C++程式設計基礎 week 3

陳毅

上週回顧

- 條件控制
- 迴圈控制

條件控制

- 關係運算符(>,<,>=,<=,!=)
- 邏輯運算符 (&& (AND), || (OR),! (NOT))
- if-else if-else
- switch

```
(條件式1){
  程式區塊1;
else if (條件式2){
  程式區塊2;
else if (條件式N){
  程式區塊N;
else {
  程式區塊N+1;
```

```
switch (變數/運算式){
   case 值1:
       程式敘述1;
       break;
   case 值2:
       程式敘述2;
       break;
       . . .
   case 值N:
       程式敘述N;
       break;
   default:
       程式敘述N+1;
       break;
```

迴圈控制

• for迴圈

• while迴圈

• do-while迴圈

- continue敘述
- break敘述

```
(起始式; 判斷式; 運算式){
   程式敘述;
     (判斷式){
   程式敘述;
do
   程式敘述;
} while (判斷式);
```

練習

- 以亂數擲10000次骰子,並分別列出出現1、2、3、4、5、6點的次數。(Dice.cpp)
- 輸入兩個數字,求最大公因數,與最小公倍數。
- 列出1~100中的所有質數。
- 列出九九乘法表。

本週概要

- 使用者函數(自定義函數)
 - 函數的架構
 - 引數(參數)的傳遞

使用者函數(自定義函數)

好處

- 將重複功能的部分,使用函數替代,增加程式碼的可利用性。
- 將複雜的程式切分成數個較小且簡單的問題,在維護和修改上會 更為方便。
- •程式語言中的函數並**不單單只是數學函數**,它真正有用的是,可以**實作並包裝一個功能**,讓程式設計師能有效率地去拼組出一個複雜的程式。

• 黑盒子

• 與他人合作開發時,可將自己負責的部分進行<u>封裝</u>,別人只需要知道輸入與輸出,不需要知道實作方式,即可使用。

函數的架構

函數雛型(Declaration)

用來告訴編譯器,這個程式會有哪些函數。

型態 函數名稱(引數1型態,引數2型態, ...);

函數宣告(Definition)

用來定義一個函數實際的執行內容。

```
型態 函數名稱(引數1,引數2, ...){
程式敘述;
...
}
```

```
#include <iostream>
using namespace std;
void I_AM_A_FUNCTION(int, int);
int main(){
    I_AM_A_FUNCTION(1, 2);
    return 0;
void I_AM_A_FUNCTION(int a, int b){
    cout << a << " " << b << endl;
    return;
```

函數的架構

• return 敘述

- 可以將變數傳回呼叫它的函數內。
- 傳回的值必須與函數宣告時的型態相同。
- 在函數中,一旦執行到return敘述,程式將直接結束這個函數的執行。

圖片來源: https://ithelp.ithome.com.tw/articles/10192017

練習

- 請寫一個函數,用以計算整數的次方。
 - 輸入:int a, int n
 - 輸出:a^n
- 請寫一個函數,找出四個整數中的最大值。
 - 輸入: int a, int b, int c, int d
 - 輸出:max(a,b,c,d)
- •請寫一個函數,在螢幕上輸出10行「Hello, world!」。
 - 輸入:無
 - 輸出:無

下週放假!春假愉快!