A PROJECT REPORT ON

EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

Domain: ARTIFICIAL INTELLIGENCE

Team ID: PNT2022TMID01103

College Name: Panimalar Engineering College

R.PRANATI
(211419106194)
Department of Electronics
and Communication Engineering

P.MONISHA
(211419106171)
Department of Electronics
and Communication Engineering

S.PREETHI
(211419106204)
Department of Electronics
and Communication Engineering

R.SANGEETHA PRIYA
(211419106233)

Department of Electronics
and Communication Engineering

TABLE OF CONTENTS

1.INTRODUCTION	4
1.1 Project Overview	4
1.2 Purpose	4
2.LITERATURE SURVEY	5
2.1 Existing Problem	5
2.2 References	5
2.3 Problem Statement Definition	6
3. IDEATION AND PROPOSED SOLUTION	8
3.1 Empathy Map Canvas	8
3.2 Ideation and Brainstorming	9
3.3 Proposed Solution	12
3.4 Problem Solution Fit	15
4. REQUIREMENT ANALYSIS	16
4.1 Functional Requirements	16
4.2 Non-Functional Requirements	16
5. PROJECT DESIGN	17
5.1 Data Flow Diagrams	17
5.2 Solution and Technical Architecture	17
5.3 User Stories	23
6. PROJECT PLANNING AND SCHEDULING	24
6.1 Sprint Planning and Estimation	24

6.2 Sprint Delivery Schedule	25
6.3 Reports from JIRA	27
7. CODING AND SOLUTIONING	28
7.1 Feature 1	28
7.2 Feature 2	31
7.3 Database Schema	34
8. TESTING	36
8.1 Test Cases	36
8.2 User Acceptance Testing	37
9. RESULTS	39
9.1 Performance Metrics	39
10. ADVANTAGES AND DISADVANTAGES	42
11. CONCLUSION	43
12. FUTURE SCOPE	44
13. APPENDIX	45
13.1 Source Code	45
13.2 GitHub and Project Demo Link	46

1.INTRODUCTION

1.1 Project Overview

Forests, which are diverse centers of flora and wildlife and create 1/3 of the world's oxygen, are at risk of forest fires, both natural and man-made. The precaution of averting such a massive devastating flare can save many animals and the environment. Protecting forests before they are harmed is a method of repaying Mother Nature's everlasting gift.

Wildfires are one of the biggest catastrophes faced by our society today causing irrevocable damages. These forest fires can be man-made or caused by mothernature by different weather conditions, torrential winds. These fires cause damages not only to the environment they also destroy vast homes and property.

1.2 Purpose

Forest fires have become a major threat around the world, causing many negative impacts on human habitats and forest ecosystems. Climatic changes and the greenhouse effect are some of the consequences of such destruction. A higher percentage of forestfires occur due to human activities. The goal of the project is to develop a forest fire detection system that can identify forest fires in their early phases.

2. LITERATURE SURVEY

2.1 Existing Problem

Every year, there are an estimated 340,000 premature deaths from respiratory and cardiovascular issues attributed to wildfire smoke.

The increasing frequency and severity of wildfires pose a growingthreat to biodiversity globally. Individuals, companies and public authorities bear great economic costs due to fires. In order to reduce all these, we need to detect the forest fire at an early stage and prevent it.

2.2 References

- Turgay Celik, Huseyin Ozkaramanl, and Hassan Demirel (2007). Fire and Smoke detection without Sensors: Image Processing based approach.15th European signal processing conference (eusipco 2007), Poznan, Poland, September 3-7.
- Osman Gunay, A. Enis C, Etin, Yusuf Hakan, Habiboglu. Flame Detection method in video using Covariance descriptors, IEEE transactions, 1817-1820.
- CHENG Caixia, SUN Fuchun, ZHOU Xinguan (2011).

- One Fire Detection Method Using Neural Networks, Tsinghua Science and Technology, ISSN 1007-0214 05/17 31-35Volume 16, Number 1.
- S. A. Christopher, M. Wang, T. A. Berendes, and R. M. Welch (1998). The 1985 biomass burning season in South America: Satellite remote sensing of fires, smoke, and regional radiative energy budgets, vol. 37, 661–678
- Paulo Vinicius Koerich Borges (2010). A Probabilistic Approach for VisionBased Fire Detection in Videos, IEEE transactions on circuits and systems for video technology, vol. 20, no. 5.
- Jiawei Han, Micheline Kamber, Jian Pei (2012). Data Mining Concepts and Techniques, Third edition, 248-253, 350-351.

