Project 02: Income Qualification

Submitted By Mr. Vivek Gautam in October 2020

DESCRIPTION

Identify the level of income qualification needed for the families in Latin America.

Problem Statement Scenario:

Many social programs have a hard time ensuring that the right people are given enough aid. It's tricky when a program focuses on the poorest segment of the population. This segment of the population can't provide the necessary income and expense records to prove that they qualify. In Latin America, a popular method called Proxy Means Test (PMT) uses an algorithm to verify income qualification. With PMT, agencies use a model that considers a family's observable household attributes like the material of their walls and ceiling or the assets found in their homes to classify them and predict their level of need. While this is an improvement, accuracy remains a problem as the region's population grows and poverty declines. The Inter-American Development Bank (IDB)believes that new methods beyond traditional econometrics, based on a dataset of Costa Rican household characteristics, might help improve PMT's performance. Following actions should be performed:

- 1. Identify the output variable.
- 2. Understand the type of data.
- 3. Check if there are any biases in your dataset.
- 4. Check whether all members of the house have the same poverty level.
- 5. Check if there is a house without a family head.
- 6. Set poverty level of the members and the head of the house within a family.
- 7. Count how many null values are existing in columns.
- 8. Remove null value rows of the target variable.
- 9. Predict the accuracy using random forest classifier.
- 10. Check the accuracy using random forest with cross validation. Find the datasets here.

In [1]:

```
import numpy as np
import pandas as pd
from pandasql import sqldf
```

In [2]:

```
#pip install pandasql
```

In [3]:

```
#pip install sqlalchemy
#pip install pandasql
```

In [4]:

```
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [5]:

```
import warnings
warnings.filterwarnings("ignore")
```

In [6]:

```
#Load the data
trainDf = pd.read_csv(r'D:\Data_Science_Data\Income_Qualification\train.csv')
```

In [7]:

trainDf

Out[7]:

	Id	v2a1	hacdor	rooms	hacapo	v14a	refrig	v18q	v18q1	r4h1	 S
0	ID_279628684	190000.0	0	3	0	1	1	0	NaN	0	
1	ID_f29eb3ddd	135000.0	0	4	0	1	1	1	1.0	0	
2	ID_68de51c94	NaN	0	8	0	1	1	0	NaN	0	
3	ID_d671db89c	180000.0	0	5	0	1	1	1	1.0	0	
4	ID_d56d6f5f5	180000.0	0	5	0	1	1	1	1.0	0	
9552	ID_d45ae367d	80000.0	0	6	0	1	1	0	NaN	0	
9553	ID_c94744e07	80000.0	0	6	0	1	1	0	NaN	0	
9554	ID_85fc658f8	80000.0	0	6	0	1	1	0	NaN	0	
9555	ID_ced540c61	80000.0	0	6	0	1	1	0	NaN	0	
9556	ID_a38c64491	80000.0	0	6	0	1	1	0	NaN	0	

9557 rows × 143 columns

In [8]:

trainDf.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9557 entries, 0 to 9556
Columns: 143 entries, Id to Target

dtypes: float64(8), int64(130), object(5)

memory usage: 10.4+ MB

In [9]:

trainDf.describe()

Out[9]:

	v2a1	hacdor	rooms	hacapo	v14a	refrig	
count	2.697000e+03	9557.000000	9557.000000	9557.000000	9557.000000	9557.000000	9557.00
mean	1.652316e+05	0.038087	4.955530	0.023648	0.994768	0.957623	0.23
std	1.504571e+05	0.191417	1.468381	0.151957	0.072145	0.201459	0.42
min	0.000000e+00	0.000000	1.000000	0.000000	0.000000	0.000000	0.00
25%	8.000000e+04	0.000000	4.000000	0.000000	1.000000	1.000000	0.00
50%	1.300000e+05	0.000000	5.000000	0.000000	1.000000	1.000000	0.00
75%	2.000000e+05	0.000000	6.000000	0.000000	1.000000	1.000000	0.00
max	2.353477e+06	1.000000	11.000000	1.000000	1.000000	1.000000	1.00

8 rows × 138 columns

2. Understand the type of data.

In [10]:

trainDf.dtypes

Out[10]:

Id	object
v2a1	float64
hacdor	int64
rooms	int64
hacapo	int64
SQBovercrowding	float64
SQBdependency	float64
SQBmeaned	float64
agesq	int64
Target	int64
Length: 143, dtype:	object

```
In [11]:
```

1. Identify the output variable

```
In [12]:
trainDf.Target.value_counts()
Out[12]:
4
     5996
2
     1597
3
     1209
1
      755
Name: Target, dtype: int64
In [13]:
trainDf.Target.value_counts() / trainDf.shape[0]*100
Out[13]:
     62.739353
4
     16.710265
2
     12.650413
3
1
      7.899969
Name: Target, dtype: float64
```

7. Count how many null values are existing in columns

