Universidade do Minho

Licenciatura em Engenharia Informática

TP3 -Nível de Ligação Lógica: Redes Ethernet, Protocolo ARP e Redes Locais sem Fios (Wi-Fi)

Trabalho realizado por: Margarida Cunha da Silva, A104357 Maria Leonor Carvalho da Cunha, A103997 Tiago Rodrigues Barros, A104530.

Redes de Computadores

PL9 - Grupo 91 April 16, 2024

Índice

1. Parte 1	3
1.1. Exercício 1	3
1.2. Exercício 2	4
2. Parte 2	11
2.1. Exercício 1	11
2.2. Exercício 2	13
2.3. Exercício 3	16
2.4. Exercício 4	18
Conclusão	20

1. Parte 1

1.1. Exercício 1

Captura e análise de Tramas Ethernet

Com o aumento do preço da habitação em Braga, o Shrek e o Burro tomam a decisão economicamente sensata e decidem voltar à sua casa no Pântano. A sua rede local é constituída por um switch (n2), um router para acesso à rede (n1), assim como os portáteis do Shrek e do Burro, ligados por Ethernet a n2. O router n1 está ainda ligado a um hub (n3), que se conecta ao portátil da Fiona e ao servidor do conhecido site de notícias pantanews.com.

A caminho, o Shrek fica a saber que houve um ataque aos servidores do seu site de notícias favorito, o Pantanews, e que todos os seus dados terão sido apagados. Assim que chegam a casa, o Shrek aproveita para verificar se realmente há algum problema com o site (servidor - 10.0.1.10). Utilize o comando curl para o efeito (poderá consultar o manual do comando com man curl), apontando diretamente para o endereço do servidor. Pare a captura do Wireshark, e analise a trama que contém os primeiros dados HTTP referentes à página alojada no servidor.

1. Anote os endereços MAC de origem e de destino da trama capturada. Identifique a que sistemas se referem. Justifique

	31 27.404244915	10.0.0.20 10.0.1.10 TCP	74 44796 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=325568095 TSecr=0 WS=128	
	32 27.404279755	10.0.1.10 10.0.0.20 TCP	74 80 44796 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK PERM=1 TSval=959433019 TSecr=325568095 WS=128	
	33 27.404288880	10.0.0.20 10.0.1.10 TCP	66 44796 → 80 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=325568095 TSecr=959433019	
	34 27.404322318	10.0.0.20 10.0.1.10 HTT	139 GET / HTTP/1.1	
m	35 27.404340439	10.0.1.10 10.0.0.20 TCP	66 80 44796 [ACK] Seq=1 Ack=74 Win=65152 Len=0 TSval=959433019 TSecr=325568095	
-	36 27.404586412	10.0.1.10 10.0.0.20 HTTI	552 HTTP/1.1 200 0K	
	37 27.494634475	10.0.0.20 10.0.1.10 TCP	66 44796 - 80 [ACK] Seg=74 Ack=487 Win=63872 Len=0 TSval=325568096 TSecr=959433020	
	38 27.406009609	10.0.0.20 10.0.1.10 TCP	66 44796 → 80 FIN, ACK] Seq=74 Ack=487 Win=64128 Len=0 TSval=325568097 TSecr=959433020	
	39 27.406039751	10.0.1.10 10.0.0.20 TCP	66 80 - 44796 FIN, ACK Seg=487 Ack=75 Win=65152 Len=0 TSval=959433021 TSecr=325568097	
L	40 27.406043858	10.0.0.20 10.0.1.10 TCP	66 44796 → 80 [ACK] Seq=75 Áck=488 Win=64128 Len=0 TSval=325568097 TSecr=959433021	

Figure 1: Pacote TCC

```
▶ Frame 34: 139 bytes on wire (1112 bits), 139 bytes captured (1112 bits) on interface veth2.0.42, id 0
▼ Ethernet II, Src: 00:00:00 aa:00:00 (00:00:00:aa:00:00), Dst: 00:00:00-aa:00:02 (00:00:00:aa:00:02)
▼ Destination: 00:00:00 aa:00:00 (00:00:00:00:aa:00:02)
▼ Source: 00:00:00_aa:00:00 (00:00:00:00:00)
    Type: IPv4 (0x0800)
▼ Internet Protocol Version 4, Src: 10.0.0.20, Dst: 10.0.1.10
▼ Transmission Control Protocol, Src Port: 44796, Dst Port: 80, Seq: 1, Ack: 1, Len: 73
► Hypertext Transfer Protocol
```

Figure 2: Trama capturada

Resposta: O endereço MAC do destino é 00:00:00:aa:00:02 e refere-se ao endereço físico do router. O endereço MAC na origem é 00:00:00:aa:00:00, este refere-se ao endereço físico da máquina que estamos a utilizar para realizar a captura.

- 2. Qual o valor hexadecimal do campo Type da trama Ethernet? O que significa? **Resposta:** O endereço é 0x0800 (Figure 2) e significa que a camada superior está a utilizar o protocolo IPv4.
 - 3. Quantos bytes são usados no encapsulamento protocolar, i.e. desde o início da trama até ao início dos dados do nível aplicacional? Calcule e indique, em percentagem, a sobrecarga (overhead) introduzida pela pilha protocolar.

Resposta: Conforme a captura de rede fornecida, a trama em questão possui um tamanho total de 139 bytes. No entanto, apenas 85 bytes são destinados aos dados do nível aplicacional, ou seja, o conteúdo da requisição HTTP.

Cálculo da sobrecarga: 85 bytes / 139 bytes ≈ 0,6115 Sobrecarga em porcentagem: 0,6115*100% = 61,15%

A análise revela que a pilha protocolar introduz uma sobrecarga significativa de 61,15% no tamanho total da trama.

```
00 00 00 aa 00 02 00 00
                                00 aa 00 00 08 00 45 00
                                                            . . . . . . . . . . . . . . E .
0010 00 7d 47 40 40 00 40 06 de 1d 0a 00 00 14 0a 00
                                                             - }G@@ - @ -
0020 01 0a ae fc 00 50 02 fl 4c 0c ee 24 4c 37 80 18
                                                            · · · · · P · · L · · $L7 · ·
                                                            ··)····g·_9/
0030 01 f6 29 d2 00 00 01 01 08 0a 13 67 c6 5f 39 2f
                                                             GET / HTTP
0040 c9 3b 47 45 54 20 2f 20
                                48 54 54
                                                            Host: 10.0.1.1
0 User- Agent: c
      0d 0a 48 6f 73 74 3a 20
                                31 30 2e 30 2e 31 2e 31
      30 0d 0a 55 73 65 72 2d
                                41 67 65 6e 74 3a 20 63
0070 75 72 6c 2f 37 2e 36 38
                                                            ur1/7.68 .0 · Acce
                                2e 30 0d 0a 41 63 63 65
                                                            pt: */*·
0080 70 74 3a 20 2a 2f 2a 0d 0a 0d 0a
```

