Quiz 1

Question 1 (1 point)	Question 2 (1 point)
What does the file <i>vmlinuz</i> contain?	Apple's Rosetta is an example of a / an
what does the me willing contain:	Apple's Nosetta is all example of a / all
o The Master Boot Record (MBR)	o container platform
	o container platform o emulator
o The initial RAM disk	
o The BIOS	o virtual machine manager
o The Linux kernel	o resource manager
Question 3 (1 point)	Question 4 (1 point)
A program in memory is called a	An operating system is using DMA to transfer a 512-byte block
	from a device to memory.
o process	How many interrupts are generated by this DMA transfer?
o system	
o executable	01
o device	02
	0512
	O None of the above
	o Notice of the above
Question 5 (1 point)	Question 6 (1 point)
Which of the following statements is false regarding	Which of the following components run in kernel mode for a
	microkernel design
system calls?	microkernei design
o A number associated with each system call	o Device driver
O Typically written in a high-level language (C / C++) or in assembly	o Filesystem driver
O Usually accessed by user programs via the system call interface	o Interprocess communication
O None of the above	O None of the above
Thomas of the above	o None of the above
Question 7 (1 point)	Question 8 (1 point)
Hotmail and Outlook Online are examples of	Which of the following is false regarding hard disk drives?
o Information-as-a-service	O Movement of the arm is not done using motor, instead of a heat coil
o Platform-as-a-service	O The head is connected to an arm, which is moved by an actuator
o Software-as-a-service	o Read / write performed by a head on a platter
o Desktop-as-a-service	O Stores data on a rotating platter(s) within the disk body
O Desktop-as-a-service	o stores data on a rotating platter(s) within the disk body
	Question 10 (1 point)
	The act of moving a process in and out of main memory is called
	O swapping
	o caching
	o virtualizing
	o scheduling

Question 1 (1 point)

Consider the following set of processes P1, P2, P3, and P4. Assume that the processes arrive at the same time.

Process	Burst Time
P1	7
P2	12
P3	5
P4	16

Under a *round-robin* (RR) scheduler with time quantum of 4, which process will complete its burst time first?

- o P1
- 0 P2
- o P3
- o P4

Question 2 (1 point)

Consider the following set of processes arriving in the order P1 (first to arrive), P2, P3, and P4 (last to arrive)

Process	Burst Time
P1	7
P2	12
Р3	5
P4	16

Under a *first-come*, *first-served* (FCFS) scheduler, which process will start **last**?

- o P1
- o P2
- o P3
- o P4

Question 3 (1 point)

The following are correct about programs and processes except

- O A process is a program in execution
- o A program is an active entity
- o One program can be several processes
- O A process is an active entity

Question 4 (1 point)

Which of the following is **not** a process state?

- o New
- o Ready
- Running
- Waiting
- o Terminated
- o All of the above are valid process states

Question 5 (1 point)

If a parent process terminates without invoking wait(), its child processes shall become _____ processes.

- o Zombie
- o Orphaned
- o Idle
- o Redundant

Question 6 (1 point)

Of the following, which is **not** a section of a process in memory?

- o Heap
- o Text
- o Code
- o Stack

Question 7 (1 point)

Consider the following set of processes P1, P2, P3, and P4. Assume that the processes arrive at the same time.

Process	Burst Time
P1	7
P2	12
P3	5
P4	16

Under a shortest-job-first (SJF) scheduler, which process will start last?

- o P1
- 0 P2
- o P3
- o P4

Question 8 (1 point)

CPU scheduling decisions may take place when a process

- 1. Switches from running to waiting state
- 2. Switches from running to ready state
- 3. Switches from waiting to ready
- 4. Terminates

Of the above, a scheduling scheme is considered **non-preemptive** if scheduling takes place

- Only under 1, 2, and 4
- o Only under 1, 2, and 3
- Only under 1 and 4
- o Under all 1, 2, 3, and 4

Question 9 (1 point)

The two main type of queues pertaining to process scheduling are

- Run and wait queues
- o Ready and I/O queues
- Run and I/O queues
- Ready and wait queues

Question 10 (1 point)

A round-robin (RR) scheduling algorithm with a **large time quantum** shall tend towards the performance of which scheduling algorithm?

- o Priority scheduling
- o Shortest-remaining-time-first (SRTF)
- o Shortest-job-first (SJF)
- o First-come, first-served (FCFS)

Quiz 3

Question 1 (1 point)

Of the following, which is **not true** regarding user-level threads?

- o Schedulable by the kernel
- Supported above the kernel
- Typically managed using a thread library
- May impact performance depending on how threads are mapped

Question 2 (1 point)

Consider the following set of processes arriving in the order P1, P2, P3, P4, and P5. Assume that the processes arrive at the same time.

Process	Burst Time
P1	3
P2	6
P3	5
P4	2
P5	3

Under a *shortest-job-first* (SJF) scheduler, what is the **turnaround time for process P3**?

Provide your answer as a number (e.g., 17)

Question 3 (1 point)

Consider the following set of processes arriving in the order P1 (first), P2, P3, and P4 (last)

()	(7
Process	Burst Time
P1	3
P2	4
Р3	5
P4	7

Under a *round-robin* (RR) scheduler with time quantum of 2, what is the **average waiting time** across all the processes?

Provide your answer as a number (e.g., 17), up to 2 decimal places if necessary

Question 4 (1 point)

Each thread has its own copy of the following, except

- O A program counter
- o A thread identifier
- o A heap
- o A stack

Question 3 (1 point)

Consider the following set of processes arriving in the order P1 (first to arrive), P2, P3, and P4 (last to arrive)

Process	Burst Time
P1	3
P2	6
Р3	2
P4	1

Under a *first-come*, *first-served* (FCFS) scheduler, what is the **total waiting time for process P3**?

Provide your answer as a number (e.g., 17)

Question 6 (1 point)

Which of the following statements is **not true** regarding real-time CPU scheduling and real-time tasks?

- O Periodic real-time tasks are real-time tasks that are repeated after a certain time interval
- o Examples of real-time scheduling algorithms include rate monotonic scheduling and earliest deadline first scheduling
- o Aperiodic rea/l-time tasks have a processing time t, deadline d, and a period p
- O Aperiodic real-time tasks are real-time tasks that occur at any random time

Quiz 4

	T
Question 1 (1 point)	Question 2 (1 point)
Which of the following is not an approach for signal	Which of the following is not true regarding thread
handling in multithreaded programs?	cancellation?
manding in malditileaded programs:	Cancellation:
o Deliver the signal to an arbitrary thread within the process	o If a thread disables cancellation, cancellation requests will
O Deliver the signal to certain threads in the process	be discarded
O Assign a specific thread to receive all signals for the process	
O Deliver the signal to the thread to which the signal applies	O Deferred cancellation allows the target thread to
Server the signal to the timeda to which the signal applies	
	periodically check if it should be cancelled
	O In asynchronous cancellation, the target thread is
	terminated immediately
	,
	o Thread cancellation is the act of terminating a thread before
	_
	it has finished
Question 3 (1 point)	Question 4 (1 point)
What parameters does the POSIX function pthread_kill	What value would you initialize a semaphore to, for a binary
takes in?	
takes in:	semaphore?
 The thread identifier and the signal 	00
o The process identifier and the signal	02
O The thread identifier, the processes identifier, and the signal	01
-	
Only the signal	0-1
Question 5 (1 point)	Question 6 (1 point)
Of the following, which is not considered a form of	Which of the following best describes the concept of starvation?
hardware support for synchronization?	
natuwate support for synchronization:	O Multiple processes reading and conting above didate, result
	O Multiple processes reading and writing shared data; result
O Support for instruction to disable / enable interrupt	depends on relative timing of processes
o Compare-and-swap instruction support	
o Test-and-set instruction support	Multiple processes continuously change their states in
o Semaphores	response to changes in other processes without doing any
o semaphores	useful work
	USCIUI WOIK
	Multiple processes wait for each other, and none can
	proceed any further
	o A process is stuck because it cannot obtain the resource(s) it
	needs to continue
	niceus to continue
Question 7 (1 point)	
Which of the following function pairs are often associated	
with semaphores?	
a \//\ and D/\	
o V() and P()	
o sleep() and wait()	
o signal() and join()	
o wakeup() and sleep()	
100 100	