

Inland Routing Model Development for Compatibility with the Next Generation Water Resources Modeling Framework and Basic Model Interface Operability

S. Horvath^{1,2}, D. Kim^{1,3}, N. Mizukami^{1,4}, D. Johnson¹, N. Frazier^{1,2}, A. Torabi^{1,2}, J. Zach^{1,2}, T.

¹NOAA OWP National Water Center. ²Lynker Technologies.

³AWI Univ. of Alabama. ⁴National Center for Atmospheric Research

Why Improve Inland Routing?

Facilitate and encourage community engagement to enhance channel/reservoir routing models and data assimilation

- Continental-scale framework Tree-Based Channel Routing (t-route) for 1-D channel and reservoir routing solutions and data assimilation.
- Parallel computing using stream junction orders and independent networks.
- **Heterogenous application** of channel routing models.
- BMI compatible
- Hydrofabric Agnostic
- Modular Design

Framework for Channel and Reservoir Routing

- Continental-scale framework for 1-D channel and reservoir routing solutions with vector-based river network data.
- Parallel computing enabled by breaking into independent sub-networks using junctions orders.
- Reservoir routing based on a simple water balance.
- Streamflow nudging using observed data.
- Data Assimilation using various types of observed outflow data.

Figure 1. Independent sub-networks covering CONUS (a) and California (b) for computing diffusive wave as well as parallel computing of MC

Heterogeneous Channel Routing with t-route

	Muskingum-Cunge	Diffusive wave
Domain	Individual stream segment	Independent
Domain	mamada sa sa masa masa mana	sub-network
Compute Process	Parallel on CONUS using junction order and short-time step	Serial on a sub-network using junction order
Routing Direction	Upstream to downstream	Both directions
Numerical Scheme	One-dimensional explicit scheme	Implicit Crank-Nicolson scheme

Figure 2. t-route configured junction orders for computing diffusive wave as well as parallel computing of MC

Inland Hydraulics Module Library in the NextGen Framework

Basic Model Interface

- Simulate full CONUS routing via BMI functions
- Pass observations/forecasts between BMI models

```
DAforcing = bmi_DAforcing.bmi_DAforcing()
DAforcing.initialize(
   bmi_cfg_file='Standard_AnA.yaml')

troute = bmi_troute.bmi_troute()
troute.initialize(
   bmi_cfg_file='Standard_AnA.yaml')
...
troute.update_until(n)
```


Standalone Reservoir Modules with BMI

- Simulate a single RFC reservoir via BMI functions
- Aggregate inflow from multiple incoming flowpaths
- Assimilate gage observations/forecasts

Figure 4. RFC reservoir DA for mid-range forecast using BMI

t-route in the Next Generation National Water Model

Next Generation Water Resources Modeling Framework Hydrofabric

- flowpath to nexus
- nexus to flowpath (same numeric IDs)
- Single flowpath between nexuses
- Github

NHDPlusV2 Hydrofabric

- link to link
- Single or multiple links between junctions

Common Network Features:

- Vector-based river network
- Directed acyclic graph (upstream to downstream)
- Flowpaths can merge downstream, but cannot split downstream

Acceptable file types:

- NetCDF
- Geopackage
- Json
- Geojson
- More are possible...

t-route in the Next Generation National Water Model

Network Agnostic

LowerColorado_TX run on NHDNetwork and HYFeatures for comparison

Figure 5. Lower Colorado River, TX test domain and t-route computed hydrographs for both hydrofabrics

Summary

Facilitate community engagement to enhance channel/reservoir models and data assimilation

- Continental scale, parallel computing of inland routing
 - Channel and reservoir routing
 - Data assimilation
- Basic Model Interface integration to conform to the Next Generation Water Resources Modeling Framework
 - Maintains functionality to call from command line
 - Separate reservoir module (can still operate internally in t-route)
- Internal modularity for fluid (pardon the pun!) configurations
 - Heterogeneous application of channel routing schemes
 - Network agnostic

Questions?

