

Fonaments de computadors

TEMA 2. PRINCIPIS DEL DISSENY DIGITAL

Objectius

- Conèixer les funcions lògiques i la representació d'aquestes.
- Dissenyar circuits lògics senzills.
- Fonaments de l'Àlgebra de Boole.
- Mètodes de simplificació. Mapes de Karnaugh.

Recursos d'aprenentatge

- Poliformat, secció "Recursos"
 - Exercicis sense solució.
 - Solucions als exercicis.
 - Entrenador de Karnaugh.
 - Exàmens d'anys anteriors.
- Poliformat, secció "Lessons"
 - Mòdul 2: Principios de diseño digital.
 - » Taules de veritat.
 - » Portes lògiques.

Índex

- Introducció
- Funcions lògiques i taules de veritat
- Portes lògiques
- Àlgebra de Boole
- Anàlisi de circuits
- Formes canòniques de representar una funció lògica
- Simplificació de funcions lògiques
 - Mapes de Karnaugh

Introducció

- Transistor
 - Unitat física mínima de disseny digital
- Porta lògica
 - Unitat lògica mínima de disseny digital

Introducció

Circuit combinacional

- Les eixides només depenen del valor de les entrades en el moment actual.
 - Exemple. Selecció de la beguda en una màquina de cafè.
- Circuit sequencial
 - Les eixides depenen del valor actual de les entrades i de la seqüència de valors anteriors (història) del circuit.
 - Exemple. Magatzem de monedes d'una màquina de cafè.
- Unitat funcional
 - Conjunt de petits circuits que fan una funció definida.

Funcions lògiques i taules de veritat

- Funció lògica
 - Expressió formal del comportament d'un circuit lògic
 - Permet determinar l'eixida del circuit en funció de les entrades
 - Aritat = nombre de variables lògiques d'entrada
 - Valoració = una de les combinacions de valors de les entrades

Funcions lògiques i taules de veritat (ii)

- Taula de veritat
 - Forma tabular d'expressar una funció lògica.
 - Per a cada entrada o eixida s'assigna una columna.
 - Per a cada valoració s'assigna una fila.
 - Entrades a l'esquerra, eixides a la dreta.
 - Valoracions seguint la numeració binària.

Taules de veritat. Exemples

- Llum interior d'un cotxe
 - A partir de dues entrades d, e (portes dreta i esquerra),
 dissenyeu un circuit que encenga un llum / quan alguna de les portes estiga oberta.

d	е	I
0 0 1 1	0 1 0 1	0 1 1

Taules de veritat. Exemples (ii)

- Llum interior d'un cotxe (ii)
 - Afegiu una entrada m d'encesa manual: si l'entrada m està activada (m=1) s'encén el llum independentment de l'estat (obert/tancat) de les portes.

m	d	е	I	m	d	е	I	
0 0 0 0 1 1	0 0 1 1 0	0 1 0 1 0	0 1 1 1 1 1	0 0 0 0 1	0 0 1 1 X	0 1 0 1 X	0 1 1 1	
1 1	1	0	1 }	Tau	la c	de v	erita	t <u>reduïda</u>

Taules de veritat. Exemples (iii)

- Funcions amb <u>entrades indiferents</u>
 - Aquelles combinacions de valors d'entrada per a les quals no importa el valor de l'eixida, atès que...
 - Es tracta d'una combinació de les entrades per a la qual no s'ha especificat el comportament del circuit.
 - O es tracta d'una combinació de les entrades que és impossible.
 - En la taula de veritat, l'eixida per a aquestes valoracions és
 X.

Taules de veritat. Exemples (iv)

FCO

- Intermitents d'un cotxe
 - A partir de 3 entrades: palanca a l'esquerra (pe), palanca a la dreta (pd) i avaria (a), genereu les eixides que activen els intermitents esquerre (ie) i dret (id).

