NSR Search Results Page 1 of 7

Visit the **Isotope Explorer** home page!

41 reference(s) found:

Keynumber: 2001BOZU

Reference: JINR-E3-2001-55 (2001)

Authors: S.B.Borzakov, R.E.Chrien, H.Faikow-Stanczyk, Yu.V.Grigoriev, Ts.Ts.Panteleev, S.Pospisil,

L.M.Smotritsky, S.A.Telezhnikov

Title: An Accurate Redetermination of the ¹¹⁸Sn Binding Energy

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁶³Cu, ¹¹⁷Sn(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁷Fe,

⁶⁴Cu, ¹¹⁸Sn deduced binding energies.

Keynumber: 1999MAZV

Reference: INDC(CPR)-048/L, p.83 (1999)

Authors: G.Ma

Title: Evaluation of Activation Cross Sections for (n,2n) and (n,γ) Reactions on 63,65,Nat Cu

Keyword abstract: NUCLEAR REACTIONS Cu, 63 , 65 Cu(n,2n), (n, γ),E<0 MeV; compiled, evaluated

σ.

Keynumber: 1997ROZZ

Reference: INDC(CPR)-042/L, p.93 (1997)

Authors: J.Rong, G.Lui

Title: The Integral Test of the Reactor Dosimetry Data

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁴⁶, ⁴⁷, ⁴⁸Ti, ⁵⁴, ⁵⁶Fe, ⁵⁸, ⁶⁰Ni, ³²S(n,p), ²⁷Al, ⁵⁹Co, ⁶³Cu(n,α), ⁵⁵Mn, ⁵⁹Co, ⁵⁸Ni, ⁶⁵Cu(n,2n), ²³Na, ⁴⁵Sc, ⁵⁹Co, ⁵⁸Fe, ⁶³Cu, ¹¹⁵In, ¹⁹⁷Au, ²³²Th, ²³⁸U(n,γ), ²³⁵, ²³⁸U, ²³²Th, ²³⁷Np, ²³⁹Pu(n,F), ⁴⁷, ⁴⁸Ti(n,np), ⁶Li, ¹⁰B, ¹¹⁵In(n,X),E=reactor; calculated

spectrum averaged σ . Several data libraries compared.

Keynumber: 1997RO26

Reference: IEEE Trans.Instrum.Meas. 46, 560 (1997)

Authors: S.Rottger, A.Paul, U.Keyser

Title: Prompt (n,γ) -Spectrometry for the Isotopic Analysis of Silicon Crystals for the Avogadro Project **Keyword abstract:** NUCLEAR REACTIONS 1 H, 14 N, 28 , 29 Si, 56 Fe, 27 Al, 63 Cu (n,γ) ,E=thermal;

measured Eγ,Iγ.

Keyword abstract: ATOMIC MASSES ¹, ²H, ¹⁴, ¹⁵N, ²⁸, ²⁹, ³⁰, ³¹, ³²Si, ⁵⁶, ⁵⁷Fe; measured neutron-induced γ spectra; deduced mass differences.

Kevnumber: 1990KO52

Reference: At.Energ. 69, 329 (1990); Sov.At.Energy 69, 987 (1991)

Authors: S.A.Konakov, D.Yu.Chuvilin

Title: Systematic Errors Using a Multicomponent Activation Detector to Determine the Neutron Flux of ²⁵²Cf Fission

Keyword abstract: NUCLEAR REACTIONS ⁶³Cu, ¹¹⁵In(n,γ), ¹⁰³Rh, ¹¹⁵In(n,n), ²³⁷Np, ²³⁹Pu(n,F), ⁵⁸Ni, ⁶⁴Zn, ⁵⁴Fe, ⁴⁷Ti, ²⁷Al(n,p), ⁶³Cu(n,2n),E=fission; analyzed data; deduced average activation σ.

