



**Primimplikatorer:**  $x_{2}^{'}x_{5}$ ,  $x_{3}x_{5}x_{7}$ ,  $x_{1}x_{3}^{'}x_{5}$ ,  $x_{1}x_{5}x_{7}$ ,  $x_{2}^{'}x_{4}x_{6}$ 

## Primimplikatortabell enligt Reusch:

|                       | $x_2^{'}x_5$ | $x_{2}^{'}x_{4}x_{5}^{'}x_{6}$ | $x_2 x_3 x_5 x_7$ | $x_1x_2x_3x_5$ |
|-----------------------|--------------|--------------------------------|-------------------|----------------|
| $x_2 x_5$             | 1            | 0                              | 0                 | 0              |
| $x_3 x_5 x_7$         | $x_3x_7$     | 0                              | 1                 | 0              |
| $x_1x_3x_5$           | $x_1x_3$     | 0                              | 0                 | 1              |
| $x_1 x_5 x_7$         | $x_1x_7$     | 0                              | $x_1$             | $x_7$          |
| $x_{2}^{'}x_{4}x_{6}$ | $x_4x_6$     | 1                              | 0                 | 0              |

**Minimal disjunktiv form:**  $f(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = x_2 x_5 + x_3 x_5 x_7 + x_1 x_3 x_5 + x_2 x_4 x_6$ 

| 2.              |                  |                 |                         |    |          |         |                       |                          |    |              |         |                         |                          |                    |                    |                  |                         |                          |    |    |
|-----------------|------------------|-----------------|-------------------------|----|----------|---------|-----------------------|--------------------------|----|--------------|---------|-------------------------|--------------------------|--------------------|--------------------|------------------|-------------------------|--------------------------|----|----|
|                 | 00               | . <i>y</i> . 01 | 1 <i>y</i> <sub>2</sub> | 10 |          | 00      | <i>y</i> <sub>1</sub> | <i>y</i> <sub>2</sub> 11 | 10 |              | 00      | <i>y</i> <sub>1</sub> . | <i>y</i> <sub>2</sub> 11 | 10                 |                    | 00               | <i>y</i> <sub>1</sub> . | <i>y</i> <sub>2</sub> 11 | 10 |    |
| 00              | 0                | 0               | 0                       | 0  | 00       | 0       | 0                     | 0                        | 0  | 00           | 0       | 0                       | 0                        | 0                  | 00                 | 0                | 0                       | 0                        | 0  |    |
| 01              | 0                | 0               | 0                       | 0  | v r 01   | 0       | 0                     | 0                        | 0  | 01<br>rr     | 0       | 0                       | 1                        | 1                  | 01<br>rr           | 0                | 1                       | 1                        | 0  |    |
| $x_1 x_2 \\ 11$ | 0                | 0               | 1                       | 0  | $x_1x_2$ | 0       | 0                     | 0                        | 1  | $x_{1}x_{2}$ | 0       | 1                       | 0                        | 1                  | $x_1 x_2$          | 0                | 1                       | 1                        | 0  |    |
| 10              | 0                | 0               | 0                       | 0  | 10       | 0       | 0                     | 1                        | 1  | 10           | 0       | 1                       | 1                        | 0                  | 10                 | 0                | 0                       | 0                        | 0  |    |
|                 | z <sub>1</sub> = | $x_1x_2$        | $_{2}y_{1}y_{2}$        |    |          | $z_2 =$ | $x_1y$                | $_{1}\cdot z_{1}$        |    |              | $z_3 =$ | $(x_1)$                 | y <sub>2</sub> + x       | (2V <sub>1</sub> ) | · Z <sub>1</sub> ' | z <sub>4</sub> = | $x_2y$                  | 2                        |    | £. |

fortsättning

# 2 forts.



3.  $f(w,x,y,z) = z \cdot (x+y) \cdot (w'+x') + (x'+y') \cdot w$  (1)

För 
$$x = 1$$
,  $y = 0$  och  $z = 1$  fås  $f(w,1,0,1) = 1 \cdot (1+0) \cdot (w'+0) + (0+1) \cdot w = w'+w$ 

Således statisk hasard vid övergången mellan (0101) och (1101).

