IN THE CLAIMS:

1. (Currently amended) A method of disrupting leukocyte function comprising <u>a step of</u> contacting leukocytes with a compound having a structure

$$R^1$$
 R^3
 R^2
 R^3
 R^3
 R^3
 R^3

wherein A is an optionally substituted monocyclic 5-membered heterocyclic ring system containing two or three nitrogen atoms or a bicyclic ring system containing at least two nitrogen atoms, and at least one ring of the bicyclic system is aromatic;

X is selected from the group consisting of $C(R^b)_2$, CH_2CHR^b , and $CH=C(R^b)$;

Y is selected from the group consisting of null, S, SO, and SO₂, NH, O, C(=O), OC(=O), C(=O)O, and NHC(=O)CH₂S;

 R^1 and R^2 , independently, are selected from the group consisting of hydrogen, C_{1-6} alkyl, aryl, heteroaryl, halo, NHC(=0) C_{1-3} alkyleneN(R^a)₂, NO₂, OR^a, CF₃, OCF₃, N(R^a)₂, CN, OC(=0) R^a , C(=0) R^a , C(=0)OR^a, arylOR^b, Het, NR^aC(=0) C_{1-3} alkyleneC(=0)OR^a, arylO- C_{1-3} alkyleneN(R^a)₂, arylOC(=0) R^a , C_{1-4} alkyleneC(=0)OR^a, OC₁₋₄alkyleneC(=0)OR^a, C_{1-4} alkyleneC(=0)- C_{1-4} alkyleneC(=0)OR^a, C(=0)NR^aSO₂R^a, C_{1-4} alkyleneN(C_{1-4} alkyleneOC₁₋₄alkyleneON(C_{1-4} alkyleneON(C_{1-4} a

OC₁₋₄alkyleneHet, OC₂₋₄alkyleneOR^a, OC₂₋₄alkyleneNR^aC(=O) - OR^a, NR^aC₁₋₄alkyleneN(R^a)₂, NR^aC(=O)R^a, NR^aC(=O)N(R^a)₂, N($SO^2C_{1-4}alkyl$)₂, NR^a($SO_2C_{1-4}alkyl$), $SO_2N(R^a)_2$, OSO₂CF₃, C₁₋₃alkylenearyl, C₁₋₄alkyleneHet, C₁₋₆alkyleneOR^b, C₁₋₃alkyleneN(R^a)₂, C(=O)N(R^a)₂, NHC(=O)C₁-C₃alkylenearyl, C₃₋₈cycloalkyl, C₃₋₈heterocycloalkyl, arylOC₁₋₃alkylene-N(R^a)₂, arylOC(=O)R^b, NHC(=O)C₁₋₃alkyleneC₃₋₈heterocycloalkyl, NHC(=O)C₁₋₃alkyleneHet, OC₁₋₄alkyleneOC₁₋₄alkylene-C(=O)OR^b, C(=O)C₁₋₄alkyleneHet, and NHC(=O)haloC₁₋₆alkyl;

or ${\bf R}^1$ and ${\bf R}^2$ are taken together to form a 3- or 4-membered alkylene or alkenylene chain component of a 5- or 6-membered ring, optionally containing at least one heteroatom;

 R^3 is selected from the group consisting of optionally substituted hydrogen, C₁₋₆alkyl, C₃₋₈cycloalkyl, C₃₋₈heterocycloalkyl, C₁₋₄alkylenecycloalkyl, C_{2-6} alkenyl, C_{1-3} alkylenearyl, aryl C_{1-3} alkyl, C(=0) R^a , aryl, heteroaryl, $C(=0)OR^a$, $C(=0)N(R^a)_2$, $C(=S)N(R^a)_2$, SO_2R^a , $SO_2N(R^a)_2$, $S(=0)R^a$, $S(=0)N(R^a)_2$, $C(=0)NR^aC_{1-4}alk$ ylene OR^a , $C(=O)NR^aC_{1-4}alkyleneHet$, $C(=O)C_{1-4}alkylenearyl$, $C(=0)C_{1-4}$ alkyleneheteroaryl, C_{1-4} alkylenearyl substituted with one or more of $SO_2N(R^a)_2$, $N(R^a)_2$, $C(=0)OR^a$, $NR^aSO_2CF_3$, CN, NO_2 , $C(=O)R^a$, OR^a , $C_{1-4}alkyleneN(R^a)_2$, and OC_{1-4} alkyleneN(R^a)₂, C_{1-4} alkyleneheteroaryl, C_{1-4} alkylene-Het, C_{1-4} alkyleneC(=0) C_{1-4} alkylenearyl, C_{1-4} alkyleneC(=0) - C_{1-4} alkyleneheteroaryl, C_{1-4} alkyleneC (=0) Het, C_{1-4} alkyleneC(=0)N(R^a)₂, C_{1-4} alkyleneO R^a , C_{1-4} alkyleneN R^a C(=0) R^a , C_{1-4} alkylene OC_{1-4} alkylene OR^a , C_{1-4} alkylene $N(R^a)_2$, C_{1-4} alkyleneC(=0)OR^a, and C_{1-4} alkyleneOC₁₋₄alkyleneC(=0)OR^a;

