Tópicos de Matemática Discreta

folha 9 -

4. Relações binárias

- 4.1. Para cada uma das relações seguintes indique o domínio e imagem.
 - (a) $S \notin \text{a relação de } A = \{0, 1, 2, 3, 4, 5\} \text{ para } B = \{1, 2, 3\} \text{ dada por } S = \{(0, 1), (1, 1), (2, 2), (3, 2), (4, 3)\}.$
 - (b) R é a relação em \mathbb{R} dada por $R = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$.
 - (c) | é a relação "divide" em $\{2, 3, 4, 6, 9, 10, 12, 20\}$ definida por $a \mid b \text{ se } \exists_{n \in \mathbb{N}} b = na$.
- **4.2.** Seja $A = \{2, 4, 6, 8, 10\}$. Considere as seguintes relações em A:

$$R = \{(2,2), (2,4), (2,6), (10,8)\}, \qquad S = \{(10,2), (10,8)\}, \qquad T = \{(6,2), (6,4), (8,10)\}.$$

Determine

(a)
$$R^{-1}$$

(d)
$$T^{-1} \cap S$$

(g)
$$S^{-1} \circ S$$

(d)
$$T^{-1} \cap S$$
 (g) $S^{-1} \circ S$ (j) $T^{-1} \circ S^{-1}$

(b)
$$R^{-1} \cup S^{-1}$$

(e)
$$S \circ T$$

(h)
$$(S \circ T)^{-1}$$

(d)
$$T \cap S$$
 (g) $S \cap S$ (J) $T \cap S \cap S$ (e) $S \circ T$ (h) $(S \circ T)^{-1}$ (k) $(R \circ S) \circ T$ (f) $R \circ T$ (i) $S^{-1} \circ T^{-1}$ (l) $R \circ (S \circ T)$

(c)
$$T \setminus S^{-1}$$

(f)
$$R \circ T$$

(i)
$$S^{-1} \circ T^{-}$$

(1)
$$R \circ (S \circ T)$$

4.3. Sejam $A = \{1, 2, 3\}$ e $B = \{x, y, w, z\}$. Considere as relações binárias R, de A em B, e S, de B em A:

$$R = \{(1, x), (1, z), (2, y), (2, z)\}$$

$$S = \{(x, 1), (x, 3), (y, 2), (w, 2), (z, 3)\}.$$

Sejam $T = S \circ R$ e $U = R \circ S$.

- (a) Determine R^{-1} , S^{-1} , T, $T \circ T$, $U \in U \circ U$.
- (b) Verifique que $T^{-1} = R^{-1} \circ S^{-1}$.
- (c) Indique o domínio e a imagem de R.
- (d) Indique quantas relações binárias de A em B existem.
- (e) Indique todas as relações binárias de A em B cujo domínio é $\{2,3\}$ e cuja imagem é $\{x,z\}$.
- **4.4.** Sejam $A = \{1, 2, 3, 4\}$ e $B = \{3, 4, 5, 6\}$. Dê exemplo de, ou justifique que não existe:
 - (a) uma relação binária R de A em B tal que $R = R^{-1}$;
- (b) relações binárias R e S em A tais que $R \circ S = S \circ R$ e $R \neq S$;
- (c) uma relação binária R em A tal que $\mathrm{id}_A \subseteq R$ e $\mathrm{id}_A \not\subseteq R^{-1}$;
- (d) uma relação binária R de A em B tal que $Dom(R) = \emptyset$;
- (e) relações binárias R de A em B e S de B em A tais que $R \circ S = \mathrm{id}_B$ e $S \circ R = \mathrm{id}_A$.

Tópicos de Matemática Discreta

folha 10 -

4.5. Considere o conjunto $A = \{1, 2, 3, 4\}$ e as seguintes relações em A:

$$R_1 = \{(1,4), (2,2), (2,3), (3,2), (4,1)\},$$
 $R_2 = \{(2,3)\},$ $R_3 = \{(1,2), (2,3), (3,2), (1,3), (2,2), (3,3)\},$ $R_4 = \{(a,a) \mid a \in A\} = \mathrm{id}_A.$

Diga, justificando, se cada uma das relações apresentadas é ou não uma relação

- (a) reflexiva;
- (b) simétrica;
- (c) antissimétrica;
- (d) transitiva.
- **4.6.** Considere o conjunto $A = \{a, b, c\}$. Determine todas as relações de equivalência em A e, para cada uma, indique o conjunto quociente.
- **4.7.** Seja $A = \{-3, -1, 0, 1, 2, 3\}$ e considere a relação de equivalência R em A definida por x R y se e só se $x^2 = y^2$. Indique todos os elementos da classe $[-3]_R$ e determine o conjunto quociente A/R.
- **4.8.** Seja $A = \{1, 2, 4, 6, 7, 9\}$ e considere a relação de equivalência \sim em A definida por $x \sim y$ se e só se x + y = 2n, para algum $n \in \mathbb{N}$. Indique todos os elementos da classe $[2]_{\sim}$ e determine o conjunto quociente A/\sim .
- **4.9.** Seja $A = \{1, 2, 3, 4, 5\}$. Considere as seguintes relações de equivalência em A: R é a menor relaçõe de equivalência em A tal que $(1, 2), (1, 3), (4, 5) \in R$ e S é a relaçõe de equivalência em A cujas classes de equivalência são: $\{1, 3\}, \{4\}$ e $\{2, 5\}$. Determine R, indique todos os elementos da classe $[2]_R$ e indique, se existirem, $a, b \in A$ tais que aRb e aSb.
- **4.10.** Considere a relação R em $\mathbb{R} \times \mathbb{R}$ definida por (x,y) R(z,w) se e só se y=w. Verifique que R é uma relação de equivalência em $\mathbb{R} \times \mathbb{R}$ e descreva a classe de equivalência $[(2,3)]_R$.
- **4.11.** Seja $A = \{2, 3, 4, 6, 7\}$ e sejam

