Question 3

Prenons le repère de centre O, avec l'axe Ox aligné avec la droite OA. Dans ce repère, le point A a l'affixe a+i0, le point $B=ae^{i\frac{\pi}{3}}$ car le triangle direct ABC est un triangle isocèle et O est le centre du triangle donc $\|OA\|=\|OB\|=\|OC\|$. Les droites OA et OB sont à $\frac{\pi}{3}$. L'affixe du vecteur unitaire \overrightarrow{u} dirigeant la droite OB est $\frac{a.e^{i\frac{\pi}{3}}}{\|OB\|}=\frac{\|OA\|.e^{i\frac{\pi}{3}}}{\|OB\|}=e^{i\frac{\pi}{3}}$. Les droites OA et OC sont à $\frac{2\pi}{3}$. L'affixe du vecteur unitaire \overrightarrow{u} dirigeant la droite OC est $\frac{a.e^{i\frac{\pi}{3}}}{\|OC\|}=\frac{\|OA\|.e^{i\frac{\pi}{3}}}{\|OC\|}=e^{i\frac{\pi}{3}}$.

Dans ce repère, la rotation de centre O et d'angle $\frac{2\pi}{3}$ est $r(z)=e^{\frac{2\pi}{3}}z$.

Dans ce repère, on a $\sigma_1(z) = \overline{z}$ (ie réflexion sur l'axe Ox).

Dans ce repère, on a $\sigma_2(z) = (e^{\frac{i\pi}{3}})^2 . \overline{z} = e^{\frac{2i\pi}{3}} . \overline{z}$ (réflexion de droite OB).

Dans ce repère, on a $\sigma_3(z) = (e^{\frac{i2\pi}{3}})^2 . \overline{z} = e^{\frac{i4\pi}{3}} . \overline{z}$ (réflexion de droite OC).

Donc
$$\sigma_1 \circ \sigma_2(z) = \overline{e^{\frac{i2\pi}{3}}.\overline{z}} = e^{\frac{-i2\pi}{3}}.z = e^{\frac{i4\pi}{3}}.z = r \circ r(z).$$

Donc
$$\sigma_1 \circ \sigma_3(z) = \overline{e^{\frac{i4\pi}{3}}.\overline{z}} = e^{\frac{-i4\pi}{3}}.z = e^{\frac{i2\pi}{3}}.z = r(z).$$

Question 4

On a $\sigma_1 \circ \sigma_1 = Id$ car une réflexion est une involution. On a

$$\sigma_{1} \circ \sigma_{2} = r \circ r$$

$$\sigma_{1} \circ \sigma_{1} \circ \sigma_{2} = \sigma_{1} \circ r \circ r$$

$$\sigma_{2} = \sigma_{1} \circ r \circ r$$

$$\sigma_{2} = s \circ r \circ r$$

 $\sigma_2 = s \circ r^2$

On a

$$\sigma_{1} \circ \sigma_{3} = r$$

$$\sigma_{1} \circ \sigma_{1} \circ \sigma_{3} = \sigma_{1} \circ r$$

$$\sigma_{3} = \sigma_{1} \circ r$$

$$\sigma_{3} = s \circ r$$

QED