

Course Overview (Tentative)

Instructor: **Dr. Ersin Çine** (Email: **ersincine@iyte.edu.tr**; Office hours: **Monday 14:30–16:30**)
Assistant: **Ceren Sözeri** (Email: **cerensozeri@iyte.edu.tr**; Office hours: **Thursday 13.30–15.30**)

Primary Textbook: **Fundamentals of Machine Learning for Predictive Data Analytics** (Second Edition) Supplementary Textbook: **Hands-On Machine Learning with Scikit-Learn & TensorFlow** (Third Edition)

Grading Policy: 20% Assignments + 10% Quizzes + 30% Midterm Exam + %40 Final Exam

Syllabus (Tentative)

Introduction: 1 Week

Information-Based Learning: ~2 Weeks (1, 3.6, 4.1, 4.2, 4.3, 4.4.4, 4.4.5)

Similarity-Based Learning: ~1 Week (5.1, 5.2, 5.3, 5.4.1, 5.4.3, 5.4.6)

Probability-Based Learning: ~1 Week (6.1, 6.2, 6.3, 6.4.1)

Error-Based Learning: ~2 Weeks (7.1, 7.2, 7.3, 7.4.4, 7.4.5, 7.4.6, 7.4.7)

Deep Learning: ~2 Weeks (8.1, 8.2, 8.3)

Evaluation: ~1 Week (9.1, 9.2, 9.3, 9.4.1, 9.4.2, 9.4.3, 9.4.4, 9.4.5)

Unsupervised Learning: ~1 Week (10.1, 10.2, 10.3)

Reinforcement Learning: ~1 Week (11.1, 11.2, 11.3)

The Art of Machine Learning and Next Steps: ~1 Week (14)

What Is Artificial Intelligence (AI)?

AI is a field that focuses on creating systems capable of performing tasks that typically require human intelligence, such as problem-solving, reasoning, planning, perceiving the environment through vision, and understanding language.

What Is Machine Learning (ML)?

ML is a subset of AI.

"ML is the field of study that gives computers the ability to learn without being explicitly programmed."

"True **intelligence** is not about knowing everything, but about knowing how to **learn** anything."

AI and ML Applications

What are some applications of AI and ML?

How can they be used by **students**, **engineers**, **scientists**, **doctors**, **lawyers**, **marketers**, **artists**, **entrepreneurs**, **professionals in other fields**, and **everyday people** in their daily lives? (Share what you know or dream up something exciting!)

Plato

Idealist

Theoretical & abstract

Classical AI (Logic)

Aristotle

Realist

Practical & experimental

Machine Learning (Statistics)

Chess-Playing AI

Classical AI

Search possible moves and choose the

move that leads to the best position (i.e., worst position for the opponent). Manually defined **rules** (or heuristics):

A bishop is three times more valuable than a pawn.

- Knights are better positioned in the center.

Machine Learning

Predict the best move based on the huge training data (i.e., experience).

Compiled **examples** from past games:

- In a grandmaster's match, White won after this opening.
- From this position, Black lost their queen in three moves.

— Seneca

"The path is long with rules,

but short with examples."

Chess-Playing AI

Classical AI Machine Learning

Predict the best move based on the

huge training data (i.e., experience).

Compiled **examples** from past games:

move that leads to the best position (i.e., worst position for the opponent).

Manually defined **rules** (or heuristics):

Search possible moves and choose the

A bishop is three times more valuable than a pawn

valuable than a pawn.Knights are better positioned in

the center.

 In a grandmaster's match, White won after this opening.

won after this opening.
From this position, Black lost their queen in three moves.

What Is Learning?

