```
In [ ]: import os
        #os.getcwd()
        import warnings
        warnings.filterwarnings('ignore')
        import sys
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        sns.set()
        import sklearn
        import scipy.integrate as integrate
        import scipy
        import statsmodels.api as sm
        from statsmodels.formula.api import ols
        from sklearn.preprocessing import KBinsDiscretizer
        from sklearn.feature_selection import SelectKBest, chi2
        from sklearn.model selection import train test split
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.feature selection import RFE
        from sklearn.feature selection import RFECV
        # importing algorithm, evaluation, and modeL libraries
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.model selection import train test split
        from sklearn.linear model import LogisticRegression
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from xgboost import XGBClassifier
        from sklearn.linear model import RidgeClassifier
        from sklearn.model selection import GridSearchCV
        from sklearn.svm import SVC
        import sklearn.metrics as metrics
        from sklearn.metrics import accuracy_score
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import recall score
        from sklearn.model selection import cross val score
        from statsmodels.stats.outliers influence import variance inflation factor
In [ ]: churn data = pd.read csv('churn.csv')
In [ ]: churn_data.head()
```

```
customerID gender SeniorCitizen Partner Dependents tenure CallService MultipleConne
        0
           2907-ILJBN Female
                                     0.0
                                             Yes
                                                        Yes
                                                              11.0
                                                                         Yes
                                     0.0
        1 3896-RCYYE Female
                                             No
                                                        No
                                                              67.0
                                                                          No
                                                                                 No phone
        2 9764-REAFF Female
                                     0.0
                                                              59.0
                                             Yes
                                                        No
                                                                         Yes
                6651-
        3
                                     0.0
                                                              67.0
                        Male
                                             Yes
                                                        Yes
                                                                         Yes
               RLGGM
                5879-
                                     0.0
        4
                      Female
                                             No
                                                        No
                                                              11.0
                                                                         Yes
               SESNB
       5 rows × 21 columns
In [ ]: churn_data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 12335 entries, 0 to 12334
        Data columns (total 21 columns):
             Column
         #
                                      Non-Null Count Dtype
             ____
                                      -----
         0
             customerID
                                      12335 non-null object
         1
             gender
                                      12335 non-null object
                                      12335 non-null float64
         2
             SeniorCitizen
         3
             Partner
                                     12335 non-null object
         4
                                    12335 non-null object
             Dependents
         5
             tenure
                                    12335 non-null float64
         6
             CallService
                                    12335 non-null object
                                   12335 non-null object
12335 non-null object
12335 non-null object
         7
             MultipleConnections
             InternetConnection
         8
         9
             OnlineSecurity
                                     12335 non-null object
         10 OnlineBackup
                                      12335 non-null object
         11 DeviceProtectionService 12335 non-null object
                                      12335 non-null object
         12
             TechnicalHelp
         13 OnlineTV
                                    12335 non-null object
                                    12335 non-null object
         14 OnlineMovies
         15 Agreement
                                     12335 non-null object
         16 BillingMethod
                                    12335 non-null object
                                      12335 non-null object
         17 PaymentMethod
         18 MonthlyServiceCharges
                                      12335 non-null float64
                                      12335 non-null float64
         19 TotalAmount
         20 Churn
                                      12335 non-null object
        dtypes: float64(4), object(17)
        memory usage: 2.0+ MB
In [ ]: churn_data = churn_data.drop_duplicates()
        churn_data.shape
Out[]: (9328, 21)
```

data has no null values

```
churn_data.isnull().sum()
Out[]: customerID
                                    0
        gender
                                    0
        SeniorCitizen
                                    0
        Partner
                                    0
                                    0
        Dependents
        tenure
                                    0
        CallService
                                    0
        MultipleConnections
        InternetConnection
                                    0
        OnlineSecurity
                                    0
        OnlineBackup
        DeviceProtectionService
                                    0
        TechnicalHelp
                                    0
                                    0
        OnlineTV
        OnlineMovies
        Agreement
                                    0
                                    0
        BillingMethod
        PaymentMethod
        MonthlyServiceCharges
                                    0
        TotalAmount
                                    0
        Churn
                                    0
        dtype: int64
```

dropping customerID

```
churn_data = churn_data.drop(['customerID'],axis=1)
        churn_data.isnull().sum()
Out[]: gender
                                    0
        SeniorCitizen
                                    0
                                    0
        Partner
        Dependents
                                    0
        tenure
        CallService
                                    0
        MultipleConnections
        InternetConnection
                                    0
        OnlineSecurity
                                    0
        OnlineBackup
                                    0
        DeviceProtectionService
        TechnicalHelp
                                    0
        OnlineTV
                                    0
        OnlineMovies
                                    0
        Agreement
                                    0
        BillingMethod
                                    0
        PaymentMethod
                                    0
        MonthlyServiceCharges
        TotalAmount
                                    0
        Churn
        dtype: int64
```

```
In [ ]: y=churn_data[['Churn']]
    x=churn_data.drop(['Churn'],axis=1)
    y.shape
Out[ ]: (9328, 1)
```

finding the % of churn-Yes Or the mean of Y = Yes

```
In [ ]: y['Churn'].value_counts()
Out[]: Yes
               5607
               3721
        Name: Churn, dtype: int64
In [ ]: # finding genders distribution with churners
        churn_percent = (y['Churn'].value_counts() / len(y) * 100)
        print(churn percent)
        y_temp = pd.DataFrame(y)
        y_temp = np.where(y_temp['Churn']=='No',0,1)
        print('churn_percent ',y_temp.mean())
        Yes
               60.109348
               39.890652
        Name: Churn, dtype: float64
        churn_percent 0.6010934819897084
```

spitting the features categroical & numeric separtely

```
In [ ]: x_num=x.select_dtypes(include="number")
    x_cat=x.select_dtypes(include="object")
```

numeric fields

```
In [ ]: x_num.columns
Out[ ]: Index(['SeniorCitizen', 'tenure', 'MonthlyServiceCharges', 'TotalAmount'], dtyp
    e='object')
In [ ]: x_num.describe()
```

