

ADA063761

AFGL-TR-78-0289
AIR FORCE SURVEYS IN GEOPHYSICS, NO. 403

(12)

LEVEL

Spectral Radiance of Snow and Clouds in the Near Infrared Spectral Region

FRANCIS R. VALOVIN

DDC FILE COPY

17 November 1978

Approved for public release; distribution unlimited.

OPTICAL PHYSICS DIVISION PROJECT 7670
AIR FORCE GEOPHYSICS LABORATORY
HANSCOM AFB, MASSACHUSETTS 01731

AIR FORCE SYSTEMS COMMAND, USAF

79 03 22 036

This report has been reviewed by the ESD Information Office (OI) and is
releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and
is approved for publication.

FOR THE COMMANDER

John Howard
Chief Scientist

Qualified requestors may obtain additional copies from the
Defense Documentation Center. All others should apply to the
National Technical Information Service.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFGL-TR-78-0289, AFGL-AFSG-103		2. GOVT ACCORDING TO RECIPIENT'S CATALOG NUMBER
3. TITLE (If different from Report Number) SPECTRAL RADIANCE OF SNOW AND CLOUDS IN THE NEAR INFRARED SPECTRAL REGION.		4. TYPE OF REPORT & PERIOD COVERED Scientific Final
5. AUTHOR(s) Francis R. Valovcin		6. PERFORMING ORGANIZATION REPORT NUMBER AFSG No. 403
7. PERFORMING ORGANIZATION NAME AND ADDRESS Air Force Geophysics Laboratory (OP) Hanscom AFB Massachusetts 01731		8. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62101 F 76701302
9. CONTROLLING OFFICE NAME AND ADDRESS Air Force Geophysics Laboratory (OP) Hanscom AFB, Massachusetts 01731		10. REPORT DATE 17 November 1978
11. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		12. NUMBER OF PAGES 46
		13. SECURITY CLASS. (of this report) Unclassified
		14. DECLASSIFICATION/DOWNGRADING SCHEDULE
15. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
17. SUPPLEMENTARY NOTES		
18. KEY WORDS (Continue on reverse side if necessary and identify by block number) Snow Visible spectral region Clouds Near infrared Radiance Reflectance		
19. ABSTRACT (Continue on reverse side if necessary and identify by block number) The near infrared spectral radiance measurements of snow and cirrus and cumulus cloud backgrounds taken by the Air Force Geophysics Laboratory's flying laboratory are evaluated. From the analysis of the 124 spectra obtained, the spectral radiances or reflectance characteristics of snow and cirrus and cumulus clouds between 5500 and 7000/cm ⁻¹ (1.82-1.43 μm) were determined. Snow/cloud discrimination can be made by utilizing a sensor in the 5500 to 7000/cm ⁻¹ spectral region. Based on the analysis of these data, certain snow/cloud design parameters were identified; that is, slope of the spectral radiance,		

DD FORM 1 JAN 73 EDITION OF 1 NOV 68 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

79 08 22 036
409518 13

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. (Cont)

absolute spectral and/or total radiance, and the location and value of the maximum spectral radiance for the snow and cirrus and cumulus cloud backgrounds. Finally, specific recommendations are made for an optimal operational snow/cloud discrimination radiometer.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Preface

The author wishes to acknowledge the participation and assistance of Brian P. Sandford and the technical crew members on the AFGL KC-135 who flew the various missions and collected the data, and to thank Mr. C. Elam of the USAF Environmental Technical Applications Center (ETAC) for supplying the ground truth data in the formats of 3D NEPH, radiosonde, and surface observations, and Mr. Vincent Falcone for introducing me to the research subject. Also, special thanks to Dr. Robert McClatchey who critically reviewed the manuscript, Ed Lefebvre for his invaluable programming skills, and Kathy Lowe for typing the manuscript.

PROCEEDING PAGE BLANK-NOT FILMED

Contents

1. INTRODUCTION	9
2. AIRCRAFT MEASUREMENTS	10
3. SPECTRAL RADIANCE OF BACKGROUNDS	11
3.1 Snow Backgrounds	11
3.2 Cirrus Backgrounds	14
3.3 Cumulus Backgrounds	18
3.4 Comparison of Backgrounds	21
4. SNOW/CLOUD DISCRIMINATION SENSOR DESIGN PARAMETERS	22
4.1 Absolute Spectral Radiance	22
4.1.1 Averages	23
4.1.2 Ratios	26
4.2 Maximum Spectral Radiance	28
4.3 Location of the Maximum Spectral Radiance	29
4.4 Slope of the Spectral Radiance	30
5. RECOMMENDATIONS	31
5.1 Narrow Spectral Band Radiometer-Imager	32
5.2 Three-Detector, Narrow-Spectral-Band, Near-IR Radiometer	33
5.3 Multispectral Radiometer	34
5.4 Conclusions	34
APPENDIX A: Mission Parameters	35
APPENDIX B: Spectral Radiance Normalized and Ratios	39

Illustrations

1. Aircraft Aspect Angles	11
2. Spectral Radiance Over Snow, Quarterly Means	12
3. Spectral Radiance Normalized Over Snow—All Spectra, N = 56	13
4. Snow— $\bar{X} \pm \Sigma$ —All Spectra, N = 56	14
5. Maximum Spectral Radiance Measured Over Snow	15
6. Spectral Radiance Over Cirrus, Quarterly Means	16
7. Spectral Radiance Normalized Over Cirrus—All Spectra, N = 32	16
8. Cirrus— $\bar{X} \pm \Sigma$ —All Spectra, N = 32	17
9. Maximum Spectral Radiance Measured Over Cirrus	18
10. Spectral Radiance Over Cumulus, Quarterly Means	19
11. Spectral Radiance Normalized—Cumulus—All Spectra, N = 36	20
12. Cumulus $\bar{X} \pm \Sigma$ —All Spectra, N = 36	20
13. Maximum Spectral Radiance Measured Over Cumulus	21
14. Spectral Radiance Normalized—All—Cumulus, Cirrus, and Snow	22
15. Spectral Radiance Averaged 50 to 500 cm^{-1} —Cumulus	23
16. Spectral Radiance Averaged 50 to 500 cm^{-1} —Cirrus	24
17. Spectral Radiance Averaged 50 to 500 cm^{-1} —Snow	24
18. Ratio Cumulus/Cirrus	27
19. Ratio Cumulus/Snow	27
20. Maximum Spectral Radiance for Cumulus, Cirrus, and Snow	28
21. Location of the Maximum Spectral Radiance for Cumulus, Cirrus, and Snow	29
22. Ratio of Radiance at 5500–5615 cm^{-1} to Radiance at 5715–5825 cm^{-1}	30
23. Ratio of Radiance at 5715–5825 cm^{-1} to Radiance at 6060–6125 cm^{-1}	31

Tables

1. Maximum Mean Spectral Radiance and its Location for Snow—Quarterly Means	12
2. Maximum Mean Spectral Radiance and its Location for Cirrus—Quarterly Means	15
3. Maximum Mean Spectral Radiance and its Location for Cumulus—Quarterly Means	19
4. Spectral Radiance of Snow, Cirrus, and Cumulus Averaged Over 50 cm^{-1} Wavenumbers	25
5. Maximum Spectral Radiance	29

Tables

6. Slope of Spectral Radiance	31
7. Radiometer Bandwidth vs Optimum Spectral Band	32
8. Three-Way Thresholding	33
A1. Mission Parameters for Snow, N = 56	36
A2. Mission Parameters for Cirrus, N = 32	37
A3. Mission Parameters for Cumulus, N = 36	38
B1. Spectral Radiance Normalized and Ratios—All	40

PREVIOUS PAGE BLANK-NOT FILMED

Spectral Radiance of Snow and Clouds in the Near Infrared Spectral Region

1. INTRODUCTION

The purpose of this investigation was to evaluate the near infrared spectral radiance measurements of snow and cloud backgrounds taken by the Air Force Geophysics Laboratory's flying laboratory (NKC-135 aircraft) so that a recommendation could be made for a sensor on the Defense Meteorological Satellite Program (DMSP) satellite to discriminate snow from clouds. Automated snow forecasts are a requirement of the Air Weather Service. At the present time, cloud and/or snow analyses are limited due to the difficulty of discriminating between snow and clouds from satellite imagery. An operational snow/cloud discriminating sensor on-board the DMSP satellite could eliminate these limitations and provide unique real-time data for improved analyses and forecasts.

The spectral reflectance of snow in the near infrared has been reported by O'Brien and Munis.¹ The lowest reflectance values of snow occur around 6667 and 5000 cm^{-1} (1.5 and 2.0 μm). Studies of the near infrared reflectance properties

Received for publication 17 November 1978

1. O'Brien, H.W., and Munis, R.H. (1975) Red and Near Infrared Spectral Reflectance of Snow, ERP No. 332, US Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 18 pp.

of snow using Skylab S192 data (Band 11) have been reported.^{2,3} Again, the low reflectance of snow in the near infrared (Band 11 of the Skylab S192 Experiment) $6452-5714 \text{ cm}^{-1}$ ($1.55-1.75 \mu\text{m}$) is a potential feature in discriminating clouds from snow.

2. AIRCRAFT MEASUREMENTS

In September 1976 and April 1977, the Air Force Geophysics Laboratory (AFGL) collected signatures of snow and cloud backgrounds in the near infrared. The spectral measurements were made with a Michelson interferometer with a field-of-view of 1.6° , full angle at a spectral resolution of 3.8 cm^{-1} in the 4000 to 3300 cm^{-1} (2.5 to $1.2 \mu\text{m}$) region. This instrument is one of many used by AFGL on the NKC-135A aircraft, which is an infrared flying laboratory. A full description of the aircraft, instrumentation, and background measurements was reported by Sandford et al.⁴

The various backgrounds were measured at a 45° depression angle from the aircraft to record the snow or cloud background below the aircraft. When the selected snow or cloud measurement area is reached, the aircraft enters into a 45° right bank that is held for a full 360° orbit. Thus, the background is observed over a full 360° range of aspect angles.

The scan time for each interferogram from the interferometer is 1 sec, and the approximate average of 15 interferograms is used in the data analysis. The aspect angle changes 2.4° per sec so that the snow or cloud backgrounds are averages over sectors of 36° centered at the main aspect angles of 0° , 90° , 180° , and 270° . The four main aspect angles are defined and shown in Figure 1.

The Scientist-Director of the flight was solely responsible for choosing the target background and making notes pertinent to the run. A 16 mm camera coaligned with the interferometer was used to record the background scene. Relevant meteorological data such as 3D NEPH, radiosonde, and surface observations were obtained from the USAF Environmental Technical Applications Center (ETAC) for ground/cloud truth verification.

-
2. Barnes, J. C., and Bowley, C. J. (1977) Study of Near-Infrared Snow Reflectance Using Skylab S192 Multispectral Scanner Data, ERT Document No. 1474F, Final Report, Contract No. AA-635201, Environmental Research & Technology Inc., Concord, MA, 48 pp.
 3. Valovein, F. R. (1976) Snow/Cloud Discrimination, AFGL-TR-76-0174, 16 pp.
 4. Sandford, B. P., Schummers, J. H., Rex, J. D., Shumsky, J., Huppi, R. J., and Sluder, R. B. (1976) Aircraft Signatures in the Infrared 1.2 to 5.5 Micron Region, Volume I Instrumentation, Volume II Background Measurements, AFGL-TR-76-0133 (I) 89 pp and (II) 72 pp.

Figure 1. Aircraft Aspect Angles

A total of 124 spectra measurements (Snow 56, Cirrus 32, and Cumulus 36) were collected by the AFGL aircraft and analyzed at AFGL/OPI. Pertinent parameters of the background runs of the various spectra are summarized in Appendix A.

All spectra in this study are presented in absolute spectral radiance (N_ν), as seen from the aircraft, in units of watts per cm^2 per steradian per wavenumber ($\text{W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$). The absolute spectral radiance (N_ν) can be converted to units of (N_μ), watts per cm^2 per steradian per micron ($\text{W cm}^{-2} \text{sr}^{-1} \mu\text{m}^{-1}$), as follows:

$$N_\mu = N_\nu \cdot \nu^2 \cdot 10^{-4}$$

where ν is wavenumber in cm^{-1} . In the majority of illustrations, the abscissa scale is given in wavenumbers and microns. In addition, each data point represents a spectral resolution of 1.9287 cm^{-1} averaged over a 21.2157 cm^{-1} interval.

