AN EVALUATION OF THE ATTENUATION MECHANISMS FOR DISSOLVED AROMATIC HYDROCARBONS FROM GASOLINE SOURCES IN A SANDY SURFICIAL FLORIDA AQUIFER

Ву

JOSEPH TIMOTHY ANGLEY

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

Copyright 1987 by Joseph T. Angley

ACKNOWLEDGEMENTS

My sincere thanks are extended to my committee chairman, Dr. Lamar Miller, for his insight and support during this research. Special thanks are also extended to my cochairman, Dr. Joseph J. Delfino, for his guidance and thoughtful criticism. I would also like to thank Dr. Paul Chadik, Dr. Peter Nkedi-Kizza and Dr. Daniel Spangler for their generous assistance in the design and interpretation of these experiments. My thanks also go to Dr. Suresh Rao for his probing questions and criticisms and for the kind use of his laboratory.

The work presented in this dissertation could not have been accomplished without the support and assistance of many of my colleagues. My sincere thanks are extended to Mr. Norman Cabrera for his valuable assistance with several laboratory experiments, and to Mr. Gene Killan, Ms. Vicki Card and Mr. Ben Horenstein for their help in the collection of field samples and maintenance of the field site. I would also like to thank Ms. Robin Mitchell for her work on the microbial analyses, Mr. Jimmy Yeh for his work on GC analyses, Ms. Linda Lee for her help in setting up the column studies, and Mr. Bill Davis for his expert assistance with gas chromatography and quality assurance procedures.

Finally, this work would not have been possible without the love, support and friendship provided by my wife Beth. I also thank my family for their financial support during my many years of schooling.

This research was funded through a research grant from the Institute for Food and Agricultural Sciences.

TABLE OF CONTENTS

			page
ACKNOW	VL EDGI	EMENTS	iii
LIST (OF TAE	BLES	vii
LIST	OF FIG	gures	x
ABSTRA	ACT		xii
CHAPTI	ERS		
I	INTRO	ODUCTION	1
II	OBJE	CTIVES	6
III	LITER	RATURE REVIEW	7
	3.1	Introduction	7
	3.3 3.4 3.5 3.6	Contamination	7 10 13 24 33
IV	MATE	RIALS AND METHODS	34
	4.11 4.12	Introduction. Site Description Aquifer Material Choice of Solutes. Hydrocarbon Analyses. Hydrolysis Studies Batch Sorption Studies Column Sorption Studies Hydrogen Peroxide Evaluation Batch Biodegradation Studies Field Studies	34 34 35 38 40 42 43 45 47 48 53
V	RESU	LTS AND DISCUSSION	59
	5.1 5.2 5.3 5.4	Introduction	59 59 61 61

	5.5 Breakthrough Curves for Aromatic Solutes 5.6 Evaluation of Sorption Models 5.7 Comparison of Mixed Solute and Single	79 93
	Solute Retardation	106
	Reactivity	108 111 128 146 156
VI	SUMMARY AND CONCLUSIONS	168
	6.1 Summary	168 175
APPEN	DICES	
A	CHROMATOGRAPHIC CONDITIONS AND QUALITY CONTROL PARAMETERS FOR THE ANALYSIS OF AROMATIC HYDROCARBONS	179
В	FIELD SAMPLING PROCEDURES	182
С	ISOTHERM DATA FOR THE SORPTION OF STUDY COMPOUNDS TO AQUIFER MATERIALS	186
D	BREAKTHROUGH CURVE DATA FOR SORPTION OF STUDY COMPOUNDS TO AQUIFER MATERIALS	214
E	BATCH BIODEGRADATION DATA	229
F	COLUMN BREAKTHROUGH DATA FOR BIODEGRADATION COLUMNS	272
G	HYDROCARBON CONCENTRATIONS IN MONITORING WELLS AT THE LAKE ALFRED CITRUS RESEARCH AND EDUCATION CENTER.	291
00000	ENCES	306
BIOGR	APHICAL SKETCH	318

LIST OF TABLES

Table		Page
3-1	Selected physical properties of study compounds	9
3-2	Summary of adsorption data for aromatic hydrocarbons	23
3-3	Sorption coefficients of selected aromatic hydrocarbons on low organic soil	25
4-1	Experimental design for batch biodegradation experiment $\sharp 1$	49
4-2	Experimental design for batch biodegradation experiment $\sharp 2$	51
5-1	Selected physical and chemical properties of the Lake Alfred aquifer material	62
5-2	Regression parameters for the analysis of average values of equilibrium batch isotherm sorption data with the linear model	65
5-3	Regression parameters for the analysis of average values of equilibrium batch isotherm sorption data with the linear model (supressed intercept)	67
5-4	Regression parameters for the analysis of average values of equilibrium batch isotherm data with the Freundlich model	68
5-5	Ratios of sorbed concentrations calculated from Freundlich and linear equilibrium models	71
5-6	Regression parameters for the analysis of average values of equilibrium batch desorption data with the linear model	76
5-7	Regression parameters for the analysis of average values of equilibrium batch desorption data with the linear model (supressed intercept).	77

5-8	Regression parameters for the analysis or average values of equilibrium batch ! desorption data with the Freundlich model	78
5-9	Values of Dispersion calculated from the breakthrough curves of unretained solutes in laboratory columns	81
5-10	Calculated values of R, K, and K from analysis of solute breakthrough curves	87
5-11	Retardation factors calculated from leaching column and equilibrium batch isotherm data	88
5-12	An empirical index of sorption nonequilibrium (ISNE) for 12 selected aromatic solutes leaching through Lake Alfred aquifer material	90
5-13	Regression coefficients for plots of log Koc vs. log Kow and log Koc vs log WS	98
5-14	Comparison of relationships to predict Koc from Kow values	99
5-15	Regression coefficients for the relationship between log Koc and ${}^{\perp} X \dots$	104
5-16	Total average hydrocarbon values (ug/L) in the microcosms of batch biodegradation experiment $\sharp 1.$	113
5-17	Biodegradation rate constants, half lives and correlation coefficients for the fit of biodegradation experiment #1 data to a first order rate equation	116
5-18	Biodegradation rate constants, half lives and correlation coefficients for the fit of biodegradation experiment #1 data to the Thomas-slope rate equation	118
5-19	Total average hydrocarbon values (ug/L) in the microcosms of batch biodegradation experiment #2	129
5-20	Biodegradation rate constants, half lives and correlation coefficients for the fit of biodegradation experiment #2 data to a first order rate equation.	133

5-21	Biodegradation rate constants, half lives and correlation coefficients for the fit of biodegradation experiment #2 data to the Thomas-slope rate equation	135
5-22	First order biological rate constants and half-lives of aromatic hydrocarbons for the biodegradation column with flow at 0.90 mL/hr	149
5-23	First order biological rate constants and half-lives of aromatic hydrocarbons for the biodegradation column with flow at lmL/min	151
5-24	Microbial populations in a soil core taken south of the paint shop (bldg 54), June, 1986	163
5-25	Microbial populations in a soil core taken in the spray field June, 1986	163
5-26	Microbial populations in a soil core taken south of the pump house (bldg 12) july, 1986	164
5-27	Microbial populations from samples collected during instasllation of monitoring wells RAP-5 amd RAP-6, September, 1986	165
5-28	Water chemistry parameters from selected monitoring wells at Lake Alfred CREC, 1986	166

LIST OF FIGURES

Figure		Page
4-1	Site plan of the field research site at the Citrus Research and Education Center, Lake Alfred, Fl	36
4-2	Extent of the hydrocarbon plume at the field research site as of October, 1986	37
5-1	Approach to equilibrium for several aromatic solutes on Lake Alfred aquifer material	63
5-2	Freundlich sorption isotherm for benzene at equilibrium	73
5-3	Freundlich sorption isotherm for toluene at equilibrium	74
5-4	Breakthrough curve for chloride for a 5 cm sorption column	80
5-5.	Breakthrough curve for benzene from Lake Alfred water ($C_0 = 4700 \text{ ug/L}$)	83
5-6	Breakthrough curve for toluene from Lake Alfred water (C $_{0}$ = 2600 ug/L)	84
5-7	Breakthrough curve for n-propylbenzene from Lake Alfred water (C $_{0}$ = 1000 ug/L)	85
5-8	Log \mathbf{K}_{oc} vs. log \mathbf{K}_{ow} for study compounds	95
5-9	Log K (from column data) vs. log WS for study compounds	97
5-10	Regression equations for several models describing the relationship between K and K: (a) Curtis et al., 1985 (B) Schwarzenbach and Westall, 1981 (c) this	101
5-11	study (d) Briggs, 1981 (e) Chiou et al., 1983 Log K vs. 1x for aromatic solutes (a) in this	101
2-11	study and (b) from Sabljic (1987)	103
5-12	Breakthrough curve for benzene (single solute) spiked into RAP-2 well water (Co = 4000 ug/L)	107

3-13	addition of 50% hydrogen peroxide and aquifer material	110
5-14	Relative concentration vs. time for five aromatic compounds in biodegradation treatment la	121
5-15	Relative concentration vs. time for four ${\rm ^{C}_{9}^{H}}_{12}$ compounds in biodegradation treatment 14	122
5-16	Concentration vs. time for dissolved oxygen in biodegradation treatments 1A, 1B and 1C	124
5-17	Concentration vs. time for dissolved oxygen in biodegradation treatments 1D, 1E, 1F and 1G	126
5-18	Relative concentrations of C ₆ -C ₈ aromatic hydrocarbons vs. time in biodegradation treatment 2B	137
5-19	Relative concentrations of C ₆ -C ₈ aromatic hydrocarbons vs. time in biodegradation treatment 2D	139
5-20	Concentration vs. time for dissolved oxygen in biodegradation treatments 2D, 2E and 2F	140
5-21	Electron transport activity in biodegradation treatments 2D, 2E and 2F	141
5-22	Electron transport activity in biodegradation treatments 2A, 2B and 2C	145
5-23	Breakthrough curves for aromatic compounds in column biodegradation experiments performed at a flow rate of 0.90 mL/hr	L48
5-24	Breakthrough curve for benzene in column biodegradation experiment performed at a flow rate of 1 mL/min	L52
5-25	Breakthrough curve for toluene in column biodegradation experiment performed at a flow rate of l mL/min	153
5-26	Breakthrough curve for 1,2,4-trimethylbenzene in column biodegradation experiment performed at a flow rate of 1 mL/min	154

5-27	Breakthrough curve for field tracer (NH ₄ Cl) experiment measured at RAP-10	158
5-28	Distribution of benzene (ug/L) at the Lake Alfred field site	160
5-29	Distribution of o-xylene (ug/L) at the Lake Alfred field site	162

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

AN EVALUATION OF THE ATTENUATION MECHANISMS FOR DISSOLVED AROMATIC HYDROCARBONS FROM GASOLINE SOURCES IN A SANDY SURFICIAL FLORIDA AOUIFER

bv

JOSEPH TIMOTHY ANGLEY

December 1987

Chairman: Wesley Lamar MIller Cochairman: Joseph J. Delfino Major Department: Environmental Engineering Sciences

Gasoline is a significant source of groundwater contamination in Florida. This results from the large numbers of gasoline storage tanks, high rainfall, reliance on groundwater-based potable water supplies and the hydrogeology of Florida. Sorption, biodegradation and hydrolysis of dissolved aromatic hydrocarbons (all isomers of $C_6H_6-C_9H_{12}$) were determined in multicomponent experiments with natural aquifer materials under saturated conditions. Hydrogen peroxide, air, oxygen gas and ammonium chloride treatments were evaluated as methods to enhance microbial degradation of aromatic hydrocarbons. The solutes and sorbents were from a gasoline contaminated aquifer in central Florida. This site was typical of sandy surficial

aquifers in Florida with a low organic carbon content (0.015%). The aquifer was composed primarily of fine to medium grained sands.

Hydrolysis was not a significant removal mechanism for the selected aromatic solutes. Equilibrium batch isotherms and column studies determined sorption coefficients for aromatic solutes ranging between 0.045 and 0.1 with retardation values between 1.36 and 2.40. Column breakthrough curves exhibited minimal effects of adsorption non-equilibrium. Sorption isotherms were linear through the concentration range tested and no significant hysteresis was noted. Partitioning and surface dependent adsorption were evaluated by regression of column ${\rm K}_{\rm OC}$ data with literature values of ${\rm K}_{\rm OW}$, water solubility and first order connectivity indices. No single model fully described the sorption process, and the sorption mechanism appeared to be a combination of several processes. Competitive solute interactions were not shown to be significant.

Column biodegradation experiments with acclimated microorganisms were performed at flow velocities close to those from the contaminated aquifer. Half lives ranged from 0.940 hr for benzene to 0.086 hr for n-propylbenzene at 0.680 cm/min. Branched aromatic solutes were more easily degraded in column studies.

Batch studies demonstrated the ability of field microbes to degrade aromatic hydrocarbons to less than 0.5 ug/L given sufficient oxygen. Microbes were not phosphorus

or nitrogen limited. Hydrogen peroxide increased dissolved oxygen, but did not lead to increased hydrocarbon removal in lab studies. Ammonium chloride produced nitrifying conditions. Oxygen augmentation with air and oxygen gas was shown to enhance biological removal of aromatic hydrocarbons.

CHAPTER I

Groundwater contamination is a topic of great scientific interest and public concern. Groundwater provides approximately 100 million people with potable water in the United States (Hoag and Marley, 1986) and nearly every state contains some number of contaminated wells (Barbash and Roberts, 1986). The sources of groundwater contamination are numerous. These include seepage from lagoons and impoundments, landfills, agricultural and silvicultural practices, accidental spills and leaking storage tanks and transfer equipment.

Gasoline and petroleum products are some of the most common groundwater pollutants. The potential magnitude of this problem is evident from the volume of petroleum used in the United States. Approximately 110 billion gallons of motor fuels are stored underground each year, in an estimated 1.4 million underground storage tanks, 85% of which are unprotected steel tanks with finite lifetimes (Hoag and Marley, 1986). It is expected that 10 to 30% of these tanks may leak (Dowd, 1984).

Gasoline contamination of groundwater in Florida is a particularly serious problem. This results from the confluence of three factors: the large number of petroleum storage tanks in the state, the reliance on groundwater

based potable water supplies, and the hydrogeology of

The major sources of petroleum contamination in Florida are leaking storage tanks and pipes. The high water table in the state leads to conditions favorable for corrosion. As of February 1986 there were 455 known storage tank incidents resulting in 368 cases of groundwater contamination. The total volume of spilled gasoline exceeds 4.2 million gallons (FLDER, 1986). The remaining 60,000 petroleum storage tanks in the state provide potential sources for future groundwater pollution.

These sources of contamination are particularly significant owing to the importance of groundwater in Florida. Groundwater withdrawal for potable water use is approximately 1400 Mgal/d, comprising 87% of public water and 94% of rural water supplies. It is noteworthy that nearly 2 million residents drink untreated water from shallow private wells which are particularly prone to contamination from underground storage tanks (Fernald and Patton, 1984).

Hydrogeology is the third factor which contributes to the sensitivity of Florida's water supplies to gasoline contamination. Most of the potable water aquifers are surficial or intermediate in depth, and are susceptible to contamination. In addition, the generally porous nature of top soil in the state enhances pollutant transport to the underlying aquifers. Most soils in Florida are sandy loam,

sandy clay and sandy clay loams, all of which are noted for their relatively high permeabilities (Fernald and Patton, 1984). The sandy deposits of the Pliocene and Pleistocene ages common to Florida are also marked by low organic carbon and clay content (Fetter, 1980), resulting in high permeability and low sorptive capacity.

Given the magnitude of this problem, the transport and environmental reactions of dissolved gasoline components in shallow sandy aquifers is an important area of study. This is particularly true of the aromatic constituents of gasoline, owing to their toxicity, concentrations in gasoline and their high aqueous solubility. Gasoline products which are released into the vadose zone travel downward under the influence of capillary and gravitational forces. When the sorptive capacity of the soil is exceeded, gasoline moves onto the groundwater table, where it spreads laterally across the top of the saturated zone. This is a result of the density of gasoline (0.7-0.75 g/cm³). Gasoline components partition into the water to the extent of their water solubility, and move in the direction of the water table gradient.

Physical, chemical and biological factors must all be considered in the determination of the fate and transport of dissolved gasoline hydrocarbons in groundwater. The interaction of these factors may be conveniently examined in the context of a generalized mass transport equation. A one-dimensional form of this equation is

$$\partial C/\partial t = D_h (\partial C/\partial x^2) - v(\partial C/\partial x) - p/\theta(\partial S/\partial t) - Q_i$$
 [1.1]

where C = solution phase concentration of solute (ug/L)
S = adsorbed phase concentration of solute (ng/g)
0 = volumetric water content (mL/cm³)
t = time (min)
x = horizontal distance (cm)
p = bulk density (g/cm³)
D = hydrodynamic dispersion coefficient (cm²/min)
V = average pore water velocity (cm/min)
Q = degradation rate (min¹)

The components of this equation are convection, dispersion, sorption and degradation terms. Convection describes the movement of a dissolved contaminant with the groundwater. Dispersion describes the spreading of the solutes during flow through the aquifer material. Sorption terms account for the retardation of the dissolved solutes by interaction with the aquifer matrix, and degradation terms evaluate the removal or transformation of the contaminants. Research has shown that sorption and biological degradation are the major attenuation mechanisms for organic solutes in soils and groundwater (Woodburn, 1985).

Mathematical models based on such equations are important tools for the prediction of contaminant movement (Pinder, 1984). However, the adequacy of these predictions is directly related to a knowledgeable and accurate quantification of the processes involved (MacKay et al., 1985). The remediation of groundwater contamination also

requires detailed and usually site specific data for these processes.

This dissertation presents a detailed investigation of the attenuation of selected dissolved aromatic gasoline hydrocarbons in a typical sandy surficial aquifer in Florida, using a variety of batch and column techniques. Sorption coefficients and biological and abiotic degradation rates from laboratory studies are presented. These studies simulated conditions at a contaminated field site and included experiments to assess various treatment alternatives. Actual field data are summarized, and compared to the laboratory data.

The improved understanding obtained from the collection and analysis of these data should aid in the formation and improved use of predictive models describing the movement and reaction rates of water soluble components of gasoline in shallow groundwater systems and aid in the selection of appropriate groundwater reclamation technologies.

CHAPTER II OBJECTIVES

The main objectives of this study were:

- (1) To evaluate the sorption coefficients for 12 selected aromatic hydrocarbons found in water at the Lake Alfred research site, employing batch isotherms and soil columns:
- (2) To determine the rates of hydrolysis of the 12 selected aromatic hydrocarbons;
- (3) To determine the rates of biodegradation of the 12 selected aromatic hydrocarbons under simulated field conditions, and after treatment with hydrogen peroxide, oxygen gas and ammonium chloride;
- (4) To determine the most appropriate predictive model for sorption of the 12 selected aromatic hydrocarbons in a sandy surficial aquifer in Florida;
- (5) To correlate molecular properties of the selected aromatic hydrocarbons with sorptive and biological parameters:
- (6) To evaluate field data based on the laboratory measurements of sorption and biodegradation and
- (7) To extrapolate the laboratory data for application of aquifer remediation practices.

CHAPTER III

3.1 Introduction

This chapter presents a review of the pertinent literature for the reactions of gasoline derived aromatic hydrocarbons in groundwater. The major areas of discussion are the environmental effects of gasoline contamination, the use of advection-dispersion transport models, the sorption of aromatic compounds to aquifer materials, and the biodegradation of aromatic compounds in groundwater systems.

3.2 Environmental Effects of Gasoline Contamination

Gasoline is a complex mixture of many hydrocarbon compounds. A typical gasoline contains between 150-250 identifiable hydrocarbon components (Sanders and Maynard, 1968) consisting of alkane, alkene, aromatic and napthene hydrocarbons. Automobile gasolines are comprised of ${\rm C_5-C_{12}}$ hydrocarbons with boiling points in the range 32-210 C. Unleaded gasolines contain greater concentrations of aromatic hydrocarbons to provide for anti-knock protection and branched hydrocarbons to increase octane ratings (Moore and Moore, 1976).

Despite the large number of hydrocarbons comprising gasoline, much of the environmental concern focuses on the water soluble components of gasoline, particularly the single ring aromatic compounds. These compounds are of concern based on their toxicity, aqueous solubility and concentration in gasoline (Barker and Patrick, 1985). Acute toxicity is associated with the water soluble fraction of oils (Blumer et al., 1973) and the major components of the water soluble fraction are aromatic (Coleman et al., 1984). Data from the work of Coleman et al. (1984) showed that although aromatic components made up only 50% of the unleaded gasoline product in their study, 87-95% of the components in the water soluble fraction were aromatic. Thus in a spill situation a significant amount of the contaminants in the water phase will be aromatic. Selected physical properties of the compounds used in this study are listed in Table 3-1.

The health effects from the use of gasoline contaminated water may be significant. Benzene is a carcinogen in rats and mice and exposure is linked with leukemia (USPHS, 1981). The maximum contaminant level for benzene in community drinking water supplies is 1 ppb in Florida. Toluene, ethylbenzene and m-xylene affect the central nervous system (Windholtz, 1976). Unleaded gasoline induces renal and hepatocellular carcinomas in rats and the use of petroleum contaminated water can produce elevated levels of indoor air pollutants allowing chronic exposure to

Table 3-1. Selected physical properties of study compounds.

Compound	Molecular ^a Weight, Sol AMU	iolecular ^a Water ^b Weight, Solubility, AMU mg/L	Boiling ^a Point, °C	Boiling ^a Point, Density, ^a °C g/ml	a log ^C Kow	1 X ^d
Benzene	78.11	1740-1791	80.1	0.8675	1.56-2.28	3.000
Toluene	92.13	515- 724	110.6	0.8669	2.11-2.73	
Ethylbenzene	106.2	131 - 208	136.2	0.8670	3.15	3.932
m,p-Xylene	106.7	134- 196	139.1	0.8642	3.18	
1			138.4	0.8611		
o-Xylene	106.7	142 - 213	144.4	0.8802	2.77-3.13	3.805
3,4-Ethyltoluene	120.2	40	161.3	0.8645		4.326
			162.5	0.8616		
1,3,5-Trimethylbenzene	120.2	48- 92	164.7	0.8652	3.42-3.60	4.182
2-Ethyltoluene	120.2	40	165.2	0.8807		4.343
1,2,4-Trimethylbenzene	120.2	52- 59	169.3	0.8758		4.198
1,2,3-Trimethylbenzene	120.2	75	176.1	0.8944	3.60	4.215
Isopropylbenzene	120.2	48- 73	165.4	0.9106	3.60	4.305
n-Propylbenzene	120.2	55	159.2	0.8620	3.57-3.68	4.432

^aCRC Handbook of Chemistry and Physics, 1980.

^bBrookman et al., 1985.

CLeo et al., 1971.

d_{Sabljic}, 1987.

hydrocarbons (Shehata, 1985). Dermal absorption of volatile organic contaminants from gasoline may also be a significant exposure (Brown et al., 1984).

Fire and explosion hazards are also a risk factor in the release of gasoline to the environment. Volatilization and subsequent gas phase transport of hydrocarbons in the unsaturated zone have destroyed buildings (Hoag and Marley, 1986).

3.3 Convective-Dispersive Models

The cogent evaluation of contaminant plumes, remedial action alternatives, and risk assessment for organic compounds in groundwater requires a thorough understanding of the behavior of these contaminants in groundwater systems. This includes an assessment and quantification of the relevant processes which influence their fate and transport (Miller and Weber, 1984).

The interaction of these processes may be examined in the context of convective-dispersive models. These models have been reviewed (Anderson, 1979, Freeze and Cherry, 1979) and are marked by their computational simplicity, reasonable data requirements and sufficiently accurate output (Roberts et al., 1985). Although the adequacy of convective-dispersive models for describing solute transport has been questioned (Anderson, 1979, Smith and Schwartz, 1980), particularly with regard to dispersivity

approximations, these models provide a convenient framework for understanding the transport of dissolved solutes in groundwater.

The general form of the solute transport equation under saturated flow conditions is given by Bear (1979). A onedimensional form of this equation for conservative contaminants under steady flow conditions is

$$\partial C/\partial t = D_h(\partial^2 C/\partial x^2) - v(\partial C/\partial x)$$
 [3.1]

solution phase concentration of solute (ug/L)

sorbed phase concentration of solute (ng/g) D_h = hydrodymanic dispersion coefficient (cm²/min) t = time (min)

x = horizontal distance (cm)

v = average pore water velocity (cm/min)

The major components of this equation are convection (bulk flow) and dispersion (deviation from bulk flow). A brief discussion of dispersion follows, with reference to extrapolation of laboratory data to field scale applications.

The hydrodynamic dispersion coefficient describes the spreading of a solute as it moves through porous media. Hydrodynamic dispersion (D_h) is the sum of mechanical dispersion, caused by differences in water velocity through sinuous and tortuous pores, and molecular diffusion (Biggar and Nielsen, 1962). Dispersion values reflect the heterogeneity of the aquifer material. Dispersion is usually determined by measuring the breakthrough of a conservative tracer such as chloride or tritiated water.

The physical and mathematical relationships of water and solute transport were reviewed by Davidson et al. (1983). Solute dispersion was noted to occur because of macroscale spatial changes in the direction and magnitude of water flow. The continuum approach to mathematically describe water and solute transport in laboratory soil columns was shown to be reasonably successful.

In practice, laboratory measurements and theory may be of little value in predicting dispersion in natural aquifers. Laboratory columns give dispersivity estimates on the order of centimeters, whereas field scale dispersion is usually in meters (Bedient et al., 1985). This is a result of the greater heterogeneity of a field site versus a small homogeneous laboratory column. A solution for equation [3.1] for a finite column using dimensionless variables was presented by Brenner (1962). The dimensionless Peclet number (Pa) was used as a measure of dispersion:

$$P_{p} = vL/4D_{h}$$
 [3.2]

where v is pore water velocity (cm/min), L is the length (cm) of the soil column and D_h is the hydrodynamic dispersion coefficient (cm $^2/\text{min}$). For values of $P_e > 100$ dispersion is assumed negligible. Values of $P_e < 10$ generally indicate complete mixing. Boundary conditions for displacement experiments through short laboratory columns were reviewed by van Genuchten and Parker (1984). The solution of Brenner (1962) was shown to correctly conserve mass in finite laboratory soil columns, based on mass

balance considerations. For a flux type inlet boundary condition (flowing concentrations), Brenner's solution was applicable provided the column Peclet number was not much less than five. The solution of Lapidus and Amundson (1952) was recommended to evaluate flux averaged concentrations in finite laboratory columns or semi infinite field profiles.

3.4 Sorption of Aromatic Compounds

Sorption is a major mechanism in the attenuation of organic solutes in the saturated zone. Solutes differentially sorb onto aquifer materials and thus are retarded in their movement through the subsurface, resulting in a chromatographic like separation of the soluble constituents of a plume, with groundwater as the mobile phase.

Sorption describes the transfer of solutes from a liquid phase to a solid phase (Miller and Weber, 1984). In this literature review the liquid phase is assumed to be water, containing solubilized organic solutes and the solid phase is the aquifer material under saturated, steady flow conditions. Sorption is influenced by the physical and chemical characteristics of the aquifer (ie., soil type, fraction of organic carbon), and the solute (ie., solubility, volatility, density).

Although sorption is a major component in the attenuation of solutes in the subsurface, the fundamental

processes of solute-soil interaction and the thermodynamics of this process are not completely characterized. Therefore, sorption is used in this study as a generic term to describe solute retention (ie. uptake of solute), regardless of whether the process is one of adsorption, absorption or partitioning (Woodburn, 1985). Desorption is used here to describe solute removal from the solid phase.

3.4.1 Sorption Processes

The attractive forces acting to effect sorption of hydrophobic compounds onto natural sorbents were reviewed by Voice and Weber (1983). The major theory is discussed below.

Bonding forces in sorption may be both physical and chemical, though both are basically electrostatic in nature. Physical sorption results from Van der Waals forces. The strength of these interactions is generally on the order of 1-2 Kcal/mole. These energies may be augmented by a thermodynamic gradient driving hydrophobic molecules out of solution. This is based on entropic considerations (solvophobic theory).

Chemical sorption is the interaction between specific sites of the sorbent and individual solute molecules. This approximates a true chemical bond with heats of adsorption between 15-50 Kcal/mole. Voice and Weber (1983) point out that it is difficult to assess the importance of each type of bonding. The heterogeneous nature of natural sorbent materials is largely unknown, and sorption processes probably involve all types of interactions.

3.4.2 Sorption Equilibria

Two experimental techniques are widely used to evaluate the 3S/ 0t term in equation [1.1]. These are batch equilibrium and soil column methods. Batch studies allow the evaluation of the linearity of the sorption isotherm and their use is well documented (Schwarzenbach and Westall, 1981, Chiou et al., 1979). The most widely used models to describe sorption equilibria in groundwater systems are the linear [3.3] and Freundlich models [3.4] (Miller and Weber, 1984):

$$S = K_d * C$$
 [3.3]

$$S = K_f * C^n$$
 (n < 1) [3.4]

where S (ug/g) and C (ug/L) are the adsorbed phase and solution phase concentrations respectively at equilibrium, $K_{\bar d}$ (L/g) is the linear sorption coefficient, $K_{\bar f}$ (L/g) is the Freundlich sorption coefficient (both $K_{\bar d}$ and $K_{\bar f}$ indicating sorption capacity) and n is an empirical constant (indicating sorption intensity). The linear model is in effect, a special case of the Freundlich model where n=1. The Freundlich equation is often linearized (log transformed) to facilitate calculation of variables $K_{\bar f}$ and n in batch studies:

$$\log S = n * \log C + \log K_f$$
 [3.5]

In column studies $K_{\hat{d}}$ is evaluated through the retardation factor (R). The mass transport equation for reactive solutes under steady flow is described by equation [3.6]:

$$\partial C/\partial t + p/\theta \partial S/\partial t = D_h \partial^2 C/\partial x^2 - v \partial C/\partial x$$
 [3.6]

where p is the bulk density, 0 is the volumetric water content and S is the sorbed phase concentration. Note that equation [3.6] is equivalent to equation [3.1] with the addition of the sorption term 3S/3t. Assuming linear, reversible sorption, the sorbed concentration of a solute is related to the aqueous concentration of the solute by the relationship:

$$\partial S/\partial t = K_d \partial C/\partial t$$
 [3.7]

Substitution for $\Im S/ \Im t$ in equation [3.6] with equation [3.7] yields the relationship:

$$\partial C/\partial t + \kappa_d \partial C/\partial t (p/\theta) = D_h \partial^2 C/\partial x^2 - v \partial C/\partial x$$
 [3.8]

After separation of variables equation [3.8] becomes

$$R = 1 + p K_A/\Theta$$
 [3.10]

substitution of equation [3.10] into [3.9] results in the incorporation of the retardation factor (R) into the mass transport equation for solute transport under saturated steady flow conditions:

$$R \partial C/\partial t = D_h \partial^2 C/\partial x^2 - v \partial C/\partial x$$
 [3.11]

Analysis of equation [3.10] indicates that the value of R is largely dependent on K_d for a homogeneous aquifer system or laboratory column. Determination of R from soil

column studies leads to the evaluation of $K_{\mbox{\scriptsize d}}$ from equation [3.10]. Nkedi-Kizza et al. (1987) compared techniques for the calculation of R from soil column leaching experiments and from batch isotherm experiments. Values of R calculated by determining the area above the breakthrough curve were shown to be equivalent to R values calculated by using equation [3.10].

3.4.3 Sorption Estimators

Recently, approximation methods based on the assumption of partitioning as the dominant method of solute interaction have become common (Karickhoff et al., 1979, Chiou et al., 1979, Kenaga and Goring, 1980, Chiou et al., 1983). Their use is largely a result of the time and difficulty in the accurate measurement of sorption coefficients (K_d), and the general lack of data on hydrocarbon sorption to environmental sorbents. These authors note a correlation between the fractional organic carbon content of the sorbent material (f_{oc}) and K_d . The K_d normalized to f_{oc} of the sorbent is described as K_{oc} where:

$$K_{oc} = K_{d}/f_{oc}$$
 [3.12]

Values of $K_{\rm oc}$ is well correlated with aqueous solubility (WS) (Chiou et al., 1979) and the octanol-water partition coefficient $(K_{\rm ow})$ (Karickhoff et al., 1979). These authors suggest that the solute-sorbent interaction is a partitioning process rather than an interaction between solute and the mineral surface. Evidence for partitioning is partially supported by the hydrophobic character of soil

organic matter, and by solvophobic theory (Rao et al., 1985). The general relationship between $K_{\mbox{oc}}$ and $K_{\mbox{ow}}$ and WS takes the form (Curtis et al., 1986):

$$Log K_{oc} = a * Log K_{ow} + Log f_{oc} + b$$
 [3.13]

$$Log K_{oc} = c * Log WS + Log f_{oc} + d$$
 [3.14]

where a,b,c, and d result from regression analysis of laboratory isotherm data and depend on the solute-sorbent system.

However, there are significant limitations on the use of these estimators, and the basis of partitioning as a sorption mechanism is questionable (Milgelgrin and Gerstl, 1983). In a strict sense, these relationships hold only for those compounds and sorbents used in the original studies (i.e., these are empirical relationships). This is reflected in orders of magnitude variation in estimates of sorption using these relationships. Application of the partitioning models may not be appropriate in experimental systems with solutes and sorbents which are different from those used to develop these models. In addition, these equations may not apply at organic carbon fractions less than 0.1% (Curtis et al., 1986). Rao and Jessup (1983) noted that the use of $K_{\overline{QC}}$ to estimate sorption can lead to significant errors with soils with very low (less than 0.1%) organic carbon contents.

Milgelgrin and Gerstl (1983) reviewed the evidence for partitioning and noted that a correlation between the organic carbon content of the soil and sorption was not

universally significant. These authors cited several studies where removal of organic carbon from a soil actually increased the amount of sorption, or had no negative effect on the sorption values. These authors suggested that molecular structure of the solute may be a better predictor of sorption to sediments than water solubility or octanol/water partition coefficients. This results from the observation that with a relatively rigid adsorbing surface, the conformation of the solute molecule will greatly affect its adsorption (i.e., steric effects), but not its partitioning between an organic phase and water.

Recently, first order molecular connectivity indexes (1 X) were shown to be well correlated with K $_{\rm OC}$ values (Sabljic, 1984, Sabljic, 1987). Molecular connectivity is described as a quantitative measure of the area occupied by the projection of the non-hydrogen skeleton of a molecule. The correlation between K $_{\rm OC}$ and the first order molecular connectivity index supports the contention that the process of soil sorption may be viewed as an attractive interaction between two planes, with the magnitude of the interaction directly proportional to the surface area of the molecule. This suggests that the soil sorption and partitioning process reflect different mechanisms. An accurate model of sorption may include both partitioning and surface area dependent affects.

The relationship between κ_{oc} and $^1 x$ is (Sabljic, 1987):

$$Log K_{QQ} = 0.53 * {}^{1}X + 0.54$$
 [3.15]

This relationship is based on literature values of $K_{\rm oc}$ from laboratory experiments with 72 compounds covering a broad range of polarities and classes, and a variety of sorbent systems. The correlation coefficient is 0.976 which explains 95.2% of the variance.

3.4.4 Desorption

In most cases sorption is considered to be completely reversible, that is, the adsorption-desorption isotherms are reversible and single valued. However, several investigators report desorptions which display hysteresis in batch studies (Bailey and White, 1970, Boucher and Lee, 1972, Carringer et al., 1975, DiToro and Horzempa, 1982). Van Genuchten et al. (1974) found that the exponent for desorption is concentration dependent, and described the hysteretic behavior by using separate isotherm equations for sorption and desorption:

$$S_s = K_{ds} C_s$$
 ns [3.16]

$$S_d = K_{dd} C_d^{nd}$$
 [3.17]

where subscripts s and d indicate sorption and desorption respectively. Hysteresis in column studies was noted by Schwarzenbach and Westall (1981), although the reaction was termed reversible, since all the solute was eventually eluted from the column.

3.4.5 Sorption Kinetics

Hysteretical behavior may actually be a manifestation of sorption-desorption kinetics. Rao and Jessup (1983) noted that the influence of non-singular isotherms (ie., isotherms which display hysteresis) on solute movement may be less significant than the effects of sorption nonequilibria. In a study of the transport of pesticides at high concentrations, Rao and Davidson (1979) noted that the position of an adsorbed solute in a breakthrough curve was governed by the nature of the equilibrium adsorption isotherm equation, whereas the shape of the curve was defined by the kinetics of the sorption-desorption process.

Sorption reactions between hydrophobic pollutants and sediments are generally rapid and not rate limited (Weber et al., 1983). Rao and Davidson (1980) concluded that many sorption reactions are complete within one minute in batch slurry experiments, although longer times to equilibrium were noted in several studies (Karickhoff et al., 1979, Miller and Weber, 1984). Schwarzenbach and Westall (1981), in a comparison of solute breakthrough at various flow velocities, concluded that K_{d} values from column experiments where velocity was less than 10^{-3} cm/second were similar to K_{d} values from 18 hour equilibrium batch studies.

3.4.6 Aromatic Sorption Values From The Literature

There are few data in the literature addressing sorption of dissolved gasoline components in the subsurface. Much of the research involved aromatic compounds in single

solute experiments, simple mixtures, or data from crude oil studies.

Houzim (1978) observed a decrease in sorption in the order alkenes > aromatics > cycloalkanes > alkanes.

Nathawani and Phillips (1977) in a study of hexadecane, o-xylene, toluene and benzene in crude oil on soils of varying organic matter presented sorption coefficients based on Freundlich isotherms. Rodgers et al. (1980) reported the adsorption and desorption of benzene on several soils and clays at 25 C. The aqueous phase concentration range was 10 to 1000 ug/L. Sorption of benzene was minimal, except on aluminum saturated clay. These data are summarized in Table 3-2.

Wilson et al. (1981) evaluated the sorption of toluene on a fine sand in a column study. A retardation factor less than 2 for the concentration range of 200-900 ug/L was reported. This indicates the relatively low retardation potential of sandy aquifers. The retardation factor describes the extent of solute transport relative to water. The retardation factor for water is defined as unity. Solutes with large retardation factors are less mobile and and their movement is retarded, relative to that of water.

Schwarzenbach and Westall (1981) presented data for the sorption of several chlorinated and alkyl benzenes on twelve natural aquifer materials with varying amounts of organic carbon. The initial concentrations of the alkylbenzene components were 20 ug/L. Sorption coefficients from batch

Summary of adsorption data for aromatic hydrocarbons. Table 3-2.

	Percent	Benzene	ene	Toluene	ene	o-Xy	o-Xylene
Soil	Organic Content	1/u	M	1/n	M.	1/n	×
Silty Clay	16.2	1.272	3.23	1.008	3.52	0.947	0.947 11.03
Sandy Loam	10.8	1.298	0.583	1.002	2.69	0.707	4.77
Silty Clay	1.7	1.366	0.003				
Silt Loam	1.0	1.51	0.028	966.0	0.931	1.098	0.62
Silty Clay Loam	2.6	0.89	2.4				
Silty Clay Loam	1.8	0.94	1.8				
Al saturated Montmorillonite	0	1.08	30.9				
Cu saturated Montmorillonite	0	0.99	4.4				

Adapted from Brookman et al., 1985.

studies of a soil with low organic carbon (0.0015 g_{oc}/g soil) are shown in Table 3-3.

As may be noted from this short review, most of the above studies involve data from individual components or from oil based products. Given the differences in composition among these petroleum products and gasoline, extrapolation may be insufficient to provide accurate data (Brookman et al., 1985).

3.5 Biodegradation of Aromatic Hydrocarbons in Groundwater

Biological activity is an important process in the attenuation of gasoline hydrocarbons in the subsurface environment. This realization is only recent. Early techniques for the enumeration of microbes in the subsurface (Waksman, 1916) underrepresented the numbers of microbes in the subsurface, showing a decline in population with depth. These data resulted from the use of nutrient rich growth media, inappropriate for the enumeration of groundwater bacteria (Wilson and McNabb, 1963).

Recent work shows that more substantial populations of heterotrophic organisms exist in shallow water table aquifers than were previously thought. Wilson et al. (1983a) demonstrated that the numbers of organisms were relatively constant to a depth of six meters in a shallow water table aquifer. The populations of heterotrophic bacteria were estimated to be approximately 10⁶ organisms/gram dry weight soil (Ghiorse and Balkwill, 1985).

Table 3-3. Sorption coefficients of selected aromatic hydrocarbons on low organic carbon soil.

	K _d		
Compound	average	standard deviation	
Toluene	0.37	0.12	
p-Xylene	0.50	0.10	
1,3,5-Trimethylbenzene	1.00	0.16	
1,2,3-Trimethylbenzene	0.95	0.11	

Source: Schwarzenbach and Westall, 1981.

A review of the techniques for the enumeration and estimation of microbial biomass were presented by Atlas (1982) and Webster et al. (1985). Bouwer and McCarty (1884) noted that the majority of bacterial activity was associated with bacteria attached to surfaces. This results in the formation of biofilms, which are favored in low substratehigh surface area conditions. The biofilm may also present an active surface with solutes sorbing to the surfaces of microbial cells. In terms of the advection-dispersion models, the rates of biological degradation are incorporated into the model through the sink term $\mathbf{Q}_{\hat{\mathbf{1}}}$, which describes the microbial degradation of solutes from the aqueous phase. $\mathbf{Q}_{\hat{\mathbf{1}}}$ is defined as:

$$Q_i = -k \theta C$$
 [3.18]

where k is the rate of biological degradation (\mathtt{T}^{-1}) , 0 is the volumetric water content $(\mathtt{ml/cm}^3)$ and C is the solution phase concentration of a solute $(\mathtt{ug/L})$.

3.5.1 Environmental Factors Affecting Biodegradation

Many factors can affect the transformation of organic contaminants in the subsurface. McCarty (1984) included low substrate concentrations, toxic conditions, molecular structure of the substrate, inaccessibility of the substrate, and absence of essential growth factors Biological activity is often limited by certain metabolic requirements of the cell, supplied from the environment. Important geochemical properties include pH. redox potential, nitrogen and phosphorus concentrations and the

availability of an appropriate electron acceptor. Oxygen is used as the ultimate electron acceptor for aerobic degradation processes and is often a limiting factor in the degradation of hydrocarbons. Molecular oxygen is also essential to the aerobic metabolism of aromatic compounds, because it is incorporated into the structure of the metabolic products (Evans, 1977). The biochemistry of the aerobic metabolism of aromatic compounds is well established (Dagley, 1975). The first step in this metabolic pathway is the removal of side chains, followed by the enzyme (oxygenases) mediated hydroxylation of the aromatic ring. Assuming 50% conversion of carbon to biomass and incomplete oxidation of the hydrocarbon molecules, two parts of oxygen are required for the degradation of each part hydrocarbon (Wilson et al., 1986). The complete oxidation of hydrocarbon molecules to CO, and H,O may require three to four parts of oxygen per part hydrocarbon.

There is some evidence for the anaerobic biodegradation of aromatic compounds in the environment. In the absence of oxygen, nitrates, sulfates and CO₂ become electron acceptors. Bouwer and McCarty (1984) presented a review of these processes. Nitrate respiration (<u>Psuedomonas</u> and <u>Moraxella sp.</u>) and methanogenic fermentation processes can reduce the benzene nucleus followed by hydrolysis to yield aliphatic acids (Evans, 1977). Wilson and Rees (1985) showed the anaerobic degradation of benzene, toluene, xylenes and alkylbenzenes under methanogenic conditions.

Over a six week period only toluene showed substantial degradation, but after 40 weeks, benzene was reduced by 72%, toluene by 99%, ethylbenzene by 74% and o-xylene by 78%. Nutrient addition decreased the rate of hydrocarbon removal. The metabolic products from the anaerobic degradation of the aromatic molecules were not investigated. Nitrate respiration of xylene in a river alluvium was demonstrated by Kuhn et al. (1985). However, anaerobic biotransformations occur extremely slowly (months), relative to aerobic processes which may be completed in a matter of hours (Wilson, 1985).

Physical properties of the aquifer also play an important role in determining the extent of microbial degradation. Porosity and hydraulic conductivity are significant parameters since the resupply of oxygen, substrate and nutrients to the microbial cells must come via the groundwater.

The concentration of the contaminant substrates is an important factor in the extent of biodegradation. High concentrations may result in incomplete degradation resulting from rapid depletion of oxygen and high substrate concentrations may also lead to increased acclimation times. Jensen et al. (1985) demonstrated an increase in the time required for acclimation (lag time) of bacterial cultures with increasing concentrations of napthelene. Lag times prior to substantial microbial degradation of a solute or nutrient reflects the time required by the indigenous

microflora to adapt to the added substance. Adaption is a phenomenon rather than a mechanism or process, and the term refers to an increase in the rate of biotransformation of a substance resulting from exposure to that substance (Wilson et al., 1983b). Low solute concentrations may result in the occurrence of a threshold limit, below which the microflora are unable to utilize the solute with out a cosolute (Wilson and McNabb, 1983). Jensen et al. (1985) demonstrated the degradation of aromatic molecules to less than 1 ug/L, implying that there was a very low threshold limit for the aromatic hydrocarbons. The relationship between concentration and biodegradation was reviewed by Alexander (1985). He stressed the importance of studying contaminant levels that exist in the environment.

3.5.2 Aromatic Biodegradation Values From the Literature

McKee et al. (1972) reported the oxidation of gasoline by Pseudomonas and Arthrobacter under aerobic but not anaerobic conditions. Degradation of gasoline by Pseudomonas was reported by Williams and Wilder (1971), and Litchfield and Clark (1973) showed significant numbers (10⁴ cells/mL) of hydrocarbon degrading bacteria in groundwater contaminated with petroleum hydrocarbons from twelve sites. Bacterial populations appeared to be related to the concentrations of hydrocarbons. These data indicate the adaptation of microbial communities to the changing nutrient source (i.e., gasoline). The two major mechanisms of adaptation are induction of metabolic pathways, or the

activation or transfer of plasmids (Litchfield, 1986). This ability of microorganisms to adapt to the presence of contaminants forms the basis of in-situ biodegradation.

Several researchers have reported the biodegradation of aromatic compounds in groundwater. One shortcoming of most of this research is the lack of degradation rate coefficient data, required for use in groundwater transport models, and insufficient data on solute concentrations.

Jamison et al. (1976) reported the use of benzene as a sole carbon source. No rate coefficient data were given.

McKenna and Heath (1976) noted the slow oxidation of benzene by P. putida. Delfino and Miles (1985) showed the degradation of benzene in 16 days under aerobic conditions in Floridan groundwater with an eight day lag phase.

Ethylbenzene was degraded as a sole carbon source (Gibson and Yeh, 1973), but no rate data were given. Schwarzenbach et al. (1983) found toluene rapidly degrades within several meters in a study of river water infiltration to groundwater but rate and initial concentration data were not specified.

