Abstract Algebra

: Lecture 11

Leo

2024.10.31

Let G be a finite group with $|G| = p^e m$ s.t. gcd(p, m) = 1. $|G|_p = p^e$. Recall: A Sylow p-subgroup of G is a subgroup $H \leq G$ s.t. $|H| = p^e$. We already proved the existence of Sylow p-subgroups. Today we will talk about the relation between Sylow p-subgroups and the number of Sylow p-subgroups.

Theorem 1. Sylow 1st Theorem: Let G be a finite group with $|G| = p^e m$ s.t. gcd(p, m) = 1. Then Sylow p-subgroup exists.

Theorem 2. Sylow 2nd Theorem: Let G be a finite group with $|G| = p^e m$ s.t. gcd(p, m) = 1. Let P be a Sylow p-subgroup of G. Let $H \leq G$ s.t. $|H| | p^e$. Then H is conjugated to a subgroup of P. In particular, all Sylow p-subgroups are conjugate to each other. G has only one Sylow p-subgroup if and only if P is normal in G.

证明. Let $\Omega = [G:P] = \{Px | x \in G\}$, then G acts on Ω by right multiplication. $g:Px \mapsto Pxg, \forall g, x \in G$. Then the map is a group action of G on Ω , and it is transitive. This is called a coset action. (transitive permutation representation).

Of course, H acts on the set Ω in the same way. Which may be intransitive. The size $|\Omega| = \frac{|G|}{|P|} = m$, is coprime to p. And each orbit of H on Ω has size dividing |H| by orbit-stabilizer theorem.

So there exists at least one orbit of H of size 1. Namely H fixes a point Px for some $x \in G$. Now $G_{Px} = \{g \in G | Pxg = Px\}$ is conjugate to $G_P = P$, and it shows $H \leq G_{Px}$ for some $x \in G$, i.e. H is conjugated to a subgroup of P (all stabilizers are conjugate because of transitivity).

If $G
subseteq \Omega$ transitive then all stabilizers are conjugate: Let $x \in g^{-1}G_{\alpha}g$. Then $x = g^{-1}hg$ for some $h \in G_{\alpha}$. And $(\alpha^g)^x = (\alpha^g)^{g^{-1}hg} = (\alpha^h)^g = \alpha$. So $g^{-1}G_{\alpha}g \leq G_{\alpha}$. Similarly $g^{-1}G_{\alpha}g \geq G_{\alpha}$. So $g^{-1}G_{\alpha}g = G_{\alpha}$.

Theorem 3. Sylow 3rd theorem. Let G be a finite group and p a prime dividing |G|. Then $n_p \mid m$ and $n_p \equiv 1 \pmod{p}$.

证明. Let $P \in Syl_p(G)$, and let $N = N_G(P) = \{g \in G | g^{-1}Pg = P\}$, called the normalizer of P in G. Then P is a normal subgroup of N, and N is a subgroup of G. Then $m = \frac{|G|}{|P|}$, and $n_p = |Syl_p(G)|$. By thm 2 G is transitive on the set $Syl_p(G)$ with stabilizer of P which is $N_G(P)$. Thus $n_p = |Syl_p(G)| = \frac{|G|}{|N_G(P)|}$ i.e $n_p \frac{|N_G(P)|}{|P|} = \frac{|G|}{|N_G(P)|} \frac{|N_G(P)|}{|P|} = m$, it shows $n_p \mid m$.

G is transitive on $Syl_P(G)$ with stabilizer $N_G(P)$ (by conjugate action). Recall $Syl_P(G)$, size n_P . Now P acts on $Syl_P(G)$ by conjugation. Then each orbit of P has size dividing |P|. As $gcd(p, n_P) = 1$, there exists **exactly one** orbit of size 1. Therefore $n_P \equiv 1 \pmod{p}$.

Proof for **exactly one**: Let $P, Q \in Syl_p(G)$. Then by conjugation, P fixes Q iff $\forall x \in P$, $x^{-1}Qx = Q$, so $x \in N_G(Q)$, in other words $P \leq N_G(Q)$. But according to Sylow 2nd thm, $N_G(Q)$ has only one Sylow p-subgroup which is Q, thus P = Q.

Example 4. Consider A_4 and S_4 . $|A_4| = 12$, $|S_4| = 24$. A_4 dose not have a subgroup of order 6. S_4 has a subgroup of order 6.

Exercise 5. Prove: A_4 dose not have a subgroup of order 6. S_4 has a subgroup of order 6.

Example 6. Conjecture: Let n be a positive integer which is not a power of a prime. Then there exist a finite group G which $n \mid |G|$ s.t. G dose not have a subgroup of order n.

Exercise 7. If |G| = 2p, then $G = C_{2p}$ or $G = D_{2p}$.

证明. By Sylow 3rd thm $G_p \triangleleft G$ so let $x \in G_2$ the conjugation action induces an order \leq two automorphism of $\langle g \rangle = G_p = C_p$ we already know $\operatorname{Aut}(C_p) = C_{p-1}$ only identity and $\sigma : g \mapsto g^{-1}$ has order 2. The fist one shows $G = C_{2p}$ and the second one shows $G = D_{2p}$.

Exercise 8. Let |G| = pq where p > q are primes. Prove that $G_p \triangleleft G$, and either G is cyclic or $q \mid p-1$.

证明. Just consider Sylow 3rd thm.