6 Интерполяция таблично заданных функций. Интерполяционный многочлен Ньютона. Интерполяция кубическими сплайнами

·

1 Интерполяционный многочлен Лагранжа

Интерполяция — это определение (вычислительным или графическим путем) промежуточных значений некоторой функции y=f(x), заданной дискретным рядом ее значений $y_1, y_2, ..., y_n$, полученных эмпирически.

Пусть в точках $x_0, x_1, ..., x_n$ таких, что $a \le x_0 < \cdots < x_n \le b$ известны значения функции y=f(x), то есть на отрезке [a;b] задана табличная функция:

X	\mathbf{x}_0	\mathbf{x}_1	•••	$\mathbf{X}_{\mathbf{n}}$
у	y 0	y 1	•••	Уn

Функция $\phi(x)$ называется интерполирующей (интерполяционной) для f(x) на [a;b], если ее значения $\phi(x)$, $\phi(x)$, ..., $\phi(x)$ в заданных точках x_0 , x_1 , ..., x_n , называемых узлами интерполяции, совпадают с заданными значениями f(x), то есть с y_0 , y_1 , ..., y_n соответственно.

Будем строить многочлен п-степени в виде линейной комбинации

$$L_n(x) = \sum_{i=0}^{n} p_i(x)f(x_i)$$
(1)

Где базисные многочлены имеют вид

$$p_{i}(x) = \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1}) \dots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \dots (x_{i} - x_{n})}$$
(2)

обладающий свойством:

$$L_{n}(x_{i}) = f(x_{i}), i = \overline{0, n}$$
(3)

Теорема. Полином n-й степени, обладающий свойством (3), единственный.

2 Полином Ньютона

Пусть интерполируемая функция y=f(x) задана таблично значениями y_0 , y_1, \ldots, y_n на системе равностоящих узлов x_0, x_1, \ldots, x_n . Множество x_k можно представить в виде $x_k = x_0 + kh, k = \overline{0,n}, h > 0, f_k = f(x_k), h$ — шаг сетки.

Конечной разностью первого порядка называется

$$\Delta^{1} f_{k} = f_{k+1} - f_{k}$$

$$(\Delta^{0} f_{k} = f_{k})$$
(4)

Конечная разность п-порядка:

$$\Delta^{n} f_{k} = \Delta^{n-1} f_{k+1} - \Delta^{n-1} f_{k}$$
 (5)

Свойства:

- 1 $\Delta^n P_n(x) = \text{const}$ (конечная разность n-го порядка от полинома n-й степени равно константе).
- $2 \ \Delta^{n+1} P_n(x) = 0$ (конечная разность (n+1)-го порядка от полинома n-го порядка равна нулю).
 - 3 Пусть f(x) имеет все производные, тогда $\Delta^n f_k \approx f^{(n)}(x_k) h^n$.

Непосредственно через значения функции конечные разности можно представить рекуррентной формулой:

$$\Delta^{n} f_{k} = \sum_{i=0}^{n} (-1)^{i} (C_{n}^{i}) f_{n+k+i}$$

Разделенной разностью f(x0, ..., xn) n-го порядка называется:

$$f(x_0, x_1, ..., x_n) = \frac{f(x_1, x_2, ..., x_n) - f(x_0, x_1, ..., x_{n-1})}{x_n - x_0}$$
(6)

Разделенная разность первого порядка:

$$f(x_0, x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Разделенная разность второго порядка:

$$f(x_0, x_1, x_2) = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0}$$

Свойства разделенной разности:

1 Пусть f(x) имеет все производные, тогда при равномерном разбиении:

$$f(x_0, x_1, ..., x_n) = f^{(n)}(\xi), f(x_0, x_1, ..., x_n) = \frac{\Delta^n f_0}{n! h^n}$$

- 2 Разделенная разность n-го порядка, примененная к полиному n-й степени равна константе. Разделенная разность (n+1)-го порядка от полинома n-й степени равна нулю.
- 3 Разделенная разность n-го порядка $f(x_0, x_1, ..., x_n)$ симметрическая функция своих аргументов.

Для функции f(x), заданной таблично на узлах x_i , $i=\overline{0,n}$, можно записать интерполяционный полином Ньютона:

$$N_{n}(x) = f(x_{0}) + f(x_{0}, x_{1})(x - x_{0}) + f(x_{0}, x_{1}, x_{2})(x - x_{0})(x - x_{1}) + \cdots + f(x_{0}, x_{1}, \dots, x_{n})(x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

$$(7)$$

Замечание. Полином Ньютона есть одна из форм представления полинома Лагранжа.

