$ au_{1^{-}}^{\#2}$	0	0	0	$\frac{2i}{kr_5 + 2k^3r_5}$	$\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$	0	$\frac{6k^2r_5+4t_3}{(1+2k^2)^2r_5t_3}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{k^2 r_5 + 2k^4 r_5}$	$\frac{3k^2 r_5 + 2t_3}{(k+2k^3)^2 r_5 t_3}$	0	$-\frac{i\sqrt{2}(3k^2r_5+2t_3)}{k(1+2k^2)^2r_5t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$\frac{\sqrt{2}}{k^2 r_5 + 2 k^4 r_5}$	0	$-\frac{2i}{kr_5+2k^3r_5}$
$\tau_1^{\#1}_{+}\alpha_\beta$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	Lagrangian de
$r_2 < 0 \&\& t_2 > 0$	Unitarity conditions

 $_{lpha}\partial^{\kappa}f_{\lambda\kappa}+rac{1}{3}\,r_{2}\,\partial_{\kappa}\omega^{lphaeta heta}\,\partial^{\kappa}\omega_{lphaeta heta}+rac{2}{3}\,r_{2}\,\partial_{\kappa}\omega^{etalphaeta}\,\partial^{\kappa}\omega_{lphaeta heta} _{\kappa}^{\prime}$ - $r_5 \partial_{\theta} \omega_{\lambda}^{\alpha} {}_{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}$ $\kappa_{-\frac{1}{3}} r_2 \partial_{\theta} \omega_{\alpha\beta}^{\quad \ \ \, \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta}$ $\partial^{\kappa} f_{\lambda\alpha} - \frac{1}{6} t_2 \partial_{\kappa} f_{\theta}^{\ \lambda} \partial^{\kappa} f_{\lambda}^{\ \theta} +$ $_{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda}$ - $r_{5}\partial_{\alpha}\omega_{\lambda}^{c}$ $r_2 \, \partial^\beta \omega_{\alpha}{}^{\alpha\lambda} \, \partial_\lambda \omega_{\alpha\beta}{}^{\prime\prime} + {1\over 3} \, r_2 \, \partial^\beta \omega_{\lambda}{}^{\lambda\alpha} \, \partial_\lambda \omega_{\alpha\beta}{}^{\prime\prime} + r_5 \, \partial_\alpha \omega_{\lambda}{}^{\alpha}{}_{\theta} \, \partial^\lambda \omega^{\theta\kappa}{}_{\kappa}$ ' $\omega^{\kappa\lambda}$ $_{\theta}\partial_{\kappa}\omega^{\theta\kappa\lambda} + r_{5}\,\partial_{\theta}\omega_{\lambda}^{\ \ \ \ }$ $x'' + \frac{2}{3}t_2 \omega_{\kappa\lambda}^{\kappa\lambda} \omega_{\kappa\lambda}' + \frac{1}{3}t_2 \omega_{\kappa\lambda}'$ $\alpha + \frac{2}{3} r_2 \partial^{\beta} \omega^{\theta \alpha}$ $\frac{2}{3} r_2 \, \partial_\theta \omega_{\alpha\beta}^{ } \, \partial_\kappa \omega^{\theta\alpha\beta} - r_5$ $\sigma_{\alpha\beta\chi}$ - $r_5\,\partial_i\omega^{\kappa\lambda}$ $\frac{2}{3}t_3 \omega_i^{\alpha_i} \omega_{\kappa\alpha}^{}$ $2 r_5 \partial_\theta \omega_\lambda^{\alpha}$ $\frac{2}{3}t_3\omega_{\kappa\alpha}^{a}$ t_2

$f_{1^-}^{\#2} \alpha$	0	0	0	$-\frac{2}{3}$ Ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	2 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2} t_2}{3}$	ر 2 ع	$-\frac{1}{3}$ I k t_2	0	0	0	0
$\omega_1^{\#1}_{+\alpha\beta}$	$k^2 r_5 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + ^{lphaeta}$	$\epsilon_1^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$\int_{1}^{\pi} + \alpha$	$\frac{r#2}{1} + \alpha$

	$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	0	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\sharp 1} \dagger^{\alpha \beta \chi}$	0	0	0
•			

	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2}^{\#1}_{\alpha\beta}$	$\omega_2^{\#1}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	0	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0
'			

 $\sigma_{0}^{\#1}$

0

	$\omega_{0}^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0^+}^{\#1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{\#1}\dagger$	$i\sqrt{2}kt_3$	$2k^2t_3$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$
,				

 \sim

0 #

 $r_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha$

 $r_{0+}^{\#1} - 2ik\sigma_{0+}^{\#1} == 0$

Source constraints

SO(3) irreps

 $\tau_{0}^{\#2} == 0$

 \sim

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 $^{\circ}$

0

 $\tau_1^{\#_1}\alpha\beta + ik \ \sigma_1^{\#_2}\alpha\beta$

2

 $\sigma_{2}^{\#1}\alpha\beta\chi == 0$

2

 $\tau_{2}^{\#1}\alpha\beta == 0$

 $\sigma_{2}^{\#1}\alpha\beta=0$

2	$\tau_0^{\#2}$	0	0	0	0
5 2	$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
0 == 0	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
$\sigma_2^{\#1}\alpha\beta$ = Total #		$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

0

 $\frac{1}{k^2 r_2 + t_2}$

0

(No massless particle

es)