FIN2010 Financial Management The Valuation of Long-Term Securities -Stock Valuation

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

What is a Stock?

Corporate's perspective:

What we own (Asset)

What we owe (Debt)
What is left over (Equity)

Investor's perspective:

Cash flow:

Purchase price

Dividend

- Rights: vote, claim to dividend
- What do I have no control of?
 - Cannot make day-to-day decisions
 - Cannot force the company to pay dividends

Stock Valuation—Overview

- Key: predicting <u>unknown</u> cash flows in the future and determining required return
 - Discounted dividend model: forecast what dividend investors will get
 - Discounted free cash flow model: forecast how much a firm can earn (free cash flow)
 - Comparable pricing: use the prices of comparable firms
- But predicting the future is hard! No one can accurately predict the future. As an investor or financial analyst, we can only try our best.

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

The Dividend Discount Model

 What is a stock's value if we plan to hold the stock for one year?

$$\begin{vmatrix} \mathbf{0} & \mathbf{1} \\ -P_0 & Div_1 + P_1 \end{vmatrix} \qquad P_0 = \left(\frac{Div_1 + P_1}{1 + r_E} \right)$$

 What is a stock's value if we plan to hold the stock for two years?

-r_F: discount rate. Also called required rate of return from equity or cost of equity in stock valuation

The Dividend Discount Model

What if you plan to hold the stock for N years?

$$P_0 = \frac{Div_1}{1 + r_E} + \frac{Div_2}{(1 + r_E)^2} + \cdots + \frac{Div_N}{(1 + r_E)^N} + \frac{P_N}{(1 + r_E)^N}$$

 In cases when a firm is expected to operate forever, we can let N go to infinity and write it as follows:

$$P_0 = \frac{Div_1}{1 + r_E} + \frac{Div_2}{(1 + r_E)^2} + \frac{Div_3}{(1 + r_E)^3} + \cdots = \sum_{n=1}^{\infty} \frac{Div_n}{(1 + r_E)^n}$$

• The price of any stock is equal to the present value of the expected future dividends it will pay.

The Dividend Discount Model

- The challenge: virtually impossible to forecast an infinite number of dividends
 - Therefore, we tend to make simplified assumptions about the future dividends
- Based on the assumptions we make, the DDM is classified into three categories:
 - Zero growth model: dividends are constant over time
 - Constant growth model: dividends grow at a constant rate
 - Variable growth model: dividends change for a number of years and then stabilize to a sustainable growth rate

Zero Growth Model

Zero growth model: the firm's future dividends will be a constant number forever.

• Zero Growth stock is a perpetuity: $P_0 = Div / r_E$ Where r_E is the required return on equity

Example – Zero Growth Model

Suppose you are thinking of purchasing the stock of Moore Oil, Inc. You expect the stock to pay a \$0.50 dividend every quarter and the required return is 10% per year. What is the price?

$$P_0 = .50 / (10\% / 4) = $20$$

Constant Growth Model

Constant Dividend Growth: the firm's future dividends will grow at a constant rate, g, forever

- The value of the firm depends on the current dividend level, the cost of equity, and the growth rate
- Insights:
 - $\triangleright g \uparrow$, price \uparrow Firms with higher growth potential have higher stock value
 - When investors demand higher return, a stock $\succ r_E \uparrow$, price has lower stock value. Investors often demand higher return for riskier stock.

Example – Constant Growth Model

 Consolidated Edison, Inc. is a regulated utility company that services the New York City area. Suppose Con Edison plans to pay \$2.60 per share in dividends in the coming year. If its equity cost of capital is 6% and dividends are expected to grow by 2% per year in the future, estimate the value of Con Edison's stock.

$$P_0 = \frac{Div_1}{r_e - g} = \frac{2.6}{6\% - 2\%} = $65$$

Variable Growth Model

 Dividend is unstable in the first stage, and then it grows at a sustainable constant rate in the second stage.

Value of stock = PV of dividend in the 1st stage + PV of dividend in the 2nd stage.

$$= \frac{\operatorname{Div}_{1}}{1+r} + \frac{\operatorname{Div}_{2}}{(1+r)^{2}} + \dots + \frac{\operatorname{Div}_{t}}{(1+r)^{t}} + \frac{\frac{\operatorname{Div}_{t}(1+g)}{r-g}}{(1+r)^{t}}$$

$$\frac{\operatorname{Value}_{(1+r)^{t}} + \frac{\operatorname{Div}_{t}(1+g)}{(1+r)^{t}}}{(1+r)^{t}}$$

Example – Discounted Dividend Model

 Example: Assume that there are 3 companies, and they all just paid exactly the same annual dividend of \$2.25 a share. In addition, the future annual rate of growth in dividends for each of the 3 companies has been estimated as follows. What are the fair prices if the discount rate is 10%?

