

- [1] Dittrich, Jens, Joris Nix, and Christian Schön. "The next 50 years in database indexing or: the case for automatically generated index structures." *Proceedings of the VLDB Endowment* 15.3 (2021): 527-540.
- [2] Cha, Hokeun, et al. "Blink-hash: An adaptive hybrid index for in-memory timeseries databases." *Proceedings of the VLDB Endowment* 16.6 (2023): 1235-1248.
- [3] Anneser, Christoph, et al. "Adaptive hybrid indexes." *Proceedings of the 2022 International Conference on Management of Data*. 2022.

PGM - Property Graph Model

RDF - Resource Description Framework

- → Stored in triple format (node, edge label, node)
- → Each property must be modeled as a triple Label: Descriptive Type information

PGQL - Property Graph Query Language (tries to look like SQL)

Property/Data - Actual data

Label – Descriptive (type) information

→ Labels are sometimes called "type", especially in the context of edges

Properties/Data:

- Assuming a domain of data / values ${\mathcal D}$ and a domain of property keys / attributes ${\mathcal K}$
- A graph is a structure (V, E, ν)
- $\nu: V \to \mathcal{D}$ (vertex data)

 $\nu: E \to \mathcal{D}$ (edge data)

 ν : $V \cup E \rightarrow \mathcal{D}$ (vertex and edge data)

 ν : $V \times \mathcal{K} \to \mathcal{D}$ (vertex properties)

 $\nu: E \times \mathcal{K} \to \mathcal{D}$ (edge properties)

 ν : $(V \cup E) \times \mathcal{K} \to \mathcal{D}$ (vertex and edge properties) is a partial function assigning data / values to each vertex / edge / vertex and edge

Vertex id is system generated in Neo4j

Cypher (Neo4j) uses the keyword CREATE to create a new vertex, e.g.

CREATE (ja:Person { name: 'Jane Austen', yearOfBirth: 1775 })

An edge can be created with the CREATE keyword in Cypher, just like vertices, e.g.

CREATE (ja)-[:livedIn {since: 1775}]->(lo)

Not directly expressible since edge connect exactly two vertices, not more, not less

→ Solution: Reification of relationship

Expressibility depends on datatype system of specific system in use

- → Possible in Neo4j (see slide)
- → If not expressible: Reification of values of multivalued property

Multiple labels can be connected with a : or a & in Neo4j, e.g. (wb:Person&Artist {name: 'William Blake', hadOccupation: ['Poet', Painter', Printmaker']})

Exercise Neo4j

- Your fridge is stocked with cheese, butter, milk, and pizza
- There are also 4 tomatoes and two bars of chocolate in the kitchen
- Each item has an expiration date and a quantity: cheese (15 May, 10), butter (01 June, 1), milk (11 May, 2), Pizza (25 Aug, 5)
- You have a recipe for luxury frozen pizza that is called "PiDeLuxe". It requires a slice of cheese and a tomato per frozen pizza. You want to prepare one Pizza "PiDeLuxe" today.

How can this be modeled using the ER model? How could it be expressed with Neo4j?

11

Reachability: $A^2=A\cdot A$ shows all paths of length 2 between nodes of graph represented by A

Graph isomorphism: Graphs represented by A_1 and A_2 are isomorphic if there exists a permutation matrix P such that PA_1 $P^{-1}=A_2$

Note: Most definitions work only for unlabeled graphs!

Adjacency matrices are often sparse

→ Compression

Also works column-wise → Compress Sparse Column (CSC)

Representations: Relational Representations I Triple Table: A table with three columns: subject, predicate, object http://www.w3.org/2000/10/swap/pim/contact#fullName> "Eric Miller" http://www.w3.org/2000/10/swap/pim/contact#mailbox> <mailto:e.miller123(at)example> $< http://www.w3.org/People/EM/contact\#me> \\ < http://www.w3.org/2000/10/swap/pim/contact\#personalTitle> \\ "Dr." \\$ http://www.w3.org/1999/02/22-rdf-syntax-ns#type> http://www.w3.org/2000/10/swap/pim/contact#Person Vertex and Edge Table: Two universal tables, one for vertices, one for edges Nationality RAM "Apple iPad MC707LL/A" Product "Cell Phones & Accessories" Category part of "Phones" Category part of 19 ૠું NoSQL

Triple Table

- · Generic, simple, straightforward approach
- Can be built on relational storage engines
- · Add indexing for faster lookups
- Queries need to operate on all triples (no data portioning based on schema information)
- · High storage redundancy

