

# UK Patent Application GB 2 373 524 A

(43) Date of Printing by UK Office 25.09.2002

(21) Application No 0208367.3

(22) Date of Filing 05.10.2000

(30) Priority Data

(31) 60159039 (32) 12.10.1999 (33) US  
(31) 60165228 (32) 12.11.1999

(86) International Application Data  
PCT/US2000/027645 En 05.10.2000

(87) International Publication Data  
WO2001/026860 En 19.04.2001

(51) INT CL?  
B23P 17/02, E21B 43/10

(52) UK CL (Edition T)  
E1F FLA

(56) Documents Cited by ISA  
US 5368075 A US 4573248 A  
US 4413395 A US 4069573 A

(58) Field of Search by ISA  
U.S. : 138/98; 29/890.031, 890.044

(71) Applicant(s)

Enventure Global Technology  
(Incorporated in USA - Texas)  
2135 Highway 6 South, Houston, TX 77077.  
United States of America

(74) Agent and/or Address for Service

Haseltine Lake & Co  
Imperial House, 15-19 Kingsway, LONDON,  
WC2B 6UD, United Kingdom

(72) Inventor(s)

Andrei Gregory Filippov  
Mike Cowan  
William J Dean  
Lev Ring

(54) Abstract Title

Lubricant coating for expandable tubular members

(57) A lubricant coating (240) for expandable tubulars (215). The interior surfaces of the expandable tubulars are coated with the lubricant coating (240). The expandable tubulars (215) are then placed within a preexisting structure (205). The expandable tubulars are then radially expanded into contact with the preexisting structure.



GB 2 373 524 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
19 April 2001 (19.04.2001)

PCT

(10) International Publication Number  
**WO 01/26860 A1**

(51) International Patent Classification<sup>7</sup>: B23P 17/02 (44) Agents: MATTINGLY, Tod et al.; Haynes and Boone, LLP, 901 Main Street, Suite 3100, Dallas, TX 75202-3789 (US).

(21) International Application Number: PCT/US00/27645

(22) International Filing Date: 5 October 2000 (05.10.2000)

(25) Filing Language: English

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(30) Priority Data:

60/159,039 12 October 1999 (12.10.1999) US  
60/165,228 12 November 1999 (12.11.1999) US

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): ENVIRONMENTAL GLOBAL TECHNOLOGY [US/US]; 2135 Highway 6 South, Houston, TX 77077 (US).

Published:

- With international search report.
- With amended claims.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: LUBRICANT COATING FOR EXPANDABLE TUBULAR MEMBERS



**WO 01/26860 A1**

(57) Abstract: A lubricant coating (240) for expandable tubulars (215). The interior surfaces of the expandable tubulars are coated with the lubricant coating (240). The expandable tubulars (215) are then placed within a preexisting structure (205). The expandable tubulars are then radially expanded into contact with the preexisting structure.

**LUBRICANT COATING FOR EXPANDABLE  
TUBULAR MEMBERS**

**Cross Reference To Related Applications**

This application claims the benefit of the filing date of: (1) U.S. Provisional Patent Application serial no. 60/159,039, attorney docket no. 25791.36, filed on October 12, 1999; and (2) U.S. Provisional Patent Application serial no. 5 60/165,228, attorney docket no. 25791.39, filed on November 12, 1999, the disclosures of which are incorporated herein by reference.

This application is related to the following co-pending applications:

|    | Provisional Patent<br>Application Number | Attorney<br>Docket No. | Filing Date |
|----|------------------------------------------|------------------------|-------------|
| 10 | 60/108,558                               | 25791.9                | 11-16-1998  |
|    | 60/111,293                               | 25791.3                | 12-7-1998   |
|    | 60/119,611                               | 25791.8                | 2-11-1999   |
|    | 60/121,702                               | 25791.7                | 2-25-1999   |
|    | 60/121,841                               | 25791.12               | 2-26-1999   |
| 15 | 60/121,907                               | 25791.16               | 2-26-1999   |
|    | 60/124,042                               | 25791.11               | 3-11-1999   |
|    | 60/131,106                               | 25791.23               | 4-26-1999   |
|    | 60/137,998                               | 25791.17               | 6-7-1999    |
|    | 60/143,039                               | 25791.26               | 7-9-1999    |
| 20 | 60/146,203                               | 25791.25               | 7-29-1999   |
|    | 60/154,047                               | 25791.29               | 9-16-1999   |
|    | 60/159,082                               | 25791.34               | 10-12-1999  |
|    | 60/159,039                               | 25791.36               | 10-12-1999  |
|    | 60/159,033                               | 25791.37               | 10-12-1999  |
| 25 | 60/162,671                               | 25791.27               | 11-01-1999  |

Applicants incorporate by reference the disclosures of these applications.

#### Background of the Invention

This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.

Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.

The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming wellbores.

#### Summary of the Invention

According to one aspect of the present invention, an expandable tubular assembly is provided that includes one or more tubular members and a layer of a lubricant coupled to the interior surfaces of the tubular members.

According to another aspect of the present invention, a method of coupling an expandable tubular assembly including one or more tubular members to a preexisting structure is provided that includes coating the interior surfaces of the tubular members with a lubricant, positioning the tubular members within a

preexisting structure and radially expanding the tubular members into contact with the preexisting structure.

According to another aspect of the present invention, an apparatus is provided that includes a preexisting structure and one or more tubular members coupled to the preexisting structure. The tubular members are coupled to the preexisting structure by the process of: coating the interior surfaces of the tubular members with a lubricant, positioning the tubular members within a preexisting structure, and radially expanding the tubular members into contact with the preexisting structure.

10 According to another aspect of the present invention, an expandable tubular assembly is provided that includes one or more tubular members, and a layer of a first part of a lubricant coupled to the interior surfaces of the tubular members.

According to another aspect of the present invention, a method of coupling an expandable tubular assembly including one or more tubular members to a preexisting structure is provided that includes positioning the expandable tubular assembly into the preexisting structure, injecting a quantity of a lubricant material into contact with the expandable tubular assembly, and radially expanding the expandable tubular assembly into contact with the preexisting structure.

According to another aspect of the present invention, an apparatus is provided that includes a preexisting structure and one or more tubular members coupled to the preexisting structure. The tubular members are coupled to the preexisting structure by the process of: positioning the tubular members into the preexisting structure, injecting a quantity of a lubricant material into contact with the tubular members, and radially expanding the tubular members into contact with the preexisting structure.

According to another aspect of the present invention, a method of coupling an expandable tubular assembly including one or more tubular members to a preexisting structure is provided that includes coating the interior surfaces of the tubular members with a first part of a lubricant, positioning the tubular members within a preexisting structure, circulating a fluidic material including a second part of the lubricant into contact with the coating of the first part of the lubricant,

and radially expanding the tubular members into contact with the preexisting structure.

According to another aspect of the present invention, an apparatus is provided that includes a preexisting structure and one or more tubular members coupled to the preexisting structure. The tubular members are coupled to the preexisting structure by the process of: coating the interior surfaces of the tubular members with a first part of a lubricant, positioning the tubular members within a preexisting structure, circulating a fluidic materials having a second part of the lubricant into contact with the coating of the first part of the lubricant, and 10 radially expanding the tubular members into contact with the preexisting structure.

#### Brief Description of the Drawings

Fig. 1 is a flow chart illustrating a preferred embodiment of a method for coupling a plurality of tubular members to a preexisting structure.

15 Fig. 2 is cross sectional illustration of a plurality of tubular members including an internal coating of a lubricant.

Fig. 3 is a fragmentary cross sectional illustration of the radial expansion of the tubular members of Fig. 2 into contact with a preexisting structure.

20 Fig. 4 is a flow chart illustrating an alternative preferred embodiment of a method for coupling a plurality of tubular members to a preexisting structure.

#### Detailed Description

A method and apparatus for coupling tubular members to a preexisting structure is provided. The internal surfaces of the tubular members are coated with a lubricant. The tubular members are then radially expanded into contact 25 with a preexisting structure. In several alternative embodiments, the method and apparatus are used to form and/or repair a wellbore casing, a pipeline, or a structural support.

In Fig. 1, a preferred embodiment of a method 100 for forming and/or repairing a wellbore casing, pipeline, or structural support includes the steps of: 30 (1) providing one or more tubular members in step 105; (2) applying a lubricant coating to the interior walls of the tubular members in step 110; (3) coupling the

first and second tubular members in step 115; and (4) radially expanding the tubular members into contact with the preexisting structure in step 120.

As illustrated in Fig. 2, in a preferred embodiment, in step 105, a first tubular member 205 having a first threaded portion 210 and a second tubular member 215 having a second threaded portion 220 are provided. The first and second tubular members, 205 and 215, may be any number of conventional commercially available tubular members. In a preferred embodiment, the first tubular member 205 includes a recess 225 containing a sealing member 230 and a retaining ring 235. In a preferred embodiment, the first and second tubular members, 205 and 210, are further provided substantially as disclosed in one or more of the following co-pending applications:

|    | Provisional Patent Application Number | Attorney Docket No. | Filing Date |
|----|---------------------------------------|---------------------|-------------|
| 15 | 60/108,558                            | 25791.9             | 11-16-1998  |
|    | 60/111,293                            | 25791.3             | 12-7-1998   |
|    | 60/119,611                            | 25791.8             | 2-11-1999   |
|    | 60/121,702                            | 25791.7             | 2-25-1999   |
| 20 | 60/121,841                            | 25791.12            | 2-26-1999   |
|    | 60/121,907                            | 25791.16            | 2-26-1999   |
|    | 60/124,042                            | 25791.11            | 3-11-1999   |
|    | 60/131,106                            | 25791.23            | 4-26-1999   |
| 25 | 60/137,998                            | 25791.17            | 6-7-1999    |
|    | 60/143,039                            | 25791.26            | 7-9-1999    |
|    | 60/146,203                            | 25791.25            | 7-29-1999   |
|    | 60/154,047                            | 25791.29            | 9-16-1999   |
|    | 60/159,082                            | 25791.34            | 10-12-1999  |
|    | 60/159,039                            | 25791.36            | 10-12-1999  |
|    | 60/159,033                            | 25791.37            | 10-12-1999  |
|    | 60/162,671                            | 25791.27            | 11-01-1999  |

Applicants incorporate by reference the disclosures of these applications.

