JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH

PŘÍRODOVĚDECKÁ FAKULTA

FYZIKÁLNÍ PRAKTIKUM IV

2. Elektrony

Datum: 1. 11. 2023

Jméno: Vavřinec Konečný

Obor: Biofyzika

Hodnocení:

1. Úkol

- Změřte specifický náboj elektronu.
- Ze známé hodnoty elementárního náboje vypočtěte hmotnost elektronu.
- Pozorujte difrakci elektronového svazku na stínítku baňky
- Určete vzdálenosti mezi rovinami grafitové difrakční mřížky.

2. Pomůcky

Thomsonova trubice, Helmhotzovy cívky, vysokonapěťový zdroj, proudový zdroj, posuvné měřítko, luminiscenční deska, propojovací vodiče, elektronová difrakční trubice.

3. Teorie

Difrakce elektronů

Difrakce je ohyb vlnění za překážkou (zde krystalovou mřížkou). Difrakce nastává, pokud vzdálenosti mezi rovinami mřížky jsou srovnatelné s vlnovou délkou vlnění. Při difrakci vzniká na krystalové mřížce fázový posun, čímž dochází k interferenci. Na stínítku pak lze pozorovat její maxima. [1]

Specifický náboj elektronu

Pokud elektrony urychlené elektrickým polem vlétnou do magnetického pole kolmého na směr jejich pohybu, dochází k vychýlení jejich trajektorie. Ze znalosti urychlovacího napětí, poloměru zakřivení trajektorie elektronu a intenzity magnetického pole lze určit specifický náboj elektronu. [2]

4. Postup měření

Nejprve byla měřena difrakce elektronu. Vysokonapěťový zdroj byl dle návodu připojen k elektronové difrakční baňce a zapojení bylo zkontrolováno vedoucím praktika. Zdroj byl zapnut a urychlovací napětí nastaveno na 4 kV. Posuvným měřítkem byly změřený průměry obou prstenců na stínítku a hodnoty zapsány do tabulky. Průměry prstenců byly změřeny ještě při urychlovacím napětí 4,2 kV, 4,4 kV, 4,6 kV, 4,8 kV a 3,8 kV, neboť vedoucí praktika upozornil, že zdroj raději nenastavovat na 5 kV. Zdroj byl následně vypnut a dle návodu připojen k Thompsonově trubici pro měření specifického náboje elektronu. Helmholtzovy cívky byly připojeny k proudovému zdroji a na obou zdrojích nastaveny všechny potenciometry na 0. Zapojení bylo zkontrolováno vedoucím praktika, zdroje zapnuty a po nažhavení katody bylo nastaveno urychlovací napětí na 2 kV. Na proudovém zdroji byl nastaven proud, kdy elektronový svazek na luminiscenční dece neprotínal stupnici v hodnotě 40 mm a hodnota proudu byla zapsána do tabulky. Zvyšováním proudu byl svazek vychylován čím dál více a hodnoty proudu při protnutí 50 mm, 60 mm, 70 mm a 80 mm zapisovány do tabulky. Stejný postup byl zopakován pro urychlovací napětí 3 kV, 4 kV a 4,8 kV. Zdroje byly nastaveny na nulové hodnoty a vypnuty.

5. Naměřené hodnoty

Prstence difrakčních maxim byly široké, byl tedy vždy měřen vnitřní a vnější průměr prstence.

Tabulka 1: Průměry prstenců elektronové difrakce při různém urychlovacím napětí

Napětí <i>U</i> [kV]	Průměr	Průměr	Průměr	Průměr
· · · · · · · · · · · · · · · · · · ·	$D_{1,in}$ [mm]	$D_{1,out}$ [mm]	$D_{2,in}$ [mm]	$D_{2,out}$ [mm]
4	21	25	35	41
4,2	21	25	35	40
4,4	20	24	35	39
4,6	19	22	33	38
4,8	18	21	33	37
3,8	21	25	37	43

Průměr cívek: 130 mm

Vzdálenost mezi cívkami: 54 mm

Tabulka 2: Hodnoty proudu v cívkách při určitém ohybu elektronového svazku

U =	2 kV	U =	3 kV	U = 4 kV $U =$		U = 2	= 4,8 kV	
Ohyb	Proud	Ohyb	Proud	Ohyb	Proud	Ohyb	Proud	
e [m]	<i>I</i> [A]	e [m]	<i>I</i> [A]	e [m	<i>I</i> [A]	e [m	<i>I</i> [A]	
0,04	0,50	0,04	0,62	0,04	0,71	0,04	0,77	
0,03	0,69	0,03	0,86	0,03	0,98	0,03	1,08	
0,02	0,90	0,02	1,11	0,02	1,25	0,02	1,38	
0,01	1,11	0,01	1,37	0,01	1,55	0,01	1,68	
0,00	1,30	0,00	1,59	0,00	1,81	0,00	1,97	

6. Výsledky

Difrakce elektronu

Z průměrů prstenců byly vypočítány střední hodnoty.

