Préformation Statistiques

Luc Meyer

28, 29 et 30 août 2023

Content

Introduction

- Rappels de probabilités
- Premières définitions et cadre de l'estimation
- **Estimateurs empiriques**
- 5 Estimateur des moments
- Estimateur du Maximum de Vraisemblance

Un premier exemple

- Un industriel souhaite évaluer la proportion de pièces défectueuses dans un lot.
- Il prélève au hasard 100 pièces et les teste : sur les 100 pièces testées, 10 sont défectueuses.
- Il en déduit la proportion de pièce défectueuse sur l'ensemble des pièces :

$$\hat{p} = \frac{10}{100} = 0.1. \tag{1}$$

Questions statistiques

Différentes questions peuvent se poser :

- Comment modéliser le problème?
 - -> Modélisation d'un problème statistique.
- Existe-t-il d'autres façons d'estimer p? Si oui, quelle est la meilleure façon?
 -> Estimation ponctuelle.
- Peut-on être sûr à 90% que la proportion de pièce défectueuses appartient à l'intervalle [0.05; 0.15] ?
 - -> Estimation par intervalles de confiance.

Contenu du cours

- Rappels de probabilités
- Premières définitions : Paramètre, Échantillon, Population, etc.
- Introduction à l'estimation paramétrique
- Estimation paramétrique : méthode des moments
- Estimation paramétrique : méthode du Maximum de Vraisemblance

Content

- 1 Introduction
 - Rappels de probabilités
- 3 Premières définitions et cadre de l'estimation
 - Premières définitions
 - Cadre général de l'estimation paramétrique
 - Propriétés d'un estimateur
- 4 Estimateurs empiriques
 - Estimateur de la moyenne empirique
 - Estimateur de la variance empirique
- 5 Estimateur des moments
 - Principe
 - Exemple
 - Propriété

Luc Mever

Estimateur du Maximum de Vraisemblance

Pré-requis

Les notions suivantes sont censées être acquises (cf. Pré-formation en Probabilités) :

- Espace probabilisé
- Variables aléatoires réelles (discrètes et continues)
- Calculs de probabilités, moyennes et variance d'une variable aléatoire réelle, connaissant sa loi (discrète ou continu à densité)
- Théorème de transfert
- Différents mode de convergence des variables aléatoires
- Exemples classiques de lois discrètes : uniforme, Bernouilli, Binomiale, Poisson
- Exemples classiques de lois continues : uniforme, normale, exponentielle
- Moments d'ordre k (cf. partie du cours consacrée à l'estimation paramétrique par la méthode des moments)

Variables aléatoires réelles

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé, c'est-à-dire (rappel) :

- \blacksquare Ω est un ensemble,
- \mathcal{A} est une tribu de Ω (i.e. un sous-ensemble de $\mathcal{P}(\Omega)$ vérifiant certaines propriétés spécifiques),
- \blacksquare \mathbb{P} est une probabilité (i.e. une mesure dont la masse totale vaut 1) sur \mathcal{A} .

On appelle événement les éléments de A.

Definition (Rappel)

Une variable aléatoire réelle X est une application mesurable de $(\Omega, \mathcal{A}, \mathbb{P})$ dans \mathbb{R} .

Definition

La loi d'une variable aléatoire réelle X est la mesure image de $\mathbb P$ par X, c'est-à-dire, la mesure $\mathbb P_X$ sur $\mathbb R$ définie par :

$$\forall A \in \mathcal{P}(\mathbb{R}), \qquad \mathbb{P}_X(A) = \mathbb{P}(X^{-1}(A)) = \mathbb{P}(\omega \in \Omega : X(\omega) \in A) = \mathbb{P}(X \in A).$$
 (2)

Fonction de répartition

Lemma (Rappel)

Pour identifier une mesure de probabilités \mathbb{P} sur \mathbb{R} , il faut et il suffit que l'on connaisse $\mathbb{P}(]-\infty,x]$) pour tout réel x.

Definition

Soit X une variable aléatoire réelle (v.a.r.), la fonction :

$$F_X: \mathbb{R} \to [0;1]$$

$$x \mapsto \mathbb{P}_X(]-\infty, x[) = \mathbb{P}(X \le x)$$
(3)

s'appelle la fonction de répartition de X.

Fonction de répartition (cont.)

