1 典型应用说明

1.1 I2C 连接方式

IP2368 可作为从设备, MCU 可通过 I2C 接口来读取或设置 IP2368 的电压、电流、功率等信息, IP2368I2C 连接方式如下:

1.2 I2C 注意事项

- IP2368 的 I2C 设备地址: 写为 0xEA, 读为 0xEB. 如需设为其他地址, 可以通过定制实现;
- IP2368 的 I2C 通讯电压是 3.3V, 如 MCU 端是 5V 电压, 则需要加电平转换芯片, 转到 3.3V;
- IP2368 INT 应用说明: IP2368 休眠时检测到 INT 为高就会唤醒, 唤醒之后, IP2368 主动拉高 INT, 100ms 之后, MCU 可进行 I2C 通信, 进行寄存器的读写操作; IP2368 在进入休眠之前, 会切换为输入高阻来检测 INT 状态, 如果为高电平, 则认为 MCU 不允许 IP2368 进入休眠, 如果为低电平, 则 IP2368 进入休眠; MCU 在检测到 INT 为低后, 16ms 内要停止访问 IC;
- IP2368 的 I2C 最高支持 250k 通信频率, 考虑时钟偏差, 建议 MCU 的 I2C 通信时钟用 100k-200k;
- 如果要修改 IP2368 某个寄存器的值,需要先将对应寄存器的值读出来,然后对需要修改的Bit 进行与或运算之后,把计算得到的值写入该寄存器中,其他未开放的寄存器不能随意修改。
 . 寄存器的默认值以读到的值为准,不同 IC 默认值可能不同;
- IP2368 I2C 通信是实时数据,在接收到请求之后,需要进中断进行数据准备,准备时间较长,所以MCU在 I2C 通讯时需要在发送地址后判断是否收到ACK 和增加50us 延时(参考I2C应用示例);建议单字节读取,100k的I2C 通信频率,每个字节之间增加1ms延时;
- 在 I2C 读取数据末尾, 读取完最后一个字节之后, 一定要给出 NACK 信号, 否则 IP2368 会认 为还在继续读取数据, 下一个时钟会继续输出下一个数据, 导致无法收到 STOP 信号, 最后读 取错误:
- Reserved 的寄存器不可随意写入数据,不可改变原有的值,否则会出现无法预期的结果.对 寄存器的操作必须按照读-修改-写来进行,只修改要用到的 bit,不能修改其他未用 bit 的值;
- 本文档只针对 IP2368 I2C COUT/IP2368 I2C NACT 的型号, 其他型号无效;

1.3 I2C 应用示例

在 IP2368 INT 引脚持续为高 100ms 之后, MCU 可以进行 I2C 通信, 可先初始化寄存器 (需要修改特殊功能时才修改寄存器, 如果不需要修改可以不写寄存器); 然后读取 IP2368 内部信息 (电量、充放电状态、按键状态); 最后进行特殊需求的操作 (如特殊指示灯、充放电管理、快充请求管理); MCU 检测到 INT 为低后, 16ms 内需要停止访问 I2C. 例如:

往 0x05 寄存器写入数据 0x5A

图 1 I2C Write 0x05

从 0x05 寄存器读回数据

图 2 I2C Read 0x05

实际从 0x31 寄存器读回数据

图 3 I2C Read 0x31

2 寄存器列表:

2.1 可读/写操作寄存器

[0x00] SYS_CTL0 (charge 使能寄存器)

