Lectures 3 - 4 - 5 Vector space, basis and dimension

Dipankar Ghosh (IIT Hyderabad)

January, 2020

• Linear Algebra is the study of 'vector spaces' and the 'maps' between them.

- Linear Algebra is the study of 'vector spaces' and the 'maps' between them.
- For now, we keep \mathbb{R}^n as an example of a vector space.

- Linear Algebra is the study of 'vector spaces' and the 'maps' between them.
- For now, we keep \mathbb{R}^n as an example of a vector space.
- Essentially, a vector space means a collection of objects,

- Linear Algebra is the study of 'vector spaces' and the 'maps' between them.
- For now, we keep \mathbb{R}^n as an example of a vector space.
- Essentially, a vector space means a collection of objects, we call them vectors,

- Linear Algebra is the study of 'vector spaces' and the 'maps' between them.
- For now, we keep \mathbb{R}^n as an example of a vector space.
- Essentially, a vector space means a collection of objects, we call them vectors, where we can add two vectors, and what we get is a vector;

- Linear Algebra is the study of 'vector spaces' and the 'maps' between them.
- For now, we keep \mathbb{R}^n as an example of a vector space.
- Essentially, a vector space means a collection of objects, we call them vectors, where we can add two vectors, and what we get is a vector; we can multiply a vector by a scalar, and what we get is a vector.

A set V of objects (called vectors)

A set V of objects (called vectors) along with vector addition '+' and scalar multiplication '·'

A set V of objects (called vectors) along with vector addition '+' and scalar multiplication '·' is said to be a vector space over a field \mathbb{F} (say, $\mathbb{F} = \mathbb{R}$, the set of real numbers) if the following hold:

1 V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.

- V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.
- **2** Addition is commutative, i.e. x + y = y + x for all $x, y \in V$.

- **1** V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.
- **Q** Addition is commutative, i.e. x + y = y + x for all $x, y \in V$.
- **3** Addition is associative, i.e. (x + y) + z = x + (y + z) for all $x, y, z \in V$.

- **1** V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.
- 2 Addition is commutative, i.e. x + y = y + x for all $x, y \in V$.
- **3** Addition is associative, i.e. (x + y) + z = x + (y + z) for all $x, y, z \in V$.
- Additive identity, i.e. there is $0 \in V$ such that x + 0 = x for all $x \in V$.

- V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.
- **2** Addition is commutative, i.e. x + y = y + x for all $x, y \in V$.
- **3** Addition is associative, i.e. (x + y) + z = x + (y + z) for all $x, y, z \in V$.
- Additive identity, i.e. there is $0 \in V$ such that x + 0 = x for all $x \in V$.
- **Additive inverse, i.e.** for every x ∈ V, there is -x ∈ V such that x + (-x) = 0.

- V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.
- 2 Addition is commutative, i.e. x + y = y + x for all $x, y \in V$.
- **3** Addition is associative, i.e. (x + y) + z = x + (y + z) for all $x, y, z \in V$.
- Additive identity, i.e. there is $0 \in V$ such that x + 0 = x for all $x \in V$.
- **Additive inverse, i.e.** for every x ∈ V, there is -x ∈ V such that x + (-x) = 0.
- **6** *V* is closed under '.', i.e. $c \cdot x \in V$ for all $c \in \mathbb{F}$ and $x \in V$.

- V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.
- 2 Addition is commutative, i.e. x + y = y + x for all $x, y \in V$.
- **3** Addition is associative, i.e. (x + y) + z = x + (y + z) for all $x, y, z \in V$.
- Additive identity, i.e. there is $0 \in V$ such that x + 0 = x for all $x \in V$.
- **Additive inverse, i.e.** for every x ∈ V, there is -x ∈ V such that x + (-x) = 0.
- **1** V is closed under '.', i.e. $c \cdot x \in V$ for all $c \in \mathbb{F}$ and $x \in V$.

- **1** V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.
- 2 Addition is commutative, i.e. x + y = y + x for all $x, y \in V$.
- **3** Addition is associative, i.e. (x + y) + z = x + (y + z) for all $x, y, z \in V$.
- Additive identity, i.e. there is $0 \in V$ such that x + 0 = x for all $x \in V$.
- **Additive inverse, i.e.** for every x ∈ V, there is -x ∈ V such that x + (-x) = 0.
- **1** V is closed under '.', i.e. $c \cdot x \in V$ for all $c \in \mathbb{F}$ and $x \in V$.
- $0 \quad 1 \cdot x = x \text{ for all } x \in V.$
- $\mathbf{0} \quad a \cdot (b \cdot x) = (ab) \cdot x \text{ for all } a, b \in \mathbb{R} \text{ and } x \in V.$

- V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.
- **2** Addition is commutative, i.e. x + y = y + x for all $x, y \in V$.
- **3** Addition is associative, i.e. (x + y) + z = x + (y + z) for all $x, y, z \in V$.
- Additive identity, i.e. there is $0 \in V$ such that x + 0 = x for all $x \in V$.
- **Additive inverse, i.e.** for every x ∈ V, there is -x ∈ V such that x + (-x) = 0.
- **1** V is closed under '.', i.e. $c \cdot x \in V$ for all $c \in \mathbb{F}$ and $x \in V$.
- $\mathbf{0} \quad a \cdot (b \cdot x) = (ab) \cdot x \text{ for all } a, b \in \mathbb{R} \text{ and } x \in V.$

- **1** V is closed under '+', i.e. $x + y \in V$ for all $x, y \in V$.
- 2 Addition is commutative, i.e. x + y = y + x for all $x, y \in V$.
- **3** Addition is associative, i.e. (x + y) + z = x + (y + z) for all $x, y, z \in V$.
- Additive identity, i.e. there is $0 \in V$ such that x + 0 = x for all $x \in V$.
- **Additive inverse, i.e.** for every x ∈ V, there is -x ∈ V such that x + (-x) = 0.
- **6** *V* is closed under '.', i.e. $c \cdot x \in V$ for all $c \in \mathbb{F}$ and $x \in V$.
- $\mathbf{0} \quad 1 \cdot x = x \text{ for all } x \in V.$
- $\mathbf{0} \quad a \cdot (b \cdot x) = (ab) \cdot x \text{ for all } a, b \in \mathbb{R} \text{ and } x \in V.$

Remarks on vector spaces

1 The elements of \mathbb{F} are called **scalars**,

Remarks on vector spaces

① The elements of \mathbb{F} are called **scalars**, and the elements of V are called **vectors**.

Remarks on vector spaces

- **①** The elements of \mathbb{F} are called **scalars**, and the elements of V are called **vectors**.
- The first five properties are nothing but the properties of abelian group,

Remarks on vector spaces

- **①** The elements of \mathbb{F} are called **scalars**, and the elements of V are called **vectors**.
- ② The first five properties are nothing but the properties of abelian group, i.e. (V,+) is an abelian group.

Remarks on vector spaces

- **①** The elements of \mathbb{F} are called **scalars**, and the elements of V are called **vectors**.
- ② The first five properties are nothing but the properties of abelian group, i.e. (V, +) is an abelian group.
- **3** We simply write cx instead of $c \cdot x$ for $c \in \mathbb{F}$ and $x \in V$ when there is no confusion.

Remarks on vector spaces

- **①** The elements of \mathbb{F} are called **scalars**, and the elements of V are called **vectors**.
- ② The first five properties are nothing but the properties of abelian group, i.e. (V, +) is an abelian group.
- **3** We simply write cx instead of $c \cdot x$ for $c \in \mathbb{F}$ and $x \in V$ when there is no confusion.
- \bullet From now, we work over the field \mathbb{R} .

(1) The *n*-tuple space, $V = \mathbb{R}^n$.

(1) The *n*-tuple space, $V = \mathbb{R}^n$.

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad \text{and} \quad c \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{pmatrix}$$

(1) The *n*-tuple space, $V = \mathbb{R}^n$.

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad \text{and} \quad c \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{pmatrix}$$

(2) The space $\mathbb{R}^{m \times n}$ of all $m \times n$ matrices

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{pmatrix} \quad \text{where } x_{ij} \in \mathbb{R}.$$

(1) The *n*-tuple space, $V = \mathbb{R}^n$.

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix} \quad \text{and} \quad c \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{pmatrix}$$

(2) The space $\mathbb{R}^{m \times n}$ of all $m \times n$ matrices

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{pmatrix} \quad \text{where } x_{ij} \in \mathbb{R}.$$

Component wise addition and component wise scalar multiplication.

(3) Let S be any non-empty set.

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} .

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

Is V a vector space?

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

Is V a vector space? Answer: Yes.

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

Is V a vector space? Answer: Yes.

(4) The set $\mathbb{R}[x]$ of all polynomials

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

Is V a vector space? Answer: Yes.

(4) The set $\mathbb{R}[x]$ of all polynomials $a_0 + a_1x + \cdots + a_mx^m$,

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

Is V a vector space? Answer: Yes.

(4) The set $\mathbb{R}[x]$ of all polynomials $a_0 + a_1x + \cdots + a_mx^m$, where $a_i \in \mathbb{R}$,

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

Is V a vector space? Answer: Yes.

(4) The set $\mathbb{R}[x]$ of all polynomials $a_0 + a_1x + \cdots + a_mx^m$, where $a_i \in \mathbb{R}$, x is an indeterminate

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

Is V a vector space? Answer: Yes.

(4) The set $\mathbb{R}[x]$ of all polynomials $a_0 + a_1x + \cdots + a_mx^m$, where $a_i \in \mathbb{R}$, x is an indeterminate and m varies over non-negative integers.

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

Is V a vector space? Answer: Yes.

(4) The set $\mathbb{R}[x]$ of all polynomials $a_0 + a_1x + \cdots + a_mx^m$, where $a_i \in \mathbb{R}$, x is an indeterminate and m varies over non-negative integers. The vector addition and scalar multiplication are defined in obvious way.

(3) Let S be any non-empty set. Let V be the set of all functions from S into \mathbb{R} . The sum f+g of two vectors f and g in V is defined to be

$$(f+g)(s) := f(s) + g(s)$$
 for all $s \in S$.

The scalar multiplication $c \cdot f$ (for $c \in \mathbb{R}$) is defined by

$$(c \cdot f)(s) := c f(s)$$
 for all $s \in S$.

Is V a vector space? Answer: Yes.

(4) The set $\mathbb{R}[x]$ of all polynomials $a_0 + a_1x + \cdots + a_mx^m$, where $a_i \in \mathbb{R}$, x is an indeterminate and m varies over non-negative integers. The vector addition and scalar multiplication are defined in obvious way. Then $\mathbb{R}[x]$ is a vector space over \mathbb{R} .

(5) The set $\mathbb{R}^{n \times n}$ of all $n \times n$ matrices

(5) The set $\mathbb{R}^{n \times n}$ of all $n \times n$ matrices with vector addition:

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} \times \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} -- & -- & -- \\ -- & (\sum_{k=1}^{n} x_{ik} y_{kj}) & -- \\ -- & -- & -- \end{pmatrix} \quad \text{(matrix multiplication)}$$

(5) The set $\mathbb{R}^{n \times n}$ of all $n \times n$ matrices with vector addition:

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} \times \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} -- & -- & -- \\ -- & (\sum_{k=1}^{n} x_{ik} y_{kj}) & -- \\ -- & -- & -- \end{pmatrix} \quad \text{(matrix multiplication)}$$

and scalar multiplication as before.

