Polynômes

1 Ensemble des polynômes à coefficients dans $\mathbb R$

1.1 Notion de polynôme

Rappel: Étant données deux fonctions $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, on peut naturellement définir les fonctions $f + g : x \mapsto f(x) + g(x)$, $f \times g : x \mapsto f(x) \times g(x)$, $f^k : x \mapsto (f(x))^k$ (pour $k \in \mathbb{N}$).

Définition 1 (Monômes)

- On note X la fonction de $\mathbb R$ dans $\mathbb R$ définie par $X: \begin{array}{ccc} \mathbb R & \to & \mathbb R \\ x & \mapsto & x \end{array}$
- Pour tout $k \in \mathbb{N}^*$, on a ainsi $X^k : \mathbb{R} \to \mathbb{R}$ (au sens de la multiplication de fonctions).
- Par convention, X^0 est la fonction constante égale à 1, c'est à dire $X^0: \mathbb{R} \to \mathbb{R}$

\blacksquare Définition 2 (Polynôme à coefficients dans \mathbb{R})

Un polynôme (ou fonction polynômiale) est une combinaison linéaire de monômes,

c'est à dire une fonction de la forme $P = \sum_{k=0}^{n} a_k X^k = a_0 X^0 + a_1 X + \ldots + a_n X^n$, avec $a_0, a_1, \ldots, a_n \in \mathbb{R}$.

Autrement dit,
$$P: \begin{array}{c} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \sum_{k=0}^{n} a_k x^k = a_0 + a_1 x + \ldots + a_n x^n \end{array}$$

Les réels $a_0, a_1, \dots a_n$ sont alors appelés les coefficients du polynôme P.

L'ensemble de tous les polynômes à coefficients dans \mathbb{R} est noté $\mathbb{R}[X]$.

Exemples

• La fonction définie par $\forall x \in \mathbb{R}, \ P(x) = 3x^3 - 2x^2 + x + 2$ est un polynôme.

Avec les notations introduites, on la note : $P = 3X^3 - 2X^2 + X + 2X^0$.

Plus simplement encore, on écrira : $P=3X^3-2X^2+X+2$ en comprenant bien que ce "2" désigne la fonction constante égale à 2.

On peut ainsi écrire $3X^3 - 2X^2 + X + 2 \in \mathbb{R}[X]$.

 \bullet De même, $X^2-1\in\mathbb{R}[X], \ X+1\in\mathbb{R}[X], \ 3\in\mathbb{R}[X]$ (polynôme constant égal à 3!)

Remarque 1

• Un polynôme $P \in \mathbb{R}[X]$ étant en fait une fonction de \mathbb{R} dans \mathbb{R} , on peut naturellement évaluer sa valeur P(a) en n'importe quel $a \in \mathbb{R}$.

Dans les calculs, tout se passe alors comme si on "remplaçait" X par a.

Exemple: Pour $P = 2X^3 + X^2 - 1 \in \mathbb{R}[X]$ on a P(0) = -1, P(1) = 2, P(-1) = -2.

ullet Pour cette raison, il arrive que l'on utilise la notation P(X) pour désigner le polynôme P.

Exemple: On peut écrire $P = X^2 - 1 \in \mathbb{R}[X]$ ou bien $P(X) = X^2 - 1 \in \mathbb{R}[X]$.

Opérations sur les polynômes

Les polynômes étant des fonctions de \mathbb{R} dans \mathbb{R} , étant donnés $P,Q \in \mathbb{R}[X]$, on peut bien-sûr définir :

- $\bullet P + Q : x \mapsto P(x) + Q(x)$
- $PQ: x \mapsto P(x)Q(x)$ $P \circ Q: x \mapsto P(Q(x))$
- $\lambda P : x \mapsto \lambda P(x) \pmod{\lambda \in \mathbb{R}}$.

Proposition 1 (Stabilité de $\mathbb{R}[X]$)

L'ensemble $\mathbb{R}[X]$ est stable par somme, produit, composition, multiplication par un réel.

Autrement dit, pour $P, Q \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$ $P+Q \in \mathbb{R}[X]$, $PQ \in \mathbb{R}[X]$, $P \circ Q \in \mathbb{R}[X]$, $\lambda P \in \mathbb{R}[X]$.

Exemples

Posons $P = X^2 + 1$ et Q = 2X - 1.

• $\forall x \in \mathbb{R}, (P+Q)(x) = P(x) + Q(x) = x^2 + 1 + 2x - 1 = x^2 + 2x$.

Ainsi $P + Q = X^2 + 2X \in \mathbb{R}[X]$.

• $\forall x \in \mathbb{R}, (PQ)(x) = P(x)Q(x) = (x^2 + 1)(2x - 1) = 2x^3 - x^2 + 2x - 1.$

Ainsi $PQ = 2X^3 - X^2 + 2X - 1 \in \mathbb{R}[X]$.

Pour effectuer ces calculs, le plus simple est en fait de travailler directement sur les polynômes, en traitant X "comme une variable"!

- $P + Q = X^2 + 1 + 2X 1 = X^2 + 2X$ $PQ = (X^2 + 1)(2X 1) = 2X^3 X^2 + 2X 1$.

Exercice 1

On pose $P = X^2 + 2X - 3$ et $Q = X^2 + 3X + 1$. Calculer P + Q, PQ, 3P, $P \circ Q$ et $Q \circ P$.

- $P + Q = X^2 + 2X 3 + X^2 + 3X + 1 = 2X^2 + 5X 2$.
- $PQ = (X^2 + 2X 3)(X^2 + 3X + 1) = X^4 + 5X^3 + 4X^2 7X 3$
- $3P = 3(X^2 + 2X 3) = 3X^2 + 6X 9$.
- $P \circ Q = P(Q) = Q^2 + 2Q 3 = (X^2 + 3X + 1)^2 + 2(X^2 + 3X + 1) 3 = X^4 + 6X^3 + 13X^2 + 12X^2 + 12X^2$

<u>Remarque</u>: Si $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{n} b_k X^k$, on a $P + Q = \sum_{k=0}^{n} a_k X^k + \sum_{k=0}^{n} b_k X^k = \sum_{k=0}^{n} (a_k + b_k) X^k$.

Proposition 2 (Coefficients d'un produit)

Si
$$P = \sum_{k=0}^{n} a_k X^k$$
 et $Q = \sum_{k=0}^{p} b_k X^k$, alors $PQ = \sum_{k=0}^{n+p} c_k X^k$ avec $c_k = \sum_{i+j=k}^{n} a_i b_j = \sum_{i=0}^{k} a_i b_{k-i}$

(avec la convention $a_i = 0$ si i > n, $b_i = 0$ si j > p)

Exemple

Cette formule est utile pour développer rapidement et efficacement un produit de polynômes.

$$(a_0 + a_1X + a_2X^2)(b_0 + b_1X + b_2X^2) = a_0b_0 + (a_0b_1 + a_1b_0)X + (a_0b_2 + a_1b_1 + a_2b_0)X^2 + (a_1b_2 + a_2b_1)X^3 + a_2b_2X^4$$

1.3 Identification des coefficients

Il est bien entendu naturel de décréter que deux polynômes sont les mêmes lorsqu'ils sont égaux en tant que fonctions de \mathbb{R} dans \mathbb{R} .

lacktriangle Définition 3 (Égalité dans $\mathbb{R}[X]$)

Soient $P, Q \in \mathbb{R}[X]$. On dit que P et Q sont égaux, et on note P = Q lorsque : $\forall x \in \mathbb{R}, \ P(x) = Q(x)$.

