

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

EducT 129 00.875

WELLS'S NEW FOUR-PLACE LOGARITHMIC

TABLES

By Exchange

3 2044 097 012 868

Harvard College Library

By Exchange

WELLS'S MATHEMATICAL SERIES.

Academic Arithmetic. First Course in Algebra.

Algebra for Secondary Schools.

Text-Book in Algebra.

Essentials of Algebra.

Academic Algebra. New Higher Algebra.

University Algebra.

College Algebra.

Advanced Course in Algebra.

Advanced Course in Argeorae

New Plane and Solid Geometry.
Essentials of Plane and Solid Geometry.

Complete Trigonometry.

New Plane Trigonometry.

New Plane and Spherical Trigonometry.

Four-Place Logarithmic Tables.

Six-Place Logarithmic Tables.

D. C. HEATH & CO.. Publishers.

FOUR PLACE

LOGARITHMIC TABLES

TOGETHER WITH A

TABLE OF NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS

PREPARED BY

WEBSTER WELLS, S.B.

PROFESSOR OF MATHEMATICS IN THE MASSACHUSETTS .
INSTITUTE OF TECHNOLOGY

D. C. HEATH & CO., PUBLISHERS
BOSTON NEW YORK CHICAGO

HARVARD COLLEGE LIGRARY
By exchange from
OBERLIN COLLEGE LIBRARY

ACCES - 30, 19 2 6

1c7

COPYRIGHT, 1887 AND 1900, By WEBSTER WELLS

USE OF THE TABLES.

I. USE OF THE TABLE OF LOGARITHMS OF NUMBERS.

This table (pages 12 and 13) gives the mantissæ of the logarithms of all integers from 100 to 1000, calculated to four places of decimals.

TO FIND THE LOGARITHM OF A NUMBER OF THREE FIGURES.

Look in the column headed "No." for the first two significant figures of the given number.

Then the required mantissa will be found in the corresponding horizontal line, in the vertical column headed by the third figure of the number.

Finally, prefix the characteristic in accordance with the rules of §§ 66 or 67.

For example, $\log 168 = 2.2253$; $\log .0344 = 8.5366 - 10$; etc.

For a number consisting of one or two significant figures, the column headed 0 may be used.

Thus, let it be required to find log 83 and log 9.

By § 80, log 83 has the same mantissa as log 830, and log 9 the same mantissa as log 900.

Hence, $\log 83 = 1.9191$, and $\log 9 = 0.9542$.

To find the Logarithm of a Number of more than Three Figures.

Ex. 1. Required the logarithm of 327.6.

From the table, $\log 327 = 2.5145$,

and $\log 328 = 2.5159$.

That is, an increase of one unit in the number produces an increase of 2014 in the logarithm.

Therefore, an increase of \mathcal{S} of a unit in the number will produce an increase of $\mathcal{S} \times \mathcal{D}014$ in the logarithm, or .0008 to the nearest fourth decimal place.

Here, $\log 327.6 = 2.5145 + .0008 = 2.5153$.

Note 1. The above method is based on the assumption that the differences of logarithms are proportional to the differences of their corresponding numbers; which, though not strictly accurate, is sufficiently exact for practical purposes.

Note 11. The difference between any mantissa in the table and the mantissa of the next higher number of three figures, is called the tabular difference. The subtraction may be performed mentally.

The following rule is derived from the above:

Find from the table the mantissa of the first three significant figures, and the tabular difference.

Multiply the latter by the remaining figures of the number with a decimal point before them. (See Note III.)

Add the result to the mantissa of the first three significant figures, and prefix the proper characteristic.

Mote III. In finding the correction to the nearest unit's figure, the decimal portion should be omitted provided that, if it is .5 or more than .5, the unit's figure is increased by 1. Thus, 13.26 would be taken as 13; 30.5 as 31; 22.803 as 23.

Ex. 2. Find the logarithm of .021508.

TO FIND THE NUMBER CORRESPONDING TO A LOGARITHM

Ex. 1. Required the number whose logarithm is 1.6571. Find in the table the mantissa 6571.

In the corresponding line, in the column headed "No." we find 45, the first two figures of the required number, and at the head of the column we find 4, the third figure.

Since the characteristic is 1, there must be two places to the left of the decimal point (§ 66).

Hence, the number corresponding to 1.6571 is 45.4.

Ex. 2. Required the number whose logarithm is 2.3934.

We find in the table the mantissæ 3927 and 3945, whose corresponding numbers are 247 and 248, respectively.

That is, an increase of 18 in the mantissa produces an increase of one unit in the number corresponding.

Therefore, an increase of 7 in the mantissa will produce an increase of $\frac{7}{18}$ of a unit in the number, or .4, nearly.

Hence, the number corresponding is 247 + .4, or 247.4.

The following rule is derived from the above:

Find from the table the next less mantissa, the three figures corresponding, and the tabular difference.

Subtract the next less from the given mantissa, and divide the remainder by the tabular difference. (See Note V.)

Annex the quotient to the first three figures of the number, and point off the result. (See Note IV.)

Note IV. The rules for pointing off are the reverse of the rules for characteristic given in §§ 66 and 67.

- 1. If -10 is not written after the mantissa, add 1 to the characteristic, giving the number of places to the left of the decimal point.
- 2. If -10 is written after the mantissa, subtract the positive part of the characteristic from 9, giving the number of ciphers to be placed between the decimal point and first significant figure.
 - Ex. 3. Find the number whose logarithm is 8.5265 10

5265 Next less mantissa = 5263; three figures corresponding, 386,

Tabular difference = 13)2.00(.15 = .2, nearly.

By the rule of Note IV., there will be one cipher between the decimal point and first significant figure.

Hence, the number corresponding = .03362.

Note V. The correction can usually be depended upon to one decimal place; the division should be carried out to two decimal places in order to determine the last figure accurately. (See Note III.)

II. USE OF THE TABLE OF LOGARITHMIC SINE COSINES, ETC.

This table (pages 14 to 19) gives the logarithms of the sines, cosines, tangents, and cotangents of all angles at intervals of 10 minutes from 0° to 90°.

For angles between 0° and 45°, the degrees and minutes will be found in the *left-hand* column, and the functions in the columns designated by the names at the *top*; that is, sines in the first column, cosines in the second, tangents in the third, and cotangents in the fourth.

For angles between 45° and 90°, the degrees and minutes will be found in the *right-hand* column, and the functions in the columns designated by the names at the *foot*; that is, cosines in the first column, sines in the second, cotangents in the third, and tangents in the fourth.

If only the mantissa of the logarithm is found, the characteristic may be determined from the nearest logarithm in the same column in which the characteristic is given.

Since the sines and cosines of all acute angles, the tangents of angles between 0° and 45° , and the cotangents of angles between 45° and 90° , are less than unity, the characteristics of their logarithms have been increased by 10, and -10 must be written after the mantissa; in all other cases, the true value of the characteristic is given in the table.

Thus,
$$\log \sin 38^{\circ} 30' = 9.7941 - 10$$
; $\log \tan 65^{\circ} 20' = 0.3380$; $\log \cot 79^{\circ} 10' = 9.2819 - 10$; $\log \cos 89^{\circ} 40' = 7.7648 - 10$; etc.

To find the Logarithmic Sine, Cosine, Tangent, or Cotangent, of any Acute Angle expressed in Degrees and Minutes.

Find from the table the logarithmic sine, cosine, tangent, or cotangent of the next less multiple of ten minutes, and the difference for 1' corresponding. (See Note VI.)

Multiply this difference by the number of minutes remaining.

If sine or tangent, add

If cosine or cotangent, subtract

this correction.

Note VI. The columns immediately to the right of those headed "Sin.," "Cos.," and "Tan.," contain the respective differences for 1'; the right-hand column of differences is also to be used with the column headed "Cot."

It will be observed that the differences do not stand in the same horizontal line with the logarithms, but opposite the intervals between consecutive logarithms. For angles below 45°, the difference next below should be taken; for angles above 45°, the difference next above.

Note VII. The rule assumes that the differences of the logarithmic functions are proportional to the differences of their corresponding angles, which, unless the angle is near to 0° or 90°, is in general sufficiently exact for practical purposes. (See page 9.)

Note VIII. If the angle is expressed in degrees, minutes, and seconds, the seconds should be reduced to the decimal part of a minute before applying the rule.

Ex. 1. Find log tan 17° 14'.

Ex. 2. Find log cos 58° 33.5'.

To find the Acute Angle corresponding to a given Logarithmic Sine, Cosine, Tangent, or Cotangent.

Take from the table, if sine or tangent the next less, if cosine or cotangent the next greater, logarithmic function, the angle corresponding, and the difference for 1'. (See Note IX.)

Find the difference between the given logarithm and that taken from the table, and divide it by the difference for 1', giving the correction in minutes.

Add the result to the angle corresponding to the next less, or next greater, function.

