

Cálculo de la entalpía

El presente documento sigue los lineamientos estipulados por la $\it IAPWS$ para las funciones de estado. 1

Ingreso de variables

Nuestro objetivo es obtener la expresión

$$h = h(p; T) \tag{1}$$

La formulación está expresada de modo adimensional. Para ello, debemos calcular:

$$\pi = \frac{p}{p^*} \tag{2}$$

siendo $p^* = 1 MPa$ y

$$\tau = \frac{T^*}{T} \tag{3}$$

con $T^* = 540 \, K$. Por lo tanto, para que la formulación funcione, el ingreso de la presión y la temperatura debe hacerse en MPa y K, debiéndo realizarse las conversiones correspondientes.

Obtención de la entalpía

La siguiente expresión sirve únicamente para vapor sobrecalentado, en los entornos normales de operación para un ciclo industrial.

La expresión que se utiliza es:

$$h(\pi;\tau) = RT \cdot \tau \cdot (\gamma_{\tau}^{\circ} + \gamma_{\tau}^{r}) \tag{4}$$

Siendo, $R = 0,461\,526\,\frac{kJ}{kg\cdot K}$ Por su parte

$$\gamma_{\tau}^{\circ} = \sum_{i=1}^{9} n_i^{\circ} \cdot J_i^{\circ} \cdot \tau^{J_i^{\circ} - 1} \tag{5}$$

Los coeficientes que deben usarse para la expresión (5) son los siguientes:

i	J_i^{o}	n_i°	i	J_i^{o}	n_i^{o}
1	0	$-0.969\ 276\ 865\ 002\ 17 \times 10^{1}\ a$	6	-2	$0.142\ 408\ 191\ 714\ 44 \times 10^{1}$
2	1	$0.100\ 866\ 559\ 680\ 18 \times 10^{2}\ a$	7	-1	$-0.438\ 395\ 113\ 194\ 50 \times 10^{1}$
3	-5	$-0.56087911283020\times10^{-2}$	8	2	-0.284 086 324 607 72
4	-4	$0.714\ 527\ 380\ 814\ 55 \times 10^{-1}$	9	3	$0.212\ 684\ 637\ 533\ 07\times 10^{-1}$
5	-3	$-0.407\ 104\ 982\ 239\ 28$			

Finalmente,

$$\gamma_{\tau}^{r} = \sum_{i=1}^{43} n_{i} \cdot \pi^{I_{i}} \cdot J_{i} \cdot (\tau - 0.5)^{J_{i} - 1}$$
(6)

¹Acrónimo de "The International Association for the Properties of Water and Steam". Su formulación es el estándar para fines científicos y tecnológicos. Puede visitarse http://www.iapws.org/ En caso de desearse la formulación completa, comunicarse con pbarral@agrestsrl.com

Los coeficientes que deben usarse para la expresión (6) son los siguientes:

