EECS 553: Machine Learning (ECE)

University of Michigan

The Expectation-Maximization Algorithm

Winter 2023 Clayton Scott

1 The EM Algorithm in General

The EM algorithm is not specific to Gaussian mixture models, and can be used to perform maximum likelihood estimation for a variety of latent variable models. We begin by stating the EM algorithm in a general setting.

Let \underline{X} be the random variables associated to the observed data, and let \underline{x} denote the actual observation. Let $f(\underline{x}; \theta)$ be the pdf/pmf of \underline{X} , where θ is the parameter vector to be estimated. The objective is to maximize the likelihood

$$L(\boldsymbol{\theta}; \underline{\boldsymbol{x}}) := f(\underline{\boldsymbol{x}}; \boldsymbol{\theta}),$$

or equivalently the log-likelihood

$$\ell(\boldsymbol{\theta}; \boldsymbol{x}) := \log f(\boldsymbol{x}; \boldsymbol{\theta}),$$

with respect to θ .

Let \underline{Z} be denote the latent (unobserved) variables. The random variables \underline{X} and \underline{Z} are assumed to be jointly distributed. Let $f(\underline{z}|\underline{x};\theta)$ denote the conditional pdf/pmf of \underline{Z} given $\underline{X} = \underline{x}$. The complete data likelihood is $L(\theta;\underline{x},\underline{z}) := f(\underline{x};\theta)f(\underline{z}|\underline{x};\theta)$, and the complete-data log-likelihood is $\ell(\theta;\underline{x},\underline{z}) = \log L(\theta;\underline{x},\underline{z})$. The EM algorithm is as follows.

```
Initialize \boldsymbol{\theta}_0
t \leftarrow 0
Repeat

E-step: Compute
Q(\boldsymbol{\theta}; \boldsymbol{\theta}_t) = \mathbb{E}_{\underline{\boldsymbol{Z}} \sim f(\underline{\boldsymbol{z}} | \underline{\boldsymbol{x}}; \boldsymbol{\theta}_t)}[\ell(\boldsymbol{\theta}; \underline{\boldsymbol{x}}, \underline{\boldsymbol{Z}})].

M-step: Solve
\boldsymbol{\theta}_{t+1} \leftarrow \arg\max_{\boldsymbol{\theta}} \ Q(\boldsymbol{\theta}; \boldsymbol{\theta}_t)
t \leftarrow t+1
Until convergence criterion satisfied
```

The basic idea behind the EM algorithm is that $\ell(\theta; \underline{x}, \underline{z})$ cannot be computed because \underline{z} is unobserved, and so the uncertainty in \underline{Z} (given $\underline{X} = \underline{x}$) is "averaged out," yielding a computable proxy for the log likelihood. It is important to keep in mind that the expected complete data log-likelihood is distinct from the original log-likelihood. Indeed, the entire reason for the EM algorithm is that direct maximization of the log-likelihood is difficult or intractable, wheras the expected complete-data log-likelihood is can me maximized efficiently in many problems of interest.

An important property of the EM algorithm is the following ascent or monotonicity property:

Theorem 1. For each t = 0, 1, 2, ...

$$\ell(\boldsymbol{\theta}_{t+1}; \ \underline{\boldsymbol{x}}) \ge \ell(\boldsymbol{\theta}_t; \ \underline{\boldsymbol{x}})$$

Note that this result applies to the original likelihood, which is the function we really want to maximize, even though the EM algorithm maximizes a different objective. Figure 1 shows an example of the likelihood $\ell(\theta; \underline{x})$ as a function of iteration, illustrating this property.

To prove this result, we will show that EM in a minorize-maximize algorithm.

Figure 1: The log-likelihood increases monotonically.

2 EM as an MM Algorithm

We previously studied majorize-minimize algorithms for minimization problems. The idea behind minorize-maximize algorithms is the same idea but applied to maximization problems. Let $J(\theta)$ denote the objective function to be maximized. The general minorize-maximize algorithm is as follows.

Initialize θ_0 $t \leftarrow 0$ Repeat $\mathbf{Minorize}$: Find a function $J_t(\boldsymbol{\theta})$ such that $J(\boldsymbol{\theta}_t) = J_t(\boldsymbol{\theta}_t) \\ J(\boldsymbol{\theta}) \geq J_t(\boldsymbol{\theta}) \quad \forall \boldsymbol{\theta}$ $\mathbf{Maxmize}$: Solve $\boldsymbol{\theta}_{t+1} \leftarrow \operatorname*{arg\,max}_{\boldsymbol{\theta}} J_t(\boldsymbol{\theta})$ $t \leftarrow t+1$ Until convergence

MM algorithms satisfy a monotonicity property. The descent property was shown for majorize-minimize algorithms earlier, and so an analogous ascent property automatically holds for minorize-maximize algorithms, because we can always map between maximization and minimization problems by multiplying the objective by -1. Therefore, for any minorize-maximize algorithm, we know that $J(\boldsymbol{\theta}_{t+1}) \geq J(\boldsymbol{\theta}_t)$ for all t.

To establish the ascent property for EM algorithm, it suffices to show that it is an instance of a minorize-maximize algorithm. We will do this by showing that the function

$$J_t(\boldsymbol{\theta}) := Q(\boldsymbol{\theta}, \boldsymbol{\theta}_t) + \ell(\boldsymbol{\theta}_t; \underline{\boldsymbol{x}}) - Q(\boldsymbol{\theta}_t, \boldsymbol{\theta}_t)$$
(1)

minorizes $J(\theta) := \ell(\theta; \underline{x})$. The details are given in the next section. Noting that only the first term of J_t involves θ , we see that the minorize step is equivalent to the E-step, and the maximize step is the same as the M-step.