3. SPECTRAL RADIANCE OF BACKGROUNDS

3.1 Snow Backgrounds

The absolute spectral radiance of snow was measured with the AFGL aircraft altitudes ranging from 26,000 to 33,000 feet. A total of 56 snow spectra were obtained in September 1976 and April 1977. In September 1976, the measurements were obtained in the states of Oregon, Washington, and Alaska. In April 1977, measurements were obtained in the Province of Quebec, Canada.

Each snow spectrum was analyzed individually and categorized according to the total integrated amount of measured spectral radiance between 5500 and 7000 cm^{-1}

(1.82-1.43 μm). These values of spectral radiance were arranged in increasing order, and the lowest-(highest) 25 percent of the snow spectra were designated as the 1st Quarter-(4th Quarter). Each quarter represents the sum of 14 snow spectra. The absolute spectral radiance of snow for the four quarters as a function of wave-number is shown in Figure 2.

The maximum mean spectral radiance and its location for snow backgrounds for the four quarters is given in Table 1.

Figure 2. Spectral Radiance Over Snow, Quarterly Means

Table 1. Maximum Mean Spectral Radiance and its Location for Snow—Quarterly Means

Quarter	Value of Maximum ($\text{W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$)	Location	
		Wavenumber (cm^{-1})	Wavelength (μm)
1st	1.959×10^{-8}	5713	1.75
2nd	4.112×10^{-8}	5713	1.75
3rd	6.297×10^{-8}	5713	1.75
4th	17.224×10^{-8}	5825	1.72

Although the location of the maximum value of the 4th Quarter mean is technically at 5825 cm^{-1} , the value at 5713 cm^{-1} is 17.208 or 99.9 percent of the maximum. The spectral radiance normalized to the maximum mean for all 56 snow spectra as a function of wavenumber is shown in Figure 3. The value of the maximum mean spectral radiance (ordinate = 1) is $7.394 \times 10^{-8} \text{ W cm}^{-2} \text{ sr}^{-1} (\text{cm}^{-1})^{-1}$ and is located at 5713 cm^{-1} . Presentation of the data in this format allows one to compare the percentage of the maximum mean spectral radiance as a function of wavenumber. The filter curve between 5980 and 6780 cm^{-1} represents a preliminary DMSP snow/cloud discrimination sensor design that was evaluated on the aircraft-collected spectra.

Another feature that may be seen from Figure 3 is the slope of the reflected radiance as a function of wavenumber for snow spectra. It is large and positive between 5500 and 5713 cm^{-1} , and large and negative between 5825 and 6300 cm^{-1} .

Figure 3. Spectral Radiance Normalized Over
Snow-All Spectra, $N = 53$

The mean (\bar{X}) and the standard deviation (σ) as a function of wavenumber for all the snow spectra are shown in Figure 4. The ordinate (0-25) was maximized for the snow background spectra. The negative values of the mean minus sigma ($\bar{X} - \sigma$) in

Figure 4 is an indication that the deviations among the snow spectra in the spectral interval 6100 to 7000 cm⁻¹ are large. Also, it indicates that the sample N = 56 is not large enough to be completely and statistically representative of snow backgrounds. For example, at 6612 cm⁻¹, 51 snow spectra have a spectral radiance value of less than 10×10^{-8} , and the remaining 5 snow spectra have values between 10 and 25×10^{-8} .

Figure 4. Snow- $\bar{X} \pm \text{Sigma}$ -All Spectra, N = 56

The maximum spectral radiance for snow (Figure 5) was measured by the AFGL aircraft on 25 April 1977 on the west bank of Lake Crescent in Quebec, Canada, on Mission 703, Run 5.

3.2 Cirrus Backgrounds

The majority of the cirrus background measurements were made at altitudes ranging from 31,000 to 39,000 feet. The separation between the aircraft and the tops of the cirrus clouds was from 200 to 2000 feet. The optical thicknesses of the cirrus clouds ranged from semi-transparent to opaque. On some occasions, lower alto-cumulus or alto-stratus were visible through the cirrus. A total of 32 cirrus spectra were obtained by the AFGL aircraft.

Each cirrus spectrum was analyzed individually and categorized according to

the total integrated amount of measured spectral radiance between 5500 and 7000 cm^{-1} . The absolute spectral radiances for the four quarters, as previously defined for the cirrus background as a function of wavenumber, are shown in Figure 6. Each quarter represents the mean of eight cirrus spectra. Note that the ordinate scale (0-100) for cirrus clouds is four times that of the ordinate scale for snow in Figure 2.

The maximum mean spectral radiance and its location for cirrus backgrounds for each of the four quarters is given in Table 2.

Figure 5. Maximum Spectral Radiance Measured Over Snow

Table 2. Maximum Mean Spectral Radiance and its Location for Cirrus—Quarterly Means

Quarter	Value of Maximum ($\text{W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$)	Location	
		Wavenumber cm^{-1}	Wavelength (μm)
1st	5.902×10^{-8}	5938	1.68
2nd	23.892×10^{-8}	7000	1.43
3rd	43.679×10^{-8}	5825	1.72
4th	67.315×10^{-8}	5825	1.72

Figure 6. Spectral Radiance Over Cirrus, Quarterly Means

Figure 7. Spectral Radiance Normalized Over Cirrus—All Spectra, $N = 32$

The spectral radiance normalized to the maximum mean for all 32 cirrus spectra as a function of wavenumber is shown in Figure 7. The value of the maximum mean spectral radiance (ordinate = 1) is $34.687 \times 10^{-8} \text{ W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$ and is located at 5825 cm^{-1} .

The slope of the reflected radiance as a function of wavenumber for cirrus spectra can also be seen in Figure 7. A positive slope is seen between 5500 and 5825 cm^{-1} , a negative slope between 5825 and 6750 cm^{-1} , and a positive slope between 6750 and 6880 cm^{-1} .

Figure 8 shows the mean (\bar{X}) and standard deviations (σ) as a function of wavenumber for all of the cirrus spectra. Comparing Figure 8 with Figure 4 for snow spectra, it can be seen that the means and standard deviations for cirrus as a function of wavenumber are larger than those for snow.

The maximum absolute spectral radiance for cirrus was measured by the AFGL aircraft on 28 April 1977 on Mission 705, Run 10, and is shown in Figure 9. The maximum spectral radiance is $84.457 \times 10^{-8} \text{ W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$ and is located at 5827 cm^{-1} .

Figure 8. Cirrus- $\bar{X} \pm \sigma$ -All Spectra, $N = 32$

Figure 9. Maximum Spectral Radiance Measured Over Cirrus

3.3 Cumulus Backgrounds

The cumulus background measurements were made over stratocumulus and altocumulus clouds whose tops ranged between 6000 and 20,000 feet. The separation between the aircraft and the tops of the cumulus clouds was between 10,000 and 25,000 feet. A total of 36 cumulus spectra was obtained by the AFGL aircraft.

Again, each cumulus spectrum was analyzed individually and categorized according to the total integrated amount of measured spectral radiance between 5500 and 7000 cm^{-1} . The absolute spectral radiance for the quarterly means for the cumulus backgrounds as a function of wavenumber is shown in Figure 10. Note that the ordinate scale (0-150) for cumulus is a factor of 1.5 greater than the scale of cirrus (Figure 6), and a factor of 6 greater than the scale for snow (Figure 2). Each quarter represents the mean of nine cumulus spectra.

The maximum mean spectral radiance and its location for cumulus backgrounds for each of the four quarters is given in Table 3.

Figure 10. Spectral Radiance Over Cumulus,
Quarterly Means

Table 3. Maximum Mean for Spectral Radiance and its Location for Cumulus—Quarterly Means

Quarter	Value of Maximum ($\text{W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$)	Location	
		Wavenumber (cm^{-1})	Wavelength (μm)
1st	17.796×10^{-8}	5871	1.70
2nd	28.566×10^{-8}	5981	1.67
3rd	54.222×10^{-8}	6027	1.66
4th	121.630×10^{-8}	6156	1.62

Figure 11 shows the spectral radiance normalized to the maximum mean for all 36 cumulus spectra as a function of wavenumber. The value of the maximum mean spectral radiance (ordinate = 1) is $55.040 \times 10^{-8} \text{ W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$ and is located at 5985 cm^{-1} .

The slope of the reflected spectral radiance for cumulus spectra is also shown in Figure 11. A large positive slope is seen between 5500 and 5825 cm^{-1} , a zero slope between 5825 and 6200 cm^{-1} , and a large negative slope starting at 6400 cm^{-1} and continuing to 6800 cm^{-1} .

Figure 11. Spectral Radiance Normalized—Cumulus—All Spectra, $N = 36$

Figure 12. Cumulus $X \pm \Sigma$ —All Spectra, $N = 36$

The means (\bar{X}) and standard deviations (σ) as a function of wavenumber for all 36 cumulus spectra are shown in Figure 12. The negative values of the mean minus sigma ($\bar{X} - \sigma$) curve in the spectra intervals 5500 to 5560 cm^{-1} and 6700 to 7000 cm^{-1} in Figure 12 are an indication that the deviations from the mean are large and that the sample of 36 cumulus spectra is not large enough to be completely representative of cumulus backgrounds.

Finally, the maximum spectral radiance over cumulus (Figure 13) was measured on 28 April 1977 on Mission 795, Run 16, in the vicinity of Lewiston, Maine. The maximum spectral radiance was $202.95 \times 10^{-8}\text{ W cm}^{-2}\text{ sr}^{-1}(\text{cm}^{-1})^{-1}$ and is located at 6156 cm^{-1} .

Figure 13. Maximum Spectral Radiance Measured Over Cumulus

3.4 Comparison of Backgrounds

The spectral radiance normalized to the value of the cumulus maximum ($55.04 \times 10^{-8}\text{ W cm}^{-2}\text{ sr}^{-1}(\text{cm}^{-1})^{-1}$ and located at 5984.8 cm^{-1}) for all cumulus, cirrus, and snow spectra is illustrated in Figure 14 and tabulated in Table B1 in Appendix B. The range of the spectral radiance of snow backgrounds, when compared to the maximum spectral radiance of cumulus cloud backgrounds, has a minimum of 1.5 percent at 5500.7 cm^{-1} and a maximum of 13.4 percent at 5712.8 cm^{-1} . The range of the spectral radiance of cirrus backgrounds has a minimum of 28.4 percent at 5500.7 cm^{-1} and a maximum 63.0 percent at 5824.7 cm^{-1} (see Table B1). When all cumulus, cirrus, and snow spectra are considered, it can be seen that the location of the maximum spectral radiance measured is a function of wavenumber (wavelength). The location of the maximum mean spectral radiance for cumulus is 5985 cm^{-1} , for cirrus it is 5825 cm^{-1} , and for snow it is 5713 cm^{-1} .

Figure 14. Spectral Radiance Normalized—All—Cumulus, Cirrus, and Snow

4. SNOW/CLOUD DISCRIMINATION SENSOR DESIGN PARAMETERS

Based on the analysis of the 124 spectra measurements obtained by AFGI's flying laboratory, the reflectance characteristics of snow and cirrus and cumulus clouds are significantly different in the 5500 to 7000 cm^{-1} spectral range; consequently, it appears that a sensor can be used to make snow/cloud discriminations in that spectral range. Many parameters were investigated and the following specific sensor design parameters will be reported:

- Absolute spectral radiance, averages and ratios
- Maximum spectral radiance
- Location of the maximum spectral radiance
- Slope of the spectral radiance.

4.1 Absolute Spectral Radiance

In Section 3, the absolute spectral radiance ($\text{W cm}^{-1}\text{sr}^{-1}(\text{cm}^{-1})^{-1}$) was averaged over 11 data points or 21.2157 cm^{-1} and plotted at intervals of 1.9287 cm^{-1} . The maximum spectral radiance averaged for the 56 snow spectra was 7.394×10^{-8} .

for the 32 cirrus spectra it was 34.687×10^{-8} , and for the 36 cumulus spectra it was $55.040 \times 10^{-8} \text{ W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$.

