CSPB3202 Artificial Intelligence

Linear Regression

Geena Kim

Predict price bedrooms bathrooms sqft_living sqft_lot floors 221900 1.00 1180 5650 1.0 3 2570 2.0 538000 3 2.25 7242 1.0 180000 2 1.00 770 10000 604000 3.00 1960 1.0 4 5000 510000 1.0 2.00 1680 3 8080

Pandas

Data columns	(total 21	columns):	
id	21613	non-null	int64
date	21613	non-null	object
price	21613	non-null	int64
bedrooms	21613	non-null	int64
bathrooms	21613	non-null	float64
sqft_living	21613	non-null	int64
sqft_lot	21613	non-null	int64
floors	21613	non-null	float64
waterfront	21613	non-null	int64
view	21613	non-null	int64
condition	21613	non-null	int64
grade	21613	non-null	int64
sqft_above	21613	non-null	int64
sqft_basement	21613	non-null	int64
yr_built	21613	non-null	int64
<pre>yr_renovated</pre>	21613	non-null	int64
zipcode	21613	non-null	int64
lat	21613	non-null	float64
long	21613	non-null	float64
sqft_living15	21613	non-null	int64
sqft_lot15	21613	non-null	int64

y= axtbx2+c 1--

Simple Linear Regression

Dep. Variable:	price	R-so	quared:	0.436
Model:	OLS	Adj. R-so	quared:	0.436
Method:	Least Squares	F-st	atistic:	1.651e+04
Date:	Tue, 14 Jan 2020	Prob (F-sta	atistic):	0.00
Time:	19:04:13	Log-Like	lihood:	-2.9523e+05
No. Observations:	21402		AIC:	5.905e+05
Df Residuals:	21400		BIC:	5.905e+05
Df Model:	1			
Covariance Type:	nonrobust			
				CI
CC	pef std err	t P> t	[0.	0.975]
Intercept 1.24e+	04) 4305.280	2.881 0.004	3964.	466 2.08e+04
sqft_living 251.09	67 1.954 12	8.505 0.000	247.	267 254.927
~0				

R-squared

p-value

Null hypothesis

$$H_0: \widehat{\beta_1} = 0$$

Alternative hypothesis

$$H_A: \beta_1 \neq 0$$

3

t-statistics

$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)}$$

p-value

Accuracy of the coefficient estimates

```
import seaborn as sns
plt.figure(figsize=(10,6))
sns.regplot(x="sqft_living", y = "price", data=x_sample, ci=95)
```


95% Confidence Interval

$$\left[\hat{\beta}_1 - 2 \cdot \text{SE}(\hat{\beta}_1), \ \hat{\beta}_1 + 2 \cdot \text{SE}(\hat{\beta}_1)\right]$$

Under the hood...

OLS Regression Results

D	ep. Variable:	price	R-squared:	0.436	
	Model:	OLS	Adj. R-squared:	0.436	
	Method:	Least Squares	F-statistic:	1.651e+04	
	Date:	Tue, 14 Jan 2020	Prob (F-statistic):	0.00	The state of the s
	Time:	19:04:13	Log-Likelihood:	-2.9523e+05	
No. O	bservations:	21402	AIC:	5.905e+05	•
[Of Residuals:	21400	BIC:	5.905e+05	
	Df Model:	1		T/1 1	9
Cova	ariance Type:	nonrobust		$L(b_0,b_1$	$,s^{z}$

Maximum likelihasd

$$= \underbrace{\log \prod_{i=1}^{n} p(y_i|x_i; b_0, b_1, s^2)}_{n}$$

$$= \sum_{i=1}^{n} \log p(y_i|x_i;b_0,b_1,s^2)$$

$$= -\frac{n}{2}\log 2\pi - n\log s - \frac{1}{2s^2}\sum_{i=1}^{n} (y_i - (b_0 + b_1x_i))^2$$

RSS X MSE

Polynomial Regression

Bias-Variance Trade-off

Robust

Multi-linear Regression

Multilinear regression model

All predictors(variables) X₁~X_p are linear to Y

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Multilinear regression model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

 β_j Average effect of X_j to Y when all other predictors fixed

Caution: In general, predictors might be correlated

Collinearity

Caution: In general, predictors might be correlated

 When predictors are correlated, the coefficients estimates become inaccurate.

Then it's called (multi-)collinear.

 The interpretation of the coefficient as the variable's contribution to the response becomes inaccurate.

Model selection

Parametric Linear regression

St Regression Tust

• Do I include all predictors or just a subset?