Kappeler and Wuhrmann (1978b) in a study of gas oil degradation reported that nitrogen and oxygen were the limiting factors in hydrocarbon degradation. Addition of ${\rm NH_4Cl}$ resulted in further microbial degradation, and cell densities were on the order of $10^6/{\rm mL}$. Lag times of 5-6 days were noted in the batch experiments. Kappeler and Wuhrmann (1978a) showed that microbes from uncontaminated groundwater can attack gas oil components. Lag times of 1

day at 25 C and 5 days at 10 C were reported in column studies with mixed autochthonous flora from clean groundwater. The meta and para isomers of xylene and 1,2,4-trimethylbenzene were degraded more rapidly than o-xylene, 1,2,3-trimethylbenzene or 1,3,5-trimethylbenzene. These studies by Kappeler and Wuhrmann (1978a,b) make up the bulk of the work on degradation of alkyl substituted benzenes.

3.5.3 In-situ Biodegradation

Application of in-situ bioremediation technology for the renovation of hydrocarbon contaminated aquifers is based primarily on the work of Raymond et al. (1975a,b) and Raymond et al. (1977) at Suntech. Nutrients and oxygen were introduced with injection wells, and circulated through the aquifer with pumping wells. This technique and other bioremediation methods were reviewed by Wilson et al. (1986). These authors noted that studies are needed to investigate the effectiveness of natural biorestoration and to evaluate whether enhancement of natural processes is possible or desirable.

Transport of sufficient oxygen to subsurface microbes is a major technical problem. Oxygen is only slightly soluble in water and is quickly depleted during aerobic biodegradation. Oxygen addition by air sparging, oxygen sparging and the use of hydrogen peroxide are documented in the literature (Lee and Ward, 1984). The use of hydrogen peroxide appears particularly advantageous (TRI, 1982). Hydrogen peroxide is relatively inexpensive, nonpersistent

and is more soluble in water than air or molecular oxygen. However, it is also cytotoxic and may be chemically reduced, especially in the presence of iron salts. The biological decomposition of hydrogen peroxide is enzymatic:

where X is a biological reducing agent. Non-enzymatic decomposition occurs most frequently in the presence of iron salts:

$$OH^{\bullet} + H_{2}O_{2} ------> H_{2}O + H^{+} + O_{2}^{\bullet}$$
 [3.21]

Britton (1985) reported that hydrogen peroxide was relatively stable in combination with phosphates, even in the presence of moderate iron concentrations, and that bacterial populations can tolerate $\rm H_2O_2$ concentrations up to 500 mg/L. Hydrogen peroxide was shown (Britton, 1985) to increase microbial counts by $\rm 10^2$, but there was no reported increase in hydrocarbon removal.

3.5.4 Measurement of Microbial Activity

The reduction of INT (2-p-iodophenol-3-p-nitrophenyl-5-phenyl tetrazolium chloride) to INT-formazan by the electron transport system is a function of cell respiration, and is widely used as a general measure of microbial activity.

This technique is recommended as an index of general microbial activity of soil microorganisms (Klein et al., 1971).

Reduction of INT to INT-formazan is a sensitive assay for dehydrogenase activity. The INT-formazan is easily extracted from sediments and soils by methanol, and the INT-formazan complex is stable. Trevors et al. (1982) found a high correlation between electron transport system activity and oxygen consumption. Klein et al. (1971) presented a rapid and simple procedure for the determination of dehydrogenase activity using INT in soils with low organic carbon.

3.6 Summary

This literature review has presented some of the basic principles required as a basis for the discussion of the experimental work reported in this dissertation, and has highlighted some of the important findings relative to the dispersion, sorption and biodegradation of aromatic compounds in groundwater systems.

CHAPTER IV MATERIALS AND METHODS

4.1 Introduction

This chapter discusses the materials and experimental methods employed during this study. The field site, and the solutes and sorbents are described followed by a description of the chromatographic systems. Laboratory experiments for the determination of hydrolysis, sorption and biodegradation parameters are discussed. Finally, the field procedures and experiments are discussed.

4.2 Site Description

The field research site used for a portion of this study was located at the Citrus Research and Education

Center (CREC) at Lake Alfred, Fl. The site was located in the Trail-Ridge Lake Wales Ridge system of hills containing deep internally drained lake basins. Unconsolidated deposits in the area consisted of sand and sandy clays up to 150 ft thick above the limestone bedrock. The geology was marked by many sinkholes formed through subsidence of the unconsolidated deposits into solution cavities in the limestone (Spangler, 1984).

The research site was located on the rim of an ancient sinkhole. The surficial aquifer was composed of sand and clayey sands. An continuous clayey confining layer of uneven depth was present between 7 to 12 ft below land surface. This layer supported a saturated zone between 3 to 6 ft in thickness. Local relief was from 156 ft (above mean sea level) at the top of the hill at the eastern boundary of the site, to 131 ft in the wetland area at the west edge of the site. A site map is shown in Figure 4-1. The surficial aquifer was comprised of medium angular grained sands and fill material. The hydrology of the site was discussed by Killan (1987).

The surficial aquifer was contaminated during the spring of 1983 by the loss of 7500-8000 gallons of leaded gasoline from a storage tank. Free floating gasoline was removed by surface skimming as of May 1985. The outline of the contaminated area as of October, 1986 is shown in Figure 4-2. The plume was defined by determination of explosive gas concentrations in bore holes throughout the site. These data were confirmed by GC analysis of soil cores and the use of ground penetrating radar. These techniques were described in detail by Killan (1987).

4.3 Aquifer Material

Aquifer materials used in this research were obtained from the field research site at the IFAS-Citrus Research and Education Center at Lake Alfred Florida. A site map is

Site plan of the field research site at the Citrus Research and Education Center, Lake Alfred, FL. Figure 4-1.

Figure 4-2. Extent of the hydrocarbon plume at the field research site as of October, 1986.

shown in Figure 4-1. All experiments were carried out with subsamples of the same aquifer material. The sample was collected with a stainless steel auger just below the water table at a depth of about 4 feet, approximately 10 feet east of Well RAP-1. Care was taken to avoid contamination with surface materials by removing one foot of top soil, and through careful handling of the auger. The aquifer material was oven dried at 105 C for 24 hours, sieved through 2 mm standard sieve and stored, covered, at room temperature. Prior to use, the aquifer material was autoclaved for 90 minutes on each of three consecutive days to sterilize the materials.

Prior to sterilization and drying, selected physical and chemical properties of the aquifer materials used in the laboratory studies were characterized (pH, particle density, particle size analysis, percent organic carbon, bulk density, hydraulic conductivity, and water content) using standard methods of soil analysis (Black, 1965).

4.4 Choice of Solutes

Gasoline contaminated well water from the Lake Alfred research site was used as the source of dissolved solutes for the majority of experiments in this study. With the exception of a single solute column sorption experiment with benzene spiked in to RAP-2 water, all experiments were performed with mixtures of dissolved hydrocarbons at

concentrations occurring in the field. These concentrations are the result of the solubilization and subsequent weathering of gasoline hydrocarbons into groundwater. Well OHM-4 was used as the source of water for these experiments. This well was chosen based on consistently high levels of dissolved aromatic hydrocarbons. Hydrocarbon free groundwater was obtained from a non-contaminated portion of the aquifer (Well RAP-2). Hydrocarbon concentrations in these waters were monitored monthly. Well RAP-2 remained free of aromatic hydrocarbons throughout the course of these experiments. Concentrations of aromatic hydrocarbons varied in Well OHM-4 but remained high enough to provide samples for laboratory experiments.

Water samples were collected with a 5.1 cm (2") id poly vinyl chloride (PVC) bailer, following removal of five well volumes to allow collection of a representative sample. Well volumes were calculated based on the diameter of the well, and the depth of water in the well. These water samples were collected in four liter brown glass bottles transported on ice, and stored at 4 C upon arrival at the laboratory. The pH of these well waters ranged from 6 to 7. The conductivity was approximately 300 umhos. Total phosphate was 0.4 mg/L for RAP-2 and was 0.65 mg/L for well OHM-4. Nitrate was 0.29 mg/L in well RAP-2 and 0.20 in well OHM-4.

The single solute column experiment with benzene used RAP-2 water spiked with benzene (Aldrich, gold label 99.9%) to yield a solution of 4000 ug/L benzene.

4.5 Hydrocarbon Analyses

Gas chromatographic analyses of hydrocarbons for this study were performed on two systems. These are described below.

4.5.1 GC/MS Analyses

Field samples collected before September, 1986, and the initial hydrolysis vials were analyzed for volatile aromatic constituents using a Hewlett Packard model 5985B GC/MS/COMP system equipped with a 10 port Tekmar Automatic Liquid Sampler (ALS) and Liquid Sample Concentrator (LSC) purge and trap system. EPA method 624 was used. Separation of analytes was achieved with a 0.32 mm i.d., 30 meter long, DB-5 (1 um film thickness) fused silica capillary column (J & W Scientific), with manual liquid nitrogen cryofocusing. The 1,4 isomer of dichlorobenzene was used as an internal standard. Response factors for benzene, toluene, ethylbenzene and o-xylene were determined relative to the internal standard and used for quantitation. Response factors for meta and para xylene were assumed to be the same as the ortho isomer. A response factor of 1 was assumed for the CoH12 hydrocarbons. Chromatographic conditions were as follows:

 mass range
 45-450 amu

 Temp 1
 30 C

 Temp 2
 280 C

 Rate
 5 C/min

 Hold time
 10 minutes

 Cryofocus time
 5 minutes

 Pre-cool
 2 minutes

4.5.2 GC Analyses

Hydrocarbon analyses were performed on a Perkin Elmer model 8410 gas chromatograph with a flame ionization detector and microprocessor data system. Samples were concentrated by purge and trap with a Tekmar LSC/ALS system employing a modified version of EPA method 602. Analytical separation was achieved with a 0.53 mm i.d., 30 meter long, fused silica Megabore DB-1 (100% methylpolysiloxane) column (J & W Scientific) with a 3 um film thickness.

Benzene, toluene, ethylbenzene, o-xylene and m,p-xylene were quantified using the internal standard method (1,4 dichlorobenzene) during August and September 1986 for monthly analysis of field samples and for day = 0 hydrolysis ampules. After this date, eight isomers of C₉H₁₂ were identified and confirmed by analysis of individual standards and were quantified in all chromatograms along with BTEX (benzene + toluene + ethylbenzene + m,p,o-xylene) compounds. The internal standard was changed from 1,4-dichlorobenzene to chlorobenzene to avoid co-elution problems. A complete description of this analytical method and a summary of the quality control parameters for this method are in Appendix A.

The meta and para isomers of xylene were not resolved on either chromatographic system employed in this research. The combination of these analytes was reported as m,p-xylene. Likewise, 3-ethyltoluene and 4-ethyltoluene were not resolved with the analytical system employed in this study, and the combined concentrations of these analytes were reported in this study with the abbreviation 3,4-ethyltoluene.

4.6 Hydrolysis Studies

Hydrolysis studies were performed in 5 mL glass ampules (Fisher Scientific). Ampules were rinsed with methanol and oven dried at 105 C. Ten microliters of hydrocarbon contaminated groundwater were spiked into ampules containing 5 mL of buffer solution. Buffer solutions were prepared with non contaminated well water, and the pH was adjusted to pH = 2.0, 7.0, 9.2, and 12.0 with 0.01 M phosphate buffers. The ampules were sealed with an ampule sealer (Oceanographic International, College Station, TX), and autoclaved (1 hour at 120 C). One set of ampules was analyzed at time zero. Another set of ampules was stored in the dark at 20, 40 and 60 C and analyzed by gas chromatography (GC) after 60 days.

4.7 Batch Sorption Studies

Sorption batch studies were performed in 40 mL VOA vials with Teflon coated septa (Fisher Scientific). Vials were first filled with 60 g of aquifer material, and then autoclaved at 120 C for 1 hour on each of three consecutive days.

Water from well OHM-4, containing a mixture of dissolved aromatic hydrocarbons, was used in the batch sorption experiments. As a result, all these experiments are multisolute, at concentrations representative of those found across the aquifer at Lake Alfred.

4.7.1 Sorption Experiments

Water used in the sorption experiments was filter sterilized through 0.2 um membrane filters (Gelman Metricel) and then added to each vial. The range of solute concentrations was achieved by dilution of Well OHM-4 water with Well RAP-2 water at ratios between 1:1 to 1:1000. Each dilution was performed in triplicate. Non-soil controls (solute water with no soil) were also set up in triplicate. To minimize headspace, the vials were premixed on a rotary tumbler for approximately 1 hour to remove interstitial air and to disperse the foam that formed during mixing. The vials were then opened, completely filled with sample and recapped. A high solids to solution ratio (2.9 g/g) was used to maximize the fractional decrease in solution

concentration owing to sorption, and to more closely simulate natural aguifer conditions.

Vials used in sorption experiments were equilibrated at room temperature (20 ± 2 C) on a rotary tumbler at approximately 20 rpm for 18 hours, and then centrifuged at 800 G for 30 minutes. Samples were analyzed by purge and trap/gas chromatography. Vials used in the batch sorption kinetic rate study were sampled at 1, 2, 4, 8, 16, 24, 36 and 48 hours.

4.7.2 Desorption experiments

Desorption experiments were conducted subsequent to a sorption experiment. Following centrifugation and sampling for sorption losses, approximately 10 mL of supernatant were removed and replaced with hydrocarbon free water (Well RAP-2). The vials were re-equilibrated for 24 hours on the rotary tumbler, centrifuged and sampled. Each vial was only desorbed one time. These experiments were not designed to calculate desorption isotherms or test isotherm nonsingularity.

4.7.3 Calculation of Sorption Coefficients

The amount of solute sorbed to the aquifer material (ng solute/gram soil) was calculated by determining the difference between the solution concentration of the non-soil blanks and the soil containing vials. The amount of solute lost was divided by the solution to soil ratio to normalize the data to a ng/gram basis. Sorption coefficients were calculated by fitting isotherm data to three models; linear, linear with intercept forced through

zero, and the log normalized (Freundlich) models (Miller and Weber, 1984).

4.8 Column Sorption Studies

4.8.1 Experimental Procedures

Leaching column experiments were performed with a 25 x 250 mm glass preparative chromatography column (Altex cat. no. 252-18) with a Teflon coated adjustable plunger (Nkedi-Kizza et al., 1987). Aquifer material was dry packed into the column which was then autoclaved at 120 C for 1 hour. The solutes were pumped from 2.6 L Teflon gas sampling bags (Alltech Associates, Deerfield, IL) with a Gilson model 302 HPLC pump fitted with a model 5s pump head (Gilson Medical Electronics, Middleton, WI). The flow range of this system was 0.005 - 5.00 mL per minute. All transfer lines and connections were Teflon or stainless steel to minimize interaction of solutes with reactive surfaces. Column length was adjusted to 5.0 cm. Flow rates through the column were set at 1 ml/min (0.204 cm/min) for sorption studies. Column effluent breakthrough curves (BTCs) were measured under steady saturated water flow conditions with continuous application of solute containing water.

Effluents from the sorption columns were collected manually in 1 ml crimp seal vials. These column effluents were either analyzed immediately or stored at 4 C in 1 mL $^{\circ}$

crimp seal vials with Teflon coated septa for later analysis. All samples were analyzed within 48 hours.

The breakthrough of an unretained solute was determined for each column using calcium chloride (1 ml/min columns). Breakthrough curves were determined by spiking hydrocarbon free groundwater from Lake Alfred (RAP-2) with chloride (600 mg/L CaCL_2). Chloride analyses were performed with a chloridometer automatic titrator (Buchler-Cotlove). Chloride ion was not expected to be adsorbed owing to the low cation exchange capacity of the Lake Alfred soil.

Well water used in the sorption experiments was filtered through 0.2 um membrane filters (Gelman Metricel) directly into the Teflon bags. The bags were autoclaved prior to each use. Columns were saturated with filter sterilized water from well RAP-2 prior to the input of solute containing water.

4.8.2 Estimation of Retardation Factor (R) in Columns

Three methods were used to estimate the value of R from the column data. In method 1, retardation factors $(R_{\tilde{b}})$ were calculated by fitting the solution of Brenner (1962) to the column effluent curves. Peclet numbers used for these calculations were determined from the breakthrough of the non-retained solutes having retardation factors equal to unity. Method 2 was based on the conservation of mass principle. This method calculated retardation factors $(R_{\tilde{a}})$ by evaluating the area above the breakthrough curve using Simpson's Rule (Swokowski, 1975). The $R_{\tilde{a}}$ value was assumed

equal to the area above the BTC when the effluent concentration (C) divided by the influent concentration (C $_{\rm o}$) was plotted vs pore volume as described by equation [4.1]

$$R = \int_{0}^{pv} [1-c/c_{o}] dpv$$
 [4.1]

where pv_{max} is the total number of pore volumes displaced through the column, and pv is pore volumes (Nkedi-Kizza et al., 1987). This method assumed a mass balance existed in the soil columns. The third method set the retardation factor (R_{pv}) to equal the number of pore volumes required for the effluent concentration of each analyte to reach 0.5 of the influent concentration. The use of this method assumes that the breakthrough curve is symmetrical and sigmoidal, and that equilibrium conditions exist between the solution and sorbed concentrations during leaching through the column (Nkedi-Kizza et al., 1987). The value of K_{d} was calculated from the various R values with equation [3.10].

4.9 Hydrogen Peroxide Evaluation

The reaction rate of hydrogen peroxide in the aquifer environment was simulated by monitoring the dissolved oxygen (DO) (YSI model 5739 probe and YSI model 54A DO meter), redox potential (platinum redox electrode, Fisher Scientific) and pH (gel membrane electrode, Fisher Scientific) of well water and aquifer material in a 3 arm 500 mL reaction flask. Contaminated well water was

equilibrated at room temperature (20 \pm 2 C) in the sealed flask. Hydrogen peroxide (50%) was added undiluted in microliter quantities and at various dilutions. Aquifer material was then added to assess the ability of the material to catalyze the reaction. The 50% hydrogen peroxide stock was titrated with 0.01N potassium permanganate (Dupont, 1984) to check the strength of the stock solution. The standardized stock was then used to make the appropriate dilutions without further calibration.

4.10 Batch Biodegradation Studies

4.10.1 Experimental Procedure

Batch biodegradation experiments were performed in 40 mL VOA vials as described for the batch sorption experiments.

Well water from OHM-4 was used as the source of both dissolved aromatic hydrocarbons and bacteria in these studies. The water was not filtered prior to use. This experiment was designed to evaluate the ability of adapted groundwater bacteria to degrade mixtures of dissolved aromatic solutes at field scale concentrations. The experimental design for batch biodegradation experiment number 1 is shown in Table 4-1. Seven treatments were set up, with 15 replicate vials per treatment. Water from Well OHM-4 was added (350 mL) to a 500 mL erlenmeyer flask, and then amended with hydrogen peroxide (50%), ammonium chloride

Table 4-1. Experimental design for batch biodegradation experiment #1.

Treatment	Hydrogen Peroxide (mg/L)	NH ₄ Cl (mg/L)	Sodium Azide (mg/L)
1A	none	none	none
18	17	none	none
1C	68	none	none
1D	none	18	none
1E	17	18	none
1F	68	18	none
lG	none	none	1.25

(Reagent grade, Fisher Scientific) and 10% (w/v) aqueous solution of sodium azide (Fisher Scientific) as outlined in Table 4-1. Triplicate samples were analyzed for each treatment at 0, 3, 7, 15, and 31 days. Treatment number 1G was a sterile control. Hydrogen peroxide was added based on data from the hydrogen peroxide evaluation experiment and on data from Britton (1985), who demonstrated that cytotoxicity was minimal at hydrogen peroxide concentrations less than 100 mg/L. Ammonium chloride was added based on data from Mitchell (1974) who found that ammonia nitrogen is assimilated quickly during microbial growth. Ammonia (as NH₄CL) was added to achieve quantities calculated to meet nitrogen requirements of the bacteria.

Biodegradation experiment number 2 was designed to evaluate the efficacy of oxygen gas in addition to hydrogen peroxide (Table 4-2). Sterile controls were maintained in treatments 2C, 2F and 2I. Ammonium chloride and hydrogen peroxide were added as in biodegradation experiment $\sharp 1$. Oxygen was added by bubbling O_2 gas into a closed 3 liter flask filled with 1200 mL of contaminated well water. A valve allowed for pressure relief. Water was released through a glass tube at the bottom of the flask, fitted with a teflon stopcock. Vials were filled as described in the sorption experiments. The vials used in both batch biodegradation experiments were placed in an incubator (20 \pm 1 C) and inverted once every two days to provide mixing. Samples were taken at 0, 2, 7, 14, 21 and 35 days.

Table 4-2. Experimental design for batch biodegradation experiment ${\sharp}\,2.$

Treatment #	Oxygen addition	NH4Cl (mg/L)	Sodium Azide (mg/L)
2A	air	none	none
2B	air	18	none
2C	air	none	1.25
2D	60 mg/L H ₂ O ₂	none	none
2 E	60 mg/L H ₂ O ₂	18	none
2F	60 mg/L H ₂ O ₂	none	1.25
2G	O ₂ saturation	none	none
2 H	O ₂ saturation	18	none
21	O ₂ saturation	none	1.25

Following sample removal for GC analysis, dissolved oxygen was measured in each batch biodegradation vial (batch experiments 1 and 2) with a YSI model 5739 DO probe and YSI model 54A DO meter (Yellow Springs Instruments Co.).

Microbial activity was assessed through the measurement of INT reduction to INT-formazan (Klein et al., 1971). Ten grams of soil from each vial were placed in sterile 50 mL Erlenmeyer flasks. Each flask was amended with 1 mL distilled water and 1.5 mL of 0.4% (w/v) aqueous solution of filter sterilized (0.2 um Gelman Metricel membrane filters) INT (Eastman-Kodak Co.). The soil was mixed with a sterile glass rod, capped with aluminum foil and incubated at 20 C for 72 hours. Sterile controls were prepared by autoclaving several flasks for 3 consecutive days for 90 minutes. Approximately 3 grams (dry weight) of soil were removed from each flask following incubation and placed in a test tube. Ten mL of methanol were added to each tube and the contents were mixed on a vortex mixer for 1 minute, then centrifuged at 800G for 20 minutes. The INT- formazan in the methanolic extract was measured spectrophotometrically at 480 nm against a methanol extract of soil containing no INT. The INT-formazan concentration was derived from a standard curve of INT-formazan in methanol.

4.10.2 Calculation of Biological Rate Constants

Aqueous concentration data from the batch biodegradation vials were used with the regression equations from the Freundlich fit of the batch description data to

calculate the amount of solute lost to sorption in each batch vial. The extent of the sorption loss correction varied with the concentration of the analyte and the sorption parameters $K_{f,d}$ and n. This correction factor added as much as 20% to the measured concentration values. These predicted losses resulting from sorption were added to the aqueous concentration for each analyte in each vial to calculate the total concentration of each solute in the vial (C_+) . These C_+ values were employed to obviate the need for simultaneous calculation of biodegradation on both sorbed and aqueous concentrations and any calculation of rates of sorption-desorption during biodegradation. The C_{μ} values were used to model the biological rate coefficients. The rate data were fitted to zero order, first order, second order and mixed order rate equations (Levenspiel, 1972), and to the Thomas slope method (Thomas, 1950).

4.11 Column Biodegradation Studies

4.11.1 Experimental Procedure

Column biological degradation experiments were performed with the same column system described in section 4.8. Two flow rates were used in these experiments. These were 1 ml/min (0.680 cm/min) and 0.90 ml/hr (0.010 cm/min). Columns operated at 0.90 ml/hr were fitted with a low dead volume in-line septa. Effluent was withdrawn with a 50 ul syringe (Hamilton Co.) and analyzed immediately. Effluents

from the 1 mL/min columns were collected and analyzed as described in section 4.8. Breakthrough curves for a non retained solute were obtained with tritiated water (0.01 uci ³H for 0.90 ml/hr columns) or CaCl₂ (1 ml/min columns). Analyses of ³H₂O effluents were performed on a Delta 300 model 6890 Liquid Scintillation Counter (Cearle Analytical) using Scintiverse II scintillation cocktail (Fisher Scientific). Columns operated for biodegradation experiments were set up in the same manner as the sorption columns. Solute containing water was filtered through 0.45 um membrane filters (Gelman Metricel) to remove particulates. A standing microbial population was developed in the columns operated at 1 ml/min by inoculation with water from well OHM-4.

4.11.2 Calculation of Rate Constants

Rate constants for the biological degradation of aromatic solutes from column breakthrough curves were determined by application of the first order rate equation to the breakthrough curve data at steady state. Microbial degradation processes are often assumed to be first order (Bossert and Bartha, 1984). Substitution of equation [3.18] into equation [3.11] incorporates the degradation term into the one dimensional mass transport equation:

R
$$\partial C / \partial t = D_h \partial^2 C / \partial x^2 - v \partial C / \partial x - k C [4.2]$$

Dividing all terms of equation [4.2] through by R and defining D_\star = D/R, v_\star = v/R and k_\star = k/R, equation [4.2] becomes

$$a \text{ c/} a \text{ t} = D_{h^*} a^2 \text{ c/} a \text{ x}^2 - v_* a \text{ c/} a \text{ x} - k_* \text{ c}$$
 [4.3]

at steady state conditions where $\Im C/\Im t = 0$, equation 4.3 reduces to:

$$D_{h} = \partial^{2}C/\partial x^{2} - v \partial C/\partial x + k C = 0$$
 [4.4]

For steady state conditions there is no sorption effect since the R term cancels out and the rate of biodegradation (k) may then be calculated by application of the first order rate equation to the portion of the BTC which is at steady state. The first order rate equation for this system is:

$$c/c_{o} = e^{-kt}$$
 [4.5]

For a column of length x, and with a pore water velocity of v, time may be expressed as

$$t = x/v$$
 [4.6]

and substitution of [4.6] into [4.5] and rearrangement allows calculation of the rate constant for biodegradation:

$$k = - (ln C/C_0) v/x$$
 [4.7]

Average C/C $_{0}$ values were calculated from the regions of the solute breakthrough curves where $\partial C/\partial t=0$. This derivation assumes that microbial degradation occurs only from the aqueous phase, and that dispersion is negligible.

4.12 Field Studies

4.12.1 Aquifer Characterization

A tracer experiment was conducted to measure seepage velocities and obtain better estimates of aquifer hydraulic conductivity and field scale dispersion. RAP-9 was used as the dosing well. The following steps outline the experimental procedure:

- 1. A tracer solution was prepared by dissolving 50 lb (23 kg) of technical grade ammonium chloride in 55 gal (208 L) of tap water. The resulting concentration was 109,000 mg/L ammonium chloride.
- 2. The ammonium chloride solution was injected into the dosing well and simultaneously diluted with tap water at a metered rate of 1 gallon per minute (gpm).

 Dosing continued for 15.8 hours, resulting in a total dose volume of 1,035 gallons of tracer solution.
- 3. Detection of the tracer was monitored in wells RAP-10 and RAP-11 using a conductivity meter with a field probe. Measurements were obtained at one half- to one-hour intervals for the first 24-hour period. Wells P-

6, P-7, UF-1E, RAP-4, OHM-4, UF-2M and UF-3W were also monitored periodically for the following two weeks.

The breakthrough of the tracer was calculated in pore volumes using the equation

$$pv = vt/L$$
 [4.8]

where pv is pore volumes, t is time (hours), L is the distance between RAP-9 and RAP-10 (5 ft) and v is the seepage velocity (ft/hour)from work by Killan (1987). 4.12.2 Water Quality Monitoring

Samples for hydrocarbon analysis were taken from selected monitoring wells monthly from February 1, 1986 to June 1987. Sampling procedures are detailed in Appendix B. Hydrocarbon analyses were as described previously using the three chromatographic methods as they became available. The pH, temperature, dissolved oxygen, and conductivity were measured periodically in selected wells. Sampling procedures are detailed in Appendix B.

Total phosphorus concentrations were determined in all monitoring wells (EPA method 365.1). All phosphorus forms were converted to orthophosphate by autoclaving with potassium permanganate in an acidic medium. Orthophosphate was determined spectrophotometrically at 880 nm with a Perkin Elmer model 552 spectrophotometer.

Chloride was determined colorometrically in each monitoring well over several months to determine background levels of chloride via EPA method 325.1. Average background concentrations were 20 \pm 8 mg/L. Nitrate was measured with

an Orion nitrate electrode via standard method 418b (APHA, 1980).

4.12.3 Microbial analyses

Viable microbial cells were enumerated by plate count technique using dilute soil extract agar (DSEA) media. This technique was developed based on work by Ghiorse and Balkwill (1983) and Wilson et al. (1983).

DSEA was prepared by autoclaving 100 g of surface soil in 100 mL of distilled water for one hour at 120 C. The supernatant was filtered (Whatman glass fiber filters) to remove particulates and diluted ten fold with distilled water and amended 1.5% (w/v) with agar (Fisher Scientific).

Ten grams of subsurface material were suspended aseptically in 100 mL 0.1% sodium pyrophosphate (Fisher Scientific) then appropriate dilutions were plated in triplicate on DSEA media. All plates were incubated aerobically at 27-30 C for ten days.

CHAPTER V RESULTS AND DISCUSSION

5.1 Introduction

This chapter will review the results of all experiments performed as part of this dissertation research. The presentation of results and the interpretation of the data for each major experimental section are grouped together to avoid loss of continuity. Hydrolysis of aromatics in groundwater is discussed first, followed by the results and discussion of the batch and column sorption experiments. Batch and column biodegradation experiments are addressed next; followed by the presentation of field data, and the correlation of field data with laboratory experiments.

5.2 Hydrolysis of Aromatic Hydrocarbons

The results of initial measurements (time = 0) of the hydrolysis ampules were inconclusive, resulting from over-dilution of the samples. Several analytes were below the limit of detection of the GCMS analytical system, therefore no conclusive statements may be made relative to the rates of aromatic hydrolysis.

Statistical analysis of data from ampules after 60 days of temperature controlled storage indicated that for a given temperature, there was no significant (student's t-test,

0.05 level) change in concentration of analytes over the $p\bar{p}$ range tested ($p\bar{p}$ 2,7,9,12).

Only one compound, 1,2,3-trimethylbenzene, demonstrated a significant (student's t-test, 0.01 level) temperature effect at pH values of 7,9 and 12. This change in concentration occurs only at 40 C, and the concentration values at 20 and 60 C are equivalent for all pH values. These data are not consistent with data from other aromatic compounds in this study, which showed no change in concentration with varying temperatures. The apparent loss of solute seen for 1,2,3-trimethylbenzene was likely the result of working near the detection limit of the analytical system, or the result of experimental error.

The absence of concentration differences across a wide range of pH and temperature for the 60 day ampules implies that hydrolysis was not a significant mechanism for removal of aromatic hydrocarbons. This was expected, owing to the resistance of aromatic structures to nucleophilic attack by water. This results from the electronegativity associated with the delocalization of electrons in the pi bonds of the aromatic nucleous. McCarty (1984) has noted that chemical hydrolysis may occur, but that for most compounds this process was slow relative to biological removal rates. In addition, hydrolysis results in simple changes in the molecular structure, whereas biological transformations often result in the mineralization of organic compounds to carbon dioxide and water.

5.3 Characterization of Aquifer Materials

An analysis of a sub-sample of the aquifer materials used in the laboratory experiments is presented in Table 5
1. All experiments with aquifer material were performed with subsamples of well-mixed aquifer material. Single size fractions of aquifer material were not used since extrapolation from one size fraction to another has been shown to lead to errors in the estimation of sorption values (Abdul et al., 1986). Unwashed, natural sorbent material from the Lake Alfred site was used in this study to more closely approximate field conditions. The organic carbon content of this material was low, and particle size analysis indicated the dominance of fine to medium grained sands. The pH of the aquifer material was in the range suitable for biological degradation, and was consistent with the pH values in the well water.

5.4 Batch Sorption Studies

5.4.1 Sorption Rate Studies

Rate studies were conducted to determine the sorption kinetics of the selected aromatic solutes with Lake Alfred aquifer material. These experiments established the equilibration time for the sorption isotherms. The approach to equilibrium is shown in Figure 5-1. These curves are

Table 5-1. Selected physical and chemical Properties of the Lake Alfred aquifer material.

Parameter	Value
рН	7.4 (0.01M CaCl ₂)
Particle Density	2.6 g/mL
Water Content (by weight)	24%
Organic Carbon	0.015%
Bulk Density	1.4 g/mL
Particle Size Analysis	
clay	1.8%
silt	1.7%
very fine sand	3.0%
fine sand	38.2%
medium sand	47.0%
coarse sand	8.2%
very coarse sand	0.2%

Approach to equilibrium for several aromatic solutes on Lake Alfred aquifer material. Figure 5-1.

marked by an initial rapid sorption, and equilibrium conditions are established within several (4 to 8) hours. These data are in agreement with Weber et al. (1983) who stated that sorption reactions with natural sorbents were generally rapid and not rate limited. Based on these data an equilibration time of 18 hours was chosen. Eighteen hours was chosen to maximize the time for sorption yet minimize the time for losses from the system (ie., via diffusion of solutes through the Teflon septum). This was equivalent to time scales used in previous studies (Chiou et al., 1979, 1983; Schwarzenbach and Westall, 1981). Longer equilibration times were not possible using this experimental technique since losses in non-soil blanks after 3 days made it difficult to differentiate between sorption and loss from the system. The equilibration time used in this study did not guarantee that the sorption process was complete, but that it was complete to the extent that it could be accurately measured.

5.4.2 Batch Sorption Isotherm Data

Data for the equilibrium batch sorption isotherms are presented in Appendix C. Solution concentrations are in ug/L, and sorbed concentrations are in ng/g. Three models were fitted to these data using the method of least squares regression analysis. These models were the linear, linear with suppressed fit (forced through the origin), and the Freundlich (log-log transformed). The results of these analyses for the linear models are presented in Table 5-2

Table 5-2. Regression parameters for the analysis of average values of equilibrium batch isotherm sorption data with the linear model.

		С Б			
Compound	N ^a	C D (ug7L)	K _d , std ^c	y-int ^d , std	r ²
					=====
Benzene	14	950	0.066, 0.005	1.5, 4.28	0.914
Toluene	14	4200	0.049, 0.010	10.9, 65.6	0.694
m,p-Xylene	16	4300	0.095, 0.005	3.4, 28.7	0.961
o-Xylene	16	2500	0.097, 0.004	3.1, 10.8	0.979
3 or 4 ET ^e	11	935	0.087, 0.012	3.8, 12.6	0.861
1,3,5-TMB ^f	11	460	0.142, 0.008	1.6, 3.92	0.973
2~ET ^g	11	373	0.106, 0.011	0.81, 4.66	0.910
1,2,4-TMB ^h	10	1600	0.131, 0.006	4.6, 10.6	0.981
1,2,3-TMB ⁱ	10	558	0.124, 0.010	1.7, 6.10	0.951

a number of data points

bmaximum concentration

cstandard deviation

dy-intercept

^e3 or 4 Ethyltoluene

f_{1,3,5}-Trimethylbenzene

g_{2-Ethyltoluene}

h_{1,2,4-Trimethylbenzene}

i_{1,2,3}-Trimethylbenzene

and Table 5-3. The Freundlich regression parameters are presented in Table 5-4.

There is no significant difference (student's t-test, 0.05 level) between sorption coefficients predicted with the linear model and those predicted with the linear model with suppressed intercept. The sorption coefficients are determined form the slope of the linear isotherms. In addition, statistical determination of the confidence intervals of the y-intercepts indicate that there is no significant difference between the predicted value of the yintercept in the linear model and zero at the 0.05 significance level, confirming that these two models are analogous. Equivalence between these two models is expected since the sorbed concentration should equal zero when no solute is added to the system. A non zero intercept is an indication of nonlinearity in the isotherm. In most cases both linear models fit the data well as evidenced by the relatively high coefficients of determination (r2). Based on these analyses, the isotherms for the sorption of aromatic solutes from Lake Alfred water onto Lake Alfred aquifer material were concluded to be linear. The coefficients of determination for toluene in both linear models were substantially lower than for other compounds in this study. The linear model with suppressed intercept accounted for only 63.6% of the total sum of squares deviations about the means for the 14 values in the toluene isotherm. This suggested that this model was not

Table 5-3. Regression parameters for the analysis of average values of equilibrium batch isotherm sorption data with the linear model (suppressed intercept).

Compound	N ^a	c b (Wg/L)	K _d ,	std ^c	y-int ^d	r ²
_						
Benzene	14	950	0.069,	0.005	0	0.904
Toluene	14	4200	0.051,	0.009	0	0.636
m,p-Xylene	16	4300	0.096,	0.004	0	0.960
o-Xylene	16	2500	0.099,	0.003	0	0.978
3 or 4 ET ^e	11	935	0.093,	0.010	0	0.850
1,3,5-TMB ^f	11	460	0.146,	0.007	0	0.969
2-ET ⁹	11	373	0.108,	0.009	0	0.908
1,2,4-TMB ^h	10	1600	0.135,	0.005	0	0.978
1,2,3-TMB ⁱ	9	558	0.128,	0.008	0	0.948

anumber of data points

bmaximum concentration

cstandard deviation

^dy-intercept

e₃ or 4 Ethyltoluene

 $f_{1,3,5-Trimethylbenzene}$

g_{2-Ethyltoluene}

h_{1,2,4-Trimethylbenzene}

i_{1,2,3-Trimethylbenzene}

Table 5-4. Regression parameters for the analysis of average values of equilibrium batch isotherm data with the Freundlich model.

		h					
Compound	N ^a	c c c c c c c c c c c c c c c c c c c	log () K	log std	nª	stde	r ²
Benzene	14	950	-0.857,	0.217	0.901,	0.071	0.952
Toluene	14	4200	-0.783,	0.260	0.876,	0.076	0.917
m,p-Xylene	16	4300	-0.758,	0.110	0.916,	0.031	0.984
o-Xylene	16	2500	-0.873,	0.098	0.966,	0.026	0.990
3 or 4 ET ^f	11	935	-0.702,	0.158	0.904,	0.054	0.958
1,3,5-TMB ^g	11	460	-0.605,	0.081	0.921,	0.029	0.991
2-ET ^h	11	373	-0.951,	0.255	0.993,	0.088	0.934
1,2,4-TMB ¹	10	1600	-0.641,	0.099	0.937,	0.035	0.989
1,2,3-TMB ^j	9	558	-0.623,	0.078	0.918,	0.028	0.995

anumber of data points

bmaximum concentration

 $^{^{\}rm C}$ log standard deviation of ${\rm K_f}$ values

d Freundlich exponent

e standard deviation of Freundlich exponent

f₃ or 4 Ethyltoluene

g_{1,3,5}-Trimethylbenzene

h2-Ethyltoluene

il,2,4-Trimethylbenzene

j_{1,2,3-Trimethylbenzene}

appropriate for estimation of sorption. However, analysis of variance with a global F-test indicated that the model was useful for predicting sorption at the 0.01 significance level. Therefore, the linearity of all isotherms was confirmed. Linear isotherms have been noted by several authors (Schwarzenbach and Westall, 1981, Chiou et al., 1979, Karickhoff et al., 1979) and the data presented in this study are in agreement with these studies.

Curtis et al. (1986) noted that the use of the linear regression technique was not statistically rigorous since variance in the dependent variable was not distributed uniformly across the observed concentration range. These authors suggested that a least squares fit on the log transformed data (Freundlich model) gives a better approximation by providing a more uniform distribution of variance. The Freundlich model provided a good fit to the data in this study (Table 5-4) as evidenced by the high coefficients of determination for the Freundlich model. The Freundlich isotherm explained between 91.7 to 99.5% of the variance in the data, and provided a slightly improved fit to the isotherm data relative to the linear models. The r^2 value for toluene was 0.917, which was much improved over the coefficient of determination for toluene in the linear model. The log $K_{\mbox{\scriptsize f}}$ values for the study compounds are also presented in Table 5-4. Values for several components (ethylbenzene, and the propylbenzenes) were not included in the table owing to their low concentrations in Well OHM-4

water on the day samples were collected for this study. The linearity of these isotherms was confirmed by the values of the regression coefficients and the Freundlich exponents (n), both of which were close to unity. As n approaches unity the models should converge since the linear model is in effect a special case of the Freundlich model.

A comparison of the Freundlich and linear models is presented in Table 5-5. The deviation between predicted amounts of sorption for the linear model with suppressed intercept and Freundlich models are expressed as ratios between the calculated sorbed concentrations. This method was used to evaluate the predictive equivalence of both models over the concentration ranges encountered in this study. This method was chosen, since direct comparison of $K_{\rm d}$ and $K_{\rm f}$ values may be misleading owing to the log transformation of the data in the Freundlich isotherm model. The largest deviations occurred for toluene at 1 ug/L. In general the ratios approached unity as the concentrations increased, but diverged in the range between 1 to 50 ug/L. This comparison indicates that the models, were essentially similar, as is predicted from the values of the Freundlich exponent (n). As n approaches unity, the Freundlich isotherm approaches the linear isotherm. The convergence of these models is confirmed by an examination of 2ethyltoluene in Table 5-5. This compound has the highest Freundlich constant (n = 0.993) and the ratios of predicted

Table 5-5. Ratio of sorbed concentrations calculated from Freundlich and linear equilibrium models

		concent	concentrations (ug/L)				
Solute	1	50	100	500	1000		
Benzene	2.01 ^a	1.73	1.27	1.09	1.01		
Toluene	3.23	1.97	1.81	1.48	1.36		
m,p-Xylene	1.81	1.30	1.23	1.08	1.01		
o-Xylene	1.35	1.18	1.16	1.09	1.07		
3 or 4 ET ^b	2.14	1.48	1.38	1.18	1.10		
1,3,5-TMB ^C	1.70	1.25	1.18	1.04	0.99		
2-ET ^d	1.04	1.01	1.00	0.99	0.98		
1,2,4-TMB ^e	1.69	1.34	1.28	1.15	1.10		
1,2,3-TMB ^f	1.88	1.35	1.27	1.12	1.05		

athe ratio of the amount sorbed as calculated from the Freundlich model to the amount sorbed predicted from the linear model with suppressed intercept, at the same solution concentration.

b₃ or 4 Ethyltoluene

c_{1,3,5}-Trimethylbenzene

d_{2-Ethyltoluene}

e_{1,2,4}-Trimethylbenzene

f_{1,2,3}-Trimethylbenzene

sorption from the two models are consistently close to one over the entire concentration range tested.

Freundlich isotherms for benzene and toluene are shown in Figures 5-2 and 5-3. Graphs of Freundlich isotherms for the remaining solutes are presented in Appendix C. Average values are plotted in Figures 5-2 and 5-3 and error bars showing one standard deviation in the experimental determination of the sorbed concentrations are presented to give an indication of the variance in these data. Standard deviations for all compounds are shown in Appendix C. The influence of dissolved organic carbon was not assessed during this study. However, based on the work of Curtis et al., (1986) with a sandy aquifer material (0.02% organic carbon), organic carbon in this study was not expected to decrease the values of K_d by more than 5%. Water from the Lake Alfred aguifer was used in these experiments, and the organic carbon in solution was assumed to be in equilibrium with the organic carbon on the aquifer material. Therefore, dissolution of additional organic carbon into solution should have been minimal, and $K_{\mathcal{A}}$ should not be greatly affected. This hypothesis was confirmed by evaluation of the partitioning model as a predictive technique for sorption of aromatic solutes to the Lake Alfred aquifer material in section 5.6. The interaction between organic carbon and the solutes was shown to be low.

Freundlich sorption isotherm for benzene at equilibrium. Figure 5-2.

Freundlich sorption isotherm for toluene at equilibrium. Figure 5-3.

5.4.3 Batch Desorption Experiments

Desorption data are also presented in Figures 5-2 and 5-3, fit with the Freundlich type model. Visual inspection of the desorption data suggests some degree of irreversibility or some difference in desorption kinetics based on the upward displacement of the desorption regression lines. However, the calculated values of the partition coefficient for desorption with the linear type model (Table 5-6) and for the linear type model with suppressed intercept (Table 5-7) were not significantly different from sorption values (Kd) at the 0.05 probability level. Desorption coefficients from the Freundlich type model (K_{fd}) were also not significantly different from K_f values at the 0.05 level (Table 5-8). Statistical analyses of the models used to evaluate the desorption coefficients indicated that all three models gave excellent fit to the data, as evidenced by the high coefficients of determination.

These data suggested the reversibility of the sorption process, and demonstrated that the hysteretical behavior of the desorption data were not significant. This was consistent with a majority of the published literature on sorption of organic compounds to natural sorbents (Miller and Weber, 1984).

For purposes of discussion, the Kd values from the linear model with suppressed intercept are used in the following sections. As discussed earlier, these data were

Table 5-6. Regression parameters for the analysis of average values of equilibrium batch desorption data with the linear model.

		b				
Compound	N ^a	c ~ (ug/L)	K _{dd} '	std ^c	y-int ^d std	r ²
Benzene	5	950	0.248,	0.006	2.2, 4.18	0.998
Toluene	8	4200	0.303,	0.011	4.13, 55.8	0.992
m,p-Xylene	9	4300	0.186,	0.006	13.3, 30.1	0.993
o-Xylene	9	2500	0.152,	0.012	11.0, 31.1	0.955
3 or 4 ET ^e	9	935	0.250,	0.018	-2.9, 18.4	0.968
1,3,5-TMB ^f	8	460	0.194,	0.004	1.5, 1.62	0.998
2-ET ⁹	7	373	0.566,	0.010	0.78, 2.64	0.999
1,2,4-TMB ^h	10	1600	0.199,	0.005	3.3, 7.62	0.996
1,2,3-TMB ⁱ	9	558	0.219,	0.032	1.1, 20.3	0.871

anumber of data points

bmaximum concentration

^Cstandard deviation

dy-intercept

e₃ or 4 Ethyltoluene

f_{1,3,5}-Trimethylbenzene

g_{2-Ethyltoluene}

h_{1,2,4}-Trimethylbenzene

i_{1,2,3}-Trimethylbenzene

Table 5-7. Regression parameters for the analysis of average values of equilibrium batch desorption data with the linear model (suppressed intercept).

Compound	N ^a	c b (üğ/L)	K _{dd} '	std ^c	y-int ^d	r ²
=========						
Benzene	5	950	0.251,	0.004	0	0.998
Toluene	8	4200	0.304,	0.008	0	0.992
m,p-Xylene	9	4300	0.190,	0.005	0	0.992
o-Xylene	9	2500	0.159,	0.010	0	0.951
3 or 4 ET ^e	9	935	0.256,	0.014	0	0.967
1,3,5-TMB ^f	8	460	0.1968	0.003	0	0.997
2-ET ⁹	7	373	0.570,	0.007	0	0.999
1,2,4-TMB ^h	10	1600	0.202,	0.004	0	0.996
1,2,3-TMB ⁱ	9	558	0.221,	0.022	0	0.870

anumber of data points

bmaximum concentration

c_{standard} deviation

dy-intercept

e₃ or 4 Ethyltoluene

f_{1,3,5-Trimethylbenzene}

g_{2-Ethyltoluene}

h_{1,2,4-Trimethylbenzene}

i_{1,2,3-Trimethylbenzene}

Table 5-8. Regression parameters for the analysis of average values of equilibrium batch desorption data with the Freundlich model.