■ Propriétés des fonctions de répartition

Theorem

Pour toute fonction de répartition F_X , on a :

- $\blacksquare \lim_{x \to -\infty} F_X(x) = 0,$
- $\blacksquare \lim_{x\to +\infty} F_X(x) = 1,$
- F_X est croissante, continue à droite, i.e., $\lim_{y\to x,y>x} F_X(y) = F_X(x)$.

On pose

$$F_X(x^-) = \lim_{y \to x, y > x} F_X(y) = P(X < x),$$
 (4)

et

$$\Delta F_X(x) = F_X(x) - F_X(x^-) = \mathbb{P}(X = x). \tag{5}$$

10/51

Densité d'une variable aléatoire

■ Théorème-définition sur la densité de probabilité d'une variable aléatoire

Theorem

Lorsqu'elle exite, on définit la densité de la loi de X la fonction f_X telle que :

$$F_X(x) = \int_{-\infty}^{x} f_X(u) du.$$
 (6)

(i.e. F_X est une fonction absolument continue). On dit alors que X est une variable aléatoire à densité.

Espérance, variance et moments

■ Espérance

Definition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et X une variable aléatoire à valeurs dans \mathbb{R} . On appelle espérance de X, notée E[X] la quantité :

$$E[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega). \tag{7}$$

Si X, est une variable aléatoire discrète, l'espérance s'écrit :

$$E[X] = \sum_{x \in \Omega} x P(X = x).$$

Si X est une variable aléatoire réelle à densité, l'espérance s'écrit :

$$E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx.$$

Remarque : l'espérance est une application linéaire.

Espérance, variance et moments (cont.)

■ Moment d'ordre p

Definition

Plus généralement, on définit le moment d'ordre $p \in \mathbb{N}$, s'il existe, par $E[X^p]$.

■ Variance et écart-type

Definition

■ La variance d'une variable aléatoire X est définie par :

$$Var(X) = E[(X - E[X])^{2}].$$
 (8)

■ L'écart-type d'une variable aléatoire X est définie comme la racine carrée de la variance :

$$\sigma(X) = \sqrt{Var(X)}. (9)$$

Remarque. On montre facilement que $Var(X) = E[X^2] - E[X]^2$, et que :

$$\forall a \in \mathbb{R}, \quad Var(aX) = a^2 Var(X), \quad et \quad \sigma(aX) = a\sigma(X).$$
 (10)

Théorème de transfert

■ Théorème de transfert

Theorem

Soit X une variable aléatoire réelle (abrégée v.a.r dans ce cours), et $Y = \phi(X)$ une autre v.a.r. fonction de X, avec $\phi : \mathbb{R} \mapsto \mathbb{R}$. Alors :

$$E[Y] = E[\phi(X)] = \int_{\mathbb{R}} \phi(x) dP_X(x), \tag{11}$$

sous réserve d'existence de l'intégrale.

Dans le cas particulier où X et Y sont des v.a.r. continues à densité f_X , on a:

$$E[Y] = \int_{\mathbb{D}} y f_Y(y) dy = \int_{\mathbb{D}} \phi(x) f_X(x) dx.$$
 (12)

Théorème de transfert (cont.)

■ Application aux calculs des moments

Corollary

Si X est une variable aléatoire réelle à densité, son moment d'ordre $p \in \mathbb{N}$ est égal à :

$$E[X^{p}] = \int_{-\infty}^{+\infty} x^{p} f_{X}(x) dx.$$
 (13)

Exemple. Soit X une v.a.r. uniforme sur [0;1] et $Y=\phi(X)=X^3$. Alors :

$$E[Y] = E[X^3] = \int_{\mathbb{R}} \phi(x) \frac{1}{1 - 0} \mathbb{1}_{[0;1]} dx = \int_0^1 \phi(x) dx = \int_0^1 x^3 dx = \frac{1}{4}.$$
 (14)

Probabilités conditionnelles et théorème de Bayes (Rappels)

Definition

Soient A et B deux événements avec B de probabilité non nulle. La probabilité conditionnelle de A sachant que B est réalisé est :

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$
 (15)

Theorem (Formule de Bayes)

Soient A et B deux événements avec B de probabilité non nulle. Alors :

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$
 (16)

Probabilités conditionnelles et théorème de Bayes (Rappels) (cont.)

