Al-Bazaar: A Cloud-Edge Computing Power Trading Framework for Ubiquitous Al Services by

Xiaoxu Ren ,Xiaofei Wang ,Chao Qiu,Zhu Han,Ke Xu ,Haipeng Yao and Song Guo

DOI: 10.1109/TCC.2022.3201544

Published in: IEEE Transactions on Cloud Computing (Volume: 11, Issue: 3, 01 July-Sept. 2023)

Presented To

Presented by

Name: Prof. Dr. Md. Abdur Razzaque

Designation: Chairman and Professor

Department: CSE

Name: Shamim Ahmed &

Rashed Hassan Siam

Roll: SH 2344 & FH 2343

MSc. CSE DU

- → Al-Bazaar
- Limitations of Related Works
- ☐ Key Contributions and Framework
- □ Problem Formulation
- Profit Maximization

- □ PB-MARL Algorithm
- Stackelberg Equilibrium
- Simulations and Results
- Limitations of this Work

Introduction

Growth of Al and IoE:

Rapid growth of Al applications demands high computational power, low latency, and high bandwidth.

- Edge and Cloud Computing:
 - Edge and cloud computing technologies are key to meeting the computational needs of AI services.
- Challenges in Current Frameworks:
 Issues include underutilization of resources, inefficient allocation, and unbalanced profit-sharing mechanisms.
- Need for a New Trading Framework:
 A fair, efficient, and profit-balanced computing power trading framework is crucial for AI applications.

Limitations of Related Works

- Underutilization of Resources: Computational resources, particularly in cloud-edge infrastructures, are often either underutilized or incapable of meeting the rising demands of intensive AI tasks.
- Lack of a Profit-Balanced Trading Mechanism: Current computing frameworks often prioritize the self-interest of computing power providers (CPPs), neglecting fair profit-sharing mechanisms.
- Inefficiency in Al Service Management: Traditional frameworks struggle to provide accurate, personalized, and high-quality Al services under resource-constrained environments.

How Al-Bazaar Addresses These Problems

- Efficient Resource Utilization: Al-Bazaar connects scattered computational resources using blockchain, optimizing their allocation across tasks.
- 2. **Profit-Balanced Framework**: **The Stackelberg game model** ensures fairness by balancing the interests of CPPs and AI consumers.
- 3. **Multi-Role Flexibility**: Al consumers can switch between roles (blockchain miner, Al service provider, or both), maximizing their benefits.
- 4. Sustainable Blockchain Mechanism: By employing Proof of Learning (PoL), computational power is used for meaningful tasks (like training neural networks), eliminating wastage seen in PoW.

Framework Overview

Al-Bazaar is a **blockchain-based computing-power trading framework** designed to address inefficiencies in traditional cloud-edge systems. It emphasizes **resource sharing**, **profit balance**, and **multi-role functionality** for Al consumers. The framework consists of three layers:

- 1. **Al Consumers Layer**: Represents **resource-constrained devices** (e.g., edge nodes) that demand computing power for tasks like Al training and inference.
- Computing-Power Provider (CPP) Layer: Integrates
 distributed computational resources and rents them to Al
 consumers.
- 3. **Blockchain Layer**: Ensures **secure**, **decentralized**, and **transparent** management of transactions and computational tasks.

Framework

Role-Playing Ratio

$$a_i = \frac{b_i F_i}{\sum_{j=1}^N b_j F_j}$$

- a_i: Fraction of consumer i's computing power allocated for mining.
- b_i: Role-playing ratio for mining.
- F_i: Computing power rented by i.

Analysis:

- If b_i increases, more of F_i is allocated to mining.
- a_i depends on F_i relative to the total rented resources $\sum_{j=1}^N b_j F_j$.

Mining Success Probability

$$r_i = a_i e^{-\epsilon T_p^i}$$

- r_i : Probability that consumer i successfully mines a block.
- $T_p^i = td_iB$: Propagation time for block i, dependent on block size (B) and evaluation metrics (d_i) .

Analysis:

• Larger a_i improves r_i , but higher T_p^i (e.g., large blocks or poor d_i) reduces it.

 $oldsymbol{\epsilon}$ adjusts for training time, incentivizing efficient blocks.

Consumer Profit from Mining

$$U_i^m = (R + \eta B)a_i e^{-\epsilon t d_i B}$$

- R: Block reward for successful mining.
- ηB: Performance reward based on block size.
- td_iB: Penalizes delays in block propagation.

Insights:

- Increasing R or η incentivizes mining.
- Poor block performance (d_i) decreases profit exponentially.

