

GRAF

(Slide Acknowledgment: Gatot Wahyudi, Adila A. Krisnadhi)

Matematika Diskret 2
Fakultas Ilmu Komputer Universitas Indonesia

Agenda

- Lintasan dan Sirkuit
- Keterhubungan
- Graf Euler dan Hamilton

• Lintasan (baik untuk graf berarah maupun tidak berarah)

Sebuah lintasan (path) L dari vertex u ke vertex v dalam sebuah graf G = (V, E) adalah

- barisan sisi $L = \langle e_1, e_2, ..., e_n \rangle$ di mana $e_1 = \langle u, v_1 \rangle$, $e_2 = \langle v_1, v_2 \rangle$, $e_3 = \langle v_1, v_2 \rangle$, ..., $e_n = \langle v_{n-1}, v \rangle$
- dapat juga dinyatakan dalam barisan verteks $L = \langle u, v_1, v_2, ..., v_{n-1}, v \rangle$
- Jika graf memiliki sisi ganda, lintasan dapat juga dinyatakan dalam barisan verteks-edge $L = \langle u, e_1, v_1, e_2, v_2, ..., v_{n-1}, e_n, v \rangle$
- Panjang lintasan L, ditulis p(L), adalah jumlah sisi pada lintasan tersebut
- Vertex u disebut vertex awal dan vertex v disebut vertex akhir dari lintasan L
- Jika vertex awal dan vertex akhir suatu lintasan adalah sama dan panjang lintasan lebih dari 0, maka lintasan tersebut disebut sirkuit (circuit, cycle), dituliskan dengan S

Contoh

- Tunjukkan lintasan-lintasan yang dapat dilalui dari a menuju setiap verteks lainnya
- Berapakah panjang masing-masing lintasan?

- ▶ Lintasan sederhana (*simple path*)
 - Lintasan yang tidak mengandung sisi yang sama lebih dari satu kali
- Sirkuit sederhana (simple circuit)
 - Sirkuit yang tidak mengandung sisi yang sama lebih dari satu kali
- ► Lintasan elementer (*elementary path*)
 - Lintasan yang tidak mengandung vertex yang sama lebih dari satu kali
- Sirkuit elementer (elementary circuit)
 - Sirkuit yang tidak mengandung vertex yang sama lebih dari satu kali (kecuali vertex awal dan akhir)

Contoh

- Perhatikan beberapa lintasan dari *a* ke *f* yaitu:
 - $L_1 = \langle e_1, e_2, e_3 \rangle = \langle a, b, c, f \rangle$
 - $L_2 = \langle e_1, e_2, e_4, e_8, e_9, e_{10}, e_3 \rangle = \langle a, b, c, d, g, e, c, f \rangle$
 - $L_3 = \langle e_1, e_2, e_4, e_7, e_2, e_4, e_8, e_9, e_{10}, e_3 \rangle = \langle a, b, c, d, b, c, d, g, e, c, f \rangle$
- L₁ adalah lintasan sederhana sekaligus lintasan elementer
- L₂ adalah lintasan sederhana yg bukan lintasan elementer karena ada vertex c yang dilalui lebih dari satu kali
- L_3 bukan lintasan sederhana karena ada sisi $e_2 = (b, c)$ atau sisi $e_4 = (c, d)$ dilalui dua kali, dan bukan lintasan elementer karena vertex b, c, dan d masing-masing dilalui lebih dari satu kali

Contoh

- Graf di samping mempunyai beberapa sirkuit:
 - $S_1 = \langle e_1, e_2, e_4, e_5, e_6 \rangle = \langle a, b, c, d, h, a \rangle$
 - $S_2 = \langle e_1, e_2, e_4, e_8, e_9, e_{11}, e_5, e_6 \rangle = \langle a, b, c, d, g, e, d, h, a \rangle$
 - $S_3 = \langle e_1, e_2, e_4, e_8, e_9, e_{10}, e_4, e_5, e_6 \rangle = \langle a, b, c, d, g, e, c, d, h, a \rangle$
- S₁ adalah sirkuit sederhana sekaligus sirkuit elementer
- S_2 adalah sirkuit sederhana yang bukan sirkuit elementer karena ada vertex d yang dilalui lebih dari satu kali
- S_3 bukan sirkuit sederhana karena ada sisi e_4 = (c, d) dilalui dua kali, dan juga bukan sirkuit elementer karena vertex c dan d dilalui masing-masing lebih dari satu kali

Teorema

Dalam sebuah graf berarah maupun tidak berarah G dengan n buah vertex, untuk setiap pasang vertex u & v berlaku:

Jika dari u terdapat sebuah lintasan L ke v, maka terdapat lintasan L' dengan panjang lintasan $p(L') \le (n-1)$ dari u ke v.