En fait, on peut également dire que deux polynômes sont égaux si et seulement si ils ont mêmes coefficients! Commençons par un résultat intermédiaire.

Proposition 3 (Polynôme nul)

La fonction constante égale à 0 est appelée polynôme nul et noté simplement $0 \in \mathbb{R}[X]$.

Soit
$$P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$$
. On a l'équivalence : $P = 0 \iff \forall k \in [0, n], \ a_k = 0$.

Preuve:

L'implication réciproque \Leftarrow est évidente : démontrons l'implication directe.

Supposons P=0, c'est à dire $\forall x \in \mathbb{R}, \ P(x)=a_0+a_1x+\ldots+a_{n-1}x^{n-1}+a_nx^n=0$. Ceci ce ré-écrit :

$$\forall x \in \mathbb{R}^*, \ P(x) = x^n \left(\frac{a_0}{x^n} + \frac{a_1}{x^{n-1}} + \dots + \frac{a_{n-1}}{x} + a_n \right) = 0$$

Si jamais $a_n \neq 0$, on a ainsi $\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} x^n \times a_n = \pm \infty$ (selon le signe de a_n). Contradiction!

C'est donc que $a_n = 0$. Mais alors on peut écrire : $\forall x \in \mathbb{R}, \ P(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} = 0$ et reprendre le même raisonnement avec a_{n-1} .

On conclut ainsi que $a_n = 0$, puis $a_{n-1} = 0$, puis ... puis $a_1 = 0$.

Finalement, il reste : $\forall x \in \mathbb{R}, P(x) = a_0 = 0, \text{ donc } a_0 = 0.$

On a bien montré que $\forall k \in [0, n], a_k = 0$.

★ Théorème 1 (Identification des coefficients)

Soient $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$ avec $a_n \neq 0$ et $Q = \sum_{k=0}^{p} b_k X^k \in \mathbb{R}[X]$ avec $b_p \neq 0$.

On a l'équivalence : $P = Q \iff (n = p \text{ et } \forall k \in [0, n], a_k = b_k)$

En particulier, les coefficients d'un polynôme P sont uniques.

Preuve:

L'implication réciproque \Leftarrow est évidente : démontrons l'implication directe.

Supposons P = Q, c'est à dire P - Q = 0.

D'après la Proposition 1, tous les coefficients de P-Q doivent donc être nuls.

• Supposons $n \neq p$, disons n > p (l'autre cas est similaire).

Alors on peut écrire $P - Q = \sum_{k=0}^{n} a_k X^k - \sum_{k=0}^{p} b_k X^k = \sum_{k=0}^{p} (a_k - b_k) X^k + \sum_{k=p+1}^{n} a_k X^k$.

Absurde car le coefficient devant X^n est $a_n \neq 0$!

• Ainsi n = p et on peut écrire $P - Q = \sum_{k=0}^{n} (a_k - b_k) X^k = 0$.

Tous les coefficients étant nuls, on conclut : $\forall k \in [0, n], \ a_k = b_k$.

Une "application" de l'identification des coefficients de deux polynômes :

Exercice 2

Montrer qu'il existe $a, b \in \mathbb{R}$ tels que : $\forall x \in \mathbb{R} \setminus \{0, -1\}, \ \frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}$.

Pour tous $a, b \in \mathbb{R}$ et $x \in \mathbb{R} \setminus \{0, -1\}$,

$$\frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1} \Longleftrightarrow \frac{1}{x(x+1)} = \frac{a(x+1) + bx}{x(x+1)} \Longleftrightarrow \frac{1}{x(x+1)} = \frac{(a+b)x + a}{x(x+1)} \Longleftrightarrow 1 = (a+b)x + a$$

On cherche donc $a, b \in \mathbb{R}$ tels que $\forall x \in \mathbb{R} \setminus \{0, -1\}, (a + b)x + a = 1$.

Il est <u>suffisant</u> de choisir a et b tels que (a+b)X + a = 1 dans $\mathbb{R}[X]$.

En identifiant les coefficients : a + b = 0 et a = 1, donc a = 1 et b = 0 conviennent.

(En fait c'est la seule solution : on verra que deux polynômes qui coïncident sur $\mathbb{R} \setminus \{0, -1\}$ doivent être les mêmes.)

$ightharpoonup \operatorname{Proposition} 4 \left(\operatorname{Produit} \ \operatorname{nul} \ \operatorname{dans} \ \mathbb{R}[X]\right)$

Pour tous $P, Q \in \mathbb{R}[X]$, on a : $PQ = 0 \iff (P = 0 \text{ ou } Q = 0)$.

Autrement dit, dans $\mathbb{R}[X]$: "un produit est nul si et seulement si l'un des facteurs est nul".

Preuve:

L'implication $(P = 0 \text{ ou } Q = 0) \Rightarrow PQ = 0 \text{ est évidente.}$

Au lieu de montrer l'implication réciproque $PQ=0 \Rightarrow (P=0 \text{ ou } Q=0)$, on va montrer sa contraposée : $(P\neq 0 \text{ et } Q\neq 0) \Rightarrow PQ\neq 0$.

Si $P \neq 0$ et $Q \neq 0$, on peut toujours écrire $P = \sum_{k=0}^{n} a_k X^k$ avec $a_n \neq 0$ et $Q = \sum_{k=0}^{p} b_k X^k$ avec $b_p \neq 0$.

On constate alors que le coefficient devant X^{n+p} dans PQ est $a_nb_p \neq 0$. Ainsi $PQ \neq 0$ (car sinon tous ses coefficients seraient nuls).

lacktriangledown Corollaire 1 ("Simplification" dans $\mathbb{R}[X]$)

Soit $P, Q, A \in \mathbb{R}[X]$. Si AP = AQ et si $A \neq 0$, alors P = Q.

Preuve:

On écrit que AP - AQ = 0, c'est à dire A(P - Q) = 0. L'un des facteurs doit être nul! Comme $A \neq 0$, on en déduit que P - Q = 0, c'est à dire P = Q.

A Attention!

Cette "simplification" ne revient pas à "diviser par A" comme on le ferait pour des réels!

Un raisonnement du type : $AP = AQ \Rightarrow \frac{AP}{A} = \frac{AQ}{A} \Rightarrow P = Q$ est à proscrire!

L'ensemble $\mathbb{R}[X]$ est stable par multiplication, mais pas par division : on ne peut pas diviser un polynôme par un autre dans $\mathbb{R}[X]$.

1.4 Notion de degré

Définition 4 (Degré d'un polynôme)

Soit
$$P = \sum_{k=0}^{n} a_k X^k = a_0 + a_1 X + \ldots + a_n X^n$$
 un polynôme, avec $a_n \neq 0$.

L'entier $n \in \mathbb{N}$ est appelé degré de P et est noté deg(P).

Le coefficient a_n est appelé coefficient dominant de P.

(Lorsque celui-ci est égal à 1, on dit que le polynôme est unitaire.

Par convention, le degré du polynôme nul est $deg(0) = -\infty$.

