Introduction to ISO 15118 Vehicle-to-Grid Communication Interface

Begleitforschung "Schaufenster Elektromobilität" Frankfurt, 2015-10-01 stephan.voit <at> rwe.com

Word Cloud ISO 15118-1

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

Word Cloud ISO 15118-2

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

PAGE 3

Agenda

Part I

- > Motivation for a high-level communication
- > Philosophy of ISO 15118
- > Architecture
- > Use cases

Part II

- > Information flows
- > Sequence diagrams
- > Data structures
- > How to implement? (reference implementation, test cases)

Part III

> Privacy and security

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

MOTIVATION FOR A HIGH-LEVEL COMMUNICATION

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

PAGE 5

Political and technical Regulations for E-Mobility

- > European Union defined the 2020 climate and energy package, also known as "20-20-20" targets and Clean Vehicle Directive.
 - > "A 20% reduction in EU greenhouse gas emissions from 1990 levels;
 - > Raising the share of EU energy consumption produced from renewable resources to **20%**:
 - > A 20% improvement in the EU's energy efficiency."
- > Today (distribution) grid system configuration can be better operated with assistance of smart charging.
- > Costs of grid enhancement exceed costs for "Smart Charging" clearly.
- > Optimized usage of fluctuating renewable energy (photovoltaic, wind).
- > Possibly development of new market(s) for selling flexibility of EV charging.

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

eurelectric

Transport White Paper - March 2011
"Roadmap to a Single European Transport Area Towards a competitive and resource efficient transport system"

By 2030:

- Reduce transport GHG emissions by 20%
- Halve use of conventionally fuelled cars in urban centres
- Essentially free CO2 logistics in major urban centres

By 2050:

• Reduce transport emissions by 60%

eurelectric

2. Co-evolution Electricity and Transport system

- Together both industries have more potential for optimization than independent from each other
- Possibility to enable grid optimization taking into consideration as well user and grid needs
- Usage of existing ICT systems to do authentification

PHILOSOPHY AND STRUCTURE OF ISO 15118

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

PAGE 15

Philosophy of ISO 15118

- > Use Control Pilot (CP) and Pulse Width Modulation (PWM) of IEC 61851-1 (similar to SAE J1772) for "safety"
- > Support of several services
- > Authentication "External Identification Means" (EIM) and "Plug 'nd Charge" (PnC)
 - > Handling of digital certificates and electronic signatures
- > Charging AC (Alternating Current) and DC (Direct Current)
 - > Respecting customer requirements
 - > Allows respecting of availability of capacity and power at (distribution) grid
 - > Allows respecting of price tables from energy (re)seller
 - > (re)negotiation of a charge profile with new parameters
- > Value Added Services
- > Respect security and privacy
- > Provide enough bandwidth by using PLC technology based on HomePlug GreenPHY
- > EV acts as a client, EVSE acts as a server

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

Smart electric cars, smart grids and charging stations will use a single data standard. Advantages of the bidirectional communications protocol ISO 15118 **Grid friendliness** International importance > Automatic authentication at > Active load management > European and American charging points through EV feedback acceptance of the deployment for AC Automatic contract > Time-controlled charging handling operation (new charging possible > Worldwide acceptance contract, change of > Tariff-controlled contract) for deployment for charging possible combined charging system > Quick and easy foreign > Integration of (CCS) DC authentication renewable energy > According to ACEA report of the OEM from 2017 (⇒ Enabling of Europewide e-roaming) integrated into all EVs > High security against data manipulation

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

PAGE 17

RWE

Structure of Norm ISO 15118 "Road vehicles — Vehicle to grid communication interface"

- > Part 1: General information and use-case definition (*International Standard* (IS) available since 04/2013)
- > Part 2: Network and application protocol requirements (IS available since 04/2014)
- > Part 3: Physical and data link layer requirements (IS available since 05/2015)
- > Part 4: Network and application protocol conformance test (CD2 available since 02/2015)
- > Part 5: Physical layer and data link layer conformance test (CD available since 08/2015)
- > Part 6: General information and use-case definition for wireless communication (DIS available since 09/2015)
- > Part 7: Network and application protocol requirements for wireless communication (CD under development)
- > Part 8: Physical layer and data link layer requirements for wireless communication (CD under development)

Availability: Paper or PDF versions of DIS, FDIS, CDV and IS can be bought at ISO (www.iso.org) and IEC (www.iec.ch). CD versions are only distributed within Joint Working Group.

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

ISO 15118-1: Overview Use Case Elements (1/2)

No.	Use case element name / grouping
A1	Begin of charging process with forced High Level Communication
A2	Begin of charging process with concurrent IEC 61851-1 and High Level Communication
B1	EVCC/SECC communication setup
C1	Certificate update
C2	Certificate installation
D1	Authorisation using Contract Certificates performed at the EVSE
D2	Authorisation using Contract Certificates performed with help of SA
D3	Authorisation at EVSE using external credentials performed at the EVSE
D4	Authorisation at EVSE using external credentials performed with help of SA
E1	AC charging with load levelling based on High Level Communication
E2	Optimized charging with scheduling to secondary actor
E3	Optimized charging with scheduling at EV
E4	DC charging with load levelling based on High Level Communication
E5	Resume to Authorised Charge Schedule

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

PAGE 27

ISO 15118-1: Overview Use Case Elements (2/2)

No.	Use case element name / grouping
F0	Charging loop
F1	Charging loop with metering information exchange
F2	Charging loop with interrupt from the SECC
F3	Charging loop with interrupt from the EVCC or user
F4	Reactive power compensation
F5	Vehicle to grid support
G1	Value added services
G2	Charging details
H1	End of charging process

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01

Load Management according to ISO 15118 with a Smart fortwo ed 3 connected to an RWE Charge Spot

- > Charging power was restricted by cable, installation, feed-in and grid transmission capacity to max. 22 kW.
- > Electricity reseller offered a special price for this charging session at 50 % off, but between 10:30 and 11:00 AM normal price (100 %) had to be paid. During this period EV stopped charging.

© 2015, Stephan Voit, RWE Effizienz GmbH 2015-10-01