1. Suppose $\langle x \rangle_{\alpha \in A}$ is a net in X that does not converge to $x \in X$. Show that there is an open set U containing x and a subnet $\langle x_{\alpha_{\beta}} \rangle_{\beta \in B}$ such that $x_{\alpha_{\beta}} \notin U$ for all $\beta \in B$. Hint: For a particular 'bad' U, take B to be the entire subset of A such that $x_{\beta} \notin U$ and show that B is directed. Then show that there is a natural increasing cofinal map from B to A.

Proof. Suppose $\langle x_{\alpha} \rangle_{\alpha \in A}$ is a net in X that does not converge to $x \in X$. By definition there exists a $U \in \mathcal{V}(x)$ such that $\langle x_{\alpha} \rangle_{\alpha \in T(\alpha')} \not\subseteq U$ for all $\alpha' \in A$. Let $B = \{\alpha \in A : x_{\alpha} \notin U\}$. We will proceed by showing that B is directed with \leq relation inherited from A. Clearly it's reflective, and transitive, by A. Let $a, b \in B$, and note that $\langle x_{\alpha} \rangle_{\alpha \in T(a)} \not\subseteq U$ and $\langle x_{\alpha} \rangle_{\alpha \in T(b)} \not\subseteq U$, since $x_a, x_b \notin U$. Since A is directed, there exist a $C \in A$ such that $C \geq a, b$. Since $C \in A$ we know that $C \geq a$ and therefore there exists a $C \in A$ such that by definition $C \in B$ and since $C \in C$ it follows $C \in C \geq a$ and thus $C \in C$ is directed.

We will proceed to show that $f: B \to A$ defined by the identity is increasing and cofinal. Clearly this map is increasing, since our directness was inherited from A. Let $a \in A$, and note that $\langle x_a \rangle_{\alpha \in T(a)} \not\subseteq U$ so there exists some $b \in T(a)$ such that $x_b \notin U$. Note that $b \in B$ and $f(b) = b \ge a$.

Therefore *B* defines a subnet $\langle x_{\alpha_{\beta}} \rangle$ which by construction has the property that $x_{\alpha_{\beta}} \notin U$ for all $\beta \in B$.

2. Crossley 6.1 Show that the spaces [0, 1] and (0, 1) are homotopy equivalent by finding an explicit homotopy equivalence and its inverse between the two spaces.

Proof. Let $f:[0,1] \to (0,1)$ be defined by $f(x) = \frac{1+2(x)}{4}$. Let $g:(0,1) \to [0,1]$ be the identity map. Consider $g \circ f$ which is defined by $g(f(x)) = \frac{1+2(x)}{4}$. We will show this function is homotopy equivalent to the identity on (0,1) by exhibiting an explicit homotopy. Consider the function $H_1: I \times I \to I$ defined by,

$$H_1(x,t) = \frac{1+2(x)}{4}(1-t) + x(t).$$

This function is continuous and note that $H_1(x,0) = \frac{1+2(x)}{4} = g(f(x))$ and $H_2(x,1) = x$.

Consider $f \circ g$ which is defined by $f(g(x)) = \frac{1+2(x)}{4}$. We will show this function is homotopy equivalent to the identity on (0,1) by exhibiting an explicit homotopy. Consider the function $H_2: (0,1) \times I \to (0,1)$ defined by,

$$H_2(x,t) = \frac{1+2(x)}{4}(1-t) + x(t).$$

This function is also continuous and note that $H_2(x,0) = \frac{1+2(x)}{4} = f(g(x))$ and $H_2(x,1) = x$.

velcro

Due: April 7, 2023

3. Crossley 6.4b

Suppose $f: X \to S^n$ is continuous and not surjective. Show that it is homotopic to a constant map.

Proof. Suppose $f: X \to S^n$ is continuous and not surjective. Let $p \notin f(X)$ and recall that $A = S^n \setminus \{p\}$ is homeomorphic to \mathbb{R}^n via the stereographic projection map σ . Note that $\sigma(f(x))$ is a map from $X \to \mathbb{R}^n$, and recall that \mathbb{R}^n is contractible and therefore there exists a homotopy, namely $H(x,t) = \sigma(f(x))(1-t) + q(t)$ with the property that $H(x,0) = \sigma(f(x))$ and H(x,1) = q where $q = \sigma(i)$ for some $i \in A$. Note that $\sigma^{-1}(H(x,t))$ is a function defined from $X \times I \to A$ with the property that

$$\sigma^{-1}(H(x,t)) = \sigma^{-1}(\sigma(f(x))(1) + q(0)) = f(x)$$

and

$$\sigma^{-1}(H(x,t)) = \sigma^{-1}(\sigma(f(x))(0) + q(1)) = \sigma^{-1}(q) = \sigma^{-1}(\sigma(i)) = i,$$

a constant map in S^n since $i \in A \subseteq S^n$. Since $\sigma^{-1}(H(x,t))$ is a composition of continuous functions it is also continuous and thus we have constructed a homotopy from f to a constant map.

