Codifica binaria dell' informazione

Codifica binaria dell'informazione

- Tutte le informazioni vanno tradotte in bit (organizzati poi in Byte):
 - Numeri naturali
 - Numeri interi (con segno)
 - Numeri frazionari
 - Numeri reali
 - Caratteri
 - Immagini
- Nell'interazione con il calcolatore sia la codifica in binario che la decodifica in formato leggibile per l'operatore umano avvengono in modo trasparente all'utente

Numeri naturali: Sistemi di numerazione

- Un sistema di numerazione è composto da:
 - Insieme finito di simboli (o cifre)
 - Regole che permettono di rappresentare i numeri
- Classificazione
 - Sistemi additivi (Es. sistema romano, con alcuni accorgimenti ...):
 - Ogni cifra assume un valore prefissato
 - Il numero si ottiene addizionando le cifre che lo compongono (...)
 - Impossibilità di rappresentare numeri molto grandi e difficoltà di esecuzione delle operazioni matematiche
 - Sistemi posizionali (Es. sistema decimale):
 - Le cifre hanno peso diverso a seconda della posizione che occupano
 - Un numero di n cifre è rappresentato in base p dalla sequenza:

$$a_{n-1}, a_{n-2}, ..., a_0$$

 Compattezza di rappresentazione anche per numeri molto grandi e facilità di esecuzione delle operazioni

Sistemi pos.:rappresentazione in base p

Numero naturale composto da *n* cifre, in base *p*:

Rappresentazione:

Il numero $a_{n-1}a_{n-2}...a_0$ in base p rappresenta il valore:

$$a_{n-1}p^{n-1}+a_{n-2}p^{n-2}+...+a_1p^1+a_0p^0=\sum_{i=0}^{n-1}a_ip^i$$

Spazio di Rappresentazione (range):

Con n cifre, in base p si possono rappresentare tutti i numeri nell'intervallo $[0, p^n - 1]$

Sistema decimale: rappresentazione in base 10

Sistema posizionale

• Esempio: 123 = 100 + 20 + 3

Base: p = 10

Insieme di simboli: $a_i \in \{0,1,2,3,4,5,6,7,8,9\}$

Numero naturale *N* di *n* cifre:

- Rappresentazione:
 - $N_{10} = a_{n-1} \cdot 10^{n-1} + a_{n-2} \cdot 10^{n-2} + \dots + a_0 \cdot 10^0$
 - Esempio, con n=3: $587_{10} = 5 \cdot 10^2 + 8 \cdot 10^1 + 7 \cdot 10^0$
- Spazio di rappresentazione: intervallo discreto [0, 10ⁿ-1]
 - Con n=3, range: [0, 10³-1] ossia [0, 999]

Sistema binario:rappresentazione in base due

Sistema posizionale

Base binaria: p=2

Insieme di simboli: $a_i \in \{0, 1\}$

- Simboli chiamati bit (binary digit)
- Otto bit chiamati Byte (abbreviato con B)

Numero naturale N di n cifre:

• Rappresentazione:

•
$$N_2 = a_{n-1} \cdot 2^{n-1} + ... + a_0 \cdot 2^0$$

Esempio, con n=5: $11011_2 = (1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0)_{10} = 27_{10}$

- Spazio di rappresentazione:
 - intervallo discreto [0, 2^m -1]

Esempio con n=8: $[00000000_2, 111111111_2]$, ovvero: $[0_{10}, 256-1=255_{10}]$

Sistema binario: unità di misura

- Kilobyte (KB) = 2^{10} byte = 1024 byte
- Megabyte (MB) = 2^{20} byte = 1048576 byte
- Gigabyte (GB) = 2^{30} byte = 1073741824 byte
- Terabyte (TB) = 2^{40} byte = 1099511627776 byte

Unità di misura (da wikipedia)