```
In [16]:
```

```
# Missing Values
trainDf.isnull().sum()
Out[16]:
Ιd
                       0
                    6860
v2a1
hacdor
                       0
rooms
                       0
hacapo
                       0
SQBovercrowding
                       0
SQBdependency
                       0
```

In [17]:

SQBmeaned

agesq

Target

```
trainDf_NaN = pd.DataFrame(data = trainDf.isnull().sum(), columns = ['CountOfNaN'])
print(trainDf_NaN)
```

	CountOfNaN
Id	0
v2a1	6860
hacdor	0
rooms	0
hacapo	0
• • •	
SQBovercrowding	0
SQBdependency	0
SQBmeaned	5
agesq	0
Target	0

Length: 143, dtype: int64

5

0

[143 rows x 1 columns]

In [18]:

```
trainDf_NaN[trainDf_NaN['CountOfNaN'] != 0]
```

Out[18]:

	CountOfNaN
v2a1	6860
v18q1	7342
rez_esc	7928
meaneduc	5
SQBmeaned	5

There are five columns which have missing values

3. Check if there are any biases in your dataset.

OI OHOOK II WIOLO WIO WHY NIWOOD HI JOWI WWWOOW

```
In [19]:
```

```
trainDf_NaN['% NaN'] = (trainDf_NaN['CountOfNaN'] / trainDf.shape[0]) * 100
trainDf_NaN[trainDf_NaN.sum(axis = 1) > 0]
```

Out[19]:

	CountOfNaN	% NaN
v2a1	6860	71.779847
v18q1	7342	76.823271
rez_esc	7928	82.954902
meaneduc	5	0.052318
SQBmeaned	5	0.052318

In [20]:

```
Missing_cols = trainDf.columns[trainDf.isnull().any()]
Missing_cols
```

Out[20]:

```
Index(['v2a1', 'v18q1', 'rez_esc', 'meaneduc', 'SQBmeaned'], dtype='object')
```

In [21]:

```
print('#of Missing Columns: {}'.format(len(Missing_cols)))
```

#of Missing Columns: 5

In [22]:

```
#pip install missingno
```

In [23]:

```
import missingno as msno
```

In [24]:

```
#Showing columns with missing values
msno.matrix(trainDf[Missing_cols], figsize = (18,7), fontsize = 10, color=(0.2,0.8,0.8))
```

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x1b87e77e820>

Remove columns with missing values

In [25]:

```
trainDf.drop(Missing_cols, axis = 1, inplace = True)
```

In [26]:

```
trainDf.shape
```

Out[26]:

(9557, 138)

In [27]:

```
trainDf_dtypes = trainDf.dtypes.reset_index()
trainDf_dtypes.columns = ["col_names", "col_type"]
print(trainDf_dtypes)
```

```
col_names col_type
                        object
0
                   Ιd
1
               hacdor
                          int64
2
                rooms
                          int64
3
                          int64
               hacapo
4
                 v14a
                          int64
133
        SQBhogar_nin
                          int64
                      float64
134
     SQBovercrowding
135
       SQBdependency
                       float64
136
                          int64
                agesq
137
               Target
                          int64
```

[138 rows x 2 columns]

(9557, 5)

```
In [28]:
trainDf_dtypes.groupby("col_type").size()
Out[28]:
col_type
           130
int64
float64
object
dtype: int64
In [29]:
trainDf.select_dtypes(include = ['object']).columns
Out[29]:
Index(['Id', 'idhogar', 'dependency', 'edjefe', 'edjefa'], dtype='object')
In [30]:
obj_cols = trainDf.select_dtypes(include = ['object']).columns
In [31]:
obj_df = trainDf[obj_cols]
In [32]:
obj_df.shape
Out[32]:
```

In [33]:

```
#df_obj.head()
trainDf[obj_cols]
```

Out[33]:

	ld	idhogar	dependency	edjefe	edjefa
0	ID_279628684	21eb7fcc1	no	10	no
1	ID_f29eb3ddd	0e5d7a658	8	12	no
2	ID_68de51c94	2c7317ea8	8	no	11
3	ID_d671db89c	2b58d945f	yes	11	no
4	ID_d56d6f5f5	2b58d945f	yes	11	no
9552	ID_d45ae367d	d6c086aa3	.25	9	no
9553	ID_c94744e07	d6c086aa3	.25	9	no
9554	ID_85fc658f8	d6c086aa3	.25	9	no
9555	ID_ced540c61	d6c086aa3	.25	9	no
9556	ID_a38c64491	d6c086aa3	.25	9	no

9557 rows × 5 columns

In [34]:

```
for col in obj_cols:
    print('Unique value in columns: {} = {}'.format(col, len(trainDf[col].unique())))

Unique value in columns: Id = 9557
Unique value in columns: idhogar = 2988
Unique value in columns: dependency = 31
Unique value in columns: edjefe = 22
Unique value in columns: edjefa = 22
In [35]:
```

#pip install pandas_profiling
#import pandas_profiling as pp

In [36]:

```
num_cols = trainDf.select_dtypes(exclude=['object']).columns
num_cols
```

Out[36]:

```
In [37]:
```

```
num_df = trainDf[num_cols]
```

In [38]:

num_df.shape

Out[38]:

(9557, 133)

In [39]:

num_df.describe().T

Out[39]:

	count	mean	std	min	25%	50%	75%
hacdor	9557.0	0.038087	0.191417	0.00	0.000000	0.000000	0.000000
rooms	9557.0	4.955530	1.468381	1.00	4.000000	5.000000	6.000000
hacapo	9557.0	0.023648	0.151957	0.00	0.000000	0.000000	0.000000
v14a	9557.0	0.994768	0.072145	0.00	1.000000	1.000000	1.000000
refrig	9557.0	0.957623	0.201459	0.00	1.000000	1.000000	1.000000
SQBhogar_nin	9557.0	3.844826	6.946296	0.00	0.000000	1.000000	4.000000
SQBovercrowding	9557.0	3.249485	4.129547	0.04	1.000000	2.250000	4.000000
SQBdependency	9557.0	3.900409	12.511831	0.00	0.111111	0.444444	1.777778
agesq	9557.0	1643.774302	1741.197050	0.00	289.000000	961.000000	2601.000000
Target	9557.0	3.302292	1.009565	1.00	3.000000	4.000000	4.000000

133 rows × 8 columns

In [42]:

float_cols = trainDf.select_dtypes(include=['float64']).columns

In [45]:

trainDf[float_cols].describe().T

Out[45]:

	count	mean	std	min	25%	50%	75%	max
overcrowding	9557.0	1.605380	0.819946	0.20	1.000000	1.500000	2.000000	6.0
SQBovercrowding	9557.0	3.249485	4.129547	0.04	1.000000	2.250000	4.000000	36.0
SOBdenendency	9557.0	3 900409	12 511831	0.00	0 111111	0 444444	1 777778	64.0

In [48]:

```
float_df = trainDf[float_cols]
float_df
```

Out[48]:

	overcrowding	SQBovercrowding	SQBdependency
0	1.000000	1.000000	0.0000
1	1.000000	1.000000	64.0000
2	0.500000	0.250000	64.0000
3	1.333333	1.777778	1.0000
4	1.333333	1.777778	1.0000
9552	1.250000	1.562500	0.0625
9553	1.250000	1.562500	0.0625
9554	1.250000	1.562500	0.0625
9555	1.250000	1.562500	0.0625
9556	1.250000	1.562500	0.0625

9557 rows × 3 columns

In [49]:

```
Q1 = float_df.quantile(0.25)
Q3 = float_df.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

overcrowding 1.000000 SQBovercrowding 3.000000 SQBdependency 1.666667

dtype: float64

In [51]:

```
init = False

for col_name in list(float_df.columns):
    low = Q1[col_name] - 1.5 *IQR[col_name]
    high = Q3[col_name] + 1.5 *IQR[col_name]

    query_string = '{} <@low or {} > @high'.format(col_name, col_name)

    outlier_arr_loop = float_df.query(query_string).index

if not init:
    outlier_arr = outlier_arr_loop
    init = True
    outlier_arr = outlier_arr.union(outlier_arr_loop)
```

In [52]:

```
len(outlier_arr)
```

Out[52]:

1527

In [53]:

```
float_df.skew(axis=0)
```

Out[53]:

overcrowding 1.889641 SQBovercrowding 4.186951 SQBdependency 4.404052

dtype: float64

In [54]:

```
fig, (axes) = plt.subplots(nrows=1, ncols=3, figsize=(16, 5))
sns.boxplot(data=float_df[['overcrowding']], palette='Set2', ax=axes[0]);
sns.boxplot(data=float_df[['SQBovercrowding']], palette='Set2', ax=axes[1]);
sns.boxplot(data=float_df[['SQBdependency']], palette='Set2', ax=axes[2]);
```


In [55]:

#overcrowding Distribution

sns.distplot(float_df.overcrowding)

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x1b800061250>

In [56]:

#SQBovercrowding Distribution
sns.distplot(float_df.SQBovercrowding)

Out[56]:

<matplotlib.axes._subplots.AxesSubplot at 0x1b8004ef1c0>

In [57]:

```
#SQBdependency Distribution
sns.distplot(float_df.SQBdependency)
```

Out[57]:

2988

<matplotlib.axes._subplots.AxesSubplot at 0x1b8000721c0>

4. Check whether all members of the house have the same poverty level

```
In [58]:
trainDf.shape
Out[58]:
(9557, 138)
In [59]:
#sqLdf('SELECT COUNT(DISTINCT idhogar) FROM trainDf')
len(trainDf['idhogar'].unique())
Out[59]:
```

In [60]:

```
sqldf('SELECT idhogar, Target FROM trainDf order by idhogar;')
```

Out[60]:

	idhogar	Target
0	001ff74ca	4
1	001ff74ca	4
2	003123ec2	2
3	003123ec2	2
4	003123ec2	2
9552	ffe90d46f	1
9553	fff7d6be1	4
9554	fff7d6be1	4
9555	fff7d6be1	4
9556	fff7d6be1	4

