Problem Set VII

Youngduck Choi CIMS New York University

yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set V. The chosen problems are 1,2, and 3.

Question 2.

2. Let (X_k) be mutually independent r.v.'s and suppose $S_n = \sum_{k=1}^n X_k$ has $\sigma_n^2 := \text{Var}(S_n) < \infty$.

(i) Prove that if

$$\lim_{n\to\infty}\sigma_n^{-q}\sum_{k=1}^n\mathbb{E}\left|X_k-\mathbb{E}X_k\right|^q=0\qquad\text{ for some }q>2 \tag{\star}$$

then $(S_n - \mathbb{E}S_n)/\sigma_n \Rightarrow \mathcal{N}(0,1)$.

- (ii) Show that if $\sigma_n \to \infty$ and there exist C>0, q>2 such that $\mathbb{E}\left|X_k-\mathbb{E}X_k\right|^q \leq C\operatorname{Var}(X_k)$ for all k, then (\star) holds.
- (iii) Give an example where there exist C>0, q>2 such that $\mathbb{E}\left|X_k-\mathbb{E}X_k\right|^q\leq C\operatorname{Var}(X_k)^{q/2}$ for all k and $\sigma_n\to\infty$, yet $(S_n-\mathbb{E}S_n)/\sigma_n$ does not converge in distribution.

Solution.

(i) We verify the Lindenberg condition on $\{\frac{S_n - \mathbb{E}[S_n]}{\sigma_n}\}$. Observe that

$$\frac{S_n - \mathbb{E}[S_n]}{\sigma_n} = \frac{1}{\sigma_n} \sum_{k=1}^n X_k - \mathbb{E}[X_k] = 0$$

and

$$\mathbb{E}\left[\frac{X_k - \mathbb{E}[X_k]}{\sigma_n}\right] = 0$$

for each $n, k \in \mathbb{N}$. Furthermore,

$$\sum_{n=1}^{\infty} \mathbb{E}\big[\frac{(X_k - \mathbb{E}\big[X_k\big]\big)^2}{\sigma_n^2}\big] \quad = \quad \lim_{n \to \infty} \frac{1}{\sigma_n^2} \sum_{k=1}^n \mathrm{Var}\big[X_k\big] = \lim_{n \to \infty} \frac{1}{\sigma_n^2} \mathrm{Var}\big[S_n\big] = 1.$$

Hence, it now suffices to show the integral condition. Fix $\epsilon > 0$. With the given q > 2,

$$\sum_{k=1}^{n} \mathbb{E}\left[\frac{(X_{k} - \mathbb{E}[X_{k}])^{2}}{\sigma_{n}^{2}} 1_{\{|X_{k} - \mathbb{E}[X_{k}]| > \epsilon\}}\right] = \frac{1}{\sigma_{n}^{2}} \sum_{k=1}^{n} \mathbb{E}\left[(X_{k} - \mathbb{E}[X_{k}])^{2} 1_{\{|X_{k} - \mathbb{E}[X_{k}]| > \epsilon\sigma_{n}\}}\right] \\
\leq \frac{1}{\sigma_{n}^{2}} \sum_{k=1}^{n} \mathbb{E}\left[\left(\frac{|X_{k} - \mathbb{E}[X_{k}]|}{\epsilon\sigma_{n}}\right)^{q-2} (X_{k} - \mathbb{E}[X_{k}])^{2} 1_{\{|X_{k} - \mathbb{E}[X_{k}]| > \epsilon\sigma_{n}\}}\right] \\
= \epsilon^{2-q} \frac{1}{\sigma_{n}^{q}} \sum_{k=1}^{n} \mathbb{E}\left[\left(|X_{k} - \mathbb{E}[X_{k}]|\right)^{q} 1_{\{|X_{k} - \mathbb{E}[X_{k}]| > \epsilon\sigma_{n}\}}\right] \\
\leq \epsilon^{2-q} \frac{1}{\sigma_{n}^{q}} \sum_{k=1}^{n} \mathbb{E}\left[\left(|X_{k} - \mathbb{E}[X_{k}]|\right)^{q}\right]$$

for any $n \in \mathbb{N}$. Now, by the assumption, the last term goes to 0 as $n \to \infty$. Since $\epsilon > 0$ was arbitrary, we have shown that the desired Lindenberg condition, Therefore, by Lindenberg CLT,

$$\frac{S_n - \mathbb{E}[S_N]}{\sigma_n} \to_D N(0,1)$$

as required.

