Einführung in die Optimierung

Ulrike Stöcker
Ulrike.stoecker@verbund.com

Wien 15.11.2024

VERBUND auf einen Blick

130 Wasserkraftwerke von VERBUND mit über 8.400 MW Leistung.

Rund **900** Kilometer ist das Erdgas-Hochdruckleitungsnetz der GCA lang.

Bis zu 1/4 der Gesamterzeugung soll bis 2030 aus Sonnen- und Windkraft kommen.

Rund **3.400**

Kilometer Trassenlänge hat das überregionale Stromnetz der APG.

Rund **490.000**

Privatkund:innen setzten 2023 auf VERBUND.

Nachhaltige Energiezukunft 98 % Erzeugung aus erneuerbaren Energien

Wasserkraft¹

>92 % der Stromerzeugung 130 Wasserkraftwerke 30,509 GWh Strom

Windkraft

>4 % der Stromerzeugung 321 Windkraftanlagen 1.397 GWh Strom

Sonnenkraft²

>1 % der Stromerzeugung 44 Photovoltaikparks 362 GWh Strom

Wärmekraft

>2 % der Stromerzeugung2 Wärmekraftwerke677 GWh Strom

Batteriespeicher

< 1 % der Stromerzeugung 15 Anlagen 32 GWh Strom

Kraftwerkspark der VHP

Operation Research

Operation Research ist das wissenschaftliche Gebiet, welches sich mit modellbasierender Lösungshilfe für komplexe Managementprobleme auseinandersetzt. Es hat den Zweck, Einsichten in die Lösungen dieser Probleme zu erhalten. Als solches ist die Modellbildung, Analyse von Modellen und Interpretation von Modelllösungen Gegenstand dieser Disziplin.

Ein Modell ist eine Vereinfachte Darstellung der Wirklichkeit. Es gibt immer wieder einen Trade-off zwischen Plausibilität und Durchführbarkeit.

In Operations Resarch kommen mathematische Modelle zum Einsatz. Entscheidungen die getroffenen werden können strategischer (mittel- bis langfristig, ungenau) und taktischer (kurzfristig, genau) Natur sein.

Typsiche Problemstellungen

- Lagerhaltungsprobleme
- Warteschlangen-Problem
- Aufteilungsprobleme
- Bsp: "Problem des Handlungsreisenden":

Ein Handlungsreisender muss hierbei die beste Route für einen Besuch in mehreren Städten planen, wobei keine Stadt mehrmals besucht werden soll. Um ein optimales Kosten-Nutzen-Verhältnis zu schaffen, soll die Strecke für diese Reise möglichst kurz sein und der Handlungsreisende am Ende wieder in seiner Ausgangsstadt eintreffen.

Verfahren:

- Simulationsverfahren
- Entscheidungsbaumverfahren
- Mathematische Optimierung
- Verfahren der Warteschlangentheorie
- Heuristische Verfahren...

OR Prozess

Auswahl des Modells Definition des realen Problems Vereinfachung Modell Realität Trade-Off: Durchführbarkeit u. Gültigkeit Überlegungen zu den Inputparametern Datenqualität Auswirkung auf das Ergebnis Analyse Rückkopplung Prüfung der Ergebnisse Sensitivitätsanalyse – Untersuchung auf Abhängigkeiten zu Parametern Wie Valide ist die Lösung? Berücksichtigung der Vereinfachungen Erziele ich ein optimales Ergebnis? Achtung vor Fehlern! Implementierung Lösung in der Modell Lösung Realität Wie kann das Ergebnis angewandt werden?

Formulierung des Mathematischen Modells

Modell-Überlegungen

Exakte vs. Approximative Lösung:

Exakte Lösung = beweisbare zulässige Lösung

Approximative Lösung = Zulässige Lösung einer präskriptiven Analyse (keine Garantie auf exaktes Optimum)

Deterministik – Stochastik:

Deterministisches math. Modell: alle Parameter Werte gelten als bekannt Stochastisches math. Modell: Parameter Werte sind mit Wahrscheinlichkeitsverteilungen definiert

Optimierung Beispiel Müsliherstellung

Rezept:

	Standardmüsli	Früchtemüsli
Haferflocken	0,8 kg	0,8 kg
Trockenfrüchte	0,1 kg	0,2 kg
Nüsse	0,1 kg	