Out[]:		SeniorCitizen	tenure	MonthlyServiceCharges	TotalAmount
	count	9328.000000	9328.000000	9328.000000	9328.000000
	mean	0.163885	26.642965	61.341895	1839.159069
	std	0.351640	22.491378	27.661949	2008.858997
	min	0.000000	1.000000	18.250000	18.800000
	25%	0.000000	6.700780	35.392830	288.599227
	50%	0.000000	20.325530	64.220312	1052.258266
	75%	0.000000	44.345050	84.070699	2777.241953
	max	1.000000	72.000000	118.750000	8684.800000

```
x_num['SeniorCitizen'].value_counts()
Out[]: 0.000000
                  7420
       1.000000
                  1155
       0.660002
                   1
       0.208768
                     1
       0.437521
                     1
       0.087772 1
       0.353116
       0.387478
       0.031710
       0.433856
       Name: SeniorCitizen, Length: 755, dtype: int64
```

Senior citizen should be Yes or No (1 or 0). But we have some float values here.Incorrect records are about 753 rows. Close to 6% of the data. So replacing them with mode, which is 0.

```
In [ ]: x_num['SeniorCitizen'] = np.where((x_num['SeniorCitizen'] > 0) & (x_num['SeniorCitizen']
        x['SeniorCitizen'].value_counts()
Out[]: 0.000000 7420
        1.000000
                    1155
        0.660002
                      1
        0.208768
                       1
        0.437521
                      1
        0.087772
                     1
        0.353116
        0.387478
        0.031710
        0.433856
                       1
        Name: SeniorCitizen, Length: 755, dtype: int64
In [ ]: x_cat.info()
```

```
<class 'pandas.core.frame.DataFrame'>
               Int64Index: 9328 entries, 0 to 12334
               Data columns (total 15 columns):
                                                                 Non-Null Count Dtype
               --- -----
                gender 9328 non-null object
Partner 9328 non-null object
Dependents 9328 non-null object
CallService 9328 non-null object
MultipleConnections 9328 non-null object
InternetConnection 9328 non-null object
OnlineSecurity 9328 non-null object
OnlineBackup 9328 non-null object
DeviceProtectionService 9328 non-null object
DeviceProtectionService 9328 non-null object
TechnicalHelp 9328 non-null object
                0 gender
1 Partner
2 Dependents
3 CallService
                9 TechnicalHelp 9328 non-null object
10 OnlineTV 9328 non-null object
11 OnlineMovies 9328 non-null object
12 Agreement 9328 non-null object
13 BillingMethod 9328 non-null object
14 PaymentMethod 9328 non-null object
               dtypes: object(15)
               memory usage: 1.1+ MB
In [ ]: x_num.info()
               <class 'pandas.core.frame.DataFrame'>
               Int64Index: 9328 entries, 0 to 12334
               Data columns (total 4 columns):
                                           Non-Null Count Dtype
                 # Column
                0 SeniorCitizen 9328 non-null float64
1 tenure 9328 non-null float64
                 2 MonthlyServiceCharges 9328 non-null float64
                3 TotalAmount
                                                             9328 non-null float64
               dtypes: float64(4)
               memory usage: 364.4 KB
```

treating outliers for numeric columns tenure, MonthlySericeCharges, TotalAmount

```
In []: upper_limit = x_num['MonthlyServiceCharges'].quantile(0.99)
    lower_limit = x_num['MonthlyServiceCharges'].quantile(0.01)
    x_num['MonthlyServiceCharges'] = np.where(x_num['MonthlyServiceCharges'] >= uppec
In []: upper_limit = x_num['tenure'].quantile(0.99)
    lower_limit = x_num['tenure'].quantile(0.01)
    x_num['tenure'] = np.where(x_num['tenure'] >= upper_limit, upper_limit, np.wherecection
In []: upper_limit = x_num['TotalAmount'].quantile(0.99)
    lower_limit = x_num['TotalAmount'].quantile(0.01)
    x_num['TotalAmount'] = np.where(x_num['TotalAmount'] >= upper_limit, upper_limit
In []: # checking after outlier treatment
    x_num.describe()
```

Out[

]:		SeniorCitizen	tenure	MonthlyServiceCharges	TotalAmount
	count	9328.000000	9328.000000	9328.000000	9328.000000
	mean	0.123821	26.642965	61.317044	1835.677311
	std	0.329395	22.491378	27.607443	1998.063713
	min	0.000000	1.000000	19.300000	20.200000
	25%	0.000000	6.700780	35.392830	288.599227
	50%	0.000000	20.325530	64.220312	1052.258266
	75%	0.000000	44.345050	84.070699	2777.241953
	max	1.000000	72.000000	112.236500	7780.474000

discretizing tenure column

```
In []: x_tenure_binned = x_num['tenure']
    x_tenure_binned = x_tenure_binned.values.reshape(-1, 1)
    est = KBinsDiscretizer(n_bins=6, encode='ordinal', strategy='uniform')
    Xt = est.fit_transform(x_tenure_binned)
In []: x_num['tenure'] = Xt
    x_num['tenure'].shape
Out[]: (9328,)
```

data visualization of numeric to numeric and selecting all the 3 numeric features as slope is good

```
In []: plt.figure(figsize = (20,5))
    num_cols = ['MonthlyServiceCharges', 'TotalAmount','tenure']
    for col in enumerate(num_cols):
        plt.subplot(1,3,col[0]+1)
        sns.histplot(data = x_num, x = col[1], kde = True, hue = y['Churn'])
        plt.xticks(rotation = 45)
```

scaling the numeric fields

```
In []: #x_num_scaled = x_num[['MonthlyServiceCharges','TotalAmount']]
    scaler = MinMaxScaler()
    #x_num = x_num.values.reshape(1,-1)
    x_num[["MonthlyServiceCharges"]] = scaler.fit_transform(x_num[["MonthlyServiceCharges"]])
    x_num[["TotalAmount"]] = scaler.fit_transform(x_num[["TotalAmount"]])
    x_num.head()
```

