Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, Michael Felsberg

Discriminative Correlation Filters (DCF)

Applications

- Object recognition
- Object detection
- Object tracking
 - Among state-of-the-art since 2014
 - KCF, DSST, HCF, SRDCF, Staple ...

Discriminative Correlation Filters (DCF)

Limitations:

Single-resolution
feature map

DCF Limitations:

- 1. Single-resolution feature map
- Why a problem?
 - Combine convolutional layers of a CNN
 - Shallow layers: low invariance high resolution
 - Deep layers: high invariance low resolution
- How to solve?
 - Explicit resampling?
 - Artefacts, information loss, redundant data
 - Independent DCFs with late fusion?
 - Sub-optimal, correlations between layers

DCF Limitations:

- 2. Coarse output scores
- Why a problem?
 - Accurate localization
 - Sub-grid (e.g. HOG grid) or sub-pixel accuracy
 - More accurate annotations=> less drift
- How to solve?
 - Interpolation?
 - Which interpolation strategy?
 - Interweaving?
 - Costly

DCF Limitations:

- 3. Coarse labels
- Why a problem?
 - Accurate learning
 - Sub-grid or sub-pixel supervision
- How to solve?
 - Interweaving?
 - Costly
 - Explicit interpolation of features?
 - Artefacts

Our Approach: Overview Continuous filters Continuous Multioutput resolution features

Multiresolution Features

Interpolation Operator

$$J_d:\mathbb{R}^{N_d} o L^2(T)$$
 $J_d\{\{\{\{\{\}\}\}\}\}$

Convolution Operator

$$||g||^2 = \frac{1}{T} \int_0^T |g(t)|^2 dt$$

Training Loss – Fourier Domain

$$E(f) = \sum_{j=1}^{m} \alpha_j \left\| \sum_{d=1}^{D} \hat{f}^d X_j^d \hat{b}_d - \hat{y}_j \right\|_{\ell^2}^2 + \sum_{d=1}^{D} \left\| \hat{w} * \hat{f}^d \right\|_{\ell^2}^2$$

$$\|\hat{g}\|_{\ell^2}^2 = \sum_{\infty} |\hat{g}[k]|^2$$

$$\hat{g}[k] = \langle g, e_k \rangle = \frac{1}{T} \int_0^T g(t) e^{-i\frac{2\pi}{T}kt} dt$$

$$X^{d}[k] = \sum_{n=0}^{N_d - 1} x^{d}[n]e^{-i\frac{2\pi}{N_d}nk}$$

Training Loss – Fourier Domain

$$E(f) = \sum_{j=1}^{m} \alpha_j \left\| \sum_{d=1}^{D} \hat{f}^d X_j^d \hat{b}_d - \hat{y}_j \right\|_{\ell^2}^2 + \sum_{d=1}^{D} \left\| \hat{w} * \hat{f}^d \right\|_{\ell^2}^2$$

$$(A^{\mathrm{H}}\Gamma A + W^{\mathrm{H}}W) \,\hat{\mathbf{f}} = A^{\mathrm{H}}\Gamma \hat{\mathbf{y}}$$

Localization

Localization

How to set y_j and b_d ?

• Use periodic summation of functions $g: \mathbb{R} \to \mathbb{R}$:

$$g_T(t) = \sum_{n = -\infty}^{\infty} g(t - nT)$$

- Gaussian function for y_j
- Cubic spline kernel for b_d
- Fourier coefficients \hat{y}_j , \hat{b}_d with Poisson's summation formula:

$$\hat{g}_T[k] = \frac{1}{T}\hat{g}(\frac{k}{T})$$

Object Tracking Framework: Features

- VGG network
 - Pre-trained on ImageNet
 - No fine-tuning on application specific data

Object Tracking Framework: Optimization

Solving
$$(A^{\mathrm{H}}\Gamma A + W^{\mathrm{H}}W) \hat{\mathbf{f}} = A^{\mathrm{H}}\Gamma \hat{\mathbf{y}}$$

SRDCF: Gauss-Seidel

- © Sparse matrix handling
- $\otimes \mathcal{O}(D^2)$
- ⊕ "Infinite" memory
- Warm starting: trivial

C-COT: Conjugate Gradient

- © Only need to evaluate $(A^{\mathrm{H}}\Gamma A + W^{\mathrm{H}}W)$ **f**
- © **No** sparse matrix handling
- $\odot \mathcal{O}(D)$
- © Finite memory
- ⊕ Warm starting: non-trivial
- © Tuning of pre-conditioners

Object Tracking Framework: Pipeline

Simple:

```
... – Track – Train – Track – Train – ...
```

- No thresholds
- No hidden "tricks"

Experiments: Object Tracking

- 3 datasets: OTB-100, TempleColor, VOT2015
- Layer fusion on OTB:

	Layer 0	Layer 1	Layer 5	Layers 0, 1	Layers 0, 5	Layers 1, 5	Layers 0, 1, 5
Mean OP					70.7	81.8	82.4
AUC	$\mid 49.9$	65.8	51.1	05.7	59.0	<i>67.8</i>	$ \qquad 68.2$

- Compared to explicit resampling in DCF
 - − Performance gain: +7.4% AUC
 - − Efficiency gain: −80% data size

Experiments: OTB (100 videos)

Experiments: Temple-Color (128 videos)

Experiments: VOT2016

Tracker		EAO	A	\mathbf{R}	A_{rank}	R_{rank}	AO	EFO	Impl.
1.	O C-COT	0.331	0.539	0.238	12.000	1.000	0.469	0.507	$\overline{\rm D} {\rm M}$
2.	× TCNN	0.325	0.554	0.268	4.000	2.000	0.485	1.049	\overline{S} M
3.	* SSAT	0.321	0.577	0.291	1.000	3.000	0.515	0.475	$\overline{S M}$
$\overline{4.}$	▼ MLDF	0.311	0.490	0.233	36.000	1.000	0.428	1.483	$\overline{\rm D} {\rm M}$
5.	♦ Staple	0.295	0.544	0.378	5.000	10.000	0.388	11.144	DC

[Matej et al., ECCV VOT workshop 2016]

Object Tracking: Speed

- With CNN features: slow ~1 FPS (no GPU)
- With HOG features: ~ real time at SRDCF performance

Feature Point Tracking Framework

- Grayscale pixel features, D=1
- Uniform regularization, $w(t) = \beta$

$$\hat{f}[k] = \frac{\sum_{j=1}^{m} \alpha_j \overline{X_j[k]} \hat{b}[k]}{\sum_{j=1}^{m} \alpha_j |X_j[k] \hat{b}[k]|^2 + \beta^2}$$

Experiments: Feature Point Tracking

The Sintel dataset

Feature Point Tracking: KITTI

C-COT

KLT

Future Work

- Features
 - Fine tuning
 - Unsupervised learning
- Optimization
 - Warm start in CG (theory and heuristics)
 - Preconditioners
 - Implementation aspects
 - Alternative strategies or update rules
- Further explore of the continuous formulation

Conclusions

- Continuous domain learning formulation
 - Multi-resolution deep feature maps
 - Sub-pixel accurate localization
 - Sub-pixel supervision
- Superior results for two applications
 - Object tracking
 - Feature point tracking

Oral and poster: O-4B-03

Friday afternoon (last session)

Martin Danelljan

www.liu.se

