

AI in Medical Image Classification

Warmup

8/9 (Sun) 14:00-17:00

中央研究院統計科學研究所 李易儒博士 森元俊成研究助理

Warmup

14:00-15:30 學習動機:了解電腦影像與基本Python語法

15:30-17:00 統計模型估計

本課程所使用的肺部X光影像資料來自開源資料庫 https://www.kaggle.com/paultimothymooney/chestxray-pneumonia

課前準備

• 下載Anaconda在自己的筆電上

https://www.anaconda.com/products/individual

在自己的電腦上安裝Python

學習動機:了解電腦影像與基本Python語法

- 猜猜看哪一張
- 電腦影像為何?
- 本課程使用的肺部影像介紹(Chest x-ray)
- · 如何使用Python 操作影像

猜猜看,哪一張?

哪一張是有肺炎的肺部影像?

哪一張是有肺炎的肺部影像?

哪一張是有肺炎的肺部影像?

人工智慧在醫療場域

診斷=模式(pattern)識別 有智慧的機器可以幫助醫生···

- 自動分類與檢查影像—增益遠距醫療與急診
- •機器學習輔助第二意見—受益於其他醫師對類似病例的共識
- 自動報告產生-紀錄以影像為本的機器產出
- 診斷細化—簡少多模態訊息
- 自動腫瘤追蹤

人如何學習分類? 絕對與相對

藍色或綠色?

貓或狗?

蘋果或櫻桃?

人如何學習分類?

認知策略 行為選擇

人類的分類極限

人類的分類極限

人類的分類極限?

分類:系統性地依據觀察分群入不同類別

人

- 吃食物 水
- · 經驗累積所歸納的 規則與特徵
- 容許無法描述的內 隱知識
- 有彈性的邏輯思維

電腦

- 吃運算資源
- 可定義的規則
- 知識持續大量累積
- 提供鉅細靡遺的估計資料

電腦影像為何?影像是數字

醫學影像作為Data

資料數位化使影像可以被電腦分析

什麼是醫學影像?

- 包含臨床意義的訊息
- 以輔助治療、診斷、照護為目的

醫學影像數位化

醫學資料必需結構化,讓機器可以認得

醫學影像裡的資料

機器端攝影參數

影像本身屬性

影像相關資料

量化的資料讓電腦讀得懂 可以分析

機器端攝影參數

掃掃掃掃資掃掃影機描描描描掛料描描像器姓組號期期間間類造

影像本身屬性

掃描序號

影像厚度 影像位置 影像角度 索引UID Slice位置 欄 列 像素Spacing Bits Allocated Bits Stored 最小影像像素值 最大影像像素值 Window 中央位置 Window寬 Rescale截距 Rescale斜率

影像相關資料

姓生年病精描號。

綜合評估與意見

醫學影像的格式

- Digital Imaging and Communications in Medicine (DICOM)
- Neuroimaging Informatics Technology Initiative (NIfTI)
- Nearly Raw Raster Data (NRRD)

醫學影像的格式

Summary of file formats characteristics

Format	Header	Extension	Data types
Analyze	Fixed-length: 348 byte binary format	.img and .hdr	Unsigned integer (8-bit), signed integer (16-, 32-bit), float (32-, 64-bit), complex (64-bit)
Nifti	Fixed-length: 352 byte binary format ^a (348 byte in the case of data stored as .img and .hdr)	.nii	Signed and unsigned integer (from 8- to 64- bit), float (from 32- to 128-bit), complex (from 64- to 256-bit)
Minc	Extensible binary format	.mnc	Signed and unsigned integer (from 8- to 32- bit), float (32-, 64-bit), complex (32-, 64-bit)
Dicom	Variable length binary format	.dcm	Signed and unsigned integer, (8-, 16-bit; 32-bit only allowed for radiotherapy dose), float not supported

Not all the software support all the specified data types. Dicom, Analyze, and Nifti support color RGB 24-bit; Nifti also supports RGBA 32-bit (RGB plus an alpha-channel)

aNifti has a mechanism to extend the header

醫學影像的格式

Consists of:

- Metadata

 (eg file size, image dimensions, scan date, patient id)
- Data (usually big long string of bytes)

Organized as:

- Header (metadata) followed by data
- Containers (each has an identifier, metadata, data)

- 最小單位是pixel
- 裡面會有數字
- 黑白影像可以用矩陣表示
- 彩色影像可以用三階張量(RGB)表示

黑白影像是矩陣

0	0	0	0	0	0	0	1	5	8	1	0	0	0
0	0	0	0	0	0	0	1	5	8	1	0	0	0
0	0	0	0	0	120	0	1	5	8	1	0	0	0
0	0	0	0	3	0	0	1	5	8	1	0	0	0
0	0	0	0	0	43	0	1	5	8	1	0	0	0
0	0	0	0	33	0	0	1	5	8	1	0	0	0
0	0	0	0	22	0	0	1	5	8	1	0	0	0
0	0	0	0	0	0	231	165	250	8	1	0	0	0
0	0	0	0	78	0	250	1	254	8	1	0	0	0
0	0	0	112	254	199	222	231	250	231	98	0	0	0
0	33	77	231	250	210	231	250	250	250	86	134	0	0
0	23	89	250	250	228	255	222	222	222	92	169		0
0	56	132	222	222	251	243	255	222	231	132	215	142	0
0	0	255	222	255	222	255	255	222	255	222	0	0	0
0	0	243	255	243	255	255	243	255	243	255	0	0	0

矩陣!

