Chapter 5

Differentiation

5.1 Chapter 5: Differentiation

From Rudin (1976).

12/5: • Let f be a real-valued function defined on [a, b].

• **Derivative** (of f at x): The limit $\lim_{t\to x} \phi(t)$, provided that said limit exists, where $\phi:(a,b)\setminus\{x\}\to\mathbb{R}$ is defined by

 $\phi(t) = \frac{f(t) - f(x)}{t - x}$

Denoted by f'(x).

• **Derivative** (of f): The real function defined on X that evaluates to f'(x) everywhere on its domain, where

$$X = \{x \in [a, b] : f'(x) \text{ exists}\}\$$

Denoted by f'.

• Theorem 5.2: Differentiability at x implies continuity at x.

- The converse is not true.

- Theorem 5.3: Sum, product, and quotient rules of derivatives.
- Theorem 5.4 (Chain Rule): Suppose f is continuous on [a, b], f'(x) exists at some point $x \in [a, b]$, g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If h(t) = g(f(t)) for all $t \in [a, b]$, then h is differentiable at x and

$$h'(x) = g'(f(x))f'(x)$$

Proof. Let y = f(x). Since f is differentiable at x and g is differentiable at f(x), we have that

$$\frac{f(t) - f(x)}{t - x} = f'(x) + u(t)$$

$$\frac{g(s) - g(y)}{s - y} = g'(y) + v(s)$$

$$f(t) - f(x) = (t - x)[f'(x) + u(t)]$$

$$g(s) - g(y) = (s - y)[g'(y) + v(s)]$$

where $t \in [a, b], s \in I, u(t) \to 0$ as $t \to x$, and $v(s) \to 0$ as $s \to y$. Let s = f(t). Then

$$h(t) - h(x) = g(f(t)) - g(f(x))$$

$$= [f(t) - f(x)] \cdot [g'(f(x)) + v(s)]$$

$$= (t - x) \cdot [f'(x) + u(t)] \cdot [g'(f(x)) + v(s)]$$

$$\frac{h(t) - h(x)}{t - x} = [f'(x) + u(t)] \cdot [g'(f(x)) + v(s)]$$

Thus, since as $t \to x$, $s = f(t) \to f(x) = y$ by the continuity of f, we have that

$$h'(x) = \lim_{t \to x} \frac{h(t) - h(x)}{t - x}$$

$$= \lim_{t \to x} [f'(x) + u(t)] \cdot [g'(f(x)) + v(s)]$$

$$= [f'(x) + 0] \cdot [g'(f(x)) + 0]$$

$$= g'(f(x))f'(x)$$

as desired.

- Local maximum (of $f: X \to \mathbb{R}$): A point $p \in X$ for which there exists a $\delta > 0$ such that $f(q) \leq f(p)$ for all $q \in X$ with $d(p,q) < \delta$.
- Theorem 5.8: f(x) a local maximum and f' exists implies f'(x) = 0.
- Theorem 5.9 (Generalized or Cauchy Mean Value Theorem): f, g continuous on [a, b], differentiable on (a, b) imply there exists $x \in (a, b)$ such that

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x)$$

• Theorem 5.10 (Mean Value Theorem): f continuous on [a, b], differentiable on (a, b) implies there exists $x \in (a, b)$ such that

$$f(b) - f(a) = (b - a)f'(x)$$

Proof. Take g(x) = x in Theorem 5.9.

- Theorem 5.11: Suppose f is differentiable in (a, b).
 - (a) If $f'(x) \ge 0$ for all $x \in (a, b)$, then f is monotonically increasing.
 - (b) If f'(x) = 0 for all $x \in (a, b)$, then f is constant.
 - (c) If $f'(x) \leq 0$ for all $x \in (a, b)$, then f is monotonically decreasing.
- Theorem 5.12: f differentiable on [a, b] and $f'(a) < \lambda < f'(b)$ implies there exists $x \in (a, b)$ such that $f'(x) = \lambda$.
- Corollary: f differentiable on [a, b] implies f' has no simple discontinuities on [a, b].
 - But it may have discontinuities of the second kind.
- Theorem 5.13 (L'Hôpital's Rule): f, g differentiable on $(a, b), g'(x) \neq 0$ for all $x \in (a, b), f'(x)/g'(x) \rightarrow A$, and $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$ or $g(x) \rightarrow +\infty$ as $x \rightarrow a$ implies $f(x)/g(x) \rightarrow A$ as $x \rightarrow a$, where $-\infty < a < b < +\infty$.
- n^{th} derivative (of f at x): The derivative of the $(n-1)^{\text{th}}$ derivative of f at x, if it exists. Denoted by $f^{(n)}(x)$.
 - $-f^{(n)}(x)$ exists iff $f^{(n-1)}$ exists in some $N_r(x)$ and $f^{(n-1)'}(x)$ exists.
 - We customarily denote the first few higher order derivatives with repeated primes, e.g., f''(x) is the second derivative of f.
- Theorem 5.15 (Taylor's Theorem): f defined on [a, b], $n \in \mathbb{N}$, $f^{(n-1)}$ continuous on [a, b], $f^{(n)}(t)$ defined on (a, b), $\alpha, \beta \in [a, b]$ such that $\alpha \neq \beta$, and

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t - \alpha)^k$$

implies there exists $x \in (\alpha, \beta)$ such that

$$f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!} (\beta - \alpha)^n$$

- For n = 1, this is the mean value theorem.
- "In general, the theorem shows that f can be approximated by a polynomial of degree n-1 and that the last equation above allows us to estimate the error, if we know bounds on $|f^{(n)}(x)|$ " (Rudin, 1976, p. 111).
- **Derivative** (of **f** at x): The point $\mathbf{f}'(x) \in \mathbb{R}^k$, if it exists, such that

$$\lim_{t \to x} \left\| \frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} - \mathbf{f}'(x) \right\| = 0$$

- Theorems 5.2-5.3 remain valid for vector-valued functions.
- If $\mathbf{f} = (f_1, \dots, f_k)$, then $\mathbf{f}'(x)$ exists iff $f'_i(x)$ $(i = 1, \dots, k)$ exists and

$$\mathbf{f}' = (f_1', \dots, f_k')$$

• Theorem 5.19: $\mathbf{f}:[a,b]\to\mathbb{R}^k$ continuous and \mathbf{f} differentiable on (a,b) implies there exists $x\in(a,b)$ such that

$$\|\mathbf{f}(b) - \mathbf{f}(a)\| \le (b - a)\|\mathbf{f}'(x)\|$$