

Syllabus

B. Tech Computer Engineering (Last Year Semester VII and VIII)

From
Academic Year 2020 - 21
(KJSCE 2018 CBGS Pattern)
LY B. Tech / COMP / Revision 2.0
Approved by Academic Board
LY B. Tech / COMP / 29/06/2020

K. J. Somaiya College of Engineering, Vidyavihar, Mumbai – 77 (Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Preamble

Academic Autonomy conferred by the University of Mumbai from the Academic Year 2014-15, gave us the freedom to develop and implement our own curriculum KJSCE2014 with features such as inclusion of choice based Interdisciplinary Course (IDC), Audit Courses, Add on Credit Courses, Exposure Courses, etc. Distinct assessment and evaluation methods were also designed based on focus of individual course. In addition, the outcome of these entire exercises, either by way of student placements or by way of the feedback received from all stakeholders is quite encouraging.

At present, Industry is moving towards Industrial revolution 4.0. Knowing very well that every country's education system forms the basis of its progress and the groundwork for its future, we need to be making engineering graduates equipped to take industrial challenges. A common feature in successful education systems is the balance between tradition and the capacity to be flexible and able to adapt to current social trends. To achieve this, AICTE has taken necessary initiative in January 2018 by introducing model syllabus for undergraduate courses having a focus on the changing industrial scenario.

Our new revision in syllabus *KJSCE2018*, introduced from the academic year 2018-19, has been designed based on the revised AICTE guidelines as well as various accrediting bodies.

The said syllabus is a result of expert advice from members of Board of Studies and Academic Council; both having due representation from academia as well as appropriate industries. Subsequently faculty members of the college have put in efforts to document it in the form, which has been presented here.

Some of the highlights of the *KJSCE2018* syllabus are Introduction of wide choice for branch specific electives, more number of open or interdisciplinary electives, opportunities for internships, etc.

Focus of academic processes in KJSCE is such that, by the time student completes the requirements of the degree, he/ she will be able to acquire attributes required for profession as an engineer. Outcomes are defined to acquire these attributes, which lead to the development of curriculum, pedagogy and assessment tools. These tools need to be updated based on the experiences of teacher and learner. Hence teaching -learning -evaluation paradigm is going to be a mix of traditional as well as use of ICT tools. Role of the faculty member changes from tutor to trainer / instructor/ facilitator / mentor based on the outcomes targeted.

For measuring learning outcomes of students, traditional methods like tests, laboratory work and End Semester Examinations (ESE) are implemented. Continuous Assessment (CA) is carried out through In Semester Examination (ISE) and internal assessment (IA) like quizzes, case studies, mini projects etc. These IA tools not only contribute to marks but also enables the student to learn through solutions discussed, improvisations suggested, feedback given by faculty members. Through these assessment methods students get opportunity for reading research papers, presenting ideas and working in a team.

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Since the assessments are distributed throughout the term, the learning process is continuously monitored and graded.

The Department of Computer Engineering courses focus on thrust areas of Department. These areas are Intelligent System and Data Processing, Network System and Security, Image Analysis and Interpretation and System & Software Engineering.

College promotes co-curricular, extra-curricular activities as well as sports; making life outside classroom exciting and rewarding. What makes these activities very effective is the fact that these do not focus only on winning trophies but try to nurture generic skills such as leadership, effective communication, teamwork etc. which are essential skills for a bright professional career.

Along with my colleagues, I welcome you to the Department of Computer Engineering and look forward to lead you towards professional career.

Dr. Deepak Sharma Head, Department of Computer Engineering

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Vision

To become a center of excellence in discipline of Computer Engineering for developing technically adept professionals with ethical and leadership qualities in service of society.

Mission

- Provide sound technical foundation in Computer Engineering through comprehensive curriculum and application oriented learning.
- Provide ambience for professional growth and lifelong learning for adapting to challenges in rapidly changing technology
- Inculcate social and ethical values and leadership qualities

Program Educational Outcomes (PEO)

A graduate of Computer Engineering will

- **PEO1.** Solve problems in diverse fields using knowledge of Computer Engineering.
- **PEO2.** Excel in professional career, exhibit leadership qualities with ethics &soft skills.
- **PEO3.** Pursue higher education, research or entrepreneurship, engage in professional development, adapt to emerging technologies.

Program Outcomes (PO)

After successful completion of the program Computer Engineering Graduate will be able to:

- **PO1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

norms of the engineering practice.

- **PO9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSO)

- **PSO1**: Apply acquired skills of Information Systems, Networking, Image processing in solving problems of varying complexities.
- **PSO2**: Pursue higher studies in the field of Computer Science & Engineering and be employable in industries.

Acron	ym for category of courses	Acronyms used in syllabus docum		
Acronym	Definition	Acronym	Definition	
BS	Basic Science Courses	CA	Continuous Assessment	
ES	Engineering Science	ESE	End Semester Exam	
HS	Humanities and Social Sciences including Management Courses	IA	Internal Assessment	
PC	Professional Core Courses	0	Oral	
PE	Professional Elective courses	P	Practical	
OE	Open Elective Courses	P&O	Practical and Oral	
LC	Laboratory Courses	TH	Theory	
PR	Project	TUT	Tutorial	
AC	Audit Course	TW	Term work	
AOCC	Add on Credit Course	ISE	In- Semester Examination	
AOAC	Add on Audit Course	CO	Course Outcome	
AVAC	Add on Value Audit Course	PO	Program Outcome	
EX	Exposure Course	PSO	Program specific Outcome	
Ι	Interdisciplinary courses			

Acronyms used in Course code e.g. 2UCC501/2UCE601

Position of Digit	Acronym	Definition
1	2	Second revision after autonomy KJSCE 2018
		(First revision KJSCE 2014)
2	U	Undergraduate
3	T	Department of Computer Engineering
	S	Common to All
4	C	Core Course
	E	Elective Course
	L	Laboratory Course
	T	Tutorial
	ST	Open Elective Technical
	SH	Open Elective Humanities/Management/SWAYAM-NPTEL
	M	Mandatory Non Credit Course
	N	Internship
	P	Project
5	5/6	Semester Number
	G/Y	Management Elective/ Humanity Elective
6, 7	01	Course Number

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

LY BTech Semester VII

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Course Category
2UCC701	Project Management	3-0-0	3	3-0-0	3	PC
2UCE71X	Departmental Elective-III	3-0-0	3	3 - 0 - 0	3	PE
2UCE72X	Departmental Elective-IV	3 - 0 - 0	3	3-0-0	3	PE
2UST7XX	Open Elective Technical-III	3-0-0	3	2-0-0	2	PE
2USH701	Open Elective Humanities/ management/Swayam NPTEL course (8weeks)	2-0-0	2	2-0-0	2	HS
2UCP701	Project – I %	0-6-0	6	0 – 3– 0	3	PR
2UCL701	Project Management Lab	0 - 2 - 0	2	0-1-0	1	PC
2UCL702	Elective-III laboratory	0 - 2 - 0	2	0-1-0	1	PE
2UCL703	Elective- IV laboratory	0-2-0	2	0-1-0	1	PE
Total		14 –12 – 0	26	14-6-0	19	

%- For Students opting for one semester internship for semester VIII, project I will not continue to Project II.

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Examination Scheme

Course	Course Name	Examination Scheme							
Code					Marks				
		CA		ESE	TW	0	P	P&O	Total
		ISE	IA						
2UCC701	Project Management	30	20	50					100
2UCE71X	Departmental Elective-III	30	20	50					100
2UCE72X	Departmental Elective-IV	30	20	50					100
2UST7XX	Open Elective Technical	30	20						100
2USH701	Open Elective Humanities/ management/Swayam NPTEL course (8weeks)	30	20						50
2UCP701	Project – I %				25	25			50
2UCL701	Project Management Lab				25	25			50
2UCL702	Elective–III laboratory				25	25			50
2UCL703	Elective- IV laboratory				25	25			50
Total		120	80	150	150	100			600

^{%-} For Students opting for one semester internship for semester VIII, project I will not continue to Project II

	Departmental Elective -III & IV for VII Semester									
Course	Name of Elective	Course	Name of Elective							
Code		Code								
2UCE711	Big Data Analytics	2UCE712	Data Science							
2UCE713	Cloud Computing Emerging	2UCE714	Block Chain Technology							
	Technologies									
2UCE715	Cyber Security, Forensics and	2UCE716	Computer Vision							
	Cyber Law									
2UCE717	Geographic Information System	2UCE718	Computer Simulation and Modeling							
	and Spatial Computing									
2UCE719	User Experience Design	2UCE720	C# Programming and. Net Technology							

Open Electives Technical for VII Semester								
Course Name of Elective Course Name of Elective								
Code		Code						
2UST701	Genetics Algorithm	2UST702	Web Analytics and Web Intelligence					
	and Applications							
2UST703	Reinforcement Learning	2UST704	Massive Graph Analysis					

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

LY BTech VIII Semester

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Course Category
2UCP801	Project- II/ Semester long Internship	0 - 14 - 0	14	0 - 7 - 0	7	PR
2UECE81X	Departmental Elective- V / Swayam NPTEL course*	3-0-0	3	3-0-0	3	PE
2UECE82X	Departmental Elective- VI/ Swayam NPTEL course*	3-0-0	3	3-0-0	3	PE
	Total	6 – 14 – 0	20	6-7-0	13	

^{*}For students selected for semester long internship.

Examination Scheme

Course	Course Name		Examination Scheme						
Code				Marks					
		CA		ESE	TW	0%	P	P&O#	Total
		ISE	IA						
2UCP801	Project- II/ Semester long Internship	-1			100	100		-	200
2UCE81X	Departmental Elective- V / Swayam NPTEL course*	30	20	50	l	1		1	100
2UCE82X	Departmental Elective- VI/ Swayam NPTEL course*	30	20	50				-	100
Total		600	40	100	100	100			400

	Departmental Elective – V & VI for VIII Semester								
Course	Name of	Course	Name of						
Code	Electives	Code	Electives						
2UCE811	Bioinformatics	2UCE812	Game Programming						
2UCE813	Advanced Algorithms: Design	2UCE814	IoT Security						
	and Analysis								
2UCE815	Internet of Everything	2UCE816	Cyber Physical System						
2UCE817	Deep Learning	2UCE818	Speech and Language Processing						
2UCE819	Software Architecture and Design	2UCE820	High Performance Computing						
	Thinking								

SEMESTER VII

B. Tech Computer Engineering (KJSCE 2018)

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCC701	Project Management							
	Γ	TH P TUT Total						
Teaching Scheme(Hrs.)		03						03
Credits Assigned		03				03		
				Marks				
Examination	CA		ESE	TW	0	P	P&O	Total
Scheme	e ISE IA		ESE	1 44	J	P	100	1 Otal
	30	20	50					100

Course prerequisites (if any):

-

Course Objectives

The objective of this course is to introduce Concepts of project management. Introduce characteristics of a project manager.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Identify the phases of Projects
- CO2 Plan various project activities based on efforts and duration estimations by analyzing risks involved in it.
- CO3 Understand Practices, Tools & Techniques in the area of Project Management.
- CO4 Evaluate and assess the projects and to estimate the project cost using cost benefit evaluation techniques.
- CO5 Understand the selection of the most appropriate people for the project.

Module	Unit Details		Hrs.	CO
No.	No.			
1	Introduction to Project management		03	CO 1
	What is Project? What is Project M			
	Project Management? Project Pl			
	holders, Key general Management S	Skills.		
2	Project Management Process		05	CO2
	Project Process, Process Groups,			
	Customizing Process Interactions,			
	Management Process. Organizations			
	Agile Methodology, Scrum, Kanbar	1.		
3	Project Management Knowledge areas		12	CO 3
	Project Integration Managemen			
	Management, Project Time Mana			
	Management, Project Quality N			
	Human Resource Management, Pr			
	Management, Project Risk Mar	nagement, , Project		
4	Project Management in the Corporate co	ant ovet	12	CO 4
4	The Management of Project Management of Proj		12	CO 4
	•	oject Management,		
	Elements of Budgets & Estimates	ž –		
	Budgeting, Project Cost Account			
	schedules & forecast. PERT & CPM			
5	Managing People in Project		07	CO 5
		dham-Hackman job	- 07	000
	Characteristics Model, Working in	J		
	team, Stress, Health and Safety			
6	Case Studies		06	CO
			06	2,3,4 5
	Case studies:			
	ITIL Framework for Service Manag	gement		
	(ITIL- Information Technology Infr			
	#Self-Learning: ISO Standards for p	processes in Project		
	Management			
		Total	45	

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	John M. Nicholas,	Project Management for	Routledge	4 th Edition
	Herman Steyn	Engineering,	Taylor &	
		Business and Technology	Francis Group,	
			London	
2.	Bob Hughes Bob	Software Project	Tata McGraw	5th Edition,
	Hughes, Mike	Management	Hill, Special	
	cotterell, Rajib Mall		Indian Edition	
3.		A guide to the Project	Project	2000 Edition
		management Body of	Management	
		knowledge	Institute, USA	
4.	Avraham Shtub,	Project Management,	Pearson	2 nd Edition
	Jonathan F. Bard,	Processes, Methodologies	Education	
	Shlomo Gloerson	& Economics		
5.	Cohn, M	Agile estimating and	Pearson	2 nd Edition
		planning	education	
6.	Schwaber, K. &	Agile software	Prentice Hall	2001 Edition
	Beedle, M	development using Scrum		

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering	
Departmental Elective III and IV	

(Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Course Code	Course Title								
2UCE711		Big Data Analytics							
	T	ТН		P	•	'	TUT	Total	
Teaching Scheme(Hrs.)							03		
Credits Assigned	03							03	
	Marks								
Examination	CA		ECE	TEXX/	O	P	P&O	Total	
Scheme	ISE	IA	ESE	TW	J	ľ	1 & O	1 Otal	
	30	20	50					100	

Course prerequisites (if any):

Database management system

Course Objectives

- 1. To provide an overview of an exciting growing field of big data analytics.
- 2. To introduce the tools required to manage and analyze big data like Hadoop, NoSql MapReduce.
- 3. To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- 4. To enable students to have skills that will help them to solve complex real-world problems in for decision support.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Understand the fundamental enabling techniques like Hadoop, MapReduce in achieving Big data analytics.
- CO2 Associate appropriate technique for finding similarity and dimensionality reduction.
- CO3 Demonstrate the statistical analysis techniques for decision making.
- CO4 Interpret business models and scientific computing paradigm for solving real world problems.