Figure 3: Valores dos bytes da trama em estudo

Qual é o endereço Ethernet da fonte? A que sistema de rede corresponde?
 Justifique.

```
Frame 36: 552 bytes on wire (4416 bits), 552 bytes captured (4416 bits) on interface veth2.0.42, id 0

Ethernet II, Src: 00:00:00_aa:00:02 (00:00:00:aa:00:02), Dst: 00:00:00_aa:00:00 (00:00:00:aa:00:00)

Destination: 00:00:00_aa:00:00 (00:00:00:aa:00:00)

Source: 00:00:00_aa:00:02 (00:00:00:aa:00:02)

Type: IPv4 (0x0800)

Internet Protocol Version 4, Src: 10.0.1.10, Dst: 10.0.0.20

Transmission Control Protocol, Src Port: 80, Dst Port: 44796, Seq: 1, Ack: 74, Len: 486

Hypertext Transfer Protocol
```

Figure 4: Resposta HTTP

Resposta: Como podemos ver na figura 4, o endereço é 00:00:00:aa:00:02 e corresponde ao endereço físico do router com que estamos a comunicar.

5. Qual é o endereço MAC do destino? A que interface corresponde? **Resposta:** O endereço MAC do destino é 00:00:00:aa:00:00 e corresponde ao endereço físico da nossa máguina.

1.2. Exercício 2

Protocolo ARP e Domínios de Colisão

Deverá ter a cache ARP completamente vazia antes de iniciar esta secção: reinicie a topologia, ou utilize o comando arp -d.

Um pouco mais preocupado com a segurança dos seus dados, o Shrek repara que a Fiona sabe sempre por onde andou a navegar. Para averiguar esta situação, o Shrek experimenta de novo aceder ao site do pantanews.com (10.0.1.10) através do comando curl. Certifiquese que está a capturar tráfego com o Wireshark na interface do Shrek e na do Burro.

Figure 5: Captura do tráfego na interface do Shrek

Figure 6: Aceder ao pantanews.com no Shrek através do comando curl

No.	Time	Source	Destination	Protocol	Length	
С	1 0.000000000		. ff02::fb	MDNS		107 Standard query 0x0000 PTR _ippstcp.local, "QM" question PTR _ipptcp.local, "QM" question
	2 0.696817099		224.0.0.5	OSPF		78 Hello Packet
	3 2.697215824		224.0.0.5	OSPF		78 Hello Packet
	4 2.707265291	fe80::20	. ff02::5	0SPF		90 Hello Packet
	5 3.420429368	fe80::cf	. ff02::2	ICMPv6		70 Router Solicitation from 32:a1:f0:f5:cf:d4
	6 4,698436326	10.0.0.1	224.0.0.5	OSPF		78 Hello Packet
	7 4.700478642	fe80::20	. ff02::2	ICMPv6		70 Router Solicitation from 00:00:00:aa:00:01
	8 5.468371834	fe80::30	. ff02::2	ICMPv6		70 Router Solicitation from 32:a1:f0:f5:cf:d4
	9 5.980381609	fe80::20		ICMPv6		70 Router Solicitation from 00:00:00:aa:00:00
	10 6.700046940	10.0.0.1	224.0.0.5	OSPE		78 Hello Packet
	11 6.912442985		. ff02::fb	MDNS		107 Standard query 0x0000 PTR ipps. tcp.local, "OM" question PTR ipp. tcp.local, "OM" question
i	12 8.001032229		. ff02::fb	MDNS		197 Standard query 0x0000 PTR ipps. tcp.local, "OM" question PTR ipp. tcp.local, "OM" question
	13 8.700722943		224.0.0.5	OSPF		78 Hello Packet
	14 10.701801654		224.0.0.5	OSPF		78 Hello Packet
	15 12.701848440		224.0.0.5	OSPF		78 Hello Packet
	16 12.714641251	fe80::20		OSPE		90 Hello Packet
	17 14.703087759		224.0.0.5	OSPF		78 Hello Packet
	18 16.704185264		224.0.0.5	OSPF		78 Heilo Packet
	19 18.704731271		224.0.0.5	OSPF		78 Hello Packet
	20 18.780355791	fe80::cf		ICMPv6		70 Router Solicitation from 32:a1:f0:f5:cf:d4
	21 20.572667327	fe80::20		ICMPv6		70 Router Solicitation from 00:00:00:00:00:1
	22 20.705773534		224.0.0.5	OSPE		78 Hollo Packet
				ICMPv6		
	23 21.084410907	fe80::30				70 Router Solicitation from 32:a1:f0:f5:cf:d4
	24 22.668849154	fe80::20		OSPF		90 Hello Packet
	25 22.705935036		224.0.0.5	OSPF		78 Hello Packet
l i	26 22.912247188		. ff02::fb	MDNS		107 Standard query 0x0000 PTR _ippstcp.local, "QM" question PTR _ipptcp.local, "QM" question
_	27 24.002692566		. ff02::fb	MDNS		107 Standard query 0x0000 PTR _ippstcp.local, "QM" question PTR _ipptcp.local, "QM" question
	28 24.707142841		224.0.0.5	0SPF		78 Hello Packet
	29 25.436428415	fe80::20		ICMPv6		78 Router Solicitation from 80:00:00:aa:00:00
	30 26.708527698		224.0.0.5	OSPF		78 Hello Packet
	31 28.708618729		224.0.0.5	OSPF		78 Hello Packet
	32 30.708802354		224.0.0.5	0SPF		78 Hello Packet
	33 32.636921528		. ff02::5	0SPF		90 Hello Packet
	34 32.704351941		. ff02::16	ICMPv6		90 Multicast Listener Report Message v2
	35 32.708884448		224.0.0.5	OSPF		78 Hello Packet
	36 33.596436962		. ff02::16	ICMPv6		90 Multicast Listener Report Message v2
	37 34.710368486		224.0.0.5	OSPF		78 Hello Packet
	38 36.710898131	10.0.0.1	224.0.0.5	0SPF		78 Hello Packet
. Fee	ame 1: 107 bytes on wire (856 b)	(to) 107 hute	as sontured (DEC hite) on i	.torfooo .	a use by 0 ho 4d 0
	ame 1: 107 bytes on wire (856 b) hernet II, Src: 32:a1:f0:f5:cf:d					
	Destination: IPv6mcast fb (33:3			t. Irvoilleast_II	(33.33.6	3.00.00.10)
	Source: 32:a1:f0:f5:cf:d4 (32:a					
		11.10:15:0f:04	*)			
	Type: IPv6 (0x86dd) ternet Protocol Version 6, Src:	£00011200115	DEELEGEE LOCAL	Dott 6600 6		
				, DSC: TT02::TI	,	
	er Datagram Protocol, Src Port:		t: 5353			
→ Mul	Lticast Domain Name System (que	ry)				