2.3 Problem Statement Definition

- In the past, fires were detected by watching towers or using satellite images.
- Satellites collect images of fires and send them to a monitoring authority for review. If the images

- appear to show a fire, the authority will determine whetherthe fire is burning or not.
- But this approach was slow because the fire may have spread in the largeareas and caused a lot of damage before the rescue team arrived.
- Since it's impossible to place a man inevery part of a forest, it's important to have monitoring devices in certainareas so we can keep an eye on the forest.
- Both watching towers and satellite images failed to detect the presenceof a fire earlyon, which resulted in more damage being done by the fire.
- Predictive analytics based on these insights are becoming increasingly effective in detecting mitigating and preventing fires.

3.IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation and Brainstorming

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Over the last few decades, forest fires are increased due to deforestation and global warming. Many trees and animals in the forest are affected by forest fires. Technology can be efficiently utilized to solve this problem. Forest fire detection is inevitable forforest fire management.
2.	Idea / Solution description	Modern fire protection systems are comprised of three main components — fire detection, alarms and notifications, and suppression, all of which must function together to provide the necessary fire protection for a given building. Designing a fire alarm and notification system requires an integrated approach that includes a comprehensive analysis of the entire fire protection system. This analysis is necessary to gain a thorough understanding of how all the main components of the overall fire protection system will work together. This analysis needs to be conducted before the system is installed.
3.	Novelty / Uniqueness	The novelty of system is real-time monitoring, early prediction, validation through UAV and fire confirmation using image processing. The proposed system presents highertrue fire detection rate of about 95-98 percent.

4.	Social Impact /	Timely information aboutthe appearance
	CustomerSatisfacti on	of fire reduce the number of areas affected by this fire and thereby minimizes the costs of fire extinguishing and the damage caused in the woods. Monitoring of the potential risk areas and an early detection of fire can significantly shorten the reaction time and also reduce the potential damage
		caused by the forest fire.

5. Business Model (Revenue Model)

Aspirating smoke detectors continuously sample air to provide early warnings of fire hazards, helping detect threats before they escalate. Some devices provide multi-level warnings and are equipped with wide- ranging sensitivity to identify eventhe most negligible amounts of smoke, helping to prevent smalls fire from taking hold and causing widespread damage.

Unlike traditional detection technology which is largely passive, waiting for smoke to reach sensors – aspirating devices are designed to sample and test air near the most likely sources of fires throughout a building. Aspirating smoke devices can be positioned in hard-tomonitor places, such as ceilings, air grilles and openings, or within critical spaces, including operating and patient rooms. Early detection technologies can also draw air from targeted locations back to a central system that continuously monitors for trace amounts of smoke.

6.	Scalability of the Solution	Changes in the use or occupancy of
		abuilding can resultin compliance
		issuesand a fire alarm system that no
		longer provides sufficient protection. If
		future changes are anticipated, fire safety
		engineers can design a fire alarm system
		with this in mind, providing a flexible
		infrastructure that includes the proper
		wire size and additional circuits
		distributed in a way that accommodates
		futuregrowth and change.
		Perhaps one of the most compelling
		reasons to design a fire alarm system that
		goes above and beyond the minimum
		requirements from the start is the fact
		that fire codes and other applicable
		regulations can and do change.And,
		changes that are made retroactively can
		trigger potentially very expensive
		alterations in a fire alarm system. This is
		also why it is so important to work with
		highly qualified fire safety engineers who
		can anticipate coming changes
		andproactively design your system
		to meet new requirements.

3.4 Problem Solution Fit

15

AMALTAMA

Problem-Solution it canvas is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 license

Created by Daria Nepriakhina / Amaltama.com

4.REQUIREMENT ANALYSIS

4.1 Functional Requirements

Following are the functional requirements of the proposed solution.

