第4节 高考中抛物线常用的二级结论(★★☆)

内容提要

1. 坐标版焦半径、焦点弦公式(设 $P(x_0,y_0)$ 在抛物线上, $A(x_1,y_1)$, $B(x_2,y_2)$,AB 是抛物线的焦点弦)

标准方程	$y^2 = 2px(p > 0)$	$y^2 = -2px(p > 0)$	$x^2 = 2py(p > 0)$	$x^2 = -2py(p > 0)$
焦半径公式	$ PF = x_0 + \frac{p}{2}$	$ PF = \frac{p}{2} - x_0$	$ PF = y_0 + \frac{p}{2}$	$ PF = \frac{p}{2} - y_0$
焦点弦公式	$ AB = x_1 + x_2 + p$	$ AB = p - (x_1 + x_2)$	$ AB = y_1 + y_2 + p$	$ AB = p - (y_1 + y_2)$

2. 角版焦半径、焦点弦公式: 设抛物线 $y^2 = 2px(p > 0)$ 的焦点为 F, O 为原点.

①焦半径公式:设A为抛物线上任意一点,记 $\angle AFO = \alpha$,则焦半径 $|AF| = \frac{p}{1 + \cos \alpha}$.

证明:作 $AM \perp x$ 轴于M,先考虑M在F右侧的情形,如图 1,设 $A(x_0,y_0)$,则 $|FM|=x_0-\frac{p}{2}$,

又 $|FM| = |AF|\cos \angle AFM = |AF|\cos(\pi - \alpha) = -|AF|\cos\alpha$,与上式比较可得: $-|AF|\cos\alpha = x_0 - \frac{p}{2}$,

另一方面,由坐标版焦半径公式知 $|AF|=x_0+\frac{p}{2}$,与上式作差消去 x_0 整理得: $|AF|=\frac{p}{1+\cos\alpha}$;

同理可证当M在F左侧或恰好与F重合时,都有 $|AF| = \frac{p}{1+\cos\alpha}$.

②焦点弦公式: AB 是抛物线的焦点弦,记 $\angle AFO = \alpha$,则 $|AB| = \frac{2p}{\sin^2 \alpha}$.

证明:如上图 2, $\angle BFO = \pi - \alpha$,由①中的焦半径公式可得 $|AF| = \frac{p}{1 + \cos \alpha}$, $|BF| = \frac{p}{1 + \cos(\pi - \alpha)} = \frac{p}{1 - \cos \alpha}$,
所以 $|AB| = \frac{p}{1 + \cos \alpha} + \frac{p}{1 - \cos \alpha} = \frac{p(1 - \cos \alpha) + p(1 + \cos \alpha)}{(1 + \cos \alpha)(1 - \cos \alpha)} = \frac{2p}{1 - \cos^2 \alpha} = \frac{2p}{\sin^2 \alpha}$.

③焦点弦和原点构成的三角形面积:设AB是抛物线的焦点弦,记 $\angle AFO = \alpha$,则 $S_{\triangle AOB} = \frac{p^2}{2\sin\alpha}$.

证明: 如上图 3,作 $OD \perp AB \mp D$,则 $|OD| = |OF| \sin \angle OFD = |OF| \sin(\pi - \alpha) = |OF| \sin \alpha = \frac{p}{2} \cdot \sin \alpha$,

由②中的焦点弦公式可得: $|AB| = \frac{2p}{\sin^2 \alpha}$, 所以 $S_{\Delta AOB} = \frac{1}{2} |AB| \cdot |OD| = \frac{1}{2} \cdot \frac{2p}{\sin^2 \alpha} \cdot \frac{p}{2} \cdot \sin \alpha = \frac{p^2}{2\sin \alpha}$.

④焦半径倒数和定值结论: 设抛物线的焦点为 F,AB 是抛物线的一条焦点弦,则 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$.

证明:如图 2,由①中的焦半径公式,
$$|AF| = \frac{p}{1+\cos\alpha}$$
, $|BF| = \frac{p}{1+\cos(\pi-\alpha)} = \frac{p}{1-\cos\alpha}$,

所以
$$\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{1 + \cos \alpha}{p} + \frac{1 - \cos \alpha}{p} = \frac{2}{p}$$
.

