Logic Design Tutorial 4

Amr Keleg

Faculty of Engineering, Ain Shams University

August 7, 2020

Contact: amr_mohamed@live.com

Outline

- 1 Logic gates
 - Motivation
 - Axioms of Boolean Algebra
 - Sheet 3 Question 4
 - Sheet 3 Question 7
 - Sheet 3 Question 9
 - Sheet 3 Question 15
- 2 Gray code

Outline

- 1 Logic gates
 - Motivation
 - Axioms of Boolean Algebra
 - Sheet 3 Question 4
 - Sheet 3 Question 7
 - Sheet 3 Question 9
 - Sheet 3 Question 15
- 2 Gray code
 - Sheet 2 Question 2

What is the output of this circuit for the following input X=0, Y=0, Z=1?

What is the output of this circuit for the following input X=0, Y=0, Z=1?

Using Boolean Algebra, we can simplify the function to $F2 = X.\overline{Y} + \overline{X}.Z$

Using Boolean Algebra, we can simplify the function to $F2 = X.\overline{Y} + \overline{X}.Z$

Outline

- 1 Logic gates
 - Motivation
 - Axioms of Boolean Algebra
 - Sheet 3 Question 4
 - Sheet 3 Question 7
 - Sheet 3 Question 9
 - Sheet 3 Question 15
- 2 Gray code
 - Sheet 2 Question 2

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

Axioms of Boolean Algebra

How to prove something like X + (Y + Z) = (X + Y) + Z?

How to prove something like X + (Y + Z) = (X + Y) + Z? Using Truth Table:

Χ	Υ	Z	(Y+Z)	X + (Y+Z)	(X+Y)	(X+Y) + Z
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

- It rains (RAIN)
- It doesn't rain (\overline{RAIN}) and it's cold (COLD)

Jacket =

- It rains (RAIN)
- It doesn't rain (\overline{RAIN}) and it's cold (COLD)

$$Jacket = RAIN + \overline{RAIN}.COLD =$$

- It rains (RAIN)
- It doesn't rain (\overline{RAIN}) and it's cold (COLD)

```
Jacket = RAIN + \overline{RAIN}.COLD = RAIN + COLD
```

- It rains (RAIN)
- It doesn't rain (\overline{RAIN}) and it's cold (COLD)

$$Jacket = RAIN + \overline{RAIN}.COLD = RAIN + COLD$$

Generally:
$$X + \overline{X}.Y = X + Y$$

- It rains (RAIN)
- It doesn't rain (\overline{RAIN}) and it's cold (COLD)

$$Jacket = RAIN + \overline{RAIN}.COLD = RAIN + COLD$$

Generally:
$$X + \overline{X}.Y = X + Y$$

AND $\overline{X} + X.Y = \overline{X} + Y$

Outline

- 1 Logic gates
 - Motivation
 - Axioms of Boolean Algebra
 - Sheet 3 Question 4
 - Sheet 3 Question 7
 - Sheet 3 Question 9
 - Sheet 3 Question 15
- 2 Gray code
 - Sheet 2 Question 2

• c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 (to one literal)

• c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 (to one literal)
= $\overline{A}B\overline{D} + \overline{A}B\overline{C}D + AB + \overline{A}BCD$

• c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 (to one literal)
= $\overline{A}B\overline{D} + \overline{A}B\overline{C}D + AB + \overline{A}BCD$
= $\overline{A}B(\overline{D} + \overline{C}D + CD) + AB$

• c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 (to one literal)
= $\overline{A}B\overline{D} + \overline{A}B\overline{C}D + AB + \overline{A}BCD$
= $\overline{A}B(\overline{D} + \overline{C}D + CD) + AB$
= $\overline{A}B(\overline{D} + D.(\overline{C} + C)) + AB$

• c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 (to one literal)
= $\overline{A}B\overline{D} + \overline{A}B\overline{C}D + AB + \overline{A}BCD$
= $\overline{A}B(\overline{D} + \overline{C}D + CD) + AB$
= $\overline{A}B(\overline{D} + D.(\overline{C} + C)) + AB$
= $\overline{A}B(\overline{D} + D) + AB$