FR	Functional Requirement(Epic)	Sub Requirement (Story / Sub-Task)	
No.			
FR-1	Video surveillance start	Start surveillance throughremote control	
FR-2	Forest monitoring	Continuous monitoring through camera	
FR-3	Detect fire	Fire is detectedthrough CNN model	
FR-4	Alert	Alert the forest officials through message	

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR	Functional Requirement(Epic)	Sub Requirement (Story / Sub-Task)
No.		
FR-1	Reliability	Model is safe to install
FR-2	Security	More secure environment
FR-3	Availability	Build model is available all the time

FR-4	Performance	
		Model will achieve high accuracy

5. PROJECT DESIGN

5.1Data Flow Diagrams

- 3. IMPLEMENT ALGORITHMS4. EVALUATE THE ACCURACY OF EACH ALGORITHMS
- 5. DISPLAY RESULTS

5.2 Solution and Technical Architecture

Solution Architecture

- 1. This Solution Architecture involves four stages.
 - a. Input Image
 - ь. Region Proposal
 - c. Feature extraction &classification
 - d. Output detection result
- Step 1: We get the input image and discuss feature maps, learning the parameters of such maps, how patterns are detected, the layers of detection, and how the findings are

mapped out.

Step 2: The second part of this step will involve the Rectified Linear Unit or ReLU. We will cover ReLU layers and explore how linearity functions in the context of Convolutional Neural Networks.

Not necessary for understanding CNN's, but there's no harm in a quick lesson to improve your skills.

Step 3-Pooling: In this part, we'll cover pooling and will get to understand exactly how it generally works. Our nexus here, however, will be a specific type of pooling; max pooling. We'll cover various approaches, though, including mean (or sum) pooling. This part will end with a demonstration made using a visual interactive tool that will definitely sort the whole concept out for you.

Step 4 -Flattening: This will be a brief breakdown of the flattening process and how we move from pooled to flattened layers when working with Convolutional NeuralNetworks.

Step 5-FullConnection: In this part, everything that we covered throughout the section will be merged together. By learning this, you'll get to envision a fuller picture of how

Convolutional Neural Networks operate and how the "neurons" that are finally produced learn the classification of images.

Technology Architecture

Table 1: Components and Technologies

S.No	Component	Description	Technology
1.	User Interface	The user uses the console to access the interface	Python/HTML ,CSS , Javascript and react.Js
2.	Input	Video Feed	Web Camera/Video on a site
3.	Conversion	Video inputted is converted intoFrames	Frame Converter
4.	Feeding the Model	The Frames are sent to the Deeplearning model	Our Model
5.	Dataset	Using Test set and Train set , train the model	Data set from CloudStorage , Database
6.	Cloud Database	The model is trained in the cloud more precise with	

		detections later images can be added.	
7.	Infrastructure (Server / Cloud), API	Application Deployment on Local System / Cloud Local ,CloudServer Configuration , Twilio API to sendmessages	Java/python, React.Js, JavaScript, HTML , CSS ,IBM Cloud,OPEN CV, Anaconda Navigator ,Local.

Table 2 : Application Characteristics

s. no	Characteristics	Description	Technology
1.	Open-Source Frameworks	Python Flask framework is used	Technology of Opensource framework
2.	Security Implementations	Mandatory Access Control (MAC) and Preventative Security Controlis used	e.g. SHA- 256, Encryption s, IAM Controls, OWASPetc.
3.	Scalable Architecture	High scalability with 3-tier architecture	Web server – HTML ,CSS ,JavaScript Application server – Python , Anaconda Database server –IBM DB2

4.	Availability	Use of load balancing to distribute traffic acrossservers	IBM loadbalancer
5.	Performance	Enhance the performance by using IBM CDN	IBM Content Delivery Network

5.3 User Stories

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Environmentalist	Collect the data	USN-1	As an Environmentalist, it is necessary to collect the data of the forest which includes temperature, humidity, wind and rain of the forest	It is necessary to collect the right data else the prediction may become wrong	High	Sprint-1
		USN-2	Identify algorithms that can be used for prediction	To collect the algorithm to identify the accuracy level of each algorithms	Medium	Sprint-2
		USN-3	Identify the accuracy of each algorithms	Accuracy of each algorithm-calculated so that it is easy to obtain the most accurate output	High	Sprint-2
		USN-4	Evaluate the Dataset	Data is evaluated before processing	Medium	Sprint-1
		USN-5	Identify accuracy,precision,recall of each algorithms	These values are important for obtaining the right output	High	Sprint-3
		USN-6	Outputs from each algorithm are obtained	It is highly used to predict the effect and to take precautionary measures.	High	Sprint-4

