Homework 4

Shao-Ting Chiu (UIN:433002162)

11/16/22

Table of contents

Homework Description	2
Computational Environment	2
Libraries	2
Versions	2
Problem 6.3	3
Problem 6.5	3
(a)	1
(b)	1
(c)	5
Problem 6.7	3
(a)	3
(b)	7
(c)	3
Problem 7.1	3
Bias)
Deviation variance)
Root mean-square error)
Correlation coefficient)
Tail probabilities)
Problem 7.10	Ĺ
(a) $\dots \dots \dots$	2
(b) $\dots \dots \dots$	
(c) $\dots \dots \dots$	3
(d) $\dots \dots \dots$	_
(e) $\dots \dots \dots$	
D of over a constant in the co	3

Homework Description

- Course: ECEN649, Fall2022
- Deadline: 2022/11/16, 11:59 pm > Problems from the Book > > 6.3 > > 6.5 > > 6.7 > > 7.1 > > 7.10 > > 6.12 (coding assignment) > Problems 6.3-6.5 are worth 10 points each, Problem 7.10 and the coding assignment are worth 20 points each.

Computational Environment

Libraries

```
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import sys
```

Versions

```
print(np.__version__)
print(tf.__version__)
print (sys.version)
print(sys.executable)

1.23.4
2.10.0
3.9.12 (main, Apr 5 2022, 01:52:34)
[Clang 12.0.0 ]
/Users/stevenchiu/miniconda/bin/python
```

Problem 6.3

Show that the decision regions produced by a neural network with k threshold sigmoids in the *first* hidden layer, no matter what nonlinearities are used in succeeding layers, are equal to the intersection of k half-spaces, i.e., the decision boundary is piecewise linear

Hint: All neurons in the first hidden layer are perceptrons and the output of the layer is a binary vector.

Let \bar{O} be the k output of first hidden layer, and there are 2^k types of binary vectors $[O_1, \dots, O_k]$. Therefore, before the next layer, the input is determinstic in 2^k combination in R^k space.

For each data point $x \in \mathbb{R}^d$ where d is the feature space. the output of first layer is

$$O(x)_i = I_{q_i(x)}(x), \quad i = 1, \cdots, k \tag{1}$$

where $g_i(\cdot)$ is the perceptron function of neuron i. Thus, any point x belong to one type of $[I_{g_1(x)}(x),\ldots,I_{g_k(x)}(x)]$. For each O_i , the space forms a half-space with $\{x:g_i(x)>0\}$, and there are k half space in total.

Problem 6.5

For the VGG16 CNN architecture:

Figure 1: VGG16

(a)

Determine the number of filters used in each convolution layer.

```
Conv-1: 64 filters (pre-depth: 3)
Conv-2: 128 filters (pre-depth: 64)
Conv-3: 256 filters (pre-depth: 128)
Conv-4: 512 filters (pre-depth: 256)
Conv-5: 512 filters (pre-depth: 512)
```

There are total

```
rs = np.array([3, 64, 128, 256, 512])
t_filters = np.array([64, 128, 256, 512, 512])
np.sum(t_filters)
```

1472

filters.

(b)

CONV3

Based on the fact that all filters are of size $3 \times 3 \times r$, where r is the depth of the previous layer, determine the total number of convolution weights in the entire network.

```
CONV1 = (3*3*3)*64 + (3*3*64)*64

CONV1

38592

CONV2 = (3*3*64)*128 + (3*3*128)*128

CONV2

221184

CONV3 = (3*3*128)*256 + (3*3*256)*256 + (3*3*256)*256
```

```
1474560
```

```
1 CONV4 = (3*3*256)*512 + (3*3*512)*512 + (3*3*512)*512
2 CONV4
5898240
 CONV5 = (3*3*512)*512 *3
2 CONV5
7077888
_{1} fc1 = 512 * 7 * 7 * 4096
_2 fc1
102760448
_{1} fc2 = 4096 * 4096
_2 fc2
16777216
_{1} fc3 = 4096 * 1000
_2 fc3
```

(c)

4096000

Add the weights used in the fully-connected layers to obtain the total number of weights used by VGG16.

Total of weights

```
total = np.sum([CONV1, CONV2, CONV3, CONV4, CONV5, fc1, fc2, fc3])
total
```

138344128

Problem 6.7

Consider the training data set given in the figure below.

(a)

By inspection, find the coefficients of the linear SVM hyperplane $a_1x_1+a_2x_2+a_0=0$ and plot it. What is the value of the margin? Say as much as you can about the values of the Lagrange multipliers associated with each of the points.

The boundary passes by $\frac{1}{2}((3,3)+(3,2))=(3,2.5)$ and $\frac{1}{2}((3,4)+(4,3))=(3.5,3.5)$

- $a_1 = 2.5 3.5 = -1$
- $a_2 = 3.5 3 = 0.5$
- $a_0 = 3 \cdot 3.5 3.5 \cdot 2.5 = 1.75$
- The boundary is

$$-x_1 + 0.5x_2 + 1.75 = 0$$

Figure 2: SVM boundry

In Figure 2, there are 6 support vectors that are λ_2 to λ_7 . The KKT conditions¹ state that

$$\lambda_i = 0 \Rightarrow y_i E_i \le 0 \tag{2}$$

$$0 < \lambda_i < C \Rightarrow y_i E_i = 0 \tag{3}$$

$$\lambda_i = C \Rightarrow y_i E_i \ge 0 \tag{4}$$

• Lagrange multipliers

$$-\lambda_1=0$$

$$-\ \lambda_2 \in (0,C)$$

$$-\lambda_3 \in (0,C)$$

$$-\ \lambda_4 \in (0,C)$$

$$-\ \lambda_5\in(0,C)$$

$$\frac{1}{2}$$
 $= \frac{1}{2}$

$$\begin{array}{l} -\ \lambda_6 \in (0,C) \\ -\ \lambda_7 \in (0,C) \end{array}$$

$$-\lambda_8 = 0$$

where C is the pentalty term.

(b)

Apply the CART rule, using the misclassification impurity, and stop after finding one splitting node (this is the "1R" or "stump" rule). If ther eis a tie between best splits, pick one that makes at most one error in each class. Plot this classifier as a decision boundary superimposed on the training data and also as a binary decision tree showing the splitting and leaf nodes.

where \bullet labelled as 1; \circ labelled as 0.

 $^{^1} Intro.\ to\ SVM:\ https://article.sciencepublishinggroup.com/html/10.11648.j.acm.s.2017060401.11.html$

Figure 3: Decision boundary

Figure 4: Apply CART rule

(c)

How do you compare the classifiers in (a) and (b)? Which one is more likely to have a smaller classification error in this problem?

• SVM of (a) yields smaller classification error than (b) because it allow any slope of decision boundary.

Problem 7.1

Suppose that the classification error ϵ_n and an error estimator $\hat{\epsilon}_n$ are jointly Gaussian, such

$$\epsilon_n \sim N(\epsilon^* + \frac{1}{n}, \frac{1}{n^2}), \hat{\epsilon}_n \sim N(\epsilon^* - \frac{1}{n}, \frac{1}{n^2}), Cov(\epsilon_n, \hat{\epsilon}_n) = \frac{1}{2n^2}$$

where ϵ^* is the Bayes error. Find the bias, deviation variance, RMS, correlation coefficient and tail probabilities $P(\hat{\epsilon}_n - \epsilon_n < -\tau)$ and $P(\hat{\epsilon}_n - \epsilon_n > \tau)$ of $\hat{\epsilon}_n$. Is this estimator optimistically or pessimistically biased? Does performance improve as sample size increases? Is the estimator consistent?