i	I_i	J_{i}	n_i	i	I_i	J_{i}	n_i
1	1	0	$-0.177\ 317\ 424\ 732\ 13 \times 10^{-2}$	23	7	0	$-0.590\ 595\ 643\ 242\ 70 \times 10^{-17}$
2	1	1	$-0.178\ 348\ 622\ 923\ 58 \times 10^{-1}$	24	7	11	$-0.126\ 218\ 088\ 991\ 01 \times 10^{-5}$
3	1	2	$-0.459\ 960\ 136\ 963\ 65 \times 10^{-1}$	25	7	25	$-0.389\ 468\ 424\ 357\ 39 \times 10^{-1}$
4	1	3	$-0.57581259083432 \times 10^{-1}$	26	8	8	$0.112\ 562\ 113\ 604\ 59 \times 10^{-10}$
5	1	6	$-0.503\ 252\ 787\ 279\ 30 \times 10^{-1}$	27	8	36	$-0.823\ 113\ 408\ 979\ 98 \times 10^{1}$
6	2	1	$-0.330\ 326\ 416\ 702\ 03 \times 10^{-4}$	28	9	13	$0.198\ 097\ 128\ 020\ 88 \times 10^{-7}$
7	2	2	$-0.189\ 489\ 875\ 163\ 15 \times 10^{-3}$	29	10	4	$0.104\ 069\ 652\ 101\ 74 \times 10^{-18}$
8	2	4	$-0.39392777243355 \times 10^{-2}$	30	10	10	$-0.10234747095929 \times 10^{-12}$
9	2	7	$-0.43797295650573 \times 10^{-1}$	31	10	14	$-0.100\ 181\ 793\ 795\ 11 \times 10^{-8}$
10	2	36	$-0.26674547914087 \times 10^{-4}$	32	16	29	$-0.80882908646985 \times 10^{-10}$
11	3	0	$0.204\ 817\ 376\ 923\ 09 \times 10^{-7}$	33	16	50	0.106 930 318 794 09
12	3	1	$0.438\ 706\ 672\ 844\ 35 \times 10^{-6}$	34	18	57	-0.336 622 505 741 71
13	3	3	$-0.32277677238570 \times 10^{-4}$	35	20	20	$0.891\ 858\ 453\ 554\ 21 \times 10^{-24}$
14	3	6	$-0.150\ 339\ 245\ 421\ 48 \times 10^{-2}$	36	20	35	$0.306\ 293\ 168\ 762\ 32 \times 10^{-12}$
15	3	35	$-0.40668253562649 \times 10^{-1}$	37	20	48	$-0.420\ 024\ 676\ 982\ 08 \times 10^{-5}$
16	4	1	$-0.788\ 473\ 095\ 593\ 67 \times 10^{-9}$	38	21	21	$-0.590\ 560\ 296\ 856\ 39 \times 10^{-25}$
17	4	2	$0.127\ 907\ 178\ 522\ 85 \times 10^{-7}$	39	22	53	$0.378\ 269\ 476\ 134\ 57 \times 10^{-5}$
18	4	3	$0.482\ 253\ 727\ 185\ 07 \times 10^{-6}$	40	23	39	$-0.127\ 686\ 089\ 346\ 81 \times 10^{-14}$
19	5	7	$0.229\ 220\ 763\ 376\ 61 \times 10^{-5}$	41	24	26	$0.730\ 876\ 105\ 950\ 61 \times 10^{-28}$
20	6	3	$-0.167\ 147\ 664\ 510\ 61 \times 10^{-10}$	42	24	40	$0.554\ 147\ 153\ 507\ 78 \times 10^{-16}$
21	6	16	$-0.211\ 714\ 723\ 213\ 55 \times 10^{-2}$	43	24	58	$-0.943\ 697\ 072\ 412\ 10 \times 10^{-6}$
22	6	35	$-0.23895741934104 \times 10^{2}$				

Líneas de comando en Visual Basic

Las siguientes líneas funcionan como *macro* en MS Excel. Adaptando la sintaxis, puede utilizarse en cualquier lenguaje de programación.

```
Function h2_pT(ByVal p As Double, ByVal T As Double) As Double
2
    'Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic
3
       Properties of Water and Steam, September 1997
    '6 Equations for Region 2, Section. 6.1 Basic Equation
4
    'Table 11 and 12, Page 14 and 15
5
      Dim i As Integer
      Dim tau, g0_tau, gr_tau As Double
      Dim Ir, Jr, nr, J0, nO As Variant
      Const R As Double = 0.461526 'kJ/(kg K)
      J0 = Array(0, 1, -5, -4, -3, -2, -1, 2, 3)
10
      n0 = Array(-9.6927686500217, 10.086655968018, -0.005608791128302,
          0.071452738081455 \,, \quad -0.40710498223928 \,, \quad 1.4240819171444 \,, \\
          -4.383951131945, -0.28408632460772, 0.021268463753307)
      Ir = Array(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 6,
12
          6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22,
         23, 24, 24, 24)
      Jr = Array(0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7,
13
          3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48,
          21, 53, 39, 26, 40, 58)
      nr = Array(-1.7731742473213E-03, -0.017834862292358,
14
          -0.045996013696365, -0.057581259083432, -0.05032527872793,
          -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03,
```



```
-0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08,
                              4.3870667284435E-07\,, \quad -3.227767723857E-05\,, \quad -1.5033924542148E-03\,, \\
                             \hbox{-0.040668253562649}\,, \hbox{-7.8847309559367E-10}\,, \hbox{1.2790717852285E-08}\,,
                             4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11,
                             \hbox{\tt -2.1171472321355E-03}\,,\,\,\,\hbox{\tt -23.895741934104}\,,\,\,\,\hbox{\tt -5.905956432427E-18}\,,
                             -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11,
                             -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19,
                             -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11,
                             0.10693031879409, -0.33662250574171, 8.9185845355421E-25,
                             3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26,
                             3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29,
                             5.5414715350778E-17, -9.436970724121E-07)
                  tau = 540 / T
15
                  g0_tau = 0#
16
                  For i = 0 To 8
17
                        g0_{tau} = g0_{tau} + n0(i) * J0(i) * tau ^ (J0(i) - 1)
18
                  Next i
19
                  gr_tau = 0#
20
                  For i = 0 To 42
                     gr_tau = gr_tau + nr(i) * p ^ Ir(i) * Jr(i) * (tau - 0.5) ^ (Jr(i) - 0.5) ^ 
23
                  Next i
                 h2_pT = R * T * tau * (g0_tau + gr_tau)
24
            End Function
```