

POLYMER

29 OCT 2005

10/501442

SEQUENCE LISTING *A5*

<110> Diversa Corporation
Kerovuo, Janne
Solbak, Arne
Gray, Kevin
McCann, Ryan
Purohit, Shalaka
Gerendash, Joel
Janssen, Giselle
Dahod, Samun

<120> PECTATE LYASES, NUCLEIC ACIDS ENCODING
THEM AND METHODS FOR MAKING AND USING THEM

<130> 564462009640

<140> To Be Assigned
<141> Concurrently herewith

<150> 60/460,842
<151> 2003-04-04

<150> 60/484,798
<151> 2003-07-03

<160> 134

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1917
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 1
gtgtctcttttagaaaactcgcaactgctgttctgtgcgtctactgctttctgtcgga
60
gcagaaacccgagcgtcgaagcgaattgtcgtggccgctgatggatcggttgacgtcagg
120
acaattcaaacaaagcggtgaccaggttccc aaagacaatacacacccggcttgattcag
180
atcaaaccgggtgttatca ggaacaggtaatgtcgccgcggccaaacgtttatcact
240
tttcgcggcgacgatgcgagcaagaccgtcattcacatcattgagcgcactgcaagcg
300
ggaaataacccggctggcattcaccacccgttataatgcagacgactttcgccggagaac
360
ctgacgtttgaaaactccttccggcaccgggttcacaaggcggttgctttgttgcgtatgcg
420
gaccgcgcga cgtttgaaaaatggccggttccgggttgcgtatgcg
480
ggcagccgccacttcttcaaagactgctacgtcaaggccacgtcgatttcatggcc
540
acggcctccgccgtgtttga gaactgcaccattcacagca aaggcgaaggttatgtgacc

600
gcacactatc gcaccagcga tgagatggat accgggttttgc tcttcatcg ttgtcggttg
660
accggacgag acacggggcccg cggagtttat ctcggaaggc cttggcgacc ttacgcgcgc
720
gtcgtctta tcgattgctg gctggacgca cacatcagac ctgaaggctg ggataattgg
780
agagatcctg aacgagagaa gaccgcgtgg tttgccgagt acaagtcaaa agggccccgt
840
gctaattcccg tagctcggtcgc cgacagaaca agccgcgcag
900
ttttcgccgg aacgctttt cagccgcgt gttcgccggc tctctggca ggccaaccag
960
gcagtcggaa cgatcgcgtg ggacgatgcg cagaaaaaac cgaacgagtgc gtatgcgagc
1020
gccgaggcgt tgccgttgc cgacaacgtt gttctttatc aacgtgactc cggcggttgg
1080
cccaagaaca tcgacatggg gaagccgctc gacgaaaagg gtcgagccgg tcttctgcgc
1140
gtgcgttaaga agaacgattc cacgatcgac aatggcgca cttacacgca actctcgtt
1200
ctggcgccgg tttacacggc gcaaaacgcg gagcggcgtc gcgagtcgtt tctgaaggga
1260
ctcgattacc ttttgcgttgc gcaatccca aacggaggct ggccgcgtt ctatccaaac
1320
ctcaacggctt attacaaaca catcaacttc aacgacaacg ccatgatcg cgtatgaaa
1380
ctgctgcgcg acgttagcgac agcgaaacccg gcgtatgcgt tcgtcgacga agcacgacgg
1440
acgagtgcgg cgaaggcggt cggaaaaagg atcgagtgcg tactgaagac gcagggtgg
1500
gtgaatggcc ggcgcaccgt gtgggtgcg caacatgacg aagtacgcgt cgcgcctgcc
1560
ccggcgagga cgttgcattt agttcgctg agtgggtggaa aacgcgttgc gatcgatgcgc
1620
tttttgcgttgc gcatcaagaa cccgtcgccg gcggttgcg aggcatcgaa gtcggcggtt
1680
gcgtgggtcg agcaatcgca agtggaaatgc cccgcggca aacgcgttgc ggcgcgtt
1740
tatggatcg gcaactatcg tccgatcttc gcccggcggt acggcggtcg taatgtat
1800
gtgaaacaga tcgatgagga acgacgaaag aattacgcgtt ggtacgttgc cgacgcagcg
1860
aaactactga aaaccgacta tcctgagtgg aaagaaaaga acgccaaaga tcaatga
1917

<210> 2
<211> 638
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(21)

<221> DOMAIN
<222> (28)...(308)
<223> Pectin methyl esterase domain

<221> DOMAIN
<222> (309)...(638)
<223> Catalytic domain

<400> 2
Met Ser Leu Phe Arg Lys Leu Ala Leu Leu Val Leu Cys Gly Leu Leu
1 5 10 15
Leu Ser Val Gly Ala Glu Thr Arg Ala Ser Lys Arg Ile Val Val Ala
20 25 30
Ala Asp Gly Ser Gly Asp Val Arg Thr Ile Gln Gln Ala Val Asp Gln
35 40 45
Val Pro Lys Asp Asn Thr His Pro Val Leu Ile Gln Ile Lys Pro Gly
50 55 60
Val Tyr Gln Glu Gln Val Arg Val Ala Ala Gly Lys Arg Phe Ile Thr
65 70 75 80
Phe Arg Gly Asp Asp Ala Ser Lys Thr Val Ile Thr Tyr Arg Leu Ser
85 90 95
Ala Leu Gln Ala Gly Asn Thr Arg Leu Ala Phe Thr Thr Phe Val Asn
100 105 110
Ala Asp Asp Phe Arg Ala Glu Asn Leu Thr Phe Glu Asn Ser Phe Gly
115 120 125
Thr Gly Ser Gln Ala Val Ala Leu Phe Val Asp Ala Asp Arg Ala Thr
130 135 140
Phe Glu Asn Cys Arg Phe Leu Gly Trp Gln Asp Thr Leu Phe Val Asn
145 150 155 160
Gly Ser Arg His Phe Phe Lys Asp Cys Tyr Val Glu Gly His Val Asp
165 170 175
Phe Ile Phe Gly Thr Ala Ser Ala Val Phe Glu Asn Cys Thr Ile His
180 185 190
Ser Lys Gly Glu Gly Tyr Val Thr Ala His Tyr Arg Thr Ser Asp Glu
195 200 205
Met Asp Thr Gly Phe Val Phe His Arg Cys Arg Leu Thr Gly Arg Asp
210 215 220
Thr Gly Arg Gly Val Tyr Leu Gly Arg Pro Trp Arg Pro Tyr Ala Arg
225 230 235 240
Val Val Phe Ile Asp Cys Trp Leu Asp Ala His Ile Arg Pro Glu Gly
245 250 255
Trp Asp Asn Trp Arg Asp Pro Glu Arg Glu Lys Thr Ala Trp Phe Ala
260 265 270
Glu Tyr Lys Ser Lys Gly Pro Gly Ala Asn Pro Val Ala Arg Val Ala
275 280 285
Trp Ser Arg Gln Leu Thr Thr Glu Gln Ala Ala Glu Phe Ser Arg Glu
290 295 300
Arg Phe Phe Ser Arg Ala Val Arg Gly Leu Ser Gly Gln Ala Asn Gln
305 310 315 320
Ala Val Gly Thr Ile Ala Trp Asp Asp Ala Gln Lys Lys Pro Asn Glu
325 330 335
Trp Tyr Ala Ser Ala Glu Ala Leu Arg Ile Ala Asp Asn Val Val Leu
340 345 350
Tyr Gln Arg Asp Ser Gly Gly Trp Pro Lys Asn Ile Asp Met Gly Lys
355 360 365
Pro Leu Asp Glu Lys Gly Arg Ala Gly Leu Leu Arg Val Arg Lys Lys
370 375 380
Asn Asp Ser Thr Ile Asp Asn Gly Ala Thr Tyr Thr Gln Leu Ser Phe
385 390 395 400
Leu Ala Arg Val Tyr Thr Ala Gln Lys Gln Glu Arg His Arg Glu Ser
405 410 415
Phe Leu Lys Gly Leu Asp Tyr Leu Leu Lys Ala Gln Tyr Pro Asn Gly
420 425 430
Gly Trp Pro Gln Phe Tyr Pro Asn Leu Asn Gly Tyr Tyr Lys His Ile
435 440 445

Thr Phe Asn Asp Asn Ala Met Ile Gly Val Met Lys Leu Leu Arg Asp
450 455 460
Val Ala Thr Ala Lys Pro Ala Tyr Ala Phe Val Asp Glu Ala Arg Arg
465 470 475 480
Thr Ser Ala Ala Lys Ala Val Glu Lys Gly Ile Glu Cys Ile Leu Lys
485 490 495
Thr Gln Val Val Val Asn Gly Arg Arg Thr Val Trp Cys Ala Gln His
500 505 510
Asp Glu Val Thr Leu Ala Pro Ala Pro Ala Arg Thr Phe Glu Leu Val
515 520 525
Ser Leu Ser Gly Gly Glu Ser Val Glu Ile Val Arg Phe Leu Met Ser
530 535 540
Ile Lys Asn Pro Ser Pro Ala Val Val Glu Ala Ile Glu Ser Ala Val
545 550 555 560
Ala Trp Phe Glu Gln Ser Gln Val Lys Asp Pro Ala Gly Lys Pro Ala
565 570 575
Trp Ala Arg Phe Tyr Glu Ile Gly Thr Asn Arg Pro Ile Phe Ala Gly
580 585 590
Arg Asp Gly Val Val Lys Tyr Asp Val Lys Gln Ile Asp Glu Glu Arg
595 600 605
Arg Lys Asn Tyr Ala Trp Tyr Val Asp Asp Ala Ala Lys Leu Leu Lys
610 615 620
Thr Asp Tyr Pro Glu Trp Lys Glu Lys Asn Ala Lys Asp Gln
625 630 635

<210> 3
<211> 1416
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 3
atgtcgtcac gacgcgagtt cattagagat ctgttgactg gcggcgca gatgccgtc
60
gcgcgcgtc tgtctgcgtt tgcagcggag gagaatccgt gggaaacggt gatgccttcg
120
atcgtgaaac gcatcaagcg acctcggtt ccgatgcgca cgtttgcgtt cacggagtt
180
ggagcgtaaag gtgtatggacg aacagattgc acgttggctt tccgtcgcc gatcgatcg
240
tgcacgaacg ccggtggtgg gagagtagtt gttccaccgg gttcgatct cactggcgcc
300
attcatttga agagcaacgt cgaccttcat atctcagaag gtactacggt caagttcagc
360
cagaacccga aagactacct gcccggtt ttctcggtt gggaaaggcgt cgagggtttc
420
aactactcgc ctttatcta cgccttcgaa caaacgaaca ttgcgatcac tggcaagggc
480
acgctcaacg gtcaaagcga caacgaacac tggtgccct ggaacggacg tgccgcgtac
540
ggctggaaag aagggtatgag caatcagcgt cccgatcgaa atgcgtgtt tgcgatggcc
600
aaaaaaggtg tcccggttca ggagcgcatt tttgggtgagg gccattactt aaggccgcag
660
ttcattcaac cttatcggtt tgagaacgtg ctgatcgaag gtgtcactat tcgaaactcg
720
ccgatgtgg aaattcatcc ggtgctctgc cggaatgtca tcgtccaaaa tgtgatcatc
780
aacagtcatg gtccaaacaa cgacgggtgt aatcctgagt cgtgcacgga tgtgttgatt

840
aaggattgtg acttcacac tggtaacat tttatcgca tcaagtcagg ccgaaatgca
900
gatggccgc gactgaaggc tcctactgaa aacattatcg tgactgggt tcgcataaaa
960
gatggtcacg gccccattac ggtggcagc gagattcgg gtgggtgcg aaatcttgc
1020
gcattcaact gccggctcga cagtccgaac ctggaccatg cattgcgggt taagaataac
1080
gctatgcgtg gccccgttt ggagaatctg cacttccgaa atatcgacgt cggcaagtg
1140
gcgcacgcgg tggcacat cgattcaat tatgaggaag gcgcgaaggg atcggtc
1200
ccagtcgttc gtgattacac cgtcgatggc cttcgacca cggaaatgaa gtacgcgctc
1260
gatgtgcagg gcttggcgac ggcgccgatc gtgaatctgc gtctaaccgg ctgcacatctc
1320
gacaatgtcg ctgaaggaaa tgggtgtaaag aacgtaaagg atgcaactat cgagaatgtc
1380
aaaatcaatg gaaaaagcgt tggatgcgtt ccgttag
1416

<210> 4
<211> 471
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(28)

<221> DOMAIN
<222> (81)...(476)
<223> Catalytic domain

<400> 4
Met Ser Ser Arg Arg Glu Phe Ile Arg Asp Leu Leu Thr Gly Gly Ala
1 5 10 15
Leu Ile Ala Val Ala Pro Arg Leu Ser Ala Phe Ala Ala Glu Glu Asn
20 25 30
Pro Trp Glu Thr Val Met Pro Ser Ile Val Lys Arg Ile Lys Arg Pro
35 40 45
Arg Phe Pro Met Arg Thr Phe Asp Leu Thr Glu Phe Gly Ala Lys Gly
50 55 60
Asp Gly Arg Thr Asp Cys Thr Leu Ala Phe Arg Arg Ala Ile Asp Arg
65 70 75 80
Cys Thr Asn Ala Gly Gly Arg Val Val Val Pro Pro Gly Ser Tyr
85 90 95
Leu Thr Gly Ala Ile His Leu Lys Ser Asn Val Asp Leu His Ile Ser
100 105 110
Glu Gly Thr Thr Val Lys Phe Ser Gln Asn Pro Lys Asp Tyr Leu Pro
115 120 125
Val Val Phe Ser Arg Trp Glu Gly Val Glu Val Phe Asn Tyr Ser Pro
130 135 140
Phe Ile Tyr Ala Phe Glu Gln Thr Asn Ile Ala Ile Thr Gly Lys Gly
145 150 155 160
Thr Leu Asn Gly Gln Ser Asp Asn Glu His Trp Trp Pro Trp Asn Gly
165 170 175
Arg Ala Ala Tyr Gly Trp Lys Glu Gly Met Ser Asn Gln Arg Pro Asp

180	185	190
Arg Asn Ala Leu Phe Ala Met Ala Glu Lys Gly Val Pro Val Gln Glu		
195	200	205
Arg Ile Phe Gly Glu Gly His Tyr Leu Arg Pro Gln Phe Ile Gln Pro		
210	215	220
Tyr Arg Cys Glu Asn Val Leu Ile Glu Gly Val Thr Ile Arg Asn Ser		
225	230	235
Pro Met Trp Glu Ile His Pro Val Leu Cys Arg Asn Val Ile Val Gln		
245	250	255
Asn Val Ile Ile Asn Ser His Gly Pro Asn Asn Asp Gly Cys Asn Pro		
260	265	270
Glu Ser Cys Thr Asp Val Leu Ile Lys Asp Cys Asp Phe Asp Thr Gly		
275	280	285
Asp Asp Cys Ile Ala Ile Lys Ser Gly Arg Asn Ala Asp Gly Arg Arg		
290	295	300
Leu Lys Ala Pro Thr Glu Asn Ile Ile Val Thr Gly Cys Arg Met Lys		
305	310	315
Asp Gly His Gly Gly Ile Thr Val Gly Ser Glu Ile Ser Gly Gly Val		
325	330	335
Arg Asn Leu Phe Ala Ser Asn Cys Arg Leu Asp Ser Pro Asn Leu Asp		
340	345	350
His Ala Leu Arg Val Lys Asn Asn Ala Met Arg Gly Gly Leu Leu Glu		
355	360	365
Asn Leu His Phe Arg Asn Ile Asp Val Gly Gln Val Ala His Ala Val		
370	375	380
Ile Thr Ile Asp Phe Asn Tyr Glu Glu Gly Ala Lys Gly Ser Phe Thr		
385	390	395
400		
Pro Val Val Arg Asp Tyr Thr Val Asp Gly Leu Arg Ser Thr Lys Ser		
405	410	415
Lys Tyr Ala Leu Asp Val Gln Gly Leu Ala Thr Ala Pro Ile Val Asn		
420	425	430
Leu Arg Leu Thr Asn Cys Ile Phe Asp Asn Val Ala Glu Gly Asn Val		
435	440	445
Val Lys Asn Val Lys Asp Ala Thr Ile Glu Asn Val Lys Ile Asn Gly		
450	455	460
Lys Ser Val Asp Ala Val Pro		
465	470	

<210> 5
<211> 1077
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 5
ttggacgaca agtgggctga gcggacatcg cccgatttca atctcgtctc gtggaatgaa
60
attctaaagc agccgaaact ttggtaacgcg gtcgacgaag cgacgcggat cgcaaatcag
120
gtgatccctt atcaacgcga caacggtggt tggccgaaga atatcgacat ggccgccatg
180
ctcatgcagg cagaacgcga aaaacttagt cgcgagaaga gcgagaccga cacgacaatc
240
gacaacggcg cgacgacaac ccagctcgcg tatctggcga aggtcatcac ggccaagaat
300
atcgaaagcc atcgcgtcgc gttttcaaa ggcctcgatt ttctttcgc catgcagtac
360
ggaaatggcg gcttcccgca atttttcct ctgcgtgacg attattcgcg cgagattacg
420

ttcaacgaca acgcgatgat aaatgtgctt cggttgctcc ggcacatagc cgatcgaaag
480
aacgattatg tggatttcga tgaagagccg cgagcgaagg cccgagcaggc tgtaaggcgt
540
gcgatcccgt tgatccttag cacgcaggc gtcgtcgatg gaaagaaaac cgtctggct
600
gcgcagtagtgc atgagaagac attgaagccg gcccgcgc gaaagttcga gccggcatca
660
ttgaccgcgc gcgagagcgt tggcatcgac cggttttgc tgctagaaaa accaacaccc
720
gagatcatta acgcgatcga atccgcatac gcttggtaca aggccaacaa catctcgaa
780
cttaggtgg agagggcggaa cggcgagaac attgtatca aagacaagaa cgcgcgc
840
gtctggcgc gcttttatca gatcgaaacg atgaggccga tcttcgcgg tcgcgtgc
900
gtcatcagat acgatgtatc gcagatcgag tcgaaacgatc gaaacggata tgcgtgtac
960
gtatccgaac cgaatgagtt gttaatgaa gattatccga agtggaggac aaggagtgc
1020
aagcgtgcgc agatcttca acgtccgcct ctggatcgaa gatttcggac cgtgtac
1077

<210> 6
<211> 358
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(358)
<223> Catalytic domain

<400> 6
Met Asp Asp Lys Trp Ala Glu Arg Thr Ser Pro Asp Phe Asn Leu Val
1 5 10 15
Ser Trp Asn Glu Ile Leu Lys Gln Pro Lys Leu Trp Tyr Ala Val Asp
20 25 30
Glu Ala Thr Arg Ile Ala Asn Gln Val Ile Leu Tyr Gln Arg Asp Asn
35 40 45
Gly Gly Trp Pro Lys Asn Ile Asp Met Ala Ala Met Leu Met Gln Ala
50 55 60
Glu Arg Glu Lys Leu Ser Arg Glu Lys Ser Glu Thr Asp Thr Thr Ile
65 70 75 80
Asp Asn Gly Ala Thr Thr Thr Gln Leu Ala Tyr Leu Ala Lys Val Ile
85 90 95
Thr Ala Lys Asn Ile Glu Ser His Arg Val Ala Phe Phe Lys Gly Leu
100 105 110
Asp Phe Leu Phe Ala Met Gln Tyr Gly Asn Gly Gly Phe Pro Gln Phe
115 120 125
Phe Pro Leu Arg Asp Asp Tyr Ser Arg Glu Ile Thr Phe Asn Asp Asn
130 135 140
Ala Met Ile Asn Val Leu Arg Leu Leu Arg Asp Ile Ala Asp Arg Lys
145 150 155 160
Asn Asp Tyr Val Phe Val Asp Glu Glu Arg Arg Ala Lys Ala Glu Gln
165 170 175
Ala Val Arg Arg Ala Ile Pro Leu Ile Leu Ser Thr Gln Val Val Val
180 185 190
Asp Gly Lys Lys Thr Val Trp Ala Ala Gln Tyr Asp Glu Lys Thr Leu

195	200	205
Lys Pro Ala Ala Ala Arg	Lys Phe Glu Pro Ala Ser	Leu Thr Ala Gly
210	215	220
Glu Ser Val Gly Ile Val Arg	Phe Leu Met	Leu Glu Lys Pro Thr Pro
225	230	235
Glu Ile Ile Asn Ala Ile	Glu Ser Ala Ile	Ala Trp Tyr Lys Ala Asn
245	250	255
Asn Ile Ser Gly Leu Arg Trp	Glu Arg Asn Gly	Glu Asn Ile Val
260	265	270
Ile Lys Asp Lys Asn Ala Pro	Pro Val Trp Ala Arg	Phe Tyr Gln Ile
275	280	285
Glu Thr Met Arg Pro Ile Phe	Ala Gly Arg Asp	Ala Val Ile Arg Tyr
290	295	300
Asp Val Met Gln Ile Glu Ser	Glu Arg Arg Asn	Gly Tyr Ala Trp Tyr
305	310	315
Val Ser Glu Pro Asn Glu Leu	Leu Asn Glu Asp	Tyr Pro Lys Trp Arg
325	330	335
Thr Arg Ser Ala Lys Arg Ala Gln	Ile Phe Gln Arg Pro	Pro Pro Leu Gly
340	345	350
Ser Arg Phe Arg Thr Val		
355		

<210> 7
<211> 1125
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 7
gtgcatgcgg gcgcaaaaca cgtgagccga tggcgcgaag agttcctgcg cgacttcgcc
60
gcgcggctct cccgaaccat tccgtcctcg cccgcgcaga gcgcgcgtt cagcgggtt
120
ccggcggcga tccgctgggg agcggacgtc ctgcggcaga agccggagtg gtatgcctcg
180
cgagaggcga ggacgatcgc cgacagcgta atccagtacc aggcggcgga cggcggctgg
240
cccaagaaca ccgacctcgg gactccccc acggctgaat cacgcgcggc cgcggcggcc
300
gacgtgacgt cgagcaccat cgacaacaac ggcacgcga tgccgatgca gttccttgcg
360
ctgggtggcgg acgcgaccgg cgaggctcgc tatcgccgtt cggttccgcgac
420
tacctgctcg ccgcgcagta tcccaacggc ggctggccgc agttcttcc gctccgcgc
480
gggttattaca cccacatcac cttcaacgcac aacgcgtatgg tcaacgtgtt gaccgtgctg
540
cgcgatgccc cggccggta ggcgcatac gccttcgtgg acgagccccg cgcgcgaag
600
gccccgcgcgc cctgttcccg gggatcgac gtcatcctga agacccaagt gaaacagaac
660
ggcaagctga cggcgtggtg cgcgcagcac gacgagaaga ccctcgcc ggcgtggcgc
720
cgcgcttacg agccgcatac gctctccggc agcgaaaccg tcggcatcgt ccgttccctg
780
atggagatcg agaagccgtc accggagatc gtcgcccgcga tcgaaggggc cgtcgcctgg
840
ctgaagtccg tggcgattcc gggctgcgc tacgagtccct tcaccggcgc ggacggacag
900

agggaccgcc gcgtcggtcc ggatccatcg gccggactcc tgtggcgcg gttctacgag
960
ctcggcacca accggccat cttcctcgcc cgcgactccg tggtcgcgc cgcgctcagt
1020
gacatcgAAC gcgagcgCCG cgccggctac gcctactacg gtacgtggcc ggcgagcctg
1080
attgctgcgg actacccgCG ctggcggtcg acgctccggc gctga
1125

<210> 8
<211> 374
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(374)
<223> Catalytic domain

<400> 8
Met His Ala Gly Ala Lys His Val Ser Arg Trp Arg Glu Glu Phe Leu
1 5 10 15
Arg Asp Phe Ala Ala Arg Leu Ser Arg Thr Ile Pro Ser Ser Pro Ala
20 25 30
Gln Ser Ala Ala Val Ser Gly Val Pro Ala Ala Ile Arg Trp Gly Ala
35 40 45
Asp Val Leu Arg Gln Lys Pro Glu Trp Tyr Ala Ser Arg Glu Ala Arg
50 55 60
Thr Ile Ala Asp Ser Val Ile Gln Tyr Gln Ala Ala Asp Gly Gly Trp
65 70 75 80
Pro Lys Asn Thr Asp Leu Gly Thr Pro Pro Thr Ala Glu Ser Arg Ala
85 90 95
Gly Ala Ala Ala Asp Val Thr Ser Ser Thr Ile Asp Asn Asn Gly Thr
100 105 110
Thr Met Pro Met Gln Phe Leu Ala Leu Val Ala Asp Ala Thr Gly Glu
115 120 125
Ala Arg Tyr Arg Ala Ser Phe Leu Arg Gly Phe Asp Tyr Leu Leu Ala
130 135 140
Ala Gln Tyr Pro Asn Gly Gly Trp Pro Gln Phe Phe Pro Leu Arg Arg
145 150 155 160
Gly Tyr Tyr Thr His Ile Thr Phe Asn Asp Asn Ala Met Val Asn Val
165 170 175
Leu Thr Val Leu Arg Asp Ala Ala Gly Gln Ala Pro Tyr Ala Phe
180 185 190
Val Asp Glu Pro Arg Arg Ala Lys Ala Arg Ala Ala Val Ser Arg Gly
195 200 205
Ile Asp Val Ile Leu Lys Thr Gln Val Lys Gln Asn Gly Lys Leu Thr
210 215 220
Ala Trp Cys Ala Gln His Asp Glu Lys Thr Leu Ala Pro Ala Trp Ala
225 230 235 240
Arg Ala Tyr Glu Pro Pro Ser Leu Ser Gly Ser Glu Thr Val Gly Ile
245 250 255
Val Arg Phe Leu Met Glu Ile Glu Lys Pro Ser Pro Glu Ile Val Ala
260 265 270
Ala Ile Glu Gly Ala Val Ala Trp Leu Lys Ser Val Ala Ile Pro Gly
275 280 285
Leu Arg Tyr Glu Ser Phe Thr Gly Ala Asp Gly Gln Arg Asp Arg Arg
290 295 300
Val Val Pro Asp Pro Ser Ala Gly Leu Leu Trp Ala Arg Phe Tyr Glu

305 310 315 320
Leu Gly Thr Asn Arg Pro Ile Phe Leu Gly Arg Asp Ser Val Val Arg
 325 330 335
Ala Ala Leu Ser Asp Ile Glu Arg Glu Arg Arg Ala Gly Tyr Ala Tyr
 340 345 350
Tyr Gly Thr Trp Pro Ala Ser Leu Ile Ala Ala Asp Tyr Pro Arg Trp
 355 360 365
Arg Ser Thr Leu Arg Arg
 370

<210> 9
<211> 1116
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 9
ttgatcggt a gcatgaaaac gattctctca aatctgaacg cggcgctgct ttcatgcgcc
60
ctgctcttgc cgccagccac acaggaaacc aagccgcccc aagtgcggtg gaatgagtgc
120
ctaaacccaaa aacctgcctg gtacggcagc ccggaaagcgg tgccattgc tgacaacctg
180
ttgctttacc aacgcgacca cggcggtgg cacaagaata tcgaaatggc tgccgtcttg
240
accgaacagc aacaggcaga gttgaaagcg caaaaggcaa ccgacgattc gacgattgat
300
aacggcgacg cctataccca ggtgatttat ctggcgccgc tcttcaatgc gacgaagcag
360
gagcgattca aaaccgcgtt tctcaaagga ttgcattatc tgctcaaggc tcagtatgcg
420
aacggcggtt ggccgcagta ttacccgcgt ttgcagggtt attacaaca catcacgttc
480
aacgatgacg cgtggtcgg cgtgcttgat cttctgcgcg atgtgcgcg cggcgattcc
540
ggttatcggt tcgtggacag cgaccggcgc gcccgcgc gccaggccgt gcaaaaaggaa
600
attgagtgc a tcttgcatttgc ccagatcgat gtcgcggggaaaagaccgc ctggcgccg
660
caacacgatg aagtgcatttgc cggcgcgcg cctacgagaa aatttcgcctg
720
agcggcagcg aatcggtgg cctgatccgc ttccgtatgg gcattgaaca accggacgcg
780
cgtgtatgg aggcgattga gtccgcgtt gcctggctca agcaagccaa gctgaccggc
840
atcaaagtgg ttcaagaaggc ggatgcattcg aagcccaatg gcttcgaccg ggtcgctgtt
900
gaagatgcac aagccggcc attgtggcg cgctttacg agatcggtac gggccgcgg
960
atctttccg gacgtgacgg catcgtaaa tacagcttgg cggaaatcga acacgaacgg
1020
cgcacgggtt acggctggta cacgaatgcg cccgcgaaat tgctgaaaca agattatccg
1080
gcctggcaaa tcaaacgcgg gggcaagaaaa aagtaa
1116

<210> 10
<211> 371
<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1) . . . (29)

<221> DOMAIN

<222> (30) ... (371)

<223> Catalytic domain

<400> 10

<210> 11
<211> 1167
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 11
atgtcggtgg gaccagggtgc taatccgaaa gctcgcgttc cctggtccaa acaactatcg
60
ggtgttgagg caaaagttgtt cgatcgcgag cggttcttca gcctcgctgc ggaacgaacc
120
tctaagaaga atgaccagca agtcggcgcc atcgcgtgga aagatgcaca cggaaaggca
180
gatgagtggt atgcgagcgt tgaggcactt cgtatagccg ataacgtcgt tttctatcaa
240
cgtgactcag gtggctggcc caagaatatac gagatggcga agacgttgag cgatcgtgag
300
aaggctgcga ttctccgcga gaagaaaaag aatgactcaa caatcgacaa tggcgcgact
360
cacactcagt tatctttct ggcgcgcgtc tatacagcac aacagcagga gcgacatcgc
420
gagtcatttt taaaaggact ggattactta ctgaaggcgc agtattcaaa tggtggtgg
480
ccacagttct atccaaactt gaatggctac tacaaacgga tcacgtacaa cgatggcgcg
540
atgatcggtg tcatgaagct tctgcgtgat gttgcggcag cgaaacctga atacgcgtt
600
gtcgatgaaa ctcggcgtgc gaaggctgcg aacgcggtgg aaaaaggcat cgtgtgcatt
660
ttgaaaacgc aggtgggtgt tcatggcgt cgcactgttt ggtgtgcaca acacgacgaa
720
gtgacggttg cgccccgcgc tgcaagaaaag tttgagtttag cttcggttag cggcggtgag
780
agcgtcgata ttgttcgatt tctaattgtcg ataaaggatc catcgctaa cgtggttgaa
840
tcgattgaat cggcagttaa atgggttgag cagtcggagc taaaaggcgt taagtgggtc
900
aagaaaaaccg acgctactca acctaattggg ttgcattgtg tcgttggtaa agatccggag
960
agctctgttt gggcgcgctt ttacgagatt ggcacgaacc gcccgcatt tgccggcg
1020
gatggagtgcc ctaagtatga cgtcgccgag atcgaacacg agcgacgaac gggttacgaa
1080
tggtacgttg atgaggcagc aaaactgctg aaaaaagatt atccggcgtg gaagaaacgaa
1140
catgtcgtaa cgacgcgagt tcattag
1167

<210> 12
<211> 388
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(388)

<223> Catalytic domain

<400> 12

Met Ser Leu Gly Pro Gly Ala Asn Pro Lys Ala Arg Val Pro Trp Ser
1 5 10 15
Lys Gln Leu Ser Gly Val Glu Ala Lys Leu Phe Asp Arg Glu Arg Phe
20 25 30
Phe Ser Leu Ala Ala Glu Arg Thr Ser Lys Lys Asn Asp Gln Gln Val
35 40 45
Gly Ala Ile Ala Trp Lys Asp Ala His Gly Lys Ala Asp Glu Trp Tyr
50 55 60
Ala Ser Val Glu Ala Leu Arg Ile Ala Asp Asn Val Val Phe Tyr Gln
65 70 75 80
Arg Asp Ser Gly Gly Trp Pro Lys Asn Ile Glu Met Ala Lys Thr Leu
85 90 95
Ser Asp Arg Glu Lys Ala Ala Ile Leu Arg Glu Lys Lys Asn Asp
100 105 110
Ser Thr Ile Asp Asn Gly Ala Thr His Thr Gln Leu Ser Phe Leu Ala
115 120 125
Arg Val Tyr Thr Ala Gln Gln Glu Arg His Arg Glu Ser Phe Leu
130 135 140
Lys Gly Leu Asp Tyr Leu Leu Lys Ala Gln Tyr Ser Asn Gly Gly Trp
145 150 155 160
Pro Gln Phe Tyr Pro Asn Leu Asn Gly Tyr Tyr Lys Arg Ile Thr Tyr
165 170 175
Asn Asp Gly Ala Met Ile Gly Val Met Lys Leu Leu Arg Asp Val Ala
180 185 190
Ala Ala Lys Pro Glu Tyr Ala Phe Val Asp Glu Thr Arg Arg Ala Lys
195 200 205
Ala Ala Asn Ala Val Glu Lys Gly Ile Val Cys Ile Leu Lys Thr Gln
210 215 220
Val Val Val Asp Gly Arg Arg Thr Val Trp Cys Ala Gln His Asp Glu
225 230 235 240
Val Thr Phe Ala Pro Ala Pro Ala Arg Lys Phe Glu Leu Ala Ser Leu
245 250 255
Ser Gly Gly Glu Ser Val Asp Ile Val Arg Phe Leu Met Ser Ile Lys
260 265 270
Asp Pro Ser Arg Asn Val Val Glu Ser Ile Glu Ser Ala Val Lys Trp
275 280 285
Phe Glu Gln Ser Glu Leu Lys Gly Val Lys Trp Val Lys Lys Thr Asp
290 295 300
Ala Thr Gln Pro Asn Gly Phe Asp Cys Val Val Val Lys Asp Pro Glu
305 310 315 320
Ser Ser Val Trp Ala Arg Phe Tyr Glu Ile Gly Thr Asn Arg Pro Ile
325 330 335
Phe Ala Gly Arg Asp Gly Val Pro Lys Tyr Asp Val Ala Gln Ile Glu
340 345 350
His Glu Arg Arg Thr Gly Tyr Glu Trp Tyr Val Asp Glu Ala Ala Lys
355 360 365
Leu Leu Lys Lys Asp Tyr Pro Ala Trp Lys Lys Arg His Val Val Thr
370 375 380
Thr Arg Val His
385

<210> 13

<211> 1065

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 13
atggaaaacga tcagccttat ttgcctcgca atctctgctg ggattctgga ttcgggttgcg
60
60
gcggcacgct ggaacgaatt cgcccagaag gcggatgatt ggtatcgagg tgacgaaggc
120
120
aggcgcgttg cttcgaatat tctttctcac caatcactgc aaggaagctg gcccaagaat
180
180
accgataccca ccgcgagatt cttcaatgga gatctagcga agattcaggg cacgttcgac
240
240
aacgggtgcga cgacggacga gttgcgttgc ctggcccgcg cgttgtcgc cacgaaagaa
300
300
aaaaactacg agtcagcggt ccgaaaaggc ttcaaacaca ttctcgccgc gcaatacgcg
360
360
aacggccggat ggccgcaata ttgcgcgcgc cccaaaagtt accaccgaca cattaccc
420
420
aacgataatt cgatggtgcg gctgatgatt ttccctcgcg aggtcacgac ttcaatctc
480
480
tactcggttcg tcgaagcgcc gctgcgaaca caagcccgcg aaagttcga tcgcggtgtg
540
540
cggtgcattt ttaagtgcgc gatcgtcggt aacgggcaca agaccgcgtg gtgcgcgc
600
600
catgatgaaa cgatattcag ccccgatcc gcgcgttagtt acgaactgcc ttgcgtgagc
660
660
ggttctgaat cagtcggcat tgtgcgttg ctgatgagcc tcgatcagcc gagccgcgg
720
720
gtgatcgatg ccatcaccaa cggcgtagcg tggttcgaat cggcgaagct gcccggatc
780
780
aaaaccgttc aagagaccga tccgaattcg cccaaaggct ggaatcgcgt cgtcgtaaaa
840
840
gatgaaagtgc cccgaccgat gtgggcgcgt ttctacgaca tcaacacccaa caaaccgttc
900
900
ttttgtgatc gcatgggtgt gccaaaggccg agtctgcgt agatcggtt tgaacggcg
960
960
aacgggtatgcgtggctcgatactggcct gaagacttgc tcgcaagaga gtatccagcg
1020
1020
tggaaagatga agtggctgaa gccccaaagag cggccagcat tttga
1065
1065

<210> 14

<211> 354

<212> PRT

<212> FRI

<220>

<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1) . . . (22)

<221> DOMAIN

<222> (23) . . . (354)

<223> Catalytic domain

<400> 14

Met	Lys	Thr	Ile	Ser	Leu	Ile	Cys	Leu	Ala	Ile	Ser	Ala	Gly	Ile	Leu
1					5					10				15	
Asp	Ser	Val	Ala	Ala	Ala	Arg	Trp	Asn	Glu	Phe	Ala	Gln	Lys	Ala	Asp
						20			25				30		
Asp	Trp	Tyr	Arg	Gly	Asp	Glu	Gly	Arg	Arg	Val	Ala	Ser	Asn	Ile	Leu
						35			40			45			

Ser His Gln Ser Leu Gln Gly Ser Trp Pro Lys Asn Thr Asp Thr Thr
50 55 60
Ala Arg Phe Phe Asn Gly Asp Leu Ala Lys Ile Gln Gly Thr Phe Asp
65 70 75 80
Asn Gly Ala Thr Thr Asp Glu Leu Arg Phe Leu Ala Arg Ala Phe Val
85 90 95
Ala Thr Lys Glu Lys Asn Tyr Glu Ser Ala Phe Arg Lys Gly Phe Glu
100 105 110
His Ile Leu Ala Ala Gln Tyr Ala Asn Gly Gly Trp Pro Gln Tyr Ser
115 120 125
Pro Pro Pro Lys Ser Tyr His Arg His Ile Thr Phe Asn Asp Asn Ser
130 135 140
Met Val Arg Leu Met Ile Phe Leu Arg Glu Val Thr Thr Ser Asn Leu
145 150 155 160
Tyr Ser Phe Val Glu Ala Pro Leu Arg Thr Gln Ala Arg Glu Ser Phe
165 170 175
Asp Arg Gly Val Arg Cys Ile Leu Lys Cys Gln Ile Val Val Asn Gly
180 185 190
His Lys Thr Ala Trp Cys Ala Gln His Asp Glu Thr Asp Phe Ser Pro
195 200 205
Arg Ser Ala Arg Ser Tyr Glu Leu Pro Ser Leu Ser Gly Ser Glu Ser
210 215 220
Val Gly Ile Val Arg Leu Leu Met Ser Leu Asp Gln Pro Ser Arg Gly
225 230 235 240
Val Ile Asp Ala Ile Thr Asn Ala Val Ala Trp Phe Glu Ser Ala Lys
245 250 255
Leu Pro Gly Ile Lys Thr Val Gln Glu Thr Asp Pro Asn Ser Pro Lys
260 265 270
Gly Trp Asn Arg Val Val Val Lys Asp Glu Ser Ala Arg Pro Met Trp
275 280 285
Ala Arg Phe Tyr Asp Ile Asn Thr Asn Lys Pro Phe Phe Cys Asp Arg
290 295 300
Asp Gly Val Pro Lys Pro Ser Leu Ala Glu Ile Gly Tyr Glu Arg Arg
305 310 315 320
Asn Gly Tyr Ala Trp Leu Gly Tyr Trp Pro Glu Asp Leu Leu Ala Arg
325 330 335
Glu Tyr Pro Ala Trp Lys Met Lys Trp Leu Lys Pro Lys Glu Arg Pro
340 345 350
Ala Phe

<210> 15
<211> 1575
<212> DNA
<213> Bacteria

<400> 15
atgagacgac cagtcgcact ccggctccac gcggcactgg ccaccctggc cctggcgccc
60
gcgaccggcg tgggtctctc gatccccag gcatcggcgg cggccggcgg cgccaccggc
120
tacgcggcc agaacggcgg caccacggc ggtgccggcg gccagaccgt acgggccacc
180
acgggcaccg ccatccacgc ggccctgtgc ggacgggcca gcagcagcac cccgatcacg
240
atcgaggatcg agggAACGAT caaccacGCC aacaccGCC aggtgtccgg ccccagctgc
300
aacaccGCC CGGGAGTGTAT CGAGCTGAAG CAGATCAGCA ACgtCACGCT CGTCGGGTC
360
ggctccggcg ccgtttcga ccaactcggc atccacatcc gcgagtccag caacatcatc
420

atccagaacg tgacggtccg gaacgtcaag aagtccccctcgcc caacggcggc
480
gacgccatcg gcatggagag cgacgtccgc aacgtctggg tcgaccactc caccctggag
540
gcctcggcg gcgagtccga gggctacgac ggcctttcg acatgaagga caacacccgg
600
tacgtgaccc tgtcgtagc catcctgcgc aaatccggc gcggcggcct cgtgggtcc
660
agcgagaccg aactctcgaa cagcttcattc acgtaccacc acaacctgta cgagaacatc
720
gactcgcgcg cgccccgtgc gcgcggcgaccgcggccatacataccactac
780
cgatcaacg agtccggcat caactcccgt gccggagccc acgccaagggt ggacaacaac
840
tacttcgagg actccaagga cgtcctcgac accttctaca ccgacgcgcg cgggtactgg
900
caggtcagcg gcaacgtcta cgacaacgtg acctggccgc cccggggcac cgacaacaac
960
ccggcggggc cgacccgca gtccaaacacc accgtctcca tcccctacgc cttcagcctc
1020
gaccggcca cctgcgtgcc ggacgtcgat agccgaacgg cgggtgccgg caagggactt
1080
caggtgtcga acggcagctg ctcccccgac acacccacgc ccacgcccac gggcacgc
1140
accacaccccg cgccgacgac tcccaccccg agcccgacgc cctccacgccc cggaccgacc
1200
cagccggcg ggacgaacct cagcatcggt gccgggtccg acgggtcgag caaggccgac
1260
ggcaccagct acggcaacgt ccgggacggg gacctcggca cccactggtc tccggccggt
1320
tcgaccggct ccgtgtcgat caagtgggc agcgccacca cgggtcccg catcgatc
1380
cgcgaggcg cgccgacgac gggcgtcatc ggctcctggc tcgtcctgaa cggcgcacacc
1440
ggcgcgtgc tgacctccgg cagcggggcg gggacgatct cggcccccg gacggccctg
1500
aagaagatca cttcgagat cacggcgcg agcggcacgc cacggatcgac cgagttcgag
1560
acgtacgccc gctag
1575

<210> 16

<211> 524

<212> PRT

<213> Bacteria

<220>

<221> SIGNAL

<222> (1)...(33)

<221> DOMAIN

<222> (34)...(359)

<223> Catalytic domain

<400> 16

Met Arg Arg Pro Val Ala Leu Arg Leu His Ala Ala Leu Ala Thr Leu
1 5 10 15
Ala Leu Ala Ala Ala Thr Gly Val Val Leu Ser Ile Pro Gln Ala Ser
20 25 30
Ala Ala Ala Gly Gly Ala Thr Gly Tyr Ala Gly Gln Asn Gly Gly Thr

35	40	45
Thr Gly Gly Ala Gly Gly Gln Thr Val Arg Ala Thr	Thr Gly Thr Ala	
50	55	60
Ile His Ala Ala Leu Cys Gly Arg Ala Ser Ser Ser	Thr Pro Ile Thr	
65	70	75
Ile Glu Val Glu Gly Thr Ile Asn His Ala Asn Thr	Ala Lys Val Ser	
85	90	95
Gly Pro Ser Cys Asn Thr Ala Ala Gly Val Ile Glu	Leu Lys Gln Ile	
100	105	110
Ser Asn Val Thr Leu Val Gly Val Gly Ser Gly Ala	Val Phe Asp Gln	
115	120	125
Leu Gly Ile His Ile Arg Glu Ser Ser Asn Ile Ile	Ile Gln Asn Val	
130	135	140
Thr Val Arg Asn Val Lys Lys Ser Gly Ser Pro Leu	Ser Asn Gly Gly	
145	150	155
Asp Ala Ile Gly Met Glu Ser Asp Val Arg Asn Val	Trp Val Asp His	
165	170	175
Ser Thr Leu Glu Ala Ser Gly Gly Glu Ser Glu Gly	Tyr Asp Gly Leu	
180	185	190
Phe Asp Met Lys Asp Asn Thr Arg Tyr Val Thr Leu	Ser Tyr Ser Ile	
195	200	205
Leu Arg Lys Ser Gly Arg Gly Gly Leu Val Gly Ser	Ser Ser Glu Thr Glu	
210	215	220
Leu Ser Asn Ser Phe Ile Thr Tyr His His Asn Leu	Tyr Glu Asn Ile	
225	230	235
Asp Ser Arg Ala Pro Leu Leu Arg Gly Gly Thr Ala	His Met Tyr Asn	
245	250	255
Asn His Tyr Leu Arg Ile Asn Glu Ser Gly Ile Asn	Ser Arg Ala Gly	
260	265	270
Ala His Ala Lys Val Asp Asn Asn Tyr Phe Glu Asp	Ser Lys Asp Val	
275	280	285
Leu Gly Thr Phe Tyr Thr Asp Ala Ala Gly Tyr Trp	Gln Val Ser Gly	
290	295	300
Asn Val Tyr Asp Asn Val Thr Trp Ser Ala Arg Gly	Thr Asp Asn Asn	
305	310	315
Pro Ala Gly Pro Asp Pro Gln Ser Asn Thr Thr Val	Ser Ile Pro Tyr	
325	330	335
Ala Phe Ser Leu Asp Pro Ala Thr Cys Val Pro Asp	Val Val Ser Arg	
340	345	350
Thr Ala Gly Ala Gly Lys Gly Leu Gln Val Ser Asn	Gly Ser Cys Ser	
355	360	365
Pro Gln Thr Pro Thr Pro Thr Pro Thr Gly Thr Pro	Thr Thr Pro Ala	
370	375	380
Pro Thr Thr Pro Thr Pro Ser Pro Thr Pro Ser Thr	Pro Gly Pro Thr	
385	390	395
Gln Pro Gly Gly Thr Asn Leu Ser Ile Gly Ala Gly	Ser Asp Gly Ser	
405	410	415
Ser Lys Ala Asp Gly Thr Ser Tyr Gly Asn Val Arg	Asp Gly Asp Leu	
420	425	430
Gly Thr His Trp Ser Pro Ala Gly Ser Thr Gly Ser	Val Ser Ile Lys	
435	440	445
Trp Gly Ser Ala Thr Thr Val Ser Arg Ile Val Ile	Arg Glu Ala Ala	
450	455	460
Gly Ala Thr Gly Val Ile Gly Ser Trp Leu Val Leu	Asn Gly Asp Thr	
465	470	475
Gly Ala Val Leu Thr Ser Gly Ser Gly Ala Gly Thr	Ile Ser Val Pro	
485	490	495
Arg Thr Ala Leu Lys Lys Ile Thr Phe Glu Ile Thr	Gly Ala Ser Gly	
500	505	510
Thr Pro Arg Ile Ala Glu Phe Glu Thr Tyr Ala Gly		
515	520	

<210> 17
<211> 1047
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 17
ttgccgcgtg cccccggtgg tgagtcgtca tcgccagcgc agacgtcatc gttgcggtc
60 tcctgggatc agatcctccg tcagcctgcg gcctggtacg gcggtgccga ggcgttgcga
120 gtcgctgaga acgtgctttt gtatcagcgc gcggcaggag ggtggccgaa gaacatcaac
180 atggcggcgc ccatgaccgc cgctgaccgt gcgaaagtca cggacgagcg cgccagaac
240 gacgccacga tcgacaacac gtcaacgacg acgcagatcc gtttcttgc gtcgttctt
300 cgccggcaccg ccgacgcacg attcaaggac gcggcgctga agggcatcga ctccctgctg
360 gctgcgcaat acgcgaatgg aggctggcct cagtatttc ccctgcgcga cgactactcg
420 cgccgcacatca cgttcaatga cgacgcgtatgtgtga tgacgctgct gcgcgagact
480 tcgcaggccc agacgcgtt cgagttcgac gacgcctcgc gcgcggccg ggccgcgcag
540 tctgtctcac gcggcgctga cgtcatgctg cgacgcaga ttgcagtcaa cggcgtgctg
600 accggctggt gccagcagca cgacgagcgg aactttcagc cggtaaggc gcgcgcgtac
660 gaacatccgt cgattgccag caaggaaacc gcgagcatcg caagattcct gatggggatt
720 gaacggccgt cgccggagat cgtgtccgcg gtggatggcg cagtcgcgtg gttgcgagcg
780 gcgcagattt caggtgtgcg gacggagcgc cggccgcacg gatcgaatcc gggcggcgcac
840 gtcgtggcgg tgcaaggactc cgccgcgcgc ccaatctggg cccgcttcta cagattggc
900 accaaccggc cgtatgtttc ggtcgac ggcgtcatca agtacagcct cagcgagatc
960 gagatcgagc ggcgcgtgg atacagctgg tacggcgact acgcccag actgctcaga
1020 gacgactatc cgaagtggaa gaaatga
1047

<210> 18
<211> 348
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(348)
<223> Catalytic domain

<400> 18
Met Pro Arg Ala Pro Gly Gly Glu Ser Ser Ser Pro Ala Gln Thr Ser

1 5 10 15
Ser Val Ala Val Ser Trp Asp Gln Ile Leu Arg Gln Pro Ala Ala Trp
20 25 30
Tyr Gly Gly Ala Glu Ala Leu Arg Val Ala Glu Asn Val Leu Leu Tyr
35 40 45
Gln Arg Ala Ala Gly Gly Trp Pro Lys Asn Ile Asn Met Ala Ala Pro
50 55 60
Met Thr Ala Ala Asp Arg Ala Lys Val Thr Asp Glu Arg Ala Gln Asn
65 70 75 80
Asp Ala Thr Ile Asp Asn Thr Ser Thr Thr Gln Ile Arg Phe Leu
85 90 95
Ala Leu Val Leu Arg Gly Thr Ala Asp Ala Arg Phe Lys Asp Ala Ala
100 105 110
Leu Lys Gly Ile Asp Phe Leu Leu Ala Ala Gln Tyr Ala Asn Gly Gly
115 120 125
Trp Pro Gln Tyr Phe Pro Leu Arg Asp Asp Tyr Ser Arg Arg Ile Thr
130 135 140
Phe Asn Asp Asp Ala Met Val Asn Val Met Thr Leu Leu Arg Glu Thr
145 150 155 160
Ser Gln Gly Gln Thr Pro Phe Glu Phe Val Asp Ala Ser Arg Arg Gly
165 170 175
Arg Ala Ala Gln Ser Val Ser Arg Gly Val Asp Val Met Leu Arg Thr
180 185 190
Gln Ile Arg Val Asn Gly Val Leu Thr Gly Trp Cys Gln Gln His Asp
195 200 205
Glu Arg Asn Phe Gln Pro Val Lys Ala Arg Ala Tyr Glu His Pro Ser
210 215 220
Ile Ala Ser Lys Glu Thr Ala Ser Ile Ala Arg Phe Leu Met Gly Ile
225 230 235 240
Glu Arg Pro Ser Pro Glu Ile Val Ser Ala Val Asp Gly Ala Val Ala
245 250 255
Trp Leu Arg Ala Ala Gln Ile Ser Gly Val Arg Thr Glu Arg Arg Pro
260 265 270
Asp Gly Ser Asn Pro Gly Gly Asp Val Val Ala Val Gln Asp Ser Ala
275 280 285
Ala Pro Pro Ile Trp Ala Arg Phe Tyr Glu Ile Gly Thr Asn Arg Pro
290 295 300
Met Phe Ser Gly Arg Asp Gly Val Ile Lys Tyr Ser Leu Ser Glu Ile
305 310 315 320
Glu Ile Glu Arg Arg Ala Gly Tyr Ser Trp Tyr Gly Asp Tyr Ala Ala
325 330 335
Arg Leu Leu Arg Asp Asp Tyr Pro Lys Trp Lys Lys
340 345

<210> 19

<211> 1122

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 19

gtgaacaggt ggcgcgaaga cttcttcgcgactttcgccgg cccgcatgtctccgggtgcatg
60
gttccccggc cgcatatcca ctggggcgcc ggtgtcatcc ggcaggaaacc ggaatggta
120
ggctcgcccg aggccgtgc gatcgccgac agcgttcttc aataccagtc gaccgctggc
180
ggctggccca agaacaccga cttgacggtc tcgcccaccgt ccggccaaatt ctttgcggat
240

gcggatggtc tcacgaacac gatcgacaac gacgccacca cgttgccat gcgatttctc
300
gctctggtgg cgcacgcac cggcggcatc aagtaccgcg ccgcgttcga acgcggctcg
360
gactacctgc tcgcccgtca gtatccaaat ggccggctggc ctcaagtattt tccccgtgcg
420
gacggctatt actcgacat cacctacaac gacaatgcga tggtaaacgt cctcaccgtt
480
ctgcgcgatg cggccgcggg ccggcccccct tactcggtcg tcgacaggc ccggcgcgccc
540
agagcagaaa cggccatcgc tcgcggcatc gacatcatcg tgccactca ggtgagacgg
600
gccggcgtgc tgaccgcgtg gtgcgcccag cacgacgaaa agacgctcgaa gccggcgtgg
660
gcgcgcaact acgaaccgcc gacactctcc gggcacgaaa gcgtcggcat cgtgcgcttt
720
ctcatggaa tcgaaaagcc cacgcccagg atcgtcgccg cggtgcaagg cggcgtgac
780
tggttgagag ccgtcgcgt cagcgggttg cgtctcgagg aattcaccga cggcgtggc
840
aggcgcgaca ggcgcgtcgt cggcgtccgc gcagcgcgc tcctgtggc gcgcttctac
900
gagcttggca cggaccgtcc cgtcttcacc ggccgcgaca aggtgatccg gtactcgctc
960
agcgaatcg agcacgagcg ccgaaacggg tatgcctact atggcacatg gcccggccacg
1020
ctcctcagcg aggagtaccc ccgttggcgc gcaaacacc tggctcgacg gagcgtcagg
1080
caggttagagg aggaatcgc gatacgcgtc cctaattccct ga
1122

