Incertidumbre 3: Razonamiento Probabilístico

Representación Numérica de la Incertidumbre: Probabilidad

La Teoría de la Probabilidad (TProb)

- Es un área de las Matemáticas que ha sido aplicada a problemas de razonamiento con incertidumbre
- Es una teoría elegante, bien entendida y con mucha historia (formalizaciones a partir de mediados del siglo XVII)
- Asigna valores numéricos (llamados probabilidades) a las proposiciones.
- Nos dice, dadas las probabilidades de ciertas proposiciones, y algunas relaciones entre ellas como asignar probabilidades a las proposiciones relacionadas
- Relación con la LPO:
 - En la LPO las proposiciones son ciertas o falsas.
 - Con la Tprob las proposiciones son también ciertas o falsas pero se tiene un grado de creencia en la certeza o falsedad.

¿Qué son las Probabilidades?

 A pesar de su larga historia los valores numéricos que representan las probabilidad no tiene una interpretación única.

Algunas Interpretaciones:

- Frecuentista: Es el valor, cuando el número de pruebas tiende a infinito, de la frecuencia de que ocurra algún evento
- Subjetiva: Es un grado de creencia acerca de un evento incierto

Aún así:

 Existe un consenso sobre el modelo matemático que soporta la Teoría

Los Valores Numéricos de la Probabilidad

- Denotaremos por P(A) a la probabilidad de la proposición A
 - A="El paciente tiene sarampión"
 - A="Mañana saldrá el sol" ...
- Los valores de la Probabilidad satisfacen un conjunto de axiomas:
 - $-0 \le P(A) \le 1$
 - P(Proposición Verdadera)=1
 - $P(A \lor B) = P(A) + P(B)$
 - Siempre que A y B sean disjuntos, es decir ¬(A∧B)
- A partir de ellos se puede demostrar por ejemplo:
 - $P(\neg A)=1-P(A)$
 - P(Proposición Falsa)=0
 - $P(A \lor B) = P(A) + P(B) P(A \land B)$

Variables Aleatorias

- Muchas veces tenemos un evento con un conjunto de resultados:
 - Completo

Se conocen todos los posibles resultados

Mutuamente excluyente

No se pueden dar dos resultados distintos simultáneamente.

Ejemplos

- Si tiramos una moneda, el resultado es cara o cruz
- Si tiramos un dado, se producen seis resultados distintos
- La temperatura de un paciente puede estar en un conjunto de intervalos: <36.5, 36.5-37.4, 37.5-38.4, 38.5-39.4, >39.4
- En lugar de tener una proposición para cada resultado se introduce el concepto de Variable aleatoria
- Se permiten proposiciones de la forma Variable = resultado
 - Por ejemplo, si M="Resultado de tirar una moneda con valores posibles cara y cruz" se permiten las proposiciones:
 - M=cara y M=Cruz y podemos hablar de
 - P(M=cara) y P(M=cruz) que representan la probabilidad de obtener una cara y una cruz respectivamente

Variables Aleatorias

- Por consistencia, se puede considerar que todas las proposiciones son variables aleatorias que toman dos valores verdadero o falso
 - Por ejemplo, dada la proposición "Tiene Sarampión"
 - Construimos la variable aleatoria Sarampión que toma los valores verdadero y falso
 - Y representamos la probabilidad de que un paciente tenga Sarampión P("Tiene Sarampión") como P(Sarampión =verdadero)

Abreviaturas

- Se suele escribir P(M=cara) como P(cara), cuando está claro que nos referimos a la variable aleatoria M.
- Si una variable aleatoria como Sarampión toma únicamente los valores verdadero o falso se suele escribir P(Sarampión =verdadero) como P(sarampión) y P(Sarampión =falso) como P(¬ sarampión)

Distribuciones de Probabilidad

- Dada una Variable Aleatoria nos gustaría conocer la probabilidad para cada valor que pueda tomar
- Esta descripción se llama distribución de probabilidad (Dprob) de la variable aleatoria y consiste en listar los valores de probabilidad para cada valor de la variable

Ejemplo:

Distribución de probabilidad de la variable Llueve

Variable →	Llueve	P(Llueve)	
	Verdadero	0.1	> Probabilidades
Valores <	Falso	0.9	× 1105000