Theorem (Formule des probabilités totales)

Soit A un événement, et $(B_i)_{i\in I}$ un système complet d'événements (fini ou dénombrable), tous de probabilité non nulle. Alors :

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A \cap B_i) = \sum_{i \in I} \mathbb{P}(A|B_i)\mathbb{P}(B_i). \tag{17}$$

17 / 51

Content

- 1 Introduction
- 2 Rappels de probabilités
- 3 Premières définitions et cadre de l'estimation
 - Premières définitions
 - Cadre général de l'estimation paramétrique
 - Propriétés d'un estimateur
- 4 Estimateurs empiriques
 - Estimateur de la moyenne empirique
 - Estimateur de la variance empirique
 - Estimateur des moments
 - Principe
 - Exemple
 - Propriété

Luc Mever

Estimateur du Maximum de Vraisemblance

Premières définitions

Definition

- Paramètre : caractéristique du modèle
- Population : ensemble d'individus
- Echantillon : sous-ensemble extrait d'une population
- Variables : caractéristiques de la population régies par un modèle partiellement connu.
- n-échantillon : vecteur $X = (X_1, ..., X_n)$ de n variables aléatoires (v.a.) indépendantes et identiquement distribuées (i.i.d.). En particulier tous les X_i suivent la même loi.
- Observation : réalisation d'une variable aléatoire. On notera x_i l'observation issue de la variable aléatoire X_i .
 - Remarque : X_i est une variable aléatoire et x_i est un réel (la réalisation de X_i).

4ロト 4回ト 4 三ト 4 三 り 9 0 0

Cadre de l'estimation paramétrique

Hypothèses de l'estimation paramétrique :

- Les variables étudiées sur la population sont des variables aléatoires réelles (v.a.r.).
- Les *n* variables sont supposées issues de variables aléatoires réelles indépendantes et identiquement distribuées (i.i.d., i.e. distribuées suivant la même loi de probabilité).
- Dans le cadre de l'estimation paramétrique, on suppose que les variables suivent un modèle partiellement connu (cf. cours de probabilités) : la loi est supposée connue, mais un (ou plusieurs) paramètre(s) sont supposés inconnus.

Remark

Une autre approche (estimation non paramétrique, hors cadre de ce cours) consiste à considérer comme inconnue la loi suivie par les variables aléatoires.

Ainsi, un modèle paramétrique est un ensemble $\{\mathbb{P}_{\theta}; \theta \in \Theta \subset \mathbb{R}^{\rho}\}$, où \mathbb{P}_{θ} est la loi de probabilité, θ est le paramètre, et Θ est l'ensemble des valeurs admissibles pour θ .

Exemples:

Luc Meyer Préformation Statistiques 28, 29 et 30 août 2023 20 / 51

900

Cadre de l'estimation paramétrique (cont.)

- $\blacksquare \ \{\mathbb{P}_{\theta}; \theta \in \Theta\} = \{\mathcal{U}_{[-\theta;\theta]}; \theta \in \mathbb{R}_{+}^{*}\}, \text{ les observations sont issues d'une loi uniforme,}$
- $\{\mathbb{P}_{\theta}; \theta \in \Theta\} = \{\mathcal{N}(\theta_1, \theta_2); \theta = (\theta_1, \theta_2), \theta_1 \in \mathbb{R}, \theta_2 \in \mathbb{R}_+\}$, les observations sont issues d'une loi normale.
- $\{\mathbb{P}_{\theta}; \theta \in \Theta\} = \{\mathcal{B}(\theta); \theta \in [0,1]\}$, les observations sont issues d'une loi de Bernoilli. Exemple : probabilité de tirer au sort une pièce défectueuse dans un lot.

L'objectif de l'estimation est donc de rechercher la valeur de $\theta \in \Theta$ qui correspond au mieux aux observations $(x_1,...,x_n)$ données.

L'estimation paramétrique est elle même divisée en deux branches :

- Estimation ponctuelle : on cherche une estimation du paramètre. Exemple : $\hat{p} = 1.27$.
 - -> Cadre de ce cours.
- Estimation par intervalles de confiance : on cherche un intervalle dans lequel appartient le paramètre avec une probabilité donnée. Exemple : $p \in [1.25; 1.29]$ avec un risque d'erreur de 0.05 = 5%.
 - -> Non traité dans le cadre de ce cours.

