CUDAProb3++

Generated by Doxygen 1.8.11

Contents

1	Hier	archica	I Index		1
	1.1	Class	Hierarchy		1
2	Clas	s Index			3
	2.1	Class	List		3
3	Clas	s Docu	mentation	1	5
	3.1	cudapı	rob3::Cpul	Propagator < FLOAT_T > Class Template Reference	5
		3.1.1	Detailed	Description	6
		3.1.2	Construc	ctor & Destructor Documentation	6
			3.1.2.1	CpuPropagator(int n_cosines, int n_energies, int threads)	6
			3.1.2.2	CpuPropagator(const CpuPropagator &other)	6
			3.1.2.3	CpuPropagator(CpuPropagator &&other)	7
		3.1.3	Member	Function Documentation	7
			3.1.3.1	calculateProbabilities(NeutrinoType type) override	7
			3.1.3.2	getProbability(int index_cosine, int index_energy, ProbType t) override	7
			3.1.3.3	operator=(const CpuPropagator &other)	7
			3.1.3.4	operator=(CpuPropagator &&other)	8
	3.2	cudapı	rob3::Cuda	aPropagator< FLOAT_T > Class Template Reference	8
		3.2.1	Detailed	Description	10
		3.2.2	Construc	ctor & Destructor Documentation	10
			3.2.2.1	CudaPropagator(int nc, int ne)	10
			3.2.2.2	CudaPropagator(const std::vector< int > &ids, int nc, int ne, bool failOnInvalid ← Id=true)	10
			3.2.2.3	CudaPropagator(CudaPropagator &&other)	10

iv CONTENTS

	3.2.3	Member	Function Documentation	11
		3.2.3.1	calculateProbabilities(NeutrinoType type) override	11
		3.2.3.2	getProbability(int index_cosine, int index_energy, ProbType t) override	11
		3.2.3.3	operator=(CudaPropagator &&other)	11
		3.2.3.4	$setCosineList(const\ std::vector < FLOAT_T > \&list)\ override\ .\ .\ .\ .\ .\ .$	11
		3.2.3.5	setDensity(const std::vector< FLOAT_T > &radii, const std::vector< FLOAT_T > &rhos) override	12
		3.2.3.6	setDensityFromFile(const std::string &filename) override	12
		3.2.3.7	${\sf setEnergyList} ({\sf const std::vector} {< FLOAT_T} > {\sf \&list}) \ override \ \ldots \ \ldots \ \ldots$	12
		3.2.3.8	setMNSMatrix(FLOAT_T theta12, FLOAT_T theta13, FLOAT_T theta23, FLO↔ AT_T dCP) override	13
		3.2.3.9	setNeutrinoMasses(FLOAT_T dm12sq, FLOAT_T dm23sq) override	13
		3.2.3.10	setProductionHeight(FLOAT_T heightKM) override	13
3.3	cudapr	ob3::Cuda	PropagatorSingle < FLOAT_T > Class Template Reference	14
	3.3.1	Detailed	Description	15
	3.3.2	Construc	tor & Destructor Documentation	15
		3.3.2.1	CudaPropagatorSingle(int id, int n_cosines_, int n_energies_)	15
		3.3.2.2	CudaPropagatorSingle(int n_cosines, int n_energies)	15
		3.3.2.3	CudaPropagatorSingle(CudaPropagatorSingle &&other)	16
	3.3.3	Member	Function Documentation	16
		3.3.3.1	calculateProbabilities(NeutrinoType type) override	16
		3.3.3.2	getProbability(int index_cosine, int index_energy, ProbType t) override	16
		3.3.3.3	operator=(CudaPropagatorSingle &&other)	16
		3.3.3.4	$setCosineList(const\ std::vector < FLOAT_T > \&list)\ override\ .\ .\ .\ .\ .\ .$	17
		3.3.3.5	setDensity(const std::vector< FLOAT_T > &radii_, const std::vector< FLOAT_T > &rhos_) override	17
		3.3.3.6	${\sf setEnergyList}({\sf const\ std}::{\sf vector}{<\sf FLOAT_T} > {\sf \&list})\ {\sf override}\ .\ .\ .\ .\ .\ .\ .$	17
3.4	cudapr	ob3::Propa	agator < FLOAT_T > Class Template Reference	17
	3.4.1	Detailed	Description	19
	3.4.2	Construc	tor & Destructor Documentation	19
		3.4.2.1	Propagator(int n_cosines, int n_energies)	19
		3.4.2.2	Propagator(const Propagator &other)	19

