Przetwarzanie obrazów Sprawozdanie z laboratorium

Małgorzata Wiśniewska

Warszawa, 2020

Spis treści

1	W_{S1}	tęp	3
	1.1	Format obrazów	3
	1.2	Instrukcja obsługi programu	
2	Ope	eracje ujednolicania obrazów	4
	2.1	Ujednolicanie obrazów szarych geometryczne	4
	2.2	Ujednolicanie obrazów szarych rozdzielczościowe	
	2.3	Ujednolicanie obrazów RGB geometryczne	9
	2.4	Ujednolicanie obrazów RGB rozdzielczościowe	12
3	Ope	eracje sumowania arytmetycznego obrazów szarych	15
	3.1	Sumowanie obrazów szarych	
		3.1.1 Sumowanie obrazu z określoną stałą	
		3.1.2 Sumowanie dwóch obrazów	15
	3.2	Mnożenie obrazów szarych	15
		3.2.1 Mnożenie obrazu przez określoną stałą	15
		3.2.2 Mnożenieobrazu przez inny obraz	15
	3.3	Mieszanie obrazów z określonym współczynnikiem	15
	3.4	Potęgowanie obrazu z zadaną potęgą	
	3.5	Dzielenie obrazów szarych	15
		3.5.1 Dzielenie obrazu przez zadaną stałą	15
		3.5.2 Dzielenie obrazu przez inny obraz	15
	3.6	Pierwiastkowanie obrazu	15
	3.7	Logarytmowanie obrazu	
4	Ope	eracje sumowania arytmetycznego obrazów barwowych	16
	4.1	Sumowanie obrazów barwowych	16
		4.1.1 Sumowanie obrazu z określoną stałą	16
		4.1.2 Sumowanie dwóch obrazów	16
	4.2	Mnożenie obrazów barwowych	
		4.2.1 Mnożenie obrazu przez określoną stałą	
		4.2.2 Mnożenieobrazu przez inny obraz	
	4.3	Mieszanie obrazów z określonym współczynnikiem	16
	4.4	Potęgowanie obrazu z zadaną potęgą	16
	4.5	Dzielenie obrazów barwowych	16
		4.5.1 Dzielenie obrazu przez zadaną stałą	16
		4.5.2 Dzielenie obrazu przez inny obraz	16
	4.6	Pierwiastkowanie obrazu	16
	47	Logarytmowanie obrazu	16

5	Operacje geometryczne na obrazie			
	5.1	Przemieszczanie obrazu o zadany wektor	17	
	5.2	Skalowanie obrazu	17	
		5.2.1 Skalowanie jednorodne	17	
		5.2.2 Skalowanie niejednorodne	17	
	5.3	Obracanie obrazu o dowolny kąt	17	
	5.4	Symetrie obrazu	17	
		5.4.1 Symetra względem osi OX	17	
		5.4.2 Symetria względem osi OY	17	
		5.4.3 Symetria względem zadanej prostej		
	5.5	Wycinanie fragmentów obrazów	17	
	5.6	Kopiowanie fragmentów obrazów	17	
6	Ope	eracje na histogramie obrazu szarego	18	
	$6.\bar{1}$	Obliczanie histogramu	18	
	6.2	Przemieszczanie histogramu	18	
	6.3	Rozciąganie histogramu		
	6.4	Progowanie lokalne		
	6.5	Progowanie globalne		
7	Ope	eracje na histogramie obrazu barwowego	19	
	7.1	Obliczanie histogramu	19	
	7.2	Przemieszczanie histogramu		
	7.3	Rozciąganie histogramu		
	7.4	Progowanie 1 progowe lokalne		
	7.5	Progowanie 1 progowe globalne		
	7.6	Progowanie wieloprogowe lokalne		
	7.7	Progowanie wieloprogowe globalne	19	

Wstęp

- 1.1 Format obrazów
- 1.2 Instrukcja obsługi programu

Operacje ujednolicania obrazów

Operacje ujednolicania obrazów dzieli się na dwa etapy. Pierwszym etapem jest ujednolicanie geometryczne, drugim jest ujednolicenie rozdzielczościowe. W prezentowanym programie ujednolicane są dwa obrazy, w taki sposób, że mniejszy z nich jest doprowadzany do takiego samego rozmiaru jak większy. Skutkuje to wygenerowaniem nowego obrazu o zwiększonej ilości piksli niż początkowa wartość. Dzięki zastosowaniu tego typu ujednolicania w efekcie nie następuje widoczny spadek jakości.

2.1 Ujednolicanie obrazów szarych geometryczne

Opis algorytmu

Operacje geometrycznego ujednolicania polega na wyrównaniu liczby piksli w kolumnach i wierszach w obu obrazach, poprzez zwiększenie liczby piksli w kolumnach i wierszach mniejszego z obrazów.

