

ProSavage PN133 Chipset

VT8603 / 86C380 "Twister"

Single-Chip SMA North Bridge with 133 / 100 / 66 MHz Front Side Bus for VIA C3 and Intel Celeron / Pentium III Integrated ProSavage4 AGP 4x Graphics Core plus Advanced Memory Controller supporting PC133 / PC100 SDRAM for Mobile PC Systems

> Revision 1.52 February 12, 2002

a joint development of VIA TECHNOLOGIES, INC. and S3 GRAPHICS, INC.

Copyright Notice:

Copyright © 2000, 2001, 2002 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Copyright © 2000, 2001 S3 Graphics Incorporated. All rights reserved. If you have received this document from S3 Graphics Incorporated in electronic form, you are permitted to make the following copies for business use related to products of S3 Graphics Incorporated: one copy onto your computer for the purpose of on-line viewing, and one printed copy. With respect to all documents, whether received in hard copy or electronic form, other use, copying or storage, in whole or in part, by any means electronic, mechanical, photocopying or otherwise, is not permitted without the prior written consent of S3 Graphics Incorporated. The material in this document is for information only and is subject to change without notice. S3 Graphics Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT82C585, VT82C586B, VT82C587, VT82C590, VT82C595, VT82C596B, VT82C597, VT82C598, VT8501, VT82C680, VT82C685, VT82C686A, VT82C686B, VT82C697, VT82C596A, VT82C691, VT82C692, VT82C693, VT82C693A, VT82C694, VT82C694A, VT82C694X, VT8231, VT8233, VT8363, VT8363A, VT8364, VT8365, VT8365A, VT8366, VT8601, VT8601A, VT8603, VT8604, VT8605, VT8606, VT8633, Mobile South, Super South, Apollo VP, Apollo VPX, Apollo VP2, Apollo VP3, Apollo MVP3, Apollo MVP4, Apollo P6, Apollo Pro, Apollo ProPlus, Apollo Pro133, and Apollo ProMedia may only be used to identify products of VIA Technologies.

S3, S3 ON BOARD, S3d (design and word), Trio and ViRGE are registered trademarks of SONICblue, Incorporated.

The S3 Corporate Logo, Sight. Sound. Speed., S3TC, DuoView, and Streams Processor are trademarks of SONICblue Incorporated.

Savage, Savage3D, Savage4, Savage4MX, Savage2000, ProSavage, ProSavage4, ProSavage8, ProSavageDDR, Twister, TwisterK, TwisterK-DDR, TwisterT, TwisterT-DDR, and TwisterP4 are trademarks of S3 Graphics, Inc. Pentium™ and MMXTM are registered trademarks of Intel Corp.

Cyrix™, Cyrix6_x86™ and WinChip™ are registered trademarks of VIA Technologies

Athlon™, AMD5_K86™, AMD6_K86™, AMD-K5™, and AMD-K6™ are registered trademarks of Advanced Micro Devices Corp. Windows 2000™. Windows ME™, Windows 98™, Windows 95™ and Plug and Play Mare registered trademarks of Microsoft Corp.

PCI™ is a registered trademark of the PCI Special Interest Group.

PS/2™ is a registered trademark of International Business Machines Corp.

VESA™ is a trademark of the Video Electronics Standards Association.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies or S3 Graphics. VIA Technologies and S3 Graphics make no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies and S3 Graphics assume no responsibility for any errors in this document. Furthermore, VIA Technologies and S3 Graphics assume no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated Taiwan Office: 8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: 886-2-2218-5452 FAX: 886-2-2218-5453

Home page: http://www.via.com.tw

VIA Technologies Incorporated USA Office: 440 Mission Count, Suite 220 Fremont, CA 94539 USA Tel: 510-683-3300

FAX: 510-683-3301 or 510-687-4654

Home Page: http://www.viatech.com

S3 Graphics Incorporated USA Office: 1045 Mission Count Fremont, CA 94539 USA

Tel: 510-687-4900 FAX: 510-683-4901

Home Page: http://www.s3graphics.com

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	9/26/00	Fixed document to conform to VIA data sheet format and revision numbering	DH
		Fixed revision history table	
		Fixed various typographical errors (pin names, text, table numbering, etc.)	
		Changed pin names for compatibility and consistency with other VIA products	
		Corrected feature bullets, overview text, and pin descriptions per engg review	
		Removed ambient temperature spec and added power characteristics table	
		Removed "Confidential – NDA Required" watermark for public release	
1.01	10/10/00	Removed "Preliminary" from document revision	DH
		Fixed formatting of ballout diagram (fixed partially obscured pin names)	
		Fixed MA2-4 strap descriptions in pin descriptions and functional description	
		Fixed typographical errors in VCCLPLL and VCCLVDS pin descriptions	
1.02	10/16/00	Fixed minor formatting problems in pinout tables	DH
1.1	10/23/00	Removed PC66 support from feature bullets & overview (not tested)	DH
		Added VCC3 on NC pins at E11 and F19	
1.2	11/7/00	Fixed product marking in Mechanical Spec	DH
1.21	12/14/00	Fixed misc formatting errors	DH
		Removed "sprite / full-scene antialiasing" from feature bullets & overview	
		Added power information to electrical specs	
		Added real "Twister" logo to marking / mechanical spec	
1.3	1/12/01	Updated copyright, trademarks, and page top logo for change of S3 to SONICblue	DH
		& S3 Graphics; Updated trademarks and product list	
		Removed revision history prior to first public 1.0 release	
		Added missing line in table of contents	
		Fixed typos in pinouts on pins E4, F11, & F15 & fixed MA8,12 strap definition	
		Fixed voltage specification typos in pin descriptions (changed all to $\pm 5\%$)	
		Added NC pin description to pin description tables	
1.4	2/1/01	Updated cover page logo and part marking logo from S3 to S3 Graphics	DH
		Fixed VCCLPLL voltage and DFTIN & BISTIN connections in pin descriptions	
		Fixed Device 0 Rx70[4], A4[2-0], A8[1-0], AC[3], AE[3-2]	
		Added AC Timing Specs	
1.41	3/29/01	Updated title, feature bullets and overview; Fixed misc typos and updated logos	DH
1.42	5/3/01	Changed Device 0 Rx69[0] to reserved & updated table in same register bit-6	DH
1.43	5/16/01	Updated feature bullets & overview to add simultaneous display on CRT and FP	DH
1.44	7/2/01	Fixed cover logos and company addresses; Fixed Rx6A	DH
		Changed VIA Cyrix III to VIA C3; fixed fig 1 & CPU descriptions in Overview	
		Fixed pin names VCC/GNDALPLL, VCC/GNDALVDS, and VCC/GNDLVDS to	
		match Design Guides and VT8606 TwisterT data sheet	
1.45	9/18/01	Added S3 Graphics part number on cover & page headings; fixed part # in marking	DH
		Updated "Overview" to explain terminology and relationship of "Twister",	
		"PN133", "VT8603", and "86C380"	
		Fixed check mark printout in Table 1 Supported CRT Screen Resolutions	
1.46	10/5/01	Removed VCM support from feature bullets, overview and block diagram	DH
1.5	12/5/01	Updated cover logo, added chipset name and reworded document description	DH
		Updated S3 to S3 Graphics, Savage4 to ProSavage4, DX7 to DirectX	
		Updated Table 1; Fixed register #s and panel tables in Functional Description	
1.51	1/4/02	Changed package to HSBGA; Fixed block diagram; Removed DVI/TMDS intfc	DH
1.52	2/12/02	Added note to Device 1 Rx40[6]; Fixed "Savage4" references to be "ProSavage4"	DH

TABLE OF CONTENTS

REVISION HISTORY	I
TABLE OF CONTENTS	II
LIST OF FIGURES	IV
LIST OF TABLES	IV
PRODUCT FEATURES	1
OVERVIEW	4
HIGH-PERFORMANCE 3D ACCELERATOR	5
128-BIT 2D GRAPHICS ENGINE	5
DVD PLAYBACK AND VIDEO CONFERENCING	5
LCD AND FLAT PANEL MONITOR SUPPORT	5
HIGH SCREEN RESOLUTION CRT SUPPORT	6
PINOUTS	7
PIN DESCRIPTIONS	
REGISTERS	
REGISTER OVERVIEW	
MISCELLANEOUS I/O	
CONFIGURATION SPACE I/O	
DEVICE 0 REGISTER DESCRIPTIONS	
Device 0 Header Registers - Host Bridge	
Device 0 Configuration Registers - Host Bridge	
Host CPU Control	
DRAM Control	
PCI Bus Control	
GART / Graphics Aperture Control	
AGP Control	
Power Management	
Miscellaneous	
BIOS Scratch Timers	
Frame Buffer Control.	
Back Door	
DEVICE 1 REGISTER DESCRIPTIONS	
Device 1 Header Registers - PCI-to-PCI Bridge	41
Device 1 Configuration Registers - PCI-to-PCI Bridge	
AGP Bus Control	
FUNCTIONAL DESCRIPTION - INTEGRATED GRAPHICS	
CONFIGURATION STRAPPING	45
PCI CONFIGURATION AND INTEGRATED AGP	45
PCI Configuration	45
PCI Subsystem ID	
Integrated AGP	
<u> </u>	

DISPLAY MEMORY	47
Interrupt Generation	47
DISPLAY INTERFACES	48
STN Panel Interfaces	48
TFT Panel Interfaces	48
Flat Panel LVDS Interface	48
CRT Interface	48
External TV Encoder Interface	49
I ² C Serial Communications Port	49
ZV-Port Interface	50
ELECTRICAL SPECIFICATIONS	54
ABSOLUTE MAXIMUM RATINGS	
DC CHARACTERISTICS	
Power Characteristics	55
AC TIMING SPECIFICATIONS	55
MECHANICAL SPECIFICATIONS	57

LIST OF FIGURES

FIGURE 1. PROSAVAGE PN133 SYSTEM BLOCK DIAGRAM	4
FIGURE 2. VT8603 / TWISTER BALL DIAGRAM (TOP VIEW)	7
FIGURE 3. GRAPHICS APERTURE ADDRESS TRANSLATION	
FIGURE 4. EXTERNAL TV ENCODER INTERFACE	
FIGURE 5. ZV-PORT INTERFACE	50
FIGURE 6. MECHANICAL SPECIFICATIONS - 552-PIN HSBGA BALL GRID ARRAY PACKAG	
SPREADER	

LIST OF TABLES

TABLE 1. SUPPORTED CRT SCREEN RESOLUTIONS	6
TABLE 2. VT8603 / TWISTER PIN LIST (NUMERICAL ORDER)	8
TABLE 3. VT8603 / TWISTER PIN LIST (ALPHABETICAL ORDER)	9
TABLE 4. VT8603 / TWISTER PIN DESCRIPTIONS	
TABLE 5. VT8603 / TWISTER REGISTERS	19
TABLE 6. SYSTEM MEMORY MAP	26
TABLE 7. MEMORY ADDRESS MAPPING TABLE	
TABLE 8. VGA/MDA MEMORY/IO REDIRECTION	43
TABLE 9. DEFINITION OF STRAPPING BITS AT THE RISING EDGE OF THE RESET SIGNAL	45
TABLE 10. PCI SUBSYSTEM ID AND SUBSYSTEM VENDOR ID REGISTERS	46
TABLE 11. SUPPORTED FRAME BUFFER MEMORY CONFIGURATIONS	47
TABLE 12. EXTERNAL TV ENCODER OUTPUT DATA FORMATS	49
TABLE 13. STN FLAT PANEL DATA OUTPUTS	51
TABLE 14. TFT FLAT PANEL DATA OUTPUTS (SR7D[3] = 0)	52
TABLE 15. TFT FLAT PANEL DATA OUTPUTS (SR7D[3] = 1)	53
TABLE 16. ABSOLUTE MAXIMUM RATINGS	54
TABLE 17. DC CHARACTERISTICS	54
TABLE 18. POWER CHARACTERISTICS	
TABLE 19. AC TIMING MIN / MAX CONDITIONS	
TABLE 20. AC TIMING – CPU INTERFACE	
TABLE 21. AC TIMING – MEMORY INTERFACE	56

PROSAVAGE PN133 CHIPSET

VT8603 / 86C380 "TWISTER" NORTH BRIDGE

Single-Chip SMA North Bridge with 133 / 100 / 66 MHz FSB for VIA C3 and Intel Celeron / Pentium III CPUs with Integrated ProSavage4 AGP 4x Graphics core plus Advanced Memory Controller supporting PC133 / PC100 SDRAM for Mobile PC Systems

PRODUCT FEATURES

• Defines Integrated Solutions for Value PC Mobile Designs

- High performance SMA North Bridge: Integrated VIA Pro133A and S3 Graphics' ProSavage4™ in a single chip
- 64-bit Advanced Memory controller supporting PC133 / PC100 SDRAM
- Combines with VIA VT82C686A/B PCI-ISA South Bridge for state-of-the-art power management
- Combines with VIA VT8231 PCI-LPC South Bridge for integrated LAN support

• High Performance CPU Interface

- Supports Socket-370 (VIA C3 and Intel Celeron and Pentium[®] III) processors
- 133 / 100 / 66 MHz CPU Front Side Bus (FSB)
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions
- Five outstanding transactions (four In-Order Queue (IOQ) plus one output latch)
- Dynamic deferred transaction support

• Advanced High-Performance DRAM Controller

- DRAM interface runs synchronous (100/100 or 133/133) mode or pseudo-synchronous (100/66, 100/133, 133/100) mode with FSB
- Concurrent CPU, AGP, and PCI access
- Supports PC133 and PC100 SDRAM memory types
- Support 3 DIMMs or 6 banks for up to 1.5 GB of DRAM (256Mb DRAM technology)
- 64-bit data width
- Supports maximum 8-bank interleave (8 pages open simultaneously); banks are allocated based on LRU
- SDRAM X-1-1-1-1-1 back-to-back accesses

Integrated ProSavage4 2D / 3D / Video Accelerator

- Optimized Shared Memory Architecture (SMA)
- Full internal AGP 4x performance
- Significant internal architectural upgrades from original S3 Graphics Savage4 standalone product
- 8 / 16 / 32 MB frame buffer using system memory
- Floating point triangle setup engine
- Single cycle 128-bit 3D architecture
- 8M triangles/second setup engine
- 140M pixels/second trilinear fill rate
- Microsoft DirectX texture compression
- Next generation, 128-bit 2D graphics engine
- High quality DVD video playback
- Flat panel monitor support
- 2D/3D resolutions up to 1920x1440

• 3D Rendering Features

- Single-pass multiple textures
- Anisotropic filtering
- 8-bit stencil buffer
- 32-bit true color rendering
- Specular lighting and diffuse shading
- Alpha blending modes
- Massive 2K x 2K textures
- MPEG-2 video textures
- Vertex and table fog
- 16 or 24-bit Z-buffering
- Reflection mapping, texture morphing, shadows, procedural textures and atmospheric effects

• 2D Hardware Acceleration Features

- ROP3 Ternary Raster Operation BitBLTs
- 8, 16, and 32 bpp mode acceleration

Motion Video Architecture

- High quality up/down scaler
- Planar to packed format conversion
- Motion compensation for full speed DVD playback
- Hardware subpicture blending and highlights
- Multiple video windows for video conferencing
- Contrast, hue, saturation, brightness and gamma controls
- ZV-Port Interface for display of video from an external source
- Digital output port for NTSC/PAL TV encoders

Extensive LCD Support

- 36-bit DSTN/TFT flat panel interface with 256 gray shade support
- Integrated 2-channel 110 MHz LVDS interface
- Support for all resolutions up to 1600x1200
- Panel power sequencing
- Hardware Suspend/Standby control

• Concurrent PCI Bus Controller

- PCI 2.2 compliant, 32-bit 3.3V PCI interface with 5V tolerant inputs
- Supports up to 5 PCI masters
- PCI to system memory data streaming support
- Delay transaction from PCI master accessing DRAM
- Symmetric arbitration between Host/PCI bus for optimized system performance

Advanced System Power Management Support

- Dynamic power down of SDRAM (CKE)
- Independent clock stop controls for CPU / SDRAM, AGP, and PCI bus
- PCI and AGP bus clock run and clock generator control
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and self-refresh power down
- Low-leakage I/O pads
- ACPI 1.0B and PCI Bus Power Management 1.1 compliant

• Full Software Support

- Drivers for major operating systems and APIs: [Windows[®] 9x, Windows NT 4.0, Windows 2000, Direct3D[™],
 DirectDraw[™] and DirectShow[™], OpenGL[™] ICD for Windows 9x, NT, and 2000]
- North Bridge/Chipset and Video BIOS support

• Additional Features

- Simultaneous display on CRT and LCD panel or on CRT and TV
- 250 MHz RAMDAC with Gamma Correction
- I²C Serial Bus and DDC Monitor Communications
- 2.5V Core and Mixed 3.3V/5V Tolerant and GTL+ I/O
- 35 x 35mm HSBGA (Ball Grid Array with Heat Spreader) package with 552 balls

OVERVIEW

Twister is a high performance, cost-effective and energy efficient SMA north bridge for the implementation of mobile personal computer systems with 133 MHz, 100 MHz and 66 MHz CPU host bus ("Front Side Bus") frequencies and based on 64-bit "P6 Bus" (Socket-370 VIA C3 and Intel Celeron and Pentium III) super-scalar processors. In VIA's product naming system, the Twister chip is part of a chipset also referred to as the "ProSavage PN133". The PN133 chipset includes the VT8603 "Twister" North Bridge and the VT8231 South Bridge. This document describes the Twister chip. The VT8231 South Bridge is described in a separate data sheet. The Twister chip is manufactured by S3 Graphics so is marked with the S3 Graphics part number (86C380) but is marketed by VIA so will be referred to by the VIA part number (VT8603) or simply "Twister" throughout this data sheet.

Figure 1. ProSavage PN133 System Block Diagram

Twister integrates VIA's VT82C694X system controller, S3 Graphics' 128-bit ProSavage4 2D/3D graphics accelerator and S3 Graphics' flat panel interfaces into a single 552 BGA package. The Twister SMA system controller provides superior performance between the CPU, DRAM and PCI bus with pipelined, burst, and concurrent operation.

Twister supports six banks of DRAMs up to 1.5Gbyte of system memory with 256Mbit DRAM technology. The DRAM controller supports standard PC133 and PC100 Synchronous DRAM (SDRAM). The Synchronous DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 133 / 100 MHz. The six banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32MxN DRAMs. The DRAM controller can run at either the host CPU Front Side Bus frequency (133 / 100 MHz) or pseudo-synchronous to the CPU FSB frequency (PC100 with the FSB at 133 MHz or PC133 with the FSB at 100 MHz) with built-in PLL timing control.

Twister supports a 32-bit 3.3 / 5V system bus (PCI) that is synchronous / pseudo-synchronous to the CPU bus. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and PCI operation. For PCI master operation, forty-eight levels

(doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent PCI bus and DRAM/cache accesses. The chip also supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

Twister also integrates S3 Graphics' 128-bit ProSavage4™ graphics accelerator into a single chip. Twister brings mainstream graphics performance to the Value PC with leading-edge 2D, 3D and DVD video acceleration into a cost effective package. Based on its capabilities, Twister is an ideal solution for the consumer, corporate mobile users and entry level professionals.

The industry's first integrated AGP 4X solution, Twister combines AGP 4X performance with Microsoft DirectX texture compression and massive 2Kx2K textures to deliver unprecedented 3D performance and image quality for the Value PC mobile market.

The 352-pin VT8231 BGA PCI-LPC bridge supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.2 compliant). The VT8231 also includes an integrated Super I/O, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-33 / 66 / 100 for 33 / 66 / 100 MB/sec transfer rate, integrated four USB interface with root hub and two function ports with built-in physical layer transceivers, Distributed DMA support, integrated AC-97 link for basic audio and HSP based modem functions, integrated hardware monitoring and OnNow / ACPI compliant advanced configuration and power management interface. The VT8231 also has an integrated MAC and 10Mbit PHY for LAN connection. It can bypass the internal PHY with external home PNA with a 1Mbit PHY or a 10/100Mbit PHY through the MII interface.

For sophisticated power management, Twister provides independent clock stop control for the CPU / SDRAM and PCI and Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT8231 south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

High-Performance 3D Accelerator

Featuring a new super-pipelined 128-bit engine, Twister utilizes a single cycle architecture that provides high performance along with superior image quality. Several new features enhance the 3D architecture, including single-pass multitexturing, anisotropic filtering, and an 8-bit stencil buffer. Twister also offers the industry's only simultaneous usage of single-pass multitexturing and single-cycle trilinear filtering – enabling stunning image quality without performance loss. Twister further enhances image quality with true 32-bit color rendering throughout the 3D pipeline to produce more vivid and realistic images. Twister's advanced triangle setup engine provides industry leading 3D performance for a realistic user experience in games and other interactive 3D applications. The 3D engine is optimized for AGP texturing from system memory.

