Force (\mathbf{F}, \mathbf{f}) $\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{qQ}{2} \hat{\boldsymbol{\lambda}}$ point charge $\mathbf{F} = Q\mathbf{E}$ e-field

 $\mathbf{f} = \sigma \mathbf{E} \ per \ unit \ A$

 $\mathbf{f} = \frac{1}{2}\sigma(\mathbf{E}_{abv} + \mathbf{E}_{blw})$ general

 $\mathbf{Electric}\ \mathbf{Field}\ (\mathrm{E})$

 $\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{q_i}{2\epsilon^2} \hat{\boldsymbol{\lambda}}_i \text{ point charges}$

 $\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{1}{2}\hat{\mathbf{z}}dq$ continuous q-dist

 $\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\lambda(\mathbf{r}')}{2} \hat{\boldsymbol{\lambda}} dl' \ linear \ q\text{-}dist$

 $\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\sigma(\mathbf{r}')}{2} \hat{\boldsymbol{\lambda}} da' \text{ surface } q\text{-dist}$

 $\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}')}{2} \hat{\boldsymbol{\iota}} d\tau' \text{ volume } q\text{-}dist$

 $\oint \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{enc} \ G\text{-symm q-dist}$ $\mathbf{E} = -\nabla V \ e\text{-potential}$

 $\mathbf{E} = \mathbf{0}$ inside conductor

 $\mathbf{E} \neq \mathbf{0}$ cavity in conductor

 $\mathbf{E} = \frac{\sigma}{\epsilon_0} \hat{n}$ just outside conductor

Electric Potential (V)

 $V(\mathbf{r}) \equiv \int_{\mathcal{O}=\infty}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l} \ def$ $V = \sum_{i} V_{i} \ linsup$ $V = \frac{1}{4\pi\epsilon_{0}} \sum_{i} \frac{q_{i}}{\mathcal{D}_{i}} \ point \ charges$

 $V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{1}{2} dq \ continuous \ q\text{-}dist$

 $V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}')}{2} d\tau' \text{ volume q-dist}$

 $V = \frac{1}{4\pi\epsilon_0} \int \frac{\lambda(\mathbf{r}')}{2} dl' \ linear \ q\text{-}dist$

 $\begin{array}{l} V = \frac{1}{4\pi\epsilon_0}\int \frac{\sigma(\mathbf{r}')}{2}da' \ surface \ q\text{-}dist \\ V(\mathbf{r}) = W/Q \ work \end{array}$

 $\nabla^2 V = -\frac{\rho}{\epsilon_0} Poisson \ w/bc's$

 $\nabla^2 V = 0$ no enclosed ρ , uniqueness

 $\pm \mathbf{q} \ q_i \ above \ conducting \ plane(s)$

 $V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}}$

 $\int (r')^n P_n(\cos \alpha) \rho(\mathbf{r}') d\tau' \text{ far from } q\text{-}dist$

 $V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \left(\frac{1}{r} \int \rho(\mathbf{r}') d\tau'\right)$

 $+\frac{1}{r^2}\int r'\cos\alpha\rho(\mathbf{r}')d\tau'$

 $+\frac{1}{r^3}\int (r')^2(\frac{3}{2}\cos\alpha^2)$ far from q-dist

 $V_{dip}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2}$ no net charge Work (W)

 $W = \int_a^b \mathbf{F} \cdot d\mathbf{l} \ def$

 $W = QV(\mathbf{r})$ e-potential

 $W = \frac{1}{2} \sum_{i=1}^{n} q_i V(\mathbf{r}_i) \ p - q$'s, V_i of others

 $W = \frac{1}{2} \int \sigma V da \text{ surf-q density}$

 $W = \frac{1}{2} \int \rho V d\tau \ vol\text{-}q \ density$ $W = \frac{\tilde{\epsilon}_0}{2} \int E^2 d\tau$ e-field, all space

Energy (W)

We have $V(\mathbf{r}_i)$ assembly $W = \frac{1}{2} \sum_{i=1}^{n} q_i V(\mathbf{r}_i)$ assembly $W = \frac{\epsilon_0}{2} \int E^2 d\tau$ total, e-field $W = \frac{1}{2} \int \rho V d\tau$ total, q-dist $W = \frac{1}{2} CV^2$ capacitor