Vertex and Edge Table

- Requires efficient handling of NULL values
 - · Given for instance in column stores
- Queries need to operate on all vertices/edges (no data portioning based on schema information)

Further reading

Daniel J. Abadi et al. Scalable Semantic Web Data Management Using Vertical Partitioning. VLDB 2007

Representations: Relational Representations II

Clustered Property Table: Groups properties that tend to be defined together in a table

Property Table			
Subj.	Type	Title	copyright
ID1	BookType	"XYZ"	"2001"
ID2	CDType	"ABC"	"1985"
ID3	BookType	"MNP"	NULL
ID4	DVDType	"DEF"	NULL
ID5	CDType	"GHI"	"1995"

Left-Over Triples		
Subj.	Prop.	Obj.
ID1	author	"Fox, Joe"
ID2	artist	"Orr, Tim"
ID2	language	"French"
ID3	language	"English"

BookType NULL

Property-Class Table: Cluster similar sets of subjects together in the same table

Class: BookType			
Subj.	Title	Author	copyright
ID1	"XYZ"	"Fox, Joe"	"2001"
ID3	"MNP"	NULL	NULL
ID6	NULL	NULL	"2004"
	•		

Class: CDType			
Subj.	Title	Artist	copyright
ID2	"ABC"	"Orr, Tim"	"1985"
ID5	"GHI"	NULL	"1995"

Left-Over Triples			
Subj.	Prop.	Obj.	
ID2	language	"French"	
ID3	language	"English"	
ID4	type	DVDType	
ID4	title	"DEF"	

20

Clustered Property Table

- Example:
 - · Properties: type, title, and copyright date
 - Table stores all triples with one of these properties
- Multiple property tables with different clusters of properties may be created
- One particular property may only appear in at most one property table
- Triples that not fit any property table are stored in a left-over triple table
- Multivalued attributes are problematic
- Queries that have unspecified property are problematic
- Introduce NULL values

Property-Class Table

- Exploits the type property of subjects
- A property may exist in multiple property-class tables
- A subject may also exist in multiple tables
- Multivalued attributes are problematic
- Queries that do not select on class type are problematic
- Introduce NULL values

Property Table Approaches

Triple Table

Subj.	Prop.	Obj.
ID1	type	BookType
ID1	title	"XYZ"
ID1	author	"Fox, Joe"
ID1	copyright	"2001"
ID2	type	CDType
ID2	title	"ABC"
ID2	artist	"Orr, Tim"
ID2	copyright	"1985"
ID2	language	"French"
ID3	type	BookType
ID3	title	"MNO"
ID3	language	"English"
ID4	type	DVDType
ID4	title	"DEF"
ID5	type	CDType
ID5	title	"GHI"
ID5	copyright	"1995"
ID6	type	BookType
ID6	copyright	"2004"

(Clustered) property table

Property Table				
Subj.	Type	Title	copyright	
ID1	BookType	"XYZ"	"2001"	
ID2	CDType	"ABC"	"1985"	
ID3	BookType	"MNP"	NULL	
ID4	DVDType	"DEF"	NULL	
ID5	CDType	"GHI"	"1995"	
ID6	BookType	NULL	"2004"	

Left-Over Triples			
Subj.	Prop.	Obj.	
ID1	author	"Fox, Joe	
ID2	artist	"Orr, Tim	

language

Property-Class Table

70041		
Title	Author	copyright
"XYZ"	"Fox, Joe"	"2001"
"MNP"	NULL	NULL
NULL	NULL	"2004"
	"MNP"	"XYZ" "Fox, Joe" "MNP" NULL

Class: CDType			
Subj.	Title	Artist	copyright
ID2	"ABC"	"Orr, Tim"	"1985"
ID5	"GHI"	NULL	"1995"

Left-Over Triples			
Subj.	Prop.	Obj.	
ID2	language	"French"	
ID3	language	"English"	
ID4	type	DVDType	
ID4	title	"DEF"	

Reduce numbers of subject-subject self joins necessary to reconstruct entities

- PGQs were recently adopted in the SQL standard (2023): ISO/IEC DIS 9075-16
- First implementation in Oracle version 23.2: https://docs.oracle.com/en/database/oracle/property-graph/23.2/spgdg/sql-property-graphs.html
- Only because PGQs are supported by SQL, there is no guarantee that the DBS implementing it is optimized for graph processing!