128-bit 2D Graphics Engine

Twister's advanced 128-bit 2D graphics engine delivers high-speed 2D acceleration for productivity applications. Several enhancements have been made to the 2D architecture to optimize SMA performance and to provide acceleration in all color depths.

DVD Playback and Video Conferencing

Twister provides the ideal architecture for high quality MPEG-2 based DVD applications and video conferencing. For DVD playback, Twister's video accelerator offloads the CPU by performing the planar to packed format conversion and motion compensation tasks, while its enhanced scaling algorithm delivers incredible full-screen video playback. For video conferencing, Twister's multiple video windows enable a cost effective solution. The integrated ZV-Port allows display of video from an external source.

LCD and Flat Panel Monitor Support

Twister supports a wide variety of DSTN or TFT panels through a 36-bit interface. This includes support for VGA, SVGA, XGA, SXGA+, UXGA, and UXGA+ TFT color panels with 9-bit, 12-bit, 18-bit (both 1 pixel/clock and 2 pixels/clock), and 24-bit interfaces. Enhanced STN hardware with 256 gray scale support and advanced frame rate control to provide up to 16.7 million colors. Twister supports simultaneous display on CRT with LCD display or CRT with TV display. In addition, the integrated 2-channel LVDS interface can support another panel. All resolutions are supported up to 1280x1024.

High Screen Resolution CRT Support

	System Memory Frame Buffer Size							
Resolutions Supported	8 MB	16/32 MB						
640x480x8/16/32	~	V						
800x600x8/16/32	~	V						
1024x768x8/16/32	~	~						
1280x1024x8	~	V						
1280x1024x16	~	V						
1280x1024x32	~	~						
1600x1200x8	~	~						
1600x1200x16	~	~						
1600x1200x32		~						
1920x1440x8		~						
1920x1440x16		V						

Table 1. Supported CRT Screen Resolutions

PINOUTS

Figure 2. VT8603 / Twister Ball Diagram (Top View)

	10013	_	1 2		_				_	10		12	12	11	Diagra		_		10	20					2.5	26
Key	1 GND	2	3 v	4 GND	VCC	6	7	8	9	10	11	12	13	14	15	16	17	18	19 CPU	20	21	22	23	24	25	26
A	RGB	ÍN	OÛT	PLL1	PLL2	HD62	HD57	HD63	GND	HD45	HD38	HD34	HD31	HD16	HD13	HD3	HD12	GND	RST#	HA18	HA20	HA22	HA10	HA28	HA3	GND
В	GND DAC	GND	VCC PLL1	AGP_ BUSY#	GND PLL2	HD50	HD59	HD48	HD51	HD44	HD22	HD32	HD33	HD19	HD24	HD2	HD10	HD1	HA26	HA29	HA23	HA25	HA21	HA13	HA5	HA6
C	VCC DAC	RED	GOP0	STP AGP#	FP D35	HD60	HD55	GND	HD41	HD49	HD43	HD28	HD26	GND	HD20	HD9	HD5	HD4	GND	HA27	HA31	HA19	HA16	HA9	HA11	HA8
D	VCC RGB	BLUE	GREEN	GND	HD61	HD53	HD54	HD47	HD42	HD37	HD36	HD29	HD25	HD23	HD7	HD11	HD8	HD6	HD15	HA30	HA17	HA12	GND	HA4	HA14	BNR#
E	V SYNC	H SYNC	RSET	COMP	HD56	HD58	HD46	HD40	HD27	HD39	VCC 3	GTL REF	HD35	HD21	HD30	HD14	HD18	HD17	HD0	HA24	GTL REF	CPU RSTD#	HA7	HREQ 0#	HREQ 4#	BPRI#
F	EN VDD	SP DAT1	SP CLK1	STAND BY	SUS PEND	GND	VCC 3	HD52	VCC 25	VCC 3	DFT IN	VCC 3	GND	GND	BIST IN	GND	VCC 3	VCC 25	VCC 3	VCC 3	GND	HA15	HREQ 1#	HREQ 2#	HREQ 3#	DEFER#
G	FP GPIO	FPD0 TVD11	FP VS	FP CLK	FP HS	VCC 3	G 7	8	9	10	11	12	13	14	15	16	17	18	19	G20	VCC 3	HCLK	H LOCK#	HIT#	HT RDY#	HITM#
Н	FP D2	FPD1 TVD10	FP DE	FP D5	EN VEE	VCC 3	Н									CPU	Pins			Н	VCC A	VCC	RS0#	GND	RS2#	DBSY#
J	FP D4	FP D3	FPD08 TVD9	FP D7	FP D11	VCC 25	J		VCC 3	VCC 3	VCC 25	VCC 25	VCC 3	VCC 3	VCC 25	VCC 25	VCC 3	VCC 3		J	VCC 25	MCLK	D RDY#	ADS#	BREQ 0#	GND
K	FP D12	FP D10	FP D13	FP D20	FPD16 TVCKR	FP D6	K		VCC 3			<u>'</u>		<u>'</u>			_	VCC 3		K	VCC 3	MCLK F	RS1#	PLL TST	MD1	MD32
L	FPD17 TVBLK#	FP D15	FP D18	VCC 3	FPD09 TVD8	FP D14	L		VCC 25		GND	VCC3	GND	GND	VCC3	GND		VCC 25		L	GND A	GND A	MD33	MD35	MD3	MD2
M	FP D23	SP CLK2	SP DAT2	FP D21	FP D22	FP D19	M	Flat	VCC 25		VCC3	GND	GND	GND	GND	VCC3	1	VCC 25		M	GND	MD34	MD0	MD5	MD36	MD4
N	ZV D14	ZV D13	GND	ZV D15	ZV D12	GND	N	Panel	VCC		GND	GND	GND	GND	GND	GND		VCC		N	GND	MD39	MD37	MD7	MD38	MD6
P	GND	ZV D9	ZV D10	ZV D11	ZV D8	GND	P	Pins	VCC 3		GND	GND	GND	GND	GND	GND		VCC		P	GND	MD12	MD8	MD41	MD9	MD40
R	ZV D6	ZV D4	ZV D7	ZV D5	ZV D3	ZV D0	R		VCC 25		VCC3	GND	GND	GND	GND	VCC3		VCC 3		R	N/C	MD44	MD10	MD43	MD11	MD42
Т	ZV D2	ZV D1	ZV HS	VCC3	FPD25 TVD4	FPD24 TVD6	Т		VCC 25		GND	VCC3	GND	GND	VCC3	GND	1	VCC 25	DRAM	Т	GND	MD15	MD13	MD46	MD14	MD45
U	ZV VS	FPD27 TVD7	ZV CLK	FPD26 TVD5	FPD33 TVD2	VCC 5	U		VCC									VCC 25	Pins	U	VCC 3	SCAS A#	MD47	SWE	SWEB# CKE2	SWEC# CKE0
v	FPD28 TVD0	FPD29 TVD1		FPD32 TVCLK		VCC 25	v		VCC 3	VCC 25	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC		v	VCC 25	NC	DQM0 CAS0#	SCASC# CKE1	1	GND
W	VCCA	VCCA	FPD31	Yl	INTA#	VCC	w		3	PCI	Pins	3	23	3	23	3	3	3		w	CS5#	NC	DQM1	GND	DQM5	DQM4
Y	GNDA LVDS	VCC LVDS	GNDA	Y1 M	Y2 P	vçc	Y7	8	9	10	11	12	13	14	15	16	17	18	19	Y20	VCC 3	CS4#	CAS1# CS3# PAS3#	CS2# RAS2#	CAS5# CS1# PAS1#	CAS4# CS0# PAS0#
AA	LVDS GNDA	GND LVDS	Y0 P	Z2 P	Y2 M	GND	VCC 3	AD16	VCC 25	VCC	WSC#	GP OUT	GND	GND	GND	FP	vçc	VCC 25	MD58	VCC	GND	VSUS 25	MA0	SRAS	RAS1# SRASB#	SRASC#
AB	YC	VCCA	Y0	Z2	GNT	AD30	AD25	AD21	DEV	PAR	C/BE	AD10	AD7	AD5	PCLK	DET MD63	MD29	MD56	MD54	MD20	MD18	NC	MA1	A# MA4	CKE5# MA3	MA2
AC	YC YC	Z0	M Z1	M GND	0# REQ	AD29	AD24	AD23	SEL# AD17	I	1# AD15	AD11	AD6	AD4	P		MD60			MD52		SUSST#	GND	MA7	MA6	MA5
AD	M ZC	P Z0	P Z1 M	REQ	0# REQ	AD28	C/BE	GND	C/BE	RDY#	AD14	AD11	GND	PWR	REQ#			MD57	GND	1	MD50	MD16	DQM6	MA11	MA9	MA8
	P ZC	M GNT	GNT	3# REQ	LOCK#		3#		2# EDM#	RDY#				OK AD1	GNT# PCI								CAS6# DQM3	BA0 MA12		
AE	M	X# REO	3# GNT	2# GNT		AD27	AD20	AD19	FRM#	STOP#	AD13	AD8 C/BE	AD2	AD1	RST# PCK		MD59	MD26	MD55	MD22	MD19	MD48	CAS3# DOM7	MA12 BA1 DQM2	1	MA10
AF	GND	X#	2#	1#	AD31	AD26	AD22	AD18	GND	SERR#	AD12	0#	AD3	AD0	RUN#	MD62	MD28	GND	MD24	MD53	MD51	MD17	CAS7#	CAS2#	MA14	GND

Table 2. VT8603 / Twister Pin List (Numerical Order)

Pin#		Pin Name	Pin #		Pin Name	Pin		Pin Name	Pin #		Pin Name	Pin #	_	Pin Names	Pin #		Pin Name
A01	P	GNDRGB	D03	Α	GREEN	G05	О	FPHS	P01	P	GND	Y23	О	CS3# / RAS3#	AC25	_	MA06
A02	I	XIN	D04		GND	G06	P	VCC3	P02	I	ZVD09	Y24	О	CS2# / RAS2#	AC26		MA05
A03	O	XOUT GNDPLL1	D05 D06		HD61 HD53	G21	P	VCC3 HCLK	P03 P04	I	ZVD10 ZVD11	Y25 Y26	0	CS1# / RAS1#	AD01 AD02		ZCP
A04 A05	P P	VCCPLL2	D00		HD53 HD54	G22 G23	I I	HLOCK#	P04 P05	I I	ZVD11 ZVD08	AA01	P	CS0# / RAS0# GNDALVDS	AD02 AD03		Z0M Z1M
A06		HD62	D08	IO	HD47			HIT#	P06	P	GND	AA02	P	GNDLVDS	AD04		REQ3#
A07	IO	HD57	D09	IO	HD42			HTRDY#	P21	P		AA03	A	Y0P	AD05		REQ1#
A08		HD63	D10 D11	IO	HD37 HD36	G26	O	HITM# FPD02	P22			AA04		Z2P	AD06 AD07		
A09 A10	P IO	GND HD45	D11	IO	HD36 HD29	H01 H02	Ö	FPD02 FPD01 / TVD10	P23 P24			AA05 AA06		Y2M GND	AD07 AD08		C/BE3# GND
	IO	HD38	D13	IO	HD25	H03	Ö	FPDE	P25			AA07	P	VCC3	AD09	Ю	C/BE2#
A12		HD34	D14	IO	HD23	H04	О	FPD05	P26		MD40	AA08		AD16	11		TRDY#
A13 A14	IO	HD31 HD16	D15 D16	IO	HD07 HD11	H05	O P	ENVEE	R01 R02	I I	ZVD06 ZVD04	AA09	P	VCC25 VCC3	AD11 AD12		
A14		HD13	D10	IO	HD08	H06 H21	P	VCC3 VCCA	R03	I	ZVD04 ZVD07	AA10 AA11		WSC#	AD12		GND
A16		HD03	D18	IO	HD06	H22	P	VCCA	R04	Ì	ZVD05	AA12			AD14		PWROK
A17		HD12	D19	IO	HD15	H23	IO	RS0#	R05	I	ZVD03	AA13			AD15		PGNT#
A18 A19		GND CPURST#	D20 D21	10	HA30 HA17	H24 H25	P IO	GND RS2#	R06 R21	1	ZVD00 NC	AA14		GND GND	AD16 AD17		
A19 A20		HA18	D21	IO	HA12	H26	IO	DBSY#	R22	Ю		AA15 AA16	I	FPDET	AD17		
A21	IO	HA20	D23	P	GND	J01	О	FPD04	R23			AA17		VCC3 VCC25	AD19		GND
A22		HA22	D24	IO	HA04	J02	0	FPD03	R24			AA18	P	VCC25	AD20		
A23 A24		HA10 HA28	D25 D26		HA14 BNR#	J03 J04	0	FPD08 / TVD9 FPD07	R25 R26		MD11 MD42	AA19 AA20		MD58 VCC3	AD21 AD22		MD50 MD16
A25		HA03	E01		VSYNC	J05	o	FPD11	T01	I	ZVD02	AA21		GND	AD23		DQM6 / CAS6#
A26	P	GND	E02	О	HSYNC	J06	P	VCC25	T02	Ī	ZVD01	AA22		VSUS25	AD24		MA11 / BA0
B01		GNDDAC	E03	A	RSET	J21	P	VCC25	T03	I		AA23		MA00	AD25		MA09
B02	P P	GND VCCPLL1	E04 E05		COMP HD56	J22	O IO	MCLK DRDY#	T04 T05	P	VCC3 FPD25 / TVD4	AA24 AA25	0	SRASA# SRASB# / CKE5	AD26 AE01	O A	MA08 ZCM
B03 B04	IO	AGPBUSY#	E03	IO	HD58	J23 J24	IO	ADS#	T06		FPD23 / TVD4 FPD24 / TVD6	AA26	ő	SRASD# / CKE3 SRASC# / CKE4	AE01		GNTX#
B05		GNDPLL2	E07	IO	HD46	J25	О	BREO0#	T21	P	GND	AB01	Α	YCP	AE03	О	GNT3#
B06		HD50	E08		HD40	J26	P	GND	T22		MD15	AB02		VCCALPLL	AE04		REQ2#
B07 B08	IO	HD59 HD48	E09 E10		HD27 HD39	K01 K02	0	FPD12 FPD10	T23 T24			AB03 AB04	A A	Y0M Z2M	AE05 AE06		LOCK#
B09	IO	HD51	E11	P	VCC3	K02	ŏ	FPD13	T25			AB05			AE07		AD20
B10	IO	HD44	E12	P	GTLREF	K04	O	FPD20	T26		MD45	AB06	Ю	AD30	AE08	Ю	AD19
B11	IO	HD22 HD32	E13	IO	HD35	K05	0	FPD16 / TVCLKR	U01	I		AB07	IO	AD25	AE09		
B12 B13	IO	HD32 HD33	E14 E15	10	HD21 HD30	K06 K21	O P	FPD06 VCC3	U02 U03	O I	FPD27 / TVD7 ZVCLK	AB08	10		AE10 AE11		
B13	IO	HD19	E16	IO	HD14	K21	I	MCLKF	U04	Ô	FPD26 / TVD5	AB10	Ю	PAR	AE11		
B15	IO	HD24	E17	IO	HD18	K23	Ю	RS1#	U05		FPD33 / TVD2	AB11	Ю	C/BE1#	AE13	Ю	AD02
B16	IO	HD02	E18		HD17	K24	I	PLLTST	U06	P	VCC5	AB12			AE14		
B17 B18	IO IO	HD10 HD01	E19 E20		HD00 HA24		IO IO	MD01 MD32	U21 U22	P O	VCC3 SCASA#	AB13 AB14	10	AD07 AD05	AE15 AE16	IO	RESET# MD30
B19		HA26	E21			L01	0	FPD17 / TVBLK#	U23		MD47	AB15	Ī	PCLK	AE17		
B20	IO	HA29	E22		GTLREF CPURSTD#	L02	O	FPD15	U24	О	SWEA#	AB16	Ю	MD63 MD29	AE18	Ю	MD26
B21		HA23	E23		HA07	L03	0	FPD18	U25		SWEB# / CKE2	AB17	IO	MD29	AE19		
B22 B23		HA25 HA21	E24 E25		HREQ0# HREQ4#	L04 L05	P O	VCC3 FPD09 / TVD8	U26 V01	0	SWEC# / CKE0 FPD28 / TVD0	AB18		MD56 MD54	AE20 AE21		
B24		HA13	E26		BPRI#	L06	ŏ	FPD14	V01	ŏ	FPD29 / TVD1			MD20	AE22		
B25	Ю	HA05	F01		ENVDD	L21	P	GNDA	V03	O	FPD30 / TVD3	AB21		MD18	AE23	О	DQM3 / CAS3#
B26		HA06	F02		SPDAT1	L22	P	GNDA	V04	0	FPD32 / TVCLK		P	NC	AE24		MA12 / BA1
C01 C02	P A	VCCDAC RED	F03 F04	I	SPCLK1 STANDBY	L23	10	MD33 MD35	V05 V06	O P	FPD34 / TVHS VCC25	AB23 AB24	0	MA01 MA04	AE25 AE26		MA13 MA10
C03	О	GOP0	F05 F06	Ì	SUSPEND	L25	Ю	MD03	V21	P	VCC25	AB25	ŏ				
C04	I							MD03 MD02	V22	P	NC						GND REQX#
C05 C06		FPD35 HD60	F07 F08	P IO	VCC3 HD52	M01 M02	O IO	FPD23 SPCLK2	V23 V24	0	DOM0 / CAS0# SCASC# / CKE1	AC01 AC02	A A	YCM Z0P	AF03 AF04		GNT2# GNT1#
C06		HD60 HD55	F09	P	VCC25			SPDAT2	V24 V25	0	SCASE# / CKE1		A	ZIP	AF04 AF05		
C08		GND	F10	P	VCC3	M04		FPD21	V26	P	GND	AC04		GND			AD26
C09		HD41	F11	I	DFTIN	M05	0	FPD22	W01	P	VCCALVDS	AC05	I	REO0#	AF07		AD22
C10 C11		HD49 HD43	F12 F13	P P	VCC3 GND	M06 M21	O P	FPD19 GND	W02 W03	P O	VCCALVDS FPD31 / TVVS	AC06 AC07	IO IO	AD29 AD24	AF08 AF09		AD18 GND
C11		HD43 HD28	F13	P	GND GND			MD34	W03		Y1P	AC07		AD24 AD23			SERR#
C13	Ю	HD26	F15	I	BISTIN	M23	Ю	MD00	W05	O	INTA#	AC09	Ю	AD17	AF11	IO	AD12
C14		GND	F16	P	GND			MD05	W06	P	VCC3	AC10		IRDY#	AF12		C/BE0#
C15 C16		HD20 HD09	F17 F18	P P	VCC3 VCC25	M25 M26		MD36 MD04	W21 W22	O P	CS5# / RAS5# NC	AC11 AC12		AD15 AD11	AF13 AF14		AD03 AD00
C10		HD05	F19	P P	VCC3	N01	I	ZVD14	W23	O	DOM1 / CAS1#			AD11 AD06	AF15		PCKRUN#
C18	IO	HD04	F20	P	VCC3	N02	I	ZVD13	W24	P	GND	AC14	Ю	AD04	AF16	IO	MD62
C19		GND	F21		GND	N03	P	GND ZVD15	W25	0	DQM5 / CAS5#	AC15		PREQ#			MD28
C20 C21		HA27 HA31	F22 F23		HA15 HREQ1#	N04 N05	I I	ZVD15 ZVD12	W26 Y01	O P	DQM4 / CAS4# GNDALVDS	AC16 AC17		MD31 MD60	AF18 AF19		GND MD24
C21		HA19	F24		HREQ1# HREQ2#	N05	P	GND	Y02	P	VCCLVDS			MD25	AF20		MD53
C23	Ю	HA16	F25	Ю	HREQ3#	N21	P	GND	Y03	P	GNDALPLL	AC19	Ю	MD23	AF21	Ю	MD51
C24		HA09	F26		DEFER#	N22		MD39	Y04		Y1M	AC20		MD52	AF22		
C25 C26		HA11 HA08	G01 G02		FPGPIO FPD0 / TVD11	N23 N24		MD37 MD07	Y05 Y06	A P	Y2P VCC3	AC21 AC22	IO I	MD49 SUSST#	AF23 AF24	0	DQM7 / CAS7# DQM2 / CAS2#
D01	P	VCCRGB	G02		FPVS			MD38	Y21	P	VCC3	AC23		GND	AF25		MA14
D02		BLUE	G04	О	FPCLK			MD06	Y22	О	CS4# / RAS4#	AC24		MA07	AF26		GND

Center VCC3 Pins: J9-10,13-14,17-18, K9,18, L12,15, M11,16, N9,18, P9,18, R11,16,18, T12,15, U9, V9,11-12,14,16-18

