VOCABULAIRE USUEL

1

- 1) Montrer que la fonction $x \mapsto x \frac{1}{x}$ est injective sur \mathbb{R}_{+}^{*} . Et sur \mathbb{R}^{*} ?
- 2) a) La fonction $x \mapsto xe^x$ est-elle injective sur \mathbb{R} ? **b)** Déterminer son image.
- 3) Déterminer l'image de la fonction $x \mapsto x^n \ln x$ pour tout $n \in \mathbb{N}^*$.
- 4) a) La fonction $x \stackrel{f}{\longmapsto} \sqrt{x^2 + x + 1}$ est-elle injective sur \mathbb{R} ?
 - **b)** Déterminer f(]-2,4]).
- 5) a) Sur quels intervalles (les plus grands possible) la fonction $x \xrightarrow{f} x^2 + 4x + 1$ est-elle injective ? **b)** Déterminer f([-3, 0]).

2

(2) Tracer rapidement l'allure du graphe des fonctions :

1)
$$x \longmapsto \sqrt{3x-4}$$
.

$$x \mapsto \sqrt{3x-4}$$
. **2)** $x \mapsto \frac{5}{2x+1}$. $x \mapsto 1 + \ln(2-x)$.

- \bigcirc On note f la fonction $x \longmapsto \sqrt{2-x}$.
- 1) Tracer rapidement l'allure du graphe de f.
- 2) Déterminer les points fixes de f et montrer que [0,2] et [-2,2] sont stables par f.

- 1) Montrer, grâce au TVI strictement monotone, que la fonction $x \stackrel{f}{\longleftrightarrow} \sqrt{x^3 - 1}$ est bijective de $[1, +\infty[$ sur son image (à préciser).
- 2) Retrouver le résultat de la question 1) et déterminer une expression explicite de f^{-1} en résolvant l'équation y = f(x) d'inconnue $x \in [1, +\infty[$.

 \bigcirc Montrer que la fonction $x \mapsto \sqrt{x^2 - 1}$ est bijective de $[1, +\infty[$ sur son image (à préciser) et déterminer une expression explicite de sa réciproque.

- 1) Montrer que la somme d'une fonction croissante et d'une fonction décroissante peut n'être ni croissante ni décroissante.
- 2) Montrer que la somme de deux fonctions majorées (resp. bornées) est majorée (resp. bornée).
- 3) Le produit de deux fonctions majorées (resp. bornées) est-il majoré (resp. borné)?

(2) Que dire de la dérivée d'une fonction dérivable paire? impaire? périodique?

Déterminer une expression explicite de la fonction affine f dans chacun des cas suivants :

- 1) Le graphe de f coupe l'axe des abscisses en 3 et a pour pente 2.
- 2) Le graphe de f passe par les points de coordonnées (-1,2) et (2,1).

- 1) Tracer le graphe de $x \mapsto 2|x-1|-|x+1|$.
- 2) Déterminer une expression explicite par morceaux de la fonction représentée ci-dessous.

(b) (c) Déterminer les ensembles de définition, de continuité et de dérivabilité des fonctions :

- 1) $x \mapsto \sqrt{\ln x}$. 2) $x \mapsto \ln(4x x^2)$. 3) $x \mapsto \sqrt{2 |x 3|}$. 4) $x \mapsto \sqrt{e^x + 2e^{-x} 3}$. 5) $x \mapsto \frac{\ln(x^2 4)}{\sqrt{4x^2 2x + 1}}$.

(b) (b)

11 1) Étudier la parité/imparité, les variations, les limites aux bornes et la convexité/concavité de la fonctions $x \mapsto \frac{x^3}{x^2 - 3}$. 2) Même question sans la convexité/concavité avec

la fonction $x \mapsto \sqrt{\frac{\ln|x|}{x}}$.

(b) (c) Déterminer le nombre de racines réelles des fonctions polynomiales : 1) $x \mapsto x^5 - x^3 + 1$.

2) $x \mapsto 4x^3 - 18x^2 + 24x - 9$.

LOGARITHME, EXPONENTIELLE **ET PUISSANCES**

13

- 1) Étudier pour tout a > 0 les variations de la fonction $x \mapsto a^x$ sur \mathbb{R} , dite exponentielle de base a.
 - 2) Résoudre l'équation $2^x + 3^x = 5$ d'inconnue $x \in \mathbb{R}$.

14

- 1) Étudier les variations, les limites aux bornes et la convexité/concavité de la fonction $x \stackrel{f}{\longmapsto} x^x$.
- 2) Combien l'équation $y = x^x$ d'inconnue x > 0 possèdet-elle de solutions pour tout $y \in \mathbb{R}$?