Proposiciones más Complejas

- Podemos estar interesados en estudiar varias variables en conjunto.
 - Por ejemplo
 - P(Sarampión=verdadero \(\times \) Fiebre=verdadero) que es la probabilidad de que el paciente tenga sarampión y fiebre
 - Generalmente lo escribiremos como:
 - P(sarampión∧ fiebre) o P(sarampión, fiebre)
- Para ello se necesita asignar probabilidades a cada posible combinación de los valores de las variables.
- El listado de todos esos valores se llama la distribución conjunta del conjunto de variables

Ejemplo de distribución conjunta

 Distribución conjunta de las variables Llueve y EnCalle P(Llueve, EnCalle):

Llueve	EnCalle	P(Llueve,EnCalle)
Verdadero	Verdadero	0.01
Verdadero	Falso	0.09
Falso	Verdadero	0.2
Falso	Falso	0.7

También se puede escribir como:

Циеve	EnCalle	P(Llueve,EnCalle)
llueve	encalle	0.01
llueve	–encalle	0.09
¬ llueve	encalle	0.2
¬ llueve	¬encalle	0.7

- Recuerda a la tabla de la verdad lógica excepto que:
 - Describe las probabilidad para cada combinación de valores de las variables
 - Generalmente dichos valores no se pueden calcular a partir de sus componentes

La Importancia de la Distribución Conjunta

- La distribución conjunta contiene todo lo que se necesita saber acerca de un conjunto de variables aleatorias.
- En particular, la distribución de cada variable individual se puede calcular a partir de la distribución conjunta (y se llama distribución marginal)
 - Ejemplo: Supongamos las variables aleatorias: Llueve y EnCalle con distribución conjunta P(Llueve, EnCalle)

llueve	encalle	0.01
llueve	¬encalle	0.09
¬ llueve	encalle	0.2
¬ llueve	¬encalle	0.7

- Entonces P(llueve)= P(llueve ∧ enCalle)+
 P(llueve ∧¬ enCalle)=0.01+0.09=0.1.
- De forma similar P(¬llueve)= 0.9
- También podemos calcular la probabilidad de disyunciones:
 P(Ilueve v enCalle)=0.01+0.09+0.2= 0.3

Probabilidad Condicional

- Escribiremos P(A|B) para representar la probabilidad de A dado B. Esta probabilidad se llama probabilidad condicional.
- Lo podemos interpretar como mi grado de creencia en A cuando todo lo que sé es B.
 - O de forma alternativa, de los casos en los que se da B, ¿en que proporción se da A?

Probabilidad Condicional Representación gráfica

Se define como:

- P(A|B)=P(A∧B)/P(B) (Asumiendo P(B)≠0) o equivalentemente
- $P(A \land B) = P(A \mid B)P(B)$ (Regla del Producto)

Distribución Condicional

- Nos permite conocer la probabilidad de que se tomen unos determinados valores por un conjunto de variables aleatorias cuando se saben los valores que han tomado otras.
 - Ejemplo: P(Llueve|enCalle)

Llueve	P(Llueve enCalle)		
llueve	0.05		
¬ Ilueve	0.95		

Ejemplo: P(Llueve| ¬ enCalle)

Llueve	P(Llueve ¬enCalle)		
llueve	0.11		
¬ Ilueve	0.89		

 Nótese que Llueve|enCalle y Llueve| ¬ enCalle son variables aleatorias

Razonamiento con Probabilidades: La Regla de Bayes

Propuesta en 1763 por el Reverendo T. Bayes

- P(A|B) = P(B|A) P(A) / P(B)
- Es una consecuencia de la regla del producto:
 - P(A|B)P(B) = P(A,B) = P(B|A)P(A)

Thomas Bayes

De forma intuitiva:

 La probabilidad de una hipótesis A dada una evidencia B: P(A|B) es proporcional a probabilidad de la hipótesis P(A) multiplicada por el grado en que la hipótesis predice los datos P(B|A)

Aplicabilidad

 En muchos problemas dado un conjunto de datos (evidencia) B tenemos que seleccionar la hipótesis A más probable mediante P(A|B)

