3.2	${f 1}$ In $GL_2(R)$, find the order of each ${f c}$	of the following elements.	
	b	[]	
		0 1	
		_1 0	
	Ans		
	d	Г 1	
		0 1	
		0 1	
	Ans		
1	1 Let S be a set, and let a be a fixed a subgroup of $Sym(S)$.	d element of $S.$ Show that $\{\sigma \in$	$\operatorname{Sym}(S)\mid\sigma(a)=a\}\text{ is }$
An	s		
12	2 For each of the following groups, f	ind all elements of finite order.	
	a $\mathbb{R}^{ imes}$		
	Ans		
	d $\mathbb{C}^{ imes}$		
	Ans		
19	9 Let G be a group, and let $a \in G$. The G		of all elements of G
	that commute with a is called the		
	a Show that $C(a)$ is a subgroup of	of G .	
	Ans		
	b Show that $\langle a \rangle \subseteq C(a)$.		
	Ans		

	c Compute $C(a)$ if $G = S_3$ and $a = (1, 2, 3)$.
	Ans
	d Compute $C(a)$ if $G=S_3$ and $a=(1,2)$. $ \Box$
20	Compute the centralizer in $\text{GL}_2(\mathbb{R})$ of the matrix $ \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} $
Ans	
25	Let G be a finite group, let $n>2$ be an integer, and let S be the set of elements of G that have order n . Show that S has an even number of elements.
Ans	
3.3 4	Find the cyclic subgroup generated by $\left[\begin{array}{cc} 2 & 1 \\ & & \\ 0 & 2 \end{array}\right]$ in $GL_2(\mathbb{Z}_3).$
Ans	
5 Ans	Prove that if G_1 and G_2 are abelian groups, then the direct product $G_1 \times G_2$ is abelian. \Box
8	Let G_1 and G_2 be groups, with subgroups H_1 and H_2 , respectively. Show that $\{(x_1,x_2)\mid x_1\in H_1, x_2\in H_2\}$ is a subgroup of the direct product $G_1\times G_2$.
Ans	
11	Let G_1 and G_2 be groups, and let G be the direct product $G_1 \times G_2$. Let $H = \{(x_1, x_2) \in G_1 \times G_2 \mid x_2 = e\}$ and let $K = \{(x_1, x_2) \in G_1 \times G_2 \mid x_1 = e\}$.
	a Show that H and K are subgroups of G .
	Ans
	b Show that $HK = KH = G$. $ \Box$
	c Show that $H \cap K = \{e, e\}$.

	Ans
13	Let p,q be distinct prime numbers, and let $n=pq$. Show that $HK=\mathbb{Z}_n^{\times}$, for the subgroups $H=\{[x]\in\mathbb{Z}_n^{\times}\mid x\equiv 1\ (\mathrm{mod}\ p)\}$ and $K=\{[y]\in\mathbb{Z}_n^{\times}\mid y\equiv 1\ (\mathrm{mod}\ q)\}$ of \mathbb{Z}_n^{\times} .
Ans	
16	Let G be a group of order 6, and suppose that $a,b\in G$ with a of order 3 and b of order
	2. Show that either G is cyclic or $ab \neq ba$.

Ans