Probing BSM effects in $e^+e^- o WW$ with machine learning

Shengdu Chai

Fudan University, Physics Department

Oct.12 2022

Current work with Lingfeng Li and Jiayin Gu

- ▶ How to probe beyond the standard model physics?
- ▶ Why do we study the process of diboson?
- ▶ Why it is necessary to use Machine Learning Method?

Big Picture

lacktriangle Build large colliders ightarrow high energy ightarrow discover new particles!

- Build a larger collider?
- ► No guaranteed discovery!

Big Picture

- ▶ Build large colliders → high energy → discover new particles!
 ★ do precision measurements → discover new physics indirectly!
- Build a larger collider?
- No guaranteed discovery!
- ► Higgs Factory! (CEPC,ILC,etc)
- Standard Model Effective Field Theory(SMEFT)

The Standard Model Effective Field Theory

- ▶ $[\mathcal{L}_{SM}] \leq 4$. Why?
 - Renormalizable
 - Higher dimensional operators are fine as long as we are happy with finite precision in perturbative calculation.
- Assuming Baryon and Lepton numbers are conserved,

$$\mathcal{L}_{\textit{SMEFT}} = \mathcal{L}_{\textit{SM}} + \sum_{i} \frac{\mathrm{c}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{\mathrm{c}_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots$$

▶ If $\Lambda \gg E$, v,then SM + dimension-6 operators are sufficient to parameterize the physics around the electroweak scale.

The Standard Model Effective Field Theory

X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\tilde{G}}$	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$Q_{\varphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{\rho}u_{r}\tilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{g}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
$X^2\varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\bar{l}_{p} \gamma^{\mu} l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger} i \overrightarrow{D}_{\mu}^{I} \varphi) (\overline{l}_{p} \tau^{I} \gamma^{\mu} l_{\tau})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^I_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}u_{r})\widetilde{\varphi} G^{A}_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi)(\overline{e}_{p} \gamma^{\mu} e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overrightarrow{D}_{\mu}^{I}\varphi)(\overline{q}_{\nu}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}d_{r})\varphi G_{\mu\nu}^{A}$	$Q_{\varphi u}$	$(\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi)(\bar{u}_p \gamma^{\mu} u_r)$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W_{\mu\nu}^{I}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_{\mu}\sigma^{\mu\nu}d_{\tau})\tau^{I}\varphi W^{I}_{\mu\nu}$	$Q_{arphi d}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi)(\bar{d}_{p} \gamma^{\mu} d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi \widetilde{W}_{\mu\nu}^{I}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_{z}\sigma^{\mu\nu}d_{\tau})\varphi B_{\mu\nu}$	$Q_{arphi nd}$	$i(\tilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$			
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_\tau)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_\tau)(\bar{e}_s \gamma^\mu e_t)$		
$Q_{02}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{ou}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_y \gamma_\mu l_r)(\bar{u}_y \gamma^\mu u_t)$		
$Q_{02}^{(3)}$	$(\bar{q}_{\mu}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	Q_{ss}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{1d}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qs}	$(\bar{q}_{\mu}\gamma_{\mu}q_{\nu})(\bar{e}_{z}\gamma^{\mu}e_{t})$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_\tau)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{cd}	$(\bar{e}_p \gamma_\mu e_\tau)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_{\rho}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{\sigma}\gamma^{\mu}T^{A}u_{t})$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
Q_{lodq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	$Q_{\rm rlog}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$				
$Q_{quqd}^{(1)}$	$(\bar{q}_{i}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{i}^{k}d_{t})$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_s^{\alpha j})^TCq_s^{\beta k}\right]\left[(u_s^\gamma)^TCe_t\right]$				
$Q_{\rm quaf}^{(8)}$	$(\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$	$Q_{\rm eee}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$				
$Q_{logu}^{(1)}$	$(\bar{l}_{p}^{i}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	Q_{dwa}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_p^{\alpha})^T C e_t \right]$				
$Q_{logs}^{(3)}$	$(\bar{l}_{a}^{i}\sigma_{i\nu}e_{\tau})\varepsilon_{ik}(\bar{q}_{a}^{k}\sigma^{\mu\nu}u_{i})$						

- Write down all D6 operators, eliminate redundant ones via field redefinition, integration by parts, equations of motion...
- ➤ 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott.