4.1.1 AVERAGES

Spectral radiances averaged over 50 to 500 wavenumber intervals between 5500 and 7000 cm^{-1} and plotted at intervals of 50 cm^{-1} for cumulus (36 spectra), cirrus (32 spectra), and snow (56 spectra) are shown graphically in Figures 15, 16, and 17 respectively. The averaging is performed by summation of all the spectral radiances over 50 to 500 cm^{-1} , moved at intervals of 50 cm^{-1} , and plotted at the maximum wavenumber in the interval. All averages start at 5500 cm^{-1} and end at 7000 cm^{-1} . Thus, the average 50 cm^{-1} (100 cm^{-1} , etc.) represents the summation of the spectral radiances between 5500 and 5550 cm^{-1} , 5550 and 5600 cm^{-1} , etc. (5500 and 5600 cm^{-1} , 5500 and 5650 cm^{-1} , etc.). Note that the ordinate values of spectral radiance in Figure 17 (snow) are a factor of 10 less than the ordinate values in Figure 15 (cumulus) and Figure 16 (cirrus). Table 4 lists the spectral radiance as a function of wavenumber interval for all snow, cirrus, and cumulus spectra averaged over 50 cm^{-1} .

Figure 15. Spectral Radiance
Averaged 50 to 500 cm^{-1} —Cumulus

Figure 16. Spectral Radiance
Averaged 50 to 500 cm^{-1} —Cirrus

Figure 17. Spectral Radiance
Averaged 50 to 500 cm^{-1} —Snow

Table 4. Spectral Radiance ($\text{W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$) of Snow, Cirrus, and Cumulus Averaged Over 50 cm^{-1} Wavenumbers

Wavenumber Interval (cm^{-1})	Snow	Cirrus	Cumulus
5500-5550	9.258×10^{-7}	1.045×10^{-5}	5.670×10^{-6}
5550-5600	2.218×10^{-6}	1.339×10^{-5}	1.279×10^{-5}
5600-5650	2.816×10^{-6}	1.448×10^{-5}	1.718×10^{-5}
5650-5700	3.414×10^{-6}	1.618×10^{-5}	2.162×10^{-5}
5700-5750	3.491×10^{-6}	1.655×10^{-5}	2.314×10^{-5}
5750-5800	3.452×10^{-6}	1.664×10^{-5}	2.409×10^{-5}
5800-5850	* 3.549×10^{-6}	* 1.701×10^{-5}	2.548×10^{-5}
5850-5900	3.472×10^{-6}	1.699×10^{-5}	2.650×10^{-5}
5900-5950	3.375×10^{-6}	1.663×10^{-5}	2.669×10^{-5}
5950-6000	3.221×10^{-6}	1.636×10^{-5}	* 2.598×10^{-5}
6000-6050	3.124×10^{-6}	1.599×10^{-5}	2.679×10^{-5}
6050-6100	2.970×10^{-6}	1.526×10^{-5}	2.617×10^{-5}
6100-6150	2.951×10^{-6}	1.539×10^{-5}	2.677×10^{-5}
6150-6200	2.854×10^{-6}	1.514×10^{-5}	2.642×10^{-5}
6200-6250	2.527×10^{-6}	1.420×10^{-5}	2.421×10^{-5}
6250-6300	2.488×10^{-6}	1.354×10^{-5}	2.399×10^{-5}
6300-6350	2.372×10^{-6}	1.335×10^{-5}	2.413×10^{-5}
6350-6400	2.257×10^{-6}	1.271×10^{-5}	2.386×10^{-5}
6400-6450	2.257×10^{-6}	1.240×10^{-5}	2.455×10^{-5}
6450-6500	2.160×10^{-6}	1.190×10^{-5}	2.401×10^{-5}
6500-6550	2.044×10^{-6}	1.117×10^{-5}	2.268×10^{-5}
6550-6600	1.890×10^{-6}	1.061×10^{-6}	2.104×10^{-5}
6600-6650	1.736×10^{-6}	9.779×10^{-6}	1.828×10^{-5}
6650-6700	1.485×10^{-6}	9.219×10^{-6}	1.585×10^{-5}
6700-6750	1.157×10^{-6}	* 8.698×10^{-6}	1.169×10^{-5}
6750-6800	* 8.872×10^{-7}	8.853×10^{-5}	8.409×10^{-6}
6800-6850	9.644×10^{-7}	1.009×10^{-5}	7.811×10^{-6}
6850-6900	1.119×10^{-6}	1.300×10^{-5}	9.123×10^{-6}
6900-6950	9.451×10^{-7}	1.256×10^{-5}	5.921×10^{-6}
6950-7000	1.022×10^{-6}	1.337×10^{-5}	* 5.130×10^{-6}
5500-7000	6.914×10^{-5}	4.019×10^{-4}	5.870×10^{-4}

*Denotes maximum/minimum values.

The maximum/minimum values in Table 4 are designated by an *. Note in Table 4 that the spectral radiance averaged over 50 cm^{-1} for cumulus, in general, is greater than cirrus, which in turn is greater than snow. Also note in Table 4 that the spectral radiance for cumulus backgrounds is greater than that for cirrus backgrounds between wavenumber interval of 5650 to 6750 cm^{-1} . However, between the wavenumber intervals of 5500 to 5650 cm^{-1} and 6750 to 7000 cm^{-1} , the spectral radiance of cirrus backgrounds is greater than that of cumulus backgrounds.

The absolute spectral radiance averages over 50 to 500 cm^{-1} for 32 cirrus spectra as a function of wavenumber are shown in Figure 16. The hexagons on

each line labeled 50 to 500 cm^{-1} in Figure 16 represents the maximum or end wavenumber for maximum spectral radiance ratios between cumulus and cirrus. The locations of the hexagons are obtained by taking ratios of the spectral radiance of cumulus to cirrus at the same wavenumber interval, and then plotting the location of the maximum ratio.

Figure 17 shows the absolute spectral radiance averaged over 50 to 500 cm^{-1} intervals for 56 snow spectra as a function of wavenumber. The boxed X in Figure 17 on the line marked 500 cm^{-1} represents the approximate spectral radiance that would be observed by the preliminary DMSP snow/cloud discrimination sensor design. The 50 percent transmission curve of this sensor lies between 6135 and 6625 cm^{-1} . The * on each line in Figure 17 represents the maximum or end wavenumber for maximum spectral radiance ratios between cumulus and snow.

Based on the analysis of the 56 snow spectra collected by the AFGL aircraft, the DMSP snow/cloud discrimination sensor could be improved by moving the 50 percent transmission approximately 150 cm^{-1} , so that it senses reflected energy in the 6300 to 6800 cm^{-1} spectral region. Again, depending on the averaging over 50 to 500 cm^{-1} intervals, the maximum spectral radiance ratios between cumulus and snow are found at the maximum wavenumber between 6600 and 6800 cm^{-1} , as compared to the ratios between cumulus and cirrus where the maximum wavenumbers are located between 6550 and 6700 cm^{-1} .

4.1.2 RATIOS

The ratio of the absolute spectral radiance of cumulus/cirrus and cumulus/snow averaged over 50 to 700 cm^{-1} intervals as a function of wavenumber between 5500 and 7000 cm^{-1} is shown in Figures 18 and 19 respectively. The spectral radiance ratio between cumulus and cirrus is shown in Figure 18, and generally runs between 0.4 and 2.0 over the wavenumber interval of 5500 to 7000 cm^{-1} , depending on the averaging of 50 to 700 cm^{-1} . Values less than 1.0 indicate that the cirrus backgrounds have a greater spectral radiance than that of cumulus backgrounds. The maximum ratios of 1.8 to 2.0 are found in the wavenumber interval of 6500 to 6700 cm^{-1} . The range of maximum spectral radiance ratios between cumulus and cirrus is 2.0, averaging over 50 cm^{-1} intervals between 6500 and 6550 cm^{-1} , and 1.8, averaging over 700 cm^{-1} intervals between 6000 and 6700 cm^{-1} . The maximum ratio between all cumulus and cirrus spectra that would be observed by the DMSP sensor would be 1.9. Cumulus/cirrus discrimination on an individual basis may be difficult. See Table 8, Section 5.1.

Figure 18. Ratio Cumulus/Cirrus

Figure 19. Ratio Cumulus/Snow

The spectral radiance ratios between cumulus and snow is illustrated in Figure 19. In the 5500 to 7000 cm^{-1} interval, the ratios have values between 5 and 11, depending on the averaging interval between 50 and 700 cm^{-1} . The maximum ratios of 10 and 11 are found in the wavenumber interval of 6600 to 6900 cm^{-1} . The range of maximum spectral radiance ratios between cumulus and snow is 11.2, averaging over 50 cm^{-1} between 6550 and 6600 cm^{-1} , and 10.3, averaging over 700 cm^{-1} intervals between 6200 and 6900 cm^{-1} (1.61-1.45 μm). The DMSP sensor would observe a reflectance ratio of 10.3 between cumulus and snow; again, sufficient to discriminate between cumulus and snow backgrounds.

4.2 Maximum Spectral Radiance

The maximum spectral radiance values in the spectral range of 5500 to 7000 cm^{-1} for each of the 124 measured spectra are shown in Figure 20. The range or lowest and highest values of the maximum spectral radiance observed for snow and cirrus and cumulus clouds is shown graphically to the right of spectra No. 125. These values are tabulated in Table 5.

Figure 20. Maximum Spectral Radiance for Cumulus, Cirrus, and Snow

Table 5. Maximum Spectral Radiance ($\text{W cm}^{-2} \text{sr}^{-1} (\text{cm}^{-1})^{-1}$)

"value	Snow	Cirrus	Cumulus
Lowest	8.417×10^{-9}	2.041×10^{-8}	1.215×10^{-7}
Highest	2.905×10^{-7}	8.446×10^{-7}	2.029×10^{-6}

In general, the maximum spectral radiance of snow on any given day is lower than that of either cirrus or cumulus. Thresholding the maximum spectral radiance at a value equal to 1×10^{-7} , the number of spectra categorized as under (over) for the three different backgrounds are as follows: snow 43 under (13 over), cirrus 7 under (25 over), cumulus 0 under (36 over). Increasing the threshold value to 1.5×10^{-7} , the number of spectra categorized are as follows: snow 47 under (9 over), cirrus 9 under (23 over), cumulus 2 under (34 over).

4.3 Location of the Maximum Spectral Radiance

Figure 21 shows the spectral location of the maximum spectral radiance for the 124 collected spectra. About 93 percent (52 out of 56) of the snow spectra show the location of the maximum spectral radiance to be between 5650 and 5825 cm^{-1} . In the case of cumulus, approximately 89 percent (32 out of 36) of cumulus spectra show the location to be between 5860 and 6435 cm^{-1} . The location of the maximum spectral radiance of cirrus spectra, on the other hand, is similar to that of snow, sometimes similar to that of cumulus, and sometimes its location is unique—such as the seven spectra located at 7000 cm^{-1} .

4.4 Slope of the Spectral Radiance

The slope of the spectral radiance for the three different backgrounds was discussed in Section 3. Another way of analyzing the slope of the reflected radiance as a function of wavenumber for the 124 collected spectra for the three different backgrounds may be seen in Figures 22 and 23. By taking the ratios of the spectral radiance in the wavenumber interval 5500 to 5615 cm^{-1} to the spectral radiance in the wavenumber interval 5715 to 5825 cm^{-1} , the slope characteristic for both snow and cumulus spectra is positive-large. As can be seen in Figure 22, the ratio values for snow and cumulus are in general between 5 and 50, which is defined as large. In the case of cirrus, the ratio is generally less than 2.5 (defined as small), as depicted by the hexagons in Figure 22, and thus the slope is positive-small for cirrus backgrounds. The value of the slope between wavenumber intervals of 5500 and 5825 cm^{-1} may be used to discriminate cirrus from snow or cumulus.

