

MA2201/TMA4150

Vår 2015

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag — Øving 9

Seksjon 18

Et element i $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$ er et trippel (a,q,b), der $a,b \in \mathbb{Z}$, $q \in \mathbb{Q}$. Anta nå at dette trippelet har en invers c,p,d. Da er altså ac = bd = 1 og pq=1. Følgelig er a og b enheter i Z og må dermed være lik ± 1 . q er en enhet i \mathbb{Q} , og siden \mathbb{Q} er en kropp betyr det bare at $q \neq 0$.

Vi får altså enhetene i $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$ er

$$(1,q,1)$$
 $(1,q,-1)$ $(-1,q,1)$ $(-1,q,-1)$

 $der q \in \mathbb{Q}, q \neq 0.$

[37] Vi viser først at U er lukket under multiplikasjon; hvis U er det har vi en veldefinert binæroperasjon på U og kan dermed sjekke gruppeaksiomene. La derfor $u, v \in u$, og la u', v' være deres multiplikative inverser. Da er (uv)(v'u') = u(vv')u' = uu' = 1. Dermed har uv en multiplikativ invers, så $uv \in U$.

Vi sjekker så gruppeaksiomene:

- \bullet Multiplikasjon på U er assosiativt fordi multiplikasjon i R er det.
- R inneholder multiplikativ identitet (unity), og denne er åpenbart en enhet og dermed inneholdt i U, og virker som identitetelement i (U, \cdot) .
- $u \in U$ har per definisjon en multiplikativ invers $u' \in R$. Denne u' er igjen en enhet (med invers u), og dermed inneholdt i U.
- Anta at $a, b \in R$ er nilpotente elementer, slik at $a^n = 0 = b^m$ for n, m > 0. Da finner vi ved hjelp av binomialsetningen at:

$$(a+b)^{m+n} = \sum_{i=0}^{n+m} {m+n \choose i} a^{m+n-i} b^{i}$$

$$= \sum_{i=0}^{m-1} {m+n \choose i} a^{m+n-i} b^{i} + \sum_{i=m}^{n+m} {m+n \choose i} a^{m+n-i} b^{i}$$

$$= \underbrace{a^{n}}_{i=0} \sum_{i=0}^{m-1} {m+n \choose i} a^{m-i} b^{i} + \underbrace{b^{m}}_{i=0} \sum_{i=m}^{n+m} {m+n \choose i} a^{m+n-i} b^{i-m} = 0$$

Seksjon 19

1 For å forstå oppgaven ed det lurt å først lese eksempel 19.1. Den greieste metoden for å finne alle røtter er nok å sjekke elementene i \mathbb{Z}_{12} .

Røttene er -4, -3, -1, 0, 3 og 5

[2] Siden både 7 og 23 er primtall er \mathbb{Z}_7 og \mathbb{Z}_{23} begge kropper. Derfor kan vi bruke kanselleringslovene; det vil si at vi kan skrive $x = 3^{-1}2$.

Vi ser først på \mathbb{Z}_7 . Der er $3^{-1} = 5$. Dermed har vi at $x = 5 \cdot 2 = 3$. Vi ser så på \mathbb{Z}_{23} . Der er $3^{-1} = 8$. Dermed har vi at $x = 8 \cdot 2 = 16$.

[23] La R være en divisjonsring, og la $a \in R$ være idempotent, det vil si at $a^2 = a$. Da har vi at $a(a-1) = a^2 - a = 0$. R kan ikke inneholde nulldivisorer, altså må enten a = 0 eller så må a - 1 = 0, og dermed a = 1. Altså inneholder R kun to idempotente elementer, nemlig 0 og 1.

Ekstraoppgaver

1 Det er åpenbart at $\mathbb{Z} \subseteq \mathbb{Z}[\sqrt{n}] \subseteq \mathbb{C}$. Videre kan vi se at $\mathbb{Z}[\sqrt{n}]$ er lukket under addisjon og multiplikasjon ved å regne ut henholdsvis summen og produktet av $a + b\sqrt{n}$ og $c + d\sqrt{n}$.

Vi ser så på ringaksiomene fra definisjon 18.1:

R1 Følger av at $(\mathbb{C},+)$ er en abelsk gruppe og $(\mathbb{Z}[\sqrt{n}],+)$ er en undergruppe.

 \mathbf{R} 2 Følger av at multiplikasjon er assosiativt i \mathbb{C} .

