

Trigonometric Functions

by Sophia

WHAT'S COVERED

In this lesson, you will get a brief overview of the trigonometric functions, some properties, and graphs. Specifically, this lesson will cover:

- 1. The Three Basic Trigonometric Functions
- 2. Evaluating Trigonometric Functions
 - 2a. Using Right Triangles to Evaluate Trigonometric Functions
 - 2b. Evaluating Trigonometric Functions for Any Acute Angle
 - 2c. Evaluating Trigonometric Functions for 30°, 45°, and 60°
 - 2d. Defining Non-Acute Angles
 - 2e. The Unit Circle and Evaluating Trigonometric Functions for Any Angle
- 3. Radian Measure
 - 3a. Converting Between Degrees and Radians
 - 3b. Evaluating Trigonometric Functions Using Radian Measure
- 4. Finding an Input for a Known Output (Solving Trigonometric Equations)
- 5. Basic Trigonometric Graphs
 - 5a. The Graph of $y = \sin x$
 - 5b. The Graphs of $y = \cos x$ and $y = \tan x$
- 6. Frequently Used Trigonometric Identities

1. The Three Basic Trigonometric Functions

Consider the right triangle.

The sides "Opposite" and "Adjacent" are named this way relative to the angle θ (theta) marked in the triangle.

Going forward, "Opposite" means the length of the opposite side and "Adjacent" means the length of the adjacent side.

The hypotenuse is the side opposite the right angle, and is consequently the longest side of the right triangle.

Using this convention, there are six possible ratios that can be computed between two distinct sides of a right triangle. We will focus on three of these for now.

A **trigonometric function** assigns an angle to a ratio. That is, the input is the angle and the output is the ratio. The three basic trigonometric functions we will discuss for now are called the sine function (sin), the cosine function (cos), and the tangent function (tan).

To compute these functions, an angle must be used. Here are their definitions:

Definitions of the Sine, Cosine, and Tangent Functions

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

Trigonometric Function

2. Evaluating Trigonometric Functions

At first, we are going to only consider situations where θ is an **acute angle**, meaning its measure is more than 0° and less than 90°. When using trigonometric functions, it is important to note that an angle must accompany the name of the function. For example, we write $\sin \theta = \frac{5}{7}$, not $\sin \theta = \frac{5}{7}$. (Think about the square root function: You had to write $\sqrt{16} = 4$ as opposed to $\sqrt{=4}$.)

Acute Angle

An angle whose measure is more than 0° and less than 90° .

2a. Using Right Triangles to Evaluate Trigonometric Functions

 \approx EXAMPLE Using the right triangle, find the sine, cosine, and tangent of angle θ .

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{9}{41}$$

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{9}{41}$$
 $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{40}{41}$ $\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{9}{40}$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{9}{40}$$

All right triangles satisfy the Pythagorean theorem. Therefore, if two sides are given, the Pythagorean theorem can be used to find the unknown side.

 \Leftrightarrow EXAMPLE Using the right triangle, find the sine, cosine, and tangent of angle θ .

Let x = the adjacent side. To find x, the Pythagorean theorem is needed:

$$4^{2} + x^{2} = 6^{2}$$

$$16 + x^{2} = 36$$

$$x^{2} = 20$$

$$x = \sqrt{20} = 2\sqrt{5}$$

Now, here is the triangle with the unknown side filled in:

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{4}{6} = \frac{2}{3}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{4}{2\sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

In the result for $\tan \theta$ in the above example, the expression $\frac{2}{\sqrt{5}}$ is not considered simplified since there is a radical in the denominator. The process by which an expression like this is simplified is called rationalizing the denominator. In short, to rationalize a fraction with \sqrt{b} in the denominator, multiply by $\frac{\sqrt{b}}{\sqrt{b}}$.

Consider the right triangle below.

What is the length of the hypotenuse?

Let c = the hypotenuse.

$$a^2 + b^2 = c^2$$
 Pythagorean Theorem

$$6^2 + 4^2 = c^2$$
 Substitute $a = 6$ and $b = 4$.

$$52 = c^2$$
 Simplify.

$$c = \sqrt{52} = 2\sqrt{13}$$
 Solve for *c* by applying the square root to both sides, then write in simplest form.

