

Centro Federal de Educação Tecnológica de Minas Gerais Departamento de Computação Laboratório de Algoritmos e Estruturas de Dados II Prof. Thiago de Souza Rodrigues

Trabalho Prático 02

Valor 15 pontos

O trabalho pode ser feito em grupos de até 3 pessoas;

• Data: 05 de Junho de 2018

• Data de Entrega: 15 de Junho de 2018

- Considere o problema das linhas de montagem apresentados em sala de aula onde se quer verificar qual é o caminho mais eficiente da entrada nas linhas de montagem até a saída levando em consideração o tempo de processamento em cada estação e o tempo de transporte entre uma estação e outra, assim como o tempo de saída das linhas de montagem.
 - a. e₁ e e₂: tempo gasto para a entrada nas linhas 1 e 2, respectivamente;
 - b. a_{1,1}, a_{1,2}, ... a_{1,n}: tempo gasto para o processamento em cada uma das estações
 S_{1,1}, S_{1,2}, ..., S_{1,n} da Linha de montagem 1;
 - c. **a**_{2,1}, **a**_{2,2}, ... **a**_{2,n}: tempo gasto para o processamento em cada uma das estações **S**_{2,1}, **S**_{2,2}, ..., **S**_{2,n} da **Linha de montagem 2**;
 - d. **t**_{1,1}, **t**_{1,2}, ... **t**_{1,n-1}: tempo gasto para ir de uma estação na Linha 1 até a estação seguinte na Linha 2;
 - e. **t**_{2,1}, **t**_{2,2}, ... **t**_{2,n-1}: tempo gasto para ir de uma estação na Linha 2 até a estação seguinte na Linha 1;
 - f. $\mathbf{x_1} \mathbf{e} \mathbf{x_2}$: tempo de saída das linhas de montagem 1 e 2, respectivamente.

- 2. Para a instância abaixo contendo duas linhas de montagens com 06 estações cada, a entrada de dados é dada da seguinte forma:
 - a. A1 = [2, 7, 9, 3, 4, 8, 4, 3] que corresponde ao tempo de processamento de cada estação na Linha 1 juntamente com as tempo de entrada e saída dessa linha, primeiro e último elementos, respectivamente;
 - b. A2 = [4, 8, 5, 6, 4, 5, 7, 2] que corresponde ao tempo de processamento de cada estação na Linha 2 juntamente com as tempo de entrada e saída dessa linha, primeiro e último elementos, respectivamente;
 - c. T1 = [2, 3, 1, 3, 4] que corresponde ao tempo de transporte de uma Estação na Linha 1 até a Estação seguinte na Linha 2;
 - d. T2 = [2, 1, 2, 2, 1] que corresponde ao tempo de transporte de uma Estação na Linha 2 até a Estação seguinte na Linha 1;

- 3. Implementar, em Java, um algoritmo iterativo que utilize a metodologia de programação dinâmica para solucionar o problema das linhas de montagem, considerando sempre duas linhas. O algoritmo deve imprimir o caminho utilizado na solução assim como tempo gasto.
- Implementar, Java, um algoritmo guloso para solucionar o problema das linhas de montagem, considerando sempre duas linhas. O algoritmo deve imprimir o caminho utilizado na solução assim como tempo gasto.
- Mostrar o resultado encontrada para cada uma das instâncias a seguir utilizando os duas métodos implementados.

```
e. A1 = [05, 10, 06, 03, 08, 05, 03, 07, 12, 08]

f. A2 = [07, 03, 05, 03, 07, 06, 04, 09, 10, 09]

g. T1 = [04, 02, 07, 02, 05, 08, 02]

h. T2 = [06, 01, 07, 03, 06, 04, 05]
```

- 6. O que deve ser entregue via moodle:
 - a. Relatório contendo o código fonte comentado, explicitando a característica da programação dinâmica e da programação gulosa em cada um dos casos;
 - No relatório, mostrar os resultados de cada método proposto para cada uma das instâncias acima, fazendo uma comparação entre os resultados.
 - c. Postar, o projeto implementado.
 - d. Trabalhos atrasados poderão ser entregues até 2ª-feira dia 18 de junho.