Out[]:		SeniorCitizen	tenure	MonthlyServiceCharges	TotalAmount
	0	0.0	0.0	0.013988	0.027538
	1	0.0	5.0	0.366917	0.458611
	2	0.0	4.0	0.000000	0.133713
	3	0.0	5.0	0.075320	0.215031
	4	0.0	0.0	0.602024	0.111910

data visulation of categorical features

```
In [ ]: x_cat.info()
              <class 'pandas.core.frame.DataFrame'>
              Int64Index: 9328 entries, 0 to 12334
              Data columns (total 15 columns):
                # Column
                                                               Non-Null Count Dtype
               --- -----
               9328 non-null object
Partner 9328 non-null object
Dependents 9328 non-null object
CallService 9328 non-null object
MultipleConnections 9328 non-null object
InternetConnection 9328 non-null object
OnlineSecurity 9328 non-null object
OnlineBackup 9328 non-null object
PaviceProtectionService 9328 non-null object
                      DeviceProtectionService 9328 non-null object
TechnicalHelp 9328 non-null object
                8
                9
                                                             9328 non-null object
                10 OnlineTV
                11 OnlineMovies
                12 Agreement
                13 BillingMethod
                14 PaymentMethod
              dtypes: object(15)
              memory usage: 1.1+ MB
In [ ]:
              cat cols = x cat.columns
              list(enumerate(cat_cols))
```

```
Out[]: [(0, 'gender'),
          (1, 'Partner'),
          (2, 'Dependents'),
          (3, 'CallService'),
          (4, 'MultipleConnections'),
          (5, 'InternetConnection'),
          (6, 'OnlineSecurity'),
          (7, 'OnlineBackup'),
          (8, 'DeviceProtectionService'),
          (9, 'TechnicalHelp'),
          (10, 'OnlineTV'),
          (11, 'OnlineMovies'),
          (12, 'Agreement'),
          (13, 'BillingMethod'),
          (14, 'PaymentMethod')]
In [ ]: plt.figure(figsize = (30,15))
        for col in enumerate(cat_cols):
             plt.subplot(3,5,col[0]+1)
             sns.countplot(x=col[1], hue=y['Churn'], data=x_cat)
             plt.xticks(rotation =45)
```

dropping gender, partner as there is any big variance

```
In [ ]: x_cat = x_cat.drop(['gender','Partner'],axis=1)
x_cat.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 9328 entries, 0 to 12334 Data columns (total 13 columns): # Column Non-Null Count Dtype --- ----------0 Dependents 9328 non-null object
1 CallService 9328 non-null object
2 MultipleConnections 9328 non-null object
3 InternetConnection 9328 non-null object
4 OnlineSecurity 9328 non-null object
5 OnlineBackup 9328 non-null object 6 DeviceProtectionService 9328 non-null object 7 TechnicalHelp 9328 non-null object 8 OnlineTV 9328 non-null object 9 OnlineMovies 9328 non-null object 10 Agreement 9328 non-null object 11 BillingMethod 9328 non-null object 12 PaymentMethod 9328 non-null object 13 PaymentMethod 9328 non-null object 14 Object 15 PaymentMethod 9328 non-null object 16 Object 17 Object 18 Object 18 Object 19 Ob dtypes: object(13)

encoding categorical - using label encoding

```
In [ ]: x_cat_enc = pd.get_dummies(x_cat,drop_first=True)
        x_cat_enc.head()
Out[]:
                                        MultipleConnections No
                                                                                     Internet(
```

	Dependents_Yes	CallService_Yes	phone service	MultipleConnections_Yes	memer
0	1	1	0	0	
1	0	0	1	0	
2	0	1	0	0	
3	1	1	0	1	
4	0	1	0	1	

5 rows × 24 columns

memory usage: 1020.2+ KB

selecting k-best features

```
In [ ]: # Select K Best for Categorical Features
        selector = SelectKBest(chi2, k=24)
        selector.fit_transform(x_cat_enc, y)
        # Get columns to keep and create new dataframe with those only
        cols = selector.get_support(indices=True)
        select_features_df_char = x_cat_enc.iloc[:,cols]
        select_features_df_char
```

ſΊ	14-	- 1	0
υı	Α С	- 1	

	Dependents_Yes	CallService_Yes	MultipleConnections_No phone service	MultipleConnections_Yes	Inte
0	1	1	0	0	
1	0	0	1	0	
2	0	1	0	0	
3	1	1	0	1	
4	0	1	0	1	
12330	1	1	0	0	
12331	0	0	1	0	
12332	1	0	1	0	
12333	1	1	0	0	
12334	0	1	0	0	

9328 rows × 24 columns

In []: select_features_df_char.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 9328 entries, 0 to 12334 Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	Dependents_Yes	9328 non-null	uint8
1	CallService_Yes	9328 non-null	uint8
2	MultipleConnections_No phone service	9328 non-null	uint8
3	MultipleConnections_Yes	9328 non-null	uint8
4	<pre>InternetConnection_Fiber optic</pre>	9328 non-null	uint8
5	InternetConnection_No	9328 non-null	uint8
6	OnlineSecurity_No internet service	9328 non-null	uint8
7	OnlineSecurity_Yes	9328 non-null	uint8
8	OnlineBackup_No internet service	9328 non-null	uint8
9	OnlineBackup_Yes	9328 non-null	uint8
10	DeviceProtectionService_No internet service	9328 non-null	uint8
11	DeviceProtectionService_Yes	9328 non-null	uint8
12	TechnicalHelp_No internet service	9328 non-null	uint8
13	TechnicalHelp_Yes	9328 non-null	uint8
14	OnlineTV_No internet service	9328 non-null	uint8
15	OnlineTV_Yes	9328 non-null	uint8
16	OnlineMovies_No internet service	9328 non-null	uint8
17	OnlineMovies_Yes	9328 non-null	uint8
18	Agreement_One year	9328 non-null	uint8
19	Agreement_Two year	9328 non-null	uint8
20	BillingMethod_Yes	9328 non-null	uint8
21	<pre>PaymentMethod_Credit card (automatic)</pre>	9328 non-null	uint8
22	PaymentMethod_Electronic check	9328 non-null	uint8
23	PaymentMethod_Mailed check	9328 non-null	uint8
dtvn	es: uint8(24)		

dtypes: uint8(24) memory usage: 291.5 KB

final features