Bit(s)	Name	Description	R/W	rst
7	En_LOADOTP	开机唤醒重新复位寄存器值使能	R/W	1
		0: 不重新复位寄存器值		
		1: 重新复位寄存器值		
		该 bit 不建议修改为 0, 如果需要修改, 软件需要定期 复位寄存器默认值, 如		
		VINOk VBUOk 信号触发后		
6	En_RESETMCU	MCU 重新复位寄存器	R/W	0
		写 1: 重新复位寄存器为默认值, 复位后该 bit 自动恢 复为 0		
5	En_INT_low	有异常的时候 INT 拉低 2MS, 提示 MCU 有异常发生	R/W	0
		1: Enable		
		0: disable		
4	En_Vbus_SinkDPdM	C 口输入 DM DP 快充使能	R/W	1
		1: Enable		
		0: disable		
3	En_Vbus_SinkPd	C 口输入 Pd 快充使能	R/W	1
		1: Enable		
		0: disable		
2	En_Vbus_SinkSCP	C 口输入 SCP 快充使能	R/W	1
		1: Enable		
		0: disable		
1	En_Vbus_Sinkctrl	C 口 MOS 输入使能 1: Enable, 打开 C 口 MOS 0: disable, 关闭 C 口 MOS	R/W	1
0	En_Charger	Charger 充电使能 (关闭后不可充电)	R/W	1
		1: Enable		
		0: disable		

[0x01] SYS_CTL1 (串联节数设置、电池类型、电流设置模式)

Bit(s)	Name	Description	R/W	rst
	Reserved	·		
3	En_BATmode_set	设置电池类型使能 (电池类型由寄存器 0x01[2])	R/W	0
		1: Enable, 允许设置电池类型		
		0: disable, 不允许设置电池类型		
2	Set_BATmode	电池类型设置	R/W	1
		0: 磷酸铁锂电池, 单节电池涓流转恒流电压 2.5V, 充 满电压 3.6V 左右		
		1: 普通锂电池, 单节电池涡流转恒流电压 3.0V, 充满 电压 4.2V 左右		
1	En_Isetmode_set	选择电流设置模式使能	R/W	0
		1: Enable, 允许选择电流设置模式		
		0: disable, 不允许选择电流设置模式		
0	Set_Isetmode	选择电流设置模式 (电流和功率寄存器 0x03 [6:0])	R/W	1
		0: Iset 设置的是电池端电流		
		1: Iset 设置的是输入端功率		

[0x02] SYS_CTL2 (Vset 充满电压设定)

Bit(s)	Name	Description	R/W	rst
7	En_Vset_set	设置充满电压使能	R/W	0
		1: Enable, 允许设置		
		0: disable, 不允许设		
		充满电压 置充满电压		
6:0	Vset	充满电压设置	R/W	0x0A
		磷酸铁锂电池模式时 (0x01[2]=0) , 单节电池充满电压 Vset=N*10+3500mV (最高		
		3.7V)		
		普通锂电池模式时 (0x01[2]=1) , 单节电池充满电压 Vset=N*10+4000mV (最高		
		4.4V)		

[0x03] SYS_CTL3 (Iset 充电功率或电流设置)

Bit(s)	Name	Description	R/W	rst
7	En_Iset_set	设置充电功率或电流使能	R/W	0
		1: Enable, 允许设置充电功率或电流		
		0: disable, 不允许设置充电功率或电流		
6:0	Iset	电池端电流或功率设置 当设置为电池端电流时 (0x01[0]=0) , 电池端电流	R/W	0x3C
		Iset=N*100mA (最大为 5A)		
		当设置为充电输入功率模式时 (0x01[0]=1) , 设置的 充电功率		
		Pmax=N*1W (充电最大为 100W)		

[0x04] SYS_CTL4 (电池容量设置)

Bit(s)	Name	Description	R/W	rst
7	En_FCAP_set	设置电池容量功能使能	R/W	0
		1: Enable, 允许设置电池容量		
		0: disable, 不允许设置电池容量		
6:0	Fcap	电池容量 FCAP= N*200mAh	R/W	0x28

[0x06] SYS_CTL6 (当前电量)

Bit(s)	Name	Description	R/W	rst
7:0	Cap_Now	当前电量 (可读写)	R/W	Х
		Cap Now=N		

[0x07] SYS_CTL7 (涓流充电电流、阈值和充电超时设置)

Bit(s)	Name	Description	R/W	rst
7:4	ltk	涓流充电电流设置 (<i>最大的涓流充电电流 400ma</i>)	R/W	0x04
		ltk=N*50mA		
3:2	Vtk	单节电池涓流转恒流充电电压阈值	R/W	10
		当设置为磷酸铁锂模式时 (0x01[2]=0)		
		00:2.3V		
		01:2.4V		
		10:2.5V		
		11:2.6V		
		当设置为普通锂电池模式时 (0x01[2]=1)		
		00:2.8V		
		01:2.9V		

