

关于蒙特卡罗方法 在高等数学中的应用

简绍勇

(新余高等专科学校 数理系, 江西 新余 338000)

摘 要:运用蒙特卡罗方法并结合 Matlab软件,通过举例讨论了高数中常见的几类数学问题:数值积分、函数最值的求解、一元函数根的求解以及规划问题的求解。

关键词:蒙特卡罗方法;高等数学;Matlab

中图分类号: O242 1 文献标识码: A 文章编号: 1008 - 6765 (2008) 02 - 0072 - 04

1 蒙特卡罗方法简介

蒙特卡罗方法也称随机模拟方法,有时也称作随机抽样技术或统计实验方法。它的基本思想是:首先建立一个概率模型或随机过程,使它的参数等于问题的解;然后利用计算机模拟该随机现象,通过对大量模拟仿真试验的结果来分析计算所求参数,得出实际问题的近似解。

蒙特卡罗方法的特点可归纳成三个方面: (1)蒙特卡罗方法及其程序的结构简单。 (2)蒙特卡罗方法的收敛性及收敛速度与问题的维数无关。 (3)蒙特卡罗方法的适用性强,可用在求很多解析方法或常规数值方法难解问题的低精度解。

- 2 利用蒙特卡罗法求解数值积分
- 2 1定积分的蒙特卡罗算法

假定函数 f(x) 在 [a,b]内有界连续且 f(x) 0,对定积分 $I = \int_{b}^{a} f(x) dx$,为计算出定积分值,可构造一概率模型:取一个边长分别为 b - a和 M的矩形 D,使曲边梯形在矩形域之内(图 1),并在矩形内随机投点,假设随机点均匀地落在整个矩形之内,则落在图中灰色区域内的随机点数 k与投点总数 N之比 k/N,就近似地等于灰色区面积与矩形面积之比,从而得出实现,

出定积
$$I = \frac{k}{N} (b - a) M$$
。

收稿日期: 2007 - 11 - 28

作者简介:简绍勇(1979-),男,江西新余人,助教。

— 72 —

对 $f(x) = e^{-x^2}$,我们很难求出其原函数,所以用牛顿 - 莱布尼茨公式无法求解,可运用蒙特卡罗方法依如下步骤求出其近似值。(见图 2)

步骤 1:产生矩形域 D内的 N个均匀随机点 $P_i(x_i,y_i)$; 步骤 2:统计满足条件 y_i f(x) 的落在曲边梯形内随机 点 P_i 的数目 k:

步骤 3: (取 M=1, a=-1, b=1, N=100000),则定积分的近似值 $I=\frac{k}{N}$ (b-a) $M=\frac{k}{5000}$ °

Matlab程序 1:

xi = unifmd(-1, 1, 100000, 1);

yi = rand(100000, 1); %产生 100000个符合题意随 机点的坐标 (xi, yi)

k = 0;

y = exp(- xi 2); %产生曲线上对应 xi的函数值 y

for i = 1:100000

 $if\ y\,i(\ i)\ <\ =\ y\,(\ i)$

k = k + 1; % 统计处在曲边梯形内的随机点数目

end

end

I = k/50000

将以上程序利用 matlab软件重复执行 6次,所得计算结果如下

表 1								
第 <i>i</i> 次	1	2	3	4	5	6		
积分近似值	1. 4934	1. 4928	1. 4963	1. 4936	1. 4946	1. 4941		

注意:由于随机误差的影响,每次计算机模拟的结果可能不一样,但是各次计算结果总是在准确值附近作微小摆动。

2 2二重积分的蒙特卡罗算法

对二重积分 I = f(x, y) dxdy,设 f(x, y) 为区域 A 上的有界函数且 f(x, y) = 0,据其几何意义,它是以 f(x, y) 为曲面顶,A 为底的曲顶柱体 C的体积。据此,用均匀随机数计算二重积分的蒙特卡罗方法基本思路为:

假设曲顶柱体 C包含在己知体积为 V_D 的几何体 D的内部,在 D内产生 N个均匀随机点,统计出在 C内部的随机点数

目
$$N_C$$
,则 II $\frac{V_D}{N}$ N_C

例 2:计算 $[(1 + \sqrt{1 - x^2 - y^2}) - \sqrt{x^2 + y^2}] dx dy$,其中 $A = \{(x, y) \mid x^2 + y^2 = 1\}$ 。

