Algorithms PART II: Partitioning and Divide & Conquer

HPC Fall 2012

Prof. Robert van Engelen

Overview

- Partitioning strategies
- Divide and conquer strategies
- Further reading

Partitioning Strategies

Block partitioning of a 2D domain

Data partitioning

- Perform domain decomposition to run parallel tasks on subdomains
- "Scatter-compute-gather"
 where local computation may
 require communication and
 scatter/gather may involve
 computations

Task partitioning

Decompose functions into independent subfunctions and execute the subfunctions in parallel

Partitioning Strategies

- Partitioning strategy (data partitioning):
 - 1. Break up a given problem into *P* subproblems
 - 2. Solve the *P* subproblems concurrently
 - 3. Collect and combine the P solutions
- Embarrassingly parallel
 - Is a simple form of data partitioning into independent subproblems without initial work and no communication between tasks (workers)

Partitioning Example 1: Summation

- Summation of *n* values $X = [x_1, ..., x_n]$
- 1. Divide X into P equally-sized sublists X_p , p = 0,...,P-1 and distribute the X_p sublists to the P processors
- 2. The processors sum the local parts $s_p = \sum X_p$
- 3. Combine the local sums $s = \sum s_p$
- Algorithms:
- Scatter list X using a scatter-tree
- 2. Serial summation of parts
- 3. Reduce local sums

11/14/12 HPC Fall 2012

Partitioning Example 1: Summation

Partitioning Example 1: Summation

Communication time

Scatter:
$$t_{comm1} = \sum_{k=1..\log 2(P)} (t_{startup} + 2^{-k}n \ t_{data})$$
$$= \log_2(P)t_{start} + n(P-1)/P \ t_{data}$$

$$= \log_2(P)t_{start} + n(P-1)/P t_{data}$$

□ Reduce:
$$t_{comm2} = \log_2(P) (t_{start} + t_{data})$$

□ Total:
$$t_{comm} = 2 \log_2(P) t_{start} + (n(P-1)/P + \log_2(P)) t_{data}$$

Computation time

□ Local sum:
$$t_{comp1} = n/P$$

□ Global sum:
$$t_{comp2} = \log_2(P)$$

□ Total:
$$t_{comp} = n/P + \log_2(P)$$

■ Speedup, assuming $t_{startup} = 0$

□ Sequential time:
$$t_s = n-1$$

□ Parallel time:
$$t_P = (n(P-1)/P + \log_2(P)) t_{data} + n/P + \log_2(P)$$

$$\square$$
 Speedup: $S_P = t_s/t_P = O(n/(n + \log(P)))$

□ Best speedup w/o communication:
$$S_P = O(P/\log(P))$$

General M-Ary Partitioning

Example: partitioning an image, e.g. to compute histogram by parallel reductions (summations to count color pixels)

3-level 4-ary partitioning for $4^3 = 64$ processors

Partitioning Example 2: Parallel Bucket Sort

- Bucket sort of values $[x_1, ..., x_n]$ bounded within a range $x_i \in [lo...hi]$
- Partition the *n* values in *n*/*P* segments
- 2a. Sort each segment into *P* small buckets (local computation)
- 2b. Send content of small buckets to *P* large buckets
- Sort *P* large buckets and merge lists

11/14/12

Partitioning Example 2: Parallel Bucket Sort

Partitioning Example 2: Parallel Bucket Sort

- Communication time (assuming uniform distribution in X)
 - □ Scatter: $t_{comm1} = \log_2(P)t_{startup} + n(P-1)/P t_{data}$
 - \square All-to-all: $t_{comm2} = (P-1)(t_{startup} + n/P^2 t_{data})$
 - □ Gather: $t_{comm3} = \log_2(P)t_{startup} + n(P-1)/P t_{data}$
- Computation time (assuming uniform distribution in X)
 - □ Small bucket sort: $t_{comp1} = n/P$
 - □ Large bucket sort: $t_{comp2} = n/P \log_2(n/P)$
- Speedup
 - □ Sequential time: $t_s = n \log_2(n/P)$ (with *P* buckets)
 - Parallel time: $t_P = 2 \log_2(P) t_{startup} + 2 n(P-1)/P t_{data} + (P-1)(t_{startup} + n/P^2 t_{data}) + n/P (1 + \log_2(n/P))$
 - □ Speedup w/o communication: $S_P = O(P)$