Figure 7: Captura do tráfego na interface do Burro

 Observe o conteúdo da tabela ARP do Shrek com o comando arp -a. Com a ajuda do manual ARP (man arp), interprete o significado de cada uma das colunas da tabela.

```
</body></html>root@Shrek:/tmp/pycore.33533/Shrek.conf# arp -a
? (10.0.0.1) at 00:00:00:aa:00:02 [ether] on eth0
root@Shrek:/tmp/pycore.33533/Shrek.conf#
```

Figure 8: Comando arp -a no shrek

No.	Time	Source	Destination	Protocol	Length	Info
	17 15.048603531	00:00:00_aa:00:00	Broadcast	ARP	4	2 Who has 10.0.0.1? Tell 10.0.0.20
	18 15.048628017	00:00:00_aa:00:02	00:00:00_aa:00:00	ARP	4	2 10.0.0.1 is at 00:00:00:aa:00:02
	36 20.129047895	00:00:00_aa:00:02	00:00:00_aa:00:00	ARP	4	2 Who has 10.0.0.20? Tell 10.0.0.1
	37 20 129059006	00:00:00 aa:00:00	00:00:00 aa:00:02	ARP	4	12 10.0.0.20 is at 00:00:00:aa:00:00

Figure 9: tabela ARP

Resposta: A primeira coluna mostra os endereços IPs e a segunda coluna mostra os endereços MAC.

- 2. Observe a trama Ethernet que contém a mensagem com o pedido ARP (ARP Request).
- a. Qual é o valor hexadecimal dos endereços MAC origem e destino? Como interpreta e justifica o endereço destino usado?

```
Frame 17: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface veth2.0.7f, id 0

Ethernet II, Src: 00:00:00_aa:00:00 (00:00:00:aa:00:00), Dst: Broadcast (ff:ff:ff:ff:ff)

Destination: Broadcast (ff:ff:ff:ff:ff)

Source: 00:00:00_aa:00:00 (00:00:00:aa:00:00)

Type: ARP (0x0806)

Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocol type: IPv4 (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: request (1)

Sender MAC address: 00:00:00_aa:00:00 (00:00:00:aa:00:00)

Sender IP address: 10.0.0.20

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)

Target IP address: 10.0.0.1

Target IP address: 10.0.0.1
```

Figure 10: Trama com o pedido ARP

- b. Qual o valor hexadecimal do campo Tipo da trama Ethernet? O que indica? **Resposta:** O valor do campo tipo trama é 0x0806 e indica que a camada superior está a usar o protocolo ARP.
 - c. Observando a mensagem ARP, como pode saber que se trata efetivamente de um pedido ARP? Refira duas formas distintas de obter essa informação.

Resposta: Trata-se efetivamente de um pedido ARP pois temos a indicação que é uma "request" na figura 10.

Para além disso, na mensagem ARP estão contidos os endereços IP e MAC e o protocolo ARP permite converter um endereço IP num endereço MAC.

3. Localize a mensagem ARP que é a resposta ao pedido ARP efetuado.

Figure 11: Mensagem ARP que é a resposta ao pedido ARP efetuado

- a. Qual o valor do campo ARP opcode? O que especifica? **Resposta:** O valor do campo ARP opcode é 2. Assim podemos concluir que, o IP 10.0.0.20 recebe a mensagem de "request" e está a enviar o seu endereço MAC com resposta.
- b. Em que posição da mensagem ARP está a resposta ao pedido ARP efetuado? **Resposta:** A resposta ao pedido encontra-se entre os bytes 15 e 42, como podemos ver na imagem abaixo.

```
Frame 18: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface veth2.0.7f, id 0 
The Ethernet II, Src: 00:00:00_aa:00:02 (00:00:00:aa:00:02), Dst: 00:00:00_aa:00:00 (00:00:00:aa:00:00)
      Destination: 00:00:00_aa:00:00 (00:00:00:aa:00:00)
      Source: 00:00:00_aa:00:02 (00:00:00:aa:00:02)
      Type: ARP (0x0806)
▼ Address Resolution Protocol (reply)
      Hardware type: Ethernet (1)
Protocol type: IPv4 (0x0800)
      Hardware size: 6
      Protocol size: 4
      Sender MAC address: 00:00:00_aa:00:02 (00:00:00:aa:00:02)
      Sender IP address: 10.0.0.1
      Target MAC address: 00:00:00_aa:00:00 (00:00:00:aa:00:00)
      Target IP address: 10.0.0.20
       00 00 00 aa 00 00 00 00
                                     00 aa 00 02 08 06 00 01
0010 08 00 06 04 00 02 00 00 00 aa 00 02 0a 00 00 01 0020 00 00 aa 00 00 00 00 14
                                                                      ....
```

Figure 12: Trama com a resposta ARP

c. Identifique a que sistemas correspondem os endereços MAC de origem e de destino da trama em causa, recorrendo aos comandos ifconfig, netstat -rn e arp executados no PC selecionado.

```
root@Shrek:/tmp/pycore.38945/Shrek.conf# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
            inet 10.0.0.20 netmask 255.255.255.0 broadcast 0.0.0.0 inet6 2001;:20 prefixlen 64 scopeid 0x0<global> inet6 fe80;:200;ff;feaa;0 prefixlen 64 scopeid 0x20link> ether 00;00;00;aa;00;00 txqueuelen 1000 (Ethernet)
            RX packets 4606 bytes 371136 (371.1 KB)
            RX errors 0 dropped 0 overruns 0 frame 0
            TX packets 17 bytes 1382 (1.3 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
            RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
            TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
 root@Shrek:/tmp/pycore.38945/Shrek.conf# netstat -rn
Kernel IP routing table
Destination
                                                                           Flags
                         Gateway
                                                  Genmask
                                                                                       MSS Window
                                                                                                          irtt Iface
0.0.0.0
10.0.0.0
                         10.0.0.1
                                                  0.0.0.0
                                                                           UG
                                                                                          0 0
                                                                                                               0 eth0
                                                  255,255,255,0
                                                                          ш
                                                                                          Ôΰ
                                                                                                               0 eth0
                         0.0.0.0
root@Shrek:/tmp/pycore.38945/Shrek.conf# arp
 oot@Shrek:/tmp/pycore.38945/Shrek.conf#
```

Figure 13: comandos ifconfig, netstat -rn, arp no Shrek

Resposta: Com base na figura podemos concluir que o endereço ether é 00:00:00:aa:00:00, e é o endereço MAC de origem.

d. Justifique o modo de comunicação (unicast vs. broadcast) usado no envio da resposta ARP (ARP Reply).

