# Министерство цифрового развития Федеральное государственное бюджетное образовательное учреждение высшего образования

«Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Кафедра прикладной математики и кибернетики

## Отчёт

по лабораторной работе № 1 «Первичный анализ и предобработка данных»

Выполнил:

студент группы

ИП-216

Андрущенко Ф.А

Работу проверил: Преподаватель Сороковых Д.А.

Новосибирск 2025 г.

## Введение

Краткое описание выбранного набора данных:

- Название: House-price

- Объём данных: 187,531 запись

- Количество признаков: 21

## Постановка задачи:

Выберите набор данных с различными типами признаков и наличием пропусков. Проведите все этапы разведочного анализа (EDA).

## Основная часть

## 1. Загрузка и первичный осмотр

Скачиваем набор данных в формате .csv

```
import kagglehub

path = kagglehub.dataset_download("juhibhojani/house-price")
print("Path to dataset files:", path)

Downloading from https://www.kaggle.com/api/v1/datasets/download/juhibhojani/house-price?dataset_version_number=1...
100%| 6.61M/6.61M [00:00<00:00, 77.3MB/s]Extracting files...

Path to dataset files: /root/.cache/kagglehub/datasets/juhibhojani/house-price/versions/1</pre>
```

#### Загружаем данные в DataFrame и выводим первые 5 строк

| import os<br>import pandas as pd<br>file_path = ' <u>/root/.cache/kagglehub/datasets/juhibhojani/house-price/versions/l/house_prices.csv</u> '<br>df = pd.read_csv(file_path)<br>df.head() |       |                                                         |                                                      |                      |                         |          |                |                  |                 |             |                    |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------|------------------------------------------------------|----------------------|-------------------------|----------|----------------|------------------|-----------------|-------------|--------------------|--------|
|                                                                                                                                                                                            | Index | Title                                                   | Description                                          | Amount(in<br>rupees) | Price<br>(in<br>rupees) | location | Carpet<br>Area | Status           | Floor           | Transaction | Furnishing         | facing |
| 0                                                                                                                                                                                          |       | 1 BHK Ready<br>to Occupy Flat<br>for sale in<br>Srushti | Bhiwandi, Thane<br>has an attractive<br>1 BHK Flat f | 42 Lac               | 6000.0                  | thane    | 500<br>sqft    | Ready<br>to Move | 10 out<br>of 11 | Resale      | Unfurnished        | NaN    |
| 1                                                                                                                                                                                          |       | 2 BHK Ready<br>to Occupy Flat<br>for sale in<br>Dosti V | One can find this<br>stunning 2 BHK<br>flat for sale | 98 Lac               | 13799.0                 | thane    | 473<br>sqft    | Ready<br>to Move | 3 out<br>of 22  | Resale      | Semi-<br>Furnished | East   |
| 2                                                                                                                                                                                          |       | 2 BHK Ready<br>to Occupy Flat<br>for sale in<br>Sunrise | Up for immediate<br>sale is a 2 BHK<br>apartment in  | 1.40 Cr              | 17500.0                 | thane    | 779<br>sqft    | Ready<br>to Move | 10 out<br>of 29 | Resale      | Unfurnished        | East   |
| 3                                                                                                                                                                                          |       | 1 BHK Ready<br>to Occupy Flat<br>for sale<br>Kasheli    | This beautiful 1<br>BHK Flat is<br>available for sal | 25 Lac               | NaN                     | thane    | 530<br>sqft    | Ready<br>to Move | 1 out<br>of 3   | Resale      | Unfurnished        | NaN    |
| 4                                                                                                                                                                                          |       | 2 BHK Ready<br>to Occupy Flat<br>for sale in<br>TenX Ha | This lovely 2 BHK<br>Flat in Pokhran<br>Road, Thane  | 1.60 Cr              | 18824.0                 | thane    | 635<br>sqft    | Ready<br>to Move | 20 out<br>of 42 | Resale      | Unfurnished        | West   |

#### Используем методы .info(), .describe(), .shape

df.shape (187531, 21)



| df.describe() |               |                   |            |           |    |  |  |  |
|---------------|---------------|-------------------|------------|-----------|----|--|--|--|
|               | Index         | Price (in rupees) | Dimensions | Plot Area |    |  |  |  |
| count         | 187531.000000 | 1.698660e+05      | 0.0        | 0.0       | 11 |  |  |  |
| mean          | 93765.000000  | 7.583772e+03      | NaN        | NaN       |    |  |  |  |
| std           | 54135.681003  | 2.724171e+04      | NaN        | NaN       |    |  |  |  |
| min           | 0.000000      | 0.000000e+00      | NaN        | NaN       |    |  |  |  |
| 25%           | 46882.500000  | 4.297000e+03      | NaN        | NaN       |    |  |  |  |
| 50%           | 93765.000000  | 6.034000e+03      | NaN        | NaN       |    |  |  |  |
| 75%           | 140647.500000 | 9.450000e+03      | NaN        | NaN       |    |  |  |  |
| max           | 187530.000000 | 6.700000e+06      | NaN        | NaN       |    |  |  |  |

