3.6.1 (150). СПЕКТРАЛЬНЫЙ АНАЛИЗ

ДОПОЛНИТЕЛЬНОЕ ОПИСАНИЕ

5 августа 2013 г.

А. Исследование спектра периодической последовательности прямоугольных импульсов

Экспериментальная установка для исследования спектра периодической последовательности прямоугольных импульсов представлена на рис. 2. Сигнал с выхода генератора прямоугольных импульсов Γ 5-54 подаётся на вход анализатора спектра и одновременно — на вход Y осциллографа. С генератора импульсов на осциллограф подаётся также сигнал синхронизации, запускающий ждущую развёртку осциллографа. При этом на экране осциллографа можно наблюдать саму последовательность прямоугольных импульсов, а на экране ЭЛТ анализатора спектра — распределение амплитуд спектральных составляющих этой последовательности.

Рис. 2. Схема для исследования спектра периодической последовательности прямоугольных импульсов

В наблюдаемом спектре отсутствует информация об амплитуде нулевой гармоники, т.е. о величине постоянной составляющей; её местоположение (начало отсчёта шкалы частот) отмечено небольшим вертикальным выбросом.

ЗАДАНИЕ

В этом упражнении исследуется зависимость ширины спектра периодической последовательности прямоугольных импульсов от длительности отдельного импульса.

- 1. Соберите схему согласно рис. 2 и включите в сеть ТОЛЬКО генератор Г5-54. Познакомьтесь с назначением ручек управления генератора и осциллографа и подготовьте установку к измерениям, следуя техническому описанию, расположенному на установке (ТО, разделы I, II и III-A).
- 2. Установите на анализаторе спектра режим работы с однократной развёрткой и получите на экране спектр импульсов с параметрами $f_{\text{повт}} = 10^3 \ \Gamma \text{ц}; \ \tau = 25 \ \text{мкc};$ частотный масштаб $m_x = 5 \ \text{к} \Gamma \text{ц}/\text{дел}$ (TO, раздел III-A, п.7).

Проанализируйте, как меняется спектр ($\Delta \nu$ и $\delta \nu$ на рис. 6.3 Введения): а) при увеличении τ вдвое при неизменном $f_{\text{повт}}=1$ к Γ ц; б) при увеличении $f_{\text{повт}}$ вдвое при неизменном $\tau=25$ мкс.

Опишите результаты или зарисуйте в тетрадь качественную картину.

- 3. Проведите измерения зависимости ширины спектра от длительности импульса $\Delta\nu(\tau)$ при увеличении τ от 25 до 200 мкс (6–8 значений при $f_{\text{повт}}=1$ к Γ ц и масштабе по горизонтали $m_x=5$ к Γ ц/дел).
- 4. Скопируйте на кальку спектры с параметрами: $f_{\text{повт}}=1$ к Γ ц, $m_x=5$ к Γ ц/дел, а) $\tau=50$ мкс, б) $\tau=100$ мкс. Запишите на кальках эти параметры и приложите кальки к отчёту.
- 5. Постройте график $\Delta \nu(1/\tau)$ и по его наклону убедитесь в справедливости соотношения неопределённостей.

Б. Исследование спектра периодической последовательности цугов гармонических колебаний

Экспериментальная установка. Исследование спектра периодически чередующихся цугов гармонических колебаний проводится по схеме, изображённой на рис. 3. Генератор Г6-34 вырабатывает синусоидальные колебания высокой частоты. На вход АМ (амплитудная модуляция) генератора Г6-34 подаются прямоугольные импульсы с генератора Г5-54 и синусоида модулируется — «нарезается» на отдельные куски — цуги. Эти цуги с выхода генератора Г6-34 поступают на вход спектроанализатора и одновременно на вход У осциллографа. Сигнал синхронизации подаётся на осциллограф с генератора импульсов.

ЗАДАНИЕ

В этом упражнении исследуется зависимость расстояния между ближайшими спектральными компонентами от частоты повторения цугов.

1. Не выключая приборов из сети (можно уменьшить амплитуды сигналов), соберите схему, изображённую на рис. 3 (для этого достаточно один провод переключить и один добавить).

Подготовьте приборы к работе, (см. ТО, раздел III-Б).

2. Установите частоту несущей $\nu_0=25$ к Γ ц и проанализируйте, как изменяется вид спектра: а)при увеличении длительности импульса вдвое ($\tau=50,\,100$ мкс для $f_{\text{повт}}=1$ к Γ ц); б) при изменении несущей частоты ν_0 (на генераторе Γ 6- 34 $\nu_0=25,\,10$ или 40 к Γ ц) при фиксированных значениях $f_{\text{повт}}=1$ к Γ ц, $\tau=100$ мкс и частотном масштабе $m_x=5$ к Γ ц/дел.

Опишите результаты эксперимента или зарисуйте качественную картину в тетради.

3. При фиксированной длительности импульсов $\tau = 50$ мкс исследуйте зависимость расстояния $\delta\nu$ между соседними спектральными компонентами от периода T (частоты повторения импульсов $f_{\text{повт}}$). Проведите измерения для 5–6 значений частоты $f_{\text{повт}}$ в диапазоне 1–8 к Γ ц, подбирая горизонтальный масштаб m_x , удобный для измерений (см. ТО, раздел III-A, п.7).

Рис. 3. Схема для исследования спектра периодической последовательности цугов высокочастотных колебаний

4. Скопируйте на кальку спектры цугов с параметрами: $\tau=100\,\mathrm{mkc},\ m_x=5\,\mathrm{k}\Gamma\mathrm{ц}/\mathrm{дел};\ \mathrm{a})\ f_\mathrm{повт}=1\,\mathrm{k}\Gamma\mathrm{ц};\ \mathrm{б})\ f_\mathrm{повт}=2\,\mathrm{k}\Gamma\mathrm{ц}.$

Запишите на кальках эти параметры и приложите кальки к отчёту.

- 5. Постройте график $\delta \nu(f_{\text{повт}})$ и поясните, как меняется вид спектра на экране при стремлении частоты повторения к нулю.
- 6. Сравните зарисованные на кальку спектры:
 - а) прямоугольных импульсов при одинаковых периодах и разных длительностях импульса au;
 - б) цугов при одинаковых au и разных периодах;
 - в) цугов и прямоугольных импульсов при одинаковых значениях au и T.

В. Исследование спектра гармонических сигналов, модулированных по амплитуде

Экспериментальная установка. Схема для исследования амплитудномодулированного сигнала представлена на рис. 4. В генератор сигналов генератора встроен модуляционный генератор, который расположен в левой части Γ 6-34. Синусоидальный сигнал с частотой модуляции $f_{\text{мод}} = 1 \text{ к}\Gamma$ ц подаётся с модуляционного генератора на вход АМ (амплитудная модуляция) генератора, вырабатывающего синусоидальный сигнал высокой частоты (частота несущей $\nu_0 = 25 \text{ к}\Gamma$ ц). Амплитудно-модулированный сигнал с основного выхода генератора поступает на осциллограф и на анализатор спектра.

ЗАДАНИЕ

В этом упражнении исследуется зависимость отношения амплитуд спектральных линий синусоидального сигнала, модулированного низкочастотными гармоническими колебаниями, от коэффициента модуляции, который определяется с помощью осциллографа.

1. Соберите схему, изображённую на рис. 4 (для этого достаточно выключить генератор Г5-54 и переключить 1 провод).

Рис. 4. Схема для исследования спектра высокочастотного гармонич. сигнала, промодулированного по амплитуде низкочастотным гармонич. сигналом

Подготовьте приборы к работе (см. ТО, раздел III-В).

2. Изменяя глубину модуляции (ручка 11 на Γ 6-34), исследуйте зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии $(a_{\text{бок}}/a_{\text{осн}})$ от глубины модуляции m (5–6 значений в диапазоне $0 < m \leqslant 1$); для расчёта глубины модуляции m по формуле (6.13) измеряйте максимальную $2A_{\text{max}}$ и минимальную $2A_{\text{min}}$ амплитуды сигнала на экране осциллографа (см. рис. 6.6 и 6.7 Введения).

Рис. 6. 6. Гармонич. колебания, модулированные по амплитуде

Рис. 6. 7. Спектр колебаний, модулированных по амплитуде

- 3. При 100% глубине модуляции ($A_{\min}=0$) посмотрите, как меняется спектр при увеличении частоты модулирующего сигнала (ручка 10 на $\Gamma6$ -34 поворачивается по часовой стрелке).
- 4. Постройте график отношения $a_{\text{бок}}/a_{\text{осн}}=f(m)$. Определите угол наклона графика и сравните с рассчитанным с помощью формулы (6.14).

Исправлено 5-VIII-2013