TEORIA OBLICZEŃ

Spis treści

3.1 Funkcje rekurencyjne	1	Od d	dr Krystiana Jobczyka wskazówki przed egzaminem	3
2.2 Teza Churcha 2.3 Twierdzenie Churcha-Rossera 2.4 Twierdzenie Goedla 2.5 Lemat diagonalny 2.6 Twierdzenie Mayer-Ritchie 3 Pojęcia i definicje 3.1 Funkcje rekurencyjne 3.2 Funkcje pierwotnie rekurencyjne i elementarnie rekurencyjne 3.3 Relacje rekurencyjne i prymitywnie rekurencyjne 3.4 Maszyny Turinga i maszyny Turinga z własnością stopu 3.5 Zbiór/język rekurencyjny oraz rekurencyjnie przeliczalny 3.6 Teoria, teoria zupełna, teoria niesprzeczna	2	Twierdzenia i lematy		
2.3 Twierdzenie Churcha-Rossera 2.4 Twierdzenie Goedla 2.5 Lemat diagonalny 2.6 Twierdzenie Mayer-Ritchie 3 Pojęcia i definicje 3.1 Funkcje rekurencyjne 3.2 Funkcje pierwotnie rekurencyjne i elementarnie rekurencyjne 3.3 Relacje rekurencyjne i prymitywnie rekurencyjne 3.4 Maszyny Turinga i maszyny Turinga z własnością stopu 3.5 Zbiór/język rekurencyjny oraz rekurencyjnie przeliczalny 3.6 Teoria, teoria zupełna, teoria niesprzeczna		2.1	Twierdzenie Churcha o λ definiowalności	6
2.3 Twierdzenie Churcha-Rossera 2.4 Twierdzenie Goedla 2.5 Lemat diagonalny 2.6 Twierdzenie Mayer-Ritchie 3 Pojęcia i definicje 3.1 Funkcje rekurencyjne 3.2 Funkcje pierwotnie rekurencyjne i elementarnie rekurencyjne 3.3 Relacje rekurencyjne i prymitywnie rekurencyjne 3.4 Maszyny Turinga i maszyny Turinga z własnością stopu 3.5 Zbiór/język rekurencyjny oraz rekurencyjnie przeliczalny 3.6 Teoria, teoria zupełna, teoria niesprzeczna		2.2	Teza Churcha	6
2.4 Twierdzenie Goedla 2.5 Lemat diagonalny 2.6 Twierdzenie Mayer-Ritchie 3 Pojęcia i definicje 3.1 Funkcje rekurencyjne 3.2 Funkcje pierwotnie rekurencyjne i elementarnie rekurencyjne 3.3 Relacje rekurencyjne i prymitywnie rekurencyjne 3.4 Maszyny Turinga i maszyny Turinga z własnością stopu 3.5 Zbiór/język rekurencyjny oraz rekurencyjnie przeliczalny 3.6 Teoria, teoria zupełna, teoria niesprzeczna		2.3		6
2.5 Lemat diagonalny 2.6 Twierdzenie Mayer-Ritchie 3 Pojęcia i definicje 3.1 Funkcje rekurencyjne 3.2 Funkcje pierwotnie rekurencyjne i elementarnie rekurencyjne 3.3 Relacje rekurencyjne i prymitywnie rekurencyjne 3.4 Maszyny Turinga i maszyny Turinga z własnością stopu 3.5 Zbiór/język rekurencyjny oraz rekurencyjnie przeliczalny 3.6 Teoria, teoria zupełna, teoria niesprzeczna		2.4		7
2.6 Twierdzenie Mayer-Ritchie Pojęcia i definicje 3.1 Funkcje rekurencyjne		2.5		8
3.1 Funkcje rekurencyjne		2.6		9
3.2 Funkcje pierwotnie rekurencyjne i elementarnie rekurencyjne	3	Poje	cia i definicje	11
3.2 Funkcje pierwotnie rekurencyjne i elementarnie rekurencyjne		3.1	Funkcje rekurencyjne	11
 3.3 Relacje rekurencyjne i prymitywnie rekurencyjne 3.4 Maszyny Turinga i maszyny Turinga z własnością stopu 3.5 Zbiór/język rekurencyjny oraz rekurencyjnie przeliczalny 3.6 Teoria, teoria zupełna, teoria niesprzeczna 		3.2	· · · · · · · · · · · · · · · · · · ·	12
 3.4 Maszyny Turinga i maszyny Turinga z własnością stopu 3.5 Zbiór/język rekurencyjny oraz rekurencyjnie przeliczalny 3.6 Teoria, teoria zupełna, teoria niesprzeczna 		3.3		13
3.5 Zbiór/język rekurencyjny oraz rekurencyjnie przeliczalny		3.4	* ** ** *	13
3.6 Teoria, teoria zupełna, teoria niesprzeczna		3.5		14
				15
217 They still of the latest and of the still st				15
3.8 Funkcja Ackermanna				16

