10,18

Фотоупругие свойства графенов

© Р.А. Браже, А.И. Кочаев, Р.М. Мефтахутдинов ¶

Ульяновский государственный технический университет, Ульяновск, Россия

¶ E-mail: mrm@ulstu.ru

(Поступила в Редакцию 24 мая 2016 г. В окончательной редакции 6 июля 2016 г.)

Вычислены компоненты тензора упругооптических коэффициентов в графенах с sp^2 -гибридизацией атомных орбиталей для видимой и ближней ИК-области спектра электромагнитных волн. Показано, что эти коэффициенты соизмеримы по величине с упругооптическими коэффициентами в ниобате лития.

Работа выполнена в рамках государственного задания Министерства образования и науки РФ 2014/232 (проект № 1742) и при финансовой поддержке РФФИ (№ 16-32-60041 мол_а_дк).

DOI: 10.21883/FTT.2017.02.44058.211

Наметившийся в последние годы интерес исследователей к фотоупругим свойствам графена [1] обусловлен перспективами создания оптических, механических и электрооптических устройств наномасштабных размеров. Известно [2,3], что оптической прозрачностью графена в направлении, перпендикулярном к его плоскости, можно управлять, нарушая равенство концентраций электронов и дырок, т.е. сдвигая уровень Ферми относительно точки Дирака, путем амбиполярного допирования графена. Это достигается двумя способами: путем его эпитаксиального выращивания на подложке из карбида кремния [4,5], либо созданием МДП-структуры (с графеном с качестве металлического слоя) и применением затворного напряжения [6-8]. Создание в графеновом листе механических напряжений, как показано в [1], в сущности, приводит к тому же результату — сдвигу уровня Ферми. Это позволяет управлять прозрачностью графена в пределах упругих деформаций.

Не меньший практический интерес, на наш взгляд, представляет исследование возможностей управления оптическими свойствами графена и графеноподобных материалов в плоскости самого листа под воздействием его упругих деформаций типа растяжения—сжатия или сдвига. Для этого необходимо знать соответствующие компоненты тензора упругооптических коэффициентов. Их вычислению и посвящена настоящая работа.

Исследовались следующие графены с sp^2 -гибридизацией: $(C)_6$ — собственно графен, $(C)_{63(12)}$ — додекатриграфен, $(C)_{664}$ — додекагексатетраграфен и $(C)_{44}$ — октатетраграфен (октаграфен), в которых ранее нами было изучено изменение оптических свойств, в частности гигантского эффекта Фарадея в перпендикулярном листу направлении под воздействием затворного напряжения [9]. Соответствующие элементарные ячейки показаны на рисунке.

Все рассматриваемые 2D-кристаллы принадлежат к классу симметрии 6/mmm, за исключением октаграфена, относящегося к классу симметрии 4/mmm. Матрицы

упругих жесткостей (C_{ij}) и упругооптических коэффициентов (p_{ij}) для этих классов, полученные путем редукции соответствующих матриц для 3D-кристаллов [10], имеют вид

Класс 6/mm Класс 4/mmm
$$\begin{pmatrix} c_{11} & c_{12} & 0 \\ c_{12} & c_{11} & 0 \\ 0 & 0 & \frac{1}{2} (c_{11} - c_{12}) \end{pmatrix}_{(2)}, \quad \begin{pmatrix} c_{11} & c_{12} & 0 \\ c_{12} & c_{11} & 0 \\ 0 & 0 & c_{33} \end{pmatrix}_{(3)},$$

$$\begin{pmatrix} p_{11} & p_{12} & 0 \\ p_{12} & p_{11} & 0 \\ 0 & 0 & \frac{1}{2} (p_{11} - p_{12}) \end{pmatrix}_{(2)}, \quad \begin{pmatrix} p_{11} & p_{12} & 0 \\ p_{12} & p_{11} & 0 \\ 0 & 0 & p_{33} \end{pmatrix}_{(3)},$$

Матричные представления тензоров c_{ijkl} и p_{ijkl} соответствуют сверткам по парам симметричных индексов $(i,j),\ (k,l)$ следующего вида: $11 \to 1;\ 22 \to 2;\ 12,\ 21 \to 3$.Внизу справа в круглых скобках указано число независимых компонент соответствующего тензора.