CONTENTS

	0.110111	Total roddollorinolgin(i 2071-1 noightain)	
	3.4.3.11	setProductionHeight(FLOAT T heightKM)	22
	3.4.3.10	setNeutrinoMasses(FLOAT_T dm12sq, FLOAT_T dm23sq)	22
	3.4.3.9	setMNSMatrix(FLOAT_T theta12, FLOAT_T theta13, FLOAT_T theta23, FLO↔ AT_T dCP)	22
	3.4.3.8	setEnergyList(const std::vector< FLOAT_T > &list)	21
	3.4.3.7	setDensityFromFile(const std::string &filename)	21
	3.4.3.6	setDensity(const std::vector< FLOAT_T > &radii_, const std::vector< FLOAT_T > &rhos_)	21
	3.4.3.5	${\sf setCosineList}({\sf const\ std}:: {\sf vector} {< \ \sf FLOAT_T > \&list}) \dots \dots \dots$	21
	3.4.3.4	operator=(Propagator &&other)	20
	3.4.3.3	operator=(const Propagator &other)	20
	3.4.3.2	getProbability(int index_cosine, int index_energy, ProbType t)=0	20
	3.4.3.1	calculateProbabilities(NeutrinoType type)=0	20
3.4.3	Member	Function Documentation	19
	3.4.2.3	Propagator(Propagator &&other)	19

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

cudaprob3::Propagator< FLOAT_T >	17
cudaprob3::CpuPropagator< FLOAT_T >	5
cudaprob3::CudaPropagator< FLOAT_T >	8
cudaprob3::CudaPropagatorSingle < FLOAT T >	14

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

cudaprob3::CpuPropagator< FLOAT_T >	
Multi-threaded CPU neutrino propagation. Derived from Propagator	5
cudaprob3::CudaPropagator< FLOAT_T >	
Multi-GPU neutrino propagation. Derived from Propagator	8
cudaprob3::CudaPropagatorSingle < FLOAT_T >	
Single-GPU neutrino propagation. Derived from Propagator	14
cudaprob3::Propagator< FLOAT_T >	
Abstract base class of the library which sets up input parameter on the host. Concrete imple-	
mentation of calcuations is provided in derived classes	17

4 Class Index

Chapter 3

Class Documentation

3.1 cudaprob3::CpuPropagator < FLOAT_T > Class Template Reference

Multi-threaded CPU neutrino propagation. Derived from Propagator.

Inheritance diagram for cudaprob3::CpuPropagator< FLOAT_T >:

 $Collaboration\ diagram\ for\ cudaprob3:: CpuPropagator < FLOAT_T >:$

Public Member Functions

• CpuPropagator (int n_cosines, int n_energies, int threads)

Constructor.

CpuPropagator (const CpuPropagator &other)

Copy constructor.

• CpuPropagator (CpuPropagator &&other)

Move constructor.

CpuPropagator & operator= (const CpuPropagator &other)

Copy assignment operator.

CpuPropagator & operator= (CpuPropagator &&other)

Move assignment operator.

• void calculateProbabilities (NeutrinoType type) override

Calculate the probability of each cell.

• FLOAT_T getProbability (int index_cosine, int index_energy, ProbType t) override

get oscillation weight for specific cosine and energy

3.1.1 Detailed Description

```
template < class FLOAT_T > class cudaprob3::CpuPropagator < FLOAT_T >
```

Multi-threaded CPU neutrino propagation. Derived from Propagator.

Parameters

FLOAT↔	The floating point type to use for calculations, i.e float, double
T	

3.1.2 Constructor & Destructor Documentation

3.1.2.1 template < class FLOAT_T > cudaprob3::CpuPropagator < FLOAT_T >::CpuPropagator (int $n_cosines$, int $n_energies$, int threads) [inline]

Constructor.

Parameters

n_cosines	Number cosine bins	
n_energies	Number of energy bins	
threads	Number of threads	

3.1.2.2 template < class FLOAT_T > cudaprob3::CpuPropagator < FLOAT_T >::CpuPropagator < const CpuPropagator < FLOAT_T > & other) [inline]

Copy constructor.