${\rm Firm}{\rm A}$	Firm B	Firm C	
g=0	g=6%	Year 1	\$2.53
i.e., dividends are expected to remain at \$2.25/share	for the foreseeable future	Year 2 Year 3 Year 4	\$2.85 \$3.20 \$3.60
42.20/ 82282 8		Year 5 and beyond	g=6%

Solution:

• Firm A: value =
$$\frac{2.25}{10\%}$$
 = 22.5

• Firm B: value =
$$\frac{2.25 * (1+6\%)}{10\%-6\%}$$
 = 59.63

• Firm C: value =
$$\frac{2.53}{(1+10\%)^1} + \frac{2.85}{(1+10\%)^2} + \frac{3.2}{(1+10\%)^3} + \frac{3.6}{(1+10\%)^4} + \frac{\frac{3.6 * (1+6\%)}{10\%-6\%}}{(1+10\%)^4} = 74.68$$

Which Model to Choose?

Zero growth model:

 Generally used to price preferred stock

Variable growth model:

- Appropriate for companies expected to experience rapid or variable rates of growth for a period and then settle down to a more stable growth rate thereafter
- This, in fact, is the growth pattern of many young companies, so the model has considerable application in practice.

The constant-growth model:

- Best suited for common stocks of mature, dividend-paying companies
- They are probably large companies (or even some mature mid-cap companies) that have demonstrated an ability to generate steady rates of growth.
- The growth rates may not be identical from year to year, but they tend to move within a relatively narrow range.

What is the Appropriate g?

- The math in dividend discount model is easy. Real life is complicated.
- Biggest challenge: how to determine div, r_E , g
- Will discuss in depth how to determine r_E and div in future lectures.
- Here we briefly discuss a simple model of g and try to get a sense of what is driving stock price

Dividend Growth Rate

- Method 1: Calculate the growth rate of dividends in the past. Shortcoming: backward looking.
- Method 2: look at the key forces that actually drive the g. One commonly used approach:
 - Assumption: the ROE (return on equity) and the dividend payout ratio (b) are constant. Retention ratio (rr) = 1 – payout ratio (b)

$$\begin{aligned} \text{Dividend growth}(\mathbf{g}) &= \frac{\text{Div}_{t+1} - \text{Div}_t}{\text{Div}_t} \\ &= \frac{\text{ROE} * \text{Equity}_{t+1} * b - \text{ROE} * \text{Equity}_t * b}{\text{ROE} * \text{Equity}_t * b} \\ &= \frac{\text{Equity}_{t+1} - \text{Equity}_t}{\text{Equity}_t} \\ &= \frac{\text{Equity}_t + \text{Equity}_t * \text{ROE} * (1 - b) - \text{Equity}_t}{\text{Equity}_t} \\ &= ROE * (1 - b) \\ &= ROE * rr \end{aligned}$$

$$q = ROE * (1 - b) = ROE * rr$$

Insights from the Simple Model

 Applying the simple model of g into constant growth model generate some great insights:

$$P_0 = \frac{Div_1}{r_e - g} = \frac{ROE * Equity * (1 - rr)}{r_e - ROE * rr}$$

- Higher ROE, higher stock price. Profitable firms' stock have higher values.
- How does rr affect stock value?

$$\frac{\partial P}{\partial rr} = \frac{ROE * Equity (ROE - r_e)}{[r_e - ROE * rr]^2}$$

- > The answer will depend on the profitability of the firm's investments
 - When ROE> r_e , higher retention ratio leads to higher stock value.
 - When ROE< r_e , higher rr leads to lower stock value.
- > ROE: the return firms earn on the amount they reinvest into the business (retained earnings). r_e : investors' required return.
- Overall, increasing efficient investment leads to stock value increase.
 - Efficient (inefficient) investment: when ROE is higher (lower) than investors' required return.

Limitations of the Dividend Discount Model

- Cannot be used on stocks that do not pay dividends
- Div, r and g can only be estimated with error
- Results are extremely sensitive to r and g (small changes in r and g can lead to large changes in the estimated stock price)
- Forecasting g requires forecasting the ROE and dividend payout rate, which could be hard to predict

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

Method of Comparable

- We estimate the value of the firm <u>based on the value of</u> <u>other comparable firms</u>
- Another application of the Law of One Price: similar stocks should be price similarly
- Similar firms: similar in future growth and risk. One sensible but not perfect way to look for similar firm:
 - Same industry
 - Similar size and maturity level