Définition d'un estimateur

Définition

Soit $(X_1,...X_n)$ un *n*-échantillon suivant une loi *connue* de paramètre $\theta \in \mathbb{R}$ *inconnu*.

- Un estimateur du paramètre θ est une variable aléatoire réelle (v.a.r.) $\hat{\theta}_n$ fonction du n-échantillon, i.e. il existe une fonction $F: \mathbb{R}^n \to \mathbb{R}$ avec $\hat{\theta}_n = F(X_1, ..., X_n)$. Exemple : $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$ (estimateur de la moyenne empirique du n-échantillon).
- Une estimation de θ est un réel fonction des réalisations $x_1,...,x_n$ des v.a. $X_1,...,X_n$. C'est donc une réalisation de $\hat{\theta}_n$.

Exemple : $real(\hat{\theta}_n) = \frac{1}{n} \sum_{i=1}^n x_i$ (estimation de la moyenne empirique du n-échantillon).

Luc Meyer

Définition d'un estimateur (cont.)

Exemples d'estimateurs pour la loi normale

Soit $(X_1,...,X_n)$ un n-échantillon de loi parente $\mathcal{N}(\theta,1)$, de moyenne θ inconnue et de variance connue égale à 1.

- $\bullet \hat{\theta}_n^{(1)} = X_1,$
- $\hat{\theta}_n^{(2)} = -4.7,$
- $\hat{\theta}_n^{(3)} = \frac{1}{n} \sum_{i=1}^n X_i,$
- $\hat{\theta}_n^{(4)} = \frac{1}{n} \sum_{i=1}^n X_i + \frac{1}{n^2}.$

Remarque

 $\hat{\theta}_n = F(X_1,...,X_n)$, où les X_1 , ..., X_n sont les variables aléatoires réelles.

Ainsi, un estimateur $\hat{\theta}_n$ est une variable aléatoire réelle.

Objectif de l'estimation

Choisir la fonction F de façon à estimer correctement θ .

Consistance d'un estimateur

Définition

Un estimateur $\hat{\theta}_n$ est dit *consistant* pour la valeur θ (ou *convergent* vers θ) si $\hat{\theta}_n$ tend vers θ presque sûrement (par rapport à $\mathbb{P}_{\theta}(X_1,...,X_n)$) quand n tend vers l'infini.

Remarque

La consistance est une propriété majeure d'un estimateur ponctuel. C'est elle qui donne du sens à l'approximation de θ par $\hat{\theta}_n$ pour n grand.

Biais et variance

Rappel : un estimateur est une variable aléatoire.

Ainsi, les définitions et propriétés classiques des variables aléatoires sont applicables.

Notations

Soit X une variable aléatoire. On note $\mathrm{E}[X]$ son espérance mathématique, et $\mathrm{Var}(X)$ sa variance. Pour rappel, $\mathrm{Var}(X) = \mathrm{E}[(\mathrm{E}[X] - X)^2] = \mathrm{E}[X^2] - \mathrm{E}[X]^2$.

Définition

Le *biais* d'un estimateur $\hat{\theta}_n$ de θ est :

$$B(\hat{\theta}_n, \theta) = E[\hat{\theta}_n] - \theta.$$

Un estimateur $\hat{\theta}_n$ est dit sans biais si $B(\hat{\theta}_n, \theta) = 0$. Sinon, il est dit biaisé.

Propriété

Un estimateur sans biais et de variance asymptotiquement nulle est convergent (consistant).

→ロト→個ト→重ト→重 り90

Exemples

Reprenons les exemples précédents d'estimateurs pour la loi $\mathcal{N}(\theta,1)$:

