第八章 捕获信号参数估计

8.1 导言

正余弦信号的参数(频率、幅度、相位等)估计问题不仅深入与我们生活的方方面面,而且在雷达、声呐以及电子对抗等领域有着及其广泛的作用。本章实验以正弦信号为例,使用相位差分参数估计算法和最小二乘法拟合算法,通过 CCS 软件,在 DM6437EVM 开发板进行对正弦信号进行捕获并进行参数估计。

通过该实验,可进一步加深对信号时域和频域关系的理解,同时深入了解 CCS 集成开发环境,掌握 DSP/BIOS 配置文件的创建,对 HWI 和 SWI 线程调度管理有初步的认识和了解。

8.2 相位差分法

相位差分法是在 FFT 粗测结果上的进一步校正,这种算法无需在频谱的最大和次大谱线间进行频率的搜索,只需对采样点分组后进行两次 FFT 就可以在不高的信噪比下获得精度相当高的频率和初相估值,而且初相和频率的估计精度是彼此独立的,十分有利于工程的实现。

假设信号模型 $S(t) = a \cdot e^{j(2\pi f_0 t + \varphi_0)}$,其中主要参数包含:频率 f_0 ,幅度 a 和初相位 φ_0 。对该信号对该信号进行采样,采样时间为 f_0 ,采样点数为 f_0 ,采样频率为 f_0 。将采样得到的序列分为前后两段等长的子序列 f_0 ,和 f_0 , 每个序列的长度为 f_0 ,那么,对 f_0 ,就有:

$$S_1[n] = a \cdot e^{j(\frac{2\pi f_0 T n}{N} + \varphi_0)}$$
 $n = 0, 1, 2, ..., \frac{N}{2} - 1$ (8-1)

对 $S_1[n]$ 和 $S_2[n]$ 进行 DFT 有:

$$S_{1}[k] = \sum_{n=0}^{\frac{N}{2}-1} \left[a \cdot e^{j(\frac{2\pi f_{0}Tn}{N} + \varphi_{0})} \cdot e^{-j\frac{4\pi kn}{N}} \right]$$
 (8-2)

$$S_1[k] = A_k e^{j\varphi_k} \tag{8-3}$$

$$S_{2}[k] = S_{1}[k]e^{j\pi f_{0}T}$$
 (8-4)

$$S_2[k] = A_k e^{j(\pi f_0 T + \varphi_k)}$$
 (8-5)

其中:

$$A_{k} = \frac{a \sin[\pi(k - \frac{f_{0}T}{2})]}{2\pi(k - \frac{f_{0}T}{2})} \sin[\frac{2\pi(k - \frac{f_{0}T}{2})}{N}]$$
(8-6)

由式可知,当 $k=[\frac{f_0T}{2}]$ 时, A_k 得最大值,在最大谱线处, $k_0=[\frac{f_0T}{2}]$,此 时可以得到频率的粗测值 $\hat{f}_k=k_0\Delta f$,其中 $\Delta f=\frac{2}{T}$ 为频率分辨率。

在 $S_1[k]$ 最大谱线处,由式(8-6)得到幅度估计值 \hat{a} ,

$$\varphi_{k_0} = \varphi_0 + \pi \left(\frac{f_0 T}{2} - k_0\right) \left(1 - \frac{2}{N}\right) = \varphi_1 \tag{8-7}$$

由于 $S_2[k]$ 和 $S_1[k]$ 的幅度项完全相同,因而 $S_2[k]$ 同样在 $k = k_0$ 处有最大值。对于 $S_2[k]$ 有:

$$\varphi_{k_0} = \varphi_0 + \pi \left(\frac{f_0 T}{2} - k_0 \right) (1 - \frac{2}{N}) + \pi f_0 T = \varphi_2 \, \text{T} \quad (8-8)$$

由式 (8-7) 和 (8-8) 可得:

相位差:
$$\Delta \varphi = \varphi_2 - \varphi_1 = \pi f_0 T - 2\pi k_0$$
 (8-9)

频率偏差:
$$\hat{f}_{\delta} = \frac{\Delta \varphi}{2\pi} \cdot \Delta f$$
 (8-10)

频率估计值:
$$\hat{f}_0 = \hat{f}_k + \hat{f}_\delta = (k_0 + \frac{\Delta \varphi}{2\pi})\Delta f$$
 (8-11)

将式 (8-9) 代入式 (8-7) 得

$$\varphi_{k_0} = \varphi_0 + \frac{N-2}{2N} \Delta \varphi \tag{8-12}$$

于是初相位的估计为:

$$\hat{\varphi}_0 = \varphi_1 - \frac{N-2}{2N} \Delta \varphi = \frac{3N-2}{2N} \varphi_1 - \frac{N-2}{2N} \varphi$$
 (8-13)

