MAT315

Jenci Wei

Winter 2024

Contents

1	Division	3
2	Prime Numbers	7
3	Modular Equivalence	10
4	Rational Numbers	15
5	Polynomials	17
6	Euler's Totient Function	19
7	Primitive Roots	22
8	Quadratic Reciprocity	28
9	Sums of Two Squares	36
10	Arithmetic Functions	37
11	Probability	41
12	Fermat's Last Theorem	44

1 Division

In this course we consider $\mathbb{N} = \{1, 2, \ldots\}$.

Overarching Question: How can I solve ax + by = c where $a, b, c \in \mathbb{N}$ for solutions $x, y \in \mathbb{N}$?

Def. Let $n, d \in \mathbb{Z}$. We say d divides n if there is $e \in \mathbb{Z}$ with n = de. We write $d \mid n$.

Proof Techniques

- 1. Induction
- 2. Strong induction
- 3. Well-ordering property

Theorem 1.1 (Division Algorithm). Let $a \in \mathbb{Z}, b \in \mathbb{N}$. There exists $q, r \in \mathbb{Z}$ with

$$a = qb + r$$
, $0 \le r < b$

and q, r are unique.

Proof. Let

$$S = \{a - bq \ge 0 : q \in \mathbb{Z}\}\$$

Suppose q = -|a| so that

$$a - qb = a + |a|b \ge 0$$

so $S \neq \emptyset$. By the well-ordering property, S has a least element r = a - bq. Then the following hold:

- 1. a = bq + r
- 2. r > 0
- 3. If r > b, then $0 \le r b = a b(q + 1)$, contradicting minimality of r.

Uniqueness: Suppose

$$bq_1 + r_1 = a = bq_2 + r_2$$

Then

$$r_1 - r_2 = b(q_2 - q_1)$$

Notice that $-b < r_1 - r_2 < b$ since $0 \le r_1, r_2 < b$. Then we have $r_1 = r_2$ because $r_1 - r_2$ is a multiple of b that is strictly between -b and b. Then $q_1 = q_2$ follows.

Lemma 1.2. Let $a, b, c, d \in \mathbb{N}$.

- 1. If $a \mid b$ and $b \mid c$, then $a \mid c$.
- 2. If $a \mid b$ and $c \mid d$, then $ac \mid bd$.
- 3. $\forall x, y \in \mathbb{Z}$, if $d \mid a$ and $d \mid b$, then $d \mid ax + by$.

Proof.

- 1. b = an, c = bm, c = a(nm)
- 2. b = an, d = cm, bd = ac(nm)
- 3. a = dn, b = dm, ax + by = d(nx + my)

Def. For $a, b \in \mathbb{Z}$, their **greatest common divisor (GCD)** is the natural number gcd(a, b) which is the largest common divisor of a and b

• Except if a = b = 0, then gcd(a, b) = 1.

Lemma 1.3 (Bézout's). Let $a, b \in \mathbb{N}$. The equation

$$ax + by = \gcd(a, b)$$

has a solution.

Proof. Let

$$S = \{c \in \mathbb{N} : ax + by = c \text{ has a solution}\}\$$

This is nonempty because we can take c = a and set x = 1, y = 0. By the well-ordering property, there is a least element s. We claim that $s = \gcd(a, b)$.

First note that $s \ge \gcd(a, b)$ because $\gcd(a, b) \mid s$ (Property 3 of Lemma 1.2). To show that $s \le \gcd(a, b)$, we will show that $s \mid a$ and $s \mid b$. Applying division algorithm to s, a:

$$a = qs + r, \quad 0 \le r < s$$

Then

$$a = q(ax + by) + r \implies a(1 - qx) + b(-y) = r$$

Which implies that r = 0 because r cannot be in S, and so $s \mid a$. By symmetry $s \mid b$, so $s \leq \gcd(a, b)$. \square

Theorem 1.4. Let $a, b, d \in \mathbb{N}$. If $d \mid a$ and $d \mid b$, then $d \mid \gcd(a, b)$.

Proof. Using Bézout's lemma:

$$ax + by = \gcd(a, b)$$

Then $d \mid ax + by$ by Property 3 of Lemma 1.2, so $d \mid \gcd(a, b)$.

Theorem 1.5. ax + by = c is solvable iff $gcd(a, b) \mid c$.

Proof.

" \Leftarrow " Say $c = \gcd(a, b)k$. By Bézout, there are $x, y \in \mathbb{Z}$ with

$$ax + by = \gcd(a, b)$$

Then

$$a(kx) + b(ky) = \gcd(a, b)k = c$$

" \Longrightarrow " Say ax + by = c. Then $gcd(a, b) \mid c$ by the previous lemma.

Def. We say $a, b \in \mathbb{Z} \setminus \{0\}$ are **coprime** if gcd(a, b) = 1.

Lemma 1.6. Let $a, b \in \mathbb{N}$ be coprime and $c \in \mathbb{N}$. If $a \mid bc$ then $a \mid c$.

Proof. By Bézout ax + by = 1. Then

$$acx + bcy = c$$

Since $a \mid a$ and $a \mid bc$, we have that $a \mid c$ by Property 3 of Lemma 1.2.

Back to the overarching question: denote $d = \gcd(a, b)$. Then

$$ax + by = c = dk \implies \frac{a}{d}x + \frac{b}{d}y = k$$

Assume a and b are coprime and that

$$ax_0 + by_0 = c (1)$$

$$ax_1 + by_1 = c (2)$$

Then

(1) - (2)
$$a(x_0 - x_1) + b(y_0 - y_1) = 0$$

$$a(x_0 - x_1) = b(y_1 - y_0)$$

$$a \mid y_1 - y_0$$

$$b \mid x_0 - x_1$$

$$y_1 - y_0 = at \quad \text{where } t = (x_0 - x_1)/b$$

$$x_0 - x_1 = bs \quad \text{where } s = (y_1 - y_0)/a$$

$$abs = bat$$

$$s = t$$

Therefore

$$x_1 = x_0 - bt$$
$$y_1 = y_0 + at$$

Theorem 1.7 (Linear Diophantine Equations). Let $a, b, c \in \mathbb{N}$. Let $x_0, y_0 \in \mathbb{Z}$ be a solution to ax + by = c. Then all solutions are of the form (x, y) where

$$x = x_0 - \frac{b}{d}t$$
$$y = y_0 + \frac{a}{d}t$$

where $d = \gcd(a, b)$ and $t \in \mathbb{Z}$.

Proof. By the above observation.

To find gcd, consider a pair of natural numbers (a, b). Divide

$$a = qb + r, \quad 0 \le r < b$$

Then gcd(a, b) = gcd(b, r) because say $d \mid a$ and $d \mid b$, then $d \mid a - qb = r$. Conversely, if $d \mid b$ and $d \mid r$, then $d \mid qb + r = a$.

Example: find the gcd of 315 and 17.

$$315 = 18 \cdot 17 + 9$$

$$17 = 1 \cdot 9 + 8$$

$$9 = 1 \cdot 8 + 1$$

$$8 = 8 \cdot 1$$

$$\gcd(8, 1) = 1$$

So gcd(315, 17) = 1. Try back substitution to find x, y such that 315x + 17y = 1:

$$\begin{aligned} 1 &= 9 - 1 \cdot 8 \\ &= 9 - 1 \cdot (17 - 1 \cdot 9) \\ &= 2 \cdot 9 - 1 \cdot 17 \\ &= 2 \cdot (315 - 18 \cdot 17) - 1 \cdot 17 \\ &= 2 \cdot 315 - 37 \cdot 17 \end{aligned}$$

Theorem 1.8 (Euclidean Algorithm). Let $a, b \in \mathbb{N}$ where a > b. Define a sequence by repeated divisions

$$a = q_1b + r_1, \quad 0 \le r_1 < b$$

$$b = q_2r_1 + r_2$$

$$...$$

$$r_{n-3} = q_{n-2}r_{n-2} + r_{n-1}$$

$$r_{n-2} = q_{n-1}r_{n-1} + r_n$$

$$r_{n-1} = q_nr_n$$

Then $gcd(a,b) = r_n$. Moreover, we can solve for x,y in $ax + by = r_n$ by back substitution.

2 Prime Numbers

Def. A natural number p > 1 is **prime** if its only divisors are 1 and p.

Lemma 2.1. gcd(a, p) = 1 or p. Moreover, gcd(a, p) = p iff $p \mid a$.

Corollary 2.1.1. If a prime number p divides ab, then $p \mid a$ or $p \mid b$.

Proof. Either $p \mid a$, or gcd(a, p) = 1 and $p \mid b$.

Corollary 2.1.2. If $a_1, \ldots, a_m \in \mathbb{N}$ and $p \mid a_1 \cdots a_m$, then $p \mid a_i$ for some i.

Theorem 2.2 (Fundamental Theorem of Arithmetic). For every $n \in \mathbb{Z} \setminus \{0\}$, there exists a factorization

$$n = \pm p_1^{k_1} \cdots p_r^{k_r}$$

where $p_j s$ are distinct primes, $k_j \in \mathbb{N}$, and this is unique up to reordering of the p_j .

Proof.

Existence: By strong induction on n.

Base case: 1 = 1, 2 = 2.

Inductive step: suppose this holds for $1, \ldots, n$ and consider n+1. If n+1 is prime, then we're done. Otherwise, there is a divisor of n+1 that is in (1, n+1). Can then write n+1=de with $1 < d, e \le n$. By induction, d, e factors, so n+1 factors.

Uniqueness: First observe that if p, q are prime and $p \mid q$, then p = q. Write two factorizations

$$n = p_1^{k_1} \cdots p_r^{k_r} = q_1^{t_1} \cdots q_s^{t_s}$$

By the corollary, since $q_1 \mid n$, then $q_1 \mid p_i$ for some i. This means that $q_1 = p_i$ for some i. By reordering we can assume $q_1 = p_1$. Using the same technique, we can cancel off a q_1 and p_1 from both sides, which gives

$$p_1^{k_1-1}p_2^{k_2}\cdots p_r^{k_r}=q_1^{k_1-1}q_2^{t_2}\cdots q_s^{t_s}$$

Keep cancelling q_1 s as long as they are on the RHS. We eventually get

$$p_1^{k_1-t_1}p_2^{k_2}\cdots p_r^{k_r} = q_2^{t_2}\cdots q_s^{t_s}$$

Since the ps and qs are unique, if we have another p_1 , it must divide one of q_2, \ldots, q_s , which cannot happen. Therefore $k_1 - t_1 = 0$, and so we get

$$p_2^{k_2}\cdots p_r^{k_r}=q_2^{t_2}\cdots q_s^{t_s}$$

Iterating this procedure (i.e. induction on length), we get $r = s, k_i = t_i, p_i = q_i$ for all i.

Lemma 2.3. Consider

$$a = p_1^{k_1} \cdots p_r^{k_r}$$
$$b = p_1^{t_1} \cdots p_r^{t_r}$$

with $t_i, k_i \geq 0$. Then

1.
$$ab = p_1^{k_1+t_1} \cdots p_r^{k_r+t_r}$$

2.
$$b/a = p_1^{t_1-k_1} \cdots p_r^{t_r-k_r}$$
, moreover, $a \mid b \iff t_j \geq k_j$ for all j

3.
$$gcd(a,b) = p_1^{\min(k_1,t_1)} \cdots p_r^{\min(k_r,t_r)}$$

Page 7

Theorem 2.4 (Euclid). There are infinitely many primes.

Proof. Let p_1, \ldots, p_n be prime and consider $N=p_1\cdot p_r+1$. It has a prime factor q. If $p_j\mid N$, then $p_j\mid n-p_1\cdots p_r=1$, which is impossible. So $p_1,\ldots,p_r,q=p_{r+1}$ is a larger set of primes.

Lemma 2.5. $\pi(x) = number \ of \ primes \leq x \approx \frac{x}{\log x}$.

Questions regarding primes:

- 1. How did we estimate $\pi(x)$?
 - Will return to this later
- 2. Do they bunch together
 - Know that n and n+1 are not both prime if n>2
 - For n and n+2, we don't know (twin primes conjecture)
- 3. Are they far apart?
 - p_k could be arbitrarily distant to p_{k+1} (requires very large p_k)
 - Bertrand's postulate: for every $n \in \mathbb{N}$, there is a prime p with n

Lemma 2.6. Let p_n denote the nth prime number. Then

$$p_n \le 2^{2^{n-1}}$$

Proof. By induction.

Base case: $p_1 = 2$, $2^{2^{1-1}} = 2$.

Inductive step: assume $p_j \leq 2^{2^{j-1}}$ for all $j \leq n$. We know that there is a new prime q dividing $M = p_1 \cdots p_n + 1$. So

$$p_{n+1} \le q$$

$$= p_1 \cdots p_n + 1$$

$$\le 2^{2^{1-1}} \cdots 2^{2^{n-1}} + 1$$

$$= 2^{\sum_{j=1}^{n} 2^{j-1}} + 1$$

$$= 2^{\frac{2^{n}-1}{2^{-1}}} + 1$$

$$= 2^{2^{n}-1} + 1$$

$$\le 2^{2^{n}}$$

$$= 2^{2^{(n+1)-1}}$$

Def. For $x \in \mathbb{R}$, $|x| = n \in \mathbb{Z}$ where $\leq x < n + 1$. The fractional part defined as

$$\{x\} = x - |x|$$

Corollary 2.6.1. $\pi(x) \ge \lfloor \log_2 \log_2 x \rfloor + 1$.