Regla de Bayes: Forma General

Forma general de la Regla de Bayes

 Si se tiene un conjunto de proposiciones {A₁, A₂,..., A_m} completas y mutuamente excluyente se tiene:

$$P(A_i|B) = P(B|A_i) P(A_i)$$

 $P(B|A_1) P(A_1) + ... P(B|A_n) P(A_m)$

O lo que es lo mismo, si tiene una variable aleatoria A con valores a_1 , a_2 ,..., a_m

$$P(a_i|B) = P(B|a_i) P(a_i)$$

 $P(B|a_1) P(a_1) + ... P(B|a_n) P(a_m)$

La Regla de Bayes: Ejemplo

- Intentemos resolver un caso real con probabilidades:
 - Se pretende determinar la presencia o no de una enfermedad con un test.
 - En este caso:
 - Hipótesis (A): Enfermedad (variable aleatoria con dos valores verdadero y falso)
 - Evidencia (B): Test (variable aleatoria con dos valores positivo y negativo)
 - Se tiene:
 - P(a)=1/10000 (Prevalencia)
 P(b|a)=0.99 (Sensibilidad)
 P(¬ b|¬ a)=0.99 (Especificidad)
 - Aplicando la Regla de Bayes:

 Al elegir la hipótesis más probable debemos concluir que con este test si el resultado es positivo lo más probable es que el paciente no esté enfermo!

La Regla de Bayes: Ejemplo

Continuamos con el ejemplo:

- ¿Y si hay varios tests B₁,B₂,...,B_m?
 - Supondremos que cada test B₁,B₂,...,B_m es una variable aleatoria con dos resultados: positivo y negativo.
- Entonces si queremos calcular la probabilidad de que el paciente esté enfermo necesitamos calcular:

$$P(A|B_1,B_2,...,B_m)=P(B_1,B_2,...,B_m|A)P(A)/P(B_m,B_m,...,B_m)$$

- Si al paciente se le hace un conjunto de 30 pruebas y por simplificar se supone que cada una da como resultado sí o no.
 - Entonces para almacenar la tabla de probabilidad conjunta P(B₁, B₂,...,B_m| A) se necesitan guardar unos 2³⁰ números reales (unos 8 DVD's por paciente).
 - ¿De donde sacamos los números ? ¿Cómo estimar los números a partir de casos (en la Tierra hay 2³² personas aproximadamente)?
 - ¿Cómo hacemos los cálculos computacionalmente eficientes?

Independencia: ¿Una Solución?

Independencia

- Decimos que dos proposiciones A₁ y A₂ son independientes si el conocimiento de una no cambia la probabilidad de la otra
 - Por ejemplo si
 - A₁="Es rubio" , A₂="Tiene la piel clara" ,A₃="Lloverá mañana"
 - A₁ y A₃ son independientes A₁ y A₂ no.
- Formalmente A₁,A₂ son independientes si P(A₁|A₂)=P(A₁)
 o de forma equivalente: P(A₂|A₁)=P(A₂)
 o utilizando la regla del producto P(A₁∧A₂)= P(A₁) P(A₂)
- Entonces P(A₁ ∧ A₂ ∧... ∧ A_n)= P(A₁) P(A₂)... P(A_n)
 Para especificar la distribución conjunta de n variables se necesitan o(n) números en lugar de o(2ⁿ)
- Dos variables aleatorias son independientes si el conocimento del valor que toma una no cambia la probabilidad de los valores de la otra: P(A₁=c|A₂=d) = P(A₁=c)

Independencia Condicional

Pero...

- La condición de independencia es muy restrictiva.
- Por ejemplo, los resultados de los tests en medicina no suelen ser independientes.

Independencia condicional

- Se dice que dos proposiciones A₁,A₂ son independientes dada una tercera B si cuando B está presente el conocimiento de una no influye en la probabilidad de la otra: P(A₁|A₂,B)=P(A₁|B)
 - o de forma equivalente: $P(A_2|A_1,B)=P(A_2|B)$
 - o de forma equivalente: $P(A_1 \land A_2 | B) = P(A_1 | B) P(A_2 | B)$
 - Ejemplo:
 - A₁="Tengo congestión nasal" A₂="Tengo fiebre" A₃="Tengo gripe"
 - A₁ y A₂ son dependientes pero son independientes si se conoce A₃.
- Ahora se tiene: $P(A_1 \land A_2 \land ... \land A_n \mid B) = P(A_1 \mid B) P(A_2 \mid B) ... P(A_n \mid B)$
 - Tenemos o(n) números en lugar de o(2ⁿ)

