Summary of Discrete Distributions

Notation and Parameters	Probability Function $f(x)$	Mean E(X)	Variance $Var(X)$
Discrete Uniform (a, b) $b \ge a$ a, b integers	$\frac{1}{b-a+1}$ $x = a, a+1,, b$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$
Hypergeometric (N, r, n) N = 1, 2, n = 0, 1,, N r = 0, 1,, N	$\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$ $x = \max(0, n - N + r),$, $\min(r, n)$	$\frac{nr}{N}$	$\frac{nr}{N}\Big(1-\frac{r}{N}\Big)\frac{N-n}{N-1}$
Binomial (n, p) $0 \le p \le 1, q = 1 - p$ n = 1, 2,	$\binom{n}{x} p^x q^{n-x}$ $x = 0, 1, \dots, n$	np	npq
Bernoulli (p) $0 \le p \le 1, q = 1 - p$	$p^x q^{1-x}$ $x = 0,1$	p	pq
Negative Binomial (k, p) 0 $k = 1, 2,$	${x+k-1 \choose x} p^k q^x$ $= {-k \choose x} p^k (-q)^x$ $x = 0,1,$	$\frac{kq}{p}$	$\frac{kq}{p^2}$
Geometric(p) 0	pq^{x} $x = 0,1,$	$\frac{q}{p}$	$\frac{q}{p^2}$
$Poisson(\lambda)$ $\lambda \ge 0$	$\frac{e^{-\lambda}\lambda^x}{x!}$ $x = 0,1,$	λ	λ

Summary of Continuous Distributions

Notation and Parameters	Probability Density Function $f(x)$	Mean E(X)	Variance Var(X)
Uniform (a, b) $b > a$	$\frac{1}{b-a}$ $a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential(θ) $\theta > 0$	$\frac{1}{\theta}e^{-x/\theta}$ $x \ge 0$	θ	θ^2