EDAN95 Applied Machine Learning

Lecture 6: Recurrent Neural Networks

Pierre Nugues

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

November 18, 2020

Natural Language Processing

High-level applications:

- Spoken interaction: Apple Siri, Google Assistant, Amazon Echo
- Speech dictation of letters or reports: Windows 10, macOS
- Question answering: IBM Watson and Jeopardy!

The inner engines of these applications tend to be powered by neural networks.

Big change from the

- 1980's (rules),
- 1990's (Bayes), and
- 2000's (SVM and logistic regression, still usable for most tasks).

Neural net expansion started in 2010. What in 2030?

Scope of this Course

Applications we will consider:

- Text categorization
- Word or segment categorization
- 3 Translation: Google Translate, DeepL, Bing translator, etc.

Preprocessing Text

Before we can apply machine learning algorithm, we need to preprocess the texts: Format it so that it can use it as input to our programs It includes (but it is not limited to):

- Format parsing (HTML, XML, etc.) and text extraction
- 2 Tokenization
- Sentence segmentation
- Encoding
- Cleaning.

Encoding Words

Neural networks can only handle numbers
We need then to encode the words or the characters with numbers.
Using ordinal numbers (a:1, b:2, c:3, d:4, etc) is impossible.
Is a closer to b, than c?
The most simple encoding is the one-hot encoding (or contrast encoding), that we have seen in the 3rd lecture.

Matrix Notation

- A feature vector (predictors): **x**, and feature matrix: **X**;
- The class: y and the class vector: y;
- The predicted class (response): \hat{y} , and predicted class vector: \hat{y}

Converting Symbolic Attributes into Numerical Vectors

Linear classifiers are numerical systems.

Symbolic – nominal – attributes are mapped onto vectors of binary values.

This is called a one-hot encoding A conversion of the weather data set.

Object	Attributes									Class	
	Outlook				emperati	ıre	Hu	midity	Wi		
	Sunny	Overcast	Rain	Hot	Mild	Cool	High	Normal	True	False	
1	1	0	0	1	0	0	1	0	0	1	N
2	1	0	0	1	0	0	1	0	1	0	N
3	0	1	0	1	0	0	1	0	0	1	P
4	0	0	1	0	1	0	1	0	0	1	P
5	0	0	1	0	0	1	0	1	0	1	P
6	0	0	1	0	0	1	0	1	1	0	N
7	0	1	0	0	0	1	0	1	1	0	P
8	1	0	0	0	1	0	1	0	0	1	N
9	1	0	0	0	0	1	0	1	0	1	P
10	0	0	1	0	1	0	0	1	0	1	P
11	1	0	0	0	1	0	0	1	1	0	P
12	0	1	0	0	1	0	1	0	1	0	P
13	o	1	0	1	0	0	0	1	0	1	P
14	ll o	0	1	0	1	0	1	0	1	0	l N

Code Example

```
Jupyter Notebook: Chollet 6.1 https:
//github.com/fchollet/deep-learning-with-python-notebooks
6.1-one-hot-encoding-of-words-or-characters.ipynb
```

Text Categorization

- spam/not spam
- Language identification, French, English, or Spanish? (https://github.com/google/cld3)
- Sentiment analysis: Is this comment on my favorite tooth paste positive, neutral, or negative?
- Mewswire categorization.

Text Categorization: The Reuters Corpus

```
<title>USA: Tylan stock jumps; weighs sale of company.</title>
<headline>Tylan stock jumps; weighs sale of company.</headline>
<dateline>SAN DIEGO</dateline>
<t.ext.>
The stock of Tylan General Inc. jumped Tuesday after the maker of
process-management equipment said it is exploring the sale of the company and
added that it has already received some inquiries from potential buyers.
Tylan was up $2.50 to $12.75 in early trading on the Nasdaq market.
The company said it has set up a committee of directors to oversee the sale and
that Goldman, Sachs & amp; Co. has been retained as its financial adviser.
</text>
<metadata>
<codes class="bip:topics:1.0">
<code code="C15"/>
<code code="C152"/>
<code code="C18"/>
<code code="C181"/>
<code code="CCAT"/>
</codes>
```