а	pe	pd	ie id
0	0	0	0 0
0	0	1	0 1
0	1	0	1 0
0	1	1	ΧX
1	0	0	1 1
1	0	1	1 1
1	1	0	1 1
1	1	1	X X

Taula de veritat
d'una <u>funció</u>
amb entrades indiferents

Composició de funcions

- Funció composta. Aquella en què l'eixida d'una (sub)funció és utilitzada com a entrada d'una altra.
- Exemple: Ilum interior de cotxe amb encesa manual.

 Porta lògica. Circuit electrònic que implementa una funció lògica elemental.

- Tipus
 - Bàsics: AND, OR, NOT
 - Altres: XOR
 - Amb eixida negada: NAND, NOR, XNOR

- Tecnologies. Base física de construcció
 - TTL, CMOS

Portes lògiques (ii)

- AND
 - Producte lògic ("i")
 - Ampliable

a	a-b
b	

b	а	a-b
0	0	0
0	1	0
1	0	0
1	1	1

- OR
 - Suma lògica ("o")
 - Ampliable

a			a+b
b		>	
	7_		

b	а	a+b
0	0	0
0	1	1
1	0	1
1	1	1

- NOT
 - Negació lògica ("no")
 - No ampliable

а	a
0	1
1	0

- XOR
 - OR exclusiva
 - No ampliable

<u>a</u>	7/	
h		<u>}a⊕b</u>
	/ /	

b	а	a⊕b
0	0	0
0	1	1
1	0	1
1	1	0

Portes lògiques amb eixida negada

- NAND = NOT (AND)
 - Ampliable

b	а	a-b
0	0	1
0	1	1
1	0	1
1	1	0

- NOR = NOT (OR)
 - Ampliable

b	a	a+b
0	0	1
0	1	0
1	0	0
1	1	0

- XNOR = NOT (XOR)
 - No ampliable

b	а	a⊕b
0	0	1
0	1	0
1	0	0
1	1	1

Portes lògiques. Tecnologies

- Cada tecnologia de construcció empra diferents tipus d'elements físics (transistors) i tensions per a representar els valors lògics "0" i "1"
- TTL = *Transistor-Transistor Logic*
 - Basada en transistors bipolars
 - Alta velocitat, alt consum, difícil integració
- CMOS = Complementary Metal Oxide Semiconductor
 - Basada en transistors MOSFET
 - Menor velocitat, baix consum, alta escala d'integració

Esquema físic d'una NAND TTL

Portes lògiques. Integració

Function Table

$$Y = \overline{AB}$$

Inputs		Output	
I A	В	xaX Y = ao	
aa L	L	HS atol	
L	Н	H	
Н	L	H 500	
Н	Н	L	

H = High Logic Level

L = Low Logic Level

Esquema físic d'un inversor CMOS

Circuit integrat amb dues NOR i una NOT FCO

Nivell d'un circuit lògic

FCO

Nivell

- Nombre de portes que cal travessar en el pitjor dels casos des de les entrades fins a les eixides del circuit.
- És una indicació del retard del circuit.
- Cada porta té un retard T.
- Nivell 0 = entrades.

Travessa 2 portes.

Travessa 3 portes.

Travessa 2 portes.

Travessa 3 portes.

Travessa 3 portes.

Nivell = pitjor cas = 3 portes

Anàlisi de circuits

- Donat un circuit, es tracta d'obtenir-ne la funció lògica i la taula de veritat.
 - Funció lògica: component les subfuncions corresponents a cada punt del circuit.
 - Taula de veritat: calculant l'eixida per a totes les possibles combinacions d'entrada.

Anàlisi de circuits (ii)

Síntesi d'un circuit lògic

- A partir de la funció lògica corresponent:
 - Afegiu i interconnecteu les portes en l'ordre en què s'avaluen els termes de l'expressió lògica.

Àlgebra de Boole

FCO

- George Boole (s. xix)
 - Matemàtic i filòsof anglès.
 - Desenvolupa una estructura algebraica amb dos valors ("vertader", "fals") i dues lleis de composició interna ("i", "o").
 - Permet formalitzar les regles del raonament lògic.