Da			_ 1		
Pа	ra	m	eı	re	rs

other	

3.1.2.3 template < class FLOAT_T > cudaprob3::CpuPropagator < FLOAT_T > ::CpuPropagator < FLOAT_T > && other) [inline]

Move constructor.

Parameters

other

- 3.1.3 Member Function Documentation

Calculate the probability of each cell.

Parameters

type	Neutrino or Antineutrino
------	--------------------------

Implements cudaprob3::Propagator< FLOAT T>.

3.1.3.2 template < class FLOAT_T > FLOAT_T cudaprob3::CpuPropagator < FLOAT_T >::getProbability (int index_cosine, int index_energy, ProbType t) [inline], [override], [virtual]

get oscillation weight for specific cosine and energy

Parameters

index_cosine	Cosine bin index (zero based)
index_energy	Energy bin index (zero based)
t	Specify which probability P(i->j)

Implements cudaprob3::Propagator< FLOAT_T >.

3.1.3.3 template < class FLOAT_T > CpuPropagator& cudaprob3::CpuPropagator< FLOAT_T >::operator=(const CpuPropagator< FLOAT_T > & other) [inline]

Copy assignment operator.

Parameters

other

3.1.3.4 template < class FLOAT_T > CpuPropagator & cudaprob3::CpuPropagator < FLOAT_T >::operator= (CpuPropagator < FLOAT_T > & & other) [inline]

Move assignment operator.

Parameters

other

The documentation for this class was generated from the following file:

· cpupropagator.hpp

3.2 cudaprob3::CudaPropagator < FLOAT_T > Class Template Reference

Multi-GPU neutrino propagation. Derived from Propagator.

 $Inheritance\ diagram\ for\ cudaprob3:: CudaPropagator < FLOAT_T >:$

Collaboration diagram for cudaprob3::CudaPropagator< FLOAT_T >:

Public Member Functions

· CudaPropagator (int nc, int ne)

Single GPU constructor for device id 0.

• CudaPropagator (const std::vector< int > &ids, int nc, int ne, bool failOnInvalidId=true)

Constructor.

CudaPropagator (CudaPropagator &&other)

Move constructor.

• CudaPropagator & operator= (CudaPropagator &&other)

Move assignment operator.

• void setDensityFromFile (const std::string &filename) override

Set density information from file.

- void setDensity (const std::vector < FLOAT_T > &radii, const std::vector < FLOAT_T > &rhos) override
 Set density information from arrays.
- void setNeutrinoMasses (FLOAT_T dm12sq, FLOAT_T dm23sq) override

Set neutrino mass differences $(m_i)^2$ in $(eV)^2$. no assumptions about mass hierarchy are made.

- void setMNSMatrix (FLOAT_T theta12, FLOAT_T theta13, FLOAT_T theta23, FLOAT_T dCP) override Set mixing angles and cp phase in radians.
- void setEnergyList (const std::vector< FLOAT_T > &list) override

Set the energy bins. Energies are given in GeV.

void setCosineList (const std::vector< FLOAT_T > &list) override

Set cosine bins. Cosines are given in radians.

void setProductionHeight (FLOAT_T heightKM) override

Set production height in km of neutrinos.

• void calculateProbabilities (NeutrinoType type) override

Calculate the probability of each cell.

• FLOAT_T getProbability (int index_cosine, int index_energy, ProbType t) override

get oscillation weight for specific cosine and energy

3.2.1 Detailed Description

$$\label{template} \begin{split} & template {<} class \ FLOAT_T {>} \\ & class \ cudaprob3:: CudaPropagator {<} \ FLOAT_T {>} \end{split}$$

Multi-GPU neutrino propagation. Derived from Propagator.

This is essentially a wrapper around multiple CudaPropagatorSingle instances, one per used GPU Most of the setters and calculation functions simply call the appropriate function for each GPU

Parameters

FLOAT⊷	The floating point type to use for calculations, i.e float, double
T	

3.2.2 Constructor & Destructor Documentation

3.2.2.1 template < class FLOAT_T > cudaprob3::CudaPropagator < FLOAT_T >::CudaPropagator (int nc, int ne) [inline]

Single GPU constructor for device id 0.

