Differential Calculus

Functions of Single Variable

Sequence and Series

- **☐** Sequence
- **□**Series
- **□**Power Series

Sequence: A sequence is an ordered set of real numbers or a list of numbers in a given order.

It may be thought as a function $f: N \subseteq \mathbb{N} \to \mathbb{R}$.

If the number of elements in the sequence is infinite (or domain of f is \mathbb{N}), it is called an *infinite sequence*.

An infinite sequence $a_1, a_2, ..., a_n, ...$ is generally written as $\{a_n\}_{n=1}^{\infty}$.

Example:
$$1, 4, 7, \dots, 1 + 3(n - 1), \dots$$

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$$

$$\frac{1}{2}$$
, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$..., $(-1)^{n+1}$, ...

Convergence of Sequence:

A sequence $\{a_n\}_0^\infty$ converges to the number L if to every positive number ϵ , however small, there exists an integer N such that for all n, $n>N \implies |a_n-L|<\epsilon$

In other words, the sequence $\{a_n\}_0^\infty$ approaches the limit L, if by taking n large enough, we can make $|a_n - L|$ as small as we please.

Notation:
$$\lim_{n\to\infty} a_n = L \text{ OR } a_n \to L$$

If no such number L exists, we say that the sequence **diverges**.

Remark: A convergent sequence has a (unique) limit.

Divergence of Sequence:

The sequence $\{a_n\}$ diverges to ∞ ($a_n \to \infty$) if for every number M there is an integer N such that for all n > N, we have $a_n > M$.

The sequence $\{a_n\}$ diverges to ∞ ($a_n \to -\infty$) if for every number m there is an integer N such that for all n > N, we have $a_n < m$.

A sequence $\{a_n\}_0^{\infty}$ has an infinite limit (divergent series), if, no matter how large the number M may be, an index N can be found such that $a_n > M$ for all n > N. Similar argument for $-\infty$.

Example: Show that $\lim_{n\to\infty}\frac{1}{n}=0$

Consider:
$$\left| \frac{1}{n} - 0 \right| < \epsilon \implies \frac{1}{n} < \epsilon \implies n > \frac{1}{\epsilon}$$

Hence *N* is any natural number such that $N > \frac{1}{\epsilon}$

Thus for any $\epsilon > 0$, there is a natural number N such that $|x_n| < \epsilon$ for every $n \ge N$.

Example: Let
$$a_n = \frac{2n+1}{3n+5}$$
. Show that $\lim_{n\to\infty} a_n = \frac{2}{3}$

$$\left| a_n - \frac{2}{3} \right| = \left| \frac{2n+1}{3n+5} - \frac{2}{3} \right| = \left| \frac{2n+1}{3n+5} - \frac{2}{3} \right| = \frac{7}{3(3n+5)} < \epsilon \quad \Rightarrow 3n+5 > \frac{7}{3\epsilon} \quad \Rightarrow n > \frac{7}{9\epsilon} - \frac{5}{3}$$

Hence *N* is any natural number such that $N > \frac{7}{9\epsilon} - \frac{5}{3}$

L'Hôpital's Rule: If $\lim_{x\to\infty} f(x) = L$ and $a_n = f(n)$ where n is an integer, then $a_n \to L$.

Example: Find the limit of the sequence
$$\left\{\frac{n}{e^n}\right\}_{n=1}^{\infty}$$

Consider
$$\lim_{x \to \infty} \frac{x}{e^x}$$

Using L'Hospitals' rule
$$\lim_{x\to\infty}\frac{1}{e^x}=0$$
 Thus we conclude $\lim_{n\to\infty}\frac{n}{e^n}=0$

Example: Find the limit of the sequence $\sqrt[n]{n}$

Consider
$$y = f(x) = \sqrt[x]{x}$$

$$\ln y = \frac{1}{x} \ln x \quad \Rightarrow \lim_{x \to \infty} \ln y = \lim_{x \to \infty} \frac{1}{x} \ln x = \lim_{x \to \infty} \frac{1}{x} = 0 \qquad \Rightarrow \lim_{x \to \infty} y = 1$$

Thus we conclude
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

Limit Calculations

Let $a_n \to a$ and $b_n \to b$. Then

$$a_n \pm b_n \rightarrow a \pm b$$

$$a_n b_n \to ab$$

$$\frac{a_n}{b_n} \to \frac{a}{b}$$
 if $b \neq 0$ and $b_n \neq 0$ for all n .

