

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Centro Tecnológico - Departamento de Engenharia Elétrica

Disciplina: Instalações Elétricas I - ELE 3670/ELE 8512 Curso: Eng. Elétrica/ Computação

Professor: Hélio Marcos André Antunes E-mail: helio@ele.ufes.br

Lista de exercícios 2 - Unidade 8: Luminotécnica

1)

O número de luminárias com duas lâmpadas fluorescentes com fluxo luminoso de 2500 lumens cada, com fator de utilização 0,6 e fator de depreciação 0,8, necessário para a iluminação de uma sala de escritório de 8x10 m, de forma a se ter nível e iluminância de 750 lux e uma distribuição coerente de luminárias, deve ser no mínimo

- (A) 15
- (B) 16
- (C) 20
- (D) 22
- (E) 25

2)

Considere as afirmativas abaixo:

- A iluminância, ou nível de iluminamento, é expressa em lux, e corresponde ao fluxo luminoso (dado em lúmens) incidente em uma determinada superfície por unidade de área (m²).
- Fluxo luminoso (em lúmens) é a potência de radiação emitida por uma fonte luminosa em todas as direções do espaço.
- Eficiência é a relação entre o fluxo luminoso emitido pela lâmpada e a potência consumida por esta (lúmens/W).

Está INCORRETA a afirmativa:

- a) Os dias de sol encoberto apresentam uma iluminância menor que os dias de sol de verão a céu aberto.
- b) As lâmpadas incandescentes possuem uma eficiência luminosa menor que as lâmpadas a vapor de mercúrio.
- c) A iluminância em áreas de trabalho que exijam tarefas visuais muito exatas deve ser maior que em áreas não utilizadas para trabalho contínuo.
- d) Comparando uma lâmpada incandescente e uma lâmpada mista de mesma potência, obteremos um fluxo luminoso inferior para a lâmpada mista.

3)

Hélio Creder. Instalações Elétricas. LTC, 14.ª ed., 2.000, p. 182.

A figura acima mostra o esquema de ligação para o funcionamento de uma lâmpada fluorescente. A respeito do esquema mostrado, da lâmpada fluorescente e dos dispositivos indicados no esquema, julgue os itens subseqüentes.

A função do *starter* é produzir a sobretensão inicial necessária para ligar a lâmpada.

Uma das funções do reator é limitar a corrente que circula no circuito.

A função do condensador é compensar o fator de potência no circuito. Caso esse componente não fosse ligado, o fator de potência poderia ser bastante reduzido em função da presença do reator no circuito.

Uma lâmpada fluorescente de 40 W produz iluminamento aproximadamente equivalente ao de uma lâmpada incandescente de 60 W.

4)

A relação entre o fluxo luminoso emitido por uma fonte luminosa e a potência consumida por ela é a(o):

- (A) emitância.
- (B) eficiência luminosa.
- (C) fator de utilização.
- (D) fator de depreciação.
- (E) fator de iluminamento.

5)

A potência de radiação emitida por uma fonte luminosa abrangendo todas as direções do espaço é definida como

- a intensidade luminosa.
- fluxo luminoso.
- eficiência luminosa.
- luminância.
- e refletância.

6)

Na lâmpada fluorescente tubular de partida instantânea, a ignição depende exclusivamente da aplicação de uma alta tensão sobre a lâmpada. Dessa forma, é correto afirmar que

- (A) o reator tem a função de fornecer uma tensão elevada para a partida da lâmpada.
- (B) o reator eletrônico necessita de um starter para acionar uma lâmpada fluorescente de partida instantânea.
- (C) o starter tem a função de limitar a corrente na lâmpada fluorescente.
- (D) a lâmpada fluorescente é uma lâmpada de descarga de alta pressão.
- (E) a lâmpada fluorescente tubular é produzida para potências superiores a 100 W, sendo ideal para iluminar locais públicos.

7)

Assinale a opção que apresenta algum fator que NÃO é levado em consideração na elaboração de um projeto de iluminação.

- (A) A cor das paredes e do teto do recinto a ser iluminado.
- (B) A área da superfície a ser iluminada.
- (C) O fator de potência da rede de energia elétrica que alimenta o local a ser iluminado.
- (D) A escolha apropriada dos aparelhos de iluminação, tipo e quantidade de luminárias.
- (E) A altura da luminária em relação ao plano de trabalho, isto é, a distância entre o piso ou superfície a ser iluminada e o foco luminoso.

Com relação a Sistemas de Iluminação, assinale a alternativa correta.

