주성분 분석 K-Means 클러스터링

김수인

KAIST http://suin.kim

강의 목표

- 30분 강의
- elice.io 문제를 알고리즘을 이해하고 풀 수 있게 돕는 것
 - 이 데이터에 왜 이 알고리즘을 사용할까?
 - 파라미터를 어떻게 바꾸면 어떻게 동작할까?
 - 알고리즘이 내보내는 결과를 어떻게 해석할까?
 - 앞으로 내가 회사나 연구실에서 이 알고리즘을 사용할 때 주의해야 할 점은?

주성분 분석

고차원의 데이터를 저차원의 데이터로 환원시키는 기법

주성분 분석

고차원의 데이터를 정보를 최대한 유지하면서 저차원의 데이터로 환원시키는 기법

주성분 분석: 왜 사용하는가 (1)

· 고차원의 데이터를 사람이 이해가능하게 시각화

주성분 분석: 왜 사용하는가 (1)

고차원의 데이터를 사람이 이해가능하게 시각화

주성분 분석: 왜 사용하는가 (2)

주거지역 정보 데이터

• 변수간의 숨겨진 연관성을 분석

	Principal Component		
Variable	1	2	3
Climate	0.190	0.017	0.207
Housing	0.544	0.020	0.204
Health	0.782	-0.605	0.144
Crime	0.365	0.294	0.585
Transportation	0.585	0.085	0.234
Education	0.394	-0.273	0.027
Arts	0.985	0.126	-0.111
Recreation	0.520	0.402	0.519
Economy	0.142	0.150	0.239

- 1. 주거시설, 의료시설, 교통, 문화, 오락시설은 서로 관련되어 있음
- 2. 두 번째 주성분은 의료시설에만 연관된 것임
- 3. 범죄율 ↑ 오락시설 ↑

• 2차원의 데이터를 1차원으로 축소하기

• 2차원의 데이터를 1차원으로 축소하기

• 2차원의 데이터를 1차원으로 축소하기

주성분을 만드는 것은 데이터를 축에 맞추어 이동하는것과
 같음

주성분을 만드는 것은 데이터를 축에 맞추어 이동하는것과
 같음

 N 차원 데이터 집합에 대해 최대 N 개의 서로 수직인 주성분 벡터를 발견할 수 있음

- 첫 번째 주성분은 그 방향으로 데이터들의 분산이 가장 큰 축
- 두 번째 주성분은 첫 번째 주성분으로 표현할 수 없는 축 중 에서 가장 분산이 큰 축

고차원 데이터 분석

- 3차원 데이터
 - 첫 번째 주성분을 찾고 투사: 1차원
 - 두 번째 주성분을 찾고 투사: 2차원
 - http://setosa.io/ev/principal-component-analysis/

주성분 분석: 왜 사용하는가 (1)

- 고차원의 데이터를 사람이 이해가능하게 시각화
- 첫 번째 주성분에
 17차원 데이터를
 투사하여 1차원으로
 축소한 결과

주성분 분석: 왜 사용하는가 (2)

	Principal Component		
Variable	1	2	3
Climate	0.190	0.017	0.207
Housing	0.544	0.020	0.204
Health	0.782	-0.605	0.144
Crime	0.365	0.294	0.585
Transportation	0.585	0.085	0.234
Education	0.394	-0.273	0.027
Arts	0.985	0.126	-0.111
Recreation	0.520	0.402	0.519
Economy	0.142	0.150	0.239

 주거시설, 의료시설, 교통, 문화, 오락시설은 서로 관련되어 있음

0.985: 이 주성분은 Arts 를 측정하는 성분임

2. 두 번째 주성분은 의료시설에 음으로 연관됨

LoL 데이터 분석

174차원 → 2차원

원거리 딜러

LoL 주성분 살펴보기

- Analysis: "A subjective decision"
- 마법 마법 기술 범위
- 공격력 마법 저항

magic',	-1.13E-01
'difficulty',	-3.64E-02
'attack',	1.04E-01
'defense',	2.54E-02
'armorperlevel',	-7.62E-03
'mpperlevel',	-4.80E-02
'attackspeedoffset',	-3.39E-02
'hp',	6.99E-02
'attackspeedperlevel',	2.64E-02
'attackrange',	-1.05E-01
'attackdamageperlevel',	1.82E-02
'critperlevel',	1.01E-28
'spellblockperlevel',	1.32E-01
'crit',	0.00E+00
'spellblock',	1.31E-01
'attackdamage',	4.20E-02
'armor',	4.84E-02
'hpregenperlevel',	1.20E-02
'movespeed',	5.67E-02
'mpregenperlevel',	-5.23E-02

주성분 1

Achtung!

- · 주성분 분석의 instability
 - · 데이터의 scale에 크게 영향받음
 - solution: Normalization

exam score

클러스터링

주어진 데이터를 클러스터로 묶는 알고리즘

클러스터링: 왜 사용하는가

- · Unsupervised Learning (비지도학습)
- 레이블 없이 데이터들을 묶어 (grouping) 데이터를 설명하는 클러스터를 찾고자 할 때

클러스터링: 왜 사용하는가

- 마케팅: 비슷한 성향을 가진 고객들을 발견하고 분류해서 타 깃 광고를 수행하고자 할 때
- 보험: 고객들을 risk factor 에 따라 분류하여 사고 위험이 높 은 고객들을 선별
- · 도시 계획: 집들을 모양, 가치, 위치에 따라 분류
- 뉴스 분석: 뉴스 기사들을 토픽에 따라 분류 (bag-of-words)

K-Means 클러스터링

주어진 데이터를 K개의 클러스터로 묶는 알고리즘

목표: 각 클러스터 내의 분산의 합을 최소화

K-Means 클러스터링: 알고리즘

· 시작: K개의 시작점을 각 클러스터의 중심으로 설정

ㆍ 반복

- · 각각의 데이터 포인트를 그 포인트에서 가장 가까운 (Euclidean distance) 클러스터 중심에 할당
- · 할당된 데이터 포인터의 중심을 클러스터 중심으로 재설정

· 멈춤: 데이터 포인트의 소속 클러스터가 바뀌지 않을 때

K-Means 클러스터링: 알고리즘

· 시작: K개의 시작점을 각 클러스터의 중심으로 설정

• 반복

- · 각각의 데이터 포인트를 그 포인트에서 가장 가까운 (Euclidean distance) 클러스터 중심에 할당
- · 할당된 데이터 포인터의 중심을 클러스터 중심으로 재설정

· 멈춤: 데이터 포인트의 소속 클러스터가 바뀌지 않을 때

2차원 데이터 클러스터링 (PCA 적용: 174차원 → 2차원)

Discussion

- · K 의 수를 잘못 설정하면 성능이 나빠질 수 있음
 - Soft clustering
 - Non-parametric density estimation
- · Local minima에 수렴할 경우 빠져나오지 못할 수 있음
- 시작점을 설정하는 다양한 방법

Hard vs. Soft Clustering

Gaussian Mixture Model