INFDTA01-2 Data Science Data mining

Giulia Costantini [office H.4.204]

What is this course about?

Data mining

- Explosive growth of data
 - terabytes of available data
 - automated data collection tools, database systems, web, ...
 - major sources of abundant data: business, science, society, ...
- Information "hidden" in the data
 - human analysts take weeks to discover useful information
- ⇒ pressing need for the *automated analysis* of such massive data!

Lesson structure

- Brief presentation on the theory
- Time to study by yourself & work in pairs on the homework assignments
 - ► Keep a social behaviour
 - Exploit the teacher's presence to ask questions and answer your doubts

Learning materials

- Data Smart, John W. Foreman, Wiley, 2013
 - ► Chapters 2, 4, [6], 8, 9
 - ▶ Datasets for the practical assignments
- ► Slides of the lessons

Grading

More details on the modulewijzer

- Written exam
- Practical examination: assignments + oral check
 - ► Part 1: clustering
 - ► Part 2: genetic algorithms
 - ► Part 3: forecasting
 - Oral check: programming of some parts of data mining algorithms related to the three parts of the assignments
- ► Final grade
 - ▶ 100% practical examination...
 - ▶ ... but the written exam <u>MUST</u> be sufficient to pass the course!!!

Giulia Costantini - INFDTA01-2

Practical examination

- Programming the assignments at home
 - ▶ in pairs or alone
 - ▶ up to 3 points
- Oral check
 - strictly individual
 - ▶ up to 7 points

More details on the modulewijzer

- Admitted languages: Java, C#, Scala, F#
- Important date
 - Lesson of week 8

Giulia Costantini NF Check of your practical assignments & Oral check

Program

- ▶ 8 weekly lessons
- ► Topics per week (draft)

Week	Topic
1	Introduction; Intro clustering
2	Clustering; Intro genetic algorithms
3	Genetic algorithms
4	Practicum; (optional) GA + regression case study
5	Forecasting (SES, DES)
6	Forecasting (TES)
7	Linear programming; outliers; summary/practicum
8	Check assignments + oral check

Today's topics

- Introduction to data mining
- Introduction to clustering

Data mining intro

Data mining - Definitions

- Science of discovering structure and making predictions in (large) data sets
- Non-trivial extraction of implicit, previously unknown and useful information from data
- Exploration & analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns
- Process of semi-automatically analysing large databases to find patterns that are
 - ▶ Valid , Novel , Useful , Understandable

Data mining - Examples

In vitro fertilization

- ► Given: embryos described by 60 features
- Problem: selection of embryos that will survive
- Data: historical records of embryos and outcome

Credit assessment

- ► Given: a loan application
- ▶ Problem: predict whether the bank should approve the loan
- ▶ Data: records from other loans

Data mining - Example

Credit assessment

Data mining - Example

Credit assessment

Data mining - Example

- Credit assessment
 - ► Valid?
 - ▶ the pattern has to be valid with respect to a certainty level (rule true for the 86%)
 - ► Novel?
 - ▶ the value *k* should be previously unknown and not obvious
 - ► Useful?
 - ▶ the pattern should provide information useful to the bank for assessing credit risk
 - ▶ Understandable?

Data mining

Related fields

Data mining (DM) vs KDD

- ▶ Data mining ⇒ algorithms to extract patterns from data
- ► *KDD* ⇒ Knowledge Discovery from Data
 - overall process of discovering useful knowledge from data
 - ▶ DM focuses only on the application of some particular algorithms without the additional steps of the KDD process (like data cleaning, data reduction, visualization, etc...)

Data mining

- Major data mining tasks
 - Classification (predicting an item class)
 - **Clustering** (finding clusters in data)
 - Association rule (associations and/or correlation relationships)
 - **Estimation** (predicting a continuous value)
 - Outlier analysis (detect significant deviation from normal behaviour)
 - Trend and evolution analysis (regression analysis, sequential pattern mining, periodicity analysis, similarity-based analysis)

Data mining

- Classification
 - ► Finding models (functions) that describe and distinguish classes or concepts

- Finding a *structure* in a collection of unlabeled data
- Grouping a set of objects in such a way that...
 - objects in the same group (called a cluster) are more "similar" to each other than to those in other groups (clusters)

Applications

- Market segmentation
 - discover distinct groups of customers and use this knowledge to develop targeted marketing programs
- Biology
 - classification of plants and animals given their features
- City-planning
 - identify groups of houses according to their house type, value and geographical location
- Earthquake studies
 - ▶ identify dangerous zones based on observed earthquake epicenters
- ▶ WWW
 - document classification; weblog clustering to discover groups of users with similar access patterns

- General task to be solved
 - ► Can be achieved by many algorithms
- Partitioning approach (i.e., k-means)
- Hierarchical approach
- Density-based approach
- Grid-based approach
- Model-based
- Frequent-pattern based
- ...