Untuk sebuah graf berarah maupun tidak berarah G dengan urutan vertex v_1 , v_2 , ..., v_n , dan A adalah matriks ketetanggaan (*adjacency matrix*) untuk G, maka:

Jumlah lintasan dengan panjang r dari v_i ke v_j sama dengan jumlahan semua elemen $\boldsymbol{a_{ij}}$ pada A^r .

- Contoh
 - Tentukan jumlah lintasan dengan panjang 2 pada graf G berikut.

- Jawab
 - Matriks ketetanggaan untuk G (dengan urutan a, b, c):

$$\bullet \ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

• Untuk mendapatkan lintasan dengan panjang 2 maka harus ditentukan A²:

• Jadi, lintasan dengan panjang 2 pada *G* hanya satu yaitu dari *a* ke *c*

- Contoh
 - Tentukan jumlah lintasan dengan panjang 2 pada graf G berikut.

$$\bullet \ A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• Untuk mendapatkan lintasan dengan panjang 2 maka harus ditentukan A²:

• Jadi, lintasan dengan panjang 2 pada *G* ada 12 lintasan

- Contoh
 - Tentukan jumlah lintasan dengan panjang 3 pada graf G berikut.

• Matriks ketetanggaan untuk G (dengan urutan a, b, c, d):

•
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 dan $A^2 = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 3 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$

• Untuk mendapatkan lintasan dengan panjang 3 maka harus ditentukan A³:

• Jadi, lintasan dengan panjang 3 pada **G** ada 18 lintasan

- Contoh
 - Tentukan jumlah lintasan dan sirkuit dengan panjang 3 yang pada graf-graf berikut:

Keterhubungan

Keterhubungan (Connectivity)

• Definisi keterhubungan pada graf tidak berarah

Suatu graf tidak berarah G dikatakan terhubung (connected) jika dan hanya jika terdapat lintasan antara setiap pasang verteks pada G.

• Definisi keterhubungan pada graf berarah

Suatu graf berarah *G* dikatakan terhubung kuat (*strongly connected*) jika dan hanya jika untuk setiap pasang verteks *u* dan *v* pada *G*, terdapat lintasan dari *u* ke *v* dan dari *v* ke *u*. Suatu graf berarah *G* dikatakan terhubung (*weakly connected*) jika dan hanya jika terdapat lintasan antara setiap pasang verteks pada *G* jika arah sisinya diabaikan (*underlying connected graph*).

Keterhubungan (Connectivity)

Contoh Soal 1

```
Buktikan bahwa graf tak berarah G = (V, E) dengan V = \{a, b, c, d\} dan E = \{(a, b), (b, c), (b, d), (c, d)\} adalah terhubung
```


- Jawab (Cara 1)
 - G terhubung karena untuk setiap dua vertex berbeda terdapat lintasan:
 - sepanjang 1 dari a ke b: $\langle a, b \rangle$
 - sepanjang 2 dari a ke c: $\langle a, b, c \rangle$
 - sepanjang 2 dari a ke d: $\langle a, b, d \rangle$
 - sepanjang 1 dari b ke c: $\langle b, c \rangle$
 - sepanjang 1 dari b ke d: $\langle b, d \rangle$
 - sepanjang 1 dari c ke d: $\langle c, d \rangle$

- Jawab (Cara 2)
 - Menggunakan matriks ketetanggaan (adjacency matrix) dari graf, misalnya M_G beserta pangkat-pangkatnya $(M_G)^2$, $(M_G)^3$, ...

$$\bullet \ M_G = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \qquad (M_G)^2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$

$$(M_G)^2 = \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{vmatrix}$$

- Terlihat bahwa $(a_{ij} \neq 0) \lor (b_{ij} \neq 0)$, dengan i, j = 1, 2, 3, 4 pada M_G dan $(M_G)^2$
- Antara sepasang vertex selalu ada lintasan dengan panjang 1 (sebanyak 8) atau 2 (sebanyak 18)