Module	Unit	Details	Hrs.	CO
No.	No.		1115.	
	Intro	luction to Big Data and mining large scale system		
	1.1	Introduction to Big Data, Big Data characteristics, types of Big Data, Traditional vs. Big Data business approach, Case Study of Big Data Solutions.		
	1.2	Introduction to Hadoop and its components		
1	1.3	Distributed File Systems: Physical Organization of Compute Nodes, Large-Scale File-System Organization MapReduce: The Map Tasks, Grouping by Key, The Reduce Tasks, Combiners, Details of MapReduce Execution, Coping With Node Failures.	11	CO1
	Algorithms Using Multiplication by M Operations, Computing Computing Projection Intersection, and Differe Computing Natural Join Aggregation by Mapl	Algorithms Using MapReduce: Matrix-Vector Multiplication by MapReduce, Relational-Algebra Operations, Computing Selections by MapReduce, Computing Projections by MapReduce, Union, Intersection, and Difference by MapReduce, Computing Natural Join by MapReduce, Grouping and Aggregation by MapReduce, Matrix Multiplication, Matrix Multiplication with One MapReduce Step.		
2	Findi	ng Similar Items and Dimensionality Reduction		
	2.1	Applications of Near-Neighbor Search- Jaccard Similarity of Sets, Similarity of Documents, Collaborative Filtering as a Similar-Sets Problem.		
	2.2	Distance Measures: Definition of a Distance Measure, Euclidean Distances, Jaccard Distance, Cosine Distance, Edit Distance, Hamming Distance.		
	2.3	Shingling of Documents, Similarity-Preserving Summaries of Sets, Locality-Sensitive Hashing for Documents, Applications of Locality-Sensitive Hashing	08	CO2
	2.4	Dimensionality Reduction: Eigenvalues and Eigenvectors of Symmetric Matrices, Principal-Component Analysis, Singular-Value Decomposition CUR Decomposition		
		#Self-learning : Latent factor models, Methods of High		
		degree of similarity		
	Minin	g Data Streams		
	3.1	The Stream Data Model: A Data-Stream-Management System, Examples of Stream Sources, Stream Query, Issues in Stream Processing.		
3	3.2	Sampling Data in a Stream: Obtaining a Representative Sample, The General Sampling Problem, Varying the Sample Size.	06	CO3
	3.3	Filtering Streams: The Bloom Filter, Analysis		
	3.4	Counting Distinct Elements in a Stream: The Count- Distinct Problem, The Flajolet-Martin Algorithm,		

Department of Computer Engineering

		Combining Estimates, Space Requirements.		
		Estimating Moments		
		Counting Ones in a Window: The Cost of Exact Counts,		
		The Datar-Gionis-Indyk-Motwani Algorithm.		
		Self-learning: Query Answering in the DGIM Algorithm,		
		Decaying Windows.		
	Link	Analysis And Frequent Itemsets		
	4.1	PageRank Definition, Structure of the web, dead ends, Using Page rank in a search engine, Efficient computation of Page Rank: PageRank Iteration Using MapReduce, Use of Combiners to Consolidate the Result Vector. Topic sensitive Page Rank, Hubs and Authorities		
4	4.2	Handling Larger Datasets in Main Memory Algorithm of Park, Chen, and Yu, All or Most frequent itemsets in two passes. The SON Algorithm and MapReduce, Toivonen's Algorithm	08	CO3
		Self-learning: link spam, The Multistage Algorithm, The Multihash Algorithm. Counting Frequent Items in a Stream Sampling Methods for Streams, Frequent Item sets in Decaying Windows		
	Cluste	ering and Mining Social Network and graphs		
	5.1	CURE Algorithm, Clustering in Non-Euclidean Spaces Stream-Computing , A Stream-Clustering Algorithm, Initializing & Merging Buckets, Answering Queries		
5	5.2	Recommendation Systems – A model for Recommendation systems, Content based recommendation, Collaborative Filtering	12	CO4
	5.3	Mining Social-Network Graphs – Social networks as graphs, Clustering, Direct discovery of communities, Partitioning of Graphs, Finding overlapping of communities, SimRank, Counting Traingles,		
		#Self-learning: Counting Traingles, Neighborhood		
		properties of graph, Adversting on Web		
		Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Anand Rajaraman	Mining of Massive	Cambridge	Second
	and Jeff Ullman	Datasets	University	Edition, 2014
			Press	
2.	Alex Holmes	Hadoop in Practice	Manning Press,	Second
			Dreamtech	Edition, 2015
			Press.	
3.	Bill Franks	Taming The Big Data	Wiley	2012
		Tidal Wave: Finding		
		Opportunities In Huge		
		Data Streams With		
		Advanced Analytics		
4.	Chuck Lam	Hadoop in Action	Dreamtech	2011
			Press	
5.	Radha Shankarmani	Big Data Analytics	Wiley	2st edition,
	M. Vijaylakshmi	_	-	2018

(Autonomous College Affiliated to University of Mumbai)
Department of Computer Engineering

Course Code	Course Title								
2UCE712		Data Science							
	7	ТН		P		-	TUT	Total	
Teaching Scheme(Hrs.)					-		03		
Credits Assigned							03		
	Marks								
Examination	CA	CA		77337			P&O	Total	
Scheme	ISE	IA	ESE	TW	O	P	rao	1 Otal	
	30	20	50					100	

Course prerequisites (if any):

Students are expected to have basic knowledge of algorithms and programming experience.

Course Objectives

To develop practical data analysis skills, which can be applied to practical problems.

To develop fundamental knowledge of mathematical concepts needed for data science applications.

To develop practical skills needed in data analytics.

To explain how math and information sciences can be used for developing better algorithms and software.

To develop applied experience with data science software, programming, applications and Processes.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Explain the basic terms of Statistical Inference and commonly used probability distributions for fitting data.
CO2	Use R Programming to carry out basic statistical modelling and analysis.
CO3	Explain the significance of exploratory data analysis (EDA) in data science.
CO4	Describe the Data Science Process and how its components interact.
CO5	Apply basic tools to carry out EDA for the Data Science process.

(Autonomous College Affiliated to University of Mumbai)
Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	duction to Applied Data Science	09	CO1
	1.1	Introduction to Applied Data Science: What is Data Science? - Big Data and Data Science, Datafication - Current landscape of perspectives - Skill sets needed and various application areas. Challenges and skill Sets needed and various applications areas.		
	1.2	Impact of applying Data Science in business scenario.		
	1.3	Introduction to need of estimation and validation for added value due to data science		
2	Intro	duction to Mathematical Foundation	10	CO2
	2.1	Introduction to R Programming Language		
	2.2	Introduction to the mathematical foundations required for data science. Statistical Inference: Populations and samples, Statistical modeling, Probability distribution, Fitting a model.		
3	Explo	ratory Data Analysis	09	CO3
	3.1	Exploratory Data Analysis and the Data Science Process Basic tools (plots, graphs and summary statistics) of		
		EDA		
	3.3	The Data Science Process: Linear Regression, k-Nearest Neighbors (k-NN), k-means, Naive Bayes) for predictive modeling		
4	Intro	duction to Basic Machine Learning Algorithms	09	CO4
	4.1	Linear Regression and k-NN comparison for various applications and its flows		
	4.2	Data Wrangling: APIs and other tools for scrapping the Web		
5	Data '	Visualization	08	C05
	5.1	Introduction to Feature Generation and Feature Selection (Extracting Meaningful Data)		
	5.2	Overview/Introduction to Feature Selection algorithms.		
	5.3	Data Visualization - Basic principles, ideas and tools for data visualization and its applications		
		# Self Learning –Mini Project		
	1	Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publicatio n
1.	Han, J., Kamber, M., Pei, J.	Data mining concepts and techniques	Morgan Kaufmann	2011
2.	James, G., Witten, D., Hastie, T., Tibshirani, R.	An introduction to statistical learning with applications in R	Springer	2013
3.	Cathy O'Neil and Rachel Schutt	Doing Data Science, Straight Talk From The Frontline	O'Reilly	2014
4.	Kevin P. Murphy	Machine Learning: A Probabilistic Perspective	ISBN 0262018020	2013
5.	Mohammed J. Zaki and Wagner Miera Jr.	Data Mining and Analysis: Fundamental Concepts and Algorithms	Cambridg e Universit y Press	2014
6.	Avrim Blum, John Hopcroft, and RavindranKannan	Foundations of Data Science	ONLINE	2014

(Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Course Code	Course Title								
2UCE713	C	Cloud Computing Emerging Technologies							
	Л	TH		P)	TUT		Total	
Teaching Scheme (Hrs.)	03							03	
Credits Assigned	03							03	
	Marks								
Examination									
Scheme	CA		EGE	(DXX)	0	P	P&O	Total	
	ISE	IA	ESE	TW	U	ľ	rau	Total	
	30	20	50	-	-	-	-	100	

Course prerequisites:

- Fundamental knowledge on Operating system.
- Basics of client/server programming and network protocols.

Course Objectives:

Cloud computing has evolved as a very important computing model, which enables information, software, and other shared resources to be provisioned over the network as services in an on-demand manner. Students will be exposed to the current practices in cloud computing. Topics may include distributed computing models and technologies, Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS), virtualization, performance and systems issues, capacity planning, federated clouds, challenges in implementing clouds, data centers, hypervisor CPU and memory management, cloud hosted applications, and other advanced and research topics in cloud computing.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: Describe fundamental and core concepts of cloud computing

CO2: Investigate the system virtualization and outline its role in enabling the cloud computing system model.

CO3: Develop cloud applications using Aneka platform

CO4: Analyze and apply cloud programming models to solve problems

CO5: Configure and experiment with advanced cloud technologies

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	luction	8	
	1.1	Cloud Computing at a Glance, Historical Developments, Building Cloud Computing Environments, Computing Platforms and Technologies - Microsoft Azure, Hadoop, Force.com and Salesforce.com, Manjrasoft Aneka		CO1
2	Virtua	alization	12	
	2.1	Introduction, Characteristics of Virtualized Environments , Taxonomy of Virtualization Techniques, Virtualization and Cloud Computing, Pros and Cons of Virtualization,		
	2.2	Technology Examples: Xen: Para virtualization, VMware: Full Virtualization, Microsoft Hyper-V		CO2
	2.3	Cloud Computing Architecture : Cloud Reference Model, Types of Clouds, Economics of the Cloud, Open Challenges,		
		#Self-Learning – Virtual Machine Provisioning and Migration services		
3	Aneka	a: Cloud Application Platform	10	
	3.1	Framework Overview, Anatomy of the Aneka Container, Building Aneka Clouds: Infrastructure Organization, Logical Organization, Private Cloud Deployment Mode, Public Cloud Deployment Mode, Hybrid Cloud Deployment Mode Cloud Programming and Management - Aneka SDK, Management Tools		CO3
		#Self-Learning - CometCloud: An Autonomic Cloud Engine		
4	Classi		7	
4	4.1	Infrastructure and Platforms in Industry. Open Stack: Introduction to open stack, Components of open stack, Amazon Web Services: Compute Services; Storage Services; Google Cloud Platform, Google AppEngine:	1	CO4
		Architecture and Core concepts; Application Life Cycle #Self-Learning - The MapReduce Programming Model		
		and Implementation		
5	1	nced Topics in Cloud Computing	8	
	5.1	Energy Efficiency in Clouds, Market Based Management of Clouds, Federated Clouds / Inter Cloud, Third Party Cloud Services: MetaCDN, SpotCloud		CO5
	5.2	Dockers and Containers, Micro Services, Cloud automation tools and DevOps concepts		

5.3	Mobility as a Service (MAAS), JUJU, MBASS			
		Total	45	

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Rajkumar Buyya, Christian Vecchiola, S Thamarai Selvi	Mastering Cloud Computing	McGraw Hill Education Private Limited	2013
2.	Judith Hurwitz, R.Bloor,M.Kanfman, F.Halper	OpenStack Cloud Computing Cookbook	PACKT Publishing BIRMINGHAM - MUMBAI	Third Edition
3.	J.Vette, Toby J. Vette, Robert Elsenpeter	Cloud Computing: A Practical Approach	Tata McGraw Hill)	1st, 2009
4.	Rajkumar Buyya, James Broberg, Andrzej Goscinski	Cloud Computing, Principles and Paradigms	Wiley	1st ,2013
5.	Tim Mathar, S. Kumaraswammy, S.Latif	Cloud Security & Privacy	O'REILLY	1st , 2009

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE714	Block Chain Technology							
	TH			P		TUT	Total	
Teaching Scheme(Hrs.)	(03	
Credits Assigned	03							03
	Marks							
Examination Scheme	CA		ECE	TXX		ъ	P&O	Total
Examination Scheme	ISE	IA	ESE	TW	O	P	rao	Total
	30	20	50					100

Course prerequisites:

Networking Concepts, Object Oriented Programming Skills, Cryptography and Network Security Concepts.

Course Objectives:

The objective of the Course is to explore the Bitcoin protocol followed by the Ethereum protocol – to lay the foundation necessary for developing applications and programming. Course will give the idea about the decentralized peer-to-peer network, an immutable distributed ledger and the trust model that defines a blockchain.

This course explains basic components of a blockchain (transaction, block, block header, and the chain) its operations (verification, validation, and consensus model) underlying algorithms, and essentials of trust (hard fork and soft fork).

Course Outcomes:

- CO1 Build your own Blockchain businesses with acquired knowledge.
- CO2 Learn Solidity language & Multiple Technology-based developments.
- CO3 Apply the algorithm and techniques used in Blockchain.
- CO4 Grasp the in-depth understanding of Blockchain, Smart Contracts & how it works
- CO5 Describe the methods of mining.

