Distribution and Replication for Feature Selection (FSR 2.2)

Uchechukwu Njoku

1st DEDS Winter school Athens, Greece 5th April, 2022

Supervisors: Alberto Abelló (UPC), Besim Bilalli (UPC), Gianluca Bontempi (ULB)

Feature selection (FS)

Feature selection is the process of **detecting the relevant features and discarding the irrelevant and redundant ones** with the goal of obtaining a subset of features that accurately describe a given problem with a **minimum degradation of performance** [1]

Fig. 1: Full dataset

Fig. 2: Filtered dataset

Why feature selection?

- Storage
- Training time
- Data visualization
- Data understanding
- Curse of dimensionality

Applications

- Text classification
- DNA microarray analysis $(6000 \rightarrow 60,000)$ [2]
- o Image classification
- $\circ \quad \text{Face recognition} \\$
- Telecommunications

FS Classification

Feature selection methods are popularly classified based on their relationship with the learning algorithm

Filter methods

Fast execution

- Good generalization
- Robust to overfitting
- Possible redundancy
- Model independent
- Non 'optimal' selection

E.g: Gini, ReliefF, MRMR, CFS

Wrapper methods

- High accuracy
- Captures dependencies
- Poor generalization
- Risk of overfitting
- Computationally intense

E.g: SFS, SBS

Embedded methods

- Model dependent
- Moderate execution
- Captures dependencies
- Poor generalization

E.g. Tree based algorithms

An Example

- o Synthetic_control
- o 61 features
- o 600 instances
- 30 features
- Decision tree

 $Filter \, (Gini) \rightarrow 0.935$

Wrapper (SFS) \rightarrow 0.971

Embedded \rightarrow 0.89

Baseline $\rightarrow 0.97$

Limitations

- Existing methods were developed for small-medium dataset sizes
- Assuming that the entire dataset fits in the main memory

Scalability

Real-time

Techniques

- Distributed frameworks
- Parallel programming methods
- Cloud-computing-assisted learning methods

Real-time

Goal

This project focuses on making wrapper feature selection methods scalable by optimizing their search strategies through distribution and parallelism to enhance data preprocessing and, consequently, improve the performance of learning algorithms

Wrapper Feature Selection

Selection Strategies

Exponential

E.g. Exhaustive search

- o Considers all possible feature subset (2ⁿ 1)
- Guarantees to find optimal solution
- Exponential complexity (Impractical)
- Difficult to run even for moderate feature size

Population Based

E.g. Genetic algorithms

- Good tradeoff between computational cost and quality of solution
- Several parameters (affects outcome)
- Initialization strategy (affects outcome)
- Slow convergence

Sequential

E.g: Sequential forward selection

- Quick to converge
- No guarantee of finding optimal solution

Evaluation criterion

Performance measure of learning algorithm

- Accuracy
- AUC score
- o Precision
- Recall
- o F1
- Jaccard
- rand_score

Stop criteria

- Set performance threshold
- Number of selected features
- Number of iterations/generations
- Number of consecutive rounds without improvement

Related Works

Year	Paper	Approach
2013	A Distributed Wrapper Approach for Feature Selection [3]	Selection strategy: Sequential Forward Selection Equal vertical partitioning guided by information gain Result → Shortened execution time with maintained accuracy
2015	Evolutionary Feature Selection for Big Data Classification: A MapReduce Approach [4]	Selection strategy: Population based (CHC) Horizontal partitioning in HDFS, Mapreduce and MLLib (KNN) in Spark for selection and evaluation. Feature weight for aggregation Result → reduce adequately the number of features of large datasets, smaller storage, faster computation, and easier classification
2018	A Preliminary Study of the Feasibility of Global Evolutionary Feature Selection for Big Datasets under Apache Spark [5]	Selection strategy: Population based (CHC) MLLib (Decision Tree) in Spark for evaluation only Result → handle very big datasets with a large number of instances and features

Gaps

Experiments show success of these in dealing with the challenge of poor scalability

- Few works
- No tools
- Fixed evaluation

Horizontal partitioning

Online FS

Why?

- Growing features/instances
- Traditional batch approach is insufficient Existing solutions
- o Grafting [6]
- Online feature selection (OFS) [6]
- Online streaming feature selection (OSFS) [6]
- Feature ranking method + incremental learning algorithm [7]

Limitations

- Unvalidated with online ML algorithms
- Limited to feature-based learning algorithms

Objectives

- 1. Study present distributed feature selection methods for:
 - a. comparison of several search algorithms of wrapper feature selection through evaluation of the quality of final feature subset selected by each method and
 - economic cost analysis of parallelism of FS methods using cloud-computing-assisted learning methods
- 2. Optimize wrapper feature selection methods by adopting known distribution optimization techniques such as distributed frameworks with parallel computing, parallel programming methods, and several load partitioning and communication methods for distributed feature selection
- 3. Propose a novel adaptive feature selection method for data streams using online machine learning
- 4. Optimize the distribution and parallelism of feature engineering for Big Data
 - a. Analyze the scalability of feature engineering methods

Timeline

Timeline

A survey of Wrapper Feature Selection tools

Tools for wrapper FS

Tools: specifications

Tool	Lang.	Exponential	Population-based	Sequential	Parallelism
Weka	Java	X	Х	✓	Partial
Sklearn	Python	Х	Х	✓	Partial
Rapidminer	Java	✓	✓	✓	Partial
Mlxtend	Python	✓	Х	✓	Yes
scikit-feature	Python	X	Х	✓	No
FeatureSelect	Matlab	X	✓	Х	No

Tool	Limitations			
Weka	Poor implementation documentation			
Sklearn	Naive implementation of sequential selection (single stop criterion)			
Rapidminer	RapidMiner Studio Free upto 10,000 data rows and 1 Logical Processor			
Mlxtend	Naive implementation of sequential selection (single stop criterion)			
scikit-feature	Naive implementation of sequential sequential feature selection with evaluation criteria (Support Vector Machine and Decision Tree)			
FeatureSelect	Not maintained			

References

- 1. Bolón-Canedo, Verónica, et al. "Feature Selection: From the Past to the Future." Advances in Selected Artificial Intelligence Areas. Springer, Cham, (2022)
- 2. Bolón-Canedo, Verónica, et al. "A review of microarray datasets and applied feature selection methods." Information sciences 282 (2014):
- 3. Bolón-Canedo, Verónica, Noelia Sánchez-Marono, and Amparo Alonso-Betanzos. "A distributed wrapper approach for feature selection." ESANN. (2013)
- 4. Peralta, Daniel, et al. "Evolutionary feature selection for big data classification: A mapreduce approach." Mathematical Problems in Engineering 2015 (2015)
- 5. Galar, Mikel, et al. "A preliminary study of the feasibility of global evolutionary feature selection for big datasets under Apache Spark." 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE, (2018)
- 6. Bolón-Canedo, Verónica, Noelia Sánchez-Maroño, and Amparo Alonso-Betanzos. "Recent advances and emerging challenges of feature selection in the context of big data."

 Knowledge-based systems 86 (2015)
- 7. Katakis, Ioannis, Grigorios Tsoumakas, and Ioannis Vlahavas. "On the utility of incremental feature selection for the classification of textual data streams." Panhellenic Conference on Informatics. Springer, Berlin, Heidelberg, (2005)

