数理逻辑笔记

陈鸿峥

2020.08*

目录

1	命题逻辑	2
	1.1 自然推断	2
	1.2 形式语言	4
	1.3 语义	5
	1.4 规范形式	5
	1.5 SAT求解器	6
2	谓词逻辑	6
	2.1 形式语言	6
	2.2 逻辑证明	7
	2.3 语义	8
3	模型检查验证	10
	3.1 线性时序逻辑	10
	3.2 模型检查	12
	3.3 计算树逻辑	13
4	程序验证	14
	4.1 证明论	15
5	模态逻辑	17
6	二元决策图	18
	6.1 约简规则	19
	6.2 应用规则	20

^{*}Build 20200801

1 命题逻辑

1.1 自然推断

定义 1 (命题(proposition)). 命题或声明式句子是指可判断为真或者假的句子。不可被分解的(indecomposable)命题为原子命题。

关于命题公式的定义在这里不再给出,注意—是右结合(right-associative)的,如 $p \to q \to r$ 等价于 $p \to (q \to r)$ 。

定义 2 (自然推断(deduction)). 假设有一系列前提(premise)公式 $\phi_1, \phi_2 \dots, \phi_n$,及结论 ψ ,那么推断过程可记为

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

这一表达式称为一个序列(sequent), 若一个证明可以被找到则称它是合法的(valid)。

注意 \vdash 读作推出(deduce/derive)/逻辑后承,而 \Longrightarrow 读作实质蕴涵 1 。可以理解为 \vdash 左侧是一些公理(axiom),右侧是陈述(statement)

推理的基本规则:

• and-introduction ($\wedge i$): 前提与前提为真

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$$

• and-elimination ($\wedge e_i$): 前提与中子成分为真

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$$

• negation-introduction $(\neg \neg i)$

$$\frac{\phi}{\neg \neg \phi} \neg \neg i$$

• negation-elimination $(\neg \neg e)$

$$\frac{\neg \neg \phi}{\phi} \neg \neg e$$

• implication-elimination $\rightarrow e$

$$\frac{\phi \quad \phi \to \psi}{\psi} \to e$$

- https://math.stackexchange.com/questions/2903877/to-vs-vdash-in-logic
- 逻辑学中, 前提为假而命题为真的推论如何解释? 罗心澄的回答 知乎 https://www.zhihu.com/question/21020308/answer/16917222

¹参考以下资料:

• implies-introduction $\rightarrow i$

 \bullet or-introduction $\vee e$

• bottom/not-elimination

$$\frac{\perp}{\phi}\perp e$$
 $\frac{\phi}{\perp} \neg \phi \neg e$

• negation

例 1. 证明 $p \wedge q, r \vdash q \wedge r$ 是合法的。

分析. 推理过程如下

$$\begin{array}{cccc} 1 & p \wedge q & premise \\ 2 & r & premise \\ 3 & q & \wedge e_2 & 1 \\ 4 & q \wedge r & \wedge i & 3, 2 \\ \\ & & \frac{p \wedge q}{q} \wedge e_2 & r \\ & & q \wedge r & \wedge i \end{array}$$

定义 $\mathbf{3}$ (定理(theorem)). 有着合法序列 $\vdash \phi$ 的逻辑公式 ϕ 称为定理。

三条进阶推理规则:

• 拒取式(modus tollens, MT)

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} MT$$

3

• 反证法(proof by contradition, PBC)

• 排中律(the law of the excluded middle, LEM)

定义 4 (可证明等价性(provably equivalent)). 令 ϕ 和 ψ 为命题逻辑公式, ϕ 和 ψ 是可证明等价的当且仅当序列 $\phi \vdash \psi$ 和 $\psi \vdash \phi$ 都是合法的, 或者 $\phi \dashv \vdash \psi$

1.2 形式语言

定义 5 (合式公式(well-formed formula, WFF)). 一个WFF是

- 一个原子公式(无论是命题常元还是命题变元)
- 形如 $(\neg \phi)$ 的公式, 其中 ϕ 是一个WFF
- 形如 $(\phi \lor \psi)$ 的公式,即由二元连接词连接的两个WFF

合式公式可用BNF(Backus Naur Form)定义

$$\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \rightarrow \psi \mid (\phi)$$

The following tree is a parse tree of a well-formed formula.