Note IX. In searching for the next less (or greater) logarithm, attention must be paid to the fact that the functions are found in different columns according as the angle is below or above 45°.

If, for example, the next less logarithmic sine is found in the column with "Sin." at the top, the angle corresponding must be taken from the left-hand column; but if it is found in the column with "Sin." at the foot, the angle corresponding must be taken from the right-hand column. Similar considerations hold with respect to the other three functions.

Ex. 1. Find the angle whose $\log \sin = 9.9594 - 10$.

$$9.9594 - 10$$

Next less $\log \sin = 9.9590 - 10$; angle corresponding = 65° 30′, D. 1′ = .6)4.0(6.66 = 6.7, nearly.

Adding the correction, the result is 65° 36.7'.

Ex. 2. Find the angle whose $\log \cot = 0.1696$.

Next greater log cot = 0.1710; angle corresponding = 34° 0'

D. 1' = 2.7)14.0(5.18 = 5.2, nearly.

13 5

50

27

280 Result, 34° 5.3'.

TO FIND THE LOGARITHMIC SECANT OF COSECANT OF ANY ACUTE ANGLE.

Since
$$\sec x = \frac{1}{\cos x}$$
 and $\csc x = \frac{1}{\sin x}$, we have by § 85,

 $\log \sec x = \operatorname{colog} \cos x$, and $\log \csc x = \operatorname{colog} \sin x$.

Hence, to find the logarithmic secant, subtract the logarithmic cosine from 10-10; and to find the logarithmic cosecant, subtract the logarithmic sine from 10-10.

Ex. Find log sec 22° 38'.

From the table, $\log \cos 22^{\circ} 38' = 9.9652 - 10$

Subtracting from 10 - 10, we have

 $\log \sec 22^{\circ} 38' = 0.0348.$

Note X. The logarithmic cotangent of an angle may be obtained by subtracting the logarithmic tangent from $10 \div 10$.

To find the Logarithmic Functions of an Angle Not Lying between the Limits 0° and 90°.

By § 34, any function of any angle may be expressed as a function of a certain acute angle; and hence the table of the functions of acute angles serves to determine the functions of angles of any magnitude whatever, positive or negative.

Ex. Find log sin 152° 16'.

By § \$4, $\sin 152^{\circ} 16' = \cos 62^{\circ} 16'$.

Then, $\log \sin 152^{\circ} 16' = \log \cos 62^{\circ} 16' = 9.6678 - 10$.

Another method would be to find the logarithmic sine of 27° 44′, the supplement of 152° 16′ (§ 32).

Note XI. If the natural function is negative, as for example in the case of the cosine of an angle between 90° and 180°, there is no logarithmic function, strictly speaking. (See Note before § 87.)

In solving examples involving such functions, we proceed as if the functions were positive, and determine the algebraic sign of the result irrespective of the logarithmic work. Illustrations of this will be found

Chapters X. and XI.

III. USE OF THE TABLE OF NATURAL SINES AND COSINES.

This table (pages 20 and 21) gives the natural values of the sines and cosines of all angles at intervals of 10 minutes from 0° to 90°, calculated to four places of decimals.

Its use is similar to that of the table of logarithmic functions, except that the tabular differences for 1' are not given, but are to be calculated from the table when required.

Ex. 1. Find sin 48° 52'.

The difference between sin 48° 50′ and sin 49° 0′ is .0019, one-tenth of which is .00019.

sin 48° 50' = .7528 D. 1' = 1.9
$$\frac{4}{.7532}, Ans.$$
 Corr. = $3.8 = 4$, nearly.

Ex. 2. Find the angle whose $\cos = .5506$.

The difference between the next greater and next less functions, .5519 and .5495, is .0024; one-tenth of which is .00024.

Next greater cos = .5519; angle corresponding = 56° 80'.

IV. USE OF THE TABLE OF NATURAL TANGENTS AND COTANGENTS.

This table (pages 22 and 23) gives the tangents and cotangents of all angles at intervals of 10 minutes from 0° to 90°; its use is similar to that of the table of natural sines and cosines.

V. MORE ACCURATE METHOD FOR FINDING THE LOGARITHMIC FUNCTIONS OF ANGLES NEAR TO 0° OR 90°.

It was stated in Note VII., page 5, that in general the differences of the logarithmic functions are approximately proportional to the differences of their corresponding angles. It will be seen from the table that this is not the case with the logarithmic sines, tangents, and cotangents of angles near to 0°, nor with the logarithmic cosines, tangents, and cotangents of angles near to 90°.

Thus, the difference for 1' in the case of the logarithmic sine or tangent of an angle between 40' and 50' is 96.9, while for an angle between 50' and 1° it is 79.2.

A very accurate method for finding the logarithmic sine or tangent of an angle near to 0°, or the logarithmic cosine or cotangent of an angle near to 90°, is to first calculate the natural function by aid of the table of natural sines and cosines, or of natural tangents and cotangents, and then find the logarithm of the result.

To find the angle corresponding in similar cases, find the number corresponding to the logarithmic function, and then, by aid of the tables of natural functions, calculate the angle corresponding to the result.

Ex. 1. Find log sin 0° 56'.

From the table of natural sines and cosines, we obtain

natural $\sin 0^{\circ} 56' = .016289$.

Whence.

 $\log \sin 0^{\circ} \, 56' = 8.2119 - 10.$

This result is correct to the last place of decimals; by the ordinary method we should have obtained 8.2102 - 10.

Ex. 2. Find the angle whose $\log \tan = 8.0302 - 10$.

The number corresponding to this logarithm is .01072.

From the table of natural tangents and cotangents, the angle whose natural tangent is .01072 is 36.85'.

This is correct to the last place of decimals; the ordinary method would have given 37.15'.

Note XII. To find with accuracy the log cotangent of an angle near to 0° , find the log tangent of the angle by the above method, and then subtract the result from 10-10. (See Note X., page 7.)

To find the angle corresponding to a log cotangent in a similar case, find the log tangent of the angle (Note X.), and then find the angle corresponding as above.

Note XIII. To find the log tangent of an angle near to 90°, find the log tangent of its *complement*, and subtract the result from 10-10. (See Note XII.)

To find the angle corresponding in a similar case, find the angle corresponding to its cologarithm, and take the complement of the result.

Note XIV. The more accurate method should be employed in finding the log sines, tangents, or cotangents of angles between 0° and 5°, or the log cosines, tangents, or cotangents of angles between 85° and 90°, and the angles corresponding in similar cases. For angles between 5° and 85° the ordinary method is sufficiently exact.

No.	0	1	2	3	4	5	6	7	8	8
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1523	1553	1584	1303	1335	1367	1399	1430
15 16 17 18	1761 2041 2304 2553 2788	1790 2068 2330 2577 2810	1818 2095 2355 2601 2833	1847 2122 2380 2625 2856	1875 2148 2405 2648 2878	1903 2175 2430 2672 2900	1931 2201 2455 2695 2923	1959 2227 2480 2718 2945	1987 2253 2504 2742 2967	2014 2279 2529 2765 2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551
36	5563	5575	55 ⁸ 7	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	57 ⁰ 5	5717	5729	5740	5752	5763	5775	5786
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893
49	6902	6911	6920	6928	6937	6946	6955	6964	69 7 2	6981
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
No.	0	1	2	3	4	5	в	7	8	9

No.	0	1	2	3	4	5	6	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9 020	9025
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996
No.	0	1	2	3	4	5	в	7	8	9