注:②和③中的 α 可由 $\angle AFO$ 换成 $\angle BFO$ 或直线 AB 的倾斜角,结果不变;但若 α 统一取 $\angle AFO$,则①② ③中的结论对各种开口的抛物线都成立,这也是为什么我们要把 $\angle AFO$ 设为 α 的原因.

典型例题

类型 I: 焦半径问题

【例 1】过抛物线 $C: y^2 = 4x$ 的焦点 F 的直线 l 与 C 交于 A, B 两点,若 |AF| = 3,则 $|BF| = _____$.

解法 1: 已知 |AF|,可由坐标版焦半径公式求得 A 的坐标,

由题意, $|AF|=x_A+1=3$,所以 $x_A=2$,代入 $y^2=4x$ 可得 $y_A=\pm 2\sqrt{2}$,由对称性,不妨设 $A(2,2\sqrt{2})$,

此时可结合点F写出直线AF的方程,并与抛物线联立求出点B的坐标,再算|BF|,

又
$$F(1,0)$$
, 所以 $k_{AF} = \frac{2\sqrt{2}-0}{2-1} = 2\sqrt{2}$, 故直线 AF 的方程为 $y = 2\sqrt{2}(x-1)$,

联立
$$\begin{cases} y = 2\sqrt{2}(x-1) \\ y^2 = 4x \end{cases}$$
 消去 y 整理得: $2x^2 - 5x + 2 = 0$, 解得: $x = 2$ 或 $\frac{1}{2}$,

因为
$$x_A = 2$$
,所以 $x_B = \frac{1}{2}$,故 $|BF| = x_B + 1 = \frac{3}{2}$.

解法 2: 如图,已知 |AF|,可由角版焦半径公式求得 $\cos \alpha$,并用于求 |BF|,

设
$$\angle AFO = \alpha$$
 ,则 $|AF| = \frac{2}{1 + \cos \alpha} = 3$,所以 $\cos \alpha = -\frac{1}{3}$,故 $|BF| = \frac{2}{1 + \cos(\pi - \alpha)} = \frac{2}{1 - \cos \alpha} = \frac{3}{2}$.

解法 3: 已知 |AF| 求 |BF|,也可用结论 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$,

由题意,
$$p=2$$
 ,所以 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p} = 1$,将 $|AF| = 3$ 代入可求得 $|BF| = \frac{3}{2}$.

答案: $\frac{3}{2}$

【变式 1】过抛物线 $C: y^2 = 2x$ 的焦点 F 的直线 l 与 C 交于 A, B 两点,若 |AB| = 8,则 $|AF| \cdot |BF| = _____.$ 解法 1: |AB| 和 $|AF| \cdot |BF|$ 都可以用 A, B 的坐标来算,故先设坐标,

设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, 则 $|AB| = x_1 + x_2 + 1$, $|AF| = x_1 + \frac{1}{2}$, $|BF| = x_2 + \frac{1}{2}$,

所以
$$|AF| \cdot |BF| = (x_1 + \frac{1}{2})(x_2 + \frac{1}{2}) = x_1x_2 + \frac{x_1 + x_2}{2} + \frac{1}{4}$$
 ①,

涉及 x_1+x_2 和 x_1x_2 ,可将直线与抛物线联立,结合韦达定理来算,

由题意, $F(\frac{1}{2},0)$,直线 l 不与 y 轴垂直,可设其方程为 $x = my + \frac{1}{2}$,

代入 $y^2 = 2x$ 整理得: $y^2 - 2my - 1 = 0$, 由韦达定理, $y_1 + y_2 = 2m$, $y_1y_2 = -1$,

$$\text{FFU} x_1 + x_2 = my_1 + \frac{1}{2} + my_2 + \frac{1}{2} = m(y_1 + y_2) + 1 = 2m^2 + 1 \text{ (2)}, \quad x_1x_2 = \frac{y_1^2}{2} \cdot \frac{y_2^2}{2} = (\frac{y_1y_2}{2})^2 = \frac{1}{4} \text{ (3)},$$

故 $|AB|=x_1+x_2+1=2m^2+2$, 由题意, |AB|=8, 所以 $2m^2+2=8$, 故 $m^2=3$,

将②③代入①可得
$$|AF|\cdot |BF| = x_1x_2 + \frac{x_1 + x_2}{2} + \frac{1}{4} = \frac{1}{4} + \frac{2m^2 + 1}{2} + \frac{1}{4} = m^2 + 1 = 4.$$

