Opérations sur les ensembles, dénombrement.

1. Soient E, F et G des ensembles. Soient $f: E \to F$ et $g: F \to G$ des applications. Montrer que si $g \circ f$ est injective, alors f est injective. Montrer que si $g \circ f$ est surjective, alors g est surjective.

Montrer qu'une application $f: E \to F$ est bijective si et seulement s'il existe une application $h: F \to E$ telle que $h \circ f = \mathrm{id}_E$ et $f \circ h = \mathrm{id}_F$.

C'est parfois le moyen le plus simple de prouver qu'une application est bijective.

2. Soit $f: E \to F$ une application. Soit A une partie de E. Montrer par des contrexemples qu'on n'a en général ni $f(A^c) \subset f(A)^c$ ni $f(A)^c \subset f(A^c)$.

Déterminer une condition nécessaire et suffisante sur f pour que pour toute partie B de E on ait $f(B^c) \subset f(B)^c$. Faire de même avec l'inclusion contraire.

3. Soit E un ensemble. Pour toute partie A de E, on définit la fonction indicatrice de A et on note $\mathbb{1}_A$ la fonction $\mathbb{1}_A: E \to \{0,1\}$ définie par

$$\forall x \in E, \mathbb{1}_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon.} \end{cases}$$

Montrer que l'application de $\mathscr{P}(E)$ dans $\{0,1\}^E$ qui à une partie associe sa fonction indicatrice est une bijection. En déduire que $\mathscr{P}(E)$ est fini si E est fini et calculer son cardinal.

4. Soit E un ensemble. Soient A et B des parties de E. Exprimer $\mathbb{1}_{A^c}$ en fonction de $\mathbb{1}_A$. Exprimer $\mathbb{1}_{A\cap B}$ en fonction de $\mathbb{1}_A$ et $\mathbb{1}_B$. En écrivant $A\cup B$ en fonction de A^c et B^c , exprimer $\mathbb{1}_{A\cup B}$ en fonction de $\mathbb{1}_A$ et $\mathbb{1}_B$.

On observera que si A est finie, $|A| = \sum_{x \in E} \mathbb{1}_A(x)$.

5. Soit E un ensemble. Soient A_1, \ldots, A_n des parties de E. Montrer que

$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \ldots < i_k \le n} |A_{i_1} \cap \ldots \cap A_{i_k}|.$$

C'est la formule d'inclusion-exclusion.

En appliquant cette formule à un ensemble et à des parties bien choisies, établir une formule pour le nombre de surjections de $\{1, \ldots, p\}$ dans $\{1, \ldots, n\}$ pour tous n et p entiers.

6. Soit E un ensemble fini de cardinal n. Déterminer le nombre d'applications bijectives $f: E \to E$ telles que pour tout $x \in E$ on ait $f(x) \neq x$.

Quelle est la limite, lorsque n tend vers l'infini, de la proportion de bijections de E dans E qui ont cette propriété?

7. Avec un jeu de 32 cartes, combien peut-on former de paires? De brelans? De full (cinq cartes contenant une paire et un brelan)?

En tirant trois cartes successivement avec remise, de combien de façons peut-on tirer trois cartes de la même hauteur? En tirant cinq cartes successivement avec remise, de combien de façons peut-on tirer un full?

8. Jusqu'en 2008, un tirage du loto était un ensemble de six nombres entiers distincts compris entre 1 et 49. Combien y avait-il de tirages possibles? Pour tout entier n compris entre 0 et 6, déterminer le nombre de ces tirages ayant exactement n numéros communs avec un tirage donné. Combien y avait-il de tirages ne contenant pas deux nombres consécutifs?

Depuis 2008, un tirage est une paire formée d'un ensemble de cinq entiers distincts compris entre 1 et 49 et d'un entier compris entre 1 et 10. Y a-t-il plus ou moins de tirages possibles qu'avant 2008? Combien y a-t-il de tirages formés de six nombres distincts?

- **9.** De combien de façons peut-on mettre n boules numérotées dans p urnes? De combien de façons peut-on mettre n boules identiques dans p urnes?
- 10. On lance n dés indistinguables. Combien y a-t-il de lancers distincts possibles? De combien de façons peut-on obtenir n chiffres distincts? Reprendre ces questions en supposant les dés peints de n couleurs distinctes.
- 11. Une urne contient N boules, chacune peinte avec une couleur choisie parmi p. Pour chaque $i \in \{1, \ldots, p\}$ on note N_i le nombre de boules de couleur i. Ainsi, $N = N_1 + \ldots + N_p$. On se donne un entier n et des entiers n_1, \ldots, n_p tels que $n = n_1 + \ldots + n_p$.

De combien de façons peut-on tirer sans remise n boules de cette urne de telle sorte qu'on ait n_i boules de couleur i pour chaque $i \in \{1, \ldots, p\}$? Qu'en est-il si l'on tire maintenant avec remise? Solution de l'exercice 11.

12. Parmi les ensemble suivants, dire lesquels sont dénombrables : \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , $\mathbb{Q} \times \mathbb{R}$, l'ensemble des suites finies de longueur quelconque de 0 et de 1, l'ensemble des suites infinies de 0 et de 1, l'ensemble des suites finies d'entiers naturels, l'ensemble des polynômes à une indéterminée à coefficients rationnels.