Randomized Algorithms

Spezialvorlesung
Wintersemester 05/06

René Beier

Stefan Canzar

Stefan Funke

René Beier Randomized Algorithms - p. 1

Randomized Quicksort

Quicksort

Algorithm

- Example
- The worst case
- Very Basic Probability Theory
- Analyzing Quick-sort
- Recursion Tree
- Lemma
- Lemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Input: a set *S* of *n* different numbers

Output: the numbers of *S* in increasing order

Algorithm: randQS(S)

- 1. Choose *y* form *S* uniformly at random
- **2.** $S_1 := \{x \in S \mid x < y\}; S_2 := \{x \in S \mid x > y\}$
- 3. If $S_1 \neq \emptyset$ then randQS(S_1)
- 4. output *y*
- 5. If $S_2 \neq \emptyset$ then randQS(S_2)

Example

Quicksort

Algorithm

Example

- The worst case
- Very Basic Probability Theory
- Analyzing Quick-sort
- Recursion Tree
- Lemma
- Lemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

execution

1

3 4 2 1 5 7 6

2 (1) 3 4 (5) 7 6

1 2 3 4 5 7 6

0 0 4 5 0

recursion tree T

The worst case

Quicksort

Algorithm

Example

● The worst case

Very Basic Probability Theory

Analyzing Quick-sort

Recursion Tree

Lemma

Lemma

Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

execution							#comp.	probability
1	2	3	4	5	6	7	6	1/7
(2	3	4	5	6	7	5	1/6
		3	4	5	6	7	4	1/5
					6	7	1	1/2
						7	0	1

The worst case

Quicksort

- Algorithm
- Example

The worst case

- Very Basic Probability Theory
- Analyzing Quick-sort
- Recursion Tree
- Lemma
- Lemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

execution #comp. probability 1/7 2 3 4 7 6 5 6 5 1/6 3 4 5 6 7 1/5 4 5 6

#comparisons:
$$\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = \Theta(n^2)$$

The worst case

Quicksort

- Algorithm
- Example

The worst case

- Very Basic Probability Theory
- Analyzing Quick-sort
- Recursion Tree
- Lemma
- Lemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

execution #comp. probability

- 2 3 7 4 5 6
 - 3 5 6 4
 - 7 4 5 6

- - 1/7 6
 - 5 1/6
 - 1/5

- 1/2
 - 0

#comparisons:
$$\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = \Theta(n^2)$$

prob:
$$\prod_{i=1}^{n} \frac{1}{i} = \frac{1}{n!}$$

Very Basic Probability Theory

Quicksort

Algorithm

Example

The worst case

Very Basic Probability Theory

- Analyzing Quick-sort
- Recursion Tree
- Lemma
- Lemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Probability Space: A (finite) sample space Ω and a probability measure Pr

Sample Space Ω : A set of elementary events

Probability measure Pr: A function $Pr : \mathcal{P}(\Omega) \to \mathbb{R}$ with

- For each $\mathcal{E} \subseteq \Omega$, $0 \le Pr[\mathcal{E}] \le 1$
- $Pr[\Omega] = 1$
- For each $\mathcal{E} \subseteq \Omega, Pr[\mathcal{E}] = \sum_{\omega \in \mathcal{E}} Pr[\{\omega\}]$

Random Variable X: a function $X : \Omega \to \mathbb{R}$.

Expectation of a random variable: $E[X] = \sum_{x \in \mathbb{N}} x \cdot Pr[X = x]$

Fact: E[X + Y] = E[X] + E[Y].

Analyzing Quick-sort

Quicksort

- Algorithm
- Example
- The worst case
- Very Basic Probability Theory

Analyzing Quick-sort

- Recursion Tree
- Lemma
- Lemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

- We want to count the number of comparisons we perform.
- Let s_i be the *i*th smallest element of S.
- We define random variables X_{ij} as

$$X_{ij} = \begin{cases} 1 & \text{if we compare } s_i \text{ and } s_j \\ 0 & \text{otherwise} \end{cases}$$

■ The expected running time (#comparisons) is

$$E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

■ Thus we have to compute $E[X_{ij}]$.

$$E[X_{ij}] = 0 \cdot Pr[X_{ij} = 0] + 1 \cdot Pr[X_{ij} = 1] = Pr[X_{ij} = 1]$$

Recursion Tree

Quicksort

- Algorithm
- Example
- The worst case
- Very Basic Probability Theory
- Analyzing Quick-sort

Recursion Tree

- Lemma
- Lemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

execution

4

2

6

2

(1)

3

4

1

(5)

5

7

7

6

4

3

5

7

6

1

2

3

4

5

6

7

recursion tree T

 $\pi = (3, 1, 5, 2, 4, 6, 7)$: level order traversal

Quicksort

- Algorithm
- Example
- The worst case
- Very Basic Probability Theory
- Analyzing Quick-sort
- Recursion Tree

Triccursion no

- Lemma ● Lemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Lemma: There is a comparison between s_i and s_j (i < j), iff s_i or s_j occurs earlier in π than any other element in $S_{ij} = \{s_i, s_{i+1}, \dots, s_j\}$.