```
In [ ]: x_cols_final = pd.concat([x_num,select_features_df_char],axis=1, join="inner")
        x_cols_final.columns
Out[ ]: Index(['SeniorCitizen', 'tenure', 'MonthlyServiceCharges', 'TotalAmount',
               'Dependents_Yes', 'CallService_Yes',
               'MultipleConnections_No phone service', 'MultipleConnections_Yes',
               'InternetConnection_Fiber optic', 'InternetConnection_No',
               'OnlineSecurity_No internet service', 'OnlineSecurity_Yes',
               'OnlineBackup_No internet service', 'OnlineBackup_Yes',
               'DeviceProtectionService_No internet service',
               'DeviceProtectionService_Yes', 'TechnicalHelp_No internet service',
               'TechnicalHelp_Yes', 'OnlineTV_No internet service', 'OnlineTV_Yes',
               'OnlineMovies_No internet service', 'OnlineMovies_Yes',
               'Agreement_One year', 'Agreement_Two year', 'BillingMethod_Yes',
               'PaymentMethod_Credit card (automatic)',
               'PaymentMethod_Electronic check', 'PaymentMethod_Mailed check'],
              dtype='object')
In [ ]: x_cols_final.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 9328 entries, 0 to 12334
        Data columns (total 28 columns):
            Column
                                                        Non-Null Count Dtype
        --- -----
                                                        _____
         0
            SeniorCitizen
                                                        9328 non-null float64
                                                        9328 non-null float64
         1
            tenure
         2
            MonthlyServiceCharges
                                                        9328 non-null float64
                                                        9328 non-null float64
         3
            TotalAmount
         4
            Dependents Yes
                                                        9328 non-null uint8
         5
            CallService Yes
                                                        9328 non-null uint8
                                                        9328 non-null uint8
         6
            MultipleConnections_No phone service
         7
            MultipleConnections Yes
                                                        9328 non-null
                                                                       uint8
                                                        9328 non-null uint8
         8
            InternetConnection_Fiber optic
         9 InternetConnection No
                                                        9328 non-null uint8
         10 OnlineSecurity_No internet service
                                                       9328 non-null uint8
                                                        9328 non-null uint8
         11 OnlineSecurity_Yes
         12 OnlineBackup_No internet service
                                                        9328 non-null uint8
         13 OnlineBackup Yes
                                                        9328 non-null uint8
         14 DeviceProtectionService_No internet service 9328 non-null
                                                                       uint8
         15 DeviceProtectionService_Yes
                                                        9328 non-null uint8
         16 TechnicalHelp No internet service
                                                        9328 non-null uint8
         17 TechnicalHelp_Yes
                                                        9328 non-null uint8
         18 OnlineTV_No internet service
                                                        9328 non-null
                                                                       uint8
         19 OnlineTV_Yes
                                                        9328 non-null uint8
         20 OnlineMovies_No internet service
                                                        9328 non-null uint8
                                                        9328 non-null uint8
         21 OnlineMovies_Yes
         22 Agreement_One year
                                                        9328 non-null uint8
                                                        9328 non-null uint8
         23 Agreement_Two year
         24 BillingMethod_Yes
                                                        9328 non-null uint8
         25 PaymentMethod_Credit card (automatic)
                                                      9328 non-null uint8
                                                       9328 non-null uint8
         26 PaymentMethod_Electronic check
         27 PaymentMethod_Mailed check
                                                       9328 non-null uint8
        dtypes: float64(4), uint8(24)
        memory usage: 841.0 KB
```

```
x_cols_final.nunique()
                                                           2
Out[]: SeniorCitizen
        tenure
                                                           6
        MonthlyServiceCharges
                                                        5153
        TotalAmount
                                                        8831
        Dependents_Yes
                                                           2
        CallService Yes
        MultipleConnections_No phone service
                                                            2
        MultipleConnections_Yes
        InternetConnection_Fiber optic
                                                           2
        InternetConnection_No
                                                            2
        OnlineSecurity_No internet service
                                                           2
        OnlineSecurity_Yes
        OnlineBackup_No internet service
        OnlineBackup_Yes
                                                            2
        DeviceProtectionService No internet service
        DeviceProtectionService_Yes
                                                            2
        TechnicalHelp_No internet service
                                                            2
        TechnicalHelp Yes
                                                            2
        OnlineTV No internet service
        OnlineTV_Yes
        OnlineMovies_No internet service
        OnlineMovies_Yes
        Agreement_One year
        Agreement Two year
        BillingMethod_Yes
                                                            2
        PaymentMethod_Credit card (automatic)
        PaymentMethod_Electronic check
        PaymentMethod_Mailed check
        dtype: int64
In [ ]: y['Churn'] = np.where(y['Churn']=='No',0,1)
        y['Churn'].head()
Out[]: 0
        1
        3
        Name: Churn, dtype: int32
```

variance influence factor for x cols final. we obeserve that there exists very high correlation betweeen tenure, MonthlyServiceCharges, TotalAmount, CallService_Yes features having very high correlation. Also not eliminating any feature here