- 1. Wybierz największą wysokość i największą szerokość spośród obu obrazów.
- 2. Jeśli dany obraz ma mniejszą wysokość lub szerokość, wypełnij różnicę pikslami o wartości 1, tak, żeby wysokość i szerokość obu obrazów była równa.

(b) Obraz 2: 512x512

Rysunek 2.1: Obrazy wejściowe

(a) Obraz 1: 512x512

(b) Obraz 2: 512x512

Rysunek 2.2: Obrazy wyjściowe

(b) Obraz 2: 623x640

Rysunek 2.3: Obrazy wejściowe

(a) Obraz 1: 623x640

(b) Obraz 2: 623x640

Rysunek 2.4: Obrazy wyjściowe

2.2 Ujednolicanie obrazów szarych rozdzielczościowe

Opis algorytmu

Operacja rozdzielczościowego ujednolicania obrazów następuje po ujednoliceniu geometrycznym obrazów wejściowych. Polega na wypełnieniu obrazu pikslami. Brakujące piksle powinny zostać zinterpolowane.

- 1. Wypełnij cały obraz pikslami o znanej wartości zachowując pewien odstęp między nimi, gdzie odstępem będą piksle o wartości 0.
- 2. Każdemu pikslowi o nieznanej wartości przypisz średnią wartość znanych (¿0) piksli z jego bezpośredniego otoczenia.

Rysunek 2.5: Obrazy wejściowe po ujednoliceniu geometrycznym

(b) Obraz 2: 512x512

Rysunek 2.6: Obrazy wyjściowe bez interpolacji

(a) Obraz 1: 512x512

(b) Obraz 2: 512x512

Rysunek 2.7: Obrazy wyjściowe po interpolacji

```
result[pomL, pomW] = self.matrix[1, w]
       elif w % 2 == 1:
           pomL = int(round(scaleFactorLength * 1))
           pomW = int(scaleFactorWidth * w)
           result[pomL, pomW] = self.matrix[1, w]
# zapisz obraz bez interpolacji
path = self.ex + self.smallerPictureName + ' ' + self.
   → biggerPictureName + '_withoutInterpolation.png'
self.saver.savePictureFromArray(result, 'L', path)
# interpolacja
for l in range(self.maxLength):
   for w in range(self.maxWidth):
       value = 0
       count = 0
       if result[1, w] == 0:
           for 10ff in range(-1, 2):
               for wOff in range(-1, 2):
                   1Save = 1 if ((1 + 10ff) > (self.maxLength - 2)
                      \hookrightarrow ) | ((1 + 10ff) < 0) else (1 + 10ff)
                   wSave = w if ((w + wOff) > (self.maxWidth - 2))
                      \hookrightarrow | ((w + w0ff) < 0) else (w + w0ff)
                   if result[lSave, wSave] != 0:
                      value += result[lSave, wSave]
                      count += 1
           result[1, w] = value / count
# zapisz obraz po interpolacji
path = self.ex + self.smallerPictureName + ' ' + self.
   → biggerPictureName + '_withInterpolation.png'
self.saver.savePictureFromArray(result, 'L', path)
print('Finished_resolution_unification.')
```

2.3 Ujednolicanie obrazów RGB geometryczne

Opis algorytmu

Operacje geometrycznego ujednolicania polega na wyrównaniu liczby piksli w kolumnach i wierszach w obu obrazach, poprzez zwiększenie liczby piksli w kolumnach i wierszach mniejszego z obrazów.

- 1. Wybierz największą wysokość i największą szerokość spośród obu obrazów.
- 2. Jeśli dany obraz ma mniejszą wysokość lub szerokość, wypełnij różnicę pikslami o wartości 1 dla każdego z kanałów (R,G,B), tak, żeby wysokość i szerokość obu obrazów była równa.

(b) Obraz 2: 1025x1025

Rysunek 2.8: Obrazy wejściowe

(a) Obraz 1: 1025x1025

(b) Obraz 2: 1025x1025

Rysunek 2.9: Obrazy wyjściowe

(b) Obraz 2: 512x512

Rysunek 2.10: Obrazy wejściowe

(a) Obraz 1: 512x512

(b) Obraz 2: 512x512

Rysunek 2.11: Obrazy wyjściowe

2.4 Ujednolicanie obrazów RGB rozdzielczościowe

Opis algorytmu

Operacja rozdzielczościowego ujednolicania obrazów następuje po ujednoliceniu geometrycznym obrazów wejściowych. Polega na wypełnieniu obrazu pikslami. Brakujące piksle powinny zostać zinterpolowane.

- 1. Wypełnij cały obraz pikslami o znanej wartości zachowując pewien odstęp między nimi, gdzie odstępem będą piksle o wartości 0.
- 2. Każdemu pikslowi (ze wszystkich kanałów R, G, B) o nieznanej wartości przypisz średnią wartość znanych (¿0) piksli z jego bezpośredniego otoczenia.

