4. Sirfure, 1 could 3-1-10)	
ef A anyther foliation on m' is the equivalence class of a vector s.t. $\times \wedge \times' \leftarrow \exists f : \wedge \neg \neg \neg \exists f : \wedge \neg \neg \neg \exists f : \wedge \neg \neg$	Geld X
et $SC(\Lambda, S=hr(a))$ & an oriented surface the characteristic foliation S_{p} iven by $TS\Lambda$ S_{p}	of S ?
$(+ t_p) = s_p = 0$ $(+ t_p) $	
$S_{\xi} \Rightarrow Spand Sy \times = (x_2-y)_{0} + (y_2+x)_{0} - (x_2x_{y^2})_{0}$ \times \in \frac{1}{5}^2 \ldots \times \in \frac{1}{5}^2	
X(x1412)=0 (-1412) = (010, ±1)	
Identify $VS = S \times R$ $S \mapsto S \times O$ C i.e. $C = B_2 + U_2 d_2$ $C \mapsto C = R_1 + R_2 d_2$ $C \mapsto C = R_2 + R_2 d_2$ $C \mapsto C = R_2 + R_2 d_2$	
=	
ortet contra: Uz Bz + Bz A(duz-Bz) 20 -et l de an cren for a S	

(iii) I for live connecting hypersolic posts not rorse-smale THOY! After a Co-perturbation
that Sq 13 Norm-smale proof: not cusy -> See dy-mand systems 4.3 Conver sulus (airoux) Deliscing) is called convex (=) 3 Contact vector Geld Y New 5 St. YdS Ex: 5" x S" C (S" x 1722, Ker (cos(h b)dx - sh (hd)dy) Y= x dx 4727 Ly on = iz (don) + d(iy on) = on -) Y is a contest vector Greft Rx1 man sphen a (R),90t) Sc (7,9) - closed 18 com (=)] 4: 5x12 -) m s.t. P + 4(p,0) is the inclusion SCS m & the (4*x) is on 12-nex. contact structume Proofs "E" TY (Ic) o a contact with Livel of S =)" Let Y be a contact vector freeld SI. Yh S $H:=\alpha(Y)$ defined near SLet $\psi: \cap \rightarrow \mathbb{R}$ s.t. $\psi: \cap \rightarrow \mathbb{R}$ s.t. $\psi: \cap \rightarrow \mathbb{R}$ Y The contact vatir field corresponding to you H M:= tim of Y) TY(p,t)(d) = Y(p) = Y(Yx(p)) new) =) to YX D IR-Nov. when $\alpha = \beta + udt$ $= (\alpha + udt) \wedge (\beta + \beta + udt)$ $= (ud\beta + \beta \wedge du) \wedge dt$ Contact Contition: [vdB + Bride 20] \neq ds= $d(l_{\times}\Omega) = o_{l_{\infty}}(x)\Omega$ * dup St =0 (3 for on a surface) $\Rightarrow 0 = (\chi(\lambda_{N}, N) = \chi(V) N - \lambda_{N} \wedge (\chi N) = \chi(N) N + \beta_{N} \lambda_{N}$ =) (orket contitu) U DIVW(x) - x(u) >0 $S:=\{(^{2}_{1}=(^{2}_{1},(^{2}_{1}=1-1))\}$ $B = \alpha(T_s = (dy_1 + (n-c)) de_7$ I = d y ndy2 (x. 1 = . (n- ()) d. (2, + 6 d. (2) = B. Le, 4 the dimination lemna An elliptic pont Xe & a hypersolic pont Xh are m elimination profession (=) syn(xe) = sign(xh) & 3 a separatrix of xh Connecting Xh dea: replace by Lenna 6 ? Let Xe & X & or clin po, =) I an annulus ACS s.t. * Xe & Xh are he only somether in A f

* A q la has closed orbit

* A q b framed to DA

costlary): 13 of a convex surface & dunds & *[2 Su(p)=0) conrect continon du to on ['s =) [Du n-nf/ * IE BELZ = My(o) Dr XEIL TITIC her (10) (de conse × (hr (p)) y control carling * If [= p =) N to =) Mu + hz is a contact form =) d(B/u) son exact area for a S b $\int \partial f \text{ area (5)} = \int d(p/u) = \int (3/u) = 0$ χ on $S_{\pm} \times \mathbb{R}$ we can where $q = \ker \left(\frac{\beta}{|n|} + d_2 \right)$ T) contact condition = $\pm d\vec{D} > 0$ on s_{\pm} T) $\pm d\vec{D}$ is an area for N_{0} on s_{\pm} T) $d(x_{\pm}N_{0}) = d\vec{D} = \pm N_{0}$ -) In $M_0(x) = \pm \gamma$ on S $LN = f N_0 \text{ on } S_1 \text{ for } f: S_2 \longrightarrow \mathbb{R}^2$ (orlinity Lx N \$0 on SIT & x ports at of St along IT The 20: (c) Sc (1,9) is corner (=) Sy is durited by a n-nfl (C) (b) Pr (up to rooter) determed by Sq (a) "= s" [= [by conday o) E" Let U be a volume from & x representative of S B:= Lx M Q a == Bt wbg on SXR Mining Sq =) 3 surposte charie at in site in dug (X) -x(V) >0. J ker (a) is an 112-thranzat contact structure on SXIR & Sp = Sma S convex with 9

prod! HW
[dea: (1) Use prod of the 12 to find cectorfields X, & to define S, & F
St. of = (x, N + u, l, ore 12-over)
for $x_t := (1-t) \times_0 + t \times_1 = \int_{x_1} \mathbb{R} S_{x_2} \times S_{x_3}$
(2) apply Moser took to at =) get 1 topy 42 with (1) - (11) to
6,6 The legentran realization principle & arrows Contenum
The 15 [Legentria rate than principly Kanha - (bolda)
Let 3 (h, 9) se caner & G (S be a non-sortely graph
Let SCh, 9) & carex & G CS be a non-totaling graph (i.e. G A S & Continued every composent of S & G)
=)] 100 top of S S.L. a o contain a char foliation (1.e. Lyandran)
prol: For G=1-nfd (gen case & HW)
By The 14 it is enough to construct a singular following that
contains a and is devided by [].
Let So be a component of $S\setminus (G\cup \Gamma_S)$.
Lloy So C St
News DS,!
Some isolary =) de \$ \$
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
9+
So So
Enbed $S_0' = S_0 \setminus v(\partial S_0)$ in $\mathbb{R}^2 \times C_0 \cap J$ $S_0 \cap J$ $S_$
at nost one name & no minu
12 > 0 =) The extent the troining will at one one of elliptic point. B
POMF, BJ

(2)
$$4$$
 $25 \in C$ $\Rightarrow S$ $45(C) = Ch(C_1 A_2) = 3 \cdot A_0 = 25(CAB_3)$

(3) $rac(C_1 B_3) = signed consist of sequential of an extension of $M(C_3 cons)$
 $= C_1 + C + C_2 + C_3 + C_4 + C_4 + C_5 + C_6 + C_6$$

