Read / Write amplifier for FDD BH6625FS

The BH6625FS is a 4-mode read / write IC designed for floppy disk drives, and has an active filter that can be set according to transfer rate. Any of multiple write current settings can be selected, and inner track / outer track switching is done internally.

Applications

Floppy disk drives (1MB, 1.6MB and 2MB)

Features

- Internal active filter with multiple settings that can be selected for multiple Q and fo.
- Time domain filter that is internally switchable according to transfer rate.
- Any of multiple write current settings can be selected, and inner track / outer track switching is done internally.

● Absolute maximum ratings (unless otherwise noted, Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	+7	٧
Operating temperature	Topr	0~+70	°C
Storage temperature	Tstg	−55 ~ +125	င
Digital input voltage	VI	-0.5∼Vcc+0.3	V
RW pin voltage	VRW	+15	V
LVS output voltage	VLVS	Vcc+0.3	٧
ED pin voltage	VER	Vcc+0.3	٧
Power dissipation	Pd	650*	mW

• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.5	5.0	5.5	V

Block diagram

Pin descriptions and input / output circuits

Pin No.	Pin name	Equivalent circuit	Function
1	wcc	Voc The state of t	For connecting the write current adjustment resistor Connect the write current adjustment resistor between this pin and Vcc. Setting this pin to the low level during reading switches MONI to differentiator output.
2	Vcc		Power supply pin
3	RW00	4 6 3 5	Active when SIDE0 and the read/write head connecting pin (pin 15, XS1) is at the high level (side 0)
4	RW01		Starts at RW00 during the start of writing (from reading to writing)
5	RW10		Active when the read/write head connecting pin (pin 15, XS1) is at the low level (side 1)
6	RW11		Starts at RW10 during the start of writing (from reading to writing)
7	ED0	7	Side 0 erase current sink
8	ED1	8	Side 1 erase current sink

Pin No.	Pin name	Equivalent circuit	Function
9	XHD	Vcc → \$100k →	1MB/2MB selector High = 1MB Low = 2MB
10	F2	Vcc	1.6MB drive selector Selector signal high level = active High = 1.6MB drive, low = 2MB drive
11	XTR2	10 11 12	Inner track/outer track position setting Controls the write current
12	XTR1 (XSWF)		Inner track/outer track position setting Controls the filter and write current
13	XWG	Vcc 30k 30k 13 1777	Write enable gate (Schmidt input) Low = active
14	XEG	Vcc \$100k	Erase enable gate (Schmidt input) Low = active
15	XS1	30k	Head/side switching signal Low = active (Schmidt input) High = side 0, low = side 1

Pin No.	Pin name	Equivalent circuit	Function
16	DGND		Digital ground
17	RDO	Vcc	Read data output TTL high level = active
18	XWD	Vcc	Write data input Operates at falling edge (Schmidt input)
19	FILC	100k Vcc Vcc 100k 100k	Filter control (fo, Q) Used to switch filter cutoff frequency (tri-state input)
20	XPS	20 30k	Power save selector Low = active

Pin No.	Pin name	Equivalent circuit	Function
21	XLVS	21	External low level voltage detection pin Open collector output when low level voltage is detected Switches to low level when Vcc drops below the specified voltage
22	MONI	Vcc 250 \$ 222	Preamplifier output and differentiator output monitoring Monitor is switched with pin 1 (WCC)
23	AGND		Analog ground
24	RCC	V _{cc} 24	Filter (LPF, BPF) cutoff frequency and TDF 1st M/M pulse width setting resistor connection

ullet Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V) Supply current

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Current dissipation, Standby	ICCST	_	245	400	μΑ	*1
Current dissipation, Read	ICCR	_	28	42	mA	*1
Current dissipation, Write	ICCW	_	8.5	15	mA	*2

^{*1} RRCC=2.0 [kΩ] (XHD=H)

Low level voltage detection circuit

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
	VTH1+	_	4.05	4.30	V	When power supply voltage rises, internal LVS/write protect
Threshold voltage 1	VTH1—	3.60	3.85	4.10	٧	When power supply voltage falls, internal LVS/write protect
Thursday and Control of Control	VTH2+	-	3.95	4.20	٧	When power supply voltage rises, external LVS
Threshold voltage 2	VTH2-	3.50	3.75	4.00	V	When power supply voltage falls, external LVS
Hysteresis voltage	VH	50	_	_	mV	
Output low level voltage	VOL	_	_	0.40	٧	Vcc=2.5 [V] IOL=0.2 [mA]
Output leakage current	IOH	_	_	10	μΑ	

Recovery time

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
POWER · SAVE→READ	TR2	_	_	500	μs	by XPS
READ→ERASE	TR3	_	_	6	μs	by XEG
READ→WRITE	TR4	_	_	4	μs	by XWG
WRITE→READ	TR5E	_	_	20	μs	by XEG
WAITETREAD	TR5W	_	_	160	μs	by XWG
SIDE0↔SIDE1	TR6	_	_	40	μs	by XS1
1MB↔2MB	TR7	_	_	40	μs	by XHD

