UNIVERSIDADE FEDERAL DO ABC Projeto de Pesquisa

Iniciação Científica - Edital Nº 04/2022

Descelularização de brócolis: obtenção de biomaterial bioativo

São Bernardo do Campo 2022

RESUMO

A descelularização consiste em um processo químico para a remoção de células e é solução promissora à engenharia de tecidos e aos transplantes de órgãos. O objetivo deste experimento é promover a descelularização de hortaliças como a de brócolis (Brassica oleracea L.), a partir da construção de um sistema de irrigação por gotejamento. Utilizando-se soluções dos detergentes Dodecil Sulfato de Sódio (SDS) e Triton X-100, busca-se atingir a descelularização e com o biomaterial obtido realizar um cultivo celular para analisar a possível aplicação do biomaterial em regeneração tecidual de pele.

Palavras-chave: Curativos; Engenharia de Tecidos; Biomaterial;

Descelularização; Brócolis.

SUMÁRIO

1	•	INT	RODUÇÃO	1	
2		OB.	JETIVOS	2	
	2.1		Objetivo Geral	2	
	2.2		Objetivos Específicos	2	
3		ΜÉ	TODOS	3	
	3.1 Revisão de Bibliografia				
	3.2 Descelularização				
	3.3 Morfologia do Biomaterial				
	3.4 Cultura de Células				
4		CR	ONOGRAMA	5	
5		RFI	FERÊNCIAS BIBLIOGRÁFICAS	5	

1. INTRODUÇÃO

Uma das dificuldades para o pleno avanço da engenharia de tecidos é fornecer uma rede vascular viável na qual o oxigênio, vitaminas e minerais sejam conduzidos e nutram as células. Ademais, ao se tratar de transplante de órgãos, os pacientes transplantados sofrem para encontrar um doador compatível. A rejeição, relacionada ao grau de compatibilidade, pode ocorrer em qualquer transplante (SILVA et al., 2020).

A técnica de descelularização em hortaliças é uma alternativa promissora, pois permite a obtenção de uma rede vascular orgânica, na qual as próprias nervuras das folhas servem como uma distribuição capilar. A estrutura descelularizada possibilita um meio para cultura de células. É a partir do biomaterial de celulose obtido e em virtude das ramificações disponíveis que se torna possível a incubação e até o desenvolvimento de células-tronco embrionárias (LATTE et al., 2011; SANTOS, 2019).

Para realizar a descelularização é necessária a ação de detergentes, os quais circulam através da rede vascular e possibilitam a remoção do hialoplasma e das organelas das células da folha. Neste projeto serão utilizados os detergentes Dodecil Sulfato de Sódio (SDS) e o Triton X-100 para realizar o processo de descelularização (GERSHLAK et al., 2017).

As folhas submetidas ao experimento serão as de brócolis (*Brassica oleracea L.*), por critério de densidade de ramificações e pela presença de componentes com atividades antiinflamatórias e antioxidantes. O Sulforafano é um desses componentes, considerado um potente inibidor da carcinogênese, assim sendo um potencial agente quimiopreventivo. Devido à atividade antioxidante do Sulforafano, evidências sugerem que esse fitoativo pode interromper danos ao DNA, mutações e inflamação (VANDUCHOVA et al., 2019; YAGISHITA et al., 2019).

Após o processo de descelularização da folha de brócolis, o biomaterial de celulose obtido será testado e se tornará meio para cultura de células Vero, com intuito de analisar sua possível aplicação em regeneração tecidual de pele.

2. OBJETIVOS

2.1. Objetivo Geral

O objetivo geral deste projeto é realizar descelularização de folhas de brócolis (Brassica oleracea L.) e utilizar o material obtido como biomaterial para cultura celular, visando futuramente a sua aplicação em regeneração tecidual de pele.

2.2. Objetivos Específicos

- Revisão de bibliografia;
- Obtenção e caracterização de biomaterial obtido com o processo de descelularização das folhas de brócolis;
- Avaliação da proliferação celular na presença do biomaterial.