Bias

Use Eq. 7.3 (Braga-Neto 2020, 154),

$$Bias(\hat{\epsilon}_n) = E[\hat{\epsilon}_n] - E[\epsilon_n]$$

• $E[\hat{\epsilon}_n] = \epsilon^* - \frac{1}{n}$ • $E[\epsilon_n] = \epsilon^* + \frac{1}{n}$

Thus,

$$Bias(\hat{\epsilon}_n) = \frac{-2}{n} < 0$$

This estimator is optimisitcally biased.

Deviation variance

Use Eq. 7.4 (Braga-Neto 2020, 154),

$$Var_{dev}(\hat{\epsilon}_n) = Var(\hat{\epsilon}_n, \epsilon_n) = Var(\hat{\epsilon}_n) + Var(\epsilon_n) - 2Cov(\epsilon_n, \hat{\epsilon}_n)$$

- $\begin{array}{l} \bullet \ \ Var(\hat{\epsilon}_n) = \frac{1}{n^2} \\ \bullet \ \ Var(\epsilon_n) = \frac{1}{n^2} \\ \bullet \ \ Cov(\epsilon_n, \hat{\epsilon}_n) = \frac{1}{2n^2} \end{array}$

Thus,

$$Var_{dev}(\hat{\epsilon}_n) = \frac{1}{n^2} + \frac{1}{n^2} - 2\frac{1}{2n^2} = \frac{1}{n^2}$$

The deviation variance reduces as sample size increases.

Root mean-square error

Use Eq. 7.5 (Braga-Neto 2020, 154),

$$RMS(\hat{\epsilon}_n) = \sqrt{E[(\hat{\epsilon}_n - \epsilon_n)^2]} = \sqrt{Bias(\hat{\epsilon}_n)^2 + Var_{dev}(\hat{\epsilon}_n)}$$

Apply previous results,

$$RMS(\hat{\epsilon}_n) = \sqrt{\frac{4}{n^2} + \frac{1}{n^2}} = \frac{\sqrt{5}}{n}$$

Correlation coefficient

Use the pearson correlation coefficient²

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

- $\begin{array}{ll} \bullet & Cov(\epsilon_n, \hat{\epsilon}_n) = \frac{1}{2n^2} \\ \bullet & \sigma_{\epsilon_n} = \frac{1}{n} \\ \bullet & \sigma_{\hat{\epsilon}_n} = \frac{1}{n} \end{array}$

$$\rho_{\epsilon_n,\hat{\epsilon}_n} = \frac{1}{2}$$

Correlation coefficient is a constant and independent from sample size.

Tail probabilities

Use Eq. 7.6 (Braga-Neto 2020, 154),

$$P(|\hat{\epsilon}_n - \epsilon_n| \geq \tau) = P(\hat{\epsilon}_n - \epsilon_n \geq \tau) + P(\hat{\epsilon}_n - \epsilon_n \leq -\tau), \quad \text{for } \tau > 0$$

The normal difference distribution³ of $\hat{\epsilon}_n - \epsilon_n$

$$\hat{\epsilon}_n - \epsilon_n \sim N(\frac{-2}{n}, \frac{2}{n^2}) = N(\mu, \sigma^2)$$

 $^{{}^2} Correlation\ coefficient:\ https://en.wikipedia.org/wiki/Pearson_correlation_coefficient$

 $^{^3}$ Normal difference distribution: https://mathworld.wolfram.com/NormalDifferenceDistribution.html

That $\Delta \epsilon_n = \hat{\epsilon}_n - \epsilon_n$

$$\begin{split} P(\Delta \epsilon_n \leq -\tau) &= P(\frac{\Delta \epsilon_n - \mu}{\sigma} \leq \frac{-\tau - \mu}{\sigma}) \\ &= \Phi(\frac{-\tau - \mu}{\sigma}) \end{split} \tag{5}$$

$$=\Phi(\frac{-\tau-\mu}{\sigma})\tag{6}$$

$$=\Phi(\frac{-\tau+2/n}{\sqrt{2}/n})\tag{7}$$

$$=\Phi(\frac{-n\tau+2}{\sqrt{2}})\tag{8}$$

(9)

$$P(\Delta \epsilon_n \ge \tau) = P(\frac{\Delta \epsilon_n - \mu}{\sigma} \ge \frac{\tau - \mu}{\sigma}) \tag{10}$$

$$=1-P(\frac{\Delta\epsilon_n-\mu}{\sigma}<\frac{\tau-\mu}{\sigma}) \tag{11}$$

$$=1-\Phi(\frac{\tau-\mu}{\sigma})\tag{12}$$

$$=1-\Phi(\frac{n\tau-2}{\sqrt{2}})\tag{13}$$

Thus, when $n \to \infty$

$$\lim_{n\to\infty}P(\Delta\epsilon_n\leq -\tau)=0 \tag{14}$$

$$\lim_{n \to \infty} P(\Delta \epsilon_n \ge \tau) = 0 \tag{15}$$

This can be conluced to

$$\lim_{n \to \infty} P(|\hat{\epsilon}_n - \epsilon_n| \ge \tau) = 0$$

The estimator is *consistent*.

Problem 7.10

This problem illustrates the very poor (even paradoxical) performance of crossvalidation with very small sample sizes. Consider the resubstitution and leave-oneout estimators $\hat{\epsilon}_n^r$ and $\hat{\epsilon}_n^l$ for the 3NN classification rule, with a sample of size n=4 from a mixture of two equally-likely Gaussian populations $\Pi_0 \sim N_d(\mu_0, \Sigma)$

and $\Pi_1 \sim N_d(\mu_1, \Sigma)$. Assume that μ_0 and μ_1 are far enough apart to make $\delta = \sqrt{(\mu_1 - \mu_0)^T \Sigma^{-1}(\mu_1 = \mu_0)} \gg 0$ (in which case the Bayes error is $\epsilon_{\rm bay} = \Phi(-\frac{\delta}{2}) \approx 0$).

(a)

For a sample S_n with $N_0=N_1=2$, which occurs $P(N_0=2)={4\choose 2}2^{-4}=37.5\%$ of the time, show that $\epsilon_n\approx 0$ but $\hat{\epsilon}_n^l=1$

If $N_0 = N_1 = 2$, the leave-one-out method removes one of the data point. The remaining points will have the majority label and have opposite label to the removed point (Figure 5). This flipping causes $\hat{\epsilon}^l = 1$.

Since two Gaussian population are far away from each other. The decidsion boundary is in the middle of two means, and there is little overlap between two distribution. Thus, when $\delta \gg 0$, $\epsilon_n \approx 0$.

Figure 5: Two separated gaussian process in hyperplan with N0=N1=2

(b)

Show that $E[\epsilon_n] \approx \frac{5}{16} = 0.3125$, but $E[\hat{\epsilon}_n^l] = 0.5$, so that $\mathrm{Bias}(\hat{\epsilon}_n^l) \approx \frac{3}{16} = 0.1875$, and the leave-one-out estimator is far from unbiased.