(5) The set $\mathbb{R}^{n \times n}$ of all $n \times n$ matrices with vector addition:

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} \times \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} -- & -- & -- \\ -- & (\sum_{k=1}^{n} x_{ik} y_{kj}) & -- \\ -- & -- & -- \end{pmatrix} \quad \text{(matrix multiplication)}$$

and scalar multiplication as before.

Is V a vector space?

(5) The set $\mathbb{R}^{n \times n}$ of all $n \times n$ matrices with vector addition:

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} \times \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n1} & y_{n2} & \cdots & y_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} -- & -- & -- \\ -- & (\sum_{k=1}^{n} x_{ik} y_{kj}) & -- \\ -- & -- & -- \end{pmatrix} \quad \text{(matrix multiplication)}$$

and scalar multiplication as before.

Is V a vector space? Answer: No.

Reasons:

• The operation 'x' is not **commutative**,

Reasons:

• The operation 'x' is not **commutative**, because

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Reasons:

• The operation 'x' is not **commutative**, because

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

 Another reason is that every matrix does not necessarily have multiplicative inverse.

Reasons:

• The operation 'x' is not **commutative**, because

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

• Another reason is that every matrix does not necessarily have multiplicative inverse. Note that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity element under the operation \times .

Reasons:

• The operation 'x' is not **commutative**, because

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

• Another reason is that every matrix does not necessarily have multiplicative inverse. Note that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity element under the operation \times . But $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ does not have inverse under the operation \times

Reasons:

• The operation 'x' is not **commutative**, because

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

• Another reason is that every matrix does not necessarily have multiplicative inverse. Note that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity element under the operation \times . But $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ does not have inverse under the operation \times as there does not exist a matrix A such that

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \times A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Definition

A vector β in V is said to be a **linear combination** of vectors α_1,α_2 and α_r in V

Definition

A vector β in V is said to be a **linear combination** of vectors α_1, α_2 and α_r in V if

$$\beta = c_1 \alpha_1 + c_2 \alpha_2 + \cdots + c_r \alpha_r$$
 for some $c_1, c_2, \ldots, c_r \in \mathbb{R}$.

Definition

A vector β in V is said to be a **linear combination** of vectors α_1, α_2 and α_r in V if

$$\beta = c_1 \alpha_1 + c_2 \alpha_2 + \cdots + c_r \alpha_r$$
 for some $c_1, c_2, \ldots, c_r \in \mathbb{R}$.

Definition

A vector β in V is said to be a **linear combination** of vectors α_1,α_2 and α_r in V if

$$\beta = c_1 \alpha_1 + c_2 \alpha_2 + \cdots + c_r \alpha_r$$
 for some $c_1, c_2, \ldots, c_r \in \mathbb{R}$.

In this figure, the linear combinations of $\{u\}$ are the vectors on the dotted line;

Definition

A vector β in V is said to be a **linear combination** of vectors α_1, α_2 and α_r in V if

$$\beta = c_1\alpha_1 + c_2\alpha_2 + \cdots + c_r\alpha_r$$
 for some $c_1, c_2, \ldots, c_r \in \mathbb{R}$.

In this figure, the linear combinations of $\{u\}$ are the vectors on the dotted line; while the linear combinations of $\{u,v\}$ yield \mathbb{R}^2

1 Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.

- Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- ② Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?

- Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?

- **1** Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?
- We find the answers to these questions as we proceed further.

- **1** Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?
- We find the answers to these questions as we proceed further.
- 5 Let us see some examples here:

- **1** Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?
- We find the answers to these questions as we proceed further.
- 5 Let us see some examples here:
- **6** In \mathbb{R}^2 , the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

- **1** Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?
- We find the answers to these questions as we proceed further.
- 5 Let us see some examples here:
- **1** In \mathbb{R}^2 , the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

- **1** Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?
- We find the answers to these questions as we proceed further.
- 5 Let us see some examples here:
- $\textbf{ In } \mathbb{R}^2 \text{, the vector } \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ (Unique way)}.$

- **1** Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?
- We find the answers to these questions as we proceed further.
- 5 Let us see some examples here:
- **1** In \mathbb{R}^2 , the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (Unique way).

- **1** Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?
- We find the answers to these questions as we proceed further.
- 5 Let us see some examples here:

- **1** Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?
- We find the answers to these questions as we proceed further.
- 5 Let us see some examples here:
- **1** In \mathbb{R}^2 , the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (Unique way).

- **1** Suppose $\alpha_1, \alpha_2, \ldots, \alpha_r$ and β are given vectors in V.
- **2** Is β a linear combination of $\alpha_1, \alpha_2, \ldots, \alpha_r$?
- If yes, then how many ways are there to write that lin. comb.?
- We find the answers to these questions as we proceed further.
- 5 Let us see some examples here:
- **1** In \mathbb{R}^2 , the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (Unique way).

Definition

Let V be a vector space over \mathbb{R} .

Definition

Let V be a vector space over $\mathbb{R}.$ A subspace of V is a subset W of V

Definition

Let V be a vector space over $\mathbb R$. A subspace of V is a subset W of V which is itself a vector space over $\mathbb R$

Definition

Let V be a vector space over \mathbb{R} . A subspace of V is a subset W of V which is itself a vector space over \mathbb{R} with the same operations of vector addition and scalar multiplication on V.

Definition

Let V be a vector space over \mathbb{R} . A subspace of V is a subset W of V which is itself a vector space over \mathbb{R} with the same operations of vector addition and scalar multiplication on V.

Definition

Let V be a vector space over \mathbb{R} . A subspace of V is a subset W of V which is itself a vector space over \mathbb{R} with the same operations of vector addition and scalar multiplication on V.

Both red and blue lines are subspaces of \mathbb{R}^2 .

Definition

Let V be a vector space over \mathbb{R} . A subspace of V is a subset W of V which is itself a vector space over \mathbb{R} with the same operations of vector addition and scalar multiplication on V.

Both red and blue lines are subspaces of \mathbb{R}^2 . In fact, any line passing through the origin is a subspace of \mathbb{R}^2 .

Definition

Let V be a vector space over \mathbb{R} . A subspace of V is a subset W of V which is itself a vector space over \mathbb{R} with the same operations of vector addition and scalar multiplication on V.

Both red and blue lines are subspaces of \mathbb{R}^2 . In fact, any line passing through the origin is a subspace of \mathbb{R}^2 .

For a subspace W of V, is it true that $0 \in W$?

Definition

Let V be a vector space over \mathbb{R} . A subspace of V is a subset W of V which is itself a vector space over \mathbb{R} with the same operations of vector addition and scalar multiplication on V.

Both red and blue lines are subspaces of \mathbb{R}^2 . In fact, any line passing through the origin is a subspace of \mathbb{R}^2 .

For a subspace W of V, is it true that $0 \in W$? Answer: Yes.

Theorem

Let W be a non-empty subset of a vector space V over \mathbb{R} .

Theorem

Let W be a non-empty subset of a vector space V over \mathbb{R} . Then W is a subspace of V

Theorem

Let W be a non-empty subset of a vector space V over \mathbb{R} . Then W is a subspace of V

if and only if

for each pair of vectors $\alpha, \beta \in W$ and each scalar $c \in \mathbb{R}$,

Theorem

Let W be a non-empty subset of a vector space V over \mathbb{R} . Then W is a subspace of V

if and only if

for each pair of vectors $\alpha, \beta \in W$ and each scalar $c \in \mathbb{R}$, the vector $c\alpha + \beta$ belongs to W.

Theorem

Let W be a non-empty subset of a vector space V over \mathbb{R} . Then W is a subspace of V

if and only if

for each pair of vectors $\alpha, \beta \in W$ and each scalar $c \in \mathbb{R}$, the vector $c\alpha + \beta$ belongs to W.

Proof. Exercise!

Theorem

Let W be a non-empty subset of a vector space V over \mathbb{R} . Then W is a subspace of V

if and only if

for each pair of vectors $\alpha, \beta \in W$ and each scalar $c \in \mathbb{R}$, the vector $c\alpha + \beta$ belongs to W.

Proof. Exercise!

Note that many properties of W will be inherited from V.

• The subset $\{0\}$ consisting of the zero vector of V

• The subset $\{0\}$ consisting of the zero vector of V is a subspace of V.

• The subset $\{0\}$ consisting of the zero vector of V is a subspace of V. It is also denoted by 0.

- The subset $\{0\}$ consisting of the zero vector of V is a subspace of V. It is also denoted by 0.
- In \mathbb{R}^n , the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=0\}$$

- The subset {0} consisting of the zero vector of V is a subspace of V. It is also denoted by 0.
- In \mathbb{R}^n , the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=0\}$$

is a subspace;

- The subset {0} consisting of the zero vector of V is a subspace of V. It is also denoted by 0.
- In \mathbb{R}^n , the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=0\}$$

is a subspace; while the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=1\}$$

- The subset {0} consisting of the zero vector of V is a subspace of V. It is also denoted by 0.
- In \mathbb{R}^n , the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=0\}$$

is a subspace; while the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=1\}$$

is NOT a subspace.

- The subset {0} consisting of the zero vector of V is a subspace of V. It is also denoted by 0.
- In \mathbb{R}^n , the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=0\}$$

is a subspace; while the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=1\}$$

is NOT a subspace.

The set of all 'symmetric matrices'

- The subset {0} consisting of the zero vector of V is a subspace of V. It is also denoted by 0.
- In \mathbb{R}^n , the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=0\}$$

is a subspace; while the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=1\}$$

is NOT a subspace.

 The set of all 'symmetric matrices' forms a subspace of the space of all n × n matrices.

Examples of subspaces

- The subset {0} consisting of the zero vector of V is a subspace of V. It is also denoted by 0.
- In \mathbb{R}^n , the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=0\}$$

is a subspace; while the set

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n:x_1=1\}$$

is NOT a subspace.

• The set of all 'symmetric matrices' forms a subspace of the space of all $n \times n$ matrices. Recall that an $n \times n$ square matrix A is said to be symmetric if $A_{ij} = A_{ji}$ for each i and j.

Definition

Let S be a set of vectors in a vector space V.

Definition

Let S be a set of vectors in a vector space V. The **subspace spanned** by (or generated by) S is defined to be the smallest subspace of V containing S.

Definition

Let S be a set of vectors in a vector space V. The **subspace spanned** by (or generated by) S is defined to be the smallest subspace of V containing S. We denote this subspace by $\mathrm{Span}(S)$.

Definition

Let S be a set of vectors in a vector space V. The **subspace spanned** by (or generated by) S is defined to be the smallest subspace of V containing S. We denote this subspace by $\mathrm{Span}(S)$. We write that S spans the subspace $\mathrm{Span}(S)$.

Definition

Let S be a set of vectors in a vector space V. The **subspace spanned** by (or generated by) S is defined to be the smallest subspace of V containing S. We denote this subspace by $\mathrm{Span}(S)$. We write that S spans the subspace $\mathrm{Span}(S)$.

$\mathsf{Theorem}$

Let S be a set of vectors in a vector space V.

Definition

Let S be a set of vectors in a vector space V. The **subspace spanned** by (or generated by) S is defined to be the smallest subspace of V containing S. We denote this subspace by $\mathrm{Span}(S)$. We write that S spans the subspace $\mathrm{Span}(S)$.

$\mathsf{Theorem}$

Let S be a set of vectors in a vector space V. The following subspaces are equal.