```
In [ ]: vif_features = pd.DataFrame()
        vif_features['feature_names'] = x_cols_final.columns
```

```
vif_features['vif_values'] = [variance_inflation_factor(x_cols_final, i) for i i
print(vif_features)
                                feature_names vif_values
0
                                SeniorCitizen
                                                1.283691
1
                                       tenure 11.164181
2
                         MonthlyServiceCharges 17.803474
3
                                  TotalAmount 15.518206
                               Dependents_Yes
                                               1.621904
4
5
                              CallService_Yes 11.620357
          MultipleConnections_No phone service 1.589235
6
                                                2.196782
7
                       MultipleConnections_Yes
8
                InternetConnection_Fiber optic
                                                4.006358
9
                         InternetConnection No 3.949974
10
            OnlineSecurity_No internet service 3.369774
                            OnlineSecurity_Yes 1.781707
11
12
              OnlineBackup_No internet service 3.389887
13
                             OnlineBackup Yes 1.965955
   DeviceProtectionService_No internet service 3.458866
14
15
                   DeviceProtectionService_Yes
                                                2.039356
             TechnicalHelp No internet service 3.284803
16
17
                            TechnicalHelp_Yes 1.855395
                  OnlineTV_No internet service 3.566204
18
19
                                 OnlineTV_Yes 2.504054
20
              OnlineMovies_No internet service 3.535424
21
                             OnlineMovies Yes 2.458684
22
                            Agreement One year
                                                 1.599268
23
                            Agreement_Two year 2.228679
24
                             BillingMethod Yes 2.514791
25
         PaymentMethod_Credit card (automatic)
                                                1.772461
                PaymentMethod_Electronic check
26
                                                 2.628250
27
                    PaymentMethod Mailed check
                                                 2.104484
```

spliting train and test

```
In [ ]: X_train, X_test, y_train, y_test = train_test_split(x_cols_final, y, test_size=@
        model accuracy = {}
        #model accuracy = {'LogisticRegression':[0], 'RandomForestClassifier':[0], 'Grid
In [ ]: print("Shape of Training Data", X train.shape)
        print("Shape of Testing Data", X test.shape)
        print("Response Rate in Training Data",y_train.mean())
        print("Response Rate in Testing Data",y_test.mean())
        # observe that the mean of training and test of y_train and y_test are more or L
        Shape of Training Data (6529, 28)
        Shape of Testing Data (2799, 28)
        Response Rate in Training Data Churn
                                                0.604074
        dtype: float64
        Response Rate in Testing Data Churn
                                               0.594141
        dtype: float64
```

model execution and summary with coefficients & p-values

```
In [ ]: import statsmodels.api as sm
        #y_train = list(y_train)
        model_result = sm.Logit(y_train,X_train).fit()
        print(model_result.summary())
```

Optimization terminated successfully. Current function value: 0.538566 Iterations 6

Logit Regression Results

		Logit Regres			
		 Churn			6529
Dep. Variat Model:	Jie.		Df Residuals:	•	6501
Method:		Logit MLE	Df Model:		
					27
Date:			Pseudo R-squ.:		0.1978
Time:			Log-Likelihood:		-3516.3
converged:	T		LL-Null:		-4383.1
Covariance		nonrobust ============	LLR p-value:		0.000
			coef	std err	Z
P> z	[0.025	0.975]			
			0.2544	0.005	2 604
SeniorCitiz		0.000	-0.2541	0.095	-2.681
0.007	-0.440	-0.068			
tenure			-0.3301	0.040	-8.289
0.000	-0.408	-0.252			
MonthlyServ	_	es .	1.4090	0.234	6.010
0.000	0.950	1.868			
TotalAmount	t		-1.0628	0.345	-3.084
0.002	-1.738	-0.387			
Dependents_	_		0.3082	0.063	4.864
0.000	0.184	0.432			
CallService	e_Yes		0.0511	0.103	0.498
0.619	-0.150	0.252			
MultipleCor	nnections_	_No phone service	0.9166	0.108	8.500
0.000	0.705	1.128			
MultipleCor	nnections_	_Yes	0.2303	0.070	3.281
0.001	0.093	0.368			
		iber optic	0.5991	0.088	6.770
0.000	0.426	0.773			
InternetCor	nnection_N	lo	0.3432	0.111	3.090
0.002	0.125	0.561			
OnlineSecur	rity_No ir	nternet service	0.0224	0.103	0.217
0.828	-0.180	0.225			
OnlineSecur	rity_Yes		-0.3181	0.076	-4.213
0.000	-0.466	-0.170			
OnlineBackı	up_No inte	ernet service	0.0753	0.103	0.731
0.465	-0.127	0.277			
OnlineBackı	ıp_Yes		-0.0783	0.074	-1.058
0.290	-0.223	0.067			
DeviceProte	ectionServ	vice_No internet ser	vice 0.0806	0.104	0.771
0.440	-0.124	0.285			
DeviceProte	ectionServ	/ice_Yes	0.0478	0.076	0.629
0.529	-0.101	0.197			
TechnicalHe	elp_No int	ernet service	-0.0530	0.102	-0.520
0.603	-0.253	0.147			
TechnicalHe	elp_Yes		-0.3501	0.079	-4.457
0.000	-0.504	-0.196			
OnlineTV_No			0.1919	0.105	1.836
0.066	-0.013	0.397			
			0.1198	0.078	1.532
0.126	-0.033	0.273	- · •		
			0.1157	0.106	1.094
	_		- · ·		
OnlineTV_Ye	es -0.033	0.397 0.273 ernet service 0.323	0.1198 0.1157	0.078 0.106	1.532

OnlineMovies_Yes		0.1107	0.077	1.430
0.153 -0.041	0.263			
Agreement_One year		-0.2188	0.076	-2.881
0.004 -0.368	-0.070			
Agreement_Two year		-1.1217	0.104	-10.834
0.000 -1.325	-0.919			
BillingMethod_Yes		0.1704	0.060	2.832
0.005 0.052	0.288			
PaymentMethod_Credit o	ard (automatic)	-0.0805	0.088	-0.914
0.361 -0.253	0.092			
PaymentMethod_Electror	ic check	0.3306	0.079	4.202
0.000 0.176	0.485			
PaymentMethod_Mailed o	heck	-0.0581	0.083	-0.704
0.481 -0.220	0.104			
=======================================	=======================================			========

creating the model

