

计算机系 彭昊若 指导老师 赵颖

6/18/2013

提纲

- 研究主题
 - ■研究背景与相关工作
 - 研究内容与方式
- 研究过程
 - 并行系统简介
 - ■算法简介
- 研究结果
- ■总结

研究背景

- 大数据的挑战
 - ■运算效率问题
 - ■算法可扩展性

- ■罗吉斯回归模型(LR)的广泛应用
 - eg. Anti-Spam Filtering & PageRank
 - ■机器学习领域的发展
- ■选择LR进行研究的优势
 - 简洁+理论基础强
 - 二分类->多分类 LR->其他模型

- 大数据背景下的机器学习算法
 - PSVM、PLDA、DP、GraphLab
- 并行框架
 - Apache Hadoop
 - Apache Mahout
 - Apache Spark
- ■算法框架
 - 次线性、并行梯度下降、随机梯度下降

研究内容与方式

- 从并行系统层面和算法层面综合解决罗 吉斯回归模型优化算法的计算效率问题
- 主要加速方式: 并行计算
- 研究重点在于充分认识
 - 在何种情况下选择并行
 - 选择什么并行系统
 - 选择怎样的并行算法
 - 次重点为新的次线性并行算法的提出

并行系统-Hadoop

- MapReduce框架
 - 键-值对
 - Map & Reduce
- HDFS
 - 文件分割
- ■对节点失败的鲁棒性
 - 存储冗余

- 专门针对大规模机器学习算法
 - 主要4类支持的算法: 推荐系统、聚类、分类、频繁模式
 - 其他包括: K-means、LDA、SVD、Bayes、 Decision Tree, etc.
- ■很多算法实现建立在Hadoop基础上
- 但其中针对LR的算法使用在线随机梯度下降法,没有使用多机并行,而使用单击多线程

并行系统-Spark

- ■专门针对迭代算法
 - 迭代是机器学习算法一大特点
- 使用In-Memory策略
- ■基本延续了MapReduce执行框架
 - 无Shuffle, 单Reducer
- 弹性分布式数据集RDD
 - 线性操作Lineage
- ■对节点失败鲁棒性
 - Lineage为主, Checkpointing为辅

LR模型下的优化问题

■训练数据集定义

$$\mathbf{X} = \{ (\mathbf{x}_i, y_i) : i = 1, \dots, \underline{n} \}$$

$$\mathbf{x}_i \in \mathbb{R}^{\underline{d}} \qquad y_i \in \{-1, 1\}$$

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]^T$$
$$\mathbf{y} = (y_1, y_2, \dots, y_n)^T$$

LR模型下的优化问题

■罗吉斯回归模型定义

$$P(y_i|\mathbf{x}_i) = \frac{1}{1 + \exp(-y_i(\mathbf{x}_i^T\mathbf{w} + \mathbf{b}))} \triangleq g_i(y_i)$$

■ 考虑对数最大似然
$$F(\mathbf{w}, b | \mathcal{X}) = \sum_{i=1}^{n} \log g_i(y_i)$$

■ 最大后验 $\max_{\mathbf{w},b} \left\{ \log p(\mathbf{w},b|\mathcal{X}) \propto F(\mathbf{w},b|\mathcal{X}) + \log p(\mathbf{w}) \right\}$

LR模型下的优化问题

■ 带二阶惩罚项 (高斯先验)

$$\max_{\mathbf{w},b} \left\{ F(\mathbf{w},b|\mathcal{X}) - \frac{\lambda}{2} ||\mathbf{w}||_2^2 \right\}$$

■ 带一阶惩罚项(拉普拉斯先验)

$$\max_{\mathbf{w},b} \ \left\{ F(\mathbf{w},b|\mathcal{X}) - \gamma \|\mathbf{w}\|_1 \right\}$$

次线性优化方法

- ■中心思想
 - 随机抽取 (Sampling)
 - 训练数据不是每一维都有效
 - 不仅在样本空间中抽取,也在特征空间中抽取
 - ■对偶方法
 - 样本空间与特征空间不断转换
 - ■可乘式更新算法
 - 在特征空间中保持优化问题的梯度计算方向不变
- 算法细节可以参考引文[5]

次线性优化方法

- 算法框架(每次迭代)
 - 阶段1: 随机原始更新
 - 根据概率向量 P 随机抽取一个训练样本
 - 计算该样本梯度方向,并更新回归向量 W
 - *过渡*:根据 w 抽取特征中的一维(关键)
 - 阶段2:随机对偶更新
 - 对每个训练样本,根据抽取的一维特征,分别计算硬边际量加软边际量的估计值。
 - 根据上述数值,使用可乘式更新算法分别更新概率向量**P**的每一个维