Learning a task ⇔ Improving performance as experience increases

$$f(x, y, z) = ?$$

$$f(x, y, z) = ?$$

Experience: Input-output data examples for the function (i.e., training set)

$$f(x, y, z) = ?$$

Experience: Input-output data examples for the function (i.e., training set)

$$f(x, y, z) = ?$$

Experience: Input-output data examples for the function (i.e., training set)

Performance: Minimizing errors on the test set

$$f(x, y, z) = xz - 2y$$

Experience: Input-output data examples for the function (i.e., training set)

Performance: Minimizing errors on the test set

$$f(x, y, z) = xz - 2y$$

Experience: Input-output data examples for the function (i.e., training set)

Performance: Minimizing errors on the test set

$$f(4, 1, 7) = ?$$

Let's say we predict f(4, 1, 7) = 28

Assume the ground truth is f(4, 1, 7) = 26

Our absolute error = 2

Our **squared error = 4**

Stochastic functions

$$f(x, y, z) = xz - 2y$$

Experience: Input-output data examples for the function (i.e., training set)

Performance: Minimizing errors on the test set

"No free lunch"

$$add(x, y) = ?$$

Since this is a very important function, we have a special operator for this task:

$$x + y$$

Experience: Examples given in class (i.e., in the training set)

$$7 + 21 = 28$$

$$4 + 14 = 18$$

$$11 + 40 = 51$$

Performance: Scoring high on the exam (i.e., the test set)

$$6 + 32 = ?$$

$$17 + 2 = ?$$

$$add(x, y) = ?$$

Since this is a very important function, we have a special operator for this task:

$$x + y$$

Experience: Examples given in class (i.e., in the training set)

$$7 + 21 = 28$$

$$4 + 14 = 18$$

$$11 + 40 = 51$$

Performance: Scoring high on the exam (i.e., the test set)

$$6 + 32 = ?$$

$$17 + 2 = ?$$

$$add(x, y) = ?$$

Since this is a very important function, we have a special operator for this task:

$$x + y$$

Experience: Examples given in class (i.e., in the training set)

$$7 + 21 = 28$$

$$4 + 14 = 18$$

$$11 + 40 = 51$$

Performance: Scoring high on the exam (i.e., the test set)

$$6 + 32 = ?$$

$$17 + 2 = ?$$

Data augmentation

$$add(x, y) = ?$$

Since this is a very important function, we have a special operator for this task:

$$x + y$$

Experience: Examples given in class (i.e., in the training set)

$$7 + 21 = 28$$

$$4 + 14 = 18$$

$$11 + 40 = 51$$

Performance: Scoring high on the exam (i.e., the test set)

$$6 + 32 = ?$$

$$17 + 2 = ?$$

Problem (Machine Translation)

translate(original_text, target_language) = translated_text

Once each character is represented as a number, it becomes a mathematical problem.

Examples

```
translate("makine", English) = "machine"
translate("bir kedi", English) = "a cat"
translate("Benim adım Ersin.", German) = "Mein Name ist Ersin."
translate("Düşünüyorum.", English) = "I'm thinking."
translate("Bugün hava çok güzel.", English) = "The weather is very nice today."
```

Queries

```
translate( "makine öğrenmesi", English ) = ?
translate( "Nasılsın?", German ) = ?
```

:

Problem (Machine Translation)

translate(original_text, target_language) = translated_text

Once each character is represented as a number, it becomes a mathematical problem.

Examples

translate("makine", English) = "machine"
translate("bir kedi", English) = "a cat"
translate("Benim adım Ersin.", German) = "Mein Name ist Ersin."
translate("Düşünüyorum.", English) = "I'm thinking."
translate("Bugün hava çok güzel.", English) = "The weather is very nice today."

Queries

translate("makine öğrenmesi", English) = ? translate("Nasılsın?", German) = ?

Pretraining?

Problem (Machine Translation)

translate(original_text, target_language) = translated_text

Once each character is represented as a number, it becomes a mathematical problem.

Examples

```
translate("makine", English) = "machine"

translate("bir kedi", English) = "a cat"

translate("Benim adım Ersin.", German) = "Mein Name ist Ersin."

translate("Düşünüyorum.", English) = "I'm thinking."

translate("Bugün hava çok güzel.", English) = "The weather is very nice today."
```

Queries

```
translate( "makine öğrenmesi", English ) = ?
translate( "Nasılsın?", German ) = ?
```

We won't be doing natural language processing in this course.

Problem (Image Classification)

classify(photo) = object_in_the_photo

Once each pixel is represented as a number, it becomes a mathematical problem.

