

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2551

วิชา ENE 325 Electromagnetic fields and waves ภาควิชา วศ.อิเล็กทรอหิกส์ฯ บีที่ 3 สอบ วันศุกร์ที่ 25 กรกฎาคม พ.ศ. 2551

เวลา 9.00-12.00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 10 ข้อ 12 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ไม่อนุญาตให้นำเอกสารประกอบการเรียนเข้าห้องสอบ
- 4. อนุญาตให้ใช้เครื่องคำนวณได้
- 5. ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระตาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา					
ชื่อ-สกุล	รหัสประจำตัว				
อาจารย์สุวัฒน์ ภัทรมาลัย					
อาจารย์ราชวดี ศิลาพันธ์					
ผู้ออกซ้อสอบ					
โทร 0-2470-9062					

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

ผศ.ดร.วุฒิชัย อัศวินชัยโชติ หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ส่วนที่ 1 Electrostatics (25 คะแนน)

- 1. (4 marks) given points A(8,-5, 4) and B(-2, 3, 2), find:
 - a. The distance from A to B.
 - b. A unit vector directed from A towards B.
 - c. A unit vector directed from the origin to the midpoint of the line AB.
 - d. The coordinates of the point on the line connecting A to B at which the line intersects the plane z = 3.

2. (3 marks) Given the vector field $\mathbf{E} = 4zy^2 \cos 2x \, \mathbf{a}x + 2zy \sin 2x \, \mathbf{a}y + y^2 \sin 2x \, \mathbf{a}z$ for the region |x|,

|y|, and |z| less than 2, find

- a. The surfaces on which $E_y = 0$.
- b. The region in which $E_y = E_z$

3

3. (5 marks) Four 10nC positive charges are located in the z=0 plane at the corners of a square 8cm on a side. A fifth 5nC positive charge is located at a point 8cm distant from the other charges. Calculate the magnitude of the total force on this fifth charge for $\varepsilon_0 = 8.85e-12$.

- 4. (5 marks) A uniform line charge of 16 nC/m is located along the line defined by y = -2, z = 5.
 - **a.** Find **E** at P(1, 2, 3)
 - b. Find **E** at that point in the z = 0 plane where the direction of **E** is given by $(1/3)\mathbf{a}_y (2/3)\mathbf{a}_z$.

5. (6 marks) Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge densities of 20

nC/m²,-4 nC/m², and ρ_{r0} , respectively.

- a. Find **D** at r = 1, 3 and 5 m.
- **b.** Determine ρ_{s0} such that $\mathbf{D} = 0$ at r = 7 m.

6

- 6. (2 marks) A cube is defined by 1 < x, y, z < 1.2. If $D = 2x^2yax + 3x^2y^2ay$ C/m²
 - a. evaluate $\nabla \cdot \mathbf{D}$ at the center of the cube
 - b. Estimate the total charge enclosed within the cube

7. (2 marks: Bonus) If $\mathbf{D} = 2r \, \mathbf{a} r \, \text{C/m2}$, find the total electric flux leaving the surface of the cube, 0 < x, y, z < 0.4.

8

ส่วนที่ 2 Magnetostatics (คะแนนที่ระบุในโจทย์ส่วนที่ 2 จะถูกนำไปปรับสัดส่วนให้คะแนนรวม ทั้งหมดในส่วนนี้เท่ากับ15 คะแนน)

สูตรที่ใช้ในการคำนวณ

1. Ampère's law: $\oint \vec{H} \cdot d\vec{L} = I_{en}$

โดยที่ H = ความเข้มสนามแม่เหล็ก (A/m) $I_m = ปริมาณกระแส (A)$

2. Magnetic properties: $\vec{B} = \mu \vec{H}$ Tesla

โดยที่ \vec{B} = ความหนาแน่นของเส้นแรงแม่เหล็ก (Tesla) $\mu = \mu_r \mu_0$ = magnetic permeability (H/m)

3. Boundary conditions:

1)
$$\hat{a}_{21} \times (\vec{H}_1 - \vec{H}_2) = \vec{K}$$

โดยที่ \$\hat{a}_{21}\$ คือ unit vector ที่พุ่งตั้งฉากจากตัวกลาง 2 ไปยังตัวกลางที่ 1

2)
$$B_{n1} = B_{n2}$$

โดยที่ n = normal component หรือองค์ประกอบตั้งฉาก

ชื่อ		รหัสประจำ	าตัว	เลขที่นั่งสอบ
ar a			. v	

- 8. จากบทเรียนเรื่อง Magnetostatics จงตอบคำถามต่อไปนี้ (15 คะแนน)
- a) จงเขียนนิยามของ Ampère's law และลักษณะของการนำไปใช้งานเมื่อเทียบกับ Bio Savart's law (5 คะแนน)

b) ต้นกำเนิดของสนามแม่เหล็กมีอะไรบ้าง (5 คะแนน)

c) ต้นกำเนิดของ magnetic dipole moment มีอะไรบ้าง (5 คะแนน)

9

9. กำหนดให้เส้นลวดนำกระแสขนาดอนันต์ 3 เส้นวางตัวในอากาศดังรูป โดยเส้นที่ 1 วางดัวตามแนวแกน z มีกระแสไหล $I_1 = 0.5$ A เส้นที่ 2 วางตัวตามแนวแกน y ที่ x = 0.5 m และ z = 0 m มีกระแสไหล $I_2 = 1$ A และ เส้นที่ 3 วางตัวตามแนวแกน x ที่ y = 0.5 m และ z = 0. 5 m มีกระแสไหล $I_3 = 0.5$ A จงคำนวณ (20 คะแนน)

a) ขนาดความเข้มสนามแม่เหล็กรวม (H_{total}) ที่ดำแหน่ง x = 1 m, y = 0 m, z = 0 m (10 คะแนน)

11

b) ความหนาแน่นสนามแม่เหล็กรวม ($\stackrel{
ightharpoonup}{B_{total}}$) จากข้อ a) เป็นปริมาณเวคเตอร์ โดยกำหนดให้ค่า relative permeability ของเส้นที่ 1 มีค่า μ_{rl} = 2 เส้นที่ 2 มีค่า μ_{r2} = 5 และ เส้นที่ 3 มีค่า μ_{r3} = 10 โดย μ_{o} = 4π x10⁻⁷ H/m (10 คะแนน)

10. Boundary condition: จากรูปกำหนดให้สนามแม่เหล็กรวม $\overset{
ightharpoonup}{H_{total}}$ ที่คำนวณได้ในข้อ 2 พุ่งไปตกกระทบ ตัวกลาง B ที่มีค่า $\mu_{\!\scriptscriptstyle B}$ = 100 ที่รอยต่อ z = 0 ให้คำนวณ (15 คะแนน)

a) H_{tB} (5 คะแนน)

b) H_{nB} (5 คะแนน)

c) เปรียบเทียบ**ขนาด**ความเข้มสนามแม่เหล็กที่เกิดขึ้นในตัวกลาง *B* นี้ กับที่เกิดขึ้นในอากาศ (ตัวกลาง *A*) จงวิเคราะห์ว่าเหตุใดขนาดของสนามแม่เหล็กจึงมีค่าไม่เท่ากัน (5 คะแนน)