Method of Comparable-Valuation multiples

- Stock shares do not have the same unit
 - Two firms are both worth \$100M:
 - (1) Firm A issued 1M shares, so each share is worth \$100
 - (2) Firm B issued 10M shares, so each share is worth \$10?
 - (3) Just because firm A's stock is \$100/share, we believe firm B's stock should also be \$100/share would be wrong.
- To adjust for the differences in scale, we calculate the share value in terms of a valuation multiple
 - By buying stocks, we earn rights to claim for the firms' future profit.
 - –Stock value= rights

value / rights

- -Analogous to:
- –House value= size (# of square meters)* value/square meter

Valuation Multiples

- Most commonly used model:
 - Stock's fair value=EPS*appropriate P/E ratio
 - Earnings per share (EPS) = $\frac{Net income}{\# of shares}$
 - P/E Ratio (市盈率): the multiple
 - Appropriate P/E ratio: often use similar firms' actual P/E ratio.
- Other commonly used valuation multiples
 - Stock's fair value=cash flow per share * appropriate price/cash flow per share
 - Stock's fair value=sales per share * appropriate price/sales per share
 - Stock's fair value=book value per share *appropriate price/book value per share

Example-Valuation Multiples

 Suppose furniture manufacturer Herman Miller, Inc., has earnings per share of \$1.38. If the average P/E of comparable furniture stocks is 21.3, estimate a value for Herman Miller using the P/E as a valuation multiple. What are the assumptions underlying this estimate?

- Solution: P_0 = \$1.38 *21.3= \$29.39
- Underlying assumptions: Herman Miller is similar to an average firm in the industry

Actual and appropriate P/E ratio

- Just like every stock has a market price, and every investor have her own fair value in mind.
- A stock has an acutal P/E ratio, and every investor may have her own fair P/E ratio in mind.
 - Actual P/E ratio=market price/EPS.
 - Fair price=EPS*appropriate P/E ratio
 - We often use other stock's actual P/E as the focal stock's appropriate P/E ratio.

What Determines P/E ratio?

 Let's dig deeper into P/E ratio with the constant growth model.

$$- P = \frac{div}{r-g}. \rightarrow \frac{P}{E} = \frac{div}{(r-g)*E}$$

- Although the constant growth model is not a perfect model, it provides great insights into the determinants of P/E ratio.
- Therefore, investors typically value firms with lower risk and higher growth rate at higher P/E ratio.
 - We will learn in the future topics that investors' required returns are positively related to the perceived risk in an investment. Higher risk, higher required return.

Where can We Find P/E Ratios?

Yahoo Finance:
 Apple Inc.

Apple Inc. (AAPL)
NasdaqGS - NasdaqGS Real Time Price. Currency in USD

☆ Follow

182.32 +0.76 (+0.42%)

182.96 +0.64 (+0.35%)

. 0 1.001 M L31	/ 11 661	modi 5.	00.001	

Summary	Chart	Conversation	ons Statistics	Historical Data	Prof	ile	Finar	ncials	Ana	alysis	C	ptions	Holders	Sustainability
Previous Close		181.56	Market Cap	2.815T	1D	5D	1M	6M	YTD	1Y	5Y	Max	44	⊭ ⁷ Full screen
Open		181.94	Beta (5Y Monthly)	1.31										220.00
Bid	0.0	0 x 1300	PE Ratio (TTM)	28.35)							M		153.33
Ask	0.0	00 x 800	EPS (TTM)	6.43				Δ						86.67
Day's Range	180.66	- 182.89	Earnings Date	May 02, 2024 - May 06, 2024										50.07
52 Week Range	143.90	- 199.62	Forward Dividend & Yield	0.96 (0.53%)			_	11-						20.00
Volume	39,	054,026	Ex-Dividend Date	Feb 09, 2024	Mar	1, 19				Sep	1, 2	i limili li 1		III.
Avg. Volume	54,	011,552	1y Target Est	201.08						Т	rade	prices are	not sourced	from all markets

• Sina Finance: 贵州茅台

信息地雷: 2023-12-19 贵州茅台: 2023年特别分红, 10派191.06000000(含税), 税后10派191.060000登

Historical P/E Ratios of Different Markets

7.5

Limitations of Comparable Pricing Method

- There is no clear guidance on how to
 - Choose similar firms
 - Adjust for differences in expected future growth rates, risk, or differences in accounting policies
- This method values a firm relative to similar firms in the market. However, the similar firms may be wrongly priced themselves, which may lead to a wrong valuation of the targeted firm
 - In contrast, discounted dividend model have the advantage that they can incorporate specific information about the firm's cost of capital or future growth

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

Discounted Free Cash Flow Model

(We will discuss this in detail in the 2nd half of the semester)

- Intuition: enterprise value = PV(free cash flow of the firm)
 - Enterprise value = equity value + debt value − cash →
 - Equity value = enterprise value + cash debt value
 - Logic: the cash generated by a firm can be paid out as dividends (although its manager may decide not to).

Pros:

- Very flexible. Can be used to analyze any firm (esp. for startups, which are difficult to value using the other 2 methods).
- Can justify any price

Cons:

Need to make a LOT of assumptions, which might be difficult to justify.

