PRÉPARATION OLYMPIQUE FRANÇAISE DE MATHÉMATIQUES

TEST DU 20 FEVRIER 2018 CORRIGÉ

Exercice 1. Déterminer la valeur maximale de $\sqrt{x} + \sqrt{2y+2} + \sqrt{3z+6}$ lorsque x, y, z sont des nombres réels strictement positifs vérifiant x + y + z = 3.

Solution de l'exercice 1 D'après l'inégalité de Cauchy-Schwarz, on a

$$\sqrt{x}\sqrt{1} + \sqrt{y+1}\sqrt{2} + \sqrt{z+2}\sqrt{3} \leqslant \sqrt{x+y+1+z+2}\sqrt{1+2+3} = 6.$$

L'égalité est atteinte lorsque x=y=z=1. Donc la valeur maximale est 6.

Exercice 2. Soit ABC un triangle acutangle, et soit P un point situé à l'intérieur du triangle ABC. Soit D le milieu du segment [PC], E le point d'intersection des droites (AP) et (BC), et Q le point d'intersection des droites (BP) et (DE). Montrer que, si les angles \widehat{PAC} et \widehat{PCB} sont égaux, alors $\widehat{sin}(\widehat{BCQ}) = \widehat{sin}(\widehat{BAP})$.

<u>Solution de l'exercice 2</u> Soit R le point d'intersection des droites (CQ) et (AP). Il suffit de prouver l'égalité des angles de droites (CB,CQ)=(AB,AR). Pour ce faire, il suffit de prouver que les points B,C,A,R sont cocycliques, c'est-à-dire que (BR,BC)=(AR,RC). Comme (AR,AC)=(CP,CB), il suffit de prouver que (BR,BC)=(CP,CB), donc que les droites (BR) et (PC) sont parallèles.

Pour ce dernier point, on peut utiliser que si $X=(CP)\cap(BR)$ alors (X,D,P,C) est une division harmonique. On peut également se passer de géométrie projective comme suit :

On utilise le théorème de Ceva dans le triangle PCE, puisque les droites (PB), (DE) et (RC) sont concourantes en Q, avec $R \in (PE)$ et $B \in (CE)$. On en déduit que

$$1 = \frac{CB}{EB} \cdot \frac{PD}{CD} \cdot \frac{RE}{RP} = \frac{CB}{EB} \cdot \frac{RE}{RP},$$

c'est-à-dire

$$\frac{RE}{EB} = \frac{RP}{CB}.$$

En appliquant la réciproque du théorème de Thalès aux triangles BRE et CPE, on déduit de cette dernière égalité que les droites (BR) et (PC) sont bien parallèles, ce qui conclut.

Exercice 3. Trouver toutes les valeurs possibles pour f(2018) où f est une fonction de \mathbb{Q} dans \mathbb{R}_+ vérifiant les trois conditions suivantes :

- f(2) = 1/2;
- pour tout rationnel x, si $f(x) \le 1$, alors $f(x+1) \le 1$;
- f(xy) = f(x)f(y) pour tous rationnels x et y.

<u>Solution de l'exercice 3</u> Tout d'abord, l'égalité $1/2 = f(2) = f(1 \times 2) = f(1)f(2) = f(1)/2$ montre que f(1) = 1, et donc que $f(n) \le 1$ pour tout entier naturel non nul n.

Notons de plus que pour tous x,y avec $y \neq 0$ on a $f(y) \neq 0$, et f(x/y) = f(x)/f(y) puisque f(x/y)f(y) = f((x/y)y) = f(x). En particulier, f(1/2) = 2. Enfin, pour tout rationnel x, on a $f(x)^2 = f(x^2) = f(-x)^2$, donc f est paire.

Soit alors k un entier naturel impair, de la forme k=2n+1: on a nécessairement $f(k)\leqslant 1$. On sait également que f(-k/2)>1, puisque 1/2=-k/2+(n+1), donc $f(-2/k)=1/f(-k/2)\leqslant 1$, ce qui implique que $f(\frac{k-2}{k})=f(-\frac{2}{k}+1)\leqslant 1$, par conséquent $f(k-2)\leqslant f(k)$.

Ceci permet de montrer par récurrence que pour tout $k \ge 1$ impair on a $f(k) \ge 1$, et donc f(k) = 1.

On déduit de tout ceci que f(2018) = f(2)f(1009) = 1/2.

Réciproquement, il reste à vérifier qu'une fonction f telle que décrite dans l'énoncé existe bien. Il suffit pour ce faire de constater que la fonction f définie par

$$f: p/q \mapsto \begin{cases} 0 & \text{si } p = 0 \\ 2^{v_2(q) - v_2(p)} & \text{si } p \neq 0, \end{cases}$$

où $v_2(n)$ désigne la valuation 2-adique de l'entier n, satisfait bien les conditions de l'énoncé.