(ii) By independence, with the given C > 0 and q > 2,

$$\sigma_n^{-q} \sum_{k=1}^n \mathbb{E}|X_k - \mathbb{E}[X_k]|^q \leq C\sigma_n^{-q} \sum_{k=1}^n \text{Var}[X_k] = C\sigma_n^{2-q}$$

for any $n \in \mathbb{N}$. Since 2 - q > 0 and $\sigma_n \to \infty$ as $n \to \infty$, the RHS converges to 0 as $n \to \infty$. Hence, (*) holds.

(iii) Let $\mathbb{P}(X_k = a_k) = \mathbb{P}(X_k = -a_k) = \frac{1}{2}$ for all $k \ge 1$, where $\{a_k\}$ are positive numbers to be chosen. We compute

$$\mathbb{E}[X_k] = 0, \ \mathbb{E}|X_k|^q = a_k^q$$

so with C = 1 and q > 2,

$$\mathbb{E}|X_k - \mathbb{E}X_k|^q = c(\operatorname{Var}(X_k))^{\frac{q}{2}}$$

for all $k \ge 1$. Note that, by independence,

$$\sigma_n^2 = \operatorname{Var}(S_n) = \sum_{k=1}^n a_k^2 \ \mathbb{E}|X_k|^3 < \infty.$$

By the estimate in Durrett 3.3.8,

$$\phi_{X_k}(\frac{t}{\sigma_n}) = 1 - \frac{a_k t^2}{2\sigma_n^2} + \Theta(\frac{1}{\sigma_n^3})$$

for all $n \ge 1$, and hence

$$\phi_{\sigma_{n}^{-1}S_{n}}(t) = \prod_{k=1}^{n} \left(1 - \frac{a_{k}t^{2}}{2\sigma_{n}^{2}} + \Theta\left(\frac{1}{\sigma_{n}^{3}}\right)\right)$$

$$= \exp\left(\sum_{k=1}^{n} \log\left(1 - \frac{a_{k}^{2}t^{2}}{2\sigma_{n}^{2}} + \Theta\left(\frac{1}{\sigma_{n}^{3}}\right)\right)\right)$$

$$= \exp\left(\sum_{k=1}^{n} - \frac{a_{k}^{2}t^{2}}{2\sigma_{n}^{2}} + \Theta\left(\frac{1}{\sigma_{n}^{3}}\right)\right) = \exp\left(-\frac{t^{2}}{2} + \Theta\left(\frac{n}{\sigma_{n}^{3}}\right)\right)$$

for all n large enough. The theta estimate comes from the fact that we have values less than 1 in absolute value, so we can consider a geometric series to sum the remainder term. Choose $\{a_n\}$ such that $\sum_{k=1}^n a_k^2 = \sqrt{n}$ for all n. Then, by the above estimate, we see that the characteristic function diverges, so it does not converge in distribution, and we have the desired construction.

Question 3.

3. Let (X_k) be mutually independent r.v.'s and let $S_n = \sum_{k=1}^n X_k$.

(i) Suppose that for some fixed $\alpha, \beta \in \mathbb{R}$,

$$\mathbb{P}(X_k = k^{\alpha}) = \mathbb{P}(X_k = -k^{\alpha}) = \frac{1}{2}k^{-\beta}, \qquad \mathbb{P}(X_k = 0) = 1 - k^{-\beta}.$$
 (**)

Show that if $\beta>1$ then S_n converges a.s. as $n\to\infty$ in two ways: (1) via a direct application of Borel-Cantelli, and (2) via Kolmogorov's Three Series Theorem.

