CS244 Theory of Computation Homework 3 Solution

Problem 1

The **Kolmogorov complexity** of a bit string b, $K_L(b)$, is the length of the shortest program in language L that outputs b and only b. Is $K_L(b)$ computable? Prove your answer.

Solution

 $K_L(b)$ is uncomputable.

Lemma. For each $n \in \mathbb{N}$, there exists a bit string b such that $K_L(b) > n$.

Proof. Assume for contradiction that for some $n \in \mathbb{N}$, all the bit strings b have $K_L(b) \leq n$. Then $1+2+4+\cdots+2^n=2^{n+1}-1$ programs can generate infinitely many bit strings. However, each program can generate at most one bit string.

Proof. We prove it for the Turing Machine language. It follows the same procedure for other languages. Assume for contradiction that $K_{\mathsf{TM}}(b)$ is computable. Then there is a TM M on input b, outputs $K_{\mathsf{TM}}(b)$. The following TM S outputs the bit string b with $K_{\mathsf{TM}}(b)$:

S:

- 1. Obtain via the recursion theorem, $\langle S \rangle$.
- 2. Go through each possible $b \in \{0,1\}^*$ in string order $(\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...)$ and run M on b to get $K_{\mathsf{TM}}(b)$. If $K_{\mathsf{TM}}(b) > |\langle S \rangle|$ (the length of S), output b and halt.

The TM S outputs b and only b, so $K_{\mathsf{TM}}(b) \leq |\langle S \rangle|$, which is a contradiction. Thus $K_{\mathsf{TM}}(b)$ is uncomputable.

Problem 2

Let $SHUFFLE = \{\langle w, x, y \rangle \mid w = a_1b_1 \dots a_kb_k \text{ for } k \geq 0 \text{ where } x = a_1a_2 \dots a_k \text{ and } y = b_1b_2 \dots b_k, \text{ each } a_i, b_i \in \Sigma^* \}.$

(a) Show that $SHUFFLE \in NP$.

Proof. Construct a polynomial-time verifier V:

V on input $\langle \langle w, x, y \rangle, \langle a_1, a_2, \dots, a_k, b_1, b_2, \dots, b_k \rangle \rangle$:

- 1. Test whether each $a_i, b_i \in \Sigma^*$.
- 2. Test whether $w = a_1 b_1 \dots a_k b_k$.
- 3. Test whether $x = a_1 a_2 \dots a_k$.
- 4. Test whether $y = b_1 b_2 \dots b_k$.
- 5. If all tests pass, accept. Otherwise, reject.

(b) Show that $SHUFFLE \in P$.

Proof. The polynomial time algorithm M deciding SHUFFLE using dynamic programming is as follows:

M on input $\langle w, x, y \rangle$, where $w = w_1 w_2 \dots w_r$, $x = x_1 x_2 \dots x_s$, $y = y_1 y_2 \dots y_t$:

- 1. If $r \neq s + t$, reject.
- 2. Assign $table(0,0) \leftarrow True$.
- 3. For i = 1 to s:
- 4. Assign $table(i,0) \leftarrow (table(i-1,0) \land (w_{i-1}=x_{i-1}))$.
- 5. For j = 1 to t:
- 6. Assign $table(0, j) \leftarrow (table(0, j 1) \land (w_{j-1} = y_{j-1}))$.
- 7. For i = 1 to s:
- 8. For j = 1 to t:
- 9. Assign $table(i, j) \leftarrow ((w_{i+j-1} = x_{i-1}) \wedge table(i-1, j)) \vee ((w_{i+j-1} = y_{i-1}) \wedge table(i, j-1)).$
- 10. If table(s-1, t-1) = True, accept; otherwise, reject.

The total running time of the algorithm is O(st), which is polynomial in the size of the input. Thus $SHUFFLE \in P$.

Problem 3

Let SET- $SPLITTING = \{\langle S, C \rangle \mid S \text{ is a finite set and } C = \{C_1, \ldots, C_k\} \text{ is a collection of subsets of } S, \text{ where the elements of } S \text{ can be colored red or blue so every } C_i \text{ has at least one red element and at least one blue element}. Show that <math>SET$ -SPLITTING is NP-complete.

Proof. First, we show that SET- $SPLITTING \in NP$. Construct a polynomial-time verifier V:

V on input $\langle \langle S, C \rangle, P \rangle$, where P is the coloring scheme:

- 1. Test whether each element of S is colored either red or blue by P.
- 2. Test whether each C_i in C has at least one red element and at least one blue element.
- 3. If both pass, accept; otherwise, reject."

Next, we show that $3SAT \leq_{\mathbf{P}} SET\text{-}SPLITTING$. Given a 3cnf-formula ϕ , where there are m variables x_1, x_2, \ldots, x_m , the reduction is as follows:

- 1. $S = \{x_1, x_2, \dots, x_m, \overline{x_1}, \overline{x_2}, \dots, \overline{x_m}, a\}$ (a is a new variable).
- 2. $C = \{\{x_1, \overline{x_1}\}, \{x_2, \overline{x_2}\}, \dots, \{x_m, \overline{x_m}\}\} \cup \{\{y_1, y_2, y_3, a\} \mid (y_1 \vee y_2 \vee y_3) \text{ is a clause in } \phi\}.$
- (\rightarrow) If ϕ is satisfiable, then there is an assignment making ϕ True and each clause contains at least one literal that is True. Color the elements of S such that all True literals are colored red and all False literals are colored blue; specially, color a blue. A variable can either be assigned True or False, so in each $\{x_i, \overline{x_i}\}$ there is exactly one red element and one false element. Also, in each $\{y_1, y_2, y_3, a\}$, at least one of y_1, y_2, y_3 is colored red, and at least a is colored blue. Thus this is a valid coloring scheme.
- (\leftarrow) If there is a valid coloring scheme for $\langle S, C \rangle$, assign False to all literals in the same color as a and assign True to all literals in the other color. At least one literal in each clause is True, and $\{x_i, \overline{x_i}\}$ s guarantee that the assignment is not contradictory. Thus ϕ is satisfiable.

The reduction can be computed in polynomial time. 3SAT is NP-complete, thus SET-SPLITTING is NP-complete.