Two Counterexamples to Tokenization and the Noiseless Channel

Marco Cognetta¹ Vilém Zouhar² Sangwhan Moon¹

Extrinsic Train-Eval Loop

Naoaki Okazaki¹

1. Tokyo Institute of Technology 2. ETH Zurich

TLDR: We describe two families of BPE tokenizer variants which are counterexamples to the Efficiency Hypothesis and other intrinsic tokenizer metrics.

Background

They are difficult to tune

Tokenizers are often overlooked

- Surprisingly large downstream effects
- Tokenization and the Noiseless Channel
 - Compared intrinsic metrics
 - Found Rényi Efficiency to be the best
 - Propose the Efficiency Hypothesis
- We find two counter examples to it
 - Tokenizers that increase efficency but decrease BLEU

tokenizer 1 \longrightarrow tokenized \longrightarrow training \longrightarrow perf. 1 text model — perf. 2

Prior Intrinsic Tokenizer Metrics

- Sequence Length
 - Average number of tokens in a sequence
 - Lower is better
- Percentile Frequency
 - Total unigram probability of [a, b]percentile
 - Higher is better

Entropy Based Metrics

Shannon Entropy

-
$$H(V) = \sum_{w \in V} p(w) \log p(w)$$

- Higher is better

- Shannon Efficiency
 - $-\operatorname{Eff}(V) = \frac{H(V)}{\log(|V|)}$
 - Easy to comparé across vocabulary sizes

Rényi Efficiency

•
$$H_{\alpha}(V) = \lim_{\alpha' \to \alpha} \frac{1}{1-\alpha'} \sum_{v \in V} \log(p(v)^{\alpha'})$$

 $-\alpha = 1$ is Shannon Entropy

 $-\alpha > 1$ encourages "flatter" distributions

• $\operatorname{Eff}_{\alpha}(V) = \frac{H_{\alpha}(V)}{\log(|V|)}$

Tokenization and the Noiseless Channel

- Large scale translation task
 - Rènyi Efficiency ($\alpha = 2.7$) was best correlated to BLEU

Predictor	Pearson	Spearman	$ ho^2$
Sequence len.	-0.32 (=0.118)	-0.24 (=0.239)	10%
Percentile freq.	$0.76 \ (< 0.001)$	0.63 (< 0.001)	58%
Entropy	0.22 (=0.281)	0.12 (=0.578)	5%
Entropy eff.	0.56 (=0.004)	0.38 (=0.006)	31%
Rényi entropy	0.49 (=0.001)	0.38 (=0.006)	24%
Rényi eff.	0.78 (<0.001)	0.66 (<0.001)	61%

Table 1: Correlations between different predictors and MT performance (BLEU). The *p*-values for each statistic (computed using a t-test) are in parentheses.

Random-Drop BPE

ullet Randomly mark k tokens from the top N

- After tokenization, decompose any of the marked tokens
- Provable sufficient conditions for efficiency increase

Duplicate BPE

- ullet Create k duplicates of the top N tokens
- After tokenization, replace at random with duplicate
- Provably increases efficiency
- Intuitively decreases BLEU

Experimental Results

- DE-EN Translation Task
- Picked multiple BPE baselines
 - Varied initial vocabulary size
- Built Duplicate/Random-Drop on top of them
 - Varied N and k for each
 - Efficiency is consistently higher than baseline
 - BLEU is consistently lower than baseline

			Overall		Best	
Tokenizer	N	$oldsymbol{k}$	$Eff_{oldsymbol{lpha}}$	BLEU	$Eff_{oldsymbol{lpha}} *$	BLEU*
Baseline $(4\kappa/4\kappa)$) –	-	0.474	33.74	-	-
	2k	500	0.500	33.39	$0.\overline{5}0\overline{4}$	33.48
Random-Drop	2k	1k	0.474	32.76	0.483	32.89
$(4\mathrm{K}/4\mathrm{K})$	4k	500	0.497	33.72	0.498	33.85
	4k	1k	0.506	33.40	0.518	33.48
\overline{R} ANDOM- \overline{D} ROP	$\overline{2}$ k	500	0.491	33.35	$-0.49\overline{5}$	$-33.\overline{37}^{-}$
$(4.5\mathrm{K}/4.5\mathrm{K})$	4.5k	500	0.485	33.69	0.487	33.81
Baseline $(6\kappa/6\kappa)$) –	_	0.444	33.94	-	-
	2k	500	0.468	33.46	$0.\overline{471}$	33.46
Random-Drop	2k	1k	0.441	32.86	0.445	33.03
$(6 { m K} / 6 { m K})$	6k	500	0.458	33.69	0.458	33.94
	6k	1k	0.473	33.60	0.472	33.71
\overline{R} ANDOM- \overline{D} R \overline{O} P	$\overline{2}$ k	500	0.462	33.37	$0.\overline{4}6\overline{4}$	-33.44
(6.5 K/6.5 K)	6.5k	500	0.451	33.69	0.453	33.70

Tokenizer	N	$oldsymbol{k}$	$Eff_{oldsymbol{lpha}}$	BLEU
Baseline $(4\kappa/4\kappa)$	_	-	0.474	33.74
	$\overline{1}0\overline{0}$	3	0.594	32.37
DUPLICATION	100	5	0.648	31.32
$(4\mathrm{K}/4\mathrm{K})$	500	3	0.583	32.26
, , ,	500	5	0.627	N/A
Baseline $(6\kappa/6\kappa)$	_	-	0.444	33.94
	$\overline{1}0\overline{0}$	3	$\overline{0.560}$	32.27
Duplication	100	5	0.612	31.60
$(6\mathrm{K}/6\mathrm{K})$	500	3	0.552	32.43
	500	5	0.598	30.57

Other Metrics

Tokenizer	N	$oldsymbol{k}$	PCT ↑	SEQ ↓	BLEU
Baseline $(4\kappa/4\kappa)$	-	_	0.461	25.50	33.74
	$-2\overline{k}$	$\overline{500}$	0.356	31.46	33.39
RANDOM-DROP	2k	1k	0.233	40.37	32.76
$(4\mathrm{K}/4\mathrm{K})$	4k	500	0.405	29.23	33.72
	4k	1k	0.352	33.37	33.40
RANDOM-DROP	$-2\overline{k}$	$\overline{500}$	0.356	31.46	33.35
$(4.5\mathrm{K}/4.5\mathrm{K})$	4.5k	500	0.402	27.93	33.69
	$\overline{100}$	$ \overline{3}$	0.590	25.50	32.37
Duplication	100	5	0.633	25.50	31.32
$(4\mathrm{K}/4\mathrm{K})$	500	3	0.571	25.50	32.26
	500	5	0.605	25.50	N/A

The Future

- Probably not too bad for intrinsic metrics
- Most natural tokenizers still follow the efficiency hypothesis
- Unclear about the relation to subword regularization
- Not yet tested on non-generation tasks (e.g., classification)
- Hopefully helps for designing better metrics!