- $\hat{\theta}^{(1)} = X_1,$ $E[\hat{\theta}^{(1)}] = E[X_1] = \theta => B(\hat{\theta}^{(1)}, \theta) = 0 => \text{Estimateur sans biais.}$ $Var(\hat{\theta}^{(1)}) = Var(X_1) = 1 => \lim_{n \to \infty} Var(\hat{\theta}^{(1)}) = 1 \neq 0 => \text{Variance asymptotiquement non nulle.}$
- $\hat{\theta}^{(2)} = -4.7,$ $E[\hat{\theta}^{(2)}] = -4.7 => B(\hat{\theta}^{(2)}, \theta) = -4.7 \theta => \text{Estimateur biaisé (sauf dans le cas particulier où } \theta = -4.7).$ $Var(\hat{\theta}^{(2)}) = 0 => \lim_{n \to \infty} Var(\hat{\theta}^{(2)}) = 0 => \text{Variance asymptotiquement nulle.}$
- $\hat{\theta}^{(3)} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $E[\hat{\theta}^{(3)}] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} \sum_{i=1}^{n} \theta = \theta => B(\hat{\theta}^{(3)}, \theta) = 0 => \text{Estimateur sans biais.}$ $Var(\hat{\theta}^{(3)}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} 1 = \frac{1}{n} => \lim_{n \to \infty} Var(\hat{\theta}^{(3)}) = 0 => \text{Variance asymptotiquement nulle.}$

Exemples (cont.)

 $\hat{\theta}^{(4)} = \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{n^2},$ $E[\hat{\theta}^{(4)}] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] + \frac{1}{n^2} = \frac{1}{n} \sum_{i=1}^{n} \theta + \frac{1}{n^2} = \theta + \frac{1}{n^2} = > B(\hat{\theta}^{(4)}, \theta) = \frac{1}{n^2} = >$ Estimateur biaisé. $Var(\hat{\theta}^{(4)}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} 1 = \frac{1}{n} = > \lim_{n \to \infty} Var(\hat{\theta}^{(4)}) = 0 = > Variance$ asymptotiquement nulle.

4 D > 4 B > 4 B > 4 B > 9 Q @

27 / 51

Estimateurs sans biais à minimum de variance

Définition

Un estimateur $\hat{\theta}_n$ est dit sans biais à minimum de variance si :

- $\blacksquare \ \mathsf{E}[\hat{\theta}_n] = \theta, \qquad \forall \theta \in \Theta,$
- lacksquare pour tout estimateur $ilde{ heta}_n$ tel que "E $[ilde{ heta}_n]= heta, orall heta\in\Theta$ ", on a :

$$Var(\tilde{\theta}_n) \ge Var(\hat{\theta}_n).$$
 (18)

Propriété

Si un tel estimateur existe, alors il est unique (presque sûrement).

Définition

Quand il existe, un tel estimateur est appelé estimateur efficace.

4 D > 4 B > 4 B > 4 B > 9 Q @

Risque Quadratique Moyen

Définition

Soit $\hat{\theta}_n$ un estimateur de $\theta \in \mathbb{R}$. On appelle erreur quadratique moyenne (ou risque quadratique moyen) la valeur : $EQM(\hat{\theta}_n, \theta) = E[(\hat{\theta}_n - \theta)^2]$.

Propriété

$$EQM(\hat{\theta}_n, \theta) = Var(\hat{\theta}_n) + B(\hat{\theta}_n, \theta)^2$$
(19)

Ainsi, pour un estimateur sans biais : $EQM(\hat{\theta}_n, \theta) = Var(\hat{\theta}_n)$.

Exercice : calculer le risque quadratique moyen des estimateurs précédemment proposés de la loi $\mathcal{N}(\theta, 1)$.

◆ロト ◆昼 ト ◆ 壹 ト ◆ 昼 ・ か へ ②

Risque Quadratique Moyen (cont.)

Définition

- Un estimateur $\hat{\theta}_n$ est dit (quadratiquement) préférable à un estimateur $\tilde{\theta}_n$ pour la valeur θ si $EQM(\hat{\theta}_n, \theta) \leq EQM(\tilde{\theta}_n, \theta)$.
- Un estimateur $\hat{\theta}_n$ est dit (quadratiquement) uniformément préférable à un estimateur $\tilde{\theta}_n$ s'il est quadratiquement préférable pour toute valeur de $\theta \in \Theta$.
- Un estimateur est dit admissible s'il n'existe aucun estimateur qui lui est préférable. Il est dit inadmissible dans le cas contraire.

Meilleurs estimateurs?

Quel(s) critère(s) pour une estimation optimale?

- (Rappel) Un bon estimateur est nécessairement consistant.
- Deux approches possibles (selon le critère à optimiser) :
 - si cela est possible, on cherche en priorité un estimateur (possiblement biaisé)
 à minimum d'erreur quadratique moyenne => idéal mais pas toujours possible,
 - estimateur sans biais à minimum de variance => plus facile à mettre en place en pratique.