^{*2} RWCC=2.4 [kΩ] (When 2MB inner edge, XTR2=high level, excluding IWR and IER)

Preamplifier

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Voltage gain (1)	GVD1	43	46	49	dB	f=125[kHz], VIN=2.5[mV _{P-P}] (XTR1=L) (differential)
Voltage gain (2)	GVD2	46	49	52	dB	f=125[kHz], VIN=2.5[mV _{P-P}] (XTR1=H) (differential)
SIDE0 ↔ SIDE1 crosstalk	GCTLK	50	_	_	dB	f=125[kHz], VIN=100[mV _{P-P}] (differential)*3
Differential input resistance	RID	_	3.3	_	kΩ	8.0 [k Ω] input resistance, //5.5 [k Ω] damping resistance
Input conversion noise voltage	VN	_	2.5	3.7	μ V _{rms}	f=500[Hz]~1[MHz]
Input sink current	ISINK	_	180	_	μΑ	
Differential input voltage amplitude tolerance (1)	VIN1	_	_	5.0	mV _{P-P}	5% distortion (sine wave input) (XTR1=L)
Differential input voltage amplitude tolerance (2)	VIN2	_	_	3.5	mV _{P-P}	5% distortion (sine wave input) (XTR1=H)
Common mode rejection ratio	CMRR	50	_	_	dB	f=125[kHz], VIN=100[mV _{P-P}] *3
Power supply rejection ratio	PSRR	40	1	ı	dB	f=250[kHz], VIN=100[mV _{P-P}] *3

Preamplifier / L.P.F / differentiator (B.P.F)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Filter time constant accuracy	EFIL	-10	_	+10	%	*3
Total gain (preamplifier/ LPF/differentiator) (1)	GVDD1	40.5	44.5	48.5	dB	f=250[kHz], VIN=2.5[mV _{P-P}] (differential) (2MB, XTR1=L, FILC=H)
Total gain (preamplifier/ LPF/differentiator) (2)	GVDD2	43.5	47.5	51.5	dB	f=250[kHz], VIN=2.5[mV _{P-P}] (differential) (2MB, XTR1=H, FILC=H)
Differentiator output peaking frequency setting range	fo	0.1	_	0.5	MHz	Defined according to typical value in the settings

*3 RRCC=2.0 [$k\Omega$] (XHD=L, XTR1=H, F2=L, FILC=H)

Comparator and waveform shaping

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
TDF M/M pulse width accuracy (1)	TDF1	-10	_	+10	%	XHD=H, F2=L (Typ.: 2470[ns]) f=62.5[kHz]~125[kHz] *4
TDF M/M pulse width accuracy (2)	TDF2	-10	_	+10	%	XHD=H, F2=H (Typ.: 2040[ns]) f=62.5[kHz] ~125[kHz] *4
TDF M/M pulse width accuracy (3)	TDF3	-10	_	+10	%	XHD=L, F2=H/L (Typ.: 1230[ns]) f=125[kHz]~250[kHz] *4
RD pulse width	TRD	270	400	530	ns	Judgment level 1.5 [V]
Rise time	TTLH	_	_	70	ns	Rise time till 0.4 [V] - 2.0 [V]
Fall time	TTHL	_	_	70	ns	Fall time till 2.0 [V] - 0.4 [V]
Peak shif	P. S.	_	_	1.0	%	f=250[kHz] , VIN=1[mV _{P-P}] (differential)
Output low level voltage	VOL	_	_	0.5	٧	
Output high level voltage	VOH	2.7	_	_	٧	Rise level at 0.4 [V] to 70 [ns]

*4 RRCC=2.0 [kΩ]

Write circuit

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Write current adjustment range	IWR	2.0	_	20	mA0-P	
Write current accuracy	ACIW	—7.0	_	+7.0	%	*5
Write current pairability	△IWR	-1.0	_	+1.0	%	RWCC=2.4[kΩ]
Write current supply voltage dependency	PSIW	-4.0	-0.8	+3.0	%/V	RWCC=2.4[kΩ]
Output saturation voltage	VSATRW	_	0.4	1.0	٧	IWR=12[mA]
0"	ILKRW1	_	_	20	μA	Unselected side
Off-state leakage current	ILKRW2	_	_	50	μA	Selected side
Minimum write data pulse width	TWD	70	_	_	ns	
Write current inner track/ outer track ratio accuracy	ACIWTR	±1	0× (1-setting	%	*6	

^{*5} RWCC=2.4 [k Ω] , adapted for desired setting of XTR1, XTR2

Erase output

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Erase current adjustment	IER	_	_	40	mA	
Output saturation voltage	VSATER	_	0.2	0.6	V	IER=40[mA]
Output leakage current	IOH	_	_	10	μΑ	OFF, ED0=ED1=V∞

