B.TECH. (COMPUTER SCIENCE AND ENGINEERING) THIRD SEMESTER (DETAILED SYLLABUS)

DATA STRUCTURE (KCS301)		
Course Outcome (CO) Bloom's Knowledge Leve		evel (KL)
At the end of course, the student will be able to understand		
CO 1	Describe how arrays, linked lists, stacks, queues, trees, and graphs are represented in memory used by the algorithms and their common applications.	, K ₁ , K ₂
CO 2	Discuss the computational efficiency of the sorting and searching algorithms.	\mathbf{K}_{2}
CO 3	Implementation of Trees and Graphs and perform various operations on these data structure.	K ₃
CO 4	Understanding the concept of recursion, application of recursion and its implementation an removal of recursion.	d K ₄
CO 5	Identify the alternative implementations of data structures with respect to its performance t solve a real world problem.	K ₅ , K ₆
DETAILED SYLLABUS		3-1-0
Unit	Торіс	Proposed Lecture
I	Introduction: Basic Terminology, Elementary Data Organization, Built in Data Types in O Algorithm, Efficiency of an Algorithm, Time and Space Complexity, Asymptotic notations: Bi Oh, Big Theta and Big Omega, Time-Space trade-off. Abstract Data Types (ADT) Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Majo Order, and Column Major Order, Derivation of Index Formulae for 1-D,2-D,3-D and n-D Arra Application of arrays, Sparse Matrices and their representations. Linked lists: Array Implementation and Pointer Implementation of Singly Linked Lists, Doubl Linked List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion, Traversa Polynomial Representation and Addition Subtraction & Multiplications of Single variable & Tw variables Polynomial.	g r y 08
П	Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linke Implementation of Stack in C, Application of stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Iteration and Recursion- Principles of recursion, Tail recursion, Removal of recursion Problem solving using iteration and recursion with examples such as binary search Fibonacci numbers, and Hanoi towers. Tradeoffs between iteration and recursion. Queues: Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, Array and linked implementation of queues in C, Dequeue and Priority Queue.	f f L, 08
III	Searching: Concept of Searching, Sequential search, Index Sequential Search, Binary Search Concept of Hashing & Collision resolution Techniques used in Hashing. Sorting: Insertion Sor Selection, Bubble Sort, Quick Sort, Merge Sort, Heap Sort and Radix Sort.	
IV	Graphs: Terminology used with Graph, Data Structure for Graph Representations: Adjacence Matrices, Adjacency List, Adjacency. Graph Traversal: Depth First Search and Breadth First Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims an Kruskal algorithm. Transitive Closure and Shortest Path algorithm: Warshal Algorithm an Dijikstra Algorithm.	d 08

V	Trees: Basic terminology used with Tree, Binary Trees, Binary Tree Representation: Array
	Representation and Pointer(Linked List) Representation, Binary Search Tree, Strictly Binary Tree
	,Complete Binary Tree . A Extended Binary Trees, Tree Traversal algorithms: Inorder, Preorder
	and Postorder, Constructing Binary Tree from given Tree Traversal, Operation of Insertation,
	Deletion, Searching & Modification of data in Binary Search. Threaded Binary trees, Traversing
	Threaded Binary trees. Huffman coding using Binary Tree. Concept & Basic Operations for AVL
	Tree, B Tree & Binary Heaps

08

Text books:

- 1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein, "Data Structures Using C and C++", PHI
 - Learning Private Limited, Delhi India
- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publications Pvt Ltd Delhi India.
- 3. Lipschutz, "Data Structures" Schaum's Outline Series, Tata McGraw-hill Education (India) Pvt. Ltd.
- 4. Thareja, "Data Structure Using C" Oxford Higher Education.
- 5. AK Sharma, "Data Structure Using C", Pearson Education India.
- 6. Rajesh K. Shukla, "Data Structure Using C and C++" Wiley Dreamtech Publication.
- 7. Michael T. Goodrich, Roberto Tamassia, David M. Mount "Data Structures and Algorithms in C++", Wiley India.
- 8. P. S. Deshpandey, "C and Data structure", Wiley Dreamtech Publication.
- 9. R. Kruse etal, "Data Structures and Program Design in C", Pearson Education.
- 10. Berztiss, AT: Data structures, Theory and Practice, Academic Press.
- 11. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill.
- 12. Adam Drozdek "Data Structures and Algorithm in Java", Cengage Learning