Элементарные ячейки исследуемых графиков.

Все графены изотропны в плоскости своего листа, поэтому уравнение оптической индикатрисы в отсутствие механических деформаций имеет вид [10]

$$a_1^0(x_1^2 + x_2^2) = 1, (1)$$

где $a_1^0 = 1/n_0^2$, а n_0 — показатель преломления невозмущенного графена для данной длины световой волны.

Уравнение измененной в результате механических деформаций оптической индикатрисы записывается в виде [10]

$$a_{11}x_1^2 + a_{22}x_2^2 + 2a_{12}x_1x_2 = 1, (2)$$

где $a_{11}=a_1^0+\Delta a_{11},\ a_{11}=a_1^0+\Delta a_{22},\ a_{12}=\Delta a_{12},\$ а изменения поляризационных констант под воздействием деформаций описывается уравнением [10]

$$\Delta a_{ij} = p_{ijkl}r_{kl} \quad (i, j, k, l = 1, 2)$$
 (3)

или в матричном виде

$$\Delta a_m = p_{mn} r_n \quad (m, n = 1, 2, 3),$$
 (4)

где r_{kl} — симметричный тензор деформаций.

Проводя в (3), (4) суммирование по повторяющимся индексам, можем переписать (2) в виде

$$[a_1^0 + (p_{11} - p_{12})r_1]x_1^2 + [a_1^0 - (p_{11} - p_{12})r_1]x_2^2 + 4p_{33}r_3x_1x_2 = 1.$$
 (5)

Для класса симметрии 6/mmm уравнение (5) принимает вил

$$[a_1^0 + (p_{11} - p_{12})r_1]x_1^2 + [a_1^0 - (p_{11} - p_{12})r_1]x_2^2 + 2(p_{11} - p_{12})r_3x_1x_2 = 1.$$
(6)

Для анализа полученных уравнений рассмотрим два случая: когда присутствуют только деформации вида растяжение—сжатие в отсутствие сдвиговых деформаций, и наоборот, когда есть только сдвиговые деформации, а растяжения и сжатия отсутствуют.

1. Если сдвиговые деформации отсутствуют $(r_3=0)$, уравнение оптической индикатрисы (5), (6) приводится к каноническому виду в кристаллофизических координатах x_1, x_2

$$\frac{x_1^2}{n_1^2} + \frac{x_2^2}{n_2^2} = 1,\tag{7}$$

где

$$n_1 = \frac{1}{\sqrt{a_1^0 + (p_{11} - p_{12})r_1}}; \quad n_1 = \frac{1}{\sqrt{a_1^0 - (p_{11} - p_{12})r_1}}.$$

При малых деформациях индикатрисы (в пределах фотоупругости), когда $(p_{11}-p_{12})r_1\ll a_1^0$,

$$\frac{1}{\sqrt{a_1^0 \pm (p_{11} - p_{12})}} \approx n_0 \left[1 \mp \frac{1}{2} n_0^2 (p_{11} - p_{12}) \right],$$

и величина созданного деформацией растяжения по оси x_1 и одновременно сжатия по оси x_2 изменения показателя преломления в плоскости графенового листа

$$\Delta n = n_2 - n_1 = n_0^3 (p_{11} - p_{12}) r_1. \tag{8}$$

2. Если, наоборот, присутствуют только сдвиговые деформации, то (6) приводится к каноническому виду

$$\frac{x_1^{\prime 2}}{n_1^2} + \frac{x_2^{\prime 2}}{n_2^2} = 1, (9)$$

где

$$n_{1,2} = \frac{n_0}{\sqrt{1 \mp 2n_0^2 p_{33} r_3}} \approx n_0 (1 \pm n_0^2 p_{33} r_3).$$

Таким образом, изменение показателя преломления, обусловленное сдвиговой деформацией в плоскости графенового листа,

$$\Delta n = 2n_0^3 p_{33} r_{33}. \tag{10}$$

При этом индикатриса повернута в плоскости (x_1, x_2) на угол θ , определяемый выражением

$$tg \, 2\theta = \frac{4p_{33}r_3}{1/n_0^2 - 2p_{33}r_3}. (11)$$

Уравнения (8), (10) позволяют вычислить упругооптические коэффициенты графена, если известен его показатель преломления n_0 для данной длины волны излучения, а величина Δn выражена через компоненты тензора деформаций.

