Projekt sieci komputerowej

Zaprojektowanie sieci dla dwóch dziesięciokondygnacyjnych budynków

28 kwietnia 2020

Jarosław Kolanowski Maciej Kaszkowiak Mateusz Krauze

Spis treści

Słownik pojęć	6
Cel projektu	7
Określenie wymagań projektu	8
Plan budynku	9
Schemat budynku	10
Piętro biurowe	10
Piętro handlowe	11
Piętro mieszkalne	12
Piętro restauracyjne	13
Schemat fizyczny sieci	14
Legenda	14
Piętro biurowe	15
Piętro handlowe	16
Piętro mieszkalne	17
Piętro restauracyjne	18
Schemat okablowania kampusowego	19
Schemat szafy w BPS	20
Schemat szafy w CPS	21
Wykorzystany sprzęt	22
Założenia	22
Centralny punkt sieci	23
Kondygnacyjne i lokalne punkty dystrybucyjne	24
Biuro	24
Reszta sieci	24
Okablowanie	24
Projekt podłączenia do Internetu	26
Oznaczenie stref, okablowania oraz punktów końcowych	27
Adresacja hostów	29
Wstęp	29
Fundamentalne założenia	30
Adresacja sieci	32
Adresacja budynków	33
Adresacja poszczególnych kondygnacji	34
Adresacja kondygnacji handlowych (1, 2, 3, 4)	36

	Adresacja kondygnacji restauracyjnej (5)	38
	Adresacja kondygnacji biurowych (6, 7)	39
	Adresacja kondygnacji mieszkalnych (8, 9, 10)	41
0	dwzorowanie modelu sieci w Cisco Packet Tracer	42
	Wstęp - wybór narzędzia	42
	Komentarz	42
	Przebieg testu	44
	Struktura testowanej sieci	44
	Konfiguracja testowanej sieci	45
	Sprawność sieci	47
	Wnioski	48
K	onfiguracja urządzeń aktywnych	50
	Wstęp	50
	Wykorzystywana funkcjonalność	50
	VLAN	50
	QoS (802.1Q)	54
	DHCP	54
	Statyczny routing	55
	Pozostałe	56
	Automatyzacja konfiguracji - komendy Cisco IOS	57
	Zarządzanie urządzeniem	57
	Po połączeniu się z routerem:	57
	Wejście w tryb konfiguracji:	57
	Przejście w niższy tryb:	57
	Zapisanie obecnej konfiguracji:	57
	DNS	57
	Ustawienie serwera DNS w routerze:	57
	Dodanie nazwy hosta w routerze:	57
	Interfejsy sieciowe	58
	Konfiguracja interfejsu sieciowego w routerze:	58
	Konfiguracja adresu IP w switchu:	58
	Podgląd interfejsów w routerze/switchu:	58
	Podgląd tablicy MAC w switchu:	58
	DHCP	58
	Konfiguracja DHCP w routerze:	58
	Wykluczenie adresów IP z puli DHCP w routerze:	58

Podgląd dzierżawy DHCP w routerze:	58
Podgląd ustawień DHCP w routerze:	59
Tablica routingu	59
Podgląd tablicy routingu w routerze:	59
Przypisanie statycznej trasy w routerze:	59
Przypisanie domyślnej bramy w routerze:	59
Przykładowa konfiguracja routera	60
Rozplanowanie zadań oraz czasu pracy	63
Opis procedur przy montażu okablowania	65
Opis procedur testowych po montażu okablowania:	67
Konserwacja projektu sieci	69
Odbiór projektu przez Klienta	70
Kosztorys	71
Pojedyncze piętro handlowe	71
Pojedyncze piętro restauracyjne	71
Pojedyncze piętro biurowe	72
Pojedyncze piętro mieszkalne	72
Koszty ogólne	73
Centralny punkt sieci	73
Budynkowy punkt sieci	73
Praca maszyn	73
Koszty pracowników	74
Podsumowanie kosztów	74
Zysk	74
Całkowity koszt	74
Karty katalogowe wykorzystanych urządzeń	75
Okablowanie miedziane, UTP, Cat 5e	75
Okablowanie światłowodowe	77
Switch SG350X-24-K9-EU	78
Switch SG350X-48-K9-EU	80
Switch SG350-10P-K9-EU	82
SG350XG-24F-K9-EU	84
Access Point Cisco AIR-AP1815I-E-K9C	85
Router C892FSP-K9	86
Router ASR1001-X	87
APC Smart-UPS C Lithium Ion	88

APC Smart-UPS SC 420	89
APC Smart-UPS z akumulatorem litowo-jonowym	90
Router Cisco ASR 9901 120G	91
Patch panel 48-portowy, UTP, kat. 5e, 1U, 19"	92
Światłowodowy LC Patch Panel 24 port	93
Pigtail LC/UPC, MM, 50/125 1m	94
Patchcord LC/UPC-LC/UPC, MM, 50/125 1m	95
Patch panel 24-portowy, UTP, kat. 5e, 1U, 19"	96
Patchcord LC-LC MM OM4 50/125	97
Patchcord ethernet RJ45 UTP 0.25m kat.5e	98
Korytko kablowe perforowane 200x42 grubość 0,5	mm 99
Ścienna listwa kablowa Legrand plastikowa 85x50	100
Gniazdo LAN podwójne natynkowe rj45	101
Gniazdo LAN podwójne podtynkowe rj45	102
Szafa wisząca 6U 19", 355x600x440 mm	103
Szafa wisząca 12U 19", 590x600x440 mm	104
Szafa stojąca 25U 19", 1250x600x800 mm	105
Licencja projektu	106
Spis rysunków i tabel	107
Załączniki	109

Słownik pojęć

- **AP** Access Point, urządzenie zapewniające dostęp do sieci komputerowej za pomocą Wi-Fi
- **BPD/BPS** budynkowy punkt dystrybucyjny/sieci. Jest to miejsce, w którym zbiega się okablowanie z całego budynku.
- **CPD/CPS** centralny punkt dystrybucyjny/sieci. Jest to miejsce, w którym zbiega się całe okablowanie strukturalne. W sieci znajduje się tylko jeden.
- CPT Cisco Packet Tracer, oprogramowanie służące do symulacji sieci komputerowych.
- KPD/KPS kondygnacyjny punkt dystrybucyjny/sieci. Jest to miejsce, w którym zbiega się okablowanie z całego piętra.
- **LPD/LPS** lokalny punkt dystrybucyjny/sieci. Służy do przedłużenia segmentu w większych sieciach.
- NAT translacja adresów sieciowych, technika przesyłania ruchu sieciowego przez router
- **Patch panel** panel krosowniczy

Cel projektu

Projekt obejmuje budowę sieci w dwóch budynkach kampusowych identycznych pod względem konstrukcji oraz zagospodarowania poszczególnych pięter. Sieć powinna być skalowalna, bezpieczna, wydajna, stabilna oraz łatwa w administrowaniu. Każda kondygnacja potrzebuje dostępu do sieci.

Projekt obejmuje również sporządzenie dokumentacji technicznej dotyczącej sieci, m.in:

- konfigurację urządzeń aktywnych
- plan okablowania strukturalnego
- plan rozmieszczenia punktów abonenckich oraz urządzeń aktywnych
- opis procedury testowania okablowania
- spis wykorzystanych komponentów
- kosztorys
- podział projektu na poszczególne zadania
- rozplanowanie czasu pracowników wdrażających projekt

Określenie wymagań projektu

wielkiej skali projektu minimalnej oraz zaplanowanej przepustowości na pojedynczy punkt abonencki (15Mb/s) sieć będzie musiała być zaprojektowana w technologii 1000BASE-TX oraz 1000BASE-LX. Oba budynki będą musiały być połączone poprzez wykopanie między nimi rowu, gdzie zostanie położone okablowanie światłowodowe. Na powierzchni handlowej w każdym przeznaczonym dla sklepów pomieszczeniu będzie musiało się znaleźć gniazdo abonenckie oraz AP, których sygnał obejmie jak największą powierzchnię. Restauracja powinna także zostać wyposażona w gniazda abonenckie oraz AP. Piętra biurowe z racji wielu stanowisk pracy w sumie potrzebują 320 gniazd abonenckich na każdej z kondygnacji. Mieszkania powinny być wyposażone w ilość gniazd abonenckich pozwalających na swobodne korzystanie z wszelkich funkcji wymagających dostępu do sieci, z których korzysta przeciętna osoba. Piętra mieszkalne są jedynymi piętrami, gdzie okablowanie strukturalne może zostać poprowadzone pod tynkiem z powodów wizualnych. Na pozostałych piętrach nie będzie problemem wykorzystanie tzw. korytek oraz podwieszanego sufitu.

Plan budynku

Sieć ma być umiejscowiona w dwóch kampusach o identycznym planie budynku. Pierwsze cztery kondygnacje to powierzchnie przeznaczone do celów handlowych. Piąta kondygnacja składa się z części restauracyjnej podzielonej na 3 sekcje oraz zawiera taras. Szósta i siódma kondygnacja to piętra biurowe. Na każde piętro przypadają cztery sekcje po cztery pomieszczenia. Każde pomieszczenie posiada 20 miejsc pracy znajdujących się w boksach biurowych. Ósma, dziewiąta i dziesiąta kondygnacja zaplanowane są jako piętra mieszkalne. Każda z czterech sekcji na piętrze zawiera cztery apartamenty. Budynki posiadają sprawną sieć energetyczną, instalację przeciwpożarową oraz klimatyzację.

Na każdym piętrze znajduje się pomieszczenie, które może być przeznaczone jako serwerownia lub punkt dystrybucyjny - wszystkie znajdują się w jednym pionie, więc możliwe jest także przeprowadzenie okablowania pionowego między kondygnacjami w właśnie tej lokalizacji. Budynki w dokumentacji są oznaczone literami A i B. Poszczególne kondygnacje oznaczone są liczbami od 1 do 10.

Schemat budynku

Piętro biurowe

Schemat 1 Piętro biurowe - wymiary

Piętro handlowe

Schemat 2 Piętro handlowe - wymiary

Piętro mieszkalne

Schemat 3 Piętro mieszkalne - wymiary

Piętro restauracyjne

Schemat 4 Piętro restauracyjne - wymiary

Schemat fizyczny sieci

Legenda

Piętro biurowe

Schemat 5 Piętro biurowe - sieć

Piętro handlowe

Schemat 6 Piętro handlowe - sieć

Piętro mieszkalne

Schemat 7 Piętro mieszkalne - sieć

Piętro restauracyjne

Schemat 8 Piętro restauracyjne - sieć

Schemat okablowania kampusowego

Schemat szafy w BPS

Schemat 10 BPS

Schemat szafy w CPS

Schemat 11 CPS

Wykorzystany sprzęt

Założenia

Urządzenia dla całej sieci zostały wyselekcjonowane z należytą starannością. Wybierając sprzęt wyszliśmy z założenia skalowalnej, odpornej na niespodziewane incydenty oraz opłacalnej w swojej cenie sieci. Dlatego każdy element projektu fizycznego sieci został dokładnie przemyślany pod kątem przepustowości, zabezpieczeń oraz reszty wymagań poszczególnych instancji instalacji. Cała sieć wykorzystuje sprzęt aktywny firmy Cisco dzięki czemu konfiguracja i administrowanie sieci będzie przebiegać sprawniej, ponieważ zostaną wykorzystane opracowane wcześniej schematy konfiguracji.