3. MÉTODOS

3.1 Revisão de Bibliografia

Será realisada revisão de bibliografia sobre as técnicas de descelularização, compostos fitoquímicos e as propriedades biológicas do brócolis. Serão utilizadas as bases de dados: Scielo, PubMed, ScienceDirect e Google Acadêmico, com combinação de palavras-chave relevantes para o projeto, apresentadas nos resultados desseprojeto.

3.2 Descelularização

Será utilizado o brócolis para o desenvolvimento desse projeto, pela estrutura foliar e compostos fitoquímicos, com potencial antiinflamatório, conhecidos para a espécie. O processo de descelularização será realizado a partir de modificação de técnica apresentada na literatura (GERSHLAK et al., 2017), com gotejamento de solução detergente a partir de um sistema de irrigação (desenvolvido anteriormente) com equipos de soro e agulhas, para injetar nas folhas as soluções detergentes. Serão utilizados dodecil sulfato de sódio (SDS) e Triton X-100, pelo período de 10 dias.

3.3 Morfologia do Biomaterial

Será realizada a caracterização morfológica do biomaterial por microscopia de luz direta e por microscopia eletrônica de varredura.

Para microscopia de luz será realizada montagem total do biomaterial e observação em campo claro.

Para microscopia eletrônica de varredura o biomaterial será fixado com glutaraldeído 2,5%, em tampão fosfato (pH 7,4), durante 1 hora, lavado em tampão fosfato, seguida de lavagem em água, secagem em ponto, e metalização com ouro. A observação será realizada ao Microscópio de Eletrônico de Varredura.

3.4 Cultura de Células

O biomaterial obtido com a descelularização das folhas de brócolis será utilizado como suporte para o cultivo de células Vero. As culturas serão mantidas em meio HAM F10, contendo 10% de soro fetal bovino, e 100µg/ml de penicilina/estreptomicina, a 37°C com 5% CO₂. Serão realizadas trocas de meio de cultura e repiques celulares para a manutenção das células.

Com a tripsinização das culturas será obtida suspensão celular a ser inoculada diretamente nos biomateriais, a uma concentração de 20.000 células / mL. Para tanto será realizada contagem e viabilidade celular com o corante vital azul de tripan.

As células serão cultivadas por 14 dias nos biomateriais. Após esse período será realizada observação por microscopia de luz, com a fixação com glutaraldeído 2,5%, lavagem em água e coloração com cresil violeta.

Será realizada análise da interação das células com os biomateriais por microscopia eletrônica de varredura, sendo realizada a fixação com glutaraldeído 2,5%, em tampão fosfato (pH 7,4), durante 1 hora, lavagem em tampão, lavagem em água, secagem em ponto, e metalização com ouro. A observação será realizada ao Microscópio de Eletrônico de Varredura.

4. CRONOGRAMA

As atividades que compreendem esse projeto serão desenvolvidas ao longo dos 12 meses de vigência do mesmo, conforme descrito na tabela a seguir.

Descrição das atividades	1º Quadrimestre	2º Quadrimestre	3º Quadrimestre
Revisão de literatura	x	x	x
Descelularização	Х	Х	Х
Caracterização Morfológica		Х	Х
Interação Celular		Х	Х
Relatório Final			Х

5. REFERÊNCIAS BIBLIOGRÁFICAS

GERSHLAK, J. R. et al. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, v.125, p: 13-22, 2017.

LATTÉ, K. P et al. Health benefits and possible risks of broccoli - An overview . Food Chem Toxicol . v . 49 , n . 12 , p . 3287-3309 , 2011.

SANTOS, P. W. S. Influência do sulforafano, um inibidor de histonas desacetilases, sobre a instabilidade genômica e mecanismos epigenéticos em linhagens celulares humanas. 2019. 35 f. Tese (MESTRADO) - Curso de Toxicologia, USP, Ribeirão Preto, 2019.

SILVA, P. F. et al. Doação de órgãos e tecidos pós-morte encefálica: fatores dificultadores. Revista Científica Multidisciplinar Núcleo do Conhecimento, v. 11, p: 49-66, 2020.

VANDUCHOVA, A. et al.. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J Med Food, v.22, n.2, p.121-126, 2019.

YAGISHITA Y, et al. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules, v. 24, n.19, p.:3593, 2019.