<210> 20

<211> 373

<212> PRT

<213> Unknown:

<220>

<223> Obtained from an environmental sample

<221> DOMAIN

<222> (1)...(373)

<223> Catalytic domain

<400> 20

Met	Asn	Arg	Trp	Arg	Glu	Asp	Phe	Leu	Arg	Asp	Phe	Ala	Ala	Arg	Met
1					5				10					15	
Leu	Arg	Cys	Met	Val	Pro	Arg	Pro	Gln	Ile	His	Trp	Gly	Gly	Gly	Val
					20				25				30		
Ile	Arg	Gln	Glu	Pro	Glu	Trp	Tyr	Gly	Ser	Ala	Glu	Ala	Arg	Ala	Ile
					35				40				45		
Ala	Asp	Ser	Val	Leu	Gln	Tyr	Gln	Ser	Thr	Ala	Gly	Gly	Trp	Pro	Lys
					50				55			60			
Asn	Thr	Asp	Leu	Thr	Val	Ser	Pro	Pro	Ser	Ala	Glu	Phe	Leu	Ala	Asp
					65				70			75			80
Ala	Asp	Gly	Leu	Thr	Asn	Thr	Ile	Asp	Asn	Asp	Ala	Thr	Thr	Leu	Pro
					85				90			95			
Met	Arg	Phe	Leu	Ala	Leu	Val	Ala	His	Ala	Thr	Gly	Gly	Ile	Lys	Tyr
					100				105			110			
Arg	Ala	Ala	Phe	Glu	Arg	Gly	Leu	Asp	Tyr	Leu	Leu	Ala	Ala	Gln	Tyr
					115				120			125			
Pro	Asn	Gly	Gly	Trp	Pro	Gln	Tyr	Phe	Pro	Leu	Arg	Asp	Gly	Tyr	Tyr

130	135	140
Ser His Ile Thr Tyr Asn Asp Asn Ala Met Val Asn Val Leu Thr Val		
145	150	155
Leu Arg Asp Ala Ala Ala Gly Arg Pro Pro Tyr Ser Phe Val Asp Arg		160
165	170	175
Ala Arg Arg Ala Arg Ala Glu Thr Ala Ile Ala Arg Gly Ile Asp Ile		
180	185	190
Ile Val Arg Thr Gln Val Arg Arg Ala Gly Val Leu Thr Ala Trp Cys		
195	200	205
Ala Gln His Asp Glu Lys Thr Leu Glu Pro Ala Trp Ala Arg Asn Tyr		
210	215	220
Glu Pro Pro Thr Leu Ser Gly His Glu Ser Val Gly Ile Val Arg Phe		
225	230	235
Leu Met Gly Ile Glu Lys Pro Thr Pro Arg Ile Val Ala Ala Val Gln		240
245	250	255
Gly Ala Ala Asp Trp Leu Arg Ala Val Ala Ile Ser Gly Leu Arg Leu		
260	265	270
Glu Glu Phe Thr Asp Ala Asp Gly Arg Arg Asp Arg Arg Val Val Ala		
275	280	285
Asp Pro Ala Ala Pro Leu Leu Trp Ala Arg Phe Tyr Glu Leu Gly Thr		
290	295	300
Asp Arg Pro Val Phe Thr Gly Arg Asp Lys Val Ile Arg Tyr Ser Leu		
305	310	315
Ser Glu Ile Glu His Glu Arg Arg Asn Gly Tyr Ala Tyr Tyr Gly Thr		320
325	330	335
Trp Pro Ala Thr Leu Leu Ser Glu Glu Tyr Pro Arg Trp Arg Ala Lys		
340	345	350
His Leu Ala Arg Arg Ser Val Arg Gln Val Glu Glu Gly Ile Ala Ile		
355	360	365
Arg Val Pro Asn Pro		
370		

<210> 21

<211> 1269

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 21

```

atgcgtaaat cgaactggc cgtcacaacg gccatcctgc tcgcgttag cgccgcaccc
60
ctggcgcaa agcccatcg agagatcacc ctcgcccgtgc cgctcagccc ggcgccgcctg
120
accgaaacgc cgccctgagca gcgggcgcaa tggcaggccat atctcgccac caccgaggca
180
cagcttaagg cagacaaggc ggcgtggct gccgagcgcg ccggcttggc cgaaatcccc
240
gccaaggccga agaccggcag cgccaaacacc atgcccgtcg acaagccgct ggaatggtag
300
gcgtcggtcccg aggccgtct ggtcgccat aatatcgta gctatcagac tccggcaggc
360
ggctgggca aaaatcaggc ccgcaacgaa cccacgcgggt tgaaaggta ggcctacact
420
atcgatgacg ccgatccac cggttcggc aaatggaaact tcgtcggcac catcgacaac
480
gacgccacca tcgtggaaat tcgctttctc gccccgttag cggcggcggc cacggcccg
540
gaaggcgacg tctatcgccgc ctccgcccacg cgccgcatac cctacttgct ggcggcgcag
600

```

taccccaatg gcggctggcc gcaggtctgg ccgcttcagg gcggctatca cgacgccatc
660
acccta atg acggcgcat gatccatgtg ctcgaactgt ttgacgacat cgccagcgga
720
cagggcact tcgccttcct gcctgagccg ctgcgcgaca aggtcgaggc cgcacaggca
780
aagggtcaga aggtgcttct cgatttcag cttaagcgca acggcgaacg caccctgtgg
840
gcgcagcagt acgatccgat taccctcttgc cccagcgccg cgcttaacta cgagccgtcg
900
tcgatcagca ccgtgaaag cgccgggtgtg ctgatctacc tcatgtccct gccaacccc
960
tcgcctgaag tgcgacgc catcgaaaaa ggctggccc tgctgatcaa acttcagatc
1020
aacggcatgg catggaaaaa ggacggcatg cgcaaacgatc tggtcgccaa ggctgacgcc
1080
tcgcccgtgt ggtcgacgta tcacgactcg gaaacgctgc tgccatctt cggtgaccgc
1140
gacatgcgca tttcgacga cgtcaacgac atcagcgacg aacgcagccg cggctatgcc
1200
tggtatggca caagccggc acggccatc gccgaatacg aaaaatggaa acagggcaac
1260
ggcaa atga
1269

<210> 22
<211> 422
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(23)

<221> DOMAIN
<222> (24)...(422)
<223> Catalytic domain

<400> 22
Met Arg Lys Ser Asn Trp Ala Val Thr Thr Ala Ile Leu Leu Ala Leu
1 5 10 15
Ser Ala Ala Pro Leu Ala Ala Lys Pro Ile Gly Gln Ile Thr Leu Ala
20 25 30
Val Pro Leu Ser Pro Ala Arg Leu Thr Glu Thr Pro Pro Glu Gln Arg
35 40 45
Ala Gln Trp Gln Ala Tyr Leu Ala Thr Thr Glu Ala Gln Leu Lys Ala
50 55 60
Asp Lys Ala Ala Leu Ala Ala Glu Arg Ala Gly Leu Ala Glu Ile Pro
65 70 75 80
Ala Lys Pro Lys Thr Gly Ser Ala Asn Thr Met Pro Leu Asp Lys Pro
85 90 95
Leu Glu Trp Tyr Ala Ser Ser Glu Ala Arg Leu Val Ala Asp Asn Ile
100 105 110
Val Ser Tyr Gln Thr Pro Ala Gly Gly Trp Gly Lys Asn Gln Ala Arg
115 120 125
Asn Glu Pro Thr Arg Leu Lys Gly Gln Ala Tyr Thr Ile Asp Asp Ala
130 135 140
Asp Pro Thr Gly Ser Gly Lys Trp Asn Phe Val Gly Thr Ile Asp Asn
145 150 155 160

Asp Ala Thr Ile Val Glu Ile Arg Phe Leu Ala Arg Val Ala Ala Ala
165 170 175
Ala Thr Gly Pro Glu Gly Asp Val Tyr Arg Ala Ser Ala Thr Arg Gly
180 185 190
Ile Thr Tyr Leu Leu Ala Ala Gln Tyr Pro Asn Gly Gly Trp Pro Gln
195 200 205
Val Trp Pro Leu Gln Gly Gly Tyr His Asp Ala Ile Thr Leu Asn Asp
210 215 220
Gly Ala Met Ile His Val Leu Glu Leu Phe Asp Asp Ile Ala Ser Gly
225 230 235 240
Gln Gly Asp Phe Ala Phe Leu Pro Glu Pro Leu Arg Asp Lys Val Glu
245 250 255
Ala Ala Gln Ala Lys Gly Gln Lys Val Leu Leu Asp Leu Gln Leu Lys
260 265 270
Arg Asn Gly Glu Arg Thr Leu Trp Ala Gln Gln Tyr Asp Pro Ile Thr
275 280 285
Leu Leu Pro Ser Ala Ala Arg Asn Tyr Glu Pro Ser Ser Ile Ser Thr
290 295 300
Gly Glu Ser Ala Gly Val Leu Ile Tyr Leu Met Ser Leu Pro Asn Pro
305 310 315 320
Ser Pro Glu Val Arg Asp Ala Ile Glu Lys Gly Val Ala Leu Ile
325 330 335
Lys Leu Gln Ile Asn Gly Met Ala Trp Glu Lys Asp Gly Met Arg Lys
340 345 350
Arg Leu Val Ala Lys Ala Asp Ala Ser Pro Leu Trp Ser Arg Tyr His
355 360 365
Asp Ser Glu Thr Leu Leu Pro Ile Phe Gly Asp Arg Asp Met Arg Ile
370 375 380
Phe Asp Asp Val Asn Asp Ile Ser Asp Glu Arg Ser Arg Gly Tyr Ala
385 390 395 400
Trp Tyr Gly Thr Ser Pro Ala Arg Ala Ile Ala Glu Tyr Glu Lys Trp
405 410 415
Lys Gln Gly Asn Gly Lys
420

<210> 23

<211> 1182

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 23

atgaaccgtg gcgtgattgt tttgctggcg gccgctccag ctgcggcgca tggcgcagtg
60
ctggggata tgacgcctgc gcagccgttg accgaggcgc gcattgccgc gctgccggcg
120
tcggagcagg gcgcctggcg gggctacctc gcccgtcccc gcgcagccat ggacgcccac
180
aaggccgccc tggccgccga ggcgcggcg ctcgcccaccg taccgccggc gccgcccac
240
ggcgggtggtg atggcgggat ggcgcgcaac cgtccgacgg cttggtatgg gacgcccggaa
300
gcccggcaca tcgcggacaa tatcgtcagc ttccagacgc cgtccggcg ctggggcaag
360
aacgtggacc gcacgggacc tgtgcgccag cgccggacagc attacgttgc ttgcgtatggc
420
aaggagtcct ggaacttcat cggcacgatc gacaacaacg ccacaacgag cgagctgaaa
480
ttccctggcgcc gcgtgcaggc gcaaatgccc ggcgcggcg ggcacgaaata ccggaaggcc

540
gcccgcgc gcatcagcta cctgttgaac tcacaatata ccaacggcgg cttccgcag
600
gtcttatccgc tgcaaggcgg ctaccacgac gccatcacct tcaacgacga tgccctcgcc
660
aacgtgctgc aagtgctgct ggaagtggcg aaccgcaggg gcgactatgc cttcgcccc
720
gaaaccgtgg caaccgatgc ccgcgcggcc gcggacaagg cgctccaagt cctgctggcg
780
agccagatca tcgtcggcgg cgtacgcacc gcctggtgcc agcagcacga tgcgatcag
840
ctggcgcccc cgccgcggcc caatttcgaa cccgcgcgc tgaccagcac ggaaagcgcg
900
cgccctgctga tgctgttgc gctgctgccc gatccgagcc cggagctgag agcgtcaatc
960
catgcgggaa tggcctggct gcagaaagcg gcgctgccc gggatgtctg gtgcgcctac
1020
tatgacctga acacgatgag gccgatctt gggatcgta accgcagttt ccacgatgtat
1080
gtgaaggaat tgagcgaaggaa gaggcaaaaa ggctatggct ggtagttaaa cggaccagcc
1140
agagctaaac aggctttga ggcctggacg cgcaaaccctt ga
1182

<210> 24
<211> 393
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(18)

<221> DOMAIN
<222> (19)...(393)
<223> Catalytic domain

<400> 24
Met Asn Arg Gly Val Ile Val Leu Leu Ala Ala Ala Pro Ala Ala Ala
1 5 10 15
His Gly Ala Val Leu Gly Tyr Met Thr Pro Ala Gln Pro Leu Thr Glu
20 25 30
Ala Arg Ile Ala Ala Leu Pro Ala Ser Glu Gln Gly Ala Trp Arg Gly
35 40 45
Tyr Leu Ala Arg Ser Arg Ala Ala Met Asp Ala Asp Lys Ala Ala Leu
50 55 60
Ala Ala Glu Arg Ala Ala Leu Ala Thr Val Pro Pro Ala Pro Pro His
65 70 75 80
Gly Gly Gly Asp Gly Gly Met Ala Arg Asn Arg Pro Thr Ala Trp Tyr
85 90 95
Gly Thr Pro Glu Ala Arg His Ile Ala Asp Asn Ile Val Ser Phe Gln
100 105 110
Thr Pro Ser Gly Gly Trp Gly Lys Asn Val Asp Arg Thr Gly Pro Val
115 120 125
Arg Gln Arg Gly Gln His Tyr Val Ser Phe Asp Gly Lys Glu Ser Trp
130 135 140
Asn Phe Ile Gly Thr Ile Asp Asn Asn Ala Thr Thr Ser Glu Leu Lys
145 150 155 160
Phe Leu Ala Arg Val Gln Ala Gln Met Pro Gly Ala Ala Gly Asp Glu

165	170	175
Tyr Arg Lys Ala Ala Leu Arg Gly Ile Ser	Tyr Leu Leu Asn	Ser Gln
180	185	190
Tyr Pro Asn Gly Gly Phe Pro Gln Val	Tyr Pro Leu Gln	Gly Gly Tyr
195	200	205
His Asp Ala Ile Thr Phe Asn Asp Asp Ala	Phe Ala Asn Val	Leu Gln
210	215	220
Val Leu Leu Glu Val Ala Asn Arg Arg Gly	Asp Tyr Ala Phe Val	Pro
225	230	240
Glu Thr Val Ala Thr Asp Ala Arg Ala Ala	Asp Lys Ala	Leu Gln
245	250	255
Val Leu Leu Ala Ser Gln Ile Ile Val	Gly Gly Val Arg	Thr Ala Trp
260	265	270
Cys Gln Gln His Asp Ala Ile Thr Leu Ala	Pro Val Gly	Ala Arg Asn
275	280	285
Phe Glu Pro Ala Ala Leu Thr Ser Thr Glu Ser	Ala Arg	Leu Leu Met
290	295	300
Leu Leu Met Leu Leu Pro Asp Pro Ser Pro	Glu Leu Arg	Ala Ser Ile
305	310	320
His Ala Gly Met Ala Trp Leu Gln Lys Ala	Ala Leu Pro Gly	Asp Val
325	330	335
Trp Ser Arg Tyr Tyr Asp Leu Asn Thr Met Arg	Pro Ile Phe	Gly Asp
340	345	350
Arg Asp Arg Ser Ile His Asp Asp Val Lys	Glu Leu Ser	Glu Glu Arg
355	360	365
Gln Lys Gly Tyr Gly Trp Phe Ser Asn Gly	Pro Ala Arg	Ala Lys Gln
370	375	380
Ala Phe Glu Ala Trp Thr Arg Lys Pro		
385	390	

<210> 25.

<211> 1194

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 25

```

ttggtcgtc ccctattaag ctgcggcagc gccaatctct atgcagaatc aaccgcaaaa
60
tcggttacgc aatcagcagc cacaatcaa ttgcaaaatg aaaaaaggcag ttgggacagc
120
tattacgccg catccaaaaa aatacatcag gcagaccagg attttctcgc cgctgaatta
180
aaaaaactcg gtcagaaaaa accaacattt cccgcacaca ccaaagattt tggtttgat
240
gttaaggcagg taaatgcaga ttggttaaa agtgacgaag gcaaacgtgt gatggagatt
300
attctctcct tccaaacccc gtccggcggt tggtaaagc gtaccgacat ggccaaggcg
360
gtgcgacaac ctgggcaagc ctttggcggt gaaaaaggct atatccaaac atttgataat
420
ggcgctacca gcactcaatt gatgttgctc ggcgaagcac accaagccac cggcgatcac
480
cgcttagcg acgcatttg ggcggcttg caattaattt tgactgcgca atacccgaat
540
ggtggctggc cacaaaactt tccactaacc ggtagctacc acgattacat cacctacaac
600
gacaatctta cgcgacacct gatggtagtg ctgcacaaaaa cagcgcaggc aaaaaatgtat
660

```

tttgcattcg tgaccaaagc gcagcaaatac gcagcgtaag ctagcctcgc gcgtgcactt
720
gattgcgtat taaaatcaca agttgtcgta aatggcacac gcacactctg gggcgacag
780
cacatgtta aaacactgca accaaccaaa gcgcgcat ttgaaatggt gtcactcact
840
accactgaaa gcgagccat gctcagttt ctgatggata tcaaaaatcc cagcgccat
900
attattcaat ccatacatgc agccatagcc tggtatgagc aaaataaaat cgtcggaaaa
960
acctggacac gtggtgatgc ggaattaaaa gataataaaa attcgcagcc actctggcg
1020
cgttttatg agataggcac taataagcct atattgggg atcgcgatga cactgtgtat
1080
tacgatttgg caaaagtgtc taaagagcgt cgcaagggtt atgcgtggta ctccactgac
1140
ccgaataaga cgctaaaaaa atatgctgaa tggctaaaaa aatatccaa ataa
1194

<210> 26
<211> 397
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(15)

<221> DOMAIN
<222> (16)...(397)
<223> Catalytic domain

<400> 26
Met Val Ala Ala Leu Leu Ser Cys Gly Ser Ala Asn Leu Tyr Ala Glu
1 5 10 15
Ser Thr Ala Lys Ser Val Thr Gln Ser Ala Ala Thr Asn Gln Leu Gln
20 25 30
Asn Glu Lys Ser Ser Trp Asp Ser Tyr Tyr Ala Ala Ser Lys Lys Ile
35 40 45
His Gln Ala Asp Gln Asp Phe Leu Ala Ala Glu Leu Lys Lys Leu Gly
50 55 60
Gln Lys Lys Pro Thr Leu Pro Ala His Thr Lys Asp Phe Gly Phe Asp
65 70 75 80
Val Lys Gln Val Asn Ala Asp Trp Phe Lys Ser Asp Glu Gly Lys Arg
85 90 95
Val Met Glu Ile Ile Leu Ser Phe Gln Thr Pro Ser Gly Gly Trp Ser
100 105 110
Lys Arg Thr Asp Met Ala Lys Ala Val Arg Gln Pro Gly Gln Ala Phe
115 120 125
Gly Val Glu Lys Gly Tyr Ile Pro Thr Phe Asp Asn Gly Ala Thr Ser
130 135 140
Thr Gln Leu Met Leu Leu Ala Gln Ala His Gln Ala Thr Gly Asp His
145 150 155 160
Arg Phe Ser Asp Ala Phe Gly Arg Gly Leu Gln Leu Ile Leu Thr Ala
165 170 175
Gln Tyr Pro Asn Gly Gly Trp Pro Gln Asn Phe Pro Leu Thr Gly Ser
180 185 190
Tyr His Asp Tyr Ile Thr Tyr Asn Asp Asn Leu Thr Arg Asp Leu Met
195 200 205

Val Val Leu His Lys Thr Ala Gln Ala Lys Asn Asp Phe Ala Phe Val
210 215 220
Thr Lys Ala Gln Gln Ile Ala Ala Ser Ala Ser Leu Ala Arg Ala Leu
225 230 235 240
Asp Cys Val Leu Lys Ser Gln Val Val Val Asn Gly Thr Arg Thr Leu
245 250 255
Trp Gly Ala Gln His Asp Val Lys Thr Leu Gln Pro Thr Lys Ala Arg
260 265 270
Ala Phe Glu Met Val Ser Leu Thr Thr Glu Ser Ala Ala Met Leu
275 280 285
Ser Phe Leu Met Asp Ile Lys Asn Pro Ser Ala Asp Ile Ile Gln Ser
290 295 300
Ile His Ala Ala Ile Ala Trp Tyr Glu Gln Asn Lys Ile Val Gly Lys
305 310 315 320
Thr Trp Thr Arg Gly Asp Ala Glu Leu Lys Asp Asn Lys Asn Ser Gln
325 330 335
Pro Leu Trp Ala Arg Phe Tyr Glu Ile Gly Thr Asn Lys Pro Ile Phe
340 345 350
Gly Asp Arg Asp Asp Thr Val Tyr Tyr Asp Leu Ala Lys Val Ser Lys
355 360 365
Glu Arg Arg Glu Gly Tyr Ala Trp Tyr Ser Thr Asp Pro Asn Lys Thr
370 375 380
Leu Lys Lys Tyr Ala Glu Trp Ser Lys Lys Tyr Pro Lys
385 390 395

<210> 27

<211> 1917

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 27

gtgtctcttttagaaaactcgcaactgccg gttctgtgcgtctactgctttctgtcgga
60
gcagaaaacccgagcgtcgaa ggcattgtcgtggccgctgatggatcggttgacgtcagg
120
acgattcaaac aagcggtgga ccaggttccc aaagacaata cacacccgttctgattcag
180
atcaagccgg gtgttatca ggaacaagtgcgtgcgtccggcaaacgttttactact
240
cttcggcgacgacgcatcaagaccgtc atcacctatc gattgagcgc actacaagcg
300
ggaaataccccgttt
360
ctgacgttttggaaactccctt cggcaccgggttcacaaaggcggttttttttttttttt
420
aaccgcgcga ctgttt
480
ggcagccgcccacttcttcaa agactgctac gtcgaaggccatgtcgatttcattttcggc
540
acggcctccgcgtgttt
600
gcgcactatcgcaccatcacttt
660
accggacgagacacggccgcggagtttttttttttttttttttttttttttttttttttttt
720
gtcgtcttt
780
agagatcctg aacgagagaa gaccgcgtgg tttgccgagtacaagtcaaa agggcccggt

840 gctaatcccg tagctcggt cgcgtggtcc aggcaagttga cgacagaaca agccgcccag
900 ttttcgcggg aacgctttt cagccgcgtc gttcgcgggc tctctggca ggccaaccag
960 gcagtcggaa cgatcgctg ggacgatgcg cagaaaaaac cgaacgagtg gtatgcgagc
1020 gccgaggcgt tgcgcatcgc cgacaacgtt gttctttatc aacgtgactc cggcggctgg
1080 cccaaagaaca tcgacatggg gaagccgctc gacgacaagg gtcgagccgg tcttctgcgc
1140 1260 gtgcgttaaga agaacgattc caccatcgat aacggcgcga cttacacgca actctcgtt
1200 ctagcgcggg tttacacggc gcaaaagcag gagcggcattc gcgagtcgtt tctgaaggga
1320 ctgcattacc tggtaaggc gcagtatcca aacggaggct ggccgcagtt ctatcccaat
1380 ctcaacggct attacaaaca catcaatttc aacgacaacg cgatgatcg cggtatgaaa
1440 ctgctgcgc acgtacggc agcgaaacccg gcgtatgcgt ttgtcgcacga agcacgcacga
1500 acgagtgcgg cgaaggcggc cgaaaaagga atcgagtgcatactgaagac gcagggtgg
1560 gtgaatggcc ggcgcaccgt gtgggtgcg caacatgacg aagtcaacgcgcgcctgcc
1620 ccggcgagga cgtttgaatt agttcgctg agtgggtggtaaagcgttga gatcgctgcgc
1680 ttttgatgt cgatcaagaa cccgtcgccg gcggttgtcg aggcgatcga gtcggcggtt
1740 gcgtggttcg agcaatcgca agtggaaat cccgcggca aacctgcgtg ggccgcattt
1800 tatgagatcg gcaactatcg tccgatcttc gccgggcgtg acggcgtcgt taagtatgat
1860 gtgaaacaga tcgatgagga acgacgaaag aattacgcatttgcgttga cgacgcacgc
1917 aaactactga agaccgacta tcctgagtgg aaagaaaaga acgccaaaga tcaatga

<210> 28
<211> 638
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(21)

<221> DOMAIN
<222> (28)...(308)
<223> Pectin methyl esterase domain

<221> DOMAIN
<222> (309)...(638)
<223> Catalytic domain

<400> 28
Met Ser Leu Phe Arg Lys Leu Ala Leu Pro Val Leu Cys Gly Leu Leu
1 5 10 15
Leu Ser Val Gly Ala Glu Thr Arg Ala Ser Lys Arg Ile Val Val Ala

20	25	30
Ala Asp Gly Ser Gly Asp Val Arg Thr Ile Gln Gln		Ala Val Asp Gln
35	40	45
Val Pro Lys Asp Asn Thr His Pro Val Leu Ile Gln	Ile Lys Pro Gly	
50	55	60
Val Tyr Gln Glu Gln Val Arg Val Ala Ala	Gly Lys Arg Phe Ile Thr	
65	70	75
Leu Arg Gly Asp Asp Ala Ser Lys Thr Val Ile Thr	Tyr Arg Leu Ser	
85	90	95
Ala Leu Gln Ala Gly Asn Thr Arg Leu Ala Phe Thr	Thr Leu Ile Asn	
100	105	110
Ala Asp Asp Phe Arg Ala Glu Asn Leu Thr Phe	Glu Asn Ser Phe Gly	
115	120	125
Thr Gly Ser Gln Ala Val Ala Leu Phe Val Asp	Ala Asn Arg Ala Thr	
130	135	140
Phe Glu Asn Cys Arg Phe Leu Gly Trp Gln Asp	Thr Leu Phe Val Asn	
145	150	155
Gly Ser Arg His Phe Phe Lys Asp Cys Tyr Val	Glu Gly His Val Asp	
165	170	175
Phe Ile Phe Gly Thr Ala Ser Ala Val Phe Glu Asn	Cys Thr Ile His	
180	185	190
Ser Lys Gly Glu Gly Tyr Val Thr Ala His Tyr	Arg Thr Ser Asp Glu	
195	200	205
Met Asp Thr Gly Phe Val Phe His Arg Cys Arg	Leu Thr Gly Arg Asp	
210	215	220
Thr Gly Arg Gly Val Tyr Leu Gly Arg Pro	Trp Arg Pro Tyr Ala Arg	
225	230	235
Val Val Phe Ile Asp Cys Trp Leu Asp Ala His	Ile Arg Pro Glu Gly	
245	250	255
Trp Asp Asn Trp Arg Asp Pro Glu Arg Glu Lys	Thr Ala Trp Phe Ala	
260	265	270
Glu Tyr Lys Ser Lys Gly Pro Gly Ala Asn Pro	Val Ala Arg Val Ala	
275	280	285
Trp Ser Arg Gln Leu Thr Thr Glu Gln Ala Ala	Glu Phe Ser Arg Glu	
290	295	300
Arg Phe Phe Ser Arg Ala Val Arg Gly Leu Ser	Gly Gln Ala Asn Gln	
305	310	315
Ala Val Gly Thr Ile Ala Trp Asp Asp Ala Gln	Lys Pro Asn Glu	
325	330	335
Trp Tyr Ala Ser Ala Glu Ala Leu Arg Ile Ala Asp	Asn Val Val Leu	
340	345	350
Tyr Gln Arg Asp Ser Gly Gly Trp Pro Lys Asn	Ile Asp Met Gly Lys	
355	360	365
Pro Leu Asp Asp Lys Gly Arg Ala Gly Leu Leu	Arg Val Arg Lys Lys	
370	375	380
Asn Asp Ser Thr Ile Asp Asn Gly Ala Thr Tyr	Thr Gln Leu Ser Phe	
385	390	395
Leu Ala Arg Val Tyr Thr Ala Gln Lys Gln	Glu Arg His Arg Glu Ser	
405	410	415
Phe Leu Lys Gly Leu Asp Tyr Leu Leu Lys Ala	Gln Tyr Pro Asn Gly	
420	425	430
Gly Trp Pro Gln Phe Tyr Pro Asn Leu Asn Gly	Tyr Tyr Lys His Ile	
435	440	445
Thr Phe Asn Asp Asn Ala Met Ile Gly Val Met	Lys Leu Leu Arg Asp	
450	455	460
Val Ala Ala Ala Lys Pro Ala Tyr Ala Phe Val	Asp Glu Ala Arg Arg	
465	470	475
Thr Ser Ala Ala Lys Ala Val Glu Lys Gly Ile	Glu Cys Ile Leu Lys	
485	490	495
Thr Gln Val Val Val Asn Gly Arg Arg Thr Val	Trp Cys Ala Gln His	
500	505	510

Asp Glu Val Thr Leu Ala Pro Ala Pro Ala Arg Thr Phe Glu Leu Val
515 520 525
Ser Leu Ser Gly Gly Glu Ser Val Glu Ile Val Arg Phe Leu Met Ser
530 535 540
Ile Lys Asn Pro Ser Pro Ala Val Val Glu Ala Ile Glu Ser Ala Val
545 550 555 560
Ala Trp Phe Glu Gln Ser Gln Val Lys Asp Pro Ala Gly Lys Pro Ala
565 570 575
Trp Ala Arg Phe Tyr Glu Ile Gly Thr Asn Arg Pro Ile Phe Ala Gly
580 585 590
Arg Asp Gly Val Val Lys Tyr Asp Val Lys Gln Ile Asp Glu Glu Arg
595 600 605
Arg Lys Asn Tyr Ala Trp Tyr Val Asp Asp Ala Ala Lys Leu Leu Lys
610 615 620
Thr Asp Tyr Pro Glu Trp Lys Glu Lys Asn Ala Lys Asp Gln
625 630 635

<210> 29
<211> 1398
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 29
atgattaacc gtcgagattt cataaaagac ctcatcatca cctccgcccgg agtcgcgggtt
60
ctccccgaac tggcgttcgg acaaaaacgt ccctggaaaaa ctcaataccgc gcagatcctc
120
gcgcggatca aaccgcccggaa atttccgaag cgcgatttcg tcatacggaa gttcggcg
180
aaggcggggaa ccgatagcac gcaagcgatc gctaaagccc tcgacgcttgcgcgaa
240
ggcggcggac gcgtcgctgt acccgccggc gaatttctca ccggtgcgat ccatctcaag
300
tcgaacacca atctctacgt ctcaaaaaggc gcgactctga agtttcgac cgacccggaa
360
aaatatctgc cgatcggtca cacgcgggtgg gaagggatgg agttgatgca tctctcgccc
420
ttcatctacg cgtacgagca gacgaacatc gcgatcaccc gcgagggcac gtcgacggc
480
caaggcaaat cgttcttttgcgaa gaaatggcac ggcaacccgc gatacggcgaa
540
gtgatcgatc agcaaaaagc gcggggcgac ctttacgaga tgatggacaa gaacgtaccc
600
gtcgcggagc gcgtgttcgg tatcgggcac tatctccggc cgcaatccat ccagccgtac
660
aaatgtaaat acgtcttgcgaa cgaaggcgatc acgatcatcg actcgccgat gtggaaat
720
catccgggtgc tttgcgagaa tgtcaccgtc cgcaatcttc acatctcgat gcacggtccg
780
aacaacacgc gctgcgatcc cgagtcgtgc aaagacgtcc tgatggacaa ctgcttcttc
840
gacaccgggtgc acgactgcgtc cgcaatccatcg acgatcatcg actcgccgat gtggaaat
900
aacacacccgc cggagaacat catcgatccgc aactgcacgc tgaaagacgg tcacgggtgg
960
atcacgggtcg gaagcgagat ctcggggcgc gtgcgaaact tgttcgcaca cgattgcaag
1020
atggacacgtc cgatctgtc gaccgcgc cggtaaaga acaacgcacgc gcgccggcggc

1080
atgctggaga atttctattt ccgcaacatc accgtcgcc aagtgcgcg tgctgtggc
1140
gagatcgatt tcaactatga agaaggcgcg aagggatcgt acacaccggt catgcgcaac
1200
tacgtggtcg aggatctgac gtgcaccagc gggAACCGGC ccgtcgatct gcaaggatt
1260
gacaacgcgc caatttacga tgtgtcgctg cgtaaacacga ctttcggcgc gatgaagaac
1320
aagagcgtcg tgaagaatgt ccgaggactg aagatcgaaa acgttaccgt cagcggcact
1380
cgcgtggaga gtttatga
1398

<210> 30
<211> 465
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(27)

<221> DOMAIN
<222> (77)...(459)
<223> Catalytic domain

<400> 30
Met Ile Asn Arg Arg Asp Phe Ile Lys Asp Leu Ile Ile Thr Ser Ala
1 5 10 15
Gly Val Ala Val Leu Pro Gln Leu Ala Phe Gly Gln Asn Asp Pro Trp
20 25 30
Lys Thr Gln Tyr Pro Gln Ile Leu Ala Arg Ile Lys Pro Pro Lys Phe
35 40 45
Pro Lys Arg Asp Phe Val Ile Thr Lys Phe Gly Ala Lys Ala Gly Thr
50 55 60
Asp Ser Thr Gln Ala Ile Ala Lys Ala Leu Asp Ala Cys Ala Lys Ala
65 70 75 80
Gly Gly Gly Arg Val Val Val Pro Ala Gly Glu Phe Leu Thr Gly Ala
85 90 95
Ile His Leu Lys Ser Asn Thr Asn Leu Tyr Val Ser Lys Gly Ala Thr
100 105 110
Leu Lys Phe Ser Thr Asp Pro Glu Lys Tyr Leu Pro Ile Val His Thr
115 120 125
Arg Trp Glu Gly Met Glu Leu Met His Leu Ser Pro Phe Ile Tyr Ala
130 135 140
Tyr Glu Gln Thr Asn Ile Ala Ile Thr Gly Glu Gly Thr Leu Asp Gly
145 150 155 160
Gln Gly Lys Ser Phe Phe Trp Lys Trp His Gly Asn Pro Arg Tyr Gly
165 170 175
Gly Asn Pro Glu Val Ile Ser Gln Gln Lys Ala Arg Ala Arg Leu Tyr
180 185 190
Glu Met Met Asp Lys Asn Val Pro Val Ala Glu Arg Val Phe Gly Ile
195 200 205
Gly His Tyr Leu Arg Pro Gln Phe Ile Gln Pro Tyr Lys Cys Lys Asn
210 215 220
Val Leu Ile Glu Gly Val Thr Ile Ile Asp Ser Pro Met Trp Glu Val
225 230 235 240
His Pro Val Leu Cys Glu Asn Val Thr Val Arg Asn Leu His Ile Ser

245 250 255

Ser His Gly Pro Asn Asn Asp Gly Cys Asp Pro Glu Ser Cys Lys Asp
260 265 270

Val Leu Ile Asp Asn Cys Phe Phe Asp Thr Gly Asp Asp Cys Ile Ala
275 280 285

Ile Lys Ser Gly Arg Asn Asn Asp Gly Arg Arg Leu Asn Thr Pro Thr
290 295 300

Glu Asn Ile Ile Val Arg Asn Cys Thr Met Lys Asp Gly His Gly Gly
305 310 315 320

Ile Thr Val Gly Ser Glu Ile Ser Gly Gly Val Arg Asn Leu Phe Ala
325 330 335

His Asp Cys Lys Met Asp Ser Ala Asp Leu Trp Thr Ala Leu Arg Val
340 345 350

Lys Asn Asn Ala Ser Arg Gly Gly Met Leu Glu Asn Phe Tyr Phe Arg
355 360 365

Asn Ile Thr Val Gly Gln Val Ala Arg Ala Val Val Glu Ile Asp Phe
370 375 380

Asn Tyr Glu Glu Gly Ala Lys Gly Ser Tyr Thr Pro Val Met Arg Asn
385 390 395 400

Tyr Val Val Glu Asp Leu Thr Cys Thr Ser Gly Asn Arg Pro Val Asp
405 410 415

Leu Gln Gly Leu Asp Asn Ala Pro Ile Tyr Asp Val Ser Leu Arg Asn
420 425 430

Thr Thr Phe Gly Ala Met Lys Asn Lys Ser Val Val Lys Asn Val Arg
435 440 445

Gly Leu Lys Ile Glu Asn Val Thr Val Ser Gly Thr Arg Val Glu Ser
450 455 460

Leu
465

<210> 31
<211> 1401
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 31
atgatcaatc tttatggcgt ctttgacatc cggacctttg gggcccaacc ggacggagaa
60
acgccttcca ctgcggcgat tacggcgcc atcgaaactt gtgccgcggc cgggggagga
120
gtggtctaca tcccggccgg acggttcctc accggcccc tccgcctcaa aagccacgtc
180
cggtccatc tcgaggccgg agcgcacttg ctcttagtc aggacccggc cgattatcct
240
gttctggaga cgaggtggga gggaaaggag gtcttgacct atgcacaccca gatctacggc
300
gaggacctcg aagggtcgc gattaccgt cgggggacca tcgacggccg gggcgagact
360
tggtggcgac tcttccgcgc caaagccttc acccatcccc gacccgcct catgccttt
420
acccgctgca aggacatcct gatagaagga gtaaccctcg tcaattcacc ggcctggacc
480
atcaatcctg tcatgtgcga gcgggtgacc atcgataagg tgactatcat caacccgccc
540
gactcgccca acaccgacgg gatcgacccc gattcctccc ggaacgtcta tatcactaac
600
tgctacattg acgtaggcga tgactgcattt gccatcaaag cggggccgaga ggactccctt
660

tatcgacgc cttgtgaaaa cattgtcatc gccaactgcc tcatgcgcc a cggtcacggc
720
ggggtgtca tcggcagcga gaccagcggg ggtattcgca aggtagtcataccaaactgc
780
atcttcgagg acaccgaccg gggcattaga cttaagtccc ggccgcggacg cggcgggttc
840
gtcgaggacc tccggcgac gaatattatc atggaaaagg tgctctgtcc cttcgccctc
900
aacatgtact atgataccgg gggaggcgtg atcgacgagc gcgcgcata cttagaaccc
960
catccgtaa gcgaggctac accctcccttc cgccgcctct cttcagtca cattactgcc
1020
cggyaagtgc aggccgccc ggccttcctc tacggcctgc ccgaacagcc tctggaggac
1080
gtcttatttg acgatatctg gatagagctg gccgcccacg cttctccctgc cctgtccggcc
1140
atgatgcggg ccgtcccgcc catgagccaa ggtgggtgtgc tctgtacgg tgccgcggcgg
1200
atctccttcc ggcacatgca cctccgcggg caccgcggtc cggccttcca gatcgaacgc
1260
gcggaggcgg tgcaagtttatc gggctgctcg accgacggca gtgaagaccc ccagcttgc
1320
ttgggtcaag cggaggaggt caccatccgt gactgcaccc ttaccgcaca gcaggacccc
1380
gcaaaagaaa ggcaaaatta a
1401

<210> 32
<211> 466
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(348)
<223> Catalytic domain

<400> 32
Met Ile Asn Leu Tyr Gly Val Phe Asp Ile Arg Thr Phe Gly Ala Gln
1 5 10 15
Pro Asp Gly Glu Thr Pro Ser Thr Ala Ala Ile Thr Ala Ala Ile Glu
20 25 30
Thr Cys Ala Ala Ala Gly Gly Val Val Tyr Ile Pro Ala Gly Arg
35 40 45
Phe Leu Thr Gly Pro Leu Arg Leu Lys Ser His Val Arg Leu His Leu
50 55 60
Glu Ala Gly Ala His Leu Leu Phe Ser Gln Asp Pro Ala Asp Tyr Pro
65 70 75 80
Val Leu Glu Thr Arg Trp Glu Gly Lys Glu Val Leu Thr Tyr Ala His
85 90 95
Gln Ile Tyr Gly Glu Asp Leu Glu Gly Val Ala Ile Thr Gly Arg Gly
100 105 110
Thr Ile Asp Gly Arg Gly Glu Thr Trp Trp Arg Leu Phe Arg Ala Lys
115 120 125
Ala Phe Thr His Pro Arg Pro Arg Leu Ile Ala Phe Thr Arg Cys Lys
130 135 140
Asp Ile Leu Ile Glu Gly Val Thr Leu Val Asn Ser Pro Ala Trp Thr
145 150 155 160
Ile Asn Pro Val Met Cys Glu Arg Val Thr Ile Asp Lys Val Thr Ile

	165	170	175
Ile Asn Pro Pro Asp Ser Pro Asn Thr Asp Gly Ile Asp Pro Asp Ser			
180	185		190
Ser Arg Asn Val Tyr Ile Thr Asn Cys Tyr Ile Asp Val Gly Asp Asp			
195	200		205
Cys Ile Ala Ile Lys Ala Gly Arg Glu Asp Ser Leu Tyr Arg Thr Pro			
210	215		220
Cys Glu Asn Ile Val Ile Ala Asn Cys Leu Met Arg His Gly His Gly			
225	230	235	240
Gly Val Val Ile Gly Ser Glu Thr Ser Gly Gly Ile Arg Lys Val Val			
245	250		255
Ile Thr Asn Cys Ile Phe Glu Asp Thr Asp Arg Gly Ile Arg Leu Lys			
260	265		270
Ser Arg Arg Gly Arg Gly Phe Val Glu Asp Leu Arg Ala Thr Asn			
275	280		285
Ile Ile Met Glu Lys Val Leu Cys Pro Phe Val Leu Asn Met Tyr Tyr			
290	295		300
Asp Thr Gly Gly Val Ile Asp Glu Arg Ala His Asp Leu Glu Pro			
305	310	315	320
His Pro Val Ser Glu Ala Thr Pro Ser Phe Arg Arg Leu Ser Phe Ser			
325	330		335
His Ile Thr Ala Arg Glu Val Gln Ala Ala Ala Ala Phe Leu Tyr Gly			
340	345		350
Leu Pro Glu Gln Pro Leu Glu Asp Val Leu Phe Asp Asp Ile Trp Ile			
355	360		365
Glu Leu Ala Ala Asp Ala Ser Pro Ala Arg Pro Ala Met Met Arg Ala			
370	375		380
Val Pro Pro Met Ser Gln Gly Gly Val Leu Cys Tyr Gly Ala Arg Arg			
385	390	395	400
Ile Ser Phe Arg His Met His Leu Arg Gly His Arg Gly Pro Ala Phe			
405	410		415
Gln Ile Glu Arg Ala Glu Ala Val Gln Leu Met Gly Cys Ser Thr Asp			
420	425		430
Gly Ser Glu Asp Pro Gln Leu Val Leu Gly Gln Ala Glu Glu Val Thr			
435	440		445
Ile Arg Asp Cys Thr Phe Thr Ala Gln Gln Asp Pro Ala Lys Glu Arg			
450	455		460
Gln Asn			
465			

<210> 33

<211> 1041

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 33

atgaaacttc gatgtctgat gctcaccctg cttcttgcg gcagcgcctt cgccgccgac
60

cggattacgg ccgacaagat caacaacaag cccgactcct ggcttaccag cgacgaaggc
120

atcaagctga tcgacaacat catcacctgg cagaaccccg agggtgtgctg ggccaagtac
180

tacgacgcga ccaatccgca caaacaaggc gaagtctacg gcgactggga cggcgtcggc
240

accatcgaca acggctacac ctacaccgag ctgaatctcc tggcgacgt ctacaccctc
300

accaagcgcc cgagatcct cgattcggtt aacaagggcc tggagttct gctcaaagcc
360

caatacccca gcggcggctg gcccacaacgg ttccgggtgc ccaacaacta cggcaagtgc
420
atcacgctca acgacaacgc gatggtaac gtgatgcagt tcctgcagaa cgtcgcaaag
480
ggcaaggaag acttcgcttt cgtcgacgag cagcgtcgcg ccaaagcga ggaggcgaaa
540
gaccgcggga tcgactgcct tctgaagctc cagattaccg tgaacggcaa gcttaccgcc
600
tggcccccagc agtatgaccc gaagacactc gccgcggcgc cggccgggc gtacgagctc
660
ccggccctca gcggctgcga aagcgcgccc gtcatgcgct tggtcatgtc ttggagaac
720
cccagtcccc aagttcagcg cgccgtccac gcggcggcgg ctggtagcga ggcgtcgaag
780
atcaccggca agaagctggt gcgcgagaac aacgacgtga cactggccga cgaccccaac
840
ggcgagccgc tttggcgcg cttctacgac atcgaaacca accgcccgtt ctattgcgt
900
cgcgacggcg tgaagaagt gtcgctggac gagatcgagc ccgaacgccc caaggctac
960
gcttgggtcc gcccctggc gacgagcgt a ctggagcagt atcgcaagt ggcggcgaag
1020
caccaccccg tgaacagttg a
1041

<210> 34

<211> 346

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1)...(18)

<221> DOMAIN

<222> (19)...(346)

<223> Catalytic domain

<400> 34

Met	Lys	Leu	Arg	Cys	Leu	Met	Leu	Thr	Leu	Leu	Leu	Cys	Gly	Ser	Ala
1						5			10						15
Phe	Ala	Ala	Asp	Arg	Ile	Thr	Ala	Asp	Lys	Ile	Asn	Asn	Lys	Pro	Asp
									20		25				30
Ser	Trp	Leu	Thr	Ser	Asp	Glu	Gly	Ile	Lys	Leu	Ile	Asp	Asn	Ile	Ile
								35		40				45	
Thr	Trp	Gln	Asn	Pro	Glu	Gly	Gly	Trp	Ala	Lys	Tyr	Tyr	Asp	Ala	Thr
								50		55		60			
Asn	Pro	His	Lys	Gln	Gly	Glu	Val	Tyr	Gly	Asp	Trp	Asp	Gly	Val	Gly
								65		70		75			80
Thr	Ile	Asp	Asn	Gly	Tyr	Thr	Tyr	Thr	Glu	Leu	Asn	Leu	Leu	Ala	His
								85		90				95	
Val	Tyr	Thr	Leu	Thr	Lys	Arg	Pro	Glu	Ile	Leu	Asp	Ser	Phe	Asn	Lys
								100		105				110	
Gly	Leu	Glu	Phe	Leu	Leu	Lys	Ala	Gln	Tyr	Pro	Ser	Gly	Gly	Trp	Pro
								115		120				125	
Gln	Arg	Phe	Pro	Val	Pro	Asn	Asn	Tyr	Gly	Lys	Cys	Ile	Thr	Leu	Asn
								130		135		140			
Asp	Asn	Ala	Met	Val	Asn	Val	Met	Gln	Phe	Leu	Gln	Asn	Val	Ala	Lys
								145		150		155			160

Gly Lys Glu Asp Phe Ala Phe Val Asp Glu Gln Arg Arg Ala Lys Ala
165 170 175
Lys Glu Ala Phe Asp Arg Gly Ile Asp Cys Leu Leu Lys Leu Gln Ile
180 185 190
Thr Val Asn Gly Lys Leu Thr Ala Trp Ala Gln Gln Tyr Asp Pro Lys
195 200 205
Thr Leu Ala Ala Ala Pro Ala Arg Ala Tyr Glu Leu Pro Gly Leu Ser
210 215 220
Gly Cys Glu Ser Ala Pro Val Met Arg Leu Phe Met Ser Leu Glu Asn
225 230 235 240
Pro Ser Pro Glu Val Gln Arg Ala Val His Ala Ala Ala Ala Trp Tyr
245 250 255
Glu Ala Ser Lys Ile Thr Gly Lys Lys Leu Val Arg Glu Asn Asn Asp
260 265 270
Val Thr Leu Ala Asp Asp Pro Asn Gly Glu Pro Leu Trp Ala Arg Phe
275 280 285
Tyr Asp Ile Glu Thr Asn Arg Pro Phe Tyr Cys Gly Arg Asp Gly Val
290 295 300
Lys Lys Trp Ser Leu Asp Glu Ile Glu Pro Glu Arg Arg Lys Gly Tyr
305 310 315 320
Ala Trp Val Arg Pro Trp Ala Thr Ser Val Leu Glu Gln Tyr Arg Lys
325 330 335
Trp Ala Ala Lys His Pro Pro Val Asn Ser
340 345

<210> 35

<211> 1071

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 35

atgccaaaaa attccgacga cgcgtggcgg gaaaagactc cgcccgattt gagtcttgtc
60
acatggagcg acgtattcaa acagaagcct ctctggtacc aaaccgacga ggcggctcga
120
gtcgcggacc aactcctcat ctatcaaaaa gagaacggcg ggtttgagaa gaatgtcgac
180
atggcgttga tgctgacgca gaaggaaaaa gaagagctca ccgcaaagcg gtcagacgtc
240
tccgaaacga cgatcgacaa ccggaccacg tattcctcagg tcgcgtatct cggtcgagta
300
atcaccgcaa gccttcttaa accttcgccc cccgcgaatc ttccgaaata caaagacgcc
360
ttcaacaag gtcttgatta cctgcttgcc tcccagtatg agaacggagg atttccgcaa
420
ttcttatccgt tgaaaaaagg ctattacaca cacatcacct tcaacgacga cgcgatgatc
480
ggcgtcttga aggtgcttcg cgacatcgca aataagaaag aggattacgt gttcgtggat
540
gaagcgcgaa gacttcgcgc cgagcaagcg gtcgccttca tattctgaag
600
cttcaggttg tcgtcgacgg aaagaaaaacc gtctggctg cgcaatgtca cgagactacg
660
ctggcgccttga cagcggctcg caagtttag cccgtgtcgt tgaccgctgg tgagagcgtc
720
ggcattcgatcc gatacctgat gcagggaaaaa ccgacgcccgg agatcaccga tgcgatcgag
780
tctgcgatcg attggatcg aaagaacaag atcgacggaa tacgttggaa gcgcatcaaa

840
ggcgagaaca cggttgtaa agacaaatcg gctcccccta tatgggcacg gttctatcag
900
atcgaaaacga tgcgtccgat cttcatcgga cgtgattcgg ttatcaagta tgacgtgacg
960
caggtcgaag ccgagcgtcg gaatggttac gcctggtacg tcaccgcacc gaatgaattg
1020
tgtaacgagg attatttcaa gtggaagggg aaaagcgccg gagccaagta g
1071

<210> 36
<211> 356
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(356)
<223> Catalytic domain

<400> 36
Met Pro Lys Asn Ser Asp Asp Ala Trp Arg Glu Lys Thr Pro Pro Asp
1 5 10 15
Trp Ser Leu Val Thr Trp Ser Asp Val Phe Lys Gln Lys Pro Leu Trp
20 25 30
Tyr Gln Thr Asp Glu Ala Ala Arg Val Ala Asp Gln Leu Leu Ile Tyr
35 40 45
Gln Lys Glu Asn Gly Gly Phe Glu Lys Asn Val Asp Met Ala Leu Met
50 55 60
Leu Thr Gln Lys Glu Lys Glu Glu Leu Thr Ala Lys Arg Ser Asp Val
65 70 75 80
Ser Glu Thr Thr Ile Asp Asn Arg Thr Thr Tyr Pro Gln Val Ala Tyr
85 90 95
Leu Gly Arg Val Ile Thr Ala Ser Leu Leu Lys Pro Ser Pro Pro Ala
100 105 110
Asn Leu Pro Lys Tyr Lys Asp Ala Phe Asn Lys Gly Leu Asp Tyr Leu
115 120 125
Leu Ala Ser Gln Tyr Glu Asn Gly Gly Phe Pro Gln Phe Tyr Pro Leu
130 135 140
Lys Lys Gly Tyr Tyr Thr His Ile Thr Phe Asn Asp Asp Ala Met Ile
145 150 155 160
Gly Val Leu Lys Val Leu Arg Asp Ile Ala Asn Lys Lys Glu Asp Tyr
165 170 175
Val Phe Val Asp Glu Ala Arg Arg Leu Arg Ala Glu Gln Ala Val Ala
180 185 190
Lys Ala Leu Pro Leu Ile Leu Lys Leu Gln Val Val Val Asp Gly Lys
195 200 205
Lys Thr Val Trp Ala Ala Gln Tyr Asp Glu Thr Thr Leu Ala Pro Ala
210 215 220
Ala Ala Arg Lys Phe Glu Pro Val Ser Leu Thr Ala Gly Glu Ser Val
225 230 235 240
Gly Ile Val Arg Tyr Leu Met Gln Glu Lys Pro Thr Pro Glu Ile Thr
245 250 255
Asp Ala Ile Glu Ser Ala Ile Asp Trp Tyr Arg Lys Asn Lys Ile Asp
260 265 270
Gly Ile Arg Trp Glu Arg Ile Lys Gly Glu Asn Thr Val Val Lys Asp
275 280 285
Lys Ser Ala Pro Pro Ile Trp Ala Arg Phe Tyr Gln Ile Glu Thr Met
290 295 300

Arg Pro Ile Phe Ile Gly Arg Asp Ser Val Ile Lys Tyr Asp Val Thr
305 310 315 320
Gln Val Glu Ala Glu Arg Arg Asn Gly Tyr Ala Trp Tyr Val Thr Ala
325 330 335
Pro Asn Glu Leu Val Asn Glu Asp Tyr Leu Lys Trp Lys Gly Lys Ser
340 345 350
Ala Gly Ala Lys
355

