

Course > Week 4 > Proble... > Lyapun...

Lyapunov Functions

Lyapunov Functions

0.0/20.0 points (graded)

This question will test your understanding of Lyapunov functions with a series of short questions.

(a) Suppose that $V_1(x)$ and $V_2(x)$ are valid Lyapunov functions that prove global stability of a system to the origin. Is it always the case that $V_2(x)=cV_1(x)$ for some c>0? In other words, are Lyapunov functions unique up to scaling?

O Yes			
○ No ✔			

Explanation

Lyapunov functions are not unique up to scaling. As an example, consider the system $\dot{x} = -x$. The function $V(x) = x^2$ is a valid Lyapunov function, but so is $V(x) = x^4$.

(b) For the system:

$$egin{aligned} \dot{x_1} &= -rac{6x_1}{\left(1+x_1^2
ight)^2} + 2x_2 \ \dot{x_2} &= -rac{2\left(x_1+x_2
ight)}{\left(1+x_1^2
ight)^2} \end{aligned}$$

you are given the positive definite function $V(x)=\frac{x_1^2}{1+x_1^2}+x_2^2$ and told that, for this system, \dot{V} is negative definite over the entire space. Is V a valid Lyapunov function which proves global asymptotic stability to the origin for the system? (Hint: Try simulating a few

trajectories of this system or plotting a few level sets of $m{V}$ to build more intuition before answering this problem).

○ No ✔			
Yes			

Explanation

The function $V\left(x\right)$ is not radially unbounded. This results in the level sets of V being unbounded (see the figure above for a picture of the level sets). Thus, even though V decreases along trajectories of the system, the system does not go to the origin.

(c) Suppose V(x) is a valid Lyapunov function that proves global asymptotic stability of a system to the origin. Is it true that $(V(x))^2$ is also a valid Lyapunov function?

○ Yes ✔	
O No	

Explanation

This is true since if V(x) is positive definite, then so is $V^2(x)$. Further, the time-derivative of $V^2(x)$ is $2V\dot{V}$, which is negative definite because \dot{V} is negative definite.

(d) Suppose V(x) is a valid Lyapunov function that proves global asymptotic stability of a system to the origin. Is it true that $\tanh(V(x))$ is also a valid Lyapunov function?

O Yes	
○ No ✔	
Explanation The function function.	${f N}$ is not radially unbounded and is thus not a valid Lyapunov
Submit	You have used 0 of 1 attempt
1 Answe	rs are displayed within the problem

© All Rights Reserved