Logica — 26-1-2021

Tutte le risposte devono essere adeguatamente giustificate

- **2.** Si consideri il linguaggio del prim'ordine dell'aritmetica $\mathcal{L} = \{<, +, \cdot, 0, 1\}$, dove:
 - < è simbolo relazionale binario
 - $-+,\cdot$ sono simboli funzionali binari
 - 0,1 sono simboli di costante

Si consideri la \mathcal{L} -struttura $\mathcal{R} = (\mathbb{R}, <, +, \cdot, 0, 1)$, dove i simboli di \mathcal{L} sono intepretati in maniera standard. Si consideri la formula

$$\varphi(x,y): \qquad ((x\cdot x)+y)+1=0$$

- (a) Determinare l'insieme di verità della formula $\varphi(x,y)$ nella struttura $\mathcal R$ e disegnarlo
- (b) Determinare l'insieme di verità della formula $\exists x \varphi(x, y)$ nella struttura \mathcal{R} e disegnarlo
- 3. Sia $\mathcal{L} = \{C, G, T, A, p, g\}$ un linguaggio del prim'ordine, dove C, G, T sono simboli relazionali unari, A è simbolo relazionale binario, p è simbolo funzionale unario, g è simbolo di costante. Si consideri la seguente interpretazione di \mathcal{L} :
 - -C(x): x è un cane;
 - -G(x): $x \in un gatto;$
 - -T(x): x va a teatro;
 - -A(x,y): x è amico di y;
 - -p(x): il proprietario di x;
 - -g: Gino.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

- 1. Gino e l'unico gatto che va a teatro.
- 2. Tutti i cani amici di Gino vanno a teatro.
- 3. Gino è un gatto e il suo proprietario ha almeno due cani.

4. Si considerino gli enunciati del prim'ordine

 $\varphi: \quad \forall x (R(x,a) \to R(x,b))$

 $\psi: \exists x (R(x,a) \land R(x,b))$

Costruire, se esistono:

- (a) Un modello di $\varphi \wedge \psi$
- (b) Un modello di $\varphi \wedge \neg \psi$

Svolgimento

2. (a) Una coppia di numeri reali (u, v) appartiene a $\varphi(\mathcal{R})$ se e solo se $\mathcal{R} \models (((x \cdot x) + y) + 1 = 0)[= x/u, y/v]$, cioè se e solo se $u^2 + v + 1 = 0$:

$$\varphi(A) = \{(u, v) \in \mathbb{R}^2 \mid u^2 + v + 1 = 0\}$$

Si tratta di una parabola con vertice in (0, -1), avente come asse l'asse delle ordinate, rivolta verso il basso.

(b) Un numero reale v appartiene a $\exists x \varphi(\mathcal{R})$ se e solo se $\mathcal{R} \models (\exists x ((x \cdot x) + y) + 1 = 0)[y/v]$, cioè se e solo se esiste un numero reale u tale che $\mathcal{R} \models (((x \cdot x) + y) + 1 = 0)[x/u, y/v]$, cioè se e solo se esiste un numero reale u tale che $u^2 + v + 1 = 0$; questo significa che $v \leq -1$:

$$\exists x \varphi(\mathcal{R}) =]-\infty, -1]$$

- 3. 1. $G(g) \wedge T(g) \wedge \forall x (G(x) \wedge T(x) \rightarrow x = g)$
 - 2. $\forall x \ (C(x) \land A(x,g) \to T(x))$
 - 3. $G(g) \wedge \exists x \exists y (x \neq y \wedge C(x) \wedge C(y) \wedge p(g) = p(x) \wedge p(g) = p(y))$
- **4.** Il simbolo R è un simbolo relazionale binario, i simboli a, b son simboli di costante. Pertanto una struttura per il linguaggio considerato è della forma $\mathcal{A} = (A, R^{\mathcal{A}}, a^{\mathcal{A}}, b^{\mathcal{A}})$, dove A è un insieme non vuoto e

$$R^{\mathcal{A}} \subseteq A^2, \quad a^{\mathcal{A}} \in A, \quad b^{\mathcal{A}} \in A$$

In una struttura siffatta, l'enunciato φ asserisce che ogni elementi in relazione $R^{\mathcal{A}}$ con $a^{\mathcal{A}}$ è anche in relazione con $b^{\mathcal{A}}$; l'enunciato ψ asserisce che esiste un elemento in relazione $R^{\mathcal{A}}$ sia con $a^{\mathcal{A}}$ sia con $b^{\mathcal{A}}$.

(a) Una struttura $\mathcal{B}=(B,R^{\mathcal{B}},a^{\mathcal{B}},b^{\mathcal{B}})$ che soddisfi $\varphi \wedge \psi$, cioè che soddisfi sia φ sia ψ può quindi essere costituita da un solo elemento (che interpreta entrambi i simboli di costante) in relazione con se stesso:

$$B = \{0\}, \quad R^{\mathcal{B}} = \{(0,0)\}, \quad a^{\mathcal{B}} = 0, \quad b^{\mathcal{B}} = 0$$

(b) Una struttura $\mathcal{C} = (C, R^{\mathcal{C}}, a^{\mathcal{C}}, b^{\mathcal{C}})$ che soddisfi $\varphi \wedge \neg \psi$, cioè che soddisfi φ ma non ψ può quindi essere costituita da un solo elemento (che interpreta entrambi i simboli di costante) non in relazione con se stesso:

$$C = \{0\}, \quad R^{\mathcal{C}} = \emptyset, \quad a^{\mathcal{C}} = 0, \quad b^{\mathcal{C}} = 0$$