- Partitional clustering
 - ▶ Objects are divided into non-overlapping subsets (clusters) such that each object is in exactly one subset
- Hierarchical clustering
 - ► A set of nested clusters organized as a hierarchical tree

Partitioning Giulia Costantini - INFDTA01-2

- \triangleright Goal: partition a set of observations into k clusters
 - each observation belongs to the cluster with the nearest mean/centroid, serving as a prototype of the cluster
- Iterative technique
 - Initialization: choose a set of k initial means/centroids
 - 2) Assign each observation to the closest mean (i.e., cluster center)
 - Recompute the cluster centers (as the mean of all the observations belonging to the cluster)
 - 4) Go back to step 2 and repeat

Steps

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Pseudo-code

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

K-means example, step 1

K-means example, step 2

K-means example, step 2

K-means example, step 3

K-means example, step 3

K-means example, step 4a

K-means example, step 4a

K-means example, step 4c

K-means example, step 4c

K-means example, step 4d

K-means example, step 4d

K-means example, step 5

- 1. How to compute the distance between observations?
 - ► Many distances are possible
 - ► Euclidean distance

2-dim:
$$\sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

$$n-\text{dim}: \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} \qquad (p_1, p_2)$$

$$(q_1, q_2)$$

- 2. What is a good value for k?
 - ► Input parameter of the algorithm
 - ► An inappropriate choice may yield poor results
 - ► More on this next week!

- 3. When to terminate the algorithm?
 - ▶ When a maximum number of iterations is reached
 - ▶ When the centroids stop changing

- 4. How to choose the first set of *k* means?
 - ► Random points inside the space
 - Forgy method
 - ► Choose randomly k observations from the dataset
 - ► Random Partition method
 - ▶ Divide randomly the observations in clusters
 - ▶ The first k means are the centroids of the randomly made clusters

Good choice of initial cluster centers

► Good choice of initial cluster centers

▶ Bad choice of initial cluster centers

▶ Bad choice of initial cluster centers

- Initial cluster centers: very important choice!
 - ▶ the quality of the result depends greatly on it

- Initial cluster centers: how to find the best?
 - ► *Multiple runs* (helps a bit)
 - ▶ Use another clustering method (hierarchical?) to determine initial centroids
 - Select more than k initial centroids and then select among these (the most widely separated)
 - Post-processing
 - ► Bisecting k-means

Multiple runs

- \blacktriangleright Given k, to determine the "best" clustering solution
 - \blacktriangleright Repeat the k-means algorithm many times (i.e., 50-100)
 - ▶ Each time, random choice of initial cluster centers
 - ► For each run, compute a measure of the *global error*
 - ► Choose the solution with *lowest error*
- Most common measure of error
 - ► SSE → how closely related are objects in a cluster

- SSE = Sum of Squared Errors
 - ► Sum of the squares of the error of each point
 - ► Error of a point = *distance* to the nearest cluster center

$$SSE = \sum_{i=1}^{k} \sum_{x \in C_i} dist^2(c_i, x)$$

where

- \triangleright $x = \text{data point in the cluster } C_i$
- $ightharpoonup c_i = \text{center of cluster } C_i$

Homework

- Study slides week 1
- ▶ Read **Chapter 2** of the book (<u>until</u> page 53)
- Download datasets for part 1 of the assignment
 - The complete one: "WineKMC.xlsx" from http://eu.wiley.com/WileyCDA/WileyTitle/productCd-111866146X.html → Downloads section → Chapter 2
 - ► The already preprocessed in csv format ("Winedata.csv") from N@tschool
- Start the implementation of part 1...?
 - ► Read description of the assignment (available on N@tschool)
 - ▶ We will also talk about it together during the next lesson