Package 'MBAnalysis'

October 24, 2023
Title Multiblock Exploratory and Predictive Data Analysis
Version 2.0.2
Description Exploratory and predictive methods for the analysis of several blocks of variables measured on the same individuals.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
Depends R (>= 2.10)
LazyData false
Imports ggplot2, ggrepel, grDevices, stats, utils
NeedsCompilation no
Author Benjamin Mahieu [aut, cre], Essomanda Tchandao Mangamana [aut], Evelyne Vigneau [aut], Veronique Cariou [aut] Maintainer Benjamin Mahieu <benjamin.mahieu@oniris-nantes.fr></benjamin.mahieu@oniris-nantes.fr>
Repository CRAN
Date/Publication 2023-10-24 13:40:22 UTC
24.0.7 4.0.7.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
R topics documented:
Beta ComDim ham MBPCA MBplotBlocks MBplotScores MBplotVars 1 MBPLS 1 MBValidation 1 MBWCov 1

2 Beta

Index		25
	summary.MBWCov	24
	summary.MBPLS	23
	summary.MBPCA	
	summary.ComDim	22
	predict.MBWCov	21
	predict.MBPLS	20
	plot.MBWCov	19
	plot.MBPLS	18
	plot.MBPCA	17
	plot.ComDim	16

Beta

Regression coefficients of MBPLS or MBWCov models

Description

Computes regression coefficients from MBPLS or MBWCov.

Usage

```
Beta(res, ncomp = res$call$ncomp)
```

Arguments

res An object resulting from MBPLS or MBWCov.

ncomp The number of components to be considered in the model. By default, all com-

ponents computed in MBPLS or MBWCov are considered.

Value

A matrix of regression coefficients where each row corresponds to a variable in X and each column corresponds to a variable in Y.

See Also

```
predict.MBPLS predict.MBWCov
```

```
# With MBPLS

data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
Beta(res.mbpls)</pre>
```

ComDim 3

```
# With MBWCov

data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
Beta(res.mbwcov)</pre>
```

ComDim

Common Dimensions analysis (ComDim)

Description

Performs ComDim analysis on a set of quantitative blocks of variables. ComDim can be viewed as a Multiblock Weighted Principal Components Analysis (MBWPCA)

Usage

```
ComDim(
   X,
   block,
   name.block,
   ncomp = NULL,
   scale = TRUE,
   scale.block = TRUE,
   threshold = 1e-08
)
```

Arguments X

block	Vector indicating the number of variables in each block.
name.block	names of the blocks of variables (NULL by default).
ncomp	Number of dimensions to compute. By default (NULL), all the global components are extracted.
scale	Logical, if TRUE (by default) then variables are scaled to unit variance (all variables are centered anyway).
scale.block	Logical, if TRUE (by default) each block of variables is divided by the square

Dataset obtained by horizontally merging all the blocks of variables.

root of its inertia (Frobenius norm).

threshold Convergence threshold

4 ComDim

Value

Returns a list of the following elements:

optimalcrit	Numeric vector of the optimal value of the criterion (sum of squared saliences) obtained for each dimension.
saliences	Matrix of the specific weights of each block of variables on the global components, for each dimension.
T.g	Matrix of normed global components.
Scor.g	Matrix of global components (scores of individuals).
W.g	Matrix of global weights (normed) associated with deflated X.
Load.g	Matrix of global loadings (normed).
Proj.g	Matrix of global projection (to compute scores from pretreated X).
explained.X	Matrix of percentages of inertia explained in each block of variables.
cumexplained	Matrix giving the percentages, and cumulative percentages, of total inertia of X blocks explained by the global components.
Block	A list containing block components (T.b) and block weights (W.b)

References

E.M. Qannari, I. Wakeling, P. Courcoux, J.M. MacFie (2000). Defining the underlying sensory dimensions, Food Quality and Preference, 11: 151-154.

E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glèlè Kakaï, E.M. Qannari (2019). Unsupervised multiblock data analysis: A unified approach and extensions, Chemometrics and Intelligent Laboratory Systems, 194, 103856.

See Also

```
summary.ComDim plot.ComDim
```

```
data(ham)
X=ham$X
block=ham$block
res.comdim <- ComDim(X,block,name.block=names(block))
summary(res.comdim)
plot(res.comdim)</pre>
```

ham 5

ham Ham data

Description

Case study pertaining to the sensory evaluation of eight American dry-cured ham products, performed by a panel of trained assessors.

