

SEQUENCE LISTING

<110> LEE, Sang Yup
PARK, Si Jae

<120> PROCESS FOR PREPARING POLYHYDROXYALKANOATE EMPLOYING maoC GENE

<130> Q77446

<150> KR 10-2003-0025863
<151> 2003-04-23

<160> 11

<170> PatentIn version 3.2

<210> 1
<211> 681
<212> PRT
<213> Escherichia coli

<400> 1

Met Gln Gln Leu Ala Ser Phe Leu Ser Gly Thr Trp Gln Ser Gly Arg
1 5 10 15

Gly Arg Ser Arg Leu Ile His His Ala Ile Ser Gly Glu Ala Leu Trp
20 25 30

Glu Val Thr Ser Glu Gly Leu Asp Met Ala Ala Ala Arg Gln Phe Ala
35 40 45

Ile Glu Lys Gly Ala Pro Ala Leu Arg Ala Met Thr Phe Ile Glu Arg
50 55 60

Ala Ala Met Leu Lys Ala Val Ala Lys His Leu Leu Ser Glu Lys Glu
65 70 75 80

Arg Phe Tyr Ala Leu Ser Ala Gln Thr Gly Ala Thr Arg Ala Asp Ser
85 90 95

Trp Val Asp Ile Glu Gly Ile Gly Thr Leu Phe Thr Tyr Ala Ser
100 105 110

Leu Gly Ser Arg Glu Leu Pro Asp Asp Thr Leu Trp Pro Glu Asp Glu
115 120 125

Leu Ile Pro Leu Ser Lys Glu Gly Gly Phe Ala Ala Arg His Leu Leu
130 135 140

Thr Ser Lys Ser Gly Val Ala Val His Ile Asn Ala Phe Asn Phe Pro

145 150 155 160

Cys Trp Gly Met Leu Glu Lys Leu Ala Pro Thr Trp Leu Gly Gly Met
165 170 175

Pro Ala Ile Ile Lys Pro Ala Thr Ala Thr Ala Gln Leu Thr Gln Ala
180 185 190

Met Val Lys Ser Ile Val Asp Ser Gly Leu Val Pro Glu Gly Ala Ile
195 200 205

Ser Leu Ile Cys Gly Ser Ala Gly Asp Leu Leu Asp His Leu Asp Ser
210 215 220

Gln Asp Val Val Thr Phe Thr Gly Ser Ala Ala Thr Gly Gln Met Leu
225 230 240

Arg Val Gln Pro Asn Ile Val Ala Lys Ser Ile Pro Phe Thr Met Glu
245 250 255

Ala Asp Ser Leu Asn Cys Cys Val Leu Gly Glu Asp Val Thr Pro Asp
260 265 270

Gln Pro Glu Phe Ala Leu Phe Ile Arg Glu Val Val Arg Glu Met Thr
275 280 285

Thr Lys Ala Gly Gln Lys Cys Thr Ala Ile Arg Arg Ile Ile Val Pro
290 295 300

Gln Ala Leu Val Asn Ala Val Ser Asp Ala Leu Val Ala Arg Leu Gln
305 310 320

Lys Val Val Val Gly Asp Pro Ala Gln Glu Gly Val Lys Met Gly Ala
325 330 335

Leu Val Asn Ala Glu Gln Arg Ala Asp Val Gln Glu Lys Val Asn Ile
340 345 350

Leu Leu Ala Ala Gly Cys Glu Ile Arg Leu Gly Gly Gln Ala Asp Leu
355 360 365

Ser Ala Ala Gly Ala Phe Phe Pro Pro Thr Leu Leu Tyr Cys Pro Gln
370 375 380

Pro Asp Glu Thr Pro Ala Val His Ala Thr Glu Ala Phe Gly Pro Val

385

390

395

400

Ala Thr Leu Met Pro Ala Gln Asn Gln Arg His Ala Leu Gln Leu Ala
405 410 415

Cys Ala Gly Gly Ser Leu Ala Gly Thr Leu Val Thr Ala Asp Pro
420 425 430

Gln Ile Ala Arg Gln Phe Ile Ala Asp Ala Ala Arg Thr His Gly Arg
435 440 445

Ile Gln Ile Leu Asn Glu Glu Ser Ala Lys Glu Ser Thr Gly His Gly
450 455 460

Ser Pro Leu Pro Gln Leu Val His Gly Gly Pro Gly Arg Ala Gly Gly
465 470 475 480

Gly Glu Glu Leu Gly Gly Leu Arg Ala Val Lys His Tyr Met Gln Arg
485 490 495

Thr Ala Val Gln Gly Ser Pro Thr Met Leu Ala Ala Ile Ser Lys Gln
500 505 510

Trp Val Arg Gly Ala Lys Val Glu Glu Asp Arg Ile His Pro Phe Arg
515 520 525

Lys Tyr Phe Glu Glu Leu Gln Pro Gly Asp Ser Leu Leu Thr Pro Arg
530 535 540

Arg Thr Met Thr Glu Ala Asp Ile Val Asn Phe Ala Cys Leu Ser Gly
545 550 555 560

Asp His Phe Tyr Ala His Met Asp Lys Ile Ala Ala Ala Glu Ser Ile
565 570 575

Phe Gly Glu Arg Val Val His Gly Tyr Phe Val Leu Ser Ala Ala Ala
580 585 590

Gly Leu Phe Val Asp Ala Gly Val Gly Pro Val Ile Ala Asn Tyr Gly
595 600 605

Leu Glu Ser Leu Arg Phe Ile Glu Pro Val Lys Pro Gly Asp Thr Ile
610 615 620

Gln Val Arg Leu Thr Cys Lys Arg Lys Thr Leu Lys Lys Gln Arg Ser

625	630	635	640
Ala Glu Glu Lys Pro Thr Gly Val Val Glu Trp Ala Val Glu Val Phe			
645		650	655
Asn Gln His Gln Thr Pro Val Ala Leu Tyr Ser Ile Leu Thr Leu Val			
660		665	670
Ala Arg Gln His Gly Asp Phe Val Asp			
675		680	

