Global properties of SMEFT and HEFT based on 2008, 08597 with T. Cohen, N. Craig and X. Lu, 2001.00017 with N. Craig, M. Jiang, Y-y. Li Dave Sutherland INFN, Sezione di Trieste EPS HEP 2021, 28th July 2021

12020 MSCA COFUNE G.A. 754496= 0.74, λ_{1999}

Consider the (simplified) EFT of the SM scalar sector

We observe four scalar degrees of freedom in high energy collisions: the Higgs boson and the three longitudinal components of the W^+ , W^- and Z. What field theory should we use to parameterise their interactions?

On first principles, what is the difference between scalar sectors of:

- **SMEFT**: built about the electroweak preserving vacuum, out of fields $\vec{\phi}$ that linearly realise electroweak symmetry, and
- ▶ **HEFT**: built about our low energy vacuum, out of fields h, $\vec{\pi}$ that don't?

Are **SMEFT** and **HEFT** just field redefinitions of each other?

Use (field redefinition invariant) geometric properties

(Alonso, Jenkins, and Manohar 2016)

Dynamics encoded by a metric and potential.

$$\mathcal{L} = rac{1}{2} g_{lphaeta}(\phi) \partial^{\mu}\phi^{lpha}\partial_{\mu}\phi^{eta} - V(\phi)$$

HEFT is an expansion about our vacuum.

SMEFT is an expansion about the electroweak preserving vacuum.

A HEFT is poorly described by SMEFT when sufficient violence is done to the manifold between us and the EW preserving vacuum.

When is a HEFT not a SMEFT?

1) When turning off the Higgs vev gives massless BSM particles (Falkowski and Rattazzi 2019)

Extend the scalar sector with an EW singlet

$$\mathcal{L}_{\text{UV}} = \left| \partial H \right|^2 + \frac{1}{2} \left(\partial S \right)^2 - \left(-\mu_H^2 \left| H \right|^2 + \lambda_H \left| H \right|^4 + \frac{1}{2} \left(m^2 + \kappa \left| H \right|^2 \right) S^2 + \frac{1}{4} \lambda_S S^4 \right)$$

Match at tree-level: sub in the solution $S^{\rm c}$ to the EOM, assume $m^2, \kappa \leq 0$.

$$\frac{\delta S_{\text{UV}}}{\delta S} = (\partial^2 + m^2 + \kappa |H|^2 + \lambda_S S^2) S = 0 \implies S^{\text{c}} = \sqrt{-\frac{m^2 + \kappa |H|^2}{\lambda_S}} + O(\partial^2)$$

$$\mathcal{L}_{\mathsf{EFT}} = |\partial H|^2 - \frac{\kappa^2 \left(\partial_{\mu} |H|^2 \right)^2}{4\lambda_S \left(m^2 + \kappa |H|^2 \right)} - \left(-\mu_H^2 |H|^2 + \lambda_H |H|^4 - \frac{\left(m^2 + \kappa |H|^2 \right)^2}{4\lambda_S} \right) + \mathcal{O}(\partial^4)$$

The lagrangian is non-analytic at H = 0 when $m^2 = 0$.

When is a HEFT not a SMEFT?

2) When there are extra sources of EWSB, e.g., a triplet

O(2) sym. axis

$$\mathcal{L}_{\mathsf{UV}} = \left|\partial H\right|^2 + \frac{1}{2} \left(\partial \Phi\right)^2$$

$$-\left(-\mu_{H}^{2}|H|^{2}+\lambda_{H}|H|^{4}+\frac{1}{2}m^{2}\Phi^{2}-\frac{1}{2}\mu H^{\dagger}\sigma^{a}H\Phi_{a}+\kappa|H|^{2}\Phi^{2}+\frac{1}{4}\lambda_{\Phi}\Phi^{4}\right)$$

