First Principles Study of Solar Cell PCE of Organic Molecules

Mary Catlett and Dr. Mario F. Borunda Senior Project Presentation Friday 12/14/2018

Power Conversion Efficiency (PCE)

 Ratio of the output energy to the input

- Important factor determining if a solar panel is marketable
 - Current consumer solar panels have PCE's starting at 15%

Central Motivation

- Organic Photovoltaics (OPVs) are low cost to manufacture due to roll-to-roll manufacturing process
- OPV PCE levels are increasing quickly
 - o 2017: 14%*
 - o 2018: 17.3%*
- Computational screening can contribute to increased performance
 - Identify and target high performing molecular families

*Science 2018, DOI:10.1126/science.aat2612

Purpose

 In this study, our goal is to compare PCE predictions proposed by Scharber to experimental data available in literature

Project Outline

 Built Molecules in Avogadro*

2. Basic Geometry Optimization in Avogadro*

3. Ground State Calculations in Octopus**

8. Compare calculations to the Scharber Model and experiment

4. Geometry Optimization 1st attempt: Octopus 2nd attempt: Quantum Espresso

5. Optical Absorption Spectrum in Octopus

7. Calculate the Quantum Yield for each molecule

6. Convolute Absorption
Spectrum with Solar
Spectrum

Set 3: 64 to 99 Atoms

Molecules

Set 1: 18 to 45 Atoms

M5_1a M5_1b M5_2b

M13_a M13_d

Set 2: 46 to 63 Atoms

N HOOC CN

\$1: X = S; $Ar = C_6H_4$ \$2: X = Se; $Ar = C_6H_4$ \$3: X = S; $Ar = C_4H_2S$ \$4: X = Se; $Ar = C_4H_2S$

R S S R

M7

44

M1 S1

M1 S2

M1 S3

M1 S4

M6 3

CoHig CHig CoHig CHig R

223377

M2_24 M2_25

M3

M4_1

M4_2

M6_1

M9_3 M9_4 M9_III M9_IV

M11_1

M11_2

M12_2 M12_3

2. Basic Geometry Optimization in Avogadro

3. Ground State Calculations in Octopus

8. Compare calculations to the Scharber Model and experiment

4. Geometry Optimization 1st attempt: Octopus 2nd attempt: Quantum Espresso

5. Optical Absorption Spectrum in Octopus

7. Calculate the Quantum Yield for each molecule

6. Convolute Absorption
Spectrum with Solar
Spectrum

Building Molecules

- We manually constructed a model of each molecule from the papers in Avogadro
- We used the "optimize geometry" feature to optimize the molecule's structure using molecular mechanics.
 - This step was a way to reduce the amount of time for subsequent calculations.

2. Basic Geometry Optimization in Avogadro

3. Ground State Calculations in Octopus

8. Compare calculations to the Scharber Model and experiment

6. Convolute Absorption
Spectrum with Solar
Spectrum

Previous Optimization Study

- Tried to use Octopus Software
 - There were a lot of bugs
 - Data was not very accurate
- Only the 6 smallest molecules converged

Converged Molecules (RED)

Convergence Criteria:

Maximum Force: 0.01 eV/Angstrom

S1: X = S: Ar = C₆H₄ S2: X = Se; Ar = C₆H₄ S3: X = S; Ar = C₄H₂S \$4: X = Se; Ar = C₄H₂S

44

M1 S1

M1 S2

M1 S3

M1_S4

M6 3

M12 2 M12 3

- **2.** Basic Geometry Optimization in Avogadro
 - **3.** Ground State Calculations in Octopus

8. Compare calculations to the Scharber Model and experiment

4. Geometry Optimization
1st attempt: Octopus
2nd attempt:
Quantum Espresso

5. Optical Absorption Spectrum in Octopus

7. Calculate the Quantum Yield for each molecule

6. Convolute Absorption Spectrum with Solar Spectrum

Calibrating System

- This semester, project calculations were transitioned to Quantum Espresso
- We split the molecules into three sets based on size, to better optimize computing resources.
- Set 1: 18 to 45 Atoms
 - WTL: .5 to 2 days
 - System, Size: +10 Angstrom in x, y, z
 - Hardware: 1 node (32 GB RAM), 12 processors
- Set 2: 46 to 63 Atoms
 - O WTL: 3 to 5 days
 - System Size: +15 Angstrom in x, y, z
 - Hardware: 2 nodes (64 GB RAM), 24 processors
- Set 3: 64 to 99 Atoms
 - o WTL: between 1 and 5 days
 - System Size: +20 Angstrom in x, y, z
 - Hardware: 1 BigMem node (256 GB RAM), 12 processors

