Study of Higgs pair production with H \to bb and H \to WW $\to qq\ell\nu$ for an upgraded CMS detector at the High Luminosity LHC

A. Hinzmann, B. Kilminster, C. Lange & I. Neutelings

University of Zurich

December 2015

Abstract

A study of the Higgs boson pair production where one Higgs boson decays into $b\bar{b}$ quarks and one into WW bosons in the semi-leptonic final state with a $t\bar{b}$ background is presented. The study uses simulated pp collisions at $\sqrt{s} = 14$ TeV in an upgraded CMS detector at the High Luminosity LHC assuming an integrated luminosity L = 3000 fb⁻¹. Kinematic variables are examined for a multivariate analysis with a Boosted Decision Tree.

1 Samples

The signal and background processes are simulated with Monte Carlo samples. These only contain $bbWW \rightarrow bbqq\ell\nu$ at generator level, where taus coming from a W-boson are excluded. Both generation and parton shower and hadronization are done in Pythia6. The samples were finally reconstructed with Delphes for the CMS Phase II technical proposal.

2 Event preselection & clean-up

We select from the samples events with at least two b-jets with $p_T > 30$ GeV and $|\eta| < 2.5$, at least four jets with $p_T > 20$ GeV and $|\eta| < 2.5$ exactly one lepton with $p_T > 20$ GeV and $|\eta| < 2.5$ and missing transverse energy $\mathcal{E}_T > 20$ GeV.

Further clean-up cuts, 60 GeV $< M_{\rm bb} < 160$ GeV and $\Delta R_{\rm bb} < 3$ GeV, remove a significant amount of background with out affecting the signal too much.

Figure 1: Multiplicities of $p_T > 20$ GeV jets and $p_T > 30$ GeV.

3 Multivariate analysis

The TMVA's boosted decision tree (BDT) is used for the multivariate analysis on HH \rightarrow bbWW \rightarrow bb $qq\ell\nu$ with background $t\bar{t} \rightarrow$ bbWW \rightarrow bb $qq\ell\nu$. The following are input variables for the BDT:

 p_T^{bb} of the two b-tagged jets, p_T^{jj} of the two leading "light" jets, p_T^ℓ of the leading lepton, \mathscr{E}_T , p_T^{bb} , p_T^{b} ,

$$M_T^{\ell\nu} = \sqrt{2p_T^\ell \cancel{E}_T (1 - \cos\Delta\phi_{\ell,\cancel{E}_T})}. \tag{1}$$

All variables are shown Figs. 3-9.

The final BDT output and background rejection versus signal efficiency of the test sample is shown in Fig. 10. A cut is made at 0.44, yielding a significance of P = 0.37 (see Eq. (??)), 27 signal events and 5153 background events at an integrated lumininosity L = 3000 fb⁻¹.

Figure 2: Multiplicities of $p_T > 20$ GeV jets and $p_T > 30$ GeV.

Figure 3: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: transverse momentum p_T of the lepton and missing transverse energy \cancel{E}_T .

References

- [1] C. Delaere et al., Study of HH production with $H \to bb$, $H \to WW \to \ell\nu\ell\nu$ for an upgraded CMS detector at the HL-LHC, CMS draft analysis note 2014/141.
- [2] D. de Florian & J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD. Phys. Rev. Lett. 111 (Nov, 2013) 201801, doi:10.1103/PhysRevLett.111.201801, arXiv:1309.6594.

Figure 4: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: transverse momentum p_T for the two leading jets and two leading b-jets.

- [3] NNLO+NNLL top-quark-pair cross sections ATLAS-CMS recommended predictions for top-quark-pair cross sections using the Top++v2.0 program (M. Czakon, A. Mitov, 2013), https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO#Top_quark_pair_cross_sections_at.
- [4] R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Rev. Lett. B723 (May, 2014) 142, doi:10.1016/j.physletb.2014.03.026, arXiv:1401.7340.
- [5] Higgs cross sections for European Strategy studies in 2012, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HiggsEuropeanStrategy2012#SM_Higgs_decay_branching_ratio_M.
- [6] T. Aaltonen et al. (CDF Collaboration), Measurement of B(t → Wb)/B(t → Wq) in Top-Quark-Pair Decays Using Dilepton Events and the Full CDF Run II Data Set, Phys. Rev. Lett. 112, 221801 (June, 2014), doi:10.1103/PhysRevLett.112.221801, arXiv:1404.3392.
- [7] J. Beringer *et al.* (Particle Data Group), PR **D86**, 010001 (2012) and 2013 partial update for the 2014 edition (http://pdg.lbl.gov/2013/listings/rpp2013-list-w-boson.pdf).

Figure 5: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: $p_T^{\rm bb}$, p_T^{jj} , $p_T^{j_1\ell}$ and $\Delta\phi_{j_1\ell,{\rm bb}}$.

Figure 6: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: $\Delta R_{j_1\ell}$, $\Delta R_{j_2\ell}$, $\Delta R_{b_1\ell}$ and $\Delta R_{b_2\ell}$.

Figure 7: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: ΔR_{bb} , ΔR_{jj} , $\Delta R_{jj,b_1}$ and $\Delta R_{jj,\ell}$.

Figure 8: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: Higgs mass reconstructions $M_{\rm bb}$ and $M_{jj\ell\nu}$ and top mass reconstructions $M_{jj{\rm b}_1}$ and $M_{{\rm b}_2\ell\nu}$.

Figure 9: Variables distribution of HH (red) and $t\bar{t}$ (blue) for the neural network: $M_{\rm b_2l}$ and $M_T^{\ell\nu}$ (see Eq. (1)).

Figure 10: Final BDT output and background rejection versus signal efficiency.