TEORIA OBLICZEŃ

Na podstawie:

• Różne...

1 Od dr Krystiana Jobczyka wskazówki przed egzaminem...

```
CHUJ WIE JAK SIĘ PISZE TE NAZWISKA!!!
egzamin w formie testowej - wielokrotnego wyboru
- sformułowania twierdzeń - te, które mają swoje nazwy:
        - tw. Churcha, Churcha-Rosela, teza Churcha
        - tw. Mayera-Richiego
        - lambda reprezentowalne, ale nie w drugą stronę - dokładne treści
- przykład języka - trzeba rozstrzygnąć - np. język pusty, albo każdej maszyny Turinga
- nierekurencyjność przy tw. Reice'a
- rachunek lambda - operacje dodawania, mnożenia, potęgowanie itd.
- sformułowanie tw. Reice'a
- sposoby podejść do rekurencyjnej przeliczalności (odnosić do problemu lub jezyka, do dowolnego zbioru)
- które maszyny - akceptują jakie typy jezyków
- czy dana f. jest rekurencyjna
- podana lista funkcji - która z nich zawiera rekurencyjne albo w której zawiera się nierekurencyjna
- funkcja Akermana - rekurencyjna, ale nie jest pierwotnie rekurencyjna
- definicje: co to f. rekurencyjna, 3 funkcje inicjalne czy coś - na jakie własności domykamy
- przykłady relacji rekurencyjnych - mniejszosci, równości
- f. rekurencyjna, jak definiuje sięf. rek. - pytanie o przykład i definicje
- 3 część - ktoś inny układa
- lemat przekątniowy, tw. Goedla
- konsekwencja logiczna - modele zdań, jak interpretować termy
- co to teoria, teoria niesprzeczna, zupełna, aksjomatywozalna
```

chyba bez aksjomatyki arytmetyki Peano

jobczyk@agh.edu.pl

do mnie 🕶

Drogi Panie Adamie,

zgodnie z moją obietnicą - parę ukierunkowujących uwag dla was:

1) Nie uczymy się dowodów, bo będą zupełnie zbędne (choć kroki dowodowe bywają uczące;)), ale

2) Uczymy się WŁAŚCIWEGO SFORMUOWANIA ważniejszych twierdzeń i faktów. Ważnych twierdzeń jest w istocie kilka (ok.10-15 w toku całego wykładu). Te najznaczniejsze, to oczywiście: tw. Churcha o lambda-definiowalności, Twierdzenie Churcha-Rossera, Twierdzenie Goedla, teza Churcha, lemat diagonalny. Ale warto zwrócić uwagę na nieco pomniejsze, jak np. tw. Mayer-Richy'ego. Ważne, by być pewnym, co twierdzenie głosi: np. wiedzieć, że tw. Churcha-Rossera głosi, że klasa funkcji rekurencyjnych jest lambda-rekurencyjna, a nie np. na odwrót, czyli: że klasa funkcji lambda-rekurencyjnych jest rekurencyjna.

UWAGA: Pewnym wyjątkiem jest tw. Rice'a, którego nie trzeba, jak sądzę, perfekcyjnie wysławiać, ale wiedzieć, do czego służy, w dowodzie jakiej własności się używa.

