Linear Factor Model for Discovering Lead-Lag Relationship between Two Brain Areas

Heejong Bong 1 Valerie Ventura 1 Eric Yttri 2 Robert E. Kass 1

¹Department of Statistics and Data Science, Carnegie Mellon University
²Department of Biological Sciences, Carnegie Mellon University

Carnegie Mellon University

Discovering Dynamic Features of Functional Connection

Experiment: Mice performed an uncued, goal-oriented joystick reaching task.

Data: We collected spike trains of neurons in motor cortex and striatum.

Goal: We want to evaluate functional connection between two brain areas. We expect lead-lag relationship.

Methods: We summarize the numerous pairwise correlations between the two areas using a multiset inverse canonical correlation sparsification (MICCS) and develop an inferential framework to assess the significance of the discovered functional connectivity.

Multiset probabilistic CCA (pCCA)

$$\underline{X_i^t} | Z_i^t \sim MVN\left(Z_i^t \underline{\beta_i^t} + \underline{\mu_i^t}, \Phi_i^t\right), t = 1, \dots, T, i = 1, 2$$

$$\left(\frac{Z_1}{Z_2}\right) \sim MVN\left(\left(\frac{0}{\underline{0}}\right), \Sigma\right)$$
 (2)

Each of two neuron populations X_i^t are summarized by a 1D latent variable Z_i^t , which we use to assess connectivity between two areas.

Figure 1: pCCA model

Our goal is to identify which connections between Z_1 and Z_2 are significant.

The precision matrix $\Omega = \Sigma^{-1}$ provides a graphical interpretation of functional connection.

Figure 2: Graphical Interpretation from $\Omega = \Sigma^{-1}$: When a significant element of Omega is identified, e.g., the red star, its coordinates and distance from the diagonal indicate at what time in the experiment a connectivity happens between two brain areas at what lead or lag. $Z_i \to Z_j$ means that area i leads area j in that section of Ω .

MICCS: Multiset Inverse Canonical Correlation Sparsification

We impose **sparsity constraints** on Ω to stabilize its estimation:

- forced sparsity: interested in lead-lag relationship with delay less than 200ms
- regularized sparsity: assume dominant association is concentrated

Maximum penalized likelihood estimate:

Negative log-likelihood GLASSO penalty $\widehat{\Omega} = argmin_{\Omega,\,\eta_i^t} - log det(\Omega) + tr\big(\Omega \widehat{\Sigma}\big) + \frac{\lambda_1 ||\Omega||_1}{2}$

where Ω satisfies the following form:

We implemented coordinate descent method to find a local minimum.

Statistical inference:

- Entries of de-sparsified precision have Gaussian null limiting distributions $^{[1]}$ with a variance estimated by permuting trials \rightarrow We calculate p-value for each entry
- To find areas of concentrated associations, we control the false discovery rate (FDR) by the multiple hypothesis testing method, **STAR**^[2].

Simulation Analysis

Artificial data with known underlying functional connections are simulated from:

- our multiset pCCA model above, e.g. in fig. 3a
- modified experimental spike train data, e.g., in fig. 3b

Figure 3: Artificial data are simulated from the pCCA model with true Ω in (a) and from experimental data with true Ω in (b)

STAR on de-sparsified precisions controls FDR and discovers real signals in high probability

Figure 4: (a) Estimated false discovery rate (\widehat{FDR}) , (b) false non-discovery rate (\widehat{FNR}) in different target FDRs, and (c) probabilities of each precision entry to be discovered at the target FDR = 0.1 in simulation from our pCCA model with true Ω in fig. 3a. (d, e, f) The same for simulation from modified experimental spike train data with true Ω in fig. 3b.

Results: Application to Neuropixel data

MICCS on spike counts of 22 M1 and 20 striatum neurons from -1 sec. to 1 sec. after each of 147 movement onsets.

Figure 5: (a) Estimated Ω using MICCS and (b) discovered functional connections using STAR with target FDR=0.2

Discussion:

- MICCS discovered simultaneous (zero lag) connectivity between brain areas before movement onsets.
- MICCS did not discover a hypothesized lead-lag relationship around movement onset: we
 may lack power due to correlation attenuation from spike train Poisson noise.

Future goal: increase statistical power by accounting for Poisson noise.

References

- [1] Jana Jankova, Sara Van De Geer, et al. Confidence intervals for high-dimensional inverse covariance estimation. *Electronic Journal of Statistics*, 9(1):1205--1229, 2015.
- [2] Lihua Lei, Aaditya Ramdas, and William Fithian. Star: A general interactive framework for fdr control under structural constraints. arXiv preprint arXiv:1710.02776, 2017.