Reparameterise as radial (r,f) and angular modes (π^a,eta^i)

$$H = \frac{1}{\sqrt{2}} r \exp\left(i\frac{\pi^a}{v}\sigma^a\right) \begin{pmatrix} 0\\1 \end{pmatrix}; \quad \Phi_a = \frac{2\,f}{r^2} \exp\left(\begin{matrix} 0 & 0 & \beta_1\\0 & 0 & \beta_2\\ -\beta_1 & -\beta_2 & 0 \end{matrix}\right) \begin{pmatrix} H^\dagger\sigma^1H\\H^\dagger\sigma^2H\\H^\dagger\sigma^3H \end{pmatrix}$$
 to integrate out at tree-level (sub. in EOM solutions of f and β)

$$\frac{\partial V}{\partial \beta^{i}} = 0 \implies \beta^{i} = 0; \frac{\partial V}{\partial f} \Big|_{\beta^{i} = 0} = -\frac{1}{4} \mu r^{2} + (m^{2} + \kappa r^{2}) f + \lambda_{\Phi} f^{3} = 0$$

$$\mathcal{L}_{\mathsf{EFT}} = \frac{1}{2} \left[1 + (f_c')^2 + \frac{8f_c^2}{r^2} \right] (\partial r)^2 + \frac{1}{2} \left[\frac{r^2 + 4f_c^2}{v^2} \right] \left((\partial \pi_1)^2 + (\partial \pi_2)^2 \right) + \frac{1}{2} \left[\frac{r^2}{v^2} \right] (\partial \pi_3)^2$$

$$- V + O(\partial^4, \pi^4)$$

Need $f_c o 0$ as r o 0 for SMEFT

SMEFT, like the SM, is a chiral theory

Can write the lagrangian in terms of fields in irreps of Lorentz group $\approx SU(2)_L \times SU(2)_R$

$$\phi, \psi_{\alpha}, \bar{\psi}_{\dot{\alpha}}, F_{\alpha\beta}, \bar{F}_{\dot{\alpha}\dot{\beta}}, D_{\alpha\dot{\alpha}},$$

These excite massless particles of definite helicities

Leading to the familiar dimension 4 Lagrangian

$$\mathcal{L}_4 = -F^2 - \bar{F}^2 + i\bar{\psi}D\psi + (D\phi)^2 - \lambda\phi^4 - y\phi\psi\psi + \text{h.c.}$$

Dimension 4 tree-level amplitude map

(Cheung and Shen 2015)

In terms of the coordinates

- 1. n, number of external legs
- 2. $\sum h$, total helicity of external legs, with all particles' momenta outgoing

At
$$(n, \sum h) = (3, 1)$$
, $A(\phi\psi^+\psi^+)$, $A(\psi^+\psi^-V^+)$ $A(\phi\phi V^+)$, $A(V^+V^+V^-)$ At $(n, \sum h) = (4, 2)$, $A(V^+V^+\psi^+V^-)$ $A(V^+V^+\psi^+\psi^-)$ $A(V^+V^+\psi^+\phi)$ vanish at dim 4, leaving just $A(\psi^+\psi^+\psi^+\psi^+)$

A map of dimension 6 operators $\left| \begin{array}{ccc} c_{VV} = -\frac{1}{2} (\bullet \bullet \bullet Vv) \end{array} \right|^{\frac{y\psi}{y\psi}} \stackrel{M+y\psi}{\underset{lib}{\longrightarrow} M+y\psi} \stackrel{M+y\psi}{\underset{lib}{\longrightarrow} -lib}$ Classified by tree/loop-level generated (3.2)(UV lagrangian) Red: tree-level Blue: loop-level, renormalised by tree level Black: loop-level Gray: eliminable by EOMs

... plotted in terms of the number of legs n, and total helicity $\sum h$, of the associated contact interactions.

(Azatov, Contino, Machado, and Riva 2017): Many dim 6 operators, at tree level, do not interfere with SM, e.g. $\mathcal{A}(V^+\psi^+\psi^+\phi)$.

(Cheung and Shen 2015): Many operators do not renormalise others at one loop, e.g., $\phi^4D^2 \not\to F^2\phi^2$.