Exemples

- Les polynômes de degré 0 sont les polynômes constants non nuls : $P = a_0 X^0$ avec $a_0 \neq 0$ (que l'on peut simplement noter $P = a_0$).
- Les polynômes de degré 1 sont les fonctions affines $P = a_1 X + a_0$ avec $a_1 \neq 0$.
- Les polynômes de degré 2 sont de la forme $P = a_2X^2 + a_1X + a_0$ avec $a_2 \neq 0$.
- Si $P = 3X^4 X^2 + 2X 1$ on a deg(P) = 4.

\blacksquare Définition 5 (Ensemble des polynômes de degré au plus n)

Pour tout $n \in \mathbb{N}$, on note $\mathbb{R}_n[X] = \{P \in \mathbb{R}[X] \mid \deg(P) \leqslant n\}$.

A Attention !

 $\mathbb{R}_n[X]$ n'est pas l'ensemble des polynômes de degré égal à n!

Exemple

 $\mathbb{R}_2[X]$ est composé des polynômes de degré 2, 1, 0, et du polynôme nul (degré $-\infty$).

On a ainsi : $3X^2 - 2 \in \mathbb{R}_2[X]$, $X + 1 \in \mathbb{R}_2[X]$, $2 \in \mathbb{R}_2[X]$.

Proposition 5 (Opérations et degré)

Soient P et Q deux polynômes.

- $deg(P \times Q) = deg(P) + deg(Q)$
- Si $Q \neq 0$ et $P \circ Q \neq 0$, $deg(P \circ Q) = deg(P) \times deg(Q)$
- $deg(P+Q) \leq \max(deg(P), deg(Q))$.

Il y a inégalité stricte lorsque deg(P) = deg(Q) avec des coefficients dominants opposés.

En particulier, si deg(P) < deg(Q), on a deg(P+Q) = deg(Q).

Exemples

• Si
$$P = X^2 - 1$$
 et $Q = 2X + 2$, on a $PQ = (X^2 - 1)(2X + 2) = 2X^3 + 2X^2 - 2X - 2$.

Ainsi deg(PQ) = 3 = 2 + 1 = deg(P) + deg(Q).

• Si
$$P = X^2 - 1$$
 et $Q = 2X + 2$, on a $P + Q = X^2 + 2X + 1$.

Ainsi $deg(P+Q) = 2 = \max(2,1) = \max(deg(P), deg(Q)).$

• En revanche, si $P = X^2 + 1$ et $Q = -X^2 + 2X + 3$, on a P + Q = 2X + 4

Ainsi $deg(P+Q) < 2 = \max(deg(P), deg(Q))!$

lacktriangle Corollaire 2 (Stabilité de $\mathbb{R}_n[X]$)

Pour tout $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est stable par addition et multiplication par un réel.

Autrement dit, pour $P, Q \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$, $P + Q \in \mathbb{R}_n[X]$ et $\lambda P \in \mathbb{R}_n[X]$.

Preuve:

Soient $P, Q \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$. On a donc $\deg(P) \leq n$ et $\deg(Q) \leq n$.

- On a vu que $\deg(P+Q) \leqslant \max(\deg(P), \deg(Q))$, donc $\deg(P+Q) \leqslant n$, c'est à dire $(P+Q) \in \mathbb{R}_n[X]$.
- Si $\lambda \neq 0$, on a vu que $\deg(\lambda P) = \deg(\lambda) + \deg(P) = \deg(P) \leqslant n$.
- Si $\lambda = 0$, $\deg(\lambda P) = \deg(0) = -\infty \leqslant n$. Dans les deux cas, on a $\deg(\lambda P) \leqslant n$, i.e $\lambda P \in \mathbb{R}_n[X]$.

2 Divisibilité

2.1 Division euclidienne

ightharpoonup Théorème 2 (Division euclidienne dans $\mathbb{R}[X]$)

Soient $A \in \mathbb{R}[X]$, $B \in \mathbb{R}[X]$ avec $B \neq 0$.

Il existe un unique couple $(Q, R) \in (\mathbb{R}[X])^2$ satisfaisant : $\begin{cases} A = BQ + R \\ \deg(R) < \deg(B) \end{cases}$

On dit alors que:

- Q est le quotient de la division euclidienne de A par B.
- R est le reste de cette division.

A Attention!

Si A = BQ + R, cela ne suffit pas pour dire que Q est le quotient et R le reste de la division euclidienne de A par B. Il faut aussi faire attention au degré de R!

(On peut toujours écrire A = BQ + R en prenant Q = 0 et R = A...)

Remarques 2

Le degré de Q peut être déterminé par d'avance :

• Si deg(B) > deg(A), alors Q = 0 (et donc R = A).

Exemple : Division euclidienne de X+1 par X^2 : $X+1=0\times X^2+(X+1)$.

• Si $\deg(B) \leq \deg(A)$, alors $\deg(Q) = \deg(A) - \deg(B)$.

Exemple : Division euclidienne de $2X^2+1$ par X^2+X+2 : $2X^2+1=2\times(X^2+X+2)+(-2X-2)$

Æ Méthode : Effectuer la division euclidienne de deux polynômes "explicites"

On peut "poser" une division euclidienne de polynômes comme on "pose" une division pour des entiers.

On construit le quotient petit à petit (en commençant par les monômes de plus haut degré) et l'on réduit au fur et à mesure le dividende, jusqu'à obtenir le reste.

♠ Exercice 3

- 1. Effectuer la division euclidienne de $A=X^2$ par B=(X-1):
- 2. Effectuer la division euclidienne de $A = X^3 + 5X^2 X + 1$ par $B = X^2 3X + 2$:

1.

2.

$$\begin{array}{c|c} X^3 + 5X^2 - X + 1 \\ \hline -X(X^2 - 3X + 2) \\ \hline 8X^2 - 3X + 1 \\ \hline -8(X^2 - 3X + 2) \\ \hline 21X - 15 \end{array} \quad \begin{array}{c|c} X^2 - 3X + 2 \\ \hline X + 8 \\ \hline \end{array} \quad \text{Conclusion} : X^3 + 5X^2 - X + 1 = (X^2 - 3X + 2)(X + 8) + 21X - 15$$

2.2 Diviseurs et multiples

Définition 6 (Diviseur / Multiple)

Soient $A \in \mathbb{R}[X]$, $B \in \mathbb{R}[X]$ avec $B \neq 0$.

On dit que B divise A, et on note $B \mid A$ lorsqu'il existe $Q \in \mathbb{R}[X]$ tel que A = BQ. (autrement dit, lorsque le reste dans la division euclidienne de A par B est nul)

On alors dit que B est un diviseur de A ou encore que A est un multiple de B.

Exemple

X-1 est un diviseur de X^2-1 car $X^2-1=(X-1)(X+1)$.

Remarques 3

- \bullet Le polynôme nul est divisible par n'importe quel polynôme $B: \ \ 0=B\times 0.$
- Un polynôme A est toujours divisible par n'importe quel polynôme constant $\lambda \neq 0$: $A = \lambda \times (\frac{1}{\lambda}A)$.
- Un polynôme $A \neq 0$ est toujours divisible par lui même : $A = A \times 1$.

Proposition 6 (Diviseurs et degré)

Soient A et B deux polynômes <u>non nuls</u>.