Figure 23 shows the slope of the spectral radiance in the wavenumber intervals of 5715 to 5825 cm^{-1} and 6060 to 6125 cm^{-1} for snow and cumulus spectra. All 56 snow spectra show a negative slope (value greater than 1). In the case of cumulus backgrounds, 29 out of 36 cumulus spectra show a positive slope (value equal to or less than 1). Thus, the slope between 5825 and 6125 cm^{-1} for cumulus backgrounds is generally positive-small, and for snow it is negative. Again the value and sign of the slope between wavenumber interval 5715 and 6125 cm^{-1} may be used to discriminate snow from cumulus.

Figure 22. Ratio of Radiance at 5500–5615 cm^{-1} to Radiance at 5715–5825 cm^{-1}

Figure 23. Ratio of Radiance at $5715-5825\text{ cm}^{-1}$ to Radiance at $6060-6125\text{ cm}^{-1}$

The various properties of the slope are summarized in Table 6.

Table 6. Slope of Spectral Radiance

	Between $5500-5825\text{ cm}^{-1}$ ($1.82-1.72\mu\text{m}$)	Between $5715-6125\text{ cm}^{-1}$ ($1.75-1.63\mu\text{m}$)
A) Cumulus	Positive-Large (>5.0)	*Positive (<1.0)*
B) Cirrus	*Positive-Small (<2.5)*	Positive/Negative
C) Snow	Positive-Large (>5.0)	*Negative (>1.0)*

*Can be used to discriminate between cumulus/cirrus/snow.

5. RECOMMENDATIONS

Analysis of the 124 AFGL-measured spectra of snow and cirrus and cumulus clouds shows marked differences in their spectral reflectance characteristics in the near IR spectral region. These differences in the 5500 to 7000 cm^{-1} spectral region could be used in snow/cloud discrimination. Specifically, a snow/cloud discrimination sensor design in the near IR spectral region should consider the following

parameters: absolute spectral and/or total radiance; slope of the spectral radiance; and the location and value of the maximum spectral radiance. Based on the analysis of the spectra measured over snow/cloud backgrounds, the following recommendations are made for an optimal operational snow/cloud discrimination sensor design.

5.1 Narrow Spectral Band Radiometer-Imager

As designed, this preliminary DMSP snow/cloud sensor should be more than adequate in snow/cloud discrimination. However, a slight improvement may be obtained in the cumulus/snow signal ratios by moving this experimental snow/cloud SSP sensor 150 cm^{-1} to larger wavenumbers (shorter wavelength). The 100 percent transmission that presently lies approximately in the interval of 6375 to 6450 cm^{-1} (1.57 - $1.55 \mu\text{m}$) should be moved to the interval of 6525 to 6600 cm^{-1} (1.53 - $1.52 \mu\text{m}$). The 50 percent transmission that lies in the 6135 to 6625 cm^{-1} interval (1.63 - $1.51 \mu\text{m}$) should be moved to the interval of 6285 to 6775 cm^{-1} (1.59 - $1.48 \mu\text{m}$) for maximum spectral radiance ratios between cumulus and snow.

On the average, the absolute spectral and/or total radiance for cumulus backgrounds is greater than that for cirrus backgrounds which in turn is greater than that for snow backgrounds. The reflectance characteristics of the three different backgrounds in the near IR could be categorized or defined as follows: cumulus-high (white), cirrus-medium (gray), and snow-low (black). Using this definition, a narrow spectral band radiometer or imager could be designed for maximum cumulus/snow (white/black) or cumulus/cirrus (white/gray) spectral radiance ratios, as shown in Table 7 below.

Table 7. Radiometer Bandwidth vs Optimum Spectral Band

Radiometer Bandwidth (cm^{-1})	Optimum Spectral Band Wavenumber (cm^{-1})	Wavelength (cm^{-1})	Spectral Radiance Ratios Cumulus/Snow	Cumulus/Cirrus
50	6550-6600	1.53-1.52	11.2	2.0
100	6500-6600	1.54-1.52	11.2	2.0
200	6400-6600	1.56-1.52	11.1	2.0
300	6400-6700	1.58-1.49	10.9	1.9
400	6350-6750	1.58-1.48	10.8	1.9
500	6300-6800	1.59-1.47	10.7	1.8
600	6200-6800	1.61-1.47	10.4	1.8
700	6200-6900	1.61-1.45	10.3	1.6

The preliminary DMSP snow/cloud SSP sensor would require a visible channel for comparison in a snow/cloud discrimination decision. In addition, a thresholding capability should be utilized on the sensor. The value of thresholding could be

two-way (snow/cloud) or three-way (snow/cirrus/cumulus). Using the response curve of the preliminary snow/cloud sensor and assigning a value of total radiance less than $5 \times 10^{-5} \text{ W cm}^{-2} \text{ sr}^{-1}$ to define black, the snow/cloud discrimination results on the aircraft-measured spectra are as follows: snow 48/56 or 86 percent and clouds 57/68 or 84 percent would be correctly observed. Further discrimination with clouds could be accomplished by using a three-way thresholding value such as black, less than $5 \times 10^{-5} \text{ W cm}^{-2} \text{ sr}^{-1}$; gray, $5 \times 10^{-5} - 1.75 \times 10^{-4}$; and white, greater than $1.75 \times 10^{-4} \text{ W cm}^{-2} \text{ sr}^{-1}$. The results are shown in Table 8.

Table 8. Three-Way Thresholding

Total Radiance (W cm ⁻² sr ⁻¹) (<5 × 10 ⁻⁵)	(5 × 10 ⁻⁵ - 1.75 × 10 ⁻⁴)	(>1.75 × 10 ⁻⁴)
Color: Black	Gray	White
Snow 48 (86%)	8 (14%)	0 (0%)
Cirrus 8 (25%)	16 (50%)	8 (25%)
Cumulus 3 (8%)	17 (47%)	16 (44%)

As seen in Table 8, three-way thresholding would not make any significant contribution to cirrus/cumulus discrimination.

5.2 Three-Detector, Narrow-Spectral-Band, Near-IR Radiometer

If the spectral radiance or reflectance is sufficient, serious consideration should be made for a three-detector, narrow-spectral-band, near-IR radiometer that utilizes the slope of the spectral radiance. As previously discussed, the slope of the spectral radiance for cirrus in the 5500 to 5825 cm^{-1} interval is positive-small (less than a factor of 2.5), whereas for snow and cumulus it is positive-large (greater than a factor of 5). This feature should allow one to discriminate cirrus from snow or cumulus clouds. Next, in the case of snow backgrounds, the slope of the spectral radiance in the 5825-6125 cm^{-1} interval is negative, whereas it is positive for cumulus backgrounds. This feature should allow one to discriminate between snow and cumulus.

The three-detector, near-IR radiometer could be designed as follows: Detector No. 1 should sense the reflectance in the 5500 to 5615 cm^{-1} spectral band; Detector No. 2 in the 5715 to 5825 cm^{-1} spectral band, and Detector No. 3 in the 6060 to 6125 cm^{-1} spectral band. The instrument could be preprogrammed to compare the

reflectance of the three detectors. If the comparisons between Detectors No. 1 and No. 2 give a small value (that is, a value less than a factor of 3), the background is cirrus. If the value is large (that is, a value greater than a factor of 5), compare Detector No. 2 with No. 3; if the value is positive (negative slope) the background is snow. If the comparison of Detector No. 2 with No. 3 gives a negative value (positive slope) or zero value, the background is cumulus. In addition, a thresholding capability on Detectors No. 2 and No. 3 could aid in discriminating snow from cumulus (that is, large reflectances on either Detectors would represent a cumulus rather than snow background).

If we utilize this principle on the aircraft-measured spectra, the snow/cirrus/cumulus discrimination results are as follows: cirrus, 31/32 or 97 percent correct; snow, 52/56 or 93 percent correct; and cumulus, 30/36 or 83 percent correct. In general, the above percentages are a definite improvement over those for the instrument described in Section 3.1

5.3 Multispectral Radiometer

A multispectral radiometer operating in the spectral interval of from 5625 to 6450 cm^{-1} with a spectral resolution of 15 to 20 cm^{-1} could be designed in order to utilize the location and value of the maximum spectral radiance for discrimination between snow and cirrus and cumulus cloud backgrounds.

If we utilize this principle on the aircraft-measured spectra, the snow/cirrus/cumulus discrimination results are as follows: snow, 52/56 or 93 percent correct; cirrus, 21/32 or 66 percent correct; and cumulus, 33/36 or 92 percent correct.

5.4 Conclusions

Based on the results of the analysis performed on the aircraft-measured spectra, it appears that the three-detector, near-IR Radiometer described in Section 3.2 would have the highest potential of discriminating snow and cirrus and cumulus clouds. In addition, this type of instrument that utilizes the slope of the spectral radiance could obviate the need of a visible channel for comparison purposes, and could easily be preprogrammed for on-board processing of the signal. The data rate from this type of instrument could be very minimal.

The Radiometer-Imager described in Section 3.1 should be adequate for snow/cloud discrimination. However, when the attempt is made to discriminate cirrus from cumulus, it may be difficult. It would probably require a variable thresholding capability as a function of latitude and solar elevation angle to optimize the cirrus/cumulus discrimination. The need of a visible channel for comparison purposes and the data rate required would be a negative feature of this instrument.

Finally, the multispectral radiometer could be quite useful for snow/cumulus discrimination. Nothing would be gained by using this instrument in trying to identify cirrus backgrounds.

Appendix A

Mission Parameters

A number of relevant parameters are listed for each snow (Table A1), cirrus (Table A2), and cumulus (Table A3) background run performed in September 1976 and 1977. The information for each heading follows:

- | | |
|-------------|---|
| Spectra No. | — Reference number used in main text |
| Mission No. | — Reference number for mission identification |
| Run | — Reference number for run identification |
| Date | — Day, month, year |
| Time | — Universal time, hours and minutes |
| Lat N | — North latitude, decimal degrees |
| Long W | — West longitude, decimal degrees |
| Solar Az | — Solar azimuth, true bearing, decimal degrees |
| Solar El | — Solar elevation, decimal degrees |
| Alt T | — True altitudes of aircraft, feet |
| Remarks | — Information relative to location, height, and texture |

Table A1. Mission Parameters for Snow, N = 56

Spectra No.	5-8	15-18	23-26	31-34	39-42	46-49	53-56
Mission No.	TR46	TR45	TR45	TR45	TR45	TR44	TR44
Run	6	1	4	7	11	1	4
Date	21 Sept 76	20 Sept 76	20 Sept 76	20 Sept 76	20 Sept 76	18 Sept 76	18 Sept 76
Time	22:36	20:12	20:48	21:17	22:01	17:42	21:17
Lat N	68.12	61.82	60.40	60.28	61.40	46.20	46.85
Long W	146.63	143.33	141.22	141.58	141.75	121.50	121.77
Solar Az	197.1	160.5	173.1	181.2	193.8	136.6	208.4
Solar El	22.1	28.6	31.2	31.5	30.6	37.7	42.2
Alt T	27000	26000	26000	33000	33000	28000	31000
Remarks	Brooks Range 6000	Nebraska Glacier 7500	Columbus Glacier 6000	Yankee Glacier 3500	Mt. Rainier 14500	Mt. Adams 12300	Mt. Rainier 14400
Spectra No.	85-90	91-96	97-101	102-106	107-112		
Mission No.	703	703	703	703	703		
Run	1	2	4	5	7		
Date	25 Apr 77	25 Apr 77	25 Apr 77	25 Apr 77	25 Apr 77	25 Apr 77	
Time	16:11	16:23	17:15	17:21	18:03		
Lat N	51.58	51.50	51.17	51.10	51.67		
Long W	68.50	68.67	73.33	73.25	79.42		
Solar Az	171.6	176.0	188.8	191.7	198.2		
Solar El	51.4	51.6	51.8	51.6	50.4		
Alt T	29000	29000	22000	23000	23000		
Remarks	Lake Manicouagan	Snow Cov. Terrain 1/2 rocks 1/2 trees	Lake Mistassini no puddles	West Bank of Lake Crescent	Hudson Bay some puddles		