Количество записей: 187531 Количество признаков: 21

#### Типы признаков:

- Числовые (4 признака)
  - Index
  - Price
  - Dimensions
  - Plot Area
- Категориальные (17 признаков) все имеют тип object

## Пропущенные значения:

- Dimensions и Plot Area 100%
- Super Area 57%
- Society 58%
- Car parking 55%
- Overlooking 43%
- Facing 37%
- Balcony 26%

## 2. Анализ пропусков

```
plt.figure(figsize=(12,6))
sns.heatmap(df.isnull(), cbar = False, yticklabels = False)
plt.title("Ματρиμα προπусκοв")
plt.show()

missing_count = df.isnull().sum()
missing_ratio = (missing_count / len(df)) * 100

missing_table = pd.DataFrame({
    'missing_count': missing_count,
    'missing_ratio_%': missing_ratio
})

missing_table = missing_table[missing_table['missing_count'] > 0].sort_values(by='missing_ratio_%', ascending=False)
print(missing_table)
```



Столбцы с наибольшим процентом пропусков: Dimensions и Plot Area (100%), Super Area (57.4%), Society (58.5%), Car Parking (55.1%)

## Стратегия обработки:

- Удалить полностью пустые столбцы
- Для столбцов с >50% пропусков использовать удаление или заполнение значением «Не указано»
- Для числовых признаков с пропусками заполнить медианной
- Для категориальных признаков заполнить модой

#### 3. Анализ числовых признаков

```
numeric_cols = df.select_dtypes(include=np.number).columns

fig, axes = ppt.subplots(2, 2, figsize=(15, 10))
axes = axes.flatten()

for i, col in enumerate(numeric_cols):
    if i < 4:
        axes[i].hist(df[col].dropna(), bins=50, alpha=0.7, color='skyblue', edgecolor='black')
        axes[i].set_itle(f'Pacnpegenehue {col}', fontsize=12)
        axes[i].set_xlabel(col)
        axes[i].set_ylabel('Частота')

plt.tight_layout()
plt.show()

fig, axes = plt.subplots(1, len(numeric_cols), figsize=(15, 5))
for i, col in enumerate(numeric_cols):
        axes[i].boxplot(df[col].dropna())
        axes[i].set_title(f'Boxplot {col}')
        axes[i].set_ylabel('Значения')

plt.tight_layout()
plt.tight_layout()
plt.show()

stats_df = pd.DataFrame({
    'mean': df[numeric_cols].mean(),
    'median': df[numeric_cols].std(),
    'skew': df[numeric_cols].std(),
    'skew': df[numeric_cols].skew()
})
display(stats_df)
```





|                   | mean         | median  | std          | skew      |  |
|-------------------|--------------|---------|--------------|-----------|--|
| Index             | 93765.000000 | 93765.0 | 54135.681003 | 0.00000   |  |
| Price (in rupees) | 7583.771885  | 6034.0  | 27241.705819 | 177.11337 |  |
| Dimensions        | NaN          | NaN     | NaN          | NaN       |  |
| Plot Area         | NaN          | NaN     | NaN          | NaN       |  |

Распределение цены показывает значительные выбросы (6.7e6 при медиане 6034). Столбец Index равномерно распределён.

## 4. Анализ категориальных признаков

```
categorical_cols = df.select_dtypes(include='object').columns
reasonable_cats = [col for col in categorical_cols if df[col].nunique() <= 20]
fig, axes = plt.subplots(4, 2, figsize=(15, 20))
axes = axes.flatten()

for i, col in enumerate(reasonable_cats[:8]): # Первые 8 признаков
    value_counts = df[col].value_counts().head(10) # Ton-10 категорий
    axes[i].bar(value_counts.index.astype(str), value_counts.values)
    axes[i].set_title(f'Pacnpegenenue {col}', fontsize=12)
    axes[i].tick_params(axis='x', rotation=45)
    axes[i].set_ylabel('Количество')

plt.tight_layout()
plt.tight_layout()
print("\nKоличество уникальных категорий:")
print("-" * 35)
for col in categorical_cols:
    unique_count = df[col].nunique()
    print(f"{col}: {unique_count} уникальных значений")</pre>
```