Center VCC25 Pins: J11-12,15-16, L9,18, M9,18, R9, T9,18, U18, V10,13,15

Center GND Pins: L11,13,14,16, M12-15, N11-16, P11-16, R12-15, T11, 13,14,16

Table 3. VT8603 / Twister Pin List (Alphabetical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin	Pin #		Pin Name	Pin#		Pin Names	Pin#		Pin Name
AF14		AD00	K01	О	FPD12	AB05	О	GNT0#	E08	Ю	HD40			MD26	F09	P	VCC25
AE14		AD01	K03	О	FPD13	AF04	O	GNT1#	C09		HD41			MD27	F18	P	VCC25
AE13		AD02	L06	0	FPD14	AF03	O	GNT2#	D09	IO	HD42			MD28	J06	P	VCC25
AF13 AC14		AD03 AD04	L02 K05	0	FPD16 / TVCL KP	AE03 AE02	0	GNT3# GNTX#	C11 B10	IO	HD43 HD44			MD29 MD30	J21 V06	P P	VCC25 VCC25
AB14		AD05	L01	o	FPD16 / TVCLKR FPD17 / TVBLK#	C03	0	GOP0	A10		HD45			MD31	V00 V21	P	VCC25 VCC25
AC13		AD06	L03	ŏ	FPD18	AA12	ŏ	GPOUT	E07		HD46	K26		MD32	AA09	P	VCC25
AB13		AD07	M06	О	FPD19	D03	Α	GREEN	D08	Ю	HD47	L23		MD33	AA18	P	VCC25
AE12		AD08	K04	0	FPD20	E12	P	GTLREF	B08		HD48			MD34	E11	P	VCC3
AD12		AD09 AD10	M04 M05	0	FPD21 FPD22	E21 A25	P IO	GTLREF HA03	C10		HD49 HD50			MD35 MD36	F07 F10	P	VCC3
AB12 AC12		AD11	M01	0	FPD23	D24	IO	HA04	B06 B09		HD50 HD51			MD37	F10 F12	P P	VCC3 VCC3
AF11		AD12	T06	ŏ	FPD24 / TVD6	B25	IO	HA05	F08	-	HD52			MD38	F17	P	VCC3
AE11		AD13	T05	О	FPD25 / TVD4	B26	IO	HA06	D06	Ю	HD53	N22		MD39	F19	P	VCC3
AD11		AD14	U04		FPD26 / TVD5	E23	IO	HA07	D07		HD54	P26		MD40	F20	P	VCC3
AC11 AA08		AD15 AD16	U02 V01	0	FPD27 / TVD7 FPD28 / TVD0	C26 C24	IO IO	HA08 HA09	C07 E05		HD55 HD56	P24 R26		MD41 MD42	G06 G21	P P	VCC3 VCC3
AC09		AD17	V01 V02	o	FPD29 / TVD1	A23	IO	HA10	A07		HD57	R24		MD43	H06	P	VCC3
AF08		AD18	V03	ŏ	FPD30 / TVD3	C25	IO	HA11	E06	IO	HD58			MD44	K21	P	VCC3
AE08		AD19	W03	О	FPD31 / TVVS	D22	IO	HA12	B07		HD59			MD45	L04	P	VCC3
AE07	IO	AD20	V04	0	FPD32 / TVCLK	B24	IO	HA13	C06		HD60	T24		MD46	T04	P	VCC3
AB08 AF07		AD21 AD22	U05 V05	0	FPD33 / TVD2 FPD34 / TVHS	D25 F22	IO IO	HA14 HA15	D05 A06		HD61 HD62			MD47 MD48	U21 W06	P P	VCC3 VCC3
AC08		AD23	C05	Ю	FPD34 / IVHS	C23	IO	HA16	A08	IO	HD63	AC21		MD49	Y06	P	VCC3
AC07		AD24	H03	0	FPDE	D21	IO	HA17	G24		HIT#			MD50	Y21	P	VCC3
AB07	Ю	AD25	AA16	I	FPDET	A20	IO	HA18	G26	I	HITM#	AF21		MD51	AA07	P	VCC3
AF06		AD26	G01	-	FPGPIO	C22	IO	HA19	G23		HLOCK#			MD52	AA10	P	VCC3
AE06 AD06		AD27 AD28	G05 G03	0	FPHS FPVS	A21 B23	IO IO	HA20 HA21	E24 F23		HREQ0# HREQ1#			MD53 MD54	AA17 AA20	P P	VCC3 VCC3
AC06		AD29	AE09	Ю	FRAME#	A22	IO	HA22	F24		HREQ1# HREQ2#			MD55	U06	P	VCC5
AB06		AD30	A09	P	GND	B21	IO	HA23	F25		HREO3#			MD56	H21	P	VCCA
		AD31	A18	P	GND	E20	IO	HA24	E25		HREQ4#			MD57	H22	P	VCCA
J24	IO	ADS#	A26	P	GND	B22	IO	HA25	E02	0	HSYNC			MD58 MD59	C01	P	VCCDAC
B04 F15	IO I	AGPBUSY# BISTIN	B02 C08	P P	GND GND	B19 C20	IO IO	HA26 HA27	G25 W05	0	HTRDY# INTA#			MD60	AB02 W01	P	VCCALPLL VCCALVDS
D02	Ā	BLUE	C14	P	GND	A24	ΙÖ	HA28	AC10		IRDY#			MD61	W02	P	VCCALVDS
D26	Ю	BNR#	C19	P	GND	B20	IO	HA29	AE05	Ю	LOCK#		Ю	MD62	B03	P	VCCPLL1
E26	IO	BPRI#	D04	P	GND	D20	IO	HA30	AA23	0	MA00		IO		A05	P	VCCPLL2
J25 AF12	O IO	BREO0# C/BE0#	D23 F06	P P	GND GND	C21 G22	IO	HA31 HCLK	AB23 AB26	0	MA01 MA02	R21 V22		NC NC	D01 Y02	P	VCCRGB VCCLVDS
AB11		C/BE1#	F13	P	GND	E19	IO	HD00	AB25	ŏ	MA03	W22		NC	AA22	P	VSUS25
AD09	Ю	C/BE2#	F14	P	GND	B18	IO	HD01	AB24	О	MA04	AB22		NC	E01	О	VSYNC
	IO	C/BE3#	F16	P	GND	B16	IO	HD02	AC26	0	MA05	AB10		PAR	AA11	Ō	WSC#
E04 A19	A O	COMP CPURST#	F21 H24	P P	GND GND	A16 C18	IO IO	HD03 HD04	AC25 AC24	0	MA06 MA07	AF15 AB15	IO	PCKRUN# PCLK	A02 A03	O	XIN XOUT
E22	ŏ	CPURSTD#	J26	P	GND	C17	IO	HD05	AD26	ŏ	MA08	AD15		PGNT#	AB03	A	Y0M
Y26	О	CS0# / RAS0#	M21	P	GND	D18	IO	HD06	AD25	О	MA09	K24	I	PLLTST	AA03	Α	Y0P
Y25	0	CS1# / RAS1#	NO3	P	GND	D15	IO	HD07	AE26	0	MA10	AC15		PREQ#	Y04	A	Y1M
Y24 Y23	0	CS2# / RAS2# CS3# / RAS3#	N06 N21	P P	GND GND	D17 C16	IO IO	HD08 HD09	AD24 AE24	0	MA11 / BA0 MA12 / BA1	AD14 C02	I A	PWROK RED	W04 AA05	A A	Y1P Y2M
Y22	o	CS4# / RAS4#	P01	P	GND	B17	IO	HD10	AE25	ŏ	MA13	AC05	I	REQ0#	Y05	A	Y2P
W21	О	CS5# / RAS5#	P06	P	GND	D16	IO	HD11	AF25	О	MA14	AD05	I	REQ1#	AC01	Α	YCM
H26	IO	DBSY#	P21	P	GND	A17	IO	HD12	J22	Ō	MCLK	AE04		REO2#	AB01	A	YCP
F26		DEFER# DEVSEL#	T21 V26	P P	GND GND	A15 E16	IO IO	HD13 HD14	K22	I	MCLKF MD00	AD04 AF02		REO3# REOX#	AD02 AC02	A A	Z0M Z0P
			W24		GND	D19		HD15	K25					RESET#	AD03		Z1M
V23	О	DOM0 / CAS0#	AA06	P	GND	A14	IO	HD16	L26	Ю	MD02	H23	Ю	RS0#	AC03	A	Z1P
W23	0	DQM1 / CAS1#	AA13	P	GND	E18	IO	HD17	L25		MD03			RS1#	AB04	A	Z2M
AF24 AE23	0	DQM2 / CAS2# DQM3 / CAS3#	AA14	P	GND	E17 B14	IO IO	HD18 HD19	M26 M24		MD04 MD05	H25 E03	A	RS2# RSET	AA04 AE01	A A	Z2P ZCM
W26	o	DOM4 / CAS4#	AA15 AA21	P P	GND GND	C15	IO	HD20	N26	-	MD06	U22		SCASA#	AD01	A	ZCP
W25	ŏ	DQM5 / CAS5#	AC04	P	GND	E14	IO	HD21	N24		MD07	V25		SCASB# / CKE3	U03	I	ZVCLK
AD23		DOM6 / CAS6#	AC23		GND	B11	IO	HD22	P23		MD08	V24		SCASC# / CKE1	R06	Ĭ	ZVD00
AF23 J23	O IO	DQM7 / CAS7# DRDY#	AD13	P	GND	D14	IO	HD23 HD24	P25		MD09			SERR# SPCLK1	T02	I	ZVD01
F01	0	ENVDD	AD13 AD19	P P	GND GND	B15 D13	IO IO	HD24 HD25	R23 R25		MD10 MD11			SPCLK1 SPCLK2	T01 R05	I	ZVD02 ZVD03
H05	О	ENVEE	AF01		GND	C13	IO	HD26	P22		MD12			SPDAT1	R02	Ì	ZVD04
G04	0	FPCLK	AF09	P	GND	E09	IO	HD27	T23		MD13			SPDAT2	R04	Ĭ	ZVD05
G02 H02	0	FPD0 / TVD11 FPD01 / TVD10	AF18 AF26	P P	GND GND	C12 D12	IO IO	HD28 HD29	T25 T22		MD14 MD15	AA24 AA25		SRASA# SRASB# / CKE5	R01 R03	I	ZVD06 ZVD07
H01	o	FPD01 / 1 VD10	L21	P	GNDA	E15	IO	HD30	AD22		MD16	AA26		SRASC# / CKE4	P05	I	ZVD07 ZVD08
J02	ŏ	FPD03	L22	P	GNDA	A13	IO	HD31	AF22	Ю	MD17	F04		STANDBY	P02	I	ZVD09
J01	О	FPD04	Y03	P	GNDALPLL	B12	IO	HD32	AB21	-	MD18			STOP#	P03	I	ZVD10
H04	0	FPD05	AA01		GNDALVDS	B13	IO	HD33			MD19	C04		STPAGP#	P04	I	ZVD11
K06 J04	0	FPD06 FPD07	Y01 B01	P	GNDALVDS GNDDAC	A12 E13	IO IO	HD34 HD35	AB20 AD20		MD20 MD21	F05 AC22		SUSPEND SUSST#	N05 N02	I	ZVD12 ZVD13
J03	o	FPD08 / TVD9	AA02	P	GNDLVDS	D11	IO	HD36	AE20			U24	_	SWEA#	N01	I	ZVD13 ZVD14
L05	О	FPD09 / TVD8	A04	P	GNDPLL1	D10	IO	HD37	AC19	Ю	MD23	U25	O	SWEB# / CKE2	N04	I	ZVD15
K02	0	FPD10	B05		GNDPLL2	A11	IO	HD38	AF19					SWEC# / CKE0	T03	I	ZVHS
J05	0	FPD11	A01	ľ	GNDRGB	E10	IO	HD39	AC18	IU	MD25	AD10	W	TRDY#	U01		ZVVS

Center VCC3 Pins: J9-10,13-14,17-18, K9,18, L12,15, M11,16, N9,18, P9,18, R11,16,18, T12,15, U9, V9,11-12,14,16-18

Center VCC25 Pins: J11-12,15-16, L9,18, M9,18, R9, T9,18, U18, V10,13,15 Center GND Pins: L11,12

Center GND Pins: L11,13,14,16, M12-15, N11-16, P11-16, R12-15, T11, 13,14,16

PIN DESCRIPTIONS

Table 4. VT8603 / Twister Pin Descriptions

Signal Name Pin # I/O Signal Description HA[31:3]# (see pinout tables) IO Host Address Bus. HA[31:3] connect to the address bus of the cycles HA[31:3] are inputs. These signals are driven by the Twis operations. HD[63:0]# (see IO Host CPU Data. These signals are connected to the CPU data but the cycles are driven by the Twis operations.	
pinout tables) cycles HA[31:3] are inputs. These signals are driven by the Twis operations. HD[63:0]# (see IO Host CPU Data. These signals are connected to the CPU data by	
pinout tables)	us.
ADS# J24 IO Address Strobe. The CPU asserts ADS# in T1 of the CPU bus c	
BNR# D26 IO Block Next Request. Used to block the current request bus requests. This signal is used to dynamically control the processor	
BPRI# E26 IO Priority Agent Bus Request. The owner of this signal will alwa This signal has priority over symmetric bus requests and caus owner to stop issuing new transactions unless the HLOCK# signal drives this signal to gain control of the processor bus.	ses the current symmetric al is asserted. The Twister
DBSY# H26 IO Data Bus Busy. Used by the data bus owner to hold the data bus more than one cycle.	ous for transfers requiring
DEFER# F26 IO Defer . The Twister uses a dynamic deferring policy to optimize Twister also uses the DEFER# signal to indicate a processor retry	
DRDY# J23 IO Data Ready . Asserted for each cycle that data is transferred.	
HIT# G24 IO Hit. Indicates that a caching agent holds an unmodified version of driven in conjunction with HITM# by the target to extend the sno	
HITM# G26 I Hit Modified. Asserted by the CPU to indicate that the address assertion of EADS# is modified in the L1 cache and needs to be well.	
HLOCK# G23 I Host Lock. All CPU cycles sampled with the assertion of HLOC negation of HLOCK# must be atomic.	
HREQ[4:0]# E25, F25, F24, F23 E24 Request Command. Asserted during both clocks of the request the signals define the transaction type to a level of detail that is s request. In the second clock, the signals carry additional in complete transaction type.	sufficient to begin a snoop
HTRDY# G25 IO Host Target Ready. Indicates that the target of the processor to the data transfer phase.	ransaction is able to enter
RS[2:0]# H25, K23 H23 H23 H23 Response Signals. Indicates the type of response per the table be RS[2:0]# Response type 000 Idle State 001 Retry Response 010 Defer Response 011 Reserved 100 Hard Failure 101 Normal Without Data 110 Implicit Writeback 111 Normal With Data	elow:
CPURST# A19 O CPU Reset. Reset output to CPU. External pullup and filter capa provided per CPU manufacturer's recommendations.	acitor to ground should be
CPURSTD# E22 O CPU Reset Delayed. CPU reset output delayed by 2T.	
BREQ0# J25 O Bus Request 0. Bus request output to CPU.	

Note: Clocking of the CPU interface is performed with HCLK.

Note: Internal pullup resistors are provided on all GTL interface pins. If the CPU does not have internal pullups, these north bridge internal pullups may be enabled to allow the interface to meet GTL bus interface specifications (see MA6 strap description).

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

]	DRAM Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(see pinout tables)	IO	Memory Data. These signals are connected to the DRAM data bus.
MA14 /graphics strap MA13 /graphics strap MA12 / BA1 / strap, MA11 / BA0 / strap, MA10 MA9 / strap, MA8 / strap, MA7 / strap, MA6 / strap, MA6 / strap, MA5 / strap, MA4 / graphics strap, MA4 / graphics strap, MA3 / graphics strap, MA1 / graphics strap, MA1 / graphics strap,	AF25 AE25 AE24 AD24 AE26 AD25 AD26 AC24 AC25 AC26 AB24 AB25 AB26 AB23	O/I	Memory Address. DRAM address lines / strap options MA12 strap – Host Freq Select lsb (see MA8 below for msb) MA11 strap – IOQ Level (0=4-level, 1=1-level) MA9 strap – Clock select (0=Use PLLs, 1=Clocks on XIN/PD10 pins) MA8 strap – Host Freq Select msb (00=66, 01=100, 10=auto, 11=133) MA7 strap – Graphics Test Mode (0=Normal, 1=Test) MA6 strap – GTL Internal Pullups (0=Enable, 1=Disable) MA5 strap – PCI Frequency (0=33 MHz, 1=66 MHz) MA4 strap – Graphics PCI Interrupt (0=Enable, 1=Disable) MA3 strap – Graphics I/O (0=Enable, 1=Disable) MA2 strap – Graphics PCI Base Address (0=Map0, 1=Map1) MA14,13,1,0 – Graphics OEM-Defined Panel Type (Note: all non-graphics straps default to 0 if not connected to a strap
MA0 / graphics strap CS[5:0]# RAS[5:0]#	AA23 W21, Y22 Y23, Y24 Y25, Y26	О	resistor. See Table 9 for graphics strap definitions and defaults.) Chip Select. (Synchronous DRAM) Chip select of each bank. RAS. (FPG/EDO DRAM)
DQM[7:0] CAS[7:0]#	AF23, AD23, W25, W26, AE23, AF24, W23, V23	0	Data Mask. (Synchronous DRAM) Data mask of each byte lane CAS. (FPG/EDO DRAM)
SRASA# SRASB# / CKE5 SRASC# / CKE4	AA24 AA25 AA26	0	Row Address Command Indicator. For support of up to three synchronous DRAM DIMM slots. "A" controls banks 0-1 (module 0), "B" controls banks 2-3 (module 1) and "C" controls banks 4-5 (module 2).
SCASA# SCASB# / CKE3 SCASC# / CKE1	U22 V25 V24	0	Column Address Command Indicator. For support of up to three synchronous DRAM DIMM slots. "A" controls banks 0-1 (module 0), "B" controls banks 2-3 (module 1) and "C" controls banks 4-5 (module 2).
SWEA# / MWEA SWEB# / MWEB#/CKE2 SWEC# / MWEC#/CKE0	U24 U25 U26	О	Write Enable Command Indicator. For support of up to three synchronous DRAM DIMM slots. Used as MWE# for FPG/EDO memory. "A" controls banks 0-1 (module 0), "B" controls banks 2-3 (module 1) and "C" controls banks 4-5 (module 2).
CKE0 / SWEC# CKE1 / SCASC# CKE2 / SWEB# CKE3 / SCASB# CKE4 / SRASC# CKE5 / SRASB#	U26 V24 U25 V25 AA26 AA25	О	SDRAM Clock Enables. Clock enables for each DRAM bank for powering down the SDRAM or clock control for reducing power usage and for reducing heat / temperature in high-speed memory systems.

			PCI Bus Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
AD[31:0]	(see	IO	Address/Data Bus. The standard PCI address and data lines. The address is
	pinout		driven with FRAME# assertion and data is driven or received in following
	tables)		cycles.
CBE[3:0]#	AD7, AD9, AB11,	IO	Command/Byte Enable. Commands are driven with FRAME# assertion.
	AF12		Byte enables corresponding to supplied or requested data are driven on following clocks.
FRAME#	AE9	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
IRDY#	AC10	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.
TRDY#	AD10	IO	Target Ready. Asserted when the target is ready for data transfer.
STOP#	AE10	IO	Stop. Asserted by the target to request the master to stop the current transaction.
DEVSEL#	AB9	IO	Device Select. This signal is driven by the Twister when a PCI initiator is
			attempting to access main memory. It is an input when the Twister is acting as a PCI initiator.
PAR	AB10	IO	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0].
SERR#	AF10	IO	System Error. The Twister will pulse this signal when it detects a system error condition.
LOCK#	AE5	IO	Lock. Used to establish, maintain, and release resource lock.
PREQ#	AC15	I	South Bridge Request. This signal comes from the South Bridge. PREQ# is the South Bridge request for the PCI bus.
PGNT#	AD15	О	South Bridge Grant. This signal driven by the Twister to grant PCI access to the South Bridge.
REQ[3:0]#	AD4, AE4, AD5, AC5	I	PCI Master Request. PCI master requests for PCI.
GNT[3:0]#	AE3, AF3, AF4, AB5	О	PCI Master Grant. Permission is given to the master to use PCI.
REQX#	AF2	I	PCI Master Request. PCI master request for PCI.
GNTX#	AE2	О	PCI Master Grant. Permission is given to the master to use PCI.
PCLK	AB15	I	PCI Clock. From external clock generator.
PCKRUN#	AF15	IO	PCI Clock Run. May be used to stop PCI clock.
INTA#	W5	0	PCI Interrupt Out. An asynchronous active low output used to signal an event that requires handling on behalf of the internal integrated graphics controller. If MA2 is strapped high at reset (clearing CR36[0]) no interrupt will be requested during PCI configuration. The default drive strength is 24 mA (other drive strengths may be selected via CR80[1-0]).
WSC#	AA11	0	Write Snoop Complete. Sideband PCI signal (used on the planar only in multiprocessor configurations) asserted to indicate that all snoop activity on the CPU bus initiated by the last PCI-to-DRAM write is complete and that it is safe to send an APIC interrupt message. Basically this signal is always active except when PCI master write data is not flushed.

