Exemple Examen Recherche d'information

Documents autorisés

Exercice 1

Soit $q = q_1, ..., q_m$ une requête, d un document et $P(q_i|d)$ la probabilité du mot q_i dans le modèle de langue de d. On suppose que nous disposons d'une collection de documents comportant au total 8 mots w1, ..., w8.

La Table ci-dessous liste pour chaque mot sa probabilité dans le modèle de langue de référence, P(w|REF), estimé sur la collection (2èm colonne), la fréquence du terme c(w;d) dans un document (3ème colonne). Les colonnes 4 et 5 représentent les probabilités du terme dans les modèles langue du document d, estimés respectivement selon le maximum de vraisemblance et Dirichlet avec le paramètre μ .

Mots	P(w REF)	c(w; d)	P _{ml} (w d)	P _μ (w d)
w1	0.3	2		
w2	0.15	1		
w3	0.1	2		0.125
w4	0.1	4		
w5	0.05	1		
w6	0.1	0		
w7	0.1	0		
w8	0.1	0		

- 1- Remplir la colonne 4 (p_{ml}(w|d)),
- 2- La colonne 5 représente la probabilité du terme calculée après un lissage de Dirichlet effectuée sur la collection. Seule la probabilité de $\it w3$ est donnée dans le tableau, déduire la valeur de $\it \mu$?
- 3- Sans effectuer les calculs de probabilités de la colonnes 5, indiquer pour chacun des mots de cette colonne si sa probabilité lissée (P_{μ} (w|d)) est {>;=;<} à celle non lissée, calculée selon p_{ml} (w|d), c'est-à-dire celle de la colonne 4.
- 4- Quelle condition doit satisfaire c(w; d) pour que la probabilité lissée du mot w soit toujours la même que la valeur non lissée quelque soit le paramètre μ.