Homework #2

Raymond Deneckere

Fall 2017

- 1. Sundaram, #9, p.67.
- 2. Sundaram, #13, p.68.
- 3. Sundaram, #23, p.68
- 4. Let (X, d) be a metric space. Prove the following statement : $A \subset X$ is closed iff for every sequence $\{x_n\} \subset A$, $x_n \to x$ implies $x \in A$.
- 5. Consider the set of all rational numbers \mathbb{Q} , and make it into a metric space by defining d(p,q) = |p-q| for all $p,q \in \mathbb{Q}$. Let E be the set of all $p \in \mathbb{Q}$ such that $2 < p^2 < 3$. Show that E is closed and bounded in \mathbb{Q} , but that E is not compact. Conclude that \mathbb{Q} is not a compact space. Is E open in \mathbb{Q} ?

HINT: Be very careful here. The notions closed, open and compact are all with reference to the space \mathbb{Q} , not the space \mathbb{R} .