Proof. $\pi(x) = \text{number of primes } \leq x$. Want to count the p_n with $2^{2^{n-1}} \leq x$. Taking a log gives

$$2^{n-1}\log_2 2 \le 2^{n-1} \le \log_2 x$$

Taking another log gives

$$(n-1)\log_2 2 + \log_2 2 \le \log_2 \log_2 x$$

So

$$\begin{aligned} n \log_2 2 &\leq \log_2 \log_2 x \\ n &\leq \log_2 \log_2 x \\ &\leq |\log_2 \log_2 x| + 1 \end{aligned}$$

Lemma 2.7. A composite n has a nontrivial divisor $d \leq \sqrt{n}$.

Proof. By contradiction, if all divisors are $> \sqrt{n}$, then multiplying them exceed n.

Theorem 2.8 (Principle of Inclusion-Exclusion). For sets A_1, A_2, A_3 ,

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

3 Modular Equivalence

Def. Let X be a set, then an equivalence relation on X is the some relation \sim on $\{x \sim y \text{ pairs}\}$ such that

- 1. Reflective: $x \sim x$ for all $x \in X$
- 2. Symmetric: $x \sim y \implies y \sim x$
- 3. Transitive: $x \sim y, y \sim z \implies x \sim z$

For $n \in \mathbb{N}$, define an equivalence relation on \mathbb{Z} by $a \sim b$ iff $n \mid a - b$

- 1. $n \mid 0 = a a$, so $a \sim a$
- 2. $n \mid a b \implies n \mid b a$, so $a \sim b \implies b \sim a$
- 3. $n \mid a b, n \mid b c \implies n \mid a c$

When $a \sim b$, we write $a \equiv b \pmod{n}$.

Lemma 3.1.

- 1. Addition is preserved by modular equivalence, i.e. if $a \equiv a' \pmod{n}$, $b \equiv b' \pmod{n}$, then $a+b \equiv a'+b' \pmod{n}$.
- 2. Multiplication is preserved by modular equivalence, i.e. if $a \equiv a' \pmod{n}$, $b \equiv b' \pmod{n}$, then $ab \equiv a'b' \pmod{n}$.

Proof.

- 1. $n \mid a a', n \mid b b', \text{ so } n \mid a a' + b b' = (a + b) (a' + b'), \text{ so } a + b \equiv a' + b' \pmod{n}$.
- 2. If $n \mid a a'$, $n \mid b b'$, notice that

$$ab - a'b' = ab - ab' + ab' - a'b'$$

= $a(b - b') + b'(a - a')$

So $n \mid ab - a'b'$, therefore $ab \equiv a'b' \pmod{n}$.

Def. The equivalence class of a point $x \in X$ is the set

$$[x] = \{ y \in X : x \sim y \}$$

• The set of equivalence class is

$$X/\sim = \{[x] : x \in X\}$$

 \bullet In the case of modular equivalence, there are n equivalence classes

$$\mathbb{Z}/n\mathbb{Z} = \{[0], [1], \dots, [n-1]\}$$

• Take n = 12, then

$$\mathbb{Z}/12\mathbb{Z} = \{[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]\}$$

Then

$$3 + 9 \equiv 0 \pmod{12}$$

$$2 \cdot 8 + 4 \equiv 8 \pmod{12}$$

$$3 \cdot 7 \equiv 9 \pmod{12}$$

For larger numbers, can use the following trick:

$$3 \cdot 9 \equiv 3 \cdot (-3) \pmod{12}$$
$$\equiv -9 \pmod{12}$$
$$\equiv 3 \pmod{12}$$

Consider the case where we want to divide by 6, i.e. find x_0 such that

$$6x_0 \equiv 1 \pmod{12}$$

which is impossible, since the RHS can only be 0 or 6

- We can divide by $a \pmod{n}$ iff the equation $ax \equiv 1 \pmod{n}$ has a solution, which we call a^{-1} , the multiplicative inverse of $a \pmod{n}$
- Consider $ax \equiv 1 \pmod{n}$.

$$ax \equiv 1 \pmod{n} \iff ax = 1 + ny \quad \text{for some } y \in \mathbb{Z}$$

 $\iff ax + n(-y) = 1$

which is solvable iff a, n are coprime.

• The following are well-defined, i.e. does not depend on any choice:

$$[a] + [b] := [a + b]$$

 $[a] \cdot [b] := [ab]$

• $[a] = [b] \iff a \equiv b \pmod{n}$

Corollary 3.1.1. If $p(x) \in \mathbb{Z}[x]$ (integer-coefficient polynomials), and $a \equiv b \pmod{n}$, then $p(a) \equiv p(b) \pmod{n}$.

Proof. By induction, if $p(x) \in \mathbb{Z}[x]$, then p([x]) = [p(x)] is well-defined.

Theorem 3.2. The equation

$$ax \equiv b \pmod{n}$$

has a solution iff $d = \gcd(a, n) \mid b$. If x_0 is a solution, then the distinct solutions modulo n are

$$x_0, x_0 + \frac{n}{d}, x_0 + \frac{2n}{d}, \cdots, x_0 + \frac{(d-1)n}{d}$$

- \bullet a is a congruence class
- gcd(a, n) is well-defined because by Euclid's algorithm gcd(m, qm + r) = gcd(m, r)

Proof.

" \Longrightarrow ": Say x_0 such that $ax_0 \equiv b \pmod{n}$, then $n \mid ax_0 - b$. So there is a $y_0 \in \mathbb{Z}$ with

$$ny_0 = ax_0 - b$$
$$b = ax_0 + n(-y_0)$$
$$\gcd(a, n) \mid b$$

" $\Leftarrow=$ ": If $gcd(a, n) \mid b$, then there are $x_0, y_0 \in \mathbb{Z}$ such that $ax_0 + ny_0 = b$, so $n \mid ax_0 - b$, or equivalently $ax_0 \equiv b \pmod{n}$.

By the LDET the solutions are of the form $x_0 + \frac{n}{d}t$, $t \in \mathbb{Z}$. Want to show that these are distinct and complete.

- 1. Distinct: Suppose $x_0 + jn/d \equiv x_0 + in/d \pmod{n}$. Then $n \mid (i-j)n/d$, where $0 \le i-j \le d-1$. Since |(i-j)n/d| < n, and that n divides this number, this number must be 0, so i=j.
- 2. Complete: For any x, know that

$$x = x_0 + \frac{n}{d}t = x_0 + \frac{n}{d}(qd + r) = x_0 + \frac{rn}{d} + qn, \quad 0 \le r < d$$

therefore the list is complete.

Example: simplify the following equations

- $10x \equiv 11 \pmod{9} \implies x \equiv 2 \pmod{9}$
- $7x \equiv 13 \pmod{15} \implies \text{convert to } 7x + 15y = 13$
 - First solve 7x + 15y = 1, apply Euclid gives $15 = 2 \cdot 7 + 1$, $7 = 7 \cdot 1 + 0$, so x = -2, y = 1
 - Multiplying by 13 gives x = -26, y = 13
 - So the solution to $7x = 13 \pmod{15}$ is $x \equiv -26 \equiv 4 \pmod{15}$

Lemma 3.3 (Independence Condition). Let $n = p_1^{k_1} \cdots p_r^{k_r}$. Then $a \in \mathbb{Z}, a \equiv 0 \pmod{n}$ iff $a \equiv 0 \pmod{p_j^{k_j}}$ for all $1 \leq j \leq r$.

Consider addition + and multiplication · on $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$:

$$\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} = \{([a]_n, [b]_m) : a = 0, \dots, n-1; b = 0, \dots, m-1\}$$
$$([a]_n, [b]_m) \cdot ([c]_n, [d]_m) := ([ac]_n, [bd]_m)$$
$$([a]_n, [b]_m) + ([c]_n, [d]_m) := ([a+c]_n, [b+d]_m)$$

- (0,0) is the additive identity
- (1,1) is the multiplicative identity
- Consider $x^2 \equiv 2 \pmod{14}$, we can split into

$$x^2 \equiv 2 \pmod{2}$$

 $x^2 \equiv 0 \pmod{2}$
 $x \equiv 0 \pmod{2}$

and

$$x^2 \equiv 2 \pmod{7}$$
$$x \equiv \pm 3 \pmod{7}$$

Theorem 3.4 (Chinese Remainder Theorem). Let $m, n \geq 1$ be coprime integers. Then the map

$$\varphi: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

$$a \pmod{nm} \mapsto (a \pmod{m}, a \pmod{n})$$

is a bijection. Moreover:

- 1. It preserves addition: $\varphi(x+y) = \varphi(x) + \varphi(y)$
- 2. It preserves multiplication: $\varphi(xy) = \varphi(x)\varphi(y)$

Proof. To show that φ is injective, want to show that $\varphi(a) = \varphi(b) \implies a = b$, which is equivalent to $a \equiv b \pmod{n} \land a \equiv b \pmod{m} \implies a \equiv b \pmod{nm}$. Because n, m coprime, have $n \mid a - b \land m \mid a - b$, which implies that $nm \mid a - b$.

To show that φ is surjective, for any $b \pmod n$, $c \pmod m$, we want $a \pmod nm$ such that $a \equiv b \pmod n \land a \equiv c \pmod m$. By Bezout's Lemma, there are $x_0, y_0 \in \mathbb{Z}$ such that $nx_0 + my_0 = 1$. Take

$$a = b(my_0) + c(nx_0)$$

Then when we work in modulo n, then

$$a \equiv b(my_0) + c(nx_0) \equiv b(my_0) \equiv b(1) \pmod{n}$$
 Since $my_0 \equiv 1 \pmod{n}$ by Bezout's

Similarly, $a \equiv c \pmod{m}$.

To show that φ preserves addition:

$$\varphi(x+y) = ((x+y) \pmod{n}, (x+y) \pmod{m})$$

$$= (x \pmod{n} + y \pmod{n}, x \pmod{m} + y \pmod{m})$$

$$= (x \pmod{n}, x \pmod{m}) + (y \pmod{n}, y \pmod{m})$$

$$= \varphi(x) + \varphi(y)$$

To show that φ preserves multiplication:

$$\begin{split} \varphi(xy) &= ((xy) \pmod n, (xy) \pmod m) \\ &= (x \pmod n \cdot y \pmod n, x \pmod m \cdot y \pmod m) \\ &= (x \pmod n, x \pmod m) \cdot (y \pmod n, y \pmod m) \\ &= \varphi(x)\varphi(y) \end{split}$$

Consider the polynomial

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0 = 0$$

Then

$$\varphi(p(x)) = \varphi(a_d x^d) + \dots + \varphi(a_1 x) + \varphi(a_0)$$

$$= \varphi(a_d) \varphi(x^d) + \dots + \varphi(a_1) \varphi(x) + \varphi(a_0)$$

$$= \varphi(a_n) \varphi(x)^d + \dots + \varphi(a_1) \varphi(x) + \varphi(a_0)$$

$$= a_n \varphi(x)^d + \dots + a_1 \varphi(x) + a_0$$

$$= p(\varphi(x))$$

This means that $\varphi(p(x)) = (p(x) \pmod{n}, p(x) \pmod{m})$, and $\varphi(y) = 0 \iff y \equiv 0 \pmod{nm}$. φ gives a correspondence

$$\{(a,b)\mid p(a)\equiv 0\pmod{n}, p(b)\equiv 0\pmod{m}\}\longleftrightarrow \{c\mid p(c)\equiv 0\pmod{nm}\}$$

Ex. Solve the following equations

- $6x \equiv 15 \pmod{385}$
- $x^2 \equiv 2 \pmod{14}$
 - CRT says it's enough to solve

$$x^2 \equiv 2 \pmod{2}, \qquad x^2 \equiv 2 \pmod{7}$$

- The first one gives $x^2 \equiv 0 \pmod{2}$, so $x \equiv 0 \pmod{2}$
- The second one gives $x^2 \equiv 9 \pmod{7}$, so $x \equiv \pm 3 \pmod{7}$, these are the only solutions (prove later)
- On the LHS of the correspondence we have $\{(0,3),(0,-3)\}$
- This means we need to solve simultaneous sytems

$$x \equiv 0 \pmod{2}$$

$$x \equiv 3 \pmod{7}$$

$$y \equiv 0 \pmod{2}$$

$$y \equiv -3 \pmod{7}$$

- (First two) Use Euclidean algorithm with backsubstitution to get 7(1) + 2(-3) = 1
- Want $z \pmod{nm}$ that maps to $(a \pmod{n}, b \pmod{m})$
- -z = a(my) + b(nx) = 3(2)(-3) + 0(7)(1) = -18, so $z \equiv 10 \pmod{14}$
- (Second two) z = (-3)(2)(-3) + (0)(7)(1) = 18, so $z \equiv 4 \pmod{14}$

Strategy for solving $f(x) \equiv 0 \pmod{n}$:

- 1. Factor $n = p_1^{k_1} \cdots p_r^{k_r}$
- 2. Solve the system

$$f(x) \equiv 0 \pmod{p_1^{k_1}}$$

$$\vdots$$

$$f(x) \equiv 0 \pmod{p_r^{k_r}}$$

- 3. Use CRT to finish
- Example: $x^4 \equiv 7 \pmod{81}$
- $81 = 3^4$, so we work mod 3

$$x^4 \equiv 7 \equiv 1 \pmod{3}$$

- $x \equiv 1, -1 \pmod{3}$ (because the only choices are 0, 1, 2)
- Working in mod 9, 1, -1 correspond to 1, 4, 7, 2, 5, 8, so we only need to check those
- If $n \equiv a \pmod{p^k}$, then there are p possible congruence classes for $n \pmod{p^{k+1}}$

4 Rational Numbers

Consider the equation $x^2 + y^2 = z^2$. Does this have rational solutions? Can we find them?