Quicksort

- Algorithm
- Example
- The worst case
- Very Basic Probability Theory
- Analyzing Quick-sort
- Recursion Tree
- Trecursion ne
- LemmaLemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Lemma: There is a comparison between s_i and s_j (i < j), iff s_i or s_j occurs earlier in π than any other element in $S_{ij} = \{s_i, s_{i+1}, \dots, s_j\}$.

 s^* : element from S_{ij} that occurs first in π .

Observe: No pivot preceding s^* in π splits $S_{i,j}$ $\Rightarrow S_{ij}$ contained in subtree rooted at s^* .

Quicksort

Algorithm

Example

The worst case

Very Basic Probability Theory

Analyzing Quick-sort

Recursion Tree

● Lemma

Lemma

Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Lemma: There is a comparison between s_i and s_j (i < j), iff s_i or s_j occurs earlier in π than any other element in $S_{ij} = \{s_i, s_{i+1}, \dots, s_j\}$.

 s^* : element from S_{ij} that occurs first in π .

Observe: No pivot preceding s^* in π splits $S_{i,j}$ $\Rightarrow S_{ij}$ contained in subtree rooted at s^* .

Case I: $s^* \in \{s_i, s_j\}$:

Quicksort

Algorithm

Example

The worst case

Very Basic Probability Theory

Analyzing Quick-sort

Recursion Tree

● Lemma

Lemma

Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Lemma: There is a comparison between s_i and s_j (i < j), iff s_i or s_j occurs earlier in π than any other element in $S_{ij} = \{s_i, s_{i+1}, \dots, s_j\}$.

 s^* : element from S_{ij} that occurs first in π .

Observe: No pivot preceding s^* in π splits $S_{i,j}$ $\Rightarrow S_{ij}$ contained in subtree rooted at s^* .

Case II: $s^* \notin \{s_i, s_j\}$:

Quicksort

- Algorithm
- Example
- The worst case
- Very Basic Probability Theory
- Analyzing Quick-sort
- Recursion Tree
- Lemma

Lemma

Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Lemma:

$$\Pr[s^* \in \{s_i, s_j\}] = \frac{2}{j - i + 1}$$

Each element in $S_{i,j}$ equally likely to be the first element in π .

Finalizing the Analysis

Quicksort

- Algorithm
- Example
- The worst case
- Very Basic Probability Theory
- Analyzing Quick-sort
- Recursion Tree
- Lemma
- Lemma
- Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Lemma: $\Pr[X_{ij} = 1] = 2/(j-i+1)$

$$\Rightarrow$$
 E $[X_{ij}] = 0 \cdot$ **Pr** $[X_{ij} = 0] + 1 \cdot$ **Pr** $[X_{ij} = 1] = 2/(j-i+1)$

Finalizing the Analysis

Quicksort

Algorithm

Example

The worst case

Very Basic Probability Theory

Analyzing Quick-sort

Recursion Tree

● Lemma

Lemma

Finalizing the Analysis

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Lemma: $\Pr[X_{ij} = 1] = 2/(j-i+1)$

$$\Rightarrow$$
 E $[X_{ij}] = 0 \cdot$ **Pr** $[X_{ij} = 0] + 1 \cdot$ **Pr** $[X_{ij} = 1] = 2/(j - i + 1)$

Theorem: The expected number of comparisons performed is

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbf{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=2}^{n} \sum_{k=2}^{i} \frac{2}{k}$$

$$= 2\sum_{i=2}^{n} (H_i - 1)$$

$$\leq 2nH_n \approx 2n\log n$$

The problem

Quicksort

Verifying Matrix Multiplication

The problem

- Proof
- Probability amplification

Las Vegas - Monte Carlo

Verify $A \cdot B = C$ for given matrices A, B and C.

