

Supervised: Ingredients

Outline

Notation

One sample

Representation of the sample: (Feature 1, Feature 2)

One sample

Representation of the sample: (Feature 1, Feature 2)

Feature 1 => X_1

Feature 2 => X_2

One sample (X_1, X_2)

nf: Dimension of the space

Collection of samples

Sample 1:
$$\vec{X}^1 = (X_1^1, X_2^1, \dots X_{nf}^1)$$

Sample 2: $\vec{X}^2 = (X_1^2, X_2^2, \dots X_{nf}^2)$

Sample ns: $\vec{X}^{ns} = (X_1^{ns}, X_2^{ns}, \dots X_{nf}^{ns})$

$$X = \begin{pmatrix} X_{1}^{1}, X_{2}^{1}, \cdots X_{nf}^{1} \\ X_{1}^{2}, X_{2}^{2}, \cdots X_{nf}^{2} \\ \cdots \\ X_{1}^{ns}, X_{2}^{ns}, \cdots X_{nf}^{ns} \end{pmatrix}$$

Data: Features

$$X = \begin{pmatrix} X_{1}^{1}, X_{2}^{1}, \cdots X_{nf}^{1} \\ X_{1}^{2}, X_{2}^{2}, \cdots X_{nf}^{2} \\ \cdots \\ X_{1}^{ns}, X_{2}^{ns}, \cdots X_{nf}^{ns} \end{pmatrix}$$

nf: Dimension of the space

ns: Number of Samples

Data: Labels

nf: Dimension of the space

ns: Number of Samples

Data: Labels

$$X = \begin{pmatrix} X_{1}^{1}, X_{2}^{1}, \cdots X_{nf}^{1} \\ X_{1}^{2}, X_{2}^{2}, \cdots X_{nf}^{2} \\ \cdots \\ X_{1}^{ns}, X_{2}^{ns}, \cdots X_{nf}^{ns} \end{pmatrix} Y = \begin{pmatrix} Y^{1} \\ Y^{2} \\ \cdots \\ Y^{ns} \end{pmatrix}$$

nf: Dimension of the space

ns : Number of Samples

Types of Data

There are more than one categorization ...

Encoding of Data

Exercise

How would you encode categorical types of data?

Processing the Data

$$X = \begin{pmatrix} X_{1}^{1}, X_{2}^{1}, \cdots X_{nf}^{1} \\ X_{1}^{2}, NA, \cdots X_{nf}^{2} \\ \cdots \\ X_{1}^{ns}, X_{2}^{ns}, \cdots X_{nf}^{ns} \end{pmatrix}$$

$$X = \begin{pmatrix} X_{1}^{1}, X_{2}^{1}, \cdots X_{nf}^{1} \\ X_{1}^{2}, NA, \cdots X_{nf}^{2} \\ \cdots \\ X_{1}^{ns}, X_{2}^{ns}, \cdots X_{nf}^{ns} \end{pmatrix}$$

What can we do about the missing data?

$$X = \begin{pmatrix} X_1^1, X_2^1, \cdots X_{nf}^1 \\ X_1^2, NA, \cdots X_{nf}^2 \\ \cdots \\ X_1^{ns}, X_2^{ns}, \cdots X_{nf}^{ns} \end{pmatrix}$$

- 1. Get rid of the sample
 - What's the disadvantage?
- 2. Get rid of the feature
 - When does it make sense to do this?
- 3. Assign a value to it?
 - How?

Scale of the data

Scale of the data for regression

Scale of the data: Clustering

Re-scaling the data

1. Physical Scale

2. Scale on which it is changing

Questions

What other ways are there to scale the data? What are they good for?

Does scaling the data affect optimization/training models?

Data Reduction

Why

Visualization

Computational efficiency

Curse of dimensionality

Techniques

Feature selection

- Feature transformation
 - Linear transformation
 - Manifold learning

Feature Selection

Feature Selection

How to:

- Un-Supervised
 - Variance
 - Importance/significance

supervised

Feature Transformation

Non-linear transformations: Manifold learning

In three dimension

Non-linear transformations: Manifold learning

2D reduction

Summary

Notation Types of Data Encoding Transformations and preprocessing Missing data Scaling the data • Data reduction

Supervised: Ingredients