15

- 1) Montrer que l'équation $x \ln x = 1$ d'inconnue $x \in \mathbb{R}_{+}^{*}$ possède une et une seule solution.
- 2) Montrer que l'équation $e^{-x^2} = e^x 1$ d'inconnue $x \in \mathbb{R}$ possède une et une seule solution.
- 3) $\bigcirc \bigcirc \bigcirc$ Combien la fonction $x \mapsto 1 + \frac{x}{\ln x}$ possèdet-elle de points fixes?
- **4)** P Montrer que la fonction f définie sur \mathbb{R} par f(0) = 1 et pour tout $x \in \mathbb{R}^*$: $f(x) = \frac{e^x - 1}{x}$ est bijective de \mathbb{R} sur \mathbb{R}_+^*

- 1) Comparer $(1+x)^{\alpha}$ et $1+\alpha x$ pour tous $\alpha \in \mathbb{R}$ et
- **2)** En déduire que pour tous $\alpha \in [0,1]$ et $n \in \mathbb{N}^*$:

$$\prod_{k=1}^{n} \left(1 + \frac{\alpha}{k} \right) \ge (n+1)^{\alpha}.$$

 \bigcirc \bigcirc Montrer que pour tout $n \ge 2$:

$$\left(1+\frac{1}{n}\right)^n \le e \le \left(1-\frac{1}{n}\right)^{-n}.$$

Montrer, en étudiant une fonction BIEN CHOISIE, que :

- 1) P pour tout $x \le 1$: $e^x \le 1 + x + \frac{ex^2}{2}$.
- 2) 9 pour tout $x \in]0,1[: x^{x}(1-x)^{1-x} \ge \frac{1}{2}.$ 3) 9 pour tout $x \in \mathbb{R}^{*}: \frac{e^{x}-1}{x} \ge x + e 2.$ 4) 9 9 pour tout x > 0:

$$x \ln x - (x-1) \ge \frac{3(x-1)^2}{2(x+2)}$$
.

1) a) Étudier le signe de :

$$x \longmapsto (x-1)\ln(1+x)-x\ln x \quad \text{sur } [1,+\infty[.$$

b) En déduire les variations de :

$$x \stackrel{\varphi}{\longmapsto} \ln(1+x) \ln\left(1+\frac{1}{x}\right) \quad \text{sur} [1,+\infty[.$$

- c) En déduire les variations de φ sur \mathbb{R}_+^* . On pourra s'intéresser à la fonction $x \mapsto \varphi\left(\frac{1}{x}\right)$.
- **2)** En déduire que pour tous *a*, *b* :

$$\ln\left(1+\frac{a}{b}\right)\ln\left(1+\frac{b}{a}\right) \le (\ln 2)^2.$$

 \bigcirc \bigcirc Soit $p \in]0,1[$. On pose q=1-p et on note f la fonction $x \longmapsto \ln \frac{1+qx}{1-px}$.

- 1) Étudier les variations de f et ses limites aux bornes.
- **2)** Montrer que pour tout *x* bien choisi :

$$f\left(\frac{1}{p} - \frac{1}{q} - x\right) = 2\ln\frac{q}{p} - f(x).$$

Qu'en déduit-on sur le graphe de f ?

- P Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ une fonction. On suppose que pour tout $x \geq 0: f(x) \operatorname{e}^{f(x)} = x$. Étudier les variations de f.
- 22 $\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$ Montrer l'inégalité : $e^x \ge \sum_{k=0}^n \frac{x^k}{k!}$ tous $n \in \mathbb{N}$ et $x \ge 0$.

FONCTIONS HYPERBOLIQUES

P Montrer que pour tous $x, y \in \mathbb{R}$: 23

- $\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y.$
- ch(x + y) = ch x ch y + sh x sh y. $th(x + y) = \frac{th x + th y}{1 + th x th y}.$
- Montrer que la fonction $x \longmapsto \frac{1}{\operatorname{ch} x}$ possède un unique point fixe.
- Montrer que:
 - 1) 9 pour tout $x \ge 0$: $\operatorname{sh} x \ge x$

et
$$\operatorname{ch} x \ge 1 + \frac{x^2}{2}$$
.

- (b) (b) 26
 - 1) Montrer que la fonction sh est bijective de \mathbb{R} sur R et déterminer une expression explicite de sa réciproque en résolvant l'équation $y = \sinh x$ d'inconnue $x \in \mathbb{R}$.
 - 2) Même question avec la fonction th, bijective de \mathbb{R} sur]-1,1[.
 - 3) Même question avec la fonction ch, bijective de \mathbb{R}_+ $sur [1, +\infty[$.
- 27 $n \in \mathbb{N}$ et $x \in \mathbb{R}$. Factoriser la somme $\sum_{k=0}^{n} \operatorname{ch}(2kx)$ pour tous
- - 1) ② Que vaut $\lim_{x\to 0} \frac{\operatorname{th} x}{x}$?
 2) ③ Montrer que : $\operatorname{th}(2x) = \frac{2\operatorname{th} x}{1+\operatorname{th}^2 x}$ tout $x \in \mathbb{R}$.
 - **3)** P P En déduire que pour tout $x \in \mathbb{R}^*$:

$$\prod_{k=1}^{+\infty} \left(1 + \operatorname{th}^2 \frac{x}{2^k} \right) = \frac{x}{\operatorname{th} x}$$