1 Variants of NFAs

1.1 Multiple Start States

Let $M = (Q, \Sigma, \delta, I, F)$, where $I \subseteq Q$ and $I \neq \emptyset$.

Theorem 1.1

If $L = \mathfrak{L}(M)$, then there exists an NFA N such that $\mathfrak{L}(N) = L$.

Proof.

Suppose $M = (Q, \Sigma, \delta, I, F)$.

We construct $M' = (Q \cup \{q_0\}, \Sigma, \delta', q_0, F')$, where $q_0 \notin Q$, and for each $a \in \Sigma$ we have $\delta'(q_0, a) = \bigcup \{\delta(q, a) \mid q \in I\}$ and $\delta'(q, a) = \delta(q, a)$, and

$$F' = \begin{cases} F, & \text{if } I \cap F = \emptyset \\ F \cup \{q_0\}, & \text{if } I \cap F \neq \emptyset. \end{cases}$$

We prove then that $\mathfrak{L}(M) = \mathfrak{L}(M')$.

1.2 NFA with λ -Transitions

Let $M = (Q, \Sigma, \delta, q_0, F)$ and $\delta : Q \times (\Sigma \cup \lambda \to 2^Q)$.

Let $\mathfrak{L}(M) = \{x \in \Sigma^* \mid \text{ there is a path from } q_0 \text{ to a final state such that } x \text{ is a concatenation of the labels of } If <math>L = \mathfrak{L}(M)$, then there exists an NFA N such that L = L(N).

For exery state $q \in Q$ let $E(q) = \{q' \mid \text{ there is a path from } q \text{ to } q' \text{ labelled by } \lambda\}.$

In particular, $q \in E(q)$.

Let $M' = (Q, \Sigma, \delta', E(q_0), F)$ and $\delta'(q, a) = \bigcup \{E(q') | q' \in \delta(q, a)\}.$

2 Closure Results

Suppose that $L_1, L_2 \in \Sigma^*$ are accepted by finite state automata.

Then $L_1 \cup L_2$, $L_1 \cdot L_2$, $\Sigma^* - L_1$, L_1^* , L_1^+ , $L_1 \cap L_2$ can also be accepted by finite automata.

We prove now that this statement holds for any languages L_1 and L_2 .

Let $M_1 = (Q, \Sigma, \delta, q_1, F_1)$ and $M_2 = (Q, \Sigma, \delta, q_2, F_2)$, with $\mathfrak{L}(M_1) = L_1$ and $\mathfrak{L}(M_2) = L_2$.

Assume $Q_1 \cap Q_2 = \emptyset$.

Let $M' = (Q, \Sigma, \delta_1, q, Q_1 - F_1)$ (an NFA with interchanged accept and reject states).

Then $\mathfrak{L}(M') = \Sigma^* - L_1$.

Proof.

Let $x \in \Sigma^*$. Then $x \in \mathfrak{L}(M')$ if and only if $\delta_1^*(q_1, x) \in Q - F_1$, which holds if and only if $\delta_1^*(q, x) \notin F_1$, which is equivalent to $x \notin \mathfrak{L}(M) = L_1$, and thus $x \in \Sigma^* - L_1$.

If M_1 is an NFA, then it is possible that $\delta_1^*(q_1, x) \cap F \neq \emptyset$ and $\delta_1^*(q_1, x) \cap (Q_1 - F) \neq \emptyset$.

Union

Let
$$M' = (Q_1 \cup Q_2, \Sigma, \delta, \{q_1, q_2\}, F_1 \cup F_2)$$
 and $\delta : (Q_1 \cup Q_2) \times \Sigma \to Q \cup Q_2$.
Then $\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{if } q \in Q_1 \\ \delta_2(q, a) & \text{if } q \in Q_2 \end{cases}$
Then $\mathfrak{L}(M') = \mathfrak{L}(M_1) \cup \mathfrak{L}(M_2)$.

Intersection

Let $M' = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), F_1 \times F_2)$, thus creating an NFA consisting of two subNFA running in parallel.

Then
$$\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta(q_2,a))$$
 for all $a\in\Sigma$ and $q_1\in Q_1$ and $q_2\in Q_2$.

Concatenation Connect two NFAs by λ -transitions from the accepting states in one connected to the initial state in another.

 L_1^+ Connect the accepting states to the initial states with λ -transitions.

$$L_1^*$$
 If $\lambda \in L_1$, then $L_1^* = L_1^+$ if $\lambda \notin L_1$.

Connect the accepting states by λ -transitions to the old initial state, adding a new accepting initial state connected to the old initial state by the λ -transition.

Corollary 2.1

Every regular language can be accepted by a finite state automaton.

Proof.

The proof proceeds by structural induction.