(12) UK Patent Application (19) GB (11) 2 306 485 (13) A

(43) Date of A Publication 07.05.1997

(21) Application No 9622819.2

(22) Date of Filing 01.11.1996

(30) Priority Data

(31) GB9502588 9522407 (32) **02.11.1995 01.11.1995**

5 - (33) WO

(71) Applicant(s)

British Gas plc

(Incorporated in the United Kingdom)

Rivermill House, 152 Grosvenor Road, LONDON, SW1V 3JL, United Kingdom

(72) Inventor(s)

Luet-Lok Wong Sabine Lahja Flitsch Darren Paul Nickerson Alwyn James Hart (51) INT CL⁶
C12N 9/02 15/53 // (C12N 15/53 C12R 1:19)

(56) Documents Cited GB 2294692 A

GB 2294692 A J.Biol.Chem. 1988,263(35),18842-18849 J.Amer.Chem.Soc. 1989,111,2715-2717 J.Biol.Chem. 1990,265(10),5361-5363

ONLINE: WPI,CLAIMS,DIALOG/BIOTECH

(74) Agent and/or Address for Service
David J Morgan
British Gas plc, Intellectual Property Department,
100 Thames Valley Park Drive, READING, Berkshir,
RG6 1PT, United Kingdom

(54) Mutants of mono-oxygenase cytochrome P-450cam

(57) A mutant of mono-oxygenase cytochrome P-450cam in which cysteine, at position 334, is deleted therefrom, or replaced by a different amino acid, is described. Tyrosine(96) may also be substituted by a different amino acid. The amino acid may be selected from alanine, arginine, asparagine, aspartic acid, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, tryptophan and valine, and, for cysteine(334), tyrosine. Preferred substitutions of amino acids may also occur at at least one of the positions 87, 98, 101, 185, 193, 244, 247, 295, 297, 395 and 396.

GRC 4269

ENZYME MUTANT

The present invention relates to a mutant of the mono-oxygenase cytochrome P-450cam.

Mono-oxygenases catalyse the selective oxidation of activated and unactivated carbon-hydrogen bonds using oxygen¹, and are therefore of great interest for potential use in organic synthesis. However, progress in this area has been hampered by the difficulty in isolating sufficient quantities of the mono-oxygenase enzyme and/or the associated electron-transfer proteins. Despite the availability of amino acid sequences of more than 150 different cytochrome P-450 mono-oxygenases, to date structural date of only three are available^{2,3,4}, and few have been successfully over-expressed in bacterial systems³.

One cytochrome P-450 mono-oxygenase, which is soluble and can be expressed in sufficient quantities, is the highly specific P-450cam from P. putida which catalyses the regio- and stereoselective hydroxylation of camphor to 5-exo-hydroxycamphor. The high resolution crystal structure of P-450cam has been determined, and since the mechanism of action of this bacterial enzyme is believed to be very similar to that of its mammalian counterparts, it has been used as a framework on which structural models of mammalian enzymes are based.

The nucleotide sequence and corresponding amino acid sequence of P-450cam have been described^{5,7}. The location of an active site of the enzyme is known and structure-function relationships have been investigated^{8,9}. Mutants of P-450cam have been described at the 101 and 185 and 247 and 295 positions^{9,10,11} and at the 87 position¹². A mutant in which tyrosine 96 (Y96) has been changed to phenylalanine 96 (the Y96F mutant) has been described^{11,13,14,15}. But in all cases the papers report effects of the mutations on the oxidation reactions of molecules which had previously been shown to be substrates for the wild-type enzyme. There is no teaching of how mutations might be used to provide biocatalysts for oxidation of different, novel substrates.

In an attempt to develop new biocatalysts, we have initiated a project which aims to redesign P-450cam, such that it is able more effectively to carry out specific oxidations of organic molecules whether or not these are substrates for the wild-type protein.

The three dimensional structure of P-450cam shows the active site to provide close van der Waals contacts with the hydrophobic groups of camphor as shown in Figure 1. Of particular significance are the contacts between camphor and the side chains of leucine 244, valine 247 and valine 295. Three aromatic residues (Y96, F87 and F98) are grouped together and line the substrate binding pocket, with a hydrogen bond between tyrosine 96 and the camphor carbonyl oxygen maintaining the

substrate in the correct orientation to ensure the regio- and stereo- specificity of the reaction.

Lipscomb and co-workers¹⁶ demonstrated in 1978 that wild-type P-450cam showed a propensity to dimerise, but they also reported that the catalytic activity of the monomer and dimer towards camphor oxidation were indistinguishable. Since the dimerisation reaction could be reversed by thiol reducing agents, they concluded that it occurred by intermolecular cysteine disulphide (S-S) bond formation. They were unable to determine whether dimerisation involved more than one cysteine per P-450cam molecule. Nor were they able to identify the key cysteine residue(s) involved in this reaction because neither the amino acid sequence nor crystal structure of P-450cam were known at the time.