Usage

data(ham)

Format

An object of class "list" with 8 products, 3 blocks of X variables (Flavor, Aroma, Texture) and 1 block of Y variables corresponding to hedonic measures:

- **X** dataframe of 8 products and 25 variables structured into 3 blocks: Flavor (11 variables), Aroma (8 variables) and Texture (6 variables)
- Y dataframe of 8 products and 6 vectors of hedonic values corresponding to consumers' segmentation

block vector indicating the number of variables per block

References

M.D. Guardia, A.P. Aguiar, A. Claret, J. Arnau & L. Guerrero (2010). Sensory characterization of dry-cured ham using free-choice profiling. Food Quality and Preference, 21(1), 148-155. doi:10.1016/j.foodqual.2009.08.014

Examples

data(ham)
ham\$X
ham\$Y
ham\$block

MBPCA

Multiblock Principal Components Analysis (MB-PCA)

Description

Performs MB-PCA on a set of quantitative blocks of variables.

6 MBPCA

Usage

```
MBPCA(
    X,
    block,
    name.block = NULL,
    ncomp = NULL,
    scale = TRUE,
    scale.block = TRUE
)
```

Arguments

block Vector indicating the number of variables in each block.

name.block names of the blocks of variables (NULL by default).

ncomp Number of dimensions to compute. By default (NULL), all the global compo-

nents are extracted.

scale Logical, if TRUE (by default) then variables are scaled to unit variance (all

variables are centered anyway).

scale.block Logical, if TRUE (by default) each block of variables is divided by the square

root of its inertia (Frobenius norm).

Value

Returns a list of the following elements:

optimalcrit Numer	ric vector of the optimal	value of the criterion ((sum of saliences) obtained
-------------------	---------------------------	--------------------------	-----------------------------

for each dimension.

saliences Matrix of the specific weights of each block of variables on the global compo-

nents, for each dimension.

T.g Matrix of normed global components.

Scor.g Matrix of global components (scores of individuals).

W.g Matrix of global weights (normed) associated with deflated X.

Load.g Matrix of global loadings (normed) = W.g in the specific context of MB-PCA.

Proj. g Matrix of global projection (to compute scores from pretreated X) = W.g in the

specific context of MB-PCA.

explained.X Matrix of percentages of inertia explained in each block of variables.

cumexplained Matrix giving the percentages, and cumulative percentages, of total inertia of X

blocks explained by the global components.

Block A list containing block components (T.b) and block weights (W.b)

MBplotBlocks 7

References

S. Wold, S. Hellberg, T. Lundstedt, M. Sjostrom, H. Wold (1987). Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection, in: Proc. Symp. On PLS Model Building: Theory and Application, Frankfurt am Main.

E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glèlè Kakaï, E.M. Qannari (2019). Unsupervised multiblock data analysis: A unified approach and extensions, Chemometrics and Intelligent Laboratory Systems, 194, 103856.

See Also

```
summary.MBPCA plot.MBPCA
```

Examples

```
data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
summary(res.mbpca)
plot(res.mbpca)</pre>
```

MBplotBlocks

Customizable plots of blocks related information

Description

Plots blocks related information of MBPCA, ComDim, MBPLS or MBWCov with several options of customization.

Usage

```
MBplotBlocks(
  res,
  which = "explained.blocks&Y",
  axes = c(1, 2),
  blocks.axes = 1:max(axes),
  title = NULL,
  size = 2.25
)
```

Arguments

```
res An object resulting from MBPCA, ComDim, MBPLS or MBWCov.
which Either "explained.blocks&Y", "scree", "structure" or "blocks.axes". See details.
```

8 MBplotBlocks

axes	Which global dimensions should be plotted? Only useful if <i>which=structure</i> or <i>which=blocks.axes</i>
blocks.axes	Which individual blocks dimensions should be correlated with global ones? Only useful if <i>which=blocks.axes</i>
title	An optional title to be added to the plot.
size	The overall size of labels, points, etc.

Details

- explained.blocks&Y: Barplot of the percentages of inertia explained in each block of variables (and Y for MBPLS or MBWCov) by each global components.
- scree: Barplot of the saliences of each block of variables on each global components.
- structure: Blocks coordinates (saliences) on the global selected axes
- blocks.axes: Correlations of the selected individual blocks.axes with the global selected axes.

Value

The required plot.