- Contoh Soal 2
 - Buktikan bahwa graf berarah G = (V, E) dengan $V = \{a, b, c, d, e\}$ dan $E = \{(a, b), (b, c), (b, d), (c, d), (d, e), (e, a)\}$ adalah terhubung kuat

- Jawab
 - G terhubung kuat karena untuk setiap dua vertex berbeda terdapat lintasan:

```
• sepanjang 1 dari a ke b: \langle a, b \rangle
```

- sepanjang 2 dari a ke c: $\langle a, b, c \rangle$
- sepanjang 2 dari a ke d: $\langle a, b, d \rangle$
- sepanjang 4 dari a ke e: $\langle a, b, c, d, e \rangle$
- ...
- sepanjang 3 dari e ke c: $\langle e, a, b, c \rangle$
- sepanjang 4 dari e ke d: $\langle e, a, b, c, d \rangle$

- Contoh Soal 3
 - Buktikan bahwa graf berarah G = (V, E) dengan $V = \{a, b, c, d, e\}$ dan $E = \{(b, a), (b, c), (b, d), (c, d), (d, e), (e, a)\}$ adalah tidak terhubung kuat tetapi terhubung

- Jawab
 - G tidak terhubung kuat karena tidak ada lintasan dari α ke b, tetapi G terhubung karena jika G dipandang sebagai graf tidak berarah maka matriks ketetanggaan M_G adalah:

$$\bullet \ M_G = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$(M_G)^2 = \begin{bmatrix} 2 & 0 & 1 & 2 & 0 \\ 0 & 3 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 3 & 0 \\ 0 & 2 & 1 & 0 & 2 \end{bmatrix}$$

• Terlihat bahwa $(a_{ij} \neq 0) \lor (b_{ij} \neq 0)$, dengan i, j = 1, 2, 3, 4, 5 pada M_G dan $(M_G)^2$, yang berarti antara sepasang vertex selalu ada lintasan dengan panjang 1 (sebanyak 12) atau 2 (sebanyak 30)

Komponen Terhubung (Connected Components)

Definisi

Suatu subgraf H dari graf G (baik graf tidak berarah maupun graf berarah yang diabaikan arah sisinya) disebut komponen terhubung jika dan hanya jika H terhubung dan H bukan proper subgraf dari komponen terhubung lain pada G.

Dapat dikatakan juga bahwa *H* terhubung maksimal.

- Perhatikan bahwa graf G pada definisi di atas tidak harus terhubung
- Graf tidak terhubung dapat dipecah ke dalam dua atau lebih komponen
- Suatu graf dikatakan terhubung jika dan hanya jika graf tersebut hanya terdiri dari satu komponen
- Suatu graf yang terdiri dari n verteks dapat terdiri dari paling sedikit satu komponen dan paling banyak n komponen

Komponen Terhubung (Connected Components)

Komponen terhubung kuat pada graf berarah

Suatu subgraf *H* dari graf berarah *G* disebut komponen terhubung kuat (*strongly connected component*) jika dan hanya jika *H* terhubung kuat dan *H* bukan proper subgraf dari komponen terhubung lain pada *G*.

- Contoh Soal 4
 - Buktikan bahwa graf G = (V, E) dengan $V = \{a, b, c, d, e, f\}$ dan $E = \{(a, c), (b, c), (d, f), (f, e)\}$ tidak terhubung
- Jawab (Cara 1)
 Graf G memiliki lebih dari satu komponen
- Jawab (Cara 2)
 Tidak terdapat lintasan dari a ke d
 (Counterexample)

- Jawab (Cara 3)
 - Menggunakan matriks ikatan, misalnya M_G ,

$$\bullet \ M_G = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}, \ B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

• $(M_G)^r$ untuk r=0,1,2,... selalu dapat dijadikan matriks blok B, terdapat submatriks yang merupakan matriks nol.

Latihan

- Soal
 - Tentukan apakah graf-graf berikut ini adalah graf terhubung kuat atau hanya terhubung

- Bagaimana memeriksa seberapa handal keterhubungan sebuah graf (tidak berarah)?
- Bagaimana mengetahui jalur-jalur kritis pada sebuah peta yang menghubungkan beberapa kota?