Why Diboson

- Diboson is an important part of the precision measurement program
- Connected to the higgs couplings in the SMEFT frame
- Can be measured very well at Higgs factories

EFT Parameterization

- Focusing on tree-level CP-even dimension-6 contributions
- $lackbox{e}^-e^+
 ightarrow WW$ can be parameterized by

$$\delta \mathbf{g}_{1,Z},~\delta \kappa_{\gamma},~\lambda_{Z},~\delta \mathbf{g}_{Z,L}^{ee},~\delta \mathbf{g}_{Z,R}^{ee},~\delta \mathbf{g}_{W}^{e\nu},~\delta \mathbf{m}_{W}$$

 $ightharpoonup m_W$ is better constrained, so we can simply set $\delta m_W = 0$

$e^-e^+ o WW$ with Histogram

- ▶ The TGCs are sensitive to the differential distributions
 - One could do a fit to the binned distributions of all angles.
 - ▶ Not the most efficient way of extracting information.
 - Correlations among angles are sometimes ignored.

$e^-e^+ o WW$ with Optimal Observable

► What are Optimal Observables?

Diehl, M., Nachtmann, O., 1994. Zeitschrift Für Physik C Part Fields 62, 397-411.

▶ In the limit of large statistics (everything is Gaussian) and small parameters (linear contribution dominates), the best possible reaches can be derived analytically!

$$\frac{d\sigma}{d\Omega} = S_0 + \Sigma_i S_{1,i} g_i, \quad c_{ij}^{-1} = \int d\Omega \frac{S_{1,i} S_{1,j}}{S_0} \cdot \mathcal{L}$$

$e^-e^+ o WW$ with Optimal Observable

▶ What are Optimal Observables?

Diehl, M., Nachtmann, O., 1994. Zeitschrift Für Physik C Part Fields 62, 397-411.

▶ In the limit of large statistics (everything is Gaussian) and small parameters (linear contribution dominates), the best possible reaches can be derived analytically!

$$\frac{d\sigma}{d\Omega} = S_0 + \Sigma_i S_{1,i} g_i, \quad c_{ij}^{-1} = \int d\Omega \frac{S_{1,i} S_{1,j}}{S_0} \cdot \mathcal{L}$$

▶ The optimal observable is a function of 5 angles and is given by $\mathcal{O}_i = \frac{S_{1,i}}{S_0}$

Initial state radiation

- Jet smearing
- Detect effects
 - final state jets can not be distinguished
 - neutrino cannot be directly measured
- ► They are systematic effects

In simulation, systematic effects can't be ignored

- In simulation, systematic effects can't be ignored
- Analytical methods become more difficult and time consuming when we include more realistic effects.
- ▶ Naively applying optimal observables could lead to a bias

- In simulation, systematic effects can't be ignored
- ► Analytical methods become more difficult and time consuming when we include more realistic effects.
- ▶ Naively applying optimal observables could lead to a bias
- New method in need

Likelihood Inference

Neyman-Pearson lemma says the best statistics to test new physics is the likelihood ratio given data \times and theory parameters θ_1 and θ_0

$$r(x|\theta_0,\theta_1) = \frac{p(x|\theta_0)}{p(x|\theta_1)}$$

- ▶ The key thing is $r(x|\theta_0, \theta_1)$
- Analytical methods always computational consuming and ignore systematic effects

Likelihood Inference

- ▶ Johann Brehmer, etc develop new simulation-based inference techniques that are tailored to the structure of particle physics processes.[arXiv:1805.00013]Brehmer, J, Cranmer, K, Louppe, G, Pavez, J
- ► Machine Learning method can extract more information from x to predict the likelihood ratio

Particle-Physics Structure

The likelihood function can be written as

$$p(x|\theta) = \int dz \ p(x,z|\theta) = \int dz \ p(x|z)p(z|\theta)$$

- ► Here $p(z|\theta) = 1/\sigma(\theta)d\sigma/dz$ is the parton level density distribution.
- p(x|z) describes the probabilistic evolution from the parton-level four-momenta to observable particle properties

$$p(x|z) = \int dz_d \int dz_s \int dz \ p(x|z_d)p(z_d|z_s)p(z_s|z)$$

Particle Structure

We can extract more information from the simulator by defining joint likelihood ratio and joint score

$$r(x, z|\theta_0, \theta_1) = \frac{p(x|z)p(z|\theta_0)}{p(x|z)p(z|\theta_1)} = \frac{p(z|\theta_0)}{p(z|\theta_1)}$$
$$\alpha(x, z|\theta_0, \theta_1) = \nabla_{\theta_0} r(x, z|\theta_0, \theta_1)|_{\theta_0 = \theta_1}$$