Centralny punkt sieci

Znajdujący się w budynku A centralny punkt sieci został zaprojektowany z pewną nadmiarowością, ponieważ jako jej najważniejszy punkt zawsze musi być sprawny. Stawiając przed routerem switch stworzone by zostało wąskie gardło gdyby w przyszłości zostało podłączone lepsze łącze internetowe. W takim wypadku renowacja sieci byłaby bardzo kosztowna. Dlatego proponowany router Cisco ASR 9901 120G, który jest sprzętem z najwyższej półki będzie nie tylko zapewniał dostępu do Internetu, ale także zostanie centralnym punktem sieci z racji na swoją ogromną przepustowość (ponad 1Tb/s). Dzięki temu każdy port i każda z kondygnacji będzie mogła wykorzystać pełny potencjał. Przyłącze internetowe oraz kampusowe zostanie podłączone do portu obsługującego technologie 40GBase-X i 100GBase-X poprzez moduł QSFP+ zapewniający przepustowość 40Gb/s. Biurowe kondygnacje zostaną podłączone poprzez moduły SFP+ pozwalające na przepustowość do 10Gb/s. Dla reszty pięter zostanie zastosowany moduł SFP z możliwościami do 1Gb/s. Zabezpieczeniem na wypadek utraty zasilania zostanie zasilacz APC Smart-UPS 1350W 1500 VA, który zapewni do kilkunastu minut działania sieci. Całość znajdzie się w stojącej szafie typu rack 19" o pojemności 25U. Gabaryty szafy pozwalają w przyszłości na umieszczenie serwera w jej wnętrzu. Porządek i estetykę prowadzenia okablowania zostanie zapewniona przez 24 portowy patch panel wyposażony w adaptery światłowodowe LC-LC.

Budynkowy punkt sieci

Centralny punkt budynku B, czyli BPS został zaprojektowany w podobny sposób, jednakże nie posiada routera, lecz switch Cisco CATALYST 3850-48XS-S z potencjałem pozwalającym na zadbanie o całą sieć budynku i położenie tylko jednego kabla między kampusowego. Zostanie on wyposażony w moduły światłowodowe tak jak router w centralnym punkcie sieci.

Kondygnacyjne i lokalne punkty dystrybucyjne

Biuro

Kondygnacyjny punkt dystrybucyjny (KPD) na poziomach biurowych zostanie wyposażony w sprzęt wysokiej klasy pozwalający obsłużenie ogromną ilość punktów abonenckich. Switch Cisco SG350XG-24F-K9-EU o przepustowości 10Gb/s wyposażony w moduły SFP 1Gb/s dla połączenia routerów w lokalnych punktach dystrybucyjnych (LPD) oraz dla routera moduł SFP+ 10Gb/s. Routerem dbającym o podsieci biur zostanie ASR1001-X z przepustowością 10Gb/s, który zostanie wyposażony w moduły SFP+ o właśnie takiej prędkości. Centrum podsieci biur musi zawsze mieć pewność działanie, co powoduje konieczność zastosowania zasilacza UPS Short Depth 400W.

Reszta sieci

Reszta KPD i LPD zostanie oparta na tych samych urządzeniach opartych na technologii Gigabit Ethernet. Zależnie od ilości punktów abonenckich potrzebnych do obsłużenia zostaną wykorzystane te switche z tej samej serii wyposażone kolejno w 10, 24 i 48 portów (Cisco SG350-10P-K9-EU,Cisco SG350X-24-K9-EU,Cisco SG350X-48-K9-EU). Wymienione switche będą współpracowały z routerem Cisco C892FSP-K9, który w zupełności wystarczy do wydzielenia poszczególnych podsieci. Porządek w szafach zostanie zapewnione przez proste patch panele 24 i 48 portowe. Zabezpieczeniem w takich punktach zostanie zasilacz APC Smart-UPS SC 420 260W z racji swoich kompaktowych wymiarów i możliwości.

Okablowanie

Okablowanie miedziane wykorzystane w projekcie to kable U/UTP cat.5e o maksymalnej przepustowości 1000Mb/s, które wewnątrz budynku spełnią swoją rolę. Okablowanie prowadzone w pionie budynku oraz jako strukturalne

pionowe na piętrach biurowych to światłowód wielomodowy 50/125 w pełnym dupleksie z włóknami OM2. Natomiast trasa między kampusowa będzie poprowadzona okablowaniem światłowodowym wielomodowym 50/125 w pełnym dupleksie z włóknami OM4 izolowanym specjalnie dla zastosowań na zewnątrz budynków w peszlu zabezpieczającym przed uszkodzeniami mechanicznymi, co pozwoli przeprowadzić trasę telekomunikacyjną na odległość maksymalnie 150m bez straty przepustowości na poziomie 40Gb/s. Wszystkie zakończenie światłowodów zostaną zakończone tzw. pigtailami i połączone z główną wiązką spawarką. Okablowanie prowadzące od patch paneli do switchy zostanie uzupełnione przez patch cordy dostosowane do rodzaju światłowodu i skrętki.

Projekt podłączenia do Internetu

Po rozeznaniu na lokalnym rynku dostawców łącza internetowego najlepszym wyborem zostaje firma lnea oferującą najszybsze i najtańsze symetryczne łącze w najlepszej cenie. Usługa zostanie dostarczona technologią światłowodową, a przydzielony adres będzie statyczny oraz publiczny. Dzięki temu nie będzie problemu z postawieniem różnych usług serwerowych, co może być szczególnie ważne dla stref biurowych.

Łącze zapewni prędkość na poziomie 8,5Gb/s pobierania oraz 8,5Gb/s wysyłania. Niestety nie udało się stworzyć z dostawcą niestandardowej oferty pozwalającej na większą przepustowość pomimo zaproponowanych rozwiązań takich jak łącze o większej przepustowości, agregacja łączy i translacja NAT zapewniona z naszej strony pozwalająca na używanie zupełnie oddzielnych łącz, **pomimo dialogu z przedstawicielami firmy.**

Sieć została zaprojektowana w sposób pozwalający bez problemu podłączenie dużo szybszego łącza, więc nie będzie musiała ona przechodzić renowacji, gdy pojawi się na rynku lepsza oferta.

Tabela poniżej przedstawia wyliczenie kosztów dostępu do Internetu w skali pierwszego roku. Jednocześnie kwota ta nie została policzona w końcowym kosztorysie (ze względu na jej miesięczny wymiar opłat).

Przyłącze internetowe - koszty roczne					
Lp.	Usługa	Miesiace	Koszt miesięczny	Kwota netto	Kwota brutto
1	Opłata za uruchomienie usługi	jednorazowo		231,00 zł	300,00 北
2	Dostęp do łącza intenretowego 8,5Gb/s/8,5Gb/s	12	693	8 316,00 zł	10 228,68 과
			Suma	8 547.00 zł	10 528.68 과

Tabela 1 Przyłącze internetowe

Oznaczenie stref, okablowania oraz punktów końcowych

Każdy końcowy punkt okablowania musi posiadać swoje oznaczenie. Każdy kabel musi posiadać oznaczenia obu punktów końcowych w formie nalepki przy obu zakończeniach. W przypadku wymiany kabla należy przykleić nalepkę na nowym okablowaniu.

- kondygnacje handlowe (1, 2, 3, 4):

- <budynek>.<piętro>.<zakończenie>
- <budynek>.<piętro>.<nr sklepu>.<zakończenie>

kondygnacja restauracyjna (5):

- <budynek>.<piętro>.<sekcja restauracji>.<zakończenie>

- kondygnacje biurowe (6, 7):

- <budynek>.<piętro>.<nr części biurowej>.<nr części użytkowej>.<urządzenie>
- <budynek>.<piętro>.<nr części biurowej>.<nr części użytkowej>.<nr boksu biurowego>.<gniazdo>

- kondygnacje mieszkalne (8, 9, 10):

- <budynek>.<piętro>.<zakończenie>
- <budynek>.<piętro>.<nr mieszkania>.<nr pokoju>.<gniazdo>

- centralny punkt dystrybucyjny:

- CPD.<zakończenie>

- budynkowy punkt dystrybucyjny:

- CPD.<zakończenie> (w budynku A pełni tą rolę CPD)
- B.BPD.<zakończenie>

kondygnacyjny punkt dystrybucyjny:

- <budynek>.<piętro>.KPD.<zakończenie>

lokalny punkt dystrybucyjny:

- <budynek>.<piętro>.<sekcja>.LPD.<zakończenie>

Zakończenie może być:

- urządzeniem aktywnym (router, switch, AP, repeater)
- gniazdem telekomunikacyjnym

Do wspomnianych oznaczeń możemy zastosować oznaczenia słowne. Zapewnia to znacznie większą przejrzystość. Na przykład, gniazdo dolne/górne jest o wiele bardziej klarowne niż 1 / 2, kosztem kilku dodatkowych znaków.

Pragniemy również zaznaczyć, że numeracja wykorzystywana przy podziale sekcji wykorzystuje liczby naturalne (1, 2, 3, ...).

Adresacja hostów

Wstęp

Adresacja hostów jest bardzo istotnym zagadnieniem. Przede wszystkim, poprawna adresacja ułatwi administrację siecią. W dobrze zaadresowanej sieci Administrator będzie mógł sprawnie zarządzać łączem, monitorować ruch sieciowy, określać skąd pochodzą pakiety. W takiej sieci nie wystąpi problem wybrania błędnej grupy hostów do zarządzania czy też przypisania niewłaściwego adresu IP przez serwer DHCP.

Fundamentalne założenia

Adresacja logiczna musi współgrać z strukturą sieci fizycznej.

Tworząc podsieci w adresacji logicznej musimy brać pod uwagę jaką ilością routerów dysponujemy, gdzie są zlokalizowane oraz ile obsługują hostów. Analogicznie, tworząc sieć fizyczną, musimy wziąć pod uwagę, że hosty muszą być podzielone tak, aby umożliwić ich administrację. Wniosek jest dość trywialny, ale niezwykle ważny - podczas projektowania sieci fizycznej równolegle powstawała adresacja logiczna hostów. Nie działaliśmy szeregowo. Dzięki temu sieć podczas tworzenia ulegała dużej ilości zmian. Naprawiliśmy potencjalne błędy i problemy, które w przeciwnym razie nie zostałyby wykryte.

Adresacja logiczna nie może zwalniać ani ograniczać przepustowości sieci.

Głównym konceptem, którego staraliśmy się uniknąć, jest nadmierny podział. Za bardzo podzielona sieć utrudniłaby administrację oraz wprowadzanie zmian. Wprowadziliśmy podsieci w optymalnych miejscach - gdy dana grupa hostów tudzież użytkowników sieci może być inaczej potraktowana pod względem ruchu sieciowego przez Administratora sieci, wprowadziliśmy podsieć. Skutkuje to np. dużym stopniem zagnieżdżenia podsieci w sekcji biurowej w porównaniu do mniejszego w sekcji restauracyjnej.

• Adresacja logiczna musi ułatwić administrację.

Administrator może wykorzystywać ustawienia routerów i switchów w celu niestandardowej konfiguracji, dopasowanej do aktualnych klientów

budynku oraz panujących w nim wydarzeń. Zapewniliśmy do tego możliwie jak najlepszy podział.

Adresacja logiczna powinna być czytelna dla użytkownika

Zwróciliśmy na to uwagę - poświęciliśmy cały drugi oktet na określenie budynku oraz kondygnacji hosta. Ze względu na to każde piętro wymaga odmiennego podziału logicznego, porzuciliśmy adresację klasową na rzecz bezklasowej. Pomimo tego, adresy IP są w pełni uporządkowane oraz łatwe do rozczytania z dokumentacją.

Adresacja logiczna powinna być prosta do ewentualnej modyfikacji.

Zachowaliśmy nadmiarowość. Przy projektowaniu sieci oszacowaliśmy takie rzeczy jak: ile hostów może znajdować się na danym piętrze, górną granicę hostów (np. przyjęcie w restauracji, Black Friday w sklepach) czy też potencjalny podział systemu informatycznego. Ze względu na dysponowanie dużą pulą adresów IP byliśmy w stanie zachować balans pomiędzy miejscem na dodatkowe hosty i miejscem na dodatkową architekturę sieciową.

Adresacja sieci

Cała sieć:

10.0.0.0/8

Rysunek 1 Adresacja - całość

Sieć wykorzystuje pulę adresów prywatnych 10.0.0.0/8 ze względu na aż 24 bity na adres hosta, umożliwiając nam hierarchiczny podział całej sieci z zachowaniem nadmiarowości.

CPD może wykorzystać przestrzeń adresów 10.0.0.0/24.

