Project Report on OSDA

Yuan Wei

Project Based on Titanic Survivor Predictions

Overview

The data has been split into two groups:

training set (train.csv)

test set (test.csv)

The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the "ground truth") for each passenger. Your model will be based on "features" like passengers' gender and class. You can also use feature engineering to create new features.

The test set should be used to see how well your model performs on unseen data. For the test set, we do not provide the ground truth for each passenger. It is your job to predict these outcomes. For each passenger in the test set, use the model you trained to predict whether or not they survived the sinking of the Titanic.

Variable	Definition	Key	Variable
survival	Survival	0 = No, 1 = Yes	survival
pclass	Ticket class	1 = 1st, 2 = 2nd, 3	pclass
		=3rd	
sex	Sex		sex
Age	Age in years		Age
sibsp	# of siblings /		sibsp
	spouses aboard the		
	Titanic		
parch	# of parents /		parch
	children aboard the		
	Titanic		
ticket	Ticket number		ticket
fare	Passenger fare		fare
cabin	Cabin number		cabin
embarked	Port of	C = Cherbourg, Q	embarked
	Embarkation	= Queenstown, S =	
		Southampton	

1. Basic overview

PassengerId passenger id

Training set 891 (1-891), test set 418 (892 - 1309)

Survived Whether rescued or not

1=yes, 2=no Rescued: 38%

Stricken: 62% (actual % in distress: 67.5%)

Pclass Ticket class

Represents socio-economic status. 1=advanced, 2=intermediate, 3=low

1:2:3=0.24:0.21:0.55

Name Name

Example: Futrelle, Mrs. Jacques Heath (Lily May Peel)

Example: Heikkinen, Miss. Laina

Sex Gender

male male 577, female female 314

Male: Female = 0.65: 0.35 Age Age (missing 20% of data) Training set: 714/891 = 80% Test set: 332/418 = 79%

SibSp Total number of siblings or spouses of peers

68% none, 23% have 1 ... max 8

Parch Total number of parents or children in the same row

76% none, 13% with 1, 9% with 2 ... max 6

Some children travelled only with a nanny, therefore parch=0 for them.

Ticket Ticket number (format not standardised)

Example: A/5 21171

Example: STON/O2. 3101282

Fare

The test set is missing one data

Cabin number

The training set has only 204 data, the test set has 91 data

Example: C85

Embarked Port of embarkation

C = Cherbourg 19%, Q = Queenstown 9%, S = Southampton 72%

Training set with two less data

2. Exploring the data

2.1 Basic information on features (head, info, describe)

Explore the data

View field structures, types and head examples

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
Survived 891 non-null int64
Pclass 891 non-null int64
Name 891 non-null object

Sex 891 non-null object

Age	714 non-null float64
SibSp	891 non-null int64
Parch	891 non-null int64
Ticket	891 non-null object
Fare	891 non-null float64
Cabin	204 non-null object
Embarked	889 non-null object
dtypes: float64(2), int64(5), object(5)

memory usage: 83.6+ KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417

Data columns (total 11 columns):

418 non-null int64 PassengerId **Pclass** 418 non-null int64 Name 418 non-null object Sex 418 non-null object Age 332 non-null float64 418 non-null int64 SibSp Parch 418 non-null int64 **Ticket** 418 non-null object Fare 417 non-null float64 Cabin 91 non-null object

Embarked 418 non-null object dtypes: float64(2), int64(4), object(5)

memory usage: 36.0+ KB

2.2 Correlation of several enumerated features with Survived (direct group aggregation for mean value)

Higher survival rates for the rich and middle classes, lower survival rates for the bottom

	Pclass	Survived
0	1	0.629630
1	2	0.472826
2	3	0.242363

Gender and survival are strongly correlated, with female users having a significantly higher survival rate than males

	Sex	Survived
0	female	0.742038
1	male	0.188908

The chances of surviving with 0 to 2 siblings or spouses are higher than with more

	SibSp	Survived
1	1	0.535885
2	2	0.464286
0	0	0.345395
3	3	0.250000
4	4	0.166667
5	5	0.000000
6	8	0.000000

2.3 Separate histograms were used to look at the distribution of survivorship and non-survivorship for characteristics with a long span such as age # Greater chance of survival for babies and young children

Low chance of survival for the cheapest ticket

3. Feature cleaning

3.1 HasCabin

#Removal of the features Ticket (no human judgement correlation) and Cabin (too little valid data)

3.2 Title

- # Create a designation feature based on the name, which will contain gender and class information
- # dataset.Name.str.extract(' ([A-Za-z]+)\.' -> Extract strings starting with space . Ending strings are extracted
- # Match with gender to see if each type of title belongs to male or female for subsequent categorization
- # Categorise titles as Mr,Miss,Mrs,Master,Rare_Male,Rare_Female (with Rare differentiated by male and female)
- # Summarize Survived Means by Title to see correlation