Independencia Condicional

Finalizamos el ejemplo:

- \dot{c} Y si hay varios tests $B_1, B_2, ..., B_m$?
- Como vimos, para calcular la probabilidad de que el paciente esté enfermo hay que calcular:

$$P(A|B_1,B_2,...,B_m)=P(B_1,B_2,...,B_m|A)P(A)/P(B_m,B_m,...,B_m)$$

 Si los tests B₁,B₂,...,B_m son independientes dada la enfermedad A (aproximación que suele dar buenos resultados):

$$P(B_1, B_2, ..., B_m | A) = P(B_1 | A) P(B_2 | A) ... P(B_m | A)$$

El problema a resolver ya es abordable:

Basta calcular:

$$P(A|B_1,B_2,...,B_m)=P(B_1|A) P(B_2|A)...P(B_m|A)P(A)/P(B_m,B_m,...,B_m)$$

 $P(\neg A|B_1,B_2,...,B_m)=P(B_1|\neg A) P(B_2|\neg A)...P(B_m|\neg A) P(\neg A)$
 $P(B_m,B_m,...,B_m)$

con
$$P(B_m, B_m, ..., B_m) = P(B_1|A) P(B_2|A) ... P(B_m|A) P(A) + P(B_1|A) P(B_2|A) ... P(B_m|A) P(B_m|A) P(A)$$

Representación de la Independencia: Redes Bayesianas

- La clave hacer factible la inferencia con probabilidades es la introducción explícita de la independencia entre variables
- El modelo más extendido de representación de independencias lo constituye las Redes Bayesianas.
- En este modelo se representa de forma explícita la dependencia entre variables mediante un grafo
- Los nodos del grafo se corresponden con variables y las dependencias se representan mediante arcos entre ellas

Aplicación Regla de Bayes

Ejemplo simple

Tenemos un conocimiento sobre la probabilidad de E (P(E), probabilidad a priori). Indago y descubro que se da S. Conociendo P(S/E) y P(S/¬E), ¿que probabilidad hay ahora (P(E/S) probabilidad a posteriori) de que se de E?

$$P(E|S) = \frac{P(S|E).P(E)}{P(S|E).P(E) + P(S|\neg E).P(\neg E)}$$

Aplicación Regla de Bayes

Caso simple: Probabilidad inducida por un efecto

Se conoce P(C), P(E|C) y $P(E|\neg C)$, ¿Puedo calcular P(C|E)?

$$P(C|E) = \frac{P(E|C)*P(C)}{P(E|C)*P(C)+P(E|\neg C)*P(\neg C)}$$

Aplicación Regla de Bayes

Probabilidad inducida a una variable por varias efectos (suponiendo

independencia entre ellos cuando se condiciona a la variable)

ENFERMEDAD (E): presente (+e), ausente (\neg e)

SÍNTOMA (S): presente (+s), ausente $(\neg s)$

PRUEBA ANALÍTICA (A): positivo (+a), negativo (¬a)

Grafo dirigido acíclico

P(+e) = 0'002
$$\rightarrow$$
 probabilidad a priori
P(+s|+e) = 0'93 P(+a|+e) = 0'995 \rightarrow prob de los efectos si +e
P(+s|¬e) = 0'01 P(+a|¬e) = 0'003 \rightarrow prob de los efectos si -e

$$P(+e|+s,+a) = P(+e,+s,+a) / P(+s,+a)$$
 ecuación cálculo $P(+e,+s,+a) = P(+e).P(+s|+e).P(+a|+e) = 0,00185$ $P(-e,+s,+a) = P(-e).P(+s|-e).P(+a|-e) = 0,00003$ $P(+s,+a) = P(+e,+s,+a) + P(-e,+s,+a) = 0,00188$ $P(+e|+s,+a) = P(+e,+s,+a) / P(+s,+a) = 0,984$

Red causal

 Probabilidad inducida por varias factores (independientes entre si) y varios efectos (independientes cuando se condiciona a la variable entre si, y con los factores)

