

Rodzaj dokumentu:	Zasady oceniania rozwiązań	
Nouzaj dokumenta.	zadań	
Egzamin:	Egzamin maturalny	
_g_amm.	Test diagnostyczny	
Przedmiot:	Matematyka	
Poziom:	Poziom podstawowy	
	MMAP-P0-100-2212, MMAP-P0-200-2212,	
Formy arkusza:	MMAP-P0-300-2212, MMAP-P0-400-2212,	
	MMAP-P0-700-2212, MMAP-P0-Q00-2212,	
	MMAP-P0-Z00-2212, MMAU-P0-100-2212	
Data publikacji dokumentu:	15 grudnia 2022 r. (wersja 1)	

Uwagi:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający, rozwiązując zadanie otwarte, popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2023 i 2024¹	
Wymaganie ogólne	Wymagania szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	I.1) wykonuje działania ([] mnożenie, []
rzeczywistych, także przy użyciu	potęgowanie, []) w zbiorze liczb
kalkulatora, stosowanie praw działań	rzeczywistych;
matematycznych przy przekształcaniu	I.4) stosuje związek pierwiastkowania
wyrażeń algebraicznych oraz	z potęgowaniem oraz prawa działań na
wykorzystywanie tych umiejętności przy	potęgach i pierwiastkach.
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

(

¹ Rozporządzenie Ministra Edukacji i Nauki z dnia 10 czerwca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu maturalnego przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (Dz.U. 2022, poz.1246).

Zadanie 2. (0-1)

Wymagania ogólne	Wymaganie szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	I.8) wykorzystuje własności potęgowania
rzeczywistych, także przy użyciu	[] w sytuacjach praktycznych, w tym do
kalkulatora, stosowanie praw działań	obliczania procentów składanych
matematycznych przy przekształcaniu	z kapitalizacją roczną i zysków z lokat.
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	
III. Wykorzystanie i interpretowanie	
reprezentacji.	
Stosowanie obiektów matematycznych	
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 3. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IV.2) stosuje układy równań liniowych do
2. Dobieranie i tworzenie modeli	rozwiązywania zadań tekstowych.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 4. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach	II.1) stosuje wzory skróconego mnożenia
rzeczywistych, także przy użyciu	na: [] $a^2 - b^2$;
kalkulatora, stosowanie praw działań	II.6) dodaje i odejmuje wyrażenia wymierne,
matematycznych przy przekształcaniu	w przypadkach nie trudniejszych niż:
wyrażeń algebraicznych oraz	$\left \frac{1}{x+1} - \frac{1}{x} \right $, $\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$, $\frac{x+1}{x+2} + \frac{x-1}{x+1}$.
wykorzystywanie tych umiejętności przy	$\left \frac{\overline{x+1}}{\overline{x}} - \frac{\overline{x}}{x} \right $, $\left \frac{\overline{x}}{x} + \frac{\overline{x^2}}{x^2} + \frac{\overline{x^3}}{x^3} \right $, $\left \frac{\overline{x+2}}{x+1} + \frac{\overline{x+1}}{x+1} \right $.
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 5. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XI.1) zlicza obiekty w prostych sytuacjach
2. Dobieranie i tworzenie modeli	kombinatorycznych.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 6. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	I.4) stosuje związek pierwiastkowania
Stosowanie obiektów matematycznych	z potęgowaniem oraz prawa działań na
i operowanie nimi, interpretowanie pojęć	potęgach i pierwiastkach;
matematycznych.	I.9) stosuje związek logarytmowania
	z potęgowaniem, posługuje się wzorami na
	[] logarytm potęgi;
	V.2) oblicza wartość funkcji zadanej wzorem
	algebraicznym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 7.1. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	V.4) odczytuje z wykresu funkcji:[] zbiór
1. Stosowanie obiektów matematycznych	wartości [].
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – rozwiązanie poprawne.

0 pkt – rozwiązanie niepoprawne lub niepełne albo brak rozwiązania.

Rozwiązanie

 $[-3,\infty)$

Zadanie 7.2. (0-2)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	V.8) interpretuje współczynniki występujące
Stosowanie obiektów matematycznych	we wzorze funkcji kwadratowej w postaci
i operowanie nimi, interpretowanie pojęć	ogólnej, kanonicznej i iloczynowej [];
matematycznych.	V.9) wyznacza wzór funkcji kwadratowej na
	podstawie informacji o tej funkcji lub o jej
	wykresie.

Zasady oceniania

2 pkt – poprawna metoda wyznaczenia postaci kanonicznej funkcji f oraz zapisanie jej wzoru: $f(x) = 3(x-5)^2 - 3$.

