Kirchhoff's Laws in Series and Parallel Circuits Pre-lab Exercise (10 Points)

Print Name					
Lab	Section	_ Date	TA		
				work sheet to this pre-lab test if used. rules of significant figures.	
(1)			1.05 k Ω and 0.47 let R_s . (Note: 1 k Ω =	$k\Omega$ are connected in series. Calculate = $1000\Omega)$	the
	$R_s = \underline{\hspace{1cm}}$				
(2)		ors, 3.30 kΩ, parallel resistan		$\alpha\Omega$ are connected in parallel. Calculate	the
	$R_p = \underline{\hspace{1cm}}$				
(3)	is connected	I in the circuit,	and applies a voltag	Ω, are connected in series. A power sup Q ge of 10.00 V across all three. Calculate milliamps (mA), where 1 mA = 0.001 A	the
	I =				
(4)	Calculate th	e voltage drop	across the 3.00 k Ω r	resistor in question 3 above.	
	V =				
(5)	recorded by first resistor	the current m	eter in the circuit. A tage of 2.20 V is me	stors in series, and a current of 1.00 mA A voltage of 4.50 V is measured across neasured across the second resistor R ₂ . F	the
	$R_3 = $				