CPP Profit

$$U_{CPP} = (p-C)\sum_{i=1}^N F_i$$

- p: Price per unit computing power.
- C: Cost per unit.

ptimization:

• Profit increases with higher p and $\sum F_i$, but excessive p reduces demand (F_i) .

Consumer Profit Maximization

$$\max_{F_i} \left[F_i((1-b_i)C_b - u_i p) + m_i U_i^m \right]$$

- C_b : Business value per unit computing power.
- u_i: Weight of cost impact on consumer utility.
- m_i: Monetary value of mining rewards.

Trade-offs:

• Consumers balance C_b (business utility) against costs (p) and mining risks.

Stackelberg Equilibrium

Equilibrium ensures:

- CPP's pricing strategy maximizes its profit.
- Consumers' purchase strategies maximize their utilities.

Conditions for Equilibrium:

- Consumer utilities (Ui) must be concave.
- CPP profit (Ucpp) must have a unique maximum with respect to p.

Model Analysis(1/3)

1. Al-Bazaar Equilibrium Definition:

• The equilibrium consists of strategies Fi and P satisfying conditions that no player has an incentive to deviate from their chosen strategy, considering the opponent's decisions.

2. Game Setup:

- Al consumers form a noncooperative game based on self-interest, where they choose purchase strategies from a convex set, with the strategy space being non-empty and compact.
- The utility of each consumer is continuous in their strategy space.

3. Existence of Nash Equilibrium (NE):

- Lemma 1 confirms that the strategy space is convex, non-empty, and compact, and the utility function is continuous.
- **Theorem 1** demonstrates that the Nash equilibrium exists due to the continuity and concavity of the utility function.

Model Analysis(2/3)

4. Fixed Point and Uniqueness of NE:

- **Theorem 2** establishes that the Nash equilibrium is a fixed point of the consumers' profit function.
- **Theorem 3** shows the uniqueness of the Nash equilibrium when consumers share the same role-playing ratio bi and a specific condition is met.
- Theorem 4 specifies that, under these conditions, the unique equilibrium for consumers can be derived.

5. Profit Maximization:

- The conditions leading to the maximization of profits in the consumer game are analyzed. The strategy functions and the specific conditions for maximizing profit under the game model are presented.
- **Lemma 2** further asserts that under the condition Rci, the consumers' strategies must satisfy a fixed inequality, which is crucial for determining optimal strategies.

Model Analysis (3/3)

- **Initialization** of the Q-values and the policy for each state-action pair.
- 2. **Action Selection** using a probability distribution derived from the current policy.
- 3. **Observation** of the reward and the new state after taking the action.
- 4. **Q-value Update** using the Bellman equation, adjusting the Q-values based on the received reward and the expected future rewards.
- 5. **Policy Update** based on the frequency of action selections and the changes in the Q-values.
- 6. **Strategy Update** to adapt the policy to new experiences.

Algorithm 1. The PB-MARL Algorithm for the CPP

Input: α_{cpp} , γ_{cpp} , δ_{cpp}^{win} , δ_{cpp}^{lose} . Initialization: t=1, $Q_{cpp}(s_{cpp}^t,p^t)=0$, $\pi_{cpp}(s_{cpp}^t,p^t)=0$ $\frac{1}{|\mathcal{A}_{cpp}|}$, $\bar{\pi}_{cpp}(s_{cpp}^t, p^t) = \frac{1}{|\mathcal{A}_{cpp}|}$, $\delta_{cpp}^{win} < \delta_{cpp}^{lose}$, $C(s_{cpp}^t) = 0$. for $t = 1, 2, 3, \cdots$

- Observe the state s_{cm}^t .
- Select action p^t at the probability policy $\pi_{cpp}(s_{cpp}^t, p^t).$
- Observe the next reward R_{cpp} and the state s_{cpp}^{t+1} . 3:
- Update $Q_{cpp}(s_{cpp}^t, p^t)$: 4: $Q_{cpp}(s_{cpp}^t, p^t) \leftarrow (1 - \alpha_{cpp})Q_{cpp}(s_{cpp}^t, p^t) + \alpha_{cpp}$ $(R_{cpp} + \gamma_{cpp} \max_{p \in \mathcal{A}_{cpp}} Q_{cpp}(s_{cpp}^{t+1}, p)).$
- Update average policy $\bar{\pi}_{cpp}(s_{cpp}^t, p)$: 5:

$$C(s_{cpp}^t) = C(s_{cpp}^t) + 1$$

$$\bar{\pi}_{cpp}(s_{cpp}^t, p) \leftarrow \bar{\pi}_{cpp}(s_{cpp}^t, p) + \frac{1}{C(s_{cpp}^t)}(\pi_{cpp}(s_{cpp}^t, p) - \bar{\pi}_{cpp}(s_{cpp}^t, p)), \forall p \in A_{cpp}.$$