Adresacja budynków

Budynki:

A: 10.0.0.0/11 B: 10.32.0.0/11

1111111 .111 00000.00000000.00000000

Budynek

adres hosta

Rysunek 2 Adresacja - budynki

Budynek - 0 dla budynku A, 1 dla budynku B

Sieć podzielona jest na budynki używając trzech pierwszych bitów drugiego oktetu. Jest to nadmiarowe rozwiązanie, pozwala na przyłączenie do sześciu dodatkowych budynków w razie ewentualnego rozwoju sieci. Umożliwia również wizualną identyfikację pochodzenia hosta.

BPD w budynku B może wykorzystać przestrzeń adresów 10.32.0.0/24.

Adresacja poszczególnych kondygnacji

budynek A, 5. kondygnacja 10.5.0.0/16

budynek B, 1. kondygnacja 10.33.0.0/16

Kondygnacja

Rysunek 3 Adresacja - kondygnacje

Budynek - 0 dla budynku A, 1 dla budynku B

Kondygnacja - od 1 do 31

Dla kondygnacji zarezerwowaliśmy pozostałe pięć bitów z drugiego oktetu. Zapewnia to czytelność adresu IP, realizując jedno z głównych założeń postawionych sobie przy projektowaniu sieci. Duża pula adresów, którymi dysponujemy, sprawia, że nie musimy się martwić o niewykorzystywane adresy. Dodatkowo zapewniona jest nadmiarowość - do budynku można dobudować kilkanaście dodatkowych pięter (co nie jest abstrakcją, biorąc pod uwagę ich stosunek szerokości/długości do wysokości)

Dwa ostatnie oktety różnią się metodą adresacji od rodzaju kondygnacji.

KPD mogą wykorzystać przestrzeń adresów 10.<adres kondygnacji>.0.0/24.

Routery w dalszych podsieciach powinny wykorzystać pierwsze dostępne adresy IP. Główny router dla danej podsieci powinien przyjąć pierwszy adres (np. dla

podsieci 10.1.0.0/16 powinien być adresowany jako 10.1.0.1). Należy to brać pod uwagę przy statycznej adresacji pozostałych hostów i konfiguracji DHCP.

Adresacja kondygnacji handlowych (1, 2, 3, 4)

Kondygnacje handlowe: 1, 2, 3, 4

(2. kondygnacja)

10.2.0.0/17 - sieć dla sklepów 10.2.128.0/17 - sieć dla AP (cała) 10.2.5.0/24 - sieć dla piątego sklepu

Rysunek 4 Adresacja - piętra handlowe

Czy sklep - 0 dla sieci sklepów, 1 dla AP

Numer sklepu - numer sklepu od 1 do 127

Adres hosta - ustalany przez DHCP lub statycznie

Dla kondygnacji handlowych wyróżniliśmy dwa rodzaje potencjalnych hostów. Są nimi klienci, korzystający z bezprzewodowych urządzeń, oraz sklepy z systemami informatycznymi. Postanowiliśmy oddzielić każdy sklep w osobną podsieć. Miejsca na sklepy są dość duże, więc zostawiliśmy nadmiarowe miejsce w trzecim oktecie, w razie restrukturyzacji przez właściciela budynku na większą ilość mniejszych sklepów. Osobne podsieci pozwolą również ograniczyć ich widoczność przez Administratora i tym samym zapewnić bezpieczeństwo systemu informatycznego.

Klienci natomiast znajdują się w jednej podsieci, ponieważ nie jest wymagana ich separacja. Co więcej, pozwala to zapewnić możliwie jak największą liczbę hostów

(adresacja pozwala na ponad 32 tysiące, przez co jedynym ograniczeniem będzie przepustowość urządzeń fizycznych oraz łącza danych).

Adresacja kondygnacji restauracyjnej (5)

Kondygnacja restauracyjna: 5

10.5.0.0/18 - klienci 10.5.64.0/18 - pracownicy 10.5.128.0/18 - system obsługi zamówień

Rysunek 5 Adresacja - piętra restauracyjne

Podział - 0 dla klientów, 1 dla pracowników, 2 dla systemu obsługi zamówień, nadmiarowe: 3

Adres hosta - ustalany przez DHCP lub statycznie

Kondygnacja restauracyjna znajduje się w podobnej sytuacji co kondygnacja handlowa. Przede wszystkim również wymaga wsparcia dla dużej liczby użytkowników. Nie istnieje tutaj jednak podział na sklepy, a zaledwie na grupy użytkowników. Na sali może być zaadresowane ponad 16 tysięcy klientów, korzystających z urządzeń mobilnych. Jak wyżej, limitem jest tylko sprzęt i łącze danych. Prywatne wifi pracowników może być dowolne rozbudowane w ramach ulepszenia sieci - np. może zostać dodana podsieć z drukarkami lub urządzeniami smart na sali. Wszystko to zależy jednak od zapotrzebowań Klienta, toteż nie tworzyliśmy sztucznych podziałów. Natomiast system obsługi zamówień może być odłączony przez Administratora od Internetu.

Adresacja kondygnacji biurowych (6, 7)

Kondygnacje biurowe: 6, 7

(6 kondygnacja)

10.6.0.0/18 - 1. cz. biurowa **10.6.64.0/18 -** 2. cz. biurowa **10.6.128.0/18 -** 3. cz. biurowa **10.6.192.0/18 -** 4. cz. biurowa w 1. części biurowej 10.6.0.0/20 - 1. cz. użytkowa 10.6.16.0/20 - 2. cz. użytkowa 10.6.32.0/20 - 3. cz. użytkowa 10.6.48.0/20 - 4. cz użytkowa

Rysunek 6 Adresacja - piętra biurowe

Nr części biurowej - 0 dla części pierwszej, 1 dla części drugiej, 2 dla części trzeciej, 3 dla części czwartej

Nr części użytkowej - 0 dla części pierwszej, 1 dla części drugiej, 2 dla części trzeciej, 3 dla części czwartej

Rozdział PC/AP - 0 dla PC, 1 dla AP, nadmiarowe: 2, 3

Adres hosta - ustalany przez DHCP lub statycznie

Kondygnacje biurowe są najbardziej wymagające pod względem adresacji hostów. Każde piętro zawiera 4 części biurowe. Każda sekcja biurowa zawiera 4 części użytkowe. Każda część użytkowa zawiera 20 miejsc do pracy, będących boksami biurowymi. Miejsce do pracy powinno umożliwiać dostęp do sieci dla

komputera stacjonarnego oraz urządzenia bezprzewodowego. Ze względu na rozmiar boksu biurowego zapewniamy w nim podwójne gniazdo LAN. Oznacza to, że musimy zaadresować 640 hostów jako komputery stacjonarne na piętro oraz co najmniej 320 hostów poprzez AP. Nie jest wymagana pełna przepustowość dla wszystkich hostów jednocześnie, dlatego odpowiednie ustawienia QoS pozwolą nadać priorytet ruchu z komputerów stacjonarnych. Istnieje także możliwość kontroli widoczności pomiędzy podsieciami AP i PC - w firmie web deweloperskiej takie rozwiązanie byłoby optymalne, lecz niekoniecznie w firmie zajmującej się bankowością.

Podział przedstawia się następująco: część biurowa -> część użytkowa -> PC / AP -> host. Rozdział PC (komputerów stacjonarnych) od AP (urządzeń mobilnych połączonych poprzez Access Pointy) posiada nadmiarowy bit. Nie chcieliśmy ustalać sztucznych podziałów, które mogą zostać niewykorzystane przez użytkowników sieci, tworząc niepotrzebną strukturę sieci, która utrudniałaby zarządzanie, utrzymanie i ograniczałaby możliwości sieci. Administrator sieci może jednak dodać dodatkowy podział - oprócz PC/AP może zostać stworzona podsieć dla np. drukarek.

Adresacja kondygnacji mieszkalnych (8, 9, 10)

Kondygnacje mieszkalne: 8, 9, 10 (8. kondygnacja)

10.8.0.0/24 - mieszkalne po kablu 10.8.128.0/24 - mieszkalne po AP (802.11)

Rysunek 7 Adresacja - piętra mieszkalne

Czy AP - 0 dla gniazda abonenckiego w pokoju hotelowym, 1 dla Access Pointów **Adres hosta** - ustalany przez DHCP lub statycznie

W przypadku kondygnacji mieszkalnych zdecydowaliśmy się na znikomy podział podsieci. Przede wszystkim, docelowo konfiguracja urządzeń aktywnych powinna zablokować widoczność pomiędzy hostami w kondygnacjach mieszkalnych. Zapewni to dodatkowe bezpieczeństwo dla klientów. Szansa, że klient będzie wymagał wzajemnej widoczności hostów na hotelowej sieci bez posiadania swojego switcha jest znikoma. Obecne rozwiązanie sprawia też, że nie wydajemy nadmiernych pieniędzy na urządzenia aktywne - chęć rozdzielenia na podsieci wymagałaby zakupu kolejnych routerów oraz dodatkowego okablowania. Oczywiście nie zamykamy przed sobą furtki - alternatywnym rozwiązaniem jest adresacja numeru mieszkania na ostatnich 7 bitach trzeciego oktetu.

Odwzorowanie modelu sieci w Cisco Packet Tracer

Wstęp - wybór narzędzia

Aby zweryfikować poprawność naszego teoretycznego model sieci, musieliśmy wdrożyć go w praktyce. Z racji jego skali niemożliwym dla nas jest pozyskanie takiej ilości urządzeń oraz okablowania. Test dla nas nadal był konieczny - postanowiliśmy wykorzystać program służący do symulacji sieci komputerowych. Wybór padł na Cisco Packet Tracer.

Przede wszystkim, program jest bezpłatny. Mogliśmy dzięki temu legalnie go wykorzystać. Po drugie, jesteśmy już z nim zaznajomieni, przez co nauka obsługi wymagała mniejszego nakładu czasu. Po trzecie, wybór wielu komponentów padł na Cisco. Dzięki temu mieliśmy większą pewność, że test pokryje się z rzeczywistością.

Komentarz

Wykorzystujemy urządzenia aktywne lepsze niż są oferowane w programie. Przykładem może być router Cisco ASR 9901. Nasza sieć operuje na dużych przepustowościach. Gdybyśmy chcieli je zachować, musielibyśmy wprowadzić znaczne zmiany w CPT - przede wszystkim dodać dużo urządzeń aktywnych, które nie znajdują się w naszym projekcie. Tym samym, model w CPT nie jest w 100% dokładnym odwzorowaniem urządzeń w naszej sieci.

Każdy router operuje jednak na tych samych protokołach. Co więcej, urządzenia są tej samej firmy. Dzięki temu możemy bez wątpienia powiedzieć, że test ma odwzorowanie w rzeczywistości. Postawiliśmy na odwzorowanie funkcjonalności.

Nasz test operuje również na jedynie fragmencie sieci. Przyczyną jest zbyt duży nakład czasu wymagany do odtworzenia całej sieci. Każde urządzenie aktywne musiałoby Zależało nam na udowodnieniu pełnej funkcjonalności naszego projektu. Tym samym, wdrożyliśmy wszystkie istotne części, z których składa się cały projekt:

- okablowanie pionowe
- okablowanie poziome przewodowe i bezprzewodowe
- tworzenie podsieci
- konfiguracja urządzeń aktywnych

Rysunek 8 Packet Tracer - całość

Przebieg testu

Struktura testowanej sieci

Rysunek 9 Packet Tracer - legenda

Przeprowadziliśmy test na poszczególnych elementach:

- CPD z umieszczonym serwerem, służącym do testowania połączeń HTTP
- kondygnacje 1. (handlowa) oraz 6. (biurowa) z KPD
- 2. sekcję użytkową pierwszej części biurowej na 6. kondygnacji
- 1. sklep z hostem pracowniczym oraz sieć hostów podłączonych przez AP

Podzieliliśmy je na powyższej grafice na bloki zaadresowane zgodnie z metodologią dokumentacji sieci.

