Um dos exemplos mais fáceis de visualizar é a deformação elástica de uma mola helicoidal, cujo esquema é mostrado na figura 1. Nos sólidos em geral e, em especial, nas molas, a deformação está relacionada à força de restauração pela relação conhecida como Lei de Hooke:

$$F = -k x \tag{2}$$

onde F é a intensidade da força de restauração da mola, x é o quanto ela é alongada (ou comprimida) e k é a constante elástica da mola, que depende do material e da geometria com que ela é construída. O sinal negativo indica apenas que a direção da força de restauração é oposta à direção em que ocorre o alongamento ou a compressão da mola.

Figura 1. Sistema massa-mola sob a ação da força da gravidade.

Para verificar essa relação, aplicamos uma força bem definida em uma mola, suspendendo-se aí uma massa, como mostrado na figura 1. Quando o sistema massa-mola entra em equilíbrio, o peso da massa pendurada é igual à força de restauração da mola. Note que quanto maior for a constante elástica da mola, k, maior é a força de resistência com que a mola se opõe ao deslocamento da massa.

Neste terceiro experimento, utilizando a montagem esquematizada na figura 1, você deverá:

- Determinar a variação do comprimento Δx de duas molas helicoidais como função da força peso F_g exercida pelos pesos suspensos em cada mola.
- Verificar a Lei de Hooke e determinar as constantes elásticas k das molas, comparando-as,

Materiais

- Molas helicoidais ou dinamômetros
- Suportes para suspender as molas
- Balança
- Pesos
- Suporte para pesos
- Régua.

Procedimento Experimental

Neste experimento, iremos fazer uma montagem similar à apresentada na figura 1. Temos duas molas (ou dinamômetros) diferentes para medir suas constantes elásticas. Observe que em cada uma existe uma identificação com o valor máximo de força que pode ser aplicada à mesma. Certifique-se de que em suas medidas a força aplicada NUNCA seja maior que o valor máximo suportado, pois isso causaria uma deformação permanente na mola/dinamômetro.

- Monte o sistema conforme o esquema da figura 1, pendurando uma das molas no suporte fornecido. Use uma massa apropriada para causar uma pequena elongação inicial na mola entre 5 mm e 10 mm. Nota: Esta massa não-nula na posição inicial é necessária para descomprimir a mola e colocá-la na região de operação onde vale a Lei de Hooke.
- 2. Meça o valor da massa m_0 , que corresponde à soma das massas do peso inicial e do suporte de pesos.
- 3. Tomando dois pontos de referência, um no suporte e outro no corpo do dinamômetro, meça a posição da extremidade inferior da mola x_0 . SEMPRE USE UMA RÉGUA PARA ISSO.
- 4. Fazendo combinações com os pesos disponíveis, vá aumentando a massa suspensa na mola de modo a obter elongações sucessivas da ordem de 10 mm. <u>Lembre-se de usar sempre o mesmo ponto de referência da primeira medida para obter a posição da extremidade inferior da mola.</u> Para cada aumento, meça a massa suspensa (pesos+suporte) e a respectiva posição x_i da ponta mola.
- 5. Faça combinações de pesos para obter 4 valores DIFERENTES de força. Anote as massas e as respectivas posições nas tabelas 1 e 2.

Procedimento de análise de dados

1. Tomando como referência a posição x_0 , correspondente à elongação obtida pela massa m_0 inicial, e aplicando a condição de equilíbrio $F_R = 0$, obtém-se

$$|F_i| = |(m_i - m_0) g| = k(x_i - x_0) = k \Delta x_i$$
(3)

onde F_i é a força necessária para esticar a mola de x_0 até x_i .

- 2. Calcule os valores das forças $F_i = (m_i m_0)g$ e as respectivas elongações $\Delta x_i = x_i x_0$. Admita que o valor da aceleração da gravidade seja 9,8 m/s² (tomaremos este como valor exato).
- 3. Com os dados das tabelas 1 e 2, construa NO MESMO PAPEL MILIMETRADO UM ÚNICO GRÁFICO da força F_i (no eixo vertical) em função da elongação Δx_i (no eixo horizontal) para as duas molas. Determine graficamente os coeficientes angulares de cada reta. Considerando a relação do coeficiente angular com a constante elástica, determine esta última para cada mola, expressando o resultado com as unidades apropriadas. Mostre todas as contas (Questão 3).