- Trzeba DOBRZE znać definicje istotnych pojęć. Najważniejsze z nich to:
- a)funkcje rekurencyjne,
- b) pierwotnie rekurencyjne + elementarnie rekurencyjne,
- c) relacje rekurencyjne i pierwotnie rekurencyjne (+ pamiętać ze 3 podręczne przykłady),
- d) maszyny Turinga, maszyny Turinga z własnością stopu,
- e) zbioru/języka rekurencyjnego/rekurencyjnie przeliczalnego,
- f) teorii/ teorii zupełnej/teorii niesprzecznej,
- g) arytmetyki liczb naturalnych (może opatrzyć się z jej aksjomatami...).

UWAGA1: Warto zwrócić uwagę na funkcję Ackermanna (niekoniecznie znać dokładną definicję), ale pamiętać, czego stanowi przykład!

TEORIA OBLICZEŃ

UWAGA1: Warto zwrócić uwagę na funkcję Ackermanna (niekoniecznie znać dokładną definicję), ale pamiętać, czego stanowi przykład!

4) Warto wiedzieć, że pewne pojęcia, zwłaszcza rekurencyjność i rekurencyjna przeliczalność dają się wyrazić na różne sposoby. Np. można mówić o nich w kontekście języków r/r.e. (wtedy wygodnie mówi się o nich w terminach maszyn Turinga (wiedzieć-jakich!)) albo np. zbiorów r/r.e. (wtedy wygodniej mówi się o nich w terminach relacji rekurencyjnych lub własności problemów, które definiują).

Przykład: A jest r.e iff a problem 'x\in A' jest semirozstrzygalny iff funkcja charakterystyczna jest zdefiniowana tylko dla x\in A i nieokreślona dla x\not\in A.

 Rzućcie wreszcie okiem, proszę, na przykłady z rozstrzyganiem własności języków, zwłaszcza te, które okazywały się (nie)rekurencyjne i na sposób ich rozwiązywania.

Na koniec - chciałem dodać, że żywo w Was wierzę! Serdecznie pozdrawiam, Krystian Jobczyk

2 Twierdzenia i lematy

2.1. Twierdzenie Churcha o λ definiowalności

Pytanie

O czym mówi twierdzenie Churcha o λ definiowalności ?

Twierdzenie 8: Churcha

Każda funkcja λ -definiowalna jest rekurencyjna (klasy REK).

2.2. Teza Churcha

Pytanie

O czym mówi teza Churcha?

Tzw. teza Churcha głosi, że na MT obliczymy tylko funkcje rekurencyjne.

2.3. Twierdzenie Churcha-Rossera

Pytanie

O czym mówi twierdzenie Churcha-Rossera (diamond property)?

Twierdzenie 5: Church-Rosser (Diamond property)

Jeżeli term T da się rozłożyć na termy S i K, to S i K dadzą się sprowadzić do termu P.

Sens twierdzenia: S, K są syntaktycznie różne, a semantycznie równe. Dowód później.

Pytanie

O czym mówi twierdzenie Churcha-Rossera?

- (c) $(\lambda yz.z)u \xrightarrow{\beta} \lambda z.z$
- (d) $(\lambda x.xy)(\lambda x.x) \xrightarrow{\beta} (\lambda x.x)y \xrightarrow{\beta} y$
- $(e) \ (\lambda x.xy)((\lambda yz.z)u) \stackrel{\beta}{\longrightarrow} ((\lambda yz.z)u)y \stackrel{\beta}{\longrightarrow} (\lambda z.z)y \stackrel{\beta}{\longrightarrow} y$
- $(f) \ (\lambda x.xy)((\lambda yz.z)u) \xrightarrow{\beta} (\lambda x.xy)(\lambda z.z) \xrightarrow{\beta} (\lambda z.z)y \xrightarrow{\beta} y$

UWAGA. Proszę zwrócić uwagę, że β -redukcja nie jest deterministyczna, tzn. może przebiegać różnymi ścieżkami (zob. punkt (e) i (f) z powyższego przykładu), choć prowadzi do jednego wyniku. Ta własność jest treścią przedstawionego dalej Twierdzenia 5 (Churcha-Rossera).

Jeżeli istnieją dwie redukcje lub sekwencje redukcji, które można zastosować do tego samego termu, wówczas istnieje term, który można osiągnąć z obu wyników, stosując (możliwie puste) sekwencje dodatkowych redukcji.

