

Formulário de Introdução à Probabilidade e Estatística Engenharia Civil, Engenharia das Energias Renováveis, Engenharia Geológica,

Engenharia Informática e Engenharia Mecatrónica

Estatística Descritiva

Localização	Dados Não Agrupados	Dados Agrupados
Média	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\overline{X} = \frac{1}{n} \sum_{i=1}^{k} n_i X_i'$ k=n° de classes ou categorias
Localização	Dados Não Agrupados e	Dados Agrupados
	Dados Agrupados Discretos	Contínuos
Moda	M_o =Valor ou categoria que se repete mais vezes	$M_0 = l_i + A_i \frac{\Delta_1}{\Delta_1 + \Delta_2}$ $\Delta_1 = n_i - n_{i-1} \text{ e } \Delta_2 = n_i - n_{i+1}$
Mediana	$M_e = \left\{ egin{array}{ll} rac{1}{2}(X_{([rac{n}{2}])} + X_{([rac{n}{2}+1])}), & n ext{ par} \ X_{([rac{n+1}{2}])}, & n ext{ impar} \end{array} ight.$	$M_e = l_i + A_i \frac{\frac{n}{2} - N_{i-1}}{n_i}$
Quantis	$Q_p = \left\{ \begin{array}{l} \frac{1}{2}(X_{(np)} + X_{(np+1)}), & np \text{ inteiro} \\ X_{([np]+1)}, & np \text{ n\~ao inteiro} \end{array} \right.$	$Q_p = l_i + A_i \frac{np - N_{i-1}}{n_i}$

Dispersão	Dados Não Agrupados	Dados Agrupados
Variância	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$ $= \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} - \frac{n}{n-1} \overline{X}^{2}$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{k} n_{i} (X'_{i} - \overline{X})^{2}$ $= \frac{1}{n-1} \sum_{i=1}^{k} n_{i} X'_{i}^{2} - \frac{n}{n-1} \overline{X}^{2}$
Momento Empírico de ordem m	$M_m' = \frac{1}{n} \sum_{i=1}^n X_i^m$	$M_m' = \frac{1}{n} \sum_{i=1}^k n_i X_i'^m$
Momento Empírico Centrado de ordem m	$M_m = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^m$	$M_m = \frac{1}{n} \sum_{i=1}^k n_i (X_i' - \overline{X})^m$

Outras Medidas de Dispersão (Dados agrupados e não agrupados):

Amplitude (Range) $\Delta = X_{(n)} - X_{(1)};$ Dispersão Quartal $Q = Q_{0,75} - Q_{0,25}$

Intervalo de Variação $Q'=Q_{0,90}-Q_{0,10};$ Coeficiente de Variação $CV=\frac{S}{\overline{X}}\times 100\%$

Construção de Classes: $A_i = \frac{\Delta}{k}$; $k = \left\lceil \frac{\ln(n)}{\ln(2)} \right\rceil + 1$ (Regra de Sturges:)

Medidas de Assimetria (Skewness) (Dados agrupados e não agrupados):

$$\textbf{Coeficiente de Assimetria de Fisher} \quad \beta_1 = \frac{M_3}{S^3} = \left\{ \begin{array}{ll} <0, & \text{Dist. Assimétrica Negativa} & (\overline{X} < M_e) \\ =0, & \text{Dist. Simétrica} & (\overline{X} = M_e) \\ >0, & \text{Dist. Assimétrica Positiva} & (\overline{X} > M_e) \end{array} \right.$$

Grau de Assimetria de Pearson
$$G_P = \frac{\overline{X} - M_o}{S} = \begin{cases} < 0, & \text{Dist. Assimétrica Negativa} \\ = 0, & \text{Dist. Simétrica} \\ > 0, & \text{Dist. Assimétrica Positiva} \end{cases}$$

Coeficiente de Assimetria de Bowley
$$G_B = \frac{Q_3 + Q_1 - 2Q_2}{Q_3 - Q_1} = \begin{cases} < 0, & \text{Dist. Ass. Negativa} \\ = 0, & \text{Dist. Simétrica} \\ > 0, & \text{Dist. Ass. Positiva} \end{cases}$$

Medidas de Achatamento (Kurtosis) (Dados agrupados e não agrupados):