See Also

```
plot.MBPCA plot.ComDim plot.MBPLS plot.MBWCov
```

```
# Unsupervised example
data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))</pre>
MBplotBlocks(res.mbpca,which="explained.blocks&Y")
MBplotBlocks(res.mbpca,which="scree")
MBplotBlocks(res.mbpca,which="structure")
MBplotBlocks(res.mbpca,which="blocks.axes")
# Supervised example
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block=names(block))
MBplotBlocks(res.mbpls,which="explained.blocks&Y")
MBplotBlocks(res.mbpls,which="scree")
MBplotBlocks(res.mbpls,which="structure")
MBplotBlocks(res.mbpls,which="blocks.axes")
```

MBplotScores 9

MBplotScores	Customizable plots of scores related information

Description

Plots scores related information of MBPCA, ComDim, MBPLS or MBWCov with several options of customization.

Usage

```
MBplotScores(
  res,
  axes = c(1, 2),
  block = 0,
  color = NULL,
  select = 1:nrow(res$Scor.g),
  title = NULL,
  size = 2.25
)
```

Arguments

res	An object resulting from MBPCA, ComDim, MBPLS or MBWCov.
axes	Which dimensions should be plotted?
block	Of which block? Block 0 corresponds to global components.
color	Either NULL (default) or a character vector of length <i>select</i> . Controls the color of each individual plotted. Useful if individuals pertain to different a priori known groups. By default individuals are colored in black for global components and in the block color (the same as in MBplotVars) for block components.
select	A numeric or integer vector to select which individuals should be plotted. By default, all individuals are plotted.
title	An optional title to be added to the plot.
size	The overall size of labels, points, etc.

Value

The required plot.

See Also

```
plot.MBPCA plot.ComDim plot.MBPLS plot.MBWCov
```

MBplotVars

Examples

```
# Unsupervised example

data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
MBplotScores(res.mbpca)

# Supervised example

data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block=names(block))
MBplotScores(res.mbpls)</pre>
```

MBplotVars

Customizable plots of variables related information

Description

Plots variables related information of MBPCA, ComDim, MBPLS or MBWCov with several options of customization.

Usage

```
MBplotVars(
  res,
  axes = c(1, 2),
  which = ifelse(res$call$scale, "correlation", "loading"),
  block = 0,
  select = 0,
  title = NULL,
  size = 2.25
)
```

Arguments

res An object resulting from MBPCA, ComDim, MBPLS or MBWCov.

axes Which dimensions should be plotted? which Either "correlation" or "loading".

block Selection of variables by blocks. A number or integer, possibly a vector, corre-

sponding to the index of the blocks from which the variables should be plotted. For MBPLS and MBWCov the Y response block corresponds to the index

MBPLS 11

length(res\$call\$size.block)+1. By default, all variables of all blocks are plotted. Only one of block and select can differ from 0 (the default) both at the same

time.

select Selection of variables by index. A number or integer, possibly a vector, corre-

sponding to the index of the variables that should be plotted. For MBPLS and MBWCov the Y variables index start from ncol(res\$call\$X)+1. By default, all variables of all blocks are plotted. Only one of block and select can differ from

0 (the default) both at the same time.

title An optional title to be added to the plot.

size The overall size of labels, points, etc.

Value

The required plot.

See Also

```
plot.MBPCA plot.ComDim plot.MBPLS plot.MBWCov
```

Examples

```
# Unsupervised example
```

MBplotVars(res.mbpls)

```
data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
MBplotVars(res.mbpca)

# Supervised example
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block=names(block))</pre>
```

MBPLS

Multiblock Partial Least Squares (MB-PLS) regression

Description

MB-PLS regression applied to a set of quantitative blocks of variables.

MBPLS

Usage

```
MBPLS(
   X,
   Y,
   block,
   name.block = NULL,
   ncomp = NULL,
   scale = TRUE,
   scale.block = TRUE,
   scale.Y = TRUE
)
```

Arguments

Χ	Dataset obtained by horizontally merging all the predictor blocks of variables.
Υ	Response block of variables.
block	Vector indicating the number of variables in each predictor block.
name.block	Names of the predictor blocks of variables (NULL by default).
ncomp	Number of dimensions to compute. By default (NULL), all the global components are extracted.
scale	Logical, if TRUE (by default) the variables in X are scaled to unit variance (all variables in X are centered anyway).
scale.block	Logical, if TRUE (by default) each predictor block of variables is divided by the square root of its inertia (Frobenius norm).
scale.Y	Logical, if TRUE (by default) then variables in Y are scaled to unit variance (all variables in Y are centered anyway).

