APPENDIX A NOMENCLATURE

Abbreviations

CP Charging Pile CS Charging Station DR Demand Response EV Electric Vehicle V2G Vehicle-to-Grid **VPP** Virtual Power Plant

Parameters

Coefficient corresponding to the lower limit of the DR power requirement for the CS α_1 Coefficient corresponding to the upper limit of the DR power requirement for the CS α_2

Size of the planning time horizon

 C^{o} Subsidy from the grid for unit response electricity C^{p} Penalty from the grid for unit deviation electricity

 C_{\cdot}^{chmax} Expected maximum price of unit electricity for EV_i to charge C_{i}^{chmin} Expected minimum price of unit electricity for EV_i to charge C_{c}^{J} dcmax Expected maximum subsidy of unit electricity for EV_j to discharge C_i^{dcmin} Expected minimum subsidy of unit electricity for EV_i to discharge

Unit purchase price of electricity for CS_k from the grid

 C_k^{pur} C_k^{resmax} Maximum recruitment subsidy of CS_k for unit response electricity Minimum recruitment subsidy of CSk for unit response electricity

 C_k C_k Unit sell price of electricity for CS_k to EVs Unit sales profit of electricity for CS_k to EVsSubsidy of CS_k for unit waiting time of EVs

Basic recruitment subsidy of CS_k for unit response electricity

Price preference type of EV_i , 1, 0, and -1 represent the driver as sensitive, neutral, and insensitive, respectively

LSize of the planning lead time N_k Total number of CPs at CS_k

Maximum charging or discharging power of CP_i at CS_k

 $P_{k,i}^{\max}$ $P_{k,i}^{\max}$ $P_{k,t}^{\max}$ Q_{j}^{\max} Q_{j}^{\max} Base power of CS_k at time tMaximum battery capacity of EV_j

Minimum battery power level of EV_i at which the driver won't have energy anxiety

 Q_k^{resthre} Required amount of response electricity of CS_k for recruited EVs

Type of DR task received by CS_k , 1 indicates valley filling task, and -1 indicates peak shaving task

TTime limit of a certain DR task

Sets and Indices

Index of CP iIndex of EV j kIndex of CS

Index of planning time horizon

Index of time

Variables

 $\Pr_{j,k,t}^{\mathrm{ch}}$ Probability of EV_j charging to participate in the DR task of CS_k $\Pr_{j,k,t}^{\text{J,k,t}}$ $C_{k,j,l}^{\text{res}}$ Probability of EV_i discharging to participate in the DR task of CS_k

Unit response electricity subsidy for recruited EV_j at CS_k in the l-th time horizon

Charging price or discharging subsidy for recruited EV_i at time t $C_{k,t}^{\text{res}}$ Recruitment subsidy for unit response electricity from CS_k at time t

 $D_{j,k,t}^{r,t}$ $I_{j,k}^{wait}$ $I_{k,l}^{res}$ Distance between EV_i and CS_k at time tWaiting subsidy for EV_j from CS_k Revenue of CS_k in l-th time horizon

Revenue of CS_k from EVs participating in DR task in the l-th time horizon

Revenue of CS_k from EVs not participating in DR task in the l-th time horizon

 $N_{k,l}$ Cumulative number of EVs at CS_k in the l-th time horizon

 $N_{k,l}^{\text{newres}}$ Number of EVs starting to participate in DR task at CS_k in the l-th time horizon Number of EVs that continue to participate in DR task at CS_k in the *l*-th time horizon