Angle.	Sin.	D. 1'.	Cos.	D. 1'.	Tan.	D. 1'.	Cot.	
0° 0′	-∞		10,0000				∞	90° 0′
0° 10′	7.4637		.0000	.0	7.4637		2.5363	89° 50′
0 20	.7648	301.1	.0000	.0	.7648	301.1	.2352	890 401
00 30/	.9408	176.0	,0000	.0	.9409	176.1	.0591	80° 30'
100 40/	8.0658	125.0	.0000	.0	8.0658	124.9	1.9342	89° 20'
0° 50′	.1627	96.9	.0000	.0	.1627	96.9	.8373	890 10
10 0	8.2419	79.2	9.9999	I.	8.2419	79.2	1.7581	89° 0′
10 10'	.3088	66.9	.9999	.0	.3089	67.0	.6911	88° 50'
10 20	.3668	58.0	.9999	.0	.3669	58.0	.6331	880 401
10 30/	.4179	51.1	.9999	.0	.4181	51.2	.5819	880 30/
10 40	.4637	45.8	.9998	.I	.4638	45.7	.5362	88° 20'
1° 50'	.5050	41.3	.9998	.0	.5053	41.5	.4947	88° 10'
20 0	8.5428	37.8		I.	8.5431	37.8	1.4569	880 0
2° 10'	.5776	34.8	9.9997	.0		34.8	.4221	87° 50'
20 20'	.6097	32.1	9997	I.	·5779 .6101	32.2	.3899	870 40'
2° 30'	.6397	30.0	.9996	.0	.6401	30.0		87° 30′
20 40'	.6677	28.0		I.	.6682	28.1	•3599	87° 20'
20 50'	.6940	26.3	·9995 ·9995	.0	.6945	26.3	.3318	870 10
3° 0′	8.7188	24.8	9.9994	.I	8.7194	24.9	1.2806	87° 0′
3° 10'	.7423	23.5	-9993	.I	.7429	23.5	.2571	86° 50′
3° 20' 3° 30'	.7645	22.2	.9993	.0	.7652	22.3	.2348	86° 40′
30 30'	.7857	21.2	.9992	.I	.7865	21.3	.2135	86° 30′
30 40'	.8059	20.2	.9991	.I	.8067	20.2	.1933	86° 20′
3° 40′ 3° 50′	.8251	19.2	.9990	I.	.8261	19.4	.1739	860 10
40 0'	8.8436	18.5	9.9989	I.	8.8446	18.5	1.1554	86° 0′
4º 10'	.8613	17.7	.9989	.0	.8624	17.8	.1376	85° 50′
4° 20′ 4° 30′	.8783	17.0	.9988	I.	.8795	17.1	.1205	85° 40′
4° 30′	.8946	16.3	.9987	I.	.8960	16.5	.1040	850 201
4° 40′	.9104	15.8	.9986	I.	.9118	15.8	.0882	I 8 ≝° 20/
4° 50′	.9256	15.2	.9985	ı.	.9272	15.4	.0728	85° 10'
5° 0′	8.9403	14.7	9.9983	.2	8.9420	14.8	1.0580	85° 0′
50 10	·9545	14.2	.9982	.I		14.3		84° 50′
1 ~ / /	.9682	13.7	.9981	.I	.9563	13.8	.0437	84° 40′
	.9816	13.4	.9980	.I	.9701 .9836	13.5	.0299	84° 30′
5° 40'	·9945	12.9	.9979	I.	.9966	13.0	.0034	84° 20′
50 50'	9.0070	12.5	9977	.2	9.0093	12.7	0.9907	84° 10′
6° 0′	9.0192	12.2	9.9976	I.	9.0216	12.3	0.9784	84° 0′
6º 10'	.0311	11.9	.9975	I.	.0336	12.0	.9664	83° 50′
60 20/	.0426	11.5	.9973	.2	.0330	11.7	·9547	83° 40'
60 30/	.0539	11.3	.9972	.I	.0567	11.4		83° 30'
60 401	.0648	10.9	.9971	.I	.0678	11.1	.9433	83° 20′
6° 50′	.0755	10.7	.9969	.2	.0786	10.8	.9322	83° 10'
70 0'	9.0859	10.4	9.9968	I.	9.0891	10.5	0.9109	83° 0′
7° 10'	.0961	10.2	.9966	.2	.0995	10.4	.9005	82° 50′
1 70 20/1	.1060	9.9	.9964	.2	.1096	10.1	.8904	82° 40'
7° 30′	.1157	9.7	.9963	ı.	.1194	9.8	.8806	82° 30′
	Cos.	D. 1'.	Sin.	D. 1'.	Cot.	D. 1'.	Tan.	Angle.

Angle.	Sin.	D. 1'.	Cos.	D. 1'.	Tan.	D. 1'.	Cot.	
7° 30′	9.1157		9.9963	.2	9.1194	0.7	0.8806	820 301
1 70 40/	.1252	9.5	.9961	1	.1291	9.7	.8709	82° 20'
7° 50'.	.1345	9.3 9.1	.9959	.2 .I	.1385	9.4	.8615	82° 10′
8° 0'	9.1436	8.9	9.9958	.2	9.1478	9.3 9.1	0.8522	82° 0′
8º 10'	.1525	0.9	.9956	.2	.1569	8.9	.8431	81° 50′
8º 20'	.1612	8.7 8.5	-9954	.2	.1658	8.7	.8342	181° 40′
8º 30'	.1697	8.4	.9952	.2	.1745	8.6	.8255	81° 30'
8° 40'	.1781	8.2	.9950	.2	.1831	8.4	.8169	81° 20′
8º 50'	.1863	8.0	.9948	.2	.1915	8.2	.8085	81° 10'
9° 0′	9.1943	7.9	9.9946	.2	9.1997	8.1	0.8003	81° 0′
90 101	.2022	7.8	-9944	.2	.2078	8.0	.7922	80° 50′
1 00 20/1	.2100	7.6	.9942	.2	.2158	7.8	.7842	80° 40′
9° 30'	.2176	7.5	.9940	.2	.2236	7.7	.7764	80° 30′
90 401	.2251	7.3	.9938	.2	.2313	7.6	.7687	80° 20′
9° 50'	.2324	7.3	.9936	.2	.2389	7.4	.7611	80° 10'
10° 0′	9.2397	7.1	9.9934	.3	9.2463	7.3	0.7537	80° 0′
100 101	.2468	7.0	.9931	.2	.2536	7.3	.7464	79° 50′
100 20/	.2538	6.8	.9929	.2	.2609	7.1	.7391	79° 40′
10° 30′	.2606	6.8	.9927	.3	.2680	7.0	.7320	79° 30′
100 40/	.2674	6.6	.9924	.2	.2750	6.9	.7250	79° 20'
10° 50′	.2740	6.6	.9922	-3	.2819	6.8	.7181	790 10
11° 0′	9.2806	6.4	9.9919	.2	9.2887	6.6	0.7113	79° 0′
110 10/	.2870	6.4	. 9 917	-3	.2953	6.7	.7047	78° 50′ 78° 40′
110 20	.2934	6.3	.9914	.2	.3020	6.5	.6980	78° 40′ 78° 30′
11° 30′ 11° 40′	.2997	6.1	.9912	-3	.3085	6.4	.6915 .6851	78° 30′ 78° 20′
11° 40'	.3058	6.1	.9909	.2	.3149 .3212	6.3	.6788	78° 10'
11° 50′ 12° 0′	.3119	6.0	.9907 9.9904	-3		6.3	0.6725	78° 0'
120 10	9.3179	5.9	.9901	-3	9.3275 .3336	6.1	.6664	77° 50'
120 20	.3238	5.8	.9899	.2	·3397	6.1	.6603	770 40
120 30'	.3296 ·3353	5.7	.9896	-3	.3458	6.1	.6542	770 201
120 40'	.3410	5.7	.9893	-3	.3517	5.9	.6483	77~20
120 50'	.3466	5.6	.9890	-3	.3576	5.9	.6424	77° 10′
13° 0′	9.3521	5.5	9.9887	-3	9.3634	5.8	0.6366	77° 0′
130 101	·3575	5-4	.9884	-3	.3691	5.7	.6309	76° 50′
120 20/	.3629	5.4	.9881	-3	.3748	5.7 5.6	.6252	76° 40'
1130 30/ I	.3682	5.3	.9878	.3	.3748 .3804	5.0	.6196	760 30/
13° 40'	·3734	5.2	.9875	.3	.3859	5.5	.6141	760 20
13° 50′	.3786	5.2	.9872	•3	.3914	5·5 5·4	.6086	76° 10'
14° 0′	9.3837	5.1 5.0	9.9869	.3	9.3968	5.4	0.6032	76° 0′
140 10/	.3887	-	.9866		.4021	-	-5979	75° 50′
1140 20/	.3937	5.0	.9863	.3	.4074	5.3 5.3	.5926	750 40
140 30	.3986	4.9	.9859	-4	.4127	5.3 5.1	.5873	
140 40	.4035	4.9 4.8	.9856	·3 ·3	.4178	5.2	.5822	175° 20
140 50	.4083	4.7	.9853	·3 ·4	.4230	5.I	.5770	750 10
15° 0′	9.4130		9.9849	<u> </u>	9.4281		0.5719	75° 0′
	Cos.	D. 1'.	Sin.	D. 1'.	Cot.	D. 1'.	Tan.	Angle.