- (ii) Suppose (**) holds for $0 \le \beta < \min\{1, 2\alpha + 1\}$. Show that there exists a non-random sequence (b_n) such that $b_n^{-1}S_n \Rightarrow Z$ for some random variable Z satisfying $0 < F_Z(z) < 1$ for some $z \in \mathbb{R}$, and compute its characteristic function $\Phi_Z(t)$.
- (iii) Now suppose that

$$\mathbb{P}(X_k = 2k) = \mathbb{P}(X_k = -2k) = \tfrac{1}{2k^2} \,, \qquad \mathbb{P}(X_k = 1) = \mathbb{P}(X_k = -1) = \tfrac{1}{2} \left(1 - \tfrac{1}{k^2}\right) \,.$$

Show that $S_n/\sqrt{n} \Rightarrow \mathcal{N}(0,1)$.

Solution.

(i) Suppose $\beta > 1$. Choose any 0 < C < 1. Then, as $|k^{\alpha}| \ge 1 > C$ for all $k \in \mathbb{N}$,

$$\sum_{k=1}^{\infty} \mathbb{P}(|X_k| \ge C) = \sum_{k=1}^{\infty} \mathbb{P}(|X_k| = k^{\alpha}) + \mathbb{P}(|X_k| = -k^{-\alpha}) = \sum_{k=1}^{\infty} k^{-\beta} < \infty.$$

Let $Y_k = X_k 1_{|X_k| \le C}$ for each $k \in \mathbb{N}$. Then, as before,

$$\mathbb{E}[Y_k] = 0$$
 for all $k \in \mathbb{N}$

and hence

$$\sum_{k=1}^{\infty} \mathbb{E}[Y_k] < \infty.$$

Similarly,

$$\operatorname{Var}[Y_k] = \mathbb{E}[Y_k^2] - \mathbb{E}[Y_k]^2 = 0$$

for all $k \in \mathbb{N}$, so

$$\sum_{k=1}^{\infty} \operatorname{Var}[Y_k] \text{ converges.}$$

Therefore, by Kolmogorov's three series theorem, we have that S_n converges a.s.

Choose any 0 < C < 1. Then,

$$\mathbb{P}(|X_k| > \epsilon) = k^{-\beta}$$

for all $k \ge 1$, and hence with $\beta > 1$,

$$\sum_{k=1}^{\infty} \mathbb{P}(|X_k| > \epsilon) \text{ is summable.}$$

Hence, by BC I,

$$\mathbb{P}(|X_k| \le \epsilon \text{ a.a.}) = 1.$$

Since

$$\{|X_k| \le \epsilon \text{ a.a.}\} \subset \{\frac{S_n}{n} \text{ converges}\},$$

we are done.

(ii) Suppose $0 \le \beta < \min(1, 2\alpha + 1)$. Observe that

$$\sigma_k^2 = \operatorname{Var}[X_k] = \mathbb{E}[X_k^2] = k^{2\alpha - \beta}$$

for all $k \in \mathbb{N}$. Then, we have the third moment is 0 and the fourth moment is finite. Analogous to the solution in 2-iii,

$$\phi_{b_n^{-1}S_n}(t) = \exp(\sum_{k=1}^n \frac{k^{2\alpha-\beta}t^2}{2b_n} + \Theta(\frac{n}{b_n^4}))$$

Choose $\{b_n\}$ such that

$$\frac{n}{b_n^4} \to 0 \quad \sum_{k=1}^n k^{2\alpha-\beta} b_n^{-1} \to C$$

for some C > 0. Then, $b_n^{-1} S_n \to_D N(0, C)$. So we are done.

(iii) With the exact same calculation as above, we see that $\phi_{\frac{S_n}{\sqrt{n}}} \to e^{-\frac{t^2}{2}}$. Therefore, we see that it should converge to normal distribution with 0 mean, but with variance 5.

