

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА (САМАРСКИЙ УНИВЕРСИТЕТ)»

ИНСТИТУТ ИНФОРМАТИКИ И КИБЕРНЕТИКИ

Кафедра программных систем

МОДЕЛИРОВАНИЕ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ И СИСТЕМ

Лабораторная работа

Моделирование динамических непрерывно-детерминированных систем в AnyLogic

Методические указания

Моделирование динамических непрерывно-детерминированных систем в AnyLogic: Метод. указания к лабораторной работе / Самар. ун-т; *А.В. Баландин*. Самара, 2024. 19 с.

Методические указания предназначены для выполнения лабораторных работ по моделированию динамических непрерывно-детерминированных систем в инструментальной системе AnyLogic.

В методических указаниях приведена словесная модель предмета моделирования и сформулированы задачи исследования. Представлены варианты заданий. Описаны порядок выполнения лабораторной работы, требования к оформлению результатов и отчёту.

Методические указания предназначены бакалаврам, обучающимся по направлению «Фундаментальные информатика и информационные технологии», изучающим дисциплину «Моделирование информационных процессов и систем».

ОГЛАВЛЕНИЕ

ПРЕДМЕТ МОДЕЛИРОВАНИЯ	4
ЗАДАЧА ИССЛЕДОВАНИЯ	4
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	4
Анализ отношений предмета моделирования	8 9 10
ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ	10
ОЦЕНОЧНЫЕ ВОПРОСЫ ПО ТЕМЕ ЛАБОРАТОРНОЙ РАБОТЫ	12
ПРИЛОЖЕНИЕ 1	16
Варианты заданий	
ПРИЛОЖЕНИЕ 2	19

Предмет моделирования

Предметом моделирования в лабораторной работе является кинематика движения шара (с пренебрежимо тонкой и неупругой оболочкой) в воздушном пространстве - в тропосфере (предельная высота, в зависимости от широты - $8 \div 18$ км). Исходными характеристиками запуска шара (в момент времени t=0) являются:

- диаметр шара *D*;
- масса шара *m*;
- высота над поверхностью Земли (над уровнем моря) h_0 ;
- начальная скорость \vec{V}_0 ;
- угол скорости к горизонту α_0 .

Построение модели и задача исследования

Необходимо реализовать, представленную в аналитической форме непрерывно-детерминированную модель движения шара в воздушном пространстве, используя средства моделирования динамических систем и системной динамики инструментальной системы AnyLogic. Провести серию экспериментов с моделью с целью доказательства её адекватности с различными настройками параметров модели.

В соответствии с вариантом задания определить значения управляемых параметров модели в момент старта, при которых траектория движения шара удовлетворяет заданным требованиям или экспериментально убедиться в не реализуемости заданных требований при заданных условиях запуска шара.

Подготовка и порядок выполнения работы

При подготовке и выполнении лабораторной работы необходимо:

- самостоятельно во внеаудиторное время установить на свой компьютер свободно распространяемую для обучения версию AnyLogic (Personal Learning Edition PLE) скачать с сайта компании AnyLogic (http://www.anylogic.ru/downloads);
- выполнить контролируемую самостоятельную работу по освоению основ использования средств построения моделей в системе AnyLogic¹.
- самостоятельно изучить инструменты моделирования динамических систем и системной динамики системы AnyLogic².

В процессе выполнения задания необходимо:

1. Используя представленную ниже аналитическую модель движения шара, применить *обобщённую схему моделирования* для анализа параметров и отношений между параметрами и оформить результаты анализа в виде таблицы (см. Таблица 1):

¹ **Основы моделирования в системе AnyLogic**: Метод. указания по контролируемой самостоятельной работе / Самар. ун-т; *А.В. Баландин*. Самара, 2024. 19 с

² **Баландин А.В. Моделирование систем в среде AnyLogic**. Учебное пособие - Самар. гос. аэрокосм. ун-т. Самара, 2024. 19 с.

