CS 5990 Final: Epidemiology

Aumkaareshwar Jeremy Anunwah Yurii Lebid Bill Kim

Methodology

- Three network types
 - Fully-Mixed (complete)
 - Small-World (Watts-Strogatz)
 - Barabasi-Albert
 - Simulated networks generated using same strategy from Group Assignment #1
- Tested three values for the interesting parameter for each network
 - Fully-Mixed: population size
 - Small-World: rewiring parameter (degree held constant)
 - Barabasi-Albert: new edge degree (core size held constant)
- Avoids large number of possibilities given all parameters
- Within each network's three value tests
 - Two β values
 - Three y values
- 18 total simulations per network type

Methodology

- Stop conditions, whichever comes first
 - SI: all infected (I = N)
 - SIR: all infected (I = N) or all non-infected (S + R = N, S < N, R > 0)
 - 2000 ticks

Source Code

```
public void step() {
    if (this.state == Human.STATE_INFECTED && this.tick > this.infectedTick) {
         for (Object human : this.network.getAdjacent(this)) {
             if (Human.random.nextDouble() < this.beta) {</pre>
                  ((Human)human).tryBecomeInfected();
           (Human.random.nextDouble() < this.gamma) {</pre>
             this.recover();
    ++this.tick;
```

Parameter Summary

	SIR Parameters	Fixed Parameters	Tested Parameters
Fully-Mixed	β = 0.001, 0.002 γ = 0.00, 0.10, 0.20	I ₀ / n = 0.01 S ₀ / n = 0.99	n = 100, 500, 1000
Small-World	β = 0.001, 0.002 γ = 0.00, 0.10, 0.20	I _o = 5 S _o = 495 d = 6	B = 0.05, 0.10, 0.20
Barabasi-Albert	β = 0.001, 0.002 γ = 0.00, 0.10, 0.20	$I_0 = 5$ $S_0 = 495$ $n_0 = 25$	m = 5, 10, 20

Note: γ = 0.00 corresponds to an SI simulation, γ > 0.00 corresponds to an SIR simulation

Graph Info

- Legend
 - o Blue: Susceptible
 - o Red: Infected
 - o Green: Recovered
- Horizontal axis: simulation ticks
- Vertical axis: number of agents

Fully-Mixed Model: n = 100

Fully-Mixed Model: n = 500

Fully-Mixed Model: n = 1000

Small-World Model: B = 0.05

Small-World Model: B = 0.10

Small-World Model: B = 0.20

Barabasi-Albert Model: m = 5

Barabasi-Albert Model: m = 10

Barabasi-Albert Model: m = 20

Findings

- Fully-Mixed models
 - Larger populations spread disease faster due to complete network topography
 - Reaches peak number of infections faster
 - Increasing recovery rate initially extends simulation, then shortens
 - Lower rate balances infection
 - Higher rate quickly eliminates infection
- Small-World
 - SI models slow down significantly
 - SIR models show no meaningful disease spread
 - Perhaps a much higher d needed
- Barabasi-Albert
 - Both models slow down as in Small-World
 - Possibly more capable of showing meaningful disease spread

Tasks

- Aumkaareshwar: Methodology and Presentation
- Jeremy Anunwah: Repast Simphony implementation
- Yurii Lebid: Repast Simphony setup
- Bill Kim: Simulation graphs and Presentation

Thank You