> Vincent Antaki

Introduction

Les VASS continus

Implémentation

Completion

Accessibilité dans les systèmes à compteurs continus: théorie et pratique

Vincent Antaki

Université de Montréal antakivi@iro.umontreal.ca

24 mai 2015

> Vincent Antaki

Introduction

Les VASS continus

Implémentation

Contexte: La vérification formelle

La vérification formelle vise à confirmer qu'un système a le comportement attendu.

- Circuits combinatoires et circuits numériques
- Moteur d'inférences logiques
- Logiciels

Formalise des modèles et des questions :

- Existe-t-il une séquence infinie dans cet automate?
- Le graphe suivant possède-t-il un chemin d'un état x à un état y?
- L'automate accepte-t-il un ensemble de mots X?
- Une expression est-elle satisfiable dans un système de logique donné?

> Vincent Antaki

Introduction

Les VASS continus

Implémentation

Carrate de la constante de la

Les réseaux de Petri (PN)

Un réseau de Petri P = (P, T, Pre, Post) où

- P un ensemble fini de places (compteurs);
- T un ensemble fini de transitions;
- Pre une matrice $|P| \times |T|$ indiquant le coût pour activer chaque transition ;
- Post une matrice $|P| \times |T|$ indiquant l'ajout dans les compteurs suite à l'activation de chaque transition

> Vincent Antaki

Introduction

Les VASS continus

Implementation

Canalusian

Exécution dans un PN

Exemple

Séquence d'activation : t_1t_2

Exécution: (2,0,0)(0,1,3)(1,0,3)

> Vincent Antaki

Introduction

Les VASS continus

Implementation

Le problème d'accessibilité

Étant donné un système S, une configuration initiale x_0 et une configuration finale x, existe-t-il une exécution $x_0 \stackrel{*}{\to} x$ dans S?

Historique de la décidabilité du problème

- EXPSPACE-ardu : Lipton 1976
- Preuve partielle (erronée) : Sacerdote & Tenney 1977
- Preuve complète : Mayr 1981
- Simplifications : Kosaraju 1982, Lambert 1992
- Nouvelle preuve : Leroux 2009, 2011, 2012
- Borne supérieure (F_{ω^3}) : Leroux 2015

> Vincent Antaki

Introduction

Les VASS continus

Implémentation

Conclusion

Les réseaux de Petri continus (CPN)

- Mêmes données qu'un PN (P, T, Pre, Post)
- Marquage dans les réels $m \in \mathbb{R}^P_{\geq 0}$
- Chaque transition est appliquée avec un coefficient $\alpha \in (0,1]$
- Peut converger avec des séquences d'activation infinies
- Problème d'accessibilité P-Complet : Fraca & Haddad 2013

> Vincent Antaki

Introduction

Les VASS continus

Implementation

Conclusion

Le Projet

Objectif:

 Développement de module pour un outil permettant de résoudre partiellement le problème d'accessibilité dans les VASS

Résultats :

- Deux modèles définis (CVASSM et CVASSU)
- CVASSM prouvés équivalents aux CPN
- CVASSU constituent une nouvelle relaxation des VASS
- Implémentation d'un algorithme résolvant le problème d'accessibilité pour les CPN

> Vincent Antaki

Introduction

Les VASS continus

Implementation

Conclusion

Les systèmes d'additions de vecteurs avec états (VASS)

Un d-VASS est une paire (Q, δ) où :

- *d* la *dimension* (nombre de compteurs);
- Q un ensemble fini d'états;
- $\delta \subseteq Q \times \mathbb{Z}^d \times Q$ un ensemble fini de *transitions*.

Les VASS sont équivalents aux PN.

> Vincent Antaki

Introduction

Les VASS continus

Implémentation

Complement

Exécution dans un VASS

Exemple

Séquence d'activation : $t_2t_1t_3$

Exécution : (b, (0,0,4))(a, (1,3,2))(b, (0,5,2))(c, (0,0,0))

> Vincent Antaki

Introduction

Les VASS continus

Implémentation

Canalinatan

Les systèmes d'addition de vecteurs continus avec états

- Même données qu'un VASS (Q, δ, d)
- Chaque transition avec un coefficient $\alpha \in (0,1]$
- Les compteurs ont un nombre de jetons $x \in \mathbb{R}_{\geq 0}$

Avec états uniques (CVASSU) :

• Change entièrement d'état lorsqu'on emprunte une transition, indépendamment du coefficient α

Avec états multiples (CVASSM) :

