Вариант А1 (страница 1 из 1)

- **1.** Исследовать сходимость несобственного интеграла $\int_{0}^{+\infty} x^{p} \sin x^{-2} dx$ при всех значениях параметра p.
- **2.** На плоскости с прямоугольными декартовыми координатами (x,y) эллипс вписан в ромб с вершинами (4,0), (0,12), (-4,0) и (0,-12). Найти площадь эллипса, если длина одной его полуоси равна 4.
- **3.** Рассмотрим способ линейной записи битовых матриц в виде одной цепочки символов. Будем записывать элементы строк матрицы подряд. Между концом одной строки и началом следующей будем ставить запятую.

Пример: линейная запись матрицы $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ будет такой: 11,00

Составьте нормальный алгоритм Маркова, получающий в качестве входного слова линейную запись матрицы размера $M \times N$ ($M, N \geqslant 2$), каждый элемент которой равен 0 или 1. Если в матрице есть хотя бы одна строка, состоящая только из нулей, то алгоритм должен зацикливаться, иначе он должен остановиться. В составленном алгоритме должно быть не более 5 формул подстановки. В записи алгоритма используйте \rightarrow для простой формулы подстановки, и \Rightarrow для формулы финальной подстановки.

4. В результате операции реляционной алгебры NATURAL JOIN, выполненной над реляционными отношениями R1 и R2, было получено реляционное отношение $R3 = R1 \bowtie R2$ с первичным ключом {NeIMDB, Критик}, в котором функциональные зависимости заданы диаграммой.

Известно, что R1 находится в третьей нормальной форме, и что у R2 вторая нормальная форма является старшей. Тело отношения R3:

№IMDB	Критик	Название	Режиссер	Страна	Оценка
69293	Кудрявцев	Солярис	Тарковский	Россия	10 из 10
69293	Эберт	Солярис	Тарковский	Россия	3 из 4
307479	Кудрявцев	Солярис	Содерберг	США	5,5 из 10
307479	Эберт	Солярис	Содерберг	США	3,5 из 4
91670	Эберт	Жертвоприношение	Тарковский	Россия	4 из 4

- 1) Восстановите и *полностью выпишите тело* отношения R1. 2) Восстановите и *полностью выпишите тело* отношения R2. 3) Обоснуйте, почему R1 находится в третьей нормальной форме и почему у R2 вторая нормальная форма является старшей.
- 5. Особые точки системы уравнений

$$\begin{cases} \dot{x} = 4x - 2y, & x(0) = 4, \\ \dot{y} = y - 2x, & y(0) = 3, \end{cases}$$

заполняют на фазовой плоскости прямую линию l_1 . Решение (x(t),y(t)) в фазовой плоскости движется из начальной точки (x(0),y(0)) по прямой линии l_2 к точке (x_*,y_*) при $t\to +\infty$ или при $t\to -\infty$. Найдите уравнения прямых l_1 , l_2 , особую точку (x_*,y_*) . Определите тип устойчивости особой точки (x_*,y_*) : асимптотически устойчиво; устойчиво; неустойчиво.

- **6.** Можно ли булеву функцию $f(x_1, x_2, x_3)$, вектор значений которой имеет вид (01010111), представить формулой над системой булевых функций $\{x \oplus y, x \lor y\}$? Ответ обоснуйте.
- **7.** Случайная точка с координатами (ξ_1,ξ_2) равномерно распределена в единичном квадрате $K=\{(u,v): 0\leq u\leq 1, 0\leq v\leq 1\}$. Обозначим через η число действительных корней уравнения $x^3/3-\xi_1^2x+\xi_2=0$. Найти математическое ожидание случайной величины η .

Вариант А1 (страница 2 из 1)

- **8.** Предполагая достаточную гладкость функции f(x), аппроксимировать ее производную f'(x) в точке x=3h/2 со вторым порядком по h по известным значениям функции f(0), f(h) и f(5h/2).
- 9. Решить краевую задачу для волнового уравнения

$$16u_{tt} = u_{xx}, \ 0 < x < \pi/4, \ t > 0,$$

$$u(x,0) = 2\sin 4x, \ u_t(x,0) = 0,$$

$$u(0,t) = 0, \ u_x(\pi/4,t) = 0.$$