Printed Pages:2
Paper Id: 180272

Sub Code: KAG 201
Roll No.

B TECH (SEM II) THEORY EXAMINATION 2018-19 BASIC MATHEMATICS II

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. Define trivial and non-trivial solution.
- b. Find the rank of $A = \begin{bmatrix} 16 & 4 & 12 \\ 8 & 4 & 6 \\ -2 & -1 & -1.5 \end{bmatrix}$.
- c. State the Cauchy's Riemann equations in polar form.
- d. Determine whether $f(z) = \frac{1}{z}$ is analytic or not.
- e. State the Green's theorem.
- f. Find the value of (grad r)where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.
- g. Solve $(2D_x^2 + 5D_xD_y + 2D_y^2)z = 0$.
- h. Find the half range Fourier sine series for f(x) = x in $-\pi < x < \pi$.
- i. Write the one dimensional heat equation in unsteady state.
- j. Solve $u_{xx} u_y = 0$ by separation of variables.

SECTION B

2. Attempt any *three* of the following:

10x3 = 30

- a. Find P and Q such that the normal form of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 0 \\ 3 & 1 & 2 \end{bmatrix}$ is PAQ. Hence, find the rank.
- b. Prove that the function $f(z) = |z|^2$ is continuous everywhere but nowhere differentiable except at the origin.
- c. Evaluate $\nabla^2 r^m$ where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.
- d. Find the Fourier series of $f(x) = x\cos\left(\frac{\pi x}{l}\right)in l \le x \le l$.
- e. Solve Laplace equation in a rectangle in the 0 < x < m and 0 < y < n satisfying the following boundary conditions u(x,0)=0, u(x,n)=0, u(0,y)=0 and u(m,y)=ky(n-y)

SECTION C

3. Attempt any *one* part of the following:

10x1=10

- a. Find A^{-1} , A^{-2} if $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$.
- b. Show that $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is skew-hermitian and also unitary. Find the eigen values and eigen vectors.
- 4. Attempt any *one* part of the following:

10x1=10

- a. If f(z) is regular function of z, show that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4|f'(z)|^2$.
- b. Show that the function defined by $f(z) = \sqrt{|xy|}$ is not regular at the origin, although the Cauchy-Riemann equations are satisfied there.
- 5. Attempt any *one* part of the following:

10x1=10

- a. Prove that $(\vec{A}) = (6xy + z^3)\vec{i} + (3x^2 z)\vec{j} + (3xz^2 y)\vec{k}$ is irrational. Find a scalar function (x, y, z) such that $\vec{A} = \nabla f$.
- b. Find the flux of the vector field $\vec{A} = (x 2z)\vec{i} + (x + 3y + z)\vec{j} + (5x + y)\vec{k}$ through the upper side of the triangle ABC with vertices at the points A(1,0,0),B(0,1,0) and C(0,0,1).
- 6. Attempt any *one* part of the following:

10x1=10

- a. Find the Fourier series expansion of $f(x) = x \sin x$ in $-\pi < x < \pi$.
- b. Solve the partial differential equation $z_{xx} + z_{yy} = x^2 y^2$.
- 7. Attempt any *one* part of the following:

10x1=10

- a. Solve the following PDE by the method of separation of variables: $3u_x + 2u_y = 0$ with $u(x, 0) = 6e^{-x}$.
- b. Derive the general solution of one dimensional wave equation .