9557 rows × 2 columns

In [61]:

```
sqldf('SELECT idhogar, Target FROM trainDf order by idhogar;')
```

Out[61]:

	idhogar	Target
0	001ff74ca	4
1	001ff74ca	4
2	003123ec2	2
3	003123ec2	2
4	003123ec2	2
9552	ffe90d46f	1
9553	fff7d6be1	4
9554	fff7d6be1	4
9555	fff7d6be1	4
9556	fff7d6be1	4

9557 rows × 2 columns

In [62]:

```
trainDf.groupby(['idhogar','Target']).size().unstack()
```

Out[62]:

1	2	3	4
NaN	NaN	NaN	2.0
NaN	4.0	NaN	NaN
NaN	2.0	NaN	NaN
NaN	NaN	2.0	NaN
NaN	3.0	NaN	NaN
NaN	NaN	NaN	4.0
NaN	NaN	NaN	3.0
NaN	NaN	NaN	2.0
4.0	NaN	NaN	NaN
NaN	NaN	NaN	4.0
	NaN	NaN NaN Ann Ann Ann Ann Ann NaN NaN NaN NaN NaN NaN NaN NaN Ann Ann Ann Ann Ann Ann Ann NaN NaN NaN NaN NaN NaN NaN NaN NaN N	NaN NaN NaN NaN 4.0 NaN NaN 2.0 NaN NaN 3.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.0 NaN NaN

2988 rows × 4 columns

In [63]:

trainDf.groupby(['idhogar','Target']).size().unstack().fillna(0).sample(10)

Out[63]:

Target	1	2	3	4
idhogar				
f86c4f7b1	0.0	0.0	4.0	0.0
2af7d54ce	0.0	0.0	0.0	2.0
3e27db2cd	0.0	0.0	0.0	3.0
597fd9997	0.0	0.0	0.0	1.0
5e9e3d554	0.0	0.0	0.0	3.0
d22d30c29	0.0	0.0	0.0	5.0
3fe2124d9	0.0	0.0	0.0	1.0
24559be8f	0.0	0.0	0.0	1.0
8ac40302b	0.0	0.0	0.0	4.0
05e1d4a10	0.0	3.0	0.0	0.0

In [64]:

```
df_family_level = trainDf.groupby(['idhogar','Target']).size().unstack().reset_index()
df_family_level.head()
```

Out[64]:

Target idhogar		1	2	3	4
0	001ff74ca	NaN	NaN	NaN	2.0
1	003123ec2	NaN	4.0	NaN	NaN
2	004616164	NaN	2.0	NaN	NaN
3	004983866	NaN	NaN	2.0	NaN
4	005905417	NaN	3.0	NaN	NaN

In [65]:

```
df_family_level.columns
```

Out[65]:

Index(['idhogar', 1, 2, 3, 4], dtype='object', name='Target')

In [66]:

```
column_names = ['FamilyId', 'Level1', 'Level2', 'Level3', 'Level4']
df_family_level.columns = column_names
df_family_level.head()
```

Out[66]:

	Familyld	Level1	Level2	Level3	Level4
0	001ff74ca	NaN	NaN	NaN	2.0
1	003123ec2	NaN	4.0	NaN	NaN
2	004616164	NaN	2.0	NaN	NaN
3	004983866	NaN	NaN	2.0	NaN
4	005905417	NaN	3.0	NaN	NaN

In [67]:

```
df_family_level.fillna(0, inplace = True)
```

In [68]:

```
In [69]:
```

```
df_family_level.head()
```

Out[69]:

	Familyld	Level1	Level2	Level3	Level4	Total_Levels
0	001ff74ca	0.0	0.0	0.0	2.0	2.0
1	003123ec2	0.0	4.0	0.0	0.0	4.0
2	004616164	0.0	2.0	0.0	0.0	2.0
3	004983866	0.0	0.0	2.0	0.0	2.0
4	005905417	0.0	3.0	0.0	0.0	3.0

In [70]:

```
poverty_level=trainDf.groupby('idhogar')['Target'].apply(lambda x: x.nunique() == 1)
print('{} Households have different Target value.'.format(sum(poverty_level == False)))
```

85 Households have different Target value.

5. Check if there is a house without a family head.

```
In [71]:
```

In [72]:

```
trainDf.parentesco1
```

```
Out[72]:
```

```
1
1
        1
2
3
        a
9552
        1
9553
        0
9554
        0
9555
        0
9556
Name: parentesco1, Length: 9557, dtype: int64
```

In [73]:

```
grouped = trainDf.groupby('idhogar')
grouped.apply(lambda x : x[x['parentesco1'] != 1]['parentesco1'])
Out[73]:
idhogar
001ff74ca
          7471
                   0
003123ec2 8159
                   0
           8161
                   0
           8162
                   0
004616164
          6473
                   0
ffe90d46f
           9350
                   0
           9351
                   0
fff7d6be1
           5948
                   0
           5949
           5951
                   0
Name: parentesco1, Length: 6584, dtype: int64
```