		10:3.0V		
		11:3.1V		
1:0	Charge_OT	充电超时设置	R/W	0x02
		00: disable, 没有充电超时功能		
		01:24h		
		10:36h		
		11:48h		

V1.63

[0x08] SYS_CTL8 (停充电流和再充电阈值设置)

Bit(s)	Name	Description	R/W	rst
7:4	Istop	停充充电电流设置	R/W	0x02
		Istop=N*50mA		
3:2	Vrch	再充电阈值	R/W	0x02
		00: 充饱后没有再充电功能		
		01: VTRGT – N*0.05		
		10: VTRGT – N*0.1		
		11: VTRGT – N*0.2		
		VTRGT – 充饱电压		
		N-电池串联节数		
1:0	Reserved			

[0x09] SYS_CTL9 (待机使能和低电电压设置)

Bit(s)	Name	Description	R/W	rst
7	En_Standby	待机使能	R/W	1
		1: 使能		
		0: 不使能		
6	En_BATlow_Set	电池低电电压设置使能 (电池电压设置寄存器 0x0A)	R/W	0
		0: disable		
		1: Enable		
5	En_BAT_Low	关掉电池低电关机功能	R/W	0
		0: disable		
		1: Enable		
4:0	Reserved			

[0x0A] SYS_CTL10 (电池低电电压设置)

Bit(s)	Name	Description	R/W	rst
7:5	Set_BATlow	电池低电电压设置	R/W	0x02
		000: 锂电池 2.80V*N/铁锂电池 2.3V*N		
		001: 锂电池 2.90V*N/铁锂电池 2.4V*N		
		010: 锂电池 3.00V*N/铁锂电池 2.5V*N		
		011: 锂电池 3.10V*N/铁锂电池 2.6V*N		
		100: 锂电池 3.20V*N/铁锂电池 2.7V*N		
		N: 电池串联节数		
4:0	Reserved			

[0x0B] SYS_CTL11 (输出使能寄存器)

Bit(s)	Name	Description	R/W	rst
7	En_Dc_Dc_Output	放电输出使能 (关闭后不可输出)	R/W	1
		1: 使能		
		0: 不使能		
6	En_Vbus_Src_DP_dM	C 口输出 DP/DM 快充使能	R/W	1
		1: Enable		
		0: disable		
5	En_Vbus_SrcPd	C 口输出 Pd 快充使能	R/W	1
		1: Enable		
		0: disable		
4	En_Vbus_SrcSCP	C 口输出 SCP 快充使能	R/W	1
		1: Enable		
		0: disable		
3:0	Reserved			

[0x0C] SYS_CTL12 (输出最大功率选择寄存器)

Bit(s)	Name	Description	R/W	rst
7:5	Vbus_Src_Power	Vbus1 输出功率选择:	R/W	0x05
		000:20W		
		001:25W		
		010:30W		
		011:45W		
		100:60W		
		101:100W		
4:0	Reserved			

100W 需要加 Emark 识别电路.

[0x22] TypeC_CTL8 (TYPE-C 模式控制寄存器)

Bit(s)	Name	Description	R/W	rst
7:6	Vbus_Mode_Set	Vbus CC 模式选择	R/W	0
		00: UFP		
		01: DFP		
		11: DRP		
5:0	Reserved		-	

[0x23] TypeC_CTL9 (输出 Pdo 电流设置寄存器)

Bit(s)	Name	Description	R/W	rst
7	En_5VPdo_3A/2.4A	5VPdo 电流设置	R/W	1
		1:3A		ì
		0:2.4A		
6	En_Pps2Pdo_Iset	Pps2 Pdo 电流设置使能	R/W	0
		1: Enable		
		0: disable		ì
		*使能后输出功率、过流以设置的 Pdo 电流为准, 过 流为设置 Pdo 电流 1.1 倍		,
5	En_Pps1Pdo_Iset	Pps1 Pdo 电流设置使能	R/W	0
		1: Enable		ì
		0: disable		ì
		*使能后输出功率、过流以设置的 Pdo 电流为准, 过 流为设置 Pdo 电流 1.1 倍		

