V302

Elektrische Brückenschaltungen

Umut Aydinli Muhammed-Sinan Demir umut.aydinli@tu-dortmund.de sinan.demir@tu-dortmund.de

Durchführung: 17.11.2021 Abgabe: 14.01.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	setzung	3									
2	The	Theorie										
	2.1	Wheatstonesche Brücke	5									
	2.2	Kapazitätsmessbrücke	6									
	2.3	Induktivitätsmessbrücke	6									
	2.4	Maxwell-Brücke	7									
	2.5	Wien-Robinson-Brücke	8									
3	Vers	suchsaufbau und Versuchdurchführung	10									
	3.1	Wheatstonesche Brücke	10									
	3.2	Kapazitätsmessbrücke	10									
	3.3	Induktivitätsmessbrücke	10									
	3.4	Maxwell-Brücke	11									
	3.5	Wien-Robinson-Brücke	11									
4	Auswertung											
	4.1	Wheatstonesche Brücke	11									
	4.2	Kapazitätmessbrücke	12									
	4.3	Induktivitätsbrücke	12									
	4.4	Maxwell-Brücke	13									
	4.5	Wien-Robinson-Brücke	13									
5	Disk	kussion	16									
6	Anh	ang	17									
Lit	terati	ur	19									

1 Zielsetzung

In dem Versuch geht es um die Bestimmung von Messgrößen wie Widerständen, Kapazitäten und Induktivitäten durch verschiedene elektrische Brückenschaltungen. Ebenso wird durch die Wien-Robinson-Brücke die Frequenzabhängige Spannnung ermittelt.

2 Theorie

Brückenschaltungen sind eine häufig verwendete Methode in der Messtechnik, weil diese die Auflösung einer Messung erhöhen. Durch Verwenden der Nullmethode gelingt dies insbesondere. In diesem Versuch wird die Nullmethode durch die abgeglichenen Brücken realisiert. Ebenso sind jegliche physikalische Größen gut messbar, wenn diese sich als elektrischer Widerstand, bzw. als Impedanz, darstellen lassen.

Um die Brückenspannung und die dazugehörige Abgleichbedingung zu berechnen, untersucht man die Potentialdifferenz der Schaltung, welche in zwei Punkten auf zwei getrennten stromdurchflossenen Leitern gemessen wird. Diese Potentialdifferenz steht in Abhängigkeit mit dem Widerstandsverhältnis der Schaltung. Eine "normale" Brückengleichung ist in Abbildung 1 zu sehen.

Abbildung 1: Eine Abbildung einer einfachen Brückenschaltung [1].

Die Spannung U zwischen den beiden Punkten wird als Brückenspannung bezeichnet. Die Berechnung dieser Spannung beruht auf den zwei Kirchhoffschen Gesetzen.

Das erste Kirchhoffsche Gesetz besagt, dass die Summe der zufließenden Ströme gleich der Summe der abfließenden Ströme in einem Verzweigungspunkt ist.

$$\sum_{\mathbf{k}} I_{\mathbf{k}} = 0$$

Abbildung 2: Die Abbildung eines Knotenpunktes mit einer Leiterverzeigung [1].

Das zweite Kirchhoffsche Gesetz besagt, dass die Summe aller Spannungen einer beliebig gewählten Masche des Schaltkreises gleich null ist.

$$\sum_{\mathbf{k}}U_{\mathbf{k}}=0.$$

Abbildung 3: Die Abbildung einer Masche [1].

Wenn der Strompfeil im Uhrzeigersinn läuft, ist die Spannung positiv zu rechnen. Wenn der Strompfeil gegen den Uhrzeigersinn läuft, ist die Spannung negativ zu rechnen.