1 pkt – zapisanie wzoru funkcji f w postaci kanonicznej: $f(x) = a(x-5)^2 - 3$ lub w postaci iloczynowej f(x) = a(x-4)(x-6), lub w postaci ogólnej $f(x) = 3x^2 - 30x + 72$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Wzór funkcji f w postaci kanonicznej to

$$f(x) = a(x-5)^2 - 3$$
, gdzie $a \neq 0$

Obliczamy a. Wykres funkcji przechodzi przez punkt o współrzędnych (4,0), zatem

$$0 = a \cdot (4-5)^2 - 3$$
, czyli $0 = a - 3$

Stad a = 3.

Wzór funkcji f w postaci kanonicznej to $f(x) = 3(x-5)^2 - 3$.

Sposób II

Wzór funkcji f w postaci kanonicznej to

$$f(x) = a(x-5)^2 - 3$$
, gdzie $a \neq 0$

Ponieważ wykres funkcji kwadratowej f jest symetryczny względem prostej o równaniu x=5, więc miejscami zerowymi funkcji f są liczby 4 oraz 6.

Przyrównujemy postać iloczynową funkcji f do jej postaci kanonicznej:

$$a(x-4)(x-6) = a(x-5)^2 - 3$$
$$ax^2 - 10ax + 24a = ax^2 - 10ax + 25a - 3$$
$$a = 3$$

Wzór funkcji f w postaci kanonicznej to $f(x) = 3(x-5)^2 - 3$.

Sposób III

Wzór funkcji f w postaci kanonicznej to

$$f(x) = a(x-5)^2 - 3$$
, gdzie $a \neq 0$

Ponieważ wykres funkcji kwadratowej f jest symetryczny względem prostej o równaniu x=5, więc miejscami zerowymi funkcji f są liczby 4 oraz 6.

Zapisujemy wzór funkcji f w postaci iloczynowej: f(x) = a(x-4)(x-6)

Podstawiając do tego wzoru współrzędne wierzchołka (5, -3), otrzymujemy równanie

$$f(5) = a(5-4)(5-6) = -3$$

Stad a = 3.

Wzór funkcji f w postaci kanonicznej to $f(x) = 3(x-5)^2 - 3$.

Sposób IV

Wzór funkcji f w postaci ogólnej to

$$f(x) = ax^2 + bx + c$$
, gdzie $a \neq 0$

Ponieważ wykres funkcji kwadratowej f jest symetryczny względem prostej o równaniu x=5, więc jej miejscami zerowymi są liczby 4 oraz 6.

Do wykresu funkcji f należą punkty (4,0), (5,-3) oraz (6,0).

Wstawiając ich współrzędne do wzoru funkcji f, otrzymujemy

$$\begin{cases} 0 = a \cdot 4^{2} + b \cdot 4 + c \\ -3 = a \cdot 5^{2} + b \cdot 5 + c \\ 0 = a \cdot 6^{2} + b \cdot 6 + c \end{cases}$$
$$\begin{cases} 0 = 16a + 4b + c \\ -3 = 25a + 5b + c \\ 0 = 36a + 6b + c \end{cases}$$

Stad a = 3, b = -30, c = 72.

Zatem

$$f(x) = 3x^2 - 30x + 72$$

Wzór ten można przekształcić do postaci

$$f(x) = 3x^2 - 30x + 72 = 3(x^2 - 10x + 25) - 3 = 3(x - 5)^2 - 3$$

Wzór funkcji f w postaci kanonicznej to $f(x) = 3(x-5)^2 - 3$.

Zadanie 8. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	V.8) interpretuje współczynniki
Stosowanie obiektów matematycznych	występujące we wzorze funkcji kwadratowej
i operowanie nimi, interpretowanie pojęć	w postaci [] iloczynowej (jeśli istnieje).
matematycznych.	III.4) rozwiązuje równania i nierówności
	kwadratowe.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 9. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	V.8) interpretuje współczynniki
1. Stosowanie obiektów matematycznych	występujące we wzorze funkcji kwadratowej
i operowanie nimi, interpretowanie pojęć	w postaci ogólnej […].
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

B1

Zadanie 10. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IV.1) […] podaje interpretację geometryczną
1. Stosowanie obiektów matematycznych	układów oznaczonych [].
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 11. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	II.4) rozkłada wielomiany na czynniki
1. Stosowanie obiektów matematycznych	metodą wyłączania wspólnego czynnika
i operowanie nimi, interpretowanie pojęć	przed nawias oraz metodą grupowania
matematycznych.	wyrazów [].