Value

Returns a list of the following elements:

optimalcrit	Numeric vector of the optimal value of the criterion (sum of saliences) obtained for each dimension.
saliences	Matrix of the specific weights of each predictor block on the global components, for each dimension.
T.g	Matrix of normed global components.
Scor.g	Matrix of global components (scores of individuals).
W.g	Matrix of global weights (normed) associated with deflated X.
Load.g	Matrix of global loadings.
Proj.g	Matrix of global projection (to compute scores from pretreated X).
explained.X	Matrix of percentages of inertia explained in each predictor block.
cumexplained	Matrix giving the percentages, and cumulative percentages, of total inertia of X and Y blocks explained by the global components.

MBValidation 13

Y A list containing un-normed Y components (U), normed Y weights (W.Y) and Y loadings (Load.Y)

Block A list containing block components (T.b) and block weights (W.b)

References

S. Wold (1984). Three PLS algorithms according to SW. In: Symposium MULDAST (Multivariate Analysis in Science and Technology), Umea University, Sweden. pp. 26–30.

E. Tchandao Mangamana, R. Glèlè Kakaï, E.M. Qannari (2021). A general strategy for setting up supervised methods of multiblock data analysis. Chemometrics and Intelligent Laboratory Systems, 217, 104388.

See Also

```
summary.MBPLS plot.MBPLS
```

Examples

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
summary(res.mbpls)
plot(res.mbpls)</pre>
```

MBValidation

Cross-Validation of MBPLS or MBWCov models

Description

Computes MSEP and corresponding standard error based on Leave One Out (LOO) or Out Of Bag (OOB) Cross-Validation (CV) by number of components of a MBPLS or MBWCov model from MBPLS or MBWCov.

Usage

```
MBValidation(
  res,
  ncomp.max = min(res$call$ncomp, nrow(res$call$X) - 2, ncol(X)),
  method = "LOO",
  nboot = 1000,
  graph = TRUE,
  size.graph = 2.25
)
```

14 MBWCov

Arguments

res An object resulting from MBPLS or MBWCov.

ncomp.max The maximum number of components to be investigated in the CV procedure.

method Either "LOO" or "OOB". Default is LOO.

nboot Number of bootstrap samples to be generated in case of OOB CV.

graph Logical. Should the results be plotted? Default is TRUE. size.graph If *graph=TRUE*, the overall size of labels, points, etc.

Value

A matrix with two rows (MSEP and std.error) and *ncomp.max+1* columns. The +1 column corresponds to the null model (Dim.0) where Y is predicted by its empirical average on the training sample.

See Also

```
predict.MBPLS predict.MBWCov
```

Examples

```
# With MBPLS

data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
MBValidation(res.mbpls)

# With MBWCov

data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
MBValidation(res.mbwcov)</pre>
```

MBWCov

Multiblock Weighted Covariate analysis (MB-WCov)

Description

MB-WCov analysis applied to a set of quantitative blocks of variables.

MBWCov 15

Usage

```
MBWCov(
   X,
   Y,
   block,
   name.block = NULL,
   ncomp = NULL,
   scale = TRUE,
   scale.block = TRUE,
   scale.Y = TRUE,
   threshold = 1e-08
)
```

Arguments

Χ	Dataset obtained by	v horizontally	merging all the	e predictor b	locks of variables.

Y Response block of variables.

block Vector indicating the number of variables in each predictor block.

name.block Names of the predictor blocks of variables (NULL by default).

ncomp Number of dimensions to compute. By default (NULL), all the global compo-

nents are extracted.

scale Logical, if TRUE (by default) the variables in X are scaled to unit variance (all

variables in X are centered anyway).

scale.block Logical, if TRUE (by default) each predictor block of variables is divided by the

square root of its inertia (Frobenius norm).

scale.Y Logical, if TRUE (by default) then variables in Y are scaled to unit variance (all

variables in Y are centered anyway).

threshold Convergence threshold

Value

optimalcrit	Numeric vector of the optimal value of the criterion (sum of squared saliences) obtained for each dimension.
saliences	Matrix of the specific weights of each predictor block on the global components, for each dimension.
T.g	Matrix of normed global components.
Scor.g	Matrix of global components (scores of individuals).
W.g	Matrix of global weights (normed) associated with deflated X.
Load.g	Matrix of global loadings.

 $\label{eq:projection} \mbox{Proj.g} \qquad \qquad \mbox{Matrix of global projection (to compute scores from pretreated X)}.$

explained.X Matrix of percentages of inertia explained in each predictor block.

cumexplained Matrix giving the percentages, and cumulative percentages, of total inertia of X

and Y blocks explained by the global components.

16 plot.ComDim

Y A list containing un-normed Y components (U), normed Y weights (W.Y) and

Y loadings (Load.Y)

Block A list containing block components (T.b) and block weights (W.b)

References

E. Tchandao Mangamana, R. Glèlè Kakaï, E.M. Qannari (2021). A general strategy for setting up supervised methods of multiblock data analysis. Chemometrics and Intelligent Laboratory Systems, 217, 104388.

See Also

