Convex Invariants in Multipartite Tournaments

Darren B. Parker* Randy F. Westhoff[†]

May 13, 2025

MR Subject Classifications: 05C20, 06B99

Keywords: Convex sets, rank, Helly number, Radon number, multipartite tournaments

Abstract

In the study of convexity spaces, the most common convex invariants are based on notions of independence with respect to taking convex hulls. In [15], H-independence, R-independence, and convex independence were studied to prove results about the Helly number, Radon number, and rank of a clone-free multipartite tournament under 2-path convexity. In this paper, we extend many of these results to general multipartite tournaments. In particular, we determine conditions under which a convexly independent set of vertices is R- and/or H-independent. We also investigate conditions under which an R-independent set is H-independent.

1 Introduction

Convexity in graphs and digraphs has been investigated in many different contexts. In each case, the convex sets are defined in terms of a particular type of path. Let T be a graph or digraph and let \mathcal{P} be a set of paths in T. A subset $C \subseteq V(T)$ is \mathcal{P} -convex if, whenever $v, w \in C$, any path in \mathcal{P} that originates at v and ends at w can involve only vertices in C. The most commonly studied type of convexity is geodesic convexity, where \mathcal{P} is taken to be the set of geodesics in T (see [4], [3], [7] and [9]). Another type of convexity is induced path convexity, where \mathcal{P} is the set of all chordless paths (see [5]). Other types of convexity include path convexity (see [12] and [17]), and triangle path convexity (see [2]). In this paper we consider two-path convexity where \mathcal{P} is taken to be the set of all 2-paths in a digraph T. Two-path convexity was first studied in tournaments in [6], [20], and [11]. More recent results in multipartite tournaments are studied in [1], [13], [14], [16], and [15].

Several numerical invariants can be associated with a convex structure. Two of the most studied are the Helly and Radon numbers (see [10], [18], and [2]). These can each

^{*}Department of Mathematics, Grand Valley State University, Allendale, MI 49401-6495, parkerda@gvsu.edu, http://https://dbparker47.github.io/DB-Home-Page/Research

[†]Department of Mathematics & Computer Science, Bemidji State University, Bemidji, MN 56601, rwesthoff@bemidjistate.edu

be defined using notions of independence (see [19, Chap. 3]). For a subset $S \subseteq V(T)$, the convex hull of S, denoted C(S), is defined to be the smallest convex subset containing S. Let $F \subseteq V(T)$. We say F is H-independent if $\bigcap_{p \in F} C(F - \{p\}) = \emptyset$. The Helly number h(T) is the size of a largest H-independent set. A partition $F = A \cup B$ with $C(A) \cap C(B) \neq \emptyset$ is called a Radon partition of F, and F is R-independent if F does not have a Radon partition. The Radon number r(T) is the size of a largest R-independent set. Note that some authors define the Radon number to be the smallest number r such that every subset of size r has a Radon partition. This results in a Radon number one larger than the definition we use. It is well known that if F is H-independent then F is R-independent (see [19, p. 163]). This implies Levi's inequality, which is $h(T) \leq r(T)$.

One final type of independence we will consider is convex independence. We say F is convexly independent if, for each $p \in F$, we have $p \notin C(F - \{p\})$. The rank d(T) is the size of a largest convexly independent set. Rank provides an upper bound on the number of elements of a convex set that are needed to generate the convex set using convex hulls. In [8], D. Haglin and M. Wolf used the fact that the collection of two-path convex subsets in a tournament has rank 2 to construct an algorithm for computing the convex subsets of a given tournament. Note that any set that is H- or R-independent must also be convexly independent, so rank is an upper bound for both the Helly and Radon numbers.

We call $v, w \in V(T)$ clones if they have the same inset and outset, and we say T is clone-free if V(T) has no clones. Given $v \in V(T)$, we define $[v] = \{w \in V(T) : w \text{ and } v \text{ are clones}\}$. In [15], we studied convex independence in clone-free multipartite tournaments and applied our results to Helly and Radon numbers in this context. In this paper, we seek to generalize these results to general multipartite tournaments.

For T a digraph, we denote an arc (v, w) by $v \to w$ and say that v dominates w. If $U, W \subseteq V(T)$, then we write $U \to W$ to indicate that every vertex in U dominates every vertex in W. We call T a multipartite tournament if it is possible to partition V into partite sets $P_1, P_2, \ldots, P_k, k \geq 2$ such that there is precisely one arc between each pair of vertices in different partite sets and no arcs between vertices in the same partite set. In the case when k = 2 we will also call T a bipartite tournament. If $A, B \subseteq V(T)$, we denote the convex hull of $A \cup B$ by $A \vee B$. If $v, w \in V$, we drop the set notation and write $\{v\} \vee \{w\}$ as $v \vee w$. Finally, we denote by T^* the digraph with the same vertex set as T, and where (v, w) is an arc of T^* if and only if (w, v) is an arc of T.

2 Convex Independence in Multipartite Tournaments

In [14] and [15], we studied properties of convexly independent sets under two-path convexity in multipartite tournaments. In this section, we present some notational conventions, definitions, and results that will be used throughout this paper.

The following is from [14]. Let T be a multipartite tournament, and let $U \subseteq V(T)$ be a convexly independent set. Then U can have a nonempty intersection with at most two partite sets. Thus, T has partite sets P_0 and P_1 such that $A = U \cap P_0$ and $B = U \cap P_1$ with $U = A \cup B$. It follows that $A \to B$ or $B \to A$. Note that T and T^* have the same

convex subsets, so by relabelling P_0 and P_1 and reversing the arcs, if necessary, we can assume that $|A| \ge |B|$ and $A \to B$ if $B \ne \emptyset$.

Given $C \subseteq V(T)$, we define the following, which generalizes the analogous definition for clone-free multipartite tournaments in [14].

$$\begin{array}{l} D_C^{\rightarrow} = \{z \in V(T): z \rightarrow x \text{ for some } x \in C, y \rightarrow z \text{ for all } y \in C - [x]\} \\ D_C^{\leftarrow} = \{z \in V(T): x \rightarrow z \text{ for some } x \in C, z \rightarrow y \text{ for all } y \in C - [x]\} \end{array}$$

The following appears in [13].

Theorem 2.1. Let T be a clone-free multipartite tournament. Let A and B form a convexly independent set, with $A \to B$ when both sets are nonempty.