Tabulka 3: Střední hodnoty průměru prstence

Napětí U [kV]	\overline{D}_1 [mm]	\overline{D}_2 [mm]
4	23	38
4,2	23	37,5
4,4	22	37
4,6	20,5	35,5
4,8	19,5	35
3,8	23	40

Vzdálenosti rovin grafitové mřížky lze získat ze vztahu:

$$2 \cdot d \cdot \sin \vartheta = n \cdot \lambda \tag{1}$$

kde λ je:

$$\lambda = \frac{h}{\sqrt{2 \cdot e \cdot m_e \cdot U}} \tag{2}$$

kde $e=1,602176634\cdot 10^{-19}$ C [5], $m_{\rm e}=9,1093837015\cdot 10^{-31}$ kg [6], $h=6,62607015\cdot 10^{-34}$ J · s [7]

úhel ϑ lze vyjádřit pomocí rovnice:

$$\tan(2\vartheta) = \frac{\frac{D}{2}}{l_1 + l_2} \tag{3}$$

kde $l_1=L-R$ a $l_2=\sqrt{R^2-\left(\frac{D}{2}\right)^2}$. L=135~mm~a~R=65~mm~(parametry~difrakčni~trubice).

Tabulka 4: Vzdálenosti mezi rovinami krystalové mřížky grafitu

Napětí <i>U</i> [kV]	\overline{D}_1 [mm]	Vzdálenost rovin v grafitu $d_1[\mathrm{pm}]$
4	23	226,53
4,2	23	221,07
4,4	22	225,90
4,6	20,5	237,24
4,8	19,5	244,25
3,8	23	232,42
Napětí U [kV]	\overline{D}_2 [mm]	Vzdálenost rovin v grafitu d_2 [pm]
4	38	135,92
4,2	37,5	134,47
4,4	37	133,20
4,6	35,5	135,92
4,8	35	135,00
3,8	40	132,28

Výsledné hodnoty vzdáleností rovin v grafitové mřížce jsou určeny jako střední hodnota. Chyba je střední kvadratická odchylka:

$$\bar{\sigma} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n \cdot (n-1)}} \tag{4}$$

kterou je nutné vynásobit koeficientem 1,16 z důvodu nízkého počtu měření.

Výsledné hodnoty vzdáleností rovin krystalové mřížky grafitu:

$$d_1 = (231 \pm 4) \text{ pm}$$

 $d_2 = (134, 5 \pm 0, 7) \text{ pm}$

Specifický náboj elektronu

Naměřené proudy v tabulce 2 je nutné vydělit 2 z důvodu paralelního zapojení cívek.

Tabulka 5: hodnoty proudu pro každou cívku

U =	2 kV	U =	3 kV	U = 4 kV		U = 2	= 4,8 kV	
Ohyb e [m]	Proud <i>I</i> [A]							
0,04	0,25	0,04	0,31	0,04	0,36	0,04	0,39	
0,03	0,35	0,03	0,43	0,03	0,49	0,03	0,54	
0,02	0,45	0,02	0,56	0,02	0,63	0,02	0,69	
0,01	0,56	0,01	0,69	0,01	0,78	0,01	0,84	
0,00	0,65	0,00	0,80	0,00	0,91	0,00	0,99	

Specifický náboj elektronu lze vypočítat pomocí rovnice:

$$\frac{q}{m} = \frac{2 \cdot U}{(B \cdot r)^2} \tag{5}$$

kde *r* je poloměr ohybu:

$$r = \frac{(80^2 \text{mm}^2 + e^2)}{\sqrt{2} \cdot (80 \text{mm} - e)} \tag{6}$$

a intenzita magnetického pole B je:

$$B = \left(\frac{4}{5}\right)^{3/2} \cdot \frac{\mu_0 \cdot N}{R} \cdot I \tag{7}$$

kde μ_0 je permeabilita vakua, N = 320 je počet závitů a R je poloměr cívky.