Cut vertex

Suatu verteks *v* pada graf terhubung *G* disebut *cut vertex* (*cut node/articulation point*) jika dan hanya penghapusan verteks tersebut akan membuat graf *G* menjadi tidak terhubung.

Cut edge

Suatu *edge u* pada graf terhubung *G* disebut *cut edge* (*jembatan/bridge*) jika dan hanya penghapusan *edge* tersebut akan membuat graf *G* menjadi tidak terhubung.

• Contoh:

- Tuliskan semua cut vertex dari graf di atas.
 - b, c, dan e
- Tuliskan semua *cut edge* dari graf di atas.
 - (a,b) dan (c,e)

• Contoh graf *H*:

- Tuliskan semua cut vertex dari graf di atas.
 - Tidak ada
- Tuliskan semua cut edge dari graf di atas.
 - Tidak ada
- Graf *H* adalah contoh *nonseparable graph*

• Tidak semua graf memiliki *cut vertex* atau *cut edge*. Dengan demikian, setiap graf mungkin memiliki derajat keterhubungan yang berbeda satu sama lain.

Misalkan terdapat graf G = (V, E) yang terhubung.

- Vertex-cut set atau separating set:
 - Subhimpunan vertex V' pada G yang jika dihapus akan menyebabkan G menjadi tidak terhubung
- Edge-cut set atau cut set
 - Subhimpunan edge *E'* pada *G* yang jika dihapus akan menyebabkan *G* menjadi tidak terhubung

• Contoh graf *X*:

- Tuliskan semua *vertex cut* dari graf *X*.
 - {b,g}, {b,f}, {c,e}, {c,f}, {c,g}, {d,f}, ada lagi?
- Tuliskan semua *edge cut* dari graf *X*.
 - {(a,b),(a,g)}, {(b,c),(g,f)}, {(c,d),(f,e)}, {(c,d),(d,e)}, {(d,e),(f,e)}, ada lagi?

- Suatu graf mungkin saja memiliki lebih dari satu vertex cut atau edge cut.
 - Vertex connectivity $(\kappa(G))$: jumlah vertex minimum pada sebuah vertex cut/separating set
 - Edge connectivity $(\lambda(G))$: jumlah edge minimum pada sebuah edge cut/cut set
- Kasus khusus: jika G merupakan graf lengkap K_n , maka $\kappa(G) = \lambda(G) = n 1$
- Jika graf G tidak terhubung atau hanya terdiri dari satu verteks, maka $\kappa(G) = \lambda(G) = 0$
- Jika graf G memiliki satu cut vertex atau satu cut edge, maka $\kappa(G) = \lambda(G) = 1$
- Graf G dikatakan k-connected jika $\kappa(G) \ge k$
- Pada graf tidak berarah G, berlaku $\kappa(G) \leq \lambda(G) \leq \min_{v \in V} \deg(v)$

• Contoh graf *X*:

- Tentukan *vertex-connectivity* dari graf *X*.
 - $\kappa(X) = 2$
- Tentukan *edge-connectivity* dari graf *X*.
 - $\lambda(X) = 2$

Cut Vertex & Cut Edge

• Latihan:

Tuliskan vertex connectivity dan edge connectivity dari graf-graf di atas.

Graf Euler dan Hamilton

Lintasan dan Sirkuit Euler

- Konigsberg Bridge Problem
 - Kota Konigsberg di Prussia mempunyai sungai dan 7 jembatan berbentuk seperti pada gambar di bawah
 - Timbul pertanyaan:
 - Adakah cara seseorang memulai berjalan dari satu daratan ke daratan yang lain dengan melalui 7 jembatan masing-masing satu kali dan kembali ke tempat asalnya?

Apakah ada sebuah sirkuit sederhana yang melalui semua sisi? Sirkuit seperti ini memiliki sebutan khusus yaitu Sirkuit Euler.