FIG: A parse tree representing a well-formed formula

1.3 语义

定义 6 (模型(model)). 在前提 $\phi_1, \phi_2, \ldots, \phi_n$ 和结论 ψ 上定义另一关系, 记作

$$\phi_1, \phi_2, \dots, \phi_n \models \psi$$

真值包括两个元素T和F,公式 ϕ 的模型(model)或估值(valuation)是指对 ϕ 中的每一原子命题都有一个真值指派(assignment)。对 $\phi_1,\phi_2,\ldots,\phi_n$ 的真值指派决定了 ψ 的真值,称为 ψ 的解释(interpretation),可表示为真值表中的一行。

如果对于所有 $\phi_1, \phi_2, \dots, \phi_n$ 的估值都为 T, ψ 也估值为T, m么称

$$\phi_1, \phi_2, \dots, \phi_n \models \psi$$

成立(hold), 且称|=为语义包含(semantic entailment)关系。

定理 1 (正确性(soundness)). $\diamond \phi_1, \phi_2, \dots, \phi_n$ 和 ψ 都是命题逻辑公式,若 $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ 是合法的²,那 $\Delta \phi_1, \phi_2, \dots, \phi_n \models \psi$ 成立。(事实上这两者是等价关系)

定义 7 (恒真式(tautology)/矛盾式(contradiction)). 命题逻辑 ϕ 被称为恒真式当且仅当它在所有估值下都取值为T, 也即 $\models \phi$ 。若在某个估值/解释 I_0 下值为T,则称其可满足。若所有估值均为F,则为矛盾式。

定理 2. 若 $\models \eta$ 成立,则 $\vdash \eta$ 是合法的。换句话说,若 η 是永真式,则 η 是定理。

1.4 规范形式

定义 8 (语义等价). $\phi n \psi$ 都是命题逻辑的公式, 称其等价当且仅当 $\phi \models \psi n \psi \models \phi$ 成立, 记作 $\phi \equiv \psi$, 也 等价于 $\models (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$ 成立。

定义 9 (合取范式(conjunction normal form, CNF)). BNF定义如下:

- $\hat{\mathbf{x}}$ $\hat{\mathbf{y}}$ (literal): $L := p \mid \neg p$
- 句子(clause): $D := L \mid L \vee D$
- $\triangle \preceq (formula): C := D \mid (D) \mid D \wedge C$

例子如

$$(p \vee r) \wedge (\neg p \vee r) \wedge (p \vee \neg r)$$

定义 10 (霍尔公式(Horn formula)). 若命题逻辑公式 ϕ 能用下面的语法,表示成H的一个示例

$$P := \bot \mid \top \mid p$$
 $A := P \mid P \land AC := A \rightarrow PH := C \mid C \land H$

则称C的每个实例为霍尔从句(clause)。

 $^{^{2}}$ 假设 ϕ_{1},\ldots,ϕ_{n} 为真,可以推出 ψ 为真

1.5 SAT求解器

线性求解器只接受以下几种形式的公式

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi)$$

例 2. $\phi = p \land \neg (q \lor \neg p)$, 计算 $T(\phi) = p \land \neg \neg (\neg q \land \neg \neg p)$, 则有语法树和DAG如下

2 谓词逻辑

谓词逻辑(predicate)或被称为一阶逻辑,提供了更强的语言表达能力。

2.1 形式语言

定义 11 (项(item)). 项的定义如下:

- 每一个变量都是项
- $\exists c \in \mathcal{F}$ 是一个空函数,则c是项(常数)
- $ilde{x}t_1,t_2,\ldots,t_n$ 都是项,且 $f\in\mathcal{F}$ 有n>0个元(arity),则 $f(t_1,t_2,\ldots,t_n)$ 是一个项用BNF写即

$$t ::= x \mid c \mid f(t_1, t_2, \dots, t_n)$$

定义 12 (公式(formula)). BNF定义如下

$$\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \psi) \mid (\phi \lor \psi) \mid (\phi \to \psi) \mid (\forall x \phi) \mid (\exists x \phi)$$

定义 13 (自由(free)/约束(bound)变量). 语法树叶结点往上不会经过 $\forall x$ 或 $\exists x$ 结点,则为自由变量。

定义 14 (替代(substituion)). 给定变量x、项t和公式 ϕ , 定义 $\phi[t/x]$ 为将 ϕ 中所有自由x用t代替

2.2 逻辑证明

• equality (=i)

$$\overline{t=t}=i$$

• substitution (=e)