LCD Panel Interface				
Signal Name	Pin#	<u>I/O</u>	Signal Description	
FPD[35:0]	(see pin table)	О	Panel Data. Internally pulled down during reset. 8mA is the default. 16mA is selected via SR3D[6]=1.	
FPDET	AA16	I	Panel Detect. If SR30[1]=0, SR30[2] will read 1 if a Flat Panel is appropriately connected. Must be tied to GND if not used.	
FPVS	G3	0	Panel VSYNC. Internally pulled down.	
FPHS	G5	0	nel HSYNC. Internally pulled down.	
FPDE	Н3	0	Panel Data Enable. Internally pulled down.	
FPCLK	G4	О	nel Clock. Internally pulled down during reset. 8mA is the default. 16mA may also be ected.	
ENVDD	F1	О	Enable VDD. This signal is driven high to external logic to initiate a flat panel power up sequence.	
ENVEE	Н5	О	Enable VEE. This signal is driven high to a programmable time after ENVDD is driven high during a flat panel power up sequence.	
FPGPIO	G1	I/O	General Purpose Input / Output.	

TV Encoder Interface			
Signal Name	Pin #	<u>I/O</u>	Signal Description
TVD[11:0]	(see pin table)	О	TV Encoder Data. Internally pulled down during reset
TVCLK	V4	I	TV Encoder Clock. Input clock from encoder. Internally pulled down.
TVCLKR	K5	0	TV Encoder Return Clock. Output clock to TV encoder. Internally pulled down.
TVVS	W3	О	TV Encoder VSYNC. Internally pulled down during reset
TVHS	V5	О	TV Encoder HSYNC. Internally pulled down during reset
TVBLK#	L1	О	TV Encoder Blanking. Internally pulled down during reset

CRT Interface				
Signal Name Pin # I/O Signal Description				
RSET	Е3	A	Reference Resistor. Tie to GNDRGB through an external 140Ω resistor to control the RAMDAC full-scale current value.	
COMP	E4	A	Compensation. Tie to VCC25 through a 0.1 μF capacitor.	
RED	C2	Α	Analog Red. Analog red output to the CRT monitor.	
BLUE	D2	Α	Analog Blue. Analog blue output to the CRT monitor.	
GREEN	D3	A	Analog Green. Analog green output to the CRT monitor.	
HSYNC	E2	О	Horizontal Sync. Output to CRT.	
VSYNC	E1	О	Vertical Sync. Output to CRT.	

LVDS Interface			
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
Y[2:0]P	Y5, W4, AA3	A	LVDS Data Positive Output.
Y[2:0]M	AA5, Y4, AB3	A	LVDS Data Negative Output.
YCP	AB1	A	LVDS Clock Positive Output.
YCM	AC1	A	LVDS Clock Negative Output.
Z[2:0]P	AA4, AC3, AC2	A	2 nd LVDS Data Positive Output.
Z[2:0]M	AB4, AD3, AD2	A	2 nd LVDS Data Negative Output.
ZCP	AD1	A	2 nd LVDS Clock Positive Output.
ZCM	AE1	A	2 nd LVDS Clock Negative Output.

ZV-Port Video Capture Interface				
Signal Name	<u>Pin #</u>	<u>IO</u>	Signal Description	
ZVD[15:0]	(see pin table)	I	ZV-Port Data Bus. Video Input	
ZVCLK	U3	I	ZV-Port Clock.	
ZVHS	Т3	I	ZV-Port Horizontal Sync.	
ZVVS	U1	I	ZV-Port Vertical Sync.	

	Miscellaneous Functions			
Signal Name	Name Pin # I/O Signal Description			
XIN	A2	I	Reference Frequency Input. An external 14.318 MHz crystal is connected between XOUT and this pin. Alternatively, an external oscillator can be connected.	
XOUT	A3	О	Crystal Output. This pin drives the crystal via an internal oscillator. If an external oscillator is connected to XIN, this pin can be left unconnected.	
SPCLK[2:1]	M2, F3	Ю	Serial Port Clocks. These are the clocks for serial data transfer. SPCLK1 is typically used for I^2C communications. As an output, it is programmed via CRA0[0]. As an input, its status is read via CRA0[2]. In either case the serial port must be enabled by CRA0[4] = 1. SPCLK2 is typically used for DDC monitor communications. As an output, it is programmed via CRB1[0]. As an input, its status is read via CRB1[2]. The port is enabled via CRB1[4] = 1.	
SPDAT[2:1]	M3, F2	Ю	Serial Port Data. These are the data signals used for serial data transfer. SPDAT1 is typically used for I^2C communications. As an output, it is programmed via CRA0[1]. As an input, its status is read via CRA0[3]. In either case the serial port must be enabled by CRA0[4] = 1. SPDAT2 is typically used for DDC monitor communications. As an output, it is programmed via CRB1[1]. As an input, its status is read via CRB1[3]. The port is enabled via CRB1[4] = 1.	
GPOUT	AA12	О	General Purpose Output. This pin reflects the state of SRD[0].	
GOP0	C3	0	General Output Port. When SR1A[4] is cleared, this pin reflects the state of CR5C[0].	
STPAGP#	C4	I	Stop AGP. Power management for internal AGP.	
AGPBUSY#	B4	I/O	AGP Busy. Power management for internal AGP.	
STANDBY	F4	I	Standby. Used to put the integrated graphics controller in the standby state.	
SUSPEND	F5	I	Suspend. Used to put the integrated graphics controller in the suspend state.	
SUSST#	AC22	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable.	

	Clock / Reset Control					
Signal Name	Pin#	<u>I/O</u>	Signal Description			
HCLK	G22	I	Host Clock. This pin receives the host CPU clock (66 / 100 / 133 MHz). This clock			
PCLK	AB15	I	PCI Clock. This pin receives a buffered host clock divided-by-2, 3, or 4 to create 33 MHz. This clock is used by all of the Twister logic that is in the PCI clock domain. This clock input must be 33 MHz maximum to comply with PCI specification equirements and must be synchronous with the host CPU clock, HCLK, with an HCLK:PCLK frequency ratio of 2:1, 3:1, or 4:1 as shown in the table below. The lost CPU clock must lead the PCI clock by 2.0 ± 1.0 nsec. Cypical Clock Frequency Combinations Rx68[1:0] Mode Host Clock AGP Clock PCI Clock PCI Clock			
			00 2x 66 MHz 66 MHz 33 MHz 01 3x 100 MHz 66 MHz 33 MHz 10 4x 133 MHz 66 MHz 33 MHz 11 Reserved			
MCLK	J22	О	DRAM Clock. Output from internal clock generator to the external clock buffer.			
MCLKF	K22	I	DRAM Clock Feedback. Input from the external clock buffer.			
RESET#	AE15	I	Reset. Input from South Bridge chip. When asserted, this signal resets the Twister and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options			
PWROK	AD14	I	Power OK. Connect to South Bridge and Power Good circuitry.			
CPURST#	A19	О	CPU Reset. GTL output level.			
CPURSTD#	E22	O	CPU Reset Delayed. Reset output delayed by 2T.			

	Power, Ground, and Test			
Signal Name	Pin #	<u>I/O</u>	Signal Description	
VCC3	(see pin list)	P	Power for I/O Interface Logic (3.3V ±5%).	
VCC25	(see pin list)	P	Power for Internal Logic $(2.5V \pm 5\%)$.	
VCC5	U6	P	Power for 5V Input Tolerance (5V ±5%).	
VSUS25	AA22	P	Suspend Power $(2.5V \pm 5\%)$.	
VCCRGB	D1	P	Power for CRT $(2.5V \pm 5\%)$.	
VCCA	H21, H22	P	Power for Analog (2.5V ±5%)	
VCCDAC	C1	P	Power for DAC Digital Logic (2.5V ±5%)	
VCCPLL1	В3	P	Power for PLL1 (2.5V ±5%).	
VCCPLL2	A5	P	Power for PLL2 (2.5V ±5%).	
VCCALPLL	AB2	P	Analog Power for LVDS PLL (2.5V ±5%).	
VCCALVDS	W1, W2	P	Analog Power for LVDS (3.3V ±5%).	
VCCLVDS	Y2	P	Digital Power for LVDS (2.5V ±5%).	
GND	(see pin table)	P	Ground	
GNDA	L21, L22	P	Ground for North Bridge Host CPU Clock Circuitry. Connect to main ground	
			plain through a ferrite bead.	
GNDRGB	A1	P	Connection point for RGB load resistors	
GNDDAC	B1	P	Ground for DAC Analog Circuitry	
GNDPLL1	A4	P	Ground for PLL1	
GNDPLL2	B5	P	Ground for PLL2	
GNDALPLL	Y3	P	Ground for LVDS PLL	
GNDALVDS	Y1, AA1	P	Ground for LVDS Analog Circuitry	
GNDLVDS	AA2	P	Ground for LVDS Digital Circuitry	
GTLREF	E12, E21	P	CPU Interface GTL+ Voltage Reference. 2/3 VTT ±2%	
PLLTST	K24	I	PLL Test Input. Pull down with 4.7K resistor for normal operation.	
BISTIN	F15	I	BIST In. This pin is used for testing and must be left unconnected or tied high on all	
			board designs.	
DFTIN	F11	I	DFT In. This pin is used for testing and must be left unconnected or tied high on all	
			board designs.	
NC	R21, V22,	-	No Connect. Reserved for future use. Do not connect.	
	W22, AB22			

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the Twister. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

The graphics registers are described in a separate document.

Table 5. VT8603 / Twister Registers

Twister I/O Ports

Port #	I/O Port	Default	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

Twister Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0605	RO
5-4	Command	0006	\mathbf{RW}
7-6	Status	0210	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
C	-reserved-	00	
D	Latency Timer	00	\mathbf{RW}
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	RW
14-2B	-reserved-	00	
2D-2C	Subsystem Vendor ID	0000	W1
2F-2E	Subsystem ID	0000	W1
30-33	-reserved-	00	
37-34	Canability Pointer	0000 0080	RO
38-3F	-reserved-	00	

Device-Specific Registers

Offset	Host CPU Protocol Control	Default	Acc
40-4F	-reserved-	00	_
50	Request Phase Control	00	RW
51	Response Phase Control	00	RW
52	Dvnamic Defer Timer	10	RW
53	Miscellaneous 1	03	RW
54	Miscellaneous 2	00	RW
55-57	-reserved-	00	

Offset	DRAM Control	Default	Acc
59-58	MA Man Type	0000	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E	Bank 4 Ending (HA[31:24])	01	RW
5F	Bank 5 Ending (HA[31:24])	01	RW
60	DRAM Type	undefined	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for Banks 0.1	EC	RW
65	DRAM Timing for Banks 2.3	EC	RW
66	DRAM Timing for Banks 4.5	EC	RW
67	-reserved-	00	
68	DRAM Control	00	RW
69	DRAM Clock Control	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	01	RW
6C	SDRAM Control	00	RW
6D	DRAM Control Drive Strength	00	RW
6E-6F	-reserved-	00	RW

Device-Specific Registers (continued)

Offset	PCI Bus Control	Default	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control 1	00	RW
72	CPU to PCI Flow Control 2	00	WC
73	PCI Master Control 1	00	RW
74	PCI Master Control 2	00	RW
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77	Chip Test (do not program)	00	RW
78	PMU Control	00	RW
79	PMU Control	00	RW
7A	Miscellaneous Control 1	00	RW
7B	Miscellaneous Control 2	02	RW
7C-7D	-reserved-	00	
7E-7F	PLL Test Mode (do not program)	00	RW

Offset	GART/TLB Control	Default	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85-87	-reserved-	00	
8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
	-reserved-	00	

Offset	AGP Control	Default	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	00	RO
A2	AGP Specification Revision	20	RO
A3	-reserved-	00	
A7-A4	AGP Status	1F00 0204	RO
AB-A8	AGP Command	0000 0000	RW
AC	AGP Control	00	RW
AD	AGP Latency Timer	02	RW
AE	AGP Miscellaneous Control	00	RW
AF	-reserved-	00	
B0	AGP Compensation Control / Status	8x	RW
B1	AGP Drive Strength	63	RW
B2	AGP Pad Drive & Delay Control	00	RW
B3-BF	-reserved-	00	

Offset	Power Mgt. &Misc. Control	Default	Acc
C0	Power Management Capability	01	RO
C1	Power Management New Pointer	00	RO
C2	Power Management Capabilities I	02	RO
C3	Power Management Capabilities II	00	RO
C4	Power Management Control/Status	00	RW
C5	Power Management Status	00	RO
C6	PCI-to-PCI Bridge Support Extension	00	RO
C7	Power Management Data	00	RO
C8-DF	-reserved-	00	_
E0	Miscellaneous Control	00	RW
E1-EF	-reserved-	00	_
F7-F0	BIOS Scratch Registers	00	RW
F8	DRAM Arbitration Timer Control	00	RW
F9	VGA Timer Control	00	RW
FA	CPU Direct Access FB Address	00	RW
FB	Frame Buffer Size	00	RW
FC	Back-Door Control 1	00	RW
FD	Back-Door Control 2	00	RW
FF-FE	Back-Door Device ID	0000	RW

<u>Twister Device 1 Registers - PCI-to-PCI Bridge</u>

Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	8605	RO
5-4	Command	0007	RW
7-6	Status	0230	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
A	Sub Class Code	04	RO
В	Base Class Code	06	RO
C	-reserved-	00	
D	Latency Timer	00	RO
Е	Header Type	01	RO
F	Built In Self Test (BIST)	00	RO
10-17	-reserved-	00	_
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	RW
1A	Subordinate Bus Number	00	RW
1B	Secondary Latency Timer	00	RO
1C	I/O Base	F0	RW
1D	I/O Limit	00	RW
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	RW
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	RW
28-33	-reserved-	00	<u> </u>
34	Capability Pointer	80	RO
35-3D	-reserved-	00	<u> </u> —
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offset	AGP Bus Control	<u>Default</u>	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	00	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	00	RW
44	Back-Door Register Control	00	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48-7F	-reserved-	00	_
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	_

Miscellaneous I/O

One I/O port is defined in the Twister: Port 22.

7-2	Reserved always reads 0
1	AGP Arbiter Disable
	0 Respond to GREQ# signaldefault
	1 Do not respond to GREQ# signal
0	PCI Arbiter Disable
	0 Respond to all REQ# signalsdefault
	1 Do not respond to any REQ# signals,
	including PREQ#
	ort can be enabled for read/write access by setting bit-7

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 78.

Configuration Space I/O

All registers in the Twister (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Dort CI	FB-CF8 - Configuration AddressRW
31	Configuration Space Enable
	0 Disabled default
	1 Convert configuration data port writes to
	configuration cycles on the PCI bus
30-24	Reserved always reads 0
23-16	PCI Bus Number
	Used to choose a specific PCI bus in the system
15-11	Device Number
	Used to choose a specific device in the system
	(devices 0 and 1 are defined for the Twister)
10-8	Function Number
	Used to choose a specific function if the selected
	davias gummants multiple functions (only function 0 is

device supports multiple functions (only function 0 is defined for the Twister).7-2 Register Number (also called the "Offset")

Used to select a specific DWORD in the Twister configuration space

1-0 Fixedalways reads 0

Port CFF-CFC - Configuration Data.....RW

Refer to PCI Bus Specification Version 2.2 for further details on operation of the above configuration registers.

Device 0 Register Descriptions

Device 0 Header Registers - Host Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and device number equal to zero.

		et 1-0 - Vendor ID (1106h)RO
15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device	0 Offs	et 3-2 - Device ID (0605h)RO
15-0		ode (reads 0605h to identify the Twister)
Davisa	0 Off.	24.5.4. Command (000(h) DW
		et 5-4 –Command (0006h)RW
15-10		
9		Back-to-Back Cycle EnableRO
	0	Fast back-to-back transactions only allowed to
		the same agent default
	1	Fast back-to-back transactions allowed to
0	CEDI	different agents
8		R# EnableRO
	0	SERR# driver disableddefault
	1	SERR# driver enabled
_		R# is used to report parity errors if bit-6 is set).
7		ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6		y Error ResponseRW
	0	Ignore parity errors & continuedefault
_	1	Take normal action on detected parity errors
5		Palette SnoopRO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette accesses on PCI bus
4		ory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
	1	Bus masters may generate Mem Write & Inval
3	_	ial Cycle MonitoringRO
	0	Does not monitor special cyclesdefault
	1	Monitors special cycles
2	PCI 1	Bus Master
	0	Never behaves as a bus master
	1	Can behave as a bus masterdefault
1	Mem	ory SpaceRO
	0	Does not respond to memory space
	1	Responds to memory spacedefault
0	I/O S	SpaceRO
	0	Does not respond to I/O spacedefault
	1	Responds to I/O space

Device	0 Offset 7-6 – Status (0210h)RWC
15	Detected Parity Error
	0 No parity error detecteddefault
	1 Error detected in either address or data phase.
	This bit is set even if error response is disabled
	(command register bit-6)write one to clear
14	Signaled System Error (SERR# Asserted)
	always reads 0
13	Signaled Master Abort
	0 No abort received default
	1 Transaction aborted by the master
	write one to clear
12	Received Target Abort
	0 No abort received default
	1 Transaction aborted by the target
	write one to clear
11	Signaled Target Abortalways reads 0
	0 Target Abort never signaled
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detected
	0 No data parity error detected default
	1 Error detected in data phase. Set only if error
	response enabled via command bit-6 = 1 and
	Twister was initiator of the operation in which
	the error occurred
_	write one to clear
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 0
4	Supports New Capability listalways reads 1
3-0	Reserved always reads 0
Device	0 Offset 8 - Revision ID (0nh)RO
7-0	Chip Revision Codealways reads 0nh
, 0	Chip Revision Code
Device	0 Offset 9 - Programming Interface (00h)RO
7-0	Interface Identifieralways reads 00h
DRO	0 Officet A. Such Class Code (00h)
	0 Offset A - Sub Class Code (00h)RO
7-0	Sub Class Codereads 00 to indicate Host Bridge
Device	0 Offset B - Base Class Code (06h)RO
7-0	Base Class Code reads 06 to indicate Bridge Device
	C
Device	0 Offset D - Latency Timer (00h)RW
Specifie	es the latency timer value in PCI bus clocks.
7-3	Guaranteed Time Slice for CPUdefault=0
2-0	Reserved (fixed granularity of 8 clks) always read 0
	Bits 2-1 are writeable but read 0 for PCI specification
	compatibility. The programmed value may be read
	heals in Offset 75 hits 5.4 (DCI Arbitration 1)

back in Offset 75 bits 5-4 (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

Device	0 Offset E -	Header Ty	pe (00h).	•••••	•••••	RO
7-0	Header Ty	pe Code	rea	ds 00: sin	gle fu	nction
Device	0 Offset F -	Built In Se	lf Test (B	IST) (00l	1)	RO
_						

<u>Device 0 Offset 13-10 - Graphics Aperture Base</u> (00000008h)RW

31-28	Upper	Prog	rammal	ole I	3as	e Addr	ess I	3its		. de	f=0
27-20	Lower	Prog	grammal	ble l	Bas	e Addr	ess I	3its		. de	f=0
	These	bits	behave	as	if	hardw	ired	to	0	if	the
	corresp	ondi	ng Grap	hics	A	perture	Siz	e re	egis	ter	bit
	(Devic	e 0 O	ffset 84h) is	0						

27 26 25 24 23 22 21 20 (This Register) (Gr Aper Size) <u>7 6 5 4</u> <u>3</u> 2 RW RW RW RW RW RW RW 1M RW RW RW RW RW RW 2MRWRWRWRWRW 0 4M RW RW RW RW RW 0 0 0 8M RWRWRW 0 0 0 16M RWRWRW 0 0 0 0 32M RWRW 0 0 0 0 0 0 64M RW = 00 0 0 0 0 0 128M 0 0 0 0 0 0 0 0 256M

Note: The locations in the address range defined by this register are prefetchable.

Device 0 Offset 2D-2C - Subsystem Vendor ID (0000h)R/W1

15-0 Subsystem Vendor ID......default = 0 This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h)R/W1

15-0 Subsystem ID......default = 0 This register may be written once and is then read only.

Device 0 Offset 37-34 - Capability Pointer (00000080h).RO

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer...... always reads 80h

Device 0 Configuration Registers - Host Bridge

These registers are normally programmed once at system initialization time.

