

HOLISTIC IM: SCALABILITY & EFFICIENCY WITH OPINION-AWARE MODELS

SAINYAM GALHOTRA^a, AKHIL ARORA^a, AND SHOURYA ROY

To all Control Vorox Possarch Centre India

ECONOMIC Possarch Centre India

Total Control Possarch Text & Graph Analytics, Xerox Research Centre India sainyam@cs.umass.edu, {akhil.arora,shourya.roy}@xerox.com

• **EaSyIM** assigns a score to each node (*u*) of the

• Intuition: The probability of a node v to get

all possible simple paths from u to v in G.

• $\Delta^l(u)$ ($\forall u \in V$) is defined as the weighted

at most (l) starting from u

···EaSyIM

Time vs Seeds (LT)

Medium Datasets

sum of the number of simple paths of length

Time vs Seeds (IC)

+l=10

-**×**-l=7

+l=5

#seeds

DBLP Datasets

⊙|=3

<u></u>4|=2

★I=1

activated by a seed node u is dependent upon

^aEqual Contribution

MOTIVATION

- Need for Influence based Modelling??
- Answer: Interpret Real-world processes
 - Spread of information/diseases
 - Traffic and its propagation

- Real-World Applications
 - Product/Topic/Event Promotions
 - Managing Celebrity/Political Campaigns
 - Blog Selection/Viral Ad-Targeting
 - Detect Outbreaks/Epidemics/Rumours
 - Many more ...

INFLUENCE MAXIMIZATION

- Given: A model for information diffusion
- Task: Identify the most-influential set of nodes
- Constraints: Budget (k = |S|)
- $\sigma(S) = \mathbb{E}[\mathbb{F}(S)]$: Expected number of activated nodes, if S is targeted for initial activation
- More formally, given a budget k, select a set Sof k = |S| nodes, so as to maximize $\sigma(S)$

UNADDRESSED CHALLENGES!

- Classical models fail to capture real-world phenomena
- How to model diffusion of opinion?? [4, 5]
 - Most models don't incorporate change of opinion; except the OC model
- Extensive study on **run-time** efficiency and efficacy – [1, 2, 3], KDD'07, SODA'14, CIKM'14
- Scalable solutions (catering to both runningtime and memory-consumption) are nonexistent

PROPAGATION MODELS

- Opinion Aware models
 - Opinion-based Cascading (OC) model
 - Opinion-cum-Interaction (OI) model
- Opinion Oblivious models
 - IC, WC and LT Models

OI MODEL

- Added a layer to model change of opinions
- Opinion of a newly activated node
 - is computed using: (1) Its personal opinion, (2) opinion of activating node, and (3) their interaction probability

NEED FOR OPINION-AWARE IM

- $\sigma(A) = 0.8$, $\sigma(B) = 0.3628$, $\sigma(C) = 0.9$ and $\sigma(D) = 0$
- $\sigma^{o}(A) = p_{AD}(\varphi_{AD}(o_D + o_A)/2 + (1 \varphi_{AD})(o_D o_A)/2 + (1 \varphi_{AD})(o$ $o_A)/2) = 0.136$
- $\sigma^{o}(B) = -0.022564$, $\sigma^{o}(C) = -0.351$ and $\sigma^o(D) = 0$

OI UNDER LT MODEL

EASYIM

graph

- Each node possesses an activation threshold $\theta_v \in [0,1]$
- Edge Weights: $w_{(u,v)} \in [0,1]$ & Interaction Probability $(\varphi_{(u,v)})$

OVERVIEW OF OUR APPROACH

ANALYSIS

- Time Complexity (score assgn) O(l(m + n))
- Total time taken for k seeds O(kl(m + n))
- Memory Complexity O(n)

MOTIVATION: OPINION SPREAD

SCALABILITY

QUALITY: OPINION-OBLIVIOUS

EFFICIENCY

10⁸ Nethept

+ HepPh

RESULT SUMMARY

Dataset	Running Time (min)			Memory (MB)		
	CELF++	EaSyIM	Gain	CELF++	EaSyIM	Gain
NetHEPT	5352.25	118	45.35x	23.26	3.39	6.86x
HepPh	9746.74	230	41x	24.60	3.47	7.08x
DBLP	NA	5071.67	∞	NA	44.73	8

Dataset	Running Time (min)			Memory (MB)		
	TIM ⁺	EaSyIM	Gain	TIM ⁺	EaSyIM	Gain
DBLP	783.1	2183	0.36x	35234.75	46.5	758x
YouTube	NA	5089.5	∞	NA	158.3	∞
socLive	NA	15433.33	∞	NA	974.94	8

EFFICIENCY

REFERENCES

- [1] Goyal et al. CELF++: Optimizing the greedy algorithm for influence maximization in social networks. In WWW (Companion Volume), 2011.
- D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD, 2003.
- [3] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal time complexity meets practical efficiency. In SIGMOD, 2014. [4] H. Zhang, T.N. Dinh, and M.T. Thai. Maximizing the Spread of Positive
- Influence in Online Social Networks. In ICDCS, 2013. Chen et al. Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate In SDM, 2011.