CS/SE 4X03 — Assignment 1

21 September, 2021

Due date: 1 October

Instructions

- If you write your solutions by hand, please ensure your handwriting is legible. We may subtract marks for hard-to-read solutions.
- Submit to Avenue a **PDF** file containing your solutions and the **required** MATLAB files.

Assignments in other formats, e.g. IMG, PNG, will not be marked.

Name your MATLAB files **exactly** as specified.

- Name your PDF file Lastname-Firstname-studentnumber.pdf.
- Submit only what is required.
- Do not submit zipped files. We will **ignore any compressed file** containing your files.

Problem 1 [2 points] Explain the output of this MATLAB code

```
a = -1.10714946411818e+17;
b = -8.039634349988262e-01;
c = 1.107149464118181e+17;
a+b+c
(a+b)+c
a+(b+c)
(a+c)+b
a+(c+b)
```

Problem 2 [7 points] Consider a floating-point (FP) system with 4 decimal digits and rounding to the nearest. Give an example for each of the following:

a.
$$(a+b)/2 \notin [a,b]$$

b.
$$a + (b + c) \neq (a + b) + c$$

c.
$$a * (b * c) \neq (a * b) * c$$

where a, b, c are FP numbers in this system.

[4 points] Let a and b be IEEE-754 FP numbers and $a \le b$. Can $(a+b)/2 \notin [a,b]$ occur? Explain.

Hint: for $x \leq y$, fl $(x) \leq$ fl (y).

Problem 3 [8 points] Consider the series expansion of e^x :

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Write Matlab functions as follows

function s = expsum1(x) computes an approximation to e^x by adding terms until the sum does not change.

function s = expsum2(x) returns expsum1(x) for $x \ge 0$ and $1/\exp \sup (-x)$ for x < 0.

function s = expsum3(x) accumulates the positive and negative terms separately and then adds the corresponding sums.

Write a main program main_expsum.m that calls these functions for

$$x = -20, -15, -5, -1, 1, 5, 15, 20$$

and outputs for each function results in the form

X	accurate value	approx. value	abs. error	rel. error
-20.0	2.061153622439e-09	6.138259738609e-09	4.08e-09	1.98e+00
-15.0	3.059023205018e-07	3.059300523747e-07	2.77e-11	9.07e-05
•				
20.0	40			

(If y is an accurate value and \widetilde{y} is an approximation, the absolute (abs.) error is $|y - \widetilde{y}|$ and the relative (rel.) error is $|y - \widetilde{y}|/|y|$.)

- a. [6 points] Explain the accuracy of expsum1, expsum2, expsum3.
- b. [2 points] Can expsum3 produce accurate results for x < 0? Explain.

Submit

- Your Matlab files to Avenue.
- PDF should contain Matlab code, output, and discussion.

Problem 4 [6 points] We are not going to do C/C++ in this course, but this is a good exercise to learn about benchmarking and performance.

Read about

- the LINPACK benchmark, https://en.wikipedia.org/wiki/LINPACK_benchmarks.
- long double and __float128, https://en.wikipedia.org/wiki/Long_double

I have modified a bit the original benchmark, see the file linpack.cc. In Linux, save the given files linpack.cc and makefile and type make. This should produce the output file benchmark.out.

- Modify linpack.cc, see lines 48 and 52, so it can produce results for these two datatypes.
- Then uncomment in the makefile

```
TESTS = single double #longdouble float128
all: ${TESTS}
   ./single > benchmark.out
   ./double >> benchmark.out
#./longdouble >> benchmark.out
#./float128 >> benchmark.out
```

Executing make should produce results for the four data types.

Submit in the PDF

- [4 points] the output benchmark.out
- [2 points] discussion about the performance of these data types.

Problem 5 [10 points] Given a scalar function f, from

$$f(x+h) = f(x) + f'(x)h + O(h^2),$$

we can approximate the first derivative

$$f'(x) \approx g_1(x,h) := \frac{f(x+h) - f(x)}{h},$$

where the error in this approximation is O(h).

From

$$f(x \pm h) = f(x) \pm f'(x)h + \frac{f''(x)}{2}h^2 + O(h^3),$$

we can approximate

$$f'(x) \approx g_2(x,h) := \frac{f(x+h) - f(x-h)}{2h}$$

where the error is $O(h^2)$.

- a. [4 points] Let $f(x) = xe^x$ and $x_0 = 1$. Write a MATLAB program that computes the errors $|f'(x_0) g_1(x_0, h)|$ and $|f'(x_0) g_2(x_0, h)|$ for each $h = 10^{-k}$, k = 1, 2, ..., 16. Using loglog, plot on the same plot these errors versus h.
- b. [2 points] For what h is the minimum of the errors achieved in each of these two approximations?
- c. [4 points] Explain the behaviour of these errors. In particular, discuss the role of the cancellation and truncation errors.

Submit

- Avenue: your MATLAB code. Provide a main program with name $main_deriv.m$ such that when it is executed it produces the required plot and the two values for h.
- PDF: plot, the two values for h, and explanations.

Problem 6 [6 points] Consider three methods for computing the sum of n floating-floating point numbers:

- a. summation is in decreasing order of magnitude
- b. summation is in increasing order of magnitude
- c. using Kahan's summation algorithm see https://en.wikipedia.org/wiki/Kahan_summation_algorithm

Apply these three methods to compute the sum $\sum_{i=1}^{n=10000} 1/i$. How would you compute an accurate result for this sum? Using such a result, report the errors in a., b., c., in the form

```
decreasing order error
increasing order error
Kahan's sum error
```

(Report in the format format short e)

Name your main program main_sum.m. When executed, it should produce the above output.

Submit

- Avenue: your Matlab code.
- PDF: your Matlab code, the output as above, and discussion.