Chapter 1.1: Bisection (Interval Halving) Method

Expected Skills:

- Be able to state the Intermediate Value Theorem and use it to prove the existence of a solution to f(x) = 0 in an interval (a, b).
- Be able to apply the Bisection (Interval Halving) Method to approximate a solution to f(x) = 0.
- Be able to use different stopping procedures to exit the Bisection Method algorithm, as described in the notes.

Practice Problems:

- 1. State the Intermediate Value Theorem. What are the assumptions? What are the conclusions?
- 2. Sketch the graph of a function which satisfies the assumptions of the intermediate value theorem on the interval [a, b] and which has:
 - (a) Exactly one solution to f(x) = 0 in the interval (a, b).
 - (b) Exactly two solutions to f(x) = 0 in the interval (a, b).
 - (c) Exactly three solutions to f(x) = 0 in the interval (a, b).
- 3. By appealing to the Intermediate Value Theorem, justify the existence of a solution to $x^5 7x + 3 = 0$ in the interval (1, 2).
- 4. Use the Bisection Method to estimate a solution to $x^3 + 7x 5 = 0$ in the interval (0,8) using the stopping procedures listed below. In each case, what is an estimate of the desired solution? How many iterations do you have to perform?
 - (a) Use the stopping algorithm described in Algorithm 1.1.1 of the notes with $\epsilon = 0.1$.
 - (b) Again let $\epsilon = 0.1$. Use the stopping algorithm: "If $|f(m_k)| < \epsilon$, stop. Else, perform another iteration."
 - (c) Again let $\epsilon = 0.1$. Use the stopping algorithm: "If $|m_k m_{k-1}| < \epsilon$, stop. Else, perform another iteration."

- 5. Estimate $\sqrt{3}$ using the bisection method. Initialize your search with [a,b]=[0,2] and use the stopping procedures listed below. In each case, what is the estimated value of $\sqrt{3}$ and how many iterations were required? (Hint: find the positive value of x such that $x^2=3$.)
 - (a) Use the stopping algorithm described in Algorithm 1.1.1 of the notes with $\epsilon = 0.1$.
 - (b) Again let $\epsilon = 0.1$. Use the stopping algorithm: "If $|f(m_k)| < \epsilon$, stop. Else, perform another iteration."
 - (c) Again let $\epsilon = 0.1$. Use the stopping algorithm: "If $|m_k m_{k-1}| < \epsilon$, stop. Else, perform another iteration."
- 6. The False position (regula falsi), sometimes called linear interpolation method, is an iterative process designed to speed up the bisection method; it works to approximate a solution to f(x) = 0, where f(x) satisfies the same hypotheses of the bisection method. Given two points $(a_n, f(a_n))$ and $(b_n, f(b_n))$ satisfying $f(a_n)f(b_n) < 0$, the secant line which passes through both of these points will cross the x-axis, as in the figure below.

In each iteration, rather than choosing the midpoint of the interval (a_n, b_n) as the next approximation of the solution as is done in the bisection method, the update is chosen to be the x intercept of this secant line. Then, the algorithm would continue as in the bisection method.

Derive a formula for x_n , the approximation generated by the False position method when the current interval is (a_n, b_n) .