Из теории дисперсии света известно, что

$$n_0^2 = 1 + \frac{P}{\varepsilon_0 E},\tag{12}$$

причем периодическая поляризованность среды P в электрическом поле E световой волны в данном случае изменяется за счет изменения площади элементарной ячейки: $\Delta P/P = \Delta S/S$. Дифференцируя (12), получаем

$$\Delta n = \frac{n_0^2 - 1}{2n_0} \frac{\Delta S}{S}.$$
 (13)

В случае 1: $\Delta S/S = \Delta a/a + \Delta h/h$, где a и h — соответственно размеры элементарной ячейки графена вдоль осей x_1 и x_2 . Применяя закон Гука, выразим $\Delta a/a$, $\Delta h/h$ и $\Delta S/S$ через соответствующие компоненты тензора напряжений t_{11} и t_{22} , модуль Юнга E_{11} и коэффициент Пуассона σ_{12}

$$\frac{\Delta a}{a} = \frac{t_{11}}{E_{11}}; \quad \frac{\Delta h}{h} = \frac{t_{22}}{E_{11}} = \frac{\sigma_{12}t_{11}}{E_{11}} = \sigma_{12}\frac{\Delta}{a};$$

$$\frac{\Delta S}{S} = (1 + \sigma_{12})\frac{t_{11}}{E_{11}}.$$
(14)

Используя стандартные методы кристаллофизики [10], находим для рассматриваемых классов симметрии

$$t_{11} = (c_{11} - c_{12})r_1; \quad E_{11} = \frac{c_{11}^2 - c_{12}^2}{c_{11}}; \quad \sigma_{12} = -\frac{c_{12}}{c_{11}}.$$

Таблица 1. Используемые для расчетов значения упругих жесткостей и показателей преломления графенов

Параметр	(C) ₆₆	(C) ₆₃₍₁₂₎	(C) ₆₆₄	(C) ₄₄
c ₁₁ , N/m	533	75.7	361	328
c_{12} , N/m	331	47.1	226	218
c_{33} , N/m				68
$n_0 \ (\lambda = 405 \mathrm{nm})$	1.6	~ 1	~ 1	~ 1
$n_0 \ (\lambda = 520 \mathrm{nm})$	1.7	_	~ 1	2.0
$n_0 \ (\lambda = 690 \mathrm{nm})$	2.0	_	~ 1	~ 1
$n_0 \ (\lambda = 1060 \mathrm{nm})$	2.5	2.5	2.0	_

 Π р и м е ч а н и е. Показатели преломления n_0 находились из графиков, представленных в [12], для краев видимого диапазона длин волн, его средней части и ближней части ИК-диапазона. Свет распространяется по касательной к листу. Прочерк означает, что в данной части спектра материал непрозрачен.

Таблица 2. Результаты вычисления упругооптических коэффициентов sp^2 -гибридизированных графенов

λ, nm	$(p)_{ij}$	(C) ₆₆	(C) ₆₃₍₁₂₎	(C) ₆₆₄	(C) ₄₄
405	p_{11} p_{12} p_{33}	0.073 0.045	~ 0 ~ 0	~ 0 ~ 0	~ 0 ~ 0 ~ 0
520	p ₁₁ p ₁₂ p ₃₃	0.070 0.043	- -	~ 0 ~ 0	0.057 0.038 0.023
690	p ₁₁ p ₁₂ p ₃₃	0.058 0.036	_ _	~ 0 ~ 0	~ 0 ~ 0 ~ 0
1060	p ₁₁ p ₁₂ p ₃₃	0.041 0.025	0.041 0.025	0.055 0.040	- - -

Далее подставляя эти выражения в (13), (14), получаем

$$\Delta n = \frac{n_0^2 - 1}{2n_0} \left(\frac{c_{11}}{c_{11} + c_{12}} - \frac{c_{12}}{c_{11} + c_{12}} \right) r_1. \tag{15}$$