6.PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	DATA COLLECTION	USN-1	Data collected by sensors aboard orbiting satellites, carried aboard aircraft, or installed on the ground provide a wealth of data that can be used to assess conditions before a burn and track the movement of a wildfire in near real-time.	10	High	Pranati Monisha Preethi Sangeetha Priya
Sprint-1	IMAGE PREPROCESSING	USN-2	Image processing-Image processing technique automatically detect forest fires around the world by using infrared(IR) images sourced from satellites and CNN used for image recognition and tasks that involve the processing of pixel data.	7	Medium	Pranati Monisha Preethi Sangeetha Priya
Sprint-2	TRAINING AND TESTING	USN-3	The model is trained for detecting the fire by training with real time work and the testing is done according the accuracy of the model	10	high	Pranati Monisha Preethi Sangeetha Priya

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-3	REVIEWING THE MODEL	USN-4	The main task is to check that the model is efficient to work in real time to ensure there is no error in the model	7	Medium	Pranati Monisha Preethi Sangeetha Priya
Sprint-4	IMPLEMENTATION	USN-5	After completing every step the model is implemented on the forest and the quick responses is collected from forest organization	10	High	Pranati Monisha Preethi Sangeetha Priya

6.2 Sprint Delivery Schedule

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	8	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	7	08 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	8	15 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	7	20 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = 7/10 = 0.7$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

6.3 Reports from JIRA

7.CODING AND SOLUTION

7.1 Feature 1

- Language used: Python
- Tools/IDE:Google Colab

```
from google.colab import drive
            drive.mount('/content/drive')
           Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
           Data Collection
In [108...
            !unzip '/content/drive/MyDrive/archive.zip'
           Archive: /content/drive/MyDrive/archive.zip replace Dataset/Dataset/test_set/forest/0.48007200_1530881924_final_forest.jpg? [y]es, [n]o, [A]ll, [N]one, [r]ename:
           Image Pre-processing
In [109...
            from keras.preprocessing.image import ImageDataGenerator
            train_datagen = ImageDataGenerator(rescale=1./255
                                                   shear_range=0.2,
                                                    rotation_range=180,
                                                   zoom_range=0.2,
horizontal_flip=True)
            test_datagen = ImageDataGenerator(rescale=1./255)
            batch_size=32,
class_mode='binary')
test = train_datagen.flow_from_directory('/content/Dataset/Dataset/train_set',
                                                           target_size=(128,128),
batch_size=32,
                                                            class_mode='binary')
           Found 121 images belonging to 2 classes. Found 436 images belonging to 2 classes.
           Sprint 2
In [110...
            #Model Building
            from keras.models import Sequential
from keras.layers import Convolution2D,MaxPooling2D,Dense,Flatten
            import warnings
warnings.filterwarnings('ignore')
```

```
In [111...
          #Initializing the model and adding CNN and Dense layers
          model = Sequential()
          model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))
          model.add(MaxPooling2D(pool_size=(2,2)))
          model.add(Flatten())
          model.add(Dense(units=256,activation='relu'))
          model.add(Dense(units=1,activation='sigmoid'))
          model.summary()
         Model: "sequential"
          Layer (type)
                                    Output Shape
                                                            Param #
          conv2d (Conv2D)
                                    (None, 126, 126, 32)
                                                            896
          max_pooling2d (MaxPooling2D (None, 63, 63, 32)
          flatten (Flatten)
                                    (None, 127008)
                                                            0
          dense (Dense)
                                    (None, 256)
                                                            32514304
          dense_1 (Dense)
                                    (None, 1)
                                                            257
         Total params: 32,515,457
         Trainable params: 32,515,457
         Non-trainable params: 0
In [112...
          # Compiling the Model
          model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy','mse'])
In [113...
          #Training the model
          y = model.fit_generator(train, steps_per_epoch=14, epochs=15, validation_data=test, validation_steps=4)
         Epoch 1/15
          4/14 [======>.....] - ETA: 27s - loss: 4.0799 - accuracy: 0.5537 - mse: 0.3706
```

```
14/14 [========] - 27s 1s/step - loss: 4.0799 - accuracy: 0.5537 - mse: 0.3706 - val_loss: 6.6469 - val_accuracy: 0.6562 - val_ms
         e: 0.3400
In [114...
          #Saving the model
          model.save('ffd_model.h5')
          #Testing the model
          from keras.models import load_model
          import cv2
          import numpy as np
          from PIL import Image
          from keras.utils import img_to_array
          model = load_model('/content/ffd_model.h5')
          def prediction(img_path):
             i = cv2.imread(img_path)
              i = cv2.cvtColor(i, cv2.COLOR_BGR2RGB)
              img = Image.open(img_path)
              img = img.resize((128,128))
              x = img_to_array(img)
              x = np.expand_dims(x,axis=0)
              pred = model.predict(x)
              plt.imshow(i)
              print("%s"%("FOREST FIRE DETECTED! SMS SENT!" if pred==[[1.]] else "NO FOREST FIRE DETECTED"))
In [117...
          prediction(r'/content/Dataset/Dataset/test_set/forest/1200px_Mountainarea.jpg')
         1/1 [======] - 0s 182ms/step
         NO FOREST FIRE DETECTED
          100
          200
          300
          400
          500
          600
```