[ROSSEN]

Lintasan dan Sirkuit Euler

Definisi

Sebuah lintasan L pada graf sederhana atau graf ganda G = (V, E) disebut lintasan Euler jika L adalah lintasan sederhana yang mengandung semua $e \in E$

Sebuah sirkuit S pada graf G disebut sirkuit Euler jika S adalah sirkuit sederhana yang mengandung semua $e \in E$

- Soal
 - Identifikasi semua lintasan Euler dan sirkuit Euler yang dimulai dari vertex a jika ada!
- Jawab
 - Lintasan Euler dari a:

•
$$L_1 = \langle a, c, d, a, b, d, e, b \rangle$$

•
$$L_2 = \langle a, d, b, a, c, d, e, b \rangle$$

•
$$L_3 = \langle a, b, e, d, c, a, d, b \rangle$$

- ...
- Sirkuit Euler dari a:
 - Tidak ada

- Soal
 - Identifikasi semua lintasan Euler dan sirkuit Euler yang dimulai dari vertex a jika ada!
- Jawab
 - Lintasan Euler dari a:

•
$$L_1 = \langle a, b, e, c, d, e, a \rangle$$

•
$$L_2 = \langle a, b, e, d, c, e, a \rangle$$

•
$$L_3 = \langle a, e, c, d, e, b, a \rangle$$

•
$$L_4 = \langle a, e, d, c, e, b, a \rangle$$

- Sirkuit Euler dari a:
 - Semua lintasan Euler di atas merupakan sirkuit Euler

- Soal
 - Identifikasi semua lintasan Euler dan sirkuit Euler yang dimulai dari vertex *a* jika ada!
- Jawab
 - Lintasan Euler dari a:
 - Tidak ada
 - Sirkuit Euler dari a:
 - Tidak ada

Lintasan dan Sirkuit Euler

Teorema untuk multigraf terhubung

Suatu graf G = (V, E) memiliki sirkuit Euler jika dan hanya jika setiap vertex $v \in V$ berderajat genap

Suatu graf G = (V, E) memiliki sebuah lintasan Euler tetapi tidak memiliki sirkuit Euler jika dan hanya jika G memiliki tepat dua vertex berderajat ganjil

- Soal
 - Temukan salah satu lintasan dan sirkuit Euler pada graf berikut jika ada!

- Jawab
 - Graf di samping pasti mempunyai sirkuit Euler karena terhubung dan setiap vertexnya berderajat genap
 - $\deg(a) = 2$; $\deg(b) = 2$; $\deg(c) = 2$; $\deg(d) = 2$; $\deg(e) = 4$; $\deg(f) = 2$
 - Karena mempunyai sirkuit Euler maka pasti mempunyai lintasan Euler
 - Salah satu sirkuit dan lintasan Euler pada graf:
 - $L = S = \langle f, b, e, a, d, e, c, f \rangle$

- Soal
 - Apakah graf di samping mempunyai lintasan atau sirkuit Euler?
 Temukan salah satunya jika ada!

- Jawab
 - Graf representasi Konigsberg bridge adalah terhubung dengan derajat setiap vertexnya:
 - deg(a) = 5; deg(b) = 3; deg(c) = 3; deg(d) = 3
 - Graf tersebut tidak memiliki sirkuit Euler karena ada verteks berderajat ganjil.
 - Graf tersebut tidak memiliki lintasan Euler karena tidak tepat dua verteks yang berderajat ganjil.

- Soal
 - Apakah graf di samping mempunyai lintasan atau sirkuit Euler?
 Temukan salah satunya jika ada!

- Jawab
 - Graf di samping adalah terhubung dengan derajat setiap vertexnya:

•
$$deg(a) = 4$$
; $deg(b) = 3$; $deg(c) = 3$; $deg(d) = 2$

- Berdasarkan teorema maka terdapat lintasan Euler tetapi tidak terdapat sirkuit Euler
- Salah satu lintasan Euler pada graf:

•
$$L = \langle B, D, C, A, B, A, C \rangle$$

Aplikasi Lintasan dan Sirkuit Euler

- Postman problem
 - Untuk mencari cara bagaimana agar seorang petugas pos harus melalui semua jalan yang diperlukan untuk menyampikan pesan dimana setiap jalan cukup dilewati satu kali
- Electronic and Networking
 - Layout sirkuit elektronik atau network multicasting dapat dibuat efisien dengan memanfaatkan lintasan/sirkuit Euler
- Molecular biology
 - Lintasan Euler dapat digunakan pada pengurutan DNA

Latihan

Soal

• Selidiki apakah graf berikut mempunyai lintasan atau sirkuit Euler. Jika ya maka tunjukkan

salah satunya!

