Kelvin-Helmholtz instability

Generated by Doxygen 1.11.0

1 File Index	1
1.1 File List	1
2 File Documentation	3
2.1 finitevol.c File Reference	3
2.1.1 Function Documentation	4
2.1.1.1 applyFluxes()	4
2.1.1.2 extrapolateInSpaceToFace()	4
2.1.1.3 getConserved()	5
2.1.1.4 getFlux()	5
2.1.1.5 getGradient()	6
2.1.1.6 getPrimitive()	6
2.1.1.7 linspace()	7
2.1.1.8 meshgrid()	7
2.1.1.9 printM()	8
2.1.1.10 writeToFile()	8
Index	9

Chapter 1

File Index

1	1 1	Fi	le	Ιi	et
			ıc	_,	ЭL

Here is a list of all files with brief descriptions:	
finitevol.c	

2 File Index

Chapter 2

File Documentation

2.1 finitevol.c File Reference

```
#include <math.h>
#include <mpi.h>
#include <omp.h>
#include <stdbool.h>
#include <unistd.h>
#include <stdio.h>
```

Functions

- void getConserved (double rho, double vx, double vy, double P, double gamma, double vol, double *Mass_o, double *Momx_o, double *Momy_o, double *Energy_o)
- void getPrimitive (double Mass, double Momx, double Momy, double Energy, double gamma, double vol, double *rho_o, double *vx_o, double *vy_o, double *P_o)
- void getGradient (double f, double f_down, double f_up, double f_right, double f_left, double dx, double *f_
 dx o, double *f dy o)
- void extrapolateInSpaceToFace (double f, double f_dx, double f_dy, double dx, double *f_XL_o, double *f_XL_o, double *f_YR_o)
- double applyFluxes (double F, double flux_F_x, double flux_F_x_up, double flux_F_y_left, double flux_F_y, double dx, double dt)
- void getFlux (double rho_L, double rho_R, double vx_L, double vx_R, double vy_L, double vy_R, double P

 _L, double P_R, double gamma, double *flux_Mass_o, double *flux_Momx_o, double *flux_Momy_o, double *flux_Energy_o)
- void linspace (double start, double stop, size_t num, double *output)
- void meshgrid (double *xv, double *yv, size_t N, double *x_res, double *y_res)
- void printM (double *a, int w, int h)
- void writeToFile (FILE *stream, double *m, int w, int h)

4 File Documentation

2.1.1 Function Documentation

2.1.1.1 applyFluxes()

Applies the fluxes to the conserved variables

Parameters

F	- Conserved variable
flux_F_x	- Flux of the conserved variable in the x direction
flux_F_x_up	- Flux of the conserved variable above F in the x direction
flux_F_y_left	- Flux of the conserved variable to the left of F in the y direction
flux_F_y	- Flux of the conserved variable in the y direction
dx	- Cell size
dt	- Time step

2.1.1.2 extrapolateInSpaceToFace()

```
void extrapolateInSpaceToFace ( double f, double f_-dx, double f_-dy, double dx, double *f_-XL_-o, double *f_-XR_-o, double *f_-YL_-o, double *f_-YR_-o, double *f_-YR_-o)
```

Performed spatial extrapolation on a cell in a field to each of the 4 faces of a cell (Its four neighbors up, down, left and right)

Parameters

f	- Element in a field
f_dx	- Derivative of f along the x-axis
f_dy	- Derivate of f along the y-axis
dx	- Cell size
f_XL⊷	- Pointer to the buffer to store the extrapolated variable to the left of f
_0	
f_XR↔	- Pointer to the buffer to store the extrapolated variable to the right of f
_0	
f_YL⇔	- Pointer to the buffer to store the extrapolated variable below f
_0	
f_YR↔	- Pointer to the buffer to store the extrapolated variable above f
_0	

2.1.1.3 getConserved()

Calculates the conserved variables from the primitive variables

Parameters

rho	- Density
VX	- Velocity in the x direction
vy	- Velocity in the y direction
Р	- Pressure
gamma	- Ideal gas gamma
vol	- Volume of the cell
Mass_o	- Pointer to the buffer to store the mass
Momx_o	- Pointer to the buffer to store the x momentum
Momy_o	- Pointer to the buffer to store the y momentum
Energy⊷	- Pointer to the buffer to store the ernergy
0	

