Von φ-Segmentierung zu Euler: Beweiskette & Ableitung

Kurzfassung

Wir zeigen, wie das ϕ -Segmentgitter (diskrete Skalenstufen) auf die Euler-Darstellung $e^{x+i\theta}$ zurückgeführt werden kann. Daraus folgen (i) die Lattice-Vorhersage $1+z=\varphi^n$ für Rotverschiebungen bzw. Frequenz-Verhältnisse, (ii) die Darstellung als logarithmische Spirale mit festem Wachstumsparameter, und (iii) konkrete, falsifizierbare Tests in Labor- und Astrodaten. Der zentrale Reduktionsschritt nutzt die Polarzerlegung eines komplexen Exponenten: Magnitude e^x (Skala) × Phase $e^{i\theta}$ (Drehung). Die ϕ -Segmentierung fixiert x pro Segment zu $\ln \varphi$, die Topologie legt $\Delta \theta$ pro Segment fest.

1. Axiome & Definitionen

A1 (Segment-Postulat). Raumzeit besitzt Diskretstufen S_n mit konstanter lokalen Kopplung und konstanter effektiver Metrik innerhalb eines Segments.

A2 (Skalenfaktor). Beim Übergang $S_n \to S_{n+1}$ skaliert jede relevante Längen-/Zeit-/Frequenzgröße durch den festen Faktor φ (goldener Schnitt). Beispiel: Wellenlänge λ wächst wie $\lambda \mapsto \varphi \, \lambda$; Frequenz f fällt wie $f \mapsto f/\varphi$.

A3 (Winkel-Quantelung). Die Segmentgrenze entspricht einer festen Phasenrotation $\Delta\theta$ (z. B. Viertelkreis $\Delta\theta=\pi/2$ oder allgemein $2\pi/N$).

D1 (Ratio, Redshift). $R \equiv f_{
m emit}/f_{
m obs} = 1 + z = \lambda_{
m obs}/\lambda_0$.

Hypothese H_{ϕ} (Lattice).

$$\boxed{1+z=R=arphi^n}\,,\qquad n\in\mathbb{Z}.$$

2. Lemma: Logarithmisches Gitter in log-Skala

Aus **A2** folgt $\ln R=n\,\ln \varphi$. Daher ist $\ln(1+z)$ **periodisch** modulo $\ln \varphi$, und die beste ganzzahlige Stufe ist

$$\hat{n} = \operatorname{round}\Bigl(rac{\ln R}{\ln arphi}\Bigr).$$

Residual $arepsilon = rac{\ln R}{\ln arphi} - \hat{n} \in (-rac{1}{2},rac{1}{2}]$.

3. Euler-Reduktion: von φ-Stufen zur Exponentialform

Die Bewegung/Übertragung über Segmente kann im komplexen Plan parametrisiert werden:

$$z_k = r_k \, e^{i heta_k} = r_0 \, arphi^k \, e^{ik\,\Delta heta} = r_0 \, e^{k(\lnarphi+i\,\Delta heta)}.$$

Schreibweise mit Euler: $e^{x+i\theta} = e^x(\cos\theta + i\sin\theta)$.

Folgerungen. - Pro Segment multipliziert die Magnitude um $e^{\ln \varphi}=\varphi$ (Skalen-Jump), - die Phase rotiert um $\Delta \theta$ (Topologie/Geometrie der Grenze), - der kontinuierliche Grenzpfad ist eine logarithmische Spirale

$$r(heta) = r_0 \, e^{b heta}, \qquad b = rac{\ln arphi}{\Delta heta}.$$

Für Viertelkreis-Segmentierung $\Delta heta = rac{\pi}{2}$ gilt $b = rac{2 \ln arphi}{\pi}$.

Damit ist die ϕ -Segmentierung exakt die **Betragskomponente** der Euler-Form; die Grenzrotation liefert die **Phasenkomponente**. Die Lattice-Physik ist daher die reelle Achse $x=\ln\varphi$ einer komplexen Euler-Exponentialbewegung.

4. Satz (Euler-Darstellung der φ-Skalierung)

Satz. Unter **A1–A3** existiert eine Parametrisierung der beobachtbaren Verhältnisse R als **reeller Anteil** eines komplexen Exponenten,

$$R=e^{n\lnarphi}=ig|e^{n(\lnarphi+i\Delta heta)}ig|,$$

so dass die φ-Stufe n die **Magnitude** steuert, die Geometrie $\Delta \theta$ die **Phase**. Für Spektren/Zeitraten folgt $1+z=\varphi^n$, für Frequenzen $f_{\rm obs}=f_{\rm emit}/\varphi^n$.

Beweis. Direkt aus der Euler-Zerlegung und dem Produktgesetz der Exponentialfunktion. \Box

5. Rückführung auf die "Euler-Formel am Anfang"

Viele Darstellungen im Projekt beginnen mit einer **Euler-Spirale** des Typs

$$r(heta) = \exp(k\, heta), \quad ext{mit} \quad k = rac{\ln arphi}{\pi} \; ext{(oder ""aquivalent")}.$$

Dies ist ein Spezialfall der obigen Herleitung mit $\Delta heta$ passend gewählt. Allgemein gilt

$$r(heta) = e^{rac{\ln arphi}{\Delta heta} \, heta} = arphi^{ heta/\Delta heta}.$$

Wählt man $heta=\pi$ als Referenz-Halbumlauf und $\Delta heta=\pi/2$ (Segment als Viertelkreis), so ist

$$r(\pi)=arphi^{\pi/(\pi/2)}=arphi^2.$$

Andere Normalisierungen (z. B. $r(\pi)=1$) entsprechen nur einer Wahl von r_0 und verschieben k additiv; die **Ableitungsstruktur** bleibt identisch. Entscheidend ist: **Der Wachstumskoeffizient** ist proportional zu $\ln \varphi$, also **rein reell**, und die Rotation ist **rein imaginär** ($i\theta$). Genau das ist Eulers Zerlegung.