- 1. If $A = \{x_1, \ldots, x_m\}$, $m \geq 2$, then one can order the vertices in A such that there exist $u_2, \ldots, u_m \in D_A^{\rightarrow}$ (resp., in D_A^{\leftarrow} if $D_A^{\rightarrow} = \emptyset$) such that $u_i \to x_i$ (resp., $x_i \to u_i$).
- 2. If $|A| \geq 3$, then $D_A^{\rightarrow} \neq \emptyset$ if and only if $D_A^{\leftarrow} = \emptyset$, and D_A^{\rightarrow} and D_A^{\leftarrow} each lie in at most one partite set.
- 3. Suppose $A, B \neq \emptyset$. If $|A| \geq 2$, then D_A^{\rightarrow} is in the same partite set as B, and if $|B| \geq 2$, then D_B^{\leftarrow} is in the same partite set as A.
- 4. If $|A|, |B| \geq 2$, then $D_B^{\leftarrow} \to D_A^{\rightarrow}$.
- 5. Any vertex that distinguishes vertices in A must be in either D_A^{\rightarrow} or D_A^{\leftarrow} and any vertex that distinguishes vertices in B must be in D_B^{\leftarrow} or D_B^{\rightarrow} . If $A, B \neq \emptyset$ or if $|A| \geq 3$, then any vertex that distinguishes vertices in A must be in D_A^{\rightarrow} and any vertex that distinguishes vertices in B must be in D_B^{\leftarrow} .

When $|A| \geq 2$, Theorem 2.1(1) implies that one of D_A^{\rightarrow} or D_A^{\leftarrow} is nonempty, and when $|A| \geq 3$, Theorem 2.1(2) implies that the other is empty. In the case of $B = \emptyset$, we choose T or T^* so that $D_A^{\rightarrow} \neq \emptyset$ and let P_1 be the partite set containing D_A^{\rightarrow} . We will assume that this and the above notational conventions and choices have been made throughout the remainder of the paper.

Let $U = A \cup B$ be a convexly independent set. As noted in [15], C(U) can be constructed in two ways. The most natural method is using the sets $C_k(U)$, defined as follows. Let $C_0(U) = U$ and for $k \ge 1$, let

$$C_k(U) = C_{k-1}(U) \cup \{ w \in V(T) : x \to w \to y \text{ for some } x, y \in C_{k-1}(U) \}$$

Then $C(U) = \bigcup_{k=0}^{\infty} C_k(U)$. Another way to generate convex hulls is to define $\Delta_k(U)$ as follows. Let $\Delta_0(U) = A$, $\Delta_1(U) = B \cup C_1(A)$, and for $t \geq 2$, let $\Delta_t(U) = C_1(\Delta_{t-1}(U))$. As before, $C(U) = \bigcup_{i=0}^{\infty} \Delta_i(U)$.

The following generalizes the definition of D_A^{\rightarrow} and D_B^{\leftarrow} .

Definition 2.2. Let $U = A \cup B$ be a convexly independent set with $A \to B$. For each $x \in U$, define $\overline{D}_t(x)$ for $t \ge 0$ as follows. If $x \in A$, then $\overline{D}_0(x) = \{x\}$, and if $x \in B$, then $\overline{D}_0(x) = \emptyset$ and $\overline{D}_1(x) = \{x\}$. Otherwise, we have

$$\overline{D}_{2k}(x) = \{ v \in \Delta_{2k}(U) : u \to v \text{ for some } u \in \overline{D}_{2\ell-1}(x), \ell \le k \}$$

$$\overline{D}_{2k+1}(x) = \{ v \in \Delta_{2k+1}(U) : v \to u \text{ for some } u \in \overline{D}_{2\ell}(x), \ell \le k \}$$

We then define $D_t(x) = \bigcup_{k \le t} \overline{D}_k(x)$ and $D(x) = \bigcup_{t=0}^{\infty} D_t(x)$.

Notice that $\overline{D}_k(x) \subseteq \overline{D}_{k+2}(x)$ for $k \ge 1$ if $x \in A$, and for $k \ge 2$ if $x \in B$. Our main result from [15] was the following.

Theorem 2.3. Let T be a clone-free multipartite tournament, and let $U = A \cup B$ be convexly independent. Suppose $|U| \ge 4$, and let $x, y, z \in U$.

- 1. For all $k, \ell \geq 0$, $\overline{D}_{2k}(x) \subseteq P_0$ and $\overline{D}_{2\ell+1}(x) \subseteq P_1$.
- 2. If $x \neq y$, then $\overline{D}_{2k}(x) \to \overline{D}_{2\ell+1}(y)$ for all $k, \ell \geq 0$.
- 3. Let $u \in \overline{D}_r(x)$, $v \in \overline{D}_s(y)$, where $x \neq y$, r and s have the same parity. If $x, y \in A$ and $\overline{D}_1(x)$, $\overline{D}_1(y) \neq \emptyset$ or if $x, y \in B$ and $\overline{D}_2(x)$, $\overline{D}_2(y) \neq \emptyset$, then $x \vee y = u \vee v$.
- 4. Let $u \in \overline{D}_m(x)$, $v \in \overline{D}_n(y)$, and $w \in \overline{D}_p(z)$, where x, y, and z are distinct. Then $x \vee y \vee z = u \vee v \vee w$.

We will also make use of the following result from [15].

Lemma 2.4. Let T be a clone-free multipartite tournament, let $U = A \cup B$ be a convexly independent set, and let $z \in V - (P_0 \cup P_1)$.

- 1. If $|U| \ge 4$ and z distinguishes two vertices in V_U , then $(V_U \cap P_0) \to z \to (V_U \cap P_1)$.
- 2. If $|U| \geq 3$ and z distinguishes two vertices in $U \cup D_A^{\rightarrow}$, then $(A \cup D_B^{\leftarrow}) \rightarrow z \rightarrow (B \cup D_A^{\rightarrow})$.

3 Induced Clone-Free Digraphs

From our work in [14] and [15], we have a great deal of knowledge about convexly independent sets in clone-free multipartite tournaments. The following helps us make connections between general multipartite tournaments and clone-free multipartite tournaments.

Definition 3.1. Let T be a directed graph.

1. We define the *induced clone-free digraph* of T, denoted by T_f , to be the multipartite tournament with vertex set $\{[v]: v \in V(T)\}$ and arcs given by $[v] \to [w]$ if and only if $v \to w$ in T.

2. For $U \subseteq V(T)$, define $[U] = \{[v] : v \in U\}$.

The following is immediate.

Lemma 3.2. For each $S \subseteq V(T_f)$, there exists a subset $U \subseteq V(T)$ with [U] = S. One such set is $\{v \in V(T) : [v] \in S\}$. Moreover, U can be chosen so that no two vertices in U are clones.

Given a convexly independent set $U \subseteq V(T)$, we write $U = A \cup B$ where A and B have the properties discussed in the previous section. We now relate the convex subsets in T and T_f .

Lemma 3.3. Let T be a multipartite tournament, and let $U \subseteq V(T)$ be a convexly independent set. For all $k \geq 0$, we have

- 1. $[C_k(U)] = C_k([U]).$
- 2. $[\Delta_k(U)] = \Delta_k([U])$.
- 3. $[\overline{D}_k(x)] = \overline{D}_k([x])$ for all $x \in U$.
- 4. $[D_k(x)] = D_k([x])$ for all $x \in U$.