						-	
Compound	N ^a	c b (ugyr	log) Kf,	log std ^c	n ^d ,	std ^e	r ²
Benzene	5	950	-0.635,	0.168	1.02,	0.079	0.982
Toluene	8	4200	-0.478,	0.039	0.992,	0.019	0.998
m,p-Xylene	9	4300	-0.561,	0.096	0.963,	0.043	0.986
o-Xylene	9	2500	-0.159,	0.263	0.774,	0.099	0.891
3 or 4 ET ^f	9	935	-0.692,	0.068	1.029,	0.030	0.994
1,3,5-TMB ^g	8	460	-0.569,	0.051	0.956,	0.025	0.996
2-ET ^h	7	373	-0.657,	0.079	0.983,	0.046	0.989
1,2,4-TMB ⁱ	10	1600	-0.658,	0.122	0.997,	0.056	0.981
1,2,3-TMB ^j	9	558	-0.624,	0.092	0.988,	0.038	0.990

anumber of data points

bmaximum concentration

 $^{^{\}mathrm{C}}$ log standard deviation of $^{\mathrm{K}}{}_{\mathrm{f}}$ values

dFreundlich exponent

e standard deviation of Freundlich exponent

f₃ or 4 Ethyltoluene

g_{1,3,5}-Trimethylbenzene

h_{2-Ethyltoluene}

i_{1,2,4}-Trimethylbenzene

j_{1,2,3-Trimethylbenzene}

or linear models, and this model is more convenient for the application of equation [3.10].

5.5 Breakthrough Curves for Aromatic Solutes

5.5.1 Measurement of Column Dispersion

Breakthrough curves (BTCs) for a non-retained solute were determined for each column used in these experiments. Analysis of these data allowed the determination of the Peclet number used to model the breakthrough of the aromatic solutes. Evaluation of these data also allowed the calculation of dispersion in the column. Chloride and tritiated water were used in these experiments.

Dispersion (D_h) was calculated from the slope of a plot of C/Co vs pore volumes (pv) at pv = 1 according to the equation (Rao, 1985):

$$D_{h} = [v L/ 4 pi B^{2}]$$
 [5.1]

where D_{h} is the hydrodynamic dispersion coefficient $(\mathrm{cm}^2/\mathrm{min})$, v is the flow velocity $(\mathrm{cm/min})$, L is the length of the column (cm) and B is the slope of the BTC at C/Co =1. This assumes a sigmoidal shaped curve, and this assumption was valid for these breakthrough curves. A typical breakthrough curve is shown in Figure 5-4. Some values of D_{h} are presented in Table 5-9. Columns with flow rates of 1 ml/min exhibited higher values of D_{h} since dispersion

Figure 5-4. Breakthrough curve for chloride for a 5 cm sorption column.

Table 5-9. Values of dispersion coefficients calculated from the breakthrough curves of unretained solutes in laboratory columns.

Tracer	Flow (mL/min)	Velocity (cm/min)	Dispersion (cm ² /min)	(D _h) avg ^a	std ^b
3 _{H2} 0	0.015	0.003	0.00053		
3 _{H2} 0	0.015	0.003	0.00066		•
3 _{H2} 0	0.015	0.003	0.00040		,
				0.00053	0.00013
CaCl ₂	1.0	0.204	0.051		
CaCl ₂	1.0	0.204	0.013		
CaCl	1.0	0.204	0.069		
				0.044	0.029

average values of dispersion measurements

b standard deviation of dispersion measurements

ml/min exhibited higher values of D_h since dispersion increases with increasing pore water velocity (Roberts et al., 1985). It may be noted that the pore water velocity of 0.680 cm/min was equivalent to the seepage velocity in some portions of the aquifer at the Lake Alfred field site. These data are compared to field dispersion data in section 5.10.

5.5.2 Aromatic Solute Breakthrough Curves

Breakthrough curves for selected, dissolved aromatic solutes in the column effluent (Well OHM-4 water) are shown in Figure 5-5 (benzene) Figure 5-6 (toluene) and Figure 5-7 (n-propylbenzene). Breakthrough curves for these solutes are presented because they show the the breakthrough of the least retained compounds (benzene and toluene) and the most retained (n-propylbenzene). These solutes are presented separately to avoid overlap on a single plot, but are part of the multi-component mixture resulting from the solubilization of gasoline into groundwater at the Lake Alfred site. Graphical representations of the remaining solutes in the column effluent are shown in Appendix D. The changes in effluent concentration near the end of each breakthrough curve was consistent for each solute, reflecting the same relative variability. These deviations may be explained by heterogeneities in flow paths in the porous media, or by analytical error.

Calculated values of R, ${\rm K_d}$, and ${\rm K_{OC}}$ based on the analyses of the column data by curve fitting to Brenner

Breakthrough curve for benzene from Lake Alfred water ($C_{\rm o}$ = 4700 ug/L) Figure 5-5.

Breakthrough curve for toluene from Lake Alfred water ($_{\rm O}$ = 2600 ug/L). Figure 5-6.

Breakthrough curve for n-propylbenzene from Lake Alfred water (C $_{\rm O}$ = 1000 ug/L). Figure 5-7

(1962) are shown in Table 5-10. Breakthrough curve data are compiled in Appendix D.

Retardation factors for these solute breakthrough curves were also evaluated by estimating the area above the curve using Simpson's method. This method of calculation yielded R values which were slightly greater than the fitted values (Table 5-11), but which exhibited the same relative elution order. The R values calculated from the area above the BTC were within 0.1 of the values calculated by curve fitting. Retardation factors were also calculated by determination of the number of pore volumes required to reach C/C value of 0.5. All three methods of calculation are compared in Table 5-11. The breakthrough curves for the solutes in this study were slightly asymmetrical whereas the curves for the unretained solute were sigmoidal and symmetrical. This asymmetry was attributed to sorption nonequilibrium during transport through the column and not to dispersion. The shape of the measured BTC is determined by the kinetics of the sorption-desorption process. Symmetrical BTC are obtained when the sorption process is instantaneous and equilibrium conditions exist between sorbed and aqueous concentrations. Under non-equilibrium conditions during flow, asymmetrical BTC are obtained (Rao and Davidson, 1979). This type of response has been reported by several investigators for pesticide breakthrough (Nkedi-Kizza et al., 1987).

Table 5-10 . Calculated values of R, $\rm K_{\rm d}$ and K $_{\rm c}$ from analysis of solute breakthrough Curves.

Compound	C a	R ^b	K c	K d	log K
Benzene	4700	1.36	0.059	393	2.60
Toluene	2600	1.55	0.091	607	2.78
Ethylbenzene	1800	1.65	0.107	713	2.85
m,p-Xylene	1700	1.85	0.140	933	2.97
o-Xylene	2200	1.60	0.099	660	2.82
Isopropylbenzene	1000	2.00	0.165	1100	3.04
n-Propylbenzene	560	2.40	0.231	1540	3.19
3 or 4 Ethyltoluene	1600	2.25	0.206	1373	3.14
1,3,5-TMB ^e	530	2.15	0.190	1267	3.10
2-Ethyltoluene	990	1.90	0.148	987	2.99
1,2,4-TMB ^f	770	2.10	0.181	1207	3.08
1,2,3-TMB ^g	1223	1.84	0.138	920	2.96

ainfluent concentration

 $^{^{\}rm b}{\rm calculated}$ by curve fitting with Brenner (1962) with ${\rm P_{\rm e}}$ = 8.

 $^{^{\}rm C}{\rm calculated}$ from the relationship $\rm K_{\mbox{\scriptsize d}}$ = (R-1) $_{\mbox{\scriptsize θ}}/\rm p$ where $~\mbox{\scriptsize θ}$ = 0.30 and p = 1.82

 $^{^{}d}K_{oc} = K_{d}/f_{oc}$ where $f_{oc} = 0.00015$.

el,3,5-Trimethylbenzene

f_{1,2,4}-Trimethylbenzene

g_{1,2,3-Trimethylbenzene}

Table 5-11. Retardation factors calculated from leaching column and equilibrium batch isotherm data

Compound	R a	R b	R _i c	R _b
Benzene	1.45	1.17	1.60	1.36
Toluene	1.73	1.33	1.72	1.55
Ethylbenzene	1.73	1.49	nd ^e	1.65
m,p-Xylene	1.99	1.66	1.76	1.85
o-Xylene	1.68	1.39	1.58	1.60
Isopropylbenzene	2.08	1.82	nđ	2.00
n-Propylbenzene	2.49	2.29	nd	2.40
3 or 4 Ethyltoluene	2.32	2.05	1.86	2.25
1,3,5-Trimethylbenzene	2.26	2.02	1.94	2.15
2-Ethyltoluene	2.02	1.74	1.49	1.90
1,2,4-Trimethylbenzene	2.20	1.92	1.99	2.10
1,2,3-Trimethylbenzene	1.93	1.67	2.03	1.84

^aR retardation factor calculated from the area of the breakthrough curve.

 $^{^{\}rm b}{\rm R}$ retardation factor calculated from the number of pore volumes at C/C $_{\rm o}$ = 0.5

 $^{^{\}mathbf{C}}\mathbf{R}_{,}$ retardation factor calculated from equilibrium batch isotherm data.

 $^{^{\}rm d}{\rm R}_{\rm b}$ retardation factor calculated from fitting column data to the solution of Brenner (1962).

e not determined

Nkedi-Kizza et al. (1987) presented a method to assess the asymmetry in a BTC by measuring the difference in the R values calculated by the pore volume method (R_{pv}), from those calculated from the area above the BTC (R_{a}). An empirical index for sorption nonequilibrium (ISNE) was defined as:

$$ISNE = [(R_a - R_{pv}) / R_a]$$
 [5.2]

where R_{a} is the retardation factor calculated from the area above the BTC and $R_{\rm pv}$ is the retardation factor calculated by evaluation of the number of pore volumes required for the column effluent to equal 0.5 of the influent concentration. For ISNE equal to zero, $\mathbf{R}_{\mathbf{a}}$ is equal to $\mathbf{R}_{\mathbf{D}\mathbf{V}}$, and for ISNE equal to 1, R_a is much less than R_{py} . The calculated values of ISNE for all 12 compounds in this study are presented in Table 5-12. Based on these data, the solutes in this study do not show an appreciable amount of sorption non-equilibrium. These solutes are not strongly sorbed, and thus are not expected to exhibit a large degree of nonequilibrium. Regression of R values with ISNE values yielded a model with a r² value of 0.57. Statistical analysis of this regression model indicated that the model was useful for predicting ISNE from R values at the 0.01 significance level.

The cause of nonequilibrium may be the result of several physical or chemical phenomena which limit the rate

Table 5-12. An empirical index of sorption nonequilibrium (ISNE) for 12 selected aromatic solutes leaching through Lake Alfred aquifer material.

Compound	ISNE
Benzene	0.20
Toluene	0.23
Ethylbenzene	0.14
m,p-Xylene	0.17
o-Xylene	0.17
Isopropylbenzene	0.13
n-Propylbenzene	0.10
3 or 4 Ethyltoluene	0.12
1,3,5-Trimethylbenzene	0.11
2-Ethyltoluene	0.10
1,2,4-Trimethylbenzene	0.13
1,2,3-Trimethylbenzene	0.13

of sorption. Physical limitations to equilibrium include diffusion controlled adsorption-desorption processes (Rao and Davidson, 1979) or the presence of physical barriers limiting the interaction of the sorbent and solute (eg. soil aggregates, surface films). The kinetics of chemical reactions between the sorbent and solute may be limiting, thereby explaining the nonequilibrium in the column breakthrough curves. Multisite models have been proposed to account for sorption nonequilibrium (Rao et al., 1979). However, the physical and chemical processes are mathematically equivalent when written in non-dimensional form, thus the identification of the process responsible for the observed nonequilibria is not possible from breakthrough curve data.

Sorption nonequilibria are also a function of the flow velocity. The observed effect of increased flow velocity is displacement of the elution curve towards a smaller breakthrough volume, whereas the calculated effect of increased flow velocity is a broadening of the elution curve, owing to increased dispersion, without a change in the position of the position of the BTC. This effect was demonstrated by Schwarzenbach and Westall (1981) where retardation factors decreased with increased flow rates, indicating slow sorption kinetics.

Rao and Davidson (1979) illustrated that the retardation factor may also be a function of concentration, with increased concentration of solutes leading to decreased

sorption. This results from nonlinearity of the sorption isotherm, which governs the position of the breakthrough curve.

The BTC data in this study were obtained for a single flow velocity and at only one range of concentrations. However, the importance of increased flow velocity and high concentration on the transport of contaminants may be significant at the Lake Alfred field site. Killan (1987) reported seepage velocities of 1 to 18 feet per day in the Lake Alfred aguifer. This high flow velocity, combined with the high levels of hydrocarbon contamination and oxygen limitation in certain areas at the Lake Alfred site suggests that movement of solutes may be more rapid than these column experiments would predict. The sorption isotherms calculated in this study were based on linear isotherms, for concentrations which were present in the well water. However, it is possible that residual gasoline in the aquifer may provide higher concentrations in selected areas, leading to more rapid leaching of aromatic solutes owing to higher concentrations (eq., the sorption isotherms may be nonlinear, and R may be concentration dependent).

5.5.3 Comparison of Column and Equilibrium Isotherm Data.

Retardation factors (Table 5-11) and sorption coefficients (Tables 5-10 and 5-7) from the column data and the equilibrium data isotherm compare favorably. On average, $K_{\mbox{d}}$ values from regression analysis of isotherm data using the linear model overestimate the value of the sorption coefficients by 40%, and the Freundlich model underestimates the value of the sorption coefficients by 33% relative to the column derived sorption coefficients.

Based on this comparison, the column data appear to fall within a range of values bounded by the batch isotherm data. In the following discussion, sorption coefficients from the column data are used to evaluate various sorption relationships. Column data are used here since they are equivalent to the isotherm data, and also since the column data provide values for ethylbenzene and the propylbenzenes which were not evaluated in the isotherm studies owing to low concentrations in the well water.

The retardation values of aromatic hydrocarbons in these experiments are relatively low. The retardation values from the column studies range between 1.36 and 2.40. These data indicate that the most retained solute will continue to move at 42% the rate of water movement. Thus solutes may be expected to move relatively rapidly through the site.

5.6 Evaluation of Sorption Models

The actual mechanisms through which sorption retards the movement of solutes are not well known. Various conceptual models are available to help describe these sorption process. These include the partitioning between organic matter on the aquifer matrix (Chiou et al., 1979, Karickhoff et al., 1979), interactions with the mineral surfaces (Sabljic, 1987), and solvophobic theory (Rao et al., 1985). To assess the significance of these models, sorption data from the column experiments were compared to several theoretical models. The column data were normalized to the organic carbon content of the Lake Alfred aquifer. These values of K_{OC} are shown in Table 5-10.

5.6.1 Relationship between K and K

Several authors cite the linearity of the sorption isotherms as evidence of the dominance of the partitioning mechanism (Chiou et al., 1979, Chiou et al., 1983). However this evidence may be suspect, if the range of concentrations is far removed from the maximum solubility of the compounds. In addition, many sorption models are indistinguishable over sufficiently small concentration ranges (Curtis et al., 1986). In this study, solute concentrations are far below the solubility limits. The least soluble compounds in this work are 3 ethyltoluene and 4-ethyltoluene with aqueous solubilities of 40 mg/L. However, the maximum concentration employed in this study is 935 ug/L, which is only 2% of the

maximum solubility level. Therefore, the fact that the isotherms are linear in this study does not confirm the dominance of the partitioning theory.

An improved method to assess the importance of partitioning in the sorption process at the Lake Alfred site is to compare K_{OC} values from this work with octanol-water partition coefficients (Figure 5-8) and water solubility (Figure 5-9) from the literature. The regression coefficients for these correlations are shown in Table 5-13. These experimentally derived relationships can now be compared with those from previous studies.

The experimentally derived relationships between $\kappa_{\rm oc}$ and $\kappa_{\rm ow'}$ and $\kappa_{\rm oc}$ and WS were determined by regression of literature values of $\kappa_{\rm ow}$ and water solubility with $\kappa_{\rm oc}$ data from the sorption BTC data. These relationships are

$$\log K_{oc} = 0.31 * \log Kow + 1.91$$
 [5.2]

$$log K_{oc} = -0.272 * log WS (umoles/L) + 3.78$$
 [5.3]

Table 5-14 compares the predicted values of $K_{\rm oc}$ from the work of several authors (Karickhoff et al., 1979, Means et al., 1982, Chiou et al., 1983, Kenaga and Goring, 1980, Briggs, 1981). The $K_{\rm oc}$ data from this study (Table 5-10) consistently fall within the upper range of the predicted values shown in Table 5-14. The relationships used to calculate the values in Table 5-14 were based on a wide range of organic solutes and natural sorbent materials. It

Figure 5-8. Log $K_{\rm OC}$ vs. log $K_{\rm OW}$ for study compounds.

Figure 5-9. Log $\rm K_{OC}$ (from column data) vs. log WS for study compounds.

Table 5-13. Regression coefficients for plots of log $\rm K_{OC}$ vs. log $\rm K_{OW}$ and log $\rm K_{OC}$ vs. log Ws.

Log K oc v	s. Log K _{ow}	Log K oc	/s. Log WS ^a
Slope	0.310	Slope	-0.272
Std. error of slope	0.052	Std. error of slope	0.039
Y-intercept	1.909	Y-intercept	3.785
Std. error of y-intercept 2 r	0.073 0.857	Std. error of y-intercept 2	0.074
Number of observations	8	Number of observations	12
Degrees of freedom	6	Degrees of freedom	10

aumoles/L

Table 5-14. Comparison of relationships to predict $K_{\rm oc}$ from $K_{\rm ow}$ values.

	100	10	g Kocve	log Kocvalues from:	: w:		Range
Compound	Kow	Karickoff ^a Means ^b Chiou ^c Kenaga ^d Briggs ^e	Means	Chiou	Kenaga ^d	Briggs	K oc
Benzene (min.)	1.56	1.35	1.24	0.62	2 22	1 45	0 62-2 61
(max.)	2.28	2.07	1.96	1.27	2.61	2	0.02-20.01
Toluene (min.)	2.11	1.90	1.79	1.12	2.52	1.74	1 12-2 85
(max.)	2,73	2.52	2.41	1.68	2.85	2.06	1
Ethylbenzene	3.15	2.94	2.83	2.06	3.08	2.28	2.06-3.08
m, p-Xylene	3.18	2.97	2.86	2.08	3,10		2.08-3.10
o-Xylene (min.)	2.77	2.56	2.45	1.71	2.88		1 71-3 07
(max.)	3.13	2.92	2.81	2.04	3.07		9
Isopropylbenzene	3.66	3.45	3.34	2.51	3.36		2 51-3 15
n-Propylbenzene (min.)	3.57	3,36	3.25	2.43	3 3 3		7 43-5 57
(max.)	3.68	3.47	3.36	2.53	3 37		10.0-01.2
1,3,5-Trimethylbenzene)			
(min.)	3.42	3.21	3.10	2.30	3.23	2 51	2 30-3 20
(max.)	3.60	3,39	3.28	2.46	3.32	2.5	66.00.00
1,2,3-Trimethylbenzene	3.60	3.39	3.28	2.46	3,32	2.51	2.46-3.39
^a Karickoff et al., 1979:	- 1	*	4 50				
4		TO MO NOT COLL DO SOL	MO. FOT	17.0			

 $^{\rm d}{\rm Kenaga}$ and Goring, 1980: log ${\rm K_{oC}}$ = 0.54 * log ${\rm K_{oW}}$ + 1.38 $^{\rm b}_{\rm Means}$ et al., 1982: log $\rm K_{\rm oc}$ = 1.00 * log $\rm K_{\rm ow}$ - 0.32 Chiou et al., 1983: log $\rm K_{\rm oC}$ = 0.90 * log $\rm K_{\rm oW}$ - 0.78

^eBriggs, 1981: Log K_{OC} = 0.52 * log K_{OW} + 0.64

is notable that $K_{\rm oc}$ from this study falls in the upper range of the predicted $K_{\rm oc}$ values, given the paucity of organic carbon in the Lake Alfred aquifer material. A comparison of predicted $K_{\rm oc}$ values calculated from water solubility relationships of several authors and that of equation [5.3] also show that the experimental $K_{\rm oc}$ values from this study are generally in the upper range of these predicted values as well.

The relatively high values of K_{OC} predicted from equations [5.2] and [5.3] may be the result of several factors: 1) error in the measurement of organic carbon, 2) increased hydrophobicity of the organic matter at Lake Alfred compared to the referenced studies, 3) sorption to the mineral surface, or 4) any combination of the above (Curtis et al., 1986). It is unlikely that the organic matter in this study is more hydrophobic than that used by other researchers. This is confirmed by analysis of the slopes of the regression lines in the relationships between K_{OC} and K_{OW} . The slope of a plot of K_{OC} vs. K_{OW} may be viewed as a measure of the hydrophobicity of the organic phase in the partitioning model (Leo et al., 1971). In the experimental data presented here the slope of equation [5.2] was less than that observed in previous studies where partitioning is thought to predominate. This is presented graphically in Figure 5-10. Therefore, increased hydrophobicity of the organic matter at Lake Alfred was ruled out.

relationship between $K_{\rm OC}$ and $K_{\rm OW}$: (a) Curtis et al., 1985, (b) Schwarzenbach and Westell, 1981, (c) this study, (d) Briggs, 1981 and (e) Chiou et al., 1983. Regression equations for several models describing the Figure 5-10.

It is more likely that the increased sorption results from some affinity of the aromatic solutes in this study for the mineral surface of the aquifer material. This is consistent with the findings of Schwarzenbach and Westall (1981) and Curtis et al., (1986). These authors demonstrate that the mineral surface area and the nature of the mineral surface, exert a greater influence on sorption than organic carbon for sorbents with low amounts of naturally occurring organic material.

5.6.2 Relationship Between 1X and K

To assess the contribution of the mineral surface in the sorption of aromatic solutes from the Lake Alfred aquifer, K_{OC} values from this study were correlated with first order molecular connectivity indices (1 X). This relationship is shown in Figure 5-11 and the regression parameters are shown in Table 5-15. The use of this correlation was based on the suggestion of Milgelgrin and Gerst1 (1983) that molecular structure or topology may be more effectively correlated with sorption than K_{OW} or WS. Sabljic (1987) suggested the use of first order molecular connectivity indices (1 X) as an estimator of molecular topology. The regression equation developed by Sabljic (1987) is also shown in Figure 5-11. This relationship was based on the regression of calculated 1 X versus literature values of K_{OC} data.

The slopes of these lines are not significantly different at the 0.05 significance level. The correlation $\left(\frac{1}{2} \right)^{-1}$

Log $K_{\mbox{\scriptsize OC}}$ vs. $^1 \mbox{\scriptsize X}$ for aromatic solutes in (a) this study and from (b) Sabljic (1987). Figure 5-11.

Table 5-15. Regression coefficients for the relationship between log $\rm K_{\mbox{\scriptsize oc}}$ and $\rm ^{1}X.$

Slope	0.360
Std. error of slope	0.050
Y-intercept	1.509
Std. error of y-intercept	0.072
-	0.839
Number of observations	12
Degrees of freedom	10

coefficients are also comparable: 0.916 for this study vs 0.976 for Sabljic (1987). Sabljic (1987) demonstrated that first order molecular connectivity was a quantitative measure of the area occupied by the projection of the non-hydrogen skeleton of a molecule. The goodness of fit between $^1\mathrm{X}$ and K_OC data in this study supports the hypothesis that sorption depends, at least in part, on some type of surface interaction.

However, comparison of correlation coefficients between the three models $(K_{QM}, WS \text{ and } ^1X)$ indicates that neither of these models completely describe the sorption process (see Tables 5-13 and 5-15). This suggests that the sorption mechanism is in reality a combination of processes, interacting to yield an overall sorption effect. The lack of any dominant mechanism may be more pronounced in this study resulting from the low organic carbon content of the Lake Alfred aguifer material. This serves to reduce the partitioning effect, by eliminating the sorption substrate (organic carbon). In addition, Schwarzenbach and Westall (1981) demonstrated that organic poor sorbents with high specific surface areas may still exhibit small K_d values, indicating that surface interactions alone did not completely account for sorption. These data support the observation of Voice and Weber (1983) that, given the heterogeneous nature of natural sorbent materials, sorption mechanisms of organic solutes in the environment probably involve many types of interactions. The importance of a

given reaction mechanism depends on the nature of the sorbent surface. Partitioning is probably more important in soils with high organic carbon contents. The varying degrees of sorption in soils with low organic carbon contents reported by Milgelgrin and Gerstl (1984) reflect the variation in the ability of mineral surfaces to sorb organic compounds.

5.7 <u>Comparison of Mixed Solute and Single Solute</u> Retardation.

Nkedi-Kizza et al. (1987) demonstrated the influence of organic co-solvents on the movement of hydrophobic organic compounds through soils. In this dissertation, the study compounds were a multicomponent mixture of dissolved aromatic solutes, resulting from the partial solubilization of a leaded gasoline product into groundwater at the Lake Alfred site. The presence of multiple solutes may affect the sorption of a single component of the mixture either by changing the solubility of the component or through competitive sorption (Brookman et al., 1985). To evaluate this possibility, a single solute (benzene, 4 mg/L dissolved in RAP-2 well water) was passed through a soil column. The breakthrough of this solute is shown in Figure 5-12. Evaluation of the retardation factor for this column yielded an R value of 1.4, which is equivalent to the R value for benzene from the mixed solute sample. Based on these data, no co-solute effect on benzene was observed. If a

Breakthrough curve for benzene (single solute) spiked into RAP-2 well water (C $_{\rm O}$ = 4000 ug/L). Figure 5-12.

competitive sorption effect is operating in the mixed solute sample, then benzene as a single solute should show increased sorption. Lack of sorption increase indicates that competitive sorption between solutes was not important in this experimental system although this may not be the case in portions of the aquifer with residual concentrations of gasoline.

5.8 Evaluation of Hydrogen Peroxide Reactivity

Hydrogen peroxide is known to be a viable method of increasing the dissolved oxygen in aquifer systems (Britton, 1985, TRI Report, 1982). The purpose of this experiment was to evaluate the reaction kinetics and the extent of conversion of hydrogen peroxide to ${\rm O}_2$ in the Lake Alfred aquifer system.

Initial experiments with distilled deionized water and known additions of dilute hydrogen peroxide showed no increases in dissolved oxygen. Even after addition of 5 mL of 50% hydrogen peroxide to the reaction flask, no increase in dissolved oxygen was noted over a 45 minute interval. The titer of the 50% stock solution (49.7%) was confirmed by titration with potassium permanganate. These data indicated the stability of hydrogen peroxide in the absence of a catalyst.

The reaction of hydrogen peroxide in filter sterilized Lake Alfred water was investigated to assess the availability of non-biological catalysts in the aqueous phase. Water from wells OHM-4 (with aromatic solutes) and RAP-2 (no aromatic solutes) were titrated with hydrogen peroxide solutions of 240 and 2400 mg/L with no apparent increase in dissolved oxygen, indicating an the absence of a $\rm H_{2}O_{2}$ active catalyst in both these water samples.

The response of non-filtered water from well OHM-4 to the addition of 50% hydrogen peroxide is shown in Figure 5-13. The pH of the water in the reaction flask was 6.5 and this value remained constant throughout the course of the experiment. The redox potential increased from 59 millivolts (mv) to 338 mv immediately following the addition of 500 ul of 50% $\rm H_2O_2$ (equivalent to 2000 mg/L $\rm H_2O_2$). This addition of $H_{2}O_{2}$ was sufficient to maintain an increase of 1 mg/L over the ambient DO in the reaction flask. The addition of sterile aguifer material from the Lake Alfred site increased the DO of the reaction flask immediately after introduction. This indicated the catalytic ability of the Lake Alfred aguifer and was most likely associated with the presence of iron salts (Britton 1985) although iron concentrations were not determined for the Lake Alfred aquifer material. This small scale study helped to determine the reactivity of the hydrogen peroxide in the Lake Alfred aquifer system, and provided ranges for use of hydrogen peroxide in the biological experiments. Gas chromatographic analyses of aromatic compounds during the course of this experiment showed that there were no

Reaction of OHM-4 well water to the addition of 50% hydrogen peroxide and aquifer material. Figure 5-13.

measurable changes in the concentrations of these solutes resulting from the addition of hydrogen peroxide. The absence of aromatic hydrocarbon removal in this experiment should not imply that ${\rm H_2O_2}$ is an ineffective method of oxygen augmentation. The dissolved oxygen levels did increase in this experiment. However, removal of hydrocarbons, abiotically, via oxidation of the aromatic molecules appeared not to be significant. This experiment was not designed to measure the microbial removal of hydrocarbons. The time scale of this experiment was too short to observe a microbial effect. Batch biodegradation experiments (sections 5.8 and 5.9) demonstrated that several days were required for microbial adaptation to hydrogen peroxide.

The data from this experiment simply confirm that there are sufficient catalysts available to mediate the conversion of $\rm H_2O_2$ to $\rm O_2$. Application of $\rm H_2O_2$ to the Lake Alfred aquifer is underway. Preliminary data indicate that dissolved oxygen levels were increased, and that hydrocarbons concentrations were reduced following an adaptation period.

5.9 Batch Biodegradation Experiment #1

Two separate batch biodegradation experiments were performed. The first experiment was designed to investigate the effect of various combinations of hydrogen peroxide and

ammonium chloride on the biodegradation of the aromatic compounds in the Lake Alfred aquifer, and to assess the degradation of these compounds in the presence of dissolved oxygen. The average concentrations of aromatic hydrocarbons in the microcosms of experiment #1 over the time course of the experiment (31 days) are shown in Table 5-16. A detailed presentation and statistical analysis of these data are presented in Appendix E. These data were fit to several rate equations. Zero order, first order, an empirically based first order rate equation (Thomas-slope method), second order, and a mixed order (zero to first order) rate equations were fit to the biodegradation data. Only the first order rate equations gave adequate fit to the data, based on an analysis of the coefficients of determination for the various models (Global F-test, 0.05 significance level). The results of linear regression analysis of the data to the first order models are shown in Table 5-17 (first order) and Table 5-18 (Thomas-slope). In both tables the rate constants, calculated half lives and the coefficients of determination for each solute under each treatment condition are presented.

Regression analyses and rate data for both types of first order rate equations are presented, since neither method yields coefficients of determination which consistently provide superior fit to the data. First order and Thomas slope rate equations each provide adequate fit to the data as evidenced by the ${\bf r}^2$ values. In the sections

Total average hydrocarbon values (ug/L) in the microcosms of batch biodegradation experiment $\sharp 1.$ Table 5-16.

					Treatment	ıţ		
Compound	Day	1A	118	10	1D	1E	1F	16
Benzene	0 0	828.35		m 0	870.85	692.00	692.00	611.33
	7 2	55.00	681.00		274.20	259.33	4/6.33	547.00
	15 31	0.00	222.95	8.93	168.27	93.33	473.50	464.33
Toluene	0 3 7 15	2170.91 53.45 39.33 13.65 0.00	1735.47 1348.13 1416.30 414.50	1803.10 1070.47 192.68 35.53	2141.95 1091.70 144.45 224.20 0.55	1691.67 1509.33 151.00 74.00	1691.67 1053.67 388.00 191.00 56.00	1422.00 780.67 1079.00 907.00 753.00
m,p-Xylene	0 3 7 15 31	4823.27 1623.15 924.83 40.65	3548.30 1608.97 1826.93 935.95	3898.10 1823.30 53.35 57.30 0.00	4664.55 652.13 18.20 83.13	3068.33 2013.67 33.00 29.00 5.00	3068.33 2311.67 40.00 25.25 9.00	3528.67 1984.33 2342.67 1966.33 1565.00
o-Xylene	0 3 7 15	2755.48 1652.45 742.00 48.25	2111.07 1714.50 2110.50 856.45	2272.20 1737.33 943.53 123.93	2770.90 1744.60 1675.25 1294.70 8.45	2215.67 1884.67 1468.00 1063.00 211.00	2215.67 1428.67 1387.33 1230.00 624.33	2237.67 1313.00 1723.67 1317.33

Table 5-16. Continued.

					Treatment			
Compound	Day	18	118	10	1D	1E	1F	16
3,4-ETa	0		659.17	867.00	858.30	675.33	675.33	717.67
	n		346.40	319.73	249.63	410.00	383,33	353.67
	7		409.85	46.30	60.20	00.69	00.99	414,33
	15	14.60	182.20	15.80	41.90	20.67	47.75	312.33
	31		4.83	00.0	4.13	3.33	8.67	224.00
1,3,5-TMB ^b	0	389.89	269.07	378.90	347.75	0	280.00	320.67
	٣	218,30	204.73	188,93	214,47	33	130,33	165
	7	136.93	223.50	128.40	153.50	134.67	122.67	189.33
	15	3.80	83.55	38.50	132,37	2.2	94.75	129
	31	00.0	3.23	17.65	99.70	2.2	26.00	104
2-ETC	0	410.43	241.47	317.90	299.50	256.33	256,33	285.33
	m	167.60	187.80	178.93	212.07	175.67	145.00	146.33
	7	131.70	215.75	145.95	179.05	151,67	147.67	172.00
	15	33.15	100.50	33.90	137.73	131.00	128,00	126.00
	31	00.00	10.83	3.60	54.05	30.33	68.33	101.00
1.2.4-TMB ^d	0	1334.60	1121.87	1103.30	1113.70	980.00	980.00	1046.33
	m	442.55	388.13	422.70	89.90	349.33	548.33	537.67
	7	189,60	364.70	7.58	4.75	5.33	7,33	618.33
	15	14.90	181.20	9.63	4.90	7.67	00.6	414.67
	31	00.0	2.10	0.85	1.70	3.33	2.33	335.67

Table 5-16. Continued.

					Treatment	13		
Compound	Day	1A	118	10	1D	1E	1F	16
1,2,3-TMB ^e	0	560.37	493.07	518.50	493.60	436.00	436.00	479.33
	e	309.30	306.93	291.23	315.47	306.00	241.33	264.00
	7	200.80	361.85	271.25	283.50	243.00	230.00	310.67
	15	12.70	169.60	73.27	219.13	243.00	184.25	222.00
	31	00.00	09.6	8.50	155.45	75.67	130.67	194.67
$_{ m DO}^{ m f}$	0	7.30	9.03	10.40	8.90	10.20	10.20	8.63
	m	1.50	1.50	3.03	2.20	2.10	9.80	7.87
	7	1.80	2.10	2.63	5.20	4.13	2.80	8.20
	15	2.70	2.40	3.77	4.00	5.40	5.43	7.95
	31	4.10	2.40	3.60	5.20	5.47	6.57	7.80

a3,4-Ethyltoluene

b_{1,3,5-Trimethylbenzene}

d_{1,2,4-Trimethylbenzene} c2-Ethyltoluene

el,2,3-Trimethylbenzene

 $f_{\rm Dissolved}$ oxygen, in mg/L

Table 5-17. Biodegradation rate constants, half-lives and correlation coefficients for the fit of biodegradation experiment #1 data to a first order rate equation.

Treatm	nent	Benzene	Toluene	m,p-Xylene	o-Xylene	3,4-ET ^a
1A	k	0.233	0.219	0.295	0.282	0.235
	t½	2.97	3.17	2.35	2.46	2.95
	r²	0.779	0.844	0.993	0.995	0.989
1B	k	0.233	0.262	0.190	0.208	0.135
	t½	2.97	2.65	3.65	3.33	4.47
	r ²	0.887	0.901	0.909	0.876	0.928
1C	k	0.242	0.261	0.271	0.284	0.227
	t½	2.86	2.66	2.56	2.44	3.05
	r ²	0.970	0.994	0.913	0.975	0.967
1D	k t½ r ²	0.212 3.27 0.942	0.254 2.73 0.920	0.216 3.21 0.753	0.183 2.79 0.868	0.157 4.42 0.921
1E	k	0.154	0.200	0.200	0.076	0.171
	t½	4.50	3.47	3.47	9.17	4.05
	r ²	0.992	0.952	0.753	0.969	0.936
1F	k	0.038	0.107	0.185	0.036	0.134
	t½	18.3	6.48	3.75	19.47	5.17
	r ²	0.885	0.945	0.706	0.917	0.897
1G	k	0.010	0.013	0.020	0.017	0.030
	t½	69.31	51.7	35.55	40.29	23.42
	r ²	0.370	0.401	0.625	0.584	0.724

Table 5-17 Continued.

Treat	ment	1,3,5-T	MB ^b 2-ET ^c	1,2,4-TMB ^d	1,2,3-TMB [€]	DOf
1A	k t½	0.223 3.11	0.207 3.35	0.249	0.230 3.01	
	r ²	0.935	0.982	0.989	0.986	0.013
1B	k t½	0.145 4.78	0.102 6.80	0.193 3.59	0.126 5.50	
	r ²	0.936	0.937	0.939	0.933	0.093
1C	k t⅓	0.097 7.17	0.146 4.75	0.214 3.24	0.133 5.21	
	r2	0.927	0.994	0.777	0.990	0.111
1D	k t½	0.034 20.21	0.052 13.30	0.172 4.03	0.033 21.00	
	r ²	0.775	0.982	0.632	0.875	0.0
1E	k t½	0.053 13.05	0.065 10.75	0.164 4.23	0.052 13.46	
	r ²	0.946	0.946	0.591	0.931	0.005
1F	k t½	0.043 16.16	0.036 19.42	0.183 3.79	0.032 21.66	
	r ²	0.820	0.868	0.673	0.799	0.042
1G	k t½	0.030 23.50	0.026 26.36	0.030 23.11	0.023 30.27	
	r ²	0.725	0.683	0.728	0.655	0.429

a3,4-Ethyltoluene

b_{1,3,5}-Trimethylbenzene

c_{2-Ethyltoluene}

 $^{^{\}rm d}$ 1,2,4-Trimethylbenzene

e_{1,2,3}-Trimethylbenzene

fDissolved oxygen

Table 5-18. Biodegradation rate constants, half-lives and correlation coefficients for the fit of biodegradation experiment #1 data to the Thomas slope rate equation.

Treatm	ment	Benzene	Toluene	m,p-Xylene	o-Xylene	3,4-ET
1A	k ^a t½b r²	0.224 3.09 0.964	0.239 2.91 0.958	0.188 3.68 0.974	0.139 4.97 0.999	0.195 3.56 0.967
1B	k t ¹ 2 2	-3.406 -0.204 0.764	-0.155 -4.46 0.129	0.135 5.14 0.838	-0.155 -0.107 0.129	0.111 6.27 0.745
10	k t½ 2	0.094 7.37 0.899	0.153 4.54 0.986	0.183 3.79 0.987	0.087 7.93 0.947	0.195 3.55 0.984
1D	k t½ 2	0.118 5.90	0.171 4.06	0.228 3.04	0.096 7.21	0.205
1E	k t½	0.978 -0.027 -25.99	0.975 0.048 14.30	0.966 0.144 4.80	0.712 0.045 15.33	0.972 0.151 4.60
1F	r ² k t ¹ ₂	0.040 0.101 6.88	0.199 0.142 4.89	0.946	0.926	0.982
	r2	0.568	0.989	5.96 0.822	5.31 0.816	4.33 0.983
1G	k t½ r ²	0.130 5.33 0.488	0.177 3.92 0.780	0.176 3.93 0.863	0.157 4.41 0.761	0.173 4.00 0.883

Table 5-18. Continued.

Treat	ment	1,3,5-T	MB 2-ET	1,2,4-TMB	1,2,3-TMB	DO
1A	k	0.140	0.165	0.193	0.140	0.382
	t½	4.96	4.20	3.59	4.94	1.81
	2	0.988	0.955	0.978	0.984	0.990
18	k	0.032	0.012	0.172	0.078	0.259
	t½	21.66	56.98	4.04	8.85	2.68
	r²	0.139	0.012	0.925	0.526	0.952
1C	k	0.158	0.129	0.197	0.122	0.262
	t½	4.39	5.38	3.52	5.70	2.64
	r ²	0.975	0.949	0.986	0.903	0.955
1D	k	0.166	0.106	0.235	0.148	0.310
	t½	4.17	6.57	2.96	4.67	2.24
	2	0.969	0.889	0.964	0.933	0.939
1E	k	0.127	0.102	0.210	0.110	0.324
	t½	5.45	6.81	3.44	6.30	2.14
	r ²	0.896	0.786	0.985	0.785	0.940
1F	k	0.176	0.151	0.167	0.169	0.074
	t½	3.95	4.60	4.15	4.10	9.37
	2	0.924	0.850	0.981	0.923	0.183
1G	k t½ 2 r	0.171 4.05 0.897	0.176 3.95 0.890	0.170 4.07 0.896	0.174 4.00 0.885	0.176 3.94 0.801

a_{day} -1

b_{days}

below, each treatment is discussed individually, prior to an overall analysis of these experiments.

5.9.1 Treatment 1A.

Data are plotted in Figures 5-14 and 5-15. The dissolved oxygen in these microcosms was not artificially increased, other than by aeration during the transfer and filling of the solute containing water into the biodegradation vials. The DO of these vials at time = 0 was 7.3 mg/L. An examination of the half lives of these solutes showed that benzene (3.1 days) and toluene (2.9 days) were readily removed from the microcosm compared to a half life of 4.96 for 1,3,5-trimethylbenzene. This is in contradiction to studies which note the recalcitrance of these compounds to biodegradation (Bossert and Bartha, 1984). The ortho isomer of xylene was more resistant to microbial attack than were the meta and para isomers. This confirmed the data of Kappeler and Wuhrmann (1978a, 1978b). Complete degradation of all solutes was achieved by 31 days (detection limit 0.5 ug/L) and in many cases degradation was complete in 15 days. Toluene was degraded particularly rapidly. The depletion of oxygen in these microcosms suggested that this loss was microbially mediated (Figure 5-16).

5.9.2 Treatment 1B.

Data for this treatment are shown in Appendix E . These data demonstrate the effect of $17\ \text{mg/L}$ hydrogen peroxide treatment on the degradation of the aromatic

Relative concentration vs. time for five aromatic compounds in biodegradation treatment 1A. Figure 5-14.

Relative concentration vs. time for four ${\rm C_9H_{12}}$ compounds in biodegradation treatment 1A. Figure 5-15.

solutes. The main feature of these plots is the eight day lag phase in the removal of benzene, toluene and o-xylene. However, with time, degradation of these compounds was essentially complete. The ${\rm C_9H_{12}}$ compounds also displayed a lag up to eight days in length. The half lives were slightly increased over treatment lA, indicating the time involved in the adaption of the microorganisms to the hydrogen peroxide.

5.9.3 Treatment 1C

The effects of increasing the concentration of ${\rm H_2O_2}$ to 68 mg/L was shown in this treatment. There was no apparent increase in toxicity over the 17 mg/L treatment. Benzene, toluene and m,p-xylene were completely removed. Again, 1,2,4-trimethylbenzene exhibited the most rapid degradation of the ${\rm C_9H_{12}}$ compounds. The initial DO in these microcosms was 10.5 mg/L. The increased half lives of the study compounds reflect the adaptation to hydrogen peroxide noted in treatment 2B. Dissolved oxygen concentrations are shown in Figure 5-16.

5.9.4 Treatment 1D

Ammonium chloride (18mg/L) was added to these vials. This concentration was chosen based on the calculated amount of nitrogen required to completely degrade the aromatic solutes assuming a C:N ratio of 10:1. The initial DO concentration was 9 mg/L. Oxygen consumption appeared rapid but fell after seven days. Addition of ammonium chloride significantly reduced the rate of microbial degradation of

Concentration vs. time for dissolved oxygen in biodegradation treatments 1A, 1B and 1C. Figure 5-16.

benzene, toluene, 1,3,5-trimethylbenzene, 2-ethyltoluene, and 1,2,3-trimethylbenzene. Both m,p-xylene (half life = 3 days) and 1,2,4-trimethylbenzene (half life = 2.96 days) were less affected and were each degraded to 1.7 ug/L. At the end of 31 days, 31% of 1,2,3-trimethylbenzene remained but 1,3,5-trimethylbenzene, 2-ethyltoluene and 1,2,4-trimethylbenzene although not completely degraded were well removed.

5.9.5 Treatment 1E

Graphical representation of this treatment is shown in Appendix E. These vials are treated with 18 mg/L NH $_4$ Cl and 17 mg/L H $_2$ O $_2$. This combination of treatments caused an increase in the 1/2 lives for the C $_6$ -C $_8$ compounds, but the removal rates of the C $_9$ H $_1$ 2 compounds were improved relative to treatment with ammonium chloride alone. Ultimate removal of compounds was good except for the more recalcitrant o-xylene, 1,2,3-trimethylbenzene, 3,4-ET and 1,3,5-trimethylbenzene. The lag in degradation of the aromatic solutes was reflected in the reduced consumption of DO in the microcosms (Figure 5-17).

5.9.6 Treatment 1F

Treatment with 68 mg/L $\rm H_2O_2$ and 18 mg/L $\rm NH_4C1$ is shown in Appendix E and average data are shown in Table 5-16. There was an obvious lag in the DO profile (Figure 5-17), and the half life for dissolved oxygen was increased from 1.8 days in treatment 1A to 9.4 days in this treatment. This was also reflected in the concentrations of benzene, o-

Concentration vs. time for dissolved oxygen in biodegradation treatments 1D, 1E, 1F and 1G. Figure 5-17.

xylene, 2-ethyltoluene, 1,3,5-trimethylbenzene and 1,2,3trimethylbenzene. All compounds showed a substantial increase in half lives, except for m,p-xylene and 1,2,4trimethylbenzene. Throughout this study these compounds were well degraded. These compounds were the most rapidly removed compounds in the work of Kappeler and Wuhrmann (1978a, 1987b). The changes in the degradation rates for the other aromatic compounds may reflect a change in the community structure of the well water bacteria. The bacteria from the field site may be adapted to degrade aromatic compounds that are usually thought to be recalcitrant or degraded slowly (i.e., benzene). In treatment 1A, benzene was rapidly and easily removed by the bacterial community. However, by disrupting this community by the addition of additional nutrients and hydrogen peroxide, only the compounds which are more easily biodegraded are removed. It may be possible that if these experiments were carried out for longer incubation periods, the microbial communities may have adapted to efficiently degrade the remaining aromatic compounds.