Обычно интерполяция проводится не на всех точках разбиения, а только на 5–7 соседних. В этой ситуации при изменении точек интерполирования полином Лагранжа приходится строить заново каждый раз. А полином Ньютона изменяется лишь на несколько слагаемых. При увеличении числа точек интерполяции на одну точку все слагаемые полинома Ньютона сохраняются, добавляются только последующие слагаемые. Для полинома Лагранжа все п слагаемых должны быть построены заново.

2.1 І интерполяционная формула Ньютона

Пусть для функции y=f(x), заданной таблицей с постоянным шагом составлена таблица конечных разностей.

$$P_n(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \dots + \frac{\Delta^n y_0}{n! \, h^n}(x - x_{n-1}) \tag{8}$$

Пусть
$$k = \frac{x - x_0}{h}$$
, $x = x_0 + kh$, тогда

$$P_n(x) = P_n(x_0 + kh) =$$

$$= y_0 + k\Delta y_0 + \frac{k(k-1)}{2!} \Delta^2 y_0 + \dots + \frac{k(k-1)\dots(k-n+1)}{n!} \Delta^n y_0$$
(9)

Формулы (8)-(9) применяются для интерполирования в начале отрезка для значения k из интервала (0; 1).

Путем переобозначений за начальное значение x_0 можно принять любое табличное значение аргумента x, отбросив лишние узлы сетки.

2.2 II интерполяционная формула Ньютона

Когда значения аргумента находятся ближе к концу отрезка интерполяции, применять первую интерполяционную формулу становится невыгодно. В этом случае строят полином в виде:

$$P_n(x) = P_n(x_n + kh) = \tag{10}$$

$$= y_n + k\Delta y_{n-1} + \dots + \frac{k(k-1)\dots(k+n-1)}{n!}\Delta^n y_0$$

3 Кусочно-линейная и кусочно-квадратичная аппроксимация

При кусочно-линейной интерполяции на каждом отрезке функция приближается линейной. Дополнительных условий не требуется, условия гладкости на U(x) в данном случае не налагаются.

Требуется аппроксимировать функцию f(x) кусочно-линейной функции функции $\phi(x)$, исходя из условий интерполяций, т.е.:

$$\phi(x) = \begin{cases}
a_1 x + b_1, x_0 \le x \le x_1 \\
a_2 x + b_2, x_1 \le x \le x_2 \\
... \\
a_n x + b_n, x_{n-1} \le x \le x_n
\end{cases}$$
(11)

Для нахождения неизвестных параметров $a_k, b_k \ (k = \overline{1,n}),$ получим систему уравнений:

$$\begin{cases}
 a_1 x_0 + b_1 = y_0 \\
 a_1 x_1 + b_1 = y_1 \\
 \dots \\
 a_n x_{n-1} + b_n = y_{n-1} \\
 a_n x_n + b_n = y_n
\end{cases} (12)$$

Каждая из подсистем решается отдельно.

Кусочно-квадратичная аппроксимация осуществляется аналогично кусочно-линейной аппроксимации. Каждое звено кусочно-квадратичной функции при n=2m

$$\varphi(x) = \begin{cases} a_1 x^2 + b_1 x + c_1, x_0 \le x \le x_1 \\ a_2 x^2 + b_2, x_1 + c_2, x_1 \le x \le x_2 \\ \dots \\ a_n x^2 + b_n x + c_n, x_{n-1} \le x \le x_n \end{cases}$$
(13)

Тройка коэффициентов a_k, b_k, c_k ($k = \overline{1,m}$) может быть найдена последовательным решением трехмерных линейных систем, соответствующим выставленным интерполяционным узлам.

$$\begin{cases}
 a_k x_{2k-2}^2 + b_k x_{2k-2} + c_k = y_{2k-2} \\
 a_k x_{2k-1}^2 + b_k x_{2k-1} + c_k = y_{2k-1} \\
 a_k x_{2k}^2 + b_k x_{2k-1} + c_k = y_{2k}
\end{cases}$$
(14)

4 Интерполяция кубическим сплайном

Кубическим сплайном, интерполирующим на отрезке [a, b] данную функцию y(x) называется функция (15)

$$g_{k}(s) = a_{k} + b_{k}(s - x_{k}) + c_{k}(s - x_{k})^{2} + d_{k}(s - x_{k})^{3},$$

$$s \in [x_{k-1}, x_{k}], k = \overline{1, n}$$
(15)

Удовлетворяющая следующим условиям:

 $1 g_k(x_k) = y_k; g_k(x_{k-1}) = y_{k-1}$ (условие интерполяции в узлах сплайна).