We used molecular modelling to investigate the likely effects of points mutations to the three aromatic residues (Y96, F87, F98) in the active site pocket. We noted that replacement of any of these aromatic residues with a smaller, hydrophobic non-aromatic side-chain could provide an "aromatic pocket" which could be used to bind more hydrophobic substrates. The program GRID¹⁷ was used to calculate an energy of interaction between an aromatic probe and possible mutants of cytochrome P-450cam where these residues were changed to alanine (F87A, Y96A and F98A). The results were then examined graphically using the molecular modelling package Quanta¹⁸.

The mutant F98A appeared to have the strongest binding interaction within the active site cavity accessible to the aromatic probe, with that of Y96A being slightly smaller, and that of F87A being substantially less. It was decided in the first instance to mutate tyrosine 96 to alanine as it is more central to the binding pocket, whereas phenylalanine 98 is in a groove to one side. Also, removal of tyrosine 96 should decrease the specificity of the enzyme towards camphor due to the loss of hydrogen bonding to the substrate.

According to one aspect of the present invention a mutant of the mono-oxygenase cytochrome p-450cam is provided in which the cysteine residue at position 334 is removed.

Preferably the removal is by the substitution of another amino acid except cysteine for the cysteine residue.

Alternatively the removal is by the deletion of the entire cysteine 344 residue from the enzyme.

Suitably the tyrosine residue at position 96 in the mutant is replaced by the residue of any amino acid except tyrosine.

Conveniently the amino acid is selected from any one of the following: alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, tryptophan, tyrosine and valine except that in the

case of the cysteine residue at position 334, the amino acid is not cysteine and in the case of the tyrosine residue at position 96 the amino acid is not tyrosine.

Preferably the amino acid residue at one or more of the positions 87, 98, 101, 185, 193, 244, 247, 295, 297, 395 and 396 is replaced by another amino acid residue.

We examined the structure of P-450cam generated from the published crystallographic atomic co-ordinates using the modelling programme Quanta. We determined that there are five cysteines near the surface of P-450cam (cysteines 58, 85, 136, 148, 334) which might participate in intermolecular disulphide bond formation leading to protein dimerisation. We carried out sit-directed mutagenesis to substitute each of these cysteines to alanine, thus generating five Cys - Ala surface mutants.

The extent of protein dimerisation in the wild-type P-450cam and the five surface Cys - Ala mutants were investigated. The presence of dimer was detected by both anion exchange fast protein liquid chromatography on a Resource Q column (Pharmacia) and gel filtration size exclusion chromatography on a Superose 12 column (Pharmacia) in the wild-type P-450cam and the C58A, C85A, C136A and C148A mutants. On the other hand, no dimer was detected, even at high concentrations (0.1mM range), for the C334A mutant (see data in Figure 2). We concluded that wild-type P-450cam underwent dimerisation by intermolecular s-s

disulphide bond formation between the surface cysteine 334 on two protein molecules.

The C334A mutation has the obvious benefit of removing unwanted protein dimerisation, thus ensuring the presence of a single species in solution at all times. In addition, we noted a completely unexpected benefit of this mutation. Like all proteins, wild-type P-450cam shows aggregation upon standing. The reasons why proteins aggregate are not clear, but the P-450cam aggregates are insoluble and catalytically inactive. The wild-type and C58A, C85A, C136A and C148A mutants all showed dimerisation as well as aggregation upon storage at 4°C, and even in 50% glycerol solutions at -20°C. Aggregation will also occur turnover, especially at the higher concentrations required in any economically viable industrial application in, for example, synthesis of organic molecules. The C334A mutant did not show any evidence of aggregation even at mM concentrations at room temperature over a period of three days. Thus, the C334A mutation has beneficial effects in protein handling, storage, and increased catalyst lifetime.

We believe the mutation at position 96 to be the key which enables the mutant enzymes to catalyse the oxidation of a relatively wide range of organic substrates. Other amino acids adjacent to the active site of the enzyme may also be mutated in order to change the shape and specificity of the active site. These other amino acids include those at positions 87, 98, 101, 185, 193, 244, 247, 295, 297, 395 and 396. It is envisaged that

)

the amino acid at one or more of these positions may be replaced by: a small hydrophobic amino acid so as to enlarge the active site; or a large hydrophobic amino acid so as to reduce the size of the active site; or by an amino acid having an aromatic ring to interact with a corresponding aromatic ring of a substrate.