Angle.	Sin.	D. 1'.	Cos.	D. 1′.	Tan.	D. 1'.	Cot.	
15° 0′	9.4130	4.7	9.9849	-3	9.4281	5.0	0.5719	75° 0′
150 10'	.4177	4.6	.9846	.3	.433I	5.0	.5669	74° 50′
17 E ∨ 20 / I	.4223	4.6	.9843	.4	.4381	4.9	.5619	74° 40'
150 30'	.4269	4.5	.9839	-3	·4430	4.9	·557°	74 20
150 40'	.4314	4.5	.9836	-4	•4479	4.8	.5521	74° 20'
150 50/	<u>-4359</u>	4.4	.9832	4	<u>-4527</u>	4.8	·5473	74° 10′
16° 0′	9.4403	4.4	9.9828	-3	9.4575	4.7	0.5425	74° 0′
160 10'	-4447	4.4	.9825	-4	.4622	4.7	.5378	73° 50'
160 20'	.4491	4.2	.9821	-4	.4669	4.7	.5331	73° 40′
160 30'	·4533	4.3	.9817	-3	.4716	4.6	.5284	173~30/
160 40'	4576	4.2	.9814	4	.4762	4.6	.5238	173 [∨] 20′
16° 50′	.4618	4.I	.9810	-4	.4808	4.5	.5192	730 10
17° 0′	9.4659	4.1	9.9806	-4	9.4853	4.5	0.5147	73° 0'
170 10'	.4700	4.I	.9802	-4	.48 98	4.5	.5102	720 501
170 20	-474I	4.0	.9798	-4	·4943 ·	4.4	-5057	720 40'
17° 30′ 17° 40′	.4781	4.0	∙9794	-4	.4987	4.4	.5013	720 301
170 40'	.4821	4.0	.9790	-4	.5031	4.4	.4969	720 20
170 50'	.4861	3.9	.9786	.4	.5075	4.3	-4925	720 10
18° 0′	9.4900	3.9	9.9782	-4	9.5118	4.3	0.4882	72° 0′
180 10'	.4939	3.8	.9778	-4	.5161	4.2	-4 839	71° 50′
180 20	·4977	3.8	∙9774	-4	.5203	4.2	·4797	71° 40'
18° 30'	.5015	3.7	.9770	.5	-5245	4.2	·4755	710 301
T-12 - T	.5052	3.7 3.8	.9765	.4	.5287	4.2	4713	710 201
18° 50′ 19° 0′	.5090 9.5126	3.6	.9761	.4	.5329	4.1	.4671	71° 10'
190 10		3.7	9.9757	-5	9.5370	4.I	0.4630	
19° 20′	.5163	3.6	.9752	-4	.5411	4.0	.4589	70° 50′ 70° 40′
190 30'	.5199	3.6	.9748	-5	.5451	4.0	·4549	70° 40′ 70° 30′
190 40'	.5235 .5270	3.5	·9743 ·9739	-4	.5491	4.0	.4509 .4469	70° 20'
190 50'	.5306.	3.6	.9734	-5	.5531 (.5571	4.0	.4429	70° 10'
20° 0′	9.5341	3.5	9.9730	-4	9.5611	4.0	0.4389	70° 0′
200 10'	•5375	3.4	.9725	-5	.5650	3.9		69° 50′
200 20/	.5409	3.4	.9721	-4	.5689	3.9	.4350 .4311	69° 40′
200 30/	·5443	3.4	.9716	-5	.5727	3.8	.4273	69° 30'
200 40/	·5477	3.4	.9711	•5	.5766	3.9	.4234	69° 20'
200 50	.5510	3.3	.9706	-5	.5804	3.8	.4196	690 101
210 0	9.5543	3.3	9.9702	.4	9.5842	3.8	0.4158	69° 0'
210 10'	.5576	3.3	.9697	-5	.5879	3.7	4121	68° 50′
210 20'	.5609	3.3	.9692	-5	.5917	3.8	.4083	68° 40'
21° 30′	.5641	3.2	.9687	-5	.5954	3.7	.4046	68° 30′
210 40/	.5673	3.2	.9682	•5	.5991	3.7	4009	68° 20′
210 50	.5704	3.1 3.2	.9677	•5 •5	.6028	3.7 3.6	.3972	68° 10′
22° 0′	9.5736	3.2 '3.1	9.9672	•5	9.6064	3.6	0.3936	68° 0′
220 10	.5767	-	.9667	.6	.6100		.3900	67° 50′
220 201	.5708	3.1	.9661		.6136	3.6	.3864	67 ⁰ 40'
22 ⁰ 30'	.5828	3.0	.9656	-5	.6172	3.6	.3828	67° 30′
	Cos.	D. 1'.	Sin.	D. 1'.	Cot.	D. 1/.	Tan.	Angle.

Angle.	Sin.	D. 1'.	Cos.	D. 1′.	Tan.	D. 1'.	Cot.	
22° 30′	9.5828	2.	9.9656	-	9.6172	3.6	0.3828	67° 30′
22° 40'	.5859	3.1 3.0	.9651	-5	.6208		.3792	67° 20'
22° 50′	.5889	3.0	.9646	.5 .6	.6243	3.5 3.6	-3757	670 10
23° 0′	9.5919	2.9	9.9640	.5	9.6279	3.5	0.3721	67° 0′
230 10/	.5948	3.0	.9635	.6	.6314	3.4	.3686	66° 50′
1230 20/	.5978	2.9	.9629		.6348	3.5	.3652	66° 40′
123 ⁰ 30' l	.6007	2.9	.9624	.5 .6	.6383	3.4	.3617	66° 30′
23° 40′	.6036	2.9	.9618		.6417	3.5	.3583	66° 20'
23° 50′	.6065	2.8	.9613	.5 .6	.6452	3.4	.3548	
24° 0′	9.6093	2.8	9.9607	-5	9.6486	3.4	0.3514	66° 0′
24° 10′	.6121	2.8	.9602	.6	.6520	3.3	.3480	65° 50′
24° 20′ 24° 30′	.6149	2.8	.9596	.6	.6553	3.4	-3447	65° 40′ 65° 30′
24° 30′ 24° 40′	.6177 .6205	2.8	.9590 .9584	.6	.6587 .6620	3.3	.3413 .3380	65° 30′ 65° 20 ′
24° 50′	.6232	2.7	.9579	.5 .6	.6654	3.4	.3346	65° 10'
25° 0′	9.6259	2.7	9.9573		9.6687	3.3	0.3313	65° 0′
25° 10'	.6286	2.7	.9567	.6	.6720	3.3	.3280	64° 50'
1250 200/ 1	.6313	2.7	.9561	.6	.6752	3.2	.3248	64° 40′
1250 30'	.6340	2.7	.9555	.6	.6785	3.3	.3215	640 301
'25° 40'	.6366	2.6	.9549	.6	.6817	3.2	.3183	164° 20′ I
250 501	.6392	2.6 2.6	.9543	.6 .6	.6850	3.3	.3150	640 10
26° 0′	9.6418	2.6	9.9537		9.6882	3.2	0.3118	64° 0′
260 10/	.6444	2.6 2.6	.9530	·7 .6	.6914	3.2	.3086	63° 50′
26° 20'	.6470	2.5	.9524	.6	.6946	3.2 3.1	.3054	630 401
26° 30′	.6495	2.6	.9518	.6	.6977	3.2	.3023	63° 30′
26° 40′	.6521	2.5	.9512		.7009	3.1	.2991	63° 20′
26° 50′	.6546	2.4	.9505	.7 .6	7040	3.2	.2960	63° 10′
27° 0′	9.6570	2.5	9.9499	.7	9.7072	3.1	0.2928	63° 0′
270 10	.6595	2.5	.9492	.6	.7103	3.1	.2897	62° 50′
27° 20′	.6620	2.4	.9486		.7134	3.1	.2866	62° 40′ 62° 30′
27° 30′ 27° 40′	.6644 .6668	2.4	.9479	.7 .6	.7165	3.1	.2835	62° 20'
27° 40′ 27° 50′	.6692	2.4	.9473 .9466	.7	.7196 .7226	3.0	.2774	62° 10′
28° 0'	9.6716	2.4		.7	9.7257	3.1	0.2743	62° 0′
280 101		2.4	9.9459	.6	.7287	3.0	.2713	61° 50′
28° 20′	.6740 .6763	2.3	.9453	.7		3.0	.2683	61° 40′
280 30'	.6787	2.4	.9446 .9439	.7	.7317 .7348	3.1	.2652	610 301
280 40'	.6810	2.3	.9432	· <u>7</u>	.7378	3.0	.2622	61° 20'
28° 50'	.6833	2.3	.9425	.7	.7408	3.0	.2592	61° 10′
29° 0′	9.6856	2.3	9.9418	.7	9.7438	3.0	0.2562	61 °0′
200 10/	.6878	2.2	.9411	·7	.7467	2.9	.2533	60° 50′
29° 20'	.6901	2.3	.9404	.7	7497	3.0	.2503	600 40/
20° 30′	.6923	2.2	.9397	.7	.7526	2.9 3.0	.2474	60° 30′
29° 40'	.6946	2.3	.9390	.7	.7556	2.9	.2444	60° 20′
29° 50′	.6968	2.2	.9383	·7 .8	.7585	2.9	.241 5	600 101
30° 0 ′	9.6990		9.9375		9.7614		0.2386	60° 0′
	Cos.	D. 1'.	Sin.	D. 1′.	Cot.	D. 1'.	Tan.	Angle.