Bardziej formalnie: Jeżeli term M poprzez pewne ciągi β -redukcji redukuje się do termów N1 i N2, to istnieje term M' taki, że zarówno N1, jak i N2 można zredukować do M' (poprzez ciągi β -redukcji).

Twierdzenie 7: Churcha-Rossera

Funkcje rekurencyjne są λ -definiowalne. (Zob. Twierdzenie 5 i Definicja 10)

Plus mały hint od dr Jobczyka;):

Ważne, by być pewnym, co twierdzenie głosi: np. wiedzieć, że tw. Churcha-Rossera głosi, że klasa funkcji rekurencyjnych jest Vambda-rekurencyjna, a nie np. na odwrót, czyli: że klasa funkcji Vambda-rekurencyjnych jest rekurencyjna.

2.4. Twierdzenie Goedla

Pytanie

Czym jest język arytmetyki ${\cal Q}$?

Arytmetyka

Dany jest zbiór symboli $\{0, s, +, *, =\}$, gdzie 0 to stała, s - następnik, będący symbolem funkcyjnym jednoargumentowym, + - "dodawanie", * - "mnożenie". Nad zbiorem tym tworzymy język arytmetyki, ozn. \mathbb{Q} .

Liczbie
$$n \in \mathbb{N}$$
 odpowiada w języku \mathbb{Q} wyrażenie $\underline{n} = \underline{s(s ... s(0))}$.

Pytanie

Co głosi pierwsze twierdzenie Goedla?

Z wykładu:

Twierdzenie 28: Gödla o niezupełności arytmetyki

Nie istnieje zupełne, aksjomatyzowalne i niesprzeczne rozszerzenie teorii $\mathbb Q.$

(Nie wprost). Przypuśćmy, że istnieje T_0 , które jest zupełne i aksjomatyzowalne. A więc T_0 jest rozstrzygalne, co wynika z Twierdzenia 27. Ale T_0 jako niesprzeczne rozszerzenie teorii $\mathbb Q$ jest nierozstrzygalne. Co stanowi sprzeczność.

Wnioskiem z twierdzenia Gödla o niezupełności arytmetyki jest, to iż arytmetyka Ar (zob. Twierdzenie 26) jako zupełne i niesprzeczne rozszerzenie teorii $\mathbb Q$ nie jest aksjomatyzowalna.

Z wikipedii: Każdy niesprzeczny rozstrzygalny system formalny pierwszego rzędu, zawierający w sobie aksjomaty Peana, musi być niezupełny.

Inaczej formułowane z opracowania:

Nie istnieje niesprzeczny układ aksjomatów i sformalizowany system poprawnej dedukcji, w którym można udowodnić wszystkie prawdziwe zdania arytmetyki liczb naturalnych.

Pytanie

Co głosi drugie twierdzenie Goedla?

To twierdzenie jest konsekwencją poprzedniego. Głosi ono, że w ramach żadnego rozstrzygalnego systemu formalnego pierwszego rzędu zawierającego w sobie aksjomaty Peana nie da się dowieść niesprzeczności jego samego.

Błędne interpretacje [edytuj | edytuj kod]

Potoczne rozumienie twierdzeń Gödla prowadzi zwykle do nieprawidłowych wniosków, np.:

- istnieją w matematyce twierdzenia nierozstrzygalne (częsta nadinterpretacja GI),
- nie można udowodnić spójności arytmetyki (częsta nadinterpretacja GII).

Inaczej formułowane z opracowania:

Dowodu niesprzeczności sformalizowanej teorii mat. nie można przeprowadzić na gruncie tej teorii. Jest to możliwe jedynie w teorii ogólniejszej, ale dowód niesprzeczności tej nowej teorii wymaga teorii jeszcze ogólniejszej itd.

2.5. Lemat diagonalny

Pytanie

Co głosi lemat diagonalny?

Z wikipedii: Rozumowanie przekątniowe – klasyczny przykład rozumowania w dowodzie nie wprost. Za jego pomocą można wykazać na przykład, że moc zbioru liczb rzeczywistych z przedziału [0,1] jest większa od mocy zbioru liczb naturalnych; formułuje się to obrazowo: liczb rzeczywistych jest więcej niż liczb naturalnych.