Converged Molecules

M5_1a M5_1b M5_2b

M13_a M13_d

Convergence Criteria:

Maximum Force:0.0005 Ry/Bohr= 0.0125eV/Angstrom

М7

M1 S1

M1 S3

M1_S4

M6_3

33

M2 25

M3

M4 1

M6 1

M9 3

Non Converged Molecules

M5_1a M5_1b M5_2b

M13_a M13_d

Convergence Criteria:

Maximum Force:0.0005 Ry/Bohr= 0.0125eV/Angstrom

N-Ar S $S1: X = S; Ar = C_6H_4$ $S2: X = Se; Ar = C_4H_2S$ $S4: X = Se; Ar = C_4H_2S$

M1_S1 M1_S2 M1_S3 M1_S4

M6_3

M7

223377

M2_24
M2_25

M3

M4_1

M4_2

M6_1

M9_3 M9_4 M9_III M9_IV

M11_1

M11_2

//12_2 //12_3

Trends

- Smallest molecules converged first
 - Some larger ones did as well
- Larger molecules containing Flourine, Sulfur, and Silicon have not converged

Computing Time Comparison

Molecule	Octopus Convergence Time	Quantum Espresso Convergence Time
M5_1a	~150 hours	~1 hour
M5_1b	~175 hours	~1.5 hours
M5_2b	~200 hours	~4 hours
M7	200+ hours	~17 hours
M13_a	200+ hours	~5 hours
M13_d	200+ hours	~26 hours

Factors Affecting Time Differences

- Changing software being used
- Use of parallel computing when made transition to Quantum Espresso
- Newer supercomputer hardware at time of transition
- Last set of coordinates from Octopus runs for each molecule was used as starting point for Quantum Espresso calculations

2. Basic Geometry Optimization in Avogadro

3. Ground State Calculations in Octopus

8. Compare calculations to the Scharber Model and experiment

4. Geometry Optimization 1st attempt: Octopus 2nd attempt: Quantum Espresso

5. Optical Absorption Spectrum in Octopus

7. Calculate the Quantum Yield for each molecule

6. Convolute Absorption Spectrum with Solar Spectrum

Absorption Spectrums

Method:

- Time Dependent Density Functional Theory (TD-DFT)
- delta kick function in Octopus

Previous Attempt:

Future Attempts:

 Plan to decrease the oscillation discrepancy between experiment and theory by matching temperatures of systems

Conclusions

- Don't use Octopus for geometry optimizations
 - Quantum Espresso is more efficient for that set of calculations
- To complete geometry optimizations
 - Maximum number of SCF cycle steps need to be changed

Next Steps

- Complete Geometry Optimization and Absorption Spectrum Calculations
 - o Change maximum SCF steps allowed per calculation cycle
- Complete comparison of data to Scharber Model and experimental data

2. Basic Geometry Optimization in Avogadro

3. Ground State Calculations in Octopus

8. Compare calculations to the Scharber Model and experiment

4. Geometry Optimization 1st attempt: Octopus 2nd attempt: Quantum Espresso

5. Optical Absorption Spectrum in Octopus

7. Calculate the Quantum Yield for each molecule

6. Convolute Absorption Spectrum with Solar Spectrum

Acknowledgments

- The Borunda Group
- Okstate High Performance Computing
- OSU Physics Department
- OK-LSAMP and McNair Scholars research grant programs