Erlös:

Standardmüsli: 6€/ kg Früchtemüsli; 8€/ kg

Zutaten:

80 kg Haferflocken 16 kg Trockenfrüchte 7 kg Nüsse

Mathematische Modellierung:

Zielfunktion:

$$\max 6 x_1 + 8x_2$$

subject to (s.t.):

$$0.8 x_1 + 0.8 x_2 \le 80$$

$$0.1 x_1 + 0.2 x_2 \le 16$$

$$0.1 x_1 \le 7$$

$$x_1 \ge 0, x_2 \ge 0$$

 x_1 ... zu produzierende Standardmüsli (in kg) x_1 ... zu produzierende Menge Früchtemüsli (in kg)

Lineare Optimierung Allgemein

$$\max_{x} p'x$$

$$Ax \le b$$
$$x \ge 0$$

p ... Erlösvektor

 a_{ij} ... Menge der Ressource j, die für die

Erzeugung von Gut x_i benötigt wird

b_i ... verfügbare Menge von Ressource j

Grafische Lösung: zulässiger Bereich

Nebenbedingungen:

20

0

40

60

80

100

120

х1

Grafische Lösung: zulässiger Bereich

x2

Grafische Lösung: Optimale Lösungsfindung

Besondere Lösungen

Eindeutige Lösung

Kein endliches Maximum

Lösungsmenge

Konvexe Optimierung

Eindeutige Lösung

Nicht Konvexe Optimerung mit lokalem Maximum

Programmierung bei zerlegbaren Funktionen

Voraussetzung:

konvexes Optimierungsproblem:

$$\max f(x)$$
 konkav
s.t. $g_i(x)$ konvex

Wobei f und g_i zerlegbar sein müssen:

$$f(x) = \sum_{j=1}^{n} f_j(x_j), \quad g_i(x) = \sum_{j=1}^{n} g_{ij}(x_j)$$

Zerlegbarkeit von f(x) impliziert Additivität. Das heißt, es gibt keine Wechselwirkung (Kreuzproduktterme) zwischen den verschiedenen Aktivitäten.

Die Konkavität der fj(xj) bedeutet, dass der Grenzgewinn (die Steigung der Gewinnkurve) niemals steigt, wenn xj zunimmt.

Umformung in ein LP

Ang.: nur f(x) wäre nicht linear

Idee: Umwandlung in stückweise lineare Funktion

$$x_j = \sum_k x_{jk}$$

$$f_j(x_j) \cong \sum_k s_{jk} x_{jk}$$

$$x_{jk} = 0$$
, wenn $x_{ji} < u_{ji} \ \forall k > i$

Grafik – Zerlegbare Zielfunktion

- $\rightarrow s_{j1} > s_{j2} > \dots > s_{jk}$
- \rightarrow Algorithmus füllt automatisch die x_{ji} richtig auf

Schlüsseleigenschaft der Parziell Zerlegbaren Funktionen

Erfüllen f(x) und $g_i(x)$ die Voraussetzungen der PZF, und werden die jeweiligen stückweise linearen Funktionen zu linearen Funktionen umgeformt, dann ergibt sich unter Vernachlässigung der Spezialrestriktion ein Modell der LP, dessen optimale Lösung automatisch die Spezialrestriktion erfüllt.

Erweiterung: Nicht konvexe Optimierungsprobleme

Liegt kein konvexes Optimierungsproblem vor, so kann man theoretisch auch die Funktionen linear approximieren, allerdings muss die Spezial - Nebenbedingung explizit erfüllt sein.

$$x_{jk} = 0$$
, wenn $x_{ji} < u_{ji} \ \forall k > i$

In Optimierungsmodellen wird diese Nebenbedingung erfüllt, wenn wir hierfür die Variablen des Typs SOS2 (Special Orderd Sets of type 2) einführen.

