OCE 313 TÉCNICAS DE ANÁLISIS NO PARAMÉTRICO

CLASE 13 – Análisis de componentes principales

Dr. José Gallardo

Junio 2021

Contenidos de la clase

- ¿Qué son los análisis de componentes principales?
- ACP con R para Oceanografía.
- Elaborar análisis de componentes principales con R

¿Qué son los análisis de componentes principales?

Análisis de componentes principales (ACP)

Es una herramienta utilizada para realizar <u>análisis exploratorio de</u> <u>datos multivariantes</u> y <u>para</u> <u>construir modelos predictivos</u>.

Permite <u>reducir la dimensionalidad</u> <u>y encontrar patrones</u> en un set de datos mediante el calculo de los "componentes principales".

Gráficas biplot

¿Qué son los componentes principales?

CP: Combinación lineal de las variables originales no corr. entre si (perpendiculares / ortogonales).

Ejemplo
2 var.cor.
2 CP

Solución matemática para obtener los CP

Calcular los valores y vectores propios de la matriz de Varianza/covarianza de los datos.

Supuestos

Linealidad: Se asume que los datos observados son combinación lineal de una cierta base.

Normalidad: Los datos se distribuyen de manera gaussiana.

Eingenvalue y eigenvector

Cada <u>eigenvector</u> corresponde a un CP y la varianza explicada por cada CP se estima desde su eigenvalue

FIGURE 1. Transformación de las variables originales en componentes.

ACP con R para Oceanografía

Datos multivariantes - Toy set

Sitio	Depth	Pollution	Temperature
s1	72	4,8	3,5
s2	75	2,8	2,5
s3	59	5,4	2,7
s 4	64	8,2	2,9
s 5	61	3,9	3,1
• • •			
s26	78	2,5	3,4
s27	85	2,1	3,0
s28	92	3,4	3,3
s29	51	6,0	3,0
s30	99	1,9	2,9

Etapa 1: Correlaciones

pairs.panels(bioenv[]) 7:9

Etapa 2: Normalidad qqplot

Etapa 2: Normalidad Shapiro test

Shapiro-Wilk normality test

data: bioenv\$Depth

W = 0.93774, p-value = 0.080

data: bioenv\$Pollution

W = 0.91871, p-value = 0.025

data: bioenv\$Temperature

W = 0.95337, p-value = 0.21

Etapa 3 - Configuración de datos

- El nombre de los sitios debe ser incluido en el nombre de las filas.

	Depth <dbl></dbl>	Pollution <dbl></dbl>	Temperature <dbl></dbl>
s1	72	4.8	3.5
s2	75	2.8	2.5
s3	59	5.4	2.7
s4	64	8.2	2.9
s5	61	3.9	3.1
s6	94	2.6	3.5

Etapa 4 - ACP

```
library(factoextra)
bioenv_pca <- prcomp(bioenv, scale = TRUE)</pre>
```

```
Standard deviations (1, .., p=3):

[1] 1.1854775 1.0007570 0.7701484

Rotation (n x k) = (3 x 3):

PC1 PC2 PC3

Depth 0.6892610 -0.226750181 0.6881160

Pollution -0.7077454 -0.007574555 0.7064270

Temperature 0.1549703 0.973923499 0.1657022
```


Varianza explicada por cada CP

variance.percent

eigenvalue

cumulative.variance.percent

<dbl>

46.84523

80.22905

100.00000

Gráfica de Sitios Buscar patrones

fviz_pca_ind(bioenvpca, repel = TRUE)

Gráfica de variables Vector de correlaciones

fviz_pca_var(bioenvpca)

Gráfica Biplot

fviz_pca_ind(bioenvpca, repel = TRUE)

Resumen de la clase

- Revisión de Análisis de componentes principales
- Práctica de análisis de componentes principales con R

