

CS606 Al Planning and Decision Making

University Timetabling

Vu Viet Linh
Rao Ningzhen
Nguyen Thi Ngoc Anh
Huang Anni
Yang Guowei
Tang Jingxue

Table of contents

- Introduction
- Problem Description
- Solution Approach
- Result
 - Demo

1. INTRODUCTION

1.Introduction

ITC 2019: International Timetabling Competition

Goal: To find a proper time, a room and students for all the classes

1.Introduction

Goal: find a proper time, a room and students for all the classes

1.Introduction

- Model used by competition participants
 - Mixed Integer Programming

- Model used by us
 - Mixed Integer Programming
 - Constraint Programming

2. PROBLEM DEFINITION

2.1 Data

2.1 Data

Classes

2.1 Data

- Courses
 - Each course has multiple subparts
 - Each subpart has multiple classes
 - A student need to choose one class in each subpart for each course
 - Some class has prerequisites

: precedence relationship

2.1 Data

2.1 Data

Distributed Constraints

We only consider hard constraints: SameAttendees in this project

Constraint	Complementary	Tim	e Day	s Wee	ks Roo	m Pairs
SameStart		V	*	*	*	₩
SameTime	DifferentTime	V	*	38	*	₩
SameDays	DifferentDays	*	V	*	*	✓
SameWeeks	DifferentWeeks	*	*	~	38	~
SameRoom	DifferentRoom	*	*	*	~	₩
0verlap	Not0verlap	V	V	\checkmark	22	₩
SameAttendees		V	~	~	~	~
Precedence		V	V	V	*	₩.
WorkDay(S)		V	~	~	*	₩
MinGap(G)		V	~	~	*	₩
MaxDays(D)		*	V	**	*	days over D
MaxDayLoad(S)		V	~	~	38	slots over S
MaxBreaks(R,S))	V	V	V	38	breaks over R
MaxBlock(M,S)		V	~	~	38	blocks over M

2.2 Notations

Table	1:	Notation

Symbol	Definition
Sets	
$c \in C$	set of classes
$t \in T$	set of time periods
$s \in S$	set of students
$r \in R$	set of rooms
$r \in CR_c$	set of rooms each class can use
$t \in CT_c$	set of time slots each class can use
$c \in SC_s$	set of Courses that each student need to learn
$(c_i,c_j)\in SA$	set of class pairs c_i, c_j that can't overlap
Parameters	
$pr_{c,r}$	penalty of choosing room r of class c
$pt_{c,t}$	penalty of choosing time t of class c
M_r	capacity of each room r
Decision Variable	S
$x_{c,t}$	binary variable that indicates whether class c is scheduled to time slot t
$y_{c,r}$	binary variable that indicates whether class c takes place at room r
$z_{s,c}$	binary variable that indicates whether student s choose class c

2.3 Assumptions

- There's **no travel time** between two classes.
- Do not consider soft constraints and only consider SameAttendees in distributed constraints.

2. Problem Definition (MP)

Decision variables

$$x_{c,t} = \begin{cases} 1 & \text{The class c takes place at time t} \\ 0 & \text{otherwise} \end{cases}$$

$$y_{c,r} = \begin{cases} 1 & \text{The class c takes place in room r} \\ 0 & \text{otherwise} \end{cases}$$

$$z_{s,c} = \begin{cases} 1 & \text{The student s is assigned to class c} \\ 0 & \text{otherwise} \end{cases}$$

No global identifier for timeslot

2. Problem Definition (MP)

Objective

$$\begin{array}{ll} \text{Min} & \sum_{c \in C} \sum_{r \in R} y_{c,r} pr_{c,r} & \text{Room penalty} \\ & + \sum_{c \in C} \sum_{t \in T} x_{c,t} pt_{c,t} & \text{Time penalty} \end{array}$$

2.Problem Definition (MP)

Constraints

H1: Every class must be assigned a time

H2: Every class must be assigned a room

➤ H3: Every student must attend exactly one class for each subpart that he/she must attend

2.Problem Definition (MP)

Constraints

- H4: Prerequisite:
 - Ex: If you take Al Planning you must take Algorithm as well
- H5: The capacity limit of each class must not be exceeded.
- ➤ H6: A room cannot be used when it is unavailable
- H7: The pairs of classes in SameAttendees should not overlap in time
 - Ex: Prof Dai is teaching Algorithm & Applied ML these 2 classes cannot happen at the same time
- H8: Two classes can't be at the same time and the same room