DFCF Model Example

Aswath Damodaran's valuation of Tesla

	В	Base year	1	2	3	4	5	6
Revenue growth rate			70.00%	70.00%	70.00%	70.00%	70.00%	56.55%
Revenues	\$	1,328.70	\$ 2,258.78	\$ 3,839.93	\$ 6,527.88	\$ 11,097.40	\$ 18,865.58	\$ 29,534.07
EBIT (Operating) margin		-1.64%	-0.23%	1.18%	2.60%	4.01%	5.43%	6.84%
EBIT (Operating income	\$	(21.86)	\$ (5.21)	\$ 45.46	\$ 169.63	\$ 445.34	\$ 1,023.93	\$ 2,020.72
Tax rate		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	7.00%
EBIT(1-t)	\$	(21.86)	\$ (5.21)	\$ 45.46	\$ 169.63	\$ 445.34	\$ 1,023.93	\$ 1,879.27
- Reinvestment			\$ 659.64	\$ 1,121.38	\$ 1,906.35	\$ 3,240.79	\$ 5,509.35	\$ 7,566.30
FCFF			\$ (664.84)	\$ (1,075.92)	\$ (1,736.72)	\$ (2,795.45)	\$ (4,485.42)	\$ (5,687.03)
NOL	\$	1,070.00	\$ 1,075.21	\$ 1,029.74	\$ 860.11	\$ 414.78	\$ -	\$ -
Cost of capital			10.03%	10.03%	10.03%	10.03%	10.03%	9.63%
Cumulated discount facto	r		0.9088	0.8260	0.7507	0.6822	0.6200	0.5656
PV(FCFF)			\$ (604.23)	\$ (888.67)	\$ (1,303.68)	\$ (1,907.10)	\$ (2,781.02)	\$ (3,216.43)

Agenda

- Stock pricing overview
- Method 1: dividend discount model
- Method 2: comparable pricing
- Method 3: discounted free cash flow model
- Final word

Stock Valuation Techniques: The Final Word

- No single technique provides a final answer regarding a stock's true value. All approaches require assumptions or forecasts that are too uncertain to provide a definitive assessment of the firm's value.
 - Most real-world practitioners use a combination of these approaches and gain confidence if the results are consistent across a variety of methods
 - Other methods: total payout model, dividend and earnings approach
 - Additional analysis: sensitivity analysis, scenario analysis...

A Glimpse at an Analysts' Report

 https://www.cfainstitute.org/en/societies/challenge/pastchampions

Appendix A3: FGL Terminal Multiple Assumptions

The terminal multiple for FGL was determined through a 10-year trading multiples analysis of comparable companies in the sporting goods retailing subsector. The global median (second quartile) of the 10-year trading multiples analysis was used as the terminal multiple. The chosen competitor set included: Foot Locker, Inc., Cabela's Incorporated, Dick's Sporting Goods Inc., Sportman's Warehouse Holdings, Inc., and Hibbett Sports, Inc.

Historical EV / EBITDA Trend: Sporting Goods and Apparel Retailers

Source: written report of the 2016 champion

Analysts Often Disagree with Each Other!

Analysts' price targets of <u>Tesla Inc.</u>

Date	Brokerage	Action	Rating	Price Target
2/11/2019	Canaccord Genuity	Upgrade	Hold → Buy	\$330.00 → \$450.00
2/6/2019	Royal Bank of Canada	Reiterated Rating	Sell	\$245.00
2/5/2019	Morgan Stanley	Reiterated Rating	Equal → Equal Weight	\$291.00 → \$283.00
2/4/2019	DZ Bank	Reiterated Rating	Sell	
1/31/2019	CIBC	Reiterated Rating	Outperform → Outperform	\$418.00 → \$437.00
1/31/2019	JPMorgan Chase & Co.	Reiterated Rating	Underweight → Underweight	\$220.00 → \$230.00
1/31/2019	JMP Securities	Reiterated Rating	Mkt Outperform → Outperform	\$408.00 → \$406.00
1/31/2019	Jefferies Financial Group	Set Price Target	Buy	\$450.00

Why are We Learning This?

- The purpose of the lecture is not
 - To teach you how to make accurate forecasts so you can get rich
- But rather, the purpose is to get you familiar with the techniques so you are able to
 - Understand the assumptions and flaws of the pricing models
 - Know how to use these models based on your forecasts.
 - Be able to draw insights from the models even though they are flawed
 - Understand the news/reports
 - Take more advanced finance courses
 - Think critically

Summary

- Three commonly used methods to price stocks
 - Dividend discount model
 - Method of comparable pricing
 - Discounted free cash flow model
- No single method is perfect.
 - We typically use a combination of different methods in reality.
 - Analysts disagree with each other all the time.