• α pondère le changement d'état ainsi que l'effet de la transition sur les compteurs

> Vincent Antaki

Introduction

Les VASS continus

Implémentation

CVASS avec états multiples (CVASSM)

Exemple d'exécution

Séquence d'activation : $0.5t_10.5t_20.5t_3$

Exécution : ((1,0,0),(2,0)) ((0.5,0.5,0),(2,0.5))

((0,0.5,0.5),(0,1))((0,0,1),(1,0))

> Vincent Antaki

Introductio

Les VASS continus

Implémentation

Conclusion

Conversion CVASSM à CPN

> Vincent Antaki

Introductio

Les VASS continus

Implémentation

Conclusion

Conversion CPN à CVASSM

> Vincent Antaki

Introduction

Les VASS continus

Implémentation

Complement

Ordonnancement d'une séquence d'activation

Exemple

- On suppose que l'on commence et termine dans l'état q
- Soit une séquence désordonnée : $0.5\delta_{qc} \ 1.0\delta_{qb} \ 0.5\delta_{bq} \ 0.1\delta_{qb} \ 0.6\delta_{bq} \ 0.5\delta_{cq}$
- **1** $0.5\delta_{qc}$ $0.5\delta_{cq}$ $1.0\delta_{qb}$ $0.5\delta_{bq}$ $0.1\delta_{qb}$ $0.6\delta_{bq}$
- **2** $0.5\delta_{qc}$ $0.5\delta_{cq}$ $1.0\delta_{qb}$ $1.0\delta_{bq}$ $0.1\delta_{qb}$ $0.1\delta_{bq}$

> Vincent Antaki

Introduction

Les VASS continus

Implémentation

Conclusion

Algorithme de Fraca et Haddad

```
Algorithm 2: Decision algorithm for reachability
    Reachable (\langle \mathcal{N}, m_0 \rangle, m): status
     Input: a CPN system (N, m_0), a marking m
    Output: the reachability status of m
    Output: the Parikh image of a witness in the positive case
     Data: nbsol: integer: v. sol: vectors: T': subset of transitions
 1 if m = m_0 then return (true.0)
 2 T' ← T
 3 while T' \neq \emptyset do
          nbsol \leftarrow 0: sol \leftarrow 0
          for t \in T' do
 5
                solve \exists ?\mathbf{v} \ \mathbf{v} \ge \mathbf{0} \land \mathbf{v}[t] > 0 \land \mathbf{C}_{P \times T'} \mathbf{v} = \mathbf{m} - \mathbf{m}_0
               if \exists v \text{ then } nbsol \leftarrow nbsol + 1; \text{ sol} \leftarrow \text{sol} + v
 8
          end
          if nbsol = 0 then return false else sol \leftarrow \frac{1}{nbsol} sol
          T' \leftarrow \llbracket \mathbf{sol} \rrbracket
10
          T' \leftarrow T' \cap \max FS(\mathcal{N}_{T'}, m_0[^{\bullet}T'^{\bullet}])
11
          T' \leftarrow T' \cap \texttt{maxFS}(\mathcal{N}_{T'}^{-1}, \boldsymbol{m}[{}^{\bullet}T'{}^{\bullet}]) \text{ /* deleted for lim-reachability}
          if T' = [sol] then return (true.sol)
14 end
15 return false
```

> Vincent Antaki

Introduction

Les VASS continus

Implémentation

Conclusion

Système a résoudre

Résoudre $\exists ? v$ tel que $v \ge 0 \land v[t] > 0 \land C_{P \times T'} v = m - m_0$

Comment résoudre ce système avec un solveur qui ne traite pas les inégalités strictes?

Maximiser t

Sujet à
$$C_{P\times T'}v=m-m_0 \wedge v\geq 0$$

Minimiser t

Sujet à
$$C_{P \times T'} v = m - m_0 \land v \ge 0 \land v[t] \ge 1$$

> Vincent Antaki

Introductio

Les VASS continus

Implémentation

Conclusion

Solveur exact

- Les solveurs conventionnels utilisent l'arithmétique à virgule flottante, insuffisante dans le cadre de la vérification formelle.
- Solveur exact en arithmétique rationnelle plus lent
- QSopt_ex : Simplexe exact en C++

> Vincent Antaki

Introduction

Les VASS continus

Implementation

Conclusion

Questions ouvertes et travaux futurs

- Solveurs alternatifs et tests de performances
- Accessibilité dans les CVASSU
- Prochains modules

> Vincent Antaki

Introductio

Les VASS

Implémentation

Conclusion

Merci