Coeficiente de Achatamento
$$\beta_2 = \frac{M_4}{S^4} = \begin{cases} < 3, & \text{Dist. Platicúrtica} \\ = 3, & \text{Dist. Mesocúrtica} \\ > 3, & \text{Dist. Leptocúrtica} \end{cases}$$

Medidas de Associação Amostral:

Covariância amostral de
$$(X,Y)$$
: $S_{XY}=\frac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})(Y_i-\overline{Y})=\frac{1}{n-1}\sum\limits_{i=1}^nX_iY_i-\frac{n}{n-1}\overline{X}\,\overline{Y}$ Correlação amostral de (X,Y) : $r=\frac{S_{XY}}{S_X\,S_Y}$

Distribuições de Probabilidades

Univariadas			
Distribuição	P(X = x)	$\mathbf{E}[\mathbf{X}]$	$Var[\mathbf{X}]$
Binomial			
$X \frown B(n,p)$	$n C_x p^x (1-p)^{n-x}, x = 0, \dots, n$	np	np(1-p)
Hipergeométrica			
$X \frown H(N, n, p)$	$\frac{{}^{Np}C_x{}^{Nq}C_{n-x}}{{}^{N}C_n}, \ x = 0, \dots, n$	np	$np(1-p)\frac{N-n}{N-1}$
Poisson			
$X \frown P(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}, \ x = 0, 1, \dots$	λ	λ
Distribuição	$\mathbf{f}(\mathbf{x})$	$\mathbf{E}[\mathbf{X}]$	$Var[\mathbf{X}]$
Normal			
$X \frown N(\mu, \sigma)$	$\frac{1}{\sqrt{\sigma^2 2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}$	μ	σ^2
Exponencial			
$X \frown \operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda x}, \ x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Aproximações:

- Se $X \frown B(n, p), n \ge 20$ e $p \le 0, 05$, então $X \dot{\frown} P(np)$
- Se $X \frown B(n,p), n > 50$ e $0, 1 , então <math>X \dot{\frown} N(np, \sigma^2 = np(1-p))$
- Se $X
 subseteq P(\lambda), \lambda > 20$, então $X \dot{\frown} N(\lambda, \sigma^2 = \lambda)$

Intervalos de Confiança

	Parâmetro: μ		
σ^2 conhecido?	Condições	IC a $100(1-lpha)\%$	
Sim	População Normal e n qualquer ou População qualquer e $n>30$	$\overline{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \overline{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \Big[$	
Não	População Normal	$\overline{\overline{X}} - t_{n-1;1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}; \overline{X} + t_{n-1;1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \Big[$	
Não	População qualquer e $n > 30$	$\overline{X} - Z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + Z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \left[$	

Parâmetro: p		
População	IC a $100(1-\alpha)\%$	
Bernoulli $n > 30$	$\overline{\Big]}\overline{P} - z_{1-\frac{\alpha}{2}}\sqrt{\frac{\overline{P}(1-\overline{P})}{n}}; \overline{P} + z_{1-\frac{\alpha}{2}}\sqrt{\frac{\overline{P}(1-\overline{P})}{n}}\Big[$	
	Parâmetro: σ^2	
População	IC a $100(1-\alpha)\%$	
Normal	$\left] \frac{(n-1)S^2}{\chi^2_{n-1;1-\frac{\alpha}{2}}}; \frac{(n-1)S^2}{\chi^2_{n-1;\frac{\alpha}{2}}} \right[$	

Parâmetro: $\mu_1 - \mu_2$		
$\sigma_1^2 e \sigma_2^2$ conhecidos?	Populações	IC a $100(1-\alpha)\%$
Sim	Normais	
	Quaisquer e $n_1 > 30 \text{ e } n_2 > 30$	
Não $(\sigma_1^2 = \sigma_2^2)$	Normais	$ \overline{ } \overline{X_1} - \overline{X_2} - t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S^*; \overline{X_1} - \overline{X_2} + t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S^* [$
		$S^* = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
Não $(\sigma_1^2 = \sigma_2^2)$	Quaisquer e $n_1 > 30$ e $n_2 > 30$	$\overline{\left] \overline{X_1} - \overline{X_2} - Z_{1-\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}; \overline{X_1} - \overline{X_2} + Z_{1-\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \right[$