Анализ параметров и отношений предмета моделирования

Таблица 1

№	Параметр	Обозначение	Характеристика параметра	Управляемость	Зависимость	Изменение во времени	Формирование значений				
N.	Название	Идентификатор	Внутренний параметр Внешний фактор Входное воздействие Выходная характеристика	Управляемый/ Неуправляемый	Экзогенный/ Эндогенный	Константа/ Статический/ Динамический	Заданное значение/ Формула				
	Образцы										
1.	Объем тела	V	Внутренний параметр	Неуправляемый	Зависимый	Статический	$\frac{\pi \cdot D^3}{6}$				
2.	Плотность воздуха	rh	Внешний фактор	Неуправляемый	Зависимый	Динамический	$\frac{p \cdot M}{R \cdot T}$				
3.	Время	t	Внешний фактор	Неуправляемый	Независимый	Динамический	0				
4.	Угол бросания	alfa	Входное воздействие	Управляемый	Независимый	Статический	45°				
5.	Дальность полёта	lt	Выходная характеристика	Неуправляемый	Зависимый	Динамический	$\frac{dx}{dt} = Vl$				
6.	Высота над уровнем моря	h	Выходная характеристика	Неуправляемый	Зависимый	Динамический	$\frac{dh}{dt} = Vh$				
7.	Скорость по оси Y	Vyt	Выходная характеристика	Неуправляемый	Зависимый	Динамический	$\frac{dVh}{dt} = \frac{F}{m}$				
8.											

2. По результатам анализа параметров и отношений оформить математическую модель предмета моделирования (см. образец содержимого):

$$SIMPOBAHMЯ (CM. ООРАЗЕЦ СОДЕРЯНИЯ) ... \\ v_l = v_0 * cos(\alpha) \\ \frac{dl}{dt} = v_l \\ \frac{dv_l}{dt} = \frac{Fl}{m} \\ Fl = \frac{S \cdot C \cdot pBh \cdot Vl^2}{2} \\ S = \pi \cdot \left(\frac{D}{2}\right)^2 \\ M = 0.0289644 \frac{\kappa z}{Moлb} \\ g = \frac{GM_3}{(R_3 + h)^2} \frac{M}{c^2} \\ G = 6.67 \cdot 10 - 11 \frac{H \cdot M^2}{\kappa z^2} \\ ...$$

Рисунок 1 Образец оформления математической модели

- 3. Используя элементы палитры *Агент* и *Системная динамика* построить в AnyLogic диаграмму, соответствующую полученной математической модели. В свойствах модели установить *единицу модельного времени* (по умолчанию *секунда*).
- 4. Создать и выполнить *простые эксперименты* с моделью для проверки адекватности построенной диаграммы как вычислительного аналога математической модели. Для этого на модели экспериментально проверить выполнение известных классических физических законов движения материальной точки в вакууме, а также убедиться в учёте моделью действия

силы Архимеда на шар, летящий в атмосфере:

5. Экспериментируя с моделью, определить значения искомых управляемых параметров шара, удовлетворяющих заданным параметрам шара и условиям его движения в атмосфере в соответствии с вариантом задания, или убедиться в недостижимости заданного условия движения шара с указанными в задании фиксированными параметрам модели.

Самостоятельно изменить и подобрать такие значения фиксированных параметров шара, при которых условие движения шара выполняется.

6. Подготовить письменный отчёт по результатам моделирования и проведённых исследований с моделью в системе AnyLogic.

Анализ отношений предмета моделирования

Движение шара, рассматриваемое в декартовой системе координат (см. Рисунок 2), следует разложить на две составляющие движения: движение по вертикали и движение по горизонтали (см. рисунок). При движении по горизонтали на шар действует только сила лобового сопротивления воздуха \vec{F}_{c_l} . При движении по вертикали кроме силы лобового сопротивления \vec{F}_{c_h} добавляются сила Архимеда A и сила тяжести P.

Рисунок 2 Движение шара в атмосфере

Основываясь на приведённых ниже известных законах кинематики и свойствах атмосферы, постройте формальную математическую модель, описывающую кинематику движения шара в воздушном пространстве (в $mponoc \phi epe$) в непрерывном времени, выражающую зависимости координат центра масс шара от времени — < h(t), l(t)>. Следует учесть, что движение шара в атмосфере будет осуществляться с переменным ускорением и с инверсией

направления скорости по высоте. Поэтому, например, зависимость от времени координаты h(t) находится из системы дифференциальных уравнений:

$$\begin{cases} \frac{dh(t)}{dt} = V_h(t), \\ \frac{\pm dV_h(t)}{dt} = \frac{F_h(t)}{m}. \end{cases}$$

где $F_h(t)$ — сумма всех сил по вертикали, действующих на шар в момент времени t; $V_h(t)$ — модуль (изменяющегося по направлению) вектора скорости по вертикали в момент времени t; m — масса шара. Аналогично находится и зависимость от времени координаты l(t), но без инверсии направления скорости.