Given two label have equal occurrences,

$$\begin{split} \bullet & \ P(N_0=0) = {4 \choose 0} 2^{-4} = 1 \cdot 2^{-4} \\ & - \ (N_0,N_1) = (0,4) \\ & - \ \epsilon_n = \frac{1}{2} \ (\text{always predicting } N_1) \\ & - \ \hat{\epsilon}_n^l = 0 \end{split}$$

$$\begin{split} \bullet & \ P(N_0=1) = {4 \choose 1} 2^{-4} = 4 \cdot 2^{-4} \\ & - \ (N_0,N_1) = (1,3) \\ & - \ \epsilon_n = \frac{1}{2} \\ & - \ \hat{\epsilon}_n^l = \frac{1}{4} \end{split}$$

$$\begin{split} \bullet & \ P(N_0=2) = {4 \choose 2} 2^{-4} = 6 \cdot 2^{-4} \\ & - \ (N_0,N_1) = (2,2) \\ & - \ \epsilon_n = 0 \\ & - \ \hat{\epsilon}_n^l = 1 \ (\text{flipped}) \end{split}$$

$$\begin{array}{ll} \bullet & P(N_0=3)={4 \choose 3}2^{-4}=4\cdot 2^{-4}\\ & - & (N_0,N_1)=(3,1)\\ & - & \epsilon_n=\frac{1}{2}\\ & - & \hat{\epsilon}_n^l=\frac{1}{4} \end{array}$$

$$\begin{split} \bullet \quad & P(N_0=4) = {4 \choose 4} 2^{-4} = 1 \cdot 2^{-4} \\ & - \ (N_0,N_1) = (4,0) \\ & - \ \epsilon_n = \frac{1}{2} \\ & - \ \hat{\epsilon}_n^l = 0 \end{split}$$

$$E[\epsilon_n] = \frac{1}{2} \frac{1}{16} + \frac{1}{2} \frac{4}{16} + 0 + \frac{1}{2} \frac{4}{16} + \frac{1}{2} \frac{1}{16} = \frac{5}{16}$$

$$E[\hat{\epsilon}_n^l] = 0 + \frac{1}{4} \frac{4}{16} + 1 \frac{6}{16} + \frac{1}{4} \frac{4}{16} + 0 = \frac{8}{16} = \frac{1}{2}$$

(c)

Show that $Var_d(\hat{\epsilon}_n^l) \approx \frac{103}{256} \approx 0.402$, which corresponds to a standard deviation of $\sqrt{0.402} = 0.634$. The leave-one-out estimator is therefore highly-biased and highly-variable in this case.

$$Var_d(\hat{\epsilon}_n^l) = E[(\hat{\epsilon}_n^l - \epsilon_n)^2] - (E[\hat{\epsilon}_n^l - \epsilon_n])^2$$
 (16)

$$= (0 - \frac{1}{2})^2 \frac{1}{16} + (\frac{1}{4} - \frac{1}{2})^2 \frac{4}{16}$$
 (17)

$$+\,(1-0)^2\frac{6}{16}+(\frac{1}{2}-\frac{1}{4})^2\frac{4}{16}+(0-\frac{1}{2})^2\frac{1}{16}-(\frac{3}{16})^2 \eqno(18)$$

$$=2(\frac{1}{2})^2\frac{1}{16}+2(\frac{1}{4})^2\frac{4}{16}+\frac{6}{16}-(\frac{3}{16})^2\tag{19}$$

$$=\frac{14}{32}-(\frac{3}{16})^2=\frac{103}{256} \tag{20}$$

(d)

Consider the correlation coefficient of an error estimator $\hat{\epsilon}_n$ with the true error ϵ_n :

$$\rho(\epsilon_n, \hat{\epsilon}_n) = \frac{Cov(\epsilon_n, \hat{\epsilon}_n)}{Std(\epsilon_n)Std(\hat{\epsilon}_n)}$$

Show that $\rho(\epsilon_n, \hat{\epsilon}_n^l \approx 0.98)$, i.e., the leave-one-out estimator is almost perfectly negatively correlated with the true error.

$$Var(\hat{\epsilon}_n^l) = E[\epsilon_n^2] - E[\epsilon_n]^2 \tag{21}$$

$$=\frac{1}{16}\frac{4}{16}+\frac{6}{16}+\frac{1}{16}\frac{4}{16}=\frac{4+96+4}{256}-\frac{1}{4}=\frac{40}{256}=\frac{5}{32} \tag{22}$$

$$Var(\epsilon_n) = E[(\hat{\epsilon}_n^l)^2] - (E[\hat{\epsilon}_n^l])^2 \tag{23}$$

$$=\frac{1}{4}\frac{1}{16} + \frac{1}{4}\frac{4}{16} \tag{24}$$

$$+\frac{1}{4}\frac{4}{16}+\frac{1}{4}\frac{1}{16}-(\frac{5}{16})^2\tag{25}$$

$$=\frac{10}{64} - \frac{25}{256} = \frac{15}{256} \tag{26}$$

Use the previous results,

$$Cov(\epsilon_n, \hat{\epsilon}_n^l) = E[\epsilon_n \hat{\epsilon}_n^l] - E[\epsilon_n] E[\hat{\epsilon}_n^l] \tag{27}$$

$$= (0 + \frac{1}{2} \frac{1}{4} \frac{4}{16} + 0 + \frac{1}{2} \frac{1}{4} \frac{4}{16}) - \frac{5}{16} \frac{1}{2} \tag{28}$$

$$=\frac{1}{16} - \frac{5}{32} = \frac{-3}{32} \approx -0.98\tag{29}$$

We can derive the correlation coefficient:

$$\rho(\epsilon_n,\hat{\epsilon}_n^l) = \frac{-3/32}{\sqrt{\frac{5}{32}}\sqrt{\frac{15}{256}}}$$

(e)

For comparison, show that, although $E[\hat{\epsilon}_n^r] = \frac{1}{8} = 0.125$, so that $\mathrm{Bias}(\hat{\epsilon}_n^r) \approx \frac{-3}{16} = -0.1875$, which is exactly the negative of the bias of leave-one-out, we have $Var_d(\hat{\epsilon}_n^r) \approx \frac{7}{256} \approx 0.027$, for a standard deviation of $\frac{\sqrt{7}}{16} \approx 0.165$, which is several times smaller than the leave-one-out variance, and $\rho(\epsilon_n, \hat{\epsilon}_n^r) \approx \sqrt{\frac{3}{5}} \approx 0.775$, showing that the resubstitution estimator is highly positively correlated with the true error.

The resubstitution error estimator uses 3 nearest neighbors, and no point is removed:

$$\begin{split} \bullet & \ P(N_0=0) = {4 \choose 0} 2^{-4} = 1 \cdot 2^{-4} \\ & - \ (N_0,N_1) = (0,4) \\ & - \ \epsilon_n = \frac{1}{2} \\ & - \ \hat{\epsilon}_n^r = 0 \end{split}$$

$$\begin{array}{ll} \bullet & P(N_0=1)={4 \choose 1}2^{-4}=4\cdot 2^{-4}\\ & - & (N_0,N_1)=(1,3)\\ & - & \epsilon_n=\frac{1}{2}\\ & - & \hat{\epsilon}_n^r=\frac{1}{4} \end{array}$$

$$\begin{split} \bullet & \ P(N_0=2) = {4 \choose 2} 2^{-4} = 6 \cdot 2^{-4} \\ & - \ (N_0,N_1) = (2,2) \\ & - \ \epsilon_n = 0 \\ & - \ \hat{\epsilon}_n^r = 0 \end{split}$$

$$\begin{array}{ll} \bullet & P(N_0=3)={4 \choose 3}2^{-4}=4\cdot 2^{-4} \\ & - & (N_0,N_1)=(3,1) \\ & - & \epsilon_n=\frac{1}{2} \\ & - & \hat{\epsilon}_n^r=\frac{1}{4} \end{array}$$

$$\begin{split} \bullet & \ P(N_0=4) = {4 \choose 4} 2^{-4} = 1 \cdot 2^{-4} \\ & - \ (N_0,N_1) = (4,0) \\ & - \ \epsilon_n = \frac{1}{2} \\ & - \ \hat{\epsilon}_n^r = 0 \end{split}$$

The resubstitution estimator is positively correlated with the true error.

