CS & IT ENGINEERING

Algorithm

Analysis of Algorithms

Lecture No.- 01

Topics to be

Topic

Schedule

Topic

Outcomes

Topic

Intro to Algorithms

A---> 1 08 2 -- (91) B - 3 27/ (-> 4th 48 -- 29% D-3 Job --- 16% E -> Deboowing 3nd + time

1. Analysis of Algorithms

- Algorithm Concept and Lifecycle
- Analysis of Algorithms
- Methodology & Types of Analysis
- - 5. Framework for Analysing Recursive Algorithms
 - 6. Apriori analysis of Non-Recursive Algorithms
- 7. Analysing Loops
 - 8. Space Complexity
 - 9. Mathematical Background

9.

2.	Div	ide & Conquer (Design !	Strategies)	Design	strategies
(Framework)	1.	General Method			
	2.	Max-Min Problem	[D: 1	Greedy	Dunamic
Sorting	-3.	Merge Sort	Divid	Jung	Dynamic Programy
	4.	Binary Search	(Conguer		(DD)
	5.	Quick Sort	(DnC)		
Time Complexity	6.	Matrix Multiplication			
	7.	Long Integer Multiplication (LIM)			
Machilla	- 8.	Master Method for D and C Recurrences			

Recursion Tree

3. Greedy Method

- 1. General Method (Framework)
- Knapsack Problem
- 3. Job Sequencing with Deadlines JSWD
- 4. Optimal Merge Patterns
- ◆ 4.1 Huffman Coding
- 5. Minimum Cost Spanning Trees
 - Prims Method
 - 2. Kruskal's Method
- 6. Dijkstra's Shortest Paths Problem

Intenviews + (ATF+ Job Dynamic Programming (DP)

- The Framework
- Difference between DP, Greedy Method and Divide and Conquer
 - **Multistage Graphs**
 - Travelling Salesperson Problem TSP
 - Binary Knapsack Problem (0/1 knapsack)
 All Pairs Shortest Paths (APSP) **₹** 5.
 - Bellman-Ford Single Source Shortest Paths (SSSP) McMT
 - Longest Common Subsequence 8.
 - Matrix Chain Multiplication sum of Subsets
 - Optimal Cost Binary Search Tree

ications

Topic: Lecture Schedule

Directed, Properties

5. Graph Algorithms

- Representation of Graphs
- 2. Graph Traversals
- **DFS** 5.2.1
 - 5.2.1 Undirected Connected Graphs
 - 5.2.2 Undirected Disjoint Graphs: DFT
 - 5.2.3 Directed Graphs & Types of Edges
 - 5.2.4 DAG > Topological Sosting
- BFS
- 5.2.5 FIFO BFS
- 5.2.6 LIFO BFS

6. Heap Algorithms

Doto 1. Operations: Create, Insert, Delete, Modify

2. Applications : Heapsort

Time Complexity Analysis

Algo

Sostiny Technique

- 7. Sets
 - 1. Representations
 - 2. Operations \longrightarrow (Union & Find)

Applications

) Kruskel Algo for MCST

8. Sorting Algorithms

- 1. Basic terminology —
- Methods

- Bubble Sort
- 2. Selection Sort
- 3. Insertion Sort
- 4. Radix Sort

(Bonus)

9. Backtracking & Branch- Bound

L, Application

N-Queens Problem

Reference Books:

- 1) Introduction to Algorithms Cormen
- 2) Fundamentals of Algorithms -> Sahii

Algorithms

Jan Amazon coding test 300 Feb GATE Amazon
Interview

The requisites -1) Data Structures Fundamentals Lo Stacks, Queue, Tree ---) (2) Programming Fundamentals RC Log, Grien (AP, GP...)

Filosps

RC Log, GP...

Algorithm: An algorithm is a collection of finite number of instanction to Some a given problem. Statements Thuse instructions are fundamental) and should follow a proper Leguence. x= 4+3 fundamilal opr

Algorithm input (i/p) must always produce attenst on Subjut An algo may take

Rython - For i in range (0,19t1)

C++: For li=0, i<=n, i++)) Algorithm Implemented using some programming language Algorithm ____ Reudo Code ___ for i=0 ton { For i:(0-___n) (set of segmential Rules/statements/instructions)

Algorithm likeaych bat algo Sylabus Requirements/Constraints Problem Statement Analysis Check its Correct noss Time Complexity (officiency Tosting Solve the problem in the most applicant way

Algo AJSir() Print (" Hello Students!")

Mgo AJSir2()

Sefurn 100

3

* Analysis of Algorithm Why to analyse? - Compare two Algos (What) to analyse? on the basis of
Time / Space { Ruso wrip? }
Consum? AA 3) How to analyse?

(91) Why to analyse? To Compare and decide which solution
is the best among different available
solutions (Algos) Problem: Nagpur -) Walk -> Soln (AI) Time & cost T (money)

(9.2) What to analyse? Ly Analyse the consumption of Resources. Resource: (Time, Space/memory) > GATE Money) Internet Bondwidth, etc. No. of programmers.

(93) you to analyse? Framework)
methods Analysing Analysing Before 3 mplementation of Myo Implementation
Of Algo.

(1) Apostorion Analysis Advontages of time units. Low lend long - machine of trueholy

Disadvantages -> Platform dependent ~ Software ~ OS (Linux, Windows) -> Processor/CPU,

Memory (RAM)

Programming burying dependent

2 mins Summary

THANK - YOU