Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Дисциплина: Функциональная схемотехника

Лабораторная работа 1

Вариант 1

Выполнил:

Гурьянов Кирилл Алексеевич

Группа: Р33302

Преподаватель:

Табунщик Сергей Михайлович

Санкт-Петербург

Цель работы

Изучение и освоение основных принципов проектирования цифровых вентилей на полевых транзисторах с использованием технологии CMOS, а также в овладении навыками моделирования электрических цепей с использованием программного пакета LTspice. Освоение принципов работы цифровых вентилей, овладение методами моделирования в LTspice и использование языка Verilog HDL для создания и тестирования цифровых схем на вентильном уровне.

Задание

Реализовать демультиплексор "1 в 4" в логическом базисе NOR.

<u>Часть 1:</u>

- 1. Постройте в LTspice на транзисторах схему вентиля, составляющего основу логического базиса согласно варианту задания.
- 2. Создайте символ для разработанного вентиля как иерархического элемента.
- 3. С использованием созданного иерархического элемента постройте схему тестирования вентиля.
- 4. Проведите моделирование работы схемы и определите задержку распространения сигнала через тестируемый вентиль.
- 5. Определите максимальную частоту изменения входных сигналов, при которой построенная схема сохраняет работоспособность.
- 6. Постройте БОЭ на базе созданного вентиля согласно варианту задания.
- 7. Создайте символ для построенного БОЭ.
- 8. Проведите моделирование работы схемы и определите задержку распространения сигнала через БОЭ.
- 9. Определите максимальную частоту изменения входных сигналов, при которой построенная схема сохраняет работоспособность.
- 10. Составьте отчет по результатам выполнения заданий первой части лабораторной работы.

<u>Часть 2:</u>

- 1. Опишите на Verilog HDL на вентильном уровне модуль, реализующий функцию БОЭ в указанном логическом базисе согласно варианту задания.
- 2. Разработайте тестовое окружение для созданного модуля.
- 3. Проведите моделирование работы схемы.

4. Составьте отчет по результатам выполнения заданий второй части лабораторной работы.

Отчет о выполнении 1 части

Схема разработанного вентиля

"Рисунок 1. Схема NOR"

Символ вентиля и схема тестирования

"Рисунок 2. Символ вентиля NOR" .include 90nm_bulk.txt

"Рисунок 3. Схема для тестирования вентиля NOR"

Временная диаграмма процесса тестирования вентиля

"Рисунок 4. Временная диаграмма процесса тестирования вентиля NOR"

Результат измерения задержки распространения сигнала через вентиль

Время задержки распространения сигнала через вентиль на фронте равно:

$$t_1 \approx 23.5 \text{ Hc} - 21 \text{ Hc} = 2.5 \text{ Hc}$$

Время задержки распространения сигнала через вентиль на спаде равно:

$$t_{_{2}} \approx 35.5 \,\mathrm{Hc} \, - 33 \,\mathrm{Hc} \, = \, 2.5 \,\mathrm{Hc}$$

Максимальная частота работы вентиля

$$\nu = \frac{1}{t_1} = \frac{1}{2.5 \text{ HC}} \approx 400 \text{ M}$$
Гц

Схема разработанного БОЭ

$$z_0 = \overline{x_1} \wedge \overline{x_2} \wedge y$$

$$z_1 = \overline{x_1} \wedge x_2 \wedge y$$

$$z_2 = x_1 \wedge \overline{x_2} \wedge y$$

$$z_3 = x_1 \wedge x_2 \wedge y$$

Сделаем переход в базис NOR:

$$z_{0} = \overline{x_{1}} \wedge \overline{x_{2}} \wedge y = \overline{x_{1} \vee x_{2}} \wedge y = (x_{1} \downarrow x_{2}) \wedge y = \overline{(x_{1} \downarrow x_{2}) \vee y} = \overline{(x_{1} \downarrow x_{2})} \vee \overline{y} = \overline{(x_{1} \downarrow x_{2})} \downarrow \overline{y} = \overline{(x_{1}$$

$$z_{1} = \overline{x_{1}} \wedge x_{2} \wedge y = \overline{x_{1} \vee \overline{x_{2} \wedge y}} = x_{1} \downarrow (\overline{x_{2} \wedge y}) = x_{1} \downarrow (\overline{\overline{x_{2} \vee y}}) = x_{1} \downarrow (\overline{\overline{x_{2} \vee y}}) = x_{1} \downarrow (\overline{\overline{x_{2} \vee y}}) = x_{2} \downarrow (\overline{\overline{x_{2} \vee y}}) = x_{3} \downarrow (\overline{\overline{x_{2} \vee y}}) = x_{3} \downarrow (\overline{\overline{x_{2} \vee y}}) = x_{4} \downarrow (\overline{x_{2} \vee y}) = x$$

$$= x_1 \downarrow (\overline{(x_2 \downarrow x_2) \downarrow (y \downarrow y)}) = x_1 \downarrow (((x_2 \downarrow x_2) \downarrow (y \downarrow y)) \downarrow ((x_2 \downarrow x_2) \downarrow (y \downarrow y)))$$

$$z_2 = x_1 \land \overline{x_2} \land y = \overline{x_2} \land x_1 \land y = \overline{x_2} \lor \overline{x_1} \land \overline{y} = x_2 \downarrow (\overline{x_1} \land \overline{y}) = x_2 \downarrow (\overline{x_1} \lor \overline{y}) \Rightarrow x_2 \downarrow (\overline{x_1} \lor \overline{y}) = x_2 \downarrow (\overline{x_1} \lor \overline{y}) \Rightarrow x_2 \downarrow$$