Partitioning Example 3: Barnes Hut Algorithm

$$F = \frac{Gm_1m_2}{r^2}$$

Direction of the force between two bodies at points *p* and *q*

$$ec{F} = rac{Gm_pm_q}{r^2} \left(rac{ec{p}-ec{q}}{r}
ight)$$

$$F = ma$$

$$ec{F}^t = rac{m(ec{v}^{t+rac{1}{2}} - ec{v}^{t-rac{1}{2}})}{\Delta t}$$

$$\vec{v}^{t+\frac{1}{2}} = \vec{v}^{t-\frac{1}{2}} + \frac{\vec{F}^t \Delta t}{m}$$

$$\vec{x}^{t+1} = \vec{x}^t + \vec{v}^{t+\frac{1}{2}} \Delta t$$

Partitioning Example 3: Barnes Hut Algorithm

Particles in 2D space

Partitioning Example 3: Barnes Hut Algorithm

```
for (t = 0; t < tmax; t++)
{
   Build_tree();
   Compute_Total_Mass_Center();
   Compute_Force();
   Update_Positions();
}</pre>
```

Sequential time is $O(n \log n)$

Assuming P = n then $t_P = O(\log P)$

$$C = \frac{1}{M} \sum_{i=0}^{3} m_i c_i \tag{*}$$

$$ec{F} = rac{Gm_pm_q}{r^2} \left(rac{ec{p}-ec{q}}{r}
ight) \quad (**)$$

```
Compute Force()
  for (i = 0; i < n; i++)
    Compute Tree Force(i,root)
Compute Tree Force (i, node)
  if (box at node contains one particle)
    F = force using eq (**)
  else
    r = distance from i to C (*) of box
    D = size of box at node
    if (D/r < theta)
      F = force using eq (**) with total M
    else
      for (all children c of box)
         F = F + Compute Tree Force(i,c);
 return F;
```


Divide and Conquer

- Divide and conquer strategy (definition by JáJá 1992)
 - 1. Break up a given problem into independent subproblems
 - 2. Solve the subproblems *recursively* and concurrently
 - Collect and combine the solutions into the overall solution.
- In contrast to the partitioning strategy, divide and conquer uses recursive partitioning with concurrent execution to divide the problem down into independent subproblems
- In deeper levels of recursion the number of active processors may increase or decrease

Divide & Conquer Example 1: Parallel Recursive Matmul

 Block matrix multiplication in recursion by decomposing matrix in 2×2 submatrices and computing the submatrices recursively

```
Mat matmul (Mat A, Mat B, int s)
\{ \text{ if } (s == 1) \}
      C = A * B;
   else
   \{ s = s/2; 
      P0 = matmul(A_{p,p}, B_{p,p}, s);
      P1 = matmul(A_{p,q}, B_{q,p}, s);
P2 = matmul(A_{p,p}, B_{p,q}, s);
      P3 = matmul(A_{p,q}, B_{q,q}, s);
                                                         PO...P7 computed in parallel
      P4 = \operatorname{matmul}(A_{q,p}^{P,q}, B_{p,p}^{q,q}, s);
      P5 = \text{matmul}(A_{q,q}, B_{q,p}, s);
      P6 = matmul(A_{q,p}, B_{p,q}, s);
      P7 = matmul(A_{q,q}, B_{q,q}, s);
      C_{p,p} = P0 + P1;
      C_{p,q}^{r'r} = P2 + P3;

C_{q,p} = P4 + P5;

C_{q,q} = P6 + P7;
                                                         Can be computed in parallel
   return C;
```

