Question 5:

a.

To show $5n^3+2n^2+3n=\Theta(n^3)$, we need to prove there exist positive constants c_1 , c_2 and a positive integer constant n_0 such that $c_2n^3\leq 5n^3+2n^2+3n\leq c_1n^3$ for all $n\geq n_0$.

For upper bound $5n^3 + 2n^2 + 3n \le c_1 n^3$:

Since $5n^3+2n^2+3n \le 5n^3+2n^3+3n^3=10n^3$, for all $n \ge 1$, Then we can take $c_1=10$, when $n \ge 1$, $5n^3+2n^2+3n \le 10n^3$.

For lower bound $c_2 n^3 \le 5n^3 + 2n^2 + 3n$:

Since $5n^3 \le 5n^3 + 2n^2 + 3n$, for all $n \ge 1$, Then we can take $c_2 = 5$, when $n \ge 1$, $5n^3 \le 5n^3 + 2n^2 + 3n$.

Thus, there exist positive constants $c_{_{1}}^{}=\,10$ and $c_{_{2}}^{}=\,5$ such that:

$$5n^3 \le 5n^3 + 2n^2 + 3n \le 10n^3$$
, for all $n \ge 1$.

Therefore, $5n^3 + 2n^2 + 3n = \Theta(n^3)$.

b.

To show $\sqrt{7n^2+2n-8}=\Theta(n)$, we need to prove there exist positive constants c_1 , c_2 and a positive integer constant n_0 such that $c_2n\leq \sqrt{7n^2+2n-8}\leq c_1n$ for all $n\geq n_0$.

For upper bound $\sqrt{7n^2 + 2n - 8} \le c_1 n$:

Square both sides: $7n^2 + 2n - 8 \le c_1^2 n^2$,

Since $7n^2 + 2n - 8 \le 7n^2 + 2n^2 = 9n^2 = 3^2n^2$, for all $n \ge 1$,

Then we can take $c_1 = 3$, when $n \ge 1$, $\sqrt{7n^2 + 2n - 8} \le 3n$.

For lower bound $c_2 n \le \sqrt{7n^2 + 2n - 8}$:

Square both sides: $c_2^2 n^2 \le 7n^2 + 2n - 8$

Since
$$2^2n^2=4n^2\leq 7n^2+2n-8$$
, for all $n\geq 2$, Then we can take $c_2=2$, when $n\geq 2$, $2n\leq \sqrt{7n^2+2n-8}$.

Thus, there exist positive constants $c_{_{1}}\!=3$ and $c_{_{2}}\!=2$ such that:

$$2n \le \sqrt{7n^2 + 2n - 8} \le 3n$$
, for all $n \ge 2$.

Therefore,
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$
.