4	En_20VPdo_Iset	20VPdo 电流设置使能	R/W	0
		1: Enable		
		0: disable		
		*使能后输出功率、过流以设置的 Pdo 电流为准, 过 流为设置 Pdo 电流 1.1 倍		
3	En_15VPdo_Iset	15VPdo 电流设置使能	R/W	0
		1: Enable		
		0: disable		
		*使能后输出功率、过流以设置的 Pdo 电流为准, 过 流为设置 Pdo 电流 1.1 倍		
2	En_12VPdo_Iset	12VPdo 电流设置使能	R/W	0
		1: Enable		
		0: disable		
		*使能后输出功率、过流以设置的 Pdo 电流为准, 过 流为设置 Pdo 电流 1.1 倍		
1	En_9VPdo_Iset	9VPdo 电流设置使能	R/W	0
		1: Enable		
		0: disable		
		*使能后输出功率、过流以设置的 Pdo 电流为准, 过 流为设置 Pdo 电流 1.1 倍		
0	En_5VPdo_Iset	5VPdo 电流设置使能	R/W	0
		1: Enable		
		0: disable		

[0x24] TypeC_CTL10 (5VPdo 电流设置寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	5VPdo_Iset	5VPdo 电流设置	R/W	0x96
		5VPdo=20mA*N (默认 3A,Max=3A)		

[0x25] TypeC_CTL11 (9VPdo 电流设置寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	9VPdo_Iset	9VPdo 电流设置	R/W	0x96
		9VPdo=20mA*N (默认 3A,Max=3A)		

[0x26] TypeC_CTL12 (12VPdo 电流设置寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	12VPdo_Iset	12VPdo 电流设置	R/W	0x96
		12VPdo=20mA*N (默认 3A,Max=3A)		

[0x27] TypeC_CTL13 (15VPdo 电流设置寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	15VPdo_Iset	15VPdo 电流设置	R/W	0x96
		15VPdo=20mA*N (默认 3A,Max=3A)		

[0x28] TypeC_CTL14 (20VPdo 电流设置寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	20VPdo_Iset	20VPdo 电流设置	R/W	0xFA
		20VPdo=20mA*N		
		(默认 5A, 需要识别到 emark,Max=5A) 没有识别到 emark 为 3A		

[0x29] TypeC_CTL23 (Pps1 Pdo 电流设置寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	Pps1Pdo_Iset	Pps1 Pdo 电流设置	R/W	0x3C
		Pps1 Pdo=50mA*N		
		(默认 5A, 需要识别到 emark,Max=5A) 没有识别到 emark 为 3A		

[0x2A] TypeC_CTL24 (Pps2 Pdo 电流设置寄存器)

Bit(s)	Name	Description		rst
7:0	Pps2Pdo_Iset	Pps2 Pdo 电流设置	R/W	0x3C
		Pps2 Pdo=50mA*N		
		(默认 5A, 需要识别到 emark,Max=5A) 没有识别到 emark 为 3A		

[0x2B] TypeC_CTL17 (输出 Pdo 设置寄存器)

Bit(s)	Name	Description	R/W	rst
7	Reserved		R	R
6	En_Src_Pps2Pdo	Pps2 Pdo 使能	R/W	1
		1: Enable		
		0: disable		
		* disable 后没有 Pps2 Pdo		
	En_Src_Pps1Pdo	Pps1 Pdo 使能	R/W	1
	En_Src_Pps1Pdo	1: Enable		
		0: disable		
		* disable 后没有 Pps1 Pdo		
4	En_Src_20VPdo	20VPdo 使能	R/W	1
		1: Enable		
		0: disable		
		* disable 后没有 20V Pdo		
3	En_Src_15VPdo	15VPdo 使能	R/W	1
		1: Enable		
		0: disable		
		* disable 后没有 15V Pdo		
2	En_Src_12VPdo	12VPdo 使能	R/W	1
		1: Enable		
		0: disable		
		* disable 后没有 12V Pdo		
1	En_Src_9VPdo	9VPdo 使能	R/W	1
		1: Enable		
		0: disable		
		* disable 后没有 9V Pdo		
0	Reserved		R	R