Regarding the oxidation reactions, the conditions are described in the literature references attached. The enzyme system typically includes putidaredoxin and putidaredoxin reductase together with NADH as co-factors in addition to the mutant enzyme. The example of cyclohexylbenzene oxidation is described in the experimental section below. Various classes of organic compounds are envisaged and described below. We note that the wild-type P-450cam is active towards the oxidation of a number of molecules included in the following sections. However, in all cases the mutant P-450cam proteins show much higher turnover activities.

i) The organic compound is an aromatic compound, either a hydrocarbon or a compound used under conditions in which it does not inactivate or denature the enzyme. Since the mutation has been effected with a view to creating an aromatic-binding pocket in the active site of the enzyme, the mutant enzyme is capable of catalysing the oxidation of a wide variety of aromatic compounds. Oxidation of example aromatic and polyaromatic compounds is demonstrated in the experimental section below and is believed very surprising given that the wild-type enzyme has been reported to

catalyse the oxidation of only members of the camphor family and shows low activity towards a few other molecules such as styrene¹⁹, ethylbenzene^{9,10}, a tetralone derivative²⁰, and nicotine²¹.

ii) The organic compound may be a hydrocarbon, e.g. aliphatic or alicyclic, carrying a functional group (see Scheme 1). An aromatic protecting group is attached to the functional group prior to the oxidation reaction and removed from the functional group after the oxidation reaction. A suitable aromatic group is a benzyl group. The protecting group serves two purposes: firstly it makes the substrate more hydrophobic and hence increases binding to the hydrophobic enzyme pocket; secondly it may help to hold the substrate in place at the active site. Thus, with the correct aromatic protection group, both regio- and stereo-selective hydroxylation of the substrate may be achieved. Examples of monofunctionalised hydrocarbons are cyclohexyl, cyclopentyl and alkyl derivatives (Scheme 1). The oxidation products of these compounds are valuable starting materials for organic synthesis, particularly when produced in a homochiral form. A range of aromatic protecting groups are envisaged, e.g. benzyl or naphthyl ethers and benzoyl ethers and amides (Scheme 1). Of interest are also benzoxazole groups as carboxyl protecting groups and Nbenzyl oxazolidine groups as aldehyde protecting groups. Both can be easily cleaved after the enzymatic oxidation and have previously been described in the literature for the microbial oxidations of aldehydes and acids22.

- iii) The organic compound is a C4 to C12 aliphatic or alicyclic hydrocarbon. Oxidation of cyclohexane and linear and branched hydrocarbons is demonstrated in the experimental section below. We have found that wild-type P-450cam is also capable of oxidising these molecules, but the activities are low and in all cases the mutants show substantially higher activities.
- iv) The organic compound is a halogenated aliphatic or alicyclic hydrocarbon. Oxidation of lindane (hexachlorocyclohexane) is also describe below.

Mutants were constructed in which active site substitutions were combined with the surface mutation of cysteine at position 334 alanine and contained alanine, leucine, valine, phenylalanine instead of tyrosine at position 96 (Y96). Lastly several active site mutations and the surface mutation were combined to constitute mutant enzymes with multiple mutations. The genes encoding cytochrome P-450cam, and its natural electron-transfer partners putidaredoxin and putidaredoxin reductase, were amplified from the total cellular DNA of P. Putida using the polymerise chain reaction (PCR). The expression vector/E. coli host combinations employed were $pRH1091^{23}$ in strain JM109 for P-450cam, pUC 118 in strain JM109 for putidaredoxin, and pGL W11 in strain DH5 for putidaredoxin reductase. Oligonucleotide-directed site-specific mutagenesis was carried out using an M13 mp 19 subclone by the method of Zoller and Smith²⁴, and mutant selection was by the method of Kunkel²⁵.

Binding of potential substrates was investigated by spectroscopic methods. The wild-type enzyme in the absence of substrate is in the 6-co-ordinated, low-spin form with a weakly bound water occupying the sixth co-ordination site, and shows a characteristic Soret maximum at 418 nm. Binding of camphor and the substrate analogues adamantanone, adamantane and norbornane fully converted the haem to the 5-co-ordinated, high-spin form which has a characteristic Soret band at 392 nm. spin-state shift is accompanied by an increase in the haem reduction potential which enables the physiological electrontransfer partner putidaredoxin to reduce P-450cam and initiate the catalytic hydroxylation cycle²⁶. The haem spin state shift is thus a qualitative indication of the likelihood of molecules shown in Tables 1 and 2 being oxidised by the wild-type and mutant P-450cam enzymes.

A buffered solution (50 mM Tris.HCI, pH 7.4), typically 3ml in volume, containing 10uM putidaredoxin, 2 uM putidaredoxin reductase, 1 uM cytochrome P-450cam mono-oxygenase (wild-type or mutant), 200 mM KCI, 50 ug/ml bovine liver catalase (Sigma), and 1 mM target organic compound such as cyclohexylbenzene (added as a 0.1 M stock in ethanol) was preincubated at 30°C for 5 minutes. The enzymatic reaction was initiated by adding NADH to a total

concentration of 2 mM. Further four aliquots of NADH (to increase the NADH concentration by 1mM each time) were added in intervals of 10 minutes, and 30 minutes into the incubation one aliquot of substrate (to increase the concentration by 1mM) was also added. The reaction was quenched after 60 minutes by adding 0.5 ml chloroform and vortexing the mixture. The phases were separated by centrifugation (4000 g) at 4°C. The chloroform layer was analyzed by gas chromatography.