Text Categorization: The Categories

In total 103 topic categories:

C11	STRATEGY/PLANS	C15	PERFORMANCE
C12	LEGAL/JUDICIAL	C151	ACCOUNTS/EARNINGS
C13	REGULATION/POLICY	C1511	ANNUAL RESULTS
C14	SHARE LISTINGS	C152	COMMENT/FORECASTS
C15	PERFORMANCE	C16	INSOLVENCY/LIQUIDITY
C151	ACCOUNTS/EARNINGS	C17	FUNDING/CAPITAL
C1511	ANNUAL RESULTS	C171	SHARE CAPITAL
C152	COMMENT/FORECASTS	C172	BONDS/DEBT ISSUES
C16	INSOLVENCY/LIQUIDITY	C173	LOANS/CREDITS
C17	FUNDING/CAPITAL	C174	CREDIT RATINGS
C171	SHARE CAPITAL	C18	OWNERSHIP CHANGES
C172	BONDS/DEBT ISSUES	C181	MERGERS/ACQUISITIONS
C173	LOANS/CREDITS	C182	ASSET TRANSFERS
C174	CREDIT RATINGS	C183	PRIVATISATIONS
C11	STRATEGY/PLANS	C21	PRODUCTION/SERVICES
C12	LEGAL/JUDICIAL	C22	NEW PRODUCTS/SERVICES
C13	REGULATION/POLICY	C23	RESEARCH/DEVELOPMENT
C14	SHARE LISTINGS		

Text Categorization Using Bags of Words

A first technique to carry out categorization is to represent documents as vectors in a space of words.

The word order plays no role and it is often called a *bag-of-word model*. To represent the two documents:

D1: Chrysler plans new investments in Latin America.

D2: Chrysler plans major investments in Mexico.

We would have:

D#∖ Words	america	chrysler	in	investments	latin	major	mexico	new	plans	Category
1	1	1	1	1	1	0	0	1	1	spam
2	0	1	1	1	0	1	1	0	1	nospam

Text Categorization Using TFIDF

For a collection of documents, we would have a word by document matrix.

As parameter, (w_i, D_j) could contain the frequency of w_i in document D_j

D#\Words	w_1	<i>w</i> ₂	W3	 w _m	Category
D_1	$C(w_1, D_1)$	$C(w_2, D_1)$	$C(w_3, D_1)$	 $C(w_m, D_1)$	spam
D_2	$C(w_1, D_2)$	$C(w_2, D_2)$	$C(w_3, D_2)$	 $C(w_m, D_2)$	nospam
Dn	$C(w_1, D_1 n)$	$C(w_2, D_n)$	$C(w_3, D_n)$	 $C(w_m, D_n)$	spam

Most of the time, the counts are replaced by the term frequency times the inverse document frequency: $tf \times idf$.

The term frequencies $tf_{i,j}$ are normalized by the sum of the frequencies of all the terms in the document:

$$tf_{i,j} = \frac{t_{i,j}}{\sum_{i} t_{i,j}},$$

The inverse document frequency is defined as: $idf_i = \log(\frac{N}{n_i})$, where N is the total number of documents in the collection.

Code Example

```
Jupyter Notebooks: Chollet 3.5 and 3.6 https:
//github.com/fchollet/deep-learning-with-python-notebooks
3.5-classifying-movie-reviews.ipynb
3.6-classifying-newswires.ipynb
```

Dimension Reduction

One-hot encoding or TFIDF encoding can produce very long vectors: Imagine a vocabulary of one million words per language with 100 languages.