解法 2: 涉及焦点弦 |AB| 和焦半径 |AF| 与 |BF|, 也可设角,用角版的焦点弦、焦半径公式来处理,

如图,设
$$\angle AFO = \alpha$$
,由题意, $|AB| = \frac{2}{\sin^2 \alpha} = 8$,所以 $\sin^2 \alpha = \frac{1}{4}$,

$$X|AF| = \frac{1}{1 + \cos \alpha}, |BF| = \frac{1}{1 + \cos(\pi - \alpha)} = \frac{1}{1 - \cos \alpha}, |FS||AF| \cdot |BF| = \frac{1}{1 + \cos \alpha} \cdot \frac{1}{1 - \cos \alpha} = \frac{1}{1 - \cos^2 \alpha} = \frac{1}{\sin^2 \alpha} = 4.$$

解法 3: 注意到
$$|AB| = |AF| + |BF|$$
, 故将 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$ 通分,恰好可求得 $|AF| \cdot |BF|$,

由题意,
$$p=1$$
,所以 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p} = 2$,又 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{|BF| + |AF|}{|AF| \cdot |BF|} = \frac{|AB|}{|AF| \cdot |BF|} = \frac{8}{|AF| \cdot |BF|}$

所以
$$\frac{8}{|AF|\cdot |BF|} = 2$$
,故 $|AF|\cdot |BF| = 4$.

答案: 4

【反思】从上面两道题可以看出,涉及焦半径、焦点弦的计算,用角版的公式或 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$ 计算量往往更小,可作为首选方案,坐标版公式为次选方案.

【变式 2】过抛物线 $C: y^2 = 4x$ 的焦点 F 的直线 l 与 C 交于 A, B 两点,若 |AF| = 2|BF|,则 $|AB| = ____$.

解法 1: 由 |AF| = 2|BF| 可用角版焦半径公式建立方程求得 $\cos \alpha$,从而求得 |AB|,

如图,设
$$\angle AFO = \alpha$$
,则 $|AF| = \frac{2}{1 + \cos \alpha}$, $|BF| = \frac{2}{1 + \cos(\pi - \alpha)} = \frac{2}{1 - \cos \alpha}$,

因为
$$|AF| = 2|BF|$$
,所以 $\frac{2}{1 + \cos \alpha} = 2 \cdot \frac{2}{1 - \cos \alpha}$,从而 $\cos \alpha = -\frac{1}{3}$,故 $|AB| = \frac{4}{\sin^2 \alpha} = \frac{4}{1 - \cos^2 \alpha} = \frac{9}{2}$.

解法 2: 由|AF| = 2|BF|结合 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$ 也可求出|AF|和|BF|,进而求得|AB|,

由题意, $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p} = 1$,结合 |AF| = 2|BF| 可得 |AF| = 3, $|BF| = \frac{3}{2}$, 所以 $|AB| = |AF| + |BF| = \frac{9}{2}$.

答案: ⁹

【变式 3】已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点为 F,过 F 且斜率为 $2\sqrt{2}$ 的直线 l 与 C 交于 A, B 两点(A在x轴上方),若 $|AF| = \lambda |BF|$,则 $\lambda = ($

(A)
$$\sqrt{2}$$
 (B) $\sqrt{3}$ (C) 2 (D) $\sqrt{5}$

(B)
$$\sqrt{3}$$

$$(C)$$
 2

(D)
$$\sqrt{5}$$

解析:如图,由斜率可求得 $\cos \alpha$,于是选择角版焦半径公式来计算|AF|和|BF|,

设直线 l 的倾斜角为 $\alpha(0<\alpha<\frac{\pi}{2})$,则 $\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=2\sqrt{2}$,结合 $\sin^2\alpha+\cos^2\alpha=1$ 可得 $\cos\alpha=\frac{1}{3}$,

由图可知 $\angle AFO = \pi - \alpha$, $\angle BFO = \alpha$, 所以 $|AF| = \frac{p}{1 + \cos(\pi - \alpha)} = \frac{p}{1 - \cos\alpha} = \frac{3p}{2}$, $|BF| = \frac{p}{1 + \cos\alpha} = \frac{3p}{4}$,

又
$$|AF| = \lambda |BF|$$
,所以 $\lambda = \frac{|AF|}{|BF|} = \frac{\frac{3p}{2}}{\frac{3p}{4}} = 2.$

答案: C

【变式 4】抛物线 $C: y^2 = 4x$ 的焦点为 F,直线 $l: x - my - 1 = 0 (m \in \mathbb{R})$ 与 C 交于 A,B 两点,则 |AF| + 4|BF| 的 最小值是____.