• c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 (to one literal)
= $\overline{A}B\overline{D} + \overline{A}B\overline{C}D + AB + \overline{A}BCD$
= $\overline{A}B(\overline{D} + \overline{C}D + CD) + AB$
= $\overline{A}B(\overline{D} + D.(\overline{C} + C)) + AB$
= $\overline{A}B(\overline{D} + D) + AB$
= $\overline{A}B + AB$

• c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 (to one literal)
= $\overline{A}B\overline{D} + \overline{A}B\overline{C}D + AB + \overline{A}BCD$
= $\overline{A}B(\overline{D} + \overline{C}D + CD) + AB$
= $\overline{A}B(\overline{D} + D.(\overline{C} + C)) + AB$
= $\overline{A}B(\overline{D} + D) + AB$
= $\overline{A}B + AB$
= $B(\overline{A} + A)$

• c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 (to one literal)
= $\overline{A}B\overline{D} + \overline{A}B\overline{C}D + AB + \overline{A}BCD$
= $\overline{A}B(\overline{D} + \overline{C}D + CD) + AB$
= $\overline{A}B(\overline{D} + D.(\overline{C} + C)) + AB$
= $\overline{A}B(\overline{D} + D) + AB$
= $\overline{A}B + AB$
= $B(\overline{A} + A)$
= B

$$lacksquare$$
 a) $\overline{A} \, \overline{C} + ABC + A\overline{C}$ (to three literals) =

a)
$$\overline{A} \overline{C} + ABC + A\overline{C}$$
 (to three literals) = $\overline{C} \cdot (\overline{A} + A) + ABC =$

■ a)
$$\overline{AC} + ABC + A\overline{C}$$
 (to three literals) = $\overline{C}.(\overline{A} + A) + ABC = \overline{C}.(1) + ABC =$

■ a)
$$\overline{AC} + ABC + A\overline{C}$$
 (to three literals) = $\overline{C}.(\overline{A} + A) + ABC = \overline{C}.(1) + ABC = \overline{C} + ABC = \overline{C}$

■ a)
$$\overline{A} \, \overline{C} + ABC + A\overline{C}$$
 (to three literals) = $\overline{C} \cdot (\overline{A} + A) + ABC =$ $\overline{C} \cdot (1) + ABC =$ $\overline{C} + ABC =$ $\overline{C} + AB$

• e) $AB\overline{C}D + \overline{A}BD + ABCD$ (to two literals)

• e)
$$AB\overline{C}D + \overline{A}BD + ABCD$$
 (to two literals)
= $BD(A\overline{C} + \overline{A} + AC)$

• e)
$$AB\overline{C}D + \overline{A}BD + ABCD$$
 (to two literals)
= $BD(A\overline{C} + \overline{A} + AC)$
= $BD(A(\overline{C} + C) + \overline{A})$

• e)
$$AB\overline{C}D + \overline{A}BD + ABCD$$
 (to two literals)
= $BD(A\overline{C} + \overline{A} + AC)$
= $BD(A(\overline{C} + C) + \overline{A})$
= $BD(A + \overline{A})$

• e)
$$AB\overline{C}D + \overline{A}BD + ABCD$$
 (to two literals)
= $BD(A\overline{C} + \overline{A} + AC)$
= $BD(A(\overline{C} + C) + \overline{A})$
= $BD(A + \overline{A})$
= BD

Outline

- 1 Logic gates
 - Motivation
 - Axioms of Boolean Algebra
 - Sheet 3 Question 4
 - Sheet 3 Question 7
 - Sheet 3 Question 9
 - Sheet 3 Question 15
- 2 Gray code
 - Sheet 2 Question 2