Example:
$$\lim_{n \to \infty} \frac{n+1}{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = \lim_{n \to \infty} (1) + \lim_{n \to \infty} \left(\frac{1}{n} \right) = 1$$

Sandwich Theorem: Suppose that $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ are sequences such that $a_n \le b_n \le c_n$ holds for all n beyond some index N. If $a_n \to L$ and $c_n \to L$ then $b_n \to L$.

Example:
$$\frac{\cos n}{n} \to 0$$
 because $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$

Example:
$$\frac{1}{2^n} \to 0$$
 because $0 \le \frac{1}{2^n} \le \frac{1}{n}$

Example:
$$(-1)^n \frac{1}{n} \to 0$$
 because $-\frac{1}{n} \le (-1)^n \frac{1}{n} \le \frac{1}{n}$

Remark: If
$$|b_n| \le c_n$$
 and $c_n \to 0$, then $b_n \to 0$.

Remark: If
$$\lim_{n\to\infty} |a_n| = 0$$
 then $\lim_{n\to\infty} a_n = 0$.

Continuous function theorem for Sequence:

If $a_n \to L$ and if f is a function that is continuous at L and defined at all a_n , then $f(a_n) \to f(L)$.

Example:
$$\sqrt{\frac{n+1}{n}} \to 1$$

Taking
$$a_n = \frac{n+1}{n}$$
, $f(x) = \sqrt{x}$ and $L = 1$

Example:
$$2^{\frac{1}{n}} \rightarrow 1$$

Taking
$$a_n = \frac{1}{n}$$
, $f(x) = 2^x$ and $L = 0$

Bounded sequence: A sequence $\{a_n\}$ is said to be bounded if there exists numbers m and M such that $m \le a_n \le M$ for every n.

If there exists no \widetilde{M} such that $\widetilde{M} < M$ and $a_n \leq \widetilde{M}$ for every n, then M is called *least upper bound of the* $set \{a_n : n \in \mathbb{N}\}.$

Similarly, if there exists no \widetilde{m} such that $\widetilde{m} > m$ and $a_n \geq \widetilde{m}$ for every n, then m is called *greatest lower bound* of the set $\{a_n : n \in \mathbb{N}\}$.

Theorem: Every convergent sequence is bounded, but the converse fails.

There are bounded sequences that do not converge.

Example: The sequence
$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$$
 is convergent and $\left|\frac{n}{n+1}\right| < 1$

The sequence 1,2,3,4,1,2,3,4,1,2,3,4, ... is bounded but not convergent

Boundedness + $? \Rightarrow$ Convergence

- A sequence $\{a_n\}$ is said to be **monotonically increasing (nondecreasing)** if $a_{n+1} \geq a_n$ for every n
- A sequence $\{a_n\}$ is said to be monotonically decreasing (nonincreasing) if $a_{n+1} \leq a_n$ for every n
- A sequence $\{a_n\}$ is said to be monotonic if it is either monotonically increasing or monotonically decreasing

Theorem: Every bounded monotonic sequence is convergent.

Note: A monotonic sequence has always a limit, either finite or infinite; the sequence is convergent provided that $|a_n|$ is less than a number M independent of n; otherwise the sequence diverges.

Theorem: Suppose $\{a_n\}$ is a bounded and increasing sequence. Then the *least upper bound* of the set $\{a_n: n \in \mathbb{N}\}$ is the limit of the sequence $\{a_n\}$.

Theorem: Suppose $\{a_n\}$ is a bounded and decreasing sequence. Then the *greatest lower bound* of the set $\{a_n: n \in \mathbb{N}\}$ is the limit of the sequence $\{a_n\}$.

RECALL:

Sequence: A sequence is an ordered set of real numbers or a list of numbers in a given order.

Convergence: the sequence $\{a_n\}_0^\infty$ approaches the limit L, if by taking n large enough, we can make

 $|a_n - L|$ as small as we please. If no such number L exists, we say that the sequence diverges.