- Si B|A, alors $deg(B) \leq deg(A)$
- Si B|A et si deg(B) = deg(A), alors il existe $\lambda \in \mathbb{R}^*$ tel que $A = \lambda B$.
- En particulier, si B | A et A | B, alors il existe $\lambda \in \mathbb{R}^*$ tel que $A = \lambda B$.

Preuve de la Proposition 6:

Supposons que B|A: on peut écrire A=BQ avec $Q\in\mathbb{R}[X]$ et $Q\neq 0$ (car $A\neq 0$).

- $deg(A) = deg(B) + deg(Q) \geqslant deg(B)$.
- Si $\deg(A) = \deg(B)$, c'est donc que $\deg(Q) = 0$: $Q = \lambda$ pour un $\lambda \in \mathbb{R}^*$.
- Si B|A et A|B, d'après le premier point on a $\deg(B) \leq \deg(A)$ et $\deg(A) = \deg(B)$. Donc d'après le deuxième point, on conclut que $Q = \lambda$ pour un $\lambda \in \mathbb{R}^*$.

Proposition 7 (Relation de divisibilité)

• Soient $A, B, C \in \mathbb{R}[X]$ avec $B \neq 0, C \neq 0$.

Si C|B et si B|A, alors C|A. (Transitivité)

• Soient $A_1, \ldots, A_n \in \mathbb{R}[X]$ et $B \in \mathbb{R}[X]$ avec $B \neq 0$.

Si B divise $A_1, A_2 \dots$ et A_n alors B divise tout polynôme de la forme $P = A_1C_1 + \dots + A_nC_n$ (avec $C_1, \dots C_n \in \mathbb{R}[X]$).

Preuve rapide:

- Si $B = CQ_1$ et $A = BQ_2$, on peut écrire $A = C(Q_1Q_2)$.
- Si $A_1 = BQ_1, \ldots, A_n = BQ_n$, on peut écrire $A_1C_1 + \ldots + A_nC_n = B(Q_1C_1 + \ldots Q_nC_n)$.

3 Dérivation et formule de Taylor

Rappel : Pour f et g des fonctions dérivables (sur \mathbb{R}) et $a, b \in \mathbb{R}$, on a :

$$(af + bg)' = (af)' + (bg)' = af' + bg'$$
. (linéarité de la dérivation)

Ainsi si $\forall x \in \mathbb{R}$, $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n$ alors par linéarité de la dérivation :

$$\forall x \in \mathbb{R}, \ P'(x) = a_1 + 2a_2x + 3a_3x^2 + \ldots + na_nx^{n-1}.$$

Définition 7 (Polynôme dérivé, dérivées successives)

Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X].$

- Le polynôme dérivé de P est : $P' = \sum_{k=1}^{n} k a_k X^{k-1} \in \mathbb{R}[X]$.
- Soit $i \in \mathbb{N}$. En répétant i fois cette dérivation on obtient la dérivée i-ième de P, notée $P^{(i)}$.

Ainsi : $P^{(0)} = \mathbb{P}$ (par convention) et $\forall i \in \mathbb{N}, P^{(i+1)} = (P^{(i)})'$.

Remarques 4

- Si P = 0, alors $\forall i \in \mathbb{N}, P^{(i)} = 0$.
- La définition de P' coïncide bien-sûr avec la notion classique de dérivée d'une fonction. On a ainsi les règles de calcul habituelles : (P+Q)'=P'+Q', (PQ)'=P'Q+PQ' etc...
- En particulier, notons que pour $a, b \in \mathbb{R}$, (aP + bQ)' = aP' + bQ'.

En dérivant de nouveau : (aP + bQ)'' = (aP' + bQ')' = aP'' + bQ''. Par récurrence immédiate :

Exercice 4

Calculer les dérivées successives de $P = 3X^3 - X^2 + 2X + 7$.

- $P^{(0)} = P = 3X^3 X^2 + 2X + 7$
- $P^{(1)} = P' = 9X^2 2X + 2$
- $P^{(2)} = P'' = 18X 2$
- $P^{(3)} = 18$
- $P^{(4)} = 0$ et donc $\forall i \ge 4, P^{(i)} = 0$.

Proposition 8 (Dérivation et degré)

Soit P un polynôme <u>non constant</u>. Alors $\deg(P') = \deg(P) - 1$.

Plus généralement :

- Pour tout $0 \le i \le \deg(P)$ $\deg(P^{(i)}) = \deg(P) i$
- Pour tout $i > \deg(P)$, $P^{(i)} = 0$.

Preuve rapide:

Notons $n = \deg(P) \geqslant 1$: on peut donc écrire $P = \sum_{k=0}^{n} a_k X^k$ avec $a_n \neq 0$.

On a alors $P' = \sum_{k=1}^{n} k a_k X^{k-1}$. Le coefficient dominant de P' est $na_n \neq 0$ (coeff. devant X^{n-1}).

On voit donc que P' est de degré n-1. On a bien montré $\deg(P') = \deg(P) - 1$.

Les points suivants s'obtiennent par récurrence immédiate, puisque chaque dérivation abaisse de 1 le degré du polynôme! Au bout de n dérivations, on a $\deg(P^{(n)})=0$, c'est à dire que $P^{(n)}$ est un polynôme constant. Il en résulte que $P^{(n+1)}=0$, et toutes les dérivées suivantes sont également nulles. \square

ightharpoonup Proposition 9 (Coefficients de $P^{(i)}$)

- Dérivées d'un monôme : Pour $k \in \mathbb{N}$, les dérivées successives de X^k sont données par :
 - Pour tout $i \in [0, k]$, $(X^k)^{(i)} = k(k-1)\dots(k-i+1)X^{k-i} = \frac{k!}{(k-i)!}X^{k-i}$.
 - Pour tout i > k, $\left(X^k\right)^{(i)} = 0$.
- Dérivées d'un polynôme : Soit $P = \sum_{k=0}^{n} a_k X^k$. Les dérivées successives de P sont données par :
 - Pour tout $i \in [0, n]$, $P^{(i)} = \sum_{k=i}^{n} a_k \frac{k!}{(k-i)!} X^{k-i}$.
 - Pour tout i > n, $P^{(i)} = 0$.

Preuve rapide:

- \bullet Les dérivées de X^k s'obtiennent facilement par récurrence.
- Si $P = \sum_{k=0}^{n} a_k X^k$, par linéarité de la dérivation : $P^{(i)} = \sum_{k=0}^{n} a_k \left(X^k \right)^{(i)} = \sum_{k=i}^{n} a_k \left(X^k \right)^{(i)}$. $\left(\operatorname{car} \left(X^k \right)^{(i)} = 0 \text{ pour } k < i ! \right)$

En appliquant la formule du premier point, on obtient bien $P^{(i)} = \sum_{k=i}^{n} a_k \frac{k!}{(k-i)!} X^{k-i}$.

Ocrollaire 3 (Coefficients en fonction de dérivées en 0)

Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$. Ses coefficients sont donnés par : $\forall i \in [0, n], \ a_i = \frac{P^{(i)}(0)}{i!}$

Preuve:

Pour tout
$$i \in [0, n]$$
, on a vu que $P^{(i)} = \sum_{k=i}^{n} a_k \frac{k!}{(k-i)!} X^{k-i} = a_i \times i! + \sum_{k=i+1}^{n} a_k \frac{k!}{(k-i)!} X^{k-i}$.

