Laboratoire de régulation

Rapport des séances

21/02/2018

06/03/2018

20/03/2018

17/04/2018

Emile Albert

Mathieu David

William de Decker

Tom Selleslagh

Table des matières

1	Séa	ance 1: Identification	2
	1.1	Introduction	2
		1.1.1 Système	2
	1.2	Essai indiciel	
		1.2.1 Description et conditions de l'essai	2
		1.2.2 Modèle de Broïda	
		1.2.3 Modèle de Vander Grinten	
		1.2.4 Modèle de Stejc	4
		1.2.5 Optimisation des modèles	
	1.3	Observations	4
	1.4	Synthèse de régulateur par la méthode de Chien - Hrones - Reswick $\dots \dots \dots \dots \dots$	Ę
2	Séa	ance 2 : Etude du régulateur PID	7
		Introduction	7
3	Séa	ance 3 : Feed-Forward	8
	3.1	Introduction	8
4	Séa	ance 4: Internal Model Control	g
	11	Introduction	0

1 Séance 1 : Identification

1.1 Introduction

Une bonne régulation ne peut se faire sans un bon modèle

Les régulateurs sont destinés à opérer dans des systèmes physiques. Les réponses qu'ils doivent fournir pour une bonne régulation s'appuient sur leur synthèse et les paramètres qui en découlent. Ces paramètres doivent correspondre au plus près à la réalité physique du système. Cette réalité est exprimée au travers du modèle mathématique associé à ce dernier. Ce modèle correspond à la fonction de transfert du système, autrement dit à la relation liant son (ses) entrée(s) à sa (ses) sortie(s).

1.1.1 Système

Dans le cadre de ce laboratoire, le système est un canon à chaleur. Il est constitué d'une résistance chauffante, d'en ventilateur ainsi que d'un clapet pouvant modifier l'entrée d'air du canon.

FIGURE 1 – Schéma du système

L'entrée du système correspond au courant injecté dans la résistance, directement relié à la puissance thermique dissipée dans le canon $(P = R * I^2)$.

La sortie du système, quant à elle, correspond à la température de l'air à la sortie du canon mesurée au moyen d'un capteur industriel LTR700.

Au vu de ces considérations, le système ne peut pas être représenté par un système du premier ordre. En effet, l'équation de puissance dissipée et de transfert de chaleur par rayonnement apporte des termes de puissance deux et quatre.

Les objectifs de cette première séance sont d'une part comparer trois modélisations différentes pour le système physique et de trouver un modèle optimal et d'autre part de synthétiser par méthode directe un régulateur PID (méthode de Chien-Hrones-Reswick).

Schéma bloc des E/S et de la fonction de transfert

1.2 Essai indiciel

1.2.1 Description et conditions de l'essai

Dans le but de déterminer la fonction de transfert du système, nous allons donc appliquer un échelon à celui-ci.

Le système étant d'un degré supérieur à un, nous allons travailler autour d'un point de fonctionnement pour pouvoir considérer la réponse du système linéaire sur cet intervalle. Ce point de fonctionnement est 50% de la température et donc un intervalle égal à [45%-55%]

L'échelon sera appliqué sur la totalité de la plage. Le système étant considéré comme linéaire, la raison de ce choix n'est pas d'augmenter la précision d'une approximation, mais plutôt de minimiser l'erreur induite par le bruit. En effet, un échelon plus grand permet de réduire le ratio signal/bruit.

Condition de l'essai

- LTR700
- Position du clapet Ouvert
- Position de l'interrupteur de perturbation 0

Identification

- Mode régulateur MANU
- Échelon de température de l'air- de 45% à 55% $\Delta=10\%$
- Mesure de la température de l'air en sortie de 39.5% à 49.5% $\Delta=10\%$

FIGURE 2 – Réponse indicielle du système

- On trouve la valeur de a graphiquement grâce à la formule $a=\frac{a'}{\Delta y}=\frac{2.52}{9.78}=0.2577$
- $-T_U$ est trouvé graphiquement et vaut 20.83
- $-\ T_G$ est trouvé graphiquement et vaut 145.83
- $-T_1$ est trouvé graphiquement et vaut 58.33
- $-\ T_2$ est trouvé graphiquement et vaut 75

Feuille manuelle pour expliciter les valeurs graphiques en annexes ? + Unités

1.2.2 Modèle de Broïda

On modélise la fonction de transfert d'un système d'ordre n à l'aide d'un modèle du premier ordre combinée à un retard pur

$$H_B(s) = \frac{K}{1 + Ts} * e^{-T_m s} \tag{1}$$

οù

• K est le gain statique [sans unité]

- T est la constante de temps???
- T_m est la constante de temps???