Definition

Let S be a set of vectors in a vector space V. The **subspace spanned** by (or generated by) S is defined to be the smallest subspace of V containing S. We denote this subspace by $\mathrm{Span}(S)$. We write that S spans the subspace $\mathrm{Span}(S)$.

$\mathsf{Theorem}$

Let S be a set of vectors in a vector space V. The following subspaces are equal.

• The intersection of all subspaces of V containing S.

Definition

Let S be a set of vectors in a vector space V. The **subspace spanned** by (or generated by) S is defined to be the smallest subspace of V containing S. We denote this subspace by $\mathrm{Span}(S)$. We write that S spans the subspace $\mathrm{Span}(S)$.

$\mathsf{Theorem}$

Let S be a set of vectors in a vector space V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- 2 The set of all linear combinations of vectors in S, i.e.

$$\{c_1v_1+\cdots+c_rv_r:c_i\in\mathbb{R},\,v_i\in\mathcal{S}\}.$$

Definition

Let S be a set of vectors in a vector space V. The **subspace spanned** by (or generated by) S is defined to be the smallest subspace of V containing S. We denote this subspace by $\mathrm{Span}(S)$. We write that S spans the subspace $\mathrm{Span}(S)$.

$\mathsf{Theorem}$

Let S be a set of vectors in a vector space V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- 2 The set of all linear combinations of vectors in S, i.e.

$$\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}.$$

3 The subspace spanned by S (i.e. the smallest subspace of V containing S).

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1, W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively.

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1 , W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively. Clearly, W_1 is contained in any subspace of V containing S.

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1, W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively. Clearly, W_1 is contained in any subspace of V containing S. Since W_1 is a subspace, W_1 is the smallest subspace of V containing S,

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1, W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively. Clearly, W_1 is contained in any subspace of V containing S. Since W_1 is a subspace, W_1 is the smallest subspace of V containing S, i.e. $W_1 = W_3$.

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1 , W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively. Clearly, W_1 is contained in any subspace of V containing S. Since W_1 is a subspace, W_1 is the smallest subspace of V containing S, i.e. $W_1 = W_3$. Note that W_2 is a subspace containing S.

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1, W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively. Clearly, W_1 is contained in any subspace of V containing S. Since W_1 is a subspace, W_1 is the smallest subspace of V containing S, i.e. $W_1 = W_3$. Note that W_2 is a subspace containing S. So $W_1 \subseteq W_2$.

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1 , W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively. Clearly, W_1 is contained in any subspace of V containing S. Since W_1 is a subspace, W_1 is the smallest subspace of V containing S, i.e. $W_1 = W_3$. Note that W_2 is a subspace containing S. So $W_1 \subseteq W_2$. Notice that any subspace of V containing S also contains all linear combinations of vectors in S.

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1, W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively. Clearly, W_1 is contained in any subspace of V containing S. Since W_1 is a subspace, W_1 is the smallest subspace of V containing S, i.e. $W_1 = W_3$. Note that W_2 is a subspace containing S. So $W_1 \subseteq W_2$. Notice

Note that W_2 is a subspace containing S. So $W_1 \subseteq W_2$. Notice that any subspace of V containing S also contains all linear combinations of vectors in S. Hence it follows that $W_2 \subseteq W_1$.

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1, W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively. Clearly, W_1 is contained in any subspace of V containing S. Since W_1 is a subspace, W_1 is the smallest subspace of V containing S, i.e. $W_1 = W_3$. Note that W_2 is a subspace containing S. So $W_1 \subseteq W_2$. Notice that any subspace of V containing S also contains all linear combinations of vectors in S. Hence it follows that $W_2 \subseteq W_1$.

Therefore $W_1 = W_2$.

Theorem

Let S be a subset of V. The following subspaces are equal.

- The intersection of all subspaces of V containing S.
- ② The set of all linear combinations of vectors in S, i.e. $\{c_1v_1 + \cdots + c_rv_r : c_i \in \mathbb{R}, v_i \in S\}$.
- The subspace spanned by S, i.e. the smallest subspace of V containing S.

Proof. Let W_1 , W_2 and W_3 be the subspaces described as in (1), (2) and (3) respectively. Clearly, W_1 is contained in any subspace of V containing S. Since W_1 is a subspace, W_1 is the smallest subspace of V containing S, i.e. $W_1 = W_3$. Note that W_2 is a subspace containing S. So $W_1 \subseteq W_2$. Notice

Note that W_2 is a subspace containing S. So $W_1 \subseteq W_2$. Notice that any subspace of V containing S also contains all linear combinations of vectors in S. Hence it follows that $W_2 \subseteq W_1$. Therefore $W_1 = W_2$. Thus $W_1 = W_2 = W_3$.

1 Let $V = \mathbb{R}^{2 \times 2}$ be the space of all 2×2 matrices over \mathbb{R} .

1 Let $V = \mathbb{R}^{2 \times 2}$ be the space of all 2×2 matrices over \mathbb{R} . Set

$$S := \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

• Let $V = \mathbb{R}^{2 \times 2}$ be the space of all 2×2 matrices over \mathbb{R} . Set

$$S:=\left\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix},\begin{pmatrix}0&1\\1&0\end{pmatrix}\right\}.$$

The subspace spanned by S is the subspace of all 2×2 symmetric matrices over \mathbb{R} .

• Let $V = \mathbb{R}^{2 \times 2}$ be the space of all 2×2 matrices over \mathbb{R} . Set

$$S:=\left\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix},\begin{pmatrix}0&1\\1&0\end{pmatrix}\right\}.$$

The subspace spanned by S is the subspace of all 2×2 symmetric matrices over \mathbb{R} .

2 Let $V = \mathbb{R}[x]$ (set of all polynomials).

• Let $V = \mathbb{R}^{2 \times 2}$ be the space of all 2×2 matrices over \mathbb{R} . Set

$$S:=\left\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix},\begin{pmatrix}0&1\\1&0\end{pmatrix}\right\}.$$

The subspace spanned by S is the subspace of all 2×2 symmetric matrices over \mathbb{R} .

② Let $V = \mathbb{R}[x]$ (set of all polynomials). Set

$$S := \{f_n(x) = x^n : n = 0, 1, 2, \ldots\}.$$

1 Let $V = \mathbb{R}^{2 \times 2}$ be the space of all 2×2 matrices over \mathbb{R} . Set

$$S:=\left\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix},\begin{pmatrix}0&1\\1&0\end{pmatrix}\right\}.$$

The subspace spanned by S is the subspace of all 2×2 symmetric matrices over \mathbb{R} .

2 Let $V = \mathbb{R}[x]$ (set of all polynomials). Set

$$S := \{f_n(x) = x^n : n = 0, 1, 2, \ldots\}.$$

Then the subspace spanned by S is V itself.

In this figure,

In this figure,

the subspace spanned by $\{u\}$ can be described by the dotted line;

In this figure,

the subspace spanned by $\{u\}$ can be described by the dotted line; while the subspace spanned by $\{u, v\}$ is \mathbb{R}^2 .

Throughout, let V be a vector space over \mathbb{R} .

Throughout, let V be a vector space over \mathbb{R} .

Definition

A subset S of vectors in V is said to be **linearly dependent**

Throughout, let V be a vector space over $\mathbb R$.

Definition

A subset S of vectors in V is said to be **linearly dependent** if there exists vectors v_1, v_2, \ldots, v_r in S and

Throughout, let V be a vector space over \mathbb{R} .

Definition

A subset S of vectors in V is said to be **linearly dependent** if there exists vectors v_1, v_2, \ldots, v_r in S and scalars c_1, c_2, \ldots, c_r in \mathbb{R} ,

Throughout, let V be a vector space over \mathbb{R} .

Definition

A subset S of vectors in V is said to be **linearly dependent** if there exists vectors v_1, v_2, \ldots, v_r in S and scalars c_1, c_2, \ldots, c_r in \mathbb{R} , NOT ALL of which are 0,

Throughout, let V be a vector space over \mathbb{R} .

Definition

A subset S of vectors in V is said to be **linearly dependent** if there exists vectors v_1, v_2, \ldots, v_r in S and scalars c_1, c_2, \ldots, c_r in \mathbb{R} , NOT ALL of which are 0, such that

$$c_1v_1+\cdots+c_rv_r=0.$$

Linearly dependent or independent

Throughout, let V be a vector space over \mathbb{R} .

Definition

A subset S of vectors in V is said to be **linearly dependent** if there exists vectors v_1, v_2, \ldots, v_r in S and scalars c_1, c_2, \ldots, c_r in \mathbb{R} , NOT ALL of which are 0, such that

$$c_1v_1+\cdots+c_rv_r=0.$$

Definition

A set *S* which is not linearly dependent is called **linearly independent**.

Linearly dependent or independent

Throughout, let V be a vector space over \mathbb{R} .

Definition

A subset S of vectors in V is said to be **linearly dependent** if there exists vectors v_1, v_2, \ldots, v_r in S and scalars c_1, c_2, \ldots, c_r in \mathbb{R} , NOT ALL of which are 0, such that

$$c_1v_1+\cdots+c_rv_r=0.$$

Definition

A set *S* which is not linearly dependent is called **linearly independent**.

If $S = \{v_1, \dots, v_n\}$, we say that v_1, \dots, v_n are linearly dependent (or independent) instead of saying that S is so.

Any set containing the 0 vector

Any set containing the 0 vector is linearly dependent.

- Any set containing the 0 vector is linearly dependent.
- 2 A set *S* of vectors is linearly dependent if and only if there exists a non-trivial relation of some vectors of *S*:

$$c_1v_1 + \cdots + c_rv_r = 0$$
, where at least one $c_i \neq 0$.

- Any set containing the 0 vector is linearly dependent.
- 2 A set *S* of vectors is linearly dependent if and only if there exists a non-trivial relation of some vectors of *S*:

$$c_1v_1 + \cdots + c_rv_r = 0$$
, where at least one $c_i \neq 0$.

This is equivalent to say that there exists at least one vector $v \in S$

- Any set containing the 0 vector is linearly dependent.
- 2 A set *S* of vectors is linearly dependent if and only if there exists a non-trivial relation of some vectors of *S*:

$$c_1v_1 + \cdots + c_rv_r = 0$$
, where at least one $c_i \neq 0$.

This is equivalent to say that there exists at least one vector $v \in S$ which belongs to the subspace spanned by $S \setminus \{v\}$.

- Any set containing the 0 vector is linearly dependent.
- A set S of vectors is linearly dependent if and only if there exists a non-trivial relation of some vectors of S:

$$c_1v_1 + \cdots + c_rv_r = 0$$
, where at least one $c_i \neq 0$.

This is equivalent to say that there exists at least one vector $v \in S$ which belongs to the subspace spanned by $S \setminus \{v\}$.

Any set containing a linearly dependent subset

- Any set containing the 0 vector is linearly dependent.
- 2 A set *S* of vectors is linearly dependent if and only if there exists a non-trivial relation of some vectors of *S*:

$$c_1v_1 + \cdots + c_rv_r = 0$$
, where at least one $c_i \neq 0$.

This is equivalent to say that there exists at least one vector $v \in S$ which belongs to the subspace spanned by $S \setminus \{v\}$.

Any set containing a linearly dependent subset is again linearly dependent.

• Every non-zero vector v in V

1 Every non-zero vector v in V is linearly independent.

- Every non-zero vector v in V is linearly independent.
- ② A finite set $\{v_1, \ldots, v_r\}$ is linearly independent

- Every non-zero vector v in V is linearly independent.
- A finite set $\{v_1, \dots, v_r\}$ is linearly independent if and only if $c_1v_1 + \dots + c_rv_r = 0 \implies c_i = 0$ for all $1 \le i \le r$.

