The Why and How of Nonnegative Matrix Factorization Topic Presentation

Group 02

LINMA2380 — Matrix computations

December 10, 2020

Summary

1 Applications

2 Connections to other problems

Applications - Image processing

Goal: Facial Feature Extraction

Data matrix : $X \in \mathbb{R}^{p \times n}_+$

- lacksquare p: total number of pixels
- \blacksquare n: number of faces
- lacksquare X(i,j) : the gray-level of the i-th pixel in the j-th face

Applications - Image processing

W(:,k)

facial features

H(k,j)

importance of features in jth image

WH(:,j)

approximation of jth image

Applications - Image processing

NMF decomposition

PCA decompostion

Applications - Text mining

Goal: Topic Recovery and Document Classification

Data matrix : $X \in \mathbb{R}^{n \times m}$

- each column: a document
- each line: a word
- lacksquare X(i,j) : number of times the i-th word appears in the j-th document

$$\underbrace{X(:,j)}_{j\text{th document}} \approx \sum_{k=1}^{r} \underbrace{W(:,k)}_{k\text{th topic}} \underbrace{\underbrace{H(k,j)}}_{\text{importance of kth topic}}, \quad \text{with $W \geq 0$ and $H \geq 0$.}$$

Nonnegative rank

Definition (Nonnegative rank)

Given $X \in \mathbb{R}^{p \times n}_+$, the nonnegative rank of X, denoted $\operatorname{rank}_+(X)$ is the minimum r s.t. $\exists W \in \mathbb{R}^{p \times r}_+, H \in \mathbb{R}^{r \times n}_+$ with X = WH.

Computational Geometry: Nested polytopes problem

Figure: Finding a polytope with minimum nb of vertices nested between 2 polytopes

Graph Theory: Bipartite dimension

Let $G(X)=(V_1\cup V_2,E)$ be a bipartite graph induced by X (i.e. $(i,j)\in E\Leftrightarrow X_{ij}\neq 0$).

Definition (Biclique and bipartite dimension)

- A biclique (or a complete bipartite graph) is a bipartite graph s.t. every vertex in V_1 is connected to every vertex in V_2 .
- The bipartite dimension (or the minimum biclique cover) bc(G(X)) is the minimum number of bicliques needed to cover all edges in E.

Figure: Example for biclique edge cover [biclique]