Colon Cancer

Jose Tamez

2023-04-26

Contents

```
library(survival)
library(FRESA.CAD)
## Loading required package: Rcpp
## Loading required package: stringr
## Loading required package: miscTools
## Loading required package: Hmisc
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
##
     format.pval, units
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
     cov, smooth, var
#library(corrplot)
source("~/GitHub/FRESA.CAD/R/RRPlot.R")
source("~/GitHub/FRESA.CAD/R/PoissonEventRiskCalibration.R")
op <- par(no.readonly = TRUE)</pre>
pander::panderOptions('digits', 3)
#pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
data(cancer)
colon <- subset(colon,etype==1)</pre>
colon$etype <- NULL</pre>
rownames(colon) <- colon$id
colon$id <- NULL
```

```
colon <- colon[complete.cases(colon),]
time <- colon$time
status <- colon$status
data <- colon
data$time <- NULL
data$study <- NULL
table(data$status)</pre>
```

0 1 442 446

```
#dataColon <- as.data.frame(model.matrix(status~.*.,data))
dataColon$`(Intercept)` <- NULL
dataColon$time <- time/365
dataColon$status <- status
colnames(dataColon) <-str_replace_all(colnames(dataColon),":","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\.","_")
colnames(dataColon) <-str_replace_all(colnames(dataColon),"\\.","_")
data <- NULL

trainsamples <- sample(nrow(dataColon),0.7*nrow(dataColon))
dataColonTrain <- dataColon[trainsamples,]
dataColonTest <- dataColon[-trainsamples,]</pre>
```

0	1
320	301

pander::pander(table(dataColonTest\$status))

0	1
122	145

0.1 Modeling

Table 3: Table continues below

	Estimate	lower	HR	upper	u.Accuracy
nodes	0.018702	1.013	1.019	1.025	0.602
${f node 4}$	0.205428	1.142	1.228	1.321	0.612
${f age_node4}$	0.005120	1.003	1.005	1.007	0.612
${f age_nodes}$	0.000160	1.000	1.000	1.000	0.593

	Estimate	lower	HR	upper	u.Accuracy
age	-0.016078	0.978	0.984	0.991	0.517
${f age_extent}$	0.003637	1.002	1.004	1.006	0.517
${f extent}$	0.130698	1.062	1.140	1.223	0.543
${ m rxLev_5FU_age}$	-0.001709	0.997	0.998	0.999	0.552
${f rxLev_5FU}$	-0.142480	0.782	0.867	0.962	0.552
surg	0.089631	1.016	1.094	1.177	0.546
${\bf age_surg}$	0.000302	1.000	1.000	1.001	0.546

Table 4: Table continues below

	r.Accuracy	full.Accuracy	u.AUC	r.AUC	full.AUC
nodes	0.512	0.607	0.597	0.518	0.603
${f node 4}$	0.583	0.620	0.604	0.586	0.613
${ m age_node4}$	0.590	0.628	0.604	0.594	0.627
${f age_nodes}$	0.498	0.594	0.588	0.508	0.589
age	0.619	0.628	0.515	0.614	0.627
age_extent	0.615	0.628	0.518	0.611	0.627
extent	0.612	0.620	0.554	0.604	0.613
$rxLev_5FU_age$	0.620	0.620	0.558	0.613	0.613
$rxLev_5FU$	0.632	0.628	0.558	0.629	0.627
surg	0.605	0.628	0.539	0.602	0.627
age_surg	0.603	0.628	0.539	0.601	0.626

	IDI	NRI	z.IDI	z.NRI	Delta.AUC	Frequency
nodes	0.02913	0.390	5.87	5.21	0.085718	1.0
$\mathbf{node4}$	0.03800	0.418	5.51	6.12	0.027357	1.0
${ m age_node4}$	0.03330	0.418	5.14	6.12	0.033102	1.0
age_nodes	0.02376	0.350	5.03	4.69	0.080486	1.0
age	0.02789	0.220	4.77	2.76	0.012935	1.0
age_extent	0.01884	0.215	3.86	3.92	0.015303	1.0
extent	0.01718	0.215	3.63	3.92	0.008799	1.0
$rxLev_5FU_age$	0.01209	0.231	3.18	3.10	-0.000197	1.0
$rxLev_5FU$	0.00879	0.231	2.68	3.10	-0.002800	1.0
surg	0.00576	0.156	2.37	2.18	0.024751	1.0
age_surg	0.00513	0.156	2.23	2.18	0.025497	0.5

0.2 Cox Model Performance

Here we evaluate the model using the RRPlot() function.