Host CPU Control

Device 0 Offset 50 - Request Phase Control (00h)...... RW CPU Hardwired IOQ (In Order Queue) Size Default per strap on pin MA11. During reset. This register can be written 0 to restrict the chip to one level of IOQ. 0 1-Level 1 4-Level Read-Around-Write 6 0 Disable......default Enable Reservedalways reads 0 **Defer Retry When HLOCK Active** 0 Disable......default Enable Note: always set this bit to 1 3-1 Reservedalways reads 0 **CPU / PCI Master Read DRAM Timing** 0 Start DRAM read after snoop complete def Start DRAM read before snoop complete

Device	0 Offset 51 – Response Phase Control (00h)RW	Devic	e 0 Offset 53 – Miscellaneous 1 (03h)RW
7	CPU Read DRAM Ows for Back-to-Back Read	7	HREQ
,	Transactions	,	0 Disabledefault
	0 Disabledefault		1 Enable
	1 Enable	6	SDRAM Frequency Higher Than CPU Front Side
	Setting this bit enables maximum read performance	U	Bus Frequency
	by allowing continuous 0 wait state reads for		0 Disabledefault
	pipelined line reads. If this bit is not set, there will be		1 Enable
	at least 1T idle time between read transactions.		Setting this bit enables the DRAM subsystem to run at
6	CPU Write DRAM 0ws for Back-to-Back Write		a higher frequency than the CPU FSB frequency.
6			When setting this bit, register bit Rx69[6] must also be
	Transactions 0 Disabledefault		
			set and only SDRAM type DIMM modules may be
	1 Enable	_	used.
	Setting this bit enables maximum write performance	5	PCI/AGP Master-to-CPU / CPU-to-PCI/AGP
	by allowing continuous 0 wait state writes for		Slave Concurrency
	pipelined line writes ands sustained 3T single writes.		0 Disabledefault
	If this bit is not set, there will be at least 1T idle time		1 Enable
_	between write transactions.	4	HPRI Function
5	Reservedalways reads 0		0 Disabledefault
4	Fast Response (HIT/HITM sample 1T earlier)	_	1 Enable
	0 Disabledefault	3	P6Lock Function
_	1 Enable		0 Disabledefault
3	Non-Posted IOW	_	1 Enable
	0 Disabledefault	2	Line Write / Write Back Without Implicit Write
_	1 Enable		Back Data
2	CPU Read DRAM Prefetch Buffer Depth		0 Disabledefault
	0 1-level prefetch bufferdefault		1 Enable
_	1 4-level prefetch buffer	1	PCI Master Pipeline Access
1	CPU-to-DRAM Post-Write Buffer Depth		0 Disable
	0 1-level post-write bufferdefault		1 Enabledefault
	1 4-level post-write buffer	0	ReservedAlways reads 0
0	Concurrent PCI Master / Host Operation	Devic	e 0 Offset 54 – Miscellaneous 2 (00h)RW
	0 Disable – the CPU bus will be occupied (BPRI	7-3	
	asserted) during the entire PCI operationdef	2	Zero Length Write
	1 Enable – the CPU bus is only requested before ADS# assertion		0 Disabledefault
	ADS# assertion		1 Enable (this bit must be set to 1)
Device	0 Offset 52 – Dynamic Defer Timer (10h)RW	1	Invalidate CPU Internal Cache on PCI Master
	GTL I/O Buffer Pullupdefault = MA6 Strap	•	Access
,	0 Disable		0 Disabledefault
	1 Enable		1 Enable
	The default value of this bit is determined by a strap	0	1-1-1-1 PMRDY for PCI Master Access
	on the MA6 pin during reset.	v	0 Disabledefault
6	RAW Write Retire Policy (After 2 Writes)		1 Enable
	0 Disabledefault		
	1 Enable		
5	Quick Start Selectdefault = MA10 Strap		
	0 Disabledefault		
	1 Enable		
	The default value of this bit is determined by a strap		
	on the MA10 pin during reset.		
4-0	Snoop Stall Count		
	00 Disable dynamic defer		
	01-1F Snoop stall count default = 10h		
	-		

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies Twister BIOS porting guide for details).

Table 6. System Memory Map

Space S	<u>Start</u>	<u>Size</u>	Address Range	Comment
DOS	0	640K	00000000-0009FFFF	Cacheable
VGA 6	640K	128K	000A0000-000BFFFF	Used for SMM
BIOS 7	768K	16K	000C0000-000C3FFF	Shadow Ctrl 1
BIOS 7	784K	16K	000C4000-000C7FFF	Shadow Ctrl 1
BIOS 8	300K	16K	000C8000-000CBFFF	Shadow Ctrl 1
BIOS 8	316K	16K	000CC000-000CFFFF	Shadow Ctrl 1
BIOS 8	332K	16K	000D0000-000D3FFF	Shadow Ctrl 2
BIOS 8	348K	16K	000D4000-000D7FFF	Shadow Ctrl 2
BIOS 8	364K	16K	000D8000-000DBFFF	Shadow Ctrl 2
BIOS 8	380K	16K	000DC000-000DFFFF	Shadow Ctrl 2
BIOS 8	396K	64K	000E0000-000EFFFF	Shadow Ctrl 3
BIOS 9	960K	64K	000F0000-000FFFFF	Shadow Ctrl 3
Sys	1MB		00100000-DRAM Top	Can have hole
Bus I	O Top		DRAM Top-FFFEFFF	
Init 40	G-64K	64K	FFFEFFFF-FFFFFFF	000Fxxxx alias

Do

Device (0 Offset 59-58 - DRAM MA Map Type (0000h).RW
15-13	Bank 5/4 MA Map Type (see below)
12	Bank 5/4 Virtual Channel Enable def=0
11-8	Reserved def=0
7-5	Bank 0/1 MA Map Type (SDRAM)
	000 16Mbit SDRAMdefault
	001 -reserved-
	01x -reserved-
	100 64Mbit / 128Mbit SDRAM
	101 256Mbit SDRAM x32
	110 256Mbit SDRAM x16
	111 256Mbit SDRAM x8 or x4
4	Bank 1/0 Virtual Channel Enable def=0

Bank 3/2 MA Map Type (see above)

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5A - Bank 0 Ending (HA[31:24]) (01h)	RW
Offset 5B - Bank 1 Ending (HA[31:24]) (01h)	RW
Offset 5C - Bank 2 Ending (HA[31:24]) (01h)	RW
Offset 5D - Bank 3 Ending (HA[31:24]) (01h)	RW
Offset 5E - Bank 4 Ending (HA[31:24]) (01h)	RW
Offset 5F - Bank 5 Ending (HA[31:24]) (01h)	RW

Note: BIOS is required to fill the ending address registers for all banks even if no memory is populated. The

endings have to be in incremental order.						
Device	0 Offset 60 – DRAM TypeRW					
7- 6	Reserved always reads 0					
5-4	DRAM Type for Bank 5/4 default undefined					
	00 -reserved-					
	01 -reserved-					
	10 -reserved-					
	11 SDRAM					
3-2	DRAM Type for Bank 3/2 default undefined					
1-0	DRAM Type for Bank 1/0 default undefined					

Table 7. Memory Address Mapping Table

SDRAM

MA:	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
<u>16Mb</u>				11	22	21	20	19	18	17	16	15	14	13	12	11x10,
(0xx)				11	PC	24	23	10	9	8	7	6	5	4	3	11x9, 11x8
64/128Mb		24	13	12	22	21	20	19	18	17	16	15	14	11	23	x4: 14x10
(100)		27/	13	12	PC	26	25	10	9	8	7	6	5	4	3	x8: 14x9
2/4 bank		24														
256Mb	25	24	13	12	22	21	20	19	18	17	16	15	14	11	23	x32: 14x8
(101) 2/4B		28	13	12	PC	26	25	10	9	8	7	6	5	4	3	
256Mb	26	24	13	12	22	21	20	19	18	17	16	15	14	11	23	x16: 14x9
(110) 2/4B		28	13	12	PC	26	25	10	9	8	7	6	5	4	3	
256Mb	27	24	13	12	22	21	20	19	18	17	16	15	14	11	23	x8: 14x10
(111) 2/4B		28	13	12	PC	26	25	10	9	8	7	6	5	4	3	x4: 14x11

"PC" = "Precharge Control" (refer to SDRAM specifications)

3-1

0

Device	0 Offs	et 61 - Shadow RAM Control 1 (00h)RW	Device	0 Offse	et 63 - Shadow	RAM	Conti
7-6		00h-CFFFFh	7-6	E0000	h-EFFFFh		
	00	Read/write disabledefault		00	Read/write di	sable	
	01	Write enable		01	Write enable		
		Read enable		10	Read enable		
	11	Read/write enable			Read/write en	able	
5-4		0h-CBFFFh	5-4	F0000	h-FFFFFh		
	00	Read/write disabledefault		00	Read/write di	sable	
	01	Write enable			Write enable		
	10	Read enable		10	Read enable		
	11	Read/write enable			Read/write en	able	
3-2	C400	0h-C7FFFh	3-2		ory Hole		
	00	Read/write disabledefault			None		
	01	Write enable			512K-640K		
	10	Read enable			15M-16M (11	M)	
	11	Read/write enable			14M-16M (21		
1-0	C000	0h-C3FFFh	1		B000 SMRAN		rt Acc
	00	Read/write disabledefault	•		Enable		
	01	Write enable		1	Disable	••••••	•••••
	10	Read enable	0	_	B000 DRAM	Access	
	11	Read/write enable	U	0	Disable		
				1	Enable	• • • • • • • • • • • • • • • • • • • •	•••••
Device	0 Offs	et 62 - Shadow RAM Control 2 (00h)RW		1			
7-6	DC00	00h-DFFFFh			SMI Map	ping Co	ontro
	00	Read/write disabledefault		Bits	SMM	ſ	<u>N</u>
	01	Write enable		1-0		<u>.</u> Data	Co
	10	Read enable		00	DRAM D		P(
	11	Read/write enable		01	DRAM D		DR
5-4	D800	0h-DBFFFh		10		PCI	PO
	00	Read/write disabledefault		11	DRAM D	_	DR
	01	Write enable		11	DIAM D	IXAIVI	DK
	10	Read enable					
	11	Read/write enable					
3-2	D400	0h-D7FFFh					
	00	Read/write disabledefault					
		Write enable					
	10	Read enable					
	11	Read/write enable					
1-0		0h-D3FFFh					
		Read/write disabledefault					
		Write enable					
		Read enable					
	1.0	P. 1/ 1.					

7-6 E0000h-EFFFFh 00 Read/write disable	ılt								
01 Write enable 10 Read enable 11 Read/write enable 5-4 F0000h-FFFFFh 00 Read/write disable defau 01 Write enable 10 Read enable 11 Read/write enable 3-2 Memory Hole 00 None defau 01 512K-640K	ılt								
10 Read enable 11 Read/write enable 5-4 F0000h-FFFFFh 00 Read/write disable									
11 Read/write enable 5-4 F0000h-FFFFh									
5-4 F0000h-FFFFFh 00 Read/write disable defar 01 Write enable 10 Read enable 11 Read/write enable 3-2 Memory Hole 00 None defar 01 512K-640K defar									
00 Read/write disable									
01 Write enable 10 Read enable 11 Read/write enable 3-2 Memory Hole 00 None									
10 Read enable 11 Read/write enable 3-2 Memory Hole 00 None	ılt								
11 Read/write enable 3-2 Memory Hole 00 None									
3-2 Memory Hole 00 None									
00 None									
01 512K-640K									
** ******	ılt								
10 15M-16M (1M)									
11 14M-16M (2M)									
1 A000/B000 SMRAM Direct Access									
0 Enabledefai	ılt								
1 Disable									
0 A000/B000 DRAM Access									
0 Disabledefau	ılt								
1 Enable									
SMI Mapping Control									
Bits <u>SMM</u> <u>Non-SMM</u>									
<u>1-0 Code Data Code Data</u>									
00 DRAM DRAM PCI PCI									
01 DRAM DRAM DRAM DRAM									
10 DRAM PCI PCI PCI									
11 DRAM DRAM DRAM DRAM									

11 Read/write enable

Device 0 Offset 64 - DRAM Timing for Banks 0,1 (ECh)RW
Device 0 Offset 65 - DRAM Timing for Banks 2,3 (ECh)RW
Device 0 Offset 66 - DRAM Timing for Banks 4,5 (ECh)RW

7	Precharge Command to Active Command Period
	$0 T_{RP} = 2T$
	1 $T_{RP} = 3T$ default
6	Active Command to Precharge Command Period
	$0 T_{RAS} = 5T$
	1 $T_{RAS} = 6T$ default
5-4	CAS Latency
	00 1T
	01 2T
	10 3Tdefault
_	11 reserved
3	DIMM Type
	0 Standard
_	1 Registereddefault
2	ACTIVE Command to CMD Command Period
	0 2T
1.0	1 3Tdefault
1-0	Bank Interleave
	00 No Interleavedefault 01 2-way
	10 4-way
	11 Reserved
	11 Reserved
evice	0 Offset 68 - DRAM Control (00h)RW
7	SDRAM Open Page Control
	0 Always precharge SDRAM banksdefault
	1 SDRAM banks remain active
6	Bank Page Control
	0 Allow only pages of the same bank activedef.
	1 Allow pages of different banks to be active
5-4	Reserved always reads 0
3	EDO Test Mode
	0 Disabledefault
_	1 Enable
2	Burst Refresh
	0 Disabledefault
1.0	1 Enable (burst 4 times)
1-0	System Frequency DividerRO
	Bit 1 is latched from MA8 and bit 0 is latched from
	MA12 at the rising edge of RESET#.
	00 CPU Frequency = 66 MHz
	O1 CDITE Engagement = 100 MHz
	01 CPU Frequency = 100 MHz
	10 Autodetect

Device	0 Offset 69 – DRAM Clock Select (00h) RW
7	CPU Operating Frequency Faster Than DRAM O CPU Same As or Equal to DRAM default CPU Faster Than DRAM by 33 MHz
6	DRAM Operating Frequency Faster Than CPU O DRAM Same As or Equal to CPU default DRAM Faster Than CPU by 33 MHz
	Rx68[1-0] Rx69[7-6] CPU / DRAM 00 00 66 / 66(def) 00 01 66 / 100†
	01 10 100 / 66 01 00 100 / 100 01 01 100 / 133†
5	256Mbit DRAM Support 0 Disable (pin AB22 is DCLKRD) default 1 Enable (pin AB22 is MAA14)
4	DRAM Controller Command Register Output 0 Disabledefault 1 Enable
3	Fast DRAM Precharge for Different Bank 0 Disabledefault 1 Enable
2	DRAM 4K Page Enable (64Mbit DRAM Only) 0 Disabledefault 1 Enable
1	DIMM Type 0 Unbuffered default
0	1 Registered Reservedalways reads 0

Device	0 Offset 6A - Refresh Counter (00h)RW	Device	0 Offset 6C - SDRAM Control (00h)RW
7-0	Refresh Counter (in units of 16 MCLKs)	7-5	Reservedalways reads 0
	00 DRAM Refresh Disableddefault	4	CKE Configuration
	01 32 MCLKs		$0 \operatorname{Rx} 6B[4]=0 \operatorname{CSA} = \operatorname{CSA}, \operatorname{CSB} = \operatorname{CSB},$
	02 48 MCLKs		CKE0=CKE0, $CKE1 = CKE1$
	03 64 MCLKs		x Rx6B[4]=1 CSA = CSA, CSB = Float,
	04 80 MCLKs		CSB = Float, MA = Float,
	05 96 MCLKs		CKE0 = CKE0, CKE1 = CKE0
			1 $Rx6B[4]=0$ $CSA = CSA$, $CSB = CSB$,
	The programmed value is the desired number of 16-		CKE3-2 = CSA7-6
	MCLK units minus one.		CKE5-4 = CSB7-6
	Week units initias one.		CKE1 = GCKE (Global CKE)
			CKE0 = FENA (FET Enable)
Davica	0 Offset 6B - DRAM Arbitration Control (01h).RW	3	Fast TLB Lookup
	_		0 Disabledefault
7-6	Arbitration Parking Policy		1 Enable
	00 Park at last bus ownerdefault 01 Park at CPU side	2-0	SDRAM Operation Mode Select
			000 Normal SDRAM Mode default
	10 Park at AGP side 11 Reserved		001 NOP Command Enable
5	Fast Read to Write turn-around		010 All-Banks-Precharge Command Enable
3			(CPU-to-DRAM cycles are converted
	0 Disabledefault 1 Enable		to All-Banks-Precharge commands).
4	Memory Module ConfigurationRO		011 MSR Enable
4	0 Normal Operationdefault		CPU-to-DRAM cycles are converted to
	1 Unused Outputs Tristated (CSB#, DQMB,		commands and the commands are driven on
	CKE, MA, DCLKO)		MA[14:0]. The BIOS selects an appropriate
	This bit is latched from MA7 at the rising edge of		host address for each row of memory such that
	RESET#.		the right commands are generated on
3	MD Bus Second Level Strength Control		MA[14:0].
3	0 Normal slew rate controldefault		100 CBR Cycle Enable (if this code is selected,
	1 More slew rate control		CAS-before-RAS refresh is used; if it is not
2	CAS Bus Second Level Strength Control		selected, RAS-Only refresh is used)
-	0 Normal slew rate controldefault		101 Reserved
	1 More slew rate control		11x Reserved
1	AGP Pad Slew Rate Control		
	0 Disabledefault		
	1 Enable		
0	Multi-Page Open		
-	0 Disable (page registers marked invalid and no		
	page register update which causes non page-		
	mode operation)		
	1 Enabledefault		

Device	0 Offset 6D - DRAM Drive Strength (00h)RW	Device 0 Offset 6E - Reserved (00h)RW
7	Reserved	D. J. O.Off (CE. D
6-5	Delay DRAM Read Latch	Device 0 Offset 6F - Reserved (00h)RW
	00 No Delaydefault	
	01 0.5 ns	
	10 1.0 ns	
	11 1.5 ns	
4	Memory Data Drive (MD, MECC)	
	0 6 mAdefault	
	1 8 mA	
3	SDRAM Command Drive (SRAS#, SCAS#, SWE#)	
	0 16mAdefault	
	1 24mA	
2	Memory Address Drive (MA, WE#)	
	0 16mAdefault	
	1 24mA	
1	CAS# Drive	
	0 8 mAdefault	
	1 12 mA	
0	RAS# Drive	
	0 16mAdefault	
	1 24mA	

PCI Bus Control

These registers are normally programmed once at system initialization time.

