Introduction to Information Security 14-741/18-631 Fall 2021 Unit 1: Lecture 2: Threat Model

Limin Jia

liminjia@andrew

Threat model of Japanese puzzle box

Threat model of Japanese puzzle box

This lecture's agenda

- Why Cryptosystems Fail
- Attack trees: "listing failure modes"
- STRIDE: classifying types of attacks
- Objectives of the lecture
 - Get an understanding of possible failure modes in information systems and associated threat models
 - Expose you to concrete examples of technique for preliminary system security analysis

Analyzing the security of ATM

Analyzing the security of ATM

The software/hardware Employees at the bank Postmen deliver the card/pin to customers

No need to remember the details, just an example complex system for discussion.

Create PIN:

- ▼ PIN verification key to derive a natural PIN from an acct number
 - DES: a mathematical transformation process
- The user's selected pin combined with the natural pin to derive pin offset
- Only Pin offset is stored
- Without the pin verification key, attacker can't know the natural pin

Create PIN:

- PIN verification key to derive a natural PIN from an acct number
 - DES: a mathematical transformation process
- The user's selected pin combined with the natural pin to derive pin offset
- Only Pin offset is stored
- Without the pin verification key, attacker can't know the natural pin

Verify PIN:

- Re-compute Pin offset using acct number and user's pin
- Compare it with the stored one

■ ATM is connected via a network

- ATM is connected via a network
- Can't send pin in the plain to the bank

- ATM is connected via a network
- Can't send pin in the plain to the bank

- ATM is connected via a network
- Can't send pin in the plain to the bank
- Encrypt pin using pin encryption key
- How does ATM get pin encryption key?

- ATM is connected via a network
- Can't send pin in the plain to the bank
- Encrypt pin using pin encryption key
- How does ATM get pin encryption key?

- PIN verification key to derive a PIN from an acct number
- PIN encryption key to encrypt a PIN at ATM
- Terminal key so that the central bank can transmit the PIN encryption key encrypted
 - ▼ Terminal key is physically installed by bank employees

How does ATM verify foreign pins?

How does ATM verify foreign pins?

- Working keys to allow transactions with foreign banks
- Zone keys to allow encrypted transmissions of working keys

Why cryptosystems fail

- Seminal paper by Ross Anderson from 1993
- Back in 1990s
 - Security = cryptography
 - Almost all cryptographers work for NSA
 - As late as 1992, cryptography was on the U.S. Munitions List as an Auxiliary Military Technology
 - Security by obscurity doesn't sound that bad

Why cryptosystems fail

- Seminal paper by Ross Anderson from 1993
- Draws analogy between information security and airline industry
 - Airlines: low risk because failures are highly publicized and analyzed
 - Information security: generally security by obscurity
 - Government classification, proprietary protocols
 - We don't learn from our mistakes
- Makes the case that information security must become much more open to investigation
 - Example: ATM fraud in the UK

Policy differences between countries

- In the U.S.
 - In case of theft, customer bears almost no responsibility on the charges incurred
- In the U.K. (and in many other countries)
 - Customer has to bear risk!
 - No incentive for the bank to be overly concerned about security (at the time the paper was written)
 - Many "phantom withdrawals"

Insider attacks

- Banker's ability to issue a 2nd card
 - **▼** Could even conceal withdrawals in some cases
- Technical staff can tamper with the ATM
- Policy breakdowns
 - Some manager decides to remove most security primitives to save costs
 - Manager is powerful, no one complains, fraud increases

Outsider attacks

- Postal interception of cards and PINs
- Replay attacks
 - ▼ ATM is bugged with a recording device
 - Authorization to pay is recorded, and then replayed at will
 - "Jackpotting" (popular in the 80's)
- Test transactions
- **■** False terminals

Fake slot

Wireless camera

Guessable PINs

- Generally, PINs should be 4-digits taken from the encrypted version of the bank account
 - 10,000 possibilities if truly random
- Most ATMs allow for 3 trials
 - 1 chance in 3,333 that a crook guesses the right PIN before card is swallowed by ATM
- Unfortunately, some banks use:
 - Constraints on PINs to make them easier to verify by weak POS that don't have encryption
 - **■** E.g., $d_1+d_4=d_2+d_3 \rightarrow 1,000$ possible combinations
 - ▼ Visual aids → about 20-30 possible combinations
 - Personally chosen PINs
 - Can be easily guessable
 - Identification by bank clerks
 - ▼ PINs selected by the bank (has no relation to the accnt no.) and encrypted on card itself!

