كلية العلوم الدقيقة والتطبيقية Faculté des sciences exactes et appliquées

1/10

Traitement d'ombre dans les images satellitaires très hautes résolution spatiale

Doctorant: Nassim Refes

Encadré par : Dr. R.Nourine, Co-encadré par : Dr. E.Zigh

Résumé

Les images satellitaires très haute résolution contiennent des informations sur la surface de la terre avec une très grande précision. La présence de l'ombre dans ces images peut être une indication précieuse pour déduire des informations de scène 3D comme il peut être une source de nuisance pour les zones affectées, C'est dans ce deuxième cas que nous nous intéressons dans ce travail pour la correction de l'ombre afin de restaurer l'information utile cachée.

Problématique

l'existence d'ombres conduit à une perte partielle d'informations radiométriques dans les zones affectées. Cela rend les applications telles que :

- la classification
- la détection des changements
- la surveillance de terrain

la reconnaissance des objets la reconstruction de scène

plus difficiles, voire impossibles.

pour parer a ce problème, le processus de correction des ombres s'est avéré nécessaire, ce processus dépends des deux étapes suivante :

Méthodes de détection d'ombre

La détection des ombres fait référence au processus d'identification des pixels contaminés par les ombres dans les images de télédétection. La précision de la détection de l'ombre est grandement affectée dans les résultats de la compensation de l'ombre.

En général, les méthodes de détection d'ombre peuvent être organisées en deux catégories :

des objets

État de l'art

nous nous sommes basés sur une publication récente comme référence de base pour faire l'état de l'art [Yasser 2017].

Techniques		Références	Résolution spectrale utilisé	Méthode	
Méthodes basé sur la propriété de l'ombre	Seuillage	Otsu, 1979	R, G, B	Le modèle de mélange gaussien	
		Chen et al., 2007	IR (Infrarouge)	Le nombre de pics et de vallées	
		Su et al., 2016	Pan	Utilise la division d'histogramme bimodale et la technique de matage d'image	
		Mostafa et Abdelhafiz, 2017	Pan	Utilise la technique de seuillage pour distinguer l'ombre et l'eau	
	Espaces colorimétriques invariants	Tsai, 2006	R, G, B	Applique un rapport spectrale	
		Ma et al., 2008	R, G, B	Utilise un indice normalisé de différence de valeur de saturation (NSVDI)	
		Candra et al. 2016	R, G, NIR, SWIR	R, G pour distinguer les nuages et NIR, SWIR pour l'ombre du nuage	
	Classification	Martel- Brisson et Zaccarin, 2005	R, G, B	méthode automatique basé sur le modèle de mélange gaussiens pour classer les ombre projeté	
		Alberto et al., 2016	R, G, B	Utilise SVM pour extraire les classes en utilisant le noyau RBF (Radial Basis Function) a partir des données Lidar et orthophoto	
	Segmentation d'objets	Arévalo et al., 2008	R, G, B	Utilise l'espace C1C2C3 et HSV suivi par le processus de croissance de régions	
		Zhang et al., 2014	R, G, B	segmentation par ligne de partage des eaux (watershed) pour extraire les zones ombré	
		Champion, 2016	NIR	A partir d'une séries temporelles d'images et la différence de réflectance, l'ombre est déterminé par seuillage et croissance de régions	
Méthodes basé sur le modèle de l'ombre		Simpson et Stitt, 1998		utilise des contraintes géométriques et optiques pour projeter les caractéristiques du nuage au sol afin de détecté les ombres a partir des scènes AVHRR	
		Wang & Yan, 2016		utilise un modèle d'élévation numérique (MNE) et la position du soleil pour la détection de l'ombre	

Travail effectué

L'implémentation de trois méthodes :

Deux méthodes basées sur la transformation photométrique invariante :

- Haijian Ma et al. (2008) => NSVDI
- Victor J. D. Tsai (2006) => Ratio spectrale map

Une méthode basée sur la segmentation d'objet :

V. Arévalo et al. (2008) => Croissance de régions

ont été effectués puis une évaluation sur une base de données standard qui contient des images vérité-terrain afin de comparer entre les trois algorithmes,

Évaluation

Trois paramètres d'évaluation ont été utilisés:

- la précision du producteur
- la précision de l'utilisateur
- la précision globale

Ils mesurent ensemble les performances d'un algorithme de détection d'ombres.

Exemple de détection d'ombre sur une images vérité-terrain :

Pour une précision sur tout la base de données :

	Précision producteur		Précision utilisateur		Précision Globale
	ης	ηN	ps	pn	
V. Arévalo et al.	68.93 %	96.50 %	84.49 %	92.70 %	91.298 %
Victor J. D. Tsai	76.36 %	92.77 %	77.32 %	94.36 %	89.869 %
Haijian Ma et al.	60.19 %	83.30 %	55.07 %	88.98 %	79.334 %

Reste à faire

- Une communication sur une analyse comparative des méthodes de détection étudiées.

- Proposition d'une nouvelle méthode ou approche de détection de l'ombre,
- Etude des méthodes de compensation (réduction) de l'ombre.
- proposition d'une méthode et implémentation,
 Evaluation des méthodes implémentées.

Conclusion

La présence d'ombres réduit la qualité de ces images ou peut affecter les informations qui peuvent en être obtenues. Ainsi, il est important de détecter les zones d'ombre et de récupérer leurs informations afin d'effectuer une interprétation correcte de l'image. Pour cela nombreux algorithmes et méthodes ont été développés pour détecter et compenser l'ombre dans différentes conditions environnementales. L'étude des trois méthodes a montré que la technique utilisé par V.Arévalo donner de meilleur résultat par rapport au techniques de J.D.Tsai et Haijian Ma.

Références

- Yasser Mostafa (2017). A Review on Various Shadow Detection and Compensation Techniques in Remote Sensing Images, Canadian Journal of Remote Sensing,
- DOI: 10.1080/07038992.2017.1384310
 Tsai, V. J. D. (2006). A comparative study on shadow compensation of color aerial images in invariant color models. *IEEE Transactions on Geoscience and Remote Sensing*, 44(6), 1661-1671.
- https://doi.org/10.1109/TGRS.2006.869980

 Arévalo V. González J. & Ambrosio G. (20
- Arévalo, V., González, J., & Ambrosio, G. (2008). Shadow detection in colour high-resolution satellite images. International Journal of Remote Sensing, 29(7), 1945-1963. https://doi.org/10.1080/01431160701395302
- Ma, H., Qin, Q., & Shen, X. (2008). Shadow Segmentation and Compensation in High Resolution Satellite Images. In IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, p. II-1036-II-1039). https://doi.org/10.1109/IGARSS.2008.4779175