- If $a, b \in \mathbb{Q} \setminus 0$, then $a/b \in \mathbb{Q}$
- Divide by z:

$$\left(\frac{x}{z}\right)^2 + \left(\frac{y}{z}\right)^2 = 1$$

and so we can work with $u^2 + v^2 = 1$

• (0,1) is a rational solution. Assume that there is another rational solution (a,b), we could draw a secant line through (0,1) and (a,b), the line is defined by v=t(u-1)

$$u^{2} + (t(u-1))^{2} = 1$$

$$u^{2} + t^{2}(u^{2} - 2u + 1) = 1$$

$$(1+t^{2})u^{2} - 2t^{2}u + t^{2} - 1 = 0$$

$$2t \pm \sqrt{4t^{4} - 4(1+t^{2})(t^{2} - 1)}$$

$$u = \frac{2t \pm \sqrt{4t^4 - 4(1+t^2)(t^2 - 1)}}{2(1+t^2)}$$

$$= \frac{2t^2 \pm \sqrt{4t^4 - 4(t^4 - 1)}}{2(1+t^2)}$$

$$= \frac{2t^2 \pm 2}{2(1+t^2)}$$

$$= \frac{t^2 \pm 1}{t^2 + 1}$$

$$= 1, \frac{t^2 - 1}{t^2 + 1}$$

$$v = t(u - 1)$$

$$= t\left(\frac{t^2 - 1}{t^2 + 1} - 1\right)$$

$$= t\left(\frac{t^2 - 1}{t^2 + 1}\right)$$

$$= -\frac{2t}{t^2 + 1}$$

• Can build a dictionary between rational slopes and rational points on $u^2 + v^2 = 1$

$$t\mapsto \left(\frac{t^2-1}{t^2+1}, -\frac{2t}{t^2-1}\right)$$

Write t = m/n where $m, n \in \mathbb{Z}$

$$\frac{t^2 - 1}{t^2 + 1} = \frac{\frac{m^2}{n^2} - 1}{\frac{m^2}{n^2} + 1}$$

$$= \frac{m^2 - n^2}{m^2 + n^2}$$

$$-\frac{2t}{t^2 + 1} = \frac{-2\frac{m}{n^2}}{\frac{m^2}{n^2} + 1}$$

$$= \frac{-2mn}{m^2 + n^2}$$

• From rational points to integer points on $x^2 + y^2 = z^2$

$$\left(\frac{m^2-n^2}{m^2+n^2}, \frac{-2mn}{m^2+n^2}\right) \mapsto \left(\underbrace{m^2-n^2}_x, \underbrace{-2mn}_y, \underbrace{n^2+n^2}_z\right)$$

5 Polynomials

Theorem 5.1. When p (the modulus) is prime, we can have a division algorithm for polynomials

- Say f(x) is a polynomial with $f(a) \equiv 0 \pmod{p}$, then f(x) = (x a)g(x)
- The degree goes down after division

Polynomials with coefficients in $\mathbb{Z}/p\mathbb{Z}$, p prime

• Notation: $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$

$$\mathbb{F}_p[x] = \{a_n x^n + \dots + a_1 x + a_0 \mid a_n, \dots, a_0 \in \mathbb{F}_p\}$$

Theorem 5.2 (Division Algorithm). Let $f(x), g(x) \in \mathbb{F}_p[x]$, g(x) nonconstant. There exists $q(x), r(x) \in \mathbb{F}_p[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$

And r(x) = 0 or $\deg r < \deg g$.

Proof. Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \quad a_n \neq 0$$

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0, \quad b_m \neq 0$$

If m > n, then q(x) = 0, r(x) = f(x). If $m \le n$, then

$$f(n) - \frac{a_n}{b_m} x^{n-m} g(x) = c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + \dots + c_1 x + c_0$$

Continue to iterate this process until it terminates. The remaining term is r(x), and $q(x) = \sup$ of all the terms we multiplied g(x) by.

- The fact we have a division algorithm means we have a unique factorization in $\mathbb{F}_p[x]$
- Moreover, the division algorithm lets us connect roots of polynomial with linear factors
- Given a polynomial f(x) and that $x a \mid f(x)$, i.e. there is $g(x) \in \mathbb{F}_p[x]$ with f(x) = (x a)g(x), then f(a) = 0
- The converse is true as well

Theorem 5.3. Let $f(x) \in \mathbb{F}_p[x]$, $a \in \mathbb{F}_p$. If $f(a) \equiv 0 \pmod{p}$, then $x - a \mid f(x)$.

Proof. Apply the division algorithm to get f(x) = g(x)(x-a) + r(x), where r(x) = 0 or $\deg(r) < \deg(x-a) = 1$, so $r(x) = b_0$ is a constant. Plugging a into the equation gives $f(a) \equiv (a-a)q(a) + b_0 \pmod{p}$, so $b_0 \equiv 0 \pmod{p}$. This means that r(x) = 0, so f(x) = g(x)(x-a).

• Notice if we write

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_k)q(x)$$

Then deg f > k.

Theorem 5.4. Let $f(x) \in \mathbb{F}_p[x]$ be nonzero. Then the number of roots of $f(x) \leq \deg f$, counted with multiplicity.

Proof. Induct on degree.

Base case: degree 0, 1 are clear.

Inductive step: Say the result is true if deg = n and consider f(x) with degree n + 1.

- ullet If f has no roots, then we're done
- If f(x) has a root a, then by the previous theorem, we can write

$$f(x) = (x - a)g(x)$$

and $\deg f=1+\deg g$. Knowing $\deg f=n+1$, I know that $\deg g=n$. By IH the number of roots with multiplicity of g(x) is $\leq n$, so the number of roots with multiplicity of f(x) is $\leq n+1$.

6 Euler's Totient Function

Consider $x^p - x \pmod{p}$

- Observe that $x^p x = x(x^{p-1} 1)$
- Everything is a root
- For $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$

Group of units modulo n

• For n > 1,

$$(\mathbb{Z}/n\mathbb{Z})^* = \{a \in \mathbb{Z}/n\mathbb{Z} \mid \gcd(a,n) = 1\} = \text{invertible elements modulo } n$$

- 1. If $x, y \in (\mathbb{Z}/n\mathbb{Z})^*$, then $xy \in (\mathbb{Z}/n\mathbb{Z})^*$. Moreover, this product is associative and commutative
- 2. For all $x \in (\mathbb{Z}/n\mathbb{Z})^*$, $1 \cdot x \equiv x \pmod{n}$
- 3. For all $x \in (\mathbb{Z}/n\mathbb{Z})^*$, there exists $y \in (\mathbb{Z}/n\mathbb{Z})^*$ such that $xy \equiv 1 \pmod{n}$, i.e. inverses exist

Def. Define a function on the positive integers by

$$\phi(1) = 1$$

$$\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*| \quad \text{for } n > 1$$

This is called the **Euler** ϕ -function.

- For p prime, $\phi(p) = p 1$
- For $a \in (\mathbb{Z}/n\mathbb{Z})^*$, define a function

$$\mu_a: (\mathbb{Z}/n\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*, \quad x \mapsto ax$$

- This is a bijection
- We know there is some $a^{-1} \in (\mathbb{Z}/n\mathbb{Z})^*$ so $\mu_a \circ \mu_{a^{-1}} = \mu_{a^{-1}} \circ \mu_a = identity$

Theorem 6.1 (Euler). For $a \in (\mathbb{Z}/n\mathbb{Z})^*$, $a^{\phi(n)} \equiv 1 \pmod{n}$.

Proof. Write $(\mathbb{Z}/n\mathbb{Z})^* = \{x_1, \dots, x_{\phi(n)}\} = \{ax_1, \dots, ax_{\phi(n)}\}$ (multiplying by a shuffles the order of the set). Multiplying everything together gives

$$x_1 \cdots x_{\phi(n)} \equiv (ax_1) \cdots (ax_{\phi(n)}) \pmod{n}$$
$$\equiv a^{\phi(n)} (x_1 \cdots x_{\phi(n)}) \pmod{n}$$
$$1 \equiv a^{\phi(n)} \pmod{n}$$

The product is commutative because integer multiplication is commutative.

Corollary 6.1.1 (Fermat's Little Theorem). For p prime, $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

Lemma 6.2. If n, m are coprime, then $\phi(nm) = \phi(n)\phi(m)$

Proof. By Chinese Remainder Theorem, we have bijections

$$\mathbb{Z}/nm\mathbb{Z} \longleftrightarrow \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$
$$(\mathbb{Z}/nm\mathbb{Z})^* \longleftrightarrow (\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^*$$

 $a \in (\mathbb{Z}/N\mathbb{Z})^*$ iff $ax \equiv 1 \pmod{N}$ is solvable.

Given an arbitrary n, we can factor

$$n = p_1^{k_1} \cdots p_r^{k_r}$$

and $p_i^{k_i}, p_j^{k_j}$ are coprime if $i \neq j$, so

$$\phi(n) = \phi(p_1^{k_1}) \cdots \phi(p_r^{k_r})$$

To compute $\phi(p^k)$, observe that $\gcd(a,p^k)=1\iff p\nmid a.$ p^k has divisors $1,p,p^2,\ldots,p^k$. So if I want $1\leq a\leq p^k$ with $\gcd(a,p^k)=1$, observe that this number is the same as

$$\phi(p^k) = p^k - \left| \frac{p^k}{p} \right| = p^k - p^{k-1}$$

Because $\lfloor p^k/p \rfloor$ represents the number of multiples of p in the range $1, \ldots, p^k$, and multiples of p cannot be coprime to p^k .

Theorem 6.3.

- 1. $\phi(p^k) = p^k p^{k-1} = p^{k-1}(p-1)$ for p prime, $k \ge 1$
- 2. If $n = p_1^{k_1} \cdots p_r^{k_r}$, then

$$\phi(n) = \phi(p_1^{k_1}) \cdots \phi(p_r^{k_r})$$

= $p_1^{k_1-1}(p_1-1) \cdots p_r^{k_r-1}(p_r-1)$

- Notice that $p^k p^{k-1} = p^k(1 1/p)$
- Can then write

$$\phi(n) = \left(p_1^{k_1} \left(1 - \frac{1}{p_1}\right)\right) \cdots \left(p_r^{k_r} \left(1 - \frac{1}{p_r}\right)\right) = p_1^{k_1} \cdots p_r^{k_r} \prod_{p \mid n} \left(1 - \frac{1}{p}\right) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$$

- E.g. $n = 13^4 \cdot 3^5 \cdot 19^7$, which is big, but we can compute $\phi(n) = 13^3(13-1) \cdot 3^4(3-1) \cdot 19^6(19-1)$
- E.g. Compute the last 2 digits of 3¹⁴⁹²
 - We know that $3^{\phi(100)} \equiv 1 \pmod{100}$
 - If $1492 = q \cdot \phi(100) + r$ for $0 \le r < \phi(100)$, then $3^{1492} \equiv 3^{q \cdot \phi(100) + r} \equiv 3^r \pmod{100}$.
 - $-\phi(100) = 2(2-1) \cdot 5(5-1) = 40$
 - $-1492 \equiv 12 \pmod{40}$, so $3^{1492} \equiv 3^{12} \pmod{100}$
 - Successive squaring trick: every number has a binary expansion

$$m = c_k 2^k + c_{k-1} 2^{k-1} + \dots + c_1 2 + c_0$$

where $c_i \in \{0, 1\}$. Then

$$x^{m} = x^{c_{k}2^{k} + c_{k-1}2^{k-1} + \dots + c_{1}2 + c_{0}}$$
$$= \left(x^{2^{k}}\right)^{c_{k}} \cdot \left(x^{2^{k-1}}\right)^{c_{k-1}} \cdots \left(x^{2}\right)^{c_{1}} \cdot x^{c_{0}}$$

- -12 = 8 + 4, $3^4 = 81$, $3^8 = 361 \equiv 61 \pmod{100}$
- Now $3^{12} \equiv 61 \cdot 81 \pmod{100} \equiv 41 \pmod{100}$

Want to solve $x^d \equiv 1 \pmod{n}$

• Say $a^d \equiv 1 \pmod{n}$, then $a^{-1} \equiv a^{d-1} \pmod{n}$

Def. For $a \in (\mathbb{Z}/n\mathbb{Z})^*$, the **order** of a, denoted ord a, is the smallest positive integer d such that $a^d \equiv 1 \pmod{n}$.

• This exists because $a^{\phi(n)} \equiv 1 \pmod{n}$, and most of the times the order $< \phi(n)$

Lemma 6.4. For $a \in (\mathbb{Z}/n\mathbb{Z})^*$, if $a^m \equiv 1 \mod n$, then ord $a \mid m$.

Proof. By division algorithm,

$$m = q \cdot \operatorname{ord} a + r, \quad 0 \le r < \operatorname{ord} a$$

See that

$$1 \equiv a^m \equiv a^{q \cdot \operatorname{ord} a} \cdot a^r \equiv a^r \pmod{n}$$

By minimality of ord a, r must be 0, and so ord $a \mid m$.

Corollary 6.4.1. For every $a \in (\mathbb{Z}/n\mathbb{Z})^*$, ord $a \mid \phi(n)$.

We know that $x^d \equiv 1 \pmod{n}$ are only solvable if $d \mid \phi(n)$

- Observe that if we want solutions with ord a=d, it is enough to solve this for $d=\phi(n)$
- Want to find an element of order d for every $d \mid \phi(n)$

Lemma 6.5. We can always find an order d element for $d \mid \phi(n)$ iff we can find an order $\phi(n)$ element.