In [74]:

```
trainDf.idhogar
```

Out[74]:

```
21eb7fcc1
0
        0e5d7a658
1
2
        2c7317ea8
3
        2b58d945f
        2b58d945f
9552
        d6c086aa3
        d6c086aa3
9553
9554
        d6c086aa3
        d6c086aa3
9555
9556
        d6c086aa3
Name: idhogar, Length: 9557, dtype: object
```

```
In [75]:
```

```
sqldf('SELECT idhogar, parentesco1 FROM trainDf order by idhogar;')
```

Out[75]:

	idhogar	parentesco1
0	001ff74ca	0
1	001ff74ca	1
2	003123ec2	0
3	003123ec2	1
4	003123ec2	0
9552	ffe90d46f	0
9553	fff7d6be1	0
9554	fff7d6be1	0
9555	fff7d6be1	1
9556	fff7d6be1	0

9557 rows × 2 columns

In [76]:

```
sqldf('SELECT idhogar, COUNT(parentesco1) FROM trainDf GROUP BY idhogar HAVING COUNT(parent
Out[76]:
```

idhogar COUNT(parentesco1)

6. Set poverty level of the members and the head of the house within a family

In [80]:

```
#pl = sqldf('SELECT idhogar, Target FROM trainDf ORDER BY idhogar;')
pl = trainDf[['idhogar', 'Target']].sort_values(by='idhogar', ascending=True)
pl
```

Out[80]:

	idhogar	Target
7472	001ff74ca	4
7471	001ff74ca	4
8159	003123ec2	2
8160	003123ec2	2
8161	003123ec2	2
9351	ffe90d46f	1
5948	fff7d6be1	4
5949	fff7d6be1	4
5950	fff7d6be1	4
5951	fff7d6be1	4

9557 rows × 2 columns

In [81]:

```
pl.shape
```

Out[81]:

(9557, 2)

In [87]:

```
#a=pl.idhogar[0]
#for i in range(len(pl)) :

count = 0;

print('Family Id \t Poverty Level')

for i in range(5000):

    f1 = pl.idhogar[i]
    f2 = pl.idhogar[i+1]

    if (f1 == f2):
        t1=pl.Target[i]
        t2=pl.Target[i+1]

        if(t1 != t2):

            count = count + 1;
            pl.Target[i+1] = pl.Target[i]
            print(pl.idhogar[i],'\t', pl.Target[i+1])

print(count)
```

```
Family Id
                  Poverty Level
4b6077882
4b6077882
                  1
6833ac5dc
                  2
43b9c83e5
                  2
                  3
5c3f7725d
                  3
5c3f7725d
0f9494d3a
                  2
0f9494d3a
                  2
0f9494d3a
                  2
daafc1281
                  2
daafc1281
                  2
                  2
daafc1281
73d85d05d
                  2
bcaa2e2f5
                  4
44f219a16
                  3
efd3aec61
                  2
                  2
efd3aec61
3c6973219
0511912b6
                  4
f006348ed
                  3
f006348ed
                  3
f006348ed
                  3
a20ff33ba
                  2
5e9329fc6
                  3
e65d4b943
                  3
42ec8bef5
                  2
42ec8bef5
                  2
6bcf799cf
                  2
26b3a0f41
                  3
4dc11e11f
                  1
4dc11e11f
                  1
                  2
594d3eb27
594d3eb27
                  2
                  1
d9b1558b5
```

```
      d9b1558b5
      1

      7ea6aca15
      4

      8bb6da3c1
      2

      8bb6da3c1
      2

      3df651058
      1

      811a35744
      4

      811a35744
      4

      2cb443214
      2

      42
```

In [89]:

p1

Out[89]:

idhogar	Target
001ff74ca	4
001ff74ca	4
003123ec2	2
003123ec2	2
003123ec2	2
ffe90d46f	1
fff7d6be1	4
	001ff74ca 001ff74ca 003123ec2 003123ec2 ffe90d46f fff7d6be1 fff7d6be1 fff7d6be1

9557 rows × 2 columns

Now, poverty level of each member and the head of the house within a family is same.

8. Remove null value rows of the target variable.

```
In [90]:
trainDf['Target'].isnull().sum()
Out[90]:
0
In [ ]:
```

Null values are not present in target variable

9. Predict the accuracy using random forest classifier.

```
In [91]:
```

obj_df.columns

Out[91]:

Index(['Id', 'idhogar', 'dependency', 'edjefe', 'edjefa'], dtype='object')

In [92]:

obj_df.head()

Out[92]:

	ld	idhogar	dependency	edjefe	edjefa
0	ID_279628684	21eb7fcc1	no	10	no
1	ID_f29eb3ddd	0e5d7a658	8	12	no
2	ID_68de51c94	2c7317ea8	8	no	11
3	ID_d671db89c	2b58d945f	yes	11	no
4	ID_d56d6f5f5	2b58d945f	yes	11	no

In [93]:

obj_df.columns

Out[93]:

Index(['Id', 'idhogar', 'dependency', 'edjefe', 'edjefa'], dtype='object')

In [94]:

obj_df.head()

