SEMISIMPLICITY OF REPRESENTATIONS

ARPON RAKSIT

original: December 30, 2015 updated: December 30, 2015

Let k be a field. Let \mathcal{A} be an abelian k-linear category. Let G be a finite group such that $\operatorname{char}(k)$ does not divide |G|. Denote by \mathcal{A}^G the (abelian k-linear) category of G-representations in \mathcal{A} , i.e. the functor category $[BG, \mathcal{A}]$.

1. Lemma (Averaging trick). Suppose all short exact sequences in \mathcal{A} split. Then the same is true in \mathcal{A}^G .

Proof. Consider a short exact sequence

$$0 \to X' \to X \to X'' \to 0$$
,

in \mathcal{A}^G . This is a short exact sequence when viewed in \mathcal{A} as well, so by hypothesis there is a splitting $T \colon X'' \to X$ in \mathcal{A} . Then the average

$$\frac{1}{|G|} \sum_{g \in G} gTg^{-1}$$

is a morphism $X'' \to X$ in \mathcal{A}^G which also splits the sequence. (Note that this average makes sense by our hypothesis that $\operatorname{char}(k)$ does not divide |G|.)

2. Proposition. Suppose A is semisimple. Then A^G is semisimple.

Proof. Recall [abelian-category-linear-algebra, 1.5] that \mathcal{A} being semisimple is equivalent to all short exact sequences in \mathcal{A} splitting and all objects in \mathcal{A} having finite length. For an object in \mathcal{A}^G we'll refer to its length in \mathcal{A} as its \mathcal{A} -length.

Now, we wish to show any nonzero $X \in \mathcal{A}^G$ is semisimple. We induct on its \mathcal{A} -length. We may choose a nonzero subobject $\phi \colon X' \hookrightarrow X$ in \mathcal{A}^G of minimal \mathcal{A} -length. Clearly X' must be simple in \mathcal{A}^G . If ϕ is an isomorphism then we're done. Otherwise, consider the short exact sequence

$$0 \to X' \to X \to X'' \to 0$$

in \mathcal{A}^G . By (1) it splits. Since X' is simple this reduces the semisimplicity of X to the semisimplicity of X''. But X'' has strictly smaller \mathcal{A} -length than X so we're done by induction.