Parameters

nc	Number cosine bins
ne	Number of energy bins

3.2.2.2 template < class FLOAT_T > cudaprob3::CudaPropagator < FLOAT_T > ::CudaPropagator (const std::vector < int > & ids, int nc, int ne, bool failOnInvalidId = true) [inline]

Constructor.

Parameters

ids	List of device ids of the GPUs to use
nc	Number cosine bins
ne	Number of energy bins
failOn⊷ InvalidId	If true, throw exception if ids contains an invalid device id

3.2.2.3 template < class FLOAT_T > cudaprob3::CudaPropagator < FLOAT_T >::CudaPropagator (CudaPropagator < FLOAT_T > && other) [inline]

Move constructor.

Da			_ 1		
Pа	ra	m	eı	re	rs

other

- 3.2.3 Member Function Documentation

Calculate the probability of each cell.

Parameters

typ	е	Neutrino or Antineutrino
-----	---	--------------------------

Implements cudaprob3::Propagator< FLOAT_T >.

3.2.3.2 template < class FLOAT_T > FLOAT_T cudaprob3::CudaPropagator < FLOAT_T > ::getProbability (int index_cosine, int index_energy, ProbType t) [inline], [override], [virtual]

get oscillation weight for specific cosine and energy

Parameters

index_cosine	Cosine bin index (zero based)
index_energy	Energy bin index (zero based)
t	Specify which probability P(i->j)

Implements cudaprob3::Propagator< FLOAT_T >.

3.2.3.3 template < class FLOAT_T > CudaPropagator & cudaprob3::CudaPropagator < FLOAT_T >::operator= (CudaPropagator < FLOAT_T > && other) [inline]

Move assignment operator.

Parameters

other

3.2.3.4 template < class FLOAT_T > void cudaprob3::CudaPropagator < FLOAT_T > ::setCosineList (const std::vector < FLOAT_T > & list) [inline], [override], [virtual]

Set cosine bins. Cosines are given in radians.

Parameters

list Cosine list	e list	Cos	list
------------------	--------	-----	------

Reimplemented from cudaprob3::Propagator< FLOAT_T >.

```
3.2.3.5 template < class FLOAT_T > void cudaprob3::CudaPropagator < FLOAT_T > ::setDensity ( const std::vector < FLOAT_T > & radii_, const std::vector < FLOAT_T > & rhos_) [inline], [override], [virtual]
```

Set density information from arrays.

radii_ and rhos_ must be same size. both radii_ and rhos_ must be sorted, in the same order. The density (g/cm^3) at a distance (km) from the center of the sphere between radii_[i], exclusive, and radii_[j], inclusive, i < j is assumed to be rhos_[j]

Parameters

radii←	List of radii
_	
rhos⊷	List of densities
_	

Reimplemented from cudaprob3::Propagator< FLOAT_T >.

```
3.2.3.6 template < class FLOAT_T > void cudaprob3::CudaPropagator < FLOAT_T >::setDensityFromFile ( const std::string & filename ) [inline], [override], [virtual]
```

Set density information from file.

File must contain two columns where the first column contains the radius (km) and the second column contains the density (g/cm³). The first row must have the radius 0. The last row must have to radius of the sphere

Parameters

filename	File with density information
----------	-------------------------------

 $\label{lem:propagator} \mbox{Reimplemented from cudaprob3::Propagator} < \mbox{FLOAT_T} >.$

```
3.2.3.7 template < class FLOAT_T > void cudaprob3::CudaPropagator < FLOAT_T > ::setEnergyList ( const std::vector < FLOAT_T > & list ) [inline], [override], [virtual]
```

Set the energy bins. Energies are given in GeV.

Parameters

list	Energy list

Reimplemented from cudaprob3::Propagator< FLOAT_T >.

3.2.3.8 template < class FLOAT_T > void cudaprob3::CudaPropagator < FLOAT_T >::setMNSMatrix (FLOAT_T theta12, FLOAT_T theta13, FLOAT_T theta23, FLOAT_T dCP) [inline], [override], [virtual]

Set mixing angles and cp phase in radians.

Parameters

theta12	
theta13	
theta23	
dCP	

Reimplemented from cudaprob3::Propagator< FLOAT_T >.