$$\begin{split} \Pi_1 &= \left\{\left\{2,4\right\}, \left\{3\right\}, \left\{4,6\right\}, \left\{3,6,7\right\}\right\}, & \Pi_2 &= \left\{\left\{2,4,6\right\}, \left\{3,7\right\}\right\}, \\ \Pi_3 &= \left\{\left\{2\right\}, \left\{3,4,7\right\}\right\}, & \Pi_4 &= \left\{\left\{2\right\}, \left\{3\right\}, \left\{4\right\}, \left\{6\right\}, \left\{7\right\}\right\}, \\ \Pi_5 &= \left\{\left\{2\right\}, \emptyset, \left\{3,4\right\}, \left\{6,7\right\}\right\}, & \Pi_6 &= \left\{\left\{2,6\right\}, \left\{3,7\right\}, \left\{4\right\}\right\}. \end{split}$$

- (a) Diga, justificando, quais dos conjuntos Π_i ($1 \le j \le 6$) são partições de A.
- (b) Para os conjuntos Π_j $(1 \le j \le 6)$ que são partições, determine \mathcal{R}_{Π_j} e indique $[7]_{\mathcal{R}_{\Pi_j}}$.

Tópicos de Matemática Discreta

folha 11

4.12. Seja $A = \{a, b\}$. Indique todas as relações de ordem parcial em A e apresente os correspondentes diagramas de Hasse.

4.13. Seja $A=\{1,2,3,4\}$ e sejam $\rho_1,\,\rho_2,\,\rho_3$ e ρ_4 as seguintes relações em A:

$$\rho_1 = id_A \cup \{(4,1), (4,2)\}, \qquad \rho_2 = id_A \cup \{(1,4), (4,2), (2,4)\},
\rho_3 = id_A, \qquad \qquad \rho_4 = id_A \cup \{(2,3), (2,1), (3,1)\}.$$

Indique se cada uma destas relações é ou não uma ordem parcial e, para cada ordem parcial, apresente o correspondente diagrama de Hasse.

- **4.14.** Mostre que os seguintes pares são cpo:
 - (a) $(\mathcal{P}(A), \subseteq)$, onde $A \in \text{um conjunto}$;
 - (b) $(\mathbb{N}_0, |)$, onde | é a relação "divide" definida por $x|y \leftrightarrow (\exists_{k \in \mathbb{N}_0} \ y = kx)$.
- 4.15. Construa diagramas de Hasse para os seguintes cpo:
 - (a) $(\mathcal{P}(A), \subseteq)$, sendo $A = \{1, 2\}$;
- (b) (A, |), sendo $A = \{2, 3, 4, 6, 10, 12, 20\}$ e | a relação dada por $x | y \leftrightarrow (\exists_{k \in \mathbb{N}_0} \ y = kx)$.
- **4.16.** Sejam $A = \{1, 2, 3, 4, 5, 6, 7, 8\}, X = \{1, 2, 6\}$ e $Y = \{2, 3, 4, 8\}$. Considere o cpo (A, \preceq) com o seguinte diagrama de Hasse:

Determine para A, X e Y, caso existam, os majorantes e os minorantes, o supremo e o ínfimo, os elementos maximais e minimais e o máximo e o mínimo. O cpo (A, \preceq) é um reticulado?

- **4.17.** Sejam (A, \leq) um c
po e $X \subseteq A$. Diga, justificando, se é verdadeira ou falsa cada uma das seguintes proposições:
 - (a) Se X tem um elemento maximal então X tem elemento máximo;
 - (b) Se X tem elemento máximo então X tem um elemento maximal;
 - (c) Se existe $\sup(X)$ então X tem um elemento maximal;
 - (d) Se X tem um elemento maximal então existe $\sup(X)$.
- **4.18.** Considere o cpo $(\mathbb{N}_0, |)$, definido no exercício 4.14.(b).
 - (a) Mostre que $(\mathbb{N}_0, |)$ não é uma cadeia.
 - (b) Diga, justificando, se $(\mathbb{N}_0, |)$ tem elemento máximo ou elemento mínimo.
 - (c) Mostre que $(\mathbb{N}_0, |)$ é um reticulado, indicando $\sup\{a, b\}$ e $\inf\{a, b\}$ para cada $a, b \in \mathbb{N}_0$.