

OTIC FILE COPY

LOCH LINNHE EXPERIMENT DATA SUMMARY

23 November 1987

Ken Beach
Daniel Kwoh
Harry Rungaldier
Ivan Stonich
Richard Wagner

Approved for public released
Distribution Unlimited

TRW Space & Technology Group One Space Park Redondo Beach, California 90278

CLEARED FOR OPEN PUBLICATION

REVIEW OF THIS MATERIAN THE SECOND DEPARTMENT OF DEFINE OF THE SECOND SACRUMENT OF THE SECOND OF THE

JAN 25 1988

PRECIONATE FOR FREEDOM OF INFORMATION AND SECURITY REVIEW (OASD-PA) DEPARTMENT OF DEFENSE

88 2 08 07 4 88 0111

TABLE OF CONTENTS

			Page
1.	Introduction	•	1
2.	Scanning Laser Slope Gauge		1
3.	X- and Ka-Band Radars		4
4.	Wave Height Probe		7
5.	Specular Point Measurement System		7
6.	Data Log Summary		8

Acces	ion For		
DTIC Unanc	CRA&I TAB neunced cation		
	er Str	F	
;	Nedhulady		
Dist	A grain		
AI		-	
	INSOLA!	200	

1. \ Introduction

During the Loch Linnhe Experiment, TRW deployed a ground truth package of instrumentation on board the Loch Nevis. The package consists of the following 4 main instruments:

- (i) Scanning laser slope gauge,
 - (ii) X-and Ka-band radars,
 - (iii) Wave height probe, a.
 - (iv) A photographic system for detecting and measuring specular joints,

The following auxiliary instruments are also deployed in a supporting role:

- (i) An inclinometer to measure the pitch and roll of the slope gauge due to ship motion,
- (ii) A salinity gauge (on loan to us from Anton Edwards of SMBA) for detecting the presence or arrival of an internal wave,
- (iii) A video camera for recording general conditions of the sea surface around the slope gauge.

A brief description of the main instruments can be found in the following sections. The last section is a data log summary showing the data taken as well as its assessed quality.

2. Scanning Laser Slope Gauge

Description

The major components of the scanning laser slope gauge are shown in Figure 1. The beam from the argon laser is directed down through a nitrogen filled tube to the x-y scanner below the water surface. The scanner then redirects it upward toward the surface where it scans a raster pattern with the nominal characteristics listed in Table 1. Angle transducers within the x-y scanner indicate the direction of the beam as it exists the scanner. Knowledge of this as well as water surface height and the position where the beam hits the detector provides the information necessary to calculate the slope of the water surface at the point of incidence. The 2 axis inclinometer allows corrections to be made for platform pitch and roll.

However, these corrections are small and very slowly varying compared to scanned slope of 3 cm waves.

TABLE 1. Slope Gauge Characteristics

Scan Geometry 5 lines, 50 cm long.

spaced 9.5 cm apart

Scan Rate 150 lines per second

Spot Size 0.4 mm diameter

Sun Discrimination Modulated laser and phase

sensitive detection

frequency response 36 kHz

Support Instruments Wave height gauge 2 axis inclinometer

Near the scanner is a lens which focuses the beam of the water surface. The calculated diffraction limited spot diameter at the mean water height is 0.4 mm. The 3.3 m rad. divergence of the beam results in the spot size increasing to approximately 1.0 mm diameter with water height changes of \pm 300 mm from the mean level.

Loch Linnhe water optical effects. It has been suggested by others that particulates in the water might scatter the light to the extent that the laser beam would spread to a diameter too large to resolve centimeter water waves. To investigate this photographs were taken of the laser spot in calm water when the Loch Nevis was tied to the pier. These showed that the spot size varied rapidly with time between 0.4 mm and 1.0 mm. Inhomogeneities in the index of refraction of the water having a characteristic scale the order of 10 mm were visually observed in the column of water through which the laser beam passes. These inhomogeneities, probably due to mixing of the fresh and salt water in the shallow region near the pier, probably cause this slight focus degradation which should have negligible effect on our instruments.