Module	Unit		Hrs.	CO
No.	No.	Details		
		Block Chain Technology		
1	Block	chain Basics	8	
	1.1	Introduction to Blockchain, what is Block? Registry of Transaction, Blockchain Structure, Basic Operations, Blockchain & Distributed Ledger Technology (DLT), Elements of Distributed Computing.		CO1
	1.2	Elements of Cryptography, Elements of Game Theory, Cryptocurrencies, Tokens, and ICOs.		
	1.3	Blockchain Defined: Bitcoin & Blockchain.		
2	Mini	ng and Consensus	9	
	2.1	Decentralized Consensus, Mining Node, The Coinbase Transaction. Mining the Block, Validating New Block, Blockchain Forks, Mining Pool.		CO5
	2.3	Changing the consensus Rules, Hard Fork and Soft Fork,		C03
3	Build	ling Smart Contracts : Using Ethereum, Solidity	12	
	3.1	Smart Contract Basics: Why Smart Contracts? Smart Contracts Defined, Processing Smart Contracts, Deploying Smart Contracts. Ethereum Blockchain, Ethereum Structure, Ethereum Operations, Interactive Model, Solidity: Structure, Basic Data Types & Statements (Bidder Data & Functions Demos), Specific Data Types, Data Structures, Access Modifiers & Applications		CO4
4	Algo	rithm and Techniques , Trust Essentials	8	
	4.1	Public-Key Cryptography, Hashing, Transaction Integrity, Security Blockchain Trust Essential: Decentralized Systems, Consensus Protocol, Robustness, Forks,		CO3
5	Appl	ications and Case studies	8	
	5.1	Developing Smart Contracts, Time Elements, Validation & Test, Client Application.		CO2
	#Self	-Learning 5.2:		
	5.2	Case Studies: Government, Energy supply, Supply Chain, Insurance, Border Control, Waste Management, Shipping, Land Registry, HealthCare, Music, Real Estate, Fishing, Tourism, National Security etc.		
		Total	45	

Department of Computer Engineering

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Andreas M. Antonopoulos	Mastering the Bitcoin: Programming the Open Blockchain	O' Reilly	2 nd Edition, 2017
2.	Melanie Swan	BlockChian	O'Reilly	2015
3.	Nitin Gaur, Luc Desrosiers, Petr Novotny, Venkatraman Ramakrishna	Hands-On Blockchain with Hyperledger: Building decentralized applications with Hyperledger Fabric and Composer	Packt	Kindle Edition, 2018
4.	Stephen Fleming business ecosystems	Blockchain Technology: Introduction to Blockchain Technology and its impact on	Stephen Fleming	2017
5.	Zeeshan-ul- hassan Usmani	Introduction to lockchain with Case Studies	Guhftgu Publication	2018

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE715	Cyb	Cyber Security, Forensics and Cyber Law						
	ТН			P TUT		TUT	Total	
Teaching Scheme(Hrs.)	03							03
Credits Assigned	03							03
				Marks				
Examination	CA	CA		(DXX/		n n	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	1 & O	1 Otal
	30	20	50					50

Course prerequisites (if any):

Computer Organization & Architecture, Cryptography & System Security, Computer Networks.

Course Objectives

The objective of the course is to enable students to understand the basic principles of cyber security, computer crimes and methods of defense. The course introduces the process of digital forensic investigation, extraction of evidences using appropriate tools. It covers the techniques of data hiding, recovery, disk analysis, volatile data extraction. Further, it explores different network based attacks, tools to monitor/mitigate such attacks. Tools such as metasploit, interfaces to dark web and deep web explore the conducive environment for attackers. Cyber laws, IT Acts enable the student to understand the legal aspects of various cyber-crimes.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Identify various	security goals,	computer crimes	& methods of defense.
-----	------------------	-----------------	-----------------	-----------------------

CO2 Understand the fundamentals of digital forensics

CO3 Analyze and interpreted the results of disk forensic operations

CO4 Apply forensic tools to extract and investigate the evidences from network

CO5 Relate the corresponding computer security acts with the crimes

Module	Unit No.	Details	Hrs.	CO
No. 1		r Security and Digital Forensics	06	CO1
	1.1	Security Attacks, security goals, security services, security mechanisms, malwares, types of malwares, data privacy.	- 00	001
	1.2	Cyberspace and criminal profiling, methods of defense		
	1.3	Incidence-response, CERT and its role.		
		#Self-Learning: Types of contemporary cyber crimes		
2	Digita	l Forensics Foundations.	10	CO2
	2.1	Introduction, six A's of digital forensics, digital investigations, digital crime scene investigation process		
	2.2	Computer evidence – introduction, types, rules and guidelines for procuring evidences, establishing chain of custody, admissibility of evidences in the court of law.		
	2.3	Evidence sources – computer generated, user generated, data generated by peripheral devices, hand-held devices, wireless devices, telecommunication devices.		
		#Self-Learning: Use of Tools for digital forensics		
3	Infori	11	CO3	
	3.1	Cloning, imaging, tools for cloning, hidden locations – slack space, unallocated disk space		
	3.2	Passwords – Brute force, dictionary based attack, password cracking		
	3.3	Disk Analysis – carving, hashing, FAT, NTFS file systems and analysis		
	3.4	Registry Analysis – introduction, structure, windows registry, volatile data, live analysis		
		#Self-Learning: Use of Tools for disk analysis		
4	Netwo	ork Forensics	10	CO4
	4.1	Network forensics methodology, Network based attacks – MITM, OWASP, ARP spoofing, IP and MAC spoofing, DNS attacks, SYN flooding attacks, port scanning, DOS, DDOS.		
	4.2	Network penetration testing – threat assessment, penetration testing tools, threat matrices		
	4.3	Tools & Applications — Browser forensics, email forensics, Nmap, Nessus, Wireshark, Metasploit, Kali Linux, Deep-Web, Dark-Web, Ransomwares #Self-Learning: Use of Tools related to network		
		forensics		

Department of Computer Engineering

5	Cyber	laws, compliances and standards	08	CO5
	5.1	Indian IT Act 2000, 2008 (Amended)		
	5.2	DMCA, CAN-SPAM Act, trade secrets, IPR		
	5.3	Compliances and standards – IT service management, COBIT, RA (Risk Analysis/Assessment)		
		Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Department of Computer Engineering

Recommended Books:

Sr. No	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Bill Nelson, Amelia Phillips, Christopher Steuart.	Guide to Computer Forensics and Investigations	Cengage Learning, USA.	3rd Edition paperback, 2002.
2.	Jason T. Luttgens, Mathew Pepe, Kevin Mandia	Incident Response and Computer Forensics	Tata McGraw Hill Education	3rd Edition, 2014.
3.	Marie-Helen Maras	Computer Forensics: Cybercriminals, Laws and Evidences	Jones and Bartlett Learning	2nd Edition, 2014
4.	Pawan Duggal	Cyber Law – The Indian Perspective	Saakshar Law Publications	2002

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title								
2UCE716		Computer Vision							
	ТН			P TUT		TUT	Total		
Teaching Scheme(Hrs.)	(03		
Credits Assigned	03							03	
	Marks								
Examination	CA	CA		TXX7	0	Ъ	P&O	Total	
Scheme	ISE	IA	ESE	TW	J	P	1 &0	1 Otal	
	30	20	50	-		-		100	

Course prerequisites (if any):

Computer Graphics, Image Processing with basic mathematical operations on vectors, matrices.

Course Objectives

In this course, students will learn basic principles of image formation, image processing algorithms and different algorithms for 3D reconstruction and recognition from single or multiple images (video). This course emphasizes the core vision tasks of scene understanding and recognition. Applications to 3D modelling, video analysis, video surveillance, object recognition and vision based control relevant to real world case studies.

Course Outcomes

At the end of successful completion of the course the student will be able to

COI	implement fundamental image processing techniques required for
	Computer Vision.
CO2	Understand image formation process.
CO3	Extract features from images and do analysis of images.
CO4	Understand video processing and object recognition techniques.
CO5	Apply the algorithms for real world application processing.

Modul	Unit	Details	Hrs.	CO		
e No.	No.					
1	Intro	luction to Computer Vision	06	CO 1		
	1.1	Image Processing, Computer Vision and Computer Graphics, What is Computer Vision - Low-level, Mid-level, High-level, Overview of Diverse Computer Vision Applications: Document Image Analysis, Biometrics, Object Recognition, Tracking, Medical Image Analysis, Content-Based Image Retrieval, Video Data Processing, Multimedia, Virtual Reality and Augmented Reality				
2	Image	12	CO 2			
	2.1	Digital Image Formation and low level processing, Overview and State-of-the-art, Fundamentals of Image Formation, Transformation: Orthogonal, Euclidean, Affine, Projective, etc; Fourier Transform, Convolution and Filtering, Image Enhancement, Restoration, Histogram Processinglevel processing,				
	2.2	Camera model and Camera calibration, Binocular imaging systems, Multiple views geometry, Structure determination, shape from shading, Photometric Stereo, Depth from Defocus, Construction of 3D model from images.				
		#Self-learning : 3D transformations and projections.				
3	Featu	re Extraction, Shape representation and Segmentation	12	CO 3		
	3.1	Edges - Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space Analysis-Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT.				
	3.2	Contour based representation, Region based representation, Deformable curves and surfaces, Snakes and active contours, Level set representations, Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-Shift, MRFs, Texture Segmentation; Object detection.				
4	Motio	Motion Estimation and Object Recognition				
	4.1	Regularization theory, Optical computation, Stereo Vision, Motion estimation, Structure from motion				
	4.2	Hough transforms and other simple object recognition methods, Shape correspondence and shape matching, Principal component analysis, Shape priors for recognition. #Self-learning: Pattern recognition.				

Department of Computer Engineering

5	Applications	5	CO 5
	Applications: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application: Surveillance foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion – combining views from multiple cameras – human gait analysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians		
Total		45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Robert Haralick and Linda Shapiro	"Computer and Robot Vision", Vol I, II.	Addison-Wesley	1993
2.	Richard Szeliski	Computer Vision: Algorithms and Applications	Springer-Verlag London Limited electronic copy available at (http://szeliski.org/Book)	2011
3.	D. Forsyth, J. Ponce	Computer Vision - A modern approach	Pearson Education	2003
4.	E. R. Davies	Computer & Machine Vision	Academic Press	Fourth Edition, 2012.
5.	R.C. Gonzalez and R.E. Woods	Digital Image Processing	Addison- Wesley.	1992.

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE717	Geographic	Geographic Information System and Spatial Computing						
	r	TH P TUT Total					Total	
Teaching Scheme(Hrs.)				•			03	
Credits Assigned		03						03
			Marks					
Examination	CA	CA		(DXX)		n	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	rau	1 otal
	30	20	50	-				100

Course prerequisites:

Students are expected to have some knowledge of DBMS and skills of programming.

Course Objectives:

The objectives of this course are to

- Introduce spatial data concepts and Map referencing.
- Provide knowledge to spatial data processing for collecting, modeling and structuring.
- Develop the skills of spatial data visualization and data presentation.
- Develop the skills to analyze spatial data using different tools
- Develop the skills for designing GIS database for small applications.

Course Outcomes

- CO1 Describe spatial data concepts and Map reference systems in GIS applications
- CO2 Apply GIS modeling and Terrain modeling using spatial data and perform interpolation using different GIS tools
- CO3 Analyze and visualize the spatial data and its quality
- CO4 Implement small decision support system applications by creating GIS database.
- CO5 Develop small GIS applications using Open standards

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	8	CO 1	
	1.1	Introduction to GIS		
	1.2	Spatial data concepts		
	1.3	Map reference systems		
2	Spatia	al Data Processing	10	CO2
	2.1	Spatial data - sources, models, structures		
	2.2	Analysis and Interpolation		
	Self-L	earning Topic: Study of different data interpolation		
	metho	ds.		
3	Terra	in Modeling and Visualization	10	CO3
	3.1	Terrain modeling		
	3.2	Visualization and measures to analyze data Quality		
4	GIS D	Decision Support System	10	CO 4
	4.1	Spatial decision support systems		
	4.2	Introduction to Global positioning systems		
		Learning Topic: Study of open source software QGIS: ation, configuration, feature extraction using in built ons		
5	GIS A	Applications and Open-source Tools	7	CO 5
	5.1	GIS applications with open source tools such as QGIS		
	•	Total	45	

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with Country	Edition and Year of Publication
1.	P. A. Burrough and R. A. McDonnell	Principles of Geographic Information Systems	Oxford University	1999
			Press	
2.	DeMers M.N.	Fundamentals of	John Wiley &	2000
		Geographic Information	Sons, Inc.,	
		Systems	New York	
3.	R. Laurini and D.	Fundamentals of Spatial	Academic	1994
	Thompson,	Information Systems	press,	
4.	Longley P.A.,	Geographical Information	Second	2005
	Goodchild M.F.,	Systems Principles	Edition,	
	Maguire D.J. and	,Techniques, Management	Abridged, John	
	Rhind D.W.	and Applications,	Wiley & Sons,	
			NJ	

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE718	C	Computer Simulation and Modeling						
	Г	TH		P)	,	TUT	Total
Teaching Scheme(Hrs.)			-	•			03	
Credits Assigned		03						03
				Marks				
Examination	CA		ECE	7DXX7	0	Ъ	P&O	Total
Scheme	ISE	IA	ESE	TW	U	P	rao	1 Otal
	30	20	50					100

Course prerequisites (if any):

Understanding of basic concepts of Database Management System and algorithms and Data structures.

Course Objectives:

This computer simulation and modeling course presents an introduction to discrete event simulation systems. The course discusses the modeling techniques of entities, queues, resources and entity transfers in discrete event environment. The course will teach the students the necessary skills to formulate and build valid models, implement the model, perform simulation analysis of the system and analyze results properly.

Course Outcomes:

- CO1 Understand the concepts of discrete event simulation and its importance in business, science, engineering, industry and other services.
- CO2 Ability to analyse and apply general principles of event scheduling algorithm & various statistical methods on different applications.
- CO3 Generate pseudorandom numbers and perform statistical tests to measure the quality of a pseudorandom number generator.
- CO4 Analyze the systems for input modeling, output analysis and validation.
- CO5 Apply simulation and modelling concepts and techniques on various real time applications.

