Mathematics: analysis and approaches Higher level Paper 1 Practice Set C (Hodder)

2 hours

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in an answer booklet.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: analysis and approaches formula book is required for this paper.
- The maximum mark for this examination paper is [110 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions. Answers must be written within the answ	er boxes provided	Working may	be continued
below the lines, if necessary.			

-	To the same of it meets out j.	
1	[Maximum mark: 6]	
	Let $f(x) = 2x^2 + 10x + 7, x \in \mathbb{R}$.	
	a Find the largest possible domain of the form $x \le k$ for which the inverse function, f^{-1} , exists.	[2]

[4]

b For the value of k from part **a**, find the inverse function $f^{-1}(x)$, stating its domain.

2		Maximum mark: 6] Let $z = 3 - 2i$ and $w = -1 + i$.	
		Represent z and w on an Argand diagram.	[2
		Find $\frac{w}{z}$ in the form $a + bi$.	[2
		Find the real numbers p and q such that $pz + qw = 6$.	[2
	• •		

3	[Maximum mark: 5] Solve the inequality $ 2x + 1 < x - 3 $.

		Maximum mark: 5] Find the set of values of k for which the function $f(x) = x^3 + kx^2 + kx - 2$ is strictly increasing for all $x \in$
	_	
	•	
	•	

5	[Maximum	mark:	6
	Evaluate		

$$\int_{1}^{6} \frac{3x - 16}{3x^2 + 10x - 8} \, \mathrm{d}x$$

Give your answer in the form $\ln k$.

Hence find the approximate solutions of the equation $\frac{1}{10} \sin 3x = x^2$.

6 [Maximum mark: 5]

I	The sum of the first two terms of a geometric series is 3 and its sum to infinity is 5. Given that all terms of the series are positive, find the common ratio of the series.
•	
•	
•	•••••••••••••••••••••••••••••••••••••••

[Maximum mark:	7]
Solve the equation	ı

$\log_4(3-2x) = \log_{16}(6x^2 - 5x + 12)$	$\log_4(3)$	-2x) =	$\log_{16}(6x^2 -$	5x +	12).
--	-------------	--------	--------------------	------	------

9 [Maximum mark: 5]

The graph of y = f(x) is shown in the diagram. The domain of f is $0 \le x \le 4$.

							F.07 \ 7.72
a	On the same	grid,	sketch	the	graph	of $v =$	$ f(x) ^2$

[3]

b Find the domain and range o	of the function $g(x) = 2f(x - 1)$.
--------------------------------------	--------------------------------------

[2]

[Maximum mark: 5]

Section B

Answer all questions in an answer booklet. Please start each question on a new page.

- 11 [Maximum mark: 18]
 - a Points A, B and D have coordinates A(1, -4, 3), B(2, 1, -1) and D(-1, 3, 3).
 - i Find the equation of the line l_1 through A and B.
 - ii Write down the equation of the line l_2 , which passes through D and is parallel to AB. [5]
 - **b** i Find the exact distance AB.
 - ii Find the coordinates of two possible points C on the line l_2 such that CD = 2AB.
 - iii Denote the two possible points C by C_1 and C_2 . Determine whether angle C_1AC_2 is acute, right or obtuse.
 - **c** i Find $\overrightarrow{AB} \times \overrightarrow{AD}$.
 - ii Hence find the equation of the plane containing the points A, B and D. [5]

[8]

[4]

- **12** [Maximum mark: 16]
 - **a** Use compound angle identities to express $\cos 3\theta$ in terms of $\cos \theta$.
 - **b** Consider the equation $8x^3 6x + 1 = 0$.
 - i Given that $x = \cos \theta$, for $0 \le \theta \le \pi$, find the value of $\cos 3\theta$.
 - ii Hence find the possible values of x and show that they are all distinct. [7]
 - c Show that $8\cos\left(\frac{2\pi}{9}\right)\cos\left(\frac{4\pi}{9}\right) = -\sec\left(\frac{8\pi}{9}\right)$. [3]
 - **d** State, with a reason, the value of $\cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{4\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right)$. [2]
- **13** [Maximum mark: 21]

Let $f(x) = \frac{x}{1+x^2}$ for $x \in \mathbb{R}$.

a Determine algebraically whether f is an even function, an odd function or neither. [3]

The continuous random variable X has probability density function given by

$$g(x) = \begin{cases} \frac{kx}{1+x^2} & \text{for } 0 \le x \le \sqrt{3} \\ 0 & \text{otherwise} \end{cases}.$$

- **b** Show that $k = \frac{1}{\ln 2}$. [4]
- \mathbf{c} Find the median of X. [4]
- **d** Find the mode of X. [5]
- e Find the mean of X. [5]