

TEST REPORT

Product Name : F10 Pro

Brand Mark : FOCUSPOWER

Model No. : F10 Pro

FCC ID : 2AMQ6-F10PRO

Report Number : BLA-EMC-202001-A4201

Date of Sample Receipt : 2020/1/16

Date of Test : 2020/1/19 to 2020/2/26

Date of Issue : 2020/2/26

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Dongguan Liesheng Electronic Co., Ltd. 13/F, Project Phrase 2 of GaoshengTechTower, No.5, Longxi Road, Nancheng, Dongguan, Guangdong, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. **IOT Test Centre of BlueAsia** No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

> TEL: +86-755-28682673 FAX: +86-755-28682673

Compiled by: 0 2 4.

Approved by: Emen is

Review by:

Sweet lieur

REPORT REVISE RECORD

Version No.	Date	Description
00	2020/2/26	Original

TABLE OF CONTENTS

1	TEST SUMMARY	6
2	GENERAL INFORMATION	7
3	GENERAL DESCRIPTION OF E.U.T.	7
4	TEST ENVIRONMENT	
5	TEST MODE	
6	MEASUREMENT UNCERTAINTY	
7	DESCRIPTION OF SUPPORT UNIT	
8	LABORATORY LOCATION	
9	TEST INSTRUMENTS LIST	
ΑN	ITENNA REQUIREMENT	14
(Conclusion	14
СО	ONDUCTED SPURIOUS EMISSIONS	15
	LIMITS	
	BLOCK DIAGRAM OF TEST SETUP	
	TEST DATA	
НО	PPING CHANNEL NUMBER	17
	LIMITS	17
	BLOCK DIAGRAM OF TEST SETUP	
	TEST DATA	
CA	RRIER FREQUENCIES SEPARATION	18
L	LIMITS	18
	BLOCK DIAGRAM OF TEST SETUP	
1	TEST DATA	18
20[DB BANDWIDTH	19
E	BLOCK DIAGRAM OF TEST SETUP	19
1	TEST DATA	19
СО	NDUCTED PEAK OUTPUT POWER	20
L	LIMITS	20
E	BLOCK DIAGRAM OF TEST SETUP	20

TEST DATA		21
CONDUCTED E	EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	22
LIMITS		22
BLOCK DIAGRA	M OF TEST SETUP	22
PROCEDURE		22
TEST DATA		24
RADIATED SPU	JRIOUS EMISSIONS	26
LIMITS		26
BLOCK DIAGRA	M OF TEST SETUP	26
PROCEDURE		27
TEST DATA		29
RADIATED EMI	SSIONS WHICH FALL IN THE RESTRICTED BANDS	35
LIMITS		35
BLOCK DIAGRA	M OF TEST SETUP	36
PROCEDURE		36
TEST DATA		37
CONDUCTED B	BAND EDGES MEASUREMENT	38
	M OF TEST SETUP	
	INTOF TEST SETUP	
DWELL TIME		40
LIMITS		40
BLOCK DIAGRA	M OF TEST SETUP	40
TEST DATA		41
10 APPENDIX	K	42
10.1 APPEN	DIXA: 20DBEMISSION BANDWIDTH	42
Test Result	<u> </u>	42
Test Graphs		43
10.2 APPEN	DIXC: MAXIMUM CONDUCTED OUTPUT POWER	48
Test Result		48
Test Graphs		49
10.3 APPEN	DIXD: CARRIER FREQUENCY SEPARATION	54
Took Docult		- 4

Test Graphs	55
10.4 APPENDIXE: TIME OF OCCUPANCY	57
Test Result	
Test Graphs	58
10.5 APPENDIXF: NUMBER OF HOPPING CHANNELS	60
Test Result	
Test Graphs	61
10.6 APPENDIXG:BAND EDGE MEASUREMENTS	63
Test Result	63
Test Graphs	
10.7 APPENDIXH: CONDUCTED SPURIOUSEMISSION	70
Test Result	70
Test Graphs	71
10.8	84
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	
APPENDIX B: PHOTOGRAPHS OF EUT	87

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass

2 GENERAL INFORMATION

Applicant	Dongguan Liesheng Electronic Co., Ltd.	
Address	13/F,Project Phrase 2 of GaoshengTechTower,No.5,Longxi Road,Nancheng,Dongguan,Guangdong,China	
Manufacturer	ShenZhen FuYuan International Supply Chain CO.,LTD	
Address	International E-Time B3-803,NO.4,ZhongXing RD.,Ma'AnTang Community,BanTian ST.,LongGang DIST.,ShenZhen,China	
Factory	Dongguan Zhengrong Electronics Co., Ltd.	
Address No. 4 Shugang Avenue, Hongmei Town, Dongguan City, Guangdon Province, China		