Konfiguracja testowanej sieci

Rysunek 10 Packet Tracer - połączenie

Wszystkie elementy sieci adresowane są zgodnie z projektem. Każde urządzenie aktywne należy do podsieci zgodnej z dokumentacją. Aby je skonfigurować, wykorzystaliśmy następujące elementy:

- tablica statycznego routingu dla każdego routera jest zapełniona
 najbliższymi routerami oraz sieciami które one dysponują
- brama domyślna routera ustawiona jest na router łączący z podsiecią z mniejszą maską - najwyżej w hierarchii jest router 10.0.0.1 łączący sieć z Internetem
- switche wykorzystują VLAN do umożliwienia połączenia pomiędzy danymi podsieciami czy też zablokowania
- routery oraz AP połączone bezpośrednio z hostami mają skonfigurowane
 DHCP na odpowiedni zakres podsieci
- na adresie IP 10.0.0.200 został postawiony serwer służący do weryfikowania połączenia HTTP

Rysunek 11 Packet Tracer - interfejs bezprzewodowy

Rysunek 12 Packet Tracer - routing

Na powyższej grafice widać, że brama domyślna dla routera 10.1.0.3 / 10.1.1.1 jest ustalona na 10.1.0.1, który z kolei jest połączony z routerem głównym.

Sprawność sieci

Rysunek 13 Packet Tracer - ping

Sieć jest w pełni sprawna. Pakiety przechodzą pomiędzy dwoma dowolnymi urządzeniami. Przy początkowym uruchomieniu sieci jedynie należy zaktualizować tablicę adresów MAC w switchach - pierwsze pakiety wysłane w danej sesji CPT nie przejdą. Do tego zadania wystarczy jedynie narzędzie ping.

Wnioski

Rysunek 14 Packet Tracer - wnioski

Test okazał się bezcenny.

Przede wszystkim, próba zrealizowania pierwotnie stworzonego planu adresacji szybko zweryfikowała, które założenia są złe i należy je zmienić. Na powyższej grafice widać urywek rozmowy z realizacji projektu. Podsieci dla danych kondygnacji bardzo często przechodziły zmianom iteracyjnym.

Dzięki realizacji testu zwróciliśmy także większą uwagę na współgranie schematu logicznego [adresacja adresów IP, podsieci] z rozmieszczeniem fizycznych urządzeń sieci. Aby zachować rozsądne koszty realizacji projektu eliminowaliśmy nadmiernie ambitne rozwiązania. Test pokazał, że większość z nich była po prostu niepraktyczna.

Kolejnym ważnym elementem była możliwość oszacowania wydajności sieci. Po zastosowaniu statycznych tablic routingu pakiety zawsze trafiały po najbardziej optymalnej ścieżce do docelowego hosta. Dzięki temu wykorzystujemy jak najlepiej przepustowość urządzeń oraz okablowania. Mogliśmy również trafniej oszacować wąskie gardło w naszym projekcie.

Kwestia doboru podzespołów również została dotknięta przez test. Pozwolił nam określić, jakie elementy są niezbędne do funkcjonowania sieci w poszczególnych punktach dystrybucyjnych. Przykładowo, mieliśmy problem aby znaleźć rozsądnie wyceniony router obsługujący 10 Gb/s oraz DHCP. Test wykazał, że nie potrzebujemy funkcjonalności DHCP, ponieważ owy router nie będzie bezpośrednio połączony z hostami, co nie było wprost widoczne na schemacie fizycznym sieci.

Ze względu na to, że operujemy na urządzeniach od Cisco, byliśmy w stanie zebrać komendy służące do konfiguracji urządzeń aktywnych, które wykorzystywaliśmy podczas realizacji testu. Definitywnie będą one potrzebne do konfiguracji docelowej sieci przy wdrażaniu jej w życie.

Najważniejsze było jednak, że pozyskaliśmy spory zasób praktycznej wiedzy dotyczącej funkcjonowania sieci.

W załącznikach do projektu zamieszczony jest plik .pkt pozwalający na samodzielne przeprowadzenie testu w programie Cisco Packet Tracer.

Nadmienię jednak ponownie - przy początkowym uruchomieniu sieci należy zaktualizować tablicę adresów MAC w switchach - pierwsze pakiety wysłane w danej sesji nie przejdą. Jest to ograniczenie programu. Zwykłe obustronne PDU wystarczy do tego zadania.

Konfiguracja urządzeń aktywnych

Wstęp

W celu przeprowadzenia konfiguracji urządzeń aktywnych należy się oprzeć o ten dokument. Adresacja logiczna urządzeń opiera się o numery sekcji, kondygnacji, etc. które można znaleźć na planie sieci budynku. Niżej opisujemy dokładnie wykorzystywane funkcjonalności routerów i switchów.

Dalsza konfiguracja zależy w dużej mierze od przyszłego Administratora sieci. Przykładowo, domyślnie sieć posiada pełną widoczność pomiędzy wszystkimi hostami. Administrator będzie mógł to zmienić.

Wykorzystywana funkcjonalność

VLAN

Ustawienia VLAN w switchach pozwalają konfigurować połączenie pomiędzy danymi podsieciami bez wpływania na pozostałą konfigurację. Domyślnie każdy interfejs sieciowy jest podłączony do VLANu 1 metodą Access. Ustawienie to można jednak zmienić na tzw. trunking.

Trunking pozwala przyłączyć urządzenie do wielu VLANów jednocześnie. Zademonstruję na przykładzie.

Załóżmy, że konfigurujemy switch zaznaczony na czerwono.

Rysunek 15 Konfiguracja - VLAN 1

Jak widać, na interfejsie #1 domyślnie ustawiony jest tryb Access. Nie można zaznaczyć więcej niż jednego VLANa.

Rysunek 16 Konfiguracja - VLAN 2

Po zmianie na tryb trunk można wybrać więcej niż jeden VLAN:

Rysunek 17 Konfiguracja - VLAN 3

Następnie należy skonfigurować ustawienia VLAN w routerach podłączonych do switcha. W przeciwnym wypadku napotkamy problem:

Rysunek 18 Konfiguracja - VLAN 4

Jak widać, Cisco Packet Tracer znacznie ułatwia lokalizację błędów podczas tworzenia sieci. Niestety, nie byliśmy w stanie w pełni odtworzyć funkcjonalności VLANów ze względu na dobór zbyt słabych routerów w CPT - wzięliśmy pierwsze z brzegu, ponieważ pozornie wszystkie oferowały tą samą funkcjonalność.

```
Router(config)#interface GigabitEthernet0/1/1.10 
%Cannot create sub-interface
```

Natomiast przy konfiguracji sieci na fizycznych urządzeniach Administrator będzie przeprowadzić konfigurację bez żadnego problemu. Z pewnością panele administracyjne urządzeń lepszej klasy będą oferowały znacznie lepsze ustawienia.

Ustawienia VLAN pozwalają również na stworzenie intranetu - sieci odciętej od reszty podsieci ustawieniami, będąc nadal połączonym fizycznym łączem. Wystarczy stworzyć nowy VLAN, wybrać go na interfejsie przełącznika i ustawić tryb na Access.

Rysunek 19 Konfiguracja - VLAN 5

QoS (802.1Q)

Quality of Service pozwala na konfigurację przepustowości dla danego interfejsu sieciowego. Oznacza to, że możemy ograniczyć ruch sieciowy dla danej kondygnacji/sekcji/części na rzecz innych. Owa opcja znajduje duże zastosowanie w naszym projekcie sieci. Mianowicie, kondygnacje handlowe, restauracyjne oraz mieszkalne zostaną ograniczone na rzecz większej przepustowości dla kondygnacji biurowej.

Istnieją także takie ustawienia jak zmiana priorytetu ruchu dla danych usług. Ich ewentualne wykorzystanie leży w gestii administratora.

DHCP

Rysunek 20 Konfiguracja - DHCP

DHCP wykorzystujemy jedynie w routerach warstwy dostępu dla urządzeń końcowych. Adresacja hostów powinna odbywać się z zarezerwowaniem pierwszych kilku miejsc na urządzenia aktywne w danej podsieci. Dla urządzeń aktywnych stosujemy statyczne adresy IP. Mogą być przydzielane również dla

urządzeń, które mają znaczenie dla innych użytkowników sieci - np. drukarki, serwery, etc.

Statyczny routing

Rysunek 21 Konfiguracja - routing

Statyczny routing jest podporą trasowania pakietów w naszej sieci. Zapewnia dobrą wydajność poprzez trafne wysyłanie pakietów. Wymaga wstępnej konfiguracji, lecz zapewnia stałą wydajność.

Dla każdego routera w naszej sieci tablica statycznego routingu jest zapełniona najbliższymi routerami oraz sieciami którymi one zarządzają. Brama domyślna każdego routera ustawiona jest na router łączący z podsiecią z mniejszą maską najwyżej w hierarchii jest router 10.0.0.1 łączący sieć z Internetem. Przykładowo, dla routera 10.1.128.1/10.1.0.4 bramą domyślną jest 10.1.0.1, natomiast dla routera 10.0.0.3/10.1.0.1 bramą domyślną jest 10.0.0.1.

Pozostałe

W celu wprowadzenia zabezpieczeń może zostać wykorzystana adresacja statyczna MAC (host bez dodanego adresu MAC do białej listy nie będzie mógł przypisać manualnie swojego adresu IP do zablokowanej podsieci).

Automatyzacja konfiguracji - komendy Cisco IOS

Zarządzanie urządzeniem

Po połączeniu się z routerem:

> enable

Wejście w tryb konfiguracji:

configure terminal

Przejście w niższy tryb:

(config-if)# exit (config)# exit #

Zapisanie obecnej konfiguracji:

copy running-config startup-config

DNS

Ustawienie serwera DNS w routerze:

(config)# ip domain-lookup
(config)# ip name-server <IP głównego serwera DNS>
(config)# ip name-server <IP alternatywnego serwera DNS>

Dodanie nazwy hosta w routerze:

(config)# ip host <nazwa hosta> <adres IP>

Interfejsy sieciowe

Konfiguracja interfejsu sieciowego w routerze:

(config)# interface <nazwa interfejsu>
(config-if)# ip address <adres IP routera> <maska podsieci>
(config-if)# no shutdown

Konfiguracja adresu IP w switchu:

(config)# int vlan 1
(config-if)# ip address <adres IP> <maska podsieci>
(config-if)# no shutdown

Podgląd interfejsów w routerze/switchu:

show ip interface brief

Podgląd tablicy MAC w switchu:

show mac address-table

DHCP

Konfiguracja DHCP w routerze:

(config)# ip dhcp pool "<nazwa puli DHCP>"
(dhcp-config)# network <adres sieci> <maska sieci>
(dhcp-config)# default-router <IP bramy domyślnej>
(dhcp-config)# dns-router <IP serwera DNS>

Wykluczenie adresów IP z puli DHCP w routerze:

(config)# ip dhcp excluded-address <adres początkowy> <adres końcowy>

Podgląd dzierżawy DHCP w routerze:

show ip dhcp binding

Podgląd ustawień DHCP w routerze:

show ip dhcp pool

Tablica routingu

Podgląd tablicy routingu w routerze:

show ip route

Przypisanie statycznej trasy w routerze:

(config)# ip route <docelowa sieć> <maska podsieci> <IP następnego routera>

Przypisanie domyślnej bramy w routerze:

(config)# ip route 0.0.0.0 0.0.0.0 <IP następnego routera>

Przykładowa konfiguracja routera

Konfiguracja przedstawia komendy oparte o model stworzony w CPT. Jest to konfiguracja dla routera z KPD w 1. kondygnacji (handlowej):

Rysunek 22 Przykład 1

Router>enable

Router#configure terminal

Konfigurujemy podsieć 10.1.0.0/16 dla kondygnacji 1.:

Router(config)#interface GigabitEthernet0/0/0

Router(config-if)#ip address 10.1.0.1 255.255.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Podłączamy się do podsieci z CPD:

Router(config)#interface GigabitEthernet0/0/1

Router(config-if)#ip address 10.0.0.3 255.255.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Ustawiamy statyczny routing:

Rysunek 23 Przykład 2

grafika przedstawia kolejność wykonywanych komend - jak widać, są to najbliższe routery:

Router(config)#ip route 10.1.1.0 255.255.255.0 10.1.0.3

Router(config)#ip route 10.1.128.0 255.255.128.0 10.1.0.4

Router(config)#ip route 10.6.0.0 255.255.0.0 10.0.0.4

Router(config)#ip route 0.0.0.0 0.0.0.0 10.0.0.1

Zapisujemy konfigurację:

Router(config)#exit

Router#copy running-config startup-config

To wszystko. Oczywiście, dla realnego przykładu tablicę routingu należałoby szerzej uzupełnić - KPD miałby tablice routingu dla każdej kondygnacji w budynku. Nie została ona wypełniona, ponieważ projekt z CPT ma ograniczony zakres.

