

ถ้งดักนิวตริโน

การทดสอบความสามารถในการแก้ปัญหาโดยการเขียนโปรแกรม

การทดสอบวันที่ 16 ธ.ค. 2563

ในห้องทดลองใต้ดินขนาดมหาศาล คุณได้สร้างถังดักอนุภาคนิวตริโนที่จะร่วงหล่นมาจากอวกาศเอาไว้ N ถัง ถังแต่ละถัง จะมีลักษณะเป็นรูปสี่เหลี่ยมจัสตุรัส โดยมีการวางถังให้เส้นแบ่งกลางถังเรียงตรงกันเป็นเส้นตรง ถังแต่ละใบอาจจะวาง ซ้อนกันได้ แต่จะไม่มีกรณีที่ถังวางเหลื่อมกัน ในการวางซ้อนกันถังใบเล็กจะอยู่ด้านบนเสมอ ถังแต่ละถังระบุตำแหน่ง เป็นพิกัดตามแนวแกน x ที่มากที่สุดและน้อยที่สุดตามลำดับ กล่าวคือถังที่ i จะระบุตำแหน่งด้วยค่า A_i และ B_i แทน พิกัดแกน x ที่มากที่สุดและน้อยที่สุดของถังดังกล่าว (นั่นคือ A_i < B_i) ไม่มีถังสองใบใด ๆ ที่มีพิกัดเท่ากันเลย นอกจาก นี้ เนื่องจากเราทราบว่าไม่มีถังเหลื่อมกัน เราจึงทราบว่าจะไม่มีกรณีของถัง i และ j ที่ A_i < A_i แต่ B_i < B_i ด้วย

ด้านล่างแสดงตัวอย่างของถังดักนิวตริโนจำนวน 7 ถัง ในการระบุพิกัดเราจะเรียงหมายเลขถังด้วยค่า **A**, จาก น้อยไปหามาก

ถังทั้ง 7 ระบุได้ดังนี้

ถังใบที่ i	1	2	3	4	5	6	7
A_{i}	1	2	6	7	11	13	17
B _i	5	3	16	10	15	14	20

สังเกตว่าเนื่องจากถังนั้นวางซ้อนกันอยู่ ถ้าคุณขนถังหมายเลข 3 จะเหมือนกับว่าคุณได้ขนถังหมายเลข 3, 4, 5, และ 6 ไปพร้อมกัน

ในบรรดาถัง N ใบ มีถังจำนวน M ใบที่มีร่องรอยเหมือนว่าจะมีการถูกชนด้วยอนุภาคที่คุณตามหา อย่างไร
ก็ตาม การขนถังออกไปจากห้องทดลองทำได้ยาก คุณอยากจะขนถังออกไปให้น้อยถังที่สุด (โดยถือว่าถ้าขนถังซ้อน ๆ
กันออกไป ให้นับว่าเป็นถังเดียว) และในกรณีที่ขนจำนวนถังเท่า ๆ กัน คุณต้องการขนให้ถังที่ไม่เกี่ยวข้องถูกนำออกไป ด้วยน้อยที่สุด (ดูตัวอย่าง) ให้คุณเขียนโปรแกรมคำนวณว่าจะต้องขนถังน้อยที่สุดกี่ถังถึงจะครอบคลุมถัง M ถังนี้ และ ต้องขนถังใดบ้าง

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็ม **N** และ **M** (1 <= **N** <= 300; 1 <= **M** <= **N**)

จากนั้นอีก N บรรทัดระบุข้อมูลพิกัดของถัง กล่าวคือ บรรทัดที่ 1+i ระบุจำนวนเต็ม ${\bf A}_i$ และ ${\bf B}_i$ แทนพิกัดมาก ที่สุดและน้อยที่สุดบนแกน x ของถังที่ i (${\bf A}_i$ <= 100,000; ${\bf B}_i$ <= 100,000)

บรรทัดที่ 2 + N จะระบุจำนวนเต็ม M จำนวน เรียงจากน้อยไปหามาก แทนหมายเลขของถังที่คุณต้องการขน ออกจากห้องทดลอง (โดยจะขนซ้อน ๆ กันไปก็ได้)

ข้อมูลส่งออก

มีสองบรรทัด บรรทัดแรกระบุจำนวนถังที่น้อยที่สุดที่ต้องขน บรรทัดที่ 2 ระบุหมายเลขถังที่ต้องขนไป เรียงลำดับจาก น้อยไปหามาก

เงื่อนไขการทำงาน โปรแกรมต้องทำงานภายใน 1 วินาที ใช้หน่วยความจำไม่เกิน 256 MB

ตัวอย่าง 1

Input	Output
7 3	2
1 5	2 3
2 3	
6 16	
7 10	
11 15	
13 14	
17 20	
2 4 6	

คำอธิบาย: หยิบถังที่ 2 และ 3 (ถังที่ 3 รวมถังที่ 4 และ 6 อยู่ด้วย) สังเหตว่า การหยิบถัง 1 และ 3 จะได้ถังครบ แต่นำ ถังที่ไม่เกี่ยวข้องออกจากห้องทดลองมากเกินไป

ตัวอย่าง 2

Input	Output
7 3	2
1 10	3 6
2 9	
3 8	
4 7	
5 6	
11 14	
12 13	
3 5 6	

คำอธิบาย: หยิบถังที่ 3 (รวมถังที่ 3 และ 5) และ 6

ตัวอย่าง 3

Input	Output
6 3	1
1 20	2
2 10	
3 4	
5 6	
7 8	
30 40	
3 4 5	

คำอธิบาย: หยิบถังที่ 2 (ได้ถังที่ 3, 4 และ 5) ถ้าหยิบถังที่ 1 แม้จะได้ครบเหมือนกัน แต่นำถังออกไปมากเกิน (เพราะว่า หยิบแค่ถังที่ 2 ก็เพียงพอ)