"Рисунок 5 Схема БОЕ демультиплексора"

Символ разработанного БОЭ и схема тестирования

"Рисунок 6. Символ БОЕ демультиплексора"

"Рисунок 7. Схема тестирования БОЕ демультиплексора"

Временная диаграмма процесса тестирования БОЭ

"Рисунок 8. Временная диаграмма процесса тестирования БОЭ"

Результат измерения задержки распространения сигнала через БОЭ

"Рисунок 9. Приближенная временная диаграмма для измерения временных задержек на схеме БОЭ демультиплексора"

```
Время задержки распространения сигнала через БОЭ на фронте равно: t_1 \approx 22.7~{\rm Hc}~-~20~{\rm Hc}~=~2.7~{\rm Hc} Время задержки распространения сигнала через вентиль на спаде равно: t_2 \approx 32~{\rm Hc}~-~30~{\rm Hc}~=~2~{\rm Hc}
```

Максимальная частота работы БОЭ

$$\nu = \frac{1}{t_{_1}} = \frac{1}{2.7\,\mathrm{HC}} pprox 370\,\mathrm{M}$$
Гц

Отчет о выполнении 2 части

Код разработанного модуля БОЭ

```
`timescale 1ns / 1ps
module demultiplexer(
    input y,
    input x1,
    input x2,
    output z0,
    output z1,
    output z2,
    output z3
);
wire not_x1, not_x2, not_y;
wire nor_x12, nor_nx2ny, nor_nx1ny, nor_nx1nx2;
wire not_nor_x12, not_nor_nx2ny, not_nor_nx1ny, not_nor_nx1nx2;
nor(not_x1, x1, x1);
nor(not x2, x2, x2);
nor(not_y, y, y);
nor(nor_x12, x1, x2);
nor(nor_nx2ny, not_x2, not_y);
nor(nor_nx1ny, not_x1, not_y);
nor(nor_nx1nx2, not_x1, not_x2);
nor(not_nor_x12, nor_x12, nor_x12);
nor(not_nor_nx2ny, nor_nx2ny);
nor(not_nor_nx1ny, nor_nx1ny, nor_nx1ny);
nor(not nor nx1nx2, nor nx1nx2, nor nx1nx2);
```

```
nor(z0, not_nor_x12, not_y);
nor(z1, not_nor_nx2ny, x1);
nor(z2, not_nor_nx1ny, x2);
nor(z3, not_nor_nx1nx2, not_y);
endmodule
```

Код разработанного тестового окружения БОЭ

```
`timescale 1ns / 1ps
module demultiplexer_tb;
    reg [1:0] y_t;
    reg [2:0] x;
    wire z0_t, z1_t, z2_t, z3_t;
    demultiplexer dem(
        .x1(x[1]),
        .x2(x[0]),
        .y(y_t[0]),
        .z0(z0_t),
        .z1(z1_t),
        .z2(z2_t),
        .z3(z3_t)
    );
    initial begin
        y_t = 2'b00;
        while (y_t < 2'b10) begin
            x = 2'b00;
            while (x <= 2'b11) begin
                $display("x1=%b, x2=%b, input=%b, output: z0=%b, z1=%b,
z2=%b, z3=%b", x[1], x[0], y_t[0], z0_t, z1_t, z2_t, z3_t);
                x = x + 1;
            end
            y_t = y_t + 1;
        end
        $stop;
    end
endmodule
```

Временная диаграмма процесса тестирования БОЭ

"Рисунок 10. Временная диаграмма процесса тестирования БОЭ" Вывод в консоль:

```
x1=0, x2=0, input=0, output: z0=0, z1=0, z2=0, z3=0
x1=0, x2=1, input=0, output: z0=0, z1=0, z2=0, z3=0
x1=1, x2=0, input=0, output: z0=0, z1=0, z2=0, z3=0
x1=1, x2=1, input=0, output: z0=0, z1=0, z2=0, z3=0
x1=0, x2=0, input=1, output: z0=1, z1=0, z2=0, z3=0
x1=0, x2=1, input=1, output: z0=0, z1=1, z2=0, z3=0
x1=1, x2=0, input=1, output: z0=0, z1=0, z2=1, z3=0
x1=1, x2=1, input=1, output: z0=0, z1=0, z2=0, z3=1
```

Вывод

В данной работе были изучены и освоены основные принципы проектирования цифровых вентилей на полевых транзисторах. Также были приобретены навыки моделирования электрических цепей с использованием программного пакета LTspice. Основные шаги работы включали в себя проектирование цифровых вентилей с использованием языка Verilog HDL, создание и тестирование цифровых схем на вентильном уровне.

Таким образом, выполнение данной работы позволило получить практические навыки в области проектирования цифровых вентилей, а также научиться использовать инструменты моделирования для эффективного анализа разработанных цифровых схем.