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]} = e$$

• for-eliminating $(\forall x \ e)$

$$\frac{\forall x \phi}{\phi[t/x]} \forall x \quad e$$

• for-introduction $(\forall x \ i)$

• exists-introduction $(\exists x \quad i)$

$$\frac{\phi[t/x]}{\exists x \phi} \exists x \quad i$$

• exists-elimination $(\exists e)$

例 3. 证明 $\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$

分析. 推理过程如下

$$\neg \forall x \phi \dashv \vdash \exists x \neg \phi, \qquad \neg \exists x \phi \dashv \vdash \forall x \neg \phi$$

2.3 语义

记Γ为公式 ϕ_1, \ldots, ϕ_n ,要证明 $\Gamma \vdash \psi$ 是合法的,则只需从 Γ 中提供 ψ 的证明。而如果要证明 Γ 推不出 ψ ,从**证明论**(proof theory)的角度是困难的。

但从语义(semantics)的角度,只需找到一个模型(model)满足所有 ϕ_i 都为真,而 ψ 为假,即可得到 Γ 推 不出 ψ ;相反地,要证明 Γ 推出 ψ 则是困难的,因为对于谓词逻辑来说有无穷多种估值/模型,只有全部验证了才能得知 $\Gamma \models \psi (\psi$ 被 Γ 语义蕴含entail)。

因此证明论和模型论两者都是重要的。

定义 15 (模型(model)). 令F为函数符号的集合,P为谓词符号的集合 3 。关于(F,P)的模型M包含以下数据:

- 非空集合A: 具体值的全集
- 对于每一空函数符号 $f \in \mathcal{F}, f^{\mathcal{M}} \in A$
- 对于每一 $f \in \mathcal{F}$ 且元n > 0. 具体函数 $f^{\mathcal{M}}: A^n \to A$
- 对于每一 $P \in \mathcal{P}$ 且元n > 0. 子集 $P^{\mathcal{M}} \subset A^n$

也就是说f和P仅仅是**抽象的符号**,而 f^{M} 和 P^{M} 为**具体的函数/元素**。也可以说模型给出了一个解释(interpretation)。

 $^{^3}$ 函数符号是一个算子,作用在项上并生成一个新的项/实体(object),比如+和×;而谓词符号也是一个算子,作用在项上并生成一个谓词/宣称(claim),比如<和>。

例 4. 令 $\mathcal{F} \stackrel{def}{=\!=\!=\!=} \{i\}$, $\mathcal{P} \stackrel{def}{=\!=\!=\!=} \{R,F\}$, 其中i是一个常数, F是一元谓词符号, R是二元谓词符号。一个模型可以是

$$A \stackrel{def}{=} \{a, b, c\}$$

$$i^{\mathcal{M}} \stackrel{def}{=} a$$

$$R^{\mathcal{M}} \stackrel{def}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$$

$$F^{\mathcal{M}} \stackrel{def}{=} \{b, c\}$$

那么有 $\exists y R(i,y)$ 为真, $\neg F(i)$ 为真。

上面给出了模型的定义,并且使得我们可以直接从 $(\mathcal{F},\mathcal{P})$ 中计算出真值,但我们仍需讨论如何处理全称量词 $\forall x \phi$ 及特称量词 $\exists x \phi$,需要检查 ϕ 是否对于所有模型中的a都成立。尽管我们可以用 $\phi[a/x]$ 表示,但是 $\phi[a/x]$ 并不是一个逻辑公式,因为a不是一个项(term)而是模型中的一个元素。

因此需要限定公式是关于一个环境的(relative to an environment)。

定义 16 (环境(environment)/查找表(look-up table)). 对于全集A具体值的环境是一个函数 $l: var \to A$,定义 $l[x \mapsto a]$ 为从x映射到a的查找表。

定义 17 (满足关系(satisfaction)). 给定 $\mathcal{M}(F,\mathcal{P})$ 及环境l,定义满足关系 $\mathcal{M} \models_l \phi$ 。若 $\mathcal{M} \models_l 成立(hold)$,则称 ϕ 在关于环境l的模型 \mathcal{M} 中计算为T。

例 5. 令 $F \stackrel{def}{=\!=\!=} \{alma\}, P \stackrel{def}{=\!=\!=} \{loves\}$, 其中alma是常数, $loves(\cdot, \cdot)$ 是谓词符号。模型 \mathcal{M} 包含集合

$$A \stackrel{def}{=} \{a, b, c\}, alma^{\mathcal{M}} \stackrel{def}{=} a, loves^{\mathcal{M}} \stackrel{def}{=} \{(a, a), (b, a), (c, a)\}$$