Number of EVs planned to recruit for DR task of CS_k at time t

```
N_{k,t}^{\mathrm{res}}
P_{k}^{\mathrm{goal}}
P_{k,i,j,t}^{\mathrm{ch}}
P_{k,i,j,t}^{\mathrm{dc}}
                                             Number of EVs participating the DR task of CS_k at time t
                                             Required response power of CS<sub>k</sub>
                                             Charging power of EV_j at CP_i of CS_k at time t
                                             Discharging power of EV_j at CP_i of CS_k at time t
 P_{k,i,j,t}
P_{k,t}

                                           Expected response power of EV_j at CP_i of CS_k at time t
                                            Charging or discharging power of EV_i at CP_i of CS_k at time t
                                            Total charging power of EVs not participating in DR tasks of CS_k at time t
    Q_{j,t}
                                             Battery power of EV_i at time t
   Q_{j,t}^{\text{unitconsum}} Electricity consumption per unit mileage of \mathrm{EV}_j at time t Q_{k,i,j,l}^{\mathrm{res}} Amount of response electricity of \mathrm{EV}_j at \mathrm{CP}_i of \mathrm{CS}_k in the l-th time horizon
\begin{array}{ll} Q_{k,i,j,l}^{\mathrm{res}} & \mathrm{Amount\ of\ response\ electricity\ of\ EV_j\ at\ CP_i\ of\ CS_k\ in\ the\ l\text{-th\ time\ horizon}}\\ Q_{k,i,j}^{\mathrm{res}} & \mathrm{Amount\ of\ response\ electricity\ for\ EV_j\ at\ CP_i\ of\ CS_k}\\ Q_{k,i,j}^{\mathrm{res}} & \mathrm{Amount\ of\ response\ electricity\ of\ EV_j\ at\ CP_i\ of\ CS_k}\\ Q_{k,i,j}^{\mathrm{glectres}} & \mathrm{Amount\ of\ effective\ response\ electricity\ of\ CS_k\ in\ the\ l\text{-th\ time\ horizon}}\\ Q_{k,i,j}^{\mathrm{glock}} & \mathrm{Expected\ amount\ of\ effective\ response\ electricity\ of\ CS_k\ in\ the\ l\text{-th\ time\ horizon}}\\ Q_{k,i,j}^{\mathrm{plan}} & \mathrm{Expected\ amount\ of\ effective\ response\ electricity\ of\ CS_k\ in\ the\ l\text{-th\ time\ horizon}}\\ Q_{k,i,j}^{\mathrm{plan}} & \mathrm{Expected\ amount\ of\ effective\ response\ electricity\ of\ CS_k\ at\ time\ t}\\ T_{i,k}^{\mathrm{resend}} & \mathrm{Total\ waiting\ time\ of\ EV_j\ at\ CP_i\ of\ CS_k}\\ T_{k,i,j}^{\mathrm{resend\ }} & \mathrm{Demand\ response\ end\ time\ of\ EV_j\ at\ CP_i\ of\ CS_k}\\ Charging\ start\ time\ of\ EV_j\ that\ does\ not\ not\ participate\ in\ DR\ task\ at\ CP_i\ of\ CS_k\ T_{k,i,j}^{\mathrm{res}} & \mathrm{Charging\ end\ time\ of\ EV_j\ that\ does\ not\ not\ participate\ in\ DR\ task\ at\ CP_i\ of\ CS_k\ Moment\ when\ EV_j\ accepts\ recruitment\ from\ station\ CS_k\ ti\ is\ 1\ if\ EV_j\ accepts\ recruitment\ from\ CS_k\ at\ time\ t,\ else\ is\ 0}\\ \end{array}
                                           Amount of charging electricity for EV_j that does not participate in DR tasks at CP_i of CS_k in the l-th time horizon
```

