Quiz-1 (ADA-2024) - Answers

January 31, 2024

Roll Number:

Section:

- 1. Let $f(n) = 25^n n^3$ and $g(n) = 36^n n$. Then which of the following statement(s) is/are true?
- (A) g(n) = O(f(n)).
- (B) f(n) = O(g(n)). (Correct)
- (C) Both the above.
- (D) None of the above.
- 2. Let $f(n) = 2^n n^9$ and $g(n) = 2^n n^7$. Then which of the following statement(s) is/are true?
- (A) g(n) = O(f(n)). (correct)
- (B) f(n) = O(g(n)).
- (C) Both the above.
- (D) None of the above.
- **3.** Suppose that an algorithm \mathcal{A} partitions a problem of size n into 7 subproblems each of size n/3 and then combines the solutions in $6n^2$ -time. When $n \leq 6$, then it takes only 4 primitive operations. Then what is the recurrence relation of algorithm \mathcal{A} ?
- (A) $T(n) = 6T(n/3) + 6n^2$ for all $n \ge 7$ and T(n) = 2 for all $n \le 6$.
- (B) $T(n) = 6T(n/3) + 6n^2$ for all $n \ge 2$ and T(n) = 4 for all $n \le 6$.
- (C) $T(n) = 7T(n/3) + 6n^2$ for all $n \ge 2$ and T(n) = 2 for all $n \le 6$.
- (D) $T(n) = 7T(n/3) + 6n^2$ for all $n \ge 2$ and T(n) = 4 for all $n \le 6$. (correct)
- **4.** Suppose that an algorithm \mathcal{A} partitions a problem of size n into 4 subproblems each of size n/4 and then combines the solutions in $2n \log n$ time. Then what is the tightest asymptotic running time of algorithm \mathcal{A} in Big-Oh notation?

(A) $O(n \log n)$.
(B) $O(n^2)$.
(C) $O(n(\log n)^2)$. (correct)
(D) $O(n^2 \log n)$.
5. Suppose that an algorithm \mathcal{A} partitions a problem of size n into 6 subproblems each of size $n/2$ and then combines the solutions in $6n^3$ time. Then what is the tightest asymptotic running time of algorithm \mathcal{A} in Big-Oh notation?
(A) $O(n^2 \log n)$.
(B) $O(n^2)$.
(C) $O(n^3 \log n)$.
(D) $O(n^3)$. (correct)
6. Your friend wrote an algorithm for selecting k^{th} smallest element in an unsorted array of length n , with the help of medians of medians. If her recursive function partitions an input array A into $\lceil A /3 \rceil$ groups each group (possibly except one) having three elements, then what is the best (or tightest) running time of her algorithm.
(A) $O(n \log n)$. (correct)
(B) $O(n)$.
(C) $O(n^2)$.
(D) $O(n^2 \log n)$.
7. Consider an array of n distinct numbers. What is the maximum number of inversions that are possible in that array?
(A) $O(n^2)$.
(B) $\frac{n(n-1)}{2}$. (correct)
(C) 0.
(D) n .
8. Can Master's Theorem be applied on any recurrence relation?
(A) Yes.
(B) No. (correct)

(C) Cannot Say.