Angle.	Sin.	D.1'.	Cos.	D. 1'.	Tan.	D. 1'.	Cot.	
30° 0	9.6990	2.2	9.9375	.7	9.7614	3.0	0.2386	60° 0′
30° 10'	.7012	2.1	.9368	-	.7644		.2356	59° 50′
30° 20'	.7033	2.1	.9361	.7 .8	.7673	2.9 2.8	.2327	50° 40' i
30° 30′	.7055	2.I	-9353		.7701	2.9	.2299	ו לאכי יסו
30° 40'	7076	2.1	.9346	.7 .8	.7730	2.9	.2270	50 ⁰ 20' l
30° 50′	.7097	2.1	.9338	.7	·7759	2.9	.2241	590 101
31° 0′	9.7118	2.I	9.9331	.8	9.7788	2.8	0.2212	59° 0′
31° 10'	7139	2.1	.9323	.8	.7816	2.9	.2184	58° 50'
31° 20′	.7160	2.1	.9315		.7845	2.8	.2155	58° 40'
31° 30′	.7181	2.0	.9308	.7 .8	.7873	2.9	.2127	58° 30′
31° 40′	.7201	2. I	.9300	.8	.7902	2.8	,2098	58° 20′
31° 50′	.7222	2.0	.9292	.8	.7930	2.8	.2070	58° 10'
32° 0′	9.7242	2.0	9.9284	.8	9.7958	2.8	0.2042	58° 0′
32° 10′	.7262	2.0	.9276	.8	.7986	2.8	.2014	57° 50′
32° 20'	.7282	2.0	.9268	.8	.8014	2.8	.1986	570 AO' I
32° 30'	.7302	2.0	.9260	.8	.8042	2.8	.1958	57 ⁰ 30' I
32° 40'	.7322	2.0	.9252	.8	.8070	2.7	.1930	57° 20' I
32° 50′	.7342	1.9	.9244	.8	.8097	2.8	.1903	57° 10′
33° 0′	9.7361	1.9	9.9236	.8	9.8125	2.8	0.1875	57° 0′
33° 10′	.7380	2.0	.9228		.8153	. 2.7	.1847	56° 50′
330 20	.7400	1.9	.9219	.9 .8	.8180	2.8	.1820	56° 40'
133° 30' 1	.7419	1.9	.9211	.8	.8208		.1792	56° 30′
33° 40′	.7438	1.9	.9203		.8235	2.7 2.8	.1765	56° 20′
33° 50′	·7457	1.9	.9194	.9 .8	.8263	2.7	.1737	56° 10′
34° 0′	9.7476	1.8	9.9186	9.	9.8290	2.7	0.1710	56 ° 0′
34° 10′	·7494	1.9	.9177	.8	.8317	2.7	.1683	55° 50′
340 20	.7513	1.9	.9169	.9	.8344	2.7	.1656	550 40
34° 30′ 34° 40′	·7531		.9160	. <u>9</u>	.8371	2.7	.1629	1 E E Y 20'
34° 40′	·7550	1.9	.9151	.ģ	.8398	2.7	.1602	55 20
34° 50′ 35° 0′	.7568	1.8	.9142	.9 .8	.8425	2.7	.1575	550 10
	9.7586	1.8	9.9134	.9	9.8452	2.7	0.1548	5 5° 0′
35° 10′	.7604	1.8	.9125	.9	.8479	2.7	.1521	54° 50′
35° 20′	.7622	1.8	.9116	.é	.8506	2.7	.1494	540 401
35° 30′ 35° 40′	.7640	1.7	.9107 .9098	ا وُ.	.8533	2.6	.1467	54° 30′
35° 50′	.7657 .7675	1.7 1.8	.9098	.9	.8559 .8586	2.7	.1441	54° 20' 54° 10'
36° 0′		1.7		.9		2.7	.1414	
	9.7692	1.8	9.9080	1.0	9.8613	2.6	0.1387	54° 0′
36° 10′ 36° 20′	.7710	1.7	.9070	.9	.8639	2.7	.1361	53° 50′
36° 30′	.7727	1.7	.9061	9.	.8666	2.6	.1334	53° 40′
36° 30′ 36° 40′	·7744	1.7	.9052	1.0	.8692	2.6	.1308	530 30
36° 50′	.7761 .7778	1.7	.9042	.9	.8718 .8745	2.7	.1262	53° 20′ 53° 10′
37° 0′	9.7795	1.7	9.9023	1.0	9.8771	2.6	0.1229	53° 10
270 10	.7811	1.6		.9	.8797	2.6		
37° 20'	.7828	1.7	.9014 .9004	1.0	.8797 .8824	2.7	.1203	52 ⁰ 50 52 ⁰ 40'
37° 30'	.7844	1.6	.8995	.9	.8850	2.6	.1176	52 ⁰ 40'
	Cos.	D. 1'.	Sin.	D. 1'.	Cot.	D. 1'.	Tan.	Angle.
	~~~		13444	J. 1.		20. 1.	- 4111-	William.

Angle.	Sin.	D.1'.	Cos.	D. 1'.	Tan.	D. 1'.	Cot.	
37° 30′	9.7844		9.8995		9.8850	- 6	0.1150	52° 30′
127 40' 1	.7861	1.7	.8985	1.0	.8876	2.6	.1124	52 ⁰ 20/
37° 50′	.7877	1.6	.8975	1.0	.8902	2.6	.1098	52° 10′
38° 0′	9.7893	1.6	9.8965	1.0	9.8928	2.6 2.6	0.1072	52° 0′
38° 10′	.7910	1.7	.8955		.8954		.1046	510 50
1280 20/ 1	.7926	1.6	.8945	1.0	.8980	2.6	.1020	510 401
1280 20/1	.7941	1.5 1.6	.8935	1.0	.9006	2.6	.0994	510 30/ I
1280 AO/ I	·7957		.8925	1.0	.9032	2.6	.0968	51° 20'
38° 50	.7973	1.6 1.6	.8915	1.0	.9058	2.6 2.6	.0942	510 10/
39° 0	9.7989	1.5	9.8905	1.0	9.9084	2.6	0.0916	51° 0′
39° 10′	.8004		.8895	1 1	.9110		.0890	50° 50′
1200 200	.8020	1.6	.8884	1.1	.9135	2.5 2.6	.0865	50° 40'
1200 30/	.8035	1.5	.8874	1.0	.9161	2.6 2.6	.0839	EOO 30/
1300 40'	.8050	1.5 1.6	.8864	I.0 I.I	.9187		.0813	500 20/
39° 50′	.8066		.8853	1.0	.9212	2.5 2.6	.0788	500 101
40° 0′	9.8081	1.5	9.8843	1.1	9.9238	2.6	0.0762	50° 0'
40 ⁰ 10'	.8096	1.5	.8832	1	.9264		.0736	49° 50′
1400 20/	1118.	1.5	.8821	I.I	.9289	2.5 2.6	.0711	490 401
1400 301	.8125	1.4	.8810	1.1	.9315		.0685	400 30/
1400 40'	.8140	1.5	.8800	I.0	.9341	2.6	.0659	400 20/
40° 50′	.8155	1.5	.8789	1.1	.9366	2.5 2.6	<b>.0</b> 634	49° 10'
41° 0′	9.8169	1.4	9.8778	1.1	9.9392	2.5	0.0608	49° 0′
41° 10′	.8184	· ·	.8767	ł	.9417	2.6	.0583	480 50
14 TO 20'	.8198	1.4	.8756	1.1	9443		.0557	I 48° 40′ I
1410 201	.8213	1.5	.8745	I.I I.2	.9468	2.5 2.6	.0532	48° 30′
410 40'	.8227	I.4 I.4	.8733	1.1	-9494	2.5	.0506	48° 20'
410 50	.8241	1.4	.8722	1.1	.9519	2.5	.0481	480 101
42° 0′	9.8255	1.4	9.8711	1.2	9.9544	2.6	0.0456,	48° 0′
420 10	.8269	1.4	.8699	1.1	.9570	Í	.0430	47° 50′
1420 201	.8283	1.4	.8688	1.2	-9595	2.5 2.6	.0405	47° 40′
420 30'	.8297	1.4	.8676	1.1	.9621	2.5	.0379	47° 30′
1420 40'	.8311	1.3	.8665	1.2	.9646	2.5	.0354	47° 20'
42° 50′	.8324	1.4	.8653	1.2	.9671	2.6	.0329	47° 10'
43° 0′	9.8338	1.3	9.8641	1.2	9.9697	2.5	0.0303	47° 0′
43° 10′	.8351	1.4	.8629	1.1	.9722	2.5	.0278	46° 50′
	.8365	1.3	.8618	1.2	∙9747	2.5	.0253	46° 40'
143° 30°	.8378	1.3	.8606	1.2	.9772	2.6	.0228	46° 30′
14 7 40	.8391	1.4	.8594	F.2	.9798	2.5	.0202	460 20
43° 50′	.8405	1.3	.8582	1.3	.9823	2.5	.0177	46° 10'
440 0'	9.8418	1.3	9.8569	1.2	9.9848	2.6	0.0152	46° 0′
440 10/	.8431	1.3	.8557	1.2	.9874	2.5	.0126	45° 50′
44° 20′	.8444	1.3	.8545	1.3	.9899	2.5	.0101	45° 40′
44° 30′	.8457	1.2	.8532	1.2	.9924		.0076	45° 30′
440 40'	.8469	1.3	.8520	1.3	-9949	2.5 2.6	.0051	450 20
44° 50′ 45° 0′	.8482 9.8495	1.3	.8507	1.2	.9975	2.5	.0025	45° 10'
30° 0'		- 11	9.8495		0.0000		0.0000	
	Cos.	D. 1'.	Sin.	D. 1'.	Cot.	D. 1'.	Tan.	Angle.

Α.	Sin.	Cos.		A.	Sin.	Cos.		A.	Sin.	Cos.	
00	.000000	1.0000	<b>90</b> °	30'	.1305	.9914	30'	15°	.2588	.9659	75°
10'	.002909	1.0000	50'	40	.1334	.9911	20	10'	.2616	.9652	501
20/	.005818	1.0000	40	50'	.1363	.9907	10	20/	.2644	.9644	40'
30/	.008727	1.0000	30'	80	.1392	.9903	82°	30'	.2672	.9636	30'