Logic input

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Input high level voltage	VIH	2.0	_	_	V	Excluding FILC
Input low level voltage	VIL	_	_	0.8	V	Excluding FILC
Input voltage hysteresis	VH	0.15	_	_	V	Applies to XWD, XWG, XEG, XS1
Input low level current	IIL1	_	50	100	μΑ	Vcc=5[V] VIL=GND Applies to XWG, XEG, XHD
	VIH	4.2	_	_	V	Applies to FILC
	VIM	2.0	2.5	3.0	V	Applies to FILC
Tri-state interface	VIL	_	_	0.8	V	Applies to FILC
	IIH	_	50	100	μΑ	Vcc= [V], VIH=5[V], applies to FILC
	IIL	_	50	100	μΑ	Vcc=5[V], VIL=0[V], applies to FILC

^{*6} Error in setting ratio (reference: XTR1=L, XTR2=L)

Read characteristics

	Densi	ty		1MB				1.6MB		2MB	
	Transfer	rate	FILC	250[k	(bps]	300[k	(bps]	500[kbps] 500[kbps			dps]
	Mode	XHD		HIGH		HIGH		LOW		LOW	
Input	IVIUGE	F2	NO CARE	LOW		HIGH		HIGH		LOW	
	Track	XTR1 (XSWF)	NO CARE	Outer track LOW	Inner track HIGH						
Output	Filter	fo [kHz] Characteristic *1	HIGH	144	162	171	192	324	422	384	358(C)
			OPEN	167	182	201	216	309	400	336	361 (B)
			LOW	139	162	165	192	301	384	350	361 (B)
	TDF	[nSEC]	NO CARE	2470		2040		1230		1230	

^{*1 (}B) Chebyshev characteristics.

(However RRCC=2.0 [kΩ])

Total filter peak frequency setting

$$f_0 = a / (RRCC [k\Omega] + 0.09) [kHz]$$

TDF time constant setting

250 [kbps] : T = 940 \times RRCC [k Ω] +590 [ns] 300 [kbps] : T = 745 \times RRCC [k Ω] +550 [ns] 500 [kbps] : T = 377 \times RRCC [k Ω] +476 [ns]

Write current switching ratio

	Track Out	er edge <					
	XTR1	l	-	Н			
	XTR2	L	Н	L	Н		
Density	2MB	0.450	0.400	0.350	0.300		
	1.6MB	0.500	0.450	0.400	0.350		
	1MB (250kbps)	0.933	0.833	0.766	0.677		
	1MB (300kbps)	1.000	0.900	0.800	0.700		

Write current setting

$$Iwr = \frac{24.0}{RWCC [k\Omega]} [mA]$$

⁽C) All are Butterworth characteristics except 2MB inner edges. High-ripple Chebyshev characteristics.

•Filter characteristic

Fig. 1 PRE IN - DIFF OUT

Preamplifier-differentiator (B.P.F)-L.P.F

(A) Total characteristic peak frequency (fo): 1M, 1.6M, 2M [outer edge]

(B) Total characteristic peak frequency (fo) when FILC = low level or FILC = open, 2M [inner edge]

(C) Total characteristic peak frequency (fo) when FILC = high level, 2M [inner edge]

Measurement circuit

Fig. 2

Circuit operation

(1) Read

The input signal from the head coils from each side of the disc is amplified by the preamplifier and then differentiated. The filter time constant can be set externally. After differentiation, the differential output is input to the comparator. The time domain filter detects zero cross, and the output is converted to read data. The monostable multivibrator width can be set externally, while the read data pulse width is a constant 400ns.

(2) Write

Input write data are converted to toggle movements by the internal flip-flops, operating the write driver. The write driver current is supplied by the write current generator, but the externally set current can be controlled according to density and by selecting inner track / outer track.

(3) Erase

An open collector output pin is used, and the erase current is set with a resistor between it and the head.

(4) Power supply

When the low level voltage detector detects a drop in the supply voltage, writing and erasing are prohibited.

Operation notes

- (1) Use a short pattern for Vcc, and a sufficiently wide AGND and DGND. Keep the impedance between Vcc and GND low by inserting a bypass capacitor.
- (2) Use a pattern that will minimize interference between digital signals and the head.

Electrical characteristic curves

Fig. 3 Thermal derating characteristics

Fig. 4 Preamp voltage gain vs. ambient temperature

Fig. 5 Preamp voltage gain vs. power supply voltage

Fig. 6 Filter time constant (fo) vs. ambient temperature

Fig. 7 Filter time constant (f₀) vs. power supply voltage

Fig. 8 TDF time constant vs. ambient temperature

Fig. 9 TDF time constant vs. power supply voltage

Fig. 10 Write current vs. ambient temperature

Fig. 11 Write current vs. power supply voltage

Fig. 12 Low level datection voltage vs. ambient temperature

Fig. 13 Write current vs. write current adjustment resistance

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