Durch die beiden Kirchhoffschen Gesetze ergibt sich die Formel für die Brückenspannung in Abhängigkeit von den Schaltungsparametern

$$U_{\rm Br} = \frac{R_2 R_3 - R_1 R_4}{(R_3 + R_4)(R_1 + R_2)} U_{\rm S}$$
 (1)

mit

$$U_{\rm s} = I_1(R_1 + R_2). (2)$$

Wenn die Widerstände so gewählt werden, dass die Brückenspannung, welche unabhängig von der Speisespannung ist, verschwindet, ergibt sich die sogenannte Abgleichbedingung:

$$R_1 R_4 = R_2 R_3$$
.

Ebenfalls wichtig sind die Impedanzen bei Brückenschaltungen. Unter einer Impedanz wird die Zusammenarbeit von Blind- und Wirkwiderstand verstanden. Der Wirkwiderstand X steht hierbei für den Realteil und der Blindwiderstand Y für den imaginären Teil.

$$\xi = X + iY$$

2.1 Wheatstonesche Brücke

Die Wheatstonesche Brücke ist eine Widerstandsmessbrücke und enthält dadurch nur ohmsche Widerstände. Betrieben kann diese mit Gleich- sowie Wechselstrom, wobei der Nullindikator entsprechend der Stromart gewählt werden muss. In Abbildung 4 ist die Wheatstonesche Brückenschaltung gezeigt.

Abbildung 4: Die Abbildung einer Wheatstonesche Brücke [1].

Die Bestimmung des unbekannten Widerstandes erfolgt durch die Formel

$$R_x = R_2 \cdot \frac{R_3}{R_4}. (3)$$

2.2 Kapazitätsmessbrücke

Die Kapazitätsmessbrücke ist eine Schaltung, in welcher Kondensatoren hinzugefügt werden. Durch den Kondensator, welcher neben dem Speichern von Energie auch andere Eigenschaften mit sich bringt, wie die Umwandlung von elektrischer Energie zu Wärmeenergie. Der Kondensator ist in Reihe mit einem ohmschen Widerstand geschaltet, aufgrund der Eigenschaft des realen Kondensators. Das Schaltkreisbild der Kapazitätmessbrücke ist zu sehen in Abbildung 5.

Abbildung 5: Die Abbildung einer Kapazitätsmessbrücke [1].

Die Abgleichbedingung für die Kapazitätmessbrücke lauten

$$R_x = R_2 \frac{R_3}{R_4} \tag{4}$$

und

$$C_x = C_2 \frac{R_4}{R_3}. (5)$$

2.3 Induktivitätsmessbrücke

Bei der Induktivitätsbrücke wird in dem Schaltbild der Kapazitätmessbrücke der Kondensator durch eine Spule ersetzt, welche ein Teil der magnetischen Feldenergie in Wärme umwandelt.

Abbildung 6: Die Abbildung einer Induktivitätsmessbrücke [1].

Die Abgleichbedingung für R_x ist identisch mit der, der Kapazitätsmessbrücke, für die Induktivität gilt jedoch

$$L_x = L_2 \frac{R_3}{R_4}. (6)$$

2.4 Maxwell-Brücke

Die Maxwell-Brücke ist eine weitere Induktivitätsmessbrücke, welche für die Messung der Induktivität verwendet wird. Hierbei fällt die Spule L_2 weg, weil die Spule möglichst geringe Verluste vorweisen sollte und dadurch der Widerstand R_2 den Wirkanteil realisiert. Bei niedrigen Frequenzen ist dies jedoch schwer zu realisieren, weswegen man die Maxwell-Brücke verwendet. Der Widerstand R_2 wird als bekannten Widerstand genommen, aufgrund der möglichst verlustarmen Kapazität C_4 , R_3 und R_4 sind beide Regelwiderstände, wobei R_4 parralell zu dem Kondensator C_4 geschaltet ist. Das Schaltbild zu der Maxwell-Brücke wird in Abbildung 7 gezeigt.

Abbildung 7: Die Abbildung einer Maxwell-Brücke [1].