Proof. For (1), we induct on k. For k=0, we get $[C_0(U)]=[U]=C_0([U])$. For k>0, let $[x]\in [C_k(U)]$. Then x or some clone of x is in $C_k(U)$, so $u_1\to x\to u_2$ for some $u_1,u_2\in C_{k-1}(U)$. Thus, $[u_1]\to [x]\to [u_2]$. By induction, $[u_1],[u_2]\in [C_{k-1}(U)]=C_{k-1}([U])$, so we have $[x]\in C_k([U])$. Thus, $[C_k(U)]\subseteq C_k([U])$. The other direction is similar, and (2) follows similarly.

For (3), the case k=0 when $x\in A$ and the cases k=0,1 when $x\in B$ are trivial. For $k\geq 1$ when $x\in A$ or $k\geq 2$ when $x\in B$, let $[v]\in [\overline{D}_k(x)]$ with $v\in \overline{D}_k(x)$. If k is odd, there exist $u\in \overline{D}_{k-1}(x),\ w\in \Delta_{k-1}(U)$ with $w\to v\to u$. By induction and (2), $[u]\in \overline{D}_{k-1}([x])$ and $[w]\in \Delta_{k-1}([U])$. Thus, $[v]\in \overline{D}_k([x])$, and so $[\overline{D}_k(x)]\subseteq \overline{D}_k([x])$. Similarly, $\overline{D}_k([x])\subseteq [\overline{D}_k(x)]$, which gives us (3). The case when k is even is similar and part (4) follows immediately.

From this, we get the following.

Corollary 3.4. Let T be a multipartite tournament, and let $U \subseteq V(T)$ be a convexly independent set. Then

- 1. [C(U)] = C([U]).
- 2. [D(x)] = D([x]) for all $x \in U$.

We end this section with a lemma that describes when clones may be added to or taken away from a set without substantially affecting its convex hull.

Lemma 3.5. Let $U \subseteq V(T)$, $u \in U$, and $S \subseteq [u]$. Then

- 1. $C_k(U \cup S) = C_k(U) \cup S$ for all $k \ge 0$, and so $C(U \cup S) = C(U) \cup S$.
- 2. If $(U-S) \cap [u] \neq \emptyset$, then $C_k(U) S \subseteq C_k(U-S)$ for all $k \geq 0$, and so $C(U) S \subseteq C(U-S)$. Equality holds if U is convexly independent and $S \cap U \neq \emptyset$.

Proof. For (1), we induct on k. For k = 0, we have $C_0(U \cup S) = U \cup S = C_0(U) \cup S$. For $k \ge 1$, we clearly have $C_k(U) \cup S \subseteq C_k(U \cup S)$, so it suffices to show the other inclusion. Let $v \in C_k(U \cup S)$. If $v \in U \cup S$, then clearly $v \in C_k(U) \cup S$. Otherwise, there exist $w_1, w_2 \in C_{k-1}(U \cup S)$ with $w_1 \to v \to w_2$. By induction, $w_1, w_2 \in C_{k-1}(U) \cup S$.

If $w_1, w_2 \in C_{k-1}(U)$, then $v \in C_k(U)$. Since w_1 and w_2 are not clones, we cannot have $w_1, w_2 \in S$, so it suffices to prove the case where $w_1 \in C_{k-1}(U)$ and $w_2 \in S$. Since w_2 and u are clones, $w_1 \to v \to u$, and so $v \in C_k(U)$, proving the result.

For (2), let $v \in (U - S) \cap [u]$. We then have [v] = [u], and so we can apply (1) with v in place of u, U - S in place of U, and $U \cap S$ in place of S to get

$$C_k(U) = C_k((U - S) \cup (U \cap S)) = C_k(U - S) \cup (U \cap S)$$

and so $C_k(U) - S \subseteq C_k(U - S)$.

Now suppose U is convexly independent and $S \cap U \neq \emptyset$. Clearly, $C_k(U-S) \subseteq C_k(U)$, so it suffices to show $C_k(U-S) \cap S = \emptyset$ for all $k \geq 0$. If not, let k be minimal such that there exists $x \in C_k(U-S) \cap S$ for some k. If k = 0, then $x \in U-S$, which contradicts $x \in S$. If $k \geq 1$, then there exist $w_1, w_2 \in C_{k-1}(U-S)$ with $w_1 \to x \to w_2$. Since $x \in S \subseteq [u]$, we have $w_1 \to [u] \to w_2$, and so $[u] \subseteq C_k(U-S) \subseteq C(U-S)$. Since $S \cap U \neq \emptyset$, this contradicts the convex independence of U.

4 Convexly Independent Sets in General Multipartite Tournaments

In this section, we seek to use our understanding of convex independence in clone-free multipartite tournaments to help us understand convex independence in general multipartite tournaments. Throughout this section, let T be a (general) multipartite tournament. We begin by showing that convex independence of a set in T is preserved when it is passed down to T_f .

Lemma 4.1. Let $U \subseteq V(T)$ be a convexly independent set in T. Then [U] is a convexly independent set of T_f .

Proof. For contradiction, assume that U is convexly independent and [U] is convexly dependent. Then there exists $u \in U$ with $[u] \in C([U] - \{[u]\})$. Let $[u] \in C_k([U] - \{[u]\})$ with k minimal. Clearly, $k \geq 1$. Then there exist $[v], [w] \in C_{k-1}([U] - \{[u]\})$ with $[v] \to [u] \to [w]$. Since $[U] - \{[u]\} = [U - [u]]$ then $C_{k-1}([U] - \{[u]\}) = [C_{k-1}(U - [u])]$ by Lemma 3.3(1). Thus, we can assume that $v, w \in C_{k-1}(U - [u])$ so that $u \in C_k(U - [u]) \subseteq C(U - \{u\})$, violating the convex independence of U.

This helps give us a better characterization of convex subsets in T.

Lemma 4.2. Let $U \subseteq V(T)$. Then U is convexly independent in T if and only if [U] is convexly independent in T_f and for each $u \in U$ either

- 1. $[u] \cap U = \{u\}$ or
- 2. u does not distinguish any vertices in C(U).

Proof. First assume that U is convexly independent. By Lemma 4.1, [U] is also convexly independent. Now suppose for contradiction that $u' \in ([u] \cap U) - \{u\}$ and there exist $v, w \in C(U)$ with $v \to u \to w$. By Lemma 3.5(2), $v, w \in C(U) - \{u\} \subseteq C(U - \{u\})$. We get $u \in C(U - \{u\})$, which contradicts convex independence. Thus, u cannot distinguish vertices in C(U).

For the converse, suppose that U is convexly dependent. Then there exists $u \in U$ such that $u \in C(U - \{u\})$. We have $u \in C_k(U - \{u\})$ for some $k \geq 1$, and so there exist $v, w \in C_{k-1}(U - \{u\}) \subseteq C(U)$ with $v \to u \to w$. Thus, u distinguishes vertices in C(U), and so $[u] \cap U = \{u\}$. We then have $[U - \{u\}] = [U] - \{[u]\}$, and so $[u] \in [C(U - \{u\})] = C([U] - \{[u]\})$. This contradicts the convex independence of [U], and the result follows.

For the case $|[U]| \ge 3$, our next lemma helps us understand the convex independence of U without having to know C(U).