 R^a is selected from the group consisting of hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} heterocycloalkyl, C_{1-3} alkyleneN(R^c)₂, aryl, aryl C_{1-3} alkyl, C_{1-3} alkylenearyl,

heteroaryl, heteroaryl C_{1-3} alkyl, and C_{1-3} alkyleneheteroaryl;

or two R^a groups are taken together to form a 5- or 6-membered ring, optionally containing at least one heteroatom;

 R^b is selected from the group consisting of hydrogen, C_{1-6} alkyl, hetero C_{1-3} alkyl, C_{1-3} alkylenehetero C_{1-3} alkyl, arylhetero C_{1-3} alkyl, and aryl, heteroaryl, aryl C_{1-3} alkyl, heteroaryl C_{1-3} alkyl, C_{1-3} alkyleneheteroaryl;

 R^c is selected from the group consisting of hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, aryl, and heteroaryl;

Het is a 5- or 6-membered heterocyclic ring, saturated or partially or fully unsaturated, containing at least one heteroatom selected from the group consisting of oxygen, nitrogen, and sulfur, selected from the group consisting of 1,3-dioxolane, 2-pyrazoline, pyrazolidine, pyrrolidine, piperazine, pyrroline, 2H-pyran, 4H-pyran, morpholine, thiomorpholine, piperidine, 1,4-dithiane, and 1,4-dioxane, and optionally substituted with C₁₋₄alkyl or C(=0)OR^a;

