上海大学 计算机学院 《计算机组成原理实验》报告二

姓名	胡才郁	学号	20121034

时间 __ 周二 9-11__ 机位 _6_ 指导教师 __ 周时强__

实验名称:	运算器实验

一、实验目的

- 1. 学习数据处理部件的工作方式控制。
- 2. 学习机器语言程序的运行过程。

二、实验原理

CP226 实验仪的运算器由一片 CPLD 实现,包括 8 种运算功能。运算时先将数据写到寄存器 A 和寄存器 W 中,根据选择的运算方式系统产生运算结果送到直通门 D。

手动方式下,运算功能的通过信号 S1、S2、S3 选择。

S2	S1	S0	功能					
0	0	0	A+W 加					
0	0	1	A-W 减					
0	1	0	A W 或					
0	1	1	A&W 与					
1	0	0	A+W+C 带进位加					
1	0	1	A-W-C 带进位减					
1	1	0	~A A 取反					
1	1	1	A 输出 A					

CP226 中有 7 个寄存器可以向数据总线输出数据,它们是 IN、IA、ST、PC、D、L、R,但在某一特定时刻只能有一个寄存器输出数据。控制信号 X2、X1、X0 决定哪一个寄存器输出数据。如下图所示,模型机采用 3 线-8 线译码器74HC138 实现连接总线的寄存器的选通控制。芯片输入端 A、B、C 接三位输入控制信号 X2、X1、X0,任何时刻只有一个输出端 Yi 为低电平,选通一个寄存器。

输出寄存器选择信号

X2	X1	X0	输出寄存器					
0	0	0	IN_OE	外部输入门				
0	0	1	IA_OE	中断向量				
0	1	0	ST_OE	堆栈寄存器				
0	1	1	PC_OE	PC 寄存器				
1	0	0	D_OE	直通门				
1	0	1	R_OE	右移门				
1	1	0	L_OE	左移门				
1	1	1	没有	「输出				

三、实验内容

- 1. 实验任务一: 计算 07H+6AH 后左移一位的值送 0UT 输出。
- (1) 实验步骤
 - 1、ALU 输入控制信号 x2, x1, x0 为 0 0 0, 选通 IN。
- 2、AEN 输入低电平信号,向 A 寄存器输入数值 07H,00000111B。按下小键盘 STEP 脉冲键, CK 由高变低 (CK 信号呈亮→灭),这时寄存器 A 的黄色选择指示灯亮,表明选择 A 寄存器。放开小键盘的 STEP 键 CK 脉冲由低变高 (即产生上升沿,CK 信号呈灭→亮),数据打入选通的寄存器 W。数据存到 A 寄存器后,调节高电平断开。
- 3、WEN 输入低电平信号,向 W 寄存器输入数值 6AH,01101010B。操作同对 A 寄存器。数据存到 W 寄存器后,调节高电平断开。
 - 4、S2, S1, S0 输入 0 0 0, 选择运算功能 A+W。
- 5、D 寄存器显示运算结果为 71H, L 寄存器中显示为 E2H 为左移一位后的值。
- 6、x2, x1, x0 输入信号 1 1 0, 选中寄存器 L, OUTEN 输入低电平信号, OUT 寄存器有效。

控制电键	К9	K8	K7	K6	K4	К3	K2	K1	K0	K23~K16
被控对象	OUTEN	X2	X1	X0	S2	S1	S0	WEN	AEN	
步骤 2	1	0	0	0				1	0	00000111
步骤 3	1	0	0	0				0	1	01101010
步骤 4					0	0	0			
步骤 6	0	1	1	0				1	1	

(2) 实验现象

D 寄存器显示运算结果为 71H, L 寄存器中显示为 E2H 为左移一位后的值。OUT 是输出寄存器,用来存放输出的数据。OUT 的控制信号有

OUTEN,当 OUTEN 有效时,配合时钟的上升沿跳变的到来,数据总线的数据被写入 OUT。按住 STEP 脉冲键,CK 由高变低,这时寄存器 OUT 的黄色选择指示灯亮,表明选择 OUT 寄存器。放开 STEP 键,CK 由低变高,产生一个上升沿,运算结果被写入 OUT 寄存器。

OUT 上显示结果 E2H。

(3) 数据记录、分析与处理

07H + 6AH = 00000111B + 01101010B = 01110001B = 71H 01110001 左移一位为 11100010B = E2H

(4) 实验结论

实际输出与理论值一致,实验成功。

2. 实验任务二: 把 39H 取反后同 64H 相或的值送入 R2 寄存器。

(1) 实验步骤

- 1、ALU 输入控制信号 x2, x1, x0 为 0 0 0, 选通 IN。
- 2、AEN 输入低电平信号,向 A 寄存器输入数值 39H,00111001B,高电平断开。
- 3、S2, S1, S0 输入 1 1 0, 对 A 寄存器进行取反运算, D 寄存器显示 C6H。
- 4、WEN 输入低电平信号, x2, x1, x0 输入 1 0 0 选中 D, 将 C6H 写入 寄存器 W。高电平断开。
- 5、AEN 输入低电平信号,向 A 寄存器输入数值 64H,01100100B,高电平断开。
 - 6、S2, S1, S0 输入 0 1 0, 选择 A | W 运算, D 寄存器显示 E6H, 11100110B。 7、x2, x1, x0 输入 1 0 0, D 选通。
- 8、SB, SA 输入信号 10 对应选择寄存器 R2, RWR 输入低电平, D 内值传入 R2 寄存器。

控制电键	K14	K13	K12	K8	K7	K6	K4	К3	K2	K1	K0	K23~K16
被控对象	SB	SA	RWR	X2	X1	X0	S2	S1	S0	WEN	AEN	
步骤 2				0	0	0				1	0	00111001
步骤 3							1	1	0			
步骤 4				1	0	0				0	1	
步骤 5				0	0	0				1	0	01100100
步骤 6							0	1	0			
步骤 7&8	1	0	0	1	0	0						

(2) 实验现象

R2 寄存器显示 E6。

(3) 数据记录、分析与处理 00111001B 取反得 11000110B 11000110B 与 01100100B 或运算得 11100110B = E6。

(4) 实验结论

实验所得数据符合,实验成功。

四、建议和体会

即使是简单的指令,在计算机内部也需要分割成数条基础操作完成。而且操作的顺序非常重要。在这次实验中,我们主要学习了运算器的计算,丰富了知识面,通过人工译码,加深对译码器基本工作原理的理解,收获颇丰。了解并验证了运算器计算的过程,同时锻炼了自己的动手能力,很期待接下来的课程。

五、思考题

思考题:如何将R2中的数据送至A寄存器中?

答:调节 SB、SA 为 10 选中 R2 寄存器。将使能端 RWR 接高电平 1,RRD 接低电平 0,调整 R2 寄存器为读状态。AEN 输入低电平,A 寄存器选通。