2 Функция g(x) дважды непрерывно дифференцируема на интервале [a,b].

3 На концах интервала функция g должна удовлетворять следующим соотношениям $g_1^{\prime\prime(a)}=g_k^{\prime\prime}(b)=0$

Для построения интерполяционного сплайна необходимо найти 4n коэффициентов $a_k,\,b_k,\,c_k,\,d_k$ ($k{=}1,\,2,\,...,\,n$).

Из определения сплайна получаем n+1 соотношение (16)

$$g_1(x_0) = y_0; g_k(x_k) = y_k, k = \overline{1, n}$$
 (16)

Из условий гладкой стыковки звеньев сплайна (во внутренних узловых точках совпадают значения двух соседний звеньев сплайна, их первый и вторые производные) получаем еще ряд соотношений (17)-(18)

$$g_{k-1}(x_{k-1}) = g_k(x_k)$$

$$g'_{k-1}(x_{k-1}) = g'_k(x_k), k = \overline{1,n}$$

$$g''_{k-1}(x_{k-1}) = g''_k(x_k)$$
(17)

$$g''_{1}(x_{0}) = g''_{n}(x_{n})$$
(18)

Соотношения (16)-(18) образуют 4n соотношений для нахождения коэффициентов сплайна. Подставляя выражения функций (15) и их производных (19)

$$g'_{k}(s) = b_{k} + 2c_{k}(s - x_{k}) + 3d_{k}(s - x_{k})^{2}$$

$$g''_{k}(s) = 2c_{k} + 6d_{k}(s - x_{k}) +$$
(19)

в соотношения (16)-(18) и принимая во внимание соотношение

$$h_k = x_k - x_{k-1}, k = \overline{1, n}$$
 (20)

Получим следующую систему уравнений

$$\begin{cases} a_{1} - b_{1}h_{1} + c_{1}h_{1}^{2} - d_{1}h_{1}^{3} = y_{0} \\ a_{k} = y_{k}, k = \overline{1, n} \\ a_{k-1} = a_{k} - b_{k}h_{k} + c_{k}h_{k}^{2} - d_{k}h_{k}^{3}, k = \overline{2, n} \\ b_{k-1} = b_{k} - 2c_{k}h_{k} + 3d_{k}h_{k}^{3}, k = \overline{2, n} \\ c_{k-1} = c_{k} - 3d_{k}h_{k}, k = \overline{2, n} \\ c_{1} - 3d_{1}h_{1} = 0 \\ c_{n} = 0 \end{cases}$$

$$(21)$$

Задача интерполяции свелась к решению системы (21). После преобразований данной системы и использования метода прогонки получаем следующие соотношения

$$h_{k} = x_{k} - x_{k-1}, \qquad k = \overline{1, n}$$

$$l_{k} = \frac{y_{k} - y_{k-1}}{h_{k}}, \qquad k = \overline{1, n}$$

$$\delta_{1} = -\frac{1}{2} \frac{h_{2}}{h_{1} + h_{2}}$$

$$\lambda_{1} = \frac{3}{2} \frac{l_{2} - l_{1}}{h_{1} + h_{2}}$$
(22)

$$\delta_{k-1} = -\frac{h_k}{2h_{k-1} + 2h_k + h_{k-1}\delta_{k-2}}, \qquad k = \overline{3, n}$$

$$\lambda_{k-1} = \frac{2l_k - 3l_{k-1} - h_{k-1}\lambda_{k-2}}{2h_{k-1} + 2h_k + h_{k-1}\delta_{k-2}}, \qquad k = \overline{3, n}$$

$$c_{k-1} = \delta_{k-1}c_k + \lambda_{k-1}, \qquad k = \overline{n, 2}$$

$$b_k = l_k + \frac{2}{3}c_k h_k + \frac{1}{3}h_k c_{k-1}, \qquad k = \overline{1, n}$$

$$d_k = \frac{c_k - c_{k-1}}{3h_k}, \qquad k = \overline{1, n}$$

Используя формулы (22) можно рассчитать все необходимые коэффициенты для составления функции кубического сплайна (15).

Задание

Для допуска к защите лабораторной работы студент должен иметь распечатанный отчет, содержащий титульный лист; задание (включая числовые значения варианта по списку); подробное описание выполнения всех пунктов задания (построение многочленов, таблицы разностей, графики и т.д.) и выводы.