0.2.1 The evaluation of the raw Cox model with RRPlot()

Here we will use the predicted event probability assuming a baseline hazard for events withing 5 years

```
index <- predict(ml,dataColonTrain)
timeinterval <- 2*mean(subset(dataColonTrain,status==1)$time)

h0 <- sum(dataColonTrain$status & dataColonTrain$time <= timeinterval)
h0 <- h0/sum((dataColonTrain$time > timeinterval) | (dataColonTrain$status==1))
```

Cumulative vs. Observed: Raw Train: Colon Cancer

Decision Curve Analysis: Raw Train: Colon Cancer

Relative Risk: Raw Train: Colon Cancer

Time vs. Events: Raw Train: Colon Cancer

Kaplan-Meier: Raw Train: Colon Cancer

0.2.2 Uncalibrated Performance Report

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 6: O/E Ratio

est	lower	upper
0.957	0.852	1.07

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 7: O/E Ratio

mean	50%	2.5%	97.5%
1.5	1.5	1.47	1.53

pander::pander(t(rrAnalysisTrain\$OAcum95ci),caption="0/Acum Ratio")

Table 8: O/Acum Ratio

mean	50%	2.5%	97.5%
1.34	1.34	1.34	1.35

pander::pander(rrAnalysisTrain\$c.index\$cstatCI, caption="C. Index")

mean.C Index	median	lower	upper
0.66	0.66	0.629	0.69

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 10: ROC AUC

est	lower	upper
0.686	0.644	0.727

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 11: Sensitivity

est	lower	upper
0.269	0.22	0.323

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity),caption="Specificity")

Table 12: Specificity

est	lower	upper
0.9	0.862	0.931

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 13: Probability Thresholds

90%	
0.479	

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 14: Risk Ratio

est	lower	upper
1.68	1.45	1.96

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 15: Logrank test Chisq = 56.555705 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	$(O-E)^2/E$	$(O-E)^2/V$
$\begin{array}{c} { m class}{=}0 \\ { m class}{=}1 \end{array}$	508 113	220 81	263.1 37.9	$7.06 \\ 49.00$	56.6 56.6

0.2.3 Cox Calibration

h0	Gain	DeltaTime
0.646	1.49	2.98

0.2.4 The RRplot() of the calibrated model

Cumulative vs. Observed: Calibrated Train: Colon

Decision Curve Analysis: Calibrated Train: Colon

Relative Risk: Calibrated Train: Colon

Time vs. Events: Calibrated Train: Colon

Kaplan-Meier: Calibrated Train: Colon

0.2.5 Calibrated Train Performance

pander::pander(t(rrAnalysisTrain\$0ERatio), caption="0/E Ratio")

Table 17: O/E Ratio

est	lower	upper
0.741	0.659	0.829

pander::pander(t(rrAnalysisTrain\$0E95ci),caption="0/E Ratio")

Table 18: O/E Ratio

mean	50%	2.5%	97.5%
0.964	0.964	0.948	0.981

pander::pander(t(rrAnalysisTrain\$0Acum95ci), caption="0/Acum Ratio")

Table 19: O/Acum Ratio

mean	50%	2.5%	97.5%
1.04	1.04	1.03	1.04

pander::pander(rrAnalysisTrain\$c.index\$cstatCI, caption="C. Index")

mean.C Index	median	lower	upper
0.66	0.659	0.629	0.688

pander::pander(t(rrAnalysisTrain\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 21: ROC AUC

est	lower	upper
0.686	0.644	0.727

pander::pander((rrAnalysisTrain\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 22: Sensitivity

est	lower	upper
0.269	0.22	0.323

pander::pander((rrAnalysisTrain\$ROCAnalysis\$specificity), caption="Specificity")

Table 23: Specificity

est	lower	upper
0.9	0.862	0.931

pander::pander(t(rrAnalysisTrain\$thr_atP),caption="Probability Thresholds")

Table 24: Probability Thresholds

90%
0.622

pander::pander(t(rrAnalysisTrain\$RR_atP),caption="Risk Ratio")

Table 25: Risk Ratio

est	lower	upper
1.68	1.45	1.96

pander::pander(rrAnalysisTrain\$surdif,caption="Logrank test")

