Cooperative Cable Transportation with Vision

Aaron Weinstein

August 1, 2018

Abstract

The goal of this project is to take the the next step in allowing UAV's to transport heavy loads in the real world

1 Previous work

- [1] Work done at penn on multiple robots with cables, experiments done in vicon, required high order derivative estimates
- [2] Visual control of a payload with 2 quadrotors. No communication. LQR solution to put follower above tag. Uses tag on tail of leader to give the yaw of the payload, otherwise assume flat
- [3] Mathematical explanation of how non-zero desired internal tension can be used in a communication free system to allow control of the attitude of a payload
- [4] Controller used here with modifications to only use attainable derivatives. Only simulation
- [5] Transportation of large objects with many hexrotors. Attachment via spherical joint (similar to a short cable). Communication free, each robot estimates the force on the payload and does an admittance controller. Heavy state machine use to reject disturbances. Quasi-static. Assumes flat. Yaw of the payload is based on following the leader
- [6] Single robot with closed loop control using vision
- [7] Whycode is a circular tag detector that includes a barcode in the middle for unique identification and yaw estimation
- [8] How to merge visual estimates for multi robot control of a payload

2 Equations

2.1 Payload Errors

Subscript 0 refers to the payload

$$e_{x_0} = x_0 - x_{0_d}$$

$$e_{\dot{x}_0} = \dot{x}_0 - \dot{x}_{0_d}$$

$$e_{\int x_0} = \sum e_{x_0} dt$$

$$e_{R_0} = \frac{1}{2} (R_{0_d}^{\top} R_0 - R_0^{\top} R_{0_d})$$

$$e_{\Omega_0} = \Omega_0 - R_0^{\top} R_{0_d} \Omega_{0_d}$$

2.2 Payload Control Wrench

Linear component:

$$F_0 = m_0(-k_{p_x}e_{x_0} - k_{d_x}e_{\dot{x}_0} - k_{i_x}e_{\int x} + a_{0_d} + ge_3)$$

Untested Angular component:

$$M_0 = -k_{R_0} e_{R_0} - k_{\Omega_0} e_{x_0} + (R_0^{\top} R_{0_d} \Omega_{0_d})^{\wedge} J_0 R_0^{\top} R_{0_d} \Omega_{0_d} + J_0 R_0^{\top} R_{0_d} \dot{\Omega}_{0_d}$$

2.3 Payload Control Distribution

Define constant matrix P

$$P = \begin{bmatrix} I_{3x3} & \dots & I_{3x3} \\ \hat{\rho_0} & \dots & \hat{\rho_n} \end{bmatrix}$$

For 3 robots, rank(p) = 6 which allows for full linear and angular control of the payload

Next we calculate the "virtual desired control" μ for each cable

$$\begin{bmatrix} \mu_{0_d} \\ \dots \\ \mu_{n_d} \end{bmatrix} = diag[R_0, \dots, R_0] P^{\top} (PP^{\top})^{-1} \begin{bmatrix} R_0^{\top} F_d \\ M_d \end{bmatrix}$$

2.4 Cable force input

The attachment point acceleration is:

$$a_i = \ddot{x}_{0,i} + ge_3 + R_0 \hat{\Omega}_0^2 \rho_i - R_0 \hat{\rho}_i \dot{\Omega}_0$$

The virtual control input is then mapped onto the cable direction: q_i

$$\mu_i = q_i q_i^{\top} \mu_{i_d}$$

And used to calculate the parallel component of control:

$$u_i^{\parallel} = \mu_i + m_i l_i \|\omega_i\|^2 q_i + m_i q_i q_i^{\top} a_i$$

Which we simplified to (for now)

$$u_i^{\parallel} = \mu_i + (m_i q_i q_i^{\top} a_i)$$

2.5 Cable Control

Now we need the quadrotor to move the cable to the desired direction

$$u_i^{\perp} = m_i l_i \hat{q}_i (-k_{p_a} e_q - k_{d_a} e_w - (q_i \cdot \omega_{i_d}) \dot{q}_i - \hat{q}_i^2 \dot{\omega}_d) - m_i \hat{q}_i^2 a_i$$

Simplified to:

$$u_i^{\perp} = m_i l_i \hat{q}_i (-k_{p_q} e_q - k_{d_q} e_w) - m_i \hat{q}_i^2 a_i$$

2.6 Quadrotor attitude

Finally the components of u are combined and sent as the desired thrust to a standard attitude controller

$$u_i = u_i^{\parallel} + u_i^{\perp}$$

References

[1] K. Sreenath and V. Kumar, "Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots," rn, vol. 1, no. r2, p. r3, 2013.

- [2] M. Gassner, T. Cieslewski, and D. Scaramuzza, "Dynamic collaboration without communication: Vision-based cable-suspended load transport with two quadrotors," in *Robotics and Automation (ICRA)*, 2017 IEEE International Conference on, pp. 5196–5202, IEEE, 2017.
- [3] M. Tognon, C. Gabellieri, L. Pallottino, and A. Franchi, "Aerial Co-Manipulation With Cables: The Role of Internal Force for Equilibria, Stability, and Passivity," *IEEE Robotics and Automation Letters*, vol. 3, pp. 2577–2583, July 2018.
- [4] T. Lee, "Geometric Control of Quadrotor UAVs Transporting a Cable-Suspended Rigid Body," *IEEE Transactions on Control Systems Technology*, vol. 26, pp. 255–264, Jan. 2018.
- [5] A. Tagliabue, M. Kamel, R. Siegwart, and J. Nieto, "Robust Collaborative Object Transportation Using Multiple MAVs."
- [6] S. Tang, V. Wuest, and V. Kumar, "Aggressive Flight With Suspended Payloads Using Vision-Based Control," *IEEE Robotics and Automation Letters*, vol. 3, pp. 1152–1159, Apr. 2018.
- [7] P. Lightbody, T. Krajnk, and M. Hanheide, "An efficient visual fiducial localisation system," ACM SIGAPP Applied Computing Review, vol. 17, pp. 28–37, Nov. 2017.
- [8] G. Loianno and V. Kumar, "Cooperative Transportation Using Small Quadrotors Using Monocular Vision and Inertial Sensing," *IEEE Robotics and Automation Letters*, vol. 3, pp. 680–687, Apr. 2018.