prediction(r'/content/Dataset/Dataset/test set/with fire/Fire 2 696x392.jpg')

FOREST FIRE DETECTED! SMS SENT!

Model Deployment in IBM Cloud

#Converting .h5 to tar format !tar -zcvf forest_fire_detection.tgz ffd_model.h5

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Requirement already satisfied: watson-machine-learning-client in /usr/local/lib/python3.7/dist-packages (1.0.391)
Requirement already satisfied: lomond in /usr/local/lib/python3.7/dist-packages (from watson-machine-learning-client) (0.3.3) Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (from watson-machine-learning-client) (1.26.12)
Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from watson-machine-learning-client) (2.28.1)
Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from watson-machine-learning-client) (4.64.1)

7.2 Feature 2

Model Deployment in IBM Cloud

#Converting .h5 to tar format !tar -zcvf forest_fire_detection.tgz ffd_model.h5

ffd model.h5

In []: !pip install watson-machine-learning-client

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/

Requirement already satisfied: watson-machine-learning-client in /usr/local/lib/python3.7/dist-packages (1.0.391)

Requirement already satisfied: lomond in /usr/local/lib/python3.7/dist-packages (from watson-machine-learning-client) (0.3.3)

Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (from watson-machine-learning-client) (1.26.12)

Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from watson-machine-learning-client) (2.28.1)

1) Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from pandas->watson-machine-learning-client) (1.21.6) Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->watson-machine-learning-client) (2022.6) In []: !pip install ibm watson machine learning Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Collecting ibm watson machine learning Downloading ibm watson machine learning-1.0.257-py3-none-any.whl (1.8 MB) 1.8 MB 6.5 MB/s Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from ibm watson machine learning) (4.13.0) Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from ibm_watson_machine_learning) (0.8.10) Collecting ibm-cos-sdk==2.7.* Downloading ibm-cos-sdk-2.7.0.tar.gz (51 kB) 51 kB 498 kB/s Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (from ibm_watson_machine_learning) (1.26.12) Requirement already satisfied: certifi in /usr/local/lib/python3.7/dist-packages (from ibm watson machine learning) (2022.9.24) Requirement already satisfied: lomond in /usr/local/lib/python3.7/dist-packages (from ibm_watson_machine_learning) (0.3.3) Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from ibm watson machine learning) (21.3) Requirement already satisfied: pandas<1.5.0,>=0.24.2 in /usr/local/lib/python3.7/dist-packages (from ibm watson machine learning) (1.3.5) Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from ibm_watson_machine_learning) (2.28.1) Collecting ibm-cos-sdk-core==2.7.0 Downloading ibm-cos-sdk-core-2.7.0.tar.gz (824 kB) 824 kB 39.4 MB/s Collecting ibm-cos-sdk-s3transfer==2.7.0