3 GENERAL DESCRIPTION OF E.U.T.

Product Name	F10 Pro
Test Model No.	F10 Pro
Battery	DC3.7V
Hardware Version	V1.0
Software Version	V1.0
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK, p/4DQPSK, 8DPSK
Channel Spacing:	1MHz
Number of Channels:	79
Antenna Type:	Chip Antenna
Antenna Gain:	0.9dBi

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	DC3.7V

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION	
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation. (hopping and no hopping mode all be tested, worse case is no hopping mode and reported)	
Remark: Full battery is used during all test except ac conducted emission, DH1, DH3, DH5 all have been tested, during the test, GFSK, Pi/4QPSK, 8-DPSK modulation were all pre-scanned only worse case is reported.		

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission	±4.34dB	
Radiated Emission	±4.24dB	
Radiated Emission	±4.68dB	
AC Power Line Conducted Emission	±3.45dB	

Parameter	Expanded Uncertainty (Confidence of 95%)	
Occupied Channel Bandwidth	±5 %	
RF output power, conducted	±1.5 dB	
Power Spectral Density, conducted	±3.0 dB	
Unwanted Emissions, conducted	±3.0 dB	
Temperature	±3 °C	
Supply voltages	±3 %	
Time	±5 %	
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB	
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB	

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter (UGREEN)	UGREEN	CD112	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Antenna Requirement						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	

Test Equipment Of Conducted Spurious Emissions								
Equipment	nent Manufacturer Model S/N Cal.Date Cal.Due							
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020			
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020			
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020			
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020			

Test Equipment Of Hopping Channel Number								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020			
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020			
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020			
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020			

Test Equipment Of Carrier Frequencies Separation									
Equipment Manufacturer Model S/N Cal.Date Cal.Du									
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020				
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020				
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020				
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020				

Test Equipment Of 20dB Bandwidth Cal.Date Cal.Due **Equipment** Manufacturer Model S/N Spectrum R&S FSP40 100817 7/4/2019 7/3/2020 Spectrum Agilent N9020A MY49100060 12/18/2019 12/17/2020 Signal Generator N5182A MY49060650 12/18/2019 12/17/2020 Agilent Signal Generator Agilent E8257D MY44320250 5/7/2019 5/6/2020

Test Equipment Of Conducted Peak Output Power									
Equipment	quipment Manufacturer Model S/N Cal.Date Cal.Du								
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020				
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020				
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020				
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020				

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Shield room	SKET	833	N/A	6/10/2018	6/9/2021				
Receiver	R&S	ESPI3	101082	5/7/2019	5/7/2020				
LISN	R&S	ENV216	3560.6550.15	7/4/2019	7/3/2020				
LISN	安泰信	AT166-2	AKK1806000003	12/18/2019	12/17/2020				
EMI software	EZ	EZ-EMC	N/A	N/A	N/A				

Test Equipment Of Radiated Spurious Emissions							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		

Chamber	SKET	966	N/A	5/8/2018	5/7/2021
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020
Receiver	R&S	ESR7	101199	5/7/2019	5/6/2020
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	7/14/2019	7/13/2020
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	7/14/2019	7/13/2020
Amplifier	SKET	LNPA-0118-45	N/A	7/4/2019	7/3/2020
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2/14/2019	2/13/2020

Test Equipment Of Radiated Emissions which fall in the restricted bands								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber	SKET	966	N/A	5/8/2018	5/7/2021			
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020			
Receiver	R&S	ESR7	101199	5/7/2019	5/6/2020			
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	7/14/2019	7/13/2020			
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	7/14/2019	7/13/2020			
Amplifier	SKET	LNPA-0118-45	N/A	7/4/2019	7/3/2020			
EMI software	EZ	EZ-EMC	N/A	N/A	N/A			
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2/14/2019	2/13/2020			

Test Equipment Of Conducted Band Edges Measurement							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		

Report No.: BLA-EMC-202001-A4201 Page 13 of99

Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020

Test Equipment Of	Dwell Time				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020

ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.9dBi.

CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	55%

LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

HOPPING CHANNEL NUMBER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.3
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	55%

LIMITS

Frequency range(MHz)	Number of hopping channels (minimum)
002.020	50 for 20dB bandwidth <250kHz
902-928	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

CARRIER FREQUENCIES SEPARATION

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	55%

LIMITS

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

20DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.7
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	55%

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	55%

LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1 for ≥50 hopping channels			
902-928	0.25 for 25≤ hopping channels <50			
	1 for digital modulation			
	1 for ≥75 non-overlapping hopping channels			
2400-2483.5	0.125 for all other frequency hopping systems			
	1 for digital modulation			
5725 5050	1 for frequency hopping systems and digital			
5725-5850	modulation			

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	55%

LIMITS

Frequency of	Conducted	limit(dBµV)
emission(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
*Decreases with the logarithm	of the frequency.	

BLOCK DIAGRAM OF TEST SETUP

PROCEDURE

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50?H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power

Report No.: BLA-EMC-202001-A4201

Page 23 of 99

cables to a single LISN provided the rating of the LISN was not exceeded.

- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Resolution bandwidth:

i) Below 150 kHz: 300 Hz or CISPR 200 Hz (CISPR 200 Hz for QP detector)

ii) 150 kHz to 30 MHz: 10 kHz or CISPR 9 kHz, (CISPR 9 kHz for QP detector)

Video bandwidth:

i) VBW for Peak, Quasi-peak, or Average Detector Function: 3 × RBW

Detector:

i) QP AV below 1 GHz (however, peak detector measurements may be used to determine compliance with QP requirements).

TEST DATA

AC120V/60Hz

Humidity:

60 %

Limit: FCC Class B Conduction(QP)

EUT: M/N: f10pro Mode: BT mode

Note:

Site

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2100	21.25	9.89	31.14	63.21	-32.07	QP	
2	0.2100	15.38	9.89	25.27	53.21	-27.94	AVG	
3	0.5100	16.24	9.73	25.97	56.00	-30.03	QP	
4	0.5100	11.50	9.73	21.23	46.00	-24.77	AVG	
5 *	2.1940	23.13	9.82	32.95	56.00	-23.05	QP	
6	2.1940	12.06	9.82	21.88	46.00	-24.12	AVG	
7	7.3860	22.07	9.87	31.94	60.00	-28.06	QP	
8	7.3860	11.29	9.87	21.16	50.00	-28.84	AVG	
9	14.1740	14.65	9.96	24.61	60.00	-35.39	QP	
10	14.1740	7.91	9.96	17.87	50.00	-32.13	AVG	
11	23.9140	4.73	10.06	14.79	60.00	-45.21	QP	
12	23.9140	-1.94	10.06	8.12	50.00	-41.88	AVG	

Power:

Test Result: Pass

Humidity:

[TestMode: TX]; [Line: Nutral]

Limit: FCC Class B Conduction(QP)

EUT:

Site

M/N: f10pro Mode: BT mode

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2060	21.13	9.88	31.01	63.37	-32.36	QP	
2	0.2060	15.44	9.88	25.32	53.37	-28.05	AVG	
3	0.9540	18.36	9.77	28.13	56.00	-27.87	QP	
4	0.9540	12.52	9.77	22.29	46.00	-23.71	AVG	
5 *	2.1860	26.01	9.86	35.87	56.00	-20.13	QP	
6	2.1860	14.21	9.86	24.07	46.00	-21.93	AVG	
7	7.6220	22.71	9.85	32.56	60.00	-27.44	QP	
8	7.6220	11.92	9.85	21.77	50.00	-28.23	AVG	
9	9.5140	15.10	9.95	25.05	60.00	-34.95	QP	
10	9.5140	6.88	9.95	16.83	50.00	-33.17	AVG	
11	14.6500	15.37	10.01	25.38	60.00	-34.62	QP	
12	14.6500	7.95	10.01	17.96	50.00	-32.04	AVG	

Power:

AC120V/60Hz

Test Result: Pass

RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6					
Test Mode (Pre-Scan)	TX;TX mode (SE) below 1G					
Test Mode (Final Test)	TX;TX mode (SE) below 1G					
Tester	Jozu					
Temperature	25℃					
Humidity	55%					

LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202001-A4201

Page 27 of 99

PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: BLA-EMC-202001-A4201

Page 28 of 99

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Resolution bandwidth:

- i) Below 150 kHz: 300 Hz or CISPR 200 Hz (CISPR 200 Hz for QP detector)
- ii) 150 kHz to 30 MHz: 10 kHz or CISPR 9 kHz, (CISPR 9 kHz for QP detector)
- iii) 30 MHz to 1000 MHz: 100 kHz or CISPR 120 kHz, (CISPR 120 kHz for QP detector)
- iv) Above 1 GHz: 1 MHz

Video bandwidth:

- i) VBW for Peak, Quasi-peak, or Average Detector Function: 3 × RBW
- ii) VBW when using peak detector function: 10Hz

Detector:

- i) QP below 1 GHz (however, peak detector measurements may be used to determine compliance with QP requirements).
- ii) Peak and average above 1 GHz

TEST DATA

[TestMode: TX]; [Polarity: Horizontal]

Power:AC120V/60Hz

Site

Limit: FCC Part15 Class B

EUT: F10 Pro M/N: F10 Pro

Mode: BT Note: Polarization: Horizontal Temperature:
Power: Humidity:

Distance: 3m

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	54.0711	-2.92	24.04	21.12	40.00	-18.88	QP			
2	97.1148	2.58	20.36	22.94	43.50	-20.56	QP			
3	187.0958	3.86	20.67	24.53	43.50	-18.97	QP			
4	322.1886	2.35	24.51	26.86	46.00	-19.14	QP			
5	590.9737	-0.23	31.02	30.79	46.00	-15.21	QP			
6 *	866.0879	0.66	34.91	35.57	46.00	-10.43	QP			

Test Result: Pass

[TestMode: TX]; [Polarity: Vertical]

Power:AC120V/60Hz

Limit: FCC Part15 Class B

EUT: F10 Pro M/N: F10 Pro Mode: BT

Site

Note:

Polarization: Vertical

Humidity: Power:

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	36.5092	4.91	23.52	28.43	40.00	-11.57	QP			
2		84.7019	6.13	19.31	25.44	40.00	-14.56	QP			
3		96.4362	5.44	20.29	25.73	43.50	-17.77	QP			
4		161.4742	-0.63	23.06	22.43	43.50	-21.07	QP			
5		209.3129	3.95	20.73	24.68	43.50	-18.82	QP			
6		576.6443	2.07	30.71	32.78	46.00	-13.22	QP			

Test Result: Pass

[TestMode:8-DPSK mode]

Remark: During the test, pre-scan the GFSK, Pi/4QPSK, 8-DPSK modulation, and found the 8-DPSK modulation which it is worse case

modulation wi	modulation which it is worse case.						
		Tes	st channel:low	est			
	Peak value:						
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio	
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n	
4804.00	41.9	2.38	44.28	74	-29.72	Vertical	
7206.00	40.88	2.17	43.05	74	-30.95	Vertical	
9608.00	41.67	2.06	43.73	74	-30.27	Vertical	
12010.00	*			74		Vertical	
14412.00	*			74		Vertical	
4804.00	43.54	2.38	45.92	74	-28.08	Horizontal	
7206.00	43.36	2.17	45.53	74	-28.47	Horizontal	
9608.00	43.07	2.06	45.13	74	-28.87	Horizontal	
12010.00	*			74		Horizontal	
14412.00	*			74		Horizontal	
Average value:							
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio	
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n	
4804.00	31.86	2.38	34.24	54	-19.76	Vertical	
7206.00	31.28	2.17	33.45	54	-20.55	Vertical	
9608.00	31.11	2.06	33.17	54	-20.83	Vertical	
12010.00	*			54		Vertical	
14412.00	*			54		Vertical	
4804.00	32.97	2.38	35.35	54	-18.65	Horizontal	
7206.00	32.59	2.17	34.76	54	-19.24	Horizontal	
9608.00	30.16	2.06	32.22	54	-21.78	Horizontal	
12010.00	*			54		Horizontal	
14412.00	*			54		Horizontal	
		Tes	st channel:Mic	ldle			
			Peak value:		T	T	
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio	
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n	
4882.00	42.51	0.17	42.68	74	-31.32	Vertical	

7323.00	40.53	1.43	41.96	74	-32.04	Vertical	
9764.00	42.07	1.26	43.33	74	-30.67	Vertical	
12205.00	*			74		Vertical	
14646.00	*			74		Vertical	
4882.00	43.64	0.17	43.81	74	-30.19	Horizontal	
7323.00	42.96	1.43	44.39	74	-29.61	Horizontal	
9764.00	43.14	1.26	44.40	74	-29.60	Horizontal	
12205.00	*			74		Horizontal	
14646.00	*			74		Horizontal	
	Average value:						