► The loss function is

$$\mathcal{L}[\hat{g}(x)] = \int dxdz \ p(x,z|\theta)|g(x,z) - \hat{g}(x)|^2$$

▶ The loss function is minimized when $g(x, z) = \hat{g}(x)$

ML Algorithm: ALICE

- Approximate likelihood with improved crossentropy estimator
- Directly predict the likelihood ratio
- ightharpoonup Loss function \mathcal{L} is

$$\mathcal{L}(\hat{s}) \propto \sum_{x} [s(x, z | \theta_0, \theta_1) \log(\hat{s}(x)) + (1 - s(x, z | \theta_0, \theta_1)) \log(1 - \hat{s}(x))]$$

- ► Here $s(x, z|\theta_0, \theta_1) = \frac{1}{1 + r(x, z|\theta_0, \theta_1)}$
- $\hat{r}(x|\theta_0,\theta_1)$ can be reconstructed by $\hat{s}(x)=\frac{1}{1+\hat{r}(x|\theta_0,\theta_1)}$

ML Algorithm: SALLY

- Score approximates likelihood locally
- likelihood ratio can also be parameterized by Wilson coefficients

$$\hat{r}(x,\theta) = 1 + \sum_{i} \hat{\alpha}_{i}(x)\theta_{i}$$

- ▶ And we can predict α_i term as well
- ightharpoonup Loss function \mathcal{L} is

$$\mathcal{L} \propto \sum_{i} |\hat{\alpha}_{i}(x) - \alpha_{i}(x, z|\theta_{0}, \theta_{1})|^{2}$$

Prediction of Likelihood Ratio:ALICE

► ALICE method offers a precise way to predict the likelihood ratio directly.

Prediction of Likelihood Ratio:SALLY

We can construct the $\hat{r}(x,\theta)$ by predicting the alpha term and give an analytical expression of $\hat{r}(x,\theta)$

Estimation of the Boundary: Compared with Histogram

- no bias
- precise bounds along individual directions
- weak constraints in other directions

Estimation of the Boundary: Compared with OO

- Once you get the $\hat{r}(x|\theta)$, $\chi^2 = -2\sum_i \log(\hat{r}(x_i|\theta))$
- ▶ The χ^2 analysis shows that ML method can correct the large bias and give a strong constrain on the model parameters.

Conclusion

- ► Future colliders will generate large amount of data, ML will benefit it a lot
- ▶ By machine learning, we can construct 6D likelihood ratio to improve the global fit result
- Machine Learning can easily take care of systematic effects as long as the MC simulation is accurate.
- ▶ Machine learning is (likely to be) the future

Thanks!

Backup Slides: $e^-e^+ o WW$ parameterization

$$\begin{split} \mathcal{L}_{TGC} &= \textit{igs}_{\theta_{w}} A^{\mu} (W^{-\nu} W_{\mu\nu}^{+} - W_{\mu\nu}^{+\nu}) \\ &+ \textit{ig} (1 + \delta g_{1}^{Z}) c_{\theta_{w}} Z^{\mu} (W^{-\nu} W_{\mu\nu}^{+} - W_{\mu\nu}^{+\nu}) \\ &+ \textit{ig} [(1 + \delta \kappa_{Z}) c_{\theta_{w}} Z^{\mu\nu} + (1 + \delta \kappa_{\gamma}) s_{\theta_{w}} A^{\mu\nu}] W_{\mu}^{-} W_{\nu}^{+} \\ &+ \frac{\textit{ig}}{m_{W}^{2}} (\lambda_{Z} c_{\theta_{w}} Z^{\mu\nu} + \lambda_{\gamma} s_{\theta_{w}} A^{\mu\nu} W_{\nu}^{-\rho} W_{\rho\mu}^{+}) \end{split}$$

- ▶ Imposing Gauge invariance one obtains $\delta \kappa_Z = \delta g_{1,Z} t_{\theta_w}^2 \delta \kappa_\gamma$ and $\lambda_Z = \lambda_\gamma$
- $\blacktriangleright \ \delta g_{1,Z}, \ \delta \kappa_{\gamma}, \ \lambda_{Z}, \ \delta g_{Z,L}^{\text{ee}}, \ \delta g_{Z,R}^{\text{ee}}, \ \delta g_{W}^{\text{ev}}, \ \delta m_{W}$