

Introducción al Modelado de Datos

Microsoft SQL Server es un sistema de gestión de base de datos relacional desarrollado como un producto de software con la función principal de almacenar y recuperar datos según lo solicitado por otras aplicaciones.

Diseño Conceptual, Físico y Lógico

Diseño Conceptual

 Es una descripción de alto nivel de la estructura de base de datos.

Diseño Lógico

 Es una descripción gráfica de la base de datos en términos de las estructuras de datos o entidades (Modelo Entidad-Relación).

Diseño Físico

 Parte del diseño lógico y da como resultado una descripción de las entidades, flujo de información, tipos de datos, etc.

Tablas, Registros y Campos

Una **Tabla** es una colección de datos, organizados en filas y columnas, similar a una hoja de cálculo.

Un **Registro** es una fila de una base de datos, una agrupación horizontal de datos.

Un **Campo** es una columna, la cual detalla un conjunto de valores de un tipo particular.

Cliente	Fecha pedido	Total
Paul Henriot	1996-07-04	440.00
Karin Josephs	1996-07-05	1863.40
Mario Pontes	1996-07-08	1813.00
Mary Saveley	1996-07-08	670.80
Pascale Cartrain	1996-07-09	3730.00
Mario Pontes	1996-07-10	1444.80
Yang Wang	1996-07-11	625.20
Michael Holz	1996-07-12	2490.50
Paula Parente	1996-07-15	517.80
Carlos Hemández	1996-07-16	1119.90
Roland Mendel	1996-07-17	2018.60

Cliente	Fecha pedido	Total
Paul Henriot	1996-07-04	440.00
Karin Josephs	1996-07-05	1863.40
Mario Pontes	1996-07-08	1813.00
Mary Saveley	1996-07-08	670.80
Pascale Cartrain	1996-07-09	3730.00
Mario Pontes	1996-07-10	1444.80
Yang Wang	1996-07-11	625.20
Michael Holz	1996-07-12	2490.50
Paula Parente	1996-07-15	517.80
Carlos Hemández	1996-07-16	1119.90
Roland Mendel	1996-07-17	2018.60

Cliente	Fecha pedido	Total
Paul Henriot	1996-07-04	440.00
Karin Josephs	1996-07-05	1863.40
Mario Pontes	1996-07-08	1813.00
Mary Saveley	1996-07-08	670.80
Pascale Cartrain	1996-07-09	3730.00
Mario Pontes	1996-07-10	1444.80
Yang Wang	1996-07-11	625.20
Michael Holz	1996-07-12	2490.50
Paula Parente	1996-07-15	517.80
Carlos Hemández	1996-07-16	1119.90
Roland Mendel	1996-07-17	2018.60

Normalización

Divide tablas grandes en tablas más pequeñas y las enlaza usando relaciones.

1ra Forma Normal: Cada celda tiene un sólo valor y cada registro es único. (Reconocer las entidades del negocio)

2da Forma Normal: Debe estar en 1° N y una llave primaria (PK)

3ra Forma Normal: Debe estar en 2° N y sin dependencias funcionales transitivas

La Normalización es una técnica de diseño de base de datos que reduce la redundancia de los datos.

Nombre Completo	Dirección	Películas Alquiladas	Saludo
Janet Jones	First Street Plot No 4	Piratas del Caribe, Duelo de Titanes	Sra.
Robert Phil	3rt Street 34	Olvidando a Sarah Marshal, Hijas de papá	Sr.
Robert Phil	5th Avenue	Duelo de Titanes	Sr.

Figura 2 –1: Modelo de Datos antes de aplicar la 2FN

Normalización

ID Miembro	Nombre Completo	Dirección	Saludo
1	Janet Jones	First Street Plot No 4	Sra.
2	Robert Phil	3rt Street 34	Sr.
3	Robert Phil	5th Avenue	Sr.