References

Braga-Neto, Ulisses. 2020. Fundamentals of Pattern Recognition and Machine Learning. Springer.

Problem 6.12

Libraries

```
import tensorflow as tf
import numpy as np
import PIL
import cv2
import os
import sklearn
import pandas as pd
import pickle
import platform
from tqdm.notebook import tqdm
from sklearn.multiclass import OneVsOneClassifier
from sklearn import preprocessing
from sklearn import svm
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from scipy import stats as st
```

Computational Environment

```
physical_devices = tf.config.list_physical_devices('GPU')
  my_system = platform.uname()
  print(physical_devices)
  print(f"System: {my_system.system}")
  print(f"Node Name: {my_system.node}")
  print(f"Release: {my_system.release}")
  print(f"Version: {my_system.version}")
  print(f"Machine: {my_system.machine}")
  print(f"Processor: {my_system.processor}")
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
System: Darwin
Node Name: client-10-229-179-166.tamulink.tamu.edu
Release: 21.5.0
Version: Darwin Kernel Version 21.5.0: Tue Apr 26 21:08:29 PDT 2022; root:xnu-8020.121.3~4/R
Machine: arm64
Processor: i386
```

Helper function

```
def load_image(path, width=484, preprocess_input=tf.keras.applications.vgg16.preprocess_in
    """
    Load and Preprocessing image
    """
    img = tf.keras.utils.load_img(path)
    x = tf.keras.utils.img_to_array(img)
    x = x[0:width,:,:]
    x = np.expand_dims(x, axis=0)
    return tf.keras.applications.vgg16.preprocess_input(x)
```

Data inspectation

```
dpath = os.path.join("data", "CMU-UHCS_Dataset")
pic_path = os.path.join(dpath, "images")
df_micro = pd.read_csv( os.path.join(dpath, "micrograph.csv"))
df_micro = df_micro[["path", "primary_microconstituent"]]
for i in range(0, len(df_micro)):
    img_ph = os.path.join(pic_path,df_micro.iloc[i][0])
    assert os.path.exists(img_ph)
    df_micro.iloc[i][0] = img_ph
df_micro2 = df_micro.copy()
CLS_rm = ["pearlite+widmanstatten", "martensite", "pearlite+spheroidite"] #(type, sample s
for c in CLS_rm:
    df_micro.drop(df_micro[df_micro["primary_microconstituent"] == c].index, inplace=True)
# labels
name_lbs = df_micro["primary_microconstituent"].unique()
le = preprocessing.LabelEncoder()
le.fit(name_lbs)
list(le.classes_)
```

['network', 'pearlite', 'spheroidite', 'spheroidite+widmanstatten']

```
dlabel = le.transform(df_micro["primary_microconstituent"])
df_micro.insert(2, "label", dlabel)
df_micro
```

	path	primary_microconstituent	label
0	data/CMU-UHCS_Dataset/images/micrograph1.tif	pearlite	1
1	data/CMU-UHCS_Dataset/images/micrograph2.tif	spheroidite	2
3	data/CMU-UHCS_Dataset/images/micrograph5.tif	pearlite	1
4	data/CMU-UHCS_Dataset/images/micrograph6.tif	spheroidite	2
5	$data/CMU\text{-}UHCS_Dataset/images/micrograph7.tif$	spheroidite+widman statten	3
955	data/CMU-UHCS_Dataset/images/micrograph1722.tif	spheroidite	2
957	data/CMU-UHCS_Dataset/images/micrograph1726.tif	spheroidite+widmanstatten	3
958	data/CMU-UHCS_Dataset/images/micrograph1730.png	spheroidite	2
959	data/CMU-UHCS_Dataset/images/micrograph1731.tif	pearlite	1
960	$data/CMU\text{-}UHCS_Dataset/images/micrograph 1732.tif$	pearlite	1

Data Processing

	path	primary_microconstituent	label
1	data/CMU-UHCS_Dataset/images/micrograph2.tif	spheroidite	2
4	data/CMU-UHCS_Dataset/images/micrograph6.tif	spheroidite	2
8	data/CMU-UHCS_Dataset/images/micrograph10.png	spheroidite	2
9	data/CMU-UHCS_Dataset/images/micrograph11.tif	spheroidite	2
20	$data/CMU-UHCS_Dataset/images/micrograph 29.t if$	spheroidite	2
596	$data/CMU\text{-}UHCS_Dataset/images/micrograph 1093.tif$	spheroidite+widman statten	3
618	$data/CMU\text{-}UHCS_Dataset/images/micrograph1129.tif$	spheroidite+widmanstatten	3
631	data/CMU-UHCS_Dataset/images/micrograph1156.tif	spheroidite+widmanstatten	3
672	data/CMU-UHCS_Dataset/images/micrograph1218.tif	spheroidite+widmanstatten	3
673	data/CMU-UHCS_Dataset/images/micrograph1219.tif	spheroidite+widman statten	3

df_test

	path	primary_microconstituent	label
237	data/CMU-UHCS_Dataset/images/micrograph436.png	spheroidite	2
238	data/CMU-UHCS_Dataset/images/micrograph437.tif	spheroidite	2
239	data/CMU-UHCS_Dataset/images/micrograph440.png	spheroidite	2
241	data/CMU-UHCS_Dataset/images/micrograph442.tif	spheroidite	2
242	$data/CMU\text{-}UHCS_Dataset/images/micrograph 443.tif$	spheroidite	2
955	data/CMU-UHCS_Dataset/images/micrograph1722.tif	spheroidite	2
957	data/CMU-UHCS_Dataset/images/micrograph1726.tif	spheroidite+widmanstatten	3
958	data/CMU-UHCS_Dataset/images/micrograph1730.png	spheroidite	2
959	data/CMU-UHCS_Dataset/images/micrograph1731.tif	pearlite	1
960	$data/CMU\text{-}UHCS_Dataset/images/micrograph 1732.tif$	pearlite	1

Feature Extraction

```
# VGG16

base_model = tf.keras.applications.vgg16.VGG16(
    include_top=False,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
```

```
classes=1000,
   classifier_activation='softmax'
)
base_model.summary()
```