Tabulka 6: Vypočtené hodnoty specifického náboje elektronu

U = 2 kV			U = 3 kV				
Ohyb e [m]	Proud <i>I</i> [A]	Specifický náboj $\frac{q}{m}\left[\frac{\mathtt{C}}{\mathtt{kg}}\right]$	Ohyb e [m]	Proud <i>I</i> [A]	Specifický náboj $\frac{q}{m} \left[\frac{C}{kg} \right]$		
0,04	0,245	1,63300E+11	0,04	0,310	1,59307E+11		
0,03	0,335	1,60910E+11	0,03	0,415	1,55373E+11		
0,02	0,445	1,56959E+11	0,02	0,545	1,54781E+11		
0,01	0,540	1,53713E+11	0,01	0,655	1,51358E+11		
0,00	0,635	1,50980E+11	0,00	0,765	1,51392E+11		
	U = 4 kV			U = 4.8 kV			
Ohyb e [m]	Proud <i>I</i> [A]	Specifický náboj $\frac{q}{m} \left[\frac{\mathtt{C}}{\mathtt{kg}} \right]$	Ohyb e [m]	Proud <i>I</i> [A]	Specifický náboj $\frac{q}{m} \left[\frac{C}{\text{kg}} \right]$		
0,04	0,360	1,61972E+11	0,04	0,385	1,65256E+11		
0,03	0,485	1,59536E+11	0,03	0,525	1,57632E+11		
0,02	0,625	1,62735E+11	0,02	0,685	1,60223E+11		
0,01	0,765	1,57661E+11	0,01	0,830	1,61046E+11		
0,00	0,900	1,55769E+11	0,00	0,970	1,57792E+11		

Z hodnot v tabulce byla vypočtena výsledná hodnota specifického náboje jak střední hodnota. Chyba je střední kvadratická odchylka – rovnice (4).

Výsledná hodnota specifického náboje elektronu:

$$\frac{q}{m} = (1,58 \pm 0,09) \cdot 10^{11} \frac{C}{kg}$$

Nyní lze vypočítat hmotnost elektronu z rovnice:

$$m_{\rm e} = \frac{e}{\frac{q}{m}} \tag{7}$$

kde e je elementární náboj.

Tabulka 7: Vypočtené hodnoty hmotnosti elektronu

Specifický náboj $\frac{q}{m} \begin{bmatrix} \frac{C}{\text{kg}} \end{bmatrix}$	Hmotnost elektronu $m_e~\mathrm{[kg]}$	Specifický náboj $\frac{q}{m} \left[\frac{C}{kg} \right]$	Hmotnost elektronu $m_e~{ m [kg]}$
1.63300E+11	9.89168E-31	1.61972E+11	9.81123E-31
1.60910E+11	1.00427E-30	1.59536E+11	9.95697E-31
1.56959E+11	9.84529E-31	1.62735E+11	1.02076E-30
1.53713E+11	1.01622E-30	1.57661E+11	1.04232E-30
1.50980E+11	1.02856E-30	1.55769E+11	1.06118E-30
1.59307E+11	9.69513E-31	1.65256E+11	1.00572E-30
1.55373E+11	1.01640E-30	1.57632E+11	1.03118E-30
1.54781E+11	9.99967E-31	1.60223E+11	1.03513E-30
1.51358E+11	9.94858E-31	1.61046E+11	1.05853E-30
1.51392E+11	1.01537E-30	1.57792E+11	1.05829E-30

Výsledná hodnota hmotnosti elektronu je určena jako střední hodnota a chyba jako střední kvadratická odchylka (4).

Výsledná hodnota hmotnosti elektronu:

$$m_{\rm e} = (10, 15 \pm 0, 06) \cdot 10^{-31} \, {\rm kg}$$

Všechny uvedené rovnice byly vzaty z Návod k úloze: Elektrony [4] a Chyby měření [3].

7. Diskuze

Úkolem bylo určit vzdálenosti rovin v krystalové mřížce grafitu z difrakce elektronů. Naměřené hodnoty vzdáleností rovin krystalové mřížky grafitu $d_1=(231\pm4)~{\rm pm}$ a $d_2=(134,5\pm0,7)~{\rm pm}$. Tabulkové hodnoty [9] $d_1=213~{\rm pm}$ a $d_2=123~{\rm pm}$. Naměřené hodnoty se od tabulkových liší o přibližně 8 %. Chyba mohla vzniknout při měření průměru prstenců, u kterých nebylo možné přesně rozpoznat kde končí kvůli rozptylu na stínítku.