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	duction to Simulation, Simulation Examples & general		
	princi	<u></u>		
	1.1	Introduction to Simulation: advantages, disadvantages, types		CO1
		of models & steps in simulation study.	12	&
	1.2	Simulation Examples: Manual Simulation: Queuing and Inventory problems		
	1.3	General Principles: Event Scheduling Algorithm/Time advance algorithm, Simulation using time advance algorithm.		
2	Statis	tical & Queuing Models		
	2.1	Statistical Models in simulation: Discrete and Continuous Distributions.	08	CO2
	2.2	Queuing Models: M/G/1, M/M/1		
3		om Number Generation		
	3.1	Random Number Generation Techniques		
	3.2	Testing random numbers: Chi square, K-S, Runs up and Down test.	10	CO3
	3.3	Random Variate Generation: Inverse transform technique, Convolution Method & Acceptance-Rejection Technique		
	Analy	rsis of simulation data		
4	4.1	Input Modeling: Data collection, Identifying the Distribution with Data, Parameter Estimation, Goodness-of-Fit Tests, Selecting Input Models without Data and Multivariate and Time-Series Input Models		CO4
	4.2	Verification and Validation of Simulation Models: Verification, Calibration and Validation of Simulation models.		
	4.3	Output Analysis: Estimation of absolute performance, Output Analysis Concepts		
5	Appli	05	CO5	
	5.1	Simulation of Manufacturing and Material-Handling Systems	05	
		#Self-learning: Simulation tools		
	•	Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Jerry Banks, John Carson, Barry Nelson, and David M. Nicol	Discrete Event System Simulation	Prentice-Hall	Third Edition
2.	Jerry Banks, John Carson, Barry Nelson, and David M. Nicol	Discrete Event System Simulation	Prentice-Hall	Fifth Edition
3.	Averill M Law	System Modeling & Analysis;	Tata McGraw Hill	Fourth Edition
4.	Lawrence M. Leemis Stephen K. Park	Discrete-Event Simulation: A First Course	Pearson	First Edition
5.	Banks C M , Sokolowski J A	Principles of Modeling and Simulation	Wiley	2010

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE719		User Experience Design						
	7	Н		F	•	,	TUT	Total
Teaching Scheme(Hrs.)				-			03	
Credits Assigned		03						03
				Marks				
Examination	CA	CA		TXX7	0	P	P P&O Total	Total
Scheme	ISE	IA	ESE	TW	J	r	IWU	Total
	30	20	50					100

Course prerequisites (if any):

Software Engineering.

Course Objectives

The focus of this course is to introduce the learner to User Experience (UX) Design. User Experience design is design that is user centered. The goal is to design artifacts that allow the users to meet their needs in the most effective efficient and satisfying manner. Every digital interface/interaction (e.g. web and mobile application, car dashboard, smart appliance) is designed to solve a problem or to make our lives better, easier, more successful. User Interface (UI) design refers to the way the interface looks (the actual layout of its elements). User Experience (UX) design tackles how it feels to use the product (what do we do? how do we feel?). This course teaches the principles and practice of UI/UX design.

Course Outcomes

- CO1 Understand the fundamentals of human-computer interaction and its impact on UX design.
- CO2 Outline the importance of user centric design.
- CO3 Illustrate the working of UX design process.
- CO4 Analyze tools and techniques for prototyping and designing applications.
- CO5 Summarize the applications of UX design.

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	luction to User Interface Design	06	CO1
	1.1	What is user experience design? What makes up user experience? Evolution of UX Design, Elements of user		
		experience, requirements, strategy, design principles, user centric design.		
2	User 1	12	CO2	
	2.1	Types of users, problem formulation for users (stakeholders), need finding, planning and execution for a user centered design.		
	2.2	5S model, User research, user research goals, heuristic analysis, user personas, identifying and recruiting users for the research.		
	2.3	User research methodologies - Qualitative and Quantitative analysis, user interviews, focused group discussion, expert reviews, tools for user research.		
3	UX D	esign Process	10	CO3
	3.1	Defining the UX Design Process and its Methodology, Understanding user needs, Flow chart, Six stages of UX Design process.		
	3.2	The four quadrants of empathy map, emotional mapping using an empathy map, Design Thinking, Wicked problems, Ideation.		
4	Wiref	raming and Prototyping.	12	CO4
	4.1	Visual design principles, Interaction design, Information design and data visualization, Information architecture.		
	4.2	Wireframing and storyboards, Digital Designs, Elements and Widgets, Screen design and layout, prototyping tools.		
	4.3	Usability testing – types and process.		
5	Appli	cations and Future of UXD	5	CO5
	5.1	Introduction to Augmented Reality (AR) and Virtual Reality (VR), UXD and XR, present and future of XR. #Self-learning: Case studies on UXD.		
		Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Department of Computer Engineering

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Don Bradman	The Design of Everyday	Basic Books	Reprint
		Things		Edition 2002.
2.	Allan Cooper, Robert	About Face: The	Wiley	4 th Edition,
	Reimann, David	Essentials of Interface	Publications.	2016.
	Cronin, Christopher	Design, 4ed (WILEY)		
	Noessel.			
3.	Steve Krug	Don't Make Me Think,	Pearson	Third Edition,
		Revisited: A Common	Education	2015.
		Sense Approach to Web		
		Usability		
4.	Daniel Kahneman	Thinking, Fast And Slow	Penguin Press	2012 Edition
5.	Russ Unger, Carolyn	A Project Guide to UX	New Riders	2 nd Edition,
	Chandler	Design: For user		2012.
		experience designers in the		
		field or in the making		
		(Voices That Matter)		

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE720	C# Programming and. Net Technology							
	7	TH P TUT Total				Total		
Teaching Scheme(Hrs.)							03	
Credits Assigned		03						03
				Marks				
Examination	CA	CA		TEXX7		n	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	1 &0	Total
	30*	20	50					100

Course prerequisites (if any):

Fundamentals of Object Oriented Programming concepts.

Course Objectives:

- Creating Form based application using WPF and .net Controls.
- Creating ASP.Net applications using standard .net controls.
- Connecting to data sources and managing them.
- Understand the fundamentals of developing modular application by using object oriented methodologies

Course Outcomes

CO1	Understand .NET framework & fundamentals.
CO2	Implement object-oriented concept in C#.
CO3	Develop desktop applications & Multi-threaded programs in C#.
CO4	Implement ADO.NET and LINQ concept in C#.
CO5	Demonstrate the web application using ASP.NET.

^{*} The ISE and End Semester Exam is conducted in Lab for with Onscreen Mode with guidelines and instructions provided during/before the examination.

Department of Computer Engineering

Module no	Unit No	Details	Hrs.	CO
		Introduction of .NET framework, Language fundamentals and OOPs	5	CO1
	1.1	Concepts .NET framework: What is .net, CLR, MSIL, JIT, CLS, CTS, Namespaces, Assembly		
1	1.2	Language fundamentals: Data types, Operators, Conditional statements, Looping, statements, Arrays, Structures, and Enumerators		
1	1.3	OOPs Concepts: Encapsulation, Abstraction, Inheritance, Overloading Class and object, Types of classes, Creating and using namespaces, passing arguments to methods – pass by in, out, param, address. Working with Collections and File Hendling		
		Working with Collections and File Handling Collection Classes	6	CO2
2	2.1	ArrsayList, Hash Table, Stack, Queue, Dictionaries etc. Working with Generic Collection Classes		
	2.2	File Handling: Introduction to streams, System.IO namespace, Path, File, and Directory classes, Reding And writing files, streamReader and streamWriter class.		
		Windows Forms and WPF	14	CO2,CO4
	3.1	Introduction, Controls:, ToolTip, RichTexBox etc Menus Strip, Toolbar Strip, Dialog box, MDI Applications, deploying windows application, Creating .dll file.		
3	3.2	Introduction to WPF (Windows presentation Foundation), Control Menus, Layout, Input, Styles, Resources and theme, Data Binding, Control templates, Documents, Navigation based Application, Animation and media,		
	3.3	Database programming with ADO.NET and LINQ Overview of ADO.NET, Namespaces, Classes, Data retrieval methods – connected, disconnected, Data table, Dataset, Using the Data Controls, LINQ Architecture, LINQ to object, LINQ to SQL, LINQ to Dataset		
4		Multithreading, XML and working with Excel in C#:	10	CO3
	4.1	Multithreading: Introduction, Application Domains, Creating and Managing Threads, Threads Priority, Thread States, Thread Synchronization & Interthread Communication, Using Monitor		

Department of Computer Engineering

		XML: Reading and Writing XML, Important Classes in		
	4.2	the System.XML Namespace, Read and Write XML		
		Nodes and Attributes.		
		Creating, Opening, Reading an Excel file in C#, Format an Excel file using C#, Insert a picture in excel		
		from C# App, Insert a background picture in excel,		
	4.3	Creating Excel Chart from C#, Export excel chart from		
		C#, Export database to excel file, Export DataGridView		
		to excel file		
5		ASP.NET	10	CO5
		ASP.NET Architecture, control based programming,		
	5.1	ASP.NET working with DATA: Data Binding, State		
		Management, Validation, Caching		
		ASP.NET Security: IIS 6 & IIS7 URL Authorization,		
	5 2	Forms authentication, Role-based authorization,		
	5.2	Trimming site maps with roles, Config file encryption,		
		ASP.NET Membership, Resources and Internationalization		
	5.3	ASP.NET MVC, ASP.NET Ajax, ASP.NET		
		Advanced Topics:		
		#Self-learning: HTTP pipeline, custom control, Web		
	5.4	parts, Web Services		
		Total	45	

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Christian Nagel, Bill Evjen, Jay Glynn, Karli Watson, Morgan Skinner	Professional C# 2008	Wiley	1 st , 2008
2.	Deitel	C# How to Program	Pearson	6 th ,2016
3.	Mattew Macdonlads	Pro ASP.NET 3.5 in C# 2008	Apress	2 nd , 2007
4.	Anne Boehm, Joel Murach	Murach's C# 2015	Mike Murach & Associates	6 th Edition, 2016
5.	Matthew MacDonald	Pro WPF in C# 2008	Apress	3 rd , 2009

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering
Department of Computer Engineering
Open Elective Technical

(Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Course Code	Course Title							
2UST701		Genetic Algorithm and Applications						
	TH			P		,	TUT	Total
Teaching Scheme(Hrs.)	03			•				03
Credits Assigned	02							02
	Marks							
Examination	CA		EGE	CENTAL Z	0	Р	P&O	Total
Scheme	ISE	IA	ESE	TW	U	r	TWO	Total
	30	20				-		50

Course Objectives

The objective of this course is to introduce optimization techniques and application of genetic algorithms. The course also familiarizes students with the concepts of various operators and their implementation. Course mainly focuses on applying the genetic algorithm for a real life application.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Understand the concept of Genetic Algorithm	

CO2 Describe Various Operators of GA

CO3 Understand the biological background and its technology

CO4 Solve and implement problem by GA techniques

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO	
No. 1	No.	luction	07	CO	
	1.1	Introduction, History, Basic concepts – Creation of Off springs	- 07		
	1.2	Working principle, Encoding – binary encoding – octal encoding – hexadecimal encoding, Permutation encoding-Value encoding			
	1.3	Tree encoding, Fitness function			
2	GA O _l	GA Operators			
	2.1	Reproduction, Roulette-wheel Selection – Boltzmann Selection- Tournament Selection, Rank Selection – Steady –state selection, Elitism – generation gap and steady-state selection			
	2.2	Inheritance operators –Crossover, Single-point crossover – Two-point cross over – Multi-point cross over, Uniform Cross over –Matrix Cross Over – Cross Over rate			
	2.3	Mutation operators, Mutation – Mutation rate			
3	Geneti	ic Modelling	08	CO	
	3.1	Inversion – deletion and duplication - deletion and regeneration, Segregation – crossover and inversion			
	3.2	Bit-wise operators – one's complement operator, Logical bit-wise operators, Shift operators – bit-wise operators used in GA			
	3.3	Generational cycle Derivation, Convergence of GA			
	3.4	Differences and Similarities between GA and Other Traditional Methods			
4	Applic	eations Of GA	08	CO	
	4.1	The rise of GA, GA application of Historical Interaction			
	4.2	Dejung & Function optimization, Current applications of GA			
	4.3	Techniques in genetic search :Dominance, Diploidy & abeyance, Multi objective optimization			
	4.4	Knowledge-Based Techniques, GA & parallel processes, Real Life Problem			
5	Geneti	ics-Based Machine Learning	10	CO	

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

	5.1	Genetics – Based Machined learning Classifier system, Rule & Message system		
	5.2	Apportionment of credit: The bucket brigade – Genetic Algorithm, A simple classifier system in Pascal		
	5.3	Results using the simple classifier system, The Rise of GBMC, Development of CS-1, the first classifier system		
	5.4	Smitch's Poker player, Applications		
#Self-Learning Topic- Multiobjective Evolutionary Optimization				
			45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	David E. Goldberg	Genetic Algorithms in	Pearson	2001
		Search, Optimization and	Education	
		Machine Learning		
2.	S.Rajesekaran,	Neural Networks, Fuzzy	Pearson	2003
	G.A.Viijayalakshmi	Logic and Genetic	Education	
	Pai	Algorithms		
3.	Banzhaf, Nordin,	Genetic Programming: An	Morgan	February 1998
	Keller and Francone,	Introduction	Kaufmann	
	Morgan-Kaufmann			
4.	Riccardo Poli,	A Field Guide to Genetic	Lulu.com	March 2008
	Willian B. Langdon,	Programming		
	Nicholas Freitag			
	McPhee			
5.	Clinton Sheppard	Genetic Algorithms With	Createspace	April 2016
		Python	Independent	
			Pub	

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UST702	W	Web Analytics and Web Intelligence						
	ТН			P		TUT	Total	
Teaching Scheme(Hrs.)	03							03
Credits Assigned	02							02
	Marks							
Examination	CA		EGE	TDXX/	0	Р	P&O	Total
Scheme	ISE	IA	ESE	TW	J		100	1 Otal
	30	20						50

Course Objectives

Web Analytics is the measurement, collection, analysis, and reporting of Internet data for purposes of understanding and optimizing Web usage. Web Analytic is a tool that can measure Web site traffic. Businesses can also use it as a tool for business and market research.

Course includes definition and categories of Web Analytics, some examples of Web-based Analytics such as Google Analytics, and usage of EDDIE Tool.