QUESTÕES

QUESTÃO 1

Compare os resultados obtidos para as constantes k das duas molas (Questão 3). Classifique-as qualitativamente como "rígida" e "flexível" de acordo com o grau de rigidez de cada mola. Para qual das molas você esperaria um valor de k maior e por quê? Nesse sentido, os valores obtidos são coerentes com o que seria esperado? Explique.

Em folha a porte.

QUESTÃO 2

Os dados do gráfico formam linhas retas? O que isso pode dizer sobre o comportamento das molas?

Sim, a pointir disto verificamos a Lei de Hooke e que as molos possuem constantes elásticas para os deformações utilizadas.

QUESTÃO 3

Calcule os valores das constantes elásticas k das duas molas <u>pelo método gráfico</u>. Mostre explicitamente os cálculos com os valores utilizados para chegar ao resultado (se necessário, use o verso). Não se esqueça de indicar as unidades das constantes.

fara o cálculo das constantes elásticas, utilizamos pontos conhecidos da reta de aproximação, para o cálculo da constante elástica da molo 1 (K_1) , utilizamos o ponto $(2.70^2 m, 1.57N)e$ para mola 2 o ponto $(2.10^2 m, 0.76N)$. cálculos em folha a parte.

QUESTÃO 4 (para casa)

Considere duas molas idênticas, cada uma com constante elástica k, conectadas em paralelo (lado a lado) a uma mesma massa. Qual seria o valor esperado para a constante elástica total do sistema? Mostre os cálculos.

Rara uma associação de molas em para lelo temos:

Keq = K1 + K2 + K3 + ... + Kn

O valor esperado para a constante elástica do sistema é:

Req = 2 k; Demonstrações e cálculos em folha a parte.

Fenômenos Mecânicos Experimento 3 04/11/2016

Questão 1

A mola 1 qualificamos—a como "rígida" e a mola 2 qualificamos—a como "flexível". Como uma mola mais rígida necessita de uma força aplicada de maior intensidade em comparação a uma mola flexível, no experimento constatamos que a mola 1 é mais rígida que a mola 2, pois aplicando a mesma força — de origem gravitacional—a mola 1 deforma menos que a mola 2, portanto $k_1 > k_2$. Sem embargo, com base em dados experimentais, os resultados obtidos estão coe rentes com o esperado.

Questão 3.

constante elástica da mola 1 (K1)

$$K_1 = \frac{1.57}{2.10^{-2}} = 78.5 \text{ N.(m)}^{-1}$$

constante elástica da mola 2 (kz)

$$K_2 = \frac{0.76}{2.10^{-2}} = 38.0 \text{ N.(m)}^{-1}$$

Fenômeros Mecánicos

Experimento 3 04/11/2016

Questão 4.

Guando deformadas de X, a mola K' fica sujeita a uma farça F'=K'.X e a mola K'' a uma forca F''=K''X.

a mola equivalente, quanda submetida à merma força F, refre a merma deparmação X de modo que $F = K_{eq} \cdot X$.

(ome
$$F = F' + F'' = > k' \cdot x + k'' \cdot x = > k_{eq} = k' + k''$$
)

Semos que $k' = k'' = k \cdot x$
 $= > k_{eq} = 2k' = 2k \cdot x$
 cqp .

Tabela 1. Dados para cálculo da constante elástica da mola 1.

Mola 1: Rígida Flexível						
(<i>i</i>)	$x_i(\mathbf{m})$	m_i (g)	Δx_i (m)	F_i (N)		
0	1,02 . 10 m	205,77 9	0 m	ON		
1	1,65.10 m	261,61 9	6,3.10 m	0,55 N		
2	2,33.10 ⁻² m	311,619	1,31.10 ⁻² m	1,0 N		
3	2,89.10 ⁻² m	361,539	1,87.10 m	1,5 N		
4	3,51 . 10 m	411,42 g	2,49.10 m	2,0 N		

Tabela 2. Dados para cálculo da constante elástica da mola 2.

Mola 2: Rígida Flexível						
(<i>i</i>)	$x_i(m)$	m_i (g)	Δx_i (m)	F_i (N)		
0	3,05. 10°m	205,84 g	Om	ON		
1	4,36.10 ⁻² m	261,55 g	1,31.10 ⁻² m	0,55N		
2	5, fo 10 m	3M, 45 g	2,65.10 m	1,0 N		
3	6,94.10 m	361,329	3,92.10 ⁻² m	1,5 N		
4	8,15. 10 m	411,289	5,10 .10 M	2,0 N		