If $\{a_n\}_0^\infty$ tends to $\pm \infty$ as $n \to \infty$, the sequence $\{a_n\}_0^\infty$ is said to be divergent.

If $\{a_n\}_0^\infty$ does not tend to a unique limit as $n\to\infty$ then the sequence $\{a_n\}_0^\infty$ is said to be oscillatory or non-convergent.

Every convergent sequence is bounded, but the converse fails.

Every bounded monotonic sequence is convergent

Subsequence: A subsequence of a sequence $\{a_n\}$ is any sequence of the form $\{b_n\}$, where $b_m=a_{n_m}$ and the n_n are integers with $n_1< n_2< n_3<\cdots$

In other words, a subsequence is formed by considering any infinite subcollection of the terms of a sequence without changing their order.

Example: Consider the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$.

Then one subsequence of this sequence would be $\left\{\frac{1}{n^2}\right\}_{n=1}^{\infty}$

Some properties of sequences and subsequences

1. Changing a finite number of terms in a sequence has no effect on convergence, divergence, or the limit, if it exists.

Example: The sequences
$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots, \frac{1}{n}, \cdots$$
 and $2, 8, 5, \frac{1}{10}, \frac{1}{5}, \frac{1}{6}, \cdots, \frac{1}{n}, \cdots$ both converge to 0

2. Any subsequence of a convergent sequence converges and its limit is the limit of the original sequence.

Example:
$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots$$
 coverges to 0.

And so also its subsequence
$$\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \cdots, \frac{1}{2n}, \cdots$$

3. Any subsequence of a sequence that diverges to ∞ also diverges to ∞

Example: 1, 2, 3, ..., n, ... diverges to ∞ .

Consider its subsequence 1, 8, 27, 64, ..., n^3 , ... Its also diverges to ∞ .

4. Note: If $\{a_n\}$ converges to 0 and $\{b_n\}$ converges, then $\{a_nb_n\}$ converges to zero.

Example: Consider $a_n = \frac{1}{n}$, $b_n = \frac{n}{n+1}$

5. If two subsequences of a given sequence converge to distinct limits, then the sequence diverges.

Example: Consider 1, 2, 3, 1, 2, 3, 1, 2, 3, ...

It contains subsequences 1, 1, 1, ... and 2, 2, 2, ..., for example, and these subsequences converge to 1 & 2

6. The sum, difference, product and quotient of two divergent sequences need not diverge.

Example: Let
$$a_n = (-1)^{n+1}$$
, $b_n = (-1)^n$, $c_n = (-1)^n$

Note that the sequences $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ diverge.

However the sequences $\{a_n+b_n\}$, $\{a_nb_n\}$, $\{a_nb_n\}$ and $\{b_n-c_n\}$ converge.

$$7. \lim_{n \to \infty} a_n = 0 \iff \lim_{n \to \infty} |a_n| = 0$$

Note:
$$\lim_{n \to \infty} a_n = a \implies \lim_{n \to \infty} |a_n| = |a|$$

$$\lim_{n \to \infty} |a_n| = |a| \implies \lim_{n \to \infty} a_n = a$$

$$a \neq 0$$

Example:
$$a_n = \frac{(-1)^n n}{n+1}$$
 $|a_n| \to 1$

$$|a_n| \to 1$$

but a_n does not converge either to 1 or -1

8. If $a_n \le M$ for all n and $a_n \to a$, then $a \le M$. However, even if $a_n < M$ for all M. We may not have a < M.

Examples: Consider
$$a_n = 1 + \frac{1}{n} \le 2$$
 we have $\lim_{n \to \infty} a_n = 1 \le 2$ Consider $a_n = \frac{n}{n+1} < 1$ but $\lim_{n \to \infty} a_n = 1$

9. Suppose f(x) is a function defined for all $x \ge n_0$ and that $\{a_n\}$ is sequence of all real numbers such that $a_n = f(n)$ for $n \ge n_0$. Then

$$\lim_{x \to \infty} f(x) = L \Longrightarrow \lim_{n \to \infty} a_n = L$$

Note that the converse of the above result is not true, i.e., $\lim_{n\to\infty} a_n = L$ may not imply $\lim_{x\to\infty} f(x) = L$