- Every non-zero vector v in V is linearly independent.
- 2 A finite set $\{v_1, \dots, v_r\}$ is linearly independent if and only if $c_1v_1 + \dots + c_rv_r = 0 \implies c_i = 0$ for all $1 \le i \le r$.
- A set S of vectors is linearly independent if and only if every finite subset of S is linearly independent,

- Every non-zero vector v in V is linearly independent.
- **2** A finite set $\{v_1, \dots, v_r\}$ is linearly independent if and only if $c_1v_1 + \dots + c_rv_r = 0 \implies c_i = 0$ for all $1 \le i \le r$.
- **3** A set S of vectors is linearly independent if and only if every finite subset of S is linearly independent, i.e., if and only if for every subset $\{v_1, \ldots, v_r\} \subseteq S$,

$$c_1v_1+\cdots+c_rv_r=0$$

- Every non-zero vector v in V is linearly independent.
- **2** A finite set $\{v_1, \dots, v_r\}$ is linearly independent if and only if $c_1v_1 + \dots + c_rv_r = 0 \implies c_i = 0$ for all $1 \le i \le r$.
- **3** A set S of vectors is linearly independent if and only if every finite subset of S is linearly independent, i.e., if and only if for every subset $\{v_1, \ldots, v_r\} \subseteq S$,

$$c_1v_1 + \cdots + c_rv_r = 0 \implies c_i = 0 \text{ for all } 1 \le i \le r.$$

- Every non-zero vector v in V is linearly independent.
- 2 A finite set $\{v_1, \dots, v_r\}$ is linearly independent if and only if $c_1v_1 + \dots + c_rv_r = 0 \implies c_i = 0$ for all $1 \le i \le r$.
- **3** A set S of vectors is linearly independent if and only if every finite subset of S is linearly independent, i.e., if and only if for every subset $\{v_1, \ldots, v_r\} \subseteq S$,

$$c_1v_1+\cdots+c_rv_r=0 \implies c_i=0 \text{ for all } 1\leq i\leq r.$$

4 Any subset of a linearly independent set

- Every non-zero vector v in V is linearly independent.
- A finite set $\{v_1, \dots, v_r\}$ is linearly independent if and only if $c_1v_1 + \dots + c_rv_r = 0 \implies c_i = 0$ for all $1 \le i \le r$.
- **3** A set S of vectors is linearly independent if and only if every finite subset of S is linearly independent, i.e., if and only if for every subset $\{v_1, \ldots, v_r\} \subseteq S$,

$$c_1v_1 + \cdots + c_rv_r = 0 \implies c_i = 0 \text{ for all } 1 \le i \le r.$$

 Any subset of a linearly independent set is linearly independent.

Lemma

Let S be a linearly independent subset of a vector space V.

Lemma

Let S be a linearly independent subset of a vector space V. Suppose $v \notin \operatorname{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S, c_i \in \mathbb{R}\}.$

Lemma

Let S be a linearly independent subset of a vector space V. Suppose $v \notin \operatorname{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S, c_i \in \mathbb{R}\}$. Then $S \cup \{v\}$ is linearly independent.

Lemma

Let S be a linearly independent subset of a vector space V. $Suppose \ v \notin \mathrm{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S, c_i \in \mathbb{R}\}.$ $Then \ S \cup \{v\}$ is linearly independent.

Proof.

Let $c_1v_1 + \cdots + c_rv_r + cv = 0$ for some vectors $v_1, \ldots, v_r \in S$ and scalars c_1, \ldots, c_r, c .

Lemma

Let S be a linearly independent subset of a vector space V. $Suppose \ v \notin \mathrm{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S, c_i \in \mathbb{R}\}.$ $Then \ S \cup \{v\}$ is linearly independent.

Proof.

Let $c_1v_1+\cdots+c_rv_r+cv=0$ for some vectors $v_1,\ldots,v_r\in S$ and scalars c_1,\ldots,c_r,c . If $c\neq 0$,

Lemma

Let S be a linearly independent subset of a vector space V. $Suppose\ v \notin \mathrm{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S, c_i \in \mathbb{R}\}.$ $Then\ S \cup \{v\}$ is linearly independent.

Proof.

Let $c_1v_1 + \cdots + c_rv_r + cv = 0$ for some vectors $v_1, \ldots, v_r \in S$ and scalars c_1, \ldots, c_r, c .

If $c \neq 0$, then it follows that $v \in \text{Span}(S)$,

Lemma

Let S be a linearly independent subset of a vector space V. $Suppose\ v \notin \mathrm{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S, c_i \in \mathbb{R}\}.$ $Then\ S \cup \{v\}$ is linearly independent.

Proof.

Let $c_1v_1 + \cdots + c_rv_r + cv = 0$ for some vectors $v_1, \ldots, v_r \in S$ and scalars c_1, \ldots, c_r, c .

If $c \neq 0$, then it follows that $v \in \text{Span}(S)$, which is a contradiction.

Lemma

Let S be a linearly independent subset of a vector space V. $Suppose\ v \notin \mathrm{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S, c_i \in \mathbb{R}\}.$ $Then\ S \cup \{v\}$ is linearly independent.

Proof.

Let $c_1v_1+\cdots+c_rv_r+cv=0$ for some vectors $v_1,\ldots,v_r\in S$ and scalars c_1,\ldots,c_r,c .

If $c \neq 0$, then it follows that $v \in \operatorname{Span}(S)$, which is a contradiction. Therefore c = 0,

Lemma

Let S be a linearly independent subset of a vector space V. $Suppose\ v \notin \mathrm{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S, c_i \in \mathbb{R}\}.$ $Then\ S \cup \{v\}$ is linearly independent.

Proof.

Let $c_1v_1 + \cdots + c_rv_r + cv = 0$ for some vectors $v_1, \ldots, v_r \in S$ and scalars c_1, \ldots, c_r, c .

If $c \neq 0$, then it follows that $v \in \operatorname{Span}(S)$, which is a contradiction. Therefore c = 0, and hence $c_1v_1 + \cdots + c_rv_r = 0$.

Lemma

Let S be a linearly independent subset of a vector space V. $Suppose \ v \notin \mathrm{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S, c_i \in \mathbb{R}\}.$ $Then \ S \cup \{v\}$ is linearly independent.

Proof.

Let $c_1v_1+\cdots+c_rv_r+cv=0$ for some vectors $v_1,\ldots,v_r\in S$ and scalars c_1,\ldots,c_r,c .

If $c \neq 0$, then it follows that $v \in \operatorname{Span}(S)$, which is a contradiction. Therefore c = 0, and hence $c_1v_1 + \cdots + c_rv_r = 0$. Since S is linearly independent, it follows that $c_i = 0$ for all $1 \leq i \leq r$.

Definition

A set S of vectors in V is called a **basis** of V if

Definition

A set S of vectors in V is called a **basis** of V if

(i) S is linearly independent, and

Definition

A set S of vectors in V is called a **basis** of V if

- (i) S is linearly independent, and
- (ii) it spans the space V (i.e., the subspace spanned by S is V).

Definition

A set S of vectors in V is called a **basis** of V if

- (i) S is linearly independent, and
- (ii) it spans the space V (i.e., the subspace spanned by S is V).

The space V is said to be **finite dimensional** if it has a finite basis.

Definition

A set S of vectors in V is called a **basis** of V if

- (i) S is linearly independent, and
- (ii) it spans the space V (i.e., the subspace spanned by S is V).

The space V is said to be **finite dimensional** if it has a finite basis. If V does not have a finite basis, then V is said to be **infinite dimensional**.

What is the guarantee that a basis exists?

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors.

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How?

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How? Start with a finite spanning set S.

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How? Start with a finite spanning set S. Then check whether it is linearly independent.

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How? Start with a finite spanning set S. Then check whether it is linearly independent. If yes, then we are done.

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How? Start with a finite spanning set S. Then check whether it is linearly independent. If yes, then we are done. Otherwise S should be linearly dependent, and

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How? Start with a finite spanning set S. Then check whether it is linearly independent. If yes, then we are done. Otherwise S should be linearly dependent, and there is $v \in S$ such that v belongs to the subspace spanned by $S \setminus \{v\}$.

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How? Start with a finite spanning set S. Then check whether it is linearly independent. If yes, then we are done. Otherwise S should be linearly dependent, and there is $v \in S$ such that v belongs to the subspace spanned by $S \setminus \{v\}$. One can prove that $S \setminus \{v\}$ spans V.

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How? Start with a finite spanning set S. Then check whether it is linearly independent. If yes, then we are done. Otherwise S should be linearly dependent, and there is $v \in S$ such that v belongs to the subspace spanned by $S \setminus \{v\}$. One can prove that $S \setminus \{v\}$ spans V. Repeat the process till we get a linearly independent subset of S which spans V.

What is the guarantee that a basis exists? We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How? Start with a finite spanning set S. Then check whether it is linearly independent. If yes, then we are done. Otherwise S should be linearly dependent, and there is $v \in S$ such that v belongs to the subspace spanned by $S \setminus \{v\}$. One can prove that $S \setminus \{v\}$ spans V. Repeat the process till we get a linearly independent subset of S which spans V.

For vector space which is not finitely generated,

What is the guarantee that a basis exists?

We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How?

Start with a finite spanning set S. Then check whether it is linearly independent. If yes, then we are done. Otherwise S should be linearly dependent, and there is $v \in S$ such that v belongs to the subspace spanned by $S \setminus \{v\}$. One can prove that $S \setminus \{v\}$ spans V. Repeat the process till we get a linearly independent subset of S which spans V.

For vector space which is not finitely generated, we need the axiom of choice.

What is the guarantee that a basis exists?

We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How?

Start with a finite spanning set S. Then check whether it is linearly independent. If yes, then we are done. Otherwise S should be linearly dependent, and there is $v \in S$ such that v belongs to the subspace spanned by $S \setminus \{v\}$. One can prove that $S \setminus \{v\}$ spans V. Repeat the process till we get a linearly independent subset of S which spans V.

For vector space which is not finitely generated, we need the axiom of choice. We will not do that in this course.

The set
$$\left\{ u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$
 forms a basis of \mathbb{R}^2 .

The set $\left\{ u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$ forms a basis of \mathbb{R}^2 .

Indeed, geometrically, it can be observed that u, v are linearly independent,

The set $\left\{ u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$ forms a basis of \mathbb{R}^2 .

Indeed, geometrically, it can be observed that u, v are linearly independent, and $\{u, v\}$ spans \mathbb{R}^2 .

The set $\left\{ u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$ forms a basis of \mathbb{R}^2 .

Indeed, geometrically, it can be observed that u, v are linearly independent, and $\{u, v\}$ spans \mathbb{R}^2 .

Or directly, we see that for EVERY vector $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$,

The set $\left\{u=\begin{pmatrix}1\\2\end{pmatrix}, v=\begin{pmatrix}2\\1\end{pmatrix}\right\}$ forms a basis of \mathbb{R}^2 .

Indeed, geometrically, it can be observed that u, v are linearly independent, and $\{u, v\}$ spans \mathbb{R}^2 .

Or directly, we see that for EVERY vector $egin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$, the system

$$x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 i.e., $\begin{cases} x + 2y = a \\ 2x + y = b \end{cases}$ or $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$

has a UNIQUE solution in x, y

The set $\left\{u=\begin{pmatrix}1\\2\end{pmatrix},v=\begin{pmatrix}2\\1\end{pmatrix}\right\}$ forms a basis of \mathbb{R}^2 .