While there was no evidence of significant beam spread due to scattering, there was considerable transmission loss through the water. In order to get a rough idea what the loss was, water samples were taken periodically at the test site. The

transmission of these samples was measured at the argon laser wavelength, 514 nm, and found to be characterized by an absorption coefficient ranging from 0.83 m⁻¹ to 1.05 m⁻¹ resulting in transmittance through the 1.462 m underwater path ranging from 0.30 to 0.22. Laser output power was increased to compensate for some of this loss. Data reduction techniques provide normalization to compensate for laser power variations.

Data quality. The slope gauge operated for the duration of the tests with the exception of the last run on the last day; Run 4 on 21 September 1987. The laser failed to start for this run. Operator problems resulted in low signal level for Runs 1 and 2 on 3 September 1987 which will result in degraded slope resolution. Disconnected leads resulted in loss of signal in 5 of the detector channels on Run 3 on 5 September 1987 which may not be reducible with software developed for an 8 detector sensor. Two changes were made in the raster scan early in the program. The scan lines were changed from a sawtooth pattern in which the scan lines were at an angle of 11 degrees to the Loch Nevis heading to a scan parallel to her heading. This change was effective starting 5 September 1987. Starting 10 September 1987 the scan rate was changed from 150 lines per second to 156.25 lines per second to facilitate more efficient data processing. Because of this, software developed to process the bulk of the data obtained starting 10 September 1987 will require modification to process data taken on 3 and 5 September 1987.

3. X- and Ka-Band Raders

Description

Both X-and Ka-band radars have the following characteristics:

- (i) CW fixed frequency superhet system
- (ii) Coherent both amplitude and phase measured
- (iii) Dual polarized in vv and hh
- (iv) Focused at 1 meter

Their differences are summarized in the following table:

	X-Band	<u>Ka-Band</u>
Frequency	9.23 GHz	38.0 GHz
Power	1 watt	250 mW
3 dB spot size at 1 m	18 cm	13 cm

The X-band system uses 2 klystrons as local oscillators and transmitters whereas the Ka-band system uses 2 Varactor-tuned Gunn diodes. Since both systems are phase-locked using frequency stabilizers and synchronizers, they behave the same operationally. Both systems mix the local oscillator signal with the reflected signal to produce a 30 mHz IF. The IF is first downconverted to 20 kHz by vector voltmeters (which also act as tuning indicators) and then downconverted a second time using frequency synthesizers and low frequency mixers to about 400 Hz. This signal, which contains both the amplitude and phase information, is being recorded onto digital tape.

The 2 radar antennas are mounted side by side close to the edge of the slope gauge detector box (see Figure 1). Incidence angle for both horn antennas is fixed at 40° and distance to water surface is 1 m. The X-band radar footprint on the water surface is traversed symmetrically by 3 laser scan lines whereas the Ka-band radar footprint is cut through by 1 scan line. This will make possible the comparison between laser slope data and radar data when detailed analysis is performed.

Radar calibration was performed by swining a 5/8" stainless steel sphere through the antenna patterns and measuring the Doppler spectrum. This was performed once for each test period.

Data Quality

The X-band radar performed almost flawlessly throughout the experiment. The radar was phase-locked so well that hardly any adjustment need be made in the course of an afternoon. Consequently, tuning of the X-band radar to minimize stray

ዸቜቜቜቔፙቜዀጜዄኯፘቑፘ፟ዹዄዹዄዹፚዄዸዄጜዄፙቑፙቔፙዹጚዹዄፚዄፙዹዀዀዿቔቔፙኇዹፙዹዄኇዹዹዹ

reflections and drifting was quite easy. While the data was being recorded, its Doppler spectrum was observed simultaneously on a real-time spectrum analyzer. Judging from the spectrum analyzer display, the data should be excellent.