and pharmaceutically acceptable salts $\frac{1}{2}$ and $\frac{1}{2}$ solvates,

in an amount sufficient to inhibit phosphatidylinositol 3-kinase delta activity in said leukocytes.

```
2.
                (Original)
                           The method according to
claim 1 wherein the compound is selected from the group
consisting of
2-(6-aminopurin-9-ylmethyl)-3-(2-chlorophenyl)-6,7-
dimethoxy-3H-quinazolin-4-one
2-(6-aminopurin-o-ylmethyl)-6-bromo-3-(2-chlorophenyl)-
3H-quinazolin-4-one
2-(6-aminopurin-o-ylmethyl)-3-(2-chlorophenyl)-7-
fluoro-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-6-chloro-3-(2-chlorophen-
yl)-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-(2-chlorophenyl)-5-
fluoro-3H-quinazolin-4-one
2-(6-aminopurin-o-ylmethyl)-5-chloro-3-(2-chlorophen-
yl)-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-(2-chlorophenyl)-5-
methyl-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-8-chloro-3-(2-chlorophen-
yl)-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-biphenyl-2-yl-5-chloro-
3H-quinazolin-4-one
5-chloro-2-(9H-purin-6-ylsulfanylmethyl)-3-o-tolyl-3H-
quinazolin-4-one
5-chloro-3-(2-fluorophenyl)-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-5-chloro-3-(2-fluorophen-
yl)-3H-quinazolin-4-one
3-biphenyl-2-yl-5-chloro-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
5-chloro-3-(2-methoxyphenyl)-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
```

```
3-(2-chlorophenyl)-5-fluoro-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-6,7-dimethoxy-2-(9H-purin-6-ylsul-
fanylmethyl)-3H-quinazolin-4-one
6-bromo-3-(2-chlorophenyl)-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-8-trifluoromethyl-2-(9H-purin-6-
ylsulfanylmethyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-2-(9H-purin-6-ylsulfanylmethyl)-3H-
benzo[q]quinazolin-4-one
6-chloro-3-(2-chlorophenyl)-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
8-chloro-3-(2-chlorophenyl)-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-7-fluoro-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-7-nitro-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-6-hydroxy-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
5-chloro-3-(2-chlorophenyl)-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-5-methyl-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-6,7-difluoro-2-(9H-purin-6-ylsulfan-
ylmethyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-6-fluoro-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-(2-isopropylphenyl)-5-
methyl-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-5-methyl-3-o-tolyl-3H-
quinazolin-4-one
```

```
3-(2-fluorophenyl)-5-methyl-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-5-chloro-3-o-tolyl-3H-
quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-5-chloro-3-(2-methoxy-
phenyl)-3H-quinazolin-4-one
2-(2-amino-9H-purin-6-ylsulfanylmethyl)-3-cyclopropyl-
5-methyl-3H-quinazolin-4-one
3-cyclopropylmethyl-5-methyl-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-cyclopropylmethyl-5-
methyl-3H-quinazolin-4-one
2-(2-amino-9H-purin-6-ylsulfanylmethyl)-3-cyclopropyl-
methyl-5-methyl-3H-quinazolin-4-one
5-methyl-3-phenethyl-2-(9H-purin-6-ylsulfanylmethyl)-
3H-quinazolin-4-one
2-(2-amino-9H-purin-6-ylsulfanylmethyl)-5-methyl-3-
phenethyl-3H-quinazolin-4-one
3-cyclopentyl-5-methyl-2-(9H-purin-6-ylsulfanylmethyl)-
3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-cyclopentyl-5-methyl-3H-
quinazolin-4-one
3-(2-chloropyridin-3-yl)-5-methyl-2-(9H-purin-6-ylsul-
fanylmethyl)-3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-(2-chloropyridin-3-yl)-5-
methyl-3H-quinazolin-4-one
3-\text{methyl}-4-[5-\text{methyl}-4-\text{oxo}-2-(9H-\text{purin}-6-\text{ylsulfanyl}-
methyl)-4H-quinazolin-3-yl]-benzoic acid
3-cyclopropyl-5-methyl-2-(9H-purin-6-ylsulfanylmethyl)-
3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-cyclopropyl-5-methyl-3H-
quinazolin-4-one
```

```
5-methyl-3-(4-nitrobenzyl)-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
3-cyclohexyl-5-methyl-2-(9H-purin-6-ylsulfanylmethyl)-
3H-quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-cyclohexyl-5-methyl-3H-
quinazolin-4-one
2-(2-amino-9H-purin-6-ylsulfanylmethyl)-3-cyclohexyl-5-
methyl-3H-quinazolin-4-one
5-methyl-3-(E-2-phenylcyclopropyl)-2-(9H-purin-6-ylsul-
fanylmethyl) -3H-quinazolin-4-one
3-(2-chlorophenyl)-5-fluoro-2-[(9H-purin-6-ylamino)-
methyl]-3H-quinazolin-4-one
2-[(2-amino-9H-purin-6-ylamino)methyl]-3-(2-chloro-
phenyl)-5-fluoro-3H-quinazolin-4-one
5-methyl-2-[(9H-purin-6-ylamino)methyl]-3-o-tolyl-3H-
quinazolin-4-one
2-[(2-amino-9H-purin-6-ylamino)methyl]-5-methyl-3-o-