SOS2- Variablen

SOS Typ 1 - Variablen

Ein Special Ordered Set vom Typ 1 beinhaltet 01-Variablen oder kontinuierliche Variablen mit einem Wertebereich zwischen Null und Eins von denen maximal eine Variable ungleich Null sein darf:

$$\sum_{j=1}^{n} x_j \le 1$$

SOS Typ 2 - Variablen

Ein Special Ordered Set vom Typ 2 beinhaltet kontinuierliche Variablen mit einem Wertebereich zwischen Null und Eins von denen maximal zwei Variablen ungleich Null sein dürfen. Sind zwei Variablen ungleich Null, dann müssen diese benachbart sein:

$$\sum_{j=1}^{n} x_j \le 1$$

Modellierung von nichtlinearen separablen Funktionen

$$f(x_1,...,x_n) = \sum_{j=1}^n f_j(x_j)$$
 ... separable Funktion

Modellierung von $f_j(x_j)$ nicht linear:

Funktion f_i wird in 4 lineare Funktionen geteilt:

im Segment k bis k+1 gilt: $x \in [a_k, a_{k+1}]$ mit $y \in [0,1]$:

$$x = a_{k+1}y + a_k(1-y) \rightarrow x - a_k = (a_{k+1} - a_k)y$$
 (1.1)

$$f^*(x) = b_k + \frac{b_{k+1} - b_k}{a_{k+1} - a_k} (x - a_k)$$

$$\rightarrow f^*(x) = b_k + (b_{k+1} - b_k)y = b_{k+1}y - b_k(1-y)$$

Alternativ:

$$x = a_{k+1}z_{k+1} + a_k z_k$$

$$f^*(x) = b_{k+1}z_{k+1} - b_k z_k$$

$$z_{k+1} + z_k = 1$$

$$z_{k}, z_{k+1} \ge 0$$

Allgemein:

$$f^*(x) = \sum_{k=0}^{n} b_k z_k$$
$$x = \sum_{k=0}^{n} a_k z_k$$
$$\sum_{k=0}^{n} z_k = 1$$

wobei nur zwei benachbarte z_k ungleich 0 sein dürfen

Deterministische Dynamische Programmierung

Dynamische Programmierung (DP) = math. Methode zur Lösung sequentieller (mehrstufiger) Entscheidungsprozesse.

Steuerung der Strategie zu diskreten Zeitpunkten oder laufend (kontinuierlich)

Formulierung oft schwierig – existiert keine Standardform

Bsp: Lagerhaltungsprobleme, Produktionsplanung, Planung chemischer Prozesse...

Gründung: Bellman in den 50er Jahren

Dynamische Programmierung Bsp: Problem des kürzesten Weges

Ein Paket muss von A nach L geliefert werden, Gesucht: kürzester Weg

Lösungsansätze:

- 1. Enumeration
- 2. Dynamische Programmierung

Lösungsansatz: Enumeration:

Für jeden Weg wird die Gesamtlänge des Weges bestimmt und dann wir aus diesen Werten der kürzeste ausgewählt.

Weg	Länge
A-B-D-G-J-L	2+4+10+20+12= 48
A-B-E-I- K-L	2+12+10+2+8=34
A-B-D-H-K-L	2+4+10+6+8=30
A-C-F-I-K-L	8+10+14+2+8=42
A-C-D-G-J-L	8+10+10+20+12=60
A-C-F-H-J-L	8+10+10+4+12=44

Nachteil: Kann sehr viele Berechnungen benötigen

Lösungsverfahren: Dynamische Optimierung

Nütze Stufenstruktur- Beginn am Ende der Lösung

Graph hat 5 Stufen (n=0,..,5) Entscheidungen auf 4 Stufen (n=0,..,4)

Zerlegung des großen Problems in viele kleine:

Angenommen wir sind auf Stufe 4: Triviale
 Entscheidung je nachdem in welchem Knoten man ist

$$v4(J) = 12$$

 $v4(K) = 8$

• Angenommen wir sind auf Stufe 3:

$$v3(G) = 20 + v4(J) = 32$$

 $v3(H) = min \{4 + v4(J), 6 + v4(K)\} = 14 ... Ort K$
 $v3(I) = 2 + v4(K) = 1$

Stufe 2:

$$v2(D) = min \{10 + v3(G), 10 + v3(H)\} = 24$$
 .. Ort H
 $v2(E) = 10 + v3(I) = 20$.. Knoten: I
 $v2(F) = min \{10 + v3(H), 14 + v3(I)\} = 24$... Ort I

