Calculating the intervals:
$$\mathcal{R}_{2}-x_{1}=2-1=1$$

$$\mathcal{R}_{3}-x_{2}=3-2=1$$

$$\mathcal{R}_{4}-x_{3}=4-3=1$$

Mosing logrange's interpolation method:

— the have to find for
$$f(x)$$
 for $x = 2.5$.

So, $y(0) = (2.5-4)(2.5-2)(2.5-3) \times 1 + (1-4)(1-3)(1-2)$

$$\frac{(2.5-4)(2.5-3)(2.5-1)}{(2-4)(2-3)(2-1)} \times 8 +$$

$$(2.5-4)(2.5-2)(2.5-1)$$
 27 + $(3+)(3-2)(3-1)$

$$\frac{(2.5-3)(2.5-2)(2.5-1)}{(4-3)(4-2)(4-1)} \times (4$$

$$= (-0.0625 \times 1) + (0.5625 \times 8) + (0.5625 \times 8) + (-0.0625 \times 4)$$

D = 15.625.

Meng newton's forward interpolation method's

2	y	△y.	$\Delta^2 y$	Δ^3y
1	1	7		
2	8	1 9	12	6
3	27	27	18	
4	64	5 1		

$$h = 21-20 = 2.5-2 = 0.5$$

$$f(2.5) = f(0.2) + (0.5 \times 8) + (0.5)(0.5-1) \times 180 + (0.5)(0.5-1)$$

$$+10.5)(0.5-1)(0.5-2)$$
 $+18$ $= 8+4+(-2.375)+($

Ming Newton's backward interpolation

a	y	Δy	$\Delta^2 y$	Δ^3 y
L	1	7		
2	8	1 9	12	6
3	27	37	18	
4	64			

$$\gamma = \int (2) \frac{2.5-2}{2} = 0.5$$

$$y = f(2.5) = f(2) + (0.5 \times 8) + (0.5 \times 1.5 \times 72)$$

= 8+4+2.625 = 14.625.

By observation, we should use newton's forward interpolation method as the numbers of are in very close internals.