Regression Problem

- Explore feature correlation
- Simple Linear Regression
- Evaluate Model with MSE, MAE, R-square

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
df = pd.read_csv('http://jse.amstat.org/v19n3/decock/AmesHousing.txt',
          sep='\t',
          usecols=columns)
```

df.head()

→		Overall Qual	Overall Cond	Total Bsmt SF	Central Air	Gr Liv Area	SalePrice	
	0	6	5	1080.0	Υ	1656	215000	Ш
	1	5	6	882.0	Υ	896	105000	
	2	6	6	1329.0	Υ	1329	172000	
	3	7	5	2110.0	Υ	2110	244000	
	4	5	5	928.0	Y	1629	189900	

Next steps: (Generate code with df

View recommended plots

New interactive sheet

df.describe()

→		Overall Qual	Overall Cond	Total Bsmt SF	Gr Liv Area	SalePrice	
	count	2930.000000	2930.000000	2929.000000	2930.000000	2930.000000	
	mean	6.094881	5.563140	1051.614544	1499.690444	180796.060068	
	std	1.411026	1.111537	440.615067	505.508887	79886.692357	
	min	1.000000	1.000000	0.000000	334.000000	12789.000000	
	25%	5.000000	5.000000	793.000000	1126.000000	129500.000000	
	50%	6.000000	5.000000	990.000000	1442.000000	160000.000000	
	75%	7.000000	6.000000	1302.000000	1742.750000	213500.000000	
	max	10.000000	9.000000	6110.000000	5642.000000	755000.000000	

df.info()

RangeIndex: 2930 entries, 0 to 2929 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Overall Qual	2930 non-null	int64
1	Overall Cond	2930 non-null	int64
2	Total Bsmt SF	2929 non-null	float64
3	Central Air	2930 non-null	object
4	Gr Liv Area	2930 non-null	int64

```
5 SalePrice 2930 non-null int64 dtypes: float64(1), int64(4), object(1)
     memory usage: 137.5+ KB
# Encoding categorical feature
df['Central Air'] = df['Central Air'].map({'N': 0, 'Y': 1})
# Remove NaN
df = df.dropna(axis=0)
df.isnull().sum()
 ₹
       Overall Qual 0
       Overall Cond 0
      Total Bsmt SF 0
       Central Air
       Gr Liv Area
        SalePrice
     dtype: int64

    Visualizing Feature Correlation

import matplotlib.pyplot as plt
from mlxtend.plotting import scatterplotmatrix
```

```
# Use pairplot as an alternative
scatterplotmatrix(df.values, figsize=(12, 10),
                  names=df.columns, alpha=0.5)
plt.tight_layout()
```



```
import numpy as np
from mlxtend.plotting import heatmap

cm = np.corrcoef(df.values.T)
hm = heatmap(cm, row_names=df.columns, column_names=df.columns)

plt.tight_layout()
```


Estimating the coefficient of a regression model

```
X = df[['Gr Liv Area']].values
y = df['SalePrice'].values
from sklearn.preprocessing import StandardScaler
sc_x = StandardScaler()
sc y = StandardScaler()
X_std = sc_x.fit_transform(X)
y_std = sc_y.fit_transform(y[:, np.newaxis]).flatten()
from sklearn.linear_model import LinearRegression
slr = LinearRegression()
slr.fit(X, y)
y_pred = slr.predict(X)
print(f'Slope: {slr.coef_[0]:.3f}')
print(f'Intercept: {slr.intercept_:.3f}')
    Slope: 111.666
    Intercept: 13342.979
def lin_regplot(X, y, model):
    plt.scatter(X, y, c='steelblue', edgecolor='white', s=70)
    plt.plot(X, model.predict(X), color='black', lw=2)
    return
lin_regplot(X, y, slr)
plt.xlabel('Living area above ground in square feet')
plt.ylabel('Sale price in U.S. dollars')
plt.tight_layout()
```


Fitting a robust regression model using RANSAC

```
from sklearn.linear_model import RANSACRegressor
ransac = RANSACRegressor(LinearRegression(),
                         max_trials=100, # default
                         min_samples=0.95,
                         loss='absolute_error', # default
                         residual_threshold=None, # default
                         random_state=123)
ransac.fit(X, y)
inlier_mask = ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask)
line_X = np.arange(3, 10, 1)
line_y_ransac = ransac.predict(line_X[:, np.newaxis])
plt.scatter(X[inlier_mask], y[inlier_mask],
            c='steelblue', edgecolor='white',
            marker='o', label='Inliers')
plt.scatter(X[outlier_mask], y[outlier_mask],
            c='limegreen', edgecolor='white',
            marker='s', label='Outliers')
plt.plot(line_X, line_y_ransac, color='black', lw=2)
plt.xlabel('Living area above ground in square feet')
plt.ylabel('Sale price in U.S. dollars')
plt.legend(loc='upper left')
plt.tight_layout()
```



```
print(f'Slope: {ransac.estimator_.coef_[0]:.3f}')
print(f'Intercept: {ransac.estimator_.intercept_:.3f}')
```

Slope: 106.348
Intercept: 20190.093

Evaluating the performance of linear regression models