The hypotenuse is $c = 2\sqrt{13}$.

What is the sine of angle θ ?

 $\sin \theta = \frac{2\sqrt{13}}{13}$. Here is why:

$$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}} \qquad \text{Definition of sine}$$

$$= \frac{4}{2\sqrt{13}} \qquad \text{Opposite side is 4, hypotenuse is } 2\sqrt{13} \,.$$

$$= \frac{2}{\sqrt{13}} \qquad \text{Remove common factor of 2.}$$

$$= \frac{2}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}} \qquad \text{Rationalize the denominator.}$$

$$= \frac{2\sqrt{13}}{13} \qquad \text{Simplify.}$$

What is the cosine of angle θ ?

 $\cos \theta = \frac{3\sqrt{13}}{13}$ · Here is why:

$$\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}} \qquad \text{Definition of cosine}$$

$$= \frac{6}{2\sqrt{13}} \qquad \text{Adjacent side is 6, hypotenuse is } 2\sqrt{13} \,.$$

$$= \frac{3}{\sqrt{13}} \qquad \text{Remove common factor of 2.}$$

$$= \frac{3}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}} \qquad \text{Rationalize the denominator.}$$

$$= \frac{3\sqrt{13}}{13} \qquad \text{Simplify.}$$

ī

What is the tangent of angle θ ?

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{4}{6} = \frac{2}{3}$$

2b. Evaluating Trigonometric Functions for Any Acute Angle

Most trigonometric functions require calculator use. On a typical scientific calculator, you will notice the "sin," "cos," and "tan" buttons.

Before practicing this, be sure that your calculator is in "degree" mode, which should be the default setting.

 \rightleftharpoons EXAMPLE Suppose we want the sine of the angle 40° . This is written $\sin(40^{\circ})$.

Using your calculator, press the "sin" key, then type in the number 40, then close the parenthesis. The result is a long decimal. Rounded to 4 places, we can say $\sin(40^\circ) \approx 0.6428$.

Use your calculator to answer the following questions.

What is the value of cos40°?

cos 40° ≈ 0.7660

What is the value of tan40°?

tan 40° ≈ 0.8391

2c. Evaluating Trigonometric Functions for 30°, 45°, and 60°

Most trigonometric functions produce values that are long decimals, which are irrational numbers. It turns out that the ratios corresponding to 30° , 45° , and 60° are concise enough that they are worth noting (and remembering!). This is why we sometimes refer to these angles as special angles.

This video reviews how these values are derived.

The exact values for all the special angles are as follows:

$$\sin 30^{\circ} = \frac{1}{2}$$

$$\sin 45^{\circ} = \frac{\sqrt{2}}{2}$$

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

Page 7

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
 $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$ $\cos 60^{\circ} = \frac{1}{2}$ $\tan 30^{\circ} = \frac{\sqrt{3}}{3}$ $\tan 45^{\circ} = 1$ $\tan 60^{\circ} = \sqrt{3}$

2d. Defining Non-Acute Angles

As it turns out, the work we have done with the trigonometric functions can be applied to any angle, not just acute angles. But how are non-acute angles handled?

For reference, we draw the x-axis and y-axis. The angle is represented by starting at the positive x-axis (which we call the initial side of an angle), then drawing counterclockwise. To show where the angle stops, a side is created (dashed). This is called the terminal side of the angle.

For example, here are what ^{110°} and ^{240°} look like:

It follows that angles can also be measured clockwise. These angles are negative. Some examples:

Lastly, it is also possible to talk about angles larger than 360° . These angles go through more than one full revolution.

Notice that the 450 ° angle above terminates at the same place that a 90 ° angle terminates. We call these angles coterminal. In general, coterminal angles have measures that differ by some multiple of 360 °.

Suppose you have the angle 110°.

Give measures of two angles that are coterminal to this angle.

+

There are many answers, but the most straightforward are $^{470}^{\circ}$ and $^{830}^{\circ}$.

2e. The Unit Circle and Evaluating Trigonometric Functions for Any Angle

This video shows how a unit circle, which is a circle with radius 1, can be connected with the trigonometric functions.

For your reference, here is the unit circle. It will also be accessible on the course dashboard.

