Large Data in MATLAB: A Case Study in Seismic Data Processing

Table of Contents

Data Sources	1
Required Products and Hardware	1
Run setup.m	1
Parallel Computing Setup	
GPU Setup	
Recommended Demo Order	
Directory and File Listing	

These are the files used in the webinar on Feb. 23, 2011. This file provides a brief description of the contents of the demo files and the steps needed to download the public data sources for use with this demo. You can watch the archived version of this webinar at http://www.mathworks.com/wbnr53777

Data Sources

Two sources of data are used.

The fault model is a slice from an SEG/EAGE model which was take from http://utam.gg.utah.edu/Inter.LAB1/CH2.lab/lab.mig.pre/lab.html. The velocity model is needed to run faultModelMigration.m.

The salt tooth model is from the BP Benchmark data set from: http://software.seg.org/datasets/2D/2004_BP_Vel_Benchmark

You will need to download the BP Benchmark files to run the saltModelMigrationRTM.m and migrateExample.m files.

Required Products and Hardware

MATLAB. You will also need Parallel Computing Toolbox and MATLAB Distributed Computing Server if you want to speed up computations using multiple MATLAB Workers (on a multicore desktop or across a cluster of computers) or run the GPU example. This demo was developed and tested on R2010b.

For the GPU examle, you will need a supported GPU. Consult http://www.mathworks.com/products/parallel-computing/requirements.html to determine if your hardware is supported.

Run setup.m

The script setup.m will create the directories needed and download the data from the public sources. It will also generate the 20GB traveltime.data file used once all the data has completed downloading. This can take several hours, depending upon your network connection and computer. It is recomended to run this script when you don't need your computer for several hours (or run overnight). Once this completes,

you will be able to run the demos.

Parallel Computing Setup

migrateExample.m uses parallel computing to run the migration. If you don't use parallel computing, it will run for 2-3 days, or more if depending upon your machine. To set up parallel computing, consult the doc. You will also need to change the matlabpool call in migrateExample.m to point to your resources.

GPU Setup

You will need to compile the CUDA kernels (*.cu files in gpu directory). Assuming your system is configured correctly, you can run the build.m file to compile and test the kernels are working correctly.

Recommended Demo Order

To get the most out of this example. Run these demos in this order:

- faultModelMigrationRTM.m
- migrateExample.m migration with parallel computing>
- saltModelMigrationRTM.m salt model on GPU

You should first uncomment the sections of code that save videos if you want them created.

Directory and File Listing

Listing of directories and files, post run of the demo files.

Top level directory (LargeDataSeismic)

dir

LargeDataSeismicWebinar.pdf LargeDataSeismicWebinar.pptx faultModelMigrationRTM.m README.m

README.pdf benchmark faultModelData fileReader

gpu html migrateExample.m migration saltModelMigrationRTM.

Benchmark data directory

dir benchmark

central_shot_674.gif shots0401_0600.segy shots0601_0800.segy eage_abstract.pdf README.pdf shots0001_0200.segy shots0801_1000.segy README_Modification.txt shots0201_0400.segy shots1001_1200.segy

Large Data in MATLAB: A Case Study in Seismic Data Processing

 $fault Model Data \ directory \ stores \ the \ intermediate \ results \ generated \ from \ \texttt{faultModelMigration-RTM.m.}$