A solution is to produce dense vectors also called <u>word embeddings</u> using a dimension reduction

This reduction is very close to principal component analysis or singular value decomposition

It can be automatically obtained through training or initialized with pretrained vectors

Principal Component Analysis

We will use a small dataset to explain principal component analysis: The characters in *Salammbô*

Ch.	'a'	'b'	'c'	'd'	'e'	'f'	'g'	'h'	17	T'	'k'	T	'm'	'n'	'0'	'p'	'q'	171	's'	't'	'u'	'V'	- '\
01_fr	2503	365	857	1151	4312	264	349	295	1945	65	4	1946	726	1896	1372	789	248	1948	2996	1938	1792	414	
02_fr	2992	391	1006	1388	4993	319	360	350	2345	81	6	2128	823	2308	1560	977	281	2376	3454	2411	2069	499	
03_fr	1042	152	326	489	1785	136	122	126	784	41	7	816	397	778	612	315	102	792	1174	856	707	147	
04_fr	2487	303	864	1137	4158	314	331	287	2028	57	3	1796	722	1958	1318	773	274	2000	2792	2031	1734	422	
05 fr	2014	268	645	949	3394	223	215	242	1617	67	3	1513	651	1547	1053	672	166	1601	2192	1736	1396	315	
06 fr	2805	368	910	1266	4535	332	384	378	2219	97	3	1900	841	2179	1569	868	285	2205	3065	2293	1895	453	
07 fr	5062	706	1770	2398	8512	623	622	620	4018	126	19	3726	1596	3851	2823	1532	468	4015	5634	4116	3518	844	
08 fr	2643	325	869	1085	4229	307	317	359	2102	85	4	1857	811	2041	1367	833	239	2132	2814	2134	1788	437	
09 fr	2126	289	771	920	3599	278	289	279	1805	52	6	1499	619	1711	1130	651	187	1719	2404	1763	1448	348	
10 fr	1784	249	546	805	3002	179	202	215	1319	60	5	1462	598	1246	922	557	172	1242	1769	1423	1191	270	
11 fr	2641	381	817	1078	4306	263	277	330	1985	114	0	1886	900	1966	1356	763	230	1912	2564	2218	1737	425	
12 fr	2766	373	935	1237	4618	329	350	349	2273	65	2	1955	812	2285	1419	865	272	2276	3131	2274	1923	455	
13 fr	5047	725	1730	2273	8678	648	566	642	3940	140	22	3746	1597	3984	2736	1550	425	4081	5599	4387	3480	767	
14 fr	5312	689	1754	2149	8870	628	630	673	4278	143	2	3780	1610	4255	2713	1599	512	4271	5770	4467	3697	914	
15 fr	1215	173	402	582	2195	150	134	148	969	27	6	950	387	906	697	417	103	985	1395	1037	893	206	
01 en	2217	451	729	1316	3967	596	662	2060	1823	22	200	1204	656	1851	1897	525	19	1764	1942	2547	704	258	65
02 en	2761	551	777	1548	4543	685	769	2530	2163	13	284	1319	829	2218	2237	606	21	2019	2411	3083	861	295	76
03 en	990	183	271	557	1570	279	253	875	783	4	82	520	333	816	828	194	13	711	864	1048	298	94	25
04 en	2274	454	736	1315	3814	595	559	1978	1835	22	198	1073	690	1771	1865	514	33	1726	1918	2704	745	245	66
05 en	1865	400	553	1135	3210	515	525	1693	1482	7	153	949	571	1468	1586	517	17	1357	1646	2178	663	194	56
06 en	2606	518	797	1509	4237	687	669	2254	2097	26	216	1239	763	2174	2231	613	25	1931	2192	2955	899	277	73
07 en	4805	913	1521	2681	7834	1366	1163	4379	3838	42	416	2434	1461	3816	4091	1040	39	3674	4060	5369	1552	465	133
08 en	2396	431	702	1416	4014	621	624	2171	2011	24	216	1152	748	2085	1947	527	33	1915	1966	2765	789	266	69
09 en	1993	408	653	1096	3373	575	517	1766	1648	16	146	861	629	1728	1698	442	20	1561	1626	2442	683	208	56
10 en	1627	359	451	933	2690	477	409	1475	1196	7	131	789	506	1266	1369	325	23	1211	1344	1759	502	181	41
11 en	2375	437	643	1364	3790	610	644	2217	1830	16	217	1122	799	1833	1948	486	23	1720	1945	2424	767	246	63
12 en	2560	489	757	1566	4331	677	650	2348	2033	28	234	1102	746	2125	2105	581	32	1939	2152	3046	750	278	72
13 en	4597	987	1462	2689	7963	1254	1201	4278	3634	39	432	2281	1493	3774	3911	1099	49	3577	3894	5540	1379	437	137
14 en	4871	948	1439	2799	8179	1335	1140	4534	3829	36	427	2218	1534	4053	3989	1019	36	3689	3946	5858	1490	539	137
15 en	1119	229	335	683	1994	323	281	1108	912	9	112	579	351	924	1004	305	9	863	997	1330	310	108	33
																							_

