weak form (i.e.; we replace stable by weakly stable and 'lim' by 'weak-lim'). The proofs require only some obvious modifications.

If A has a compact resolvent or if A is the generator of a bounded holomorphic semigroup, then weak stability implies stability. In general, this is no longer true; e.g., the translation semigroup on $L^2(\mathbb{R})$ is weakly uniformly stable but not stable (see also B-IV,Ex.1.2).

2. STABILITY: INHOMOGENEOUS CASE

Using the results of the first section, we now investigate the long term behavior of the solutions of the inhomogeneous initial value problem

(2.1)
$$\dot{u}(t) = Au(t) + F(t)$$
, $u(0) = f$

where A is the generator of a strongly continuous semigroup on a Banach space E and F(·) is a locally integrable function from \mathbb{R}_+ into E called forcing term. A function u(·) is called a (strong) solution of (2.1) if u(·) : \mathbb{R}_+ \rightarrow D(A) , u(·) \in C¹(\mathbb{R}_+ ,E) and (2.1) is satisfied for $t \ge 0$.

The assumption that A is the generator of a semigroup $(T(t))_{t \geq 0}$ yields the uniqueness of the solution of (2.1). If $u(\cdot)$ is a solution of (2.1), then the function v(s) := T(t-s)u(s), $0 \leq s \leq t$, is differentiable and v'(s) = T(t-s)F(s). But $F(\cdot)$ is locally integrable, and by $\int_0^t T(t-s)F(s) \, ds = v(t) - v(0) = u(t) - T(t)f$ we see that the solution u(t) of (2.1) is given by

(2.2)
$$u(t) = T(t)f + \int_{0}^{t} T(t-s)F(s) ds$$
.

Example. Let $(T(t))_{t \geq 0}$ be not eventually differentiable. Then there exists $g \in E$ such that $t \to T(t)g$ is not differentiable on $(0,\infty)$. The initial value problem $\dot{u}(t) = Au(t) + T(t)g$, u(0) = 0 has no (strong) solution $u(\cdot)$ because otherwise

$$u(t) = \int_0^t T(t-s)T(s)g ds = tT(t)g$$

has to be differentiable on \mathbb{R}_+ .

Whenever the expression (2.2) makes sense we call it a <u>generalized</u> (or <u>mild</u>) <u>solution</u> of (2.1). If $F(\cdot)$ is continuous and $f \in D(A)$, then the generalized solution of (2.1) is a strong solution if and only if $v(t) := \int_0^t T(t-s)F(s) \, ds$ is differentiable (see Pazy (1983) Chap.4,