MAC 1140/1147 **Sequences Formulas**

General Sequence Formulas and Properties

$$\sum_{k=1}^{n} c = cn$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$

$$\sum_{k=j}^{n} a_{k} = \sum_{k=1}^{n} a_{k} - \sum_{k=1}^{j-1} a_{k}, \text{ where } 0 < j < n$$

Arithmetic Sequences

$$n^{th}$$
 Term: $a_n = a_1 + (n-1)d$

Recursive: $a_n = a_{n-1} + d$

Sum of the first *n* Terms: $S_n = \frac{n}{2}(a_1 + a_n)$

$$S_n = \frac{n}{2} (a_1 + a_n)$$

Geometric Sequences

$$n^{th}$$
 Term: $a_n = a_1 r^{n-1}$

$$a_n = a_1 r^{n-1}$$

Recursive: $a_n = r \cdot a_{n-1}$

Sum of the first *n* Terms of a finite geometric series $\sum_{i=1}^{n} a_i r^{k-1}$: $a_i \cdot \frac{1-r^n}{1-r}$

Sum of the terms of a convergent <u>infinite</u> geometric series $\sum_{i=1}^{\infty} a_i r^{k-1}$: $\frac{a_1}{1-r}$

Binomial Theorem

$$\binom{n}{j} = \frac{n!}{j!(n-j)!}$$

$$(x+a)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} a^j$$

In the expansion of $(x+a)^n$, the term containing x^j is: $\binom{n}{n-i}a^{n-j}x^j$