Examples

Queries

፥

Problem (Image Classification)

classify(photo) = object_in_the_photo

Once each pixel is represented as a number, it becomes a mathematical problem.

Examples

Queries

Data augmentation?

Problem (Image Classification)

classify(photo) = object_in_the_photo

Once each pixel is represented as a number, it becomes a mathematical problem.

Examples

Queries

We won't be doing computer vision in this course.

titanic(name, age, gender, ticket_fare) = accident_outcome

Examples

titanic("Braund, Mr. Owen Harris", 22, Male, 7) = Died titanic("Heikkinen, Miss. Laina", 26, Female, 7) = Survived titanic("Nasser, Mrs. Nicholas", 14, Female, 30) = Survived

Queries

titanic ("Myles, Mr. Thomas Francis", 62, Male, 9) =?

titanic(name, age, gender, ticket_fare) = accident_outcome

Examples

titanic("Braund, Mr. Owen Harris", 22, Male, 7) = Died titanic("Heikkinen, Miss. Laina", 26, Female, 7) = Survived titanic("Nasser, Mrs. Nicholas", 14, Female, 30) = Survived

Queries

titanic ("Myles, Mr. Thomas Francis", 62, Male, 9) =?

:

titanic(name, age, gender, ticket_fare) = accident_outcome

Examples

titanic("Braund, Mr. Owen Harris", 22, Male, 7) = Died titanic("Heikkinen, Miss. Laina", 26, Female, 7) = Survived titanic("Nasser, Mrs. Nicholas", 14, Female, 30) = Survived

Queries

titanic ("Myles, Mr. Thomas Francis", 62, Male, 9) =?

titanic(name, age, gender, ticket_fare) = accident_outcome

Examples

titanic("Braund, Mr. Owen Harris", 22, Male, 7) = Died titanic("Heikkinen, Miss. Laina", 26, Female, 7) = Survived titanic("Nasser, Mrs. Nicholas", 14, Female, 30) = Survived

Queries

titanic ("Myles, Mr. Thomas Francis", 62, Male, 9) =?

:

Classification: Accuracy

Regression: Mean squared error

titanic(name, age, gender, ticket_fare) = accident_outcome

Examples

titanic("Braund, Mr. Owen Harris", 22, Male, 7) = Died titanic("Heikkinen, Miss. Laina", ?, Female, 7) = Survived titanic("Nasser, Mrs. Nicholas", 14, ?, 30) = Survived

Queries

titanic ("Myles, Mr. Thomas Francis", 62, Male, 9) =?

:

Missing values

If the number of people in a photo is to be counted:

Detecting people can be learned.

(Then counting the detected "things" is easy.)

If the time on an analog clock is to be read from a photo:

Detecting the angles of the hour hand and minute hand can be learned.

(Once their angles are known, telling the time is easy.)

Proxy task

What move should White play?

Instead of learning the complex task of "finding the best move for White in a given position," a simpler task can be learned:

"Estimating White's probability of winning in a given position."

(We can perform the estimation for all possible positions and choose the move that leads to the best position.)

Proxy task

A Famous Illustration

A Better Illustration

Model Example: Decision Tree

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	normal	false	?

Ensemble model

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false false true	Yes Yes No
rain	cool	normal		
rain	cool	normal		
overcast	cool	normal	true	Yes
sunny	mild	high normal normal	false false false true	No Yes Yes Yes
sunny	cool mild mild			
rain				
sunny				
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

ID3 - Algorithm

ID3 (Examples, Target Attribute, Attributes)

- · Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target Attribute in Examples
- · Otherwise Begin
 - A ← the attribute from Attributes that best classifies Examples
 - The decision attribute for Root ← A
 - For each possible value, vi, of A,
 - Add a new tree branch below *Root*, corresponding to the test A = vi
 - Let Examples_{vi} be the subset of Examples that have value vi for A
 - If Examples... is empty
 - Then below this new branch add a leaf node with label = most common
 - value of Target Attribute in Examples
 - Else below this new branch add the subtree
 - ID3(Examples_{vi}, Target Attribute, Attributes {A})
- End
- Return Root