If we have a large (hard to factor) N and some exponent e. If someone wants to send a message A in terms of $(\mathbb{Z}/N\mathbb{Z})^*$ elements, they send

$$A^e \pmod{N}$$

where $gcd(e, \phi(N)) = 1$. By Bezout

$$ef + \phi(N)h = 1$$

Then

$$A' \equiv A^{ef+\phi(N)h \pmod{N}}$$
$$\equiv A^{ef} \left(A^{\phi(N)} \right)^h \pmod{N}$$
$$\equiv (A^e)^f \pmod{N}$$

Notice that

$$(\mathbb{Z}/N\mathbb{Z})^* = \{1, g, g^2, \dots, g^{\phi(n)-1}\}$$

The existence of a generator gives us a "discrete logarithm" to each $a \in (\mathbb{Z}/N\mathbb{Z})^*$, i.e. there is a unique $0 \le k \le \phi(N) - 1$ such that $g^k \equiv a \pmod{N}$, so $k = \log_a(a)$.

• This matters because log "linearizes" equiation

$$\log(A^e) = e \log A$$

7 Primitive Roots

Def. We say $g \in (\mathbb{Z}/n\mathbb{Z})^*$ is a **primitive root** if ord $g = \phi(n)$.

Lemma 7.1. For $a \in (\mathbb{Z}/n\mathbb{Z})^*$, ord $a = |\{a^k \mid k \geq 0\}|$.

Proof. Define a map

$$\{1, \dots, \operatorname{ord} a\} \to \{a^k \mid k \ge 0\}, \quad k \mapsto a^k$$

This is surjective by the division algorithm. To see that this is injective, if $a^i \equiv a^j \pmod{n}$, say i > j, then $a^{i-j} \equiv 1 \pmod{n}$, but $0 \le i - j < \text{ord } a$, so i = j.

For the polynomial $x^d - 1$, if $a \in (\mathbb{Z}/p\mathbb{Z})^*$ of order d, then all powers of a, i.e. $\{1, a, a^2, \dots, a^{d-1}\}$ are all distinct roots of $x^d - 1$.

- This list has no repeats
- Since $x^d 1$ has $\leq d$ roots, and the list contains exactly d roots, the set of elements of order d is some subset of this list

Lemma 7.2. Let $a \in (\mathbb{Z}/p\mathbb{Z})^*$ have order d. Then $\operatorname{ord}(a^k) = d/\gcd(d,k), \ k \geq 1$.

Proof.

$$(a^k)^{\frac{d}{\gcd(d,k)}} \equiv a^{\frac{k}{\gcd(d,k)} \cdot d}$$
$$\equiv 1 \pmod{n}$$

Say that $(a^k)^j \equiv 1 \pmod{n}$, so $d \mid kj$. Then

$$\frac{d}{\gcd(d,k)} \mid \frac{k}{\gcd(d,k)} \cdot j$$

$$\implies \frac{d}{\gcd(d,k)} \mid j \quad \text{By lemma (coprime)}$$

So as long as j > 0, $j \ge \frac{d}{\gcd(d,k)}$

Corollary 7.2.1. $\operatorname{ord}(a^k) = \operatorname{ord}(a)$ iff $\operatorname{gcd}(\operatorname{ord}(a), k) = 1$.

Lemma 7.3. In $(\mathbb{Z}/p\mathbb{Z})^*$, there are either 0 elements of order d, or there are $\phi(d)$.

Proof. Write $\eta(d) = \#$ of order d elements in $(\mathbb{Z}/p\mathbb{Z})^*$. Observe that

$$\sum_{d|p-1} \eta(d) = \phi(p) = p-1$$

Which aggregates elements of every possible order, counting each element once, which results in $|(\mathbb{Z}/p\mathbb{Z})^*| = \phi(p)$. If any $\eta(d) = 0$, then the sum would be .

- Technique: if $0 \le a_n \le b_n$ and $\sum a_n = \sum b_n$, then $a_n = b_n$ for all n
- a_n is $\eta(d)$, which represents the count of elements in $(\mathbb{Z}/p\mathbb{Z})^*$ of order d
- b_n is $\phi(d)$, which represents the theoretical maximum number of elements in $(\mathbb{Z}/p\mathbb{Z})^*$ of order d

Theorem 7.4 (Gauss). For any $m \ge 1$,

$$\sum_{d|m} \phi(d) = m$$

Proof. Consider $\mathbb{Z}/m\mathbb{Z}$ and for each $d \mid m$, look at

$$S_d = \{ x \in \mathbb{Z}/m\mathbb{Z} \mid dx \equiv 0 \pmod{m} \land lx \not\equiv 0 \pmod{m} \quad \forall l < d \}$$

This is the set of smallest $\mathbb{Z}/m\mathbb{Z}$ elements that when multiplied by d results in multiples of m. Observe that $S_{d_1} \cap S_{d_2} = \emptyset$ for $d_1 \neq d_2$, because $d_1 x \equiv 0 \equiv d_2 x \pmod{m}$ for any $x \in S_{d_1} \cap S_{d_2}$, so $d_1 \leq d_2 \leq d_1 \implies d_1 = d_2$. Also observe that for every $x \in \mathbb{Z}/m\mathbb{Z}$, $x \in S_d$ for some $d \mid m$ (by division algorithm, since every x can be "multiplied" to $0 \pmod{m}$). Therefore

$$\mathbb{Z}/m\mathbb{Z} = \bigsqcup_{d|m} S_d$$

Take the cardinality of both sides give

$$m = \sum_{d|m} |S_d|$$

Say $x \in S_d$ such that $dx \equiv 0 \pmod{m}$, or equivalently, $m \mid dx$, therefore $\frac{m}{d} \mid x$. Can then write $x = \frac{m}{d}t$ for some $t \in \mathbb{Z}$. We claim that $\gcd(t,d) = 1$, which we can see because

$$x = \frac{m}{d/\gcd(d,t)} \cdot \frac{t}{\gcd(d,t)}$$

Therefore

$$\frac{d}{\gcd(d,t)}x\equiv 0\pmod m$$

But since $x \in S_d$, $d \le \frac{d}{\gcd(d,t)} \le d$ (first \le is by minimality of d), so $d = \frac{d}{\gcd(d,t)}$, which means that $\gcd(d,t) = 1$. Then

$$S_d = \left\{ \frac{m}{d}t : 0 \le t \le d - 1 \land \gcd(t, d) = 1 \right\}$$

This means $|S_d| = \phi(d)$, which completes the proof.

Theorem 7.5. Primitive roots exist mod p.

Proof. We know that

$$\sum_{d|p-1} \eta(d) = p - 1 = \sum_{d|p-1} \phi(d)$$

Since $\eta(d) \leq \phi(d)$, we have $\eta(d) = \phi(d)$. In particular, $\eta(p-1) = \phi(p-1) > 0$, so there is at least one primitive root.

Further observation

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$
$$= n \sum_{p|n} \frac{\mu(d)}{d}$$
$$= \sum_{d|n} \mu(d) \frac{n}{d}$$

If p is not prime, then primitive root may not exist:

- $(\mathbb{Z}/8\mathbb{Z})^* = \{1, 3, 5, 7\}$ - $1^2 = 1, 3^2 = 1, 5^2 = 1, 7^2 = 1$, and so there are no primitive roots
- $(Z/4p\mathbb{Z})^*$

$$- (\mathbb{Z}/4p\mathbb{Z})^* \longleftrightarrow (\mathbb{Z}/4\mathbb{Z})^* \times (\mathbb{Z}/p\mathbb{Z})^*$$

$$-a \longleftrightarrow (b,c), a^k \longleftrightarrow (b^k,c^k)$$

- Then $a^{p-1} \equiv 1 \pmod{4p}$ for all a
- But $\phi(4p) = 2(p-1)$, so there are no primitive roots

Lemma 7.6. For $n \mid m$, the reduction map

$$(\mathbb{Z}/m\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$$

 $[x]_m \mapsto [x]_n$

is surjective.

Proof. Say $1 \le x \le n$, $\gcd(x,n) = 1$ (i.e. take $x \in (\mathbb{Z}/n\mathbb{Z})^*$). If $y \in \mathbb{Z}/m\mathbb{Z}$ with $y = x \pmod{n}$, then for any other $y' \in \mathbb{Z}/m\mathbb{Z}$, $y' \equiv x \pmod{n}$, y' = y + nt, so the elements in $\mathbb{Z}/m\mathbb{Z}$ above x are x + at. If $\gcd(x,m) = 1$, then we're good. Otherwise, there are primes $p \mid m$ with $p \mid x$. Note that $m = (m/n) \cdot n$. Since $\gcd(x,n) = 1$, we're forced to conclude that $p \mid (m/n)$.

Pick t to "interfere" with these primes, i.e. take t to be the product of $p \mid (m/n)$ but $p \nmid x$. Then we claim that gcd(x+nt,m)=1. Take a prime $p \mid (m/n)$. If $p \mid x$, then $p \mid x+nt_0$ implies $p \mid nt_0$, so $p \mid t_0$, which is a contradiction (beacuse this would divide x). And, if $p \nmid x$, then by construction $p \mid t_0$, so $p \mid x+nt_0$ implies $p \mid x$, which is a contradiction. Therefore we have shown that $gcd(x+nt_0,m)=1$.

Lemma 7.7. Let $n \mid m$. If $(\mathbb{Z}/n\mathbb{Z})^*$ has a primitive root, then so does $(\mathbb{Z}/m\mathbb{Z})^*$.

Proof. Call the reduction map $\pi: (\mathbb{Z}/m\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$ and say that g is a primitive root mod m. Take $h \equiv \pi(g) \pmod{n}$, then for any $x \in (\mathbb{Z}/m\mathbb{Z})^*$, I know there is some $y \in (\mathbb{Z}/m\mathbb{Z})^*$ with $\pi(y) = x \pmod{n}$. But since $y \equiv g^k \pmod{m}$ for some $k \geq 0$, and that π preserves multiplication, I see that $h^k \equiv \pi(g)^k \equiv \pi(g^k) \equiv \pi(y) \equiv x \pmod{n}$. Therefore h is a primitive root mod n.

Theorem 7.8 (Obstruction). If $8 \mid n$ or $4p \mid n$ for p an odd prime, then $(\mathbb{Z}/n\mathbb{Z})^*$ has no primitive root. Also, if $pq \mid n$ for distinct odd primes p, q, then there is no primitive root.

- $(\mathbb{Z}/pq\mathbb{Z})^* \longleftrightarrow (\mathbb{Z}/p\mathbb{Z})^* \times (\mathbb{Z}/q\mathbb{Z})^*$
- Exercise: $a^{(p-1)(q-1)/2} \equiv 1 \pmod{pq}$ for all $a \in (\mathbb{Z}/pq\mathbb{Z})^*$
- Work separately in mod p and mod q, observe that

$$p-1 \mid \frac{(p-1)(q-1)}{2}$$
 and $q-1 \mid \frac{(p-1)(q-1)}{2}$

Since $\phi(pq) = (p-1)(q-1)$, there is no primitive root mod pq

Candidates for having a primitive root (i.e. things not ruled out by obstruction theorem)

• Only possibilities are $n = 1, 2, 4, p^k, 2p^k$ for p an odd prime

Theorem 7.9. $(\mathbb{Z}/p^k\mathbb{Z})^*$ has a primitive root for p odd, $k \geq 1$.

Proof. We're done with the case of k = 1. Start induction from k = 2. Given g a primitive root \pmod{p} , we claim that one of g or $g + p \pmod{p^2}$ is a primitive root. If g is a primitive root, then we're done. Otherwise, $g^{p-1} \equiv 1 \pmod{p^2}$ since if $g^d \equiv 1 \pmod{p^2}$, then $g^d \equiv 1 \pmod{p}$. So by an order argument, $p-1 \mid d$. So if d is the order of $g \pmod{p^2}$, we know $d \mid \phi(p^2) = p(p-1)$. So $p-1 \mid d \mid p(p-1)$, so d = p-1 or d = p(p-1). Since we're assuming that g is not a primitive root mod p^2 , we have that d = p-1.

$$(g+p)^{p-1} \equiv g^{p-1} + (p-1)g^{p-2}p \qquad (\text{mod } p^2)$$

$$\equiv 1 + (p-1)g^{p-2}p \qquad (\text{mod } p^2)$$

If LHS $\equiv 1$, then $p^2 \mid (p-1)g^{p-2}p$, which implies that $p \mid (p-1)g^{p-2}$, but both of those numbers are coprime to p, so LHS $\not\equiv 1$. This means that g+p has order p(p-1), so it is a primitive root.

Now, for induction, claim that if h is a primitive root mod p^k for $k \ge 2$, then it is a primitive root mod p^{k+1} . Say that $d \equiv \text{order of } h \pmod{p^{k+1}}$. Then $h^d \equiv 1 \pmod{p^{k+1}}$ so $h^d \equiv 1 \pmod{p^k}$. By an order argument, $\phi(p^k) \mid d$, and $d \mid \phi(p^{k+1})$. We know

$$\phi(p^k) = p^{k-1}(p-1)$$
 and $\phi(p^{k+1}) = p^k(p-1)$

So $d = \phi(p^k)$ or $d = \phi(p^{k+1})$. Observe that $\phi(p^k) = p\phi(p^{k-1})$. We know

$$h^{\phi(p^{k-1})} \equiv 1 \pmod{p^{k-1}} \qquad \text{By Euler's Theorem}$$

$$h^{\phi(p^{k-1})} \not\equiv 1 \pmod{p^k}$$

The first equation states that $h^{\phi(p^{k-1})} \equiv 1 + p^{k-1}t$ and the second equation states that $p \nmid t$. Then

$$h^{\phi(p^k)} \equiv \left(h^{\phi(p^{k-1})}\right)^p \pmod{p^{k+1}} \qquad (\text{mod } p^{k+1})$$

$$\equiv \left(1 + p^{k-1}t\right)^p \qquad (\text{mod } p^{k+1})$$

$$\equiv 1 + p^k t + \binom{p}{2} p^{2(k-1)} t^2 + \cdots \qquad (\text{mod } p^{k+1})$$

In the "···" are the terms that look like $p^{s(k-1)}$, $s \ge 3$. So using $3(k-1) \ge k+1$, I have $2k \ge 4$, and so $k \ge 2$ (and so the inequality is true). This means that all those terms vanish (because they are divisible by the modulus).