0	517
0	40
1	6
0	6
0	2
0	2
0	1
0	1
0	1
0	1
182	0
125	0
2	0
1	0
1	0
1	0
1	0
	0 1 0 0 0 0 0 0 0 182 125 2 1

female

male

Sex

	Title	Survived
0	Master	0.575000
1	Miss	0.704301
2	Mr	0.156673
3	Mrs	0.792000
4	Rare_Female	1.000000
5	Rare_Male	0.285714

3.3 Sex

Sex features mapped to values

	Survived	Pclass	Sex
0	0	3	0
1	1	1	1
2	1	3	1
3	1	1	1
4	0	3	0

3.4 Age

Predictive supplementation for null values in the Age field

Take the median age of the same Pclass and Title for supplementation (Demo for Pclass and Sex)

Populate valuation with empty values for the age field

Use the median Age of the same Pclass and Title instead (for combinations where the median is empty, use the median of the Title as a whole instead)

3.4 IsChildren

Create whether child features based on age

Fare	Embarked	NameLength	HasCabin	Title	IsChildren
'.2500	S	23	0	1	0.0
1.2833	С	51	1	3	0.0
'.9250	S	22	0	2	0.0
3.1000	S	44	1	3	0.0
3.0500	S	24	0	1	0.0

[#] Create age interval features

pd.cut is a uniform cut by the size of the value, each set of value intervals is the same size, but the number of samples may not be the same

pd.qcut is cut by frequency of distribution of samples over values, same number of samples per group

	Survived	Pclass	Sex	Age	SibSp	Parch
0	0	3	0	2	1	0
1	1	1	1	6	1	0
2	1	3	1	3	0	0
3	1	1	1	5	1	0
4	0	3	0	5	0	0

3.5 Family Size

Create family size FamilySize portfolio features

	FamilySize	Survived
0	1	0.303538
1	2	0.552795
2	3	0.578431
3	4	0.724138
4	5	0.200000
5	6	0.136364
6	7	0.333333
7	8	0.000000
8	11	0.000000

3.6 IsAlone

Create whether the IsAlone feature is alone

	IsAlone	Survived
0	0	0.505650
1	1	0.303538

3.7 Embarked

Get the most ports of embarkation

	Embarked	Survived
0	С	0.553571
1	Q	0.389610
2	S	0.339009

3.8 Fare

Fill the test set with null values for Fare, using the median

Convert Fare features to ordinal values based on FareBand

	FareBand	Survived
0	(-0.001, 7.91]	0.197309
1	(7.91, 14.454]	0.303571
2	(14.454, 31.0]	0.454955
3	(31.0, 512.329]	0.581081

3.9 Feature correlation visualization¶

Visualization of correlation between features using seaborn's heatmap

Pearson Correlation of Features

3.10 Processed Dataset

3.10.1 New Features:

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Pclass	418 non-null	int64
2	Sex	418 non-null	int64
3	Age	418 non-null	int64
4	Fare	418 non-null	float64
5	Embarked	418 non-null	int64
6	HasCabin	418 non-null	int64
7	Title	418 non-null	int64
8	IsChildren	418 non-null	float64
9	FamilySize	418 non-null	int64
10	IsAlone	418 non-null	int64

3.10.2 New look

	Survived	Pclass	Sex	Age	Fare	Embarked	HasCabin	Title	IsChildren	FamilySize	IsAlone
0	0	3	0	1	0	1	0	1	0.0	3	0
1	1	1	1	1	3	2	1	3	0.0	3	0
2	1	3	1	0	1	1	0	2	0.0	3	1
3	1	1	1	2	3	1	1	3	0.0	3	0
4	0	3	0	2	1	1	0	1	0.0	3	1
•••											
886	0	2	0	1	1	1	0	6	0.0	3	1
887	1	1	1	1	2	1	1	2	0.0	3	1
888	0	3	1	1	2	1	0	2	0.0	4	0
889	1	1	0	0	2	2	1	1	0.0	3	1
890	0	3	0	2	0	0	0	1	0.0	3	1

3.10.3 Binarization

Using proposed algorithm:

```
def binarize_X(X: pd.DataFrame) -> 'pd.DataFrame[bool]':
    """Scale values from X into pandas.DataFrame of binary values"""
    dummies = [pd.get_dummies(X[f], prefix=f, prefix_sep=': ') for f in X.columns]
    X_bin = pd.concat(dummies, axis=1).astype(bool)
    return X_bin
```