```
In [ ]: logreg = LogisticRegression()
        logreg.fit(X_train, y_train)
Out[]: ▼ LogisticRegression
        LogisticRegression()
```

predicting the test set results and calculating the accuracy

```
In [ ]: y_pred_test = logreg.predict(X_test)
        score = logreg.score(X_test, y_test)
        print('Accuracy score:', score)
        model_accuracy['LogisticRegression'] = score
        Accuracy score: 0.7227581279028225
In [ ]: confusion_matrix = metrics.confusion_matrix(y_test, y_pred_test)
        plt.figure(figsize = (3,2))
        sns.heatmap(confusion_matrix , annot=True,fmt = "d", cmap='OrRd')
        plt.title("LOGISTIC REGRESSION CONFUSION MATRIX");
```

LOGISTIC REGRESSION CONFUSION MATRIX

classification report

```
In [ ]: print("classification_report")
       print(metrics.classification_report(y_test, y_pred_test))
       classification_report
                  precision recall f1-score support
                     1136
                                      0.79
                      0.73
                             0.86
                                               1663
                                             2799
                                      0.72
          accuracy
         macro avg 0.72 0.69 ighted avg 0.72 0.72
                                     0.70
                                               2799
                                     0.71
       weighted avg
                                               2799
```

Training Accuracy vs Test Accuracy, both seemed to be more or less same in accuracy

```
In [ ]: y pred train = logreg.predict(X train)
        print("Training Accuracy", metrics.accuracy_score(y_train, y_pred_train))
        print("**********************5)
        print("Test Accuracy", metrics.accuracy_score(y_test, y_pred_test))
        Training Accuracy 0.739163731046102
        Test Accuracy 0.7227581279028225
```

ROC - AUC

```
In [ ]: logistic_roc_auc = metrics.roc_auc_score(y_test, y_pred_test)
        logistic_roc_auc
Out[]: 0.6916467990141693
In [ ]: fpr, tpr, thresholds = metrics.roc_curve(y_test, y_pred_test)
In [ ]: plt.figure()
        plt.plot(fpr, tpr, label = "ROC Curve (area=%0.2f)" %logistic_roc_auc)
        plt.plot([0,1],[0,1],'k--')
        plt.xlim([0.0,1.0])
        plt.ylim([0.0,1.0])
        plt.xlabel("False Positive Rate")
        plt.ylabel("True Positive Rate")
        plt.title("Receiver Operating Characteristic with Area Under Curve")
        plt.legend(loc='lower right')
        plt.show()
```


performing cross validation and observed that accuracy max is 80% and min 68%

```
In [ ]: # cross validation score - K_FOLD method
       from sklearn.model selection import cross val score
       accuracy = cross_val_score(logreg, X_test, y_test, cv =20)
       print(accuracy)
       print('accuracy mean ', accuracy.mean())
       [0.72142857 0.72857143 0.72857143 0.75714286 0.74285714 0.75714286
        0.78571429 0.7
                          0.69285714 0.73571429 0.73571429 0.72857143
        0.73571429 0.6618705 ]
       accuracy mean 0.7302363823227133
```

using Random forest and found that accuracy improved to 78%

```
rclassifier = RandomForestClassifier(n_estimators=25, criterion='gini', random_s
        rclassifier.fit(X_train, y_train)
Out[]:
                                 RandomForestClassifier
        RandomForestClassifier(max_depth=5, n_estimators=25, random_state=1)
```

```
In [ ]: y_pred_test_rfc = rclassifier.predict(X_test)
        score_rfc = metrics.accuracy_score(y_test, y_pred_test_rfc)
        model_accuracy['RandomForestClassifier'] = score_rfc
In [ ]: confusion_matrix = metrics.confusion_matrix(y_test, y_pred_test_rfc)
        plt.figure(figsize = (3,2))
        sns.heatmap(confusion_matrix , annot=True,fmt = "d", cmap='OrRd')
        plt.title("RANDOM FOREST CONFUSION MATRIX")
```

Out[]: Text(0.5, 1.0, 'RANDOM FOREST CONFUSION MATRIX')

print classification report

```
In [ ]: print("classification_report")
       print(metrics.classification_report(y_test, y_pred_test_rfc))
       classification_report
                    precision recall f1-score
                                                  support
                         0.82
                                  0.60
                                            0.70
                                                     1136
                         0.77
                                  0.91
                                            0.83
                                                     1663
           accuracy
                                            0.79
                                                     2799
          macro avg
                       0.80
                                  0.76
                                            0.77
                                                     2799
                                  0.79
       weighted avg
                       0.79
                                            0.78
                                                     2799
```

RandomForestClasifier cross validation

```
In [ ]: accuracy = cross_val_score(rclassifier, X_test, y_test, cv =20)
        print(accuracy)
        print('accuracy mean ', accuracy.mean())
        [0.80714286 0.81428571 0.74285714 0.76428571 0.77142857 0.78571429
         0.79285714 0.76428571 0.83571429 0.72142857 0.77857143 0.83571429
         0.78571429 0.77857143 0.77857143 0.8 0.76428571 0.79285714
         0.79285714 0.79856115]
        accuracy mean 0.7852852004110996
```

Random forest feature importance