分析:该二重积分可看作以 $z = (1 + \sqrt{1 - x^2 - y^2})$ -

 $\sqrt{x^2 + y^2}$ 为顶的曲顶柱体的体积,此曲顶柱体在一个边长为 2的立方体之内 (见图 3),可计算出其精确值为 。现利用蒙特卡罗算法计算其近似值,见以下程序:

Matlab程序 2:

n = 100000;

x = unifmd(-1, 1, n, 1);

y = unifmd(-1, 1, n, 1);

zi = unifmd(0, 2, n, 1);

 $z = 1 + sqrt(1 - x^2 - y^2) - sqrt(x^2 + y^2);$

Nc = 0;

for i = 1: n

if x(i) ? 2 + y(i) ? 2 < = 1 & zi(i) < = z(i)

Nc = Nc + 1;

end

end

 $I\,=\,8\,\star\,N\,c/n$

下面是重复十次运算所得数据 (见表 2)

表 2

第 k次	1	2	3	4	5		
近似值	3 1450	3. 1485	3 1420	3. 1464	3 1468		
第 k次	6	7	8	9	10		
近似值	3 1386	3 1408	3 1498	3. 1410	3 1436		

从上面十个数据可以看出,每次计算结果在精确值 的 附近摆动。为提高精度,可选取其它随机数促进蒙特卡罗的收 敛性,例如选取有利随机数来代替均匀随机数可在较少随机 点的情况下使计算精度大大提高。

3 蒙特卡罗求一元函数的最值

高数中求一元函数 f(x) 在闭区间 [a,b] 的最值的方法为:找出函数 f(x) 的所有驻点和不可导点并计算出其相应函数值,并将其与区间端点函数值比较得出函数的最大值最小值。但实际问题中方程 f'(x)=0很难求出其根,所以驻点往往很难求出。

若利用蒙特卡罗方法:在 [a, b]上产生 n个随机数,计算出这些数的函数值并作比较,则可得出最值近似值。

例 3: $f(x) = (1 - x^3) \sin 3x$, 2 x 2 ,求函数的最大值。

解法一:使用蒙特卡罗方法

matlab程序 3:

$$x = unifmd(-2*pi, 2*pi, 1e4, 1);$$

$$fx = (1 - x / 3). * sin(3 * x);$$

fm ax = m ax (fx)

% 画函数图形观察

$$f = '(1 - x/3) * sin(3 * x);$$

 $title(\dot{y} = (1 - x/3) * sin(3 * x))$

解法二:采用等距法搜索函数最值

matlab程序 4:

n = 1e4;

$$x = linspace(-2 * pi, 2 * pi, n);$$

$$fx = (1 - x^{3}). * sin(3 * x);$$

fm ax = m ax(fx)

将 matlab程序 3重复运行 6次 (见表 3),则可得出函数的最大值为 194 9062

表 3									
第 <i>i</i> 次	1	2	3	4	5	6			
最大值	194. 9008	194. 9061	194 9062	194. 9049	194. 9038	194. 9062			

将 matlab程序 4运行后得函数最大值为 194 9061。根据图 4,可知两种方法的结果都很接近函数最大值。从结果上来看,可发现蒙特卡罗方法比等距法结果更优。

4 蒙特卡罗方法求一元函数的根

求一元函数 f(x) = 0的根有很多方法,如一般迭代法,牛顿切线法等等,用这些方法求其根的收敛性与初始迭代值 x_0 密切相关,但通常要给出一个合适的初始迭代值 x_0 是比较

困难的。利用蒙特卡罗方法求根的近似值则克服了求根对初始值 x₀的依赖性。下面介绍蒙特卡罗求函数根的方法:

要解方程 f(x) = 0, x = [a, b], 其中函数 f(x) 为连续函数,为指定精度。令 $X_{down} = a$, $X_{up} = b$, k = 1, $F_{smin}(1) = F_0$ 再进行以下步骤:

(1) 令 k = k + 1, ;在 $[X_{down}, X_{up}]$ 内产生 n个随机数 x_i ($i = 1, 2, \ldots n$),计算并比较出这 n个随机数的函数绝对值的最小值 $|f(x_{nk})| = \min_i f(f(x_i))$, nk为 的某个取值,令 $F_{xmin}(k) = \min_i F_{xmin}(k - 1)$, $f(x_{nk})$

(2) 若 $F_{smin}(k) < 成立,则终止计算,令 <math>f_{smot} = x_{nk}$,根就是 f_{smot}

若 $F_{min}(k) >$ 且 $F_{min}(k) = F_{min}(k-1)$,则令 k = k-1,转至 (1);

若 $F_{min}(k) >$ 且 $F_{min}(k) < F_{min}(k-1)$,则令 $f_{xnoot} = x_{nk}$,转至 (3)。

(3) 令 $d = d_0 / k$, $X_{down} = f_{xroot} - d$, $X_{up} = f_{xroot} + d$, 转至 (1)。 说明: I) F_0 是人为给定的一个很大的正数, $d_0 < < b - a$ 且 $d_0 > 0$

I(k = k + 1表示重新赋值给 k,使 k的值增加 1;对 k = k - 1同理。

II) 对 $d = d_0 / k$ 是为了使搜索根的区间越来越小,以加快收敛速度。

III) 区间 [xdown, xup]一定在定义域 [a, b]之内。 此迭代步骤能使函数值序列 $F_{xmin}(1) > F_{xmin}(2) > \dots F_{xmin}(k) > \dots$ 最终使 $F_{xmin}(k) < 成立,得出函数 <math>f(x) = 0$ 达到精度要求的根 $f_{xmin}(k)$

例 4: 求方程 $f(x) = e^{-x^3} - tanx + 800 = 0$ 在 (0, /2)的实根。(假定只要满足 $/f(x) / < 10^{-5}$,则认为 x为根)

分析:对此方程用任意给定的初值,如取初值为 0 5,0 7,0 9,1 1,1 3,1 5,用熟知的牛顿迭代公式在区间内都找不出根,若用蒙特卡罗方法,则不需给定初值。

下为用蒙特卡罗法求方程根的 matlab程序

matlab程序 5

n = 10000; xup = pi/2; xdow n = 0; k = 1; fxm in (1) = 1000; d0 = 1e - 4;

while(fxm in(k) > 1e - 5)

k = k + 1;

. x = unifmd(xdown, xup, n, 1); $y = exp(-x^5) - tan(x) + 800;$

fxm in(k) = fxm in(k-1);for i = 1: n

if abs(y(i)) < = fxm in(k)

fxm in(k) = abs(y(i)); $xnum = \dot{x}$

end

end O

if fxm in (k) = fxm in (k-1)

k = k - 1; continue;

end

fx root = x(xnum);

d = d0/k; xup = fx root + d; xdown = fx root - d;

end

表 4 matlab程序 5运行后的某次结果

				K : M CONTROLLED TO SECTION STATES AND SECTION STATES AND SECTION SECT						
	k	1	2	3	4	5	6	7	8	f_{xroot}
	$f_{xm in(k)}$	1000	41. 951	12 103	0 0043777	5. 74e - 5	1. 7079e - 5	1. 27 <i>e</i> - 5	2 695e - 6	1. 56954636015342

从表 4可看出 fxm in(k)是一个逐步减小的序列, fxmot = 1.56954636015342时,相应的函数值 f(fxmot) = fxm in(8) = 2.695e - 6 < 1e - 5,因此方程的近似根为 fxmot = 1.56954636015342

从结果也可看出,以上利用蒙特卡罗求方程根的算法精度很高,而且其运算量与函数的复杂度是无关的,所以此求根算法具有很强的应用价值。

5 蒙特卡罗方法解规划问题

用蒙特卡罗方法可解约束规划问题:

$$\begin{array}{lll}
m \ in & f(X), X & E^{n} \\
s & t & g_{i}(X) & 0, i = 1, 2, ..., m \\
a_{j} & x_{j} & b_{j}, j = 1, 2, ..., n
\end{array}$$

其基本思想是:在估计的区域 $f(x_1, x_2, ..., x_n) / x_j$ $f(a_j, b_j), j = 1, 2, ..., n$ 内随机取若干个试验点,然后从试验点中找出可行点,再从可行点中选择出使函数值最小的点。

其具体作法为:

符号假设和说明:

设试验点的第 j个分量 x_j 服从 $[a_j, b_j]$ 内的均匀分布; P: 试验点总数; MAXP: 最大试验点总数; K: 可行点总数; MAXK:最大可行点数; X^* :迭代产生的最优点; R:在 [0, 1]上的均匀随机数; Q:迭代产生的最小值 $f(X^*)$,其初始值为计算机所能表示的最大数.