Rozplanowanie zadań oraz czasu pracy

Data rozpoczęcia projektu została zaplanowana na 6 stycznia 2020, natomiast zakończenia na 6 maja 2020. Łączny czas trwania projektu to 121 dni. Każde zadanie zostało zaplanowane w taki sposób, aby uzyskać jak największą wydajność. Wszystkie zadania oraz ich czas zostały dokładnie przemyślane i zaplanowane tak, aby projekt został ukończony w jak najszybszym terminie. Zadania, ich relacje oraz kolejność również zostały dokładnie omówione, przez co możemy uzyskać największą możliwie produktywność pracowników. Ich ilość również została dokładnie zaplanowana, przez co na projekt przewidziano 12 pracowników. Dzięki takiemu rozplanowaniu każdy pracownik ma ciągłą pracę, co skutkuje większą wydajnością

Na wywiad z klientem zaplanowano 1 dzień. Aby dokładnie zbadać teren pracy potrzeba 3 dni. Z naszej strony chcieliśmy zaoferować najlepszą możliwa sieć, przez co na stworzenie projektu sieci przeznaczono 10 dni. Na wykonanie odwiertów (3 dni), kucie (6 dni) oraz ułożenie korytek (6 dni) przeznaczono po 2 osoby. Dzięki temu pracownicy po ukończeniu odwiertów mogą przejść do układania kabli między budynkami i zakopywania rowu. Przez wielkość miejsca pracy położenie okablowania pionowego zajmuje 10 dni. Na to zadanie przeznaczone jest 6 pracowników. Położenie okablowania poziomego rozbito na 2 części, dzięki czemu mogliśmy przydzielić do pierwszej części 6 pracowników z czasem dziesięciu dni, natomiast do drugiej części 12 pracowników z czasem 10 dni. Przez takie rozwiązanie wykorzystujemy 100% produktywności monterów. Przez to, że kładziemy nacisk na profesjonalizm i dokładność, aby przywrócić budynek do stanu pierwotnego przeznaczono 6 osób z czasem 11 dni. Do wykopania rowu między budynkami zaplanowano 2 dni przez 1 operatora koparki. Aby ułożyć szafy rackowe dla KPD i LPD przydzielono 6 osób oraz 3 dni, natomiast tworzenie KPD i LPD to 4 dni przez 6 osób. Aby zamontować inne urządzenia aktywne , jak między innymi AP, przeznaczyliśmy 6 monterów z czasem pracy trzech dni.

Czas potrzebny na postawienie i wyposażenie CPD/BPD to łącznie 4 dni przez 6 osób. Aby zapewnić największą dokładność oraz aby mieć pewność działania sieci, konfiguracja oraz wstępne testy zajmują 15 dni, realizowane przez 12 osób. Przywrócenie miejsca pracy do porządku (powrotny montaż podwieszanego sufitu, sprzątanie odpadów itp) obejmie 12 osób oraz 4 dni. Aby zagwarantować całkowitą pewność poprawności sieci, przeprowadzenie końcowych testów zajmie 10 dni przez 12 osób. Ostatniego dnia projektu następuje odbiór sieci przez klienta.

Rysunek 24 Gantt - prace

	2020																	
GANTT. project	2020		Poo	zatek prad												Koniec	budowy	
Osoba	Domyślna rola Tydzień 2	Tydzień 3 20-01-13	Tydzle44 20-01-20	Tydzieł S 20-01-27	Tydzie46 20-02-03	Tydzie47 20-02-10	Tydzień 8 20-02-17	Tydzie 69 20-02-24	Tydzień 10 20-03-02	Tydzleń 11 20-03-00	Tydzień 12 20-03-16	Tydzień 10 20-03-23	Tydzień 14 20-03-30	Tydzie4 15 20-04-06	Tydzień 16 20-04-13	Tydzień 17 20-04-20	Tydzień 18 20-04-27	Tydzień 19 20-05-04
Jarosław Kolanowski	niezdefiniow																	
Mateusz Krauze	niezdefiniow																	
■ Maciej Kaszkowiak	niezdefiniow																	
Pracownik 1	niezdefiniow																	
Pracownik 2	niezdefiniow																	
Pracownik 3	niezdefiniow																	
■ Pracownik 4	niezdefiniow																	
Pracownik 5 Pracownik 5	niezdefiniow																	
Pracownik 6	niezdefiniow																	
Pracownik 7	niezdefiniow																	
■ Pracownik8	niezdefiniow																	
Pracownik 9	niezdefiniow																	
Pracownik 10 Pracownik 10	niezdefiniow																	
Pracownik 11	niezdefiniow																	
■ Pracownik 12	niezdefiniow																	
Operator koparko ladowarki	niezdefiniow																	

Rysunek 25 Gantt - pracownicy

Opis procedur przy montażu okablowania

Przy montażu okablowania należy zachowywać stosowne procedury mające na celu zapewnienie integralności sieci począwszy od warstwy fizycznej. Zastosowane zostanie testowane oddolne (bottom-up). Przede wszystkim:

- przed montażem kabla sieciowego należy przeprowadzić pomiar kabla używając miernika. Należy zwrócić uwagę, czy w normie jest tłumienie (nadmierne może powodować packet loss przy dłuższych odcinkach okablowania), przesłuch zbliżny (może powodować zakłócenia) oraz pozostałe parametry oferowane przez wykorzystywany miernik. Należy także zwrócić uwagę na parametr WireMap kabel musi być zakuty w standardzie T-568A.
- przy montażu kabla sieciowego należy zwracać uwagę na standardy trasy przebiegu kabla - należy zachować 30+ cm od wysokonapięciowego oświetlenia oraz 90+ cm od przewodów 5+ KVA. W przeciwnym wypadku mogą występować zakłócenia.
- należy upewnić się, czy należyta długość kabla została zachowana (maksymalnie 90 metrów od patch panelu do punktu abonenckiego) - jeśli zostanie napotkana niespodziewana blokada trasy kabla, długość ustalona w projekcie może ulec zmianie. Kabel nie może również być naprężony na swoim przebiegu oraz wolny od zagnieceń, nacięć czy złamań. Powinny także skręcać pod kątem 90 stopni oraz zachować minimalny promień skrętu (skrętka UTP - 4 średnice, STP - 6 średnic, kabel światłowodowy zależy od sposobu wykonania, od 10 do 20)
- podczas montażu kabli oraz urządzeń sieciowych należy zadbać o pełną dokumentację sieci. Kabel powinien być oznaczony przy początku i końcu oznakowaniem punktów podłaczenia.

- podczas instalacji gniazda należy pamiętać o zostawieniu zapasu kabla, który umożliwi ponowne zakończenie kabla.
- do prowadzenia kabli pionowych należy wykorzystać linę podtrzymującą

Opis procedur testowych po montażu okablowania:

Przebieg testowania całości sieci w budynku:

- należy zacząć od połączenia centralnego punktu dystrybucyjnego z Internetem. Sprawdzamy, czy osiągana jest docelowa przepustowość oraz ping. Upewniamy się, czy nie występuje packet loss/jitter/choke.
- następnie sprawdzamy połączenia CPD z kondygnacyjnymi punktami dystrybucyjnymi. Połączenia powinny wykorzystywać pełną szerokość pasma oraz nie mieć **jakiegokolwiek** packet loss ani znaczącego opóźnienia. Należy wyeliminować wszystkie możliwe problemy sieci, na którymi możemy mieć wpływ.
- następnie sprawdzamy połączenia KPD z lokalnymi punktami dystrybucyjnymi. Obowiązują powyższe zasady.
- po zweryfikowaniu jakości połączeń pomiędzy punktami dystrybucyjnymi powinniśmy przejść do zweryfikowania konfiguracji przełączników. Adresacja podsieci powinna w pełni zgadzać się z opisem ujętym w opisie projektu. Należy również zweryfikować, czy numeracja sekcji sieciowych zgadza się z numeracją przyjętą przez Klienta. Należy zapobiec sytuacji, w której np. sekcja nr 5 ma zamienioną konfigurację z sekcją nr 3.
- po zweryfikowaniu adresacji podsieci należy zweryfikować ustawienia usług DHCP - punkty abonenckie powinny otrzymywać adresy IP z poprawnych puli (należące do odpowiedniej podsieci). Należy również zweryfikować ustawienia DHCP w AP poprzez nawiązywanie połączeń przez sieć Wi-Fi.
- następnie należy sprawdzić zabezpieczenia sieci. Sprawdzamy, czy blokada sekcji prywatnych dla poszczególnych adresów MAC w piętrach handlowych działa poprzez podłączenie odmiennych urządzeń.

Sprawdzamy, czy hosty mają poprawną widoczność - np. czy z innej podsieci widać hosty w podsieci prywatnej. Sprawdzamy analogicznie, czy hosty widzą się nawzajem w dwóch podsieciach widocznych dla siebie. Sprawdzamy, czy określone podsieci mają dostęp do Internetu lub czy też mają go zablokowany. Sprawdzamy, czy zapory poprawnie funkcjonują. Ze względu na to, że ten etap konfiguracji sieci może dynamicznie ulegać zmianie, należy zweryfikować, czy Administrator może dokonać zmiany oraz czy zachodzą one poprawnie w życie. W celu usprawnienia tego procesu należy przygotować zestaw testów oraz hostów i możliwie zautomatyzować ten proces - zweryfikowanie poprawności całej sieci na tym etapie jest bardzo czasochłonne.

następnie sprawdzamy dodatkowe ustawienia sieci, takie jak ustawienia
 QoS na piętrze biurowym z priorytetem komputerów stacjonarnych nad komórkami.

Konserwacja projektu sieci

Gdy będziemy chcieli wykonać zmianę sieci po oddaniu jej do użytkowania, należy uprzednio:

- przygotować listę zmienianych urządzeń oraz zmienianych parametrów
- przygotować testy przeprowadzone po wdrożeniu zmian
- sporządzić kopię zapasową dotychczasowej konfiguracji i przygotować plan jak wdrożyć ją w razie gdyby zabrakło zaplanowanego czasu na dokonanie zmian
- przeprowadzić testy przed wykonaniem zmian w celu upewnienia się, że stan opisany pokrywa się ze stanem faktycznym

Należy uprzednio również zastanowić się jaka część sieci zostanie dotknięta przez dokonane zmiany. Idealnie, cały zakres dokonanych zmian powinien zostać zweryfikowany testami przed oraz po.

Po dokonaniu zmian należy zaktualizować dokumentację sieci, nawet przy najmniejszej zmianie. Nieaktualna dokumentacja może powodować coraz większe i większe problemy przy kolejnych zmianach w sieci. To tak zwane budowanie długu technicznego. Odsyłam w tym miejscu do zewnętrznego odnośnika (jest to bardzo dobre źródło informacji o przeprowadzaniu zmian w istniejącym systemie sieciowym): https://ipfabric.io/blog/testing-procedures-for-network-changes/

Odbiór projektu przez Klienta

Po zakończeniu wszystkich prac nastąpi odbiór projektu przez Klienta. Klient powinien otrzymać pełną dokumentację techniczną (zawartą w tym dokumencie), wyniki przeprowadzonych testów oraz sprawozdanie z przebiegu prac monterskich. Klient powinien zostać oprowadzony po obiekcie oraz zaznajomiony z planami sieci. Klient docelowo powinien potrafić określić z wsparciem dokumentacji gdzie znajdują się urządzenia aktywne, jak są oznaczone oraz za co odpowiadają.

Dobre zaznajomienie Klienta z wdrożonym projektem pozwoli zmniejszyć ilość błędów podczas konserwacji sieci, wynikających z niewiedzy. Jeśli przeznaczony czas na odbiór projektu przez Klienta okaże się niewystarczający, to należy poświęcić go więcej. Znajomość i zrozumienie projektu przyniesie więcej długoterminowych korzyści niż zaniechanie do wytłumaczenia.