Lemma 4.3. Let $U \subseteq V(T)$ with $|[U]| \ge 3$, and assume that [U] is a convexly independent set in T_f . Then for all $u \in U$, u distinguishes two vertices in C(U) if and only if $D(u) \ne \{u\}$.

Proof. Let $u \in U$ and assume $v \to u \to w$ for some $v, w \in C(U)$. When $u \in A, v \in \Delta_k(U)$ for some $k \geq 1$ and $v \in \overline{D}_l(u)$ for some odd $l \geq k$. Similarly, if $u \in B$ then $w \in \Delta_k(U)$ for some $k \geq 2$ and $w \in \overline{D}_l(u)$ for some even $l \geq k$. Either way, $D(u) \neq \{u\}$.

Conversely, assume $D(u) \neq \{u\}$. Suppose $u \in A$ and let k be the smallest positive odd integer such that $\overline{D}_k(u) \neq \{u\}$, say $v \in \overline{D}_k(u) - \{u\}$. Then $v \to [u]$. If $B \neq \emptyset$ then there is a $w \in B$ such that $u \to w$. Thus $v \to u \to w$ so u distinguishes vertices in C(U). Now assume $B = \emptyset$, and note that $|[U]| \geq 3$, [U] is convexly independent in T_f , and T_f is clone-free. By Theorem 2.1(1) there is a $[w] \in D_A^{\to}$ such that $[u] \to [w]$. It follows that $v \to u \to w$, so again u distinguishes vertices in C(U). The argument when $u \in B$ is similar.

Putting together Lemmas 4.2 and 4.3, we get

Theorem 4.4. Let T be a multipartite tournament, with $U \subseteq V(T)$. If $|[U]| \ge 3$ then U is convexly independent in T if and only if

- 1. [U] is convexly independent in T_f and
- 2. For all $u \in U$, either $D(u) = \{u\}$ or $[u] \cap U = \{u\}$.

This result limits the vertices in a convexly independent set that can be clones.

Corollary 4.5. Let T be a multipartite tournament, and let $U \subseteq V(T)$ be a convexly independent set with $|[U]| \geq 3$. If P is a partite set with a nonempty intersection with U, then there exists at most one $[v] \in [P]$ with $|[v] \cap U| \geq 2$.

Proof. Let $[v], [w] \in [P]$ such that $[v] \cap U$ and $[w] \cap U$ each have at least two vertices. Since v and w are not clones, there exists $x \in V$ that distinguishes v and w (say $v \to x \to w$). But then either $w, x \in D(w)$ or $v, x \in D(v)$, which violates Theorem 4.4.

It also turns out that, in most cases, any $[u] \in V(T_f)$ with $|[u] \cap U| \geq 2$ does not contribute significantly to C(U).

Corollary 4.6. Let U be a convexly independent set with $|[A]| \ge 3$ or $|[U]| \ge 4$, and let $u \in U$ with $|[u] \cap U| \ge 2$. Then $C(U) - C(U - [u]) = [u] \cap U$.

Proof. The fact $[u] \cap U \subseteq C(U) - C(U - [u])$ follows directly from the convex independence of U, so we need only show that $C(U) - C(U - [u]) \subseteq [u] \cap U$. Suppose this is not the case, and let k be minimal such that there exists $y \in C_k(U)$ with $y \in C(U) - C(U - [u])$ and $y \notin [u] \cap U$. If k = 0, then $y \in C_0(U) = U$. Moreover, $y \notin C(U - [u])$ so we must have $y \in [u]$ and thus $y \in [u] \cap U$, a contradiction. Therefore, $k \geq 1$.

Since $k \geq 1$, there exist $z_1, z_2 \in C_{k-1}(U)$ with $z_1 \to y \to z_2$. Since $y \notin C(U - [u])$, we must have $z_1 \notin C(U - [u])$ or $z_2 \notin C(U - [u])$. By the minimality of k, this implies that $z_1 \in [u] \cap U$ or $z_2 \in [u] \cap U$. Without loss of generality, we can assume that $u = z_1$ or $u = z_2$. Suppose that $u = z_1$. Since $U = A \cup B$, we have $u \in A$ or $u \in B$. If $u \in B$, then $A \to B$ implies that $A \to u \to y$, and so u distinguishes two vertices in C(U). By Lemma 4.2, this implies that U is not convexly independent, a contradiction. Thus, $u \in A$. If $u = z_2$ and $u \in A$ a similar argument using $y \to U \to B \cup D_{\overrightarrow{A}}$ gives a contradiction. Thus if $u = z_2$ then $u \in B$. Furthermore, since we cannot have both $z_1, z_2 \in [u]$, then the minimality of k implies that one of z_1 and z_2 is in C(U - [u]).

We first consider the case where $|[A]| \geq 3$. Let $a_1, a_2, a_3 \in A$ be distinct and not clones of one another. By Lemma 4.2 and Theorem 2.1(1), without loss of generality, there exist $v_2, v_3 \in D_A^{\rightarrow}$ such that $v_2 \to a_2$ and $v_3 \to a_3$.

If $u = z_1$, then as discussed above, $u \in A$ and $z_2 \in C(U - [u])$. If there exists some $a \in A - [u]$ with $a \to y$, then $a \to y \to z_2$, and so $y \in C(U - [u])$, a contradiction. Thus, $y \to A - [u]$. Since $|[A]| \ge 3$, y dominates at least two vertices in A that are not clones, and so $y \notin D_A^{\to}$. By Theorem 2.1(5), we must have $y \to A$, and so $y \to u$, a contradiction since $u = z_1$.

If $u = z_2$, then we have $u \in B$ and $z_1 \in C(U - [u])$. If we have $y \to v_2$, we get $z_1 \to y \to v_2$. Since $z_1, v_2 \in C(U - [u])$, this would imply $y \in C(U - [u])$, a contradiction. Thus, $v_2 \to y$ and, similarly, $v_3 \to y$. Since $a_1 \to v_2 \to a_2$, we have $v_2 \in a_1 \lor a_2 \lor u$. Then $v_2 \to y \to u$, $a_2 \to v_3 \to y$, and $v_3 \to a_3 \to v_2$ imply that $a_3 \in a_1 \lor a_2 \lor u$. This contradicts the convex independence of U.

We now move on to the case where $|[A]| \leq 2$. In this case, we must have $|[U]| \geq 4$. Since also $|[A]| \geq |[B]|$, we must have |[A]| = |[B]| = 2. So let $a_1, a_2 \in A$ and $b_1, b_2 \in B$, no two of which are clones, and let $v \in D_A^{\rightarrow}$, $w \in D_B^{\leftarrow}$ such that $v \to a_2$ and $b_2 \to w$. Since $|[u] \cap U| \geq 2$, Theorem 4.4 implies that $D(u) = \{u\}$. Thus, $a_1 \in [u]$ or $b_1 \in [u]$.