For many substrate compounds such as cyclohexylbenzene for which not all the P-450cam-mediated oxidation products are commercially available, the chloroform extracts are evaporated to dryness under a stream of nitrogen. The residues were extracted with hexane and the oxidation products separated by high performance liquid chromatography, eluting with a hexane/isopropanol gradient. The purified products were then identified by mass spectroscopy and particularly nuclear magnetic resonance spectroscopy.

For different substrates of different solubility in the aqueous buffer solution, the amount of substrate added to the incubation mixtures varies from 0.2 mM to 4 mM final concentration. The NADH concentration can be monitored at 340 nm and, in all cases, more substrates and NADH are added during the incubation.

Using the above experimental techniques, the inventors have investigated a considerable number of organic compounds as

. __. -

substrates for both the wild-type P-450cam enzyme and also the mutant version Y96A. Work has included mutants designated Y96V; Y96L; Y96f: C334A; the combined mutant F87A-Y96G-F193A and the combined active site and surface mutants of Y96A-C334A; Y96V-C334A; Y96L-C334A; Y96F-C334A; F87A-Y96G-F193A-C334A. The results for C334A and C334A-Y96A are set out in Table 1 and 2, in which structurally related molecules are grouped together.

Table 1 details the NADH consumption for oxidation of small linear, branched and cyclic hydrocarbons by the mutant Y96A-C334A. Tables 2(a) to 2(h) details the product distributions for mutant and substrate combinations where these have been elucidated to date.

The cysteine residue at position 344 can be deleted by any well known and freely available standard restriction techniques and will therefore not be described in detail herein.

Scheme 1:

Hydrocarbons		\(\tag{2} \)	() _n ²
- Z	Protector	ng Group	
- OH	_ O PN/A	ABOM1 C	PrvNaohi
· NH ₂	, N. Phys.	laoni	
- СООН		· m · · · · · · · · · · · · · · · · · ·	
- CHO			

Table 1:

K_{app} (μΜ)*

		WT	Y96A
×.	1	6.3	12
	2	12	28
	<u>3</u>	8.4	1.4
	4	330	92
	<u>5</u>	>1500°	73
			•

[&]quot;Values are the average of two independent measurements using the method of Sligar (S.G. Sligar, *Biochemistry*, **1976**, 15, 5399 - 5406). The value of K_{app} is strongly dependent on the concentration of K^* in the butfer. At $\{K^*\}>150$ mM, K_{app} for camphor is 0.6 μ M for both wildtype and Y96A. Data in this table were determined at $\{K^*\}=70$ mM in phosphate buffer, pH 7.4, in order to avoid salting out of substrates at higher ion concentrations.

BAD ORIGINAL

^{*} Saturation not reached.

			Table	2(a)					
P450cam·substrate Interactions	ate interactions	Wild type		Mutant Y96A	Y96A	Wild type	,pe	Mutant Y96A	796A
Subgroup: 1-ring	61	∆Spin high/low	Vs DTT	ΔSpin high/low	VsDTT	NADH Iurnover?	903	NADH lumover?	607
	Benzene								
	Toluene			30	30				
	Elhylbenzene			40	40				
	Slyrene			30	30				
	Cyclohexene	·	'n	40	40				
	1,3 Cyclohexadiene	p	p:	pq	pu				
	1,4-Cyclohexadiene		S	15	20				
\bigcirc	Cyclohexane			09	09			+	
5	Hexane	•		20	09			+	
	Methylcyclohexane	20	20	8	70				
	(S)-(+)-Carvone	10	09	10	90				

		Table	7 (P)					
P450cam-substrate interactions	Wild type	type	Mutant Y96A	Y96A	Wild type	ed/	Mutant Y96A	796A
Subgroup: 2-ring, Naphthalene	ASpin high/low	Vs DTT	J.Spin highdow	VsDTT	NADH turnover?	603	NADH lumover?	60%
Naphithalene		•	15	20				
1-Ethylnaphthalene		•	s	20				
2-Ethylnaphithalene			0	20				
2-Naphithylacelate		s		S				
1·Naphithylacetate	•	S		S.				
1-Naphthylpropionate		50	0	50				
1-Naphthylbutyrate		ĸ		S				
Naphiliyiphenyiketone		ĸ		S				
1.2 Dihydronaptithalene	S	70	30	06				
1,2,3,4-Tetrahydro naphihalene	s.	2	9	40				

