Lecture 5

Algorithms on graphs. <u>Introduction t</u>o graphs and basic algorithms on graphs

Analysis and Development of Algorithms

Overview

- Graphs and their applications
- Trees and forests
- Graph representations
- Real world graphs
- 5 Depth-first search and its applications
- 6 Breadth-first search and its applications

Graphs and their applications

An (undirected) graph is a pair G = (V, E), where V is a set whose elements are called vertices (or nodes), and E is a set of two-sets (sets with two distinct elements) of vertices, whose elements are called edges (or links).

The number of vertices is usually denoted by |V|. The number of edges is usually denoted by |E|.

A *directed graph* is a graph in which edges have orientations.

A weighted graph is a graph in which a weight is assigned to each edge.

A *simple graph* allows only one edge between a pair of vertices. A *multigraph* is a generalization that allows multiple edges between a pair of vertices.

Graphs and their applications

A *complete graph* is a graph in which each pair of vertices is joined by an edge.

A path in a graph is a sequence of distinct edges which join a sequence of distinct vertices. The *length* of a path is the number of the traversed edges.

In a graph, a pair of vertices $\{x,y\}$ is called *connected* if there is a path from x to y. Otherwise, a pair of vertices is called *disconnected*.

A connected graph is an undirected graph in which every unordered pair of vertices in the graph is connected. Otherwise, it is called a disconnected graph.

We will usually consider **simple undirected** (unweighted or weighted) graphs.

Demonstration: Applications of graphs in real life

Algorithms Lecture 5 4/

Special types of graphs: trees

A *tree* is an undirected graph in which any two vertices are connected by exactly one path.

Demonstration: Decision tree, Fractal tree

Algorithms Lecture 5 5 / 1:

Special types of graphs: forests

A *forest* is an undirected graph in which any two vertices are connected by at most one path, or equivalently a disjoint union of trees.

Demonstration: Random forest classifier

Algorithms Lecture 5 6 / 11

Graph representations: adjacency matrix and adjacency list

The adjacency matrix is a matrix whose rows and columns are indexed by vertices and whose cells contain a Boolean value that indicates whether the corresponding vertices are adjacent (for weighted graphs, it contains corresponding weights instead of 1s.). The matrix (stored as a 2D array) requires $O(|V|^2)$ of space.

The adjacency list is a collection of lists containing the set of adjacent vertices of a vertex. The list (stored as an 1D array of lists) requires O(|V| + |E|) of space.

For a sparse graph, i.e. a graph in which most pairs of vertices are not connected by edges, $|E| \ll |V|^2$, an adjacency list is significantly more space-efficient than an adjacency matrix.

Adjacency matrix

	0	1	2	3	4	5	6
0	0	1	1	0	0	0	0
1	1	0	1	1	0	0	0
2	1	1	0	0	1	0	0
3	0	1	0	0	1	0	0
4	0	0	1	1	0	1	0
5	0	0	0	0	1	0	1
6	0	0	0	0	0	1	0

Adjacency list

Vertex	Adjacent vertices		
0	1, 2		
1	0, 2, 3		
2	0, 1, 4		
3	1, 4		
4	2, 3, 5		
5	4, 6		
6	5		

Real world graphs (networks)

Link 1: Stanford Large Network Dataset Collection

Link 2: Network Repository

Data & Network Collections. Find and interactively VISUALIZE and EXPLORE hundreds of network data

🏦 ANIMAL SOCIAL NETWORKS	816		29	SCIENTIFIC COMPUTING	11
BIOLOGICAL NETWORKS	37	★ INFRASTRUCTURE NETWORKS	8	SOCIAL NETWORKS	77
BRAIN NETWORKS	116	NABELED NETWORKS	104	f FACEBOOK NETWORKS	114
COLLABORATION NETWORKS	19	MASSIVE NETWORK DATA	21	TECHNOLOGICAL NETWORKS	12
CHEMINFORMATICS	646	MISCELLANEOUS NETWORKS	2668	₩EB GRAPHS	33
CITATION NETWORKS	4	POWER NETWORKS	8	O DYNAMIC NETWORKS	115
ECOLOGY NETWORKS	6	PROXIMITY NETWORKS	13	▼ TEMPORAL REACHABILITY	38
\$ ECONOMIC NETWORKS	16		221	m BHOSLIB	36
MAIL NETWORKS	6	RECOMMENDATION NETWORKS	36	III DIMACS	78
GRAPH 500	8	A ROAD NETWORKS	15	€ DIMACS10	84
HETEROGENEOUS NETWORKS	15	FETWEET NETWORKS	34	■ NON-RELATIONAL ML DATA	211

Depth-first search (DFS) and its applications

Depth-first search (DFS) is an algorithm for traversing or searching a graph. The algorithm starts at a chosen root vertex and explores as far as possible along each branch before backtracking.

Applied for: searching connected components, searching loops in a graph, testing bipartiteness, topological sorting, etc.

The **time complexity** of DFS is O(|V|+|E|).

A *connected component* of a graph is a subgraph in which any two vertices are connected by paths, and which is not connected to any vertex in the rest graph.

Demonstration: DFS and Search of connected components

Algorithms Lecture 5 9/3

Breadth-first search (BFS) and its applications

Breadth-first search (BFS) is an algorithm for traversing or searching a graph. The algorithm starts at a chosen root vertex and explores all of the neighbour vertices at the present depth prior to moving on to the vertices at the next depth level.

It uses an **opposite strategy to DFS**, which instead explores the vertex branch as far as possible before being forced to backtrack and expand other vertices.

Applied for: searching shortest path

The **time complexity** of BFS is O(|V| + |E|).

Demonstration: BFS

Thank you for your attention!

11 / 11