```
In [ ]: features_imp_dict= {}
        for col, val in sorted(zip(x_cols_final.columns, rclassifier.feature_importances
          features_imp_dict[col]=val
        features_df_rf = pd.DataFrame({'Feature':features_imp_dict.keys(),'Importance':f
        features_df_rf
```

]:		Feature	Importance
	0	tenure	0.211375
	1	MonthlyServiceCharges	0.187146
	2	Agreement_Two year	0.145862
	3	TotalAmount	0.128925
	4	OnlineMovies_No internet service	0.038637
	5	InternetConnection_Fiber optic	0.037694
	6	OnlineSecurity_Yes	0.035808
	7	InternetConnection_No	0.028067
	8	TechnicalHelp_No internet service	0.027064
	9	DeviceProtectionService_No internet service	0.024846
	10	OnlineSecurity_No internet service	0.022896
	11	OnlineBackup_No internet service	0.021353
	12	PaymentMethod_Electronic check	0.019439
	13	TechnicalHelp_Yes	0.015250
	14	OnlineTV_No internet service	0.015148
	15	OnlineBackup_Yes	0.011226
	16	PaymentMethod_Credit card (automatic)	0.006525
	17	MultipleConnections_Yes	0.004846
	18	Agreement_One year	0.004833
	19	DeviceProtectionService_Yes	0.002495
	20	MultipleConnections_No phone service	0.002212
	21	OnlineTV_Yes	0.002154
	22	BillingMethod_Yes	0.002125
	23	OnlineMovies_Yes	0.001145
	24	Dependents_Yes	0.000873
	25	PaymentMethod_Mailed check	0.000835
	26	CallService_Yes	0.000758
	27	SeniorCitizen	0.000464

```
In [ ]: values = features_df_rf.Importance
        idx = features_df_rf.Feature
        plt.figure(figsize=(10,8))
        clrs = ['green' if (x < max(values)) else 'red' for x in values ]</pre>
```

sns.barplot(y=idx,x=values,palette=clrs).set(title='Important features to predic plt.show()

using GridSearchCV and Random Forest

```
In [ ]: # selected model up on accuracy score in RandomForestClassifier with Tunned Hype
        params = {'n estimators' : [30],
                   'min_samples_split' : [8, 10, 12],
                   'criterion' :['gini', 'entropy']
        rfc gscv = GridSearchCV(RandomForestClassifier(),param grid= params, scoring='rc
        rfc_gscv.fit(X_train, y_train)
        y_predicted = rfc_gscv.predict(X_test)
        rfc_gscv_model = rfc_gscv.best_estimator_
        print (rfc_gscv.best_score_, rfc_gscv.best_params_)
        0.9113187256349988 {'criterion': 'gini', 'min_samples_split': 10, 'n_estimator
        s': 30}
In [ ]: y_pred_gscv = rfc_gscv.predict(X_test)
        score_gscv = accuracy_score(y_test, y_pred_gscv)
        model_accuracy['GridSearchCV_RFC'] = score_gscv
        print("Grid Search CV", score_gscv)
        print("classification_report")
        print(metrics.classification_report(y_test, y_pred_gscv))
```

Grid Search CV 0.8113612004287245 classification report

	precision	recall	f1-score	support
0	0.78	0.75	0.76	1136
1	0.83	0.85	0.84	1663
accuracy			0.81	2799
macro avg	0.81	0.80	0.80	2799
weighted avg	0.81	0.81	0.81	2799

```
In [ ]: confusion_matrix = metrics.confusion_matrix(y_test, y_pred_gscv)
        plt.figure(figsize = (3,2))
        sns.heatmap(confusion_matrix , annot=True,fmt = "d", cmap='OrRd')
        plt.title("GRIDSEARCHCV RANDOM CLASSIFIER CONFUSION MATRIX")
```

Out[]: Text(0.5, 1.0, 'GRIDSEARCHCV RANDOM CLASSIFIER CONFUSION MATRIX')

GRIDSEARCHCV RANDOM CLASSIFIER CONFUSION MATRIX

using gradiant boosting classifier (reducing the errors) and further improvement on accuracy to 82%

```
In [ ]: gbc_classifier = GradientBoostingClassifier(random_state=0,max_depth=5,min_sampl
        gbc_classifier.fit(X_train, y_train)
        y_pred_gbcl = gbc_classifier.predict(X_test)
        score_gbcl = accuracy_score(y_test, y_pred_gbcl)
        model_accuracy['GradientBoostingClassifier'] = score_gbcl
        print("Gradient Boosting Classifier", accuracy_score(y_test, y_pred_gbcl))
        Gradient Boosting Classifier 0.8177920685959271
In [ ]: y_pred_gbcl = gbc_classifier.predict(X_test)
        print("Gradient Boosting Classifier", accuracy_score(y_test, y_pred_gbcl))
        print("classification_report")
        print(metrics.classification_report(y_test, y_pred_gbcl))
```

Gradient Boosting Classifier 0.8177920685959271 classification_report

precision	recall	f1-score	support
0.78	0.76	0.77	1136
0.84	0.86	0.85	1663
		0 02	2799
		0.82	2/99
0.81	0.81	0.81	2799
0.82	0.82	0.82	2799
	0.78 0.84 0.81	0.78 0.76 0.84 0.86 0.81 0.81	0.78 0.76 0.77 0.84 0.86 0.85 0.82 0.81 0.81 0.81

```
In [ ]: confusion_matrix = metrics.confusion_matrix(y_test, y_pred_gbcl)
        plt.figure(figsize = (3,2))
        sns.heatmap(confusion_matrix , annot=True,fmt = "d", cmap='OrRd')
        plt.title("GRADIANT BOOSTING CLASSIFIER CONFUSION MATRIX")
```

Out[]: Text(0.5, 1.0, 'GRADIANT BOOSTING CLASSIFIER CONFUSION MATRIX')

GRADIANT BOOSTING CLASSIFIER CONFUSION MATRIX

understanding the feature importance using gbc