Tabia 1

ID Miembro	Películas Alquiladas	
1	Piratas del Caribe	
1	Duelo de Titanes	
2	Olvidando a Sarah Marshal	
2	Hijas de papá	
3	Duelo de Titanes	

Tabla 2

Figura 2 –2: Modelo de datos después de aplicar la 2FN y antes de la 3FN

Normalización

ID Miembro	Nombre Completo	Dirección	Saludo
1	Janet Jones	First Street Plot No 4	2
2	Robert Phil	3rt Street 34	1
3	Robert Phil	5th Avenue	1

ID Miembro	Películas Alquiladas
1	Piratas del Caribe
1	Duelo de Titanes
2	Olvidando a Sarah Marshal
2	Hijas de papá
3	Duelo de Titanes

Tabla 1

ID Saludo	Saludo
1	Sr.
2	Sra.
3	Srta.
4	Dr.

Tabla 2

Tabla 3

Figura 2 –3: Modelo de datos después de aplicar la 3FN

Relación

Una relación es una asociación entre diferentes entidades. Es un vínculo que nos permite definir una dependencia, es decir, nos permite exigir que varias entidades compartan ciertos atributos de forma indispensable.

Ejemplo:

Si entramos en el contexto de una universidad donde se cuenta con la entidad "Estudiante" y la entidad "Libro", podríamos ver que entre estas existe una relación, como se muestra:

- ✓ Un estudiante solicita un libro.
- ✓ Un libro es prestado a un estudiante.

Cardinalidad

Llamada también multiplicidad. Indica la cantidad de elementos o instancias de una entidad A que se relacionan con una instancia de una Entidad B y viceversa

Cardinalidad

Llamada también multiplicidad. Indica la cantidad de elementos o instancias de una entidad A que se relacionan con una instancia de una Entidad B y viceversa

La Importancia de los Tipos de Datos

Los Tipos de Datos nos permiten almacenar los datos en un formato conocido y consistente

Creando Tablas desde SMSS

Primary Key & Foreign Key

Primary Key o Llave Primaria es un valor de columna usado para identificar un registro de manera única.

ClienteID	NombreCliente	Ciudad	Pais	Telefono
ALFKI	Maria Anders	Berlin	Germany	030-0074321
ANATR	Ana Trujillo	México D.F.	Mexico	(5) 555-4729
ANTON	Antonio Moreno	México D.F.	Mexico	(5) 555-3932
AROUT	Thomas Hardy	London	UK	(171) 555-7788
BERGS	Christina Berglund	Luleå	Sweden	0921-12 34 65
BLAUS	Hanna Moos	Mannheim	Germany	0621-08460
BLONP	Frédérique Citeaux	Strasbourg	France	88.60.15.31
BOLID	Mart in Sommer	Madrid	Spain	(91) 555 22 82
BONAP	Laurence Lebihan	Marseille	France	91.24.45.40
BOTTM	Elizabeth Lincoln	Tsawassen	Canada	(604) 555-4729
BSBEV	Victoria Ashworth	London	UK	(171) 555-1212

Foreign Key o Llave Foranea es aquella que referencia a la llave primaria de otra tabla, y que nos asegura que una tabla tenga registros correspondientes en otra.

PedidoID	Clienteld	FechPedido	Frete
10643	ALFKI	1997-08-25	29.46
10692	ALFKI	1997-10-03	61.02
10702	ALFKI	1997-10-13	23.94
10835	ALFKI	1998-01-15	69.53
10952	ALFKI	1998-03-16	40.42
11011	ALFKI	1998-04-09	1.21
10926	ANATR	1998-03-04	39.92
10759	ANATR	1997-11-28	11.99
10625	ANATR	1997-08-08	43.90
10308	ANATR	1996-09-18	1.61
10365	ANTON	1996-11-27	22.00

Implementando un Modelo Relacional

CREANDO TABLAS BÁSICAS

Atenciones

TicketID

Tickets

TicketID

Calendario

Fecha

Agencia

AgencialD

Proveedor

ProveedorID

Categoria

CategorialD

Tipo

TipoID

Item

ItemID

IDENTIFICANDO RELACIONES

AGREGANDO LOS FK

AGREGANDO CAMPOS ÚTILES

NORMALIZANDO MÁS EL MODELO

PARA NUESTRO EJEMPLO

