Student: Phong Vo Date: 05/04/18 Instructor: Chuck Ormsby

Course: Multi-Variable and Vector Calculus -- Calculus III Spring 2018

Assignment: Section 15.6 Homework

1. Explain how to compute the surface integral of a scalar-valued function f over a sphere using an explicit description of the sphere.

Choose the correct answer below.

- A. Compute $\int_{0}^{2\pi} \int_{0}^{h} f(a \cos u, a \sin u, v) dv du.$
- **B.** Compute $\int_{0}^{\pi} \int_{0}^{2\pi} f(a \sin u \cos v, a \sin u \sin v, a \cos u)a^2 \sin u dv du.$
- C. Compute $\int_{0}^{\pi} \int_{0}^{2\pi} f(a \sin u \cos v, a \sin u \sin v, a \cos u) dv du.$
- D. Compute $\int_{0}^{2\pi} \int_{0}^{\pi} f(a \cos u, a \sin u, v)a^{2} \sin u \, dv \, du.$
- 2. Explain how to compute a surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$ over a hemisphere using a parametric description of a hemisphere of radius a and a given orientation.

Choose the correct answer below.

- A. Compute $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} a^{2} \sin u (f \tan u \cos v + g \tan u \sin v + h) dv du.$
- C. Compute $\int_{0}^{2\pi} \int_{0}^{h} (f \cos u + g \sin u + hv) dv du.$
- O. Compute $\int_{0}^{\frac{\pi}{2}} \int_{0}^{2\pi} (f \tan u \cos v + g \tan u \sin v + h) dv du.$

5/4/2	018 Section 15.6 Homework-Phong Vo
3.	Give a parametric description of the form $\mathbf{r}(u,v) = \langle x(u,v),y(u,v),z(u,v) \rangle$ for the frustum of the cone $z^2 = x^2 + y^2$, for $5 \le z \le 7$.
	Select the correct choice below.
	\checkmark A. $r(u,v) = \langle v \cos u, v \sin u, v \rangle, 0 \le u \le 2\pi, 5 \le v \le 7$
	B. $\mathbf{r}(u,v) = \langle 7v \cos u, 5v \sin u, v \rangle$, 0 ≤ u ≤ 2π, 5 ≤ v ≤ 7
	C. $\mathbf{r}(\mathbf{u},\mathbf{v}) = \langle 7\mathbf{v} \cos \mathbf{u}, 5\mathbf{v} \sin \mathbf{u}, \mathbf{v} \rangle$, $0 \le \mathbf{u} \le 2\pi$, $5 \le \mathbf{v} \le 7$
	○ E. $\mathbf{r}(u,v) = \left(\frac{5v}{7}\cos u, \frac{5v}{7}\sin u, v\right), 0 \le u \le 2\pi, 5 \le v \le 7$
4.	Describe the surface with the parametric representation shown below.
	$\mathbf{r}(u,v) = \langle v \cos u, v \sin u, 5 v \rangle$, for $0 \le u \le 2\pi$, $0 \le v \le 1$
	Select the correct choice below and fill in the answer boxes within your choice.
	A. The surface is a cylinder with a height of and a radius of .
	B. The surface is a sphere with its center at (,,) and a radius of,
	C. The surface is a cone with height of 5 and radius of 1 at the widest point.
5.	Find the area of the surface of the half cylinder $\{(r,\theta,z): r=4, 0 \le \theta \le \pi, 0 \le z \le 6\}$ using a parametric description of the surface.
	The surface area is 24π . (Type an exact answer, using π as needed.)
6.	Evaluate the surface integral $\iint_{S} f(x,y,z) dS$ using a parametric description of the surface.
	$f(x,y,z) = 4x^2 + 4y^2$, where S is the hemisphere $x^2 + y^2 + z^2 = 9$, for $z \ge 0$
	The value of the surface integral is

(Type an exact answer, using π as needed.)

7. Find the area of the following cone using the given explicit description of the surface.

$$z^2 = 9(x^2 + y^2)$$
, for $0 \le z \le 9$

 $9\pi\sqrt{10}$ The surface area is

(Type an exact answer, using π as needed.)

The flux is ____(Simplify your answer.)

0/4/2	Section 15.6 nomework-Priority vo
8.	Evaluate the surface integral $\iint_{S} f(x,y,z) dS$ using an explicit representation of the surface.
	$f(x,y,z) = e^{z}$, S is the plane $z = 18 - 2x - 6y$ in the first octant.
	The value of the surface integral is .
	(Type an exact answer, using radicals as needed.)
9.	Find the average temperature on that part of the plane $x + 3y + z = 7$ over the square $ x \le 1$, $ y \le 1$, where the temperature is given by $T(x,y,z) = e^{-z}$.
	The average value is .
	(Type an exact answer, using radicals as needed.)
10.	Find the flux of the vector field $\mathbf{F} = \langle 0,0,3 \rangle$ across the slanted face of the tetrahedron $z = 1 - x - y$ in the first octant with the normal vectors pointing in the positive z-direction. You may use either an explicit or parametric description of the surface.

ttns://xlitemnrod	nearsoncma	com/ani/v1/print/math	