Table: Character counts per chapter, where the fr and en suffixes designate the language, either French or English

Each chapter is modeled by a vector of characters.

Character Counts

Table: Character counts per chapter in French, left part, and English, right part

Each characters is modeled by a vector of chapters.

Singular Value Decomposition

There are as many as 40 characters: the 26 unaccented letters from a to z and the 14 French accented letters

Singular value decomposition (SVD) reduces these dimensions, while keeping the resulting vectors semantically close

X is the $m \times n$ matrix of the letter counts per chapter, in our case, m = 30 and n = 40.

We can rewrite X as:

$$X = U\Sigma V^{\mathsf{T}}$$
,

where **U** is a matrix of dimensions $m \times m$, Σ , a diagonal matrix of dimensions $m \times n$, and **V**, a matrix of dimensions $n \times n$.

The diagonal terms of Σ are called the **singular values** and are traditionally arranged by decreasing value.

We keep the highest values and set the rest to zero.

Code Example

Jupyter Notebook 3.1-SVD

Word Embeddings

We can extend singular value decomposition from characters to words.

The rows will represent the words in the corpus, and the columns, documents,

We can replace documents by a context of a few words to the left and to the right of the focus word: w_i .

A context C_j is then defined by a window of 2K words centered on the word:

$$W_{i-K}, W_{i-K+1}, ..., W_{i-1}, W_{i+1}, ..., W_{i+K-1}, W_{i+K},$$

where the context representation uses a bag of words.

We can even reduce the context to a single word to the left or to the right of w_i and use bigrams.

Word Embeddings

We store the word-context pairs (w_i, C_j) in a matrix.

Each matrix element measures the association strength between word w_i and context C_j , for instance mutual information.

Mutual information, often called pointwise mutual information (the strength of an association) is defined as:

$$I(w_i, w_j) = \log_2 \frac{P(w_i, w_j)}{P(w_i)P(w_j)} \approx \log_2 \frac{N \cdot C(w_i, w_j)}{C(w_i)C(w_j)}.$$

D#\Words	C_1	C_2	C ₃	 Cn
w_1	$MI(w_1, C_1)$	$MI(w_1, C_2)$	$MI(w_1, C_3)$	 $MI(w_1, C_n)$
W_2	$MI(w_2, C_1)$	$MI(w_2, C_2)$	$MI(w_2, C_3)$	 $MI(w_2, C_n)$
<i>W</i> 3		$MI(w_3, C_2)$	$MI(w_3, C_3)$	 $MI(w_3, C_n)$
Wm	$MI(w_m, C_1)$	$MI(w_m, C_2)$	$MI(w_m, C_3)$	 $MI(w_m, C_n)$

Word Embeddings

We compute the word embeddings with a singular value decomposition, where we truncate the $U\Sigma$ matrix to 50, 100, 300, or 500 dimensions. The word embeddings are the rows of this matrix.