Сравнивая (8) и (15), видим, что первое слагаемое в (15) обусловливает величину p_{11} , а второе — p_{12}

$$p_{11} = \frac{n_0^2 - 1}{2n_0^4} \frac{1}{1 + c_{12}/c_{11}}; \tag{16}$$

$$p_{12} = \frac{n_0^2 - 1}{2n_0^4} \frac{c_{12}/c_{11}}{1 + c_{12}/c_{11}},\tag{17}$$

т.е. в 2*D*-кристаллах из классов симметрии 4/*mmm* и 6/*mmm* $p_{12}=(c_{12}/c_{11})p_{11}.$

В случае 2: $\Delta S/S=\gamma$, где γ — угол сдвига. Согласно закону Гука для сдвиговых деформаций, $\gamma=t_{12}/G_{12}$, где сдвиговое напряжение $t_{12}=2c_{33}r_3$, а модуль сдвига

$$G_{12} = \frac{E_{11}}{2(1+\sigma_{12})} = \frac{1}{2}(c_{11}+c_{12}).$$

Тогда (13) принимает вид

$$\Delta n = \frac{n_0^2 - 1}{n_0} \frac{c_{13}/c_{11}}{1 + c_{12}/c_{11}} r_3. \tag{18}$$

Сравнивая (10) и (18), находим

$$p_{33} = \frac{n_0^2 - 1}{n_0^4} \frac{c_{13}/c_{11}}{1 + c_{12}/c_{11}}. (19)$$

Для более симметричного класса 6/mmm $p_{33} = 1/2(p_{11}-p_{12})$, $c_{33} = 1/2(c_{11}-c_{12})$, и (18) сводится к (15), а (19) — к паре (16), (17).

Таким образом, для вычисления упругооптических коэффициентов указанных выше графенов нужно знать их упругие жесткости и показатели преломления. Они были взяты из наших предыдущих работ [11,12] и представлены в табл. 1. Результаты вычислений показаны в табл. 2.

Анализируя полученные результаты, видим, что из всех рассмотренных графенов лишь $(C)_6$ может быть использован в качестве фотоупругого материала одноатомной толщины с распространением электромагнитных волн оптического диапазона вдоль кристаллического листа. При этом его упрогооптические коэффициенты близки по своей величине к значениям соответствующих коэффициентов такого широко распространенного 3D-кристалла, как ниобат лития $(LiNbO_3)$ [13]. В средней части оптического диапазона может быть использован $(C)_{44}$, а в ближней ИК-области спектра — другие графены.

Оптические спектры высших графенов содержат зоны непрзрачности и участки, где показатель преломления близок к 1 [12]. В последнем случае свет распространяется вдоль графенового листа без преломления. Это означает, что такие участки находятся вдали от областей резонансного поглощения света, и показатель его преломления независимо от приложенных механических напряжений остается постоянным.

Результаты работы могут быть использованы при создании планарных наноакустических устройств, в которых используется взаимодействие лазерного излучения с упругими волнами.

Список литературы

- [1] V.M. Pereira, R.M. Ribeiro, N.M.R. Peres, A.H. Castro Neto. Europhys. Lett. **92**, 67 001 (2011).
- [2] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, J.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim. Science 320, 1308 (2008).

- [3] K.F. Mak, M.Y. Steir, Y. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz. Phys. Rev. Lett. **101**, 196 405 (2008).
- [4] С.Ю. Давыдов. ФТП 45, 1102 (2011).
- [5] С.Ю. Давыдов. ФТП 47, 97 (2013).
- [6] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, I.V. Grigorieva, A.A. Firsov. Science 306, 666 (2004).
- [7] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov. Nature 438, 197 (2005).
- [8] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim. Phys. Rev. Lett. 100, 016 602 (2008).
- [9] Р.А. Браже, М.В. Литвиненко. ЖТФ 85, 118 (2015).
- [10] Н.В. Переломова, М.М. Тагиева. Задачник по кристаллофизике. М. (1972). 288 с.
- [11] Р.А. Браже, А.И. Кочаев, Р.М. Мефтахутдинов. ФТТ **53**, 1614 (2011).
- [12] Р.А. Браже, Р.М. Мефтахутдинов. ЖТФ 86, 112 (2016).
- [13] Акустические кристаллы. Справочник / Под ред. М.П. Шаскольской. Наука, М. (1982). 632 с.