Теория категорий Пределы и копределы

Валерий Исаев

24 февраля 2021 г.

План лекции

Пределы

Копределы

Конусы диграмм

- ightharpoonup Пусть J=(V,E) некоторый граф, и D диграмма формы J в категории ${f C}$.
- Конус диаграммы D это объект A вместе с коллекцией морфизмов $a_v:A\to D(v)$ для каждой $v\in V$, удовлетворяющие условию, что для любого $e\in E$ следующая диаграмма коммутирует

Определение пределов

▶ Предел диграммы D — это такой конус A, что для любого конуса B существует уникальный морфизм $f:B\to A$, такой что для любой $v\in V$ следующая диаграмма коммутирует

- ightharpoonup Предел D обозначается $\lim D$.
- ► Категория называется *полной* (*конечно полной*), если в ней существуют все малые (конечные) пределы.

Примеры пределов

- ▶ Произведения это пределы дискретных диаграмм.
- Бинарные произведения это пределы диаграмм вида

• •

Уравнители – это пределы диаграмм вида

▶ Терминальные объекты – это пределы пустой диаграммы.

Уникальность пределов

Proposition

Если A и B – пределы диаграммы D, то существует изоморфизм $f:A\simeq B$, такой что $a_v=b_v\circ f$ для любой $v\in V$.

Доказательство.

Так как B — предел, то существует стрелка $f:A\to B$, удовлетворяющая условию утверждения. Так как A — предел, то существует стрелка $g:B\to A$. По уникальности мы знаем, что $g\circ f=id_A$ и $f\circ g=id_B$, то есть f — изоморфизм.

Пулбэки

► Пулбэки – это пределы диаграмм вида

Пулбэк можно изображать как коммутативный квадрат

- Пулбэк иногда называют декартовым квадратом.
- lacktriangle Стрелку $A imes_C B o A$ называют пулбэком стрелки B o C.

Декартово произведение через пулбэки

Proposition

Если 1 – терминальный объект, то пулбэк $A \times_1 B$ является декартовым произведением $A \times B$.

Доказательство.

Действительно, конус диаграммы A B - это тоже самое, что и конус диаграммы

Следовательно пределы этих диграмм также совпадают.

Пулбэки в Set

В **Set** пулбэк диаграммы

можно определить как подмножество декартова произведения $A \times B$. Действительно, если мы положим $A \times_C B = \{(a,b) \mid f(a) = g(b)\}$, то легко видеть, что $A \times_C B$ является пулбэком диграммы выше.

Пулбэки через уравнители и произведения

Proposition

Если в категории существуют конечные произведения и уравнители, то в ней существуют пулбэки.

Доказательство.

Пулбэки можно сконструировать так же, как и в \mathbf{Set} . Пусть $e:D\to A\times B$ — уравнитель стрелок $f\circ\pi_1:A\times B\to C$ и $g\circ\pi_2:A\times B\to C$. Тогда легко видеть, что квадрат ниже является декартовым.

$$D \xrightarrow{\pi_2 \circ e} B$$

$$\pi_1 \circ e \bigvee_{q} \bigvee_{q} g$$

$$A \xrightarrow{f} C$$

Пределы через уравнители и произведения

Proposition

Если в категории существуют конечные произведения и уравнители, то в ней существуют все конечные пределы.

Доказательство.

Пусть D — диаграмма формы (V, E). Тогда рассмотрим диаграмму, состоящую из пары стрелок

$$\langle \pi_{t(e)} \rangle_{e \in E}, \langle D(e) \circ \pi_{s(e)} \rangle_{e \in E} : \prod_{v \in V} D(v) \Longrightarrow \prod_{e \in E} D(t(e))$$

Конус этой диаграммы — это тоже самое, что конус диаграммы D. Следовательно предел этой диаграммы также является пределом D.

Прообраз подобъекта

- ightharpoonup Пусть f:A o C функция в **Set** и $B\subseteq C$.
- ▶ Тогда мы можем определить прообраз f: $f^{-1}(B) = \{a \in A \mid f(a) \in B\} \subseteq A$.
- Как обобщить эту конструкцию на произвольную категорию?
- lacktriangledown Прообраз подобъекта $B\hookrightarrow C$ вдоль морфизма $f:A\to C$ это пулбэк

ightharpoonup Упражнение: докажите, что $f^{-1}(B) o A$ является мономорфизмом.