При расчёте сил, приложенных к шару, движущемуся в воздушном пространстве, следует учесть действие на тело силы *Архимеда* и силы *лобового сопротивления* воздуха, используя приведённые ниже формулы и зависимости характеристик тропосферы от высоты над уровнем моря.

Сила лобового сопротивления воздуха $\vec{F}_c = \vec{F}_{c_h} + \vec{F}_{c_l}$, действующая в направлении противоположном вектору скорости движения шара \vec{V} , описывается формулой вида:

$$\vec{F}_c = C \cdot S \cdot \rho_e(h) \frac{\vec{V}^2}{2},$$

где:

 $ec{V}\,$ - вектор скорости движения тела;

C - коэффициент лобового сопротивления, для тел сферической формы, C=0.15;

S - площадь максимального поперечного сечения шара;

 $ho_{\!\scriptscriptstyle 6}(h)$ - плотность воздуха на высоте h над уровнем моря.

Плотность воздуха $\rho_{\rm e}$ зависит от высоты над поверхностью Земли (над уровнем моря). На уровне моря (h=0) при стандартной температуре $T_{\rm 0}$ полагают - $\rho_{\rm e}(0) \approx 1.3$ кг/м $^{\rm 3}$. Плотность воздуха в тропосфере на высоте h описывается формулой:

$$\rho_{\scriptscriptstyle 6}(h) = \frac{p(h) \cdot M}{R \cdot T(h)},$$

где:

p(h) - давление воздуха на высоте h, описывается формулой:

$$p(h) = p_0 \cdot \left(1 - \frac{L \cdot h}{T_0}\right)^{\frac{g(h) \cdot M}{R \cdot L}},$$

 $p_0 = 101325 \; \Pi a$ - стандартное атмосферное давление на уровне моря;

 $T_0 = 288,15 \ K$ - стандартная температура воздуха на уровне моря в кельвинах;

 $L = 0{,}0065 \frac{K}{_{M}}$ - скорость падения температуры с высотой в пределах тропосферы,

 $M = 0.0289644 \frac{\kappa z}{MOЛЬ}$ - молярная масса сухого воздуха;

$$g(h) = \frac{GM_3}{\left(R_3 + h\right)^2} \; \frac{\mathcal{M}}{c^2}$$
 - ускорение свободного падения на высоте h над

поверхностью Земли;

$$G=6,67\cdot 10^{-11}\ \frac{H\cdot {\it M}^2}{\kappa {\it c}^2}$$
 — гравитационная постоянная;
$$M_3=5,96\cdot 10^{24}\ {\it \kappa}{\it c}$$
 — масса $\emph{Земли}$;
$$R_3=6,37\cdot 10^6\ {\it M}$$
 — средний радиус $\emph{Земли}$; — высота над уровнем моря $(\it M)$;

 $R=8,31447~\frac{\cancel{\cancel{\cancel{1}3\cancel{\cancel{1}}\cancel{\cancel{1}}\cancel{\cancel{1}}}}{\cancel{\cancel{\cancel{1}0\cancel{\cancel{1}}\cancel{\cancel{1}}}\cancel{\cancel{\cancel{1}}\cancel{\cancel{\cancel{1}}}}}$ - универсальная газовая постоянная.

T(h) - температура воздуха в Kельвинах (для тропосферы) на высоте h над уровнем моря описывается формулой:

$$T(h) = T_0 - L \cdot h$$

Оформление результатов анализа предмета моделирования и математической модели

По результатам анализа параметров и отношений оформит оформить таблицу параметров (см. Таблица 1) и итоговою математическую модель предмета моделирования в представленном выше виде (см. Рисунок 1)

Построение вычислительной модели и эксперименты с моделью

Создайте проект модели в системе AnyLogic. Для этого, используя полученную формальную математическую модель, постройте в AnyLogic соответствующую ей вычислительную модель в виде диаграммы параметров и отношений между ними, применяя графо-символические средства AnyLogic, представленные в палитрах Агент и Системная динамика.