Table A2. Mission Parameters for Cirrus, N = 32

Spectra No.	i-4	11-14	43-45	51-64	65-68	73-76
Mission No.	TR46	TR46	TR45	TR44	705	705
Run	4	10	19	8	1	5
Date	21 Sept 76	21 Sept 76	20 Sept 76	19 Sept 76	28 Apr 77	28 Apr 77
Time	21:25	23:55	23:27	00:53	16:19	16:43
Lat N	72.32	63.90	63.02	63.08	43.33	43.25
Long W	148.83	150.17	142.6	142.12	67.33	67.08
Solar Az	175.6	215.3	216.1	237.5	176.5	188.9
Solar El	19.0	23.2	24.2	17.6	60.8	60.7
Alt T	37000	37000	39000	37000	31000	31000
Remarks	Thin	Thin	Mod-Thick	Thin	Thick	Thick
	36000	35000	37500	36000	31000	31000
Spectra No.	79	113-116	121-124			
Mission No.	705	702	702			
Run	10	1	17			
Date	28 Apr 77	22 Apr 77	22 Apr 77			
Time	17:51	18:10	22:06			
Lat N	46.50	45.67	44.00			
Long W	67.42	68.75	71.00			
Solar Az	215.6	218.8	212.4			
Solar El	53.2	51.0	15.3			
Alt T	33000	29000	37000			
Remarks	Thick	Thick	Semi T.			
	31000	?	37000			

Table A3. Mission Parameters for Cumulus, N = 36

Spectra No.	9-10	19-22	27-30	35-38	50-52	57-60
Mission No.	TR46	TR45	TR45	TR45	TR44	TR44
Run	8	2	5	8	2	6
Date	21 Sept 76	20 Sept 76	20 Sept 76	20 Sept 76	18 Sept 76	18 Sept 76
Time	22:57	20:18	20:57	21:22	17:46	21:33
Lat N	68.08	61.72	60.45	60.22	46.2	46.85
Long W	149.27	143.42	142.08	141.88	121.48	121.77
Solar Az	200.0	162.1	174.7	132.3	137.7	213.4
Solar El	22.1	28.9	31.2	31.5	38.2	40.8
Alt T	27000	25000	26000	26000	28000	31000
Remarks	7-8K	15-16K	10-12K	9-10K	12-13K	14-15K
Spectra No.	69-72	77-78	80-81	82-84	118-120	
Mission No.	705	705	705	705	702	
Run	3	9	13	16	5	
Date	28 Apr 77	28 Apr 77	28 Apr 77	28 Apr 77	22 Apr 77	
Time	16:30	17:35	18:46	19:08	19:10	
Lat N	43.25	45.42	43.83	44.00	43.13	
Long W	66.83	69.00	68.31	70.50	72.70	
Solar Az	182.8	205.6	235.0	238.1	235.2	
Solar El	60.9	56.2	48.6	46.5	46.8	
Alt T	31000	33000	31000	24000	28000	
Remarks	10-14K	20K	6-10K	6-10K	13-15K	

Appendix B

Spectral Radiance Normalized and Ratios

Table B1. Spectral Radiance Normalized and Ratios — All

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO CDC

WAVE NUMBER	WAVE LENGTH	INFRARED DATA 2975 WORDS, AVERAGE EVERY ELEVEN CU C1 SN CU/C1 CU/SN						WAVELENGTH NUMBER						WAVELENGTH NUMBER					
		CU	C1	SN	CU/C1	CU/SN		CU	C1	SN	CU/C1	CU/SN		CU	C1	SN	CU/C1	CU/SN	
121	5735.1	1.745	.826	.597	*123	1.33	8.72	1.61	5847.6	1.740	.926	*126	1.53	7.35					
	5735.0	1.744	.817	.591	*121	1.33	6.72	1.62	5847.7	1.749	.930	*126	1.53	7.4					
122	5734.9	1.743	.816	.592	*122	1.33	6.65	1.83	5851.7	1.747	.931	*125	1.53	7.44					
123	5734.8	1.742	.816	.593	*122	1.33	6.65	1.84	5853.6	1.747	.932	*125	1.53	7.45					
124	5734.7	1.743	.814	.593	*125	1.33	6.68	1.85	5855.5	1.748	.933	*125	1.53	7.46					
125	5734.6	1.742	.814	.594	*127	1.41	6.73	1.85	5857.5	1.747	.942	*126	1.53	7.47					
126	5734.7	1.742	.815	.595	*126	1.42	6.75	1.86	5871.4	1.748	.950	*125	1.53	7.5					
127	5734.7	1.741	.812	.595	*125	1.42	6.81	1.87	5879.4	1.747	.951	*126	1.53	7.51					
128	5734.6	1.740	.812	.596	*127	1.43	6.81	1.88	5881.3	1.746	.951	*126	1.53	7.53					
129	5734.5	1.740	.811	.596	*128	1.43	6.81	1.89	5883.5	1.745	.952	*127	1.54	7.52					
130	5734.5	1.739	.864	.613	*127	1.43	6.82	1.93	5885.2	1.745	.952	*127	1.54	7.52					
131	5734.4	1.739	.864	.613	*127	1.42	6.84	1.91	5887.1	1.744	.953	*128	1.55	7.56					
132	5734.3	1.739	.875	.613	*128	1.42	6.84	1.92	5889.0	1.744	.954	*128	1.55	7.56					
133	5735.2	1.738	.861	.613	*128	1.42	6.84	1.93	5871.4	1.743	.954	*128	1.55	7.56					
134	5735.1	1.737	.861	.613	*127	1.43	6.84	1.94	5872.9	1.742	.954	*127	1.55	7.53					
135	5735.1	1.736	.865	.614	*125	1.43	6.93	1.95	5874.8	1.742	.952	*127	1.54	7.52					
136	5735.0	1.735	.875	.615	*125	1.44	6.95	1.95	5876.7	1.742	.952	*127	1.54	7.52					
137	5735.0	1.735	.868	.612	*125	1.44	6.96	1.97	5878.7	1.741	.952	*127	1.54	7.52					
138	5734.9	1.735	.871	.612	*123	1.43	6.95	1.98	5880.6	1.741	.954	*127	1.54	7.57					
139	5735.0	1.734	.879	.612	*121	1.42	6.94	1.99	5882.5	1.740	.951	*127	1.54	7.53					
140	5735.0	1.734	.876	.612	*121	1.42	6.94	2.00	5884.5	1.740	.951	*127	1.54	7.53					
141	5777.7	1.731	.865	.596	*121	1.42	6.94	2.01	5886.4	1.699	.955	*127	1.54	7.54					
142	5772.5	1.732	.862	.612	*124	1.41	6.98	2.02	5888.3	1.693	.954	*127	1.54	7.55					
143	5773.0	1.731	.875	.612	*125	1.41	6.95	2.03	5889.2	1.698	.955	*125	1.54	7.56					
144	5776.5	1.731	.871	.612	*125	1.41	6.95	2.04	5902.4	1.697	.962	*125	1.54	7.67					
145	5778.4	1.731	.871	.613	*125	1.41	6.95	2.05	5904.1	1.697	.969	*126	1.55	7.7					
146	5778.5	1.730	.873	.613	*125	1.41	6.95	2.06	5906.4	1.699	.970	*126	1.55	7.72					
147	5778.2	1.729	.874	.612	*125	1.42	6.97	2.07	5908.6	1.697	.970	*126	1.55	7.74					
148	5784.2	1.728	.882	.615	*124	1.42	6.98	2.08	5909.9	1.695	.964	*126	1.55	7.64					
149	5786.1	1.728	.879	.612	*129	1.42	6.97	2.09	5910.8	1.694	.969	*126	1.55	7.69					
150	5785.0	1.728	.897	.612	*129	1.42	6.97	2.10	5913.4	1.694	.971	*126	1.55	7.69					
151	5793.5	1.727	.891	.614	*125	1.42	6.99	2.11	5915.3	1.693	.976	*126	1.55	7.7					
152	5791.0	1.727	.908	.611	*125	1.42	6.99	2.12	5907.6	1.697	.942	*127	1.53	7.72					
153	5792.0	1.726	.874	.612	*125	1.42	6.97	2.13	5911.5	1.692	.963	*126	1.55	7.71					
154	5793.5	1.725	.889	.613	*125	1.42	6.96	2.14	5913.4	1.691	.969	*126	1.55	7.69					
155	5797.7	1.725	.891	.613	*129	1.42	6.97	2.15	5915.3	1.691	.970	*126	1.55	7.69					
156	5794.6	1.724	.889	.612	*127	1.42	6.96	2.16	5917.3	1.690	.973	*126	1.55	7.65					
157	5811.5	1.724	.892	.611	*126	1.42	6.96	2.17	5918.0	1.688	.975	*126	1.55	7.65					
158	5811.5	1.723	.881	.612	*125	1.42	6.96	2.18	5919.4	1.689	.974	*126	1.55	7.61					
159	5811.4	1.722	.889	.612	*125	1.42	6.97	2.19	5921.1	1.689	.974	*126	1.55	7.79					
160	5807.3	1.722	.883	.612	*125	1.42	6.97	2.20	5923.4	1.682	.976	*126	1.55	7.6					
161	5806.5	1.721	.886	.613	*125	1.42	6.96	2.21	5925.9	1.680	.974	*126	1.55	7.64					
162	5801.1	1.721	.897	.612	*127	1.42	6.97	2.22	5926.9	1.687	.975	*126	1.55	7.61					
163	5801.1	1.721	.892	.611	*126	1.42	6.97	2.23	5928.0	1.688	.975	*126	1.55	7.61					
164	5815.6	1.721	.892	.612	*126	1.42	6.97	2.24	5934.8	1.686	.972	*126	1.55	7.61					
165	5817.1	1.719	.907	.612	*125	1.42	6.97	2.25	5932.7	1.686	.967	*126	1.55	7.97					
166	5816.6	1.719	.905	.612	*125	1.42	6.97	2.26	5944.6	1.685	.964	*126	1.55	8.04					
167	5817.3	1.718	.903	.613	*125	1.42	6.97	2.27	5946.2	1.682	.961	*126	1.55	8.02					
168	5816.2	1.717	.907	.612	*125	1.42	6.97	2.28	5948.5	1.681	.960	*126	1.55	8.06					
169	5824.7	1.717	.905	.613	*125	1.42	6.97	2.29	5950.4	1.683	.953	*126	1.55	7.99					
170	5826.6	1.716	.907	.612	*125	1.42	6.97	2.30	5954.3	1.682	.952	*126	1.55	8.01					
171	5828.5	1.716	.906	.612	*125	1.42	6.97	2.31	5944.3	1.682	.951	*126	1.55	8.03					
172	5833.0	1.715	.905	.613	*125	1.42	6.97	2.32	5946.2	1.682	.950	*126	1.55	8.04					
173	5832.4	1.715	.903	.613	*125	1.42	6.97	2.33	5948.1	1.681	.952	*126	1.55	8.02					
174	5834.6	1.714	.907	.612	*125	1.42	6.97	2.34	5950.4	1.681	.954	*126	1.55	8.09					
175	5836.2	1.713	.908	.612	*125	1.42	6.97	2.35	5952.0	1.680	.956	*126	1.55	8.11					
176	5838.2	1.713	.907	.612	*125	1.42	6.97	2.36	5953.9	1.681	.955	*126	1.55	8.1					
177	5846.1	1.712	.902	.612	*127	1.42	6.97	2.37	5955.4	1.679	.954	*126	1.55	8.22					
178	5842.0	1.712	.903	.612	*127	1.42	6.97	2.38	5957.6	1.678	.953	*126	1.55	8.21					
179	5844.6	1.711	.907	.612	*127	1.42	6.97	2.39	5959.7	1.678	.952	*126	1.55	8.24					
180	5845.9	1.711	.902	.612	*126	1.42	6.97	2.40	5961.6	1.677	.953	*126	1.55	8.24					