Resposta: A resposta ARP é encaminhada como unicast, ao contrário do pedido que é transmitido em broadcast. Isto garante que a resposta seja entregue diretamente ao dispositivo que solicitou, aumentando a eficiência e economizando recursos de rede. Optar por enviar a resposta como broadcast seria redundante e iria gerar tráfego desnecessário na rede, já que todos os dispositivos teriam que processar a mensagem ARP.

4. O Burro recebeu toda a informação trocada na interação anterior? Qual será a razão para tal?

Resposta: Na captura de tráfego, podemos observar que o Burro envia um pacote ARP para o RACI solicitando o endereço MAC do PC2. Isso indica que o Burro não possui o endereço MAC do PC2 em sua tabela ARP. Sem o endereço MAC do PC2, o Burro não pode enviar pacotes para ele diretamente.

5. Repita a experiência com uma captura na interface do PC da Fiona. Documente as suas observações e conclusões com base no tráfego observado/capturado.

Figure 14: Captura do tráfego da interface Fiona

Resposta: A captura de tráfego da interface Fiona mostra que ela desempenha um papel ativo na rede. Ela troca pacotes OSPF com outros routers para construir e manter a topologia da rede, trocando pacotes TCP com outros hosts para transferir dados, acessando web servers e trocando mensagens ICMP com outros dispositivos para testar a conectividade e anunciar sua presença na rede.

6. Esboce um diagrama em que indique claramente, e de forma cronológica, todas as mensagens trocadas entre o Shrek e os sistemas com os quais comunica, até à recepção do primeiro pacote que contém dados HTTP. Assuma que todas as tabelas ARP se encontram inicialmente vazias.

Resposta:

7. Construa manualmente a tabela de comutação do switch da casa do Shrek, atribuindo números de porta à sua escolha.

Resposta: Está associado a porta 1 do switch, o endereço MAC 00:00:00:aa:00:02. O endereço MAC 00:00:00:aa:00:00 está associado à porta 2 do switch.

A tabela abaixo, indica ao switch, tendo por base o endereço MAC de destino, por qual porta ele deve encaminhar os pacotes. Quando é recebido pelo switch um pacote com um endereço MAC 00:00:00:aa:00:02, ele encaminha-o para a porta 1, quando recebe um pacote com o endereço MAC 00:00:00:aa:00:00, ele encaminha-o para a porta 2.

MAC address	Porta
00:00:00:aa:00:02	1
00:00:00:aa:00:00	2

Tabela 1: Tabela de comutação de Switch

2. Parte 2

2.1. Exercício 1

A Fiona decide ir morar com o Shrek e o Burro, mas com a condição de deixarem de ter os cabos Ethernet espalhados pela casa. O Shrek decide então comprar equipamento Wireless e faz uma captura de tráfego para perceber melhor o seu funcionamento.

Descarregue da plataforma de ensino a captura WLAN-traffic-20240415.pcapng.zip e abra o ficheiro .pcapng no Wireshark.

Acesso Rádio

Como pode ser observado, a sequência de bytes capturada inclui meta-informação do nível físico (radiotap header, radio information) obtida do firmware da interface Wi-Fi, para além dos bytes correspondentes a tramas 802.11. Selecione a trama de ordem XX correspondente ao seu identificador de grupo (TurnoGrupo, e.g., 11).

Figure 15: Trama 891 selecionada.

1. Identifique em que frequência do espectro está a operar a rede sem fios, e o canal que corresponde a essa frequência.

```
888 1.826046 a6:ef:15:08:32:99 Broadcast 802.11 222 Beacon frame, SN=1338, FN=0, Flags=.....C, BI=100, SSID=ph...
889 1.854067 56:5f:07:ef:4f:be PTInovac_67:77:60 802.11 48 Acknowledgement, Flags=.....C

891 1.854068 Tp-LinkT_a3:af:08 Broadcast 802.11 48 Acknowledgement, Flags=.....C

892 1.891819 SamsungE_7f:71:a7 (... PTInovac_67:77:60 (... SamsungE_7f:71:a7 (... B02.11 76 Request-to-send, Flags=......C

894 1.904051 PTInovac_67:77:60 (... SamsungE_7f:71:a7 (... 802.11 76 Request-to-send, Flags=......C

97 Frame 891: 282 bytes on wire (2256 bits), 282 bytes captured (2256 bits) on interface en0, id 0

98 Frame 891: 282 bytes on wire (2256 bits), 282 bytes captured (2256 bits) on interface en0, id 0

98 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

98 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

98 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

98 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

98 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

98 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

99 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

99 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

99 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

99 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

99 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

90 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

90 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

90 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

90 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

90 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

90 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

90 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

90 Frame 891: 282 bytes captured (2256 bits) on interface en0, id 0

90 Frame 891: 282 bytes
```

Figure 16: frequência de espetro da trama 891

Resposta: A frequência é de 2412MHz no canal 1.

- 2. Identifique a versão da norma IEEE 802.11 que está a ser usada. **Resposta:** A versão usada é 802.11n.
 - **3.** Qual a taxa de transmissão a que foi enviada a trama escolhida? Será que essa taxa de transmissão corresponde à máxima que a interface Wi-Fi pode operar? Justifique.

Figure 17: Débito suportado

Resposta: Como comprovamos na figura 16, o data rate é de 1,0 Mb/s. Sendo assim, o débito máximo suportado é de 11 Mb/s. O protocolo 802.11 é capaz de suportar velocidades de até 600 Mb/s, dependendo das condições da rede e das configurações utilizadas.

Como podemos observar na figura 16, o data rate da trama é de 1,0 Mb/s. No entanto, isso não significa que o utilizador final esteja a receber dados a essa velocidade. O débito máximo real depende de diversos fatores, como o protocolo de camada superior utilizado, o tipo de modulação, a taxa de erro da rede e as configurações da interface Wi-Fi.

O protocolo 802.11 possui diferentes versões, cada uma com sua taxa máxima teórica. Por exemplo, o 802.11b suporta até 11 Mb/s, enquanto o 802.11ac pode chegar a 1.750 Mb/s (em condições ideais).

É importante ressaltar que a velocidade real de uma rede Wi-Fi raramente atinge a taxa máxima teórica. Interferência de outras redes, obstáculos físicos, congestionamento da rede e configurações incorretas podem reduzir significativamente o desempenho.

