S1 Chapter 6: Statistical Distributions

Probability Distributions

This Chapter Overview

1 :: General Probability Distributions

"Given that $P(X = x) = \frac{k}{x}$, find the value of k."

2:: Binomial Distribution

"I toss an unfair coin, with probability heads of 0.6, 10 times. What's the probability I see 5 heads?"

3 :: Cumulative Binomial Probabilities

"I toss an unfair coin, with probability heads of 0.6, 10 times. What's the probability I see at most 3 heads?"

Probability distributions

You are already familiar with the concept of **variable** in statistics: a collection of values (e.g. favourite colour of students in the room):

x	red	green	blue	orange
P(X=x)	0.3	0.4	0.1	0.2

If each is assigned a probability of occurring, it becomes a random variable.

 \mathscr{N} A random variable X represents a single experiment/trial. It consists of outcomes with a probability for each.

A shorthand for P(X = x) is $\mathcal{P}(x)$ (note the lowercase p). It's like saying "the probability that the outcome of my coin throw was heads" (P(X = heads)) vs "the probability of heads" (p(heads)). In the latter the coin throw was implicit, so we can skip the 'X ='.

Probability Distributions vs Probability Functions

There are two ways to write the mapping from outcomes to probabilities:

The "{" means we have a 'piecewise function'. This just simply means we choose the function from a list depending on the input.

Advantages of functional form:

As a function:

$$p(x) = \begin{cases} 0.1x, & x = 1,2,3,4 \\ 0, & otherwise \end{cases}$$

e.g. if x = 2, then the probability is $0.1 \times 2 = 0.2$

As a table:

The table form that you know and love.

Advantages of table form:

Ţ

Probability Distributions vs Probability Functions

There are two ways to write the mapping from outcomes to probabilities:

The "{" means we have a 'piecewise function'. This just simply means we choose the function from a list depending on the input.

As a function:

$$p(x) = \begin{cases} 0.1x, & x = 1,2,3,4 \\ 0, & otherwise \end{cases}$$

e.g. if x = 2, then the probability is $0.1 \times 2 = 0.2$

As a table:

Advantages of functional form:

Can have a rule/expression based on the outcome. Particularly for continuous random variables (in Yr2), it would be impossible to list the probability for every outcome. More compact.

x	1	2	3	4
p(x)	0.1	0.2	0.3	0.4

The table form that you know and love.

Advantages of table form:

Probability for each outcome more explicit.

Example

The random variable *X* represents the **number of heads when three coins are tossed**.

Example

The random variable *X* represents the **number of heads when three coins are tossed**.

Underlying Sample Space

{ HHH, HHT, HTT, HTH, THH, TTT, }

Distribution as a Table

Num heads x	0	1	2	3
P(X=x)	1	3	3	1
	8	8	8	8

Distribution as a Function

$$P(X = x) = \begin{cases} \frac{1}{8} & x = 0,3\\ \frac{3}{8} & x = 1,2\\ 0 & otherwise \end{cases}$$

Example Exam Question

(Hint: Use your knowledge that $\Sigma p(...) = 1$

Edexcel S1 May 2012

1. A discrete random variable X has the probability function

$$P(X=x) = \begin{cases} k(1-x)^2 & x = -1, 0, 1 \text{ and } 2\\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that $k = \frac{1}{6}$.

(3)

x	-1	0	1	2
p(x)	?	5	?	5

Example Exam Question

(Hint: Use your knowledge that $\Sigma p(...) = 1$)

(3)

Edexcel S1 May 2012

1. A discrete random variable X has the probability function

$$P(X=x) = \begin{cases} k(1-x)^2 & x = -1, 0, 1 \text{ and } 2\\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that $k = \frac{1}{6}$.

Since
$$\Sigma p(x) = 1$$
, $4k + k + 0 + k = 1$

$$6k = 1 \rightarrow k = \frac{1}{6}$$

Probability of a Range

x	2	3	4	5
p(x)	0.1	0.3	0.2	0.4

Determine:

$$P(X > 3) = ?$$
 $P(2 \le X < 4) = ?$
 $P(2X + 1 \ge 6) = ?$

Probability of a Range

x	2	3	4	5
p(x)	0.1	0.3	0.2	0.4

Determine:

$$P(X > 3) = \mathbf{0.2} + \mathbf{0.4} = \mathbf{0.6}$$

 $P(2 \le X < 4) = \mathbf{0.1} + \mathbf{0.3} = \mathbf{0.4}$
 $P(2X + 1 \ge 6) = P(X \ge 2.5) = \mathbf{0.3} + \mathbf{0.2} + \mathbf{0.4} = \mathbf{0.9}$

A few last things...

We can also represent a probability distribution p(x) graphically:

The throw of a die is an example of a <u>discrete uniform distribution</u> because the probability of each outcome is the same.

p(x) for discrete random variables is known as a **probability mass function**, because the probability of each outcome represents an actual 'amount' (i.e. mass) of probability.

We can also have probability distributions for **continuous** variables, e.g. height.

However, the probability that something has a height of say **exactly** 30cm, is infinitely small (effectively 0).

p(x) (written f(x)) for continuous random variables is known as a **probability density function**. p(30) wouldn't give us the probability of being 30cm tall, but the amount of probability **per unit height**, i.e. the density. This is similar to histograms where frequency density is the "frequency per unit value". Just as an area in a histogram would then give a frequency, and area under a probability density graph would give a probability (mass).

You will encounter the **Normal Distribution** in Year 2, which is an example of a continuous probability distribution.