Parâmetro: $p_1 - p_2$		
Populações	IC a $100(1-lpha)\%$	
Bernoulli $n_1 > 30 \text{ e } n_2 > 30$	$\boxed{ \boxed{ \overline{P_1} - \overline{P_2} - z_{1-\frac{\alpha}{2}} \sqrt{\frac{\overline{P_1}(1-\overline{P_1})}{n_1} + \frac{\overline{P_2}(1-\overline{P_2})}{n_2}}; \overline{P_1} - \overline{P_2} + z_{1-\frac{\alpha}{2}} \sqrt{\frac{\overline{P_1}(1-\overline{P_1})}{n_1} + \frac{\overline{P_2}(1-\overline{P_2})}{n_2}} \left[\right] }$	
	Parâmetro: σ_1^2/σ_2^2	
Populações	IC a $100(1-lpha)\%$	
Normais	$\left] \frac{1}{F_{n_1-1,n_2-1;1-\frac{\alpha}{2}}} \frac{S_1^2}{S_2^2}; \frac{1}{F_{n_1-1,n_2-1;\frac{\alpha}{2}}} \frac{S_1^2}{S_2^2} \right[$	

Testes de Hipóteses

$H_0: \mu = \mu_0 \text{ ou } H_0: \mu \leq \mu_0 \text{ ou } H_0: \mu \geq \mu_0$		
σ^2 conhecido?	População	Estatística de Teste
Sim	Normal	$Z = \sqrt{n} \frac{\overline{X} - \mu_0}{\sigma} \frown N(0, 1)$
Sim	Qualquer e $n > 30$	$Z = \sqrt{n} \frac{\overline{X} - \mu_0}{\sigma} \dot{\sim} N(0, 1)$
Não	Normal	$T = \sqrt{n} \frac{\overline{X} - \mu_0}{S} \frown t_{(n-1)}$
Não	Qualquer e $n > 30$	$Z = \sqrt{n} \frac{\overline{X} - \mu_0}{S} \dot{} N(0, 1)$

$H_0: p = p_0 \text{ ou } H_0: p \le p_0 \text{ ou } H_0: p \ge p_0$	
População	Estatística de Teste
Bernoulli $n > 30$	$Z = \frac{\overline{P} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \dot{\sim} N(0,1)$
$H_0: \sigma^2 = \sigma_0^2$	ou $H_0: \sigma^2 \le \sigma_0^2$ ou $H_0: \sigma^2 \ge \sigma_0^2$
População	Estatística de Teste
Normal	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} \frown \chi^2_{(n-1)}$

$H_0: \mu_1 - \mu_2 = \mu_0$ ou $H_0: \mu_1 - \mu_2 \le \mu_0$ ou $H_0: \mu_1 - \mu_2 \ge \mu_0$		
$\sigma_1^2 e \sigma_2^2$ conhecidos?	Populações	Estatística de Teste
Sim	Normais	$Z = \frac{\overline{X_1} - \overline{X_2} - \mu_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \curvearrowright N(0, 1)$
Sim	Quaisquer e $n_1 > 30 \text{ e } n_2 > 30$	$Z = \frac{\overline{X_1} - \overline{X_2} - \mu_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \stackrel{\sim}{\sim} N(0, 1)$
Não $(\sigma_1^2 = \sigma_2^2)$	Normais	$T = \frac{\overline{X_1} - \overline{X_2} - \mu_0}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \ \ \frown t_{(n_1 + n_2 - 2)}$
Não	Quaisquer e	$Z = \frac{\overline{X_1} - \overline{X_2} - \mu_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \stackrel{\sim}{\sim} N(0, 1)$
$(\sigma_1^2 = \sigma_2^2)$	$n_1 > 30 e n_2 > 30$	

$H_0: p_1 - p_2 = p_0$ ou $H_0: p_1 - p_2 \le p_0$ ou $H_0: p_1 - p_2 \ge p_0$		
Populações	Estatística de Teste	
Bernoulli $n_1 > 30 \text{ e } n_2 > 30$	$\frac{\overline{P_1} - \overline{P_2} - p_0}{\sqrt{\overline{P}^* (1 - \overline{P}^*)(\frac{1}{n_1} + \frac{1}{n_2})}} \stackrel{\sim}{\sim} N(0, 1)$ $\overline{P}^* = \frac{n_1 \overline{P_1} + n_2 \overline{P_2}}{n_1 + n_2}$	
	n_1+n_2	
$H_0: \frac{\sigma_1^2}{\sigma_2^2} = \sigma_0^2$	ou $H_0: \frac{\sigma_1^2}{\sigma_2^2} \le \sigma_0^2$ ou $H_0: \frac{\sigma_1^2}{\sigma_2^2} \ge \sigma_0^2$	
Populações	Estatística de Teste	
Normais	$\frac{1}{\sigma_0^2} \frac{S_1^2}{S_2^2} \frown F_{(n_1 - 1; n_2 - 1)}$	