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 12. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji. 1. Stosowanie obiektów matematycznych	Zdający: III.6) rozwiązuje równania wymierne w postaci $\frac{V(x)}{W(x)} = 0$, gdzie wielomiany
i operowanie nimi, interpretowanie pojęć matematycznych.	W postaci $\overline{W(x)} = 0$, guzie wielomiany $V(x)$ i $W(x)$ są zapisane w postaci iloczynowej.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 13. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.3) rozwiązuje nierówności liniowe z jedną
1. Stosowanie obiektów matematycznych	niewiadomą.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 14. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	I.2) przeprowadza proste dowody dotyczące
kilkuetapowych, podawanie argumentów	podzielności liczb całkowitych i reszt
uzasadniających poprawność rozumowania,	z dzielenia [].
odróżnianie dowodu od przykładu.	

Zasady oceniania

2 pkt – przeprowadzenie pełnego dowodu, tj. rozpatrzenie dwóch przypadków: gdy $\,n=2k\,$ oraz $\,n=2k+1\,$

ALBO

przekształcenie wyrażenia $5n^2 + 15n$ do postaci 5n(n+3) oraz uzasadnienie, że liczba 5n(n+3) dzieli się przez 2 i przez 5, czyli jest podzielna przez 10.

1 pkt – przekształcenie wyrażenia $5n^2 + 15n$ do postaci 5n(n+3)

ALBO

rozpatrzenie przypadku, gdy n=2k (gdzie $k\in\mathbb{N}$), tj. przekształcenie wyrażenia $5n^2+15n$ do postaci $10\cdot(2k^2+3k)$ i zapisanie, że liczba $2k^2+3k$ jest naturalna,

ALBO

rozpatrzenie przypadku, gdy n=2k+1 (gdzie $k\in\mathbb{N}$), tj. przekształcenie wyrażenia $5n^2+15n$ do postaci $10\cdot(2k^2+5k+2)$ i zapisanie, że liczba $2k^2+5k+2$ iest naturalna.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Przedstawiamy liczbę $5n^2 + 15n$ w postaci iloczynu

$$5n^2 + 15n = 5n(n+3)$$

Liczby n oraz n+3 różnią się o liczbę nieparzystą. Zatem, jeśli n jest parzysta, wtedy n+3 jest nieparzysta. Jeśli n jest nieparzysta, wtedy n+3 jest parzysta. Wynika stąd, że liczba 5n(n+3) dzieli się przez 2 i przez 5, czyli jest podzielna przez 10. To należało wykazać.

Sposób II

Rozważamy dwa przypadki: gdy liczba n jest parzysta i gdy liczba n jest nieparzysta. Parzystą liczbę n możemy zapisać w postaci n=2k, gdzie $k\in\mathbb{N}$. Wtedy

$$5n^2 + 15n = 5(2k)^2 + 15 \cdot 2k = 20k^2 + 30k = 10 \cdot (2k^2 + 3k)$$

Ponieważ k jest liczbą naturalną, to liczba $2k^2+3k$ również jest naturalna, a iloczyn $10\cdot(2k^2+3k)$ jest podzielny przez 10.

W przypadku, gdy liczba n jest nieparzysta, możemy ją zapisać w postaci n=2k+1, gdzie $k\in\mathbb{N}.$ Wtedy

$$5n^2 + 15n = 5(2k + 1)^2 + 15 \cdot (2k + 1) = 5(4k^2 + 4k + 1) + 30k + 15 =$$

$$= 20k^2 + 20k + 5 + 30k + 15 = 20k^2 + 50k + 20 = 10 \cdot (2k^2 + 5k + 2)$$

Ponieważ k jest liczbą naturalną, to liczba $2k^2 + 5k + 2$ również jest naturalna, a iloczyn $10 \cdot (2k^2 + 5k + 2)$ jest podzielny przez 10. To należało wykazać.

Sposób III

Przedstawiamy liczbę $5n^2 + 15n$ w postaci iloczynu

$$5n^2 + 15n = 5n(n+3)$$

Rozważamy dwa przypadki: gdy liczba n jest parzysta i gdy liczba n jest nieparzysta. Parzystą liczbę n możemy zapisać w postaci n=2k, gdzie $k\in\mathbb{N}$. Wtedy

$$5n^2 + 15n = 5 \cdot 2k(2k + 3) = 10k(2k + 3)$$

Ponieważ k jest liczbą naturalną, to liczba 2k+3 również jest naturalna, a iloczyn $10 \cdot k(2k+3)$ jest podzielny przez 10.