Molecule References

- 1. Selvaraju, S., Adhikari, S., Hopson, R. A., Dai, S., Rheingold, A. L., Borunda, M. F., & Nelson, T. L. (2016). Effects of structural variations on the optical and electronic properties of eumelanin-inspired small molecules. Journal of Materials Chemistry C, 4(18), 3995-3999. doi:10.1039/c5tc03982g
- 2. Velusamy, M., Thomas, J., Lin, J. T., Hsu, Y., & Ho, K. (2005). Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Organic Letters, 7(10), 1-4. doi:0.1021/ol050417f
- 3. A. A., Lopez-Arroyo, L., De la Cruz, P., Oswald, F., Meyer, T. B., & Langa, F. (2012). Organic Dyes Incorporating Oligothienylenevinylene for Efficient Dye-Sensitized Solar Cells. Organic Letters, 14(22), 1-4. doi:10.1021/ol302738k
- 4. A. A., Lopez-Arroyo, L., De la Cruz, P., Oswald, F., Meyer, T. B., & Langa, F. (2012). Organic Dyes Incorporating Oligothienylenevinylene for Efficient Dye-Sensitized Solar Cells. Organic Letters, 14(22), 1-4. doi:10.1021/ol302738k
- 5. Ebata, H., Miyazaki, E., Yamamoto, T., & Takimiya, K. (2007). Synthesis, Properties, and Structures of Benzo[1,2-b:4,5-b¢]bis[b]benzothiophene and Benzo[1,2-b:4,5-b¢]bis[b]benzoselenophene. Organic Letters, 9(22), 1-4. doi:10.1021/oI701815j
- 6. Steinberger, S., Mishra, A., Reinold, E., Muller, C. M., Uhrich, C., Bauerle, M., & Bauerle, P. (2011). A-D-A-Type Oligothiophenes for Vacuum-Deposited Organic Solar Cells. Organic Letters, 13(1), 1-4. doi:10.1021/ol102603n
- 7. Qian, X., Zhu, Y., Song, J., Gao, X., & Zheng, J. (2013). New Donor-π-Acceptor Type Triazatruxene Derivatives for Highly Efficient Dye-Sensitized Solar Cells. Organic Letters, 15(23), 1-4. doi:10.1021/ol402931u
- 8. Aeschi, Y., Li, H., Cao, Z., Chen, S., Amacher, A., Bieri, N., . . . Liu, S. (2013). Directed Metalation Cascade To Access Highly Functionalized Thieno[2,3-f]benzofuran and Exploration as Building Blocks for Organic Electronics. Organic Letters, 15(21), 1-4. doi:10.1021/ol402787d
- 9. Lin, L., Lu, C., Huang, W., Chen, Y., Lin, H., & Wong, K. (2011). New A-A-D-A-A-Type Electron Donors for Small Molecule Organic Solar Cells. Organic Letters, 13(18), 1-4. doi:10.1021/ol2021077
- 10. Qian, X., Zhu, Y., Song, J., Gao, X., & Zheng, J. (2013). New Donor-π-Acceptor Type Triazatruxene Derivatives for Highly Efficient Dye-Sensitized Solar Cells. Organic Letters, 15(23), 1-4. doi:10.1021/ol402931u
- 11. Sean, E. J., & Rasmussen, S. C. (2010). N-Acyldithieno[3,2-b:2',3'-d]pyrroles: Second Generation Dithieno[3,2-b:2',3'-d]pyrrole Building Blocks with Stabilized Energy Levels. Organic Letters, 12(18), 4054-4057. doi:10.1021/ol101647f
- 12. Evenson, S. J., & Rasmussen, S. C. (2010). N-Acyldithieno [3, 2-b: 2', 3'-d] pyrroles: Second Generation Dithieno [3, 2-b: 2', 3'-d] pyrrole Building Blocks with Stabilized Energy Levels. Organic letters, 12(18), 4054-4057.

Software References

- 13. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & The samp; Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics, 4(1), 17
- 14. Castro, A., Rubio, A., Rozzi, C. A., Lorenzen, F., Appel, H., Oliveira, M., Strubbe, D. A. (2014, April 03). The Octopus Manual Version 6.0. Retrieved from http://www.tddft.org/programs/octopus/wiki/index.php/The_Octopus_Manual
- 15.. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., ... & Dal Corso, A. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Cond. Matt., 21(39), 395502.
- 16. Python 3.7.0 documentation. (n.d.). Retrieved from https://docs.python.org/3/

