Presentation: OctupusTea

Ch.8 Bitcoin Network

P2P Network Architecture

- Inherently resilient
- Decentralized
- Open

Bitcoin Network

- Collections of nodes
- Bitcoin P2P Protocol

Extended Bitcoin Network

Extended Bitcoin Network

- Bitcoin P2P Protocol
- Pool-Mining Protocol
- Stratum Protocol
- Any other related protocols

Node Roles

- Collection of 4 functions:
 - Network (Routing)
 - BC DB
 - Miming
 - Wallet

The Ns: Network Routing

- Validate / Propagate TXs / blocks
- Discover Peers
- Maintain Connections

The Bs: Full Blockchain

- Full nodes
- Autonomously and authoritatively verify TXs.
- SPV nodes (not the Bs)

The Ms: Miner

- Mining nodes
- Create new blocks (PoW)
- Full node miner / Pool miner

The Ws: Wallets

Bitcoin core / SPV wallets

The Others

- Nodes running other protocols
 - Mining pool protocol
 - Light-weight client-access protocol

Common Node Types

Reference Client Full BC Node (Bitcoin Core)

Common Node Types (ctd.)

Solo Miner

SPV Wallet

Common Node Types (ctd.)

Pool Protocol Servers SPV Wallet & Mining Nodes

Full Nodes

- Maintain a full BC with all TXs
- In early years, all nodes are full nodes
- Independently and authoritatively verify TX

Later, SPV nodes are introduced

SPV Nodes

- Most common form, especially wallets
- Only save block headers
- Special TX verification
- Not as safe as full nodes

Bitcoin Relay Network

Bitcoin Relay Network

- Latency is related to profit.
- NOT replacements for P2P network
- But additional connectivity

Bitcoin Relay Network (ctd.)

- Original: Specialized host nodes
- Next original: FIBRE
- Falcon by Cornell University

Network Discovery

Protocol

- Booting
 - Connect to at least one existing node
 - Select at random
 - Generally use port 8333

- Connection establishing
 - Handshake
 - version message is sent to remote
 - verack message is sent by remote if compatable

- Peer finding
 - DNS query
 - DNS seeds
 - Given IP

- Address exchanging
 - getaddr message is sent to remote
 - List of other peers is sent by remote

- Path
 - No need to connect too many modes
 - Most-recent-success is remembered
 - Periodically message sending
 - Disconnection: 90-minute timeout

Exchanging "Inventory"

- Full nodes try construct a complete BC.
- Syncing
 - 1. Check version message for BestHeight
 - 2. Receive version message, compare to its own BC
 - 3. Exchange getblocks messages

Exchanging "Inventory" (ctd.)

- Share 500 hashes of blocks from the "the longer" BC
- Using an inv message

Exchanging "Inventory" (ctd.

- SPV nodes use getheader message
 - Responding peer will send up to 2000 block headers in header message
 - TXs of interest are retrieved using getdata request
 - Privacy issue

^{*} Bloom Filter

Bloom Filter

- Problem: privacy risks of SPV nodes
- A probabilistic search filter
 - Can be tuned toward precision or privacy
 - More accurate at the expense of privacy

Implementation

- Foundation
 - N-bit array indexed 1 to N
 - M hash functions ranging [1, N]
 - Different N and M for accuracy or privacy.

Implementation (ctd.)

- Pattern recording
- Pattern matching

Application on SPV Nodes

- Requesting node
 - Bloom filter set to 0
 - List owning addresses, keys and hashes
 - Extracting PKH, SH, and TX ID from any UTXO
 - Send a filterload message to peers.

Application on SPV Nodes (ctd.)

- Peers
 - Check matching:
 - TX ID, TX inputs, input sig
 - Data components and / or witness scripts
 - Send back probably matchingTXs
 - merkleblock message

Application on SPV Nodes (ctd.)

- Back to requesting node
 - Discard false positives
 - Update UTXO and wallet balance
 - Modify the bloom filter for future matching

Filter modification

- filteradd message
- filterclear message
- Pattern removal via clear and resend.

Encrypted and Authenticated Connections

Encrypted and Authenticated Connections

- Originally, the network are entirely in the clear
 - Not a major concern for full nodes
 - But a big problem for SPV nodes.
- Solutions
 - BIP-150 and 151 / Tor transport

Tor Transport

- The Onion Routing network
- Encryption and encapsulation of data
- Randomized network paths
- Bitcoin Core supports Tor

P2P Authentication and Encryption

- BIP-150 (Peer authentication)
 - Optionsal
 - ECDSA
 - Requires BIP-151 communications

P2P Authentication and Encryption (ctd.)

BIP-151 (P2P communication encryption)

- Overall benefits
 - Prevent MITM attack
 - Strengthen resistance of Bitcoin to surveillance.

TX Pools

Memory Pool (TX Pool)

- Per node temp list of unconfirmed TXs
 - Keep TXs known to the network but no yet on BC
 - Wallet nodes use TX pool to track incomings

Orphaned TX Pool

- Checked when a TX is added
- Matching orphans are then validated
 - Recursively find in the orphan pool

UTXO DB / Pool

- Not initialized empty
- Contains entries of UTXO
 - From all the way back to the genesis block
- May be a pool on local memory
- Or an indexed DB on mass storage

Differences

- TX / orphan pools represent local perspective
 - Might vary significantly between nodes
 - Only contains unconfirmed outputs
- UTXO pool represents the consensus
 - Vary little between nodes
 - Only contains confirmed outputs.