BÀI TẬP PHÉP TOÁN TRÊN MA TRẬN

- 1. Tìm các số x, y, z sao cho $\begin{bmatrix} -2 & -1 & x \\ 1 & x + 2y^2 & 3 \\ z & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -1 & 2x^2 + y \\ 1 & y & 3 \\ -4 & 0 & 1 \end{bmatrix}.$
- 2. Tìm $s,t\in\mathbb{R}$ sao cho ma trận $A=\begin{bmatrix}2&s&t\\2s&0&s+t\\3&3&t\end{bmatrix}$ là ma trận đối xứng.
- 3. Cho các ma trận $A = \begin{bmatrix} 2 & -1 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 4 & -3 \\ 6 & 3 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 2 & 1 \\ -2 & -6 & 5 \end{bmatrix}$,

$$D = \begin{bmatrix} 2 & 4 \\ 4 & 0 \\ -2 & 2 \end{bmatrix}, E = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \text{ và các số } \alpha = 4, \beta = \frac{1}{2}. \text{ Tính các ma trận sau:}$$

a.
$$B+C$$
, B^t+D , $C-D^t$, $\alpha B^t-\alpha C^t$, $B^t+\alpha D-\beta C^t$.

b.
$$AD, BE, AB^t, AE, E(\beta A), D(\alpha B + C), A(B^t + C^t)$$
.

4. Tính:

a.
$$\begin{bmatrix} 7 \\ 1 \\ 3 \end{bmatrix}$$
 [6 4 -8], [2 4 -1] $\begin{bmatrix} 5 \\ 2 \\ 6 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 2 & 5 \\ 3 & 2 \end{bmatrix}$ $\begin{bmatrix} 3 & 4 \\ 2 & 0 \\ -2 & 1 \end{bmatrix}$.

b.
$$\begin{bmatrix} 2 & 4 & 5 \\ 0 & -1 & -3 \\ 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 3 & 6 & 0 \\ -2 & 5 & 3 \\ 3 & -3 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 1 & 4 \\ 7 & 2 & 3 \\ 4 & -4 & 1 \end{bmatrix}.$$

5. Tìm $x, y \in \mathbb{R}$:

$$\begin{bmatrix} -4 & 2 & 3 \\ 5 & 3 & 5 \\ 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ x \\ 5 \end{bmatrix} = \begin{bmatrix} 9 \\ 38 \\ y \end{bmatrix}, \begin{bmatrix} -3 & 2 & 3 \\ 4 & 3 & 5 \\ 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ x & 3 \\ 4 & -2 \end{bmatrix} = \begin{bmatrix} 14 & -12 \\ 40 & 15 \\ 10 & y \end{bmatrix}$$

6.

a. Cho
$$M = \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
. Tính M^2 .

- b. Cho ma trận A cấp n. Chứng minh nếu $A^2 = A$ thì $(I_n A)^2 = I_n A \, .$
- 7. Cho ma trận $P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ và ma trận $Q = \frac{1}{4}(I_3 + P)$.
 - a. Tính PQ, QP theo P.
 - b. Chứng minh $Q^n=a_nI_3+b_nP$, trong đó $\begin{cases} a_{n+1}=\frac{1}{4}a_n\\ b_{n+1}=\frac{1}{4}a_n+b_n \end{cases}.$
- 8. Tính ma trận A^n (với n nguyên dương) trong các trường hợp sau:
 - a. $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$.
 - b. $A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
- 9. Cho ma trận $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - a. Chứng minh A là nghiệm của $f(x) = x^2 (a+d)x + ad bc$.
 - b. Chứng minh nếu $\exists k \in \mathbb{N} \ A^k = 0$ thì $A^2 = 0$.

c.

10. Nam mua 2 bó hoa gồm 3 loại: hoa hồng, hoa cẩm chướng và hoa li li. Số lượng mỗi loại hoa trong các bó hoa được cho bởi ma trận sau:

Hoa Hoa cẩm Hoa ly ly hồng chướng
Bố hoa 1
$$\begin{bmatrix} 6 & 7 & 5 \\ 8 & 6 & 4 \end{bmatrix}$$

Mỗi hoa hồng giá 10.000đ, hoa cẩm chướng 3.000đ, và hoa lili 15.000đ. Viết số tiền Nam phải trả dưới dạng 1 ma trận tích, nếu Nam được giảm giá 50% cho bó hoa thứ 2.