CS & IT

ENGINEERING

DIGITAL LOGIC

Combinational circuit

Lecture No. 1

By- CHANDAN SIR

Comparator

Question Practice

03 Discussion

AND GATE (+ve)

A	B	Y	
0	0	0	
0	1	0	
1	0	0	
L	1	1	

A	B	BY	
1	1	1	
1	0	1	
0	1	1	
0	0	0	

- Aud , NOR MAND 4
- (5) X-OR Wud X-NOR

 (6) Buffer Wud Buffer

 (7) INVERTER WUM INVERTER

$$f_{D} = A + O = A$$

t·me/cJSIR

$\underbrace{\mathsf{E}_{\mathsf{X}}}_{\mathsf{I}}. f = \mathsf{A}\mathsf{B} + \mathsf{C}\mathsf{D} + \mathsf{E}\mathsf{F}$ $f^{\mathsf{P}} = (\mathsf{A} + \mathsf{B}) \cdot (\mathsf{C} + \mathsf{D}) \cdot (\mathsf{E} + \mathsf{F})$

Ex.2.
$$f = \overline{ABC+DEF}$$

$$f^{D} = AB + CD$$

$$f^{D} = AB + CD$$

$$f^{D} = AB + CD$$

$$f = A$$

$$f^{D} = A$$

Self Rual

Self Aual = 2

COMBINATIONAL CIRCULT

A circuit without feedback or memory are called combinational circuit.

> Static circuit

DESIGNING OF COMBINATIONAL CIRCUIT

- **Step 1.** Find the number of inputs and outputs.
- Step 2. Write the truth table.
- Step 3. Write the logical expression.
- Step 4. Minimize the logical expression.
- Step 5. Hardware implementation.

Mognitude

DESIGNING OF COMBINATIONAL CIRCUIT

Step 3. Logical expression

$$X(A > B) = A 6$$

$$Y(A < B) = A \otimes$$

$$Z(A = B) = \overline{AB} + AB = AOB$$

- Step 4. Minimization Already minimize.
- Step 5. Hardware implementation

Step 5.

TWO BIT COMPARATOR

$$\begin{cases}
A_1 \longrightarrow A \\
A_0 \longrightarrow A
\end{cases}$$

$$\begin{cases}
B_1 \longrightarrow B \\
\end{cases}$$

$$\begin{cases}
COMPERATOR \\
\end{cases}$$

$$\begin{cases}
COMPERATOR \\
\end{cases}$$

$$\begin{cases}
COMPERATOR \\
\end{cases}$$

$$\begin{cases}
COMPERATOR \\
\end{cases}$$

Decimal	Binory		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0 1 0 1		
6	0 1 1 0		
7	0 1 1 1		
8	1000		
9	1001		
10	1010		
11	FO 7 1		
12	1100		
13	1101		
14	1110		
15	1111		

2. Design a two-Bit comparator?

Step 2. Truth table

DESIGNING OF COMBINATIONAL CIRCUIT

Step 3. Logical expression

$$X(A > B) = \sum m($$

$$Y(A < B) = 7m$$

$$Z(A = B) = \sum m$$

DESIGNING OF COMBINATIONAL CIRCUIT

Step 4. Minimization

DESIGNING OF COMBINATIONAL CIRCUIT

Step 4. Minimization

For Z

100	×			
Prox	00	01	11	10
00				
01				
11				
10				

Thank you

GW Soldiers!

