MATRICES

MATRICES TRIANGULAIRES, TRANSPOSÉE, TRACE, MATRICES SYMÉTRIQUES

Soient $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et $n \in \mathbb{N}^*$.

1 Matrices triangulaires, matrices diagonales

Soit $A=(a_{i,j})_{1\leq i,j\leq n}$ une matrice d'ordre n à coefficients dans $\mathbb K$. Alors

- 1. Si $\forall i > j, \ a_{i,j} = 0$, alors A est triangulaire supérieure.
- 2. Si $\forall i < j, \ a_{i,j} = 0$, alors A est triangulaire inférieure.
- 3. Si $\forall i \neq j, \ a_{i,j} = 0$, alors A est diagonale.

Théorème 1 Une matrice triangulaire $A \in M_n(\mathbb{K})$ est inversible si et seulement si ses éléments diagonaux sont tous non nuls.

2 Matrice transposée

Soit $A \in M_{n,p}(\mathbb{K})$ définie par

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,p} \end{pmatrix}.$$

Définition 1 On appelle matrice transposée de A la matrice $A^T \in M_{p,n}(\mathbb{K})$, obtenue en échangeant les lignes et les colonnes de A. Elle est définie par :

$$A^{T} = \begin{pmatrix} a_{1,1} & a_{2,1} & \dots & a_{n,p} \\ a_{1,2} & a_{2,2} & \dots & a_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,p} & a_{2,p} & \dots & a_{n,p} \end{pmatrix}$$

Proposition 1 (propriétés de la transposée) Soient $(A, B) \in (M_n(\mathbb{K}))^2$ et $(\lambda, \mu) \in \mathbb{K}^2$. Alors,

- 1. $(\lambda A + \mu B)^T = \lambda A^T + \mu B^T$.
- 2. $(AB)^T = B^T A^T$.
- 3. $(A^T)^T = A$.
- 4. Si A est inversible, alors A^T l'est aussi et on a $(A^T)^{-1} = (A^{-1})^T$.

1 IONISX

MATRICES

MATRICES TRIANGULAIRES, TRANSPOSÉE, TRACE, MATRICES SYMÉTRIQUES

3 Trace

Définition 2 Soit $A \in M_n(\mathbb{K})$. On définit la **trace** de la matrice A, notée tr(A) comme étant la somme des éléments diagonaux de A, c'est-à-dire

$$tr(A) = \sum_{k=1}^{n} a_{k,k}.$$

Théorème 2 Soient A et B deux matrices de $M_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Alors

- 1. tr(A + B) = tr(A) + tr(B).
- 2. $tr(\lambda A) = \lambda tr(A)$.
- 3. $tr(A^T) = tr(A)$.
- 4. tr(AB) = tr(BA).

4 Matrices symétriques et matrices antisymétriques

Définition 3 Soit $A \in M_n(\mathbb{K})$.

- 1. Si $A^T = A$, alors A est une matrice symétrique.
- 2. Si $A^T = -A$, alors A est une matrice antisymétrique.

Remarque 1 Si A est antisymétrique, alors les coefficients de la diagonale de A sont nuls.

<u>I</u>