Assignment 5

Antal element	Merge sort	Insertion sort
10	0.000011	0.000004
30	0.000032	0.000011
50	0.000056	0.000023
100	0.000105	0.000088
200	0.000254	0.000391
500	0.000610	0.002284
1000	0.000897	0.003460
2000	0.001586	0.012499
3000	0.001646	0.010658
4000	0.002032	0.017826
5000	0.002435	0.026019
6000	0.002883	0.035763
7000	0.003410	0.046055
8000	0.003673	0.047608
9000	0.004363	0.054430
10000	0.004709	0.061996
12000	0.005636	0.083797
50000	0.023513	0.985631
100000	0.044113	4.002073
250000	0.108080	24.080469
500000	0.216146	96.667275

Slutsats: I intervall $[0, \sim 100]$ är insertion sort effektivare, annars var merge sort snabbare. Ett förslag är att kombinera merge sort och insertion sort, där merge sort sorterar alla del-arrayer som är > 100.