If $u = z_1$, then $u \in A$ and $z_2 \in C(U - [u])$ as before. Thus, without loss of generality, $u = a_1$. If $a_2 \to y$, then $a_2 \to y \to z_2$, and so $y \in C(U - [u])$, a contradiction. Thus, $y \to a_2$. If $w \to y$, then we have $b_2 \to w \to b_1$ and $w \to y \to z_2$. Again, this implies $y \in C(U - [u])$, a contradiction. Thus, $y \to w$. But now $u \to y \to a_2$, $y \to w \to b_1$, and $a_2 \to b_2 \to w$. This implies $b_2 \in u \lor a_2 \lor b_1$, which contradicts the convex independence of U.

Finally, if $u = z_2$, then $u \in B$ and $z_1 \in C(U - [u])$, and so we can assume that $u = b_1$. If $y \to b_2$, then $z_1 \to y \to b_2$, and so $y \in C(U - [u])$, a contradiction. Similarly, if $y \to v$, then $a_1 \to v \to a_2$ and $z_1 \to y \to v$ imply that $y \in C(U - [u])$, a contradiction. Thus, $\{b_2, v\} \to y$. But now $b_2 \to y \to u$, $a_1 \to v \to y$, and $v \to a_2 \to b_2$, which implies that $a_2 \in a_1 \lor u \lor b_2$. This contradicts the convex independence of U and completes the proof.

For our main result, we generalize Theorem 2.3 to general multipartite tournaments.

Theorem 4.7. Let T be a multipartite tournament, and let $U = A \cup B$ be convexly independent. Suppose $|[U]| \ge 4$, and let $x, y, z \in U$.

- 1. For all $k, \ell \geq 0$, $\overline{D}_{2k}(x) \subseteq P_0$ and $\overline{D}_{2\ell+1}(x) \subseteq P_1$.
- 2. If $x \neq y$, then $\overline{D}_{2k}(x) \to \overline{D}_{2\ell+1}(y)$ for all $k, \ell \geq 0$.
- 3. Let $u \in \overline{D}_r(x)$, $v \in \overline{D}_s(y)$, where $[x] \neq [y]$, r and s have the same parity. If $x, y \in A$ and $\overline{D}_1(x)$, $\overline{D}_1(y) \neq \emptyset$ or if $x, y \in B$ and $\overline{D}_2(x)$, $\overline{D}_2(y) \neq \emptyset$, then $x \vee y = u \vee v$.
- 4. Let $u \in \overline{D}_m(x)$, $v \in \overline{D}_n(y)$, and $w \in \overline{D}_p(z)$, where [x], [y], and [z] are distinct. Then $x \vee y \vee z = u \vee v \vee w$.

Proof. By Theorem 2.3, the theorem holds for clone-free multipartite tournaments. In particular, it holds for T_f . Part (1) follows directly, and (2) follows in the case $[x] \neq [y]$. Moreover, (2) is vacuously true if [x] = [y], since Theorem 4.4(2) implies $D(x) = \{x\}$ and $D(y) = \{y\}$.

For (3), we assume $x, y \in A$, the case $x, y \in B$ being similar. Since (3) holds for T_f , we have $[x \vee y] = [u \vee v]$. We begin by showing that all clones of x and y are in $x \vee y$ and all clones of u and v are in $u \vee v$. Since $\overline{D}_1(x)$, $\overline{D}_1(y) \neq \emptyset$, let $w_1 \in \overline{D}_1(x)$ and $w_2 \in \overline{D}_1(y)$. By (2) and the definitions, we have $x \to w_2 \to y \to w_1 \to x$. Clearly, $x \vee y = w_1 \vee w_2$. Since x' and x are clones, we have $w_1 \to x' \to w_2$, and so $x' \in w_1 \vee w_2 = x \vee y$. Similarly, any clone of y is in $x \vee y$.

For $u \vee v$, let r and s be even, the odd case being similar. If $r, s \geq 2$, we have $u' \in \overline{D}_{r-1}(x)$, $v' \in \overline{D}_{s-1}(y)$ with $u' \to u$ and $v' \to v$. Since also $v \to u'$ and $u \to v'$, we have $u' \vee v' = u \vee v$, and the result follows as with $x \vee y$. The case u = x and v = y was proven in the previous paragraph. If u = x and $v \neq y$, let $q \in \overline{D}_1(x)$. We then have $x \to v' \to v \to q \to x$. As before, $x \vee v = q \vee v'$ and any clone of x or v is in $q \vee v'$. Thus all clones of x and y are in $x \vee y$ and all clones of y are in $y \vee y$. Since clones of elements of $y \vee y$ not in $y \vee y$ and be pulled into $y \vee y$ and similarly for $y \vee v$, this completes the proof. Part (4) follows similarly.

This leads to the following analogue of Corollary 3.8 in [15].

Corollary 4.8. Let T be a multipartite tournament and let $U = A \cup B$ be a convexly independent set with $|U| \ge 4$. Then for $x \in U$ the D(x) are pairwise disjoint.

Proof. It suffices to show that the $\overline{D}_t(x)$'s are pairwise disjoint for all $t \geq 0$. Suppose that $v \in \overline{D}_t(x) \cap \overline{D}_t(y)$, where $x, y \in U$ are distinct. We do the case of $v \in P_1$. The case $v \in P_0$ is similar. Clearly, we must have $t \geq 2$. Since $v \in \overline{D}_t(x)$, there exists $v' \in \overline{D}_{t-1}(x)$ with $v \to v'$. But since $v \in \overline{D}_t(y)$, Theorem 4.7(2) implies that $v' \to v$, a contradiction.

5 Helly, Radon, & Convex Independence

Our results in this section explore the relationship between H-, R-, and convex independence. This will help us determine when the Helly number, Radon number, and rank are equal.

The following helps us to determine how the addition of clones affects H-, R-, and convex independence.

Theorem 5.1. Let T be a multipartite tournament. Let $U \subseteq V(T)$, $u \in U$, and $S \subseteq [u]$. Suppose $|[u] \cap U| \geq 2$. If U is convexly independent (respectively R- or H-independent), then $U \cup S$ is also convexly independent (respectively R- or H-independent).

Proof. Without loss of generality, assume $[u] \cap U \subseteq S$. Assume U is convexly independent and let $x \in U \cup S$. By Lemma 3.5(1),

$$C((U \cup S) - \{x\}) = C([U - \{x\}] \cup (S - \{x\})) = C(U - \{x\}) \cup (S - \{x\})$$

Clearly, $x \notin S - \{x\}$. Moreover, $x \notin C(U - \{x\})$ by convex independence, and so $x \notin C((U \cup S) - \{x\})$, which makes $U \cup S$ convexly independent.