Z opracowania:

Lemat przekatniowy

Klasyczny przykład rozumowania w dowodzie nie wprost. Przykład:

Dowód na to, że nieskończony zbiór składający się z zer i jedynek jest nieprzeliczalny. Tworzymy macierz składającą się z dowolnej ilości ciągów zero-jedynkowych. Bierzemy przekątną i zamieniamy wszystkie 0 na 1 i wszystkie 1 na 0, z czego wynika że ciąg końcowy różni się o co najmniej jeden znak od dowolnego wiersza.

A tutaj fragmenty z wykładu:

Poniżej wprowadzamy definicję **diagonalizacji**, która umożliwi doprowadzenie do sprzeczności, co będzie z kolei potrzebne przy dowodzeniu własności niesprzecznych rozszerzeń teorii $\mathbb Q$ (a więc także arytmetyki). Metoda diagonalizacji zastosowana dalej, jest analogiczna do metody przekątniowej, używanej w dowodzeniu twierdzenia Cantora (moc zbioru [0,1] jest większa niż \aleph_0).

Definicja 44: Diagonalizacja formuły

Diagonalizacja formuły A(x):

 $\exists x : (x = {}^{\mathsf{r}}A^{\mathsf{r}} \wedge A(x))$ (A jest prawdziwa na swoim numerze Gödla).

Lemat 30: Diagonalizacja jest reprezentowana w $\mathbb Q$ i obliczalna

Zalożenie: Niech diag: $\mathbb{N}\longrightarrow\mathbb{N}$ będzie taką funkcją, że diag(n) jest numerem diagonalizacji formuły o numerze n. Teza: diag jest reprezentowana w teorii \mathbb{Q} .

Dowód. Istnieje program (maszyna Turinga) robiący to.

2.6. Twierdzenie Mayer-Ritchie

Pytanie

O czym mówi twierdzenie Mayer-Ritchie?

Twierdzenie 11: (Meyer-Ritchie)

Wszystkie funkcje REK i tylko one są wyrażalne przez while programy.

Pytanie

O czym mówi twierdzenie Rice'a?

Twierdzenie 20: Rice'a

Jeżeli własność ${\mathscr S}$ jest nietrywialna, to język $L_{\mathscr S}$ nie jest rekurencyjny (tzn. własność ${\mathscr S}$ jest nierozstrzygalna).

Pytanie

Przy których dowodach korzysta się z twierdzenia Rice'a?

Przykład 16. Rozważmy zdefiniowaną wcześniej klasę maszyn, akceptujących języki puste:

$$\textit{L}_{\textit{e}} = \{\langle \textit{M} \rangle \colon \textit{L}(\textit{M}) = \varnothing\}.$$

Konstruujemy własność \mathscr{S} , taką że $L_e=L_{\mathscr{S}}$: $\mathscr{S}=\{\varnothing\}$ (klasa \mathscr{S} złożona jedynie z języka pustego). Z twierdzenia Rice'a mamy, że $L_e=L_{\mathscr{S}}$ nie jest rekurencyjny. **Uwaga**: założenie twierdzenia jest spełnione, ponieważ tak zdefiniowana własność \mathscr{S} jest nietrywialna, mianowicie: $\mathscr{S}=\{\varnothing\}\neq\varnothing$.

3 Pojęcia i definicje

3.1. Funkcje rekurencyjne

Pytanie

Czym jest klasa funkcji rekurencyjnych?

Definicja 10: Klasa funkcji rekurencyjnych

Klasa funkcji rekurencyjnych (w skrócie REK) to najmniejsza klasa zawierająca funkcje inicjujące PREK i domknięta na

- składanie,
- rekursję prostą,
- μ -rekursję.