tolyl-3H-quinazolin-4-one
2-[(2-fluoro-9H-purin-6-ylamino)methyl]-5-methyl-3-o-
toly1-3H-quinazolin-4-one
(2-chlorophenyl)-dimethylamino-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
5-(2-benzyloxyethoxy)-3-(2-chlorophenyl)-2-(9H-purin-6-
ylsulfanylmethyl)-3H-quinazolin-4-one
6-aminopurine-9-carboxylic acid 3-(2-chlorophenyl)-5-
fluoro-4-oxo-3,4-dihydro-quinazolin-2-ylmethyl ester
N-[3-(2-chlorophenyl)-5-fluoro-4-oxo-3,4-dihydro-
quinazolin-2-ylmethyl]-2-(9H-purin-6-ylsulfanyl)-
acetamide
2-[1-(2-fluoro-9H-purin-6-ylamino)ethyl]-5-methyl-3-o-
tolyl-3H-quinazolin-4-one
```

```
5-methyl-2-[1-(9H-purin-6-ylamino)ethyl]-3-o-tolyl-3H-
quinazolin-4-one
2-(6-dimethylaminopurin-9-ylmethyl)-5-methyl-3-o-tolyl-
3H-quinazolin-4-one
5-methyl-2-(2-methyl-6-oxo-1,6-dihydro-purin-7-ylmeth-
yl)-3-o-tolyl-3H-quinazolin-4-one
5-methyl-2-(2-methyl-6-oxo-1,6-dihydro-purin-9-ylmeth-
yl)-3-o-tolyl-3H-quinazolin-4-one
2-(amino-dimethylaminopurin-9-ylmethyl)-5-methyl-3-o-
toly1-3H-quinazolin-4-one
2-(2-amino-9H-purin-6-ylsulfanylmethyl)-5-methyl-3-o-
tolyl-3H-quinazolin-4-one
2-(4-amino-1,3,5-triazin-2-ylsulfanylmethyl)-5-methyl-
3-o-tolyl-3H-quinazolin-4-one
5-methyl-2-(7-methyl-7H-purin-6-ylsulfanylmethyl)-3-o-
toly1-3H-quinazolin-4-one
5-methyl-2-(2-oxo-1,2-dihydro-pyrimidin-4-ylsulfanyl-
methyl)-3-o-tolyl-3H-quinazolin-4-one
5-methyl-2-purin-7-ylmethyl-3-o-tolyl-3H-quinazolin-4-
one
5-methyl-2-purin-9-ylmethyl-3-o-tolyl-3H-quinazolin-4-
one
5-methyl-2-(9-methyl-9H-purin-6-ylsulfanylmethyl)-3-o-
toly1-3H-quinazolin-4-one
2-(2,6-Diamino-pyrimidin-4-ylsulfanylmethyl)-5-methyl-
3-o-tolyl-3H-quinazolin-4-one
5-\text{methyl}-2-(5-\text{methyl}-[1,2,4]\text{triazolo}[1,5-a]\text{pyrimidin}-7-
ylsulfanylmethyl)-3-o-tolyl-3H-quinazolin-4-one
5-methyl-2-(2-methylsulfanyl-9H-purin-6-ylsulfanyl-
methyl)-3-o-tolyl-3H-quinazolin-4-one
2-(2-hydroxy-9H-purin-6-ylsulfanylmethyl)-5-methyl-3-o-
tolyl-3H-quinazolin-4-one
```

```
5-methyl-2-(1-methyl-1H-imidazol-2-ylsulfanylmethyl)-3-
o-tolyl-3H-quinazolin-4-one
5-methyl-3-o-tolyl-2-(1H-[1,2,4]triazol-3-ylsulfanyl-
methyl)-3H-quinazolin-4-one
2-(2-amino-6-chloro-purin-9-ylmethyl)-5-methyl-3-o-
tolyl-3H-quinazolin-4-one
2-(6-aminopurin-7-ylmethyl)-5-methyl-3-o-tolyl-3H-
quinazolin-4-one
2-(7-amino-1,2,3-triazolo[4,5-d]pyrimidin-3-ylmethyl)-
5-methyl-3-o-tolyl-3H-quinazolin-4-one
2-(7-amino-1,2,3-triazolo[4,5-d]pyrimidin-1-ylmethyl)-
5-methyl-3-o-tolyl-3H-quinazolin-4-one
2-(6-amino-9H-purin-2-ylsulfanylmethyl)-5-methyl-3-o-
tolyl-3H-quinazolin-4-one
2-(2-amino-6-ethylamino-pyrimidin-4-ylsulfanylmethyl)-
5-methyl-3-o-tolyl-3H-quinazolin-4-one
2-(3-amino-5-methylsulfanyl-1,2,4-triazol-1-ylmethyl)-
5-methyl-3-o-tolyl-3H-quinazolin-4-one
2-(5-amino-3-methylsulfanyl-1,2,4-triazol-1-ylmethyl)-
5-methyl-3-o-tolyl-3H-quinazolin-4-one
5-methyl-2-(6-methylaminopurin-9-ylmethyl)-3-o-tolyl-
3H-quinazolin-4-one
2-(6-benzylaminopurin-9-ylmethyl)-5-methyl-3-o-tolyl-
3H-quinazolin-4-one
2-(2,6-diaminopurin-9-ylmethyl)-5-methyl-3-o-tolyl-3H-
quinazolin-4-one
5-methyl-2-(9H-purin-6-ylsulfanylmethyl)-3-o-tolyl-3H-
quinazolin-4-one
3-isobutyl-5-methyl-2-(9H-purin-6-ylsulfanylmethyl)-3H-
quinazolin-4-one
N-{2-[5-Methyl-4-oxo-2-(9H-purin-6-ylsulfanylmethyl)-
4H-quinazolin-3-yl]-phenyl}-acetamide
```

```
5-methyl-3-(E-2-methyl-cyclohexyl)-2-(9H-purin-6-yl-
sulfanylmethyl)-3H-quinazolin-4-one
2-[5-methyl-4-oxo-2-(9H-purin-6-ylsulfanylmethyl)-4H-
quinazolin-3-yll-benzoic acid
3-{2-[(2-dimethylaminoethyl)methylamino]phenyl}-5-
methyl-2-(9H-purin-6-ylsulfanylmethyl)-3H-quinazolin-4-
one
3-(2-chlorophenyl)-5-methoxy-2-(9H-purin-6-ylsulfanyl-
methyl)-3H-quinazolin-4-one
3-(2-chlorophenyl)-5-(2-morpholin-4-yl-ethylamino)-2-
(9H-purin-6-ylsulfanylmethyl)-3H-quinazolin-4-one
3-benzyl-5-methoxy-2-(9H-purin-6-ylsulfanylmethyl)-3H-
quinazolin-4-one
2-(6-aminopurin-9-ylmethyl)-3-(2-benzyloxyphenyl)-5-
methyl-3H-quinazolin-4-one;
2-(6-aminopurin-9-ylmethyl)-3-(2-hydroxyphenyl)-5-
methyl-3H-quinazolin-4-one;
2-(1-(2-amino-9H-purin-6-ylamino)) ethyl) -5-methyl-3-o-
tolyl-3H-quinazolin-4-one;
5-methyl-2-[1-(9H-purin-6-ylamino)propyl]-3-o-tolyl-3H-
quinazolin-4-one;
2-(1-(2-fluoro-9H-purin-6-ylamino)propyl)-5-methyl-3-o-
tolyl-3H-quinazolin-4-one;
2-(1-(2-amino-9H-purin-6-ylamino)propyl)-5-methyl-3-o-
toly1-3H-quinazolin-4-one;
2-(2-benzyloxy-1-(9H-purin-6-ylamino)ethyl)-5-methyl-3-
o-tolyl-3H-quinazolin-4-one;
2-(6-aminopurin-9-ylmethyl)-5-methyl-3-{2-(2-(1-methyl-
pyrrolidin-2-yl)-ethoxy)-phenyl}-3H-quinazolin-4-one;
2-(6-aminopurin-9-ylmethyl)-3-(2-(3-dimethylamino-
propoxy) -phenyl) -5-methyl-3H-quinazolin-4-one;
```