Donc en évaluant en
$$0: P^{(i)}(0) = a_i \times i! + 0 = a_i \times i!$$
. On en déduit $a_i = \frac{P^{(i)}}{i!}$.

Théorème 3 (Formule de Taylor pour les polynômes)

Soit $P \in \mathbb{R}[X]$, soit $\alpha \in \mathbb{R}$.

Pour tout $n \ge \deg(P)$, on peut écrire la formule de Taylor à l'ordre n en α :

$$P = P(\alpha) + P'(\alpha)(X - \alpha) + \dots + \frac{P^{(n)}(\alpha)}{n!}(X - \alpha)^n = \sum_{i=0}^n \frac{P^{(i)}(\alpha)}{i!}(X - \alpha)^i.$$

Remarque 5

Traditionnellement, on donne un polynôme P comme une combinaison linéaire de puissances de X. La formule de Taylor en α permet en fait de ré-exprimer P comme une combinaison linéaire de puissances de $(X - \alpha)$. On écrira en général la formule à l'ordre $n = \deg(P)$.

Exemple : Pour $P = X^3 - 2X + 1$, écrivons la formule de Taylor à l'ordre 3 en 1 :

$$P = P(1) + P'(1)(X - 1) + \frac{P''(1)}{2!}(X - 1)^2 + \frac{P^{(3)}(1)}{3!}(X - 1)^3.$$

On calcule : \bullet $P = X^3 - 2X + 1$ donc P(1) = 0 \bullet $P' = 3X^2 - 2$ donc P'(1) = 1. \bullet $P^{(3)} = 6$ donc $P^{(3)}(1) = 6$.

On obtient ainsi : $P = (X - 1) + 3(X - 1)^2 + (X - 1)^3$

Preuve:

On a $n \ge \deg(P)$, donc on peut écrire $P = \sum_{k=0}^{n} a_k X^k$ (avec éventuellement des coefficients nuls).

• Montrons la formule pour $\alpha = 0$. On a vu que pour tout $i \in [0, n]$, $a_i = \frac{P^{(i)}(0)}{i!}$.

On a donc bien : $P = \sum_{i=1}^{n} a_i X^i = \sum_{i=1}^{n} \frac{P^{(i)}(0)}{i!} (X - 0)^i$.

• Montrons la formule pour un $\alpha \in \mathbb{R}$ quelconque. Posons $\forall x \in \mathbb{R}, \ Q(x) = P(x + \alpha)$ (*)

Cela revient à poser le polynôme $Q = Q(X) = P(X + \alpha) = \sum_{k=0}^{n} a_k (X + \alpha)^k \in \mathbb{R}[X].$

On peut appliquer la formule de Taylor à l'ordre n en 0 à Q: $Q = \sum_{i=1}^{n} \frac{Q^{(i)}(0)}{i!} X^{i}$.

En dérivant (\star) , on voit facilement que : $\forall i \in [0, n], \ Q^{(i)}(x) = P^{(i)}(x + \alpha)$.

En particulier, $Q^{(i)}(0) = P^{(i)}(\alpha)$. Ainsi : $Q = \sum_{i=0}^{n} \frac{P^{(i)}(\alpha)}{i!} X^{i}$

et donc $P = P(X) = Q(X - \alpha) = \sum_{i=0}^{n} \frac{P^{(i)}(\alpha)}{i!} (X - \alpha)^{i}$.

♠ Exercice 5

Soit $n \in \mathbb{N}$ et $P \in \mathbb{R}_n[X]$ satisfaisant $\forall i \in [1, n], P^{(i)}(2) = 0$. Que dire de P?

On a $deg(P) \leq n$, donc on peut écrire la formule de Taylor à l'ordre n en 2 :

$$P = P(2) + P'(2)(X - 2) + \ldots + \frac{P^{(n)}(2)}{n!}(X - 2)^n = P(2).$$

P est donc un polynôme constant.

Inversement, tout polynôme P constant satisfsait $\forall i \in [1, n], P^{(i)}(2) = 0$.

4 Racines d'un polynôme

4.1 Notion de racine et divisibilité

Définition 8 (Racine d'un polynôme)

Soit $P \in \mathbb{R}[X]$. On dit que $\alpha \in \mathbb{R}$ est une racine de P lorsque $P(\alpha) = 0$.

Exemples

- P = X + 1 admet une racine : -1. $P(x) = 0 \iff x + 1 = 0 \iff x = -1$.
- P = X(X-1) admet deux racines : 0 et 1. $P(x) = 0 \iff x(x-1) = 0 \iff x = 0$ ou x = 1
- $P = X^2 + 1$ n'admet pas de racine (dans \mathbb{R})! $\forall x \in \mathbb{R}, P(x) = x^2 + 1 \ge 1$.

A Attention!

Rappelons que X est un polynôme, donc une fonction de \mathbb{R} dans \mathbb{R} !

Lors de la recherche de racines, on évitera donc d'écrire $X(X-1)=0 \iff X=0$ ou X=1.

On préfèrera évaluer le polynôme P en un réel particulier $(P(\alpha)=\ldots)$

ou bien introduire $x \in \mathbb{R}$ et résoudre l'équation P(x) = 0 d'inconnue x.

Remarque 6

Le polynôme nul admet n'importe quel réel comme racine.

On verra que c'est l'unique polynôme admettant une infinité de racine!

★ Théorème 4 (Racines et divisibilité)

Soit $P \in \mathbb{R}[X]$.

- 1 Pour tout $\alpha \in \mathbb{R}$, on a l'équivalence : α est une racine de $P \iff (X \alpha) \mid P$.
- Plus généralement, pour $\alpha_1, \ldots, \alpha_n$ des réels deux à deux distincts, on a l'équivalence :

 $\alpha_1, \ldots, \alpha_n$ sont des racines de $P \iff P$ est divisible par $(X - \alpha_1) \times \ldots \times (X - \alpha_n)$.

Preuve du Théorème 4:

I Soit $\alpha \in \mathbb{R}$. Écrivons la division euclidienne de P par $X - \alpha : P = (X - \alpha) \times Q + R$. On doit avoir $\deg(R) < \deg(X - \alpha) = 1$ c'est à dire $\deg(R) \le 0$. R est donc un polynôme constant : on peut écrire $R = \lambda \in \mathbb{R}$. Ainsi $P(X) = (X - \alpha)Q(X) + \lambda$ et donc $P(\alpha) = (\alpha - \alpha)Q(\alpha) + \lambda = \lambda$. On a donc les équivalences :

$$\alpha$$
 est une racine de $P \iff P(\alpha) = 0 \iff \lambda = 0 \iff R = 0 \iff (X - \alpha)|P$

 $(\operatorname{car}(X-\alpha)\operatorname{divise} P\operatorname{si}\operatorname{et}\operatorname{seulement}\operatorname{si}\operatorname{le}\operatorname{reste}\operatorname{dans}\operatorname{la}\operatorname{division}\operatorname{euclidienne}\operatorname{est}\operatorname{nul}!)$

- $\boxed{2}$ Soient $\alpha_1, \ldots, \alpha_n$ deux à deux distincts.
- L'implication réciproque \Leftarrow est évidente : si P est divisible par $\prod_{k=1}^{n} (X \alpha_k)$, on peut écrire

$$P(X) = Q(X) \times \prod_{k=1}^{n} (X - \alpha_k)$$
 et en évaluant on voit que $\forall k \in [1, n], \ P(\alpha_k) = 0.$

• Montrons l'implication directe \Rightarrow par récurrence. Pour tout $n \ge 1$, posons :

$$\mathcal{P}(n)$$
: "Si $P \in \mathbb{R}[X]$ et $\alpha_1, \ldots, \alpha_n$ sont des racines de P 2 à 2 distinctes, alors $\prod_{k=1}^n (X - \alpha_k) \mid P$ "

- La proposition $\mathcal{P}(1)$ est vraie d'après le point $\boxed{1}$ (cas d'une seule racine)
- Soit $n \ge 1$. Supposons $\mathcal{P}(n)$, montrons $\mathcal{P}(n+1)$.

