BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2016-2017

Course Handout (Part II)

Date:

In addition to part - I (General Handout for all courses appended to the timetable), this portion gives further specific details regarding the course.

Course No. : CHE F212

Course title : Fluid Mechanics Instructor-in-charge : I.SREEDHAR Instructor : I Sreedhar

1. Course Description

Fundamental Concepts, Fluid Statics, Integral and Differential Analyses for Fluid Motion, Dimensional Analysis, Internal and External Fluid Flow, Fluid Machinery, Flow through Packed Bed, Agitation, Introduction to Compressible Flow.

2. Scope and Objective

This course is an introduction to the field of fluid mechanics. It mainly covers the basic principles of fluid mechanics and introduces the student to the fundamental and practical aspects of basic fluid flow operations, which a practicing chemical engineer meets with regularly. The physical concepts of fluid mechanics and analysis methods, beginning from basic principles shall be dealt with in this course.

3. Text Books

- T1 Fox, R.W. and A.T. McDonalds, *Introduction to Fluid Mechanics* (7th Ed.), John Wiley & Sons Inc., 2001. [ISBN: 9971-51-355-2]
- T2 McCabe, W.L., J.C. Smith and P. Harriott, *Unit Operations of Chemical Engineering* (7th Ed.), McGraw Hill Inc., 2005. [ISBN 007-124710-6]

4. Reference Books

- R1 Bird, R.B., W.E. Stewart and E.N. Lightfoot, *Transport Phenomena* (2nd Ed.), John Wiley and Sons Inc., 2002.
- R2 Welty, J.R., C.E. Wicks, R.E. Wilson, and G. Rorrer, *Fundamentals of Momentum, Heat and Mass Transfer (4th Ed.)*, John Wiley and Sons Inc., 2001.
- R3 Coulson, J. M. and J. F. Richardson (with J. R. Backhurst and J. H. Harker), *Coulson & Richardson's Chemical Engineering-Volume 1 (5th Ed.)*, Pergamon Press.
- R4 Nevers, N. de, *Fluid Mechanics for Chemical Engineers (3rd Ed.)*, McGraw-Hill Higher Education, 2005.
- R5 Cengel, Y. A. and Cimbala J M (Adapted by: S Bhattacharyya), *Fluid Mechanics: Fundamentals and Applications (In SI Units)*, Tata McGraw-Hill Publishing Co. Ltd., Second Reprint 2007.

PTO

1

COURSE PLAN: FLUID FLOW OPERATIONS

Lecture Number	Learning Objectives	Topics to be Covered	Reference (Text Book)	
1-2 (Module1 = M1)	Introduction to the Fluid Mechanics	Definition of a fluid, Basic Equations, Methods of Analysis; Units and Dimensions and Dimensional Analysis,.	T1: 1.2 – 1.6 T2: Page 15	
3-6 (M2)	Fundamental Concepts [Introduction to new concepts and definitions of Fluid Mechanics]	Introduction to new and Stress fields, Viscosity and concepts and definitions of Surface Tension, Description and		
7-10 (M3)	Fluid statics [Study of the principles of Fluid Statics and their applications for various purposes]	Basic Equations of Fluid Statics, Pressure variation in Static Fluids, Hydrostatic Equilibrium in a Centrifugal Field,	T1: 3.1, 3.3, T2: Pages 33-34	
11-15 (M4)	Basic Equations in Integral form for a Control Volume [General Mathematical Formulations for a Control Volume using Basic laws of Mechanics, Physics and Thermodynamics]	Basic Laws for a System, Conservation of Mass and Momentum Equations for Integral Control Volumes, Angular Momentum Principle [Fixed Control Volume Analysis only], First and Second Laws of Thermodynamics.	T1: 4.1, 4.3, 4.4, 4.7.1, 4.8-4.9	
16 – 20 (M5)	Introduction to Differential Analysis of Fluid Motion	Conservation of Mass and Momentum Equations [Navier- Stokes equations: Rectangular coordinates only], Motion of fluid Elements.	T1: 5-1.1, 5- 1.2, 5-3 – 5.4 T2: Pages 68-82	
21 – 25 (M6)	Fundamentals of Incompressible Inviscid flows	Euler's Equations, Bernoulli's Equation, Bernoulli's Equation as an Energy Equation	T1: 6.1 – 6.4, T2: Pages 86-94	
26 – 28 (M7)	Dimensional Analysis and Similitude [Significance of Non-Dimensionalization Technique and Non Dimensional numbers]	Buckingham PI theorem/ Rayleigh's Method, Significant Dimensionless Groups in Fluid Mechanics	T1: 7.1 – 7.4 T2: Page 16-20	
29-33 (M8)	Internal Incompressible flow [Study of the Mechanics of flows inside Solid bodies, Aspects of Transportation and Metering of fluids]	Flow between parallel plates, Flow in pipes and ducts, Energy considerations in Pipe flow, Pumps, Flow Measurement Techniques (Venturi and Orifice meters, Pitot tubes etc.)	T1: 8.1 – 8.11 T2: Pages 98-108, 202-214	

Lecture	Learning Objectives	Topics to be Covered	Reference
Number			(Text Book)
34-37	External Incompressible	Boundary layer concept, Boundary	T1: 9.1 – 9 -
(M9)	Viscous flow (Flow over	Layer thickness, Boundary layer	2, 9-7.1-9-
	Flat Plates and Flow past	formation and Separation, Drag &	7.3
	Immersed bodies) and	Streamlining, Flow through beds	T2: Pages
	Associated effects.	of solids; Compressible flow and	60-65, 133-
	Introduction to	the equations relevant	138;155-167
	Compressible flow		
38-40	Agitation and Mixing of	Agitated Vessels and Accessories,	T2: Chap. 9
(M10)	Liquids [Agitation and	Flow patterns in Vessels, Velocity	Pages 244-
	Mixing of Homogeneous	patterns and Gradients, Power	271
	Liquids, Liquid-Liquid,	Consumption, Blending & Mixing,	
	Gas-Liquid and Solid-	Static Mixers; Scale up	
	Liquid Dispersions]		

EVALUATION SCHEME

Component	Duration	Weightage	Date & Time	Remarks
Test – I	50 min	20%		СВ
Test – II	50 min	20%		OB
Quiz/Asst/Seminar	20 min	20%		СВ
Comprehensive	3 hours	40%		CB and/or
Examination				OB

CB - Close book OB - Open book

- Chamber consultation hour will be announced in the class.
- The **notices** will be displayed on the Chemical Engineering Group notice board only.
- **Make-up** will be granted for <u>genuine cases only</u>. Certificate from authenticated doctor from the Medical Center must accompany make-up application (*only prescription or vouchers for medicines will not be sufficient*). Prior permission of IC is compulsory.

Instructor-in-charge CHE F212