Twierdzenie 12

Każda funkcja <code>rekurencyjna</code> jest obliczalna przez pewną MT, pracującą nad alfabetem $\Gamma=\{0,1,\Delta\}.$

3.2. Funkcje pierwotnie rekurencyjne i elementarnie rekurencyjne

Pytanie

Czym są funkcje pierwotnie rekurencyjne? A czym są funkcje elementarnie rekurencyjnie?

pierwotnie rekurencyjna = prymitywnie rekurencyjna

Funkcja pierwotnie rekurencyjna [edytuj|edytuj|kod]

Funkcjami pierwotnie rekurencyjnymi nazywamy funkcje:

Funkcja zerowa

$$Z:\mathbb{N} o \mathbb{N}$$
, zdefiniowana jako $Z(n)=0$

• Funkcja następnika

$$S:\mathbb{N} \to \mathbb{N}$$
, zdefiniowana jako $S(n)=n+1$

• Funkcja rzutowania

$$I_n^i \colon \mathbb{N}^n o \mathbb{N}$$
, zdefiniowana jako $I_n^i(x_1, \dots, x_n) = x_i, \ i \leqslant n$

oraz wszystkie funkcje zbudowane z funkcji pierwotnie rekurencyjnych za pomocą następujących metod kompozycji:

Złożenia funkcji

Dla danych funkcji
$$f: \mathbb{N}^k \to \mathbb{N}$$
 oraz $g_1, \ldots, g_k : \mathbb{N}^n \to \mathbb{N}$, złożeniem nazywamy funkcję $h: \mathbb{N}^n \to \mathbb{N}$, zdefiniowaną jako $h(\overline{n}) = f(g_1(\overline{n}), \ldots, g_k(\overline{n}))$

· Rekursji prostej

Dla danych funkcji $g:\mathbb{N}^n \to \mathbb{N}$ oraz $h:\mathbb{N}^{n+2} \to \mathbb{N}$, złożeniem rekurencyjnym nazywamy funkcję $f:\mathbb{N}^{n+1} \to \mathbb{N}$ zdefiniowaną jako $\left\{ egin{align*} f(\overline{n},0) = g(\overline{n}) \\ f(\overline{n},S(m)) = h(f(\overline{n},m),\overline{n},m) \end{array}
ight.$

Funkcje elementarnie rekurencyjne

Klasa funkcji elementarnie rekurencyjnych to najmniejsza klasa funkcji zawierająca funkcje:

- odejmowania ∸,
- funkcję wykładniczą,
- funkcję następnika,

oraz zamknięta ze względu na operacje:

- złożenia,
- minimum ograniczonego.

3.3. Relacje rekurencyjne i prymitywnie rekurencyjne

Pytanie

Czym jest relacja prymitywnie rekurencyjna, a czym relacja rekurencyjna?

Definicja 7: Relacja prymitywnie rekurencyjna

Relację $R\subset \mathbb{N}^{n+1}$ nazywamy prymitywnie rekurencyjną \iff funkcja charakterystyczna relacji R,

$$f_R(\overline{x}) = egin{cases} 1, & \mathsf{gdy} \ R(x) \ \mathsf{zachodzi}, \ 0, & \mathsf{gdy} \ R(x) \ \mathsf{nie} \ \mathsf{zachodzi}, \end{cases}$$

jest prymitywnie rekurencyjna.

Bardziej ogólnie powiemy, że:

Relacja *P* jest *rekurencyjna* (*pierwotnie rekurencyjna*), jeśli jej funkcja charakterystyczna jest ogólnie rekurencyjna (pierwotnie rekurencyjna).

Przykłady relacji prymitywnie rekurencyjnych:

Definicja 8: Funkcje znaku

Definiujemy następujące funkcje PREK $\ni sg, \overline{sg} : \mathbb{N} \longrightarrow \mathbb{N}$:

$$sg(x) = \begin{cases} 0, & \text{gdy } x = 0, \\ 1, & \text{gdy } x > 0, \end{cases} \qquad \overline{sg}(x) = \begin{cases} 1, & \text{gdy } x = 0, \\ 0, & \text{gdy } x > 0. \end{cases}$$

Przykład 2. $Relacje = 0, < 0, \le sq$ PREK.

$$- f_{=}(x,y) = \begin{cases} 1, & dla \ x = y \\ 0, & dla \ x \neq y \end{cases} = \overline{sg}((x - y) + (y - x)).$$
$$- f_{<}(x,y) = \overline{sg}(x - y).$$

$$-f_{\leq}(x,y)=(\acute{C}wiczenie\ 2).$$

3.4. Maszyny Turinga i maszyny Turinga z własnością stopu

Pytanie

Czym są maszyny Turinga? Czym są maszyny Turinga z własnością stopu?