<210> 37

<211> 1860

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 37

atgttcacta ctactggctc tcattgcgcc cggaattccg cgcgttttc cttactgcg
60
atagcagccg ctgttgcgtt gatggcaggc acttcagcat ttgcagctgc gacgggtggc
120
ttctctacca ctgatggtgg caacgtatcg ggcccgtt cgtttactgc atcgacttac
180
cagcaaatca acaccattat tgccaacgca aaactggatg atgcaggtaa aaaagtca
240
gggggtgctt acccgcttat cattacctac accggtaatg aagactcgct gattaaccag
300
atgatcaaag accacacggt gaattcatcg ggcaactgcc ctaacccgcg ttggagcga
360
gcctatcgct acgtggaaat taaagagttt accaaggta ttaccattca aggcgcaat
420
ggttcttcag ccaaacttcgg cattgtgatt aataaatctg acaatgtgat tgtcgtaat
480
atgaaaatcg gtgcgcttgc tggtgcgagt aacgatgcgg atatgattcg tatcgacacc
540
ggcgtaacg tgtggattga tcacaacgaa ttgtttgcgg taaataatga atgtaaaggt
600
tcacccgatg gtgacctgac atttggaaagt gcgattgata ttaaaaaagc atcgaaaaat
660
attacggtgt cctacaacat tatccgcgt agtaaaaaag tagggctcga tggttcgagt
720
agcagtgata ttgcaggtgg ccgtaagatt acgttccatc acaatattta tcgcaatgtt
780
ggtgacacgtt taccgttgca acgcgggtgt tggacacaca tgtataacaa tctttacgac
840
ggagttacca gctcggttat taacgttcgt caaggtggct acgcgctaatt cgagaacaac
900
tggttccaaa atgctgtcaa cccggttacc tgccgttttgc acagtagtaa ctgcggttac
960
tgggatctgc gcaacaacaa cgtgcgcaac cctgggtgatt tctccaccta caacattacc
1020
tggaccacgc gtggcaccat cgacgccacc aactggacta ccactcaacc tttcccgatt
1080
agcattccctt acagctactc gcctgttagc cgcagtggtg tcaaagacaa gttggcaaat
1140
tatgctggtg tcggtaaaaa caatgcgcaa ttaacggcgt ctgcgtgcag cgaaataact
1200
tcatcggttag cacccatccatc agtgcgcagca tcacggcgg cacccatcaag ccgttcatcc
1260
agcagtgcag cccatccag cacaccaact acatcaagct cgagttcagt tgccgcaacc

1320
ggttcaattt cgctcggtgc aacggcaacc aacaacagca ttgtgttagg ttggtcaccc
1380
aacaatgtga cgctcggttc gcaagaagtg tatcgcgata ccgacgctga tccatcgggg
1440
cgtgtgcgta tcgcatccct ggctgcttca ggcgttatgt ataccgatag cacagcggca
1500
tcggggccaaa cctattacta ctggattaaa aataccactt ctggtgttgc caccaattcc
1560
aatgctgcat cagcgcgtat tggtagcacy gcgtccagtt ctgttgcatc aagcagctca
1620
agttcaagcg gcggcgcgcc cgtatttaggt ggtactggtg attatccaag cggcttctcc
1680
aagtgcgctg atttgggcgg gacttggttca gtgtcatcgg gcgatggctg gggtgcgttt
1740
ggtcgcaaag gcaagtgggt taccaagaaa gtatcggtag gtagttcaat cgcctgtacc
1800
gttgcggcat ttggttcggg tccacaggc aaccctaaca agtgttctta caaacgttaa
1860

<210> 38
<211> 619
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1) ... (35)

<221> DOMAIN
<222> (36) ... (387)
<223> Catalytic domain

<400> 38
Met Phe Thr Thr Gly Ser His Cys Ala Arg Asn Ser Ala Arg Phe
1 5 10 15
Ser Leu Thr Ala Ile Ala Ala Val Ala Leu Met Ala Gly Thr Ser
20 25 30
Ala Phe Ala Ala Ala Thr Gly Gly Phe Ser Thr Thr Asp Gly Gly Asn
35 40 45
Val Ser Gly Ala Arg Ser Phe Thr Ala Ser Thr Tyr Gln Gln Ile Asn
50 55 60
Thr Ile Ile Ala Asn Ala Lys Leu Asp Asp Ala Gly Lys Lys Val Thr
65 70 75 80
Gly Gly Ala Tyr Pro Leu Ile Ile Thr Tyr Thr Gly Asn Glu Asp Ser
85 90 95
Leu Ile Asn Gln Met Ile Lys Asp His Thr Val Asn Ser Ser Gly Asn
100 105 110
Cys Pro Asn Pro Arg Trp Ser Glu Ala Tyr Arg Tyr Val Glu Ile Lys
115 120 125
Glu Phe Thr Lys Gly Ile Thr Ile Gln Gly Ala Asn Gly Ser Ser Ala
130 135 140
Asn Phe Gly Ile Val Ile Asn Lys Ser Asp Asn Val Ile Val Arg Asn
145 150 155 160
Met Lys Ile Gly Ala Leu Ala Gly Ala Ser Asn Asp Ala Asp Met Ile
165 170 175
Arg Ile Asp Thr Gly Val Asn Val Trp Ile Asp His Asn Glu Leu Phe
180 185 190
Ala Val Asn Asn Glu Cys Lys Gly Ser Pro Asp Gly Asp Leu Thr Phe

195	200	205
Glu Ser Ala Ile Asp Ile Lys Lys Ala Ser Gln Asn Ile Thr Val Ser		
210	215	220
Tyr Asn Ile Ile Arg Asp Ser Lys Lys Val Gly Leu Asp Gly Ser Ser		
225	230	235
Ser Ser Asp Ile Ala Gly Gly Arg Lys Ile Thr Phe His His Asn Ile		
245	250	255
Tyr Arg Asn Val Gly Ala Arg Leu Pro Leu Gln Arg Gly Gly Trp Thr		
260	265	270
His Met Tyr Asn Asn Leu Tyr Asp Gly Val Thr Ser Ser Gly Ile Asn		
275	280	285
Val Arg Gln Gly Gly Tyr Ala Leu Ile Glu Asn Asn Trp Phe Gln Asn		
290	295	300
Ala Val Asn Pro Val Thr Cys Arg Phe Asp Ser Ser Asn Cys Gly Tyr		
305	310	315
Trp Asp Leu Arg Asn Asn Asn Val Arg Asn Pro Gly Asp Phe Ser Thr		
325	330	335
Tyr Asn Ile Thr Trp Thr Ser Gly Gly Thr Ile Asp Ala Thr Asn Trp		
340	345	350
Thr Thr Thr Gln Pro Phe Pro Ile Ser Ile Pro Tyr Ser Tyr Ser Pro		
355	360	365
Val Ser Pro Gln Cys Val Lys Asp Lys Leu Ala Asn Tyr Ala Gly Val		
370	375	380
Gly Lys Asn Asn Ala Gln Leu Thr Ala Ser Ala Cys Ser Gly Asn Thr		
385	390	395
Ser Ser Val Ala Pro Ser Ser Val Pro Ala Ser Ser Ala Ala Pro Ser		
405	410	415
Ser Arg Ser Ser Ser Ala Ala Pro Ser Ser Thr Pro Thr Thr Ser		
420	425	430
Ser Ser Ser Val Ala Ala Thr Gly Ser Ile Ser Leu Gly Ala Thr		
435	440	445
Ala Thr Asn Asn Ser Ile Val Leu Ser Trp Ser Pro Asn Asn Val Thr		
450	455	460
Leu Gly Ser Gln Glu Val Tyr Arg Asp Thr Asp Ala Asp Pro Ser Gly		
465	470	475
Arg Val Arg Ile Ala Ser Leu Ala Ala Ser Ala Arg Met Tyr Thr Asp		
485	490	495
Ser Thr Ala Ala Ser Gly Gln Thr Tyr Tyr Trp Ile Lys Asn Thr		
500	505	510
Thr Ser Gly Val Val Thr Asn Ser Asn Ala Ala Ser Ala Arg Ile Gly		
515	520	525
Ser Thr Ala Ser Ser Ser Val Ala Ser Ser Ser Ser Ser Ser Gly		
530	535	540
Gly Ala Pro Val Leu Gly Gly Thr Gly Asp Tyr Pro Ser Gly Phe Ser		
545	550	555
Lys Cys Ala Asp Leu Gly Gly Thr Cys Ser Val Ser Ser Gly Asp Gly		
565	570	575
Trp Val Ala Phe Gly Arg Lys Gly Lys Trp Val Thr Lys Lys Val Ser		
580	585	590
Val Gly Ser Ser Ile Ala Cys Thr Val Ala Ala Phe Gly Ser Asp Pro		
595	600	605
Gln Gly Asn Pro Asn Lys Cys Ser Tyr Lys Arg		
610	615	

<210> 39

<211> 1077

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 39
atggcgccga tcctccgacc caacccctt tgcaacttacg cgctctgcat gggcttgctc
60
gccgtggta gctgcgcggc gggccgggtg tcagcgcagc agccggcgcc atggagcacg
120
gccatcggtgg agcaggagga gagcgcgttc gcctccccgt cgatgcgcag cgtcgccgac
180
aacgtcggtgc gccatcagtc ggccgaaggc ggctggccta agaacaccaa tctggcggcg
240
ccgcccattcggtgg ccggccggcc ggagggcgac gccaatacga tcgacaatga tgcgacgacg
300
ctgcccgtatgg agtttctggc gcgtgtgatc cacgcccggcg gcgtccgata caagccggcc
360
ttcgagcgcg ggctggatta tctgcttgcg gctcagtacg cgaacggcg ctggccgcag
420
ttcttatccgc tgcgccgggg ctattacgt cacgtgacgt tcaacgacga cccatgatc
480
cggtgtatga ttctgctcgg cgcaatggcg cgccgggggg cgccctatga atttgcac
540
gcccggccgc gcgccgcgc tgcaatggcg gtcgagcggg gcctggcgct catccctgcgc
600
acgcagatcc ggcaggcg ggccgtgacg gtctggcg cgcaatgtga cagcgccacc
660
ttgcagcccg cctggcgccg cgcctatgag ccgcgtcccc tgtccggcgc ggaaagtgt
720
gggatcggtgc gctatctcat gtcgatcgac catccctcgcc ccaaatcgatc cccgcgcgtc
780
gacggcgctg tggcatggct gcgccggcc gccattgccc gcgtgcgcgt ggagaatttc
840
acggacgccc acggccgccc tgaccgccc gccgtggccg acgcggccgc gccgccgatc
900
tggcgccgt tctacgagtt cggcgccaaac cggccgatct tcctggggcg tgattccgtt
960
tttcactaca cggtcgaga aatcgagcgc gagcggcgcc caggctacaa ttattacgga
1020
tactggcgcc gctccgtgct ggaagactat ccggcctggc gcgccgcgt gcgatga
1077

<210> 40

<211> 358

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1)...(32)

<221> DOMAIN

<222> (33)...(358)

<223> Catalytic domain

<400> 40

Met	Ala	Pro	Ile	Leu	Arg	Pro	Asn	Leu	Leu	Cys	Thr	Tyr	Ala	Leu	Cys
1				5					10				15		
Met	Gly	Leu	Leu	Ala	Val	Val	Ser	Cys	Ala	Ala	Gly	Pro	Val	Ser	Ala
					20			25					30		
Gln	Gin	Pro	Ala	Pro	Trp	Ser	Thr	Ala	Ile	Val	Glu	Gln	Glu	Glu	Ser
					35			40				45			

Ala Phe Ala Ser Pro Ser Met Arg Ser Val Ala Asp Asn Val Val Arg
50 55 60
His Gln Ser Ala Glu Gly Gly Trp Pro Lys Asn Thr Asn Leu Ala Ala
65 70 75 80
Pro Pro Ser Gly Pro Ala Pro Glu Gly Val Ala Asn Thr Ile Asp Asn
85 90 95
Asp Ala Thr Thr Leu Pro Met Glu Phe Leu Ala Arg Val Ile His Ala
100 105 110
Gly Gly Val Arg Tyr Lys Pro Ala Phe Glu Arg Gly Leu Asp Tyr Leu
115 120 125
Leu Ala Ala Gln Tyr Ala Asn Gly Gly Trp Pro Gln Phe Tyr Pro Leu
130 135 140
Arg Gly Gly Tyr Tyr Asp His Val Thr Phe Asn Asp Asp Ala Met Ile
145 150 155 160
Arg Val Met Ile Leu Leu Gly Ala Val Ala Arg Gly Gly Ala Pro Tyr
165 170 175
Glu Phe Val Asp Ala Gly Arg Arg Ala Arg Ala Ala Ala Val Glu
180 185 190
Arg Gly Leu Ala Leu Ile Leu Arg Thr Gln Ile Arg Gln Gly Gly Ala
195 200 205
Leu Thr Val Trp Cys Ala Gln Tyr Asp Ser Ala Thr Leu Gln Pro Ala
210 215 220
Trp Ala Arg Ala Tyr Glu Pro Pro Ser Leu Ser Gly Ala Glu Ser Val
225 230 235 240
Gly Ile Val Arg Tyr Leu Met Ser Ile Asp His Pro Ser Pro Glu Val
245 250 255
Val Ala Ala Val Asp Gly Ala Val Ala Trp Leu Arg Ala Ala Ala Ile
260 265 270
Ala Gly Val Arg Val Glu Asn Phe Thr Asp Ala Asp Gly Arg Pro Asp
275 280 285
Arg Arg Ala Val Ala Asp Ala Gly Ala Pro Pro Ile Trp Ala Arg Phe
290 295 300
Tyr Glu Phe Gly Ala Asn Arg Pro Ile Phe Leu Gly Arg Asp Ser Val
305 310 315 320
Phe His Tyr Thr Phe Gly Glu Ile Glu Arg Glu Arg Arg Ala Gly Tyr
325 330 335
Asn Tyr Tyr Gly Tyr Trp Ala Arg Ser Val Leu Glu Asp Tyr Pro Ala
340 345 350
Trp Arg Ala Arg Val Arg
355

<210> 41
<211> 1080
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 41
atgaaaaatt taaaatacag ttttagttca tttgtactac tcattactat gaatgtttt
60
acgcaagaaaa aaaaagttaac ttggaaaagc atcacagaaaa ataacgatga aaattggtt
120
gtaagcgaag aagccaaaaa aatagccgaa aatgtttgt tatatcaacg cgatattgg
180
ggttggccaa aaaacactga aattcaaat gaacttcag aaaaagaaaa actaacat
240
aaagaattaa aatcgatcc aaaaggatgt accatcgaca atggtgcaac gtgtcaggaa
300
ttactttct tatccaaaat atataatcc aatccagatg agcgatataa aatggcttc

360 taaaagggtg tgatttacct gattacagct caatacaaaaa atggtggttg gccacaatat
420 tacccttga gagaaggata ttacactcat attacttaca acgataatgc aatggtaat
480 gttttaaagt tggtaaaaga agttaaagat aaatctgatt actactcaat tcaagcaccc
540 gatgaaattt ccaaaatggc tgaagtatca ttataaaag gagtcgattg catattaaaa
600 acacagtaca aacaaaatgg aatattaacc gcttggtgtg cacaacatga cagggaaaca
660 ttgaaacctg ctaaagcaag agcttatgaa ttgccttcgt taagcgaaa agaatcagcc
720 aaaatttgtt tggtaattat gtcaatcgaa aatccatcta aagaagtaat tactgccgt
780 aattcagcag ttaattgggt tgaaaaaaca aaaatcaacg gaattaaaaat tggaaaccatt
840 tccacccggaa aaaaggatga aaaagataga attgttggtt aaagtccgtg tgctccgccc
900 ctggggcaa gatttatgga attaagtgac aacaaaccat tttttgtga tcgtgacgga
960 aagaaaaaat acagcatgtc agaaattagt caagagcgta gaaccggcta tgcatggta
1020 accaacgaac caaaagaagt tttaaaaaaa tacgatgatt ggaagtcatc attaaactaa
1080

<210> 42
<211> 359
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(21)

<221> DOMAIN
<222> (22)...(359)
<223> Catalytic domain

<400> 42
Met Lys Asn Leu Lys Tyr Ser Leu Val Ser Phe Val Leu Leu Ile Thr
1 5 10 15
Met Asn Val Phe Thr Gln Glu Lys Lys Val Thr Trp Lys Ser Ile Thr
20 25 30
Glu Asn Asn Asp Glu Asn Trp Phe Val Ser Glu Glu Ala Lys Lys Ile
35 40 45
Ala Glu Asn Val Leu Leu Tyr Gln Arg Asp Ile Gly Gly Trp Pro Lys
50 55 60
Asn Thr Glu Ile Gln Asn Glu Leu Ser Glu Lys Glu Lys Leu Thr Leu
65 70 75 80
Lys Glu Leu Lys Ser Asp Pro Lys Gly Cys Thr Ile Asp Asn Gly Ala
85 90 95
Thr Cys Gln Glu Leu Leu Phe Leu Ser Lys Ile Tyr Lys Ser Asn Pro
100 105 110
Asp Glu Arg Tyr Lys Met Ala Phe Leu Lys Gly Val Ile Tyr Leu Ile
115 120 125
Thr Ala Gln Tyr Lys Asn Gly Gly Trp Pro Gln Tyr Tyr Pro Leu Arg
130 135 140
Glu Gly Tyr Tyr Thr His Ile Thr Tyr Asn Asp Asn Ala Met Val Asn

145 150 155 160
Val Leu Lys Leu Leu Lys Glu Val Lys Asp Lys Ser Asp Tyr Tyr Ser
165 170 175
Ile Gln Ala Pro Asp Glu Ile Ser Lys Met Ala Glu Val Ser Phe Asn
180 185 190
Lys Gly Val Asp Cys Ile Leu Lys Thr Gln Tyr Lys Gln Asn Gly Ile
195 200 205
Leu Thr Ala Trp Cys Ala Gln His Asp Arg Glu Thr Leu Lys Pro Ala
210 215 220
Lys Ala Arg Ala Tyr Glu Leu Pro Ser Leu Ser Gly Lys Glu Ser Ala
225 230 235 240
Lys Ile Val Leu Leu Met Ser Ile Glu Asn Pro Ser Lys Glu Val
245 250 255
Ile Thr Ala Val Asn Ser Ala Val Asn Trp Phe Glu Lys Thr Lys Ile
260 265 270
Asn Gly Ile Lys Ile Glu Thr Ile Ser Thr Gly Lys Lys Asp Glu Lys
275 280 285
Asp Arg Ile Val Val Glu Ser Pro Asp Ala Pro Pro Leu Trp Ala Arg
290 295 300
Phe Met Glu Leu Ser Asp Asn Lys Pro Phe Phe Cys Asp Arg Asp Gly
305 310 315 320
Lys Lys Lys Tyr Ser Met Ser Glu Ile Ser Gln Glu Arg Arg Thr Gly
325 330 335
Tyr Ala Trp Tyr Thr Asn Glu Pro Lys Glu Val Leu Lys Lys Tyr Asp
340 345 350
Asp Trp Lys Ser Ser Leu Asn
355

<210> 43
<211> 1902
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 43
gtggatccaa agaattgggg cagcggattt accggcgaaa tcaaagtaac taacaacaca
60
agccaaacag tcaatagctg gtctgtgtca tggcaagagg caggagccag tgtaactaat
120
tccttggaatg caaccttggg agggacgaat cttataccg caaccgggtt aggtatggAAC
180
tcaaccctgg cccccggagc ctctgccagt ttgggtttc aagcaaacgg cactgcgggg
240
gcacccaaagg taaatggcag tttgtgttgt gcgactgcat catctgcagc gaccagcaaa
300
tccagtgcga gtgttgcgag ttcaaagatt gcaagttcaa ttcaatcaag tgcaacttagc
360
agttcaaaat cgccatgttc tgctgcacct tcaagcacgc caaaatccag tagctctgct
420
ccaacggctg catcattcac tattcaagaa gagcaagccg gttttgccc tgttagacgg
480
attgcaacgg aaagtaccaa caccggattc accggcaacg gctacaccaa ttccaataat
540
gtacaagggtg ctgccattgt gtggggcgta aatgcaacta ccagtgcacg ccatacaatt
600
actttccgct tcgctaattgg tggcactgcg aatcgcaatg gctcgctagt cattaacggc
660
ggcagcaatg gtaattacac ggtgcaatta ccacgcacccg cgagctgggc tgactggcaa
720

acagtaagtc tgaaaattga tttggcacaa ggcaataaca atttgcaact caccgcattg
780
actgcagatg gcctcgcaaa tatcgacttc atcaaaattt aaggagcatc aaccaaagcg
840
ggaacctgtg caggtgcggc cagcagtagc agtgtgcct ctgcgtaaa atccagtgt
900
agcgcggcaa gcagttctgt accaacgaac accggcgcca tgctaacttt ggatggcaac
960
cctgcccaa gctggcttaa caaatcgctg acaaagtgg agcgcacgcg cgctgacatt
1020
gttgcctctt atcaacagtc caacggcggc tggccaaaaa atctggatta caattcagtg
1080
agcgctggta atggcggcag tgcaagcggc accatcgata atggcgaac tattactgaa
1140
atggtttac tcgctgaggt ttacaaaacc gaaaaacaata ccaagtaccg cgatgcagtt
1200
cgccgtgcag caaactttat cgtgagttcg caatatacgca ctggcgcgtt gccgcaatt
1260
tatccgctca aaggtggcta tgcagaccac gccaccttta atgataacgg catggcttac
1320
gcattaaactg tattggattt cgctgcaaac aagcgcgcgc ctttgatac ggatgtctt
1380
aatgacacag accgcgcaaa attaaaaca gcgtaacca aaggtgtga ttacatttt
1440
aaagcgaat gaaaaacaaaa tggaaaatta acagcctggt gcgcacaaca tggcgcact
1500
gactatcaac ctaaaaaagc acgcgttat gaattggaaat cactgagtgg tagcgagtct
1560
gttggtgtaa ttgcattttt aatgacgcag ccgcagacag cacaaatcca aacggccgtt
1620
aaagcaggcc tcaactggtt caatagcccc agcacctatt tggaaaggta cacctacgat
1680
tcatccaaag cgtccactaa tcccatagtg cagaaagcgg gaagtagaat gtggtatcgc
1740
ttttacgatt taaataccaa ccgtggtttt ttcagcgacc gggacggcag caaattctat
1800
gacattacca aaatgtctga agaacgtcgc acgggtata gttgggtgg cgcttatgg
1860
gagagcatca tcgccttgg caaaaaagtgg ggctatctat aa
1902

<210> 44

<211> 633

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> BINDING

<222> (4)...(89)

<223> Carbohydrate binding module

<221> BINDING

<222> (152)...(275)

<223> Carbohydrate binding module

<221> DOMAIN

<222> (277)...(633)

<223> Catalytic domain

<400> 44

Met Asp Pro Lys Asn Trp Gly Ser Gly Phe Thr Gly Glu Ile Lys Val
1 5 10 15
Thr Asn Asn Thr Ser Gln Thr Val Asn Ser Trp Ser Val Ser Trp Gln
20 25 30
Glu Ala Gly Ala Ser Val Thr Asn Ser Trp Asn Ala Thr Leu Gly Gly
35 40 45
Thr Asn Pro Tyr Thr Ala Thr Gly Leu Gly Trp Asn Ser Thr Leu Ala
50 55 60
Pro Gly Ala Ser Ala Ser Phe Gly Phe Gln Ala Asn Gly Thr Ala Gly
65 70 75 80
Ala Pro Lys Val Asn Gly Ser Leu Cys Gly Ala Thr Ala Ser Ser Ala
85 90 95
Ala Thr Ser Lys Ser Ser Ala Ser Val Ala Ser Ser Lys Ile Ala Ser
100 105 110
Ser Ile Gln Ser Ser Ala Thr Ser Ser Ser Lys Ser Ser Ser Ala
115 120 125
Ala Pro Ser Ser Thr Pro Lys Ser Ser Ser Ala Pro Thr Ala Ala
130 135 140
Ser Phe Thr Ile Gln Glu Glu Gln Ala Gly Phe Cys Arg Val Asp Gly
145 150 155 160
Ile Ala Thr Glu Ser Thr Asn Thr Gly Phe Thr Gly Asn Gly Tyr Thr
165 170 175
Asn Ser Asn Asn Val Gln Gly Ala Ala Ile Val Trp Ala Val Asn Ala
180 185 190
Thr Thr Ser Ala Arg His Thr Ile Thr Phe Arg Phe Ala Asn Gly Gly
195 200 205
Thr Ala Asn Arg Asn Gly Ser Leu Val Ile Asn Gly Gly Ser Asn Gly
210 215 220
Asn Tyr Thr Val Gln Leu Pro Arg Thr Ala Ser Trp Ala Asp Trp Gln
225 230 235 240
Thr Val Ser Leu Glu Ile Asp Leu Val Gln Gly Asn Asn Asn Leu Gln
245 250 255
Leu Thr Ala Leu Thr Ala Asp Gly Leu Ala Asn Ile Asp Phe Ile Lys
260 265 270
Ile Glu Gly Ala Ser Thr Lys Ala Gly Thr Cys Ala Gly Ala Val Ser
275 280 285
Ser Ser Ser Val Ala Ser Ser Val Lys Ser Ser Ala Ser Ala Ala Ser
290 295 300
Ser Ser Val Pro Thr Asn Thr Gly Ala Met Leu Thr Leu Asp Gly Asn
305 310 315 320
Pro Ala Ala Ser Trp Leu Asn Lys Ser Arg Thr Lys Trp Ser Ala Ser
325 330 335
Arg Ala Asp Ile Val Ala Ser Tyr Gln Gln Ser Asn Gly Gly Trp Pro
340 345 350
Lys Asn Leu Asp Tyr Asn Ser Val Ser Ala Gly Asn Gly Gly Ser Ala
355 360 365
Ser Gly Thr Ile Asp Asn Gly Ala Thr Ile Thr Glu Met Val Tyr Leu
370 375 380
Ala Glu Val Tyr Lys Thr Gly Asn Asn Thr Lys Tyr Arg Asp Ala Val
385 390 395 400
Arg Arg Ala Ala Asn Phe Ile Val Ser Ser Gln Tyr Ser Thr Gly Ala
405 410 415
Leu Pro Gln Phe Tyr Pro Leu Lys Gly Gly Tyr Ala Asp His Ala Thr
420 425 430
Phe Asn Asp Asn Gly Met Ala Tyr Ala Leu Thr Val Leu Asp Phe Ala
435 440 445
Ala Asn Lys Arg Ala Pro Phe Asp Thr Asp Val Phe Asn Asp Thr Asp
450 455 460
Arg Ala Lys Phe Lys Thr Ala Val Thr Lys Gly Val Asp Tyr Ile Leu
465 470 475 480

Lys Ala Gln Trp Lys Gln Asn Gly Lys Leu Thr Ala Trp Cys Ala Gln
485 490 495
His Gly Ala Thr Asp Tyr Gln Pro Lys Lys Ala Arg Ala Tyr Glu Leu
500 505 510
Glu Ser Leu Ser Gly Ser Glu Ser Val Gly Val Ile Ala Phe Leu Met
515 520 525
Thr Gln Pro Gln Thr Ala Gln Ile Gln Thr Ala Val Lys Ala Gly Leu
530 535 540
Asn Trp Phe Asn Ser Pro Ser Thr Tyr Leu Glu Gly Tyr Thr Tyr Asp
545 550 555 560
Ser Ser Lys Ala Ser Thr Asn Pro Ile Val Gln Lys Ala Gly Ser Arg
565 570 575
Met Trp Tyr Arg Phe Tyr Asp Leu Asn Thr Asn Arg Gly Phe Phe Ser
580 585 590
Asp Arg Asp Gly Ser Lys Phe Tyr Asp Ile Thr Lys Met Ser Glu Glu
595 600 605
Arg Arg Thr Gly Tyr Ser Trp Gly Gly Ala Tyr Gly Glu Ser Ile Ile
610 615 620
Ala Phe Gly Lys Lys Val Gly Tyr Leu
625 630

<210> 45

<211> 987

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 45

atgactagac gcgccttcat cgcggttatac tgtttcttcg cggccgtctg cgccgcacgcg
60
cagtccaccg tgcgctggaa ggacgtgctc gagcagtccg agggctggta ttccacgacc
120
gccgcgcacg tcgtcgccga cacggtgctg ctgttatcaac gtccatccgg tggatggccg
180
aaggacatcg acatgacggc gccgcggcg gaccgcactc ctcccgccg tccagacgcg
240
accatcgaca acggcgccac gaccacgcg atccgcctgc tcgctcgtgc ggcctcgcc
300
gcaccggcgg ctgccgcca cacctacacg gcggcggcg ttcgcggat cgattacctg
360
ctcgaggcgc agtatccaa cggcggtgg ccgcagttct tccccctgcg caaggactat
420
tcgcgctacg tcacgttcaa cgacgacgcg atgatgaacg tgatgttctt gctggacgag
480
gtctcgccgg gagatgcgcc gttcacgttc gtggacgaac aacgcccgcga ccgcgcgcgc
540
gctgccgtcg ccaaggggt ctccgtcatc ctgaagtcgc aggtccggat cgacggacg
600
ctgaccgcct ggtgcgcgca acacgacgag atcaccctgg caccgcgtcc ggccgcgcacc
660
ttcgagcacg cgtcgctcag cggcaacgcg tctgtcgca tcgtcgctt cctgatgacc
720
cgtccgcgcga cgccagcgat cgtcgccgcg gtcgatgcgg cggtcgcctg gtcagacgc
780
gtccgcctcc ctgacggacg gtgggcccga ttctacgagt tcggtaccaa tcgtccgatc
840
ttctcggggc gagacagtgt cgtgcgtac aaactcgagg agatcgaaca ggaacgtcag
900
gagggctacg cgtggtacgg cacgtggccg aggacgcttg ttgagaagat gtaccctgca

960
tggaagtcgc ggcttccggg caagtag
987

<210> 46
<211> 328
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(20)

<221> DOMAIN
<222> (21)...(328)
<223> Catalytic domain

<400> 46

Met	Thr	Arg	Arg	Ala	Phe	Ile	Ala	Val	Ile	Cys	Phe	Phe	Ala	Ala	Val
1				5					10				15		
Cys	Ala	His	Ala	Gln	Ser	Thr	Val	Arg	Trp	Lys	Asp	Val	Leu	Glu	Gln
				20				25					30		
Ser	Glu	Gly	Trp	Tyr	Ser	Thr	Thr	Ala	Ala	His	Val	Val	Ala	Asp	Thr
	35						40					45			
Val	Leu	Leu	Tyr	Gln	Arg	Pro	Ser	Gly	Gly	Trp	Pro	Lys	Asp	Ile	Asp
	50				55					60					
Met	Thr	Ala	Pro	Pro	Ala	Asp	Arg	Thr	Pro	Pro	Ala	Arg	Pro	Asp	Ala
65					70				75			80			
Thr	Ile	Asp	Asn	Gly	Ala	Thr	Thr	Thr	Gln	Ile	Arg	Leu	Leu	Ala	Arg
	85						90				95				
Ala	Ala	Ser	Gly	Ala	Pro	Ala	Ala	Ala	His	Thr	Tyr	Thr	Ala	Ala	
	100						105				110				
Ala	Leu	Arg	Gly	Ile	Asp	Tyr	Leu	Leu	Glu	Ala	Gln	Tyr	Pro	Asn	Gly
	115						120				125				
Gly	Trp	Pro	Gln	Phe	Phe	Pro	Leu	Arg	Lys	Asp	Tyr	Ser	Arg	Tyr	Val
	130					135				140					
Thr	Phe	Asn	Asp	Asp	Ala	Met	Met	Asn	Val	Met	Phe	Leu	Leu	Asp	Glu
145						150				155			160		
Val	Ser	Ala	Gly	Asp	Ala	Pro	Phe	Thr	Phe	Val	Asp	Glu	Gln	Arg	Arg
						165			170			175			
Asp	Arg	Ala	Arg	Ala	Ala	Val	Ala	Lys	Gly	Val	Ser	Val	Ile	Leu	Lys
						180		185				190			
Ser	Gln	Val	Arg	Ile	Asp	Gly	Thr	Leu	Thr	Ala	Trp	Cys	Ala	Gln	His
						195		200				205			
Asp	Glu	Ile	Thr	Leu	Ala	Pro	Arg	Pro	Ala	Arg	Thr	Phe	Glu	His	Ala
	210					215				220					
Ser	Leu	Ser	Gly	Asn	Glu	Ser	Val	Ala	Ile	Val	Arg	Phe	Leu	Met	Thr
225						230				235			240		
Arg	Pro	Pro	Thr	Pro	Ala	Ile	Val	Ala	Ala	Val	Asp	Ala	Ala	Val	Ala
						245			250			255			
Trp	Leu	Arg	Arg	Val	Arg	Leu	Pro	Asp	Gly	Arg	Trp	Ala	Arg	Phe	Tyr
						260		265			270				
Glu	Phe	Gly	Thr	Asn	Arg	Pro	Ile	Phe	Ser	Gly	Arg	Asp	Ser	Val	Val
						275		280			285				
Arg	Tyr	Lys	Leu	Glu	Glu	Ile	Glu	Gln	Glu	Arg	Gln	Glu	Gly	Tyr	Ala
	290					295				300					
Trp	Tyr	Gly	Thr	Trp	Pro	Arg	Thr	Leu	Val	Glu	Lys	Met	Tyr	Pro	Ala
305						310				315			320		
Trp	Lys	Ser	Arg	Leu	Pro	Gly	Lys								

<210> 47
<211> 1077
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 47
atgaaaaatt taaaaaatat tgtaggagcg ttacttataat ctgtAACGTT ttgtgtgcac
60
ggcaggtaa acaaaaaatc ctggcgggct attacacagt ctaacgacga tgcatggtt
120
gcacatctgatg gagctgcaca gattgcagat aatgtattac tctatcagcg caatgttggc
180
ggatggccta aaaatattga aatgcaggaa ccgccttagtg aggccgacaa aaaaaagctg
240
atagatctta agtctacggc caaagaaaagt actacagata atggggctac gtgtcaggaa
300
atggtattcc tctctaagat atataaacaa aagcccgaag agaagtataa agaggcttt
360
ttaaaaggac ttaattattt gcttgaagca cagtataaaa atgggtggatg gccacagttc
420
taccctttaa aaaaaggta ttataccac attacctata atgacgattc tatggtaaac
480
attcttatga tcttaaagaa tattaaggaa gatgccaact attacagtat tacgccaagc
540
gataaagttt taaagcaggt atcgacagct tttgacagag gcattgactg cattctaaaa
600
acacagtaca agcaaaaaggg tgtgcttaca agctggtgtg cccagcacga tgaggttaca
660
ttagaacctg caaatgcaag ggcttttagt ttggcatcac taagtggtaa agaatctgct
720
aaaataacgt tggctaat gtctgtaaaa aatccgtcta aagaggttgt tgctgctgta
780
gatgctgctg tggcgtggtt tgaaaaaaca aaaattgaag gcattaaagt agaagaagta
840
accggagctg atggcaaaaa ggataggta gtagtacaaa gggctgatgc cgaaccattg
900
tggcgcgtt ttatggaact ggataccaac aggccatttt tttgcacag ggacggata
960
aaaaaatatt cgcttgctga gataggtcat gaacgcccgt aacggatatgg ctggtacacc
1020
aacgaaccaa aagaagttt aaagaaaatac accaaatgga aaaacagtct taaatag
1077

<210> 48
<211> 358
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(21)

<221> DOMAIN
<222> (22)...(358)

<223> Catalytic domain

<400> 48
Met Lys Asn Phe Lys Asn Ile Val Gly Ala Leu Leu Ile Ser Val Thr
1 5 10 15
Phe Cys Val His Gly Gln Val Asn Lys Lys Ser Trp Arg Ala Ile Thr
20 25 30
Gln Ser Asn Asp Asp Ala Trp Phe Ala Ser Asp Gly Ala Ala Gln Ile
35 40 45
Ala Asp Asn Val Leu Leu Tyr Gln Arg Asn Val Gly Gly Trp Pro Lys
50 55 60
Asn Ile Glu Met Gln Glu Pro Leu Ser Glu Ala Asp Lys Lys Lys Leu
65 70 75 80
Ile Asp Leu Lys Ser Thr Ala Lys Glu Ser Thr Thr Asp Asn Gly Ala
85 90 95
Thr Cys Gln Glu Met Val Phe Leu Ser Lys Ile Tyr Lys Gln Lys Pro
100 105 110
Glu Glu Lys Tyr Lys Glu Ala Phe Leu Lys Gly Leu Asn Tyr Leu Leu
115 120 125
Glu Ala Gln Tyr Lys Asn Gly Gly Trp Pro Gln Phe Tyr Pro Leu Lys
130 135 140
Lys Gly Tyr Tyr Thr His Ile Thr Tyr Asn Asp Asp Ser Met Val Asn
145 150 155 160
Ile Leu Met Ile Leu Lys Asn Ile Lys Glu Asp Ala Asn Tyr Tyr Ser
165 170 175
Ile Thr Pro Ser Asp Lys Val Leu Lys Gln Val Ser Thr Ala Phe Asp
180 185 190
Arg Gly Ile Asp Cys Ile Leu Lys Thr Gln Tyr Lys Gln Lys Gly Val
195 200 205
Leu Thr Ser Trp Cys Ala Gln His Asp Glu Val Thr Leu Glu Pro Ala
210 215 220
Asn Ala Arg Ala Phe Glu Leu Ala Ser Leu Ser Gly Lys Glu Ser Ala
225 230 235 240
Lys Ile Thr Leu Leu Met Ser Val Lys Asn Pro Ser Lys Glu Val
245 250 255
Val Ala Ala Val Asp Ala Ala Val Ala Trp Phe Glu Lys Thr Lys Ile
260 265 270
Glu Gly Ile Lys Val Glu Glu Val Thr Gly Ala Asp Gly Lys Lys Asp
275 280 285
Arg Val Val Val Gln Arg Ala Asp Ala Glu Pro Leu Trp Ala Arg Phe
290 295 300
Met Glu Leu Asp Thr Asn Arg Pro Phe Phe Cys Asp Arg Asp Gly Ile
305 310 315 320
Lys Lys Tyr Ser Leu Ala Glu Ile Gly His Glu Arg Arg Asn Gly Tyr
325 330 335
Gly Trp Tyr Thr Asn Glu Pro Lys Glu Val Leu Lys Lys Tyr Thr Lys
340 345 350
Trp Lys Asn Ser Leu Lys
355

<210> 49

<211> 1023

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 49

atgttaagtt tcatcgccgt atcagtgttt cataattact gcacaggca gacagcgtcc

60

accaaaaaatt cagtggccga aaagatgctt cagtaccagt tgtcaaatgg cgcctggccc
120
aaacagttgg tagacaaaag tgtcggttatc tacagtcttc cattaacgaa agagcgccta
180
cagcagatca agaaaacaga tattgatcat gctacgctcg acaacagtgc gacaaccgg
240
gaaataactg aattgatcaa ggcttttaag gacactaaaa ataaggcata tttgactgct
300
gtagaaaaagg ggattgcata tattttatcg gctcaatatg agaatggcgg atttccacaa
360
tactacccaa ataaattata ctatagagct gagataacat acaacgatga tgcgatgatc
420
aatgcattac tagtgcttta caaagtagcc aataagcgag agggggttga ggctatcaat
480
cccatatttg tgtcaaaagc gcaaaaagca gttgaaaagg gtataacctg tatcctaaaa
540
acacaggtca tacaagacgg aaaaaggagt atttggctg cgcaatacga tcagaacact
600
ttacaacctg ctcaggcaag aaagttgaa ccagcttcat tgagcacaag tgaatctgtt
660
tccatcggttc gctttctcat gctacagcct gcaaccactg aaattaagca agcgatcgaa
720
catgcaatac aatggttcga acagcatgat attgaagggtt accgtttcga ccgcataacaa
780
gatagggtga ctggaaaata tcaacggcaa cttgtcgca gatcgacttc cacgatttg
840
gcgcgatttt ataatctcga agacaaccgc ccattgtttg gagatcggga caataacaatc
900
aaataacaact ttgaggaggt ttcagaggag cgtagaaatg gctatgctt gttcggcaac
960
tggccggaaa agctgatcca aaaggactat ccaaaatgga aaaaacaata caaaattaaaa
1020
taa
1023

<210> 50
<211> 340
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(16)

<221> DOMAIN
<222> (17)...(340)
<223> Catalytic domain

<400> 50
Met Leu Ser Phe Ile Ala Val Ser Val Phe His Asn Tyr Cys Thr Gly
1 5 10 15
Gln Thr Ala Ser Thr Lys Asn Ser Val Ala Glu Lys Met Leu Gln Tyr
20 25 30
Gln Leu Ser Asn Gly Ala Trp Pro Lys Gln Leu Val Asp Lys Ser Val
35 40 45
Val Asp Tyr Ser Leu Pro Leu Thr Lys Glu Arg Leu Gln Gln Ile Lys
50 55 60
Lys Thr Asp Ile Asp His Ala Thr Leu Asp Asn Ser Ala Thr Thr Arg
65 70 75 80

Glu Ile Thr Glu Leu Ile Lys Ala Phe Lys Asp Thr Lys Asn Lys Ala
85 90 95
Tyr Leu Thr Ala Val Glu Lys Gly Ile Ala Tyr Ile Leu Ser Ala Gln
100 105 110
Tyr Glu Asn Gly Gly Phe Pro Gln Tyr Tyr Pro Asn Lys Leu Tyr Tyr
115 120 125
Arg Ala Glu Ile Thr Tyr Asn Asp Asp Ala Met Ile Asn Ala Leu Leu
130 135 140
Val Leu Tyr Lys Val Ala Asn Lys Arg Glu Gly Phe Glu Ala Ile Asn
145 150 155 160
Pro Ile Phe Val Ser Lys Ala Gln Lys Ala Val Glu Lys Gly Ile Thr
165 170 175
Cys Ile Leu Lys Thr Gln Val Ile Gln Asp Gly Lys Arg Ser Ile Trp
180 185 190
Ala Ala Gln Tyr Asp Gln Asn Thr Leu Gln Pro Ala Gln Ala Arg Lys
195 200 205
Phe Glu Pro Ala Ser Leu Ser Thr Ser Glu Ser Val Ser Ile Val Arg
210 215 220
Phe Leu Met Leu Gln Pro Ala Thr Thr Glu Ile Lys Gln Ala Ile Glu
225 230 235 240
His Ala Ile Gln Trp Phe Glu Gln His Asp Ile Glu Gly Tyr Arg Phe
245 250 255
Asp Arg Ile Gln Asp Arg Val Thr Gly Lys Tyr Gln Arg Gln Leu Val
260 265 270
Ala Asp Arg Thr Ser Thr Ile Trp Ala Arg Phe Tyr Asn Leu Glu Asp
275 280 285
Asn Arg Pro Leu Phe Gly Asp Arg Asp Asn Thr Ile Lys Tyr Asn Phe
290 295 300
Glu Glu Val Ser Glu Glu Arg Arg Asn Gly Tyr Ala Trp Phe Gly Asn
305 310 315 320
Trp Pro Glu Lys Leu Ile Gln Lys Asp Tyr Pro Lys Trp Lys Lys Gln
325 330 335
Tyr Lys Ile Lys
340

<210> 51
<211> 1131
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 51
gtgacgtggg atcagatcct tcgtcagcct gccgcctgg acggcggtcc ggaagcgoga
60
cgatatcgca atctggtcct gctgtaccag cgcgcgacgg ggggctggcc caagaacatc
120
gacatggcgc ggtcgttgtc tccggacgat cgcacgacgc tcgcggcgga acgggccctc
180
accgactcga cgatcgacaa tggatcgacg acgacgcagt tgcggtttct cgcgatggtg
240
cagcacgccc agcaggcacc cgtgcgcgac gccatcacgc acggcctgga ctatctgctg
300
aacgcgcaat actcgaacgg cggatggccg cagtaacttc cgctccgaga cgactactcg
360
cgtcacatca cgatcaacga cgacgcgatg atcaatgtaa tgacggtgct acgcgatgtc
420
gcagaagctc gcatgccctt cgaaggatc gacgcggtcc gtcgggaccg ggccgcgtgtc
480
gccatcacgc gtggcatcga cgtgattctc gggacgcaaa tccgcgtcgg ggaccgtctg

540 acgggcttgtt gccagcagca tgacgagcgc tccctcgccc ccaccaaggc tcgcgcctac
600 gaggaccat cgatcgccag caaggaaacg gtaaccatca cgcgcttcct catgaccctc
660 gatcgcccga gtcagcagat catcgccgcg atcgaggcgg ctgtcgagtg gttgcgcgtg
720 gcgaccctgt cgggtgtgcg agttgagcgt cggccggacc cggcgagtcc gaccggatata
780 gacgtcgctcg ccgcgcggca tgccgcccga cctccgacct gggcacggtt ctacgagatc
840 ggcacgaacc gcccaatgtt ttccggccgc gacggcgtga tcagattccg gtcgcggac
900 atcgagattg agcgccgcac cggctacacgc tggatggcgc actatgccgc gaggttgctg
960 aacgaggagt atccggcgtg ggcgaggcta cgccgggcga gctttcagaa cggcgagctg
1020 cacaaggagt ccggtaagt cgtacacacg gcatcgatgc acgatcttcg cttccttgat
1080 gtcgaagaca aagaccagcc gcagccgaaa gtgctttcg ctggcggta g
1131

<210> 52
<211> 376
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(376)
<223> Catalytic domain

<400> 52
Met Thr Trp Asp Gln Ile Leu Arg Gln Pro Ala Ala Trp Tyr Gly Gly
1 5 10 15
Pro Glu Ala Arg Arg Ile Ala Asn Leu Val Leu Leu Tyr Gln Arg Ala
20 25 30
Thr Gly Gly Trp Pro Lys Asn Ile Asp Met Ala Arg Ser Leu Ser Pro
35 40 45
Asp Asp Arg Thr Thr Leu Ala Ala Glu Arg Ala Leu Thr Asp Ser Thr
50 55 60
Ile Asp Asn Gly Ser Thr Thr Gln Leu Arg Phe Leu Ala Met Val
65 70 75 80
Gln His Ala Gln Gln Ala Pro Val Arg Asp Ala Ile Thr His Gly Leu
85 90 95
Asp Tyr Leu Leu Asn Ala Gln Tyr Ser Asn Gly Gly Trp Pro Gln Tyr
100 105 110
Phe Pro Leu Arg Asp Asp Tyr Ser Arg His Ile Thr Phe Asn Asp Asp
115 120 125
Ala Met Ile Asn Val Met Thr Val Leu Arg Asp Val Ala Glu Ala Arg
130 135 140
Met Pro Phe Glu Gly Ile Asp Ala Val Arg Arg Asp Arg Ala Arg Val
145 150 155 160
Ala Ile Thr Arg Gly Ile Asp Val Ile Leu Gly Thr Gln Ile Arg Val
165 170 175
Gly Asp Arg Leu Thr Gly Trp Cys Gln Gln His Asp Glu Arg Ser Leu
180 185 190
Ala Pro Thr Lys Ala Arg Ala Tyr Glu His Pro Ser Ile Ala Ser Lys
195 200 205

Glu Thr Val Thr Ile Thr Arg Phe Leu Met Thr Leu Asp Arg Pro Ser
210 215 220
Gln Gln Ile Ile Ala Ala Ile Glu Ala Ala Val Glu Trp Leu Arg Val
225 230 235 240
Ala Thr Leu Ser Gly Val Arg Val Glu Arg Arg Pro Asp Pro Ala Ser
245 250 255
Pro Thr Gly Tyr Asp Val Val Ala Ala Pro Asp Ala Ala Pro Pro
260 265 270
Thr Trp Ala Arg Phe Tyr Glu Ile Gly Thr Asn Arg Pro Met Phe Ser
275 280 285
Gly Arg Asp Gly Val Ile Arg Phe Arg Leu Ala Asp Ile Glu Ile Glu
290 295 300
Arg Arg Thr Gly Tyr Ser Trp Met Gly Asp Tyr Ala Ala Arg Leu Leu
305 310 315 320
Asn Glu Glu Tyr Pro Ala Trp Ala Arg Leu Arg Arg Ala Ser Phe Gln
325 330 335
Asn Ala Glu Leu His Lys Glu Ser Gly Glu Val Val His Thr Ala Ile
340 345 350
Val His Asp Leu Ala Phe Leu Asp Val Glu Asp Lys Asp Gln Pro Gln
355 360 365
Pro Lys Val Leu Phe Ala Gly Arg
370 375

<210> 53

<211> 1977

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 53

atgaataact caacaaaaaa aatgattcgg ccactcaagg catctttgc cttggcgct
60
ctcgcactgg caatcgcatc accctcatgg gcggcttgct cttacagcgt aaccaataat
120
tggggctctg gctttaccgg agaaattaaa gtaaccaacg atacaacatc gactgtaaat
180
aattggctcg tgcgttggca ggaatcaggc gtgaccgtca ctaacgcattt gaatgcaaca
240
ctgagcggat ccaaattctta taccgcaaca tcactcgggt ggaacggAAC tctcgctcca
300
aaagcttcag caagtttgg tttcaagca aatgaaacag cgggcgcacc gaaagttaat
360
ggaaccttgt gtggtaccag cacatcatca acaggtacat cctcaatttgc accttcattcc
420
gtagcgagta gcgttgctgt atcaagcagt aaatcatcaa gctctgttgc aaccatcagt
480
agctctaaat ccagcagcag tgtgccgaca gtttcatcat tcactattca ggaagagcaa
540
gccggtttct gccgtgtaga tggcattgca actgaaagta ctaacactgg ctatacagg
600
aatggctaca ccaacaccac taatgcgcaa ggcgctgcaa ttgaatggc aattaatgt
660
cccaacacgca gccgctacac cctcaccttc cggttatgcca atgctggtagt cgctaatcgc
720
aatggttcgt tattaattaa cgacggaaagc aatggtaact acacagtgc attgccaagt
780
accggcgcattt gggcaacctg gcaaaccgtc agtggtaag tggattttgtt gcaaggcaat
840
aatattttga aactcgcttc gcttactgtt gatggccttg cgaatataga ttcattaaaa

900 attgaaggcg cacaagccaa agctggtgta tgcagcacta cggttaatgt cagctttcg
960 tcaattaaat caagttccag ttcatcatcg tccagctcaa ctgcagcagt aaaaacattha
1020 acactggatg gtaaccctgc tgcaaactgg ttataataat ccagaaccaa gtggaatgtc
1080 agcagagctg acatcgtaact ttctgtatcg caatcaaattt gtggctggcc aaaaaatttg
1140 gactacaact cggttaggctc aggtaatggt ggttagcgaca gcggcactat tgataatggt
1200 gcaaccataa cggaaatggt gtacctcgct gaagtgtata aaaatggcgga aataaccaaa
1260 taccgcgacg ccgtgcgcag agcagcgaat ttatttgta gttcacaata cagcactgg
1320 gctttaccgc agtttatcc gctgaaaggt ggttacgcag atcacgctac cttaatgtat
1380 aatggtatgg cttacgcgtt gactgttcgt gatttcgcgg taaataaacg cgccattt
1440 gataacgata ttttctctga ctctgaccgc agcaaatttta aaactgctgt taccaaaggc
1500 gtcgattaca tattaaaagc gcaatggaaa cagaatggaa aattaaccgt atgggtgcga
1560 caacacggtg ctaatgatta tcaaccgaaa aaagcgcgtg cttacgagtt agaatcattt
1620 agtggtagtg aatctgtcgg tgtactcgct ttcttaatga ctcaaccaca aaccacgcaa
1680 attgaagcag ctgtgcgtgc aggtgtggcc tggtttaata gccaaggcac ctacttgaat
1740 aattacactt acgattcttc caaagctcg accaatccaa tcgtgccaaa atccggaagc
1800 aaaatgtggt atcgctttta tgacctgaat accaaccgcg gtttcttcag tgatcgtgac
1860 ggcagcaagt tctacgacat cacccaaatg tcagaagagc gtcgcactgg ttacagttgg
1920 ggtggtagt acggcagctc gattatcagc ttgcacaaa aagtggata tctctaa
1977

<210> 54
<211> 658
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(31)

