CSCI 566: Deep Learning and Its Applications

Jesse Thomason

Lecture 5: Recurrent Neural Networks

Map to the Midterm

January 2023

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

www.a-printable-calendar.com

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

February 2023

Wednesday

Thursday

Saturday

www.a-printable-calendar.com

Sunday

Monday

Tuesday

Module 1: Neural Network Basics

[Feb 17] Wrapping Up Module One

February 2023

Project Teams Formed	Feb 3		
Assignment 1 Out	Feb 10		
Project Proposal Due	Feb 17		
Midterm Exam	Feb 24		
Assignment 1 Due	Feb 27		

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	-			/

www.a-printable-calendar.com

Course Project Proposals Due Today

- See Piazza for assignment description details; 10 slides addressing:
 - Q1: What will your project aim to do? Articulate your objectives using absolutely no jargon.
 - Q2: What is new in your approach and why do you think it will be successful?
 - Q3: Who cares? If you are successful, what difference will it make?
 - Q4: What are the risks?
 - Q5: How much will it cost?
 - Q6: Who will do what? Outline your expectations for your team to hold yourselves accountable to one another and to us.
 - Q7: What is your expected timeline?

Midterm Next Week [Feb 24]

- The midterm exam will be conducted on Feb 24 during our class period after announcements (1:20pm to 4:20pm PT)
- You do not need to be physically present to take the exam
- The exam will be in the form of a link to a PDF (exam questions) and a link to a Google Form (to submit answers)
- The exam will be partially or entirely multiple choice
- The exam PDF and Google Form will be available only during the 1:20pm-4:20pm window; links will go up on Piazza
- We are still working on the exam, but we do not expect it to take most people the full class period to complete.

In-class "Pop-up" Quizzes

- These quizzes are a method of engaging with you while the class is happening
- They account for a very small fraction of your total grade
- There will probably be more than 5 of them
- They can, generally, not be made up or postponed
- If you usually attend class, this part of your evaluation will just

be totally fine

Deliverable	Points of the total grade
Pop-up Quizzes	5
TOTAL	100

Overview of Today's Plan

- Course organization and deliverables
 - Any questions before we move on?
- Recurrent Neural Networks
- Long-Short Term Memory
- Applications and Attention Mechanisms

Activation Functions

Activation Functions

Activation Functions

Leaky ReLU $\max(0.1x, x)$

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Video Topic Classification

- Input space X?
 - Images at every timestep
 - $\circ \quad \phi_{\mathbf{v}}(\mathbf{X}) = \mathbf{R}^{T,W,H,3}$

- Output space Y?
 - Output classes C
 - *X*=*C*

- Would a CNN make sense here?
 - o 3D CNN
- Where would filters that span the time dimension fail?
- What if we processed every frame with a 2D CNN?
 - Would need some method to aggregate through time.

Text Classification

- Input space X?
 - Review tokens T
 - \circ $X=T^N$ for max length N

- Output space Y?
 - Possible sentiments S
 - Y=S
- Classification via a multi-layer perceptron:
 - Represent x as a multi-hot "bag of words" vector that tells us which words are in the review and which aren't
- Weaknesses of an MLP model?
 - No ordering information
 - "cold ice cream and warm pizza"
 - "warm ice cream and cold pizza"

Text Classification

- Input space X?
 - Review tokens T
 - \circ $X=T^N$ for max length N

- Output space Y?
 - Possible sentiments S
 - Y=S

- Classification via a CNN
 - Represent x as a sequence of token embedding vectors
 - Filters can combine words close together
- Weaknesses?
 - Words may have long-range dependencies that are hard to see with CNNs that favor neighborhood information
 - E.g., Main verb of "The horse raced past the barn fell"?

Machine Translation

- Input space X?
 - Input tokens T
 - \circ $X=T^N$ for max length N

- Output space Y?
 - Output tokens V
 - \circ $X=V^N$ for max length M
- Would an MLP even make sense here?
 - What would our output classification be?
- Would a CNN even make sense here?
 - O What might the output architecture look like?
- Probably we need an entirely different approach!

- One-to-one
 - One input produces one output
 - Image classification

- One-to-many
 - One input produces a sequence of outputs

Image captioning

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

- Many-to-one
 - Sequence of inputs produces a single output

- Many-to-many
 - A sequence of inputs produces a sequence of outputs
 - Robot Actions

- Many-to-many variants:
 - Sequential one-to-one
 - Robot actions

- Encoder-decoder
 - Machine Translation

Unidirectional and Bidirectional Seq2Seq Models

Forward RNN

- Output y_t depends only on inputs so far $x_{0:t-1}$
 - E.g., robot actions

Bidirectional RNN

- Output y_t depends on all inputs $x_{0:L}$
 - E.g., machine translation

Recurrent Neural Networks

- We encode one input at a time to iteratively build up our representation of the sequence
- After each new input, we produce a new hidden state from which we could decode outputs (e.g., many-to-many)
- For classification (e.g., many-to-one), we can decode from the final hidden state that contains information about the whole input sequence
- We only need to *learn* how to map inputs to hidden states, hidden states to outputs, and hidden states to hidden states