It is 1 if EV_i accepts recruitment from CS_k at time t, else is 0

APPENDIX B MODEL CONSTRUCTION AND SOLUTION

A. Operation Model of CS

$$\begin{aligned} & \text{max} & \quad I_{k,l} = I_{k,l}^{\text{last}} + I_{k,l}^{\text{max}} \\ & s.t. & \quad I_{k,l}^{\text{res}} = \min \{Q_{k,l}^{\text{effectes}}, Q_{k,l}^{\text{soal}}\} \cdot C^{\text{o}} + \sum_{i=1}^{N_k} \sum_{j=1}^{N_{k,l}} Q_{k,i,j,l}^{\text{res}} \cdot (C_k^{\text{s}} - C_{k,j,l}^{\text{res}}) - \max \{Q_{k,l}^{\text{soal}} - Q_{k,l}^{\text{effectes}}, 0\} \cdot C^{\text{p}} \\ & \quad Q_{k,l}^{\text{effectes}} = \int_{l+L}^{l+L} P_{k}^{\text{effectes}} \, dt \\ & \quad Q_{k,l}^{\text{cool}} = \int_{0}^{l+L+T} P_{k}^{\text{soal}} \, dt - \int_{0}^{l+L} P_{k,l}^{\text{effectes}} \, dt \\ & \quad C_k^{\text{s}} = \left\{ \begin{array}{c} C_{k}^{\text{col}} - C_k^{\text{cov}} \cdot S_k = 1, \\ 0, & S_k = -1, \\ P_{k,l}^{\text{effectes}} = P_{k,l}^{\text{effectes}} - P_{k,l}^{\text{effectes}}, S_k = 1, \\ 0, & S_k = -1, \\ P_{k,l}^{\text{effectes}} + P_{k,l}^{\text{effectes}} - P_{k,l}^{\text{effectes}}, S_k = 1, \\ 0, & V_k^{\text{goal}} \leq P_{k,l}^{\text{effectes}}, & V_{k,l}^{\text{effectes}}, S_k = 1, \\ 0, & V_k^{\text{goal}} \leq P_{k,l}^{\text{effectes}}, & V_{k,l}^{\text{effectes}}, &$$

B. Proof of Proposition 1

Proposition 1: For the adjusted optimization problem, when it takes the optimal value, $N_{k,t}^{\text{recruit}} - a_{k,t} - b_{k,t} \cdot C_{k,t}^{\text{res}} = 0$.

Proof Proof of Proposition 1. Transform the adjusted optimization problem into a standard-constrained optimization problem.

$$\min \quad -I_{k,l}, \tag{A.1}$$

s.t.
$$g_i(\mathbf{x}) \le 0, i = 1, ..., m,$$
 (A.2)

$$h_j(\mathbf{x}) = 0, j = 1, ..., n.$$
 (A.3)

Due to space limitations, the constraints are not expanded here. For the specific expression of constraints, see Eq. A.1. Define the Lagrangian function:

$$L(N_{k,t}^{\text{recruit}}, C_{k,t}^{\text{res}}, \lambda_i, \mu_j) = -I_{k,l} + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{n} \mu_j h_j(\mathbf{x}).$$
(A.4)

Then, calculate the partial derivative of the subsidized price $C_{k,l-1}^{\text{res}}$. Based on the Karush-Kuhn-Tucker (KKT) condition [28], the following results can be obtained.

$$N_{k,t}^{\text{recruit}} \cdot Q_{k,l}^{\text{resthre}} - \mu \cdot b_{k,t} = 0, \tag{A.5}$$

$$\mu(N_{k,t}^{\text{recruit}} - a_{k,t} - b_{k,t} \cdot C_{k,t}^{\text{res}}) = 0, \tag{A.6}$$

when there is a need for recruitment, Eq. A.5 shows that μ is not equal to 0, therefore, for the optimal solution of the optimization problem, the following relationship exists:

$$N_{k\,t}^{\text{recruit}} - a_{k,t} - b_{k,t} \cdot C_{k\,t}^{\text{res}} = 0.$$
 (A.7)

C. Proof of Proposition 2

Proposition 2: The optimization objective $I_{k,l}$ increases with the increase of $b_{k,t}$.