• Stufe 1:

$$v1(B) = min \{4 + v2(D), 12 + v2(E)\} = 28 \dots Ort D$$

 $v1(C) = min \{10 + v2(D), 10 + v2(F)\} = 34 \dots Ort D, F$

Stufe 0:

$$v0(A) = min \{2 + v1(B), 8 + v1(C)\} = 30 ... Ort B$$

Lösung. A-B-D-H-K-L

Prinzip der Dynamsichen Optimierung

Zerlegung eines mehrstufigen Problems in viele einstufige Teilprobleme

Das Verfahren der Dynamischen Optimierung hat 2 Phasen:

- Rückwärtsrekursion: Ermittlung auf jeder Stufe in jedem Knoten (bzw.Zustand) den kürzesten Weg und Notation der optimale Bewertung für den Restweg
- 2. Vorwärtsrechnung: Beginnend beim Ausgangspunkt wird optimlale Route zusammen gesetzt.

Optimalitätsprinzip von Bellman:

Sei $(x_0^*, x_1^*, ..., x_j^*, ..., x_{n-1}^*)$ eine optimale Lösung, die das System vom Anfangszustand $z_0 = a$ in den Endzustand $z_n = b$ überführt, wobei das System zum Zeitpunkt j den Zustand z_j^* annimmt. Dann gilt: $(x_j^*, ..., x_{n-1}^*)$ ist eine optimale (Teil-)Lösung, die das System vom vorgegebenen Zustand z_j^* in den Endzustand b überführt.

$$F = \sum_{k=0}^{n-1} r_k(z_k, x_k) + r_n(z_n)$$

oder mit anderen Worten:

eine optimale Lösung hat die Eigenschaft, dass unabhängig vom Anfangszustand und den anfänglichen Entscheidungen We verbleibenden Entscheidungen ausgehend vom aktuellen Zustand optimal sind.

GAMS

General Algebraic Modeling System

Download:

https://www.gams.com/download/

GAMS Modellierung

Verallgemeinerung unseres Modells:

$$\max 6 x_1 + 8x_2$$

subject to (s.t.):

$$0.8 x_1 + 0.8 x_2 \le 80$$

$$0.1 x_1 + 0.2 x_2 \le 16$$

$$0.1 x_1 \le 7$$

$$x_1 \ge 0, x_2 \ge 0$$

Allgemein:

$$Z = \max \sum_{j} c_{j} x_{j}$$

$$s.t. \qquad \sum_{j} a_{ij} x_{j} \le b_{i} \qquad \forall i \in I$$

$$x_{j} \ge 0 \quad \forall j \in J$$

Mengen

I, J

Parameter

 c_j, a_{ij}, b_i

Variablen

Z ... Zielfunktionsvariable

 x_i ... Variablen

Gleichungen

GAMS Syntax

Math. Modell	GAMS Syntax	
Mengen	sets	(Daten)
Parameter	parameters tables scalars	(Daten)
Variablen	variables	(Modellstruktur)
Zielfunktion	equations	(Modellstruktur)
Nebenbedingungen	equations	(Modellstruktur)

GAMS Code

Definition der Parameter:

```
Parameter
DB(Muesli)/

1 6
2 8
//

Zusammensetzung(Muesli, Zutaten) Matrix der Zutaten je Muesli/

1.Hafer=0.8
1.Frucht=0.1
1.Nuss=0.1
2.Hafer=0.8
2.Frucht=0.2
2.Nuss=0
//

Lager(Zutaten) Lagerbestand aller Zutaten/
Hafer 80
Frucht 16
Nuss 7
//
;
```

Tipp:

Verwendung von sprechenden Namen für Sets, Parameter Variablen und Gleichungen

Achtung:

GAMS ist nicht Case-sensitiv

GAMS Code

Definition der Variablen

```
Variable
v_Erloes
;

Positive Variable

v_Produktion(Muesli) optimale Produktionsmenge je Muesli
;
```

Tipp:

Bei Benennung von Variablen mit v_XY ist in den Gleichungen gleich gut ersichtlich ob man im Linearen Optimierungsproblem bleibt