Precedència (si no hi ha parèntesi)

- Claude Shannon (1938, Lab. Bell)
 - Adapta aquest àlgebra a la computació.
 - Valors 0 i 1, lleis de composició AND i OR
 - Permet formalitzar les regles de construcció de circuits digitals.

Porta Iògica	Símbol estàndard	
NOT	_	
AND	•	
OR	+	
XOR	⊕	

Àlgebra de Boole. Axiomes

FCO

Commutativitat (+ , ●)

Distributivitat (+ ⇔ ●)

$$(a + b) \cdot (a + c) = a + (b \cdot c) = a \cdot (b + c)$$

$$(a \cdot b) + (a \cdot c) = a \cdot (b + c)$$

Àlgebra de Boole. Axiomes (ii)

FCO

Existència d'element neutre (+ , ●)

Existència d'element complementari (+, •)

$$a + \overline{a} = 1$$
$$a \cdot \overline{a} = 0$$

Àlgebra de Boole. Propietats

FCO

Associativa (+ , ●) ≡

$$(a + b) + c = a + (b + c) = a + b + c$$

 $(a \cdot b) \cdot c = a \cdot (b \cdot c) = a \cdot b \cdot c$

 Permet construir portes amb un nombre més gran d'entrades a partir de portes amb menys entrades:

Àlgebra de Boole. Propietats (ii)

- Associativa (ii)
 - ATENCIÓ a les portes amb eixida negada!

$$\overline{a+b+c} = \overline{(a+b)+c}$$

$$b = b = c$$

Àlgebra de Boole. Propietats (iii)

FCO

Idempotència (+ , ●)

$$a + a = a \qquad a \cdot a = a$$

$$a + a = a \qquad = a \qquad = a \qquad = a$$

Permet construir portes NOT a partir de NAND o NOR

$$\overline{a + a} = \overline{a} = \overline{a \cdot a}$$
 $a - \overline{a} = \overline{$

Àlgebra de Boole. Propietats (iv)

FCO

Involució

$$\overline{a} = a$$

$$a \longrightarrow \overline{a} \longrightarrow a$$

Lleis de De Morgan

$$(\overline{a + b + \dots + n}) = \overline{a} \cdot \overline{b} \cdot \dots \cdot \overline{n}$$

 $(\overline{a \cdot b \cdot \dots \cdot n}) = \overline{a} + \overline{b} + \dots + \overline{n}$

- ATENCIÓ!

$$(a + b) = a + b$$

$$(\overline{a+b}) = \overline{a} \cdot \overline{b}$$

Àlgebra de Boole. Propietats (v)

FCO

 Aplicant adequadament les lleis de De Morgan,
 qualsevol circuit lògic es pot implementar només amb portes NAND o NOR.

– Exemple:

$$f = a \cdot \overline{b} + \overline{c} = \overline{a \cdot \overline{b} + \overline{c}} = \overline{a \cdot \overline{b} + \overline{c}} = \overline{a \cdot \overline{b} \cdot \overline{c}}$$

• Expressió algebraica única d'una funció lògica formulada amb maxitermes o minitermes.

- Miniterme d'ordre n
 - Producte en què apareixen les n variables lògiques d'entrada.

 - Cada valoració dóna lloc a un miniterme distint.
 - Els minitermes es numeren segons la quantitat representada per la valoració corresponent.

Formes canòniques (ii)

Maxiterme d'ordre n

- Suma en què apareixen les n variables lògiques d'entrada.
- Cada variable apareix complementada si el valor n'és 1.
- Cada valoració dóna lloc a un maxiterme distint.
- Els maxitermes es numeren segons la quantitat representada per la valoració corresponent.

Forma canònica disjuntiva

- Forma canònica disjuntiva o suma de productes
 - Suma dels minitermes pertanyents a la funció.
 - Pertanyen a la funció els minitermes corresponents a les valoracions per a les quals la funció val 1.

 \sum (llista numerada dels minitermes de la funció)

llista de variables de la funció

b	а	f	miniterme	núm.
0	0	0	<u>b</u> · a	0
0	1	1	<u></u> b ⋅ a	1
1	0	0	b ⋅ a	2
1	1	1	b · a	3

Forma canònica
$$f = \sum_{b,a} (1,3) = \overline{b} \cdot a + b \cdot a$$
 Expressió algebraica equivalent

- Forma canònica conjuntiva o producte de sumes
 - Producte dels maxitermes de la funció.
 - Pertanyen a la funció els maxitermes corresponents a les valoracions per a les quals la funció val 0.

[Ilista numerada dels maxitermes de la funció)

llista de variables de la funció

b	а	f	maxiterme	núm.
0	0 1	0	b + <u>a</u> b + a	0
1	0	0	b + a	2
1	1	1	Ђ + a	3

Forma canònica
$$f = \prod_{b,a} (0,2) = (b+a) \cdot (\overline{b}+a)$$
 Expressió algebraica equivalent

Formes canòniques. Interès

FCO

- Expressió única i compacta d'una funció lògica.
- Primera aproximació a la síntesi de circuits a partir d'una taula de veritat:

b	а	f	b N
0 0 1 1	0 1 0 1	0 1 0 1	$f = \sum_{b, a} (1, 3) = \overline{b} \cdot a + b \cdot a$

 Qualsevol funció lògica pot implementar-se per mitjà d'un circuit de nivell ≤ 3.

Formes canòniques. Entrades indiferents FCO

- Formes canòniques per a funcions amb entrades indiferents
 - Aquestes combinacions s'agrupen per separat en sumatoris o productoris del conjunt buit Φ.

	а	pe	pd	id
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
2 3 4 5 6	0	1	1	X
4	1	0	0	1
5	1	0	1	1
	1	1	0	1
7	1	1	1	X

$$id = \sum_{a, pe, pd} (1, 4, 5, 6) + \sum_{\phi} (3, 7)$$

$$id = \prod_{a, pe, pd} (0, 2) \bullet \prod_{\phi} (3, 7)$$

Simplificar una funció

- Consisteix a trobar una expressió algebraica equivalent a la de partida, però de menor grandària (menys termes, termes amb menys variables).
- L'objectiu n'és reduir al màxim el circuit amb què s'implementa una funció lògica. ≡

Metodologia

- Algebraica. Aplicació d'axiomes i propietats de l'àlgebra de Boole
 - Element complementari, element neutre, distributiva i associativa
- Gràfica. Mapes de Karnaugh

Simplificació per Karnaugh

Mapa de Karnaugh

- Representació matricial d'una taula de veritat.
- Una cel·la del mapa de Karnaugh representa una fila de la taula de veritat.
- En cada cel·la es col·loca el valor d'una eixida de la funció.
- La disposició espacial de les cel·les és tal que els termes adjacents de la funció lògica estan en cel·les adjacents.

- Dos termes es diuen adjacents si les valoracions en difereixen en el valor d'una sola variable.
- Les vores del mapa de Karnaugh han de considerar-se com adjacents.

Simplificació per Karnaugh (ii)

FCO

 Mapes per a funcions de 2, 3 i 4 variables variables de major pes

número de cel·la / terme $(2_{10} \Rightarrow b=1, a=0)$

numeració de cel·les en codi Grey

cel·les adjacents
a la cel·la 13

cel·les adjacents

a la cel·la 10

ba 00 01 11 10 00 0 4 12 8 01 1 5 13 9 01 3 7 15 11 10 2 6 14 10

DISCA

Simplificació per Karnaugh (iii)

FCO

- Mètode de simplificació
 - Cal agrupar totes les cel·les amb el mateix valor, en un o més grups.
 - Cada grup ha de contenir un nombre de cel·les adjacents potència de 2.
 - Cal fer els grups tan grans com siga possible.
 - El nombre de grups ha de ser mínim.

Una cel·la pot estar en un grup o en més d'un.

Simplificació per uns. Mètode

FCO

- Cal agrupar les cel·les de valor 1.
- Cada grup representa un terme producte (no un miniterme, ja que no apareixen totes les variables de la funció). Les variables a 0 apareixen complementades.
- Un grup de 2^k cel·les elimina k variables del terme resultant, i per tant aquest tindrà n-k variables.
- En cada grup s'eliminen les variables que canvien de valor d'unes cel·les a altres.