Die Abgleichbedingungen für die Maxwell-Brücke ergeben sich durch

$$R_x = \frac{R_2 R_3}{R_4} \tag{7}$$

und

$$L_x = R_2 R_3 C_4. \tag{8}$$

2.5 Wien-Robinson-Brücke

Die Wien-Robinson-Brücke verfügt über keine Abgleichelemente, was bedeutet, dass alle Impedanzen bekannt sind. Deswegen sollten die Bauteile dieser Schaltung, C, R und R', eine möglichst geringe Toleranz haben. Die Kondensatoren sollten dazu ebenfalls geringe Verluste haben. Durch das Ändern der Frequenz wird bei dieser Schaltung dieser Abgleich durchgeführt, was bedeutet, dass die Wien-Robinson-Brücke als elektronischer Filter funktioniert. Deutlich wird dies in der Aufstellung der Gleichung für das Verhältnis der Brückenspannung zur Speisespannung.

Abbildung 8: Die Abbildung einer Wien-Robinson-Brücke [1].

Die Brückenspannung setzt sich hierbei zusammen aus

$$U_{\mathrm{Br}} = \frac{\omega^2 R^2 C^2 - 1}{3\left(1 - \omega^2 R^2 C^2\right) + 9i\omega RC} U_{\mathrm{S}}. \label{eq:uBr}$$

Das darausfolgende Verhältnis zwischen Speise- und Brückenspannung

$$\left|\frac{U_{\rm Br}}{U_{\rm Sp}}\right|^2 = \frac{\left(\omega^2 R^2 C^2 - 1\right)}{9\left((1 - \omega^2 R^2 C^2)^2 + 9\omega^2 R^2 C^2\right)} \tag{9}$$

 mit

$$\omega_0 = \frac{1}{RC}$$

und dem Frequenzverhältnis

$$\Omega = \omega / \omega_0$$

wird die Gleichung (9) vereinfacht zu

$$\left| \frac{U_{\rm Br}}{U_{\rm Sp}} \right|^2 = \frac{1}{9} \frac{\left(\Omega^2 - 1\right)^2}{\left(1 - \Omega^2\right) + 9\Omega^2}.$$
 (10)

Bei einer Frequenz von ω_0 sollte keine Brückenspannung mehr zu sehen sein. In der Theorie klappt es, aber in der Realität wird trotzdem ein minimaler Wert angegeben, der sich durch Oberwellen erklären lässt Das Verhältnis von Oberwellengehalt zur Grundwelle wird durch den Klirrfaktor ausgedrückt:

$$\kappa = \frac{\sqrt{\sum_{i=2}^{N} U_i^2}}{U_1} \tag{11}$$

3 Versuchsaufbau und Versuchdurchführung

3.1 Wheatstonesche Brücke

Die Schaltung wird wie in Abbildung 4 aufgebaut. Das Potentiometer wird so eingestellt, dass die Brückenspannung verschwindet. Wenn das Potentiometer so variiert wurde, dass die Brückenspannung verschwindet, werden die Werte für R_3 und R_4 notiert. R_2 ist ein fest gewählter Widerstand und R_x wird durch die Formel (3) berechnet. Dieser Durchgang wird für drei verschiedene R_2 Widerstände wiederholt, für jeweils zwei verschiedene unbekannte R_x Widerstände.

3.2 Kapazitätsmessbrücke

Die Schaltung wird wie in Abbildung 5 aufgebaut. Man stellt das Potentiometer R_2 und R_3 wieder so ein, dass die Brückenspannung verschwindet und notiert die Werte für R_2 , R_3 und R_4 . Der Wert für C_2 ist fest gewählt, R_x wird durch die Formel (4) und C_x durch die Formel (5) bestimmt. Dies wird einmal wiederholt, danach werden die Widerstände R_x und R_2 ausgebaut und der Versuch wird ein weiteres mal ausgeführt und es werden die Messwerte für R_3 und R_4 notiert.