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DOG

WAVE NUMBER	WAVE LENGTH	INFRAGEN DATE 2075 WORDS, AVERAGE EVERY ELEVEN CU CI SN CU/SN CU/CU SN CU/CU SN CU/SN										
		CU	CI	SN	CU/SN	CU/CU	CI	CU	CI	SN	CU/CU	SN
241	5.963.5	1.677	*.591	*.116	1.65	8.26	301	6079.3	1.645	.955	1.72	.77
	5.965.5	1.676	*.592	*.118	1.65	8.25	302	6079.2	1.644	.955	1.72	.79
242	5.967.4	1.676	*.593	*.119	1.65	8.26	303	6079.1	1.644	.956	1.72	.84
243	5.967.5	1.675	*.597	*.113	1.65	8.26	304	6079.0	1.643	.952	1.73	.85
244	5.967.7	1.675	*.593	*.113	1.65	8.26	305	6078.9	1.643	.946	1.73	.86
245	5.971.3	1.675	*.598	*.113	1.65	8.32	306	6078.9	1.643	.948	1.73	.87
246	5.972.2	1.674	*.597	*.117	1.65	8.37	306	6078.9	1.642	.939	1.73	.88
247	5.975.1	1.674	*.593	*.117	1.65	8.41	307	6078.8	1.642	.934	1.73	.89
248	5.977.0	1.673	*.592	*.117	1.65	8.44	308	6078.8	1.641	.934	1.73	.90
249	5.979.0	1.672	*.590	*.117	1.66	8.45	309	6078.7	1.641	.933	1.73	.97
250	5.980.5	1.672	*.594	*.115	1.66	8.45	310	6078.6	1.640	.929	1.73	.89
251	5.982.8	1.671	*.594	*.113	1.66	8.47	311	6078.5	1.640	.925	1.73	.91
252	5.984.4	1.671	*.593	*.116	1.66	8.49	312	6100.5	1.639	.929	1.73	.95
253	5.996.3	1.669	*.595	*.112	1.65	8.49	313	6102.4	1.639	.937	1.73	.98
254	5.998.0	1.667	*.597	*.117	1.66	8.50	314	6134.3	1.638	.933	1.73	.90
255	5.998.6	1.670	*.595	*.117	1.66	8.50	315	6134.3	1.641	.934	1.73	.93
256	5.999.5	1.669	*.597	*.116	1.66	8.51	315	6134.3	1.638	.937	1.73	.94
257	5.999.4	1.668	*.596	*.115	1.66	8.50	316	6134.2	1.637	.944	1.73	.94
258	5.999.3	1.668	*.598	*.115	1.66	8.50	317	6134.1	1.637	.952	1.73	.96
259	5.998.3	1.667	*.597	*.112	1.65	8.49	318	6112.1	1.636	.960	1.74	.91
260	6.000.2	1.667	*.595	*.111	1.66	8.48	319	6114.0	1.635	.965	1.74	.93
261	6.002.1	1.666	*.594	*.111	1.66	8.48	320	6115.9	1.635	.966	1.74	.94
262	6.004.0	1.666	*.595	*.111	1.65	8.52	321	6117.8	1.635	.972	1.74	.91
263	6.006.0	1.665	*.595	*.111	1.65	8.52	322	6119.8	1.634	.972	1.74	.91
264	6.007.9	1.664	*.597	*.113	1.65	8.52	323	6121.7	1.634	.971	1.74	.91
265	6.009.9	1.664	*.596	*.113	1.65	8.52	324	6123.6	1.633	.972	1.74	.90
266	6.011.8	1.663	*.595	*.111	1.65	8.48	325	6115.6	1.633	.975	1.74	.90
267	6.012.7	1.663	*.594	*.111	1.65	8.48	326	6117.5	1.632	.979	1.74	.91
268	6.015.6	1.662	*.592	*.111	1.65	8.48	327	6119.4	1.635	.972	1.74	.91
269	6.017.5	1.662	*.592	*.111	1.65	8.48	328	6121.3	1.631	.976	1.74	.91
270	6.019.5	1.661	*.593	*.112	1.65	8.49	329	6133.3	1.634	.974	1.74	.91
271	6.021.4	1.661	*.594	*.112	1.65	8.48	330	6115.2	1.633	.975	1.74	.90
272	6.023.3	1.660	*.594	*.111	1.65	8.48	331	6117.4	1.632	.974	1.74	.91
273	6.025.3	1.660	*.595	*.112	1.65	8.48	332	6119.4	1.632	.979	1.74	.91
274	6.027.2	1.659	*.597	*.114	1.66	8.48	332	6120.4	1.631	.981	1.74	.91
275	6.029.1	1.659	*.596	*.111	1.65	8.49	333	6131.3	1.631	.978	1.74	.91
276	6.031.0	1.658	*.588	*.115	1.67	8.49	334	6133.3	1.630	.974	1.74	.90
277	6.033.0	1.658	*.593	*.115	1.66	8.49	335	6115.2	1.631	.971	1.75	.90
278	6.034.9	1.657	*.594	*.114	1.66	8.57	336	6117.2	1.629	.974	1.75	.91
279	6.036.5	1.656	*.590	*.115	1.68	8.56	337	6119.1	1.629	.980	1.75	.91
280	6.038.6	1.656	*.595	*.112	1.66	8.56	338	6119.1	1.629	.987	1.75	.91
281	6.040.7	1.655	*.592	*.115	1.66	8.56	339	6120.4	1.628	.981	1.75	.91
282	6.042.6	1.655	*.567	*.115	1.69	8.53	340	6144.8	1.622	.992	1.75	.91
283	6.044.5	1.654	*.567	*.115	1.69	8.64	341	6158.6	1.624	.992	1.75	.91
284	6.046.5	1.654	*.566	*.114	1.69	8.66	342	6146.6	1.622	.998	1.75	.91
285	6.048.4	1.653	*.563	*.109	1.70	8.71	343	6148.7	1.622	.998	1.75	.91
286	6.050.3	1.652	*.563	*.109	1.70	8.71	344	6152.6	1.622	.986	1.75	.91
287	6.052.3	1.652	*.565	*.109	1.70	8.71	345	6164.5	1.621	.991	1.75	.91
288	6.054.2	1.652	*.567	*.109	1.70	8.71	346	6166.4	1.621	.992	1.75	.91
289	6.056.1	1.651	*.567	*.109	1.70	8.71	347	6168.3	1.621	.997	1.75	.91
290	6.058.0	1.651	*.560	*.109	1.70	8.71	348	6169.3	1.621	.995	1.75	.91
291	6.060.0	1.650	*.551	*.109	1.70	8.71	349	6171.8	1.620	.990	1.75	.91
292	6.061.9	1.650	*.559	*.109	1.70	8.71	350	6173.8	1.620	.985	1.75	.91
293	6.063.8	1.649	*.561	*.109	1.70	8.71	351	6175.6	1.620	.984	1.75	.91
294	6.065.6	1.649	*.567	*.109	1.71	8.75	352	6179.6	1.619	.984	1.75	.91
295	6.067.7	1.648	*.567	*.109	1.71	8.75	353	6181.5	1.618	.989	1.75	.91
296	6.069.6	1.648	*.567	*.109	1.71	8.75	354	6183.4	1.617	.983	1.75	.91
297	6.071.5	1.647	*.555	*.109	1.71	8.76	355	6187.3	1.616	.986	1.75	.91
298	6.073.5	1.647	*.557	*.109	1.71	8.76	356	6190.2	1.616	.985	1.75	.91
299	6.075.4	1.646	*.556	*.108	1.71	8.77	357	6191.1	1.615	.984	1.75	.91
300	6.077.3	1.645	*.552	*.108	1.71	8.78	358	6193.1	1.615	.984	1.75	.91

THIS PAGE IS BEST QUALITY PRACTICABLY
FROM COPY FURNISHED TO DDC

INFRARED DATA 2075 WORDS, AVERAGE EVERY ELEVEN										WAVE LENGTH									
WAVE NUMBER	WAVE LENGTH	CU	CI	SN	CUCI	CUR/SN	CU/SN	CU/CI	CU/SM	CU	CI	SN	CUCI	CUR/SN	CU/SN	CU/CI	CU/SM		
361	519.0	.939	.541	.101	1.74	9.31	4.21	6340.7	1.585	.923	.511	.091	1.81	10.12					
362	619.6	1.614	935	.539	1.10	1.74	9.32	6222.6	1.584	.923	.510	.090	1.81	10.22					
363	619.8	1.615	.932	.537	.099	1.73	9.42	6223.6	1.585	.921	.510	.089	1.81	10.31					
364	620.6	1.613	.927	.535	.098	1.73	9.51	6242.6	1.583	.916	.510	.089	1.80	10.34					
365	620.7	1.612	.925	.531	.096	1.73	9.54	6225.4	1.583	.907	.513	.083	1.80	10.27					
366	620.6	1.612	.906	.525	.095	1.72	9.54	6226.0	1.582	.909	.499	.088	1.80	10.22					
367	620.6	1.611	.892	.518	.094	1.72	9.52	6227.0	1.582	.892	.495	.088	1.80	10.19					
368	620.6	1.611	.882	.513	.093	1.72	9.46	6228.0	1.581	.882	.487	.082	1.80	10.15					
369	620.6	1.610	.874	.510	.092	1.72	9.46	6229.0	1.581	.874	.486	.086	1.80	10.12					
370	620.7	1.610	.869	.508	.092	1.71	9.49	6330.1	1.580	.871	.485	.086	1.80	10.13					
371	621.0	1.609	.866	.507	.091	1.71	9.52	6331.0	1.582	.864	.481	.085	1.80	10.12					
372	621.2	1.609	.865	.507	.091	1.71	9.54	6332.0	1.582	.853	.474	.084	1.80	10.10					
373	621.2	1.608	.866	.508	.091	1.70	9.55	6333.0	1.575	.841	.468	.084	1.80	10.07					
374	622.0	1.608	.870	.513	.092	1.71	9.46	6334.0	1.578	.834	.463	.083	1.80	10.05					
375	622.0	1.607	.877	.513	.092	1.71	9.52	6335.0	1.577	.833	.461	.082	1.80	10.14					
376	622.3	1.607	.883	.516	.092	1.71	9.58	6336.0	1.577	.834	.461	.081	1.81	10.24					
377	622.3	1.607	.885	.517	.092	1.71	9.61	6337.0	1.577	.832	.459	.081	1.81	10.36					
378	622.7	1.606	.885	.517	.092	1.71	9.58	6338.0	1.576	.829	.456	.085	1.82	10.45					
379	622.7	1.605	.886	.517	.092	1.71	9.61	6339.0	1.575	.824	.452	.078	1.82	10.54					
380	623.6	1.605	.887	.517	.092	1.71	9.65	6340.0	1.575	.821	.449	.079	1.82	10.55					
381	623.6	1.604	.887	.518	.092	1.71	9.67	6341.0	1.575	.819	.448	.077	1.83	10.64					
382	623.5	1.604	.887	.517	.091	1.70	9.67	6342.0	1.575	.819	.447	.076	1.83	10.72					
383	623.4	1.603	.887	.514	.091	1.70	9.67	6343.0	1.574	.824	.450	.077	1.83	10.76					
384	623.9	1.603	.885	.511	.091	1.70	9.66	6344.0	1.574	.833	.455	.077	1.83	1.6					
385	624.1	1.602	.886	.509	.099	1.70	9.67	6345.0	1.576	.837	.450	.078	1.83	1.6					
386	624.1	1.602	.887	.507	.099	1.69	9.66	6346.0	1.575	.836	.457	.076	1.83	1.6					
387	624.5	1.601	.887	.509	.099	1.69	9.67	6347.0	1.575	.835	.457	.076	1.83	1.6					
388	624.7	1.601	.886	.512	.091	1.69	9.64	6348.0	1.572	.834	.453	.076	1.83	1.6					
389	624.9	1.600	.887	.515	.091	1.69	9.67	6349.0	1.572	.834	.452	.076	1.83	1.6					
390	625.0	1.600	.879	.517	.091	1.70	9.67	6350.0	1.571	.833	.452	.076	1.83	1.6					
391	625.2	1.599	.887	.519	.091	1.71	9.66	6351.0	1.573	.832	.453	.077	1.83	1.6					
392	625.4	1.599	.895	.521	.093	1.72	9.56	6352.0	1.570	.832	.457	.076	1.83	1.6					
393	625.6	1.598	.897	.520	.093	1.71	9.62	6353.0	1.569	.833	.456	.076	1.83	1.6					
394	625.8	1.598	.897	.519	.093	1.71	9.58	6354.0	1.568	.834	.455	.076	1.83	1.6					
395	626.6	1.597	.907	.520	.095	1.71	9.58	6356.0	1.567	.828	.452	.076	1.83	10.50					
396	625.5	1.597	.914	.521	.095	1.71	9.61	6357.0	1.566	.827	.452	.076	1.83	10.43					
397	626.4	1.596	.914	.519	.095	1.71	9.62	6358.0	1.566	.832	.453	.077	1.83	1.6					
398	626.6	1.596	.916	.518	.095	1.71	9.59	6359.0	1.565	.837	.451	.076	1.83	10.37					
399	626.8	1.595	.920	.519	.096	1.71	9.65	6360.0	1.564	.836	.455	.076	1.83	10.34					
400	627.0	1.595	.925	.521	.095	1.71	9.55	6361.0	1.563	.835	.456	.076	1.83	1.6					
401	627.1	1.594	.922	.522	.095	1.71	9.62	6362.0	1.562	.835	.456	.076	1.83	1.6					
402	627.4	1.594	.926	.522	.096	1.71	9.62	6363.0	1.562	.835	.456	.076	1.83	1.6					
403	627.6	1.593	.924	.520	.096	1.71	9.65	6364.0	1.562	.835	.456	.076	1.83	1.6					
404	627.6	1.593	.925	.519	.096	1.71	9.68	6365.0	1.562	.835	.456	.076	1.83	1.6					
405	627.6	1.592	.926	.519	.096	1.71	9.65	6366.0	1.562	.835	.456	.076	1.83	1.6					
406	6281.6	1.592	.927	.519	.096	1.71	9.66	6367.0	1.562	.835	.456	.076	1.83	1.6					
407	6283.7	1.591	.913	.511	.094	1.71	9.75	6368.0	1.561	.834	.456	.076	1.83	1.6					
408	6285.6	1.591	.912	.515	.093	1.71	9.74	6369.0	1.561	.834	.456	.076	1.83	1.6					
409	6287.6	1.591	.914	.510	.092	1.71	9.73	6370.0	1.561	.834	.456	.076	1.83	1.6					
410	6289.5	1.590	.886	.495	.091	1.71	9.71	6405.2	1.561	.834	.456	.085	1.83	1.6					
411	6291.4	1.589	.875	.490	.091	1.71	9.68	6406.1	1.561	.834	.456	.083	1.83	1.6					
412	6293.3	1.589	.873	.486	.091	1.65	9.66	6409.1	1.561	.834	.456	.083	1.83	1.6					
413	6295.3	1.588	.872	.484	.091	1.65	9.70	6411.0	1.560	.834	.456	.084	1.83	1.6					
414	6297.2	1.588	.871	.485	.091	1.65	9.75	6412.0	1.560	.834	.456	.084	1.83	1.6					
415	6299.1	1.588	.880	.488	.091	1.60	9.81	6413.0	1.560	.834	.456	.084	1.83	1.6					
416	6301.1	1.587	.867	.491	.091	1.65	9.71	6414.0	1.560	.834	.456	.085	1.83	1.6					
417	6303.0	1.587	.867	.491	.091	1.65	9.71	6415.0	1.560	.834	.456	.085	1.83	1.6					
418	6304.9	1.586	.869	.503	.092	1.65	9.93	6420.6	1.560	.834	.456	.083	1.83	1.6					
419	6306.8	1.586	.917	.507	.092	1.61	9.95	6422.6	1.560	.834	.456	.083	1.83	1.6					
420	6308.8	1.586	.922	.509	.092	1.61	10.01	6424.5	1.560	.834	.456	.082	1.83	1.6					