```
summary.MBWCov plot.MBWCov
```

Examples

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
summary(res.mbwcov)
plot(res.mbwcov)</pre>
```

plot.ComDim

Default plots for ComDim objects

Description

Successively performs MBplotScores, MBplotVars and MBplotBlocks with the default values of parameters but axes and size.

Usage

```
## S3 method for class 'ComDim' plot(x, axes = c(1, 2), size = 2.25, ...)
```

Arguments

x An object resulting from ComDim.axes Which dimensions should be plotted?size The overall size of labels, points, etc.

... further arguments passed to or from other methods.

Value

The default plots.

plot.MBPCA 17

See Also

MBplotScores MBplotVars MBplotBlocks

Examples

```
data(ham)
X=ham$X
block=ham$block
res.comdim <- ComDim(X,block,name.block=names(block))
plot(res.comdim)</pre>
```

plot.MBPCA

Default plots for MBPCA objects

Description

Successively performs MBplotScores, MBplotVars and MBplotBlocks with the default values of parameters but axes and size.

Usage

```
## S3 method for class 'MBPCA' plot(x, axes = c(1, 2), size = 2.25, ...)
```

Arguments

X	An object resulting from MBPCA.
axes	Which dimensions should be plotted?
size	The overall size of labels, points, etc.
	further arguments passed to or from other methods.

Value

The default plots.

See Also

MBplotScores MBplotVars MBplotBlocks

```
data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
plot(res.mbpca)</pre>
```

18 plot.MBPLS

plot.MBPLS

Default plots for MBPLS objects

Description

Successively performs MBplotScores, MBplotVars and MBplotBlocks with the default values of parameters but axes and size.

Usage

```
## S3 method for class 'MBPLS'
plot(x, axes = c(1, 2), size = 2.25, ...)
```

Arguments

X	An object resulting from MBPLS.
axes	Which dimensions should be plotted?
size	The overall size of labels, points, etc.
	further arguments passed to or from other methods.

Value

The default plots.

See Also

 ${\tt MBplotScores\ MBplotVars\ MBplotBlocks}$

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
plot(res.mbpls)</pre>
```

plot.MBWCov 19

plot.MBWCov	Default plots for MBWCov objects	
-------------	----------------------------------	--

Description

Successively performs MBplotScores, MBplotVars and MBplotBlocks with the default values of parameters but axes and size.

Usage

```
## S3 method for class 'MBWCov'
plot(x, axes = c(1, 2), size = 2.25, ...)
```

Arguments

Х	An object resulting from MBWCov.	
axes	Which dimensions should be plotted?	
size	The overall size of labels, points, etc.	
	further arguments passed to or from other methods.	

Value

The default plots.

See Also

 ${\tt MBplotScores\ MBplotVars\ MBplotBlocks}$

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
plot(res.mbwcov)</pre>
```

20 predict.MBPLS

predict	MRPI	ς

Prediction from MBPLS models

Description

Computes predictions of Y from MBPLS using calibration X (default) or new X observations.

Usage

```
## S3 method for class 'MBPLS'
predict(object, newdata = object$call$X, ncomp = object$call$ncomp, ...)
```

Arguments

object	An object resulting from MBPLS.
newdata	A matrix or data.frame of (new) observations having the same ncol and same colnames as the X of fitting observations.
ncomp	The number of components to be considered in the model to perform the predictions. By default, all components computed in MBPLS are considered.
	further arguments passed to or from other methods.

Value

A matrix of predicted Y values where each row corresponds to an observation and each column corresponds to a Y variable.