5.9.7 Treatment 1G

This treatment was a sterile control. The DO in this system remained at the initial levels (Figure 5-17), indicating the sterility of the system. Losses from the system are in the range of 25-50% for $\rm C_6-\rm C_8$ solutes, and 55-65% for $\rm C_9H_{12}$ solutes. These losses were most likely the result of diffusion of the volatile components through the

teflon septa. The loss of volatile compounds was exacerbated by storage at 20 C. However, this does not account for the increased reduction of $\rm C_9H_{12}$ concentrations relative to the more volatile $\rm C_6-C_8$. $\rm C_6-C_8$ values would normally exhibit greater volatile losses. The biodegradation data were not corrected for these losses.

5.10 Batch Biodegradation Experiment #2

The second series of batch biodegradation experiments were performed to assess the efficacy of several methods of oxygen addition to the Lake Alfred aquifer, and to repeat some of the previous treatments. In this series of experiments, additional sterile controls were added to better assess the losses exhibited in biodegradation experiment #1 (treatment 1F). In addition, microbial activity was measured by quantifying the microbial reduction of INT to INT-formazan.

The data from this experiment were fit to several rate models as described in section 5.9. No single model gave a consistently good fit to the data. Mixed order (zero order to first order) and zero order rate equations did not match the data well as evidenced by low coefficients of determination.

Average values of hydrocarbons in the microcosms are shown in Table 5-19. Rate constants, and regression coefficients for the fit of biodegradation #2 data to the

Total average hydrocarbon values (ug/L) in the microcosms of batch biodegradation experiment #2.Table 5-19.

						Treatment	nt			
Compound	Day	, 2A	2B	2C	2D	2E	2F	2G	2н	21
Benzene		1392.25	1392	-	-			220.00	220.00	
	m r	128.17	835.33	986.00	750.67		652.33	2.00	170.00	148.00
		138.70	492	865.33			735.67	2.05	19.50	158.00
		145.00	487	754.67		884.	890.33	2.00		
		73.00	133	743.33		755.	647.00	2.50		
Toluene	0	7758.50	7758.50	7758.		7758.50	7758.50	414.33		414.33
	m	197.33	4275.33			3299.50		1.73	133.67	244.00
	7	353.00	2675.00	3435.00	2466.33	3245.67	2871.33	7.87	49.67	329.00
	14	240.50	1293.50	439		3118.00	3537,00	29.48		222.00
	21	235.00	1287,33	m	538,33	4287.33	4407.67	1.60	34.00	
	32	81.00	174.67	3374.00	398.00	2637.00	3083.00	13.50		195.33
Ethbz	0	218.50	218	218,50	218.50	218.50	218.50	101.50	101.50	101.50
	m	24.77	78	86.50	112.57	44.00	31.00	00.0		10.00
	7	5.00	52	54.67	38.80	41.67	24.07	00.0		5.12
	14	9.40	28.10	78.67	14.65	35,33	33,33	3.78	0.55	4.00
	21	1.95	28	63.00	11.95	60.67	43.33	00.00		0.00
	35	8.37	7	56.47	5.50	47.33	29.00	00.0	1.00	5.30

Table 5-19. Continued.

						Treatment	ıt			
Compound	Day	2A	2B	2C	2D	2E	2F	2G	2н	21
m, p-Xylene	3 3 3 1 4 1 4 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7241.75 973.67 1415.33 989.00 1030.00	7241.75 3245.00 1561.00 662.50 704.93	7241.75 4153.33 2815.67 3405.00 3144.67 2602.33	7241.75 3448.00 1905.17 555.00 135.33 486.5	7241.75 2542.50 2504.33 2312.67 3368.00 1626.67	7241.75 3010.00 2456.67 2872.33 3653.33	1573.67 5.17 17.27 54.15 16.10 5.93	1573.67 112.93 7.50 11.45 28.00	1573.67 824.50 859.50 762.50 756.50
o-Xylene	0 3 7 14 21 35	3452.75 1629.33 1076.67 674.00 605.00	3452.75 1835.00 1192.00 870.00 810.33	3452.75 2259.33 1555.67 2001.00 1794.33 1500.67	3452.75 1848.33 1313.00 416.00 588.67 346.50	3452.75 1407.50 1396.00 1326.67 1899.33	3452.75 1640.00 1346.67 1611.67 2078.00	1121.33 23.97 59.70 70.28 59.77 13.57	1121.33 754.33 144.00 41.25 24.00 74.00	1121.33 655.50 717.00 604.50 622.50 532.00
3,4-ET	0 3 7 14 21 35	1651.00 299.67 307.67 200.00 236.33 110.00	1651.00 588.00 327.33 157.00 163.67	1651.00 771.00 524.33 642.33 575.67	1651.00 769.33 336.67 95.67 46.00 93.00	1651.00 437.50 412.00 331.00 561.00	1651.00 587.33 450.00 483.00 627.00	462.67 6.75 7.30 12.55 5.90	462.67 54.67 5.70 3.35 8.00 6.00	462.67 144.00 144.00 119.50 111.50
1,3,5-TMB	0 7 7 21 35	593.50 261.00 155.33 91.50 105.67	593.50 215.00 125.33 100.50 99.33	593.50 285.67 192.67 250.67 223.33 179.33	593.50 277.33 160.00 79.00 72.33 47.00	593.50 156.50 153.67 143.00 217.67 154.33	593.50 217.33 160.00 182.33 241.00 168.00	174.33 48.75 3.17 9.38 13.47	174.33 79.67 12.90 6.00 12.50 8.50	174.33 58.50 57.50 53.00 52.00

Table 5-19. Continued.

						Treatment	nt			
Compound	Day	2A	2B	2C	2D	2E	2F	2G	2н	21
2-ET	0	82.		82.2	82.			9.6	1 0	6
	m	38.		9.09	69	,			יו ר	
	7	32.		76.0	. 4				າ ແ	• .
	14			25.3	54.			י י י	0 -	, ,
	21	88	104.67	205.67	72.67	202.00	231.00		чc	; ,
	35			9.59	9		157.00	9.4	12.50	51.00
,2,4-TMB		2169.00	2169.00	00.	2169.00		2169.	9.	657.67	7
	m	260.00	753.00	1042.33	952.67	549.50	818	1.3	22.	57
	7	369.00	295.00	.33	439.33		592.	8	Н	4.
		164.50	114.00	00.	106.00		653.	ε.		33.
	П	255.00	133.67	00.	19.67		896	6.		31.
	2	110.67	10.00	. 67	109.50		610.	٠.	•	99.
1,2,3-TMB	0		812.00	12.	12.		۲,	4	4.	
	m		337.00	422,33	292.10	240.50	292.00	39.73	95	52
	7			01.	82.		2	4	9	
	14			83.	29.			5	8	37.
	21			62.	39.		2	3	6	
	35			78.			7.		0	20.
DO ^a	0	. 5	7.50	.5	.5	7.50	.5	0.		
	m	٠.	٠4	4.	.5		.5	. 4	6.40	
	7	• 5	. 2	.5	σ.		7	Τ.		
	14	.5	٠,	æ	۲.		7	.2	1	
	21	2.83	•	7.73	3.27	5.50	7.50	3.13	5.05	7.90
	35	6.	۳.	7	ω,		6	4	6	

adissolved oxygen in mg/L

first order model are shown in Table 5-20 and via the Thomas slope method in Table 5-21. Examination of correlation coefficients from the fit of the Thomas slope model to the data in this experiment suggest that rate constants from this model selectively give an adequate estimate of the biological degradation constant.

5.10.1 Treatment 2A

This is a repeat of treatment 1A. The general trends were the same and the rate constants were equivalent. Again m,p-xylene and 1,2,4-trimethylbenzene showed rapid loss as noted in treatment 1A. The extent of degradation was not as complete as in treatment 1A. This may be the result of the increased concentration of toluene (7759 ug/L vs 2171 ug/L) and the concentration of m,p-xylene (7241 ug/L vs 4823 ug/L in 1A). There was a rapid loss in DO over the first two days, indicating microbial activity.

5.10.2 Treatment 2B

This is a repeat of treatment 1D. The half lives were generally higher, reflecting a decrease in hydrocarbon removal. There was a pronounced lag phase of 8 days for benzene (Figure 5-18). The lag in degradation for toluene, o-xylene, m,p-xylene and 2-ethyltoluene was two days. The DO profile in this treatment was consistent with that of 2A indicating ${\rm O}_2$ removal during the first several days. However, microbial activity was increased over treatment 2A. This microbial activity did not result in significant degradation of hydrocarbons.

Table 5-20. Biodegradation rate constants and correlation coefficients for the fit of biodegradation experiment #2 data to a first order rate equation.

Treati	ment	Benzene	Toluene	Ethbza	m,p-Xylene	o-Xylene
2A	k ^b	0.042	0.071 0.486	0.070 0.344	0.046 0.618	0.052 0.972
2B	k	0.049	0.089	0.082	0.114	0.070
	r2	0.887	0.942	0.919	0.955	0.894
2C	k	0.003	0.006	0.013	0.013	0.007
	r2	0.105	0.317	0.619	0.619	0.403
2D	$_{r^{2}}^{k}$	0.043 0.621	0.073 0.877	0.096 0.884	0.138 0.986	0.046 0.800
2E	k	-0.004	0.006	0.017	0.017	0.002
	r2	0.169	0.219	0.138	0.009	0.038
2F	k	-0.001	0.001	0.024	0.007	0.002
	r2	0.003	0.012	0.177	0.179	0.029
2G	k r2	0.067 0.234	0.036 0.057	0.004	0.081 0.266	0.057 0.406
2Н	r ²	0.059 0.640	0.072 0.683	0.135 0.469	0.095 0.398	0.057 0.500
21	k	-0.002	0.007	0.049	0.010	0.004
	r2	0.056	0.211	0.160	0.873	0.740

Table 5-20. Continued

Treati	ment	3,4-ET	1,3,5-TMB	2-ET	1,2,4-TMB	1,2,3-TMB
2A	k r2	0.046 0.698	0.049 0.867	0.048 0.917	0.049 0.574	0.048
2B	k	0.105	0.086	0.073	0.130	0.072
	r2	0.951	0.889	0.886	0.949	0.871
2C	k	0.017	0.015	0.013	0.016	0.012
	r ²	0.653	0.553	0.557	0.572	0.539
2D	k	0.078	0.057	0.053	0.091	0.045
	r2	0.691	0.885	0.833	0.586	0.858
2E	k r2	0.019 0.360	0.010 0.139	0.008 0.136	0.022	0.008 0.128
2F	k	0.013	0.011	0.009	0.012	0.006
	r2	0.333	0.240	0.192	0.256	0.110
2G	k	0.103	0.096	0.058	0.085	0.085
	r2	0.531	0.585	0.578	0.255	0.763
2н	k	0.091	0.070	0.067	0.087	0.056
	r2	0.421	0.529	0.649	0.297	0.572
21	r ²	0.024 0.627	0.018 0.560	0.021 0.627	0.016 0.614	0.014 0.651

^aEthylbenzene

b_{day}-1

Table 5-21. Biodegradation rate constants and correlation coefficients for the fit of biodegradation experiment #2 data to the Thomas slope rate equation.

Treatr	nent	Benzene	Toluene	Ethbz	m,p-Xylene	o-Xylene
2A	k ^a r ²	0.239 0.915	0.248	0.250 0.948	0.222	0.096 0.962
2B	k r2	0.004 0.020	0.081 0.902	0.194 0.921	0.133 0.971	0.028 0.373
2C	k r2	0.379 0.850	0.139 0.384	0.232 0.920	0.122 0.802	0.139 0.466
2D	r2	0.032 0.196	-0.016 0.026	0.170 0.975	0.124 0.997	0.031 0.249
2E	k r2	0.597 0.979	0.153 0.832	0.256 0.931	0.201 0.687	0.298 0.388
2F	k r2	0.228 0.631	0.212 0.730	0.249 0.923	0.237 0.740	0.212 0.880
2G	$_{r^{2}}^{k}$	0.230 0.948	0.232 0.935	-	0.227 0.938	0.215 0.908
2Н	k r2	0.098 0.883	0.174 0.974	0.174 0.977	0.246 0.937	0.158 0.960
21	r ²	-	-	0.287 0.957	0.123 0.651	-

Table 5-21. Continued.

Treati	non+	3.4-ET	1,3,5-TMB	2-ET	1,2,4-TMB	1,2,3-TMB
	men c	3,4-61	1,3,5-IMB	2-61	1,2,4-IMB	1,2,3-IMB
2A	k r2	0.216 0.909	0.152 0.960	0.130 0.961	0.228 0.914	0.162 0.915
2B	r2	0.156 0.942	0.161 0.890	0.144 0.863	0.172 0.961	0.138 0.843
2C	k r2	0.162 0.858	0.177 0.850	0.154 0.813	0.173 0.852	0.157 0.754
2D	r ²	0.116 0.987	0.129 0.986	0.079 0.910	0.140 0.999	0.153 0.880
2E	r ₂	0.223 0.832	0.255 0.881	0.254 0.858	0.216 0.801	0.255 0.856
2F	r ₂	0.222 0.852	0.234 0.859	0.235 0.786	0.230 0.846	0.254 0.704
2G	k r2	0.225 0.940	0.177 0.961	0.211 0.943	0.227 0.940	0.206 0.935
2Н	r2	0.240 0.946	0.149 0.968	0.165 0.989	0.251 0.934	0.096 0.718
21	k r2	0.211 0.905	0.217 0.898	0.193 0.841	0.206 0.886	0.195 0.871

a_{day}-1

Relative concentrations of $C_6 - C_8$ aromatic hydrocarbons vs. time in biodegradation treatment $2B.\,$ Figure 5-18.

5.10.3 Treatments 2D and 2E

These data assessed the effect of $\mathrm{H_{2}O_{2}}$ addition on the microbial community. These were essentially repeats of treatments 1C and 1F. The addition of 58 mg/L H_2O_2 (treatment 2D) produced a 2 day lag phase for benzene, toluene, m,p-xylene and 2-ethyltoluene relative to no H202 treatment (Figure 5-19). The extent of treatment was comparable to treatment 2A (air addition). The DO profiles are shown in Figure 5-20. The lag in bioactivity was paralleled by a lag in consumption of DO for the same 2 day period. The addition of $\mathrm{NH}_{A}\mathrm{Cl}$ in treatment 2E produced a toxic effect, and the hydrocarbon data were equivalent to the sterile control losses. However, the DO profile (Figure 5-20) showed consumption of dissolved oxygen, and this implied some microbial activity. The INT data also demonstrated increased bioactivity (Figure 5-21) following a lag of at least two days. Microbial activity decreased after 14 days. This decreased INT reduction was not noted for treatment 2D. Again, there was microbial activity and O2 consumption without substantial reduction in hydrocarbon concentrations.

5.10.4 Treatments 2G, 2H, 2I.

These treatments showed the effect of the addition of oxygen gas to the microcosms. One consequence of the oxygen sparging was to reduce the initial concentrations of hydrocarbons from a total of 26,000 ug/L to 5000 ug/L.

Benzene and toluene are preferentially removed, owing to

Relative concentrations of C_6-C_8 aromatic hydrocarbons vs. time in biodegradation treatment 2D. Figure 5-19.

Concentration vs. time for dissolved oxygen in biodegradation treatments 2A, 2B and 2C. Figure 5-20.

Electron transport activity in biodegradation treatments $2\mathrm{D}\text{, }2\mathrm{E}$ and $2\mathrm{F}\text{.}$ Figure 5-21.

their higher vapor pressure (95 torr for benzene and 29 torr for toluene compared with 6 torr for m-xylene at 25 C). The half lives for biodegradation under these conditions were in the same range as those for the higher concentrations (i.e. treatment 2A). Degradation to the low ug/L level was noted for all compounds. The most recalcitrant was o-xylene. The addition of $\mathrm{NH}_{A}\mathrm{Cl}$ produced the same effect noted in other treatments. The lag phase seemed to be especially significant for benzene, o-xylene, 1,3,5-trimethylbenzene, 2-ethyltoluene and 1,2,3-trimethylbenzene. As in previous experiments, 1,2,4-trimethylbenzene was well degraded under all non-sterile conditions. The reduced treatment of solutes in 2H was accompanied by consumption of oxygen and an apparent increase in microbial activity. The DO profiles show that the concentration of dissolved oxygen remained above 4 mg/L throughout the entire study, indicating no oxygen limitation.

5.10.5 Treatments 2C, 2F, 2I (Sterile Controls)

Sterility in treatments 2C, 2F and 2G was indicated by the lack of $\rm O_2$ consumption, low INT reduction and the persistence of aromatic hydrocarbons. The losses (assumed to result from diffusion through the teflon septa) were in the range of 0-25% for $\rm C_6$ - $\rm C_8$ hydrocarbons and 20-50% for $\rm C_9$ H $_{12}$ compounds. Sorption losses were accounted for in these data by adding the amount lost to sorption to the aqueous concentration data. The drop in DO in treatment 2G indicated that oxygen also diffuses through the teflon

septa. Based on this loss, the decrease in DO in treatments 2G and 2H was not attributed solely to microbial activity. The diffusion of oxygen across the teflon septa may also account for the increased degradation of the solutes in this study. In general, two parts of oxygen are required to remove one part of hydrocarbon. Using these calculations, the microcosms should have been oxygen limited. The absence of oxygen limitation, particularly in treatments with no added source of oxygen, was likely the result of oxygen diffusion into the microcosms. This suggests that in future studies, a more suitable microcosm should be employed.

5.10.6 Discussion of Batch Biodegradation Data

The rates of biodegradation (k values and half-lives) were highest in both biodegradation experiments with air augmentation (1A and 2A) or with the addition of oxygen (2G). Almost complete degradation (to below detection limit or less than 2 ug/L) was shown in each case. These data indicated that the limiting substance was oxygen. Analysis of water quality data supports this hypothesis. Total phosphate in the groundwater averages 0.6 mg/L and nitrate averages 0.25 mg/L.

Addition of ${\rm NH}_4{\rm Cl}$ to the microcosms may have spurred the process of nitrification. This would account for the reduction in dissolved oxygen values without the concomitant loss of hydrocarbons. This effect was seen in treatment 2B. In this case, the DO dropped from 7.5 to 2.5 mg/L with no loss in hydrocarbon concentration. The presence of nitrate

in the aquifer at the Lake Alfred site and the low dissolved oxygen levels in the aquifer indicate that there may be significant levels of nitrifying bacteria which may be stimulated by the addition of NH₄Cl. Indirect evidence for this hypothesis is seen in the results of the INT studies for treatments 2A and 2B. Treatment 2B showed a seven-fold increase in electron transport activity although there was no substantial decrease in hydrocarbon concentration (Figure 5-22).

The microorganisms in this study are able to degrade aromatic hydrocarbons rapidly down to the 1 ug/L range given sufficient oxygen. These data confirm the work of Jensen et al. (1985) who show the degradation of aromatic hydrocarbons in petroleum contaminated groundwater to 1 ug/L or less. The rates of biodegradation determined from these batch biodegradation studies were significantly faster than that of Kappeler and Wuhrmann (1978b). In that study benzene required 12 days to degrade completely. Delfino and Miles (1985) showed an eight day lag phase for benzene dosed to clean groundwater. In this study, benzene was completely removed in a minimum of two days, indicating the adaptation of bacteria from the Lake Alfred site to degrade aromatic hydrocarbons.

5.10.7 Hydrogen Peroxide

The introduction of hydrogen peroxide into the microcosms produced a lag phase. The microbial populations required several days to adapt to the changing environmental

Electron transport activity in biodegradation treatments $2A_{\star}$ 2B and $2C_{\star}$ Figure 5-22.

conditions. This was reflected in the electron transport activity graphs where ${\rm H_2O_2}$ treatment reduced INT-formazan production. This may result from the toxicity of ${\rm H_2O_2}$ to the microbial population.

The addition of hydrogen peroxide to the batch microcosms did increase the DO, especially in biodegradation experiment ${\pm}1$. Initial DO levels were increased by 2 to 3 mg/L following addition of ${\rm H_2O_2}$ in treatments 1B and 1C. However, hydrogen peroxide treatment did not increase the rates of degradation, or improve the extent of removal of aromatic hydrocarbons. Air or oxygen addition was shown to be more effective methods of oxygen supplementation, since they did not require an adaption period.

This conclusion may not be significant under field conditions, where an adaption period may not be an important drawback, given the economy of $\rm H_2O_2$ relative to air or oxygen addition. These studies demonstrate that $\rm H_2O_2$ does not limit the extent of biodegradation, but that there is an adaption period associated with its use. No column experiments were performed with hydrogen peroxide. These experiments would have assessed hydrogen peroxide reactivity under flowing conditions.

5.11 Column Biodegradation Experiments

Several authors employed flow-through soil columns to study the degradation of organic contaminants (Kuhn et al., 1985). Kuhn et al. (1985) noted that if one expects to apply laboratory derived rate constants to field conditions that input concentrations should be similar to field concentrations. The columns used in this work were packed with soil from the Lake Alfred field site, and were supplied with well water from Lake Alfred so that field and laboratory conditions were closely matched. Two flow rates were used to better simulate the varied flow conditions present in the Lake Alfred aquifer.

The results of the columns run at low flow velocities (0.01 cm/min) are shown in Figure 5-23. These data were analyzed to determine rate constants, and these are shown in Table 5-22. The rate constants were calculated with equation [4.7]. The rates of degradation were much higher in the column system than in the batch biodegradation system. The rate constants of the aromatic compounds in the column system were one to two orders of magnitude greater than batch study constants. The increased rate of hydrocarbon removal was the result of improved transport of carbon sources, nutrients and oxygen to the microbial community in the column system. The microcosms in the batch studies were not continuously mixed so that portions of the microcosm may have been nutrient or oxygen limited. Removal efficiencies of 85-95% were seen for all compounds except for benzene, which was degraded more slowly and showed a 60% percent removal. The order of degradation was m,p-xylene > ethylbenzene > o-xylene > toluene > benzene. This order was

Breakthrough curves for aromatic compounds in column blodegradation experiments performed at a flow rate of 0.90~mL/hr. Figure 5-23.

Table 5-22. First order biological rate constants and half-lives of aromatic hydrocarbons for the biodegradation column with flow at 0.90 mL/hr.

Compound	C/Co	k ^a day-1	t _l day
Benzene	0.36	5.80	0.120
Toluene	0.144	11.01	0.063
Ethylbenzene	0.086	13.94	0.050
m,p-Xylene	0.051	16.82	0.041
0-Xylene	0.128	11.69	0.059

acalculated from the following data:

length = 2.5 cm
bulk density = 1.8 g/mL
particle density = 2.6 g/mL
pore water velocity = 14.21 cm/day
volumetric water content = 0.31

consistent with the removal of side chains prior to attack on the aromatic nucleous.

Degradation rates for columns run at the higher flow rate are shown in Table 5-23. The faster flow rate decreased the half lives of the aromatic contaminants. This resulted from improved transport of oxygen and subtrate. The flow rate used in this column was equivalent to groundwater velocities in portions of the Lake Alfred aguifer (Killan, 1987) and may closely reflect field removals. Breakthrough curves for benzene, toluene and 1,2,4-trimethylbenzene are shown in Figures 5-24 ,5-25 , and 5-26. Only 10% of the benzene and 30% of the toluene were removed at this flow rate although other removals are in the range of 50-60%. The difference in the degradation for benzene is seen by comparison of Figures 5-24 with Figure 5-26. Benzene almost breaks through the column completely, reflecting the time involved for the microbes to degrade this solute. The branched aromatic compounds are more rapidly degraded, which is consistent with the results from the 0.680 cm/min column. The rates of degradation of the aromatic compounds in the 0.01 cm/min columns were in the order $C_9 > C_8 > C_7 > C_6$. Benzene was the most recalcitrant with a half life of 0.12 days (2.88 hours). These data are consistent with the aromatic degradation process described by Evans (1977), and the literature on the fate of aromatic hydrocarbons in soils (Bossert and Bartha, 1984).

Table 5-23. First order biological rate constants and half-lives of aromatic hydrocarbons for the bioderradation column with flow at 1 mL/min.

Compound	ka day-1	t _{1/2} day
=======================================	========	=======================================
Benzene	17.7	0.040
Toluene	71.1	0.010
Ethylbenzene	125.3	0.006
m,p-Xylene	133.1	0.005
o-Xylene	115.2	0.006
Isopropylbenzene	166.7	0.004
n-Propylbenzene	192.4	0.004
3 or 4 Ethyltoluene	172.4	0.004
1,3,5-Trimethylbenzene	178.1	0.004
2-Ethyltoluene	158.4	0.004
1,2,4-Trimethylbenzene	172.3	0.004
1,2,3-Trimethylbenzene	150.6	0.005

acalculated with the following data:

length = 5.0 cm
pore water velocity = 0.680 cm/min
particle density = 2.6 g/mL
bulk density = 1.82 g/mL
volumetric water content = 0.30

Breakthrough curve for benzene in column biodegradation experiment performed at a flow rate of 1 $m L/\min$. Figure 5-24.

Breakthrough curve for toluene in column biodegradation experiment performed at a flow rate of 1 mL/min.Figure 5-25.

Breakthrough curve for 1,2,4-trimethylbenzene in column biodegradation experiment performed at a flow rate of 1 mL/min. Figure 5-26.

Based on these data, it is evident that a well adapted, standing microbial population from Lake Alfred is capable of degrading aromatic hydrocarbons at relatively high loadings and short contact times. Degradation may be aided by the development of an efficient biofilm (Bouwer and McCarty, 1984). Benzene was degraded to a lesser extent than the alkyl aromatics and o-xylene was more resistant to microbial degradation than the meta and para isomers. Kuhn et al. (1985) in column studies with all three xylene isomers noted the same phenomenon. The increased resistance of o-xylene was also seen in the batch biodegradation data presented in this study.

In the batch studies, benzene was degraded at higher rates than most of the branched aromatic compounds. This is contrary to the column data. This difference in removal rates may be the result of longer contact time in the batch studies. This phenomenon has important consequences for the degradation of hydrocarbons in field studies, where high flow rates may provide insufficient contact time for biological removal. Flow rates were seen to significantly affect the rates of degradation in the experimental column system. The half life for benzene decreased from 0.120 days at 0.01 cm/min to 0.039 days at a flow velocity of .680 cm/min. The half life for toluene decreased from 0.063 hours to 0.0097 hours.

However, these rates are derived from non-limiting conditions and these data may not completely represent

biodegradation in the field, where oxygen limitation reduces the biological removal of hydrocarbons.

The rapid biodegradation of solutes in the batch and column biodegradation studies supports the hypothesis that the microbial community in the Lake Alfred aquifer is well adapted to remove aromatic hydrocarbons from gasoline sources. In instances where adaptation has occurred, biotransformations may be so rapid that they are considered instantaneous relative to the rate of groundwater flow. This shifts the quantitative prediction of biological activity from a consideration of biological kinetics to a consideration of the extent of utilization (Wilson et al., 1983b). Thus geochemical constraints become the controlling factors in the biodegradation process. This is the situation at the Lake Alfred site, where oxygen is the limiting substance.

5.12 Field Data

It is beyond the scope of this work to thoroughly describe all the field data collected during the past 18 months. Rather, the major findings of this dissertation will be correlated with selected aspects of the field data. These topics include analysis of field-scale dispersion, field-scale solute transport and the enumeration of microbial populations.

5.12.1 Dispersion

The breakthrough curve for the NH $_4$ Cl tracer at the Lake Alfred site is shown in Figure 5-27. The dispersion coefficient calculated from these data was 0.546 cm 2 /min. Compared with the dispersion coefficients from the column experiments performed at 0.680 cm/min (0.01-0.07 cm 2 /min), the field scale dispersion is an order of magnitude larger than the column data. The calculated P_e is approximately 25. This value should be useful in the modeling of the Lake Alfred aquifer.

5.12.2 Solute Transport

An analysis of solute transport at the Lake Alfred research site is hampered by geologic and man-made obstacles. The presence of a swale running through the site and of a dual flow pattern around the pump house (Building 12) have produced preferential flow in the aquifer. Also, sewer, drainage, steam and telecommunications lines crisscross contaminated portions of the aquifer, complicating the flow path of dissolved hydrocarbons. It is also probable that gasoline storage tanks in between Buildings 10 and 12 and transfer equipment south of the wash rack added unknown quantities of gasoline to portions of the study area (Killan, 1987). This skews the distribution of hydrocarbons in the aquifer and makes determination of solute transport difficult. Finally, the pumping wells (UF-2M, RAP-1 and RAP-3) distort the transport of contaminants. Less retarded solutes appear to be more retained by reversal of

Breakthrough curve for field tracer (NH4Cl) experiment measured at RAP-10. Figure 5-27.

the hydraulic gradient. Conversely, solutes which are more highly sorbed move more quickly towards the pumping wells as a result of increased convective flow of the mobile phase (ie., groundwater). With these caveats in mind, interpretation of the field data becomes very complex.

The distribution of benzene at the field site is highest toward the swamp (well UF-3W) as is shown in Figure 5-28. The major concentrations of benzene seem to have migrated substantially faster than the other compounds. This is expected from the relatively low retardation factor demonstrated in the laboratory studies, and also from the inefficient biodegradation of benzene at high flow, as determined in the biodegradation column run at 0.680 cm/min. In this column, only 10% of the benzene was removed, whereas the branched aromatics were more easily degraded.

Hydrocarbon data from each monitoring well are presented in Appendix G. Examination of these data demonstrate that the areal distribution of other aromatic solutes are less distinct than benzene. Analyses of these data do not yield a sequential distribution of compounds suggested by retardation factors found in laboratory experiments. This results from the increased susceptibility to microbial attack, and the probability of multiple spill sites.

Ortho-xylene (Figure 5-29) has a measured retardation factor of 1.6, which is 20% larger than that of benzene. However, the areal distribution of o-xylene is much

Figure 5-28. Distribution of benzene (ug/L) at the Lake Alfred field site.

Figure 5-29. Distribution of o-xylene (ug/L) at the Lake Alfred field site.

different than that of benzene. Based on a comparison of R values, the distribution of o-xylene should be skewed towards the wetlands, as is benzene. One factor which may account for the apparent increase in retardation for o-xylene is the higher rate constant for biological removal (half life = 0.144 hours at 0.680 cm/min) compared to benzene (0.940 hours). This results in improved removal of o-xylene as it moves through the aquifer, so that the solute front appears retarded, relative to benzene. These type of analysis, although somewhat crude, indicates the importance of biological data in the interpretation of solute transport under field conditions.

5.12.3 Microbial Enumeration and biodegradation

Microbial populations at the field site are given in Tables 5-24 to 5-27. Generally they range from 10⁵ to 10⁶ organisms/gram dry weight soil. Given sufficient oxygen, this population is sufficient for complete biodegradation as shown in the batch laboratory studies; no additional nutrients are necessary. The extent of oxygen limitation is noted in Table 5-28, where the range in concentrations of DO over the study period are presented. Wells which exhibit low DO also exhibit high concentrations of hydrocarbons. An example of the apparent lack of significant bioactivity is seen in an examination of well data from OHM-3. This well shows consistently low DO (0.4 mg/L), with no significant changes in the concentrations of any of the individual solutes.

Table 5-24. Microbial populations in a soil core taken south of the paint shop (Bldg. 54), June, 1986.

D 11	CFU/	a 5 gdw x 10
Depth, feet	avg.	std. dev.
4.15	4.00	1.53
4.67	5.28	0.72
5.46	3.07	0.56

^aCFU/gdw: colony forming units per gram dry weight

Table 5-25. Microbial populations in a soil core taken in the spray field, June, 1986.

Donth	CFU/	gdw ^a x 10 ⁵	
Depth, feet	avg.	std. dev.	
0.5	82.3	5.18	- 4
1.0	30.8	0.54	
1.5	8.77	0.66	
2.0	4.21	0.36	
3.0	4.59	2.83	

^aCFU/gdw: colony forming units per gram dry weight

Table 5-26. Microbial populations in a soil core taken south of the pump house (Bldg. 12), July, 1986.

D + h	CFU/	gdw x 10 ⁶	
Depth, feet	avg.	std. dev.	Comments
0.5	3.6	0.73	
1.0	4.6	1.21	
1.5	6.0	2.25	
2.0	2.6	0.36	
2.5	2.1	0.91	
4.0	4.5	2.16	
5.0	1.6	0.16	
6.0	3.3	0.60	Saturated zone gasoline odo

Table 5-27. Microbial populations from samples collected during installation of monitoring wells RAP-5 and RAP-6, September, 1986.

		CFU/gdw x	10 ⁶		
Depth,		P-4		AP-5	
feet	avg.	std. dev.	avg.	std. dev.	Comments
2.0	ns ^a	ns	4.9	0.34	
3.0	8.9	0.96	3.2	0.25	
4.0	4.1	0.22	3.1	0.82	
5.0	ns	ns	8.4	0.31	
6.0	4.2	0.11	2.0	0.85	Saturated zone

^ano sample

Water chemistry parameters from selected monitoring wells at Lake Alfred CREC, 1986. Table 5-28.

Well	Chloride, mg/L	Chloride, Conductivity, mg/L umhos	hф	Dissolved Oxygen, mg/L	Total Phosphate, mg/L	Nitrate, mg/L
HM-1	1	270- 302	6.1-6.6	0.2-0.7	0.19	1
OHM-2	793	2100-2700	6.1-6.9	0.2-0.7	1.40	0.94
HM-3	18	350-390	5.9-6.6	0.1-0.3	0.62	0.14
HM-4	16	333	6.1-6.7	0.2-0.3	0.40	0.20
-5	19	390	6.1-6.7	0.2-0.6	0.47	0.19
9-	19	300	6.4-7.2	0.4-0.8	0.33	0.22
-7	21	410	5.8-7.1	0.3-0.4	0.34	0.24
F-1E	21	353	5.8-6.6	0.9-3.5	0.47	1
F-2M	12	382	5.4-6.7	0.7-0.8	0.58	0.14
UF-3W	16	470- 700	6.1-6.7	0.1-0.5	0.82	0.19
AP-2	22	325	6.1-7.1	0.9-4.1	0.65	0.29
AP-4	1	319	6.1-6.9	0.5-1.8	0.53	I
AP-5	1	280	5.8-6.9	0.2-2.2	0.57	0.15
AP-6	1	317	6.2-7.1	1.4-3.9	0.65	0.41
AP-7	0		6.3-7.1	1.7-4.8	0.67	0.43

The opposite appears to be true in data from well P-7. This well shows significant decreases in some aromatic hydrocarbons, and the dissolved oxygen levels start to increase after November, 1986. This may be the result of the increased recharge of aerated water and change in pumping conditions established by Killan (1987). Decreases in hydrocarbon concentrations concomitant with increasing DO are also noted up gradient of P-7 prior to November 22, 1986. Wells RAP-6 and RAP-5 exhibit rapid removals of hydrocarbons following the start of increased flushing with aerated water (22 October, 1986). However, the data are insufficient to conclude whether this change results from the increased supply of oxygenated water and subsequent biodegradation, or if it is caused by the more rapid solute transport owing to increasing the flow velocity of the aguifer.

CHAPTER VI SUMMARY AND CONCLUSIONS

6.1 Summary

Hydrolysis, sorption and biodegradation reactions of aromatic hydrocarbons (all isomers of $C_6H_6-C_9H_{12}$) under water saturated soil conditions were investigated. Several treatment techniques ($\mathrm{H_{2}O_{2}}$, $\mathrm{O_{2}}$ gas and $\mathrm{NH_{4}Cl}$) were evaluated to enhance the microbial degradation of the aromatic compounds. These studies were performed with a multicomponent solute system of aromatic hydrocarbons, resulting from the partial solubilization of gasoline into groundwater, obtained from a field site where a gasoline spill had occurred. The sorbent used in these studies was collected from the field site in a non-contaminated portion of the aquifer. This site was typical of sandy surficial aquifers in Florida, and was characterized by the low organic carbon content (0.015%) of the aquifer material. The aquifer was composed primarily of medium to fine grained sands.

Contaminated well water from the surficial aquifer was employed as the source of solutes for the majority of experiments. The major components of this water were the hydrocarbons (${\rm C_6H_6-C_9H_{12}}$) used in this study.

6.1.1 Hydrolysis studies

Hydrolysis did not account for substantial losses of the aromatic hydrocarbons in this study. These solutes were resistant to hydrolysis even under extreme (relative to the environment) conditions of pH (2,9,12) or temperature (60 C).

6.1.2 Sorption studies

Sorption of C_6-C_9 aromatic solutes to the aquifer material employed in this work was relatively rapid. Rate studies to determine the approach to equilibrium revealed that there was an initial period of rapid sorption and that equilibrium conditions were established within four to eight hours.

Multicomponent sorption experiments of the dissolved aromatic hydrocarbons in this study were performed in batch isotherms and in leaching column experiments. Surficial well water was used as the source of these solutes. Aquifer material from the Lake Alfred site was used as the sorbent. Batch sorption employed a 3:1 solids to solution ratio to approximate aquifer conditions, and to maximize the change in solution concentration resulting from sorption of the solutes to the aquifer material. Equilibrium batch isotherm data was evaluated with the Freundlich model, the linear model and the linear model with suppressed intercept. Sorption coefficients (K_d) for the two linear models were equivalent, and the Freundlich model gave similar sorption coefficients (K_f). K_d values from the linear models ranged

from 0.49 for toluene to 0.142 for 1,3,5-trimethylbenzene. It was concluded that the sorption process was reversible in these studies with no significant hysteresis.

Column sorption experiments were performed under saturated steady flow conditions. Sorption coefficients from batch isotherm studies and column sorption studies were closely matched. The average dispersion in these columns was 0.044 cm²/min with a standard deviation of 0.029 ${\rm cm}^2/{\rm minute}$. Retardation factors were determined for all ${\rm C_6}$ -Co aromatic compounds from the multicomponent system of dissolved aromatic hydrocarbons in well water. Retardation factors ranged from 1.36 for benzene to 2.40 for npropylbenzene. These data demonstrated the relatively low retardation of aromatic solutes by the aquifer materials. The flow velocity used in the column experiments (0.680 cm/min) was close to seepage velocities measured at the field site (0.02-0.38 cm/min). The column breakthrough curves (BTC) exhibited some non-equilibria as a result of slow sorption kinetics, and this process may also affect the transport of solutes in the field.

The influence of competing solutes was investigated by comparing retardation values for benzene in a single solute system with the breakthrough curve for benzene in the multicomponent system. The retardation factors for benzene in both column systems were similar (1.36 vs. 1.40). Solute competition for sorbing sites was not a significant factor

in this study. This was likely the result of the use of low concentrations (less than 2% of the water solubility).

Sorption mechanisms were evaluated by comparison of $K_{\rm OC}$ data from column studies in this study with partitioning and molecular topology models. Regression analysis of $K_{\rm OC}$ data versus literature values for $K_{\rm OW}$ demonstrated that partitioning alone did not adequately describe the sorption process (r^2 = 0.857). Regression analysis of $K_{\rm OC}$ data with first order molecular connectivity indices indicated that sorption may be partially described as a surface area dependent phenomena (r^2 = 0.839). Both models gave equivalent fit to the $K_{\rm OC}$ data, and this suggested that sorption was the result of several processes.

6.1.3 Biodegradation Studies

Rate constants for the biodegradation of selected aromatic hydrocarbons were determined from batch and column studies. Column studies yielded higher rate constants than the batch studies indicating more rapid removal of solutes. Half lives for columns run at 0.01 cm/min were between 0.120 days for benzene to 0.041 days for m,p-xylene. Rate constants derived from columns with velocities of 0.680 cm/min were higher, indicating increased removal of hydrocarbons. These half lives ranged from 0.940 hours for benzene to 0.086 hours for n-propylbenzene. The increased removal at the higher flow rate was the result of improved transport of oxygen and nutrients to the microbes. The 1 mL/min flow rate (0.680 cm/min) was equivalent to seepage

velocities at the field site, and suggested that the contact time was suitable for complete degradation of aromatic solutes, under non-limiting conditions. This indicated the need for oxygen augmentation at the field site to increase the biodegradation rates of aromatic contaminants.

Batch biodegradation experiments were performed to assess the efficacy of various methods to increase the biological degradation of dissolved aromatic hydrocarbons at the Lake Alfred field site. Laboratory experiments with hydrogen peroxide indicated the ability of the microbial community and the aquifer materials to catalyze the reduction of hydrogen peroxide to yield oxygen gas. No hydrocarbon oxidation was apparent as a result of the hydrogen peroxide decomposition.

The half lives for biological removal of the selected aromatic hydrocarbons with the addition of air (7-8 mg/L O₂) in the batch biodegradation studies (Treatment 1A, Thomas slope rate equation) ranged from 2.91 days for toluene to 4.96 days for 1,3,5-trimethylbenzene. Benzene, toluene and 1,2,4-trimethylbenzene were degraded most rapidly. Augmentation of oxygen in the form of air or oxygen gas was most effective for increasing the biodegradation of aromatic hydrocarbons. These data indicated that the microbes from the Lake Alfred site were well adapted to aromatic gasoline hydrocarbons, and were limited only by the availability of oxygen. Treatment with hydrogen peroxide (17 mg/L to 68 mg/L) increased the dissolved oxygen levels in the

microcosms, but did not increase the rates of degradation or the extent of hydrocarbon removal in batch studies. Ammonium chloride addition produced conditions favorable to nitrifying bacteria, which resulted in the depletion of oxygen without substantial hydrocarbon removal. Treatment with ammonium chloride resulted in a lag phase, during which the microbial community adapted to the changed nutrient conditions. The combination of NH $_4$ Cl and H $_2$ O $_2$ exhibited a toxic effect to the microflora from the Lake Alfred aquifer. This suggests that the use of NH $_4$ Cl as a field tracer should not be followed by application of H $_2$ O $_2$ to increase dissolved oxygen. Treatment with H $_2$ O $_2$ at concentrations of 17 mg/L and 68 mg/L produced lag times of up to eight days, with slightly reduced rate constants.

VOA vials were employed as microcosms for the batch biodegradation experiments. These vials allowed substantial abiotic losses of solutes, as determined by control samples, and were not recommended for use in future experiments.

6.1.4 Microbial Field Data

Oxygen was the limiting substance at the Lake Alfred Site. Dissolved oxygen concentrations in the main area of hydrocarbon contamination was only 0.1 to 0.4 mg/L. The average value for total phosphorus was 0.6 mg/L and the average value for nitrate was 0.3 mg/L over the study area. These data indicate that there were sufficient phosphorus and nitrogen sources to initiate the biological removal of hydrocarbons, given sufficient oxygen. This hypothesis was

confirmed by the laboratory biodegradation experiments, where the microbes from the field site were well adapted and were able to rapidly degrade the aromatic solutes to less than 0.5 $\mbox{ug/L}$. Microbial populations at the field site were determined to be in the range of 10^5 to 10^6 organisms per gram dry weight of soil.

6.1.5 Field Scale Solute Transport

The distribution of contaminants at the Lake Alfred field site was complicated by physical structures, numerous spills and underground utilities. This made the interpretation of field data difficult. The major concentrations of benzene were found at the western boundary of the field site, down gradient from the spill area. This distribution of benzene demonstrates that the combination of low retardation and inefficient biodegradation can result in increased migration, relative to solutes which were more retarded and more easily degraded.

6.2 Conclusions

- 1. Hydrolysis was not a significant removal mechanism for aromatic hydrocarbons.
- Solute-sorbent equilibrium was established in batch sorption vials in four to eight hours.
 - 3. Equilibrium batch sorption isotherms were linear.
- 4. Column breakthrough curves exhibited apparent nonequilibria.
- Solute-solute competition for sorbing sites was not observed.
- Equilibrium batch sorption isotherm data and breakthrough curve data yielded similar estimates of solute retardation and sorption.
- 7. Partitioning models and the first order molecular connectivity model gave equivalent fit to the sorption data. This supports the hypothesis that sorption results from several processes depending on the sorbent and the solute.
- Bacteria from the Lake Alfred site are adapted to aromatic hydrocarbons from gasoline sources.
- Enzymatic and nonbiological hydrogen peroxide catalysts are present at the Lake Alfred site.
- 10. Hydrogen peroxide does not oxidize aromatic $\ensuremath{\mathsf{hydrocarbons}}$.

- Addition of air or oxygen gas was the most effective method for stimulating microbial degradation of the solutes in this study.
- 12. Hydrogen peroxide was effective in increasing the dissolved oxygen level in the microcosms.
- 13. Hydrogen peroxide addition to the microcosms did not increase the rate or extent of aromatic hydrocarbon removal.
- 14. Ammonium chloride addition to the microcosms caused nitrification, resulting in oxygen consumption in the microcosms without hydrocarbon removal.
- 15. The combination of ammonium chloride (18 mg/L) and hydrogen peroxide (17 mg/L) additions to biodegradation microcosms produced toxic conditions.
- 16. Column biodegradation studies yielded higher rate constants than the batch studies, reflecting improved transport of nutrients and oxygen to bacteria.
- 17. Rates of biodegradation for aromatic compounds were in the order C $_9$ > C $_8$ > C $_7$ > C $_6$. Benzene was the most recalcitrant solute in the column studies.
- 18. Benzene, toluene, m,p-xylene and 1,2,4trimethylbenzene showed the most rapid biodegradation in the
 batch studies.
- 19. Microbial communities in the Lake Alfred aquifer were in the range of $10^5 10^6$ colony forming units per gram dry weight of aquifer material.

- 20. Microbial populations at the Lake Alfred site were oxygen limited, but not phosphorus or nitrogen limited.
- 21. Horizontal dispersion at the field site was calculated to be 0.546 $\mbox{cm}^2/\mbox{min.}$
- 22. Low retardation (1.36), high flow velocity (0.680 cm/min) and a degradation rate of 17.65 ug/L/day explain the distribution of benzene at the field site.

