

A Convolutional Neural Network for Image Classification of Cats and Dogs

Status update

Structure

- Neural Nets (NN)
- Convolution NN (CNN)
- Problem
- Evaluation
- Aims

NEURAL NETS

Introduction – Neural Nets

Quelle: http://cs231n.github.io/convolutional-networks/

CONVOLUTIONAL NN

TensorFlow

- Developed by Google Brain Team
- Use cases
 - Handwritten patterns, image recognition, Word2Vec
- Input data
 - Audio, image, text
- Used techniques
 - Linear classifiers, NN

Structure of the CNN we used

Input layer

Convolutional layer - Filter

http://cs231n.github.io/convolutional-networks/

Aditya Raj, Sören Schleibaum Institut für Informatik

Convolutional layer - Parameters

- Input volume size
- Number of filters
- Filter size
- Zero padding

Aditya Raj, Sören Schleibaum Institut für Informatik

Convolutional layer – Activation function

- Sigmoid
 - Not telling in which direction should we move in.
 - Non-differentiability at certain points

pool

norm

conv

input

Convolutional layer – Activation function

- Rectified linear
 - *Element Wise*: max(0, x)
 - Leaky ReLU
 - If x < 0, Output = 0.01x.
 - Non-zero gradient when the input is negative

Pool layer

Pool layer – Max pooling

Reduce the spatial dimension of an image

http://cs231n.github.io/convolutional-networks/

Aditya Raj, Sören Schleibaum Institut für Informatik

Norm layer

Local layer

Softmax-linear layer

Aditya Raj, Sören Schleibaum Institut für Informatik

PROBLEM

The data

Images of cats and dogs

File format is *.jpg

Color space is RGB

Training data

- 25,000 images
 - 12,500 of dogs
 - 12,500 of cats
- Avg. file size
 - **22.34** kB

Test data

- 12,500 images
 - x of dogs
 - y of cats
 - x + y = 12,500

Process images

- Resize to 32 * 32 * 3
- Convert to array
 - **25,000** * **3,073**

dog1.jpg

cat10.jpg

Process images

- Resize to 32 * 32 * 3
- Convert to array
 - **25,000** * **3,073**

dog1.jpg

EVALUATION

AIMS

Aims

Removing normalization layer

QUESTIONS

Quellen

- http://cs231n.github.io/convolutional-networks/
- https://www.tensorflow.org/tutorials/deep_cnn/
- Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural network acoustic models." *Proc. ICML*. Vol. 30. No. 1. 2013.

Today's Talk

- Problem Statement
- Introduction to Deep Learning
 - Layers In Deep Learning
- TensorFlow
 - Methods
 - DataSets
 - Training Time
- TensorFlow (TF)
 - Data-Structure for TensorFlow

- Implementation in TF
 - Inputs
 - Prediction
 - Training
 - Evaluation
- Results
- Future Works

Problem Statement - Explained

Introduction – Neural Nets

Quelle: http://cs231n.github.io/convolutional-networks/

Mathematical view

- Input, Weights
- Compute Sigmoid
- Measure how much we missed called Err
- Multiply Err by the Sigmoid slope

Update Weights

•
$$l_0 = X_i$$
, W = rand()

- $l_1 = Sig(X_i . W)$
- Err = $l_0 l_1$
- $\Delta l_1 = \operatorname{Err}^* \Delta \big(\operatorname{Sig}(Err) \big)$

• W = W+
$$(l_0, \Delta l_1)$$

Gradient Descent

- Pushing down weights to push errors down
 - Move weights in negative direction of gradient
- $\Delta w_i = h (y y') x_i$. Perceptron Case
 - No Thresholding, finite convergence but in linear cases
- $\Delta w_i = h (y a) x_i$ Activation Case
 - Thresholding, more robust to non-linear cases
 - Converge to a limit only to a local optimum

Why not just Neural Nets?

■ Input 32*32*3 = 3072

Weights 3072*N

Biases N

- So,
 - Full connectivity is wasteful
 - Huge number of parameters
 - Loss of spatial information
 - How 3072 input signals represent 32*32*3 matrix ?
 - Deconvolution

Convolutional Neural Network (CNN)

CNN Layers

- INPUT
- CONV
- RELU
- POOL
- FC

Output

$$1*0 + 2*0 + 0*0 + 0*0 + 0*0 + 0*2 + 0*1 + 0*0 + 0*2 + 0*2 + 1 = 1$$

Convolutional Filter Size

- Uneven dimensions such as 3*3, 5*5 ...
 - To reduce spatial dimension
 - Padding can undo dimensionality reduction
- Number of conv layers:
 - More conv layers with small filters
 - This makes the decision function more discriminative

CNN - POOL

reduce the spatial dimension of an image

Activation functions

- Why Sigmoid?
 - Not telling in which direction should we move in.