 \mathbf{R} 3 Følger av at distributive lover holder i \mathbb{C} .

2 I denne oppgaven er det nyttig å huske tilbake til lineær algebra 1 eller matte 3. Husk først at om vi har to matriser $A, B \in M_n(\mathbb{C})$, og skriver b_i for i'te kolonnevektor i B (så $B = [b_1 \dots b_n]$), så er $AB = [Ab_1 \dots Ab_n]$.

Dersom det A=0, eksisterer det en vektor $x\neq 0$ slik at Ax=0. Dermed er $A[x\ldots x]=0$, så A er en nulldivisor.

Dersom A er en nulldivisor, finnes det altså en ikkenull-matrise B slik at $Ab_i = 0$ for alle b_i ; siden minst en kolonnevektor i B er ikke-null, eksisterer det altså en vektor $x \neq 0$ slik at at Ax = 0. Følgelig er det A = 0

Altså: A er en nulldivisor hvis og bare hvis det A = 0.

$$(a,b) \text{ enhet i } R \times S \\ \Leftrightarrow \\ \exists (c,d) \in R \times S : (a,b)(c,d) = (1_R,1_S) \\ \Leftrightarrow \\ \exists c \in R, d \in S : ac = 1_R, bd = 1_S \\ \Leftrightarrow \\ a \text{ enhet i } R, b \text{ enhet i } S$$

b) La R og S være ringer og la $f: R \to S$ være en ringisomorfi.

$$a \text{ enhet i } R$$
 \Leftrightarrow

$$\exists c \in R : ac = 1_R$$
 \Leftrightarrow

$$\exists c \in R : f(a)f(c) = f(1_R) = 1_S$$
 \Leftrightarrow

$$f(a) \text{ enhet i } S$$

c) At f(a+b) = f(a) + f(b) og at f(ab) = f(a)f(b) kontrolleres ved innsetting. f er dermed en ringhomomorfi

f(a,b)=(0,0) hvis og bare hvis $a\equiv 0 \mod m$ og $a\equiv 0 \mod n$. Siden $\gcd(m,n)=0$ må da $a\equiv 0 \mod mn$. f er altså 1-1.

At f er på følger av det kinesiske restleddsteoremet, eller eventuelt at f er en 1-1 funksjon mellom to endelige mengder. Dermed er f en ringisomorfi.

d) Vi starter med følgende observasjon:

$$\gcd(a, mn) = 1 \Leftrightarrow \exists b, x \in \mathbb{Z} : ba + xmn = 1 \Leftrightarrow a \text{ er en enhet i } \mathbb{Z}_{mn}.$$

Dette har vi i punkt b vist at inntreffer hvis og bare hvis f(a) er en enhet i $\mathbb{Z}_m \times \mathbb{Z}_n$, noe som igjen bare skjer hvis $a \mod m$ og $a \mod n$ er enheter i henholdsvis \mathbb{Z}_m og \mathbb{Z}_n . Altså har vi at:

$$\phi(mn) = |\{\text{enheter i } \mathbb{Z}_{mn}\}|$$

$$= |\{\text{enheter i } \mathbb{Z}_m \times \mathbb{Z}_n\}|$$

$$= |\{\text{enheter i } \mathbb{Z}_m\} \times \{\text{enheter i } \mathbb{Z}_n\}|$$

$$= \phi(m) \cdot \phi(n)$$

4 a) La $a \in \mathbb{C}$ være et vilkårlig element. Vi regner ut:

$$f(0) = f(a - a) = f(a) - f(a) = 0$$

Anta nå at $a \in \mathbb{C}$ er slik at $f(a) \neq 0$ (dersom f er ikketriviell, må minst ett slikt element finnes). Da har vi at

$$f(a) = f(1 \cdot a) = f(1) \cdot f(a)$$

Siden $\mathbb R$ er en kropp kan vi nå bruke kanselleringslovene til å se at f(1)=1. Til slutt ser vi at

$$f(-1) + 1 = f(-1) + f(1) = f(1-1) = f(0) = 0$$

Dermed er f(-1) = -1.

b) Vi har at

$$f(i)^2 = f(i^2) = f(-1) = -1$$

Altså må f(i) være et tall som opphøyd i andre blir -1, men noe slikt tall eksisterer ikke i \mathbb{R} . Følgelig finnes det ingen ikke-trivielle ringisomorfier fra \mathbb{C} til \mathbb{R} .