W przypadku, gdy liczba n jest nieparzysta, możemy ją zapisać w postaci n=2k+1, gdzie $k\in\mathbb{N}.$ Wtedy

$$5n^2 + 15n = 5(2k + 1)(2k + 1 + 3) = 10(2k + 1)(k + 2)$$

Ponieważ k jest liczbą naturalną, to liczby 2k+1 oraz k+2 również są naturalne, a iloczyn $10 \cdot (2k+1)(k+2)$ jest podzielny przez 10. To należało wykazać.

Zadanie 15. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.2) w prostych przypadkach bada, czy
1. Stosowanie obiektów matematycznych	ciąg jest rosnący, czy malejący;
i operowanie nimi, interpretowanie pojęć	VI.1) oblicza wyrazy ciągu określonego
matematycznych.	wzorem ogólnym.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepełna lub niepoprawna albo brak odpowiedzi.

Rozwiązanie

FP

Zadanie 16. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.4) stosuje wzór na n –ty wyraz [] ciągu
1. Stosowanie obiektów matematycznych	arytmetycznego.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 17. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VI.5) stosuje wzór na n -ty wyraz [] ciągu
1. Stosowanie obiektów matematycznych	geometrycznego.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

2 pkt – wybranie dwóch odpowiedzi, z których obie są poprawne: A i E.

1 pkt – wybranie jednej lub dwóch odpowiedzi, z których jedna jest poprawna: A albo E.

0 pkt – rozwiązanie niepoprawne lub niepełne albo brak rozwiązania.

Rozwiązanie

ΑE

Zadanie 18. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VII.2) korzysta z wzorów
1. Stosowanie obiektów matematycznych	$\sin^2\alpha + \cos^2\alpha = 1 \ [].$
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 19. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.5) stosuje własności kątów wpisanych
1. Stosowanie obiektów matematycznych	i środkowych.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 20. (0-4)

Wymagania ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	XIII. Zdający rozwiązuje zadania
reprezentacji.	optymalizacyjne w sytuacjach dających się
2. Dobieranie i tworzenie modeli	opisać funkcją kwadratową.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	
IV. Rozumowanie i argumentacja.	
4. Stosowanie i tworzenie strategii przy	
rozwiązywaniu zadań, również w sytuacjach	
nietypowych.	

Zasady oceniania

- 4 pkt poprawna metoda obliczenia obu wymiarów kąpieliska oraz podanie poprawnych wyników: $a=50\,\mathrm{m}\,$ oraz $b=100\,\mathrm{m}.$
- 3 pkt poprawne zapisanie wzoru na pole powierzchni kąpieliska w zależności od zmiennej a oraz podanie dziedziny funkcji $a\in(0,100)$ i prawidłowe obliczenie pierwszej współrzędnej wierzchołka paraboli: a=50 m ALBO

poprawne zapisanie wzoru na pole powierzchni kąpieliska w zależności od zmiennej b oraz podanie dziedziny funkcji $b \in (0,200)$ i prawidłowe obliczenie pierwszej współrzędnej wierzchołka paraboli: b=100 m.

- 2 pkt poprawne zapisanie wzoru na pole powierzchni kąpieliska w zależności od jednej zmiennej: P(a)=a(200-2a) lub $P(b)=b\left(100-\frac{1}{2}b\right)$.
- 1 pkt zapisanie związku między wymiarami kąpieliska: 2a + b = 200.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Przyjmijmy oznaczenia jak na rysunku w zadaniu. Długość liny użytej do wytyczenia kapieliska – po uwzględnieniu warunków zadania – można zapisać równaniem

$$2a + b = 200$$

Stąd wyznaczamy b: b = 200 - 2a.

Z warunków zadania wynika, że

$$a > 0$$
 i $b > 0$

Powierzchnia P kapieliska jest równa polu prostokąta o bokach długości a oraz b. Zatem

$$P = a \cdot b$$

Powierzchnię kąpieliska wyrażamy jako funkcję jednej zmiennej a. W tym celu podstawiamy b=200-2a i otrzymujemy

$$P(a) = a(200 - 2a) = -2a^2 + 200a$$

Wyznaczamy dziedzinę funkcji P. Wykorzystamy związek między wymiarami a i b oraz wykorzystamy warunki, jakie te wymiary spełniają

$$b = 200 - 2a > 0$$
 oraz $a > 0$

Zatem

$$a < 100 \text{ oraz } a > 0$$

Zmienna α może przyjmować wartości z przedziału (0,100).

Wykresem funkcji *P* jest fragment paraboli skierowanej ramionami do dołu. Obliczamy pierwszą współrzędną wierzchołka paraboli:

$$p = -\frac{200}{2 \cdot (-2)} = 50 \in (0, 100)$$

Zatem funkcja *P* przyjmuje wartość największą dla argumentu 50.