检查模型M是否满足

None of Alma's lovers' lovers love her.

$$\phi: \forall x \forall y (loves(x, alma) \land loves(y, x) \rightarrow \neg loves(y, alma))$$

 $\diamondsuit x \mapsto a \mathcal{R} y \mapsto b$,又 $alma^{\mathcal{M}} \stackrel{def}{=\!\!\!=\!\!\!=} a$,得到

$$loves(a, a) \land loves(b, a) \rightarrow \neg loves(b, alma)$$

不成立,故 $M \not\models \phi$

在命题逻辑中, $\phi_1, \ldots, \phi_n \models \psi^4$ 当且仅当 ϕ_1, \ldots, ϕ_n 都估值为T, 同时 ψ 也估值为T。

定义 18. 令 Γ 为谓词逻辑的公式集合, ψ 为谓词逻辑的公式

- 1. 语义蕴含 $\Gamma \models \psi$ 成立当且仅当对于**所有**的模型M和查找表l,只要 $\forall \phi \in \Gamma : M \models_l \phi$ 成立, $M \models_l \psi$ 也成立
- 2. ψ 是可满足的(satisfiable)当且仅当**存在**模型M和环境l使得M ⊨₁ ψ 成立
- 3. ψ 是合法的(valid)当且仅当M $\models_l \psi$ 对于所有模型M和环境l都成立

⁴⊨代表语义蕴含(semantic entailment)

例 6. 考虑以下语义蕴含关系

$$\forall x (P(x) \to Q(x)) \models \forall x P(x) \to \forall x Q(x)$$

令M为满足 $\forall x(P(x) \to Q(x))$ 的模型,需要证明M也满足 $\forall xP(x) \to \forall xQ(x)$

- 若不是每个M中的元素都满足P,则前件为假,显然成立
- 若每个M中的元素都满足P,则每一元素都满足Q,因为M满足 $∀x(P(x) \to Q(x))$

进而 $\mathcal{M} \models \forall x P(x) \rightarrow \forall x Q(x)$

例 7. 考虑以下语义蕴含关系

$$\forall x P(x) \to \forall x Q(x) \models \forall x (P(x) \to Q(x))$$

 $\diamondsuit A \stackrel{def}{=\!\!\!=\!\!\!=\!\!\!=} \{a,b\}, P^{\mathcal{M}} \stackrel{def}{=\!\!\!=\!\!\!=\!\!\!=} \{a\}, Q^{\mathcal{M}} \stackrel{def}{=\!\!\!=\!\!\!=\!\!\!=} \{b\}$,则 $\mathcal{M} \models \forall x P(x) \rightarrow \forall x Q(x)$,但 $\mathcal{M} \not\models \forall x (P(x) \rightarrow Q(x))$

3 模型检查验证

3.1 线性时序逻辑

定义 19 (线性时序逻辑(linear-time temporal logic, LTL)). BNF定义如下

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (X\phi) \mid (F\phi) \mid (G\phi) \mid (\phi U\phi) \mid (\phi W\phi) \mid (\phi R\phi)$$

其中X, F, G, U, R, W都称为时序连接词(temporal connectives)

- X: neXt state
- F: some Future state (存在)
- G: all future states (Globally) (任意)
- *U*: *Until* (二元)
- R: Release (二元)
- W: Weak-until (二元)

运算符优先级

- 一元连接词: ¬. X. F. G
- *U*, *R*, *W*
- \bullet \wedge, \vee
- ullet o

定义 20 (转移系统(transition system)). 一个转移系统 $\mathcal{M}=(S,\to,L)$ 是状态集合S (静态结构), 转移关系 \to (动态结构), 使得 $\forall s\in S, \exists s'\in S: s\to s'$, 且有标注函数 $L:S\to \mathcal{P}(Atoms)$, 其中 $\mathcal{P}(Atoms)$ 为原子描述的幂集(实际上L就是给所有命题原子做真值指派)。转移系统也可以被称作模型(model)。

(*) $\mathcal{P}(\mathbf{Atoms})$ is the power set of \mathbf{Atoms} . Let $\mathcal{M} = (S, \rightarrow, L)$, where

$$S = \{s_0, s_1, s_2\}$$

$$\to = \{(s_0, s_1), (s_0, s_2), (s_1, s_0), (s_1, s_2), (s_2, s_2)\}$$

$$L = \{(s_0, \{p, q\}), (s_1, \{q, r\}), (s_2, \{r\})\}$$

定义 21 (路径(path)). 路径是一个无穷序列 $s_1, s_2, \ldots \in S$ 使得 $s_i \to s_{i+1}, \forall i \geq 1$ 。 令 $\pi^i = s_i \to s_{i+1} \to \ldots$ 为从状态 s_i 开始的路径。路径 $\pi = s_1 \to s_2 \to \ldots$ 满足LTL公式定义在满足关系上上:

- 1. $\pi \models \top$
- 2. $\pi \not\models \bot$
- 3. $\pi \models p \text{ iff } p \in L(s_1)$
- 4. $\pi \models \neg \phi \text{ iff } \pi \not\models \phi$
- 5. $\pi \models \phi \land \psi$ iff $\pi \models \phi$ and $\pi \models \psi$
- 6. $\pi \models \phi \lor \psi \text{ iff } \pi \models \phi \text{ or } \pi \models \psi$
- 7. $\pi \models \phi \rightarrow \psi \text{ iff } \pi \models \psi \text{ when } \pi \models \phi$
- 8. $\pi \models X\phi \text{ iff } \pi^2 \models \phi$
- 9. $\pi \models G\phi \text{ iff } \forall i \geq 1: \pi^i \models \phi$
- 10. $\pi \models F\phi \text{ iff } \exists i \geq 1: \pi^i \models \phi$
- 11. $\pi \models \phi U \psi \text{ iff } \exists i \geq 1 : \pi^i \models \psi \text{ and } \forall j = 1, \dots, i-1 : \pi^j \models \phi$
- 12. $\pi \models \phi W \psi$ iff either $\exists i \geq 1 : \pi^i \models \psi$ and $\forall j = 1, \ldots, i-1 : \pi^j \models \phi$ or $\forall k \geq 1 : \pi^k \models \phi$
- 13. $\pi \models \phi R \psi$ iff either $\exists i \geq 1 : \pi^i \models \phi$ and $\forall j = 1, ..., i : \pi^j \models \psi$ or $\forall k \geq 1 : \pi^k \models \psi$
- 记 $M,s\models\phi$ 表示对于所有M开始于s的执行路径 π ,都有 $\pi\models\phi$,或可简写为 $s\models\phi$

注意有以下恒等式

$$\neg G\phi \equiv F \neg \phi
\neg F\phi \equiv G \neg \phi
\neg X\phi \equiv X \neg \phi
\phi W \psi \equiv \phi U \psi \lor G\phi
\phi R \psi \equiv \neg (\neg \phi U \neg \psi)
F(\phi \lor \psi) \equiv F\phi \lor F\psi
G(\phi \land \psi) \equiv G\phi \land G\psi
F\phi \equiv \top U\phi
G\phi \equiv \bot R\phi
\phi U \psi \equiv \phi W \psi \land F\psi
\phi W \psi \equiv \psi U \psi \lor G\phi
\phi W \psi \equiv \psi W (\phi \land \psi)
\phi R \psi \equiv \psi W (\phi \land \psi)$$

例 8. 对于上图的例子,有以下式子成立

- $s_0 \models p \land q \ (3,5)$
- $s_0 \models Xr$, $\exists r \in L(s_1), L(s_2)$
- $s_0 \models G \neg (p \land r)$, 因所有从 s_0 开始的路径都满足 $G \neg (p \land r)$, 也即满足 $\neg (p \land r)$

3.2 模型检查

下面是一个互斥锁的例子,n为非临界区状态,t为尝试进入临界区、c为临界区状态。考虑2个进程,每个进程的转移都是 $n \to t \to c \to n \to \cdots$ 。

有以下性质:

• 安全性(safety): $G_{\neg}(c_1 \land c_2)$ 在每个状态都被满足

- 活性(liveness): $G(t_1 \to Fc_1)$, 对于路径 $s_0 \to s_1 \to s_3 \to s_7 \to s_1 \to s_3 \to \cdots$ 就不满足
- 非阻塞(non-blocking): 对于任意状态满足 n_1 , 有后继状态满足 t_1 , 无法用LTL表达
- 非严格序列(strict sequencing)

3.3 计算树逻辑

定义 22 (计算树逻辑(computation tree logic, CTL)). 除了LTL有的U, F, G, X, CTL还有A和E表示**所有** 路径($All\ path$)和**存在**一条路径($Exist\ a\ path$)。 BNF定义如下

