

Deep Learning Image Classification In Fashion Data

Karlis Vassilis Toliopoulou Christianna

The Problem

- Classification of images in fashion data
- Why?
 - A potential business use case is an application which tries to find similar clothes, sorted by price and location
- How?
 - Logistic Regression (baseline). Just a simple experiment
 - o MLPs
 - CNNs
 - A Combination of MLPs and CNNs

The Data

- Public Data
 - Source: Zalando research / Available in Tensorflow
 - Easy to experience with different methodologies
- Data Info
 - o 70.000 greyscale fashion images
 - 10 classes
- Pre-processing workflow

Scale pixels [0,1]

Convert to categorical

Models 1/4

Logistic Regression

*SGD Optimizer (learning rate = 0.1)

*0 Hidden Layers

*Hidden Activation Function: Relu

*Output activation : Softmax

Result of Train Loss: 0.48322
Result of Validation Loss: 0.48870
Result of Test Loss: 0.51341
Result of Train accuracy: 0.83919
Result of Validation accuracy: 0.83500
Result of Test accuracy: 0.82610

1st MLP

- * activation function; relu-
- * hidden lavers: 1
- * nodes of hidden layer: 10
- * nodes of output layer: 10
- * Epochs: 100
- * Loss Function: categorical cross-entropy
- * optimizer:SGD

Result of Train Loss : 0.37926
Result of Validation Loss: 0.39969
Result of Test Loss : 0.43173
Result of Train accuracy : 0.86859
Result of Validation accuracy: 0.86133
Result of Test accuracy : 0.84890

2nd MLP

- * hidden layers (first layer: 256 nodes, second layer: 128 nodes)
- * 1 output layer(10 nodes)
- * Activation function: relu
- * Loss function -> categorical cross-entropy
- * optimizer:SGD

Result of Train Loss: 0.22440
Result of Validation Loss: 0.29488
Result of Test Loss: 0.33770
Result of Train accuracy : 0.92220
Result of Validation accuracy: 0.89383
Result Test accuracy : 0.87940

Models 2/4

3rd MLP with dropout

- *hidden layers 2 (first layer: 256 nodes, second layer: 128 nodes)
- * drop out: 0.2
- *Activation function: relu
- *Loss function -> categorical cross-entropy
- *optimizer:SGD

Result of Validation Loss: 0.29699
Result of Test Loss: 0.32354
Result of Train accuracy : 0.90167
Result of Validation accuracy: 0.89000
Result Test accuracy : 0.88480

4th MLP with early stopping

- *hidden layers 2 (256,128)
- *Activation function:relu
- *Loss function:categorical cross entropy
- *optimizer SGD
- *Running Epochs: 37

```
Result of Train Loss: 0.32304
Result of Validation Loss: 0.36131
Result of Test Loss: 0.37531
Result of Train accuracy : 0.885
```

Result of Train accuracy : 0.88587 Result of Validation accuracy: 0.86917 Result Test accuracy : 0.86590

1st CNN

- * Convolutional Layers: 2
- * Drop out: 0.2
- * Activation function: relu
- * Loss function -> categorical cross-entropy
- * Optimizer : Adam
- * Kernel Size: 2
- * Filter Dimension: 8

Result of Train loss: 0.23817 Result of Validation loss: 0.28810

Result of Test loss: 0.29276

Result of Train accuracy : 0.91424 Result of Validation accuracy: 0.89600 Result of Test accuracy : 0.89620

Models 3/4

2nd CNN

- * Convolutional Layers: 2
- * Drop out: 0.2
- * Activation function; relu
- * Loss function -> categorical cross-entropy
- * Optimizer : SGD
- * Kernel Size: 2
- * Filter Dimension: 8

Result of Train loss: 0.37726
Result of Validation loss: 0.40657
Result of Test loss: 0.41305
Result of Train accuracy: 0.86578
Result of Validation accuracy: 0.85483
Result of Test accuracy: 0.85510

3rd CNN

- * Convolutional Lavers: 2
- * Drop out: 0.2
- * Activation function: relu
- * Loss function -> categorical cross-entropy
- * Optimizer : SGD
- * Kernel Size: 2
- * Filter Dimension: 32

Train loss: 0.15882 Validation loss: 0.26580

Test loss: 0.26036

Train accuracy : 0.94346 Validation accuracy: 0.90933 Test accuracy : 0.91050

4th CNN

*Convolutional Layers: 2

*Drop out: 0.2

*Activation function: relu

*Loss function -> categorical cross-entropy

*Optimizer : Adam

*Kernel Size: 3 *Filter Dimension: 32

Train loss: 0.09153

Validation loss: 0.28996

Test loss: 0.26735

Train accuracy : 0.96739

Validation accuracy: 0.91550

Test accuracy : 0.91830

Models 4/4

5th CNN

*Convolutional Layers: 4

*Drop out: 0.2

*Activation function: relu

*Loss function -> categorical cross-entropy

*Optimizer : Adam *Kernel Size: 3

*Filter Dimension: 64

Train loss: 0.03208

Validation loss: 0.40059

Test loss: 0.39816

Train accuracy : 0.98815

Validation accuracy: 0.91883 Test accuracy: 0.91760

Results ½-MLPs

Model	Hidden Layer	Nodes of hidden layer	Early stopping	Dropout	Validation Loss	Validation Accuracy	Test Accuracy
1st MLP	1	10	no	no	42%	85%	84%
2nd MLP	2	256/128	no	no	33%	88%	88%
3rd MLP	2	256/128	no	yes/0.2	30%	89%	88%
4th MLP	2	256/128	yes	no	34%	88%	87%

COMMON CHARACTERISTICS ACROSS

- 100 epochs
- Cross entropy loss function
- Input relu
- Output softmax

Results 2/2 - CNN

Model	Filter Dimensio n	Conv.Layers	Kernel filter	Optimiz er	Validation Loss	Validation Accuracy	Test Accuracy	Dropout
1st CNN	8	2	2	Adam	29%	89%	89%	yes/ 0.2 - 30 epochs
2nd CNN	8	2	2	SGD	40%	85%	85%	yes/ 0.2 - 26 epochs
3rd CNN	32	2	2	Adam	26%	90%	91%	yes/0.2 - 22 epochs
4th CNN	32	2	3	Adam	28%	91%	91%	yes/0.2 - 27 epochs
5th CNN	64	4	3	Adam	39%	91%	91%	yes/0.2 - 16 epochs

COMMON CHARACTERISTICS ACROSS

- Cross entropy loss function
- Convolutional activation relu
- Output activation softmax

Challenges/Learnings

- Computational problems
- Coding experience
- Small differences in results -> experiencing with multiple parameters
- Theoretical background

Future Work - Conclusion

- A combination of CNN with MLP
- Experiments using momentum in various optimizers
- Early stopping in validation loss

