1 Exhaustive Inference

1.1 Test word node potential

 ${\bf Table} \ {\bf 1} - {\bf Feature} \ {\bf potentials} \ {\bf for} \ test_word_1$

				Ca	ategories					
	0	1	2	3	4	5	6	7	8	9
1	-7.6443	18.4683	-6.3285	10.4224	-4.9671	-1.9340	-0.9451	-5.6571	5.3952	-6.8098
2	-4.0744	5.7448	1.1763	-1.7931	-1.2122	-1.7848	-8.2998	3.0951	6.8065	0.3416
3 –	-10.2081	0.8973	17.1910	-12.0176	5.5793	-0.5940	-21.4263	9.1489	9.4824	1.9471
4	6.4648	24.5312	-13.3429	5.8712	-10.9548	-11.4964	-5.4946	-7.1956	8.0456	3.5714

1.2 Energy Calculation

Table 2 – Energy for $test_word_i$

Test Word	Energy
1	63.9793
2	89.6109
3	96.9406

1.3 Log Partition function

Table 3 – Log Partition for $test_word_i$

Test Word	Log Partition
1	67.6019
2	89.6144
3	103.5276

1.4 Most Likely labels

Table 4 – Most Likely labels for $test_word_i$

Test Word	Word	Probabitliy
1	trat	0.7958
2	hire	0.9965
3	riser	0.9370

1.5 Marginal Label Probabilities

Table 5 – Marginal label probabilities $test_word_i$

Category	1	2	3	4
0	7.2227×10^{-12}	1.2658×10^{-5}	1.1321×10^{-12}	8.8683×10^{-9}
1	9.9952×10^{-1}	1.7247×10^{-1}	2.2945×10^{-8}	10.0000×10^{-1}
2	2.6262×10^{-11}	2.7314×10^{-3}	9.9946×10^{-1}	2.1357×10^{-17}
3	4.7272×10^{-4}	1.7528×10^{-4}	1.6119×10^{-13}	7.4054×10^{-9}
4	7.1555×10^{-11}	2.0074×10^{-4}	3.6976×10^{-6}	3.2900×10^{-16}
5	2.1138×10^{-9}	1.4005×10^{-4}	1.7611×10^{-8}	1.4410×10^{-16}
6	3.2960×10^{-9}	1.0646×10^{-7}	5.1721×10^{-18}	5.3711×10^{-14}
7	4.3493×10^{-11}	2.6735×10^{-2}	2.8353×10^{-4}	1.3178×10^{-14}
8	2.6281×10^{-6}	7.9660×10^{-1}	2.5376×10^{-4}	6.3940×10^{-8}
9	1.0694×10^{-11}	9.3629×10^{-4}	9.4638×10^{-8}	6.3736×10^{-10}

2 Sum-Product Message Passing

2.1 Log message values

Table 6 – Message values in log-space

	$m_{1\to 2}(Y_2)$	$m_{2\rightarrow 1}(Y_1)$	$m_{2\rightarrow 3}(Y_3)$	$m_{3\rightarrow 2}(Y_2)$
e	18.5893	49.5924	25.6511	41.8098
\mathbf{t}	17.8153	49.1330	25.2369	42.2842
a	18.7494	49.5675	25.5984	41.7732
i	18.5227	49.5224	25.5779	42.2232
\mathbf{n}	18.1808	49.2085	25.2716	42.1198
O	18.6773	49.5611	25.6012	41.8359
\mathbf{s}	18.0913	49.0165	25.0715	41.7550
h	18.8341	49.4006	25.3880	42.0509
\mathbf{r}	18.3634	49.3573	25.4145	42.2045
d	18.2164	49.1503	25.2026	42.0703

2.2 Marginal Probabilities

 Table 7 – Marginal Probabilities

	Sequence			
char	0	1	2	3
e	7.2227×10^{-12}	1.2658×10^{-5}	1.1321×10^{-12}	8.8683×10^{-9}
t	9.9952×10^{-1}	1.7247×10^{-1}	2.2945×10^{-8}	10.0000×10^{-1}
a	2.6262×10^{-11}	2.7314×10^{-3}	9.9946×10^{-1}	2.1357×10^{-17}
i	4.7272×10^{-4}	1.7528×10^{-4}	1.6119×10^{-13}	7.4054×10^{-9}
n	7.1555×10^{-11}	2.0074×10^{-4}	3.6976×10^{-6}	3.2900×10^{-16}
О	2.1138×10^{-9}	1.4005×10^{-4}	1.7611×10^{-8}	1.4410×10^{-16}
s	3.2960×10^{-9}	1.0646×10^{-7}	5.1721×10^{-18}	5.3711×10^{-14}
h	4.3493×10^{-11}	2.6735×10^{-2}	2.8353×10^{-4}	1.3178×10^{-14}
r	2.6281×10^{-6}	7.9660×10^{-1}	2.5376×10^{-4}	6.3940×10^{-8}
d	1.0694×10^{-11}	9.3629×10^{-4}	9.4638×10^{-8}	6.3736×10^{-10}

