Data 550: Data Visualization I

Lecture 4b: Comparing Distributions in R

Dr. Irene Vrbik
University of British Columbia Okanagan

Introduction

- Up until this point we have provided examples mostly in Altair with the understanding that ggplot has a similar counterpart.
- As Altair is relatively new, and ggplot2 is one of the most widely used and documented packages in R, it does have functionalities that Altair has yet to implement.
- One such example is violin plots.

Learning Outcomes

Create density, box plots, and violin plots using ggplot

Data

Below is the reprocessed movies data frame (to see how it was processed see the accompanying ipynb)

```
1 # the above is the cleaned version
2 library(rjson)
3 library(tidyverse)
4 movies <- fromJSON(file = 'data/lec-movies.json') %>%
5    as_tibble() %>%
6    unnest(-c(countries, genres))
7
8 head(movies)
```

id title

<dbl> <chr>

- 12 Finding Nemo
- 22 Pirates of the Caribbean: The Curse of the Black Pearl

•	. • .	
ıd	tit	
IU	LIL	LC

<dbl> <chr>

- 35 The Simpsons Movie
- 58 Pirates of the Caribbean: Dead Man's Chest
- 75 Mars Attacks!
- 117 The Untouchables

6 rows | 1-2 of 11 columns

Histogram

Let's recall how to make a histogram.

```
1 ggplot(movies, aes(x = runtime)) +
2 geom_histogram(color = 'white')
```


Density plot

Unlike Altair, ggplot has it's own density mark, ...

```
1 ggplot(movies, aes(x = runtime)) +
2 geom_density(fill = 'grey', alpha = 0.7)
```


Unnesting the data

We need to unnest/explode on genres and countires.

```
free genres <- movies %>% unnest(genres)
2 free countries <- movies %>% unnest(countries)
   free both <- movies %>% unnest(genres) %>% unnest(countries)
   free genres %>%
     filter(, title == "All Dogs Go
     select(genres, countries)
                                 countries
genres
                              <named list>
<chr>
                                 <chr [2]>
Fantasy
Animation
                                 <chr [2]>
                 2 rows
```

1 free both %>% filter(title == "All Dogs Go to select(genres, countries)

genres <chr></chr>	countries <chr></chr>
Fantasy	United Kingdom
Fantasy	United States of America
Animation	United Kingdom
Animation	United States of America
	4 rows

Layered Density Plot

Notice how you can add the aesthetic rather than including it as an argument within ggplot():

```
1 ggplot(free_genres) +
2    aes(x = runtime,
3         fill = genres,
4         color = genres) +
5    geom_density(alpha = 0.6)
```

Layered Density Plot

Faceting

```
ggplot(free_both) +
aes(x = runtime, fill = genres, color = genres) +
geom_density(alpha = 0.6) +
facet_wrap(~countries)
```


https://github.com/ubco-mds-2022/Data-550

Faceting (row and column)

```
ggplot(free_both, show.legend = FALSE) +
aes(x = runtime, fill = genres, color = genres) +
geom_density(alpha = 0.6) +
facet_grid(countries~genres)
```


Boxplots

As in Altair, ggplot unsuprisingly has a boxplot geom, eg.

```
1 ggplot(free_both) +
2    aes(x = runtime, y = genres, fill = genres) +
3    geom_boxplot()
```


Scaled Boxplots

As in Altair, ggplot unsuprisingly has a boxplot geom, eg.

```
1 ggplot(free_both) +
2    aes(x = runtime, y = genres, fill = genres) +
3    geom_boxplot(varwidth = TRUE)
```


Violin Plots

The change from boxplot to violin is extremely simple

```
1 ggplot(free_both) +
2    aes(x = runtime, y = genres, fill = genres) +
3    geom_violin()
```


What are violin plots

- Violin plots are similar to box plots, except that they also show the kernel probability density of the data at different values.
- Typically, violin plots will include a marker for the median of the data and a box indicating the interquartile range, as in standard box plots.
- The function geom_violin() is used to produce a violin plot.

Violin vs Faceted Density Plots


```
1 ggplot(free_both) +
2    aes(x = runtime, fill = genres
3    geom_density(alpha = 0.6) +
4    facet_wrap(~genres, ncol = 1)
```


Faceted Boxplots

As with out density plots, we can also facet by country, eg.

```
1 ggplot(free_both) +
2    aes(x = runtime, y = genres, fill = genres) +
3    geom_boxplot() +
4    facet_wrap(~countries)
```


Violin Plots

To get the violin plots, we simply change the geom:

```
1 ggplot(free_both) +
2    aes(x = runtime, y = genres, fill = genres) +
3    geom_violin() +
4    facet_wrap(~countries)
```


Layering Quanties

We can layer the quantiles shown in the box plots

```
ggplot(free_both) +
aes(x = runtime, y = genres, fill = genres) +
geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) +
facet_wrap(~countries)
```


Comments

- When possible, it is a good idea to have a look at where the individual data points are.
- Of course we could always layer on different marking of our data (using geom_point() for example)
- However when we have a lot of data, this could be impossible to read.
- For this we can use a categorical scatter plot where the dots are spread/jittered¹ randomly on the non-value axis so that they don't all overlap via geom_jitter().

Layering Points

We can layer the points onto the violin plots:

```
1 ggplot(free_both) +
2    aes(x = runtime, y = genres, fill = genres) +
3    geom_violin() + geom_point() +
4    facet_wrap(~countries)
```


Jittering Data

"jittering" adds some noise to the location of each point

```
1 ggplot(free_both) +
2    aes(x = runtime, y = genres, fill = genres) +
3    geom_violin() + geom_jitter() +
4    facet_wrap(~countries)
```


https://github.com/ubco-mds-2022/Data-550

Order matters

We can change the default height and order or layers

```
ggplot(free_both) +
aes(x = runtime, y = genres, fill = genres) +
geom_jitter(height = 0.2, alpha = 0.3) + geom_violin() +
facet_wrap(~countries)
```


https://github.com/ubco-mds-2022/Data-550

Unfaceting

Rather than faceting we could fill by countries

```
1 ggplot(free_both) +
2    aes(x = runtime, y = genres, fill = countries) +
3    geom_violin(draw_quantiles = c(0.25, 0.5, 0.75))
```