Prefissi del Sistema Internazionale

10 ⁿ	Prefisso	Simbolo	Nome	Equivalente decimale
10 ²⁴	yotta	Υ	Quadrilione	1 000 000 000 000 000 000 000 000
10 ²¹	zetta	z	Triliardo	1 000 000 000 000 000 000 000
10 ¹⁸	exa	E	Trilione	1 000 000 000 000 000 000
10 ¹⁵	peta	Р	Biliardo	1 000 000 000 000 000
10 ¹²	tera	Т	Bilione	1 000 000 000 000
10 ⁹	giga	G	Miliardo	1 000 000 000
10 ⁶	mega	M	Milione	1 000 000
10 ³	kilo o chilo	k	Mille	1 000
10 ²	etto	h	Cento	100
10	deca	da	Dieci	10
10 ⁻¹	deci	d	Decimo	0,1
10 ⁻²	oenti	С	Centesimo	0,01
10 ⁻³	milli	m	Millesimo	0,001
10 ⁻⁶	micro	μ	Milionesimo	0,000 001
10 ⁻⁹	nano	n	Miliardesimo	0,000 000 001
10 ⁻¹²	pi∞	р	Bilionesimo	0,000 000 000 001
10 ⁻¹⁵	femto	f	Biliardesimo	0,000 000 000 000 001
10 ⁻¹⁸	atto	а	Trilionesimo	0,000 000 000 000 000 001
10 ⁻²¹	zepto	z	Triliardesimo	0,000 000 000 000 000 000 001
10 ⁻²⁴	yocto	у	Quadrilionesimo	0,000 000 000 000 000 000 000 001

Basi "significative": ottale ed esadecimale

Rappresentazione in base 8:

- Base ottale: *p*=8;
- Insieme di simboli a_i ∈ {0, 1, 2, 3, 4, 5, 6, 7}
- Numero N di n cifre:
- Rappresentazione: $N_8 = (a_{n-1} \cdot 8^{n-1} + ... + a_0 \cdot 8^0)_{10}$

Es.
$$234_8 = (2 \cdot 8^2 + 3 \cdot 8^1 + 4 \cdot 8^0)_{10} = 156_{10}$$

Spazio di rappresentazione: [0, 8ⁿ-1]

Rappresentazione in base 16:

- Base esadecimale: p=16;
- Insieme di simboli a_i ∈ {0, 1, 2, ..., 9, A, B, C, D, E, F}
- Notare: "10" al posto di "A" ... "15" al posto di "F"
- Numero N di n cifre:
- Rappresentazione: $N_{16} = (a_{n-1} \cdot 16^{n-1} + ... + a_0 \cdot 16^0)_{10}$

Es. B7F₁₆ =
$$(11 \cdot 16^2 + 7 \cdot 16^1 + 15 \cdot 16^0)_{10} = 2943_{10}$$

• Spazio di rappresentazione: [0, 16ⁿ-1]

Conversioni: esempi

Base 2

1 0 1 0
$$_{2}$$
 = 2 3 + 2 1 = 10 $_{10}$
1 1 0 0 1 0 0 $_{2}$ = 2 6 + 2 5 + 2 2 = 100 $_{10}$
1 1 1 1 1 0 1 0 0 0 $_{2}$ = 2 9 + 2 8 + 2 7 + 2 6 + 2 5 + 2 3 = 1000 $_{10}$

Base 8

$$12_8 = 8 + 2 = 10_{10}$$

$$1 \ 4 \ 4_{8} = 8^{2} + 4 \bullet 8^{1} + 4 = 100_{10}$$

$$1750_{8} = 8^{3} + 7 \cdot 8^{2} + 5 \cdot 8^{1} = 512 + 448 + 40 = 1000_{10}$$

Conversioni: esempi

Base 16

$$A_{16} = 10_{10}$$

$$64_{16} = 6 \cdot 16 + 4 = 100_{10}$$

$$3 E 8_{16} = 3 \bullet 16^2 + 14 \bullet 16 + 8 = 768 + 224 + 8 = 1000_{10}$$

$$F_{16} = 15_{10}$$

$$5 E_{16} = 5 \cdot 16 + 14 = 94_{10}$$

7 1 B
$$_{16}$$
 = 7• 16² + 1• 16 + 11 = 1792 + 16 + 11 = 1819 $_{10}$

Conversioni: altri esempi

$$1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2 + 0 \cdot 1 = 32 + 16 + 4 = 52_{10}$$

$$3 \cdot 8^3 + 2 \cdot 8^2 + 1 \cdot 8 + 6 = 1536 + 128 + 8 + 6 = 1678_{10}$$

$$AB9E_{16} =$$

$$10 \bullet 16^3 + 11 \bullet 16^2 + 9 \bullet 16 + 15 = 40960 + 2816 + 144 + 15 = 43935_{10}$$

Conversioni di base: da 10 a 2

Per convertire da base p a base 10:

$$N_p = a_{n-1}p^{n-1} + a_{n-2}p^{n-2} + \dots + a_1p^1 + a_0p^0 = \sum_{i=0}^{n-1} a_ip^i$$

Esempio: 11011₂ = $(1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0)_{10} = 27_{10}$