In a preferred embodiment, in step 110, a coating 240 of a lubricant is applied to the interior surfaces of the first and second tubular members, 205 and 215. The coating 240 of lubricant may be applied prior to, or after, the first and second tubular members, 205 and 215, are coupled. The coating 240 of lubricant may be applied using any number of conventional methods such as, for example, dipping, spraying, sputter coating or electrostatic deposition. In a preferred embodiment, the coating 240 of lubricant is chemically, mechanically, and/or adhesively bonded to the interior surfaces of the first and second tubular members, 205 and 215, in order to optimally provide a durable and consistent lubricating effect. In a preferred embodiment, the force that bonds the lubricant to the interior surfaces of the first and second tubular members, 205 and 215, is greater than the shear force applied during the radial expansion process.

In a preferred embodiment, the coating 240 of lubricant is applied to the interior surfaces of the first and second tubular members, 205 and 215, by first applying a phenolic primer to the interior surfaces of the first and second tubular members, 205 and 215, and then bonding the coating 240 of lubricant to the phenolic primer using an antifriction paste having the coating 240 of lubricant carried in an epoxy resin. In a preferred embodiment, the antifriction paste includes, by weight, 40-80% epoxy resin, 15-30% molybdenum disulfide, 10-15% graphite, 5-10% aluminum, 5-10% copper, 8-15% alumisilicate, and 5-10% polyethylenepolyamine. In a preferred embodiment, the antifriction paste is provided substantially as disclosed in U.S. Patent No. 4,329,238, the disclosure of which is incorporated herein by reference.

The coating 240 of lubricant may be any number of conventional commercially available lubricants such as, for example, metallic soaps or zinc phosphates. In a preferred embodiment, the coating 240 of lubricant is compatible with conventional water, oil and synthetic base mud formulations. In a preferred embodiment, the coating 240 of lubricant reduces metal-to-metal frictional forces, operating pressures, reduces frictional forces by about 50%, and provides a coefficient of dynamic friction of between about 0.08 to 0.1 during the radial expansion process. In a preferred embodiment, the coating 240 of lubricant does

not increase the toxicity of conventional base mud formulations and will not shear in synthetic mud. In a preferred embodiment, the coating 240 of lubricant is stable for temperatures ranging from about -100 to 500 °F. In a preferred embodiment, the coating 240 of lubricant is stable when exposed to shear stresses. In a 5 preferred embodiment, the coating 240 of lubricant is stable for storage periods of up to about 5 years. In a preferred embodiment, the coating 240 of lubricant provides corrosion protection for expandable tubular members during storage and transport.

In a preferred embodiment, the coating 240 of lubricant includes sodium, 10 calcium, and/or zinc stearates; and/or zinc and/or manganese phosphates; and/or C-Lube-10; and/or C-Phos-58-M; and/or C-Phos-58-R; and/or polytetrafluoroethylene (PTFE); and/or molybdenum disulfide; and/or metallic soaps (stearates, oleates, etc ...) in order to optimally provide a coating of lubricant. In a preferred embodiment, the coating 240 of lubricant provides a sliding 15 coefficient of friction less than about 0.20 in order to optimally reduce the force required to radially expand the tubular members, 205 and 215, using an expansion cone.

In a preferred embodiment, in step 115, the first and second tubular members, 205 and 215, are coupled. The first and second tubular members, 205 20 and 215, may be coupled using a threaded connection, or, alternatively, the first and second tubular members, 205 and 215, may be coupled by welding or brazing. In a preferred embodiment, the first and second tubular members, 205 and 215, are coupled substantially as disclosed in provisional patent application serial number 60/159,033, attorney docket number 25791.37, filed on October 12, 1999, 25 the disclosure of which is incorporated herein by reference.

As illustrated in Fig. 3, in steps 120, the first and second tubular members 205 and 215 are then positioned within a preexisting structure 505, and radially expanded into contact with the interior walls of the preexisting structure 505 using an expansion cone 510. The tubular members 205 and 215 may be radially 30 expanded into intimate contact with the interior walls of the preexisting structure 505, for example, by: (1) pushing or pulling the expansion cone 510 through the interior of the tubular members 205 and 215; and/or (2) pressurizing the region

within the tubular members 205 and 215 behind the expansion cone 510 with a fluid. In a preferred embodiment, one or more sealing members 515 are further provided on the outer surface of the tubular members 205 and 215, in order to optimally seal the interface between the radially expanded tubular members 205 and 215 and the interior walls of the preexisting structure 505.

In a preferred embodiment, the radial expansion of the tubular members 205 and 215 into contact with the interior walls of the preexisting structure 505 is performed substantially as disclosed in one or more of the following co-pending patent applications:

|    | U.S. Provisional Patent Application Number | Attorney Docket No. | Filing Date |
|----|--------------------------------------------|---------------------|-------------|
| 10 | 60/108,558                                 | 25791.9             | 11-16-1998  |
|    | 60/111,293                                 | 25791.3             | 12-7-1998   |
| 15 | 60/119,611                                 | 25791.8             | 2-11-1999   |
|    | 60/121,702                                 | 25791.7             | 2-25-1999   |
| 20 | 60/121,841                                 | 25791.12            | 2-26-1999   |
|    | 60/121,907                                 | 25791.16            | 2-26-1999   |
| 25 | 60/124,042                                 | 25791.11            | 3-11-1999   |
|    | 60/131,106                                 | 25791.23            | 4-26-1999   |
|    | 60/137,998                                 | 25791.17            | 6-7-1999    |
|    | 60/143,039                                 | 25791.26            | 7-9-1999    |
|    | 60/146,203                                 | 25791.25            | 7-29-1999   |
|    | 60/154,047                                 | 25791.29            | 9-16-1999   |
|    | 60/159,082                                 | 25791.34            | 10-12-1999  |
|    | 60/159,039                                 | 25791.36            | 10-12-1999  |
|    | 60/159,033                                 | 25791.37            | 10-12-1999  |
|    | 60/162,671                                 | 25791.27            | 11-01-1999  |

The disclosures of each of the above co-pending patent applications are incorporated by reference.

As illustrated in Fig. 4, an alternate embodiment of a method 400 for forming and/or repairing a wellbore casing, pipeline, or structural support includes 5 the steps of: (1) providing one or more tubular members in step 405; (2) applying a coating including a first part of a lubricant to the interior walls of the tubular members in step 410; (3) coupling the first and second tubular members in step 415; and (4) radially expanding the tubular members into contact with the preexisting structure while also circulating fluidic materials into contact with the 10 interior walls of the tubular members having a second part of the lubricant in step 420.

In a preferred embodiment, in step 410, a coating including a first part of a lubricant is applied to the interior walls of the tubular members, 205 and 215. In a preferred embodiment, the first part of the lubricant forms a first part of a 15 metallic soap. In an preferred embodiment, the first part of the lubricant coating includes zinc phosphate.

In a preferred embodiment, in step 420, a second part of the lubricant is circulated within a fluidic carrier into contact with the coating of the first part of the lubricant applied to the interior walls of the tubular members, 205 and 215. In a 20 preferred embodiment, the first and second parts react to form a lubricating layer between the interior walls of the tubular members, 205 and 215, and the exterior surface of the expansion cone. In this manner, a lubricating layer is provided in exact concentration, exactly when and where it is needed. Furthermore, because the second part of the lubricant is circulated in a carrier fluid, the dynamic 25 interface between the interior surfaces of the tubular members, 205 and 215, and the exterior surface of the expansion cone 510 is also preferably provided with hydrodynamic lubrication. In a preferred embodiment, the first and second parts of the lubricant react to form a metallic soap. In a preferred embodiment, the second part of the lubricant is sodium, calcium and/or zinc stearate.

30 In several experimental exemplary embodiments of the methods 100 and 400, the following observations were made regarding lubricant coatings for expandable tubular members:

- (1) boundary lubrication with a lubricant coating having high adhesion (high film/shear strength) to the expandable tubular is the single-most important lubricant/lubrication process in the radial expansion process;
- 5 (2) hydrodynamic lubrication plays a secondary role in the lubrication process;
- (3) expandable tubular lubricant coating offers the more reliable and more effective form of boundary lubrication;
- (4) a liquid lubricant viscosity and/or film strength that provides effective, consistent boundary lubrication typically limits the effectiveness of additives for the mud alone to provide the necessary lubrication while maintaining drilling fluid properties (rheology, toxicity);
- 10 (5) consistent reductions of 20 to 25 percent in propagation force during the radial expansion process (compared to uncoated expandable tubular control results) were obtained with the following dry film coatings: (1) polytetrafluoroethylene (PTFE), (2) molybdenum disulfide, and (3) metallic soap (stearates), these results are for laboratory tests on one inch dry pipe, in the absence of any drilling fluid;
- 15 (6) a 20 to 25 percent reduction in propagation force during the radial expansion process was observed;
- (7) synthetic oil muds do not typically provide sufficient, reliable lubrication for uncoated pipe;
- 20 (8) the coefficient of friction for expandable tubular lubricant coatings remains essentially constant across a wide temperature range;
- (9) the expected application range for expandable tubular casing expansion is between 40 °F and 400 °F, this range is well within the essentially constant range for coefficient of friction for good coatings;
- 25 (10) and
- 30 (10) good extreme pressure boundary lubricants have a characteristic of performing better (lower coefficients of friction) as the load increases,

coefficients of friction between 0.02 and 0.08 are reported for some coatings.