Model: "vgg16"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)		
block1_conv1 (Conv2D)	(None, None, None, 64)	1792
block1_conv2 (Conv2D)	(None, None, None, 64)	36928
block1_pool (MaxPooling2D)	(None, None, None, 64)	0
block2_conv1 (Conv2D)	(None, None, None, 128)	73856
block2_conv2 (Conv2D)	(None, None, None, 128)	147584
block2_pool (MaxPooling2D)	(None, None, None, 128)	0
block3_conv1 (Conv2D)	(None, None, None, 256)	295168
block3_conv2 (Conv2D)	(None, None, None, 256)	590080
block3_conv3 (Conv2D)	(None, None, None, 256)	590080
block3_pool (MaxPooling2D)	(None, None, None, 256)	0
block4_conv1 (Conv2D)	(None, None, None, 512)	1180160
block4_conv2 (Conv2D)	(None, None, None, 512)	2359808
block4_conv3 (Conv2D)	(None, None, None, 512)	2359808
block4_pool (MaxPooling2D)	(None, None, None, 512)	0
block5_conv1 (Conv2D)	(None, None, None, 512)	2359808

```
block5_conv2 (Conv2D)
                           (None, None, None, 512)
                                                    2359808
 block5_conv3 (Conv2D)
                      (None, None, None, 512)
                                                    2359808
 block5_pool (MaxPooling2D) (None, None, None, 512)
______
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0
Use five layers
  out_layer_ns = ["block{}_pool".format(i) for i in range(1,6)]
  out_layer_ns
['block1_pool', 'block2_pool', 'block3_pool', 'block4_pool', 'block5_pool']
  # Construct 5 models for feature extraction
  extmodel = dict(zip(out_layer_ns, [tf.keras.Model(
      inputs= base_model.input,
      outputs=base_model.get_layer(bk_name).output
  ) for bk_name in out_layer_ns]))
  extmodel
{'block1_pool': <keras.engine.functional.Functional at 0x2a7861070>,
 'block2_pool': <keras.engine.functional.Functional at 0x16f7c2070>,
 'block3_pool': <keras.engine.functional.Functional at 0x2a785cd90>,
 'block4_pool': <keras.engine.functional.Functional at 0x2a7855280>,
 'block5_pool': <keras.engine.functional.Functional at 0x2a7847190>}
  # Display output dimensions
  out_shapes = [extmodel[m].output_shape[-1] for m in extmodel.keys()]
  out_shapes
[64, 128, 256, 512, 512]
```

```
# Initiate feature maps for testing and training
  fs_train = [np.zeros((df_train.shape[0], n_f)) for n_f in out_shapes]
  fs test = [np.zeros((df_test.shape[0], n f)) for n f in out shapes]
  features_train = dict(zip(out_layer_ns, fs_train))
  features_test = dict(zip(out_layer_ns, fs_test))
  features_train
{'block1_pool': array([[0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., \ldots, 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., ..., 0., 0., 0.]]),
 'block2_pool': array([[0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]]),
 'block3_pool': array([[0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., \ldots, 0., 0., 0.],
        . . . ,
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., \ldots, 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]]),
 'block4_pool': array([[0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., ..., 0., 0., 0.]]),
 'block5_pool': array([[0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.]
        [0., 0., 0., ..., 0., 0., 0.]
        . . . ,
```

```
[0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.],
        [0., 0., 0., ..., 0., 0., 0.])
  # Feature extraction with VGG16
  #save file
  paths = dict(zip(["train", "test"],\
      [os.path.join(dpath, "feature_{}.pkl".format(n))\
       for n in ["train", "test"]]))
  #if os.path.exists(os.path.join(dpath, "feature_train.pkl")) == False:
  for m in tqdm(extmodel.keys()):
      for i, df in enumerate([df train, df test]):
          for j, ph in tqdm(enumerate(df["path"])):
              x = load_image(ph)
              xb = extmodel[m].predict(x, verbose = 0) # silence output
              F = np.mean(xb,axis=(0,1,2))
              # Save features
              if i ==0:
                  features_train[m][j, :] = F
                  features_test[m][j, :] = F
  ## Create new files
  f_train = open(paths["train"], "wb")
  f_test = open(paths["test"], "wb")
  ## Write
  pickle.dump(features_train, f_train)
  pickle.dump(features_test, f_test)
  ## Close files
  f_train.close()
  f_test.close()
 0%1
               | 0/5 [00:00<?, ?it/s]
0it [00:00, ?it/s]
0it [00:00, ?it/s]
0it [00:00, ?it/s]
0it [00:00, ?it/s]
```

```
0it [00:00, ?it/s]
```

SVM

```
# load data
ftn = open(paths["train"], "rb")
ftt = open(paths["test"], "rb")
featn = pickle.load(ftn) # train feature
featt = pickle.load(ftt) # test feature
ftn.close()
ftt.close()

# label
ltrain = df_train[["primary_microconstituent", "label"]].reset_index()
ltest = df_test[["primary_microconstituent", "label"]].reset_index()
```

ltrain

0 1 1 4 2 8 3 9 4 20 355 596 356 618	spheroidite spheroidite spheroidite spheroidite	2 2 2 2
2 8 3 9 4 20 355 596	spheroidite	2
3 9 4 20 355 596	•	_
4 20 355 596	spheroidite	9
 355 596		<i>Z</i>
000 000	spheroidite	2
357 631 358 672 359 673	spheroidite+widmanstatten spheroidite+widmanstatten spheroidite+widmanstatten spheroidite+widmanstatten	 3 3 3 3

One-to-One SVM

```
class One2OneSVM:
    def __init__(self, n_class=4):
        self.n_class = n_class
        self.clfs_list = [svm.SVC(kernel="rbf", C=1., gamma="auto")\
                          for i in range(0,self.n_class*self.n_class)]
        self.clfs = [[self.clfs_list[self.n_class*i + j]\
                     for i in range(0,self.n_class)]\
                     for j in range(0,self.n_class)]
        self.cv = np.zeros((self.n_class,self.n_class))
    def train(self, ltrain, feature, fold=10):
        # traversal all features
        for i in range(0, self.n_class-1):
            lis = ltrain[ltrain["label"] == i].index.to_numpy()
            for j in range(i+1, self.n_class):
                ljs = ltrain[ltrain["label"] == j].index.to_numpy()
                # Data
                X = np.concatenate(\
                  (feature[lis,:],\
                   feature[ljs,:]), axis=0)
                Y = np.concatenate((np.ones(len(lis))*i,np.ones(len(ljs))*j))
                # Train SVM
                scores = sklearn.model_selection.cross_val_score\
                        (self.clfs[i][j], X, Y, cv=fold)
                self.clfs[i][j].fit(X,Y)
                self.cv[i][j] = 1 - np.max(scores)
    def test_1v1_error(self, ltest, feature):
        # traversal all features
        errM = np.zeros((self.n_class, self.n_class))
        for i in range(0, self.n_class-1):
            lis = ltest[ltest["label"] == i].index.to_numpy()
            for j in range(i+1, self.n_class):
                ljs = ltest[ltest["label"] == j].index.to_numpy()
                # Data
                X = np.concatenate(\
                  (feature[lis,:],\
                   feature[ljs,:]), axis=0)
                Y = np.concatenate((np.ones(len(lis))*i,np.ones(len(ljs))*j))
                # Train SVM
```

(a)

The convolution layer used and the cross-validated error estimate for each of the six pairwise two-label classifiers

The cross-validation error of pairwise two-label classifiers given convolution layer is shown in the following table.

(b)

Separate test error rates on the unused micrographs of each of the four categories, for the pairwise two-label classifiers and the multilabel one-vs-one voting classifier described previously. For the pairwise classifiers use only the test micrographs with the two labels used to train the classifier. For the multilabel classifier, use the test micrographs with the corresponding four labels.