Пересечение подобъектов

- ightharpoonup Пусть A и B подмножества C.
- ▶ Тогда мы можем определить их пересечение $A \cap B$, которое является подмножеством и A, и B.
- Как обобщить эту конструкцию на произвольную категорию?
- lacktriangle Пересечение подобъектов $A\hookrightarrow C$ и $B\hookrightarrow C$ это пулбэк

План лекции

Пределы

Копределы

Дуальная категория

Пусть C — произвольная категория, тогда *дуальная* ей категория C^{op} — это категория, определяемая следующим образом:

- ightharpoonup Объекты $m {f C}^{op}$ совпадают с объектами $m {f C}$.
- ightharpoonup Если X, Y объекты \mathbf{C}^{op} , то $Hom_{\mathbf{C}^{op}}(X,Y)$ определяется как $Hom_{\mathbf{C}}(Y,X)$.
- ► Композиция и тождественные морфизмы определяются так же, как в **C**.

Дуальность

- В теории категорий зачастую определения и утверждения можно дуализировать, применив их в дуальной категории.
- Например, понятие эпиморфизма является дуальным к понятию мономорфизма.

$$f$$
 - MOHO: $Z \xrightarrow{g} X \xrightarrow{f} Y \implies g = h$

$$f$$
 - $\exists nu: Z \stackrel{g}{\underset{h}{\rightleftharpoons}} X \stackrel{f}{\longleftrightarrow} Y \implies g = h$

 Часто к дуальным понятиям прибавляют приставку ко.
 Например, эпиморфизмы можно называть комономорфизмами (или мономорфизмы можно называть коэпиморфизмами).

Копределы

- Копределы это дуальное понятие к понятию пределов.
- Коконус диаграммы D это объект A вместе с коллекцией морфизмов $a_v:D(v)\to A$ для каждой $v\in V$, удовлетворяющие условию, что для любого $e\in E$ следующая диаграмма коммутирует

Определение копределов

• Копредел диграммы D — это такой коконус A, что для любого коконуса B существует уникальный морфизм $f:A \to B$, такой что для любой $v \in V$ следующая диаграмма коммутирует

- ightharpoonup Копредел D обозначается $\operatorname{colim} D$.
- ► Категория называется *кополной* (*конечно кополной*), если в ней существуют все малые (конечные) копределы.

Уникальность копределов

Дуализировать можно не только определения, но и утверждения.

Proposition

Если A и B – копределы диаграммы D, то существует изоморфизм $f:A\simeq B$, такой что $f\circ a_v=b_v$ для любой $v\in V$.

Доказательство.

Так как копредел в \mathbf{C} – это предел в \mathbf{C}^{op} , то это утверждение эквивалентно аналогичному утверждению для пределов.

Начальный объект

- Объект называется начальным, если он является копределом пустой диаграммы.
- B Set существует единственный начальный объект пустое множество.
- ▶ В **Grp** начальный объект тривиальная группа.

Копроизведения объектов

- ▶ Копроизведение (сумма) объектов A_1 и A_2 это копредел диаграммы A_1 A_2 . Копроизведение обозначается $A_1 \coprod A_2$ либо $A_1 + A_2$.
- В Set копроизведение это размеченное объединение множеств.
- В Grp копроизведение свободное произведение.

Фактор-множества

- ightharpoonup Пусть \sim отношение эквивалентности на множестве B.
- ightharpoonup Тогда можно определить множество B/\sim классов эквивалентности элементов B по этому отношению.
- lacktriangle Существует каноническая функция $c:B o B/\sim$, отправляющая каждый $b\in B$ в его класс эквивалентности.
- **Е**сли рассматривать отношение \sim как подмножество $B \times B$, то существуют проекции $f, g : \sim \to B$.
- ightharpoonup Стрелка c уравнивает f и g и является универсальной с таким свойством.
- ▶ Другими словами, с является коуравнителем f и g.

Коуравнители

- В произвольной категории коуравнители можно рассматривать как обобщение этой конструкции.
- ▶ Пусть B абелева группа, A подгруппа B, $f:A\hookrightarrow B$ вложенние A в B. Тогда коядро B/A это коуравнитель стрелок $f,0:A\to B$.
- lacktriangle И наоборот, коуравнитель стрелок f,g:A o B это коядро $B/\mathrm{Im}(f-g).$
- ▶ Пушауты дуальное понятие к понятию пулбэков.