Simplificació per uns. Fonament

 Cada cel·la a 1 representa un miniterme que pertany a la funció:

 La funció sense simplificar inclouria tots els minitermes que hi pertanyen:

$$f = \sum_{c,b,a} (1,2,6) = \overline{c} \cdot \overline{b} \cdot a + \overline{c} \cdot b \cdot \overline{a} + c \cdot b \cdot \overline{a}$$

Simplificació per uns. Fonament (ii)

FCO

 Els grups de cel·les adjacents detecten minitermes amb un factor comú:

La suma n'és simplificable. Algebraicament seria:

ASSOCIATIVA DISTRIBUTIVA ELEM. COMPLEM. ELEM. NEUTRE
$$\overline{c} \cdot b \cdot \overline{a} + c \cdot b \cdot \overline{a} = \overline{c} \cdot (b \cdot \overline{a}) + c \cdot (b \cdot \overline{a}) = (\overline{c} + c) \cdot (b \cdot \overline{a}) = 1 \cdot (b \cdot \overline{a}) = b \cdot \overline{a}$$

– Karnaugh obté el mateix resultat:

Cel·la 2 (cba=010)
Cel·la 6 (cba=110)

$$c = 0/1$$
, s'elimina
 $b = 1$, s'inclou
 $a = 0$, es complementa

Simplificació per uns. Exemples

FCO

Exemples

Simplificació per uns. Exemples (ii)

FCO

• Exemples (cont.)

do ba	² 00)	(<u>) 1</u>	11		10
00	1	0		1 4	1	2	8
01	1	1		1 5	1	3	9
11	1	3		7	1	5	11
10	1	2		6	1	4	10

- Cal agrupar les cel·les de valor zero.
- Cada grup representa un terme suma (no un maxiterme, ja que no apareixen totes les variables de la funció). Les variables de valor 1 apareixen complementades.
- Un grup de 2^k cel·les elimina k variables del terme resultant, i per tant aquest tindrà n-k variables.
- En cada grup s'eliminen les variables que canvien de valor d'unes cel·les a altres.

Simplificació per zeros (ii)

FCO

Exemples

$$f = (\overline{d} + c) \cdot (\overline{c} + \overline{b})$$

ba do	00	01	11	10
00	0	4	12	0 °
01	0	5	13	0 9
11	0	7	15	0 ¹¹
10	0	6	14	0 ¹⁰

ba 00	OO 0	01	11	10
01	1	5	013	0 9
11	03	0 7	0,2	11
10	0 ²	0 6	014	0 0

do oa	00	01	11	10)
00	0	4	12	0	8
01	1	0 5	0 ¹³	0	9
11	3	0 7	015	0	1
10	2	6	14	0	0

Simplificació. Entrades indiferents

FCO

Les cel·les amb "x" es prenen com si tingueren valor 1 o valor 0, cadascuna com més convinga, per maximitzar la simplificació

 $f = \sum_{d,c,b,a} (7,11,13,14,15) + \sum_{d} (1,3,5,6,10,12) =$ simplificació. b 0 Χ 0 d,c,b,aΧ ba^{dc}00 Χ 01 10 Χ 00 0 0 01 Χ 11 11 X 10 "per uns" "per zeros"

Simplificació. Entrades indiferents (ii)

FCO

Errors comuns:

Prendre totes les "x" per 0 o per 1.

Fer grups amb "x" innecessaris.

Recursos d'aprenentatge

- Poliformat, secció "Recursos"
 - Exercicis sense solució.
 - Solucions als exercicis.
 - Entrenador de Karnaugh.
 - Exàmens d'anys anteriors.
- Poliformat, secció "Lessons"
 - Mòdul 2: Principios de diseño digital.
 - » Taules de veritat.
 - » Portes lògiques.

Fonaments de computadors

TEMA 2. PRINCIPIS DEL DISSENY DIGITAL