□ HINT

From the unit circle, you can see that $\tan \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}$. This is a very useful identity that can be used to compute θ .

 \rightleftharpoons EXAMPLE Find the exact value of $\sin^{180^{\circ}}$ by using the unit circle.

On the unit circle, 180 ° corresponds to the point (-1, 0). Since the y-coordinate of the point is 0, it follows that $\sin 180$ ° = 0.

 \rightleftharpoons EXAMPLE Find the exact value of tan 315° by using the unit circle.

On the unit circle,
$$315^\circ$$
 corresponds to the point $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$. Since $\tan \theta = \frac{y}{x}$, it follows that $\tan 315^\circ = \frac{-\sqrt{2}/2}{\sqrt{2}/2} = -1$.

For negative angles and angles larger than 360 °, use a coterminal angle between 0 ° and 360 ° to evaluate the trigonometric function.

 \rightleftharpoons EXAMPLE Find the exact value of $\cos 420^{\circ}$.

On the unit circle, 420 ° has the same terminal side as 60 °. This means that $^{\cos 420}$ ° = $^{\cos 60}$ °. Since 60 ° corresponds to the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, $\cos 420$ ° = $\cos 60$ ° = $\frac{1}{2}$.

EXAMPLE Find the exact value of tan (-150°).

First, realize that
$$-150^\circ$$
 is coterminal with $-150^\circ + 360^\circ = 210^\circ$. Thus, $\tan(-150^\circ) = \tan 210^\circ$. Since 210° corresponds to the point $\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$, it follows that $\tan 210^\circ = \frac{-1/2}{-\sqrt{3}/2} = \frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$.

3. Radian Measure

Another way to measure angles is to use radians. One **radian** is defined as the central angle in the circle (see figure) so that the length of the circular arc is equal to the radius of the circle. Radians are used as a way of measuring angles because they represent a quantity, while degrees represent a scale.

Radian

The angle required to produce a circular arc whose length is equal to the radius. One radian is $\frac{180}{\pi}$ degrees.

3a. Converting Between Degrees and Radians

Thinking about the previous figure, consider making one trip around the entire circle, which has length $2\pi r$ (circumference). Remembering that each radian contributes a length of r to the circle, it follows that one full trip around the circle is $\frac{2\pi r}{r} = 2\pi$ radians.

Also recall that one full trip around the circle is 360° .

As a result, we see that $360^\circ = 2\pi$ radians. Dividing both sides by 2, we can also say that $180^\circ = \pi$ radians. Dividing both sides by π and 180 respectively, we have two rules to use when converting between radians and degrees:

	Formula	When To Use It			
Divide by π :	$\left(\frac{180}{\pi}\right)^{\circ} = 1 \text{ radian}$	When given an angle measured in radians, multiply by $\left(\frac{180}{\pi}\right)^{\circ}$ to			
-	(It)	get the angle measurement in degrees.			

Divide by 180:

$$1^{\circ} = \frac{\pi}{180}$$
 radians

When given an angle measured in degrees, multiply by $\frac{\pi}{180}$ to get the angle measurement in radians.

Д

FORMULA TO KNOW

Conversions Between Degrees and Radians

1 degree =
$$\frac{\pi}{180}$$
 radians

$$1 \text{ radian} = \frac{180}{\pi} \text{ degrees}$$

EXAMPLE Convert 45° to radians.

$$45 \cdot \frac{\pi}{180} = \frac{\pi}{4}$$
 radians

EXAMPLE Convert 2.1 radians to degrees.

$$2.1 \cdot \frac{180}{\pi} \approx 120.32^{\circ}$$

TRY IT

Convert the following from degrees to radians or vice versa.

Convert 240 degrees to radians. Leave your answer in terms of pi.

 $240 \cdot \frac{\pi}{180} = \frac{240\pi}{180} = \frac{4\pi}{3}$ radians

Convert 5.7 radians to degrees. Round your final answer to the nearest tenth.

 $5.7 \cdot \frac{180}{\pi} \approx 326.6^{\circ}$

\Box

HINT

When expressing angles in radians, it is customary to leave the angle in terms of π rather than approximate it. These angles are usually multiples of 15° .

Here is a list of some common angles you will encounter.