- 1 Построить интерполяционный многочлен Лагранжа. Вычислить $L_4(x_1+x_2)$. Построить график многочлена Лагранжа.
 - 2 Построить таблицы конечных и разделенных разностей.

Таблица 1 – Таблица конечных разностей

X_k Y_k Δy_k $\Delta^2 y_k$ $\Delta^3 y_k$ $\Delta^4 y_k$

Таблица 2 – Таблица разделенных разностей

Xk	Уk	1-го порядка	2-го порядка	3-го порядка	4-го порядка
----	----	--------------	--------------	--------------	--------------

- 3 Построить полином Ньютона и вычислить значение $N_4(x_1+x_2)$. Построить график многочлена Ньютона.
- 4 Построить интерполяционные сплайны кусочно-линейный и кусочноквадратичный. Построить графики сплайнов.
 - 5 Построить кубический интерполяционный сплайн. Построить график.
- 6 На одном чертеже с графиком полиномов построить графики сплайнов.

Варианты заданий

№	Таблица значений функции
1	x: 0,847 1,546 1,834 2,647 2,910
1	y:-1,104 1,042 0,029 -0,344 -0,449
2	x: 0,284
2	y:-3,856 -3,953 -5,112 -7,632 -8,011
3	x: 0,259 0,841 1,562 2,304 2,856
3	y: 0,018 -1,259 -1,748 -0,532 0,911
4	x: 0,172 0,567 1,113 2,119 2,769
	y:-7,057 -5,703 -0,132 1,423 2,832
5	x: 0,092 0,772 1,385 2,108 2,938

	y: 3,161 1,357 -0,158 -0,129 -4,438
	x: 0.357
6	y: 0,548 1,012 1,159 0,694 -0,503
7	x: 0,235
	y: 1,082
8	x: 0,015
0	y:-2,417 -3,819 -0,642 0,848 2,815
9	x: 0,231 0,848 1,322 2,224 2,892
	y:-2,748 -3,225 -3,898 -5,908 -6,506
10	x: 0,083 0,472 1,347 2,117 2,947
10	y:-2,132 -2,013 -1,613 -0,842 2,973
11	x: 0,119 0,718 1,342 2,859 3,948
11	y:-0,572 -2,015 -3,342 -6,752 -6,742
12	x: 0,184 0,865 1,213 2,019 2,862
12	y:-1,687 -2,542 -5,082 -7,042 -8,538
13	x: 0,351 0,867 1,315 2,013 2,859
13	y: 0,605 0,218 0,205 1,157 5,092
14	x: 0,135 0,876 1,336 2,301 2,642
14	y:-2,132 -2,113 -1,613 -0,842 1,204
15	x: 0,135
13	y: 2,382 -0,212 -1,305 -3,184 -4,365
16	x: 0,079 0,637 1,345 2,095 2,782
10	y:-4,308 -0,739 1,697 4,208 6,203
17	x: 2,119 3,618 5,342 7,859 8,934
1 /	y: 0,605 0,718 0,105 2,157 3,431

1.0	x: 0,345 0,761 1,257 2,109 2,943
18	y:-1,221 -0,525 2,314 5,106 9,818
19	x: 0,234 0,649 1,382 2,672 2,849
	y: 0,511 0,982 2,411 3,115 4,184
20	x: 0,238 0,647 1,316 2,108 4,892
	y: 0,092 0,672 2,385 3,108 2,938
21	x: 0,248 0,663 1,238 2,092 2,939
	y:-3,642 0,802 0,841 0,513 0,328
22	x: 0,282 0,872 1,513 2,022 2,672
22	y: 6,324 -0,405 -1,114 -1,315 -1,469
23	x: 0,324 0,718 1,315 2,035 2,893
	y:-2,052 -1,597 -0,231 2,808 8,011
24	x: 0,218 0,562 1,492 2,119 2,948
	y: 0,511 0,982 2,411 3,115 4,561
25	x: 0,132 0,567 1,153 2,414 3,939
	y: 69,531 1,112 –1,672 –1,922 –1,925
26	x: 0,234 0,649 1,382 3,672 5,911
20	y: 3,902 2,675 0,611 -3,256 -3,615
27	x: 0,134 0,561 1,341 2,291 6,913
21	y: 2,156 3,348 3,611 4,112 4,171
28	x: 0,452 0,967 2,255 4,013 5,432
28	y: 1,252 2,015 4,342 5,752 6,911
29	x: 0,151 0,862 1,282 2,139 2,739
∠ 7	y:-4,528 -0,345 0,638 1,342 3,645
30	x: 0,219
	y:-2,151 -0,452 1,214 2,891 4,617