Министерство науки и высшего образования Российской Федерации ФГБОУ ВО РГРТУ

Кафедра вычислительной и прикладной математики

Лабораторная работа №2 "Проверка качества генераторов псевдослучайных чисел"

> Выполнил: Студент группы №843 Редько С.В.

> > Проверил: Овечкин Г.В.

Вариант 10

Задание:

Составить и отладить программу (подпрограмму) генерирования псевдослучайных чисел с равновероятным распределением на интервале [0;1). Используя полученные результаты, проверить качество последовательности с помощью критерия Пирсона, Колмогорова, а также теста длины серии единиц.

№ вар.	Тип датчика	Начальные данные	Объем выборки	Число участков разбиения
10.	Аддитивный, формула (2.8)	$Y_1 = 4091, Y_2 = m - 5$ m = 4096*4	1000	16

№ вар.	Критерий	
10.	Тест длины серий единиц, разделительный элемент $p = 0.25$	

Решение:

1. Критерий Пирсона:

Требуется проверить, действительно ли случайная величина X имеет равномерный закон распределения.

Пусть Количество интервалов — 20; Уровень значимости — 0,05 Тогда мера расхождения $Xu^2 = 10,78$; Число степеней свободы = 19; Критическое значение $Xu^2 = 10,12$

Количество интервалов	20
Уровень значимости	0,05
Число степеней свободы	19
Мера расхождения Xи ²	10,78
Критическое значение Xи ²	10,12

Так как мера расхождения Xu^2 (10,78) больше критического значения Xu^2 (10,12), то гипотеза отвергается.

Если возьмем количество интервалов, равным 22, то:

Количество интервалов	22
Уровень значимости	0,05
Число степеней свободы	21
Мера расхождения Xи ²	8,918
Критическое значение Xи ²	11,92

Так как мера расхождения Xu^2 (8,918) меньше критического значения Xu^2 (11,92), то гипотеза принимается.

2. Критерий Колмогорова:

Требуется проверить, действительно ли случайная величина X имеет

равномерный закон распределения.

Уровень значимости		И	0,5
D+ (max	x)		0,01398
D- (max	(x)		0,01518
D (max)			0,01518
Вероятность			0,964

Так как статистика критерия D (0,01518) меньше вероятности (0,964), гипотеза принимается.

3. Критерий серии единиц:

Требуется проверить независимость случайных величин равномерного закона распределения.

При разделительном элементе p = 0.25 получаем:

Tiph pastesimiesibnem snemenie $\beta = 0.23$	e mony factor.
Число единиц	753
Число серий единиц	189
Математическое ожидание числа	3,0486
единиц в серии	
Дисперсия числа единиц в серии	12,3424
Оценка средней длины серии	3,9841
единиц	
Надежность	0,97
Уровень значимости	0,03
Квантиль стандартного	2,18
нормального распределения	
Нижнее критическое значение	2,4915
Верхнее критическое значение	3,6057

Так как оценка средней длины серии единиц (3,9841) не находится между нижним (2,4915) и верхним (3,6057) критическими значениями то гипотеза отвергается.