Kevnumber: 1987AI03

Reference: J.Phys.(London) G13, 945 (1987)

Authors: S.Ait-Tahar, P.E.Hodgson

NSR Search Results Page 2 of 7

Title: Weisskopf-Ewing Calculations: Neutron-induced reactions

Keyword abstract: NUCLEAR REACTIONS 55 Mn(n,n), 55 Mn, 59 Co, 63 , 65 Cu(n,p), (n,np), (n,2n), (n, γ), (n, α), (n,n α), (n,t), (n,nd), (n,2p), (n,p α), 59 Co, 63 , 65 Cu(n,n'),E=1-20 MeV; calculated σ (E). Weisskopf-Ewing model.

Keynumber: 1986VO03

Reference: Nucl.Sci.Eng. 93, 43 (1986); Corrigendum Nucl.Sci.Eng. 96 343 (1987)

Authors: J. Voignier, S. Joly, G. Grenier

Title: Capture Cross Sections and Gamma-Ray Spectra from the Interaction of 0.5- to 3.0-MeV

Neutrons with Nuclei in the Mass Range A = 63 to 209

Keyword abstract: NUCLEAR REACTIONS Cu, 89 Y,Zr, 93 Nb,La,Gd, 159 Tb, 181 Ta,Re,Pt,Tl, 209 Bi, 63 , 65 Cu, 155 , 156 , 157 , 158 , 160 Gd, 182 , 183 , 184 , 186 W, 203 , 205 Tl(n,γ),E=0.5-3 MeV; measured absolute σ(E); deduced capture γ-multiplicity.

Keynumber: 1986OK02

Reference: Radiat.Eff. 93, 205 (1986) **Authors:** A.Okazaki, R.T.Jones

Title: Measured Dependence of Some Effective Cross Sections on Thermal Neutron Temperatures in

the Range -195° C to 297° C

Keyword abstract: NUCLEAR REACTIONS ²³³, ²³⁵U, ²³⁹Pu(n,F), ²³⁸U, ²³²Th, ⁶³Cu, ¹¹⁵In, ¹⁷⁶Lu,

 197 Au(n, γ),E=thermal; measured effective σ vs temperature in Maxwellian distribution for fission,capture.

Keynumber: <u>1986KR16</u>

Reference: Phys.Rev. C34, 2103 (1986)

Authors: B.Krusche, K.P.Lieb

Title: Dipole Transition Strengths and Level Densities $A \le 80$ Odd-Odd Nuclei Obtained from Thermal

Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹, ⁴¹K, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu, ⁷¹Ga, ⁷⁵As, ⁷⁹Br(n, γ),E=thermal; analyzed data. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰, ⁴²K, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴, ⁶⁶Cu, ⁷²Ga, ⁷⁶As, ⁸⁰Br deduced primary E1,M1 transition strengths,level density parameters. Bethe, constant temperature Fermi gas models.

Kevnumber: 1986HI05

Reference: J.Radioanal.Nucl.Chem. 105, 351 (1986) **Authors:** P.Z.Hien, T.K.Mai, T.X.Quang, T.N.Thuy

Title: Determination of k₀-Factors by Thermal Neutron Activation Technique

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ²⁶Mg, ⁵¹V, ⁵⁵Mn, ⁵⁶Fe, ⁶⁴Ni, ⁵⁹Co, ⁶³Cu, ¹⁰⁹Ag, ¹⁹⁶, ²⁰²Hg(n,γ),E=thermal; measured composite nuclear constant. Activation technique.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ),

NSR Search Results Page 3 of 7

(n,p), (n,α) , (p,γ) , (p,n), (p,α) , (α,γ) , (α,n) , (α,p) , $^{70}Zn(p,\gamma)$, (p,n), (p,α) , (α,γ) , (α,n) , (α,p) , E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983DE28

Reference: Nucl.Phys. A404, 225 (1983); Erratum Nucl.Phys. A410, 513 (1983) **Authors:** M.G.Delfini, J.Kopecky, J.B.M.De Haas, H.I.Liou, R.E.Chrien, P.M.Endt

Title: Study of the 63 Cu(n, γ) 64 Cu Reaction

Keyword abstract: NUCLEAR REACTIONS ⁶³Cu(n,γ),E=thermal,2,24 keV; measured Εγ,Ιγ; deduced

Q-value. 64 Cu deduced levels, J, π , γ -branching. Enriched, oriented, unoriented targets.