<u>Device</u>	0 Offs	et 70 - PCI Buffer Control (00h)RW
7	CPU	to PCI Post-Write
	0	Disabledefault
	1	Enable
6	PCI 1	Master to DRAM Post-Write
	0	Disabledefault
	1	Enable
5	Rese	rved always reads 0
4	PCI 1	Master to DRAM Prefetch
	0	Enabledefault
	1	Disable
3	Enha	nce CPU-to-PCI Write
	0	Normal operationdefault
	1	Reduce 1 cycle when the CPU-to-PCI buffer
		becomes available after being full (PCI and
		AGP buses)
2	PCI 1	Master Read Caching
	0	Disabledefault
	1	Enable
1	Delay	y Transaction
	0	Disabledefault
	1	Enable
0	Slave	e Device Stopped Idle Cycle Reduction
	0	Normal Operationdefault
	1	Reduce 1 PCI idle cycle when stopped by a
		slave device (PCI and AGP buses)

7 Dynamic Burst 0 Disable	
1 Enable (see note under bit-3 below) 6 Byte Merge 0 Disable	
6 Byte Merge 0 Disable	14
0 Disable	14
1 Enable 5 Reserved	14
5 Reserved	ıuıt
4 PCI I/O Cycle Post Write 0 Disable	
0 Disable	ls 0
1 Enable 3 PCI Burst 0 Disable	
3 PCI Burst 0 Disable	ault
0 Disable	
1 Enable (bit7=1 will override this option) Dit-7 bit-3 Operation Every write goes into the write buffer and PCI burst operations occur. 1 If the write transaction is a burst transaction the information goes into the write buffer a burst transfers are later performed on the Function burst. If the transaction is not a burst, PCI woccurs immediately (after a write buffer flust buffer; burstable transactions will then but on the PCI bus and non-burstable won't. Tis the normal setting.	
bit-7 bit-3 Operation O Deration Every write goes into the write buffer and PCI burst operations occur. If the write transaction is a burst transacti the information goes into the write buffer a burst transfers are later performed on the I bus. If the transaction is not a burst, PCI woccurs immediately (after a write buffer flus 1 x Every write transaction goes to the would buffer; burstable transactions will then but on the PCI bus and non-burstable won't. T is the normal setting.	ault
0 0 Every write goes into the write buffer and PCI burst operations occur. 0 1 If the write transaction is a burst transacti the information goes into the write buffer a burst transfers are later performed on the I bus. If the transaction is not a burst, PCI w occurs immediately (after a write buffer flus 1 x Every write transaction goes to the whole buffer; burstable transactions will then but on the PCI bus and non-burstable won't. T is the normal setting.	
PCI burst operations occur. 1 If the write transaction is a burst transaction the information goes into the write buffer a burst transfers are later performed on the I bus. If the transaction is not a burst, PCI woccurs immediately (after a write buffer flust Every write transaction goes to the would buffer; burstable transactions will then but on the PCI bus and non-burstable won't. The is the normal setting.	
0 1 If the write transaction is a burst transaction the information goes into the write buffer a burst transfers are later performed on the Bus. If the transaction is not a burst, PCI we occurs immediately (after a write buffer flus 1 x Every write transaction goes to the we buffer; burstable transactions will then but on the PCI bus and non-burstable won't. To is the normal setting.	no
the information goes into the write buffer a burst transfers are later performed on the I bus. If the transaction is not a burst, PCI we occurs immediately (after a write buffer flus 1 x Every write transaction goes to the we buffer; burstable transactions will then be on the PCI bus and non-burstable won't. To is the normal setting.	
burst transfers are later performed on the I bus. If the transaction is not a burst, PCI we occurs immediately (after a write buffer flust) 1 x Every write transaction goes to the we buffer; burstable transactions will then but on the PCI bus and non-burstable won't. This is the normal setting.	on,
bus. If the transaction is not a burst, PCI woccurs immediately (after a write buffer flus Every write transaction goes to the wobuffer; burstable transactions will then but on the PCI bus and non-burstable won't. To is the normal setting.	and
occurs immediately (after a write buffer flus 1 x Every write transaction goes to the write buffer; burstable transactions will then but on the PCI bus and non-burstable won't. This is the normal setting.	
1 x Every write transaction goes to the war buffer; burstable transactions will then but on the PCI bus and non-burstable won't. This is the normal setting.	
buffer; burstable transactions will then bu on the PCI bus and non-burstable won't. T is the normal setting.	
on the PCI bus and non-burstable won't. T is the normal setting.	
is the normal setting.	
<u> </u>	his
2 PCI Fast Back-to-Back Write	
0 Disabledefa	ault
1 Enable	
1 Quick Frame Generation	
0 Disabledefa	ault
1 Enable	
0 1 Wait State PCI Cycles	
0 Disabledefa	2111t

1 Enable

Device	0 Offse	et 72 - CPU to PCI Flow Control 2 (00h) RWC
7	Retry	Status
	0	No retry occurreddefault
	1	Retry occurredwrite 1 to clear
6	Retry	Timeout Action
	0	Retry Forever (record status only)default
	1	Flush buffer for write or return all 1s for read
5-4	Retry	Limit
	00	Retry 2 timesdefault
	01	Retry 16 times
	10	Retry 4 times
	11	Retry 64 times
3	Clear	Failed Data and Continue Retry
	0	Flush the entire post-write bufferdefault
	1	When data is posting and master (or target)
		abort fails, pop the failed data if any, and keep
		posting
2	CPU I	Backoff on PCI Read Retry Failure
		Disabledefault
	1	Backoff CPU when reading data from PCI and
		retry fails
1	Reduc	ce 1T for FRAME# Generation
	0	Disabledefault
	1	Enable
0	Reduc	ce 1T for CPU read PCI slave
	0	Disabledefault
	1	Enable

Device	0 Offse	t 73 - PCI Master Control 1 (00h)RW
7	Reser	
6	PCI N	Aaster 1-Wait-State Write
	0	Zero wait state TRDY# response default
	1	One wait state TRDY# response
5	PCI N	Aaster 1-Wait-State Read
	0	Zero wait state TRDY# response default
	1	One wait state TRDY# response
4	Reser	
3	Asser	t STOP# after PCI Master Write Timeout
	0	Disabledefault
	1	Enable
2	Asser	t STOP# after PCI Master Read Timeout
	0	Disabledefault
	1	Enable
1	LOCI	K# Function
	0	Disabledefault
	1	Enable
0	PCI N	Master Broken Timer Enable
	0	Disabledefault
	1	Enable. Force into arbitration when there is no
		FRAME# 16 PCICLK's after the grant.
Device	0 Offse	t 74 - PCI Master Control 2 (00h) RW
7		Master Read Prefetch by Enhance Command
,	0	Always Prefetch default
	1	Prefetch only if Enhance command
6		ved (Do Not Program)default = 0
5	Reser	
4		ny Request default = 0
3		Delay Transaction Timeout
	0	Disable
	1	Enable
2	Backo	off CPU Immediately on CPU-to-AGP
	0	Disabledefault
	1	Enable
1-0	CPU/	PCI Master Latency Timer Control
	00	•
	01	AGP master falling edge reloads MLT timer
	10	AGP master rising edge resets timer to 00 and
		AGP master falling edge reloads MLT timer
	11	Reserved (do not program)

Device 0 Offset 76 - PCI Arbitration 2 (00h).....RW

Device	0 Offset 75 - PCI Arbitration 1 (00h)RW
7	Arbitration Mechanism
	0 PCI has prioritydefault
	1 Fair arbitration between PCI and CPU
6	Arbitration Mode
	0 REQ-based (arbitrate at end of REQ#)default
	1 Frame-based (arbitrate at FRAME# assertion)
5-4	Latency Timerread only, reads Rx0D bits 2:1
3-0	PCI Master Bus Time-Out
	(force into arbitration after a period of time)
	0000 Disabledefault
	0001 1x32 PCICLKs
	0010 2x32 PCICLKs
	0011 3x32 PCICLKs
	0100 4x32 PCICLKs
	1111 15x32 PCICLKs

Device	0 Offset 70 - 1 Cf Arbiti attoli 2 (00li)
7	PCI CPU-to-PCI Post-Write Retry Failed
	0 Continue retry attemptdefault
	1 Go to arbitration
6	CPU Latency Timer Bit-0RO
	0 CPU has at least 1 PCLK time slot when CPU
	has PCI bus
	1 CPU has no time slot
5-4	Master Priority Rotation Control
	0x Grant to CPU after every PCI master grant
	def=00
	10 Grant to CPU after every 2 PCI master grants
	11 Grant to CPU after every 3 PCI master grants
	Setting 0x: the CPU will always be granted access
	after the current bus master completes, no matter how
	many PCI masters are requesting.
	Setting 10: if other PCI masters are requesting during
	the current PCI master grant, the highest priority
	master will get the bus after the current master
	completes, but the CPU will be guaranteed to get the
	bus after that master completes.
	Setting 11: if other PCI masters are requesting, the
	highest priority will get the bus next, then the next
	highest priority will get the bus, then the CPU will
	get the bus.
	In other words, with the above settings, even if
	multiple PCI masters are continuously requesting the
	bus, the CPU is guaranteed to get access after every
	master grant (01), after every other master grant (10)
2.2	or after every third master grant (11).
3-2	Select REQn to RQ4 mappin
	00 REQ4
	01 REQ0
	10 REQ1
1	11 REQ2
1	CPU-to-PCI QW High DW Read Access to PCI Slave Allowed to be Backed Off
	0 Disable
	1 Enable
0	Enable RQ4 as High Priority Master
U	
	0 Disabledefault 1 Enable
	1 Епаріе
Device	0 Offset 77 - Chip Test Mode (00h)RW
7	Reserved (no function) always reads 0
6-0	Reserved (do not use)default=0
	` '

evice	0 Offs	et 78 - PMU Control I (00h)RW
7	I/O P	ort 22 Access
	0	CPU access to I/O address 22h is passed on to
		the PCI busdefault
	1	CPU access to I/O address 22h is processed
		internally
6	Susp	end Refresh Type
	0	CBR Refreshdefault
	1	Self Refresh
5	Reser	rvedalways reads 0
4	Dyna	mic Clock Control
	0	Normal (clock is always running)default
	1	Clock to various internal functional blocks is
		disabled when those blocks are not being used
3	Reser	rvedalways reads 0
2	GST	OP# Assertion
	0	Disable (GSTOP# is always high)default
	1	Enable (GSTOP# could be low)
1	Reser	rvedalways reads 0
0	Mem	ory Clock Enable (CKE) Function
	0	CKE Function Disabledefault
	1	CKE Function Enable

Device	0 Offs	et 79 - PMU	U Control 2 (00h)RW
7	Cach	e Controlle	er Module Clock Dynamic Stop
	0		default
	1	Enable	
6	DRA	M Controll	ler Module Clock Dynamic Stop
	0	Disable	default
	1	Enable	
5	AGP	Controller	Module Clock Dynamic Stop
	0	Disable	default
	1	Enable	
4	PCI	Controller 1	Module Clock Dynamic Stop
	0	Disable	default
	1	Enable	
3	Pseu	do Power G	Good
	0	Disable	default
	1	Enable	
2	Indic	cate SIO Re	quest to DRAM Controller
	0	Disable	default
	1	Enable	
1-0	Rese	rved	always reads 0

Device	0 Offset 7A – Miscellaneous Control 1 (00h)RW		
7	No Time-Out Arbitration for Consecutive Frame		
	Accesses		
	0 Enable default		
	1 Disable		
6-5	Reserved always reads 0		
4	Invalidate PCI / AGP Buffered (Cached) Read		
	Data for CPU to PCI / AGP Accesses		
	0 Disabledefault		
	1 Enable		
3	Background PCI-to-PCI Write Cycle Mode		
	0 Disabledefault		
	1 Enable		
2-1	Reserved always reads 0		
0	South Bridge PCI Master Force Timeout When		
	PCI Master Occupancy Timer Is Up		
	0 Disabledefault		
	1 Enable		

Device	0 Offset 7B – Miscellaneous Control 2 (02h) RW
7-2	Reservedalways reads 0
1	PCI Master Access PMRDY Select
	0 Tail
	1 Headdefault
0	F
	0 33 MHzdefault
	1 66 MHz
Device	0 Offset 7E – PLL Test Mode (00h) RW
7-6	Reserved (status)RO
5-0	Reserved (do not use)default=0
Device	0 Offset 7F – PLL Test Mode (00h) RW
7-0	Reserved (do not use)default=0

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the Twister.

This scheme is shown in the figure below.

Figure 3. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the Twister contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

	V 1 8005 / 80C580 Twister North Bridge
Device	0 Offset 83-80 - GART/TLB Control (00000000h) RW
31-16	Reservedalways reads 0
15-8	Reserved (test mode status)RO
7	Flush Page TLB
	0 Disabledefault
	1 Enable
6-4	Reserved (always program to 0)RW
3	PCI Master Address Translation for GA Access
	0 Addresses generated by PCI Master accesses
	of the Graphics Aperture will not be translateddefault
	1 PCI Master GA addresses will be translated
2	AGP Master Address Translation for GA Access
	0 Addresses generated by AGP Master accesses
	of the Graphics Aperture will not be translateddefault
	1 AGP Master GA addresses <u>will</u> be translated
1	CPU Address Translation for GA Access
	0 Addresses generated by CPU accesses of the
	Graphics Aperture will not be translated def
	1 CPU GA addresses <u>will</u> be translated
0	AGP Address Translation for GA Access
	O Addresses generated by AGP accesses of the
	Graphics Aperture will not be translated def
	1 AGP GA addresses <u>will</u> be translated
	or any master access to the Graphics Aperture range,
snoop w	vill not be performed.
Device	0 Offset 84 - Graphics Aperture Size (00h) RW
7-0	Graphics Aperture Size
	11111111 1M 1111000 16M
	11111110 2M 1110000 32M
	11111100 4M 11000000 64M
	11111000 8M 10000000 128M
	00000000 256M
Offeet S	BB-88 - GA Translation Table Base (00000000h) RW
31-12	Graphics Aperture Translation Table Base.
	Pointer to the base of the translation table in system memory used to map addresses in the aperture range
	• • • • • • • • • • • • • • • • • • • •
11.2	(the pointer to the base of the "Directory" table).
11-3 2	Reservedalways reads 0 PCI Master Directly Accesses DRAM if in GART
2	· ·
	Range 0 Disabledefault
	1 Enable
1	Graphics Aperture Enable
1	0 Disabledefault
	0 Disaute

1 Enable

aperture size. Reserved

.....always reads 0

Note: To disable the Graphics Aperture, set this bit to

0 and set all bits of the Graphics Aperture Size to 0.

To enable the Graphics Aperture, set this bit to 1 and program the Graphics Aperture Size to the desired

AGP Control

	0 Onset A3-A0 - AG1 Capability Identified
(002000	
	Reservedalways reads 00
23-20	Major Specification Revision always reads 0010
	Major rev # of AGP spec that device conforms to
19-16	Minor Specification Revision always reads 0000
	Minor rev # of AGP spec that device conforms to
15-8	Pointer to Next Item always reads 00 (last item)
7-0	AGP ID (always reads 02 to indicate it is AGP)
	•
	0 Offset A7-A4 - AGP Status (1F000204h)RO
31-24	Maximum AGP Requests always reads 1F†
	Max # of AGP requests the device can manage (32)
	† See also RxFC[1] and RxFD[2-0]
23-10	Reserved always reads 0
9	Supports SideBand Addressing always reads 1
8-6	Reserved always reads 0
5	4G Supported (can be written at RxAE[5]
4	Fast Write Supported (can be written at RxAE[4]
3	Reserved
2	4X Rate Supportedalways reads 1
1	2X Rate Supported always reads 0
0	1X Rate Supported always reads 0
U	1A Rate Supported always reads 0
Device	0 Offset AB-A8 - AGP Command (00000000h)RW
	Request Depth (reserved for target) always reads 0s
23-10	Reservedalways reads 0s
9	SideBand Addressing Enable
7	0 Disabledefault
	1 Enable
0	1 2114010
8	AGP Enable
	0 Disabledefault
	1 Enable
7-6	Reservedalways reads 0s
5	4G Enable
	0 Disabledefault
	1 Enable
4	Fast Write Enable
	0 Disabledefault
	1 Enable
3	Reservedalways reads 0s
2	······································
_	4X Mode Enable
	4X Mode Enable 0 Disable default
	0 Disabledefault
1	0 Disabledefault1 Enable
1 0	0 Disabledefault

Device	0 Offset AC - AGP Control (00h)RW
7	AGP Disable RO
,	0 Disable default
	1 Enable
	This bit is latched from MA9 at the rising edge of
	RESET#.
6	
0	AGP Read Synchronization
	0 Disabledefault
_	1 Enable
5	AGP Read Snoop DRAM Post-Write Buffer
	0 Disabledefault
	1 Enable
4	GREQ# Priority Becomes Higher When Arbiter is
	Parked at AGP Master
	0 Disabledefault
	1 Enable
3	Reserved always reads 0
2	LPR In-Order Access (Force Fence)
	0 Fence/Flush functions not guaranteed. AGP
	read requests (low/normal priority and high
	priority) may be executed before previously
	issued write requests default
	1 Force all requests to be executed in order
	(automatically enables Fence/Flush functions).
	Low (i.e., normal) priority AGP read requests
	will never be executed before previously
	will never be executed before previously issued writes. High priority AGP read
	requests may still be executed prior to
	previously issued write requests as required.
1	AGP Arbitration Parking
1	0 Disabledefault
	1 Enable (GGNT# remains asserted until either
	GREQ# de-asserts or data phase ready)
0	AGP to PCI Master or CPU to PCI Turnaround
0	
	Cycle
	0 2T or 3T Timingdefault
	1 1T Timing

Device	0 Offset AD – AGP Latency Timer (02h)RW	Device	0 Offset B1 – AGP Drive Strength (63h)RW
7-5	Reserved always reads 0	7-4	AGP Output Buffer Drive Strength N Ctrldef=6
4	Choose First or Last Ready of DRAM	3-0	AGP Output Buffer Drive Strength P Ctrldef=3
	0 Last ready chosendefault		
	1 First ready chosen	ъ.	0.000 (D2 4.000 D - 0.01 0.01 DW
3-0	AGP Data Phase Latency Timer default = 02h		0 Offset B2 – AGP Pad Drive & Delay Ctrl (00h)RW
	·	7	GD/GDS/GDS#/GBE Pad Controldefault = 0
Device	0 Offset AE – AGP Miscellaneous Control (00h)RW		SA / SBS = GD / GBE / GDS
7-6	Reserved always reads 0		0 VDDQ=1.5V: Normal Normal
5	4G Supported		VDDQ=3.3V: Delayed Normal
	0 4G not supporteddefault		1 VDDQ=1.5V: Normal Delayed
	1 4G supported		VDDQ=3.3V Delayed Delayed
4	Fast Write Supported	6-5	Reserved always reads 0
	0 Fast Write not supporteddefault	4	GD[31:16] Output Stagger Delay
	1 Fast Write supported		0 No delaydef
3-0	Reservedalways reads 0		1 Delay GD[31:16] by 1 ns
	·	3-1	Reservedalways reads 0
Device	0 Offset B0 – AGP Pad Control / Status (8xh) RW	0	GDS Output Delay
7	AGP 4x Strobe VREF Control		0 No delaydef
	0 STB VREF is STB# and vice versa		1 Delay GDS by 400 ps
	1 STB VREF is AGPREFdefault		(GDS & GDS# will be delayed 1 ns more if bit- $4 = 1$)
6	AGP 4x Strobe & GD Pad Drive Strength		
	0 Drive strength set to compensation circuit		
	defaultdefault		
	1 Drive strength controlled by RxB1[7-0]		
5-3	AGP Compensation Circuit N Control Output.RO		
2-0	AGP Compensation Circuit P Control Output .RO		

7-4	AGP Output Buffer Drive Strength N Ctrldef=6			
3-0	AGP Output Buffer Drive Strength P Ctrldef=3			
		•		8
Device	0 Offs	et B2 – AGP Pa	d Drive & D	Delay Ctrl (00h)RW
7	GD/0	GDS/GDS#/GBE	Pad Contr	\mathbf{col} default = 0
			SA / SBS	GD / GBE / GDS
	0	VDDQ=1.5V:	Normal	Normal
		VDDQ=3.3V:	Delayed	Normal
	1	VDDQ=1.5V:	Normal	Delayed
		VDDQ=3.3V	Delayed	Delayed
6-5	Rese	rved		always reads 0
4	GD[3	31:16] Output St	tagger Dela	y
	0	No delay		def
	1	Delay GD[31:1	6] by 1 ns	
3-1	Rese	rved		always reads 0
0	GDS	Output Delay		
	0	No delay		def
	1	Delay GDS by	400 ps	
	(GDS	S & GDS# will be	e delayed 1 1	ns more if bit- $4 = 1$)
			=	

Power Management

Device 0 Offset C0 - Power Management Capability IDRO 7-0 Capability ID..... always reads 01h Device 0 Offset C1 - Power Management New Pointer..RO 7-0 New Pointeralways reads 00h ("Null" Pointer) Device 0 Offset C2 - Power Mgmt Capabilities I.....RO Power Management Capabilities.. always reads 02h Device 0 Offset C3 - Power Mgmt Capabilities IIRO 7-0 Power Management Capabilities.. always reads 00h Device 0 Offset C4 - Power Mgmt Control / Status......RW always reads 0 7-2 Reserved 1-0 **Power State** 00 D0default 01 -reserved-10 -reserved-11 D3 Hot Device 0 Offset C5 - Power Management StatusRO 7-0 Power Management Status always reads 00h Device 0 Offset C6 - PCI-to-PCI Bridge Support Ext....RO P2P Bridge Support Extensions.... always reads 00h Device 0 Offset C7 - Power Management Data.....RO

7-0 Power Management Data..... always reads 00h

Miscellaneous

<u>evice</u>	0 Offse	<u>et E0 – Miscellaneous Control (00h) RW</u>
7	AGP	Pad Power Down
	0	Normaldefault
	1	Power Down
6	Reser	ved (Do Not Program)default = 0
5	Inter	nal Graphics
	0	Disabledefault
	1	Enable (& allow CPU-AGP concurrent access)
4	CKE	Drive Select default = 0
3-1	Fram	e Buffer Bank
	000	FB located in bank 0default
	001	FB located in bank 1
	010	FB located in bank 2
	011	FB located in bank 3
	100	FB located in bank 4
	101	-reserved-
	11x	-reserved-
0	Latch	DRAM Data Using
	0	Internal DRAM DCLKdefault
	1	External Feedback DR AM DCLK

Device 0 Offset FC - Back Door Control 1 (00h).....RW

BIOS	Scratch

Timers

Device	0 Offset F8 – DRAM Arbitration Timers (00h)RW
7-4	AGP Timer (units of 4 MCLKs) default = 0
3-0	Host CPU Timer (units of 4 MCLKs) default = 0
3-0	Tiost CT C Times (units of 4 MCERS) default
	0 Offset F9 – VGA Arbitration Timers (00h)RW
	,

Frame Buffer Control

Device	0 Offset F	<u> </u>	rect Acces	s FB Bas	se (00h))RW
7-0	CPU Dire	ect Access I	B Base Ad	dress[28	8:21] . c	lef=0

vice	U Offse	et FB – Frame Buffer Size (00h)RW
7	VGA	
	0	Disabledefault
	1	Enable
6-4	~ ~ ~ ~ ~ ~	e Buffer Size
	000	Nonedefault
	001	Reserved
	010	Reserved
	011	8MB
	100	16MB
	101	32MB
	11x	-reserved-
3	CPU	Direct Access Frame Buffer