Приложение:

```
<summarv>
/// Генерация псевдослучайных чисел с равновероятным распределением
/// </summary>
private void buttonGenerate Click(object sender, EventArgs e)
    listNumber.Text = "";
    numericUpDownCountIntervals.Enabled = true;
    CountNumbers = (int) numericUpDownN. Value;
    CountIntervals = (int) numericUpDownCountIntervals.Value;
    switch (comboBoxDistribution.SelectedItem)
         case "Равновероятное распределение":
                 Y0 = (int) numericUpDownY1.Value;
                 M = (int)numericUpDownM.Value;
                 Y1 = (int) numericUpDownY2.Value;
                 for (int i = 0; i < CountNumbers; i++)</pre>
                      Sequence.Add(RandomAdditive());
                      if (i < 50)
                          listNumber.Text += Sequence[i].ToString() + "\n";
                 break:
             }
        default:
             break;
    //Рассчет статистических данных
    Mx = Formuls.GetMx(Sequence);
    Dx = Formuls.GetD(Sequence);
    Moment2 = Formuls.Get2Moment(Sequence);
    Moment3 = Formuls.Get3Moment(Sequence);
    textBoxMx.Text = Mx.ToString();
textBoxD.Text = Dx.ToString();
    textBox2Moment.Text = Formuls.Get2Moment(Sequence).ToString();
    textBox3Moment.Text = Formuls.Get3Moment(Sequence).ToString();
    //Тест серии единиц
    TestLengthSeria();
    SequenceSort = Sequence;
    SequenceSort.Sort();
    double min = SequenceSort.Min();
    double max = SequenceSort.Max();
    double lengthPart = (max - min) / CountIntervals;
    //Построение гистограммы частот
    for (int i = 0; i < CountIntervals; i++)</pre>
         ProbabilityDensity.Add(0);
         for (int j = 0; j < SequenceSort.Count(); j++)
    if (Sequence[j] >= min + lengthPart * i &&
                     Sequence[j] < min + lengthPart * (i + 1))</pre>
                 ProbabilityDensity[i]++;
    for (int i = 0; i < CountIntervals; i++)</pre>
         ProbabilityDensityNorm.Add((double)ProbabilityDensity[i] / CountNumbers);
    DrawHistogramm(ProbabilityDensityNorm, CountIntervals);
     //Построение статистической функции распределения
    DistributionFunction.Add(ProbabilityDensity[0]);
    for (int i = 1; i < CountIntervals; i++)</pre>
        DistributionFunction.Add(DistributionFunction[i - 1] + ProbabilityDensity[i]);
    for (int i = 0; i < CountIntervals; i++)</pre>
        DistributionFunctionNorm.Add((double)DistributionFunction[i] / CountNumbers);
    DrawGraph(DistributionFunctionNorm, CountIntervals);
    //Проверка по критерию Пирсона
    CheckPirson();
     //Проверка по критерию Колмогорова
    CheckKolmogorov();
}
/// <summary>
/// Проверка по критерию Пирсона
```

```
/// </summary>
        public void CheckPirson()
            for (int i = 0; i < CountIntervals; i++)</pre>
                EquallyProbabilityDensity.Add(1.0 / CountIntervals);
            //Рассчитанный хи квадрат
            double hi2 = Formuls.GetHi2(ProbabilityDensity, CountNumbers,
EquallyProbabilityDensity);
            textBoxHi2Nabl.Text = hi2.ToString();
            //число степеней свободы
            int NumberOfDegreesOfFreedom = Formuls.GetNumberOfDegreesOfFreedom(CountIntervals,
0);
            textBoxNumberOfDegreesOfFreedom.Text = NumberOfDegreesOfFreedom.ToString();
            //Проверка гипотезы
            if (hi2 < (double) numericUpDownHi2Tabl.Value)</pre>
                labelCheckPirson.BackColor = Color.GreenYellow;
                labelCheckPirson.Text = "Гипотеза принимается";
            }
            else
                labelCheckPirson.BackColor = Color.Red;
                labelCheckPirson.Text = "Гипотеза отвергается";
        /// <summary>
        /// Проверка по критерию Колмогорова
        /// </summary>
        public void CheckKolmogorov()
            for (int i = 1; i <= CountNumbers; i++)</pre>