解析: 我们知道 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p}$, 故可由此将 |AF| + 4|BF| 凑成积为定值,用均值不等式求最值,

由题意, p=2 ,直线 l 过定点 (1,0) ,该定点恰为抛物线 C 的焦点 F ,所以 $\frac{1}{|AF|} + \frac{1}{|BF|} = \frac{2}{p} = 1$,

从而
$$|AF|+4|BF|=(|AF|+4|BF|)(\frac{1}{|AF|}+\frac{1}{|BF|})=5+\frac{|AF|}{|BF|}+\frac{4|BF|}{|AF|}\geq 5+2\sqrt{\frac{|AF|}{|BF|}\cdot\frac{4|BF|}{|AF|}}=9$$
,

取等条件是 $\frac{|AF|}{|BF|} = \frac{4|BF|}{|AF|}$,结合 $\frac{1}{|AF|} + \frac{1}{|BF|} = 1$ 可得此时|AF| = 3, $|BF| = \frac{3}{2}$,故 $(|AF| + 4|BF|)_{min} = 9$.

答案: 9

【反思】也可引入 $\angle AFO$ 为变量,用角版焦半径公式求|AF|+4|BF|,但计算量偏大,可自行尝试.

类型Ⅱ:焦点弦问题

【例 2】抛物线 $C: y^2 = 2px(p > 0)$ 的焦点为 F,过 F 且倾斜角为 45° 的直线交 C 于 A,B 两点,若 |AB| = 8,

则 *p* = _____.

解法 1: 可写出直线 AB 的方程,与抛物线联立求出 $x_A + x_B$,用坐标版的焦点弦公式算 |AB|,

由题意, $F(\frac{p}{2},0)$,直线 AB 的斜率 $k = \tan 45^\circ = 1$,故其方程为 $y = x - \frac{p}{2}$,

代入 $y^2 = 2px$ 整理得: $x^2 - 3px + \frac{p^2}{4} = 0$, 由韦达定理, $x_A + x_B = 3p$, 所以 $|AB| = x_A + x_B + p = 4p$,

又|AB|=8,所以4p=8,解得: p=2.

解法 2:给了直线 AB 的倾斜角,用角版焦点弦公式算 |AB| 更简单,

直线 AB 的倾斜角为 $45^{\circ} \Rightarrow |AB| = \frac{2p}{\sin^2 45^{\circ}} = 4p$,又 |AB| = 8,所以 4p = 8,解得: p = 2.

答案: 2

【反思】当抛物线中出现焦点弦以及焦点弦的斜率或倾斜角时,可考虑使用角版焦点弦公式速解.

【变式 1】已知抛物线 $y^2=8x$ 的焦点为 F,过 F 的直线 l 与抛物线交于 A, B 两点,若点 M(t,4) 是 AB 的中点,则 |AB|=()

(A) 8 (B) 12 (C) 16 (D) 18

解析:本题没有角度,故联立直线和抛物线,由韦达定理结合坐标版焦点弦公式算|AB|,

由题意, F(2,0), 直线 l 不与 y 轴垂直, 可设其方程为 x = my + 2, 设 $A(x_1, y_1)$, $B(x_2, y_2)$,

联立
$$\begin{cases} x = my + 2 \\ y^2 = 8x \end{cases}$$
 消去 x 整理得: $y^2 - 8my - 16 = 0$, 由韦达定理, $y_1 + y_2 = 8m$,

点 M 的纵坐标是已知的,故可用它求 m,因为 AB 中点 M 的纵坐标为 4,所以 $\frac{y_1+y_2}{2}=4m=4$,故 m=1,再求 x_1+x_2 ,可利用点 A,B 在直线 l 上转化为 y_1 和 y_2 来算,

 $x_1 + x_2 = my_1 + 2 + my_2 + 2 = m(y_1 + y_2) + 4 = 8m^2 + 4 = 12$, $\text{MU} |AB| = x_1 + x_2 + 4 = 16$.

答案: C

【变式 2】已知 F 为抛物线 $C: y^2 = 6x$ 的焦点, 过 F 作两条互相垂直的直线 l_1 和 l_2 , l_1 与 C 交于 A, B 两点, l_2 与 C 交于 D, E 两点,则 |AB| + |DE| 的最小值为_____.

