Group Proposal

Natural Language Processing Final Project

Minwoo Yoo

October 20, 2025

1. What problem did you select and why did you select it?

- Main objective: Apply NLP methods to estimate media slant in newspaper text and classify articles by topic.
- **Motivation:** The project is related to my research on how local economic conditions shape variation in local newspaper slant.

2. What database/dataset will you use?

The project will use two complementary datasets:¹

• Local newspapers (NewsLibrary):

- Coverage: U.S. local newspapers spanning the late 1980s through the 2000s.
- Scale: Approximately 20–30 million article records are expected.
- Structure: Newspaper name, publication date, article headline, and the first 80 words of text (per NewsLibrary access policy).
- Role in pipeline: *Application & validation*. After training the model on labeled political speech, apply estimated coefficients/scores to newspaper articles; evaluate performance and analyze slant distributions by topic.

• Congressional speeches (Congressional Record):

- **Coverage:** Late 1980s–1990s congressional floor speeches.
- **Structure:** Speaker identity, party affiliation, chamber, and date; text segmented into speech units.
- Role in pipeline: Supervised training signal. Use party labels to train the slant estimator (e.g., TF-IDF features with logistic regression / Naive Bayes, or a textscaling variant). Learned coefficients (word/bigram weights) are then transferred to newspaper text.

¹The NewsLibrary dataset is not yet available but will be shared by a professor by early to mid-November.

3. What NLP methods will you pick from the concept list? Will it be a classical model or will you have to customize it?

The project will focus on classical NLP methods introduced in the course.

- **Text preprocessing:** Clean and normalize newspaper text through tokenization, stopword removal, and stemming.
- Feature representation: Represent articles as bigram-based Bag-of-Words and TF-IDF matrices.
- **Modeling:** Apply logistic regression and Naive Bayes to estimate slant and classify articles by topic.
- **Topic modeling:** Use Latent Dirichlet Allocation (LDA) to identify key themes and compare slant across topics.

4. What packages are you planning to use? Why?

- NLTK and SpaCy: For tokenization, stopword removal, and stemming.
- scikit-learn: For feature extraction (Bag-of-Words, TF-IDF), supervised learning, and model evaluation.
- gensim: For topic modeling using LDA.
- pandas and numpy: For data handling and matrix operations.
- matplotlib and seaborn: For visualization of model performance and media slant distribution.

5. What NLP tasks will you work on?

Since this is an individual project, I will complete all parts of the analysis on my own. The project focuses on two main NLP tasks:

- **Slant estimation:** Measure the degree of media slant using supervised classification models.
- **Topic classification:** Categorize articles into topics such as politics and economy to examine variation in slant.

6. How will you judge the performance of the model? What metrics will you use?

Model performance will be evaluated using standard metrics introduced in the course.

• Accuracy: Proportion of correctly classified articles.

- **Precision, Recall, and F1-score:** To evaluate balance between false positives and false negatives.
- Confusion matrix: To visualize classification errors.
- Cross-validation: To ensure robustness and prevent overfitting.

7. Provide a rough schedule for completing the project.

Assuming the dataset is received by early November, the tentative schedule is as follows:

Week	Tasks and Goals
Week 1 (early Nov)	Receive and inspect dataset; perform cleaning and preprocessing.
Week 2	Construct Bag-of-Words and TF-IDF representations; begin exploratory analysis.
Week 3	Train supervised models for slant estimation and topic classifi- cation; tune hyperparameters and validate.
Week 4	Apply topic modeling (LDA) and analyze how slant differs across topics.
Week 5 (late Nov–early Dec)	Summarize findings, generate visualizations, and prepare the final report and presentation.