```
In [ ]: # let's create a dictionary of features and their importance values
        features_imp_dict= {}
        for col, val in sorted(zip(x_cols_final.columns, gbc_classifier.feature_importar
          features_imp_dict[col]=val
        features_df = pd.DataFrame({'Feature':features_imp_dict.keys(),'Importance':feat
        features df
```

Out[]:		Feature	Importance
	0	MonthlyServiceCharges	0.266159
	1	tenure	0.208398
	2	TotalAmount	0.095333
	3	Agreement_Two year	0.090201
	4	InternetConnection_No	0.032979
	5	OnlineTV_No internet service	0.031074
	6	InternetConnection_Fiber optic	0.030000
	7	OnlineBackup_No internet service	0.029369
	8	OnlineMovies_No internet service	0.023188
	9	TechnicalHelp_No internet service	0.022890
	10	DeviceProtectionService_No internet service	0.022751
	11	MultipleConnections_No phone service	0.021824
	12	OnlineSecurity_No internet service	0.018124
	13	TechnicalHelp_Yes	0.017099
	14	Agreement_One year	0.016186
	15	PaymentMethod_Electronic check	0.012911
	16	OnlineSecurity_Yes	0.011377
	17	CallService_Yes	0.009090
	18	MultipleConnections_Yes	0.009051
	19	OnlineMovies_Yes	0.007741
	20	OnlineTV_Yes	0.007339
	21	SeniorCitizen	0.004076
	22	OnlineBackup_Yes	0.003640
	23	DeviceProtectionService_Yes	0.003506
	24	BillingMethod_Yes	0.002522
	25	PaymentMethod_Credit card (automatic)	0.001586
	26	Dependents_Yes	0.001127
	27	PaymentMethod_Mailed check	0.000457

visualizing the important features, gbc

```
In [ ]: values = features_df.Importance
        idx = features_df.Feature
        plt.figure(figsize=(10,8))
        clrs = ['green' if (x < max(values)) else 'red' for x in values ]</pre>
        sns.barplot(y=idx,x=values,palette=clrs).set(title='Important features to predic
        plt.show()
```


using RidgeClassifier to observe the model

```
rgclassifier = RidgeClassifier()
In [ ]:
        rgclassifier.fit(X_train, y_train)
Out[]: • RidgeClassifier
        RidgeClassifier()
In [ ]: rgclassifier.fit(X_train, y_train)
        y_pred_train_rdg = rgclassifier.predict(X_train)
        score_train_rdg = accuracy_score(y_train, y_pred_train_rdg)
        print('RidgeClassifier training accuracy', score_train_rdg)
        y_pred_test_rdg = rgclassifier.predict(X_test)
        score_test_rdg = accuracy_score(y_test, y_pred_test_rdg)
        model_accuracy['RidgeClassifier'] = score_test_rdg
        print('RidgeClassifier testing accuracy', score_test_rdg)
        RidgeClassifier training accuracy 0.7377852657374789
        RidgeClassifier testing accuracy 0.7220435869953555
        print("classification_report")
        print(metrics.classification_report(y_test, y_pred_test_rdg))
```

```
classification_report
            precision recall f1-score
                                       support
               0.72
                       0.52
                                 0.60
                                          1136
                0.72
                         0.86
                                 0.79
                                          1663
                                 0.72
                                          2799
   accuracy
              0.72
                         0.69
                                 0.69
                                          2799
  macro avg
                0.72
                         0.72
                                 0.71
                                          2799
weighted avg
```

```
In [ ]: confusion matrix = metrics.confusion matrix(y test, y pred test rdg)
        plt.figure(figsize = (3,2))
        sns.heatmap(confusion_matrix , annot=True,fmt = "d", cmap='OrRd')
        plt.title("RidgeClassifier CONFUSION MATRIX")
```

Out[]: Text(0.5, 1.0, 'RidgeClassifier CONFUSION MATRIX')

RidgeClassifier CONFUSION MATRIX

using SVC

```
In []: svc = SVC()
        svc.fit(X_train, y_train)
        score = svc.score(X_train, y_train)
        print("SVC training dataset: ", score)
        cv_scores = cross_val_score(svc, X_test, y_test, cv=10)
        print("CV average score: %.2f" % cv_scores.mean())
        y pred svc = svc.predict(X test)
        score_test_svc = accuracy_score(y_test, y_pred_svc)
        model_accuracy['SVC'] = score_test_svc
        print('SVC testing accuracy', score_test_svc)
        confusion_matrix = metrics.confusion_matrix(y_test, y_pred_svc)
        plt.figure(figsize = (3,2))
        sns.heatmap(confusion_matrix , annot=True,fmt = "d", cmap='OrRd')
        plt.title("SVC CONFUSION MATRIX")
        print("SVC classification_report")
        print(metrics.classification_report(y_test, y_pred_svc))
```

SVC training dataset: 0.8286108132945321

CV average score: 0.80

0

SVC testing accuracy 0.8149339049660593

SVC classification_report

	precision	recall	f1-score	support
0	0.81	0.72	0.76	1136
1	0.82	0.88	0.85	1663
accuracy			0.81	2799
macro avg	0.81	0.80	0.80	2799
weighted avg	0.81	0.81	0.81	2799

1

GridSearchCV(RandomForest), GradiantBoostingClassifier, SVC has better accuracy

```
In [ ]: model_accuracy
```

Out[]: {'LogisticRegression': 0.7227581279028225,

^{&#}x27;RandomForestClassifier': 0.7859949982136477,

^{&#}x27;GridSearchCV_RFC': 0.8113612004287245,

^{&#}x27;GradientBoostingClassifier': 0.8177920685959271,

^{&#}x27;RidgeClassifier': 0.7220435869953555,

^{&#}x27;SVC': 0.8149339049660593}