6. Physik: von der Spirale zur Rotverschiebung

- Zeitdilatation/Frequenz: Jede durchlaufene Grenze erhöht die lokale Eigenzeit-Skala um $\varphi\Rightarrow f$ fällt um $1/\varphi\Rightarrow R=f_{\rm emit}/f_{\rm obs}=\varphi^n$.
- Wellenlänge/Redshift: λ wächst pro Segment um arphi \Rightarrow $1+z=\lambda_{
 m obs}/\lambda_0=arphi^n$.
- Log-Linearität: $\ln(1+z) = n \ln \varphi$ \Rightarrow Gitter in \ln -Koordinaten.

7. Testbare Vorhersagen

- 1. **Ganzzahltest:** $n^* = \operatorname{round}(\ln R / \ln \varphi)$ mit kleinem Residuum $|\varepsilon| \le \epsilon$ (Fehlerfortpflanzung aus Messunsicherheiten).
- 2. **Periodizität:** Histogramm von arepsilon flach unter Nullhypothese, **spitz** um 0 unter H_{arphi} .
- 3. **ABIC:** Vergleiche $H_{\varphi}: R=\varphi^n$ vs. **uniformes** oder **kontinuierliches** Modell; φ -Modell gewinnt, wenn Daten φ -quantisiert sind.

8. Mathematische Beweiskette (Skizze)

Lemma 1 (Skalenhomomorphie). Die Abbildung $n\mapsto R=\varphi^n$ ist ein Gruppenhomomorphismus $(\mathbb{Z},+)\to (\mathbb{R}_+,\cdot)$.

Lemma 2 (Euler-Einbettung). $\exists \, \Delta \theta > 0 \ {\sf mit} \ z_n = r_0 \, e^{n(\ln \varphi + i \Delta \theta)} \ {\sf und} \ |z_n| = \varphi^n \ .$

Satz 2 (Äquivalenz). $\mathbf{H}_{-}\boldsymbol{\varphi}$ ist äquivalent zur Aussage, dass die beobachtbaren Ratios R die **Beträge** einer **Euler-Exponentialbahn** auf einem logarithmischen Gitter sind.

Korollar (Rotverschiebungs-Gitter). $\ln(1+z) \in (\ln \varphi) \mathbb{Z}$ bis auf Messfehler.

9. Konsistenz & Grenzen

- **Kontinuierliche Näherung:** Für große n ist $\ln R$ fein quantisiert; lokal erscheint es quasi-kontinuierlich.
- **Geometrische Wahl von** $\Delta\theta$: Viertelkreis ($\pi/2$) ist natürlich, andere Segmentierungen (N pro Umdrehung) sind möglich; sie ändern nur $b=\ln\varphi/\Delta\theta$, **nicht** die φ -Logik.
- Falsifizierbarkeit: Systematische Abweichungen der Residuen von 0 oder Verlust der ΔBIC-Überlegenheit widerlegen H_φ.

10. Praktische Ableitungsschritte (Rezept)

- 1. Messgrößen o Ratio: Bestimme $R=f_{
 m emit}/f_{
 m obs}$ oder $1+z=\lambda_{
 m obs}/\lambda_0$.
- 2. **Ganzzahl-Schätzer:** $n^* = \operatorname{round}(\ln R / \ln \varphi)$; Residuum $\varepsilon = \ln R / \ln \varphi n^*$.
- 3. **Euler-Einbettung:** Verifiziere, dass die Daten auf einer Bahn $z_k=r_0e^{k(\ln\varphi+i\Delta\theta)}$ liegen (Magnitude richtig, Phase mit Geometrie kompatibel).
- 4. **Modelle vergleichen:** Δ BIC (ϕ -Lattice vs. uniform/GR-kontinuierlich), Vorzeichentest der | Fehler|.

11. Verbindung zu den einleitenden Euler-Formeln der Paper

Die häufig verwendete Startform $r(\theta)=\exp(k\,\theta)$ ist genau die **reelle** Komponente der oben abgeleiteten komplexen Euler-Form. Setzt man $k=\ln\varphi/\pi$ (oder äquivalente Normierungen), erhält man dieselbe logarithmische Spirale, deren **Wachstum** durch $\ln\varphi$ (Segment-Skala) und deren **Drehung** durch θ (Segment-Topologie) festgelegt ist. Damit ist die "Euler-Formel am Anfang" kein separates Axiom, sondern die **kompakte Schreibweise** der ϕ -Segmentlogik.

12. Fazit

Die φ -Logik **ist** eine Euler-Logik: Diskrete **Skalenjumps** sind die **reelle Exponential-Komponente**, Segment-**Grenzrotationen** die **imaginäre**. Alles reduziert sich auf $e^{x+i\theta}$ mit $x=\ln\varphi\,n$. Daraus folgen $1+z=\varphi^n$, die logarithmische Spirale und die beobachteten Signale in Spektren/Uhren – präzise testbar und falsifizierbar.