<221> BINDING
<222> (32)...(124)
<223> Carbohydrate binding module

<221> BINDING
<222> (180)...(303)
<223> Carbohydrate binding module

<221> DOMAIN
<222> (304)...(658)
<223> Catalytic domain

<400> 54

Met Asn Asn Ser Thr Lys Lys Met Ile Arg Pro Leu Lys Ala Ser Phe
1 5 10 15
Ala Leu Gly Ala Leu Ala Leu Ala Ile Ala Ser Pro Ser Trp Ala Ala
20 25 30
Cys Ser Tyr Ser Val Thr Asn Asn Trp Gly Ser Gly Phe Thr Gly Glu
35 40 45
Ile Lys Val Thr Asn Asp Thr Thr Ser Thr Val Asn Asn Trp Ser Val
50 55 60
Ser Trp Gln Glu Ser Gly Val Thr Val Thr Asn Ala Trp Asn Ala Thr
65 70 75 80
Leu Ser Gly Ser Asn Pro Tyr Thr Ala Thr Ser Leu Gly Trp Asn Gly
85 90 95
Thr Leu Ala Pro Lys Ala Ser Ala Ser Phe Gly Phe Gln Ala Asn Gly
100 105 110
Thr Ala Gly Ala Pro Lys Val Asn Gly Thr Leu Cys Gly Thr Ser Thr
115 120 125
Ser Ser Thr Gly Thr Ser Ser Val Ala Pro Ser Ser Val Ala Ser Ser
130 135 140
Val Ala Val Ser Ser Ser Lys Ser Ser Ser Val Ala Thr Ile Ser
145 150 155 160
Ser Ser Lys Ser Ser Ser Val Pro Thr Val Ser Ser Phe Thr Ile
165 170 175
Gln Glu Glu Gln Ala Gly Phe Cys Arg Val Asp Gly Ile Ala Thr Glu
180 185 190
Ser Thr Asn Thr Gly Tyr Thr Gly Asn Gly Tyr Thr Asn Thr Thr Asn
195 200 205
Ala Gln Gly Ala Ala Ile Glu Trp Ala Ile Asn Ala Pro Asn Ser Ser
210 215 220
Arg Tyr Thr Leu Thr Phe Arg Tyr Ala Asn Ala Gly Thr Ala Asn Arg
225 230 235 240
Asn Gly Ser Leu Leu Ile Asn Asp Gly Ser Asn Gly Asn Tyr Thr Val
245 250 255
Gln Leu Pro Ser Thr Gly Ala Trp Ala Thr Trp Gln Thr Val Ser Val
260 265 270
Glu Val Asp Leu Val Gln Gly Asn Asn Ile Leu Lys Leu Ala Ser Leu
275 280 285
Thr Ala Asp Gly Leu Ala Asn Ile Asp Ser Leu Lys Ile Glu Gly Ala
290 295 300
Gln Ala Lys Ala Gly Val Cys Ser Thr Thr Val Ser Ser Ser Ser Ser
305 310 315 320
Ser Ile Lys Ser Ser Ser Ser Ser Ser Ser Ser Thr Ala Ala
325 330 335
Val Lys Thr Leu Thr Leu Asp Gly Asn Pro Ala Ala Asn Trp Phe Asn
340 345 350
Lys Ser Arg Thr Lys Trp Asn Val Ser Arg Ala Asp Ile Val Leu Ser
355 360 365
Tyr Gln Gln Ser Asn Gly Gly Trp Pro Lys Asn Leu Asp Tyr Asn Ser
370 375 380
Val Gly Ser Gly Asn Gly Gly Ser Asp Ser Gly Thr Ile Asp Asn Gly
385 390 395 400
Ala Thr Ile Thr Glu Met Val Tyr Leu Ala Glu Val Tyr Lys Asn Gly
405 410 415
Gly Asn Thr Lys Tyr Arg Asp Ala Val Arg Arg Ala Ala Asn Phe Ile
420 425 430
Val Ser Ser Gln Tyr Ser Thr Gly Ala Leu Pro Gln Phe Tyr Pro Leu
435 440 445
Lys Gly Gly Tyr Ala Asp His Ala Thr Phe Asn Asp Asn Gly Met Ala
450 455 460
Tyr Ala Leu Thr Val Leu Asp Phe Ala Val Asn Lys Arg Ala Pro Phe
465 470 475 480

Asp Asn Asp Ile Phe Ser Asp Ser Asp Arg Ser Lys Phe Lys Thr Ala
485 490 495
Val Thr Lys Gly Val Asp Tyr Ile Leu Lys Ala Gln Trp Lys Gln Asn
500 505 510
Gly Lys Leu Thr Val Trp Cys Ala Gln His Gly Ala Asn Asp Tyr Gln
515 520 525
Pro Lys Lys Ala Arg Ala Tyr Glu Leu Glu Ser Leu Ser Gly Ser Glu
530 535 540
Ser Val Gly Val Leu Ala Phe Leu Met Thr Gln Pro Gln Thr Thr Gln
545 550 555 560
Ile Glu Ala Ala Val Arg Ala Gly Val Ala Trp Phe Asn Ser Pro Ser
565 570 575
Thr Tyr Leu Asn Asn Tyr Thr Tyr Asp Ser Ser Lys Ala Ser Thr Asn
580 585 590
Pro Ile Val Pro Lys Ser Gly Ser Lys Met Trp Tyr Arg Phe Tyr Asp
595 600 605
Leu Asn Thr Asn Arg Gly Phe Phe Ser Asp Arg Asp Gly Ser Lys Phe
610 615 620
Tyr Asp Ile Thr Gln Met Ser Glu Glu Arg Arg Thr Gly Tyr Ser Trp
625 630 635 640
Gly Gly Asp Tyr Gly Ser Ser Ile Ile Ser Phe Ala Gln Lys Val Gly
645 650 655
Tyr Leu

<210> 55

<211> 1125

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 55

gtggtcctag gtaataacgg cggcagcttg agttgcgtcc aatatattgt gattgtgaaa
60
ggaccgggtg gacctcgacc gccggtgaaa ccggccgtcc aggcccccgt tagggttacc
120
tggagcgcatt gcctagtcca gcggcccgaa tggtagccggaa gtgacgaagc gatccgcattc
180
gcggacaacg tcctcctcta ccagcgcaac accggcggtt ggccgaagga catagatatg
240
gcccggccca tcccggaaca caggaagtcc ttttcctca ccgagaagga gcccggccat
300
gactcgacca tcgacaacgg tgccaccgtt acccagctca agtatctcgc ccgcgtctac
360
aaggcggacca ggctggAACG gttcaaggag ggcttcctca aaggcttcga ctacctttg
420
gccggccagt acccgaacgg cggctggccc cagtattatc ctaacttgag gggctactac
480
gccaacatca cttataacga caatgccatg gtgaacgtgc tcaccctcct ccagagcatc
540
gccaAAAAGG ccccgagta cgacttcgtc gacccggcgc gcccggagaa gcccggccgg
600
gccgtggcga aagggtacga ctgcatttc aagaccaga tccgtgtcaa tggaaaactt
660
accgccttgtt gcggccagca tgacccaaag acgctggcgc ccgcggccggc ccgttcgtat
720
gagcttgagt ccatcagcgg ttccgagagc gtcgggatcg tccggttctt aatgagcctc
780
gagaatccga gcccgaaggt catcgaggcg gtagaggccg ccgtgaaatg gttcgaggag

840
gtcaagctta ccgggatcaa ggtggtcgag aaacccgacc cgtcccttcc gggcggttac
900
gaccgcgtgg tggtcgaaga ccccaacgcg cgcggcatct gggcccggtt ctacgagatc
960
ggcaccaacc gtcccttctt ctgcggccgc gatggtatca aaaaatacag cctggcggag
1020
atcgaacacg aacgcccgggt cggttactcc tggtacacca atgccccggc ctacctcatc
1080
1125
gagaaggagt atccgctctg gcgggccaaa caccctacca agtaa

<210> 56
<211> 374
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(374)
<223> Catalytic domain

<400> 56
Met Val Leu Gly Asn Asn Gly Gly Ser Leu Ser Cys Val Gln Tyr Ile
1 5 10 15
Val Ile Val Lys Gly Pro Gly Gly Pro Arg Pro Pro Val Lys Pro Ala
20 25 30
Val Gln Ala Pro Val Arg Val Thr Trp Ser Ala Cys Leu Val Gln Arg
35 40 45
Pro Glu Trp Tyr Gly Ser Asp Glu Ala Ile Arg Ile Ala Asp Asn Val
50 55 60
Leu Leu Tyr Gln Arg Asn Thr Gly Gly Trp Pro Lys Asp Ile Asp Met
65 70 75 80
Ala Glu Pro Ile Pro Glu His Arg Lys Ser Phe Phe Leu Thr Glu Lys
85 90 95
Glu Arg Thr Asp Asp Ser Thr Ile Asp Asn Gly Ala Thr Val Thr Gln
100 105 110
Leu Lys Tyr Leu Ala Arg Val Tyr Lys Ala Thr Arg Leu Glu Arg Phe
115 120 125
Lys Glu Gly Phe Leu Lys Gly Leu Asp Tyr Leu Leu Ala Ala Gln Tyr
130 135 140
Pro Asn Gly Gly Trp Pro Gln Tyr Tyr Pro Asn Leu Arg Gly Tyr Tyr
145 150 155 160
Ala Asn Ile Thr Tyr Asn Asp Asn Ala Met Val Asn Val Leu Thr Leu
165 170 175
Leu Gln Ser Ile Ala Lys Lys Ala Pro Glu Tyr Asp Phe Val Asp Pro
180 185 190
Ala Arg Arg Glu Lys Ala Ala Arg Ala Val Ala Lys Gly Ile Asp Cys
195 200 205
Ile Leu Lys Thr Gln Ile Arg Val Asn Gly Lys Leu Thr Ala Trp Cys
210 215 220
Ala Gln His Asp Pro Lys Thr Leu Ala Pro Ala Pro Ala Arg Ser Tyr
225 230 235 240
Glu Leu Glu Ser Ile Ser Gly Phe Glu Ser Val Gly Ile Val Arg Phe
245 250 255
Leu Met Ser Leu Glu Asn Pro Ser Pro Lys Val Ile Glu Ala Val Glu
260 265 270
Ala Ala Val Lys Trp Phe Glu Glu Val Lys Leu Thr Gly Ile Lys Val
275 280 285

Val Glu Lys Pro Asp Pro Ser Leu Pro Gly Gly Tyr Asp Arg Val Val
290 295 300
Val Glu Asp Pro Asn Ala Pro Pro Ile Trp Ala Arg Phe Tyr Glu Ile
305 310 315 320
Gly Thr Asn Arg Pro Phe Phe Cys Gly Arg Asp Gly Ile Lys Lys Tyr
325 330 335
Ser Leu Ala Glu Ile Glu His Glu Arg Arg Val Gly Tyr Ser Trp Tyr
340 345 350
Thr Asn Ala Pro Ala Tyr Leu Ile Glu Lys Glu Tyr Pro Leu Trp Arg
355 360 365
Ala Lys His Pro Thr Lys
370

<210> 57
<211> 1170
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 57
atggacaaac gcgtcaaattt gattcatcag ctttcaaaat aagaagcaaa gcagttcgag
60
cccgaaaaattt tcctcaaagg caaagacggc tggaaatccga aaaaggcgga tgaccgctgg
120
ctcgaaaaaaaaa caaaaacctga ctggcagctc gttacgtgga acgacgcgtt acgccaggcg
180
ccgctcttgtt atcaaaccga tgaagcggcg cgcatggcc accaggttat tttgtaccag
240
aaagacaaacg gcccgtggga aaaaaatctc gatatgacgg cgatgctcac gcaagccgaa
300
cgcggaaaagc tcgccaaaga aaaaatcgaac acgtcgaaaa cgacgatcga caaccgcacg
360
acctacacgc aagtgccttt tctcgccaaa gtcattacgg gcagcttgca gaaaacgact
420
ccgcccacca atttcccgaa acataaggaa gctttttca agggcttgaa ttacctgctc
480
gcgtcgacgt acgaatcggg cggcttccg cagtttatac cgctaaaaaa agttattac
540
acgcacatca cgttcaacga cgatgcgtt attggcgatc tgaaggttt gcgcaaatc
600
gccaaaaaaga aggaagacta tctttttgtt gacgaagaac gccgcctgaa agcggaaaaa
660
tcggtcgaaaa aagcgctgcc gctgattctg aaattgcagg ttgaagtcgg cggaaaaaaa
720
acggtttggg cggcgcagta tgacgaaaac acttttaaac ccgcagcgcc gcgaaagttt
780
gaaccggttt cttaacggc gggcgaatcg gtcggcatcg tccggtttt aatgtacgt
840
tcaaaggcccg accaggcgac gattgacgcg attgaatctg ccattcagt gtatcgccgc
900
aacaaaaatcg aaggcattcg atgggtgcgc gaaaacggcg aaaaccgcgt cgtcaaggac
960
aaaaacgcgc cggcgtttt ggcgcggttt tacgaaatcg aaacgatgaa gccgattttc
1020
atcgccgcgc acgccccatcat tcgttacgac gtgtctgaaa tcgaagccga gcgccgcaac
1080
ggctacgcgt ggtacgtctc ggagccgaac gagctgcttg aaaaagatta cccgaaatgg
1140
ctggaaaaaaa ttaaaaaatc agtaaagtaa

1170

<210> 58
<211> 389
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(389)
<223> Catalytic domain

<400> 58
Met Asp Lys Arg Val Lys Trp Ile His Gln Leu Ser Lys Glu Glu Ala
1 5 10 15
Lys Gln Phe Glu Pro Glu Asn Phe Leu Lys Gly Lys Asp Gly Trp Asn
20 25 30
Pro Lys Lys Ala Asp Asp Arg Trp Leu Glu Lys Thr Lys Pro Asp Trp
35 40 45
Gln Leu Val Thr Trp Asn Asp Ala Leu Arg Gln Ala Pro Leu Trp Tyr
50 55 60
Gln Thr Asp Glu Ala Ala Arg Ile Ala Asp Gln Val Ile Leu Tyr Gln
65 70 75 80
Lys Asp Asn Gly Gly Trp Glu Lys Asn Leu Asp Met Thr Ala Met Leu
85 90 95
Thr Gln Ala Glu Arg Glu Lys Leu Ala Lys Glu Lys Ser Asn Thr Ser
100 105 110
Glu Thr Thr Ile Asp Asn Arg Thr Thr Tyr Thr Gln Val Ala Phe Leu
115 120 125
Ala Lys Val Ile Thr Gly Ser Leu Gln Lys Thr Thr Pro Pro Thr Asn
130 135 140
Phe Pro Lys His Lys Glu Ala Phe Phe Lys Gly Leu Asp Tyr Leu Leu
145 150 155 160
Ala Ser Gln Tyr Glu Ser Gly Gly Phe Pro Gln Phe Tyr Pro Leu Lys
165 170 175
Lys Gly Tyr Tyr Thr His Ile Thr Phe Asn Asp Asp Ala Met Ile Gly
180 185 190
Val Leu Lys Val Leu Arg Glu Ile Ala Lys Lys Lys Glu Asp Tyr Leu
195 200 205
Phe Val Asp Glu Glu Arg Arg Leu Lys Ala Glu Lys Ser Val Glu Lys
210 215 220
Ala Leu Pro Leu Ile Leu Lys Leu Gln Val Glu Val Gly Gly Lys Lys
225 230 235 240
Thr Val Trp Ala Ala Gln Tyr Asp Glu Asn Thr Phe Lys Pro Ala Ala
245 250 255
Ala Arg Lys Phe Glu Pro Val Ser Leu Thr Ala Gly Glu Ser Val Gly
260 265 270
Ile Val Arg Phe Leu Met Tyr Asp Ser Lys Pro Asp Gln Ala Thr Ile
275 280 285
Asp Ala Ile Glu Ser Ala Ile Gln Trp Tyr Arg Ala Asn Lys Ile Glu
290 295 300
Gly Ile Arg Trp Val Arg Glu Asn Gly Glu Asn Arg Val Val Lys Asp
305 310 315 320
Lys Asn Ala Pro Pro Ile Trp Ala Arg Phe Tyr Glu Ile Glu Thr Met
325 330 335
Lys Pro Ile Phe Ile Gly Arg Asp Ala Ile Ile Arg Tyr Asp Val Ser
340 345 350
Glu Ile Glu Ala Glu Arg Arg Asn Gly Tyr Ala Trp Tyr Val Ser Glu
355 360 365

Pro Asn Glu Leu Leu Glu Lys Asp Tyr Pro Lys Trp Leu Glu Lys Ile
370 375 380
Lys Lys Ser Val Lys
385

<210> 59
<211> 1080
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 59
atgagaatcc ggtccttttc aatcggttc ggcctgattt gcagtctggc gctaagggtg
60
cctgcgaag cgcaaggcac cgtgcgtgg gcggacgtcc tgaaccagcc cggccctgg
120
tatggcaccg atgaagcccg tcgaattgcc gaccacgtgc tcgagcatca acgagcggaa
180
ggcggatggc caaagaacac ggacatgacc gcagcgcccg atccggcggt gctcacagcc
240
240
gcgcgagtga agccagactc gacgatcgat aacggcgca ccgtcactga aatgcgcgtc
300
300
ctcgccgcgc tctaccgttc atcacccat ccccggtatc gcgatgcgt gctcaagggt
360
360
ctcgactatc tggatggcagc gcagtatgcc aacggcggtt ggccgcgtt ctacccgtc
420
420
cgccaggact attcgcgcta tatcacgttc aacgacaacg cgatgatcaa tgtcgtgacg
480
480
ctgctctcag acgtcgctgc cgaaatggc gactggcggt ttgctgtatgc cagccggcgc
540
540
gagaaaagcc ggacggctgt agagaaggcc gttagaagtca tcctgcgcgc gcaggtgaga
600
600
gttgacggcc ggctgaccgc gtggatggc caacacgacg aggtgacact cgagccgcgc
660
660
aaggccccgcg cctacgaaca tccgtcgctg agcggacagg agacggtggg gatcatccgg
720
720
tttctcatga cccgcataa accggatcg agagtcgtcg atgcaatcga ggcgtcagtg
780
780
gcatggctga aggcggtgca gctcaaagga cttcgcgtcg accagcgccg cgatccctcg
840
840
ctgcccggagg ggcgtgacgt ggtgaccgtc gctgaccgtt cggcgccgc gctctggcg
900
900
cgcttctacg aaatcgggac caatcgcccg atcttctctg gacgacggcgtt cgtgatccga
960
960
tactcgttgg cagagatcga gcacgaacgc cggatagggt acgcctggct cggAACCTGG
1020
1020
cccgccgaagc tgctcgatac cgaataccca tcctggcgac ggactcaaca aaggccgtga
1080

<210> 60
<211> 359
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(24)

<221> DOMAIN
<222> (25)...(359)
<223> Catalytic domain

<400> 60
Met Arg Ile Arg Ser Ser Ser Ile Ala Phe Gly Leu Ile Cys Ser Leu
1 5 10 15
Ala Leu Arg Val Pro Ala Gln Ala Gln Val Thr Val Arg Trp Ala Asp
20 25 30
Val Leu Asn Gln Pro Ala Ala Trp Tyr Gly Thr Asp Glu Ala Arg Arg
35 40 45
Ile Ala Asp His Val Leu Glu His Gln Arg Ala Glu Gly Gly Trp Pro
50 55 60
Lys Asn Thr Asp Met Thr Ala Ala Pro Asp Pro Ala Val Leu Thr Ala
65 70 75 80
Ala Arg Val Lys Pro Asp Ser Thr Ile Asp Asn Gly Ala Thr Val Thr
85 90 95
Glu Met Arg Val Leu Ala Arg Val Tyr Arg Ser Ser Pro Asp Pro Arg
100 105 110
Tyr Arg Asp Ala Leu Leu Lys Gly Leu Asp Tyr Leu Leu Ala Ala Gln
115 120 125
Tyr Ala Asn Gly Gly Trp Pro Gln Phe Tyr Pro Leu Arg Gln Asp Tyr
130 135 140
Ser Arg Tyr Ile Thr Phe Asn Asp Asn Ala Met Ile Asn Val Val Thr
145 150 155 160
Leu Leu Ser Asp Val Ala Ala Gly Asn Gly Asp Trp Ala Phe Ala Asp
165 170 175
Ala Ser Arg Arg Glu Lys Ser Arg Thr Ala Val Glu Lys Ala Val Glu
180 185 190
Val Ile Leu Arg Ala Gln Val Arg Val Asp Gly Arg Leu Thr Ala Trp
195 200 205
Cys Ala Gln His Asp Glu Val Thr Leu Glu Pro Arg Lys Ala Arg Ala
210 215 220
Tyr Glu His Pro Ser Leu Ser Gly Gln Glu Thr Val Gly Ile Ile Arg
225 230 235 240
Phe Leu Met Thr Arg Asp Lys Pro Asp Gln Arg Val Val Asp Ala Ile
245 250 255
Glu Ala Ser Val Ala Trp Leu Lys Ala Val Gln Leu Lys Gly Leu Arg
260 265 270
Val Asp Gln Arg Arg Asp Pro Ser Leu Pro Glu Gly Arg Asp Val Val
275 280 285
Thr Val Ala Asp Pro Ser Ala Pro Pro Leu Trp Ala Arg Phe Tyr Glu
290 295 300
Ile Gly Thr Asn Arg Pro Ile Phe Ser Gly Arg Asp Gly Val Ile Arg
305 310 315 320
Tyr Ser Leu Ala Glu Ile Glu His Glu Arg Arg Ile Gly Tyr Ala Trp
325 330 335
Leu Gly Thr Trp Pro Ala Lys Leu Leu Asp Thr Glu Tyr Pro Ser Trp
340 345 350
Arg Arg Thr Gln Gln Arg Pro
355

<210> 61
<211> 1224
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 61
gtggaattac cagtaaccgg cgcatggca acctggcaaa ccgcaactgt taaaatttat
60 ttggtgcaag gtaacaacct gttaaaactt tctgcgatca cggctgatgg tttggcaaat
120 atcgattcgt tgaaaattga cggcgcacaa accaaagccg gcgtgtcag cactgtggca
180 agcagcagct cttcatccgt tgcttcatcg attaaatcaa gctccagttc atcctttcc
240 agttcaacga cgacggtaaa aacattaaca ctggatggca accccgcagc aaactggtt
300 aacaaatcca gaaccaaattg gaataccagc agagccgatg ttgtactttc ctatcaacaa
360 tccaaacggcg gctggccaaa aaatctcgat tacaatttag taagcgcagg taatggcg
420 agcgatagcg gcaccatcga taacggtgca accattactg aaatggttt tctcgccgaa
480 gtttacaaaa atggcaacaa caccaagtat cgcgatgcgg tgccgcagagc cgaaatttt
540 attgtcagct cgcaatacag cactggtgca ttaccacaat tttatccatt gaaaggcg
600 tatgcagacc acgccacatt taacgataac ggcgcattatc atgcattaaac ggtattggat
660 tttgcagtca acaaacgcgc cccatttgcactgatgttt tctccgattc tgatcgccg
720 aaattcaaaaa ccgctgtgc caaagggttg gattacattt tgaaagcgca gtggaaacaa
780 aacggaaaaat taaccgtgtg gtgtgcacaa catggtgcta ccgattatca accgaaaaaaa
840 gcgcgcgcct atgaatttggaa atcaactgagt ggcgcgaaat ctgttggtgt actcgcttc
900 ttgatgaccc aaccgcaaac cgccacaaattt gaagccgctg taaaagccgg tgttagcctgg
960 ttcaatagcc ccaacacgta tttgaacaat tacacttacg actcttcaaa agcgtcaact
1020 aatccaatag ttgccaagtc tggaagcaaa atgtggatc gctttacga tttaaataacc
1080 aatcgtggct tcttcagtga tcgcgcatttgc agcaatttctt atgacatcac ccagatgtca
1140 gaagagcgctc gcactggata tagctgggtt ggtgattacg gcacgtcgat tatttccttc
1200 gcgcaaaaaag tgggatattct gtaa
1224

<210> 62

<211> 407

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> DOMAIN

<222> (0)...(407)

<223> Catalytic domain

<400> 62

Met	Glu	Leu	Pro	Val	Thr	Gly	Ala	Trp	Ala	Thr	Trp	Gln	Thr	Ala	Thr
1					5				10				15		
Val	Glu	Ile	Asp	Leu	Val	Gln	Gly	Asn	Asn	Leu	Leu	Lys	Leu	Ser	Ala
20								25					30		

Ile Thr Ala Asp Gly Leu Ala Asn Ile Asp Ser Leu Lys Ile Asp Gly
35 40 45
Ala Gln Thr Lys Ala Gly Val Cys Ser Thr Val Ala Ser Ser Ser Ser
50 55 60
Ser Ser Val Ala Ser Ser Ile Lys Ser Ser Ser Ser Ser Ser Ser Ser
65 70 75 80
Ser Ser Thr Thr Val Lys Thr Leu Thr Leu Asp Gly Asn Pro Ala
85 90 95
Ala Asn Trp Phe Asn Lys Ser Arg Thr Lys Trp Asn Thr Ser Arg Ala
100 105 110
Asp Val Val Leu Ser Tyr Gln Gln Ser Asn Gly Gly Trp Pro Lys Asn
115 120 125
Leu Asp Tyr Asn Ser Val Ser Ala Gly Asn Gly Gly Ser Asp Ser Gly
130 135 140
Thr Ile Asp Asn Gly Ala Thr Ile Thr Glu Met Val Tyr Leu Ala Glu
145 150 155 160
Val Tyr Lys Asn Gly Asn Asn Thr Lys Tyr Arg Asp Ala Val Arg Arg
165 170 175
Ala Ala Asn Phe Ile Val Ser Ser Gln Tyr Ser Thr Gly Ala Leu Pro
180 185 190
Gln Phe Tyr Pro Leu Lys Gly Gly Tyr Ala Asp His Ala Thr Phe Asn
195 200 205
Asp Asn Gly Met Ala Tyr Ala Leu Thr Val Leu Asp Phe Ala Val Asn
210 215 220
Lys Arg Ala Pro Phe Asp Thr Asp Val Phe Ser Asp Ser Asp Arg Ala
225 230 235 240
Lys Phe Lys Thr Ala Val Ala Lys Gly Val Asp Tyr Ile Leu Lys Ala
245 250 255
Gln Trp Lys Gln Asn Gly Lys Leu Thr Val Trp Cys Ala Gln His Gly
260 265 270
Ala Thr Asp Tyr Gln Pro Lys Lys Ala Arg Ala Tyr Glu Leu Glu Ser
275 280 285
Leu Ser Gly Ser Glu Ser Val Gly Val Leu Ala Phe Leu Met Thr Gln
290 295 300
Pro Gln Thr Ala Gln Ile Glu Ala Ala Val Lys Ala Gly Val Ala Trp
305 310 315 320
Phe Asn Ser Pro Asn Thr Tyr Leu Asn Asn Tyr Thr Tyr Asp Ser Ser
325 330 335
Lys Ala Ser Thr Asn Pro Ile Val Ala Lys Ser Gly Ser Lys Met Trp
340 345 350
Tyr Arg Phe Tyr Asp Leu Asn Thr Asn Arg Gly Phe Phe Ser Asp Arg
355 360 365
Asp Gly Ser Lys Phe Tyr Asp Ile Thr Gln Met Ser Glu Glu Arg Arg
370 375 380
Thr Gly Tyr Ser Trp Gly Gly Asp Tyr Gly Thr Ser Ile Ile Ser Phe
385 390 395 400
Ala Gln Lys Val Gly Tyr Leu
405

<210> 63

<211> 1023

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 63

atgttaagtt tcatcgccgt atcagtgttt cataattact gtacagggca gactgcgtcc
60
accaaaaatt cagtggccga aaagatgctt cagtaccagt tgtcaaatgg cgcctggccc

120 aaacagttgg tagacaaaag tgtcgttgat tacagtcttc cattaacgaa agagctccta
180 cagcagatca agaaaacaga tattgatcat gctacgctcg acaacagtgc gacaaccgg
240 gaaataactg aattgatcaa ggctttaag gacactaaaa ataaggcata ttgactgct
300 gcagaaaaagg ggattgcata tatttatcg gctcaatatg agaatggcgg atttccacaa
360 tactacccaa ataaattata ctatagagct gagataacat acaacgatga tgcgatgatc
420 aatgcattac tagtgctta caaagtagcc aataagcgag aggggttga ggctatcaat
480 cccatattg tgtcaaaagc gcaaaaagca gttgaaaagg gtataacctg tattctaaaa
540 acacaggta tacaagacgg aaaaaggagt atttggctg cgcaatacga tcagaacact
600 ttacaacctg ctcaaggcaag aaagttgaa ccagcttcat tgagcacaag tgaatctgtt
660 tccatcgttc gcttctcat gctacagcct gcaaccactg aaattaagca agcgatcgaa
720 catgcaatac aatggttcga acagcatgat attgaagggtt accgttcga ccgcatacaa
780 gatagggta ctggaaaata tcaacggcag cttgtcgctg atcggacttc cacgatttg
840 gcgcgatttt ataatctcga agacaaccgt ccattgttt gagatcgga caatacaatc
900 aaatacaact ttgaggaggt ttcagaggag cgtagaaatg gctatgctt gttcggcaac
960 tggccggaaa agctgatcca aaaggactat ccaaaatgga aaaaacaata caaaattcaa
1020 taa
1023

<210> 64
<211> 340
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(16)

<221> DOMAIN
<222> (17)...(340)
<223> Catalytic domain

<400> 64
Met Leu Ser Phe Ile Ala Val Ser Val Phe His Asn Tyr Cys Thr Gly
1 5 10 15
Gln Thr Ala Ser Thr Lys Asn Ser Val Ala Glu Lys Met Leu Gln Tyr
20 25 30
Gln Leu Ser Asn Gly Ala Trp Pro Lys Gln Leu Val Asp Lys Ser Val
35 40 45
Val Asp Tyr Ser Leu Pro Leu Thr Lys Glu Leu Leu Gln Gln Ile Lys
50 55 60
Lys Thr Asp Ile Asp His Ala Thr Leu Asp Asn Ser Ala Thr Thr Arg
65 70 75 80
Glu Ile Thr Glu Leu Ile Lys Ala Phe Lys Asp Thr Lys Asn Lys Ala

85	90	95
Tyr Leu Thr Ala Ala Glu Lys Gly Ile Ala Tyr Ile Leu Ser Ala Gln		
100	105	110
Tyr Glu Asn Gly Gly Phe Pro Gln Tyr Tyr Pro Asn Lys Leu Tyr Tyr		
115	120	125
Arg Ala Glu Ile Thr Tyr Asn Asp Asp Ala Met Ile Asn Ala Leu Leu		
130	135	140
Val Leu Tyr Lys Val Ala Asn Lys Arg Glu Gly Phe Glu Ala Ile Asn		
145	150	155
Pro Ile Phe Val Ser Lys Ala Gln Lys Ala Val Glu Lys Gly Ile Thr		
165	170	175
Cys Ile Leu Lys Thr Gln Val Ile Gln Asp Gly Lys Arg Ser Ile Trp		
180	185	190
Ala Ala Gln Tyr Asp Gln Asn Thr Leu Gln Pro Ala Gln Ala Arg Lys		
195	200	205
Phe Glu Pro Ala Ser Leu Ser Thr Ser Glu Ser Val Ser Ile Val Arg		
210	215	220
Phe Leu Met Leu Gln Pro Ala Thr Thr Glu Ile Lys Gln Ala Ile Glu		
225	230	235
His Ala Ile Gln Trp Phe Glu Gln His Asp Ile Glu Gly Tyr Arg Phe		
245	250	255
Asp Arg Ile Gln Asp Arg Val Thr Gly Lys Tyr Gln Arg Gln Leu Val		
260	265	270
Ala Asp Arg Thr Ser Thr Ile Trp Ala Arg Phe Tyr Asn Leu Glu Asp		
275	280	285
Asn Arg Pro Leu Phe Gly Asp Arg Asp Asn Thr Ile Lys Tyr Asn Phe		
290	295	300
Glu Glu Val Ser Glu Glu Arg Arg Asn Gly Tyr Ala Trp Phe Gly Asn		
305	310	315
Trp Pro Glu Lys Leu Ile Gln Lys Asp Tyr Pro Lys Trp Lys Lys Gln		
325	330	335
Tyr Lys Ile Gln		
340		

<210> 65
 <211> 1311
 <212> DNA
 <213> Bacteria

<400> 65
 gtgaaccgac gtacccgcct gggagcggtc gccgcgaccg ccctcgccct gacggtcacc
 60
 gcccccgccg ccggtgccca cgccgcccgt ccccacgccc cgccacgccc ggtcgcccgt
 120
 ccggctcgcg ccacgctgcc cgccggcgac ggctggcggt ccgaggggac cggcacgacc
 180
 ggtggggccg ccgcccggaggc ctcccgggtc ttcaccgtcg ccacctggga ggagttccgg
 240
 gccgcgctcg cggtgcccgg ctccgagccc aggatcgtca aggtggtggg cacgctgaac
 300
 gccaccgccc ccggctgcgg cgccttcgag gcccggggct acgacttcgc ccgctacctc
 360
 gccgactacg acccggccgt gtgggggtac gagaaggagg tcagcggccc gcaggaggag
 420
 ctgcggcgg cggtccgcac cgccgacggc caggccatca aggtcaaggt gcccggcgaac
 480
 accacgatcg tcggggtcgg caggcacgctg gggatcacgg gcccggcgcct ccaggtgcag
 540
 ggcgtcgaca acgtcgtggt ccgcaacctg acgctggaga gcccgtcgta ctgcttcccg
 600
 cagtgggacc cgaccgacgg cgccgaccgg gcgtggaact ccgagttacga cagcctcgtc

660
gtgtacggct ccacccatgt ctggatcgac cacaacacct tcaccgacgg cgcccacccg
720
gacagttcgc tgccctcgta ctacggcgag gtctaccaggc agcacgacgg cgaactggac
780
gtcgtgcggg gcgcggacct cgtcacggtc tcgtgaaacg ctttaccga ccacgacaag
840
accctgatga tcggcaacag cgacagcgcg ggcccaccc accggggcaa gtcgggtc
900
accctgcacc acaacctgtt cgagaacgac gtcgagcggg cgccccgggt caggttcggg
960
caggtcgacg cgtacaacaa ccacttcgtc gtgccgagtt cggcctacgc gtacagcctg
1020
ggcgtcgccc aggagtccca gctttcgcg gagaagaacg cgttcaccct cgccggggc
1080
gtgccggccg ggaagatcct caagaagtgg aaggacgcgc cgtcaccac cgtcggcaac
1140
tacgtgaacg gcaggccggt cgacctgctc gccgtccaca acaccagtt cccggaggag
1200
cagttcgccc cgcacgcggg ctggacccccc gtcctgcgca ccagggtcga ccacccgagg
1260
gccgtccccg cgctcgta ccaccgcgc ggcccggcc gtcctgctg a
1311

<210> 66
<211> 436
<212> PRT
<213> Bacteria

<220>

<221> SIGNAL
<222> (1)...(28)

<221> DOMAIN
<222> (29)...(436)
<223> Catalytic domain

<400> 66
Met Asn Arg Arg Thr Arg Leu Gly Ala Val Ala Ala Thr Ala Leu Ala
1 5 10 15
Leu Thr Val Thr Ala Pro Ala Ala Gly Ala His Ala Ala Ala Pro His
20 25 30
Ala Ala Pro Arg Pro Val Ala Asp Pro Ala Arg Ala Thr Leu Pro Ala
35 40 45
Gly Asp Gly Trp Ala Ser Glu Gly Thr Gly Thr Gly Gly Ala Ala
50 55 60
Ala Glu Ala Ser Arg Val Phe Thr Val Ala Thr Trp Glu Glu Phe Arg
65 70 75 80
Ala Ala Leu Ala Val Pro Gly Ser Glu Pro Arg Ile Val Lys Val Val
85 90 95
Gly Thr Leu Asn Ala Thr Ala Ala Gly Cys Gly Ala Phe Glu Ala Pro
100 105 110
Gly Tyr Asp Phe Ala Arg Tyr Leu Ala Asp Tyr Asp Pro Ala Val Trp
115 120 125
Gly Tyr Glu Lys Glu Val Ser Gly Pro Gln Glu Glu Leu Arg Ala Ala
130 135 140
Ser Ala Thr Ala Gln Gly Gln Ala Ile Lys Val Lys Val Pro Ala Asn
145 150 155 160
Thr Thr Ile Val Gly Val Gly Arg His Ala Gly Ile Thr Gly Gly Ser
165 170 175

Leu Gln Val Gln Gly Val Asp Asn Val Val Val Arg Asn Leu Thr Leu
180 185 190
Glu Ser Pro Leu Asp Cys Phe Pro Gln Trp Asp Pro Thr Asp Gly Ala
195 200 205
Thr Gly Ala Trp Asn Ser Glu Tyr Asp Ser Leu Val Val Tyr Gly Ser
210 215 220
Thr His Val Trp Ile Asp His Asn Thr Phe Thr Asp Gly Ala His Pro
225 230 235 240
Asp Ser Ser Leu Pro Ser Tyr Tyr Gly Glu Val Tyr Gln Gln His Asp
245 250 255
Gly Glu Leu Asp Val Val Arg Gly Ala Asp Leu Val Thr Val Ser Trp
260 265 270
Asn Ala Phe Thr Asp His Asp Lys Thr Leu Met Ile Gly Asn Ser Asp
275 280 285
Ser Ala Gly Ala Thr Asp Arg Gly Lys Leu Arg Val Thr Leu His His
290 295 300
Asn Leu Phe Glu Asn Val Val Glu Arg Ala Pro Arg Val Arg Phe Gly
305 310 315 320
Gln Val Asp Ala Tyr Asn Asn His Phe Val Val Pro Ser Ser Ala Tyr
325 330 335
Ala Tyr Ser Leu Gly Val Gly Gln Glu Ser Gln Leu Phe Ala Glu Lys
340 345 350
Asn Ala Phe Thr Leu Ala Gly Gly Val Pro Ala Gly Lys Ile Leu Lys
355 360 365
Lys Trp Lys Asp Ala Pro Val Thr Thr Val Gly Asn Tyr Val Asn Gly
370 375 380
Arg Pro Val Asp Leu Leu Ala Val His Asn Thr Gln Phe Pro Glu Glu
385 390 395 400
Gln Leu Arg Ala Asp Ala Gly Trp Thr Pro Val Leu Arg Thr Arg Val
405 410 415
Asp His Pro Arg Ala Val Pro Ala Leu Val Asp His Arg Ala Gly Ala
420 425 430
Gly Arg Ser Cys
435

<210> 67

<211> 1995

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 67

atgaaaaatt caaaaactgt ttttactgca caaaaaaaaaac tcatgcactc ttgcattgcc
60
ggcgctatcg gcttggcgat aagttcaggt gcttggtcag cttgtactta cactgtcacc
120
aataattggg gttctggctt caccggtgaa atcaaagtta ccaacaacac atcatcggt
180
gtaaatggtt ggtctgtgtc ttggcaggaa tcaggcgcac cagtcaccaa ctcatggaac
240
gcaactctga gcggatcaa tccttatacg gcagccgcct taggttgaa tgcaactctc
300
gcacccggtg cttctgccag ttttggctt caagcaaatg gcactgctag cgcacctaaa
360
gtgaatggca ctttatgtgg aacagctact tcataaacac ctgcgtcatc cagcagtgtt
420
gcgagttcgg ttaaatcaag cgcacccgtt tcgtccagca gttaatcatc cagctcaatc
480
actgtgagta gtagttctat cgccagcagc agcgcaccaa gtgtttcttc attaacaatt

540 caggaagagc aagctggctt ctgtcggtt gatggcattt caacagaaaag caccaacacc
600 ggctttaccg gcaacggcta taccaatgca aacaacgcac aagggtgcagc gattgaatgg
660 gcggtaaatg caccgagcag tggccgctac acactcacat tccgtttgc aaatggcgcc
720 actgcagcac gcaatggttc actgttaatt aacggcggtt gcaatggtaa ctacaccgtt
780 gatttaccac taaccggcgc atgggcact tggcaaacag cgactgtaga aatcgatttg
840 gtacaaggca ccaacacgct gaaactttct gcattaaccg cagatggctt agctaataatc
900 gattcattaa aaattgatgg caaccaaccg aaagcaggca cttgcagcaa tacatcaagc
960 agtgttgcgc gcagttcttc atccgttaaa tccagttcaa gttcttcattc aagctcatcc
1020 accactgcaa aatgctgac tcttgcgttgc aaccccgccc caagttggtt caacaaatcc
1080 agaaccaaat ggaatagcag tcgtgcggac attgtgttgtt cttaccagca agctaacggc
1140 ggctggccaa aaaatctgga ttacaactca gtaagcgcag gtaatggtgg tagcgacagc
1200 ggcactatcg acaacggcgc aaccatcagc gaaatggttt atctcgacaa agtttataaaa
1260 aacggggca atacaaaata tcgcgatgca gtacgtaaag cggcaaaactt tattgtgagt
1320 tcgcaataca gcactggtgc gttaccacaa ttttacccat tgaaagggtgg ttatgcagat
1380 cacgccaccc ttaacgataa cggcatggct tacgcattaa cggattggta ttttgcgggt
1440 aacaaacgtg cggcggttga taacgatgta ttttctgatg cagaccgcgc aaaattcaaa
1500 actgcccgtga ccaaaggat tgattacatt ttgaaagccc aatggaaaca aaatggaaaa
1560 ctcaccgcattt ggtgtgcgc acacggagca aacgactatc aaccaaaagc ggccgcgtgct
1620 tatgagtttag tatctttaag cggcagcgaa tccgttggca tcatcgctt cctgatgacc
1680 caaccacaaa ctgcgcaaat cgaagcagcg gttaaagccc gtgtaaactg gttcgctagc
1740 ccgaatacat acttggctaa ttacacccat gactcgtaa aacccctctac caatccgatt
1800 gtgtacaaaat ccggcagcag aatgtggat cgcttctacg atctgaacac caatcgccga
1860 ttcttttagtg atcgatgg cagcaaattc tatgacatca ctcaaatgtc tgaagaacgt
1920 cgcaccggct acagctgggg cggttcttac ggtgaatcga ttatcagctt cgcgaaaaaa
1980 gtgggttatac tctaa
1995

<210> 68
<211> 664
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample
<221> SIGNAL

<222> (1)...(32)

<221> BINDING

<222> (33)...(126)

<223> Carbohydrate binding module

<221> BINDING

<222> (184)...(307)

<223> Carbohydrate binding module

<221> DOMAIN

<222> (308)...(664)

<223> Catalytic domain

<400> 68

Met	Lys	Asn	Ser	Lys	Thr	Val	Phe	Thr	Ala	Gln	Lys	Lys	Leu	Met	His
1				5				10					15		
Ser	Cys	Ile	Ala	Ala	Ala	Ile	Gly	Leu	Ala	Ile	Ser	Ser	Gly	Ala	Trp
							20			25			30		
Ser	Ala	Cys	Thr	Tyr	Thr	Val	Thr	Asn	Asn	Trp	Gly	Ser	Gly	Phe	Thr
							35			40			45		
Gly	Glu	Ile	Lys	Val	Thr	Asn	Asn	Thr	Ser	Ser	Ala	Val	Asn	Gly	Trp
							50			55			60		
Ser	Val	Ser	Trp	Gln	Glu	Ser	Gly	Ala	Ser	Val	Thr	Asn	Ser	Trp	Asn
							65			70			75		80
Ala	Thr	Leu	Ser	Gly	Ser	Asn	Pro	Tyr	Thr	Ala	Ala	Ala	Leu	Gly	Trp
							85			90			95		
Asn	Ala	Thr	Leu	Ala	Pro	Gly	Ala	Ser	Ala	Ser	Phe	Gly	Phe	Gln	Ala
							100			105			110		
Asn	Gly	Thr	Ala	Ser	Ala	Pro	Lys	Val	Asn	Gly	Thr	Leu	Cys	Gly	Thr
							115			120			125		
Ala	Thr	Ser	Ser	Thr	Pro	Ala	Ser	Ser	Ser	Val	Ala	Ser	Ser	Val	
							130			135			140		
Lys	Ser	Ser	Ala	Pro	Val	Ser	Ser	Ser	Ser	Lys	Ser	Ser	Ser	Ser	Ile
							145			150			155		160
Thr	Val	Ser	Ser	Ser	Ile	Ala	Ser	Ser	Ser	Ala	Pro	Ser	Val	Ser	
							165			170			175		
Ser	Leu	Thr	Ile	Gln	Glu	Gln	Ala	Gly	Phe	Cys	Arg	Val	Asp	Gly	
							180			185			190		
Ile	Ala	Thr	Glu	Ser	Thr	Asn	Thr	Gly	Phe	Thr	Gly	Asn	Gly	Tyr	Thr
							195			200			205		
Asn	Ala	Asn	Asn	Ala	Gln	Gly	Ala	Ala	Ile	Glu	Trp	Ala	Val	Asn	Ala
							210			215			220		
Pro	Ser	Ser	Gly	Arg	Tyr	Thr	Leu	Thr	Phe	Arg	Phe	Ala	Asn	Gly	Gly
							225			230			235		240
Thr	Ala	Ala	Arg	Asn	Gly	Ser	Leu	Leu	Ile	Asn	Gly	Gly	Ser	Asn	Gly
							245			250			255		
Asn	Tyr	Thr	Val	Asp	Leu	Pro	Leu	Thr	Gly	Ala	Trp	Ala	Thr	Trp	Gln
							260			265			270		
Thr	Ala	Thr	Val	Glu	Ile	Asp	Leu	Val	Gln	Gly	Thr	Asn	Thr	Leu	Lys
							275			280			285		
Leu	Ser	Ala	Leu	Thr	Ala	Asp	Gly	Leu	Ala	Asn	Ile	Asp	Ser	Leu	Lys
							290			295			300		
Ile	Asp	Gly	Asn	Gln	Pro	Lys	Ala	Gly	Thr	Cys	Ser	Asn	Thr	Ser	Ser
							305			310			315		320
Ser	Val	Ala	Ser	Ser	Ser	Ser	Val	Lys	Ser	Ser	Ser	Ser	Ser	Ser	
							325			330			335		
Ser	Ser	Ser	Ser	Thr	Thr	Ala	Lys	Met	Leu	Thr	Leu	Asp	Gly	Asn	Pro
							340			345			350		
Ala	Ala	Ser	Trp	Phe	Asn	Lys	Ser	Arg	Thr	Lys	Trp	Asn	Ser	Ser	Arg
							355			360			365		

Ala Asp Ile Val Leu Ser Tyr Gln Gln Ala Asn Gly Gly Trp Pro Lys
370 375 380
Asn Leu Asp Tyr Asn Ser Val Ser Ala Gly Asn Gly Gly Ser Asp Ser
385 390 395 400
Gly Thr Ile Asp Asn Gly Ala Thr Ile Thr Glu Met Val Tyr Leu Ala
405 410 415
Glu Val Tyr Lys Asn Gly Gly Asn Thr Lys Tyr Arg Asp Ala Val Arg
420 425 430
Lys Ala Ala Asn Phe Ile Val Ser Ser Gln Tyr Ser Thr Gly Ala Leu
435 440 445
Pro Gln Phe Tyr Pro Leu Lys Gly Gly Tyr Ala Asp His Ala Thr Phe
450 455 460
Asn Asp Asn Gly Met Ala Tyr Ala Leu Thr Val Leu Asp Phe Ala Val
465 470 475 480
Asn Lys Arg Ala Pro Phe Asp Asn Asp Val Phe Ser Asp Ala Asp Arg
485 490 495
Ala Lys Phe Lys Thr Ala Val Thr Lys Gly Ile Asp Tyr Ile Leu Lys
500 505 510
Ala Gln Trp Lys Gln Asn Gly Lys Leu Thr Ala Trp Cys Ala Gln His
515 520 525
Gly Ala Asn Asp Tyr Gln Pro Lys Ala Ala Arg Ala Tyr Glu Leu Val
530 535 540
Ser Leu Ser Gly Ser Glu Ser Val Gly Ile Ile Ala Phe Leu Met Thr
545 550 555 560
Gln Pro Gln Thr Ala Gln Ile Glu Ala Ala Val Lys Ala Gly Val Asn
565 570 575
Trp Phe Ala Ser Pro Asn Thr Tyr Leu Ala Asn Tyr Thr Tyr Asp Ser
580 585 590
Ser Lys Ala Ser Thr Asn Pro Ile Val Tyr Lys Ser Gly Ser Arg Met
595 600 605
Trp Tyr Arg Phe Tyr Asp Leu Asn Thr Asn Arg Gly Phe Phe Ser Asp
610 615 620
Arg Asp Gly Ser Lys Phe Tyr Asp Ile Thr Gln Met Ser Glu Glu Arg
625 630 635 640
Arg Thr Gly Tyr Ser Trp Gly Gly Ser Tyr Gly Glu Ser Ile Ile Ser
645 650 655
Phe Ala Gln Lys Val Gly Tyr Leu
660

<210> 69

<211> 1035

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 69

atggcgcggtt tggccgggtg cgtgtgtgcc agcctggag gatggggccgc ggttctggcc
60

gcccggcgccgg gccccggattt gtcggccctg ctcgcgcac acggacccttg gtttcgcagt
120

ccggcgggggc aacaggcggtt gacgaacgtt ttgtcctggc agagcgcgac aggccgcctgg
180

ccgaaaaacc tggacaccac ccgcgagccg cgtcgccagg attccggcccc gcccggggc
240

actttcgaca acggcgccac caccggcgag ttgcggtttc tggcgccggc gtttgcggcc
300

accggcgatc cgccgtgcga agccgcgggtg ctccggggc tggacggcat cctcgccggcc
360

cagcttccca gcccggctg gccgcagtgt catcctccgc gcgcgcctta tcagcgccac

420
atcaccttca acgacggtgt catggtgcgc atcctggagc tgctgcgcga gatagaccgc
480
gcgccggagt ttcgctgggt ggacgaggcg cggcgccgc gggtgccgc ggccttact
540
cgcggctgg agtgcctcct gcgcgtccag gtggtcgtcg agggcagact caccgtgtgg
600
tgtgcccagc atgacgcgga gaacttcaa ccgcgaccgg cacgcgccta cgaactggaa
660
tcgctcagcg gcgcggaaag cgccggcatc ctgggtttcc tcattgagcct ggagccgcca
720
accccgaga tcgcgcgcgc ggtcgaggcc ggggcggcct gttttcggc gtaaagctt
780
gaagggttcc gtctcgaacg aacggccgac gacgcgcggg tggtgaaaga gccgggcgcg
840
ccgcccgtct gggcgcggtt ctacgagatc gggaccaatc gccccatctt tgccggtcgc
900
gacggtgtca agaagtacgc cctgagcgag atcgagcggg aacgcccggc cggctatgcg
960
tggtaacggcg cctgggtga accggtcgcc cgccattatg cccagtggcg ggagcgttac
1020
gggacgcaga aatga
1035

<210> 70
<211> 344
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(22)

<221> DOMAIN
<222> (23)...(344)
<223> Catalytic domain

<400> 70
Met Ala Arg Leu Phe Arg Cys Val Cys Ala Ser Leu Gly Gly Trp Ala
1 5 10 15
Ala Val Leu Ala Ala Ala Gly Pro Asp Trp Ser Arg Leu Leu Ala
20 25 30
Gln Pro Asp Pro Trp Phe Arg Ser Pro Ala Gly Gln Gln Ala Val Thr
35 40 45
Asn Val Leu Ser Trp Gln Ser Ala Thr Gly Ala Trp Pro Lys Asn Leu
50 55 60
Asp Thr Thr Arg Glu Pro Arg Arg Gln Asp Ser Ala Pro Pro Glu Gly
65 70 75 80
Thr Phe Asp Asn Gly Ala Thr Thr Gly Glu Leu Arg Phe Leu Ala Arg
85 90 95
Ala Phe Ala Ala Thr Gly Asp Pro Arg Cys Glu Ala Ala Val Leu Arg
100 105 110
Gly Leu Asp Gly Ile Leu Ala Ala Gln Leu Pro Ser Gly Gly Trp Pro
115 120 125
Gln Cys His Pro Pro Arg Ala Pro Tyr Gln Arg His Ile Thr Phe Asn
130 135 140
Asp Gly Val Met Val Arg Ile Leu Glu Leu Leu Arg Glu Ile Asp Arg
145 150 155 160
Ala Pro Glu Phe Arg Trp Val Asp Glu Ala Arg Arg Ala Arg Val Arg

165 170 175
Ala Ala Phe Thr Arg Gly Leu Glu Cys Leu Leu Arg Cys Gln Val Val
180 185 190
Val Glu Gly Arg Leu Thr Val Trp Cys Ala Gln His Asp Ala Glu Asn
195 200 205
Phe Gln Pro Arg Pro Ala Arg Ala Tyr Glu Leu Glu Ser Leu Ser Gly
210 215 220
Ala Glu Ser Ala Gly Ile Leu Val Phe Leu Met Ser Leu Glu Pro Pro
225 230 235 240
Thr Pro Glu Ile Ala Arg Ala Val Glu Ala Gly Ala Ala Trp Phe Ser
245 250 255
Ala Val Lys Leu Glu Gly Phe Arg Leu Glu Arg Thr Ala Asp Asp Ala
260 265 270
Arg Val Val Glu Glu Pro Gly Ala Pro Pro Leu Trp Ala Arg Phe Tyr
275 280 285
Glu Ile Gly Thr Asn Arg Pro Ile Phe Ala Gly Arg Asp Gly Val Lys
290 295 300
Lys Tyr Ala Leu Ser Glu Ile Glu Arg Glu Arg Arg Val Gly Tyr Ala
305 310 315 320
Trp Tyr Gly Ala Trp Gly Glu Pro Val Ala Arg His Tyr Ala Gln Trp
325 330 335
Arg Glu Arg Tyr Gly Thr Gln Lys
340

<210> 71

<211> 1038

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 71

gtgactcgtg tcgccctgc gatggggctt gttgcattggg ttccggcgct cgcttcagct
60
ggccccgctg catatttgca gaagccggac gactggttcg ccagtcccga ggccaggggca
120
atcgccgcga acgtactcgc gcatcaggcc gatctcggcg ggtggccgaa gaacatcgac
180
acaacgaagc cgttcacccgg cgaccggacg ccaaataaac cgaaccttcga taacagcgcg
240
acaaccgacg agctccggtt tctggcgcgc atccacaacg cgactcgcga cgagaagtac
300
cgccaccgcgt tcgagaaggg gctcgattac atcttggaaag cacaatacgc aaacggcggt
360
tggccgcagt cgCACCCGCC CGGCACCGGC TACCACCGGC ACATCACCTT CAACGACAAT
420
GCCATGGTCC GTTGATGGA GCTCGTCGC GAAGTCGCAG CCTCGAATCG GTACGACTTC
480
CTGGACGCCG ACCGCCGAA GGCCTGCCGC GCGCTTTCG ATCGCGGCAT CGAACATCGATC
540
CTGAAGTGCCT AGATCAAGGT CGACAGTAAG CTGACGGCAT GGTGCGCCCA GCACGACGAG
600
AAGGACCTCG CTCCCCGGCC GGCACCGGACC TACGAGCTCG TCTCACTCAG CGGCTCGGAG
660
TCGGTCGGGA TCgtccgcct ACTCATGAGC CTCGATCGAC CAAGCCCGGA GGTCGCTCGG
720
GCCATCGACG GCGCGGTGCG GTGGTTCCAG TCGGCGAAGC TCGAAGGCAC CAAGGTCGTT
780
GTCGAGCGCG ACCCGAAGTA TCCGGCGGC CGGGAACGCG TGTTGGTGAAG GGATCCAAG
840

gcaccggccac tctggcgcg cttctacgaa atcggcacga atcgccccat cttctccgac
900
cgcgacggca tcaagaagta cgcgctcgcc gagatcggcc ccgaacggcg gaatggctat
960
gcctggtagtgc acacctggcc ggcgacacgt ctggagaagg aatacccagg gtggaaaaag
1020
aagctggccc ggccgtga
1038