Definition der Zielfunkton

Equation

```
ZF Zielfunkton
```

```
Rezept Zusammensetztung je Müsli und einhaltung des Lagerbestandes

;

ZF.. v_Erloes =e= sum(Muesli, v_Produktion(Muesli)*DB(Muesli));
Rezept(Zutaten).. sum(Muesli, Zusammensetzung(Muesli, Zutaten)*v Produktion(Muesli))=l= Lager(Zutaten);
```

Operatoren

GAMS	Operator
=e=	=
=l=	≤
=g=	≥

GAMS Code

```
Beschreibung des Optimierungsmodells:
Model Beispiel1 /all/;
Alternativ (wenn nicht alle Gleichungen/ NB ins Modell sollen):
Model Test /ZF, Rezept/;
                                    maximizing oder alternativ:
                                    minimizing
Solve Statement:
solve Test using lp maximizing v Erloes ;
     Name des Modells
                                                 Die zu maximierende Variable
                       Art der Optmierung
```


Modelltypen und Solver

GAMS Syntax	Modelltyp
lp .	Linear program
nlp	Nonlinear Program
Qcp	Quadratically Constrained Program
mip	Mixed Interger Program
rmip	Relaxed mixed Integer Program
minlp	Mixed Integer Nonlinear Program

Bem.: Die LP-Relaxation (relaxed mixed integer program) eines ganzzahligen Programs wird als rmip bezeichnet. Dabei wird die Ganzzahligkeitseigenschaft der Variablen verworfen.

Erweiterete GAMS Syntax Sets

Einem Set dürfen mehrere Namen gegeben werden (alias)

```
set i Fabriken /1*5/
;
alias (i,k,l)
```

Subsets:

```
p(i) Papierfabrik /1*2/
```

Mehrdimensionale Sets:

```
w(i,i) Wege zwischen den Fabriken /
1.2
1.3
2.4
3.4
4.5
/
```

Erweiterete GAMS Syntax

Funktionen:

```
t... Parameter card(t) .... Kardinalität ord(t)... Ordnung
```

Verwendung: gewisse Gleichung soll nur für den letzten Parameter nicht gelten:

```
g_Lagergleichung(t)$(ord(t)<card(t))... v_Lager(t+1)=e=v_Lager(t) +v_Einkauf(t+1)
```

Bem. : Will man die Gleichung Zyklisch machen : Verwendet man t++1 statt t+1 , so ist der Nachfolger des letzten Elements das erste Element

\$-Bedingungen:

Logische Operatoren	
Operator	Bedeutung
not	nicht
and	und
or	oder
xor	Exjkusiv oder

Numerische Operatoren		
Oper	ator	Bedeutung
lt	<	Kleiner als
le	<=	Kleiner oder gleich
eq	=	Gleich
ne	<>	Ungleich
ge	>=	Größer oder gleich
gt	>	Größer

Weiter Funktionen:

Summe und Produkt

```
*Beispiel zur Summenbildung: sum()
sum(j, x(j) - y(j) );

* Eine Summe über 2 Mengen -

* Indices müssen eingeklammert werden:
sum((k,1), z(k,1) * p(k) );

*Beispiel zur Produktbildung:
prod(j, p(j) * r(j) );
```

Parameter

Man kann diverse Rechnungen im GAMS ausführen

z.B Maximum diverser Werte:

```
Parameter
m1 Maximum
;
m1= max(1,10, 55*2);
```

Oder Maximum eines Parameters über ein Set i

```
set
i Fabriken /1*5/;
Parameter
c(i) Testdaten /1,3,10,-2/
m1
m2
;
m1=smax(i,c(i));
m1=smin(i,c(i));
```

Variablen

GAMS	Bedeutung
.lo	untere Schranke (lower bound)
.up	obere Schranke (upper bound)
.fx	Fixierung: untere und obere Schranke sind identisch

Vorteil: kann für den Solver vorteilhaft sein

Bsp.: x.up(set) = 1

Fehlerhinweise - Logfile

Logfile (.log-Datei)

- Fehlermeldungen werden mit Zeilenangabe in der Reihenfolge ihres Auftretens im logfile-Fenster angezeigt
- Doppelklick auf die rot markierte Fehlermeldung führt zur fehlerhaften Zeile im .gms File
- Ein Fehler führt oft zu mehreren Fehlermeldungen → immer zuerst die erste Fehlermeldung bearbeiten!