函 数

函数的概念

- ① 设有集合A,B, f是一个A到B的关系,若对于∀a∈A,存在唯一的b∈B,使得afb,则称f是由A到B的一个函数。记作:
 f:A→B。
- \mathbf{Z} 若afb,则称a为**象源**或自变量,b为f作用下a的**象**或值。记作b = f(a)。
- 3 f的定义域D(f) = A,f的值域 $R(f) \subseteq B$,记作f(A),称B为f的值域D。

www.znufe.edu.cn

函数的相等

设有函数 $f: A \rightarrow B$, $g: C \rightarrow D$ 。若A = C,B = D,且对 $\forall x \in A$ 和 $\forall x \in C$ 都有f(x) = g(x),则称函数f和g是相等的,记作f = g。

www.znufe.edu.cn

函数举例

 $D(\phi) = A$, $R(\phi) = \phi(A) = \{1,2,3\}$.

设A = B = R(实数集) , f 和g是A到B的关系 , $f = \{(a,a^2)/\ a \in R\} \,,$ $g = \{(a^2\ ,a)/\ a \in R\} \,,$ 试确定f 和g是否为函数 。

www.znufe.edu.cn

思考:

- 1.设A,B是两个集合,且|A|=m,|B|=n,则A到B的不同的函数的个数是多少?
- 2.设f和g均是集合A到B的函数。 $f \cap g$ 能构成A到B的函数吗?

www.znufe.edu.cn

设X和Y是任意集合, $f:X\to Y$, $A\subseteq X$, $B\subseteq X$,证明: $f(A\cup B)=f(A)\cup f(B)$

① $\forall y \in f(A \cup B)$,则 $\exists x \in A \cup B$,使得y = f(x)。 由 $x \in A \cup B$,有 $x \in A \lor x \in B$,则 $f(x) \in f(A) \lor f(x) \in f(B)$,即 $y = f(x) \in f(A) \cup f(B)$,所以 $f(A \cup B) \subseteq f(A) \cup f(B)$

② \forall y \in f(A),则 \exists x \in A,使得y=f(x)。由x \in A \subseteq A \cup B有f(x) \in f(A \cup B). 所以f(A) \subseteq f(A \cup B).同理有f(B) \subseteq f(A \cup B).

www.znufe.edu.cn

函数的性质

 $f: A \rightarrow B$ 是由A到B的函数 ,

- 型 若f(A) = B,也即对 $\forall b \in B$,都有元素a∈A使得f(a) = b,则称f是从A到B的满射。
- ② 对 \forall a₁, a₂ ∈ A,若a₁ ≠ a₂,则必有 f (a₁) ≠ f (a₂),则称f是从A到B的单射。
- 3 若f 既是满射,又是单射,则称f 是从A到B的x射。

www.znufe.edu.cn

设A = B = I(I是整数集) , f是A到B的函数 , f(a) = a^2 , $a \in I$, 判断f是否是单射 , 满射 , 双射 ?

f 既非单射也非满射。

www.znufe.edu.cn

设A = B = R(R为实数集), g是A到B的函数, g(a) = a + 1, a \in R, 判断g是否是单射,满射,双射?

g是双射。

恒等函数

设A是集合,则A上的恒等关系I_A是由A到A的函数,对∀a∈A,有I_A(a)=a,称为A上的<mark>恒等函数</mark>。

显然 , I_A 既是满射 , 又是单射 , 所以是双射。

www.znufe.edu.cn

自然映射

设R是集合A上的等价关系,定义一个从A到A/R的函数 $g:A\to A/R$ 且 $g(a)=[a]_R$,则称g是从A到商集A/R的**自然映射**。

www.znufe.edu.cn

根据图示判断函数的性质

$$f_1(A) = B, f_1$$
是满射。

www.znufe.edu.cn

 $f_2(1) \neq f_2(2) \neq f_2(3)$,所以 f_2 是单射。

 $f_3(G) = H 且 f_3(1) \neq f_3(2) \neq f_3(3)$,所以 f_3 是双射。

www.znufe.edu.cn

设A,B是有限集,f是由A到B的函数,显然,

若f 是满射,则有|A|≥|B|;

若f 是单射,则有|A|≤|B|;

若f 是双射,则有|A|=|B|。

www.znufe.edu.cn

思 考:

下列函数中哪些是满射的?哪些是单射的?哪些是双射的?