In a preferred embodiment, the optimum lubrication for in-situ expandable tubular radial expansion operations using the methods 100 and/or 400 includes a 5 combination of lubrication techniques and lubricants. These can be summarized as follows: (1) extreme pressure lubricants/lubrication techniques; and (2) hydrodynamic lubrication from the fluid in the pipe during expansion.

Extreme pressure lubrication is preferably provided by: (1) liquid extreme pressure lubricants added to the fluid (e.g., drilling fluid, etc) in contact with the 10 internal surface of the expandable tubular during the radial expansion process, and/or (2) solid lubricants added to the fluid added to, or contained within, the fluid in contact with the internal surface of the expandable tubular member during the radial expansion process, and/or (3) solid lubricants applied to the internal surface of the expandable tubular member to be radially expanded, and/or (4) 15 combinations of (1), (2) and (3) above.

Liquid extreme pressure lubricant additives preferably work by chemically adhering to or being strongly attracted to the surface of the expandable tubular to be expanded. These types of liquid extreme pressure lubricant additives preferably form a 'film' on the surface of the expandable tubular member. The adhesive 20 strength of this film is preferably greater than the shearing force along the internal surface of the expandable tubular member during the radial expansion process. This adhesive force is referred to as film strength. The film strength can be increased by increasing the viscosity of the fluid. Common viscosifiers, such as polymeric additives, are preferably added to the fluid in contact with the internal 25 surface of the expandable tubular member during the radial expansion process to increase lubrication. In a preferred embodiment, these liquid extreme pressure lubricant additives include one or more of the following: polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives such as, for example, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol 30 polymers, polyvinyl acetate polymers, polyvinyl alcohol/vinyl acetate copolymers, polyvinyl pyrrolidone and copolymers including polyolefins, latexes such as, for example, styrene butadiene latex, urethane latexes, styrene-maleic anhydride

copolymers, viscosity index improvers for motor oils such as polyacrylate esters, block copolymers including styrene, isoprene butadiene and ethylene, ethylene acrylic acid copolymers.

In a preferred embodiment, extreme pressure lubrication is provided using  
5 solid lubricants that are applied to the internal surface of the expandable tubular member. These solid lubricants can be applied using various conventional methods of applying a film to a surface. In a preferred embodiment, these solid lubricants are applied in a manner that ensures that the solid lubricants remain on the surface of the expandable tubular member during installation and radial  
10 expansion of the expandable tubular member. The solid lubricants preferably include one or more of the following: graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene (PTFE), or silicone polymers. Furthermore, blends of these solid lubricants are preferred.

In a preferred embodiment, the solid lubricants are applied directly to the  
15 expandable tubulars as coatings. The coating of the solid lubricant preferably includes a binder to help hold or fix the solid lubricant to the expandable tubular. The binders preferably include curable resins such as, for example, epoxies, acrylic, urea-formaldehyde, melamine formaldehyde, furan based resins, acetone formaldehyde, phenolic, alkyd resins, silicone modified alkyd resins, etc. The  
20 binder is preferably selected to withstand the expected temperature range, pH, salinity and fluid types during the installation and radial expansion operations. Polymeric materials are preferably used to bind the solid lubricants to the expandable tubular such as, for example, "self-adhesive" polymers such as those copolymers or terpolymers based upon vinyl acetate, vinyl chloride, maleic  
25 anhydride/maleic acid, and ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers and ethylene-vinyl acetate copolymers. In an alternative embodiment, the solid lubricants are applied as suspensions of fine particles in a carrier solvent without the presence/use of a chemical binder.

In a preferred embodiment, the solid lubricant coating and the liquid  
30 lubricant additive (added to the fluid in contact with the internal surface of the expandable tubular member during the radial expansion process) interact during the radial expansion process to improve the overall lubrication. In an exemplary

embodiment, for phosphate solid lubricant coatings, manganese phosphate is preferred over zinc or iron phosphate because it more effectively attracts and retains liquid lubricant additives such as oils, esters, amides, etc.

- In a preferred embodiment, solid lubricant coatings use binders that provide
- 5 low friction that is enhanced under extreme pressure conditions by the presence of the solid lubricant. Preferred solid lubricant coatings includes one or more of the following: graphite, molybdenum disulfide, silicone polymers and polytetrafluoroethylene (PTFE). In a preferred embodiment, blends of these materials are used since each material has lubrication characteristics that
- 10 optimally work at different stages in the radial expansion process. In a preferred embodiment, a solid, dry film lubricant coating for the internal surface of the expandable tubular includes: (1) 1 to 90 percent solids by volume; (2) more preferably, 5 to 70 percent solids by volume; and (3) most preferably, 15 to 50 percent solids by volume. In a preferred embodiment, the solid lubricants include:
- 15 (1) 5 to 80 percent graphite; (2) 5 to 80 percent molybdenum disulfide; (3) 1 to 40 percent PTFE; and (4) 1 to 40 percent silicone polymers.

- In several exemplary embodiment, the liquid lubricant additives include one or more of the following: (1) esters including: (a) organic acid esters (preferably fatty acid esters) such as, for example, trimethylol propane, isopropyl, 20 penterithritol, n-butyl, etc.; (b) glycerol tri(acetoxy stearate) and N,N' ethylene bis 12 hydroxystearate and octyl hydroxystearate; (c) phosphate and phosphite such as, for example, butylated triphenyl phosphate and isodiphenyl phosphate; (2) sulfurized natural and synthetic oils; (3) alkanolamides such as, for example, coco diethanolamide; (4) amines and amine salts; (5) olefins and polyolefins; (6) C-8 to 25 C-18 linear alcohols and derivatives containing or consisting of esters, amines, carboxylates, etc.; (7) overbased sulfonates such as, for example, calcium sulfonate, sodium sulfonate, magnesium sulfonate; (8) polyethylene glycols; (9) silicones and siloxanes such as, for example, dimethylpolysiloxanes and fluorosilicone derivatives; (10) dinonyl phenols; and (11) ethylene oxide/propylene oxide block 30 copolymers.

An expandable tubular assembly has been described that includes one or more tubular members and a layer of a lubricant coupled to the interior surfaces

of the tubular members. In a preferred embodiment, the lubricant includes a metallic soap. In a preferred embodiment, the lubricant is selected from the group consisting of sodium, calcium, and/or zinc stearates, zinc phosphates, manganese phosphate, C-Lube-10, C-PHOS-58-M, C-PHOS-58-R, graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene (PTFE), and silicone polymers. In a preferred embodiment, the lubricant provides a sliding friction coefficient of less than about 0.20. In a preferred embodiment, the lubricant is chemically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the lubricant is mechanically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the lubricant is adhesively bonded to the interior surface of the tubular members. In a preferred embodiment, the lubricant includes epoxy, molybdenum disulfide, graphite, aluminum, copper, alumisilicate and polyethylenepolyamine. In a preferred embodiment, the layer of lubricant includes: a binder and a solid lubricant material. In a preferred embodiment, the binder is selected from the group consisting of: epoxy, acrylic, urea-formaldehyde, phenolic, alkyd resins, silicone modified alkyd resins, vinyl acetate, vinyl chloride, and maleic anhydride/maleic acid. In a preferred embodiment, the solid lubricant material is selected from the group consisting of: graphite, molybdenum disulfide, silicone polymers, and polytetrafluoroethylene. In a preferred embodiment, the solid lubricant material includes: graphite, molybdenum disulfide, polytetrafluoroethylene, and silicone polymers. In a preferred embodiment, the solid lubricant material includes: about 5 to 80 percent of graphite, about 5 to 80 percent of molybdenum disulfide, about 1 to 40 percent polytetrafluoroethylene, and about 1 to 40 percent silicone polymers. In a preferred embodiment, the layer of lubricant includes about 1% to 90% of the solid lubricant material by volume. In a preferred embodiment, the layer of lubricant includes about 5% to 70% of the solid lubricant material by volume. In a preferred embodiment, the layer of lubricant includes about 15% to 50% of the solid lubricant material by volume.

30 A method of coupling an expandable tubular assembly including one or more tubular members to a preexisting structure has also been described that includes coating the interior surfaces of the tubular members with a lubricant,

positioning the tubular members within a preexisting structure and radially expanding the tubular members into contact with the preexisting structure. In a preferred embodiment, the lubricant coating includes a metallic soap. In a preferred embodiment, the lubricant coating is selected from the group consisting of sodium, calcium, and/or zinc stearates, zinc phosphates, manganese phosphate, C-Lube-10, C-PHOS-58-M, C-PHOS-58-R, graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene (PTFE), and silicone polymers.

In a preferred embodiment, the lubricant coating provides a sliding friction coefficient of less than about 0.20. In a preferred embodiment, the lubricant coating is chemically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the lubricant coating is mechanically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the lubricant coating is adhesively bonded to the interior surface of the tubular members. In a preferred embodiment, the lubricant coating includes epoxy, molybdenum disulfide, graphite, aluminum, copper, alumisilicate and polyethylenepolyamine. In a preferred embodiment, the lubricant coating includes: a binder, and a solid lubricant material. In a preferred embodiment, the binder is selected from the group consisting of: epoxy, acrylic, urea-formaldehyde, phenolic, alkyd resins, silicone modified alkyd resins, vinyl acetate, vinyl chloride, and maleic anhydride/maleic acid. In a preferred embodiment, the solid lubricant material is selected from the group consisting of: graphite, molybdenum disulfide, silicone polymers, and polytetrafluoroethylene. In a preferred embodiment, the solid lubricant material includes: graphite, molybdenum disulfide, polytetrafluoroethylene, and silicone polymers. In a preferred embodiment, the solid lubricant material includes: about 5 to 80 percent of graphite, about 5 to 80 percent of molybdenum disulfide, about 1 to 40 percent polytetrafluoroethylene, and about 1 to 40 percent silicone polymers. In a preferred embodiment, the lubricant coating includes about 1% to 90% of the solid lubricant material by volume. In a preferred embodiment, the lubricant coating includes about 5% to 30% of the solid lubricant material by volume. In a preferred embodiment, the lubricant coating includes about 15% to 50% of the solid lubricant material by volume. In a preferred embodiment, the method further includes: injecting a

quantity of a lubricating material into contact with the expandable tubular assembly. In a preferred embodiment, the lubricant coating includes a first part of a lubricating substance; and the lubricating material includes a second part of the lubricating substance.