Many one-loop dimension 6 amplitudes vanish exactly

${f Non-Abelian}$						Abelian								
		(4,0)			(4, 2)			(4,0)				(4,2)		
		$-\Lambda - \Lambda + \Lambda + \Lambda$	$- \dot{\eta}_+ \dot{\eta} \Lambda_+ \Lambda$	$\phi\phi\Lambda_+\Lambda$	$\phi \phi \phi_+ A$	$-\Lambda + \Lambda + \Lambda + \Lambda$	$-\psi^+\psi^+\psi^-$		$-\Lambda$ - Λ + Λ + Λ	$-\phi_+\phi\Lambda_+\Lambda$	$\phi\phi\Lambda_+\Lambda$	$\phi \phi \phi_+ A$	$-\Lambda + \Lambda + \Lambda + \Lambda$	$V^+V^+\psi^+\psi^-$
	$\psi^2 \bar{\psi}^2$	A ×	0	A ×	> 0*	A ×	R	$\psi^2 \bar{\psi}^2$	×	0	A ×	2 0*	N ×	<i>A</i>
(4,0)	$\phi^4 D^2$	×	×	0	×	×	n ×	$\phi^{4}D^{2}$	×	×	0	×	×	×
	$\phi^2\psi\bar{\psi}D$	×	0	0	0	×	R	$\phi^2\psi\bar{\psi}D$	×	0	0	0	×	0
(4, 2)	$F\psi^2\phi$	×	R	R	R	×	0	$F\psi^2\phi$	×	R	R	R	×	0
	$F^2\phi^2$	R	0	R	R	0*	0*	$F^2\phi^2$	R	0	R	R	0	0
	ψ^4	×	0	×	0	×	0	ψ^4	×	0	×	0	×	0
(4, -2)	$\bar{F}\bar{\psi}^2\phi$	×	R	R	R	×	0	$\bar{F}\bar{\psi}^2\phi$	×	R	R	R	×	0
	$\bar{F}^2\phi^2$	R	0	R	R	0	0	$\bar{F}^2\phi^2$	R	0	R	R	0	0
	$ar{\psi}^4$	×	0	×	R	×	0	$ar{\psi}^4$	×	0	×	R	×	0

[Key: \times =No diagram, 0 = zero, R = rational (non-zero)];

See also (Jiang, Shu, Xiao, and Zheng 2021) for an explanation in terms of angular momentum selection rules.

A map of dimension 8 operators

Summary

2008.08597: Using a geometric picture, we argue that UV theories containing

- particles getting most of their mass from electroweak symmetry breaking;
- 2. extra sources of electroweak symmetry breaking, are in principle not amenable to a SMEFT description.

2001.00017: SMEFT operators have a particular pattern in helicity amplitudes (in the high energy limit). Many contributions vanish exactly at one-loop!

Bibliography I

- Alonso, Rodrigo, Elizabeth E. Jenkins, and Aneesh V. Manohar (2016). "Geometry of the Scalar Sector". In: JHEP 08, p. 101. DOI: 10.1007/JHEP08(2016)101. arXiv: 1605.03602 [hep-ph].
- Azatov, Aleksandr et al. (2017). "Helicity selection rules and noninterference for BSM amplitudes". In: *Phys. Rev.* D95.6, p. 065014. DOI: 10.1103/PhysRevD.95.065014. arXiv: 1607.05236 [hep-ph].
- Cheung, Clifford and Chia-Hsien Shen (2015). "Nonrenormalization Theorems without Supersymmetry". In: *Phys. Rev. Lett.* 115.7, p. 071601. DOI: 10.1103/PhysRevLett.115.071601. arXiv: 1505.01844 [hep-ph].
- Falkowski, Adam and Riccardo Rattazzi (2019). "Which EFT". In: JHEP 10, p. 255. DOI: 10.1007/JHEP10(2019)255. arXiv: 1902.05936 [hep-ph].

Bibliography II

Jiang, Minyuan et al. (2021). "Partial Wave Amplitude Basis and Selection Rules in Effective Field Theories". In: *Phys. Rev. Lett.* 126.1, p. 011601. DOI: 10.1103/PhysRevLett.126.011601. arXiv: 2001.04481 [hep-ph].