Изучите виды и организацию в AnyLogic простых и оптимизационных экспериментов с моделями, и примените их для проверки адекватности вычислительной модели и решения поставленной задачи исследования.

Проверка адекватности вычислительной модели

Изучив технологию организации и выполнения в AnyLogic экспериментов, провести *простые* эксперименты с моделью для проверки адекватности построенной модели. В каждом эксперименте устанавливать такие исходные значения параметров модели, которым соответствует теоретически известная кинематика полёта физического тела:

- проверить на модели зависимость ускорения свободного падения шара, как материальной точки, от высоты над поверхностью Земли.
- оценить на модели конечную скорость падения шара (как материальной точки диаметр шара равен 0) с заданной высоты на поверхность Земли, сравнить с теоретически вычисленным значением скорости при свободном падении с заданной высоты, оценить и объяснить погрешность;
- проверить на модели выполнение условия максимальной дальности полёта шара как материальной точки при бросании под углом 45° с поверхности Земли (уровень моря), сравнить с бросанием под углами 30° и 60°. Теоретически дальность полёта при скорости бросания ν под углом к горизонту α определяется по формуле $l = \frac{\nu^2 \cdot \sin{(2 \cdot \alpha)}}{g}$, сравнить с экспериментально полученными значениями, оценить и объяснить погрешность;
- проверить на модели выполнение условия равенства дальности полёта шара как материальной точки под углами в 30° и 60°, оценить и объяснить погрешность;
- убедится в адекватном моделировании атмосферы и действии на шар силы Архимеда: всплывание шара "большого диаметра" с поверхности Земли (скорость бросания нулевая) с его последующим затухающим колебанием в разряжённой *атмосфере* и "зависание" на некоторой высоте, оценить и объяснить результат эксперимента.

Эксперименты с моделью и итоговые результаты

Убедившись в адекватности полученной модели, проведите исследование траектории полёта шара в соответствии с вариантом задания, определите значения требуемых параметров или убедитесь и объясните невозможность получения искомых значений параметров при заданных исходных данных. Для этого изучите в AnyLogic и осуществите *оптимизационный* эксперимент с моделью для решения поставленной в задании задачи исследования.

Для получения итоговых результатов необходимо установить в свойствах модели шаг дискретизации времени Δt при проведении экспериментов с моделью (по умолчанию Δt =0.001) такой, чтобы точность получаемых значений исследуемых параметров составляла *не менее двух* знаков после запятой (при последующем уменьшении шага дискретизации по времени - Δt , эти знаки не должны меняться).

По результатам экспериментов с помощью средств AnyLogic построения диаграмм палитры Статистика постройте итоговые графики:

- зависимость высоты полёта от времени h(t);
- зависимость дальности полёта от времени -l(t);
- фазовая траектория движения центра масс шара в пространстве состояний < h(t), l(t)>;

Отчёт по лабораторной работе

Для отчёта необходимо диаграмму вычислительной модели и итоговые эксперименты, полученные в соответствии с заданием (см. Приложение 1) продемонстрировать преподавателю.

Результаты выполнения лабораторной работы необходимо оформить в виде документа следующего содержания:

Титульный лист

Оформить титульный лист документа (см. Приложение 2).

Содержание

Оформить лист с оглавлением.

Предмет моделирования и задача исследования

Раздел с описанием словесной модели предмета моделирования и задачи исследования в соответствии с вариантом задания.

Анализ параметров предмета моделирования

Провести анализ и описание параметров предмета моделирования, в соответствии обобщённой схемой моделирования (см. Таблица 1 и Рисунок *I*).

Анализ отношений и построение математической модели

Провести анализ отношений и представить оформленную математическую модель предмета моделирования (Рисунок *1*).

Графо-символическая диаграмма модели

Привести вид построенной в AnyLogic графо-символической диаграммы модели (скриншот).

Проверка адекватности модели

Привести результаты экспериментов с классическими вариантами параметрической настройки модели, которым соответствуют теоретически известные характеристики кинематики движения центра масс шара. По результатам каждого выполненного эксперимента сделать выводы.