3.3 Induktivitätsmessbrücke

Die Schaltung wird wie in Abbildung 6 aufgebaut und die Potentiometer R_2 und R_3 werden erneut so eingestellt, dass die Brückenspannung verschwindet. Die Werte die aufgenommen werden sind wieder R_2 , R_3 und R_4 . Der Wert für L_2 ist fest gewählt, R_x wird durch die Formel (4) und L_x durch die Formel (6) bestimmt. Dies wird nur einmal durchgeführt.

3.4 Maxwell-Brücke

Die Schaltung wird wie in Abbildung 7 aufgebaut und erneut werden wie vorher die Potentiometer, welche diesmal R_3 und R_4 sind, so eingestellt, dass die Brückenspannung verschwindet. Der Widerstand R_2 ist diesmal fest gewählt, genauso wie der Kondensator C_4 und die Werte für R_3 und R_4 werden notiert. Der Widerstand R_x wird über die Formel (7) und die Spule L_x über die Formel (8) berechnet. Dadurch das die Maxwell-Brücke eine weitere Induktivitätsbrücke ist, ist der Wert für die Spule L_x genauer als der Wert für L_x von der Induktivitätsmessbrücke.

3.5 Wien-Robinson-Brücke

Die Schaltung wird wie in Abbildung 8 aufgebaut. Hierbei wird kein Bauteil bestimmt oder variiert, sondern die Brückenspannung für verschiedene Frequenzen ermittelt. Die Frequenzen werden im Bereich von $20\,\mathrm{Hz} \leq v \leq 30000\,\mathrm{Hz}$ varriert und die Spannungen U_Br aufgenommen und notiert.

4 Auswertung

4.1 Wheatstonesche Brücke

Der Unbekannte R_x wird mit der Hilfe der Formel (4) berechnet.

Tabelle 1: Die Messwerte der Wheatstoneschen Brücke mit dem R_x für Wert 10.

	Messung 1	Messung 2	Messung 3
R_x	$237{,}46\Omega$	$229{,}81\Omega$	$238{,}44\Omega$
R_2	500Ω	644Ω	332Ω
R_3	322Ω	263Ω	418Ω
R_4	678Ω	737Ω	582Ω

Der Wert R_x wird gemittelt und die dazugehörige Abweichung berechnet

$$R_{\text{x.Wert }10} = (235, 24 \pm 4, 72) \Omega.$$

Tabelle 2: Die Messwerte der Wheatstoneschen Brücke mit dem R_x für Wert 13.

	Messung 1	Messung 2	Messung 3
R_x	$318{,}98\Omega$	$318{,}33\Omega$	$316{,}790\Omega$
R_2	332Ω	500Ω	644Ω
R_3	490Ω	389Ω	323Ω
R_4	510Ω	611Ω	677Ω

Daraus folgt

$$R_{\text{x.Wert }13} = (318, 03 \pm 1, 12) \,\Omega.$$

4.2 Kapazitätmessbrücke

Die Berechnung der Werte C_x und R_x folgt nach den Formeln (4) und (5).

Tabelle 3: Die Messwerte der Kapazitätsmessbrücke mit dem ${\cal R}_x$ für Wert 15 und Wert 11

	Messung 1	Messung 2
C_2	$399\mathrm{nF}$	$399\mathrm{nF}$
R_2	805Ω	$\Omega \Omega$
R_3	359Ω	376Ω
R_4	611Ω	624Ω
C_x	$626\mathrm{nF}$	$662\mathrm{nF}$
R_x	512Ω	$\Omega \Omega$

Die Berechnung wird gemittelt und die Standardabweichung gebildet.

$$C_{\text{x,Wert }15} = (644 \pm 25, 45) \,\text{nF}.$$

4.3 Induktivitätsbrücke

Mit Hilfe der Formeln (6) und (4), sowie mit einer eingestellten Frequenz von $v=1076\,\mathrm{Hz}$, ergiben sich folgende Werte.

