Théorème de Schnirelmann

<u>Définitions et notations</u>:

- Si A est une partie de \mathbb{N} , on pose, pour tout $n \geq 1$, $S_n(A) = \operatorname{card}([[1, n]] \cap A)$ et l'on appelle densité de Schnirelmann de A le réel $\sigma(A) = \inf \left\{ \frac{S_n(A)}{n} \, / \, n \geq 1 \right\}$.
- Si A et B sont deux parties de N, on pose $A + B = \{a + b / (a, b) \in A \times B\}$.

Objectif:

En théorie additive des nombres, on dit qu'une partie A de \mathbb{N} est une base d'ordre h de \mathbb{N} si tout élément de \mathbb{N} peut s'écrire comme la somme de h éléments de A.

Le théorème de Schnirelmann, établi en dernière question du problème, donne une condition suffisante simple pour qu'une partie de $\mathbb N$ soit une base. Ce résultat admet de nombreuses applications.

] - Généralités, exemples

On considère une partie A de \mathbb{N} .

- 1. Justifier la définition de $\sigma(A)$.
- 2. Que vaut $\sigma(A)$ si $1 \notin A$?
- 3. À quelle condition a-t-on $\sigma(A) = 1$?
- 4. Si $A \subset B$, comparer $\sigma(A)$ et $\sigma(B)$.
- 5. Calculer $\sigma(A)$ pour les parties A suivantes :
 - a) A est une partie finie de \mathbb{N} ;
 - b) A est l'ensemble des entiers impairs;
 - c) $A = \{k^s \mid k \in \mathbb{N}\}$ est l'ensemble des puissances s-ièmes, où $s \in \mathbb{N}, s \geq 2$ est fixé.

II. - Théorème de Schnirelmann (1930)

- 1. On considère deux parties A et B de \mathbb{N} qui contiennent 0.
 - a) On considère un entier $n \ge 1$. Montrer que, si $S_n(A) + S_n(B) \ge n$, alors $n \in A + B$.
 - b) En déduire que, si $\sigma(A) + \sigma(B) \ge 1$, alors $A + B = \mathbb{N}$.
 - c) Prouver que, si $\sigma(A) \ge \frac{1}{2}$, alors A est une base de N d'ordre 2.
- 2. On considère deux parties A et B de \mathbb{N} qui contiennent 0, la partie A étant infinie. On numérote $0 = a_0 < a_1 \dots$ la suite croissante des éléments de A.
 - a) Montrer que, pour tout $n \ge 1$: $S_n(A+B) \ge S_n(A) + \left(\sum_{i=0}^{S_n(A)-1} S_{a_{i+1}-a_{i-1}}(B)\right) + S_{n-a_{S_n(A)}}(B).$

- b) En déduire que $\sigma(A+B) \ge \sigma(A) + \sigma(B) \sigma(A)\sigma(B)$.
- c) Cette inégalité reste-t-elle vraie si A est finie?
- 3. On considère $p (\geq 2)$ parties A_1, \ldots, A_p de \mathbb{N} contenant 0.

Montrer que :
$$1 - \sigma(A_1 + A_2 + ... + A_p) \le \prod_{i=1}^{p} (1 - \sigma(A_i)).$$

4. Montrer qu'une partie A de $\mathbb N$ contenant 0 et telle que $\sigma(A)>0$ est une base de $\mathbb N.$