Для каждого выполненного эксперимента представить графики (скриншоты):

- зависимость высоты центра масс шара от времени -h(t);
- зависимость дальности полёта центра масс шара от времени -l(t);
- фазовая траектория движения центра масс шара в пространстве состояний < h(t), l(t)>;

Эксперименты с моделью

Привести результаты оптимизационных экспериментов с моделью для определения искомых значений параметров с заданной точностью в соответствии

с вариантом задания. Проинтерпретировать полученные результаты экспериментов с моделью (скриншоты презентаций).

Итоговые результаты

Охарактеризовать адекватность и точность построенной модели по результатам проведённых экспериментов.

Охарактеризовать найденные параметры, при которых шар осуществляет движение в атмосфере в соответствии с вариантом задания.

ОЦЕНОЧНЫЕ ВОПРОСЫ по теме лабораторной работы

- 1. Обобщённая схема моделирования. Анализ параметров и отношений. Виды отношений.
- 2. Концепция агентного моделирования в системе AnyLogic.
- 3. Агентные типы и агенты. Диаграмма агента.
- 4. Создание нового агентного типа. «Пустой» агент.
- 5. Средства AnyLogic для реализации заданной математической непрерывнодетерминированной модели в форме вычислительной модели.
- 6. Визуальное представление функционирования агента в модели. Понятие презентации агента.
- 7. Объекты «эксперименты» как средства исследования моделей в AnyLogic.
- 8. Время в модели. Физическое и модельное время. Единицы модельного времени. Режим реального или виртуального модельного времени. Настройка параметров выбранной модели времени. Понятие «прогона» модели во времени.
- 9. Задание режима времени и скорости выполнения модели.
- 10. Экзогенные и эндогенные параметры «эксперимента». Средства AnyLogic для управления характеристиками экзогенных параметров «эксперимента».
- 11. Предназначение и состав панели Проект.
- 12. Предназначение и состав панели Палитра.
- 13. Предназначение и состав панели Свойства.
- 14. Предназначение и состав панели Ошибка.

- 15. Справочная система AnyLogic. Предназначение и состав.
- 16. Комментирование элементов модели.
- 17. Типы экспериментов: простой эксперимент, оптимизация, варьирование параметров.
- 18. Создание управление простым экспериментом.
- 19. Создание и управление оптимизационным экспериментом.
- 20. Создание и управление экспериментом варьирования параметров.
- 21. Задание параметров модели. Понятие параметров, простых переменных, динамических переменных, потоков и накопителей. Особенности их использования при построении диаграмм непрерывно-детерминированных моделей.
- 22. Создание связей между параметрами модели в диаграмме.
- 23. Понятие событий. Событийное управление выполнением модели. Завершение выполнение модели по событиям.
- 24. Оценка адекватности модели.

Формирование оценки по результатам интерактивного опроса

По результатам интерактивного опроса обучающегося выставляется оценка знания основ теории моделирования систем - O_1 , и оценка умений и навыков использования инструментальных средств моделирования при решении практических задач - O_2 .

Оценка О₁ формируется следующим образом:

- 5 баллов в диалоге выявляется *твёрдое знание и понимание* всех теоретических аспектов по теме лабораторной работы.
- 4 балла в диалоге выявляется *приемлемое знание и понимание* всех теоретических аспектов по теме лабораторной работы, но имеются *существенные неточности и неопределённости* в ответах на некоторые вопросы.
- 3 балла в диалоге выявляется внешне приемлемое знание основных положений теории по теме лабораторной работы, но в диалоге выявляются существенные

- пробелы в понимании некоторых важных теоретических аспектов.
- 2 балла в диалоге выявляются *существенные пробелы в знании или понимании* большинства принципиально важных теоретических положений по теме лабораторной работы.
- Умения и навыки владения инструментальными средствами, полученными в результате самостоятельного изучения, освоения и использования инструментальных средств при выполнении лабораторного задания оцениваются оценкой О₂: минимальная оценка - 2 балла, максимальная - 5 баллов.

Оценка O_2 выставляется по результатам анализа представленной модели и интерактивного опроса обучающегося при приёме отчёта по результатам выполнения лабораторной работы:

- 5 баллов в диалоге выявляется *твёрдое умение и уверенное владение* изученным инструментальным средством моделирования при решении практических задач по теме лабораторной работы.
- 4 балла в диалоге выявляется *приемлемое умение и владение* изученным инструментальным средством моделирования при решении практических задач по теме лабораторной работы, но имеются *существенные неточности или неопределённости* в ответах на некоторые вопросы.
- 3 балла в диалоге выявляется *приемлемое умение и владение* изученным инструментальным средством моделирования при решении практических задач по теме лабораторной работы, но имеются *существенные неточности*, *неопределённости* и пробелы в ответах на некоторые вопросы.
- 2 балла в диалоге выявляются *существенные пробелы* в *умении* и *владении* инструментальным средством моделирования при решении практических задач по теме лабораторной работы.