Regressão Linear Simples: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

•
$$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X}$$

•
$$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X}$$

• $\widehat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{S_{XY}}{S_X^2} = r \frac{S_Y}{S_X}$

$$\bullet \ \widehat{Var}[\widehat{\beta}_0] = \frac{\widehat{\sigma}^2 \sum_{i=1}^n X_i^2}{n^2 S_X^2}$$

$$\bullet \ \widehat{Var}[\widehat{\beta}_1] = \frac{\widehat{\sigma}^2}{n \, S_X^2}$$

•
$$\hat{\sigma}^2 = \sum_{i=1}^n \frac{e_i^2}{n-2} = \sum_{i=1}^n \frac{(Y_i - \hat{Y}_i)^2}{n-2} = \frac{n-1}{n-2} (S_Y^2 - \hat{\beta}_1 S_{XY})$$

	IC a $(1 - \alpha) 100\%$
Parâmetro	Intervalo de Confiança
eta_0	$\left] \widehat{\beta}_0 - t_{n-2;1-\frac{\alpha}{2}} \sqrt{\widehat{Var}[\widehat{\beta}_0]}; \ \widehat{\beta}_0 + t_{n-2;1-\frac{\alpha}{2}} \sqrt{\widehat{Var}[\widehat{\beta}_0]} \right[$
eta_1	$\left]\widehat{\beta}_{1}-t_{n-2;1-\frac{\alpha}{2}}\sqrt{\widehat{Var}[\widehat{\beta}_{1}]};\widehat{\beta}_{1}+t_{n-2;1-\frac{\alpha}{2}}\sqrt{\widehat{Var}[\widehat{\beta}_{1}]}\right[$
Y_S (Predição)	$ \hat{Y}_{S} - t_{n-2;1-\frac{\alpha}{2}} \sqrt{\hat{\sigma}^{2} \left(\frac{1}{n} + \frac{(X_{S} - \overline{X})^{2}}{S_{X}}\right)}; \hat{Y}_{S} + t_{n-2;1-\frac{\alpha}{2}} \sqrt{\hat{\sigma}^{2} \left(\frac{1}{n} + \frac{(X_{S} - \overline{X})^{2}}{S_{X}}\right)} $

$H_0: \beta_0 = \beta_{0,0}$ ou $H_0: \beta_0 \leq \beta_{0,0}$ ou $H_0: \beta_0 \geq \beta_{0,0}$	$H_0: \beta_1 = \beta_{1,0}$ ou $H_0: \beta_1 \leq \beta_{1,0}$ ou $H_0: \beta_1 \geq \beta_{1,0}$
Estatística de Teste	Estatística de Teste
$T = \frac{\hat{\beta}_0 - \beta_0}{\sqrt{Var[\hat{\beta}_0]}} \frown t(n-2)$	$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{Var[\hat{\beta}_1]}} \frown t(n-2)$

Testes Não Paramétricos

Teste	Estatística de Teste	Decisão de Rejeição de H_0
Ajustamento	$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \ \frown \chi^2_{(k-p-1)}$	$\chi^2_{Obs} > \chi^2_{k-p-1;1-\alpha}$
Independência	$\chi^2 = \sum_{i=1}^{L} \sum_{j=1}^{C} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \sim \chi^2_{(L-1)(C-1)}$	$\chi_{Obs}^2 > \chi_{(L-1)(C-1);1-\alpha}^2$
Independência tabelas 2×2 (Correcção de Yates)	$\chi^2 = \frac{n(O_{11}O_{22} - O_{12}O_{21} - 0, 5n)^2}{O_{1.}O_{2.}O_{.1}O_{.2}} \frown \chi^2_{(L-1)(C-1)}$	$\chi_{Obs}^2 > \chi_{(L-1)(C-1);1-\alpha}^2$