Lintasan dan Sirkuit Hamilton

Definisi

Sebuah lintasan L pada suatu graf sederhana atau graf berganda G = (V, E) disebut lintasan Hamilton apabila L adalah sebuah lintasan yang melalui setiap $v \in V$ tepat satu kali

Sebuah sirkuit S pada G disebut sirkuit Hamilton apabila S adalah sebuah sirkuit yang melalui setiap $v \in V$ tepat satu kali (kecuali vertex awal dan akhir)

- Soal
 - Temukan salah satu lintasan dan sirkuit Hamilton pada graf di bawah jika ada!
- Jawab
 - Beberapa lintasan Hamilton yang mungkin:

•
$$L_1 = \langle A, B, D, C \rangle$$

•
$$L_2 = \langle B, A, C, D \rangle$$

•
$$L_3 = \langle D, C, A, B \rangle$$

• Beberapa sirkuit Hamilton yang mungkin:

•
$$S_1 = \langle A, B, D, C, A \rangle$$

•
$$S_2 = \langle D, C, A, B, D \rangle$$

- Soal
 - Temukan salah satu lintasan dan sirkuit Hamilton pada graf berikut jika ada!

- Jawab
 - Salah satu lintasan Hamilton pada graf:

•
$$L = \langle a, d, e, b, f, c \rangle$$

- Soal
 - Identifikasi semua lintasan Hamilton dan sirkuit Hamilton pada graf di bawah jika ada!
- Jawab
 - Tidak ada lintasan Hamilton:
 - vertex e harus dilalui dua kali
 - Tidak ada sirkuit Hamilton:
 - vertex *a* dan *d* berderajat 1

Lintasan dan Sirkuit Hamilton

Teorema

[ORE's THEOREM]

Jika G adalah graf sederhana dengan n buah vertex ($n \ge 3$) sedemikian hingga jumlah derajat setiap pasang vertex yang tidak bersisian $\ge n$ maka G mempunyai suatu sirkuit Hamilton

[DIRAC's THEOREM]

Jika G adalah graf sederhana dengan n buah vertex (n > 3) dengan setiap vertex mempunyai derajat $\geq n/2$ maka G mempunyai suatu sirkuit Hamilton

- Soal
 - Selidiki apakah graf di samping mempunyai sirkuit Hamilton!

- Jawab
 - Berdasarkan Ore's Theorem, kita akan memeriksa jumlah derajat setiap pasang vertex yang tidak bersisian $\geq n = 4$

•
$$deg(A) + deg(D) = 4 + 2 = 6 \ge 4$$

- $deg(B) + deg(C) = 3 + 3 = 6 \ge 4$
- Dengan demikian graf tersebut pasti mempunyai suatu sirkuit Hamilton, salah satunya

•
$$S_1 = \langle A, B, D, C, A \rangle$$

- Soal
 - Selidiki apakah graf di samping mempunyai sirkuit Hamilton!

- Jawab
 - Berdasarkan Dirac's Theorem, kita akan memeriksa derajat setiap vertex harus $\geq n/2 = 4/2 = 2$

•
$$deg(A) = 4$$

•
$$deg(B) = deg(C) = 3$$
 \rightarrow $3 \ge 2$

•
$$Deg(D) = 2$$

• Dengan demikian graf tersebut pasti mempunyai suatu sirkuit Hamilton, salah satunya

•
$$S_1 = \langle A, B, D, C, A \rangle$$

 Soal
 Selidiki apakah graf di samping mempunyai sirkuit Hamilton!

- Jawab
 - Derajat vertex pada graf:
 - deg(1) = 3; deg(2) = 3; deg(3) = 4; deg(4) = 3; deg(5) = 2; deg(6) = 3; deg(7) = 2;
 - Diketahui bahwa jumlah vertex pada graf, n > 3.
 - Berdasarkan teorema DIRAC, jika derajat setiap vertex $\geq n/2 = 7/2 = 3.5$, maka terdapat sirkuit Hamilton.
 - Diketahui bahwa ada verteks yang derajatnya < 3.5, maka kita tidak dapat menyimpulkan apa pun.
 - Karena ternyata, ketika dicek di gambar, ada sirkuit Hamilton-nya, yaitu: 1-2-5-6-7-4-3-1.

Latihan

- Soal
 - Selidiki apakah graf berikut mempunyai lintasan atau sirkuit Hamilton. Jika iya, tunjukkan!