解法 1: |AB| 和 |DE| 都是焦点弦,可由坐标版公式来算,需用到韦达定理,故联立直线和抛物线方程,

由题意, $F(\frac{3}{2},0)$, l_1 和 l_2 都不与坐标轴垂直,可设 $l_1: y = k(x-\frac{3}{2})(k \neq 0)$,则 $l_2: y = -\frac{1}{k}(x-\frac{3}{2})$,

将 $y = k(x - \frac{3}{2})$ 代入 $y^2 = 6x$ 消去 y 整理得: $k^2x^2 - (3k^2 + 6)x + \frac{9}{4}k^2 = 0$,

由韦达定理, $x_1 + x_2 = \frac{3k^2 + 6}{k^2} = 3 + \frac{6}{k^2}$,所以 $|AB| = x_1 + x_2 + 3 = 6 + \frac{6}{k^2}$ ①,

注意到两直线仅斜率不同,其它都一样,故只需在①中替换斜率即可得到|DE|,无需重复计算,

在①用
$$-\frac{1}{k}$$
替换 k 可得 $|DE| = 6 + 6k^2$,所以 $|AB| + |DE| = 12 + 6(\frac{1}{k^2} + k^2) \ge 12 + 6 \times 2\sqrt{\frac{1}{k^2} \cdot k^2} = 24$,

当且仅当 $\frac{1}{L^2} = k^2$, 即 $k = \pm 1$ 时取等号,故 |AB| + |DE|的最小值为 24.

解法 2: |AB| 和 |DE| 都是焦点弦,也可设两直线的倾斜角,用角版焦点弦公式来计算,

如图,设直线 l_1 的倾斜角为 α ,两直线都不与坐标轴垂直,不妨设 $0<\alpha<\frac{\pi}{2}$,则 $|AB|=\frac{6}{\sin^2\alpha}$,

因为
$$l_1 \perp l_2$$
,所以 l_2 的倾斜角为 $\frac{\pi}{2} + \alpha$,从而 $|DE| = \frac{6}{\sin^2(\frac{\pi}{2} + \alpha)} = \frac{6}{\cos^2 \alpha}$,

故|AB|+|DE|=
$$\frac{6}{\sin^2\alpha} + \frac{6}{\cos^2\alpha} = \frac{6\cos^2\alpha + 6\sin^2\alpha}{\sin^2\alpha\cos^2\alpha} = \frac{6}{(\frac{1}{2}\sin 2\alpha)^2} = \frac{24}{\sin^2 2\alpha}$$
,

所以当 $\alpha = \frac{\pi}{4}$ 时, $\sin^2 2\alpha = 1$,|AB| + |DE|取得最小值 24.

答案: 24

类型III:焦点弦与原点构成的三角形面积

【例 3】设 F 是抛物线 $C: y^2 = 2px(p > 0)$ 的焦点,过 F 且斜率为 1 的直线 l 与 C 交于 A, B 两点, O 为原 点,若 $\triangle AOB$ 的面积为 $3\sqrt{2}$,则 p=(

(A)
$$\sqrt{2}$$
 (B) $\sqrt{6}$ (C) 1 (D) 2

B)
$$\sqrt{6}$$

$$(\mathbf{C})$$
 1

解析: 给了直线 l 的斜率,可求得其倾斜角,故可直接代公式 $S = \frac{p^2}{2\sin\alpha}$ 计算 ΔAOB 的面积,

如图,直线 l 的斜率为 $1 \Rightarrow$ 倾斜角 $\alpha = 45^\circ$,所以 $S_{\Delta AOB} = \frac{p^2}{2\sin\alpha} = \frac{p^2}{2\sin 45^\circ} = \frac{p^2}{\sqrt{2}}$,

由题意, $\triangle AOB$ 的面积为 $3\sqrt{2}$,所以 $\frac{p^2}{\sqrt{2}} = 3\sqrt{2}$,解得: $p = \sqrt{6}$.

答案: B

【反思】抛物线中涉及焦点弦与原点组成的三角形的面积问题,都可考虑用面积公式 $S = \frac{p^2}{2\sin\alpha}$ 来算.

