

Intro Data Science con Python

Hello!

Soy Isabel Ruiz Buriticá

Me gustan las comunidades para aprender y enseñar.

Me encuentras como @iris9112

¿Qué es data science?

Data science es una combinación multidisciplinaria de tratamiento de datos, desarrollo de algoritmos, estadística y tecnología para resolver problemas analiticamente complejos

Data science se trata de descubrir que hay escondido dentro de los datos

¿Quién es un Data Scientist?

66

A data scientist is someone who is better at statistics than any software engineer and better at software engineer than any statistician

- Josh wills

Perfiles

Scientist

Develops, constructs, tests, and maintains architectures. Such as databases and large-scale processing systems. Cleans, massages and organizes (big) data. Performs descriptive statistics and analysis to develop insights, build models and solve a business need.

Lenguajes & Herramientas

¿Dónde aprender?

Ha sido un tópico común que el 80% del valioso tiempo de un científico de datos se invierte simplemente buscando, limpiando y organizando datos, dejando solo un 20% para realizar el análisis.

Flujo de trabajo de un data Scientist

Principales librerías Python

Numpy

Es el módulo básico para la computación científica y la ciencia de datos en Python. Su objeto más usado son los arreglos multidimensionales.

matplotlib

Permite realizar gráficas de datos contenidos en listas o arrays. Proporciona una API, pylab diseñada para recordar a la de MATLAB.

Pandas

Es una extensión de NumPy para manipulación y análisis de datos. Principalmente para tablas numéricas y series temporales. Su principal tipo de dato es el DataFrame.

Scipy

Librería de cálculo numérico de gran capacidad basada en numpy, posee módulos para optimización de funciones, integración, funciones especiales, estadísticas, tratamiento de señales, entre otras.

Scikit-learn

Este módulo está basado en NumPy y SciPy. Proporciona algoritmos para muchas tareas estándar de ML y minería de datos, como clustering, regresión, clasificación, reducción de dimensionalidad y selección de modelo.

Tensor Flow

Librería para Machine learning y deep learning. Desarrollado por Google. Permite entrenar redes neuronales para detectar y descifrar patrones y correlaciones, análogos al aprendizaje y razonamiento usados por los humanos

Github data Python 2018

Library Name	Туре	Commits	Contributors	Releases	Watch	Star	Fork	Commits/ Contributors	Commits/ Releases	Star/ Contributors
matpletlib	Visualization	25 747	725	70	498	7 292	398	36	368	10
Bokeh	Visualization	16 983	294	58	363	7 615	2 000	58	293	26
iiii plotly	Visualization	2 906	48	8	198	3 444	850	61	363	72
Seaborn	Visualization	2 044	83	13	205	4 856	752	25	157	59
pydot	Visualization	169	12	12	17	193	80	14	14	16
learn	Machine learning	22 753	1 084	86	2 114	28 098	14 005	21	265	26
XGBoost LightGBM CatBoost	Machine learning	3277 1083 1509	280 79 61	9 14 20	868 363 157	11 991 5 488 2 780	5 425 1 467 369	12 14 25	364 77 75	43 69 46
eli5	Machine learning	922	6	22	39	672	89	154	42	112
S SciPy	Data wrangling	19 150	608	99	301	4 447	2 318	31	193	7
NumPy	Data wrangling	17911	641	136	390	7 215	2 766	28	132	11
pandas 🖳 📈 🕍	Data wrangling	17 144	1 165	93	858	14 294	5 788	15	184	12
SM StateModels Statesics in Python	Statistics	10 067	153	21	234	2 868	1 240	66	479	19
*TensorFlow	Deep learning	33 339	1 469	58	7 968	99 664	62 952	23	575	68

816

1 673

41

97

116

467

425

415

1 723

15 512

29 444

431

913

920

6 405

9 258

6 995

27 277

3 483

10 964

106

189

206

1 804

1 446

2 689

6 469

18

7

225

13

55

40

13

24

707

1111

161

34

22

543

154

69

82

24

44

86

70

27

43

26

Created by ActiveWizards

PYT BRCH

K Keras

dist-keras

elephas

spark-deep-learning

spaCy

gensim

Scrapy

Last reviewed: 13.02, 2018

Natural Language ToolKit Deep learning

Deep learning

Distributed

deep learning

NLP

NLP

NLP

Data scraping

11 306

4 5 3 9

1125 170

67

13 041

8 623

3 603

6 625

635

671

13

11

236

215

273

281

16

41

5

24

56

52

81

Datasets

https://herramientas.datos.gov.co/ es/blog/visualizaciones-de-los-mej ores-conjuntos

https://www.kaggle.com/neuromus ic/avocado-prices Kaggle is the place to do data science projects

See how it works ()

\$105,000

Es en promedio es el salario anual de un data scientist

700,000 puestos

Es la cantidad de vacantes estimadas para el 2020

59%

De toda la demanda de trabajo está en finanzas y seguros, servicios profesionales e informática.

How does NETFLIX recommend movies? Matrix Factorization

Video:

https://www.youtube.com/watch?v=ZspR5PZemcs

Repo:

https://github.com/yanneta/pytorch-tutorials/blob/master/collaborative-filtering-nn.ipynb

Modelo	Aplicaciones (Ejemplo de uso)					
Logistic Regression	Predicción de precios de inmuebles					
Fully connected networks	Clasificación					
Convolutional Neural Networks	Procesamiento de imágenes para poder encontrar gatitos en las fotos					
Recurrent Neural Networks	Reconocimiento de Voz					
Random Forest	Detención de fraude					
Reinforcement Learning	Enseñarle a la máquina a jugar videojuegos y vencer!					
Generative Models	Creación de imágenes					
K-means	Crear Clusters a partir de datos sin etiquetar. Segmentar audiencias o Inventarios					
k-Nearest Neighbors	motores de recomendación (por similitud/cercanía)					
Bayesian Clasifiers	Clasificación de emails: Spam o no					

Referencias

- Presentation template by <u>SlidesCarnival</u>
- DataCamp:
 https://www.datacamp.com/community/blog/data-scientist-vs-d
 ata-engineer
- Datos Abiertos Col: https://datos.gov.co/
- Kaggle: https://www.kaggle.com/datasets
- https://www.kaggle.com/learn/overview
- IBM analisis:
 https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-pr
 https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-pr
 edicts-demand-for-data-scientists-will-soar-28-by-2020/#f0d1151
 7e3bd
- Python Bootcamp Uniandes:
 https://github.com/PythonBootcampUniandes