3b. Evaluating Trigonometric Functions Using Radian Measure

Remember that radian measure is another way to represent an angle, so it may be helpful to convert the angle to degrees first before evaluating. (Recall the special values you were given earlier and the values from the unit circle).

$$\cos\left(\frac{\pi}{4}\right) = \cos(45^\circ) = \frac{\sqrt{2}}{2}$$

$$\tan\left(\frac{5\pi}{6}\right) = \tan(150^\circ) = -\frac{\sqrt{3}}{3}$$

$$\sin\left(\frac{2\pi}{3}\right) = \sin(120^\circ) = \frac{\sqrt{3}}{2}$$

$$\cos\left(\frac{\pi}{2}\right) = \cos(90^\circ) = 0$$

4. Finding an Input for a Known Output (Solving Trigonometric Equations)

An equation where the angle is unknown and the ratio is known is called a trigonometric equation.

$$\cos \theta = \frac{1}{2}$$

$$\tan x = 3$$

$$\sin A = 0.4$$

Based on what we know from the unit circle, there are infinite solutions to a trigonometric equation if we include all coterminal angles. In most situations, we want to find all solutions in the first revolution of the circle, namely the interval $[0, 360^{\circ})$ or in radians, $[0, 2\pi)$.

For now, we will focus on known ratios that correspond to special angles. Other angles/ratios will be investigated in Unit 3.

 \approx EXAMPLE Find all solutions to $\sin x = 0$ on the interval $[0, 2\pi)$.

From the unit circle, the y-coordinate is the sine of the angle. The two points with a y-coordinate of 0 are 0 and 180 , or in radians, 0 and $^\pi$.

Thus, the solutions to the equation are x = 0 and $x = \pi$.

 \Leftrightarrow EXAMPLE Solve the equation $\tan x + 1 = 0$ on the interval $[0, 2\pi)$.

First, isolate the tan x term on one side by subtracting 1 from both sides: $\tan x = -1$.

We seek all angles x such that the ratio is -1. Consulting the unit circle, this means that $x = 135^{\circ}$ and 315° . In radians, that means $x = \frac{3\pi}{4}$ and $x = \frac{7\pi}{4}$.

Solve $2\sin x + 1 = 0$ on the interval $[0, 2\pi)$ by completing the following steps.

First, isolate sin *x* on one side.

$$\sin x = -\frac{1}{2}$$

Now consult the unit circle.

$$x = 210^{\circ}, x = 330^{\circ}$$

Convert to radians.

$$x = \frac{7\pi}{6}, \frac{11\pi}{6}$$

E TERM TO KNOW

Trigonometric Equation

An equation in which trigonometric functions are involved and the angle is unknown.

5. Basic Trigonometric Graphs

5a. The Graph of $y = \sin x$

Consider the function $y = \sin x$.

From the unit circle, here is a table of values that shows how the angles and the ratios are related.

х	0	<u>π</u> 6	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	<u>2π</u> 3	$\frac{3\pi}{4}$	<u>5π</u> 6	π
y = sinx	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
X	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	<u>5π</u> 3	$\frac{7\pi}{4}$	<u>11π</u> 6	2π	

y = sinx	- 1 2	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	- 1 2	0
----------	------------------	-----------------------	-----------------------	----	-----------------------	-----------------------	------------------	---

Here is the graph, limited to the points that are listed above.

Remember also that **coterminal angles** produce the same trigonometric values. Thus, we can say that $\sin(x \pm 2\pi) = \sin x$. Because of this relationship, we say that the sine function has a period of 2π , meaning that the graph repeats itself every 2π units. As a result, the complete graph of $y = \sin x$ is as follows:

The graph continues in this pattern indefinitely. Since there are no breaks or holes in the graph, the domain of $f(x) = \sin x$ is the set of all real numbers, also written in interval notation as $(-\infty, \infty)$. The range of this function

is [-1, 1] since the graph goes no higher than y = 1 and no lower than y = -1.

Coterminal Angles

Angles that have the same terminal side.

5b. The Graphs of $y = \cos x$ and $y = \tan x$

By following a similar process as above, we can obtain the graphs of $y = \cos x$ and $y = \tan x$:

Remember that $\tan x = \frac{\sin x}{\cos x}$. Therefore, $\tan x$ is undefined whenever $\cos x = 0$, which is when x is an odd multiple of $\frac{\pi}{2}$.

