KING SAUD UNIVERSITY

Practice problems for final

Express the number 442 (base 6) in base 3.

What is the co-efficient of $x^3y^4z^3$ when expanding $(x+2y+3z)^{10}$.

$$(x+2y+3z)^{10} = \sum_{\lambda_1! \times \lambda_2! \times \lambda_3!} x^{\lambda_1} \cdot (2y)^{\lambda_2} \cdot (3z)^{\lambda_3}$$

coeff of
$$x^3y^43^3 \Rightarrow i_{1}=3, i_{2}=4, i_{3}=i_{1}=i$$

3. Calculate the value of
$$\sum_{k=0}^{n} \left(\prod_{k=0}^{k} 3. \right) = \sum_{k=0}^{n} 3$$

$$= 3 \sum_{k=0}^{n} 3^{k} = 3 \left(\frac{3}{2} - 1 \right)$$

Prove using Induction that for all positive integer n, then

$$\sum_{k=0}^{n} k \cdot (k!) = (n+1)! - 1.$$
 Base case (n=0)

X=0 K(K!) * Ssume it is True for コナー n N + N (0+2)! -1 (n+2)(n+1)(+ r];(1+u) > K(K!) - 11 -1 -0 some n. For n+1 (n+1)!-1 by induction) + (n+1) (n+1)! (0+0) E

13

5. Use Induction to show that, $n! > 2^n$ for all $n \ge 4$.

Use induction to show that,
$$n! > 2^n$$
 for all $n \ge 4$.

Base case $n = 4$ $4! = 24 > 2^n = 16$ True

Inductive case $(n+1)! = (n+1) \cdot n! > (n+1) \cdot 2^n$ by inductive $(n+1)! = (n+1) \cdot n! > (n+1) \cdot 2^n$ by inductive hypothesis $(n+1)! = (n+1) \cdot n! > 2 \cdot 2^n$

Write generating function in closed form to generate sequence: <5, 3, 1, 1, 1, ...> / ^, ^, ^, ^, ^ / · · · >

Eq.
$$Q_{n} = Q_{1} \left(\frac{1 + \sqrt{13}}{2} \right)^{n} + Q_{2} \left(\frac{1 - \sqrt{13}}{2} \right)^{n}$$
for Q_{1}, Q_{2} we $\left(\frac{1 + \sqrt{13}}{2}, \frac{1 - \sqrt{13}}{2} \right) \left(\frac{Q_{1}}{Q_{2}} \right) = \left(\frac{1}{4} \right)^{n}$

How many passwords of length 7 can you make using following symbols: a-z, A-Z, @, and o-9. Each password must have at least one capital letter, and at least one digit.

W. Count the number of functions $f: Z \mapsto E$.

functions $f = |E|^{|Z|} = (2)$ Suppose we have three sets: X, Y, and Z of sizes n, m, ℓ respectively. Let set $W=X\times Y$ (cross-product of two sets), and let E=P(W), that is the power set of

functions
$$f = |E|^{1/2} = (2^{nm})^{\ell} = 2^{nm} \ell$$