6: Update current strategy $\pi_{cpp}(s_{cpp}^t, p)$:

 $\pi_{cpp}(s_{cpp}^t, p) \leftarrow \pi_{cpp}(s_{cpp}^t, p) + \Gamma_{s_{cpp}^t, p}, \forall p \in A_{cpp}.$ end for

until

Convergence of Algorithms

Observation: The paper compares the proposed **Profit-Balanced Multi-Agent Reinforcement Learning (PB-MARL)** algorithm with other baseline algorithms:

- PGA-APP: Only uses local agent rewards for decision-making.
- MiniMax Q-Learning: Employs a "minimax" operator to evaluate strategies.
- PB-MARL: Incorporates the WoLF (Win or Learn Fast) principle for better convergence.

Key Findings:

- PB-MARL converges faster than both PGA-APP and MiniMax Q-Learning.
- PGA-APP fails to reach equilibrium, while MiniMax Q-Learning converges slower than PB-MARL.

Results on Different Baselines

(a) Profits comparison with different optimization problems.

(b) Profits comparison with different algorithms.

Profit-Balance in Al-Bazaar

The **profit-balance mechanism** ensures that both CPPs and AI consumers benefit fairly:

- Blue Bars: Profits under the PB-MARL algorithm (Stackelberg equilibrium).
- Red/Green Bars: Profits under unilateral optimization (GA-based solutions).

Result:

- PB-MARL achieves a balanced profit, ensuring both CPP and consumers gain reasonable benefits.
- Unilateral optimization often favors one party, making it less sustainable.

Results on Various Blockchain Factors

 $\beta=0.2$

 $\beta = 0.5$

 $\beta = 0.8$

Role-Playing Ratio (bi) and Consumer Profits

Impact of bi on Profits:

- When bi (mining allocation) is low, consumers gain more from AI services.
- Increasing bi boosts mining rewards but reduces Al service profits.

Critical Insight:

- For small block rewards, high bi leads to diminishing returns due to mining risks.
- For large block rewards, higher bi increases profits, but only up to a point.

Example:

- At bi=0.4, the balance between mining and AI service profits is optimal.
- At bi>0.6, mining risks outweigh benefits.

PB-MARL Algorithm

a. Block Reward:

- Higher block rewards incentivize more consumers to allocate computing power to mining.
- Increases overall profit for CPPs, as more consumers purchase computing power.

b. Performance Reward Factor (λ):

- Higher λ leads to better quality mining and encourages more purchases.
- CPP profits increase as AI consumers compete for higher rewards.

c. Block Size (B):

- Initially, increasing block size improves consumer profits (more transactions recorded).
- Beyond a certain size, mining becomes harder, reducing profits.

Advantages of the AI-Bazaar Framework

Resource Utilization:

Efficiently allocates unused computational power for both blockchain and Al tasks.

Decentralized Control:

Eliminates reliance on centralized intermediaries by using blockchain.

Dynamic Role Allocation:

 Consumers can switch between roles (Al training, inference, mining) dynamically, maximizing their benefits.

Fair Profit Sharing:

Stackelberg game ensures balanced profits between CPPs and AI consumers.

Limitations

- No real framework is implemented.
- Assumes uniform behavior across AI consumers.
- The complexity of the PB-MARL algorithm may increase significantly with more participants, leading to scalability concerns.
- The use of PoL consensus mechanism still introduces additional computational and network overheads.
- Excludes network bandwidth, potentially limiting its practical applicability.

References

- [1] Z. Zhang et al., "6G wireless networks: Vision, requirements, architecture, and key technologies," IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, Sep. 2019.
- [2] E. Li, L. Zeng, Z. Zhou, and X. Chen, "Edge AI: On-demand accelerating deep neural network inference via edge computing," IEEE Trans. Wirel. Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020
- [3] J. Wang, C. Jiang, H. Zhang, Y. Ren, K. Chen, and L. Hanzo, "Thirty years of machine learning: The road to pareto-optimal next-generation wireless networks," IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1472–1514, Jan. 2020.
- [4] Y. Shih, W. Chung, A. Pang, T. Chiu, and H. Wei, "Enabling low-latency applications in fog-radio access networks," IEEE Netw., vol. 31, no. 1, pp. 52–58, Jan./Feb. 2017.
- [5] F. Wang et al., "Dynamic distributed multi-path aided load balancing for optical data center networks," IEEE Trans. Netw. Serv. Manage., vol. 19, no. 2, pp. 991–1005, Jun. 2022.

Thank You