- (1) $f_1: N \to N, f_1(n) = 2n$
- (2) $f_2: I \to N^+, f_2(i) = |2i|+1$
- (3) $f_3:\rho(U) \rightarrow \rho(U)$, $f_3(S) = \tilde{S}$
- (4) $f_4: R \to R$, $f_4(r) = 2r-15$
- (5) $f_5: I \to \{0,1,2,3,4\}$, $f_5(i) = i \pmod{5}$

思考:

设(A, \leq)是偏序集,对 \forall a \in A,f(a) = {x|x \in A \land x \leq a}。证明:f:A \rightarrow ρ (A)是一个单射,且当a \leq b时,有f(a) \subseteq f(b).

www.znufe.edu.cn

函数的复合运算

设有函数 $f:A\to B,g:B\to C$,则f和g的复合函数是一个由A到C的函数,记作 $f\circ g$,或简记作gf。即

 $f \circ g = \{ \langle a,c \rangle | a \in A \land c \in C \land \exists b (b \in B \land b = f(a) \land c = g(b)) \}$

若a \in A,c \in C 且a $(f\circ g)$ c,则可记作 $f\circ g$ (a)= g (f (a)) = c。

www.znufe.edu.cn

设A = $\{1,2,3\}$,B= $\{a,b\}$,C = $\{e,f\}$, f = $\{<1,a>,<2,a>,<3,b>\}$,g = $\{<a,e>,<b,e>\}。$

则
$$gf : A \rightarrow C, gf = \{<1,e>,<2,e>,<3,e>\}$$

www.znufe.edu.cn

设
$$f: \mathbf{R} \rightarrow \mathbf{R}, f(\mathbf{x}) = \mathbf{x} + 1, g(\mathbf{x}) = \mathbf{x}^2 + 1$$
。

则

$$gf: R \to R, gf(x) = g(f(x)) = g(x+1) = (x+1)^2 + 1 = x^2 + 2x + 2.$$

 $fg: R \to R, fg(x) = f(g(x)) = f(x^2 + 1) = x^2 + 2.$

函数的复合运算满足结合性

设有函数
$$f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow D,$$
则有
$$(f \circ g) \circ h = f \circ (g \circ h) = f \circ g \circ h$$

设有 $f:A \rightarrow A$,则有复合函数ff.....f可用 f^n 表示。

www.znufe.edu.cn

设有函数
$$f: \mathbf{R} \to \mathbf{R}, f(\mathbf{x}) = \mathbf{x} + \mathbf{1}$$
。 则
$$f^2(\mathbf{x}) = f(f(\mathbf{x})) = f(\mathbf{x} + \mathbf{1}) = \mathbf{x} + \mathbf{2}$$

$$f^3(\mathbf{x}) = f(f(f(\mathbf{x}))) = f(\mathbf{x} + \mathbf{2}) = \mathbf{x} + \mathbf{3}$$

$$\vdots$$

$$f^n(\mathbf{x}) = f(f^{n-1}(\mathbf{x})) = f(\mathbf{x} + \mathbf{n} - \mathbf{1}) = \mathbf{x} + \mathbf{n} - \mathbf{1} + \mathbf{1} = \mathbf{x} + \mathbf{n}$$

www.znufe.edu.cn

设有函数 $f:R\times R$,即 $R^2\to R$, f (<x,y>) = x+y。则f 是一个二元函数 ,也是一个二元运算 ,且 $f=\{\,<<\mathsf{x},\mathsf{y}>\,,\,\mathsf{x}+\mathsf{y}>|\mathsf{x},\mathsf{y}\in R\,\}$

www.znufe.edu.cn

定理 设有函数 $f: A \rightarrow B, g: B \rightarrow C$,

- 1 若f, g都是满射,则gf是满射;
 对∀c∈C,∵g: B→C是满射,∴必有∃b∈B使得g(b)=c,
- **2** 若f, 都是单射,B**购 基** 单射;必有∃a∈A,使得f(a)=b。

 对∀a₁, 也界於有∃a⊊A₂,使得gf(a)=g(f(a))=g(b)=c。
- 3若f,g都是双射是型射光双射 $_{q}$) \neq $f(a_{q})$ 。

又: g: B \rightarrow C 也是单射, 而 $f(a_1)$, $f(a_2) \in B$,

 $\therefore g(f(a_1)) \neq g(f(a_2)) \text{ tr } gf(a_1) \neq gf(a_2).$

∴gf: A→C也是单射。

www.znufe.edu.cn

定理 设有函数 $f:A \rightarrow B, g:B \rightarrow C$,

1 若gf是满射,则g是满射;