Proof Proof of Proposition 2. Combining Eq. A.7 with Eq. A.1, the partial derivative of $I_{k,l}$ with respect to $b_{k,t}$ is as follows:

$$\frac{\partial I_{k,l}}{\partial b_{k,t}} = C_{k,t}^{\text{res}} \cdot Q_k^{\text{resthre}} (C^{\text{o}} + C_k^{\text{s}} + C^{\text{p}} - C_{k,t}^{\text{res}}), \tag{A.8}$$

since the CSs aim to obtain DR regulation profits, the recruitment subsidy of the CS is less than $(C^{o} + C_{k}^{s} + C^{p})$, then the partial derivative is greater than 0. It can be concluded that the objective function increases with the increase of $b_{k,t}$.

APPENDIX C RESPONSE MODEL FOR EV OWNER

According to the updated recruitment plan, the CS sends out invitations to nearby EVs to participate in the DR task. For EV_j around CS_k , after receiving the invitation at time t, the driver decides whether to participate in the task based on the battery power of EV, location of EV, subsidy level, etc. For EV_j , its battery power at time t is $Q_{j,t}$, and $D_{j,k,t}$ represents the distance between EV_j and CS_k , $Q_{j,t}^{\mathrm{unitconsum}}$ represents the electricity consumption per unit driving distance of EV_j , and Q_j^{safe} represents the lowest level of battery power for EV_j that the driver will not feel range anxiety. Due to the different travel plans and charging preferences of drivers, there are certain differences in Q_j^{safe} for different EVs. Q_j^{max} is the maximum battery power of EV_j , and $C_{k,t}$ is the received price of EV_j for unit electricity consumption or supply at time t.

$$Q_{j,t} - D_{j,k,t} \cdot Q_{j,t}^{\text{unitconsum}} > 0, \tag{A.9}$$

$$Q_{j,t} - D_{j,k,t} \cdot Q_{j,t}^{\text{unitconsum}} - Q_k^{\text{resthre}} > Q_j^{\text{safe}}, S_k = -1, \tag{A.10}$$

$$Q_{j,t} - D_{j,k,t} \cdot Q_{j,t}^{\text{unitconsum}} + Q_k^{\text{resthre}} < Q_j^{\text{max}}, S_k = 1, \tag{A.11}$$

$$C_{k,t} = \begin{cases} C_k^{\text{sell}} - C_{k,t}^{\text{res}}, & S_k = 1, \\ C_{k,t}^{\text{res}}, & S_k = -1. \end{cases}$$
(A.12)

Considering the diversity of drivers' preferences, their willingness to charge or discharge varies [27]. Let $\Pr_{j,k,t}^{\text{ch}}$ and $\Pr_{j,k,t}^{\text{dc}}$ represent the charging and discharging probabilities of EV_j at time t, respectively. P_j^{chmin} and P_j^{dcmin} refer to the minimum unit price for EV_j to charge or discharge. P_j^{chmax} and P_j^{dcmax} refer to the maximum unit price of EV_j for charging or discharging. K_j represents the type of price sensitivity for the driver of EV_j , where 1 indicates the driver is price-sensitive, 0 indicates the driver is neutral, and -1 indicates the driver is price-insensitive. Since drivers usually have range anxiety, it is assumed that when the battery power of the EV is less than Q_j^{safe} , the driver is eager to charge the vehicle.

$$Pr_{j,k,t}^{dc} = \frac{A_{j,t}^{dc} + B_{j,k,t}^{dc}}{2},$$
(A.13)

$$A_{j,t}^{\text{dc}} = \frac{Q_{j,t} - Q_j^{\text{safe}}}{Q_j^{\text{max}} - Q_j^{\text{safe}}},\tag{A.14}$$

$$b_{j,k,t}^{\text{dc}} = \frac{C_{k,t} - C_j^{\text{chmin}}}{C_j^{\text{chmax}} - C_j^{\text{chmin}}},\tag{A.15}$$

$$B_{j,k,t}^{\text{dc}} = \begin{cases} \ln(b_{j,k,t}^{\text{dc}} \cdot (e-1) + 1), & K_j = 1, \\ b_{j,k,t}^{\text{dc}}, & K_j = 0, \\ \frac{e^{b_{j,k,t}^{\text{dc}} - 1}}{e-1}, & K_j = -1, \end{cases}$$
(A.16)

where $A_{j,t}^{dc}$ and $B_{j,k,t}^{dc}$ represent the preference of the driver controlling EV_j to participate in the DR task regarding battery power level and discharging subsidy level.

