AMC Prep

Ritoban Roy-Chowdhury

January 21, 2021

1 2010 AMC 12A Problem 17

Bernardo randomly picks 3 distinct numbers from the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and arranges them in descending order to form a 3-digit number. Silvia randomly picks 3 distinct numbers from the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and also arranges them in descending order to form a 3-digit number. What is the probability that Bernardo's number is larger than Silvia's number?

(A)
$$\frac{47}{72}$$
 (B) $\frac{37}{56}$ (C) $\frac{2}{3}$ (D) $\frac{49}{72}$ (E) $\frac{39}{56}$

1.1 Solution

Consider the following cases.

1. If Bernardo picks a 9, his number will always be greater than Silvia's. The probability of this is

$$\frac{1}{9} + \frac{8}{9} \cdot \frac{1}{8} + \frac{7}{9} \cdot \frac{1}{7} = \frac{3}{9} = \frac{1}{3}.$$

- 2. If Bernardo does not pick $9(\frac{2}{3})$, both Bernardo and Silvia are picking from the same set of numbers ($\{1..8\}$), so it may be tempting to say that the probability of one being greater than the other is exactly $\frac{1}{2}$. This would be on the right track, HOWEVER, it doesn't account for the possibility that they pick the same number.
 - a. Since they are each choosing 3 numbers out of 8, and order doesn't matter, the number of possible numbers they can choose is

$$\binom{8}{3} = \frac{8!}{3! \cdot 5!} = \frac{8 \cdot 7 \cdot 6}{6} = 56.$$

- b. Then the probability that they choose the same number is just $\frac{1}{5}6$ (i.e. Bernardo can choose any number, there's a $\frac{1}{56}$ chance that Silvia choose the same number, or vice versa).
- c. Then, to the probability that either one is greater than the other, we find 1 minus the probability that they are both the same (the probability that they are different), and then divide that by 2 (the probability that Bernardo specifically is greater).

$$\frac{1 - \frac{1}{56}}{2} = \frac{55}{112}$$

Adding these two cases together,

$$\frac{1}{3} + \frac{2}{3} \times \frac{55}{112} = \frac{1}{3} + \frac{1}{3} \times \frac{55}{56} = \frac{1}{3} \left(1 + \frac{55}{56} \right) = \frac{1}{3} \times \frac{111}{56} = \frac{37}{56}$$

.

Therefore, the answer is (B) $\frac{37}{56}$.

1.2 Key Insight

The probability of X > Y is the same as the probability of Y > X if X and Y are chosen from the same distribution. You can find this probability by removing the probability that X = Y and dividing by 2.

2 2010 AMC 12A Problem 18

A 16-step path is to go from (-4, -4) to (4, 4) with each step increasing either the x-coordinate or the y-coordinate by 1. How many such paths stay outside or on the boundary of the square $-2 \le x \le 2, -2 \le y \le 2$ at each step?

2.1 Solution

Nothing much to this problem, just chug through the numbers until you get (C) 1698. There are more elegant ways to do this with combinatorics, but it's a number 18, I can do some arithmetic at this point.

3 2010 AMC 12A Problem 19

Each of 2010 boxes in a line contains a single red marble, and for $1 \le k \le 2010$, the box in the kth position also contains k white marbles. Isabella begins at the

first box and successively draws a single marble at random from each box, in order. She stops when she first draws a red marble. Let P(n) be the probability that Isabella stops after drawing exactly n marbles. What is the smallest value of n for which $P(n) < \frac{1}{2010}$?

(A) 45 (B) 63 (C) 64 (D) 201 (E) 1005

3.1 Solution

Since the n-th box contains 1 red marble, and n white marbles, for a total of n+1 marbles. Isabella stops after drawing n marbles if and only if she draws a white marble from every single box, all the way up until the last one, where she draws a red marble. The probability of this is

$$P(n) = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac{n-1}{n} \cdot \frac{1}{n+1}.$$

Notice that the second-last term has a denominator of n – because there are n balls in the n-1-th box, and n-1 of those are white, and 1 is red. The last term is $\frac{1}{n+1}$ because there is only 1 red ball (the stopping condition) and the n-th box has n+1 balls total.

Notice that everything cancels, leaving,

$$P(n) = \frac{1}{n} \cdot \frac{1}{n+1} = \frac{1}{n(n+1)}.$$

The problem asks for when $P(n) < \frac{1}{2010}$, so let's substitute

$$P(n) < \frac{1}{2010}$$
$$\frac{1}{n(n+1)} < \frac{1}{2010}$$
$$n(n+1) > 2010.$$

Some quick experimentation reveals that $44 \times 45 = 1980$ and $45 \times 46 = 2070$, so the answer is **(A) 45**.