2-(6-aminopurin-9-ylmethyl)-5-methyl-3-(2-prop-2-ynyloxyphenyl)-3H-quinazolin-4-one; and 2-{2-(1-(6-aminopurin-9-ylmethyl)-5-methyl-4-oxo-4H-quinazolin-3-yl]-phenoxy}-acetamide.

3. (Currently amended) A method of inhibiting kinase activity of a phosphatidylinositol 3-kinase delta polypeptide comprising a step of contacting the polypeptide with a compound having a structure

$$R^1$$
 N
 R^3
 $X-Y$
 A
 (I)

wherein A is an optionally substituted
monocyclic 5-membered heterocyclic ring system containing two or three nitrogen atoms or a bicyclic ring
system containing at least two nitrogen atoms, and at
least one ring of the bicyclic system is aromatic;

X is selected from the group consisting of $C\left(R^{b}\right)_{2}\text{, }CH_{2}CHR^{b}\text{, }$ and $CH=C\left(R^{b}\right)\text{;}$

Y is selected from the group consisting of null, S, SO, and SO₂, NH, O, C(=O), OC(=O), C(=O)O, and NHC(=O)CH₂S;

 R^1 and R^2 , independently, are selected from the group consisting of hydrogen, C_{1-6} alkyl, aryl, heteroaryl, halo, NHC(=0) C_{1-3} alkyleneN(R^a)₂, NO₂, OR^a, CF₃, OCF₃, N(R^a)₂, CN, OC(=0) R^a , C(=0) R^a , C(=0)OR^a, aryloR^b, Het, NR^aC(=0) C_{1-3} alkyleneC(=0)OR^a, arylo-C₁₋₃alkyleneN(R^a)₂, aryloC(=0)R^a, C₁₋₄alkyleneC(=0)OR^a, OC₁₋₄alkyleneC(=0)OR^a, C₁₋₄alkyleneC(=0)OR^a, C(=0)NR^aSO₂R^a, C₁₋₄alkyleneN(R^a)₂, C₂₋₆alkenyleneN(R^a)₂, C(=0)NR^aC₁₋₄alkyleneOR^a, C(=0)NR^aC₁₋₄alkyleneHet,

 $\begin{array}{llll} & \text{OC}_{2\text{-4}}\text{alkyleneN}\left(R^{a}\right)_{2}, & \text{OC}_{1\text{-4}}\text{alkyleneCH}\left(\text{OR}^{b}\right)\text{CH}_{2}\text{N}\left(R^{a}\right)_{2}, \\ & \text{OC}_{1\text{-4}}\text{alkyleneHet}, & \text{OC}_{2\text{-4}}\text{alkyleneOR}^{a}, & \text{OC}_{2\text{-4}}\text{alkylene}- \\ & \text{NR}^{a}\text{C}\left(=\text{O}\right)\text{OR}^{a}, & \text{NR}^{a}\text{C}_{1\text{-4}}\text{alkyleneN}\left(R^{a}\right)_{2}, & \text{NR}^{a}\text{C}\left(=\text{O}\right)\text{R}^{a}, & \text{NR}^{a}\text{C}\left(=\text{O}\right)- \\ & \text{N}\left(R^{a}\right)_{2}, & \text{N}\left(\text{SO}^{2}\text{C}_{1\text{-4}}\text{alkyleneN}\left(R^{a}\right)_{2}, & \text{NR}^{a}\left(\text{SO}_{2}\text{C}_{1\text{-4}}\text{alkyleneHet}, & \text{C}_{1\text{-6}}\text{alkylene}- \\ & \text{OR}^{b}, & \text{C}_{1\text{-3}}\text{alkyleneN}\left(R^{a}\right)_{2}, & \text{C}\left(=\text{O}\right)\text{N}\left(R^{a}\right)_{2}, & \text{NHC}\left(=\text{O}\right)\text{C}_{1\text{-C}}\text{3}\text{alkylene}- \\ & \text{OR}^{b}, & \text{C}_{1\text{-3}}\text{alkyleneN}\left(R^{a}\right)_{2}, & \text{C}\left(=\text{O}\right)\text{N}\left(R^{a}\right)_{2}, & \text{NHC}\left(=\text{O}\right)\text{C}_{1\text{-3}}\text{alkylene}- \\ & \text{OC}_{1\text{-3}}\text{alkyleneN}\left(R^{a}\right)_{2}, & \text{aryloC}\left(=\text{O}\right)\text{R}^{b}, & \text{NHC}\left(=\text{O}\right)\text{C}_{1\text{-3}}\text{alkylene}- \\ & \text{C}_{3\text{-8}}\text{heterocycloalkyl}, & \text{NHC}\left(=\text{O}\right)\text{C}_{1\text{-3}}\text{alkyleneHet}, & \text{OC}_{1\text{-4}}\text{alk}- \\ & \text{yleneOC}_{1\text{-4}}\text{alkyleneC}\left(=\text{O}\right)\text{OR}^{b}, & \text{C}\left(=\text{O}\right)\text{C}_{1\text{-4}}\text{alkyleneHet}, & \text{and} \\ & \text{NHC}\left(=\text{O}\right)\text{haloC}_{1\text{-6}}\text{alkyl}; \end{aligned}$

or R¹ and R² are taken together to form a 3or 4-membered alkylene or alkenylene chain component of a 5- or 6-membered ring, optionally containing at least one heteroatom;