Omskrivning av (1) ger f(w,x,y,z) = w'xz + w'yz + x'yz + wx' + wy'



Hasardfritt uttryck:

$$f(w, x, y, z) = w'xz + w'yz + x'yz + wx' + wy' + xy'z$$

Omskrivning med hjälp av distributiva lagen ger

$$f(w,x,y,z) = w \cdot (x'+y') + xz \cdot (w'+y') + yz \cdot (w'+x')$$

DeMorgans lag ger

$$f(w,x,y,z) = w \cdot (xy)' + xz \cdot (wy)' + yz \cdot (wx)'$$



Hasardfri realisering

4.





Fortsättning nästa sida

### 4 forts.

Maximala förenlighetsmängder: {1,4}, {2,3,5}, {2,3,6}, {3,6,7} och {4,5}

| C <sub>i</sub> | I(C <sub>i</sub> )   |
|----------------|----------------------|
| {1,4}          | {3,5}                |
| {2,3,5}        | $\{2,6\}, \{3,6,7\}$ |
| {2,3,6}        | Φ                    |
| {3,6,7}        | Φ                    |
| {4,5}          | {3,5}                |
| {1}            | Φ                    |
| {2,5}          | {6,7}                |
| {4}            | Φ                    |

{1,4}, {2,3,5}, {2,3,6} och {3,6,7} bildar en minimal, sluten och täckande uppsättning av förenlighetsmängder.

En annan sådan uppsättning är:  $\{1\}$ ,  $\{2,5\}$ ,  $\{3,6,7\}$  och  $\{4\}$ , som ger en enkel  $\delta(\lambda)$ -tabell.

| $\delta(\lambda)$ | 00      | 01    | 11        | 10        |
|-------------------|---------|-------|-----------|-----------|
| $A = \{1,4\}$     | B(1)    | B (0) | -(1)      | B (0)     |
| $B = \{2,3,5\}$   | C (0)   | A (1) | D(1)      | BvCvD (1) |
| $C = \{2,3,6\}$   | C (0)   | A (1) | CvD (0)   | BvCvD (1) |
| $D = \{3,6,7\}$   | CvD (0) | A (1) | BvCvD (0) | A (1)     |

| $\delta(\lambda)$ | 00    | 01    | 11    | 10    |
|-------------------|-------|-------|-------|-------|
| $E = \{1\}$       | F (1) | F (-) | - (-) | - (0) |
| $F = \{2,5\}$     | F (0) | - (-) | G (1) | G(1)  |
| $G = \{3,6,7\}$   | G (0) | H(1)  | G (0) | E (1) |
| $H = \{4\}$       | - (-) | G (0) | - (1) | F (0) |

5.



### Tillståndskodning:

|       |   | 4243 |    |    |    |  |  |
|-------|---|------|----|----|----|--|--|
|       |   | 00   | 01 | 11 | 10 |  |  |
|       | 0 | A    | C  | В  | -  |  |  |
| $q_1$ | 1 | F    | D  | Е  | G  |  |  |

**Regel 1.** Tillstånd, som för en viss insymbol har samma nästa tillstånd, ges intilliggande kodord: (B,C) (D,E) (F,G)

**Regel 2:** Tillstånd, som är nästa tillstånd till ett givet tillstånd, ges intilliggande kodord: (B,C) (D,E) (F,G)

**Regel 3.** Tillstånd, som för en viss insymbol har samma utsymbol, ges intilliggande kodord: (B,E,G) (A,C,D,F) (A,C,D) (B,E,G)

## 5 forts.

| ē                 |         |          |
|-------------------|---------|----------|
| $\delta(\lambda)$ | x = 0   | x = 1    |
| 000 = A           | 001 (1) | 011 (0)  |
| 010 =             | -       | -        |
| 110 = G           | 000 (0) | 000 (1)= |
| 100 = F           | 000 (1) | -        |
| 001 = C           | 111 (1) | 101 (0)  |
| 011 = B           | 101 (0) | 101 (1)  |
| 111 = E           | 110 (0) | 110(1)   |
| 101 = D           | 110 (1) | 100 (0)  |









# 6.