```
# Residual plot
x_max = np.max([np.max(y_train_pred), np.max(y_test_pred)])
x_min = np.min([np.min(y_train_pred), np.min(y_test_pred)])
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 3), sharey=True)
ax1.scatter(y_test_pred, y_test_pred - y_test,
            c='limegreen', marker='s', edgecolor='white',
            label='Test data')
ax2.scatter(y_train_pred, y_train_pred - y_train,
            c='steelblue', marker='o', edgecolor='white',
            label='Training data')
ax1.set_ylabel('Residuals')
for ax in (ax1, ax2):
    ax.set_xlabel('Predicted values')
    ax.legend(loc='upper left')
    ax.hlines(y=0, xmin=x_min-100, xmax=x_max+100, color='black', lw=2)
plt.tight_layout()
\overline{\Rightarrow}
         600000
                       Test data
                                                           Training data
         400000
         200000
               0
        -200000
                          200000 400000 600000
                                                              200000 400000 600000
                     0
                                                         0
                          Predicted values
                                                              Predicted values
from sklearn.metrics import mean_squared_error
mse_train = mean_squared_error(y_train, y_train_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
print(f'MSE train: {mse_train:.2f}')
print(f'MSE test: {mse_test:.2f}')
   MSE train: 1497216245.85
    MSE test: 1516565821.00
from sklearn.metrics import mean_absolute_error
mae_train = mean_absolute_error(y_train, y_train_pred)
mae_test = mean_absolute_error(y_test, y_test_pred)
print(f'MAE train: {mae_train:.2f}')
print(f'MAE test: {mae_test:.2f}')
   MAE train: 25983.03
    MAE test: 24921.29
from sklearn.metrics import r2_score
r2_train = r2_score(y_train, y_train_pred)
r2_test =r2_score(y_test, y_test_pred)
print(f'R^2 train: {r2_train:.2f}')
```

print(f'R^2 test: {r2_test:.2f}')

```
R^2 train: 0.77
R^2 test: 0.75
```

Apply regularization to regression

```
from sklearn.linear_model import Lasso
lasso = Lasso(alpha=1.0)
lasso.fit(X_train, y_train)
y_train_pred = lasso.predict(X_train)
y_test_pred = lasso.predict(X_test)
print(lasso.coef_)
→ [26251.38276394
                      804.70816337
                                      41.94651964 11364.80761309
        55.67855548]
train_mse = mean_squared_error(y_train, y_train_pred)
test_mse = mean_squared_error(y_test, y_test_pred)
print(f'MSE train: {train_mse:.3f}, test: {test_mse:.3f}')
train_r2 = r2_score(y_train, y_train_pred)
test_r2 = r2_score(y_test, y_test_pred)
print(f'R^2 train: {train_r2:.3f}, {test_r2:.3f}')
→ MSE train: 1497216262.014, test: 1516576825.348
    R^2 train: 0.769, 0.752
from sklearn.linear model import Lasso # L1
lasso = Lasso(alpha=1.0)
from sklearn.linear_model import Ridge # L2
ridge = Ridge(alpha=1.0)
from sklearn.linear model import ElasticNet # L3
elanet = ElasticNet(alpha=1.0, l1_ratio=0.5)
```

Dealing with nonlinear relationships using decision tree

```
from sklearn.tree import DecisionTreeRegressor

X = df[['Gr Liv Area']].values
y = df['SalePrice'].values

tree = DecisionTreeRegressor(max_depth=3)
tree.fit(X, y)
sort_idx = X.flatten().argsort()

lin_regplot(X[sort_idx], y[sort_idx], tree)
plt.xlabel('Living area above ground in square feet')
plt.ylabel('Sale price in U.S. dollars')

plt.tight_layout()
```


Your work

Use your own dataset or the **Boston Housing Dataset** below.

- · Preprocess the dataset, e.g. drop null
- · Explore the correlation of features with scatterplotmatrix or pairplot. Find if there is any highly correlated feature.
- Select the independent (low correlated) features as the input of your multiple regression model.
- · Split dataset, standardize features and run simple linear regression model.
- Evaluate model with MSE, MAE and R-square.

Data Dictionary. http://lib.stat.cmu.edu/datasets/boston

Submit your notebook in PDF to BrightSpace by 4/20 11:59 pm.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
data_url = "http://lib.stat.cmu.edu/datasets/boston"
df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
even_rows = df.values[::2, :] # First part of each data point
odd_rows = df.values[1::2, :] # Second part with target
X = np.hstack([even_rows[:, :11], odd_rows[:, :2]]) # 13 features
y = odd_rows[:, 2] # MEDV target (3rd column of odd rows)
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE',
                 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']
df = pd.DataFrame(X, columns=feature_names)
df['MEDV'] = y
```

```
print("Null values:", df.isnull().sum().sum())
#df = df.dropna()
#print("Null values after:", df.isnull().sum().sum())
```

→ Null values: 0

```
plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(), annot=True, fmt=".2f", cmap='coolwarm')
plt.title('Feature Correlation Matrix')
plt.show()
```



```
corr_matrix = df.corr().abs()
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
to_drop = [column for column in upper.columns if any(upper[column] > 0.8)]
selected_features = [col for col in df.columns if col not in to_drop and col != 'MEDV']
print("Selected features:", selected_features)
```

Selected features: ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'PTRATIO', 'B', 'LSTAT']

```
X = df[selected features].values
lr = LinearRegression()
lr.fit(X_train_scaled, y_train)

y_pred = lr.predict(X_test_scaled)

print("\nModel Evaluation:")
print(f"MSE: {mean_squared_error(y_test, y_pred):.2f}")
print(f"MAE: {mean_absolute_error(y_test, y_pred):.2f}")
print(f"R<sup>2</sup>: {r2_score(y_test, y_pred):.2f}")
```


Model Evaluation: MSE: 22.47

MAE: 3.24 R²: 0.70

```
coefficients = pd.Series(lr.coef_, index=selected_features)
plt.figure(figsize=(10, 6))
coefficients.sort_values().plot.barh()
plt.title('Feature Importance (Linear Regression Coefficients)')
plt.show()
```