Table 2(c)

P450cam-substrate interactions	Wild type	lype	Mulani Y96A	Y96A	Wild type	8	Mutent Y96A	196A
Subgroup: 2-ring, DPM	aSpin high/low	Vs DTT	aSpin high/low	Vs DTT	NADH fumover?	600	NADH fumover?	667
Diphenylmethane		2	45	5			+	
Ophenylether	01	vs	20	50				
Benzophenone		50		20				
Cycloherylphenylketone	<u> </u>	30	09	nd n				
Phenylbenzoale		ss						
N Phenythenzylamine	Q	ĸ	45	þ				
Bibenzyl			55	55				
Cos - Stilbene		50	40	05				
Biphenyl		50		06				
Cyclohexylbenzene	50	50	90	ē				
(Lans Sulbene			. •					
Benzylelher	٠.	ĸ	55	pu				

	_	_
	7	3
		1
	_	D
•	-	4
•		3
į	E	4

P450cam-substrate interactions	actions	Wild type	.	Mutant Y96A	r96A	Wild type	8	Mulani Y96A	36A
Subgroup: 3-ring		Spin high/low	VsDTT	∆Spin high/low	Vs DTT	NADH turnover?	903	NADH lurnover?	607
	Anthracene								
	Phenanilvene			20	50			•	
	Fluorene				20				
-ō	2.Fluorencarboxaldehyde	hyde			20				
	9.Fluorenone		50		ss				
	Anthrone		v s		s				
	Anthraquinone								
	.04 ₂ 04 ₃ 2.Ethylanthraquinone	0116							

0	
~	
0	
51	
Ta	

³ 450cam-substrate inter	interactions	Wild type	уре	Mutant Y96A	Y96A	Wild type	ğ	Mutant Y96A	96A
ubgroup: 4,5-ring		3Spm high/low	Vs DTT	aSpin high/low	Vs DTT	NADH turnover?	GC?	NADH turnover? GC?	607
	Chrysene			,					
	1,2-Benzanthracene		•						
	Fluoranthene		'n	50	10				
	Pyrene*								
	Perylene"								
)									

P450cam-substrate interactions	Wild type	type	Mutant Y96A	Y96A	Wild type	/pe	Mutant Y96A	796A
Subgroup: Cyclic Alkanes	.3Spin high/low	Vs DTT	JSpin Vs DTT high/low	Vs DTT	NADH turnover?	603	NADH turnover? GC?	607
os · Decahydronaphilialene	рц	þ	Pu	g g				
trans-Decahydro	20	01	06	02				
Cyclohexane			09	09			•	
Methylcyclohexane	20	20	100	20				

P450cam-substrate interactions	eractions	PIIM	Wild type Mut	Mutan	Mutant Y96A	Wild type	925	Mart Voca	199
Cuthan						:	74.		¥00 =
dnosbane	Sungroup: n-Alkanes	aSpin high∕low	Vs DTT	ΔSpin high/low	Vs DTT	NADH tumover?	CC?	NADH tumover?	607
	n-Pentane		5	55	40			•	
	n∙Hexane			09	40			+	
	n-Heptane	S	2	09	40			+	
	n-Octane		5	90	45			+	
	n-Nonane			02	45			•	
	п-Dесапе	рц	5	5	рц				
	n-Undecane	uq	þ	50	20		•		
	n-Dodecane	þ	pu	S	S				
CH ₃ (CH ₂) ₁₄ CH ₃	n·Нехаdесапе		•						
СН ₃ (СН ₂) ₁₅ СН ₃	n⋅Hepladecane			•					
CH ₃ (CH ₂) ₁₁ OSO ₃ .Na	Na SDS		50		8				
CH ₃ (CH ₂), CH=CH(CH ₂), CO ₂ H Oleic acid),CO ₂ H Oleic acid*		103	•	203				
(CH ₃) ₂ CH(CH ₂) ₃ CH(CH	[(CH ₃) ₂ CH(CH ₂) ₃ CH(CH ₃)(CH ₂) ₃ CH(CH ₃)CH ₂ CH ₂ ·] ₂				į				
	Squalane	•	•	•	20				
	Isoprene			10	10				
			-						

Table 2(h)

P450cam-substrate Interactions	ite Interactions	Wild lype	lype	Mutant Y96A	Y96A	Wild type	ype	Mutant Y96A	Y96A
Subgroup: Campho	phor-like	3.Spin high/low	vs DTT	JSpin VS DTT ASpin VS DTT high/low	Vs DTT	NADH furnover? GC?	603	NADH turnover? GC?	60.3
>									
	(1B)-(-)-Camphorquinone	08	08	90	00				
	(18)·(·)·Fenchone	40	0.2	20	08				
	Dicyclopentadiene	90	90	06	06				

23 Table 3

Turnover of Small Alkanes by P450cam Mutants all mutants listed below also contain the C334A mutation.

