FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

TIN Teoretická informatika

1. domáca úloha

Obsah

1	Príklad číslo 1 1.1 (a) 1.2 (b) 1.3 (c)	2 2 2 2
2	Príklad číslo 2	3
3	Príklad číslo 3	4
4	Príklad číslo 4	5
5	Príklad číslo 5	6
6	Literatúra	7

1.1 (a)

Vyjadríme si rozdiel množín ekvivalentným vzťahom pomocou prieniku a doplnku (komplementu), aby sme mohli využiť vetu zo študijného textu.

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Podľa $Vety~3.23~[1](str.~\check{c}.~50)$ platí, že trieda regulárnych jazykov \mathcal{L}_3 je uzavretá voči prieniku a doplnku (komplementu).

$$L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \cap \overline{L_2} \in \mathcal{L}_3$$

Využitím hore uvedenej Vety 3.23 a vzťahov možeme stanoviť, že nasledujúci vzťah je platný.

$$L_1, L_2 \in \mathcal{L}_3 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_3$$

1.2 (b)

Vyjadríme si rozdiel množín ekvivalentným vzťahom pomocou prieniku a doplnku (komplementu), aby sme mohli využiť vetu zo študijného textu.

$$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$$

Podľa Vety 4.27 [1](str. č. 96) platí, že trieda deterministických bezkontextových jazykov \mathcal{L}_2^D je uzavretá voči prieniku s regulárnymi jazykmi a doplnku (komplementu).

$$L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \cap \overline{L_2} \in \mathcal{L}_2^D$$

Využitím hore uvedenej Vety 4.27 a vzťahov možeme stanoviť, že nasledujúci vzťah je platný.

$$L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2^D \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2^D$$

1.3 (c)

Predpokladajme, že $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2$ je pravdivý vzťah.

Ak berieme v úvahu, že $L_1 = \Sigma^*$ (regulárny jazyk), tak musí platiť:

$$\Sigma^* \setminus L_2 \in \mathcal{L}_2 \Rightarrow \overline{L_2} \in \mathcal{L}_2 \Rightarrow \underline{\mathbf{SPOR}}$$

Vznikol nám spor pri $\overline{L_2} \in \mathcal{L}_2$ z toho dôvodu, že podľa Vety 4.24 [1](str. č. 95) platí, že bezkontextové jazyky nie sú uzavreté voči prieniku a doplnku.

Takže $L_1 \in \mathcal{L}_3, L_2 \in \mathcal{L}_2 \Rightarrow L_1 \setminus L_2 \in \mathcal{L}_2$ nie je pravdivý vzťah.

 $M_L = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

$$\begin{split} Q &= \{q_0, q_1, q_2, q_3\} \\ \Sigma &= \{\#, 0, 1, 2\} \\ \Gamma &= \{Z_0, 1\} \\ F &= \{q_3\} \\ \delta \colon \quad \delta(q_0, 0, Z_0) = (q_0, Z_0) \\ \quad \delta(q_0, 1, Z_0) = (q_0, 1Z_0) \\ \quad \delta(q_0, 2, Z_0) = (q_0, 11Z_0) \\ \quad \delta(q_0, 0, 1) = (q_0, 1) \\ \quad \delta(q_0, 1, 1) = (q_0, 11) \\ \quad \delta(q_0, 2, 1) = (q_0, 111) \\ \quad \delta(q_0, \#, 1) = (q_1, 1) \end{split}$$

 $\delta(q_0, \#, Z_0) = (q_1, Z_0)$ $\delta(q_1, 0, 1) = (q_1, 1)$ $\delta(q_1, 1, 1) = (q_1, \varepsilon)$ $\delta(q_1, 2, 1) = (q_2, \varepsilon)$ $\delta(q_1, \varepsilon, Z_0) = (q_3, Z_0)$

0, 1/1

$$L = \{ w_1 \# w_2 \mid w_1, w_2 \in \Sigma^*, \#_1(w_1) + (2 * \#_2(w_1)) = \#_1(w_2) + (2 * \#_2(w_2)) \}$$

 $Veta \ 3.18 \ [1]$ (str. č. 46): Nechť L je nekonečný regulární jazyk. Pak existuje celočíselná konstanta p>0 taková, že platí: $w\in L \land |w|\geq p \Rightarrow w=xyz\land y\neq \varepsilon \land |xy|\leq p \land xy^iz\in L$ pro $i\geq 0$

Predpokladáme že jazyk L je regulárny jazyk a tak tento jazyk musí spĺňať hore uvedenú Vetu 3.18.

Pre $w \in L : w = 1^p \# 1^p$ pre ktoré platí podmienka $|w| \ge p$ pretože platí $2p + 1 \ge p$, pričom z dôvodu podmienky $|xy| \le p$ nastane jediný prípad a to:

$$x=1^l \wedge y=1^m \wedge z=1^{p-l-m}\#1^p$$
kde $l\geq 0$ a $m>0 \wedge l+m\leq p$ pre $l,m\in N$

 $xy^iz=1^l(1^m)^i1^{p-l-m}\#1^p=1^{l+(i*m)+p-l-m}\#1^p=1^{(i*m)+p-m}\#1^p\notin L$ pre všetky $i\neq 1$ pretože nesplňuje podmienku jazyka L.