Obliczamy drugi wymiar, dla którego kąpielisko ma największą powierzchnię:

$$b = 200 \text{ m} - 2 \cdot 50 \text{ m} = 100 \text{ m}$$

Największą powierzchnię ma kąpielisko o wymiarach: a = 50 m oraz b = 100 m.

Sposób II

Przyjmiemy oznaczenia jak na rysunku w zadaniu. Długość liny użytej do wytyczenia kąpieliska – po uwzględnieniu warunków zadania – można zapisać równaniem

$$2a + b = 200$$

Stąd wyznaczamy a: $a = 100 - \frac{1}{2}b$.

Z warunków zadania wynika, że

$$a > 0$$
 i $b > 0$

Powierzchnia P kapieliska jest równa polu prostokata o bokach długości a oraz b. Zatem

$$P = a \cdot b$$

Powierzchnię kąpieliska wyrażamy jako funkcję jednej zmiennej b. W tym celu podstawiamy $a=100-\frac{1}{2}b$ i otrzymujemy

$$P(b) = b \left(100 - \frac{1}{2}b \right)$$

Wyznaczamy dziedzinę funkcji P. Wykorzystamy związek między wymiarami a i b oraz wykorzystamy warunki, jakie te wymiary spełniają

$$a = 100 - \frac{1}{2}b > 0$$
 oraz $b > 0$

Zatem

$$b < 200$$
 oraz $b > 0$

Zmienna *b* może przyjmować wartości z przedziału (0, 200).

Wykresem funkcji P jest fragment paraboli skierowanej ramionami do dołu. Obliczamy pierwszą współrzędną wierzchołka paraboli jako średnią arytmetyczną pierwiastków równania:

$$b\left(100 - \frac{1}{2}b\right) = 0$$

Pierwiastkami tego równania są liczby

$$b_1 = 0$$
 oraz $b_2 = 200$

Zatem pierwsza współrzędna wierzchołka paraboli jest równa

$$p = \frac{b_1 + b_2}{2} = 100 \in (0, 200)$$

Zatem funkcja *P* przyjmuje wartość największą dla argumentu 100.

Obliczamy drugi wymiar, dla którego kąpielisko ma największą powierzchnię:

$$a = 100 \text{ m} - \frac{1}{2} \cdot 100 \text{ m} = 50 \text{ m}$$

Największą powierzchnię ma kąpielisko o wymiarach: a = 50 m oraz b = 100 m.

Zadanie 21. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.6) stosuje wzory na pole wycinka koła
1. Stosowanie obiektów matematycznych	[].
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 22. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.8) korzysta z cech podobieństwa
1. Stosowanie obiektów matematycznych	trójkątów.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 23. (0-2)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.4) korzysta z własności kątów
1. Stosowanie obiektów matematycznych	i przekątnych w [] równoległobokach,
i operowanie nimi, interpretowanie pojęć	rombach [];
matematycznych.	VIII.8) korzysta z cech podobieństwa
3.Tworzenie pomocniczych obiektów	trójkątów.
matematycznych na podstawie istniejących,	
w celu przeprowadzenia argumentacji lub	
rozwiązania problemu.	

Zasady oceniania

2 pkt – poprawna metoda obliczenia długości boku rombu oraz poprawny wynik: $a = \frac{48}{7}$.

1 pkt – zapisanie związku między długościami odcinków wynikającego z podobieństwa odpowiednich trójkątów, np. $\frac{|AF|}{|EF|} = \frac{|AB|}{|BD|}, \frac{|BF|}{|FG|} = \frac{|AB|}{|AC|}, \frac{|KH|}{|OD|} = \frac{|KC|}{|OC|}, \frac{|KG|}{|OB|} = \frac{|KC|}{|OC|}$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Niech *a* oznacza długość boku rombu.

Trójkąty *AEF* i *ADB* są podobne oraz trójkąty *FBG* i *ABC* są podobne (na mocy cechy *kkk* podobieństwa trójkątów).

Zatem mamy zależności:

$$\frac{|AF|}{|EF|} = \frac{|AB|}{|BD|}$$
 oraz $\frac{|BF|}{|FG|} = \frac{|AB|}{|AC|}$

$$\frac{|AF|}{a} = \frac{|AB|}{12}$$
 oraz $\frac{|BF|}{a} = \frac{|AB|}{16}$

Zatem

$$|AF| = \frac{|AB| \cdot a}{12}$$
 oraz $|BF| = \frac{|AB| \cdot a}{16}$

Wobec tego

$$|AB| = |AF| + |BF| = \frac{|AB| \cdot a}{12} + \frac{|AB| \cdot a}{16}$$

Zatem

$$1 = \frac{a}{12} + \frac{a}{16}$$

Wynika stąd, że $a = \frac{48}{7}$.