Kosztorys

Pojedyncze piętro handlowe

	Piętro handlowe									
Lp.	Nazwa	Jednostka	llsoc	Jedn. cena netto	Cena netto	Cena brutto				
1	Okablowanie miedziane strukturalne pionowe, UTP, Cat 5e	m.	71	0,70 zł	49,70 zł	61,13 zł				
2	Okablowanie miedziane strukturalne poziome, UTP, Cat 5e	m.	1730	0,70 zł	1 211,00 zł					
3	Korytko kablowe perforowane 200x42 grubość 0,5mm	m.	48	10,09 zł	484,32 zł	595,71 zł				
4	Ścienna listwa kablowa Legrand plastikowa 85x50	m.	195	17,50 zł	3 412,50 zł					
5	Gniazdo LAN podwójne natynkowe rj45	szt.	21	7,50 zł	157,50 zł					
6	Półka stała 485x290 do szafy RACK	szt.	1	55,35 zł	55,35 zł					
7	Acces Point Cisco AIR-AP1815I-E-K9C	szt.	7	822,77 zł	5 759,39 zł	7 084,05 zł				
8	Szafa wisząca 6U 19", 355x600x440 mm	szt.	2	198,00 zł	396,00 zł					
9	Kołek uniwersalny Fischer Duopower 6 x 30 z wkrętem 50 szt.	szt.	7	24,23 zł	169,61 zł	208,62 zł				
10	Patchcord ethernet RJ45 UTP 0.25m kat.5e	szt.	49	3,25 zł	159,25 zł					
11	Opaski zaciskowe trytki UV 3,6x300 kablowe 100szt.	szt.	1	5,00 zł	5,00 zł	6,15 zł				
12	Blachowkręty 4,8x32 samowiercące 100szt.	szt.	1	6,81 zł	6,81 zł	8,38 zł				
13	Router C892FSP-K9	szt.	3	2 788,19 zł	8 364,57 zł	10 288,42 zł				
14	Patch panel 24-portowy, UTP, kat. 5e, 1U, 19"	szt.	4	47,00 zł	188,00 zł	231,24 zł				
15	Switch SG350X-24-K9-EU	szt.	1	1 969,95 zł	1 969,95 zł	2 423,04 zł				
16	Switch SG350X-48-K9-EU	szt.	1	3 034,32 zł	3 034,32 zł	3 732,21 zł				
17	Switch SG350-10P-K9-EU	szt.	1	885,46 zł	885,46 zł	1 089,12 zł				
18	APC Smart-UPS SC 420 260W	szt.	2	1 098,68 zł	2 197,36 zł	2 702,75 zł				

Tabela 2 Kosztorys - piętro handlowe

Pojedyncze piętro restauracyjne

Piętro restauracyjne									
Lp.	Nazwa	Jednostka	llsoc	Jedn. cena netto	Cena netto	Cena brutto			
1	Okablowanie miedziane strukturalne pionowe, UTP, Cat 5e	m.	53	0,70 zł	37,10 zł	45,63 z			
2	Okablowanie miedziane strukturalne poziome, UTP, Cat 5e	m.	192	0,70 zł	134,40 zł	165,31 z			
3	Korytko kablowe perforowane 200x42 grubość 0,5mm	m.	104	10,09 zł	1 049,36 zł	1 290,71 z			
4	Ścienna listwa kablowa Legrand plastikowa 85x50	m.	49	17,50 zł	857,50 zł	1 054,73 z			
5	Gniazdo LAN podwójne natynkowe rj45	szt.	4	7,50 zł	30,00 zł	36,90 z			
6	Switch CISCO MS120-8	szt.	1	2 740,77 zł	2 740,77 zł	3 371,15 z			
7	Szafa wisząca 6U 19", 355x600x440 mm	szt.	2	198,00 zł	396,00 zł	487,08 z			
8	Switch CISCO MS120-24	szt.	1	3 253,99 zł	3 253,99 zł	4 002,41 z			
9	Półka stała 485x290 do szafy RACK	szt.	1	55,35 zł	55,35 zł	68,08 z			
10	Acces Point Cisco AIR-AP1815I-E-K9C	szt.	5	822,77 zł	4 113,85 zł	5 060,04 z			
11	Kołek uniwersalny Fischer Duopower 6 x 30 z wkrętem 50 szt.	szt.	2	24,23 zł	48,46 zł	59,61 z			
12	Patchcord ethernet RJ45 UTP 0.25m kat.5e	szt.	15	3,25 zł	48,75 zł	59,96 z			
13	Opaski zaciskowe trytki UV 3,6x300 kablowe 100szt.	szt.	1	5,00 zł	5,00 zł	6,15 z			
14	Blachowkręty 4,8x32 samowiercące 100szt.	szt.	2	6,81 zł	13,62 zł	16,75 z			
15	Router C892FSP-K9	szt.	3	2 788,19 zł	8 364,57 zł	10 288,42 z			
16	Patch panel 24-portowy, UTP, kat. 5e, 1U, 19"	szt.	2	47,00 zł	94,00 zł	115,62 z			
17	Switch SG350X-24-K9-EU	szt.	1	1 969,95 zł	1 969,95 zł	2 423,04 z			
18	Switch SG350-10P-K9-EU	szt.	2	885,46 zł	1 770,92 zł	2 178,23 z			
19	APC Smart-UPS SC 420 260W	szt.	2	1 098,68 zł	2 197,36 zł	2 702,75 z			

Tabela 3 Kosztorys - piętro restauracyjne

Pojedyncze piętro biurowe

Piętro biurowe									
Lp.	Nazwa	Jednostka	llsoc	Jedn. cena netto	Cena netto	Cena brutto			
1	Okablowanie miedziane strukturalne poziome, UTP, Cat 5e	m.	5548	0,70 zł	3 883,60 zł	4 776,83 zł			
2	Okablowanie światłowodowe strukturalne pionowe OM2	m.	1062	2,32 zł	2 463,84 zł	3 030,52 zł			
3	Ścienna listwa kablowa Legrand plastikowa 85x50	m.	357	17,50 zł	6 247,50 zł	7 684,43 zł			
4	Korytko kablowe perforowane 200x42 grubość 0,5mm	m.	234	10,09 zł	2 361,06 zł	2 904,10 zł			
5	Gniazdo LAN podwójne natynkowe rj45	szt.	320	7,50 zł	2 400,00 zł	2 952,00 zł			
6	Szafa wisząca 12U 19", 590x600x440 mm	szt.	9	328,00 zł	2 952,00 zł	3 630,96 zł			
7	Acces Point Cisco AIR-AP1815I-E-K9C	szt.	16	822,77 zł	13 164,32 zł	16 192,11 zł			
8	Kołek uniwersalny Fischer Duopower 6 x 30 z wkrętem 50 szt.	szt.	12	24,23 zł	290,76 zł	357,63 zł			
9	Patch panel 48-portowy, UTP, kat. 5e, 1U, 19"	szt.	16	120,00 zł	1 920,00 zł	2 361,60 zł			
10	Patchcord ethernet RJ45 UTP 0.25m kat.5e	szt.	640	3,25 zł	2 080,00 zł	2 558,40 zł			
11	Opaski zaciskowe trytki UV 3,6x300 kablowe 100szt.	szt.	3	5,00 zł	15,00 zł	18,45 zł			
12	Blachowkręty 4,8x32 samowiercące 100szt.	szt.	4	6,81 zł	27,24 zł	33,51 zł			
13	Router C892FSP-K9	szt.	16	2 788,19 zł	44 611,04 zł	54 871,58 zł			
14	Światłowodowy LC Patch Panel 24 port	szt.	1	58,98 zł	58,98 zł	72,55 zł			
15	Switch SG350XG-24F-K9-EU	szt.	1	6 976,22 zł	6 976,22 zł	8 580,75 zł			
16	Switch SG350X-48-K9-EU	szt.	16	3 034,32 zł	48 549,12 zł	59 715,42 zł			
17	Router ASR1001-X	szt.	1	34 419,26 zł	34 419,26 zł	42 335,69 zł			
18	Moduł SFP+ 10 Gbps LC	szt.	3	98,00 zł	294,00 zł	361,62 zł			
19	Moduł SFP 1000 Mbps LC	szt.	64	52,00 zł	3 328,00 zł	4 093,44 zł			
20	Pigtail LC/UPC, MM, 50/125 1m	szt.	32	3,62 zł	115,84 zł	142,48 zł			
21	Patchcord LC/UPC-LC/UPC, MM, 50/125 1m	szt.	17	14,20 zł	241,40 zł	296,92 zł			
22	Zasilacz UPS Short Depth 400W	szt.	1	3 565,37 zł	3 565,37 zł	4 385,41 zł			
23	APC Smart-UPS SC 420 260W	szt.	8	1 098,68 zł	8 789,44 zł	10 811,01 zł			

Tabela 4 Kosztorys - piętro biurowe

Pojedyncze piętro mieszkalne

Piętro mieszkalne									
Lp.	Nazwa	Jednostka	Ilsoc	Jedn. cena netto	Cena netto	Cena brutto			
1	Okablowanie miedziane strukturalne pionowe, UTP, Cat 5e	m.	195	0,70 zł	136,50 zł	167,90 zł			
2	Okablowanie miedziane strukturalne poziome, UTP, Cat 5e	m.	2540	0,70 zł	1 778,00 zł	2 186,94 zł			
3	Korytko kablowe perforowane 200x42 grubość 0,5mm	m.	185	10,09 zł	1 866,65 zł	2 295,98 zł			
4	Gniazdo LAN podwójne podtynkowe rj45	szt.	32	13,99 zł	447,68 zł	550,65 zł			
5	Szafa wisząca 6U 19", 355x600x440 mm	szt.	1	198,00 zł	198,00 zł	243,54 zł			
6	Półka stała 485x290 do szafy RACK	szt.	1	55,35 zł	55,35 zł	68,08 zł			
7	Szafa wisząca 12U 19", 590x600x440 mm	szt.	1	328,00 zł	328,00 zł	403,44 zł			
8	Tynk gipsowy ręczny Knauf Goldband 20 kg	szt.	2	17,54 zł	35,08 zł	43,15 zł			
9	Gips szpachlowy Dolina Nidy 25 kg	szt.	1	19,51 zł	19,51 zł	24,00 zł			
10	Patchcord ethernet RJ45 UTP 0.25m kat.5e	szt.	70	3,25 zł	227,50 zł	279,83 zł			
11	Blachowkręty 4,8x32 samowiercące 100szt.	szt.	3	6,81 zł	20,43 zł	25,13 zł			
12	Opaski zaciskowe trytki UV 3,6x300 kablowe 100szt.	szt.	2	5,00 zł	10,00 zł	12,30 zł			
13	Acces Point Cisco AIR-AP1815I-E-K9C	szt.	2	822,77 zł	1 645,54 zł	2 024,01 zł			
14	Router C892FSP-K9	szt.	1	2 788,19 zł	2 788,19 zł	3 429,47 zł			
15	Switch SG350-10P-K9-EU	szt.	1	885,46 zł	885,46 zł	1 089,12 zł			
16	Switch SG350X-24-K9-EU	szt.	3	1 969,95 zł	5 909,85 zł	7 269,12 zł			
17	Patch panel 24-portowy, UTP, kat. 5e, 1U, 19"	szt.	4	47,00 zł	188,00 zł	231,24 zł			
18	APC Smart-UPS SC 420 260W	szt.	2	1 098,68 zł	2 197,36 zł	2 702,75 zł			