Soit $P \in \mathbb{R}[X]$ et $\alpha_1, \ldots, \alpha_n, \alpha_{n+1}$ des racines de P deux à deux distinctes.

Montrons que
$$P$$
 est divisible par $\prod_{k=1}^{n+1} (X - \alpha_k)$.

On sait que α_{n+1} est racine de P. Donc d'après $\boxed{1}$, $(X - \alpha_{n+1})$ divise P: il existe $Q \in \mathbb{R}[X]$ tel que $P(X) = Q(X) \times (X - \alpha_{n+1})$.

Pour tout
$$k \in [1, n]$$
, on a $P(\alpha_k) = 0$, i.e $Q(\alpha_k)(\alpha_k - \alpha_{n+1}) = 0$ et donc $Q(\alpha_k) = 0$.

Ainsi $\alpha_1, \ldots, \alpha_n$ sont des racines de Q 2 à 2 distinctes!

D'après $\mathcal{P}(n)$ (appliquée au polynôme Q!), il en résulte que Q est divisible par $\prod_{k=1}^{n} (X - \alpha_k)$.

Il existe donc
$$\widetilde{Q} \in \mathbb{R}[X]$$
 tel que $Q = \widetilde{Q} \times \prod_{k=1}^{n} (X - \alpha_k)$.

On conclut :
$$P = Q \times (X - \alpha_{n+1}) = \widetilde{Q} \times \prod_{k=1}^{n} (X - \alpha_k) \times (X - \alpha_{n+1}) = \widetilde{Q} \times \prod_{k=1}^{n+1} (X - \alpha_k).$$

Ceci montre $\mathcal{P}(n+1)$ et achève la récurrence.

Une conséquence importante de ce théorème est que le nombre de racines distinctes d'un polynôme est limité par son degré!

Proposition 10 (Nombre de racines distinctes)

- Un polynôme non nul de degré $n \in \mathbb{N}$ admet au plus n racines distinctes.
- Si $P \in \mathbb{R}_n[X]$ (i.e deg $(P) \leq n$) admet n+1 racines distinctes, alors P=0.

En particulier si un polynôme admet une infinité de racines, il est nul.

Preuve:

• Soit P un polynôme de degré $n \in \mathbb{N}$ (ainsi $P \neq 0$).

Si P admet r racines distinctes $\alpha_1, \ldots, \alpha_r$, d'après le Théorème 4, $\prod_{k=1}^r (X - \alpha_k)$ divise P.

Il faut donc que $\operatorname{deg}\left(\prod_{k=1}^r (X - \alpha_k)\right) \leq \operatorname{deg}(P)$, c'est à dire $r \leq n$.

Ainsi P admet au plus n racines distinctes!

• Soit $P \in \mathbb{R}_n[X]$. Si jamais $P \neq 0$, d'après le premier point, P admet au plus $\deg(P)$ racines distinctes, donc moins de n racines distinctes.

Par contraposée, si P admet au moins n+1 racines, il doit être nul.

Exemples

Ainsi, un polynôme de degré 2 admet au maximum 2 racines distinctes (on le savait déjà!), un polynôme de degré 3 admet au maximum 3 racines distinctes, etc...

Attention!

Il s'agit bien d'une majoration : le nombre de racines distinctes n'est pas forcément égal au degré!

- Exemples : $\bullet X(X-1)$ est de degré 2 et admet deux racines distinctes : 0 et 1.
 - $(X-1)^2$ est de degré 2 et admet une seule racine : 1.
 - $X^2 + 1$ est de degré 2 et n'admet aucune racine (réelle).

Exercice 6

Justifier que la fonction $\cos : \mathbb{R} \to \mathbb{R}$ n'est pas un polynôme.

La fonction cos s'annule une infinité de fois (en $\frac{\pi}{2} + k\pi$ pour tout $k \in \mathbb{Z}$). Si c'était un polynôme, il aurait une infinité de racine, donc serait le polynôme nul! Or bien-sûr $\cos \neq 0$ (car $\cos(0) = 1$ par exemple).

Le résultat suivant, conséquence de la Proposition 10, est souvent utile (à re-démontrer au cas par cas):

Ocrollaire 4 (Polynômes "qui coïncident")

Soient $P, Q \in \mathbb{R}_n[X]$. Si P et Q coïncident en au moins n+1 points distincts, alors P=Q. En particulier, deux polynômes qui coïncident en un infinité de points sont égaux.

Preuve (à savoir reproduire):

On pose A = P - Q. Comme $\deg(P) \leq n$ et $\deg(Q) \leq n$, on a aussi $\deg(A) \leq n$. Si P et Q coïncident en au moins n+1 un points, alors A admet au moins n+1 racines. C'est donc que A=0 i.e P=Q.

4.2 Multiplicité d'une racine

Définition 9 (Racine multiple)

Soient $P \in \mathbb{R}[X]$, $\alpha \in \mathbb{R}$ et $m \in \mathbb{N}^*$.

On dit que α est une racine de P de multiplicité m lorsque :

$$P$$
 est divisible par $(X - \alpha)^m$ mais pas par $(X - \alpha)^{m+1}$.

- Lorsque m = 1, on parle de racine simple.
- Lorsque m=2, on parle de racine double.

Remarque 7

Notons que la multiplicité d'une racine est forcément inférieure ou égale au degré du polynôme!

Exemples

• Si $P = (X-1)^2(X+2)$: P est de degré 3, 1 est racine double et -2 est racine simple.

Ainsi, P n'admet que deux racines distinctes, mais on dit qu'il admet 3 racines "comptées avec multiplicité" (on compte 1 deux fois).

• Si $P = (X^2 + 1)(X - 2)^3(X + 1)$: P est de degré 6, 2 est racine triple, -1 est racine simple.

Ainsi, P n'admet que deux racines distinctes, mais 4 racines <u>comptées avec multiplicité</u> (on compte 2 trois fois).

On dispose naturellement d'un équivalent du Théorème 4 (Racines et divisibilité) pour les racines multiples :

★ Théorème 5 (Racines multiples et divisibilité (admis))

Soit $P \in \mathbb{R}[X]$.

Si $\alpha_1, \ldots, \alpha_r$ sont des racines de P deux à deux distinctes, de multiplicités respectives m_1, \ldots, m_r , alors P est divisible par $(X - \alpha_1)^{m_1} \times \ldots \times (X - \alpha_r)^{m_r}$.