8.3 正弦信号最小二乘法拟合

8.3.1 三参数正弦曲线拟合法

1. 基本原理过程

理想正弦信号为:

$$y(t) = E_1 \cos(2\pi f t) + E_2 \sin(2\pi f t) + Q = E \cos(2\pi f t + \varphi) + Q$$
 (8-14)

数据记录序列为已知时刻 t_1 , t_2 , ..., t_n 的采集样本 y_1 , y_2 , ..., y_n , 3 参数正弦曲线拟合过程为输入信号的频率厂已知,选取或寻找 A_i 、 B_i 、C,使式(8-2)所述方差平方和E最小:

$$\varepsilon = \sum_{i=1}^{n} [y_i - A_1 \cos(2\pi f t_i) - B_1 \sin(2\pi f t_i) - C]^2$$
 (8-15)

则由 8-2 式可得 $\frac{\partial \varepsilon}{\partial A_{\rm l}} = 0$, $\frac{\partial \varepsilon}{\partial B_{\rm l}} = 0$, $\frac{\partial \varepsilon}{\partial C} = 0$ 。 则可求出 $A_{\rm l}$, $B_{\rm l}$, C 的表达式。

$$A_{N} = \frac{\sum_{i=1}^{n} y_{i} \alpha_{i} - \overline{y} \sum_{i=1}^{n} \alpha_{i}}{\sum_{i=1}^{n} \alpha_{i} \beta_{i} - \overline{\beta} \sum_{i=1}^{n} \alpha_{i}} - \frac{\sum_{i=1}^{n} y_{i} \beta_{i} - \overline{y} \sum_{i=1}^{n} \beta_{i}}{\sum_{i=1}^{n} \beta_{i}^{2} - \overline{\beta} \sum_{i=1}^{n} \beta_{i}}$$
(8-16)

$$A_{D} = \frac{\sum_{i=1}^{n} \alpha_{i}^{2} - \overline{\alpha} \sum_{i=1}^{n} \alpha_{i}}{\sum_{i=1}^{n} \alpha_{i} \beta_{i} - \overline{\beta} \sum_{i=1}^{n} \alpha_{i}} - \frac{\sum_{i=1}^{n} \alpha_{i} \beta_{i} - \overline{\alpha} \sum_{i=1}^{n} \beta_{i}}{\sum_{i=1}^{n} \beta_{i}^{2} - \overline{\beta} \sum_{i=1}^{n} \beta_{i}}$$
(8-17)

$$B_{N} = \frac{\sum_{i=1}^{n} y_{i} \alpha_{i} - \overline{y} \sum_{i=1}^{n} \alpha_{i}}{\sum_{i=1}^{n} \alpha_{i}^{2} - \overline{\alpha} \sum_{i=1}^{n} \alpha_{i}} - \frac{\sum_{i=1}^{n} y_{i} \beta_{i} - \overline{y} \sum_{i=1}^{n} \beta_{i}}{\sum_{i=1}^{n} \alpha_{i} \beta_{i} - \overline{\alpha} \sum_{i=1}^{n} \beta_{i}}$$
(8-18)

$$B_{D} = \frac{\sum_{i=1}^{n} \alpha_{i} \beta_{i} - \overline{\beta} \sum_{i=1}^{n} \alpha_{i}}{\sum_{i=1}^{n} \alpha_{i}^{2} - \overline{\alpha} \sum_{i=1}^{n} \alpha_{i}} - \frac{\sum_{i=1}^{n} \beta_{i}^{2} - \overline{\beta} \sum_{i=1}^{n} \beta_{i}}{\sum_{i=1}^{n} \alpha_{i} \beta_{i} - \overline{\alpha} \sum_{i=1}^{n} \beta_{i}}$$
(8-19)

其中:

$$\alpha_{i} = \cos 2\pi f t_{i}, \quad \beta_{i} = \sin 2\pi f t_{i}$$

$$\overline{\alpha} = \frac{1}{n} \sum_{i=1}^{n} \alpha_{i}, \quad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}, \quad \overline{\beta} = \frac{1}{n} \sum_{i=1}^{n} \beta_{i}$$

那么 $A_1 = A_N / A_D$; $B_1 = B_N / B_D$; $C = \overline{y} - A_1 \overline{\alpha} - B_1 \overline{\beta}$ 。参数 $A_1 \setminus B_1 \setminus C$ 即为 $E_1 \setminus E_2 \setminus Q$ 的最小二乘拟合。