Draw logic diagrams of the circuits that implement the original and simplified expressions in Problem 2.4

c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 and B

Draw logic diagrams of the circuits that implement the original and simplified expressions in Problem 2.4

c)
$$\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD)$$
 and B

Outline

- 1 Logic gates
 - Motivation
 - Axioms of Boolean Algebra
 - Sheet 3 Question 4
 - Sheet 3 Question 7
 - Sheet 3 Question 9
 - Sheet 3 Question 15
- 2 Gray code
 - Sheet 2 Question 2

$$\blacksquare$$
 a) $X\overline{Y} + \overline{X}Y$

a)
$$X\overline{Y} + \overline{X}Y$$

Complement $= \overline{(X\overline{Y}) + (\overline{X}Y)}$

a)
$$X\overline{Y} + \overline{X}Y$$

Complement $= \overline{(X\overline{Y}) + (\overline{X}Y)}$
 $= \overline{(X\overline{Y})} \cdot \overline{(\overline{X}Y)}$

a)
$$X\overline{Y} + \overline{X}Y$$

Complement = $\overline{(X\overline{Y}) + (\overline{X}Y)}$
= $\overline{(X\overline{Y})} \cdot \overline{(\overline{X}Y)}$
= $(\overline{X} + Y) \cdot (X + \overline{Y})$

a)
$$X\overline{Y} + \overline{X}Y$$

Complement = $\overline{(X\overline{Y}) + (\overline{X}Y)}$
= $\overline{(X\overline{Y})} \cdot \overline{(X\overline{Y})}$
= $(\overline{X} + Y) \cdot (X + \overline{Y})$
= $(\overline{X}X + \overline{X}\overline{Y} + YX + Y\overline{Y})$

a)
$$X\overline{Y} + \overline{X}Y$$

Complement = $\overline{(X\overline{Y}) + (\overline{X}Y)}$
= $\overline{(X\overline{Y})} \cdot \overline{(X\overline{Y})}$
= $(\overline{X} + Y) \cdot (X + \overline{Y})$
= $(\overline{X}X + \overline{X}\overline{Y} + YX + Y\overline{Y})$
= $(0 + \overline{X}\overline{Y} + XY + 0)$

a)
$$X\overline{Y} + \overline{X}Y$$

Complement = $\overline{(X\overline{Y}) + (\overline{X}Y)}$
= $\overline{(X\overline{Y})} \cdot \overline{(\overline{X}Y)}$
= $(\overline{X} + Y) \cdot (X + \overline{Y})$
= $(\overline{X}X + \overline{X}\overline{Y} + YX + Y\overline{Y})$
= $(0 + \overline{X}\overline{Y} + XY + 0)$
= $(\overline{X}\overline{Y} + XY)$

• b)
$$(a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$$

b)
$$(a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$$

Complement $=(a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$

b)
$$(a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$$

Complement $= (a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$
 $= ((a+c).(a+\overline{b})).(\overline{a}+b+\overline{c})$

b)
$$(a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$$

Complement $= (a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$
 $= ((a+c).(a+\overline{b})).(\overline{a}+b+\overline{c})$
 $= ((a+c).(a+\overline{b})) + (\overline{a}+b+\overline{c})$

b)
$$(a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$$

Complement $= (a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$
 $= ((a+c).(a+\overline{b})).(\overline{a}+b+\overline{c})$
 $= ((a+c).(a+\overline{b})) + (\overline{a}+b+\overline{c})$
 $= (a+c)+(a+\overline{b}) + (\overline{a}+b+\overline{c})$

b)
$$(a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$$

Complement $= (a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$
 $= \underline{((a+c).(a+\overline{b}))}.(\overline{a}+b+\overline{c})$
 $= \underline{((a+c).(a+\overline{b}))} + \underline{(\overline{a}+b+\overline{c})}$
 $= \overline{(a+c)} + \overline{(a+\overline{b})} + \overline{(\overline{a}+b+\overline{c})}$
 $= \overline{a}\overline{c} + \overline{a}b + a\overline{b}c$

b)
$$(a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$$

Complement $= (a+c)(a+\overline{b})(\overline{a}+b+\overline{c})$
 $= \underline{((a+c).(a+\overline{b}))}.(\overline{a}+b+\overline{c})$
 $= \underline{((a+c).(a+\overline{b}))} + \underline{(\overline{a}+b+\overline{c})}$
 $= \overline{(a+c)} + \overline{(a+\overline{b})} + \overline{(\overline{a}+b+\overline{c})}$
 $= \overline{a}\overline{c} + \overline{a}b + a\overline{b}c$