Other References

- 17. Harrison, N. (2006, August 28). An Introduction to Density Functional Theory. Retrieved January 15, 2016, from https://www.ch.ic.ac.uk/harrison/Teaching/DFT_NATO.pdf
- 18. Scharber, M., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A., & Brabec, C. (2006). Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Advanced Materials, 18(6), 789-794. doi:10.1002/adma.200501717
- 19. Selvaraju, S., Adhikari, S., Hopson, R. A., Dai, S., Rheingold, A. L., Borunda, M. F., & Nelson, T. L. (2016). Effects of structural variations on the optical and electronic properties of eumelanin-inspired small molecules. Journal of Materials Chemistry C, 4(18), 3995-3999. doi:10.1039/c5tc03982g
- 20. Velusamy, M., Thomas, J., Lin, J. T., Hsu, Y., & Ho, K. (2005). Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Organic Letters, 7(10), 1-4. doi:0.1021/ol050417f
- 21. A. A., Lopez-Arroyo, L., De la Cruz, P., Oswald, F., Meyer, T. B., & Langa, F. (2012). Organic Dyes Incorporating Oligothienylenevinylene for Efficient Dye-Sensitized Solar Cells. Organic Letters, 14(22), 1-4. doi:10.1021/ol302738k
- 22. A. A., Lopez-Arroyo, L., De la Cruz, P., Oswald, F., Meyer, T. B., & Langa, F. (2012). Organic Dyes Incorporating Oligothienylenevinylene for Efficient Dye-Sensitized Solar Cells. Organic Letters, 14(22), 1-4. doi:10.1021/ol302738k
- 23. Ebata, H., Miyazaki, E., Yamamoto, T., & Takimiya, K. (2007). Synthesis, Properties, and Structures of Benzo[1,2-b:4,5-b¢]bis[b]benzothiophene and Benzo[1,2-b:4,5-b¢]bis[b]benzoselenophene. Organic Letters, 9(22), 1-4. doi:10.1021/ol701815j
- 24. Steinberger, S., Mishra, A., Reinold, E., Muller, C. M., Uhrich, C., Bauerle, M., & Bauerle, P. (2011). A-D-A-D-A-Type Oligothiophenes for Vacuum-Deposited Organic Solar Cells. Organic Letters, 13(1), 1-4. doi:10.1021/ol102603n
- 25. Qian, X., Zhu, Y., Song, J., Gao, X., & Zheng, J. (2013). New Donor-π-Acceptor Type Triazatruxene Derivatives for Highly Efficient Dye-Sensitized Solar Cells. Organic Letters, 15(23), 1-4. doi:10.1021/ol402931u
- 26. Aeschi, Y., Li, H., Cao, Z., Chen, S., Amacher, A., Bieri, N., . . . Liu, S. (2013). Directed Metalation Cascade To Access Highly Functionalized Thieno[2,3-f]benzofuran and Exploration as Building Blocks for Organic Electronics. Organic Letters, 15(21), 1-4. doi:10.1021/ol402787d
- 27. Lin, L., Lu, C., Huang, W., Chen, Y., Lin, H., & Wong, K. (2011). New A-A-D-A-A-Type Electron Donors for Small Molecule Organic Solar Cells. Organic Letters, 13(18), 1-4. doi:10.1021/ol2021077
- 28. Qian, X., Zhu, Y., Song, J., Gao, X., & Zheng, J. (2013). New Donor-π-Acceptor Type Triazatruxene Derivatives for Highly Efficient Dye-Sensitized Solar Cells. Organic Letters, 15(23), 1-4. doi:10.1021/ol402931u
- 29. Sean, E. J., & Rasmussen, S. C. (2010). N-Acyldithieno[3,2-b:2',3'-d]pyrroles: Second Generation Dithieno[3,2-b:2',3'-d]pyrrole Building Blocks with Stabilized Energy Levels. Organic Letters, 12(18), 4054-4057. doi:10.1021/ol101647f
- 30. Evenson, S. J., & Rasmussen, S. C. (2010). N-Acyldithieno [3, 2-b: 2', 3'-d] pyrroles: Second Generation Dithieno [3, 2-b: 2', 3'-d] pyrrole Building Blocks with Stabilized Energy Levels. Organic letters, 12(18), 4054-4057.
- 31. Zhang, G., & Musgrave, C. (2006). Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations. J. Phys. Chem. A. The Journal of Physical Chemistry A, 1554-1561.
- 31. Perdew, J. P., & Yue, W. (1989). Erratum: Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical Review B, 40(5), 3399-3399. doi:10.1103/physrevb.40.3399
- 32. Laurent, A. D., & Jacquemin, D. (2013). TD-DFT benchmarks: A review. International Journal of Quantum Chemistry, 113(17), 2019-2039. doi:10.1002/qua.24438