另外一种表达式 $\hat{y}_i = A\cos(2\pi f t_i + \theta) + C$ 。

其中:
$$A = \sqrt{A_1^2 + B_1^2}$$

$$\theta = \begin{cases} \arctan \frac{-B_1}{A_1}, & A_1 \ge 0 \\ \arctan \frac{-B_1}{A_1} + \pi, & A_1 < 0 \end{cases}$$

拟合的有效方差为: $\rho = \sqrt{\frac{\varepsilon}{n}}$

$$\varepsilon = \sum_{i=1}^{n} (y_i - A_1 \alpha_i - B_1 \beta_i - C)^2 = \sum_{i=1}^{n} (y_i - \hat{y}(i))^2$$

8.32四参数正弦曲线拟合法

上述三参数正弦曲线拟合过程,是在已知信号频率f的假设下进行的,实际

上,信号频f率可能是未知的。对上述 3 参数正弦曲线拟合方法的改造,可获得一种绝对收敛的 4 参数正弦曲线拟合方法。

假设平均采集速率为 f_s ,待估计的正弦波频率目标值为 f_0 ,待估计的正弦波采样序列所含信号周期个数为 p;则有 $\Delta f_{\max} = f_0/p$,在区 $[f_0 - \Delta f_{\max}, f_0 + \Delta f_{\max}]$ 内的任意频率 f 下,方差平方和 $\varepsilon(f)$ 的极值存在且唯一。这样,可在 4 参数的正弦信号曲线拟合中,对幅度、频率、相位、直流分量进行线性搜索,可保证 $[f_0 - \Delta f_{\max}, f_0 + \Delta f_{\max}]$,用 3 参数拟合的方法实现的 4 参数正弦信号曲线拟合过程绝对收敛。过程如下:

- (1) 设定拟合迭代停止条件 h_a , 这里我们可取为 0.1;
- (2) 知时刻 t_1 , t_2 , ..., t_n 的采集样本 y_1 , y_2 , ..., y_n , 用周期计点法获得每个信号周期内的采样点数 m , 并获得序列所含的周期个数 p=n/m ; 那么频率 f_0 的估计值 $\hat{f}_0=f_s/m$,其收敛区间界为 $\Delta f_{max}=\hat{f}_0/p=f_s/n$;
 - (3) 确定频率 f 的收敛区间 $[f_0 \Delta f_{\text{max}}, f_0 + \Delta f_{\text{max}}] = [\hat{f}_0 f_s / n, \hat{f}_0 + f_s / n]$, 迭代左边界: $f_L = \hat{f}_0 - f_s / n$ 迭代右边界: $f_R = \hat{f}_0 + f_s / n$ 中值频率: $f_M = f_L + 0.618 \times (f_R - f_L)$; $f_T = f_R - 0.618 \times (f_R - f_L)$;
 - (4) 在 f_L 上执行 3 参数的正弦曲线拟合算法,获得 A_L 、 θ_L 、 C_L 、 ρ_L ; 在 f_R 上执行 3 参数的正弦曲线拟合算法,获得 A_R 、 θ_R 、 C_R 、 ρ_R ; f_M 上执行 3 参数的正弦曲线拟合算法,获得 A_M 、 θ_M 、 C_M 、 ρ_M ; f_T 上执行 3 参数的正弦曲线拟合算法,获得 A_T 、 θ_T 、 C_T 、 ρ_T ;

 - (6)每次迭代判定是否 $|(\rho_M \rho_T)/\rho_T k| < h_e$,是则停止迭代,若此时 ρ 取 ρ_T ,获得 4 参数拟合正弦曲线参数为 $A = A_T$ 、 $f = f_T$ 、 $C = C_T$ 、 ρ ,拟合过程停止;若此时 ρ 取 ρ_M ,获得 4 参数拟合正弦曲线参数为 $A = A_M$ 、 $f = f_M$ 、 $C = C_M$ 、 ρ ,拟合过程停止,否则,重复(4)~(6)步。

8.4 DM6437EVM 上正弦信号参数估计的实现

1.硬件电路连接

信号发生器输出接 DM6437EVM 的线路输入 P1 口, 电源上电。调节不同的

输入信号的频率可得到不同估计值。

2.新建配置文件

该实验主要是通过 HWI 中断来获取信号源采样输入数据,然后触发 SWI 中断实现对输入正弦信号采样数据的计算。

每个使用 DSP/BIOS 的程序,都需要一个 DSP/BIOS 的配置文件(*.tcf),并将其添加到项目文件中。根据该配置文件,系统自动生成连接工具使用的.cmd文件和相关的汇编代码。在菜单栏,点击 File->New->DSP/BIOS configuration file即可创建 DSP/BIOS 配置文件。