Course Outcomes:

- CO1 Know the concepts and terminologies related to web analytics.
- CO2 Explore various parameters used for web analytics and their impact.
- CO3 Explore the use of tools and techniques of web analytics.
- CO4 Get experience on websites, web data insights and conversions.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Web A	Analytics	08	CO 1
	1.1	Basics , Traditional Ways , Expectations		
	1.2	Data Collection , Clickstream Data , Weblogs , Beacons		
	1.3	JavaScript Tags , Packet Sniffing		
	1.4	Outcomes data , Competitive data , Search Engine Data		
2	Quali	tative Analysis	08	CO1
	2.1	Customer Centricity ,Site Visits		
	2.2	Surveys, Questionnaires, Website Surveys, Post visits, Creating and Running, Benefits of surveys		
	2.3	Critical components of successful strategy		
3	Web A	Analytic	10	CO2
	3.1	URLS, Cookies, Time on site, Page views, Understand standard reports		
	3.2	Website content quality, Navigation reports (top pages, top destinations, site overlay)		
	3.3	Search Analytics, Internal search, SEO and PPC, Measuring Email and Multichannel Marketing		
	3.4	Competitive intelligence and Web 2.0 Analytics – Segmentation – Connectable reports		
4	Googl	le Analytics	10	CO3
	4.1	Analytics, Cookies, Accounts vs Property		
	4.2	Tracking Code, Tracking Unique Visitors, Demographics		
	4.3	Page Views & Bounce Rate Acquisitions, Custom Reporting		
5	Goals	& Funnels	09	CO4
	5.1	Filters , Ecommerce Tracking ,Real Time Reports,Customer Data Alert		
	5.2	Adwords Linking, Adsense Linking, Attribution Modeling		
	5.3	Segmentation ,Campaign Tracking , Multi-Channel Attribution		
#Self lear	ning:	Web Intelligence 4.1 EDDIE Tool		
		Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Avinash Kaushik	Web Analytics 2.0: The Art of Online Accountability and Science Of Customer Centricity	Sybex	1st edition, 2009
2.	Michael Beasley	Practical Web Analytics for User Experience: How Analytics can help you Understand your Users	Morgan Kaufmann	2013.
3.	Magy Seif El-Nasr, Anders Drachen, Alessandro Canossa, eds.	Game Analytics: Maximizing the Value of Player Data	Springer	2013
4.	Bing Liu	Web Data Mining: Exploring Hyperlinks, Content, and Usage Data	Springer	2 nd Edition, 2011
5.	Justin Cutroni	Google Analytics	O'Reilly	2010
6.	Eric Fettman, Shiraz Asif, Feras Alhlou	Google Analytics Breakthrough	John Wiley & sons	2016

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code		Course Title							
2UST703		Reinforcement Learning							
	7	TH			P		TUT	Total	
Teaching Scheme(Hrs.)		03						03	
Credits Assigned		02						02	
		Marks							
Examination	CA		ESE	TW		_	P&O	Total	
Scheme	ISE	IA			O	P		1 Otal	
	30	20						50	

Course prerequisites:

Linear algebra

Probability and statistics

Multivariate calculus

Algorithms

Programming language such as Python

Course Objectives

- 1. Comprehension of fundamentals of reinforcement learning
- 2. Application of various RL methods for
- 3. Analysis using temporal difference and deep learning methods
- 4. Evaluation of various methods of RL for application development

Course Outcomes

- CO1. Interpret fundamentals of Reinforcement learning methods
- CO2. Apply various dynamic programming and Monte-Carlo methods
- CO3. Analyze for information extraction using RL methods.
- CO4. Evaluate the synthesized information for statistical interpretation.
- CO5. Design and develop RL based applications.

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1		luction to Reinforcement Learning	08	CO 1
	1.1	Elements of Reinforcement Learning		
	1.2	Markov Decision Processes to solve real-world problems,		
		Policies and value functions		
	1.3	Derivation of Bellman equations		
2	Dynar	nic Programming and Monte Carlo Methods	10	CO2
	2.1	Iterative policy evaluation, Policy improvement, Policy iteration and value iteration		
	2.2	Evolutionary algorithms, stochastic policy search, Reinforce algorithm		
	2.3	Classic Monte Carlo prediction and control methods, Greedy and epsilon-greedy policies, Exploration-Exploitation Dilemma and its solutions		
3	Temp	oral Difference Learning	10	CO3
	3.1	Q-Learning		
	3.2	Generalization		
	3.3	Sarsa-Learning		
4	Deep 1	Learning with PyTorch	08	CO4
	4.1	Building and training neural networks and		
		convolutional neural networks in PyTorch.		
	4.2	Deep Deterministic Policy Gradients (DDPG) algorithm		
	Self-L (DCN)	earning Topic: Study of Deep Convolutional Neural Network N)		
5	Deep (Q-Learning	09	CO 5
	5.1	Extend value-based reinforcement learning methods to complex problems using deep neural networks		
	5.2	Deep Q-Network (DQN), Double-DQN, Dueling-DQN, and Prioritized Replay		
	5.3	Introduction to Multi-Agent RL, Deep RL applications in Gaming, Robotics, etc.		
		earning Topic: Deep learning model design using Python functions from Tensorflow and Keras		
		Total	45	

^{*} Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
			country	Publication
1.	Stuart Russell and	Artificial Intelligence: A	Pearson	3 rd edition,
	Peter Norvig	Modern Approach		2010
2.	Robert Tibshirani,	The Elements of Statistical	Springer	2nd edition,
	and Jerome Friedman	Learning, Trevor Hastie	~pringer	2009
		8,		
3.	M. Gopal	Applied Machine Learning	Mc-Graw Hill	Print edition:
			Education	ISBN-13:
			India Pvt. Ltd.	978-93-5316-
				025-8,
4.	Chris Bishop	Pattern recognition and	Springer	ISBN-13:
		machine learning (PRML)		978-0387-
				31073-2, 2006
5.	Hal Daume III	Primary reference: A	CIML	2012
		course in machine learning		

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code		Course Title							
2UST704		Massive Graph Analysis							
	TH			P	P		TUT	Total	
Teaching Scheme(Hrs.)			-	•			03		
Credits Assigned							02		
	Marks								
Examination	CA	CA		(DXX)	0	ъ	P&O	Total	
Scheme	ISE	IA	ESE	TW	J	P	100	1 Otal	
	30	20						50	

Course Objectives

- 1. To explore the concept of Graphs and related algorithms
- 2. To learn new ways to model, store, retrieve and analyze graph-structured data.
- 3. To understand the advanced concepts in graph analytic techniques and its applications.

Course Outcomes

- 1. Explore graph analytics techniques and its applications
- 2. Model a problem into a graph database
- 3. Analyze the graph in a scalable manner.
- 4. Apply Graph theoretical techniques in a massive network

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1		luction - Large Scale Graphs	5	CO
	1.1	Characteristics of large scale graph, Complex data sources, Social Networks, Simulations, Bioinformatics; Categories-		
		Social, Endorsement, Location, Cooccurrence graphs; Graph		
		Data structures, Parallel, Multicore, & Multithreaded		
		Architectural		
		Support for Graph Processing, Mapping Graph Algorithms to		
2	Rasic :	Architectures, applications of large scale graphs and Advanced Large-scale Graph Analysis	12	CO
	2.1	Parallel Prefix & List Ranking, Link Analysis,	12	
	2.1	Page Ranking Algorithms		
	2.2	Parallel BFS, Spanning Tree, Connected Components,		
		Minimum Spanning Tree Matroid Algorithms		
	2.3	Social Networking Algorithms, Parallel Betweenness		
		Centrality.		
3	Dynan	nic Parallel Algorithms	10	CO
	3.1	Streaming Data Analysis -Data Structures for Streaming		
		Data -Tracking Clustering Coefficients -		
	3.2	Tracking Connected Components -Anomaly Detection,		
		Massive-Graphs in Computational Biology, Genome		
		Assembly.		
		#C.16 Lawing Chatain also ideas for and late		
		#Self –learning : Clustering algorithms for graph data		
4	Distrib	outed Computation for Massive Data Sets	8	CO
	4.1	Spectral, Modularity-based Clustering, Random		
		Walks; Large Graph Representation and Implementation- V-		
		Graph Representation, Map Reduce,		
		Surfer, Graph Lab.		
		#Self-Learning: Query language and access method for graph		
		databases		
5	Advan	ced Massive Graph Analysis	10	CO

Department of Computer Engineering

5.1	Power Law Distribution, Game-Theoretic Approach, Rank Aggregation and Voting Theory, Recommendation Systems, Social network analysis: case study -Facebook, LinkedIn, Google+, and Twitter.		
	Total	45	

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
110.			country	Publication
1.	Matthew O. Jackson	Social and Economic	Princeton	2010
		Networks	University	
			Press	
2.	Stanley Wasserman,	Social Network Analysis:	Cambridge	1995
	Katherine Faust	Methods and Applications	University	
			Press	
3.	Tanja Falkowski,	Community Analysis in	University	2009
		Dynamic Social Networks	Magdeburg	
4.	Ladislav Novak,	Hybrid Graph Theory and	Cambridge	2009
	Alan Gibbons	Network Analysis	Tracts in	
			Theoretical	
			Computer	
			Science	
5.	Eric D. Kolaczyk	Statistical Analysis of	Springer Series	2009
		Network Data Methods	in Statistics	
		and Models		
6.	Charu. C. Aggarwal,	Managing and mining	Springer-	2010
	Haixun Wang	graph data	Verlag New	
			York Inc.	

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Course Code		Course Title								
2USH701	Open Electi	Open Elective Humanities/Management/Swayam NPTEL Course (8 weeks)								
	Т	ТН				,	TUT	Total		
Teaching Scheme(Hrs.)	02							02		
Credits Assigned		02						02		
				Marks						
Examination	CA	CA		TW	0	, _D	P&O	Total		
Scheme	ISE	IA	ESE	1 1	J	P	100	Total		
	30	20						50		

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code		Course Title								
2UCP701		PROJECT I								
	7	ТН				TUT		Total		
Teaching Scheme(Hrs.)				06				03		
Credits Assigned					06			03		
		Marks								
Examination	CA		ECE	TDXX7	0	D	D.O.O.	Total		
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total		
				25	25			50		

^{*}Based on periodic assessment of progress of project.

Course Outcomes:

After successful completion of the course the student will be able to:

- CO1. Identify and formulate problem definition of real world Problems.
- CO2. Design hardware and software components and systems to meet specifications of identified problem.
- CO3. Apply project management principles to plan the execution of entire project work.
- CO4. Use hardware and software tools for efficient implementation of project work.

Term work:

The final year students have experienced project in their second and third year in Mini Project course. In final year, a group of maximum four students will be completing a comprehensive project work. Project work may be internally assigned or may be externally assigned by the research institutes, industry etc. Each group will be assigned one faculty advisor / guide. This project work in final year may be extension of the Mini Project work done in pre-final year. The students may choose their problem statements in consultation with faculty members. The main intention of Project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The Project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be

- Learning additional skills
- o Ability to define, design, analyze and implement the solution to problems
- o Learn the behavioral science by working in a group
- The project area may be selected in which the student intends to do further education and/or may be either intend to have employment or self-employment
- The topic of project should be different and / or may be advancement in the same topic of Mini Project
- The students may use this opportunity to learn different computational techniques / software tools / platforms etc. as well as some model development.

Students are expected to report to the faculty advisor about the progress of the work. A continuous assessment record of the progress of the project will be maintained by concerned faculty members The TW will be examined by approved internal faculty appointed by the head

^{%-} For Students opting for one semester internship for semester VIII, project I will not continue to Project II.

Department of Computer Engineering

of the institute. A Report in prescribed format must be submitted. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student will be assessed for his/her contribution, understanding and knowledge gained. There will also be an intermediate evaluation at the mid of the semester by a panel of examiners.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Course Code	Course Title									
2UCL701		Project Management Lab								
	Л	TH				TUT		Total		
Teaching Scheme(Hrs.)				02				02		
Credits Assigned					01			01		
	Marks									
Examination	CA	CA		TEXX/	0	P	P&O	Total		
Scheme	ISE	IA	ESE	TW	U	r	1 &0	1 Otal		
				25	25		-	50		

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus.

Term Work will consist of Practical covering entire syllabus of "Project Management".

Students will be graded based on continuous assessment of their term work.

Practical which will demonstrate the **Project Management** concepts

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title									
2UCEL711		Big Data Analytics lab								
	7	TH				TUT		Total		
Teaching Scheme(Hrs.)				02				02		
Credits Assigned		01				01				
	Marks									
Examination	CA	CA		(DXX)		ъ	P&O	Total		
Scheme	ISE	IA	ESE	TW	O	P	100	1 Otal		
				25	25	-	-	50		

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the above syllabus.

The programs should be implemented in C, C++, Java or Python.

Term Work will consist of Practical covering entire syllabus of "Big Data Analytics".

Students will be graded based on continuous assessment of their term work. \\

Practical which will demonstrate the big data analytics concepts.

Department of Computer Engineering

Course Code	Course Title									
2UCEL712		Data Science Lab								
	Г	TH				,	TUT	Total		
Teaching Scheme(Hrs.)				02			02			
Credits Assigned					01			01		
	Marks									
Examination	CA		ECE	TW		P	P&O	Total		
Scheme	ISE	IA	ESE		O	P	rao	Total		
	1			25	25	-	-	50		

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of "Data Science". Students

will be graded based on continuous assessment of their term work.

Practical which will demonstrate the **Data Science** concepts

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title								
2UCEL713	Cloud Computing and Emerging technology Lab								
	r	TH P TUT Total							
Teaching Scheme(Hrs.)				02				02	
Credits Assigned				01				01	
				Marks					
Examination	CA		ECE	TW	0	P	P&O	Total	
Scheme	ISE	IA	ESE	1 44	J	ľ	1 & O	1 Otal	
				25	25		-	50	

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of "Cloud Computing and Emerging Technology". Students will be graded based on continuous assessment of their

term work.