Tabelle 4: Die Messwerte der Induktivitätsmessbrücke mit dem L_x und R_x für den Wert 18.

	Messung 1
L_2	$14,6\mathrm{mH}$
R_2	90Ω
R_3	820Ω
R_4	180Ω
L_x	$66,5\mathrm{mH}$
R_x	410Ω

4.4 Maxwell-Brücke

Die Messwerte L_x und R_x ergeben sich über die Formeln (7) und (8).

Tabelle 5: Die Messwerte der Maxwell-Brücke mit L_x und R_x für den Wert 18.

	Messung 1
R_2	664Ω
R_3	205Ω
R_4	420Ω
C_4	$399\mathrm{nF}$
L_x	$54,3\mathrm{mH}$
R_x	324Ω

4.5 Wien-Robinson-Brücke

Die Frequenzabhängigkeit der Brückenspannung wird im Bereich 20 Hz $\leq v \leq 30000$ Hz untersucht. Dazu wird der Quotient $\frac{U_{\rm Br}}{U_{\rm S}}$ gegen $\Omega = \frac{v}{v_0}$ in einem halbalgortihmischen Diagramm aufgetragen.

Ab welcher Frequenz die Brückenspannung verschwinden sollte, wird nach den folgenden Formeln berechnet:

$$\begin{split} \omega_0 &= \frac{1}{RC} = \frac{1}{1000\,\Omega \cdot 660\,\mathrm{nF}} = 1515, 15\,\mathrm{Hz} \\ v_0 &= \frac{\omega_0}{2\pi} = \frac{1}{2\pi RC} = 241, 14\,\mathrm{Hz}. \end{split}$$

Tabelle 6: Die Messwerte der frequenzabhängigen Spannung.

v / Hz	$U_{ m Br}/{ m V}$
20	3,20
50	2,80
100	1,98
150	1,10
200	0,44
220	0,20
230	0,10
240	0,017
250	0,085
260	0,17
280	0,34
300	$0,\!48$
400	1,15
500	1,60
750	2,30
1000	2,60
2000	3,10
5000	3,20
10000	3,05
15000	2,80
20000	2,30

Abbildung 9: Die graphische Darstellung der Messwerte für die frequenzabhängige Spannung mit der Ausgleichsfunktion.

Wie an der Kurve zu erkennen, verschwindet die Brückenspannung bei ungefähr $V_0=240\,\mathrm{Hz}$. Für die Bestimmung des Klirrfaktors wird die Formel (11) benutzt. Wie zu erkennen, benötigt man den Wert U_2 , welcher aus (10) errechnet werden kann. Dabei ist $U_1=10\,\mathrm{V}$ aus U_S . Daraus folgt mit $\Omega=2$:

$$U_2 = \frac{0,004\mathrm{V}}{\sqrt{\frac{(2^2-1)^2}{9(1-2^2)^2+9\cdot 2^2}}} = 0,01442\,\mathrm{V}.$$

