LECCION 2 - EFICIENCIA. NOTACION 0-6RANDE

> · EFICIENCIA: Qué recursos gasta un algoritmo L > Podemos catalogar un algentmo

. RECURSOS: MEMORIA Y TIEMPO de EJECUCIÓN

EJEMPLO: Asignacion de .50 trabajos -d Mejor angnacian?

- Búsqueda Masiva - Mira todas las posibilidades

.50 × 1064

. Ordenador:

_Evalua 1billon de ponbilidad/s

- Empero 15000 millous de años

- Aun estana procesando

. No basta cur la mejora de hardware

. ALGORITMO: Conjunto de pasos o senturaias bien ordenadas que resuelen un problema.

· IMPLEMENTACIÓN - Traducción de las sentencias a un déterminades linguage de programación

PRINCIPIO DE JNVARIANZA - dos implementaciones de un mismo algortmo solo se diferencia en una constante multiplicativa.

.davé algontmo escojemos?

_ El mais epiciente en reacros.

EJEHPLO: Para un problema Dos algontmos A1 y AZ

. Eficiencia de A1: T1(n)= 10-42ns

. Eficiencia de Az: Tz(n)= 10-2×n3s

.n es el nº de datus de entrada

al algoritmo.

n 1	10	20	30	38
T,(n)	0.45	2m	71dia	laño
T, (is)	105	80s=1,5m	270s	5495
				

. ANÁLISIS ASINTOTICO

Análisis de la eficiencia de un algortmo cuando el nº de datos de entrada tiende a valores muy grandes (n->0e)

. En la eficiencia de un algortmo la estructura de datos que eswjamos también es relevante.

FUNCION DE EFICIENCIA:

Se défine sobre el n= de datus de entrada del algoritmo f(n) (n:nº de datos de entrada o tulla) y devuelve un valor real mayor o ignal que o midiendo la eficiencia (tiempo o memmia)

tiempo de ejecucion (s) 4: N- Rot $n \longrightarrow f(n)$ respacio (bytes n:tamaño del problema o talka

LECCION Z: continuaciai

- -d'Como calcular la épiciencia?
 - · Teórica Estudio Asintótico
 - . Empínica Experimentalmente

<u>"EHPÎRICA</u>

. Ejecutamos el algontmo una vez implementado y obtenemos el trempo:

_Para un mismo n (n: de datus de entrada) lo ejecutamos varias

_ Lo ejecutamos para diferentes n (distintas tallas)

. En C++: camo obtener el tiempo

Hindude (ctime)

time t tantes, tdespues;

time (& tantes)

1 sentucias

time (Atdespues) cout 22 difftime (tdespues, tantes)

PROBLEMAS de la E, EMPÍRICA

- 1) Los datus que hayamos escogido no son representativos de las características del problema
- z) Depende del hardware y liberia usada
- 3) Para poder compaisor des algontmus debenus ejecutarlos en las mismas andiciones.

.E. TEORICA - Análisis a sintótico

CARACTERÍSTICAS

.Independiente del hardware y software

. Representa a todas las entradas

. Usa una descripción a alto nivel del programa.

Orden de éficiencia, T(n)

Un algoritmo tiene un orden de eficience T(n), si I una implementación del algoritmo y su tiempo de éjecucion f(n) está acotado superiormente por c.T(n) siendo cuna constante c>1 y n el tamaño del problema.

f(n) = CT(n)

-Ordenes de Eficiencia mas comunes

. Order lineal _T(n)=n

.Orden cte - T(n) = a a es una cte

. Orden logaritmico - t(n)=log(n)

· Orden cuadrático _ T(n)=n2

.Orden exponencial - T(n) = c. cesuna ct

LECCION 2-continuación

E. TEORICA de UN ALBORITMO

1) Descubrir la funcion de eficiencia flu) del alguntmo

2) Dada fin) deducir wal es su orden de eficiencia Tin)

COMPARACIÓN DE EFICIENCIA ENTRE DUS ALGORITMUS

_ CARACTERISTICAS

Debe Findependencia de lo que ourra en un nº finito de valores para n (tamaño del problema)

- Independiente de la funcion que apresenta al orden de eficiencia.

· COMPARAR = los ordenes de eficiencia = comparar los perfiles de crecimiento

EJEMPLO2: Orden parcial
$$f(n) = \begin{cases} n^2 & \text{sin es par} \\ n^4 & \text{sin es impar} \end{cases}$$

g(n)=n3 ¿Quieñ es mayor f(n) o g(n)?

NOTACION ASINDOTICA

 $.5n^2 + 3n + 10 \approx n^2$

DEFINICION: O-grande (tiempo de DEFINICION: O-grande (tiempo de general sentencial.

Diremos que un algoritmo con tiempo de general g(n) E C(f(n))

Si = celRot y no EIN tq 4 n>, no g(n) \le c.f(n)

f.f(n) = g(n)

Ejemplos $n^2 + 5n \in O(n^2)$ c = 2 $n_0 = 5$ $3n^2 + 2n^2 \in O(n^3)$ c = 9 $n_0 = 2$ $3n \notin O(2^n)$

$$dg(n) \le f(n)?$$
 $\Rightarrow g(n) \le c \cdot f(n)$
 $de cnce$
 $100n = n^2 \Rightarrow n^2 - 100n = 0$
 $n = 100$