Nejpřesnější výsledek by dalo měření s co nejvyšším urychlovacím napětím a co nejvyšším proudem v Helmholtzových cívkách. S vyšším napětím a proudem působí větší síla na elektrony a ohyb je tak přesnější.

Dalším úkolem bylo určit specifický náboj elektronu a následně i jeho hmotnost. Naměřená hodnota specifického náboje $\frac{q}{m}=(1,58\pm0,09)\cdot10^{11}\,\frac{\text{C}}{\text{kg}}$ se od tabulkové hodnoty [6] $\frac{q}{m}=1,759\cdot10^{11}\,\frac{\text{C}}{\text{kg}}$ liší o 11 %. Naměřená hodnota hmotnosti elektronu $m_{\text{e}}=(10,15\pm0,06)\cdot10^{-31}\,\text{kg}$ se od tabulkové hodnoty [6] $m_{\text{e}}=9,1093837015\cdot10^{-31}\,\text{kg}$ liší o 10 %. Chybu mohly způsobit cívky, které nebyly pevně přidělané, tudíž jejich osy nebyly úplně kolmé ke směru letu elektronů.

8. Závěr

Výsledné hodnoty vzdáleností rovin krystalové mřížky grafitu:

$$d_1 = (231 \pm 4) \text{ pm}$$

 $d_2 = (134, 5 \pm 0, 7) \text{ pm}$

Výsledná hodnota specifického náboje elektronu:

$$\frac{q}{m} = (1,58 \pm 0,09) \cdot 10^{11} \frac{C}{kg}$$

Výsledná hodnota hmotnosti elektronu:

$$m_e = (10, 15 \pm 0, 06) \cdot 10^{-31} \text{ kg}$$

9. Zdroje

- 1. **Záhora, J, Lýsková, Š a Jakubec, T**. Difrakce elektronů v krystalech, zobrazení atomů. *Týden vědy na Jaderce*. [Online] [Citace: 7. Listopad 2023.] https://tydenvedy.fjfi.cvut.cz/2012/cd/prispevky/sbpdf/difrel.pdf.
- 2. Specifický náboj elektronu. *Univerzita J. E. Purkyně v Ústní nad Labem*. [Online] [Citace: 7. Listopad 2023.] http://physics.ujep.cz/~mackova/nabojelektronu.pdf.
- 3. Chyby měření. *elearning.jcu.cz.* [Online] [Citace: 7. Listopad 2023.] https://elearning.jcu.cz/pluginfile.php/434322/mod resource/content/1/chyby mereni.pdf.
- 4. Návod k úloze: Elektrony. *elearning.jcu.cz*. [Online] [Citace: 7. Listopad 2023.] https://elearning.jcu.cz/mod/resource/view.php?id=309651.
- 5. **Přispěvatelé Wikipedie**. Elementární náboj. *Wikipedie*. [Online] 10. Říjen 2023. [Citace: 7. Listopad 2023.]

https://cs.wikipedia.org/w/index.php?title=Element%C3%A1rn%C3%AD_n%C3%A1boj&oldid=23258 504.

- 6. **Přispěvatelé Wikipedie**. Elektron. *Wikipedie*. [Online] 13. Září 2023. [Citace: 7. Listopad 2023.] https://cs.wikipedia.org/w/index.php?title=Elektron&oldid=23166575.
- 7. **Přispěvatelé Wikipedie**. Planckova konstanta. *Wikipedie*. [Online] 4. Srpen 2023. [Citace: 7. Listopad 2023.] https://cs.wikipedia.org/w/index.php?title=Planckova_konstanta&oldid=23028290.
- 8. **Přispěvatelé Wikipedie**. Permeabilita. *Wikipedie*. [Online] 19. Duben 2023. [Citace: 7. Listopad 2023.] https://cs.wikipedia.org/w/index.php?title=Permeabilita&oldid=22716865.
- 9. Electron Diffraction v2.1. *THE UNIVERSITY OF NEW MEXICO.* [Online] [Citace: 7. Listopad 2023.] http://www.unm.edu/~mph/307/EDiffraction_UNM1.pdf.