<210> 72
<211> 345
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(20)

<221> DOMAIN
<222> (21)...(345)
<223> Catalytic domain

<400> 72
Met Thr Arg Val Ala Leu Ala Met Gly Leu Val Ala Trp Val Pro Ala
1 5 10 15
Leu Ala Ser Ala Gly Pro Ala Ala Tyr Leu Gln Lys Pro Asp Asp Trp
20 25 30
Phe Ala Ser Pro Glu Ala Arg Ala Ile Ala Ala Asn Val Leu Ala His
35 40 45
Gln Ala Asp Leu Gly Gly Trp Pro Lys Asn Ile Asp Thr Thr Lys Pro
50 55 60
Phe Thr Gly Asp Arg Thr Gln Ile Lys Pro Thr Phe Asp Asn Ser Ala
65 70 75 80
Thr Thr Asp Glu Leu Arg Phe Leu Ala Arg Ile His Asn Ala Thr Arg
85 90 95
Asp Glu Lys Tyr Arg Thr Ala Phe Glu Lys Gly Leu Asp Tyr Ile Leu
100 105 110
Lys Ala Gln Tyr Ala Asn Gly Gly Trp Pro Gln Ser His Pro Pro Gly
115 120 125
Thr Gly Tyr His Arg His Ile Thr Phe Asn Asp Asn Ala Met Val Arg
130 135 140
Leu Met Glu Leu Val Arg Glu Val Ala Thr Ser Asn Arg Tyr Asp Phe
145 150 155 160
Leu Asp Ala Asp Arg Arg Lys Ala Cys Arg Ala Ala Phe Asp Arg Gly
165 170 175
Ile Glu Cys Ile Leu Lys Cys Gln Ile Lys Val Asp Ser Lys Leu Thr
180 185 190
Ala Trp Cys Ala Gln His Asp Glu Lys Asp Leu Ala Pro Arg Pro Ala
195 200 205
Arg Thr Tyr Glu Leu Val Ser Leu Ser Gly Ser Glu Ser Val Gly Ile
210 215 220
Val Arg Leu Leu Met Ser Leu Asp Arg Pro Ser Pro Glu Val Ala Arg
225 230 235 240
Ala Ile Asp Gly Ala Val Ala Trp Phe Gln Ser Ala Lys Leu Glu Gly
245 250 255
Thr Lys Val Val Val Glu Arg Asp Pro Lys Tyr Pro Gly Gly Arg Glu
260 265 270
Arg Val Val Val Lys Asp Pro Lys Ala Pro Pro Leu Trp Ala Arg Phe
275 280 285

Tyr Glu Ile Gly Thr Asn Arg Pro Ile Phe Ser Asp Arg Asp Gly Ile
290 295 300
Lys Lys Tyr Ala Leu Ala Glu Ile Gly Pro Glu Arg Arg Asn Gly Tyr
305 310 315 320
Ala Trp Tyr Gly Thr Trp Pro Arg Asp Leu Leu Glu Lys Glu Tyr Pro
325 330 335
Gly Trp Lys Lys Leu Ala Arg Pro
340 345

<210> 73

<211> 1221

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 73

atgctcacca aaacatcaact acttattgca ttgctaggca gttgttgtat cgcaccatta
60
catgcggaca caccagcaag caatgcaccg acaaccaatg catcaattcc gctacagcaa
120
actgcgagcg atgctgccgc ctggaaaaat tatctcgcca aatccaacga gttgcgcaaa
180
gcagaccagg cgtagtcaa agccgagctg aaaaaactcg ggcaaaaaac cgcgagttg
240
cctgagtaca ccaaagaatt tggtttgaa gtgaagcagt catctgagtg gttaaaagc
300
actgaaggta aacgagtgtat ggatattatc ctatcgtttc aaactccttc tggcggctgg
360
tcaaaacgca ctgacatgag caaagcgccg cgcaaacccg gccaggcatt tgggttgaa
420
aaaaattaca tccccacatt tgataatggc gcgaccagca cacaattaat gctactggca
480
caggcgcac aagccactgg cgataaacgc tacagcgatg catttgcgcg cgggcttgaa
540
tttatcatca ccgctcaata tcccaatggc ggctggccac aaaattttcc attggttggc
600
aagtatcacg atcacatcac ttacaacgtat gccctgatgc gcgatttaat ggttagtgcta
660
cacaaggttg ccatggccaa ggatgaattt gcctttgtat ccaaggcgca gcaacaggcc
720
gcacaaggcga gcctcgaacg cgctggac tgcgtttga aaaccaggat gatggccaat
780
ggccaattaa ctatatgggg tgcgcagcac gatgccaaaa cctaaaaacc cgccaaagcg
840
cgccctatg aaatgatttc actcaccagt tctgaaagcg tgtggatgct cgattttta
900
atggatttg aacagcccag cgctgacatt attaaatccg tgcacgcggc tgccgcttgg
960
tatgagcaaa ataaaattat cgaaaaacc tggaccggg ggcacacagt tctgaaagac
1020
gataaggatg caccgcaat ctggcgctgt ttttatgaga taggtacgaa caaaccctg
1080
tttggcgacc gcgatgactc tgtccattac gatctggcaa aggtatcgga agagcgccgc
1140
acgggttagt cctggtacac aacctcaccc aatcaggtat taaaaagta cgcgcgctgg
1200
gctaaacaat atccgcaata a
1221

<210> 74
<211> 406
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(22)

<221> DOMAIN
<222> (23)...(406)
<223> Catalytic domain

<400> 74
Met Leu Thr Lys Thr Ser Leu Leu Ile Ala Leu Leu Gly Ser Cys Cys
1 5 10 15
Ile Ala Pro Leu His Ala Asp Thr Pro Ala Ser Asn Ala Pro Thr Thr
20 25 30
Asn Ala Ser Ile Pro Leu Gln Gln Thr Ala Ser Asp Ala Ala Ala Trp
35 40 45
Lys Asn Tyr Leu Ala Lys Ser Asn Glu Leu Arg Lys Ala Asp Gln Ala
50 55 60
Gln Leu Lys Ala Glu Leu Lys Leu Gly Gln Lys Thr Ala Ser Leu
65 70 75 80
Pro Glu Tyr Thr Lys Glu Phe Gly Phe Glu Val Lys Gln Ser Ser Glu
85 90 95
Trp Phe Lys Ser Thr Glu Gly Lys Arg Val Met Asp Ile Ile Leu Ser
100 105 110
Phe Gln Thr Pro Ser Gly Gly Trp Ser Lys Arg Thr Asp Met Ser Lys
115 120 125
Ala Pro Arg Lys Pro Gly Gln Ala Phe Gly Val Glu Lys Asn Tyr Ile
130 135 140
Pro Thr Phe Asp Asn Gly Ala Thr Ser Thr Gln Leu Met Leu Leu Ala
145 150 155 160
Gln Ala His Gln Ala Thr Gly Asp Lys Arg Tyr Ser Asp Ala Phe Ala
165 170 175
Arg Gly Leu Glu Phe Ile Ile Thr Ala Gln Tyr Pro Asn Gly Gly Trp
180 185 190
Pro Gln Asn Phe Pro Leu Val Gly Lys Tyr His Asp His Ile Thr Tyr
195 200 205
Asn Asp Ala Leu Met Arg Asp Leu Met Val Val Leu His Lys Val Ala
210 215 220
Met Ala Lys Asp Glu Phe Ala Phe Val Ser Lys Ala Gln Gln Ala
225 230 235 240
Ala Gln Ala Ser Leu Glu Arg Ala Leu Asp Cys Val Leu Lys Thr Gln
245 250 255
Val Met Ala Asn Gly Gln Leu Thr Ile Trp Gly Ala Gln His Asp Ala
260 265 270
Lys Thr Leu Lys Pro Ala Lys Ala Arg Ala Tyr Glu Met Ile Ser Leu
275 280 285
Thr Ser Ser Glu Ser Val Trp Met Leu Asp Phe Leu Met Asp Leu Gln
290 295 300
Gln Pro Ser Ala Asp Ile Ile Lys Ser Val His Ala Ala Ala Ala Trp
305 310 315 320
Tyr Glu Gln Asn Lys Ile Ile Gly Lys Thr Trp Thr Arg Gly Asp Thr
325 330 335
Val Leu Lys Asp Asp Lys Asp Ala Pro Pro Ile Trp Ala Arg Phe Tyr
340 345 350
Glu Ile Gly Thr Asn Lys Pro Leu Phe Gly Asp Arg Asp Asp Ser Val

355 360 365
His Tyr Asp Leu Ala Lys Val Ser Glu Glu Arg Arg Thr Gly Tyr Ala
370 375 380
Trp Tyr Thr Thr Ser Pro Asn Gln Val Leu Lys Lys Tyr Ala Arg Trp
385 390 395 400
Ala Lys Gln Tyr Pro Gln
405

<210> 75
<211> 1767
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 75
atgaccacaa cccgcgcac tattctgaaa gcccggcca gcgcggcgc gatcgccagc
60
accggctggc ccgccttggc cgccgcacag gccgcgcaag ccgcgcaccc gtgggccccgc
120
gcccagcaga tcatacgaccg ctgcgccaag ccgtctcagct tcccgaaacag ggacttcccg
180
atcaccgagt tcggcgccaa accctgcaag ctggtaaaag cccaggccct ggtcgaagta
240
agagtcaaag gcgaactcga aacgccagca ccgcgaagcgc cggacgccta cccggcaatc
300
aaagccgcca tcgcccgcagc gagcaaggcc ggaggagggc gcgtgctgat cccggccggc
360
aactggtaact gcaaggccc tattcgctg ctgtcgaaacg tgacacgtca cttgc当地
420
ggcgcccaag tctacttcag cgccaaacgccc aaggacttcg cccgcgcacgg cgactacgac
480
tgcggccca acggcaagct ggtgctctcg cgctggcaag gcaacgattt cctgaacttc
540
tcgccccatgg tctacgcgcg cggcaaaaag aatatcgcca ttaccggcga agactggacc
600
agcatcttga acggccaggc cggcgtggcg ttcaagacg gcagcggcaa tggctggtg
660
ggcatgaacc ccgcggccgc gcccggccgc agcaccacgc accaggccgc agccaatccg
720
aacaacgcgg aggagccaaat cgccagactg cccacgcgc acgcgaactg gagcgcgcac
780
gacaagtacc tgccgctgct gtccgaagcc ggcgtgcccgg ccgagcgcgc cgtgttcgg
840
ctggggact acctgcggcc gtcgatggc gaattcgtcg actgcggggta tgtgctgatg
900
cagggctacc aggtcatcaa cacgcgttc tggattcatc acccggtaa ctcacgcaac
960
attcacttct ccaaagtgcg catggaaagc atcggccgcg attcggacgg tttcgatccc
1020
gagtccctgcg acaccatcct ggtggacggc tgcctgttca ataccggcga cgactgcac
1080
gccatcaaat ccggcaagaa ccgagactcg caatacggcc caacgcgc当地 tatggtggt
1140
cagaactgca tcatacgaccg cggccacggc ggcgttacgc tggcagcga aatggcgggt
1200
ggcatcgagc atatctacgc gcagaaaatc gaattccgca acgcgttctg ggaccacgac
1260
ccgctggca cggccatccg aatgaagacg aacatgaacc gcggccggcta cttcgatccc
1320

ttctacgtgc gcgacgtgac gctgccaat ggcgtgcgta ccaagagcgg cttctacaag
1380
acgctgccgg gatctccgct ggcaggcaag gtctccacca gcggcggcgc tgttatcact
1440
atcgactgct attacgcgcc gaatgacgac agcgtgcgcg tgcggccgccc gcaggtgtcg
1500
gacgtgcata tctcgaacgt ccgcgtcagc aatgtaaaaa cggccgaagg ctcgttctcc
1560
tgctaccagg ccatggtgct gctcgggccc gtggcggcca gcttcaacgg cgccgcctggc
1620
acggccatcc tgccgatcac gaatgtcacc gtcagcgatt cggacttcgg cacgcccgc
1680
aacagcgcag agccctggtt cgcgttcaac gtgcagggac tcaagctgcg caacgtgcgc
1740
atcgatggca aggagtacaa cgtatga
1767

<210> 76

<211> 588

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1)...(34)

<221> DOMAIN

<222> (110)...(555)

<223> Catalytic domain

<400> 76

Met	Thr	Thr	Arg	Arg	Thr	Ile	Leu	Lys	Ala	Ala	Ala	Ser	Ala	Gly	
1						5		10						15	
Ala	Ile	Ala	Ser	Thr	Gly	Trp	Pro	Ala	Leu	Ala	Ala	Gln	Ala	Ala	
						20		25						30	
Gln	Ala	Ala	Asp	Pro	Trp	Ala	Arg	Ala	Gln	Gln	Ile	Ile	Asp	Arg	Phe
						35		40						45	
Ala	Lys	Pro	Leu	Ser	Phe	Pro	Asn	Arg	Asp	Phe	Pro	Ile	Thr	Glu	Phe
						50		55						60	
Gly	Ala	Lys	Pro	Cys	Lys	Leu	Val	Lys	Ala	Gln	Gly	Leu	Val	Glu	Val
						65		70				75		80	
Arg	Val	Lys	Gly	Glu	Leu	Glu	Thr	Pro	Ala	Pro	Gln	Ala	Pro	Asp	Ala
						85		90						95	
Tyr	Pro	Ala	Ile	Lys	Ala	Ala	Ile	Ala	Ala	Ser	Lys	Ala	Gly	Gly	
							100		105					110	
Gly	Arg	Val	Leu	Ile	Pro	Ala	Gly	Asn	Trp	Tyr	Cys	Lys	Gly	Pro	Ile
							115		120					125	
Val	Leu	Leu	Ser	Asn	Val	His	Val	His	Leu	Ala	Lys	Gly	Ala	Gln	Val
						130		135				140			
Tyr	Phe	Ser	Ala	Asn	Ala	Lys	Asp	Phe	Ala	Arg	Asp	Gly	Asp	Tyr	Asp
						145		150			155			160	
Cys	Gly	Ala	Asn	Gly	Lys	Leu	Val	Leu	Ser	Arg	Trp	Gln	Gly	Asn	Asp
						165		170						175	
Cys	Leu	Asn	Phe	Ser	Pro	Met	Val	Tyr	Ala	Arg	Gly	Gln	Lys	Asn	Ile
						180		185						190	
Ala	Ile	Thr	Gly	Glu	Asp	Trp	Thr	Ser	Ile	Leu	Asn	Gly	Gln	Ala	Gly
						195		200						205	
Val	Ala	Phe	Glu	Asp	Gly	Ser	Gly	Asn	Gly	Trp	Trp	Gly	Met	Asn	Pro
						210		215						220	

Ala Gly Ala Pro Pro Gly Ser Thr Thr His Gln Gly Ala Ala Asn Pro
225 230 235 240
Asn Asn Ala Glu Glu Pro Ile Ala Arg Leu Pro Thr Arg His Ala Asn
245 250 255
Trp Ser Ala Asp Asp Lys Tyr Leu Pro Leu Leu Ser Glu Ala Gly Val
260 265 270
Pro Ala Glu Arg Arg Val Phe Gly Leu Gly His Tyr Leu Arg Pro Ser
275 280 285
Met Val Glu Phe Val Asp Cys Gly Asp Val Leu Met Gln Gly Tyr Gln
290 295 300
Val Ile Asn Thr Pro Phe Trp Ile His His Pro Val Asn Ser Arg Asn
305 310 315 320
Ile His Phe Ser Lys Val Arg Met Glu Ser Ile Gly Pro Asn Ser Asp
325 330 335
Gly Phe Asp Pro Glu Ser Cys Asp Thr Ile Leu Val Asp Gly Cys Leu
340 345 350
Phe Asn Thr Gly Asp Asp Cys Ile Ala Ile Lys Ser Gly Lys Asn Arg
355 360 365
Asp Ser Gln Tyr Gly Pro Thr Arg Asn Met Val Val Gln Asn Cys Ile
370 375 380
Met Asn Arg Gly His Gly Gly Val Thr Leu Gly Ser Glu Met Ala Gly
385 390 395 400
Gly Ile Glu His Ile Tyr Ala Gln Lys Ile Glu Phe Arg Asn Ala Phe
405 410 415
Trp Asp His Asp Pro Leu Gly Thr Ala Ile Arg Met Lys Thr Asn Met
420 425 430
Asn Arg Gly Gly Tyr Leu Arg His Phe Tyr Val Arg Asp Val Thr Leu
435 440 445
Pro Asn Gly Val Arg Thr Lys Ser Gly Phe Tyr Lys Thr Leu Pro Gly
450 455 460
Ser Pro Leu Ala Gly Lys Val Ser Thr Ser Gly Gly Ala Val Ile Thr
465 470 475 480
Ile Asp Cys Asp Tyr Ala Pro Asn Asp Asp Ser Val Arg Val Arg Pro
485 490 495
Pro Gln Val Ser Asp Val His Ile Ser Asn Val Arg Val Ser Asn Val
500 505 510
Lys Thr Ala Glu Gly Ser Phe Ser Cys Tyr Gln Ala Met Val Leu Leu
515 520 525
Gly Pro Val Ala Ala Ser Phe Asn Gly Ala Pro Gly Thr Ala Ile Leu
530 535 540
Pro Ile Thr Asn Val Thr Val Ser Asp Ser Asp Phe Gly Thr Pro Arg
545 550 555 560
Asn Ser Ala Glu Pro Trp Phe Ala Phe Asn Val Gln Gly Leu Lys Leu
565 570 575
Arg Asn Val Arg Ile Asp Gly Lys Glu Tyr Asn Val
580 585

<210> 77

<211> 2043

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 77

atgaaaacct ccagagcaat ttttactaca tcaacacttt tacaccgcgc gcttatcgcg
60
gctagtgtca gcatggcaat gagttctgcc gcatgggcgg gttgtaccta taccgtcacc
120
aataattggg gctcaggatt taccggcgaa atcaaagtga ccaacaacac caccgcccagc

180
gtgaacaatt ggtctgtgtc atggcaggaa tccggcggt ctatcaccaa cgcctggaaat
240
gcaacgctca gtggctcaaa cccttacaca gccgtatccg ctgggtggaa tggcacactt
300
gcccccaatg catcgccac ttttggttgc caggcaaacg gttctgcccgg tgcaccta
360
gtgaatggca gcttggcggtt caccaacact tcatcaacac cgccatccag cagtggcc
420
agctcggtta aatcaagcgc gcccgtatcg tccaggcaga gatcatccag ttcaatcgct
480
atcaactagca gctcttagc gagaagttct attgcctcca gcagctact agtttagtagc
540
tccagagcga gcagtagtgc gccaagcggtt ttctctttt cgttccagga agagcaagcg
600
ggcttcgtc gtgttgcgtt cattgcgaca gaaagcacca acaccgggtt taccggcaat
660
ggctcacacca atgcgaacaa cgcgcaaggc gcagcgattt aatggcagt cagcgacact
720
agcagtgccgtt gttatacagt agccttccgc ttgccttcaatg gcggcacagc agcgcgcaac
780
ggctcggtttaatcaatgg cggttagtgc ggttattaca ctgtggagtt accccctgacc
840
ggcgcatggg caacctggca aattgccagc gtggaaattt atttagtgca aggcaataat
900
attttaaaac tctcggcggtt aaccgctgac gggttggcca atatcgactc attaaaaata
960
gacggcgcgc aaaccaaagc aggtacttgc agcactacat caagcagcag ctttgcagc
1020
agctcgctgtt ccgtttaatc cagcgcaagt ttttcttcga gttcatccac cgctgcaaaa
1080
atactgacat tagacggtaa cccggccgccc agctggttca acaaattccag gaccaagtgg
1140
aatagcagcc gcggcgatataat tttttttttt taccagcaat ccaacggcggtt ttggccaaaa
1200
aacctggatt acaactcagt gagcgccaggc aatggcggtt ggcacagcggtt caccatcgac
1260
aatggtgcaaa ccattaccga aatggtttac ctcgctgaaa tttttttttt cggcgcaac
1320
accaaataatc gcgatgcagt gcgcagagca gcaaaatttt tagtgagctc gcaatacagc
1380
acaggcgccct tgccacaatt ttatccgttggaa aacggcggtt atgcggatca tgccaccc
1440
aacgataacg gcatggcgta cgcgttgcgtt gtattggatt tcgcgttcaaa caaacgcgc
1500
ccgtttgata acgacattttt ctctgattctt gatcgccggca aattcaaaac cgctgttgc
1560
aaagggtgtgg attacattttt aaaagcgccag tggaaacaaa atggaaaactt cactgcattgg
1620
tgtgcacaac acgggtgtac ggattaccaaa ccggaaaaag cgccgcgttca tgaattggaa
1680
tcatttgatgtt gtagcgagtc ggtcggttcccttgcgttcaaccaccacaaacc
1740
gcgcggatcg aagcgccggcgtt caaggcggtt gtcaactgggt tcgcgttccaaatctt
1800
ttggcttaactt acacttacga ttcatcaaaa gcgttccacca acccgattgtt gtataatcc
1860
ggaaggcagaa tgggttatcg cttctatgac ctgaacacca accgtgggtt cttagtgtat
1920
cgccatggca gcaaattcttca tgatatcacc caaatgtcag aagagcggtcg caccgggtt
1980

agctgggtg gctttacgg tgaatctatt atttccttcg cgcaaaaagt gggtttatctg
2040
taa
2043

<210> 78
<211> 680
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(33)

<221> BINDING
<222> (34)...(126)
<223> Carbohydrate binding module

<221> BINDING
<222> (199)...(322)
<223> Carbohydrate binding module

<221> DOMAIN
<222> (323)...(680)
<223> Catalytic domain

<400> 78
Met Lys Thr Ser Arg Ala Ile Phe Thr Thr Ser Thr Leu Leu His Arg
1 5 10 15
Ala Leu Ile Ala Ala Ser Val Ser Met Ala Met Ser Ser Ala Ala Trp
20 25 30
Ala Gly Cys Thr Tyr Thr Val Thr Asn Asn Trp Gly Ser Gly Phe Thr
35 40 45
Gly Glu Ile Lys Val Thr Asn Asn Thr Thr Ala Ser Val Asn Asn Trp
50 55 60
Ser Val Ser Trp Gln Glu Ser Gly Ala Ala Ile Thr Asn Ala Trp Asn
65 70 75 80
Ala Thr Leu Ser Gly Ser Asn Pro Tyr Thr Ala Val Ser Ala Gly Trp
85 90 95
Asn Gly Thr Leu Ala Pro Asn Ala Ser Ala Thr Phe Gly Phe Gln Ala
100 105 110
Asn Gly Ser Ala Gly Ala Pro Lys Val Asn Gly Ser Leu Cys Gly Thr
115 120 125
Asn Thr Ser Ser Thr Pro Ala Ser Ser Ser Val Ala Ser Ser Val Lys
130 135 140
Ser Ser Ala Pro Val Ser Ser Ser Arg Ser Ser Ser Ser Ile Ala
145 150 155 160
Ile Thr Ser Ser Leu Ala Arg Ser Ser Ile Ala Ser Ser Ser Ser
165 170 175
Leu Val Ser Ser Ser Arg Ala Ser Ser Ala Pro Ser Val Phe Ser
180 185 190
Phe Thr Ile Gln Glu Glu Gln Ala Gly Phe Cys Arg Val Asp Gly Ile
195 200 205
Ala Thr Glu Ser Thr Asn Thr Gly Phe Thr Gly Asn Gly Tyr Thr Asn
210 215 220
Ala Asn Asn Ala Gln Gly Ala Ala Ile Glu Trp Ala Val Ser Ala Pro
225 230 235 240
Ser Ser Gly Arg Tyr Thr Val Ala Phe Arg Phe Ala Asn Gly Gly Thr
245 250 255

Ala Ala Arg Asn Gly Ser Leu Leu Ile Asn Gly Gly Ser Asn Gly Asn
260 265 270
Tyr Thr Val Glu Leu Pro Leu Thr Gly Ala Trp Ala Thr Trp Gln Ile
275 280 285
Ala Ser Val Glu Ile Asp Leu Val Gln Gly Asn Asn Ile Leu Lys Leu
290 295 300
Ser Ala Leu Thr Ala Asp Gly Leu Ala Asn Ile Asp Ser Leu Lys Ile
305 310 315 320
Asp Gly Ala Gln Thr Lys Ala Gly Thr Cys Ser Thr Thr Ser Ser Ser
325 330 335
Ser Val Ala Ser Ser Ser Ser Val Lys Ser Ser Ala Ser Ser Ser
340 345 350
Ser Ser Ser Ser Thr Ala Ala Lys Ile Leu Thr Leu Asp Gly Asn Pro
355 360 365
Ala Ala Ser Trp Phe Asn Lys Ser Arg Thr Lys Trp Asn Ser Ser Arg
370 375 380
Ala Asp Ile Val Leu Ser Tyr Gln Gln Ser Asn Gly Gly Trp Pro Lys
385 390 395 400
Asn Leu Asp Tyr Asn Ser Val Ser Ala Gly Asn Gly Gly Ser Asp Ser
405 410 415
Gly Thr Ile Asp Asn Gly Ala Thr Ile Thr Glu Met Val Tyr Leu Ala
420 425 430
Glu Ile Tyr Lys Asn Gly Gly Asn Thr Lys Tyr Arg Asp Ala Val Arg
435 440 445
Arg Ala Ala Asn Phe Leu Val Ser Ser Gln Tyr Ser Thr Gly Ala Leu
450 455 460
Pro Gln Phe Tyr Pro Leu Lys Gly Gly Tyr Ala Asp His Ala Thr Phe
465 470 475 480
Asn Asp Asn Gly Met Ala Tyr Ala Leu Thr Val Leu Asp Phe Ala Val
485 490 495
Asn Lys Arg Ala Pro Phe Asp Asn Asp Ile Phe Ser Asp Ser Asp Arg
500 505 510
Ala Lys Phe Lys Thr Ala Val Ala Lys Gly Val Asp Tyr Ile Leu Lys
515 520 525
Ala Gln Trp Lys Gln Asn Gly Lys Leu Thr Ala Trp Cys Ala Gln His
530 535 540
Gly Ala Thr Asp Tyr Gln Pro Lys Lys Ala Arg Ala Tyr Glu Leu Glu
545 550 555 560
Ser Leu Ser Gly Ser Glu Ser Val Gly Ile Leu Ala Phe Leu Met Thr
565 570 575
Gln Pro Gln Thr Ala Gln Ile Glu Ala Ala Val Lys Ala Gly Val Asn
580 585 590
Trp Phe Ala Ser Pro Asn Thr Tyr Leu Ala Asn Tyr Thr Tyr Asp Ser
595 600 605
Ser Lys Ala Ser Thr Asn Pro Ile Val Tyr Lys Ser Gly Ser Arg Met
610 615 620
Trp Tyr Arg Phe Tyr Asp Leu Asn Thr Asn Arg Gly Phe Phe Ser Asp
625 630 635 640
Arg Asp Gly Ser Lys Phe Tyr Asp Ile Thr Gln Met Ser Glu Glu Arg
645 650 655
Arg Thr Gly Tyr Ser Trp Gly Gly Ser Tyr Gly Glu Ser Ile Ile Ser
660 665 670
Phe Ala Gln Lys Val Gly Tyr Leu
675 680

<210> 79

<211> 1746

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 79
atgacgacac .gacgcgaatt catcaaaggc tttctactta ccggagcagc cgtggccgtc
60
gctcccggtt taattgcgtt cggcgccgag gcaagtccgt gggaaacgat gatgccttcg
120
atcctcgcac gcacacacc acctcgtttt ccgaaacgca ccttctatct caatcgattc
180
ggcgccaagg gcgatggagt cacagactgc accgcggctt ttcatcgcc gatcgatgaa
240
tgccacaaag ccggcggtgg gaaagtgcgtc gtgccggcgg gcacttatct caccggcg
300
attcatgttga agagcaacgt caacctcgaa gtctcggaag gcgcgacgat caagttcagt
360
caggaccga aacactacct gcctgttgc ttctcgccgtt ggaaagggtgt cgaagtcttc
420
aactactcgc ct当地tta cgcgttcgaa cagcgaaaca tcgcgatcac cggcaaaggc
480
acgctcgacg gacagagtga ttccggAACAC tggtgccgtt ggaacggccg tccgcag
540
ggatggaatg aagggtgaa acagcagcgt cccgatcgca acgcgttgtt cacaatggcg
600
gagaaaggcg tgccgggtcg cgagcgcatac ttggcgaag gtcattattt gaggccgcag
660
ttcattcagc cgtaccgcgtt ccagaacgtg ctgatccagg gcgtgacgat tcgaaactcg
720
ccgatgtggg agattcatcc ggtgtgtgc cgcaacgtga ctattcacga cgtgcacatc
780
gatagtcatg gaccaaaca cgacggctgc aatcccgaat cgtgcagcga cgtgttgatt
840
aaggatagct acttcgatac cggcgacgac tgcatacgca tcaaatcggg acgcaacgcc
900
gacggccggc ggcttaaagc gccgactgag aacatcatcg ttcaaggatg tcgcatgaaa
960
gacggccacg gtggatcac ggtcgccagc gagatctcg gcccgtgcg aaacctgttt
1020
gcccggaaatt gccggctcgaa cagtccaaac ctcgatcacg ccctgcgcgt gaagaacaat
1080
gccatgcgcg gcccggattact cgagaacttc cacttccgtt acatcgaaat cggccagg
1140
gcccggccggc tgattacgtt cgacttcaac tacgaagagg gcgcggaaagg gtcgttcac
1200
ccggcgttc gcgattacac ggtcgatcgt ttgcgcagca cgaagagcaa gcacgcactc
1260
gacgtccagg gtctgcccgg cgcgcggc atcaacctgc gattgacaaa ctgcacattc
1320
aacgatgtgc agcaaccgaa cattctcaag aacgtcgaaac aatcaacctt tgagaacg
1380
acgattaacg gaaagacgat cacacaaaca ggatccatct cagaaagagc ggccacgaca
1440
gcaatgaccg cgcttggcg cgacgcgtcg aggaaagaaa acggttatcc cgcgaagtgg
1500
acctatgatc atgggctggc cctgaaagga atcgagcgcg tttggacaa taccggcgat
1560
aagaagtatc tgaagttcat ccaggacagc atggaccact tcgtcaacga cgcggctcc
1620
atcgcacact acacgatcgaa ctagtacaac atcgatcacg ttcttccgg acgaaacctc
1680
ctgttccttt acaaaactac cggtcaggaa aagtatcgca aagccgcgc gttctgcgc
1740

gaacaa
1746

<210> 80
<211> 582
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(28)

<221> DOMAIN
<222> (81)...(458)
<223> Catalytic domain

<400> 80
Met Thr Thr Arg Arg Glu Phe Ile Lys Gly Phe Leu Leu Thr Gly Ala
1 5 10 15
Ala Val Ala Val Ala Pro Arg Leu Ile Ala Phe Gly Ala Glu Ala Ser
20 25 30
Pro Trp Glu Thr Met Met Pro Ser Ile Leu Ala Arg Ile Thr Pro Pro
35 40 45
Arg Phe Pro Lys Arg Thr Phe Tyr Leu Asn Arg Phe Gly Ala Lys Gly
50 55 60
Asp Gly Val Thr Asp Cys Thr Ala Ala Phe His Arg Ala Ile Asp Glu
65 70 75 80
Cys Thr Lys Ala Gly Gly Lys Val Val Val Pro Ala Gly Thr Tyr
85 90 95
Leu Thr Gly Ala Ile His Leu Lys Ser Asn Val Asn Leu Glu Val Ser
100 105 110
Glu Gly Ala Thr Ile Lys Phe Ser Gln Asp Pro Lys His Tyr Leu Pro
115 120 125
Val Val Phe Ser Arg Trp Glu Gly Val Glu Val Phe Asn Tyr Ser Pro
130 135 140
Phe Ile Tyr Ala Phe Glu Gln Arg Asn Ile Ala Ile Thr Gly Lys Gly
145 150 155 160
Thr Leu Asp Gly Gln Ser Asp Ser Glu His Trp Trp Pro Trp Asn Gly
165 170 175
Arg Pro Gln Tyr Gly Trp Asn Glu Gly Met Lys Gln Gln Arg Pro Asp
180 185 190
Arg Asn Ala Leu Phe Thr Met Ala Glu Lys Gly Val Pro Val Arg Glu
195 200 205
Arg Ile Phe Gly Glu Gly His Tyr Leu Arg Pro Gln Phe Ile Gln Pro
210 215 220
Tyr Arg Cys Gln Asn Val Leu Ile Gln Gly Val Thr Ile Arg Asn Ser
225 230 235 240
Pro Met Trp Glu Ile His Pro Val Leu Cys Arg Asn Val Thr Ile His
245 250 255
Asp Val His Ile Asp Ser His Gly Pro Asn Asn Asp Gly Cys Asn Pro
260 265 270
Glu Ser Cys Ser Asp Val Leu Ile Lys Asp Ser Tyr Phe Asp Thr Gly
275 280 285
Asp Asp Cys Ile Ala Ile Lys Ser Gly Arg Asn Ala Asp Gly Arg Arg
290 295 300
Leu Lys Ala Pro Thr Glu Asn Ile Ile Val Gln Gly Cys Arg Met Lys
305 310 315 320
Asp Gly His Gly Gly Ile Thr Val Gly Ser Glu Ile Ser Gly Gly Val
325 330 335

Arg Asn Leu Phe Ala Glu Asn Cys Arg Leu Asp Ser Pro Asn Leu Asp
340 345 350
His Ala Leu Arg Val Lys Asn Asn Ala Met Arg Gly Gly Leu Leu Glu
355 360 365
Asn Phe His Phe Arg Asn Ile Glu Val Gly Gln Val Ala His Ala Val
370 375 380
Ile Thr Ile Asp Phe Asn Tyr Glu Glu Gly Ala Lys Gly Ser Phe Thr
385 390 395 400
Pro Val Val Arg Asp Tyr Thr Val Asp Arg Leu Arg Ser Thr Lys Ser
405 410 415
Lys His Ala Leu Asp Val Gln Gly Leu Pro Gly Ala Pro Val Ile Asn
420 425 430
Leu Arg Leu Thr Asn Cys Thr Phe Asn Asp Val Gln Gln Pro Asn Ile
435 440 445
Leu Lys Asn Val Glu Gln Ser Thr Phe Glu Asn Val Thr Ile Asn Gly
450 455 460
Lys Thr Ile Thr Gln Thr Gly Ser Ile Ser Glu Arg Ala Ala Thr Thr
465 470 475 480
Ala Met Thr Ala Leu Trp Arg Asp Ala Ser Arg Lys Glu Asn Gly Tyr
485 490 495
Pro Ala Lys Trp Thr Tyr Asp His Gly Leu Val Leu Lys Gly Ile Glu
500 505 510
Arg Val Trp Asn Asn Thr Gly Asp Lys Lys Tyr Leu Lys Phe Ile Gln
515 520 525
Asp Ser Met Asp His Phe Val Asn Asp Asp Gly Ser Ile Arg Thr Tyr
530 535 540
Thr Ile Asp Glu Tyr Asn Ile Asp His Val Leu Pro Gly Arg Asn Leu
545 550 555 560
Leu Phe Leu Tyr Lys Thr Thr Gly Gln Glu Lys Tyr Arg Lys Ala Ala
565 570 575
Ala Phe Leu Arg Glu Gln
580

<210> 81

<211> 1065

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 81

atgacgtac ccgttgttcc cctgcgcgtg ctgctggcgc tgctggccac gttgccggtc
60
gcctgcgcgg gcgcgtgcgg atccgcggca gcgcaccgacc cggtcgcccga gaacatgctg
120
ctgctgcaga ccgcctccgg tggctggtcc aagcactacc gcggaaagaa ggtcgactac
180
acgcgcatt acgacaccgc cgagcgcgc cgcgtgcgcg cgcccgcccg gcatgacgac
240
gcgcacgtac aacaacaaggc cacgaccaggc gagatcgcc acctggtgca ggcacatgcc
300
aggacgggca acccggcgta cctcgacggt gccccccgcg gggtcgaata cctgctgcgc
360
gcgcagtacc cgaatggtgg ctggccgcag ttctaccccg accactcgtc ctaccggcac
420
cagatcacgc tcaacgacga cgcgatggtg catgccatca ccgtgctgca ggacatcgcc
480
gccggccgcg acggcatgca ggcgttgacg cccgagttcg gcgtccgcgc cgccgccc
540
gcgcagcgcg gcatcgaaa cctgctcgag ttgcaggtgc ggatcgacgg cgagccgacc

600
atctggccg cgcaagtacga cgagcatagc ctgcagccgg ccaaggccccg cgccttatgaa
660
ctgccctcg tggccgtggc cgaatcggtc ggcgtggtgc gcctgctgat ggcgcagccg
720
aggccggatg cccggaccgt cgccgcgatc gaatcgccgg cccgctggct ggaggcgcat
780
cgccctgcatg acctggcgct cgaacgcgtc gacgcaccgg ccgaggaaac gggcaaggac
840
gtgcgggtcg tgaccggcc cggcgccctcg ctgtgggcgc gcttctacga cctggatgga
900
cagcagcctc tgttcgtcga ccgcgacacgc aagcccgtcc cgttcgccag cctgcccAAC
960
gagcgccgca ccggctatgc ctggtaacgc acctggccgg agaagctgct ggcgcaggaa
1020
ctcccgcgct ggcgcgaggt ccatgcccGCC ggccgcgcgc cctga
1065

<210> 82
<211> 354
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(30)

<221> DOMAIN
<222> (31)...(354)
<223> Catalytic domain

<400> 82
Met Thr Leu Pro Val Val Ser Leu Arg Val Leu Leu Ala Leu Leu Ala
1 5 10 15
Thr Leu Pro Val Ala Cys Ala Gly Ala Ala Val Ser Ala Ala Ala Thr
20 25 30
Asp Pro Val Ala Glu Asn Met Leu Leu Leu Gln Thr Ala Ser Gly Gly
35 40 45
Trp Ser Lys His Tyr Arg Gly Lys Lys Val Asp Tyr Thr Arg Asn Tyr
50 55 60
Asp Thr Ala Glu Arg Ala Ala Leu Arg Ala Pro Gly Arg His Asp Asp
65 70 75 80
Ala Thr Ile Asp Asn Lys Ala Thr Thr Ser Glu Ile Ala Tyr Leu Val
85 90 95
Gln Ala His Ala Arg Thr Gly Asn Pro Ala Tyr Leu Asp Gly Ala Arg
100 105 110
Arg Gly Val Glu Tyr Leu Leu Arg Ala Gln Tyr Pro Asn Gly Gly Trp
115 120 125
Pro Gln Phe Tyr Pro Asp His Ser Ser Tyr Arg His Gln Ile Thr Leu
130 135 140
Asn Asp Asp Ala Met Val His Ala Ile Thr Val Leu Gln Asp Ile Ala
145 150 155 160
Ala Gly Arg Asp Gly Met Gln Ala Leu Thr Pro Glu Phe Gly Val Arg
165 170 175
Ala Ala Ala Ala Gln Arg Gly Ile Gly Asn Leu Leu Glu Leu Gln
180 185 190
Val Arg Ile Asp Gly Glu Pro Thr Ile Trp Ala Ala Gln Tyr Asp Glu
195 200 205
His Ser Leu Gln Pro Ala Lys Ala Arg Ala Tyr Glu Leu Pro Ser Leu

210	215	220
Ala Val Ala Glu Ser Val Gly Val Val Arg Leu	Leu Met Arg Gln Pro	
225	230	235
Arg Pro Asp Ala Arg Thr Val Ala Ala Ile Glu	Ser Ala Ala Arg Trp	240
245	250	255
Leu Glu Ala His Arg Leu His Asp Leu Ala Leu Glu	Arg Val Asp Ala	
260	265	270
Pro Ala Glu Glu Thr Gly Lys Asp Val Arg Val Val	Thr Arg Pro Gly	
275	280	285
Ala Ser Leu Trp Ala Arg Phe Tyr Asp Leu Asp Gly	Gln Gln Pro Leu	
290	295	300
Phe Val Asp Arg Asp Ser Lys Pro Val Pro Phe Ala	Ser Leu Pro Asn	
305	310	315
Glu Arg Arg Thr Gly Tyr Ala Trp Tyr Gly Thr Trp Pro	Glu Lys Leu	320
325	330	335
Leu Ala Gln Glu Leu Pro Arg Trp Arg Glu Val His Ala	Ala Gly Ala	
340	345	350
Ala Pro		

<210> 83
<211> 3618
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 83
ttgactgctc tttcaagaaa cagtcagggt gatgttagct ggaaaccgag ttccgcggaa
60
caggtaacct acaatctaaa acgcagtacc acgaaggagg gtccttatca gaccattgt
120
gaaaaaatgg cagaaaccga cttccggat acagggttag agaatggcca gaagtattac
180
tatgttgat ctgccaaac gagtagcggt gagagtgcag attcacaagc tataacggct
240
gtgcctgttag cgccattgca agctccgacc ggccttcag caagtcatgg caatggcgg
300
gtaaccattc attggaaatc cgtcaatggt gccgagtctt accaagtctt gcgcagtaaa
360
caaaaggca tcggctatga agtcatcaaa aacggtgtaa cgaaaaccag ttatacagat
420
accgggattc ccgatggcga gaagtactat tatgtcgtat ccgccaagaa cgatacagct
480
gaaagtgcaa attcccaacc gattaacggt gctgctgtat cgacgagtgg tgtaccagcc
540
attccaaacg gtatgaacgc tactgccggt gatggcagag ctgccttaac ctggtccgct
600
gtatccggcg cagattccta tagcatcaag cgccgtgagt ttaacagtgg tcaatatgag
660
gtcattgcta aaaatataca ctctaccggt tatcaagata taggccttac aaacggtgat
720
acctatgatt atgtgatttc cgctgtcaat gagcaagggg aaagtttagg ctccgaaccc
780
atcgccgtta ctcctgcgaa agtaacggtt gtagcgaaag aaggcggaga cttaaaaacg
840
attcaagaag ccattgatgc tgcacctgat aacagtacga aacggcatgt tattttata
900
aaaaatggtc aatatcgtga aaagcttacg atccctaaga gcaaaaccaa tctgagttt
960

gtagggaaaa gtaaggaagg gaccgtgctt gttttaatg ataatgcaaa tacgcctgg
1020
ccagacggca aaccattagg cacttccaat agttcaagta tctttatcta tgccaatgat
1080
tttattgccc aaaatthaac catccagaac gactctggtc aaggaacagg tcaagcagt
1140
gccgccttatg taagggccga tcgtctctac tttgaaaacg tgcagtttt aggataccag
1200
gatacattat atgcccatac gggaaagacag tattataaaa actgctacgt agaagggat
1260
gtggattca tttttggcgg agccacagcc ttgtttgata cctgtcacct tcatacgcaag
1320
cgtacaggca gtaagttAAC cgcaGCTAGT accgatcaag tcacaccgta tgggtatgtt
1380
tttttagatt caaaaatcac ctcagatgaa ggcgtgacca atgtgcacatct cgggcgaccc
1440
tggcgtcctt attcagctgt cacctatac aacaccgaaa tggatgcac gattgttcct
1500
gacggatggg ataactgggg gaaagttgaa aacgagaaaa cagccagata ttcagaatac
1560
aataacatgg ggccaggggc agacccgaaa aagcgggatc catggaccac acaattaacg
1620
ccggaggaag cgaatcaata cactgtcaa aatgtgatga aaggatctga cggctgggat
1680
cctgagagaa tcgggattat cccattatca ccactgtcaag caccgattat ttcacttgat
1740
caacgagatt ccattgtcaa tacaccaagc tttacaatta caggtcaagt ggataaagaa
1800
gcagccgttt ctgtcaatgg gaaggaaatt tccttacaaa aggatggcag cttcagcacg
1860
acgggttgtc tgaatgacgg tttgaacact attacagtgg gagctgtaga tgcagcaggg
1920
aatcaggcta ttccctgcagt gttaaaaatt gtttatgatc atgagaaacc tgcgtatcc
1980
atcgatgatc ttaaaggaga aaaaaacggg aatcactaca atgtaatcta caatccgt
2040
ccgattacag ggaagctgaa cgaagcagga acagttatgg tgaatggtga gaaagtaaat
2100
gtatcgaaaa agttgacggt tagtacaaaa gtcattttaa agccggggtt aaataacatt
2160
acgattaccg ctgttgatca ggcagggaaat gaagccgaat ctatcactat caatgtgg
2220
ccaaaaggga atgctgtcc agacggtccc gtcaagatca tcaaaagtga aacaacaaat
2280
gcaaataccg ttgaggttac ttttaatagc aagctagaaa aatttgattc tagtgatatt
2340
gcattgcaaa cggctacgaa cgtttggca gctctcaatc ctggttgaa acaattgatg
2400
acagtggaaa gcattaccac aaaagtgaat aaggataacc aaaccgtac ggtgatcaaa
2460
acgaaggaag cctttcaaga agatgaaacc attacgctcc caaaagttga agatccgtt
2520
catattcaat atttgaatgc cgattattat accggggatc gtacgcagga cattaagcat
2580
gcggatgccc tcttaacctg gcagatggat catggcggct ggtttaaaaa ctgggtggaa
2640
aaatataaac gccatggga tggaaagaa caaaaatctg aatggtattc gactaatcat
2700
ggtaactag ggacgattga taatgacgca acaacaaacg agattctctt tttagctctg
2760
atgtataaaag aaacaggtga tgctcggttat aaggattccg tttttaaaagg aatttgattt

2820 ttactagaga tgcaggta ttccggcggc tggccgcagg tctatcctgc aagaagcggt
2880 tactcagatt atgtgacctt taatgataat gcgatggttc gcgttatgag tgtattaacg
2940 atggtaaaag aaaagaagta tccgttaat tccaacctag gtgacgagca actttctgag
3000 cagattgatg atgcattggg ccgtgggctg gattatatgt taaaatcgca aattaaggta
3060 gacggtaag taaccgcatg gtgtgcttag catgaccctg tgacgtatga accgaaaggg
3120 gctcgtgcgt atgaacatcc ttcaatctct ggttcgaat ctgttagggat tgtccagtat
3180 ttgatgtcac tgccgaatcc ttcaactgag gttcaggctg ccattcatgg agctctaaat
3240 tggtttgaag aggcaaaatt ggcgggaacg aagtatgtat caggcgatcc aaatgggcaa
3300 tatttctacc cgacgccaa cagcaatacg tggtaccgct tctatgaaat tggcaccaat
3360 cgccccgattt tctcaggaag agacggtgac attaaacaca acatcttaga gattgaaaaaa
3420 gaaagaagag acggctaccg ctggcagga gaatggccgc aaaaattatt aaatatcgcc
3480 aacacaactg gctactacga aaacagagta tacgtagaag tcgttggga tcagtctaaa
3540 aacggccctg gcaaatcttt ggaaatagga aacttatata gaatagaggc ctcggcttcc
3600 gtttctacaa gcaagtaa
3618

<210> 84
<211> 1205
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (268)...(556)
<223> Pectin methyl esterase domain

<221> DOMAIN
<222> (782)...(1164)
<223> Catalytic domain

<400> 84
Met Thr Ala Leu Ser Arg Asn Ser Gln Val Asp Val Ser Trp Glu Pro
1 5 10 15
Ser Ser Ala Gln Gln Val Thr Tyr Asn Leu Lys Arg Ser Thr Thr Lys
20 25 30
Glu Gly Pro Tyr Gln Thr Ile Ala Glu Lys Met Ala Glu Thr Asp Phe
35 40 45
Arg Asp Thr Gly Leu Glu Asn Gly Gln Lys Tyr Tyr Val Val Ser
50 55 60
Ala Glu Thr Ser Ser Gly Glu Ser Ala Asp Ser Gln Ala Ile Thr Ala
65 70 75 80
Val Pro Val Ala Pro Leu Gln Ala Pro Thr Gly Leu Ser Ala Ser His
85 90 95
Gly Asn Gly Gly Val Thr Ile His Trp Glu Ser Val Asn Gly Ala Glu
100 105 110

Ser Tyr Gln Val Leu Arg Ser Lys Gln Lys Gly Ile Gly Tyr Glu Val
115 120 125
Ile Lys Asn Gly Val Thr Glu Thr Ser Tyr Thr Asp Thr Gly Ile Pro
130 135 140
Asp Gly Glu Lys Tyr Tyr Val Val Ser Ala Lys Asn Asp Thr Ala
145 150 155 160
Glu Ser Ala Asn Ser Gln Pro Ile Asn Gly Ala Ala Val Ser Thr Ser
165 170 175
Gly Val Pro Ala Ile Pro Asn Gly Met Asn Ala Thr Ala Gly Asp Gly
180 185 190
Arg Ala Ala Leu Thr Trp Ser Ala Val Ser Gly Ala Asp Ser Tyr Ser
195 200 205
Ile Lys Arg Gly Glu Phe Asn Ser Gly Gln Tyr Glu Val Ile Ala Lys
210 215 220
Asn Ile His Ser Thr Gly Tyr Gln Asp Ile Gly Leu Thr Asn Gly Asp
225 230 235 240
Thr Tyr Asp Tyr Val Ile Ser Ala Val Asn Glu Gln Gly Glu Ser Leu
245 250 255
Gly Ser Glu Pro Ile Ala Val Thr Pro Ala Lys Val Thr Val Val Ala
260 265 270
Lys Glu Gly Asp Phe Lys Thr Ile Gln Glu Ala Ile Asp Ala Ala
275 280 285
Pro Asp Asn Ser Thr Lys Arg His Val Ile Phe Ile Lys Asn Gly Gln
290 295 300
Tyr Arg Glu Lys Leu Thr Ile Pro Lys Ser Lys Thr Asn Leu Ser Phe
305 310 315 320
Val Gly Glu Ser Lys Glu Gly Thr Val Leu Val Phe Asn Asp Asn Ala
325 330 335
Asn Thr Pro Gly Pro Asp Gly Lys Pro Leu Gly Thr Ser Asn Ser Ser
340 345 350
Ser Ile Phe Ile Tyr Ala Asn Asp Phe Ile Ala Gln Asn Leu Thr Ile
355 360 365
Gln Asn Asp Ser Gly Gln Gly Thr Gly Gln Ala Val Ala Ala Tyr Val
370 375 380
Arg Ala Asp Arg Leu Tyr Phe Glu Asn Val Gln Phe Leu Gly Tyr Gln
385 390 395 400
Asp Thr Leu Tyr Ala His Thr Gly Arg Gln Tyr Tyr Lys Asn Cys Tyr
405 410 415
Val Glu Gly Asp Val Asp Phe Ile Phe Gly Gly Ala Thr Ala Leu Phe
420 425 430
Asp Thr Cys His Leu His Ser Lys Arg Thr Gly Ser Lys Leu Thr Ala
435 440 445
Ala Ser Thr Asp Gln Val Thr Pro Tyr Gly Tyr Val Phe Leu Asp Ser
450 455 460
Lys Ile Thr Ser Asp Glu Gly Val Thr Asn Val His Leu Gly Arg Pro
465 470 475 480
Trp Arg Pro Tyr Ser Ala Val Thr Tyr Ile Asn Thr Glu Met Asp Ala
485 490 495
Ser Ile Val Pro Asp Gly Trp Asp Asn Trp Gly Lys Val Glu Asn Glu
500 505 510
Lys Thr Ala Arg Tyr Ser Glu Tyr Asn Asn Met Gly Pro Gly Ala Asp
515 520 525
Pro Lys Lys Arg Asp Pro Trp Thr Thr Gln Leu Thr Pro Glu Glu Ala
530 535 540
Asn Gln Tyr Thr Val Gln Asn Val Met Lys Gly Ser Asp Gly Trp Asp
545 550 555 560
Pro Glu Arg Ile Gly Ile Ile Pro Leu Ser Pro Leu Ser Ala Pro Ile
565 570 575
Ile Ser Leu Asp Gln Arg Asp Ser Ile Val Asn Thr Pro Ser Phe Thr
580 585 590
Ile Thr Gly Gln Val Asp Lys Glu Ala Ala Val Ser Val Asn Gly Lys