2(k-1) is not always $\geq k+1$, but $p \mid \binom{p}{2}$. So the 3rd term is divisible by 2(k-1)+1, which is $\geq k+1$, so the 3rd term vanishes too.

So our equation becomes

$$h^{\phi(p^k)} \equiv 1 + p^k t \pmod{p^{k+1}} \pmod{p^{k+1}}$$

LHS $\equiv 1 \iff p^k t \equiv 0 \pmod{p^{k+1}} \iff p \mid t$, which is not true. Therefore h is a primitive root mod p^{k+1} .

- If g is a primitive root mod p^2 (p is odd prime), then g is a primitive root mod p^k for any $k \ge 1$
- Can find a primitive root mod 25 and check that it is a primitive root for 5^k , k = 1, 3, 4, 5
- $\phi(2p^k) = \phi(p^k)$, so if g is a primitive root mod p^k , then g is a primitive root mod $2p^k$

Corollary 7.9.1. $(\mathbb{Z}/2p^k\mathbb{Z})^*$ has a primitive root for p odd, $k \geq 0$.

Proof. k = 0 is trivial. For $k \ge 1$, take g to be the primitive root $\pmod{p^k}$. Say g has order d in mod $2p^k$. Then

$$d \mid \phi(2p^k) = \phi(p^k)$$

and

$$g^d \equiv 1 \pmod{2p^k}$$

This implies that $g^d \equiv 1 \pmod{p^k}$, and so $\phi(p^k) \mid d$, therefore $d = \phi(p^k)$. Hence g is a primitive root mod $2p^k$.

One thing to notice is that if g is even, then we can take $g + p^k$ instead.

Theorem 7.10. $(\mathbb{Z}/n\mathbb{Z})^*$ has a primitive root if and only if $n = 1, 2, 4, p^k, 2p^k$ for p an odd prime and $k \ge 1$. Example: find a primitive root mod 9.

- $(\mathbb{Z}/9\mathbb{Z})^* = \{1, 2, 4, 5, 7, 8\}$, which is of order 6
- It suffices to check 2, 5, 8 as they are primitive roots of mod 3
- $2^1 \equiv 2, 2^2 \equiv 4, 2^3 \equiv 8, 2^6 \equiv 1$. By our theorem, 2 is a primitive root for any $(\mathbb{Z}/3^k\mathbb{Z})^*$
- Additionally, we can find solutions to $x^7 = 8 \pmod{81}$
- Can always write $x = 2^y \pmod{8}$, so $2^{7y} \equiv 8 \equiv 2^3 \pmod{81}$
- This means $7y \equiv 3 \pmod{\phi(81)} = 54$

Def. If p is prime, h an integer, $k \geq 0$, then $p^k \mid n$ means that $p^k \mid n$ but $p^{k+1} \nmid n$.

Lemma 7.11. For $n \ge 0$, $2^{n+2} || 5^{2^n} - 1$

Proof. For n = 0, $5^{2^n} - 1 = 5 - 1 = 4$, $2^{n+2} = 4$.

Suppose this holds for $n \ge 0$, and consider $5^{2^{n+1}} - 1$. Observe

$$5^{2^{n+1}} = 5^{2 \cdot 2n} = \left(5^{2^n}\right)^2$$

So

$$5^{2^{n+1}} - 1 = \left(5^{2^n} - 1\right)\left(5^{2^n} + 1\right)$$

By induction, $2^{n+2} \parallel 5^{2^n} - 1$. Working mod 4 (because we want to check whether this is divisible by higher powers of 2),

$$5^{2^n} + 1 \equiv 1 + 1 \equiv 2 \pmod{4}$$

So 2 || $5^{2^n} + 1$. Therefore 2^{n+3} || $5^{2^{n+1}} - 1$.

Theorem 7.12. For $n \geq 3$,

- 1. 5 has order 2^{n-2} in $(\mathbb{Z}/2^n\mathbb{Z})^*$
- 2. Every element of $(\mathbb{Z}/2^n\mathbb{Z})^*$ can be written uniquely as $(-1)^i 5^j$, $0 \le i \le 1$, $0 \le j \le 2^{n-2} 1$

Proof. For 1, because $\phi(2^n) = 2^{n-1}$, we know that $d = \operatorname{ord}(5) = 2^k$ for some $k \ge 0$ (by Euler's). Moreover, we know

$$5^{2^k} - 1 \equiv 0 \pmod{2^n}$$

So

$$2^n \mid 5^{2^k} - 1$$

But by our lemma, $2^{k+2} \parallel 5^{2^k} - 1$, so $n \le k+2$. We know $(\mathbb{Z}/2^n\mathbb{Z})^*$ has no primitive root, so k < n-1. This means $n-2 \le k \le n-2$, therefore k=n-2.

For 2, consider the following lists

$$5^0, 5^1, \dots, 5^{2^{n-2}-1}$$

- $5^0, -5^1, \dots, -5^{2^{n-2}-1}$

Each have no repeats. If the lists had no overlap together, they would give $2 \cdot 2^{n-2} = 2^{n-1}$ elements, and $|(\mathbb{Z}/2^n\mathbb{Z})^*| = 2^{n-1}$. Suppose for a contradiction that $5^i = -5^j \pmod{2^{n-1}}$, which implies $1 \equiv -1 \pmod{4}$, which is a contradiction, and so the lists do not overlap.

E.g. $x^7 \equiv 9 \pmod{280}$

- $280 = 7 \cdot 5 \cdot 2^3$
- By CRT we can split this up
 - $-x^7 \equiv 2 \pmod{7}$
 - * By Euler's theorem (Fermat's little theorem, then multiply x on both sides), $x^7 \equiv x \pmod{7}$, $x \equiv 2 \pmod{7}$ is the only solution

- $-x^7 \equiv 4 \pmod{5}$
 - * By Euler's theorem, $x^4 \equiv 1 \pmod{5}$, therefore $x^3 \equiv 4 \pmod{5}$

ı	\boldsymbol{x}	1	2	3	4
	x^3	1	3	2	4

- * Therefore $x^3 \equiv 4 \pmod{5}$ has only $x \equiv 4 \pmod{5}$ as a solution
- $-x^7 \equiv 1 \pmod{8}$
 - * By Euler's theorem, $x^4 \equiv 1 \pmod{8}$, so $x^3 \equiv 1 \pmod{8}$
 - * By the previous theorem, all elements mod 8 have the form $\pm 5^i$, i = 0, 1
 - * $(\pm 5^i)^3 \equiv \pm 5^{3i}$. Since $5^3 \equiv 125 \equiv 45 \equiv 5$, we have $\pm 5^{3i} \equiv \pm 5^i \equiv 1 \pmod{8}$. Therefore the only solution is $x \equiv 1 \pmod{8}$

Quadratic Formula

• Comes from completing the squares

$$x^{2} + bx + c = \left(x + \frac{b}{2}\right)^{2} + c - \frac{b^{2}}{4} = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4c}}{2}$$

• $x^2 \equiv r \pmod{p}$ has 0, 1, 2 solutions; if s is a solution, then so is -s

8 Quadratic Reciprocity

Things we know

- 1. Divisibility and factorization, e.g. ax + by = c
- 2. Prime factorization
- 3. Remainders $\mathbb{Z}/n\mathbb{Z}$, $(\mathbb{Z}/n\mathbb{Z})^*$, Chinese remainder theorem
- 4. Hensel's lemma

Theorem 8.1 (Quadratic Reciprocity). Let p, q be distinct odd primes.

- 1. If $p \equiv 0 \pmod{4}$ or $q \equiv 1 \pmod{4}$, then $x^2 \equiv p \pmod{q}$ has a solution iff $x^2 \equiv q \pmod{p}$ has a solution
- 2. If $p \equiv q \equiv 3 \pmod{4}$, then $x^2 \equiv p \pmod{q}$ has a solution iff $x^2 \equiv q \pmod{p}$ does **not** have a solution
- By quadratic formula, solving quadratic mod p is the same as solving $x^2 \equiv a \pmod{p}$

The Gaussian integers are $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}\$

- $x^2 + y^2 = z^2$ can be factored into $(x + iy)(x iy) = z^2$
 - Notice 2 can be factored into (1+i)(1-i)
 - 5 can also be factored, i.e. 5 = (2+i)(2-i)
- There are primes which are the sum of two squares, say $p = x^2 + y^2$ for $x, y \in \mathbb{Z}$ regular integers
- gcd(x, p) = gcd(y, p) = 1

$$x^2 \equiv -y^2 \pmod{p} \implies \left(\frac{x}{y}\right)^2 \equiv -1 \pmod{p}$$

 $\mathbb{Z}[\sqrt{q}] = \{a + b\sqrt{q} \mid a, b \in \mathbb{Z}\}\$

- $x^2 qy^2 = z^2$ can be factored into $(x + \sqrt{q}y)(x \sqrt{q}y) = z^2$
- We could write some prime p as $p = x^2 qy^2$; when q is a square, the we have the same case as the above

From now on we consider p to be an odd prime.

Def. $a \in \mathbb{Z}, a \not\equiv 0 \pmod{p}$ is called a **quadratic residue** if the equation $x^2 \equiv a \pmod{p}$ has a solution. If there are no solutions, then a is called a **non-residue**.

Lemma 8.2. There are $\frac{p-1}{2}$ quadratic residues mod p, and $\frac{p-1}{2}$ non-residues.

Proof. Consider the list $1^2, 2^2, 3^2, \ldots, (p-1)^2$. This contains all quadratic residues. Since $(-x)^2 = x^2$, the list $1^2, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ contains all quadratic residues. There are no duplicates in this list because if $1 \le a, b \le \frac{p-1}{2}$ with $a^2 \equiv b^2 \pmod{p}$, then $(a-b)(a+b) \equiv 0 \pmod{p}$. Now $p \mid (a-b)(a+b) \implies p \mid a+b \lor p \mid a-b$. Because $2 \le a+b \le p-1$, we have $p \nmid a+b$. Therefore $p \mid a-b$. Knowing that -p < a-b < p, we must have a-b=0 and so a=b.

Since there are exactly $\frac{p-1}{2}$ quadratic residues, anyone not in the list is a non-residue, therefore there are $\frac{p-1}{2}$ non-residues.

Def. For $a \not\equiv 0 \pmod{p}$, denote

$$\left(\frac{a}{p}\right) = \begin{cases} 1, & \text{if } a \text{ is a QR mod } p\\ -1, & \text{if } a \text{ is a non-residue mod } p \end{cases}$$

This is the **Legendre symbol**.

Theorem 8.3. Let $a, b \in \mathbb{Z}$. Say $a, b \not\equiv 0 \pmod{p}$. Then

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

That is,

$$QR \times QR = QR$$
$$QR \times NR = NR$$
$$NR \times NR = QR$$

Proof.

Case 1: $QR \times QR = QR$. Say $a \equiv s_1^2 \pmod{p}$ and $b \equiv s_2^2 \pmod{p}$. Then $ab = (s_1s_2)^2 \pmod{p}$.

Case 2: $QR \times NR = NR$. Say $a \equiv s^2 \pmod{p}$ and b is a NR. Suppose that $ab \equiv t^2 \pmod{p}$. Then $s^2b \equiv t^2 \pmod{p}$. Dividing the s^2 gives $b \equiv (t/s)^2 \pmod{p}$, which is a contradiction. Notice that we can write fraction because the multiplicative inverse of s exists.

Case 3: $NR \times NR = QR$. Say that a is NR. List all the QRs

$$q_1,\ldots,q_{\frac{p-1}{2}}$$

List all the NRs

$$n_1,\ldots,n_{\frac{p-1}{2}}$$

Mulitplying a to the first list, we get

$$aq_1, \dots, aq_{\frac{p-1}{2}} \tag{*}$$

which only contains non-residues by case 2. They are distinct otherwise we can cancel the as and the qs would be the same. Since there are $\frac{p-1}{2}$ of them, they must be all the non-residues. Now multiply a to the second list

$$an_1,\ldots,an_{\frac{p-1}{2}}$$

which has $\frac{p-1}{2}$ elements, and they are all distinct. Observe that this list is disjoint from (*). Therefore this list is all the QRs. For a NR b, ab is in this list, hence it is a QR.

Example: Does $x^2 \equiv 3^4 \cdot 5^7 \cdot 11^3 \pmod{13}$ have a solution?