Remarque

Il existe des estimateurs biaisés meilleurs (au sens de l'EQM) que des estimateur sans biais (cf. exemple suivant).

Meilleurs estimateurs? (cont.)

Exemple

Soit un n-échantillon $(X_1,...,X_n)$ suivant une loi de Bernouilli $\mathcal{B}(\theta)$. Pour $\theta=1/2$, l'estimateur $\hat{\theta}_n^{(1)}=\frac{1}{n}\sum_{i=1}^n X_i$ est sans biais et son erreur quadratique est :

$$EQM(\hat{\theta}_n^{(1)}) = \frac{1}{4n}.$$
 (20)

Or, l'estimateur $\hat{\theta}_n^{(2)} = \frac{n\hat{\theta}_n^{(1)} + \sqrt{n/4}}{n + \sqrt{n}}$ a pour risque quadratique :

$$EQM(\hat{\theta}_n^{(2)}) = \frac{n}{4(n+\sqrt{n})^2} < \frac{1}{4n}.$$
 (21)

(ロ) (型) (注) (注) (注) かく(C)

Luc Meyer

Fin de la séance 1

Dans la séance 2, nous verrons différentes méthodes de construction d'estimateurs :

- 1 Estimateurs empiriques de la moyenne et de la variance
- 2 Méthode des moments pour la construction d'estimateurs
- 3 Méthode du maximum de vraisemblance pour la construction d'estimateurs

Content

- - Rappels de probabilités
- Premières définitions et cadre de l'estimation

Estimateurs empiriques

- Estimateur de la moyenne empirique
- Estimateur de la variance empirique
- 5 Estimateur des moments

Luc Mever

Estimateur du Maximum de Vraisemblance

Estimateur de la moyenne empirique

Considérons un *n*-échantillon $(X_1, ..., X_n)$ suivant une loi de probabilité de moyenne *m* et de variance σ^2

Définition

On appelle estimateur de la moyenne empirique du n-échantillon $(X_1, ..., X_n)$ la variable aléatoire :

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i. \tag{22}$$

Propriété

L'estimateur \overline{X} est un estimateur sans biais et consistant de la moyenne m de la loi de probabilité suivi par le *n*-échantillon.

Démonstration traitée en exercice.

Estimateur de la variance empirique

Considérons un *n*-échantillon $(X_1,...,X_n)$ suivant une loi de probabilité de moyenne *m* et de variance σ^2 .

Définition

On appelle estimateur de la variance empirique du n-échantillon $(X_1,...,X_n)$ la variable aléatoire :

$$V_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \frac{1}{n} \sum_{j=1}^n X_j)^2.$$
 (23)

Propriété

- L'espérance de l'estimateur V_n est $E[V_n] = \frac{n-1}{n}\sigma^2$. Ainsi l'estimateur V_n est un estimateur biaisé de σ^2 .
- La variable aléatoire $\tilde{V}_n = \frac{n}{n-1} V_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \frac{1}{n} \sum_{i=1}^n X_i)^2$

est un estimateur sans biais de la variance σ^2 du *n*-échantillon. Il est appelé estimateur corrigé de la variance.

Démonstration traitée en exercice.

4□ → 4□ → 4 □ → 4 □ → 9 0 0

Préformation Statistiques 36 / 51 Luc Mever 28, 29 et 30 août 2023

Content

- 1 Introduction
- 2 Rappels de probabilités
- 3 Premières définitions et cadre de l'estimation
 - Premières définitions
 - Cadre général de l'estimation paramétrique
 - Propriétés d'un estimateur
- 4 Estimateurs empiriques
 - Estimateur de la moyenne empirique
 - Estimateur de la variance empirique
- 5 Estimateur des moments
 - Principe
 - Exemple
 - Propriétés

Luc Mever

Estimateur du Maximum de Vraisemblance

Estimateur des moments

Principe

Soit un *n*-échantillon $(X_1,...,X_n)$ suivant une loi \mathbb{P}_{θ} de paramètre $\theta \in \Theta$ inconnu.

L'estimateur des moments d'ordre $k \in \mathbb{N}^*$ $\hat{ heta}_n^{(k)}$ s'obtient en résolvant l'équation :

$$m_k(\hat{\theta}_n^{(k)}) = \hat{m}_k, \tag{24}$$

avec pour tout $k \ge 0$:

- lacksquare $m_k(heta) = E_{ heta}[X_i^k]$, $\forall i \in \{1,...,n\}$ (v.a. i.i.d.), le moment théorique et
- $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$, le moment empirique.