2.2. Exercício 2

Scanning Passivo e Scanning Ativo

Como referido, as tramas *beacon* permitem efetuar *scanning* passivo em redes IEEE 802.11 (Wi-Fi). Para a captura de tramas disponibilizada, e considerando XX o seu no de TurnoGrupo (PLXX), responda às seguintes questões:

4. Selecione uma *trama beacon* cuja ordem (ou terminação) corresponda a XX. Esta trama pertence a que tipo de tramas 802.11? Identifique o valor dos identificadores de tipo e de subtipo da trama. Em que parte concreta do cabeçalho da trama estão especificados (ver Anexo I)?

```
▼ IEEE 802.11 Beacon frame, Flags: .......C

Type/Subtype: Beacon frame (0x0008)

▼ Frame Control Field: 0x8000

......00 = Version: 0

.....00... = Type: Management frame (0)

1000 .... = Subtype: 8

▶ Flags: 0x00

.000 0000 0000 0000 = Duration: 0 microseconds
```

Figure 18: tipo e subtipo da trama

Resposta: A trama que selecionamos foi a 891, e como podemos ver na figura 18, esta perrtence ao tipo *Management* (0) e o seu subtipo é *Beacon* (8). Através do anexo fornecido no enunciado podemos verificar que estes pertencem ao *Frame Control*.

5. Verifique se está a ser usado o método de deteção de erros (CRC). Justifique. (Poderá ter de ativar a verificação no Wireshark, em Edit -> Preferences -> Protocols -> IPv4 -> "Validate Checksum if Possible")

```
Frame check sequence: 0x4dff8a5f [unverified] [FCS Status: Unverified]
```

Figure 19: FCS

Resposta: Quando tentamos veríficar se o método de deteção de erros está ativo, apareceu a informação que indicamos acima na figura 19. Podemos, portanto, concluir que o CRC não está ativo.

6. Justifique o porquê de ser necessário usar deteção de erros em redes sem fios.

As tramas *beacon* são enviadas periodicamente e permitem especificar parâmetros de funcionamento para apoiar a operação e a gestão das ligações sem fios.

Resposta: É necessário usar deteção de erros em redes sem fios, pois devido a existir interferência com o meio ambiente, como, por exemplo, dispositivos eletrónicos e ruídos elétricos; existir atenuação do sinal devido a obstáculos físicos e a própria distância entre o transmissor e o recetor; erros de transmissão, como colisões, ruídos do canal e colisões; e,

por fim, mobilidade, pois é uma rede bastante usada em dispositivos móveis, como telemóveis. Todos estes motivos fazem com que exista erros em redes sem fios, daí a sua importância no seu uso.

7. Uma trama beacon anuncia o intervalo entre beacons às várias taxas de transmissão (B) que o AP suporta, assim como várias taxas de transmissão adicionais (extended supported rates). Indique qual a periodicidade e as taxas de transmissão suportadas pelo AP da trama beacon selecionada.

```
Tp-LinkT a3:af:98 Broadcast
SamsungE 7f:71:a7 (... PTInovac_67:77:60
PTInovac_67:77:60 (... SamsungE_7f:71:a7
                                                                                                                                                         88 802.11 Block Ack, Flags=... C
76 Request-to-send, Flags=... C
76 Request-to-send, Flags=... C
76 Request-to-send, Flags=... C
76 Request-to-send, Flags=... C
88 Clear-to-send, Flags=... C
88 Clear-to-send, Flags=... C
68 Clear-to-send, Flags=... C
68 Clear-to-send, Flags=... C
68 Request-to-send, Flags=... C
68 Request-to-send, Flags=... C
69 Request-to-send, Flags=... C
60 Re
  895 1.904061
  896 1.904063
  897 1.904067
898 1.904071
 898 1.9040/1
899 1.904074
900 1.910130
901 1.910136
902 1.910139
903 1.919996
904 1.921826
                                         SamsungE_7f:71:a7 (... PTInovac_67:
SamsungE_7f:71:a7 (... PTInovac_67:
                                       PTInovac_67:77:60 (... PTInovac_67:77:68 (... SamsungE_7f:71:a7 (... PTInovac_67:77:60 (... SamsungE_7f:71:a7 (... Broadcast PTInovac_67:77:62 Broadcast Broadcast
▼ IEEE 802.11 Wireless Management

    Fixed parameters (12 bytes)

                               Timestamp: 1397383577984
                               Beacon Interval: 0,102400 [Seconds]
                       Capabilities Information: 0x0431
                Tagged parameters (206 bytes)
                               Tag: SSID parameter set: TP-LINK_AP_AF08
                       Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(B), 6, 9, 12, 18, [Mbit/sec]
Tag: DS Parameter set: Current Channel: 2
                            Tag: Traffic Indication Map (TIM): DTIM 0 of 0 bitmap
                             Tag: ERP Information
                               Tag: RSN Information
                             Tag: Extended Supported Rates 24, 36, 48, 54, [Mbit/sec]
                            Tag: HT Capabilities (802.11n D1.10)
                            Tag: HT Information (802.11n D1.10)
                             Tag: Extended Capabilities (8 octets)
                      > Tag: Vendor Specific: Microsoft Corp.: WMM/WME: Parameter Element
                            Tag: Vendor Specific: Atheros Communications, Inc.: Advanced Capability
                      Tag: Vendor Specific: Microsoft Corp.: WPS
```

Figure 20: Débitos das tramas

Resposta: O intervalo de tempo previsto entre tramas beacon consecutivas é anunciado na trama, em Fixed parameters -> Beacon Interval que, neste caso, é 0.102400 segundos (visível na figura acima). A periodicidade como podemos ver na figura acima é 0,027979, ((1,919996-1,865868)+(1,921826-1,919996))/2.

As taxas de transmissão suportadas são:

- 1Mb/s
- 2 Mb/s
- 5.5 Mb/s
- 11 Mb/s
- 6 Mb/s
- 9 Mb/s
- 12 Mb/s
- 18 Mb/s;
 - 8. Identifique e liste os SSIDs dos APs que estão a operar na vizinhança da STA de captura. Explicite o modo como obteve essa informação (por exemplo, se usou algum filtro para o efeito). No trace disponibilizado foi também registado scanning

ativo (envolvendo tramas probe request e probe response), comum nas redes Wi-Fi como alternativa ao scanning passivo.

