BESIII Oxford Group Meeting

Martin Tat

Oxford LHCb

4th February 2021

Introduction

- Aim: Measure c_i and s_i in the decay $D \to K^+K^-\pi^+\pi^-$, $D = D^0, \bar{D^0}$
- \bullet End goal: Model independent binned analysis to measure γ at LHCb
- So far:
 - Familiarized myself with BOSS and BESIII analysis
 - Ran a single tagging on 2% of the 2010 MC inclusive sample (20x luminosity)
 - Sorted events into signal and background categories

Initial single tagging

Figure 1: Initial single tagging

Separation into categories

- Compared MC truth on energy, momentum and particle ID to reconstruction to sort events into categories
- Matched four-momentum by minimizing the squared deviation
- Categories:
 - $K^+K^-\pi^+\pi^-$ signal
 - $D o K_S^0 K^+ K^-$ peaking background
 - Combinatorial background
 - Other backgrounds
- Kalman kinematic fitting, constrain D mass and daugther track origins

Separation into categories

Figure 2: Signal and background categories

Kalman fit

Figure 3: Kalman kinematic fitting

K_S^0 veto

Figure 4: $\pi^+\pi^-$ invariant mass spectrum

Next steps

- Double tags (which tag modes should I use?)
- K_S^0 reconstruction?
- Detailed study of background