The empirical test error with unseen dataset is shown in the following table. The pairwise classifier was tested by the labels same as their training set. On the other hand, the multilable classifier is tested with fully four corresonding four labels.

```
def df_cv(m, clf, info=""):
    var1 = []
    var2 = []
```

```
cvs = []
errs = []
for i in range(0, m.shape[0]-1):
    for j in range(i+1, m.shape[0]):
        var1.append(i)
        var2.append(j)
        cvs.append(clf.cv[i,j])
        errs.append(m[i,j])
infos = [info] * len(errs)
return pd.DataFrame({"Info": infos, "Label 1": var1, "Label 2": var2, "Test error": er
```

Pair-wise classifier

The final block performs best in cross validation score.

```
df_errors = []
for b in out_layer_ns:
    clf1 = One2OneSVM()
    clf1.train(ltrain, features_train[b])
    errs = clf1.test_1v1_error(ltest, features_test[b])
    df_errors.append(df_cv(errs, clf1, b))

res_error = pd.concat(df_errors)
res_error
```

	Info	Label 1	Label 2	Test error	Cross Validation Error
0	block1_pool	0	1	0.823529	0.500
1	block1_pool	0	2	0.290155	0.450
2	block1_pool	0	3	0.157895	0.375
3	block1_pool	1	2	0.906040	0.500
4	block1_pool	1	3	0.466667	0.375
5	block1_pool	2	3	0.071186	0.375
0	block2_pool	0	1	0.823529	0.350
1	block2_pool	0	2	0.709845	0.350
2	block2_pool	0	3	0.157895	0.375
3	block2_pool	1	2	0.919463	0.500
4	block2_pool	1	3	0.466667	0.375
5	block2_pool	2	3	0.071186	0.375
0	block3_pool	0	1	0.823529	0.400
1	block3_pool	0	2	0.290155	0.400

	Info	Label 1	Label 2	Test error	Cross Validation Error
2	block3_pool	0	3	0.157895	0.375
3	block3_pool	1	2	0.080537	0.450
4	block3_pool	1	3	0.466667	0.375
5	$block3_pool$	2	3	0.071186	0.375
0	$block4_pool$	0	1	0.823529	0.500
1	$block4_pool$	0	2	0.290155	0.450
2	$block4_pool$	0	3	0.157895	0.375
3	block4_pool	1	2	0.080537	0.500
4	block4_pool	1	3	0.466667	0.375
5	block4_pool	2	3	0.071186	0.375
0	block5_pool	0	1	0.073529	0.000
1	block5_pool	0	2	0.033679	0.000
2	block5_pool	0	3	0.060150	0.000
3	block5_pool	1	2	0.000000	0.000
4	block5_pool	1	3	0.088889	0.000
5	block5_pool	2	3	0.061017	0.125

Multiple one-vs-one classifier

	Multiple One-Vs-One Classifier	Test Error
0	block1_pool	0.935035
1	block2_pool	0.944316
2	block3_pool	0.364269
3	block4_pool	0.364269
4	block5_pool	0.071926

(c)

For the mixed pearlite + spheroidite test micrographs, apply the trained pairwise classifier for pearlite vs. spheroidite and the multilabel voting classifier. Print the predicted labels by these two classifiers side by side (one row for each test micrograph). Comment your results

The pairwise SVM classifier performs better than Multiclass one-to-one classifier. Because the pairwise SVM is specialized for the binary problem and not be interfered with other classification setting.

	Test Label	Pairwise	(pearlite vs.	spheroidite)	Multi-OnevsOne
0	${\tt spheroidite}$			spheroidite	spheroidite
1	${\tt spheroidite}$			spheroidite	spheroidite
2	${\tt spheroidite}$			spheroidite	spheroidite
3	${\tt spheroidite}$			spheroidite	spheroidite
4	${\tt spheroidite}$			spheroidite	spheroidite
5	${\tt spheroidite}$			spheroidite	spheroidite
6	spheroidite			spheroidite	spheroidite
7	spheroidite			spheroidite	spheroidite
8	${\tt spheroidite}$			spheroidite	spheroidite
9	${\tt spheroidite}$			spheroidite	spheroidite
10	${\tt spheroidite}$			spheroidite	spheroidite
11	${\tt spheroidite}$			spheroidite	spheroidite
12	${\tt spheroidite}$			spheroidite	spheroidite
13	${\tt spheroidite}$			spheroidite	spheroidite
14	spheroidite			spheroidite	spheroidite
15	${\tt spheroidite}$			spheroidite	spheroidite

16	spheroidite	spheroidite	spheroidite
17	spheroidite	spheroidite	spheroidite
18	spheroidite	spheroidite	spheroidite
19	spheroidite	spheroidite	spheroidite
20	spheroidite	spheroidite	spheroidite
21	spheroidite	spheroidite	spheroidite
22	spheroidite	spheroidite	spheroidite
23	spheroidite	spheroidite	spheroidite+widmanstatten
24	spheroidite	spheroidite	spheroidite
25	spheroidite	spheroidite	spheroidite
26	spheroidite	spheroidite	spheroidite
27	spheroidite	spheroidite	spheroidite+widmanstatten
28	spheroidite	spheroidite	spheroidite
29	spheroidite	spheroidite	spheroidite
30	spheroidite	spheroidite	spheroidite
31	spheroidite	spheroidite	spheroidite
32	spheroidite	spheroidite	spheroidite
33	spheroidite	spheroidite	spheroidite
34	spheroidite	spheroidite	spheroidite
35	spheroidite	spheroidite	spheroidite
36	spheroidite	spheroidite	spheroidite
37	spheroidite	spheroidite	spheroidite
38	spheroidite	spheroidite	spheroidite
39	spheroidite	spheroidite	spheroidite
40	spheroidite	spheroidite	spheroidite+widmanstatten
41	spheroidite	spheroidite	spheroidite
42	spheroidite	spheroidite	spheroidite
43	spheroidite	spheroidite	spheroidite
44	spheroidite	spheroidite	spheroidite
45	spheroidite	spheroidite	spheroidite
46	spheroidite	spheroidite	spheroidite
47	spheroidite	spheroidite	spheroidite
48	spheroidite	spheroidite	spheroidite
49	spheroidite	spheroidite	spheroidite
50	spheroidite	spheroidite	spheroidite
51	spheroidite	spheroidite	spheroidite
52	spheroidite	spheroidite	spheroidite
53	spheroidite	spheroidite	spheroidite
54	spheroidite	spheroidite	spheroidite
55	spheroidite	spheroidite	spheroidite
56	spheroidite	spheroidite	spheroidite
57	spheroidite	spheroidite	spheroidite
58	spheroidite	spheroidite	spheroidite

59	spheroidite	spheroidite	spheroidite
60	spheroidite	spheroidite	spheroidite
61	spheroidite	spheroidite	spheroidite
62	spheroidite	spheroidite	spheroidite
63	spheroidite	spheroidite	spheroidite
64	spheroidite	spheroidite	spheroidite
65	spheroidite	spheroidite	spheroidite
66	spheroidite	spheroidite	spheroidite
67	spheroidite	spheroidite	spheroidite
68	spheroidite	spheroidite	spheroidite
69	spheroidite	spheroidite	spheroidite
70	spheroidite	spheroidite	spheroidite
71	spheroidite	spheroidite	spheroidite
72	spheroidite	spheroidite	spheroidite
73	spheroidite	spheroidite	spheroidite
74	spheroidite	spheroidite	spheroidite
75	spheroidite	spheroidite	spheroidite
76	spheroidite	spheroidite	spheroidite
77	spheroidite	spheroidite	spheroidite
78	spheroidite	spheroidite	spheroidite
79	spheroidite	spheroidite	spheroidite
80	spheroidite	spheroidite	spheroidite
81	spheroidite	spheroidite	spheroidite
82	spheroidite	spheroidite	spheroidite
83	spheroidite	spheroidite	spheroidite
84	spheroidite	spheroidite	spheroidite
85	spheroidite	spheroidite	spheroidite
86	spheroidite	spheroidite	spheroidite
87	spheroidite	spheroidite	spheroidite
88	spheroidite	spheroidite	spheroidite
89	spheroidite	spheroidite	spheroidite
90	spheroidite	spheroidite	${\tt spheroidite+widmanstatten}$
91	spheroidite	spheroidite	spheroidite
92	spheroidite	spheroidite	spheroidite
93	spheroidite	spheroidite	spheroidite
94	spheroidite	spheroidite	spheroidite
95	spheroidite	spheroidite	spheroidite
96	spheroidite	spheroidite	spheroidite
97	spheroidite	spheroidite	spheroidite
98	spheroidite	spheroidite	spheroidite
99	spheroidite	spheroidite	spheroidite
100	spheroidite	spheroidite	spheroidite
101	spheroidite	spheroidite	spheroidite