Text Classification with a Recurrent Neural Network

NLP FUNDAMENTALS: Word Embeddings

- A word embedding is a fixed-length vector representation of a given string, such as "dog"; we'll say length h
- Word embedding vectors stacked together as rows form a matrix of $E^{|V|^*h}$ for V the set of words the model can understand as input
- That *embedding matrix* is differentiable and can be learned as part of our neural network architecture!
- We will cover word embeddings in more detail in Module 2

Text Classification with a Recurrent Neural Network

Recurrence In Neural Networks

- We can process a sequence of inputs one input at a time by defining a recurrence function
- Recurrence function takes two arguments: the next input and a state representing aggregated information from past inputs

Recurrence In Neural Networks

- Remember how CNN filters were just little linear layers?
- Same story for how we define f_{W} !
 - Vanilla RNN:

$$oxed{h_t} = f_W(oldsymbol{h_{t-1}}, oldsymbol{x_t})$$

Note that to compress notation we frequently drop bias vectors.

High Level Computation Graph for RNN

Backpropagation for RNN

Backpropagation for RNN

Backpropagation for RNNs

- But we... don't use RNNs?
- I know Transformers are all the rage, but even when RNNs were common we stopped using vanilla RNNs. Why?
- Let's look at our gradient step again:
 - $\circ \quad \theta := \theta \varepsilon \nabla_{di...dj} L[M(\phi(d), \theta)]$
 - Need the derivative of, in this example, cross entropy
- So L is $H(P^*|P)$
- $P(i) = M(\phi(d), \theta)$
- M is our fancy new RNN

$$H(P^*|P) = -\sum_{i} P^*(i) \log P(i)$$
TRUE CLASS
DISTIRBUTION
DISTIRBUTION
DISTIRBUTION

Text Classification with a Recurrent Neural Network

The Slide Where RNNs Lose

- $P(i) = M(\phi(d), \theta)$; R the RNN layer we're learning
 - ... E(t₁)...E(t₁)
 - ... R(E(t₁), 0) ...
 - o ... R(E(t₂), R(E(t₁), 0)) ...
 - R(E(t₁), ... R(E(t₄), R(E(t₃), R(E(t₂), R(E(t₁), 0))))...) ...
 - $P(i) = F(R(E(t_1), ..., R(E(t_2), R(E(t_3), R(E(t_2), R(E(t_1), 0))))...))$
- Just thinking about the *size* of ∇ , it'll be biggest at F
- For every nested call to R, the gradient vanishes further;
 remember that we're non-linearly squeezing with each R too

Truncated Backpropagation

- Run forward and backward through chunks of the sequence instead of the whole sequence
- Carry hidden states forward through chunks
- Truncate backprop after a few steps

RNN Cell

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^T)

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Computing gradient of h₀ involves many factors of W (and repeated tanh)

Gradient clipping: scale gradient if its norm is too big

To not squash downstream gradients, we need a new architecture.

Overview of Today's Plan

- Course organization and deliverables
- Recurrent Neural Networks
 - Any questions before we move on?
- Long-Short Term Memory
- Applications and Attention Mechanisms

- A dumb name for some complex cell architecture
 - The details of LSTMs have taken a backseat in NLP lately
 - Upshot: preserve more gradient by keeping more of the hidden state around between updates
- Gated Recurrent Units (GRU) are in the same family of attempts to get around this issue with sequence problems
- In many settings, the lower parameter count of LSTMs and GRUs makes them preferable to Transformers
- So we will still learn LSTMs!

 Intuition of LSTMs is to "flip" the default recurrence behavior from "squeeze out the history" to "mostly consider the history"
 Vanilla RNN

LSTM

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

ong short-term memory
$$i = \sigma(W_i \begin{bmatrix} h_{t-1} \\ \chi \end{bmatrix})$$

$$\underbrace{\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ tanh \end{pmatrix}}_{C_t = f \odot c_{t-1} + i \odot g} W_{h_t = o \odot tanh(c_t)}^{h_{t-1}} W_{g} \begin{bmatrix} h_{t-1} \\ \chi \\ h_{t-1} \end{bmatrix})}_{C_t = f \odot c_{t-1} + i \odot g}$$

$$g = tanh(W_g \begin{bmatrix} h_{t-1} \\ \chi \\ \chi \end{bmatrix})$$

f: Forget gate, Whether to erase cell i: Input gate, whether to write to cell g: Gate gate (?), How much to write to cell

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Text Classification with an LSTM

Text Classification with a Multi-Layer LSTM

Text Classification with a Multi-Layer LSTM

Addressing the Vanishing Gradient Problem

- What do you need to know?
 - LSTMs > vanilla RNNs basically all the time
 - Multi-layer LSTM makes sense; multi-layer vanilla RNN will have such bad gradient vanishing it probably won't train
 - LSTMs ~= GRUs; think of this choice as a hyperparameter you can tune on your validation data
 - Using an RNN/LSTM/GRU is different from using convolutional layers to process text (e.g., short segments combined with some kind of pooling layer)

Overview of Today's Plan

- Course organization and deliverables
- Recurrent Neural Networks
- Long Short Term Memory
 - Any questions before we move on?
- Applications and Attention Mechanisms

Recurrent Neural Network Applications

- Image Captioning
- Question Answering
- Visual Question Answering
- Speech Recognition
- Action Recognition in Videos
- Text Parsing
- Machine Translation
- Genomic Sequence Classification

Image Captioning with Sequential Decoder

A football player receives an award.