_因为gf 是满射,所以对∀c∈C,则必有∃a∈A,使得gf (a) = c。

- 2 若g f 是单射 c,则f 是单射 i b∈B。

 $g(f(a_1)) = g(f(a_2)) = g(b) = c$ 。 所以 $g(a_1) = g(a_2)$,与假设矛盾。所以f是单射。

www.znufe.edu.cn

举例说明gf是满射,但f不一定是满射; gf是单射,但g不一定是单射。

www.znufe.edu.cn

思考与练习:

- 1. 设有函数 $f: A \to B$, $g: B \to C$ 。若gf 是单射,且f 是满射。试证明: g 是单射。
- 2. 设有函数f:A \rightarrow B, g: B \rightarrow C。若gf 是满射,且g 是单射。试证明:f 是满射。

逆函数

对任意关系R,都有R的逆关系R-1存在,但若R是函数,R-1就不一定是函数,所以并非所有函数都有逆函数。

设有函数 $f:A \to B$ 是一个双射,定义函数 $g:B \to A$,使得对 $\forall b \in B$,g(b) = a,而a是使f(a) = b的A中的元素,则称g是f的 **逆函数**,记作 f^{-1} 。

若函数f 存在逆函数 f^{-1} ,则称f 是可逆的。

www.znufe.edu.cn

设f和g是由 $\{a,b,c\}$ 到 $\{1,2,3\}$ 的函数,若f(a)=2,f(b)=3,f(c)=1;g(a)=2,g(b)=2,g(c)=3。试问f和g可逆吗?如果可逆,其逆函数是什么?

很明显,f是双射,f是可逆的。其逆函数 f^{-1} 定义如下: $f^{-1}(2)=a\,,\,\,f^{-1}(3)=b\,,\,\,f^{-1}(1)=c\,.$ g既不是单射,又不是满射,肯定不是双射,所以不可逆。

www.znufe.edu.cn

设函数 $f:A \to B$ 是双射,则f的逆函数 $f^{-1}:B \to A$,也是一个双射。

- ① 对 $\forall a \in A$,由函数的定义,必有 $\exists b \in B$,使得f(a) = b。 所以 $f^{-1}(b) = a$,所以 $f^{-1}:B \to A$ 是满射。
- ② 设有 \forall b₁, b₂ \in B且b₁ \neq b₂,因为f是双射,则必有 \exists a₁, a₂ \in A, a₁ \neq a₂,使得f(a₁) = b₁, f(a₂) = b₂。
 所以f⁻¹(b₁) = a₁, f⁻¹(b₂) = a₂,并且f⁻¹(b₁) \neq f⁻¹(b₂),所以f⁻¹:B \rightarrow A单射。

www.znufe.edu.cn

设函数 $f: A \rightarrow B$ 是双射,则 $(f^{-1})^{-1} = f$ 。

由前面定理可知 f^{-1} 是双射,所以 $(f^{-1})^{-1}$ 是一个由A到B的函数。 对 $\forall a \in A$,设f(a) = b,则 $f^{-1}(b) = a$,所以 $(f^{-1})^{-1}(a) = b$ 。 于是 $f(a) = (f^{-1})^{-1}(a)$,所以 $(f^{-1})^{-1} = f$ 。

www.znufe.edu.cn

设函数 $f:A \rightarrow B$ 是可逆的,则 $f^{-1}f=I_A,ff^{-1}=I_B$ 。

www.znufe.edu.cn

设函数 $f: A \rightarrow B$, $g: B \rightarrow A$, 当且仅当 $gf = I_{A'}fg = I_{B}$ 时有 $g = f^{-1}$ 。

由上一定理可证其必要性。

因为 $fg=I_B$ 是满射,所以f是满射。

因为 $gf=I_A$ 是单射,所以f是单射。

所以f是一个双射函数,有逆函数f-1。

因为 $f^{-1}(fg)=f^{-1}I_{B}=f^{-1}$, $(f^{-1}f)g=I_{A}g=g$,所以 $g=f^{-1}$ 。

www.znufe.edu.cn

设函数 $f: A \to B$, $g: B \to C$,且f,g都是可逆的,则(gf)-1=f-1 g-1。

因为f,g都是可逆的,所以存在 $f^{-1}: \mathbf{B} \to \mathbf{A}, g^{-1}: \mathbf{C} \to \mathbf{B}$,因而存在 夏谷函数 $f^{-1}g^{-1}: \mathbf{C} \to \mathbf{A}$ 。

所以 $(f^{-1}g^{-1})(c) = (gf)^{-1}(c)$ 。

所以(gf)-1=f-1 g-1。

www.znufe.edu.cn

本章完!