Keynumber: 1982GRZP

Reference: NEANDC(E)-232-L, p.67 (1982) **Authors:** G.Grenier, S.Joly, J.Voignier

Title: Sections Efficaces de Capture Radiative de Neutrons Rapides

Keyword abstract: NUCLEAR REACTIONS Cu, ⁶³, ⁶⁵Cu(n,γ),E=0.5-3 MeV; measured absolute σ

(capture) vs E.

-----Kevnumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1979KAZI

Reference: NEANDC(J)-61/U, p.94 (1979) **Authors:** K.Kayashima, A.Nagao, I.Kumabe

Title: Activation Cross Sections on Ti,Mn,Cu,Zn,Sr,Y,Cd,In and Te for 14.6 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS 46 , 48 Ti, 86 Sr, 110 Cd, 115 In, 122 , 124 Te(n,p), 50 Ti, 63 Cu, 89 Y, 128 Te(n, γ), 55 Mn, 66 Zn, 86 Sr, 89 Y, 116 Cd, 115 In, 120 , 122 , 124 , 130 Te(n,2n),E=14.6 MeV; measured

σ. Activation technique.

Kevnumber: 1979GAZS

Reference: INDC(RUM)-11/LN, p.28 (1979) **Authors:** I.Garlea, C.Miron, E.Popa, M.Lupu

Title: Integral Cross Sections in the $\Sigma\Sigma$ Spectrum for Some Reactions used in Reactor Dosimetry

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁶Fe, ⁶⁵Cu, ⁵⁹Co, ⁴⁶, ⁴⁷, ⁴⁸Ti, ⁴⁶Sc(n,p), ⁵⁵Mn, ⁶³Cu,

 59 Co, 109 Ag(n, γ), 59 Co(n,2n),E=thermal,fast; measured σ .

Kevnumber: 1979AN22

Reference: Nuovo Cim. 50A, 247 (1979)

Authors: R.P.Anand, M.L.Jhingan, D.Bhattacharya, E.Kondaiah

Title: 25 keV-Neutron Capture Cross-Sections

Keyword abstract: NUCLEAR REACTIONS ⁵¹V, ⁶³Cu, ⁷¹Ga, ⁷⁴Ge, ⁷⁵As, ⁹⁸, ¹⁰⁰Mo, ¹⁰⁴Ru, ¹¹⁵In, ¹¹⁶Cd, ¹²², ¹²⁴Sn, ¹²⁸, ¹³⁰Te, ¹³⁹La, ¹⁴⁰, ¹⁴²Ce, ¹⁶⁵Ho, ¹⁸⁵, ¹⁸⁷Re(n,γ), E=25 keV; measured σ; deduced

NSR Search Results Page 4 of 7

rapid, slow capture processes.

Keynumber: 1979AG02

Reference: J.Phys.Soc.Jpn. 46, 1 (1979) Authors: H.M.Agrawal, M.L.Sehgal

Title: Statistical Theory Calculations of Neutron-Capture Cross-Sections at 24 keV

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁵Mn, ⁶³, ⁶⁵Cu, ⁶⁹, ⁷¹Ga, ⁷⁵As, ⁷⁹, ⁸¹Br, ⁸⁰Se, ⁸⁵, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ⁹⁶Zr, ⁹⁸, ¹⁰⁰Mo, ¹⁰⁷, ¹⁰⁹Ag, ¹⁰⁸Pd, ¹¹⁴Cd, ¹¹⁵In, ¹²⁷I, ¹³³Cs, ¹³⁸Ba, ¹³⁹La, ¹⁴⁰, ¹⁴²Ce, ¹⁴¹Pr, ¹⁵², ¹⁵⁴Sm, ¹⁵⁸, ¹⁶⁰Gd, ¹⁶⁴Dy, ¹⁶⁵Ho, ¹⁷⁰Er, ¹⁷⁵Lu, ¹⁸⁰Hf, ¹⁸¹Ta, ¹⁸⁴, ¹⁸⁶W, ¹⁸⁵, ¹⁸⁷Re, ¹⁹⁷Au, 202 Hg, 208 Pb, 209 Bi, 232 Th(n,γ),E=24 keV; calculated σ ; deduced ratio of average $\Gamma\gamma$ to average level spacing. Margolis formula of statistical theory, low energy resonance parameters.