If U is R-independent, suppose we have a nontrivial partition $U \cup S = R_1 \cup R_2$. Let $U_i = U \cap R_i$ and $S_i = S \cap R_i$ for i = 1, 2. By Lemma 3.5(1), we have

$$C(R_1) \cap C(R_2) = (C(U_1) \cup S_1) \cap (C(U_2) \cup S_2)$$

= $(C(U_1) \cap C(U_2)) \cup (C(U_1) \cap S_2) \cup (C(U_2) \cap S_1) \cup (S_1 \cap S_2)$

Now $C(U_1) \cap C(U_2) = \emptyset$ since U is R-independent. Note that U is convexly independent, and so $U \cup S$ is also convexly independent. Therefore, $C(U_1) \cap S_2 = C(U_2) \cap S_1 = \emptyset$. Finally, $S_1 \cap S_2 \subseteq R_1 \cap R_2 = \emptyset$. Thus, $C(R_1) \cap C(R_2) = \emptyset$, and so there are no Radon partitions of $U \cup S$. This makes $U \cup S$ R-independent.

If U is H-independent, we seek to prove that $\bigcap_{x \in U \cup S} C((U \cup S) - \{x\}) = \emptyset$. As above

$$C((U \cup S) - \{x\}) = C((U - \{x\}) \cup (S - \{x\})) = C(U - \{x\}) \cup (S - \{x\})$$

for any $x \in U \cup S$. Since $\bigcap_{x \in U \cup S} C(U - \{x\}) \subseteq \bigcap_{x \in U} C(U - \{x\}) = \emptyset$ by the H-independence of U then $\bigcap_{x \in U \cup S} C((U \cup S) - \{x\}) = \bigcap_{x \in U \cup S} (C(U - \{x\}) \cup (S - \{x\})) \subseteq S$. Since U is H-independent, it is also convexly independent so $U \cup S$ is convexly independent. Thus if $x \in S$ then $x \notin C((U \cup S) - \{x\})$. Thus $\bigcap_{x \in U \cup S} C((U \cup S) - \{x\}) = \emptyset$ so $U \cup S$ is H-independent.

As in the previous section, let P_0 and P_1 be partite sets of T such that $U = A \cup B$ where $A = U \cap P_0$ and $B = U \cap P_1$. We also assume $|[A]| \ge |[B]|$, $A \to B$ and $D_A^{\to} \ne \emptyset$ when $B = \emptyset$. Our next result helps describe H-, R-, and convexly independent sets U when |[U]| is small.

Theorem 5.2. Let $U \subseteq V(T)$, $U = A \cup B$ with $|[A]| \ge |[B]|$, $A \to B$ when $B \ne \emptyset$.

- 1. If |[U]| = 1, then U is H-, R-, and convexly independent.
- 2. If |[U]| = 2, then U is H-independent if and only if U is R-independent if and only if either
 - (a) U is convexly independent, and $|[v] \cap U| \geq 2$ for at most one $[v] \in V(T_f)$ or
 - (b) No vertices distinguish any two vertices in U.
- 3. If |[U]| = 3, then U is H-independent if and only if U is convexly independent and [U] is H-independent.
- 4. If |[U]| = 3, then U is R-independent if and only if either
 - (a) U is convexly independent and |U| = 3,
 - (b) U is H-independent.

Proof. If |[U]| = 1, then C(S) = S for all $S \subseteq U$, and so (1) follows.

For (2), let $u, v \in U$ with $[U] = \{[u], [v]\}$. If U is R-independent, then U is convexly independent. Further, suppose $|[u] \cap U|, |[v] \cap U| \geq 2$. Let $R_1 = \{u, v\}, R_2 = U - \{u, v\}$. Then there exist $u' \in [u] \cap R_2$ and $v' \in [v] \cap R_2$. Any vertex y that distinguishes u and v will also distinguish u' and v', and so $y \in (u \vee v) \cap (u' \vee v') \subseteq C(R_1) \cap C(R_2)$, making $R_1 \cup R_2$ a Radon partition. Thus, R-independence implies that either $|[v] \cap U| \geq 2$ for at most one $[v] \in V(T_f)$ or no vertices distinguish any two vertices in U.

Now suppose U is convexly independent and $|[v] \cap U| \geq 2$ for at most one $[v] \in V(T_f)$. If $U = \{u, v\}$, then clearly U is H-independent. If $|[v] \cap U| \geq 2$, and $U - [v] = \{u\}$ then $C(U - \{u\}) = U \cap [v]$. By Lemma 3.5(2), for each $w \in U \cap [v]$ we have $C(U - \{w\}) = C(U) - \{w\}$, giving us

$$\bigcap_{w \in U} C(U - \{w\}) = (U \cap [v]) \cap \left(\bigcap_{w \in U \cap [v]} C(U) - \{w\}\right)$$
$$= (U \cap [v]) \cap (C(U) - (U \cap [v])) = \emptyset$$

This makes U H-independent. If no vertices distinguish u and v, then C(S) = S for each $S \subseteq U$, and so U is H-independent. Since H-independence implies R-independence, this completes the proof of (2).

For (3), Let $u, v, w \in U$ with $[U] = \{[u], [v], [w]\}$. Suppose U is H-independent. By Lemma 4.1 and the fact that H-independence implies convex independence, both

U and [U] are convexly independent. For contradiction, assume [U] is H-dependent, and let $[y] \in C(\{[u], [v]\}) \cap C(\{[u], [w]\}) \cap C(\{[v], [w]\})$. Let $[y] \in C_k(\{[u], [v]\})$, with k minimal. By convex independence of [U], we may assume $k \geq 1$. Then there exists $[z_1], [z_2] \in C_{k-1}(\{[u], [v]\}) = [C_{k-1}(\{u, v\})]$ with $[z_1] \to [y] \to [z_2]$. Without loss of generality, $z_1, z_2 \in C_{k-1}(\{u, v\})$, and so $[y] \subseteq C_k(\{u, v\}) \subseteq C(\{u, v\})$. Similarly, $[y] \subseteq C(\{u, w\}) \cap C(\{v, w\})$, violating the H-independence of U.

For the converse, suppose that U is convexly independent and [U] is H-independent. Consider first the case $[A] = \{[u], [v]\}$ with $[v] \cap A = \{v\}$ and $[B] = \{[w]\}$. Applying Lemma 2.4(2) to $[z] \in T_f$ we see that any vertex $z \notin P_0 \cup P_1$ that distinguishes vertices in U must satisfy $A \to z \to B \cup D_{\overrightarrow{A}}$. But this would imply $[z] \in C(\{[u], [v]\}) \cap C(\{[u], [w]\}) \cap C(\{[v], [w]\})$, making [U] H-dependent, a contradiction. Thus, no such z exists, and so $C([u] \cup [w]) = [u] \cup [w]$ and $C(U - \{v\}) = U - \{v\}$. By convex independence of U for each $x \in U - \{v\}$ we have $C(U - \{x\}) \subseteq C(U) - \{x\}$. Thus $\bigcap_{x \in U} C(U - \{x\}) = \emptyset$ making U H-independent.