- Per convertire da base dieci a base due:
 - Metodo delle divisioni successive: esempio

Conversioni di base: da 10 a 2

Più schematicamente:

Conversione di base: da 10 a 2

Conversione di base: da 10 a 8

Í	i
1258	2
157	5
19	3
2	2
0	

Conversione di base: da 10 a 16

$$1258_{10} = 4EA_{16}$$

Conversioni di base

- Le basi ottale ed esadecimale sono di interesse informatico per la facilità di conversione, ("per parti"):
 - Da base 2 a base 8: si converte a gruppi di tre bit, traducendo ciascuna tripla nella corrispondente cifra ottale

 Da base 2 a base 16: si converte a gruppi di quattro bit, traducendo ciascuna quadrupla nella corrispondente cifra esadecimale

 Le basi ottale ed esadecimale consentono una consistente sintesi rispetto al formato binario

La somma in base p

- Viene effettuata rispettando le regole che conoscete in base 10.
- Quando si genera un risultato maggiore o uguale alla base, mancando il simbolo per poterlo rappresentare, si riconduce ad un valore minore della base (sottraendo il valore della base stessa) generando un <u>riporto</u> (carry)
- Seguono le tabelle relative all'aritmetica in base 2:

+	0	1
0	0	1
1	1	10

Addendi		Riporto	Risultato
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

La somma in base n (naturali)

- Viene eseguita incolonnando i numeri e sommando tra loro i bit incolonnati, partendo dai meno significativi, in ordine di peso crescente.
- Per la somma di due numeri positivi di lunghezza K possono essere necessari K+1 posti. Se sono disponibili solo K cifre si genera un errore di overflow (o trabocco).

Primo esempio: 11011₂+00110₂

$$11011 + (27)$$

$$00110 = (6)$$

Esempio di somma in base 2 con carry

Esempio:

```
1  ← riporto

0101 + (510)

1001 = (910)

-----

1110 (1410)
```

Risulta 25₁₀ se uso 5 bit; ma 9₁₀ se considero solo 4 bit: errato!

Sottrazione tra numeri binari interi positivi

Regole base:

- 0-0=0
- 0-1=1 con prestito di 1
- 1-0=1
- 1-1=0

Esempio:

Moltiplicazione tra numeri binari interi positivi

Valgono le regole che già conosci, è però più semplice effettuare la moltiplicazione in quanto le cifre sono solo 0 ed 1...

Gli zeri iniziali possono essere eliminati

Moltiplicazione: potenze di 2

Nel caso di moltiplicazione per potenza k-esima di 2 il risultato è uno shift a sinistra di k posizioni:

Divisione tra Numeri Binari

Verifichiamo la correttezza del calcolo:

Numeri interi

- Includono anche i numeri negativi
- Rappresentati tramite il segno ed il valore del numero
- Codifica binaria secondo uno delle due modalità seguenti
 - Rappresentazione in modulo e segno
 - Rappresentazione in complemento a due

Modulo e segno

- In un numero di n bit il primo bit è utilizzato per memorizzare il segno:
 - "1" numero negativo
 - "0" numero positivo
- Spazio di rappresentazione: tra -(2ⁿ⁻¹-1) e +(2ⁿ⁻¹-1)
- "Stranezza" dello zero positivo e negativo (doppia rappresentazione)

Esempio n=3

Intero, base 10	Intero, base due, modulo e segno
-3	111
-2	110
–1	101
-0	100
+0	000
+1	001
+2	010
+3	011

Complemento a due (C2)

- Il MSB ha peso negativo, così tutti i numeri negativi cominciano con il bit più significativo posto a "1", mentre tutti i positivi e lo zero iniziano con uno "0"
- Usando n bit: $(-N)_{C2} = (2^n N_{10})_2$ vedi tabella sottostante
- Spazio di rappresentazione: intervallo [-2^{n-1} , 2^{n-1} 1]
 - Asimmetria tra negativi e positivi
 - Esempio (con n=8): [-128, +127], perché $-2^7 = -128 e^{2^7} 1 = +127$
- Occorre sempre concordare il numero di bit usati per rappresentare il numero!!!