THIS PAGE IS BEST QUALITY PRACTICALLY
FROM COPY FURNISHED TO DDC

INFRARED DATA 2075 WORDS, AVERAGE EVERY ELEVEN WAVE									
WAVE	NUMBER	CU	CI	SN	CU/CI	CU/SN	WAVE	LENTH	CU/SN
451	6426.4	.687	.446	.081	1.99	1.090	541	6542.2	.003
452	6428.4	1.556	.687	.446	1.99	1.101	542	6544.1	.801
453	6430.7	1.557	.689	.448	1.99	1.105	543	6546.0	1.528
454	6432.2	1.555	.692	.448	1.99	1.118	544	6547.9	1.527
455	6434.1	1.556	.689	.445	0.79	1.121	545	6549.9	1.537
456	6436.1	1.554	.686	.442	0.79	1.114	546	6551.8	1.522
457	6438.0	1.553	.682	.442	0.80	1.105	547	6553.7	1.526
458	6439.9	1.557	.681	.444	0.80	1.105	548	6555.7	1.525
459	6441.9	1.552	.680	.440	0.81	1.091	549	6557.6	1.525
460	6443.9	1.555	.679	.440	0.81	1.086	550	6559.5	1.525
461	6445.7	1.551	.679	.439	0.81	1.082	551	6561.4	1.534
462	6447.6	1.551	.680	.439	0.92	1.077	552	6563.4	1.534
463	6449.6	1.557	.681	.438	0.82	1.061	553	6565.3	1.533
464	6451.5	1.556	.687	.435	0.91	1.076	554	6567.2	1.532
465	6453.4	1.555	.689	.431	0.81	1.076	555	6569.2	1.532
466	6455.4	1.549	.684	.429	0.81	1.066	556	6571.1	1.525
467	6457.2	1.549	.687	.431	0.81	1.062	557	6573.0	1.521
468	6459.2	1.548	.682	.430	0.91	1.045	558	6574.9	1.521
469	6461.1	1.541	.674	.432	0.73	1.039	559	6576.9	1.520
470	6463.0	1.547	.672	.432	0.73	1.039	560	6578.8	1.521
471	6464.9	1.547	.686	.438	0.73	1.039	561	6580.7	1.521
472	6466.9	1.546	.686	.438	0.73	1.039	562	6582.6	1.519
473	6468.6	1.546	.681	.435	0.73	1.039	563	6584.5	1.519
474	6470.8	1.545	.687	.435	0.73	1.039	564	6586.5	1.516
475	6472.7	1.545	.676	.432	0.76	1.039	565	6588.4	1.516
476	6474.6	1.544	.672	.432	0.76	1.039	566	6590.4	1.517
477	6476.5	1.544	.672	.432	0.76	1.039	567	6592.3	1.520
478	6478.5	1.544	.678	.435	0.76	1.039	568	6594.2	1.520
479	6480.4	1.543	.677	.435	0.76	1.039	569	6596.2	1.516
480	6482.0	1.543	.674	.435	0.77	1.037	570	6598.1	1.516
481	6483.9	1.543	.674	.435	0.77	1.037	571	6600.0	1.515
482	6484.7	1.542	.675	.437	0.76	1.038	572	6601.9	1.515
483	6486.6	1.542	.672	.437	0.76	1.038	573	6603.9	1.514
484	6488.5	1.542	.672	.437	0.76	1.038	574	6605.8	1.514
485	6490.4	1.541	.672	.426	0.76	1.038	575	6607.7	1.513
486	6492.0	1.541	.661	.426	0.76	1.038	576	6609.7	1.513
487	6493.8	1.541	.661	.426	0.76	1.038	577	6611.6	1.513
488	6495.9	1.540	.654	.423	0.76	1.038	578	6613.5	1.512
489	6497.6	1.539	.668	.420	0.77	1.032	579	6615.4	1.512
490	6500.1	1.541	.663	.427	0.74	1.032	580	6617.4	1.514
491	6502.0	1.541	.661	.426	0.75	1.032	581	6619.3	1.511
492	6503.6	1.541	.660	.426	0.75	1.032	582	6621.2	1.510
493	6503.9	1.541	.666	.424	0.75	1.032	583	6623.2	1.510
494	6505.9	1.539	.654	.423	0.76	1.032	584	6625.1	1.509
495	6507.6	1.539	.651	.422	0.76	1.032	585	6627.0	1.509
496	6509.4	1.539	.651	.422	0.76	1.032	586	6628.9	1.509
497	6511.1	1.539	.649	.421	0.75	1.032	587	6630.9	1.508
498	6512.8	1.538	.643	.419	0.75	1.032	588	6632.8	1.508
499	6514.5	1.538	.645	.416	0.76	1.032	589	6634.7	1.507
500	6515.2	1.537	.642	.414	0.76	1.032	590	6636.3	1.505
501	6516.9	1.537	.639	.414	0.77	1.032	591	6638.2	1.505
502	6517.4	1.537	.637	.414	0.77	1.032	592	6639.7	1.505
503	6519.1	1.537	.637	.414	0.77	1.032	593	6641.6	1.505
504	6520.8	1.537	.637	.414	0.77	1.032	594	6643.5	1.505
505	6522.5	1.537	.637	.414	0.77	1.032	595	6645.4	1.505
506	6524.2	1.537	.637	.414	0.77	1.032	596	6647.3	1.505
507	6525.9	1.537	.637	.414	0.77	1.032	597	6649.2	1.505
508	6527.6	1.537	.637	.414	0.77	1.032	598	6651.1	1.505
509	6529.3	1.537	.637	.414	0.77	1.032	599	6653.0	1.505
510	6531.0	1.537	.637	.414	0.77	1.032	600	6654.9	1.505
511	6532.7	1.537	.637	.414	0.77	1.032	601	6656.8	1.505
512	6534.4	1.537	.637	.414	0.77	1.032	602	6658.7	1.505
513	6536.1	1.537	.637	.414	0.77	1.032	603	6660.6	1.505
514	6537.8	1.537	.637	.414	0.77	1.032	604	6662.5	1.505
515	6539.5	1.537	.637	.414	0.77	1.032	605	6664.4	1.505
516	6541.2	1.537	.637	.414	0.77	1.032	606	6666.3	1.505
517	6542.9	1.537	.637	.414	0.77	1.032	607	6668.2	1.505
518	6544.6	1.537	.637	.414	0.77	1.032	608	6670.1	1.505
519	6546.3	1.537	.637	.414	0.77	1.032	609	6672.0	1.505
520	6548.0	1.537	.637	.414	0.77	1.032	610	6673.9	1.505
521	6549.7	1.537	.637	.414	0.77	1.032	611	6675.8	1.505
522	6551.4	1.537	.637	.414	0.77	1.032	612	6677.7	1.505
523	6553.1	1.537	.637	.414	0.77	1.032	613	6679.6	1.505
524	6554.8	1.537	.637	.414	0.77	1.032	614	6681.5	1.505
525	6556.5	1.537	.637	.414	0.77	1.032	615	6683.4	1.505
526	6558.2	1.537	.637	.414	0.77	1.032	616	6685.3	1.505
527	6559.9	1.537	.637	.414	0.77	1.032	617	6687.2	1.505
528	6561.6	1.537	.637	.414	0.77	1.032	618	6689.1	1.505
529	6563.3	1.537	.637	.414	0.77	1.032	619	6691.0	1.505
530	6565.0	1.537	.637	.414	0.77	1.032	620	6692.9	1.505
531	6566.7	1.537	.637	.414	0.77	1.032	621	6694.8	1.505
532	6568.4	1.537	.637	.414	0.77	1.032	622	6696.7	1.505
533	6570.1	1.537	.637	.414	0.77	1.032	623	6698.6	1.505
534	6571.8	1.537	.637	.414	0.77	1.032	624	6700.5	1.505
535	6573.5	1.537	.637	.414	0.77	1.032	625	6702.4	1.505
536	6575.2	1.537	.637	.414	0.77	1.032	626	6704.3	1.505
537	6576.9	1.537	.637	.414	0.77	1.032	627	6706.2	1.505
538	6578.6	1.537	.637	.414	0.77	1.032	628	6708.1	1.505
539	6580.3	1.537	.637	.414	0.77	1.032	629	6709.9	1.505
540	6582.0	1.537	.637	.414	0.77	1.032	630	6711.8	1.505
541	6583.7	1.537	.637	.414	0.77	1.032	631	6713.7	1.505
542	6585.4	1.537	.637	.414	0.77	1.032	632	6715.6	1.505
543	6587.1	1.537	.637	.414	0.77	1.032	633	6717.5	1.505
544	6588.8	1.537	.637	.414	0.77	1.032	634	6719.4	1.505
545	6590.5	1.537	.637	.414	0.77	1.032	635	6721.3	1.505
546	6592.2	1.537	.637	.414	0.77	1.032	636	6723.2	1.505
547	6593.9	1.537	.637	.414	0.77	1.032	637	6725.1	1.505
548	6595.6	1.537	.637	.414	0.77	1.032	638	6727.0	1.505
549	6597.3	1.537	.637	.414	0.77	1.032	639	6728.9	1.505
550	6599.0	1.537	.637	.414	0.77	1.032	640	6730.8	1.505
551	6600.7	1.537	.637	.414	0.77	1.032	641	6732.7	1.505
552	6602.4	1.537	.637	.414	0.77	1.032	642	6734.6	1.505
553	6604.1	1.537	.637	.414	0.77	1.032	643	6736.5	1.505
554	6605.8	1.537	.637	.414	0.77	1.032	644	6738.4	1.505
555	6607.5	1.537	.637	.414	0.77	1.032	645	6740.3	1.505
556	6609.2	1.537	.637	.414	0.77	1.032	646	6742.2	1.505
557	6611.0	1.537	.637	.414	0.77	1.032	647	6744.1	1.505
558	6612.9	1.537	.637	.414	0.77	1.032	648	6746.0	1.505
559	6614.8	1.537	.637	.414	0.77	1.032	649	6747.9	1.505
560	6616.7	1.537	.637	.414	0.77	1.032	650	6749.8	1.505
561	6618.5	1.537	.637	.414	0.77	1.032	651	6751.7	1.505
562	6620.4	1.537	.637	.414	0.77	1.032	652	6753.6	1.505
563	6622.2	1.537	.637	.414	0.77	1.032	653	6755.5	1.505
564	6624.1	1.537	.637	.414	0.77	1.032	654	6757.4	1.505
565	6626.0	1.537	.637	.414	0.77	1.032	655	6759.3	1.505
566	6627.9	1.537	.637	.414	0.77	1.032	656	6761.2	1.505
567	6629.8	1.537	.637	.414	0.77</				

INFRARED DATA 2075 WORDS, AVERAGE EVERY ELEVEN WAVE										
WAVE	LENGTH	CU	CI	SN	CUSN	CUCI	NUMBER	LENGTH	CU	CI
601	665.9 .9	1.4506	.6372	*054	1.74	10.46	661	6773.6	.326	.036
602	665.9 .4	1.4502	.576	*056	1.76	10.46	662	6775.5	.350	.333
603	668.1 .7	1.4501	.600	*057	1.78	10.50	663	6777.5	.354	.336
604	668.3 .7	1.4501	.614	*058	1.80	10.57	664	6779.4	.345	.334
605	668.5 .6	1.4503	.627	*059	1.82	10.71	665	6781.3	.346	.336
606	668.7 .5	1.4506	.636	*058	1.83	10.82	666	6783.2	.345	.334
607	668.9 .4	1.4499	.636	*059	1.82	10.83	667	6785.2	.347	.336
608	669.1 .4	1.4496	.635	*050	1.81	10.77	668	6787.1	.347	.335
609	669.2 .3	1.4499	.633	*050	1.81	10.81	669	6789.0	.347	.334
610	669.5 .2	1.4498	.631	*057	1.86	10.88	670	6791.0	.347	.337
611	669.7 .2	1.4498	.662	*056	1.77	10.84	671	6792.9	.346	.332
612	669.9 .1	1.4497	.565	*056	1.74	10.84	672	6794.0	.347	.339
613	669.1 .0	1.4497	.569	*052	1.71	10.83	673	6796.7	.347	.337
614	669.2 .9	1.4496	.556	*039	1.69	19.79	674	6808.6	.347	.335
615	668.4 .9	1.4496	.549	*038	1.62	19.72	675	6800.6	.347	.335
616	668.6 .8	1.4495	.542	*036	1.66	10.59	676	6802.5	.347	.334
617	668.8 .7	1.4495	.543	*037	1.65	10.58	677	6804.5	.347	.334
618	669.0 .7	1.4495	.544	*038	1.66	10.72	678	6806.4	.347	.334
619	669.2 .6	1.4496	.535	*037	1.63	10.61	679	6808.3	.347	.334
620	669.4 .5	1.4494	.524	*036	1.61	10.76	680	6810.2	.347	.334
621	669.6 .4	1.4493	.518	*037	1.63	10.67	681	6812.2	.347	.334
622	669.8 .4	1.4494	.514	*038	1.57	10.52	682	6814.1	.347	.334
623	670.0 .3	1.4492	.516	*036	1.57	10.29	683	6816.0	.347	.334
624	670.2 .2	1.4492	.526	*031	1.60	10.72	684	6818.9	.347	.334
625	670.4 .2	1.4492	.519	*035	1.61	10.37	685	6819.9	.347	.334
626	670.6 .1	1.4491	.536	*036	1.60	10.42	686	6821.8	.347	.334
627	670.8 .0	1.4491	.528	*036	1.51	10.31	687	6823.7	.347	.334
628	670.9 .9	1.4490	.515	*032	1.55	10.56	688	6825.7	.347	.334
629	671.1 .9	1.4490	.496	*034	1.57	10.52	689	6827.6	.347	.334
630	671.3 .8	1.4489	.478	*032	1.53	10.04	690	6829.5	.347	.334
631	671.5 .7	1.4489	.462	*031	1.51	9.98	691	6831.5	.347	.334
632	671.7 .7	1.4489	.459	*035	1.48	9.98	692	6833.4	.347	.334
633	671.9 .6	1.4488	.435	*030	1.44	10.25	693	6835.3	.347	.334
634	672.1 .5	1.4488	.415	*036	1.36	10.29	694	6837.2	.347	.334
635	672.3 .4	1.4487	.391	*030	1.29	10.11	695	6839.1	.347	.334
636	672.5 .4	1.4487	.371	*028	1.26	10.06	696	6841.1	.347	.334
637	672.7 .3	1.4486	.351	*028	1.23	9.76	697	6843.0	.347	.334
638	672.9 .2	1.4486	.352	*029	1.25	9.76	698	6845.0	.347	.334
639	673.1 .2	1.4486	.346	*028	1.20	9.91	699	6846.9	.347	.334
640	673.3 .1	1.4485	.345	*036	1.17	9.89	700	6848.8	.347	.334
641	673.5 .0	1.4485	.373	*031	1.19	9.60	701	6850.7	.347	.334
642	673.6 .9	1.4486	.366	*038	1.21	10.06	702	6852.7	.347	.334
643	673.8 .9	1.4486	.371	*036	1.23	10.17	703	6854.9	.347	.334
644	674.0 .8	1.4486	.395	*039	1.24	10.21	704	6856.5	.347	.334
645	674.2 .7	1.4483	.352	*035	1.23	10.21	705	6858.5	.347	.334
646	674.4 .7	1.4483	.364	*035	1.22	10.28	706	6860.4	.347	.334
647	674.6 .6	1.4482	.317	*037	1.21	10.16	707	6862.3	.347	.334
648	674.8 .5	1.4482	.372	*031	1.17	10.41	708	6864.2	.347	.334
649	675.0 .5	1.4481	.361	*036	1.13	10.17	709	6866.2	.347	.334
650	675.2 .4	1.4481	.352	*037	1.11	10.01	710	6868.1	.347	.334
651	675.4 .3	1.4481	.350	*035	1.08	9.79	711	6870.0	.347	.334
652	675.6 .2	1.4480	.326	*039	1.06	9.70	712	6872.0	.347	.334
653	675.8 .2	1.4480	.314	*036	1.03	9.65	713	6873.9	.347	.334
654	676.0 .1	1.4479	.306	*032	1.00	9.44	714	6875.8	.347	.334
655	676.2 .0	1.4479	.296	*036	0.92	9.24	715	6877.7	.347	.334
656	676.4 .0	1.4479	.293	*032	0.90	9.27	716	6879.7	.347	.334
657	676.5 .9	1.4478	.265	*034	0.91	9.13	717	6881.6	.347	.334
658	676.7 .8	1.4478	.262	*035	0.92	8.93	718	6883.5	.347	.334
659	676.9 .7	1.4477	.290	*033	0.94	8.66	719	6885.4	.347	.334
660	677.1 .7	1.4477	.307	*036	0.97	8.97	720	6887.4	.347	.334

THIS PAGE IS FOR SECURITY TRACIC USE
FROM DRY VALLEY, CALIFORNIA

WAVE NUMBER	WAVE LENGTH	INFRARED DATA 2975 WORDS, AVERAGE EVERY ELEMENT						WAVE LENGTH	CU	CI	SN	CU/CI	CU/SN
		CU	CI	SN	CU/CI	CU/SN	CU/CI						
721	6959.3	1.452	1.260	.451	.031	.59	6.30	750	1.440	.196	.475	.036	.44
722	6951.2	1.451	1.250	.444	.031	.56	6.03	751	1.439	.197	.476	.035	.44
723	6953.2	1.451	1.236	.460	.031	.54	7.70	752	1.439	.187	.466	.034	.43
724	6955.1	1.450	1.228	.460	.031	.52	7.35	753	1.439	.182	.462	.033	.43
725	6957.0	1.451	1.230	.447	.032	.52	7.15	754	1.438	.183	.464	.034	.43
726	6959.0	1.449	1.243	.460	.030	.53	7.23	755	1.438	.183	.466	.034	.43
727	6960.9	1.449	1.256	.471	.035	.54	7.29	756	1.438	.183	.465	.033	.43
728	6962.8	1.449	1.257	.472	.036	.55	7.20	757	1.437	.179	.466	.034	.43
729	6964.7	1.448	1.256	.472	.037	.54	6.92	758	1.437	.183	.472	.036	.43
730	6966.7	1.448	1.265	.463	.039	.55	6.87	759	1.436	.165	.478	.035	.43
731	6968.6	1.447	1.272	.491	.035	.55	6.95	760	1.436	.177	.475	.033	.43
732	6919.5	1.467	1.269	.487	.036	.55	7.03	761	1.436	.169	.469	.033	.36
733	6919.5	1.467	1.269	.479	.037	.54	7.06	762	1.435	.172	.476	.035	.36
734	6914.4	1.446	1.249	.474	.036	.53	7.01	763	1.435	.187	.497	.034	.36
735	6915.3	1.445	1.242	.476	.035	.51	6.95	764	1.434	.197	.511	.036	.36
736	6916.2	1.445	1.237	.479	.035	.49	6.81	765	1.434	.192	.506	.037	.36
737	6920.2	1.445	1.229	.476	.035	.48	6.64	766	1.434	.184	.493	.035	.37
738	6922.1	1.445	1.218	.468	.033	.47	6.57	757	1.433	.176	.483	.033	.36
739	6924.0	1.444	1.209	.461	.033	.45	6.41	768	1.433	.167	.472	.032	.35
740	6926.0	1.444	1.206	.456	.032	.45	6.35	769	1.433	.165	.466	.032	.35
741	6927.9	1.443	1.202	.458	.033	.44	6.22	770	1.432	.179	.475	.033	.36
742	6925.8	1.443	1.203	.463	.036	.44	6.02	771	1.431	.195	.488	.031	.476
743	6931.7	1.443	1.207	.473	.037	.44	5.87	772	1.431	.204	.497	.043	.476
744	6933.7	1.442	1.212	.462	.035	.44	5.82	773	1.431	.208	.511	.044	.477
745	6935.6	1.442	1.213	.461	.037	.44	5.77	774	1.430	.203	.497	.043	.475
746	6937.5	1.441	1.210	.476	.036	.44	5.78	775	1.430	.195	.490	.042	.464
747	6939.5	1.441	1.203	.466	.035	.43	5.86	776	1.430	.194	.496	.042	.467
748	6941.4	1.441	1.192	.462	.034	.42	5.71	777	1.429	.197	.510	.042	.467
749	6942.3	1.440	1.195	.465	.035	.41	5.64	778	1.429	.204	.524	.044	.39