- 5 An apparatus has also been described that includes a preexisting structure and one or more tubular members coupled to the preexisting structure. The tubular members are coupled to the preexisting structure by the process of: coating the interior surfaces of the tubular members with a lubricant, positioning the tubular members within a preexisting structure, and radially expanding the  
10 tubular members into contact with the preexisting structure. In a preferred embodiment, the lubricant coating includes a metallic soap. In a preferred embodiment, the lubricant coating is selected from the group consisting of sodium, calcium, and/or zinc stearates, zinc phosphates, manganese phosphate, C-Lube-10, C-PHOS-58-M, C-PHOS-58-R, graphite, molybdenum disulfide, lead powder,  
15 antimony oxide, poly tetrafluoroethylene (PTFE), and silicone polymers. In a preferred embodiment, the lubricant coating provides a sliding friction coefficient of less than about 0.20. In a preferred embodiment, the lubricant coating is chemically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the lubricant coating is mechanically bonded to the interior surfaces  
20 of the tubular members. In a preferred embodiment, the lubricant coating is adhesively bonded to the interior surface of the tubular members. In a preferred embodiment, the lubricant coating includes epoxy, molybdenum disulfide, graphite, aluminum, copper, alumisilicate and polyethylenepolyamine. In a preferred embodiment, the lubricant coating includes: a binder and a solid  
25 lubricant material. In a preferred embodiment, the binder is selected from the group consisting of: epoxy, acrylic, urea-formaldehyde, phenolic, alkyd resins, silicone modified alkyd resins, vinyl acetate, vinyl chloride, and maleic anhydride/maleic acid. In a preferred embodiment, the solid lubricant material is selected from the group consisting of: graphite, molybdenum disulfide, silicone  
30 polymers, and polytetrafluoroethylene. In a preferred embodiment, the solid lubricant material includes: graphite, molybdenum disulfide, polytetrafluoroethylene, and silicone polymers. In a preferred embodiment, the

solid lubricant material includes: about 5 to 80 percent of graphite, about 5 to 80 percent of molybdenum disulfide, about 1 to 40 percent polytetrafluoroethylene, and about 1 to 40 percent silicone polymers. In a preferred embodiment, the lubricant coating includes about 1% to 90% of the solid lubricant material by volume. In a preferred embodiment, the lubricant coating includes about 5% to 70% of the solid lubricant material by volume. In a preferred embodiment, the lubricant coating includes about 15% to 50% of the solid lubricant material by volume. In a preferred embodiment, the method further includes: injecting a quantity of a lubricating material into contact with the expandable tubular assembly. In a preferred embodiment, the lubricant coating includes a first part of a lubricating substance; and the injected lubricating material includes a second part of the lubricating substance.

An expandable tubular assembly has also been described that includes one or more tubular members and a layer of a first part of a lubricant coupled to the interior surfaces of the tubular members. In a preferred embodiment, the lubricant includes a metallic soap. In a preferred embodiment, the lubricant is selected from the group consisting of sodium, calcium, and/or zinc stearates, zinc phosphates, manganese phosphate, C-Lube-10, C-PHOS-58-M, C-PHOS-58-R, graphite, molybdenum disulfide, lead powder, antimony oxide, polytetrafluoroethylene (PTFE), and silicone polymers. In a preferred embodiment, the lubricant provides a sliding friction coefficient of less than about 0.20. In a preferred embodiment, the lubricant is chemically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the lubricant is mechanically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the lubricant is adhesively bonded to the interior surface of the tubular members. In a preferred embodiment, the lubricant includes epoxy, molybdenum disulfide, graphite, aluminum, copper, alumisilicate and polyethylenepolyamine. In a preferred embodiment, the layer of lubricant includes: a binder and a solid lubricant material. In a preferred embodiment, the binder is selected from the group consisting of: epoxy, acrylic, urea-formaldehyde, phenolic, alkyd resins, silicone modified alkyd resins, vinyl acetate, vinyl chloride, and maleic anhydride/maleic acid. In a

preferred embodiment, the solid lubricant material is selected from the group consisting of: graphite, molybdenum disulfide, silicone polymers, and polytetrafluoroethylene. In a preferred embodiment, the solid lubricant material includes: graphite, molybdenum disulfide, polytetrafluoroethylene, and silicone polymers. In a preferred embodiment, the solid lubricant material includes: about 5 to 80 percent of graphite, about 5 to 80 percent of molybdenum disulfide, about 1 to 40 percent polytetrafluoroethylene, and about 1 to 40 percent silicone polymers. In a preferred embodiment, the layer of lubricant includes about 1% to 90% of the solid lubricant material by volume. In a preferred embodiment, the layer of lubricant includes about 5% to 70% of the solid lubricant material by volume. In a preferred embodiment, the layer of lubricant includes about 15% to 50% of the solid lubricant material by volume.

A method of coupling an expandable tubular assembly including one or more tubular members to a preexisting structure has also been described that includes positioning the expandable tubular assembly into the preexisting structure, injecting a quantity of a lubricant material into contact with the expandable tubular assembly, and radially expanding the expandable tubular assembly into contact with the preexisting structure. In a preferred embodiment, the injected lubricant material includes a liquid lubricant material. In a preferred embodiment, the liquid lubricant material is selected from the group consisting of: polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethylhydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol/vinyl acetate copolymers, polyvinyl pyrrolidone, copolymers including polyolefins, latexes, styrene butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, isoprene butadiene and ethylene, ethylene acrylic acid copolymers, esters, organic acid esters, trimethylol propane, isopropyl penterithritol, n-butyl, glycerol triacetoxy stearate, N,N' ethylene bis 12 hydroxystearate, octyl hydroxystearate, phosphate, phosphite, butylated triphenyl phosphate, isodiphenyl phosphate, sulfurized natural oils, synthetic oils, alkanolamides, coco diethanolamide, amines, amine salts, olefins, polyolefins, C-8

to C-18 linear alcohols and derivatives including esters, amines, carboxylates, overbased sulfonates, calcium sulfonate, sodium sulfonate, magnesium sulfonate, polyethylene glycols, silicones, siloxanes, dimethylpolysiloxanes, fluorosilicone derivatives, dinonyl phenols, and ethylene oxide/propylene oxide block copolymers.

- 5 In a preferred embodiment, the injected lubricant material includes a solid lubricant material. In a preferred embodiment, the solid lubricant material is selected from the group consisting of: graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene, and silicone polymers. In a preferred embodiment, the method further includes: coating the interior surfaces
- 10 of the tubular members with a lubricant prior to positioning the tubular members within the preexisting structure. In a preferred embodiment, the lubricant coating includes a first part of a lubricating substance; and the injected lubricating material includes a second part of the lubricating substance.

An apparatus has also been described that includes a preexisting structure and one or more tubular members coupled to the preexisting structure. The tubular members are coupled to the preexisting structure by the process of: positioning the tubular members into the preexisting structure, injecting a quantity of a lubricant material into contact with the tubular members, and radially expanding the tubular members into contact with the preexisting structure. In a preferred embodiment, the injected lubricant material includes a liquid lubricant material. In a preferred embodiment, the liquid lubricant material is selected from the group consisting of: polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol/vinyl acetate copolymers, polyvinyl pyrrolidone, copolymers including polyolefins, latexes, styrene butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, isoprene butadiene and ethylene, ethylene acrylic acid copolymers, esters, organic acid esters, trimethylol propane, isopropyl, penterithritol, n-butyl, glycerol triacetoxystearate, N,N' ethylene bis 12 hydroxystearate, octyl hydroxystearate, phosphate, phosphite, butylated triphenyl phosphate, isodiphenyl phosphate, sulfurized natural oils,

synthetic oils, alkanolamides, coco diethanolamide, amines, amine salts, olefins, polyolefins, C-8 to C-18 linear alcohols and derivatives including esters, amines, carboxylates, overbased sulfonates, calcium sulfonate, sodium sulfonate, magnesium sulfonate, polyethylene glycols, silicones, siloxanes,

5 dimethylpolysiloxanes, fluorosilicone derivatives, dinonyl phenols, and ethylene oxide/propylene oxide block copolymers. In a preferred embodiment, the injected lubricant material includes a solid lubricant material. In a preferred embodiment, the solid lubricant material is selected from the group consisting of: graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene, and

10 silicone polymers. In a preferred embodiment, the apparatus further includes: coating the interior surfaces of the tubular members with a lubricant prior to positioning the tubular members within the preexisting structure. In a preferred embodiment, the lubricant coating includes a first part of a lubricating substance; and the injected lubricating material includes a second part of the lubricating

15 substance.

A method of coupling an expandable tubular assembly including one or more tubular members to a preexisting structure has also been described that includes: coating the interior surfaces of the tubular members with a first part of a lubricant, positioning the tubular members within a preexisting structure,

20 circulating a fluidic material including a second part of the lubricant into contact with the coating of the first part of the lubricant, and radially expanding the tubular members into contact with the preexisting structure. In a preferred embodiment, the lubricant includes a metallic soap. In a preferred embodiment, the lubricant is selected from the group consisting of sodium, calcium, and/or zinc

25 stearates, zinc phosphates, manganese phosphate, C-Lube-10, C-PHOS-58-M, and C-PHOS-58-R. In a preferred embodiment, the lubricant provides a sliding friction coefficient of less than about 0.20. In a preferred embodiment, the first part of the lubricant is chemically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the first part of the lubricant is mechanically bonded to

30 the interior surfaces of the tubular members. In a preferred embodiment, the first part of the lubricant is adhesively bonded to the interior surface of the tubular

members. In a preferred embodiment, the method further includes: combining the first and second parts of the lubricant to generate the lubricant.

