Representações de Produtos Diretos

Deisiane Lopes Gonçalves

28 de Novembro de 2019

Seja \mathbb{F} um corpo. Seja G um grupo finito que pode ser expresso como um produto direto, digamos, $G = H \times K$. Seja V_1 e V_2 \mathbb{F} -espaços vetoriais. Se V_1 é um H-módulo e V_2 é um K-módulo, então tomamos suas representações correspondentes como ρ e σ .

Defina $T := V_1 \otimes V_2$, como produto \mathbb{F} -tensorial. Note que T é um G-módulo por definir o mapa:

$$(a \otimes b)(x, y) := ax \otimes by,$$

onde $x \in H$, $y \in K$, $a \in V_1$ e $b \in V_2$ (verificar boa-definição).

Definição 1. Uma representação $\rho\sharp\sigma:G\to GL(V_1\otimes V_2)$ é chamada de **produto de Kronecker** de ρ e σ por $(x,y)\rho\sharp\sigma=f_{(x,y)}$ onde $(a\otimes b)f_{(x,y)}=ax\otimes by$.

Se χ é o caracter de ρ e ψ é o caracter de σ então o caracter ϕ de $\rho \sharp \sigma$ é dado por

$$(x,y)\phi = (x)\chi(y)\psi.$$

Para ver isso, basta observar as entradas da matriz correspondente a $\rho \sharp \sigma$ na base de $V_1 \otimes V_2$ (verificar).

Antes de enunciar e provar o resultado principal vamos precisar do seguinte lema.

Lema 1. O número de classes de conjugação de $H \times K$ é o de número de classes de conjugação de H multiplicado pelo número de classes de conjugação de K.

A proposição a seguir caracteriza as representações irredutíveis de um grupo que pode ser expresso como produto direto.

Proposição 1. Seja \mathbb{F} um corpo algebricamente fechado e $G = H \times K$ um grupo finito.

- 1. Se ρ e σ são representações \mathbb{F} -irredutíveis de H e K, respectivamente, então $\rho \sharp \sigma$ é uma representação \mathbb{F} -irredutível de G.
- 2. Suponha que char $\mathbb{F} \nmid |G|$. Se $\{\rho_1, \dots, \rho_h\}$ e $\{\sigma_1, \dots, \sigma_k\}$ são conjuntos completos de representações irredutíveis não-equivalentes de H e K, respectivamente, então $C = \{\rho_i \sharp \sigma_r \mid 1 \leq i \leq h, 1 \leq r \leq k\}$ é o conjunto completo de representações irredutíveis não-equivalentes de G.

Demonstração. Sejam V_1 e V_2 módulos dando origem a ρ e σ , respectivamente. Suponha que $\{a_1, \dots, a_m\}$ e $\{b_1, \dots, b_n\}$ são bases de V_1 e V_2 . Assim, $T := V_1 \otimes V_2$ possui base dada por

$${a_i \otimes b_j \mid 1 \leq i \leq m, 1 \leq j \leq n}.$$

Fixe i, j, r, s e defina $\varepsilon \in End_{\mathbb{F}}(V_1)$ e $\eta \in End_{\mathbb{F}}(V_2)$ por

$$(a_k)\varepsilon = \delta_{ki}a_i, (b_l)\eta = \delta_{lr}b_s.$$

Pelo resultado de Burnside (veja [1] 8.1.8), $(H)\rho$ e $(K)\sigma$ geram $End_{\mathbb{F}}(V_1)$ e $End_{\mathbb{F}}(V_2)$ como espaço vetorial, respectivamente. Então, podemos escrever

$$\varepsilon = \sum_{x \in H} u_x(x)\rho, \quad \eta = \sum_{y \in K} v_y(y)\sigma,$$

onde $u_x, v_y \in \mathbb{F}$. Defina $\zeta := \varepsilon \otimes \eta$, então

$$\zeta = \sum_{x \in H} \sum_{y \in K} u_x v_y (x \rho \otimes y \sigma) = \sum_{x \in H} \sum_{y \in K} u_x v_y (x, y) \tau,$$

onde $\tau \coloneqq \rho \sharp \sigma$. Entretanto, por definição de ε e η ,

$$(a_k \otimes b_l)\zeta = a_k \varepsilon \otimes b_l \eta = \delta_{ki}\delta_{lr}a_i \otimes b_s.$$

Variando i, j, r, s os ζ 's geram $End_{\mathbb{F}}(T)$. Mas todos os ζ 's pertencem ao subespaço $V = \mathbb{F}((G)\tau)$ e assim, $V = End_F(T)$. Portanto, um subespaço W de T invariante por G, ou seja, um submódulo, seria invariante por todas as tranformações lineares de T, que só é possível para W igual a $\{0\}$ ou T. Logo $\rho \sharp \sigma$ é irredutível.

Agora, vamos provar a outra parte da proposição. Pelo resultado anterior, $p_i \sharp \sigma_r$ é irredutível. Vamos provar que os elementos de C não são equivalentes. Seja χ_i e ψ_r caracteres de ρ_i e σ_r . Então, $\rho_i \sharp \sigma_r$ tem caracter $(x, y)\phi_{ir} = (x)\chi_i(y)\psi_r$. Logo,

$$\langle \phi_{ir}, \phi_{js} \rangle = \frac{1}{|K||H|} \sum_{x \in H, y \in K} (x) \chi_i(y) \psi_r(x^{-1}) \chi_j(y^{-1}) \psi_s$$

$$= (\frac{1}{|H|} \sum_{x \in H} (x) \chi_i(x^{-1}) \chi_j) (\frac{1}{|K|} \sum_{y \in K} (y) \psi_r(y^{-1}) \psi_s)$$

$$= \langle \chi_i, \chi_j \rangle \langle \psi_r, \psi_s \rangle$$

$$= \delta_{ij} \delta r s.$$

A última linha pode ser vista pelos caracteres serem uma base ortonormal. Assim, $\phi_{ir} \neq \phi_{js}$ se $(i,r) \neq (j,s)$ e, logo os kh elementos de C são não equivalentes. Mas o número total de representações irredutíveis não-equivalentes de G é igual ao número de classes de conjugação de G e é igual a hk pelo lema 1, portanto obtemos o resultado.

Referências

[1] D.J.S. Robinson. A course in the theory of groups. Springer-Verlag., 1998.

2