Computação Distribuída

Odorico Machado Mendizabal

Universidade Federal de Santa Catarina – UFSC Departamento de Informática e Estatística – INE

Network Time Protocol

NTP (Network Time Protocol) – Protocolo de tempo de rede

- Protocolo para sincronização de relógios amplamente utilizado na Internet
- Estimativa de tempos pelo NTP pode ser feita entre vários pares de servidores
 - Ele mantém um histórico das diferenças de cada par para melhorar o ajuste do relógio
 - A menor estimativa de atraso é usada como referência para a atualização dos relógios
 - Um servidor só altera seu relógio se sua precisão for pior que a de outro servidor
- Servidores com relógios de referência (atualizado através de receptores de precisão – rádio ou satélite) recebem maior confiança no horário informado

NTP (Network Time Protocol)

- NTP é organizado como uma árvore
- Cada cliente é uma folha
- Cada nodo sincroniza com os seus pais

Para saber mais consulte o RFC 5905 (NTPv4)

http://tools.ietf.org/html/rfc5905 Site Oficial: http://www.ntp.org/

NTP (Network Time Protocol)

Stratum One Time Servers

A Please read the Rules Of Engagement before using these lists. These lists are updated frequently and should not be cached.

Click on a hostname to view complete details about that server.

ISO:	HostName:	AccessPolicy:	ServerContact:	LastModified:
AM	ntp.amnic.net	OpenAccess	Hrant Dadivanyan <ran@psg.com></ran@psg.com>	2010-10-19T16:01:25Z
AN	ntp.tbpl.com.au	OpenAccess	tbpl@tbpl.com.au	2010-02-02T16:09:16Z
AT	ts1.aco.net	OpenAccess	domain-admin@univie.ac.at	2009-07-08T06:15:12Z
AT	asynchronos.iiss.at	OpenAccess	Patrick Loschmidt (ntp@iiss.at)	2010-11-05T14:29:35Z
AT	ts2.aco.net	OpenAccess	domain-admin@univie.ac.at	2009-07-17T11:01:08Z
BE	ntp2.oma.be	OpenAccess	f.roosbeek@oma.be	2006-03-16T11:06:27Z
BE	ntp1.oma.be	OpenAccess	f.roosbeek@oma.be	2006-03-16T11:08:00Z
BG	ntp.bsdbg.net	OpenAccess	don[dot]nasco[at]gmail[dot]com	2010-06-12T18:52:42Z
BR	ntp1.rnp.br	RestrictedAccess	ntp-admin@rnp.br	2004-09-25T02:33:58Z
BR	gps.ntp.br	OpenAccess	ntp@nic.br or Antonio M. Moreiras moreiras@nic.br	2011-03-11T18:32:44Z
BR	ntps1.pads.ufrj.br	OpenAccess	Rafael Jorge Csura Szendrodi (szendro@pads.ufrj.br).	2008-10-14T19:34:11Z
BR	b.st1.ntp.br	OpenAccess	ntp@nic.br or Antonio M. Moreiras moreiras@nic.br	2011-03-11T18:29:38Z
BR	d.st1.ntp.br	OpenAccess	ntp@nic.br or Antonio M. Moreiras moreiras@nic.br	2010-04-16T22:48:45Z
BR	a.st1.ntp.br	OpenAccess	ntp@nic.br or Antonio M. Moreiras moreiras@nic.br	2010-04-16T22:48:00Z
BR	c.st1.ntp.br	OpenAccess	ntp@nic.br or Antonio M. Moreiras moreiras@nic.br	2010-04-16T22:48:26Z
BY	fergus.myftp.org	OpenAccess	fergus4me@gmail.com, +357298669570	2011-09-06T13:56:55Z
CA	subitaneous.cpsc.ucalgary.ca	RestrictedAccess	Brad Arit (timemaster@cpsc.ucalgary.ca)	10T19:38:38Z
CA	ntp.cm.nu	RestrictedAccess	timemaster@cm.nu	

As listas de servidores NTP globais estão disponíveis e vários servidores nos estratos 1 e 2 estão disponíveis para utilização

Funcionamento do NTP

- Cliente inicia sincronização com servidor de estrato superior (filho → pai)
 - Semelhante ao algoritmo de Cristian

O NTP guarda os 8 úlitmos pares <offset, delay> e utiliza o valor de deslocamento do par que exibiu menor atraso para a atualização do relógio

atraso
$$(delay) = (b-a) - (y-x)$$

deslocamento $(offset) = (x-a + y-b)/2$

Significa que o relógio do filho está 7 unidades de tempo atrasado

atraso
$$(delay) = (18-9) - (9-4) = 4$$

deslocamento $(offset) = (4-9 + 9-18)/2 = -7$

Referências

Parte destes slides são baseadas em material de aula dos livros:

- Coulouris, George; Dollimore, Jean; Kindberg, Tim; Blair, Gordon. Sistemas Distribuídos: Conceitos e Projetos. Bookman; 5ª edição. 2013. ISBN: 8582600534
- Tanenbaum, Andrew S.; Van Steen, Maarten. Sistemas Distribuídos: Princípios e Paradigmas. 2007. Pearson Universidades; 2ª edição. ISBN: 8576051427

- Imagens e clip arts diversos:

https://free-icon-rainbow.com/
https://www.gratispng.com/