- Level of parallelism increases with deepening recursion
- Suitable for shared memory systems

Divide and Conquer Example 2: Parallel Convex Hull Algorithm

■ The planar convex hull of a set of points $S=\{p_1,p_2,...,p_n\}$ of $p_i=(x,y)$ coordinates is the smallest convex polygon that encompasses all points S on the x-y plane

Divide and Conquer Example 2: Parallel Convex Hull Algorithm

- The *upper convex hull* spans points $\{q_1,...,q_s\} \subseteq S$ from point q_1 with minimum x to q_s with maximum x
- The convex hull = upper convex hull + lower convex hull
- Problem:
 - □ Given points $S = \{p_1, ..., p_n\}$ such that $x(p_1) < x(p_2) < ... < x(p_n)$, construct the upper convex hull in parallel

Divide and Conquer Example 2: Parallel Convex Hull Algorithm

Parallel convex hull:

- Divide the x-sorted points S into sets S_1 and S_2 of equal size
- Compute upper convex hull recursively on S_1 and S_2
- Combine $UCH(S_1)$ and $UCH(S_2)$ by computing the upper common tangent a to b to form UCH(S)

11/14/12 19

Divide and Conquer Example 2: Parallel Convex Hull Algorithm

- Base case of recursion: two points, which are returned as UCH(S)
- The line segment (a,b) can be computed sequentially in $O(\log n)$ time with $n = |UCH(S_1) + UCH(S_2)|$ using a binary search method
- Line segments can be implemented as linked list of points, thus $UCH(S_1)$ and $UCH(S_2)$ can be connected using one pointer change of a to point to b in O(1) time
- Parallel convex hull time complexity recurrence relation:

$$T(n) \le T(n/2) + a \log n$$

with solution:
 $T(n) = O(\log^2 n)$

Parallel convex hull operations recurrence relation:

$$W(n) \le 2W(n/2) + b n$$

with solution:

$$W(n) = O(n \log n)$$

which is cost optimal, since sequential algorithm is $O(n \log n)$

Divide and Conquer Example 3: First-Order Linear Recurrences

First-order linear recurrence

$$y_1 = b_1$$

$$y_i = a_i y_{i-1} + b_i$$
 $2 \le i \le n$

- Example applications:
 - □ Prefix sum $y_i = \sum_{j=1..i} b_j$ is a special case of a first-order linear recurrence with $a_i = 1$ (the multiplicative unit element)
 - □ n-th order polynomial evaluation using Horner's rule

$$p(x) = (((b_1 x + b_2) x + b_3) x + \dots + b_{n-1}) x + b_n$$

is a special case of a first-order linear recurrence with $a_i = x$

□ Solving a bi-diagonal system $\mathbf{B}\mathbf{y} = \mathbf{c}$, let $a_i = -l_i/d_i$ $b_i = c_i/d_i$

then solve linear recurrence to obtain solution *y*

$$\begin{pmatrix} d_1 & & & & \\ l_2 & d_2 & & & \\ & l_3 & d_3 & & \\ & \dots & \dots & \\ & & l_n & d_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \dots \\ c_n \end{pmatrix}$$

Divide and Conquer Example 3: First-Order Linear Recurrences

- Rewrite $y_i = a_i y_{i-1} + b_i$ into $y_i = a_i (a_{i-1} y_{i-2} + b_{i-1}) + b_i$
- This equation defines a linear recurrence of size n/2 for even index i

$$z_1 = b_1'$$

 $z_i = a_i' z_{i-1} + b_i'$ $2 \le i \le n/2$

1. Let

$$a_i' = a_{2i} a_{2i-1}$$

 $b_i' = a_{2i} b_{2i-1} + b_{2i}$

- 2. Solve z_i recursively
- 3. For $1 \le i \le n$ set

$$y_i = z_{i/2}$$
 if i is even
 $y_i = a_i z_{(i-1)/2} + b_i$ if i is odd > 1
 $y_i = b_1$ if $i = 1$