Table 26: Logrank test Chisq = 56.555705 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	$(O-E)^2/E$	$(O-E)^2/V$
$\begin{array}{c} { m class}{=}0 \\ { m class}{=}1 \end{array}$	508 113	220 81	263.1 37.9	$7.06 \\ 49.00$	56.6 56.6

0.2.6 Evaluating on the test set

The calibrated h0 and timeinterval were estimated on the training set

Cumulative vs. Observed: Test: Colon Cancer

Decision Curve Analysis: Test: Colon Cancer

Relative Risk: Test: Colon Cancer

Time vs. Events: Test: Colon Cancer

Kaplan-Meier: Test: Colon Cancer

0.2.7 Test Performance

pander::pander(t(rrAnalysisTest\$0ERatio),caption="0/E Ratio")

Table 27: O/E Ratio

est	lower	upper
0.908	0.766	1.07

pander::pander(t(rrAnalysisTest\$0E95ci),caption="0/E Ratio")

Table 28: O/E Ratio

mean	50%	2.5%	97.5%
1.12	1.12	1.09	1.15

pander::pander(t(rrAnalysisTest\$OAcum95ci),caption="0/Acum Ratio")

Table 29: O/Acum Ratio

mean	50%	2.5%	97.5%
1.14	1.14	1.13	1.14

pander::pander(rrAnalysisTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.653	0.654	0.609	0.698

pander::pander(t(rrAnalysisTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 31: ROC AUC

est	lower	upper
0.702	0.64	0.764

pander::pander((rrAnalysisTest\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 32: Sensitivity

est	lower	upper
0.31	0.236	0.392

pander::pander((rrAnalysisTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 33: Specificity

est	lower	upper
0.902	0.834	0.948

pander::pander(t(rrAnalysisTest\$thr_atP),caption="Probability Thresholds")

Table 34: Probability Thresholds

90%	
0.622	

pander::pander(t(rrAnalysisTest\$RR_atP),caption="Risk Ratio")

Table 35: Risk Ratio

est	lower	upper
1.66	1.36	2.02

pander::pander(rrAnalysisTest\$surdif,caption="Logrank test")

Table 36: Logrank test Chisq = 30.415807 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	210	100	123.5	4.47	30.4
class=1	57	45	21.5	25.65	30.4

0.3 Cross-Validation

Here we will cross validate the training set and evaluate also on the testing set. The h0 and the timeinterval are the ones estimated on the calibration process

```
title="CV Test: Colon Cancer",
ysurvlim=c(0.00,1.0),
riskTimeInterval=timeinterval)
```

Cumulative vs. Observed: CV Test: Colon Cancer

Decision Curve Analysis: CV Test: Colon Cancer

Relative Risk: CV Test: Colon Cancer

Time vs. Events: CV Test: Colon Cancer

Kaplan-Meier: CV Test: Colon Cancer

0.3.1 CV Test Performance

pander::pander(t(rrAnalysisCVTest\$0ERatio),caption="0/E Ratio")

Table 37: O/E Ratio

est	lower	upper
0.762	0.693	0.836

pander::pander(t(rrAnalysisCVTest\$0E95ci),caption="0/E Ratio")

Table 38: O/E Ratio

mean	50%	2.5%	97.5%
0.954	0.954	0.942	0.967

pander::pander(t(rrAnalysisCVTest\$OAcum95ci),caption="0/Acum Ratio")

Table 39: O/Acum Ratio

mean	50%	2.5%	97.5%
1.03	1.03	1.03	1.03

pander::pander(rrAnalysisCVTest\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.645	0.646	0.62	0.67

pander::pander(t(rrAnalysisCVTest\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 41: ROC AUC

est	lower	upper
0.672	0.637	0.707

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 42: Sensitivity

est	lower	upper
0.325	0.282	0.371

pander::pander((rrAnalysisCVTest\$ROCAnalysis\$specificity), caption="Specificity")

Table 43: Specificity

est	lower	upper
0.864	0.829	0.895

pander::pander(t(rrAnalysisCVTest\$thr_atP), caption="Probability Thresholds")

Table 44: Probability Thresholds

90%	
0.622	

pander::pander(t(rrAnalysisCVTest\$RR_atP),caption="Risk Ratio")

Table 45: Risk Ratio

est	lower	upper
1.59	1.41	1.8

pander::pander(rrAnalysisCVTest\$surdif,caption="Logrank test")

Table 46: Logrank test Chisq = 74.685264 on 1 degrees of freedom, p = 0.000000

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	683	301	369.5	12.7	74.7
class=1	205	145	76.5	61.4	74.7