sh sh

dir faultModelData

	rtmsnapshot42.mat	rtmsnapshot78.mat	shotfdm22.mat
	rtmsnapshot43.mat	rtmsnapshot79.mat	shotfdm23.mat
rtmsnapshot1.mat	rtmsnapshot44.mat	rtmsnapshot8.mat	shotfdm24.mat
rtmsnapshot10.mat	rtmsnapshot45.mat	rtmsnapshot80.mat	shotfdm25.mat
rtmsnapshot100.mat	rtmsnapshot46.mat	rtmsnapshot81.mat	shotfdm26.mat
rtmsnapshot11.mat	rtmsnapshot47.mat	rtmsnapshot82.mat	shotfdm27.mat
rtmsnapshot12.mat	rtmsnapshot48.mat	rtmsnapshot83.mat	shotfdm28.mat
rtmsnapshot13.mat	rtmsnapshot49.mat	rtmsnapshot84.mat	shotfdm29.mat
rtmsnapshot14.mat	rtmsnapshot5.mat	rtmsnapshot85.mat	shotfdm3.mat
rtmsnapshot15.mat	rtmsnapshot50.mat	rtmsnapshot86.mat	shotfdm30.mat
rtmsnapshot16.mat	rtmsnapshot51.mat	rtmsnapshot87.mat	shotfdm31.mat
rtmsnapshot17.mat	rtmsnapshot52.mat	rtmsnapshot88.mat	shotfdm32.mat
rtmsnapshot18.mat	rtmsnapshot53.mat	rtmsnapshot89.mat	shotfdm33.mat
rtmsnapshot19.mat	rtmsnapshot54.mat	rtmsnapshot9.mat	shotfdm34.mat
rtmsnapshot2.mat	rtmsnapshot55.mat	rtmsnapshot90.mat	shotfdm35.mat
rtmsnapshot20.mat	rtmsnapshot56.mat	rtmsnapshot91.mat	shotfdm36.mat
rtmsnapshot21.mat	rtmsnapshot57.mat	rtmsnapshot92.mat	shotfdm37.mat
rtmsnapshot22.mat	rtmsnapshot58.mat	rtmsnapshot93.mat	shotfdm38.mat
rtmsnapshot23.mat	rtmsnapshot59.mat	rtmsnapshot94.mat	shotfdm39.mat
rtmsnapshot24.mat	rtmsnapshot6.mat	rtmsnapshot95.mat	shotfdm4.mat
rtmsnapshot25.mat	rtmsnapshot60.mat	rtmsnapshot96.mat	shotfdm40.mat
rtmsnapshot26.mat	rtmsnapshot61.mat	rtmsnapshot97.mat	shotfdm41.mat
rtmsnapshot27.mat	rtmsnapshot62.mat	rtmsnapshot98.mat	shotfdm42.mat
rtmsnapshot28.mat	rtmsnapshot63.mat	rtmsnapshot99.mat	shotfdm43.mat
rtmsnapshot29.mat	rtmsnapshot64.mat	shotfdm1.mat	shotfdm44.mat
rtmsnapshot3.mat	rtmsnapshot65.mat	shotfdm10.mat	shotfdm45.mat
rtmsnapshot30.mat	rtmsnapshot66.mat	shotfdm100.mat	shotfdm46.mat
rtmsnapshot31.mat	rtmsnapshot67.mat	shotfdm11.mat	shotfdm47.mat
rtmsnapshot32.mat	rtmsnapshot68.mat	shotfdm12.mat	shotfdm48.mat
rtmsnapshot33.mat	rtmsnapshot69.mat	shotfdm13.mat	shotfdm49.mat
rtmsnapshot34.mat	rtmsnapshot7.mat	shotfdm14.mat	shotfdm5.mat
rtmsnapshot35.mat	rtmsnapshot70.mat	shotfdm15.mat	shotfdm50.mat
rtmsnapshot36.mat	rtmsnapshot71.mat	shotfdm16.mat	shotfdm51.mat
rtmsnapshot37.mat	rtmsnapshot72.mat	shotfdm17.mat	shotfdm52.mat
rtmsnapshot38.mat	rtmsnapshot73.mat	shotfdm18.mat	shotfdm53.mat
rtmsnapshot39.mat	rtmsnapshot74.mat	shotfdm19.mat	shotfdm54.mat
rtmsnapshot4.mat	rtmsnapshot75.mat	shotfdm2.mat	shotfdm55.mat
rtmsnapshot40.mat	rtmsnapshot76.mat	shotfdm20.mat	shotfdm56.mat
rtmsnapshot41.mat	rtmsnapshot77.mat	shotfdm21.mat	shotfdm57.mat

fileReader directory contains the SEG Y file reader object used to read SEGY files in benchmark folder. Note that these fileReaders have not been fully tested against SEGY/SEGD/SEG2 specifications. No gurantees are provided that they work on all SEGx formatted files.

dir fileReader

```
Seg2FileReader.m SegyMemmap.m ibm2ieee.m
SegYFileReader.m SeismicFileReader.m travelTimeMemmap.m
```

Large Data in MATLAB: A Case Study in Seismic Data Processing

gpu directory contains the files used to speed up computations usin a GPU.

dir gpu

build.m	fm2d_gpu.m	fm2d_kernel.ptx	rtm2d_kern
 dat4gpu.mat	fm2d_kernel.cu	rtm2d_gpu.m	rtm2d_kern

Migration routines and utillity functions

dir migration

dA.mat	migrate.m	ray2d.m
 fm2d.m	plotProgress.m	ricker.m

 $salt Tooth Model Data \ directory \ stores \ intermediate \ results \ generated \ from \ salt {\tt Model Migration-RTM.m.}$

dir saltToothModelData

```
shotfdm13.mat
                                shotfdm19.mat
                                                 shotfdm24.mat
                                                                 shotfdm8.mat
                                                                                  sn
                shotfdm14.mat
                                shotfdm2.mat
                                                 shotfdm3.mat
                                                                 shotfdm9.mat
                                                                                  sn
shotfdm1.mat
                shotfdm15.mat
                                shotfdm20.mat
                                                 shotfdm4.mat
                                                                 snapshot1.mat
                                                                                  sn
shotfdm10.mat
                                shotfdm21.mat
                                                 shotfdm5.mat
                shotfdm16.mat
                                                                 snapshot10.mat
                                                                                  sn
shotfdm11.mat
                shotfdm17.mat
                                shotfdm22.mat
                                                 shotfdm6.mat
                                                                 snapshot11.mat
                                                                                  sn
shotfdm12.mat
                shotfdm18.mat
                                shotfdm23.mat
                                                 shotfdm7.mat
                                                                 snapshot12.mat
                                                                                  sn
```

videos contains videos generated from results

dir videos

	FaultModelKirchhoffBone.avi	${\it FaultModelShots.}$
• •	FaultModelRTM.avi	${\it FaultModelTravel}$
FaultModelKirchhoff.avi	FaultModelRTMBone.avi	migrationAnimati

Published with MATLAB® 7.11