	Average value:					
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n
4882.00	32.29	0.17	32.46	54	-21.54	Vertical
7323.00	33.85	1.43	35.28	54	-18.72	Vertical
9764.00	32.37	1.26	33.63	54	-20.37	Vertical
12205.00	*			54		Vertical
14646.00	*			54		Vertical
4882.00	33.4	0.17	33.57	54	-20.43	Horizontal
7323.00	33.44	1.43	34.87	54	-19.13	Horizontal
9764.00	32.98	1.26	34.24	54	-19.76	Horizontal
12205.00	*			54		Horizontal
14646.00	*			54		Horizontal

Test channel:Highest

Peak value:

Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n
4960.00	41.42	1.04	42.46	74	-31.54	Vertical
7440.00	42.35	2.59	44.94	74	-29.06	Vertical
9920.00	43.56	2.74	46.3	74	-27.7	Vertical
12400.00	*			74		Vertical
14880.00	*			74		Vertical
4960.00	42.06	1.04	43.1	74	-30.9	Horizontal
7440.00	42.38	2.59	44.97	74	-29.03	Horizontal
9920.00	41.76	2.74	44.50	74	-29.50	Horizontal
12400.00	*			74		Horizontal
14880.00	*			74		Horizontal

						3
		ŀ	Average value):		
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n
4960.00	31.24	1.04	32.28	54	-21.72	Vertical
7440.00	30.07	2.59	32.66	54	-21.34	Vertical
9920.00	31.11	2.74	33.85	54	-20.15	Vertical
12400.00	*			54		Vertical
14880.00	*			54		Vertical
4960.00	32.8	1.04	33.84	54	-20.16	Horizontal
7440.00	32.46	2.59	35.05	54	-18.95	Horizontal
9920.00	30.82	2.74	33.56	54	-20.44	Horizontal
12400.00	*			54		Horizontal
14880.00	*			54		Horizontal
Test Result	: Pass					

Page 35 of 99

RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.10.5					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

BLOCK DIAGRAM OF TEST SETUP

PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.
- Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

TEST DATA

[TestMode: 8DPSK]

Remark: During the test, pre-scan the GFSK, Pi/4QPSK, 8-DPSK modulation, and found the 8-DPSK									
modulation which it is worse case.									
Test channel:lowest									
Peak value:									
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio			
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n			
2310	44.99	-4.2	40.79	74	-33.21	Horizontal			
2390	49.58	-3.88	45.7	74	-28.3	Horizontal			
2310	45.46	-4.49	40.97	74	-33.03	Vertical			
2390	49.44	-4.21	45.23	74	-28.77	Vertical			
		ŀ	Average value	:					
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB/ m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n			
2310	35.19	-4.2	30.99	54	-23.01	Horizontal			
2390	39.3	-3.88	35.42	54	-18.58	Horizontal			
2310	34.75	-4.49	30.26	54	-23.74	Vertical			
2390	39.4	-4.21	35.19	54	-18.81	Vertical			
		Tes	t channel:Higl	nest					
			Peak value:						
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio			
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n			
2483.5	46.37	-3.38	42.99	74	-31.01	Horizontal			
2500	45.35	-3.3	42.05	74	-31.95	Horizontal			
2483.5	44.53	-3.77	40.76	74	-33.24	Vertical			
2500	54.24	-3.7	50.54	74	-23.46	Vertical			
		, ,	Average value):					
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB/ m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n			
2483.5	36.05	-3.38	32.67	54	-21.33	Horizontal			
2500	35.88	-3.3	32.58	54	-21.42	Horizontal			
2483.5	34.2	-3.77	30.43	54	-23.57	Vertical			

Report No.: BLA-EMC-202001-A4201

Page 38 of 99

2500	43.92	-3.7	40.22	54	-13.78	Vertical
Test Result: Pass						

CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	55%				

LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

DWELL TIME

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.4
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	55%

LIMITS

Frequency(MHz)	Limit
	0.4S within a 20S period(20dB
902-928	bandwidth<250kHz)
	0.4S within a 10S period(20dB
	bandwidth≥250kHz)
	0.4S within a period of 0.4S multiplied by the
2400-2483.5	number
	of hopping channels
5725-5850	0.4S within a 30S period