We usually measure the similarity between two embeddings \vec{u} and \vec{v} with the cosine similarity, the normalized dot product of the vectors:

$$\cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||},$$

ranging from -1 (most dissimilar) to 1 (most similar) or with the cosine distance ranging from 0 (closest) to 2 (most distant):

$$1 - \cos(\vec{u}, \vec{v}) = 1 - \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||}.$$

Word2Vec

We obtain the embeddings by predicting a word from its context: Sing, O goddess, the anger of Achilles son of Peleus,

Popular Word Embeddings

Embeddings from large corpora are obtained with iterative techniques Some popular embedding algorithms with open source programs:

```
word2vec: https://github.com/tmikolov/word2vec
```

GloVe: Global Vectors for Word Representation

https://nlp.stanford.edu/projects/glove/

ELMo: https://allennlp.org/elmo

fastText: https://fasttext.cc/

To derive word embeddings, you will have to apply these programs on a very large corpus

Embeddings for many languages are also publicly available. You just download them

gensim is a Python library to create word embeddings from a corpus.

https://radimrehurek.com/gensim/index.html

Semantic Similarity

Word embeddings mitigate the dimension problem relatively to one-hot encoding

In addition, similar words will have similar vectors

Demo: http://bionlp-www.utu.fi/wv_demo/

This enables to cope with words unseen in a training set

Text Categorization

Following Chollet, we will now train a network to categorize movie reviews:

- We will first use a feedforward network with embeddings;
- 2 We will then use recurrent networks.

Structure of a Network

First, a network, where we train the embeddings (Chollet, Listing 6.7): model = Sequential() model.add(Embedding(10000, 8, input_length=maxlen)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) model.summary() history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

Using GloVe Embeddings

We create a dictionary, where the keys are the words and the value, the embedding vector

```
glove_dir = '/Users/pierre/Documents/Cours/EDAN20/programs/cho
embeddings_index = {}
f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'))
for line in f:
    values = line.strip().split()
    word = values[0]
    vector = np.array(values[1:], dtype='float32')
    embeddings_index[word] = vector
f.close()
print('Found %s word vectors.' % len(embeddings_index))
```

Initializing the Matrix

We create the embeddings matrix by using the GloVe embedding or the 0, if not in GloVe

```
embedding_dim = 100
embedding_matrix = np.zeros((max_words, embedding_dim))
for word, i in word_index.items():
    if i < max_words:
        embedding_vector = embeddings_index.get(word)
        if embedding_vector is not None:
        embedding_matrix[i] = embedding_vector</pre>
```

Building the Network

The embedding layer is set to the GloVe parameters.

```
model = Sequential()
model.add(Embedding(max_words, embedding_dim,
  input_length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.layers[0].set_weights([embedding_matrix])
model.layers[0].trainable = False
In fact Flatten() is not a good way to aggregate embeddings.
GlobalAveragePooling1D() will produce a sort of semantic middle and
result in a better accuracy
```

Complete Code Example

```
Jupyter Notebook: Chollet 6.1 https:
//github.com/fchollet/deep-learning-with-python-notebooks
6.1-using-word-embeddings.ipynb
```

Recurrent Neural Networks

In feed-forward networks, predictions in a sequence of classifications are independent.

In many cases, given an input, the prediction also depends on the previous decision.

For instance, in weather forecast, if the input is the temperature and the output is rain/not rain, for a same temperature, it the previous output was rain, the next one is likely to be rain.

This is modeled by recurrent neural networks (RNN)

Feed Forward (Reminder)

For the first layer, we have:

activation(
$$\mathbf{W}^{(1)} \cdot \mathbf{x} + \mathbf{b}^{(1)}$$
).

The RNN Architecture

A simple recurrent neural network; the dashed lines represent trainable connections.

