Árvore

Zenilton Patrocínio

Árvore – Definição

Uma árvore é um grafo conexo e acíclico (ou sem ciclos).

Árvore – Nomenclatura

Vértices de grau 1 são chamados folhas e vértices internos possuem grau maior ou igual a 2.

Árvore – Nomenclatura

Vértices de grau 1 são chamados folhas e vértices internos possuem grau maior ou igual a 2.

Árvore – Nomenclatura

Vértices de grau 1 são chamados folhas e vértices internos possuem grau maior ou igual a 2.

Seja T uma árvore com *n* vértices então:

Seja T uma árvore com *n* vértices então:

• T possui n-1 arestas;

T

0 arestas

Seja T uma árvore com *n* vértices então:

- T possui n-1 arestas;
- T possui pelo menos duas folhas, se
 n > 2;

- T possui n-1 arestas;
- T possui pelo menos duas folhas, se
 n > 2;
- T possui um único caminho entre cada par de vértices;

- T possui *n* − 1 arestas;
- T possui pelo menos duas folhas, se
 n > 2;
- T possui um único caminho entre cada par de vértices;

- T possui *n* − 1 arestas;
- T possui pelo menos duas folhas, se
 n > 2;
- T possui um único caminho entre cada par de vértices;
- A adição de uma nova aresta a T forma um único ciclo.

- T possui n-1 arestas;
- T possui pelo menos duas folhas, se
 n > 2;
- T possui um único caminho entre cada par de vértices;
- A adição de uma nova aresta a T forma um único ciclo.

- T possui n-1 arestas;
- T possui pelo menos duas folhas, se
 n > 2;
- T possui um único caminho entre cada par de vértices;
- A adição de uma nova aresta a T forma um único ciclo.

Árvore Geradora

Árvore Geradora

Uma árvore geradora de um grafo não direcionado G é um subgrafo gerador de G que também é uma árvore.

Pode-se dizer então que T = (V, E_T), em que $E_T \subseteq E$, $|E_T| = |V| - 1$ e T é conexo.

Um grafo G possui uma árvore geradora se e somente se G for conexo.

Floresta Geradora

Uma floresta geradora é uma coleção de árvores geradoras. G Floresta geradora

Dado um grafo conexo G, pode-se obter uma árvore geradora de G da seguinte forma:

enquanto G possui algum ciclo efetuar

Selecionar um ciclo qualquer de G.

Remover uma das arestas do ciclo selecionado.

Se G for desconexo, o mesmo processo pode ser usado para obter uma floresta geradora.

Obtenção de Árvore Geradora – Resumo

Obtenção de Árvore Geradora – Resumo

Obtenção de Árvore Geradora – Resumo

<u>Árvore Geradora – Ciclo Fundamental</u>

<u>Árvore Geradora – Ciclo Fundamental</u>

<u>Árvore Geradora – Ciclo Fundamental</u>