APPENDIX A CHROMATOGRAPHIC CONDITIONS AND QUALITY CONTROL PARAMETERS FOR THE ANALYSIS OF AROMATIC HYDROCARBONS

This appendix lists the chromatographic conditions used in the gas chromatographic analysis of aromatic hydrocarbons on the Perkin Elmer 4100 gas chromatograph. Following the GC parameters, summary quality control data is presented for chromatographic analyses performed during the course of these studies.

```
METHOD 6 ANGLEY 2 DATE LAST WRITTEN 87/05/12
SECTION 1 GC CONTROL
     OVEN TEMP (DEG C)
                                         78
                                 50
                                                    94
                                                             200
     ISO TIME (HIN)
RAMP RATE (DEG C/MIN)
                                                  0.0
                                5.0
                                                             0.0
                                3.0
                                         3.0
                                                  30.0
     FID SENS HIGH
     DET ZERO
                  ON
     DET TEMP 300
     FLOW A 55 ML/MIN
CARRIER GHS HE
     EQUILIB TIME 0.5 MIN
TOTAL PUN TIME 30.1 MIN
SECTION 2 TIMED EVENTS
    TIME EVENT
     0.01
             WIDTH
SET ZERO
INTEG
     8.82
    29.00
                          OFF
SECTION 3 DATA HANDLING
    DATA ACQUISITION
                                               REPORT
  START TIME
                  0.00 MIN
                                              CALC TYPE INT :
                                                              INT STD
    END TIME
                 30.19 MIN
                                              PRINT TOL
                                                              0.0000
    WIDTH
                                              OUTPUT
    SKIM SENS
                       100
                                                SCREEN
                                                              NO
    BASELINE CORP
                      B-B
                                                PRINTER
                                                             YES
    AREA SENS
BASE SENS
    PEAK IDENTIFICATION
                                              QUANTITATION (CALIB AUG OF 12)
   UNRETD PEAK TIME
                          0.00 MIH
                                              SCALING FACTOR
                                                                     1.0000
                         0.0000
                                              RF FOR UNKNOWNS
                                                                    10.0000
   REF PK: TIME
                         13.19 MIN
8.05 MIN
                                              STD COMPNT NAME
SMP AMOUNT
STD AMOUNT
                                                                   CHLOROBNZ
            TIME TOL
                                                                  1.0000
   COMPNT: TOL ABS
                           0.05
                          0.50
    COMPONENT LIST
                          STD AMT NAME
    RT
               RF
                                                       GRP
     5.63
              7.4916
                               7.1424
                                         BENZENE
    9.68
13.56
              7.5224
                              4.8768
62.0000
5.4360
                                         TOLUENE
                                         CHLOROBNZ
    14.82
15.48
17.25
20.25
               7.6000
                                        ETHYL BENZENE
                                                          1
                              5.5080
                                         M.P XYLENE
               7.9968
                                         0 XYLENE
                              5.6040
                                        ISOPROPYL BNZ
     22.60
               7.5484
                              4.1886
                                        N PROPYL BHZ
              7.5404
6.7646
8.7483
6.7756
7.4067
     23.38
                             11.0616
3.2520
5.1312
                                        3.4 ETHYLTOL
1.3.5 T M BNZ
2.ETHYLTOLUENE
1.2.4 TMBNZ
1,2,3 TMBNZ
     24.88
     24.79
```

4.1664

15.88

7.9088

Precision and accuracy data for the analysis of aromatic hydrocarbons in groundwater by EPA method 602, (modified).

=======================================				
Compound	Precis	ion	Accurac % R,	У
	======		========	======
Benzene	6.6,	8.7	98.0,	13.4
Toluene	6.2,	9.3	99.3,	18.0
Ethylbenzene	5.1,	7.0	95.2,	12.7
m,p-Xylene	4.2,	4.2	95.3,	12.1
o-Xylene	4.8,	4.7	100.8,	15.9
Isopropylbenzene	5.8,	13.2	89.8,	11.3
n-Propylbenzene	5.7,	8.3	86.5,	10.7
3,4-Ethyltoluene	4.5,	6.1	90.4,	10.2
1,3,5-Trimethylbenzene	7.3,	16.2	89.6,	12.7
2-Ethyltoluene	4.0,	4.7	83.8,	10.2
1,2,4-Trimethylbenzene	4.4,	3.6	90.0,	15.2
1,2,3-Trimethylbenzene	6.1,	5.5	93.0,	12.2

APPENDIX B FIELD SAMPLING PROCEDURES

The sampling procedures employed during this research were described in the Lake Alfred Quality Assurance/Quality Control (QA/QC) plan (Killan, 1987). Section six of the QA/QC plan is presented in the following pages.

6.0 SAMPLING PROCEDURES

6.1 Cleaning Procedures

6.1.1 Volatile Organics.

Bottle type: - water: 60 mL glass vial with teflon lined septum caps.
- soil: 1 quart mason jars.

Soap: Alconox

- Wash caps, liners and vials in hot soapy water.
- 2) Rinse liberally with tap and DI water.
- 3) Rinse with pesticide grade methanol.
- Dry caps, septa, and vials in oven at 105 C for no more than 60 minutes.
- Cool in inverted position, and cap immediately when bottles are cool enough to handle.

6.1.2 Labels

 After cleaning the appropriate label is attached to each bottle, and the date cleaned is entered.

6.2 Field Documents and Records.

6.2.1 Field sheets.

The field sheet (see attachments) is filled in with the following information upon sampling:

- 1) date
- 2) time
- 3) sample type
- 4) preservation
- 5) well number (for well samples)
- 6) well casing and diameter
- 7) depth of water at time of sampling
- 8) depth of core (if applicable; soil samples)
- note special characteristics of sample.
- 10) field number

All field measurements are recorded in the bound field notebook or on the data sheets.

All samples are assigned a consecutive field number and this is recorded in the field notebook, the field data sheet and on the sample bottle.

- 6.3 Water Sample collection Field procedures.
 - 6.3.1 Well preparation.

 The volume of water in each well is determined. The well is bailed for three times the calculated volume. This is done using a PVC bailer, or a battery operated pump. The bailed volume is measured in a calibrated container. Glass tubing is attached to the end of tygon tubing to present a glass surface to the water in the well. Tygon tubing is attached directly to the pump. Each well is supplied with a dedicated piece of tygon tubing and a dedicated class insert.

6.3.2 Volatile Organic Samples

An unopened field blank is taken into the field.

Wells are bailed as above.

Vials are filled by lowering the container directly into the well. The vial is filled to overflowing. The teflon side of the septum is placed on the meniscus, and capped tightly. The sample is inverted and examined for air bubbles.

If air is present the sample is discarded.

and the well resampled.
Samples are taken in duplicate and chilled immediately and placed in the dark. Blanks are stored with the samples.

No preservation of the samples other than cooling is performed. $\ensuremath{\,^{\circ}}$

6.4 Soil Sample Collection

6.4.1 Chemical Analysis Soil samples destined for chemical analysis for gasoline will be collected with a stainless steel auger. Samples will be placed into a one quart mason jar. Samples will be tightly packed to reduce headspace in the sample container. Samples are transported on ice and stored at 4 C in the dark.

6.4.2 Biological Analysis
Soil samples for biological analysis will be
collected with sterilized (100 ppm chlorine
solution) stainless steel auger. Samples will
be placed in a one quart mason jar, cleaned
in the same manner as the described in
section 6.1.1. Samples will be stored at 4 C
in the dark.

6.5 Measurement of field parameters.

- 6.5.1 Temperature.

 Temperature will be measured in the wells
 using a thermometer, calibrated against an
 NBS standard thermometer.
- 6.5.2 pH. The pH of the well water will be measured using a portable pH meter (Orion Research model 401) connected to a Fisher AccupHast microprobe combination electrode.
- 6.5.3 Dissolved Oxygen. DO will be measured using a portable dissolved oxygen meter (YSI 54A) with a YSI 5739 oxygen probe.

APPENDIX C ISOTHERM DATA FOR THE SORPTION OF STUDY COMPOUNDS TO LAKE ALFRED AQUIFER MATERIAL

Batch isotherm data is presented for each compound in this study. Freundlich isotherms for each compound are also shown.

Benzene Sorption Data

(ug/L) avg	std	n)	std		am so		solution
0.4	0.1	1.5	0.5	ii		-8.42	0.18
2.11	0.14	2.7	0.42	0.54	0.19	-0.73	0.42
1.1	0.08	1.5	Ø.69	0.35	0.12	-0.91	0.16
1.8	0.14	2.5	0.45	7.0	0.24	-6.17	0.4
4.4	В	7.4	0.39	3	1	0.013	0.87
8.7	0.3	15	15.5	66.1	2.1	0.32	1.17
30.9	0.92	73	3.4	41.9	14.5	1.16	1.86
16.19	4.6	96	6	43.8	15.1	1.18	1.95
99	1.6	92	4.4	24.5	9.1	96.0	1.97
254	4.2	338	Ø	84	29	1.46	2.53
594	12	728	34.3	133	46	1.66	2.86
771	26	865	111	94	32.3	1.51	2.94
873	135	906	96	27	9.5	0.98	2,95

ם י

Benzene Desorption Data

log solution concentration	11 II	1.96	Ø.93	2.59	2.94
log amount sc sorbed cc		1.49	60.0	1.99	2.34
sorbed	ii	31.1	1.2	97.3	216
sorbed	2.8	90.3	3.6	282	627
τ 4	0.08	1.1	0.5	27	æ
(ng/L)		1.7	5.1	106	238
Cw Cw	1	4.4	1	ro	128
200	ii ii	92.5	9.8	338	865

LOG AMOUNT SORBED

Freundlich sorption-desorption isotherm for benzene at equilibrium.

Toluene Sorption Data

(ug/L) avg =======	std	avg	std	(ng/L)	(ng/gn)	8 8 8 8 8	
6.1	0.24	6.6	1.5	3.8	1.3	0.13	66.0
28.9	2.3	49.3	æ	20.5	7.1	0.85	1.69
29	17.2	66	æ	31.5	10.9	1.04	1.99
66.3	18.9	261	B	95.1	32.8	1.52	2,42
2886	5.04	4000	B	1114	384	2.58	3.6
3813	7.9	4069	140	257	88.5	1.95	3.61
2 0 9	16	407	14	198	68.3	1.83	2.61
25	Ø	81	e	29.5	10.2	1	1.91
56	го	41	1.2	14.7	5.1	0.71	1.6
1.0	1.2	16	0.56	6.4	2.2	0.34	1.21
1.3	0.26	80	0.18	1.7	9.0	-0.22	6.0
4049	155	4566	565	517	178	2.25	3,66
3118	8.9	457	æ	138	48	1.68	2.66
4.7	1.2	47	æ	4	1.4	0.14	1.66

Toluene Desorption Data

00	
log solution concentration	3.66 2.66 1.66 3.61 2.61
log amount sorbed	3.17 2.53 2.19 1.19 3.05 2.14 1.67
amount sorbed (ng/g)	1474 342 155 15.4 1133 139
amount sorbed (ug/L) ========	4271 992 456 45 3285 463
std	653 a a 172 a
(ug/L) avg	4566 1086 456 4069 4069 41
cw std	219 36 2.8 0.35 214 a
(ug/L) avg	295 93 6 6 7 7
Cs	

a n=1

Freundlich sorption-desorption isotherm for toluene at equilibrium.

m,p-Xylene Sorption Data

Cs (ug/L) avg ===================================	std	Cw (ug/L) avg	std	amount sorbed (ug/L)	amount sorbed (ng/g)	amount s	solution concentration
3.4	0.2	5.1	го	1.8	0.61	0.21	
13.5	1.2	25.7	Ø	12.2	4.2	0.62	1.41
35.8	6.3	51,3	Ø	15.6	5.4	0.73	1.68
80.7	9.5	103	Ø	21.9	7.6	0.88	1.71
943	456	1026	æ	82.9	28.6	1.5	2.63
4.2	0.2	9*8	m	4.4	1.5	0.18	0.93
6.7	0.7	17.1	ø	10.5	3.6	0.56	1.23
17.2	0.5	42.9	Ø	25.7	8.9	0.95	1.92
37.5	0.3	83.7	1.3	42.3	16	1.2	2.14
176	12	429	18.4	253	87.3	1.94	3.01
3028	102	4290	184	1259	434	2.64	3.63
3214	107	4232	609	1081	351	2.54	3.63
1110	37.9	1893	80	783	270	2.43	3.28
300	9.2	423	æ	123	42.5	1.63	2.63
110	19.5	137	ø	27.5	9.5	86.0	2.01
34.7	2.1	48	-	13.3	4.6	0.66	1.63

m,p-Xylene Desorption Data

log solution concentration	3.63	3 2 2 3	2.63	2.14	1.68	3.63	2.63	1.93	1.63
log amount sorbed	2.88	2.56	1,97	1.58	0.88	2.93	2.11	1.36	1.01
amount sorbed (ng/g) ========	751.1	364.3	93.5	37.9	7.6	858.0	129.0	23.1	10.4
amount sorbed (ug/L)	2177	1056	271	110	22	2487	374	67	3.0
std =======	609	8 0	æ	æ	1	æ	18.4	Ø	æ
(ug/L) avg =======	4232	1893	423	137	48	4287	429	98	43
Cw std	45.02	52.88	2.0	0.81	3.5	220.02	50.59	4.14	0.439
Cs (ug/L) avg	2055	837	152	27	56	1800	52	19	13

e -

a n=1

o-Xylene Sorption Data

amount amount 10g 1.0g sorbed sorbed sorbed concentration std (ug/L) (ng/g)	0.53 1.12 0.4 -0.41 0.42	0.24 4.706666 1.6 0.21 1.04		1.56 59.91666 20.7 1.32 2.02	a 334,5633 115,4 2,06 3,06	a 1.39 6.5 -6.32 6.53	a 3.73 1.3 0.11 0.83	a 9.15 3.2 0.50 1.23	a 17.4 6.0 0.78 1.53		2.17	257.84 529.75 182.8 2.26 3.36	588	0.00 55.26666 19.1 1.28 2.36	3.30 5.833333 2.0 0.30 1.79	0.82 8 2.8 0.44 1.43
Cw (ug/L) avg ===================================	2.61	11.03	23.07	105.45	1153,58	3.41	6.83	17.10	34.20	170.80	1708.27 7	2316,25 25	1245.67 13	231,60	62.33	27.00
std	0.11	0.22	3.63	5.88	158.39	0.13	0.20	0.45	00.00	3.64	17.77	74.72	20.76	4.64	11.50	0.82
Cs (ug/L) avg	1.49	6.32	19.70	45.53	819.02	2.02	3.10	7.95	16.80	81,23	1274.80	1786.50	657.67	176,33	56.50	19.00

o-Xylene Desorption Data

(ug/L) avg ======	Std	(ug/L) avg	std	amount sorbed (ug/L)	amount sorbed (ng/g)	sorbed	solution concentration
	126.57	1708	74.22	894	308.4	2,49	2.91
32	11.13	171	ø	136	46.9	1,67	1.54
	0.85	34	ø	29	10.0	1.66	0.70
	5.69	17	rts	11	3.8	0.58	0.78
	317.35	2316	257.84	964	311.9	2.49	3.15
	29.95	1246	Ø	718	247.7	2,39	2.72
	14.57	168	rcs	77	26.6	1.42	1.96
16	69.0	61	3.1	45	15.5	1.19	1.20
	2.01	27	0.82	13	4.5	9.65	1.15

.

Freundlich sorption-desorption isotherm for o-Xylene at equilibrium.

3,4-Ethyltoluene Sorption Data

tion											
log solution concentration	2.97	1.97	1.27	76.0	0.57	0.27	2.91	2.48	1.91	1.26	0.95
amount sorbed	1.78	1.23	0.52	0.26	-0.21	-0.40	1.98	1.66	1.07	0.08	0.14
amount sorbed (ng/g) ========	6.89	17.1	3,3	1.8	9.0	0.4	9.96	46.2	11.7	1.2	1.4
amount sorbed (ug/L) ========	176.5	49.6	7.6	5.25	1.77	1.15	280	134	34	3.5	4
std	517.4	Ø	res	В	В	Ø	133	17	2	4	0
Cw (ug/L) avg	934.8	93.5	18.7	9.35	3.74	1.87	812	301	81	18	6
std	12.34	3.52	0	0.63	0.14	0.02	64	7	4	2	1
(ug/L) avg	758.3	43.9	6	4.1	1.97	0.72	532	167	47	14.5	5
CS											

a n=1

3,4-Ethyltoluene Desorption Data

log solution concentration ====================================	2.91	2.48	1,91	1.26	0.95	2.97	1.97	1.27	0.97
log amount s sorbed c	2.24	1.79	1.28	0.64	0.18	2.44	1.40	99.0	0.34
amount sorbed (ng/g)	174.9	61.8	19.0	4.3	1.5	272.6	25.0	4.5	2.2
amount sorbed (ug/L)	5.07	179	55	12.56	4.41	790	72.5	13.1	6.35
std	133	17	2	4	100	517.4	Ø	Ø	Ø
(ug/L) avg	812	301	81	18	6	935	93.5	18.7	9,35
cw std	7.87	10.61	2.77	0.12	0.93	27.49	11.67	1.39	0.07
(ug/L) avg =======	3.05	122	26	5.44	4.59	145	21	5.6	n
CS									

LOG AMOUNT SORBED

Freundlich sorption-desorption isotherm for 3,4-Ethyltoluene at equilibrium.

1,3,5-Trimethylbenzene Sorption Data

(ug/L) avg	std	Cw (ug/L) avg	std	amount sorbed (ug/L)	sorbed (ng/g)	sorbed	solution
6					1		
707	77	326	46	124	42.8	1.63	2.51
7.0	æ	175	3.0	105	36.2	1.56	2.24
19	1	44	1	25	8.6	0.94	1.64
10	6.4	17.5	3	7.5	2.6	0.41	1,24
2	1	4	В	2	0.7	-0.16	0.60
267.4	4.09	459.7	28.31	192.3	66.3	1.82	2.66
15.8	0.97	45.97	Ø	30.17	10.4	1.02	1.66
n	69	6	2,11	9	2.1	0.32	0.95
1.3	0.14	4.5	В	3.2	1.1	0.04	0.65
0.65	0.12	2.29	В	1.64	9.0	-0.25	0.36
0.3	0.11	1.15	9.0	0.85	0.3	-0.53	200

1,3,5-Trimethylbenzene Desorption Data

log solution concentration	2.66	1.66	0.95	2,51	2.24	1.64	1.08	0.60
amount sorbed	1.96	1.07	0.37	1.80	1.58	1.01	0.52	-0.08
amount sorbed (ng/g)	90.3	11.7	2.3	63.1	38.3	10.4	3.3	8.8
amount sorbed (ug/L) ========	261.7	33.97	8.9	183	111	3.0	9.5	2.4
std	28.31	В	2.11	46	3.0	Н	3	В
(ug/L) avg =======	459.7	45.97	6	326	175	44	12	4
std	32.7	3,38	0.36	4.06	4.02	0.71	0.08	0.22
(ug/L) avg ======	198	12	2.2	143	64	14	2.5	1.6
Cs								

a n=1

Freundlich sorption-desorption isotherm for 1,3,5-Trimethylbenzene at equilibrium.

2-Ethyltoluene Sorption Data

(1/ Ki) 50	ر	W (1197/E.)		sorbed	Sorbed	sorbed	sorbed concentration
	std	avg	std	(ng/L)	(b/bu)		
236	1	3.06	3	7.0	1	1.38	2.49
027	2	143	25	7.3	25.2	1.40	2.16
22	0	24	1	7	0.7	-0.16	1.38
9	6.4	8	1	2	6.7	-0.16	06.0
3	1	4	0	1	0.3	-0.46	09.0
245.7	3,32	373	23.4	127.3	43.9	1.64	2.57
15.5	2.07	37.3	ø	21.8	7.5	0.88	1.57
3.5	0.14	7.7	ø	4.2	1.4	0.16	68.0
1.9	0.5	3.7	ø	1.8	9.0	-0.21	0.57
6.97	0.14	1.5	Ø	0.53	0.2	-0.74	0.18
0.52	0.21	0.74	Ø	0.22	0.1	-1.12	-0.13

2-Ethyltoluene Desorption Data

amount solution sorbed concentration	1.78 2.49							
amount sorbed (ng/g)	60.4	27.3	4.1	2.1	6.7	9.1	1.8	
amount sorbed (ug/L)	175	4	12	9	2	26.3	5.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
std	31	25		1	62	Ø	Ø	
Cw (ug/L) std avg	306	143	24	80	4	37.3	7.7	
std	4.22	20.4	0.72	90.0	0.59	ø	æ	
cs (ug/L) avg ========	131	64	1.2	2	2	11	2.4	a

Freundlich sorption-desorption isotherm for 2-Ethyltoluene at equilibrium.

1,2,4-Trimethylbenzene Sorption Data

(ug/L) avg ======	std	Cw (ug/L) avg ========	std	(ng/L)	(ng/g)	Sorbed	concentration
	i						
685	7.0	1072	140	387	133.5	2.13	3.03
245	7	531	62	286	98.7	1.99	2.73
64	4	107	100	43	14.8	1.17	2.03
80	6	13	9	5	1.7	0.24	1.11
962.2	28.4	1565.2	93.24	603	208.0	2.32	3.19
57.9	57.9	156.5	m	98.6	34.0	1.53	2.19
10.8	0.14	31.4	Ø	20.6	7.1	0.85	1.50
4.9	0.5	15.7	ro	10.8	3.7	0.57	1.20
2.4	0.35	6.26	ro	3.86	1.3	0.12	08.0
1.3	0.28	3.13	т	1.83	9.0	-0.20	0.50

1,2,4-Trimethylbenzene Desorption Data

Cs	(ug/L) avg ======	Std std	Cw (ug/L) avg ========	std	sorbed (ug/L)	sorbed s (ng/g)	orbed	concentration
	479	14.27	1072	140	593	204.6	2.31	3.63
	203	17.5	531	62	328	113,2	2.05	2,73
	43	3.78	107	8	64	22.1	1.34	2.03
	80	6.79	13	9	2	1.7	0.24	1.11
	637	80,56	1565.2	æ	928.2	320.2	2,51	3.19
	24	22.12	156.5	æ	132.5	45.7	1.66	2,19
	2	4.91	31.4	Ø	26.4	9.1	96.0	1.50
	3.8	0.25	15.7	Ø	11.9	4.1	0.61	1.20

Freundlich sorption-desorption isotherm for 1,2,4-Trimethylbenzene at equilibrium.

1,2,3-Trimethylbenzene Sorption Data

Cs (ug/L) avg ==========	std	Cw (ug/L) avg	std	sorbed (ug/L)	amount sorbed (ng/g)	sorbed	solution
284	3.0	1	82	1	50.0	1.78	1
115	4	257	44	142	49.0	1,69	2.41
31	1	43	1	12	4.1	0.62	1.63
11	9	15	2	4	1.4	0.14	1,18
361.4	2.4	558	32.1	196.6	67.8	1,83	2.75
23.1	1.17	55.8	æ	32.7	11.3	1.05	1.75
4.3	6.07	11.2	ro	6.9	2.4	0.38	1.05
1.9	0.14	5.6	Ø	3.7	1.3	0.11	0.75
68.0	0.17	2.23	æ	1.34	0.5	-0.34	0.35
0.45	0.05	1.11	æ	99.0	0.2	-0.64	0.05

1,2,3-Trimethylbenzene Desorption Data

amount amount solution sorbed sorbed concentration (ug/L) (ug/g)	105.6 2.02	13.0 1.12	2.8 0.44	1.4 0.15	73.8 1.87	158 54.5 1.74 2.41	142.1 2.15	3.7 0.57	1.1
std	32.1	æ	Ø	æ	82	44	1	2	100
avg ====================================	558	55.8	11.2	2.6	429	257	434	1.5	9
Std	34.37	2.36	0.63	0.135	4.48	5.77	0.61	0.04	0.63
Cs (ug/L) avg	252	18	3.2	1.5	215	66	22	4.2	2.77

, T

Freundlich sorption-desorption isotherm for 1,2,3-Trimethylbenzene at equilibrium.

BREAKTHROUGH CURVE DATA FOR THE SORPTION OF STUDY COMPOUNDS TO LAKE ALFRED ADULFER MATERIAL

This appendix presents the breakthrough data for the aromatic solutes used in this study. The data is presented as concentrations (ug/L) and as $\mathrm{C/C}_{\mathrm{O}}$ (effluent concentration/influent concentration). Following these data, plots of $\mathrm{C/C}_{\mathrm{O}}$ vs. pore volumes are presented for those compounds not shown graphically in the body of the dissertation. The final page of this appendix presents the data for the single solute breakthrough of benzene.

Column Sorption Data
L = 5 cm
v = 0.204 cm/min
pv = 6.9 mL

Values are as ug/L

mL	BNZ	TOL	ETHBZ		
	.=======			=======	======
1.76	3	4	2	2	2
3.74	2	3	1	2	2
4.71	48	15	3	4	2 7
5.71	480	158	42	37	83
6.7	1332	514	197	174	335
7.7	2040	825	413	313	598
8.7	2777	1200	677	525	922
9.69	2948	1345	831	655	1115
10.69	3341	1511	951	756	1249
12.69	3877	1826	1238	994	1553
13.69	4081	1935	1343	1070	1658
14.69	4037	1954	1380	1116	1696
15.69	4332	2124	1482	1188	1831
16.69	4420	2165	1551	1246	1905
17.69	4589	2189	1641	1315	2013
18.69	493Ø	2462	1793	1431	2171
19.69	4531	2368	1801	1472	2183
20.69	4727	2468	1889	1528	2266
21.69	4871	2505	1883	1534	2267
22.69	4523	2415	1904	1537	2301
23.69	4615	2377	1802	1460	2210
24.69	4851	2621	2104	1713	2499
26.69	5454	2985	2385	1952	2905
27.69	5177	2794	2192	1802	2696
28.69	5563	2999	2386	1947	2897
30.7	5345	2838	2213	1822	2759
31.7	5197	2776	2168	1776	2666

Column Sorption Data L = 5 cm v = 0.204 cm/min pv = 6.9 mL

Values are as ug/L

2 1 4 0 2 2 2 1 3 3 0 2 1 3 3 2 2 2 4 1 1 3 0 2 1 3 3 0 2 1 3 3 0 2 1 3 3 0 2 1 3 3 0 2 1 3 3 0 2 1 3 3 0 2 1 3 3 0 2 1 3 3 0 3 2 1 3 3 0 3 2 1 3 3 0 3 2 1 3 3 1 3 6 1 1 47 23 72 9 4 12 34 7 38 11 47 23 72 9 9 2 101 33 113 61 168 189 53 225 72 218 127 309 271 85 359 112 314 188 431 337 117 462 145 380 236 511 509 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1870 1072 511 1561 532 1079 773 1350				135 TMB			123TMB
2 2 4 1 5 1 2 5 2 7 2 9 4 12 34 7 38 11 47 23 72 90 22 101 33 113 61 168 189 53 225 72 218 127 309 271 85 359 112 314 188 431 337 117 462 145 380 236 511 509 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 124 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	=========			=======			
2 2 4 1 5 1 2 5 2 7 2 9 4 12 34 7 38 11 47 23 72 90 22 101 33 113 61 168 189 53 225 72 218 127 309 271 85 359 112 314 188 431 337 117 462 145 380 236 511 509 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 124 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	2	1	4		2	2	2
34 7 38 11 47 23 72 90 22 101 33 113 61 168 189 53 225 72 218 127 309 271 85 359 112 314 188 431 337 117 462 145 380 236 511 509 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	1	1	3	Ø	2	1	3
34 7 38 11 47 23 72 90 22 101 33 113 61 168 189 53 225 72 218 127 309 271 85 359 112 314 188 431 337 117 462 145 380 236 511 509 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	2	2	4	1	5	1	2
90 22 101 33 113 61 168 189 53 225 72 218 127 309 271 85 359 112 314 188 431 337 117 462 145 380 236 511 509 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1870		2	7	2		4	12
90 22 101 33 113 61 168 189 53 225 72 218 127 309 271 85 359 112 314 188 431 337 117 462 145 380 236 511 509 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	34		38	11	47	23	
271 85 359 112 314 188 431 337 117 462 145 380 236 511 509 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 4			101	33		61	168
337 117 462 145 388 236 511 559 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 998 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	189	53	225	72	218	127	309
509 198 695 229 542 357 721 571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072	271	85	359	112	314	188	431
571 226 784 257 594 395 767 616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1159 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	337	117	462	145	380	236	511
616 254 838 282 637 431 821 661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	509	198	695	229	542	357	721
661 276 926 306 695 461 893 706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	571	226	784	257	594	395	767
706 302 990 331 730 499 941 767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1159 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	616	254	838	282	637	431	821
767 337 1109 368 799 555 1038 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	661	276	926	306	695	461	893
767 337 1109 368 799 555 1030 845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	706	302	990	331	730	499	941
845 370 1164 398 854 589 1085 876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	767	337	1109	368		555	
876 404 1281 431 894 636 1136 922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	845	370	1164	398	854		1085
922 420 1291 442 917 646 1152 925 423 1306 448 932 654 1179 937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	876	404	1281	431			
937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	922	420	1291				
937 439 1404 461 960 683 1224 883 406 1270 435 909 642 1173 1072 511 1561 532 1079 773 1350	925	423	1306	448	932	654	1179
1072 511 1561 532 1079 773 1350	937	439	1404	461		683	
	883	406	1270	435	909	642	1173
	1072	511	1561	532	1079	773	1350
1229 579 1774 617 1270 907 1618	1229	579	1774	617	1270	907	
1127 523 1586 562 1156 822 1478	1127	523	1586	562			
1233 581 1743 617 1258 897 1596	1233	581	1743	617			
1125 534 1662 580 1196 859 1552	1125		1662				
1121 539 1639 579 1178 845 1513	1121						

Column Sorption Data as C/Co

0.677 0.010 0.006 0.002 0.002 0 0.820 0.101 0.062 0.023 0.021 0 0.963 0.280 0.201 0.108 0.101 0 1.106 0.429 0.322 0.226 0.181 0	.001 .001 .003 .037
0.537 0.001 0.001 0.001 0.001 0.002 <td< td=""><td>.001 .003 .037</td></td<>	.001 .003 .037
0.537 0.001 0.001 0.001 0.001 0.001 0.002 <td< td=""><td>.001 .003 .037</td></td<>	.001 .003 .037
0.677 0.010 0.006 0.002 0.002 0 0.820 0.101 0.062 0.023 0.021 0 0.963 0.280 0.201 0.108 0.101 0 1.106 0.429 0.322 0.226 0.181 0	.003 .037
0.820 0.101 0.062 0.023 0.021 0 0.963 0.280 0.201 0.108 0.101 0 1.106 0.429 0.322 0.226 0.181 0	.037
0.820 0.101 0.062 0.023 0.021 0 0.963 0.280 0.201 0.108 0.101 0 1.106 0.429 0.322 0.226 0.181 0	
1.106 0.429 0.322 0.226 0.181 0	
1.106 0.429 0.322 0.226 0.181 0	.150
	. 269
	.414
1.392 0.620 0.525 0.455 0.380 0	.500
1.536 0.703 0.590 0.520 0.439 0	.560
1.823 0.816 0.713 0.677 0.577 0	.697
1.967 0.859 0.756 0.735 0.621 0	. /44
2.111 0.849 0.763 0.755 0.648 0	.761
2.254 0.912 0.830 0.810 0.690 0	.822
2 3 9 8 0 9 3 0 0 8 4 6 0 8 4 8 0 • 7 2 3 U	.855
2.542 0.966 0.855 0.897 0.763 0	.903
2 685 1 837 8 962 8 988 8 838 8	.9/4
2.829 0.953 0.925 0.985 0.854 0	. 900
2.973 0.995 0.964 1.033 0.887 1	017
2 116 1 025 0.979 1.030 0.890 l	.018
3.260 0.952 0.944 1.041 0.892 1	.033
3 404 0.971 0.929 0.985 0.848 0	.992
3.547 1.021 1.024 1.150 0.994 1	122
3 835 1.148 1.166 1.304 1.133 1	304
3.978 1.089 1.091 1.198 1.046 1	.210
4 411 1 125 1.169 1.210 1.057 1	238
4.555 1.094 1.084 1.185 1.031	1.197

Column Sorption Data as C/Co

ispBZ	npBZ	3,4 ET	135 TMB	2 ET	124 TMB	123 TMB
				=======		
0.002 0.001 0.001 0.005 0.034 0.089 0.188 0.269	0.002 0.003 0.003 0.013 0.038 0.094 0.151	0.002 0.002 0.002 0.004 0.023 0.062 0.138 0.220 0.283	0.000 0.002 0.003 0.021 0.061 0.135 0.211	0.009 0.047 0.114 0.219 0.316	0.001 0.002 0.005 0.029 0.079 0.166 0.245	0.003 0.002 0.010 0.059 0.137 0.253 0.352
Ø.506 Ø.568	0.350	Ø.426 Ø.481	0.431	0.545	0.466	0.590
0.568 0.612 0.657	0.450	0.481 0.514 0.568	0.531	0.598 0.641 0.699	0.563	0.671
0.702	0.535	0.607	0.623	0.734	0.651	0.769
Ø.762 Ø.840		0.681 0.714		Ø.8Ø4 Ø.859		
0.871 0.916				Ø.899 Ø.923		
0.919 0.932	0.749		0.841	0.938	0.854	0.964
0.878	0.720	0.779	0.817	0.914	0.838	0.959
1.065 1.222		0.958 1.088		1.086		
1.120		0.973 1.069		1.163		
1.118	0.947	1.020	1.090	1.203	1.121	1.269

Single Solute Breakthrough Data For Benzene

L = 5.0 cm Volume = 24.5 cu. cm. Bulk Density = 1.82 g/cu. cm. 1 PV = 6.96 mL v = 0.204 cm/min.

		Benzene	
mL	PV	(ug/L)	C/Co
1.43	0.205	9	0.009
3.43	0.493	12	0.003
4.43	0.636	25	0.027
5.43	0.780	35	0.038
6.43	0.924	84	0.092
7.43	1.068	250	0.272
8.43	1.211	409	0.446
9.43	1.355	529	0.576
10.43	1.499	656	0.714
11.43	1.642	734	0.800
12.43	1.786	779	0.848
14.43	2.073	784 825	0.854 0.899
15.43	2.217	. 853	0.099
16.43	2.361	820	0.893
17.43	2.504	918	1.000
23.43	3.366	909	0.990
24.43	3.510	917	0.999
25.43	3.654	887	0.966
26.43	3.797	748	0.815
27.43	3.941	578	0.629
28.43	4.085	408	0.445
29.43	4.228	298	0.325
30.43 31.43	4.372	240	0.261
32.43	4.659	181 143	Ø.197 Ø.156
33.43	4.803	113	0.123
35.43	5.091	88	0.095
37.43	5.378	81	0.089
39.43	5.665	63	0.068
49.43	7.102	33	0.036

APPENDIX E BATCH BIODEGRADATION DATA

This appendix presents data from batch biodegradation experiments one and two. All hydrocarbon concentration values are in units of ug/L. Zero values indicate that the concentration of hydrocarbons was below 0.5 ug/L. Dissolved oxygem values are in units of mg/L.

Treatm	Treatment 1A	-									1	
Day	Benzer	Benzene	Toluene	m,p-Xyl	o-Xyl	3,4 ET	TMB	2 ET	L, Z, 4 TMB	I, 2, 3 TMB	mg/L	
20		756	2023		2597	858	385	441	1239	521		~
		803	2101	4760	2639	914	369	438	1317	557		
		926	2389		3Ø31	975	415	353	1447	604	7.4	বা
Ю	ρve	828	2171	4823	2755	916	390	410	1335	560		
Ø	std	72	157		195	48	19	41	86	34		_
% 26	/ar	6	7		7	2	5	10	9	9	1.1	_
3		194	88	2740	2344	499	297	255	7.08	478		
		22	19		1961	30	140	81	177	141	1.6	10
												•
æ	φve	108	53		1652	265	218	168	443	309		10
ß	std	98	35	1117	692	235	78	87	566	169		_
96	'ar	80	65		42	88	36	52	60	55		7
7		13	19	182	208	42	48	47	47	59		
		79	54	1106	867	200	150	149	219	225		.0
		73	45	1487	1151	264	214	199	303	318	2.0	•
ro	ινg	55	39	925	742	168	137	132	190	201	1.8	~
ß	std	30	15	548	395	93	89	64	106	107	0	~
A80	ar	54	38	59	53	22	20	48	26	54	14.	~
1 1 1 1					111111111						1	!

Treatment 1A	ıt lA							•,			
Бау	Day Benzene Toluene m,p-xyl o-xyl	Toluene	Benzene Toluene m,p-Xyl o-Xyl	o-Xyl	3,4 ET	1,3,5 3,4 ET TMB	2 ET	1,2,4 1 TMB	1,2,3 DO TMB mg/L	DO mg/L	
15	6	14	19	25	17	80		12	12 11 2.7	2	-7
	0	14			12	9	32	18	15		.7
avg		14	41		15	4	33	15	13		2.7
std	1	0		24	2	4	1	3	2		0.
%var		1			16	100	4	23	14		9.
31	0	60	83	6	193	50	20	8	9		. 9
	0	0	8	0	150	0	100	9	8		5.
	9	60	8	10	0	100	03	0	69	33	.2
avg		100			150	160	100	8	60	4	4.1
std		0	8	0	0	80	100	9	9	0	9
%var		0			100	100	9	0	0	15	9.

	1										
Day	Benzene Toluene	Toluene	m,p-xyl	o-xyl	3,4 ET	L,3,5 TMB	2 ET	1,2,4 TMB	1,2,3 TMB	DO mg/L	
											!!
S.				7369	TØ/	588	253	1447			80
	623	1605		1934	623	261	232	1027			7
	615		3417	2030	653	258	239	892	408		9.5
avg			3548		629	269	241	1122	493		8
stq	1 22	167		187	32	14	6	237	82		
%var					S	2	4	21	17		1.9
3				2202	601	269	239	692	482		5.
	292	1219	1310	1274	608.	143	136	296	229		
	559			1668	129	202	188	177	298		1.5
avg	699	1348	1609	1715	346	205	188	388	307		5
stq				381	194	51	42	220	72		9
&var				22	26	25	22	57	23		0.0
7	723	1613	2281	2134	473	228	205	469	365		9
	639	1219		2087	347	219	226	260	358		1.6
avg	681	1416	1827	2111	41.0	224	216	365	362		7
std				23	63	4	11	105	3		S
&var				1	15	2	5	29	1		23.8

Trearment	all ID											
Day	Benzene T	Toluene	Toluene m,p-Xyl	o-Xyl	3,4 ET	1,3,5 TMB	2 ET	1,2,4 TMB	1,2,3 TMB	mg/L		
-	15 64	177			58	14	59	39		_	2.4	
	382	652	1642	1414	308	154	142	324	266		2,3	
av					183	84	101	181	170	_	2.4	
std	d 159	237	2007	557	125	70	42	143	96		0.0	
8va					89	84	41	79	57		2.1	
3	31 Ø	0	8		3	ю	6	4	17		2.0	
	0	0	8	60	0	60	0	0	0		2.9	
	0	0	16		11	7	23	2	12		2.3	
av	g	89	8	4	5	3	11	2	1.0		2.4	
std %var	9 B	60 60	7	. r	96 5	e 9	10	2 00	7		0.4	
				2	2	8	6	70	7		0.0	

Treatment 1C	IC									
Day	Benzene	Toluene	m,p-Xyl	Benzene Toluene m,p-Xyl o-Xyl	3,4 ET	1,3,5 TMB	2 ET	1,2,4 TMB	1,2,3 TMB	DO mg/L
80	664	1971	3962	2369		289	253	1447	684	
	623	1605	3266		623	261	232	1027	468	
	615	1631		2030	653	258	239	892	408	
avg	634	1735	3548	2111	629	269	241	1122	493	
stq	22	167			32	14	6	237	82	
%var	e	10			2	5	4	21	17	
e	339	853	1595	983	243	1.02	96	361	145	
	790	2003			609	262	236	903	403	
	398	355			108	203	204	2	325	2.9
avg	509	1070	1823	1737	320	189	179	423	291	3.0
std	200	069	_		212	99	99	369	108	
8var	39	64			99	35	33	87	37	
7	62	80			00	25	45	2	78	
	466	397			82	168	190	6	319	
	51	52	80	853	23	200	194	5	414	
	336	314		_	72	121	155	14	273	2.4
avg	213	193		944	46	128	146	80	271	
std	194	166	55	527	31	99	99	4	123	0.3
&var	19	58		24	44	20	10	39	17	

2 ET 1.24,4 2 ET T.84 90 51 11 1 14 10 9 34 10 13 15 15 13 45 8 16 5 1 18 4 1 18 4 1 18 4 1 18 4 7 19 6 6	Treatment 1C	nent	10					,		,	,		
	Day	e	enzene	Toluene	m,p-Xyl	o-xyl	3,4 ET	1,3,5 TMB	2 ET	- 15	1,2,3 TMB	mg/L	
4 38 53 34 16 7 14 19 15 9 42 44 86 19 9 37 9 28 4 36 13 93 14 16 39 34 18 73 48 14 22 75 19 113 45 8 101 9 9 9 1 9 13 45 8 101 9 9 9 1 9 35 2 1 1 1 9 9 9 9 18 4 1 9 9 9 9 9 1 9 1 9 9 9 9 9		15	14	35	75	252	12	188	51		177		3.2
9 42 44 86 19 9 37 9 28 9 36 57 124 16 39 34 18 73 48 14 22 75 19 113 45 8 101 8 8 8 8 18 4 18 11 14 8 9 8 1 8 8 101 17 17 17 17 17 17 17 17 18 1 10			4					7	14	10	15		4.0
9 36 57 124 16 39 34 10 73 48 5 13 93 3 43 15 1 74 48 14 22 75 19 113 45 8 101 9 9 9 1 8 6 1 74 10 9 9 9 18 4 1 9 9 9 9 9 189 9 189 4 6 94			6					6	37	6	28	_	4.1
4 5 13 93 3 43 15 1 74 48 14 22 75 19 113 45 8 101 6 6 6 6 6 6 7 11 1 6 6 6 1 6 35 2 1 1 6 6 6 6 18 4 1 9 6 6 6 100 6 18 2 1 1 6 6 6 100 6 18 2 6 94	ro	avg	6					39	34	1.0	73		3.8
48 14 22 75 19 113 45 8 101 6 6 6 6 6 6 75 1 11 1 8 6 6 1 6 35 2 1 17 9 6 6 6 18 4 1 9 9 6 6 106 6 18 2 6 94	υ	std	4					43	15	1	74		9.4
0 0 0 0 0 0 1	200	/ar	48					113	45	80	101		10.7
0 0 0 1 0 35 2 1 17 0 0 0 0 0 18 4 1 9 0 0 0 0 18 2 0 8 0 0 0 18 2 0 8 0 0 0 18 47 6 94		31	153	60	9	6	63	8	2	-	1		2.6
6 6 6 6 6 18 4 1 9 6 6 6 6 8 18 2 6 8 8 8 8 180 6 180 47 6 94			03	63		1	63	35	2	1	17		4.8
0 0 0 0 0 18 2 0 8 0 0 0 180 0 180 47 6 94	го	υvg	0	63	6	100	6	18	4	1	6	_	3.7
8 8 8 188 8 188 47 6 94	U)	std	0	6				18	2		8		1.1
	260	/ar	0	S			_	100	47		94		29.7

2 ET 1/2,4 1											
786 1816 4137 2370 769 379 318 1103 1035 2468 592 3172 948 317 281 1124 871 2146 552 2771 858 348 399 1114 164 326 528 401 99 31 18 1114 525 1165 843 1756 255 235 229 138 727 1376 946 1899 365 214 229 138 514 734 168 1579 136 194 188 7 559 1092 652 1745 256 214 229 138 98 267 345 131 96 16 18 58 17 24 53 8 8 8 8 65 223 141 22 1412 45 121 159 6		zene	Toluene	m,p-Xyl	o-xyl	3,4 ET	1,3,5 TMB	2 ET	1,2,4 TMB	1,2,3 TMB	DO mg/L
1835 2468 5192 3172 948 317 251 1124 871 2142 4665 2771 858 348 340 1114 164 326 528 401 99 31 18 19 15 15 11 14 19 31 18 19 15 15 11 14 19 365 224 229 133 525 1165 843 1756 255 235 229 133 527 1376 946 1899 365 214 229 139 589 1492 652 1745 259 134 188 77 589 1492 652 1745 259 16 18 58 589 267 345 131 96 16 18 58 580 148 14 1938 75 186 208 4 527 141 12 1412 45 121 159 6 528 34 18 1675 60 154 179 5 528 34 18 1675 25 21 16 16 528 34 263 25 21 16 16 528 529 34 263 25 21 529 34 263 25 21 520 34 34 36 35 22 31 520 34 34 36 35 32 29 520 34 34 36 35 31 31 31 520 34 34 36 35 31 31 520 34 34 36 35 31 520 34 34 36 35 31 520 34 34 36 35 31 520 34 34 36 35 31 520 34 34 36 35 31 520 34 34 36 35 520 34 34 36 35 520 34 34 36 520 34 34 34 520 34 34 520 34 34 520	63	706	1816	4137	2370	692	379	318	1103	519	12 61 61 61 61
871 2142 4665 2771 858 348 300 1114 164 326 528 401 90 31 18 19 19 15 11 14 10 9 31 18 10 525 1165 943 1756 255 235 220 133 527 1376 946 1899 365 214 220 138 589 1092 652 1745 250 214 212 90 98 267 345 131 96 16 18 58 17 24 53 8 38 8 8 65 223 141 22 1412 45 121 159 6 223 141 22 1412 45 121 159 6 223 3 4 263 26 15 16 16		1035	2468			948	317	281	1124	469	8.6
164 326 528 401 99 31 18 19 19 15 11 14 19 31 18 19 525 1165 643 1756 255 235 220 133 727 1376 946 1899 365 214 229 138 589 1092 652 1745 250 214 229 138 9 267 345 131 96 16 18 58 17 24 53 8 38 8 8 65 223 141 22 1412 45 121 159 6 223 141 22 1412 45 121 159 6 274 141 22 1412 45 121 159 6 274 14 18 1675 60 154 179 5 23	avg	871	2142	4.		828	348	300	1114	494	
19 15 11 14 10 9 6 1 525 1165 943 1756 255 235 229 133 727 1376 946 1899 365 214 229 133 514 734 168 1579 136 194 188 7 589 1992 652 1745 256 214 212 90 98 267 345 131 96 16 18 58 17 24 53 8 8 8 65 223 141 22 1412 45 121 150 6 223 141 22 1412 45 121 150 6 224 14 18 1675 60 154 179 5 224 23 16 25 21 16 16	std	164	326			96	31	18	1.0	25	
525 1165 943 1756 255 235 229 133 727 1376 946 1899 365 214 229 138 514 734 168 1579 138 194 188 7 589 1892 652 1745 258 214 212 99 98 267 345 131 96 16 18 58 17 24 53 8 8 8 65 326 148 14 1938 75 186 288 4 223 141 22 1412 45 121 158 6 223 141 22 1412 45 121 158 6 223 14 22 142 45 121 159 6 224 23 23 16 25 21 16 16 19 <td< td=""><td>&var</td><td>13</td><td>15</td><td></td><td></td><td>1.0</td><td>6</td><td>9</td><td>1</td><td>5</td><td>1.1</td></td<>	&var	13	15			1.0	6	9	1	5	1.1
727 1376 946 1899 365 2.23 2.29 133 514 734 168 1579 136 224 229 133 589 1892 652 1745 256 214 212 96 98 267 345 131 96 16 18 58 17 24 53 8 38 8 8 65 223 141 12 1938 75 186 208 4 223 141 22 1412 45 121 156 6 274 14 18 1675 60 154 179 5 29 23 16 25 23 16 16 16	m	525	11.65	843		255	300	800	ć		
514 734 168 1579 130 194 188 7.7 589 1092 652 1745 250 214 212 90 98 267 345 131 96 16 18 58 17 24 53 8 38 8 65 326 148 14 1938 75 186 208 4 223 141 22 1412 45 121 150 6 224 144 18 1675 60 154 179 5 22 3 4 263 15 21 16 16		727	1376	946		365	214	229	138	21.0	
589 1092 652 1745 256 214 212 99 98 267 345 131 96 16 18 58 17 24 53 8 38 8 65 326 148 14 1938 75 186 288 4 223 141 22 1412 45 121 156 6 224 144 18 1675 68 154 179 5 19 2 23 16 25 21 16 16		514	734	168		130	194	188	7	277	2.2
98 267 345 131 96 16 18 58 17 24 53 8 38 8 8 56 326 148 14 1938 75 186 208 4 223 141 22 1412 45 121 150 6 274 144 18 1675 60 154 179 5 19 2 23 16 25 21 16 16	avg	589	1092	652		250	214	212	96	315	
17 24 53 8 38 8 65 326 148 14 1938 75 186 208 4 223 141 22 1412 45 121 150 6 274 144 18 1675 60 154 179 5 52 3 4 263 15 23 16 16 16 19 2 23 16 25 21 16 16 16	std	86	267	345		96	16	18	28	30	
326 148 14 1938 75 186 208 4 223 141 22 1412 45 121 150 6 274 144 18 1675 60 154 179 5 52 3 4 263 15 23 15 19 2 23 16 25 21 16	%var	17	24	53		38	80	80	65	6	21.7
223 141 22 1412 45 121 150 6 274 144 18 1675 60 154 179 5 52 3 4 263 15 32 29 19 2 23 16 25 21 16 16	7	326	148	14	1938	75	186	208	4	334	~
274 144 18 1675 66 154 179 5 52 3 4 263 15 32 29 1 19 2 23 16 25 21 16 16		223	141	22	1412	45	121	150	9	233	6.8
52 3 4 263 15 32 29 1 19 2 23 16 25 21 16 16	avg	274	144		1675	69	154	179	2	284	5.2
19 2 23 16 25 21 16 16	std	25	3		263	15	32	29	-	5	, α , ε
27	%var	19	2		16	25	21	16	16	18	16.5

Treat	Treatment 1D											
Day	Ben	Benzene	Toluene	Toluene m,p-Xyl	o-Xyl	3,4 ET	1,3,5 TMB	2 ET	1,2,4 TMB	1,2,3 TMB	DO mg/L	
# 11 11 11	15	3.05	5 305 368	H	11	62	1.09	11	9	216		= 6
		136	229	49	1446	46	154	163	5	171		4.1
		65	9/			18	134	139	4	271		6.
	avg	168	224		1295	42	132	138	5	219		8
	stq	101	119	19		18	18	21	0	41		8.
ф	var	99	53			44	14	15	10	19		19.5
	31	60	1	m	4	4	96	57	2	163		89
		7	0	3	21	9	127	84	2	202		5.2
		m	1	8	7	S	66	45	2	143		.7
		0	1	1	-	2	77	31	1	112		.7
	avg	ī	1	2	80	4	100	54	2	155		.2
	std	٦	0			2	18	19	1	34		0.4
ф	var	107	71			40	18	36	43	22		ŗ.

