October 2, 2018 Project Specification

Introduction

Within information security, entire classes of application vulnerabilities arise due to problematic user input handling (Christey and Martin, 2007). This covers cross-site scripting (XSS), injection (SQL, LDAP, etc), insecure descrialisation and file inclusion vulnerabilities – all of which are regularly discovered in major software products.

There are many existing products that aim to detect security issues within an application. Sadowski et al. describe the benefits of SAST (Static Application Security Testing) tooling deployed within Google which allow checks to be performed as part of the compilation process (2018). The authors explain one of the main challenges with developer adoption as *trustworthiness* "users do not trust to results due to, say, false positives" and highlight the importance of reporting issues early: "survey participants deemed 74% of the issues flagged at compile time as real problems, compared to 21% of those found in checked-in code".

The main objective of this project is to explore the use of regular expressions as refinement types applied to user input. By considering data flow of 'tainted' user input, it will be possible to make inferences about potential vulnerabilities present in a codebase. Use of refinement types provides for a more informed evaluation of a particular risk than base types alone and should therefore enable reporting of fewer false positive issues.

Objectives

Text text text

Schedule

Table 1 provides a breakdown of the project time into periods for each fortnight, along with the expected work to be completed.

A supervisor meeting will be scheduled for eadch

Time Window	Work
October 1 st – October 14 th	Specification, exploration of prior related works.
October 15 th – October 28 th	TODO
October 29 th – November 11 th	TODO
November 12 th – November 25 th	Completion of progress report
November 26^{th} – December 9^{th}	TODO
January 7 th – January 20 th	TODO
January $21^{\rm st}$ – February $3^{\rm rd}$	TODO
February 4 th – February 17 th	Report work, project presentation preparation
February 18 th – March 3 rd	Project presentation preparation, report work
March 4 th – March 17 th	Project presentation delivery

Table 1: Breakdown of projected work by time period.

Legal, social, ethical and professional issues

Adam Williams Page 1 of 2

October 2, 2018 Project Specification

References

Christey, S. and Martin, R. A. (2007), 'Vulnerability type distributions in CVE'.

Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L. and Jaspan, C. (2018), 'Lessons from building static analysis tools at google', $Commun.\ ACM\ 61(4),\ 58-66.$

 ${f URL:}\ http://doi.acm.org/10.1145/3188720$

Adam Williams Page 2 of 2