Uge 14

Danny Nygård Hansen

6. december 2023

12.5 • ☜

(a) Bemærk at $f', f'' \in C_c(\mathbb{R}, \mathbb{C}) \subseteq \mathcal{L}^1_{\mathbb{C}}(\lambda)$, og at

$$\widehat{f''}(t) = it\widehat{f'}(t) = -t^2\widehat{f}(t)$$

ved Sætning 12.1.6(ii). Men $\widehat{f''}$ er begrænset ved Sætning 12.1.3(i).

(b) Da \hat{f} er begrænset, er funktionen $t \mapsto (t^2 + 1)\hat{f}(t)$ også begrænset, sig af R > 0. Men så er

$$|\hat{f}(t)| \le \frac{R}{t^2 + 1},$$

og funktionen (af t) på højre side ligger i $\mathcal{L}^1_{\mathbb{C}}(\lambda)$ (sæt f.eks. $\sigma=1$ i Opgave 12.4(b)). Det ønskede følger da af Opgave 12.3 da f er kontinuert.

13.2 • ⑤ Sæt $c = \inf\{F_X = 1\}$ og bemærk at $c \in \mathbb{R}$, da der både må findes $t \in \mathbb{R}$ så $P(X \le t) = 0$ og $P(X \le t) = 1$. Da F_X er højrekontinuert, er $F_X(c) = 1$, men omvendt er $F_X(t) = 0$ for t < c. Altså er F_X også fordelingsfunktionen for Diracmålet δ_c , så $P_X = \delta_c$ ved 13.1.5. ■

12.7 · 🖘

- (a) Oplagt.
- (b) Bemærk at

$$H_1 * u(2x) = \int_{\mathbb{R}} e^{-|2x-y|} e^{-|y|} \lambda(dy) = \int_{\mathbb{R}} e^{-(|x-y|+|x+y|)} \lambda(dy).$$

Altså er $H_1 * u$ lige, så vi kan antage $x \ge 0$. Integranden er også lige i y for ethvert x, så for $x \ge 0$ er

$$H_1 * u(2x) = 2 \int_0^\infty e^{-(|x-y|+x+y)} \lambda(dy) = 2 \int_0^\infty e^{-2(x \vee y)} \lambda(dy)$$
$$= 2 \int_0^x e^{-2x} \lambda(dy) + 2 \int_x^\infty e^{-2y} \lambda(dy)$$
$$= (2x+1)e^{-2x}.$$

Dermed er $H_1 * u(x) = (x + 1)e^{-x}$ for $x \ge 0$.

(c) Erstat $u \mod u \mathbf{1}_{(-R,R)}$ for R > 0. (Bemærk at differentiation er defineret lokalt. Sammenlign Opgave 5.24(e).)

13.4 • ☜

- (a) Betragt $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_1)$ og lad X_1 være identitetsfunktionen på \mathbb{R} .
- (b) Sæt $\mu = \mu_1 \otimes \cdots \otimes \mu_n$ og betragt produktrummet $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mu)$, og lad X_j være den j'te koordinatprojektion $(x_1, \dots, x_n) \mapsto x_j$. For uafhængighed, bemærk at (X_1, \dots, X_n) blot er identitetsfunktionen på \mathbb{R}^n , så dens fordeling er μ . Benyt da Sætning 13.5.3.

Vi bemærker at dette specielt viser at hvis X og Y er stokastiske variable, da findes et sandsynlighedsfelt (Ω, \mathcal{F}, P) hvorpå der findes uafhængige »kopier« af X og Y, dvs. stokatiske variable \tilde{X} og \tilde{Y} med $P_{\tilde{X}} = P_{\tilde{X}}$ og $P_{\tilde{Y}} = P_{\tilde{Y}}$. Hvis X og Y er defineret på samme sandsynlighedsfelt, da kan man altså altid finde uafhængige kopier deraf. Dette er især nyttigt idet vi i sandsynlighedsteori ofte kun er interesseret i fordelingen af stokatiske variable, jf. eksempelvis Opgave 13.5.

- (a) Oplagt.
- (b) Benyt vinket og lad f.eks. $X = \mathbf{1}_{[0,1/2]}$ og $Y = \mathbf{1}_{[1/2,1]}$.
- (c) Bemærk at

$$\mathbb{E}[|\mathsf{X}|^p] = \int_{\Omega} |\mathsf{X}|^p \, \mathrm{d}P = \int_{\mathbb{R}} |x|^p P_\mathsf{X}(x) = \int_{\mathbb{R}} |y|^p P_\mathsf{Y}(y) = \int_{\Omega} |\mathsf{Y}|^p \, \mathrm{d}P = \mathbb{E}[|\mathsf{Y}|^p].$$

(d) Udeladt.