1 Type Inference - A Table Based Method

In class I informally presented a method to determine the polymorphic type of a Haskell expression. We make the method more precise here by presenting two rules and a table based method for deriving types.

We will use lower case Latin letters in a Serif font $\{a, b, c, d, \dots\}$ to denote polymorphic type variables.

Polymorphic type variables range over types, *i.e.* they stand for any type. In the same way that an variable declared to be of type int in a C++ program can take on the value of any int, the polymorphic type variable a can take the value of any type. This means, if $f :: a \to a$ then any type can be substituted for a and the function f has that type. For example, replacing the polymorphic type variable a by the type String we get $f :: String \to String$. Replacing a by the type $a \to a$ we get $f :: (a \to a) \to (a \to a)$.

Recall, function application associates to the left and so the term $x \ z(y \ z)$ is parenthesized as $((x \ z)(y \ z))$. Also, recall that the function type constructor \to associates to the right so the type $a \to b \to c$ is parenthesized as $(a \to (b \to c))$.

1.1 The Method

We start by constructing an initial table that has a columns on the left labeled at the top by the names of the formal parameters and whose first row entries are labeled by different polymorphic type variables. There is also a column on the right where the entry in each row is a labeled Haskell expression. This expression is the body of the function definition with sub-expressions tagged with types (known so far). It may be more readable to fully parenthesize the expression.

For example, consider the function s defined as follows.

$$s x y z = x z (y z)$$

The initial table for this function appears as follows:

$$\begin{array}{c|cccc} x & y & z & \text{expression} \\ \hline \mathbf{a} & \mathbf{b} & \mathbf{c} & ((\overset{\mathsf{a}}{x}\overset{\mathsf{c}}{z}) (\overset{\mathsf{b}}{y}\overset{\mathsf{c}}{z})) \end{array}$$

There are two rules for constructing the next row of the table. In the table above, the rule that refines a type to an arrow type (\rightarrow) can be applied.

[Arrow Introduction Rule] If τ is a type expression and α is a polymorphic type variable ($\alpha \in \{a, b, c, \dots\}$) and there is an application of labeled expressions e_1 and e_2 in the right column having the form $\begin{pmatrix} \alpha & \tau \\ e_1 & e_2 \end{pmatrix}$, then make a new row by copying the last row and replacing all occurrences of α by the type $\tau \to \beta$ where β is a new variable name not appearing anywhere in the row being copied.

The justification for the arrow introduction rule goes like this: If $e_2 :: \tau$ then the application $(e_1 \ e_2)$ is well-typed if and only if e_1 is a function whose domain is τ . We do not know the range (yet) so we just choose a fresh polymorphic variable name and wait to figure it out later. So, we create a new row from the one above by copying it and changing all occurrences of the type variable α to the type $\tau \to \beta$ where β is a completely new variable.

There are two places this rule can be applied in the last row of the example. The pattern of the rule $\begin{pmatrix} a & t \\ e_1 & e_2 \end{pmatrix}$ matches the expression $\begin{pmatrix} a & c \\ x & z \end{pmatrix}$ by the following mapping:

$$\{e_1 \mapsto x, \alpha \mapsto \mathsf{a}, e_2 \mapsto z, \tau \mapsto \mathsf{c}\}$$

Also, the pattern $(\stackrel{\alpha}{e_1}\stackrel{\tau}{e_2})$ matches the expression $(\stackrel{\mathsf{b}}{y}\stackrel{\mathsf{c}}{z})$ by the mapping:

$$\{e_1 \mapsto y, \alpha \mapsto \mathsf{b}, e_2 \mapsto z, \tau \mapsto \mathsf{c}\}$$

Either application of the rule may be chosen; for no particular reason, we choose the second.

We apply the arrow introduction rule setting $b=c\to d$. The polymorphic type variable d is new. We create a new row in the table by copying the last row and replacing all occurrences of b by the type $(c\to d)$. This yields the following table.

Note that *all* the occurrences of **b** have been changed.

Now the arrow introduction rule could be applied again to the application (x z). Instead, we introduce the second rule which is a simplification rule that eliminates arrow types from the right side.

[Arrow Elimination Rule] If τ and τ' are type expressions and there is an labeled application of expression e_1 of type $\tau \to \tau'$ to expression e_2 of type τ , then create a new row in the table by copying the last row and replacing the labeled application $\begin{pmatrix} \tau \to \tau' & e_1 \\ e_1 & e_2 \end{pmatrix}$ by $(e_1 \ e_2)$.

The justification for the rule is simply that $(e_1 \ e_2)$ must have type τ' if $e_1 :: \tau \to \tau'$ and $e_2 :: \tau$.