Ka-band radar was harder to work with than X-band. Phase-locking was harder in the first place, probably because of weaker signal and because of the higher frequency. It was not uncommon to lose lock several times during a run, although there were several good runs during which phase locking was perfect. The vv channel was drifting very rapidly for some unknown reason for most of the Typically, this behavior is the result of some loose waveguide joints. During the week of September 6-12, all waveguide joints were checked and tightened. Flexible waveguides on the vv channel were replaced or shortened where possible. The interior of the waveguide was also flushed with dry nitrogen. measures were of no avail as the drifting problem continued. Consequently. practically no useful data was obtained in Ka-band vv. Ka-band hh channel. however, behaved quite nicely and judging from the spectrum analyzer display, the quality of the data should be quite good. A summary of data quality can be found in the data log summary.

STREET CONTOCOR LUCIONAL BOSSOCIED SOCIONAL BOSSOCIED SOCIONAL BOSSOCIA DE SOCIA DE

4. Wave Height Probe

The wave height probe used in this experiment was an instrument built to the specifications of the wave wire system developed by Blyth Hughes of DREP. It uses a passivated tantalum wire driven by a low frequency AC signal. Changes in wave height, or depth of immersion, vary the capacitance of the wire which in turn changes the current through the wire. This AC current change is converted into an AC voltage which can be rectified to a DC voltage. The DC voltage is linearly proportional to the wire capacitance which is equivalent to the immersion length of the wire.

In order to make the tantalum wire a capacitor, it has to be passivated. This is accomplished by passing a low level current (5 ma) at a high DC voltage (100 v) through the wire. This procedure results in a very thin, but tough, oxide being

built up on the wire surface. By keeping the high voltage on during operation of the gauge, added to the AC signal, any breaks in the insulation are very quickly repaired. Damage can occur to the wire when solid material, such as sea weed, hits the wire.

During operation of the wire probe it is important to keep the tantalum wire from contacting any ground plane metal since the thin oxide layer can be damaged by shorting the DC voltage to ground. With this problem in mind the three wave height gauges used in the experiment were attached to the laser slope gauge by means of nonconductive blocks, and fastened to the blocks by friction clamps. During the first set of experimental trials, September 2, 3 and 5, it was found that the friction clamps were insufficient to keep the wires from slipping out of the clamps when objects such as sea weed flowed past the wires.

Although final reduction of the wave height data has not been performed, initial assessment of the data shows it to be very good. Both linearity and calibration of each of the wires are very constant and should provide an excellent record of wave height conditions encountered during the trials.

5. Specular Point Measurement System

To detect and measure the radii of curvature of specular points, a 35 mm Nikon camera system was deployed as a "poor man's" 35 mm movie system. The camera has a 250 frame back so that at 5 frames/second, 50 seconds of data can be taken at a time. It has a 90 mm lens as well as 2 rapid firing flashes which can fire as fast as 5 times/second. The flashes are covered by red and yellow filters respectively so that their images in the specular points will be bright red-yellow point pairs. Laboratory testing of this arrangement has shown that radii of curvature of specular points can be obtained by measuring the separation between the red and yellow points. The camera and flash lamp mounting geometry is shown in Figure 1. Loch Linnhe was meant to be a testing and development stage for the system. Data will be carefully analyzed to facilitate future full scale deployment.

The second secon

6. Data Log Summary

EXPLANATION OF ABBREVIATIONS

TYPE	ENV	BRIGHT NARROW V-WAKE
	ww	Wind wave run made by Loch Nevis after completion of daily program
	ıw	Internal wave run
	AB	Start and end points of Roysterer
	BA	runs, as indicated on maps of Loch
	CD	Linnhe Test Plans
	EF	
	KNT	Ship or wind speed in knots
	MPS	Ship or wind speed in meter per second
Microwave Tuning	x	X-band microwave instrument
	Ka	Ka-band microwave instrument
	vv	VV polarization
	нн	HH polarization
	INTERM	Intermittent operation due to locking or tuning problems
Comments	WH	Wave height gauge