An apparatus has also been described that includes a preexisting structure and one or more tubular members coupled to the preexisting structure. The 5 tubular members are coupled to the preexisting structure by the process of: coating the interior surfaces of the tubular members with a first part of a lubricant, positioning the tubular members within a preexisting structure, circulating a fluidic materials having a second part of the lubricant into contact with the coating of the first part of the lubricant, and radially expanding the tubular members into 10 contact with the preexisting structure. In a preferred embodiment, the lubricant includes a metallic soap. In a preferred embodiment, the lubricant is selected from the group consisting of sodium, calcium, and/or zinc stearates, zinc phosphates, manganese phosphate, C-Lube-10, C-PHOS-58-M, and C-PHOS-58-R. In a preferred embodiment, the lubricant provides a sliding friction coefficient of less 15 than about 0.20. In a preferred embodiment, the first part of the lubricant is chemically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the first part of the lubricant is mechanically bonded to the interior surfaces of the tubular members. In a preferred embodiment, the first part of the lubricant is adhesively bonded to the interior surface of the tubular members. In 20 a preferred embodiment, the apparatus further includes combining the first and second parts of the lubricant to generate the lubricant.

Although this detailed description has shown and described illustrative embodiments of the invention, this description contemplates a wide range of modifications, changes, and substitutions. In some instances, one may employ 25 some features of the present invention without a corresponding use of the other features. Accordingly, it is appropriate that readers should construe the appended claims broadly, and in a manner consistent with the scope of the invention.

## Claims

1 1. An expandable tubular assembly, comprising:  
2 one or more tubular members; and  
3 a layer of a lubricant coupled to the interior surfaces of the tubular  
4 members.

1 2. A method of coupling an expandable tubular assembly including one or  
2 more tubular members to a preexisting structure, comprising:  
3 coating the interior surfaces of the tubular members with a lubricant;  
4 positioning the tubular members within a preexisting structure; and  
5 radially expanding the tubular members into contact with the preexisting  
6 structure.

1 3. An apparatus, comprising:  
2 a preexisting structure; and  
3 one or more tubular members coupled to the preexisting structure by the  
4 process of:  
5 coating the interior surfaces of the tubular members with a  
6 lubricant;  
7 positioning the tubular members within a preexisting structure; and  
8 radially expanding the tubular members into contact with the  
9 preexisting structure.

1 4. An expandable tubular assembly, comprising:  
2 one or more tubular members; and  
3 a layer of a first part of a lubricant coupled to the interior surfaces of the  
4 tubular members.

1 5. A method of coupling an expandable tubular assembly including one or  
2 more tubular members to a preexisting structure, comprising:  
3 positioning the expandable tubular assembly into the preexisting structure;

4       injecting a quantity of a lubricant material into contact with the expandable  
5           tubular assembly; and  
6       radially expanding the expandable tubular assembly into contact with the  
7           preexisting structure.

1   6.   An apparatus, comprising:  
2       a preexisting structure; and  
3       one or more tubular members coupled to the preexisting structure by the  
4           process of:  
5       positioning the tubular members into the preexisting structure;  
6       injecting a quantity of a lubricant material into contact with the  
7           tubular members; and  
8       radially expanding the tubular members into contact with the  
9           preexisting structure.

1   7.   A method of coupling an expandable tubular assembly including one or  
2   more tubular members to a preexisting structure, comprising:  
3       coating the interior surfaces of the tubular members with a first part of a  
4           lubricant;  
5       positioning the tubular members within a preexisting structure;  
6       circulating a fluidic material including a second part of the lubricant into  
7           contact with the coating of the first part of the lubricant; and  
8       radially expanding the tubular members into contact with the preexisting  
9           structure.

1   8.   An apparatus, comprising:  
2       a preexisting structure; and  
3       one or more tubular members coupled to the preexisting structure by the  
4           process of:  
5       coating the interior surfaces of the tubular members with a first part  
6           of a lubricant;  
7       positioning the tubular members within a preexisting structure;

8           circulating a fluidic materials having a second part of the lubricant  
9           into contact with the coating of the first part of the lubricant;  
10           and  
11           radially expanding the tubular members into contact with the  
12           preexisting structure.

**AMENDED CLAIMS**

[received by the International Bureau on 08 February 2001 (08.02.01)  
new claims 9-176 added;  
remaining claims unchanged (32 pages)]

1. An expandable tubular assembly, comprising:  
one or more tubular members coupled to one another; and  
a layer of a lubricant coupled to the interior surfaces of the tubular members.  
5
2. A method of coupling an expandable tubular assembly including one or more tubular members to a preexisting structure, comprising:  
coating the interior surfaces of the tubular members with a lubricant;  
positioning the tubular members within a preexisting structure; and  
10 radially expanding the tubular members into contact with the preexisting structure.
3. An apparatus, comprising:  
a preexisting structure; and  
15 one or more tubular members coupled to the preexisting structure by the process of:  
coating the interior surfaces of the tubular members with a lubricant;  
positioning the tubular members within a preexisting structure; and  
radially expanding the tubular members into contact with the preexisting  
20 structure.
4. An expandable tubular assembly, comprising:  
one or more tubular members; and  
a layer of a first part of a lubricant coupled to the interior surfaces of the tubular  
25 members.
5. A method of coupling an expandable tubular assembly including one or more

- tubular members to a preexisting structure, comprising:
- positioning the expandable tubular assembly into the preexisting structure;
- injecting a quantity of a lubricant material into contact with the expandable tubular assembly; and
- radially expanding the expandable tubular assembly into contact with the preexisting structure.
- 5
6. An apparatus, comprising:
- a preexisting structure; and
- one or more tubular members coupled to the preexisting structure by the process of:
- positioning the tubular members into the preexisting structure;
- injecting a quantity of a lubricant material into contact with the tubular members; and
- radially expanding the tubular members into contact with the preexisting structure.
- 10
- 15
7. A method of coupling an expandable tubular assembly including one or more tubular members to a preexisting structure, comprising:
- coating the interior surfaces of the tubular members with a first part of a lubricant;
- positioning the tubular members within a preexisting structure;
- circulating a fluidic material including a second part of the lubricant into contact with the coating of the first part of the lubricant; and
- radially expanding the tubular members into contact with the preexisting structure.
- 20
- 25
8. An apparatus, comprising:
- a preexisting structure; and

one or more tubular members coupled to the preexisting structure by the  
process of:  
coating the interior surfaces of the tubular members with a first part of a  
lubricant;  
5 positioning the tubular members within a preexisting structure;  
circulating a fluidic materials having a second part of the lubricant into  
contact with the coating of the first part of the lubricant; and  
radially expanding the tubular members into contact with the preexisting  
structure.

- 10 9. The expandable tubular assembly of claim 1, wherein the tubular members  
comprise wellbore casings.
- 15 10. The expandable tubular assembly of claim 1, wherein the tubular members  
comprise underground pipes.
11. The expandable tubular assembly of claim 1, wherein the tubular members  
comprise structural supports.
- 20 12. The expandable tubular assembly of claim 1, wherein the coating of lubricant is  
chemically bonded to the interior surfaces of the tubular members.
13. The expandable tubular assembly of claim 1, wherein the coating of lubricant is  
mechanically bonded to the interior surfaces of the tubular members.
- 25 14. The expandable tubular assembly of claim 1, wherein the coating of lubricant is  
adhesively bonded to the interior surfaces of the tubular members.
15. The expandable tubular assembly of claim 1, wherein the coating of lubricant

includes:

a primer coating coupled to the interior surfaces of the tubular members; and  
a coating of an antifriction paste coupled to the primer.

5        16. The expandable tubular assembly of claim 1, wherein the coating of lubricant  
includes, by weight:

40-80% epoxy resin, 15-30% molybdenum disulfide, 10-15% graphite, 5-10%  
aluminum, 5-10% copper, 8-15% alumisilicate, and 5-10%  
polyethylenepolyamine.

10

17. The expandable tubular assembly of claim 1, wherein the coating of lubricant  
comprises a metallic soap.

15

18. The expandable tubular assembly of claim 1, wherein the coating of lubricant  
comprises zinc phosphate.

19. The expandable tubular assembly of claim 1, wherein the coating of lubricant  
provides a coefficient of dynamic friction of between about 0.08 to 0.1.

20

20. The expandable tubular assembly of claim 1, wherein the coating of lubricant is  
selected from the group consisting of:

sodium stearates, calcium stearates, zinc stearates, zinc phosphate, manganese  
phosphate, C-Lube-10, C-Phos-58-M, C-Phos-58-R,  
polytetrafluoroethylene, molybdenum disulfide, and metallic soaps.

25

21. The expandable tubular assembly of claim 1, wherein the coating of lubricant  
provides a sliding coefficient of friction less than about 0.20.

22. The expandable tubular assembly of claim 1, wherein the coating of lubricant is

74. The apparatus of claim 3, wherein the coating of lubricant comprises:
  - a solid lubricant; and
  - a binder.
- 5 75. The apparatus of claim 72, wherein the binder is selected from the group consisting of:  
epoxy, acrylic, urea-formaldehyde, melamine formaldehyde, furan based resin, acetone formaldehyde, phenolic, alkyd resins, and silicone modified alkyd resin.
- 10 76. The apparatus of claim 72, wherein the binder is selected from the group consisting of:  
vinyl acetate, vinyl chloride, maleic anhydride, maleic acid, ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, and ethylene-vinyl acetate copolymers.
- 15 77. The apparatus of claim 3, wherein the coating of lubricant comprises a suspension of particles in a carrier solvent.
- 20 78. The apparatus of claim 3, the coating of lubricant is selected from the group consisting of:  
manganese phosphate, zinc phosphate, and iron phosphate.
- 25 79. The apparatus of claim 3, wherein the coating of lubricant comprises:  
about 1 to 90 percent solids by volume.
80. The apparatus of claim 77, wherein the coating of lubricant comprises:  
about 5 to 70 percent solids by volume.