Finally, suppose U=A. If |U|=3, then $U=\{u,v,w\}$. Since [U] is H-independent, we have $[C(\{u,v\})]\cap [C(\{u,w\})]\cap [C(\{v,w\})]=\emptyset$, and so $C(\{u,v\})\cap C(\{u,w\})\cap C(\{v,w\})=\emptyset$, making U H-independent. If $|U|\geq 4$, let $|[u]\cap U|\geq 2$, $[v]\cap U=\{v\}$ and $[w]\cap U=\{w\}$. Assume U is H-dependent, say $y\in\bigcap_{x\in U}C(U-\{x\})$. Applying Lemma 3.5(2)

$$\bigcap_{x \in U} C(U - \{x\}) = \left(\bigcap_{x \in [u] \cap U} C(U - \{x\})\right) \cap C(([u] \cap U) \cup \{v\}) \cap C(([u] \cap U) \cup \{w\})$$

$$= (C(U) - ([u] \cap U)) \cap C(([u] \cap U) \cup \{v\}) \cap C(([u] \cap U) \cup \{w\})$$

$$= (C(([u] \cap U) \cup \{v\})) \cap C(([u] \cap U) \cup \{w\})) - ([u] \cap U)$$

Then $[y] \in C(\{[u], [v]\}) \cap C(\{[u], [w]\})$. Since [U] is H-independent $[y] \notin C(\{[v], [w]\}) = [C(\{v, w\})]$ so $y \notin C(\{v, w\})$. By Corollary 4.6, $y \in C(U) - C(\{v, w\}) = [u] \cap U$ which is a contradiction. Thus U is H-independent.

For (4), let $u, v, w \in U$ with $[U] = \{[u], [v], [w]\}$. Assume U is R-independent. Suppose $|U| \geq 4$. Since U is clearly convexly independent, by (3), we need only show that [U] is H-independent in T_f . For contradiction, assume that [U] is H-dependent. Since T_f is clone-free, Theorem 4.8 in [15] implies that there exists $z \notin P_0 \cup P_1$ with $A \to z \to B \cup D_A^{\to}$. It suffices to produce a Radon partition of U.

By hypothesis, $|[A]| \geq 2$ so let $[u], [v] \subseteq A$. We can also assume that $D_A^{\rightarrow} \neq \emptyset$, and that there exists $q \in D_A^{\rightarrow}$ with $q \rightarrow v$. Since $|U| \geq 4$, it follows from Lemma 4.2 and Theorem 2.1 that either have $|[u] \cap U| \geq 2$ or $|[w] \cap U| \geq 2$ and $w \in B$.

In the case $|[u] \cap U| \geq 2$, let $u' \in U \cap ([u] - \{u\})$, let $R_1 = \{u, v\}$, and let $R_2 = U - R_1$. Since $u \to q \to v$ and $u \to z \to q$ we have $z \in C(\{u, v\}) = C(R_1)$. If $B \neq \emptyset$, we have $w \in B$. Then $u' \to z \to w$, and so $z \in C(\{u', w\}) \subseteq C(R_2)$. Similarly, if $B = \emptyset$, we have $w \in A$. The there is a $q' \in D_A^{\to}$ with $q' \to w$. Then $u' \to q' \to w$ and $u' \to z \to q'$, and so $z \in C(\{u', w\}) \subseteq C(R_2)$. Since $z \in C(R_1) \cap C(R_2)$, $R_1 \cup R_2$ is a Radon partition.

In the case $|[w] \cap U| \ge 2$ and $w \in B$, let $w' \in U \cap ([w] - \{w\})$, let $R_1 = \{u, w\}$,

and let $R_2 = U - R_1$. We have $u \to z \to w$ and $v \to z \to w'$, and so again we have $z \in C(R_1) \cap C(R_2)$.

For the converse, H-independence implies R-independence, so we are left with the case |U|=3. Let $U=R_1\cup R_2$ be a Radon partition. Without loss of generality, $|R_1|=1$, and so $C(R_1)=R_1$. But then $C(R_1)\cap C(R_2)\neq\emptyset$ implies $R_1\cap C(R_2)\neq\emptyset$, and so U is convexly dependent. This completes the proof.

We now consider bipartite tournaments. The following lemma follows similarly as Lemma 4.1 in [15].

Lemma 5.3. Let T be a bipartite tournament and let U be a convexly independent set with $|[U]| \ge 4$.

- 1. For each $t \geq 0$, $\Delta_t(U) = \bigcup_{x \in U} D_t(x)$.
- 2. $C(U) = \bigcup_{x \in U} D(x)$.

This gives us the following.

Theorem 5.4. Let T be a bipartite tournament and let U be a convexly independent set of T.

- 1. If $|[U]| \neq 2$, then U is H-independent.
- 2. If U has a nonempty intersection with two partite sets, then U is H-independent.
- 3. If there exists $u \in U$ such that $[u] \cap U = \{u\}$, then U is H-independent.
- 4. If |[U]| = 2, U is contained in a single partite set, and every vertex of U has a clone in U, then U is H-dependent.

Proof. We begin by proving (1). If |[U]| = 1, then U is H-independent by Theorem 5.2(1). If |[U]| = 3, Theorem 4.2 in [15] implies that [U] is H-independent in T_f , and so U is H-independent by Theorem 5.2(3). If $|[U]| \ge 4$, we have, by Lemma 5.3(2), that $C(U - \{x\}) \subseteq \bigcup_{y \in (U - \{x\})} D(y)$, and so $\bigcap_{x \in U} C(U - \{x\}) \subseteq \bigcap_{x \in U} (\bigcup_{y \neq x} D(y)) = \emptyset$ since the D(y)'s are pairwise disjoint by Corollary 4.8. Thus U is H-independent.

We now prove (2). By (1), we need only consider the case |[U]| = 2, so let $[U] = \{[u], [v]\}$ with u and v in distinct partite sets. Since T is bipartite, no vertex can distinguish u and v. But then Theorem 5.2(2b) implies U is H-independent.

Part (3) follows from Theorem 5.2(2a), and so it suffices to prove (4). Let U be a convexly independent set contained in a single partite set of T such that |[U]| = 2 and each vertex in U has a clone in U. This violates Theorem 5.2(2a) and (2b), and so U is H-dependent.

The next result follows directly.

Corollary 5.5. Let T be a bipartite tournament. Then $h(T) \neq d(T)$ if and only if for every maximum convexly independent set U we have |[U]| = 2, U is contained in a single partite set, and every vertex in U has a clone in U. Otherwise, we have h(T) = r(T) = d(T).

As in [15], let $V_U = \bigcup_{u \in U} D(u)$. By Theroem 4.7, if $|[U]| \geq 4$ the $V_U \subseteq P_0 \cup P_1$. Let T_U denote the bipartite tournament induced by V_U . The following result shows what happens when partite sets other than P_0 and P_1 are taken into account.

Theorem 5.6. Let T be a multipartite tournament and let U be a convexly independent subset of V with $|[U]| \ge 4$. The following are equivalent.

- 1. U is H-independent
- 2. No vertex in $V (P_0 \cup P_1)$ distinguishes two vertices in $U \cup D_A^{\rightarrow}$.
- 3. No vertex in $V (P_0 \cup P_1)$ distinguishes two vertices in V_U .
- 4. $C(U) = V_U$.
- 5. There exist $u, v, w \in U$ with [u], [v] and [w] distinct such that $\{u, v, w\}$ is H-independent.