0 Disabledefault

CPU Direct Access FB Base Address[31:29] . def=0

Back Door

/-4	Priority Timer default = 0
3-2	Reserved (Do Not Program) default = 0
1	Back-Door Max # of AGP Requests default = 0
	0 Read of RxA7 always returns a value of 1Fhdef
	1 Read of RxA7 returns the value programmed
	in RxFD[2-0]
0	Back-Door Device ID Enable default = 0
	0 Use Rx3-2 value for Rx3-2 readback default
	1 Use RxFE-FF Back-Door Device ID for Rx3-2
	read
Device	0 Offset FD - Back-DoorControl 2 (00h)RW
7-5	Reserved always reads 0
4-0	Max # of AGP Requestsdefault = 0
	(see also RxA7 and RxFC[1])
Device	0 Offset FF-FE – Back-Door Device ID (0000h) RW
15-0	Back-Door Device IDdefault=00

1 Enable

Device 1 Register Descriptions

Device 1 Header Registers - PCI-to-PCI Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and <u>device number</u> equal to <u>one</u>.

equal to 0 and <u>device number</u> equal to <u>one</u> .			
Device 1	1 Offs	et 1-0 - Vendor ID (1106h)RO	
15-0	ID C	ode (reads 1106h to identify VIA Technologies)	
Device 1	1 Offs	et 3-2 - Device ID (8605h)RO	
15-0		ode (reads 8605h to identify the Twister PCI-to-	
10 0		Bridge device)	
Device 1	1 Offs	et 5-4 – Command (0007h)RW	
15-10	Rese	rvedalways reads 0	
9	Fast	Back-to-Back Cycle EnableRO	
	0	Fast back-to-back transactions only allowed to	
		the same agentdefault	
	1	Fast back-to-back transactions allowed to	
		different agents	
8	SER	R# EnableRO	
	0	SERR# driver disableddefault	
	1	SERR# driver enabled	
		R# is used to report parity errors if bit-6 is set).	
7		ress / Data SteppingRO	
	0	Device never does steppingdefault	
	1	Device always does stepping	
6		y Error ResponseRW	
	0	Ignore parity errors & continuedefault	
	1	Take normal action on detected parity errors	
5		Palette Snoop (Not Supported)RO	
	0	Treat palette accesses normallydefault	
	1	Don't respond to palette writes on PCI bus	
		(10-bit decode of I/O addresses 3C6-3C9 hex)	
4		ory Write and Invalidate Command RO	
	0	Bus masters must use Mem Writedefault	
2	1	Bus masters may generate Mem Write & Inval	
3	-	ial Cycle MonitoringRO	
	0	Does not monitor special cyclesdefault	
2	_	Monitors special cycles MasterRW	
Z	Dus 1	Never behaves as a bus master	
	1	Enable to operate as a bus master on the	
	1	primary interface on behalf of a master on the	
		secondary interfacedefault	
1	Mem	nory SpaceRW	
1	0	Does not respond to memory space	
	1	Enable memory space accessdefault	
0	_	SpaceRW	
Ū	0	Does not respond to I/O space	
	1	Englis I/O and a constant of the space	

Enable I/O space accessdefault

Device	1 Offset 7-6 - Status (Primary Bus) (0230h)RWC
15	Detected Parity Error always reads 0
14	Signaled System Error (SERR#)always reads 0
13	Signaled Master Abort
	0 No abort received default
	1 Transaction aborted by the master with
	Master-Abort (except Special Cycles)
	write 1 to clear
12	Received Target Abort
	0 No abort received default
	1 Transaction aborted by the target with Target-
	Abort write 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detected always reads 0
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capablealways reads 1
4	Supports New Capability listalways reads 1
3-0	Reservedalways reads 0
This reg Class C 7-0	Twister Chip Revision Code (00=First Silicon) 1 Offset 9 - Programming Interface (00h)RO gister is defined in different ways for each Base/Subode value and is undefined for this type of device. Interface Identifieralways reads 00
7-0	1 Offset A - Sub Class Code (04h)
Device 7-0	1 Offset B - Base Class Code (06h)RO Base Class Code reads 06 to indicate Bridge Device
Device	1 Offset D - Latency Timer (00h)RO
7-0	Reservedalways reads 0
Device	1 Offset E - Header Type (01h)RO
7-0	Header Type Code reads 01: PCI-PCI Bridge
Device	1 Offset F - Built In Self Test (BIST) (00h) RO
7	BIST Supported reads 0: no supported functions
6	Start Test write 1 to start but writes ignored
5-4	Reserved always reads 0
3-0	Response Code 0 = test completed successfully

Device 1 Offset 18 - Primary Bus Number (00h)RW	Device 1	Offset 3F-3E – PCI-to-PCI Bridge Control
7-0 Primary Bus Number default = 0	(0000h)	RW
This register is read write, but internally the chip always uses		Reservedalways reads 0
bus 0 as the primary.		VGA-Present on AGP
ous o as the primary.	3	0 Forward VGA accesses to PCI Bus default
Davies 1 Offset 10 Cosendam Due Namber (00k) DW		1 Forward VGA accesses to AGP Bus
Device 1 Offset 19 - Secondary Bus Number (00h)RW		
7-0 Secondary Bus Number default = 0		Note: VGA addresses are memory A0000-BFFFFh
Note: AGP must use these bits to convert Type 1 to Type 0.		and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-
		3DFh (10-bit decode). "Mono" text mode uses
Device 1 Offset 1A - Subordinate Bus Number (00h) RW		B0000-B7FFFh and "Color" Text Mode uses B8000-
7-0 Primary Bus Number default = 0		BFFFFh. Graphics modes use Axxxxh. Mono VGA
Note: AGP must use these bits to decide if Type 1 to Type 1		uses I/O addresses 3Bx-3Cxh and Color VGA uses
		3Cx-3Dxh. If an MDA is present, a VGA will not
command passing is allowed.		use the 3Bxh I/O addresses and B0000-B7FFFh
		memory space; if not, the VGA will use those
Device 1 Offset 1B – Secondary Latency Timer (00h)RO		addresses to emulate MDA modes.
7-0 Reserved always reads 0	2	Block / Forward ISA I/O Addresses
·	4	
Device 1 Offset 1C - I/O Base (f0h)RW		0 Forward all I/O accesses to the AGP bus if
7-4 I/O Base AD[15:12] default = 1111b		they are in the range defined by the I/O Base
3-0 I/O Addressing Capability default = 0		and I/O Limit registers (device 1 offset 1C-
5 v 1/6 radicssing capability default		1D)
Device 1 Offset 1D - I/O Limit (00h)RW		default
7-4 I/O Limit AD[15:12] default = 0		1 Do not forward I/O accesses to the AGP bus
		that are in the 100-3FFh address range even if
3-0 I/O Addressing Capability default = 0		they are in the range defined by the I/O Base
Device 1 Offset 1F-1E - Secondary StatusRO		and I/O Limit registers.
	1-0	Reservedalways reads 0
15-0 Secondary Status	- 0	iteser vea
Rx44[4] = 0: these bits read back 0000h		
Rx44[4] = 1: these bits read back same as $Rx7-6$		
Device 1 Offset 21-20 - Memory Base (fff0h)RW		
15-4 Memory Base AD[31:20] default = FFFh		
3-0 Reserved always reads 0		
Davigo 1 Offset 22 22 Mamore I imit (Inclusive) (0000k) DW		
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW		
15-4 Memory Limit AD[31:20] default = 0		
3-0 Reserved always reads 0		
D 1 1 0 00 1 27 24 D 0 1 1 1 M D (00001) DW		
Device 1 Offset 25-24 - Prefetchable Memory Base (fff0h) RW		
15-4 Prefetchable Memory Base AD[31:20]default = FFFh		
3-0 Reserved always reads 0		
D 1 1000 (484) D 0 (1111) 35 T 111		
Device 1 Offset 27-26 - Prefetchable Memory Limit		
(0000h)RW		
15-4 Prefetchable Memory Limit AD[31:20]. $default = 0$		
3-0 Reserved always reads 0		
·		
Device 1 Offset 37-34 - Capability Pointer (00000080h).RO		

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer...... always reads 80h

Device 1 Configuration Registers - PCI-to-PCI Bridge

AGP Bus Control

Device	1 Offset 40 - CPU-to-AGP Flow Control 1 (00h) RW
7	CPU-AGP Post Write
	0 Disabledefault
	1 Enable
6	CPU-AGP Dynamic Burst
	0 Disabledefault
	1 Enable
	It is recommended that this bit be set to 0.
5	CPU-AGP One Wait State Burst Write
	0 Disabledefault
	1 Enable
4	AGP to DRAM Prefetch
	0 Disabledefault
	1 Enable
3	CPU to AGP Post Write
	0 Disabledefault
	1 Enable
2	MDA Present on AGP
	0 Forward MDA accesses to AGPdefault
	1 Forward MDA accesses to PCI
	Note: Forward despite IO / Memory Base / Limit
	Note: MDA (Monochrome Display Adapter)
	addresses are memory addresses B0000h-B7FFFh
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh
	(10-bit decode). 3BC-3BE are reserved for printers.
	Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA
1	accesses are forwarded to the PCI bus).
1	AGP Master Read Caching 0 Disabledefault
	1 Enable
0	AGP Delay Transaction
U	0 Disabledefault
	1 Enable
	1 DIAUC
Ta	able 8. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	<u>VGA</u>	MDA	Axxxx,	<u>B0000</u>	3Cx,	
VGA	MDA	<u>is</u>	<u>is</u>	B8xxx	-B7FFF	<u>3Dx</u>	3Bx
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	Access	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device	1 Offse	t 41 - CPU-to-AGP Flow Control 2 (00h) RW
7		Status
•	·	No retry occurreddefault
		Retry Occurredwrite 1 to clear
6		Timeout Action
		No action taken except to record status def
		Flush buffer for write or return all 1s for read
5-4	Retry	Count
		Retry 2, backoff CPU default
		Retry 4, backoff CPU
		Retry 16, backoff CPU
		Retry 64, backoff CPU
3		Vrite Data on Abort
	0	Flush entire post-write buffer on target-abort
		or master abortdefault
	1	Pop one data output on target-abort or master-
		abort
2	CPU I	Backoff on AGP Read Retry Timeout
		Disabledefault
	1	Enable
1-0	Reserv	vedalways reads 0
Device	1 Offse	t 42 - AGP Master Control (00h)RW
		Prefetch for Enhance Command
7		Always Perform Prefetch default
		Prefetch only if Enhance Command
6		Master One Wait State Write
U		Disabledefault
		Enable
5		Master One Wait State Read
3		Disable
		Enable
4		d AGP Internal Master for Efficient
•		ling of Dummy Request Cycles
		Disabledefault
		Enable
	This b	it is normally set to 1.
3		Delay Transaction Timeout
	0	Disable
		Enable
2	Prefet	
	Occur	•
		Normal operationdefault
	1	Disable prefetch when doing fast response to
		the previous delay transaction or doing read
		caching
1	Reserv	•
0		en AGP Master to TRFCTL
v		Disable
		Enable
	-	

Device	1 Offset 43 - AGP Master Latency Timer (00h) RW	Rx45	CPU Write		Write
7-4	Host to AGP Time slot	Bits	Address	Address	
	0 Disable (no timer)default	<u>7-4</u>	in Mem1	in Mem2	Fast Write Cycle Alignment
	1 16 GCLKs	x1xx	_	-	QW aligned, burstable
	2 32 GCLKs	0000	_	-	DW aligned, nonburstable
		x010	0	0	n/a
	F 128 GCLKs	0010	0	1	DW aligned, non-burstable
3-0	AGP Master Time Slot	x010	1	-	QW aligned, burstable
	0 Disable (no timer)default	x001	0	0	n/a
	1 16 GCLKs	x001	_	1	QW aligned, burstable
	2 32 GCLKs	0001	1	0	DW aligned, non-burstable
		x011	0	0	n/a
	F 128 GCLKs	x011	1	_	QW aligned, burstable
	1 120 GCERG	x011	0	1	QW aligned, burstable
Device	1 Offset 44 – Backdoor Register Control (00h) RW	1000	_	_	QW aligned, non-burstable
7-5	Reservedalways reads 0	1010	0	1	QW aligned, non-burstable
4	Secondary Status Access	1001	i	0	QW aligned, non-burstable
•	0 Rx1F-1E read 0000hdefault	1001	•	Ü	Q vv anghea, non oursuore
	1 Rx1F-1E read same as Rx7-6				
3	Back Door Register for Rx83[2], D2 Support				
2	Back Door Register for Rx83[1], D1 Support	Device	1 Offset 47-	46 – PCI-to	-PCI Bridge Device ID RW
1	Back Door Register for Rx82[5], Device Specific	15-0	PCI-to-PC	I Bridge D	evice ID default = 0000
1					
0	Initialization				
0	Back Door Register 0 Disabledefault				
		Device	1 Offset 80 -	<u>– Capabilit</u>	y ID (01h)RO
	1 Enable	7-0	Capability	' ID	always reads 01h
Device	1 Offset 45 – Fast Write Control (72h)RW		1.000 .01	N	(001)
7	Force Fast Write Cycle to be QW Aligned				ter (00h)RO
,	(if $Rx45[6] = 0$)	7-0	Next Point	ter: Null	always reads 00h
	0 Disabledefault				
	1 Enable				
6		Dovice	1 Offset 92	Dower M.	gmt Capabilities 1 (02h) RO
U	Merge Multiple CPU Transactions Into One Fast Write Burst Transaction				
	0 Disable	7-0	Power Mg	mt Capabil	itiesalways reads 02h
	1 Enable default	Device	1 Offset 83.	– Power M	gmt Capabilities 2 (00h) RO
_					
5	Merge Multiple CPU Write Cycles To Memory	/-0	Power Mg	ші Саравіі	itiesalways reads 00h
	Offset 23-20 Into Fast Write Burst Cycles				
	(if Rx45[6] = 0)				
	0 Disable	Device	1 Offset 84	– Power M	gmt Ctrl/Status (00h) RW
	1 Enabledefault				always reads 0
4	Merge Multiple CPU Write Cycles To	1-0	Power Sta		aiways icaus o
	Prefetchable Memory Offset 27-24 Into Fast	1-0	00 D0		default
	Write Burst Cycles (if $Rx45[6] = 0$)		00 D0		deraun
	0 Disable		10 -rese		
_	1 Enabledefault		10 -1esc		
3	Reserved always reads 0		11 D31	поі	
2	Fast Write Burst 4T Max (No Slave Flow Control)	Device	1 Offset 85	– Power M	gmt Status (00h)RO
	0 Disabledefault				default = 00
	1 Enable	/-0	rowei Mgi	iii Status	deraun – 00
1	Fast Write Fast Back to Back	Device	1 Offset 86	– P2P Br. S	upport Extensions (00h). RO
	0 Disable				-
					$d_{\alpha}f_{\alpha\beta} = 0$
	1 Enabledefault	7-0	P2P Bridge	e Support Ex	tensions default = 00
0	1 Enabledefault Fast Write Initial Block 1 Wait State		_		
0		Device	1 Offset 87	– Power M	anagement Data (00h) RO
0	Fast Write Initial Block 1 Wait State	Device	1 Offset 87	– Power M	

FUNCTIONAL DESCRIPTION - INTEGRATED GRAPHICS

Configuration Strapping

Certain Twister graphics functions have options that must be selected and fixed at reset (before the register bits controlling these functions can be programmed by software). This is accomplished via power-on configuration strapping.

The strapping pins are pulled low internally and can be individually pulled high through 10 KOhm resistors. These pull-ups and pull-downs do not affect normal operation of the pins, but they do force the pins to a definite state during reset. At the rising edge of the reset signal, this state is sampled, the result is inverted and the data loaded into the CR36, CR37, CRB0 and CRF0 registers. The data is used for system configuration. The definitions of the strapping bits at the rising edge of the reset signal are shown in Table 9. Nongraphics straps are described in the pin descriptions for the MA signals in Table 1.

Pin	Ball #	CR Bit(s)	Description
Name		Value	
MA4	AB24	CR36[0]	PCI Interrupt
		1	Disable INTA# claim (00H in PCI3D)
		0	Enable INTA# claim (01H in PCI3D)
MA3	AB25	CR36[4]	IO Disable
		1	Disable I/O access PCI04[0] ignored
		0	Enable I/O access via PCI04[0] = 1.
MA2	AB26	CRB0[7]	PCI Base Address Mapping
		1	Address Mapping 1
		0	Address Mapping 0 (PCI10, 14) (16M
			assigned to PCI0; 128M assigned to
			PCI14)
MA14	AF25	CRF0[3]	OEM-Defined Panel Type
MA13	AE25	CRF0[2]	
MA1	AB23	CRF0[1]	
MA0	AA23	CRF0[0]	

Table 9. Definition of Strapping Bits at the Rising Edge of the Reset Signal

Important Note: As described above, the signal levels on the strapping pins are inverted before being latched in the various strapping bit registers. Since the strapping pins all have internal pull-downs, the default values for each of the strapping bits is 1. The value latched at reset can be changed to 0 by adding an external pull-up to the appropriate pin. After reset, the strapping bits are written and read normally, i.e., there is no inversion of the register values.

PCI Configuration and Integrated AGP

PCI Configuration

The Twister graphics Vendor ID register (Index 00H) in the PCI Configuration space is hardwired to 5333H to specify S3 Graphics Incorporated as the vendor. The Device ID register is hardwired to 8D01H.

Bits 10-9 of the Status register (Index 06H) are hardwired to 01b to specify medium DEVSEL timing. The Class Code register (Index 08H) is hardwired to 30000xxH to specify that the Twister is a VGA compatible device.

There are two MMIO address mappings, as determined by the state of CRB0[7]. By default, CRB0[7] = 1, which selects Mapping 0. This uses the PCI base addresses specified by PCI10 and PCI14. 16 Mbytes of address space is claimed by PCI10 and 128 Mbytes of address space is claimed by PCI14. If the MA4 pin is strapped high at reset, a 0 is latched in CRB0[7] and selects Mapping 1. This uses base addresses PCI10 (same as Mapping 0), PCI14 (redefined from Mapping 0 to claim 16 Mbytes) and adds PCI18, PCI1C, PCI20 and PCI24, each claiming 16 Mbytes. Thus, Mapping 1 allows the address space claimed to be broken up into smaller blocks, as required by some operating systems. The Base Address 0 register (Index 10H) defaults to address 7000 0000H. This is the relocatable base address for memory-mapped I/O register accessing.

PCI06[4] is hardwired to 1 to indicate a capabilities list is available. PCI34[7-0] point to the PCI power management registers starting at offset DC. The basic power states (D0-D3) are supported as explained by the PCI Bus Power Management Interface Specification, Revision 1.1.

PCI Subsystem ID

The Subsystem ID and Subsystem Vendor ID are located in a 32-bit read only register at PCI Configuration Space Index 2C. These registers reflect the content of 4 read/write CR registers as follows:

	CR	PCI Configuration
Register	Space	Space
Subsystem Vendor ID Low Byte	CR81	Index 2CH
Subsystem Vendor ID High	CR82	Index 2DH
Byte		
Subsystem ID Low Byte	CR83	Index 2EH
Subsystem ID High Byte	CR84	Index 2FH

Table 10. PCI Subsystem ID and Subsystem Vendor ID Registers

These registers allow identification of particular vendors using the same graphics chip. The following design allows the subsystem identification to be handled by software (no hardwiring).

All Twister motherboard designs will incorporate the video BIOS into the system BIOS ROM. The system BIOS must load the subsystem ID information in the Twister before any ID scanning takes place. To do this, it must turn on the Twister, enable I/O accesses in the PCI configuration space, unlock the CR registers, program the subsystem ID information in the registers described above, then turn off the Twister.

Integrated AGP

Twister graphics conform with the requirements of Revision 2.0 of the AGP Interface Specification. Internal AGP Twister graphics are always enabled.

For the most part, AGP configuration is identical to PCI configuration. PCI04[4] is hardwired to 1 to indicate that Twister graphics implements a list of capabilities. PCI34[7-0] point to the location of this list, which is at offset 80H. PCI80, PCI84 and PCI88 implement the register bits required by the AGP specification. PCI88[2-0] select the data rate. PCI88[8] = 1 enables AGP bus master operations. PCI88[9] =1 enables sideband addressing. This is indicated by PCI84[9] (1 = sideband addressing supported). The state of PCI84[9] is determined by the state of CR70[7].

Display Memory

The Twister north bridge utilizes a Shared Memory Architecture (SMA) for Frame Buffer Memory. SMA allows system memory to be efficiently shared by the host CPU and the Twister north bridge graphics controller. By default, no system memory is allocated for the graphics frame buffer, but up to 32 Mbytes may be allocated depending on user preference, application requirements, and the total size of system memory.

Note: Frame buffer memory is allocated from system memory at bootup time. Changing the display settings to a resolution requiring additional frame buffer memory will require a system reboot to be performed.

Frame Buffer Size	Dev 0 RxFB[6-4] Register Setting	CR36[7-5] † Register Setting
0 Mbytes	000	000
8 Mbytes	011	011
16 Mbytes	100	100
32 Mbytes	101	101

[†] For driver information only (not connected to hardware)

Table 11. Supported Frame Buffer Memory Configurations

Interrupt Generation

Whatever the mode of operation (VGA or Enhanced), bit 4 of CR32 must be set to 1 to enable interrupt generation. When an enabled interrupt is generated, INTA# is pulled low unless CR36[0] = 0 (MA2 pulled high at reset), for which case no PCI interrupt line is claimed during PCI configuration.