40'	.011635	.9999	20/	10'	.1421	.9899	50'	40	.2700	.9628	20'
50'	.014544	.9999	10'	201	.1449	.9894	40'	50'	.2728	.9621	10
<b>1</b> °	.017452	.9998	<b>89</b> °	30'	.1478	.9890	30'	16°	.2756	.9613	74°
10'	.02036	.9998	50'	40	.1507	.9886	20/	10	.2784	.9605	50'
20'	.02327	-9997	40	50'	.1536	.9881	10/	20′	.2812	.9596	40'
30	.02618	-9997	30'	<b>9</b> °	.1564	.9877	81°	30'	.2840	.9588	30'
40	.02908	.9996	20'	10'	.1593	.9872	501	40	.2868	.9580	20'
50'	.03199	-9995	10'	20/	.1622	.9868	40'	501	.2896	.9572	10/
2°	.03490	-9994	88°	30'	.1650	.9863	30'	17°	.2924	.9563	<b>73</b> °
10'	.03781	.9993	50'	40'	.1679	.9858	20'	10'	.2952	-9555	50'
20'	.04071	.9992	40'	50'	.1708	.9853	10'	20′	.2979	.9546	40'
30'	.04362	.9990	30'	10°	.1736	.9848	<b>80</b> °	30	.3007	·953 <u>7</u>	30'
40'	.04653	.9989	20'	10	.1765	.9843	50'	40	.3035	.9528	20/
50'	.04943	.9988	10	20/	.1794	.9838	40'	50'	.3062	.9520	10
8°	.05234	.9986	87°	30'	.1822	.9833	30'	18°	.3090	.9511	<b>72º</b>
10'	.05524	.9985	50'	40'	.1851	.9827	20'	10'	.3118	.9502	50'
20/	.0581	.9983	401	50	.1880	.9822	10'	20′	.3145	.9492	40'
30'	.06105	.9981	30'	<b>11</b> °	.1908	.9816	<b>79</b> °	30'	.3173	.9483	30'
40'	.06395	.9980	20/	10/	.1937	.9811	50'	40'	.3201	.9474	20′
50'	.06685	.9978	10'	20/	.1965	.9805	40'	50'	.3228	.9465	10/
<b>4</b> °	.06976	.9976	<b>86</b> °	30'	.1994	.9799	30'	19°	.3256	··9455	71°
10'	.07266	.9974	50	40	.2022	.9793	20'	10	.3283	.9446	50'
20/	.07556	.9971	40'	50'	.2051	.9787	10'	201	.3311	.9436	40
30′	.07846	.9969	30'	12°	.2079	.9781	<b>78</b> °	30'	.3338	.9426	30'
40'	.08136	.9967	20'	10/	.2108	.9775	50'	40'	.3365	.9417	20′
50'	.08426	.9964	10'	20	.2136	.9769	40'	50'	<u>·3393</u>	.9407	10'
<b>5</b> °	.08716	.9962	85°	30'	.2164	.9763	30'	<b>20</b> °	.3420	·9397	<b>70°</b>
10	.09005	-9959	50'	40'	.2193	.9757	20'	10'	.3448	.9387	50'
20'	.09295	-9957	40'	50'	.2221	.9750	10'	201	.3475	·9377	40'
30'	.09585	-9954	30'	13°	.2250	·9744	7 <b>7</b> °	30'	.3502	.9367	30'
40/	.09874	.9951	20/	10/	.2278	.9737	50'	40	.3529	.9356	20′
50'	.10164	.9948	10'	20'	.2306	.9730	40'	50'	·3557	.9346	10
<b>6</b> °	.10453	-9945	84°	30'	.2334	.9724	30'	21°	.3584	.9336	<b>69</b> °
10/	.10742	.9942	50'	40	.2363	.9717	20/	10'	.3611	.9325	50'
20/	.11031	-9939	40'	50'	.2391	.9710	10'	20/	.3638	.9315	40'
30/	.11320	.9936	30'	14°	.2419	.9703	<b>76</b> °	30	.3665	.9304	30'
40/	.11609	.9932	20'	10	.2447	.9696	50'	40	.3692	.9293	20/
50' 70	.11898	.9929	10'	20	.2476	.9689	40'	50'	.3719	.9283	10/
	.12187	.9925	83°	30 ¹	.2504	.9681 .9674	30' 20'	<b>22</b> °	.3746	.9272	<b>68</b> °
10/	.12476	.9922	50'	50'	.2532 .2560	.9667	10	10	.3773	.9261	50'
20/	.12764	.9918	40'	150				20/	.3800	.9250	40/
30/	.13053	.9914	30'	100	.2588	.9659	75°	30'	.3827	.9239	30/
	Cos.	Sin.	A.	<u> </u>	Cos.	Sin.	A.		Cos.	Sin.	<b>A.</b>

A.	Sin.	Cos.		A.	Sin.	Cos.		A.	Sin.	Cos.	
30'	.3827	.9239	30'	<b>30</b> °	.5000	.8660	<b>60</b> °	30/	.6088	·7934	30'
40/	.3854	.9228	20/	10'	.5025	.8646	50	40	.6111	.7916	20/
50/	.3881	.9216	10'	20'	.5050	.8631	40'	50'	.6134	.7898	10
23°	.3907	.9205	67°		.5075	.8616	301	<b>38</b> °	.6157	.7880	<b>52</b> °
10'	-3934	.9194	50'	40'	.5100	.8601	20	10'	.6180	.7862	501
20/	.3961	.9182	40'	501	.5125	.8587	10	20/	.6202	.7844	40'
30'	.3987	.9171	30'	<b>31</b> °	.5150	.8572	<b>59°</b>	30'	.6225	.7826	301
40	.4014	.9159	20/	10'	.5175	.8557	50'	40′	.6248	.7808	20′
50'	.4041	.9147	10'	20/	.5200	.8542	40/	50′	.6271	.7790	10/
24°	.4067	.9135	<b>66</b> °	30′	.5225	.8526	30'	<b>39</b> °	.6293	·7771	51°
10'	.4094	.9124	50'	40	.5250	.8511	20	10	.6316	·7753	50'
20/	.4120	.9112	40'	50'	.5275	.8496	10'	20/	.6338	·7735	40'
30'	.4147	.9100	30'	<b>32</b> °	.5299	.8480	<b>58</b> °	30'	.6361	.7716	30'
40	.4173	.9088	20′	10'	.5324	.8465	501	40'	.6383	.7698	20/
50'	.4200	.9075	19'	20'	.5348	.8450	40'	50'	.6406	.7679	10'
25°	.4226	.9063	<b>65</b> °	30'	.5373	.8434	301	<b>40</b> °	.6428	.7660	<b>50°</b>
10/	.4253	.9051	50'	40'	.5398	.8418	20′	10'	.6450	.7642	50'
20'	.4279	.9038	40'	50	.5422	.8403	10/	20/	.6472	.7623	40'
30'	.4305	.9026	30'	<b>33</b> °,	.5446	.8387	57°	30	.6494	.7604	30'
40'	.433I	.9013	20′	10'	·547I	.8371	50'	40	.6517	.7585	20'
50/	.4358	.9001	10'	20'	5495	.8355	40'	50'	.6539	.7566	10'
<b>26</b> °	.4384	.8988	<b>64</b> °	30′	.5519	.8339	30'	41°	.6561	·7547	<b>49°</b>
10/	.4410	.8975	50'	40′	.5544	.8323	20′	10'	.6583	.7528	50'
20/	.4436	.8962	40'	50'	.5568	.8307	10	20'	.6604	.7509	40'
30/	.4462	.8949	30'	34°	.5592	.8290	<b>56</b> °	30/	.6626	.7490	30'
40'	.4488	.8936	20/	10'	.5616	.8274	50'	40′	.6648	.7470	20′
50'	.4514_	.8923	10	20'	.5640	.8258	40'	501	.6670	.7451	10'
27°	.4540	.8910	<b>63</b> °	30'	.5664	.8241	30'	<b>42</b> °	.6691	.7431	<b>48°</b>
10'	.4566	.8897	50'	40	.5688	.8225	20/	10	.6713	.7412	50'
20/	.4592	.8884	40'	50'	.5712	.8208	10/	201	.6734	.7392	40'
30'	.4617	.8870	30'	35°	.5736	.8192	<b>55</b> °	30/	.6756	·7373	30'
40'	.4643	.8857	20′	10'	.5760	.8175	50/	40′	.6777	·7353	20/
501	<u>.4669</u>	.8843	10'	20/	.5783	.8158	40'	50'	.6799	·7333	10'
<b>28°</b>	.4695	.8829	62°	30'	.5807	.8141	30′	<b>43</b> °	.6820	.7314	47°
10	.4720	.8816	50'	40	.5831	.8124	20/	10'	.6841	.7294	50′
20/	.4746	.8802	40'	50'	.5854	.8107	10/	20′	.6862	.7274	40'
30/	.4772	.8788	301	<b>36</b> °	.5878	.8090	<b>54</b> °	30'	.6884	.7254	30/
40'	·4797	.8774	20'	10'	.5901	.8073	50'	40	.6905	.7234	20'
50'	.4823	.8760	10'	20	.5925	.8056	40'	50	.6926	.7214	10