#### Количество уникальных категорий:

-----

Title: 32446 уникальных значений

Description: 65634 уникальных значений

Amount(in rupees): 1561 уникальных значений

location: 81 уникальных значений

Carpet Area: 2758 уникальных значений

Status: 1 уникальных значений Floor: 947 уникальных значений

Transaction: 4 уникальных значений Furnishing: 3 уникальных значений

facing: 8 уникальных значений

overlooking: 19 уникальных значений Society: 10376 уникальных значений Bathroom: 11 уникальных значений Balcony: 11 уникальных значений

Car Parking: 229 уникальных значений

Ownership: 4 уникальных значений

Super Area: 2976 уникальных значений

#### Признаки с высокой кардинальностью:

- Title (высокая уникальность)
- Description
- Location

#### 5. Анализ взаимосвязей

```
correlation_matrix = df[numeric_cols].corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
plt.title('Матрица корреляций числовых признаков', fontsize=16)
plt.show()

plt.figure(figsize=(10, 6))
plt.scatter(df['Index'], df['Price (in rupees)'], alpha=0.5)
plt.title('Зависимость цены от индекса')
plt.xlabel('Index')
plt.ylabel('Price (in rupees)')
plt.show()

cat_for_analysis = [col for col in reasonable_cats if df[col].nunique() <= 5][:3]

fig, axes = plt.subplots(1, len(cat_for_analysis), figsize=(18, 6))
for i, col in enumerate(cat_for_analysis):
    sns.boxplot(x=df[col], y=df['Price (in rupees)'], ax=axes[i])
    axes[i].set_title_f'\(\text{Qeha an o } \{col}'\)
    axes[i].tick_params(axis='x', rotation=45)

plt.tight_layout()
plt.show()
```



Корреляция между числовыми признаками слабая из-за малого количества. Зависимость цены от индекса не прослеживается. Boxplot показывают различия в распределении цен по категориям.

#### 6. Базовая предобработка

floor

transaction

7077

83

```
df.columns = df.columns.str.lower().str.replace(' ', '_').str.replace('(', '').str.replace(')', '')
print("НОВЫЕ НАЗВАНИЯ СТОЛБЦОВ (после очистки):")
print("АНАЛИЗ ПРОПУСКОВ ДО ОБРАБОТКИ:")
empty_columns = []
for col in_df.columns:
   if df[[ol].isnull().sum() == len(df):
     empty_columns.append(col)
print(f"Обнаружен полностью пустой столбец: {col}")
if empty_columns:
print(f"УДАЛЯЕМ ПОЛНОСТЬЮ ПУСТЫЕ СТОЛБЦЫ: {empty_columns}")
numeric_cols_updated = df.select_dtypes(include=[np.number]).columns.tolist() print("ЧИСЛОВМЕ ПРИЗНАКИ ДЛЯ ЗАПОЛНЕНИЯ МЕДИАНОЙ:")
     median val = df[col].median()
print(f" {col}: {missing_count} пропусков → заполняем медианой ({median_val:.2f})")
     df[col] = df[col].fillna(median_val)
print("КАТЕГОРИАЛЬНЫЕ ПРИЗНАКИ ДЛЯ ЗАПОЛНЕНИЯ МОДОЙ:
for col in categorical_cols_updated:
     mode_val = df[col].mode()[0] if not df[col].mode().empty else 'Unknown
     print(f" {col}: {missing_count} пропусков
df[col] = df[col].fillna(mode_val)
missing_after = df.isnull().sum()
ИСХОДНЫЕ НАЗВАНИЯ СТОЛБЦОВ:
['Index', 'Title', 'Description', 'Amount(in rupees)', 'Price (in rupees)',
'location', 'Carpet Area', 'Status', 'Floor', 'Transaction', 'Furnishing',
'facing', 'overlooking', 'Society', 'Bathroom', 'Balcony', 'Car Parking',
'Ownership', 'Super Area', 'Dimensions', 'Plot Area']
НОВЫЕ НАЗВАНИЯ СТОЛБЦОВ (после очистки):
['index', 'title', 'description', 'amountin rupees', 'price in rupees',
'location', 'carpet_area', 'status', 'floor', 'transaction', 'furnishing',
'facing', 'overlooking', 'society', 'bathroom', 'balcony', 'car parking',
'ownership', 'super_area', 'dimensions', 'plot_area']
______
АНАЛИЗ ПРОПУСКОВ ДО ОБРАБОТКИ:
description
                             3023
price in rupees
                            17665
carpet_area
                             80673
                                615
status
```

```
furnishing
                    2897
facing
                    70233
overlooking
                    81436
society
                   109678
bathroom
                      828
balcony
                   48935
car parking
                  103357
ownership
                   65517
super area
                  107685
dimensions
                   187531
plot area
                   187531
dtype: int64
Обнаружен полностью пустой столбец: dimensions
Обнаружен полностью пустой столбец: plot area
УДАЛЯЕМ ПОЛНОСТЬЮ ПУСТЫЕ СТОЛБЦЫ: ['dimensions', 'plot area']
Размерность после удаления пустых столбцов: (187531, 19)
ЧИСЛОВЫЕ ПРИЗНАКИ ДЛЯ ЗАПОЛНЕНИЯ МЕДИАНОЙ:
  index: пропусков нет
  price in rupees: 17665 пропусков \rightarrow заполняем медианой (6034.00)
КАТЕГОРИАЛЬНЫЕ ПРИЗНАКИ ДЛЯ ЗАПОЛНЕНИЯ МОДОЙ:
  title: пропусков нет
  description: 3023 пропусков 
ightarrow заполняем модой ('Multistorey apartment is
available for sale. It is a good location property. Please contact for more
details.')
  amountin rupees: пропусков нет
  location: пропусков нет
  carpet area: 80673 пропусков \rightarrow заполняем модой ('1000 sqft')
  status: 615 пропусков \rightarrow заполняем модой ('Ready to Move')
  floor: 7077 пропусков \rightarrow заполняем модой ('2 out of 4')
  transaction: 83 пропусков → заполняем модой ('Resale')
  furnishing: 2897 пропусков → заполняем модой ('Semi-Furnished')
  facing: 70233 пропусков \rightarrow заполняем модой ('East')
  overlooking: 81436 пропусков → заполняем модой ('Main Road')
  society: 109678 пропусков \rightarrow заполняем модой ('Hamdam Apartment')
  bathroom: 828 пропусков \rightarrow заполняем модой ('2')
  balcony: 48935 пропусков \rightarrow заполняем модой ('2')
  car parking: 103357 пропусков \rightarrow заполняем модой ('1 Covered')
  ownership: 65517 пропусков \rightarrow заполняем модой ('Freehold')
  super area: 107685 пропусков \rightarrow заполняем модой ('1100 sqft')
ПРОВЕРКА ПОСЛЕ ЗАПОЛНЕНИЯ ПРОПУСКОВ:
Все пропуски успешно заполнены!
```