3.2.3.9 template < class FLOAT_T > void cudaprob3::CudaPropagator < FLOAT_T >::setNeutrinoMasses (FLOAT_T dm12sq, FLOAT_T dm23sq) [inline], [override], [virtual]

Set neutrino mass differences $(m_i)^2$ in $(eV)^2$. no assumptions about mass hierarchy are made.

Parameters

dm12sq	
dm23sq	

Reimplemented from cudaprob3::Propagator< FLOAT_T >.

3.2.3.10 template < class FLOAT_T > void cudaprob3::CudaPropagator < FLOAT_T >::setProductionHeight (FLOAT_T heightKM) [inline], [override], [virtual]

Set production height in km of neutrinos.

Adds a layer of length heightKM with zero density to the density model

Parameters

heightKM	Set neutrino production height

Reimplemented from cudaprob3::Propagator< FLOAT_T >.

The documentation for this class was generated from the following file:

cudapropagator.cuh

3.3 cudaprob3::CudaPropagatorSingle < FLOAT_T > Class Template Reference

Single-GPU neutrino propagation. Derived from Propagator.

Inheritance diagram for cudaprob3::CudaPropagatorSingle < FLOAT_T >:

Collaboration diagram for cudaprob3::CudaPropagatorSingle < FLOAT_T >:

Public Member Functions

- CudaPropagatorSingle (int id, int n_cosines_, int n_energies_)
 Constructor.
- CudaPropagatorSingle (int n_cosines, int n_energies)

Constructor which uses device id 0.

• \sim CudaPropagatorSingle ()

Destructor

• CudaPropagatorSingle (CudaPropagatorSingle &&other)

Move constructor.

CudaPropagatorSingle & operator= (CudaPropagatorSingle &&other)

Move assignment operator.

- void setDensity (const std::vector < FLOAT_T > &radii_, const std::vector < FLOAT_T > &rhos_) override
 Set density information from arrays.
- void setEnergyList (const std::vector< FLOAT_T > &list) override

Set the energy bins. Energies are given in GeV.

void setCosineList (const std::vector< FLOAT_T > &list) override

Set cosine bins. Cosines are given in radians.

• void calculateProbabilities (NeutrinoType type) override

Calculate the probability of each cell.

FLOAT_T getProbability (int index_cosine, int index_energy, ProbType t) override
get oscillation weight for specific cosine and energy

3.3.1 Detailed Description

Single-GPU neutrino propagation. Derived from Propagator.

Parameters

FLOAT↔	The floating point type to use for calculations, i.e float, double
_ <i>T</i>	

3.3.2 Constructor & Destructor Documentation

3.3.2.1 template < class FLOAT_T > cudaprob3::CudaPropagatorSingle < FLOAT_T >::CudaPropagatorSingle (int id, int n_cosines_, int n_energies_) [inline]

Constructor.

Parameters

id	device id of the GPU to use
n_cosines←	Number cosine bins
_	
<i>n</i> _←	Number of energy bins
energies_	

3.3.2.2 template < class FLOAT_T > cudaprob3::CudaPropagatorSingle < FLOAT_T >::CudaPropagatorSingle (int n_cosines, int n_energies) [inline]

Constructor which uses device id 0.

Parameters

n_cosines	Number cosine bins
n_energies	Number of energy bins

3.3.2.3 template < class FLOAT_T > cudaprob3::CudaPropagatorSingle < FLOAT_T >::CudaPropagatorSingle (CudaPropagatorSingle < FLOAT_T > && other) [inline]

Move constructor.

Parameters

other

- 3.3.3 Member Function Documentation

Calculate the probability of each cell.

Parameters

type Neutrino or Antineutrino	
-------------------------------	--

Implements cudaprob3::Propagator< FLOAT_T >.

3.3.3.2 template < class FLOAT_T > FLOAT_T cudaprob3::CudaPropagatorSingle < FLOAT_T >::getProbability (int index_cosine, int index_energy, ProbType t) [inline], [override], [virtual]

get oscillation weight for specific cosine and energy

Parameters

index_cosine	Cosine bin index (zero based)
index_energy	Energy bin index (zero based)
t	Specify which probability P(i->j)

Implements cudaprob3::Propagator< FLOAT_T >.

3.3.3.3 template < class FLOAT_T > CudaPropagatorSingle & cudaprob3::CudaPropagatorSingle < FLOAT_T >::operator= (CudaPropagatorSingle < FLOAT_T > & dother) [inline]

Move assignment operator.

