

Digital Ethics and Data Privacy

Topic 6: Human Computer Interaction Design

RWD (Topic 6: Human-Computer Interaction Design)

Self-Regulated Learning

Topic Objectives

- Learn the concepts of human computer interaction and user experience design.
- Understand the importance of user-centric design.
- Discuss ethical considerations in HCI design such as inclusivity and accessibility.
- Identify the definitions of and differentiation between automation and autonomy.
- Evaluate the use cases of brain computer interfaces that are beneficial and detrimental to people and society.
- Explore new advancements and associated ethical issues of HCI and UX design implementations.

Human Computer Interaction

 Human-Computer Interaction (HCI) is the study of designing, implementing, and evaluating the interactive interfaces used by people and computers.

Human and Computer

Goal of HCI

HCI in Everyday Life and Work

Amazon Alexa / Google Home

Chatbots

Parking@HBD

HCI and User Experience Design

- HCI revolves around the study of how humans use technology.
- User Experience (UX) Design focuses on how a human as a user experiences their interaction with technology.
- Goal of UX Design is to provide great interactive experiences that keep users and customers loyal to the product or brand.

Image Source: rsigeeks.com

Autonomy Vs Human Control

Automation and Autonomy

Automation

Autonomy Levels of Machines

High

10	The computer decides everything and acts autonomously, ignoring the human.
9	The computer informs the human only if it, the computer, decides to.
8	The computer informs the human only if asked, or
7	The computer executes automatically, then necessarily informs the human, and
6	The computer allows the human a restricted time to veto before automatic execution, or
5	The computer executes that suggestion if the human approves, or
4	The computer suggests one alternative, or
3	The computer narrows the selection down to a few, or
2	The computer offers a complete set of decision/action alternatives, or
1	The computer offers no assistance; the human must take all decisions and actions.

Low

1-dimensional Sheridan-Verplank levels of automation/autonomy

Automation Levels of Autonomous Cars

LEVEL 0

There are no autonomous features.

LEVEL 1

These cars can handle one task at a time, like automatic braking.

LEVEL 2

These cars would have at least two automated functions.

LEVEL 3

These cars handle "dynamic driving tasks" but might still need intervention.

LEVEL 4

These cars are officially driverless in certain environments.

LEVEL 5

These cars can operate entirely on their own without any driver presence.

Image Source: Geospatialworld.net

Supervised Autonomy

Building Reliable, Safe & Trustworthy Systems

Excessive Autonomy

Brain Computer Interfaces (BCI)

Brain Data

Image Source: Towardsdatascience.com

Neuralink

Brain and AI Cloud Connectivity

Consent and Transparency

Ethical Issues

Responsibility

Privacy

Outcome

What The Future Holds

Voice-Guided User Interfaces

Virtual/Augmented Reality

Wearable Computing

HCI Ethical Considerations

System Vulnerabilities

Data Privacy Issues

Data Transparency

Hacker Risks

Accident Liability

School of Computing