• Compute the value of the Legendre symbol

$$\left(\frac{3^4 \cdot 5^7 \cdot 11^3}{13}\right) = \left(\frac{3}{13}\right)^4 \cdot \left(\frac{5}{13}\right)^7 \cdot \left(\frac{11}{13}\right)^3 = \left(\frac{5}{13}\right) \cdot \left(\frac{11}{13}\right)$$

- Now find the list of QRs $1^2, 2^2, 3^2, 4^2, 5^2, 6^2$, which is 1, 4, 9, 3, 12, 10
- Neither 5 nor 11 are in the list, therefore (-1)(-1) = 1, so the original equation has a solution

Generally, given $n = \pm q_1^{k_1} \cdots q_r^{k_r}$ with q_j distinct from p:

$$\left(\frac{n}{p}\right) = \left(\frac{\pm 1}{p}\right) \left(\frac{q_1}{p}\right)^{k_1} \cdots \left(\frac{q_r}{p}\right)^{k_r} = \left(\frac{\pm 1}{p}\right) \left(\frac{q_1}{p}\right)^{k_1 \pmod{2}} \cdots \left(\frac{q_r}{p}\right)^{k_r \pmod{2}}$$

- We know that $\left(\frac{1}{p}\right) = 1$ because $1^2 = 1$
- We want to understand $\left(\frac{-1}{p}\right)$ and $\left(\frac{q}{p}\right)$ for primes $q \neq p$

Theorem 8.4 (Euler's Criterion). For $a \in \mathbb{Z}$, $a \not\equiv 0 \pmod{p}$,

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$$

Proof. By Fermat's little theorem, the polynomial $x^{p-1} - 1$ has exactly p-1 roots mod p. But since p is odd, $(p-1)/2 \in \mathbb{Z}$ and so we get a difference of squares

$$x^{p-1} - 1 = \left(x^{\frac{p-1}{2}} - 1\right) \left(x^{\frac{p-1}{2}} + 1\right)$$

Both $x^{\frac{p-1}{2}}-1$ and $x^{\frac{p-1}{2}}+1$ have exactly $\frac{p-1}{2}$ roots because

- $x^{p-1} 1$ has p 1 roots
- So factoring it results in a total of p-1 roots
- ullet Each of the factors has at most $\frac{p-1}{2}$ roots because of the degree
- Therefore each factor has exactly $\frac{p-1}{2}$ roots

Consider for $s \not\equiv 0 \pmod{p}$:

$$(s^2)^{\frac{p-1}{2}} - 1 \equiv s^{p-1} - 1 \qquad (\text{mod } p)$$

$$\equiv 0 \qquad (\text{mod } p)$$

Therefore the roots of $x^{\frac{p-1}{2}} - 1$ is the set of the quadratic residues. It follows that the roots of $x^{\frac{p-1}{2}} + 1$ is the set of the non-residues. Rewriting this observation:

1.
$$a$$
 is a QR $\iff a^{\frac{p-1}{2}} - 1 \equiv 0 \pmod{p}$. So for a QR, $a^{\frac{p-1}{2}} \equiv 1 \equiv \left(\frac{a}{p}\right) \pmod{p}$

2.
$$a$$
 is a NR $\iff a^{\frac{p-1}{2}}+1\equiv 0\pmod p$. So for a NR, $a^{\frac{p-1}{2}}\equiv -1\equiv \left(\frac{a}{p}\right)\pmod p$

 \bullet Observe that this implies the multiplicativeness of the Legendre symbol up to modulo p

$$\left(\frac{ab}{p}\right) \equiv (ab)^{\frac{p-1}{2}} \pmod{p}$$

$$\equiv a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \pmod{p}$$

$$\equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \tag{mod } p)$$

• If p is an odd prime and $\epsilon, \delta \in \{-1, 1\}$ with $\epsilon \equiv \delta \pmod{p}$, then $\epsilon = \delta$

$$- \epsilon \equiv \delta \pmod{p} \implies p \mid \epsilon - \delta$$

$$-\epsilon - \delta \in \{-2, 0, 2\}$$

- Out of the list, the odd prime p only divides 0

• The above two points imply that
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

• E.g. compute
$$\left(\frac{7}{11}\right)$$

- By Euler, compute
$$7^{(11-1)/2} = 7^5$$

Corollary 8.4.1.

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1, & \text{if } p \equiv 1 \pmod{4} \\ -1, & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

Now we want to compute powers modulo p

- Use Fermat's little theorem
 - 1. Write out a list x_1, \ldots, x_t
 - 2. Observe that ax_1, \ldots, ax_t is the same list
 - 3. Therefore $x_1 \cdots x_t = ax_1 \cdots ax_t = a^t x_1 \cdots x_t$
- Now consider the list

$$\underbrace{-\frac{p-1}{2},\ldots,-2,-1}_{},\quad \underbrace{1,2,\ldots,\frac{p-1}{2}}_{}$$

$$-1 \le n \le \frac{p-1}{2}$$
 stay where they are

$$-\frac{p-1}{2} < n \le p-1$$
 get subtracted by p

• First consider the positives, and the related list

$$a, 2a, \ldots, \frac{p-1}{2}a$$

$$-$$
 E.g. $p = 13, a = 7$:

Original List	1	2	3	4	5	6
Related List	7	1	8	2	9	3
Related List Reduced mod 13	-6	1	-5	2	-4	3

- Notice that the number of minus signs = number of $1 \le k \le \frac{p-1}{2}$ so that $ka \pmod{p} > \frac{p-1}{2} \triangleq N$
- Also observe that

$$(-1)^N 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 7^6 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6) \implies 7^6 \equiv (-1)^N \pmod{13}$$

- * 7^6 comes from the fact that we are multiplying by 7 to each of the 6 terms
- * $(-1)^N$ comes from the fact that there are N terms with -1 in front of them

Theorem 8.5 (Gauss' Criterion). Let $a \not\equiv 0 \pmod{p}$. Let N be the number of $1 \leq k \leq \frac{p-1}{2}$ such that $ka \pmod{p} > \frac{p-1}{2}$. Then

$$a^{\frac{p-1}{2}} \equiv (-1)^N \pmod{p}$$

and as a result

$$\left(\frac{a}{p}\right) = (-1)^N$$

Proof. Start with the list $1,2,\ldots,\frac{p-1}{2}$ and consider the related list $a,2a,\ldots,\frac{p-1}{2}a$. We know for each $1\leq k\leq \frac{p-1}{2}$, we can write $ka\equiv \epsilon_k y_k\pmod{p}$ for $1\leq y_k\leq \frac{p-1}{2}$ and $\epsilon=\pm 1$ (i.e. every element in the list looks like $1,2,\ldots,\frac{p-1}{2}$ up to a sign). As a result, the product of elements in the second list is

$$a(2a)(3a)\cdots\left(\frac{p-1}{2}a\right)\equiv a^{\frac{p-1}{2}}\cdot\left(\frac{p-1}{2}\right)!\pmod{p}$$

On the other hand,

$$a(2a)(3a)\cdots\left(\frac{p-1}{2}a\right) \equiv (\epsilon_1 y_1)\cdots\left(\epsilon_{\frac{p-1}{2}}y_{\frac{p-1}{2}}\right) \equiv \prod_{i=1}^{\frac{p-1}{2}}\epsilon_i \prod_{i=1}^{\frac{p-1}{2}}y_i \equiv (-1)^N y_1\cdots y_{\frac{p-1}{2}} \pmod{p}$$

If the following holds, then we're done:

$$\left\{ y_1, \dots, y_{\frac{p-1}{2}} \right\} = \left\{ 1, \dots, \frac{p-1}{2} \right\}$$

We first show that the y_k s are all distinct. Suppose $y_i = y_j$, then it follows that

$$ia \equiv \epsilon_i y_i \equiv \epsilon_i y_j \equiv \pm ja \pmod{p}$$

So $a(i \mp j) \equiv 0 \pmod{p}$. Because $a \not\equiv 0 \pmod{p}$, we have $p \mid i \mp j$. Because $1 \le i, j \le \frac{p-1}{2}$, this forces $i \mp j = 0$ so $i = \pm j$ and that i = j because both i, j are nonnegative. It follows that $y_1, \ldots, y_{\frac{p-1}{2}} \equiv \binom{p-1}{2}$! (mod p), so

$$a^{\frac{p-1}{2}} \left(\frac{p-1}{2} \right)! \equiv (-1)^N \left(\frac{p-1}{2} \right)! \pmod{p}$$

Which implies that $a^{\frac{p-1}{2}} \equiv (-1)^N \pmod{p}$.

- We sometimes use $\mu(a,p)$ to denote N given a,p
- Assume a odd (since the symbol is multiplicative, we can reduce to this case). Notice that there are unique $q_k, r_k \in \mathbb{Z}$ such that $ka = q_kp + r_k$ where $-\frac{p-1}{2} \le r_k \le \frac{p-1}{2}$
 - Observe $\frac{ka}{p} = q_k + \frac{r_k}{p}$ where $-\frac{1}{2} < \frac{r_k}{p} < \frac{1}{2}$
 - Therefore

$$\left\lfloor \frac{k_q}{p} \right\rfloor = \begin{cases} q_k, & \text{if } r_k \ge 0\\ q_k - 1, & \text{if } r_k < 0 \end{cases}$$

- Consequently

$$\sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor = \sum_{k=1}^{\frac{p-1}{2}} q_k - \mu(a, p)$$

Theorem 8.6. Let p be an odd prime, a be odd, $a \not\equiv 0 \pmod{p}$. Then

$$\mu(a, p) \equiv \sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor \pmod{2}$$

Proof. From before:

$$\mu(a,p) \equiv \sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor + \sum_{k=1}^{\frac{p-1}{2}} q_k \pmod{2}$$

Since a, p are odd, we have

$$ka \equiv q_k p + r_k \pmod{2}$$

 $k \equiv q_k + r_k \pmod{2}$

Therefore

$$\sum_{k=1}^{\frac{p-1}{2}} q_k \equiv \sum_{k=1}^{\frac{p-1}{2}} k + \sum_{k=1}^{\frac{p-1}{2}} r_k \pmod{2}$$

The list of r_k s is exactly $\epsilon \cdot 1, \epsilon \cdot 2, \dots, \epsilon_{\frac{p-1}{2}}, \frac{p-1}{2}$, where $\epsilon_i = \pm 1$. Notice that $\pm 1 \equiv 1 \pmod{2}$. So

$$\sum_{k=1}^{\frac{p-1}{2}} r_k \equiv \sum_{k=1}^{\frac{p-1}{2}} k \pmod{2}$$

And so

$$\sum_{k=1}^{\frac{p-1}{2}} q_k \equiv 2 \sum_{k=1}^{\frac{p-1}{2}} k \equiv 0 \pmod{2}$$

• E.g. $a = 7, p = 11, 1 \le k \le 5$

$$\left| \frac{1 \cdot 7}{11} \right| = 0 \quad \left| \frac{2 \cdot 7}{11} \right| = 1 \quad \left| \frac{3 \cdot 7}{11} \right| = 1 \quad \left| \frac{4 \cdot 7}{11} \right| = 2 \quad \left| \frac{5 \cdot 7}{11} \right| = 3$$

Their sum is 7, which is odd

• Computing $\mu(7,11)$ in the traditional way gets

$$7 \equiv 7$$
 $14 \equiv 3$ $21 \equiv 10$ $28 \equiv 6$ $35 \equiv 2$

3 of which are ≥ 5 , and so $\mu(7,11) = 3$, which is odd

- Geometric perspective
 - $-\left|\frac{ka}{p}\right|$ counts the integers $1 \le m < \frac{ka}{p}$
 - Back to a = 7, p = 11 example
 - If m satisfies $1 \leq m < \frac{ka}{p}$, we indicate \times ; otherwise we indicate \cdot

- If we draw a vertex at (p/2, a/2) and draw a triangle from the origin, then only the \times are in the triangle (we don't count the points on the boundary)

$$\sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor = \# \text{ of lattice points inside the triangle} \triangleq T(p,q)$$

Theorem 8.7. Let p be an odd prime. Then

Proof. Want to use Gauss' Criterion, so we compute $\mu(2,p)$. We know that for $1 \le k \le \frac{p-1}{2}$, $2 \le 2k \le p-1$. So $2k \pmod{p} = 2k$. So

$$\mu(2,p) = \left| \left\{ 1 \le k \le \frac{p-1}{2} : 2k > \frac{p-1}{2} \right\} \right|$$

$$= \left| \left\{ 1 \le k \le \frac{p-1}{2} \right\} : k > \frac{p-1}{4} \right|$$

$$= \left| \left\{ \frac{p-1}{4} < k \le \frac{p-1}{2} \right\} \right|$$

Case 1: $p \equiv 1 \pmod{4}$. So $\frac{p-1}{4}$ is an integer and

$$\mu(2, p) = \left| \left\{ \frac{p-1}{4} < k \le \frac{p-1}{2} \right\} \right|$$

$$= \frac{p-1}{2} - \frac{p-1}{4}$$

$$= \frac{p-1}{4}$$

Case 2: $p \equiv 3 \pmod 4$. Then $\frac{p-1}{4} = \frac{p-3}{4} + \frac{1}{2}$. So $\frac{p-1}{4} < k \iff \frac{p-3}{4} + 1 \le k$. Hence

$$\begin{split} \mu(2,p) &= \left| \left\{ \frac{p-3}{4} + 1 \le k \le \frac{p-1}{2} \right\} \right| \\ &= \frac{p-1}{2} - \left(\frac{p-3}{4} + 1 \right) + 1 \\ &= \frac{3p-2}{4} - \frac{p-3}{4} \\ &= \frac{p+1}{4} \end{split}$$

Now to finish, we need to compute $(-1)^{\mu(2,p)}$. This is a condition on $p \pmod 8$ and there are 4 cases to consider:

Case 1: $p \equiv 1 \pmod{8}$. This gives $p \equiv 1 \pmod{4}$ so $\mu(2,p) = \frac{p-1}{4}$, which is even.