29°	.4848	.8746	61°	30/	.5948	.8039 .8021	30' 20'	44°	.6947	.7193	<b>46</b> °
10/	.4874	.8732	501	40' 50'	.5972	.8004	10	10'	. <b>6</b> 967	.7173	50'
20/	.4899	.8718	40/	37°	·5995			20/	.6988	.7153	40'
30'	.4924	.8704	301		.6018	.7986	53°	30	.7009	.7133	30' 20'
40' 50'	.4950	.8689	20 ¹	10,	.6041	.7969	50'	40'	.7030	.7112	10'
<b>30</b> °	<u>-4975</u>	.8675 .8660	<b>60</b> °	20'	.6065 .6088	.7951	40'	50' 45°	.7050	.7092	45°
30	.5000	.8000	000	30'	.0088	·7934	30'	<b>40</b> °	.7071	.7071	+0
	Cos.	Sin.	A.	l	Cos.	Sin.	<b>A.</b>		Cos.	Sin.	A.

A.	Tan.	Cot.		A.	Tan.	Cot.	1	A.	Tan.	Cot.	
0°	.000000	∞	<b>90</b> °	30′	.1317	7.5958		15°	.2679	3.7321	<b>75</b> °
10'	.002909	343-7737	50'	40′	.1346	7.4287	20'	10'	.2711	3.6891	50'
201	.005818	171.8854	40'	501	.1376	7.2687	10	20/	.2742	3.6470	40'
30'	.008727	114.5887	30'	<b>8</b> °	.1405	7.1154	<b>82</b> °	30'	.2773	3.6059	30'
40	.01 1 6 3 6	85.9398	20/	10'	.1435	6.9682	50'	40'	.2805	3.5656	20'
50	.014545	68.7501	10'	20/	.14/65	6.8269	40'	50'	.2836	3.5261	10
10	.017455	57.2900	<b>89</b> °	30'	.1495	6.6912	30'	16°	.2867	3.4874	<b>74</b> °
10'	.02036	49.1039	50'	40'	.1524	6.5606	20′	10'	.2899	3.4495	50
20	.02328	42.9641	40	50'	.1554	6.4348	10	20	.2931	3.4124	40
30′	.02619	38.1885	30'	<b>9</b> °	. 1 584	6.3138	81°	30'	.2962	3-3759	30'
40	.02910	34.3678	20/	10	.1614	6.1970	50'	40'	.2994	3.3402	20′
50'	.03201	31.2416	10'	20'	.1644	6.0844	40'	50'	.3026	3.3052	10'
2°	.03492	28.6363	<b>88</b> °	30'	.1673	5.9758	301	17°	.3057	3.2709	<b>73</b> °
10/	.03783	26.4316	50'	40′	.1703	5.8708	20'	10'	.3089	3.2371	501
20/	.04075	24.5418	40'	50'	.1733	5.7694	10'	20/	.3121	3.2041	40'
30'	.04366	22.9038	30'	10°	.1763	5.6713	<b>80</b> °	30'	.3153	3.1716	30'
40'	.04658	21.4704	20'	10/	.1793	5.5764	50'	40'	.3185	3.1397	201
50'	.04949	20.2056	10'	20/	.1823	5.4845	40'	50'	.3217	3.1084	10
<b>3</b> °	.05241	19.0811	<b>87</b> °	30′	.1853	5.3955	30'	18°	.3249	3.0777	720
10'	.05533	18.0750	50'	40′	.1883	5.3093	20'	10'	.3281	3.0475	50
20'	.05824	17.1693	40'	50'	.1914	5.2257	10'	20'	.3314	3.0178	40'
30'	.06116	16.3499	301	11°	.1944	5.1446	<b>79</b> °	301	.3346	2.9887	30
40'	.06408	15.6048	201	10'	.1974	5.0658	50'	40'	.3378	2.9600	20
50	.06700	14.9244	10'	20'	.2004	4.9894	40'	50'	.3411	2.9319	10'
<b>4</b> °	.06993	14.3007	<b>86</b> °	30′	.2035	4.9152	30'	<b>19°</b>	-3443	2.9042	71°
10'	.07285	13.7267	50	40'	.2065	4.8430	20'	10	.3476	2.8770	50'
20	.07578	13.1969	40'	50'	.2095	4.7729	10	201	.3508	2.8502	40'
30'	.07870	12.7062	30'	12°	.2126	4.7046	<b>78</b> °	301	.3541	2.8239	301
40'	.08163	12.2505	20′	10'	.2156	4.6382	50'	40'	.3574	2.7980	20'
50'	.08456	11.8262	10/	20'	.2186	4.5736	40'	50'	.3607	2.7725	10
<b>5</b> °	.08749	11.4301	<b>85</b> °	30'	.2217	4.5107	30'	<b>20</b> °	.3640	2.7475	<b>70</b> °
10	.09042	11.0594	50'	40/	.2247	4.4494	20′	10	.3673	2.7228	50'
20′	.09335	10.7119	40/	50/	.2278	4.3897	10/	20'	.3706	2.6985	40'
30'	.09629	10.3854	30'	13°	.2309	4.3315	77°	301	.3739	2.6746	30'
40'	.09923	10.0780	20/	10/	.2339	4.2747	50'	40'	.3772	2.6511	20'
50'	.10216	9.7882	10'	20′	.2370	4.2193	40'	50'	.3805	2.6279	10'
6°	.10510	9.5144	<b>84</b> °	30'	.2401	4.1653	30'	21°	.3839	2.6051	<b>69</b> °
10'	.10805	9.2553	50'	40	.2432	4.1126	20/	10'	.3872	2.5826	50
20/	.11099	9.0098	40'	50	.2462	4.0611	10'	20′	.3906	2.5605	40
30/	.11394	8.7769	30'	<b>14</b> °	.2493	4.0108	76°	30′	.3939	2.5386	301
40/	.11688	8.5555	20′	10	.2524	3.9617	50'	40'	∙3973	2.5172	20'
50'	.11983	8.3450	10'	20/	.2555	3.9136	40'	50'	.4006	2.4960	10,
7°	.12278	8.1443	<b>83</b> °	30/	.2586	3.8667	30'	<b>22</b> °	.4040	2.4751	<b>68</b> °
10/	.12574	7.9530	50'	40'	.2617	3.8208	20'	10	.4074	2.4545	50'
20/	.12869	7.7704	40'	50'	.2648	3.7760	10	20	.4108	2.4342	40'
30'	.13165	7.5958	301	15°	.2679	3.7321	75°	30'	.4142	2.4142	30'
	Cot.	Tan.	A.		Cot.	Tan.	A.		Cot.	Tan.	A.

A.	Tan.	Cot.		A.	Tan.	Cot.		A.	Tan.	Cot.	
301	.4142	2.4142	301	<b>30</b> °	-5774	1.7321	<b>60</b> °	30′	.7673	1.3032	301
40'	.4176	2.3945	20'	10'	.5812	1.7205	50'	40/	.7720	1.2954	20′
50'	.4210	2.3750	10'	20'	.5851	1.7090	40	50'	.7766	1.2876	10
23°	.4245	2.3559	67°	30'	.5890	1.6977	301	<b>38</b> °	.7813	1.2799	<b>52</b> °
10'	.4279	2.3369	50'	40'	.5930	1.6864	20/	10'	.7860	1.2723	50'
20/	.4314	2.3183	40	50'	.5969	1.6753	10	20/	.7907	1.2647	40'
30	.4348	2.2998	30'	31°	.6009	1.6643	<b>59</b> °	30′	.7954	1.2572	30'
40	.4383	2.2817	20/	10'	.6048	1.6534	50/	40′	.8002	1.2497	20'
50	-4417	2.2637	10	20'	.6088	1.6426	40	50	.8050	1.2423	10'
24°	-4452	2.2460	<b>66</b> °	30′	.6128	1.6319	30'	39°	.8098	1.2349	<b>51</b> °
10'	.4487	2.2286	50'	40	.6168	1.6212		10	.8146	1.2276	50'
20/	.4522	2.2113	40	50′	.6208	1.6107	10/	20′	.8195	1.2203	40′
30'	-4557	2.1943	30'	<b>32</b> °	.6249	1.6003	<b>58</b> °	30'	.8243	1.2131	30′
40	.4592	2.1775	20′	10'	.6289	1.5900	501	40′	.8292	1.2059	20/
50'	.4628	2.1609	10/	20′	.6330	1.5798	40'	50'	.8342	1.1988	10'
25°	.4663	2.1445	<b>65</b> °	30′	.6371	1.5697	301	<b>40°</b>	.8391	1.1918	<b>50</b> °
10'	.4699	2.1283	50'	40'	.6412	1.5597	20/	10'	.8441	1.1847	50/
20'	4734	2.1123	401	50	.6453	1.5497	10'	20′	.8491	1.1778	40
30'	.4770	2.0965	30'	<b>33</b> °	.6494	1.5399	<b>57</b> °	30'	.8541	1.1708	30'
40'	.4806	2.0809	20′	10'	.6536	1.5301	50'	40	.8591	1.1640	20/
50	.4841	2.0655	10'	20/	.6577	1.5204	40'	501	.8642	1.1571	10/
<b>26°</b>	.4877	2.0503	<b>64</b> °	30'	.6619	1.5108	30'	<b>41</b> °	.8693	1.1504	<b>49</b> °
10'	.4913	2.0353	50'	40	.6661	1.5013	20/	10'	.8744	1.1436	50′
