IIT-JEE CHEMISTRY

Quantum number, Electronic configuration and Shape of orbitals

121. (d) For f orbital l = 3.

122. (b) n=1, l=1, m=0, s=-1/2

Rules to check:

Principal quantum number (n): n = 1, 2, 3...Azimuthal quantum number (l): $0 \le l \le n - 1$ Magnetic quantum number (m₁): $-l \le m_1 \le +l$ Spin quantum number (s): $\pm 1/2$

- **123.** (b) 4*d*-orbital have highest energy in given data.
- **124** (b) [Xe]4f⁷ 5d¹ 6s²
- **125.** (d) If m = -3, l = 3 and n = 4.
- 126. (d) 4

An electron in an atom is completely described by 4 quantum numbers:

Principal quantum number (n) \rightarrow energy level Azimuthal quantum number (l) \rightarrow shape of orbital Magnetic quantum number (m_l) \rightarrow orientation of orbital Spin quantum number (s) \rightarrow spin of electron

- **127.** (b) $N_7^{14} = 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$.
- **128.** (c) m can't be greater than l.
- **129.** (a) 3f
- **130.** (b) n = 1 and m = 1not possible for s-orbitals.

131. (a)
$$Fe_{26} = [Ar]3d^64s^2$$

 $Fe^{3+} = [Ar]3d^54s^0$.

- **132.** (c) Maximum number of electron = $2n^2$ (where n = 4) = $2 \times 4^2 = 32$.
- **133.** (d) When 2p orbital is completely filled then electron enter in the 3s. The capacity of 2p orbital containing e^- is 6. So $1s^2$, $2s^22p^23s^1$ is a wrong electronic configuration the write is $1s^22s^22p^3$.
- **134.** (b) This electronic configuration is Cr (chromium element) in the ground state $= 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$
- **135.** (a) n=3; l=2; m=2; s=+1/2
- 136. valid options: (a) and (c)
 - (a) n=1, l=2

 $1 \le n-1 \rightarrow 2 \le 0$ Not valid

(c) m=3, l=0

 m_l must satisfy $-l \leq m \leq l \rightarrow -0 \leq 3 \leq 0$ Not valid

\\\\PLAIFOKI

- **137.** (c) No. of electron are same (18) in Cl^- and Ar.
- **138.** (c) For s-subshell l = 0 then should be m = 0.
- **139.** (c) 19^{th} electron of chromium is $4s^1$ n = 4, l = 0, m = 0, $s = +\frac{1}{2}$
- **140.** (c) The value of m is -1 to 1 including zero so for l = 3, m would be -3, -2, -1, 0, +1, +2, +3.
- **141.** (c) l = 1 is for p orbital.
- **142.** (d) Magnetic quantum number of sodium $(3s^1)$ final electron is m = 0.

IIT-JEE CHEMISTRY

- **143.** (c) Generally azimuthal quantum number defines angular momentum.
- 144. (c) Pauli's exclusion principle

Pauli's exclusion principle states that no two electrons in an atom can have the same set of four quantum numbers.

This principle is the basis for defining **n**, **l**, **m**_l, **s** for each electron.

145. (b)

146. (d)
$$m = (2l + 1)$$
 for d orbital $l = 2m = (2 \times 2 + 1) = 5$.

- **147.** (a) The atomic number of chlorine is 17 its configuration is $1s^22s^22p^63s^23p^5$
- **148.** (c) n l m_1 m_2 3 2 1 0

This set (c) is not possible because spin quantum number values $=\pm\frac{1}{2}$.

- **149.** (b) The ground state of neon is $1s^22s^22p^6$ on excitation an electron from 2p jumps to 3s orbital. The excited neon configuration is $1s^22s^22p^53s^1$.
- 150. (c) The spatial orientation of the orbital

 m_{l} defines the **orientation of the orbital in space** relative to an external magnetic field.

It does not affect the energy of the orbital in the absence of a magnetic field.