Name:

Section (time):

$Math\ 340\ Quiz\ 12$

1.) Let $\langle \cdot, \cdot \rangle$ be an inner product (do not assume it is the dot product). Is the following function a linear transformation? $L : \mathbb{R} \to \mathbb{R}$,

$$L(x) = \langle x, 91 \rangle.$$

2.) Let A and B be square matrices. Show that if B is similar to A, then A is similar to B.

Not Quiz 12

Quiz before I made it a little easier.) Let $\langle \cdot, \cdot \rangle$ be an inner product. Is the following function a linear transformation? $L: \mathcal{V} \to \mathbb{R}$,

$$L_y(x) = \langle x, y \rangle.$$

- a.) Is $L(x,y) = \sqrt{xy}$ a linear transformation?
- b.) Is $H(x,y) = \langle x,y \rangle$ a linear transformation?
- c.) Is T(x, y, z) = 91 a linear transformation?
- d.) Let $L: P_2 \to P_1$ be the linear transformation defined by

$$L(at^{2} + bt + c) = (a+b)t + (b-c).$$

Find a basis for ker and range L.

- e.) HW25 from 6.3 Let $L: \mathbb{R}^4 \to \mathbb{R}^6$ be a linear transformation. If dim ker L=2, find dim range L? If dim range L=3, what is dim ker L?
- f.) Let T(x, y, z) = (x + y, y + z). Calculate the matrix of T relative to the standard bases of \mathbb{R}^3 and \mathbb{R}^2 . Then, relative to the bases $\{(1, 0, 0), (0, 0, 1), (1, -1, 1)\}$ and $\{(1, 0), (0, 1)\}$.
- g.) Find the value of T(1,1,-1) for the linear transformation $T:\mathbb{R}^3$ whose matrix relative to the standard basis and $\{1,x,x^2\}$ is

$$\left[\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 4 & -3 \\ 3 & 0 & 2 \end{array}\right].$$

Theorem 6.12 Let $L:V\to W$ be a linear transformation with matrix A. Let S and S' be ordered bases for V and T and T' be ordered bases for W. Let P and Q be the transition matrices from S to S' and T and T', respectively. Then $Q^{-1}AP$ is the representation of L with respect to S' and T'.

Definition Matrix B is similar to A if $B = P^{-1}AP$.

HW9.) Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation with matrix

$$A = \left[\begin{array}{ccc} 2 & -1 & 3 \\ 3 & 1 & 0 \end{array} \right]$$

with respect to $S = \{(1, 0, -1), (0, 2, 0), (1, 2, 3)\}$ and $T = \{(1, -1), (2, 0)\}.$

Find the representation of L with respect to the natural bases for \mathbb{R}^3 and \mathbb{R}^2 .

h.) Let λ be the eigenvalues of A. Find the eigenvalues of A^n and (A + cI). Recall $Ax = \lambda x$ for any eigenvalue λ and an associated eigenvector x.