Treaducine Th	,						100		, ,		[20]
Day	BE III	Benzene	Toluene	Benzene Toluene m,p-Xyl	o-xyl	3,4 ET	TMB	2 ET	TMB	TMB	mg/L
	100	681	1655			663	285	259	985	444	10.5
		804	1991			791	322	291	1134	491	6.6
		591	1429	1429	1913	572	233	219	821	373	10.2
ıvg		692	1692			675	280	256	980	436	10.2
std		87	231	1181	263	96	37	29	128	49	9.5
var		13	14			13	13	11	13	11	2.4
	~	909	1398			402	T69	191	488	279	3.6
		744	1619	1514	2026	411	204	193	188	345	1.8
		648	1519			417	183	173	372	294	1.5
ρVI		999	1509	2014	1885	41.0	185	176	349	306	2.1
std		58	94			9	14	13	124	28	9.6
Var		6	9			7	8	8	35	6	300 .
	7	243	159			89	145	159	9	255	5
		224	66	21	1463	89	136	150	2	242	2.4
		311	195			71	123	146	5	232	5.0
ıvg		259	151		1468	69	135	152	5	243	4.1
std		37	40	6		1	6	5	9	6	1.2
var		14	26			2	7	4	6	4	29.7

Treatment 1E	nen.	t 1E									3	
Day	ij	Day Benzene Toluene m,p-Xyl o-Xyl	Toluene	Toluene m,p-Xyl	o-Xyl	3,4 ET	TMB	2 ET	TMB	1,2,3 TMB	mg/L	1
	15		38	24	901	22	150	139	80	255		5.1
		245	162	38	1302	3.0	123	132	8	242		1:1
		6	30	25	986	10	164	122	7	232		0.9
avg		93	74			21	126	131	80	243	۵,	5.4
std		1.07	62	9	173	80	19	7	8	6	9	6.6
%var		115	84			40	15	2	9	4	1	0.7
	31	2	9	6	263	5	65	41	4	66		0.
		4	. 1	2	178	2	48	56	4	99	,	3.7
		15	4	4	192	Э	24	24	2	62	-	1.7
avg		7	4	5	211	3	46	30	3	9/	u,	5.5
stq		9	2	3	37	П	17	80	1	17		1.7
\$var		82	26	29	18	37	37	25	28	22	36	.5

18.5 9.9 18.2 0.2 8.69 8.69 9.8 2.4 3.6 3.6 2.8 [DO] 491 373 44 18 *Ø* 18 181 285 251 286 233 1,2,3 TMB 1134 821 *Ø* 128 13 387 629 L14 21 1,2,4 TMB 291 219 29 11 168 168 12 8 .45 28 19 134 146 ä 322 233 105 174 31 24 24 1,3,5 TMB ET 791 572 90 13 261 414 9Ø 23 53 74 3,4 1143 1594 2555 1913 263 12 203 14 136Ø 1349 Senzene Toluene m,p-Xyl o-Xyl 4163 1429 40 23 57 3Ø68 L181 38 1737 2491 416 18 9 48 1991 1429 231 14 884 154 .054 121 11 228 466 113 29 8Ø4 591 87 13 49 10 408 500 46 9 Treatment 1F avg std %var avg std %var &var Day avg

Treatment 1F	ment	t 1F										
Day	i	Benzene	Toluene	Day Benzene Toluene m,p-Xyl o-Xyl	o-xyl	3,4 ET	1,3,5 TMB	2 ET	1,2,4 TMB	1,2,3 TMB	[DO] mg/L	
	15	594				55	110	144	12	216		0,
		463	176	21	1081	41	9/	106	80	148		4.5
		619				19	125	161	12	221		5.4
		218				34	89	101	4	152		7.8
avg		474	191		1230	48	95	128	6	184		5.4
std		159	79	10	275	11	24	25	3	34		1,5
%var		34	42		22	23	25	20	37	19		6.92
	7	8	ì	;								
	31	202	75	14		8	48	99	e	108		7.2
		П	1	4	298	7	62	89	2	141		5.1
		349	92	6		11	28	81	2	143		7.4
avg		185	99	6	624	6	26	89	2	131		9*9
stq		143	40	4	241	2	9	10	8	16		0
&var		77	71	45	39	20	11	15	20	12		15.8

2 ET 1,2,4 1,2,5 1 1,2	Treat	Freatment 1G	9										
9 565 1484 3375 2013 612 270 249 881 499 9 615 1339 3158 2237 694 303 271 1066 469 9 654 1443 4053 2463 694 303 271 1066 469 9 611 1422 3529 2238 718 321 285 1946 479 8 36 4 11 8 14 97 56 37 128 62 9 3 551 1066 2686 1789 453 215 191 701 346 8 510 1018 272 1779 483 228 51 184 93 7 510 1018 272 179 483 228 51 184 93 7 510 1018 272 176 483 528 54	рау	ll ll	nzene	Toluene		o-xyl	3,4 ET	1,3,5 TMB		1,2,4 TMB	1,2,3 TMB		ļ
615 1339 3158 2237 664 383 271 1866 469 654 1443 44653 2463 847 389 336 1192 560 469 654 1443 44653 2463 847 389 336 1192 560 660 64 1192 660 649 649 649 649 649 649 649 649 649 649		60	565	1484		2013	612	270	249	881	409		5
654 1443 4053 2463 847 389 336 1192 560 611 1422 3529 2238 718 321 285 1046 479 6			615			2237	694	303	271	1866	469		
611 1422 3529 2238 718 321 285 1046 479 36 61 381 184 97 36 37 128 62 3 64 41 184 97 36 37 128 62 118 286 1789 453 215 191 701 346 118 228 545 371 125 53 51 184 93 188 245 371 125 228 11 728 93 195 378 1818 666 162 88 67 259 121 195 47 51 51 46 48 46 47 46 50 47 58 162 88 66 63 341 46 50 47 58 48 206 188 68 341 46 51 1			654			2463	847	389	336	1192	560		, r;
36 61 381 184 97 59 37 128 62 6 4 11 8 14 16 13 12 13 3 551 1066 2686 1789 453 215 191 701 346 118 228 545 371 125 53 51 164 93 195 370 1018 666 162 80 67 250 146 50 47 51 51 46 48 46 47 46 7 584 992 1623 159 48 46 47 46 7 564 992 1623 159 48 66 47 46 50 1287 2828 1899 448 206 188 658 341 51 1938 2585 1692 427 196 176 643 <t< td=""><td>avg</td><td></td><td>611</td><td></td><td>1.7</td><td>2238</td><td>718</td><td>321</td><td>285</td><td>1046</td><td>479</td><td></td><td>9.</td></t<>	avg		611		1.7	2238	718	321	285	1046	479		9.
3 551 1066 4 11 8 14 16 13 12 13 3 551 1066 2686 1789 453 215 191 701 346 510 1018 2722 1779 483 228 197 728 353 195 370 1018 666 162 186 67 256 121 7 504 992 1623 1590 368 166 152 554 275 626 1207 2820 1889 448 206 188 658 341 51 162 152 654 347 46 47 46 51 107 2820 1889 448 206 188 658 341 51 1038 2585 1692 427 196 176 643 316 54 9 9 9 9 <	std		36			184	97	50	37	128	62		e,
3 551 1066 2686 1789 453 215 191 701 346 510 1018 258 545 371 125 53 51 104 93 393 781 1984 1313 354 165 146 538 264 195 370 1018 666 162 80 67 250 121 50 47 51 51 46 48 46 47 46 7 504 992 1623 1590 368 166 152 554 275 626 1307 2820 1889 448 206 188 658 341 511 1038 2585 1692 427 196 176 643 316 54 9 2343 1724 414 189 172 648 31 56 9 518 124 34	&var		9			80	14	16	13	12	13		۳.
3 551 1666 2686 1789 453 215 191 701 346 110 286 545 371 125 53 51 184 93 110 1018 722 177 483 228 197 728 93 195 370 1984 113 354 165 146 538 264 195 47 161 666 162 80 67 250 121 5 47 51 164 48 46 47 46 6 120 2820 1689 448 206 188 658 341 51 1038 2826 1692 477 196 176 643 316 547 1079 2343 1724 444 189 176 643 316 547 9 9 9 9 9 7 9 <td></td>													
118 228 545 371 125 53 51 184 93 510 1018 2722 1779 483 228 197 728 353 393 781 1984 1313 354 165 146 538 264 195 370 1018 666 162 80 67 250 264 50 47 51 51 46 48 46 47 46 7 564 992 1623 1599 388 166 152 554 511 1038 2585 1692 448 206 188 658 341 547 1079 2343 1724 444 189 172 618 311 56 92 518 1724 444 189 175 618 311 69 97 27 7 8 9 9 7 9		3	551	_			453	215	191	701	346		0.
510 1018 2722 1779 483 228 197 728 353 393 781 1984 1313 354 165 146 538 264 195 370 1018 666 162 80 67 250 121 7 504 992 1623 1590 368 166 152 554 275 626 1207 2820 1889 448 206 188 658 341 511 1038 2585 1692 427 196 176 643 316 547 1079 2343 1724 414 189 176 643 316 56 9 518 124 34 17 64 7 9			118				125	53	51	184	93		8
393 781 1984 1313 354 165 165 164 538 264 195 370 1018 666 162 80 67 256 121 7 504 992 1623 1590 368 166 152 554 275 511 1038 2852 1689 448 206 188 658 341 511 1038 2343 1724 414 196 176 643 316 54 9 2343 1724 34 17 6 643 311 16 9 236 174 34 17 6 7 9			510	_			483	228	197	728	353		æ
195 370 1018 666 162 89 67 256 121 7 504 992 1623 1590 368 166 152 554 275 511 1036 2856 1689 448 206 188 658 341 511 1038 2855 1692 427 196 176 643 316 54 1079 2343 1724 414 189 172 618 311 56 9 518 174 34 17 68 9 7 9	avg		393				354	165	146	538	264	7	6
50 47 51 51 46 48 46 47 46 7 594 992 1623 1590 368 166 152 554 275 511 1038 2585 1692 427 196 176 643 316 547 1079 2343 1724 414 189 172 618 311 56 92 518 172 414 189 175 618 311 10 9 22 7 8 9 7 9	stq		195		_		162	80	67	250	121	60	۲.
7 584 992 1623 1599 368 166 152 554 275 626 1207 2829 1889 448 206 188 658 341 511 1038 2585 1692 427 196 176 643 316 547 1079 2343 1724 414 189 172 618 311 56 92 518 174 34 17 15 46 27 10 9 22 7 8 9 7 9	8var		50				46	48	46	47	46	1	• 5
626 1207 2820 1889 446 206 188 658 377 518 511 1038 2855 1692 446 206 188 658 315 511 1038 2855 1692 447 196 176 643 316 518 518 518 518 518 518 518 518 518 518		7	5.04		1623	1598	368	166	152		376	C	c
511 1038 2585 1692 427 196 176 643 316 547 1079 2343 1724 414 189 172 618 311 56 92 518 124 34 17 15 46 27 10 9 22 7 8 9 9 7 9			626			1889	448	206	188	658	341	000	1 4
547 1079 2343 1724 414 189 172 618 311 56 92 518 124 34 17 15 46 27 10 9 22 7 8 9 9 7 9			511			1692	427	196	176	643	316	ο α	8
56 92 518 124 34 17 15 46 27 10 9 22 7 8 9 9 7 9	avg		547	16			414	189	172	618	311		.2
10 9 22 7 8 9 9 7 9	stq		26				34	17	15	46	27		.2
	%var		10				80	6	6	7	6		89.

Treatment 16	or To										
Day	Benzene	Toluene	m,p-xyl	o-xyl	3,4 ET	1,3,5 ,4 ET TMB	2 ET	1,2,4 TMB	TMB	mg/L	ij
-	15 478				317	132	128	434	224		7.5
	483	978	2116	1396	339	138	131	440	235		8.4
	432				281	118	119	370	207		
ıvg	464		1966		312	129	126	415	222		3.0
std	23	72		89	24	80	5	32	12		3.4
var	S				8	9	4	8	2		5.7
e,	31 528				326	152	143	483	279		5.5
	446	829	1617	1165	217	101	100	317	205		8.0
	180				129	60	69	207	100		6.7
ıvg	385				224	104	101	336	195		8.
std	149	278	605	381	81	38	34	113	73		0.2
var	39				36	36	34	34	38		8

TREATMENT #2A

DAY 6 BNZ	J.	TOL	ETH BZ		m,p-XYL		o-XYL 3,4ET 135TMB	135 TMB			124 TMB		[00]
	1238	7083	2	227	6498		1443	5095		415	1899	415 1899 689	7.50
	1826	10286		30	9320	4225				624	2805	1036	
	1350	7355		56	6903	3353				462	2031	765	
	1155	6310		91	6246	3048				428	1941	758	
ρvi	1392	7759		61	7242	3453				482	2169		
std	260	1509		82	1223	459	295	104		84	370	133	00.00
%variance	19	19		39	17	13				17	17		
treatment #2A DAY 2 BNZ	71	TOL	ETH BZ		m,p-XYL	o-XYL	3,4ET	135 TMB	2ET		124 TMB	123TMB	[00]
	110	206		11	1273	1340				198	412		38.8
	47	84		31	201	1403	129	257		233	26	76	2.20
	228	302		21	1447	2145				284	312		
ıvg	128	197		25	974	1629	300	261		238	260		2.73
std	75	89		4	551	366				32	150	155	
9 year i and	ď	AS		7	7.7	22				4	019		•

Data of the	TOL	1	ETH BZ	m,p-XYL o-XYL	O-XYL	3,4ET	135 TMB	2ET	124	124TMB	123 TMB	[00]
	222	602		222 602 5 1902 1365 428 200 170 511 303 2.20	1365	428	200		7.0	511	303	2 . 20
	188	395		1605	1033	311	142	_	.23	401	219	2.50
	59	62		739				-	105	195	209	2.10
avg	156	353	2,	5 1415	1077			1	33	369	244	2,27
std	7.0	222	-	Ø 493		100			27	131	42	0.17
&variance	45	63	_				21		21	35	17	7.58
treatment #2A DAY 14		TOL	ETH BZ	Z m,p-XYL	Ů		135 TMB			124 TMB	123 TMB	[00]
ir 11 11 11 11 11 11 11 11 11	82	136		136 9 777	554			11	11	148	1	
	195	345		1201			111	1	122	181	125	3.80
			•									
avg	139	741						_	00	165	155	3.53
std	92	1,05	~ (0 212	120	41	20		22	17	30	0.31
avar rance	41	43	٠.						22	2	9	0 75

treatment #2A DAY 21		TOL	ETH BZ	m, p-XYL	O-XYL	3,4ET	135TMB	2ET	124 TMB	123TMB	[00]
	170	148	3	952	522	204	94	77	250	128	2.30
	79	132	1	742	463	174	85	72	170	124	2.20
	186	425		1396	830	331	138	111	345	192	4.00
DVE	145	235	2	1,030	605	236	1.06	68	255	148	2.83
std	47	135	Т	273	191	89	23	20	72	31	0.83
svariance	32	57	49	26	27	29	22	23	28	21	29.15
Treatment #2A DAY 34	щ	TOL	ETH BZ	m, p-XYL	O-XYL	3,4ET	135TMB	2ET	124TMB	123 TMB	[00]
	94	164	8	601	355	155	77	99	158	111	
	80	87	6	336	181	94	45	39	93	99	1.90
	45	52	6	325	189	81	40	37	81	60	1.80
avq	73	81	80	421	242	110	54	47	111	92	1.93
std	21	22	1	128	80	32	16	13	34	25	0.12
One in a second	38	27	α	30	33	56	30	28	31	33	6.45

TREATMENT #2B

DAY Ø	BNZ	TOL	ETH BZ	m, p-XYL	O-XYL	3,451	L35'I'MB	137	LZ4 TMB	123TMB	[27]
11 11 11 11 11 11 11 11 11 11	1238	7.083	227	6498	3185	1443	509	415	1899	689	7.50
	1350	7355	226	6903	3353	1576	569	462	2031	765	
	1155	6310	16	6246	3048	1432	527	428	1941	758	
avq	1392	7759	219	7242	3453	1651	594	482	2169	812	7.50
std	260	1509	85	1223	459	295	164	84	370	133	00.00
§variance	19	19	39	17	13	18	17	17	17	16	00.00
ent		TOL	ETH BZ		O-XYL	3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
		4486	84		1964	649	239	221	845	379	2.10
	882	4601	79	3339	1891	591	214	198	716	334	2.50
	732	3739	71	2963	1650	524	193	180	669	297	2.70
ava	835	4275	78	3245	1835	288	215	200	753	337	2.43
std	73	382	5	203	134	15	19	17	65	34	0.25
%variance	6	6	7	9	7	6	6	8	6	10	10.25

Treatment #2B DAY 7	BNZ	TOL	ETH BZ	m'p-XYL		3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	667	1	55	55 1857	11	380	137	135		239	2.30
	704	2835	52	1469	1214	323	131	127	250	229	2.10
	592	2419	50	1357	1117	279	1.08	118	245	200	2.20
avg	654	2675	52	1561	1192	327	125	127	295	223	2.20
2+0	47	183	2	214	55	41	12	7	29	17	0.08
%variance	7	7	4	14	2	13	10	2	23	7	3.71
Treatment #2B DAY 15	B BNZ	TOL	ETH BZ	m,p-xyl	O-XYL	3,4ET			124 TMB		[00]
289	289	887	887 19		916	198		11	159	190	3.10
	695	1700	37	469	824	116	1.02	109	69	175	2.70
avd	492	1294	28	663	870	157	101	108	114	183	2.90
5+9	203	407	6	194	46	41	2	1	45	80	0.20
\$variance	41	31	31	29	5	56	1	1	39	4	96.9

DAY 21	BNZ	TOL	ЕТН ВЗ	m, p-XYL	O-XYL	3,4ET	135TMB	2ET	124 TMB	123TMB	[00]
	208	761	17	17 152	388	58	51	49	13	83	4.40
	498	1585	31	1584	1299	321	145	161	337	293	2.40
	757	1516	37	379	744	112	102	104	21	200	2.70
avg	488	1287	29	7.05	818	164	66	1.05	134	192	3.17
std	224	373	80	628	375	113	38	46	145	98	88
svariance	46	53	29	88	46	69	39	44	108	45	27.81
Treatment #2B DAY 34 BNZ	+2B BNZ	TOL	ЕТН В 2 м.р	m,p-XYL	O-XYL	3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	89	142	11	154	118	36	12	18	26	32	3.40
	6	29	1	8	24	2	2	7	2	10	3.60
	324	353	6	28	165	15	19	24	2	41	3.00
avg	134	175	7	63	102	19	11	16	1.0	28	3,33
std	137	134	4	65	59	13	7	7	11	13	0.25
&variance	102	77	28	1,02	22	69	63	43	113	47	7.48

TREATMENT #2C

DAY 0	1		ETH BZ		O-XYL	3,4ET	135TMB	2ET	124 TMB	123 TMB	[00]
		ï	227	1	3185	1443	589	415	1899	689	7.50
	1826	1,0286	330	9320	4225	21.53	169	624	2805	1036	
	1350	7355	226	6903	3353	1576	269	462	2031	765	
	1155	6310	91	6246	3048	1432	527	428	1941	758	
pve	1392	7759	219	7242	3453	1651	594	482	2169	812	7.50
std	260	1509	85	1223	459	295	104	84	370	133	00.00
%variance	19	19	39	17	13	18	17	17	17	16	00.0
Treatment #2C DAY 2	F2C BNZ	TOL	ETH BZ	m, p-XYL	O-XYL	3,4ET	135 TMB	2ET	124 TMB	123TMB	[00]
	992	4924	81	1	2132	716	261	244	963	389	7.00
	913	4703	79	3820	2099	703	265	241	949	395	7.80
	1053	5580	100	4743	2547	894	331	297	1215	483	7.50
avg	986	5869	87	4153	2259	771	286	261	1042	422	7.43
std	57	372	1.0	418	204	87	32	56	122	43	0.33
%variance	9	7	11	10	6	11	11	1.0	12	1.0	4.44

)										
DAY 6	BNZ	TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET	135TMB	2ET	124TMB	123 TMB	[00]
	652	3428	52	i	1590	533	199	180	712	312	7.40
	740	3812	29	3131	1668	558	203	185	730	308	7.30
	298	3065	45	2473	1409	482	176	163	644	285	7.90
avg	663	3435	55	2816	1556	524	193	176	695	300	7 53
std	59	305	6	269	1.08	32	12	6	37	12	90.0
%variance	6	6	17	10	7	9	9	2	. 2	4	3.48
Treatment #2C DAY 14	2C BNZ	TOL	ETH BZ	m,p-xyL	O-XXL	3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	893	4426	81	3543	1986	617	23.7	219	898	369	8.10
	849	4222	74	3333	1870	575	21.7	203	786	341	7.50
	854	4549	81	3339	2147	735	298	254	1040	440	7.80
avg	865	4399	79	3405	2001	642	251	225	868	383	7.80
std	20	135	3	86	114	89	34	21	106	42	0.24
&variance	2	3	4	3	9	11	14	6	12	11	3.14

Treatment #2C	SC										
DAY 21	BNZ	TOL	- 1	ETH BZ m,p-XYL	O-XYL	e	135 TMB	2ET	124 TMB	123TMB	[00]
	712	3677	1	3026	1		550 214 197 764 353	197	764	353	8.00
	822	4227	69	3448	1969	631	247	227	875	391	7.50
	730	3662	29	2960	1688	546	209	193	764	342	7.70
avg	755	3855	63	3145	1794	576	223	206	801	362	7.73
std	48	263	4	216	124	39	17	15	52	21	0.21
<pre>\$variance</pre>	9	7	7	7	7	7	8	7	7	9	2.66
Treatment #2C DAY 35	2C BNZ	TOL	ЕТН ВЕ	етн ва м,р-хуг		3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	922	4052	71	3244		579	226	209	806	348	6.90
	595	2619	41	1828	1087	294	118	111	427	193	7.30
	713	3451	28	2735	1568	491	194	177	989	294	7.60
avg	743	3374	99	2602	1501	455	179	166	640	278	7.27
std	135	288	12	286	314	119	45	41	158	64	0.29
<pre>%variance</pre>	18	17	22	23	21	26	25	25	25	23	3.95

TREATMENT #2D

treatment #2D day 0	#2D BNZ	TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET	135TMB	2ET	124 TMB	123TMB	[00]
	1238	7083	227	6498	3185	1443	509	415	1899	689	7 5.0
	1826	10286	330	9320	4225	2153	692	624	2805	1,036	ac.
	1350	7355	226	6903	3353	1576	569	462	2031	765	
	1155	6310	91	6246	3048	1432	527	428	1941	758	
avg	1392	7759	219	7242	3453	1651	594	482	2169	812	7 50
std	260	1509	85	1223	459	295	164	84	370	1 33	0 00
<pre>%variance</pre>	19	19	39	17	13	18	17	17	17	16	0.00
day 2	BNZ	TOL	ETH BZ	m, p-XYL	O-XYL	3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	748	3946	191	3479	1937	1026	332	37.0	1085	550	8.89
	191	4083	9/	3660	1909	732	295	246	1016] [8.80
	743	3871	71	3205	1699	550	202	192	757	315	8.00
avg	751	3967	113	3448	1848	692	277	269	953	292	8,53
std	00	88	26	187	106	196	53	75	141	22.1	98.98
%variance	1	2	49	5	9	25	19	28	15	92	4.42

treatment #2D	٥										
day 7	BNZ	TOL	ETH BZ	TH BZ m, p-XYL o-XYL	O-XYL	3,4ET	135TMB	2ET		123 TMB	[00]
	41	73	5	27	654	23	23 92	143		246	4.30
	703	3602	55	2794	1584	478	192	172	656	292	2.20
	735	3724	26	2895	1701	589	196	179	929	309	2.20
avg	493	2466	39	1905	1313	337	160	165	439	282	2.98
td	320	1693	24	1329	468	222	48	16	306	27	66.9
<pre>%variance</pre>	65	69	19	7.0	36	99	3.0	6	7.0	6	34.14
treatment #2D day 14	BNZ	TOL	ETH BZ	m, p-XYL	o-XYL	3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	73	175			71	15	14	26	1.0	21	4.30
	216	1118	18	188	673	174	68	98	187	164	4.10
	137	820	11	711	504	86	134	80	121	203	2.80
avg	142	704	15	555	416	96	79	64	106	129	3.73
td	29	394	3	348	254	9	49	27	73	78	99.0
<pre>%variance</pre>	41	26	23	63	19	89	63	42	69	60	17,81

day 21	BNZ	TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET	135TMB	2ET	124 TMB	123TMB	[00]
		19		I	11	5	7	12	5	17	4.80
	248	905	8	383	1027	106	129	119	52	256	2.40
	327	169	16	12	728	27	81	87	2	146	2.60
avg	288	538	12	135	589	46	72	73	20	140	3.27
std	40	377	4	175	426	43	20	45	23	86	1.09
%variance	14	7.0	34	129	72	94	69	62	116	70	33.28
treatment #2D day 35	#2D BNZ	TOL	ЕТН ВZ	m,p-XYL	o-XYL		135 TMB	2ET	124TMB	123 TMB	[00]
	108	405	5	932	533	1	87	71	213	138	1.60
	254	391	9	41	160	16	7	27	9	35	2.10
avg	181	398	9	487	347	93	47	49	110	87	1,85
std	73	7	0	446	187	77	40	22	104	52	0.25
%variance	40	7	6	92	54	83	85	45	95	60	13,51

day Ø BNZ 1238 1826 1359 1155	TOL	FTH BZ	m.p-XYI.	IVV.	3.4ET	1	-	1		
		20	,	O_AID	-	L35TMB		124 TMB	1231MB	[00]
1826 1350 1155	7083	227	6498	3185	1443	509	415	1899	689	7.50
1350	10286	330	9320	4225	2153	169	624	2805	1036	
1155	7355	226	6903	3353	1576	269	462	2031	765	
	6310	91	6246	3048	1432	527	428	1941	758	
avg 1392	7759	219	7242	3453	1651	594	482	2169	812	7.50
	1509	82	1223	459	295	104	84	370	133	00.0
%variance 19	19	39	17	13	18	17	17	17	16	00.00
treatment #2E day 2 BNZ	TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET	135TMB	2ET	124 TMB	123TMB	[00]
=======================================	3060	43	2368	1313	418	149	141	534	229	8.10
692	3539	45	2717	1502	457	164	155	292	252	8.05
avg 649	3300	44	2543	1408	438	157	148	550	241	8,08
	240	1	174	95	20	80	7	16	12	0.02
%variance 7	7	2	7	7	4	5	2	e	S	0.31

day 7	BNZ	TOL	ETH BZ	m,p-XYL	O-XXL	3,4ET	135 TMB		124 TMB	123 TMB [DO]	[00]
	71.0	3490	46	3490 46 2651 1510	1510	426	159	1		260	5.10
	613	3031	38	2369	1288	393	143	135	528	227	5.10
	642	3216	41	2493	1390	417	159	149	562	254	3.70
avq	655	3246	42	2564	1396	412	154	145	554	247	4.63
std	41	189	9	115	91	14	80	7	19	14	99.0
<pre>%variance</pre>	9	9	80	2	9	3	2	2	3	9	14.24
treatment #2E day 14	2E BNZ	TOL	ETH BZ	m, p-XYL	O-XYL	3,4ET	135TMB	2ET	124 TMB	123 TMB	[00]
	782	3296	44	1	1441	423	158	151	ii	250	6.00
	160	2918	40	2148	1249	355	132	130	478	224	4.90
	652	3140	22	2238	1290	215	139	131	462	224	5.20
avg	731	3118	35	2313	1327	331	143	137	511	233	5.37
std	57	155	10	173	83	87	11	10	28	12	0.46
%variance	80	2	27	7	9	56	80	7	11	2	8.65

treatment #2E	‡2E										
day 21	BNZ	TOL	ETH BZ	m,p-xyl	O-XYL	3,4ET	135TMB	2ET	124 TMB	123TMB	[00]
	693	3401		2689	1526	448	173	164	634	264	5.00
	1160	5580	78	4406	2455	735	285	261	1012	428	6.10
	8Ø1	3881	99	3009	1717	200	195	181	682	384	5.40
avg	885	4287	19	3368	1899	561	218	202	176	332	5.58
std	200	935	13	746	401	125	48	42	168	70	0.45
%variance	23	22	21	22	21	22	22	21	22	21	8.27
treatment #2E day 35		TOL	ETH BZ	m, p-XYL	O-XYL	3,4ET	135 TMB		124TMB	123 TMB	[00]
	830	3654	51	2489	1397	427	167	144	494	260	3.30
	704	3134	46	2197	1387	343	134	136	468	226	3.90
	732	1123	45	194	1408	116	162	153	9/	239	2.60
avg	755	2637	47	1627	1397	295	154	144	346	242	3.27
std	54	1691	3	1828	6	131	15	7	191	14	0.53
%variance	7	41	9	63	1	44	6	ď	55	9	16.26

Treatment 2F

CTEG CHEIL #2E											
day 0	BNZ	TOL	ETH BZ	m, p-XYL	O-XYL	3,4ET	135TMB	2ET		123 TMB	[00]
	1238	7083	!	1	3185	1443	589	415	11		7.50
	1826	1,0286	330	9320	4225	2153	492	624	2805	1836	
	1350	7355	226	6903	3353	1576	269	462	2031	765	
	1155	6310	16	6246	3048	1432	527	428	1941	758	
avg	1392	7759	219	7242	3453	1651	594	482	2169	812	7.50
std	260	1509	82	1223	459	295	164	84	370	133	000
%variance	19	19	39	17	13	18	17	17	17	16	0.00
treatment #2F DAY 2	2F BNZ	TOL	ETH BZ	m, p-XYL		3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	799	3996	38	3568	1929	695	254	239	972	396	9.00
	518	2596	23	2203	1221	403	146	135	539	227	8.19
	640	3415	32	3259	1770	664	252	224	944	253	8.50
avg	652	3336	31	3010	1640	587	217	199	818	292	8.53
std	115	574	9	584	303	131	58	46	198	74	9.37
%variance	18	17	20	19	18	22	23	23	24	25	4.31

Treatment 2E

day 0	BNZ	TOL	ETH BZ	m, p-XYL	O-XYL	3,4EF	135 TMB		124TMB	123 TMB	[00]
	1238	7083	227	6498	3185	1443	589	ii	1899	689	7.50
	1826	10286	330	9320	4225	2153	169	624	2805	1,036	
	1350	7355	226	6903	3353	1576	269	462	2031	765	
	1155	6310	91	6246	3048	1432	527	428	1941	758	
avg	1392	7759	219	7242	3453	1651	594	482	2169	812	7.58
std	260	1509	82	1223	459	295	104	84	370	133	00.00
%variance	19	19	39	17	13	18	17	17	17	16	0.00
treatment #2F DAY 2	2F BNZ	TOL	ETH BZ	m, p-XYL	O-XYL	3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	799	3996	38	3568	1929	695	254	239	972	396	99.6
	518	2596	23	2203	1221	403	146	135	539	227	8.10
	640	3415	32	3259	1770	664	252	224	944	253	8.50
avg	652	3336	31	3010	1640	587	217	199	818	292	8.53
std	115	574	9	584	303	131	20	46	198	74	0.37
%variance	18	17	20	19	18	22	23	23	24	25	4.31

treatment #7F	Ti.										
DAY 7	BNZ	TOL	ETH BZ	m,p-XYL	o-XYL	3,4ET	135TMB	2ET	124 TMB	123TMB	[00]
	600	2946	26	2536	1388	457	156		600	261	8.00
	687	3294	27	2834	1519	508	186	168	689	290	8.60
	428	2374	19	2000	1133	385	138	127	498	237	8.10
avg	572	2871	24	2457	1347	450	160	147	593	263	8.23
std	1.08	379	4	345	160	5.0	20	17	74	22	0.26
%variance	19	13	16	14	12	11	12	11	13	80	3,19
treatment #2F DAY 14		TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET	135TMB	2ET	124TMB	123 TMB	[00]
	7.01	3320	3.0	3.0 2651	1502	436	167	160	596	279	7.90
	176	3713	34	2968	1666	498	184	173	663	289	8.10
	730	3578	36	2998	1667	515	196	179	702	302	7.20
avg	736	3537	33	2872	1612	483	182	171	654	290	7.73
std	31	163	2	157	78	34	12	œ	44	6	0.39
%variance	4	2	7	5	2	7	7	2	7	3	4.99

DAY 21	BNZ	TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	542	2778	24	2229	1298	378	146	138	531	246	7.30
	820	4048	40	3374	1928	583	228	221	854	403	7.70
	1309	6405	99	5357	3008	920	349	334	1305	268	7.50
avg	890	4408	43	3653	2078	627	241	231	897	406	7.50
std	317	1506	17	1292	2007	223	83	80	317	131	0.16
%variance	36	34	40	35	34	36	35	32	35	32	2.18
treatment #2F DAY 35	PBNZ	TOL	ETH BZ	m, p-XYL	O-XYL	3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
	629	3131	31	31 2542	1473	428	166	157	909	266	6.30
	635	3035	27	2497	1449	427	170	157	614	268	7.60
avg	647	3083	29	2520	1461	428	168	157	610	267	6.95
std	12	48	2	22	12	0	2	0	4	1	0.65
%variance	2	2	9	_	_	65	_	8	_	8	9.35

TREATMENT #2G

treatment #2G day 0	BNZ	TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET	135TMB	2ET	124 TMB	123TMB	
	337	460		3880		=========		. 20			
	107	400		2002	TORO	432	TRT	T /10	//3	333	70.00
	230	397	80	1367	1017	433	161	198	583	363	
	193	386	123	1348	1044	523	181	231	617	396	
avg	220	414	1.02	1574	1121	463	174	200	658	364	א ממ
std	19	33	21	306	129	43	6	25	83	26	00.00
%variance	6	8	21	19	11	6	5	17	13	7	n/a
treatment #2G day 3	m i	TOL	ЕТН ВZ	m,p-XYL	O-XYL	3,4ET	135TMB	2ET	124 TMB	123 TMB	[00]
	0	2	0 1	1	2	1	47	26	11	33	4.50
	100	2	100	13	69	12	51	46	m	85	4.40
	100	2	100	П	2			3	100	2	
avg	52	2	62	5	24	7	49	25	1	40	4.45
std	100	8	100	9	32	5	2	18	7	34	0.05
%variance	ERR	10	ERR	113	132	79	4	71	106	86	1.12

1	BNZ	TOL	ЕТН ВЗ	ETH BZ m, P-XYL	O-XYL	3,4ET	TOL ETH BZ m,p-XXL 0-XXL 3,4ET 135TWB 2ET 124TWB 123TWB [DO]	2ET	124TMB	123TMB	[00]
	9	6	0	3	4	2	0	6	8	5	5.00
	0	4	0	40	1.05	15	0	18	21	43	2.90
	69	11	0	6	7.0	2	1.0	17	3	25	4.40
avq	В	80	80	17	68	7	က	15	80	24	4.10
std	0	e	0	16	42	2	4	4	6	16	88.0
%variance	ERR	37	ERR	94	7.0	73	141	28	116	65	21.54
treatment #2G day 14	2G BNZ	TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET			124TMB	123TMB	[00]
			======================================	64	ii	12	ii Ii	18	15	15 21	11 11
	Э	39	80	59	37	12	2	1.0	13	14	4.00
	0	15	0	57	101	17	14	21	22	33	2.50
	0	4	0	37	83	11	12	56	12	23	
avq	7	29	4	54	7.0	13	6	19	15	23	3.23
std	2	21	4	1.0	24	2	r	9	4	7	0.61
%variance	1.07	73	101	13	34	18	37	30	52	30	18,95

treatment #2G											
day 21	BNZ	TOL	ETH BZ	m,p-XYL	O-XXL	3,4ET	3,4ET 135TMB	2ET	2ET 124TMB	123TMB	[00]
	0	1	1 60	39	106	14	21		18	44	2.90
	0	П	60	4	25	П	10	2	e	2	2.60
	0	Э	100	2	48	3	6	10	2	24	3.90
avg	0	2	0	16	60	9	13	11	œ	23	3.13
std	0	П	0	16	34	9	2	9	7	17	0.56
%variance	ERR	54	ERR	1.02	22	95	40	25	95	74	17.74
treatment #2G day 35	BNZ	TOL	ETH BZ	m,p-XYL	o-XYL	3,4ET	135 TMB	2ET	124TMB	123 TMB	[00]
	2	7	0	7 0 4 26 3 5	26	3		12	3	3 16	11
	S	30	100	12	12	2	1	4	3	1	3.60
	1	4	69	1	e	100	0	13	0	0	3.60
avg	٣	14	6	9	14	2	2		2	9	3.47
std	2	12	60	2	10	1	2	4	-	7	0.19
%variance	8.0	88	ERR	79	70	73	109	43	71	129	5.44
					111111111111111111111111111111111111111	1111111111					

TREATMENT #2H

treatment #2H day 0	BNZ	TOL	1	ETH BZ m, P-XYL	O-XYL	3,4ET	135 TMB	2ET	124TMB	123TMB	[00]
	237	460	1	2006	1303	432	181	170	773	333	20.00
	230	397	80	1367	1017	433	191	198	583	363	
	193	386	123	1348	1044	523	181	231	617	396	
ıvg	220	414	102	1574	1121	463	174	200	658	364	20.00
std	19	33	21	306	129	43	6	25	83	26	0.00
%variance	6	00	21	19	11	6	2	12	13	7	n/a
treatment #2H day 2		TOL	ЕТН В2	m,p-XYL	o-XYL	3,4ET	135 TMB	2ET		123 TMB	[00]
	136	56	0		628	23	55	99		152	4.20
	181	164	0	184	809	72	92	95	41	218	8.00
	193	181	8	151	826	69	92	94	56	217	7.90
ινg	170	134	6	113	754	55	88	85	23	196	6.40
std	25	22	0	78	96	22	17	13	16	31	1,61
\$variance	14	41	ERR	69	12	41	22	16	73	16	25,13

day 7 BNZ	BNZ TOL	N DWG DA	m n		mer A. C.	1				
1		9	In Be III, PAIL O-AIL 3, 4EI 1351PHB	O-XYL	3,451	135 TMB	2ET	124TMB	123TMB	[00]
			12	225	8	19	33	5	33 5 64 5.00	5.00
	25 2	21 0	9	43	0	9	20	0	21	5.20
1				164	6	13	33	0	53	5.00
avg		1 1	80	144	9	13	29	2	46	5.07
	37 2.	22 1	9	92	4	S	9	2	18	0 00
%variance		14 141	40	23	71	41	21	141	40	1.86
treatment #2H day 14 B	BNZ TOL	ETH B	m,p-XYL	O-XYL	3,4ET	135 TMB	2ET	124 TMB	123 TMB	[00]
			8 23	59		7	15	7	15 7 36	
			22	69	9	7	24	4	27	
	14	3 0	9	13	1	2	2	1	27	
			1	24	7	2	3	н	22	
	20 16	6 1	11	41	3	9	11	ĸ	28	ERR
std			11	23	2	7	6	3	2	FRR
%variance		1 153	76	22	65	17	83	82	18	ERR

day 21	BNZ	TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET	135TMB	2ET	124TMB	123TMB	[00]
		43	1	43 1 37 109	109	6	9 11 14 9 44 5.50	14	6	44	5.50
	44	25	60	19	139	7	14	18	9	22	4.60
pve	35	34	1	28	124	80	13	16	80	5.0	5.05
std	1.0	6	1	6	15	1	2	2	2	5	0.45
<pre>%variance</pre>	28	56	100	32	12	12	12	12	20	11	8.91
treatment #2H day 35	2H BNZ	TOL	ETH BZ	ETH BZ m,p-XYL	o-XYL	3,4ET	135TMB	2ET	124 TMB	123 TMB	[00]
	4	5	0		======================================	3	1		3	7	3,50
	45	27	2	15	134	6	16	20	2	54	2.40
avg	25	16	1	10	74	9	6	13	4	31	2,95
std	20	11	П	2	60	e	80	80	1	24	0.55
%variance	84	69	1 00	50	8	50	88	69	25	17	18 64

TREATMENT #21

	111 0 110 110 110										
day Ø	BNZ	TOL	ETH BZ	ETH BZ m, p-XYL	O-XYL	3,4ET	135TMB	2ET		123 TMB	
	237	460		2006	1	432	181	170			20.00
	230	397	88	1367	1017	433	191	198	583	363	
	193	386	123	1348	1644	523	181	231	617	396	
avg	220	414	102	1574	1121	463	174	200	658	364	20.00
std	19	33	22	306	129	43	6	25	83	56	00.00
§variance	6	8	21	19	11	6	2	12	13	7	n/a
treatment #2I day 2	BNZ	TOL	ETH BZ	m, p-XYL	O-XXL	3.4ET	135 TMB	ZET	124 mmB	123 mm	[00]
	104	9C7	1	178	199	149	28	89	255	152	9.6
	142	238	6	822	650	139	59	29	259	152	9.60
avg	148	244	10	825	929	144	59	89	257	152	9.60
std	9	9	Т	2	S	5	0	100	7	0	00.00
%variance	4	7	10	0	1	m	1	П	1	100	00.00

treatment #21 day 7		TOL	ETH BZ	m, p-XYL	o-xyl.	O-XYL 3,4ET	135 TMB	2ET	12.4 TMB	123TMB	[00]
	163 186	282 376		825 894	766	147	58 57	81	243 265		8.60
avg std %variance	175 12 7	329 47 14	ERR ERR ERR	86Ø 35 4	717	144 3 2	58	83 2 2	254 11 4	156 3 2	8.60 ERR ERR
ent #	BNZ	TOL	ETH BZ	m,p-xyf.	o-xyl	3,4ET	3,4ET 135TMB	2ET	124TMB	123TMB	[20]
	l	221 223	4	743 782	594 615	117	51 55	62 64	221 245	132	7.50
avg std %variance	158 1 1	222 1 Ø	4 0 0	763 20 3	605	120	53 2	63	233 12 5	137 5	7.35

BNZ TOL ETH BZ n,P-XYL O-XYL 3,4Er 135 FyB 2Fr 124 Wh 123 TyB 174 236 bdl 727 686 107 51 56 239 139 176 238 8 75 623 112 56 223 136 17 38 17 623 112 5 23 136 17 38 17 5 12 2 8 2 1 3 8RR 4 3 4 2 3 3 1 1 3 8RR 17 5 12 3 3 1 1 3 8RR 17 5 14 2 3 1 18 4 3 4 2 3 3 1 18 4 3 4 2 3 3 1 18 4 3 4	treatment #21	2.1										
177 236 bdl 786 639 116 53 59 239 139 174 223 bdl 727 662 116 51 56 223 136 125 23 bdl 727 623 112 52 58 231 138 126 23 bdl 757 623 112 52 58 231 138 127 8 8 75 623 112 5 28 231 138 127 12	day 21	BNZ	TOL	ETH BZ	m,p-XYL	O-XYL	3,4ET		2ET	124 TMB	123 TMB	[00]
174 223 bd1 727 696 197 51 56 223 136 176 239 9 757 623 112 52 58 231 138 176 239 9 757 623 112 5 5 5 8 21 138 18ment #21		177	236	bdl	786	639	116	11	59	239	139	7.90
Liance 176 230 9 757 623 112 52 58 231 138 2 7 8 9 175 623 112 5 2 58 231 138 2 1 2 8 2 3 2 1 2 8 2 2 3 1 3 8 2 2 3 1 3 8 2 2 3 1 3 8 2 3 3 1 2 4 2 2 3 8 23 3 4 1 2 8 3 5 1 2 8 3 7 8 8 8 8 8 4 1 166 184 5 707 577 110 48 57 218 131 114 195 5 643 532 100 44 51 199 121 64 114 195 5 643 532 100 44 51 199 121 115 176 176 176 176 176 176 176 1176 221 5 707 577 110 48 55 213 127 1176 221 5 707 577 110 48 55 213 127 1177 117 117 117 117 117 117 117 1178 1178		174	223		727	909	1.07	51	99	223	136	7.90
tiance 1 7 6 36 17 5 1 2 8 2 1 2 2 8 2 2 1 2 2 8 2 2 2 2 2 2	avq	176	230	8	757	623	112	55	ą,	23.1	138	7.90
Tience 1 3 ERR 4 3 4 2 3 3 1 1 Then the true of true	std	2	7	8	3.0	17	5	} -	7	00	2	ERR
35 tunent #21 36 TOL ETH BZ m,p-XVL 0-XVL 3,4ET 135TWB 2ET 124TWB 123TWB 156 214 5 787 577 118 49 57 218 131 178 221 5 787 577 118 48 55 213 127 144 195 5 643 532 188 44 51 199 121 27 31 89 16 64 15 5 13 14 27 31 89 16 8 14 12 5 18 13 14 12	%variance	1	3	ERR	4	Э	4	2	3	3	1	ERR
197 151 514 442 79 36 41 166 184 156 214 5 787 577 118 49 57 218 131 178 221 5 787 577 118 48 55 213 127 144 195 5 643 532 188 44 51 199 121 27 31 8 91 64 15 6 7 23 12 21 31 8 4 12 19 121	treatment #. day 35		TOL	ETH BZ		o-XYL	3,4ET	135TMB	2ET	124TMB	123 TMB	[00]
156 214 5 707 577 110 49 57 218 131 170 170 221 5 707 577 110 48 55 213 127 170 170 48 55 213 127 170 170 48 55 213 127 170 170 170 170 170 170 170 170 170 17		1.07	151			442	79	36	41	166	164	6.20
170 221 5 707 577 110 48 55 213 127 144 195 5 643 532 1000 44 51 199 121 27 31 0 91 64 15 6 7 23 12 :iance 19 16 0 14 12 15 13 14 12 10 1		156	214	5	7.007	577	110	49	22	218	131	5.50
144 195 5 643 532 188 44 51 199 121 27 31 8 91 64 15 6 7 23 12 12 13 14 12 19 19 121		170	221	5	707	211	110	48	22	213	127	7.20
27 31 \$\theta\$ 91 64 15 6 7 23 12	avg	144	195	S	643	532	1.00	44	51	199	121	6.30
19 16 0 14 12 15 13 14 12 10	std	27	31	0	91	64	15	9	7	23	12	0.70
	%variance	19	16	0	14	12	15	13	14	12	1.0	11.07

APPENDIX F COLUMN BREAKTHROUGH DATA FOR BIODEGRADATION COLUMNS

Breakthrough data for columns with flow rates of 1 mL/min and 0.9 mL/hr are presented in tabular form. Breakthrough curves for each compound for the 1 mL/min column are presented following the tabular data.