Practical which will demonstrate the Cloud Computing and Emerging Technology concepts

Course Code	Course Title								
2UCEL714		Bloc	k Chain	Tech	nolog	gy La	ab		
	Γ	TH		P)	,	TUT	Total	
Teaching Scheme(Hrs.)				02				02	
Credits Assigned				01				01	
				Marks					
Examination	CA		ECE	TW	0	D	P&O	Total	
Scheme	ISE	IA	ESE	1 44	J	P	1 & 0	1 Otal	
	1			25	25	-	-	50	

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of "Block Chain Technology". Students will be graded based on continuous assessment of their term work. Practical which will demonstrate the Block Chain Technology concepts

Course Code	Course Title									
2UCEL715	Cyber	Cyber Security, forensic and Cyber Law Lab								
	Γ	TH P TUT Total								
Teaching Scheme(Hrs.)				02	2			02		
Credits Assigned				01	1			01		
				Marks						
Examination	CA		ESE	TW	0	P	P&O	Total		
Scheme	ISE	IA	ESE	1 77	U	P	rao	1 Otal		
	1			25	25		-	50		

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of "Cyber Security, Forensic and Cyber Law". Students will be graded based on continuous assessment of their term work.

Practical which will demonstrate the Cyber Security, Forensic and Cyber Law concepts

Course Code	Course Title									
2UCEL716		Computer Vision Lab								
	Γ	TH		P)	,	TUT	Total		
Teaching Scheme(Hrs.)				02	2			02		
Credits Assigned				01				01		
				Marks						
Examination	CA		ESE	TW	0	D	P&O	Total		
Scheme	ISE	IA	ESE	1 44	J	P	1 & 0	1 Otal		
	1			25	25	-	-	50		

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of "Computer Vision". Students will be graded based on continuous assessment of their term work. Practical which will demonstrate the Computer Vision concepts

Course Code	Course Title								
2UCEL717		GIS and Spatial Computing Lab							
	Γ	TH		P)	,	TUT	Total	
Teaching Scheme(Hrs.)				02	2			02	
Credits Assigned				01				01	
				Marks					
Examination	CA		ESE	TW	0	D	P&O	Total	
Scheme	ISE	IA	LSL	1 44	J	P	1 & O	1 Otal	
	-			25	25		-	50	

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of "GIS and Spatial Computing". Students will be graded based on continuous assessment of their term work. Practical which will demonstrate the GIS and Spatial Computing concepts

Course Code	Course Title								
2UCEL718	Computer Simulation and Modeling Lab								
	Γ	TH		P)	,	TUT	Total	
Teaching Scheme(Hrs.)				02	2			02	
Credits Assigned				01				01	
				Marks					
Examination	CA		ESE	TXX7	0	D	P&O	Total	
Scheme	ISE	ESE	TW	U	P	rao	1 Otal		
	1			25	25	-	-	50	

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of "Computer Simulation and Modeling". Students will be graded based on continuous assessment of their term work. Practical which will demonstrate the Computer Simulation and Modeling concepts

Course Code	Course Title								
2UCEL719	User Experience and Design Lab								
	Γ	TH P TUT Total							
Teaching Scheme(Hrs.)				02				02	
Credits Assigned				01				01	
				Marks					
Examination	CA		ECE	TW	0	P	P&O	Total	
Scheme	ISE	IA	ESE	1 44	J	ľ	1 & O	1 Otal	
	-			25	25	-	-	50	

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of "User Experience and Design". Students will be graded based on continuous assessment of their term work. Practical which will demonstrate the User Experience and Design concepts

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title								
2UCEL720	C# P	C# Programming and .Net Technology Lab							
	Γ	TH P TUT Total							
Teaching Scheme(Hrs.)				02				02	
Credits Assigned				01				01	
				Marks					
Examination	CA		ECE	TW	0	P	P&O	Total	
Scheme	ISE	ESE	1 44	J	ľ	1 & O	1 Otal		
	1			25	25		-	50	

Term Work:

Note: The faculty should conduct 8-10 experiments and case study based on the syllabus. Term Work will consist of Practical covering entire syllabus of "C# Programming and .net Technology". Students will be graded based on continuous assessment of their term work. Practical which will demonstrate the C# Programming and .net Technology concepts

Semester VIII
B.Tech Computer Engineering
(KJSCE 2018)

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

LY BTech VIII Semester

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Course Category
2UCP801	Project- II/ Semester long Internship	0 - 14 - 0	14	0 - 7 - 0	7	PR
UECE81X	Departmental Elective- V / Swayam NPTEL course*	3-0-0	3	3-0-0	3	PE
UECE82X	Departmental Elective- VI/ Swayam NPTEL course*	3-0-0	3	3-0-0	3	PE
	Total	6 – 14 – 0	20	6-7-0	13	

*For students selected for semester long internship

Examination Scheme

Course	Course Name	Examination Scheme							
Code					Mark	KS .			
		C	'A	ESE	TW	0	P	P&O	Total
		ISE	IA						
2UCP801	Project- II/ Semester long Internship			-	100	100			200
2UCE81X	Departmental Elective- V / Swayam NPTEL course*	30	20	50	-	1		1	100
2UCE82X	Departmental Elective- VI/ Swayam NPTEL course*	30	20	50		-			100
Total		600	40	100	100	100			400

	Departmental Electiv	ve – V & VI f	for VIII Semester
Course	Name of	Course	Name of
Code	Electives	Code	Electives
2UCE811	Bioinformatics	2UCE812	Game Programming
2UCE813	Advanced Algorithms: Design	2UCE814	IoT Security
	and Analysis		
2UCE815	Internet of Everything	2UCE816	Cyber Physical System
2UCE817	Deep Learning	2UCE818	Speech and Language Processing
2UCE819	Software Architecture and	2UCE820	High Performance Computing
	Design Thinking		

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title									
2UCP801	PRO	PROJECT – II / Semester Long Internship ^{\$}								
	7	TH P TUT Total								
Teaching Scheme(Hrs.)								14		
Credits Assigned				07				07		
				Marks						
Examination	CA		ECE	/DXX/	0	ъ	P&O	Total		
Scheme	ISE	ESE	TW	U	P	rau	1 Otal			
				100	100			200		

^{*}Based on periodic assessment of progress of project/ Internship

Course Outcomes:

After successful completion of the course the student will be able to:

- CO1. Design, implement and test the hardware / software components of system to meet desired specifications
- CO2. Analyze, interpret results and correspondingly modify the designed system/components to achieve desired results.
- CO3. Identify limitations of work done and suggest scope for future development.
- CO4. Write technical report and present the work done in appropriate format.
- CO5. Demonstrate individual, group and leadership skills during project execution

Term work:

The final year students have already under gone project assignment in their seventh semester and in this semester the students are expected to continue the project work of stage I. Students are expected to report to the faculty advisor about the progress of the work. A continuous assessment record of the progress of the project will be maintained by concerned faculty members. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- o Extensive Literature survey.
- o Progress of the work (Continuous assessment)
- o Design, implementation, and analysis of the project work.
- o Results, conclusions and future scope.
- o A Technical Report in prescribed format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained. There will also be an intermediate evaluation at the mid of the semester by a panel of examiners.

\$ - Semester Long Internship Policy (SLIP) will be applicable for Semester Long Internship

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE811		Bioinformatics						
	T	TH P TUT Total				Total		
Teaching Scheme(Hrs.)	03							03
Credits Assigned	03							03
				Marks				
Examination	CA	CA		7DXX7	/// O	n neo	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	100	1 Otal
	30	20	50					100

Course prerequisites (if any):

Basic concepts of Programming

Course Objectives

The objective of this course will be to introduce students to the fundamentals of molecular biology and recent advances in genomics technology. The development of bioinformatics as an interdisciplinary field has introduced many sophisticated tools and techniques, to organize the information associated with biological molecules and contribute to our understanding of biological processes. On a larger scale, this has led to many practical applications, not only providing greater depth to biological research but also adding other dimensions to engineering applications. This course also aims to provide students with a practical and hands-on experience with common bioinformatics tools and databases.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Understand the scope of Bioinformatics
- CO2 Understand popular bioinformatics database
- CO3 Learn Fundamentals of Databases and Sequence alignment
- CO4 Process, analyze, and manage biological information through Machine Learning Algorithms.

Module	Unit	Details	Hrs.	CO
No.	No.		00	00.1
1		uction to Bioinformatics	08	CO 1
	1.1	Bioinformatics- History, Computational biology, Biological computing, Applications		
	1.2	Human Genome Project: History, Significance & applications.		
	1.2	Introduction to important bioinformatics databases		
		(NCBI, Uniprot, PDB and others)		
2	Algori	thms for biological sequence analysis	09	CO2
	2.1	Introduction to python for bioinformatics, Visualization		
		of Genomics, Sequencing technologies: Overview,		
		Genome Assembly, Genome Annotation, Comparing		
		Genomes		
	2.2	Pairwise sequence analysis, Multiple sequence analysis		
3	Introd	uction to protein structure prediction	08	CO3
	3.1	Predictive methods using protein sequences – protein		
		identification, physical properties, motifs and patterns		
	3.2	3D structure prediction techniques, structure		
		classification, Secondary structure prediction, Tertiary		
		structure prediction		
4		ine Learning for Bioinformatics	12	CO4
	4.1	Intelligent systems, Hidden Markov model(HMM),		
		Bayesian network(BN), Symbolic machine		
		learning(Decision and identification trees), Application		
		of Artificial intelligence(AI) for bioinformatics,		
	4.2	Application of Artificial intelligence (AI) for		
		bioinformatics, Artificial neural network (ANN),		
		Stochastic context free grammar(SCFG), Genetic and		
		Lamarckian algorithms.		
5	Appli	cations of Bioinformatics	08	CO4
	5.1	Secondary Structure Prediction of Protein		
		Secondary structure: basic principles on which the		
		prediction methods of first, second and third generation		
		are based		
	5.2	Algorithm of Chou-Fasman, GOR methods, other		
		methods, predicting secondary structures using these		
		methods and analysis		
	5.3	Concepts in measuring the accuracy of prediction (Q3,		
		segment overlap, Mathew's correlation coefficient etc.)		
		#Self learning : Comparative and Functional		
		Genomics	4.7	
		Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Pierre Baldi	Bioinformatics: The Machine Learning Approach (Adaptive Computation and Machine Learning series	Bradford	2008
2.	Dan E. Krane	Fundamental Concepts of Bioinformatics	Pearson	2009
3.	Andreas Baxevanis	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins	Wiley- Interscience	2001

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title								
2UCE812		Game Programming							
	ſ	TH			P TUT		Total		
Teaching Scheme(Hrs.)	03			-				03	
Credits Assigned		03						03	
		Marks							
Examination	CA	CA			0	_	P&O	Total	
Scheme	ISE	IA	ESE	TW	O	P	rau	1 Otal	
	30	20	50					100	

Course prerequisites (if any):

Computer Graphics, Mathematics, Basic Physics, Data Structure and Algorithms

Course Objectives

Understand the concepts of Game design and development. Learn the processes, mechanics and issues in Game Design. Be exposed to the Core architectures of Game Programming. Know about Game programming platforms, frame works and engines.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Understand and choose appropriate game architecture

- CO2 Design a game using appropriate development environment
- CO3 Implement a game with detailed components
- CO4 Optimize, debug and publish an ethical games

Module	Unit	Details	Hrs.	CO
No.	No.			
1		luction to game programing	04	CO1
	1.1	Game Architecture		
		Applying the Game Architecture		
		Application Layer		
		Game Logic		
		Game View for the Human Player		
		Game Views for AI Agents		
		Networked Game Architecture		
		Design Philosophy of DirectX	0.2	00.0
2		core Game Programming	03	CO 2
	2.1	Introduction to Game Design		
		Data Structures and Algorithms for Game Programming		
		The Mathematical Side of Games		
		Introduction to Physics Modeling		
3		ing Your Game	10	CO 2
	3.1	Creating a Project		
		Source Code Repositories and Version Control		
		Building the Game: A Black Art?		
		Creating Build Scripts		
	~	Game Initialization and Shutdown		
4		Actors and Component Architecture and Controlling ain Loop	15	CO3
	4.1	Game Actors and Component Architecture		
	7.1	A First Attempt at Building Game Actors		
		Component Architecture		
		Creating Actors and Components		
		Defining Actors and Components		
		Storing and Accessing Actors		
		Putting It All Together		
		Data Sharing		
	4.2	Controlling the Main Loop		
	''-	Organizing the Main Loop		
		Playing Nicely with the OS		
		Using the DirectX		
		Can I Make a Game Yet?		
		Creating Game Mission**		
		#Self Learning: Creating Sound		
5	Loadii	ng and Caching, optimization, debugging and publishing	13	CO
	5.1	Loading and Caching Game Data		
		Game Resources: Formats and Storage Requirements		
		Resource Files		
		The Resource Cache		
		Out of Cache		
	5.3	Optimization and Debugging		
		The Art of Handling Failure		
		The The Of Handing Landie		L

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

	Debugging Basics		
	Graphics and Shader Debugging		
	Debugging Techniques		
	Building an Error Logging System.		
	Different Kinds of Bugs		
	Profiling		
	Game Publishing		
5.3	Game engine, Game Server and Client		
5.4	The Ethics of Computer Games		
	Applying Ethics		
	Unethical Game Content and Effect Studies		
	The Ethics of Game Design		
	#Self learning: Case Studies: Ethical and Unethical		
	games		
	Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
			country	Publication
1.	Mike "MrMike"	Game Coding	Cengage	Fourth Edition
	McShaffry and David	Complete	Learning.	2013
	"Rez" Graham		USA	
2.	André LaMoth	Game	Premier Press,	Second
		Programming	Inc, USA	Edition, 2002
		All in One		

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE813	Advanced Algorithms: Design and Analysis							
	ТН			P	P TUT		TUT	Total
Teaching Scheme(Hrs.)	03			-				03
Credits Assigned	03							03
				Marks				
Examination	CA	CA		(E) X X /		Ъ	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	1 &0	Total
	30	20	50					100

Course prerequisites (if any): Data structures, Analysis of algorithms

Course Objectives

This course is concerned with the study of algorithms for solving practical problems efficiently, and the theoretical analysis of their performance. There will also be a brief introduction to complexity theory, the formal study of algorithm performance. The algorithm categories considered for study are greedy algorithms, dynamic programming, network flow algorithms, graph algorithms, intelligent algorithms and approximation algorithms.

