Image Segmentation

Image Segmentation

 Goal: Group pixels into meaningful or perceptually similar regions

261458 & 261753 Computer Vision

#12

#12

261458 & 261753 Computer Vision

#12

Types of Segmentations

Oversegmentation Undersegmentation

Multiple Segmentations

Segmentation Methods

4

- **Bottom-up**: Group pixels with similar features, relying mainly on continuity principles.
- **Top-down**: Use prior knowledge about an object such as its possible shape, color, or texture, to guide the segmentation

[Levin and Weiss 2006]

Segmentation Methods

- Bottom-up Approaches
 - Clustering
 - K-means
 - Mean-shift
 - Boundary
 - Watershed
 - Graph-Based
 - Felzenszwalb and Huttenlocher

http://www.cs.brown.edu/~pff/segment/

- Top-down Approaches
 - Deformable Templates
 - Active Shape Models
 - Active Contours (Snake)

261458 & 261753 Computer Vision

#12

7

K-means Clustering

- 1. Choose the number of cluster K
- 2. Initialize the centers of every cluster
- 3. Assign each sample to nearest center \rightarrow They will belong to the same cluster
- 4. Find mean of the samples that belong to the same cluster \rightarrow Use mean as new centers for that cluster
- 5. Repeat 3 and 4 until the centers are converged

Segmentation by Clustering

261458 & 261753 Computer Vision

K-means Clustering Using Intensity or Color alone

Image

Clusters on

#12

K-means Pros and Cons[®]

- Pros
 - Simple and fast
 - Easy to implement

- Cons
 - Need to choose K
 - Sensitive to outliers
 - Sensitive to initial condition

261458 & 261753 Computer Vision

#12

#12

Mean shift Segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Versatile technique for clustering-based segmentation

K-means Pros and Cons¹

http://www.cs.uvm.edu/~xwu/kdd/Slides/Kmeans-ICDM06.pdf

261458 & 261753 Computer Vision

12

Mean-shift Algorithm

• Try to find *modes* of this non-parametric density

image

Feature space (L*u*v* color values)

http://img.my.csdn.net/uploads/201210/05/1349427627 8823.png

• Try to find *modes* of this non-parametric density

Density

Cluster

261458 & 261753 Computer Vision

#12

261458 & 261753 Computer Vision

#12

Slide by Y. Ukrainitz & B. Sarel

261458 & 261753 Computer Vision

#12

Slide by Y. Ukrainitz & B. Sarel

261458 & 261753 Computer Vision

#12

261458 & 261753 Computer Vision

#12

24

Attraction Basin

• Attraction basin: the region for which all trajectories lead to the same mode

Cluster: all data points in the attraction basin of a mode

Slide by Y. Ukrainitz & B. Sarel

261458 & 261753 Computer Vision

#12

23

261458 & 261753 Computer Vision

Mean-Shift Clustering

- The mean shift algorithm seeks *modes* of the given set of points
 - 1. Choose kernel and bandwidth
 - 2. For each point:
 - a) Center a window on that point
 - b) Compute the mean of the data in the search window
 - c) Center the search window at the new mean location
 - d) Repeat b),c) until convergence
 - 3. Assign points that lead to nearby modes to the same cluster

261458 & 261753 Computer Vision

#12

27

25

Mean-Shift Clustering

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

- Compute features for each pixel (color, gradients, texture, etc); also store each pixel's position
- Set kernel size for features K_f and position K_c
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge modes that are within width of K_f and K_s

261458 & 261753 Computer Vision

Mean-Shift Clustering

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

#12

28

Mean Shift Pros and Cons

- Pros
 - Good general-purpose segmentation
 - Flexible in number and shape of regions
 - Robust to outliers
- Cons
 - Have to choose kernel size in advance
 - Not suitable for high-dimensional features
- When to use it
 - Oversegmentation
 - Multiple segmentations
 - Tracking, clustering, filtering applications
 - D. Comaniciu, V. Ramesh, P. Meer: <u>Real-Time Tracking of Non-Rigid Objects using</u>
 <u>Mean Shift</u>, <u>Best Paper Award</u>, IEEE Conf. Computer Vision and Pattern Recognition
 (CVPR'00), Hilton Head Island, South Carolina, Vol. 2, 142-149, 2000

261458 & 261753 Computer Vision

#12

Watershed Algorithm

261458 & 261753 Computer Vision

#12

Watershed Segmentation

Image

Gradient

Watershed Boundaries

Watershed Segmentation

Use Gaussian or median filter to reduce number of regions

261458 & 261753 Computer Vision

#12

1. Choose **local minima** as region seeds

2. Add neighbors to *priority queue*, sorted by value

3. Take top priority pixel from queue

- 1. If all labeled neighbors have same label, assign that label to pixel
- 2. Add all non-marked neighbors to queue
- 4. Repeat step 3 until finished (all remaining pixels in queue are on the boundary)

Meyer 1991

261458 & 261753 Computer Vision

#12

35

Watershed Pros and Cons

- Pros
 - Fast
 - Preserves boundaries
- Cons
 - Only as good as the soft boundaries
 - Not easy to get variety of regions for multiple segmentations
- Usage
 - Use as a starting point for hierarchical segmentation

Class-Specific Top-Down Segmentation

261458 & 261753 Computer Vision

Eran Borenstein, et al.

37

Class-Specific Top-Down Segmentation

Eran Borenstein, et al.

261458 & 261753 Computer Vision

#12