595	600	605
Glu Ile Ser Leu Gln Lys Asp	Gly Ser Phe Ser Thr	Thr Val Val Leu
610	615	620
Asn Asp Gly Leu Asn Thr	Ile Thr Val Gly Ala Val Asp Ala Ala	Gly
625	630	635
Asn Gln Ala Ile Pro Ala Val Leu Lys	Ile Val Tyr Asp His	Glu Lys
645	650	655
Pro Val Val Ser Ile Asp Asp Leu Lys	Gly Glu Lys Asn Gly	Asn His
660	665	670
Tyr Asn Val Ile Tyr Asn Pro Leu Pro	Ile Thr Gly Lys Leu Asn	Glu
675	680	685
Ala Gly Thr Val Met Val Asn	Gly Glu Lys Val Asn Val	Ser Glu Lys
690	695	700
Leu Thr Phe Ser Thr Lys Val	Ile Leu Lys Pro Gly Leu Asn	Asn Ile
705	710	715
720	725	730
Thr Ile Thr Ala Val Asp Gln Ala Gly	Asn Glu Ala Glu Ser	Ile Thr
735	740	745
Ile Asn Val Val Pro Lys Gly Asn Ala Val	Pro Asp Gly Pro Val Lys	
750	755	760
Ile Ile Lys Ser Glu Thr Thr Asn Ala Asn	Thr Val Glu Val Thr Phe	
765	770	775
Asn Ser Lys Leu Glu Lys Phe Asp Ser Ser Asp	Ile Ala Leu Gln Thr	
780	785	790
Ala Thr Asn Val Trp Ala Ala Leu Asn	Pro Gly Leu Lys Gln Leu	Met
800	805	810
Thr Val Glu Ser Ile Thr Thr Lys Val	Asn Lys Asp Asn Gln	Thr Val
815	820	825
Ala Val Ile Lys Thr Lys Glu Ala Phe	Gln Glu Asp Gly Thr Ile Thr	
830	835	840
Leu Pro Lys Val Glu Asp Pro Phe His	Ile Gln Tyr Leu Asn Ala Asp	
845	850	855
Tyr Tyr Thr Gly Asp Arg	Thr Gln Asp Ile Lys His	Ala Asp Ala Leu
860	865	870
Leu Thr Trp Gln Met Asp His	Gly Gly Trp Phe Lys Asn Trp	Val Glu
880	885	890
Lys Tyr Lys Arg Pro Trp Asp Gly Lys	Glu Pro Lys Ser Glu Trp	Tyr
895	900	905
Ser Thr Asn His Gly Glu Leu Gly	Thr Ile Asp Asn Asp Ala	Thr Thr
910	915	920
Asn Glu Ile Leu Phe Leu Ala Leu	Met Tyr Lys Glu Thr Gly	Asp Ala
925	930	935
Arg Tyr Lys Asp Ser Val	Leu Lys Gly Ile Asp Phe	Leu Leu Glu Met
940	945	950
Gln Val Asp Ser Gly Gly	Trp Pro Gln Val Tyr Pro	Ala Arg Ser Gly
960	965	970
Tyr Ser Asp Tyr Val Thr Phe Asn Asp	Asn Ala Met Val Arg	Val Met
975	980	985
Ser Val Leu Thr Met Val Lys Glu	Lys Tyr Pro Phe Asn Ser Asn	
990	995	1000
Leu Gly Asp Glu Gln Leu Ser	Glu Gln Ile Asp Asp Ala	Leu Gly Arg
1005	1010	1015
Gly Leu Asp Tyr Met Leu Lys Ser	Gln Ile Lys Val Asp Gly	Glu Val
1020	1025	1030
Thr Ala Trp Cys Ala Gln His Asp	Pro Val Thr Tyr Glu Pro	Lys Gly
1040	1045	1050
Ala Arg Ala Tyr Glu His Pro Ser Ile	Ser Gly Ser Glu Ser Val	Gly
1055	1060	1065
Ile Val Gln Tyr Leu Met Ser Leu	Pro Asn Pro Ser Thr Glu	Val Gln
1070	1075	1080
Ala Ala Ile His Gly Ala Leu Asn Trp	Phe Glu Glu Ala Lys	Leu Ala
1085	1085	1085

Gly Thr Lys Tyr Val Ser Gly Asp Pro Asn Gly Gln Tyr Phe Tyr Pro
1090 1095 1100
Asp Ala Asn Ser Asn Thr Trp Tyr Arg Phe Tyr Glu Ile Gly Thr Asn
1105 1110 1115 1120
Arg Pro Ile Phe Ser Gly Arg Asp Gly Val Ile Lys His Asn Ile Leu
1125 1130 1135
Glu Ile Glu Lys Glu Arg Arg Asp Gly Tyr Arg Trp Ala Gly Glu Trp
1140 1145 1150
Pro Gln Lys Leu Leu Asn Ile Ala Asn Thr Thr Gly Tyr Tyr Glu Asn
1155 1160 1165
Arg Val Tyr Val Glu Val Val Gly Asp Gln Ser Lys Asn Ala Ala Gly
1170 1175 1180
Glu Ser Leu Glu Ile Gly Asn Leu Tyr Arg Ile Glu Ala Ser Ala Ser
1185 1190 1195 1200
Gly Ser Thr Ser Lys
1205

<210> 85

<211> 1152

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 85

atgtcggttg gaccaggtgc taatccgaaa gctcgtgttc catggtccaa acagtttatcg
60
ggtgttgagg caaagctgtt tcagcgcgag cggttcttca gcctcgctgc ggagcacact
120
tctaagaaaa atgatcagga agtcggcgcg atcgcgtgga aagatgcaca tggaaagccg
180
gatgagtggat atgcgagtgt tgaggcactg cgatggccg ataacgtcgt tctctatcaa
240
cgcgactcag gtggttggcc caagaacatc gacatggcga aggcaactcaa cgatcgtgag
300
caggctgcga tcctccgcca gaagaaaaag aacgactcca cgatcgacaa tggcgtgact
360
cacacacagt tatcctttct ggcgcgcgtc tatacagcac agcgtcagga ggcacatcgc
420
gagtcgtttt tcaaaggatt ggattactta ctgaatgcgc agtacccaaa tggaggctgg
480
cccgagtttt atccgaaccc gacgggctat cacaaggcaca ttacttacaa cgacggcgcg
540
atgattggtg tcatgaaggt gctgcgcgtat atcgcgtgcgg cgaaggcttt gtacgcttt
600
gtcgacgaag ctcggcgccg gaaggcgacg agtgcagttt aaaaaggat cgagtgcatt
660
ttgaaaacgc aggtgggtggt agatggcgt cgcaactgtgt ggagtgcgc acatgatgaa
720
gtaacgttag cgccagctcc tgcgcgaacc ttgcgtttaa ctgcgttgcgg cggcggtgag
780
agcgtagata tcgttcgatt ttaatgtcg atcaaggatc cgatcgctaa agtagttgt
840
gcgggttaat cggcggttaa gtgggttgcgg caatcgagttt aaaaaggcgt gaagtgggtt
900
aagaaggcgg acgcttctaa acctggcggtt tttgattgcgt tcgttagttaa ggatccggag
960
agctcggttt gggcgcgctt ttatgagatt ggcacgaacc ggccgatctt ttccggcgcc
1020
gatggagtggtgg tcaaatacga cgtggcgccag atcgaacacg agcggcgac gaattatgag

1080
tggtaacgttg atgaagcagc caagctgctg aagaaagagt atccggcctg gcggaaaaga
1140
acatctctgt ga
1152

<210> 86
<211> 383
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(383)
<223> Catalytic domain

<400> 86
Met Ser Val Gly Pro Gly Ala Asn Pro Lys Ala Arg Val Pro Trp Ser
1 5 10 15
Lys Gln Leu Ser Gly Val Glu Ala Lys Leu Phe Gln Arg Glu Arg Phe
20 25 30
Phe Ser Leu Ala Ala Glu His Thr Ser Lys Lys Asn Asp Gln Glu Val
35 40 45
Gly Ala Ile Ala Trp Lys Asp Ala His Gly Lys Pro Asp Glu Trp Tyr
50 55 60
Ala Ser Val Glu Ala Leu Arg Met Ala Asp Asn Val Val Leu Tyr Gln
65 70 75 80
Arg Asp Ser Gly Gly Trp Pro Lys Asn Ile Asp Met Ala Lys Ala Leu
85 90 95
Asn Asp Arg Glu Gln Ala Ala Ile Leu Arg Gln Lys Lys Lys Asn Asp
100 105 110
Ser Thr Ile Asp Asn Gly Ala Thr His Thr Gln Leu Ser Phe Leu Ala
115 120 125
Arg Val Tyr Thr Ala Gln Arg Gln Glu Arg His Arg Glu Ser Phe Phe
130 135 140
Lys Gly Leu Asp Tyr Leu Leu Asn Ala Gln Tyr Pro Asn Gly Gly Trp
145 150 155 160
Pro Gln Phe Tyr Pro Asn Pro Thr Gly Tyr His Lys His Ile Thr Tyr
165 170 175
Asn Asp Gly Ala Met Ile Gly Val Met Lys Val Leu Arg Asp Ile Ala
180 185 190
Ala Ala Lys Pro Leu Tyr Ala Phe Val Asp Glu Ala Arg Arg Ala Lys
195 200 205
Ala Thr Ser Ala Val Glu Lys Gly Ile Glu Cys Ile Leu Lys Thr Gln
210 215 220
Val Val Val Asp Gly Arg Arg Thr Val Trp Ser Ala Gln His Asp Glu
225 230 235 240
Val Thr Leu Ala Pro Ala Pro Ala Arg Thr Phe Glu Leu Thr Ser Leu
245 250 255
Ser Gly Gly Glu Ser Val Asp Ile Val Arg Phe Leu Met Ser Ile Lys
260 265 270
Asp Pro Ser Pro Lys Val Val Asp Ala Val Glu Ser Ala Val Lys Trp
275 280 285
Phe Glu Gln Ser Glu Leu Lys Gly Val Lys Trp Val Lys Lys Ala Asp
290 295 300
Ala Ser Lys Pro Gly Gly Phe Asp Cys Val Val Val Lys Asp Pro Glu
305 310 315 320
Ser Ser Val Trp Ala Arg Phe Tyr Glu Ile Gly Thr Asn Arg Pro Ile
325 330 335

Phe Ser Gly Arg Asp Gly Val Val Lys Tyr Asp Val Ala Gln Ile Glu
340 345 350
His Glu Arg Arg Thr Asn Tyr Glu Trp Tyr Val Asp Glu Ala Ala Lys
355 360 365
Leu Leu Lys Lys Glu Tyr Pro Ala Trp Arg Lys Arg Thr Ser Leu
370 375 380

<210> 87
<211> 1698
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 87
atgtctacta caaaatgttt taacacagcc ccaggtttta ccctgaaaagc agtcgcagca
60
gcagtggcga tgtttgcagg ttcttcagta ttgcgcgg ctacaggtgg ttttccacg
120
actgatggcg gtgcggcaag cggctcgaa tccttcacgg cggccaacct tgaccagctc
180
aacaccattg ttgccaatgc gaagagtggc ggttacccgg ttgtgattac ctataccggt
240
aatgaagaca gcttgattaa ccagatgatc aaagaccaca ccgtggattc ttcaggcaac
300
tgcccgaacc cacgctggag taaaacctac cgcaaggttag aaattaagga gatgaccaaa
360
ggtgtcacca tcacggtgc caatggttct tcggcaaact tcggattgtt ggtgaacaag
420
tccagcaatg tgattatccg caacatgaaa atcggtgccg tggccggtgc cagcaacgac
480
gcggatatga ttcgtatcga tagcggcact aacgtatggg ttgaccacaa cgaattgttc
540
gcggtaaca acgaatgtaa agttcaccg gatggcgatt tgaccttcga aagcgccatc
600
gacatcaaga aagattcaca caacatcacc gtgtcttaca acctgattcg cgacagcaaa
660
aaagtgggcc ttgatggttc cagcagcagc gatatcgccg gtggccggcga gatcacttc
720
caccacaaaca tttacaaaaa cgtaatgca cgcttgcgt tgcaacgcgg tggctggacg
780
cacatgtata acaacctgta cgacggcatt accgggtccg gtatcaacgt acgtcaggcc
840
ggttatgcgt tgattgaaag caactggttc caaaatgcgg ttaacccgt gacttgcgt
900
tacgacagca gcaactgcgg tttctggat ctgcgcata acaacgtaa gtcgcccagca
960
gatttcgcga cctataacat cacctggacc agcggcggca ctattgatgc aaccaactgg
1020
acgaccacccg ctccggttccc gatcagcatt cttacagct actcgccggt gtctccacag
1080
tgcgtgaagg acaagttggc cagcgttgcg ggtgtggta aaaacggtgc agttctgaac
1140
tcatcagtgt gtggtggaaag cagctctgtt ccatcatcaa gctcagtcgc tactacttcc
1200
aaatcatcca gctcggtagc aaccagcaag tccagctccg tcgctacgac gtccagtaag
1260
tcatccagct cggtatgtcc atcatcatca agctcaagtt cagtggttaa taacggcagc
1320
atcgcgtaa ccgcccactgc taccggcaat agcattgtcc tgagctggtc gccgaacaac

1380
ctgacactgg gcacccagga ggtgtatcgc gataccgatt cagacccaag tggccgtgtg
1440
cgtattgctg ccctgagttc cagcactcgc atgtacaccg atgccactgc atcgccgggc
1500
caaacgttct actactggat caaaaacacc accaacggtg taaccaccaa ttccaatgcg
1560
gcttcggcgg caattggcga tgcagctcgc gccattcgcg catgcgcagg aaaccgagga
1620
agtggcgctc gcaccagtcg cgcaagttcg actgggtcaa atcctcgtgg gcctgccggt
1680
agccatcccc a gagcttga
1698

<210> 88
<211> 565
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(32)

<221> DOMAIN
<222> (33)...(375)
<223> Catalytic domain

<400> 88
Met Ser Thr Thr Lys Cys Phe Asn Thr Ala Pro Gly Phe Thr Leu Lys
1 5 10 15
Ala Val Ala Ala Ala Val Ala Met Phe Ala Gly Ser Ser Val Phe Ala
20 25 30
Ala Ala Thr Gly Gly Phe Ser Thr Thr Asp Gly Gly Ala Ala Ser Gly
35 40 45
Ser Gln Ser Phe Thr Ala Ala Asn Leu Asp Gln Leu Asn Thr Ile Val
50 55 60
Ala Asn Ala Lys Ser Gly Gly Tyr Pro Val Val Ile Thr Tyr Thr Gly
65 70 75 80
Asn Glu Asp Ser Leu Ile Asn Gln Met Ile Lys Asp His Thr Val Asp
85 90 95
Ser Ser Gly Asn Cys Pro Asn Pro Arg Trp Ser Glu Thr Tyr Arg Lys
100 105 110
Val Glu Ile Lys Glu Met Thr Lys Gly Val Thr Ile Ile Gly Ala Asn
115 120 125
Gly Ser Ser Ala Asn Phe Gly Ile Val Val Asn Lys Ser Ser Asn Val
130 135 140
Ile Ile Arg Asn Met Lys Ile Gly Ala Leu Ala Gly Ala Ser Asn Asp
145 150 155 160
Ala Asp Met Ile Arg Ile Asp Ser Gly Thr Asn Val Trp Val Asp His
165 170 175
Asn Glu Leu Phe Ala Val Asn Asn Glu Cys Lys Gly Ser Pro Asp Gly
180 185 190
Asp Leu Thr Phe Glu Ser Ala Ile Asp Ile Lys Lys Asp Ser His Asn
195 200 205
Ile Thr Val Ser Tyr Asn Leu Ile Arg Asp Ser Lys Lys Val Gly Leu
210 215 220
Asp Gly Ser Ser Ser Ser Asp Ile Ala Gly Gly Arg Glu Ile Thr Phe
225 230 235 240
His His Asn Ile Tyr Lys Asn Val Asn Ala Arg Leu Pro Leu Gln Arg

245	250	255
Gly Gly Trp Thr His Met Tyr Asn Asn Leu Tyr Asp Gly Ile Thr Gly		
260	265	270
Ser Gly Ile Asn Val Arg Gln Ala Gly Tyr Ala Leu Ile Glu Ser Asn		
275	280	285
Trp Phe Gln Asn Ala Val Asn Pro Val Thr Cys Arg Tyr Asp Ser Ser		
290	295	300
Asn Cys Gly Phe Trp Asp Leu Arg Asn Asn Asn Val Lys Ser Pro Ala		
305	310	315
Asp Phe Ala Thr Tyr Asn Ile Thr Trp Thr Ser Gly Gly Thr Ile Asp		
325	330	335
Ala Thr Asn Trp Thr Thr Ala Pro Phe Pro Ile Ser Ile Pro Tyr		
340	345	350
Ser Tyr Ser Pro Val Ser Pro Gln Cys Val Lys Asp Lys Leu Ala Ser		
355	360	365
Val Ala Gly Val Gly Lys Asn Gly Ala Val Leu Asn Ser Ser Val Cys		
370	375	380
Gly Gly Ser Ser Ser Val Pro Ser Ser Ser Ser Val Ala Thr Thr Ser		
385	390	395
Lys Ser Ser Ser Val Ala Thr Ser Lys Ser Ser Ser Val Ala Thr		
405	410	415
Thr Ser Ser Lys Ser Ser Ser Val Val Pro Ser Ser Ser Ser Ser		
420	425	430
Ser Ser Val Val Asn Asn Gly Ser Ile Ala Leu Thr Ala Thr Ala Thr		
435	440	445
Gly Asn Ser Ile Val Leu Ser Trp Ser Pro Asn Asn Leu Thr Leu Gly		
450	455	460
Thr Gln Glu Val Tyr Arg Asp Thr Asp Ser Asp Pro Ser Gly Arg Val		
465	470	475
Arg Ile Ala Ala Leu Ser Ser Ser Thr Arg Met Tyr Thr Asp Ala Thr		
485	490	495
Ala Ser Ala Gly Gln Thr Phe Tyr Tyr Trp Ile Lys Asn Thr Thr Asn		
500	505	510
Gly Val Thr Thr Asn Ser Asn Ala Ala Ser Ala Ala Ile Gly Asp Ala		
515	520	525
Ala Arg Ala Ile Arg Ala Cys Ala Gly Asn Arg Gly Ser Gly Ala Arg		
530	535	540
Thr Ser Arg Ala Val Ser Thr Gly Ser Asn Pro Arg Gly Pro Ala Gly		
545	550	555
Ser His Pro Arg Ala		
565		

<210> 89

<211> 1377

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 89

```

atgacgcacgc gacgcgaatt cattcgagat cttttgggttg gcggcgtagt ggtcgctgtt
60
gcaccgcgtt tcctggcggtt ttcttcggtg gcgagtcgtt gggaaacgggt gatgccttcg
120
atccctcgAAC gcatcaagcc accgcgtttt ccgaaaacgca cgtgctatct caaccgggtt
180
ggagcaaaag gcgacgggca aactgattgc acttcagctt ttcgacgcgc aatcgatcag
240
tggtcgaaag cgggcgggtgg caaagtgatc gttccgcagg gaatgtatct caccggcgca
300

```

attcacttga agagcaacgt caatctcgag atctccgaag gcgcgacgt caagttcagt
360
caaaacccga aagactatct cccggtggtt ttttcgcgtt gggaggcgt cgaagtattc
420
aactactcac ct当地atcta cgcatttcaa cagcagaaca tcgcgatcac gggcaaggc
480
acgctcgatg ggcagagtga taacgaacac tggtgccat ggaacggacg cgccaggtac
540
ggttggaaag aaggatgag ccaccagcgt ccggatcgaa acgcgctt tgcgatggcg
600
aaaaaaggtg tttcggttcg cgaacgtgtt ttcggcgagg gtcattactt aaggccgcag
660
ttcattcagc cgtatcgctg ccagaacgta ttgatcgacg gagttacgat acgaaactcg
720
ccgatgtgg aaattcatcc ggtgctgtgc cggaaatgtca tcgtgcaaaa cgtgcacatt
780
aacagtcatg gaccaaacaa cgtggctgc aatcccagt cgtgcactga tgtgctgatt
840
aagaactgtt acttcgacac tggcgacgac tgtatcgccg tcaaattcagg acgcaacgcg
900
gacggccggc ggcttaaagc gccgacagag aacgtgatcg tgcaagactg tcaaattgaaa
960
gatggacacg gcgggatcac tgtcggcagt gagatctcag gcggtgtgag aaatctgttt
1020
gcggagaact gccggcttga tagtccaaac ctggaccatg ctttgcgggt taagaacaac
1080
gcgatgcgtg gagggctgct cgagaatttg cacttccgaa acatcgaagt tggcaggtg
1140
gcgcacatgcag tgatcacat cgatttaat tacgaggaag gcgcgaaagg atcgttcacg
1200
ccgggtttc gtgactacac tgtcgatggg ttgcgcagca cgcgaagcaa atacgcgctc
1260
gacgttcaag gtctgtcggg cgcgccgatc gtaaatctgc gtctgacgaa ttgcacgttc
1320
gacaatgttgcgaa cgtcgtgaag aatgttaagg acgcgacaat tcaaaaaa
1377

<210> 90

<211> 459

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1)...(31)

<221> DOMAIN

<222> (32)...(459)

<223> Catalytic domain

<400> 90

Met	Thr	Thr	Arg	Arg	Glu	Phe	Ile	Arg	Asp	Leu	Leu	Val	Gly	Gly	Val
1					5					10			15		
Val	Val	Ala	Val	Ala	Pro	Arg	Phe	Leu	Ala	Phe	Ser	Ser	Val	Ala	Ser
					20					25			30		
Pro	Trp	Glu	Thr	Val	Met	Pro	Ser	Ile	Leu	Glu	Arg	Ile	Lys	Pro	Pro
					35					40			45		
Arg	Phe	Pro	Lys	Arg	Thr	Cys	Tyr	Leu	Asn	Arg	Phe	Gly	Ala	Lys	Gly
					50					55			60		

Asp Gly Gln Thr Asp Cys Thr Ser Ala Phe Arg Arg Ala Ile Asp Gln
65 70 75 80
Cys Ser Lys Ala Gly Gly Gly Lys Val Ile Val Pro Gln Gly Met Tyr
85 90 95
Leu Thr Gly Ala Ile His Leu Lys Ser Asn Val Asn Leu Glu Ile Ser
100 105 110
Glu Gly Ala Thr Ile Lys Phe Ser Gln Asn Pro Lys Asp Tyr Leu Pro
115 120 125
Val Val Phe Ser Arg Trp Glu Gly Val Glu Val Phe Asn Tyr Ser Pro
130 135 140
Phe Ile Tyr Ala Phe Glu Gln Gln Asn Ile Ala Ile Thr Gly Lys Gly
145 150 155 160
Thr Leu Asp Gly Gln Ser Asp Asn Glu His Trp Trp Pro Trp Asn Gly
165 170 175
Arg Ala Arg Tyr Gly Trp Lys Glu Gly Met Ser His Gln Arg Pro Asp
180 185 190
Arg Asn Ala Leu Phe Ala Met Ala Glu Lys Gly Val Ser Val Arg Glu
195 200 205
Arg Val Phe Gly Glu Gly His Tyr Leu Arg Pro Gln Phe Ile Gln Pro
210 215 220
Tyr Arg Cys Gln Asn Val Leu Ile Asp Gly Val Thr Ile Arg Asn Ser
225 230 235 240
Pro Met Trp Glu Ile His Pro Val Leu Cys Arg Asn Val Ile Val Gln
245 250 255
Asn Val His Ile Asn Ser His Gly Pro Asn Asn Asp Gly Cys Asn Pro
260 265 270
Glu Ser Cys Thr Asp Val Leu Ile Lys Asn Cys Tyr Phe Asp Thr Gly
275 280 285
Asp Asp Cys Ile Ala Val Lys Ser Gly Arg Asn Ala Asp Gly Arg Arg
290 295 300
Leu Lys Ala Pro Thr Glu Asn Val Ile Val Gln Asp Cys Gln Met Lys
305 310 315 320
Asp Gly His Gly Ile Thr Val Gly Ser Glu Ile Ser Gly Gly Val
325 330 335
Arg Asn Leu Phe Ala Glu Asn Cys Arg Leu Asp Ser Pro Asn Leu Asp
340 345 350
His Ala Leu Arg Val Lys Asn Asn Ala Met Arg Gly Gly Leu Leu Glu
355 360 365
Asn Leu His Phe Arg Asn Ile Glu Val Gly Gln Val Ala His Ala Val
370 375 380
Ile Thr Ile Asp Phe Asn Tyr Glu Glu Gly Ala Lys Gly Ser Phe Thr
385 390 395 400
Pro Val Val Arg Asp Tyr Thr Val Asp Gly Leu Arg Ser Thr Arg Ser
405 410 415
Lys Tyr Ala Leu Asp Val Gln Gly Leu Ser Gly Ala Pro Ile Val Asn
420 425 430
Leu Arg Leu Thr Asn Cys Thr Phe Asp Asn Val Ala Glu Gly Asn Val
435 440 445
Val Lys Asn Val Lys Asp Ala Thr Ile Gln Lys
450 455

<210> 91
<211> 1125
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 91
gtggccttag gtaataacgg cggcagcttg agttgcgtcc aatatattgt gattgtgaaa

60 ggacccggtg gacctcgacc gccgggtgaaa cccggccgtcc aggcgcccgt tagggttacc
120 tggagcgcatt cccttagtcca gcggccccgaa tggtaacggga gtgacgaagc gatccgcattc
180 gcggacaacg tcctcctcta ccagcgcaac accggcggtt ggccgaagga catagatatg
240 gccgagccca tcccggaaca caggaagtcc ttttcctca ccgagaagga gcggaccgat
300 gactcgacca tcgacaacgg tgccaccgtg acccagctca agtatctgc cccgtctac
360 aaggcgcacca ggctggaacg gttcaaggag ggtttcctca aaggcttcga ctacctttg
420 gccgcccagt acccgaacgg cggctggccc cagtattatc ctaacttgag gggctactac
480 gccaacatca cttataacga caatgccatg gtgaacgtgc tcaccctcct ccagagcatc
540 gccaaaaagg ccccgagta cgacttcgtc gacccggcgc gccgggagaa ggccgcccgg
600 gccgtggcga aagggatcga ctgcatttc aagaccaga tccgtgtcaa tggaaaactt
660 accgccttgtt gcgcccagca tgacgccaag acgctggcgc ccgcgcggc ccgttgttat
720 gagcttgagt ccatcagcgg tttcgagagc gtcgggatcg tccggttctt aatgagcctc
780 gagaatccga gcccgaaggt catcgaggcg gtagaggccg ccgtgaaatg gttcgaggag
840 gtcaagctta cccggatcaa ggtggtcgag aaacccgacc cgtcccttcc gggcggttac
900 gaccgcgtgg tggtcgaaga ccccaacgcg ccgcgcattt gggccgggtt ctacgagatc
960 ggcaccaacc gtcccttctt ctgcggccgc gatggtatca aaaaatacag cctggcggag
1020 atcgaacacg aacgcgggtt cggttactcc tggtaaccca atgcggcgc ctacctcatc
1080 gagaaggagt atccgctctg gcgggccaaa caccctacca agtaa
1125

<210> 92
<211> 374
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(374)

<400> 92
Met Val Leu Gly Asn Asn Gly Gly Ser Leu Ser Cys Val Gln Tyr Ile
1 5 10 15
Val Ile Val Lys Gly Pro Gly Gly Pro Arg Pro Pro Val Lys Pro Ala
20 25 30
Val Gln Ala Pro Val Arg Val Thr Trp Ser Ala Ser Leu Val Gln Arg
35 40 45
Pro Glu Trp Tyr Gly Ser Asp Glu Ala Ile Arg Ile Ala Asp Asn Val
50 55 60
Leu Leu Tyr Gln Arg Asn Thr Gly Gly Trp Pro Lys Asp Ile Asp Met
65 70 75 80
Ala Glu Pro Ile Pro Glu His Arg Lys Ser Phe Phe Leu Thr Glu Lys

85	90	95
Glu Arg Thr Asp Asp Ser Thr Ile Asp Asn Gly Ala Thr Val Thr Gln		
100	105	110
Leu Lys Tyr Leu Ala Arg Val Tyr Lys Ala Thr Arg Leu Glu Arg Phe		
115	120	125
Lys Glu Gly Phe Leu Lys Gly Leu Asp Tyr Leu Leu Ala Ala Gln Tyr		
130	135	140
Pro Asn Gly Gly Trp Pro Gln Tyr Tyr Pro Asn Leu Arg Gly Tyr Tyr		
145	150	155
Ala Asn Ile Thr Tyr Asn Asp Asn Ala Met Val Asn Val Leu Thr Leu		
165	170	175
Leu Gln Ser Ile Ala Lys Lys Ala Pro Glu Tyr Asp Phe Val Asp Pro		
180	185	190
Ala Arg Arg Glu Lys Ala Ala Arg Ala Val Ala Lys Gly Ile Asp Cys		
195	200	205
Ile Leu Lys Thr Gln Ile Arg Val Asn Gly Lys Leu Thr Ala Trp Cys		
210	215	220
Ala Gln His Asp Ala Lys Thr Leu Ala Pro Ala Pro Ala Arg Ser Tyr		
225	230	235
Glu Leu Glu Ser Ile Ser Gly Phe Glu Ser Val Gly Ile Val Arg Phe		
245	250	255
Leu Met Ser Leu Glu Asn Pro Ser Pro Lys Val Ile Glu Ala Val Glu		
260	265	270
Ala Ala Val Lys Trp Phe Glu Glu Val Lys Leu Thr Gly Ile Lys Val		
275	280	285
Val Glu Lys Pro Asp Pro Ser Leu Pro Gly Gly Tyr Asp Arg Val Val		
290	295	300
Val Glu Asp Pro Asn Ala Pro Pro Ile Trp Ala Arg Phe Tyr Glu Ile		
305	310	315
Gly Thr Asn Arg Pro Phe Phe Cys Gly Arg Asp Gly Ile Lys Lys Tyr		
325	330	335
Ser Leu Ala Glu Ile Glu His Glu Arg Arg Val Gly Tyr Ser Trp Tyr		
340	345	350
Thr Asn Ala Pro Ala Tyr Leu Ile Glu Lys Glu Tyr Pro Leu Trp Arg		
355	360	365
Ala Lys His Pro Thr Lys		
370		

<210> 93
<211> 1062
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 93
gtggatccaa agaattggaa cccgaaaaaa gccgacgatt catggctcga aaagacgaaa
60
cccgattacc ggctggtctc ctggcgac gtttagatc aaactcagct ctggtaacgcg
120
gtcgacgaag cgacgcgcat cgccaaccag gtttgctct ttcagcgcga taacggcggc
180
tggaaaaaaa acgtcgacat ggcggcgatg ctcactcaag ccgaacgaga aaaactcgct
240
aaagaaaaat ctcacaccga tacgaccatc gacaacggcg cgacgaccac gcagctgcgt
300
tatctggcaa aagtcatcac ggcgaaaaac atcgaagctc ataaacagtc gtttctcaag
360
ggattggatt ttctgctcgc gatgcagtat gaaaacggag gatttccgca atattatcct
420

ttgaaaaacg attattcgcg cgagattact ttcaacgacg acgcgtatcatgttctt
480
aaattgctgc gcgacgtggc aaaaaagaag gaagattatt tattcgtcga cgaagaccgg
540
cgcgccagag cgaaaggcgc ggtcgaaaaa ggcgtccgccc tgatcttcaa aacacaggc
600
gccatcgacg gcaaaaaaac gatctggcg ggcgcgtacg acgaaaacac tttgaaaccg
660
gcaaattgcga gaaagttga gcccgcctcg ctcgcgttcgc gcgaatcggt cagcgtggc
720
agattttga tgctcgacgc caaaccgcac gagaaaaaaa tcggagcgat cgaatcggcg
780
atcgaatggt ttcaaaaaaaaaa caaactgagc ggcattcgct gggaaatcgaa aagcggagaa
840
aacctggtcg tcaaagacaa agcggcgccg ccgatctggg gaaggtttta tcaattcgaa
900
accatgcgcc ccatttttat cgggcgcgcac gcggtgattc gctacgtatgt catgcaaatc
960
gaagccgaac gccgcaacgg ctacggctgg tacacgaacg agccgaacga gctttggac
1020
aaagattatc cgaaatggaa agagaaaatt aagaaaaattt ag
1062

<210> 94

<211> 353

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> DOMAIN

<222> (1)...(353)

<400> 94

Met	Asp	Pro	Lys	Asn	Trp	Asn	Pro	Lys	Lys	Ala	Asp	Asp	Ser	Trp	Leu
1									10					15	
Glu	Lys	Thr	Lys	Pro	Asp	Tyr	Arg	Leu	Val	Ser	Trp	Arg	Asp	Val	Leu
									25					30	
Asp	Gln	Thr	Gln	Leu	Trp	Tyr	Ala	Val	Asp	Glu	Ala	Thr	Arg	Ile	Ala
									40					45	
Asn	Gln	Val	Leu	Leu	Phe	Gln	Arg	Asp	Asn	Gly	Gly	Trp	Glu	Lys	Asn
									55					60	
Val	Asp	Met	Ala	Ala	Met	Leu	Thr	Gln	Ala	Glu	Arg	Glu	Lys	Leu	Val
									70					80	
Lys	Glu	Lys	Ser	His	Thr	Asp	Thr	Thr	Ile	Asp	Asn	Gly	Ala	Thr	Thr
									85					95	
Thr	Gln	Leu	Arg	Tyr	Leu	Ala	Lys	Val	Ile	Thr	Ala	Lys	Asn	Ile	Glu
									100					110	
Ala	His	Lys	Gln	Ser	Phe	Leu	Lys	Gly	Leu	Asp	Phe	Leu	Leu	Ala	Met
									115					125	
Gln	Tyr	Glu	Asn	Gly	Gly	Phe	Pro	Gln	Tyr	Tyr	Pro	Leu	Lys	Asn	Asp
									130					140	
Tyr	Ser	Arg	Glu	Ile	Thr	Phe	Asn	Asp	Asp	Ala	Met	Ile	Asn	Val	Leu
									145					155	
Lys	Leu	Leu	Arg	Asp	Val	Ala	Lys	Lys	Glu	Asp	Tyr	Leu	Phe	Val	
									165					175	
Asp	Glu	Asp	Arg	Arg	Ala	Arg	Ala	Glu	Gly	Ala	Val	Glu	Lys	Gly	Val
									180					190	
Arg	Leu	Ile	Leu	Lys	Thr	Gln	Val	Ala	Ile	Asp	Gly	Lys	Lys	Thr	Ile
									195					205	

Trp Ala Ala Gln Tyr Asp Glu Asn Thr Leu Lys Pro Ala Asn Ala Arg
210 215 220
Lys Phe Pro Ala Ser Leu Ala Ser Arg Glu Ser Val Ser Val Val
225 230 235 240
Arg Phe Leu Met Leu Asp Ala Lys Pro Asp Glu Glu Lys Ile Gly Ala
245 250 255
Ile Glu Ser Ala Ile Glu Trp Phe Gln Lys Asn Lys Leu Ser Gly Ile
260 265 270
Arg Trp Glu Ser Lys Ser Gly Glu Asn Leu Val Val Lys Asp Lys Ala
275 280 285
Ala Pro Pro Ile Trp Gly Arg Phe Tyr Gln Phe Glu Thr Met Arg Pro
290 295 300
Ile Phe Ile Gly Arg Asp Ala Val Ile Arg Tyr Asp Val Met Gln Ile
305 310 315 320
Glu Ala Glu Arg Arg Asn Gly Tyr Gly Trp Tyr Thr Asn Glu Pro Asn
325 330 335
Glu Leu Leu Asp Lys Asp Tyr Pro Lys Trp Lys Glu Lys Ile Lys Lys
340 345 350
Asn

<210> 95

<211> 1074

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 95

atgacgtac ccgttgttcc cctgcgcgta ctgctggcgc tgctggccac gtcgccggc
60
gcctgcgcgg gcgcgcgcgg acccgcgact gcgcaccgatc cggtcgccga gaacatgctg
120
cttctgcaga ccgcctccgg cggctggtcc aaggactacc gcgagaagaa ggtcgactac
180
gcgcgcgact acgacgcgcgc cgagcgcgcgc gcgcgcgcgc cgccgcaccg gcatgacgat
240
gcgacgatcg acaacaaggc cacgaccacc gagatgcgcct acctggtgca ggcacatgcc
300
aggacgggca atccggccta cctcgacggc gcgcgcgcgc gcgtcgagta cctgctgcgc
360
gcccagtacc cgaacggcgg ctggccgcag ttctaccccg accattcgatc ctaccggcac
420
cagatcacgc tcaacgacga tgcgatggtg cacgccccatca ccgtgctgca ggacatcgcc
480
gcggggccgca acggcatgca ggtgctggcg ccggagttcg gcgtccgcgc cgccgcggcc
540
gcgcagcgcg gcatcgaaa cctgctcgag ttgcaggtgc ggatcgccgg ggtgcccacg
600
atatggcccg cgcagtacga cgagaccaggc ctgcaaccgg ccaaggccccg cgcgtacgaa
660
ctgccttcgc tggccgtggc cgaatcggtc ggcgtggtgc gcctgctgat ggcgcagccg
720
gcgcctgatg cgcgcacggc cgccgcgatc gaggcggcgcc ggcactggct ggaggcgcac
780
cgccctccgg acctcgccct ggaacgcacgc gaagcccccg ccgaggaaac cggcaaggac
840
gtcccgctcg tggccagacc gggcgctcg ttgtggcgc gcttctacga cctcgagcgg
900
caggtgccgc tgttcgtcga tcgcaacacgc cgtccggcgc cttcgccga gcttcccaac

960
gagcgtcgta ccggctatgg ctggtatggc acctggccgg aaaagctgct ggcacaggaa
1020
ctccccggct ggcgcaagggt ccatgcggcc agcgcgggcccgttga
1074

<210> 96
<211> 357
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(31)

<221> DOMAIN
<222> (32)...(357)
<223> Catalytic domain

<400> 96
Met Thr Leu Pro Val Val Ser Leu Arg Val Leu Leu Ala Leu Leu Ala
1 5 10 15
Thr Ser Pro Val Ala Cys Ala Gly Ala Ala Pro Ala Thr Ala Thr
20 25 30
Asp Pro Val Ala Glu Asn Met Leu Leu Leu Gln Thr Ala Ser Gly Gly
35 40 45
Trp Ser Lys His Tyr Arg Glu Lys Lys Val Asp Tyr Ala Arg Asp Tyr
50 55 60
Asp Ala Ala Glu Arg Ala Ala Leu Arg Ala Pro Asp Arg His Asp Asp
65 70 75 80
Ala Thr Ile Asp Asn Lys Ala Thr Thr Thr Glu Ile Ala Tyr Leu Val
85 90 95
Gln Ala His Ala Arg Thr Gly Asn Pro Ala Tyr Leu Asp Gly Ala Arg
100 105 110
Arg Gly Val Glu Tyr Leu Leu Arg Ala Gln Tyr Pro Asn Gly Gly Trp
115 120 125
Pro Gln Phe Tyr Pro Asp His Ser Ser Tyr Arg His Gln Ile Thr Leu
130 135 140
Asn Asp Asp Ala Met Val His Ala Ile Thr Val Leu Gln Asp Ile Ala
145 150 155 160
Ala Gly Arg Asn Gly Met Gln Val Leu Ala Pro Glu Phe Gly Val Arg
165 170 175
Ala Ala Ala Ala Gln Arg Gly Ile Gly Asn Leu Leu Glu Leu Gln
180 185 190
Val Arg Ile Ala Gly Val Pro Thr Ile Trp Ala Ala Gln Tyr Asp Glu
195 200 205
Thr Ser Leu Gln Pro Ala Lys Ala Arg Ala Tyr Glu Leu Pro Ser Leu
210 215 220
Ala Val Ala Glu Ser Val Gly Val Val Arg Leu Leu Met Arg Gln Pro
225 230 235 240
Ala Pro Asp Ala Arg Thr Val Ala Ala Ile Glu Ala Ala Asp Trp
245 250 255
Leu Glu Ala His Arg Leu Pro Asp Leu Ala Leu Glu Arg Ile Glu Ala
260 265 270
Pro Ala Glu Glu Thr Gly Lys Asp Val Arg Val Val Ala Arg Pro Gly
275 280 285
Ala Ser Leu Trp Ala Arg Phe Tyr Asp Leu Glu Arg Gln Val Pro Leu
290 295 300
Phe Val Asp Arg Asn Ser Arg Pro Val Pro Phe Ala Glu Leu Pro Asn

305 310 315 320
Glu Arg Arg Thr Gly Tyr Gly Trp Tyr Gly Thr Trp Pro Glu Lys Leu
 325 330 335
Leu Ala Gln Glu Leu Pro Arg Trp Arg Lys Val His Ala Ala Ser Ala
 340 345 350
Gly Ala Pro Ala Arg
 355

<210> 97
<211> 2097
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 97
ttgaacgccc cccgcagccg gcgggttcgcg caactcgtcg tcgcggatct gcggcggctg
60
gtgccccgcgc tggcgccctt ct当地cgac gagccgctgg cgggaggagt cccgcgcctc
120
cagcgcagcg tcgatgcgt cgtcggcgcg gacggcaccc gacagtttgc gacggtgca
180
gaggcgcatac acgcccgcgc gcagaacacc agcacgacca gccgctggat catcctcgtc
240
aaaccaggca cgtatcgca ggtcgcttac gtgcagcgtg agaagcgctt cgtcagcgtg
300
atcggcgaag acccggcacg gacgacgatc acgtaccacc tcaaagcgtc tgacgtgggg
360
ctcgacggca agcccatcg gacgatcgacgatc tggtggtgga tgccgacgat
420
ttcacgatcg agaacatcac catcgagaac gggcagggc cggtcggta agcgctggcc
480
ttgcgagtgga acggcgatcg cgtgacggtg aggaacagcc gcctgctggg ctggcaggac
540
acgatcttc tcaaccgtgg gcggccactac ttgcaggact ctttcattcg cgggcacgtg
600
gatttcattt tcggcggcgc gacggcggtg ttgcagcgat gcatatcg cgcctggcgg
660
gacggctacc tcacggcgcgt ggccacgttgc gggagcaac gattcggctt cgtgttcctg
720
aacagcatcg tcagtggaga agctggcgc cgcacgtacc tcggcgtacc gtggcggcgc
780
ttcgcgcacg tggcatttcat caagacgacg atggcgagg tggtgccccc ggtggctgg
840
aacaactggg accggccgga gcgtgagaag accgtgcgtt ttctcgaagc aggacccac
900
ggcgcggcgcg gcacgcgtcgc tgcgcgcgtc gcctggcgcg gcgtgcac gccagccgag
960
ctcgctgatc tgacgaccga ggtggctt ggcggcaccc acggctggga cccgcgtcgc
1020
gtcgccccgt acccgatcgcc ctttcgcgc aacgcggcgc cgtgccgcg gccgcccgg
1080
cccgacgtcg ctggcccgca gagccccc gccttgcgt gggaccaggc cgcgcgc
1140
ccacgcgtcg ggtggccac acccgaagcg ctgcggattt ccgagaacgt ggcctctat
1200
caacggcaca ctggcggctg gcccaaaaac ctgcacatgg cgcagccgtt gacggacgcc
1260
gatcgcgcgc gtcacggc cgtacgcgc ctcgacgact cgaccatcga caatggcgc
1320

acgacgcggc agatcgagtt tctcgcccg atcgccgccc ccaaccgcga cgagcgcgcg
1380
caggcgtcga tgctggctgg gatcgactac ctgctcgccg cccagtatcc aaacggcggc
1440
tggccgcagt atttcccgct ccgcaacgac tactcgcc acatcacgtt caacgacgac
1500
gcgatgatcg cggccgcac gatcctgcag tcggtcgcgc tggccgtcc gccgttcgcc
1560
ggcgtcgacg cgactcgccg ccggcgggccc gcggaggccc tcgcgcgc ccatcgctg
1620
attctggcct cgagattcg cgtcaacggc cagctcactg gctggtgcca gcagcacgt
1680
gcacgcacgc tggagccagc gcgcggcgc acctacgagc atccatcgat cagtggccgc
1740
gaaaccgtga cgatcgtaa tttcctgcgg tcgatcgaaac cgcgccgaccg ccagacccaa
1800
gcccgcacatcg atgcccgcat ggagtggctc aaggccgtgc agatccgcgg ctggcgcacg
1860
gagcggcggc ccgatccctc aggaccggc ggttacgacg tggatggatggt ggaggacccc
1920
aacgcggcgc cgctctggc ccgcttctac gagattggca ccaatcgatc gatctactcg
1980
ggccgggacg gcgtcatcaa gtaccggctc gccgagatcg aaattgaacg gcggaccggc
2040
tacagctggg tcggaccgta cgcgcaggcg ctgctcgatg aagagcgcag gaagtaa
2097

<210> 98
<211> 698
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (45)...(333)
<223> Pectin methyl esterase domain

<221> DOMAIN
<222> (336)...(698)
<223> Catalytic domain

<400> 98
Met Asn Ala Ala Gly Ser Arg Arg Phe Ala Gln Leu Val Val Ala Asp
1 5 10 15
Leu Arg Arg Leu Val Pro Ala Leu Ala Pro Phe Phe Arg Asp Glu Pro
20 25 30
Leu Ala Gly Gly Val Ala Ala Leu Gln Arg Ser Val Asp Ala Ile Val
35 40 45
Ala Ala Asp Gly Thr Gly Gln Phe Ala Thr Val Gln Glu Ala Ile Asn
50 55 60
Ala Ala Pro Gln Asn Thr Ser Thr Ser Arg Trp Ile Ile Leu Val
65 70 75 80
Lys Pro Gly Thr Tyr Arg Glu Val Val Tyr Val Gln Arg Glu Lys Arg
85 90 95
Phe Val Thr Leu Ile Gly Glu Asp Pro Ala Arg Thr Thr Ile Thr Tyr
100 105 110
His Leu Lys Ala Ser Asp Val Gly Leu Asp Gly Lys Pro Ile Gly Thr
115 120 125
Phe Arg Thr Pro Thr Met Val Val Asp Ala Asp Asp Phe Thr Ile Glu

130 135 140
Asn Leu Thr Ile Glu Asn Gly Ala Gly Pro Val Gly Gln Ala Leu Ala
145 150 155 160
Leu Arg Val Asp Gly Asp Arg Val Thr Val Arg Asn Ser Arg Leu Leu
165 170 175
Gly Trp Gln Asp Thr Ile Phe Leu Asn Arg Gly Arg His Tyr Phe Glu
180 185 190
Asp Ser Phe Ile Gly Gly His Val Asp Phe Ile Phe Gly Gly Ala Thr
195 200 205
Ala Val Phe Glu Arg Cys His Leu Arg Ala Trp Arg Asp Gly Tyr Leu
210 215 220
Thr Ala Ala Ser Thr Pro Ala Glu Gln Arg Phe Gly Phe Val Phe Leu
225 230 235 240
Asn Ser Ile Val Ser Gly Glu Ala Gly Ala Arg Thr Tyr Leu Gly Arg
245 250 255
Pro Trp Arg Ala Phe Ala His Val Ala Phe Ile Lys Thr Thr Met Gly
260 265 270
Glu Val Val Arg Pro Val Gly Trp Asn Asn Trp Asp Arg Pro Glu Arg
275 280 285
Glu Lys Thr Val Arg Phe Leu Glu Ala Gly Thr Ser Gly Ala Gly Gly
290 295 300
Ser Val Ala Ala Arg Val Ala Trp Ala Arg Val Ala Thr Pro Ala Glu
305 310 315 320
Leu Ala Asp Leu Thr Thr Glu Val Val Leu Gly Gly Thr Asp Gly Trp
325 330 335
Asp Pro Arg Arg Val Ala Pro Tyr Pro Ser Ala Val Arg Ala Asn Ala
340 345 350
Ala Pro Leu Pro Arg Pro Pro Gly Pro Asp Val Ala Gly Pro Gln Ser
355 360 365
Pro Pro Ala Leu Thr Trp Asp Gln Val Ala Arg Gln Pro Ala Ser Trp
370 375 380
Leu Ala Thr Pro Glu Ala Leu Arg Ile Ala Glu Asn Val Arg Leu Tyr
385 390 395 400
Gln Arg His Thr Gly Gly Trp Pro Lys Asn Leu Asp Met Ala Gln Pro
405 410 415
Leu Thr Asp Ala Asp Arg Ala Arg Leu Thr Ala Asp Arg Ala Leu Asp
420 425 430
Asp Ser Thr Ile Asp Asn Gly Ala Thr Thr Arg Gln Ile Glu Phe Leu
435 440 445
Ala Arg Ile Ala Ala Ala Asn Arg Asp Glu Arg Ala Gln Ala Ser Met
450 455 460
Leu Ala Gly Ile Asp Tyr Leu Leu Ala Ala Gln Tyr Pro Asn Gly Gly
465 470 475 480
Trp Pro Gln Tyr Phe Pro Leu Arg Asn Asp Tyr Ser Arg His Ile Thr
485 490 495
Phe Asn Asp Asp Ala Met Ile Ala Ala Thr Ile Leu Gln Ser Val
500 505 510
Ala Leu Ala Arg Pro Pro Phe Ala Gly Val Asp Ala Thr Arg Arg Arg
515 520 525
Arg Ala Ala Glu Ala Val Ala Arg Ala His Arg Val Ile Leu Ala Ser
530 535 540
Gln Ile Arg Val Asn Gly Gln Leu Thr Gly Trp Cys Gln Gln His Asp
545 550 555 560
Ala Arg Thr Leu Glu Pro Ala Arg Gly Arg Thr Tyr Glu His Pro Ser
565 570 575
Ile Ser Gly Arg Glu Thr Val Thr Ile Val Asn Phe Leu Arg Ser Ile
580 585 590
Glu Pro Arg Asp Arg Gln Thr Gln Ala Ala Ile Asp Ala Ala Met Glu
595 600 605
Trp Leu Lys Ala Val Gln Ile Arg Gly Trp Arg Thr Glu Arg Arg Pro
610 615 620

Asp Pro Ser Gly Pro Gly Gly Tyr Asp Val Val Met Val Glu Asp Pro
625 630 635 640
Asn Ala Ala Pro Leu Trp Ala Arg Phe Tyr Glu Ile Gly Thr Asn Arg
645 650 655
Pro Ile Tyr Ser Gly Arg Asp Gly Val Ile Lys Tyr Arg Leu Ala Glu
660 665 670
Ile Glu Ile Glu Arg Arg Thr Gly Tyr Ser Trp Val Gly Pro Tyr Ala
675 680 685
Gln Ala Leu Leu Asp Glu Glu Arg Arg Lys
690 695

<210> 99
<211> 1782
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 99
atgttcacta ctaacagctc tatttgcgcc cgaaaaatccg cgcgttttc actgactgcc
60
atggctgctg cggggctat gatcgccggc acctctgcct ttgcggcctc taccggtgcc
120
ttttcgacca cggatggcgg caatgtgtca gggtaaaaat cctttaccgc ctcaagccac
180
acccaaatcc agcaaattcct tgaggatgcc aaagatggca attatccggt ggtgatcacc
240
tacaccggca atgaggattc actgattaac caagtcgtcc gggatcacac cgtcgattct
300
tcaggcaact gccctaaagc gcgttggaat gatgcctacc gcaaagtgcg aatcaaagaa
360
atgaccaagg gtgtcaccat tcagggtgcc aatggttcgt cggcgaattt cggaatcgtg
420
gtgaataaaat ccagcaacgt gattattcgc aacatgaaga ttgggtcact gggccggcgt
480
aataacgatg cggatatgtat ccgtgtggac agcggtgtga acgtctggat cgatcacac
540
gaattattcg ccgtgaacaa cggatgttaag gggtcacccg atggcgatct gacctttgaa
600
agcgcgattg atatcaaaaa agcctcgcaa gatatcacccg tgtcctacaa cgtgattcgc
660
gacagtaaaa aagtccgttt ggttgcgtcc agcagcagcg atatcgccgg cggccgaaaa
720
attactttcc accacaatat ctaccgcaac gtaggtgcgc gcttaccttt gcagcgcggc
780
ggttggacgc acatgtacaa caacctgtac gacggcatta ccagctcggg catcaacgtg
840
cgccaaaaacg gttatgcgtt aattgaaagc aactggttcc aaaacgcgtt taacccggc
900
acctgccgtt ttgacagcag caactgcggc aagtgggatc tgcgcacacaa taacatccgc
960
aacccgggtg attttgcac ttacaacatc acctggacca gtggccggcac catcgacgcc
1020
accaactgga ccaccactgc gccctccct atcagcattc cctacagcta ttcaccgggt
1080
actccgcaat gtgtgaaaga tcgtctggcg agttacgcgg gtgtggtaa aaacggccgc
1140
cagctgactg cctccggcctg cggtggtgcg gcatcgtcca cacctgcacac gtccacac
1200
gcaagttcca gctctgcggc aaacagttcc gctgcacatc gcaatgtgag tttgggtggc

1260
agtcccgta atgcatcggt tgcacttaac tggaccgtga atgccaacat taatgcgctg
1320
gaaatttatac aggatacgga ttctgatccc gccggacgtg tgccgattgc gtcgctgcc
1380
accagcgca ccaactacac cgcaacaggt ctgagcaacg gcactaccta ttacttctgg
1440
gtgaaatatac gcaccaccaa taatgtgtgg agcaactcca atgtgttag cgccaaggca
1500
1560
agttcaggta caaccccgta atcatccagc agcgccgctt catcaacgcc aagtggtgca
ccggtgttaa gtggtaggg tgattaccca agcggcttct ccaagtgtgc tgatctgggt
1620
ggcacctgct cagtcgcctc gggcgatggg tgggtgcct ttggtcgcaa aggcaagtgg
1680
gtcacaaaaa aagtgtcagt cggtagctct attgcctgta ccgttgcgc gtttggatct
1740
1782
gatccacaag gcaatccaa taagtgttct tataaaaagt aa

<210> 100
<211> 593
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(35)