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

10 APPENDIX

Appendix1

10.1 APPENDIX: 20DBEMISSION BANDWIDTH

TestMode	Antenna	Channel	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.119	2401.457	2402.576		PASS
DH1	Ant1	2441	1.116	2440.460	2441.576		PASS
		2480	1.119	2479.457	2480.576		PASS
		2402	1.380	2401.328	2402.708		PASS
2DH1	Ant1	2441	1.383	2440.325	2441.708		PASS
		2480	1.380	2479.328	2480.708		PASS
		2402	1.386	2401.322	2402.708		PASS
3DH1	Ant1	2441	1.389	2440.322	2441.711		PASS
		2480	1.383	2479.322	2480.705		PASS

10.2 APPENDIX: MAXIMUM CONDUCTED OUTPUT POWER

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	-2.09	<=20.97	PASS
DH1	Ant1	2441	-2.3	<=20.97	PASS
		2480	-2.33	<=20.97	PASS
		2402	0.33	<=20.97	PASS
2DH1	Ant1	2441	0.09	<=20.97	PASS
		2480	0.06	<=20.97	PASS
		2402	0.91	<=20.97	PASS
3DH1	Ant1	2441	0.58	<=20.97	PASS
		2480	0.65	<=20.97	PASS

© 81 8F 50 2 Ac

| Center Freq 2.480000000 GHz | PNO: Fast → IFGaint.ow #Atten: 40 dB Frequency #Avg Type: RMS Avg|Hold: 100/100 Mkr1 2.479 768 GHz -2.331 dBm Auto Tun Ref Offset 1.92 dB Ref 30.00 dBm Center Fred Start Freq 2.476000000 GHz Stop Freq 2.484000000 GHz Freq Offset Center 2.480000 GHz #Res BW 3.0 MHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 8.0 MHz 2DH1_Ant1_2402 23 PM Jan 16, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P #Avg Type: RMS Avg|Hold: 100/100 Frequency Mkr1 2.401 816 GHz 0.333 dBm Auto Tune Ref Offset 1.89 dB Ref 30.00 dBm Center Freq 2.398000000 GHz Stop Free Freq Offset Center 2.402000 GHz #Res BW 3.0 MHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 8.0 MHz

2DH1_Ant1_2441

© 81 8F 50 2 Ac

| Center Freq 2.441000000 GHz | PNO: Fast → IFGaint.ow #Atten: 40 dB Frequency #Avg Type: RMS Avg|Hold: 100/100 Mkr1 2.441 000 GHz 0.092 dBm Auto Tun Ref Offset 1.92 dB Ref 30.00 dBm Center Fred Start Freq 2.437000000 GHz Stop Freq 2.445000000 GHz Freq Offset Center 2.441000 GHz #Res BW 3.0 MHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 8.0 MHz 2DH1_Ant1_2480 149 PM Jan 16, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P #Avg Type: RMS Avg|Hold: 100/100 Frequency Mkr1 2.479 944 GHz 0.055 dBm Auto Tune Ref Offset 1.92 dB Ref 30.00 dBm Center Freq 2.480000000 GH 2.476000000 GHz Stop Free Freq Offset

> Span 8.000 MHz Sweep 1.000 ms (1001 pts)

Center 2.480000 GHz #Res BW 3.0 MHz

#VBW 8.0 MHz

3DH1_Ant1_2402

10.3 APPENDIX: CARRIER FREQUENCY SEPARATION

TestMode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	0.994	>=0.746	PASS
2DH1	Ant1	Нор	1.006	>=0.922	PASS
3DH1	Ant1	Нор	1	>=0.926	PASS

10.4 APPENDIX: TIME OF OCCUPANCY

Test Result

TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.40	320	0.128	<=0.4	PASS
DH3	Ant1	Нор	1.67	160	0.267	<=0.4	PASS
DH5	Ant1	Нор	2.89	106.6	0.308	<=0.4	PASS

Note:

DH5 Packet permit maximum 1600/79/6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). Sothe dwell time is the time duration of the pulse times $3.37 \times 31.6 = 106.6$ within 31.6 seconds.

DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds.

DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the dwell time is the time duration of the pulse times $10.12 \times 31.6 = 320$ within 31.6 seconds.

10.5 APPENDIX: NUMBER OF HOPPING CHANNELS

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	>=15	PASS
2DH1	Ant1	Нор	79	>=15	PASS
3DH1	Ant1	Нор	79	>=15	PASS

