

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA MECÂNICA

ES664 - Laboratório de Eletrônica para Automação Industrial

Relatório - Experimento 4 Acionamento de motor DC

Nome:
Daniel Dello Russo Oliveira
Marcelli Tiemi Kian

RA101918
117892

1 Objetivos

O experimento tem como objetivo implementar o acionamento de um motor DC através de um retificador controlado e um chopper. Além disso, queremos avaliar o controle de velocidade do motor em malha aberta.

2 Experimento

2.1 Retificador Monofásico Controlado

Utilizamos um transformador para rebaixar a tensão de 220 V para 24 V, fazendo a ligação da tensão de linha (protegida pelos fusíveis) no primário, obtendo como saída 25.54 V. No secundário, ligamos o circuito na entrada do conversor. Alimentamos e configuramos o cartão de disparos, permitindo configurar α por meio de um potenciômetro. O esquemático do sistema pode ser visto na figura 1.

Figura 1: Retificador monofásico controlado de onda completa utilizado para acionar motor DC. (roteiro)

Prosseguimos o experimento com a medição da resistência de armadura do motor:

$$R_a = 7.9 \ \Omega \tag{1}$$

e com a resistência de medição

$$R_R = 3.8 \ \Omega \tag{2}$$

sendo este último valor diferente do sugerido no roteiro (0.2Ω) .

Ligamos o circuito e capturamos a forma de onda da tensão de armadura v_a para $\alpha=90^\circ$, conforme figura 2. Variando os valores de α , obtivemos os valores da tabela 1.

Figura 2: Tensão de armadura do motor DC com retificador controlado para $\alpha = 90^{\circ}$

Tabela 1: Tensão de armadura v_a e velocidade angular ω_m do motor DC para diferentes ângulos de disparo α

α	v_a	ω_m
60°	4.81	340
70°	5.9	470
80°	7.12	650
90°	8.5	900
100°	9.8	1150
110°	10.6	1350
120°	11.6	1510

Medimos também a tensão no resistor de medição R_R , para cálculo da cor-

rente de armadura, conforme figura 3.

Figura 3: Corrente no resistor de medição para $\alpha = 90^{\circ}$

Como tivemos problemas na ligação do circuito, descontinuamos o experimento sem fazer a medição da corrente para outros valores de α , conforme orientado pelo professor.

2.2 Conversor Step-Down

Para o experimento com o conversor step-down, configuramos as tensões da fonte DC e pulsos do gerador de sinal. Ligamos o lado alto do conversor em $12\ V$, e o lado baixo na armadura do motor em série com o resistor de medição. Alimentamos o circuito de acionamento do conversor com $15\ V$ e ligamos o gerador de sinal nos cabos indicados por "BUCK" e "GND".

Utilizamos o mesmo motor do caso anterior, mas outra resistência de medição:

$$R_S = 5.3 \ \Omega \tag{3}$$

Ligamos o circuito e capturamos a forma de onda da tensão de armadura v_a para D=50%, conforme figura 4. Variando os valores de D, obtivemos os valores da tabela 2.

Figura 4: Tensão de armadura do motor DC com chopper em step-down para D=50%

Tabela 2: Tensão de armadura v_a e velocidade angular ω_m do motor DC para diferentes duty-cycles D

D	v_a	ω_m
20%	-	-
30%	2.18	102
40%	3.08	234
50%	4.32	390
60%	5.4	574

Prosseguimos o experimento registrando os valores de tensão na resistência de medição. A forma de onda capturada para a tensão v_R é mostrada na figura 5, para realizar o cálculo de i_a da tabela 3, conforme equação a seguir.

Figura 5: Tensão no resistor de medição para D=50%

$$i_a = \frac{v_R}{R_S} A \tag{4}$$

Tabela 3: Tensão no resistor de medição v_R e corrente de armadura i_a do motor DC para diferentes duty-cycles D

D	v_R	i_a
20%	-	-
30%	0.62	0.117
40%	0.76	0.143
50%	0.9	0.170
60%	1.02	0.192