

ZKPROOF

Scalable Zero-Knowledge Protocols From Vector-OLE

Peter Scholl

27 April 2021, ZKProof Workshop

Joint work with:

Carsten Baum, Alex Malozemoff, Marc Rosen

Zero-knowledge setting

Goal: large-scale statements with low computation/memory overhead

Approach: apply state-of-the-art MPC techniques to ZK setting

Caveats:

• (possibly) interactive, designated verifier, not succinct

Overview

Homomorphic commitments from VOLE

Mac'n'Cheese: fast, "commitand-prove" ZK

Non-interactive; streaming

Optimized proofs for disjunctive statements

Vector oblivious linear evaluation (VOLE)

VOLE: OLE with α fixed across iterations

- Fast protocols based on LPN [BCGI18, BCGIKRS19, WYKW20, BCGIKS20]
- Small communication (< 1 bit) + computation (~100 ns) per VOLE

Linearly homomorphic MACs from VOLE

Take random VOLE over
$$F_p$$
: $m = \alpha r + \beta$

Can view as MAC on r with key (α, β)

- Linearly homomorphic over F_p !
- Soundness 1/p

Can use as commitment scheme:

Commit(x) \rightarrow [x] $\begin{cases} \text{Use random VOLE: } \mathbf{P} \text{ holds } (r, m), \mathbf{V} \text{ holds } (\alpha, \beta) \\ \mathbf{P} \text{ sends } d = x - r \\ \mathbf{V} \text{ updates } \beta' = \beta + \alpha d \\ \text{Now: } \mathbf{P} \text{ holds } (x, m), \mathbf{V} \text{ holds } (\alpha, \beta') \\ \mathbf{P} \text{ sends } x \text{ and } m \end{cases}$

Mac'n'Cheese: Commit-and-Prove style ZK

Assume commitments: $[w_1]$, ..., $[w_n]$

- Evaluate circuit gate-by-gate
- Linear gates: easy
- Multiply([x], [y])
 - P commits to [z] (= [xy]) and [c] (= [ay]) for random [a]
 - V sends random challenge e
 - $\circ \quad \varepsilon = \mathsf{Open}(e \cdot [x] [a])$
 - AssertZero($e \cdot [z] [c] \varepsilon \cdot [y]$)

AssertZero([x]) checks if x = 0

Streaming with Mac'n'Cheese

- Multiply([x], [y])
 - \circ **P** commits to [z] (= [xy]) and [c] (= [ay]) for random [a]
 - V sends random challenge e
 - $\circ \quad \varepsilon = \mathsf{Open}(e \cdot [x] [a])$
 - AssertZero($e \cdot [z] [c] \varepsilon \cdot [y]$)

NB: Multiply as above is easily streamable

- Drawback: many rounds of interaction! ⁽²⁾
- Alternative: batch multiply. No longer constant memory

Solution: Fiat-Shamir to squash round complexity

- Security loss depends on #queries, not #rounds!

Disjunctions in Commit-and-Prove Systems

Disjunctions

Optimizing Disjunctions

Want to communicate only information proportional to the longest branch

Key observation:

- Prover's messages in proving $C_i(w)$ are all random elements from Mult (apart from AssertZeros)
- Given random elements, Verifier doesn't know whether they're for C_1 or C_2 .
- Only send messages of true branch! ⇒ Verifier uses same messages to evaluate

both. **Problem:** how to verify the right branch?

Solution: small "OR proof" to check 1-out-of-m

sets of AssertZero

Optimizing Disjunctions: Summary

Disjunctions can be optimized for any linear IOP-like protocol

Recently, also certain sigma protocols [GGHK21]

For m clauses C_1, \ldots, C_m :

- Total communication $\max(|C_j|) + O(m)$
- vs $\sum |C_i|$ with [CDS94]

With nesting + recursion:

• O(m) becomes $O(\log m)$

Comparing Performance of VOLE-based protocols

Protocol	Boolean		Arithmetic		Disjunctions
	Comm.	Mmps	Comm.	Mmps	
Stacked garbling [HK20]	128	0.3			√
Mac'n'Cheese (simple) [BMRS21]	9		3		√
Mac'n'Cheese (batched)[BMRS21]	$1 + \epsilon$	6.9	$1 + \epsilon$	0.6^{4}	✓
QuickSilver [YSWW21]	1	12.2	1	1.4	Х

Mmps: millions of mults per sec

Conclusion

- VOLE ⇒ lightweight homomorphic commitment scheme
 - Powerful for scalable zero-knowledge with low memory costs
- "Stacked" OR proof technique
 - Optimizes disjunctions in many settings
- Open questions
 - Smaller proofs: succinct vector commitments from VOLE?
 - Beyond designated verifier?