Image Captioning with Sequential Decoder

Text

Mary moved to the bathroom.

John went to the hallway.

Question

Where is Mary?

Answer

bathroom

Text

Mary moved to the bathroom.

John went to the hallway.

Text embedding

Question

Where is Mary?

Machine Translation and The Case for Contextual Info

The Case for Contextual Information

- English to Arabic translation
- Arabic has a few things English doesn't have, including the dual case, a noun- and verb- form for pairs
 - A tree sways
 - shajarat tata'arjah] شجرة تتأرجح
 - Two trees sway
 - shajaratan tatamayalan] شجرتان تتمایلان
 - The trees sway
 - [al'ashjar tata'arjah] الأشجار تتأرجح

Machine Translation and The Case for Contextual Info

Attention

Attention

- The final hidden state of an encoder may not carry enough information about previous tokens to perform decoding
- Attention reweights encoder states $h_{\rm e[1:L]}$ as a function of the decoder hidden state $h_{\rm d[t-1]}$ at each timestep
- A learned attention head determines the matching score between the decoder's last output state and each candidate encoder hidden state
- An attention head has shared weights for all encoder states, so it's cheap to add, parameter-wise

 What are some pitfalls or weaknesses we can anticipate with the attention mechanism described so far?

• Pitfalls:

- We probably still don't need the entire sequence for every decoding step
- A lot of our weights will be near zero, probably
- The shared parameters of the attention head might only learn to pick out certain dependencies (e.g., noun-verb agreement, determiner-gender agreement, ...)

- We probably still don't need the entire sequence for every decoding step
- Can limit attention to a window of k around current decoding index to limit computation

Encoder-Decoder Attention: Soft versus Hard

- A lot of our weights will be near zero, probably
- We could instead just use the most relevant hidden state

Soft Attention

Hard Attention

```
 \begin{array}{c} \Sigma_{i=1...[} \Sigma_{j=1...L}^{\underbrace{h_{e,i=1}}_{i=1...L}} \exp(a(h_{d1},h_{ei})) \\ 1 \end{array} ) \\ = \sum_{j=1...L} \exp(a(h_{d1},h_{ei})) \\ 1 \\
```

* with some tricks to ensure the whole pipeline stays differentiable

Encoder-Decoder Attention: Hard Versus Soft

Encoder-Decoder Attention: Hard Versus Soft

Encoder-Decoder Attention: Hard Versus Soft

Encoder-Decoder Attention: Multi-headed Attention

- The shared parameters of the attention head might only learn to pick out certain dependencies (e.g., noun-verb agreement, determiner-gender agreement, ...)
- We can create multi-headed attention, where we choose a number of attention heads k to learn independent of one another

Multi-Headed Attention

h_{d2} Multi-Headed Attention 893 Add+ شجرتان Norm shajaratan s(h_d) **RNN RNN** RNN **RNN** Embedding Layer V 999 128 137 ${\rm h_{d1},h_{e5}}$ $a_2 = FC(h_{d1}, h_{e1})$ $a_2 = FC(h_{d1}, h_{e1})$ $\mathbf{a_2} \text{=} \mathsf{FC}(\mathbf{h_{d1}}, \mathbf{h_{e1}})$ $a_2 = FC(h_{d1}, h_{e1})$ $a_2 = FC(h_{d1}, h_{e1})$

<S>

two

trees

Encoder-Decoder Attention: Recap

- The final hidden state of an encoder may not carry enough information about previous tokens to perform decoding
- Global Soft Attention creates a new conditional decoding vector x that is a weighted sum of all encoder hidden states, rather than only the final hidden state only
 - Subset of states: "Local" attention
 - Max score instead of weighted: "Hard" attention
- Multi-headed Attention learns multiple such scoring functions and sums the final vectors from each as the input hidden state

Action Items for You

- Your project proposals are due today
- The midterm exam is *next week* during class; Feb 24th
 - Covers material in Module 1 and assumes knowledge of material from prerequisite courses like CSCI 567
- Coding Assignment 1 is due Monday Feb 27th
- If you want to start thinking ahead, the next deliverable after
 Coding Assignment 1 is the *Project Survey Report* [March 10]
 - See syllabus for details

CSCI 566: Deep Learning and Its Applications

Jesse Thomason

Lecture 5: Recurrent Neural Networks