UNIVERSITY OF TORONTO SCARBOROUGH

Department of Computer & Mathematical Sciences

STAD70H3 Statistics & Finance II

April 2021 Final Examination

Duration: 2 hours

Aids allowed: Open book/notes, scientific calculator

Instructor: Sotirios Damouras

Last Name: .	
First Name:	
Student $\#$: _	

Instructions:

- Read the questions carefully and answer only what is being asked.
- Show your intermediate work, and write clearly and legibly.

Question:	1	2	3	4	Total
Points:	25	25	25	25	100
Score:					

1. (Risk Management & Betting Strategies)

Assume you start with an initial wealth of V_0 and you can invest any amount on a sequence of investment opportunities with net returns $\{R_i\}_{i\geq 1}$ which follow independent and identically distributed Uniform(-1,2) distributions. For example, if you invest \$1 in such an opportunity, your resulting wealth will be $(1+R) \in (0,3)$, i.e. anywhere between losing to tripling your wealth.

- (a) [2 points] Assume you bet your entire initial capital of $V_0 = \$1$ on the first opportunity. Calculate the Value-at-Risk (VaR) of the investment at the $\alpha = 5\%$ level.
- (b) [3 points] Calculate the Conditional VaR (CVaR) at the $\alpha = 5\%$ level for the investment in part (a).
- (c) [5 points] Calculate the *Entropic* VaR (EVaR) at the $\alpha = 5\%$ level for the investment in part (a). This is defined as $\text{EVaR}_{\alpha} = \inf_{z>0} \{z^{-1} \ln(M_L(z)/\alpha)\}$, where $M_L(z)$ is the moment generating function of the loss (L). You are given that the infimum occurs at $z \approx 18.122$.
- (d) [5 points] Assume your strategy is to invest a fixed fraction (f) of your current wealth in each step. Show that your final wealth after n investments is

$$V_n = V_0 \prod_{i=1}^{n} (1 + fR_i)$$

- (e) [2 points] Assume you invest your entire wealth (f = 1) at each step. Find the probability of going bankrupt $(\mathbb{P}(V_n = 0))$ after n steps?
- (f) [3 points] Assume you invest your entire wealth (f = 1) at each step. Find the expected value of your wealth $(\mathbb{E}[V_n])$ after n steps.
- (g) [5 points] For general $f \in (0,1)$, show that the expected log-wealth after n investments is

$$\mathbb{E}[\ln(V_n)] = \ln(V_0) + \frac{n}{3} \left[\left(2 + \frac{1}{f} \right) \ln(1 + 2f) - \left(\frac{1}{f} - 1 \right) \ln(1 - f) - 1 \right]$$

(Hint: Use the fact that $\int \ln(1+fx)dx = (x+1/f)\ln(1+fx) - x + c$.)

2. (Brownian Motion & Simulation)

Consider the standard Brownian motion $\{W_t\}_{t\geq 0}$ and its running maximum $M_t = \max_{0\leq s\leq t}\{W_s\}$. For this question you will prove that the *conditional* distribution of the maximum given the final point of the Brownian motion (i.e. $M_1|W_1$) follows a Rayleigh distribution, something we used in class.

(a) [7 points] Show that the joint PDF of M_1, W_1 is

$$f_{W_1,M_1}(x,y) = \frac{2(2y-x)}{\sqrt{2\pi}} \exp\left\{-\frac{(2y-x)^2}{2}\right\}, \ \forall y > 0, x < y$$

(Hint: Differentiate the joint CDF $F_{W_1,M_1}(x,y)$ w.r.t. x and y, using the fact that $\mathbb{P}(W_1 \leq x, M_1 \leq y) = \mathbb{P}(W_1 \leq x) - \mathbb{P}(W_1 \leq x, M_1 > y)$, where the latter probability is given by the reflection principle.)

(b) [7 points] Show that the conditional PDF of $M_1|(W_1=x)$ is given by

$$f_{M_1|W_1}(y|x) = 2(2y-x)e^{-2y(y-x)}, \ \forall y > 0, x < y$$

(Hint: Use the fact that $f_{M_1|W_1}(y|x) = f_{W_1,M_1}(x,y)/f_{W_1}(x)$.)

(c) [4 points] Show that the conditional CDF of $M_1|(W_1=x)$ is given by

$$F_{M_1|W_1}(y|x) = 1 - e^{-2y(y-x)}, \ \forall x \in \mathbb{R}, y > \min\{0, x\}$$

(d) [7 points] Let $L_t = \min_{0 \le s \le t} \{W_t\}$ be the running minimum of the standard Brownian motion. Find a formula that simulates the conditional minimum $L_1|(W_1 = x)$ of the standard Brownian motion given $W_1 = x \in \mathbb{R}$, based on a single Uniform(0,1) random number U.