Turnover rate measured as NADH consumption rate (nmole NADH/nmole P450cam/s).

Alkane Main chain length	substrate: Name	Wild type	Y96A
C4	n-butane	•	•
C4	2-methyl butane	background	4.6
C4	2.3-dimethyl butane	background	16.8
C4	2.2-dimethyl butane	background	14.0
C5	n-pentane	background	5.8
C5	2-methyl pentane	3.8	11.7
C5	3-methyl pentane	1.3	14.2
C5	2.4-dimethyl pentane	0.2	12.6
C5	2.2-dimethyl pentane	5.2	12.8
C5	2.2.4-trimethyl pentane	0.9	5.3
C5	3-ethyl pentane	background	16.2
C6	n-hexane	background	6.0
C6	2-methyl hexane	background	10.6
C7	n-heptane	2.7	4.4
C7	2-methyl heptane	background	2.1
C7	4-methyl heptane	1.4	10.2
C8	n-octane	background	5.8
C7	cycloheptane	4.4	42.5

Product structures and distributions collowing oxidation or substrates with P450cam active site mutants.

[&]quot;background" - typical packground MADH oxidation rate is 0.07 mmole NADH inmole P450cam: sec $^{\circ}$

Table 4(a)

Product structure and distributions following exidation of substrates with P450cam active site mutants. All mutants shown below also contain the C334A mutation.

:s: Y96 V	28	39	2	2.3	12.5	+ +	
roducts (%) for mutants: Y96A Y96F Y96L Y96V	38	23	23	91	10.4	D or L	
(%) for Y96F	54	27	9	13			
Products (%) for mutants: Y96A Y96F Y96L Y	20	30	15	45	7.4	re P450cam	
WT	43	20	25	12	8.0	zene 7 P450	1 5 S
zene	3-01	3-01	Trans -4-01	Cis- 4-ol	rea/10³)	exylben	ally mo
Cyclohexylbenzene Products	Part O	T or D	100	5	Total products(area/10 ⁵)	Cyclohexylbenzene	chemically most

Table 4(b)

	ļ				
Products (%) for	mutants: _X Y96A	25	75	36	
Produ	m WT	7.7	9/	45	ons P450cam
Phenylcyclohexene	Products	o 3-one (A)	3-ol (B)	Total products(area/106)	chemically reactive positions

Table 4(c)

Naphthalene			Product	s (%) f	or mutar	ıts:
Products	TW	Y96A	Y96F	Y96I.	WT Y96A Y96F Y96L Y96V F	F87A-F96G- HeF193A
<u>\$</u>	901	001	001	001	00	001
2-01	c	=	c	c	c	•
Total products (0.016) (area/10 ⁵)	(0.016)	=	7.7	0.7	7	0.1
2 S S S S S S S S S S S S S S S S S S S	P450cam Mutants	am †		₹————————————————————————————————————		

Table 4(d)

Phenanthrene Products	WT		Produc Y96F	Products (%) for mu Y96A Y96F Y96L Y96V	Products (%) for mutants: Y96F Y96L Y96V F87	lants: F87A-F96G-
			-			F193A
Y	38	46	=	35.5	=	27
8	15	23	=	7	38	-
၁	2	13	5	6	=	3
<u>a</u>	35	15	23	14.5	9	29
Total products 0.075 7.0 (area/10 ⁶)	0.075	7.0	4.5	2.8	9.1	0.065
Phenandhrene 8 7 6 5 44			P450cam mutants	=	4 hydrox	4 hydroxylated products

rable 4(e)

Fluoranthene Products	WT	Pr Y96A	Products (%) for mutants: A Y96F Y96L Y96V F	%) for Y96L	mutan Y96V	Products (%) for mutants: Y96A Y96F Y96L Y96V F87A-F96G- F193A
V	0	£8				
=	=	91	•			100
Total products 0 (area/10 ⁶)	0	2.7	,			0.2
			P450cam mutants	e s	2 hydr	2 hydroxylated products
Fluoranthene						

Table 4(f)

Pyrene Products	TW	P V 96 V	Products (%) for mutants:	196 X	r mutar V96V	Products (%) for mutants: V96A V96F V96L V96V F87A-F96G-
	-					F193A
V	=	0+	43	23	30	33
æ	0	43.6	56	64.5	55	9
၁	0	2	12.5	7.9	12	20
<u> </u>	=	-	15.5	4.6	3	7
Total products ()	0	1.2	1.5	1.5	9.1	0.02
Pyrene 9 10.			P450cam mutants	am Is	4 hydro	4 hydroxylated products

Table 4(g)

Lindane Products (hexachlorocyclohexane)	Products (%) for mutants WT Y96A	for mutants Y96A
K	100	100
Turnover rate nmole NADII (nmolcP450) 's '	7.5	43.5