Outline

- 1 Logic gates
 - Motivation
 - Axioms of Boolean Algebra
 - Sheet 3 Question 4
 - Sheet 3 Question 7
 - Sheet 3 Question 9
 - Sheet 3 Question 15
- 2 Gray code
 - Sheet 2 Question 2

Α	В	C	<i>T</i> ₁	T ₂
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

A B C T ₁	
0 0 0 1	T ₂
	0
$0 \qquad 0 \qquad 1 \qquad 1$	0
$0 \qquad 1 \qquad 0 \qquad 1$	0
$0 \qquad 1 \qquad 1 \qquad 0$	1
1 0 0 0	1
$1 \qquad 0 \qquad 1 \qquad 0$	1
$1 \qquad 1 \qquad 0 \qquad 0$	1
1 1 1 0	1

A	В	C	<i>T</i> ₁	T ₂
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

A B C T1 T2 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A	В	C	<i>T</i> ₁	T ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	0	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	1	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	0	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	1	0	1
1 1 0 0 1	1	0	0	0	1
	1	0	1	0	1
1 1 1 0 1	1	1	0	0	1
	1	1	1	0	1

$$\mathsf{T} 1 = \overline{\mathsf{A}} \, \overline{\mathsf{B}} \, \overline{\mathsf{C}} + \overline{\mathsf{A}} \, \overline{\mathsf{B}} \, \mathsf{C} + \overline{\mathsf{A}} \, \mathsf{B} \, \overline{\mathsf{C}}$$

$$\mathsf{T} 1 = \overline{\mathsf{A}} \, \overline{\mathsf{B}} \, \overline{\mathsf{C}} + \overline{\mathsf{A}} \, \overline{\mathsf{B}} \, \mathsf{C} + \overline{\mathsf{A}} \, \mathsf{B} \, \overline{\mathsf{C}}$$

$$T1 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$$
$$= \overline{A}\overline{C}(\overline{B} + B) + \overline{A}\overline{B}C$$

$$T1 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$$

$$= \overline{A}\overline{C}(\overline{B} + B) + \overline{A}\overline{B}C$$

$$= \overline{A}\overline{C} + \overline{A}\overline{B}C$$

$$T1 = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B \overline{C}$$

$$= \overline{A} \overline{C} (\overline{B} + B) + \overline{A} \overline{B} C$$

$$= \overline{A} \overline{C} + \overline{A} \overline{B} C$$

$$= \overline{A} (\overline{C} + \overline{B} C)$$

$$T1 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$$

$$= \overline{A}\overline{C}(\overline{B} + B) + \overline{A}BC$$

$$= \overline{A}\overline{C} + \overline{A}BC$$

$$= \overline{A}(\overline{C} + \overline{B}C)$$

$$= \overline{A}(\overline{C} + \overline{B})$$

$$T1 = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$$

$$= \overline{A}\overline{C}(\overline{B} + B) + \overline{A}\overline{B}C$$

$$= \overline{A}\overline{C} + \overline{A}\overline{B}C$$

$$= \overline{A}(\overline{C} + \overline{B}C)$$

$$= \overline{A}(\overline{C} + \overline{B})$$

$$= \overline{A}(\overline{B} + \overline{C})$$

Α	В	C	<i>T</i> ₁	T ₂
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

$$\mathsf{T2} = \overline{\mathsf{T1}} = \overline{\overline{\mathsf{A}}(\overline{\mathsf{B}} + \overline{\mathsf{C}})}$$

$$T2 = \overline{T1} = \overline{\overline{A}(\overline{B} + \overline{C})} = A + BC$$

Outline

- 1 Logic gates
- 2 Gray code
 - Sheet 2 Question 2

Outline

- 1 Logic gates
 - Motivation
 - Axioms of Boolean Algebra
 - Sheet 3 Question 4
 - Sheet 3 Question 7
 - Sheet 3 Question 9
 - Sheet 3 Question 15
- 2 Gray code
 - Sheet 2 Question 2

Q2) Write an algorithm for converting from binary to gray code. You can draw a flow chart.

Q2) Write an algorithm for converting from binary to gray code. You can draw a flow chart.

Index	3	2	1	0
Binary	1	0	1	1
Gray	1	1	1	0

Sheet 2 - Question 2