Z predošlého vzťahu vyplýva, že jazyk L nie je regulárny.

ALGORITMUS

Vstup: Pravá lineárna gramatika $G_P = (N, \Sigma, P, S)$

Výstup: Ľavá lineárna gramatika $G_L = (N', \Sigma', P', S')$ taká, že $L(G_P) = L(G_L)$

Metóda:

- 1.) $N' = N \cup \{S'\}$ kde $S' \notin N$
- 2.) $\Sigma' = \Sigma$
- 3.) $P'\colon \quad w\in \Sigma^*, \ \forall A,B,S\in N \ \mathrm{kde} \ S$ je počiatočný neterminál $G_P\colon I. \ | \ (S\to \varepsilon)\in P' \ | \ II. \ | \ (B\to Aw)\in P' \ \iff \ (A\to wB)\in P \ | \ III. \ | \ (S'\to Aw)\in P' \ \iff \ (A\to w)\in P$

DEMONŠTRÁCIA

Vstup: Pravá lineárna gramatika $G = (\{S, A, B\}, \{a, b\}, P, S)$

P:
$$S \to abA \mid bS$$

 $A \to bB \mid S \mid ab$
 $B \to \varepsilon \mid aA$

Realizácia:

- 1.) $N' = N \cup \{S'\}$
- 2.) $\Sigma' = \Sigma$
- 3.) $P': S \to abA$ sa transformuje na $A \to Sab$ podľa II. $S \to bS$ $S \to Sb$ sa transformuje na podľa II. $A \rightarrow bB$ sa transformuje na $B \to Ab$ podľa II. $A \to S$ sa transformuje na $S \to A$ podľa II.sa transformuje na $S' \to Aab$ $A \rightarrow ab$ podľa III. $B \to \varepsilon$ sa transformuje na $S' \to B$ podľa III. $B \to aA$ sa transformuje na $A \to Ba$ podľa II.pridá sa $S \to \varepsilon$ podľa Ι.

Výstup: Ľavá lineárna gramatika $G_L = (N', \Sigma', P', S')$ taká, že $L(G) = L(G_L)$

Overenie:

Pravá lineárna gramatika G_P derivuje reťazec babbaabb.

 $S \Rightarrow bS \Rightarrow babA \Rightarrow babbB \Rightarrow babbaA \Rightarrow babbaA \Rightarrow babbaabA \Rightarrow babbaabB \Rightarrow babbaabB$

Ľavá lineárna gramatika G_L musí tiež derivovať reťazec babbaabb, keďže platí $L(G_P) = L(G_L)$.

 $S' \Rightarrow B \Rightarrow Ab \Rightarrow Sabb \Rightarrow Aabb \Rightarrow Baabb \Rightarrow Abaabb \Rightarrow Sabbaabb \Rightarrow Sabbaabb \Rightarrow babbaabb$

Definícia \sim_L pre jazyk L:

$$u \sim_L v \stackrel{\mathrm{def}}{\Longleftrightarrow} (\#_a(u) mod \ 3 = \#_a(v) mod \ 3 \wedge ((\#_b(u) > 0 \wedge \#_b(v) > 0) \vee (\#_b(u) = 0 \wedge \#_b(v) = 0)))$$

Na základe Vety 3.21 [1](str. č. 49), zostrojíme minimálny DKA na základe ktorého vieme určiť rozklad Σ^*/\sim_L .

Rozklad Σ^*/\sim_L je tvorený nasledujúcimi šiestimi triedami:

$$L^{-1}(q_0) = \{ w \mid \#_a(w) \mod 3 = 0 \land \#_b(w) = 0 \}$$

$$L^{-1}(q_1) = \{ w \mid \#_a(w) \mod 3 = 1 \land \#_b(w) = 0 \}$$

$$L^{-1}(q_2) = \{ w \mid \#_a(w) \mod 3 = 2 \land \#_b(w) = 0 \}$$

$$L^{-1}(q_3) = \{ w \mid \#_a(w) \mod 3 = 0 \land \#_b(w) > 0 \}$$

$$L^{-1}(q_4) = \{ w \mid \#_a(w) \mod 3 = 1 \land \#_b(w) > 0 \}$$

$$L^{-1}(q_5) = \{ w \mid \#_a(w) \mod 3 = 2 \land \#_b(w) > 0 \}$$

Rozklad Σ^*/\sim_L má tak konečný počet tried (šesť tried t.j. relácia \sim_L má index 6) z čoho vyplýva podľa Vety~3.20~[1](str.~č.~48), že sa jedná o regulárny jazyk t.j. platí Veta~3.21~[1](str.~č.~49), keďže sme vedeli zostrojiť minimálny konečný automat.

Jazyk L je tvorený zjednotením dvoch predošlých tried:

$$L = L^{-1}(q_4) \cup L^{-1}(q_5)$$

6 Literatúra

[1] M. Češka, T. Vojnar, A. Smrčka, A. Rogalewicz: Teoretická informatika - Studijní text.
 2018-08-23, [Online; Accessed: 2018-10-15].
 URL: http://www.fit.vutbr.cz/study/courses/TIN/public/Texty/TIN-studijni-text.pdf