wl	an.ssid				
No.	Time	Source	Destination	Protocol	Length Info
	808 1.510343	PTInovac_67:77:60	Broadcast	802.11	305 Beacon frame, SN=1613, FN=0, Flags=C, BI=100, SSID=MEO-677760
	809 1.512539	PTInovac 67:77:62	Broadcast	802.11	230 Beacon frame, SN=1614, FN=0, Flags=C, BI=100, SSID=MEO-WiFi
	831 1.519279	Tp-LinkT a3:af:08	OnePlusT 92:95:d9	802.11	391 Probe Response, SN=1011, FN=0, Flags=C, BI=100, SSID=TP-LINK AP AF08
	832 1.521291	Tp-LinkT_a3:af:08	OnePlusT_92:95:d9	802.11	391 Probe Response, SN=1011, FN=0, Flags=RC, BI=100, SSID=TP-LINK_AP_AF08
	833 1.524424	Tp-LinkT_a3:af:08	OnePlusT_92:95:d9	802.11	391 Probe Response, SN=1011, FN=0, Flags=RC, BI=100, SSID=TP-LINK_AP_AF08
	840 1.534013	PTInovac_9e:9b:b0	Broadcast	802.11	305 Beacon frame, SN=65, FN=0, Flags=C, BI=100, SSID=MEO-9E9BB0
	841 1.536496	PTInovac_9e:9b:b2	Broadcast	802.11	
	845 1.558871	Tp-LinkT_a3:af:08	Broadcast	802.11	282 Beacon frame, SN=1012, FN=0, Flags=C, BI=100, SSID=TP-LINK_AP_AF08
	846 1.612845	PTInovac_67:77:60	Broadcast	802.11	
	847 1.612940	PTInovac_67:77:62	Broadcast	802.11	
	848 1.641108	PTInovac_9e:9b:b2	Broadcast	802.11	230 Beacon frame, SN=68, FN=0, Flags=C, BI=100, SSID=MEO-WiFi
	849 1.671593	b0:76:1b:52:87:80	Broadcast	802.11	
	854 1.697119	PTInovac_9b:f2:a2	Broadcast	802.11	
	859 1.715832	PTInovac_67:77:60	Broadcast	802.11	305 Beacon frame, SN=1617, FN=0, Flags=C, BI=100, SSID=MEO-677760
	860 1.715835	PTInovac_67:77:62	Broadcast	802.11	
	870 1.741780	PTInovac_9e:9b:b0	Broadcast	802.11	305 Beacon frame, SN=69, FN=0, Flags=C, BI=100, SSID=MEO-9E9BB0
	871 1.741837	PTInovac_9e:9b:b2	Broadcast	802.11	230 Beacon frame, SN=70, FN=0, Flags=C, BI=100, SSID=MEO-WiFi
	886 1.818806	PTInovac_67:77:60	Broadcast	802.11	
	887 1.818811	PTInovac_67:77:62	Broadcast	802.11	
	888 1.826046	a6:ef:15:08:32:99	Broadcast	802.11	
	891 1.865868	Tp-LinkT_a3:af:08	Broadcast	802.11	
	903 1.919996	PTInovac_67:77:60	Broadcast	802.11	
	904 1.921826	PTInovac_67:77:62	Broadcast	802.11	
	908 1.946544	PTInovac_9e:9b:b0	Broadcast	802.11	
	909 1.949194	PTInovac_9e:9b:b2	Broadcast	802.11	230 Beacon frame, SN=74, FN=0, Flags=C, BI=100, SSID=MEO-WiFi
	923 2.019669	PTInovac_67:77:60	Broadcast	802.11	
	924 2.027067	PTInovac_67:77:62	Broadcast	802.11	230 Beacon frame, SN=1624, FN=0, Flags=C, BI=100, SSID=MEO-WiFi

Figure 21: SSIDs a operar na vizinhança da STA

Resposta: De modo a obter os SSIDs dos APs, utilizamos o filtro wlan.ssid no wireshark que nos dá as tramas beacon capturados provenientes dos APs que conseguem comunicar com a STA. Com o uso deste filtro chegamos à conclusão que os três SSIDs são MEO, TP-LINK, Vodafone e phi.

9. Estabeleça um filtro Wireshark apropriado que lhe permita visualizar todas as tramas probing request e probing response, simultaneamente.

			0 .	,	
wlan.f	c.type_subtype =	= 0x04 or wlan.fc.type_sub	type==0x05		
lo.	Time	Source	Destination	Protocol	Length Info
339	0.842086	94:a4:f9:16:a9:b4	a4:ef:15:08:32:99	802.11	654 Probe Response, SN=4032, FN=0, Flags=C, BI=100, SSID=
346	0.858977	94:a4:f9:16:a9:b4	a4:ef:15:08:32:99	802.11	1 654 Probe Response, SN=4032, FN=0, Flags=RC, BI=100, SSID=
342	0.872569	94:a4:f9:16:a9:b4	a4:ef:15:08:32:99	802.11	1 654 Probe Response, SN=4032, FN=0, Flags=RC, BI=100, SSID=
343	0.887927	PTInovac 67:77:62	ARRISGro aa:9c:66	802.11	
375	0.985952	Tp-LinkT a3:af:08	ARRISGro aa:9c:66	802.11	
376	0.987280	Tp-LinkT_a3:af:08	ARRISGro aa:9c:66	802.11	1 391 Probe Response, SN=1003, FN=0, Flags=RC, BI=100, SSID=
831	1.519279	Tp-LinkT_a3:af:08	OnePlusT_92:95:d9	802.11	391 Probe Response, SN=1011, FN=0, Flags=C, BI=100, SSID=
832	1.521291	Tp-LinkT_a3:af:08	OnePlusT_92:95:d9	802.11	
833	1.524424	Tp-LinkT_a3:af:08	OnePlusT_92:95:d9	802.11	1 391 Probe Response, SN=1011, FN=0, Flags=RC, BI=100, SSID=
952	2.146928	Tp-LinkT_a3:af:08	26:50:9f:40:9f:ad	802.11	391 Probe Response, SN=1018, FN=0, Flags=RC, BI=100, SSID=
953	2.147025	Tp-LinkT_a3:af:08	26:50:9f:40:9f:ad	802.11	1 391 Probe Response, SN=1018, FN=0, Flags=RC, BI=100, SSID=
954	2.162326	Tp-LinkT_a3:af:08	26:50:9f:40:9f:ad	802.11	1 391 Probe Response, SN=1019, FN=0, Flags=C, BI=100, SSID=
955	2.162463	Tp-LinkT_a3:af:08	26:50:9f:40:9f:ad	802.11	1 391 Probe Response, SN=1019, FN=0, Flags=RC, BI=100, SSID=
	2.170276	Tp-LinkT_a3:af:08	26:50:9f:40:9f:ad	802.11	
	2.190838	Tp-LinkT_a3:af:08	26:50:9f:40:9f:ad	802.11	
1713	4.695628	Tp-LinkT_a3:af:08	ROBERTBO_2b:d3:65	802.11	1 391 Probe Response, SN=1056, FN=0, Flags=RC, BI=100, SSID=
1714	4.701099	Tp-LinkT_a3:af:08	ROBERTBO_2b:d3:65	802.11	
1715	4.701234	Tp-LinkT_a3:af:08	ROBERTBO_2b:d3:65	802.11	1 391 Probe Response, SN=1056, FN=0, Flags=RC, BI=100, SSID=
	5.473379	94:a4:f9:16:a9:b4	ARRISGro_a5:20:8a	802.11	
	5.509787	94:a4:f9:16:a9:b4	ARRISGro_a5:20:8a	802.11	
	5.933333	a4:ef:15:08:32:99	Broadcast	802.11	
	5.978338	94:a4:f9:16:a9:b4	a4:ef:15:08:32:99	802.11	
	5.984439	94:a4:f9:16:a9:b4	a4:ef:15:08:32:99	802.11	
					4 6E4 Drobe Decrease CN=4024 FN=0 Flores D C DT=400 CCTD=

Figure 22: tráfego das tramas probing request/response

Resposta: O filtro que permite essa visualização é: wlan.fc.typesubtype == 0x04 or wlan.f c.type_subtype == 0x05. Assim testamos o subtipo das tramas, filtrando as de probing request (4) e as de probing response (5). A visualização após a aplicação do filtro, comprova a apresentação de tramas representados na figura 22.