Divide and Conquer Example 3: First-Order Linear Recurrences

HPC Fall 2012

log₂ *n* recursive steps

11/14/12

Parallel algorithm:

```
linrecsolve(a[], b[], y[], n)
  if (n==1)
  \{ y[1] = b[1];
    return;
  forall (i = 1 \text{ to } n/2)
  \{a_{new}[i] = a[2*i]*a[2*i-1];
    b_{\text{new}}[i] = a[2*i]*b[2*i-1]+b[2*i];
  linrecsolve (a_{new}, b_{new}, z, n/2);
  forall (i = 1 to n)
  \{ if (i == 1) \}
      y[1] = b[1];
    else if (even(i))
      y[i] = z[i/2];
    else
      y[i] = a[i]*z[(i-1)/2]+b[i];
```

23

Divide and Conquer Example 4: Triangular Matrix Inversion

■ Consider $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $n \times n$ triangular matrix \mathbf{A}

$$\begin{pmatrix}
a_{11} \\
a_{21} & a_{22} \\
a_{31} & a_{32} & a_{33} \\
\dots & \dots & \dots \\
a_{n1} & a_{n2} & \dots & \dots & a_{nn}
\end{pmatrix}$$

■ Partition A into $(n/2) \times (n/2)$ blocks

$$\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 & \mathbf{A}_3 \end{bmatrix}$$

■ Then A⁻¹ is given by

$$\begin{bmatrix} \mathbf{A}_{1}^{-1} & \mathbf{0} \\ -\mathbf{A}_{3}^{-1}\mathbf{A}_{2}\mathbf{A}_{1}^{-1} & \mathbf{A}_{3}^{-1} \end{bmatrix}$$

Divide and Conquer Example 4: Triangular Matrix Inversion

- Parallel algorithm:
 - 1. Divide A into A_1 , A_2 , A_3
 - 2. Recursively compute inverses of A_1 and A_3 in parallel
 - 3. Multiply $-\mathbf{A}_3^{-1}\mathbf{A}_2\mathbf{A}_1^{-1}$ and combine with \mathbf{A}_1^{-1} and \mathbf{A}_3^{-1} to get \mathbf{A}^{-1}
- Time complexity is given by the recurrence relation T(n) = T(n/2) + c n with $P=n^2$ processors to compute $-\mathbf{A}_3^{-1}\mathbf{A}_2\mathbf{A}_1^{-1}$ in O(n) operations in parallel, thus T(n) = O(n) time

Divide and Conquer Example 5: Banded Triangular Systems

Consider Ax = b with banded matrix A with m=3

Define block diagonal D and inverse D⁻¹

$$\mathbf{D} = \begin{pmatrix} \mathbf{A}_{11} & & & \\ & \mathbf{A}_{22} & & & \\ & & \cdots & & \\ & & & \mathbf{A}_{n/m,n/m} \end{pmatrix} \qquad \mathbf{D}^{-1} = \begin{pmatrix} \mathbf{A}_{11}^{-1} & & & \\ & \mathbf{A}_{22}^{-1} & & & \\ & & \cdots & & \\ & & & \mathbf{A}_{n/m,n/m}^{-1} \end{pmatrix}$$

Divide and Conquer Example 5: Banded Triangular Systems

Compute $\mathbf{d} = \mathbf{D}^{-1}\mathbf{b}$ and $\mathbf{B} = \mathbf{D}^{-1}\mathbf{A}$ where $\mathbf{B}_{i,i-1} = \mathbf{A}_{ii}^{-1}\mathbf{A}_{i,i-1}$

$$\mathbf{d} = \mathbf{D}^{-1}\mathbf{b} = \begin{pmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \\ \cdots \\ \mathbf{d}_{n/m} \end{pmatrix} \qquad \mathbf{B} = \mathbf{D}^{-1}\mathbf{A} = \begin{pmatrix} \mathbf{I}_m \\ \mathbf{B}_{21} & \mathbf{I}_m \\ \mathbf{B}_{32} & \mathbf{I}_m \\ \cdots \\ \mathbf{B}_{n/m,n/m-1} & \mathbf{I}_m \end{pmatrix}$$