Exemple

Exemple : soit un *n*-échantillon $(X_1,...,X_n)$ suivant une loi de poisson $\mathcal{P}(\theta)$ de paramètre

Calculons l'estimateur des moments de θ :

■ A l'ordre 1 :

$$\mathsf{E}_{\hat{\theta}_{n}^{(1)}}[X] = \frac{1}{n} \sum_{i=1}^{n} X_{i}. \tag{25}$$

 $Or : E_{\theta}[X] = \theta$

Ainsi : $\hat{\theta}_n^{(1)} = \frac{1}{n} \sum_{i=1}^n X_i$ est un estimateur des moments de θ .

39 / 51

Propriété

Questions:

- Choix des moments à utiliser!
- Existence (et calcul) des solutions

Propriété

Si $E[|X|^k] < \infty$, et si $m_k(\theta) = f(\theta)$, avec f une fonction inversible continue, alors l'estimateur $\hat{\theta}_n = f^{-1}(\hat{m}_k)$, est un estimateur consistant de θ .

40 / 51

Extension

Soit $g:\mathbb{R}\to\mathbb{R}$, une fonction continue. Alors la méthode des moments se généralise par la résolution en θ de l'équation :

$$\mu(\theta) = \hat{\mu},\tag{26}$$

avec :

- $\blacksquare \ \mu(\theta) = \mathsf{E}_{\theta}[g(X_1)],$
- $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} g(X_i).$

Propriété

Si $E[|g(X)|] < \infty$, et si $\mu(\theta) = f(\theta)$, avec f une fonction inversible continue, alors l'estimateur $\hat{\theta}_n = f^{-1}(\hat{\mu})$, est un estimateur consistant de θ .

Content

- 1 Introduction
- Rappels de probabilités
- 3 Premières définitions et cadre de l'estimation
 - Premières définitions
 - Cadre général de l'estimation paramétrique
 - Propriétés d'un estimateur
- 4 Estimateurs empiriques
 - Estimateur de la moyenne empirique
 - Estimateur de la variance empirique
- 5 Estimateur des moments
 - Principe
 - Exemple
 - Propriété
- 6 Estimateur du Maximum de Vraisemblance
 - Définition de la vraisemblance

Définition de la vraisemblance

Définition

Dans un modèle paramétrique dominé, la vraisemblance est une fonction de la variable θ définie pour toute réalisation $(x_1,...,x_n)$ du n-échantillon $(X_1,...,X_n)$ et qui associe à $\theta \in \Theta$ la valeur $f_{\theta}(x_1,...,x_n)$:

$$\theta \mapsto L_n(\theta; x_1, ..., x_n) = f_{\theta}(x_1, ..., x_n) = \prod_{i=1}^n f_{\theta}(x_i).$$
 (27)

Dans le cas discret, on a :

$$\theta \mapsto L_n(\theta; x_1, ..., x_n) = \mathbb{P}_{\theta}(x_1, ..., x_n) = \prod_{i=1}^n \mathbb{P}_{\theta}(X = x_i).$$
 (28)

Les dernières égalités de (27) et de (28) viennent de l'indépendance des v.a. $X_1, ..., X_n$. La vraisemblance est donc une fonction du paramètre θ , alors que la densité est une fonction de la variable x.

4 D > 4 A > 4 B > 4 B > B 9 Q P

43 / 51

Luc Meyer Préformation Statistiques 28, 29 et 30 août 2023

Définition de la vraisemblance (cont.)

Pour des questions pratiques, on utilisera souvent la log-vraisemblance :

$$I_n(\theta; x) = \log(L_n(\theta; x_1, ..., x_n)) = \log(f_{\theta}(x_1, ..., x_n)) = \sum_{i=1}^n \log f_{\theta}(x_i).$$
 (29)

< ロ > < 個 > < 差 > < 差 > 差 > の < @

Luc Meyer

Recherche d'estimateur

Intuition : Choisir comme estimateur la valeur du paramètre qui rend l'observation la plus probable.