Hexachlorocyclohexane

Table 4(h)

Hexane Products	Products (%) for mutants:	or mutants:
	Y96F	1.964
2-hexanone	10	15
3-hexanone	91	286
2-hexanol	7.	26
3-hexanol	90	32
Relative activity		
(WT = 1)	18.2	25.5

2-Methyl hexane	Products (%) for mutants:	for mutants:
Logners	Y96F	1.964
2-methyl-2-hexanol	7.2	74
5-methyl-2-hexanone	91	=
2-methyl-3-hexanol	7	7
5-methyl-2-hexanol	S	æ
Relative activity		
(WT = 1)	2.3	2.6

REFERENCES

- "Cytochroe P-450: Structure, Mechanism, and Biochemistry", ed. P R Ortiz de Montellano, Plenum Press, New York, 1986.
- T L Poulos, B C Finzel and A J Howard, J. Mol. Biol., t987, 195, 687-700.
- C A Hasemann, K G Ravichandran, J A Peterson, and J Deisenhofer, J. Mol. Biol., 1994, 2-)6, 1169-1185.
- 4. K G Ravichandran, S S Boddupalli, C A Hasemann, J A Peterson, and J Deisenhofer, Science, 1993, 261, 731-736.
- 5. B P Unger, I C Gunsalus, and S G Sligar, J. Biol. Chem., 1986,261,1158-1163; J S Miles, A W Munro, B N Rospendowski, W E Smith, J McKnight, and A J Thomson, Biochem. J., 1992, 288, 503-509; T H Richardson, M J Hsu, T Kronbach, H J Bames, G Chan, M R Waterman, B Kemper, and E F Johnson, Arch. Biochem. Biophys., 1993, 300, 510-516; S S Boddupalli, T Oster, R W Estabrook, and J A Peterson, J. Biol. Chem., 1992, 267, 10375-10380; H Li K Darish and T L Poulos. J. Biol. Chem., 1991, 266, 11909-11914.
- 1 C Gunsalus and G C Wagner, Methods Enzymol., 1978, 52, 166-188.
- 7. M Haniu, L G Armes, K T Yasunobu, B A Shastry, and I C Gunsalūs. Biol. Chem., 1982, 257, 12664-12671.
- 8. S G Sligar, D Filipovic, and P S Stayton, Methods Enzymol., 1991, 206, 31-49.

- P J. Loida and S G Sligar, Biochemistry, 1993, 32, 11530-11538.
- 10. P J Loida and S G Sligar, Protein Eng., 1993, 6, 207-212.
- W M. Atkins and S G Sligar, J. Am. Chem. Soc., 1989,
 111, 2715-2717.
- 12. S F Tuck, S Graham-Lorence, J A Peterson, and P R Ortiz de Montellano, J.Biol. Chem., 1993, 268, 269-275.
- 13. C Di Prime, G Hui Bin Hoa, P. Douzou, and S Sligar, J. Biol. Chem., 1990, 265, 5361-5363.
- 14. W M Atkins and S G Sligar, J. Biol. Chem., 1988, 263, 18842-18849.
- 15. W M Atkins and S G Sligar, Biochemistry, 1990, 29, 1271-1275.
- 16. J D Lipscomb, J E Harrison, K M Dus, and I C Gunsalus, Biochem. Biophys. Res. Conunun., 1978, 83, 771-778.
- 17. P J Goodford, J. Med. Chem., 1985, 28, 849-857.
- 18. Quanta 4.0, Molecular Simulations Inc., 16 New England Executive Park, Burlington, MA 01803-5297.

- 19. J A Fruetet, J R Collins, D L Camper, G H Loew, and P R
 Ortiz de Montallano, J. Am. Chem. Soc., 1992, 114,
 6987-6993.
- 20. Y Watanabe and Y Ishimura, J. Am. Chem. Sec., 1989, 111, 410-41 1.
- 21. J P Jones, W F Trager, and T J Carlson, J. Am. Chem.
 Soc., 1993, 115, 381-387.
- 22. "Biotransformation in Preparative Organic Chemistry" H G Davis, R H Green, D R Kelly, and S M Roberts, Academic Press, London, 1989, Page 169 ff.
- 23. J E Baldwin J M Blackburn, R J Heath, and J D Sutherland, Bioorg. Med. Chem. Letts. 1992, 2, 663-668.
- 24. M J Zoller and M Smith, Nucleic Acids Res., 1982, 10, 6487-6500.
- 25. T A Kunkel, Proc. Natl. Acad. Sci., USA 1985, 82, 488-492.
- 26. S G Sligar and I C Gunsalus, Proc. Natl. Acad. Sci., USA, 1976, 73, 1078-1082.