Non-differentiability at certain points

CNN - RELU

- *Element Wise*: max(0, x)
- Leaky ReLU by by Maas et al.
 - if x < 0, Output = 0.01x.
 - non-zero gradient when the input is negative

CNN Parameters

- Can be trained on an endless amount of parameters:
 - learning rate, learning rate decay
 - momentum
 - filter size, number of convolutional layers
 - activation functions (relu, leakyrelu)
 - weight decay and dropouts

Learning Rate

- how fast the network trains
- High learning rate
 - Convergence or global minimum finding is problem
- Low learning rate
 - High training times

Learning Rate decay

- Learning rate decay means the learning rate decreases over time
 - higher learning rate is well suited to get close to the global minimum
 - small learning rate is better at fine tuning the global minimum

- Several ways to do it:
 - Exponential decay, reduction by factor of n
 - GoogLeNet: function to decrease the learning rate by 4%

Momentum

- Rolling ball gains speed downwards the hill
- So, velocity to the learning rate in a given direction
 - With consistent gradient
- Convolutional neural networks commonly use a momentum value of 0.9

Batch Normalization (BN)

- batch normalization of the input to the activation function of each neuron
- normalizing the training batch after certain layers
 - Reducing amount of retraining
 - input to the activation function across each training batch has a mean of 0 and a variance of 1.
- Example
 - $BN \text{ of } \sigma(Wx+b) = \sigma(BN(Wx+b)) \text{ Where } BN = \frac{X_i \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$

Is BN enough?

- No:
 - Activation function limited to a prescribed normal distribution
- Adding γ and β -> Learnable parameters
 - γ , undoes the batch normalizing transform
 - β , a new shift parameter

$$BN = \frac{X_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} + \beta$$

Overfitting vs Underfitting

Example: Logistic regression

$$h_{ heta}(x) = g(heta_0 + heta_1 x_1 + heta_2 x_2)$$
 (g = sigmoid function)

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

Weight Penalty

- Adding extra term to cost function to penalise
 - Keeps weight small
 - Big error derivatives

 $C = E + \frac{\lambda}{2} \sum_{i} w^{i^2}$

$$\frac{\partial C}{\partial w_i} = \frac{\partial E}{\partial w_i} + \lambda w_i$$

• When $\frac{\partial C}{\partial w_i} = 0$;

•
$$w_i = -\frac{1}{\lambda} \frac{\partial E}{\partial w_i}$$

• So, at minimum of Cost function if $\frac{\partial E}{\partial w_i}$ is big, the weights are big

Weight Penalty - Advantages

- Preventing network from the weights it does not need
 - Don't have a lot of weights not doing anything
 - So output changes more slowly as input changes.
- Putting half the weight on each and not on one

Cifar10 Weight Decay

- weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
- tf.add_to_collection('losses', weight_decay)

Weight Penal

TensorFlow

- Developed by Google Brain Team
- Use cases
 - Handwritten patterns, image recognition, Word2Vec
- Input data
 - Audio, image, text
- Used techniques
 - Linear classifiers, NN

Limitations

- 150 images viewed
 - 1 duplicate
 - 1 wrong content
- Training lasts long
- Reduced image size

Activation Functions

- Non-Linear
 - sigmoid, tanh, elu, softplus, and softsign
- continuous but not everywhere differentiable functions
 - relu, relu6, crelu and relu_x

TF Implementation: Prediction

- Cifar10.Inference()
 - Conv1: convolution and rectified linear activation.
 - Pool1: max pooling.
 - Norm1: local response normalization.
 - Local3: fully connected layer with rectified linear activation.
 - Local4: fully connected layer with rectified linear activation.
 - Softmax_linear: Linear transformation to produce logits.

Cost Functions

Squared Error Measure

Softmax Cross-entropy Function

Squared Error Measure Function

•
$$Error = \frac{1}{2}(Y_{actual} - Y_{predicted})^2$$

- Drawbacks
 - No gradient to get from 0.000...1 to 1.
 - To do so it will take quite longer.
 - Deprives NN of probability information.

Softmax Output Function

- Soft continuous version of Max Function
- Forces $\sum (Output \ of \ NN) = 1$.

Derivative Softmax

$$\bullet \frac{\delta Y_i}{\delta Z_i} = Y_i (1 - Y_i)$$

- Nice Simple derivative
- Even though Y_i depends of Z_i ,
 - Derivative
 - for an individual neuron
 - of an I/P in respect to O/P is just Y_i (1 Y_i)

Cost Measure for Softmax Output Function $t_i \log Y_i$

- Negative log probability of correct answer
- Maximise the log probability of getting answer right

Advantages to Squared Error Measure

- $C = -\sum_j t_j \log Y_j$
- Very big gradient when:
 - Target value is 1.
 - Actual output is 0.
- Balance between
 - Steepness of $\frac{dC}{dy}$ and
 - Flatness of $\frac{dy}{dz}$

$$\frac{\partial C}{\partial Z_j} = \sum_{j} \frac{\partial C}{\partial y_j} \frac{\partial y_j}{\partial Z_j}$$

Hyperparameters

Learning Rate

Results

Precision 0.83

CNN – Conv Layer

Problem Statement

Ratio

TU Clausthal