Tabela 5 Kosztorys - piętro mieszkalne

Koszty ogólne

	Koszty ogólne					
Lp.	Nazwa	Jednostka	llsoc	Jedn. cena netto	Cena netto	Cena brutto
1	Wywóz ospadów oraz gruzu (kontener 8m³)	szt.	1	1 372,90 zł	1 372,90 zł	1 688,67 zł
2	Usługa wykopania rowu 110m przez koparko ładowarkę	r-g	16	149,73 zł	2 395,68 zł	2 946,69 zł
3	Woda z rurociągu	m ³	0,3	11,29 zł	3,39 zł	4,17 zł
4	Rura karbowana PESZEL 32/25	m.	110	1,42 zł	156,20 zł	192,13 zł
5	Rura elektroinstalacyjna sztywna rozmiar 50mm	m.	70	4,44 zł	310,80 zł	382,28 zł
6	Okablowanie światłowodowe strukturalne pionowe OM2	m.	355	2,32 zł	823,60 zł	1 013,03 zł
7	Okablowanie światłowodowe strukturalne międzykampusowe OM4	m.	115	11,90 zł	1 368,50 zł	1 683,26 zł
8	Moduł SFP 1000 Mbps LC	szt.	16	52,00 zł	832,00 zł	1 023,36 zł
9	Pigtail LC/UPC, MM, 50/125 1m	szt.	36	3,62 zł	130,32 zł	160,29 zł
10	Skrzynka hermetyczna AP 19x14x7cm	szt.	2	14,30 zł	28,60 zł	35,18 zł
11	Pigtail LC MM 50/125 OM4 1m	szt.	2	6,10 zł	12,20 zł	15,01 zł
12	Mufa guma uszczelniająca	szt.	18	5,66 zł	101,88 zł	125,31 zł

Tabela 6 Kosztorys - ogólne

Centralny punkt sieci

	Centralny punkt sieci					
Lp.	Nazwa	Jednostka	llsoc	Jedn. cena netto	Cena netto	Cena brutto
1	Router Cisco ASR 9901 120G	szt.	1	246 536,53 zł	246 536,53 zł	303 239,93 zł
2	Moduł SFP 1000 Mbps LC	szt.	8	52,00 zł	416,00 zł	511,68 zł
3	Moduł SFP+ 10 Gbps LC	szt.	2	98,00 zł	196,00 zł	241,08 zł
4	Moduł QSFP+ 40 Gbps LC	szt.	1	1 160,00 zł	1 160,00 zł	1 426,80 zł
5	Światłowodowy LC Patch Panel 24 port	szt.	1	58,98 zł	58,98 zł	72,55 zł
6	Patchcord LC/UPC-LC/UPC, MM, 50/125 1m	szt.	9	14,20 zł	127,80 zł	157,19 zł
7	Patchcord LC-LC MM OM4 50/125 1m	szt.	1	23,60 zł	23,60 zł	29,03 zł
8	Szafa stojąca 25U 19", 1250x600x800 mm	szt.	1	1 020,00 zł	1 020,00 zł	1 254,60 zł
9	APC Smart-UPS 1350W 1500 VA	szt.	1	9 613,86 zł	9 613,86 zł	11 825,05 zł

Tabela 7 Kosztorys - CPS

Budynkowy punkt sieci

	Budynkowy punkt sieci					
Lp.	Nazwa	Jednostka	llsoc	Jedn. cena netto	Cena netto	Cena brutto
1	Switch cisco CATALYST 3850-48XS-S	szt.	1	29 423,05 zł	29 423,05 zł	36 190,35 zł
2	Moduł SFP 1000 Mbps LC	szt.	8	52,00 zł	416,00 zł	511,68 zł
3	Moduł SFP+ 10 Gbps LC	szt.	2	98,00 zł	196,00 zł	241,08 zł
4	Moduł QSFP+ 40 Gbps LC	szt.	1	1 160,00 zł	1 160,00 zł	1 426,80 zł
5	Światłowodowy LC Patch Panel 24 port	szt.	1	58,98 zł	58,98 zł	72,55 zł
6	Patchcord LC/UPC-LC/UPC, MM, 50/125 1m	szt.	9	14,20 zł	127,80 zł	157,19 zł
7	Patchcord LC-LC MM OM4 50/125 1m	szt.	1	23,60 zł	23,60 zł	29,03 zł
8	Szafa stojąca 25U 19", 1250x600x800 mm	szt.	1	1 020,00 zł	1 020,00 zł	1 254,60 zł
9	APC Smart-UPS 1350W 1500 VA	szt.	1	9 613,86 zł	9 613,86 zł	11 825,05 zł

Tabela 8 Kosztorys - BPS

Praca maszyn

	Praca maszyn					
Lp.	Nazwa	Jednostka	llsoc	Jedn. cena netto	Cena netto	Cena brutto
1	Młotowiertarka MacAllister SDS 1200 W	m-h	144	16,24 zł	2 338,56 zł	2 876,43 zł
2	Przyrząd pomiarowy okablowania strukturalnego miedzianego	m-h	160	29,76 zł	4 761,60 zł	5 856,77 zł
3	Przyrząd pomiarowy okablowania strukturalnego światłowodowego	m-h	336	42,40 zł	14 246,40 zł	17 523,07 zł
4	Nóż Krone	m-h	532	4,30 zł	2 287,60 zł	2 813,75 zł
5	Mieszadło elektryczne do zapraw	m-h	32	17,86 zł	571,52 zł	702,97 zł
6	Spawarka światłowodowa	m-h	26	78,90 zł	2 051,40 zł	2 523,22 zł

Tabela 9 Kosztorys - praca maszyn

Koszty pracowników

	Koszty pracowników					
Lp.	Nazwa	Jednostka	Ilsoc	Jedn. cena netto	Cena netto	Cena brutto
1	Mateusz Krauze	r-h	88	35,00 zł	3 080,00 zł	3 788,40 zł
2	Maciej Kaszkowiak	r-h	104	35,00 zł	3 640,00 zł	4 477,20 zł
3	Jarosław Kolanowski	r-h	104	35,00 zł	3 640,00 zł	4 477,20 zł
4	Pracownik 1	r-h	808	18,00 zł	14 544,00 zł	17 889,12 zł
5	Pracownik 2	r-h	808	18,00 zł	14 544,00 zł	17 889,12 zł
6	Pracownik 3	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł
7	Pracownik 4	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł
8	Pracownik 5	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł
9	Pracownik 6	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł
10	Pracownik 7	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł
11	Pracownik 8	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł
12	Pracownik 9	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł
13	Pracownik 10	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł
14	Pracownik 11	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł
15	Pracownik 12	r-h	816	18,00 zł	14 688,00 zł	18 066,24 zł

Tabela 10 Kosztorys - pracownicy

Podsumowanie kosztów

Podsumowanie kosztów					
Lp.	Sekcja	llosc	Jedn. cena net	to Cena netto	Cena brutto
1	Piętra handlowe	8	28 506,09 zł	228 048,72 z	280 499,93
2	Piętra restauracyjne	2	24 983,59 zł	49 967,18 z	61 459,63
3	Piętra mieszkalne	6	27 180,95 zł	163 085,70 zł	200 595,41
4	Piętra biurowe	4	18 737,10 zł	74 948,40 zł	92 186,53
5	Koszty ogólne	1	7 536,07 zł	7 536,07 zł	9 269,36
6	Centralny punkt sieci	1	259 152,77 z	259 152,77 zł	318 757,91
7	Budynkowy punkt sieci	1	42 039,29 zł	42 039,29 zł	51 708,33
8	Praca maszyn	1	26 257,08 zł	26 257,08 zł	32 296,21
9	Koszty pracowników	1	186 328,00 z	186 328,00 zł	229 183,44
Suma 1 037 363.21 zt 1 275 956.7				1 275 956,74	

Tabela 11 Kosztorys - podsumowanie kosztów

Zysk

	Zysk				
Lp.	Sekcja	Jedn. cena netto	Cena netto	Cena brutto	
1	Zysk od materiałów	10%	82 477,81 zł	101 447,71 zł	
2	Zysk od pracy maszyn	10%	2 625,71 zł	3 229,62 zł	
3	Zysk od robocizny	10%	18 632,80 zł	22 918,34 zł	
		Suma	103 736,32 zł	127 595,67 zł	

Tabela 12 Kosztorys - zysk

Całkowity koszt

Całkowity koszt				
Lp.	Nazwa	Cena netto	Cena brutto	
1	Łączny koszt projektu	1 141 099,53 zł	1 403 552,42 zł	

Tabela 13 Kosztorys - całkowity koszt

Karty katalogowe wykorzystanych urządzeń

Okablowanie miedziane, UTP, Cat 5e

CHARAKTERYSTYKA TECHNICZNA				
Rodzaj kabla:	U/UTP			
Kategoria:	5e			
Częstotliwość:	200 MHz			
Przepustowość:	1 Gb/s			
Przekrój:	4 x 2 x 0,5 (24AWG)			
Żyły:	jednodrutowe, okrągłe, z miękkiej miedzi			
	elektrolitycznej o średnicy			
	0,5 mm (24AWG)			
Izolacja:	specjalna mieszanka			
	poliolefinowa			
Kolory izolacji żył:	zielona, niebieska, brązowa,			
	pomarańczowa - skręcone w			

	parę z żyłą białą z odpowiadającym jej kolorowym paskiem wzdłużnym
Ośrodek:	cztery pary żył skręcone w ośrodek
Ekranowanie:	brak
Typ ekranu:	-
Powłoka:	polwinit PVC oponowy
Kolor powłoki:	szary (RAL 7035)
Klasyfikacja ogniowa:	Eca

Okablowanie światłowodowe

CHARAKTERYSTYKA TECHNICZNA		
Ilość włókien	U/UTP	
Średnicy rdzenia/płaszcza	50/125	
Rodzaj włókna	OM2	
Powłoka	LSZH	

Switch SG350X-24-K9-EU

CHARAKTERYSTYKA TECH	NICZNA
Typ przełącznika	Managed
Podstawowe przełączanie RJ-45 Liczba portów Ethernet	24
Liczba zainstalowanych modułów SFP+	2
Ilość portów Gigabit Ethernet	24
Standardy komunikacyjne	IEEE 802.1D,IEEE 802.1Q,IEEE
	802.1ab,IEEE 802.1p,IEEE
	802.1s,IEEE 802.1w,IEEE
	802.1x,IEEE 802.3,IEEE
	802.3ab,IEEE 802.3ad,IEEE
	802.3ae,IEEE 802.3af,IEEE
	802.3an,IEEE 802.3at,IEEE
	802.3az,IEEE 802.3u,IEEE
	802.3x,IEEE 802.3z
Sloty	24 x 10/100/1000 + 2 x 10GE
	combo + 2 x 10GE SFP

Podstawowe przełączania Ethernet RJ-45 porty typ	Gigabit Ethernet (10/100/1000)
Port konsoli	RJ-45
Obsługiwane typy kabli	Cat5,Cat5e,Cat6,Cat6a

Switch SG350X-48-K9-EU

CHARAKTERYSTYKA TECHNICZNA	
Typ przełącznika	Managed
Podstawowe przełączanie RJ-45 Liczba portów Ethernet	48
Liczba zainstalowanych modułów SFP+	2
llość portów Gigabit Ethernet	24
Sloty	48 x 10/100/1000 + 2 x 10GE
	combo + 2 x 10GE SFP
Standardy komunikacyjne	IEEE 802.1D,IEEE 802.1Q,IEEE
	802.1ab,IEEE 802.1p,IEEE
	802.1s,IEEE 802.1w,IEEE
	802.1x,IEEE 802.3,IEEE
	802.3ab,IEEE 802.3ad,IEEE
	802.3ae,IEEE 802.3an,IEEE
	802.3az,IEEE 802.3u,IEEE
	802.3x,IEEE 802.3z
Obsługiwane typy kabli	Cat5,Cat5e,Cat6,Cat6a
Podstawowe przełączania Ethernet RJ-45 porty typ	Gigabit Ethernet (10/100/1000)

CISCO CATALYST 3850-48XS-S

CHARAKTERYSTYKA TECHNICZNA	
Typ przełącznika	Managed
Podstawowe przełączanie RJ-45 Liczba portów Ethernet	None
Liczba zainstalowanych modułów SFP+	48
QSFP + Ilość gniazd modułowych	4
Sloty	48 Port 10G
Standardy komunikacyjne	IEEE 802.1D,IEEE 802.1s,IEEE 802.1v,IEEE 802.1x,IEEE 802.3ad
Wielkość tabeli adresów	32000
Zgodny z Jumbo Frames	Tak
Szyfrowanie / bezpieczeństwo	802.1x RADIUS
Protokoły zarządzające	SNMP v1, SNMP v2c, SNMP v3

