Introduction to Machine Learning

Advanced Risk Minimization Advanced Classification Losses

Learning goals

- (squared) Hinge loss
- L2 loss defined on scores
- Exponential loss
- AUC loss

HINGE LOSS

- 0-1-loss intuitive but ill-suited for direct optimization
- Hinge loss is continuous and convex upper bound on 0-1-loss

$$L(y, f(\mathbf{x})) = \max\{0, 1 - yf(\mathbf{x})\}$$
 for $y \in \{-1, +1\}$

- Only zero for margin $yf(\mathbf{x}) \geq 1$, encourages confident predictions
- Often used in SVMs
- Resembles a door hinge, hence the name

SQUARED HINGE LOSS

• Can also define squared hinge loss:

$$L(y, f(\mathbf{x})) = \max\{0, (1 - yf(\mathbf{x}))\}^2$$

- L2 form punishes margins $yf(\mathbf{x}) \in (0,1)$ less severely but puts high penalty on confidently wrong predictions
- Cont. differentiable yet more outlier-sensitive than hinge loss

SQUARED LOSS ON SCORES

• Analogous to Brier score on probs, can specify squared loss on classification scores with $y \in \{-1, +1\}$ using $y^2 = 1$:

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2 = y^2 - 2yf(\mathbf{x}) + f(\mathbf{x})^2$$

= 1 - 2yf(\mathbf{x}) + (yf(\mathbf{x}))^2 = (1 - yf(\mathbf{x}))^2

- Like sq. hinge loss for $yf(\mathbf{x}) < 1$, but not clipped to 0 for $yf(\mathbf{x}) > 1$
- Only 0 for $yf(\mathbf{x}) = 1$ and increasing again in $yf(\mathbf{x})$ (undesirable!)

EXPONENTIAL LOSS

• Another smooth approx. of 0-1-loss is **exponential loss**:

$$L(y, f(\mathbf{x})) = \exp(-yf(\mathbf{x}))$$

- Used in AdaBoost
- Convex, differentiable (thus easier to optimize than 0-1-loss)
- Loss increases exponentially for wrong predictions with high confidence; low-confidence correct predictions have positive loss

AUC-LOSS

- AUC often used as evaluation criterion for binary classifiers
- Let $y \in \{-1, +1\}$ with n_- negative and n_+ positive samples
- AUC can then be defined as

$$AUC = \frac{1}{n_{+}} \frac{1}{n_{-}} \sum_{i:y^{(i)}=1} \sum_{j:y^{(j)}=-1} \mathbb{I}[f^{(i)} > f^{(j)}]$$

- Not differentiable w.r.t f due to indicator $\mathbb{I}[f^{(i)} > f^{(j)}]$
- Indicator can be approximated by distribution function of triangular distribution on [−1, 1] with mean 0
- Direct optimization of AUC numerically difficult, rather use common loss and tune for AUC in practice

Comprehensive survey on advanced loss functions: • Wang et al. 2020