Parameters

other

3.3.3.4 template < class FLOAT_T > void cudaprob3::CudaPropagatorSingle < FLOAT_T >::setCosineList (const std::vector < FLOAT_T > & list) [inline], [override], [virtual]

Set cosine bins. Cosines are given in radians.

Parameters

```
list Cosine list
```

Reimplemented from cudaprob3::Propagator< FLOAT_T >.

3.3.3.5 template < class FLOAT_T > void cudaprob3::CudaPropagatorSingle < FLOAT_T >::setDensity (const std::vector < FLOAT_T > & radii_, const std::vector < FLOAT_T > & rhos_) [inline], [override], [virtual]

Set density information from arrays.

radii_ and rhos_ must be same size. both radii_ and rhos_ must be sorted, in the same order. The density (g/cm^3) at a distance (km) from the center of the sphere between radii_[i], exclusive, and radii_[j], inclusive, i < j is assumed to be rhos_[j]

Parameters

radii⇔	List of radii
_	
rhos⊷	List of densities
_	

Reimplemented from cudaprob3::Propagator< FLOAT T>.

3.3.3.6 template < class FLOAT_T > void cudaprob3::CudaPropagatorSingle < FLOAT_T >::setEnergyList (const std::vector < FLOAT_T > & list) [inline], [override], [virtual]

Set the energy bins. Energies are given in GeV.

Parameters

Reimplemented from cudaprob3::Propagator< FLOAT_T >.

The documentation for this class was generated from the following file:

· cudapropagator.cuh

3.4 cudaprob3::Propagator < FLOAT_T > Class Template Reference

Abstract base class of the library which sets up input parameter on the host. Concrete implementation of calcuations is provided in derived classes.

Inheritance diagram for cudaprob3::Propagator< FLOAT_T >:

Public Member Functions

• Propagator (int n_cosines, int n_energies)

Constructor.

Propagator (const Propagator & other)

Copy constructor.

• Propagator (Propagator &&other)

Move constructor.

• Propagator & operator= (const Propagator & other)

Copy assignment operator.

Propagator & operator= (Propagator &&other)

Move assignment operator.

- virtual void setDensity (const std::vector< FLOAT_T > &radii_, const std::vector< FLOAT_T > &rhos_)
 Set density information from arrays.
- virtual void setDensityFromFile (const std::string &filename)

Set density information from file.

- virtual void setMNSMatrix (FLOAT_T theta12, FLOAT_T theta13, FLOAT_T theta23, FLOAT_T dCP) Set mixing angles and cp phase in radians.
- virtual void setNeutrinoMasses (FLOAT_T dm12sq, FLOAT_T dm23sq)

Set neutrino mass differences $(m_i)^2$ in $(eV)^2$. no assumptions about mass hierarchy are made.

virtual void setEnergyList (const std::vector< FLOAT_T > &list)

Set the energy bins. Energies are given in GeV.

virtual void setCosineList (const std::vector< FLOAT T > &list)

Set cosine bins. Cosines are given in radians.

virtual void setProductionHeight (FLOAT_T heightKM)

Set production height in km of neutrinos.

virtual void calculateProbabilities (NeutrinoType type)=0

Calculate the probability of each cell.

• virtual FLOAT_T getProbability (int index_cosine, int index_energy, ProbType t)=0

get oscillation weight for specific cosine and energy

3.4.1 Detailed Description

$$\label{template} \begin{split} & template\!<\!class\ FLOAT_T\!> \\ & class\ cudaprob3::Propagator\!<\!FLOAT_T\!> \end{split}$$

Abstract base class of the library which sets up input parameter on the host. Concrete implementation of calcuations is provided in derived classes.

Parameters

FLOAT⊷	The floating point type to use for calculations, i.e float, double
T	

3.4.2 Constructor & Destructor Documentation

3.4.2.1 template < class FLOAT_T > cudaprob3::Propagator < FLOAT_T >::Propagator (int n_cosines, int n_energies) [inline]

Constructor.

Parameters

n_cosines	Number cosine bins
n_energies	Number of energy bins

3.4.2.2 template < class FLOAT_T > cudaprob3::Propagator < FLOAT_T > ::Propagator (const Propagator < FLOAT_T > & other) [inline]

Copy constructor.