Kevnumber: 1977PA05

Reference: Phys.Rev. C15, 615 (1977)

Authors: M.S.Pandey, J.B.Garg, R.Macklin, J.Halperin

Title: High-Resolution Neutron Capture Cross Sections in ⁶³Cu and ⁶⁵Cu. II

Keyword abstract: NUCLEAR REACTIONS ⁶³, ⁶⁵Cu(n, γ),E <50 keV; measured σ (E,E γ). ⁶⁴, ⁶⁶Cu

deduced neutron resonances, parameters.

Keynumber: 1974DIZZ

Coden: JOUR ZEPYA 265 No5 abstracts (Dilg)

Keyword abstract: NUCLEAR REACTIONS 45 Sc, 51 V, 63 , 65 Cu, 103 Rh(n, γ); measured σ (E).

Kevnumber: 1974CO23

Reference: Nucl.Instrum.Methods 116, 251 (1974)

Authors: A.H.Colenbrander, T.J.Kennett

Title: The Application of a Statistical Description for Complex Spectra to the (n,γ) Reaction **Keyword abstract:** NUCLEAR REACTIONS ²⁷Al, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³Cu, ⁷⁵As, ¹⁰³Rh, ¹⁰⁹Ag, ¹¹⁵In, ¹³³Cs, ¹⁸⁵Re, ¹⁹⁷Au, ²⁰³Tl(n,γ); measured Eγ.Ιγ. ²⁸Al, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴Cu, ⁷⁶As, ¹⁰⁴Rh, ¹¹⁰Ag, ¹¹⁶In, ¹³⁴Cs, ¹⁸⁶Re, ¹⁹⁸Au, ²⁰⁴Tl deduced nuclear temperature, level densities.

Keynumber: 1973SCXT

Coden: REPT HEDL-TME-73-79,F Schmittroth

Keyword abstract: NUCLEAR REACTIONS ⁶³, ⁶⁵Cu, ⁷⁵As, ⁷⁹Br, ¹⁰⁷Ag, ¹¹⁵In, ⁷¹Ga, ¹⁰³Rh, ¹²⁷I,

¹⁶⁵Ho, ¹⁹³Ir, ¹⁹⁷Au(n, γ); calculated σ (E).

Keynumber: 1973RAZL

Coden: REPT EANDC(E)157-U,P44

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co, ⁶³, ⁶⁵Cu(n,γ); measured Eγ. ⁶⁰Co, ⁶⁴, ⁶⁵Cu

deduced levels.

Keynumber: 1973RAXV

Coden: REPT COO-2176-20 P2

Keyword abstract: NUCLEAR REACTIONS 63 Cu(n, γ); analyzed data. 64 Cu levels deduced σ .

Keynumber: 1973MU20

Reference: Nucl. Phys. A213, 35 (1973)

Authors: M.Sriramachandra Murty, K.Siddappa, J.Rama Rao

NSR Search Results Page 5 of 7

Title: Structure of 3P Size Resonance in Neutron Strength Functions

Keyword abstract: NUCLEAR REACTIONS ⁶³Cu, ⁶⁸Zn, ⁷⁴, ⁸⁰Se, ⁸¹Br, ⁸⁵, ⁸⁷Rb, ⁹⁶, ¹⁰², ¹⁰⁴Ru, ⁹⁸ 100 Mo, 108 Pd, 109 Ag, 113 , 115 In, 121 , 123 Sb, 133 Cs, 138 Ba, 140 Ce(n, γ),E=18-28 keV; measured σ,extracted p-wave neutron strength function.