Solve first-order linear recurrence on $m \times m$ matrices $\mathbf{B}_{i,i-1}$

$$\mathbf{x}_{1} = \mathbf{d}_{1}$$

$$\mathbf{x}_{i} = -\mathbf{B}_{i,i-1} \mathbf{x}_{i-1} + \mathbf{d}_{i}$$

$$2 \le i \le n/m$$

- Parallel time $O(m + m \log(n/m))$ with P=nm processors
 - Compute all \mathbf{A}_{ii}^{-1} (each requiring $\mathrm{O}(m)$ operations) in parallel with parallel matrix inversion algorithm
 - Compute all $\mathbf{B}_{i,i-1} = \mathbf{A}_{ii}^{-1} \mathbf{A}_{i,i-1}$ in O(m) operations in parallel
 - \square Recurrence depth is $\log_2(n/m)$, each step has O(m) operations

Divide and Conquer Example 6: LU of Tridiagonal Matrix

Consider tridiagonal matrix LU decomposition

$$\begin{pmatrix}
a_1 & c_1 & & & \\
b_2 & a_2 & c_2 & & \\
& b_3 & a_3 & c_3 & & \\
& & \cdots & \cdots & \cdots & \cdots \\
& & & b_n & a_n
\end{pmatrix} = \begin{pmatrix}
1 & & & & & \\
l_2 & 1 & & & & \\
& & l_3 & 1 & & & \\
& & & \cdots & \cdots & \\
& & & & l_n & 1
\end{pmatrix} \begin{pmatrix}
d_1 & u_1 & & & & \\
& d_2 & u_2 & & & \\
& & & d_3 & u_3 & & \\
& & & & \cdots & \cdots & \\
& & & & d_n
\end{pmatrix}$$

■ The LU decomposition **A** = **L U** satisfies

$$a_{1} = d_{1}$$
 $c_{i} = u_{i}$
 $a_{i} = d_{i} + l_{i}u_{i-1}$
 $b_{i} = l_{i}d_{i-1}$

thus

$$d_1 = a_1$$

$$d_i = a_i - l_i u_{i-1} = a_i - u_{i-1} b_i / d_{i-1} = [a_i d_{i-1} - b_i c_{i-1}] / d_{i-1}$$

Divide and Conquer Example 6: **LU of Tridiagonal Matrix**

Let

$$\mathbf{R}_1 = \left[\begin{array}{cc} a_1 & 0 \\ 1 & 0 \end{array} \right]$$

$$\mathbf{R}_1 = \begin{bmatrix} a_1 & 0 \\ 1 & 0 \end{bmatrix} \qquad \mathbf{R}_i = \begin{bmatrix} a_i & -b_i c_{i-1} \\ 1 & 0 \end{bmatrix} \qquad \mathbf{T}_i = \mathbf{R}_i \mathbf{R}_{i-1} \dots \mathbf{R}_1$$

$$\mathbf{T}_i = \mathbf{R}_i \; \mathbf{R}_{i-1} \; \dots \; \mathbf{R}_1$$

From the Möbius transformation we have

$$d_i = \frac{\begin{bmatrix} 1 \\ 0 \end{bmatrix}^T \mathbf{T}_i \begin{bmatrix} 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 0 \\ 1 \end{bmatrix}^T \mathbf{T}_i \begin{bmatrix} 1 \\ 1 \end{bmatrix}}$$

- Algorithm:
 - □ Set up matrices R
 - □ Solve first-order linear recurrence (prefix sum) of T
 - \square Compute d_i
 - From the solution of d_i compute $l_i = b_i/d_{i-1}$

Further Reading

- [PP2] pages 106-131
- [PSC] pages 321-337