CLAIMS

- A mutant of the mono-oxygenase cytochrome P-450cam in which the cysteine residue at position 334 is removed.
- 2. A mutant as claimed in claim 1 in which the removal is by the substitution of another amino acid except cysteine for the cysteine residue.
- 3. A mutant as claimed in claim 1 in which the removal is by deletion of the entire cysteine 334 residue from the enzyme.
- 4. A mutant as claimed in any of the preceding claims in which the tyrosine residue at position 96 in the mutant is replaced by any other amino acid except tyrosine.
- 5. A mutant as claimed in either of claims 1, 2 or 4 in which the amino acid is selected from any one of the following:-

alanine, arginine, asparagine, aspartic acid, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, tryptophan, tyrosine and valine.

- 6. A mutant as claimed in any of the preceding claims in which the amino acid residue at one or more of the positions 87, 98, 101, 185, 193, 244, 247, 295, 297, 395 and 396 is replaced by another amino acid residue.
- 7. A mutant of the mono-oxygenase cytochrome P-450cam substantially as hereinbefore described with reference to the accompanying drawings and/or examples.

37

Application No: Claims searched:

GB 9622819.2

1 to 7

Examiner:

Colin Sherrington

Date of search:

6 December 1996

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.O): C3H(HB7M)

Int Cl (Ed.6): C12N 9/02,15/53

Other: ONLINE: WPI, CLAIMS, DIALOG/BIOTECH

Documents considered to be relevant:

Category	Identity of document and relevant passage	Relevant to claims
E, A	GB 2294692 A (BRITISH GAS PLC) -whole document	4 to 7
A	J.Biological Chemistry 1988,263(35),18842-18849 -William M.Atkins et al. "The Roles of Active Site Hydrogen Bonding in Cytochrome P-450cam as Revealed by Site-directed Mutagenesis"	4
A	J.Amer.Chem.Soc. 1989,111,2715-2717 -William M.Atkins et al. "Molecular Recognition in Cytochrome P-450: Alteration of Regioselective Alkane Hydroxylation via Protein Engineering"	4
A	J.Biological Chemistry 1990,265(10),5361-5363 -Carmelo Di Primo et al. "Mutagenesis of a Single Hydrogen Bond in Cytochrome P-450 Alters Cation Binding and Heme Solvation"	4

X Document indicating lack of novelty or inventive step
 Y Document indicating lack of inventive step if combined with one or more other documents of same category.

A Document indicating technological background and/or state of the art.

P Document published on or after the declared priority date but before

with one of more other documents of same category.

the filing date of this invention.

E. Patent document published on or after, but with priority date gardier

[&]amp; Member of the same patent family

E Patent document published on or after, but with priority date earlier than, the filing date of this application.

(12) UK Patent Application (19) GB (11) 2 306 485 (13) A

(43) Date of A Publication 07.05.1997

(21) Application No 9622819.2

(22) Date of Filing 01.11.1996

(30) Priority Data (31) PCT/GB97/02588 (32) 02.11.1995 (33) WO 9522407 01.11.1995 GB

(71) Applicant(s)

British Gas plc

(Incorporated in the United Kingdom)

Rivermill House, 152 Grosvenor Road, LONDON, SW1V 3JL, United Kingdom

(72) Inventor(s)
Luet-Lok Wong
Sabine Lahja Flitsch
Darren Paul Nickerson
Alwyn James Hart

(51) INT CL⁶
C12N 9/02 15/53 // (C12N 15/53 C12R 1:19)

(52) UK CL (Edition O)

C3H HB7M H650 H685

C8Y Y125 Y153 Y501 Y503

U1S S1289 S1305 S1333 S1508

(56) Documents Cited
GB 2294692 A
J.Biol.Chem. 1988,263(35),18842-18849
J.Amer.Chem.Soc. 1989,111,2715-2717 J.Biol.Chem.
1990,265(10),5361-5363

(58) Field of Search
UK CL (Edition O) C3H HB7M
INT CL⁶ C12N 9/02 15/53
ONLINE: WPI,CLAIMS,DIALOG/BIOTECH

(74) Agent and/or Address for Service
David J Morgan
British Gas plc, Intellectual Property Department,
100 Thames Valley Park Drive, READING, Berkshire,
RG6 1PT, United Kingdom

(54) Mutants of mono-oxygenase cytochrome P-450cam

(57) A mutant of mono-oxygenase cytochrome P-450cam in which cysteine, at position 334, is deleted therefrom, or replaced by a different amino acid, is described. Tyrosine(96) may also be substituted by a different amino acid. The amino acid may be selected from alanine, arginine, asparagine, aspartic acid, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, tryptophan and valine, and, for cysteine(334), tyrosine. Preferred substitutions of amino acids may also occur at at least one of the positions 87, 98, 101, 185, 193, 244, 247, 295, 297, 395 and 396.

	-		
			€
		 ;	
		4	! .,
1			
, å			
j			
•			