Remarque 8

La réciproque n'est ici pas tout à fait vraie : si P est divisible par $(X - \alpha_1)^{m_1} \times \ldots \times (X - \alpha_n)^{m_n}$, alors $\alpha_1, \ldots, \alpha_n$ sont racines de P de multiplicité <u>au moins</u> m_1, \ldots, m_n (mais éventuellement plus!)

Exemple : $P = (X - 1)^3$ est bien divisible par $(X - 1)^2$, mais 1 est en fait racine de multiplicité 3.

À nouveau, les multiplicités des racines d'un polynôme sont limitées par son degré!

Proposition 11 (Nombre de racines comptées avec multiplicité)

- Un polynôme non nul de degré $n \in \mathbb{N}$ admet au plus n racines comptées avec multiplicité.
- Si $P \in \mathbb{R}_n[X]$ admet au moins n+1 racines comptées avec multiplicité, alors P=0.

Preuve:

Soit P un polynôme de degré $n \in \mathbb{N}$ (ainsi $P \neq 0$).

Si P admet r racines distinctes $\alpha_1, \ldots, \alpha_r$ de multiplicités respectives m_1, \ldots, m_r

d'après le Théorème 5, $\prod_{k=1}^{r} (X - \alpha_k)^{m_k}$ divise P.

Il faut donc que $\operatorname{deg}\left(\prod_{k=1}^r (X - \alpha_k)^{m_k}\right) \leq \operatorname{deg}(P)$ c'est à dire $m_1 + \ldots + m_r \leq n$.

Ainsi la somme des multiplicités ne peut pas excéder n:P admet au plus n racines comptées avec multiplicité. Le second point découle facilement du premier.

À partir des dérivées de P, on dispose d'un critère pour déterminer exactement la multiplicité d'une racine.

业 Théorème 6 (Racine multiple et dérivation)

Soit $P \in \mathbb{R}[X]$, $\alpha \in \mathbb{R}$ et $m \in \mathbb{N}^*$.

 α est une racine de P de multiplicité m si et seulement si :

$$P(\alpha) = P'(\alpha) = \dots = P^{(m-1)}(\alpha) = 0$$
 et $P^{(m)}(\alpha) \neq 0$.

Preuve:

Notons $n = \deg(P)$. Écrivons la formule de Taylor à l'ordre n en α :

$$P = \sum_{i=0}^{n} \frac{P^{(i)}(\alpha)}{i!} (X - \alpha)^{i} = \sum_{i=0}^{m-1} \frac{P^{(i)}(\alpha)}{i!} (X - \alpha)^{i} + \sum_{i=m}^{n} \frac{P^{(i)}(\alpha)}{i!} (X - \alpha)^{i}$$

ce qui peut se ré-écrire

$$P = \sum_{i=0}^{m-1} \frac{P^{(i)}(\alpha)}{i!} (X - \alpha)^i + (X - \alpha)^m \sum_{i=m}^n \frac{P^{(i)}(\alpha)}{i!} (X - \alpha)^{i-m} = (X - \alpha)^m Q + R$$

avec
$$Q = \sum_{i=m}^{n} \frac{P^{(i)}(\alpha)}{i!} (X - \alpha)^{i-m}$$
 et $R = \sum_{i=0}^{m-1} \frac{P^{(i)}(\alpha)}{i!} (X - \alpha)^{i}$.

Comme $deg(R) \leq m-1 < deg((X-\alpha)^m)$, il s'agit de la division euclidienne de P par $(X-\alpha)^m$! Ainsi on a les équivalences :

$$(X - \alpha)^{m} \text{ divise } P \iff R = 0 \iff \sum_{i=0}^{m-1} \frac{P^{(i)}(\alpha)}{i!} (X - \alpha)^{i} = 0$$

$$\iff \forall x \in \mathbb{R}, \ \sum_{i=0}^{m-1} \frac{P^{(i)}(\alpha)}{i!} (x - \alpha)^{i} = 0$$

$$\iff \forall y \in \mathbb{R}, \ \sum_{i=0}^{m-1} \frac{P^{(i)}(\alpha)}{i!} y^{i} = 0$$

$$\iff \sum_{i=0}^{m-1} \frac{P^{(i)}(\alpha)}{i!} X^{i} = 0$$

$$\iff \forall i \in [0, m-1], \ \frac{P^{(i)}(\alpha)}{i!} = 0$$

$$\iff \forall i \in [0, m-1], \ P^{(i)}(\alpha) = 0$$

On a donc établi : $(X - \alpha)^m$ divise $P \iff P(\alpha) = 0$ et $P'(\alpha) = 0$... et $P^{(m-1)}(\alpha) = 0$. De même : $(X - \alpha)^{m+1}$ divise $P \iff P(\alpha) = 0$ et $P'(\alpha) = 0$... et $P^{(m-1)}(\alpha) = 0$ et $P^{(m)}(\alpha) = 0$. Ainsi, pour finir :

 α est racine de multiplicité $m \iff (X - \alpha)^m$ divise P et $(X - \alpha)^{m+1}$ ne divise pas P $\iff P(\alpha) = 0$ et $P'(\alpha) = 0$... et $P^{(m-1)}(\alpha) = 0$ et $P^{(m)}(\alpha) \neq 0$.

Exercice 7

Montrer que 1 est racine de $P = X^3 + X^2 - 5X + 3$ et déterminer sa multiplicité.

On calcule P(1) = 1 + 1 - 5 + 3 = 0: 1 est bien racine de P.

 $P'=3X^2+2X-5$ donc P'(1)=3+2-5=0: 1 est de multiplicité au moins 2.

P'' = 6X + 2 donc $P''(1) = 6 + 2 = 8 \neq 0$: donc 1 est de multiplicité 2.

5 Factorisation de polynômes dans $\mathbb{R}[X]$

5.1 Rappels pour les polynômes de degré 2

Proposition 12 (Factorisation d'un polynôme de degré 2)

Soient $(a, b, c) \in \mathbb{R}^3$ avec $a \neq 0$ et soit $P = aX^2 + bX + c \in \mathbb{R}[X]$. On pose $\Delta = b^2 - 4ac$.

- Si $\Delta > 0$, alors on peut écrire $P = a(X x_1)(X x_2)$ avec $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$. x_1 et x_2 sont ainsi des racines simples (distinctes) de P.
- Si $\Delta = 0$, alors on peut écrire $P = a(X x_0)^2$ avec $x_0 = \frac{-b}{2a}$. x_0 est ainsi une racine double de P.
- Si $\Delta < 0$, alors P n'admet aucune racine réelle. On ne peut pas le factoriser sous une forme plus simple.