Successfully installed docutils-0.15.2 ibm-cos-sdk-2.7.0 ibm-cos-sdk-core-2.7.0 ibm-cos-sdk-s3transfer-2.7.0 ibm-watson-machine-learning-1.0.257

```
In [ ]:
             #Connecting to IBM Cloud from Notebook
              from ibm watson machine learning import APIClient
              credentials = {
                  'url': 'https://us-south.ml.cloud.ibm.com',
                  'apikey':"hwPqBMWeHLVUWozQrsf8OwqAZUlLPITGwY4gMKcMBpVF"
              Client = APIClient(credentials)
             Python 3.7 and 3.8 frameworks are deprecated and will be removed in a future release. Use Python 3.9 framework instead.
    In [ ]:
              Client
    Out[]:
              Client.spaces.get_details()
    Out[]: {'resources': [{'entity': {'description': '',
                 'name': 'forest fires',
                 'scope': {'bss_account_id': '29b20e18cb82499ca758899f43447824'},
                 'stage': {'production': False},
                 'status': {'state': 'active'},
                  'storage': {'properties': {'bucket_name': '0bc342a6-1621-4eeb-ba26-b44087ff24d6',
                   'bucket region': 'us-south',
                   'credentials': {'admin': {'access key id': 'e6abbbbf7099406aa52ed55a4701c60f',
In [ ]: Client.spaces.list()
        Note: 'limit' is not provided. Only first 50 records will be displayed if the number of records exceed 50
        ID NAME CREATED
33e29996-acf0-40b6-8882-c6a1506201c7 forest fires project 2022-11-10T14:58:43.819Z forest fires 2022-11-10T14:56:08.672Z
In [ ]: space_uid = '33e29996-acf0-40b6-8882-c6a1506201c7' #Space User ID
Out[]: '33e29996-acf0-40b6-8882-c6a1506201c7'
        #Setting created deployment space as
Client.set.default_space(space_uid)
Out[ ]: 'SUCCESS'
         #Seeing tensorflow asset_id
Client.software_specifications.list()
```

```
software space uid = Client.software specifications.get uid by name('tensorflow rt22.1-py3.9')
                  software_space_uid
  Out[ ]: 'acd9c798-6974-5d2f-a657-ce06e986df4d'
                 model_details = Client.repository.store_model(model="/content/forest_fire_detection.tgz",meta_props={
                         Client.repository.ModelMetaNames.NAME:"forest fires project", Client.repository.ModelMetaNames.TYPE:"tensorflow_2.7",
                         Client.repository.ModelMetaNames.SOFTWARE_SPEC_UID:software_space_uid
  In [ ]: model_details
  software_spet : 10. acust/ss of 3/4-3021-acs/*-ceof
'name': 'tensorflow_rt22.1-py3.9'),
'type': 'tensorflow_2.7'),
'metadata': ('created_at': '2022-11-11T07:11:08.554Z',
'id': 'cd777ca7-c414-4c5d-9fe2-6c9828275c1b',
                    'modified_at': '2022-11-1107:11:30.1842',
'name': 'forest fires project',
'owner': 'IBMid-665002KXQR',
'resource_key': '2bea2454-f5f8-49d9-b224-07068c1dd165',
                   'space_id': '33e29996-acf0-40b6-8882-c6a1506201c7'},
'system': {'warnings': []}}
  In [ ]: model_id = Client.repository.get_model_uid(model_details)
                  model_id
 Out[ ]: 'cd777ca7-c414-4c5d-9fe2-6c9828275c1b'
                 #Downloading the model from IBM Cloud
                 Client.repository.download(model_id,'ffd_model.tgz')
                Successfully saved model content to file: 'ffd_model.tgz'
  Out[ ]: '/content/ffd model.tgz'
  In [ ]: !pip install twilio
                Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
                Collecting twilio

Downloading twilio-7.15.2-py2.py3-none-any.whl (1.4 MB)

| 1.4 MB 8.8 MB/s

Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (from twilio) (2022.6)

Collecting PyJWT-3.6.0-py3-none-any.whl (20 kB)
                Downloading PyJWI-2.5.0-py3-none-any.Wnl (20 ks)

Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from twilio) (2.28.1)

Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2.10)

Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (1.26.12)

Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2.1.1)
                Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2022.9.24) Installing collected packages: PyJWT, twilio
                Successfully installed PyJWT-2.6.0 twilio-7.15.2
                Video Analysis
In [86]: pip install twilio
                Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
                Requirement already satisfied: twilio in /usr/local/lib/python3.7/dist-packages (7.15.2)

Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from twilio) (2.28.1)

Requirement already satisfied: pyt in /usr/local/lib/python3.7/dist-packages (from twilio) (2022.6)

Requirement already satisfied: PyJWT<3.0.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from twilio) (2026.6)
                Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2022.9.24) Requirement already satisfied: charset-normalizer<3,>=2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2.1.1)
                Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (1.26.12) Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2.10)
```

```
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: playsound in /usr/local/lib/python3.7/dist-packages (1.2.2)

In [88]:
#import opency Librariy
import numpy
import numpy as np
#import numpy as np
#import indexes import load model from keros
from keras.preprocessing import image
#import cload model from traits apport client
#import client import client
#import cli
```