In the running example, the arrow elimination rule has one match in the last row of the example table. Here is the matching:

$$\{e_1 \mapsto y, e_2 \mapsto z, \tau \mapsto \mathsf{c}, \tau' \mapsto \mathsf{d}\}$$

Applying the arrow elimination rule to the last row in the table above yields the following table.

$$\begin{array}{c|cccc} x & y & z & \text{expression} \\ \hline \textbf{a} & \textbf{b} & \textbf{c} & ((\overset{\textbf{a}}{x}\overset{\textbf{c}}{z}) (\overset{\textbf{b}}{y}\overset{\textbf{c}}{z})) \\ \textbf{a} & \textbf{c} \rightarrow \textbf{d} & \textbf{c} & ((\overset{\textbf{a}}{x}\overset{\textbf{c}}{z}) (\overset{\textbf{c}}{y}\overset{\textbf{c}}{z})) \\ \textbf{a} & \textbf{c} \rightarrow \textbf{d} & \textbf{c} & ((\overset{\textbf{a}}{x}\overset{\textbf{c}}{z}) (\overset{\textbf{c}}{y}\overset{\textbf{c}}{z})) \end{array}$$

As the next step, we apply the arrow introduction rule. Since x is applied to an argument of type c it must be a function of type $c \to e$ where e is a fresh type variable. Thus we use the arrow introduction rule setting

$$a = (c \rightarrow e)$$

To create the next row of the table, copy the last row and replace all occurrences of a by the type $(c \rightarrow e)$.

$$\begin{array}{c|ccccc} x & y & z & \text{expression} \\ \hline a & b & c & ((\stackrel{a}{x} \stackrel{c}{z}) (\stackrel{b}{y} \stackrel{c}{z})) \\ a & c \rightarrow d & c & ((\stackrel{a}{x} \stackrel{c}{z}) (\stackrel{c}{y} \stackrel{d}{z})) \\ a & c \rightarrow d & c & ((\stackrel{a}{x} \stackrel{c}{z}) (y \stackrel{d}{z})) \\ c \rightarrow e & c \rightarrow d & c & ((\stackrel{c \rightarrow e}{x} \stackrel{c}{z}) (y \stackrel{d}{z})) \end{array}$$

Now, because $x :: c \to e$ and z :: c we know that the application (x z) has type e. We simplify the table by applying the arrow elimination rule as follows:

x	y	z	expression
а	b	С	$((\stackrel{a}{x}\stackrel{c}{z})(\stackrel{b}{y}\stackrel{c}{z}))$
a	$c \to d$	С	$((\overset{a}{x}\overset{c}{z})(\overset{c\tod}{y}\overset{c}{z}))$
а	$c \to d$	С	$((\overset{a}{x}\overset{c}{z})(\overset{b}{y}\overset{c}{z}))$ $((\overset{a}{x}\overset{c}{z})(\overset{c}{y}\overset{d}{z}))$ $((\overset{a}{x}\overset{c}{z})(\overset{c}{y}\overset{d}{z})$ $((\overset{a}{x}\overset{c}{z})(yz))$ $(\overset{c}{x}\overset{c}{z})(yz))$
$c \to e$	$c \to d$	С	$\left(\begin{pmatrix} c \to e & c & d \\ (x & z) & (y & z)\end{pmatrix}\right)$
$c \to e$	$c \to d$	С	$((x\ z)(y\ z))$

But now, $(x\ z)$:: e and $(x\ z)$ is applied to $(y\ z)$:: d so $e = d \to f$ where f is a new type variable. To create the next line of the table we apply the arrow introduction rule by copying the last line of the table and replacing all occurrences of e by $d \to f$.

x	y		expression
a	b	С	$ \begin{array}{c} ((\overset{a}{x}\overset{c}{z}) (\overset{b}{y}\overset{c}{z})) \\ ((\overset{a}{x}\overset{c}{z}) (\overset{c}{y}\overset{d}{z})) \end{array} $
a	$c \to d$	С	$((\stackrel{a}{x}\stackrel{c}{z})(\stackrel{c\tod}{y}\stackrel{c}{z}))$
a	$c \to d$	С	$((\stackrel{a}{x}\stackrel{c}{z}) (yz))$
$c \to e$	$c \to d$	С	$ \begin{vmatrix} (\overset{c \to e}{x} \overset{c}{z}) & (y z) \\ & \overset{e}{((x z)(y z))} \\ & \overset{d \to f}{((x z)(y z))} \end{vmatrix} $
$c \to e$	$c \to d$	С	$ \left \begin{array}{c} e & d \\ ((x\ z)(y\ z)) \end{array} \right $
$c \to (d \to f)$	$c \to d$	С	$ \begin{vmatrix} d \to f & d \\ ((x \ z)(y \ z)) \end{vmatrix} $

But now we see that $(x\ z):: d \to f$ and it is applied to $(y\ z):: d$ so the term $((x\ z)(y\ z)):: f$. We use the arrow elimination rule to create a new row in the table as follows:

From this table we know the following:

$$\begin{array}{cccc} x & :: & \mathsf{c} \to \mathsf{d} \to \mathsf{f} \\ y & :: & \mathsf{c} \to \mathsf{d} \\ z & :: & \mathsf{c} \\ ((x\,z)(y\,z)) & :: & \mathsf{f} \end{array}$$

We can read off the type of s as

$$s::(\mathsf{c} \to \mathsf{d} \to \mathsf{f}) \to (\mathsf{c} \to \mathsf{d}) \to \mathsf{c} \to \mathsf{f}$$

Since c, d and f are type polymorphic type variables, we can uniformly rename them to make the type more readable (we use the mapping $\{c \mapsto a, d \mapsto b, f \mapsto c\}$.) This gives the following type.

$$s:: (\mathsf{a} \to \mathsf{b} \to \mathsf{c}) \to (\mathsf{a} \to \mathsf{b}) \to \mathsf{a} \to \mathsf{c}$$

Problem 1.1. Use this method to compute the types for the following Haskell functions.

- $1. \quad k \ x \ y = x$
- 2. compose f g x = f (g x)
- $3. \quad flip \ f \ x \ y \ = \ f \ y \ x$