Switch SG350-10P-K9-EU

CHARAKTERYSTYKA TECHNICZNA	
Typ przełącznika	Managed
Podstawowe przełączanie RJ-45 Liczba portów Ethernet	8
Liczba portów SFP Combo	2
Sloty	10-port Gigabit
Obsługa MIB	draft-ietf-bridge-8021x-MIB, draft-
	ietf-bridge, rstpmib-04-MIB, draft-
	ietf-hubmib-etherif-MIB-v3-00-
	MIB, draft-ietf-syslog-device-MIB,
	ianaaddrfamnumbers-MIB,
	ianaifty-MIB, ianaprot-MIB, inet-
	address-MIB, ip-forward-MIB, ip-
	MIB, RFC1155-SMI, RFC1213-MIB,
	SNMPv2-MIB, SNMPv2-SMI,
	SNMPv2-TM, RMON-MIB.my, dcb-
	raj-DCBX-MIB-1108-MIB, rfc1724-
	MIB, RFC-1212.my_for_MG-Soft,
	rfc1213-MIB, rfc1757-MIB RFC-,

	1215.my, SNMPv2-, CONF.my,
	SNMPv2-TC.my, rfc2674-MIB,
	rfc2575-MIB, rfc2573-MIB,
	rfc2233-MIB, rfc2013-MIB,
	rfc2012-MIB, rfc2011-MIB, draft-
	ietf-entmib-sensor-MIB, lldp-MIB,
	lldpextdot1-MIB, lldpextdot3-MIB,
	lldpextmed-MIB, p-bridge-MIB, q-
	bridge-MIB, rfc1389-MIB, rfc1493-
	MIB, rfc1611-MIB, rfc1612-MIB,
	rfc1850-MIB, rfc1907-MIB,
	rfc2571-MIB, rfc2572-MIB,
	rfc2574-MIB, rfc2576-MIB,
	rfc2613-MIB, rfc2665-MIB,
	rfc2668-MIB, rfc2737-MIB,
	rfc2925-MIB, rfc3621-MIB,
	rfc4668-MIB, rfc4670-MIB, trunk-
	MIB, tunnel-MIB, udp-MIB
Podstawowe przełączania Ethernet RJ-45 porty typ	Gigabit Ethernet (10/100/1000)
Standardy komunikacyjne	IEEE 802.1D,IEEE 802.1Q,IEEE
	802.1p,IEEE 802.1s,IEEE
	802.1w,IEEE 802.1x,IEEE
	802.3ab,IEEE 802.3ad,IEEE

SG350XG-24F-K9-EU

CHARAKTERYSTYKA TECHNICZNA	
Typ przełącznika	Managed
Podstawowe przełączanie RJ-45 Liczba portów Ethernet	2
llość portów Gigabit Ethernet	1
Ilość slotów Modułu SFP+	24
Sloty	24-port Ten Gigabit
Podstawowe przełączania Ethernet RJ-45 porty typ	10G Ethernet (100/1000/10000)
Standardy komunikacyjne	IEEE 802.1D,IEEE 802.1Q,IEEE 802.1p,IEEE 802.1s,IEEE 802.1w,IEEE 802.1x,IEEE 802.3,IEEE 802.3ab,IEEE 802.3ad,IEEE 802.3af,IEEE 802.3at,IEEE 802.3az,IEEE 802.3u,IEEE 802.3x,IEEE 802.3z
Port konsoli	RJ-45
Złącze światłowodowe	SFP+

Access Point Cisco AIR-AP1815I-E-K9C

CHARAKTERYSTYKA TECHNICZNA	
2,4 GHz	Tak
5 GHz	Tak
Maksymalna szybkość przesyłania danych	1000
Prędkość transferu danych przez Ethernet LAN	10,100,1000
Liczba kanałów	29
Standardy komunikacyjne	IEEE 802.11a,IEEE 802.11ac,IEEE
	802.11b,IEEE 802.11d,IEEE
	802.11g,IEEE 802.11h,IEEE
	802.11i,IEEE 802.11n,IEEE
	802.11r,IEEE 802.1x,IEEE
	802.3,IEEE 802.3ab,IEEE
	802.3af,IEEE 802.3at,IEEE 802.3u
Maksymalna szybkość przesyłania danych (5 GHz)	867
Ilość portów Ethernet LAN (RJ-45)	1

Router C892FSP-K9

CHARAKTERYSTYKA TECHNICZNA	
Rodzaj interfejsu sieci Ethernet	Gigabit Ethernet
Liczba użytkowników	50
Ethernet WAN	Tak
Prędkość transferu danych przez Ethernet LAN	10,100,1000
Standardy komunikacyjne	IEEE 802.1D,IEEE 802.1Q,IEEE 802.1x
Technologia okablowania	10/100/1000Base-T(X)
Możliwość podłączenia ISDN	Nie
llość portów Ethernet LAN (RJ-45)	8
Ilość portów USB	1

Router ASR1001-X

CHARAKTERYSTYKA TECHNICZNA	
Port wan	Ethernet (RJ-45)
Gniazdko wyjścia DC	Tak
Ethernet WAN	Tak
Prędkość transferu danych przez Ethernet LAN	10,100,1000,10000
Standardy komunikacyjne	UL60950-1, CSA C22.2, No. 60950- 1-03, EN 60950-1, IEC 60950-1, AS/NZS 60950.1
llość portów Ethernet LAN (RJ-45)	6
Liczba zainstalowanych modułów SFP	2

APC Smart-UPS C Lithium Ion

CHARAKTERYSTYKA TECHNICZNA	
Maksymalna możliwa do konfiguracji moc (w watach)	400W / 500VA
Częstotliwość na wyjściu (zsynchronizowana z siecią zasilającą)	50/60 Hz +/-1 Hz
Typ przebiegu	sinusoida
Częstotliwość wejściowa	47-63 Hz
Zakres napięcia wejściowego w trybie podstawowym	208 - 253V
Moc akumulatora	10W

APC Smart-UPS SC 420

CHARAKTERYSTYKA TECHNICZNA	
Maksymalna możliwa do konfiguracji moc (w watach)	260W / 420VA
Częstotliwość na wyjściu (zsynchronizowana z siecią zasilającą)	47–53 Hz przy częstotliwości nominalnej 50 Hz, 57–63 Hz przy częstotliwości nominalnej 60 Hz
Typ przebiegu	Schodkowa aproksymacja sinusiody
Częstotliwość wejściowa	50/60 Hz +/-3 Hz (automatyczne wykrywanie)
Zakres napięcia wejściowego w trybie podstawowym	95–265V
Moc akumulatora	28W

APC Smart-UPS z akumulatorem litowo-jonowym

CHARAKTERYSTYKA TECHNICZNA	
Maksymalna możliwa do konfiguracji moc (w watach)	1.35kW / 1.5kVA
Częstotliwość na wyjściu (zsynchronizowana z siecią zasilającą)	50/60Hz +/- 3 Hz
Typ przebiegu	sinusoida
Częstotliwość wejściowa	50/60 Hz +/-3 Hz (automatyczne wykrywanie)
Zakres napięcia wejściowego w trybie podstawowym	60 - 286V
Moc akumulatora	100W

Router Cisco ASR 9901 120G

CHARAKTERYSTYKA TECHNICZNA	
Wysoka skalowalność	Zapewnia wbudowaną skalowalność dla ochrony inwestycji
Procesor	Zintegrowany procesor tras z 32 GB pamięci RAM
Porty	Zapewnia 42 porty zintegrowane (16x1G, 24x1/10G(Dual rate), 2x100G)
Standardy komunikacyjne	SR-3580: NEBS Criteria Levels (Level 3),GR-1089-CORE: NEBS EMC and Safety,GR-63-CORE: NEBS Physical Protection,VZ.TPR.9205: Verizon TEEER
Przepustowość	1/10/40/100 Gigabit

Patch panel 48-portowy, UTP, kat. 5e, 1U, 19"

Światłowodowy LC Patch Panel 24 port

Pigtail LC/UPC, MM, 50/125 1m

Patchcord LC/UPC-LC/UPC, MM, 50/125 1m

Patch panel 24-portowy, UTP, kat. 5e, 1U, 19"

Patchcord LC-LC MM 0M4 50/125

Patchcord ethernet RJ45 UTP 0.25m kat.5e

Korytko kablowe perforowane 200x42 grubość 0,5mm

Ścienna listwa kablowa Legrand plastikowa 85x50

Gniazdo LAN podwójne natynkowe rj45

Gniazdo LAN podwójne podtynkowe rj45

Szafa wisząca 6U 19", 355x600x440 mm

Szafa wisząca 12U 19", 590x600x440 mm

Szafa stojąca 25U 19", 1250x600x800 mm

Licencja projektu

Projekt oparty jest o licencję CC BY-SA 4.0. Autorami projektu są:

- Jarosław Kolanowski
- Maciej Kaszkowiak
- Mateusz Krauze

Spis rysunków i tabel

Schemat 1 Piętro biurowe - wymiary	10
Schemat 2 Piętro handlowe - wymiary Schemat 3 Piętro mieszkalne - wymiary Schemat 4 Piętro restauracyjne - wymiary Schemat 5 Piętro biurowe - sieć Schemat 6 Piętro handlowe - sieć Schemat 7 Piętro mieszkalne - sieć Schemat 8 Piętro restauracyjne - sieć	11
	12
	13
	15
	16
	17
	18
Schemat 9 Okablowanie kampusowe	19
Schemat 10 BPS	20
Schemat 11 CPS	21
Rysunek 1 Adresacja - całość	32
Rysunek 2 Adresacja - budynki	33
Rysunek 3 Adresacja - kondygnacje	34
Rysunek 4 Adresacja - piętra handlowe	36
Rysunek 5 Adresacja - piętra restauracyjne	38
Rysunek 6 Adresacja - piętra biurowe	39
Rysunek 7 Adresacja - piętra mieszkalne	41
Rysunek 8 Packet Tracer - całość	43
Rysunek 9 Packet Tracer - legenda	44
Rysunek 10 Packet Tracer - połączenie	45
Rysunek 11 Packet Tracer - interfejs bezprzewodowy	46
Rysunek 12 Packet Tracer - routing	46
Rysunek 13 Packet Tracer - ping	47
Rysunek 14 Packet Tracer - wnioski	48
Rysunek 15 Konfiguracja - VLAN 1	51
Rysunek 16 Konfiguracja - VLAN 2	51
Rysunek 17 Konfiguracja - VLAN 3	52
Rysunek 18 Konfiguracja - VLAN 4	52
Rysunek 19 Konfiguracja - VLAN 5	53
Rysunek 20 Konfiguracja - DHCP	54
Rysunek 21 Konfiguracja - routing	55
Rysunek 22 Przykład 1	60
Rysunek 23 Przykład 2	61
Rysunek 24 Gantt - prace	64
Rysunek 25 Gantt - pracownicy	64
Tabela 1 Przyłącze internetowe	26
Tabela 2 Kosztorys - piętro handlowe	71
Tabela 3 Kosztorys - piętro restauracyjne	71
Tabela 4 Kosztorys - piętro biurowe	72
Tabela 5 Kosztorys - piętro mieszkalne	72

Tabela 6 Kosztorys - ogólne	73
Tabela 7 Kosztorys - CPS	73
Tabela 8 Kosztorys - BPS	73
Tabela 9 Kosztorys - praca maszyn	73
Tabela 10 Kosztorys - pracownicy	74
Tabela 11 Kosztorys - podsumowanie kosztów	74
Tabela 12 Kosztorys - zysk	74
Tabela 13 Kosztorys - całkowity koszt	74

Załączniki

- 1. Kosztorys
- 2. Plan pracy
- 3. Projekt sieci
- 4. Archiwum Grafik
- 5. Legenda
- 6. Schemat BPS
- 7. Schemat CPS
- 8. Schemat okablowania kampusowego
- 9. Schemat pięter handlowych
- 10. Schemat pięter restauracyjnych
- 11. Schemat pięter biurowych
- 12. Schemat pięter mieszkalnych
- 13. Schemat sieci pięter handlowych
- 14. Schemat sieci pięter restauracyjnych
- 15. Schemat sieci pięter biurowych
- 16. Schemat sieci pięter mieszkalnych