SM50c6779b73363d18e28dac365d5919bf Fire Detected SMS Sent

8.TESTING

8.1 Test Cases

Test case ID	Feature Type	Component	Test Scenario	Steps To Execute	Test Data	Expected Result	Actual Result	Status	BUG ID	Executed By
OP_RT_001	Functional	Page	Check if user can upload their file	The sensor senses the fire	Sample 1.png	The input image should be uploaded to the application successfully	Working as expected	PASS		R.Pranati P.Monisha
OP_RT_002	Functional	Page	Check if user cannot upload unsupported files	1) The sensor senses the fire 2)checks with the pre- uploads images	installer.exe	The application should not allow user to select a non image file	User is able to upload any file	FAIL	BUG_HP_002	S.Preethi R.Sangeetha Priya
OP_RT_003	Functional		Checks whether the page redirects to the result page to the given output	1) The sensor senses the fire 2)checks with the pre- uploaded images 3)checks if there is fire detection	Sample 1.png	The page should redirect to the results page	Working as expected	PASS		R.Pranati
MB_RT_001	Functional	Backend	Checks if all the routes are working properly	1) The sensor senses the fire 2)checks with the pre- uploaded images 3)checks if there is fire detection	Sample 1.png	All the routes should properly work	Working as expected	PASS		P.Monisha
N_DC_001	Functional	Model	Checks whether the model can handle various image sizes	1) Open the page in a specific device 2) Upload the input image 3) Repeat the above steps with different input	Sample 1.png Sample 1 XS.png Sample 1 XL.png	The model should rescale the image and predict the results	Working as expected	PASS		R.Sangeetha Priya
N_DC_002	Functional	Model	Check if the model predicts the digit	Open the page Select the input images	Sample 1.png	The model should predict the number	Working as expected	PASS		R.Sangeetha Priya S.Preethi
N_DC_003	Functional	Model	Check if the model can handle complex input image	Open the page Select the input images Check the results	Complex Sample.png	The model should predict the number in the compex image	The model fails to identify the digit since the model is not built to handle such data	FAIL	BUG_M_001	R.Pranati P.Monisha

RL_DC_001	Functional	Result Page	Verify the elements	1) Open the page 2) Select the input image 3) Check if all the UI elements are displayed properly	Sample 1.png	The Result page must be displayed properly	Working as expected	PASS		R.Pranati P.Monisha
RL_DC_002	Functional	Result Page	Check if that image is displayed properly	Open the page Select the input image Check if the input image are displayed	Sample 1.png	The input image should be displayed properly	The size of the input image exceeds the display container	FAIL	BUG_RP_001	R.Sangeetha Priya S.Preethi
RL_DC_003	Functional	Result Page	Checks whether the displayed prediction is accurate	1) Open the page 2) Select the input image 3) Check if all the other predictions are displayed	Sample 1.png	The other predictions should be displayed properly	Working as expected	PASS		R.Pranati R.Sangeetha Priya

8.2 User Acceptance Testing

1. Purpose of Document

User Acceptance Testing (UAT) is a type of testing performed by the end user or the client to verify/accept the software system before moving the software application to the production environment. UAT is done in the final phase of testing after functional, integration and system testing are done.

The main Purpose of UAT is to validate end to end business flow. It does not focus on cosmetic errors, spelling mistakes or system testing. User Acceptance Testing is carried out in a separate testing environment with production-like data setup. The arises once software has undergone Unit, Integration and System testing because developers might have built software based on requirements document by their own understanding and further required changes during development may not be effectively communicated to them, so for testing whether the final product is accepted by client/enduser, user acceptance testing is needed.

