7^aLista de exercícios de Circuitos Digitais Turma(s): 06655

Memória

- ① Um CI de memória é especificado como sendo $2K \times 8$. Quantas palavras podem ser armazenadas neste CI ? Qual o tamanho da palavra ? Qual o número total de bits da memória ?
- ② O que é memória ROM ? o que é memória RAM. Diferencie RAM estática de RAM dinâmica. O que é memória EPROM e EEPROM ?
- 3 Descreva os pinos necessários para o funcionamento de uma memória RAM estática
- **4** A figura abaixo apresenta um barramento de endereço de 8 bits A0 A7 e barramento de dados de 4 bits D0 D3. Desejase utilizar CIs de memória RAM estática de 256x4 para construir uma memória RAM de 256x8. Desenhe os CIs de memória e mostre como os mesmos devem ser ligados ao barramento.

Figure 1: Barramento de 8 bits da endereço e de 4 bits para dados

(5) A figura abaixo apresenta um barramento de endereço de 8 bits A0-A7 e barramento de dados de 8 bits D0-D7. Deseja-se utilizar CIs de memória de 128x8 para construir uma memória de 256x8. Desenhe os CIs de memória e mostre como os mesmos devem ser ligados ao barramento e quais são os circuitos ou portas lógicas necessários para obter a solução do problema.

A0			
A2			
A3			
A4			
A7			
D0			
20			
D2			
D3-			
D4			

Figure 2: Barramento de 8 bits da endereço e de 8 bits para dados

⑥ A figura abaixo apresenta um diagrama de endereços de um certo computador. Existem diferentes faixas de endereços e nestas faixas de encdereços apenas um CHIP de memória está sendo acessado. Desenhos os diversos chips de memória envolvidos e conecte os CS de cada um destes para que funcionem apenas dentro da faixa de endereços como na figura. Represente a quantidade de linhas para o barramento de dados e de endereços e todos os circuitos necessários para ativar os pinos de CS de cada um dos chips de memória.

Figure 3: Memória de um computador X

Figure 4: Diagrama interno de uma PROM com fusíveis

Endereco 0: 1 1 1 1 1 Endereco 1: 1 0 1 0 Endereco 2: 1 1 0 0 Endereco 3: 0 0 1 1

® O CHIP 2125A é uma RAM estática de 1Kx1 de capacidade com entrada de dados independe da saída de dados. (Diagrama abaixo). Mostre como conectar esta memória para formar um módulo de 1Kx8.

Figure 5: Chip RAM 2125

9 A figura abaixo mostra um programador de EPROM manual, explique como este funciona.

Figure 6: Programador de Eprom

① Outra aplicação de uma ROM é a geração de sinais de temporização e controle. A figura abaixo mostra uma ROM com um gerador de enderecos. Assumindo que o conteudo da ROM é o indicado na tabela abaixo, desenhe o diagrama de ondas em cada saída da ROM.

Figure 7: Outro uso para ROM

	Dados	
Palavra	A ₃ A ₂ A ₁ A ₀	$D_7 - D_0$
0	0	DE
1	1	3A
2	2	85
3	3	AF
4	4	19
5	5	7B
6	6	00
7	7	ED
8	8	3C
9	9	FF
10	Α	B8
11	В	C7
12	C	27
13	D	6A
14	E	D2
15	F	5B

Figure 8: Conteúdo da ROM

⁽¹¹⁾ SIMULAÇÃO: Utilizando o Proteus ISIS, teste o funcionamento do CHIP de memória ram estática 62256. Use chaves ou mesmo um microcontrolador para setar valores nos barramentos de dados e de endereços. Crie uma operação de escrita e de leitura.