(a) Obraz 1: 1025x1025

(b) Obraz 2: 1025x1025

Rysunek 2.12: Obrazy wejściowe po ujednoliceniu geometrycznym

(a) Obraz 1: 1025x1025

(b) Obraz 2: 1025x1025

Rysunek 2.13: Obrazy wyjściowe bez interpolacji

(a) Obraz 1: 1025x1025

(b) Obraz 2: 1025x1025

Rysunek 2.14: Obrazy wyjściowe po interpolacji

```
result[pomL, pomW] = self.matrix[1, w]
       elif w % 2 == 1:
           pomL = int(round(scaleFactorLength * 1))
           pomW = int(scaleFactorWidth * w)
           result[pomL, pomW] = self.matrix[1, w]
# zapisz obraz bez interpolacji
path = self.ex + self.smallerPictureName + '_' + self.
   → biggerPictureName + '_withoutInterpolation.png'
self.saver.savePictureFromArray(result, 'L', path)
# interpolacja
for l in range(self.maxLength):
   for w in range(self.maxWidth):
       value = 0
       count = 0
       if result[1, w] == 0:
           for lOff in range(-1, 2):
               for wOff in range(-1, 2):
                  1Save = 1 if ((1 + 10ff) > (self.maxLength - 2)
                      \hookrightarrow ) | ((1 + 10ff) < 0) else (1 + 10ff)
                  wSave = w if ((w + wOff) > (self.maxWidth - 2))
                      \hookrightarrow | ((w + w0ff) < 0) else (w + w0ff)
                  if result[lSave, wSave] != 0:
                      value += result[lSave, wSave]
                      count += 1
           result[1, w] = value / count
# zapisz obraz po interpolacji
path = self.ex + self.smallerPictureName + '_' + self.
   → biggerPictureName + '_withInterpolation.png'
self.saver.savePictureFromArray(result, 'L', path)
print('Finished_resolution_unification.')
```

Operacje sumowania arytmetycznego obrazów szarych

- 3.1 Sumowanie obrazów szarych
- 3.1.1 Sumowanie obrazu z określoną stałą
- 3.1.2 Sumowanie dwóch obrazów
- 3.2 Mnożenie obrazów szarych
- 3.2.1 Mnożenie obrazu przez określoną stałą
- 3.2.2 Mnożenieobrazu przez inny obraz
- 3.3 Mieszanie obrazów z określonym współczynnikiem
- 3.4 Potęgowanie obrazu z zadaną potęgą
- 3.5 Dzielenie obrazów szarych
- 3.5.1 Dzielenie obrazu przez zadaną stałą
- 3.5.2 Dzielenie obrazu przez inny obraz
- 3.6 Pierwiastkowanie obrazu
- 3.7 Logarytmowanie obrazu

Operacje sumowania arytmetycznego obrazów barwowych

- 4.1 Sumowanie obrazów barwowych
- 4.1.1 Sumowanie obrazu z określoną stałą
- 4.1.2 Sumowanie dwóch obrazów
- 4.2 Mnożenie obrazów barwowych
- 4.2.1 Mnożenie obrazu przez określoną stałą
- 4.2.2 Mnożenieobrazu przez inny obraz
- 4.3 Mieszanie obrazów z określonym współczynnikiem
- 4.4 Potęgowanie obrazu z zadaną potęgą
- 4.5 Dzielenie obrazów barwowych
- 4.5.1 Dzielenie obrazu przez zadaną stałą
- 4.5.2 Dzielenie obrazu przez inny obraz
- 4.6 Pierwiastkowanie obrazu
- 4.7 Logarytmowanie obrazu

Operacje geometryczne na obrazie

- 5.1 Przemieszczanie obrazu o zadany wektor
- 5.2 Skalowanie obrazu
- 5.2.1 Skalowanie jednorodne
- 5.2.2 Skalowanie niejednorodne
- 5.3 Obracanie obrazu o dowolny kąt
- 5.4 Symetrie obrazu
- 5.4.1 Symetra względem osi OX
- 5.4.2 Symetria względem osi OY
- 5.4.3 Symetria względem zadanej prostej
- 5.5 Wycinanie fragmentów obrazów
- 5.6 Kopiowanie fragmentów obrazów

Operacje na histogramie obrazu szarego

- 6.1 Obliczanie histogramu
- 6.2 Przemieszczanie histogramu
- 6.3 Rozciąganie histogramu
- 6.4 Progowanie lokalne
- 6.5 Progowanie globalne

Operacje na histogramie obrazu barwowego

- 7.1 Obliczanie histogramu
- 7.2 Przemieszczanie histogramu
- 7.3 Rozciąganie histogramu
- 7.4 Progowanie 1 progowe lokalne
- 7.5 Progowanie 1 progowe globalne
- 7.6 Progowanie wieloprogowe lokalne
- 7.7 Progowanie wieloprogowe globalne