	Pclass: 1	Pclass: 2	Pclass: 3							Fare: 1			IsChildren: 0.0	IsChildren: 1.0
0	False	False	True	True	False	False	True	False	True	False	 False	False	True	False
1	True	False	False	False	True	False	True	False	False	False	 False	False	True	False
2	False	False	True	False	True	True	False	False	False	True	 False	False	True	False
3	True	False	False	False	True	False	False	True	False	False	 False	False	True	False
4	False	False	True	True	False	False	False	True	False	True	 False	False	True	False

4. Modelling and optimisation

4.1 Model comparison

4.1.1 LazyFCA

Acc = 79.05

Precision = 0.82

Recall = 0.49

Here we can see that there is a wide gap between the accuracy and recall of LazyFCA, and the resulting fl scores we obtained are not informative. Secondly there is a degree of imbalance in the data set and the accuracy rate is affected to some extent. And based on the data obtained, LazyFCA model is still relatively conservative and will still fall short of the true predictions. So here we can clearly see the lack of coverage of the real samples by looking at the recall rate.

4.1.2 Logistic Regression Acc = 82.15 Precision = 0.76

Recall = 0.70

4.1.3 Support Vector Machines

Acc = 83.28

Precision = 0.81

Recall = 0.72

4.1.4 KNN

Acc = 85.3

Precision = 0.81

Recall = 0.67

4.1.5 Decision Tree

Acc = 88.78

Precision = 0.79

Recall = 0.69

4.1.6 Random Forest

Acc = 83.15

Precision = 0.80

Recall = 0.71

Model	Accuracy	Precision	Recall
LazyFCA	79.05	0.82	0.49
Logistic	82.15	0.76	0.70
Regression			
Support Vector	83.28	0.81	0.72
Machines			
KNN	85.30	0.81	0.67
Decision Tree	88.78	0.79	0.69
Random Forest	83.15	0.80	0.71

4.2.1 Optimisation

Baseline Algorithm

```
X_pos = [x_train for x_train, y in zip(X_train, Y_train) if y]
X_neg = [x_train for x_train, y in zip(X_train, Y_train) if not y]
n_counters_pos = 0 # number of counter examples for positive intersections
for x_pos in X_pos:
    intersection_pos = x & x_pos
   continue
    for x_neg in X_neg: # count all negative examples that contain intersection_pos
       if (intersection_pos & x_neg) == intersection_pos:
           n_counters_pos += 1
n_counters_neg = 0 # number of counter examples for negative intersections
for x_neg in X_neg:
   intersection_neg = x & x_neg
   if len(intersection_neg) < min_cardinality:</pre>
       continue
   for x_pos in X_pos: # count all positive examples that contain intersection_neg
       if (intersection_neg & x_pos) == intersection_neg:
           n_counters_neg += 1
perc_counters_pos = n_counters_pos / len(X_pos)
perc_counters_neg = n_counters_neg / len(X_neg)
prediction = perc_counters_pos < perc_counters_neg</pre>
return prediction
```

Rewrite Baseline Algorithm with Numpy

```
X_pos = np.array([x_train for x_train, y in zip(np.array(X_train), Y_train) if y])
X_neg = np.array([x_train for x_train, y in zip(np.array(X_train), Y_train) if not y])
n\_counters\_pos = 0 # number of counter examples for positive intersections
for x_pos in X_pos:
   intersection_pos = x & x_pos
   if intersection pos.sum() < min cardinality: # the intersection is too small
   n counters pos += ((intersection pos & X neg) == intersection pos).all(axis=1).sum()
n_counters_neg = 0 # number of counter examples for negative intersections
for x_neg in X_neg:
   intersection_neg = x & x_neg
   if len(intersection neg) < min cardinality:</pre>
        continue
   n_counters_neg += ((intersection_neg & X_pos) == intersection_neg).all(axis=1).sum()
perc_counters_pos = n_counters_pos / len(X_pos)
perc_counters_neg = n_counters_neg / len(X_neg)
prediction = perc counters pos < perc counters neg</pre>
return prediction
```

Model		Running	Accuracy	Precision	Recall
		Time			
LazyFCA		20s	75.71	0.81	0.49
LazyFCA	with	11.3s	75.64	0.81	0.49
Numpy					

Conclusion

It is easy to see from the above that the rewritten code clearly outperforms the original algorithm in terms of running speed. However, since the core logic has not changed,

there is hardly any difference in prediction accuracy.

In comparison with the existing mainstream algorithms, lazyfca does not have a clear advantage and is far below the mainstream algorithms in terms of recall.

Decision trees clearly outperform other algorithms in predicting the dataset used in this task, while the simplest KNN also performs similarly to decision trees

If we take into account that this dataset is inherently unbalanced and we do not consider accuracy, then the support vector machine and random forest perform best.