(Hint: use the inverse conditional CDF of $M_1|(W_1 = x)$ together with the symmetry of standard Brownian motion.)

Answer the following questions in an .R/.RMarkdown file.

3. R (Simulation & Betting Strategies)

Consider the same setup as in question 1., i.e. a sequence of investment opportunities with i.i.d. Uniform (-1, 2) returns and an initial capital of $V_0 = 1$.

- (a) [5 points] Use the optimize() function to find the Kelly fraction f^* to invest, i.e. value of f which maximizes the expression in Q1.(g).
- (b) [10 points] Simulate 1,000 wealth paths consisting of 30 investments steps each using the Kelly fraction from the previous part (or, if you didn't get it, just f = .7). On the same axes, plot the *mean* simulated wealth, and the 5% and 95% quantiles of the simulated wealth at each step.
- (c) [10 points] In class, we mentioned that the Kelly criterion strategy reaches any wealth level faster than other strategies. You will test this claim with a simulation experiment. Fix a target wealth of 10,000 and simulate 1,000 paths with as many steps necessary to reach or exceed this level, under both the Kelly strategy (f^*) and the all-in strategy (f = 1). Report the average number of steps required to reach or exceed the target wealth under each strategy. Does it confirm the claim?

4. (Industry Factor Models)

We have seen how to fit macroeconomic factor models, by regressing returns (\mathbf{R}) on observed factors (\mathbf{F}) one asset at a time, to estimate their loadings $(\boldsymbol{\beta})$. There is a related class of models called fundamental factor models, which are also fit by regression, but taking a different approach. The idea is to look at asset characteristics (i.e. fundamentals) to determine the asset loadings $(\boldsymbol{\beta})$ based of their grouping with respect to common but unobserved factors. The simplest method is to group assets in non-overlapping industry categories, and assume all assets in a category are exposed to the same factor. In terms of the model, their loadings $(\boldsymbol{\beta}$'s) are either 1 for their industry's factor, or 0 for all other industry factors. The following model with 4 assets in 2 industries serves as an illustration:

$$\begin{bmatrix} R_{1,t} \\ R_{2,t} \\ R_{3,t} \\ R_{4,t} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} F_{1,t} \\ F_{2,t} \end{bmatrix} + \begin{bmatrix} e_{1,t} \\ e_{2,t} \\ e_{3,t} \\ e_{4,t} \end{bmatrix} \Leftrightarrow \boldsymbol{R} = \boldsymbol{\beta}^{\top} \boldsymbol{F} + \boldsymbol{e}$$

In order to estimate the factor values $(F_{1/2,t})$, we use *cross-sectional* regression, i.e. we fix time t and look at returns as observations from the model

$$R_{i,t} = F_{1,t}I_{i,1} + F_{2,t}I_{i,2} + e_{i,t}, i = 1, \dots, n$$

where $I_{i,1/2}$ are the indicator variables of asset i belonging to industry 1/2, serving as the explanatory variables, and the factors values $F_{1/2,t}$ are the regression coefficients 1 . The following code loads 250 daily net returns for n=121 assets (matrix R) belonging in 2 industries (factor sector). The loop fits 250 regressions to estimate the factor values (matrix \mathbf{f}) and asset idiosyncratic errors (matrix \mathbf{e}).

```
load("STAD70_W21_Final.RData")
b = model.matrix( object = ~ sectors - 1 )
f = matrix( 0, nrow = nrow(R), ncol = nlevels(sectors) )
e = matrix(0, nrow = nrow(R), ncol = ncol(R) )

for( i in 1:nrow(R) ){
  tmp = lm( R[i,] ~ b - 1 )
  f[i,] = tmp$coefficients
e[i,] = tmp$residuals
}
```

- (a) [5 points] Create a scatter-plot of the values of the two industry factors. Do the factors look independent? Explain your answer based on what you know about asset behaviour.
- (b) [3 points] Use the *sample covariance* of the returns (R) to calculate the minimum-variance-portfolio weights.
- (c) [10 points] Use the *industry factor model* to estimate the return covariance matrix (from $\beta \Sigma_F \beta^\top + \Sigma_e$), and use that to calculate the minimum-variance-portfolio weights.
- (d) [3 points] Use the weights you found in the last two parts to create the returns of each portfolio, and calculate their Sharpe ratio assuming a risk-free rate of 0.
- (e) [4 points] Plot the *cumulative gross returns* of the two portfolios on the same axes.

Page 4 of 4 Total marks: 100

¹In this simple case, this is effectively an ANOVA model, where factor values are simple averages of each industry's returns.