本課程使用的肺部影像介紹

胸部X光影像

資料集:胸部X光影像(健康/肺炎)

資料來源

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/metadata

資料集: 胸部 X 光影像 (健康/肺炎)

- 胸部X光影像來自廣州市婦女兒童醫學中心回溯性資料庫
- 1至5歲的小兒科病患影像

健康影像

肺炎影像

資料集: 胸部 X 光影像 (健康/肺炎)

- 5,863 張X光影像 (JPEG)
- 兩種資料類別(肺炎Pneumonia/正常Normal)
- 資料分別整理在3個資料夾中: train, test, val
- 每個資料夾內分別有兩個類別的影像資料夾

	Normal	Pneumonia
train	1342	3875
test	234	390
val	8	8

作業流程

Chest X-ray Image

Output (patient)
Pneumonia Positive 85%

Output (healthy)
Pneumonia Positive 10%

聰明的機器,目前有哪些?

- CNN (Wang, et al., 2017; Li et al., 2017)
- CNN + recurrent neural network (Yao et al.,2017)
- DenseNet: as the backbone of CNN (Huang et al.,2017)
- DenseNet-121 with fine tuning: Transfer learning (Rajpurkar, 2017)
- ResNet-50 (Baltruschat et al.,2018)
- VGG 16

如何使用 Python 操作影像

利用一張胸部X光影像

在Anaconda中打開Anaconda Navigator

安裝需要的工具

Environments > base (root) > Open Terminal

安裝需要的工具

輸入 conda install **numpy** 後按 enter 輸入 conda install **matplotlib** 後按 enter 輸入 conda install **pillow** 後按enter *部分同學課能會出現已裝好的情形

打開Jupyter Notebook

下載測試圖片到桌面

shorturl.at/xLVW2

test.jpeg

開啟新的Jupyter Notebook 點選python 3

輸入後,畫面呈現如下

ご Jupyter Warmup Last Checkpoint: 12 分鐘前 (unsaved changes)

影像是矩陣!影像是矩陣!影像是矩陣!

```
1 | print(X);
In [3]:
                          呈現結果的語法
         [[09792...001]
          [29894... 0 0 1]
                           1]
          [ 2 98 92 ... 0
                         0
                           0|
              0 0 ... 0 0 0]
                      0
                         0
                           0]]
```

取得影像矩陣Size的語法

print (X.shape)

```
In [4]: 1 print(X.shape);
(1484, 1968)
```

影像呈現的語法

pyplot.imshow(X);
pyplot.imshow(X,cmap='gray');
以灰階呈現,請輸入cmap='gray'

如何取得特定像素內的數值?

```
最左上角
        1 print(X[0,0]);
In [7]:
                            依矩陣位置編號由零開始
           0
                                    0
         1 print(X[1,1]);
In [8]:
                                      98
           98
```

如何取得特定像素內的數值?

取得特定範圍的像素


```
In [9]: # Show the 左變100×100
2 print(X[0:200,0:200])

[[ 0 97 92 ... 152 148 145]
[ 2 98 94 ... 149 144 140]
[ 2 98 92 ... 147 142 138]
...
[ 0 74 64 ... 119 119 119]
[ 0 74 63 ... 119 119 119]
[ 0 74 63 ... 118 118 118]]
```

取得特定範圍的像素

剪下的圖大小為400*500 x軸第 601到第1000個像素 y軸第1001到第1500個像素

```
In [16]: 1 print(X[600:1000,1000:1500])

[[194 195 198 ... 87 90 87]
      [201 200 199 ... 88 90 87]
      [200 197 194 ... 90 91 87]
      ...

[204 203 203 ... 61 63 65]
      [203 204 205 ... 61 64 64]
      [203 204 205 ... 62 65 65]]
```

呈現特定範圍的影像

建立零矩陣以及所有像素為1的矩陣

```
In [11]:
           1 # 1484 x 1968 zero matrix
                                           In [12]:
                                                      1 | B = np.ones([1484, 1968]);
            A = np.zeros([1484, 1968]);
                                                         print(B);
             print(A);
                                                       [[1. 1. 1. ... 1. 1. 1.]
            [[0. 0. 0. ... 0. 0. 0.]
                                                        [1. 1. 1. ... 1. 1. 1.]
             [0. 0. 0. ... 0. 0. 0.]
                                                        [1. 1. 1. ... 1. 1. 1.]
             [0. 0. 0. ... 0. 0. 0.]
                                                        [1. 1. 1. ... 1. 1. 1.]
             [0. 0. 0. ... 0. 0. 0.]
                                                        [1. 1. 1. ... 1. 1. 1.]
             [0. 0. 0. ... 0. 0. 0.]
                                                        [1. 1. 1. ... 1. 1. 1.]]
             [0. 0. 0. ... 0. 0. 0.]]
```

影像矩陣與<u>常數</u>的乘法 影像矩陣的減法

```
In [13]:
          1 C = B * 255;
           2 print(C);
            [[255. 255. 255. ... 255. 255. 255.]
             [255. 255. 255. ... 255. 255. 255.]
             [255. 255. 255. ... 255. 255. 255.]
             [255. 255. 255. ... 255. 255. 255.]
             [255. 255. 255. ... 255. 255. 255.]
             [255. 255. 255. ... 255. 255. 255.]]
In [14]:
           1 \mid D = C - X;
             print(D);
            [[255. 158. 163. ... 255. 255. 254.]
             [253. 157. 161. ... 255. 255. 254.]
             [253. 157. 163. ... 255. 255. 254.]
             . . .
             [255. 255. 255. ... 255. 255. 255.]
             [255. 255. 255. ... 255. 255. 255.]
             [255. 255. 255. ... 255. 255. 255.]]
```

呈現運算過後的影像矩陣(反白)

休息一下