102	spheroidite	spheroidite	spheroidite
103	spheroidite	spheroidite	spheroidite
104	spheroidite	spheroidite	spheroidite
105	spheroidite	spheroidite	spheroidite
106	spheroidite	spheroidite	spheroidite
107	spheroidite	spheroidite	spheroidite
108	spheroidite	spheroidite	spheroidite
109	spheroidite	spheroidite	spheroidite
110	spheroidite	spheroidite	spheroidite
111	spheroidite	spheroidite	spheroidite
112	spheroidite	spheroidite	spheroidite+widmanstatten
113	spheroidite	spheroidite	spheroidite
114	spheroidite	spheroidite	spheroidite
115	spheroidite	spheroidite	spheroidite
116	spheroidite	spheroidite	spheroidite
117	spheroidite	spheroidite	spheroidite
118	spheroidite	spheroidite	spheroidite
119	spheroidite	spheroidite	spheroidite
120	spheroidite	spheroidite	spheroidite
121	spheroidite	spheroidite	spheroidite
122	spheroidite	spheroidite	spheroidite
123	spheroidite	spheroidite	spheroidite
124	spheroidite	spheroidite	spheroidite
125	spheroidite	spheroidite	spheroidite
126	spheroidite	spheroidite	spheroidite
127	spheroidite	spheroidite	spheroidite
128	spheroidite	spheroidite	spheroidite
129	spheroidite	spheroidite	spheroidite
130	spheroidite	spheroidite	spheroidite
131	spheroidite	spheroidite	spheroidite
132	spheroidite	spheroidite	spheroidite
133	spheroidite	spheroidite	spheroidite
134	spheroidite	spheroidite	spheroidite
135	spheroidite	spheroidite	spheroidite
136	spheroidite	spheroidite	spheroidite
137	spheroidite	spheroidite	spheroidite
138	spheroidite	spheroidite	spheroidite
139	spheroidite	spheroidite	spheroidite
140	spheroidite	spheroidite	spheroidite
141	spheroidite	spheroidite	spheroidite
142	spheroidite	spheroidite	spheroidite
143	spheroidite	spheroidite	spheroidite
144	spheroidite	spheroidite	spheroidite

145	spheroidite	spheroidite	spheroidite
146	spheroidite	spheroidite	spheroidite
147	spheroidite	spheroidite	spheroidite
148	spheroidite	spheroidite	spheroidite
149	spheroidite	spheroidite	spheroidite
150	spheroidite	spheroidite	spheroidite
151	spheroidite	spheroidite	spheroidite
152	spheroidite	spheroidite	spheroidite
153	spheroidite	spheroidite	spheroidite
154	spheroidite	spheroidite	spheroidite
155	spheroidite	spheroidite	spheroidite
156	spheroidite	spheroidite	spheroidite
157	spheroidite	spheroidite	spheroidite
158	spheroidite	spheroidite	spheroidite
159	spheroidite	spheroidite	spheroidite
160	spheroidite	spheroidite	spheroidite
161	spheroidite	spheroidite	spheroidite
162	spheroidite	spheroidite	spheroidite
163	spheroidite	spheroidite	spheroidite
164	spheroidite	spheroidite	spheroidite
165	spheroidite	spheroidite	spheroidite
166	spheroidite	spheroidite	network
167	spheroidite	spheroidite	spheroidite
168	spheroidite	spheroidite	spheroidite
169	spheroidite	spheroidite	spheroidite
170	spheroidite	spheroidite	spheroidite
171	spheroidite	spheroidite	spheroidite
172	spheroidite	spheroidite	spheroidite
173	spheroidite	spheroidite	spheroidite
174	spheroidite	spheroidite	spheroidite
175	spheroidite	spheroidite	spheroidite
176	spheroidite	spheroidite	spheroidite
177	spheroidite	spheroidite	spheroidite
178	spheroidite	spheroidite	spheroidite+widmanstatten
179	spheroidite	spheroidite	spheroidite
180	spheroidite	spheroidite	spheroidite
181	spheroidite	spheroidite	spheroidite
182	spheroidite	spheroidite	spheroidite
183	spheroidite	spheroidite	spheroidite
184	spheroidite	spheroidite	spheroidite
185	spheroidite	spheroidite	spheroidite
186	spheroidite	spheroidite	spheroidite
187	spheroidite	spheroidite	spheroidite

188	spheroidite	spheroidite	spheroidite
189	spheroidite	spheroidite	spheroidite
190	spheroidite	spheroidite	spheroidite+widmanstatten
191	spheroidite	spheroidite	spheroidite
192	spheroidite	spheroidite	spheroidite
193	spheroidite	spheroidite	spheroidite
194	spheroidite	spheroidite	spheroidite
195	spheroidite	spheroidite	spheroidite
196	spheroidite	spheroidite	spheroidite
197	spheroidite	spheroidite	spheroidite
198	spheroidite	spheroidite	spheroidite
199	spheroidite	spheroidite	spheroidite
200	spheroidite	spheroidite	spheroidite
201	spheroidite	spheroidite	spheroidite
202	spheroidite	spheroidite	spheroidite
203	spheroidite	spheroidite	spheroidite
204	spheroidite	spheroidite	spheroidite
205	spheroidite	spheroidite	spheroidite
206	spheroidite	spheroidite	spheroidite
207	spheroidite	spheroidite	spheroidite
208	spheroidite	spheroidite	spheroidite
209	spheroidite	spheroidite	spheroidite
210	spheroidite	spheroidite	spheroidite
211	spheroidite	spheroidite	spheroidite
212	spheroidite	spheroidite	spheroidite
213	spheroidite	spheroidite	spheroidite
214	spheroidite	spheroidite	spheroidite
215	spheroidite	spheroidite	spheroidite
216	spheroidite	spheroidite	spheroidite
217	spheroidite	spheroidite	spheroidite
218	spheroidite	spheroidite	spheroidite+widmanstatten
219	pearlite	pearlite	pearlite
220	spheroidite	spheroidite	spheroidite
221	spheroidite	spheroidite	spheroidite
222	spheroidite	spheroidite	spheroidite
223	pearlite	pearlite	pearlite
224	pearlite	pearlite	pearlite
225	spheroidite	spheroidite	spheroidite
226	spheroidite	spheroidite	spheroidite
227	pearlite	pearlite	pearlite
228	spheroidite	spheroidite	spheroidite
229	spheroidite	spheroidite	spheroidite
230	spheroidite	spheroidite	spheroidite