 R^3 is selected from the group consisting of optionally substituted hydrogen, C₁₋₆alkyl, C₃₋₈cycloalkyl, C_{3-8} heterocycloalkyl, C_{1-4} alkylenecycloalkyl, C_{2-6} alkenyl, C_{1-3} alkylenearyl, aryl C_{1-3} alkyl, C (=0) R^a , aryl, heteroaryl, $C(=0)OR^a$, $C(=0)N(R^a)_2$, $C(=S)N(R^a)_2$, SO_2R^a , $SO_2N(R^a)_2$, $S(=0)R^a$, $S(=0)N(R^a)_2$, $C(=0)NR^aC_{1-4}alk$ ylene OR^a , $C(=0)NR^aC_{1-4}$ alkyleneHet, $C(=0)C_{1-4}$ alkylenearyl, $C(=0)C_{1-4}$ alkyleneheteroaryl, C_{1-4} alkylenearyl substituted with one or more of $SO_2N(R^a)_2$, $N(R^a)_2$, $C(=0)OR^a$, $NR^aSO_2CF_3$, CN, NO_2 , $C(=O)R^a$, OR^a , $C_{1-4}alkyleneN(R^a)_2$, and OC_{1-4} alkyleneN(R^a)₂, C_{1-4} alkyleneheteroaryl, C_{1-4} alkyleneHet, C_{1-4} alkyleneC(=0) C_{1-4} alkylenearyl, C_{1-4} alkylene- $C(=0)C_{1-4}alkyleneheteroaryl, C_{1-4}alkyleneC(=0)Het,$ C_{1-4} alkylene $C(=0)N(R^a)_2$, C_{1-4} alkylene OR^a , C_{1-4} alkylene- $NR^{a}C(=0)R^{a}$, $C_{1-4}alkyleneOC_{1-4}alkyleneOR^{a}$, $C_{1-4}alkylene N(R^a)_2$, C_{1-4} alkylene $C(=0)OR^a$, and C_{1-4} alkylene OC_{1-4} alkyleneC(=0) OR^a ;

 R^a is selected from the group consisting of hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} heterocycloalkyl, C_{1-3} alkyleneN(R^c)₂, aryl, aryl C_{1-3} alkyl, C_{1-3} alkylenearyl, heteroaryl, heteroaryl C_{1-3} alkyl, and C_{1-3} alkyleneheteroaryl;

or two R^a groups are taken together to form a 5- or 6-membered ring, optionally containing at least one heteroatom;

 R^b is selected from the group consisting of hydrogen, C_{1-6} alkyl, hetero C_{1-3} alkyl, C_{1-3} alkylenehetero C_{1-3} alkyl, arylhetero C_{1-3} alkyl, and aryl, heteroaryl, aryl C_{1-3} alkyl, heteroaryl C_{1-3} alkyl, C_{1-3} alkylenearyl, and C_{1-3} alkyleneheteroaryl;

 R^{c} is selected from the group consisting of hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, aryl, and heteroaryl;

Het is a 5- or 6-membered heterocyclic ring, saturated or partially or fully unsaturated, containing at least one heteroatom selected from the group consisting of oxygen, nitrogen, and sulfur, selected from the group consisting of 1,3-dioxolane, 2-pyrazoline, pyrazolidine, pyrrolidine, piperazine, pyrroline, 2H-pyran, 4H-pyran, morpholine, thiomorpholine, piperidine, 1,4-dithiane, and 1,4-dioxane, and optionally substituted with C_{1-4} alkyl or C(=0)OR^a;

and pharmaceutically acceptable salts $\frac{1}{2}$ and $\frac{1}{2}$ solvates thereof.

4. (Currently amended) A compound having a general structural formula

$$R^{1}$$
 R^{2}
 N
 $X-Y-A$
 (I)

wherein A is an optionally substituted monocyclic 5-membered heterocyclic ring system containing two or three nitrogen atoms or a bicyclic ring system containing at least two nitrogen atoms, and at least one ring of the cyclic system is aromatic;

X is selected from the group consisting of $C(R^b)_2$, CH_2CHR^b , and $CH=C(R^b)$;

Y is selected from the group consisting of null, S, SO, and SO₂, NH, O, C(=O), OC(=O), C(=O)O, and NHC(=O)CH₂S;

 $R^1 \text{ and } R^2, \text{ independently, are selected from the group consisting of hydrogen, } C_{1-6}alkyl, \text{ aryl, } heteroaryl, halo, NHC(=0)C_{1-3}alkyleneN(R^a)_2, NO_2, OR^a, CF_3, OCF_3, N(R^a)_2, CN, OC(=0)R^a, C(=0)R^a, C(=0)OR^a, aryl-OR^b, Het, NR^aC(=0)C_{1-3}alkyleneC(=0)OR^a, arylOC_{1-3}alkyleneN(R^a)_2, arylOC(=0)R^a, C_{1-4}alkyleneC(=0)OR^a, OC_{1-4}alkyleneC(=0)OR^a, C_{1-4}alkyleneC(=0)OR^a, C(=0)-NR^aSO_2R^a, C_{1-4}alkyleneN(R^a)_2, C_{2-6}alkenyleneN(R^a)_2, C(=0)-NR^aC_{1-4}alkyleneOR^a, C(=0)NR^aC_{1-4}alkyleneHet, OC_{2-4}alkyleneOR^a, C(=0)NR^aC_{1-4}alkyleneOR^a, C(=0)NR^aC_{1-4}alkyleneOR^a, OC_{1-4}alkyleneHet, OC_{2-4}alkyleneOR^a, OC_{2-4}alkyleneOR^a, OC_{2-4}alkyleneNR^aC(=0)OR^a, NR^aC_{1-4}alkyleneOR^a, OC_{2-4}alkyleneOR^a, OC_{2-4}alkyleneOR^a, NR^aC_{2-4}alkyleneOR^a, NR^aC_{2-4}alkyleneOR$

