Санкт-Петербургский политехнический университет Петра Великого Высшая школа прикладной математики и вычислительной физики, Физика-механический институт

«Прикладная математика и информатика»

Отчёт по лабораторной работе №1 по дисциплине "Интервальный анализ"

Выполнил студент группы 5030102/90201

Воротников Андрей

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2022

Содержание

1	Постановка задачи						
	1.1	Задача 1	2				
	1.2	Задача 2	2				
2	Teo	рия	2				
	2.1	Критерий Баумана	2				
	2.2	Глобальная оптимизация	2				
		2.2.1 Алгоритм GlobOpt0	3				
3	Pea	лизация	3				
4	Рез	ультаты	3				
	4.1	Задача 1	3				
		4.1.1 Определитель содержит 0	3				
		4.1.2 Особенная матрица	4				
	4.2	Задача 2	5				
		4.2.1 Функция с одним экстремумом	5				
		4.2.2 Функция с несколькими экстремумами	7				
5	Обо	зуждение	9				
6	Прі	риложения					
C	пис	сок таблиц					
	1	Особенность/неособенность матрицы при различных δ	5				
	2	Минимумы функции Химмельблау	7				
C	пис	сок иллюстраций					
	1	График границ интервала детерминанта	4				
	2	График функции Растрыгина	5				
	3	Двумерные линии уровня функции Растрыгина	6				
	4	Трёхмерные линии уровня функции Растрыгина	6				
	5	График функции Химмельблау	7				
	6	Двумерные линии уровня функции Химмельблау	8				
	7	Трёхмерные линии уровня функции Химмельблау	8				

1 Постановка задачи

1.1 Задача 1

Задана интервальная матрица А.

$$\operatorname{mid}(\mathbf{A}) = \begin{pmatrix} 1.05 & 1\\ 0.95 & 1 \end{pmatrix} \tag{1}$$

$$rad(\mathbf{A}) = \begin{pmatrix} \delta & 0 \\ \delta & 0 \end{pmatrix} \tag{2}$$

Получаем

$$\mathbf{A} = \begin{pmatrix} [1.05 - \delta, 1.05 + \delta] & [1, 1] \\ [0.95 - \delta, 0.95 + \delta] & [1, 1] \end{pmatrix}$$
 (3)

Определить, при каком δ :

- 1. определитель матрицы (3) содержит 0;
- 2. матрица (3) особенная.

1.2 Задача 2

Для функции Растрыгина

$$f(x,y) = 20 + x^2 - 10\cos(2\pi x) + y^2 - 10\cos(2\pi y),\tag{4}$$

имеющей один глобальный минимум, и функции Химмельблау

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2,$$
 (5)

имеющей 4 равнозначных глобальных экстремума. Необходимо использовать алгоритм поиска глобального минимума GlobOpt0.

2 Теория

Интервальная матрица $\mathbf{A} \in \mathbb{IR}^{nxn}$ называется неособенной, если неособенны все точечные матрицы $A \in \mathbf{A}$. Интервальная матрица называется особенной, если она содержит особенную точечную матрицу.

2.1 Критерий Баумана

Матрица $\mathbf{A} \in \mathbb{IR}^{n \times n}$ неособенна $\Leftrightarrow \forall A', A'' \in \text{vert } \mathbf{A} \ \det(A') \cdot \det(A'') > 0$

2.2 Глобальная оптимизация

Требуется найти брус, который:

- 1. содержащит одну из точек минимума
- 2. имеет ширину меньше заранее заданного значения

2.2.1 Алгоритм GlobOpt0

Вход: $\mathbf{f}: \mathbb{IR}^n \to \mathbb{IR}$. Брус $\mathbf{X} \in \mathbb{IR}^n$. Число ϵ

Выход: y* - оценка глобального минимума на брусе X.

Алгоритм:

 $\mathbf{Y} \leftarrow \mathbf{X}$

 $y \leftarrow f(\mathbf{Y})$

инициализация списка: $\mathcal{L} = (\mathbf{Y}, y)$

если $\operatorname{wid}(f(\mathbf{Y})) < \epsilon$, то $y* \leftarrow y$ и заканчиваем алгоритм

иначе выбираем новое приближение:

- 1. выбираем компоненту l, по которой брус Y имеет набольшую длину
- 2. рассекаем брус \mathbf{Y} пополам по компоненте l на брусы \mathbf{Y}' и \mathbf{Y}''
- 3. удаляем первую запись из списка
- 4. добавляем в список \mathcal{L} элементы $(\mathbf{Y}', f(\mathbf{Y}'))$ и $(\mathbf{Y}'', f(\mathbf{Y}''))$
- 5. сортируем список в порядке возрастания второго элемента кортежа
- 6. первую запись обозначаем через (Y, y)
- 7. возвращаемся к проверке условия выхода

3 Реализация

Лабораторная работа выполнена с помощью языка Python (версия 3.10.7) в среде Visual Studio Code.

Используются бибилотеки:

- 1. Математическая библиотека numpy (версия 1.23.3)
- 2. Библиотека интервальной арифметики intvalpy (версия 1.5.8)
- 3. Библиотека построения графиков matplotlib (версия 3.6.0)

Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Задача 1

4.1.1 Определитель содержит 0

Для того, чтобы определить δ , при котором интервал определителя матрицы (3) содержит 0 рассмотрим различные $\delta > 0$ и постороим график границ интервала.

Определитель матрицы 2х2 считается по формуле:

$$\det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21} \tag{6}$$

График нижней и верхней границы интервала имеет вид:

Рис. 1: График границ интервала детерминанта

Таким образом, $\det(\mathbf{A})$ содержит 0 при $\delta >= 0.05$

4.1.2 Особенная матрица

Для того, чтобы определить δ , при котором матрица (3) особенная рассмотрим различные значения $\delta > 0$ и проверим критерией Баумана.

Множество $\operatorname{vert} \mathbf{A}$ состоит из 4 матриц, так как интервальную неопределённость содержат только 2 элемента матрицы:

$$\operatorname{vert}(\mathbf{A}) = \left\{ \begin{pmatrix} 1.05 \pm \delta & 1\\ 0.95 \pm \delta & 1 \end{pmatrix} \right\}$$
 (7)

Приведём первые 10 результатов:

δ	Особенная ли матрица		
0.00	неособенная		
0.01	неособенная		
0.02	неособенная		
0.03	неособенная		
0.04	неособенная		
0.05	особенная		
0.06	особенная		
0.07	особенная		
0.08	особенная		
0.09	особенная		

Таблица 1: Особенность/неособенность матрицы при различных δ

Таким образом, матрица (3) особенная при $\delta >= 0.05$

4.2 Задача 2

4.2.1 Функция с одним экстремумом

График функции Растрыгина (4) имеет вид:

Рис. 2: График функции Растрыгина

Минимум функции находится в (0,0) и там имеет значение 0. Рассмотрим работу функции оптимизации. Черная линия показывается центр рассмтриваемого бруса.

Начальный брус: $\mathbf{X}=(1\pm 2,1\pm 2);\ \epsilon=0.01.$ Двумерный график:

Рис. 3: Двумерные линии уровня функции Растрыгина

Трёхмерный график:

Рис. 4: Трёхмерные линии уровня функции Растрыгина

4.2.2 Функция с несколькими экстремумами

График функции Химмельблау (5) имеет вид:

Рис. 5: График функции Химмельблау

Минимум функции находится в 4-ёх точках:

X	у	значение функции Химмельблау
3	2	0
-2.805188	3.131312	0
-3.779310	-3.283186	0
3.584428	-1.818426	0

Таблица 2: Минимумы функции Химмельблау

Рассмотрим работу функции оптимизации. Черная линия показывается центр рассматриваемого бруса.

Начальный брус: $\mathbf{X} = (1 \pm 3, 1 \pm 3); \ \epsilon = 0.01.$

Двумерный график:

Рис. 6: Двумерные линии уровня функции Химмельблау Трёхмерный график:

Рис. 7: Трёхмерные линии уровня функции Химмельблау

5 Обсуждение

- 1. Матрицы, подобные рассмотренной являются особеными при малых радиусах интервалов. Такие матрицы могут образовавыться, когда стоящие в столбцах интервальные величины пересекаются. Если наложение интервалов происходит во всех столбах каких-нибудь строк матрицы, то определитель будет содержать 0, так как любая линейная комбинация этих строк будет содержать 0.
- 2. Для обеих рассмариваемых функци алгоритм GlobOpt0 дал правильную оценку значения минимума функции. Процесс схождения не является непрерывным середина бруса может отдаляться от искомой точки минимума. Для функции с несколькими минимумами, которые входят в начальный брус, алгоритм может "колебаться"между двумя точками минимума.

6 Приложения

Код программы на GitHub, URL: https://github.com/aVorotnikov/interval_analysis/tree/master/lab1

Список литературы

- [1] А.Н. Баженов. Интервальный анализ. Основы теории и учебные примеры. СПб., 2020.
- [2] Интернет pecypc. URL: https://en.wikipedia.org/wiki/Test_functions_for_optimization. Дата последнего обращения: 03.10.2022.