2.2 只读状态指示寄存器

[0x30] SOC_CAP_DATA (电芯电量数据寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	Soc_Cap	电芯百分比电量数据 (%)	R	Х
		Soc Cap=N		

[0x31] STATE_CTL0(充电状态控制寄存器)

Bit(s)	Name	Description	R/W	rst
7:6	Reserved		R	Χ
5	CHG_En	充电标志位	R	Х
		1: 充电状态 (VbusOk 就算充电状态)		
		0: 非充电状态		
4	CHG_End	充满状态标志位	R	Χ
		1: 充电已充满		
		0: 充电未充满		
3	Output_En	放电状态标志位	R	Χ
		1: 放电状态且输出口已经打开,没有任何异常		
		0: 放电状态输出没有打开或者有放电异常		
2:0	Chg_state	Chg state	R	Х
		000: 待机		
		001: 涓流		
		010: 恒流充电		
		011: 恒压充电		
		100: 充电等待中 (包括未开启充电等情况)		
		101: 充满状态		
		110: 充电超时		

[0x32] STATE_CTL1(充电状态控制寄存器)

Bit(s)	Name	Description	R/W	rst
7:6	Chg_State	Chg state	R	Х
		00:5V 输入充电		
		01: 高压输入快充充电		
5:0	Reserved		R	Χ

[0x33] STATE_CTL2(输入 Pd 状态控制寄存器)

Bit(s)	Name	Description	R/W	rst
7	Vbus_Ok	Vbus Ok	R	Х
		1: Vbus 有电		
		0: Vbus 没电		
6	Vbus_Ov	Vbus Ov	R	Х
		1: Vbus 输入过压		
		0: Vbus 输入没有过压		1
5:3	Reserved			Χ
2:0	Chg_Vbus	充电电压	R	Х
		111:20V 充电		
		110:15V 充电		
		101:12V 充电		
		100:9V 充电		
		011:7V 充电		
		010:5V 充电		ı

[0x34] TypeC_STATE (系统状态指示寄存器)

Bit(s)	Name	Description	R/W	rst
7	Sink_Ok	TypeC Sink 输入连接标志位	R	Χ
		1:有效		
		o: 无效		
6	Src_Ok	TypeC Src 输出连接标志位	R	Χ
		1: 有效		
		o: 无效		
	Src_Pd_Ok	Src_Pd_Ok 输出连接标志位	R	Χ
	Src_Pd_Ok	1: 有效		
		o: 无效		
4	Sink_Pd_Ok	Sink Pd Ok 输入连接标志位	R	Χ
		1: 有效		
		o: 无效		
3	Vbus_Sink_Qc_Ok	输入快充有效标志位 Qc5V 和 Pd5V 不算快充 Ok	R	Χ
		1: 有效		
		o: 无效		
2	Vbus_Src_Qc_Ok	输出快充有效标志位 Qc5V 和 Pd5V 不算快充 Ok	R	Х
		1: 有效		
		o: 无效		
1:0	Reserved			

[0x35] MOS_STATE (输入 MOS 状态指示寄存器)

Bit(s)	Name	Description	R/W	rst
7	Reserved		R	Х
6	Vbus_Mos_State	Vbus 口输入 MOS 状态	R	Х
		0: 关闭状态		ı
		1: 开启状态		ı
5:0	Reserved		R	Χ

[0x38] STATE_CTL3 (系统过流指示寄存器)

