PROBA

David Wiedemann

Table des matières

1	Son	ne historical models	2
	1.1	Laplace Model	2
2	Basic Formalism		
	2.1	Measure spaces: A notion of area	3
	2.2	Probability spaces	4
\mathbf{L}	\mathbf{ist}	of Theorems Definition (Laplace Model)	2
	_	Definition (Laplace Model)	
	1	Proposition	2
	2	Proposition	2
	2	Definition (Intermediate model)	2
	3	Definition (Geometric probability)	3
	4	Definition (Measure space)	3
	5	Definition (Probability space)	4
	3	Lemme	4

Lecture 1: Introduction

Wed 22 Sep

1 Some historical models

1.1 Laplace Model

Definition 1 (Laplace Model)

 Ω finite set, $|\Omega| = n$ is the set of outcomes.

We can observe whether $E \subset \Omega$ happens, and we define it's probability

$$\mathbb{P}(E) = \frac{|E|}{|\Omega|}$$

Question

Why should this have any meaning/content?

Proposition 1

Consider laplace model for n coint tosses \Rightarrow every sequence has probability 2^{-n}

Denote by H_n the number of heads in n tosses

$$\mathbb{P}(|\frac{H_n}{n} - \frac{1}{2}| > \epsilon) \to 0$$

More generally

Proposition 2

If you have a laplace model for some event E, and look at n repetitions, then

$$\forall \epsilon > 0 \mathbb{P}(|\frac{E_n}{n} - \mathbb{P}(E)| > \epsilon) \to 0$$

Limitations of Laplace Model

- All outcomes have equal probability?
- Need $|\Omega| < \infty$, so what about infinite sets?

What next?

Definition 2 (Intermediate model)

Let Ω to be any set and $P:\Omega\to[0,1],\ s.t.\ \sum_{\omega\in\Omega}p(\omega)=1$

Event : $E \subset \Omega$ and

$$\mathbb{P}(E) \coloneqq \sum_{\omega \in E} p(\omega)$$

- More freedom
- If you take Ω finite, $p(\omega) = \frac{1}{|\Omega|} \Rightarrow$ Laplace model
- Price? How to choose $p:\Omega\to[0,1]\to \text{collect data, do statistics}$
- keeps many nice properties

- For contable sets, this is equivalent to the standard model.
- For uncountable Ω ?
- Problem 1: There is no function s.t.

$$p(\omega) > 0 \forall \omega \in \Omega \text{ and } \sum p(\omega) = 1$$

This intermediate model is in essence only for countable sets.

What about uncountable sets?

— What about a random point int [0,1] or $[0,1]^n$? Intuitively, consider [0,1], then we can set

$$\mathbb{P}(A) = \text{length}(A)$$

Definition 3 (Geometric probability)

Take $f: \mathbb{R} \to (0, \infty)$ to be a riemann-integrable function with total mass 1. For any $A \subset \mathbb{R}$, s.t. 1_A riemann-integrable, we set $\mathbb{P}(A) = \int_A f(x) dx$

- In general quite \underline{ok} BUT
- You would expect there is one framework for uncountable and countable sets.
- What about more complicated spaces (eg. space of continuous functions)
- $\mathbb{P}(\mathbb{Q})$ is undefined

2 Basic Formalism

2.1 Measure spaces: A notion of area

- -- Set + structure
- General setting to talk about area

Definition 4 (Measure space)

 $(\Omega, \mathcal{F}, \mu)$ is called a measure space if :

- Ω is some set
- $\mathcal{F} \subset P(\Omega)$ called a σ -algebra
 - $-\in\mathcal{F}$
 - $\ F \in \mathcal{F} \Rightarrow F^c \in \mathcal{F}$
 - $-F_1, F_2, \ldots, \in \mathcal{F}$, then $i \ge 1$ $F_i \in \mathcal{F}$ each F is called a measurable set.
- $\mu: \mathcal{F} \to [0, \infty)$ called the measure

$$-\mu()=0$$

— If F_1, \ldots , are disjoints sets of the σ -algebra, then

$$\mu(\bigcup_{i\geq 1} F_i) = \sum_{i\geq 1} \mu(F_i)$$

— Defined by Borel 1898 and Lebesgue 1901-1903

2.2 Probability spaces

Given by Kolmogorov in 1933

Definition 5 (Probability space)

A triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a probability space if it is a measure space and $\mathbb{P}(\Omega) = 1$

Interpretation

- Ω state space/universe
- \mathcal{F} is the set of events you can observe/have access to
- $\mathbb{P}(E)$ is the probability of E

Lemme 3

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space

- $\Omega \in \mathcal{F}$
- $-F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \setminus F_2 \in \mathcal{F}$
- $-F_1,\ldots\in\mathcal{F}\Rightarrow\bigcap F_i\in\mathcal{F}$
- $-F_1, F_2, \ldots \in \mathcal{F} \Rightarrow \bigcap_{i \geq 1} F_i$

Let us compare this definition with the prior ones

- Ω finite set, $\mathcal{F} = \mathcal{P}(\Omega), \mathbb{P}(F) = \frac{|F|}{|\Omega|}$ this is a probability space and a laplace model.
- For Ω countable, $\mathcal{F} = \mathcal{P}(\Omega), \mathbb{P}(E) = \sum_{\omega \in E} \mathbb{P}(\omega)$
- The really new part is $\mathcal F$ which restricts the sets we can measure