Proof. Proving $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ follows as in Theorem 4.6 of [15], using Theorem 4.7. Theorem 5.5 and the fact that $|[U]| \geq 4$ imply that U is H-independent in T_U . If we assume $C(U) = V_U$, this implies that U is H-independent in T. This gives us both $(4) \Rightarrow (1)$ and $(4) \Rightarrow (5)$

We now prove (5) \Rightarrow (2). Suppose that $z \in V - (P_0 \cup P_1)$ distinguishes two vertices in $U \cup D_A^{\rightarrow}$. Lemma 2.4(1) implies $(A \cup D_B^{\leftarrow}) \to z \to (B \cup D_A^{\rightarrow})$. Let $u, v, w \in U$ with [u], [v] and [w] distinct. It follows that $z \in (u \vee v) \cap (u \vee w) \cap (v \vee w)$, and so $\{u, v, w\}$ is H-dependent, a contradiction. This proves the result.

Now we consider R-independence. It need not be equivalent to convex independence, but it is almost always equivalent to H-independence.

Theorem 5.7. Let T be a multipartite tournament and let $U = A \cup B$ be R-independent. Then U is H-dependent if and only if |[U]| = |U| = 3 and there exists a vertex z in a partite set disjoint from $U \cup D_A^{\rightarrow}$ with $A \rightarrow z \rightarrow (B \cup D_A^{\rightarrow})$.

Proof. Assume U is H-dependent. By Theorem 5.2(1) and (2), if $|[U]| \leq 2$, U is R-dependent, a contradiction. In the case $|[U]| \geq 4$, Theorem 5.6(3) and Theorem 2.4(1) imply that there exists $z \in V - (P_0 \cup P_1)$ such that $(V_U \cap P_0) \to z \to (V_U \cap P_1)$. Since $|A| \geq |B|$, we have $|[A]| \geq 2$, so let $u, v \in A$ be vertices that are not clones, and let $M = \{u, v\}$, R = U - M. Since $|[U]| \geq 4$, $|[R]| \geq 2$.

We show that $M \cup R$ is a Radon partition by proving that $z \in C(M) \cap C(R)$. In the case $B = \emptyset$, then D_M^{\rightarrow} , $D_R^{\rightarrow} \neq \emptyset$. Let $x \in D_M^{\rightarrow}$, $y \in D_R^{\rightarrow}$. Clearly, $x \in C(M)$ and $y \in C(R)$. We have $M \rightarrow z \rightarrow x$ and $R \rightarrow z \rightarrow y$, and so $z \in C(M) \cap C(R)$. In the case |[B]| = 1,

 $B \subseteq R$ and $R \cap A \neq \emptyset$. If $w \in R \cap A$, $b \in B$, then $w \to z \to b$ implies $z \in C(R)$. As before, $z \in C(M)$, and so $z \in C(M) \cap C(R)$. Finally, if $|[B]| \geq 2$, then we get $z \in C(M)$ using the fact $A \to z \to D_A^{\to}$, and we get $z \in C(R)$ using the fact that $D_B^{\leftarrow} \to z \to B$. Again, this gives us $z \in C(M) \cap C(R)$. Thus, U is R-dependent, a contradiction.

Therefore, we have |[U]| = 3. By Theorem 5.2(4) and the fact that U is H-dependent, we get |U| = 3. The rest follows as in Theorem 4.7 of [15].

This gives a description of when the Helly number and Radon number are not equal.

Corollary 5.8. Let T be a multipartite tournament. Then $h(T) \neq r(T)$ if and only if h(T) = 2 and r(T) = 3. Furthermore, in this case for every convexly independent set $U = A \cup B$ of order 3 with |[U]| = 3, there exists a $z \in V(T)$ such that $A \to z \to (B \cup D_A^{\to})$.

Proof. Let U be a maximum R-independent set and assume $h(T) \neq r(T)$. Then U is H-dependent so by Theorem 5.7, |U| = 3. Thus r(T) = 3. Since any pair of vertices is H-independent, $h(T) \geq 2$, and so h(T) = 2. The converse is trivial.

Since a convexly independent set with 3 elements is automatically R-independent the last part also follows from Theorem 5.7.

References

- [1] A. Abueida, W.S. Diestelkamp, S.P. Edwards, and D.B. Parker, *Determining properties of a multipartite tournament from its lattice of convex subsets*, Australas. J. Combin. **31** (2005), 217–230.
- [2] M. Changat and J. Mathew, On triangle path convexity in graphs, Discrete Math. **206** (1999), 91–95.
- [3] G. Chartrand, J.F. Fink, and P. Zhang, *Convexity in oriented graphs*, Discrete Applied Math. **116** (2002), 115–126.
- [4] G. Chartrand and P. Zhang, Convex sets in graphs, Cong. Numer. 136 (1999), 19–32.
- P. Duchet, Convexity in graphs II. Minimal path convexity, J. Combin. Theory, Ser. B 44 (1988), 307–316.
- [6] P. Erdös, E. Fried, A. Hajnal, and E.C. Milner, *Some remarks on simple tournaments*, Algebra Universalis **2** (1972), 238–245.
- [7] M.G. Everett and S.B. Seidman, *The hull number of a graph*, Discrete Math. **57** (1985), 217–223.
- [8] D.J. Haglin and M.J. Wolf, On convex subsets in tournaments, SIAM Journal on Discrete Mathematics 9 (1996), 63–70.
- [9] F. Harary and J. Nieminen, Convexity in graphs, J. Differential Geometry 16 (1981), 185–190.

- [10] R.E. Jamison and R. Nowakowski, A Helly theorem for convexity in graphs, Discrete Math. **51** (1984), 35–39.
- [11] J.W. Moon, Embedding tournaments in simple tournaments, Discrete Math. 2 (1972), 389–395.
- [12] J. Nieminen, On path- and geodesic-convexity in digraphs, Glasnik Matematicki 16 (1981), 193–197.
- [13] D.B. Parker, R.F. Westhoff, and M.J. Wolf, Two-path convexity in clone-free regular multipartite tournaments, Australas. J. Combin. 36 (2006), 177–196.
- [14] ______, On two-path convexity in multipartite tournaments, European J. Combin. **29** (2008), 641–651.
- [15] ______, Convex independence and the structure of clone-free multipartite tournaments, Discuss. Math. Graph Theory 29 (2009), 51–69.
- [16] _____, Two-path convexity and bipartite tournaments of small rank, Ars Combin. 97 (2010), 181–191.
- [17] J.L. Pfaltz, Convexity in directed graphs, J. Combinatorial Theory 10 (1971), 143–152.
- [18] N. Polat, A Helly theorem for geodesic convexity in strongly dismantlable graphs, Discrete Math. 140 (1995), 119–127.
- [19] M.L.J van de Vel, Theory of Convex Structures, North Holland, Amsterdam, 1993.
- [20] J.C. Varlet, *Convexity in tournaments*, Bull. Societe Royale des Sciences de Liege **45** (1976), 570–586.