Out[94]:

	ld	idhogar	dependency	edjefe	edjefa
0	ID_279628684	21eb7fcc1	no	10	no
1	ID_f29eb3ddd	0e5d7a658	8	12	no
2	ID_68de51c94	2c7317ea8	8	no	11
3	ID_d671db89c	2b58d945f	yes	11	no
4	ID_d56d6f5f5	2b58d945f	yes	11	no

In [95]:

Prepare DataFrame by Convertinjg Object columns into numeric columns using One Hot Encodi obj_df_OHE = pd.DataFrame(pd.get_dummies(obj_df, columns=["idhogar", "dependency", "edjefe"

```
In [96]:
```

```
obj_df_OHE.head()
```

Out[96]:

	ld	idhogar_001ff74ca	idhogar_003123ec2	idhogar_004616164	idhogar_004983866
0	ID_279628684	0	0	0	0
1	ID_f29eb3ddd	0	0	0	0
2	ID_68de51c94	0	0	0	0
3	ID_d671db89c	0	0	0	0
4	ID_d56d6f5f5	0	0	0	0

5 rows × 3064 columns

In [97]:

```
obj_df_OHE.head().columns
```

Out[97]:

In [98]:

Prepare DataFrame by Convertinjg Object columns into numeric columns using One Hot Encodi float_df_OHE = pd.DataFrame(pd.get_dummies(float_df.columns, columns=['overcrowding''SQBove

In [99]:

```
float_df_OHE.head()
```

Out[99]:

	SQBdependency	SQBovercrowding	overcrowding
	0	0	1
	0	1	0
:	2 1	0	0

In [101]:

```
# Drop object columns from Train DataFrame
#TrainDfDropObj = pd.DataFrame(trainDf.drop(["Id", "idhogar", "dependency", "edjefe", "edje
```

```
In [102]:
#TrainDfDrop.Id
In [103]:
#FinalTrainDf = pd.DataFrame(pd.concat([TrainDfDropObj, obj_df_OHE]))
FinalTrainDf = pd.DataFrame(pd.concat([obj_df_OHE, num_df]))
In [104]:
FinalTrainDf.shape
Out[104]:
(19114, 3197)
In [105]:
FinalTrainDf.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 19114 entries, 0 to 9556
Columns: 3197 entries, Id to Target
dtypes: float64(3196), object(1)
memory usage: 466.4+ MB
In [106]:
FinalTrainDf.select_dtypes(include = ['object']).columns
Out[106]:
Index(['Id'], dtype='object')
In [107]:
FinalTrainDf = FinalTrainDf.drop('Id', axis=1)
In [108]:
#FinalTrainDf.Id
In [109]:
FinalTrainDf.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 19114 entries, 0 to 9556
Columns: 3196 entries, idhogar 001ff74ca to Target
dtypes: float64(3196)
memory usage: 466.2 MB
```

In [110]:

```
# Missing Values
#FinalTrainDf.isnull().sum()
#FinalTrainDf.isna().sum()
FinalTrainDf_NaN = pd.DataFrame(data = FinalTrainDf.isnull().sum(), columns = ['CountOfNaN'
FinalTrainDf_NaN[FinalTrainDf_NaN['CountOfNaN'] != 0]
```

Out[110]:

	CountOfNaN
idhogar_001ff74ca	9557
idhogar_003123ec2	9557
idhogar_004616164	9557
idhogar_004983866	9557
idhogar_005905417	9557
SQBhogar_nin	9557
SQBovercrowding	9557
SQBdependency	9557
agesq	9557
Target	9557

3196 rows × 1 columns

In [111]:

```
FinalTrainDf.fillna(0, inplace = True)
FinalTrainDf.head()
```

Out[111]:

	idhogar_001ff74ca	idhogar_003123ec2	idhogar_004616164	idhogar_004983866	idhogar_00590
0	0.0	0.0	0.0	0.0	
1	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	

5 rows × 3196 columns

In [112]:

```
#FinalTrainDf.isna().sum()
FinalTrainDf_NaN = pd.DataFrame(data = FinalTrainDf.isnull().sum(), columns = ['CountOfNaN']
FinalTrainDf_NaN[FinalTrainDf_NaN['CountOfNaN'] != 0]
```

Out[112]:

CountOfNaN

In [113]:

```
X = FinalTrainDf.drop('Target', axis=1)
y = FinalTrainDf['Target']
```

In [114]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X, y,test_size=0.3, random_state = 110)
#X_train,X_test,y_train,y_test = train_test_split(X, y,test_size=0.7, random_state = 11)
print(len(X_train))
print(len(X_test))
```

13379 5735

In [115]:

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators = 100, criterion = 'entropy')
rfc.fit(X_train, y_train)
```

Out[115]:

RandomForestClassifier(criterion='entropy')

In [116]:

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

```
In [117]:
```

```
predictions = rfc.predict(X test)
print("-----")
accuracy_test = accuracy_score(y_test, predictions)
print(accuracy_test)
print("\n-----")
conf_matrix = confusion_matrix(y_test, predictions)
print(conf_matrix)
print("\n-----")
print(classification_report(y_test, predictions))
----- Test Accuracy -----
0.9150828247602442
----- Confusion Matrix -----
      0 0
[[2853
                0
                   0]
[
  0 134
           19
                   79]
               3 170]
       4 304
0
      0
          18 156 189]
4
0
                1 1801]]
----- Classification Report ------
           precision
                    recall f1-score
                                     support
       0.0
               1.00
                       1.00
                               1.00
                                        2853
       1.0
               0.97
                       0.58
                               0.72
                                        232
       2.0
               0.88
                               0.74
                       0.63
                                        481
       3.0
               0.97
                       0.43
                               0.60
                                        363
       4.0
               0.80
                       1.00
                               0.89
                                        1806
                               0.92
   accuracy
                                        5735
               0.93
                       0.73
                               0.79
  macro avg
                                        5735
                               0.91
weighted avg
               0.93
                       0.92
                                        5735
```

Here, Accuracy on train data is 92 %

Apply the Model on Test Data

```
In [120]:
```

```
testDf = pd.read_csv(r'D:\Data_Science_Data\Income_Qualification\test.csv')
```

In [122]:

```
testDf.head()
```

Out[122]:

	ld	v2a1	hacdor	rooms	hacapo	v14a	refrig	v18q	v18q1	r4h1	 age
0	ID_2f6873615	NaN	0	5	0	1	1	0	NaN	1	 4
1	ID_1c78846d2	NaN	0	5	0	1	1	0	NaN	1	 41
2	ID_e5442cf6a	NaN	0	5	0	1	1	0	NaN	1	 41
3	ID_a8db26a79	NaN	0	14	0	1	1	1	1.0	0	 59
4	ID_a62966799	175000.0	0	4	0	1	1	1	1.0	0	 18

5 rows × 142 columns

In [123]:

testDf_NaN = pd.DataFrame(data = testDf.isnull().sum(), columns = ['CountOfNaN'])
print(testDf_NaN)

	CountOfNaN
Id	0
v2a1	17403
hacdor	0
rooms	0
hacapo	0
• • •	• • •
SQBhogar_nin	0
SQBovercrowding	0
SQBdependency	0
SQBmeaned	31
agesq	0

[142 rows x 1 columns]

In [124]:

```
testDf_NaN['% NaN'] = (testDf_NaN['CountOfNaN'] / testDf.shape[0]) * 100
testDf_NaN[testDf_NaN.sum(axis = 1) > 0]
```

Out[124]:

	CountOfNaN	% NaN
v2a1	17403	72.950201
v18q1	18126	75.980885
rez_esc	19653	82.381791
meaneduc	31	0.129946
SQBmeaned	31	0.129946

```
In [125]:
Missing cols test = testDf.columns[testDf.isnull().any()]
Missing_cols_test
Out[125]:
Index(['v2a1', 'v18q1', 'rez_esc', 'meaneduc', 'SQBmeaned'], dtype='object')
In [126]:
testDf.drop(Missing cols, axis = 1, inplace = True)
testDf.shape
Out[126]:
(23856, 137)
In [127]:
testDf.select_dtypes(include = ['object']).columns
Out[127]:
Index(['Id', 'idhogar', 'dependency', 'edjefe', 'edjefa'], dtype='object')
In [128]:
obj_cols_test = testDf.select_dtypes(include = ['object']).columns
In [129]:
obj_df_test = testDf[obj_cols_test]
In [130]:
for col in obj cols test:
    print('Unique value in columns: {} = {}'.format(col, len(testDf[col].unique())))
Unique value in columns: Id = 23856
Unique value in columns: idhogar = 7352
Unique value in columns: dependency = 35
Unique value in columns: edjefe = 22
Unique value in columns: edjefa = 22
In [131]:
from sklearn.preprocessing import LabelEncoder
lb make = LabelEncoder()
In [132]:
testDf["idhogar code"] = lb make.fit transform(testDf["idhogar"])
pd.unique(testDf[["idhogar", "idhogar_code"]].values.ravel())
Out[132]:
array(['72958b30c', 3230, '5b598fbc9', ..., 1659, 'd237404b6', 5963],
      dtype=object)
```

```
In [133]:
```

```
testDf["dependency code"] = 1b make.fit transform(testDf["dependency"])
pd.unique(testDf[["dependency", "dependency_code"]].values.ravel())
Out[133]:
array(['.5', 9, 'no', 33, '8', 32, 'yes', 34, '.25', 4, '2', 21,
        '.33333334', 6, '.375', 7, '.60000002', 10, '1.5', 19, '.2', 3,
       '.75', 12, '.66666669', 11, '3', 25, '.14285715', 1, '.40000001',
       8, '.80000001', 13, '1.6666666', 20, '.2857143', 5, '1.25', 17,
       '2.5', 24, '5', 29, '.85714287', 15, '1.3333334', 18, '.16666667',
       2, '4', 28, '.125', 0, '.83333331', 14, '2.3333333', 23, '7', 31,
       '1.2', 16, '3.5', 27, '2.25', 22, '3.3333333', 26, '6', 30],
      dtype=object)
In [134]:
testDf["edjefe code"] = lb make.fit transform(testDf["edjefe"])
pd.unique(testDf[["edjefe", "edjefe_code"]].values.ravel())
Out[134]:
array(['no', 20, '16', 6, '10', 0, '6', 16, '11', 1, '8', 18, '13', 3,
       '14', 4, '5', 15, '3', 13, '9', 19, '17', 7, '15', 5, '7', 17,
       '21', 12, '4', 14, '12', 2, '2', 10, '20', 11, 'yes', 21, '19', 9,
       '18', 8], dtype=object)
In [135]:
testDf["edjefa_code"] = lb_make.fit_transform(testDf["edjefa"])
pd.unique(testDf[["edjefa", "edjefa_code"]].values.ravel())
Out[135]:
array(['17', 7, 'no', 20, '11', 1, '14', 4, '10', 0, '15', 5, '9', 19,
       '6', 16, '8', 18, '3', 13, '2', 10, '5', 15, '16', 6, '12', 2,
       'yes', 21, '7', 17, '13', 3, '21', 12, '4', 14, '19', 9, '18', 8,
       '20', 11], dtype=object)
In [136]:
#num cols test = testDf.select dtypes(exclude=['object']).columns
#num_cols_test
In [137]:
#num_df_test = testDf[num_cols_test]
```

