

1 WHAT IS CLAIMED IS:

2

3 1. A method for hydroprocessing a hydrocarbon feedstock, said method
4 employing multiple hydroprocessing zones within a single reaction loop,
5 each zone having one or more catalyst beds, comprising the following
6 steps:

7

8 (a) passing a hydrocarbonaceous feedstock to a first hydroprocessing
9 zone having one or more beds containing hydroprocessing
10 catalyst, the hydroprocessing zone being maintained at
11 hydroprocessing conditions, wherein the feedstock is contacted
12 with catalyst and hydrogen;

13

14 (b) passing the effluent of step (a) directly to a hot high pressure
15 separator, wherein the effluent is contacted with a hot, hydrogen-
16 rich stripping gas to produce a vapor stream comprising hydrogen,
17 hydrocarbonaceous compounds boiling at a temperature below the
18 boiling range of the hydrocarbonaceous feedstock, hydrogen
19 sulfide and ammonia and a liquid stream comprising
20 hydrocarbonaceous compounds boiling approximately in the range
21 of said hydrocarbonaceous feedstock;

22

23 (c) passing the vapor stream of step (b) after cooling and partial
24 condensation, to a hot hydrogen stripper containing at least one
25 bed of hydrotreating catalyst, where it is contacted countercurrently
26 with hydrogen, while the liquid stream of step (b) is passed to
27 fractionation;

28

29 (d) passing the overhead vapor stream from the hot hydrogen
30 stripper/reactor of step (c), after cooling and contact with water, the
31 overhead vapor stream comprising hydrogen, ammonia, and
32 hydrogen sulfide, along with light gases and naphtha to a cold high
33 pressure separator, where hydrogen, hydrogen sulfide, and light

hydrocarbonaceous gases are removed overhead, ammonia is removed from the cold high pressure separator as ammonium bisulfide in the sour water stripper, and naphtha and middle distillates are passed to fractionation;

- (e) passing the liquid stream from the hot hydrogen stripper/reactor of step (c) to a second hydroprocessing zone, the second hydroprocessing zone containing at least one bed of hydroprocessing catalyst suitable for aromatic saturation and ring opening, wherein the liquid is contacted under hydroprocessing conditions with the hydroprocessing catalyst, in the presence of hydrogen;
- (f) passing the overhead from the cold high pressure separator of step (d) to an absorber, where hydrogen sulfide is removed before hydrogen is compressed and recycled to hydroprocessing vessels within the loop; and
- (g) passing the effluent of step (e) to the cold high pressure separator of step (d).

22 2. The process of claim 1, wherein the hydroprocessing conditions of
23 step 1(a) comprise a reaction temperature of from 400°F-950°F
24 (204°C-510°C), a reaction pressure in the range from 500 to 5000 psig
25 (3.5-34.5 MPa), an LHSV in the range from 0.1 to 15 hr⁻¹ (v/v), and
26 hydrogen consumption in the range from 500 to 2500 scf per barrel of
27 liquid hydrocarbon feed (89.1-445 m³ H₂/m³ feed).

29 3. The process of claim 2, wherein the hydroprocessing conditions of
30 step 1(a) preferably comprise a temperature in the range from
31 650°F-850°F (343°C-454°C), reaction pressure in the range from
32 1500-3500 psig (10.4-24.2 MPa), LHSV in the range from 0.25 to

1 2.5 hr⁻¹, and hydrogen consumption in the range from 500 to 2500 scf
2 per barrel of liquid hydrocarbon feed (89.1-445 m³ H₂/m³ feed).

3

4 4. The process of claim 1, wherein the hydroprocessing conditions of
5 step 1(e) comprise a reaction temperature of from 400°F-950°F
6 (204°C-510°C), a reaction pressure in the range from 500 to 5000 psig
7 (3.5-34.5 MPa), an LHSV in the range from 0.1 to 15 hr⁻¹ (v/v), and
8 hydrogen consumption in the range from 500 to 2500 scf per barrel of
9 liquid hydrocarbon feed (89.1-445 m³ H₂/m³ feed).

10

11 5. The process of claim 4, wherein the hydroprocessing conditions of
12 step 1(e) preferably comprise a temperature in the range from
13 650°F-850°F (343°C-454°C), reaction pressure in the range from
14 1500-3500 psig (10.4-24.2 MPa), LHSV in the range from 0.25 to
15 2.5 hr⁻¹, and hydrogen consumption in the range from 500 to 2500 scf
16 per barrel of liquid hydrocarbon feed (89.1-445 m³ H₂/m³ feed).

17

18 6. The process of claim 1, wherein the feed to step 1(a) comprises
19 hydrocarbons boiling in the range from 500°F to 1500°F.

20

21 8. The process of claim 1, wherein the feed is selected from the group
22 consisting of vacuum gas oil, heavy atmospheric gas oil, delayed coker
23 gas oil, visbreaker gas oil, FCC light cycle oil, and deasphalted oil.

24

25 9. The process of claim 1, wherein the cetane number improvement
26 occurring in step 1(e) ranges from 2 to 15.

27

28 10. The process of claim 1, wherein the hydroprocessing catalyst comprises
29 both a cracking component and a hydrogenation component.

30 11. The process of claim 10, wherein the hydrogenation component is
31 selected from the group consisting of Ni, Mo, W, Pt and Pd or
32 combinations thereof.

- 1 12. The process of claim 10, wherein the cracking component may be
- 2 amorphous or zeolitic.
- 3 13. The process of claim 12, wherein the zeolitic component is selected from
- 4 the group consisting of Y, USY, REX, and REY zeolites.
- 5
- 6 14. The process of claim 1, wherein the second hydroprocessing zone of
- 7 step 1(e) is maintained at the same pressure as the first
- 8 hydroprocessing zone of step 1(a).