A3 Q2 MAT157: Alex R

Problem 2.

Commentary: I was not sure how to use the sign-definite requirement, but I did my best.

(a) Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions. Suppose there exists M>0 such that $|f(x)|\leq M$ for all $x\in\mathbb{R}$, and $g(x)\geq 0$ for all $x\in\mathbb{R}$. If $c\in\mathbb{R}$ and $\lim_{x\to\infty}g(x)=0$, show that

$$\lim_{x \to c} f(x)g(x) = 0.$$

- (b) Strengthen part (a) by showing that the function f need only be bounded in a deleted open interval of c.
- (c) Strengthen part (b) by showing that the function g need only be sign-definite in a deleted open interval of c.
- (d) Strengthen part (c) by removing the requirement that the function g is sign-definite in a deleted open interval of c.

Solution. (a)

Want to prove that $\lim_{x\to c} f(x)g(x) = 0$ or $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R})[0 < |x - c| < \delta \Rightarrow |f(x)g(x)| < \varepsilon]$.

Fix some $\varepsilon_0 > 0$.

We have $\lim_{x \to c} g(x) = 0$, then $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R})[0 < |x - c| < \delta \Rightarrow |g(x)| < \varepsilon]$.

Then, for $\varepsilon = \frac{\varepsilon_0}{M} > 0$, there exists δ_0 such that $(\forall x \in \mathbb{R})[0 < |x - c| < \delta_0 \Rightarrow |g(x)| < \frac{\varepsilon_0}{M}]$.

Since $(\forall x \in \mathbb{R})[|f(x)| \le M]$, then $(\forall x \in \mathbb{R}) \left[0 < |x - c| < \delta_0 \Rightarrow |f(x)g(x)| = |f(x)||g(x)| < M \frac{\varepsilon_0}{M} = \varepsilon_0 \right]$.

Thus, we finally obtained that $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R})[0 < |x - c| < \delta \Rightarrow |f(x)g(x)| < \varepsilon].$

Solution. (b)

If f is bounded in a deleted open interval of c, then for $\rho > 0$ and M > 0, $(\forall x \in (c - \rho, c + \rho))[f(x) \le M]$. The previous solution should be modified by taking $\delta = \min(\delta_0, \rho)$. Then, $|g(x)| < \frac{\varepsilon_0}{M}$ and $|f(x)| \le M$, when $0 < |x - c| < \delta$.

Solution. (c)

In fact, the condition that $(\forall x \in \mathbb{R})[g(x) \ge 0]$ is excessive. The case when $(\forall x \in \mathbb{R})[g(x) \le 0]$ is analogous since $(\forall x \in \mathbb{R})[|-f(x)| = |f(x)|]$. Thus, can get by the fact that g is sign-definite.

Solution. (d)

In fact, the condition that g is sign-definite is excessive. We only use the definition of $\lim_{x\to c} g(x) = 0$, where $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{R})[0 < |x - c| < \delta \Rightarrow |g(x)| < \varepsilon]$, and the fact that $(\forall x \in \mathbb{R})[|f(x)g(x)| = |f(x)||g(x)|]$. Thus, the sign of g is not important for this solution.