【变式】过抛物线 $y^2=2px(p>0)$ 的焦点 F 的直线 l 与抛物线交于 A , B 两点, O 为原点,若 $\overrightarrow{AB}=3\overrightarrow{FB}$,

且 $\triangle AOB$ 的面积为 $\frac{3\sqrt{2}}{2}$,则 p = ()

(A) 2 (B)
$$\frac{2}{9}$$
 (C) 4 (D) $\frac{9}{2}$

解析: 由 $\overrightarrow{AB} = 3\overrightarrow{FB}$ 可结合角版焦点弦、焦半径公式求角,再用 $S = \frac{p^2}{2\sin\alpha}$ 算 ΔAOB 的面积,

如图,设 $\angle AFO = \alpha(0 < \alpha < \pi)$,则 $|AB| = \frac{2p}{\sin^2 \alpha}$, $\angle BFO = \pi - \alpha$,所以 $|FB| = \frac{p}{1 + \cos(\pi - \alpha)} = \frac{p}{1 - \cos \alpha}$,

因为 $\overrightarrow{AB} = 3\overrightarrow{FB}$,所以|AB| = 3|FB|,从而 $\frac{2p}{\sin^2 \alpha} = 3 \cdot \frac{p}{1 - \cos \alpha}$,故 $\frac{2}{\sin^2 \alpha} = \frac{3}{1 - \cos \alpha}$ ①,

$$\frac{\chi}{\sin^2\alpha} = \frac{2}{1-\cos^2\alpha} = \frac{2}{(1+\cos\alpha)(1-\cos\alpha)},$$

所以代入①化简得: $\frac{2}{1+\cos\alpha}=3$,解得: $\cos\alpha=-\frac{1}{3}$

因为 $0 < \alpha < \pi$,所以 $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{2\sqrt{2}}{3}$,

故
$$S_{\Delta AOB} = \frac{p^2}{2\sin\alpha} = \frac{p^2}{4\sqrt{2}} = \frac{3p^2}{4\sqrt{2}}$$

又
$$S_{\Delta AOB} = \frac{3\sqrt{2}}{2}$$
,所以 $\frac{3p^2}{4\sqrt{2}} = \frac{3\sqrt{2}}{2}$,解得: $p = 2$.

答案: A

强化训练

- 1. $(2020 \cdot 新高考 I 卷 \cdot ★★)$ 斜率为 $\sqrt{3}$ 的直线过抛物线 $C: y^2 = 4x$ 的焦点,且与 C 交于 $A \setminus B$ 两点,则 |AB| =____.
- 2. (★★)设 F 为抛物线 $C: y^2 = 3x$ 的焦点,过 F 且倾斜角为 30° 的直线交 C 于 A, B 两点,O 为原点,则 $\triangle AOB$ 的面积为
- 3. (★★★) 过抛物线 $y^2 = 2x$ 的焦点 F 作直线交抛物线于 A, B 两点,若 $|AB| = \frac{25}{12}$,|AF| < |BF|,则 $|AF| = \frac{1}{12}$
- 4. (★★★) 过抛物线 $C: y^2 = 3x$ 的焦点 F 的直线与 C 交于 $A \setminus B$ 两点,若 |AF| = 2|BF|,则 $|AB| = ____.$
- 5.(2022・张掖模拟・★★★)已知抛物线 $C: y^2 = 4x$ 的焦点为 F,O为原点,过 F 的直线 l与 C 交于 P, Q 两点,且 $\overrightarrow{PF} = 3\overrightarrow{FQ}$,则 ΔOPQ 的面积为()

- (A) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) $\frac{2\sqrt{3}}{3}$ (D) $\frac{4\sqrt{3}}{3}$
- 6. (★★★) 已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点为 F,准线为 l,过点 F 作倾斜角为120° 的直线与准线 l相交于点 A,线段 AF 与 C 相交于点 B,且 $|AB| = \frac{4}{3}$,则 C 的方程为_____.

- 7. $(\bigstar \bigstar \bigstar)$ 已知 F 为抛物线 $y^2 = 2px(p > 0)$ 的焦点,过 F 且倾斜角为 45° 的直线 l 与抛物线交于 A, B 两点,线段 AB 的中垂线与 x 轴交于点 M,则 $\frac{4p}{|FM|} = _____$.
- 8. $(\star\star\star\star\star)$ 过抛物线 $C:y^2=4x$ 焦点 F 作两条互相垂直的直线分别与 C 交于 A、B 和 D、E 四点,则四 边形 ADBE 的面积 S 的最小值为_____.

《一数•高考数学核心方法》