

Seminar Statistische Lernverfahren Klassifikation von Rezensionstypen

Till Gräfenberg, Alexander Kohlscheen, Michael Lau, Tanja Niklas, Matthias Häußler, Jonathan Schmitz

12. Dezember 2019

Inhaltsverzeichnis

- 1. Problemstellung
- 2. Erstellen von Prädikatoren
- 3. Analysemethoden
 - 3.1 Naive Bayes
 - 3.2 Entscheidungsbaum
 - 3.3 Random Forest
 - 3.4 weitere Anpassungen und Modelle

Problemstellung

► Ziel: Klassifizierung von Reviews in folgende Typen

Texttyp	introvertiert	extrovertiert	
emotional	stetig	initiativ	
rational	gewissenhaft	dominant	

► Gegeben: 439 bereits klassifizierte Reviews

Schwierigkeiten

- Keine eindeutige Klassifikation
 - Auch für Menschen nicht eindeutig
 - ► Teilweise sehr geringe Unterschiede zwischen den Typen
- Geringe Zahl an Trainingsdaten
- Unbalanciertes Studiendesign
- Representativität
 - Introvertierte Kunden schreiben weniger häufig Reviews
 - Nur positive Bewertungen lagen vor

- Klassifikation sollte durch verwendete Wörter geschehen
- Zurückführung auf Grundwörter notwendig
- ▶ Benutzung verschiedener Packages in R bzw. Python ermöglichte verschiedene Verfahren.

Stemming

- Durch Abschneiden von Prä-/In- und Suffixen und Ersetzen von Umlauten, Diphtongen etc. erzeugen von Wortstämmen.
- ► Eigene Implementierung nach Vorgabe von COMPEON in R
- Für Englische Sprache bereits vorgefertigte Tools z.B.
 - porterstemmer von nltk in Python
 - snowballstemmer von nltk in Python

Probleme:

- Unregelmäßigkeit von Verben im Deutschen
- Komposita

Lemmatisierung

- Alternative: Zurückführung auf grammatikalische Grundformen
- Erfordert vorgefertigte Packages z.B.
 - SpaCy in Python
 - ▶ nltk in Python
- ▶ Diese lieferten zusätzlich Informationen über die Wortart
- Auch hier für Englische Sprache ausgereifter als die deutsche Alternative

Filterung der Prädikatoren, weitere

- Nach Erstellung der Grundwörter konnte gefiltert werden, welche Wörter häufig auftraten
- Denkbare Filtermethoden:
 - Nur Wörter, die mind. n Mal aufgetaucht sind
 - Nur Wörter, die in mind. p% der Reviews verwendet wurden
- Anschließend Erstellung einer binären Document-Term-Matrix, die kodiert, welche Grundwörter in welchen Reviews auftauchten
- ► Alternative: PCA um aussagekräftige "Wörterachsen" zu bestimmen. Kein sichtbarer Erfolg.

PCA - Principal Component Analysis

Ziel: Dimensionsreduktion

Idee: Suche die Datenachsen, auf denen die Varianz am größten ist

Verfahren:

- ► Sei X die DT-Matrix (Spaltenmittelwerte = 0)
- ▶ Bestimme die Kovarianzmatrix $Cov = X^TX$
- **Bestimme** die Eigenwerte λ_i und Eigenvektoren v_i von *Cov*
- Sei $V = (v_1|v_2|...)$
- ▶ Transformiere die Daten zu $\hat{X} = XV$

Problem: Die Resultate verlieren an Interpretierbarkeit

PCA - Principal Component Analysis

9/16

PCA - Principal Component Analysis

Fazit:

- Die Dominanten Reviews haben eine geringere Varianz
- keine erkennbaren Gruppen
- Mittelwerte der Gruppen sind ähnlich

Das Verfahren liefert keine besseren Ergebnisse.

Analysemethoden

Naive Bayes

Resultate Naive Bayes, R, mind. 20 mal Wörter

	Dominant	Gewissenhaft	Initiativ	Stetig
Dominant	14	2	8	1
Gewissenhaft	0	0	0	0
Initiativ	4	11	28	17
Stetig	0	1	0	0

Resultate Naive Bayes, Python, mind. in 1% der Texte, englisch

	Dominant	Gewissenhaft	Initiativ	Stetig	
Dominant	13	0	4	1	
Gewissenhaft	4	3	5	2	
Initiativ	12	3	16	5	
Stetig	4	0	11	3	

Resultate Naive Bayes, Python, mind. in 1% der Texte, deutsch

	Dominant	Gewissenhaft	Initiativ	Stetig
Dominant	16	0	2	0
Gewissenhaft	2	5	5	2
Initiativ	13	4	16	3
Stetig	2	1	13	2

Analysemathoden

weitere Anpassungen und Modelle

Mit Naive Bayes und den Wortarten als Prädiktoren lässt sich zuverlässig voraussagen, ob eine Person extrovertiert ist:

	extrovertiert	introvertiert
extrovertiert	30	5
introvertiert	24	27

Idee:

Nutze die Vorhersage dieses Modells um ein neues Modell anzupassen.

Analysemathoden

weitere Anpassungen und Modelle

Random Forest

Random Forest mit Naive Bayes

	D	G	I	S	
D	14	2	8	1	
G	1	4	1	0	
I	3	7	25	15	
S	0	1	2	2	

	D	G	1	S
D	15	2	9	1
G	0	4	1	1
I	3	8	24	13
S	0	0	2	3

Das modifizierte Verfahren liefert im Schnitt keine besseren Ergebnisse