§21: Functions

Def: A relation is a rule that assigns elements in one set to elements in another set.

Def: A function is a vule that assigns each element in one set to a unique element in a second set.

Ex Relation or Function?

Def: A relation is a set of ordered pairs.

Def: A function is a set of ordered pairs in which no two pairs have the same first coordinate and different second coordinates

(i)
$$\{(A,1), (B,2), (B,3), (C,3)\}$$
 relation
(ii) $\{(A,1), (B,2), (C,3), (D,4)\}$ function

* all punctions are relations, but not all relations are functions

Ex) Determine whether each relation is a Justion

Identifying a Junction from a graph

Thin: A graph is the graph of a function of and only if there is no vertical line that crosses the graph more

Ex) Determine whether each equation defines y as a Junction of X.

ex)
$$x = y^2 \rightarrow y = \pm \sqrt{x}$$
 X

$$ex)$$
 $x=y^3 \rightarrow y=x^3$

Domain and Range

#47)
$$\{(x,y) \mid y = +\}$$

 $D: (-\infty,\infty)$
 $R: \{4\}$

#50)
$$y = x^2 + 8$$
 * what is the smallest value $0: (-\infty, \infty)$ * $x = x^2 + 8$ * what is the smallest value $x = x^2 + 8$ * where $x = x^2 + 8$ * where

#52)
$$\times +2 = \sqrt{y} \rightarrow \times = \sqrt{y} - 2$$

D: $[-2, \infty)$
P: $[0, \infty)$
 $y \ge 0$ and $\times = \sqrt{y} - 2$

#54)
$$y = \sqrt{5-x}$$

$$D: (-\infty, 5]$$

$$R: [0, \infty)$$

#56)
$$x = -|y|$$

$$D: (-\infty, 0]$$

$$R: (-\infty, \infty)$$

Function Notation.

$$E(x) h = \{(1,4), (6,0), (7,9)\}, f(x) = \sqrt{x-3}$$

b)
$$f(7) = \sqrt{7-3}$$

= $\sqrt{4}$
= $\sqrt{2}$

c)
$$x \text{ if } f(x) = 5$$

$$5 = \sqrt{x-3}$$

$$25 = x-3$$

$$x = 28$$

$$\mathcal{E}_{x}$$
) $f(x) = 3x^{2} - x$

#74)
$$f(x+h) = 3(x+h)^2 - (x+h)$$

= $3(x^2+2hx+h^2) - (x+h)$
= $3x^2 + 6hx - x + h^2 - h$
= $3x^2 + (6h-1)x + h^2 - h$

Average Rate of Change

$$\frac{\Delta f}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_1 - x_2}$$

What if those two prints

get close to one another?.

Xi = X

Xz = X + h where h is small.

$$\frac{\Delta f}{Dx} = \frac{f(x+h) - f(x)}{x+h - x}$$

$$= \frac{f(x+h) - f(x)}{h}$$

$$ex) f(x) = 3x^2 - x$$

$$f(x+h)=3x^2+(6h-1)x+h^2-h$$

$$f(x) = 3x^2 - x$$

$$\frac{f(x+n) - f(x)}{h} = \frac{3x^2 + (6h-1)x + h^2 - h}{h} - \frac{(3x^2 - x)}{h}$$

$$= \frac{(3x^2 - 3x^2) + (6hx(x+x) + h^2 - h}{h}$$

$$= \frac{(6hx - h + h^2)}{h}$$

$$= \chi((6x-1+h))$$

$$= 6x-1+h$$
Now suppose $h \Rightarrow 0$ $\frac{f(x+h)-f(x)}{h} \Rightarrow 6x-1$
I this is a derivative!