Bit(s)	Name	Description	R/W	rst
7:6	Reserved		R	Χ
5	Vsys_Oc	Vsys 输出过流标志位, 需写 1 清 0	R	Χ
		1: Vsys 输出有触发过流信号		
		0: Vsys 输出没有触发过流信号		
		系统在 600mS 内连续检测到两次以上的过流状态就认为过流有效,并将此标志		
		位置 1, 外部主控读取此标志位即可判断是否有过流异常发生; 从过流状态发生		
		到系统休眠, 时间约 1.5s, 休眠后此标志位会维持为 1, 所以外部主控需要在此时		
		间内读取标志位并作出对应的处理,然后写1把标志位清0;如果需要判断过流		
		状态撤销,则需要把输出口重新打开(把寄存器 0x22[7]先写 0 再写 1),然后再读		
		取状态标志位.		
4		Vsys 输出短路标志位, 需写 1 清 0	R	Χ
		1: Vsys 输出有触发短路信号		
		0: Vsys 输出没有触发短路信号		

		系统在 600mS 内连续检测到两次以上的短路状态就认为短路有效,并将此标志		
		位置 1, 外部主控读取此标志位即可判断是否有短路异常发生; 从短路状态发生		
		到系统休眠,时间约 1.5s,休眠后此标志位会维持为 1,所以外部主控需要在此时		
		间内读取标志位并作出对应的处理,然后写1把标志位清0;如果需要判断短路		
		状态撤销,则需要把输出口重新打开(把寄存器 0x22[7]先写 0 再写 1),然后再读		
		取状态标志位.		
3:0	Reserved		R	

[0x50] BATVADC_DAT0 (VBAT 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	BATVADC[7:0]	BATVADC 数据的低 8bit	R	Χ
		VBATPIN 的电压		

[0x51] BATVADC_DAT1 (VBAT 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	BATVADC[15:8]	BATVADC 数据的高 8bit	R	Χ
		VBATPIN 的电压		1
		VBAT=BATVADC (mV)		

[0x52] VsysVADC_DAT0 (Vsys 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VsysVADC[7:0]	Vsys 电压数据的低 8bit VsysPIN 的电压	R	Х

[0x53] VsysVADC_DAT1 (Vsys 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VsysVADC[15:8]	Vsys 电压数据的高 8bit	R	Χ
		VsysPIN 的电压		
		Vsys= VsysVADC (mV)		

[0x54] IVbus_Sink_IADC_DAT0 (输入电流寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	IVbus_ADC[7:0]	充电输入电流数据的低 8bit	R	Χ
		Vbus 输入的电流		1

[0x55] IVbus_Sink_IADC_DAT1 (输入电流寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	IVbusADC[15:8]	充电输入电流数据的高 8bit	R	Χ
		Vbus 输入的电流		
		lin=IVbusADC(mA)		

充电时, 电流存放在 0X54 和 0x55 中. 0x31 寄存器 bit5 是充电标志位.

[0x56] IVbus_Src_IADC_DAT0 (输出电流寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	IVbus_ADC[7:0]	放电输出电流数据的低 8bit	R	Χ
		Vbus 输出的电流		

[0x57] IVbus_Src_IADC_DAT1 (输出电流寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	IVbusADC[15:8]	放电输出电流数据的高 8bit	R	Χ
		Vbus 输出的电流		
		lout=IVbusADC (mA)		

放电时, 电流存放在 0X56 和 0x57 中. 0x31 寄存器 bit3 是放电标志位.

[0x6E] IBATIADC_DAT0 (BAT 端电流寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	IBATIADC[7:0]	电芯端电流 IBATIADC 数据的低 8bit	R	

[0x6F] IBATIADC_DAT1 (BAT 端电流寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	IBATIADC[15:8]	电芯端电流 BATIADC 数据的高 8bit	R	Х
		IBAT= IBATIADC(mA)		

[0x70] ISYS_IADC_DAT0 (IVsys 端电流寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	ISYSIADC[7:0]	IVsys 端电流 VsysIADC 数据的低 8bit	R	Х

[0x71] IVsys_IADC_DAT1 (IVsys 端电流寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	IVsysIADC[15:8]	IVsys 端电流 VsysIADC 数据的高 8bit	R	Χ
		IVsys = VsysIADC(mA)		

