Hyperspectral Imagery

CONTENTS

- · Hyperspectral Imagery
- · Issues
- General Framework
- Examples

- Simultaneous acquisition of hundreds of spectral wavelengths for each image pixel.
- □ Bands are continuous, regularly spaced.
- □ Spectral resolution ~10nm.

Hyperspectral Image

EO-1 Hyperion

3

4

220 Band AVIRIS image Indian Pine Test Site

Reference

AVIRIS: 512×217 , 204 Bands $(0.4-2.5\,\mu\text{m})$, $3.7\,\text{m}$ per pixel, 16-bit

Broccoli green weeds 1	en weeds 1	Broccoli green weeds 2	Fallow	Fallow rou	Fallow rough plow	Fallow smoot
Stubble	Celeny	Grapes untrained	Soil vineyard develop	ird develop	Corn ser	Corn senesced green weeds
Lettuce n	ettuce romaine 4 weeks		ettuce romaine 5 we	eks	Lettuce	romaine 6 weeks
Lettuce re	omaine 7 wee	ks Vineyard untra	V V	Vineyard vertical trellis	al trellis	Unlabeled

Reference

ROSIS: $610\times340,\,103$ Bands (0.43–0.86 $\mu\mathrm{m}),\,1.3\,\mathrm{m}$ per pixel, 14-bit

Reference

PaviaU

metal sheets	Unlabeled	
Painted	Shadow	
Trees	ing bricks	
Gravel	Self-block	
Meadows	Bitumen	
Asphalt	Bare Soil	
		•

PaviaC

ROSIS: 400×400 , 102 Bands $(0.43-0.86 \, \mu m)$, 1.3 m per pixel, 14-bit

Water	Trees	Meadows	Self-blocki	ng bricks
Bare Soil	Asphalt	Bitumen	Shadow	Unlabeled

—Clear Water —100 ppm —200 ppm —300 ppm —400 ppm 1500

- □ Possibility of more accurate discrimination among materials of interest.
- ☐ Higher spectral resolution, thus giving the opportunity to push further the information extraction capability.
- □ Inter class and intra class delineation.
- □ Lots of application in diverse fields.

□ Huge quantity of data to store.

- □ Computationally intensive.
- □ Exhibit redundant information.
- performances at some reduced data dimensionality □ Hughes phenomenon: classifiers achieve better for a given sample pattern size.
- Curse of dimensionality: the representation space becomes very sparse as the dimensionality of the data increases.

Fu *et al.* (1969); Richards (2013)

5 Classes 400 training pixels per class

Additional features contribute to discrimination

_∞

9 Ŋ 4

7

40

Number of Features

Accuracy degradation because the Hughes effect offsets the benefit of additional features

100

Issues

90

80

20

Classification Accuracy %

09

50

Issues

15

□ Problem 1: Visualization and tabularization of data becomes extremely difficult.

■ ● training data

- Problem 1: Visualization and tabularization of data becomes extremely difficult.
- point in high dimension becomes poor (Beyer et al. 1999) Problem 2: Discrimination between nearest and farthest

Kriegel et al. (2009)

Parsons, Haque and Liu (2004)

Example

Parsons, Haque and Liu (2004)

Issues

Problem 1: Visualization and tabularization of data becomes extremely difficult.

- point in high dimension becomes poor (Beyer et al. 1999). Problem 2: Discrimination between nearest and farthest
- Problem 3: Subset of some bands may be relevant to one cluster and subset of some other bands may be relevant to other cluster, and so on.

Dimension c

Normally distributed, $\mu = 0.5$ and -0.5 in dim a and 0.5 Other two clusters in dim b and c (same manner) in dim *b*, and $\sigma = 0.2$, dim $c \mu = 0$ and $\sigma = 1$ 4 clusters of 100 data points each

400 data points

Kriegel et al. (2009)

Dimension a

Dimension c

Dimension b

香花 三十

(a) Dims a & b

22

Parsons, Haque and Liu (2004)

□ Problem 1: Visualization and tabularization of data becomes extremely difficult.

point in high dimension becomes poor (Beyer et al. 1999). Problem 2: Discrimination between nearest and farthest

Problem 3: Subset of some bands may be relevant to one cluster and subset of some other bands may be relevant to other cluster, and so on.