4 2010 AMC 12B Problem 11

A palindrome between 1000 and 10,000 is chosen at random. What is the probability that it is divisible by 7?

(A) $\frac{1}{10}$ (B) $\frac{1}{9}$ (C) $\frac{1}{7}$ (D) $\frac{1}{6}$ (E) $\frac{1}{5}$

4.1 Solution

We are interested in four digit palindromes (10,000 is not a palindrome, and there are no other 5 digit numbers in the range). Notice that such a number is of the form abba – in other words, this is an "outer number", a, and an inner number, b.

Because the outer number a cannot be zero (because then it would be less than 1000), there are 9 choices for it (the digits 1 through 9, inclusive). On the other hand, there are 10 choices for the inner number b, so there's a total of 90 palindromes between 1000 and 10,000.

Now, write the palindrome abba as

$$10^3 a + 10^2 b + 10b + a$$
.

We want to calculate the number of possible choices of a and b such that this is divisble by 7.

$$10^3 a + 10^2 b + 10b + a \equiv 0 \mod 7.$$

Factor.

$$1001a + 110b \equiv 0 \mod 7$$

Finally, just know that the prime factorization of $1001 = 7 \times 11 \times 13$ and \$110 = $5 \times 11 \times 12$.

$$(7 \cdot 11 \cdot 13)a + (5 \cdot 11 \cdot 12)b \equiv 0 \mod 7$$

Since the a term will always have a factor of 7, there are two cases where the overall expression is divisible by 7.

- 1. When b=0, because the LHS of the congruence reduces to $(7 \cdot 11 \cdot 13)a$, which is always divisble by 7. This is the sequence of palindromes $1001, 20002, 3003, \ldots$ There are 9 possible values, because as we established earlier, there are 9 choices for a.
- 2. When b = 7. Because the first term is always divisible by 7, for the entire expression to be divisible by 7, second term must also have a factor of 7. This is only possible when b = 7, leading to another 9 possible palindromes, one for each choice of a.

Therefore, in total, there are 9+9=18 palindromes divisible by 7 between 1000 and 10,000, so the answer is $\frac{18}{90}=\frac{1}{5}$, (E).

5 2010 AMC 12B Problem 12

For what value of x does

$$\log_{\sqrt{2}} \sqrt{x} + \log_2 x + \log_4 x^2 + \log_8 x^3 + \log_{16} x^4 = 40?$$

- (A) 8
- **(B)** 16
- **(C)** 32
- **(D)** 256
- **(E)** 1024

5.1 Solution

This is a straightforward application of the change-of-base formula.

$$\begin{split} \log_{\sqrt{2}}\sqrt{x} + \log_2 x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4) &= 40 \\ \frac{1}{2}\frac{\log_2 x}{\log_2 \sqrt{2}} + \log_2 x + \frac{2\log_2 x}{\log_2 4} + \frac{3\log_2 x}{\log_2 8} + \frac{4\log_2 x}{\log_2 16} &= 40 \\ \log_2 x + \log_2 x + \log_2 x + \log_2 x + \log_2 x &= 40 \\ \log_2 x &= 40 \\ \log_2 x &= 8 \\ x &= 256 \end{split} \tag{D}$$

6 2010 AMC 12B Problem 13

In $\triangle ABC$, $\cos(2A-B) + \sin(A+B) = 2$ and AB = 4. What is BC?

- **(A)** $\sqrt{2}$
- **(B)** $\sqrt{3}$
- **(C)** 2
- (D) $2\sqrt{2}$

(E) $2\sqrt{3}$

6.1 Solution

Because \cos and \sin can never be greater than 1, for them to add up to 2, they must both be exactly 1.

$$\cos(2A - B) = 1$$
$$\sin(A + B) = 1$$

Instead of being stupid like me and trying to expand these out with sum and difference formulas, you can just directly solve for the angles now. $\arccos(1) = 0$ and $\arcsin(1) = \frac{\pi}{2}$, so

$$2A - B = 0$$
$$A + B = \frac{\pi}{2}$$

Solving the system of equations,

$$2A - B = 0$$

$$2A = B$$

$$A + B = \frac{\pi}{2}$$

$$3A = \frac{\pi}{2}$$

$$A = \frac{\pi}{6} = 30^{\circ}$$

$$B = 2A = 60^{\circ}$$

$$C = 90^{\circ}$$

This is a 30-60-90 triangle. Since AB (the side opposite C, the 90° angle) = 4, AC=2, and $BC=2\sqrt{3}$ (E).