CIRCUITS

Circuits or Logic Gates are elements which recieve a number of bit inputs and return a number of bit outputs. For this course, we will consider 3 types of gates:

Note that these gates directly map to the three basic operators in propositional logic. This allows us an alternative / weful / intuitive representation of compound statements as we know them.

7(p/q) v(rvq)

You should be able to create and Mterpret these circuits i.e go from statement to circuit and vice versa.

However, we have a third way to represent compound statements: truty-tables. By now you should be able to fill out a truty-table for a given statement, but can me go the other may? That is, given the outputs of a truty table, can me determine the statement/circuit that appearates it?

The answer is yes, and the methodology is either Disjunctive Normal Form (DNF) or Conjunctive Normal Form (CNF).

A compound statement is in DNF if it is a disjunction of conjunctions of atomic propositions and their negations:

(pnqn=r) v (pnq) - Pn (qv r) x

Similarly, a statement is in CNF if it is a conjunction of disjunctions of atomic propositions and their negations:

(pv1q) n (pv5) ~ (pnq) v r x

These two forms will allow us to derive a statement from just the outputs of a total table:

011

1011

To get an answer in CNF, we'll simply get the DNF form for the inputs that generate a "false" output, and then negate the statement:

From here, you can use laws of equivalence to to get a logically equivalent but symbolically simpler statement.

PRACTICE

Give the cossesponding statement for the

7(-pn(qvr)) n ((qvr) v(rns))

For the following problem, represent the truth-table below as a circuit using at most 3 gates. Show your simplification process:

P	9	7	7.
٥	0	0	0
0	0	١	1
0	\	٥	l
0	•	١	١
ı	0	٥	0
1	0	1	0
l	\	0	0
•	(1	0

Commutative Laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$			
Associative Laws	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$			
Distributive Laws	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$			
Identity Laws	$p \wedge 1 \equiv p$	$p \lor 0 \equiv p$			
Negation Laws	$p \lor \sim p \equiv 1$	$p \wedge \sim p \equiv 0$			
Double Negation Law	$\sim (\sim p) \equiv p$				
Idempotent Laws	$p \wedge p \equiv p$	$p \lor p \equiv p$			
Universal Bound Laws	<i>p</i> ∨ 1 ≡ 1	$p \wedge 0 \equiv 0$			
DeMorgan's Laws	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$			
Absorption Laws	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$			
Negation Laws of t and c	~1 ≡ 0	~0 ≡ 1			
Definition of Implication	$p \Rightarrow q \equiv \sim p \lor q$				
Definition of Biconditional	$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p) \equiv (p \land q) \lor \sim (p \lor q)$				
Contrapositive	$p \Rightarrow q \equiv \sim q \Rightarrow \sim p$				

DNF: (PAGAF) V (PAGAF) V (PAGAF)

