Supervised Machine Learning

Classification, Regression, Time Series

Recap – Machine Learning Framework

- The input is converted to a vector x
- The output is a value indicated by y
- Depending on the nature of x and y, we define different types of learning

Categorization of ML Based on Learning

Supervised Learning

- Machine learning that are designed to learn by examples
- It is trained with labelled data
 - \triangleright Feature vectors: x_{ij} , i = 1..N, j = 1..M
 - \triangleright Output values: y_i , i = 1...N
- It maps the input to an output based on previous input-output pairs, through a mapping function, Y = f(X)
- Depending on the nature of y, we define:
 - 1. Classification
 - 2. Regression

Classification

- Classification predicts a discrete value/class label
- Some common classification algorithms include:
 - Decision Trees
 - Support Vector Machines
 - Naïve Bayes Classifier
- Classification is often used for tasks such as:
 - Spam filtering
 - Image classification
 - Text classification

Regression

- Regression is a type of machine learning that predicts a continuous value.
- Some common regression algorithms include:
 - Linear regression
 - Polynomial regression
- Regression is often used for tasks such as:
 - Predicting the price of a house
 - Predicting the number of sales
 - Predicting the risk of a disease

e.g., a house's [Area, Age] (x) vs. its Price(y)

y = f(x), interpolating (approximating) a function from examples

iHub-Data-FMML 2023

Time Series Model

- Time series is a sequence of observations often ordered in time
- Popular Problem: Given a sequence, predict future samples
- Applications:
 - Meteorology,
 - Finance,
 - Marketing, etc

Year	Sales (in Million)
1921	251
1931	279
1941	319
1951	261
1961	439
1971	348
1981	585

- We want a machine learning model to understand sequences, not samples
- Assume we have a sequence of measurements, and we want to take N sequential measurements and predict the next one

Time Series Prediction

iHub-Data-FMML 2023

Classification with Association by Similarity

X_{test}: [42.5, 39]

- \rightarrow Is the person diabetic or not?
- How do we compare a test sample to a classification?
- We find distance to feature vectors of known classes -Association by Similarity
- We assign label of that sample which is nearest to the test sample

BMI	Age	Diabetic
32.6	49	1
34.2	23	1
22.4	31	0
25.7	43	0
29.8	15	0
31	58	1
43.2	65	0
37.6	52	1

iHub-Data-FMML 2023

ВМІ	Age	Diabetic
32.6	49	1
34.2	23	1
22.4	31	0
25.7	43	0
29.8	15	0
31	58	1
43.2	65	0
37.6	52	1

Feature Vector	Label
<i>X</i> ₁ [32.6, 49]	1
X_2 [34.2, 23]	1
<i>X</i> ₃ [22.4, 31]	0
X_4 [25.7, 43]	0
<i>X</i> ₅ [29.8, 15]	0
<i>X</i> ₆ [31.0, 58]	1
X_7 [43.2, 65]	0
<i>X</i> ₈ [37.6, 52]	1

Feature Vector	Label
<i>X</i> ₁ [32.6, 49]	1
<i>X</i> ₂ [34.2, 23]	1
<i>X</i> ₃ [22.4, 31]	0
X_4 [25.7, 43]	0
<i>X</i> ₅ [29.8, 15]	0
<i>X</i> ₆ [31.0, 58]	1
<i>X</i> ₇ [43.2, 65]	0
<i>X</i> ₈ [37.6, 52]	1

Distance	
14.07	
18.02	
21.63	
17.27	
27.15	
22.21	
26.01	
13.89	

X_{test}: [42.5, 39]

$$\sqrt{(42.5 - 32.6)^2 + (39 - 49)^2}$$
= 14.07

✓ The test sample has diabetes

Visualization in Feature Space

Class Boundaries

The classifier effectively partitions the feature space into cells consisting of all points closer to a given training point (x₁,x₂) than to any other training points.

 All points in such a cell are thus labeled by the category of the training point —
 Voronoi tessellation of the space

Age

Class Boundaries – Partition of Feature Space

We now ignore boundaries between samples of the same class

 The decision boundary is found to be piece-wise linear

iHub-Data-FMML 2023

The Classification Algorithm

Problem

- Given:
 - A set of training *n* training samples: (x_i, y_i)
 - A set of m test samples: $(x_{test}, y_{test}), m \ll n$
- Find:
 - Label (x_{test}) using Similarity Measure and return y_{pred}
- Find accuracy of the prediction
 - Evaluation of a classifier

Evaluating a Classifier

■ In a 2-class classifier, what does an accuracy of 65% tell us about the classifier?

Supervised Machine Learning - Methodology

- Step 1: A set of training *n* training samples: (x_i, y_i) , i = 1, ..., n
- Step 2: We need to correctly predict labels of unseen m test sample: (x_{test}, y_{test}) , test = 1, ..., m. Predicted value = y_{pred}
- Step 3: We need to maximize the accuracy on unseen m test sample: (x_{test}, y_{test}) , test = 1, ..., m. $y_{pred} = y_{test}$
- Assumption: Test samples come from the same distribution as training samples
- Can we have situations where we do well on training samples but perform badly on test samples?
 Rote Learning / Memorization

Overfitting vs Generalization

We try to fit the data with different models in various orders of complexity

Which of the above model will perform best on the unseen test data?

ML Based on Training-Testing Data

Take care to not leak information from Test Data into the Model with repeated testing
iHub-Data-FMML 2023

ML Based on Training - Validation - Testing Data

- The validation model is repeatedly used during development
- The test data is used once for the final prediction