Esempio n=3(-N)_{C2} = $(2^3-N_{10})_2$

Num. intero base 10	Trasformazione	Num. intero, base 2,C2, n=3
-4	8 - 4 = 4	4 ₁₀ = 100
-3	8 - 3 = 5	5 ₁₀ = 101
-2	8 - 2 = 6	6 ₁₀ = 110
-1	8 - 1 = 7	7 ₁₀ = 111
0	nessuna	0 ₁₀ = 000
1	nessuna	1 ₁₀ = 001
2	nessuna	2 ₁₀ = 010
3	nessuna	3 ₁₀ = 011

Complemento a due (C2)

Metodo per ottenere -NC2 avendo già la configurazione binaria di N

Ricopiare i bit del modulo N da destra limitatamente a:

- Tutti gli zeri consecutivi a partire da dx
- Ricopiare anche il primo 1 incontrato a partire da dx
- Complementare tutti gli altri bit (0 diventa 1 e viceversa)

Complemento a due (C2)

- Metodo alternativo per ottenere -N_{C2}
 - Complementare i bit della rappresentazione binaria del modulo N (cambiare gli 1 in 0 e viceversa)
 - Sommare 1 al risultato ottenuto

Esempio:
$$-N=-3$$
 $N=3_{10}=011_2$ complemento ad 1 100 complemento a 2 101

Somma e sottrazione in C2

- Somma: come per i naturali
- Sottrazione: $N_1 N_2 = N_1 + (-N_2)_{C2}$
- Carry:
 - Il carry finale non viene considerato!
- Overflow:
 - Se, sommando due interi di n bit dotati di segno concorde, ottengo un risultato di segno discorde (sempre considerando n bit), allora si ha un overflow (il risultato non è codificabile su n bit) e l'operazione è errata
 - L'overflow non può verificarsi se gli operandi sono di segno discorde

Somma e sottrazione in C2

Esempi: n=7 spazio di rappresentazione [-64, +63]

+5	0000101
<u>+8</u>	0001000
+13	0001101

+5	0000101
<u>-8</u>	1111000
-3	1111101

RIPORTO

Numeri frazionari

Rappresentazione:

- Relativa alla parte frazionaria
- Ottenuta tramite la formula

$$N_p = a_{-1}p^{-1} + a_{-2}p^{-2} + ... + a_{-n}p^{-n} = \sum_{i=1}^{n-1} a_i p^i$$

Spazio di rappresentazione:

 Per un numero di n cifre in base p, posso rappresentare numeri nell'intervallo continuo: [0, 1-p-n], ad esempio con 8 cifre dopo la virgola il range sarà [0, 1-2-8]

Errore di approssimazione:

- minore di *p*-*n* Esempi con *n*=3:
- base 10: Rappresentazione: $(0,587)_{10} = (5\cdot10^{-1}+8\cdot10^{-2}+7\cdot10^{-3})$

Spazio di rapp.: $[0, 1-10^{-3}] = [0, 0.999]$

Errore: minore di 0.001

• base 2: Rappresentazione: $(0,101)_2 = (1\cdot2^{-1}+0\cdot2^{-2}+1\cdot2^{-3})10 = (0,625)_{10}$

Spazio di rapp.: [0, 1-2⁻³]

Errore: minore di 2-3

Conversioni di base: parte frazionaria

Per convertire da base p a base 10, vale lo stesso discorso fatto per i decimali riguardo le cifre dopo la virgola. Ad esempio:

$$10101.1101_2 =$$
 $1*2^4 + 1*2^2 + 1*2^0 + 1*2^{-1} + 1*2^{-2} + 1*2^{-4} = 21.8125_{10}$

Conversioni di base: parte frazionaria

- Vedremo solo da base 10 a base 2:
 - Si moltiplica progressivamente per 2 la parte frazionaria
 - Si prendono le parti intere di ciascun prodotto dalla più alla meno significativa, con numero di bit proporzionale all'accuratezza

```
0.587*2= 1.174 parte intera 1 parte frazionaria 0.174

0.174*2= 0.348 parte intera 0 parte frazionaria 0.348

0.348*2= 0.696 parte intera 0 parte frazionaria 0.696

0.696*2= 1.392 parte intera 1 parte frazionaria 0.392

0.392*2= 0.784 parte intera 0 parte frazionaria 0.784

0.784*2= 1.568 parte intera 1 parte frazionaria 0.568
```

Risultato: 0.1001 con quattro cifre e approssimazione accurate entro il limite 2⁻⁴ 0.100101 con sei cifre e approssimazione accurate entro il limite 2⁻⁶

Numeri reali

- Modalità di rappresentazione alternative:
 - virgola fissa (Fixed Point)
 - virgola mobile (Floating Point)

Rappresentazione in virgola fissa

Data una sequenza di bit, si assume che la posizione della virgola sia fissata in un preciso punto all'interno della sequenza:

Parte intera

Parte frazionaria

M bit

N bit

Virgola fissa

- Uso di m bit per parte intera e n bit per parte frazionaria con n ed m fissi
 - Esempio (*m*=8, *n*=6, tot. 14 bit): -123,21₁₀
 - $-123_{10} = 10000101_2$
 - $-0.21_{10} \approx 001101_2$
 - $-123,21_{10} \approx 10000101,001101_2$
- m e n scelti in base alla precisione che si vuole tenere

Virgola mobile (floating point)

- Il numero è espresso come: $r = m \cdot b^n$
 - m e n sono in base p
 - m: mantissa (numero frazionario con segno)
 - b: base della notazione esponenziale (numero naturale)
 - n: caratteristica (numero intero)
 - Esempio (*p*=10, *b*=10):

$$-331,6875 = -0,3316875 \cdot 10^3$$
 $m = -0,3316875$ $n = 3$

Virgola mobile (floating point)

- Quando la mantissa comincia con una cifra diversa da zero, il numero in virgola mobile si dice *normalizzato* Es. -0,3316875·10³ è normalizzato perché la mantissa è "3316875"
- La normalizzazione permette di avere, a parità di cifre usate per la mantissa, una maggiore precisione.

Standard IEEE 754

In binario si usa una forma normalizzata (standard IEEE 754) su 32/64 bit suddivisi nel seguente modo:

Segr	Segno		Modulo della m.
	S	Esponente	Mantissa
Singola precisione (SP) Doppia precisione (DP)	1 bit	8 bit 11 bit	23 bit 52 bit

Standard IEEE 754

Classe III Inf 2 a.s. 2014-15

Standard IEEE 754

La rappresentazione floating point IEEE 754 è quindi nella forma:

0/1	Esponente	Mantissa (modulo)

Glossario di ripasso

Seguono alcune definizioni, che verranno approfondite nel seguito del corso...

AUTOMA

L'automa è un sistema che (di regola imitando il comportamento umano), è in grado di ricevere informazioni dall'esterno (input), reagire alle stesse elaborandole (processing), e inviare le informazioni di nuovo all'esterno (output).

Il computer è un tipo di automa composto da componenti elettronici

Informazione analogica

Si definisce *analogico* un procedimento che rappresenta un fenomeno con continuità, per esempio:

•un orologio classico che con il moto regolare della lancetta segna il trascorrere del tempo in modo continuo

Informazione digitale

E' digitale un procedimento che rappresenta lo stesso fenomeno traducendolo in cifre (dall'inglese digit) e quindi in modo discreto, come per esempio avviene in un orologio a cristalli liquidi numerico, nel quale la stessa durata temporale viene misurata da una successione di scatti, oppure un termometro digitale

Analogico e digitale

Contrariamente a quanto si potrebbe credere la registrazione digitale, pur procedendo "a salti", può essere più precisa di quella analogica, in quanto meno soggetta ad interferenze e disturbi. Occorre però che il numero di valori utilizzati sia elevato, in modo da cogliere ogni *sfumatura* che possa essere significativa per il destinatario dell'informazione.

E' necessario, dunque, che l'errore introdotto dal procedimento di digitalizzazione non sia troppo elevato.

Frequenza di una CPU

- Il tempo in un computer non è continuo, ma "discreto"
- Ogni volta che "scatta" l'orologio interno la CPU esegue un'operazione
- La "frequenza" dell'orologio viene misurata in "Hertz" (cicli al secondo)
- Quindi "Pentium 4 2.0 GHz" vuol dire "due miliardi di scatti di orologio al secondo" – uno scatto ogni mezzo nanosecondo
- Quindi, due miliardi di operazioni...?

CPU

- non esattamente!
- Due miliardi di "microoperazioni" o "microistruzioni"
- Esempio : calcola c = a + b (somma di due variabili in un programma)
 - Leggi dalla memoria il valore di a
 - · Leggi dalla memoria il valore di b
 - Passa a e b all'ALU e dille di calcolare a + b (bit a bit!)
 - Prendi il valore di a+b dall'ALU e salvalo in memoria
- Quindi, la "velocità netta" di un computer non dipende solo dalla frequenza del processore, ma anche da:
 - Tempi di accesso alla memoria
 - "Ottimizzazione" dei circuiti che eseguono calcoli
 - "Sovrapposizione" di operazioni (PIPELINING)
 - Soluzioni "multi-core" (tipo "dual core" Pentium di Intel)