$$\Pr_{j,k,t}^{\text{ch}} = \begin{cases} \frac{A_{j,t}^{\text{ch}} + B_{j,t}^{\text{ch}}}{2}, & Q_{j,t} \ge Q_{j}^{\text{safe}}, \\ 1, & Q_{j,t} < Q_{j}^{\text{safe}}, \end{cases}$$
(A.17)

$$A_{j,t}^{\text{ch}} = 1 - \frac{Q_{j,u} - Q_j^{\text{safe}}}{Q_j^{\text{max}} - Q_j^{\text{safe}}},$$
(A.18)

$$b_{j,k,t}^{\text{ch}} = \frac{C_{k,t} - C_j^{\text{chmin}}}{C_j^{\text{chmax}} - C_j^{\text{chmin}}},\tag{A.19}$$

$$B_{j,k,t}^{\text{ch}} = \begin{cases} \ln((1 - b_{j,k,t}^{\text{ch}}) \cdot (e - 1) + 1), & K_j = 1, \\ 1 - b_{j,k,t}^{\text{ch}}, & K_j = 0, \\ \frac{e^{1 - b_{j,k,t}^{\text{ch}} - 1}}{e - 1}, & K_j = -1, \end{cases}$$
(A.20)

where $A_{j,t}^{\rm ch}$ and $B_{j,k,t}^{\rm ch}$ represent the preference of the driver controlling EV_j to participate in the DR task regarding battery power level and charging subsidy level.

If the driver of EV_j accepts the invitation of CS_k , it will go to CS_k to perform the task, and then CS_k will settle the bill according to the agreed price once the task is completed.

APPENDIX D EXPERIMENTAL RESULTS

This section provides a detailed presentation of the relevant simulation results. For the sake of completeness, some results previously included in the main text are also reiterated here.

A. Experiment Setup

Table A1 shows the detailed information of the 10 CSs involved in the simulation experiment.

TABLE A1
DETAILED INFORMATION OF CSs FOR SIMULATION

	Location	of CSs	Number of CPs
ID	Longitude	Latitude	Number of CPS
$\overline{\text{CS}_1}$	110.3055	20.0141	32
CS_2	110.3239	19.9928	60
CS_3	110.2698	19.9795	29
CS_4	110.2616	20.0069	24
CS_5	110.2887	19.9766	30
CS_6	110.2911	19.9935	36
CS_7	110.2617	19.9959	32
CS ₈	110.3171	19.9761	22
CS_9	110.3393	19.9768	38
CS_{10}	110.2738	19.9620	22

B. Simulation Results Under Different DR Tasks

The simulation results of the proposed TSDO under different DR tasks are shown in Tables A2 and A3. Figs. A1 and A2 intuitively shows the performance of the proposed TSDO under different indicators. Figs. A3 and A4 show the response power performance of the proposed TSDO under specific tasks in detail.

Fig. A1. Performance variation of CSs with increasing task power of peak shaving.

Fig. A2. Performance variation of CSs with increasing task power of valley filling.

C. Simulation Results Under Different Planning Lead Time

This part presents the simulation results of the TSDO under different planning lead time L. Tables A4 and A5 show the performance results of the TSDO, and the intuitive demonstration of the TSDO performance under different planning lead time L are shown in Figs. A5 and A6.