Paludismo (X): presente +x, ausente -x

Zona de origen (F1): alto riesgo f₁⁺, riesgo medio f₁⁰, riesgo bajo f₁⁻

Tipo sanguíneo (F2): mayor inmunidad f_2^+ , menor inmunidad f_1^-

Gota gruesa (E1): positivo e_1^+ , negativo e_1^-

Fiebre (E2): presente e_2^+ , ausente e_2^-

Grafo dirigido acíclico

Red Causal: conocimiento

Distribución de probabilidad de los factores

$$P(f_1+) = 0.1$$

 $P(f_10) = 0.1$
 $P(f_1-) = 0.8$

$$P(f_2+)=0.6$$

 $P(f_2-)=0.4$

Distribución de probabilidad condicionada de la variable con respecto a los factores

$P(+x/f_1,f_2)$	f ₁ +	f ₁ 0	f ₁ -
f ₂ +	0,015	0,003	0,0003
f ₂ -	0,022	0,012	0,0008

Distribución de probabilidad condicionada de los efectos con respecto a la variable

$$P(+e_1|+x) = 0.992$$

 $P(+e_2|+x) = 0.98$

$$P(+e_1|-x) = 0.006$$

 $P(+e_2|-x) = 0.017$

Red causal: Inferencia

$$P(f_1, f_2, x, e_1, e_2) = P(f_1) * P(f_2) * P(x | f_1, f_2) * P(e_1 | x) * P(e_2 | x)$$

- Ejemplo: calcular $P(+x|f_1^0,f_2^-,e_1^-,e_2^+)$
 - $P(f_1^0, f_2^-, +x, e_1^-, e_2^+) = P(f_1^0) * P(f_2^-) * P(+x | f_1^0, f_2^-) * P(e_1^- | +x) * P(e_2^+ | +x) =$ = 0.1 * 0.4 * 0.012 * 0.008 * 0.98 = 0.00000376
 - $P(f_1^0, f_2^-, -x, e_1^-, e_2^+) = P(f_1^0) * P(f_2^-) * P(-x | f_1^0, f_2^-) * P(e_1^- | -x) * P(e_2^+ | -x) =$ = 0.1 * 0.4 * 0.988 * 0.994 * 0.017 = 0.00066780
 - $-P(f_1^0,f_2^-,e_1^-,e_2^+)=P(f_1^0,f_2^-,+x,e_1^-,e_2^+)+P(f_1^0,f_2^-,-x,e_1^-,e_2^+)=0,00067156$
 - $P(+x|f_1^0,f_2^-,e_1^-,e_2^+) = P(f_1^0,f_2^-,+x,e_1^-,e_2^+) / P(f_1^0,f_2^-,e_1^-,e_2^+) =$ = 0,00000376 / 0,00067156 = 0,0055989 $\approx 0,0056$

Red causal: deducciones

$P(+x,f_1,f_2)$	f_1^+	f_1^0	f_1^-				
f ₂ +	0,0009	0,00018	0,000144	0,001224	$P(+x, f_2^+)$	0,00204	$P(+x f_2^+)$
f ₂ -	0,00088	0,00048	0,000256	0,001616	$P(+x, f_2-)$	0,00404	$P(+x f_2-)$
	0,00178	0,00066	0,0004	0,00284	P(+x)		
	$P(+x, f_1^+)$	$P(+x, f_1^0)$	$P(+x, f_1^-)$				
	0,0178	0,0066	0,0005				
	$P(+x f_1^+)$	$P(+x f_1^0)$	$P(+x f_1^-)$				

- Probabilidad a priori: P(+x) = 0.00284
- Probabilidad tras conocer los factores: $P(+x|f_1^0,f_2^-) = 0.012$

 $P(+x|f_1^0) = 0,0066$ si desconozco el valor de F2 $P(+x|f_2^-) = 0,0040$ si desconozco el valor de F1

• Probabilidad tras añadir conocimiento sobre los efectos: $P(+x|f_1^0,f_2^-,\neg e_1,e_2) = 0,0056$ Si desconozco el valor de F1 y de E2, $\displayline P(+x|f_2^-,\neg e_1)$?