Anschließend folgt für den Klirrfaktor

$$k = \frac{U_2}{U_1} = 1,442 \cdot 10^{-3}.$$

5 Diskussion

Werden die einzelnen Bauteile in Betracht gezogen, so fällt auf, dass die meisten Abweichungen von den Bauteilen ausgehen. Dabei sind die Abweichungen gering, was dazu führt, dass die Bestimmung der gesuchten Werte nahezu gleich sind. Wie bei der Wheatstoneschen Brücke, besitzt die bestimmte Größe eine relative Abweichung von -1,56% vom Literaturwert $R_{\rm x,10}=239\,\Omega.$ Für den Wert 13 beträgt die Abweichung -0,3%, welcher sich im Toleranzbereich befindet. Bei der Kapazitätmessbrücke, welche eine Eichgenauigkeit von 3% laut Hersteller besitzt [1], hat eine relative Abweichung von -1,22%. Auffällig ist, dass der bei der Wheatstoneschen Brücke sowie der Kapazitätmessbrücke, die jeweiligen Abweichungen größtenteils sich im Toleranzbereich befindet. Beim Vergleich der Messung mit der Induktivitätsbrücke sowie der Maxwell-Brücke, so fällt auf, dass die Messwerte sich deutlich vom Literaturwert $L_{18}=49,82\,\mathrm{mH}$ und $R_{18}=360,5\,\Omega$ unterscheiden. Bei der Induktivitätsmessbrücke beträgt die relative Abweichung der Induktivität 33,48% und der Widerstand 13,88%. Bei der Maxwell-Brücke ist die Abweichung deutlich kleiner, mit 8,99% bei der Induktivität und -10% bei der Bestimmung des Innenwiderstandes. Der Unterschied lässt sich darauf hinweisen, dass die Induktivitätsmessbrücke keinem Innenwiderstand besitzt, wodurch sich dann die Verluste durch auftretende Wärmeenergie vorweisen lässt. Dabei besitzt die Maxwell-Brücke einen eingebauten Kondensator C_4 , wodurch sich das Ergebnis deutlich näher am Toleranzbereich befindet. Dennoch treten kleine Abweichungen auf, die aber auf das menschliche Geschick zurückzuführen sind. Bei Beobachtung sowie das präzise Einstellen des Reglers, bis zum Verschwinden der Brückenspannung, weist ebenso auf eine mögliche Abweichung. Die Vermutung ,dass eine Brückenspannung bei v_0 trotzdem durch Oberwellen entsteht, wurde durch den Klirrfaktor bestätigt.

6 Anhang

4)		Nessung 1	Wert	18	f:	10	76 H	4	1				
				-									
	R ₂	664.02	m 9 0		3 9	100	2314			gnu	28.0	4	
	R ₃	2050											
	3 3 122	1 200	285		0		18.		40	Hay.	24	-	-
100	Ry	420				100			10	133			+
	Cy	399nF											
211	Lx	54 3 mH	8111	1,1	1				0	SI	2	+	-
	ZX	34 3 1	12/	Verg	che	Jest				1.1			
	Rx	324_0	J	3	chu	3)							
		7 - 35					100		n	10	10		-
5)	1							1	3				-
	27	= ro	γ=	20 H	2	0	8			1 6	i pi		
A L	2 "												
571		1			1 6		2				1976	-	-
	Y = -			-	247	7672	. 2	41,11	4 H	+	18		-
		27 10002	660 nF		2 1								
Us = 0	onst	- 10V											
3/1	(-	32 V	/										-
20		218	17 5677				20 (0)	-	1 6	733	20/1		
100		2/1,38			-							-	-
100		1,1			- 3	200				108	820		+
200	73 10	0,44				-							H
290		0,2								1 0	20		+
230	1911	0,1				0.4					G.F	-	+
220 230 240	9.49	0,012				1				1	00	-	-
250		0,085									1		-
260	1 8	0,417								- 1	100	-	-
280		0,34							-			-	+
300		0,48								0	-	-	+
400		1 1/1/1/				9				-		-	-
500		1/6								- 5	A.F.		+
750		2,3											+
000		26								2			-
2000		1 b 2 3 2 b 3 1								TO	19	1	-
2000		3,2											-
0.000		3,05		4				1	220				H
15,000		2,8											-
256 260 280 300 400 500 200 200 1000 1500 7000		2,3					- 13	1000					-
								-					
				a	-								3
							-						10
									4	1			

Literatur

[1] TU Dortmund. Elektrische Brückenschaltungen. 2021. URL: https://moodle.tu-dortmund.de/pluginfile.php/1716954/mod_resource/content/1/V302.pdf (besucht am 16.12.2021).