Case 2: $p \equiv 5 \pmod{8}$. This gives $p \equiv 1 \pmod{4}$ so $\mu(2,p) = \frac{p-1}{4}$, which is odd.

Case 3: $p \equiv 3 \pmod{8}$. This gives $p \equiv 3 \pmod{4}$ so $\mu(2,p) = \frac{p+1}{4}$, which is odd.

Case 4: $p \equiv 7 \pmod{8}$. This gives $p \equiv 3 \pmod{4}$ so $\mu(2,p) = \frac{p+1}{4}$, which is even.

Notice that being 1 or 3 mod 4 only gives integrality, only mod 8 gives parity.

Theorem 8.8 (Quadratic Reciprocity). Let p, q be distinct odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Proof.

 $\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\mu(p,q)} (-1)^{\mu(q,p)}$ $= (-1)^{\mu(p,q) + \mu(q,p)}$ $= (-1)^{T(p,q) + T(q,p)}$

From the triangle argument, we can use some symmetry:

- For T(p,q), the hypotenuse is $y = \frac{p}{q}x$
- For T(q,p), the hypotenuse is $y = \frac{q}{p}x$
- They have reciprocal slopes, and their side lengths are the same
- Can "click" the two triangles together to form a rectangle

- The rectangle has height and width p/2 and q/2
- Observe that no lattice points lie on the diagonal

Hence T(p,q) + T(q,p) is the number of interior points of the rectangle, which is $\frac{p-1}{2} \cdot \frac{q-1}{2}$

Example: let p be an odd prime, $p \neq 5$. When is $x^2 \equiv 5 \pmod{p}$ solvable?

• Compute $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) \left(-1\right)^{\frac{p-1}{2} \cdot \frac{5-1}{2}} = \left(\frac{p}{5}\right)$

• $1^2 \equiv 1, 2^2 \equiv 4 \pmod{5}$. Therefore $\left(\frac{p}{5}\right)$ is -1 if $p \equiv 2, 3 \pmod{5}$; 1 if $p \equiv 1, 4 \pmod{5}$

Example: compute $\left(\frac{7}{p}\right)$

• $\left(\frac{7}{p}\right) = \left(\frac{p}{7}\right) \left(-1\right)^{\frac{p-1}{2}\frac{7-1}{2}} = \left(\frac{p}{7}\right) \left(-1\right)^{\frac{p-1}{2}}$

- $\frac{p-1}{2}$ is governed by a mod 4 condition; $\left(\frac{p}{7}\right)$ is governed by a mod 7 condition; CRT tells us that the product is governed by a mod 28 condition
- $1^2 \equiv 1, 2^2 \equiv 4, 3^2 \equiv 2 \pmod{7}$. Therefore $\binom{p}{7}$ is 1 if $p \equiv 1, 2, 4 \pmod{7}$; -1 if $p \equiv 3, 5, 6 \pmod{7}$
- $(-1)^{\frac{p-1}{2}}$ is 1 if $p \equiv 1 \pmod{4}$; -1 if $p \equiv 3 \pmod{4}$
- The product is 1 if the two are the same; -1 if the two are different

9 Sums of Two Squares

Overarching question: which primes can be written as a sum of 2 squares? i.e. $p = x^2 + y^2$; $x, y \in \mathbb{Z}$

- If p = 2, we can do $2 = 1^2 + 1^2$
- \bullet We are interested in the odd p case

Lemma 9.1. If p is an odd prime and $p = x^2 + y^2$, then $p \equiv 1 \pmod{4}$.

Proof. Working mod 4:

			0 -	
\boldsymbol{x}	0	1	2	3
x^2	0	1	0	1

So $x^2 + y^2 \equiv 0, 1, 2 \pmod{4}$ (2 comes from 1 + 1). But p is odd, so $p \equiv 1 \pmod{4}$

• Recall

$$\left(\frac{-1}{p}\right) = \begin{cases} 1, & \text{if } p \equiv 1 \pmod{4} \\ -1, & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

• If $p \equiv 1 \pmod{4}$, there is some a with $a^2 \equiv -1 \pmod{p}$, or equivalently, $p \mid a^2 + 1$, which we can write $a^2 + 1^2 = pk$ for some $k \in \mathbb{Z}$

Lemma 9.2. $(u^2 + v^2)(A^2 + B^2) = (vA - uB)^2 + (uA + vB)^2$

Lemma 9.3. If $x^2 + y^2 = zw^2$, then z is a sum of squares if $w \mid x$ and $w \mid y$, i.e.

$$z = \left(\frac{x}{w}\right)^2 + \left(\frac{y}{w}\right)^2$$

Lemma 9.4. If we can write $A^2 + B^2 = pk$ for some $1 \le k < p$, then we can write $x^2 + y^2 = p$.

Proof. (by descent procedure) Input: write $A^2 + B^2 = pk$, $1 \le k < p$

- 1. If k = 1, $A^2 + B^2 = p$. End.
- 2. Find $-k/2 \le u, v \le k/2$, with $u \equiv A \pmod{k}$ and $v \equiv B \pmod{k}$
 - \bullet By division algorithm, A and B are congruent to some u,v modulo k
- 3. Notice $u^2 + v^2 \equiv A^2 + B^2 \equiv 0 \pmod{k}$. So write $u^2 + v^2 = kt$
 - $kt = u^2 + v^2 \le k^2/4 + k^2/4 = k^2/2$
 - This means t < k/2 < k
 - Because k, u^2, v^2 are nonnegative, $t \ge 0$
 - Suppose for a contradiction that t is 0, then u, v = 0, so $k \mid A$ and $k \mid B$. Since $A^2 + B^2 = pk$, we get A = ka, B = kb for some a, b. So $k^2(a^2 + b^2) = A^2 + B^2 = pk$. So $k \mid p$, which means k = 1, which contradicts the fact that we did not halt on step 1
 - Therefore t > 1
- 4. Multiply $k^2pt = kt \cdot pk = (u^2 + v^2)(A^2 + B^2) = (vA uB)^2 + (uA + vB)^2$
- 5. Notice $k \mid (vA uB)$ and $k \mid (uA + vB)$, so $pt = \left(\frac{vA uB}{k}\right)^2 + \left(\frac{uA + vB}{k}\right)^2$
 - $vA uB \equiv BA AB \equiv 0 \pmod{k}$
 - $uA + vB \equiv A^2 + B^2 \equiv 0 \pmod{k}$

Theorem 9.5. If $p \equiv 1 \pmod{4}$, then $p = x^2 + y^2$ for some $x, y \in \mathbb{Z}$.

Proof. We know that we can write $a^2 + 1^2 = pk$ for some $a \in \mathbb{Z}$ and $1 \le k < p$. Apply the descent procedure until it terminates with $p = x^2 + y^2$.

10 Arithmetic Functions

Example: let W(n) be the number of prime divisors of n

- W(3) = 1
- W(12) = 2

Def. An **arithmetic function** is a function $f: \mathbb{N} \to \mathbb{C}$.

Def. An arithmetic function f is **multiplicative** if two conditions are satisfied:

- 1. f(1) = 1
- 2. If gcd(n,m) = 1, then f(nm) = f(n)f(m)
- E.g. Euler's phi function is multiplicative

Theorem 10.1. Let f be multiplicative. For n > 1, $n = p_1^{k_1} \cdots p_n^{k_n}$. Then $f(n) = f(p_1^{k_1}) \cdots f(p_n^{k_n})$

Proof. WTS by induction if m_1, \ldots, m_t are pairwise coprime, then $f(m_1 \cdots m_t) = f(m_1) \cdots f(m_t)$. The idea is that since m_1 is coprime to all of m_2, \ldots, m_t , we can pull out m_1 . Then we can pull out m_2 , and so

Def. An arithmetic function f is **totally multiplicative** if two conditions are satisfied:

- 1. f(1) = 1
- 2. f(nm) = f(n)f(m) (no coprime assumption)
- E.g. the Legendre symbol $(\frac{\cdot}{n})$ is totally multiplicative

Theorem 10.2. Let f be totally multiplicative. For n > 1, $n = p_1^{k_1} \cdots p_n^{k_n}$. Then $f(n) = f(p_1)^{k_1} \cdots f(p_n)^{k_n}$

Theorem 10.3. Let $n, m \in \mathbb{N}$ where gcd(n, m) = 1. For every positive divisor $d \mid nm$, there exists unique positive divisors $d_1 \mid n, d_2 \mid m$ such that $d = d_1d_2$.

Proof. Take $d_1 = \gcd(d, n)$. Then $d_1 \mid n$. Take $d_2 = d/d_1$. Then $d = d_1d_2$. To show that $d_2 \mid m$, by $\gcd(d/d_1, n/d_1) = 1$. The first term is d_2 and so it's coprime to n/d_1 . Since $d_1d_2 = d \mid nm$, we have $d_2 \mid nm/d_1 = m$ because d_2 is coprime to n/d_1 .

For uniqueness, suppose there exists $e_1 \mid n$, $e_2 \mid m$ with $d = e_1e_2$. Then $d_1d_2 = d = e_1e_2$. Observe if a, b are coprime, then divisors of a and divisors of b are coprime by prime factorization. This means $gcd(e_1, d_2) = 1$. Since $e_1 \mid d_1d_2$, we have $e_1 \mid d_1$. By symmetry $d_1 \mid e_1$, and so $e_1 = \pm d_1$. Since they are all positive, we have $e_1 = d_1$. By symmetry $e_2 = d_2$.

• Observe that there is a bijection

{positive divisors of
$$n$$
} × {positive divisors of m } \rightarrow {positive divisors of nm } $(d_1, d_2) \mapsto d_1 d_2$

Lemma 10.4. $\tau(n)$ and $\sigma(n)$ are multiplicative, where $\tau(n) = \sum_{d|n} 1$ is the number of divisors of n, and $\sigma(n) = \sum_{d|n} d$ is the sum of divisors of n

Proof. $\tau(1) = \sigma(1) = 1$ because 1 is the single divisor of 1. Now take n, m to be coprime.

$$\tau(nm) = \sum_{d|nm} 1$$

$$= \sum_{d_1|n} \sum_{d_2|m} 1$$
By previous theorem
$$= \sum_{d_1|n} 1 \sum_{d_2|m} 1$$
Since multiplication and addition distribute over one another
$$= \tau(n)\tau(m)$$

$$\sigma(nm) = \sum_{d|nm} d$$

$$= \sum_{d_1|n} \sum_{d_2|m} d_1 d_2$$
By previous theorem, also because $d = d_1 d_2$

$$= \sum_{d_1|n} d_1 \sum_{d_2|m} d_2$$

$$= \sigma(n)\sigma(m)$$

Lemma 10.5 (Generative series).

$$\left(\sum_{n=0}^{\infty} a_n z^n\right) \left(\sum_{m=0}^{\infty} b_m z^m\right) = \sum_{k=0}^{\infty} \left(\sum_{i+j=k}^{\infty} a_i b_j\right) z^k$$

- We consider the series to be absolutely convergent
- Riemann zeta function:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

• Dirichlet series:

$$D(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$

$$E(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}$$

$$D(s)E(s) = \sum_{n=1}^{\infty} \underbrace{\left(\sum_{ab=n} f(a)g(b)\right)}_{\sum_{d|n} f(d)g(n/d)} \frac{1}{n^s}$$
 Inside the parentheses is called **Dirichlet convolution**

Def. Dirichlet convolution is an arithmetic function f * g defined by $(f * g)(n) = \sum_{d|n} f(d)g(n/d)$

- E.g. $(1*1)(n) = \sum_{d|n} 1(d)1(n/d) = \sum_{d|n} 1 = \tau(n)$ (1 is the constant function that always output 1)
- E.g. $(I*1)(n) = \sum_{d|n} I(d)1(n/d) = \sum_{d|n} d = \sigma(n)$ (I is the identity function)

Theorem 10.6. If f, g are multiplicative, then f * g is multiplicative.

Proof. $(f * g)(1) = \sum_{d|1} f(d)g(1/d) = f(1)g(1) = 1$. Now let n, m be coprime. Then

$$\begin{split} (f*g)(nm) &= \sum_{d|nm} f(d)g\left(\frac{nm}{d}\right) \\ &= \sum_{d_1|n} \sum_{d_2|n} f(d_1d_2)g\left(\frac{n}{d_1} \cdot \frac{m}{d_2}\right) \\ &= \sum_{d_1|n} \sum_{d_2|m} f(d_1)f(d_2)g\left(\frac{n}{d_1}\right)g\left(\frac{m}{d_2}\right) \\ &= \sum_{d_1|n} f(d_1)g\left(\frac{n}{d_1}\right) \sum_{d_2|m} f(d_2)g\left(\frac{m}{d_2}\right) \\ &= (f*g)(n) \cdot (f*g)(m) \end{split}$$
 n,m coprime implies their divisors coprime

• Follow-up question: since f * g is a "product", is there a "division"?

• Define
$$i(n) = \begin{cases} 1, & \text{if } n = 1\\ 0, & \text{elsewise} \end{cases}$$

Lemma 10.7. If f is an arithmetic function, then f * i = f.