NR^a(SO₂C₁₋₄alkyl), SO₂N(R^a)₂, OSO₂CF₃, C₁₋₃alkylenearyl, C₁₋₄alkyleneHet, C₁₋₆alkyleneOR^b, C₁₋₃alkyleneN(R^a)₂, C(=O)N(R^a)₂, NHC(=O)C₁-C₃alkylenearyl, C₃₋₈cycloalkyl, C₃₋₈heterocycloalkyl, arylOC₁₋₃alkyleneN(R^a)₂, aryl-OC(=O)R^b, NHC(=O)C₁₋₃alkyleneC₃₋₈heterocycloalkyl, NHC(=O)C₁₋₃alkyleneHet, OC₁₋₄alkyleneOC₁₋₄alkylene-C(=O)OR^b, C(=O)C₁₋₄alkyleneHet, and NHC(=O)haloC₁₋₆alkyl;

or R^1 and R^2 are taken together to form a 3or 4-membered alkylene or alkenylene chain component of a 5- or 6-membered ring, optionally containing at least one heteroatom;

 ${
m R}^3$ is selected from the group consisting of optionally substituted hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C₃₋₈heterocycloalkyl, C₁₋₄alkylenecycloalkyl, C_{2-6} alkenyl, C_{1-3} alkylenearyl, aryl C_{1-3} alkyl, C(=0) R^a , aryl, heteroaryl, $C(=0)OR^a$, $C(=0)N(R^a)_2$, $C(=S)N(R^a)_2$, SO_2R^a , $SO_2N(R^a)_2$, $S(=0)R^a$, $S(=0)N(R^a)_2$, $C(=0)NR^aC_{1-4}alk$ ylene OR^a , $C(=0)NR^aC_{1-4}$ alkyleneHet, $C(=0)C_{1-4}$ alkylenearyl, $C(=0)C_{1-4}$ alkyleneheteroaryl, C_{1-4} alkylenearyl substituted with one or more of $SO_2N(R^a)_2$, $N(R^a)_2$, $C(=0)OR^a$, $NR^aSO_2CF_3$, CN, NO_2 , $C(=O)R^a$, OR^a , $C_{1-4}alkyleneN(R^a)_2$, and OC_{1-4} alkylene $N(R^a)_2$, C_{1-4} alkyleneheteroaryl, C_{1-4} alkylene-Het, C_{1-4} alkyleneC(=0) C_{1-4} alkylenearyl, C_{1-4} alkyleneC(=0)- C_{1-4} alkyleneheteroaryl, C_{1-4} alkyleneC(=0)Het, C_{1-4} alkyleneC(=0)N(R^a)₂, C_{1-4} alkyleneO R^a , C_{1-4} alkyleneN R^a C(=0) R^a , C_{1-4} alkylene OC_{1-4} alkylene OR^a , C_{1-4} alkylene $N(R^a)_2$, C_{1-4} alkyleneC(=0)OR^a, and C_{1-4} alkyleneOC₁₋₄alkyleneC(=0)OR^a;

 R^a is selected from the group consisting of hydrogen, C_{1-6} alkyl, C_{3-8} cycloalkyl, C_{3-8} heterocycloalkyl, C_{1-3} alkyleneN(R^c)₂, aryl, aryl C_{1-3} alkyl, C_{1-3} alkylenearyl, heteroaryl C_{1-3} alkyl, and C_{1-3} alkyleneheteroaryl;

or two R^a groups are taken together to form a 5- or 6-membered ring, optionally containing at least one heteroatom;

 R^b is selected from the group consisting of hydrogen, C_{1-6} alkyl, hetero C_{1-3} alkyl, C_{1-3} alkylenehetero C_{1-3} alkyl, arylhetero C_{1-3} alkyl, and aryl, heteroaryl, aryl C_{1-3} alkyl, heteroaryl C_{1-3} alkyl, C_{1-3} alkylenearyl, and C_{1-3} alkyleneheteroaryl;

 $$\rm R^c$$ is selected from the group consisting of hydrogen, $C_{1\text{--}6}alkyl,\ C_{3\text{--}8}cycloalkyl,\ aryl,\ and\ heteroaryl;$

Het is a 5- or 6-membered heterocyclic ring, saturated or partially or fully unsaturated, containing at least one heteroatom selected from the group consisting of oxygen, nitrogen, and sulfur, selected from the group consisting of 1,3-dioxolane, 2-pyrazoline, pyrazolidine, pyrrolidine, piperazine, pyrroline, 2H-pyran, 4H-pyran, morpholine, thiomorpholine, piperidine, 1,4-dithiane, and 1,4-dioxane, and optionally substituted with C₁₋₄alkyl or C(=0)OR^a;

and pharmaceutically acceptable salts $\frac{}{and}$ $\frac{}{or}$ solvates thereof,

with the provisos that if X-Y is $\mbox{CH}_2\mbox{S,}$ then R^3 is different from

and if X-Y is CH_2S , then R^3 is different from $-CH_2CH(OH)\,CH_2OH$ substituted phenyl.

- 5. (Original) The compound of claim 4 wherein X is selected from the group consisting of CH_2 , CH_2CH_2 , CH=CH, $CH(CH_3)$, $CH(CH_2CH_3)$, and $CH_2CH(CH_3)$, and $C(CH_3)_2$.
- 6. (Original) The compound of claim 5 wherein Y is selected from the group consisting of null, S, and NH.