Column Biodegradation Data

values as ug/L

CUMM ML	BNZ	TOL	EBZ	MPX	ox
========					
Co	= 1711	7034	1061	3848	1931
Ø	Ø	Ø	Ø	Ø	Ø
3.897	72.2	59.8	36	, Ø	17
5.553	177.4	163.5	50	` Ø	
6.975	316	272		30	33
8.775	433	412		34	49
9.828	437	485	40	64	68
10.8	455	499	43		69
11.7	490	548	54		87
13.05	467	59Ø	43	62	100
14.4	537	731	54	93	33
15.75	491	690	48	92	141
17.1	513	726	52	110	169
18.225	490	751	55	119	177
22.725	385	649	61	133	206
25.425	479	818	85	182	213
28.125	523	853	86	181	205
29.25	658	1092	93	203	249
44.325	599	1085	95	192	246
50.85	661	1009	88	195	259
54.45	644	1033	95	227	276
34.45	044	1033	95	221	2/0

L = 2.5 cm v = 0.003 cm/min

Column Biodegradation Data

Values are C/Co

PV BZ TOL EBZ MPX OX						
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.570 0.042 0.009 0.034 0.000 0.000 0.001 0.002 0.003 0.001 0.002 0.003 0.0047 0.003 0.003 0.0047 0.006 0.003 0.0047 0.006 0.003 0.0047 0.006 0.0047 0.006 0.003 0.0047 0.006 0.003 0.0047 0.006 0.003 0.0047 0.006 0.003 0.0047 0.006 0.003 0.003 0.004 0.003 0.0	PV	BZ	TOL	EBZ	MPX	OX
0.570 0.042 0.009 0.034 0.000 0.009 0.812 0.104 0.023 0.047 0.000 0.000 1.020 0.185 0.039 0.008 0.017 1.283 0.253 0.059 0.009 0.025 1.437 0.255 0.069 0.038 0.017 0.035 1.579 0.266 0.071 0.041 0.036 0.045 0.045 1.908 0.273 0.084 0.041 0.016 0.052 2.105 0.314 0.104 0.051 0.024 2.303 0.287 0.098 0.045 0.024 0.073 2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.386				=======	=======	
0.570 0.042 0.009 0.034 0.000 0.009 0.812 0.104 0.023 0.047 0.000 0.000 1.020 0.185 0.039 0.008 0.017 1.283 0.253 0.059 0.009 0.025 1.437 0.255 0.069 0.038 0.017 0.035 1.579 0.266 0.071 0.041 0.036 0.045 0.045 1.908 0.273 0.084 0.041 0.016 0.052 2.105 0.314 0.104 0.051 0.024 2.303 0.287 0.098 0.045 0.024 0.073 2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.386						
0.570 0.042 0.009 0.034 0.000 0.009 0.812 0.104 0.023 0.047 0.000 0.000 1.020 0.185 0.039 0.008 0.017 1.283 0.253 0.059 0.009 0.025 1.437 0.255 0.069 0.038 0.017 0.035 1.579 0.266 0.071 0.041 0.036 0.045 0.045 1.908 0.273 0.084 0.041 0.016 0.052 2.105 0.314 0.104 0.051 0.024 2.303 0.287 0.098 0.045 0.024 0.073 2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.386						
0.570 0.042 0.009 0.034 0.000 0.009 0.812 0.104 0.023 0.047 0.000 0.000 1.020 0.185 0.039 0.008 0.017 1.283 0.253 0.059 0.009 0.025 1.437 0.255 0.069 0.038 0.017 0.035 1.579 0.266 0.071 0.041 0.036 0.045 0.045 1.908 0.273 0.084 0.041 0.016 0.052 2.105 0.314 0.104 0.051 0.024 2.303 0.287 0.098 0.045 0.024 0.073 2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.386						
0.570 0.042 0.009 0.034 0.000 0.009 0.812 0.104 0.023 0.047 0.000 0.000 1.020 0.185 0.039 0.008 0.017 1.283 0.253 0.059 0.009 0.025 1.437 0.255 0.069 0.038 0.017 0.035 1.579 0.266 0.071 0.041 0.036 0.045 0.045 1.908 0.273 0.084 0.041 0.016 0.052 2.105 0.314 0.104 0.051 0.024 2.303 0.287 0.098 0.045 0.024 0.073 2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.386	0.000	0 000	0.000	0 000	0 000	0.000
0.812 0.104 0.023 0.047 0.000 0.000 1.020 0.185 0.039 0.008 0.017 1.283 0.253 0.059 0.009 0.025 1.437 0.255 0.069 0.038 0.017 0.035 1.579 0.266 0.071 0.041 0.036 0.045 1.908 0.273 0.084 0.041 0.016 0.052 2.105 0.314 0.104 0.051 0.024 0.073 2.303 0.287 0.098 0.045 0.024 0.073 2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.306 0.121 0.081 0.047 0.106 4.277 0.385						
1.020						
1.283 0.253 0.059 0.009 0.025 1.437 0.255 0.069 0.038 0.017 0.035 1.579 0.266 0.071 0.041 0.036 1.711 0.286 0.073 0.084 0.041 0.016 0.052 2.105 0.314 0.104 0.051 0.024 0.073 2.303 0.287 0.098 0.045 0.024 0.073 2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.306 0.121 0.081 0.047 0.106 4.277 0.385 0.155 0.088 0.053 0.129 6.481 0.350 0.154 0.090 0.050 0.127 7.435				0.047		
1.437 0.255 0.069 0.038 0.017 0.035 1.579 0.266 0.071 0.041 0.036 1.711 0.286 0.078 0.051 0.045 1.908 0.273 0.084 0.041 0.016 0.052 2.105 0.314 0.104 0.051 0.024 0.073 0.084 0.045 0.024 0.073 0.084 0.045 0.024 0.073 0.084 0.092 0.088 0.052 0.030 0.094 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.306 0.121 0.081 0.047 0.106 4.277 0.385 0.155 0.088 0.053 0.127 7.435 0.386 0.143 0.083 0.051 0.134						
1.579				0 000		
1.711 0.286 0.078 0.051 0.045 1.908 0.273 0.084 0.041 0.016 0.052 2.105 0.314 0.104 0.051 0.024 2.303 0.287 0.098 0.045 0.024 0.073 2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.306 0.121 0.081 0.047 0.106 4.277 0.385 0.155 0.088 0.053 0.129 6.481 0.350 0.154 0.090 0.050 0.127 7.435 0.386 0.143 0.083 0.051 0.134					0.017	
1.908						
2.105						
2.303 0.287 0.098 0.045 0.024 0.073 2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.306 0.121 0.081 0.047 0.106 4.277 0.385 0.155 0.088 0.053 0.129 6.481 0.350 0.154 0.090 0.050 0.127 7.435 0.386 0.143 0.083 0.051 0.134						0.052
2.500 0.300 0.103 0.049 0.029 0.088 2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.306 0.121 0.081 0.047 0.106 4.277 0.385 0.155 0.088 0.053 0.129 6.481 0.350 0.154 0.090 0.055 0.127 7.435 0.386 0.143 0.083 0.051 0.134						
2.664 0.286 0.107 0.052 0.031 0.092 3.323 0.225 0.092 0.057 0.035 0.107 3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.306 0.121 0.081 0.047 0.106 4.277 0.385 0.155 0.088 0.053 0.129 6.481 0.350 0.154 0.090 0.050 0.127 7.435 0.386 0.143 0.083 0.051 0.134						
3.323						
3.718 0.280 0.116 0.080 0.047 0.110 4.112 0.306 0.121 0.081 0.047 0.106 4.277 0.385 0.155 0.088 0.053 0.129 6.481 0.350 0.154 0.090 0.050 0.127 7.435 0.386 0.143 0.083 0.051 0.134						
4.112 0.306 0.121 0.081 0.047 0.106 4.277 0.385 0.155 0.088 0.053 0.129 6.481 0.350 0.154 0.090 0.050 0.127 7.435 0.386 0.143 0.083 0.051 0.134					0.035	
4.277 0.385 0.155 0.088 0.053 0.129 6.481 0.350 0.154 0.090 0.050 0.127 7.435 0.386 0.143 0.083 0.051 0.134	3.718	0.280	0.116	0.080	0.047	0.110
6.481 0.350 0.154 0.090 0.050 0.127 7.435 0.386 0.143 0.083 0.051 0.134	4.112	0.306	0.121	0.081	0.047	0.106
7.435 0.386 0.143 0.083 0.051 0.134	4.277	0.385	0.155	0.088	0.053	0.129
	6.481	0.350	0.154	0.090	0.050	0.127
7.962 0.376 0.147 0.090 0.059 0.143	7.435	0.386	0.143	0.083	0.051	0.134
	7.962	0.376	0.147	0.090	0.059	0.143

L = 2.5 cm

v = 0.003 cm/min

pore water velocity = 14.21290 cm/day bulk density = 1.8 g/ml particle density = 2.6 g/ml

L = 5 cm v = 0.204 cm/min 1 pore volume = 6.94 ML

Values are as ug/L

CUMM ML	BNZ	TOL	EBZ	MPX	
========				.======	
	Co = 5000	2862	2449	2092	2805
1.78	Ø.7	2.9	0.9	2.8	3.4
3.78	0.7	6.4	0.9	2.1	1.9
4.78	Ø.7	9.2	0.8	2.9	2.5
5.8	54.4	12.9	2.3	2.6	4.9
6.8	465.6	122.3	26	23.4	50.4
7.8	1346.1	398.7	122	106	211
8.8	2231	769	331.6	251	484
9.8	3104	1186	608	473	817
10.8	3472	1373	775	610	1008
11.8	3822	1552	922	728	1170
13.8	4206	1740	1082	874	1338
15.8	4360	1851	1173	951	1428
16.8	4401	1846	1170	961	1445
17.8	4631	1948	1240	1007	1516
18.8	4414	1921	1264	1038	1531
19.8	5027	2093	1313	1071	1593
20.8	4774	2106	1373	1145	1633
21.8	4302	1897	1245	1016	1498
22.8	4577	1968	1266	1036	1515
25.8	4668	2056	1342	1097	1607
	4642	2035	1320	1087	1578
26.8	4385	1889	1205	986	1487
27.8			1307	1067	1569
28.8	4632	2011		1147	1658
29.8	4541	2064	1386		
30.8	4378	1809	1080	900	1371
31.8	4730	2149	1437	1193	1710
32.8	4579	2065	1383	1134	1636
33.8	4648	2119	1422	1173	1681
34.8	4914	2241	1513	1237	1780

Pore water velocity = 0.680 cm/min. Particle density = 2.6 g/mL. Bulk density = 1.82 g/mL. Volumetric water content = 0.30

Values are as ug/L

	ISPBZ	NPBZ	3,4ET	135TMB	2 E T	124TMB	123TMB
==			======				
Co	= 151	85Ø	2318	836	1479	1145	1786
	1.9	1.6	10.5	1.4	2.8	2.2	9.1
	Ø	1.1	5.7	Ø.9	1.9	1.3	5.3
	Ø	Ø.6	2.7	Ø.8	4.2	1.5	1.7
	6	Ø.9	7.3	Ø	1.6	1.4	1.9
	3.1	2	8.4	2.2	9.2	2.9	9.3
	21.8	5	27	7.9	34	13	44
	68	16	81	26	89	45	130
	165	44	204	65	194	109	267
	260	78	333	107	290	170	386
	359	120	462	155	382	231	501
	484	193	727	228	497	335	645
	557	245	774	273	563	389	712
	564	255	799	284	578	409	748
	607	276	860	3Ø3	612	428	776
	635	302	920	324	641	463	8 Ø 5
	658	3 Ø 7	943	33Ø	654	467	819
	711	353	1048	367	71ø	521	899
	627	306	915	323	631	460	798
	638	312	933	326	636	451	800
	673	333	977	348	672	491	837
	667	334	926	345	668	481	838
	592	289	889	313	616	445	793
	659	325	1040	34Ø	663	464	845
	709	360	1058	373	718	529	896
	522	240	789	274	549	349	702
	735	364	1111	382	736	539	908
	71Ø	355	1057	365	702	567	871
	73Ø	368	1106	378	7 2 5	532	895
	776	393	1144	402	767	559	948

Column Biodegradation Data

PV	C/Co BNZ	C/Co TOL	C/Co EBZ	C/Co MPX	C/Co o-XYL
				======	
Ø.256	0.000	0.001	0.000	0.001	0.001
0.545	0.000	0.002	0.000	0.001	0.001
0.689	0.000	0.003	0.000	0.001	0.001
0.836	0.011	0.005	0.001	0.001	0.002
0.980	0.093	0.043	0.011	0.011	0.018
1.124	0.269	0.139	0.050	0.051	0.075
1.268	0.446	0.269	0.135	0.120	0.173
1.412	0.621	0.414	0.248	0.226	0.291
1.556	0.694	0.480	0.316	0.292	0.359
1.700	0.764	0.542	Ø.376	0.348	0.417
1.988	0.841	0.608	0.442	0.418	0.477
2.277	0.872	0.647	0.479	0.455	0.509
2.421	0.880	0.645	0.478	0.459	0.515
2.565	0.926	Ø.681	0.506	0.481	0.540
2.709	0.883	0.671	0.516	0.496	0.546
2.853	1.005	0.731	0.536	0.512	0.568
2.997	Ø.955	Ø.736	0.561	0.547	0.582
3.141	0.860	0.663	0.508	0.486	0.534
3.285	Ø.915	0.688	0.517	0.495	0.540
3.718	0.933	Ø.718	0.548	0.524	Ø.573
3.862	0.928	0.711	0.539	0.520	0.563
4.006	0.877	0.660	0.492	0.471	0.530
4.150	0.926	0.703	0.534	0.510	0.559
4.294	0.908	0.721	Ø.566	0.548	0.591
4.438	0.875	0.632	0.441	0.430	0.489
4.582	0.946	0.751	0.587	0.570	0.610
4.726	0.916	0.722	0.565	0.542	0.583
4.870	0.929	0.740	0.581	0.561	0.599
5.014	0.983	Ø.783	0.618	0.591	0.635

Column Biodegradation Data

C/Co ISPBZ	C/Co NPBZ		C/Co 135TMB		C/Co 124TMB	
12507						
0.001	0.002	0.005	0.002	0.002	0.002	0.005
0.000	0.001	0.002	0.001	0.001	0.001	
0.000	0.001	0.001	0.001	0.003	0.001	0.001
0.004			0.000	0.001	0.001	0.001
	0.002		0.003			0.005
0.014	0.006	0.012	0.009	0.023	0.011	0.025
0.045	0.019		0.031		0.039	0.073
0.109	0.052	0.088	0.078		0.095	0.149
0.172	0.092	0.144	0.128	Ø.196	0.148	0.216
Ø.237	0.141	0.199	0.185	0.258	0.202	0.280
0.320	0.227	0.314	0.273			
0.368	0.288	0.334	0.327	0.381	0.340	
0.373	0.300	0.345	0.340		Ø.357	
0.401	0.325	0.371	0.363	0.414	0.374	0.434
0.420	0.355		Ø.388			
0.435		0.407	0.395			
0.470			0.439			
0.414	0.360		0.387	Ø.427		
0.422			0.390			
0.445	0.392	0.421	0.416			
0.441	0.393	0.399	0.413			
0.391	0.340	0.383	0.375			
0.436	0.382	0.449		0.448		
0.469		0.456	0.446			
0.345		0.340		0.371		
0.486		0.479			0.471	
0.469			0.437	0.475	0.495	0.488
0.483		0.477				
0.513	0.463	0.493	0.481	0.519	0.488	0.531

Breakthrough curve for benzene in column biodegradation experiment performed at a flow rate of 1 $\mathrm{mL/min.}$

Breakthrough curve for toluene in column biodegradation experiments performed at a flow rate of 1 mL/min.

Breakthrough curve for ethylbenzene in column biodegradation experiment performed at a flow rate of 1 $\ensuremath{\mathrm{mL/mi}}$.

Breakthrough curve for m.p-xylene in column biodegradation experiment performed at a flow rate of 1 mL/min.

Breakthrough curve for o-xylene in column biodegradation experiment performed at a flow rate of 1 $\mathrm{mL/min.}$

Breakthrough curve for n-propylbenzene in column biodegradation experiment performed at a flow rate of 1 mL/min.

Breakthrough curve for n-propylbenzene in column biodegradation experiment performed at a flow rate of 1 mL/min.

Breakthrough curve for 3 and 4 ethyltoluene in column biodegradation experiment performed at a flow rate of 1 mL/min.

Breakthrough curve for 1,3,5-trimethylbenzene in column biodegradation experiment performed at a flow rate of 1 mL/min.

Breakthrough curve for 2-ethyltoluene in column biodegradation experiment performed at a flow rate of 1 $\mbox{mL/min.}$

Breakthrough curve for 1,2,4-trimethylbenzene in column biodegradation experiment performed at a flow rate of 1 mL/min.

Breakthrough curve for 1,2,3-trimethylbenzene in column biodegradation experiment performed at a flow rate of 1 mL/min.

APPENDIX G HYDROCARBON CONCENTRATIONS IN MONITORING WELLS AT THE LAKE ALFRED CITRUS RESEARCH AND EDUCATION CENTER

All concentration values are in units of ug/L. Blank spaces within the body of each table indicate that the concentration was below the limit of detection (0.5 ug/L) of the analytical system. Figure 4-1 shows the location of each well.

WELL OHM-1

DATE	DAYS	DAYS BENZENE	TOLUENE	ETHEZ	M,P-XYL	O-XXI.	isoPBZ	n-982	3,4ET	135TMB	2ET	124TMB	123TMB
02-01-86	0	3318		2929	11841	4681			3699	976	852	4433	995
02-27-86	56	379		1144	12661	5038			3970	1164	1654	4935	1143
03-07-86		305		1353	12963	2196			4029	1173	1084	4758	1094
03-20-86		286		921	12215	5313			4236	1330	1143	4580	1123
03-27-86		321		265	11061	4986			4551	1478	1202	5063	1399
04-25-86				1409	14446	2839			4728	1330	1330	5053	1340
05-23-86		214		1404	12423	4998			4262	1448	1099	4610	1179
06-25-83		161		2296	9692	4034			3578	911	911	3698	1032
98-81-10		224		114	1626	3623			2876		622	3198	541
08-28-86		637		1188	7865	3725			2998	1398		3700	
99-13-86		307		1393	71.26	3346			2665	1285		3450	
10-22-86		108		2059	7595	3607	157	294	2301	986	888	2835	25
11-23-86		179		1271	6419	3435	8	120	2124	99	929	2139	783
12-10-86		179		88	10270	4490	88	15	2102	969	615	2566	847
02-20-87		411		1472	8787	4109	343	463	1934	1005	888	2716	1211
03-17-87	408	147	2491	715	7494	3548	21	46	1686	285	466	2149	736
04-29-87		0.1			0.1	0.2	0.1	0.1	0.2		8.8		
05-29-87		118		1420	6865	2934	R	129	1589	23	442	2001	88
06-23-87		96		288	5018	2145	37	29	1267	453	326	1564	230

WELL OHM-2

OPECADO DANS BROADER TG. SIHEZ MAP-NOT. O-NOT. isosfet2 n-PEGZ 3,46T 135Th6 2ET 124Th9 125Th9														
0 1.044 0.43 3.36 2.57 5.47 2.97 2.35 7.53 34 695 47 5.47 2.97 2.35 7.53 44 54 426 426<	OMPOUND D	MAKS		TOL	ETHBZ		O-XXL	isopez	n-PBZ	3,4ET	135TMB	2EF	124TMB	123TMB
0														
26 26 27 26 27 28 27 28 27 28 34 70<		0		1.04	0.43	3,36	2,57			5.47	2.97	2,35	7,53	2.96
34 695 47 47 54 47 54 47 111 22 114 75 146 62 167 365 189 523 222 224 343 719 229 33 2 12 2 2 3 2 6 229 3 2 3 2 2 3 3 6 6 229 1 4 1 6 3 3 3 4 3 3 4 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 <td></td> <td>56</td> <td></td>		56												
47 54 82 424 111 144 75 1416 632 839 523 232 224 343 710 4 208 33 22 12 46 11 5 6 209 33 22 12 2 2 3 3 6 200 31 2 12 2 2 3 3 6 24 1 4 1 6 3 1 4 8 3 6 240 2 2 2 2 3 3 6 20 <td></td> <td>×</td> <td></td> <td>992</td> <td></td>		×		992										
54 424 424 424 424 424 424 424 424 434 726 424 343 710 44 75 144 144		47												
11		Ŋ												
1111 75 144 75 899 523 222 224 343 719 2289 366 186 17 55 18 40 11 5 6 229 33 22 12 2 2 2 3 3 6 229 3 2 3 2 2 3 3 6 294 1 4 1 4 8 3 6 3 311 2 14 5 17 8 1 4 8 3 6 388 77 50 300 56 24 25 70 29 64 451 6 6 6.1 6.1 6.1 6.1 6.1 6.3 6.5 465 7 7 5 9 1 1 1 1 1 1 1 5 3 1		83	424											
144 75 1416 652 839 523 232 224 343 710 720 286 186 17 55 18 40 11 5 6 282 33 22 12 2 2 2 2 6 282 1 2 1 2 2 3 3 6 6 282 1 4 1 6 3 2 2 3 3 6 3 6 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 3 3 4 3 6 4 3 4 4 3 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4		Ξ												
167 365 189 17 55 18 49 11 5 6 229 33 22 12 2 2 3 6 20 <td></td> <td>144</td> <td>K</td> <td>1416</td> <td>632</td> <td>839</td> <td>523</td> <td></td> <td></td> <td>232</td> <td>224</td> <td>343</td> <td>710</td> <td>465</td>		144	K	1416	632	839	523			232	224	343	710	465
2008 33 22 12 20 2		167	305	180	17	22	18			40	11	Ŋ	9	43
2229 33 22 12 29 20 2		208											0	
266 5 2 3 2 2 2 3 3 6 311 2 14 5 17 8 1 4 8 3 6 385 1 4 1 6 3 1 4 8 3 4 3 468 27 77 50 300 56 24 25 70 29 64 461 6 6 1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 5 3 1 2 3 1 1 4 4 14		529		33	22	77				20	20		20	444
294 1		262		2	2	8	2		2	2	m	3	9	4
311 2 14 5 17 8 1 4 8 3 6 359 1 4 1 6 3 1 </td <td></td> <td>294</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td>-</td> <td>-</td> <td>9</td>		294							-		1	-	-	9
3559 1 4 1 6 3 3 4 3 3 4 3 3 64 3 4 3 3 64 3 64 4 1 </td <td></td> <td>311</td> <td>2</td> <td>14</td> <td>2</td> <td>17</td> <td>8</td> <td></td> <td>7</td> <td>4</td> <td>80</td> <td>m</td> <td>9</td> <td>7</td>		311	2	14	2	17	8		7	4	80	m	9	7
388 27 77 59 3880 56 24 25 77 29 64 3 451 0.6 9.1 9.1 0.1 1.1 0.1 0.6 0.3 0.6 481 1 2 0 1 2 1 1 0 9 1 1 596 5 3 18 8 3 13 14 6 4 14		329	1	4	-	9	3				3	4	3	
4488 27 77 59 3808 56 24 25 78 29 64 3 451 0.6 9.1 0.1 0.1 1.1 0.1 0.6 0.3 0.6 481 1 2 0 1 2 1 1 9 1 1 596 5 3 18 8 3 13 14 6 4 14		383									1	7	1	2
451 6.6 6.1 6.1 6.1 1.1 6.1 6.6 6.3 6.6 481 1 2 6 1 2 1 1 9 1 1 566 5 3 18 8 3 13 14 6 4 14		408	27	11	20	300	28		24	52	70	ଷ	26	305
481 1 2 Ø 1 2 1 1 9 1 1 1 5 5 3 18 8 3 13 14 6 4 14		45		9.0	0.1	0.1	0.1		1.1	0.1	9.0	0.3	9.0	
566 5 3 18 8 3 13 14 6 4 14		481	1	7	0	П	2		Т	1	6	П	1	9
		206		2	3	18	8	e	13	14	9	4	14	

WELL OHM-3

123TMB	1310	197	680	758	1162	473	630	969		2196	886	985	837	6008	888	529	1482	498	229	1444	976	628	584
124TMB	398%	795	3212	3231	4935	956	2573	2507	4575	4460	3686	2215	2815	2361	21.77	1746	3103	1537	1634	3177	2421	2691	1816
2ET	866	190	788	818	1064	1005	657	2151		1395	1156	748	821	938	936	446	1185	330	334	1361	574	280	402
135¶MB	1147	243	887	877	1300	242	643	759		1755	1829	992	1150	926	1232	495	781	405	448	1601	749	707	457
3,4EF	3176	225	2906	2650	4167	1143	2345	2208	3600	3320	3025	1734	2213	1844	1675	1567	2929	1219	1297	3580	2223	2062	1403
284-u											482	386	250	248	221	185	325	80	140	1169	92	88	148
ISPRZ											142	Z	L		9/	7	121	Ħ	28	1305	55	22	19
O-XXI	4395	814	2900	4080	4802	1903	3124	3789	3998	5810	7363	3083	4275	3467	3266	3007	6154	3342	3342	6194	5303	6994	4637
M,P-XYL	1,0280	2023	7256	9394	10067	3372	6765	916/	7238	11187	13566	2829	8526	6580	6239	5481	11809	8199	6873	12903	10332	14302	8986
ETHBZ				237			1651	2993	1699	2409	4155	1529	2281	1988	1813	1540	3469	150	1557	4031	494	171	2504
TQT.	19055	1643	13885	42663	15352	1819	13381	18366	14938	34621	35679	14909	24028	15491	14691	11600	29434	12325	11561	2093.0	17725	36695	23151
BNZ	2060	786	4625	6437	5003	1921	2473	3887	1553	4010	2419	1231	2804	1294	1316	747	2004	1211	229	3794	1618	3399	381
DAYS	60	56	34	47	ß	85	144	167	208	229	262	265	268	275	278	290	294	311	329	383	408	451	200
DATE	02-01-86	02-27-86	03-07-86	03-20-86	03-27-86	04-25-86	06-25-86	07-18-86	08-28-86	89-13-86	10-22-86	10-25-86	10-28-86	11-04-96	11-07-86	11-19-87	11-23-86	12-10-86	01-27-87	02-20-87	03-17-87	04-29-87	06-23-87

WELL OHM-4

DATE	DAYS	HENZEME	TOLOENE	ETHBZ	M,P-XYL	O-XXE	isopRZ	n-P8Z	3,4ET	135TMB	ZET	124TMB	123TMB
02-01-86	0	16171	32229	2956	18866	8228			6375	1887	1962	7653	2116
02-27-86	92	3930	15197	1925	15246	6269			2299	1616	1418	6245	1635
03-07-86	%	7835	21200	2288	15561	6928			5496	1793	1675	2019	1675
03-20-86	47	2683	17373	2229	15062	6718			4984	1773	1517	5733	1576
03-27-86	Ŋ	10290	18441	2381	14170	6158			2295	2482	2653	7263	2417
04-25-86	85	8323	22376	3124	21098	9016			9839	1754	1694	7664	1998
05-23-86	Ξ	4824	20232	2530	17039	7187			5145	2073	1608	5789	1429
96-25-86	144	3109	15756	4756	9805	40/69			2160	1251	1304	5485	1411
07-18-86	167	4087	12807	2649	13030	5463			4247	996	1119	5121	1181
08-28-86	208	8540	25654	2703	10644	2562			4127	2408		5483	
98-61-60	523	7945	29956	2746	11210	5454			3315	1735	1270	4585	2276
10-22-86	262	986	2887	203	1158	648			499			996	210
10-25-86	265	7545	21466	2087	10523	5091	131	791	3019	1227	1001	4019	1201
10-28-86	5 08	3284	11339	1895	9729	4337	500	476	4006	1734	1455	5110	1512
11-04-86	272	4294	13190	2158	9886	4021	170	370	3085	1336	1102	3491	1164
11-07-86	278	4300	14416	2724	10012	4412	196	238	3434	1471	1411	4119	1581
11-19-86	290	2729	6996	1313	7349	3166	119	215	2993	926	830	3229	1073
11-23-86	8	2512	10217	2180	7848	3499	158	441	2932	894	106	3037	1001
12-10-86	311	2117	10845	1589	9737	4073	138	728	2819	984	E	3440	1110
01-27-87	329	4472	19193	2943	12400	5433	132	284	2460	784	98	2858	1036
02-20-87	383	1260	3853	1559	8429	3706	156	274	2974	1248	894	3711	1334
03-17-87	408	1500	6160	923	8176	3219	9/	8	2432	881	704	3027	1099
04-29-87	451	1899	46241	2269	18555	9215	89	S	3276	1181	986	4150	1516
06-23-87	200	1551	16940	1837	70/06	3314	Ŋ	114	1102	411	336	1462	524

WELL P-5

72-91-86 0 72-27-86 26 73-97-86 34 73-29-86 47												-	
					į				1		į	ç	
	0		9322		2414	10%			/341	6797	74/4	7908	7007
	92	291	6753	1855	12360	5301			6215	1596	1685	7033	1980
	34	113	6159	1883	14826	6219			7033	1960	2020	7900	2019
	47	133	8214	1478	9630	4002			3635	1044	1644	3950	1113
	25	282	10505	2603	16645	7041			7427	2141	2003	8234	2279
	83		16360	2497	20573	8633			6994	1970	1724	7397	1881
	п		19037	3074	19134	8246			2869	1796	1555	6379	1474
	44	174	11110	4080	9666	4498			5883	1648	1622	5923	1836
	19		5154	2101	12240	4519			6348	1277	1668	7119	1231
• •	99			1823								2580	
	ଷ	119	1455	1063	3874	1767			2825	1650	1145	3565	1880
	62	33	2692	2904	10256	4994	176	263	3720	1587	1344	4677	1474
	8	33	1063	1169	4760	2315	8	257	1999	80%	733	251.0	791
	89	26	2000	2079	7754	3931	162	470	3471	1517	1159	4146	1307
	75	85	1668	2000	7553	3289	161	216	3840	1587	1339	4645	1477
	78	6	306	979	5092	2866	164	133	3412	1490	1300	4166	1564
	86	74	822	1013	4544	2152	8	164	2145	866	974	2449	824
	8	56	999	191	3602	1762	89	139	2201	687	100	1920	692
	п	8	931	1294	6646	5963	23	126	2219	741	295	2568	834
. ,	29	1281	1857	1827	8130	31.79	171	408	2935	1066	979	4276	1277
	8	61	17		2057	1962	1,36		1402	999	416	1595	653
-	90	4	55	42	1187	75	2	4	343	121	88	417	136
-	SI.		0.2		0.1					0.1	8.8	0.1	
-	81		14	6	41	23	1	4	36	6	12	52	25
-	90		10	13	228	113	П	3	35	88	8	75	23

0.9-01-46 6 5 5 5 5 5 5 5 5 5 5 6 149 33 33 160 65 139 150 65 149 228 273 168 449 238 60 149 238 60 149 238 60 149 238 60 149 238 60 149 238 61 344 238 61 440	DATE D	DAXS	BENZENE	TOT	EIHENZ	M,P-XYL	O-XXE	isoPBZ	n-PBZ	3,455	135TMB	ZEZ	124TPB	123TPB
9 5 53 33 33 161 65 284 288														
56 126 149 222 273 156 494 47 436 46 362 156 472 273 156 494 44 436 46 362 156 478 277 191 156 394 1111 13 46 367 288 7 378 675 176 394 675 378 394 675 176 394 675 176 394 675 176 394 675 176 394 675 176 394 675 176 394 675 176 394 675 176 394 675 176 394 176 376 394 396 176 394 396 397		0	2	23		33	33			1619	[59	288	2283	621
34 35 16 62 22 191 125 452 47 372 44 287 266 270 90 615 3934 111 13 37 87 269 379 90 615 3934 111 13 37 87 87 90 655 770 1668 114 17 465 183 69 79 113 113 17 39 250 14 21 11 21 55 3 13 36 40 35 37 80 250 14 21 25 2 3 13 36 40 35 30 30 36 </td <td></td> <td>56</td> <td></td> <td>23</td> <td></td> <td>99</td> <td>149</td> <td></td> <td></td> <td>232</td> <td>273</td> <td>168</td> <td>494</td> <td>238</td>		56		23		99	149			232	273	168	494	238
47 488 40 302 196 2002 200 309 615 3094 84 372 44 20 26 20 30		×		32		16	8			221	191	125	452	147
54 372 44 287 288 379 701 478 21% 1144 17 485 18 97 94 655 70 21% 1144 17 485 183 89 79 113 182 78 78 167 78 18 99 69 655 107 789 167 78 11 2 2 89 79 113 113 12 38 113 12 38 113 12 38 38 38 38 38 38 38 38 38 38 38 38 38 38 48 38	88	47		438	40	302	196			2902	930	615	3094	909
11		ß		372	44	287	898			2079	701	478	2176	471
1111 113 123 88 88 645 107 789 164 78 165 183 89 79 113 102 789		83				37	87			918	929	270	1660	206
1144 17 465 183 89 79 113 182 7 20 <t< td=""><td>35-23-86</td><td>Ξ</td><td></td><td>13</td><td></td><td>35</td><td>88</td><td></td><td></td><td>849</td><td>645</td><td>107</td><td>789</td><td>45</td></t<>	35-23-86	Ξ		13		35	88			849	645	107	789	45
15	76-25-86	144	17	485	183	88	79			113	102	77	86	42
2.23 14 21 11 21 55 3 13 56 46 23 35 2.62 1 1 5 2 3 13 36 46 35 9 35 35 9 35		167	92	106		19	8			13	31	8	28.5	EI
262 1 39 25 32 79 3 13 36 48 35 89 268 1 21 5 2 1 3 5 14 3 89 13 98 99 98		53	14	21	П	21	FS.			20	40	R	33	521
265 1 11 5 3 4 3 4 12 17 8 3 6 46 32 13 13 29 25 21 13 29 130 113 29 20 130 113 29 20 130 113 29 20 130 113 29 20 130 113 29 20 20 130 113 29 20 20 130 113 29 20 20 20 14 11 2 31 64 46 46 32 31 64 46 46 32 31 64 46 32 31 64 46 32 31 64 46 <t< td=""><td></td><td>362</td><td>П</td><td>33</td><td>25</td><td>32</td><td>R</td><td>3</td><td>13</td><td>8</td><td>48</td><td>32</td><td>&</td><td>99</td></t<>		362	П	33	25	32	R	3	13	8	48	32	&	99
288 1 23 5 2 1 8 3 14 2 1 8 3 14 2 1 8 3 14 3 3 14 3 3 14 3 3 14 15 17 3 5 14 13 13 24 24 24 3 46 3 14 17 29 7 14 11 2 11 2 13 24 14		365	1	Ħ	5		3							
275 2 13 4 112 17 3 56 136 133 29 289 1 33 700 246 6 46 22 31 6 46 22 31 64 284 2 6 46 2 2 1 2 3 76 76 77 34 75 73 77 78 75 74 11 2 1 1 2 1 2 1 2 1 1 2 3		568	1	เ	S	7	1	80	e		14			2
250 1 39 31 119 129 3 6 46 32 31 64 294 1 26 2 36 46 32 31 64 311 4 1 2 16 51 2 5 14 11 2 393 19 26 16 16 2 14 11 2 1 468 19 26 17 34 16 27 14 15 30 461 1 33 112 379 23 16 34 18 8 39 28 566 6 5 2 1 3 12 39 23 10 34 18 8 39 28		275	2	13	4	112	171		3	28	130	113	ଷ	171
290 1 33 700 246 81 72 55 14 11 2 314 2 2 16 51 2 2 14 11 2 359 4 1 1 2 1 2 1 388 19 26 16 14 16 27 14 25 11 451 41 33 12 32 38 32 17 23 28 461 1 379 23 16 24 18 88 59 236 5% 6 5 2 1		278	1	8	33	119	179	3	9	46	33	뛵	28	46
294 2 2 6 51 2 2 5 14 11 2 393 311 4 1 2 2 5 14 11 2 1 468 15 46 1 3 15 6 7 14 16 27 14 25 11 448 1 33 12 37 23 38 32 17 23 28 5% 6 5 2 1		8	7	33		700	246			8	22	83	72	102
311 4 1 359 388 19 20 16 29 15 14 16 27 14 25 11 468 15 6 7 38 32 17 23 23 461 1 379 223 10 24 164 83 59 236 56 6 5 2 1 1 1 1 1 1		8	2	56	2	10	ᅜ	2	2	S	14	7	2	25
3399 388 19 20 16 20 21 21 21 21 21 21 21 21 21 21 21 21 21		31		4	_					1	7	Т		
388 19 20 16 29 15 14 16 27 14 25 11 14 408 408 41 15 16 29 23 38 32 17 23 28 481 1 33 112 379 223 10 24 184 184 85 99 236 596 6 5 2 7 1		329												
4408 15 6 7 13 3 451 41 33 12 32 38 32 17 23 28 28 48 15 5 5 2 1 1 1 1 1		88	91	20	16	82	15	14	16	27	14	52	Ħ	10
451 41 33 12 32 38 32 17 23 28 28 481 1 33 112 379 223 10 24 184 88 59 236 596 0 5 2 2 1		408		15		9	7					13		
481 1 33 112 379 223 1 <i>0</i> 24 184 83 59 236 5 <i>0</i> 6 <i>0</i> 5 2 1 1 1		451		41	33	77	33	88	33		17	23	83	21
596 9 5 2 1 1 1		481	1	33	112	379	223	10	24	184	88	29	236	88
	_	2009	8	2	2		7				7	7		٦

WELL P-7

© % ¥ 7 ¥ 8												
≈ 8 ¥ 4 ¥ 8			ě	9	0			9	i			
8 2 2 2 8	37	2183	1/19	15/83	6139			9/08	1655	149/	/45/	1992
¥ 4 ¥ 8	8	3265	1745	15440	6320			6510	1660	1595	7260	1725
7 7 2 8	88	3529	1786	16400	7059			7040	2066	1852	8206	1991
1 77 28	128	2623	865	9420	1609			6412	2344	1921	9589	1998
82	143	1731	1088	1006	5130			5319	2020	1793	6M19	21.77
		2600	1534	13558	6307			7558	2456	2174	8226	2384
Ħ		3844	1366	13066	6461			7801	2359	2090	9032	2064
144	99	7918	351.0	9281	4480			5038	1407	1367	5414	804
167	3197	5572	1181	10616	4304			8165	1697	1996	8417	2163
208		86	2562	2651	1873			3125	1640		3832	
229		109	1066	5058	2905			4160	1810	165	5435	2326
292		376	1157	6216	3607	133	421	3854	1730	1580	4970	1659
265		233	902	6152	3342	91	569	3993	1548	1423	5120	1758
268	135	783	282	7333	4195	788	989	6801	2920	3135	829	2898
275	16	221	238	D607	4128	92	88	4463	1912	1787	5436	2156
278	88	1992	1979	7496	3694	121	379	3001	1289	1078	3494	1086
290		233	788	3796	2058	8	74	2773	1205	1202	3307	1210
82		3 5	621	5448	2903	118	188	4408	1269	1304	4629	1700
311	22	125	4763		2549	17	2993	824	1126		3346	1315
329	582	495	1047	5977	2920	136	365	3780	1478	1003	4531	1556
383		163	499	2182	1617	88	129		1117	889	1929	
408	102	314	186	2634	1516	173	139	2805	1204	77	2549	1116
451		1,5	1,5		0.5		1,2	0.4	9.0	0.5	9.0	0.2
481		17	10	150	85	9	9	88	29	45	85	83
206			4	56	15	9.0	7	31	18	16	13.4	53

WELL RAP-2

8 1 6 4 6.3 6.3 6.2 6.1 2 2 1 1 1 1 1 6.19 6.19 6.26 6.14 6.36 6.49 6.44 6.36 6.4 6.39 6.49 6.25 6.1 6.45 6.2 6.44 6.44 6.36 6.4 6.3 6.49 6.3 6.1 6.45 6.2 6.44 6.36 6.4 6.3 6.44 6.3 6.4	DAYS	BAZ	TOE	- 1	EINEZ M,P-XYL	O-XXE	O-XYL isoPBZ	- 1	n-PEZ 3,4ET 135TMB	135TMB	ZET	124TMB	124TMB 123TMB
1 6 4 6.3 6.2 6.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
1 6 4 9.3 9.2 9.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
1 6 4 0.3 0.2 0.1 1 1 1 1 0.1 0.08 0.1 0.04 0.04 0.44 0.36 0.9 0 0													
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			80	7	9	4			0,3	0.2	0.1		2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
1 6.18 6.11 6.73 6.11 6.73 6.11 6.73 6.1 6.45 6.2 6.84 6.04 6.44 6.36 6.4 6.3 6 6 6			7		1	-					-		
1 0.08 0.11 0.73 0.1 0.73 0.1 0.74 0.36 0.4 0.3 0.3 0.1 0.91 0.30 0.4 0.30 0.4 0.3													
9.1 0.48 0.84 0.04 0.41 0.73 0.1 0.47 0.3 0.1 0.45 0.2 0.04 0.04 0.44 0.3 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			-		1								
6.1 6.45 6.2 6.84 6.84 6.44 6.36 6.4 6.3 6 6 6 6			0.19		0.1	Ø.08			0.11		0.73		0.04
1 1 8 6 6 0			0.25	0.1	0.45	0.5	9.04	0.04	0.44	0.36	0.4	0,3	0.1
		0	n	9	-	1			60	80	0	0	0

WELL RAP-4

123TMB	426	104		88	163		0.1	109
1241MB	952	297		88	19		0.3	268
ZEL	485	379		147	157	8.8	9.0	8
135TMB	774	166	167	106	136		0.3	8
3,4EF	1167	982			190		6,5	226
28d−u	117		48	115			0.1	27
iso-PBZ				107			0.1	10
O-XXII	325	187	13	26	130	0.1	6.5	180
Ethez m,p-xxL	944	415		189	231	0.1	0.7	515
Ethez	313	\$	39	100			0.2	114
TOT	224	34	8	152	69	8.8	0.4	77
HNZ				133				2
DAYS	262				408	-	-	-
DATE	16-22-86	11-23-86	12-10-86	02-20-87	03-17-87	04-29-87	05-29-87	06-23-87

WELL RAP-6

DATE	DAKS	BAZ	TOL	Ethez	EthEZ m,p-XYL	O-XYL	o-XYL iso-PBZ	n-PBZ	3,4EF	3,4ET 135IMB	2ET	124TMB	123TMB
10-22-86		113	170	242	324	142							
11-23-86			S	2	2	4	Э	15	4	10	m	5	8
12-10-86										-			
01-27-87	329		2			ī			4		2		46
02-20-87													
03-17-87		3	52		995	52				2748			5785
04-29-87	451	0.1	0.3	0.2	0.4	0.5	0.2	0.2	8.8	0.1	0.4	0.2	0.5
05-29-87		0.1	3	1.5	3	c	0.1	0.3	1.5	0.8	1	1.3	1
06-23-87			0	0	0	0		0	0	0	0	0	

VELL RAP-5

ATE	DAYS	BENZENE	TOLUME	FILHINZ	M.D-XYL	O-XML	iso-PRZ	D-PRZ	3.4ET	135TMB	ZEE	124TMB	123TMB	
19-22-86	262	32	208	213	692	499		75	346	674	231	327	S	
10-25-86	265		п							38	88		18	
10-28-86	268	5	42	18	56	16				29				
1-04-86	275													
1-07-86	278	m	14	77	73	40	2	2	33	ฤ	15	41	83	
1-19-86	298	4	10	21	99	43	2	4	35	18	14	37	77	
11-23-86	8	8	38	더	237	178	4	7	132	ł8	46	122	92	
12-10-86	317									2				
72-20-87	88	9	2	3	2	2	٣	3	4	7	2	1	-	
13-17-87	408	14	145	174	362	103	46	23	348	146	8	164	183	
4-29-87		60	1.4	0,3	1.2	0.5		0.5	6.8	0.3	6.7	8.0	0.2	
5-29-87		0.2	1,3	4	91	3.4	9.4	8.0	3.5	3	m	6	4.3	
16-23-87		75	48	83	819	108	3.5	8.9	255	113	R	301	130	