Définition

Soit un *n*-échantillon $(X_1,...,X_n)$. On appelle estimateur du maximum de vraisemblance la v.a. $\hat{\theta}(X_1,...,X_n)$ telle que :

$$\hat{\theta}(x_1,...,x_n) = argmax_{\theta \in \Theta} L_n(\theta;x_1,...,x_n) = argmax_{\theta \in \Theta} I_n(\theta;x_1,...,x_n). \tag{30}$$

(ロ) (目) (目) (目) (目)

Exemple 1

Supposons que $X_i \sim \mathcal{B}(p)$ avec $p \in [0; 1]$ (loi de Bernouilli).

On cherche l'estimateur du maximum de vraisemblance pour le paramètre p.

On a, pour tout $i \in \{1, ..., n\}$:

$$f_p(x_i) = \mathbb{P}_p(X = x_i) = p^{x_i}(1-p)^{(1-x_i)}$$
 (31)

La log-vraisemblance s'écrit :

$$I_{n}(p; x_{1}, ..., x_{n}) = \sum_{i=1}^{n} \log f_{p}(x_{i})$$

$$= \sum_{i=1}^{n} (x_{i} \log p + (1 - x_{i}) \log(1 - p))$$

$$= (\sum_{i=1}^{n} x_{i}) \log p + (n - (\sum_{i=1}^{n} x_{i})) \log(1 - p)$$
(32)

On recherche ensuite *p* tel que :

$$\frac{\partial I_n(p; x_1, \dots, x_n)}{\partial p} = 0, \tag{33}$$

et on trouve finalement :

Luc Mever

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i. \tag{34}$$

46 / 51

28, 29 et 30 août 2023

(□) (□) (Ē) (Ē) E

Préformation Statistiques

Exemple 2

Supposons que $X_i \sim \mathcal{E}(\lambda)$ avec $\lambda > 0$ (loi exponentielle).

On cherche l'estimateur du maximum de vraisemblance pour le paramètre λ .

On a, pour tout $i \in \{1,...,n\}$:

$$f_{\lambda}(x_i) = \lambda \exp^{-\lambda x_i}$$
 (35)

La log-vraisemblance s'écrit :

$$I_{n}(\lambda; x_{1}, ..., x_{n}) = \sum_{i=1}^{n} \log f_{\lambda}(x_{i})$$

$$= \sum_{i=1}^{n} (\log \lambda - \lambda x_{i})$$

$$= n \log \lambda - \lambda \sum_{i=1}^{n} x_{i}$$
(36)

On recherche ensuite λ tel que :

$$\frac{\partial I_n(\lambda; x_1, \dots, x_n)}{\partial \lambda} = 0, \tag{37}$$

et on trouve finalement :

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} X_i}.$$
 (38)

Luc Meyer Préformation Statistiques 28, 29 et 30 août 2023 47/51

Propriétés

Définition

Un modèle dominé est dit homogène si le support de $f_{\theta}(.)$ ne dépend pas de θ .

Propriété

Dans un modèle dominé homogène, lorsque la vraie valeur de θ appartient dans l'espace des paramètres Θ , alors l'estimateur du Maximum de Vraisemblance est consistant.

Discussion

- Avantages
 - Méthode universelle
 - L'estimateur prend ses valeurs l'espace des paramètres Θ
 - Bonnes propriétés asymptotiques (cf. résultat de consistance)
- Limites (liées aux difficultés de rechercher un maximum)
 - Ni existence, ni unicité acquises en général
 - Instabilité numériques (lors de recherche numérique)

Content

- 1 Introduction
 - Rappels de probabilités
- Premières définitions et cadre de l'estimation
 - Premières définitions
 - Cadre général de l'estimation paramétrique
 - Propriétés d'un estimateur
- 4 Estimateurs empiriques
 - Estimateur de la moyenne empirique
 - Estimateur de la variance empirique
- 5 Estimateur des moments
 - Principe
 - Exemple
 - Propriété
- 6 Estimateur du Maximum de Vraisemblance
 - Définition de la vraisemblance

Bibliographie

- Stephan Morgenthaler, *Introduction à la statistique*, PPUR, 2013.
- Jean-François Delmas, Introduction aux probabilités et à la statistique, Les Presses de l'Ensta
- Christophe Pouet, Probabilités et Statistique, Les Presses de l'Ecole Centrale de Marseille
- Maxime Ossonce, Statistique, Les Presses de l'Ensta