The Chi Square Test and Measures of Assosciation

EDP 613

Week 11

A Note About The Slides

Currently the equations do not show up properly in Firefox. Other browsers such as Chrome and Safari do work.

Independence

Two variables that have no association with each other are **statistically independent**.

• expected frequencies

written f_e

what you would *expect* in a bivariate table if two variables were statistically independent only assumption: the null hypothesis is true calculated by

$$f_e = rac{ ext{column marginal} \cdot ext{row marginal}}{ ext{total sample size}}$$

• observed frequencies

written f_o

what you would *observe* in a bivariate table given what you have calculated by you or given

Chi-Square Test

written χ^2 .

assumes random sampling

Is an inferential test to find significant relationships between two variables.

Calculated by

$$\chi^2 = \sum rac{(f_o - f_e)^2}{f_e}$$

with

$$df=(r-1)(c-1)$$

Example: Social Media

The percent of people using at least one social media outlet is given below by age groups

ge	Portion	Age
18 - 29	820	18 - 29
30 - 49	590	30 - 49
50 - 64	360	50 - 64
65+	120	65+

a. Test the assumption that *users* are equally likely to be in each of the four age groups listed.

b. Which age group contributes the largest amount to the test statistic?

Example: Solution for 2011

a. We have

 H_0 : Users are equally likely to be in each of the five groups listed

 H_1 : Users are NOT equally likely to be in each of the five groups listed

Step 1: Find N

We have 820+590+360+120=1890 total responses

If the distribution was uniform across all four categories, we would expect that each had 1890/4 pprox 472 respondents

Step 2: Caluclate the χ^2 statistic

Age	Responses	χ^2
18 - 29	820	$rac{\left(820-1890 ight)^2}{1890}pprox 605.767$
30 - 49	590	$\frac{\left(590-1890\right)^2}{1890}\approx 894.180$
50 - 64	360	$\frac{\left(360-1890\right)^2}{1890}\approx 1238.571$
65+	120	$rac{\left(120-1890 ight)^2}{1890}pprox 1657.619$

with the total

$$605.767 + 894.180 + 1238.571 + 1657.619 = 4396.137$$

and

$$df=4-1=3$$

Step 3: Make a Decision

In Appendix D

- ullet Look at df=3
- chi^2=4396.137\$ < the greatest p-value so p < 0.001
- ullet We reject H_0 implying that

respondents are not equally likely to be in each of the four age ranges listed

b .

- 65+ contributes the greatest amount to the sum for the test statistic
- The observed count is much smaller than expected

Example: Solution for 2021

We have

 H_0 : Users are equally likely to be in each of the five groups listed

 H_1 : Users are NOT equally likely to be in each of the five groups listed

Step 1: Find N

We have 840+810+730+450=2830 total responses

If the distribution was uniform across all four categories, we would expect that each had 2830/4 pprox 707 respondents

Step 2: Caluclate the χ^2 statistic

Age	Responses	χ^2
18 - 29	840	$rac{\left(840-2830 ight)^2}{2830}pprox 1399.329$
30 - 49	810	$\frac{\left(810-2830\right)^2}{2830}\approx 1441.837$
50 - 64	730	$\frac{\left(730 - 2830\right)^2}{2830} \approx 1558.304$
65+	450	$\frac{\left(450-2830\right)^2}{2830}\approx 2001.555$

with the total

$$1399.329 + 1441.837 + 1558.304 + 2001.555 = 6401.025$$

and

$$df=4-1=3$$

Step 3: Make a Decision

In Appendix D

- ullet Look at df=3
- ullet chi^2=6401.025\$ < the greatest p-value so p < 0.001
- ullet We reject H_0 implying that

respondents are not equally likely to be in each of the four age ranges listed

That's it. Take a break before our R session!