Формирование итоговой оценки:

- (5,5), (5,4) 5 баллов зачёт лабораторной работы с полученной оценкой.
- (4,5); (4,4); (5,3) 4 балла зачёт лабораторной работы с полученной оценкой.

- (3,5); (3,4), (4,3), (3,3) 3 балла зачёт лабораторной работы с полученной оценкой.
- (2,5); (2,4), (2,3), (2,2) 2 балла незачёт, повторный отчёт.

Варианты заданий

Задание 1.

Определить, на какой высоте h_0 над поверхностью Земли необходимо запустить шар диаметром D и массой m, чтобы при заданных условиях его запуска он коснулся бы поверхности Земли через заданное время T.

No	Начальная	Начальная	Угол к	Macca	Диаметр	Время	Дальность
варианта	высота h 0 (м)	скорость V ₀ (м/с)	горизонту	тела т (кг)	тела D (м)	полёта <i>T</i> (c)	<i>l</i> (м)
1.	?	10	10	10	3	100	-
2.	?	15	20	1	1	120	-
3.	?	5	40	0,5	0,5	140	-
4.	?	20	50	1	2	160	-
5.	?	12	60	0,05	0,1	180	-

Задание 2.

Определить, на какой высоте h_0 над поверхностью Земли необходимо запустить шар диаметром D и массой m, чтобы при заданных условиях его запуска он коснулся бы поверхности Земли на заданном расстоянии l от точки запуска.

№ варианта	Начальная высота h 0 (м)	Начальная скорость V ₀ (м/c)	Угол к горизонту Со (град)	Масса тела т (кг)	Диаметр тела D (м)	Время полёта <i>T</i> (c)	Дальность <i>l</i> (м)
1.	?	10	10	10	3	=	30
2.	?	15	20	1	1	-	42
3.	?	5	40	0,5	0,5	-	24
4.	?	20	50	1	2	-	36
5.	?	12	60	0,05	0,1	-	58

Задание 3.

Определить, с какой скоростью V_0 необходимо запустить шар диаметром D и массой m, чтобы при заданных условиях его запуска он коснулся бы поверхности Земли на заданном расстоянии l от точки запуска.

No	Начальная	Начальная	Угол к	Macca	Диаметр	Время	Полически
	высота	скорость	горизонту	тела	тела	полёта	Дальность
варианта	h_0 (M)	V_0 (m/c)	αο (град)	т (кг)	D (M)	T (c)	<i>l</i> (м)
1.	10	?	10	10	3	-	10
2.	15	?	20	3,5	0,5	-	120
3.	5	?	40	0,5	0,5	-	14
4.	20	?	50	1	2	-	16
5.	12	?	60	0,05	0,1	_	18

Задание 4.

Определить, с какой скоростью V_0 необходимо запустить шар диаметром D и массой m, чтобы при заданных условиях его запуска он коснулся бы поверхности Земли через заданное время T.

№ варианта	Начальная высота h ₀ (м)	Начальная скорость V_0 (м/c)	Угол к горизонту	Масса тела т (кг)	Диаметр тела D (м)	Время полёта Т (c)	Дальность <i>l</i> (м)
	110 (M)	V 0 (M/C)	сто (град)	m (KI)	D (M)	<i>I</i> (C)	
1.	100	?	10	100	3	10	-
2.	15	?	20	1	1	12	-
3.	5	?	40	0,5	0,5	14	-
4.	20	?	50	1	2	16	-
5.	12	?	60	0,05	0,1	18	-

Задание 5.

Определить, под каким углом к горизонту α_0 необходимо запустить шар диаметром D и массой m, чтобы при заданных условиях его запуска он коснулся бы поверхности Земли через максимальное время.