Problem 4: Large number of bands are correlated.

Kriegel et al. (2009)

Color coded visualization of correlation matrix. Red color indicates high correlation and blue color indicates low correlation.

General Framework

Thematic Map

Supervised Classification

infrared

infrared

visible red

0.8

Soil 1.2

1.0

 χ_2

 $\frac{\lambda_1}{\lambda_1}$

27

Classification

Examples

k-means Salinas

0.7453 ₹ Z

0.6963 Purity

k-means

Reference Image

Clustering

Clustering Evaluation

Shadow	Bitumen	Asphalt	Bare soil	Bricks	Meadows	Trees	Water	Unlabelled
9	7			4			4	
18.0		4	7	/	/	1		
4	7	4		\ \				
1.	1	1	Y		7		1	
Í	//_	^	*	7/				

Shadow	Bitumen	Asphalt	Bare soil	Bricks	Meadows	Trees	Water	Unlabelled	
9		4	1		/	1		3	
		1	Q	T	2/		A. 500 .		
1		**	P . 1	1	1		1		

Reference Image

k-means + PCA

k-means

Pavia City

0.7598 0.7677

0.8268 0.8484

k-means + PCA k-means

₹ Z

Purity

 $MI(\Omega, \mathbb{C}) = \sum_{k} \sum_{j} p(\omega_k \cap c_j) \log_2 \frac{p(\omega_k \cap c_j)}{p(\omega_k) p(c_j)}$ $NMI(\Omega,\mathbb{C}) = \frac{MI(\Omega,\mathbb{C})}{\max(H(\Omega),H(\mathbb{C}))}$

Normalized Mutual Information^{1,2}

(NMI)

Purity1

 $H(\Omega) = -\sum p(\omega_k) \log_2 p(\omega_k)$

 $\Omega = \{\omega_1, \omega_2, ..., \omega_k\}$ is the set of clusters

 $\mathbb{C} = \left\{c_1, c_2, ..., c_j\right\}$ is the set of classes

obtained from reference image

N is total number of pixel samples

$$\Omega = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 2 & 2 & 1 \end{bmatrix}; \mathbb{C} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix}$$

$$purity = 0.7500$$
 $NMI = 0.1888$

purity = 0.7500

Purity

34

Normalized Mutual Information (NMI)

Application of clustering in Supervised

Classification

35

$$NMI(\Omega, \mathbb{C}) = \frac{MI(\Omega, \mathbb{C})}{\max(H(\Omega), H(\Omega))}$$
$$purity(\Omega, \mathbb{C}) = \frac{1}{N} \sum_{k} \max_{j} \left| \omega_{k} \cap c_{j} \right|$$
$$H(\Omega, \mathbb{C}) = \sum_{k} \sum_{j} p(\omega_{k} \cap c_{j}) \log_{2}$$
$$H(\Omega) = -\sum_{j} p(\omega_{k}) \log_{2} p(\omega_{k})$$

$$MI(\Omega, \mathbb{C}) = \sum_{k} \sum_{j} p(\omega_k \cap c_j) \log_2 \frac{p(\omega_k \cap c_j)}{p(\omega_k) p(c_j)}$$
$$H(\Omega) = -\sum_{k} p(\omega_k) \log_2 p(\omega_k)$$

 $\Omega = \left\{ {{{\alpha _1},{\omega _2},...,{\omega _k}}} \right\}$ is the set of clusters $\mathbb{C} = \left\{c_1, c_2, ..., c_j\right\}$ is the set of classes obtained from reference image N is total number of pixel samples

Classification Strategy II

Classification Strategy I

Hyperspectral Imagery Supervised Classification Assessment Accuracy

Thank You