4. Crossley 6.5

Show by means of an explicit homotopy that the map $f: S^1 \to S^1$ given by f(x, y) = (-x, -y) is homotopic to the identity.

Proof. Suppose $f: S^1 \to S^1$ given by f(x,y) = (-x,-y). Note that (x,y) = z for some $z \in \mathbb{C}$ and then the function is equivalent to $f(z) = e^{i\pi}z$. Clearly our desired homotopy is given by $H(z,t) = e^{i\pi(t)}z$ since it is continuous and $H(z,0) = e^0z = z$ and $H(z,1) = e^{i\pi(1)}z = f(z)$.

5. Show that a space X is contractible if and only if [X, X] consists of a single element.

Proof. (\Rightarrow) Suppose X is contractible. By definition X is homotopy equivalent to a one point space, and therefore for $Y = \{p\}$ there exists function $c_p : X \to Y$ and $c_0 : Y \to X$ such that $c_p \circ c_0$ is homotopic to i_Y and $c_0 \circ c_p$ is homotopic to i_X . Since Y is a one point space [Y : X] has only one homotopy class and therefore,

$$[f] = [f \circ i_X]$$

$$= [f] \circ [i_X]$$

$$= [f] \circ [c_0 \circ c_p]$$

$$= [f \circ c_0] \circ [c_p]$$

$$= [c_0] \circ [c_p]$$

$$= [g \circ c_0] \circ [c_p]$$

$$= [g] \circ [c_0 \circ c_p]$$

$$= [g] \circ [i_X]$$

$$= [g \circ i_X]$$

$$= [g]$$

Proof. (\Leftarrow) Suppose [X,X] consists of a single element. Then the constant map for $p \in X$ is homotopic to the identity map in X. Consider the one point space $A = \{p\}$ and note that $c_p : X \to A$ and $i_X|_p$, the identity map restricted to A when composed as $c_p \circ i_X|_p$ give the identity in A and $i_X|_p \circ c_p$ give a constant map in X, which is homotopic to the identity in X and therefore $X \sim A$.

6. Suppose that $f, g: S^n \to S^n$ are continuous maps such that $f(x) \neq -g(x)$ for any $x \in S^n$. Prove that f and g are homotopic.

Proof. Consider the function $H: S^n \times I \to S^n$,

$$H(x,t) = \frac{f(x)(1-t) + g(x)t}{|f(x)(1-t) + g(x)t|}.$$

Note that since $f, g: S^n \to S^n$ we know that $H(x, 0) = \frac{f(x)}{|f(x)|} = f(x)$ and $H(x, 1) = \frac{g(x)}{|g(x)|} = g(x)$. What is left to show is that H(x, t) is continuous from $S^n \times I \to S^n$.

Note that $n(x) = \frac{x}{|x|}$ is a continuous function from $R^n \setminus \{0\} \to S^n$. Let $c(x,t) : S^1 \times I \to R^n$ be defined by c(x,t) = f(x)(1-t) + g(x)t and suppose to the contrary that f(x)(1-t) + g(x)t = 0, that would imply that $g(x) = \frac{t-1}{t}f(x)$, and since f and g are maps into S^n , taking the absolute value of both sides gives,

$$|g(x)| = \left| \frac{t-1}{t} \right| |f(x)|,$$

$$1 = \left| \frac{t-1}{t} \right|,$$

$$1 = \frac{|t-1|}{t},$$

$$t = |t-1|.$$

so t = 1/2. Substituting back into our equation we get f(x) = -g(x) a contradiction. Thus $f(x)(1-t) + g(x)t \neq 0$ for all $(x,t) \in S^n \times I$. Clearly c(x,t) is continuous, and since $c(x,t) \neq 0$ we know that n(c(x,t)) = H(x,t) is continuous, as it is a composition of continuous functions.