TRIGONOMETRY Chapter 23

Razones trigonométricas de ángulos cuadrantales

ÁNGULOS CUADRANTALES

Son aquellos ángulos en posición normal cuyo lado final coincide con algún semieje del plano cartesiano.

Son de la forma:

α = **90°.n**

 $, n \in Z$

Ejemplos:

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS CUADRANTALES

R.T	0°;360°	90°	180°	270°
SEN	0	1	0	-1
cos	7	0	-7	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	Ν	1	N.D	-1

N.D: No Determinado

Determine el valor numérico de P = cos0° + sen90° - tan180°

RESOLUCIÓN:

P = cos0° + sen90° - tan180°

RECUERDA:

R.T	0°;360°	90°	180°	270°
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	Ν	1	N.D	-1

$$P = 1 + 1 - 0$$

$$P = 2$$

RPTA = 2

Determine el valor numérico de:

$$E = (2 sen 270^{\circ} + 5 cos 360^{\circ})^{2}$$

Recuerda:

R.T	0°;360°	90°	180°	270°
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	Ο
SEC	1	N.D	-1	N.D
CSC	Ν	1	N.D	-1

RESOLUCIÓN:

$$E = (2 sen 270^{\circ} + 5 cos 360^{\circ})^{2}$$

$$E = (2(-1) + 5(1))^2$$

$$E = (-2 + 5)^2$$

$$E = (3)^2 = 9$$

Determine el valor numérico de:

$$F = \frac{5\sec 0^{\circ} - 3\csc 270^{\circ}}{3\cos 360^{\circ} + \cos 180^{\circ}}$$

Recuerda:

R.T	0°;360°	90°	180°	270°
SEN	0	1	0	-1
COS	1	0	-1	O
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	Ν	1	N.D	-1

RESOLUCIÓN:

$$F = \frac{5\sec 0^{\circ} - 3\csc 270^{\circ}}{3\cos 360^{\circ} + \cos 180^{\circ}}$$

$$F = \frac{5(1) - 3(-1)}{3(1) + (-1)}$$

$$F = \frac{5+3}{3-1} = \frac{8}{2} = 4$$

$$RPTA = 4$$

¡Muy bien!

Camila ha heredado un terreno de forma rectangular, tal como muestra la figura. Calcule el área de dicho terreno

RESOLUCIÓN:

(4cos0° - 6sen270°)m

$$(4(1) - 6(-1))m$$
10 m

(8sen90°.cos360°) (8(1).(1))*m* 8*m*

RECUERDA:

R.T	0°;360°	90°	180°	270°
SEN	0	7	0	-1
COS	1	0	-1	0
TAN	0	N.D	0	N.D
COT	N.D	0	N.D	Ο
SEC	Ī	N.D	- T	N.D
CSC	N	1	N.D	-1

Piden:

$$A_{\parallel} = BxH = (8m)(10m) = 80m^2$$

$$RPTA = 80m^2$$

Si α = 30°, calcule el valor numérico de:

 $J = csc3\alpha + 2tan6\alpha - 3sen9\alpha$

RECUERDA:

R.T	0°;360°	90°	180°	270°
SEN	0	1	0	-1
COS	1	0	-1	0
TAN	0	N.D	0	N.D
COT	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

RESOLUCIÓN:

$$J = csc3\alpha + 2tan6\alpha - 3sen9\alpha$$

$$J = csc90^{\circ} + 2tan180^{\circ} - 3sen270^{\circ}$$

$$J = 1 + 2(0) - 3(-1)$$

¡Muy bien!

$$J = 1 + 3 = 4$$

$$RPTA = 4$$

Calcule el valor de x si: xcos0° + 3sen270° = 5csc90°

RECUERDA:

R.T	0°;360°	90°	180°	270°
SEN	0	1	0	-1
COS	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	Ν	1	N.D	-1

RESOLUCIÓN:

xcos0° + 3sen270° = 5csc90°

$$x(1) + 3(-1) = 5(1)$$

$$X-3=5$$

$$X = 8$$

¡Muy bien!

$$RPTA = 8$$

En una cierta clase de matemáticas un estudiante no comprende muy bien un ejercicio, entonces amablemente pregunta a su compañero de carpeta, por lo tanto ambos se embarcan a la solución del problema el cual decía: Si cos 4α = -1 y sen6 β = 1, donde 4 α y 6 β son ángulos cuadrantales(positivos) y menores que una vuelta. Determine : $E = \alpha + \beta$

RECUERDA:

0°;360°	90°	180°	270°	
0	1	0	-1	
1	0	-1	0	
0	N.D	0	N.D	
N.D	0	N.D	Ο	
1	N.D	-1	N.D	
N	1	N.D	-1	
	0°; 360° 1 0 N.D	0°; 360° 90° 0 1 1 0 N.D 0 1 N.D N.D N.D	0°; 360° 90° 180° 0 1 0 1 0 -1 0 N.D 0 N.D 0 N.D 1 N.D -1	

RESOLUCIÓN:

Sabemos que : cos 180°= -1(I)

Del dato : $\cos 4\alpha = -1$ (II)

De I = II : $4 \alpha = 180^{\circ}$ $\alpha = 45^{\circ}$

Ademas: $sen6\beta = 1$ (III)

Del dato: sen90° = 1..... (IV)

 $6\beta = 90^{\circ}$ De III y IV: $\beta = 15^{\circ}$

Reemplazando: $E = 45^{\circ} + 15^{\circ} = 60^{\circ}$