Długość boku rombu EFGH jest równa $\frac{48}{7}$.

Sposób II

Niech a oznacza długość boku rombu. Z warunków zadania mamy |0D|=6, |0C|=8.

Punkt K jest punktem przecięcia przekątnej AC równoległoboku z bokiem GH rombu. Punkt L jest punktem przecięcia przekątnej BD równoległoboku z bokiem EH rombu.

Trójkąty HKC i DOC są podobne oraz trójkąty GKC i BOC są podobne (na mocy cechy kkk podobieństwa trójkątów), zatem

$$\frac{|KH|}{|OD|} = \frac{|KC|}{|OC|} \text{ oraz } \frac{|KG|}{|OB|} = \frac{|KC|}{|OC|}$$

Stad

$$\frac{|KH|}{6} = \frac{|KG|}{6}$$

Zatem $|KH| = |KG| = \frac{a}{2}$.

Analogicznie $|LH| = |LE| = \frac{a}{2}$.

Ponieważ boki czworokąta LOKH są równoległe do boków rombu EFGH, więc LOKH również jest rombem i każdy z jego boków ma długość $\frac{a}{2}$.

Możemy zatem obliczyć długość odcinka $|KC| = |OC| - |OK| = 8 - \frac{a}{2}$.

Korzystając ponownie z podobieństwa trójkątów HKC i DOC, mamy

$$\frac{|KH|}{|OD|} = \frac{|KC|}{|OC|}$$

$$\frac{\frac{a}{2}}{6} = \frac{8 - \frac{a}{2}}{8}$$

Stad

$$a = \frac{48}{7}$$

Długość boku rombu EFGH jest równa $\frac{48}{7}$.

Zadanie 24. (0-2)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: VII.2) korzysta z wzorów $\sin^2\alpha + \cos^2\alpha = 1, \ \ \text{tg}\alpha = \frac{\sin\alpha}{\cos\alpha};$ VII.3) stosuje [] wzór na pole trójkąta $P = \frac{1}{2} \cdot a \cdot b \cdot \sin\gamma.$ VIII.11) stosuje funkcje trygonometryczne do wyznaczania długości odcinków [].

Zasady oceniania

2 pkt – obliczenie pola trójkąta ABC i zapisanie poprawnego wyniku: $P=\frac{18}{5}$.

1 pkt – obliczenie sinusa kąta α : $\sin \alpha = \frac{3}{5}$

ALBO

obliczenie długości wysokości trójkąta ABC: $h=\frac{12}{5}$,

ALBO

obliczenie kwadratu długości boku BC: $|BC|^2 = \frac{29}{5}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Z warunków zadania mamy: |AC| = 4, |AB| = 3.

Oznaczmy przez α miarę kąta BAC. Wtedy $\cos \alpha = \frac{4}{5}$.

$$P = \frac{1}{2} \cdot |AB| \cdot |AC| \cdot \sin \alpha$$

Korzystając z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$, obliczamy sinus kąta α :

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{\frac{9}{25}} = \frac{3}{5}$$

Zatem

$$P = \frac{1}{2} \cdot 3 \cdot 4 \cdot \frac{3}{5} = \frac{18}{5}$$

Pole trójkąta ABC jest równe $\frac{18}{5}$.

Sposób II

Z warunków zadania mamy: |AC| = 4, |AB| = 3.

Niech h oznacza wysokość CD trójkąta ABC opuszczoną z wierzchołka C, natomiast α – miarę kąta BAC.

Wtedy
$$\cos \alpha = \frac{4}{5}$$
.

Aby obliczyć pole P trójkąta ABC, zastosujemy wzór

$$P = \frac{1}{2} \cdot |AB| \cdot |CD|$$

W tym celu najpierw obliczamy długość odcinka AD:

$$\frac{4}{5} = \frac{|AD|}{4}$$
$$|AD| = \frac{16}{5}$$

Korzystając z twierdzenia Pitagorasa dla trójkąta ADC, obliczamy wysokość h = |CD|:

$$|AD|^{2} + |CD|^{2} = |AC|^{2}$$

$$\left(\frac{16}{5}\right)^{2} + h^{2} = 4^{2}$$

$$h^{2} = 16 - \frac{256}{25}$$

$$h^{2} = \frac{144}{25}$$

$$h = \frac{12}{5}$$

Obliczamy pole trójkąta ABC:

$$P = \frac{1}{2} \cdot 3 \cdot \frac{12}{5} = \frac{18}{5}$$

Pole trójkąta ABC jest równe $\frac{18}{5}$.