State The control of the control				 								
1	COMMENTS		CHECKOUT, NO WAVE HEIGHT DATA	INTERMITTENT WAVE HEIGHT	ONLY 1 WAVE HEIGHT		<u> </u>	POSSIBLE GOOD RUN	POSSIBLE GOOD RUN	WH #3 SFAWEED POSSIBLE GOOD RUN	WH #2 GONE STILL NO COND WAVES TO BLACK MARK POSSIBLE GOOD LIGHT WIND RUN	
1	438	SEA					-	1' MAX GOING FLAT	FLAT	FLAT	SMALL WAVES	
1			SPEED					10 KNT				
1	WIND		DIRECTION									
1 1641 1643 148	NEVIS		SPEED									1.5 KNT
TTME	H)01		HEAD			202	234	166	163	134	132	200
Type Stope $\mu_{\text{WAVE}} = \frac{111}{1100} = 1$	JANA3	TNI 31	8089									
1 10 10 10 10 10 10 10	AVE	K	\$			INTERM	INTERM	ON	2		2	
1 17 18 19 19 19 19 19 19 19	7-7 101	×	VV HH					ł				
TYPE TIME		SLOPE			LOW	LOW		0009	0009	INTERM	0009	0009
HUM TYPE \$10PE μ-WAVE HEIGHT PHOERITY 1 TIME	ON 3d	AT 0	MIDE	-	1	_	-	2	2	7	2	~
HUM TYPE SLOPE L-WAVE HEIGHT PHOENIX WAVE TIME TIME TIME TIME TIME FILL HOUSEN TAPE FILL HOUSE TO NO	24	DISK NAME	TILE MAME			93.2	93.3	SEPT 5A SEPT 5 1	SEPT 5A SEPT 5.2	SEPT 58 SEPT 5-3	SEPT 58 SEPT 5.4	SEPT 55 SEPT 55
1 1 16 41 16 41 1 1 1 1 1 1 1 1 1 1 1 1	ENIX	_ E	<u> </u>	_	2	٣	4	_	7	m	∢	us
TYPE SLOPE LI-WAVE HEIGHT HOWET. 1	£	TAPK	NO	-	-	-	-	2	2	7	7	2
1	113/	NEAW	OH AT	-	2	٣	e	4	25	9	~	
HUM TYPE SLOPE 1						17.48	1914		15 44 45 15 54	17 04	17 56 18 06	
1 1 8NV AB 1 1 2 KNT 3 8NV BA 1 2 KNT 4 8NV BA 5 WW		H-WAVE		16 41 16 56 30		17.48 17.58	1914				17 56 18 06	
2 2 1 3 5 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2		SLOPE		16 41 16 54	16 31 30	17.48	19 14 19 16 30	14 54 30 15 03	15:44.45 15:54	17 04 17 13 30	17 58 10 18 06	18 35 18 42 20
		TYPE						BNV AB 12 KNT	BNV BA	BNV AB	BNV BA	•
9.2 9.3 9.5		5 5 E		-	-	7	е	_	2	۳	4	v
		DATE		9.2	9.3							