由于正弦信号的采样需要实时性,故采用 HWI 线程来实现。且 MCBSP1 的接收数据中断事件号为 51,并采用 HWI_INT4 来实现 isrSignal()中断服务函数来进行正弦信号的处理。设置如图所示。

图 8-1 HWI 线程配置

SWI 线程中调用估计算法函数 estimate(),该函数包含相位差分算法和最小二乘法拟合算法两种计算。在信号数据点采样点到达 1024 个后,进行一次计算。首先添加一个名为 estimate_SWI 的 SWI 线程,设置其属性调用函数 estimate()配置如下图所示.

图 8-2 SWI 线程配置

3.相关程序实现

(1) 由于采用 DSP/BIOS 编程,因此主函数只进行板子初始化以及开启中断,其程序实现如下所示。

```
void main () {
   short i;
                               // loop counter
   for(i=0;i<N;i++){</pre>
      buffer[i]=0;
   }
   EVMDM6437_init();
                             // init EVM6437 HW
   initCodec();
                              // init McBSP1; s/u AIC via I2C
                              // clear INT4 (precaution)
   ICR = 0x10;
   IER \mid= 0x10;
                              // enable INT4 as CPU interrupt
                                            // start McBSP
   MCBSP1 SPCR = 0 \times 00010001;
}
```

(2) 硬件中断服务程序 isrSignal():每次硬件中断实现正弦信号采样,在采样点累计到 1024 个后,执行一次软件中断线程。

(3) estimate()函数调用两种算法函数,对采集的信号样本 buffer 进行计算,在这里 buffer 定义为全局变量,用于存储采样得到的 1024 个点。

在差分相位算法里,计算信号的 fft 用到了 DSPlibC64+库函数,DSP_fft_16x16 库函数中分别有通过 c 自然语言"DSP_fft16x16_cn.c",带有精简指令的 c 语言"DSP_fft16x16_i.c"以及汇编语言" DSP_fft16x16_sa.SA"三种源文件来实现 fft 算法。通过库函数计算的 fft 为定点 fft 无法得到精确的傅里叶变换值 X[k],但最大值 k 处可以确定。随后利用 Goertzel 算法计算出 X[k] 的精确值,进行下一步频率、相位的估计计算。

在最小二乘法拟合算法里,分别定义了 curvefit()和 curvefit_4para()两种函数, curvefit()用于确知频率的信号参数的拟合, curvefit_4para()则调用 curvefit()来进行迭代,对精确频率进行搜索,并拟合其他信号参数。

8.5 实验结果分析

在 estimate()函数末尾加上断点,将差分相位法估计的频率值 f,相位值 p,幅度值 a,以及最小二乘法拟合频率值 freq,相位值 phase,幅度值 A,添加到 CCS 观察窗口进行观察。每运行一次,会得到不同的结果,同样,在调整信号发生器输出信号的频率时也会得到不同的计算结果。下图显示了信号发生器输出正弦信号频率为 2KHz,幅度为 1V,初始相位为 0 时,两种算法的结果。

图 8-3 测试结果

调整信号发生器的输出频率、幅度测试多组数据,可以发现频率估计的精确度可以达到要求。由于信号经板子采集后,有放大器,量化的影响,最终的结果并不能代表信号发生器所输出信号的幅度,并且在差分相位算法中, A_k 并不能代表真实幅度 a 的值,在这里未在这种算法中对 A_k 和 a 作相应的变化。但拟合算法时域上的幅度值可以作为参考。由于在进入计算拟合参数之前对 buffer 的数据除了 1024 以防止溢出,故最后可以通过 A 的值来计算采样后信号的增益。通过多组数据的拟合结果可以计算出采样后信号的增益在 8100~8200 之间。

关于相位的问题。由于硬件中断到来对信号进行采样无法保证第一个采样点恰好在0时刻,所以无法与信号发生器设定的初相位进行比较。但由于有两种算法的保证,两个相位结果的误差在1度($\frac{1}{180}\pi$)以内。所以两种相位结果可以正确的估计信号的初始相位。

8.6 参考资料

- 1、齐国清, 贾欣乐. 基于 DFT 相位的正弦波频率和初相的高精度估计方法[J]. 电子学报, 2001, 29(9):1164-1167.
 - 2、梁志国, 朱济杰, 孟晓风. 四参数正弦曲线拟合的一种收敛算法[J]. 仪器

仪表学报, 2006, 27(11):1513-1519.

3、DSPlib3_4_0_0 库