<221> DOMAIN
<222> (36)...(593)
<223> Catalytic domain

<400> 100
Met Phe Thr Thr Asn Ser Ser Ile Cys Ala Arg Lys Ser Ala Arg Phe
1 5 10 15
Ser Leu Thr Ala Met Ala Ala Ala Val Ala Met Ile Ala Gly Thr Ser
20 25 30
Ala Phe Ala Ala Ser Thr Gly Gly Phe Ser Thr Thr Asp Gly Gly Asn
35 40 45
Val Ser Gly Ser Lys Ser Phe Thr Ala Ser Ser His Thr Gln Ile Gln
50 55 60
Gln Ile Leu Glu Asp Ala Lys Asp Gly Asn Tyr Pro Val Val Ile Thr
65 70 75 80
Tyr Thr Gly Asn Glu Asp Ser Leu Ile Asn Gln Val Val Arg Asp His
85 90 95
Thr Val Asp Ser Ser Gly Asn Cys Pro Lys Ala Arg Trp Asn Asp Ala
100 105 110
Tyr Arg Lys Val Glu Ile Lys Glu Met Thr Lys Gly Val Thr Ile Gln
115 120 125
Gly Ala Asn Gly Ser Ser Ala Asn Phe Gly Ile Val Val Asn Lys Ser
130 135 140
Ser Asn Val Ile Ile Arg Asn Met Lys Ile Gly Ala Leu Gly Gly Ala
145 150 155 160
Asn Asn Asp Ala Asp Met Ile Arg Val Asp Ser Gly Val Asn Val Trp
165 170 175
Ile Asp His Asn Glu Leu Phe Ala Val Asn Asn Glu Cys Lys Gly Ser
180 185 190
Pro Asp Gly Asp Leu Thr Phe Glu Ser Ala Ile Asp Ile Lys Lys Ala

195	200	205
Ser Gln Asp Ile Thr Val Ser Tyr Asn Val Ile Arg Asp Ser Lys Lys		
210	215	220
Val Gly Leu Asp Gly Ser Ser Ser Asp Ile Ala Gly Gly Arg Lys		
225	230	235
Ile Thr Phe His His Asn Ile Tyr Arg Asn Val Gly Ala Arg Leu Pro		
245	250	255
Leu Gln Arg Gly Gly Trp Thr His Met Tyr Asn Asn Leu Tyr Asp Gly		
260	265	270
Ile Thr Ser Ser Gly Ile Asn Val Arg Gln Asn Gly Tyr Ala Leu Ile		
275	280	285
Glu Ser Asn Trp Phe Gln Asn Ala Val Asn Pro Val Thr Cys Arg Phe		
290	295	300
Asp Ser Ser Asn Cys Gly Lys Trp Asp Leu Arg Asn Asn Asn Ile Arg		
305	310	315
Asn Pro Gly Asp Phe Ala Thr Tyr Asn Ile Thr Trp Thr Ser Gly Gly		
325	330	335
Thr Ile Asp Ala Thr Asn Trp Thr Thr Ala Pro Phe Pro Ile Ser		
340	345	350
Ile Pro Tyr Ser Tyr Ser Pro Val Thr Pro Gln Cys Val Lys Asp Arg		
355	360	365
Leu Ala Ser Tyr Ala Gly Val Gly Lys Asn Gly Ala Gln Leu Thr Ala		
370	375	380
Ser Ala Cys Gly Gly Ala Ala Ser Ser Thr Pro Ala Ser Ser Thr Pro		
385	390	395
Ala Ser Ser Ser Ala Ala Asn Ser Ser Ala Ala Ser Gly Ser Val		
405	410	415
Ser Leu Gly Gly Ser Ala Gly Asn Ala Ser Val Ala Leu Asn Trp Thr		
420	425	430
Val Asn Ala Asn Ile Asn Ala Leu Glu Ile Tyr Gln Asp Thr Asp Ser		
435	440	445
Asp Pro Ala Gly Arg Val Arg Ile Ala Ser Leu Pro Thr Ser Ala Thr		
450	455	460
Asn Tyr Thr Ala Thr Gly Leu Ser Asn Gly Thr Thr Tyr Tyr Phe Trp		
465	470	475
Val Lys Tyr Arg Thr Thr Asn Asn Val Trp Ser Asn Ser Asn Val Phe		
485	490	495
Ser Ala Lys Pro Ser Ser Gly Thr Thr Pro Ser Ser Ser Ser Ala		
500	505	510
Ala Ser Ser Thr Pro Ser Gly Ala Pro Val Leu Ser Gly Thr Gly Asp		
515	520	525
Tyr Pro Ser Gly Phe Ser Lys Cys Ala Asp Leu Gly Gly Thr Cys Ser		
530	535	540
Val Ala Ser Gly Asp Gly Trp Val Ala Phe Gly Arg Lys Gly Lys Trp		
545	550	555
Val Thr Lys Lys Val Ser Val Gly Ser Ser Ile Ala Cys Thr Val Ala		
565	570	575
Ala Phe Gly Ser Asp Pro Gln Gly Asn Pro Asn Lys Cys Ser Tyr Lys		
580	585	590
Lys		

<210> 101
 <211> 1404
 <212> DNA
 <213> Unknown

<220>
 <223> Obtained from an environmental sample

<400> 101

atgactatacg accgtcgaga attccttata gacctcatta tcggcaccgc cggcttcgca
60
atcgccaccga gtatgcgtt cgccaaagct gatccatgga aaaccgtcta tccgcaaatc
120
ctcgctcgca tacggccacc gaaattccg aagcgagatt tcatcatcac tagattcggc
180
gcaaaaggccgg gaaccgacag cgccgctgct atcgcaaaag ctatcaccgc gtgcagcaag
240
gcaggcggag gacgtgttct cggtcccgca ggagagtttc tcaccggagc gatccatctg
300
aaatcgaacg taaaacttca cgtgtcaaaa ggccgcacgc tgaaattctc gaccgaccgg
360
aaggcatatc tcccgattgt acatacgcga tggaaaggaa tggagctgat gcatctgtca
420
ccgttcatct acgcttatga gcagacgaac atcgctatca cgggtcaggg aacgctcgac
480
ggccagggaa aatcattctt ctggaaatgg catggcaatc cggcttatgg cggcgatccg
540
aacacgctca gccaacggcc cgctcggtcg cggcttacg agatgatgga taagaatgtg
600
ccggtcgccc aacgtgtctt cggtctcgga cattatctgc ggccgcagtt tattcagccg
660
tacaaatgca ggaacgtttt gatcgaagat gtgacgatcg tcgattcgcc gatgtggaa
720
gttcatccgg tgcttgcga gaacgtcacg gtccgaaatg ttcacatttc atcgcatggt
780
ccgaacaatg acggatgcga tccggagtctg tgcaaggacg tactgatcga caactgtttt
840
ttcgacacccg gcgacgattt catcgatc aagtccggcc gcaacaatga cggtcgtcgg
900
atcaatgtcc cgaccgagaa catcatcgatc cgcaactgca caatgaaaga cggtcatggc
960
ggcatcacgg tcggcagtga gatttcggga ggcgtgcgaa atcttttgc gcacgattgt
1020
cgactcgaca gtgcggatct ctggaccgcg cttcgcgtca agaacaatgc gtcgcgaggc
1080
ggcaagctcg agaattttta ttttcggaat ataacggatcg gccaggtcgc acgcgttg
1140
gtcgagatcg attttaatta cgaggaaggt gcaaaggct cgtatattcc tgtcgttcga
1200
aattatgttgc ttgaaggact gacatgcgc acaggcaatc gcccgcgtca tctgcaagga
1260
ttggacaaacg cggccatcta caatgtaaacg ctgcgaaact gtacggttgg ttctgtccga
1320
aatcgttagtg ttgtaaaaaa cggtcgatcg cttcggctcg agaatgtgaa gatcggcggc
1380
aggatcgtaa acgaactggt atga
1404

<210> 102

<211> 467

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1)...(28)

<221> DOMAIN

<222> (78)...(459)
<223> Catalytic domain

<400> 102
Met Thr Ile Asp Arg Arg Glu Phe Leu Ile Asp Leu Ile Ile Gly Thr
1 5 10 15
Ala Gly Phe Ala Ile Ala Pro Ser Asp Ala Phe Gly Gln Ala Asp Pro
20 25 30
Trp Lys Thr Val Tyr Pro Gln Ile Leu Ala Arg Ile Arg Pro Pro Lys
35 40 45
Phe Pro Lys Arg Asp Phe Ile Ile Thr Arg Phe Gly Ala Lys Pro Gly
50 55 60
Thr Asp Ser Ala Ala Ala Ile Ala Lys Ala Ile Thr Ala Cys Ser Lys
65 70 75 80
Ala Gly Gly Arg Val Leu Val Pro Ala Gly Glu Phe Leu Thr Gly
85 90 95
Ala Ile His Leu Lys Ser Asn Val Asn Phe His Val Ser Lys Gly Ala
100 105 110
Thr Leu Lys Phe Ser Thr Asp Pro Lys Ala Tyr Leu Pro Ile Val His
115 120 125
Thr Arg Trp Glu Gly Met Glu Leu Met His Leu Ser Pro Phe Ile Tyr
130 135 140
Ala Tyr Glu Gln Thr Asn Ile Ala Ile Thr Gly Gln Gly Thr Leu Asp
145 150 155 160
Gly Gln Gly Lys Ser Phe Phe Trp Lys Trp His Gly Asn Pro Ala Tyr
165 170 175
Gly Gly Asp Pro Asn Thr Leu Ser Gln Arg Pro Ala Arg Ala Arg Leu
180 185 190
Tyr Glu Met Met Asp Lys Asn Val Pro Val Ala Glu Arg Val Phe Gly
195 200 205
Leu Gly His Tyr Leu Arg Pro Gln Phe Ile Gln Pro Tyr Lys Cys Arg
210 215 220
Asn Val Leu Ile Glu Asp Val Thr Ile Val Asp Ser Pro Met Trp Glu
225 230 235 240
Val His Pro Val Leu Cys Glu Asn Val Thr Val Arg Asn Val His Ile
245 250 255
Ser Ser His Gly Pro Asn Asn Asp Gly Cys Asp Pro Glu Ser Cys Lys
260 265 270
Asp Val Leu Ile Asp Asn Cys Phe Phe Asp Thr Gly Asp Asp Cys Ile
275 280 285
Ala Ile Lys Ser Gly Arg Asn Asn Asp Gly Arg Arg Ile Asn Val Pro
290 295 300
Thr Glu Asn Ile Ile Val Arg Asn Cys Thr Met Lys Asp Gly His Gly
305 310 315 320
Gly Ile Thr Val Gly Ser Glu Ile Ser Gly Gly Val Arg Asn Leu Phe
325 330 335
Ala His Asp Cys Arg Leu Asp Ser Ala Asp Leu Trp Thr Ala Leu Arg
340 345 350
Val Lys Asn Asn Ala Ser Arg Gly Gly Lys Leu Glu Asn Phe Tyr Phe
355 360 365
Arg Asn Ile Thr Val Gly Gln Val Ala Arg Ala Val Val Glu Ile Asp
370 375 380
Phe Asn Tyr Glu Glu Gly Ala Lys Gly Ser Tyr Ile Pro Val Val Arg
385 390 395 400
Asn Tyr Val Val Glu Gly Leu Thr Cys Ala Thr Gly Asn Arg Ala Val
405 410 415
Asp Leu Gln Gly Leu Asp Asn Ala Pro Ile Tyr Asn Val Thr Leu Arg
420 425 430
Asn Cys Thr Phe Gly Ser Val Arg Asn Arg Ser Val Val Lys Asn Val
435 440 445
Arg Gly Leu Arg Leu Glu Asn Val Lys Ile Gly Gly Arg Ile Val Asn

450
Glu Leu Val
465

455

460

<210> 103
<211> 1101
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 103
atgaacaccg cactgcaccc cgcatccgc ctggcgctgc tgctggcgct gtgcctgcc
60
gcgcgtgcagg cacaggccac gcagaccgag cccgtcgccg agaacatgct gctgctgcag
120
accgcgtccg gcccgtggc caagcaccac cagggcaagg cggtcgacta cggccacacg
180
ttcacccatg ccgaacgtgc ggcgtgcgc gcgcgggacc gcagggacga tgcgacgatc
240
gacaacaagg cgaccacgct tgagatcgctc ggcgtctgg aagccacca gcgcacccgc
300
aatgcgcct atctggcgcc tgcgcagcgc ggcgtggact acctgctggc cgccgactac
360
ccgaacggcg gctggccgca gtactacccg gaccgttgcg tgtaccggca ccaggtcacc
420
ttcaacatgatg atgcgatgac ccgcgtgctg gagctgctgc aggacatcgt cgagggcaag
480
ggcgcgtgg cgacgtgac acccacgcat ggcaacgcg ccaggccgc gctcgacagg
540
ggcatcgccct gcgtgctcgc cacccaggta cggatcgatg gcgagctcac gctctggcc
600
gcgcagtacg acgaagccac gctgcagccg gcgaaggcg gctcctacga gctgccatcg
660
ctggcggcgc ccgaatcggt cgggtgtatg cggctgctga tgcgcagcc acagccgtcg
720
ccgcagggtgc tgacggcggt cgaggccgc gcacgctggc tggaggcgca ccgcattgcgc
780
gacctggccc ggcgaaagat cgacgcgccc ggcgaagaaa ccggccagga cgtggtgatc
840
gtcgcgcgagc cccgcgcgtc gctgtggca cgcttctacg acctgcagca ccagcagccg
900
atgttcgtga accgcgaagg cgagcagggtg gcccgttgc ccgacatgcc caacgaacgc
960
cgctcggtac acgcctggta tggcgtgtgg cccgagaagc tgctgcagca ggagctgcca
1020
cgctggtaca acacccatgc cgaggcattg cgccgcgatta cgcctgcgc tgccgagcca
1080
aggcccccga agcggccctg a
1101

<210> 104
<211> 366
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1)...(26)

<221> DOMAIN

<222> (27)...(366)

<223> Catalytic domain

<400> 104

Met Asn Thr Ala Leu His Arg Val Ile Arg Leu Pro Leu Leu Leu Ala
1 5 10 15
Leu Cys Leu Pro Ala Leu Gln Ala Gln Ala Thr Gln Thr Glu Pro Val
20 25 30
Ala Glu Asn Met Leu Leu Leu Gln Thr Ala Ser Gly Gly Trp Ser Lys
35 40 45
His His Gln Gly Lys Ala Val Asp Tyr Gly His Thr Phe Thr Asp Ala
50 55 60
Glu Arg Ala Ala Leu Arg Ala Pro Asp Arg Arg Asp Asp Ala Thr Ile
65 70 75 80
Asp Asn Lys Ala Thr Thr Leu Glu Ile Val Ala Leu Leu Glu Ala His
85 90 95
Gln Arg Thr Gly Asn Ala Ala Tyr Leu Ala Ala Gln Arg Gly Val
100 105 110
Asp Tyr Leu Leu Ala Ala Gln Tyr Pro Asn Gly Gly Trp Pro Gln Tyr
115 120 125
Tyr Pro Asp Arg Ser Leu Tyr Arg His Gln Val Thr Phe Asn Asp Asp
130 135 140
Ala Met Thr Arg Val Leu Glu Leu Leu Gln Asp Ile Val Glu Gly Lys
145 150 155 160
Gly Ala Leu Ala Gln Leu Thr Pro Thr His Gly Glu Arg Ala Arg Ala
165 170 175
Ala Leu Asp Arg Gly Ile Ala Cys Val Leu Ala Thr Gln Val Arg Ile
180 185 190
Asp Gly Glu Leu Thr Leu Trp Ala Ala Gln Tyr Asp Glu Ala Thr Leu
195 200 205
Gln Pro Ala Lys Ala Arg Ser Tyr Glu Leu Pro Ser Leu Ala Val Ala
210 215 220
Glu Ser Val Gly Val Met Arg Leu Leu Met Arg Gln Pro Gln Pro Ser
225 230 235 240
Pro Gln Val Leu Thr Ala Val Glu Ala Gly Ala Arg Trp Leu Glu Ala
245 250 255
His Arg Met Arg Asp Leu Ala Arg Arg Lys Ile Asp Ala Pro Gly Glu
260 265 270
Glu Thr Gly Gln Asp Val Val Ile Val Ala Glu Pro Gly Ala Ser Leu
275 280 285
Trp Ala Arg Phe Tyr Asp Leu Gln His Gln Gln Pro Met Phe Val Asn
290 295 300
Arg Glu Gly Glu Gln Val Ala Arg Phe Ala Asp Met Pro Asn Glu Arg
305 310 315 320
Arg Val Gly Tyr Ala Trp Tyr Gly Val Trp Pro Glu Lys Leu Leu Gln
325 330 335
Gln Glu Leu Pro Arg Trp Tyr Asn Thr His Ala Glu Ala Leu Arg Ala
340 345 350
Ile Thr Pro Ala His Ala Glu Pro Arg Pro Pro Lys Arg Pro
355 360 365

<210> 105

<211> 1203

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 105
atgcaattca tcgaaacaca gcaattgggg accgccgcga aaccctggc gggacgagga
60
ggcgacaggc gcttccgcg gtcatgccc gccgttgcg cggcccttgc cctcgccgtg
120
tcgtcgccg agccggtcg ggcgcaggc gcggatgcgg atgcggatgg cccactgccc
180
aggtgtgaaca ggaggctggt ggatcgcccc gaggactggt tcgcctccga cgagggacag
240
cgcgttgccg ccaacgtcct ccgctaccaa tcggcggaaag gagcctggcc caaaaacacc
300
aatctggccg ccactccct tcgccccag gacattccct cctcgacctc cgggtggcc
360
aacacgatcg acaatgaagc caccaccgtg cccattcggt ttttggcccg tttcgcgcaa
420
atcaacgagg acacggccag ccgcgaggcg gtcgcagcgcg gattggacta ttcctcaag
480
gcgcaatatac cgaacggtgg ctggccgcag tatttcccg tccgcccgg ctaccactcg
540
cacatcacct acaacgacga cgcattggtg aatgtgctcg acctgctgct ggacgtgtcg
600
ctggcgagg agccgttcga ttttggac gaggatcgcc gccagcggc cgcgaccgccc
660
gtggagcggg ggatcgaatg catcctccgc acccaaatcc ggcaggagga ccaacccacc
720
ggctggtgcg cgcatgtatga ccccgaaacc ttggccccgg cgtggggacg ggcgtacgag
780
ccgcccgtcga tttccggagc cgagaccgtc ggcgtggcgc gtttctgat gggctggag
840
tcgccccatcg cggaaaggcgt cgaagccatc gagggcgcca tcgcctggct cgacacggtg
900
ggcatcgagg aattgcgtct cgaatggttc accaacagcg agggcaagcg tgaccggcgc
960
gtggtcgagg acgcttccgt gggcaccctt tggcgcgcgt tttacgaact cgaaacgaac
1020
cgccccctgt tcgtggaccg cgacgggtg ctccgctacg acttcgcgga actgacggcg
1080
gagcgccgccc aaggttacag ctactacggc acttggccgg cgccattgct ggccacggaa
1140
tatccgcgct ggcgcaggat gaacgagtcc gccctgctcg agtcgtcctt catctcgcat
1200
tga
1203

<210> 106
<211> 400
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(43)

<221> DOMAIN
<222> (44)...(400)
<223> Catalytic domain

<400> 106

Met Gln Phe Ile Glu Thr Gln Gln Leu Gly Thr Ala Ala Lys Pro Val
1 5 10 15
Ala Gly Arg Gly Gly Asp Arg Arg Phe Pro Arg Val Met Pro Ala Val
20 25 30
Cys Ala Gly Leu Ala Leu Ala Val Ser Ser Ala Glu Pro Val Arg Ala
35 40 45
Gln Gly Ala Asp Ala Asp Ala Asp Gly Pro Leu Pro Arg Trp Asn Arg
50 55 60
Arg Leu Val Asp Arg Pro Glu Asp Trp Phe Ala Ser Asp Glu Gly Gln
65 70 75 80
Arg Val Ala Ala Asn Val Leu Arg Tyr Gln Ser Ala Glu Gly Ala Trp
85 90 95
Pro Lys Asn Thr Asn Leu Ala Ala Thr Pro Leu Arg Pro Glu Asp Ile
100 105 110
Pro Ser Ser Thr Ser Gly Val Ala Asn Thr Ile Asp Asn Glu Ala Thr
115 120 125
Thr Val Pro Ile Arg Phe Leu Ala Arg Phe Ala Gln Ile Asn Glu Asp
130 135 140
Thr Ala Ser Arg Glu Ala Val Gln Arg Gly Leu Asp Tyr Leu Leu Lys
145 150 155 160
Ala Gln Tyr Pro Asn Gly Gly Trp Pro Gln Tyr Phe Pro Leu Arg Arg
165 170 175
Gly Tyr His Ser His Ile Thr Tyr Asn Asp Asp Ala Met Val Asn Val
180 185 190
Leu Asp Leu Leu Asp Val Ser Leu Gly Glu Glu Pro Phe Asp Phe
195 200 205
Val Asp Glu Asp Arg Arg Gln Arg Ala Ala Thr Ala Val Glu Arg Gly
210 215 220
Ile Glu Cys Ile Leu Arg Thr Gln Ile Arg Gln Glu Asp Gln Pro Thr
225 230 235 240
Gly Trp Cys Ala Gln Tyr Asp Pro Glu Thr Leu Ala Pro Ala Trp Gly
245 250 255
Arg Ala Tyr Glu Pro Pro Ser Ile Ser Gly Ala Glu Thr Val Gly Val
260 265 270
Ala Arg Phe Leu Met Arg Leu Glu Ser Pro Ser Pro Glu Ala Val Glu
275 280 285
Ala Ile Glu Gly Ala Ile Ala Trp Leu Asp Thr Val Gly Ile Glu Glu
290 295 300
Leu Arg Leu Glu Trp Phe Thr Asn Ser Glu Gly Lys Arg Asp Arg Arg
305 310 315 320
Val Val Glu Asp Ala Ser Val Gly Thr Leu Trp Ala Arg Phe Tyr Glu
325 330 335
Leu Glu Thr Asn Arg Pro Leu Phe Val Asp Arg Asp Gly Val Leu Arg
340 345 350
Tyr Asp Phe Ala Glu Leu Thr Ala Glu Arg Arg Gln Gly Tyr Ser Tyr
355 360 365
Tyr Gly Thr Trp Pro Ala Pro Leu Leu Ala Thr Glu Tyr Pro Arg Trp
370 375 380
Arg Arg Met Asn Glu Ser Ala Leu Leu Glu Ser Ser Phe Ile Ser His
385 390 395 400

<210> 107

<211> 1074

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 107

atgacgctac ccgttgttcc cctgcgcgtta ctgctggcgc tgctggccac gtcgccggtc

60
gcctgcgcgg gcgctgcggc acccgcgact gcgaccgatc cggtcgcccga gaacatgtcg
120
cttctgcaga ccgcctccgg cggctggtcc aagcaactacc gcgagaagaa ggtcgactac
180
gcgcgcgact acgacgcgc cgagcgcgc gcgcgcgcg cgcccgaccg gcatgacgat
240
gccacgatcg aacaacaaggc cacgaccacc gagatcgcat acctggtgca ggcacatgcc
300
aggacgggca atccggcta cctcgacggc ggcgcgcgcg gcgtcgagta cctgctgcgc
360
gcgcagtacc cgaacggcgg ctggcccgag ttctaccccg accattcgac ctaccggcac
420
cagatcacgc tcaacgacga tgcgatggtg cacgccccatca ccgtgctgca ggacatcgcc
480
gcgggcccgc acggcatgca ggtgctggcg ccggagttcg gcgtccgcgc cgccgcggcc
540
gcgcagcgcg gcatcgaaa cctgctcgag ttgcaggtgc ggatcgacgg ggtgcccacg
600
atctggcccg cgcaagtacga cgagaccacc ctgcaaccgg ccaaggcccg tgcgtacgag
660
ttgcctcgc tggccgtggc cgaatcggtg ggcgtgatgc gcctgctgat ggcgcagccg
720
gggcctgatg cgccgcacgat cgccgcgatc gaggccgcgg cggactggct ggaggcgcac
780
cgccctccgg acctcgccct ggaacgcacgc gaagcccccg ccgaggaaac cggcaaggac
840
gtcccgctcg tggccagacc gggcgctcg ttgtggcgc gcttctacga cctcgagccg
900
cagggtccgc tgttcgtcga tcgcaacacgc cgtccggttc cattcgccga gcttcccaac
960
gagcgtcgta ccggctatgg ctggtatggc acctggccgg aaaagctgct ggcacaggaa
1020
ctcccgcgct ggcgcaaggt ccatgcggcc agcgcggccg ctccggcccg ttga
1074

<210> 108

<211> 357

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1)...(31)

<221> DOMAIN

<222> (32)...(357)

<223> Catalytic domain

<400> 108

Met	Thr	Leu	Pro	Val	Val	Ser	Leu	Arg	Val	Leu	Leu	Ala	Leu	Leu	Ala
1															15
Thr	Ser	Pro	Val	Ala	Cys	Ala	Gly	Ala	Ala	Ala	Pro	Ala	Thr	Ala	Thr
															30
Asp	Pro	Val	Ala	Glu	Asn	Met	Leu	Leu	Leu	Gln	Thr	Ala	Ser	Gly	Gly
															45
Trp	Ser	Lys	His	Tyr	Arg	Glu	Lys	Lys	Val	Asp	Tyr	Ala	Arg	Asp	Tyr
															50
															55
															60
Asp	Ala	Ala	Glu	Arg	Ala	Ala	Leu	Arg	Ala	Pro	Asp	Arg	His	Asp	Asp

65	70	75	80
Ala	Thr	Ile	Asp
Asn	Lys	Ala	Thr
85	90	95	
Gln	Ala	His	Ala
Arg	Arg	Thr	Gly
100	105	110	
Arg	Gly	Val	Glu
Tyr	Tyr	Leu	Leu
115	120	125	
Pro	Gln	Phe	Tyr
Asp	Asp	Pro	Asp
130	135	140	
Asn	Asp	Ala	Met
145	150	155	160
Ala	Gly	Arg	Asn
165	170	175	
Ala	Ala	Ala	Ala
180	185	190	
Val	Arg	Ile	Asp
Gly	Val	Pro	Thr
195	200	205	
Thr	Thr	Leu	Gln
210	215	220	
Ala	Val	Ala	Glu
225	230	235	240
Gly	Pro	Asp	Ala
245	250	255	
Leu	Glu	Ala	His
260	265	270	
Pro	Ala	Glu	Gly
275	280	285	
Ala	Ser	Leu	Trp
290	295	300	
Phe	Val	Asp	Arg
305	310	315	320
Glu	Arg	Arg	Thr
325	330	335	
Leu	Ala	Gln	Glu
340	345	350	
Gly	Ala	Pro	Ala
355			

<210> 109

<211> 1422

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 109

```

atgacgacac gacgcgaatt catcaaaggc tttctactta ccggagcagc cgtggccgtc
60
gctccgcgtt tgcttgcgtt cgccgcggag gcaagtccgt gggaaacgat gatgccttcg
120
atcctcgcac gcatcagacc acctcgttt ccgaaacgca ctttatct caatcgattc
180
ggcgc当地 gtagatggagt cacagactgc accgc当地 ttcatcgcc gatcgatgaa
240
tgcaccaaag cc当地gggtgg gaaagtcgtc gt当地ggcgg gcacttatct caccggcgc当地
300
attcatttga agagcaacgt caacctcgaa gtctcgaaag gc当地gacgat caagttcagt
360
caggaccgc当地 aacactaccc gc当地gttgc ttctcgcggtt gggaaagggtgt cgaagtc当地
420

```

aactactcg ctttcattta cgcgatcgaa cagcgaaaca tcgcgatcac cgccaaaggc
480
acgctcgacg gacagagtga ttcggAACAC tggTggCCGT ggaacggccg tccgcagtac
540
ggatggaaag aaggatgaa acagcagcgt cccgatcgca acgcgttGTT cacaatggcg
600
gagaaaggcg tgccggtgcg cgagcgcata tttggcgaag gtcattattt gaggccgcag
660
ttcattcagc cgtaccgctg ccagaacgtg ctgatccagg gcgtgacgat tcggaactcg
720
ccgatgtgg agattcatcc ggtgttgtgc cgtaacgtga ctattcacga cgtgcacatc
780
gatagtcatg gaccaaaca cgacggctgc aatcccgaat cgtgcagcga cgtgttgatt
840
aaggatagct acttcgatac cgccgacgac tgcatacgca tcaaatacgaa acgcaacgcc
900
gacggccggc ggcttaaagc gccgactgag aacatcatcg ttcaaggatg tcgcatgaaa
960
gacggccacg gtggaaatcac ggtcgccagc gagatctcg gccggctgcg aaacctgttt
1020
gccgagaatt gccggctcga cagtccaaac ctcgatcacr ccctgcgcgt gaagaacaat
1080
gccatgcgcg gcccattact cgagaacttc cacttccgta acatcgaagt cggcaggtg
1140
gccccatgcgg tgattacgt cgacttcaac tacgaagagg ggcgaaagg gtcgttcaacg
1200
ccggcgttc gcgattacac ggtcgatcgt ttgcgcagca cgaagagcaa gcacgcactc
1260
gacgtccagg gtctgcccgg cgccggcgtc atcaacctgc gattgacgaa ctgcacattc
1320
aacgatgtgc agcaaccgaa cattctcaag aacgtcgaac aatcaacctt tgaaaacgtc
1380
acgatccaacg gaaagacgat cacacaaaca ggatccaaag aa
1422

<210> 110
<211> 474
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(21)

<221> DOMAIN
<222> (28)...(308)
<223> Pectin methyl esterase domain

<221> DOMAIN
<222> (309)...(637)
<223> Catalytic domain

<400> 110
Met Thr Thr Arg Arg Glu Phe Ile Lys Gly Phe Leu Leu Thr Gly Ala
1 5 10 15
Ala Val Ala Val Ala Pro Arg Leu Leu Ala Phe Ala Ala Glu Ala Ser
20 25 30
Pro Trp Glu Thr Met Met Pro Ser Ile Leu Ala Arg Ile Arg Pro Pro
35 40 45

Arg Phe Pro Lys Arg Thr Phe Tyr Leu Asn Arg Phe Gly Ala Lys Gly
50 55 60
Asp Gly Val Thr Asp Cys Thr Ala Ala Phe His Arg Ala Ile Asp Glu
65 70 75 80
Cys Thr Lys Ala Gly Gly Gly Lys Val Val Val Pro Ala Gly Thr Tyr
85 90 95
Leu Thr Gly Ala Ile His Leu Lys Ser Asn Val Asn Leu Glu Val Ser
100 105 110
Glu Gly Ala Thr Ile Lys Phe Ser Gln Asp Pro Lys His Tyr Leu Pro
115 120 125
Val Val Phe Ser Arg Trp Glu Gly Val Glu Val Phe Asn Tyr Ser Pro
130 135 140
Phe Ile Tyr Ala Phe Glu Gln Arg Asn Ile Ala Ile Thr Gly Lys Gly
145 150 155 160
Thr Leu Asp Gly Gln Ser Asp Ser Glu His Trp Trp Pro Trp Asn Gly
165 170 175
Arg Pro Gln Tyr Trp Lys Glu Gly Met Lys Gln Gln Arg Pro Asp
180 185 190
Arg Asn Ala Leu Phe Thr Met Ala Glu Lys Gly Val Pro Val Arg Glu
195 200 205
Arg Ile Phe Gly Glu Gly His Tyr Leu Arg Pro Gln Phe Ile Gln Pro
210 215 220
Tyr Arg Cys Gln Asn Val Leu Ile Gln Gly Val Thr Ile Arg Asn Ser
225 230 235 240
Pro Met Trp Glu Ile His Pro Val Leu Cys Arg Asn Val Thr Ile His
245 250 255
Asp Val His Ile Asp Ser His Gly Pro Asn Asn Asp Gly Cys Asn Pro
260 265 270
Glu Ser Cys Ser Asp Val Leu Ile Lys Asp Ser Tyr Phe Asp Thr Gly
275 280 285
Asp Asp Cys Ile Ala Ile Lys Ser Gly Arg Asn Ala Asp Gly Arg Arg
290 295 300
Leu Lys Ala Pro Thr Glu Asn Ile Ile Val Gln Gly Cys Arg Met Lys
305 310 315 320
Asp Gly His Gly Gly Ile Thr Val Gly Ser Glu Ile Ser Gly Gly Val
325 330 335
Arg Asn Leu Phe Ala Glu Asn Cys Arg Leu Asp Ser Pro Asn Leu Asp
340 345 350
His Ala Leu Arg Val Lys Asn Asn Ala Met Arg Gly Gly Leu Leu Glu
355 360 365
Asn Phe His Phe Arg Asn Ile Glu Val Gly Gln Val Ala His Ala Val
370 375 380
Ile Thr Ile Asp Phe Asn Tyr Glu Glu Gly Ala Lys Gly Ser Phe Thr
385 390 395 400
Pro Val Val Arg Asp Tyr Thr Val Asp Arg Leu Arg Ser Thr Lys Ser
405 410 415
Lys His Ala Leu Asp Val Gln Gly Leu Pro Gly Ala Pro Val Ile Asn
420 425 430
Leu Arg Leu Thr Asn Cys Thr Phe Asn Asp Val Gln Gln Pro Asn Ile
435 440 445
Leu Lys Asn Val Glu Gln Ser Thr Phe Glu Asn Val Thr Ile Asn Gly
450 455 460
Lys Thr Ile Thr Gln Thr Gly Ser Lys Glu
465 470

<210> 111
<211> 1440
<212> DNA
<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 111
atgcaaaatc gtcgagaatt tttacaactt ttatggccg gtgccgtgc cggaattgtt
60
ttgcccgaga tttcttcgg gcagactaaa caagccgacg cctggacgac cgagtatccg
120
aagatttttag ccagaatcaa accgcccggaa tttcgaaaaa aagattttcc gatcaccaaa
180
tatggagccg ttgcggacgg gaaaaccctg gcgaccgaaa gcatcaaaaa agccatcgaa
240
gcgtgcgcca aatcgggcgg cgggcgcgtc gtcgtcccc agggagaatt tttgaccggc
300
360
gcgattcatt tgaaatcaa cgtcaatctg cacatcacga aaggcgcgac cgtcaaattt
420
tccaccaacc cgaaagatta tctgcccgtc gttcacacgc gctggaaagg gatgaaattt
480
atgcataattt cgccatttaat ttatgcctac gagcaaacca acatcgccgt caccggcgag
540
560
580
590
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
1000
1020
1040
1060
1080
1100
1120
1140
1160
1180
1200
1220
1240
1260
1280
1300
1320
1340
1360
1380
1400
1420
1440

<210> 112

<211> 479

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample

<221> SIGNAL

<222> (1)...(27)

<221> DOMAIN

<222> (82)...(461)

<223> Catalytic domain

<400> 112

Met Gln Asn Arg Arg Glu Phe Leu Gln Leu Leu Phe Ala Gly Ala Gly
1 5 10 15
Ala Gly Leu Val Leu Pro Gln Ile Ser Phe Gly Gln Thr Lys Gln Ala
20 25 30
Asp Ala Trp Thr Thr Glu Tyr Pro Lys Ile Leu Ala Arg Ile Lys Pro
35 40 45
Pro Lys Phe Arg Lys Lys Asp Phe Pro Ile Thr Lys Tyr Gly Ala Val
50 55 60
Ala Asp Gly Lys Thr Leu Ala Thr Glu Ser Ile Lys Lys Ala Ile Glu
65 70 75 80
Ala Cys Ala Lys Ser Gly Gly Arg Val Val Val Pro Gln Gly Glu
85 90 95
Phe Leu Thr Gly Ala Ile His Leu Lys Ser Asn Val Asn Leu His Ile
100 105 110
Thr Lys Gly Ala Thr Val Lys Phe Ser Thr Asn Pro Lys Asp Tyr Leu
115 120 125
Pro Ile Val His Thr Arg Trp Glu Gly Met Glu Leu Met His Ile Ser
130 135 140
Pro Leu Ile Tyr Ala Tyr Glu Gln Thr Asn Ile Ala Val Thr Gly Glu
145 150 155 160
Gly Thr Leu Asp Gly Gln Gly Lys Ala Phe Phe Trp Lys Trp His Gly
165 170 175
Asn Pro Arg Tyr Gly Gly Asn Pro Asp Val Ile Ser Gln Arg Pro Ala
180 185 190
Arg Ala Arg Leu Tyr Glu Met Met Glu Lys Gly Val Pro Val Ala Glu
195 200 205
Arg Ile Phe Gly Glu Thr Gln Tyr Leu Arg Pro Gln Phe Ile Gln Pro
210 215 220
Tyr Lys Cys Lys Asn Val Leu Ile Glu Gly Val Lys Ile Ile Asp Ser
225 230 235 240
Pro Met Trp Glu Val His Pro Val Leu Cys Glu Asn Val Thr Ile Arg
245 250 255
Lys Leu His Ile Ser Thr His Gly Pro Asn Asn Asp Gly Cys Asp Pro
260 265 270
Glu Ser Cys Lys Asp Val Leu Ile Glu Asp Cys Tyr Phe Asp Thr Gly
275 280 285
Asp Asp Cys Ile Ala Ile Lys Ala Gly Arg Asn Glu Asp Gly Arg Arg
290 295 300
Ile Asn Val Pro Thr Glu Asn Val Val Val Arg Gly Cys Val Met Lys
305 310 315 320
Asp Gly His Gly Gly Ile Thr Ile Gly Ser Glu Ile Ser Gly Gly Val
325 330 335
Arg Asn Val Phe Ala Glu Asn Asn Arg Leu Asp Ser Ala Asp Leu Trp
340 345 350
Thr Ala Leu Arg Val Lys Asn Asn Ala Ser Arg Gly Gly Lys Leu Glu
355 360 365
Asn Phe Tyr Phe Arg Asp Ile Thr Val Gly Gln Val Ser Arg Ala Val
370 375 380
Val Glu Ile Asp Phe Asn Tyr Glu Glu Gly Ala Lys Gly Lys His Thr
385 390 395 400
Pro Val Val Arg Asn Tyr Val Val Glu Asn Leu Thr Cys Asn Lys Gly
405 410 415
Asn Arg Ala Val Asp Leu Gln Gly Leu Asp Asn Ala Pro Ile Tyr Asp
420 425 430

Ile Thr Met Lys Asn Cys Thr Phe Asn Val Val Glu Lys Pro Ser Val
435 440 445
Val Lys Asn Val Lys Gly Val Lys Leu Glu Asn Val Lys Ile Asn Gly
450 455 460
Lys Val Val Glu Ser Leu Glu Asn Ala Ala Thr Thr Ala Lys Lys
465 470 475

<210> 113
<211> 1017
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 113
atgaagatat tttaacaat attgctctcg gcattattca gcatttcaaa tgcacaggtg
60
ctatcggatc ctgttgcgga tcgtatgacc agctaccaac taaaaaacgg aggctggccg
120
aagcacttgg ccgataaaatc tggtttaac tattcaaaac ctctctcacc tgcttgcaa
180
aaagtcatcg atcaatcgac cgaaaagtct gcgacaattt gataataatgc aaccacacgt
240
gagataaaacc atcttctcct cgcttattcc aaaaccaaca atgacaagta tcttcaagcg
300
gcgacaaaag gtgtttagta tattttgact gctaaaaatg acaaaggagg atggcctcaa
360
tattatccag acatgtatcg actatcggtt cagatcacct acaatgacgg cgcatgatt
420
aatgtattgg aaattttact ttccatatca acaaaacaag agccctatgc tgttctaacg
480
aataaattta acgaaagaat agaaagggcc ttaacacgag ggatttactg catcttacaa
540
acccaggta aacaaggaga taaactaacc atctggccg cacagtacga tcagaaaaca
600
atggAACCTG CTCAAGCCAG ACTGTTGAA CGGTAGCGT TAGCGACAGC GGAATCGGC
660
GGCATTCTCC GCTTTTAAT GCGTCTTGAC CATCCTACTC CGAAATAAA AAATGCAATC
720
AACCACGCTG TAGAATGGTT TTCTCCCATT AAAGAGGTTAG GCTATGATTA CGTTAAAACG
780
GAAAAAAACG GAAAACCTTT GCAGGGATTG GTTCTTCGC CGGCCTCTAC CGTATGGCA
840
AGATTTATG ACATCAGGAC GAATCAACCC ATCTTGTTG ATCGCGATAA TACGATAAAG
900
TATTCGCTGA ATGAAATAAG CGAGGAACGA CAAAATGGCT ACTCTGGTA TGGTAACTGG
960
CCAGAAAAGA TAATTACAAA AGAATATGAA AAATGGCTTA AGAAGGTAAA TGAATAA
1017

<210> 114
<211> 338
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> SIGNAL
<222> (1)...(18)

<221> DOMAIN
<222> (19)...(388)
<223> Catalytic domain

<400> 114
Met Lys Ile Phe Leu Thr Ile Leu Leu Ser Ala Leu Phe Ser Ile Ser
1 5 10 15
Asn Ala Gln Val Leu Ser Asp Pro Val Ala Asp Arg Met Thr Ser Tyr
20 25 30
Gln Leu Lys Asn Gly Gly Trp Pro Lys His Leu Ala Asp Lys Ser Val
35 40 45
Val Asn Tyr Ser Lys Pro Leu Ser Pro Ala Leu Gln Lys Val Ile Asp
50 55 60
Gln Ser Thr Glu Lys Ser Ala Thr Ile Asp Asn Asn Ala Thr Thr Arg
65 70 75 80
Glu Ile Asn His Leu Leu Ala Tyr Ser Lys Thr Asn Asn Asp Lys
85 90 95
Tyr Leu Gln Ala Ala Thr Lys Gly Val Glu Tyr Ile Leu Ser Ala Gln
100 105 110
Asn Asp Lys Gly Gly Trp Pro Gln Tyr Tyr Pro Asp Ser Ser Ser Tyr
115 120 125
Arg Gly Gln Ile Thr Tyr Asn Asp Gly Ala Met Ile Asn Val Leu Glu
130 135 140
Ile Leu Leu Ser Ile Ser Thr Lys Gln Glu Pro Tyr Ala Val Leu Thr
145 150 155 160
Asn Lys Phe Asn Glu Arg Ile Glu Arg Ala Leu Thr Arg Gly Ile His
165 170 175
Cys Ile Leu Gln Thr Gln Val Lys Gln Gly Asp Lys Leu Thr Ile Trp
180 185 190
Ala Ala Gln Tyr Asp Gln Lys Thr Met Glu Pro Ala Gln Ala Arg Leu
195 200 205
Phe Glu Pro Val Ala Leu Ala Thr Ala Glu Ser Ala Gly Ile Leu Arg
210 215 220
Phe Leu Met Arg Leu Asp His Pro Thr Pro Glu Ile Lys Asn Ala Ile
225 230 235 240
Asn His Ala Val Glu Trp Phe Ser Ser His Lys Glu Val Gly Tyr Asp
245 250 255
Tyr Val Lys Thr Glu Lys Asn Gly Lys Leu Leu Arg Asp Leu Val Ser
260 265 270
Ser Pro Ala Ser Thr Val Trp Ala Arg Phe Tyr Asp Ile Arg Thr Asn
275 280 285
Gln Pro Ile Phe Gly Asp Arg Asp Asn Thr Ile Lys Tyr Ser Leu Asn
290 295 300
Glu Ile Ser Glu Glu Arg Gln Asn Gly Tyr Ser Trp Tyr Gly Asn Trp
305 310 315 320
Pro Glu Lys Ile Ile Thr Lys Glu Tyr Glu Lys Trp Leu Lys Lys Val
325 330 335
Asn Glu

<210> 115
<211> 996
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 115
gtggccaagg ccatcgccgg tccgttgccg ccggcaccag ggcagggatc gccggtaacg

60 tggcgacga ttctccggca gccatcgccg tggtacgcgt ccgcggacgc gaaggcggtt
120 gccgaaaccg tgcgcgcag ccagagagcc accggcggct ggccgaagaa cacggattgg
180 acggcgctcc agagcgacgc tgagcggcag gcgcgcgaa atgcccgcgc cgagaccgat
240 tcgacgatcg acaaattggcgc cacggtcacc gagttcgct ttctcacccg cgtgtatgtc
300 gccacgcgcg acgagctttt acgggaggcc gtgcgtcgcg gcctcgacta cctgcgtggcg
360 tcgcagtaca gcaacggcgg ctggccacaa tactttccgt tgcggaccga ttactcgcgg
420 gacatcacgt tcaacgcacga cgcgatgacc ggcgtggtgc tgctgctgaa ggatgccgcg
480 gacgggtcag caggttcga attcgtcgac aaggcgagac gtgaccgcgc tgccgcggcc
540 gtgacgcgcg ccatcgccgt gatcctccgc acgcagattc gggtaaacgg tacgctgacc
600 ggctggtgcc agcagtacga cgccgacgcg ctgacgcggc cgccgcggcgt ctcgtacgag
660 catccgtcga ttgcgagccg cgagacggc gggatgcgcg ggctgctgat gggcgtgccc
720 aatccgtcgc cagagatcgt ggctgcccgtt gacgcggctg ccgcatacggtt gggtaaatcg
780 gaactgaagg gtgtgcccga ggcgacggcg ccaggacttt gggcgcgcgtt ctacgacatc
840 gctacgaatc ggccgatcta ttcggccgcgacggcgtca tcaagtaccg gtcgacgcg
900 atcgagctcg agcggcgcac aggctacacg tgggttggcc cgtacgcgcg ggcatttctg
960 acgaccgaat atccgaaaatg gcggggcggca cgatga
996

<210> 116
<211> 331
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<221> DOMAIN
<222> (1)...(331)
<223> Catalytic domain

<400> 116
Met Ala Lys Ala Ile Gly Gly Pro Leu Pro Pro Ala Pro Gly Gln Gly
1 5 10 15
Ser Pro Val Thr Trp Ala Thr Ile Leu Arg Gln Pro Ser Pro Trp Tyr
20 25 30
Ala Ser Ala Asp Ala Lys Ala Val Ala Glu Thr Val Arg Ala Ser Gln
35 40 45
Arg Ala Thr Gly Gly Trp Pro Lys Asn Thr Asp Trp Thr Ala Leu Gln
50 55 60
Ser Asp Ala Glu Arg Gln Ala Leu Arg Asn Ala Arg Ala Glu Thr Asp
65 70 75 80
Ser Thr Ile Asp Asn Gly Ala Thr Val Thr Glu Leu Arg Phe Leu Thr
85 90 95
Arg Val Tyr Val Ala Thr Arg Asp Glu Leu Leu Arg Glu Ala Val Leu
100 105 110

Arg Gly Leu Asp Tyr Leu Leu Ala Ser Gln Tyr Ser Asn Gly Gly Trp
115 120 125
Pro Gln Tyr Phe Pro Leu Arg Thr Asp Tyr Ser Arg Asp Ile Thr Phe
130 135 140
Asn Asp Asp Ala Met Thr Gly Val Val Leu Leu Lys Asp Ala Ala
145 150 155 160
Asp Gly Ser Ala Gly Phe Glu Phe Val Asp Lys Ala Arg Arg Asp Arg
165 170 175
Ala Ala Ala Ala Val Thr Arg Ala Ile Ala Val Ile Leu Arg Thr Gln
180 185 190
Ile Arg Val Asn Gly Thr Leu Thr Gly Trp Cys Gln Gln Tyr Asp Ala
195 200 205
Asp Ala Leu Thr Pro Ala Arg Gly Arg Ser Tyr Glu His Pro Ser Ile
210 215 220
Ala Ser Arg Glu Thr Val Gly Ile Ala Arg Leu Leu Met Gly Val Pro
225 230 235 240
Asn Pro Ser Pro Glu Ile Val Ala Ala Val Asp Ala Ala Ala Trp
245 250 255
Leu Gly Lys Ser Glu Leu Lys Gly Val Pro Glu Ala Thr Ala Pro Gly
260 265 270
Leu Trp Ala Arg Phe Tyr Asp Ile Ala Thr Asn Arg Pro Ile Tyr Ser
275 280 285
Gly Arg Asp Gly Val Ile Lys Tyr Arg Leu Asp Glu Ile Glu Leu Glu
290 295 300
Arg Arg Thr Gly Tyr Ser Trp Val Gly Pro Tyr Ala Ala Ala Phe Leu
305 310 315 320
Thr Thr Glu Tyr Pro Lys Trp Arg Ala Ala Arg
325 330

<210> 117

<211> 1725

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample.

<400> 117

atgaagaatt ttgggtttgg taactacaag tttttttag cgccaatgtc tgtcgctct
60
tttcgtatg cggcaagcta tacacccccc tcaacagcag tttcgaaaat caacagctat
120
cgaggctatt cggagctgac ttcagctgca tccggcatgg atatcgacca gtacacctac
180
aacatgacca ctggcaaata cgaaacggc gtttttaca aagccatggc cgacaagtat
240
aaaagcgcgt atggcggcgg tcaaaaatcc gaatggcaag ctaaaggcgg tggcgacctc
300
ggcactatacg acaacaacgc caccatccag gaaatgcgtt tgctcgccgt gcgttacaaa
360
gaaacgacga acaacaatta caaatccgca tttaagacaa gtttcaacaa ggcggtcaat
420
tttctttga ccatgcagcg ctccaaaggc ggactcccac aagtttgcc caaacgcggc
480
aactattctg accaaatcac gctaaatgac aacgccatga tccgcgcctt ggtcacgatg
540
atggatatcg ccaacaagac gagtcattt gattcgata tcacgcacga cgccacccgc
600
agcaaaatga aatcggtct cgacaaagcg gtcgattact tgctcaaggc gcaaatcg
660
aacgacggaa aggtcacggc atggtgcc cagcacgaca ccaacagcct cgcccccgta

720
ggcgacgag cctacgaact cccgagcaaa tccggcaacg aatccatggg cgttgtgtgg
780
tttttgcata actggccaga ccaaaacgaa gcaatccaga aggcggtaa aggcgcaatc
840
gcttggtaca aaaagaataa actaaaagac aaggcggtta gcaagaccgc aggcgttg
900
gacaaggcgg gttcatcgct gtgggtccgc ttttacgaag tcaacaacga caactactt
960
ttctgcgacc gcgatggtgc tagcaccaag acgcaggact tcataaaaaat cagcgaagaa
1020
cgtcgcaagg gctaccagtg ggcaggcgat tacggctctg caattctagg caccgaaaat
1080
gcataccctg aagcactcgc caagatggac gacaactatg ttccacccctcc gccagcacca
1140
gctatgtgcg gaaacgacac ttgcaaaacg tacatcgatg gcgttgactt tattgacatt
1200
caaggcgtca aggaaacaac caacacggg ttcgttggcg aaggttacgc caacgttgac
1260
aactccaccg gaagctatgt gacctacggc gtcaccgc tcaaggaagg caaatacact
1320
ttgttcatca gcttgcaaa cggcgggtt tccgcacgcg gttacagcgt ttctgcagga
1380
gacaagacgt tacttgcaga cggcagcatg gaatctacag ccgcattggac cacttggaaa
1440
atgcaatcca tcgaaatcga attgccaatg ggctatacg aactcaagtt cacaagccott
1500
tcgaaagacg gtagggcgaa catcgattac atcggctgg a tgaacgatga tttgaaagtt
1560
ggcgaagttg aagtaccacg ctcatccatt gaagcaatac ggcgcattccg caaagcccag
1620
caggacaacc gctactttgt ggactttggc ggcaacaata atagcgcagg ggcttacttt
1680
aagcgtggca tcaacacgtt ccgcgtgaat gggaaagatga ggtaa
1725

<210> 118
<211> 574
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample.