20/	.4950	2.0204	40'	509	.6703	1.4919	10'	20′	.8796	1.1369	40'
30'	.4986	2.0057	30'	340	.6745	1.4826	<b>56</b> °	30/	.8847	1.1303	301
40′	.5022	1.9912	20/	10'	.6787	1.4733	50'	40	.8899	1.1237	20/
50'	.5059	1.9768	10	20'	.6830	1.4641	40′	50'	.8952	1.1171	10/
27°	.5095_	1.9626	<b>63</b> °	30/	.6873	1.4550	30'	<b>42</b> °	.9004	1.1106	<b>48</b> °
10'	.5132	1.9486	50'	40	.6916	1.4460	20/	10'	.9057	1.1041	50′
20'	.5169	1.9347	40'	50/	.6959	1.4370	10'	20′	.9110	1.0977	40
30'	.5206	1.9210	30'	35°	.7002	1.4281	55°	30'	.9163	1.0913	30/
40'	.5243	1.9074	20/	10'	.7046	1.4193	50'	40'	.9217	1.0850	20' 10'
50'	.5280	1.8940	10/	20'	.7089	1.4106	40′	50'	.9271	1.0786	
<b>28°</b>	-5317	1.8807	<b>62</b> °	30'	.7133	1.4019	30	<b>43</b> °	.9325	1.0724	47°
10'	·5354	1.8676	50'	40/	.7177	1.3934	20 ¹	10,	.9380	1.0661	50,
20′	.5392	1.8546	40'	50'	.7221	1.3848		20'	.9435	1.0599	40
30'	.5430	1.8418	30'	<b>36</b> °	.7265	1.3764	<b>54</b> °	301	.9490	1.0538	3Q'
40'	.5467	1.8291	20/	10'	.7310	1.3680	50'	40'	.9545	1.0477	20' 10'
501	.5505	1.8165	10'	20	.7355	1.3597	40'	50'	.9601	1.0416	46°
<b>29</b> °	·5543	1.8040	<b>61</b> °	30/	7400	1.3514	30 ¹	44°	.9657	1.0355	
10'	.5581	1.7917	50'	40' 50'	·7445	1.3432	10	10'	.9713	1.0295	50'
20/	.5619	1.7796	40	37°	.7490	1.3351	<b>53</b> °	20/	.9770	1.0235	40
30'	.5658	1.7675	301	l .	.7536	1.3270		30'	.9827	1.0176	30' 20'
40/	.5696	1.7556	10'	10	.7581	1.3190	50'	40' 50'	.9884	1.0117	10
50' 30°	·5735	1.7437	60°	30 ^f	.7627 .7673	1.3111	40' 30'	45°	.9942 1.0000	1.0058	45°
	-5774			30				<u></u>			
1 1	Cot.	Tan.	A.	l_	Cot.	Tan.	A.	l	Cot.	Tan.	A.



# ADVERTISEMENTS.



## High School Mathematics

ALGEBRA

ALGEBRA	
Fite's First Course in Algebra	<b>\$</b> .90
Modern and adapted to the capacity of beginners.  Fite's Second Course in Algebra.  The treatment is concrete, direct, and in the spirit of modern progress.	.90
The treatment is concrete, direct, and in the spirit of modern progress.  McCurdy's Exercise Book in Algebra	.72
Exceptionally serviceable for drill and review.  Peterson and Baldwin's Review and Test Problems in Algebra	.86
Sufficiently varied to review for college entrance examinations.  Wells's Essentials of Algebra	1.20
Wells's Algebra for Secondary Schools	1.28
Inductive, with abundant practical problems.  Wells and Hart's First Year Algebra.	.96
Wells and Hart's First Year Algebra Offers to first year classes the maximum of usable algebra.	
Wells and Hart's Second Course in Algebra	.96
Wells and Hart's New High School AlgebraBased on a progressive treatment of the equation and its applications.	1.28
ARITHMETIC	
The New Arithmetic by 300 Teachers, edited by Seymour Eaton Classified problems for drill and review.	. 65
Wells's Academic Arithmetic	1.12
GEOMETRY	
Edgett's Exercises in Geometry	. 50
Hopkins's Inductive Plane Geometry	.80
Wells's Essentials of Geometry: Plane, 80; Solid, .75. Complete Clear, teachable, modern, with more than 800 original exercises.	1.32
Wells and Hart's Geometry: Plane, 380; Solid, 76; Complete Shows the same pedagogical skill so notable in the authors' algebras.	1.32
Wright's Exercises in Concrete Geometry	. 44
TRIGONOMETRY	
Bowser's Elements of Trigonometry, 1.00; with Tables	1.50
Bowser's Five-Place Logarithmic Tables; Paper, .32. Cloth	.60
Wells's New Plane Trigonometry, .72; with Tables	.88
Wells's Complete Trigonometry, 1.00; with Tables	1.20
Wells's New Four-Place Logarithmic Tables	. <b>28</b> .40
Wells's Six-Place Logarithmic Tables. Pocket edition	.40
VOCATIONAL MATHEMATICS	
Brookman's Family Expense Account	.60
Dooley's Vocational Mathematics	1.28
Dooley's Vocational Mathematics for Girls	1.28 .60
Especially suited to courses for girls.	.00
Short and Elson's Secondary School Mathematics. Each book Two books giving a correlated course in arithmetic, algebra, geometry and trigonometry.	1.00

D. C. HEATH & CO., Boston, New York, Chicago

# High School Science

### AGRICULTURE

Barto's Agriculture: Soils and Crops.  Puts agriculture on a par with other sciences taught in high schools.  Halligan's Fundamentals of Agriculture.  A complete course, including soils, fertilizers, crops, animal husbandry, etc.	.60 1.40
Weed and Riley's Crop Production	.88
BOTANY	
Pepoon, Mitchell and Maxwell's Plant Life	. 60
Spalding's Introduction to Botany	1.00
Stevens's Introduction to Botany	1.40
CHEMISTRY	
Baskerville and Estabrook's Problems in Chemistry  About 2500 problems covering both elementary and advanced work.	1.00
Newell's General Chemistry	1.28
Newell's Descriptive Chemistry	1.28
GENERAL SCIENCE	
Elhuff's General Science	1.28
Elhuff's Laboratory Manual in General Science	.48
PHYSICS	
Coleman's Text-book of Physics	1.40
Linebarger's Text-book of Physics	1.40
Linebarger's Laboratory Manual of Physics	1.00
A loose-leaf manual with experiments and directions.	-
Miller's Progressive Problems in Physics	.72
PHYSIOGRAPHY	
Arey, Bryant, Clendenin, and Morrey's Physiography A pedagogical and scientific masterpiece by experienced authors.	1.44
Smith, Stahl, and Sykes's Exercises in Physiography	.80
PHYSIOLOGY	
Colton-Murbach's Physiology and Hygiene	1.12
Walters's Physiology and Hygiene A thorough course for older high school classes.	1.28
ZOOLOGY	
Colton's Zoology: Descriptive and Practical	1.60
Part I, Descriptive, \$1.20. Part II, Practical, 60 cents.	
Whitney, Lucas, Shinn, and Smallwood's Study of Animals	.72

D. C. HEATH & CO., Boston, New York, Chicago