Question 4.

4. Let $\{X_k\}$ be i.i.d. r.v.'s with $\mathbb{E}X_1=0$ and $\mathrm{Var}(X_1)=1$, and let $Y_{n,k}=X_k/\sqrt{n^{-1}\sum_{i=1}^nX_i^2}$

- (i) Show that $Y_{n,1} \Rightarrow X_1$.
- (ii) Show that $n^{-1/2} \sum_{k=1}^{n} Y_{n,k} \Rightarrow \mathcal{N}(0,1)$.
- (iii) Show that if $X_1 \sim \mathcal{N}(0,1)$ then the vector $(Y_{n,1},\ldots,Y_{n,n})$ has the uniform distribution over $\mathcal{S} = \{x \in \mathbb{R}^n : |x| = \sqrt{n}\}$ (i.e., the unique distribution over \mathcal{S} that is invariant under orthogonal transformations), and interpret items (i) and (ii) in this special case.

Solution.

(i) By SLLN,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\rightarrow 1 \text{ almost surely and } (\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})^{\frac{1}{2}}\rightarrow 1 \text{ almost surely}$$

which implies

$$Y_{n,1} = \frac{X_1}{(n^{-1} \sum_{i=1}^n X_i^2)^{\frac{1}{2}}} \to X_1$$
 almost surely.

Since a.s. convergence implies convergence in distribution,

$$Y_{n,1} \rightarrow_D X_1$$

as required.

(ii) By CLT,

$$n^{-\frac{1}{2}} \sum_{k=1}^{n} X_k \to_D N(0,1).$$

Observe that

$$n^{-\frac{1}{2}} \sum_{k=1}^{n} Y_{n,k} - n^{-\frac{1}{2}} \sum_{k=1}^{n} X_{k} = (n^{-\frac{1}{2}}) \sum_{k=1}^{n} X_{k} (\frac{1}{\sqrt{n^{-1} \sum_{i=1}^{n} X_{i}^{2}}} - 1)$$

$$= (\frac{1}{\sqrt{n^{-1} \sum_{i=1}^{n} X_{i}^{2}}} - 1) \sum_{k=1}^{n} \frac{X_{k}}{n^{-\frac{1}{2}}}$$

for all $n \in \mathbb{N}$. By SLLN and CLT,

$$\left(\frac{1}{\sqrt{n^{-1}\sum_{i=1}^{n}X_{i}^{2}}}-1\right) \rightarrow_{p} 0$$
 and $\sum_{k=1}^{n}\frac{X_{k}}{n^{-\frac{1}{2}}} \rightarrow_{D} N(0,1).$

Therefore, by the result from the problem set 4 (1-iii),

$$n^{-\frac{1}{2}} \sum_{k=1}^{n} Y_{n,k} - n^{-\frac{1}{2}} \sum_{k=1}^{n} X_k \to_D 0.$$

Now, by the result from th problem set 4 (1-ii),

$$n^{-\frac{1}{2}} \sum_{k=1}^{n} Y_{n,k} \to_D N(0,1)$$

as required.

(iii) Consider the distribution induced by $(X_1,...,X_n)$, which is a multivariate Gaussian. By symmetry of the multivariate Gaussian, we know that the value of the distribution only depend on the distance away from the origin. Since $(Y_{n,1},...,Y_{n,n})$ are obtained by the normalization, we see that the vector gives distribution that is invariant under orthogonal transformations. The measure is unique, because we can form a product measure with a Lebesgue measure on $(0,\infty)$. and that will give rise to Lebesgue measure on \mathbb{R}^{n+1} by polar decomposition. Hence, for any $A \subset S^n$ measurable, $\mu(A) = m(A \times (0,1))$, where μ is the measure we have on S^n . (i) is one dimensional case. (ii) is the avg value with \sqrt{n} scaling of the uniform distribution, so by CLT goes to N(0,1).