                KolmogorovPlus.Add((double)i / CountNumbers - SequenceSort[i - 1]);
                KolmogorovMinus.Add(SequenceSort[i - 1] - (double)(i) / CountNumbers);
            double Kolmogorov = Math.Max(KolmogorovPlus.Max(), KolmogorovMinus.Max());
            double alpha = (double) numericUpDownLvlZna4.Value;
            double p = Math.Sqrt(Math.Pow(Math.Log(alpha, 2.73), 2) / (2 * CountNumbers));
            p = 0.964;
            textBoxDnPlus.Text = KolmogorovPlus.Max().ToString();
            textBoxDnMinus.Text = KolmogorovMinus.Max().ToString();
            textBoxDn.Text = Kolmogorov.ToString();
            textBox4dn.Text = p.ToString();
            if (Kolmogorov <= p)</pre>
                labelCheckKolmogorov.BackColor = Color.GreenYellow;
                labelCheckKolmogorov. Text = "Гипотеза принимается";
            else
            {
                labelCheckKolmogorov.BackColor = Color.Red;
                labelCheckKolmogorov.Text = "Гипотеза отвергается";
        public void TestLengthSeria()
            int CountOne = 0;
            for (int i = 0; i < CountNumbers; i++)</pre>
            {
                if (Sequence[i] < 0.25)</pre>
                    SequenceOneZero.Add(0);
                else
                {
                    SequenceOneZero.Add(1);
                    CountOne++;
                }
            int CountSeriaOne = 0;
            for (int i = 1; i < CountNumbers; i++)</pre>
                if (SequenceOneZero[i - 1] == 1 && SequenceOneZero[i] == 0)
                   CountSeriaOne++;
            if (SequenceOneZero[CountNumbers - 1] == 1)
                CountSeriaOne++;
```

```
double MxOne = Formuls.GetMxOne(Sequence, CountOne);
    double DOne = Formuls.GetDOne(Sequence, CountOne);
    double AverageLengthOne = Formuls.GetAverageLengthOne(CountOne, CountSeriaOne);
    double alpha = 0.999;
double betta = 1 - alpha;
    double quantile = 3.30;
    double Zdown = MxOne - quantile * Math.Sqrt(DOne / CountSeriaOne);
    double Zup = MxOne + quantile * Math.Sqrt(DOne / CountSeriaOne);
    textBoxCountOne.Text = CountOne.ToString();
    textBoxCountSeriaOne.Text = CountSeriaOne.ToString();
    textBoxMxOne.Text = MxOne.ToString();
    textBoxDOne.Text = DOne.ToString();
    textBoxAverageLengthOne.Text = AverageLengthOne.ToString();
    textBoxZdown.Text = Zdown.ToString();
    textBoxZup.Text = Zup.ToString();
    if (AverageLengthOne >= Zdown && AverageLengthOne <= Zup)</pre>
        labelTestLengthSeria.BackColor = Color.GreenYellow;
        labelTestLengthSeria.Text = "Гипотеза принимается";
    }
    else
        labelTestLengthSeria.BackColor = Color.Red;
        labelTestLengthSeria.Text = "Гипотеза отвергается";
/// <summary>
/// Хи квадрат
/// </summary>
public static double GetHi2(List<int> parM, int parCountNumbers, List<double> parP)
    double sum = 0;
    double a;
    for (int i = 0; i < parM.Count(); i++)</pre>
        a = parCountNumbers * parP[i];
        sum += (double) ((parM[i] - a) * (parM[i] - a)) / a;
    return sum;
/// <summary>
/// Число степеней свободы
/// </summary>
public static int GetNumberOfDegreesOfFreedom(int parK, int parM)
    return parK - parM - 1;
/// <summary>
/// МатОжидание серии единиц
/// </summary>
public static double GetMxOne(List<double> parArr, int parCountOne)
    double p = (double)parCountOne / parArr.Count();
    return p / (1 - p);
/// <summary>
/// Дисперсия серии единиц
/// </summary>
public static double GetDOne(List<double> parArr, int parCountOne)
    double p = (double)parCountOne / parArr.Count();
return p / Math.Pow(1 - p, 2);
.
/// <summary>
/// Оценка средней длины серии единиц
/// </summary>
public static double GetAverageLengthOne(int parCountOne, int parCountSeriaOne)
    return (double)parCountOne / parCountSeriaOne;
```