Este filtro irá exibir todas as tramas de probe request (wlan.fc.type_subtype == 0x04) e probe response (wlan.fc.type_subtype == 0x05) capturadas na sua captura do Wireshark.

10. Assuma que a STA de captura consegue se associar a qualquer AP na vizinhança. Dadas as tramas recebidas através do scanning ativo e passivo, observe os valores da força do sinal (Signal Strength) nas meta-informações de nível físico e aponte qual AP a STA de captura deve se associar para obter a melhor qualidade de ligação possível. Indique como chegou a esta resposta.

Resposta: Como podemos ver na figura 16, a força do sinal é -80dBm. A força do sinal não é de confiança, pelo que não é dos piores sinais mas a probabilidade da conceção ser estabelecida é reduzida, o que significa que, a probabilidade de receber tramas, nestas condições, menor.

11. Os valores de taxa de transmissão do Wi-Fi estão diretamente associados à qualidade da receção do sinal, utilizando-se dos valores de sensibilidade mínima (Minimum Sensivity) e taxa de transmissão (Data Rate) das tabelas referência do Anexo II, da força do sinal recebido nas tramas do AP indicado da resposta anterior, estime o débito que a STA obterá nessa ligação.

Resposta:

De acordo com a tabela de referência do Anexo II, para um MCS 3 e uma sensibilidade mínima de -81 dBm, a taxa de transmissão máxima é de 24 Mbps.

Considerando um fator de redução de 50% devido a interferências, ruído e perdas de caminho, a taxa de transmissão efetiva seria de 12 Mbps (24 Mbps * 0.5).

O débito da ligação Wi-Fi é calculado da seguinte forma:

Débito = Taxa de transmissão efetiva * Tempo de transmissão útil

Débito = 12 Mbps * (1000 bytes / 8 bits/byte) * (1 ms / 1000 ms/s) = 1500 bps

2.3. Exercício 3

Processo de Associação

Numa rede Wi-Fi estruturada, um nodo ou STA deve associar-se a um ponto de acesso antes de enviar dados. O processo de associação nas redes IEEE 802.11 é executada enviando a trama association request da STA para o AP e a trama association response enviada pelo AP para a STA, em resposta ao pedido de associação recebido. Este processo é antecedido por uma fase de autenticação. Para a sequência de tramas capturada:

12. Identifique uma sequência de tramas que corresponda a um processo de associação realizado com sucesso entre a STA e o AP, incluindo a fase de autenticação.

Resposta: Para obter o conjunto completo de conexões entre a estação (STA) e o ponto de acesso (AP) em um processo de associação, foi necessário desenvolver um filtro que nos fornecesse, de maneira conveniente, um conjunto organizado dessas conexões. Sendo assim, o filtro aplicado foi:

wlan.fc.type == 0 && (wlan.fc.type subtype == 0 or wlan.fc.type subtype == 1 or wlan.fc. type subtype == 11)

A tabela apresentada contém informações sobre os filtros e as tramas associadas a eles. Estamos, essencialmente, filtrando os quadros de gerenciamento (Management Frames) e, dentro deles, aqueles que são do tipo "Association Request" (Solicitação de Associação), "Association Response" (Resposta de Associação) e "Authentication" (Autenticação). Essas são fases relevantes do processo de associação.

Após a aplicação do filtro, obtiveram-se as tramas seguintes:

0.	Time	Source	Destination	Protocol	Length Info
3228	14.890461	c8:70:23:1f:a2:72	80:38:fb:04:f4:2f	802.11	81 Authentication, SN=3073, FN=0, Flags=RC
3624	18.716086	c8:70:23:1f:a2:72	4e:f8:ca:05:0a:77	802.11	81 Authentication, SN=3154, FN=0, Flags=RC
3625	18.716198	c8:70:23:1f:a2:72	4e:f8:ca:05:0a:77	802.11	81 Authentication, SN=3154, FN=0, Flags=RC
3626	18.719251	c8:70:23:1f:a2:72	4e:f8:ca:05:0a:77	802.11	81 Authentication, SN=3154, FN=0, Flags=RC
3627	18.728358	c8:70:23:1f:a2:72	4e:f8:ca:05:0a:77	802.11	81 Authentication, SN=3154, FN=0, Flags=RC
5177	34.292210	c8:70:23:1f:a2:72	80:38:fb:04:f4:2f	802.11	81 Authentication, SN=3472, FN=0, Flags=RC
5178	34.292316	c8:70:23:1f:a2:72	80:38:fb:04:f4:2f	802.11	81 Authentication, SN=3472, FN=0, Flags=RC
5179	34.295367	c8:70:23:1f:a2:72	80:38:fb:04:f4:2f	802.11	81 Authentication, SN=3472, FN=0, Flags=RC
5180	34.301443	c8:70:23:1f:a2:72	80:38:fb:04:f4:2f	802.11	81 Authentication, SN=3472, FN=0, Flags=RC
12855	98.374622	92:97:e1:69:c3:d5	PTInovac 67:77:62	802.11	105 Authentication, SN=674, FN=0, Flags=C
12857	98.374728	PTInovac 67:77:62	92:97:e1:69:c3:d5	802.11	81 Authentication, SN=3667, FN=0, Flags=C
12861	98.387225	92:97:e1:69:c3:d5	PTInovac 67:77:62	802.11	213 Association Request, SN=675, FN=0, Flags=C, SSID=MEO-WiF
12863	98.387244	PTInovac 67:77:62	92:97:e1:69:c3:d5	802.11	192 Association Response, SN=3670, FN=0, Flags=C

Figure 23: Processo de associação completo - redes IEEE 802.11

Observa-se que o processo de associação consiste em duas etapas, autenticação e associação, ambas com uma solicitação e uma resposta:

- Solicitação de Autenticação Frame 12855
- Resposta de Autenticação Frame 12857
- Solicitação de Associação Frame 12861
- Resposta de Associação Frame 12863
- **13.** Efetue um diagrama que ilustre a sequência de todas as tramas trocadas no processo.

Resposta:

Figure 24: Processo de associação completo - diagrama - redes 802.11

2.4. Exercício 4

Transferência de Dados

O trace disponibilizado, para além de tramas de gestão da ligação de dados, inclui tramas de dados e tramas de controlo da transferência desses mesmos dados.

