1 Events and Probabilities

- Ω is a set of outcomes ω of a stochastic experiment. It is referred to as the sample space.
- \mathcal{A} is a set of events A. An event A is a subset of the sample space Ω . \mathcal{A} is a σ -algebra on Ω , which means
 - $-\mathcal{A}$ is non-empty
 - If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$, where $A^c = \Omega \setminus A$
 - If $A_1, A_2, ..., A_n \in \mathcal{A}$ then $\bigcup_{n=1}^{\infty} A_n$.
- The function $P: \mathcal{A} \to [0,1]$ is a probability measure, if
 - $-P(\Omega)=1$
 - $-P(A^c) = 1 P(A)$
 - $-P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n) \text{ for } A_i \cap A_j = \emptyset \text{ if } i \neq j.$
- Conditional probability, Baye's rule

2 Distribution Functions

2.1 Random Variable

- A random variable (RV) is a function $X : \Omega \to \mathbb{R}$ such that $\{\omega \in \Omega : X(\omega) \leq a\}$ is an event for each $a \in \mathbb{R}$.
- Discrete RV: the image of X is finite or countably infinite.
- Continuous RV: the image of X is uncountably infinite.

2.2 Discrete

• Cumulative Distribution Function:

$$F(x_i) = P(\{\omega \in \Omega : X(\omega) \le x_i\}) \tag{1}$$

• Probability Density Function:

$$f(x_i) = P(\{\omega \in \Omega : X(\omega) = x_i\})$$
(2)

• Interchange:

$$F(x_j) = \sum_{i < j} f(x_i) \tag{3}$$

$$f(x_j) = F(x_j) - F(x_{j-1})$$
(4)

2.3 Continuous

• Cumulative Distribution Function:

$$F(x) = P(\{\omega \in \Omega : X(\omega) \le x\}) \tag{5}$$

• Probability Density Function:

$$f(x_j) = \lim_{\Delta x \to 0} \frac{P(\{\omega \in \Omega : x - \Delta x < X(\omega) \le x\})}{\Delta x}$$
 (6)

• Interchange:

$$F(x) = \int_{-\infty}^{x} f(x)dx \tag{7}$$

$$f(x) = \frac{dF}{dx} \tag{8}$$

2.4 Joint Distribution Functions

Definitions, marginal, conditional, independent, uncorrelated.

3 Moments

• Expectation E[Q(X)] for discrete random variable

$$E[Q(X)] = \sum_{i \in I} Q(x_i) f(x_i)$$
(9)

where $I = \{0, \pm 1, \pm 2, ...\}$ and $Q : \mathbb{R} \to \mathbb{R}$.

• Expectation E[Q(X)] for continuous random variable

$$E[Q(X)] = \int_{-\infty}^{\infty} Q(x)f(x)dx \tag{10}$$

where $Q: \mathbb{R} \to \mathbb{R}$.

- nth raw moments are defined by $E(X^n)$.
- nth central moments are defined by $E\{[X E(X)]^n\}$
- The mean μ is given by $\mu = E(X)$.
- The variance σ^2 is given by $\sigma^2 = \text{Var}(X) = E\{[X E(X)]^2\}.$
- Some properties of variance:
 - For a being a constant

$$Var(aX) = a^{2}Var(X) \tag{11}$$

– For $X_1, X_2, X_3,, X_n$ being uncorrelated

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) \tag{12}$$

4 Random sequences

4.1 Convergence

4.2 Law of Large Numbers

Given the sequence

$$A_n = \frac{1}{n}S_n = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$$
(13)

where the random variables X_1 , X_2 , X_3 , ..., are independent and identically distributed, each with mean μ , then the Law of Large Numbers states that

$$A_n \to \mu \quad \text{as} \quad n \to \infty.$$
 (14)

4.3 Central Limit Theorem

Suppose $\{X_1, X_2, ...\}$ is a sequence of i.i.d. random variables, with $E[X_j] = \mu$ and $Var[X_j] = \sigma^2$ for all j. Then as n approaches infinity

$$Z_n = \frac{A_n - \mu}{\sigma / \sqrt{n}} \tag{15}$$

converges in distribution to a standard Gaussian random variable. That is, A_n becomes normally distributed, with mean μ and variance σ^2/n .

5 Statistical tests

5.1 Confidence Intervals

Consider an interval whose center A_n is random, and has a given deterministic width 2b. Given a specific value for b, there is a probability that such interval will enclose an unknown but deterministic parameter μ , and is denoted by $P(A_n - b \le \mu \le A_n + b)$. For example, if the width of the interval is infinite, then the probability that such interval will enclose μ is 1, whereas if its length is very small, then the probability that it will enclose μ would be very low. Such intervals associated with a given probability are referred to as confidence intervals.

Consider a standard normal RV Z. We can find numbers -z and z between which Z lies with probability $1 - \alpha$, that is

$$P(-z \le Z \le z) = 1 - \alpha. \tag{16}$$

The way we find such value z is by noting that the above requires $P(Z > z) = P(Z < -z) = \alpha/2$, because the distribution for Z is symmetric. Thus, $P(Z \le z) = 1 - \alpha/2$. Given an α , we can use a table for a standard normal distribution to obtain the value of z. Assume A_n is normally distributed, which is a fair assumption due to the Central Limit Theorem, and has mean μ and variance σ^2/n . Thus, $(A_n - \mu)/(\sigma/\sqrt{n})$ will have a standard normal distribution as $n \to \infty$, which allows us to write

$$P(-z \le \frac{A_n - \mu}{\sigma/\sqrt{n}} \le z) = 1 - \alpha. \tag{17}$$

Rewriting the inequality above, we obtain

$$P(A_n - z\frac{\sigma}{\sqrt{n}} \le \mu \le A_n + z\frac{\sigma}{\sqrt{n}}) = 1 - \alpha.$$
 (18)

The above is thus the probability that the interval with center A_n and width $2z\sigma/\sqrt{n}$ will enclose μ . Such probability is equal to $1-\alpha$, and hence the interval is referred to as a $100(1-\alpha)\%$ interval.

6 Stochastic Process

Consider the discrete-time stochastic process that consists of measuring the height of a random student in a classroom every minute that passes by. The outcome w could be a vector consisting of the students that were picked, for example

$$w = \begin{pmatrix} \text{George} \\ \text{Paul} \\ \text{Monica} \end{pmatrix} \tag{19}$$

The time dependence of the stochastic process would be as follows. For t = 1, $X_t(1, w)$ picks the first element of w and compares against a table that tells the of height such student, in this case George. For t = 2, $X_t(2, w)$ picks the second element of w and compares against the table to obtain the corresponding height, in this case the height of Paul. And so on for t = 3. This thus shows how at each of the different times we have a different random variable, each of which acting on different elements of w. This example also shows how we could chose a different w, namely

$$w = \begin{pmatrix} \text{Hilary} \\ \text{Sam} \\ \text{John} \end{pmatrix} \tag{20}$$

to obtain a different sample path of the stochastic process.