Definicja 16: Maszyna Turinga

Maszyną Turinga (będziemy używali skrótu MT) nazywamy siódemkę $M=(Q,\Sigma,\Gamma,\sigma,q_0,\Delta,\mathbb{F}),$ gdzie

Q - skończony zbiór stanów

Σ - skończony alfabet terminalny

 Γ - skończony alfabet, taki że $\Sigma \subset \Gamma$

 σ - funkcja przejścia $\sigma: \textit{Q} \times \Gamma \longrightarrow \textit{Q} \times \Gamma \times \boxed{\{\mathsf{L},\mathsf{R}\}}$

 $q_0 \in Q$ - stan początkowy

 $\Delta \in \Gamma$ - spacja (blank)

F - zbiór stanów końcowych

ruch głowicy w lewo lub prawo

 ${\it Komentarz}$. Funkcja przejścia, σ , jest programem.

Definicja 19: Własność stopu MT

Maszyna M ma własność stopu wtedy i tylko wtedy gdy M zatrzymuje się na każdym słowie w (to znaczy, z każdej konfiguracji początkowej q_0w , dochodzimy do jakiegoś stanu końcowego $\alpha_1q\alpha_2$, gdzie $q\in\mathbb{F}$ i $\alpha_1,\alpha_2\in\Gamma^*$).

3.5. Zbiór/język rekurencyjny oraz rekurencyjnie przeliczalny

Pytanie

Czym jest język rekurencyjny, a czym język rekurencyjnie przeliczalny?

Definicja 18: Język rekurencyjnie przeliczalny

Język $L \subset \Sigma^*$ jest rekurencyjnie przeliczalny wtedy i tylko wtedy gdy istnieje maszyna M, taka że język L jest przez nią akceptowany: L(M) = L.

Definicja 20: Język rekurencyjny

Język $L\subset \Sigma^*$ jest rekurencyjny wtedy i tylko wtedy gdy L=L(M), dla pewnej maszyny M z własnością stopu.

3.6. Teoria, teoria zupełna, teoria niesprzeczna

Pytanie

Czym jest teoria, teoria zupełna i teoria niesprzeczna?

Definicja 38: Teoria

Teorią nazywamy zbiór zdań, T, zamknięty na konsekwencję:

$$T \models A \implies A \in T$$
.

Definicja 39: Teoria niesprzeczna

Teoria T jest **niesprzeczna** \iff (i) T ma model, (ii) $\exists \varphi : \varphi \notin T$.

Definicja 40: Teoria zupełna

Teoria T jest zupełna $\iff \forall \varphi \colon \varphi \in T \lor \neg \varphi \in T$.

3.7. Arytmetyka liczb naturalnych i jej aksjomaty

Pytanie

Czym jest arytmetyka liczb naturalnych, jakie są jej aksjomaty?

Arytmetyka

Dany jest zbiór symboli $\{0, s, +, *, =\}$, gdzie 0 to stała, s - następnik, będący symbolem funkcyjnym jednoargumentowym, + - "dodawanie", * - "mnożenie". Nad zbiorem tym tworzymy język arytmetyki, ozn. \mathbb{Q} .

Liczbie $n \in \mathbb{N}$ odpowiada w języku \mathbb{Q} wyrażenie $\underline{n} = \underline{s(s ... s(0))}$.

1.
$$\forall x \forall y : (s(x) = s(y) \implies x = y)$$

2.
$$\forall x : \neg (0 = s(x))$$

3.
$$\forall x : (x \neq 0 \implies \exists y : x = s(y))$$

4.
$$\forall x : x + 0 = x$$

5.
$$\forall x \forall y : x + s(y) = s(x + y)$$

6.
$$\forall x : x * 0 = 0$$

7.
$$\forall x \forall y : x * s(y) = x + x * y$$

3.8. Funkcja Ackermanna

Pytanie

Czym jest funkcja Ackermanna?

Przykładem funkcji REK ale nie będącej PREK jest funkcja Ackermana

$$A(m,n) = \begin{cases} n+1, & m=0\\ A(m-1,1) & m>0, n=0\\ A(m-1,A(m,n-1)) & m,n>0 \end{cases}$$