- compute $A \cdot C$ and compare to $C \rightarrow$ naive: $\Theta(n^3)$, best $\Theta(n^{2.37})$
- Faster randomized algorithm with small error probability:
 - 1. Choose $r = (r_1, ..., r_n) \in \{0, 1\}^n$ at random.
 - 2. If A(Br) = Cr output "TRUE" else output "FALSE"

One-sided error: false positives

Running time: $O(n^2)$

Theorem: If $AB \neq C$ then $Pr[ABr = Cr] \leq 1/2$

Proof

Quicksort

Verifying Matrix Multiplication

The problem

● Proof

Probability amplification

Las Vegas - Monte Carlo

Define $D = AB - C \neq 0$

$$ABr = Cr \Leftrightarrow (AB - C)r = 0 \Leftrightarrow Dr = 0$$

W.l.o.g, $d_{1,1} \neq 0$

$$\sum_{j=1}^{n} d_{1,j} r_j = 0$$

$$r_1 = \frac{\sum_{j=2}^{n} d_{1,j} r_j}{d_{1,1}}$$

- Fix all r_j but r_1 .
- \blacksquare Equality holds for at most one of the two choices for r_1 .

$$\Rightarrow \Pr[Dr = 0] \le 1/2$$

Probability amplification

Quicksort

Verifying Matrix Multiplication

- The problem
- Proof
- Probability amplification

Las Vegas - Monte Carlo

Can we decrease the error-probability?

Idea: Repeat the test k times with independent random choices for *r*

- If some test reports "FALSE" we know for sure $AB \neq C$
- If $AB \neq C$ then the probability that all test report "TRUE" is at most 2^{-k}
- \blacksquare running time: $O(kn^2)$

Las Vegas - Monte Carlo

Quicksort

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

■ Las Vegas - Monte Carlo

- Markov inequality
- Transform LV -> MC
- Transform LV -> MC
- Proof

Las Vegas Algorithm:

- always gives the correct/optimal solution.
- running time is a random variable.
- Example: Quick-sort.

Monte Carlo Algorithm:

- may produce incorrect solutions.
- has a fixed deterministic running time.
- Example: Verifying Matrix-Multiplication
- For decision problems there are two kinds:

one-sided errors: either yes or no answers always correct.

two-sided errors: both have non-zero probability to be wrong.

Markov inequality

Quicksort

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

Las Vegas - Monte Carlo

Markov inequality

- Transform LV -> MC
- Transform LV -> MC
- Proof

Lemma: Let *X* be a random variable with non-negative domain.

$$\Pr[X \ge t] \le \frac{\mathbf{E}[X]}{t}$$

or equivalently

$$\Pr[X \ge t\mathbf{E}[X]] \le \frac{1}{t}$$

Proof: Assume for simplicity that the domain of X is \mathbb{N}_0

$$\mathbf{E}[X] = \sum_{i \geq 0} i \operatorname{Pr}[X = i]$$

$$\geq \sum_{i \geq t} t \operatorname{Pr}[X = i]$$

$$= t \operatorname{Pr}[X \geq t]$$

Transform LV -> MC

Quicksort

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

- Las Vegas Monte Carlo
- Markov inequality

● Transform LV -> MC

- Transform LV -> MC
- Proof

Given Las Vegas algorithm with expected running time at most f(n).

Idea: Stop algorithm after $\alpha f(n)$ time.

- Only error source: Stopping algo before completion.
- Probability: $\Pr[T > \alpha f(n)] \le 1/\alpha$
- \Rightarrow Monte Carlo algorithm with running time $\alpha f(n)$ and error rate $1/\alpha$

Transform LV -> MC

Quicksort

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

- Las Vegas Monte Carlo
- Markov inequality
- Transform LV -> MC

● Transform LV -> MC

Proof

Given Monte Carlo algorithm MC with

- \blacksquare deterministic running time at most f(n) and
- success probability at least p(n).

Assume we can verify the correctness of the output in time g(n).

Theorem: There exists Las Vegas algorithm with expected running time

$$\mathbf{E}\left[T\right] \le \frac{f(n) + g(n)}{p(n)}$$

Proof

Quicksort

Verifying Matrix Multiplication

Las Vegas - Monte Carlo

- Las Vegas Monte Carlo
- Markov inequality
- Transform LV -> MC
- Transform LV -> MC

Proof

Proof: Repeat calling MC until verifier certifies correctness of output.

- Let *i* be the number of iterations of this scheme
- Running time $T \le i(f(n) + g(n))$
- $\mathbf{E}[T] \leq (f(n) + g(n))\mathbf{E}[i]$

$$\mathbf{E}[i] = \sum_{k=1}^{\infty} k(1 - p(n))^{k-1} p(n) = \frac{1}{p(n)}$$

as

$$\sum_{k=1}^{\infty} kx^k = \frac{x}{(1-x)^2}, \text{ for } x < 1$$