When Twister graphics are being operated in VGA mode (CR66[0] = 0), only vertical retrace can generate an interrupt. This is enabled when CR11[5] = 0 and CR11[4] = 1. When an interrupt occurs, it is cleared by writing a 0 to CR11[4]. The interrupt must then be re-enabled by writing a 1 to the same bit. Note that the BIOS clears both bit 4 and bit 5 of CR11 during power-on, a mode set, or a reset. Thus, interrupt generation is disabled until bit 4 is set to 1.

In Enhanced mode (CR66[0] = 1 or 3D operation), interrupts can be generated by vertical retrace, command or bus FIFO overflow, command or bus FIFO empty, or by a BCI command. These interrupts are enabled and cleared and their status reported via MM8504. Serial port interrupts are controlled via MMFF08. If interrupts are used, they should be cleared before they are enabled.

Multiple interrupts can be enabled at the same time in Enhanced mode. The interrupt pin will remain asserted until all interrupt status bits are cleared.

Display Interfaces

Twister supports a variety of color STN and TFT flat panels. Flat panel display is enabled by setting SR31_4 = 1. Twister also provides an integrated industry standard LVDS driver interface. CRT and TV display are possible at the same time as flat panel display. All these interfaces are described in this section.

STN Panel Interfaces

STN panel support is selected when SR79[1-0] = 10b.

Twister supports either a single-scan (SS-STN) or a dual-scan (DD-STN) STN panel. The type is selected via SR70[0] as follows:

0 = DD-STN panel 1 = SS-STN panel

SR7D[2-0] define the pixel data bus size as follows:

000 = 16-bit STN 001 = 8-bit STN

010 = 24-bit STN

Pixel data is output on some combination of the FPD[35:0] pins, depending on the pixel data bus size and the setting of SR7D[3]. This is shown in Table 10 at the end of this section.

Selection of an STN panel configures several pins specifically for STN control.

The polarity of the flat panel data can be changed to active low by programming SR72[4] to 1. The drive strength of the panel data is specified via SR7D[6]. The drive strength for the clock is specified via SR7D[7].

The polarity of LP can be changed to active low by programming SR72[6] to 1.

Several controls are provided for LP and FPCLK during vertical blanking.

FPCLK is normally stopped during non-display time by setting SR80[5] to 1. When SR7D[4] = 0, LP will run during vertical blanking. Setting SR7D[4] to 1 disables LP during vertical blank. Setting SR73[6] to 1 adds an extra LP when LP is disabled during vertical blanking. If SR7D[4] = 0 and SR7D[5] = 1, FPCLK is disabled during the first line of vertical blanking. If SR80[5] = 0, FPCLK runs continuously. FPCLK can be delayed via SR80[3-1]. Its polarity can be inverted via SR72[3].

The polarity of FLM can be changed to active low by programming SR72[7] to 1.

Setting SR80[4] to 1 forces all flat panel data and control signals to logic 0.

DD-STN panel operation requires off-screen video memory. The amount of memory is programmed in SR50 and SR51. The starting location of the DD-STN memory is specified in SR4F. These values are all programmed by the video BIOS at reset.

TFT Panel Interfaces

TFT panel support is selected when SR79[1-0] = 00b.

SR7D[2-0] define the pixel data bus size as follows:

000 = 1 pixel/clock TFT (9-, 12-, 15-, 18-bit)

001 = 1 pixel/clock TFT (24-bit)

010 = 2 pixels/clock TFT (2x12-, 2x18-bit)

The 2 pixels per clock modes halve the clock rate and clock two pixels on the falling edge of FPCLK, thereby lowering EMI levels. SR80[6] is set to 1 to support this mode of operation.

Pixel data is output on some combination of the FPD[35:0] pins. The data outputs are shown in Table 14 and Table 15 at the end of this section.

Selection of a TFT panel configures several pins specifically for TFT control. The drive strengths of the panel clock and data are specified via SR7D[7-6].

The polarity of the flat panel data can be changed to active low by programming SR72[4] to 1. The polarity of the FPDE signal can be changed to active low by setting SR72[5] to 1. The polarity of the FPHS signal can be changed to active low by setting SR72[6] to 1. The polarity of the FPVS signal can be changed to active low by setting SR72[7] to 1.

SR80[5] allows FPCLK to be enabled (0) or disabled (1) during non-display time. FPCLK can be delayed via SR80[3-1].

Flat Panel LVDS Interface

Twister provides either a 1- or 2-channel integrated LVDS interface. This is available independently of the other panel interfaces. A single channel interface uses the Y[2:0]–, Y[2:0]+, YC– and YC+ outputs. A 2-channel interface uses the Yxx outputs for the first channel and the Z[2:0]–, Z[2:0]+, ZC– and ZC+ outputs for the second channel.

CRT Interface

Twister provides the following CRT interface signals:

- RED (analog red)
- GREEN (analog green)
- BLUE (analog blue)
- HSYNC (horizontal sync)
- VSYNC (vertical sync)

In addition, DDC2 monitor communications can be implemented via the serial communications port controlled by CRB1[4:0]. These bits control two-way communications over the SPCLK2 (clock) and SPDAT2 (data) lines. The operation is the same as described for the I²C serial communications port section except that interrupts and wait states are not supported.

External TV Encoder Interface

Figure 4 shows the interface to an external Bt868/869 TV encoder (or compatible device). The TV outputs are generated whenever the clock input from the decoder is present on the TVCLK pin and CRB0[4] = 0. The encoder is controlled via the I^2C interface. TV monitor detection is also done via this interface. The TV encoder interface and the flat panel interface are multiplexed on common pins, so only one of the two (either the TV interface or the flat panel interface) can be enabled at any given time

Figure 4. External TV Encoder Interface

Twister supports three output formats as shown in Table 12. As shown in Figure 4, P[11:0] on the encoder connect to TVD[11:0] on Twister. The CLKI pin on the encoder connects to the TVCLKR pin on Twister.

	SR35[5-4] = 00		SR35[5-4] = 01		SR35[5-4] = 10	
	CLK1	CLKI	CLK1	CLKI	CLK1	CLKI
Pin	Rising	Falling	Rising	Falling	Rising	Falling
P11	G4	R7	В7	G3	R7	G3
P10	G3	R6	В6	G2	R6	G2
P9	G2	R5	B5	G1	R5	G1
P8	В7	R4	B4	G0	R4	G0
P7	В6	R3	В3	R7	R3	В7
P6	B5	G7	B2	R6	R2	В6
P5	B4	G6	B1	R5	R1	B5
P4	В3	G5	В0	R4	R0	B4
P3	G0	R2	G7	R3	G7	В3
P2	B2	R1	G6	R2	G6	B2
P1	B1	R0	G5	R1	G5	B1
P0	B0	G1	G4	R0	G4	B0

Table 12. External TV Encoder Output Data Formats

I²C Serial Communications Port

One serial communications port is implemented in a register that can be accessed either via MMFF20 or CRA0. Bit 4 is set to 1 to enable the interface. The clock is written to bit 0 (= 0) and data to bit 1 (= 0), driving the SPCLK1 and SPDAT1 pins low respectively. The state of the SPCLK1 pin can be read via bit 2 and the state of the SPDAT1 pin can be read via bit 3. The SPCLK1 and SPDAT1 pins are tri-stated when their corresponding control bits are reset to 0, allowing other devices to drive the serial bus.

This serial port is typically used for I2C interfacing. When SPCLK1 and SPDAT1 are tri-stated, the Twister can detect an I2C start condition (SPDAT1 driven low while SPCLK1 is not driven low). This condition is generated by another I2C master that wants control of the I2C bus. If bit 19 of MMFF08 is set to 1, detection of a start condition generates an interrupt and sets bit 3 of MMFF08 to 1. If bit 24 of MMFF08 is set to 1, the Twister drives SPCLK1 low to generate I2C wait states until the Host can clear the interrupt and service the I2C bus.

ZV-Port Interface

The ZV-Port, or Zoomed Video Port, allows direct transmission of video data from a PC Card to Twister. Twister supports ZV Port operation when MMFF00_0 = 1). The following setup is done for ZV Port operation:

- Video 16 mode is selected (MMFF00[3-1] = 001b)
- MMFF09[9] and MMFF00[10] must be set to 1 to specify active high HSYNC (ZVHS) and VSYNC (ZVVS).
- Byte swapping is disabled by setting MMFF00[6] to 1.
- One or two frame buffer starting addresses are defined (MMFF0C, MMFF10). One is required. The second is required for double buffering.
- The horizontal and vertical decimation registers are programmed (MMFF2C, MMFF30). This is optional.
- The video input window size (height in lines and width in pixels) is programmed in MMFF24.
- The video data horizontal and vertical offsets are programmed in MMFF28.
- The line offset (stride) is programmed (MMFF34[10-0]).

During ZV-Port operation, Twister automatically detects even and odd video fields based on the state of ZVHS on the falling edge of ZVVS. The status of this detection is given by MMFF00[28].

The interface is shown in Figure 5.

Figure 5. ZV-Port Interface

SR7D[3]	0	0	0	0	0	0	1	1
SR70[0]	1	1	1	0	0	0	0	0
SR79[1-0]	10	10	10	10	10	10	10	10
SR7D[2-0]	001	000	010	010	000	010	000	010
Pin Name	STN8	STN16	STN24	DSTN8	DSNT16	DSTN24	DSTN16	DSTN24
FPD0	R0	R0	R0	LR0	LR0	LR0		LB3
FPD1	G0	G0	G0			LR3		LB2
FPD2	В0	В0	В0	LG0	LG0	LG0	LB1	LB1
FPD3	R1	R1	R1				LB0	LB0
FPD4	G1	G1	G1	LB0	LB0	LB0		UB3
FPD5	B1	B1	B1					UB2
FPD6	R2	R2	R2	LR1	LR1	LR1	UB1	UB1
FPD7	G2	G2	G2			LG3	UB0	UB0
FPD8		B2	B2		LG1	LG1		LG3
FPD9		R3	R3				LG2	LG2
FPD10		G3	G3		LB1	LB1	LG1	LG1
FPD11		В3	В3				LG0	LG0
FPD12		R4	R4		LR2	LR2		UG3
FPD13		G4	G4			LB3	UG2	UG2
FPD14		B4	B4		LG2	LG2	UG1	UG1
FPD15		R5	R5				UG0	UG0
FPD16			G5			LB2		LR3
FPD17			В5				LR2	LR2
FPD18			R6	UR0	UR0	UR0	LR1	LR1
FPD19			G6			UR3	LR0	LR0
FPD20			В6	UG0	UG0	UG0		UR3
FPD21			R7				UR2	UR2
FPD22			G7	UB0	UB0	UB0	UR1	UR1
FPD23			B7				UR0	UR0
FPD24				UR1	UR1	UR1		
FPD25						UG3		
FPD26					UG1	UG1		
FPD27								
FPD28					UB1	UB1		
FPD29						UB3		
FPD30					UR2	UR2		
FPD31						UB3		
FPD32					UG2	UG2		
FPD33								
FPD34						UB2		
FPD35								

Table 13. STN Flat Panel Data Outputs

SR7D[3]	0	0	0	0	0	0	0	0	0
SR70[0]	1	1	1	1	1	1	1	1	1
SR79[1-0]	00	00	00	00	00	00	00	00	00
SR7D[2-0]	000	010	000	010	000	010	000	010	001
Pin Name	TFT9	TFT2x9	TFT12	TFT2x12	TFT15	TFT2x15	TFT18	TFT2x18	TFT24
FPD0							R0	R00	R2
FPD1								R10	R0
FPD2					R0	R00	R1	R01	R3
FPD3						R10		R11	
FPD4			R0	R00	R1	R01	R2	R02	R4
FPD5				R10		R11		R12	
FPD6	R0	R00	R1	R01	R2	R02	R3	R03	R5
FPD7		R10		R11		R12		R13	R1
FPD8	R1	R01	R2	R02	R3	R03	R4	R04	R6
FPD9		R11		R12		R13		R14	
FPD10	R2	R02	R3	R03	R4	R04	R5	R05	R7
FPD11		R12		R13		R14		R15	
FPD12							G0	G00	G2
FPD13								G10	G0
FPD14					G0	G00	G1	G01	R3
FPD15						G10		G11	
FPD16			G0	G00	G1	G01	G2	G02	G4
FPD17				G10		G11		G12	
FPD18	G0	G00	G1	G01	G2	G02	G3	G03	G5
FPD19		G10		G11		G12		G13	G1
FPD20	G1	G01	G2	G02	G3	G03	G4	G04	G6
FPD21		G11		G12		G13		G14	
FPD22	G2	G02	G3	G03	G4	G04	G5	G05	G7
FPD23		G12		G13		G14		G15	
FPD24							В0	B00	B2
FPD25								B10	В0
FPD26					В0	B00	B1	B01	В3
FPD27						B10		B11	
FPD28			В0	B00	B1	B01	B2	B02	B4
FPD29				B10		B11		B12	
FPD30	В0	B00	B1	B01	B2	B02	В3	B03	B5
FPD31		B10		B11		B12		B13	B1
FPD32	B1	B01	B2	B02	В3	B03	B4	B04	В6
FPD33		B11		B12		B13		B14	
FPD34	B2	B02	В3	B03	B4	B04	B5	B05	В7
FPD35		B12		B13		B14		B15	

Table 14. TFT Flat Panel Data Outputs (SR7D[3] = 0)

SR7D[3]	1	1	10
SR70[0]	1	1	10
	00	00	00
SR79[1-0] SR7D[2-0]	000	010	001
Pin Name	TFT18	TFT2x18	TFT24
	11110		
FPD0		R14	B0
FPD1	D.O.	R15	B1
FPD2	B0	B00	B2
FPD3	B1	B01	B3
FPD4	B2	B02	B4
FPD5	B3	B03	B5
FPD6	B4	B04	B6
FPD7	B5	B05	B7
FPD8		R12	G0
FPD9		R13	G1
FPD10	G0	G00	G2
FPD11	G1	G01	G3
FPD12	G2	G02	G4
FPD13	G3	G03	G5
FPD14	G4	G04	G6
FPD15	G5	G05	G7
FPD16		R10	R0
FPD17		R11	R1
FPD18	R0	R00	R2
FPD19	R1	R01	R3
FPD20	R2	R02	R4
FPD21	R3	R03	R5
FPD22	R4	R04	R6
FPD23	R5	R05	R7
FPD24		G10	
FPD25		G11	
FPD26		G12	
FPD27		G13	
FPD28		G14	
FPD29		G15	
FPD30		B10	
FPD31		B11	
FPD32		B12	
FPD33		B13	
FPD34		B14	
FPD35		B15	

Table 15. TFT Flat Panel Data Outputs (SR7D[3] = 1)

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 16. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
$T_{\rm C}$	Case operating temperature	0	85	оС	1
T_{S}	Storage temperature	-55	125	oC	1
V_{IN}	Input voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2
V _{OUT}	Output voltage	-0.5	V _{RAIL} + 10%	Volts	1, 2

Note 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface can be 3.3V or 2.5V. Memory can be 3.3V only. PCI can be 3.3V or 5.0V. Video can be 3.3V or 5.0V. Flat Panel can be 3.3V only. AGP can be 1.5V (4x transfer mode) or 3.3V (2x transfer mode).

DC Characteristics

 $\overline{T_C} = 0-85^{\circ}C$, $V_{RAIL} = V_{CC} + -5\%$, $V_{CORE} = 2.5V + -5\%$, GND=0V

Table 17. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$ m V_{IL}$	Input Low Voltage	-0.50	0.8	V	
$V_{ m IH}$	Input High Voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output Low Voltage	-	0.55	V	I _{OL} =4.0mA
V_{OH}	Output High Voltage	2.4	-	V	I _{OH} =-1.0mA
${ m I}_{ m IL}$	Input Leakage Current	-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate Leakage Current	-	+/-20	uA	$0.55 < V_{OUT} < V_{CC}$

Power Characteristics

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC}$ +/- 5%, $V_{CORE} = 2.5V$ +/- 5%, GND = 0V

Table 18. Power Characteristics

Symbol	Parameter	Тур	Max	Unit	Condition
I_{CC3}	Power Supply Current – VCC3	91		mA	Full-On Operation
I _{CC3POS}	Power Supply Current – VCC3	2		mA	POS
I _{CC3STR}	Power Supply Current – VCC3	0		mA	STR
I_{CC3SOF}	Power Supply Current – VCC3	0		mA	Soft-Off
I_{CC25}	Power Supply Current – VCC25	682		mA	Full-On Operation
I _{CC25POS}	Power Supply Current – VCC25	29		mA	POS
I _{CC25STR}	Power Supply Current – VCC25	0		mA	STR
I _{CC25SOF}	Power Supply Current – VCC25	0		mA	Soft-Off
I_{SUS25}	Power Supply Current – VSUS25	2		mA	Full-On Operation
I _{SUS25POS}	Power Supply Current – VSUS25	0.0003		mA	POS
I _{SUS25STR}	Power Supply Current – VSUS25	0.0042		mA	STR
I _{SUS25SOF}	Power Supply Current – VSUS25	0		mA	Soft-Off
I_{CC5}	Power Supply Current – VCC5			mA	Max operating frequency
I _{CCRGB}	Power Supply Current – VCCRGB			mA	Max operating frequency
I_{CCA}	Power Supply Current – VCCA			mA	Max operating frequency
I_{CCDAC}	Power Supply Current – VCCDAC			mA	Max operating frequency
I _{CCPLL1}	Power Supply Current – VCCPLL1			mA	Max operating frequency
I _{CCPLL2}	Power Supply Current – VCCPLL2			mA	Max operating frequency
I _{CCALPLL}	Power Supply Current – VCCALPLL			mA	Max operating frequency
I _{CCALVDS}	Power Supply Current – VCCALVDS			mA	Max operating frequency
I _{CCLVDS}	Power Supply Current – VCCLVDS			mA	Max operating frequency
P_{D}	Power Dissipation			W	Max operating frequency

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 19. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
5.0V Power	4.75	5.25	Volts
3.3V Power (I/O Pads, VCCQ for 2x transfer mode)	3.135	3.465	Volts
2.5V Power (Internal Logic)	2.375	2.625	Volts
1.5V Power (VCCQ for 4x transfer mode)	1.425	1.575	Volts
Case Temperature	0	85	оС

Drive strength for selected output pins is programmable. See Rx6D for details.

Table 20. AC Timing – CPU Interface

Signal	Setup	Hold	Min Delay	Max Delay	Unit
HD Bus	2.1	0.4	1.2	3.6	ns
HA Bus	2.1	0.4	1.2	3.3	ns
ADS#	2.1	0.4	1.2	3.3	ns
DBSY#	2.1	0.4	1.2	3.3	ns
DRDY#	2.1	0.4	1.2	3.3	ns
BNR#	2.1	0.4	1.2	3.3	ns
HIT#	2.1	0.4	1.2	3.3	ns
HITM#	2.1	0.4	1.2	3.3	ns
HLOCK#	2.1	0.4		_	ns
HREQ0#	2.1	0.4	-	_	ns
HREQ1#	2.1	0.4	1.2	3.3	ns
HREQ2#	2.1	0.4	1.2	3.3	ns
HREQ3#	2.1	0.4	_	_	ns
HREQ4#	2.1	0.4		_	ns
BPRI#	_	_	1.2	3.3	ns
DEFER#	-	=	1.2	3.3	ns
HTRDY#	_	=	1.2	3.3	ns
RS[2:0]#	_	_	1.2	3.3	ns

Table 21. AC Timing – Memory Interface

	Rx6D[6:5] MD Bus			Weak Drive (Rx6D[4:0]=00000h)		Strong (Rx6D[4:0		
Signal	Read Delay	Setup	Hold	Min Delay	Max Delay	Min Delay	Max Delay	Unit
MD Bus	00 (0.0 ns))	1.7	1.2	0.5	3.5	0.5	3.5	ns
MD Bus	01 (0.5 ns)	1.4	1.5	_	_	_	_	ns
MD Bus	10 (1.0 ns)	1.15	1.7	_	_	_	_	ns
MD Bus	11 (1.5 ns)	0.9	1.9	_	_	_	_	ns
MA Bus	_	-	_	1.0	4.5	1.0	3.5	ns
SRAS# Bus	_	_	_	1.0	4.5	1.0	3.5	ns
SCAS# Bus	_	_	_	1.0	4.5	1.0	3.5	ns
SWE# Bus	-	-	=	1.0	4.5	1.0	3.5	ns
CS# Bus	_	_	_	0.5	3.0	0.5	2.5	ns
DQM Bus	_	-	_	0.5	3.5	0.5	3.0	ns

MECHANICAL SPECIFICATIONS

Figure 6. Mechanical Specifications - 552-Pin HSBGA Ball Grid Array Package with Heat Spreader