69. The apparatus of claim 3, wherein the coating of lubricant provides a coefficient of dynamic friction of between about 0.08 to 0.1.

5 70. The apparatus of claim 3, wherein the coating of lubricant is selected from the group consisting of:

sodium stearates, calcium stearates, zinc stearates, zinc phosphate, manganese phosphate, C-Lube-10, C-Phos-58-M, C-Phos-58-R, polytetrafluoroethylene, molybdenum disulfide, and metallic soaps.

10 71. The apparatus of claim 3, wherein the coating of lubricant provides a sliding coefficient of friction less than about 0.20.

72. The apparatus of claim 3, wherein the coating of lubricant is selected from the group consisting of:

15 polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol acetate copolymers, polyvinyl vinyl acetate copolymers, polyvinyl pyrrolidone and copolymers including polyolefins, latexes, styrene butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, block copolymers including isoprene butadiene, block copolymers including ethylene, and ethylene acrylic acid copolymers.

20 25 73. The apparatus of claim 3, wherein the coating of lubricant is selected from the group consisting of:

graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene, and silicone polymers.

60. The apparatus of claim 3, wherein the tubular members comprise underground pipes.
- 5 61. The apparatus of claim 3, wherein the tubular members comprise structural supports.
62. The apparatus of claim 3, wherein the coating of lubricant is chemically bonded to the interior surfaces of the tubular members.
- 10 63. The apparatus of claim 3, wherein the coating of lubricant is mechanically bonded to the interior surfaces of the tubular members.
64. The apparatus of claim 3, wherein the coating of lubricant is adhesively bonded to the interior surfaces of the tubular members.
- 15 65. The apparatus of claim 3, wherein the coating of lubricant includes:  
a primer coating coupled to the interior surfaces of the tubular members; and  
a coating of an antifriction paste coupled to the primer.
- 20 66. The apparatus of claim 3, wherein the coating of lubricant includes, by weight:  
40-80% epoxy resin, 15-30% molybdenum disulfide, 10-15% graphite, 5-10% aluminum, 5-10% copper, 8-15% alumisilicate, and 5-10% polyethylenepolyamine.
- 25 67. The apparatus of claim 3, wherein the coating of lubricant comprises a metallic soap.
68. The apparatus of claim 3, wherein the coating of lubricant comprises zinc phosphate.

57. The method of claim 2, wherein the coating of lubricant comprises:  
about 5 to 80 percent graphite;  
about 5 to 80 percent molybdenum disulfide;  
about 1 to 40 percent PTFE; and  
about 1 to 40 percent silicone polymers.
58. The method of claim 2, wherein the coating of lubricant comprises one or more of the following:  
ester;  
10 sulfurized oil;  
alkanolamides;  
amine;  
amine salt;  
olefin;  
15 polyolefins;  
C-8 to C-18 linear alcohol;  
derivative of C-8 to C-18 linear alcohol including ester;  
derivative of C-8 to C-18 linear alcohol including amine;  
derivative of C-8 to C-18 linear alcohol including carboxylate;  
20 sulfonate;  
polyethylene glycol;  
silicone;  
siloxane;  
dinonyl phenol;  
25 ethylene oxide block copolymer; and  
propylene oxide block copolymer.
59. The apparatus of claim 3, wherein the tubular members comprise wellbore casings.

a binder.

50. The method of claim 47, wherein the binder is selected from the group consisting of:

5        epoxy, acrylic, urea-formaldehyde, melamine formaldehyde, furan based resin, acetone formaldehyde, phenolic, alkyd resins, and silicone modified alkyd resin.

10      51. The method of claim 47, wherein the binder is selected from the group consisting of:

vinyl acetate, vinyl chloride, maleic anhydride, maleic acid, ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, and ethylene-vinyl acetate copolymers.

15      52. The method of claim 2, wherein the coating of lubricant comprises a suspension of particles in a carrier solvent.

53. The method of claim 2, the coating of lubricant is selected from the group consisting of:

20        manganese phosphate, zinc phosphate, and iron phosphate.

54. The method of claim 2, wherein the coating of lubricant comprises:  
about 1 to 90 percent solids by volume.

25      55. The method of claim 52, wherein the coating of lubricant comprises:  
about 5 to 70 percent solids by volume.

56. The method of claim 53, wherein the coating of lubricant comprises:  
about 15 to 50 percent solids by volume.

45. The method of claim 2, wherein the coating of lubricant is selected from the group consisting of:

sodium stearates, calcium stearates, zinc stearates, zinc phosphate, manganese phosphate, C-Lube-10, C-Phos-58-M, C-Phos-58-R,  
5 polytetrafluoroethylene, molybdenum disulfide, and metallic soaps.

46. The method of claim 2, wherein the coating of lubricant provides a sliding coefficient of friction less than about 0.20.

10 47. The method of claim 2, wherein the coating of lubricant is selected from the group consisting of:

polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol acetate copolymers, polyvinyl vinyl acetate copolymers, polyvinyl pyrrolidone and copolymers including polyolefins, latexes, styrene butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, block copolymers including isoprene  
15 butadiene, block copolymers including ethylene, and ethylene acrylic acid copolymers.

20 48. The method of claim 2, wherein the coating of lubricant is selected from the group consisting of:

25 graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene, and silicone polymers.

49. The method of claim 2, wherein the coating of lubricant comprises:  
a solid lubricant, and

supports.

37. The method of claim 2, wherein the coating of lubricant is chemically bonded to the interior surfaces of the tubular members.

5

38. The method of claim 2, wherein the coating of lubricant is mechanically bonded to the interior surfaces of the tubular members.

10

39. The method of claim 2, wherein the coating of lubricant is adhesively bonded to the interior surfaces of the tubular members.

40. The method of claim 2, wherein the coating of lubricant includes:  
a primer coating coupled to the interior surfaces of the tubular members; and  
a coating of an antifriction paste coupled to the primer.

15

41. The method of claim 2, wherein the coating of lubricant includes, by weight:  
40-80% epoxy resin, 15-30% molybdenum disulfide, 10-15% graphite, 5-10%  
aluminum, 5-10% copper, 8-15% alumisilicate, and 5-10%  
polyethylenepolyamine.

20

42. The method of claim 2, wherein the coating of lubricant comprises a metallic soap.

25

43. The method of claim 2, wherein the coating of lubricant comprises zinc phosphate.

44. The method of claim 2, wherein the coating of lubricant provides a coefficient of dynamic friction of between about 0.08 to 0.1.

about 1 to 40 percent silicone polymers.

33. The expandable tubular assembly of claim 1, wherein the coating of lubricant comprises one or more of the following:

5               ester;  
                  sulfurized oil;  
                  alkanolamides;  
                  amine;  
                  amine salt;  
10              olefin;  
                  polyolefins;  
                  C-8 to C-18 linear alcohol;  
                  derivatives of C-8 to C-18 linear alcohol including ester;  
                  derivatives of C-8 to C-18 linear alcohol including amine;  
15              derivatives of C-8 to C-18 linear alcohol including carboxylate;  
                  sulfonate;  
                  polyethylene glycol;  
                  silicone;  
                  siloxane;  
20              dinonyl phenol;  
                  ethylene oxide block copolymer; and  
                  propylene oxide block copolymer.

34. The method of claim 2, wherein the tubular members comprise wellbore casings.

25              35. The method of claim 2, wherein the tubular members comprise underground pipes.

36. The method of claim 2, wherein the tubular members comprise structural

from the group consisting of:

vinyl acetate, vinyl chloride, maleic anhydride, maleic acid, ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, and ethylene-vinyl acetate copolymers.

5

27. The expandable tubular assembly of claim 1, wherein the coating of lubricant comprises a suspension of particles in a carrier solvent.

10  
10

28. The expandable tubular assembly of claim 1, the coating of lubricant is selected from the group consisting of:

manganese phosphate, zinc phosphate, and iron phosphate.

15

29. The expandable tubular assembly of claim 1, wherein the coating of lubricant comprises:

about 1 to 90 percent solids by volume.

20

30. The expandable tubular assembly of claim 29, wherein the coating of lubricant comprises:

about 5 to 70 percent solids by volume.

25

31. The expandable tubular assembly of claim 30, wherein the coating of lubricant comprises:

about 15 to 50 percent solids by volume.

32

32. The expandable tubular assembly of claim 1, wherein the coating of lubricant comprises:

about 5 to 80 percent graphite;

about 5 to 80 percent molybdenum disulfide;

about 1 to 40 percent PTFE; and

selected from the group consisting of:

polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol acetate copolymers, polyvinyl vinyl acetate copolymers, polyvinyl pyrrolidone and copolymers including polyolefins, latexes, styrene butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, block copolymers including isoprene butadiene, block copolymers including ethylene, and ethylene acrylic acid copolymers.

23. The expandable tubular assembly of claim 1, wherein the coating of lubricant is selected from the group consisting of:

graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene, and silicone polymers.

24. The expandable tubular assembly of claim 1, wherein the coating of lubricant comprises:

a solid lubricant; and  
a binder.

25. The expandable tubular assembly of claim 24, wherein the binder is selected from the group consisting of:

epoxy, acrylic, urea-formaldehyde, melamine formaldehyde, furan based resin, acetone formaldehyde, phenolic, alkyd resins, and silicone modified alkyd resin.

26. The expandable tubular assembly of claim 24, wherein the binder is selected

120. The method of claim 5, wherein the lubricant is selected from the group consisting of:

manganese phosphate, zinc phosphate, and iron phosphate.

5 121. The method of claim 5, wherein the lubricant comprises:

about 1 to 90 percent solids by volume.

122. The method of claim 119, wherein the lubricant comprises:

about 5 to 70 percent solids by volume.

10

123. The method of claim 120, wherein the lubricant comprises:

about 15 to 50 percent solids by volume.

124. The method of claim 5, wherein the lubricant comprises:

15

about 5 to 80 percent graphite;

about 5 to 80 percent molybdenum disulfide;

about 1 to 40 percent PTFE; and

about 1 to 40 percent silicone polymers.

20

125. The method of claim 5, wherein the lubricant comprises one or more of the following:

ester;

sulfurized oil;

alkanolamides;

25

amine;

amine salt;

olefin;

polyolefins;

C-8 to C-18 linear alcohol;

consisting of:

sodium stearates, calcium stearates, zinc stearates, zinc phosphate, manganese phosphate, C-Lube-10, C-Phos-58-M, C-Phos-58-R, polytetrafluoroethylene, molybdenum disulfide, and metallic soaps.

5

116. The method of claim 5, wherein the lubricant provides a sliding coefficient of friction less than about 0.20.

10

117. The method of claim 5, wherein the lubricant is selected from the group consisting of:

15

polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol acetate copolymers, polyvinyl vinyl acetate copolymers, polyvinyl pyrrolidone and copolymers including polyolefins, latexes, styrene butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, block copolymers including isoprene butadiene, block copolymers including ethylene, and ethylene acrylic acid copolymers.

20

118. The method of claim 5, wherein the lubricant is selected from the group consisting of:

25

graphite, molybdenum disulfide, lead powder, antimony oxide, polytetrafluoroethylene, and silicone polymers.

119. The method of claim 5, wherein the lubricant comprises a suspension of particles in a carrier solvent.

polyolefins;  
C-8 to C-18 linear alcohol;  
derivatives of C-8 to C-18 linear alcohol including ester;  
derivatives of C-8 to C-18 linear alcohol including amine;  
5 derivatives of C-8 to C-18 linear alcohol including carboxylate;  
sulfonate;  
polyethylene glycol;  
silicone;  
siloxane;  
10 dinonyl phenol;  
ethylene oxide block copolymer; and  
propylene oxide block copolymer.

- 15 109. The method of claim 5, wherein the tubular members comprise wellbore casings.  
110. The method of claim 5, wherein the tubular members comprise underground pipes.
- 20 111. The method of claim 5, wherein the tubular members comprise structural supports.  
112. The method of claim 5, wherein the lubricant comprises a metallic soap.  
113. The method of claim 5, wherein the lubricant comprises zinc phosphate.
- 25 114. The method of claim 5, wherein the lubricant provides a coefficient of dynamic friction of between about 0.08 to 0.1.  
115. The method of claim 5, wherein the lubricant is selected from the group

manganese phosphate, zinc phosphate, and iron phosphate.

104. The expandable tubular assembly of claim 4, wherein the layer of the first part of  
the lubricant comprises:

5                   about 1 to 90 percent solids by volume.

105. The expandable tubular assembly of claim 102, wherein the layer of the first part  
of the lubricant comprises:

                     about 5 to 70 percent solids by volume.

10                  106. The expandable tubular assembly of claim 103, wherein the layer of the first part  
of the lubricant comprises:

                     about 15 to 50 percent solids by volume.

15                  107. The expandable tubular assembly of claim 4, wherein the layer of the first part of  
the lubricant comprises:

                     about 5 to 80 percent graphite;

                     about 5 to 80 percent molybdenum disulfide;

                     about 1 to 40 percent PTFE; and

20                  about 1 to 40 percent silicone polymers.

108. The expandable tubular assembly of claim 4, wherein the layer of the first part of  
the lubricant comprises one or more of the following:

25                  ester;

                     sulfurized oil;

                     alkanolamides;

                     amine;

                     amine salt;

                     olefin;

copolymers.

98. The expandable tubular assembly of claim 4, wherein the lubricant is selected from the group consisting of:

5 graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene, and silicone polymers.

99. The expandable tubular assembly of claim 4, wherein the layer of the first part of the lubricant comprises:

10 a solid lubricant; and  
a binder.

100. The expandable tubular assembly of claim 97, wherein the binder is selected from the group consisting of:

15 epoxy, acrylic, urea-formaldehyde, melamine formaldehyde, furan based resin, acetone formaldehyde, phenolic, alkyd resins, and silicone modified alkyd resin.

101. The expandable tubular assembly of claim 97, wherein the binder is selected from the group consisting of:

20 vinyl acetate, vinyl chloride, maleic anhydride, maleic acid, ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, and ethylene-vinyl acetate copolymers.

25 102. The expandable tubular assembly of claim 4, wherein the layer of the first part of the lubricant comprises a suspension of particles in a carrier solvent.

103. The expandable tubular assembly of claim 4, wherein the layer of the first part of the lubricant is selected from the group consisting of:

92. The expandable tubular assembly of claim 4, wherein the layer of the first part of the lubricant comprises a metallic soap.

5 93. The expandable tubular assembly of claim 4, wherein the layer of the first part of the lubricant comprises zinc phosphate.

94. The expandable tubular assembly of claim 4, wherein the lubricant provides a coefficient of dynamic friction of between about 0.08 to 0.1.

10 95. The expandable tubular assembly of claim 4, wherein the lubricant is selected from the group consisting of:

sodium stearates, calcium stearates, zinc stearates, zinc phosphate, manganese phosphate, C-Lube-10, C-Phos-58-M, C-Phos-58-R, polytetrafluoroethylene, molybdenum disulfide, and metallic soaps.

15 96. The expandable tubular assembly of claim 4, wherein the lubricant provides a sliding coefficient of friction less than about 0.20.

20 97. The expandable tubular assembly of claim 4, wherein the lubricant is selected from the group consisting of:

25 polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol acetate copolymers, polyvinyl vinyl acetate copolymers, polyvinyl pyrrolidone and copolymers including polyolefins, latexes, styrene butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, block copolymers including isoprene butadiene, block copolymers including ethylene, and ethylene acrylic acid

84. The expandable tubular assembly of claim 4, wherein the tubular members comprise wellbore casings.

5 85. The expandable tubular assembly of claim 4, wherein the tubular members comprise underground pipes.

86. The expandable tubular assembly of claim 4, wherein the tubular members comprise structural supports.

10 87. The expandable tubular assembly of claim 4, wherein the layer of the first part of the lubricant is chemically bonded to the interior surfaces of the tubular members.

88. The expandable tubular assembly of claim 4, wherein the layer of the first part of the lubricant is mechanically bonded to the interior surfaces of the tubular members.

15 89. The expandable tubular assembly of claim 4, wherein the layer of the first part of the lubricant is adhesively bonded to the interior surfaces of the tubular members.

90. The expandable tubular assembly of claim 4, wherein the layer of the first part of  
20 the lubricant includes:

a primer coating coupled to the interior surfaces of the tubular members; and  
a coating of an antifriction paste coupled to the primer.

91. The expandable tubular assembly of claim 4, wherein the layer of the first part of  
25 the lubricant includes, by weight:

40-80% epoxy resin, 15-30% molybdenum disulfide, 10-15% graphite, 5-10%  
aluminum, 5-10% copper, 8-15% alumosilicate, and 5-10%  
polyethylenepolyamine.

81. The apparatus of claim 78, wherein the coating of lubricant comprises:  
about 15 to 50 percent solids by volume.
  
82. The apparatus of claim 3, wherein the coating of lubricant comprises:  
5 about 5 to 80 percent graphite;  
about 5 to 80 percent molybdenum disulfide;  
about 1 to 40 percent PTFE; and  
about 1 to 40 percent silicone polymers.
  
- 10 83. The apparatus of claim 3, wherein the coating of lubricant comprises one or more of the following:  
ester;  
sulfurized oil;  
alkanolamides;  
15 amine;  
amine salt;  
olefin;  
polyolefins;  
C-8 to C-18 linear alcohol;  
20 derivative of C-8 to C-18 linear alcohol including ester;  
derivative of C-8 to C-18 linear alcohol including amine;  
derivative of C-8 to C-18 linear alcohol including carboxylate;  
sulfonate;  
polyethylene glycol;  
25 silicone;  
siloxane;  
dinonyl phenol;  
ethylene oxide block copolymer; and  
propylene oxide block copolymer.

derivative of C-8 to C-18 linear alcohol including ester;  
derivative of C-8 to C-18 linear alcohol including amine;  
derivative of C-8 to C-18 linear alcohol including carboxylate;  
sulfonate;  
5 polyethylene glycol;  
silicone;  
siloxane;  
dinonyl phenol;  
ethylene oxide block copolymer; and  
10 propylene oxide block copolymer.

126. The apparatus of claim 6, wherein the tubular members comprise wellbore casings.

15 127. The apparatus of claim 6, wherein the tubular members comprise underground pipes.

128. The apparatus of claim 6, wherein the tubular members comprise structural supports.

20 129. The apparatus of claim 6, wherein the lubricant comprises a metallic soap.

130. The apparatus of claim 6, wherein the lubricant comprises zinc phosphate.

25 131. The apparatus of claim 6, wherein the lubricant provides a coefficient of dynamic friction of between about 0.08 to 0.1.

132. The apparatus of claim 6, wherein the lubricant is selected from the group consisting of:

sodium stearates, calcium stearates, zinc stearates, zinc phosphate, manganese phosphate, C-Lube-10, C-Phos-58-M, C-Phos-58-R, polytetrafluoroethylene, molybdenum disulfide, and metallic soaps.

5 133. The apparatus of claim 6, wherein the lubricant provides a sliding coefficient of friction less than about 0.20.

134. The apparatus of claim 6, wherein the lubricant is selected from the group consisting of:

10 polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol acetate copolymers, polyvinyl vinyl acetate copolymers, polyvinyl pyrrolidone and copolymers including polyolefins, latexes, styrene  
15 butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, block copolymers including isoprene butadiene, block copolymers including ethylene, and ethylene acrylic acid copolymers.