\_\_\_\_\_\_

## 7. Обработка выбросов

```
price_data = df['price_in_rupees'].dropna()
plt.subplot(1, 2, 1)
plt.boxplot(price_data)
price_log = np.log1p(price_data)
plt.subplot(1, 2, 2)
plt.title('Boxplot цены после логарифмирования')
plt.show()
Q3 = price_data.quantile(0.75)
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
price_trimmed = price_data[(price_data >= lower_bound) & (price_data <= upper_bound)]</pre>
print(f"До обработки: {len(price_data)} записей")
print(f"После IQR обрезки: {len(price_trimmed)} записей")
print(f"Удалено выбросов: {len(price_data) - len(price_trimmed)}")
fig, axes = plt.subplots(1, 3, figsize=(18, 5))
axes[0].hist(price_data, bins=50, alpha=0.7, color='blue')
axes[1].set_title('После логарифмирования')
axes[2].hist(price_trimmed, bins=50, alpha=0.7, color='red')
axes[2].set_title('После IQR обрезки')
axes[2].set_xlabel('Цена')
 plt.tight_layout()
 plt.show()
```



До обработки: 187531 записей

После IQR обрезки: 177086 записей

Удалено выбросов: 10445



## Заключение

- 1. Проблема с пропущенными значениями
  - В данном наборе данных оказалось 2 полностью пустых столбца dimensions и plot\_area.
  - Также был высокий уровень пропусков в ключевых признаках super\_area, society и car\_parking. В признаке price\_in\_rupees были умеренные пропуски.

#### 2. Проблема выбросов

- Сильные выбросы в ценах: максимальное значение 6,700,000 при медиане ~6000.

#### 3. Проблема высокой кардинальности

- Категориальные признаки с большим количеством уникальных значений: title, description, location.

#### В данной работе было использовано:

- Удаление полностью пустых столбцов исключение бесполезных признаков
- Заполнение числовых пропусков медианой устойчивость к выбросам
- Заполнение категориальных пропусков модой сохранение наиболее частых значений
- Обработка выбросов осуществлялась с помощью логарифмического преобразования для нормализации распределения цен, а также IQR-обрезка.

#### Влияние на дальнейшее построение моделей:

- Улучшение качества данных при помощи устранения пропусков и обработки выбросов
  - Повышение эффективности моделей
  - Улучшение интерпретируемости

#### Ссылка на датасет:

https://www.kaggle.com/datasets/juhibhojani/house-price

#### Ссылка на Google Colab:

https://colab.research.google.com/drive/1IVv42XKMGGsQ7Rj56u\_p9Qv1-81yY2vb?usp=sh\_aring