<221> SIGNAL
<222> (1)...(24)

<221> DOMAIN
<222> (25)...(574)
<223> Catalytic domain

<400> 118
Met Lys Asn Phe Gly Phe Gly Asn Tyr Lys Phe Phe Val Ala Ala Met
1 5 10 15
Ser Val Ala Ser Phe Ser Tyr Ala Ala Ser Tyr Thr Pro Pro Ser Thr
20 25 30
Ala Val Ser Lys Ile Asn Ser Tyr Arg Gly Tyr Ser Glu Leu Thr Ser
35 40 45
Ala Ala Ser Gly Met Asp Ile Asp Gln Tyr Thr Tyr Asn Met Thr Thr
50 55 60
Trp Gln Ile Ala Asn Gly Gly Phe Tyr Lys Ala Met Ala Asp Lys Tyr

65 70 75 80
Lys Ser Ala Tyr Gly Gly Gly Gln Lys Ser Glu Trp Gln Ala Lys Gly
 85 90 95
Gly Gly Asp Leu Gly Thr Ile Asp Asn Asn Ala Thr Ile Gln Glu Met
 100 105 110
Arg Leu Leu Ala Val Arg Tyr Lys Glu Thr Thr Asn Asn Asn Tyr Lys
 115 120 125
Ser Ala Phe Lys Thr Ser Phe Asn Lys Ala Val Asn Phe Leu Leu Thr
 130 135 140
Met Gln Arg Ser Lys Gly Gly Leu Pro Gln Val Trp Pro Lys Arg Gly
 145 150 155 160
Asn Tyr Ser Asp Gln Ile Thr Leu Asn Asp Asn Ala Met Ile Arg Ala
 165 170 175
Met Val Thr Met Asp Ile Ala Asn Lys Thr Ser Pro Phe Asp Ser
 180 185 190
Asp Ile Ile Asp Asp Ala Thr Arg Ser Lys Met Lys Ser Ala Leu Asp
 195 200 205
Lys Ala Val Asp Tyr Leu Leu Lys Ala Gln Ile Val Asn Asp Gly Lys
 210 215 220
Val Thr Val Trp Cys Ala Gln His Asp Thr Asn Ser Leu Ala Pro Val
 225 230 235 240
Gly Ala Arg Ala Tyr Glu Leu Pro Ser Lys Ser Gly Asn Glu Ser Met
 245 250 255
Gly Val Val Trp Phe Leu Met Asn Trp Pro Asp Gln Asn Glu Ala Ile
 260 265 270
Gln Lys Ala Val Lys Gly Ala Ile Ala Trp Tyr Lys Lys Asn Lys Leu
 275 280 285
Lys Asp Lys Ala Phe Ser Lys Thr Ala Gly Val Val Asp Lys Ala Gly
 290 295 300
Ser Ser Leu Trp Phe Arg Phe Tyr Glu Val Asn Asn Asp Asn Tyr Phe
 305 310 315 320
Phe Cys Asp Arg Asp Gly Ala Ser Thr Lys Thr Gln Asp Phe Met Lys
 325 330 335
Ile Ser Glu Glu Arg Arg Lys Gly Tyr Gln Trp Ala Gly Asp Tyr Gly
 340 345 350
Ser Ala Ile Leu Gly Thr Glu Asn Ala Tyr Leu Glu Ala Leu Ala Lys
 355 360 365
Met Asp Asp Asn Tyr Val Pro Pro Pro Pro Ala Pro Ala Met Cys Gly
 370 375 380
Asn Asp Thr Cys Lys Thr Tyr Ile Asp Gly Val Asp Phe Ile Asp Ile
 385 390 395 400
Gln Gly Val Lys Glu Thr Thr Asn Thr Gly Phe Val Gly Glu Gly Tyr
 405 410 415
Ala Asn Val Asp Asn Ser Thr Gly Ser Tyr Val Thr Tyr Gly Val Thr
 420 425 430
Ala Phe Lys Glu Gly Lys Tyr Thr Leu Phe Ile Ser Phe Ala Asn Gly
 435 440 445
Gly Gly Ser Ala Arg Gly Tyr Ser Val Ser Ala Gly Asp Lys Thr Leu
 450 455 460
Leu Ala Asp Gly Ser Met Glu Ser Thr Ala Ala Trp Thr Thr Trp Lys
 465 470 475 480
Met Gln Ser Ile Glu Ile Glu Leu Pro Met Gly Tyr Ser Glu Leu Lys
 485 490 495
Phe Thr Ser Leu Ser Lys Asp Gly Met Ala Asn Ile Asp Tyr Ile Gly
 500 505 510
Trp Met Asn Asp Asp Leu Lys Val Gly Glu Val Glu Val Pro Arg Ser
 515 520 525
Ser Ile Glu Ala Ile Arg Ala Ile Arg Lys Ala Gln Gln Asp Asn Arg
 530 535 540
Tyr Phe Val Asp Phe Gly Gly Asn Asn Asn Ser Ala Gly Ala Tyr Phe
 545 550 560

Lys Arg Gly Ile Asn Thr Phe Arg Val Asn Gly Lys Met Arg
565 570

<210> 119
<211> 1848
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample.

<400> 119
gtgtcatggc aggaatccgg tgcggctatc accaacgcctt ggaatgcaac gtcagtgcc
60
tcaaaaccctt acacagccgt atccgctgggt tgaaatggca cacttgc(cc) caatgcac
120
gccacttttgc gtttccaggc aaacggttctt gccgggtgcac ctaaaagtggaa tggcagctt
180
tgcggcacca acacttcatac aacaccggca tccagcagtg ttgcccagctc gtttaaatca
240
agcgcgccccg tatcgccagc cagcagatca tccagttcaa tcgctatcac tagcagctt
300
ttagcggagaa gttctattgc ctccagcagc tcactagtta gtagctccag agcgagcagt
360
agtgcgc(aa) gcttttctc ttttacgatc caggaagagc aagcgggctt ctgtcgtt
420
gatggcatttgc cgacagaaag caccaacacc gtttttaccc gcaatggcta caccaatgc
480
aacaacgcgc aaggcgcagc gattgaatgg gcagtcagcg cacctagcag tggccgtt
540
acagtagcct tccgcttcgc caatggcggc acagcagcgc gcaacggctc gttgttaatc
600
aatggcggtt gcaatggtaa ttacactgtt gatgttaccc tgaccggcgc atggcaacc
660
tggcaatttgc ccagcgttgc aattgatttgc gtgcaaggca ataatatttt aaaactctcg
720
gcgttaaccgcg ctgacggttt ggccaatatac gactcattaa aaatagacgg cgccaaacc
780
aaagcaggta cttgcagcac tacatcaagc agcagcgtt ccagcagctc gtcgtccgtt
840
aaatccagcg caagtttttc ttcgagttca tccaccgctg caaaaataact gacattagac
900
ggtaaccggc ccgcccagctg gttcaacaaa tccaggacca agtggaaatag cagccgc
960
gatattgtgt tgcgttacca gcaatccaac ggcgggttggc caaaaaaccc ggattacaac
1020
tcagtgagcg caggcaatgg cgggagcgcac agcggcacca tcgacaatgg tgcaaccatt
1080
accgaaatgg ttacacttcgc tgaaattttt aaaaacggcg gcaacaccaa atatcgcat
1140
gcagtgccgc gaggcaggaaa cttttagtg agctcgcaat acagcacagg cgccttgc
1200
caattttatc cggtggaaagg cggctatgcg gatcatgcga cctttaacga taacggcat
1260
gcgtacgcgt tgacggattt ggatttcgc gtaaaacaaac ggcgcaccgtt tgataacgc
1320
attttctctg attctgatcg ggcgaaatttca aaaaaccgtt tgccaaagg tggattac
1380
attttaaaagg cgccaggaa acaaaatggaa aaactcactg catgggtgc acaacacgg
1440
gctacggattt accaaccgaa aaaagcgcgc gcttatgaat tgaaatcatt gagtggtac

1500
gagtcggtcg gcattctcg cttcttgatg acccaaccac aaaccgcga aatcgaagcg
1560
gcggtaagg cggtgtcaa ctgggcc agtccaaata cttatggc taactacact
1620
tacgattcat caaaagcg tcaccaacccg attgtgtata aatccgaaag cagaatgtgg
1680
tatcgcttct atgacctgaa caccaaccgt ggtttcttta gtgatgcga tggcagcaaa
1740
ttctatgata tcacccaaat gtcagaagag cgtcgcaccc gttatagctg gggtggctct
1800
tacggtaat ctattatttc ctgcgcaaa aaagtgggtt atctgtaa
1848

<210> 120
<211> 615
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample.

<221> BINDING
<222> (1)...(61)
<223> Carbohydrate binding module

<221> BINDING
<222> (134)...(257)
<223> Carbohydrate binding module

<221> DOMAIN
<222> (258)...(615)
<223> Catalytic domain

<400> 120
Met Ser Trp Gln Glu Ser Gly Ala Ala Ile Thr Asn Ala Trp Asn Ala
1 5 10 15
Thr Leu Ser Gly Ser Asn Pro Tyr Thr Ala Val Ser Ala Gly Trp Asn
20 25 30
Gly Thr Leu Ala Pro Asn Ala Ser Ala Thr Phe Gly Phe Gln Ala Asn
35 40 45
Gly Ser Ala Gly Ala Pro Lys Val Asn Gly Ser Leu Cys Gly Thr Asn
50 55 60
Thr Ser Ser Thr Pro Ala Ser Ser Ser Val Ala Ser Ser Val Lys Ser
65 70 75 80
Ser Ala Pro Val Ser Ser Ser Arg Ser Ser Ser Ser Ile Ala Ile
85 90 95
Thr Ser Ser Ser Leu Ala Arg Ser Ser Ile Ala Ser Ser Ser Ser Leu
100 105 110
Val Ser Ser Arg Ala Ser Ser Ala Pro Ser Val Phe Ser Phe
115 120 125
Thr Ile Gln Glu Glu Gln Ala Gly Phe Cys Arg Val Asp Gly Ile Ala
130 135 140
Thr Glu Ser Thr Asn Thr Gly Phe Thr Gly Asn Gly Tyr Thr Asn Ala
145 150 155 160
Asn Asn Ala Gln Gly Ala Ala Ile Glu Trp Ala Val Ser Ala Pro Ser
165 170 175
Ser Gly Arg Tyr Thr Val Ala Phe Arg Phe Ala Asn Gly Gly Thr Ala
180 185 190
Ala Arg Asn Gly Ser Leu Leu Ile Asn Gly Gly Ser Asn Gly Asn Tyr
195 200 205

Thr Val Glu Leu Pro Leu Thr Gly Ala Trp Ala Thr Trp Gln Ile Ala
210 215 220
Ser Val Glu Ile Asp Leu Val Gln Gly Asn Asn Ile Leu Lys Leu Ser
225 230 235 240
Ala Leu Thr Ala Asp Gly Leu Ala Asn Ile Asp Ser Leu Lys Ile Asp
245 250 255
Gly Ala Gln Thr Lys Ala Gly Thr Cys Ser Thr Thr Ser Ser Ser Ser
260 265 270
Val Ala Ser Ser Ser Ser Val Lys Ser Ser Ala Ser Ser Ser Ser
275 280 285
Ser Ser Ser Thr Ala Ala Lys Ile Leu Thr Leu Asp Gly Asn Pro Ala
290 295 300
Ala Ser Trp Phe Asn Lys Ser Arg Thr Lys Trp Asn Ser Ser Arg Ala
305 310 315 320
Asp Ile Val Leu Ser Tyr Gln Gln Ser Asn Gly Gly Trp Pro Lys Asn
325 330 335
Leu Asp Tyr Asn Ser Val Ser Ala Gly Asn Gly Gly Ser Asp Ser Gly
340 345 350
Thr Ile Asp Asn Gly Ala Thr Ile Thr Glu Met Val Tyr Leu Ala Glu
355 360 365
Ile Tyr Lys Asn Gly Gly Asn Thr Lys Tyr Arg Asp Ala Val Arg Arg
370 375 380
Ala Ala Asn Phe Leu Val Ser Ser Gln Tyr Ser Thr Gly Ala Leu Pro
385 390 395 400
Gln Phe Tyr Pro Leu Lys Gly Gly Tyr Ala Asp His Ala Thr Phe Asn
405 410 415
Asp Asn Gly Met Ala Tyr Ala Leu Thr Val Leu Asp Phe Ala Val Asn
420 425 430
Lys Arg Ala Pro Phe Asp Asn Asp Ile Phe Ser Asp Ser Asp Arg Ala
435 440 445
Lys Phe Lys Thr Ala Val Ala Lys Gly Val Asp Tyr Ile Leu Lys Ala
450 455 460
Gln Trp Lys Gln Asn Gly Lys Leu Thr Ala Trp Cys Ala Gln His Gly
465 470 475 480
Ala Thr Asp Tyr Gln Pro Lys Lys Ala Arg Ala Tyr Glu Leu Glu Ser
485 490 495
Leu Ser Gly Ser Glu Ser Val Gly Ile Leu Ala Phe Leu Met Thr Gln
500 505 510
Pro Gln Thr Ala Gln Ile Glu Ala Ala Val Lys Ala Gly Val Asn Trp
515 520 525
Phe Ala Ser Pro Asn Thr Tyr Leu Ala Asn Tyr Thr Tyr Asp Ser Ser
530 535 540
Lys Ala Ser Thr Asn Pro Ile Val Tyr Lys Ser Gly Ser Arg Met Trp
545 550 555 560
Tyr Arg Phe Tyr Asp Leu Asn Thr Asn Arg Gly Phe Phe Ser Asp Arg
565 570 575
Asp Gly Ser Lys Phe Tyr Asp Ile Thr Gln Met Ser Glu Glu Arg Arg
580 585 590
Thr Gly Tyr Ser Trp Gly Gly Ser Tyr Gly Glu Ser Ile Ile Ser Phe
595 600 605
Ala Gln Lys Val Gly Tyr Leu
610 615

<210> 121

<211> 1047

<212> DNA

<213> Bacteria

<400> 121

atgatgagat caagcatcgt caagctagtt gctttcagtg ttgtggttat gttatggctc
60

ggtgtatcct ttcaaacggc agaagcgaat acgccaaatt tcaacttaca aggctttgcc
120
acgttaaatg gggaaacaac tggtggtgca ggtggagatg tagtgacggt tcgtacaggg
180
aatgaattaa taaacgctt gaagtccaaa aaccctaattc gtccgttaac aatttatgta
240
aacggtagcga taacacctag taatacgctt gatagtaaga tcgatattaa ggatgtttcc
300
aatgtatcga ttttaggggt tggtacaaat ggacgattaa atggatcgg tattaaagta
360
tggcgagcga ataatatcat cattcgcaac ttgacgatcc atgaagtcca tacaggtgt
420
aaagatgcga ttagcattga agggccctct cggaacattt ggattgacca taacgagctt
480
tatgccagct tgaacgttca taaagaccac tatgacggct tgtttgacgt aaagcgcgt
540
gcttacaata ttacttctc ttggaattat gtccatgatg gctggaaagc gatgctcatg
600
ggaaactctg atagtataa ctacgaccga aacataacat tccaccataa ctacttcaaa
660
aacttaaact ctcgcgtacc tgcgtaccgt tttggaaagg cgcaactgtt tagcaattac
720
tttgagaaca ttttagaaac aggcatataat tcacggatgg gagcggaaat gtcgttgaa
780
cataacgtt ttgagaatgc caccaacccg ttaggattct ggcatalog tcgaacaggt
840
tattggaatg ttgccaataa ccgctataatc aatagcacgg gtagcatgcc gaccacttcc
900
acgaccaatt atcgacctcc ttatccstat acggtcacac cagttggtga tgtgaaatcg
960
gttgtcacac gttatgcggg agttggtgtc atccagccgt atgcaagaaa gccatccgag
1020
cgattgctct ggtggcttt tgcataa
1047

<210> 122

<211> 348

<212> PRT

<213> Bacteria

<220>

<221> SIGNAL

<222> (1)...(29)

<221> DOMAIN

<222> (30)...(348)

<223> Catalytic domain

<400> 122

Met	Met	Arg	Ser	Ser	Ile	Val	Lys	Leu	Val	Ala	Phe	Ser	Val	Val	Val
1					5				10					15	
Met	Leu	Trp	Leu	Gly	Val	Ser	Phe	Gln	Thr	Ala	Glu	Ala	Asn	Thr	Pro
					20			25					30		
Asn	Phe	Asn	Leu	Gln	Gly	Phe	Ala	Thr	Leu	Asn	Gly	Gly	Thr	Thr	Gly
					35			40			45				
Gly	Ala	Gly	Gly	Asp	Val	Val	Thr	Val	Arg	Thr	Gly	Asn	Glu	Leu	Ile
					50			55			60				
Asn	Ala	Leu	Lys	Ser	Lys	Asn	Pro	Asn	Arg	Pro	Leu	Thr	Ile	Tyr	Val
					65			70			75		80		
Asn	Gly	Thr	Ile	Thr	Pro	Ser	Asn	Thr	Ser	Asp	Ser	Lys	Ile	Asp	Ile

85	90	95	
Lys Asp Val Ser Asn Val Ser Ile Leu Gly Val Gly Thr Asn Gly Arg			
100	105	110	
Leu Asn Gly Ile Gly Ile Lys Val Trp Arg Ala Asn Asn Ile Ile Ile			
115	120	125	
Arg Asn Leu Thr Ile His Glu Val His Thr Gly Asp Lys Asp Ala Ile			
130	135	140	
Ser Ile Glu Gly Pro Ser Arg Asn Ile Trp Ile Asp His Asn Glu Leu			
145	150	155	160
Tyr Ala Ser Leu Asn Val His Lys Asp His Tyr Asp Gly Leu Phe Asp			
165	170	175	
Val Lys Arg Asp Ala Tyr Asn Ile Thr Phe Ser Trp Asn Tyr Val His			
180	185	190	
Asp Gly Trp Lys Ala Met Leu Met Gly Asn Ser Asp Ser Asp Asn Tyr			
195	200	205	
Asp Arg Asn Ile Thr Phe His His Asn Tyr Phe Lys Asn Leu Asn Ser			
210	215	220	
Arg Val Pro Ala Tyr Arg Phe Gly Lys Ala His Leu Phe Ser Asn Tyr			
225	230	235	240
Phe Glu Asn Ile Leu Glu Thr Gly Ile Asn Ser Arg Met Gly Ala Glu			
245	250	255	
Met Leu Val Glu His Asn Val Phe Glu Asn Ala Thr Asn Pro Leu Gly			
260	265	270	
Phe Trp His Ser Ser Arg Thr Gly Tyr Trp Asn Val Ala Asn Asn Arg			
275	280	285	
Tyr Ile Asn Ser Thr Gly Ser Met Pro Thr Thr Ser Thr Thr Asn Tyr			
290	295	300	
Arg Pro Pro Tyr Pro Tyr Thr Val Thr Pro Val Gly Asp Val Lys Ser			
305	310	315	320
Val Val Thr Arg Tyr Ala Gly Val Gly Val Ile Gln Pro Tyr Ala Arg			
325	330	335	
Lys Pro Ser Glu Arg Leu Leu Trp Trp Leu Phe Ala			
340	345		

<210> 123

<211> 1830

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample.

<400> 123

ttgagtcac ttagtgtaat gaccctttg cctgtatgg caagtaacaa cgtagctccc

60

tggggctggg ccacctgctc cgatgagtca gcgcacagctt atactctgaa cggagggtgc

120

ttttctgatg catcttccgt tactctgaaa gctcttgca atgaacaaac agatgacaaa

180

caaataaaac aggctatcgc tcagaaagac atcattatct tagatggtc caatggcgat

240

ttcatcccta atgaatacat caagattcg accaaaaaca aaaccatcat tggtatcaac

300

aacgcccccc tgtgtacaaa gttctaccta accgctgatg atattacgta ccttaaagca

360

caaggactgg agggactgag tagtacaaat caacatacag gaactctgcc tgatggcaca

420

acagtgcacct gtgacgagcg tgccttttc accaagaaag ccatcatgga actccaatat

480

cagaaaacag gatcctatac cctacccaat aaatcaggtt tcttttattt agatgccgt

540

tctgagaata tcacatcatccg aaatatttcg ctgatagggc caggagccgt agatatacg
600
ggagctgacc tgattaccaa tcaggtaag cacgtctgga ttgaccattg cacgtttgtg
660
gactctcaag atggtgcct ggacagcaag gtatgcgact gggccaccta tacctataac
720
cacttctact atacagaccg cagttactca catgcctaca cttgcgggtt cgatgggtc
780
agcaatcatg aaatggtgat tcacatgacc tttgcattgtat atatctgggg agcaaaatgt
840
atgcgtcgtc tgccgcaagc agatgactgt ttcatacacc ttgtgaacaa ctatcacaac
900
tgtcctggca atagtgtcg tatgaccatt aacagttaca gcaaagcatt gttgagggt
960
aactatgctg ctgcagggtt caacaagcca ttagatggca gtggggccaa ccgtaatgt
1020
acagctaagg ataatagtt tgcaaactca caagccgggt ctgttggtc tgtgccatac
1080
gactatacca agattgcagc cgccgacggtt ccagctacgc tgactggaac agagggtgca
1140
ggcccccacat taggcaacga tgcaacatac attctgtcta ctattccaac tgtcgaccga
1200
caagaaggcg aatcttcaact ctactatttc attgatggcc tggtggaac taatagtgaa
1260
ggcttattcca ttatagagtt taatgatggc gcaacattgc tgctgaacaa taaagagaaa
1320
gcatggtcta atggtagtgc aattcaactt ggtgacgata attatacgag tattaaactt
1380
tctaattggag cagaaaacat cttcacagca cctactggca aaaaagtaag tggattacc
1440
ttcttattttt atatcaatat aaaagaagaa aaactcgact tcaccaaata tccagaatat
1500
ggtttccgca cctgtttctg gcagaaaagtt gccaacctca cttattctgc gacttctgt
1560
gacgtacaaa tcttgaatc tcgtgatcca cagaatactg acgtggcatc attccatttc
1620
actccaaacaa atgttgtaag tttcaaaaat tcaggtgaac agctttgttt cttaatgaaa
1680
gtcacctata gtgatgaaag cacaggtatc tctgctatcc agaaaaaaat gcctatcgat
1740
ggcggttacct ataaccttca aggtatccgt atagataatc ccaccaaggg aatctatatt
1800
cagaacggaa agaaaatcat tatcaaataa
1830

<210> 124

<211> 609

<212> PRT

<213> Unknown

<220>

<223> Obtained from an environmental sample.

<221> SIGNAL

<222> (1)...(21)

<221> DOMAIN

<222> (22)...(390)

<223> Catalytic domain

<400> 124

Leu Ser Leu Leu Ser Val Met Thr Leu Leu Pro Val Met Ala Ser Asn
1 5 10 15
Asn Val Ala Pro Trp Gly Trp Ala Thr Cys Ser Asp Glu Ser Ala Thr
20 25 30
Ala Tyr Thr Leu Asn Gly Gly Cys Phe Ser Asp Ala Ser Ser Val Thr
35 40 45
Leu Lys Ala Leu Gly Asn Glu Gln Thr Asp Asp Lys Gln Ile Lys Gln
50 55 60
Ala Ile Ala Gln Lys Asp Ile Ile Leu Asp Gly Ser Asn Gly Asp
65 70 75 80
Phe Ile Leu Asn Glu Tyr Ile Lys Ile Ser Thr Lys Asn Lys Thr Ile
85 90 95
Ile Gly Ile Asn Asn Ala Arg Leu Cys Thr Lys Phe Tyr Leu Thr Ala
100 105 110
Asp Asp Ile Thr Tyr Leu Lys Ala Gln Gly Leu Glu Gly Leu Ser Ser
115 120 125
Thr Asn Gln His Thr Gly Thr Leu Pro Asp Gly Thr Thr Val Thr Cys
130 135 140
Asp Glu Arg Ala Phe Phe Thr Lys Lys Ala Ile Met Glu Leu Gln Tyr
145 150 155 160
Gln Lys Thr Gly Ser Tyr Thr Leu Pro Asn Lys Ser Gly Ile Phe Tyr
165 170 175
Leu Asp Ala Ala Ser Glu Asn Ile Ile Arg Asn Ile Ser Leu Ile
180 185 190
Gly Pro Gly Ala Val Asp Ile Asp Gly Ala Asp Leu Ile Thr Asn Gln
195 200 205
Gly Lys His Val Trp Ile Asp His Cys Thr Phe Val Asp Ser Gln Asp
210 215 220
Gly Ala Leu Asp Ser Lys Val Cys Asp Trp Ala Thr Tyr Thr Tyr Asn
225 230 235 240
His Phe Tyr Tyr Thr Asp Arg Ser Tyr Ser His Ala Tyr Thr Cys Gly
245 250 255
Cys Gly Trp Val Ser Asn His Glu Met Val Ile His Met Thr Phe Ala
260 265 270
Cys Asn Ile Trp Gly Ala Lys Cys Met Arg Arg Leu Pro Gln Ala Asp
275 280 285
Asp Cys Phe Ile His Leu Val Asn Asn Tyr His Asn Cys Pro Gly Asn
290 295 300
Ser Val Gly Met Thr Ile Asn Ser Tyr Ser Lys Ala Leu Val Glu Gly
305 310 315 320
Asn Tyr Ala Ala Ala Gly Val Asn Lys Pro Leu Asp Gly Ser Gly Ala
325 330 335
Asn Arg Asn Val Thr Ala Lys Asp Asn Ser Phe Ala Asn Ser Gln Ala
340 345 350
Gly Ser Val Val Ser Val Pro Tyr Asp Tyr Thr Lys Ile Ala Ala Ala
355 360 365
Asp Val Pro Ala Thr Leu Thr Gly Thr Glu Gly Ala Gly Ala Thr Leu
370 375 380
Gly Asn Asp Ala Thr Tyr Ile Leu Ser Thr Ile Pro Thr Val Asp Arg
385 390 395 400
Gln Glu Gly Glu Ser Ser Leu Tyr Tyr Phe Ile Asp Gly Leu Val Gly
405 410 415
Thr Asn Ser Glu Gly Tyr Ser Ile Ile Glu Phe Asn Asp Gly Ala Thr
420 425 430
Leu Leu Leu Asn Asn Lys Glu Lys Ala Trp Ser Asn Gly Ser Ala Ile
435 440 445
Gln Leu Gly Asp Asp Asn Tyr Thr Ser Ile Lys Leu Ser Asn Gly Ala
450 455 460
Glu Asn Ile Phe Thr Ala Pro Thr Gly Lys Lys Val Ser Gly Ile Thr
465 470 475 480
Phe Tyr Ser Tyr Ile Asn Ile Lys Glu Glu Lys Leu Asp Phe Thr Lys

485 490 495
Tyr Pro Glu Tyr Gly Phe Arg Thr Cys Phe Trp Gln Lys Val Ala Asn
500 505 510
Leu Thr Tyr Ser Ala Thr Ser Asp Asp Val Gln Ile Leu Lys Ser Arg
515 520 525
Asp Pro Gln Asn Thr Asp Val Ala Ser Phe His Phe Thr Pro Thr Asn
530 535 540
Val Val Ser Phe Lys Asn Ser Gly Glu Gln Leu Cys Phe Leu Met Lys
545 550 555 560
Val Thr Tyr Ser Asp Glu Ser Thr Gly Ile Ser Ala Ile Gln Lys Lys
565 570 575
Met Pro Ile Asp Gly Val Thr Tyr Asn Leu Gln Gly Ile Arg Ile Asp
580 585 590
Asn Pro Thr Lys Gly Ile Tyr Ile Gln Asn Gly Lys Lys Ile Ile Ile
595 600 605
Lys

<210> 125
<211> 1170
<212> DNA
<213> Unknown

<220>
<223> Obtained from an environmental sample.

<400> 125
atgaggctca aaatcatcag cgccataaat aattatagtg ttattattct ctagggctcg
60
aatggcgatt tcactattag tgctacaatg agtttcagta gcaaataaaa caaaaccata
120
gttgggtgtaa ataatgctcg cctatgcacc aagttctatc taaccgatga aataaagact
180
gcgcgtcgatg ctgctaattgt aaaatcagca agttcaacca gtggagggtgg tacactctca
240
aatgggaaat cagtgtcaga acaacgtgaa taccttactc gtcaaacaat tatcgatcta
300
actggcgatg cttcgaaatc gtgtcagaaa gcgggcacatct ttagcttcag tagtgttacc
360
aatatcatca tgcgaaacct cgttttgggtt ggccctggcc catgcgtatgt aggtggcaac
420
gatttgcttt cgctcaactgg ttctaaagcat ttttgggtcg atcactgtga gttaccgat
480
ggtatagatg gcaatttcga tattaccaag agtagcgatt tcaataactgt tacttgggt
540
atattcaatt ataccgatcg tgcatacgac cacatgaact ccaatcttat tggtagctcc
600
gatagcgaag atgctgccta tttgaacact actatggcat gcaatatttgc gggctacaag
660
tgcaatcagc gaatgccaat ggctcgtgct ggtaatattc accttgcgaa caactttac
720
gattgcgtg gcaatagtgt ggctgttaac cctcgtaaaa attctgagtt cttagtcgag
780
aactgctact ttgccacggg tgtgaagcca ttctcgacaa gtgggtcggtt gggatacaac
840
tttatttgatt gctatacaga agattcatac acttttcagc agagtggtac agtgcgtgt
900
ccatacgttt actctaagtt tgatgtgcaa ttagtacccg agcaactcaa taaatatgt
960
ggcgcaacgc ttacttctcc gcttgcata ggtcgaaag agggtgttgc tactcctatt
1020

agtgcgtct ctgttgatag cgatgttgtg ttggcgaat actattcgct gactggtaat
1080
cgtgttaaca cgctcaatag aggcataat atcgtagaa ctattacgc caacggcaa
1140
gtaaccacac aaaaggtttt ggtgaaatag
1170

<210> 126
<211> 389
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample.

<221> DOMAIN
<222> (24)...(325)
<223> Catalytic domain

<400> 126
Met Arg Ser Lys Ile Ile Ser Ala Ile Asn Asn Tyr Ser Val Ile Ile
1 5 10 15
Leu Asp Gly Ser Asn Gly Asp Phe Thr Ile Ser Ala Thr Met Ser Phe
20 25 30
Ser Ser Lys Ser Asn Lys Thr Ile Val Gly Val Asn Asn Ala Arg Leu
35 40 45
Cys Thr Lys Phe Tyr Leu Thr Asp Glu Ile Lys Thr Ala Leu Asp Ala
50 55 60
Ala Asn Val Lys Ser Ala Ser Ser Thr Ser Gly Gly Thr Leu Ser
65 70 75 80
Asn Gly Lys Ser Val Ser Glu Gln Arg Glu Tyr Leu Thr Arg Gln Thr
85 90 95
Ile Ile Asp Leu Thr Gly Asp Ala Ser Glu Ser Cys Gln Lys Ala Gly
100 105 110
Ile Phe Ser Phe Ser Ser Cys Thr Asn Ile Ile Met Arg Asn Leu Val
115 120 125
Leu Val Gly Pro Gly Pro Cys Asp Val Gly Gly Asn Asp Leu Leu Ser
130 135 140
Leu Thr Gly Ser Lys His Phe Trp Val Asp His Cys Glu Leu Thr Asp
145 150 155 160
Gly Ile Asp Gly Asn Phe Asp Ile Thr Lys Ser Ser Asp Phe Asn Thr
165 170 175
Val Thr Trp Cys Ile Phe Asn Tyr Thr Asp Arg Ala Tyr Asp His Met
180 185 190
Asn Ser Asn Leu Ile Gly Ser Ser Asp Ser Glu Asp Ala Ala Tyr Leu
195 200 205
Asn Thr Thr Met Ala Cys Asn Ile Trp Gly Tyr Lys Cys Asn Gln Arg
210 215 220
Met Pro Met Ala Arg Ala Gly Asn Ile His Leu Val Asn Asn Phe Tyr
225 230 235 240
Asp Cys Ala Gly Asn Ser Val Ala Val Asn Pro Arg Lys Asn Ser Glu
245 250 255
Phe Leu Val Glu Asn Cys Tyr Phe Ala Thr Gly Val Lys Pro Phe Ser
260 265 270
Gln Ser Gly Ala Leu Gly Tyr Asn Phe Ile Asp Cys Tyr Thr Glu Asp
275 280 285
Ser Tyr Thr Phe Gln Gln Ser Gly Thr Val Ser Val Pro Tyr Val Tyr
290 295 300
Ser Lys Phe Asp Val Gln Leu Val Pro Glu Gln Leu Asn Lys Tyr Ala
305 310 315 320
Gly Ala Thr Leu Thr Ser Pro Leu Val Ile Gly Arg Glu Glu Gly Val

525 330 335
Val Thr Pro Ile Ser Ala Val Ser Val Asp Ser Asp Val Val Leu Val
340 345 350
Glu Tyr Tyr Ser Leu Thr Gly Asn Arg Val Asn Thr Leu Asn Arg Gly
355 360 365
Ile Asn Ile Val Arg Thr Ile Tyr Ala Asn Gly Lys Val Thr Thr Gln
370 375 380
Lys Val Leu Val Lys
385

<210> 127

<211> 1449

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample.

<400> 127

atgcaatatg gcaaattagt acgcttgcg gcactgacaa cagcgctggc attcagcgcc
60
ctggcacagg caaataacct ggcaattaca ggccccggag ccggggctga tggttccagc
120
aaagccagtg gcagtagcta cggcgatgt a a a a g a c g c c g atctgcaa a g
180
ccgcctgcta ataacggcca a a a g a t g t c g g t t a a g t g g a g c a g c t a a t
240
caggtaatac tgcgtgaaca gggcagtaat gtaaccagct ggcggctggt aaataatgac
300
aacggcgcag tattggcaac cggcaccagc attggcagca a c a g a a c g g t a a c t t c a g c
360
actgtaagca c g a a a a a a c t c a a t c t g g a a a t a c t a a c t g c c a t t
420
gctgagttt a a g t t t a t t t a a a t a c c a a t g g c g a a c c c t a c t g a c c c g
480
g a a c c a g g c c c g t a a c t t c t t g c g c a g c g t c t c a c a g g t
540
g g c a c t a c c g g c g a g t g g c a g c g t a a c a a c g c t c a a
600
a t g g t a t c g g c g t a c a a a a c c g g c c g c t a c t a t c c g g t t a a t g g c
660
a c t a t c a c a c c g g t a a t t c t g g t g t c a g t a a g t t t a c t t a a a g a
720
g t c a g c a t t a a t t g g t g t a g g a a c a a t g c g t t g t t t a a a a t c t g g
780
c g g g c c a a t a c g t t a t t a c c g c a c t t a c a a t g c g t t a a a a t c t
840
g a c g c t a t t a a c t t a c c t g g c g t a a t a t c t g g a t t a c c a a c g a t a
900
a a c a g c t g a a t g t g g t a a g a t t t t a c g a g c t t a a g c g t a a a a g a c g t a
960
g a t a a c g t a a c t a t c t c t t a a c t a c c t g c a c a g a c g t g t g g g c
1020
a g c a g t g a t t c c g a c a a c t a a c c g c g t a t t a c t t t c a c c a t a a c
1080
g t t a a t t c a c g c t g c a c t g t t t t g g c a g g g c c a t a t t a c a a t a c t
1140
a a c g a c a t t c a g g a c a c c g g t a t t a a c a g c g t g g t g g t a a t t g a a a
1200
a a t t g t g t t g a a a a c g c g a a a a c c c g a t a g t g c t t t t a t t c a g c g g
1260

tgggacaccc gcggtaatag cttagcaat attacctggc aggaataccc cagcgacggc
1320
attatcgccg ggccaaatgt acaaccaca gcggtgctaa acctgcccta cagcttaac
1380
ctgttaccca ccaaccaggc aaaagccac gtactggcca acgccccgt gaataaatgt
1440
agtttctaa
1449

<210> 128
<211> 482
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample.

<221> SIGNAL
<222> (1)...(24)

<221> DOMAIN
<222> (5)...(482)
<223> Catalytic domain

<400> 128
Met Gln Tyr Gly Lys Leu Val Arg Leu Ser Ala Leu Thr Thr Ala Leu
1 5 10 15
Ala Phe Ser Ala Leu Ala Gln Ala Asn Asn Leu Ala Ile Thr Gly Pro
20 25 30
Gly Ala Gly Ala Asp Gly Ser Ser Lys Ala Ser Gly Ser Ser Tyr Gly
35 40 45
Asp Val Lys Asp Ala Asp Leu Gln Ser Tyr Trp Gln Pro Pro Ala Asn
50 55 60
Asn Gly Gln Arg Val Ser Val Lys Trp Ser Ser Ala Ile Ser Val Asn
65 70 75 80
Gln Val Ile Leu Arg Glu Gln Gly Ser Asn Val Thr Ser Trp Arg Leu
85 90 95
Val Asn Asn Asp Asn Gly Ala Val Leu Ala Thr Gly Thr Ser Ile Gly
100 105 110
Ser Asn Arg Thr Val Asn Phe Ser Thr Val Ser Thr Lys Lys Leu Asn
115 120 125
Leu Glu Ile Leu Thr Ala Ser Gly Ala Pro Arg Ile Ala Glu Phe Glu
130 135 140
Val Tyr Leu Asn Thr Asn Gly Gly Asn Pro Pro Asn Pro Thr Asp Pro
145 150 155 160
Glu Pro Gly Pro Val Thr Ser Cys Ala Ala Ser Pro Gln Gly Tyr Ala
165 170 175
Ser Leu Asn Gly Gly Thr Thr Gly Gly Ser Gly Ser Asn Ala Val Thr
180 185 190
Val Thr Val Ser Thr Gly Ala Gln Met Val Ser Ala Leu Gln Asn Arg
195 200 205
Asp Leu Asn Arg Pro Leu Thr Ile Arg Val Asn Gly Thr Ile Thr Pro
210 215 220
Gly Asn Ser Gly Gly Val Ser Lys Phe Asp Ile Lys Asp Met Asp Asn
225 230 235 240
Val Ser Ile Ile Gly Val Gly Asn Asn Ala Leu Phe Asp Gly Ile Gly
245 250 255
Ile Lys Ile Trp Arg Ala Asn Asn Val Ile Ile Arg Asn Leu Thr Met
260 265 270
Arg Tyr Val Asn Thr Gly Asp Lys Asp Ala Ile Thr Ile Glu Gly Pro
275 280 285

Ala Arg Asn Ile Trp Ile Asp His Asn Glu Ile Tyr Asn Ser Leu Asn
290 295 300
Val Gly Lys Asp Phe Tyr Asp Glu Leu Ile Ser Gly Lys Lys Asp Val
305 310 315 320
Asp Asn Val Thr Ile Ser Tyr Asn Tyr Leu His Asp Ser Trp Lys Thr
325 330 335
Ser Leu Trp Gly Ser Ser Asp Ser Asp Asn Tyr Asn Arg Arg Ile Thr
340 345 350
Phe His His Asn His Trp His Lys Val Asn Ser Arg Leu Pro Leu Phe
355 360 365
Arg Phe Gly Gln Gly His Ile Tyr Asn Asn Tyr Tyr Asn Asp Ile Gln
370 375 380
Asp Thr Gly Ile Asn Ser Arg Met Gly Ala Val Ile Arg Ile Glu Asn
385 390 395 400
Asn Val Phe Glu Asn Ala Lys Asn Pro Ile Val Ser Phe Tyr Ser Ser
405 410 415
Gly Tyr Gly Tyr Trp Asp Thr Arg Gly Asn Ser Phe Ser Asn Ile Thr
420 425 430
Trp Gln Glu Tyr Pro Ser Asp Gly Ile Ile Ala Gly Pro Asn Val Gln
435 440 445
Pro Thr Ala Val Leu Asn Leu Pro Tyr Ser Phe Asn Leu Leu Pro Thr
450 455 460
Asn Gln Val Lys Ala His Val Leu Ala Asn Ala Gly Val Asn Lys Cys
465 470 475 480
Ser Phe

<210> 129
<211> 1173
<212> DNA
<213> Bacillus halodurans ATCC 27557

<220>

<400> 129
atgagttcga aaatcaaaaa tgcttatcaat aactatagtt ttattattct cgatggctcg
60
aatggcgatt ttacagtcaa tgctacaatg agtttcagtg gcaagtccaa taaaactatt
120
gtgggtgtga acaatgctcg cctatgcacc aaattctaca ttacgcccga gataaaaagaa
180
gccctcgatg ctgccatgtt gaaatctaag agctcaagta gtggcactgg tggacttctt
240
tctaatggta cgtcggtcag tgaggctcgc gaattggcta ctcgtcaaac gttgattgtat
300
tatctcgccg atagctcaga atcgtatcag aaagctggta tctttggctt tagcaactgc
360
actaatatta ttatgcgcaa cattgtttc gttggccctg gtccatgcga tgttaggtggc
420
aacgacttgc ttgcgtcgt tggttcaag catttctggg tcgaccactg cgagtttacc
480
gatggcatcg atggcaactt cgacatcacc aagagtagcg acttcaacac cgtttcgtgg
540
tgcactttca gctataccga ccgcgcatac gaccacatga attccaacctt tattggtagc
600
tccgatttcag agaatgcggc ttaccttaat actactatgg cttccaaacgt ctggggcaat
660
aagtgcatac agcgtatgcc tatggctcgt gccggtaata ttcacctcgt aaataattat
720
tacaactgcc ctggcaatag cgtggctgtg aatcctcgca aaaactcaga atttttggtg
780

gagaattgct atttcgcaag tggcgtaag cctttctcgc agagccgcgc tcttagctat
840
ctatttatcg attgctacac cgaagatact tacacccccc agaaaatctgg ctctactacg
900
gtgccataca catatagcaa attcgatgct cagcttggc ccgagcaact cacccaaattc
960
gctggcgcaa cattgacttc gccgcttggtt attggtaggg aatctgagaa tgttacacca
1020
gtctcagtca ttgctgcaaa tagcgatgtc atatctgttag aatactattc gctcactggc
1080
aagcgcacca aacgaccaac taaaggcatc aatatcgta gaactattt tactaacggc
1140
aacgtgacca cacaaggt cttggtaaaa taa
1173

<210> 130

<211> 390

<212> PRT

<213> Bacillus halodurans ATCC 27557

<220>

<221> DOMAIN

<222> (38)...(326)

<223> Catalytic domain

<400> 130

Met	Ser	Ser	Lys	Ile	Lys	Asn	Ala	Ile	Asn	Asn	Tyr	Ser	Val	Ile	Ile
1				5					10					15	
Leu	Asp	Gly	Ser	Asn	Gly	Asp	Phe	Thr	Val	Asn	Ala	Thr	Met	Ser	Phe
							20		25					30	
Ser	Gly	Lys	Ser	Asn	Lys	Thr	Ile	Val	Gly	Val	Asn	Asn	Ala	Arg	Leu
							35		40				45		
Cys	Thr	Lys	Phe	Tyr	Ile	Thr	Pro	Glu	Ile	Lys	Glu	Ala	Leu	Asp	Ala
							50		55			60			
Ala	Asp	Val	Lys	Ser	Lys	Ser	Ser	Ser	Gly	Thr	Gly	Gly	Thr	Leu	
							65		70			75		80	
Ser	Asn	Gly	Thr	Ser	Val	Ser	Glu	Ala	Arg	Glu	Leu	Ala	Thr	Arg	Gln
							85		90			95			
Thr	Leu	Ile	Asp	Tyr	Leu	Gly	Asp	Ser	Ser	Glu	Ser	Tyr	Gln	Lys	Ala
							100		105			110			
Gly	Ile	Phe	Gly	Phe	Ser	Asn	Cys	Thr	Asn	Ile	Ile	Met	Arg	Asn	Ile
							115		120			125			
Val	Phe	Val	Gly	Pro	Gly	Pro	Cys	Asp	Val	Gly	Gly	Asn	Asp	Leu	Leu
							130		135			140			
Ser	Leu	Val	Gly	Ser	Lys	His	Phe	Trp	Val	Asp	His	Cys	Glu	Phe	Thr
							145		150			155		160	
Asp	Gly	Ile	Asp	Gly	Asn	Phe	Asp	Ile	Thr	Lys	Ser	Ser	Asp	Phe	Asn
							165		170			175			
Thr	Val	Ser	Trp	Cys	Thr	Phe	Ser	Tyr	Thr	Asp	Arg	Ala	Tyr	Asp	His
							180		185			190			
Met	Asn	Ser	Asn	Leu	Ile	Gly	Ser	Ser	Asp	Ser	Glu	Asn	Ala	Ala	Tyr
							195		200			205			
Leu	Asn	Thr	Thr	Met	Ala	Ser	Asn	Val	Trp	Gly	Asn	Lys	Cys	Asn	Gln
							210		215			220			
Arg	Met	Pro	Met	Ala	Arg	Ala	Gly	Asn	Ile	His	Leu	Val	Asn	Asn	Tyr
							225		230			235		240	
Tyr	Asn	Cys	Pro	Gly	Asn	Ser	Val	Ala	Val	Asn	Pro	Arg	Lys	Asn	Ser
							245		250			255			
Glu	Phe	Leu	Val	Glu	Asn	Cys	Tyr	Phe	Ala	Ser	Gly	Val	Lys	Pro	Phe
							260		265			270			

Ser Gln Ser Gly Ala Leu Ser Tyr Leu Phe Ile Asp Cys Tyr Thr Glu
275 280 285
Asp Thr Tyr Thr Phe Gln Lys Ser Gly Ser Thr Thr Val Pro Tyr Thr
290 295 300
Tyr Ser Lys Phe Asp Ala Gln Leu Val Pro Glu Gln Leu Thr Gln Phe
305 310 315 320
Ala Gly Ala Thr Leu Thr Ser Pro Leu Val Ile Gly Arg Glu Ser Glu
325 330 335
Asn Val Thr Pro Val Ser Val Ile Ala Asn Ser Asp Val Ile Ser
340 345 350
Val Glu Tyr Tyr Ser Leu Thr Gly Lys Arg Ile Ser Glu Pro Thr Lys
355 360 365
Gly Ile Asn Ile Val Arg Thr Ile Tyr Thr Asn Gly Asn Val Thr Thr
370 375 380
Gln Lys Val Leu Val Lys
385 390

<210> 131

<211> 972

<212> DNA

<213> Unknown

<220>

<223> Obtained from an environmental sample

<400> 131

atggcaaaaa tactgacatt agacggtaac ccggccgc ca gctggttcaa c aaatccagg
60
accaagtggaa atagcagccg cgccgatatt gtgttgtctt accagcaatc caacggcggt
120
tggccaaaaa acctggatta caactcagtg agcgcaggca atggcgggag cgacagcggc
180
accatcgaca atggtgcaac cattaccgaa atggtttacc tcgctgaaat ttataaaaac
240
ggcggcaaca ccaaataatcg ccatgcagtg cgcatgcag c aaactttt agttagctcg
300
caatacagca caggcgcc tt gccacaattt tatccgttga aaggcggcta tgcggatcat
360
gcgaccc ttta acgataacgg catggcgtac gcgttgacgg tattggattt cgcagtaaac
420
aaacgcgcac cgtttgataa cgacatttc tctgattctg atcggcgaa attcaaaaacc
480
gctgttgcca aaggtgttga ttacatttta aaagcgcagt ggaaacaaaa tggaaaactc
540
actgcattttt gtgcacaaca cggcgtac gattaccaac c gaaaaaagc g cgcgcattat
600
gaatttggaaat cattgagtgg tagcgagtcg gtcggcattc tcgccttctt gatgacc
660
ccacaaaccg cgcaaatcga agcggcggtc aaggcgggtg tcaactggtt cggcagtc
720
aatacttatt tggcttaacta cacttacgt tcatcaaaag cgtctaccaa cccgatttg
780
tataaatccg gaagcagaat gtggtatcgc ttctatgacc tgaacaccaa cctgtggtt
840
tttagtgatc gcatggcag caaattctat gatatcaccc aatgtcaga agagcgtc
900
accggttata gctgggggtgg ctcttacggt gaatcttata ttcccttcgc gcaaaaaagt
960
ggttatctgt ag
972

<210> 132
<211> 323
<212> PRT
<213> Unknown

<220>
<223> Obtained from an environmental sample

<400> 132
Met Ala Lys Ile Leu Thr Leu Asp Gly Asn Pro Ala Ala Ser Trp Phe
1 5 10 15
Asn Lys Ser Arg Thr Lys Trp Asn Ser Ser Arg Ala Asp Ile Val Leu
20 25 30
Ser Tyr Gin Gln Ser Asn Gly Gly Trp Pro Lys Asn Leu Asp Tyr Asn
35 40 45
Ser Val Ser Ala Gly Asn Gly Gly Ser Asp Ser Gly Thr Ile Asp Asn
50 55 60
Gly Ala Thr Ile Thr Glu Met Val Tyr Leu Ala Glu Ile Tyr Lys Asn
65 70 75 80
Gly Gly Asn Thr Lys Tyr Arg Asp Ala Val Arg Arg Ala Ala Asn Phe
85 90 95
Leu Val Ser Ser Gln Tyr Ser Thr Gly Ala Leu Pro Gln Phe Tyr Pro
100 105 110
Leu Lys Gly Gly Tyr Ala Asp His Ala Thr Phe Asn Asp Asn Gly Met
115 120 125
Ala Tyr Ala Leu Thr Val Leu Asp Phe Ala Val Asn Lys Arg Ala Pro
130 135 140
Phe Asp Asn Asp Ile Phe Ser Asp Ser Asp Arg Ala Lys Phe Lys Thr
145 150 155 160
Ala Val Ala Lys Gly Val Asp Tyr Ile Leu Lys Ala Gln Trp Lys Gln
165 170 175
Asn Gly Lys Leu Thr Ala Trp Cys Ala Gln His Gly Ala Thr Asp Tyr
180 185 190
Gln Pro Lys Lys Ala Arg Ala Tyr Glu Leu Glu Ser Leu Ser Gly Ser
195 200 205
Glu Ser Val Gly Ile Leu Ala Phe Leu Met Thr Gln Pro Gln Thr Ala
210 215 220
Gln Ile Glu Ala Ala Val Lys Ala Gly Val Asn Trp Phe Ala Ser Pro
225 230 235 240
Asn Thr Tyr Leu Ala Asn Tyr Thr Tyr Asp Ser Ser Lys Ala Ser Thr
245 250 255
Asn Pro Ile Val Tyr Lys Ser Gly Ser Arg Met Trp Tyr Arg Phe Tyr
260 265 270
Asp Leu Asn Thr Asn Arg Gly Phe Phe Ser Asp Arg Asp Gly Ser Lys
275 280 285
Phe Tyr Asp Ile Thr Gln Met Ser Glu Glu Arg Arg Thr Gly Tyr Ser
290 295 300
Trp Gly Gly Ser Tyr Gly Glu Ser Ile Ile Ser Phe Ala Gln Lys Val
305 310 315 320
Gly Tyr Leu

<210> 133
<211> 972
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetically generated polynucleotide

<400> 133

atggcaaaaa tactgacatt agacggtaac ccggccgcca gctggttcaa caaatccagg
60
accagaagtggaa atagcagccg cgccgatatt gtgttgtctt accagcaatc caacggcggt
120
tggccaaaaaa acctggatta caactcagtg agcgcaggca atggcgggag cgacagcggc
180
accatcgaca atggtgcaac cattaccgaa atggtttacc tcgctgaaat ttataaaaac
240
ggcggcaaca ccaaataatcg cgatgcagtg cgagcagcag caaactttt agttagctcg
300
caatacagca caggcgcctt gccacaattt tatccgttga aaggcggcta tcatgatcat
360
gcgacctta acgataacgg catggcgtac gogttgacgg tattggattt cgagtaaac
420
aaacgcgcac cgtttgataa cgacatttc tctgattctg atcggcgaa attcaaaaacc
480
gctgtgcca aaggtgtgga ttacatTTTaa aagcgcagt ggaaacaaaa tggaaaactc
540
actgcattgt gtgcacaaca cggcgtttg gattaccaac cgaaaaagg tcgcgcTTat
600
gaattggaat cattgagtgg taaggagtgc gtcggcattc tcgccttctt gatgacccaa
660
ccacaaaccg cgcaaatcga agcggcggtc aaggcgggtg tcaactgggt cgccagtcca
720
aatacttatt tggctaacta cacttacgt tcatcaaaag cgtctaccaa cccgatttg
780
tataaaaaagg gaagcagaat gtggtatcgc ttctatgacc tgtataccaa ccgtggTTc
840
tttagtgatc gcgatggcag caaattctat gatatcaccc aaatgtcaga agagcgtcgc
900
accggTTata gctggggTgg ctctggggT gaagttatta ttccTTcgc gcaaaaagtq
.960
ggttatctgt ag
972

<210> 134

<211> 323

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetically generated polypeptide

<400> 134

Met	Ala	Lys	Ile	Leu	Thr	Leu	Asp	Gly	Asn	Pro	Ala	Ala	Ser	Trp	Phe
1														15	
Asn	Lys	Ser	Arg	Thr	Lys	Trp	Asn	Ser	Ser	Arg	Ala	Asp	Ile	Val	Leu
														20	30
Ser	Tyr	Gln	Gln	Ser	Asn	Gly	Gly	Trp	Pro	Lys	Asn	Leu	Asp	Tyr	Asn
														35	45
Ser	Val	Ser	Ala	Gly	Asn	Gly	Gly	Ser	Asp	Ser	Gly	Thr	Ile	Asp	Asn
														50	60
Gly	Ala	Thr	Ile	Thr	Glu	Met	Val	Tyr	Leu	Ala	Glu	Ile	Tyr	Lys	Asn
														65	80
Gly	Gly	Asn	Thr	Lys	Tyr	Arg	Asp	Ala	Val	Arg	Arg	Ala	Ala	Asn	Phe
														85	95
Leu	Val	Ser	Ser	Gln	Tyr	Ser	Thr	Gly	Ala	Leu	Pro	Gln	Phe	Tyr	Pro
														100	110
Leu	Lys	Gly	Gly	Tyr	His	Asp	His	Ala	Thr	Phe	Asn	Asp	Asn	Gly	Met
														115	125
Ala	Tyr	Ala	Leu	Thr	Val	Leu	Asp	Phe	Ala	Val	Asn	Lys	Arg	Ala	Pro

130 135 140
Phe Asp Asn Asp Ile Phe Ser Asp Ser Asp Arg Ala Lys Phe Lys Thr
145 150 155 160
Ala Val Ala Lys Gly Val Asp Tyr Ile Leu Lys Ala Gln Trp Lys Gln
165 170 175
Asn Gly Lys Leu Thr Ala Trp Cys Ala Gln His Gly Ala Leu Asp Tyr
180 185 190
Gln Pro Lys Lys Gly Arg Ala Tyr Glu Leu Glu Ser Leu Ser Gly Lys
195 200 205
Glu Ser Val Gly Ile Leu Ala Phe Leu Met Thr Gln Pro Gln Thr Ala
210 215 220
Gln Ile Glu Ala Ala Val Lys Ala Gly Val Asn Trp Phe Ala Ser Pro
225 230 235 240
Asn Thr Tyr Leu Ala Asn Tyr Thr Tyr Asp Ser Ser Lys Ala Ser Thr
245 250 255
Asn Pro Ile Val Tyr Lys Lys Gly Ser Arg Met Trp Tyr Arg Phe Tyr
260 265 270
Asp Leu Tyr Thr Asn Arg Gly Phe Phe Ser Asp Arg Asp Gly Ser Lys
275 280 285
Phe Tyr Asp Ile Thr Gln Met Ser Glu Glu Arg Arg Thr Gly Tyr Ser
290 295 300
Trp Gly Gly Ser Trp Gly Glu Val Ile Ile Ser Phe Ala Gln Lys Val
305 310 315 320
Gly Tyr Leu