2.1.1.4 getFlux()

Calculates the fluxes of a between two states

Parameters

rho_L	- Density of the left state
rho_R	- Density of the right state

File Documentation

Parameters

vx_L	- Velocity in the x direction of the left state
vx_R	- Velocity in the x direction of the right state
vy_L	- Velocity in the y direction of the left state
vy_R	- Velocity in the y direction of the right state
P_L	- Pressure of the left state
P_R	- Pressure of the right state
gamma	- Ideal gas gamma
flux_Mass_o	- Pointer to the buffer to store the mass flux
flux_Momx_o	- Pointer to the buffer to store the x momentum flux
flux_Momy_o	- Pointer to the buffer to store the y momentum flux
flux_Energy←	- Pointer to the buffer to store the energy flux
_0	

2.1.1.5 getGradient()

Calculate the gradients of an element in a field

Parameters

f	- A variable in the field
f_down	- The variable below f in the field
f_up	- The variable above f in the field
f_right	- The variable to the right of f in the field
f_left	- The variable to the left of f in the field
dx	- Size of a cell in the field
f_dx⊷	- Where to store the derivative of f in the x-direction
_0	
f_dy⇔	- Where to store the derivative of f in the y-direction
_0	

2.1.1.6 getPrimitive()

```
double gamma,
double vol,
double * rho_o,
double * vx_o,
double * vy_o,
double * P_o)
```

Calculates the primitive variables from the conserved variables

Parameters

Mass	- Mass
Momx	- Momentum in the x direction
Momy	- Momentum in the y direction
Energy	- Energy
gamma	- Ideal gas gamma
vol	- Volume of the cell
rho_o	- Pointer to the buffer to store the density
vx_o	- Pointer to the buffer to store the x velocity
vy_o	- Pointer to the buffer to store the y velocity
P_o	- Pointer to the buffer to store the pressure

2.1.1.7 linspace()

Implementation of the numpy function linspace generate a vector of num evenly distributed elements from start to stop

Parameters

start	- Start of the vector
stop	- End of the vector
num	- Number of elements in the vector
output	- Buffer to store the vector

2.1.1.8 meshgrid()

Implementation of the numpy function meshgrid generate a two square matricies by repeating the row vector xv and the column vector yv

8 File Documentation

Parameters

XV	- Row vector to generate x_res from
yv	- Column vector to generate y_res from
N	- Length of xv and yv vectors
x_res	- Preallocated buffer to store matrix generated from xv in
y_res	- Preallocated buffer to store matrix generated from yv in

2.1.1.9 printM()

```
\begin{array}{c} \text{void printM (} \\ & \text{double * a,} \\ & \text{int $w$,} \\ & \text{int $h$)} \end{array}
```

Prints a matrix.

Parameters

а	- buffer were the matrix is stored
W	- Width of the matrix stored in a
h	- Height of the matrix stored in a

2.1.1.10 writeToFile()

```
void writeToFile (
    FILE * stream,
    double * m,
    int w,
    int h)
```

Writes a matrix to a file in binary format. The first 4 bytes in the file contain the matrixes width The next 4 bytes contain its height The following w * h sections of 8 bytes contain the values of the matrix

Parameters

stream	- File output stream opened in "wb" mode to write to
m	- buffer were matrix is stored
W	- Width of the matrix stored in m
h	- Height of the matrix stored in m

Index

```
applyFluxes
     finitevol.c, 4
extrapolateInSpaceToFace
     finitevol.c, 4
finitevol.c, 3
     applyFluxes, 4
     extrapolateInSpaceToFace, 4
     getConserved, 4
     getFlux, 5
     getGradient, 6
     getPrimitive, 6
     linspace, 7
     meshgrid, 7
     printM, 8
     writeToFile, 8
getConserved
     finitevol.c, 4
getFlux
     finitevol.c, 5
getGradient
     finitevol.c, 6
getPrimitive
     finitevol.c, 6
linspace
     finitevol.c, 7
meshgrid
     finitevol.c, 7
printM
     finitevol.c, 8
writeToFile
     finitevol.c, 8
```