2. Problem Definition (CP)

Decision variables

$$x_c = t, for \ c \in C$$

Domain: t avail for c

$$y_c = r, for \ c \in C$$

Domain: r avail for c

$$z_{s,sbp} = c, for \ s \in S, for \ sbp \in SP_s$$

Domain: c in SPs

Time for class c is tRoom for class c is rThe class choice of subpart sbp for student s is c

2. Problem Definition (CP)

Objective

$$min \sum_{c} (p_{t_c} + p_{r_c})$$

Constraints

>H1,H2,H3 are satisfied within cp

 \triangleright H4: if $z_{s,sub} = c$, then $z_{s,sub} = c$. parent

 \rightarrow H5: $count(z,c) \leq limit(c)$

►H6: if $x_c = t$, then $y_c \neq r$ for t in r.avail()

►H7: if $x_{c1} = t_1$, then $x_{c2} \neq t_2$ if ovl(t1,t2)

>H8: if $x_{c1} = t_1$, and $x_{c2} = t_2$, and $y_{c1} = r_1$, then $y_{c2} \neq r_2$ if ovl(t1,t2) and r1=r2

3. SOLUTION APPROACH

Mixed Integer Programming

- Binary variables
- Linear constraints

course 22				
c16	c17	c18		
0	1	0		

class C

3. Solution Approach

Constraint Programming

Integer variables:

$$x_c = t$$

$$y_c = r$$

$$z_{s,sbp} = c$$

 $z_{s,sbp} = c$ $y_c = 4$ r0 r2 r3 r4

t0

- Logical constraints:
 - if_else
 - logical_and

 $x_c = 1$

t3

Constraints

Mixed Integer Programming

Mixed Integer Programming

m.add_constraint(time_penalty + room_penalty <= sol_penalty-1)</pre>

Mixed Integer Programming

Stopping criteria: either

- number of iterations > 50
- time for an iteration exceed 30s

Mixed Integer Programming

Algorithm 1 MIP approach general structure

```
sol_{pre} \leftarrow None
while not meet the stopping criteria do
sol \leftarrow model.solve()
if sol then
sol_{pre} \leftarrow sol
end if
penalty \leftarrow objective(sol_{pre})
p_{time} \leftarrow m.sum(pt_{c,t} * x_{c,t} \ for \ c \in C, t \in CTime_c)
p_{room} \leftarrow m.sum(pr_{c,r} * y_{c,r} \ for \ c \in C, r \in CRoom_c)
model.add\_constraint(p_{time} + p_{room} <= penalty) \triangleright \text{New solution must be better than current one}
end while
```


Constraint Programming

Constraint Programming

SMU Classification: Restricted

4. RESULTS

4.Results

First feasible solution

Optimal solution

MIP approach result

Total runtime: 249.4854 seconds

Objective value: 40.0

Validation

Validate solution Browse... wbg-fal10-sol-mp.xml Validate

Summary

Variables assigned:	150/150
Enrollment problems detected:	0
Total time penalty:	0
Total room penalty:	16
Total distribution penalty:	13
Total student conflicts:	58
Valid solution:	true
Total penalty:	737

```
v<solution name="wbg-fal10" runtime="12.3" cores="4" technique="MIP" author="G1" institution="SMU">
  ▼<class id="1" days="1010100" start="102" weeks="111111111111111" room="3">
     <student id="1"/>
     <student id="2"/>
   </class>
 v<class id="2" days="1111100" start="138" weeks="111111111111111" room="6">
     <student id="7"/>
     <student id="12"/>
   </class>
 ▼<class id="3" days="0101000" start="90" weeks="1111111111111111" room="6">
     <student id="4"/>
     <student id="5"/>
     <student id="6"/>
     <student id="8"/>
   </class>
 v<class id="4" days="0101000" start="102" weeks="111111111111111" room="6">
     <student id="11"/>
     <student id="14"/>
     <student id="15"/>
     <student id="16"/>
   </class>
```


Validation

Total penalty by dataset

Room penalty by dataset

Time penalty by dataset

5. Demo

- Colab: MIP
- Colab: CP

SMU Classification: Restricted

Q&A