	TABLE A2
EVDEDIMENTAL	RECHITE OF PEAK SHAVING TACKS

Task Power (kW)	Annroach	Income of CSs (CNY)		Response	Response Power of CSs		Waiting Time for EVs (min)		Income of EVs (CNY/min)	
Task I Owel (KW)	Approach	Average	Variance	Average	Variance	Average	Variance	Average	Variance	
	CSP	2364.3652	58.0094	1.5158	0.0632	0.3617	0.1480	0.9801	0.0080	
300	DSP	2281.8517	73.2286	1.5789	0.0744	0.4962	0.1782	1.0326	0.0135	
500	TSDO	2404.7239	152.1891	1.1642	0.0731	1.0642	0.2467	0.9730	0.0613	
	CSP	2603.8159	86.8887	1.4176	0.0588	0.4552	0.1505	0.9758	0.0082	
350	DSP	2547.7102	84.1984	1.4738	0.0733	0.5502	0.1695	1.0177	0.0113	
330	TSDO	2703.5301	158.2229	1.1300	0.0568	1.1402	0.2761	0.9906	0.0481	
	CSP	2911.3059	113.3455	1.3555	0.0507	0.5146	0.1373	0.9738	0.0070	
400	DSP	2847.9933	106.2594	1.3950	0.0520	0.6014	0.1493	0.9998	0.0097	
400	TSDO	2912.8470	211.4107	1.0705	0.0656	1.2613	0.3054	0.9930	0.0524	
	CSP	3134.8762	161.1543	1.3195	0.0533	0.5379	0.1411	0.9730	0.0068	
450	DSP	3114.9202	112.9452	1.3337	0.0414	0.6344	0.1776	0.9892	0.0128	
430	TSDO	3356.5290	150.1364	1.0423	0.0326	1.2161	0.2382	1.0264	0.0486	
	CSP	3573.8977	149.2931	1.2383	0.0503	0.5579	0.1621	0.9731	0.0080	
500	DSP	3458.7848	149.6886	1.2768	0.0428	0.7142	0.1562	0.9830	0.0082	
330	TSDO	3593.8757	155.4868	1.0434	0.0308	1.4202	0.2222	1.0428	0.0337	

^{*} The response power represents the ratio of the target power.

TABLE A3
EXPERIMENTAL RESULTS OF VALLEY FILLING TASKS

Task Power (kW)	Approach	Income of CSs (CNY)		Response 1	Response Power of CSs		Waiting Time for EVs (min)		Income of EVs (CNY/min)	
Task rower (kw)	Approach	Average	Variance	Average	Variance	Average	Variance	Average	Variance	
	CSP	1148.9125	85.3962	1.3245	0.0407	0.0003	0.0011	0.5000	0.0000	
300	DSP	975.1546	100.7143	1.3903	0.0464	0.0014	0.0049	0.5672	0.0088	
200	TSDO	1695.5672	55.7468	0.9761	0.0067	0.0257	0.0286	0.6154	0.0461	
	CSP	1499.0062	97.5822	1.2427	0.0333	0.0004	0.0014	0.5000	0.0000	
350	DSP	1331.1526	106.0163	1.2879	0.0431	0.0011	0.0021	0.5527	0.0087	
550	TSDO	1943.5201	73.9494	0.9844	0.0108	0.0274	0.0187	0.6501	0.0509	
	CSP	1908.5660	133.6327	1.1436	0.0487	0.0018	0.0040	0.5000	0.0000	
400	DSP	1800.8232	146.3049	1.1741	0.0392	0.0025	0.0055	0.5421	0.0067	
100	TSDO	2072.9863	56.1451	0.9598	0.0048	0.0886	0.0814	0.6771	0.0366	
	CSP	2313.8063	121.5313	1.0494	0.0456	0.0011	0.0022	0.5000	0.0000	
450	DSP	2206.3390	121.1399	1.0851	0.0376	0.0027	0.0049	0.5378	0.0068	
150	TSDO	2319.0694	60.9840	0.9671	0.0067	0.0573	0.0307	0.7094	0.0333	
	CSP	2545.7672	95.2274	0.9953	0.0305	0.0004	0.0009	0.5000	0.0000	
500	DSP	2504.4970	114.0116	1.0151	0.0296	0.0033	0.0057	0.5316	0.0085	
300	TSDO	2526.4447	70.5901	0.9672	0.0082	0.0697	0.0343	0.7238	0.0165	

^{*} The response power represents the ratio of the target power.

