

Voice Chat Application

Web app
[Task 4]

Mohamad Abdulmoula,R. Rama

ramamohameed9@gmail.com

Department of Software Engineer

Under the Supervision Of:

Eng Asmaa Duramae

August 12, 2025

Table of Contents

Glossary of Terms	3
Project Overview	
Planning	
Requirements Analysis	
Conclusion	
References	۶

Glossary of Terms

Term	Definition
Flutter	An open-source UI framework by Google for building cross-platform applications.
OpenAI GPT	A large language model capable of generating human-like responses to user inputs.
Speech-to-Text (STT)	A process that converts spoken words into text.
Text-to-Speech (TTS)	A process that converts text into spoken voice output.
Material 3	The latest version of Google's Material Design system for UI/UX design.
Provider	A state management solution in Flutter for efficient UI updates.
API Key	A security credential used to authenticate API requests.
Permission Handler	A Flutter package for handling runtime permissions on mobile devices.

Project Overview

The **Voice GPT Chat Application** is a Flutter-based mobile application that allows users to interact with an AI chatbot through both voice and text. It integrates **speech-to-text** for voice input, **text-to-speech** for voice output, and OpenAI's GPT model for intelligent conversation handling.

The app supports live speech recognition, manual text input, AI-powered responses, and performance metrics tracking. It is designed with **Material 3** design principles for a modern and accessible user interface.

Planning

A. Objective:

To develop an interactive mobile chatbot that supports both **voice input** and **voice output**, powered by **OpenAI's GPT**, allowing for seamless and intelligent real-time conversations.

B. Purpose:

This application aims to provide users with a **hands-free AI conversation experience**, useful for accessibility, personal assistance, and productivity. It merges advanced AI capabilities with modern mobile design, enhancing usability and engagement.

C. Tools Used:

a. Programming Language: Dart

b. Framework: Flutter

c. State Management: Providerd. AI Engine: OpenAI GPT API

e. **Speech-to-Text:** speech_to_text package

f. Text-to-Speech: flutter tts package

g. Permission Handling: permission_handler packageh. Environment Variables: flutter doteny package

i. Version Control: Git & GitHub

Requirements Analysis

A. Functional Requirements

ID	Requirement Description	Priority
FR-	The system shall allow users to input text messages manually through a text field.	High
1		
FR-	The system shall allow users to record and transcribe speech using the microphone.	High
2		
FR-	The system shall process user input and send it to the GPT API for a response.	High
3		
FR-	The system shall display both user and AI messages in a chat interface.	High
4		
FR-	The system shall read AI responses aloud using text-to-speech.	Medium
5		
FR-	The system shall allow toggling TTS on/off via a UI button.	Medium
6		
FR-	The system shall track and display the number of requests and average response	Medium
7	time.	
FR-	The system shall allow clearing the conversation and metrics.	Low
8		
FR-	The system shall handle errors gracefully and display appropriate messages.	High
9		

B. Non-Functional Requirements

ID	Requirement Description	Priority
NFR-	The application should process speech input and generate responses within 3	High
1	seconds for smooth interaction. (Performance)	
NFR-	The interface must follow Material 3 design principles and be accessible to users	High
2	with different abilities. (Usability)	
NFR-	The application should handle network errors without crashing and provide	High
3	fallback messages. (Reliability)	
NFR-	The application must run on both Android and iOS devices. (Portability)	High
4		
NFR-	The architecture should allow easy integration of additional AI features.	Medium
5	(Scalability)	
NFR-	The API key should be stored securely using environment variables. (Security)	High
6		

Implementation Phases

a. Environment Setup

- a) Installed Flutter SDK and dependencies.
- b) Configured .env file to store the OpenAI API key securely.

b. UI Design

- a) Created the main ChatScreen with AppBar, message list, and input controls.
- b) Implemented ChatBubble widget for user and assistant messages.

c. Speech-to-Text Integration

- a) Used speech to text to initialize microphone access and transcribe speech.
- b) Added real-time transcription updates to the input field.

d. Text-to-Speech Integration

- a) Used flutter_tts to vocalize AI responses.
- b) Added toggle button to enable/disable TTS output.

e. GPT API Integration

- a) Implemented GPTService for sending requests to OpenAI's GPT API.
- b) Processed API responses and updated UI dynamically.

f. State Management

a) Used Provider (MetricsProvider) to store performance metrics such as request count and average response time.

g. Testing & Debugging

- a) Performed unit tests for GPT API calls.
- b) Tested speech recognition and TTS output on physical devices.

Conclusion

The Voice GPT Chat Application successfully combines voice recognition, AI-powered responses, and speech synthesis in a single Flutter app. It provides a hands-free conversational experience, is built with a modular architecture for scalability, and adheres to modern UI design principles. Future enhancements could include multi-language support, conversation history storage, and offline TTS/STT processing to improve performance and accessibility.

References

- A. Google Developers. (2023). Flutter Documentation. Retrieved from https://docs.flutter.dev
- B. OpenAI. (2023). *OpenAI API Documentation*. Retrieved from https://platform.openai.com/docs
- C. Flutter Community. (2023). speech_to_text Flutter package. Retrieved from https://pub.dev/packages/speech_to_text
- D. Flutter Community. (2023). flutter_tts Flutter package. Retrieved from https://pub.dev/packages/flutter-tts