

Fractional Denoising for 3D Molecular Pre-training

Shikun Feng*1, Yuyan Ni*2, Yanyan Lan1, Zhi-Ming Ma2, Wei-Ying Ma1

Motivation

Problem Domain: Self-supervised learning for 3D Molecular

representation learning

Existing SOTA:

Coordinate Denoising

Equivalent to learning an approximate force field (with Boltzmann distribution and isotropic Gaussian assumption)

Two challenges to Coordinate Denoising:

- Low Sampling Coverage: To avoid irrational structures, the noise level has to be small.
- Isotropic Force Field:

Isotropic Gaussian leads to isotropic energy function, which does not match the actual molecular distribution.

Sampled

Flexible parts

Main Contribution

- We introduce a new hybrid noise strategy and design a novel fractional denoising method (Frad) for 3D molecule pre-training.
- We use Frad to improve Noisy Nodes that fixes the non-converging issue and improve performance in fine-tuning.
- Theoretically, we prove Frad is equivalent to learning the force field with an anisotropic covariance, which captures the important characteristic of molecules. Frad also has the ability to sample more low-energy conformations.
- Empirically, we achieve a new SOTA on QM9 and MD17. Ablation study shows the effectiveness of our Frad as a pretraining strategy and our improved Noisy Nodes as a fine-tuning technique.

Results												
Training set size	Models	Aspir	in Benze	ene Etha	Ethanol Malonalde		de Naphthalene		Salicylic Acid		Toluene	Uracil
	TorchMD-NE	Γ 0.121	0.147	79 0.04	92	0.0695		.0390	0.0655		0.0393	0.0484
9500	3D-EMGP	0.156	0.164	18 0.03	89	0.0737		.0829	0.11	0.1187		0.0773
	3D-EMGP (TorchMD-NE)	T) 0.112	0.141	0.04	45	0.0618 0.0		.0352	0.0586		0.0385	0.0477
	DP-TorchMD -NET($\tau = 0.04$	0.00°	0.139	0.04	02	0.0661	0.	0.0544		0.0790		0.0507
	Frad $(\sigma = 2, \tau = 0.04)$	0.068	0.160	0.03	332	0.0427	27 0.027		0.0410		0.0305	0.0323
1000	SphereNet	0.43	0 0.17	8 0.20)8	0.340	0.340		0.360		0.155	0.267
	SchNet	1.35	0.31	0.31 0.39		0.66 0.5		0.58	0.85		0.57	0.56
	DimeNet	0.49			30	0.383	0.215		0.374		0.216	0.301
	SE(3)-DDM	0.45	3 0.05	1 0.16	66	0.288	0.129		0.266		0.122	0.183
	PaiNN	0.33	8 0.052	2* 0.22	24	0.319	C	0.077	0.1	95	0.094	0.139
950	TorchMD-NE	Γ 0.245	0.218	37 0.10	67	0.1667	0.	.0593	0.12	284	0.0644	0.0887
	Frad (σ = 2, τ = 0.04)	0.208	0.199	0.09	10	0.1415	0.0530		0.1081		0.0540	0.0760
Models	μ (D)	$\alpha (a_0^3)$	ϵ_{HOMO} (meV)	$\frac{\epsilon_{LUMO}}{(\text{meV})}$	$\Delta\epsilon$ (meV)	$ \langle R^2 \rangle $ $ (a_0^2) $	ZPVE (meV)	U ₀ (meV)	U (meV)	H (meV)	G (meV)	$\frac{C_v}{(\frac{cal}{mol K})}$
SchNet	0.033	0.235	41.0	34.0	63.0	0.07	1.70	14.00	19.00	14.00	14.00	0.033
E(n)-GNN	0.029	0.071	29.0	25.0	48.0	0.11	1.55	11.00	12.00	12.00	12.00	0.031
DimeNet-	++ 0.030	0.043	24.6	19.5	32.6	0.33	1.21	6.32	6.28	6.53	7.56	0.023
PaiNN	0.012	0.045	27.6	20.4	45.7	0.07	1.28	5.85	5.83	5.98	7.35	0.024
SphereNe	et 0.027	0.047	23.6	18.9	32.3	0.29	1.120	6.26	7.33	6.40	8.00	0.022
TorchMD	-NET 0.011	0.059	20.3	18.6	36.1	0.033	1.840	6.15	6.38	6.16	7.62	0.026
Transform	ner-M 0.037	0.041	17.5	16.2	27.4	0.075	1.18	9.37	9.41	9.39	9.63	0.022
SE(3)-DD		0.046	23.5	19.5	40.2	0.122	1.31	6.92	6.99	7.09	7.65	0.024
3D-EMG		many by harmon	21.3	18.2	37.1	0.092	1.38	8.60	8.60	8.70	9.30	0.026
DP-Torc	chMD 0.012	0.0517	177	1/1/3	21.0	0.4406	1 71	6 57	6 11	6.15	6.01	0.020

New SOTAs on 9/12 tasks of QM9 and 7/8 targets of MD17!

Method Overview Fine-tuning **Pre-training** a. Adding nitialize Hybrid Add dihedral angle noise Add coordinate noise Noise model (Non-Fractional Downstream $\psi_a = \psi_i + \Delta \psi$ $ilde{x} = x_a + \Delta x$ Denoising Task trainable) $\Delta x \sim \mathcal{N}(0, au^2 I_{3N})$ $\Delta \psi \sim \mathcal{N}(0, \sigma^2 I_m)$ Noisy structure x_a Property (x_i) Equilibrium x_i Noisy structure x Δx (x_i) **GNN** Input noisy Output $\mathcal{L} = \lambda_p \mathcal{L}_{Fractional Denoising}$ b. Fractional Equivalent to Learning an auvvva coordinate structure $ilde{x}$ $+ \lambda_n \mathcal{L}$ PropertyPrediction Denoising approximate noise Δx force field of ilde x $\mathcal{L} = E_{p(\tilde{x}|x_a)p(x_a|x_i)p(x_i)} ||GNN_{\theta}(\tilde{x}) - (\tilde{x} - x_a)||_2^2$ (Trainable) c. Improved Noisy Nodes

Other

uncovered

ow energy

Rigid parts

*Equal contribution. ¹ Institute for AI Industry Research (AIR), Tsinghua University, ²Academy of Mathematics and Systems Science (AMSS), Chinese Academy of Sciences.

Contact us: lanyanyan@air.tsinghua.edu.cn; fsk21@mails.tsinghua.edu.cn; niyuyan17@mails.ucas.ac.cn.

References:

0.010 0.0374 15.3

 $-NET(\tau = 0.04)$

Zaidi, S et al. Pre-training via denoising for molecular property prediction. 2022. Zhou, G et al. Uni-mol: A universal 3D molecular representation learning framework. 2022.

Luo, S et al. One transformer can understand both 2D & 3D molecular data. 2022. Godwin et al. Simple GNN Regularisation for 3D Molecular Property Prediction and Beyond. 2021