Indeed, geometrically, it can be observed that u, v are linearly independent, and $\{u, v\}$ spans \mathbb{R}^2 .

Or directly, we see that for EVERY vector $egin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$, the system

$$x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 i.e., $\begin{cases} x + 2y = a \\ 2x + y = b \end{cases}$ or $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$

has a UNIQUE solution in x,y because the coefficient matrix $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is invertible.

The set $\left\{u=\begin{pmatrix}1\\2\end{pmatrix},v=\begin{pmatrix}2\\1\end{pmatrix}\right\}$ forms a basis of \mathbb{R}^2 .

Indeed, geometrically, it can be observed that u, v are linearly independent, and $\{u, v\}$ spans \mathbb{R}^2 .

Or directly, we see that for EVERY vector $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$, the system

$$x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 i.e., $\begin{cases} x + 2y = a \\ 2x + y = b \end{cases}$ or $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$

has a UNIQUE solution in x,y because the coefficient matrix $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is invertible.

So every vector in \mathbb{R}^2 can be written as a linear combination of $\{u,v\}$,

The set $\left\{ u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$ forms a basis of \mathbb{R}^2 .

Indeed, geometrically, it can be observed that u, v are linearly independent, and $\{u, v\}$ spans \mathbb{R}^2 .

Or directly, we see that for EVERY vector $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$, the system

$$x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 i.e., $\begin{cases} x + 2y = a \\ 2x + y = b \end{cases}$ or $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$

has a UNIQUE solution in x,y because the coefficient matrix $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is invertible.

So every vector in \mathbb{R}^2 can be written as a linear combination of $\{u,v\}$, hence it spans the space \mathbb{R}^2 .

The set $\left\{ u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$ forms a basis of \mathbb{R}^2 .

Indeed, geometrically, it can be observed that u, v are linearly independent, and $\{u, v\}$ spans \mathbb{R}^2 .

Or directly, we see that for EVERY vector $egin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$, the system

$$x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 i.e., $\begin{cases} x + 2y = a \\ 2x + y = b \end{cases}$ or $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$

has a UNIQUE solution in x,y because the coefficient matrix $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is invertible.

So every vector in \mathbb{R}^2 can be written as a linear combination of $\{u,v\}$, hence it spans the space \mathbb{R}^2 .

Moreover, when a = b = 0, then the system has THE trivial solution x = y = 0.

The set $\left\{u=\begin{pmatrix}1\\2\end{pmatrix},v=\begin{pmatrix}2\\1\end{pmatrix}\right\}$ forms a basis of \mathbb{R}^2 .

Indeed, geometrically, it can be observed that u, v are linearly independent, and $\{u, v\}$ spans \mathbb{R}^2 .

Or directly, we see that for EVERY vector $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$, the system

$$x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 i.e., $\begin{cases} x + 2y = a \\ 2x + y = b \end{cases}$ or $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$

has a UNIQUE solution in x,y because the coefficient matrix $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is invertible.

So every vector in \mathbb{R}^2 can be written as a linear combination of $\{u, v\}$, hence it spans the space \mathbb{R}^2 .

Moreover, when a=b=0, then the system has THE trivial solution x=y=0. Thus $\{v,v\}$ is linearly independent as well.

Dimension of a vector space

Theorem

Let V be a vector space (over \mathbb{R}). Then

Dimension of a vector space

Theorem

Let V be a vector space (over \mathbb{R}). Then

V has a basis, and

Dimension of a vector space

Theorem

Let V be a vector space (over \mathbb{R}). Then

- V has a basis, and
- all the bases of V have the same cardinality,

Theorem

Let V be a vector space (over \mathbb{R}). Then

- V has a basis, and
- ② all the bases of V have the same cardinality, i.e., if S_1 and S_2 are any two bases of V,

$\mathsf{Theorem}$

Let V be a vector space (over \mathbb{R}). Then

- V has a basis, and
- ② all the bases of V have the same cardinality, i.e., if S_1 and S_2 are any two bases of V, then there exists a bijection from S_1 to S_2 .

$\mathsf{Theorem}$

Let V be a vector space (over \mathbb{R}). Then

- V has a basis, and
- ② all the bases of V have the same cardinality, i.e., if S_1 and S_2 are any two bases of V, then there exists a bijection from S_1 to S_2 . Particularly, if S_1 and S_2 are finite, then they have the same number of vectors.

Theorem

Let V be a vector space (over \mathbb{R}). Then

- V has a basis, and
- ② all the bases of V have the same cardinality, i.e., if S_1 and S_2 are any two bases of V, then there exists a bijection from S_1 to S_2 . Particularly, if S_1 and S_2 are finite, then they have the same number of vectors.

Definition

• The cardinality of a basis of the vector space V if called the **dimension** of V.

Theorem

Let V be a vector space (over \mathbb{R}). Then

- V has a basis, and
- ② all the bases of V have the same cardinality, i.e., if S_1 and S_2 are any two bases of V, then there exists a bijection from S_1 to S_2 . Particularly, if S_1 and S_2 are finite, then they have the same number of vectors.

Definition

- The cardinality of a basis of the vector space V if called the **dimension** of V.
- 2 The dimension of V is denoted by $\dim(V)$.

lacksquare In \mathbb{R}^n ,

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

1 In \mathbb{R}^n , let S be the subset consisting of the vectors:

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$.

1 In \mathbb{R}^n , let S be the subset consisting of the vectors:

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

2 Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- ② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .
- Is S linearly independent?

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- ② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .
- **1** Is *S* linearly independent? Answer: Yes.

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- ② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .
- Is S linearly independent? Answer: Yes. Why?

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- ② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .
- **3** Is *S* linearly independent? Answer: Yes. Why? (Because $x_1e_1 + \cdots + x_ne_n = 0$

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- ② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .
- **3** Is *S* linearly independent? Answer: Yes. Why? (Because $x_1e_1 + \cdots + x_ne_n = 0 \implies \text{every } x_i = 0.$)

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- ② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .
- **3** Is *S* linearly independent? Answer: Yes. Why? (Because $x_1e_1 + \cdots + x_ne_n = 0 \implies \text{every } x_i = 0.$)
- **4** Therefore S is a basis of \mathbb{R}^n .

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- ② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .
- **3** Is *S* linearly independent? Answer: Yes. Why? (Because $x_1e_1 + \cdots + x_ne_n = 0 \implies \text{every } x_i = 0$.)
- **4** Therefore S is a basis of \mathbb{R}^n .
- **5** This particular basis is called the **standard basis** of \mathbb{R}^n .

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- ② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .
- **3** Is *S* linearly independent? Answer: Yes. Why? (Because $x_1e_1 + \cdots + x_ne_n = 0 \implies \text{every } x_i = 0.$)
- Therefore S is a basis of \mathbb{R}^n .
- **5** This particular basis is called the **standard basis** of \mathbb{R}^n .
- Thus $\dim(\mathbb{R}^n)$

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- ② Note that any vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ can be written as a linear combination $x_1e_1 + \cdots + x_ne_n$. So S spans \mathbb{R}^n .
- **3** Is *S* linearly independent? Answer: Yes. Why? (Because $x_1e_1 + \cdots + x_ne_n = 0 \implies \text{every } x_i = 0.$)
- **4** Therefore S is a basis of \mathbb{R}^n .
- **5** This particular basis is called the **standard basis** of \mathbb{R}^n .
- **1** Thus $\dim(\mathbb{R}^n) = n$.

For $\mathbb{R}[x]$, the set of all polynomials over \mathbb{R} ,

For $\mathbb{R}[x]$, the set of all polynomials over \mathbb{R} , the subset

$$S = \{x^n : n = 0, 1, 2, \ldots\}$$

For $\mathbb{R}[x]$, the set of all polynomials over \mathbb{R} , the subset

$$S = \{x^n : n = 0, 1, 2, \ldots\}$$

forms a basis.

For $\mathbb{R}[x]$, the set of all polynomials over \mathbb{R} , the subset

$$S = \{x^n : n = 0, 1, 2, \ldots\}$$

forms a basis. Thus $\dim(\mathbb{R}[x])$

For $\mathbb{R}[x]$, the set of all polynomials over \mathbb{R} , the subset

$$S = \{x^n : n = 0, 1, 2, \ldots\}$$

forms a basis. Thus $\dim(\mathbb{R}[x]) = \infty$.

Theorems related to the dimension of a vector space

 In the rest of the slides, it is proved that if V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Theorems related to the dimension of a vector space

- In the rest of the slides, it is proved that if V is a finite dimensional vector space, then any two bases of V have the same number of elements.
- Interested students can read it on their own

Lemma

Suppose $\{v_1, v_2, \dots, v_n\}$ spans V.

Lemma

Suppose $\{v_1, v_2, \dots, v_n\}$ spans V. Let $u \neq 0$ is a vector in V.

Lemma

Suppose $\{v_1, v_2, \dots, v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V,

Lemma

Suppose $\{v_1, v_2, \ldots, v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors $\{v_1, v_2, \ldots, v_n\}$,

Lemma

Suppose $\{v_1, v_2, ..., v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors $\{v_1, v_2, ..., v_n\}$, we obtain that $\{u, v_2, ..., v_n\}$ spans V.

Lemma

Suppose $\{v_1, v_2, ..., v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors $\{v_1, v_2, ..., v_n\}$, we obtain that $\{u, v_2, ..., v_n\}$ spans V.

Proof. Since $\{v_1, v_2, \ldots, v_n\}$ spans V,

Lemma

Suppose $\{v_1, v_2, \ldots, v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors $\{v_1, v_2, \ldots, v_n\}$, we obtain that $\{u, v_2, \ldots, v_n\}$ spans V.

Proof. Since $\{v_1, v_2, \dots, v_n\}$ spans V, u can be written as $u = c_1v_1 + c_2v_2 + \dots + c_nv_n$ for some $c_1, \dots, c_n \in \mathbb{R}$. (1)

Lemma

Suppose $\{v_1, v_2, \ldots, v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors $\{v_1, v_2, \ldots, v_n\}$, we obtain that $\{u, v_2, \ldots, v_n\}$ spans V.

Proof. Since $\{v_1, v_2, \dots, v_n\}$ spans V, u can be written as

$$u = c_1 v_1 + c_2 v_2 + \dots + c_n v_n \text{ for some } c_1, \dots, c_n \in \mathbb{R}.$$
 (1)

Since $u \neq 0$, at least one $c_i \neq 0$.

Lemma

Suppose $\{v_1, v_2, \ldots, v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors $\{v_1, v_2, \ldots, v_n\}$, we obtain that $\{u, v_2, \ldots, v_n\}$ spans V.

Proof. Since $\{v_1, v_2, \dots, v_n\}$ spans V, u can be written as

$$u = c_1 v_1 + c_2 v_2 + \dots + c_n v_n \text{ for some } c_1, \dots, c_n \in \mathbb{R}.$$
 (1)

Since $u \neq 0$, at least one $c_i \neq 0$. So (1) yields that $v_i =$

$$(1/c_i)u+(c_1/c_i)v_1+\cdots+(c_{i-1}/c_i)v_{i-1}+(c_{i+1}/c_i)v_{i+1}+\cdots+(c_n/c_i)v_n.$$

Lemma

Suppose $\{v_1, v_2, \ldots, v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors $\{v_1, v_2, \ldots, v_n\}$, we obtain that $\{u, v_2, \ldots, v_n\}$ spans V.

Proof. Since $\{v_1, v_2, \dots, v_n\}$ spans V, u can be written as

$$u = c_1 v_1 + c_2 v_2 + \dots + c_n v_n \text{ for some } c_1, \dots, c_n \in \mathbb{R}.$$
 (1)

Since $u \neq 0$, at least one $c_i \neq 0$. So (1) yields that $v_i =$

$$(1/c_i)u+(c_1/c_i)v_1+\cdots+(c_{i-1}/c_i)v_{i-1}+(c_{i+1}/c_i)v_{i+1}+\cdots+(c_n/c_i)v_n.$$

Since every $v \in V$ is a linear combination of v_1, v_2, \ldots, v_n , using the expression of v_i in that linear combination,

Lemma

Suppose $\{v_1, v_2, ..., v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors $\{v_1, v_2, ..., v_n\}$, we obtain that $\{u, v_2, ..., v_n\}$ spans V.

Proof. Since $\{v_1, v_2, \dots, v_n\}$ spans V, u can be written as

$$u = c_1 v_1 + c_2 v_2 + \dots + c_n v_n \text{ for some } c_1, \dots, c_n \in \mathbb{R}.$$
 (1)

Since $u \neq 0$, at least one $c_i \neq 0$. So (1) yields that $v_i =$

$$(1/c_i)u+(c_1/c_i)v_1+\cdots+(c_{i-1}/c_i)v_{i-1}+(c_{i+1}/c_i)v_{i+1}+\cdots+(c_n/c_i)v_n.$$

Since every $v \in V$ is a linear combination of v_1, v_2, \ldots, v_n , using the expression of v_i in that linear combination, it follows that v can be written as a linear combination of $v_1, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_n$.

On spanning set of V

Lemma

Suppose $\{v_1, v_2, \ldots, v_n\}$ spans V. Let $u \neq 0$ is a vector in V. Then some v_i can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors $\{v_1, v_2, \ldots, v_n\}$, we obtain that $\{u, v_2, \ldots, v_n\}$ spans V.

Proof. Since $\{v_1, v_2, \dots, v_n\}$ spans V, u can be written as

$$u = c_1 v_1 + c_2 v_2 + \dots + c_n v_n \text{ for some } c_1, \dots, c_n \in \mathbb{R}.$$
 (1)

Since $u \neq 0$, at least one $c_i \neq 0$. So (1) yields that $v_i =$

$$(1/c_i)u+(c_1/c_i)v_1+\cdots+(c_{i-1}/c_i)v_{i-1}+(c_{i+1}/c_i)v_{i+1}+\cdots+(c_n/c_i)v_n.$$

Since every $v \in V$ is a linear combination of v_1, v_2, \ldots, v_n , using the expression of v_i in that linear combination, it follows that v can be written as a linear combination of $v_1, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_n$.

Theorem

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$,

Theorem

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V.

Theorem

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Theorem

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m.

Theorem

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$.

Theorem

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V.

$\mathsf{Theorem}$

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$\mathsf{Theorem}$

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$$u_2 = b_1 u_1 + b_2 v_2 + b_3 v_3 + \cdots + b_n v_n$$
 for some $b_i \in \mathbb{R}$.

$\mathsf{Theorem}$

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$$u_2 = b_1 u_1 + b_2 v_2 + b_3 v_3 + \dots + b_n v_n$$
 for some $b_i \in \mathbb{R}$.

Then at least one of $\{b_2, \ldots, b_n\}$ is non-zero.

$\mathsf{Theorem}$

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$$u_2 = b_1 u_1 + b_2 v_2 + b_3 v_3 + \dots + b_n v_n$$
 for some $b_i \in \mathbb{R}$.

Then at least one of $\{b_2, \ldots, b_n\}$ is non-zero. Hence, if necessary, by renaming the vectors v_2, \ldots, v_n , we have that $\{u_1, u_2, v_3, \ldots, v_n\}$ spans V.

$\mathsf{Theorem}$

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$$u_2 = b_1 u_1 + b_2 v_2 + b_3 v_3 + \dots + b_n v_n$$
 for some $b_i \in \mathbb{R}$.

Then at least one of $\{b_2, \ldots, b_n\}$ is non-zero.

Hence, if necessary, by renaming the vectors v_2, \ldots, v_n , we have that $\{u_1, u_2, v_3, \ldots, v_n\}$ spans V.

Continuing in this way, after n steps, we obtain that $\{u_1, u_2, \dots, u_n\}$ spans V.

$\mathsf{Theorem}$

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$$u_2 = b_1 u_1 + b_2 v_2 + b_3 v_3 + \dots + b_n v_n$$
 for some $b_i \in \mathbb{R}$.

Then at least one of $\{b_2, \ldots, b_n\}$ is non-zero.

Hence, if necessary, by renaming the vectors v_2, \ldots, v_n , we have that $\{u_1, u_2, v_3, \ldots, v_n\}$ spans V.

Continuing in this way, after n steps, we obtain that $\{u_1, u_2, \dots, u_n\}$ spans V. Hence

$$u_{n+1} \in V = \text{Span}\{u_1, u_2, \dots, u_n\}.$$

Theorem

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$$u_2 = b_1 u_1 + b_2 v_2 + b_3 v_3 + \dots + b_n v_n$$
 for some $b_i \in \mathbb{R}$.

Then at least one of $\{b_2, \ldots, b_n\}$ is non-zero.

Hence, if necessary, by renaming the vectors v_2, \ldots, v_n , we have that $\{u_1, u_2, v_3, \ldots, v_n\}$ spans V.

Continuing in this way, after n steps, we obtain that $\{u_1, u_2, \dots, u_n\}$ spans V. Hence

$$u_{n+1} \in V = \text{Span}\{u_1, u_2, \dots, u_n\}.$$

Therefore $\{u_1, u_2, \dots, u_{n+1}\}$ is linearly dependent,

$\mathsf{Theorem}$

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$$u_2 = b_1 u_1 + b_2 v_2 + b_3 v_3 + \dots + b_n v_n$$
 for some $b_i \in \mathbb{R}$.

Then at least one of $\{b_2, \ldots, b_n\}$ is non-zero.

Hence, if necessary, by renaming the vectors v_2, \ldots, v_n , we have that $\{u_1, u_2, v_3, \ldots, v_n\}$ spans V.

Continuing in this way, after n steps, we obtain that $\{u_1, u_2, \dots, u_n\}$ spans V. Hence

$$u_{n+1} \in V = \text{Span}\{u_1, u_2, \dots, u_n\}.$$

Therefore $\{u_1, u_2, \dots, u_{n+1}\}$ is linearly dependent, which contradicts the assumption.

$\mathsf{Theorem}$

Suppose $V = \operatorname{Span}\{v_1, v_2, \dots, v_n\}$, and $\{u_1, u_2, \dots, u_m\}$ is a linearly independent subset of V. Then $m \leq n$.

Proof. If possible, let n < m. Note that $u_i \neq 0$. So, by renaming the vectors v_1, \ldots, v_n , we have $\{u_1, v_2, v_3, \ldots, v_n\}$ spans V. In the 2nd step, since $u_2 \in V = \operatorname{Span}\{u_1, v_2, v_3, \ldots, v_n\}$,

$$u_2 = b_1 u_1 + b_2 v_2 + b_3 v_3 + \dots + b_n v_n$$
 for some $b_i \in \mathbb{R}$.

Then at least one of $\{b_2, \ldots, b_n\}$ is non-zero.

Hence, if necessary, by renaming the vectors v_2, \ldots, v_n , we have that $\{u_1, u_2, v_3, \ldots, v_n\}$ spans V.

Continuing in this way, after n steps, we obtain that $\{u_1, u_2, \dots, u_n\}$ spans V. Hence

$$u_{n+1} \in V = \operatorname{Span}\{u_1, u_2, \dots, u_n\}.$$

Therefore $\{u_1, u_2, \dots, u_{n+1}\}$ is linearly dependent, which contradicts the assumption. Hence $m \le n$.

Corollary

If V is a finite dimensional vector space,

Corollary

If V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Corollary

If V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Proof. Since V is finite dimensional, it has a finite basis $\{v_1, \ldots, v_n\}$.

Corollary

If V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Proof. Since V is finite dimensional, it has a finite basis $\{v_1, \ldots, v_n\}$. If $\{u_1, \ldots, u_m\}$ is another basis of V,

Corollary

If V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Proof. Since V is finite dimensional, it has a finite basis $\{v_1,\ldots,v_n\}$. If $\{u_1,\ldots,u_m\}$ is another basis of V, then by the last theorem, m < n.

Corollary

If V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Proof. Since V is finite dimensional, it has a finite basis $\{v_1, \ldots, v_n\}$.

If $\{u_1, \ldots, u_m\}$ is another basis of V, then by the last theorem, $m \le n$.

By the same argument, $n \leq m$.

Corollary

If V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Proof. Since V is finite dimensional, it has a finite basis $\{v_1, \ldots, v_n\}$.

If $\{u_1, \ldots, u_m\}$ is another basis of V, then by the last theorem, $m \le n$.

By the same argument, $n \le m$. Thus m = n.

Corollary

If V is a finite dimensional vector space, then any two bases of V have the same number of elements.

Proof. Since V is finite dimensional, it has a finite basis $\{v_1, \ldots, v_n\}$.

If $\{u_1, \ldots, u_m\}$ is another basis of V, then by the last theorem, $m \le n$.

By the same argument, $n \le m$. Thus m = n.

Corollary

Let V be a finite dimensional vector space,

Corollary

Let V be a finite dimensional vector space, d = dim(V).

Corollary

Let V be a finite dimensional vector space, d = dim(V). Then

• any subset of V containing more than d vectors is linearly dependent.

Corollary¹

Let V be a finite dimensional vector space, d = dim(V). Then

• any subset of V containing more than d vectors is linearly dependent. Thus a basis of V is a maximal linearly independent subset of V.

Corollary

Let V be a finite dimensional vector space, d = dim(V). Then

- any subset of V containing more than d vectors is linearly dependent. Thus a basis of V is a maximal linearly independent subset of V.
- A subset of V containing fewer than d vectors cannot span V.

Corollary

Let V be a finite dimensional vector space, d = dim(V). Then

- any subset of V containing more than d vectors is linearly dependent. Thus a basis of V is a maximal linearly independent subset of V.
- A subset of V containing fewer than d vectors cannot span V. Hence a basis of V can also be expressed as a minimal spanning set of V.

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V.

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite,

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

$\mathsf{Theorem}$

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements.

$\mathsf{Theorem}$

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

$\mathsf{Theorem}$

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V,

$\mathsf{Theorem}$

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done.

$\mathsf{Theorem}$

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\operatorname{Span}(S) \neq V$,

$\mathsf{Theorem}$

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\operatorname{Span}(S) \neq V$, then $\exists v_1 \in V \setminus \operatorname{Span}(S)$.

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\operatorname{Span}(S) \neq V$, then $\exists \ v_1 \in V \setminus \operatorname{Span}(S)$. Hence, $S_1 := S \cup \{v_1\}$ is linearly independent.

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\operatorname{Span}(S) \neq V$, then $\exists \ v_1 \in V \setminus \operatorname{Span}(S)$. Hence, $S_1 := S \cup \{v_1\}$ is linearly independent. If $\operatorname{Span}(S_1) = V$, then we are done.