 ${\bf Dipole\ Moment\ (p)}$

 $\mathbf{p} \equiv \int \mathbf{r}' \rho(\mathbf{r}') d\tau' \ gen$

 $\mathbf{p} = \sum_{i}^{n} q_{i} \mathbf{r'}_{i} \ p - q's$

 $\mathbf{p} = q\mathbf{d} \ equal/opp \ q's$

Physical Dipole (d)

Curl of E

 $\nabla \times \mathbf{E} = \mathbf{0} \ static \ q\text{-}dist$

Charge Density (ρ)

 $\begin{array}{l} \nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \ e\text{-field} \\ \nabla^2 V = -\frac{\rho}{\epsilon_0} \ e\text{-potential} \\ \rho = 0 \ inside \ conductor \end{array}$

Capacitance (C)

 $C \equiv \frac{Q^+}{V^+} def$

Surface Charge (σ)

 $\sigma = -\epsilon_0 \frac{\partial V}{\partial n}$ conductor

e-Pressure

 $P = \frac{\epsilon_0}{2}E^2$ conductor in e-field

Charge Enclosed (Q_{enc})

 $\oint \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{enc} \ G\text{-symm} \ q\text{-}dist$

 $Q_{enc} = \int \lambda dl = \int \sigma da = \int \rho d\tau \ general$

 $Q_{enc} = Q_{surf} \ conductor$

 $Q_{enc} = -q_{induced} \ induction$ $Q_{enc} = \sum q_i \ conductor \ w/ \ cavity \ q$'s

Laplace $(\nabla^2 V = 0)$

 $\sum_{n,m,\dots} (Ae^{kx})$ V(x,y) Be^{-kx}) $(C\sin ky + D\cos ky)$ planes,

 $V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l(\cos \theta)$

spherical

Cartesian Coefficients (A, B, C, D)

C = 0 term diverges

 $C = \mathcal{F}$ orthogonal series

 $C = \mathcal{B}$ boundary conditions

Spherical Coefficients (A_l, B_l)

C = 0 term diverges

 $C = \mathcal{F}$ orthogonal series

 $C = \mathcal{B}$ boundary conditions

Method of Images $(\pm q)$

Fourier Method (\mathcal{F})

Legendre Polynomials (P_l, P_n)

 $P_l = P_n \equiv \frac{1}{2^l l!} (\frac{d}{dx})^l (x^2 - 1)^l$ Rodrigues

Boundary Conditions (B)

 $\mathcal{B} = \mathcal{B}(V_{in/out})$ (sphr) e-pot cont. across

 $\mathcal{B} = \mathcal{B}(V_0)$ surf pot specified

 $\mathcal{B} = \mathcal{B}(\sigma_0)$ surf charge specified

Separation vector $\mathbf{\lambda} = \mathbf{r} - \mathbf{r}'$ general Charge differential $dq = \lambda dl'$ linear dist $dq = \sigma da'$ surface dist $dq = \rho d\tau'$ volume dist Line differential

 $\begin{aligned} d\mathbf{l} &= dr \hat{\mathbf{r}} + r d\theta \hat{\theta} + r \sin\theta d\phi \hat{\phi} \\ \mathbf{Volume \ differential} \\ d\tau &= s' ds' d\phi dz \ cylin \\ d\tau &= r^2 \sin\theta dr d\theta d\phi \ sphr \\ \mathbf{Boundary \ Conditions} \\ E_{above}^{\perp} - E_{below}^{\perp} &= \frac{\sigma}{\epsilon_0} \ any \ boundry \end{aligned}$

 $\begin{array}{l} \frac{\partial V_{above}}{\partial n} - \frac{\partial V_{below}}{\partial n} = -\frac{\sigma}{\epsilon_0} \ any \ boundry \\ V_{in}(R) = V_{out}(R) \ V \ cont \ across \ boundry \\ V(\theta_1) = V(\theta_2) \ conductor \rightarrow \ equipotential \\ \textbf{Normal Derivative} \\ \frac{\partial V}{\partial n} = \nabla V \cdot \hat{n} \ general \end{array}$