Control of the Contro

COMMENTS		POSSIBLE GOOD RUN. HIGH SEA COND PROBE OPERATING SPECULAR REFL. DATA	SPECULAR REFL DATA GOOD RUN, HIGH SEA	GOOD RUN	RAIN IN PART OF DATA MODERATE WW RUN GOOD	VARIABLE RAIN STRONG SLOPE INFLUENCE, POSSIBLY GOOD RUN	VARIABLE RAIN GOOD RUN	G000 RUN	GOOD LIGHT WW RUN	NO WH DURING KW	GOOD RUN	6000 RUN	-			
SEA			ů ·		_	-	_	FLAT	FLAT					 -		
	T	SPEED					10 KNT								 	
WIND		DIRECTION					2035									
LOCH NEVIS		SPEED				1 KNT				2 KNT				_		
1001		HEAD	125	139	105	214	220	210	225	195	155	156	155			
JANES.	ITOUI TMI 3 KDIS :	BOA9	ON	ON.	ΟN	2	YES	YES	POSSIBLE	0.0	ON	ON	2			
µ-WAVE TUNING	2	VV HH	LOCKED	10CKED NO VV	BAD TUNING	INTERM NO VV	INTERM NO VV	INTERM NO VV	INTERM NO VV	HH TUNED NO VV	HH INTERM NO VV	HH INTERM NO VV	HH INTERM NO VV			
ν- <i>υ</i> 10	×	V HH	>	>	>	>	>	>	>	>	>	>	>			
	SLOPE QUALITY		0009	0009	0000	0000	0009	0000	0000	0009	0000	0009	0000		 	_
DN 34	IAT O	301V	3	6	₆₀	3	*	4	4	4	S.	\$	S			
5	DISK NAME FILE NAME		SEPT 14A SEPT 14 1	SEPT 148 SEPT 14.2	SEPT 14C SEPT 14 3	SEPT 14C SEPT 14.4	SEPT 15A SEPT 15.1	SEPT 15B SEPT 15 2	SEPT 15C SEPT 15.3	SEPT 15C SEPT 15.4	SEPT 16A SEPT 16 I	SEPT 168 SEPT 16 2	SEPT 16C SEPT 16 3			
PHOENIX		NO	,	2	3	4		2	6	4	-	~	ю			
₩ ₩	TAPE	NO	£	<u>س</u>	_د	3	*	-	*	4	S.	5	<u>د</u>		 	
113/	NE NO	OH	02	=	12	13	7		9	11	<u>se</u>	6	20		 	
	HEIGHT		14 30 30 14 43 15	15:49	16 40	17.27	12 26 12 38 30	13 53 45 14 06	15 27	1641	12 37 45 12 50	13 29 45 13 48	14 47 30 15 05 40		 	
	μ·WAVE TIME		14 30 30 14 43.15	15 49 16 01	16 40 16 52	17 27 17 32	12.26 12.38.30	13 53 45 14 06	15 27 15 39 20	16 41 16 46	12 34 45 12 50	13 29 45 13 48	14 47 30 15 05 40		 	
	SLOPE		14 30 30 14 43 15	15.49 16.01	16 40 16 52	17.27	12.26 12.37.40	13 53 45 14 05	15 27	16 41 16 46	12 34 45 12 48	13 30 15 13 45	14 47 45 15 02 20			
	TYPE		BNV B A 6 MPS	BNV A B 6 MPS	BNV B.A 6 MPS	ww	IW CO	IW CD	IW EF	ww	BNV A B 6 MPS	BNV B A 5 MPS	BNV AB		 	
	NO N		2	٣	•	2	_	~	6	.	-	~	m	<u>-</u>	 	_
	DATE		914				9 15				916					
															 	_

									,				
COMMENTS			GOOD RUN	GOOD MODERATE WW RUN	GOOD RUN, STRONG IW VARIABLE WIND	BAD RUN, MISSED STRONG IW WITH SLOPE GAGE	GOOD RUN	WH DATA SUSPECT	BIG INTERNAL WAVES GOOD RUN	GOOD RUN	G000 RUN	SPECULAR PICTURES, GOOD RUN 2 WAKE CROSSINGS	GOOD RUM WIND DYING 2 WAKE CROSSINGS SPECULAR PICTURES
SEA							Stight	5.		SLIGHT	2.3.	•	
		SPEED						LIGHT	20 30 KNT		>15 KNT	15.20 KNI	
AVIND		DINECTION SPEED							250		030	150	
LOCH NEVIS		SPEED		2 KNT				1 KNT				1 5 MPS	1 5 MPS
ноот		MEAU	155	215	214	213	802	216	233	236			
JANA3	DIS 3	VAW	YFS	00	YES	YES	YES	00	YES	YES	YES	YES	YFS
AVE ING	2	VV НН	> 0N	INTERM NO VV	INTERM NO VV	INTERM NO VV	> 0N	> 0N	INTERM NO VV	INTERM NO VV	> 0N	> 0N	NO N
U-WAVE TUNING	×	ин ли	1 1	ン	11/	> >	> >	> >	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	> >	> >	> >	<i>> ></i>
	SLOPE		0000	0000	0000	0000	0000	0000	0009	0009	0000	0000	0000
DE NO		IOIV	9	9	9	9		1	7	7	•	œ	80
JA	DISK NAME		SEPT 160 SEPT 16.4	SEPT 16E SEPT 16 5	SEPT 17A SEPT 17 1	SEPT 17B SEPT 172	SEPT 17C SEPT 173	SEPT 16E SEPT 17.4	SEPT 18A SEPT 18 1	SEPT 188 SEPT 18 2	SEPT 18C SEPT 18 3	SEPT 20A SEPT 20 1	SEPT 20 1 SEPT 20 1
ENIX			-	2	-	2	е .	_	-	2	e	-	2
PHOEN	TAPE	NO	9	ဖ	-	`			60	6	6	2	01
	NEVN		2	22	23	24	25	36	27	28	29	93	33
	WAVE. HEIGHT TIME		15 38 30 15 56 45	16 23 16 28	14 30 14 48	15 56 16 14	17 30 30	18 25 18 30	14 29 15	15 56 45 16 15		14 25 20	15 51 16 05 30
	H-WAVE		15.38.30 15.56.45	16 23 16 28	14 30 14 48	15 56 16 14	17 30 30	18 25 18 30	14 29 15	15 56 45 16 15	17 28 30 17 46 30	14 25 20 14 43 45	16 05 30
	SLOPE		15.39 15.53.30	16 23 16 28	14 30 14 51 30	16 02 30 16 14	17 30 30 17 45	18 25 18 31	14 29 15 14 50	15 57 30 16 09 50	17 29	14 25 20	15 51 16 05 30
	TYPE		BNV BA 6 MPS	MM	IW CO	IW CD	IW EF	*	IW CD	IW CD	ι Ψ ΕΕ	IW CO CROSSING	CROSSING
	2 O M		4	νς. -	-	2	6	4	-	2	ω	-	~
	DATE		9 16		917				816			9 20	

