ALCTG

The Scientist must set in order. Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house.

Science and Hypothesis Henri Poincare

Table of contents

Глава	а 1 Булева алгебра	2
		0
1.1	Булевы функции	2
	1.1.1 Ломацияя работа	3

§1.1 Булевы функции

Домашняя работа

Задача 1.1.1. x, y, z — целые числа, для которых истинно высказывание

$$\neg (x = y) \land ((y < x) \to (2z > x)) \land ((x < y) \to (x > 2z))$$
(1.1)

Чему равно x, если z = 7, y = 16?

Решение. Подставляем из условия значения z и y и преобразуем выражение (1.5)

$$\neg(x = 16) \land (\neg(x > 16) \lor (x < 14)) \land (\neg(x < 16) \lor (x > 14)),$$
$$(x \neq 16) \land ((x \leqslant 16) \lor (x < 14)) \land ((x \geqslant 16) \lor (x > 14)).$$

Заметим, что итоговое выражение, как и изначальное, является конъюнкцией трех выражений. Тогда оно истинно, если каждое из выражений должно быть истинным. Это умозаключение приводит нас к трем условиям:

- 1. $(x \neq 16) = 1$, если $x \neq 16$;
- 2. $((x \le 16) \lor (x < 14)) = 1$, если $x \le 16$;
- 3. $((x \geqslant 16) \lor (x > 14)) = 1$, если x > 14.

Пользуясь методом очень пристального взгляда, замечаем, что все три условия выше можно переписать так

$$14 < x < 16$$
.

откуда

$$x = 15$$
.

Ответ. x = 15

Задача 1.1.2. Постройте таблицу истинности для функции

$$f(x_1, x_2, x_3) = (x_1 \lor x_2) \downarrow (x_2 \to x_3)$$
(1.2)

Решение. Таблица истинности:

x_1	x_2	x_3	$\int f$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Функция на всех значениях x_1, x_2, x_3 принимает значение 0.

Задача 1.1.3. Докажите, что

$$1 \oplus x_1 \oplus x_2 = (x_1 \to x_2) \land (x_2 \to x_1)$$
 (1.3)

Решение. Пусть $f_1 = 1 \oplus x_1 \oplus x_2, f_2 = (x1 \to x_2) \wedge (x_2 \to x_1)$. Тогда

x_1	x_2	f_1	f_2
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

Видно, что векторы значений f_1 и f_2 совпадают, а значит, $f_1=f_2$ (т.е. утверждение (1.3) ВЕРНО).

Задача 1.1.4. Докажите формулу

$$\bigvee_{i,j;i\neq j} x_i \oplus x_j = (x_1 \vee x_2 \vee \dots \vee x_n) \wedge (\neg x_1 \vee \neg x_2 \vee \dots \vee \neg x_n)$$
 (1.4)

Решение. Рассмотрим 2 случая:

- 1. $\bigvee_{i,j;i\neq j} x_i \oplus x_j = 1 \Rightarrow$ есть как минимум одна пара разных значений($x_i = 1, x_j = 0$). Тогда $(x_1 \lor x_2 \lor \dots \lor x_n) = 1, \neg x_1 \lor \neg x_2 \lor \dots \lor \neg x_n) = 1 \Rightarrow (x_1 \lor x_2 \lor \dots \lor x_n) \land (\neg x_1 \lor \neg x_2 \lor \dots \lor \neg x_n) = 1;$
- 2. $\bigvee_{i,j;i\neq j} x_i \oplus x_j = 1 \Rightarrow$ все x_i и x_j равны 0. Тогда в правой части либо $(x_1 \lor x_2 \lor ... \lor x_n) = 0$, либо $(\neg x_1 \lor \neg x_2 \lor ... \lor \neg x_n) = 0$, а значит и вся правая часть равна 0.

Видно, что векторы значений левой и правой частей равенства совпадают, а значит, формула верна.

Задача 1.1.5. Постройте таблицу истинности для f и выразите её через операции $\vee, \wedge, \neg,$ если

$$f = x_1 \oplus x_2 \oplus x_3 \oplus x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 \oplus x_1 x_2 x_3. \tag{1.5}$$

Решение. Таблица истинности:

$\begin{bmatrix} x_1 \\ 0 \end{bmatrix}$	<i>x</i> ₂ 0	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Перестроние с использованием \lor, \land, \lnot :

$$f_1 = x_1 \vee x_2 \vee x_3.$$

Ответ. $f_1 = x_1 \lor x_2 \lor x_3$.