231	spheroidite	spheroidite	spheroidite
232	spheroidite	spheroidite	spheroidite
233	spheroidite	spheroidite	network
234	spheroidite	spheroidite	spheroidite
235	spheroidite	spheroidite	spheroidite+widmanstatten
236	spheroidite	spheroidite	spheroidite
237	spheroidite	spheroidite	spheroidite
238	pearlite	pearlite	pearlite
239	pearlite	pearlite	pearlite
240	spheroidite	spheroidite	spheroidite
241	pearlite	pearlite	pearlite
242	pearlite	pearlite	pearlite
243	spheroidite	spheroidite	spheroidite
244	spheroidite	spheroidite	spheroidite
245	spheroidite	spheroidite	spheroidite
246	spheroidite	spheroidite	spheroidite
247	spheroidite	spheroidite	spheroidite
248	spheroidite	spheroidite	spheroidite
249	spheroidite	spheroidite	spheroidite
250	spheroidite	spheroidite	spheroidite
251	spheroidite	spheroidite	spheroidite
252	pearlite	pearlite	pearlite
253	pearlite	pearlite	pearlite
254	pearlite	pearlite	pearlite
255	pearlite	pearlite	pearlite
256	pearlite	pearlite	pearlite
257	spheroidite	spheroidite	spheroidite
258	spheroidite	spheroidite	spheroidite
259	spheroidite	spheroidite	spheroidite
260	spheroidite	spheroidite	spheroidite
261	spheroidite	spheroidite	spheroidite
262	spheroidite	spheroidite	spheroidite
263	spheroidite	spheroidite	spheroidite
264	spheroidite	spheroidite	spheroidite
265	spheroidite	spheroidite	spheroidite
266	spheroidite	spheroidite	spheroidite
267	pearlite	pearlite	pearlite
268	pearlite	pearlite	pearlite
269	spheroidite	spheroidite	spheroidite
270	pearlite	pearlite	pearlite
271	spheroidite	spheroidite	spheroidite
272	spheroidite	spheroidite	spheroidite
273	spheroidite	spheroidite	spheroidite

274	pearlite	pearlite	pearlite
275	pearlite	pearlite	pearlite
276	spheroidite	spheroidite	spheroidite
277	pearlite	pearlite	pearlite
278	spheroidite	spheroidite	spheroidite
279	spheroidite	spheroidite	spheroidite
280	spheroidite	spheroidite	spheroidite
281	spheroidite	spheroidite	spheroidite
282	spheroidite	spheroidite	spheroidite
283	spheroidite	spheroidite	spheroidite
284	spheroidite	spheroidite	spheroidite
285	spheroidite	spheroidite	spheroidite
286	pearlite	pearlite	pearlite
287	pearlite	pearlite	pearlite
288	spheroidite	spheroidite	spheroidite
289	spheroidite	spheroidite	spheroidite
290	spheroidite	spheroidite	spheroidite
291	spheroidite	spheroidite	spheroidite
292	spheroidite	spheroidite	spheroidite
293	pearlite	pearlite	pearlite
294	spheroidite	spheroidite	spheroidite
295	spheroidite	spheroidite	spheroidite
296	pearlite	pearlite	pearlite
297	pearlite	pearlite	pearlite

(d)

Now apply the multilabel classifier on the pearlite + Widmanst "atten and martensite micrographs and print the predicted labels. Compare to the results in part (c)

There is no specific relation for these unseen datasets. The prediction can not extrapolate, and (c) has preferred prediction accuracy and consistency.

```
df_micro2 = df_micro2[(df_micro2["primary_microconstituent"] == "pearlite+widmanstatten")
  (df_micro2["primary_microconstituent"] == "martensite")]

# Encode labels
le2 = preprocessing.LabelEncoder()
le2.fit(df_micro2["primary_microconstituent"].unique())
list(le2.classes_)
```

['martensite', 'pearlite+widmanstatten']

df_micro2

```
dlabel2 = le2.transform(df_micro2["primary_microconstituent"])
df_micro2.insert(2, "label", dlabel2)
```

	path	primary_microconstituent	label
15	data/CMU-UHCS_Dataset/images/micrograph20.tif	martensite	0
29	data/CMU-UHCS_Dataset/images/micrograph41.tif	martensite	0
31	data/CMU-UHCS_Dataset/images/micrograph44.tif	martensite	0
63	data/CMU-UHCS_Dataset/images/micrograph99.tif	martensite	0
71	$data/CMU\text{-}UHCS_Dataset/images/micrograph114.tif$	martensite	0
			•••
892	data/CMU-UHCS_Dataset/images/micrograph1599.tif	martensite	0
936	data/CMU-UHCS_Dataset/images/micrograph1684.tif	pearlite+widmanstatten	1
942	data/CMU-UHCS_Dataset/images/micrograph1697.tif	martensite	0
944	data/CMU-UHCS_Dataset/images/micrograph1700.tif	martensite	0
956	${\rm data/CMU\text{-}UHCS_Dataset/images/micrograph1723.tif}$	martensite	0

```
# Feature extraction with VGG16
if os.path.exists(os.path.join(dpath, "feature_test2.pkl")) == False:
   fs_test2 = np.zeros((df_micro2.shape[0], out_shapes[-1]))
   m = "block5_pool"
    for j, ph in tqdm(enumerate(df_micro2["path"])):
        x = load_image(ph)
       xb = extmodel[m].predict(x, verbose = 0) # silence output
        F = np.mean(xb,axis=(0,1,2))
        # Save features
        fs_test2[j, :] = F
    # Save data
    ## Create new files
   fs_test2_p = open(os.path.join(dpath, "feature_test2.pkl"), "wb")
    ## Write
   pickle.dump(fs_test2, fs_test2_p)
    ## Close files
   fs_test2_p.close()
```

	Test Label	Multi-OnevsOne
0	martensite	spheroidite
1	martensite	network
2	martensite	
		pearlite
3	martensite	spheroidite
4	martensite	spheroidite
5	martensite	network
6	martensite	spheroidite
7	pearlite+widmanstatten	pearlite
8	martensite	pearlite
9	martensite	spheroidite
10	martensite	spheroidite
11	pearlite+widmanstatten	pearlite
12	martensite	pearlite
13	pearlite+widmanstatten	pearlite
14	martensite	pearlite
15	pearlite+widmanstatten	spheroidite
16	pearlite+widmanstatten	spheroidite+widmanstatten
17	pearlite+widmanstatten	pearlite
18	martensite	pearlite
19	pearlite+widmanstatten	spheroidite
20	pearlite+widmanstatten	pearlite
21	pearlite+widmanstatten	spheroidite
22	pearlite+widmanstatten	spheroidite
23	pearlite+widmanstatten	pearlite
24	pearlite+widmanstatten	pearlite
25	martensite	pearlite
26	martensite	spheroidite
27	martensite	pearlite

28	martensite	spheroidite
29	martensite	pearlite
30	martensite	spheroidite
31	martensite	pearlite
32	pearlite+widmanstatten	pearlite
33	martensite	pearlite
34	martensite	spheroidite
35	pearlite+widmanstatten	spheroidite
36	martensite	spheroidite
37	pearlite+widmanstatten	spheroidite
38	pearlite+widmanstatten	pearlite
39	pearlite+widmanstatten	pearlite
40	martensite	pearlite
41	martensite	spheroidite
42	pearlite+widmanstatten	pearlite
43	pearlite+widmanstatten	spheroidite
44	pearlite+widmanstatten	spheroidite+widmanstatten
45	pearlite+widmanstatten	pearlite
46	pearlite+widmanstatten	pearlite
47	martensite	pearlite
48	pearlite+widmanstatten	pearlite
49	martensite	pearlite
50	pearlite+widmanstatten	spheroidite+widmanstatten
51	pearlite+widmanstatten	pearlite
52	martensite	pearlite
53	pearlite+widmanstatten	spheroidite
54	martensite	spheroidite
55	martensite	spheroidite
56	martensite	pearlite
57	martensite	network
58	martensite	spheroidite
59	pearlite+widmanstatten	pearlite
60	martensite	spheroidite
61	martensite	pearlite
62	martensite	spheroidite