INFORMATIKA

EL

Review

- Computers, information, number representation, code writing, architecture, file systems
- Base commands, processes, regular expressions
- Variables, command substitution, arithmetical, logical expressions
- Script control structures, sed, awk
- Batch, WSH
- Basic networking (skipped)
- PS overview, PS variables, operations
- Basic Powershell commands, control structures

What next today?

- Coding Encrypting
- Symmetric Assymetric encryption
- Terminal connecting- Secure connection
 - No telnet
 - Windows Terminál SSH
 - PUTTY SSH
- RSA Simple, Basic

Modified:2022. 11. 26. Page:3

Coding - Encrypting

- Important: A computer can store only numbers in the memor!
- To store text, chars, we need a code table. E.g. ASCII
 - 41h(65) -> A, 4Ch(76) -> L, 4Dh(77) -> M, 41h(65) -> A
- Using standard code tables, that is simple text storing (text files)
- Using modified tables, in that case we call it as encrypting, encrypted text.
- How can we define modified code table?
 - Based on a dedicated book (E.g. 3 numbers(page, row and column number) means 1 char.)
 - Using Math
 - Symmetric (pl. XOR, AES, BlowFish...)— Assymetric encoding (RSA)

Basic ASCII codetable

ASCII Code Chart

ل	0	1	2	3	4	5	6	7	8	9	A	ΙВ	C	D	E	L F
Θ	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!		#	\$	%	&	-	()	*	+	,	ı	•	/
3	0	1	2	3	4	5	6	7	8	9	••	;	٧	Ш	۸	?
4	9	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	0
5	Р	Q	R	S	T	O	V	W	Χ	Υ	Z]	/]	>	_
6	``	а	b	С	d	е	f	g	h	i	j	k	ι	m	n	0
7]	р	q	r	s	t	u	ν	W	х	у	Z	{		}	~	DEL

- Can we modify it for "personal" use?
 - Why not?- Thus we define Enryption table

Symmetric – Assymmetric encrytion

- How can we define a new encryption method?-We have a lot of methods!
- Most simple way: modified code table (e.g. based on ascii)
- A little bit smarter method, eg. Based on a book, sending numbers, and these numbers defines chars, page, row char number, define a real char.
- Today more general is defining a math method, based on a common key.

 Encryption cipher selection policy:
- Simplest method: XOR
- All previous methods are symmetric
 - Only one key
- Assymetric 2 keys.

Terminal connection — What is it used?

- Windows Terminal
 - Users\.ssh\known_hosts file store the well known host keys
 - The PUTTY Registry key: HKCU\Software\SimonTatham\PuTTY
 - How to modify?
 - Regedit
 - PS

ш

The registry HKCU key

Administrator: Windows Powers X O OS PS HKCU:\Software\SimonTatham\PuTTY> (Get-ItemProperty .\SshHostKeys)["rsa2@22:os.inf.elte.hu"] PS HKCU:\Software\SimonTatham\PuTTY> (Get-ItemProperty .\SshHostKeys)."rsa2@22:os.inf.elte.hu" 0x10001,0xc448b7bace9c9d856505d366991cf2a0271f480e04c3e2447276cb15f9b996a6601651ae5c4d4a90fcf6e0400da3353a051b9f9f2b807a b7dfd203a400c1dacc13c1ac85055a7f1c97594df6f561444e25b42ab37514bfa58c06504cc447ec09b06ebe59f5ce990ba8140bec61ebf5aeacdf96 c6d8720a73ec736b297b67631fd52be4d6c5a571956b307f795dba8b21da996e313edc507495453628d5ab661fe213571b4c6c86eebd2339d99ad86e ecf22e42d073d378dd07aa4d95867bea6ed888b517099a58f67bec8bf6af59bf2d6a24cd0ac55844881f19759f1cf6eba4628bdc19a97a5261d4fbfe b915dee9992c72e04a028b69cf0af56c4cd624f0e9 PS HKCU:\Software\SimonTatham\PuTTY> Remove-ItemProperty .\SshHostKeys "rsa2@22:os.inf.elte.hu" PS HKCU:\Software\SimonTatham\PuTTY> Get-ItemProperty .\SshHostKeys "rsa2@22:rtos.inf.elte.hu" rsa2@22:rtos.inf.elte.hu : 0x10001,0xabb89dd2ee61a5443dacd4ce25e5bec57053568d6c991d896ea19dc506299ebfb442c7f64200c94d6a 2622efa688475355898b5485e3a74e12dd12677f00adf7c6e31643e139cb4aefae1a13263f592b5bc98d5a6ab309 423dd13cf1b62d3afac687918c50a4705dbd5020536ee01546fd82981ef0a0c6e44bed805ce6d9b78006856e0426 382752e41a19399f16ccf40df44d54375bd080822872dfe7f66c5352b08c60076504f557d746c934e10f354c525f 0a6ce588949209bc6a118b102836b46cb7ec714b564e2cea814b0fb1ee86869f85ea55d0d6eb9a5b86cf6037a98b 07bfb2ecebfad95120dbf677d86a275bebc84eb8e52e206c117b7db00adf91 **PSPath** : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\SshHostKeys PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\SimonTatham\PuTTY **PSChildName** : SshHostKeys **PSDrive** : HKCU **PSProvider** : Microsoft.PowerShell.Core\Registry

Are we safe? Who guards us?

RSA algorithm

or: in everyday life, we don't just use addition from maths lessons

(eg: in shops, cassa)

Divisibility

What is the common?

4; 7; 10; 13; 16; 19; 22

Mod 3, the remaining is 1

14; 5; 17; 8; 11; 20; 23

Mod 3, the remaining is 2

3; 66; 9; 12; 135; 18; 6

Mod 3, the remaining is 0

Definition:

 $a,b \in N$ $a|b \Leftrightarrow \exists x \in N \ni a \cdot x = b$

Residual class - maradékosztályok

for natural numbers a,b, we say that a is the divisor of b (or b is divisible by a) if there is a natural number x such that a.x=b

Residual class numbers - Maradékosztályok

Check residual classes!

$$11 - 8 = 3$$

8 - 5 = 3

$$17 - 8 = 9$$

c) 3; 66; 9; 12; 135; 18; 6

$$12 - 6 = 6$$

6 - 3 = 3

$$18 - 6 = 12$$

$$7 - 4 = 3$$

$$10 - 4 = 6$$

$$19 - 7 = 12$$

Example:

 $19 \equiv 7 \mod 3$

They are in the same residual class mod 3

Def.: If the integer m ($\neq 0$) divides the difference a-b, then we say that the number a is congruent to b modulo m (\rightarrow they are in the same residue class mod m)

<mark>Je</mark>lölés: **a≡b mod m**

Congruency properties

- 1. $a \equiv b \mod m \implies b \equiv a \mod m \quad \text{és} \quad a b \equiv 0 \mod m$
- 2. $a \equiv b \mod m$ és $b \equiv c \mod m$ $\Rightarrow a \equiv c \mod m$
- 3. $a \equiv b \mod m$ és $c \equiv d \mod m$ $\Rightarrow a \cdot x + c \cdot y \equiv b \cdot x + d \cdot y \mod m$
- 4. $a \equiv b \mod m$ és $c \equiv d \mod m$ $\Rightarrow a \cdot c \equiv b \cdot d \mod m$
- 5. $a \equiv b \mod m$ és $d \mid m$ és $d > 0 \implies a \equiv b \mod d$
- 6. $f \ eg\acute{e}sz \ egy\"{u}tthat\acute{o}s \ polinom \acute{e}s \ a \equiv b \ mod \ m \Rightarrow f(a) \equiv f(b) \ mod \ m$
- 7. ha (a; m) = 1 akkor: $a \cdot x \equiv a \cdot y \mod m$ $\Leftrightarrow x \equiv y \mod m$ with a relative prime to m we can multiply, divide

4.tul. $\Rightarrow a \equiv b \mod m \quad \text{\'es} \quad a \equiv b \mod m \quad \Rightarrow \quad a^2 \equiv b^2 \mod m$

$$\Rightarrow \dots \Rightarrow a^n \equiv b^n \mod m$$

We can power (multiply) the kongruenci!

Maybe later we need it

Állítás:

They are not in the same residual class generally.

legyen (a;m) = 1 és (x;m) = 1 és (y;m) = 1továbbá $x \not\equiv y \mod m \implies a \cdot x \not\equiv a \cdot y \mod m$

Bizonyítás:

 $x \not\equiv y \mod m$ jelenti: $m \mid (x-y)$ ekkor: $m \mid a \cdot (x-y) = a \cdot x - a \cdot y$, tehát

 $a \cdot x \not\equiv a \cdot y \bmod m$

If two numbers are not congruent, then multiplying them by a relative prime of m, they will still not be congruent!

Residual systems

Look these numbers: 3; 4; 5

Other one: 33; 16; 26

They give a full residual system based on mod 3!

Def: x_1 ; x_2 ; . . . x_m <u>teljes maradékrendszer</u> *mod m*, ha tetszőleges y egész számhoz pontosan egy olyan x_j található, amelyre $y \equiv x_j \mod m$

ϕ function- definition

Euler φ function: $\varphi(m)$ number of prime positive integers not greater than m, relative to m

Example: m= 24 relative primes to m:1; 5; 7; 11; 13; 17; 19; 23

 $\varphi(24) = 8$ m = 7 relative primes to 7: 1; 2; 3; 4; 5; 6

 $\varphi(7)=6$

How many $\varphi(11)$, $\varphi(13)$, $\varphi(23)$ (10, 12, 22)

Important! If p prime, then $\varphi(p) = p - 1$

Reduced residue system mod 24

Reduced residue system: from the total residue system, only those elements are left that are primes relative to m

A small task

Let
$$m = p_1 \cdot p_2$$
 $\varphi(m) = ?$

m= 15 = 3 · 5 to 15 relatív prímes: 1; 2; 4; 7; 8; 11; 13; 14
$$\varphi(15) = 8$$

$$\varphi(3) = 2$$
; $\varphi(5) = 4$ és $2 \cdot 4 = 8$ Coincident?

Lemma:
$$\varphi(m) = (p_1 - 1) \cdot (p_2 - 1)$$

 $\varphi(m) = (p_1 - 1) \cdot (p_2 - 1) = p_1 \cdot p_2 - p_1 - p_2 + 1$

From p1.p2 we subtract a multiple of p1 of p2 and a multiple of p2 of p1, but we subtract p1.p2 twice.

Euler lemma

Tétel: ha (a;m)=1, akkor $a^{\varphi(m)}\equiv 1 \mod m$

Biz.:

 $r_1; r_2; \dots r_{\varphi(m)}$ redukált maradék rendszer mod m $a \cdot r_1; a \cdot r_2; \dots a \cdot r_{\varphi(m)}$ is redukált maradék rendszer mod m (ugyan annyi elem van itt is, ott is, ill. itt van szükség a tételre!) $r_j \equiv a \cdot r_k \mod m$ $r_1 \cdot r_2 \cdot \dots \cdot r_{\varphi(m)} \equiv a \cdot r_1 \cdot a \cdot r_2 \cdot \dots \cdot a \cdot r_{\varphi(m)} \mod m$ (4. tul.) $1 \equiv a^{\varphi(m)} \mod m$ (7. tul. alapján, mert $(r_i; m) = 1$)

$$m = 24$$
 \Rightarrow 1, 5, 7, 11, 13, 17, 19, 23
 $\varphi(24) = 8$ \Rightarrow 7, 35, 49, 77, 91, 119, 133, 161

Fermat lemma

$$p \ prim \ és \quad (a; p) = 1 \quad \Rightarrow \quad a^{p-1} \equiv 1 \mod p$$
$$\Rightarrow \quad a^p \equiv a \mod p$$

Proof.: This comes from Euler lemma

This means that if a < p, then if a is raised to the pth power and then divided by p, the remainder of the division is exactly a.

Lets join lemmas!

$$m := p_1 \cdot p_2 \quad ekkor \quad \varphi(m) = (p_1 - 1) \cdot (p_2 - 1)$$

$$(a; m) = 1$$

$$a^{\varphi(m)} \equiv 1 \quad \Rightarrow \quad a^{(p_1 - 1) \cdot (p_2 - 1)} \equiv 1 \mod m$$

$$a^{\varphi(m) + 1} \equiv a \Rightarrow \quad a^{(p_1 - 1) \cdot (p_2 - 1) + 1} \equiv a \mod m$$

$$b \in Z \quad eset\acute{e}n :$$

$$(a^{\varphi(m)})^b \equiv 1^b = 1 \quad \Rightarrow \quad a^{b \cdot (p_1 - 1) \cdot (p_2 - 1)} \equiv 1 \mod m$$

$$a^{b \cdot \varphi(m) + 1} \equiv a \qquad \Rightarrow \quad a^{b \cdot (p_1 - 1) \cdot (p_2 - 1) + 1} \equiv a \mod m$$

$$4.tul. \quad \Rightarrow \quad a \equiv b \mod m \quad \Rightarrow \quad a^n \equiv b^n \mod m$$

Continue:

$$m := p_1 \cdot p_2$$
 $ekkor$ $\varphi(m) = (p_1 - 1) \cdot (p_2 - 1)$
 $(a; m) = 1, b \in \mathbb{Z}$ $eset\acute{e}n$ $a^{b \cdot \varphi(m) + 1} \equiv a \mod m$
 $b \cdot \varphi(m) + 1 := \alpha \cdot \beta, \quad ahol \quad \alpha, \beta \in \mathbb{N}$
 $a^{\alpha \cdot \beta} = (a^{\alpha})^{\beta} \equiv a \mod m$

By property 2, I can replace a^α by any number congruent to it mod m in the calculation

(α,m), (β,m) are the keys and a is the number to be encrypted (relative prime to m)!

Lets use this method!

$$m := 3 \cdot 5 = 15$$

$$(a;m) = 1$$
 és $a < m \Rightarrow a \in \{1; 2; 4; 7; 8; 11; 13; 14\}$

$$\varphi(m) = 8$$

$$\varphi(m) + 1 = 9 = 3 \cdot 3$$

Nem jó, ugyan az lenne a titkos és a nyilvános kulcs

$$2 \cdot \varphi(m) + 1 = 17$$

Nem jó, mert prím

$$3 \cdot \varphi(m) + 1 = 25 = 5 \cdot 5$$

Ez sem jó!

$$4 \cdot \varphi(m) + 1 = 33 = 3 \cdot 11$$
 Végre!

Example, lets encrypt!

Public key: (11;15)

Private key: (3;15)

Do not forget, we can $a \in \{1; 2; 4; 7; 8; 11; 13; 14\}$ encrypt numbers:

Encrypt these numbers: 2 4 8 7

Coding

Numbers to encrypt: 2 4 8 7

Public key: (11;15)

$$2^{11} = 2048 = 136 \cdot 15 + 8$$

$$4^{11} = 4194304 = 279620 \cdot 15 + 4$$

$$8^{11} = 8589934592 = 572662306 \cdot 15 + 2$$

$$7^{11} = 1977326743 = 131821782 \cdot 15 + 13$$

Result: 8 4 2 13

Decrypting:

Secret, encrypted message: 8 4 2 13

Private key: (3;15)

$$8^3 = 512 = 34 \cdot 15 + 2$$

$$4^3 = 64 = 4 \cdot 15 + 4$$

$$2^3 = 8 = 0.15 + 8$$

$$13^3 = 2197 = 146 \cdot 15 + 7$$

So, we got back the original numbers: 2 4 8 7

What is the message!

Codetable:

Private key: (7;187) (We have to decrypt with this one.)

RSA encrypted message:

83; 162; 83; 46; 36; 162; 83; 83; 175

162; 64; 181; 46; 36; 46; 181; 64; 162; 83;

162; 180; 150; 162

What is the public key? (We coded with public key!)

- Small help for public key.
 - (7,187)
 - (23,187)

$$187 = 17 \cdot 11$$

$$\varphi(187)+1=16\cdot10+1=161$$

$$161 = 7 \cdot 23$$

$$2 \cdot \varphi(187) + 1 = 2 \cdot 16 \cdot 10 + 1 = 321$$

$$321 = 3.107$$

$$3 \cdot \varphi(187) + 1 = 3 \cdot 16 \cdot 10 + 1 = 481$$

$$481 = 13 \cdot 37$$

$$4 \cdot \varphi(187) + 1 = 4 \cdot 16 \cdot 10 + 1 = 641$$

$$641 = prim$$

Can you it crack? — Using small numbers...yes

$$m=15$$
 $\alpha=11$ $\beta=?$ $15=3\cdot 5$ $\varphi(15)=2\cdot 4=8$ $b\cdot 8+1=11\cdot \beta$

After a short probe:

$$b=4$$
 $\beta=3$

$$m = 527$$
 $\alpha = 13$ $\beta = ?$

$$527 = 17 \cdot 31$$
 $\varphi(527) = 16 \cdot 30 = 480$ $b \cdot 480 + 1 = 13 \cdot \beta$

$$b \cdot 480 + 1 = 13 \cdot \beta$$

After a short probe:

$$b=1$$
 $\beta=37$

Can you crack it?

• M = P1 * P2 - P1,P2 1024, 2048 bits

$$m := p_1 \cdot p_2$$
 ekkor $\varphi(m) = (p_1 - 1) \cdot (p_2 - 1)$
 $(a; m) = 1, b \in \mathbb{Z}$ esetén $a^{b \cdot \varphi(m) + 1} \equiv a \mod m$
 $b \cdot \varphi(m) + 1 := \alpha \cdot \beta, \text{ ahol } \alpha, \beta \in \mathbb{N}$
 $a^{\alpha \cdot \beta} = (a^{\alpha})^{\beta} \equiv a \mod m$

(α,m), (β,m) are the keys and a is the number to be encrypted (relative prime to m)!

The methon is simple, but it need huge compute capacity, years.

What the name means - RSA

E INFORMATIKA

ELT