Fig. A3. Performance of the response power of each CS under the peak shaving tasks during the task period when task power is 500 KW.

D. Simulation Results With Vehicle Arrival Time Fluctuations

Tables A6 and A7 demonstrate the simulation results under EV arrival time fluctuations, and the specific response power performance of the TSDO are shown in Figs. A7 and A8.

TABLE A4 EXPERIMENTAL RESULTS OF PEAK SHAVING TASKS UNDER DIFFERENT PLANNING LEAD TIME

L (min)	Income of		Response I	Response Power of CSs		ne for EVs (min)	Income of EVs (CNY/min)	
L (IIIII)	Average	Variance	Average	Variance	Average	Variance	Average	Variance
1	3179.1640	218.2191	1.1375	0.0531	1.8688	0.3208	0.9783	0.0513
2	3410.2535	203.1438	1.0924	0.0343	1.6230	0.2917	0.9931	0.0477
3	3481.1058	173.4344	1.0597	0.0402	1.4438	0.2856	1.0192	0.0440
4	3563.9650	180.6830	1.0527	0.0348	1.3568	0.2687	1.0229	0.0495
5	3607.7215	184.8545	1.0405	0.0296	1.3705	0.2597	1.0243	0.0447
6	3593.8757	155.4868	1.0434	0.0308	1.4202	0.2222	1.0428	0.0337
7	3630.6677	175.2095	1.0411	0.0258	1.3568	0.2978	1.0560	0.0440
8	3627.4461	159.8161	1.0441	0.0281	1.3635	0.1996	1.0580	0.0421
9	3609.5116	167.8137	1.0570	0.0268	1.4626	0.2352	1.0579	0.0480
10	3617.2775	161.6867	1.0557	0.0286	1.4986	0.2355	1.0609	0.0446

^{*} The task power in experiments is set to 500 KW.

TABLE A5 EXPERIMENTAL RESULTS OF VALLEY FILLING TASKS UNDER DIFFERENT PLANNING LEAD TIME

L (min)	Income of C	come of CSs (CNY)		Response Power of CSs		ne for EVs (min)	Income of EVs (CNY/min)	
L (IIIII)	Average	Variance	Average	Variance	Average	Variance	Average	Variance
1	1650.8371	99.6245	0.9713	0.0097	0.2740	0.3683	0.5142	0.0413
2	1656.9358	74.5996	0.9660	0.0070	0.0873	0.0841	0.5515	0.0479
3	1685.2243	62.3695	0.9707	0.0059	0.0438	0.0532	0.5669	0.0434
4	1681.2062	62.2920	0.9737	0.0092	0.0466	0.0489	0.5947	0.0485
5	1678.9928	64.5997	0.9733	0.0085	0.0319	0.0328	0.6096	0.0478
6	1695.5672	55.7468	0.9761	0.0067	0.0257	0.0286	0.6154	0.0461
7	1703.2800	49.9565	0.9781	0.0060	0.0207	0.0318	0.6106	0.0514
8	1710.3155	56.9154	0.9794	0.0089	0.0177	0.0240	0.6134	0.0417
9	1711.2301	48.7931	0.9822	0.0094	0.0255	0.0329	0.6081	0.0401
10	1720.7100	45.5344	0.9821	0.0093	0.0164	0.0241	0.5967	0.0407