Sposób III

Z warunków zadania mamy: |AC| = 4, |AB| = 3.

Z twierdzenia cosinusów mamy:

$$|BC|^2 = 3^2 + 4^2 - 2 \cdot 3 \cdot 4 \cdot \frac{4}{5} = \frac{29}{5}$$

$$|BC| = \sqrt{\frac{29}{5}} = \frac{\sqrt{145}}{5}$$

Obwód O_{ABC} trójkąta ABC jest równy

$$O_{ABC} = 4 + 3 + \frac{\sqrt{145}}{5} = \frac{35 + \sqrt{145}}{5}$$

Stosując wzór Herona, obliczamy pole *P* trójkąta *ABC*:

$$P = \sqrt{\frac{35 + \sqrt{145}}{10} \cdot \frac{35 - \sqrt{145}}{10} \cdot \frac{\sqrt{145} - 5}{10} \cdot \frac{\sqrt{145} + 5}{10}} =$$

$$= \sqrt{\frac{1225 - 145}{100} \cdot \frac{145 - 25}{100}} = \sqrt{\frac{1080}{100} \cdot \frac{120}{100}} = \frac{360}{100} = \frac{18}{5}$$

Pole trójkąta ABC jest równe $\frac{18}{5}$.

Sposób IV

Z warunków zadania mamy: |AC|=4, |AB|=3. Niech D będzie punktem przecięcia prostej AB z prostą prostopadłą do prostej AC przechodzącą przez punkt C.

Wtedy trójkąt ADC jest prostokątny, a ponieważ $\cos \alpha = \frac{4}{5}$ oraz |AC| = 4, więc jest to trójkąt egipski. Zatem |AD| = 5 oraz |CD| = 3.

Pole trójkata ADC jest równe

$$P_{ADC} = \frac{1}{2} \cdot 3 \cdot 4 = 6$$

Trójkąty ABC i ADC mają wspólną wysokość h poprowadzoną z wierzchołka C. Możemy ją wyznaczyć ze wzoru na pole trójkąta ADC:

$$P_{ADC} = \frac{1}{2} \cdot 5 \cdot h = 6$$

Stąd
$$h = \frac{12}{5}$$
.

Obliczamy pole trójkąta ABC:

$$P = \frac{1}{2} \cdot 3 \cdot \frac{12}{5} = \frac{18}{5}$$

Pole trójkąta ABC jest równe $\frac{18}{5}$.

Zadanie 25.1. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.3) rozpoznaje wielokąty foremne
1. Stosowanie obiektów matematycznych	i korzysta z ich podstawowych własności.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 25.2. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.3) rozpoznaje wielokąty foremne
1. Stosowanie obiektów matematycznych	i korzysta z ich podstawowych własności.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 26. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	VIII.4) korzysta z własności kątów
1. Stosowanie obiektów matematycznych	i przekątnych w [] trapezach;
i operowanie nimi, interpretowanie pojęć	VIII.8) korzysta z cech podobieństwa
matematycznych.	trójkątów;
	VIII.9) wykorzystuje zależności między
	obwodami [] figur podobnych.

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 27. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.4) posługuje się równaniem okręgu
1. Stosowanie obiektów matematycznych	$(x-a)^2 + (y-b)^2 = r^2$.
i operowanie nimi, interpretowanie pojęć	
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 28. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.1) rozpoznaje wzajemne położenie
1. Stosowanie obiektów matematycznych	prostych na płaszczyźnie na podstawie ich
i operowanie nimi, interpretowanie pojęć	równań [].
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 29. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	IX.2) posługuje się równaniem prostej na
1. Stosowanie obiektów matematycznych	płaszczyźnie w postaci kierunkowej, w tym
i operowanie nimi, interpretowanie pojęć	wyznacza równanie prostej o zadanych
matematycznych.	własnościach (takich jak na przykład
	przechodzenie przez dwa dane punkty,
	znany współczynnik kierunkowy,
	równoległość [] do innej prostej []).

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 30.1. (0-1)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	X.1) rozpoznaje wzajemne położenie
1. Stosowanie obiektów matematycznych	prostych w przestrzeni [];
i operowanie nimi, interpretowanie pojęć	X.4) oblicza objętości [] ostrosłupów [].
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 30.2. (0-2)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: X.2) posługuje się pojęciem kąta między prostą a płaszczyzną. VII.1) wykorzystuje definicje funkcji sinus, cosinus i tangens dla kątów od 0° do
	180° [].