Parameters

other

3.4.2.3 template < class FLOAT_T > cudaprob3::Propagator < FLOAT_T > ::Propagator (Propagator < FLOAT_T > && other) [inline]

Move constructor.

Parameters

other

3.4.3 Member Function Documentation

Calculate the probability of each cell.

Parameters

type	Neutrino or Antineutrino
------	--------------------------

 $Implemented \ in \ cudaprob3:: CudaPropagator < FLOAT_T>, \ cudaprob3:: CudaPropagator Single < FLOAT_T>, \ and \ cudaprob3:: CpuPropagator < FLOAT_T>.$

3.4.3.2 template < class FLOAT_T > virtual FLOAT_T cudaprob3::Propagator < FLOAT_T > ::getProbability (int index_cosine, int index_energy, ProbType t) [pure virtual]

get oscillation weight for specific cosine and energy

Parameters

index_cosine	Cosine bin index (zero based)
index_energy	Energy bin index (zero based)
t	Specify which probability P(i->j)

 $Implemented \ in \ cudaprob3:: CudaPropagator < FLOAT_T>, \ cudaprob3:: CudaPropagator Single < FLOAT_T>, \ and \ cudaprob3:: CpuPropagator < FLOAT_T>.$

3.4.3.3 template < class FLOAT_T > Propagator & cudaprob3::Propagator < FLOAT_T >::operator= (const Propagator < FLOAT_T > & other) [inline]

Copy assignment operator.

Parameters

other

3.4.3.4 template < class FLOAT_T > Propagator & cudaprob3::Propagator < FLOAT_T > ::operator = (Propagator < FLOAT_T > && other) [inline]

Move assignment operator.

Parameters

other

3.4.3.5 template < class FLOAT_T > virtual void cudaprob3::Propagator < FLOAT_T >::setCosineList (const std::vector < FLOAT_T > & list) [inline], [virtual]

Set cosine bins. Cosines are given in radians.

Parameters

list	Cosine list
------	-------------

 $\label{eq:conditional} Reimplemented in cudaprob3::CudaPropagator < FLOAT_T>, and cudaprob3::CudaPropagatorSingle < FLOA \leftarrow T_T>.$

3.4.3.6 template < class FLOAT_T > virtual void cudaprob3::Propagator < FLOAT_T > ::setDensity (const std::vector < FLOAT_T > & radii_, const std::vector < FLOAT_T > & rhos_) [inline], [virtual]

Set density information from arrays.

radii_ and rhos_ must be same size. both radii_ and rhos_ must be sorted, in the same order. The density (g/cm^3) at a distance (km) from the center of the sphere between radii_[i], exclusive, and radii_[j], inclusive, i < j is assumed to be rhos_[j]

Parameters

radii⇔	List of radii
rhos⊷	List of densities
_	

 $\label{eq:conditional} Reimplemented in cudaprob3::CudaPropagator < FLOAT_T>, and cudaprob3::CudaPropagatorSingle < FLOA \leftarrow T_T>.$

3.4.3.7 template < class FLOAT_T > virtual void cudaprob3::Propagator < FLOAT_T >::setDensityFromFile (const std::string & filename) [inline], [virtual]

Set density information from file.

File must contain two columns where the first column contains the radius (km) and the second column contains the density (g/cm³). The first row must have the radius 0. The last row must have to radius of the sphere

Parameters

filename	File with density information
----------	-------------------------------

Reimplemented in cudaprob3::CudaPropagator< FLOAT_T >.

3.4.3.8 template < class FLOAT_T > virtual void cudaprob3::Propagator < FLOAT_T >::setEnergyList (const std::vector < FLOAT_T > & list) [inline], [virtual]

Set the energy bins. Energies are given in GeV.

Parameters

list Energy	list
-------------	------

 $\label{eq:conditional} Reimplemented in cudaprob3::CudaPropagator < FLOAT_T>, and cudaprob3::CudaPropagatorSingle < FLOA \leftarrow T_T>.$

3.4.3.9 template < class FLOAT_T > virtual void cudaprob3::Propagator < FLOAT_T >::setMNSMatrix (FLOAT_T theta12, FLOAT_T theta13, FLOAT_T theta23, FLOAT_T dCP) [inline], [virtual]

Set mixing angles and cp phase in radians.

