

Northeastern University

Electrical and Computer Engineering Department

Augmented Cognition Laboratory (ACLab)

https://web.northeastern.edu/ostadabbas/

Multi-Object Tracking in Complex Scenes: Extending Human Perception

Bishoy Galoaa

Electrical and Computer Engineering
Northeastern University

Northeastern University

Electrical and Computer Engineering Department

Augmented Cognition Laboratory (ACLab)

https://web.northeastern.edu/ostadabbas/

Multi-Object Tracking in Complex Scenes: Extending Human Perception

"The real voyage of discovery consists not in seeking new landscapes, but in having new eyes." - Marcel Proust

Prof. Sarah Ostadabbas

- For her exceptional guidance and unwavering support throughout my research journey
- For creating an environment that fosters innovation and critical thinking
- For believing in my vision and helping me transform ideas into impactful research
- For the opportunity to continue my academic journey as a PhD student at ACLab

• Dr. Somaieh Amraee

- For her invaluable
 mentorship and technical
 guidance
- For countless hours of collaboration on all my research projects
- For sharing her expertise and insights that shaped my approach to computer vision

- **Prof.** Stratis Ioannidis
 - For his foundational teaching in Pattern Recognition
 - For serving on my thesis committee

• Prof. Michael Everett

- For his exceptional mentorship during the exoskeleton control project
- For being on my thesis committee

MS Thesis Committee Members

Thank You!

My Journey at Northeastern University

My Journey at Northeastern University

[1] Multiple Toddler Tracking in Indoor Videos

S. Amraee, **B. Galoaa**, M. Goodwin, E. Hatamimajoumerd, S. Ostadabbas *IEEE/CVF Winter Conference on Applications of Computer Vision* (WACV) Workshops, 2024

[2] DragonTrack

Transformer-Enhanced Graphical Multi-Person Tracking in Complex Scenarios B. Galoaa, S. Amraee, S. Ostadabbas Winter Conference on Applications of Computer Vision (WACV), 2025

[3] MOTE: More Than Meets the Eye

Optical Flow-Based Multi-Object Tracking with Prolonged Occlusion Handling B. Galoaa, S. Amraee, S. Ostadabbas Under Review, International Conference on Machine Learning (ICML), 2025

[4] UniTrack

A Differentiable Graph-Based Loss for Robust Multi-Object Tracking B. Galoaa, U Nandi , V Dhir, S. Amraee, S. Ostadabbas Under Review, International Conference on Computer Vision (ICCV), 2025

The Hidden Hours We Don't See

- We blink 15–20 times per minute
- Each blink lasts ~0.3 seconds
- That's 6 seconds every minute
- 6 minutes every hour
- 1.5 hours a day eyes closed, yet we never notice

Per minute:

15-20 blinks ×1/3 seconds =

6 seconds

Per hour:

6 seconds/ minute × 60 =

6 minutes

Per day:

6 minutes /hour ×16 hours =

96 minutes

The Hidden Hours We Don't See

• Our brain fills in the gaps. It sees even when we're blind for a moment.

But what about machines? Can we teach them to see through their own <u>blind spots</u>, <u>too</u>?

My Research Mission

• To extend human perception through intelligent **visual tracking systems** — enabling machines to see, reason, and remain aware where human attention cannot.

My Research Vision

- Advancing **visual tracking** to enable reliable machine perception in dynamic, complex, and attention-limited environments.
 - Multi-Object Tracking in Complex Scenes

This Thesis Vision: Solving Through Perception

What if machines could:

- Follow a child through a busy daycare, even when out in the crib
- Track a pedestrian through complex scenes
- Distinguish athletes on the same team
- Learn tracking from just a few examples

SportsMOT [ICCV 2023]

Moezzi S [WACVW 2025]

MOTE [ICML 2025]

Persistent Challenges in Tracking

- Occlusions: Objects disappearing temporarily behind others
 - Human visual system can track through occlusions
 - Most algorithms struggle when objects are not visible

Frame1

62

52 13

15 13

39

Frame 2

62

93

ByteTrack

DragonTrack

Error

Bishoy Galoaa MS Thesis April 2025

- ID Switches: Losing track of identities after occlusion
- Example: When two similar people cross paths and are later confused

UniTrack [ICCV 2025]

- Similar Appearances:
 Distinguishing between visually similar objects
- Particularly challenging in uniform scenarios (e.g., sports teams)

ByteTrack[ECCV2022]*

DragonTrack

DragonTrack [WACV 2025]

- Crowded Scenes: Complex interactions between multiple objects Computationally demanding
- Dense crowds create frequent occlusions

UniTrack [ICCV 2025]

- Small Data Domains: Limited training examples in specialized areas
- Medical applications, infant monitoring
- Requires methods that can learn from sparse data

The Evolution of Multi-Object Tracking

From Detection to Understanding

- Multi-Object tracking has evolved through three major paradigms:
 - Traditional Methods (2016-2018)
 - **SORT** (Simple Online Realtime Tracking)
 - **DeepSORT** (Integration with appearance features)
 - Limitations: They struggled with occlusions and similar appearances
 - Transform-based Methods (2021-Present)
 - Trackformer, MOTR, TransTrack
 - End-to-end learning
 - Better context understanding but room for improvement

From Detection to Understanding

- Key Evaluation Metrics:
- HOTA (Higher Order Tracking Accuracy): Balances detection and association
- MOTA (Multiple Object Tracking Accuracy): Focuses on detection errors
- IDF1: Measures identity consistency throughout the tracking

Metric	Purpose	Equation			
МОТА ↑	Overall Accuracy	$1 - \frac{\sum_{t} (FN_t + FP_t + IDSW_t)}{\sum_{t} GT_t}$			
MOTP ↑	Localization	$\frac{\sum_{t,i} d_{t,i}}{\sum_{t} c_{t}}$			
IDF1↑	Identity	$\frac{ IDTP }{ IDTP +0.5 IDFN +0.5 IDFP }$			
НОТА ↑	Detection & Associ- ation	$\left(\prod_{i=1}^{n} \sqrt{DetA(i) \times AssA(i)}\right)$			

HOTA [IJCV 2020]

Research Framework Overview

Our Approach to Complex Tracking

• Research Philosophy: "Extending human perception rather

than replacing it"

- Three main solutions:
 - DragonTrack
 - MOTE
 - UniTrack

Unifying Theme

- Creating systems that maintain awareness where human attention falters
- 5 Major Barriers to Robust Tracking
 - 1. Occlusions temporary disappearance of objects behind others
 - 2. ID Switches losing track of identities after occlusions
 - 3. Similar Appearances visually indistinguishable subjects (e.g., uniforms)
 - **4.** Crowded Scenes dense interactions and visual overlap
 - 5. Small Data Domains limited training data in healthcare/child monitoring

DragonTrack: Overview

- **DragonTrack**: Transformerenhanced graphical tracking Addresses occlusion and ID switches
- Combines transformer detection with graph modeling
- Published in WACV 2025

DragonTrack [WACV 2025]

DragonTrack: Method

Key Innovations:

- Transformer-based Detection (DETR) for spatial + appearance features
- Graph Convolutional Network (GCN) to model inter-object relationships
- Learnable Sinkhorn Assignment for optimal track-detection matching
- Contrastive Loss + Weighted BCE for identity-preserving embeddings

$$e_{ij}^{pos} = \begin{bmatrix} x_i - x_j \\ y_i - y_j \\ \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \end{bmatrix}$$

DragonTrack: Results

- We compared DragonTrack against both SOTA CNNbased and Transformerbased methods
- DragonTrack was evaluated over MOT17 and DanceTrack

Methods	$HOTA\uparrow$	AssA↑	DetA↑	IDF1↑	MOTA↑	IDS↓
CNN-based:						
Tracktor++ [3]	44.8	45.1	44.9	52.3	53.5	2072
MPNTrack [6]	49.0	51.1	47.3	61.7	58.8	1185
CenterTrack [39]	52.2	51.0	53.8	64.7	67.8	3039
TraDeS [19]	52.7	50.8	55.2	63.9	69.1	3555
QDTrack [19]	53.9	52.7	55.6	66.3	68.7	3378
GSDT [28]	55.5	54.8	56.4	68.7	66.2	3318
FairMOT [37]	59.3	58.0	60.9	72.3	73.7	3303
CorrTracker [26]	60.7	58.9	62.9	73.6	76.5	3369
GRTU [27]	62.0	62.1	62.1	75.0	74.9	1812
MAATrack [22]	62.0	60.2	64.2	75.9	79.4	1452
StrongSORT [10]	63.5	63.7	63.6	78.5	78.3	1446
ByteTrack [36]	63.1	62.0	64.5	77.3	80.3	2196
Transformer-based:						
TrackFormer [17]	-	-	-	63.9	65.0	3528
TransTrack [24]	54.1	47.9	61.6	63.9	74.5	3663
MOTR [35]	57.8	55.7	60.3	68.6	73.4	2439
MOTRv2 [38]	62.0	60.6	63.8	75.0	78.6	-
DragonTrack (Ours)	65.3	66.2	65.8	79.2	82.0	1313

DragonTrack [WACV 2025]

MOTE: Overview

- MOTE (More Than Meets the Eye):
- Optical flow-based tracking Maintains tracking during prolonged occlusions
- Uses Softmax splatting for disocclusion features
- Under review at ICML 2025

MOTE: Method

Optical Flow Estimation

• Computes dense motion fields between frames to model object movement—even when partially or fully occluded.

• Softmax Splatting Module

• Warps feature maps along flow vectors to create **disocclusion-aware** representations.

• ETEM (Enhanced Track Embedding Module)

- Inputs: Query features, positions, and splatted motion features
- Uses **multi-head attention** to fuse temporal and appearance information
- Applies linear projection, add & norm, and feedforward layers for robust embedding updates
- Outputs: Enhanced track query q_{tr}^{i+1} with improved identity continuity

MOTE [ICML 2025]

MOTE: Results

 MOTE was evaluated on the MOT15, MOT17, MOT20 and DanceTrack datasets

Methods	НОТА↑	AssA↑	DetA↑	MOTA↑	IDF1↑	IDS↓
CNN-based:						
Tracktor++(Bergmann et al., 2019)	44.8	45.1	44.9	53.5	52.3	2072
CenterTrack(Zhou et al., 2020)	52.2	51.0	53.8	67.8	64.7	3039
TraDeS (Pang et al., 2021)	52.7	50.8	55.2	69.1	63.9	3555
QDTrack (Pang et al., 2021)	53.9	52.7	55.6	68.7	66.3	3378
GSDT (Wang et al., 2021c)	55.5	54.8	56.4	66.2	68.7	3318
FairMOT(Zhang et al., 2021)	59.3	58.0	60.9	73.7	72.3	3303
CorrTracker (Wang et al., 2021a)	60.7	58.9	62.9	76.5	73.6	3369
GRTU (Wang et al., 2021b)	62.0	62.1	62.1	74.9	75.0	1812
MAATrack (Stadler & Beyerer, 2022)	62.0	60.2	64.2	79.4	75.9	1452
StrongSORT (Du et al., 2023)	63.5	63.7	63.6	78.3	78.5	1446
ByteTrack (Zhang et al., 2022b)	63.1	62.0	64.5	80.3	77.3	2196
BoostTrack (Zhang et al., 2023a)	65.4	64.2	64.8	80.5	80.2	1104
Transformer-based:						
TrackFormer (Meinhardt et al., 2021)	/	/	/	65.0	63.9	3528
TransTrack(Sun et al., 2020)	54.1	47.9	61.6	74.5	63.9	3663
MOTR(Zeng et al., 2022)	57.8	55.7	60.3	73.4	68.6	2439
MOTRv2(Zhang et al., 2023b)	62.0	60.6	63.8	78.6	75.0	/
MOTE (Ours)	66.3	67.8	65.4	82.0	80.3	1412

MOTE [ICML 2025]

MOTE: Visual Results

MOTE [ICML 2025]

UniTrack: Overview

- UniTrack (Under Review ICCV 2025): Unified loss function for tracking optimization Graph-based differentiable loss
- Integration with existing architectures
- Addresses post-occlusion, temporal, and cross-subject errors

UniTrack: Method

- Graph Definition:
 - *Vt*: Nodes representing tracked objects at time *t*
 - Et: Edges encoding spatial and temporal relationships
 - Wt: Edge weights derived from learned flow variables
- Unified Loss Formulation:
- **Temporal Edges** (Type 2 errors: drift)
- Spatial Edges (Type 3 errors: similar subjects)
- Flow Conservation Constraint (Track life cycle)

$$\mathcal{G} = \{G_t = (V_t, E_t, W_t)\}_{t=1}^T$$

$$\mathcal{L} = \mathcal{L}_{flow} + \lambda_s \mathcal{L}_{spatial} + \lambda_t \mathcal{L}_{temporal}$$

$$\mathcal{L}_{temporal} = \sum_{(i,j) \in E_t} \|v_t^i - v_{t+1}^i\|^2 f_{t,t+1}^i$$

$$\mathcal{L}_{spatial} = \sum_{(i,j) \in E_t} w_{ij} \cdot d(p_t^i, p_t^j) \cdot f_{t,t+1}^i$$

$$\sum_{j \in N^+(i)} f^i_{t,t+1} - \sum_{j \in N^-(i)} f^j_{t-1,t} = b_i$$

UniTrack: Results

- UniTrack was tested over 3 tracker: MOTR,
 Trackformer and FairMOT
- The UT-proposed algorithm were evaluated over the MOT17 and MOT20 datasets

Method	МОТА↑	IDF1†	НОТА↑	FP↓	FN↓	IDs↓
MOTR [14]	62.1	61.3	53.2	1843	21034	289
UT-MOTR	64.8	63.9	55.7	1562	19845	356
Trackformer [8] UT-Trackformer UT-Trackformer*	62.3	57.6	52.8	1965	21893	643
	65.9	66.4	56.2	1039	16667	705
	69.05	69.05	62.13	1299	16605	396
FairMOT [16]	61.7	61.5	52.9	1902	20456	388
UT-FairMOT	64.5	64.2	55.3	1623	19234	482

Method	МОТА↑	IDF1↑	НОТА↑	FP↓	FN↓	IDs↓
MOTR [14]	53.2	57.9	51.8	1843	25034	389
UT-MOTR	55.8	60.4	54.2	1562	23845	356
Trackformer [8] UT-Trackformer	54.1	56.2	50.9	1965	25893	643
	56.16	64.14	57.66	1374	22004	314
FairMOT [16]	53.5	58.3	52.4	1902	25456	488
UT-FairMOT	55.2	61.5	55.8	1723	23234	402

Bishoy Galoaa MS Thesis April 2025

UniTrack [ICCV 2025]

UniTrack: Visual Results

Bishoy Galoaa MS Thesis April 2025

UniTrack [ICCV 2025]

Real World Applications

- Tracking isn't for academia only
- Healthcare:
 - Infant Tracking
 - Sleep Monitoring

- Safety
 - Cars/Pedestrians interactions

Solved vs Remaining Challenges

- **Occlusion Handling**
 - ► *MOTE* preserves tracking during prolonged occlusions using optical flow + splatting
- Crowded Scene Robustness
 - ► *DragonTrack* uses graph modeling for better discrimination in dense environments
- **Temporal Drift Reduction**
 - *UniTrack* enforces consistency across frames via graph flow constraints
- **Plug-and-Play Optimization**
 - UniTrack enhances identity tracking across multiple SOTA architectures

Remaining Challenges (Future Work)

☐ Residual ID Switches

► Still occur in ambiguous re-identification cases despite *UniTrack*'s gains

☐ Long-Term Temporal Memory

Need for models to better remember identities across long video gaps

☐ Extreme Appearance Similarity

► Challenging in uniforms/siblings—requires more than visual features

□ Data Scarcity Adaptability

► Real-world deployment needs robust performance with minimal fine-tuning

Future Research Direction

- Multi-Camera Point Tracking:
 - Novel approach to simultaneously track points across multiple calibrated cameras
 - Gain physical understanding of human motion and interaction
- Infant Monitoring and Tracking:
 - Solve data scarcity problem using, using minimal labeling techniques
- Multi-Platform Multi Sensor Dataset Collection:
 - Enabling broader research opportunities for multi-modal tracking
- Long-Term Vision: Chain of Reasoning Events (CoRE)
 - Integrating linguistic-cognitive intelligence into tracking systems
 - Creating tracking systems that can explain and reason about observed behaviors

Thank You!

To the entire ACLab team for their collaboration and support!

Thank You!

Northeastern University Electrical and Computer Engineering Department

Augmented Cognition Laboratory (ACLab)

https://web.northeastern.edu/ostadabbas/

Questions?

UniTrack: Graph Components

where:

- * Vt are **vertices** (detected objects at time t)
- * Et are **edges** (spatial or temporal links)
- Wt are weights encoding association strength (flow)

Temporal Edges

- " Represented by red horizontal lines
- Connect same object across time
- Enforce motion smoothness
- Mitigates Type 2 errors: identity drift over time

Spatial Edges

- Represented by green vertical lines
- * Link co-occurring objects within the same frame
- * Enforce appearance and geometry-based consistency
- Mitigates **Type 3 errors**: confusion between similar subjects
- Flow Weights ft,t+1if_{t,t+1}^ift,t+1i
 - * Blue circles encode confidence in track continuity
 - " Used in loss terms + flow conservation constraint
 - Addresses **Type 1 errors**: false starts or ends of a track
- Track State bi∈{-1,0,1}
 - " Indicates whether a track is starting, continuing, or ending

Figure 3. Graph-theoretic formulation of the tracking problem. We represent a multi-object tracking sequence as a temporal sequence of weighted directed graphs $\mathcal{G} = \{G_t = (V_t, E_t, W_t)\}_{t=1}^T$. Tracked objects are represented as vertices V_t^i where superscript i indicates object identity and subscript t denotes time. The figure shows three key components: (1) temporal edges (red horizontal lines) modeling motion consistency across frames to address Type 2 errors, (2) spatial edges (green vertical lines) capturing inter-object relationships within frames to mitigate Type 3 errors, and (3) flow components (blue circles) encoding association strengths $f_{t,t+1}^i$ to prevent Type 1 errors. Light red background highlights the temporal connections, light green background highlights the spatial relationships, and light blue highlights the flow components. The track state variable b_i represents initialization, continuation, or termination of tracks through flow

conservation constraints.

MOTE: Method (cont.)

MOTE: Method (cont.)