In [138]:

```
# Prepare DataFrame by Convertinjg Object columns into numeric columns using One Hot Encodi
# obj_df_OHE_test = pd.DataFrame(pd.get_dummies(obj_df_test, columns=["idhogar", "dependenc
# obj_df_OHE_test.head()
```

In [139]:

```
\#num\_drof\_float\_df = pd.DataFrame(num\_df\_test.drop(['SQBdependency', 'SQBovercrowding','overlinesholder'), 'SQBovercrowding','overlinesholder', 'SQBovercrowding', 'SQBovercr
#TestDfDropObj = pd.DataFrame(testDf.drop(["Id", "idhogar", "dependency", "edjefe", "edjefa
#TestDfDropObj.head()
```

```
In [140]:
#obj_df_OHE_test.select_dtypes(include=['float64']).columns
In [141]:
#FinalTestDf = pd.DataFrame(pd.concat([TestDfDropObj, obj df OHE test]))
#FinalTestDf = pd.DataFrame(pd.concat([TestDfDropObj, num_df_test]))
In [143]:
FinalTestDf.shape
NameError
                                           Traceback (most recent call last)
<ipython-input-143-373aa887d663> in <module>
---> 1 FinalTestDf.shape
NameError: name 'FinalTestDf' is not defined
In [145]:
FinalTestDf.info()
                                           Traceback (most recent call last)
NameError
<ipython-input-145-ff7f34d336e3> in <module>
----> 1 FinalTestDf.info()
NameError: name 'FinalTestDf' is not defined
In [146]:
FinalTestDf_NaN = pd.DataFrame(data = FinalTestDf.isnull().sum(), columns = ['CountOfNaN'])
FinalTestDf_NaN[FinalTestDf_NaN['CountOfNaN'] != 0]
NameError
                                           Traceback (most recent call last)
<ipython-input-146-ce82a29d9b13> in <module>
----> 1 FinalTestDf NaN = pd.DataFrame(data = FinalTestDf.isnull().sum(), co
lumns = ['CountOfNaN'])
      2 FinalTestDf NaN[FinalTestDf NaN['CountOfNaN'] != 0]
NameError: name 'FinalTestDf' is not defined
In [144]:
X = FinalTrainDf
```

```
In [147]:
```

```
predictions = rfc.predict(X test)
print("-----")
accuracy_test = accuracy_score(y_test, predictions)
print(accuracy_test)
print("\n-----")
conf_matrix = confusion_matrix(y_test, predictions)
print(conf_matrix)
print("\n-----")
print(classification_report(y_test, predictions))
----- Test Accuracy -----
```

```
0.9150828247602442
```

Confusion Matrix								
[[2	853	0	0	0	0]			
[0	134	19	0	79]			
[0	4	304	3	170]			
[0	0	18	156	189]			
[0	0	4	1	1801]]			

assification	Report -		
precision	recall	f1-score	support
1.00	1.00	1.00	2853
0.97	0.58	0.72	232
0.88	0.63	0.74	481
0.97	0.43	0.60	363
0.80	1.00	0.89	1806
		0.92	5735
0.93	0.73	0.79	5735
0.93	0.92	0.91	5735
	1.00 0.97 0.88 0.97 0.80	1.00 1.00 0.97 0.58 0.88 0.63 0.97 0.43 0.80 1.00	precision recall f1-score 1.00 1.00 1.00 0.97 0.58 0.72 0.88 0.63 0.74 0.97 0.43 0.60 0.80 1.00 0.89 0.92 0.93 0.73 0.79

Here, Accuracy on test data is 92 %

In []: