15.094J: Robust Modeling, Optimization, Computation

Lectures 3: Robust Linear Optimization I: Tractability

February 2015

Outline

- RLO with Row-wise uncertainty
- 2 RLO with Row-wise Polyhedral Uncertainty
- 3 RLO with Row-wise Ellipsoidal uncertainty
- 4 RLO with General Polyhedral Uncertainty

Objectives Today

- Tractability of RLO
- Row-wise uncertainty
- General uncertainty

Row-wise Uncertainty

- Primitives: Uncertainty sets U_i , i = 1, ..., m, b, c (known, WLOG).
- RLO with row-wise uncertainty:

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & a_i'x \leq b_i \quad \forall a_i \in \mathcal{U}_i, \ i=1,\ldots,m, \\ & x \geq \boldsymbol{0}. \end{array}$$

- Note that the problem has infinitely many constraints.
- Reformulation:

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & \max_{a_i \in \mathcal{U}_i} a_i'x \leq b_i \\ & x > \mathbf{0}. \end{array}$$

• Note that the uncertainty for different constraints is independent.

Tractability

- Suppose that U_i , i = 1, ..., m are convex sets.
- Given an x, we can solve i = 1, ..., m:

$$\max_{a_i \in \mathcal{U}_i} a_i' x,$$

efficiently.

• How should we solve the RLO problem?

Theoretical Tractability

Lecture 3

- Solve the nominal problem; find x_0 .
- Separation problem: Given an x_0 , does there exist an $a_i \in \mathcal{U}_i$ that violates the constraint $a_i'x > b_i$?
- Solution: Solve $\max_{a_i \in \mathcal{U}_i} a_i' x$ and check whether

$$\max_{a_i \in \mathcal{U}_i} a_i' x \leq b_i$$
.

- This shows that if U_i are convex, we can solve the separation problem in polynomial time, thus we can solve the RLO with convex uncertainty sets in polynomial time using the Ellipsoid method (see Chapter 8 of Bertsimas and Tsitsiklis [1997]).
- The key take away from this: Even though RLO has infinitely many constraints it is polynomially solvable.
- Question: How about practically solvable? The Ellipsoid method is not a practical algorithm.

15 094 I-RO

February 2015

6 / 21

Practical Tractability

- Solve the nominal problem; find x_0 .
- Solve $\max_{a_i \in \mathcal{U}_i} a'_i x_0$, solution $\overline{a}_{i,0}$.
- Add the constraint $\overline{a}'_{i,0}x \leq b_i$ to the nominal problem
- Solve (the dual Simplex method is the right choice)

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & \overline{a}'_{i,0}x \leq b_i \\ & x \geq \mathbf{0}. \end{array}$$

• Find x_1 ; iterate.

Robust Counterpart-Polyhedral uncertainty

 $\begin{array}{ll} \max & c'x \\ \text{s.t.} & \max_{a_i \in \mathcal{U}_i} a_i'x \leq b_i. \\ & x \geq \mathbf{0}. \end{array}$

- $U_i = \{a_i | D_i a_i \leq d_i\}, D_i : k_i \times n.$
- Consider the problem and its dual:

$$\begin{array}{lll} \max & a_i'x & \min & p_i'd_i \\ \text{s.t.} & D_ia_i \leq d_i & \text{s.t.} & p_i'D_i = x' \\ & p_i \geq \mathbf{0}. \end{array}$$

Robust Counterpart continued

RC becomes

$$\begin{array}{ll} \max\limits_{x,p_i} & c'x\\ \text{s.t.} & p_i'd_i \leq b_i, \quad i=1,\ldots,m,\\ & p_i'D_i = x', \quad i=1,\ldots,m,\\ & p_i \geq \mathbf{0}, \quad i=1,\ldots,m,\\ & x \geq \mathbf{0}. \end{array}$$

- Original nominal problem: *n* variables, *m* constraints.
- Uncertainty dimension: k_i .
- Size of Robust Counterpart: $n + \sum_{i=1}^{m} k_i$, variables; $m + m \cdot n$ constraints.

↓□ → ↓□ → ↓ □ → ↓ □ → ∫ へ○

Row-wise Ellipsoidal uncertainty

RO:

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & \max_{a_i \in \mathcal{U}_i} a_i'x \leq b_i. \\ & x \geq \mathbf{0}. \end{array}$$

- $\mathcal{U}_i = \{a_i | a_i = \overline{a}_i + \Delta'_i u_i, ||u_i||_2 \le \rho\}, \Delta_i : k_i \times n, u_i : k_i \times 1.$
- RC:

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & \overline{a}_i'x + \rho||\boldsymbol{\Delta}_ix||_2 \leq b_i, \quad i = 1, \dots, m. \\ & x \geq \boldsymbol{0}. \end{array}$$

• Second order cone problem, nearly as tractable as linear optimization.

Proof

- $Z^* = \max_{a \in \mathcal{U}} a'x = \overline{a}'x + \max_{||u|| < \rho} u'(\Delta x)$
- Lagrangean dual:

$$Z(\lambda) = \overline{a}'x + \max \ u'(\Delta x) - \lambda(u'u/2 - \rho^2/2).$$

- $u^* = \Delta x/\lambda$.
- •

$$Z(\lambda) = \overline{a}'x + \frac{1}{2}\left(\frac{||\Delta x||^2}{\lambda} + \lambda \rho^2\right).$$

- For $\lambda \geq 0$, $Z^* \leq Z(\lambda)$ and strong duality: $Z^* = \min_{\lambda \geq 0} Z(\lambda)$.
- $\lambda^* = ||\Delta x||/\rho$.
- $Z^* = \overline{a}'x + \rho||\Delta x||$.

Robust Counterpart-General Norm uncertainty

RO:

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & \max_{a_i \in \mathcal{U}_i} a_i'x \leq b_i. \\ & x \geq \mathbf{0}. \end{array}$$

- $U_i = \{a_i | a_i = \overline{a}_i + \Delta'_i u_i, ||u_i|| \le \rho\}, \Delta_i : k_i \times n, u_i : k_i \times 1.$
- Dual norm:

$$||s||^* = \max_{\{||x|| \le 1\}} |s'x|.$$

- The dual of the L_p -norm $||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}$:
- $||s||^* = ||s||_q$ with $q = 1 + \frac{1}{p-1}$.
- The dual norm of the L_2 norm is L_2 .
- The dual norm of the L_1 norm is the L_{∞} norm.
- RC:

max
$$c'x$$

s.t. $\overline{a}_i'x + \rho||\boldsymbol{\Delta}_ix||^* \leq b_i, \quad i = 1, \dots, m.$
 $x > \mathbf{0}.$

General Polyhedral Uncertainty

• Define the operator $\text{vec}(A) := (a_1, a_2, \dots, a_m)$ (vector concatenation of the rows of A transposed)

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & \tilde{A}x \leq b, \quad \forall \tilde{A} \in \mathcal{U} \\ & x \in P. \end{array}$$

• $\mathcal{U} = \{\tilde{A} \mid G \cdot \text{vec}(\tilde{A}) \leq d\},\$

•

• $G \in \Re^{l \times (m \cdot n)}$, $d \in \Re^{l \times 1}$, and $\text{vec}(\tilde{A}) \in \Re^{(m \cdot n) \times 1}$.

RC

The RC is

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & p_i'G = x_i', \quad i = 1, \dots, m \\ & p_i'd \leq b_i, \quad i = 1, \dots, m \\ & p_i \geq \mathbf{0}, \quad i = 1, \dots, m \\ & x \in P, \end{array}$$

- $p_i \in \Re^{l \times 1}$.
- $x_i \in \Re^{(m \cdot n) \times 1}$, $i = 1, \dots, m$; x_i contains x in entries $(i 1) \cdot n + 1$ through $i \cdot n$, and zero everywhere else.

Proposition

- Suppose $\mathcal{U} \neq \emptyset$.
- A given \hat{x} satisfies $\tilde{a}_i'\hat{x} \leq b_i$ for all $\tilde{A} \in \mathcal{U}$ if and only if there exists a vector $p_i \in \Re^{l \times 1}$ such that

$$\begin{array}{rcl}
p_i'd & \leq & b_i \\
p_i'G & = & \hat{x}_i' \\
p_i & \geq & \mathbf{0}
\end{array}$$

• $\hat{x}_i \in \Re^{(m \cdot n) \times 1}$ contains \hat{x} in entries $(i-1) \cdot n + 1$ through $i \cdot n$, and zero everywhere else.

Proof

Consider the primal-dual pair

$$\max_{A} a_i' \hat{x}$$

s.t. $G \cdot \text{vec}(A) \leq d$

$$\begin{aligned} \min_{p_i} & p_i'd \\ \text{s.t.} & p_i'G = \hat{x}_i' \\ & p_i \geq \mathbf{0}. \end{aligned}$$

- Suppose that \hat{x} satisfies $\tilde{a}_i'\hat{x} \leq b_i$ for all $\tilde{A} \in \mathcal{U}$.
- Then, $\max_A a_i' \hat{x} \leq b_i$.
- Then primal is feasible and bounded, and so is its dual.
- Thus, there exists a vector $p_i \in \Re^{(m \cdot n) \times 1}$ satisfying the dual constraints.
- By strong duality, the optimal objective function value of the dual equals $\max_A a_i'\hat{x}$ and is less than b_i .

Proof continued

- For the reverse, since $\mathcal{U} \neq \emptyset$, primal is feasible. Suppose there exists a vector $p_i \in \Re^{l \times 1}$ that satisfies the dual constraints.
- Since both problems are feasible, they must be bounded and their optimal objective function values must be equal.
- Then $\min_{p_i} p'_i d \leq p'_i d \leq b_i$.
- By strong duality, $\max_A a_i' \hat{x} = \min_{p_i} p_i' d \leq b_i$, and hence \hat{x} satisfies $a_i' \hat{x} \leq b_i$ for all $\tilde{A} \in \mathcal{U}$.

Lecture 3 15.094J-RO February 2015 17 / 21

RC

• RO:

max
$$c'x$$

s.t. $\tilde{A}x \leq b$, $\forall \tilde{A} \in \mathcal{U}$
 $x \in P$.

- $\mathcal{U} = \{\tilde{A} \mid G \cdot \text{vec}(\tilde{A}) \leq d\}.$
- The RC is

max
$$c'x$$

s.t. $p_i'G = x_i'$, $i = 1, ..., m$
 $p_i'd \le b_i$, $i = 1, ..., m$
 $p_i \ge \mathbf{0}$, $i = 1, ..., m$
 $x \in P$.

General uncertainty sets under a general norm

RO:

$$\label{eq:max_def} \begin{split} \max & & c'x \\ \text{s.t.} & & \tilde{A}x \leq b \\ & & & x \in P \\ & & \forall \tilde{A} \in \mathcal{U} = \left\{ \tilde{A} \mid ||M(\text{vec}(\tilde{A}) - \text{vec}(\overline{A}))|| \leq \Delta \right\}. \end{split}$$

RC:

$$\begin{array}{ll} \max & c'x \\ \text{s.t.} & \overline{a}_i x + \Delta ||M^{-1} x_i||^* \leq b_i, \quad i = 1, \dots, m \\ & x \in P, \end{array}$$

- M invertible
- $x_i \in \Re^{(m \cdot n) \times 1}$ contains $x \in \Re^{n \times 1}$ in entries $(i-1) \cdot n + 1$ through $i \cdot n$, and 0 everywhere else.

Proof

•
$$y = \frac{M(\operatorname{vec}(\tilde{A}) - \operatorname{vec}(\overline{A}))}{\Lambda}$$
.

• Then, $U = \{y : ||y|| \le 1\}.$

$$\max_{\left\{\tilde{A} \in \mathcal{U}\right\}} \left\{\tilde{a}_{i}'x\right\} = \max_{\left\{\tilde{A} \in \mathcal{U}\right\}} \left\{ (\text{vec}(\tilde{A}))'x_{i} \right\}$$

$$= \max_{\left\{y: \ ||y|| \le 1\right\}} \left\{ (\text{vec}(\overline{A}))'x_{i} + \Delta(M^{-1}y)'x_{i} \right\}$$

$$= \overline{a}_{i}'x + \Delta \max_{\left\{y|||y|| \le 1\right\}} \left\{ y'(M^{-1}x_{i}) \right\}$$

$$= \overline{a}_{i}'x + \Delta||M^{-1}x_{i}||^{*}$$

References

Dimitris Bertsimas and John Tsitsiklis. *Introduction to Linear Optimization*. Athena Scientific, 1997.