Kevnumber: 1973ABZV

Coden: REPT EANDC(E)157-U,P118

Keyword abstract: NUCLEAR REACTIONS ²³Na, ⁶⁴, ⁶⁶, ⁶⁸Zn, ²⁹Si, ⁶³Cu, ⁷²Ge, ¹⁸³W(polarized n, γ); measured E γ ,CP(γ ,X). ⁶⁵, ⁶⁵, ⁶⁵Zn, ³⁰Si, ⁶⁴Cu, ⁷³Ge, ¹⁸⁴W deduced levels, ²⁴Na resonance deduced $J.\pi$.

Kevnumber: 1973ABZM

Coden: REPT INDC(SEC)-36/L P37

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁹Si, ⁶³Cu, ⁷²Ge, ⁶⁴, ⁶⁶, ⁶⁸Zn, ¹⁸³W(n,γ);

measured Eγ.

Keynumber: 1971RYZZ

Reference: Proc.Int.Conf.Chemical Nuclear Data, Measurements and Applications, Canterbury,

England, M.L.Hurrell, Ed., Institution of Civil Engineers, London, p.139 (1971)

Authors: T.B.Ryves

Title: Thermal Neutron Capture Cross Section Measurements at the NPL

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni. 63, 65Cu, 69, 71Ga, 75As, 79, 81Br, 89Y, 107, 109Ag, 115In, 121, 123Sb, 127I, 139La, 151Eu, 196, 198Pt $(n.\gamma)$.E=thermal: measured σ .

Kevnumber: 1971RYZX

Coden: CONF Canterbury(Chem Nucl Data),P139,12/10/72

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, 63, 65Cu, 69, 71Ga, 75As, 79Br, 81Br, 89Y, 107, 109Ag, 115In, 121, 123Sb, 127I, 139La, 151Eu, 196, 198Pt (n,γ) , E=thermal; measured σ ; deduced resonance integrals.

Keynumber: 1971HO40

Reference: Comment.Phys.-Math. 41, 311 (1971)

Authors: P.Holmberg, P.Passi, R.Rieppo

Title: Study of Levels in ⁶⁴Cu from Thermal Neutron Capture in Natural Copper

Keyword abstract: NUCLEAR REACTIONS ⁶³Cu(n,γ),E=thermal; measured Eγ,Iγ. ⁶⁴Cu deduced

levels. Ge(Li) detector.

Keynumber: 1971BIZV

Coden: REPT ORNL-TM-3379, J R Bird,9/14/71

Keyword abstract: NUCLEAR REACTIONS F,Na,Mg,Al,S, ³⁵Cl,K,Ca, ⁴⁰, ⁴², ⁴⁴Ca,Ti,V,Fe, ⁵⁴,

⁵⁶Fe,Ni, ⁵⁸, ⁶⁰Ni, ⁶³Cu,Zn(n,γ),E=10-100 keV; measured Eγ,Iγ. 9 inx 12 in NaI detector.

Keynumber: 1970ST12

Reference: Phys.Rev. C1, 1468 (1970) Authors: W.E.Stein, B.W.Thomas, E.R.Rae

Title: Gamma-Ray Spectra of ⁶⁴Cu and ⁶⁶Cu Following Resonant-Neutron Capture

NSR Search Results Page 6 of 7

Keyword abstract: NUCLEAR REACTIONS 63 , 65 Cu(n,γ), E=thermal, <2.7 keV; measured Eγ, Iγ. 64 , 66 Cu deduced resonances. J. π .