Pour notre système nous obtenons suivant les formules et les valeurs trouvées graphiquement

•
$$T = 5.5(t_2 - t_1) = 5.5(75 - 58.33) = 91.685$$

•
$$T_m = 2.8t_1 - 1.8t_2 = 2.8 * 58.33 - 1.8 * 75 = 28.324$$

Ce qui donne

$$H_B(s) = \frac{0.970}{1 + 91.685s} * e^{-28.324s}$$
 (2)

1.2.3 Modèle de Vander Grinten

Modélisation du système grâce à un modèle du second ordre avec deux pôles distincts et un temps mort

$$H_V(s) = \frac{Ke^{-sT_m}}{(sT_1 + 1)(sT_2 + 1)} \tag{3}$$

οù

- K est le gain statique [sans unité]
- T_1 est la constante de temps???
- T_2 est la constante de temps???
- T_m est la constante de temps???

Pour notre système nous obtenons suivant les formules et les valeurs trouvées graphiquement

•
$$T_1 = T_G \frac{3ae-1}{1+ae} = 145.83 \frac{3*0.2577*e-1}{1+0.2577*e} = 94.445$$

•
$$T_2 = T_G \frac{1-ae}{1+ae} = 145.83 \frac{1-0.2577*e}{1+0.2577*e} = 25.693$$

•
$$T_m = T_U \frac{T_1 T_2}{T_1 + 3T_2} = 20.83 \frac{94.445 * 25.693}{94.445 + 3 * 25.693} = 6.683$$

1.2.4 Modèle de Stejc

Ce modèle identifie un ordre n quelconque à condition d'avoir tous les pôles identiques

$$H_S(s) = \frac{Ke^{-sT_m}}{(sT+1)^n} \tag{4}$$

οù

- K est le gain statique [sans unité]
- T est la constante de temps???
- T_m est la constante de temps???
- n est l'ordre du modèle

Pour notre système, les valeurs calculées pour définir les paramètres du modèle de Strejc sont

$$\bullet \ \frac{T_U}{T_G} = \frac{20.83}{145.83} = 0.143$$

•
$$\frac{T_G}{T} = \frac{145.83}{91.685} = 1.591 \text{ Avec } T = 5.5(t_2 - t_1) = 5.5(75 - 58.33) = 91.685?$$

L'ordre est alors déterminé en fonction du tableau fournis dans les notes de laboratoires

Ordre(n)	Tu/Tg	Tg/T
1	0	1
2	0,1	2,72
3	0,22	3,69
4	0,32	4,46
5	0,41	5,12
6	0,49	5,7
7	0,57	6,23

Remarque :Dans le cas où les valeurs calculée tombent entre les valeurs énoncées dans le tableau, on prendra la valeur inférieure pour définir l'ordre. En effet, la courbe correspondante à l'ordre inférieure pourra être rectifiée avec un temps mort pur pour se rapprocher de la courbe réelle, au contraire de la courbe correspondante à l'ordre supérieur.

1.2.5 Optimisation des modèles

L'objectif de cette méthode est de trouver un modèle optimal par recherche algorithmique par fonction de coût. Les modèles trouvés précédemment sont donc améliorés par la routine fminsearch de MATLAB.

1.3 Observations

Les 3 courbes des modèles utilisés pour modéliser le systèmes sont reprises ci-dessous

A l'aide de la fonction matlab d'optimisation, nous avons déterminé un modèle idéal et ses paramètres associés pour le système étudié

1.4 Synthèse de régulateur par la méthode de Chien - Hrones - Reswick

La méthode de Chien - Hrones - Reswick est un méthode de synthèse directe de régulateur PID. Le type de régulateur (P, PI ou PID) est choisi en fonction de la réglabilité du système étudié et ses paramètres sont ensuite calculée en fonction des constantes de temps observées.

• Réglabilité $\rho=\frac{T_G}{T_U}=\frac{145.83}{20.83}=7.001$ Selon les critères de la méthodes, le régulateur adapté est un régulateur PI ($10>\rho>=7$) On trouve alors

$$-K_{BO} = \frac{\rho}{2.9} = \frac{7.001}{2.9} = 2.414$$

$$-K_r = \frac{K_{BO}}{K_s} = \frac{2.414}{0.97} = 2.489$$

$$-T_i = 1.2T_G = 1.2 * 145.83 = 174.996$$

Si on impose de travailler avec un régulateur PID on trouve alors

•
$$K_{BO} = \frac{\rho}{1.7} = \frac{7.001}{1.7} = 4.118$$

•
$$K_r = \frac{K_{BO}}{K_s} = \frac{4.118}{0.97} = 2.245$$

•
$$T_i = T_G = 145.83$$

•
$$T_d = (0.5...1)T_U = (0.5...1) * 20.83 =$$

•
$$T_f = \frac{T_d}{10...20} =$$

- 2 Séance 2 : Etude du régulateur PID
- 2.1 Introduction

- Séance 3: Feed-Forward
- 3.1 Introduction

- 4 Séance 4 : Internal Model Control
- 4.1 Introduction