2.3 Inference

2.3.1 Marginal Pair Probabilities

 Table 8 – Marginal Pair Probabilities

1	t	h	a
t	1.7236×10^{-1}	2.6730×10^{-2}	2.7305×10^{-3}
h	1.5904×10^{-11}	5.3897×10^{-13}	7.2001×10^{-14}
a	7.4658×10^{-12}	3.3086×10^{-13}	2.7860×10^{-14}
2	t	h	a
t	2.2314×10^{-9}	0.0001	0.1724
h	1.2104×10^{-9}	0.0000	0.0267
a	1.4997×10^{-10}	0.0000	0.0027
3	t	h	a
t	2.2945×10^{-8}	1.0581×10^{-21}	2.0796×10^{-24}
h	2.8353×10^{-4}	2.8571×10^{-18}	7.3432×10^{-21}
a	9.9946×10^{-1}	1.3171×10^{-14}	2.1337×10^{-17}

2.3.2 Predictions

Actual	Predicted
that	trat
hire	hire
rises	riser
edison	edison
shore	shore

2.3.3 Character-level accuracy

Accuracy: 0.8991

3 Maximum Likelihood Learning Derivation

3.1 Average Log likelihood

$$P_W(y,x) = \frac{1}{Z(W)} \exp\left(\sum_{j=1}^{L_i} \sum_{f=1}^F W_{y_j f}^F x_{jf} + \sum_{j=1}^{L_i - 1} W_{y_j y_{j+1}}^T\right)$$

The average log likelihood is given by

$$\frac{1}{N} \sum_{i=1}^{N} \log P_{W}(y^{(i)}, x^{(i)}) = \frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{1}{Z(W, x^{(i)})} \exp \sum_{j=1}^{L_{i}} \sum_{f=1}^{F} W_{y_{j}^{(i)} f}^{F} x_{jf}^{(i)} + \sum_{j=1}^{L_{i}-1} W_{y_{j}^{(i)} y_{j+1}^{(i)}}^{T} \right) \\
= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_{i}} \sum_{f=1}^{F} W_{y_{j}^{(i)} f}^{F} x_{jf}^{(i)} + \sum_{j=1}^{L_{i}-1} W_{y_{j}^{(i)} y_{j+1}^{(i)}}^{T} - \log Z(W, x^{(i)}) \right) \tag{1}$$

3.2 Derivative of Log Likelihood w.r.t W_{cf}^F

Let the average likelihood be defined as,

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \log P_W(y^{(i)}, x^{(i)})$$
 (2)

$$\frac{\partial \mathcal{L}}{\partial W_{c'f'}} = \frac{\partial}{\partial W_{c'f'}} \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_i} \sum_{f=1}^{F} W_{y_j^{(i)}f}^F x_{jf}^{(i)} + \sum_{j=1}^{L_i-1} W_{y_j^{(i)}y_{j+1}}^T - \log Z(W, x^{(i)}) \right)$$

Taking derivative inside the summations

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_{i}} \sum_{f=1}^{F} \frac{\partial}{\partial W_{c'f'}} W_{y_{j}^{(i)}f}^{F} x_{jf}^{(i)} + \sum_{j=1}^{L_{i}-1} \frac{\partial}{\partial W_{c'f'}} W_{y_{j}^{(i)}y_{j+1}^{(i)}}^{T} - \frac{\partial}{\partial W_{c'f'}} \log Z(W, x^{(i)}) \right)$$

Since, \boldsymbol{W}^T is constant w.r.t \boldsymbol{W}^F , it is 0

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_i} \sum_{f=1}^{F} \mathbb{I}[y_j^{(i)} = c', f = f'] x_{jf}^{(i)} - \frac{1}{Z(W, x)} \frac{\partial}{\partial W_{c'f'}} \sum_{\mathbf{y}} \exp \left(\sum_{j=1}^{L_i} \sum_{f=1}^{F} W_{y_j^{(i)} f}^F x_{jf}^{(i)} + \sum_{j=1}^{L_i - 1} W_{y_j^{(i)} y_{j+1}^{(i)}}^T \right) \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_i} \sum_{f=1}^{F} \mathbb{I}[y_j^{(i)} = c', f = f'] x_{jf}^{(i)} \right)$$

$$-\frac{1}{Z(W,x)} \sum_{\mathbf{y}} \exp\left(\sum_{j=1}^{L_i} \sum_{f=1}^F W_{y_j^{(i)}f}^F x_{jf}^{(i)} + \sum_{j=1}^{L_i-1} W_{y_j^{(i)}y_{j+1}}^T \right) \mathbb{I}[y_j^{(i)} = c', f = f'] x_{jf}^{(i)}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_i} \sum_{f=1}^{F} \mathbb{I}[y_j^{(i)} = c', f = f'] x_{jf}^{(i)} - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) \mathbb{I}[y_j^{(i)} = c', f = f'] x_{jf}^{(i)} \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_i} \sum_{f=1}^{F} \mathbb{I}[y_j^{(i)} = c', f = f'] x_{jf}^{(i)} - \mathbb{E}_{P(y|x)} \left[\mathbb{I}[y_j^{(i)} = c', f = f'] x_{jf}^{(i)} \right] \right)$$