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	1	2	0	4
Duplicate	0	0	0	0	0
External	0	0	2	1	3
Fixed	4	2	4	1	11

Not Reproduced	0	0	0	0	0
Skipped	0	0	1	1	2
Won't Fix	0	0	0	1	1
Totals	5	3	9	4	21

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Client Application	10	0	0	10
Security	2	0	0	2
Performance	2	0	0	2
Exception Reporting	2	0	0	2
Final Report Output	3	0	0	3

9.Results

9.1 Performance Metrics

10. ADVANTAGES AND DISADVANTAGES

ADVANTAGES:

- 1. The proposed model can be used in combination with a nightcamera and a thermal camera in a forest to identify tiny fire signs.
- 2. More datasets and images can be used to train for a more accurateoutcome when detecting flame destruction ability.
- 3. The model can be implemented in mobile
- 4. applications for camping experience enthusiasts.

DISADVANTAGES:

- 1. The model works for limited information.
- 2. The accuracy is low becauseto the limited quantity/quality of photos in the dataset, but this may easily be increased by changing the dataset.
- 3. The small amount of fire amount detection can also cause to trigger the alarm.

APPLICATIONS:

- 1. It will contribute to surveillance technology that improves the accuracy and predictability of fire detection.
- 2. able to detect the fire forestmore precisely, as well as some forest plants and wildlife.
- 3. Detect the amount of dangers that should be treated and those that should not. extra assistance in contacting fire fighters for assistance system.

11.CONCLUSION

Forest fires are a major cause of rain forest and savanna degradation. This model will aid in minimizing destruction by anticipating it to the system, allowing individuals to react more quickly and prevent it. The proposed methodology would deconstruct the threat to the environment by converting the image collected into signals that will trigger an alarm. This system transmits video images to a model, which recognizes them and determines whether to send a threat alert or not. The model extracts data from video feeds and defines image

processing into RGB data for signal response modelling.

12.FUTURE SCOPE

SThe availability of fire-fighting technology brings us one step closer to new AI for detection and security in the forest and at home. With the addition of a motion sensor, the technology can simply expand to compact decision-making with the addition of new software and hardware. The system is utilized as a drone and surveillance system UAV to expand the surveillance area and detect heat signatures in order to identify human from fire plasma signatures.

13.APPENDIX

13.1 Source Code

```
In [86]:
                     pip install twilio
                    Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
                   Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: twilio in /usr/local/lib/python3.7/dist-packages (7.15.2)
Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from twilio) (2022.6)
Requirement already satisfied: pytw in /usr/local/lib/python3.7/dist-packages (from twilio) (2022.6)
Requirement already satisfied: pytw in /usr/local/lib/python3.7/dist-packages (from twilio) (2.6.0)
Requirement already satisfied: certifi=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2022.9.24)
Requirement already satisfied: certifi=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2.1.1)
Requirement already satisfied: urllib3(1.27,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (1.26.12)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->twilio) (2.10)
In [87]: pip install playsound
                    Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/Requirement already satisfied: playsound in /usr/local/lib/python3.7/dist-packages (1.2.2)
In [88]: #import opencv librariy
                     import cv2
#import numpy
                     import numpy as np
#import image function from kera
                     from keras.preprocessing import image
#import load_model from keras
                      from keras.models import load model
                     #import client from twilio API
from twilio.rest import Client
                     #imort playsound package
from playsound import playsound
In [89]:
                     #load the saved model
                      model = load_model(r'/content/ffd_model.h5')
                      #define video
                      video = cv2.VideoCapture('/content/demo.mp4')
                      #define the features
                      name = ['forest','with forest']
                     account_sid = 'ACe316bbd6e26b5f3fba3c0798903db32a'
auth token = '1cedc0d00f2354840f10ba5810c6c7fd'
                      client = Client(account_sid, auth_token)
                      message = client.messages \
                              .create(
  body='Forest fire is detected , stay alert',
  from_='+18316535983',
                                  to='+918838258974'
                      print(message.sid)
                     print("Fire Detected")
print("SMS Sent")
                    SM50c6779b73363d18e28dac365d5919bf
                    Fire Detected
                    SMS Sent
```

13.2 GitHub & Project Demo Link

GitHub Link:https://github.com/IBM-EPBL/IBM-Project-2915-1658486320.git

Project Demo Link:https://uploadnow.io/f/4vP0hNy