See Also

Beta MBValidation

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
predict(res.mbpls)</pre>
```

predict.MBWCov 21

ction from MBWCov models	Prediction	predict.MBWCov
--------------------------	------------	----------------

Description

Computes predictions of Y from MBWCov using calibration X (default) or new X observations.

Usage

```
## S3 method for class 'MBWCov'
predict(object, newdata = object$call$X, ncomp = object$call$ncomp, ...)
```

Arguments

object	An object resulting from MBWCov.
newdata	A matrix or data.frame of (new) observations having the same ncol and same colnames as the \boldsymbol{X} of fitting observations.
ncomp	The number of components to be considered in the model to perform the predictions. By default, all components computed in MBWCov are considered.
	further arguments passed to or from other methods.

Value

A matrix of predicted Y values where each row corresponds to an observation and each column corresponds to a Y variable.

See Also

```
Beta MBValidation
```

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
predict(res.mbwcov)</pre>
```

22 summary.MBPCA

summary.ComDim

Summary of ComDim objects

Description

Edits the Cumulative Explained Variance, Block Explained Variance per Dimension and Block Saliences per Dimension of a ComDim object.

Usage

```
## S3 method for class 'ComDim'
summary(object, ...)
```

Arguments

object An object resulting from ComDim.

... further arguments passed to or from other methods.

Value

The summary.

See Also

```
plot.ComDim
```

Examples

```
data(ham)
X=ham$X
block=ham$block
res.comdim <- ComDim(X,block,name.block=names(block))
summary(res.comdim)</pre>
```

summary.MBPCA

Summary of MBPCA objects

Description

Edits the Cumulative Explained Variance, Block Explained Variance per Dimension and Block Saliences per Dimension of a MBPCA object.

Usage

```
## S3 method for class 'MBPCA'
summary(object, ...)
```

summary.MBPLS 23

Arguments

object An object resulting from MBPCA.

... further arguments passed to or from other methods.

Value

The summary.

See Also

```
plot.MBPCA
```

Examples

```
data(ham)
X=ham$X
block=ham$block
res.mbpca <- MBPCA(X,block, name.block=names(block))
summary(res.mbpca)</pre>
```

summary.MBPLS

Summary of MBPLS objects

Description

Edits the Cumulative Explained Variance, Block Explained Variance per Dimension and Block Saliences per Dimension of a MBPLS object.

Usage

```
## S3 method for class 'MBPLS'
summary(object, ...)
```

Arguments

object An object resulting from MBPLS.

... further arguments passed to or from other methods.

Value

The summary.

See Also

```
plot.MBPLS
```

24 summary.MBWCov

Examples

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbpls <- MBPLS(X, Y, block, name.block = names(block))
summary(res.mbpls)</pre>
```

 $\verb"summary.MBWCov"$

Summary of MBWCov objects

Description

Edits the Cumulative Explained Variance, Block Explained Variance per Dimension and Block Saliences per Dimension of a MBWCov object.

Usage

```
## S3 method for class 'MBWCov'
summary(object, ...)
```

Arguments

object An object resulting from MBWCov.

... further arguments passed to or from other methods.

Value

The summary.

See Also

```
plot.MBWCov
```

```
data(ham)
X=ham$X
block=ham$block
Y=ham$Y
res.mbwcov <- MBWCov(X, Y, block, name.block = names(block))
summary(res.mbwcov)</pre>
```

Index

```
* datasets
    ham, 5
Beta, 2, 20, 21
ComDim, 3, 7, 9, 10, 16, 22
ham, 5
MBPCA, 5, 7, 9, 10, 17, 22, 23
MBplotBlocks, 7, 16–19
MBplotScores, 9, 16–19
MBplotVars, 9, 10, 16–19
MBPLS, 2, 7–11, 11, 13, 14, 18, 20, 23
MBValidation, 13, 20, 21
MBWCov, 2, 7–11, 13, 14, 14, 19, 21, 24
plot.ComDim, 4, 8, 9, 11, 16, 22
plot.MBPCA, 7-9, 11, 17, 23
\verb"plot.MBPLS", 8, 9, 11, 13, 18, 23"
plot.MBWCov, 8, 9, 11, 16, 19, 24
predict.MBPLS, 2, 14, 20
predict.MBWCov, 2, 14, 21
summary.ComDim, 4, 22
summary.MBPCA, 7, 22
summary.MBPLS, 13, 23
summary.MBWCov, 16, 24
```