6. Frequently Used Trigonometric Identities

Recall that an identity is an equation that is true for all possible values of the variable.

 \rightleftharpoons EXAMPLE 2(x+3)=2x+6 is an identity. No matter what is substituted for x, both sides of the equation will have the same value.

The following are the most commonly used trigonometric identities.

Reciprocal Identities	Tangent/Cotangent Identities
Secant: $\sec \theta = \frac{1}{\cos \theta}$	$\tan \theta = \frac{\sin \theta}{\cos \theta}$
Cosecant: $\csc \theta = \frac{1}{\sin \theta}$	$\cot \theta = \frac{\cos \theta}{\sin \theta}$
Cotangent: $\cot \theta = \frac{1}{\tan \theta}$	
Cofunction Identities	Pythagorean Identities
$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$	$\sin^2\theta + \cos^2\theta = 1$
$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$	$1 + \tan^2 \theta = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$
$\tan\left(\frac{\pi}{2} - \theta\right) = \cot \theta$ $\cot\left(\frac{\pi}{2} - \theta\right) = \tan \theta$	(Note: The notation $\sin^2\theta$ means $(\sin\theta)^2$.)
$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$	
$\csc\left(\frac{\pi}{2} - \theta\right) = \sec \theta$	
(Note: If θ is measured in degrees, replace $\frac{\pi}{2}$ with 90° .)	
Sum of Angles Identities	Double-Angle Identities

$$sin(A \pm B) = sinAcosB \pm sinBcosA$$

$$cos(A \pm B) = cosAcosB \mp sinAsinB$$

$$tan(A \pm B) = \frac{tanA \pm tanB}{1 \mp tanAtanB}$$

Power-Reducing Identities

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\cos 2x = 2\cos^2 x - 1$$

$$\cos 2x = 1 - 2\sin^2 x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

Ŷ

SUMMARY

In this lesson, you learned about trigonometric functions, which assign an angle to a real number; in other words, they take an angle as input and return a real number as output. These real numbers stem from the ratio of sides of right triangles. You learned about **the three basic trigonometric functions**: the sine function ($\sin\theta$), the cosine function ($\cos\theta$), and the tangent function ($\tan\theta$).

You learned that there are many representations that are useful in evaluating trigonometric functions, such as using right triangles. You also explored evaluating trigonometric functions for any acute angle (an angle whose measure is more than 0° and less than 90°), evaluating trigonometric functions for 30°, 45°, and 60° (special angles with concise corresponding ratios), defining non-acute angles, the unit circle, and evaluating trigonometric functions for any angle.

You learned about another way to measure angles by using radian measure, noting that one radian is defined as the central angle in the circle so that the length of the circular arc is equal to the radius of the circle. Radians are used as a way of measuring angles because they represent a quantity, while degrees represent a scale. Using this knowledge, you explored converting between degrees and radians and evaluating trigonometric functions using radian measure.

You investigated finding an input for a known output, or solving trigonometric equations, which are equations where the angle is unknown and the ratio is known, and explored basic trigonometric graphs, including the graph of $y = \sin x$, $y = \cos x$ and $y = \tan x$. Lastly, you covered a selection of frequently used trigonometric identities that will be utilized later in this course.

Source: THIS TUTORIAL WAS AUTHORED BY Jason Malozzi FOR SOPHIA LEARNING. PLEASE SEE OUR **TERMS OF USE**.

TERMS TO KNOW

Acute Angle

An angle whose measure is more than 0° and less than 90° .

Coterminal Angles

Angles that have the same terminal side.

Radian

The angle required to produce a circular arc whose length is equal to the radius. One radian is $\overline{}$ degrees.

Trigonometric Equation

An equation in which trigonometric functions are involved and the angle is unknown.

Trigonometric Function

Uses an angle as an input and returns a ratio as the output.

FORMULAS TO KNOW

Conversions Between Degrees and Radians

1 degree =
$$\frac{\pi}{180}$$
 radians

$$1 \text{ radian} = \frac{180}{\pi} \text{ degrees}$$

Definitions of the Sine, Cosine, and Tangent Functions

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$