并行次线性方法

■算法框架

Hadoop上的并行次线性方法

- 参数传递
 - ■选择直接读写HDFS文件
- 关于一阶和二阶惩罚项
 - 两个版本,实验结果均采用一阶惩罚项模型
- ■训练数据集的稀疏问题
 - 代码优化

Spark上的并行次线性方法

Input parameters: ε , ν or γ , X, Y, n, dInitialize parameters: $T, \eta, \mathbf{u}_0, \mathbf{w}_1, \mathbf{q}_1, b_1$ ps←spark.textFile(inputfile).map(parsePoint()).cache() Iterations: $t = 1 \sim T$ 4: $g \leftarrow ps.map((1/(1 + e^{-y(\mathbf{w}^T\mathbf{x} + b)}) - 1) * y * \mathbf{p}[index]).reduce(+)$ 5: $(\mathbf{w}_{t+1}, b_{t+1}) \leftarrow \text{PrimalUpdate}(\mathbf{w}_t, b_t)$ 6: Choose $j_t \leftarrow j$ with probability $\mathbf{w}_{t+1}(j)^2 / \|\mathbf{w}_{t+1}\|_2^2$ 7: pAdjust←points.map(MW-Update()).reduce(copy()) 8: $\mathbf{p}_{t+1} \leftarrow \text{DualUpdate}(\mathbf{p}_t)$ 9: 10: Output: (\mathbf{w}, b)

Spark上的并行次线性方法

- ■时间复杂度
 - O(n*d)->O(n+d)->O(max{n,d})
- ■输入数据解析
 - 一遍->在内存中
- 参数传递
 - 内存+缓存
- ■训练数据集的稀疏问题
 - ■基于的RDD代码优化

Hadoop VS Spark

Memory Utilization

•

Spark上的并行梯度下降法

- 1: Input parameters: ε , ν or γ , X, Y, n, d
- 2: Initialize parameters: $T, \eta, \mathbf{u}_0, \mathbf{w}_1, \mathbf{q}_1, b_1$
- 3: ps←spark.textFile(inputfile).map(parsePoint()).cache()
- 4: Iterations: $t = 1 \sim T$
- 5: gradient \leftarrow ps.map($(1/(1 + e^{-y(\mathbf{w}^T\mathbf{x}+b)}) 1) * y$).reduce($_+_$)
- 6: $\mathbf{w}_{t+1} = \mathbf{w}_t gradient * \mathbf{x}$
- 7: b = b gradient
- 8: Output: (\mathbf{w}, b)

Mahout上的在线SGD算法

- ■算法函数
 - OnlineLogisticRegression
- ■数据存储结构
 - RandomAccessSparseVector
- 交叉验证
 - 使用自己的CrossValidation函数
- ■単机多线程

实验环境

■数据集

名称	特征维数	数据个数	稀疏性	非零元素 个数	正例个数与 反例个数比
2D	2	200	1.0	400	1.000
20NewsGroup	16248	1988	7.384×10^{-3}	238511	1.006
Gisette	5000	7000	0.12998	4549319	1.000
ECUESpam	100249	10678	2.563×10^{-3}	2746159	5.882
URL-Reputation	3231961	2376130	3.608×10^{-5}	277058644	0.500

■ 集群

CPU 型号	Intel Xeon E5-1410
CPU 主频	2.80GHz
节点数	6
每个节点上 CPU 核数	4 核 8 线程
每个节点内存大小	16G
每个节点硬盘大小	4T HDD
节点间连接方式	Gigabyte Ethernet

实验

实验环境

- 测试程序
 - Liblinear: 串行
 - SLLR: 串行
 - Mahout: 单机多线程
 - PSUBPLR-MR: 多机并行
 - PGDPLR-SPARK: 多机并行
 - PSUBPLR-SPARK: 多机并行

■ 仿真2D数据集

■ 学习精度结果

	2D	20NewsGroup	Gisette	ECUESpam	URL-Reputation
Mahout	93.5%	71.3%	91.5%	85.2%	91.5%
Liblinear	93.0%	92.0%	97.4%	97.1%	96.2%*
SLLR	93.5%	91.5%	94.8%	92.3%	94.2%
PSUBPLR-MR	93.5%	90.5%	94.6%	91.7%	93.8%
PGDPLR-SPARK	93.5%	92.0%	97.0%	93.7%	96.0%
PSUBPLR-SPARK	93.5%	90.5%	95.8%	91.7%	94.0%