- A) A lâmpada Multivapor metálica usada principalmente em Iluminação de Vias Públicas, possui um péssimo "índice de reprodução de cor".
- B) A lâmpada Vapor de Sódio de Alta Pressão possui uma reprodução de cor melhor do que a lâmpada Vapor de Mercúrio.
- C) A lâmpada Vapor de Sódio de Alta Pressão possui uma eficiência energética melhor do que a lâmpada Vapor de Mercúrio.
- A lâmpada Vapor de Mercúrio possui uma reprodução de cor melhor do que a lâmpada Multivapor metálica.
- E) A lâmpada mista é a que apresenta a melhor eficiência energética para iluminação de áreas externas.

9)

Qual o tipo de lâmpada mais adequada e eficiente para ser usada em projetos de iluminação de áreas externas que não exijam uma boa reprodução de cor?

- A) Vapor de Sódio de alta pressão.
- B) Vapor de Sódio de baixa pressão.
- C) Vapor multimetálica de alta pressão.
- D) Vapor multimetálica de baixa pressão.
- E) Fluorescentes eletrônicas.

10)

Dentre as lâmpadas relacionadas abaixo, a que oferece melhor reprodução de cores é a:

- A) dicróica;
- B) fluorescente branca fria;
- C) de vapor de sódio de baixa pressão;
- D) de vapor de mercúrio;
- E) de vapor metálico misto.

11)

Na luminotécnica trata-se com grandezas como:

- Fluxo Luminoso, medido em Lúmen (Im), que é a potência de energia luminosa de uma fonte percebida pelo olho humano
- II. Luminância, medida em LUX, que designa a relação entre o fluxo luminoso e a superfície a qual incide.
- III. Intensidade Luminosa, medida em candelas (cd), que é a potência de radiação luminosa numa dada direção.

Qual(is) está(ão) correta(s)?

- a) Apenas a I.
- b) Apenas a l e a II.
- c) Apenas a l e a III.
- d) Al, all eall.

12)

Os ignitores são elementos que atuam gerando uma série de pulsações de tensão a fim de iniciar o funcionamento de determinadas lâmpadas. Quando a lâmpada inicia sua operação, eles deixam automaticamente de emitir pulsos. As lâmpadas que necessitam de ignitores são as

- (A) a vapor de mercúrio e a vapor metálico.
- (B) a vapor metálico e a vapor de sódio.
- (C) a vapor de mercúrio e a vapor de sódio.
- (D) de luz mista e a vapor de mercúrio.
- (E) de luz mista e fluorescentes.

- 13) Você como futuro engenheiro eletricista está sendo requisitado para desenvolver o projeto luminotécnico de uma sala de aula, utilizando o Método dos Lúmens. A sala possui 12 m de comprimento por 7 m de largura, um pé direito de 3 m e o plano de trabalho esta localizado a 0,80 m do solo. O ambiente possui teto branco, paredes claras e piso escuro, sendo que as luminárias para lâmpadas fluorescentes deverão ser instaladas no teto. Adote as seguintes informações abaixo para o desenvolvimento do projeto.
 - Iluminância: 300 lux.
 - Fator de depreciação da luminária: 0,75.
 - Lâmpada fluorescente de 28W, IRC=85, TCC=4000K, 2900 lúmens.
 - Informações para obtenção do fator de utilização.

TETO (%)	70			50			30		0
PAREDE (%)	50	30	10	50	30	10	30	10	0
PISO (%)	10			10			10		0
Kr	FATOR DE UTILIZAÇÃO (X 0.01)								
0.60	40	34	30	39	34	30	34	30	28
0.80	49	4.3	38	4.8	4.2	38	41	38	36
1.00	55	49	45	5.4	49	45	4.8	4.4	4.3
1.25	61	5.6	51	60	55	51	5.4	51	4.9
1.50	66	61	5.6	64	60	56	59	55	5.4
2.00	72	68	6.4	70	67	63	66	63	61
2.50	7.6	72	69	7.4	71	68	70	67	65
3.00	79	75	73	7.7	7.4	72	73	71	69
4.00	82	79	77	80	78	7.6	7.6	75	7.3
5.00	8.4	81	79	82	80	78	78	77	75

14) Um engenheiro foi contratado para fazer o projeto luminotécnico de um galpão industrial. O galpão possui comprimento de 30 m, largura de 15 m, pé direito 8 m e altura do plano de trabalho 0,8 m. O ambiente possui teto na cor branca, paredes claras e piso escuro. Adote uma iluminância média de 500 lux e o fator de depreciação de serviço da luminária de 0,75. Utilizando o método dos Lúmens calcule o número de luminárias, sabendo que cada uma é composta por uma lâmpada de multivapor metálico de 34000 lúmens/ 400 W, instalada a 2,2 m do teto. Faça também a distribuição das luminárias no ambiente.

$$\phi_t = \frac{E \times S}{F_u \times F_{dl}}$$

$$K = \frac{A \times B}{H_{lp} \times (A + B)}$$

$$H_{lp} \le X, Y \le 1,5 \text{ H}_{lp}$$