3 Proof of Ascent Property \triangle

It is clear from the definitions of J and J_t that $J(\theta_t) = J_t(\theta)$, and so it remains to show

$$\ell(\boldsymbol{\theta}; \underline{\boldsymbol{x}}) \ge Q(\boldsymbol{\theta}, \boldsymbol{\theta}_t) + \ell(\boldsymbol{\theta}_t; \underline{\boldsymbol{x}}) - Q(\boldsymbol{\theta}_t, \boldsymbol{\theta}_t).$$
 (2)

for all θ . To prove this inequality, we need the following lemma.

Lemma 1. Let p and q both be pdfs, or both be pmfs, on \mathbb{R}^d . Let Y be a random variable with pdf/pmf p. Then

$$\mathbb{E}_{\boldsymbol{Y} \sim p}[\log q(\boldsymbol{Y})] \leq \mathbb{E}_{\boldsymbol{Y} \sim p} \ [\log p(\boldsymbol{Y})]$$

and equality is attained iff p and q define the same distribution.

Proof. Jensen's inequality states that for any scalar random variable R and concave function ϕ , $\mathbb{E}[\phi(R)] \leq \phi(\mathbb{E}[R])$ and if ϕ is strictly concave, equality holds iff R is a constant random variable. Assuming that p and q and both pdfs, we apply Jensen's inequality with $R = \log \frac{q(Y)}{p(Y)}$ and $\phi(r) = \log(r)$, yielding

$$\mathbb{E}_{\mathbf{Y} \sim p} \left[\log \left(\frac{q(\mathbf{Y})}{p(\mathbf{Y})} \right) \right] \le \log \left[\mathbb{E}_{\mathbf{Y} \sim p} \left(\frac{q(\mathbf{Y})}{p(\mathbf{Y})} \right) \right]$$

$$= \log \left(\int \frac{q(\mathbf{y})}{p(\mathbf{y})} p(\mathbf{y}) d\mathbf{y} \right)$$

$$= \log \left(\int q(\mathbf{y}) d\mathbf{y} \right)$$

$$= \log(1)$$

$$= 0$$

Since log is strictly concave, equality hold iff p(y) = q(y) almost everywhere, in other words, p and q define the same distribution. The same argument hold for pmfs, replacing integrals with summations.

To show (2), we will apply the lemma with $p(\underline{z}) = f(\underline{z}|\underline{x}; \theta_t)$ and $q(\underline{z}) = f(\underline{z}|\underline{x}; \theta)$. Thus,

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}) - \ell(\boldsymbol{\theta}; \underline{\boldsymbol{x}}) = \mathbb{E}_{\underline{\boldsymbol{Z}} \sim f(\underline{\boldsymbol{z}} | \underline{\boldsymbol{x}}; \boldsymbol{\theta}_t)} \left[\log \left(\frac{L(\boldsymbol{\theta}; \underline{\boldsymbol{x}}, \underline{\boldsymbol{Z}})}{f(\underline{\boldsymbol{x}}; \boldsymbol{\theta})} \right) \right]$$

$$= \mathbb{E}_{\underline{\boldsymbol{Z}} \sim f(\underline{\boldsymbol{z}} | \underline{\boldsymbol{x}}; \boldsymbol{\theta}_t)} \left[\log \left(f(\underline{\boldsymbol{Z}} | \underline{\boldsymbol{x}}; \boldsymbol{\theta}) \right) \right]$$

$$\leq \mathbb{E}_{\underline{\boldsymbol{Z}} \sim f(\underline{\boldsymbol{z}} | \underline{\boldsymbol{x}}; \boldsymbol{\theta}_t)} \left[\log \left(f(\underline{\boldsymbol{Z}} | \underline{\boldsymbol{x}}; \boldsymbol{\theta}_t) \right) \right]$$

$$= \mathbb{E}_{\underline{\boldsymbol{Z}} \sim f(\underline{\boldsymbol{z}} | \underline{\boldsymbol{x}}; \boldsymbol{\theta}_t)} \left[\log \left(\frac{L(\boldsymbol{\theta}_t; \underline{\boldsymbol{x}}, \underline{\boldsymbol{Z}})}{f(\underline{\boldsymbol{x}}; \boldsymbol{\theta}_t)} \right) \right]$$

$$= Q(\boldsymbol{\theta}_t, \boldsymbol{\theta}_t) - \ell(\boldsymbol{\theta}_t; \underline{\boldsymbol{x}}).$$

Exercises

1. (\star) Consider two probability distributions on the same domain, either both continuous with pdfs p and q, or both discrete with pmfs p and q. The Kullback-Leibler divergence between the two distributions is defined by

$$D_{KL}(p||q) := \mathbb{E}_{\mathbf{Y} \sim p} \left[\log \left(\frac{p(\mathbf{Y})}{q(\mathbf{Y})} \right) . \right]$$

Show that $D_{KL}(p||q) \ge 0$ for all p and q, with equality iff and only if p and q correspond to the same distribution.

2. $(\star\star)$ Given an alternate proof that J_t in (1) is a minorizer by showing that

$$\ell(\boldsymbol{\theta}; \underline{\boldsymbol{x}}) - \ell(\boldsymbol{\theta}_t; \underline{\boldsymbol{x}}) = Q(\boldsymbol{\theta}, \boldsymbol{\theta}) - Q(\boldsymbol{\theta}_t, \boldsymbol{\theta}_t) + D_{KL}(p \| q)$$

for certain pdfs/pmfs p and q, and applying the previous problem.