Exercise 6.1

Pearson Applied Year 1/AS Pages 39-40

- 1 Write down whether or not each of the following is a discrete random variable. Give a reason for your answer.
 - a The height, Xcm, of a seedling chosen randomly from a group of plants.
 - **b** The number of times, R, a six is rolled when a fair dice is rolled 100 times.
 - **c** The number of days, W, in a given week.
- **2** A fair dice is thrown four times and the number of times it falls with a 6 on the top, Y, is noted. Write down the sample space of Y.
- 3 A bag contains two discs with the number 2 on them and two discs with the number 3 on them. A disc is drawn at random from the bag and the number noted. The disc is returned to the bag. A second disc is then drawn from the bag and the number noted.
 - a Write down all the possible outcomes of this experiment.

The discrete random variable X is defined as the sum of the two numbers.

- b Write down the probability distribution of X as:i a tableii a probability mass function.
- **4** A discrete random variable *X* has the probability distribution shown in the table. Find the value of *k*.

x	1	2	3	4
P(X = x)	1/3	1/3	k	1/4

5 The random variable *X* has a probability function

$$P(X = x) = kx$$
 $x = 1, 2, 3, 4.$

Show that $k = \frac{1}{10}$. (2 marks)

6 The random variable *X* has a probability function

$$P(X = x) = \begin{cases} kx & x = 1, 3\\ k(x - 1) & x = 2, 4 \end{cases}$$

where k is a constant.

- a Find the value of k.
- **b** Find P(X > 1).

- (2 marks)
- (2 marks)

7 The discrete random variable *X* has a probability function

$$P(X=x) = \begin{cases} 0.1 & x = -2, -1 \\ \beta & x = 0, 1 \\ 0.2 & x = 2 \end{cases}$$

- a Find the value of β .
- **b** Construct a table giving the probability distribution of X.
- c Find $P(-1 \le X < 2)$.
- 8 A discrete random variable has a probability distribution shown in the table.

Find	tha	wind	22.0	of.	
ring	ine	Val	uc	OI	u.

x	0	1	2
P(X = x)	$\frac{1}{4} - a$	а	$\frac{1}{2} + a$

- 9 The random variable X can take any integer value from 1 to 50. Given that X has a discrete uniform distribution, find:
 - **a** P(X = 1)
 - **b** $P(X \ge 28)$
 - c P(13 < X < 42)

10 A discrete random variable X has the probability distribution shown in this table.

x	0	1	2	3
P(X = x)	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{8}$

Find:

a
$$P(1 < X \le 3)$$
 (1 mark)

$$\mathbf{b} \ \mathbf{P}(X < 2) \tag{1 mark}$$

$$\mathbf{c} \ \mathbf{P}(X > 3) \tag{1 mark}$$

11 A biased coin is tossed until a head appears or it is tossed four times.

If
$$P(Head) = \frac{2}{3}$$
:

- a Write down the probability distribution of S, the number of tosses, in table form. (4 marks)
- **b** Find P(S > 2). (1 mark)
- 12 A fair five-sided spinner is spun.

Given that the spinner is spun five times, write down, in table form, the probability distributions of the following random variables:

- a X, the number of times red appears
- **b** Y, the number of times yellow appears.

The spinner is now spun until it lands on blue, or until it has been spun five times. The random variable Z is defined as the number of spins in this experiment.

c Find the probability distribution of Z.

13 Marie says that a random variable X has a probability distribution defined by the following probability mass function:

$$P(X = x) = \frac{2}{x^2}, \quad x = 2, 3, 4$$

- a Explain how you know that Marie's function does not describe a probability distribution.
- **b** Given that the correct probability mass function is in the form $P(X = x) = \frac{k}{x^2}$, x = 2, 3, 4 where k is a constant, find the exact value of k. (2 marks)

Challenge

The independent random variables X and Y have probability distributions

$$P(X = x) = \frac{1}{8}$$
, $x = 1, 2, 3, 4, 5, 6, 7, 8 $P(Y = y) = \frac{1}{y}$, $y = 2, 3, 6$$

Find P(X > Y).

Hint X and Y are independent so the value taken by one does not affect the probabilities for the other.

(2 marks)

Homework Answers

- 1 a This is not a discrete random variable, since height is continuous quantity.
 - b This is a discrete random variable, since it is always a whole number and it can vary.
 - c This is not a discrete random variable, since the number of days in a given week is always 7.
- 2 0, 1, 2, 3, 4
- 3 a (2, 2) (2, 3) (3, 2) (3, 3)
 - b

x	4	5	6
P(X = x)	0.25	0.5	0.25

ii

$$P(X = x) = \begin{cases} 0.25, & x = 4, 6 \\ 0.5, & x = 5 \end{cases}$$

- $4 \frac{1}{12}$
- 5 k + 2k + 3k + 4k = 1, so 10k = 1, so $k = \frac{1}{10}$.
- **6 a** 0.125
- **b** 0.875

- 7 a 0.3
 - x
 -2
 -1
 0
 1
 2

 P(X = x)
 0.1
 0.1
 0.3
 0.3
 0.2
 - c 0.7
- 8 0.25
- 9 a 0.02

- **b** 0.46**b** 0.375
- **c** 0.56 **c** 0

10 a 0.625

s	1	2	3	4
P(S=s)	2	20	2 27	1 27

- **b** $\frac{1}{9}$

1	•	-
L	4	\mathbf{a}

x	P(X = x)
0	0.07776
1	0.2592
2	0.3456
3	0.2304
4	0.0768
5	0.01024

\boldsymbol{y}	P(X = y)
0	0.32768
1	0.4096
2	0.2048
3	0.0512
4	0.0064

0.00032

5

b

,	z	P(X=z)
	1	0.4
	2	0.24
	3	0.144
	4	0.0864

0.1296

13 a The sum of the probabilities is not 1. b $2\frac{22}{61}$

Challenge 0.625