The Unfolded RNN Architecture

The network unfolded in time. Equation used by implementations¹.

$$\mathbf{y}_{(t)} = \tanh(\mathbf{W} \cdot \mathbf{x}_{(t)} + \mathbf{U} \cdot \mathbf{y}_{(t-1)} + \mathbf{b})$$

¹See: https://pytorch.org/docs/stable/nn.html#torch.nn.RNN ← ≥ → ← ≥ → へへ

Building a Simple RNN with Keras

```
model = Sequential()
model.add(Embedding(max_features, 32))
model.add(SimpleRNN(32))
model.add(Dense(1, activation='sigmoid'))
model.summary()
```

We can run them in both directions: Left to right and right to left

Complete Code Example

```
Jupyter Notebook: Chollet 6.2 https:
//github.com/fchollet/deep-learning-with-python-notebooks
6.2-understanding-recurrent-neural-networks.ipynb
```

LSTMs

Simple RNNs use the previous output as input. They have then a very limited feature context.

Long short-term memory units (LSTM) are an extension to RNNs that can remember, possibly forget, information from longer or more distant sequences.

Given an input at index t, \mathbf{x}_t , a LSTM unit produces:

- ullet A short term state, called $oldsymbol{h}_t$ and
- ullet A long-term state, called ${f c}_t$ or memory cell.

The short-term state, \mathbf{h}_t , is the unit output, i.e. \mathbf{y}_t ; but both the long-term and short-term states are reused as inputs to the next unit.

LSTM Equations

A LSTM unit starts from a core equation that is identical to that of a RNN:

$$\mathbf{g}_t = \tanh(\mathbf{W}_g \mathbf{x}_t + \mathbf{U}_g \mathbf{h}_{t-1} + \mathbf{b}_g).$$

From the previous output and current input, we compute three kinds of filters, or gates, that will control how much information is passed through the LSTM cell

The two first gates, \mathbf{i} and \mathbf{f} , defined as:

$$\mathbf{i}_t = \operatorname{activation}(\mathbf{W}_i \mathbf{x}_t + \mathbf{U}_i \mathbf{h}_{t-1} + \mathbf{b}_i),$$

 $\mathbf{f}_t = \operatorname{activation}(\mathbf{W}_f \mathbf{x}_t + \mathbf{U}_f \mathbf{h}_{t-1} + \mathbf{b}_f),$

model respectively how much we will keep from the base equation and how much we will forget from the long-term state.

LSTM Equations (II)

To implement this selective memory, we apply the two gates to the base equation and to the previous long-term state with the element-wise product (Hadamard product), denoted o, and we sum the resulting terms to get the current long-term state:

$$\mathbf{c}_t = \mathbf{i}_t \circ \mathbf{g}_t + \mathbf{f}_t \circ \mathbf{c}_{t-1}.$$

The third gate:

$$\mathbf{o}_t = \operatorname{activation}(\mathbf{W}_o \mathbf{x}_t + \mathbf{U}_o \mathbf{h}_{t-1} + \mathbf{b}_o)$$

modulates the current long-term state to produce the output:

$$\mathbf{h}_t = \mathbf{o}_t \circ \mathrm{tanh}(\mathbf{c}_t).$$

The LSTM parameters are determined by a gradient descent.

See also:

https://pytorch.org/docs/stable/nn.html#torch.nn.LSTM

The LSTM Architecture

An LSTM unit showing the data flow, where \mathbf{g}_t is the unit input, \mathbf{i}_t , the input gate, \mathbf{f}_t , the forget gate, and \mathbf{o}_t , the output gate. The activation functions have been omitted

Building a LSTM with Keras

```
model = Sequential()
model.add(Embedding(max_features, 32))
model.add(LSTM(32))
model.add(Dense(1, activation='sigmoid'))
model.summary()
```

CNN for Sequences

RNN and LSTM are expensive for long sequences CNN are much faster and you can downsample the results We can apply one-dimensional convolutions to time or word sequences If the input consists of embedding vectors, the embedding directions correspond to the feature maps.

Building a One Dimensional Convolution with Keras

Complete Code Example

```
Jupyter Notebook: Chollet 6.4 https:
//github.com/fchollet/deep-learning-with-python-notebooks
6.4-sequence-processing-with-convnets.ipynb
```