求解过程:

先产生一个随机数作为初始试验点,以后则将上一个试

验点的第 介分量随机产生,其它分量不变而产生一新的试验点. 这样,每产生一个新试验点只需一个新的随机数分量. 当 K > MAXK或 P > MAXP时停止迭代。

流程图

初始化给定MAXK,MAXP;k=0,p=0,Q:大整数 x_i=a_i+R(b_ia_i) j=1,2,...,n j=0 i=j+1,p=p+1 Y MAXP N Y S(X) > 0? N i=1,2...n N W=K+1 Y MAXK?

图 5 Matlab算法流程图

机数矩阵

```
m in \quad z = -2x_1^2 - x_2^2 + x_1x_2 + 8x_1 + 3x_1
s t \begin{cases} 3x_1 + x_2 = 10 \\ x_1 & 0, x_2 & 0 \end{cases}
    例 5:
    在 M atlab中编程,共需三个 M - 文件: randlp m, mylp m,
lpconst m. 主程序为 randlp m.
    % mylp. m
                            %目标函数
    function z = my \ln (x)
    z = 2 * x(1) ? 2 + x(2) ? 2 - x(1) * x(2) - 8 * x(1) - 3 * x
(2); %转化为求最小值问题
    % lpconst m
    function lpc = lpconst(x)
                                %约束条件
     if 3 * x(1) + x(2) - 10 < = 0.5 & 3 * x(1) + x(2) - 10 >
             %约束条件的误差为
       pc = 1;
    else
       pc = 0;
    end
    % randlp. m
    function [sol, rl, r2] = rand p (a, b, n)
                                              %随机模拟解
非线性规划
    debug = 1;
    a = 0; %试验点下界
    b = 10; %试验点上界
    n = 1000; %试验点个数
     rl = unifmd(a, b, n, 1); % n(1阶的 [a, b]均匀分布随
```

```
 \begin{split} & r2 = unifmd(\,a,\,b,\,n,\,1\,)\,; \\ & sol = [\,rl\,\,(\,1\,) \ \ r2\,\,(\,1\,) \ ]; \\ & zol = inf; \\ & for \,\,i = 1\colon n \\ & x1 = rl\,\,(\,i\,)\,; \\ & x2 = r2\,\,(\,i\,)\,; \\ & pc = pconst(\,[\,x1\,\,x2\,\,]\,)\,; \\ & if \,\, pc = = 1 \\ & z = myp(\,(\,[\,x1\,\,x2\,\,]\,)\,; \\ & if \,\, z < zol \\ & zol = z; \\ & sol = \,[\,x1\,\,x2\,\,]; \\ & end \\ & end \\ & end \\ & end \\ \end{split}
```

参考文献:

- [1] 胡良剑,孙晓君. Matlab数学实验 [M]. 北京:高等教育出版社,2006
- [2] 柴中林. 蒙特卡罗方法在无穷级数中的应用 [J]. 中国计量学院学报. 2007, 18(3): 257 260.
- [3]赵静,但琦.数学建模与数学实验(第2版)[M].北京:高等教育出版社,2003:299-301.

(责任编校:任 华)

Application of Monte Carlo method in higher mathematics

J AN Shao - yong (Xinyu College, Xinyu 338000 China)

Abstract: By using Monte Carlo method in combination with Matlab software, this paper discusses several mathematic problems: numerical integration, solution of maximum and minimum of function, solution of root of function of one variable, solution of infinite series and planning problem.

Key words: Monte Carlo method; higher mathematics; Matlab

更正

本刊 2008年第 1期《论受贿罪附加刑的完善》一文作者冯广涛的工作单位应为"浙江邮电职业技术学院",特此更正。

本刊编辑部