Keynumber: 1970DI03

Reference: Acta Phys. 28, 257 (1970)

Authors: M.Diksic, P.Strohal, G.Peto, P.Bornemisza-Pauspertl, I.Hunyadi, J.Karolyi

Title: Additional Measurements of the Radiative Capture Cross Sections for 3 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ⁶³Cu, ⁷⁴Ge, ⁷⁵As, ⁸⁰Se, ⁸¹Br, ¹³⁰Te, ¹⁴¹Pr, ¹⁸⁶W, ²⁰⁹Bi (n,γ), E=3 MeV; measured σ. ⁷⁵Ge, ⁸¹Se, ¹⁴²Pr deduced isomeric σ ratios, spin cut-off parameters.

Kevnumber: 1970CHYM

Coden: CONF Madurai(Nucl, Solid State Phys), Vol2, P615, 10/25/71

Keyword abstract: NUCLEAR REACTIONS ⁵⁵Mn, ⁶³Cu, ⁷⁵As, ⁹⁸Mo, ¹¹⁴Cd, ¹²⁷I, ¹³⁹La, ¹⁴¹Pr

 (n,γ) ,E=24 keV; measured σ .

Keynumber: 1969KO05

Reference: Nucl. Phys. A127, 385 (1969)

Authors: J.Kopecky, E.Warming

Title: Circular Polarization Measurements with a Ge(Li) Detector

Keyword abstract: NUCLEAR REACTIONS 32 S, 35 Cl, 48 Ti, 55 Mn, 56 Fe, 59 Co, 63 Cu(polarized n,γ), E = thermal; measured γ circular polarization. 33 S, 36 Cl, 49 Ti, 56 Mn, 57 Fe, 60 Co, 64 Cu levels deduced J, γ-mixing. Natural targets.

imamg. Maturur turg

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n,γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal;

measured average $\boldsymbol{\gamma}$ multiplicity.

Keynumber: 1969BOZU

Reference: Proc.Intern.Symp.Neutron Capture Gamma-Ray Spectroscopy, Studsvik,

Intern.At.En.Agency, Vienna, p.15 (1969)

Authors: H.H.Bolotin

Title: Thermal-Neutron Capture Gamma-Gamma Coincidence Studies and Techniques

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁶³Cu, ¹⁷⁶Lu, ²⁰⁹Bi(n,γ),E=thermal; measured γγ-

coin. ⁴⁶Sc, ⁶⁴Cu, ¹⁷⁷Lu, ²¹⁰Bi deduced levels,J,π,γ-branching.

Kevnumber: 1968WE18

Reference: Z.Physik 213, 411 (1968) Authors: H.Weigmann, J.Winter

Title: Neutron Radiative Capture in Cu

Keyword abstract: NUCLEAR REACTIONS ⁶³, ⁶⁵Cu(n, γ),E=200 eV-16.5 keV; measured σ (E). ⁶⁴,

⁶⁶Cu deduced resonances, J, level-width.

Keynumber: 1968AL05

Reference: Nucl. Phys. A111, 1 (1968)

NSR Search Results Page 7 of 7

Authors: B.J.Allen

Title: Averaged Intensities of Primary Gamma Rays After keV Neutron Capture in copper

Keyword abstract: NUCLEAR REACTIONS ⁶³, ⁶⁵Cu(n, γ), E=10-60 keV; measured σ (E;E γ). ⁶⁴Cu

deduced γ -transition strengths. Natural target, Ge(Li) detector.

Keynumber: 1967SP05

Reference: Nucl. Phys. A102, 209 (1967)

Authors: P.Spilling, H.Gruppelaar, A.M.F.Op Den Kamp

Title: Thermal-Neutron Capture Gamma Rays from Natural Magnesium and Enriched ²⁵Mg **Keyword abstract:** NUCLEAR REACTIONS ²⁴, ²⁵, ²⁶Mg, ⁵⁶Fe, ⁶³Cu, ²⁰⁷Pb(n,γ), E=thermal; measured σ(Εγ); deduced Q. ²⁵, ²⁶, ²⁷Mg deduced levels, branching. Enriched ²⁵Mg target, Ge(Li)

detector.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal; measured Eγ; deduced Q. Natural targets.
