Smie dut (11), det (D), det (V) are the products of diagonal elements, let $(D^T) = det(D)$, det(D) = det(L), $det(V^T) = det(V)$ Hw. 4.2 16, 18, 27 4.3. Formulas For the Determinant. o If A is invertible, then PA = LDV and $det P = \pm 1$ det A = ± det L det D det U = ± (product of pivots) b, depends on the # of row exchanges = LDV = L2 det $A = 2 \cdot \left(\frac{3}{2}\right) \left(\frac{4}{3}\right) \cdot \cdots$ n+1. ⊙ From the properties 1-3, define the determinant generally for nxn. - each row is broken down into vectors in the coordinate directions: $\begin{bmatrix} a & b \end{bmatrix}^T \rightarrow \begin{bmatrix} a & o \end{bmatrix}^T + \begin{bmatrix} o & b \end{bmatrix}^T$ $[a b.c]' \Rightarrow [a 0.0]' + [0.60]' + [0.00]$

	NO 5.
By the first property 1, for 2x2 matrix,	
$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & d \end{vmatrix}$	
$= \begin{vmatrix} a & \delta \\ 0 \end{vmatrix} \begin{vmatrix} a & 0 \\ 0 \end{vmatrix} + \begin{vmatrix} 0 & b \\ 0 \end{vmatrix}$	+ 0 0 0
4 first row exchange \$1.4 property	,
= ad $-bC$.	1.78%
when a column is zero vector > determinant,	is zero.
There are n! permutations for non-zero determina	uts in decomposition.
ofor 3x3 matrix,	/
$ a_{11} a_{12} a_{13} \qquad a_{11} a_{12} $	a ₁₁
a a a a a a a a a a a a a a a a a a a	† 923
(A32 A33) (A33) (A33)	Asia
$+$ $\begin{vmatrix} a_{12} \\ a_{23} \end{vmatrix} + \begin{vmatrix} a_{23} \\ a_{24} \end{vmatrix}$	913
	t . a _{zz}
$ a_3 $ $ a_3 $	[] .
→ by row exchanges to make diagnal matrix, det A = an a=a3 + + ···	0 0 0 1 11
(Nex /4 5 0011 012-013)	M13 M22 M34
\$	
⇒ o Big Fiormula	· · · · · · · · · · · · · · · · · · ·
det $A = \sum_{\text{all } p's} (a_{10}, a_{2p},, a_{nr}) det$	۲.
all p's	- 1
$(d, \beta, \dots, \nu) \rightarrow n!$ permutations. $\leftarrow (1, 2, \dots)$, n)
θx): (1, 3, 2) $\rightarrow a_{11} a_{23} a_{32} 1$	
	MOOKEUK

MOOKEUK