[0x74] Vsys_POW_DAT0 (Vsys 端功率寄存器)

Bit	(s) Name	Description	R/W	rst
7	0 Vsys_POW_ADC[7:0]	Vsys 端功率 ADC 数据的低 8bit	R	Х

[0x75] Vsys_POW _DAT1 (Vsys 端功率寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	Vsys_POW_ADC[15:8]	Vsys 端功率 ADC 数据的中 8bit	R	Х

[0x76] Vsys_POW _DAT2 (Vsys 端功率寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	Vsys_POW_ADC[7:0]	Vsys 端功率 ADC 数据的高 8bit	R	Х
		Vsys_POW = Vsys_POW_ADC(mW)		

[0x77] INTC_IADC _DAT0 (NTC 输出电流寄存器)

Bit(s)	Name	Description	R/W	rst
7	NTC_IADC_DAT	0: 输出 20uA	R	Х
		1: 输出 80uA		
6:0	Reserved			X

[0x78] VGPIO0_NTC_DAT0 (VGPIO0_NTC_ADC 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO0_DAT0[7:0]	VGPIO0 ADC 数据的低 8bit	R	Х

[0x79] VGPIO0_NTC_DAT1 (VGPIO0_NTC_ADC 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO0_DAT1[15:8]	VGPIO0 ADC 数据的高 8bit	R	Χ
		VGPIO0 DAT= VGPIO0 ADC (mV)(0~3.3V)		

[0x7A] VGPIO1_Iset_DAT0 (VGPIO1_Iset_ADC 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO1_DAT0[7:0]	VGPIO1 ADC 数据的低 8bit	R	Χ

[0x7B] VGPIO1_Iset_DAT1 (VGPIO1_Iset_ADC 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO1_DAT1[15:8]	VGPIO1_ADC 数据的高 8bit	R	Χ
		VGPIO1 DAT= VGPIO1 ADC (mV)(0~3.3V)		

[0x7C] VGPIO2_Vset_DAT0 (VGPIO2_Vset_ADC 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO2_DAT0[7:0]	VGPIO2 ADC 数据的低 8bit	R	Χ

[0x7D] VGPIO2_Vset_DAT1 (VGPIO2_Vset_ADC 电压寄存器)

Bit(s)	Name	Name Description		rst
7:0	VGPIO2_DAT1[15:8]	High 8bit of VGPIO2 ADC data	R	Χ
		VGPIO2 DAT= VGPIO2 ADC (mV)(0~3.3V)		

[0x7E] VGPIO3_FCAP_DAT0 (VGPIO3_FCAP_ADC 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO3_DAT0[7:0]	VGPIO3 ADC 数据的低 8bit	R	Χ

[0x7F] VGPIO3_FCAP_DAT1 (VGPIO3_FCAP_ADC 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO3_DAT1[15:8]	VGPIO3 ADC 数据的高 8bit	R	Х
		VGPIO3_DAT= VGPIO3_ADC (mV)(0~3.3V)		

[0x80] VGPIO4_BATNUM_DAT0 (VGPIO4_BATNUM_ADC 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO4_DAT0[7:0]	VGPIO4_ADC 数据的低 8bit	R	Х

[0x81] VGPIO4_BATNUM_DAT1 (VGPIO4_BATNUM_ADC 电压寄存器)

Bit(s)	Name	Description	R/W	rst
7:0	VGPIO4_DAT0[15:8]	VGPIO4_ADC 数据的高 8bit	R	Х
		VGPIO3_DAT = VGPIO3_ADC (mV) ($0^3.3V$)		

3 版本/修订历史:

版本	日期	修订内容	拟制/修订人
V1.00	2021-10-25	初版释放	IT360
V1.60	2022-05-16	修改排版和说明	IT360
V1.61	2022-07-13	增加 VSYS 功率寄 存器	IT360
		高 8 位	IT360
V1.62	2022-09-13	修改系统过流指示 寄存	IT555
		器说明	
V1.63		 修改 I2C 应用示 例, 读 回数据不需 要延时	IT555