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (AX\phi) \mid (EX\phi) \mid (AF\phi) \mid (EF\phi) \mid (AG\phi) \mid (EG\phi) \mid A[\phi U \phi] \mid E[\phi U \phi]$$

运算符优先级

- \neg , AG, EG, AF, EF, AX, EX
- \(\)
- $\bullet \rightarrow$, AU, EU

定义 23 (CTL*). ϕ 为状态公式 (在状态上求值), α 为路经公式 (在路径上求值)

$$\begin{split} \phi &::= \top \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid A[\alpha] \mid E[\alpha] \\ \alpha &::= \phi \mid (\neg \alpha) \mid (\alpha \land \alpha) \mid (\alpha U \alpha) \mid (G\alpha) \mid (F\alpha) \mid (X\alpha) \end{split}$$

- LTL is a subset of CTL* The LTL formula α is equivalent to the CTL* formula $A[\alpha]$.
- CTL is a subset of CTL*
 The CTL formula is the fragment of CTL* in which we restrict the form of path formulas.

$$\alpha ::= (\alpha \cup \alpha) \mid (G \alpha) \mid (F \alpha) \mid (X \alpha)$$

The expressive powers of LTL, CTL and CTL*

4 程序验证

定义 24 (霍尔三元组(Hoare triple)).

 $\|\phi\|P(\psi)$

代表若程序P在满足 ϕ 的状态下运行,则执行完P的状态会满足 ψ 。 ϕ 称为先验条件(precondition), ψ 称为后验条件(postcondition)。存储变量x记为l(x)。

例 9. 若输入x是正数,则求出一个数字它的平方小于x。 记程序为P,则Hoare三元组为

$$(x > 0)P(y \cdot y < x)$$

一个可行的程序P可以是

```
y = 0;
while (y * y < x) { y = y + 1; }
y = y - 1;
```

定义 25 (部分正确性(partial correctness)). 若对于所有满足先验条件 ϕ 的状态,只要P需要能停止(terminate),经过P的执行,都满足后验条件 ψ ,则 (ϕ) P (ψ) 满足部分正确性。若 \models_{par} (ϕ)P (ψ) 成立,则称 \models_{par} 为部分正确性关系。全部正确性(total correctness)则是保证了P一定会停止。

例 10. 考虑下面求阶乘的程序Fac1:

```
y = 1;
z = 0;
while (z != x) {
   z = z + 1;
   y = y * z;
}
```

- $\models_{tot} (x \ge 0) Fac1(y = x!)$ 成立,只要 $x \ge 0$,Fac1一定会停止,并且有结果y = x!
- \models_{tot} (T) Fac1(y = x!) 不保证成立,因为 Fac1对于x的负数值不会停止
- $\models_{par} (x \ge 0) Fac1(y = x!)$ 和 $\models_{par} (T) Fac1(y = x!)$ 成立

定义 26 (逻辑变量(logical variable)). 逻辑变量在 ϕ 或 ψ 是自由的, 且不出现在P中

例 11. $(x = x_0 \land x \ge 0)Sum(z = x_0(x_0 + 1)/2)$

```
z = 0;
while (x != 0) {
  z = z + x;
  x = x - 1;
}
```

4.1 证明论

• Composition

$$\frac{(\!\!|\phi|\!\!) \; C_1 \; (\!\!|\eta|\!\!) \qquad (\!\!|\eta|\!\!) \; C_2 \; (\!\!|\psi|\!\!)}{(\!\!|\phi|\!\!) \; C_1; C_2 \; (\!\!|\psi|\!\!)}$$

• Assignment

$$\overline{(\psi[E/x]) \ x = E \ (\psi)}$$

注意这条公式相当tricky,是在先验条件中将x换为E(即恢复x=E的赋值),在具体证明中往往是反过来用

• If-statement

$$\frac{(\phi \land B) \ C_1 \ (\psi) \qquad (\phi \land \neg B) \ C_2 \ (\psi)}{(\phi) \ \text{if} \ B\{C_1\} \ \text{else} \ \{C_2\} \ (\psi)}$$

• Partial-while

$$\frac{(\!\!|\psi\wedge B|\!\!|)\;C\;(\!\!|\psi|\!\!|)}{(\!\!|\psi|\!\!|)\;\text{while}\;B\{C\}\;(\!\!|\psi\wedge\neg B|\!\!|)}$$

• Implied

$$\frac{\vdash_{AR} \phi' \to \phi \qquad (\!\!|\phi|\!\!) \ C \ (\!\!|\psi|\!\!) \qquad \vdash_{AR} \psi \to \psi'}{(\!\!|\phi'|\!\!) \ C \ (\!\!|\psi'|\!\!)}$$