14. Estabeleça um filtro apropriado e selecione uma trama de dados (Data ou QoS Data), cujo número de ordem inclua o seu identificador de grupo (terminação XX, ou X caso não exista XX). Sabendo que o campo Frame Control contido no cabeçalho das tramas 802.11 permite especificar a direccionalidade das tramas, o que pode concluir face à direccionalidade dessa trama, será local à WLAN?

Resposta: Analisando a flag referente ao DS status, da figura abaixo, podemos concluir que a direcionalidade desta trama pode ser observada através dos campos "To DS: 0"e "From DS: 1". O primeiro indica que a trama não é direcionada ao DS e o segundo que a trama é proveniente do DS, ou seja, podemos concluir que a trama não é destinada à WLAN (Wireless Local Area Network) e é proveniente da mesma.

Figure 23: Trama de dados nº 291

15. Para a trama de dados selecionada, transcreva os endereços MAC em uso, identificando quais os endereços correspondentes à estação sem fios (STA), ao AP e ao router de acesso ao sistema de distribuição (DS)?

Resposta: Com base na trama da figura abaixo concluímos assim que os endereços MAC correspondentes são:

STA: 56:5f:07:ef:4f:be
AP: 00:06:91:67:77:60
Router: 56:5f:07:ef:4f:be

```
0... ... = Order flag: Not strictly ordered
.000 0000 0011 0000 = Duration: 48 microseconds

Receiver address: 56:5f:07:ef:4f:be (56:5f:07:ef:4f:be)

Transmitter address: PTInovac_67:77:60 (00:06:91:67:77:60)

Destination address: 56:5f:07:ef:4f:be (56:5f:07:ef:4f:be)
Source address: PTInovac_67:77:5f (00:06:91:67:77:5f)

BSS Id: PTInovac_67:77:60 (00:06:91:67:77:60)

STA address: 56:5f:07:ef:4f:be (56:5f:07:ef:4f:be)
... ... 0000 = Fragment number: 0
0111 1001 0011 ... = Sequence number: 1939

Frame check sequence: 0x90463894 [unverified]
[FCS Status: Unverified]
Qos Control: 0x0000

CCMP parameters
```

Figure 24: Totalidade da trama

16. O uso de tramas Request To Send e Clear To Send, apesar de opcional, é comum para efetuar "pré-reserva" do acesso ao meio quando se pretende enviar tramas de dados, com o intuito de reduzir o número de colisões resultante maioritariamente de STAs escondidas. Para o envio de dados selecionado acima, verifique se está a ser usada a opção RTS/CTS na troca de dados entre a STA e o AP/Router da WLAN, identificando a direccionalidade das tramas e os sistemas envolvidos. Dê um exemplo de uma transferência de dados em que é usada a opção RTC/CTS e um outro em que não é usada.

Reposta: De forma a encontrar transferências de dados em que é usada a opção RTC/CTS em primeiro lugar aplicamos o seguinte filtro: wlan.fc.type_subtype == 0x1b || wlan.fc.type_subtype == 0x1c.

```
wlan.fc.type_subtype == 0x1b || wlan.fc.type_subtype==0x1c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Info | 68 Clear-to-send, Flags=... | C | 68 Clear-to-send, Flags=... | C
                                                   Time
252 0.676572
261 0.677776
262 0.677778
                                                                                                                                                                                     Source
                                                                                                                                                                                                                                                                                                                                                                                                                                                              Destination
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Protocol Length Info
                                                                                                                                                                                                  PTInovac_67:77:60
56:5f:07:ef:4f:be (... PTInovac_67:77:60
                                                        274 0.694804
                                                        275 0.694807
277 0.694813
                                                        278 0.694815
                                                        280 0.694823
                                                                                                                                                                                                                   56:5f:07:er:4T:De
PTInovac_67:77:69 (__ 56:5f:07:ef:4f:be
PTInovac_67:77:69 (__ 56:5f:07:ef:4f:be
PTInovac_67:77:69 (__ 56:5f:07:ef:4f:be
PTInovac_67:77:60 (__ 56:5f:07:ef:4f:be
                                                        281 0.694827
                                                      283 0.697896
284 0.697990
286 0.697910
287 0.697913
289 0.697913
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      76 Request-to-send, Flags=...
68 Clear-to-send, Flags=...
76 Request-to-send, Flags=...
68 Clear-to-send, Flags=...
76 Request-to-send, Flags=...
                                                                                                                                                                                                        PTInovac_67:77:60 (... 56:5f:07:ef:4f:be (...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                290 0.697922
293 0.697933
294 0.697937
296 0.699064
297 0.699070
307 0.758408
308 0.758413
310 0.758418
311 0.758422
313 0.758433
314 0.758434
315 0.759444
317 0.759444
319 0.761026
                                                                                                                                                                                                                PIInovac_67:77:69 (... 56:5f:97:ef:4f:be (... 892.11 PTInovac_67:77:69 (... 892.11 56:5f:97:ef:4f:be (... 89
                     Frame 290: 68 bytes on wire (544 bits), 68 bytes captured (544 bits) on interface en0, id 0 Radiotap Header v0, Length 54 802.11 radio information
IEEE 802.11 Clear-to-send, Flags: ...... C
Type/Subtype: Clear-to-send (0x001c)
Frame Control East, excellent
                                                                                                                               . .00 = Version: 0
. 01.. = Type: Control frame (1)
0 ... = Subtype: 12
                                                              1100 ... = Subtype: 12

Flags: 0x00

... .00 = DS status: Not leaving DS or network is operating in AD-HOC mode (To DS: 0 From DS: 0) (0x0)

... .0. = More Fragments: This is the last fragment

... 0... = Retry: Frame is not being retransmitted

... 0... = PWR MGT: STA will stay up

... 0... = More Data: No data buffered
```

Conclusão

O foco principal deste trabalho é a exploração de vários aspectos relacionados às redes sem fio (Wi-Fi).

Inicialmente, abordamos o Acesso Rádio, onde investigamos a camada física das redes sem fio, incluindo elementos como canais e frequências.

Em seguida, comparamos o scanning ativo e passivo, destacando que o primeiro é realizado por meio das tramas beacon, permitindo a descoberta dos pontos de acesso disponíveis, enquanto o segundo utiliza o probe response.

No terceiro ponto, discutimos o Processo de Associação, necessário para estabelecer a conexão entre um dispositivo e um ponto de acesso. Este processo envolve um pedido de associação feito pelo dispositivo, seguido da resposta do ponto de acesso.

Por fim, examinamos o processo de Transferência de Dados, levando em consideração dois fatores: informações obtidas nas tramas e o controlo da transferência.

Além disso, aprofundamos nosso conhecimento sobre as funcionalidades da ferramenta Wireshark, o que nos permitiu utilizá-la de maneira mais eficiente.