WELL RAP-7

DATE	DAYS	BAZ	10		m,p-XYL	O-XXL	EthEZ m,p-XYL o-XYL iso-PEZ		n-PBZ 3,4ET 135TMB	135TMB	ZET	ZET 124TMB	123TMB
10-22-86		0.3	0.5	6.5	1,3	9.0			6.5			9.0	
11-23-86	\$												
12-10-86	311		0.1	0.15						1.4			1
01-27-87													-
02-20-87	383									1			1
7-87													
787			0.2		0.24	0.18	0.1		1.5	0.43			
184	481	0.02	0.16	0.04	0.25	2.1					0,5	0.3	7.6
06-23-87	2005		8	8	_	0		0	0	0	0	7	0

WELL UF-1E

DATE	DAYS	Bnz	Tol	EthBz	EthBz m,p-Xyl	o-Xyl	isoPBZ	28d-u	3,4ET	135IMB	ZET	124TMB	123TMB
8			,										
09-T01-70			7		-				7			-	
02-27-86	56		365		525							296	
03-07-86	33												
03-20-86	47										,		
03-27-86	75												
04-25-86	85												
05-23-86	Ξ	~											
86-25-86	144												
07-28-86	167	7			7								
08-28-86	208												
89-13-86		7	-	1									
10-22-86	262												
11-23-86											S		
12-10-86										1			
02-20-87	383												٦
03-17-87													
05-29-87	481	0.2	6.5	1.8	1,4	9.0	9.4	0.7	1.2	4.6	3.4	3.8	1.4
06-23-87	200	~	0	5	3	7	_	~	2	9	7	3	e

WELL UF-2M

R.2H66 9 9 475 358 358 R.2H66 34 14284 691 9942 4751 366 R.2H6 34 1199 5956 4117 366 495 R.2H6 34 1187 1286 467 475 475 R.2H6 34 477 1199 5956 4116 475 364 R.2B-6 14 477 1286 1879 1426 6245 489 364 R.2B-6 14 477 2572 1879 435 364 497 R.2B-6 14 4966 2573 197 567 435 435 435 R.1B-6 15 266 187 341 1376 366 431 R.1B-6 15 266 187 341 343 342 358 R.1B-6 16 27 368 116 274 358 3	DATE	DAYS	Benzene Toluene	Toluene	Ettbz	m,p-Xyl	o-Xyl	isoPBZ	n-PBZ	3,4ET	135TMB	ZET	124TMB	123TMB
6.619 14244 951 9445 415.3 3 6.017 1304 1445 415.3 4.1 4.7 20.9 11.3 11.2 46.9 5.4 4.8 11.3 1.3 1.4 4.6 6.0 1.1 4.8 1.2 1.3 1.3 5.0 4.6 1.1 4.9 1.2 4.9 9.9 4.6 6.0 1.1 4.0 1.4 9.9 4.5 6.0 6.0 2.6 1.4 4.0 5.7 9.5 4.5 1.6 4.5 2.6 1.7 2.0 9.5 4.5 1.6 3.5 1.6 4.2 2.6 1.7 2.0 9.5 1.4 4.2 4.2 4.2 4.2 2.6 1.2 3.0 3.0 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2													!	
8. 5388 1345 1199 555.8 4111 4. 4777 28096 1437 1538 4146 5. 4 4580 12128 1237 5538 4146 8. 4 4580 12128 1237 5538 4146 11. 3765 1487 1256 6236 12. 4775 1486 1237 1536 28. 4775 1487 528 1446 6236 28. 1487 528 1456 6236 6236 28. 1487 549 1259 5576 5576 28. 1487 540 1259 558 422 28. 1487 148 158 543 422 28. 1487 1481 1589 653 442 28. 1484 2482 137 148 383 28. 1484 2482 138 458 158 28. 1489 1489 </td <td>92-101-80</td> <td></td> <td>6779</td> <td>14284</td> <td>169</td> <td>256</td> <td>4753</td> <td></td> <td></td> <td>3283</td> <td>138/</td> <td>1330</td> <td>456/</td> <td>1485</td>	92-101-80		6779	14284	169	256	4753			3283	138/	1330	456/	1485
34 8107 12061 4457 11205 4697 54 4570 28998 1437 9922 4698 1446 54 4586 11879 1436 6925 4598 4446 111 4586 1487 1972 4596 6945 4956 144 4966 5832 2879 9567 4586 1876 286 17864 2410 12786 7856 1876 4876 285 1786 2806 1378 7866 1877 442 286 1787 1448 1878 110 342 187 286 1787 1448 1876 1449 978 157 164 286 1176 1449 978 1526 137 146 353 286 1187 1444 978 1184 187 144 353 286 1187 1444 265 1184	012-27-86		2388	15775	1199	9595	4111			3664	1084	979	4203	1090
44 477 278 4145 953 4146 54 478 1228 1239 1437 953 4146 62 4735 1486 1187 11266 6245 6246 144 4966 1473 235 11266 6245 6246 286 1776 286 1176 3240 1278 767 286 1284 1576 3410 1279 757 164 353 266 244 1587 3410 1399 722 140 367 275 1443 978 545 172 164 353 276 274 12812 2460 113 342 255 276 274 1443 978 165 67 140 277 2444 1781 256 1139 678 140 284 1795 1672 256 1139 678 140	03-07-86		8107	13061	1437	11205	4697			4426	1409	1202	2093	1399
54 4589 1123 1279 9932 5580 111 2476 1427 2891 1456 6245 111 4896 1477 2891 1456 6245 167 2806 1477 2879 957 4556 286 17364 2410 12891 5380 5456 286 17364 2410 12891 5487 456 286 17364 1867 3417 1776 7867 286 1737 3410 1439 7321 422 286 1737 3449 7321 422 422 277 244 12812 2480 1164 363 422 278 274 1443 265 1184 566 11 342 278 276 1469 6424 111 342 256 278 278 1469 6624 119 342 256	03-20-86		4777	20990	1437	9538	4146			4098	1389	1123	4659	1212
R. 4785 14895 1495 1426 6245 114 4906 25.90 2551 4957 4358 4458 4456 <t< td=""><td>03-27-86</td><td></td><td>4580</td><td>12128</td><td>1297</td><td>9932</td><td>4500</td><td></td><td></td><td>3664</td><td>1192</td><td>1143</td><td>4354</td><td>1221</td></t<>	03-27-86		4580	12128	1297	9932	4500			3664	1192	1143	4354	1221
144 286 14273 255 1923 5878 167 286 1786 210 1259 4356 167 286 1786 210 1259 587 229 1785 210 9913 587 422 226 1468 1587 210 911 587 140 265 171 1278 286 1329 772 14 422 266 171 1289 286 1349 721 14 33 267 2147 1439 781 566 65 140 33 278 2147 1281 286 113 342 35 36 65 140 34 278 216 143 978 166 67 140 35 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32	04-25-86		4735	14895	1879	14266	6245			5365	1622	1073	6357	1668
144 4906 2632 5579 9567 4356 288 1786 2410 12786 368 282 2284 1856 2116 538 262 1868 1857 3410 12786 786 266 1173 2486 1173 1479 442 422 268 2417 1280 2886 1287 737 164 363 275 117 1281 2486 1439 773 164 363 275 117 1281 2486 1443 976 154 363 278 274 1281 5469 654 111 342 289 117 1281 246 113 342 255 284 1179 1672 256 1180 586 17 256 284 1178 1671 2480 1286 127 286 18 36	05-23-86		3766	14273	2351	11923	5,670			4342	1394	1179	5200	1151
16.7 268. 1786. 434.0 1259. 5380. 289. 284. 1556. 2812. 317. 1587. 787. 422. 282. 1841. 1587. 3410. 1587. 3410. 423. 422. 285. 1481. 1587. 3410. 1389. 772. 164. 363. 286. 2441. 1582. 737. 164. 363. 422. 275. 2447. 1281. 2489. 1143. 978. 169. 65. 149. 276. 2147. 1281. 2480. 1139. 615. 167. 382. 276. 2147. 1281. 2480. 1189. 615. 113. 382. 284. 1143. 215. 1804. 546. 117. 285. 284. 1144. 215. 1804. 546. 117. 285. 284. 1144. 215. 1804. 546. 117.	06-25-86		4905	26302	5579	29567	4356			4315	366	365	4261	828
229 1736 2082 1737 12705 7667 229 284 12536 2106 393 565 265 1171 13289 2805 1327 143 422 265 1171 13289 2805 1329 136 36 276 2147 12812 2805 137 54 149 277 2147 12812 2805 137 54 149 289 2167 1445 262 1189 6128 11 342 290 127 1445 262 1189 540 65 149 294 179 167 266 110 362 25 311 237 1489 286 189 25 189 389 116 267 180 286 189 88 18 389 316 1129 289 126 39 28 88 <td>07-18-86</td> <td></td> <td>2686</td> <td>17064</td> <td>2410</td> <td>12591</td> <td>2300</td> <td></td> <td></td> <td>4117</td> <td>759</td> <td>1024</td> <td>4784</td> <td>931</td>	07-18-86		2686	17064	2410	12591	2300			4117	759	1024	4784	931
2.25 2.96 178.5 2106 991 552 2.62 1/48 1857 3410 1991 553 2.66 1/21 1/280 286 1296 772 164 363 2.76 2.47 1/45 978 177 164 363 2.77 2.47 1/45 971 560 111 342 2.78 2.77 1.445 976 1169 66.4 111 342 2.94 1.79 1.80 61.28 1164 66.4 111 342 2.94 1.79 1.67 2.86 1184 568 11 342 2.94 1.79 1.67 2.86 1184 567 19 255 2.94 1.79 1.67 1.26 180 256 19 255 256 19 255 256 19 255 256 19 255 256 18 36 18 <td>08-28-86</td> <td></td> <td>1736</td> <td>20822</td> <td>3171</td> <td>12705</td> <td>7867</td> <td></td> <td></td> <td>3380</td> <td></td> <td></td> <td>7135</td> <td></td>	08-28-86		1736	20822	3171	12705	7867			3380			7135	
26. 1468 15877 3410 13499 7721 422 26. 1771 12399 2806 1737 164 36 26. 1771 1230 2806 1539 164 36 27. 2447 1281 2849 1649 66 144 36 27. 2276 1445 262 1189 662 111 342 284 1787 1249 664 67 177 286 394 1795 1573 256 1804 586 97 256 311 2372 1480 286 117 286 97 256 389 162 997 126 187 286 97 286 488 316 286 126 187 286 88 88 88 488 316 286 128 286 379 88 18 481	89-11-60		2304	13536	2106	9913	5453			3585	1915	148	4605	2206
265 1721 12389 2886 1235 7372 164 363 286 2840 1466 1443 586 1572 164 362 275 2247 12812 2480 11649 6424 111 342 296 276 1189 6158 118 342 252 294 1795 1672 256 118042 5867 117 226 294 1795 1671 256 18012 5867 127 226 395 175 1396 8046 455 58 8 8 488 1164 653 139 1396 458 58 8 8 461 1666 54 256 115 359 2004 206 418 488 1164 653 115 359 116 36 8 8 8 451 1666 546 253 <td>10-22-86</td> <td></td> <td>1468</td> <td>15877</td> <td>3410</td> <td>13490</td> <td>7321</td> <td></td> <td>422</td> <td>3621</td> <td>2032</td> <td>1522</td> <td>4756</td> <td>1363</td>	10-22-86		1468	15877	3410	13490	7321		422	3621	2032	1522	4756	1363
268 2340 14951 1443 9781 5460 65 149 275 2147 12812 2490 1169 6424 111 342 278 2146 12812 2490 11396 6434 111 342 299 2162 1339 6438 163 3521 3521 311 2375 14454 265 1187 589 97 255 313 2372 14801 2165 11872 589 82 188 314 1520 2897 1289 8944 4556 58 88 38 318 316 1299 2896 1556 599 28 88 48 468 1164 6456 115 786 599 28 48 445 1164 6556 115 7801 391 11 4 11 456 165 115 867	10-25-86		1721	13209	2805	13295	7372	164	383	3786	1690	1438	4852	1635
275 2447 12812 2448 11649 6624 111 342 278 278 278 11845 2625 11896 6158 115 352 294 1795 1872 256 11804 586 97 255 311 2872 14891 216 1187 286 97 256 389 162 997 1187 589 82 189 488 1154 689 1286 137 286 38 38 461 1164 6636 115 786 5379 11 4 461 1168 675 115 586 5379 11 4 461 1164 6636 115 786 5379 11 4 461 1166 6636 115 786 2839 11 4 468 136 367 368 388 18 18	10-28-86		2840	14961	1443	9781	2460	89	140	2691	1209	1113	3307	1/0/1
278 276 1445 265 1138 6153 163 352 294 1795 1672 286 18012 586 197 255 294 1795 1672 286 18012 586 17 285 351 287 1672 286 1801 589 17 286 389 186 187 589 97 189 189 488 1164 663 129 894 456 58 8 481 166 129 286 156 289 18 38 481 166 167 18 289 18 38 18 481 165 16 16 279 419 11 4 451 168 475 64 289 349 18 18 56 89 549 289 342 78 18 18	11-04-86		2147	12812	2400	11649	6424	11	342	3601	1774	1653	4644	1524
294 1076 18374 2113 10842 5596 97 255 294 1795 1672 256 1001 5867 117 286 311 2872 14801 2156 11072 5899 82 180 389 1652 9971 2189 8944 4556 58 88 408 1154 606 1256 1399 206 130 4451 1164 6675 115 7801 3901 11 4 4451 1163 475 156 8239 4136 11 4 566 13 727 1550 8249 3903 83 188 566 99 5494 2050 3942 78 162	11-07-86		2576	14454	2625	11398	6158	163	3521	2460	1485	2963	2681	1389
294 1795 1672 285 10812 3867 127 208 331 2372 1480 216 1107 5499 82 189 359 1632 997 1389 6894 455 58 8 8 408 1154 680 1586 5979 804 306 406 80 406 80 406 80 406 80 406 80 406 80 406 80 406 80 406	11-19-86		2102	13374	2153	10042	2438	26	522	2736	1134	1126	3488	1164
311 2572 14891 2105 11072 5599 82 189 389 1622 977 1399 6994 4356 58 8 468 1164 6636 115 7261 3591 11 4 451 1058 4756 64 8239 4136 11 4 506 99 5494 2032 9259 3342 78 162	11-23-86		1795	16723	2565	10812	2867	127	786	3248	365	1041	3394	1231
359 1632 9972 1399 8994 4756 58 88 488 3163 11290 2296 1259 2094 2004 2006 468 1164 6636 115 7261 3591 11 4 451 1068 4756 64 8239 4136 11 4 11 506 139 239 139 38 188 188 506 549 2494 2632 3442 78 162	12-10-86		2972	14801	2105	110772	24	88	180	2378	835	730	2936	1060
408 1154 6536 115 78 126 806 126 807 206 206 406 406 406 406 406 406 407 406 407 <td>01-27-87</td> <td></td> <td>1632</td> <td>9972</td> <td>1309</td> <td>8904</td> <td>4356</td> <td>28</td> <td>8</td> <td>2040</td> <td>737</td> <td>609</td> <td>2504</td> <td>978</td>	01-27-87		1632	9972	1309	8904	4356	28	8	2040	737	609	2504	978
4408 1164 6636 115 7261 3591 11 4 451 1658 4756 64 8232 9435 14 11 506 99 5494 2002 8250 3342 78 162	02-20-87		3163	11290	2096	12586	5979	2004	2006	5280	2590	2134	3621	2224
451 1668 4756 64 8239 4135 14 11 481 352 7237 1559 8242 3963 88 188 566 39 5494 2832 9259 3942 78 162	03-17-87	-	1164	9636	115	7261	3291	11	4	1530	579	470	1984	756
481 352 7327 1559 8242 3903 83 188 566 99 5494 2032 9259 3942 78 162	04-29-87	-	1058	4756	20	8239	4136	14	Π	2023	796	69	2592	1034
506 90 5494 2032 9250 3942 78 162	05-29-87	-	325	7327	1550	8242	3903	83	188	727T	877	999	2876	1074
	06-23-87		86	5494	2032	9250	3942	82	162	2220	843	645	2606	282

WELL UF-3W

9 18867 418 859 418 271 759 26 8747 643 1719 694 789 414 237 759 34 12524 645 1802 367 696 399 197 113 41 1863 645 1802 367 697 394 239 197 143 81 1683 645 1802 367 369 399 394 439 197 144 81 1683 487 578 387 676 366 188 639 111 1522 534 148 1526 386 379 469 636 138 635 288 1773 485 2749 766 469 69 92 255 289 1762 486 578 186 28 469 69 92 455 280 186 487 <td< th=""><th>CANS</th><th>Benzene</th><th>Benzene Tolluene</th><th>EthEZ</th><th>m,p-XXL</th><th>O-XXI</th><th>isopez</th><th>n-PBZ</th><th>3,4EF</th><th>135TMB</th><th>2EF</th><th>124TMB</th><th>123TMB</th></td<>	CANS	Benzene	Benzene Tolluene	EthEZ	m,p-XXL	O-XXI	isopez	n-PBZ	3,4EF	135TMB	2EF	124TMB	123TMB
1867 418 E59 644 237 1371 663 1719 684 709 414 237 13854 6645 1802 4475 997 699 399 197 11 13673 437 4475 997 696 399 197 11 11 11 11 11 11 11 11 11 11 11 11 12 12 14 12 14 12 14 13 14 12 14 12 14 14 13 14 14 14 13 14													
BRAT 665 1719 664 779 414 237 14854 6512 921 967 698 369 341 237 14854 6545 1632 4475 997 367 698 369 376 15630 437 172 937 266 269 369 276 16 17			418		628								
12.27 51.21 92.1 367 96.9 197 11 14864 645 102 347 97 97 97 97 197 11 15634 1494 125 356 386 387 236 136 197 11 15634 1494 125 386 387 276 246 136 108 11 108 <td></td> <td></td> <td>999</td> <td></td> <td>1719</td> <td>604</td> <td></td> <td></td> <td>602</td> <td>414</td> <td>237</td> <td>39</td> <td>100</td>			999		1719	604			602	414	237	39	100
14684 6645 1082 4475 997 997 947 433 276 172 1530 437 1722 393 827 394 239 236 187 176 176 176 176 176 176 176 176 176 176 176 176 146 146 176 14			1212	921	3079	367			969	300	197	1313	453
13-673 437 1722 27 28 138 6 78 138 6 138 6 138 6 138 6 138 6 138 6 138 6 138 6 138 6 138 6 138 6 138 6 138 6 138 6 7 138 6 7 138 6 7 138 6 7 138 6 7 138	~		6645	1032	4475	766			847	433	276	1458	483
1653 1894 1256 350 827 76 36 184 19 4580 201 54 780 487 208 697 322 54 184 19 4580 201 208 208 766 460 69 32 54 10 11751 1186 532 766 36 36 26 26 26 22 11670 451 299 96 396 36 396 975 975 975 6679 68 12 279 24 39 379 975 975 1989 76 18 20 18 20 193 11 12 1941 208 46 32 19 18 48 25 11 1941 208 75 26 32 19 18 48 26 11 456 76 37	_		437		1722				394	230	138	630	341
1522 544 759 2765 286 697 322 54 11	0.1		1494	1256	3503	827			276	246	148	1625	285
4569 2014 9730 4875 7749 1796 295 456 25 10489 736 342 2895 766 460 69 92 45 25 46 69 92 45 26 76 105 46 69 92 45 26 92 45 26 92 45 92 45 105 46 92 45 92 45 105 46 105 46 105 46 105 46 105 46			534	759	2785	786			697	322	Z,	1179	483
19489 2786 342 2895 766 469 69 92 1775. 11675 1186 532 536 53			20140	5730	4855	2749			1796	292	456	2252	643
1775.1 11875.2 1186.5 5.2 396.5 396.5 396.5 379.5 <	-		2786	342	2895	992			468	69	35	925	202
11652 1186 522 396 379 95 13636 454 299 961 396 379 97 937 59 36 189 28 379 97 9679 667 68 12 279 24 29 193 1989 168 46 456 32 19 18 48 25 11 1341 236 12 36 128 7 10 87 101 87 875 136 26 128 7 17 25 46 87 101 13 55 57 34 101 33 101 13 57 56 70 34 101 53 46 86 56 74 46 56 56 76 34 101 33 101 33 101 34 101 34 56 56 76 34 56	~												
13639 454 2999 961 336 379 975 6979 68 122 278 24 28 379 975 6679 68 12 279 24 28 193 195 1341 228 12 573 38 19 18 48 25 112 4586 73 23 19 18 48 25 112 1341 228 12 5 73 101 87 4586 73 12 79 74 101 37 875 128 75 74 17 23 38 116 13 875 12 76 73 11 17 23 38 116 13 875 12 76 73 11 8 74 56	0			1186									
9367 59 1227 266 188 20 379 975 6679 68 12 279 24 29 193 193 10969 168 46 12 279 24 19 18 48 25 112 13441 228 12 573 36 12 77 87 87 112 87 4558 73 6 325 128 5 67 34 101 87 8182 365 136 179 23 303 116 113 55 46 8175 13 25 7 11 11 8 7 25 46 46	\sim		454	2990		396							
6679 68 12 279 24 29 193 19869 168 46 456 32 19 18 48 25 112 1341 228 12 573 26 128 5 67 34 101 1823 365 345 128 5 67 34 101 5 375 128 79 17 23 363 116 113 5 375 128 79 11 23 363 116 113 5 375 128 26 71 11 8 74 25 46	511		29	1227		180	8		379		975	46	178
1989 168 46 456 32 19 18 48 25 112 1341 228 12 57 36 37 38 112 31 181 4638 73 6 325 128 5 67 34 101 81823 365 346 130 25 67 34 101 8975 12 36 74 17 23 38 116 13 8975 12 15 25 67 71 13 56 46			89	77		24			ଷ	193		15	8
13441 228 12 573 26 25 128 87 4558 73 6 325 128 5 67 34 101 1823 365 365 1208 74 17 23 303 116 113 597 134 136 25 71 11 8 74 25 46 466 136 25 47 11 8 74 25 46	m		168	46		33	61	81	48	52	112	38	ᅜ
4558 77 6 325 128 5 67 34 101 1 1823 345 118 131 5 5 67 34 101 1 1 1825 128 118 118 74 25 46	00		228	17		92			77		83	18	27
1823 365 330 1288 749 17 23 303 116 113 .5 5875 124 136 250 71 11 8 74 25 46	_		73	9		128		2	19	75	101	88	ኤ
5875 124 136 250 71 11 8 74 25 46			365	330		749	17	23	303	116	113	274	168
	6		124	136		7	П	80	74	52	46	35	98

REFERENCES

- Abdul, A.S., T.C. Gibson, and D.N. Rai. (1986). The Effect of Organic Carbon on the Adsorption of Fluorene by Aquifer Materials. Hazardous Waste and Hazardous Materials 3(4): 429-440.
- Alexander, M. (1985). Biodegradation of Organic Chemicals. Environ. Sci. Technol. 19(2): 106-111.
- Anderson, M.P. (1979). Using Models to Simulate the Movement of Contaminants through Groundwater Flow Systems. In <u>CRC</u> Critical Reviews in Environmental Control. Boca Raton, FL: CRC Press, pp. 97-156.
- Atlas, R.M. (1982). Enumeration and Estimation of Microbial Biomass. In Experimental Microbial Ecology. R.I. Burns and H.J. Slater (eds): Boston, MA: Blackwell Scientific Co., pp. 84-102.
- Bailey, G.W., and J.L. White. (1970). Factors Influencing the Adsorption, Desorption, and Movement of Pesticides in Soil. Residue Review. 32: 29-92.
- Barbash, J., and P.V. Roberts. (1986). Volatile Organic Chemical Contamination of Groundwater Resources in the U.S. Journal Water Pollution Control Federation 58(5): 343-348.
- Barker, J.F., and G.C. Patrick. (1985). Natural Attenuation of Aromatic Hydrocarbons in a Shallow Sand Aquifer. In Proceedings of NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water. Houston, TX: National Water Well Assoc., pp. 160-176.
- Bear, J. (1979). <u>Hydraulics of Groundwater</u>. New York: McGraw Hill Book Co.

- Bedient, P.B., R.C. Borden, and D.I. Leib. (1985) Basic Concepts for Ground Water Transport Modeling. In Ground Water Quality. C.H. Ward, W. Giger, and P.L. McCarty (eds): New York: John Wiley & Sons, Inc., pp. 512-530.
- Biggar, J.W., and D.R. Nielsen. (1962) Some Comments on Molecular Diffusion and Hydrodynamic Dispersion in Porous Media. <u>Journal of Geophysical Research</u> 67(9): 3636-3637.
- Black, C.A. (1965). Methods of Soil Analysis. Monograph 9.
 Madison, Wisconsin: Amer. Soc. Agron.
- Blumer, M., J.M. Hunt, J. Atena, and L. Stein. (1973). Interaction between Marine Organisms and Oil Pollution. Springfield, VA: National Technical Information Service, EPA R3-73-042.
- Bossert, I., and R. Bartha. (1984). The Fate of Petroleum in Soil Ecosystems. In Petroleum Microbiology. R.M. Atlas (ed): New York: Macmillan Pub. Co., pp. 435-473.
- Boucher, F.R., and G.F. Lee. (1972). Adsorption of Lindane and Dieldrin Pesticides on Unconsolidated Aquifer Sands. Environ. Sci. Technol. 6(6): 538-543.
- Bouwer, E.J., and P.L. McCarty. (1984). Modeling of Trace Organics Biotransformation in the Subsurface. <u>Ground Water</u> 22(4): 433-440.
- Brenner, H. (1962). The Diffusion Model for Longitudinal Mixing in Beds of Finite Length: Numerical Values. Chemical Engineering Science 17: 229-243.
- Briggs, G.G. (1981). Theoretical and Experimental Relationships Between Soil Adsorption and Octanol-Water-Partition Coefficients. J. Agric. Food Chem. 29: 1050-1059.
- Britton, L. (1985). Feasibility Studies on the Use of Hydrogen Peroxide to Enhance Microbial Degradation of Gasoline. Washington, D.C.: American Petroleum Institute Publication No. 4389.

- Brookman, G.T., M. Flanagan, and J.O. Kebe. (1985). <u>Literature Survey: Hydrocarbon Solubilities and Attenuation Mechanisms</u>. Washington, D.C.: American Petroleum Institute Publication No. 4414.
- Brown, H.Z., D.R. Bishop, and C.A. Rowan. (1984). The Role of Skin Absorption as a Route of Exposure for Volatile Organic Compounds (VOCs) in Drinking Water. American Journal of Public Health 74(5): 479-484.
- Carringer, R.D., J.B. Weber, and T.J. Monaco. (1975).

 Adsorption-Desorption of Selected Pesticides by Organic
 Matter and Montmorillonite. J. Agric. Food Chem. 23(3):
 568-572.
- Chiou, C.T., L.J. Peters, and V.H. Freed. (1979). A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds. Science 206: 831-832.
- Chiou, C.T., P.E. Porter, and D.W. Schmedding. (1983).

 Partition Equilibria of Non-ionic Organic Compounds

 Between Organic Matter and Water. Environ. Sci. Technol.
 17: 227-231.
- Coleman, W.E., J.W. Munch, J.P. Streicher, H.P. Ringhand, and F.C. Kopfler. (1984). The Identification and Measurement of Components in Gasoline, Kerosene, and No. 2 Fuel Oil that Partition into the Aqueous Phase after Mixing. Arch. Environ. Contam. Toxicol. 13: 171-178.
- CRC Handbook of Chemistry and Physics. (1980). Boca Raton, Fl.: CRC Press, Inc.
- Curtis, G.P., P.V. Roberts, and M. Reinhard. (1986). A Natural Gradient Experiment on Solute Transport in a Sand Aquifer IV. Sorption of Organic Solutes and its Influence on Mobility. unpublished.
- Dagley, S. (1975). A Biochemical Approach to Some Problems of Environmental Pollution. In <u>Essays in Biochemistry</u>. P.N. Campbell and W.N. Adlridge (eds): New York: Academic Press, p. 81.

- Davidson, J.M., P.S.C. Rao, and P. Nkedi-Kizza. (1983). Physical Processes Influencing Water and Solute Transport in Soils. In Chemical Mobility and Reactivity in Soil Systems. Madison, Wisconsin: Soil Science Society of America, pp. 35-47.
- Delfino, J.J., and C.J. Miles. (1985). Aerobic and Anaerobic Degradation of Organic Contaminants in Florida Groundwater. Soil & Crop Sci. Soc. Fla. Proc.44: 9-14.
- DiToro, D.M., and L.M. Horzempa. (1982). Reversible and Resistant Components of PCB Adsorption-Desorption Isotherms. Environ. Sci. Technol. 16(9): 594-602.
- Dowd, R.M. (1984). Leaking Undergound Storage Tanks. Environ. Sci. Technol. 18(10): 27-34.
- Dupont (1984). Hydrogen Peroxide Solution Storage and Handling. Wilmington, DE: E.I. Dupont de Nemours & Co., pp. E-6999.
- Evans, W.C. (1977). Biochemistry of the Bacterial Catabolism of Aromatic Compounds in Anaerobic Environments. Nature 270: 17-22.
- Fernald, E.A., and D.J. Patton. (1984). Water Resources Atlas of Florida. Tallahassee, FL: Institute of Science and Public Affairs, Florida State University.
- Fetter, G.W. (1980). Applied Hydrogeology. Columbus, OH: Charles E. Merrill Co.
- FLDER (1986) Florida Sites List: Petroleum Contamination Incidents Tallahassee, FL: Dept. of Environmental Regulation.
- Freeze, R.A., and J.A. Cherry. (1979). Groundwater. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- Ghiorse, W.C., and D.L. Balkwill. (1983). Enumeration and Morphological Characterization of Bacteria Indigenous to Subsurface Environments. Dev. Ind. Microb. 24: 213-224.

- Ghiorse, W.C., and D.L. Balkwill. (1985). Microbiological Characterization of Subsurface Environments. In Ground Water Quality. C.H. Ward, W. Giger, and P.L. McCarty (eds): New York: John Wiley & Sons, Inc., pp. 387-401.
- Gibson, D.T., and W.K. Yeh. (1973). Microbial Degradation of Aromatic Hydrocarbons. In <u>The Microbial Degradation of Oil Pollutants</u>. D.G. Ahearn and S.P. Meyers (eds):
 Baton Rouge: Louisiana State Univ., pp. 33-38.
- Hoag, G.E., and M.C. Marley. (1986). Gasoline Residual Saturation in Unsaturated Uniform Aquifer Materials. Journal of the Environmental Engineering Division, ASCE, 112: 586-604.
- Houzim, V. (1978). Alterations of the Petroleum Substance in Rock-Water-Air and Rock-Water Interfaces. In International Symposium on Groundwater Pollution by Oil Hydrocarbons. Prague. Worthington, OH: National Well Water Association.
- Jamison, V.W., R.L. Raymond, and J.O. Hudson. (1976). Biodegradation of High-Octane Gasoline. <u>Proceedings of Third International Biodegradation Symposium</u>. J.M. Sharpley, A.M. Kaplan (eds.): London, Great Britian: Applied Science Publishers. pp. 187-196.
- Jensen, B., E. Arvin, and A.T. Gundersen. (1985). The Degradation of Aromatic Hydrocarbons with Bacteria from Oil Contaminated Aquifers. In Proceedings of NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water, Houston, TX Worthington, OH: National Water Well Association, pp. 421-435.
- Kappeler, T., and K. Wuhrmann. (1978a). Microbial Degradation of the Water-Soluble Fraction of Gas Oil -I. Water Reseatch 12: 327-333.
- Kappeler, T.H., and K. Wuhrmann. (1978b). Microbial Degradation of the Water Soluble Fraction of Gas Oil -II. Bioassays with Pure Strains. <u>Water Research</u> 12: 335-342.

- Karickhoff, S.W., D.S. Brown, and T.A. Scott. (1979). Sorption of Hydrophobic Pollutants on Natural Sediments. <u>Water</u> Research 13: 241-248.
- Kenaga, E.E., and C.A. Goring. (1980). Relationship between Water Solubility, Soil Sorption, Octanol-Water Partitioning and Bioconcentration of Chemicals in Biota. In Aquatic Toxicology. J.G. Eaton, P.R. Parish, and A.C. Hendricks (eds): New York: American Soc. of Testing Materials, pp. 78-115.
- Killan, G.A. (1987). Hydrogeologic Characterization of Hydrocarbon Pollutant Transport in a Sandy, Unconfined Aquifer. M.S. Thesis, University of Florida.
- Klein, D.A., T.C. Loh, and R.A. Goulding. (1971). A Rapid Procedure to Evaluate the Dehydrogenase Activity of Soils Low in Organic Matter. Soil Bio. Biochem. 3: 385-387.
- Kuhn, E.P., P.J. Colberg, J.L. Schnoor, O. Wanner, A.J.B. Zehnder, and R.P. Schwarzenbach. (1985). Microbial Transformations of Substituted Benzenes during Infiltration of River Water to Groundwater: Laboratory Column Studies. Environ. Sci. Technol. 19,10: 981-968.
- Lapidus, L., and N.R. Amundson. (1952). Mathematics of Adsorption in Beds. VI. The Effect of Longitudinal Diffusion in Ion Exchange and Chromatographic Columns. J. Phys. Chem. 56: 984-988.
- Lee, M.D., and D.H. Ward. (1984). Reclamation of Contaminated Aquifers: Biological Techniques. Proceedings of Hazardous Material Spills Conference April 1984, Nashville, TN. Worthington, OH: National Well Water Association, pp. 98-103.
- Leo, A., C. Hansch, and D. Elkins. (1971). Partition Coefficients and Their Uses. <u>Chemical Reviews</u> 71: 525-616.
- Levenspiel, O. (1972). Chemical Reaction Engineering. New York: John Wiley and Sons, pp. 41-86.

- Litchfield, C. (1986). An Overview of The In Situ Bioreclamation of Ground Water: Principles, Practices and Potential. Newark, DL: E.I. dupont de Nemours and Company.
- Litchfield, C., and L. Clark. (1973). Bacterial Activity in Ground Waters Containing Petroleum Froducts. Washington, D.C.: American Petroleum Institute.
- MacKay, D.M., P.V. Roberts, and J.A. Cherry. (1985). Transport of Organic Contaminants in Groundwater. <u>Environ. Sci.</u> Technol. 19(5): 384-392.
- McCarty, P.L. (1984). Application of Biological Transformation in Ground Water. Proceedings of Second International Conference on Ground Water Quality Research, March 1984, Tulsa, OK. Worthington, OH: National Well Water
- McKee, J.E., F.B. Laverty, and R.M. Hertel. (1972). Gasoline in Groundwater. Journal Water Pollution Control Federation 44: 293-302.
- McKenna, E.J., and R.D. Heath (1976). Biodegradation of Polynuclear Aromatic Hydrocarbon Pollutants by Soil and Water Microorganisms. University of Illinois, Champaign-Urbana, Research Report No. 113.
- Means, J.C., S.G. Wood, J.J. Hassett, and W.L. Banwart. (1982). Sorption of Amino-and Carboxy-Substituted Aromatic Hydrocarbons by Sediments and Soils. <u>Environ.</u> Sci. Technol. 16: 93-98.
- Milgelgrin, U., and Z. Gerstl. (1983). Reevaluation of Partitioning as Mechanism of Nonionic Chemicals Adsorption in Soils. J. Environ. Qual. 12(1): 1-11.
- Miller, C.T., and W.J. Weber. (1984). Modeling Organic Contaminant Partitioning in Ground-Water Systems. <u>Ground</u> Water 22,3: 584-591.
- Mitchell, R (1974). Introduction to Environmental
 Microbiology. Englewood Cliffs, N.J.: Prentice-Hall Inc.

- Moore, J.W., and E.A. Moore. (1976). Environmental Chemistry. New York: Academic Press.
- Nathawani, J.S., and C.R. Phillips. (1977). Absorption-Desorption of Selected Mydrocarbons in Crude Oil on Soils. Chemosphere 6: 157-162.
- Nkedi-Kizza, P., P.S.C. Rao, and A.G. Hornsby. (1987). The Influence of Organic Co-Solvents on Leaching of Hydrophobic Organic Chemicals through Soils. <u>Environ.</u> Sci. Technol. 21(11): 1107-1111.
- Pinder, G.F. (1984). Groundwater Contaminant Transport Modeling. <u>Environ. Sci. Technol.</u> 18(4): 108-114.
- Rao, P.S.C. (1985). Class Lecture Notes, SOS 6622. University of FLorida, Soil Science Department.
- Rao, P.S.C., and J.M. Davidson. (1979). Adsorption and Movement of Selected Pesticides at High Concentrations in Soils. Water Research 13: 375-380.
- Rao, P.S.C., and J.M. Davidson. (1980). Estimation of Pesticide Retention and Transformation Parameters Required in Non-Point Source Pollution Models. In Environmental Impact of Non-Point Source Pollution. M.R. Overcash and J.M. Davidson (eds): Ann Arbor Science Publishing Inc., pp. 23-67.
- Rao, P.S.C., J.M. Davidson, R.E. Jessup and H.M. Selim. (1979). Evaluation of Conceptual Models for Describing Non Equilibrium Adsorption-Desorption of Pesticides During Steady Flow in Soils. <u>Soil Sci. Soc. Am. J.</u> 43: 904-912.

- Rao, P.S.C., A.G. Hornsby, D.P. Kilcrease, and P. Nkedi-Kizza. (1985). Sorption and Transport of Hydrophobic Organic Chemicals in Aqueous and Mixed Solvent Systems: Model Development and Preliminary Evaluation. J. Environ. Qual. 14: 376-382.
- Rao, P.S.C., and R.E. Jessup. (1983). Sorption and Movement of Pesticides and Other Toxic Organic Substances in Soils. In Chemical Mobility and Reactivity in Soil Systems. Madison, Wi: Soil Science Soc. of America, p. Ch. 13.
- Raymond, R.L., V.W. Jamison, and J.O. Hudson. (1975a). Beneficial Stimulation of Bacterial Activity in Groundwaters Containing Petroleum Products. AIChE Symposium Series 73. pp. 390-404.
- Raymond, R.L., V.W. Jamison, and J.O. Hudson. (1975b). Final Report on Beneficial Stimulation of Bacterial Activity in Groundwaters Containing Petroleum Products. Washington, D.C.: American Petroleum Institute, API Project 0S21.2,
- Raymond, R.L., V.W. Jamison, and J.O. Hudson. (1977).

 Bacterial Growth in and Penetration of Consolidated and Unconsolidated Sands Containing Gasoline. Washington, D.C.: American Petroleum Institute, API Project 307-76.
- Roberts, P.V., M. Reinhard, G.D. Hopkins, and R.S. Summers. (1985). Advection-Dispersion-Sorption Models for Simulating the Transport of Organic Contaminants. In Ground Water Quality. C.H. Ward, W. Giger, and P.L. McCarty (eds): New York: John Wiley & Sons, Inc., pp. 425-445.
- Rodgers, R.D., J.C. McFarlane, and A.J. Cross. (1980). Adsorption and Desorption of Benzene in Two Soils and Montmorillonite Clay. <u>Environ. Sci. Technol.</u> 14: 457-461.
- Sabljic, A. (1984). Predictions of the Nature and Strength of Soil Sorption of Organic Pollutants by Molecular Topology. J. Agric. Food Chem. 32(2): 243-246.

- Sabljic, A. (1987). On the Prediction of Soil Sorption Coefficients of Organic Pollutants from Molecular Structure: Application of Molecular Topology Model. Environ. Sci. Technol. 21(4): 358-366.
- Sanders, W.N., and J.B. Maynard. (1968). Capillary Gas Chromatographic Method for Determining the C3-C Hydrocarbons in Full Range Motor Gasolines. Anal. Chem. 40(3): 67-72.
- Schwarzenbach, R.P., W. Giger, E. Hoehn, and J.K. Schneider. (1983). Behavior of Organic Compounds During Infiltration of River Water to Groundwater, Field Studies. Environ. Sci. Technol. 17: 472-479.
- Schwarzenbach, R.P., and J. Westall. (1981). Transport of Nonpolar Organic Compounds from Surface Water to Ground Water. Environ. Sci. Technol. 15: 1360-1367
- Shehata, A. (1985). A Multi-Route Exposure Assessment to Chemically Contaminated Drinking Water and Health Significance with Emphasis on Gasoline. Augusta, ME: Maine Dept. of Human Services.
- Smith, L., and F.W. Schwartz. (1980). Mass Transport: 1. A Stochastic Analysis of Macroscopic Dispersion. <u>Water</u> Resour. Res. 16: 303-313.
- Spangler, D. (1984). <u>Hydrogeologic Study of University of Florida Agricultural Research and Education Center, Lake Alfred, Florida.</u> unpublished report.
- Standard Methods for the Examination of Water and Wastewater

 15th Edition. (1980). Washington, D.C.: American Public
 Health Assoc.
- Swokowski, E.A. (1975). <u>Calculus With Analytical Geometry</u>. Boston: Prindle, Weber and Schmidt, p. 209.
- Thomas, H.A. (1950). Graphical Determination of BOD Curve Constants. <u>Water and Sewage Works</u> 97: 123.

- Trevors, J.T. (1982). Effect of Pentachlorophenol on Electron Transport System Activity in Soil. <u>Bull. Environ. Contam.</u> Toxicol. 29: 727-730.
- Trevors, J.T., C.I. Mayfield, and W.E. Inniss. (1982). Measurement of Electron Transport System (ETS) Activity in Soil. Microb. Ecology 8: 163-168.
- TRI (1982). Enhancing the Microbial Degradation of Underground Gasoline by Increasing the Available Oxygen. Austin, TX.: Texas Research Institute.
- USPHS (1981). Second Annual Report on Carcinogens. Research Triangle Park, NC: United States Public Health Service.
- Van Genuchten, M.T., and J.C. Parker. (1984). Boundary Conditions for Displacement Experiments through Short Laboratory Soil Columns. Soil Sci. Soc. Am. J. 48: 703-708.
- Voice, T.C., and W.J. Weber. (1983). Sorption of Hydrophobic Compounds by Sediments, Soils and Suspended Solids - I: Theory and Background. Water Research 17: 1433-1441.
- Waksman, S.A. (1916). Bacterial Numbers in Soil at Different Depths and in Different Seasons of the Year. Soil Science 1: 316-330.
- Weber, W.J., T.C. Voice, M. Pirbazari, G.E. Hunt, and D.M. Ulanoff. (1983). Sorption of Hydrophobic Compounds by Sediments, Soils and Suspended Solids II: Sorbent Evaluation Studies. Water Research 17(10): 1443-1452.
- Webster, J.J., G.J. Hampton, J.T. Wilson, W.C. Ghiorse, and F.R. Leach. (1985). Determination of Microbial Cell Numbers in Subsurface Samples. Ground Water 23,1: 17-25.
- Williams, D.E., and D.G. Wilder. (1971). Gasoline Pollution of a Groundwater Reservoir -- A Case History. In Proceedings of the National Groundwater Quality Symposium. Worthington, OH: National Well Water Association.

- Wilson, B.H., and J.F. Rees. (1985). Biotransformation of Gasoline Hydrocarbons in Methanogenic Aquifer Material. In Proceedings of NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water, Houston, TX. Worthington, OH: National Water Well Assoc., pp. 128-139.
- Wilson, J.T., C.G. Enfield, W.J. Dunlap, R.L. Crosby, D.A. Foster, and L.B. Baskin. (1981). Transport and Fate of Selected Organic Pollutants in a Sandy Soil. J. Environ. Qual: 10: 501-506.
- Wilson, J.T., L.E. Leach, M. Henson, and J.N. Jones. (1986). In Situ Biorestoration as a Ground Water Remediation Technique. Ground Water Monitoring Review 6(4): 56-64.
- Wilson, J.T., and J.F. McNabb. (1983). Biological Transformation of Organic Pollutants in Groundwater. <u>EOS</u> 64(33): 505-508.
- Wilson, J.T., J.F. McNabb, D.L. Balkwill, and W.C. Ghiorze. (1983a). Enumeration and Characterization of Bacteria Indigenous to a Shallow Water Table Aquifer. Ground Water 21: 134-142.
- Wilson, J.T., J.F McNabb, J.W. Cochran, T.H. Wang, M.B. Tomson, and P.B. Bedient. (1983b). Adaption of Ground-Water Microorganisms at a Creosote Waste Disposal Site. Presented Before the Division of Environmental Chemistry. Washington, D.C.: American Chemical Society.
- Wilson, S.B. (1985). In Situ Biosurfactant Production: An Aid to the Biodegradation of Organic Ground Water Contaminants. In Proceedings of The Petroleum Hydrocarbons and Organic Chemicals in Ground Water Prevention, Detection and Restoration, Houston, TX. Worthington, OH: National Water Well Assoc., pp. 436-444.

- Windholz, M. (1976). The Merck Index, 9th Edition. Rahway, NJ:
- Woodburn, K. (1985). Thermodynamics and Mechansims of Sorption for Hydrophobic Organic Compounds on Natural and Artificial Sorbent Materials. Ph.D. Dissertation, University of Florida.

BIOGRAPHICAL SKETCH

Joseph Timothy Angley was born on November 15, 1958, in Boston, Massachusetts. He prepared for college at Silver Lake Regional High School in Kingston, Massachusetts, and graduated in 1976. He attended Bowdoin College in Brunswick, Maine, where he graduated with a Bachelor of Arts degree in biology, cum laude, in 1980. He was accepted for graduate study at the University of Florida, Department of environmental engineering sciences, in January 1981 and completed the Master of Science degree in 1984 with a study of the mutagenicity of chlorinated sewage effluents. He is currently a candidate for the Doctor of Philosophy degree in Environmental Engineering Sciences.

His related work experience has included employment as a graduate teaching assistant for several water chemistry courses, and as a graduate research associate on several grants and projects.

In 1986 he was one of 22 graduate students nationwide to receive an American Chemical Society Division of Environmental Chemistry Graduate Student Award. He is a member of the American Chemical Society and the Water Pollution Control Federation.

He was married to Elizabeth Euliano in August, 1985 and together they have one child, David, 1 year old.

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Wesley Lamar Miller, Chairman Professor of Environmental Engineering Sciences

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Joseph J. Delfino, Cochairman Professor of Environmental Engineering Sciences

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Daniel P. Spangler Associate Professor

of Geology

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Paul A. Chadik

Assistant Professor of Environmental Engineering Sciences

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Peter Nkedi-Kizza

Peter Nkedi-Kizza
Assistant Professor of
Soil Science

This dissertation was submitted to the Graduate Faculty of the College of Engineering and to the Graduate School and was accepted as partial fulfillment of the requirements for the degree of Doctor of Philosophy.

December, 1987

Dean, college of Engineering

Dean, Graduate School