Parameters

theta12	
theta13	
theta23	
dCP	

Reimplemented in cudaprob3::CudaPropagator< FLOAT_T >.

3.4.3.10 template < class FLOAT_T > virtual void cudaprob3::Propagator < FLOAT_T >::setNeutrinoMasses (FLOAT_T dm12sq, FLOAT_T dm23sq) [inline], [virtual]

Set neutrino mass differences $(m_i_j)^2$ in $(eV)^2$. no assumptions about mass hierarchy are made.

Parameters

dm12sq	
dm23sq	

Reimplemented in cudaprob3::CudaPropagator< FLOAT_T >.

3.4.3.11 template < class FLOAT_T > virtual void cudaprob3::Propagator < FLOAT_T > ::setProductionHeight (FLOAT_T heightKM) [inline], [virtual]

Set production height in km of neutrinos.

Adds a layer of length heightKM with zero density to the density model

Parameters

heightKM	Set neutrino production height

Reimplemented in cudaprob3::CudaPropagator< FLOAT_T >.

The documentation for this class was generated from the following file:

• propagator.hpp

Index

calculateProbabilities	setNeutrinoMasses, 22
cudaprob3::CpuPropagator, 7	setProductionHeight, 22
cudaprob3::CudaPropagator, 11	cudaprob3::Propagator< FLOAT_T >, 17
cudaprob3::CudaPropagatorSingle, 16	
cudaprob3::Propagator, 19	getProbability
CpuPropagator	cudaprob3::CpuPropagator, 7
cudaprob3::CpuPropagator, 6, 7	cudaprob3::CudaPropagator, 11
CudaPropagator	cudaprob3::CudaPropagatorSingle, 16
cudaprob3::CudaPropagator, 10	cudaprob3::Propagator, 20
CudaPropagatorSingle	
cudaprob3::CudaPropagatorSingle, 15, 16	operator=
cudaprob3::CpuPropagator	cudaprob3::CpuPropagator, 7, 8
calculateProbabilities, 7	cudaprob3::CudaPropagator, 11
CpuPropagator, 6, 7	cudaprob3::CudaPropagatorSingle, 16
getProbability, 7	cudaprob3::Propagator, 20
operator=, 7, 8	Propagator
cudaprob3::CpuPropagator< FLOAT_T >, 5	cudaprob3::Propagator, 19
cudaprob3::CudaPropagator	cudaprobs Topagator, 19
calculateProbabilities, 11	setCosineList
CudaPropagator, 10	cudaprob3::CudaPropagator, 11
getProbability, 11	cudaprob3::CudaPropagatorSingle, 16
operator=, 11	cudaprob3::Propagator, 20
setCosineList, 11	setDensity
setDensity, 12	cudaprob3::CudaPropagator, 12
setDensityFromFile, 12	cudaprob3::CudaPropagatorSingle, 17
setEnergyList, 12	cudaprob3::Propagator, 21
setMNSMatrix, 13	setDensityFromFile
setNeutrinoMasses, 13	cudaprob3::CudaPropagator, 12
setProductionHeight, 13	cudaprob3::Propagator, 21
cudaprob3::CudaPropagator< FLOAT_T >, 8	setEnergyList
cudaprob3::CudaPropagator< rEOA1_1 >, 6	cudaprob3::CudaPropagator, 12
calculateProbabilities, 16	cudaprob3::CudaPropagatorSingle, 17
CudaPropagatorSingle, 15, 16	cudaprob3::Propagator, 21
getProbability, 16	setMNSMatrix
operator=, 16	cudaprob3::CudaPropagator, 13
·	cudaprob3::Propagator, 22
setCosineList, 16	setNeutrinoMasses
setDensity, 17	cudaprob3::CudaPropagator, 13
setEnergyList, 17	cudaprob3::Propagator, 22
cudaprob3::CudaPropagatorSingle< FLOAT_T >, 14	setProductionHeight
cudaprob3::Propagator	cudaprob3::CudaPropagator, 13
calculateProbabilities, 19	cudaprob3::Propagator, 22
getProbability, 20	1 3 7
operator=, 20	
Propagator, 19	
setCosineList, 20	
setDensity, 21	
setDensityFromFile, 21	
setEnergyList, 21	
setMNSMatrix, 22	