The goal of this course is to develop the appropriate background, foundation and experience for advanced study in Computer algorithms and their performance. Students will develop the necessary skills from both a theoretical perspective as well as applying their knowledge on various problem solving strategies.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Derive complexity of algorithms using various techniques
CO2	Analyze and solve problems for various problem solving strategies
CO3	Solve path computation and network flow problems using various approaches
CO4	Identify appropriate data structure and design techniques for different
	problems
CO5	Analyze performance of randomization and intelligent algorithms over
	traditional solutions

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Module No.	Unit No.	Details of Topic	Hrs	CO
1		Introduction to analysis of Algorithms		CO 1
	1.1	Design and Analysis Fundamentals, Performance analysis, space and time complexity, classes of Problems		
	1.2	Growth of a function: Big Oh,, Omega, theta notation, Mathematical Background for algorithm analysis, recursive algorithms		
	1.3	Algorithm analysis: Master's theorem, Substitution and Recursion tree methods		
2		Algorithmic strategies for problem solving		CO 2
		Divide and Conquer, Greedy strategy, Dynamic Algorithms, backtracking, branch and bound: Searching and Sorting, Travelling Salesman problem, 0/1 Knapsack, Matrix Chain Multiplication, 8 queens problem	10	
3		Graph algorithms		CO 3
	3.1	Path computation algorithms: Floyd Warshall shortest path algorithm, Johnson's method	9	
	3.2	Flow Networks: The Ford Fulkerson method, maximum bipartite matching, Push relabel algorithms, The relabel to front algorithm		
4		Advanced Data Structure		CO 4
	4.1	Introduction to trees and heap	9	
		Red-Black Trees: properties of red-black trees ,Operations on Red-black trees		
	4.2	Binomial Heaps: Binomial trees and binomial heaps, Operation on Binomial heaps		
5		Randomization and Intelligent Algorithms		CO 5
	5.1	Randomized quick sort, Las Vegas algorithm, Monte Carlo algorithm	8	
	5.2	MinMax, Alpha-Beta Pruning, Facebook graph search		
	#Self le	earning : Approximation Algorithms		
		Total	45	1

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein	Introduction to Algorithms	PHI, India	Second Edition
2	Rajeev Motwani, Prabhakar Raghavan,	Randomized Algorithm	Cambridge University Press	First Edition/ South Asia Edition
3	Peter Norvig and Stuart J. Russell	Artificial Intelligence: A Modern Approach	Pearson Education	5 th Edition
4	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,	Introduction to Algorithms	PHI	2 nd Edition
5	Horowitz, Sahani and Rajsekaran	Fundamentals of Computer Algorithms	Galgotia	2 nd Edition
6	Harsh Bhasin,	Algorithms – Design and Analysisl,	Oxford	1 st Edition, 2015

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE814		IoT Security						
	T	TH P TUT Total						
Teaching Scheme(Hrs.)	03							03
Credits Assigned		03						03
	Marks							
Examination	CA	CA		TTX 0	0	D De O		Total
Scheme	ISE	IA	ESE	TW	U	P	P&O	1 otal
	30	20	50					100

Course prerequisites (if any): Microcontroller and embedded system, Security

Course Objectives

To expose students to new developments in the areas of cybersecurity for the Internet of Things (IoT).

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Understand IoT	background in t	terms of applica	tions and challenges

CO2 Analyze possible approaches and practices to meet IoT security challenges

CO3 Comprehend proposed frameworks to address IoT security

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO				
1	Introd	luction to IoT	12	CO 1				
1	1.1							
	1.2							
	1.3							
	1.4	1.4 IoT Function View						
	1.5 IoT Application Areas and IoT Smart-X Applications							
	1.6	Security, Privacy and Trust						
2	IoT ch	nallenges	08	CO1				
	2.1	IoT Threats to Individuals and Organizations						
	2.2	IoT challenges for Governance, Security and Privacy						
	2.3	Challenges to Secure IoT Deployments						
		#Self-Learning —Readings: Internet of Things — New security and privacy challenges-Paper by Rolf H. Weber						
	Recon	08	CO2					
3	3.1	Analyze privacy impacts to stakeholders and adopt a Privacy-by-Design approach to IoT development and deployment						
	3.2							
	3.3	Implement layered security protections to defend IoT assets						
	3.4	Define Life Cycle Security Controls for IoT devices						
		#Self-Learning – Readings: IoT System Security Issues and Solution Approaches (Paper)						
	Imple inforn	ment data protection best practices to protect sensitive nation	03	CO 3				
4		Data Management						
	4.1	Data Identification, Classification, Security						
		#Self-Learning- Readings: Security of Smart Objects in IOT						
	IoT Se	ecurity Framework	08	CO 3				
5	5.1	Dynamic Context- Aware Scalable and trust-based IoT Security, Privacy Framework- Concepts and Motivation of						

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

		Framework		
	5.2	A Policy-based Framework for Security and Privacy in IoT		
	5.3	An authentication/authorization framework for the organization's IoT Deployments		
	5.4	A Logging and Audit Framework for the Organization's IoT Ecosystem		
6	OWA	SP – IoT	06	CO 3
	6.1	OWASP IoT Top Ten Attacks, IoT Vulnerabilities		
	6.2	IoT Framework assessment		
	6.3	IoT Security Guidance		
		Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.				
	Marina Ruggieri,	"Internet of Things - From	River Publisher,	2014
	Homayoun Nikookar,	Research and Innovation to		
		Market"		
2.	Sebastien Ziegler	"Internet of Things security and data protection"	Springer	2017
3.				
	Shancang Li,Li Da Xu	"Securing the Internet of	Syngress	April 2015
		Things"		
4.	Sridipta	Security Challenges and	Springer	Sept 2016
	Misra, Salman	Approaches in Internet of		
	Hashmi, Muthucumar	Things		
	u Maheswaran			
5.	Sunil Cheruvu, Ned	Demystifying Internet of	Apress Open	August 2019
	Smith, Anil	Things Security:		
	Kumar, David M.	Successful IoT		
	Wheeler	Device/Edge and Platform		
		Security Deployment		

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE815		I	nternet	of Eve	eryth	ing		
	TH P TUT Total						Total	
Teaching Scheme(Hrs.)	03							03
Credits Assigned	(03	
				Marks	Marks			
Examination	CA	CA		/DXX/		D	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	1 &0	Total
	30	20	50			-	-	100

Course prerequisites (if any):

Microcontroller and Embedded system

Course Objectives

The objectives of this course are to learn concepts of Internet of things and analyze IoT application data using Analytics for designing and developing small IOT applications.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Interpret the Internet of Things concepts and challenges
- CO2 Evaluate the software and hardware platforms for IoT Technologies
- CO3 Analyze IoT application data using IoT Analytics.
- CO4 Design and develop small IoT applications.

Module	Unit	Details	Hr	CO
No.	No.		S.	
1		Introduction to Internet of Things	04	CO1
	1.1	Physical Design		
	1.2	Logical Design		
	1.3.	IoT Enabling Technologies		
2		Domain Specific IoTs	10	CO1
	2.1	Home Automation.		
	2.2	Environment, Energy		
	2.3	Retail & Logistics		
	2.4	Health & Life Style		
3		IoT & M2M	05	CO2
	3.1	Difference Between IoT & M2M		
	3.2	SDN & NFV for IoT		
4		IoT Physical Devices	10	CO2
	4.1	Basic Arduino Programming		
	4.2	Extended Arduino Libraries,		
	4.3	Arduino – Based Internet Communication,		
	4.4	Raspberry PI		
	4.5	Sensors and Interfacing.		
5		IoT design Methodology	07	CO4
	5.1	Generic Design Methodology		
	5.2	Application Development Steps		
6		IOT Analytics	05	CO3
	6.1	Business Process in IoT		
	6.2	IoT Analytics with cloud		
	6.3	Edge analytics		
7		Self learning: Case Study	04	CO4
	7.1	Agriculture		
	7.2	Industrial Application		
	7.3	Cities		
		Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Arshdeep Bhaga and	"Internet of Things (A	Tata McGraw-	4 th edition
	Vijay Madisetti	Hands-on-	Hill ,India	,2015
		Approach)",University		
		Press		
2.	Hakima Chaouchi	"The Internet of Things	Wiley	1 st
_,		(Connecting objects to the web)"	publication	edition,2014
3.	Hakim Cassimally	"Designing the Internet of	Wiley	1 st
	and Adrian McEwen	things"	publication	edition,2013
4.				
	Marina Ruggieri,	"Internet of Things - From	River Publisher,	1 st
	Homayoun Nikookar,	Research and Innovation to Market"		edition,2014
5.	Ahriram K	Internet of Things	Wiley	1 st edition
	Vasudevan, Abhishek		Publication	,2019
	Nagarajan,RMD			
	Sundaram			

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE816		Cyber Physical System						
	Γ	TH P TUT Total						Total
Teaching Scheme(Hrs.)	(03	
Credits Assigned		03						03
				Marks				
Examination	CA	CA			TINI O	D	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	1 & O	1 Otal
	30	20						50

Course Objectives

CPS mainly consists of physical systems tightly integrated and/or controlled by software, are ubiquitous in many safety critical domains, including automotive, avionics, railways, healthcare, atomic energy, power, and industrial automation. The principles of design and implementation of cyber-physical systems are remarkably different from that of other embedded systems because of the tight integration of real valued and dense time real time systems with software based discrete automated control. The objective of this course is to develop an exposition of the challenges in implementing a cyber-physical system from a computational perspective, but based equally on the principles of automated control. The course aims to expose the student to real world problems in this domain and provide a walk through the design and validation problems for such systems.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Understand the basic principles of CPS
CO2	Identify the CPS components and relevant dynamical aspects
CO3	Develop an exposition of the challenges in implementing a cyber-physical
	system
CO4	Understand Intelligent CPS models and controls
CO ₅	Understand CPS security and safety aspects

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO			
No.	No.						
1	Introd	uction to Cyber-Physical Systems	2				
	1.1						
		principles of design and validation of CPS, Industry 4.0,					
		AutoSAR, IIOT implications, Building Automation,					
		Medical CPS					
2	CPS (Components	10				
	2.1	CPS - Platform components –					
		CPS HW platforms - Processors, Sensors, Actuators,					
		CPS Network - WirelessHart, CAN, Automotive					
		Ethernet, Scheduling Real Time CPS tasks					
	2.2	Principles of Dynamical Systems-					
		Dynamical Systems and Stability, Controller Design					
		Techniques, Performance under Packet drop and Noise					
3	CPS i	mplementation issues	12				
	3.1	From features to automotive software components,					
		Mapping software components to ECUs, CPS					
		Performance Analysis - effect of scheduling, bus latency,					
		sense and actuation faults on control performance,					
		network congestion, BUilding real-time networks for					
		CPS					
4	Intelli	igent CPS	10				
	4.1	Safe Reinforcement Learning- Robot motion control,					
		Autonomous Vehicle control,					
		Gaussian Process Learning- Smart Grid Demand					
		Response, Building Automation					
5	Secur	e Deployment of CPS	11				
	5.1	Secure Task mapping and Partitioning, State estimation					
		for attack detection, Automotive Case study: Vehicle					
		ABS hacking, Power Distribution Case study: Attacks					
		on SmartGrids					
		#Self-Learning: Latest trends in CPS, Securing CPS					
		systems using ML					
	1	Total	45				

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of Publisher	Edition and		
No			with country	Year of		
•				Publication		
1.	E. A. Lee, Sanjit Seshia	Introduction to Embedded	MIT Press	Second Edition,		
		Systems – A Cyber–		2017		
		Physical Systems Approach				
2.	Rajeev Alur	Principles of Cyber-	MIT Press	Kindle Edition,		
		Physical Systems		2015		
3.	Andr´e Platzer	Logical Analysis of Hybrid	Springer	Kindle Edition,		
		Systems: Proving Theorems		2010		
		for Complex Dynamics				
4.	Houbing Song, Danda	Cyber-Physical Systems:	Academic Press	Ist Edition,		
	B. Rawat, Sabina	Foundations, Principles and		2016		
	Jeschke, Christian	Applications				
	Brecher					
5.	Houbing Song, Glenn	Security and Privacy in	Wiley-IEEE Press	1 st Edition,		
	A. Fink, Sabina Jeschke	Cyber-Physical Systems:		2017		
		Foundations, Principles,				
		and Applications				

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title										
2UCE817	Deep Learning										
	TH			P		TUT		Total			
Teaching Scheme(Hrs.)							03				
Credits Assigned	03							03			
	Marks										
Examination Scheme	CA		ECE	TXX7	0	P	P&O	Total			
	ISE	IA	ESE	TW		r	100	Total			
	30	20	50					100			

Course prerequisites:

Linear Algebra, Calculus (vectors, matrices, basic integrals), Probability (Bayes theorem, expectation, variance)&Basic machine learning (linear models, regression, decision trees)

Course Objectives:

This course covers the basics of machine learning, neural networks and deep learning. Model for deep learning technique and the various optimization and generalization mechanisms are included. Major topics in deep learning and dimensionality reduction techniques are covered. The objective of this course is:

- 1. To present the mathematical, statistical and computational challenges of building neural networks
- 2. To study the concepts of deep learning
- 3. To introduce dimensionality reduction techniques
- 4. To enable the students to know deep learning techniques to support real-time applications
- 5. To examine the case studies of deep learning techniques

Course Outcomes:

At the end of successful completion of the course the student will be able to

- 1. Describe basics of deep learning.
- 2. Design & implement various deep learning models
- 3. Apply Realignment on high dimensional data using reduction techniques
- 4. Analyze optimization and generalization in deep learning
- 5. Apply a variety of deep learning techniques to design efficient algorithms for real-world applications.

