Introdução à Investigação Operacional 3ª aula T - Resumo

1

P.L. – Conceitos Fundamentais

s.b.a. Degenerada – menos vars positivas do que o nº de restrições

Resumo – IIO – T3

P.L. – Conceitos Fundamentais

Se um problema de PL admitir uma **única solução ótima**, ela **é obrigatoriamente um vértice** do espaço de soluções admissíveis.

Numa situação de **multiplicidade de soluções ótimas**, sabe-se que <u>pelo</u> menos uma das soluções ótimas é um vértice do espaço de soluções admissíveis.

Todo o vértice do espaço de soluções admissíveis é uma solução básica.

Um **algoritmo** para resolver um problema de PL deverá analisar as soluções básicas admissíveis para encontrar a(s) solução(ões) ótima(s).

O espaço de soluções admissíveis de um problema de PL é um polítopo convexo!

Uma solução admissível de um problema de PL é um ponto desse polítopo convexo; uma s.b.a. é um vértice desse polítopo convexo.

O Algoritmo Simplex analisa apenas vértices do espaço de sols adms, Costa

Resumo – IIO – T3 Introdução ao Algoritmo Simplex

Quando obtém uma nova base, novo vértice, começa nova iteração:

Será que a solução em análise é ótima?

Sim → Parar; Não → Prosseguir

Qual a variável que deve entrar na base?

Qual a variável que deve sair da base?

Obtemos, assim, a nova base. Nova iteração.

<u></u>

Resumo – IIO – T3

Algoritmo Simplex Primal – Quadros do Simplex

Max F = 4.X+3.Y
$$\rightarrow$$
 F 4. X 3. Y = 0

	Х	Υ	F ₁	F ₂	T.I.	Δ_{i}
F1	-1	1	1	0	3	_
F ₁ F ₂	4	1	0	1	ა 8	8/4 ←
F	- 4	-3	0	0	0	$\Delta = 2$

	Χ	Υ	F ₁	F ₂	T.I.	Δ_{i}
F ₁	0	5/4	1	1/4	5	5/(5/4)
Х	1	1/4	0	1/4	2	2/(1/4)
F	0	-2	0	1	8	Δ = 4

	Х	Υ	F ₁	F ₂	T.I.
Υ	0	1	4/5	1/5	4
Χ	1	0	-1/5	1/5	1
F	0	0	+8/5	+7/5	16

$$(X^* = 1 ; Y^* = 4 ; F1^* = 0 ; F2^* = 0), com F^* = 16$$

Resumo – IIO – T4

Alg. Simplex – Multiplicidade de Soluções Ótimas

Marinian F-2 V 2 V		Χ	Υ	F ₁	F ₂	F3	T.I.	Δ_{i}		Quadro
Maximizar F = 3. X + 3. Y	F1	1	3	1	0	0	12	12/1		Inicial
sujeito a:	F ₂	1	1	0	1	0	6	6/1		
	F3	2	1	0	0	1	10	10/2	\leftarrow	X = 0 ; Y = 0
1 . X + 3 . Y ≤ 12	F	- 3	-3	0	0	0	0	Δ = 5		F = 0
$\begin{array}{cccc} 1 \cdot X + 1 \cdot Y & \leq & 6 \\ 2 \cdot X + 1 \cdot Y & \leq & 10 \end{array}$	'	^	↑							
2. ∧ + 1. 1 ≤ 10		'	•							
$X, Y \geq 0$		Х	Υ	F1	F ₂	F ₃	T.I.	۸:		
	- F.		5/2	- ' 1	0	-1/2	7	7//5/2\		18 Itaraa 5 a
	F ₁	0		0	0		1	7/(5/2)		1ª Iteração
	F ₂	0	1/2	0	1	-1/2	1	1/(1/2)	\leftarrow	
	Х	1	1/2	0	0	1/2	5	5/(1/2)		X = 5; Y = 0
	F	0	-3/2	0	0	3/2	15	$\Delta = 2$		F = 15
			↑				-	-		
		Х	Υ	F ₁	F ₂	F ₃	T.I.	Δi		2ª Iteração

	Х	Υ	F1	F ₂	F3	T.I.	Δ_{i}		2ª Iteração
F ₁	0	0	1	-5	2	2	2/2	\leftarrow	
Y	0	1	0	2	-1	2			$X^* = 4$; $Y^* = 2$
/ <u> </u>	1	0	0	-1	1	4	4/1		F* = 18
/F	0	0	0	3	0	18	$\Delta \neq 1$		Sol. óptima
V	•				\uparrow	•			
	Х	Υ	F ₁	F ₂	F ₃	T.I.	V Ai		3ª Iteração
F ₃	0	0	1/2	-5/2	1	1 /	1/(1/2)	←	
Y	0	1	1/2	-1/2	0	3	3/(1/2)		$X^* = 3$; $Y^* = 3$
X	1	0	-1/2	3/2	0	3			F* = 18
F	0	0	0	3	0	18	$\Delta = 2$		Sol. óptima

 $(X^*, Y^*) = \lambda \cdot (4, 2) + (1 - \lambda) \cdot (3, 3) ; \lambda \in [0, 1]$

Ruy Costa

Alg. Simplex – casos particulares

_		Χ	Υ	F ₁	F ₂	T.I.	Δ_{i}	1ª Iteração
_	Υ	0	1	-1/6	2/3	23/6	_	
	Χ	1	0	-1/3	1/3	5/3	_	X = 5/3; $Y = 23/6$
	F	0	0	- 7/6	8/3	89/6	∆ = ?	F = 89/6

Sol. não óptima Sol. nã Problema com espaço de soluções ilimitado e sem sol. ótima limitada!

	Х	Υ	F ₁	F ₂	T.I.	Δį	1ª Iteração
Υ	0	1	-1/6	2/3	23/6	_	
X	1	0	-1/3	1/3	5/3		X*= 5/3 ; Y* = 23/6
F	0	0	0	2	12	$\Delta = ?$	F* = 12
			↑			•	Sol. óptima
			·				não única !

 $(X^* = 5/3; Y^* = 23/6)$ é a única s.b.a que é ótima. Mas, há infinitas soluções ótimas não básicas ... (espaço de soluções ilimitado).

ű

Ruy Costa

Resumo – IIO – T4 Formulação Matricial do Simplex

Consideremos o seguinte problema de Programação Linear:

Maximizar F = 3.X + Y

sujeito a:

$$X \geq 1$$

$$Y \geq 2$$

$$X + Y \leq 5$$

$$X, Y \geq 0$$

Var.s Básicas: $(X; Y; F_1)$ Var.s Não Básicas: $(F_2; F_3)$

쓚

Formulação Matricial do Simplex

Var.s Básicas: $(X;Y;F_1)$ Var.s Não Básicas: $(F_2;F_3)$

$$B^{-1} = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} \qquad B^{-1}.D = \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 1 & 1 \end{bmatrix} \qquad X_B = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$$

	Х	Υ	F ₁	F_2	F_3	TI
Х	1	0	0	1	1	3
Y F₁	0	1	0	-1	0	3 2 2
F ₁	0	0	1	1	1	2
F	0	0	0	+ 2	+ 3	11

Leituras de apoio:

Elementos de apoio às aulas de IIO - Caps IV, V, VI e VII – PL:Conceitos Fundamentais; Introdução ao Alg. Simplex; Alg. Simplex; Formulação Matricial do Simplex – ficheiro pdf pp. 34 a 77.

Disponível atividade semanal de apoio à aprendizagem no moodle!