TABLE A6 EXPERIMENTAL RESULTS OF PEAK SHAVING TASKS UNDER DIFFERENT VEHICLE ARRIVAL FLUCTUATIONS

Uncertainty Factor u	Approach	Income of CSs (CNY)		Response power of CSs		Waiting time for EVs (min)		Income of EVs (CNY/min)	
Oncertainty Pactor a	Approach	Average	Variance	Average	Variance	Average	Variance	Average	Variance
	CSP	3573.8977	149.2931	1.2383	0.0503	0.5579	0.1621	0.9731	0.0080
0	DSP	3458.7848	149.6886	1.2768	0.0428	0.7142	0.1562	0.9830	0.0082
	TSDO	3593.8757	155.4868	1.0434	0.0308	1.4202	0.2222	1.0428	0.0337
	CSP	3532.7029	169.0941	1.2543	0.0496	0.6335	0.1782	0.9701	0.0086
0.1	DSP	3457.1936	93.9359	1.2731	0.0346	0.6958	0.1598	0.9818	0.0098
	TSDO	3635.0965	159.6190	1.0477	0.0277	1.3268	0.2285	1.0405	0.0445
0.2	CSP	3526.9497	158.1189	1.2458	0.0418	0.5634	0.1599	0.9733	0.0079
	DSP	3503.7680	132.2629	1.2607	0.0412	0.6637	0.1738	0.9818	0.0103
	TSDO	3712.1710	155.9660	1.0339	0.0279	1.2765	0.2639	1.0359	0.0456

^{*} The task power in experiments is set to 500 KW, the planning lead time L is set to 6 min, and the horizon size τ is set to 5 min. The response power represents the ratio of the target power.

TABLE A7 EXPERIMENTAL RESULTS OF VALLEY FILLING TASKS UNDER DIFFERENT VEHICLE ARRIVAL FLUCTUATIONS

Uncertainty Factor u	Approach	Income of CSs (CNY)		Response power of CSs		Waiting time for EVs (min)		Income of EVs (CNY/min)	
	Approach	Average	Variance	Average	Variance	Average	Variance	Average	Variance
	CSP	1148.9125	85.3962	1.3245	0.0407	0.0003	0.0011	0.5000	0.0000
0	DSP	975.1546	100.7143	1.3903	0.0464	0.0014	0.0049	0.5672	0.0088
	TSDO	1695.5672	55.7468	0.9761	0.0067	0.0257	0.0286	0.6154	0.0461
	CSP	1181.1583	87.5877	1.3146	0.0391	0.0000	0.0000	0.5000	0.0000
0.1	DSP	974.1737	102.8721	1.3996	0.0476	0.0044	0.0087	0.5662	0.0081
***	TSDO	1699.4020	43.0630	0.9769	0.0080	0.0192	0.0252	0.6073	0.0374
0.2	CSP	1168.7188	106.2983	1.3221	0.0513	0.0000	0.0000	0.5000	0.0000
	DSP	991.0283	92.3594	1.3829	0.0474	0.0024	0.0063	0.5658	0.0094
	TSDO	1703.3203	66.7425	0.9774	0.0075	0.0197	0.0282	0.6102	0.0503

The task power in experiments is set to 300 KW, the planning lead time L is set to 6 min, and the horizon size τ is set to 5 min.

^{**} The response power represents the ratio of the target power.

^{*} The task power in experiments is set to 300 KW.
** The response power represents the ratio of the target power.

^{**} The response power represents the ratio of the target power.

Fig. A4. Performance of the response power of each CS under the valley filling tasks during the task period when task power is 300 KW.

Fig. A5. Performance of TSDO for peak shaving tasks under different planning lead time.

Fig. A6. Performance of TSDO for valley filling tasks under different planning lead time.

Fig. A7. Performance of TSDO for peak shaving tasks under different vehicle arrival fluctuations.

Fig. A8. Performance of TSDO for valley filling tasks under different vehicle arrival fluctuations.