<210> 2
<211> 2046
<212> DNA
<213> Escherichia coli

<400> 2
atgcagcagt tagccagttt cttatccggcgt acctggcagt ctggccgggg ccgttagccgt 60
ttgattcacc acgcttattag cggcgaggcg ttatgggaag tgaccagtga aggtcttgat 120
atggcggctg cccgccagtt tgccattgaa aaaggtgccc ccgccttcg cgctatgacc 180
tttatcgaac gtgcggcgat gcttaaagcg gtcgctaaac atctgctgag tgaaaaagag 240
cgtttctatg ctctttctgc gcaaacadggc gcaacgcggg cagacagttg gggtgatatt 300
gaagggtggca ttgggacggtt atttacttac gccagcctcg gtagccggga gctgcctgac 360
gatacgtgt ggccggaaga tgaattgtatcc cccttattcga aagaagggtgg atttgccgcg 420
cgccatttac tgacctaaa gtcaggcgtg gcagtgcata ttaacgcctt taactcccc 480
tgctggggaa tgctggaaaa gctggcacca acgtggctgg gcggaatgcc agccatcatc 540
aaaccagcta ccgcgacggc ccaactgact caggcgatgg tgaaatcaat tgtcgatagt 600
ggtcttggc aattagtctg atctgcggta gtgctggcga cttgttggat 660
catctggaca gccaggatgt ggtgacttac acgggggtcag cggcgaccgg acagatgctg 720
cgagttcagc caaatatcgt cgccaaatct atccccctca ctatggaaac tgattccctg 780
aactgctgcg tactggcga agatgtcacc cggatcaac cggagttgc gctgtttatt 840
cgtgaagttg tgcgtgagat gaccacaaaa gccggggcaaa aatgtacggc aatccggcgg 900
attattgtgc cgcaggcatt ggttaatgct gtcagtgtatc ctctgggtgc gcgattacag 960
aaagtctgtgg tcgggtatcc tgctcaggaa ggcgtgaaaa tgggcgcact ggtttatgtc 1020
gagcagcgtg ccgtatgtcga ggaaaaagtg aacatattgc tggctgcagg atgcgagatt 1080
cgccctcggtg gtcaggcggaa tttatctgtc gcccgtgcct tcttccgcac aaccttattg 1140
tactgtccgc agccggatga aacacccggcg gtacatgcac cagaaggcctt tggccctgtc 1200

gcaacgctga tgccagcaca aaaccagcga catgctctgc aactggcttg tgcaggcgcc	1260
ggtagccttg cgccaacgct ggtgacggct gatccgaaa ttgcgcgtca gtttattgcc	1320
gacgcggcac gtacgcatgg gcgaattcag atcctcaatg aagagtcggc aaaagaatcc	1380
accgggcatg gctccccact gccacaactg gtacatggtg ggcctggtcg cgcaggaggc	1440
ggtaagaat taggcggttt acgagcggtg aaacattaca tgcagcgaac cgctgttcag	1500
ggtagtccga cgatgcttgc cgctatcagt aaacagtggg tgccgcgtgc gaaagtcgaa	1560
gaagatcgta ttcatccgtt ccgcaaataat tttgaggagc tacaaccagg cgacagcctg	1620
ttgactcccc gccgcacaat gacagaggcc gatattgtta actttgcttg cctcagcggc	1680
gatcatttct atgcacatat ggataagatt gctgctgccg aatctatccc cggtgagcgg	1740
gtggtgtcatg ggtatcccgt gcttctgcg gctgcgggtc tgtttgcga tgccgggtgc	1800
ggtcgggtca ttgctaacta cgggctggaa agcttgcgtt ttatcgaacc cgtaaagcca	1860
ggcgataacca tccaggtgcg tctcacctgt aagcgcaaga cgctgaaaaaa acagcgtagc	1920
gcagaagaaa aaccaacagg tgtggtgaa tgggctgttag aggtattcaa tcagcatcaa	1980
accccggtgg cgctgtattc aattctgacg ctggtgccca ggcagcacgg tgattttgtc	2040
gattaa	2046

<210> 3	
<211> 80	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 3	
atgcagcagt tagccagttt cttatccgtt acctggcagt ctggccgggg ccgtagccgt	60
agcacttcac tgacaccctc	80
<210> 4	
<211> 71	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR primer	
<400> 4	
ttaatcgaca aaatcaccgt gctgcctggc caccagcgtc agaattgaat aacttattca	60
ggcgttagcac c	71

<210> 5		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 5		
cgccggatcca ataaggagat atcttagatga gagagaaaacc aacgccc		47
<210> 6		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 6		
cggatccccg ggtaccgagc tcgaattctc agcgcacgcg cacgtaggta		50
<210> 7		
<211> 29		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 7		
gactagttga aaggtgtgctc cgatctcac		29
<210> 8		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 8		
gcggatccca tttgttatgg gcgacgtcaa ttt		33
<210> 9		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 9		
tttcccgagc tcatgcagca gtttagccagt t		31

<210> 10
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 10 28
gctctagatt aatcgacaaa atcaccgt

<210> 11
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 11 45
gctctagatt aatggtgatg atggtgatg tcgacaaaaat caccg