Red causal: deducciones

$P(+x,f_1,f_2)$	f ₁ +	f_1^0	f_1^-				
f ₂ +	0,0009	0,00018	0,000144	0,001224	$P(+x, f_2^+)$	0,00204	$P(+x f_2^+)$
f ₂ -	0,00088	0,00048	0,000256	0,001616	$P(+x, f_2-)$	0,00404	$P(+x f_2-)$
	0,00178	0,00066	0,0004	0,00284	P(+x)		
	$P(+x, f_1^+)$	$P(+x, f_1^{0})$	$P(+x, f_1^-)$				
	0,0178	0,0066	0,0005				
	$P(+x f_1^+)$	$P(+x f_1^0)$	$P(+x f_1^-)$				
	$^{*} = P(+x,f_{1}^{-1})$	= $P(+x,f_1^+,f_2^+) + P(+x,f_1^+,f_2^-)$			$(+x f_1^0,f_2^+)$	* P(f ₁ ⁰)*P	$P(f_2^+)$

- Probabilidad a priori: P(+x) = 0.00284
- Probabilidad tras conocer los factores: $P(+x|f_1^0,f_2^-) = 0,012$ $P(+x|f_1^0) = 0,0066$ si desconozco el valor de F2 $P(+x|f_2^-) = 0,0040$ si desconozco el valor de F1
- Probabilidad tras añadir conocimiento sobre los efectos: $P(+x|f_1^0,f_2^-,\neg e_1,e_2)=0,0056$ Si desconozco el valor de F1 y de E2, $P(+x|f_2^-,\neg e_1)$?

En forma de SE (conocimiento)

En forma de SE (inferencia)

Probabilidad a priori

```
P(X a\_priori) = P(X) = \sum P(X, F1 = ui, F2 = vj)
P(X,F1=u_i,F2=v_i) = P(F1=u_i)*P(F2=v_i)*P(X|F1=u_i,F2=v_i)
```

Probabilidad a posteriori tras factores F1=u,F2=v

```
P(X a_posteriori_factores) = P(X | F1=u,F2=v)
```

Probabilidad a posteriori tras factores y efectos E1=w,E2=z
 P(X a_posteriori_factores_efectos) = P(X|F1=u,F2=v,E1=w,E2=z)

```
 \begin{aligned} & \text{Cx= P(F1=u)*P(F2=v)*P(X|F1=u,F2=v)*P(E1=w|X)*P(E2=z|X) = P(X,F1=u,F2=v,E1=w,E2=z)} \\ & \text{C}\neg x = P(F1=u)*P(F2=v)*P(\neg X|F1=u,F2=v)*P(E1=w|\neg X)*P(E2=z|\neg X) = P(\neg X,F1=u,F2=v,E1=w,E2=z)} \\ & \text{C= Cx + C}\neg x = P(F1=u,F2=v,E1=w,E2=z)} \\ & \text{P(X a posteriori factores efectos) = Cx /C} \end{aligned}
```

Resumen de representaciones numéricas

Grados de certidumbre en Mycin

- Asigna:Un número entre -1 y 1 a cada regla
- Mide: La incertidumbre asociada a cada regla
- Aplicaciones: Sistemas Expertos
- Ventajas: El número de parámetros necesario es razonable
- Inconvenientes: Débil representación de la independencia, Incoherencias

Lógica difusa

- Asigna:Un número entre 0 y 1 a cada proposición
- Mide: La verdad asociada a cada proposición
- Aplicaciones: Sistemas Expertos, Control
- Ventajas: Proporciona una forma de razonar con la vaguedad asociadas al lenguaje natural
- Inconvenientes: Tiene muchas elecciones arbitrarias (combinación de grados de creencia, inferencia, etc.)

Resumen de representaciones numéricas

Probabilidad

- Asigna:Un número entre 0 y 1 a cada proposición
- Mide: La incertidumbre asociada a dicha proposición
- Aplicaciones: Sistemas Expertos, Clasificación
- Ventajas: Sistema formalmente probado y robusto
- Inconvenientes: Se necesita mucha información

IMPRECISIÓN EN LAS AFIRMACIONES VS IMPRECISIÓN EN EL CONOCIMIENTO DE LA VERACIDAD

Conocimiento verdad Afirmaciones	PRECISO	IMPRECISO: RETRACTABLE	IMPRECISO: BASADA EN ESTADISTICA	IMPRECISO: BASADO EN CREENCIAS	
PRECISAS	LÓGICA CLASICA	- LÓGICA PORDEFECTO- HIPOTESIS DELMUNDO CERRADO	PROBABILIDAD	FACTORES DE CERTEZA	
IMPRECISAS	LÓGICA DIFUSA	LÓGICA DIFUSA POR DEFECTO	LÓGICA DIFUSA PROBABILISTICA	LÓGICA DIFUSA CON FACTORES DE CERTEZA	