Zasady oceniania

2 pkt – obliczenie wartości cosinusa kąta α : $\cos \alpha = \frac{\sqrt{3}}{3}$.

1 pkt – obliczenie długości odcinka AO: $|AO| = \frac{9\sqrt{2}}{2}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Oznaczamy przez O spodek wysokości ostrosłupa ABCDW. Wtedy wysokość ostrosłupa jest równa |OW| = 9.

Odcinek AC jest przekątną kwadratu o boku 9, zatem jego długość jest równa $9\sqrt{2}$. Odcinek AO stanowi jego połowę, więc $|AO|=\frac{9\sqrt{2}}{2}$.

Z twierdzenia Pitagorasa dla trójkąta AOW mamy:

$$|AO|^2 + |OW|^2 = |AW|^2$$

Podstawiamy długości odcinków:

$$\left(\frac{9\sqrt{2}}{2}\right)^{2} + 9^{2} = |AW|^{2}$$
$$|AW|^{2} = 9^{2} \left(\frac{2}{4} + 1\right)$$
$$|AW| = \frac{9\sqrt{6}}{2}$$

Oznaczamy kąt WAO przez α . Obliczamy cosinus kąta α :

$$\cos \alpha = \frac{|AO|}{|AW|} = \frac{\frac{9\sqrt{2}}{2}}{\frac{9\sqrt{6}}{2}} = \frac{\sqrt{2}}{\sqrt{6}} = \frac{\sqrt{3}}{3}$$

Sposób II

Oznaczamy przez O spodek wysokości ostrosłupa ABCDW. Wtedy wysokość ostrosłupa jest równa |OW| = 9.

Odcinek AC jest przekątną kwadratu o boku 9, zatem jego długość jest równa $9\sqrt{2}$. Odcinek AO stanowi jego połowę, więc $|AO|=\frac{9\sqrt{2}}{2}$.

Oznaczamy kąt WAO przez α .

$$tg \alpha = \frac{|OW|}{|AO|} = \frac{9}{\frac{9\sqrt{2}}{2}} = \sqrt{2}$$

Korzystając z tożsamości trygonometrycznej $\operatorname{tg}\alpha = \frac{\sin\alpha}{\cos\alpha}$, mamy

$$\frac{\sin\alpha}{\cos\alpha} = \sqrt{2}$$

$$\sin \alpha = \sqrt{2} \cos \alpha$$

Stąd z tożsamości $\sin^2 \alpha + \cos^2 \alpha = 1$ mamy

$$2\cos^{2}\alpha + \cos^{2}\alpha = 1$$
$$3\cos^{2}\alpha = 1$$
$$\cos^{2}\alpha = \frac{1}{3}$$

Ponieważ kąt $\, \alpha \,$ jest ostry, więc

$$\cos\alpha = \frac{\sqrt{3}}{3}$$

Zadanie 31. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	X.5) wykorzystuje zależność między
1. Stosowanie obiektów matematycznych	objętościami graniastosłupów []
i operowanie nimi, interpretowanie pojęć	podobnych.
matematycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Zadanie 32. (0-1)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XII.1) oblicza prawdopodobieństwo
2. Dobieranie i tworzenie modeli	w modelu klasycznym.
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 33. (0-2)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XII.2) oblicza średnią arytmetyczną [];
1. Stosowanie obiektów matematycznych	XII.3) oblicza odchylenie standardowe
i operowanie nimi, interpretowanie pojęć	zestawu danych (także w przypadku danych
matematycznych.	odpowiednio pogrupowanych), interpretuje
	ten parametr dla danych empirycznych.

Zasady oceniania

- 2 pkt wyznaczenie końców przedziału wyznaczonego przez jedno odchylenie standardowe od średniej oraz zapisanie numerów donic, w których liczby wykiełkowanych nasion mieszczą się w tym przedziale: 126, 154, I, II, IV.
- 1 pkt poprawna metoda obliczenia średniej liczby wykiełkowanych nasion i obliczenie tej średniej: $\bar{x}=140$.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Na podstawie wyników eksperymentu obliczamy średnią liczbę wykiełkowanych nasion:

$$\bar{x} = \frac{133 + 140 + 119 + 147 + 161}{5} = \frac{700}{5} = 140$$

Ponieważ odchylenie standardowe w tym doświadczeniu jest równe $\sigma=14$, więc przedział określony przez to odchylenie standardowe od średniej będzie równy

$$(\bar{x} - \sigma, \bar{x} + \sigma) = (126, 154)$$

Numery donic, w których liczby wykiełkowanych nasion mieszczą się w tym przedziale, to: I, II oraz IV.