20 135. The apparatus of claim 6, wherein the lubricant is selected from the group consisting of:  
graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene, and silicone polymers.

25 136. The apparatus of claim 6, wherein the lubricant comprises a suspension of particles in a carrier solvent.

137. The apparatus of claim 6, wherein the lubricant is selected from the group

consisting of:

manganese phosphate, zinc phosphate, and iron phosphate.

138. The apparatus of claim 6, wherein the lubricant comprises:  
5           about 1 to 90 percent solids by volume.
139. The apparatus of claim 136, wherein the lubricant comprises:  
          about 5 to 70 percent solids by volume.
- 10     140. The apparatus of claim 137, wherein the lubricant comprises:  
          about 15 to 50 percent solids by volume.
141. The apparatus of claim 6, wherein the lubricant comprises:  
          about 5 to 80 percent graphite;  
15       about 5 to 80 percent molybdenum disulfide;  
          about 1 to 40 percent PTFE; and  
          about 1 to 40 percent silicone polymers.
142. The apparatus of claim 6, wherein the lubricant comprises one or more of the  
20       following:  
          ester;  
          sulfurized oil;  
          alkanolamides;  
          amine;  
25       amine salt;  
          olefin;  
          polyolefins;  
          C-8 to C-18 linear alcohol;  
          derivative of C-8 to C-18 linear alcohol including ester;

derivative of C-8 to C-18 linear alcohol including amine;  
derivative of C-8 to C-18 linear alcohol including carboxylate;  
sulfonate;  
polyethylene glycol;  
5 silicone;  
siloxane;  
dinonyl phenol;  
ethylene oxide block copolymer; and  
propylene oxide block copolymer.

10

143. The method of claim 7, wherein the tubular members comprise wellbore casings.

144. The method of claim 7, wherein the tubular members comprise underground pipes.

15

145. The method of claim 7, wherein the tubular members comprise structural supports.

20

146. The method of claim 7, wherein the lubricant comprises a metallic soap.

147. The method of claim 7, wherein the lubricant comprises zinc phosphate.

148. The method of claim 7, wherein the lubricant provides a coefficient of dynamic friction of between about 0.08 to 0.1.

25

149. The method of claim 7, wherein the lubricant is selected from the group consisting of:

sodium stearates, calcium stearates, zinc stearates, zinc phosphate, manganese phosphate, C-Lube-10, C-Phos-58-M, C-Phos-58-R,

polytetrafluoroethylene, molybdenum disulfide, and metallic soaps.

150. The method of claim 7, wherein the lubricant provides a sliding coefficient of friction less than about 0.20.

5

151. The method of claim 7, wherein the lubricant is selected from the group consisting of:

polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol acetate copolymers, polyvinyl vinyl acetate copolymers, polyvinyl pyrrolidone and copolymers including polyolefins, latexes, styrene butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, block copolymers including isoprene butadiene, block copolymers including ethylene, and ethylene acrylic acid copolymers.

152. The method of claim 7, wherein the lubricant is selected from the group consisting of:

graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene, and silicone polymers.

153. The method of claim 7, wherein the lubricant comprises a suspension of particles in a carrier solvent.

154. The method of claim 7, wherein the lubricant is selected from the group consisting of:

manganese phosphate, zinc phosphate, and iron phosphate.

155. The method of claim 7, wherein the lubricant comprises:  
about 1 to 90 percent solids by volume.
156. The method of claim 153, wherein the lubricant comprises:  
5 about 5 to 70 percent solids by volume.
157. The method of claim 154, wherein the lubricant comprises:  
about 15 to 50 percent solids by volume.
- 10 158. The method of claim 7, wherein the lubricant comprises:  
about 5 to 80 percent graphite;  
about 5 to 80 percent molybdenum disulfide;  
about 1 to 40 percent PTFE; and  
about 1 to 40 percent silicone polymers.
- 15 159. The method of claim 7, wherein the lubricant comprises one or more of the following:  
ester;  
sulfurized oil;  
20 alkanolamides;  
amine;  
amine salt;  
olefin;  
polyolefins;  
25 C-8 to C-18 linear alcohol;  
derivative of C-8 to C-18 linear alcohol including ester;  
derivative of C-8 to C-18 linear alcohol including amine;  
derivative of C-8 to C-18 linear alcohol including carboxylate;  
sulfonate;

polyethylene glycol;  
silicone;  
siloxane;  
dinonyl phenol;  
5 ethylene oxide block copolymer; and  
propylene oxide block copolymer.

160. The apparatus of claim 8, wherein the tubular members comprise wellbore casings.

10 161. The apparatus of claim 8, wherein the tubular members comprise underground pipes.

15 162. The apparatus of claim 8, wherein the tubular members comprise structural supports.

163. The apparatus of claim 8, wherein the lubricant comprises a metallic soap.

20 164. The apparatus of claim 8, wherein the lubricant comprises zinc phosphate.

165. The apparatus of claim 8, wherein the lubricant provides a coefficient of dynamic friction of between about 0.08 to 0.1.

25 166. The apparatus of claim 8, wherein the lubricant is selected from the group consisting of:

sodium stearates, calcium stearates, zinc stearates, zinc phosphate, manganese phosphate, C-Lube-10, C-Phos-58-M, C-Phos-58-R, polytetrafluoroethylene, molybdenum disulfide, and metallic soaps.

167. The apparatus of claim 8, wherein the lubricant provides a sliding coefficient of friction less than about 0.20.

168. The apparatus of claim 8, wherein the lubricant is selected from the group consisting of:

5 polyacrylamide polymers, AMPS-acrylamide copolymers, modified cellulose derivatives, hydroxyethylcellulose, carboxymethyl hydroxyethyl cellulose, polyvinyl alcohol polymers, polyvinyl acetate polymers, polyvinyl alcohol acetate copolymers, polyvinyl vinyl acetate copolymers, polyvinyl pyrrolidone and copolymers including polyolefins, latexes, styrene  
10 butadiene latex, urethane latexes, styrene-maleic anhydride copolymers, viscosity index improvers for motor oils, polyacrylate esters, block copolymers including styrene, block copolymers including isoprene butadiene, block copolymers including ethylene, and ethylene acrylic acid  
15 copolymers.

169. The apparatus of claim 8, wherein the lubricant is selected from the group consisting of:

20 graphite, molybdenum disulfide, lead powder, antimony oxide, poly tetrafluoroethylene, and silicone polymers.

170. The apparatus of claim 8, wherein the lubricant comprises a suspension of particles in a carrier solvent.

25 171. The apparatus of claim 8, wherein the lubricant is selected from the group consisting of:

manganese phosphate, zinc phosphate, and iron phosphate.

172. The apparatus of claim 8, wherein the lubricant comprises:

about 1 to 90 percent solids by volume.

173. The apparatus of claim 170, wherein the lubricant comprises:  
about 5 to 70 percent solids by volume.

5

174. The apparatus of claim 171, wherein the lubricant comprises:  
about 15 to 50 percent solids by volume.

- 10 175. The apparatus of claim 8, wherein the lubricant comprises:

about 5 to 80 percent graphite;  
about 5 to 80 percent molybdenum disulfide;  
about 1 to 40 percent PTFE; and  
about 1 to 40 percent silicone polymers.

- 15 176. The apparatus of claim 8, wherein the lubricant comprises one or more of the following:

ester;  
sulfurized oil;  
alkanolamides;  
amine;  
amine salt;  
olefin;  
polyolefins;  
C-8 to C-18 linear alcohol;  
derivative of C-8 to C-18 linear alcohol including ester;  
derivative of C-8 to C-18 linear alcohol including amine;  
derivative of C-8 to C-18 linear alcohol including carboxylate;  
sulfonate;  
polyethylene glycol;

5

silicone;  
siloxane;  
dinonyl phenol;  
ethylene oxide block copolymer; and  
propylene oxide block copolymer.

1/4



FIGURE 1

2/4



FIGURE 2

3/4



FIGURE 3

4/4



FIGURE 4

## INTERNATIONAL SEARCH REPORT

International application No.  
PCT/US00/27645

## A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :B23P 17/02

US CL :138/98; 29/890.031, 890.044

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 138/98; 29/890.031, 890.044

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
|-----------|------------------------------------------------------------------------------------|-----------------------|
| X         | US 4,573,248 A (HACKETT) 04 March 1986, col. 4, lines 41-43.                       | 1-4                   |
| X         | US 4,069,573 A (ROGERS, JR. et al) 24 January 1978, col. 4, lines 27-30.           | 1-4                   |
| A         | US 4,413,395 A (GARNIER) 08 November 1983, entire document.                        | 1-8                   |
| A         | US 5,368,075 A (BARO et al) 29 November 1994, entire document.                     | 1-8                   |

Further documents are listed in the continuation of Box C.  See patent family annex.

|                                                                                                                                                                           |     |                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Special categories of cited documents:                                                                                                                                  | "T" | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| - "A" document defining the general state of the art which is not considered to be of particular relevance                                                                | "X" | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| - "E" earlier document published on or after the international filing date                                                                                                | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "Z" | document member of the same patent family                                                                                                                                                                                                    |
| - "R" document referring to an oral disclosure, use, exhibition or other means                                                                                            |     |                                                                                                                                                                                                                                              |
| - "P" document published prior to the international filing date but later than the priority date claimed                                                                  |     |                                                                                                                                                                                                                                              |

Date of the actual completion of the international search

02 DECEMBER 2000

Date of mailing of the international search report

29 DEC 2000

1. Name and mailing address of the ISA/US  
Commissioner of Patents and Trademarks  
Box PCT  
Washington, D.C. 20231  
Facsimile No. (703) 305-3230

Authorized officer  
*of Hurley for*  
PATRICK F. BRINSON  
Telephone No. (703) 308-0111