Preuve rapide:

On peut vérifier en développant que les polynômes factorisés sont bien égaux à ${\cal P}.$

Si $\Delta \geqslant 0$ (dans le cas $\Delta = 0$ on a $x_1 = x_2 = x_0$), on a :

$$a(X - x_1)(X - x_2) = a(X^2 - (x_1 + x_2)X + x_1x_2) = aX^2 - a(x_1 + x_2)X + ax_1x_2$$

et on remarque que $x_1+x_2=-\frac{b}{a}$ et $x_1x_2=\frac{c}{a}$, d'où $a(X-x_1)(X-x_2)=aX^2+bX+c=P$. \square

5.2 Cas d'un polynôme général

ightharpoonup Théorème 7 (Factorisation dans eals [X] (admis))

Tout polynôme $P \in \mathbb{R}[X]$ non constant peut se factoriser sous la forme :

$$P(X) = \lambda \prod_{i=1}^{p} (X - \alpha_i)^{m_i} \prod_{j=1}^{q} (X^2 + b_j X + c_j)^{s_j}$$

où:

- $\lambda \in \mathbb{R}^*$ est le **coefficient dominant** de P.
- $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$ sont les **racines** deux à deux distinctes de P.
- $m_1, \ldots, m_p \in \mathbb{N}^*$ sont les **multiplicités** de ces racines.
- $(b_1, c_1), \ldots, (b_q, c_q) \in \mathbb{R}^2$ sont deux à deux distincts, tels que : $\forall j \in [1, q], \ \Delta_j = b_j^2 4c_j < 0$ (Autrement dit, le **discriminant** de $X^2 + b_j X + c_j$ est **négatif**)
- $s_1, \ldots, s_q \in \mathbb{N}^*$.

Cette décomposition est unique à l'ordre près des facteurs.

Remarque 9

Notons que les polynômes de $\mathbb{R}[X]$ n'ayant aucune racine sont ceux qui se mettent sous la forme

$$P = \lambda \prod_{j=1}^{q} (X^{2} + b_{j}X + c_{j})^{s_{j}}$$

Le degré d'un tel polynôme est $2s_1 + 2s_2 + \ldots + 2s_q$: P est donc de degré pair!

Par contraposée, on en déduit : Un polynôme de degré impair admet toujours au moins une racine.

Æ Méthode : Factoriser un polynôme de degré 2

Si $P = aX^2 + bX + c$ (avec $a \neq 0$).

Méthode 1 (basique) : Calculer le discriminant et appliquer le résultat de la Proposition 12.

Méthode 2 (quand c'est possible) : Utiliser une identité remarquable.

Méthode 3 (quand c'est possible): Repérer une racine évidente ($\alpha = 0$ ou ± 1 ou ± 2), puis utiliser les propriétés sur la somme et le produit des racines pour déterminer la deuxième.

₩ Méthode : Factoriser un polynôme de degré supérieur ou égal à 3

Soit $P \in \mathbb{R}[X]$ avec $\deg(P) \geqslant 3$.

L'objectif est de se ramener à un polynôme de degré inférieur, plus facile à factoriser!

- Touver une racine α de P (souvent une racine évidente $\alpha = 0$ ou ± 1 ou ± 2).
- 2 Déterminer la multiplicité m de α en calculant $P'(\alpha), P''(\alpha)$ etc...
- 3 On sait alors qu'on peut écrire $P = (X \alpha)^m \times Q$ avec $\deg(Q) = \deg(P) m$. Déterminer le polynôme Q en posant la division euclidienne de P par $(X - \alpha)^m$. (remarque : le reste doit être nul!) (On peut aussi déterminer Q en identifiant ses coefficients...)
- |4| On est maintenant ramené à factoriser Q!Si $deg(Q) \leq 2$ c'est aisé, sinon on reprend cette même méthode à nouveau.

En plus de ça, il peut parfois être utile/plus rapide de :

- Repérer une identité remarquable
- Utiliser d'autres propriétés du polynôme P (si P(X) peut s'écrire $Q(X^2)$ par exemple, il peut être utile de factoriser le polynôme Q...)

Attention: \bullet Ne pas oublier de mettre le coefficient dominant de P "devant"!

• Un polynôme qui n'a pas de racine peut tout de même être factorisé.

Exercice 8

Factoriser les polynômes suivants dans $\mathbb{R}[X]$.

(a)
$$P = 2X^3 + 2X^2 - 10X + 6$$

(a)
$$P = 2X^3 + 2X^2 - 10X + 6$$
 (b) $P = 3X^4 - 4X^3 - 4X^2 + X - 2$ (c) $P = X^4 + 1$

(c)
$$P = X^4 + 1$$

(a) On remarque que
$$P(1) = 2 + 2 - 10 + 6 = 0 : 1$$
 est racine de P .

$$P' = 6X^2 + 4X - 10$$
 donc $P'(1) = 6 + 4 - 10 = 0$.

$$P'' = 12X + 4$$
 donc $P''(1) = 16 \neq 0$: 1 est donc racine double.

On cherche donc à écrire
$$P = (X - 1)^2 \times Q$$
 (on sait que $deg(Q) = 1$)

On pose la division euclidienne de
$$P=2X^3+2X^2-10X+6$$
 par $(X-1)^2=X^2-2X+1...$

On obtient $P = (X - 1)^2 \times (2X + 6)$ ce qu'on peut ré-écrire $P = 2(X - 1)^2(X + 3)$.

(b) On remarque que P(-1) = 3 + 4 - 4 - 1 - 2 = 0: -1 est racine de P.

On remarque que $P(2) = 3 \times 16 - 4 \times 8 - 4 \times 4 + 2 - 2 = 0$.

On pourrait chercher les multiplicités de -1 et 2.

Mais on peut aussi écrire tout de suite P = (X + 1)(X - 2)Q.

(On aura deg(Q) = 2)

On pose la division euclidienne de $P = 3X^4 - 4X^3 - 4X^2 + X - 2$ par $(X+1)(X-2) = X^2 - X - 2$.

On obtient $P = (X + 1)(X - 2) \times (3X^2 - X + 1)$.

Factorisons $Q = 3X^2 - X + 1$. Discriminant : $\Delta = 1 - 4 \times 3 = -11 < 0$.

On ne peut donc pas factoriser Q d'avantage!

Conclusion: $P = (X+1)(X-2)(3X^2-X+1) = 3(X+1)(X-2)(X^2-\frac{1}{3}X+\frac{1}{3}).$

(c) $P = X^4 + 1$. On constate facilement que $\forall x \in \mathbb{R}, \ P(x) = x^4 + 1 \ge 1$.

Donc P n'a pas de racine réelle... Il s'agit de repérer/faire apparaître une identité remarquable.

$$P = X^4 + 1 = (X^2)^2 + 1^2 = (X^2 + 1)^2 - 2X^2 = (X^2 + 1)^2 - (\sqrt{2}X)^2 = \left(X^2 + 1 + \sqrt{2}X\right)\left(X^2 + 1 - \sqrt{2}X\right)$$

Ces deux polynômes de degré 2 ont un discriminant négatif (sinon P aurait une racine...). On a donc terminé la factorisation!

À savoir faire à l'issue de ce chapitre :

Au minimum

- Effectuer des calculs avec des polynômes.
- Déterminer facilement le degré d'un polynôme (même "non développé").
- Poser la division euclidienne de deux polynômes de petits degrés.
- Déterminer une racine et sa multiplicité.

Pour suivre

- ullet Connaître ou retrouver rapidement la formule donnant les coefficients de P'.
- Connaître le lien entre nombre de racines et degré d'un polynôme.
- Montrer qu'un polynôme est nul en lui trouvant "trop" de racines.
- Factoriser un polynôme dans $\mathbb{R}[X]$ en repérant des racines évidentes.

Pour les ambitieux

- Savoir exploiter la formule de Taylor quand elle est utile.
- \bullet Factoriser un polynôme dans $\mathbb{R}[X]$ en utilisant des calculs astucieux (identités remarquables...)
- Maîtriser toutes les preuves du cours.