Chapitre 3 : Tableaux statistiques croisés et probabilités conditionnelles

1) Tableaux croisés, marges, effectifs marginaux

Définitions:

Un tableau croisé est un tableau à double entrée qui permet de donner la répartition d'une population en fonction de **deux caractères**.

La ligne « Total » et la colonne « Total » sont appelées les marges du tableau croisé.

Exemple:

Suite à une enquête auprès de 1500 clients, le tableau suivant donne la répartition des effectifs des clients d'un fournisseur internet, selon leur niveau de satisfaction et la formule de l'abonnement souscrit :

	Pas satisfait	Satisfait	Total
Abonnement Basique	158	622	780
Abonnement Ciné+	41	257	298
Abonnement Foot+	69	353	422
Total	268	1232	1500

<u>Remarque</u>: chacune des marges donne la répartition de la population selon un caractère (niveau de satisfaction pour la ligne « total », formule de l'abonnement souscrit pour la colonne « total »), les effectifs indiqués dans les marges sont appelés effectifs marginaux.

2) <u>Fréquences, Fréquences marginales</u>

Définitions:

Un tableau croisé est un tableau à double entrée qui permet de donner la répartition d'une population en fonction de **deux caractères**.

La ligne « Total » et la colonne « Total » sont appelées les marges du tableau croisé.

Reprenons l'exemple précédent et calculons les fréquences par rapport à l'effectif total :

Rappel: fréquence (ou proportion) d'une sous population A dans une population E:

$$f(A) = \frac{n_A}{n_E}$$

avec n_A effectif de la sous-population A et n_E effectif de la population E.

On peut aussi écrire:

$$f(A) = \frac{card\{A\}}{Card\{E\}}$$

	Pas satisfait	Satisfait	Total
Abonnement Basique (B)	158 1500 ≈	$\frac{622}{1500} \approx$	$\frac{780}{1500} \approx$
Abonnement Ciné+ (C)	41/1500 ≈	$\frac{257}{1500} \approx$	$\frac{298}{1500} \approx$
Abonnement Foot+ (F)	69 1500 ≈	$\frac{353}{1500} \approx$	422 1500 ≈
Total	$\frac{268}{1500} \approx$	$\frac{1232}{1500} \approx$	1 (100%)

3) Fréquences conditionnelles

Approche:

Chaque caractère permet de partager la population globale en sous-populations, par exemple :

- la sous-population des clients non satisfaits (\bar{S}) et celle des clients satisfaits (S),
- les sous-populations respectives des clients ayant choisi l'abonnement Basic (B), Ciné+ (C), et Foot (F).
- ⇒ Complétons le tableau suivant, dit <u>tableau des fréquences conditionnelles en ligne</u>, afin de comparer la satisfaction des clients en fonction du type d'abonnement :

	Pas satisfait	Satisfait	Total
Abonnement Basique (B)	$\frac{158}{780} \approx$	622 780 ≈	$\frac{780}{780} = 1 \ (= 100\%)$
Abonnement Ciné+ (C)	41/298 ≈	257 298 ≈	$\frac{298}{298} = 1 (= 100\%)$
Abonnement Foot+ (F)	69/422 ≈	$\frac{353}{422} \approx$	$\frac{422}{422} = 1 (= 100\%)$

Exemple de calcul de fréquences conditionnelles en colonne :

Une association de service à domicile a fait une étude statistique sur les malades de la grippe parmi ses salariés sur la période du 1^{er} septembre 2019 au 1^{er} mai 2020 en tenant également en compte le critère de vaccination. La répartition des effectifs est donnée dans le tableau suivant :

	Vaccinés	Non vaccinés	Total
Malade	25	27	52
Non malade	552	206	758
Total	577	233	810

⇒ Complétons le tableau suivant, dit <u>tableau des fréquences conditionnelles en colonne</u>, afin de comparer la fréquence de malades parmi les salariés vaccinés et non vaccinés :

	Vaccinés	Non vaccinés
Malade		
Non malade		
Total	1(=100%)	1 (100%)

4) Probabilités conditionnelles

En statistiques nous calculons des fréquences à partir de données observées. Les probabilités prédisent des résultats d'expériences aléatoires (régies par le hasard). Les exemples précédents peuvent être transposés en calcul de probabilités si l'on introduit « un tirage au sort ».

Exemples: on tire au sort un salarié,

- Quelle est la probabilité de l'évènement M : « le salarié est malade » ?
 P(M) =
- Quelle est la probabilité de l'évènement $M \cap V$: « le salarié est malade et vacciné » ? $P(M \cap V) = \dots$

Soit A et B deux évènements tels que $card\{A\} \neq 0$ et donc $P(A) \neq 0$ La probabilité que l'évènement B se produise sachant que l'évènement A est réalisé est donnée par :

$$P_A(B) = \frac{card\{A \cap B\}}{Card\{A\}} \text{ et } P_A(B) = \frac{P(A \cap B)}{P(A)}$$

5) Rappel: probabilités d'une union d'évènements

Propriété:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $A \cup B$

 $A \cap B$

Exemple d'application:

Afin de suivre l'évolution d'une pandémie au sein de la population française et pouvoir ainsi étudier l'immunité collective, on a établi le tableau suivant en ramenant les données sur un total de 10000 individus :

	Vaccinés	Non vaccinés	Total
Malade*	1284	9369	10653
Non malade	64594	24574	89168
Décédés	23	156	179
Total	65901	34099	100 000

*Malade au cours de 6 derniers mois

On désignera par G et V les évènements suivants :

G: « l'individu est guéri »

V: « l'individu est vacciné »

On choisit un individu au hasard parmi la population, quelle est la probabilité qu'il soit guéris ou vacciné ?