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO			
No.	No.						
	_	Name of the subject: Deep Learning	T	_			
1	Introduction to machine learning						
	1.1	Introduction to machine learning models.					
	1.2	Intro to Neural Nets: What a shallow network computes- Training a network: loss functions	08	CO1			
	13	1.3 Back propagation and stochastic gradient descent					
	1.4	Learning rates and data normalization, activation functions, Optimizers, Regularization, Dropout, Momentum & Batch Norm.					
2	Deep Ne						
_	2.1	History of Deep Learning- A Probabilistic Theory of Deep Learning, Neural Nets-Deep Vs Shallow Networks-Convolutional Neural Networks: Motivation,	10	CO2 & CO5			
	2.3	Convolution operations, Pooling Image classification					
	2.4	Modern CNN architectures (VGG, ResNet, etc.)					
3	Deep Ur		CO3				
		3.1 Auto encoders					
	3.2	Dimensionality reduction in networks	10	CO5			
	3.3	Adversarial Generative Networks					
4	Recurre						
	4.1	4.1 Motivation					
	4.2	4.2 Vanishing/Exploding gradient problem					
	4.3	4.3 Applications to sequences (text)		CO5			
	4.4	Modern RNN architectures (LSTM, GRU, etc.)					
5	Optimiz						
	5.1	Optimization in deep learning					
	5.2	Non-convex optimization for deep networks-		COA			
	5.3	Stochastic Optimization & Generalization in neural networks.	07	CO4 & CO5			
	5.4	#Self Learning topic: Applications of Deep Learning to Computer Vision: Image segmentation, object detection, automatic image captioning, video to text with LSTM models		003			
		Total	45				

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
1.	Ian Goodfellow, YoshuaBengio, Aaron Courville	Deep Learning	An MIT Press book	Publication 2016
2.	Deng & Yu	Deep Learning: Methods and Applications	Now Publishers	2013
3.	Michael Nielsen	Neural Networks and Deep Learning	Determination Press	2015
4.	Josh Patterson , Adam Gibson	Deep Learning: A Practitioner's Approach	Shroff/O'Reilly	First edition (2017)
5.	Nikhil Buduma, Nicholas Locascio	Fundamentals of Deep Learning: Designing Next- Generation Machine Intelligence Algorithms	O'Reilly Media	First edition (June 29, 2017)

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE818	Speech and Language Processing							
	Γ	TH				,	TUT	Total
Teaching Scheme(Hrs.)	03							03
Credits Assigned		03						03
	Marks							
Examination	CA	CA		TENNA 7		D D&O	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	1 &0	1 Otal
	30	20	50					100

Course Objectives:

To introduce students the challenges of empirical methods for natural language processing (NLP) applications. And to provide students with the knowledge on designing procedures for natural language resource annotation and the use of related tools for text analysis and hands-on experience of using such tools

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Model linguistic phenomena with formal grammars.
- CO2 Design, implement, and analyze NLP algorithms
- CO3 Apply NLP techniques to design real world NLP applications, such as machine translation, text categorization, text summarization, information extraction...etc.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.	Justian to Natural Language Dragoging	02	CO1
1	1.1	duction to Natural Language Processing History of NLP, Generic NLP system, levels of NLP,	02	CO1
	1.1	Knowledge in language processing, Ambiguity in		
		Natural language, Stages in NLP, challenges of NLP		
		Applications of NLP.		
2	Regul	ar Expression and Finite Automata	12	CO1
	2.1	Basic regular expression patterns, Disjunction, grouping		
	2.1	and precedence, Regular expression substitution, memory and ELIZA		
	2.2	Finite State Automata: Using FSA to recognize		
		Sheeptalk, formal languages, Non deterministic FSA's,		
		using NFSA to accept strings, regular languages and FSA's		
	2.3	Morphology analysis -survey of English Morphology,		
		Inflectional morphology & Derivational morphology.		
	2.4	Finite state transducers (FST), Morphological parsing		
		with FST, Lexicon free FST -Porter stemmer. N –Grams-		
		N-gram language model, N-gram for spelling correction		
3	Proba	bilistic model of Pronunciations and spellings	10	CO2
	3.1	Dealing with spelling errors, spelling error patterns, detecting Non-Word errors.		
	3.2	Probabilistic models, applying Bayesian method to spelling, minimum edit distance, Bayesian method for pronunciation, Decision tree models, weighted automata		
	3.3	N-grams: Counting words in Corpora, Smoothing, N-gram for spelling and pronunciation, context sensitive		
		spelling error correction, N-gram for spelling error correction		
4	Synta	x and Semantic Analysis	12	CO2
	4.1	Part-Of-Speech tagging(POS)- Tag set for English (Penn Treebank), Rule based POS tagging, Stochastic POS tagging, Issues –Multiple tags & words, Unknown words, Class based N–grams .		
	4.2	Context Free Grammar for English - Constituency,		
		Context free rules & trees, Sentence level construction, Noun Phrase, coordination, agreement, the verb phrase &		
		sub categorization		
	4.3	Attachment for fragment of English- sentences, noun		
		phrases, Verb phrases , prepositional phrases		

Department of Computer Engineering

	4.4	Relations among lexemes & their senses –Homonymy, Polysemy, WordNet: A database of Lexical relations, Internal structure of words, Thematic roles, semantic Fields		
5	Word	Sense Disambiguation	9	CO3
	5.1	Word sense disambiguation, Selectional Restriction-Based disambiguation, Robust WSD –machine learning approaches and dictionary based approaches.		
	5.2	Information retrieval-The Vector Space model, Term Weighting, Homonymy, Polysemy and Synonymy		
	5.3	Pragmatics: Discourse Reference resolution, reference phenomenon, syntactic & semantic constraints on co reference, preferences in pronoun interpretation, algorithm for interpretation.		
		#Self-Learning Topic: Applications of NLP- Machine translation, question answering system Information retrieval, Text categorization, text summarization & Sentiment Analysis		
	· ·	Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Daniel Jurafsky, James H. Martin	Speech and Language Processing	Prentice Hall	Second Edition, 2008
2.	Christopher D.Manning and HinrichSchutze	Foundations of Statistical Natural Language Processing	MIT Press	1999
3.	Siddiqui and Tiwary U.S.	Natural Language Processing and Information Retrieval	Oxford University Press	2008
4.	Daniel M Bikel and ImedZitouni	Multilingual natural language processing applications	Pearson	2013
5.	Alexander Clark (Editor), Chris Fox (Editor), Shalom Lappin(Editor)	The Handbook of Computational Linguistics and Natural Language Processing	ISBN	978-1-118

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE819	Software Architecture and Design Thinking							
	ſ	P)	,	TUT	Total		
Teaching Scheme(Hrs.)	03			-				03
Credits Assigned		03						03
	Marks							
Examination	CA		ECE	/DXX/	0	n	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	rau	1 Otal
	30	20	50					100

Course prerequisites (if any):

Students should be familiar with basic concepts of Software Engineering

Course Objectives

- 1. Develop architectural thinking applicable in building large and complex systems.
- 2. Structural and behavioral models in design notations such as Architecture description languages (ADLs)
- 3. Analyzing role of architectures in various environments

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1 Design the architecture of software systems in various architectural styles
- CO2 Analyze software architecture using analysis techniques
- CO3 Analyze non-functional properties in the architectural design
- CO4 Design domain models for domain specific software engineering and architecture

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Softwa	re Architecture and Design Thinking	10	
	1.1	Basic Concepts, Designing Architectures,		
		Conventional Architectural styles : Concepts of		
		Software Architecture, Models, Processes,		
		Stakeholders		
		Styles and Architectural Patterns, Pipes and Filters,		
	1.2	Event- based		
	1.3	Implicit Invocation, Layered systems, Repositories, Interpreters		
	#SELF	LEARNING: Architecture Design Process,		
		ectural Conception		
2	Connec		12	
	2.1	Connector Foundations, Connector Roles		
	2.2	Connector Types and Their Variation Dimensions		
3	Modeli	ng , Analysis :	10	
	3.1	Modeling Concepts, Ambiguity, Accuracy, and		
		Precision,		
	3.2	Complex Modeling: Mixed Content and Multiple		
		Views. Analysis Goals, Scope of Analysis,		
		Architectural Concern being		
	3.3	Analyzed, Level of Formality of Architectural		
		Models, Type of Analysis, Analysis Techniques		
		#SELF LEARNING: SAAM		
4	Designi	ing for Non-Functional Properties and	6	
	implem	nentation:	U	
	4.1	Efficiency, Complexity, Scalability and		
		Heterogeneity, Adaptability, Dependability		
		#SELF LEARNING Existing Frameworks		
5		n-Specific Software Engineering	7	
	5.1	Domain-Specific Software Engineering in a		
		Nutshell, Domain-Specific Software Architecture,		
		DSSAs.		
	5.2	#SELF LEARNING Product Lines, and Architectural		
	3,4	Styles		
	<u> </u>	Total	45	
		Total	43	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Department of Computer Engineering

Sr.	Name/s of	Title of Book	Name of	Edition and Year
No.	Author/s		Publisher	of Publication
			with country	
1.	Richard N. Taylor,	, "Software	Publisher :	10^{th}
	Nenad Medvidovic, Eric Dashofy	Architecture: Foundations, Theory,	Wiley. ISBN: 978-0-	Edition,
		and Practice"	470-16774-8	2010
2.	M. Shaw	"Software Architecture Perspectives on an Emerging Discipline"	Prentice-Hall of India Pvt.Ltd	1996, 1 st Edition
3.	Len Bass, Paul Clements, Rick Kazman	Software Architecture in Practice	O Reilly	3 rd Edition

(Autonomous College Affiliated to University of Mumbai)

Department of Computer Engineering

Course Code	Course Title							
2UCE820	High Performance Computing							
	TH P TUT Total				Total			
Teaching Scheme (Hrs./Week)	03							03
Credits Assigned		03						03
	Marks							
Examination	CA		ECE	7DXX7	0	n	P&O	Total
Scheme	ISE	IA	ESE	TW	J	P	rau	Total
	30	20	50					100

Course prerequisites: Microprocessor and Fundamentals of computer programming

Course Objectives:

Purpose of this course is to study parallel architectures and Design and Development of parallel algorithms and programs. This course introduces parallel programming paradigms using tools like MPICH and OpenMP and multicore program approaches using CUDA platform.

Course Outcomes:

- 1. Understand different parallel processing approaches and issues involved in it to achieve high computing performance.
- 2. Evaluate the parallel computing performance with different processors architectures.
- 3. Design and development on parallel platform

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai) Department of Computer Engineering

Module	Unit	Details	Hrs.	CO
No.	No.			
		Parallel processing approaches		
1			10	
	1.1	Introduction to parallel processing: Levels of parallelism		
		(instruction, transaction, task, thread, memory, and		
		function).		
	1.2	Models (SIMD, MIMD, SIMT, SPMD, Dataflow Models and		
		Demand-driven Computation etc).		
	1.3	Parallel platforms:		
		Message-passing interface (MPI), Shared-memory thread-		
		based OpenMP programs, and hybrid (MPI/OpenMP) programs, Hadoop, Cloud computing, Multi-core Processors		
		(GPUs), Virtual GPUs, Field programmable gate		
		array(FPGA), Tensor Processing Unit (TPU)		
		anaj(11 011), Tensor Frocessing Onit (11 0)		
2	Funda	mental Design Issues and limitations in Parallel Computing	10	
	2.1	Issues: Synchronization, Scheduling, Job Allocation, Job		
		Partitioning, Dependency Analysis.		
	2.2	Mapping Parallel Algorithms onto Parallel Architectures,		
		Performance Analysis of Parallel Algorithms.		
	2.3	Limitations: Bandwidth Limitations, Latency Limitations,		
		Latency Hiding/Tolerating Techniques and their		
	~	limitations.		
3		A: GPU Parallel development environment	10	
	3.1	Compute Unified Device Architecture (CUDA)		
		Architecture, CUDA programming model, execution		
	2.2	model.		
	3.2	Thread organization: Concept of grid, block and thread.		
4	3.3	Thread index generation, warp;	10	
4		primitives, algorithms and applications	10	
	4.1	GPU primitives: scan (exclusive or inclusive), scatter,		
	4.2	gather, reduce, memory model.		
	4.2	Introduction to global, shared, local memories, usage of		
	4.2	cache, texture cache, constant memory.		
	4.3	CUDA structure, API and library (CUDPP, CUBLAS, FFT etc.) details.		
5	CPII.	parallel programming and application	05	
3	5.1		US	
	3.1	CUDA example programs (Vector dot product, Matrix multiplication (with the usage of tiling and shared memory)		
		etc.		
	5.2	Graph algorithms, molecular dynamics, n-body simulations,		
	3.2	dense linear algebra etc. using GPU. Virtual GPUs.		
		#Self-Learning: Tensor Processing Unit (TPU),		
		Application of AI in HPC		
		Total	45	
		Total		

Department of Computer Engineering

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Kai Hwang , Faye A. Briggs	Computer Architecture and Parallel Processing	McGraw-Hill	
2.	Edward Kandrot and Jason Sanders	CUDA by Example: An Introduction to General- Purpose GPU Programming	Addison-Wesley Professional	2010
3.	Alex Holmes	Hadoop in Practice	Manning Press, Dream tech Press	
4.	David Kirk, Wen-mei	UDA: Programming Massively Parallel Processors: A Hands-On Approach Hwu	ELSEVIER Inc	
5.	Michael J. Quinn	Parallel Programming in C with MPI and OpenMP	Tata McGraw-Hill Edition	
6.	Kai Hwang	Scalable Parallel Computing	McGraw Hill	1998
7.	Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar	Introduction to Parallel Computing	Addison-Welsey,	2nd edition, 2003

Department of Computer Engineering

Thrust Area-wise distribution of Departmental Electives of TY and LY

Sem	Intelligent System and Data Processing	Network System and security	Image analysis and interpretation	System and software engineering
V	Soft Computing		Computer Graphics & Visualization	Microprocessors
V	Advanced Databases and Data Warehousing			
	Data Mining and Business Intelligence	Wireless Sensor Networks and IOT		Compiler Construction
VI	Machine Learning	Mobile Communication and Adhoc Networks	Audio Signal Processing	STQA
				Micro Services and DevOPS
	Big Data and Analytics	Cloud Computing & Emerging Technologies	Computer Vision	CSM
VII	Data Science	Blockchain Technology	GIS and Spatial Computing	User Experience and Design
		Cyber Security, Forensics and Cyber Law		C# Programming and . Net Technology
	Bioinformatics	IoT security	Deep Learning	Software Architecture and Design Thinking
VIII	Game Programming	Internet of Everything	Speech and language Processing	High Performance Computing
	AADA (Adv. Algorithm)	Cyber Physical Systems		