基本谓词逻辑演算及算术表达都满足

例 12 (表格证明(proof tableaux)). $\vdash_{par} (y < 3) y = y + 1 (y < 4)$

$$(y < 3)$$

 $(y + 1 < 4)$ Implied
 $y = y + 1$
 $(y < 4)$ Assignment

$$(\!(\phi)\!)$$
 if $(B)\{C_1\}$ else $\{C_2\}$ $(\!(\psi)\!)$

- 将 ψ 反推 C_1 ,结果记为 ϕ_1
- 将 ψ 反推 C_2 , 结果记为 ϕ_2
- $\diamondsuit \phi = (B \to \phi_1) \land (\neg B \to \phi_2)$

例 13. 考虑程序Succ

证明 \vdash_{par} (T) Succ (y = x + 1) 合法

分析. 可以自底向上分析

 (\top)

 (ϕ) while $B\{C\}$ (ψ)

需要找到合适的不变量(invariant) η 使得

- $\models_{AR} \phi \to \eta$
- $\bullet \models_{AR} \eta \land \neg B \to \psi$
- $\models_{par} (\eta)$ while $(B)\{C\}(\eta \land \neg B)$

例 14. 考虑程序Fac1

```
y = 1;
z = 0;
while (z != x) { // L1

z = z + 1;
y = y * z;
} // L2
```

证明

$$\models_{AR} (y = 1 \land z = 0) \rightarrow (y = z!)$$
 $\models_{AR} (y = z! \land x = z) \rightarrow (y = x!)$

```
 \begin{array}{l} (|\top|) \\ (|1=0!|) \  \, \textit{Implied} \\ y = 1; \\ (y = 0!|) \  \, \textit{Assignment} \\ z = 0; \\ (y = z!|) \  \, \textit{Assignment} \\ while \  \, (z \ != x) \  \, \{ \\ (y = z! \land z \neq x) \  \, \textit{Invariant Hyp.} \  \, \land \, \textit{guard} \\ (y \cdot (z+1) = (z+1)!|) \  \, \textit{Implied} \\ z = z + 1; \end{array}
```

5 模态逻辑

定义 27 (模态逻辑(modal logic)). BNF定义如下

$$\phi ::= \top \mid \bot \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\phi \leftrightarrow \phi) \mid (\Box \phi) \mid (\Diamond \phi)$$

其中□为一定(necessarily), ♦为可能(possibly)。优先级顺序

- \bullet \neg , \square , \Diamond
- \bullet \vee , \wedge
- \bullet \rightarrow , \leftrightarrow

定义 28 (模型(model)). 模态逻辑的模型 M由以下三个成分定义:

- 世界(world)元素W
- 定义在W上的可访问(accessibility)关系 $R \subset W \times W$
- 标记函数 (labeling) $L: W \to \mathcal{P}(Atoms)$

这些模型称为Kripke模型

- $W = \{x_1, x_2, x_3, x_4, x_5, x_6\}$
- $R = \{(x_1, x_2), (x_1, x_3), (x_2, x_2), (x_2, x_3), (x_3, x_2), (x_4, x_5), (x_5, x_4), (x_5, x_6)\}$
- the labelling function $L: W \to \mathcal{P}(Atoms)$ is as follows:

定义 29. 令 $\mathcal{M} = (W, R, L)$ 为基本的模态逻辑, $x \in W$ 和 ϕ 是公式,满足性(satisfaction)关系 $x \Vdash \phi$ 为 在 ϕ 上的结构推断(structural induction):

例 15. 比如上图的例子有

- $x_1 \Vdash q$, $\exists q \in L(x_1)$
- $x_1 \Vdash \Diamond q$, $\exists R(x_1) = \{x_2, x_3\}, x_2 \in R(x_1), q \in L(x_2)$
- $x_1 \not\Vdash \Box q$, $\exists R(x_1) = \{x_2, x_3\}, x_3 \in R(x_1), q \notin L(x_3)$

De Morgan定律

$$\neg \Box \phi \equiv \Diamond \neg \phi \qquad \neg \Diamond \phi \equiv \Box \neg \phi$$

分配律

$$\Box(\phi \land \psi) \equiv \Box\phi \land \Box\psi \qquad \Diamond(\phi \lor \psi) \equiv \Diamond\phi \lor \Diamond\psi$$