№ варианта	Начальная высота h ₀ (м)	Начальная скорость V ₀ (м/c)	Угол к горизонту сю (гра д)	Масса тела т (кг)	Диаметр тела D (м)	Время полёта <i>T</i> (c)	Дальность <i>l</i> (м)
1.	10	10	?	10	3	max	-
2.	15	20	?	1	1	max	-
3.	5	40	?	0,5	0,5	max	-
4.	20	50	?	1	2	max	-
5.	12	60	?	0,05	0,1	max	-

Задание 6.

Определить, под каким углом к горизонту α_0 необходимо запустить шар диаметром D и массой m, чтобы при заданных условиях запуска дальность его полёта была бы максимальной.

№ варианта	Начальная высота h ₀ (м)	Начальная скорость V_0 (м/c)	Угол к горизонту сю (гра д)	Масса тела т (кг)	Диаметр тела D (м)	Время полёта <i>T</i> (c)	Дальность <i>l</i> (м)
1.	10	10	?	10	3	-	max
2.	150	200	?	50	1	-	max
3.	5	40	?	0,5	0,5	-	max
4.	20	50	?	1	2	-	max
5.	12	60	?	0,05	0,1	-	max

Задание 7.

Определить, какого диаметра D должен быть шар с заданной массой m, чтобы при заданных условиях его запуска он коснулся бы поверхности Земли через заданное время.

№ варианта	Начальная высота h ₀ (м)	Начальная скорость V ₀ (м/с)	Угол к горизонту сю (гра д)	Масса тела т (кг)	Диаметр тела D (м)	Время полёта <i>T</i> (c)	Дальность <i>l</i> (м)
1.	100	10	10	10	?	10	-
2.	150	20	20	5	?	12	-
3.	300	40	40	2	?	14	-
4.	200	50	50	1	?	16	-
5.	120	60	60	0,5	?	18	-

Задание 8.

Определить, какого диаметра D должен быть шар с заданной массой m, чтобы при заданных условиях его запуска он коснулся бы поверхности Земли на заданном расстоянии l от точки запуска.

№ варианта	Начальная высота h ₀ (м)	Начальная скорость V ₀ (м/c)	Угол к горизонту Со (град)	Масса шара т (кг)	Диаметр шара D (м)	Время полёта <i>T</i> (c)	Дальность <i>l</i> (м)
1.	10	10	10	10	?	-	10
2.	15	20	20	1	?	-	12
3.	5	40	40	0,5	?	-	14
4.	20	50	50	1	?	-	16
5.	12	60	60	0,05	?	-	18

Задание 9.

Определить, какой массы m должен быть шар с заданным диаметром D, чтобы при заданных условиях его запуска он коснулся бы поверхности Земли на заданном расстоянии l от точки его запуска.

№ варианта	Начальная высота h ₀ (м)	Начальная скорость Vo (м/c)	Угол к горизонту ССО (град)	Масса тела т (кг)	Диаметр тела D (м)	Время полёта <i>T</i> (c)	Дальность <i>l</i> (м)
1.	10	10	10	?	3	-	10
2.	15	20	20	?	1	-	12
3.	5	40	40	?	0,5	-	14
4.	20	50	50	?	2	-	16
5.	12	60	60	?	0,1	-	18

Задание 10.

Определить, какой массы m должен быть шар с заданным диаметром D, чтобы при заданных условиях его запуска он коснулся бы поверхности Земли через заданное время полёта T.

№ варианта	Начальная высота h ₀ (м)	Начальная скорость V_0 (м/c)	Угол к горизонту с о (град)	Масса тела т (кг)	Диаметр тела D (м)	Время полёта <i>T</i> (c)	Дальность <i>l</i> (м)
1.	100	10	10	?	3	10	-
2.	150	20	20	?	1	12	-
3.	250	40	40	?	1,5	14	-
4.	200	50	50	?	2	16	-
5.	120	60	60	?	2,5	18	-

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА (САМАРСКИЙ УНИВЕРСИТЕТ)»

ИНСТИТУТ ИНФОРМАТИКИ И КИБЕРНЕТИКИ

Кафедра программных систем

Дисциплина **Моделирование информационных процессов и систем**

ОТЧЁТ по лабораторной работе

Моделирование динамических непрерывно-детерминированных систем в AnyLogic

	Вариант
Выполнил:	Фамилия И.О., группа № 6XXX-XXXXXXX
Проверил:	Фамилия И.О.