Complex fraud

Protecting keys requires

- No single entity knows a full key
- Keys are not physically accessible
- Security module (PC in a safe)

Often defeated in practice

- Software encryption instead of security module
- Maintenance engineers get full access to a terminal key
- ▼ Trapdoors (physical or logical)
- Shared PIN keys(!) among institutions
- Weakly encrypted keys
 - Poor encryption algorithms (pre-DES)
 - ▼ Poor encryption parameter selection (e.g., not enough bits)

Lessons learned

- Security by obscurity
 - No prior experience available
- Result: Threat model was wrong
- Focused on what could possibly go wrong
 - Relatively complex key system to ensure secrecy
- Should have focused on what was likely to go wrong
 - Human error rendering cryptosystem useless
 - Should consider both human and tech. factors

Recommendations

- Get inspiration from safety-critical systems
- List all possible failure modes
- Document which strategy is used to make each failure mode impossible
- Review the proposed implementation of strategies by many experts
- Certification required to ensure properly trained personnel is in charge of maintenance of cryptosystem

Possible strategies

■ Formal verification

- Similar to railway system
- Used in cryptology

■ Feedback loop failure analysis and design guidelines

- Similar to avionics
- **■** E.g., wireless security: WEP \rightarrow 802.11i

More reading

- Chip and pin
- http://www.cl.cam.ac.uk/research/security/banking/

Did we learn the lessons?

■ EMV: Why Payment Systems Fail

24 years later – same author (Ross Anderson, adding Steven J. Murdoch)

Chip and pin/signature cards

- ▼ Yes cards: copy chip certificate and say "yes" to any PIN
- Can defeat with online transaction verification (requires chip to verify transaction details) or Dynamic Data Authentication (requires crypto processor in chip)
- Side-effect: PIN use in stores made it easier to create magnetic strip cards and steal from ATMs

Boolean attack tree (Schneier)

- Listing all possible failure modes
- Example: safe (incomplete)

- Listing all possible failure modes
- Example: safe (incomplete)

- Listing all possible failure modes
- Example: safe (incomplete)

- Listing all possible failure modes
- Example: safe (incomplete)

- Listing all possible failure modes
- Example: safe (incomplete)

- Listing all possible failure modes
- Example: safe (incomplete)

Parameterized attack tree

- Can be used to assess the cost of an attack
- Can use other quantities (e.g., probabilities) instead

Parameterized attack tree

- Can be used to assess the cost of an attack
- Can use other quantities (e.g., probabilities) instead

Parameterized attack tree

- Can be used to assess the cost of an attack
- Can use other quantities (e.g., probabilities) instead

Practical attack trees

- Generally multi-parameter
 - **▼** Probabilities
 - Monetary cost
- **■** Combination of continuous and boolean parameters
 - Requires special equipment/knowledge...
- Needs to be correlated with knowledge about attackers to be useful

STRIDE

■ Threat model by Microsoft

■ https://www.owasp.org/index.php/Threat_Risk_Modeling#STRIDE

Six categories

- Spoofing of user identity
- **▼** Tampering
- **▼** Repudiation
- Information disclosure (privacy breach or data leak)
- Denial of service (D.o.S)
- ▼ Elevation of privilege

STRIDE

- Draw a picture of the system
- Anywhere you see communication, this is a trust boundary where you should do analysis!

STRIDE

- CMU Directory Service (https://directory.andrew.cmu.edu/)
 - Anybody can query faculty and staff by name
 - CMU person can query student by name
 - Only admins can modify entries
- What are the threats you can envision?
 - Spoofing of user identity
 - Tampering
 - ▼ Repudiation
 - Information disclosure (privacy breach or data leak)
 - Denial of service (D.o.S)
 - ▼ Elevation of privilege

Take away

Security is about

- Ensuring a system works as intended in face of potentially malicious adversaries
- Risk management, threat management

Security can be achieved by

- legal, social, economic, or technological means
- most likely by a combination of all of the above

No security by obscurity!

■ Kerckhoff's principle: "a cryptosystem should be secure even if everything about the system, except the key, is public knowledge"

Instead:

- Inspiration from safety-critical systems
- Understand the system and attacks
- Openness, public review, proper training and certifications
- Combination of formal verification and feedback-loop design and analysis
- Design for defense and recovery
- Attack trees: a practical way of listing all the vulnerabilities of your system
- Benefit from incremental improvements (feedback)