■ 迭代-测试误差

■ 迭代-测试误差

ECUESpam数据集

URL-Reputation数据集

■ 运行时间结果

	2D	20NewsGroup	Gisette	ECUESpam	URL-Reputation
Mahout	0.595s	9.827s	131.807s	96.611s	10100.209s
Liblinear	0.078s	0.793s	2.364s	13.161s	$519.115s^*$
SLLR	1.761s	20.046s	130.451s	1028.185s	3248.473s
PSUBPLR-MR	120.186s	1360.854s	3687.941s	11478.706s	16098.260s
PGDPLR-SPARK	0.681s	10.517s	99.156s	924.020s	3615.780s
PSUBPLR-SPARK	1.325s	8.571s	89.094s	796.802s	2918.470s

■ 运行时间结果比较

精度与时间结果分析

- Liblinear 精度高、速度快、大数据差
 - 数据集较小的情况(充分利用内存)
- Mahout 精度差、速度一般、支持大数据
 - 大数据、单机、内存有限(利用在线方法)
- Sublinear方法
 - ■精度均接近最优
 - ■精度相对于串行程序有微小下降

- Hadoop 支持大数据、速度慢
 - 设计缺陷: 非环形数据流
 - 任务调度时间与文件读写时间
 - ■原始更新部分是瓶颈
- Spark 支持大数据、速度较快
 - RDD的本地拷贝形式
 - ■适合大数据、多计算节点
 - 追求精度推荐PGDPLR-SPARK算法
 - 追求速度推荐PSUBPLR-SPARK算法

■ 计算节点数-迭代时间

仿真2D数据集

■ 计算节点数-迭代时间

20NewsGroup数据集

■ 计算节点数-迭代时间

• 计算节点数-迭代时间

ECUESpam数据集

■ 计算节点数-迭代时间

URL-Reputation数据集

不同集群资源下测试结果分析

- 非线性过程
 - ■算法在集群上的可扩展性极限
- ECUESpam数据集 VS GISETTE数据集
 - 特征维度与样本个数: 高 VS 低
 - -> 迭代次数: 多 VS 少
 - 稀疏性: 高 VS 低
 - 非零元素: 少 VS 多
 - -> 迭代时间: 短 VS 长
 - 总运行时间: 长 VS 短

■ 对节点失败鲁棒性

	System Level	Algorithm Level		
PSUBPLR-MR	$\sqrt{}$	\checkmark		
PGDPLR-SPARK	V	×		
PSUBPLR-SPARK	V	√		

■ Hadoop系统: 冗余机制

■ Spark系统: RDD的线性操作

■ 次线性方法: 随机算法特性

■对节点失败鲁棒性

URL-Reputation数据集

总结

- 主要成果
 - 针对罗吉斯回归模型优化求解机器学习算法
 - 大数据应用背景
 - 考虑了以下维度上的各个特点:
 - 数据集: Size, #Instances, #Features, Sparsity
 - 并行系统: Design, Feature, Mechanism
 - 算法: Design, Framework, Code
 - 综合测试: Correctness, Accuracy, Efficiency,
 Scalability, Fault Tolerance

■ 主要创新

- 进行了客观综合地研究、测试、评价和比较。 针对不同特点的数据集和不同的运行资源, 给出了算法选择的建议。
- 提出了针对罗吉斯回归模型的新的并行次线性算法。其在SPARK系统上的运行取得了优良的效果。
- 将机器学习算法与系统综合考虑的研究思路 也是本文的一个特色

下一步研究计划

- 需要发展与机器学习算法相匹配的分布 式并行计算系统
- ■进一步增加综合测试
 - 包括算法稳定性、算法收敛性等方面
 - 增加实验节点数, 在更大规模数据集上测试
- 并行次线性方法有待继续优化
- ■研究对象扩展
 - 多分类问题以及其他模型

- [1] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker, Identifying Suspicious URLs: An Application of Large-Scale Online Learning. In *Proceedings of the International Conference on Machine Learning (ICML)*, pages 681-688, Montreal, Quebec, June 2009.
- [2] http://qwone.com/~jason/20Newsgroups/
- [3] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 feature selection challenge. *Advances in Neural Information Processing Systems*, 17:545–552, 2004.
- [4] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. A case-based technique for tracking concept drift in spam filtering. Knowledge-Based Systems, 18(4–5):187–195, 2005.

- [5] Haoruo Peng, Zhengyu Wang, Edward Y. Chang, Shuchang Zhou and Zhihua Zhang. Sublinear Algorithms for Penalized Logistic Regression in Massive Datasets. In *Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases*, 2012.
- [6] Mahout Apache Software Foundation project homepage, http://lucene.apache.org/mahout
- [7] Fan R E, Chang K W, Hsieh C J, et al. LIBLINEAR: A library for large linear classification[J]. The Journal of Machine Learning Research, 2008, 9: 1871-1874.
- [8] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica. Spark: Cluster Computing with Working Sets. *HotCloud* 2010. June 2010.

4

感谢各位老师同学给予我的帮助

谢谢!