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\operatorname{Span}(S) \neq V$, then $\exists v_1 \in V \setminus \operatorname{Span}(S)$. Hence, $S_1 := S \cup \{v_1\}$ is linearly independent. If $\operatorname{Span}(S_1) = V$, then we are done. Otherwise, if $\operatorname{Span}(S_1) \neq V$,

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\operatorname{Span}(S) \neq V$, then $\exists v_1 \in V \setminus \operatorname{Span}(S)$. Hence, $S_1 := S \cup \{v_1\}$ is linearly independent. If $\operatorname{Span}(S_1) = V$, then we are done. Otherwise, if $\operatorname{Span}(S_1) \neq V$, there is $v_2 \in V \setminus \operatorname{Span}(S_1)$,

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\mathrm{Span}(S) \neq V$, then $\exists \ v_1 \in V \setminus \mathrm{Span}(S)$. Hence, $S_1 := S \cup \{v_1\}$ is linearly independent. If $\mathrm{Span}(S_1) = V$, then we are done. Otherwise, if $\mathrm{Span}(S_1) \neq V$, there is $v_2 \in V \setminus \mathrm{Span}(S_1)$, and hence $S_2 := S \cup \{v_1, v_2\}$ is linearly independent.

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\operatorname{Span}(S) \neq V$, then $\exists \ v_1 \in V \setminus \operatorname{Span}(S)$. Hence, $S_1 := S \cup \{v_1\}$ is linearly independent. If $\operatorname{Span}(S_1) = V$, then we are done.

Otherwise, if $\mathrm{Span}(S_1) \neq V$, there is $v_2 \in V \setminus \mathrm{Span}(S_1)$, and hence $S_2 := S \cup \{v_1, v_2\}$ is linearly independent.

This process stops after some finite steps because at most $\dim(V)$ linearly independent vectors can be there in V.

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\operatorname{Span}(S) \neq V$, then $\exists v_1 \in V \setminus \operatorname{Span}(S)$. Hence, $S_1 := S \cup \{v_1\}$ is linearly independent. If $\operatorname{Span}(S_1) = V$, then we are done.

Otherwise, if $\mathrm{Span}(S_1) \neq V$, there is $v_2 \in V \setminus \mathrm{Span}(S_1)$, and hence $S_2 := S \cup \{v_1, v_2\}$ is linearly independent.

This process stops after some finite steps because at most $\dim(V)$ linearly independent vectors can be there in V.

So finally we obtain a set $S \cup \{v_1, v_2, \dots, v_m\} \subset V$ which is linearly independent and spans V,

Theorem

Let S be a linearly independent subset of a finite dimensional vector space V. Then S is finite, and it is part of a (finite) basis of V.

Proof. Note that S contains at most $\dim(V)$ elements. So S is finite.

If S spans V, then S is a basis of V, and we are done. If $\operatorname{Span}(S) \neq V$, then $\exists v_1 \in V \setminus \operatorname{Span}(S)$. Hence, $S_1 := S \cup \{v_1\}$ is linearly independent. If $\operatorname{Span}(S_1) = V$, then we are done.

Otherwise, if $\mathrm{Span}(S_1) \neq V$, there is $v_2 \in V \setminus \mathrm{Span}(S_1)$, and hence $S_2 := S \cup \{v_1, v_2\}$ is linearly independent.

This process stops after some finite steps because at most $\dim(V)$ linearly independent vectors can be there in V.

So finally we obtain a set $S \cup \{v_1, v_2, \dots, v_m\} \subset V$ which is linearly independent and spans V, i.e., it forms a basis of V.

Let V be a finite dimensional vector space.

Let V be a finite dimensional vector space.

Theorem

In V, every linearly independent set of vectors is part of a basis.

Let V be a finite dimensional vector space.

Theorem

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial,

Let V be a finite dimensional vector space.

Theorem

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then dim(W) = dim(V).

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then dim(W) = dim(V). Proof of 'only if' part.

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then $\dim(W) = \dim(V)$. Proof of 'only if' part. Let $W \subsetneq V$.

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then $\dim(W) = \dim(V)$. Proof of 'only if' part. Let $W \subsetneq V$. If W = 0, then we are done.

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W=V, then $\dim(W)=\dim(V)$. Proof of 'only if' part. Let $W\subsetneq V$. If W=0, then we are done. Thus we may assume that $\exists \ u\neq 0$ in W.

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then dim(W) = dim(V).

Proof of 'only if' part. Let $W \subsetneq V$. If W = 0, then we are done.

Thus we may assume that $\exists u \neq 0$ in W.

Then $\{u\}$ can be extended to a finite basis (say S) of W.

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then $\dim(W) = \dim(V)$.

Proof of 'only if' part. Let $W \subsetneq V$. If W = 0, then we are done.

Thus we may assume that $\exists u \neq 0$ in W.

Then $\{u\}$ can be extended to a finite basis (say S) of W. So, in particular, W is finite dimensional.

Let V be a finite dimensional vector space.

Theorem

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then $\dim(W) = \dim(V)$.

Proof of 'only if' part. Let $W \subsetneq V$. If W = 0, then we are done.

Thus we may assume that $\exists u \neq 0$ in W.

Then $\{u\}$ can be extended to a finite basis (say S) of W. So, in particular, W is finite dimensional.

Since $\operatorname{Span}(S) = W \subsetneq V$,

Let V be a finite dimensional vector space.

Theorem

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then $\dim(W) = \dim(V)$.

Proof of 'only if' part. Let $W \subsetneq V$. If W = 0, then we are done.

Thus we may assume that $\exists u \neq 0$ in W.

Then $\{u\}$ can be extended to a finite basis (say S) of W. So, in particular, W is finite dimensional.

Since $\operatorname{Span}(S) = W \subsetneq V$, there is a vector $v \in V \setminus \operatorname{Span}(S)$.

Let V be a finite dimensional vector space.

Theorem

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then $\dim(W) = \dim(V)$.

Proof of 'only if' part. Let $W \subsetneq V$. If W = 0, then we are done.

Thus we may assume that $\exists u \neq 0$ in W.

Then $\{u\}$ can be extended to a finite basis (say S) of W. So, in particular, W is finite dimensional.

Since $\operatorname{Span}(S) = W \subsetneq V$, there is a vector $v \in V \setminus \operatorname{Span}(S)$.

Then $S \cup \{v\}$ is a linearly independent subset of V.

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then $\dim(W) = \dim(V)$.

Proof of 'only if' part. Let $W \subsetneq V$. If W = 0, then we are done.

Thus we may assume that $\exists u \neq 0$ in W.

Then $\{u\}$ can be extended to a finite basis (say S) of W. So, in particular, W is finite dimensional.

Since $\operatorname{Span}(S) = W \subsetneq V$, there is a vector $v \in V \setminus \operatorname{Span}(S)$.

Then $S \cup \{v\}$ is a linearly independent subset of V.

Hence $S \cup \{v\}$ can be extended to a basis of V.

Let V be a finite dimensional vector space.

$\mathsf{Theorem}$

In V, every linearly independent set of vectors is part of a basis.

Corollary

A subspace W of V is PROPER if and only if $\dim(W) < \dim(V)$.

The 'if' part is trivial, because if W = V, then $\dim(W) = \dim(V)$.

Proof of 'only if' part. Let $W \subsetneq V$. If W = 0, then we are done.

Thus we may assume that $\exists u \neq 0$ in W.

Then $\{u\}$ can be extended to a finite basis (say S) of W. So, in particular, W is finite dimensional.

Since $\operatorname{Span}(S) = W \subsetneq V$, there is a vector $v \in V \setminus \operatorname{Span}(S)$.

Then $S \cup \{v\}$ is a linearly independent subset of V.

Hence $S \cup \{v\}$ can be extended to a basis of V.

Therefore $\dim(W) < \dim(V)$.

Example: Proper subspaces of \mathbb{R}^2

Definition

Let W_1 and W_2 be two subspaces of V.

Definition

Definition

Let W_1 and W_2 be two subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}.$$

Definition

Let W_1 and W_2 be two subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}.$$

Definition

Definition

Definition

Definition

Theorem

Let W_1 and W_2 be finite dimensional subspaces of V.

Theorem

Let W_1 and W_2 be finite dimensional subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}$$

is a finite dimensional subspace of V,

Theorem

Let W_1 and W_2 be finite dimensional subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}$$

is a finite dimensional subspace of V, and

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Theorem

Let W_1 and W_2 be finite dimensional subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}$$

is a finite dimensional subspace of V, and

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Proof. Since $W_1 \cap W_2 \subseteq W_1$,

Theorem

Let W_1 and W_2 be finite dimensional subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}$$

is a finite dimensional subspace of V, and

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Proof. Since $W_1 \cap W_2 \subseteq W_1$, it follows that $W_1 \cap W_2$ has a finite basis $\{u_1, \ldots, u_r\}$,

Theorem

Let W_1 and W_2 be finite dimensional subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}$$

is a finite dimensional subspace of V, and

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Proof. Since $W_1 \cap W_2 \subseteq W_1$, it follows that $W_1 \cap W_2$ has a finite basis $\{u_1, \ldots, u_r\}$, which can be extended to a basis

$$\{u_1, \ldots, u_r, v_1, \ldots, v_m\}$$
 of W_1

Theorem

Let W_1 and W_2 be finite dimensional subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}$$

is a finite dimensional subspace of V, and

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Proof. Since $W_1 \cap W_2 \subseteq W_1$, it follows that $W_1 \cap W_2$ has a finite basis $\{u_1, \ldots, u_r\}$, which can be extended to a basis

$$\{u_1, \ldots, u_r, v_1, \ldots, v_m\}$$
 of W_1

and a basis

$$\{u_1, \dots, u_r, w_1, \dots, w_n\}$$
 of W_2 .

Theorem

Let W_1 and W_2 be finite dimensional subspaces of V. Then

$$W_1 + W_2 := \{w_1 + w_2 : w_i \in W_i\}$$

is a finite dimensional subspace of V, and

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Proof. Since $W_1 \cap W_2 \subseteq W_1$, it follows that $W_1 \cap W_2$ has a finite basis $\{u_1, \ldots, u_r\}$, which can be extended to a basis

$$\{u_1, \ldots, u_r, v_1, \ldots, v_m\}$$
 of W_1

and a basis

$$\{u_1, \ldots, u_r, w_1, \ldots, w_n\}$$
 of W_2 .

Show that $\{u_1, \ldots, u_r, v_1, \ldots, v_m, w_1, \ldots, w_n\}$ is a basis of $W_1 + W_2$.

① Let V be a finite dimensional vector space over \mathbb{R} .

- **1** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.

- **①** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.
- \odot It essentially enables us to introduce coordinates in V.

- **①** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.
- $oldsymbol{\circ}$ It essentially enables us to introduce coordinates in V.
- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis of V.

- **①** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.
- $oldsymbol{\circ}$ It essentially enables us to introduce coordinates in V.
- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis of V.
- **6** $Given <math>v \in V$,

- **1** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.
- $oldsymbol{\circ}$ It essentially enables us to introduce coordinates in V.
- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis of V.
- **3** Given $v \in V$, there is a UNIQUE *n*-tuple (x_1, \ldots, x_n) of scalars such that $v = x_1v_1 + \cdots + x_nv_n$.

- **①** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.
- $oldsymbol{\circ}$ It essentially enables us to introduce coordinates in V.
- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis of V.
- **3** Given $v \in V$, there is a UNIQUE *n*-tuple (x_1, \ldots, x_n) of scalars such that $v = x_1v_1 + \cdots + x_nv_n$. Why?

