Inferência Estatística I

Lista 3

AUTOR

Paulo Cerqueira Jr 🖂 📵

AFILIAÇÕES

Faculdade de Estatística - FAEST

Universidade Federal do Pará - UFPA

Exercício 1 Em estudos de genética, o modelo Binomial é frequentemente utilizado, exceto quando a observação x=0, pois é impossível de ocorrer. Nestes casos, a amostragem será realizada a partir da seguinte distribuição truncada:

$$P(X=x) = egin{cases} inom{m}{x}p^x(1-p)^{m-x}/\left[1-(1-p)^m
ight], & ext{se } x \in \{1,2,\ldots,m\} \ 0, & ext{caso contrário.} \end{cases}$$

Encontre o EMV para p para quando m=2 e o tamanho da amostra é n.

Exercício 2 Sejam X_1, \ldots, X_n uma a.a. da v.a. $X \sim \operatorname{Exp}(\lambda)$.

Encontre o EMV para λ .

Exercício 3 Seja X_1,\ldots,X_n uma a.a. de $X\sim \mathrm{Unif}(\theta,\theta+1)$.

- a. Obtenha um estimador via método de momentos.
- b. Obtenha um estimador via método da máxima verossimilhança.

Exercício 4 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. $X\sim \mathrm{Gama}(2,1/ heta)$.

- a. Obtenha o EMV para θ .
- b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).

Exercício 5 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. X, com função de densidade dada por:

$$f(x \mid \theta) = \frac{x+1}{\theta(\theta+1)} \exp\left\{-\frac{x}{\theta}\right\}, \quad x > 0, \theta > 0.$$

- a. Obtenha o EMV para θ .
- b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).
- c. Obtenha um estimador via método de momentos.

Exercício 6 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. $X\sim \mathrm{Poisson}(\theta)$. Seja $g(\theta)=\exp\{-\theta\}$.

- a. Obtenha o EMV para $g(\theta)$.
- b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).

Exercício 7 Seja X_1,\dots,X_n uma amostra aleatória da v.a. $X\sim N(0,\sigma^2)$.

a. Obtenha o EMV para σ^2 .

b. Obtenha o EMV para σ .

Exercício 8 Seja X_1, \ldots, X_n uma amostra aleatória da v.a. X_n com função de densidade dada por:

$$f(x\mid heta)= heta(1+x)^{-(1+ heta)}I_{(0,\infty)}(x),\quad heta>0.$$

- a. Obtenha o EMV para $1/\theta$.
- b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).
- c. Obtenha um estimador via método de momentos.

Exercício 9 Seja X_1, \ldots, X_n uma amostra aleatória da v.a. $X \sim \text{Poisson}(\theta)$. Seja $g(\theta) = (1 + \theta) \exp\{-\theta\}$.

Obtenha o EMV para $g(\theta)$.

Exercício 10 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. X, com função de densidade dada por:

$$f(x\mid heta)= heta x^{ heta-1}I_{(0,1)}(x),\quad heta>0.$$

- a. Encontre o EMV para θ .
- b. Encontre o EMV para $g(\theta) = \frac{\theta}{1+\theta}$.

Exercício 11 Seja X_1, \ldots, X_n uma amostra aleatória da v.a. X_n com função de densidade dada por:

$$f(x \mid heta) = rac{2x}{ heta^2}, \quad 0 < x < heta, heta > 0.$$

- a. Obtenha o EMV para $g(\theta) = \theta + \theta^2$.
- b. Obtenha um estimador para θ via métodos de momentos.

Exercício 12 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. X, com função de densidade dada por:

$$f(x\mid heta)=rac{ heta}{x^2},\quad x> heta, heta>0.$$

- a. Obtenha o EMV para θ .
- b. Obtenha o EMV para $g(\theta) = E\left(\frac{1}{X}\right)$.

Exercício 13 Seja X_1, \ldots, X_n uma amostra aleatória obtida a partir da distribuição:

$$f(x) = \exp\{-(x-\theta)\}I_{(\theta,\infty)}(x), \quad \theta > 0.$$

- a. Obtenha o EMV para θ .
- b. Obtenha um estimador para θ via métodos de momentos.

Exercício 14 Seja Y_1, \ldots, Y_n variáveis aleatórias independentes com $Y_i \sim N(\alpha + \beta x_i, \sigma^2)$, em que x_i é conhecido para todo $i=1,\ldots,n$.

Encontre o EMV para α , β e σ^2 .

Exercício 15 Seja X_1,\ldots,X_n uma amostra aleatória da v.a. $X\sim \mathrm{Ber}(heta)$.

- a. Encontre o EMV para $\mathrm{Var}(X)$.
- b. Obtenha a distribuição para grandes amostras do estimador obtido no item a).