7. (Original) The compound of claim 5 wherein the A ring system is selected from the group consisting of

$$N$$
 N

, and

, and

8. (Original) The compound of claim 7 wherein the A ring system is substituted with one to three substituents selected from the group consisting of $N(R^a)_2$, halo, $C_{1-3}alkyl$, $S(C_{1-3}alkyl)$, OR^a , and

9. (Original) The compound of claim 8 wherein the A ring system is substituted with one to three substituents selected from the group consisting of NH₂, NH(CH₃), N(CH₃)₂, NHCH₂C₆H₅, NH(C₂H₅), Cl, F, CH₃, SCH₃, OH, and

10. (Original) The compound of claim 5 wherein R^1 and R^2 , independently, are selected from the group consisting of hydrogen, OR^a , halo, C_{1-6} alkyl, CF_3 , NO_2 , $N(R^a)_2$, NR^aC_{1-3} alkylene $N(R^a)_2$, and OC_{1-3} alkylene OR^a . Specific substituents include, but are not limited to, H, OCH_3 , Cl, Br, F, CH_3 , CF_3 , NO_2 , OH, $N(CH_3)_2$,

and $O(CH_2)_2OCH_2C_6H_5$, or R^1 and R^2 are taken together to form a five- or six-membered ring.

11. (Original) The compound of claim 5 wherein R^3 is selected from the group consisting of C_{1-6} alkyl, aryl, heteroaryl, C_{3-8} cycloalkyl, C_{3-8} heterocycloalkyl, C(=0) OR^a , C_{1-4} alkyleneHet, C_{1-4} alkylenecycloalkyl, C_{1-4} alkylenearyl, C_{1-4} alkyleneC(=0) C_{1-4} alkylenecaryl, C_{1-4} alkyleneC(=0) OR^a , C_{1-4} alkyleneC(=0) OR^a , C_{1-4} alkyleneC(=0) OR^a , OR^a , OR^a , and OR^a , and OR^a OR^a .

12. (Original) The compound of claim 5 wherein R^3 is selected from the group consisting of OR^a , C_{1-6} alkyl, aryl, heteroaryl, NO_2 , $N(R^a)_2$, $NR^aC(=0)R^a$, $C(=0)OC_2H_5$, $CH_2CH(CH_3)_2$,

and

13. (Original) The compound of claim 4 wherein R^3 is substituted with a substituent selected from the group consisting of halo, OR^a , C_{1-6} alkyl, aryl, heteroaryl, NO_2 , $N(R^a)_2$, $NR^aSO_2CF_3$, $NR^aC(=O)R^a$, $C(=O)OR^a$, $SO_2N(R^a)_2$, CN, $C(=O)R^a$, C_{1-4} alkyleneN(R^a)₂, OC_{1-4} alkyleneC(=O)N(R^a)₂, OC_{1-4} alkylenearyl, OC_{1-4} alkyleneheteroaryl, OC_{1-4} alkyleneHet, OC_{1-4} alkyleneN(OC_{1-4}

14. (Original) The compound of claim 4 wherein R^3 is substituted with a substituent selected from the group consisting of Cl, F, CH₃, CH(CH₃)₂, OH, OCH₃, OCH₂C₆H₅, O(CH₂)₃N(CH₃)₂, OCH₂C=CH, OCH₂C(=O)NH₂, C₆H₅, NO₂, NH₂, NHC(=O)CH₃, CO₂H, and N(CH₃)CH₂CH₂N(CH₃)₂, and


```
15.
               The compound of claim 4 selected from
the group consisting of:
2-(6-aminopurin-9-ylmethyl)-3-(2-benzyloxyphenyl)-5-
methyl-3H-quinazolin-4-one;
2-(6-aminopurin-9-ylmethyl)-3-(2-hydroxyphenyl)-5-
methyl-3H-quinazolin-4-one;
2-(1-(2-amino-9H-purin-6-ylamino)) ethyl) -5-methyl-3-o-
toly1-3H-quinazolin-4-one;
5-methyl-2-[1-(9H-purin-6-ylamino)propyl]-3-o-tolyl-3H-
quinazolin-4-one;
2-(1-(2-fluoro-9H-purin-6-ylamino)propyl)-5-methyl-3-o-
toly1-3H-quinazolin-4-one;
2-(1-(2-amino-9H-purin-6-ylamino)propyl)-5-methyl-3-o-ax
tolyl-3H-quinazolin-4-one;
2-(2-benzyloxy-1-(9H-purin-6-ylamino)ethyl)-5-methyl-3-...
o-tolyl-3H-quinazolin-4-one;
2-(6-aminopurin-9-ylmethyl)-5-methyl-3-{2-(2-(1-meth- <math>k_0)
ylpyrrolidin-2-yl)-ethoxy)-phenyl}-3H-quinazolin-4-one;
2-(6-aminopurin-9-ylmethyl)-3-(2-(3-dimethylaminopro-
poxy) -phenyl) -5-methyl-3H-quinazolin-4-one;
2-(6-aminopurin-9-ylmethyl)-5-methyl-3-(2-prop-2-
ynyloxyphenyl)-3H-quinazolin-4-one; and
2-\{2-(1-(6-aminopurin-9-ylmethyl)-5-methyl-4-oxo-4H-
quinazolin-3-yl]-phenoxy}-acetamide.
```