- **①** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.
- $oldsymbol{\circ}$ It essentially enables us to introduce coordinates in V.
- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis of V.
- **5** Given $v \in V$, there is a UNIQUE *n*-tuple (x_1, \ldots, x_n) of scalars such that $v = x_1v_1 + \cdots + x_nv_n$. Why?
- **10** We call such x_i the *i*th **coordinate of** v **relative to** \mathcal{B} .

- **①** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.
- $oldsymbol{\circ}$ It essentially enables us to introduce coordinates in V.
- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis of V.
- **3** Given $v \in V$, there is a UNIQUE *n*-tuple (x_1, \ldots, x_n) of scalars such that $v = x_1v_1 + \cdots + x_nv_n$. Why?
- **1** We call such x_i the *i*th **coordinate of** v **relative to** \mathcal{B} .
- **1** We denote the **coordinate vector of** v **relative to** \mathcal{B} by

$$[v]_{\mathcal{B}} := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

- **①** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.
- $oldsymbol{0}$ It essentially enables us to introduce coordinates in V.
- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis of V.
- **3** Given $v \in V$, there is a UNIQUE *n*-tuple (x_1, \ldots, x_n) of scalars such that $v = x_1v_1 + \cdots + x_nv_n$. Why?
- We call such x_i the *i*th **coordinate** of v **relative to** \mathcal{B} .
- **1** We denote the **coordinate vector of** v **relative to** \mathcal{B} by

$$[v]_{\mathcal{B}} := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

1 On the other hand, every *n*-tuple $(x_1, \ldots, x_n) \in \mathbb{R}^n$ is the coordinate vector of some vector in V relative to \mathcal{B} ,

- **①** Let V be a finite dimensional vector space over \mathbb{R} .
- ② An **ordered basis** of V is nothing but a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ with a specified ordering of its vectors.
- $oldsymbol{0}$ It essentially enables us to introduce coordinates in V.
- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis of V.
- **3** Given $v \in V$, there is a UNIQUE *n*-tuple (x_1, \ldots, x_n) of scalars such that $v = x_1v_1 + \cdots + x_nv_n$. Why?
- **1** We call such x_i the *i*th **coordinate of** v **relative to** \mathcal{B} .
- **1** We denote the **coordinate vector of** v **relative to** \mathcal{B} by

$$[v]_{\mathcal{B}} := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

1 On the other hand, every *n*-tuple $(x_1, \ldots, x_n) \in \mathbb{R}^n$ is the coordinate vector of some vector in V relative to \mathcal{B} , namely the vector $x_1v_1 + \cdots + x_nv_n$.

1 Let $u, v \in V$ and $c \in \mathbb{R}$.

1 Let $u, v \in V$ and $c \in \mathbb{R}$. It can be easily verified that

$$[u+v]_{\mathcal{B}} = [u]_{\mathcal{B}} + [v]_{\mathcal{B}}$$
 and $[cu]_{\mathcal{B}} = c[u]_{\mathcal{B}}$.

1 Let $u, v \in V$ and $c \in \mathbb{R}$. It can be easily verified that

$$[u+v]_{\mathcal{B}} = [u]_{\mathcal{B}} + [v]_{\mathcal{B}}$$
 and $[cu]_{\mathcal{B}} = c[u]_{\mathcal{B}}$.

f 2 Thus an ordered basis $\cal B$ of $\cal V$ determines a one-to-one correspondence

$$v \longleftrightarrow [v]_{\mathcal{B}}$$

1 Let $u, v \in V$ and $c \in \mathbb{R}$. It can be easily verified that

$$[u+v]_{\mathcal{B}} = [u]_{\mathcal{B}} + [v]_{\mathcal{B}}$$
 and $[cu]_{\mathcal{B}} = c[u]_{\mathcal{B}}$.

f 2 Thus an ordered basis $\cal B$ of $\cal V$ determines a one-to-one correspondence

$$v \longleftrightarrow [v]_{\mathcal{B}}$$

between the set of all vectors in V and the set of all n-tuples in \mathbb{R}^n ,

1 Let $u, v \in V$ and $c \in \mathbb{R}$. It can be easily verified that

$$[u+v]_{\mathcal{B}} = [u]_{\mathcal{B}} + [v]_{\mathcal{B}}$$
 and $[cu]_{\mathcal{B}} = c[u]_{\mathcal{B}}$.

f 2 Thus an ordered basis $\cal B$ of $\cal V$ determines a one-to-one correspondence

$$v \longleftrightarrow [v]_{\mathcal{B}}$$

between the set of all vectors in V and the set of all n-tuples in \mathbb{R}^n , and this correspondence respects both the vector additions and scalar multiplications.

1 Let $u, v \in V$ and $c \in \mathbb{R}$. It can be easily verified that

$$[u+v]_{\mathcal{B}} = [u]_{\mathcal{B}} + [v]_{\mathcal{B}}$$
 and $[cu]_{\mathcal{B}} = c[u]_{\mathcal{B}}$.

f 2 Thus an ordered basis $\cal B$ of $\cal V$ determines a one-to-one correspondence

$$v \longleftrightarrow [v]_{\mathcal{B}}$$

between the set of all vectors in V and the set of all n-tuples in \mathbb{R}^n , and this correspondence respects both the vector additions and scalar multiplications.

3 This also shows that any vector space V of dimension n over \mathbb{R} is isomorphic to \mathbb{R}^n .

① Let $\mathcal{B} = \{v_1, \dots, v_n\}$, $\mathcal{B}' = \{v'_1, \dots, v'_n\}$ be ordered bases of V.

- ① Let $\mathcal{B} = \{v_1, \dots, v_n\}$, $\mathcal{B}' = \{v_1', \dots, v_n'\}$ be ordered bases of V.
- ② There exists an $n \times n$ matrix P such that $P[v]_{\mathcal{B}} = [v]_{\mathcal{B}'} \ \forall \ v \in V$.

- ① Let $\mathcal{B} = \{v_1, \dots, v_n\}$, $\mathcal{B}' = \{v_1', \dots, v_n'\}$ be ordered bases of V.
- ② There exists an $n \times n$ matrix P such that $P[v]_{\mathcal{B}} = [v]_{\mathcal{B}'} \ \forall \ v \in V$. This P is called the **change of coordinates matrix** from \mathcal{B} to \mathcal{B}' .

- ① Let $\mathcal{B} = \{v_1, \dots, v_n\}$, $\mathcal{B}' = \{v_1', \dots, v_n'\}$ be ordered bases of V.
- ② There exists an $n \times n$ matrix P such that $P[v]_{\mathcal{B}} = [v]_{\mathcal{B}'} \ \forall \ v \in V$. This P is called the **change of coordinates matrix** from \mathcal{B} to \mathcal{B}' .
- **3** Since \mathcal{B}' is a basis, \exists UNIQUE scalars P_{ij} $(1 \le i, j \le n)$ such that

$$v_j = \sum_{i=1}^n P_{ij} v_i' \quad \text{for every } 1 \le j \le n.$$
 (2)

- ① Let $\mathcal{B} = \{v_1, \dots, v_n\}$, $\mathcal{B}' = \{v_1', \dots, v_n'\}$ be ordered bases of V.
- ② There exists an $n \times n$ matrix P such that $P[v]_{\mathcal{B}} = [v]_{\mathcal{B}'} \ \forall \ v \in V$. This P is called the **change of coordinates matrix** from \mathcal{B} to \mathcal{B}' .
- **3** Since \mathcal{B}' is a basis, \exists UNIQUE scalars P_{ij} $(1 \le i, j \le n)$ such that

$$v_j = \sum_{i=1}^n P_{ij} v_i'$$
 for every $1 \le j \le n$. (2)

4 Fix $v \in V$.

- Let $\mathcal{B} = \{v_1, \dots, v_n\}$, $\mathcal{B}' = \{v'_1, \dots, v'_n\}$ be ordered bases of V.
- ② There exists an $n \times n$ matrix P such that $P[v]_{\mathcal{B}} = [v]_{\mathcal{B}'} \ \forall \ v \in V$. This P is called the **change of coordinates matrix** from \mathcal{B} to \mathcal{B}' .
- **3** Since \mathcal{B}' is a basis, \exists UNIQUE scalars P_{ij} $(1 \le i, j \le n)$ such that

$$v_j = \sum_{i=1}^n P_{ij} v_i'$$
 for every $1 \le j \le n$. (2)

- ① Let $\mathcal{B} = \{v_1, \dots, v_n\}$, $\mathcal{B}' = \{v_1', \dots, v_n'\}$ be ordered bases of V.
- ② There exists an $n \times n$ matrix P such that $P[v]_{\mathcal{B}} = [v]_{\mathcal{B}'} \ \forall \ v \in V$. This P is called the **change of coordinates matrix** from \mathcal{B} to \mathcal{B}' .
- **3** Since \mathcal{B}' is a basis, \exists UNIQUE scalars P_{ij} $(1 \le i, j \le n)$ such that

$$v_j = \sum_{i=1}^n P_{ij} v_i'$$
 for every $1 \le j \le n$. (2)

- ① Let $\mathcal{B} = \{v_1, \dots, v_n\}$, $\mathcal{B}' = \{v_1', \dots, v_n'\}$ be ordered bases of V.
- ② There exists an $n \times n$ matrix P such that $P[v]_{\mathcal{B}} = [v]_{\mathcal{B}'} \ \forall \ v \in V$. This P is called the **change of coordinates matrix** from \mathcal{B} to \mathcal{B}' .
- **3** Since \mathcal{B}' is a basis, \exists UNIQUE scalars P_{ij} $(1 \le i, j \le n)$ such that

$$v_j = \sum_{i=1}^n P_{ij} v_i'$$
 for every $1 \le j \le n$. (2)

 $\P \text{ Fix } v \in V. \text{ Let } [v]_{\mathcal{B}} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \text{ and } [v]_{\mathcal{B}'} = \begin{bmatrix} x'_1 \\ \vdots \\ x'_n \end{bmatrix}. \text{ Hence }$

$$v = \sum_{j=1}^{n} x_j v_j = \sum_{j=1}^{n} x_j \left(\sum_{i=1}^{n} P_{ij} v_i' \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} P_{ij} x_j \right) v_i'.$$
 (3)

- Let $\mathcal{B} = \{v_1, \dots, v_n\}$, $\mathcal{B}' = \{v'_1, \dots, v'_n\}$ be ordered bases of V.
- ② There exists an $n \times n$ matrix P such that $P[v]_{\mathcal{B}} = [v]_{\mathcal{B}'} \ \forall \ v \in V$. This P is called the **change of coordinates matrix** from \mathcal{B} to \mathcal{B}' .
- **3** Since \mathcal{B}' is a basis, \exists UNIQUE scalars P_{ij} $(1 \le i, j \le n)$ such that

$$v_j = \sum_{i=1}^n P_{ij} v_i' \quad \text{for every } 1 \le j \le n.$$
 (2)

$$v = \sum_{j=1}^{n} x_j v_j = \sum_{j=1}^{n} x_j \left(\sum_{i=1}^{n} P_{ij} v_i' \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} P_{ij} x_j \right) v_i'.$$
 (3)

It follows from the above equalities that

$$[v]_{\mathcal{B}'} = P[v]_{\mathcal{B}}$$
 for every vector $v \in V$.

Thank You!