COMMENTS		GOOD RUN, VERY OUIET Subface, 7+ crossings	GOOD RUN. LIGHT RAIN SEVERAL IW	GOOD RUN, SPECULAR Pictures, wind Picking up	GOOD RUN, RAINING	NO SLOPE DATA, RAINING 2 CROSSINGS .	
SEA		SLIGHT	LIGHT		FLAT	FLAT	
		SPEEU		6 KNTS			
MIND		DIRECTION SPEED		240			
LOCH NEVIS			1 5 MPS				
1001		HEAD		1465	143		
YTIV JANR3 JAN	NCTIV SE INT SIGN	CONC VAW	YES	YES	YES	YES	AES.
H-WAVE TUNING	\$	VV HH	NO 🗸	NO V	> 0N	INTERM NO VV) 0
W-W TUN	×	л нн	<i>> ></i>	> >	> >	> >	` , ,
	SLOPE		ניססס	0009	0009	0000	NON
ON 3d	IAT 03	NIOI	6	6	6	2	9
2			SEPT 20C SEPT 203 SEPT 200 SEPT 204	SEPT 21A SEPT 211	SEPT 21B SEPT 21.2	SEPT 21C SEPT 21 3	SEPT 21 4 SEPT 21 4
ENIX		NO	6	-	~	m	-
PHOEN	TAPE	NO	0.	=	=	=	2
113/	DE NO	OH AT	32	33	38	36	£.
	HEIGHT		1731 1745 1745 15 1753 30	14.35 14.53		16 49 30 17 07 40	17 37 30 17 53 30
µ-WAVE TIME		1731 175330	14.35 14.53		16 49 30 17 07 40		
SLOPE			17 31 17 53 30	14 35 14 55	15 29 30 15 47 30	16 49 30 17 07 40	
TYPE		IW EF CROSSING	BNV AB	BNV BA	BNV AB	CRUSSING	
RUN		3	-	2	3	•	
DATE		9 20	12.6				
			·				

1000 C C C C

XXXXXX

Figure 1. Instrument Suite

KERRER KKKKKI BERRER KREEKER KOO

Figure 2. Side view of TRW ground truth instrumentation mounted on Loch Nevis.

Figure 3. Front view of TRW ground truth instrumentation

Loch Nevis with TRW instrument in front of bow shack in the bow area contains the 2 radar units. Shack in the back contains rest of instrumentation. Figure

Figure 5. Interior view of rear instrumentation shack

ILMED