Bernsteinovi bazni polinomi treh spremenljivk

Nejc Jenko, Petja Murnik

19. december 2024

1. Uvod

Pri predavanjih predmeta RPGO smo obravnavali Bernsteinove bazne polinome ene ter dveh spremenljivk, ki smo jih uporabili pri različnih aplikacijah pri numerični matematiki. V tem delu bomo predstavili Bernsteinove bazne polinome treh spremenljivk, ki so razširitev prej omenjenih.

2. Prostor polinomov treh spremenljivk

Definicija 1. Naj bo $n \in \mathbb{N}_0$. Prostor polinomov treh spremenljivk stopnje n je definiran kot

$$\mathbb{P}_n = \left\{ \sum_{0 \le i+j+k \le n} a_{ijk} x^i y^j z^k; a_{ijk} \in \mathbb{R} \right\}. \tag{1}$$

Lema 1. Naj bo \mathbb{P}_n kot v definiciji 1. Potem je dim $\mathbb{P}_n = \binom{n+3}{3}$. Nadalje monomi $\left\{x^i y^j z^k\right\}_{0 \le i+j+k \le n}$ tvorijo njegovo bazo.

Preden se lotimo dokaza leme, vpeljimo noticajo odvodov, ki nam ba prišla prav tako pri dokazu kot tudi v nadaljevanju. Naj bo \mathcal{D}_w^l operator parcialniega odvoda po spremenljivki w reda l. Potem definiramo $\mathcal{D}^\alpha := \mathcal{D}_x^{\alpha_1} \mathcal{D}_y^{\alpha_2} \mathcal{D}_z^{\alpha_3}$ za $\alpha = (\alpha_1, \alpha_2, \alpha_3)$, kjer je $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{N}_0$ ter vpeljimo še $|\alpha| := \alpha_1 + \alpha_2 + \alpha_3$.

Dokaz. Opazimo najprej, da monomi oblike $\{x^iy^jz^k\}_{0\leq i+j+k\leq n}$ razpenjanjo \mathbb{P}_n , kar sledi direktno it definicije prostora. Opazimo tudi, da $|(i,j,k):0\leq i+j+k\leq n, i,j,k\in\mathbb{N}_0|=\binom{n+3}{3}=\dim\mathbb{P}_n$. Pokazati moramo še linearno neodvisnost.

Predpostavimo, da je polinom $p(x,y,z) = \sum_{0 \le i+j+k \le n} a_{ijk} x^i y^j z^k$ identično enak 0. Potem so tudi vsi njegovi mešani odvodi identično enaki 0. Poi drugi strani pa z direktnim odvajanjem dobimo $D_x^i D_y^j D_k^z p(x,y,z)|_{x=0,y=0,z=0} = a_{ijk}$ za vsak $0 \le i+j+k \le n$. Torej linearna neodvisnost velja, ter je s tem dokazana lema.

3. Conclusion

Summarize the key findings and suggest future work or implications.

||3||