Introducción a los algoritmos - 2º cuatrimestre 2015 Axiomas y Teoremas del Cálculo Proposicional

Axiomas A1 Asociatividad equivalencia: $((\square \equiv \bigcirc) \equiv \diamondsuit) \equiv (\square \equiv (\bigcirc \equiv \diamondsuit))$ A2 Conmutatividad equivalencia: A3 Neutro equivalencia: $\square \equiv True \equiv \square$ A4 Definición de Negación: $\neg(\square \equiv \bigcirc) \equiv \neg\square \equiv \bigcirc$ A5 Definición de False: $False \equiv \neg True$ A6 Definición de discrepancia: $\square \not\equiv \bigcirc \equiv \neg(\square \equiv \bigcirc)$ A7 Asociatividad disyunción: $(\square \lor \bigcirc) \lor \diamondsuit \equiv \square \lor (\bigcirc \lor \diamondsuit)$ **A8** Conmutatividad disyunción: $\square \vee \bigcirc \equiv \bigcirc \vee \square$ A9 Idempotencia disyunción: $\square \vee \square \equiv \square$ A10 Distributividad disyunción con equivalencia: $\square \lor (\bigcirc \equiv \diamondsuit) \equiv (\square \lor \bigcirc) \equiv (\square \lor \diamondsuit)$ A11 Tercero excluido: $\square \vee \neg \square$ A12 Regla dorada: $\square \land \bigcirc \equiv \square \equiv \bigcirc \equiv \square \lor \bigcirc$ A13 Definición de implicación: $\square \Rightarrow \bigcirc \equiv \square \lor \bigcirc \equiv \bigcirc$ A14 Definición de consecuencia: $\square \Leftarrow \bigcirc \equiv \square \lor \bigcirc \equiv \square$

Teoremas Básicos

- T1 Metateorema de True: Si \square está demostrado, \square \equiv True
- **T2** Doble negación:

$$\neg\neg\Box$$
 \equiv \Box

T3 Equivalencia y negación:

$$\square \equiv False \equiv \neg \square$$

T4 Elemento absorbente de la disyunción:

$$\square \lor \mathit{True} \equiv \mathit{True}$$

T5 Elemento neutro de la disyunción:

$$\square \vee False \equiv \square$$

T6 *Teorema* (*):

T7 Caracterización de implicación:

$$\square \Rightarrow \bigcirc \equiv \neg \square \lor \bigcirc$$

Niveles de Precedencia

Los que están más arriba tienen mayor precedencia — "pegan más", se ponen entre paréntesis primero, se aplican primero.

E(x := a), .	sustitución y evaluación
$\sqrt{},(\cdot)^2$	raíces y potencias
*,/	producto y división
máx, mín	máximo y mínimo
+,-	suma y resta
$=,\leqslant,\geqslant$	conectivos aritméticos
	negación
V /\	disyunción y conjunción
$\Rightarrow \Leftarrow$	implicación y consecuencia
≡≢	equivalencia y discrepancia

Los operadores que están en un mismo nivel tienen exactamente la misma prioridad, así que deben ponerse siempre con paréntesis, a menos que asocien entre si $(\lor y \lor, \not\equiv y \equiv, \text{máx y máx})$.

Teoremas No Tan Básicos

T8 De Morgan para la disyunción:

$$\neg(\Box \lor \bigcirc) \equiv \neg \Box \land \neg \bigcirc$$

T9 De Morgan para la conjunción:

$$\neg(\, \bigsqcup \wedge \bigcirc) \equiv \neg \, \bigsqcup \vee \neg \bigcirc$$

T10 Distributividad de la disyunción con la conjunción:

$$\square \lor (\bigcirc \land \diamondsuit) \equiv (\square \lor \bigcirc) \land (\square \lor \diamondsuit)$$

T11 Distributividad de la conjunción con la disyunción:

$$\square \land (\bigcirc \lor \diamondsuit) \equiv (\square \land \bigcirc) \lor (\square \land \diamondsuit)$$

T12 Asociatividad de la conjunción:

$$\square \land (\bigcirc \land \diamondsuit) \equiv (\square \land \bigcirc) \land \diamondsuit$$

T13 Conmutatividad de la conjunción:

$$\square \land \bigcirc \equiv \bigcirc \land \square$$

T14 Idempotencia de la conjunción:

$$\square \wedge \square \equiv \square$$

T15 Neutro de la conjunción:

$$\square \land True \equiv \square$$

T16 Elemento absorbente de la conjunción:

$$\bigcap \land False \equiv False$$

T17 Contradicción:

$$\bigcap \land \neg \bigcap \equiv False$$

T18 Ley de absorción:

$$\square \land (\square \lor \bigcirc) \equiv \square$$

T19 Ley de absorción (bis):

$$\square \lor (\square \land \bigcirc) \equiv \square$$

Teoremas con Implicación

T20 Modus ponens:

$$\square \land (\square \Rightarrow \bigcirc) \Rightarrow \bigcirc$$

T21 Modus ponens con equivalencia:

$$\square \land (\square \Rightarrow \bigcirc) \equiv \square \land \bigcirc$$

T22 Modus tollens:

$$(\square \Rightarrow \bigcirc) \land \neg \bigcirc \Rightarrow \neg \square$$

 ${\bf T23}\ Modus\ tollens\ con\ equivalencia:$

$$(\ \, \ \, \Rightarrow \bigcirc) \land \neg \bigcirc \equiv \neg \, \ \, \land \neg \bigcirc$$

T24 Currificación:

$$\square \Rightarrow (\bigcirc \Rightarrow \diamondsuit) \equiv (\square \land \bigcirc \Rightarrow \diamondsuit)$$

T25 Transitividad de \Rightarrow :

$$(\ \, \square \Rightarrow \bigcirc) \land (\bigcirc \Rightarrow \diamondsuit) \Rightarrow (\ \, \square \Rightarrow \diamondsuit)$$

T26 Debilitamiento para \wedge :

$$\square \land \bigcirc \Rightarrow \square$$

T27 Debilitamiento para \vee :

$$\square \Rightarrow \square \vee \bigcirc$$

T28 Distributividad a derecha de la implicación con la conjunción:

$$\square \Rightarrow (\bigcirc \land \Diamond) \equiv (\square \Rightarrow \bigcirc) \land (\square \Rightarrow \bigcirc)$$

T29 Distributividad a izquierda de la implicación con la disyunción:

$$\square \lor \bigcirc \Rightarrow \diamondsuit \equiv (\square \Rightarrow \diamondsuit) \land (\bigcirc \Rightarrow \diamondsuit)$$