(3)

3.3 Derivative of Log Likelihood w.r.t $W_{cc'}^T$

$$\frac{\partial \mathcal{L}}{\partial W_{cc'}} = \frac{\partial}{\partial W_{cc'}} \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_i} \sum_{f=1}^{F} W_{y_j^{(i)}f}^F x_{jf}^{(i)} + \sum_{j=1}^{L_i-1} W_{y_j^{(i)}y_{j+1}}^T - \log Z(W, x^{(i)}) \right)$$

Taking derivative inside the summation

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_i} \sum_{f=1}^{F} \frac{\partial}{\partial W_{cc'}} W_{y_j^{(i)}f}^F x_{jf}^{(i)} + \sum_{j=1}^{L_i-1} \frac{\partial}{\partial W_{cc'}} W_{y_j^{(i)}y_{j+1}}^T - \frac{\partial}{\partial W_{cc'}} \log Z(W, x^{(i)}) \right)$$

Since W^F is constant w.r.t W^T ,

Since W is constant w.r.t W,
$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_{i}-1} \mathbb{I}[y_{j}^{(i)} = c, y_{j+1}^{(i)} = c'] - \frac{1}{Z(W, x)} \frac{\partial}{\partial W_{cc'}} \sum_{\mathbf{y}} \exp\left(\sum_{j=1}^{L_{i}} \sum_{f=1}^{F} W_{y_{j}^{(i)} f}^{F} x_{jf}^{(i)} + \sum_{j=1}^{L_{i}-1} W_{y_{j}^{(i)} y_{j+1}^{(i)}}^{T} \right) \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_{i}-1} \mathbb{I}[y_{j}^{(i)} = c, y_{j+1}^{(i)} = c'] - \frac{1}{Z(W, x)} \sum_{\mathbf{y}} \exp\left(\sum_{j=1}^{L_{i}-1} W_{y_{j}^{(i)} y_{j+1}^{(i)}}^{T} \right) \mathbb{I}[y_{j}^{(i)} = c, y_{j+1}^{(i)} = c'] \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_{i}-1} \mathbb{I}[y_{j}^{(i)} = c, y_{j+1}^{(i)} = c'] - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) \mathbb{I}[y_{j}^{(i)} = c, y_{j+1}^{(i)} = c'] \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{j=1}^{L_{i}-1} \mathbb{I}[y_{j}^{(i)} = c, y_{j+1}^{(i)} = c'] - \mathbb{E}_{P(y|x)} \left[\mathbb{I}[y_{j}^{(i)} = c, y_{j+1}^{(i)} = c'] \right] \right)$$

3.4 Using Sum-Product in likelihood

The Sum-Product method allows to compute the overall potential of a configuration. This potential is equivalent to the unnormalized probability. Formally, $P(\mathbf{y}, \mathbf{x}) \propto \prod_{j=1}^{L} \phi^F(y_j, x_j) \prod_{j=1}^{L-1} \phi^T(y_j, y_{j+1})$. From the sum-product method, we can re-write this as,

$$P(\mathbf{y}, \mathbf{x}) \propto \sum_{y_1} \phi^F(y_1, x_1) \mathbf{m}_{2 \to 1}(y_1)$$
 (5)

The message $\mathbf{m}_{2\to 1}(y_1)$, encodes the "happiness" of the sequence $\in (2,3,...)$. We can use this to calculate the log-partition function efficiently.

Now, while computing the single and pair-wise marginal probabilities, we multiply the forward $(\mathbf{m}_{i\to i+1})$ and backward messages $(\mathbf{m}_{i\to i-1})$ along with the feature potentials to obtain the single/marginal probabilities. Lastly, we obtain a distribution over the sequence length, which we can normalize over to get the *likelihood* of the sequence. Using the previous result, we can obtain an average log likelihood over N datapoints.

Similarly, to compute the derivatives, the conditional probability P(y|x), can be expressed in terms of single and marginal probabilities. We can use the already pre-computed marginals to efficiently compute P(y|x)

3.5 Training Average Log Likelihood

Average likelihood of 50 train words: -4.583959

4 Numerical Optimization Warm-Up

4.1 Derivative of f(x,y)

$$f_w(x,y) = -(1-x)^2 - 100(y-x^2)^2$$

$$\frac{\partial f(x,y)}{\partial x} = -\frac{\partial}{\partial x}(1-x)^2 - 100\frac{\partial}{\partial x}(y-x^2)^2$$

$$= -2(1-x)(-1) + 200(y-x^2)\frac{\partial}{\partial x}x^2$$

$$= 2(1-x) + 400x(y-x^2)$$

$$\frac{\partial f(x,y)}{\partial y} = -\frac{\partial}{\partial y}(1-x)^2 - 100\frac{\partial}{\partial y}(y-x^2)^2$$

$$= 0 - 200(y-x^2)\frac{\partial}{\partial y}y$$

$$= -200(y-x^2)$$

4.2 Numerical Optimizer

I used the scipy.optimize.minimize using the L-BFGS-B solver.

Maximum value: 2.6436083956216185e-17