The key stages of Model development includes:

- for model training. 1. Data Preprocessing: Implementation of techniques to refine dataset and ensure optimal input quality
- alcohol content based on chemical and physical attributes. 2. Model Development: Creation of initial models using the processed data to predict wine quality and
- and feature optimization 3. Model Refinement: Evaluation and enhancement of the initial models through statistical methods
- that led to the final improved models 4. Performance Assessment: Analysis of model metrics to identify best practices and configurations
- successful application of data preprocessing and model refinement techniques 5. Final Models: Presentation of the key metrics of the final predictive models, underscoring the

Predictive Model Development Workflow for Quality **Prediction**

Model Iterations and Their Impact on Quality **Predictive Accuracy**

Key Insights:

- 1. **Resampling and Outlier Management**: Decreased the explanatory power of the model rather than enhancing it.
- 2. **Default Feature Baseline Model**: Showed improved results compared to methods guided solely by OLS statistical summaries
- 3. Feature Selection: Eliminating non-significant features resulted in a slight improvement in the R-squared value, signifying a more precise model
- 4. Prediction Rounding: Negatively affected model's predictive accuracy when rounding predictions to the nearest integer
- 5. StandardScaler Application: Slightly reduced R-squared value, but may contribute to model stability and reduced sensitivity to
- 6. Combination for Final Model: The final model integrates elements from both v2 and v3, leveraging their respective strengths

Table No. 1 Comparison of Model Improvement Methods and Metrics

-0.0005	0.4156	Baseline Model (v6) with Significant Features	7	8.
0.0009	0.4170	Default Feature Baseline Model	6	7.
-0.1323	0.2838	Model with Rounded Prediction	5	6.
-0.0724	0.3436	Model with Potential Outliers Removed	4	5
-0.0000	0.4161	Model with Standard Scaling	3	4.
0.0019	0.4180	Model without Non-Significant Features	2	ω
-0.6235	-0.2074	Model with Resampled dataset	1	2.
0.0000	0.4161	Initial model	0	. '
Difference	R-squared	Description	Version •	

Graph No.1 R-Squared Values Across Different Model Version

Final Quality Prediction Model Features and Key **Performance Metrics**

and direction of the relationship between the feature and the target variable. The final predictive model includes a set of key features, each with an associated coefficient that signifies the strength

Table No.2 Feature Importance Summary

0.3053	0.3053	alcohol	7.
-0.0852	0.0852	chlorides	6.
-0.0628	0.0628	citric_acid	5
-0.1100	0.1100	рН	4.
0.1894	0.1894	sulphates	3.
-0.0644	0.0644	total_sulfur_dioxide	2.
-0.1731	0.1731	volatile_acidity	
Coefficient	Abs_Coefficient	Feature_Name ▼	

Graph No.2 Feature Importance Coefficient Visualization

1-7/7

Final Quality Prediction Model Features and Key **Performance Metrics**

Key Points for Final Quality Prediction Model Summary:

- enhancement in explaining the target variable's variability by 0.19%. 1. R-squared Improvement: The updated model exhibits a 0.0019 increase in R-squared value, indicating a slight
- 2. MSE Reduction: There is a marginal decrease in the mean squared error, implying an improvement in prediction
- 3. Consistency Across Folds: The average R-squared across 10 folds has risen by approximately 0.0029, suggesting improved model consistency across varied data subsets by 0.29%.
- modeling approaches. regression may not be the optimal model type for this dataset, warranting the exploration and testing of alternative 4. Consideration for Model Type: The persistently low R-squared value and prediction accuracy hint that linear

Tab	
le No.3 Mo	
Table No.3 Model Performance Metrics Comparison	
nance Metr	
ics Comparis	
rison	

0.0029	-0.0011	-0.0014	0.0019	Model Differences	ώ
0.2716	0.6431	0.4136	0.4161	Initial	2.
0.2745	0.6421	0.4122	0.4180	Final	. '
Avarage R-squared across 10 folds	RMSE	MSE	R-squared	Model →	

current red wine dataset. model for predicting wine Quality lies between 14.53% and 40.37%, based on With 95% confidence, the true prediction accuracy of the linear regression

Graph No.3 Confidence Interval for Model Predictions

Predictive Model Development Workflow for **Alcohol Content Prediction**

Model Iterations and Their Impact on Alcohol c **Content Predictive Accuracy**

Key Insights:

- 1. Model Version v3 Performance: Showed the most notable improvement in R-squared value among the iterations
- 2. **Final Model Selection**: Version v4 was chosen for its simplified complexity through the exclusion of non-significant features.
- 3. Condition Number Concern: v4 alone exhibits a high condition number, indicating potential multicollinearity or numerical Issues
- of the final model 4. StandardScaler Integration: The application of StandardScaler aims to mitigate multicollinearity and enhance the robustness
- 5. **Combination for Final Model**: The final model integrates elements from both v1 and v4, leveraging their respective strengths

 Table No.4 Comparison of Model Improvement Methods and Metrics

	Version	Description	R-squared	Difference
.1	0	Initial model	0.5626	0.0000
2.	1	Model with Standard Scaling	0.5626	0.0000
3. 2	2	Model with Potential Outliers Removed	0.5229	-0.0397
4.	3	Default Feature Baseline Model	0.7049	0.1423
'n	4	Baseline Model (v4) with Significant Features	0.7026	0.1400

Graph No.4 R-Squared Values Across Different Model Version

1 - 5 / 5

Final Alcohol Content Prediction Model Features and Key Performance Metrics

and direction of the relationship between the feature and the target variable. The final predictive model includes a set of key features, each with an associated coefficient that signifies the strength

Table No.5 Feature Importance Summary

0.0958	0.0958	citric_acid	7.
-1.2088	1.2088	. density	6.
0.8944	0.8944	fixed_acidity	5.
0.5176	0.5176	. pH	4.
0.4592	0.4592	residual_sugar	ω
0.2176	0.2176	sulphates	2.
-0.1063	0.1063	. total_sulfur_dioxide	. '
Coefficient	Abs_Coefficient	Feature_Name •	

1-7/7

Final Quality Prediction Model Features and Key **Performance Metrics**

Key Points for Final Quality Prediction Model Summary:

- its ability to explain the variability of the target variable 1. Explanatory Power: The final model shows a significant R-squared increase of 0.14, marking a substantial gain in
- the accuracy of the model's predictions. 2. Prediction Accuracy: A reduction of 0.15 in the Mean Squared Error (MSE) reflects a noteworthy improvement in
- validation underscores enhanced consistency and hints at the model's increased reliability by 19%. 3. Consistency and Reliability: The average R-squared value's increase from 0.44 to 0.63 across 10-fold cross-

Table No.6 Model Performance Metrics Comparison

0.1904	-0.1211	-0.1526	0.1400	Model Differences	ω
0.4411	0.6905	0.4768	0.5626	Initial	2.
0.6316	0.5694	0.3242	0.7026	Final	. '
Avarage R-squared across 10 folds 🔻	RMSE	MSE	R-squared	Model	

With 95% confidence, the true prediction accuracy of the linear regression model for predicting Alcohol Content in wine lies between **50.10%** and **76.21%**, based on current red wine dataset.

Graph No.6 Confidence Interval for Model Predictions