K模式(scheme)

$$\Box(\phi \to \psi) \land \Box\phi \to \Box\psi$$

例 16. 证明 $\neg \Box \phi \equiv \Diamond \neg \phi$

分析. 假设x是模型M = (W, R, L)的一个世界,希望找到 $x \Vdash \neg \Box \phi \leftrightarrow \Diamond \neg \phi$

$$x \Vdash \neg \Box \phi$$

$$\leftrightarrow it \ is \ not \ the \ case \ that \ x \Vdash \Box \phi$$

$$\leftrightarrow it \ is \ not \ the \ case \ that \ \forall y \in R(x), y \Vdash \phi$$

$$\leftrightarrow \exists y \in R(x) \ and \ not \ y \Vdash \phi$$

$$\leftrightarrow \exists y \in R(x) \ and \ y \Vdash \neg \phi$$

$$\leftrightarrow x \Vdash \Diamond \neg \phi$$

6 二元决策图

.为与,+为或,⊕为异或。

布尔函数用真值表表示,如 $f(x,y) \stackrel{\text{def}}{=\!=\!=\!=} \overline{x+y}$ 。

\boldsymbol{a}	y	f(x,y)
1	. 1	0
1	. 0	1
() 1	0
(0	1

二元决策图(Binary Decision Diagram, BDD)

- 非终端结点标号为布尔变量
- 终端结点(叶子)标号为0或1
- 每一个非终端结点有两条边,一条虚边(dashed)指向0,一条实边(solid)指向1 简化法则:
- 去除重复终端(terminal)
- 去除冗余测试: 若结点n出边都指向同个结点m, 则消除n
- 去除重复非终端符号: 第一条是本条的特例

定义 30 (有序BDD). $令[x_1,\ldots,x_n]$ 为有序n个变量, B为含有这些变量的BDD

- $\diamond V(B) \land OBDD$ 的变量集,即 $V(B) = \{x_1, x_2, \dots, x_n\}$
- $O_B(x_i)$ 是 $\forall x_i \in V(B)$ 的序
- $\forall x_i, x_j \in V(B), O_B(x_i) < O_B(x_j)$ 为在B中任一路径每一个 x_i 跟随 x_j

6.1 约简规则

定义 31. 给定BDD中非终端结点n

• lo(n)是从n用虚线指向的点

• hi(n)是从n用实线指向的点

id(·)为结点编号

- If id(lo(n)) = id(hi(n)), we set id(n) to be that label. That is because the boolean function represented at n is the same function as the one represented at lo(n) and hi(n).
- If id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), where n and m have the same variable x_i , we set id(n) to be id(m).
- Set id(n) to the next unused integer label.

6.2 应用规则

定义 32 (香农展开(Shannon expansion)). 对于所有布尔公式f及布尔变量x (包括那些不出现在f中的),有

$$f \equiv \bar{x} \cdot f[0/x] + x \cdot f[1/x]$$

应用(apply)函数基于f op g的展开

$$f \ op \ g \equiv (\bar{x} \cdot f[0/x] + x \cdot f[1/x]) \ op \ (\bar{x} \cdot g[0/x] + x \cdot g[1/x])$$

$$\equiv (\bar{x} \cdot f[0/x] \ op \ \bar{x} \cdot g[0/x]) + (x \cdot f[1/x] \ op \ x \cdot g[1/x])$$

$$\equiv \bar{x} \cdot (f[0/x] \ op \ g[0/x]) + x \cdot (f[1/x] \ op \ g[1/x])$$

• 特称规则:

$$\exists x. f \stackrel{\text{def}}{=\!\!\!=\!\!\!=} f[0/x] + f[1/x]$$

• 全称规则:

$$\exists x. f \stackrel{\text{def}}{=\!\!\!=\!\!\!=} f[0/x] \cdot f[1/x]$$

f	OBDD B_f	f	OBDD B_f
0	B_0	1	B_1
x	B_x	$ar{f}$	交换 B_f 中的 0 和 1 结点
f+g	$apply(+, B_f, B_g)$	$f \cdot g$	$apply(\cdot, B_f, B_g)$
$f \oplus g$	$apply(\oplus, B_f, B_g)$		
f[0/x]	$restrict(0, x, B_f)$	f[1/x]	$restrict(1, x, B_f)$
$\exists x.f$	$apply(+, B_{f[0/x]}, B_{f[1/x]})$	$\forall x.f$	$apply(\cdot, B_{f[0/x]}, B_{f[1/x]})$