Proof.

$$(f*i)(n) = \sum_{d|n} f(d)i\left(\frac{n}{d}\right)$$

$$= f(n)\cdot 1$$
 Since all $d\neq n$ terms vanish
$$= f(n)$$

• Now we want to know whether given f, can we find a g such that f * g = i

• E.g. f=1 the constant function. For g to be an inverse, we need 1*g=i; or equivalently, $\sum_{d|n} g(d) = \begin{cases} 1, & \text{if } n=1\\ 0, & \text{elsewise} \end{cases}$

- Plug n = 1: q(1) = 1

- Plug n = 2: g(1) + g(2) = 0. This implies g(2) = -1

- Plug n = 3: q(1) + q(3) = 0. This implies q(3) = -1

- Plut n = 4: g(1) + g(2) + g(4) = 0. This implies g(4) = 0

– In general, for n > 1, $g(n) + \sum_{\substack{d \mid n \\ d \le n}} g(d) = 0$

Def. The **Mobius function** is defined as

$$\mu(n) = \begin{cases} 1, & \text{if } n \text{ square-free and has an even number of prime factors} \\ -1, & \text{if } n \text{ square-free and has an odd number of prime factors} \\ 0, & \text{elsewise} \end{cases}$$

Lemma 10.8.

$$\sum_{d|n} \mu(n) = \begin{cases} 1, & if \ n = 1 \\ 0, & elsewise \end{cases}$$

Proof. The RHS function is i, which is multiplicative. Since $\mu(n)$ is multiplicative, the LHS is also multiplicative. Using the fact that $f = g \iff f(p^{\bar{k}}) = g(p^k)$ for all primes, it suffices to check that this equality holds for $n = p^k$, p prime, $n \ge 1$.

$$\sum_{d|p^k}\mu(d)=\sum_{j=0}^k\mu(p^j)$$

$$=\sum_{j=0}^1\mu(p^j)$$
 Since all non-square-free terms are
$$0$$

$$=\mu(1)+\mu(p)$$

$$=1+(-1)$$

$$=0$$

Theorem 10.9 (Mobius Inversion Formula). Let f, g be arithmetic functions. Then

$$f(n) = \sum_{d|n} g(d) \iff g(n) = \sum_{d|n} f(d)\mu\left(\frac{n}{d}\right)$$

Proof. " \Longrightarrow " Suppose $f(n) = \sum_{d|n} g(d)$. Then

$$\begin{split} \sum_{d|n} f(d)\mu\left(\frac{n}{d}\right) &= \sum_{d|n} \left(\sum_{e|d} g(e)\right) \mu\left(\frac{n}{d}\right) \\ &= \sum_{d|n} \sum_{e|d} g(e)\mu\left(\frac{n}{d}\right) \\ &= \sum_{e|n} g(e) \sum_{d|n,e|d} \mu\left(\frac{n}{d}\right) \\ &= \sum_{e|n} g(e) \sum_{d'|n/e} \mu\left(\frac{n}{ed'}\right) \\ &= \sum_{e|n} g(e) \sum_{d'|n/e} \mu\left(\frac{n/e}{d'}\right) \\ &= \sum_{e|n} g(e) \sum_{d'|n/e} \mu\left(\frac{n/e}{d'}\right) \\ &= \sum_{e|n} g(e)i\left(\frac{n}{e}\right) \\ &= g(n) \end{split}$$

" \Leftarrow " Follows from a similar argument.

• E.g. $\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) = \sum_{d|n} \mu(d) \frac{n}{d}$

11 Probability

Question: if I pick two positive integers n, m at random, how likely is it that they are coprime?

• How do we pick two positive integers at random?

Question: If I pick two positive integers n, m at random from $\{1, 2, ..., N\}$, how likely is it that they are coprime?

• $Pr(A \text{ happens}) = \frac{\text{\# of outcomes where } A \text{ happens}}{\text{\# of outcomes}}$

• If we call this probability p_N , then the limit $\lim_{N\to\infty}p_N$ (if it exists) is the answer to the first question

• E.g. estimate p_{100}

	1 100
Size	Probability
40	0.5
100	0.494
1000	0.639
10000	0.609

• Compute p_N

- Total # outcomes = total number of pairs $(n, m) = N^2$

– Total # pairs
$$n, m$$
 such that $\gcd(n, m) = 1$ = $\sum_{\substack{n, m \le N \\ \gcd(n, m) = 1}} 1$

• Recall Lemma 10.8

$$\underbrace{\sum_{d \mid M} \mu(d) = \begin{cases} 1, & \text{if } M = 1 \\ 0, & \text{elsewise} \end{cases}}_{\text{d | gcd}(n,m)} \implies \sum_{d \mid \text{gcd}(n,m)} \mu(d) = \begin{cases} 1, & \text{if } \gcd(n,m) = 1 \\ 0, & \text{elsewise} \end{cases}$$

• Then

$$\sum_{\substack{n,m \leq N \\ \gcd(n,m)=1}} 1 = \sum_{\substack{n,m \leq N \\ d \mid \gcd(n,m)}} \sum_{\substack{d \leq N \\ d \mid \gcd(n,m)}} \mu(d)$$

$$= \sum_{\substack{d \leq N \\ d \leq N}} \mu(d) \left(\# \text{ of pairs } (n,m) \text{ with } d \mid n \text{ and } d \mid m \right)$$

$$= \sum_{\substack{d \leq N \\ d \leq N}} \mu(d) \left(\frac{N}{d} \right)^2 \quad \text{Because } \# \text{ integer between 1 and } N \text{ divisible by } d \text{ is } \left\lfloor \frac{N}{d} \right\rfloor$$

$$= \sum_{\substack{d \leq N \\ d \leq N}} \mu(d) \left(\frac{N}{d} - \left\{ \frac{N}{d} \right\} \right)^2$$

$$= \sum_{\substack{d \leq N \\ d \leq N}} \mu(d) \left(\frac{N^2}{d^2} - 2\frac{N}{d} \left\{ \frac{N}{d} \right\} + \left\{ \frac{N}{d} \right\}^2 \right) \tag{*}$$

Notice that

$$\left| -2\frac{N}{d} \left\{ \frac{N}{d} \right\} + \left\{ \frac{N}{d} \right\}^2 \right| \le 2\frac{N}{d} + 1 \le 3\frac{N}{d}$$
$$\left| \frac{N}{d} \right|^2 = \frac{N^2}{d^2} + \mathcal{O}\left(\frac{N}{d}\right)$$

Therefore

• Back to (*):

$$\sum_{\substack{n,m \leq N \\ \gcd(n,m)=1}} 1 = \sum_{d \leq N} \mu(d) \left(\frac{N^2}{d^2} - 2\frac{N}{d} \left\{ \frac{N}{d} \right\} + \left\{ \frac{N}{d} \right\}^2 \right)$$

$$= \sum_{d \leq N} \mu(d) \frac{N^2}{d^2} + \mathcal{O}\left(N \sum_{d \leq N} \frac{1}{d} \right)$$

$$= N^2 \sum_{d \leq N} \frac{\mu(d)}{d^2} + \mathcal{O}\left(N \sum_{d \leq N} \frac{1}{d} \right)$$

$$= N^2 \sum_{d \leq N} \frac{\mu(d)}{d^2} + \mathcal{O}\left(N \log N \right)$$
(*)

• Now we can compute p_N :

$$p_N = \frac{\sum\limits_{\substack{n,m \le N \\ \gcd(n,m)=1}} 1}{N^2}$$
$$= \sum\limits_{\substack{d \le N}} \frac{\mu(d)}{d^2} + \mathcal{O}\left(\frac{\log N}{N}\right)$$

• As we take $N \to \infty$,

$$p_N \to \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} = \frac{6}{\pi^2}$$

Theorem 11.1 (Basel Problem).

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Theorem 11.2 (Probability of coprimality).

$$\sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} = \frac{6}{\pi^2}$$

Proof. Notice that

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} \cdot \sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{(\mu * 1)(n)}{n^s} = 1 \qquad \text{1 is the constant function 1}$$

Knowing that $\sum_{n=1}^{\infty} \frac{1}{n^s} = \zeta(s)$, we have the other sum as $\frac{1}{\zeta(s)}$. Knowing that $\zeta(2) = \frac{\pi^2}{6}$ (Basel problem) completes the proof.

Observe that

$$\prod_{p \text{ prime}} \frac{1}{1 - 1/p} = \prod_{p} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \cdots \right)$$

$$= \left(1 + \frac{1}{2} + \frac{1}{2^2} + \cdots \right) \left(1 + \frac{1}{3} + \frac{1}{3^2} + \cdots \right) \cdots$$

$$= \sum_{p = 1}^{\infty} \frac{1}{p}$$

• If there are finitely many primes, then LHS would be a finite product, however the RHS diverges to infinity

Lemma 11.3. If f is multiplicative, then

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \cdots \right)$$

If f is totally multiplicative, then

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p} \left[1 + \frac{f(p)}{p^s} + \left(\frac{f(p)}{p^s} \right)^2 + \dots \right] = \prod_{p} \frac{1}{1 - \frac{f(p)}{p^s}}$$

Notice that

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} = \prod_{p} \left(1 + \frac{\mu(p)}{p^s} + \frac{\mu(p^2)}{p^{2s}} + \cdots \right)$$
$$= \prod_{p} \left(1 - \frac{1}{p^s} \right)$$

Going back to the previous chapter, we have

$$\frac{6}{\pi^2} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^2} = \prod_{p} \left(1 - \frac{1}{p^2} \right)$$

ullet Each of the product terms is the probability that n,m are not both divisible by p

Question: If I pick two positive integers n, m at random, how likely is it that $m \mid n$?

• Start with the question

$$q_N = \frac{\text{\# of } (n,m) \text{ with } n,m \leq N \text{ where } m \mid n}{N^2}$$

• E.g. if N = 10, try to count pairs

$ \begin{array}{c c} (1,m) \\ (2,m) \end{array} $	au(1) pairs $ au(2)$ pairs
$\begin{array}{c} \vdots \\ (10,m) \end{array}$	$\tau(10)$ pairs

• Then

$$\sum_{\substack{n,m\leq N\\m|n}}1=\sum_{n\leq N}\sum_{\substack{m\leq N\\m|n}}1$$

$$=\sum_{n\leq N}\sum_{m|n}1$$

$$=\sum_{n\leq N}\tau(n)$$

• Knowing that $\frac{1}{N} \sum_{n \le N} \tau(n) \approx \log N$ from homework, we have

$$q_N = \frac{\sum\limits_{n \leq N} \tau(n)}{N^2} \approx \frac{\log N}{N} \to 0$$
 as $N \to \infty$

12 Fermat's Last Theorem

Pythagorean equation: find solutions to $x^2 - y^2 = z^2$ with gcd(x, y, z) = 1

- This is equivalent to gcd(x, y) = gcd(x, z) = gcd(y, z) = 1
- This means exactly 2 of x, y, z are odd, let x, z be odd and y even
- Then $(x y)(x + y) = z^2$
- Observe that

$$\gcd(x-y,x+y) = \gcd(x-y,2y) \qquad \text{Since } x+y=x-y+2y \text{ and } \gcd(a,b) = \gcd(a,b+at)$$

$$= \gcd(x-y,y) \qquad \text{Since } x-y \text{ is odd}$$

$$= \gcd(x,y) \qquad \text{Since } x=x-y+y$$

$$= 1$$

• Writing $z = p_1^{k_1} \cdots p_r^{k_r}$, then

$$z^2 = p_1^{2k_1} \cdots p_r^{2k_r}$$

SO

$$(x-y)(x+y) = p_1^{2k_1} \cdots p_r^{2k_r}$$

 \bullet As a result, there are coprime odd s and t with

$$x - y = s^{2}$$

$$x + y = t^{2}$$

$$z = st$$

$$x = \frac{(x+y) + (x-y)}{2} = \frac{s^{2} + t^{2}}{2}$$

$$y = \frac{(x+y) - (x-y)}{2} = \frac{t^{2} - s^{2}}{2}$$

• Writing $x^2 = y^2 + z^2$, we found all solutions to the Pythagorean equation

Consider $x^3 + y^3 = z^3$ with gcd(x, y, z) = 1

$$x^{3} = y^{3} - z^{3}$$
$$= (y - z)(y^{2} + yz + z^{2})$$

• At this step, we're stuck

Back to Pythagoras

$$x^{2} + y^{2} = z^{2}$$

 $x^{2} - (iy)^{2} = z^{2}$ Since $i^{2} = -1$
 $(x - iy)(x + iy) = z^{2}$

• We are now working with the Gaussian integers $\mathbb{Z}[i]$

Back to the cubic case

• Take $\omega = e^{2\pi i/3}$, where $\omega^3 = 1$ and $\omega \neq 1$ (3rd root of unity)

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

 ω is a root of the LHS. ω is not a root of (x-1). Therefore ω is a root of x^2+x+1 .

• Now

$$z^3 = x^3 + y^3$$
$$= (x+y)(x+\omega y)(x+\omega^2 y)$$

- Since ω is not a Gaussian integer, we're now working with the Eisenstein integers $\mathbb{Z}[\omega]$
- \bullet Both the Gaussian and Eisenstein integers have $unique\ factorization$
- For an odd prime p, there is $\zeta_p = e^{2\pi i/p}$ with $\zeta_p^p = 1$ and $\zeta_p^{p-1}, \zeta_p^{p-2}, \ldots, \zeta_p^2, \zeta_p \neq 1$

$$z^{p} = x^{p} + y^{p} = (x+y)(x+\zeta_{p}y)(x+\zeta_{p}^{2}y)\cdots(x+\zeta_{p}^{p-1}y)$$

• We're now working with $\mathbb{Z}[\zeta_p]$, however unique factorization fails in this domain

$$6 = (1 + \sqrt{5})(1 - \sqrt{5}) = 2 \cdot 3$$

– In equation $x^2 + 5y^2 = z^2$, we would have $(x - \sqrt{-5}y)(x + \sqrt{-5}y) = z^2$, which does not have unique factorization

Theorem 12.1 (Fermat's Last Theorem). For $n \geq 3$, there are no positive integer solutions to $x^n + y^n = z^n$.