Roll No.

Total No. of Questions: 9]

[Total No. of Printed Pages: 8

(2040)

B.C.A. (CBCS) RUSA VIth Semester Examination

3839

NUMERICAL METHODS

Paper: BCA-0602

Time: 3 Hours]

[Maximum Marks: 70

Note: Attempt four questions in all, selecting one question from each of the Sections B, C, D and E. Question No. 1 is compulsory.

Section-A

(Compulsory Question)

 (A) Answer all the following ten objective questions with 1 mark each on the answer book.

(i) If
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

$$-\infty$$
, is replaced by $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$,

CA-695

(1)

Turn Over

then this approximation leads to an error known as :

- (a) Inherent error
- (b) Rounding error
- (c). Truncation error
- (d) Absolute error
- (ii) If a number is rounded to n decimal places, then the absolute error is:

(a).
$$\frac{1}{2}10^{-n}$$

- (b) $\frac{1}{3}10^{-n}$
- (c) $\frac{1}{4}10^{-n}$
- (d) 10^{-n}
- (iii) The order of convergence in Newton-Raphson method is :
 - (a) 0
 - (b) 1
 - (c) · 2
 - (d) 3

(iv) Newton's interative formula to find \sqrt{N} is:

(a)
$$x_{n+1} = x_n(2 - Nx_n)$$

(b)
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$$

(c)
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{Nx_n} \right)$$

- (d) None of these
- (v) The first term of the series whose second and subsequent terms are 8, 3, 0, -1, 0 is
- (vi) As soon as a new value of a variable is found by iteration; it is used immediately in the following equations, this method is:
 - (a) Gauss-Jordon method
 - (b) · Gauss-Seidal method
 - (c) Jacobi's method
 - (d) Relaxation method

- (vii) The binary equivalent of the decimal number 11.625 is
- (viii) $(0.4273E 2) + (0.5324E 3) = \dots$
- (ix) By Trapezoidal rule:

$$\int_{a}^{b} f(x)dx = \dots$$

(x) Using forward differences, the formula for $f'(a) = \dots 1 \times 10 = 10$

Short Answer Type Questions

- (B) Answer all the four questions.
 - (i) If $z = \frac{1}{8}xy^3$, find the percentage error in z when $x = 3.14 \pm 0.0016$ and $y = 4.5 \pm 0.05$.
 - (ii) Express $3x^3 4x^2 + 3x 11$, in factorial notation.
 - (iii) Derive Simpson's $\frac{3}{8}$ rd rule using Newton-Cote's quadrature formula.
 - (iv) With the usual notations derive the identity, $\delta = E^{1/2} - E^{-1/2}.$ $4 \times 5 = 20$

Section-B

- 2. (a) Convert (1101101)₂ into decimal form.
 - (b) Divide 0.6663E8 by 0.2000E5 and write the result in correct format. 5,5
- (a) Round off the number 865250 to four significant figures and compute the percentage error.
 - (b) If $u = 3v^7 6v$, find the relative error in u at v = 1 if the error in v = 0.05. 5,5

Section-C

- 4. (a) Find root of $f(x) = \sqrt{5}$ using Bisection method.
 - (b) Using Regula-Falsi method obtain approximate solution of the equation $x^3 5x 3 = 0$. 5,5
- 5. (a) Solve the following equations by Guasselimination method :

$$2x + 4y + 2z = 15,$$

 $2x + y + 2z = -5$
 $4x + y - 2z = 0.$

CA-695

and

(b) Solve by Gauss-Jordon elimination method:

$$2x + 6y + z = -14$$

$$5x - y + 2z = 29,$$

$$-3x - 4y + z = 4$$
5,5

Section-D

6. (a) Construct the table of differences for the data:

x	0	1	2	3	4
f(x)	1.0	1.5	2.2	3.1	4.6

and evaluate $\Delta^3 f(2)$.

(b) If
$$u_0 = 3$$
, $u_1 = 12$, $u_2 = 81$, $u_3 = 2000$, $u_4 = 100$, then calculate $\Delta^4 u_0$.

7. (a) Using Newton's forward interpolation formula, estimate the number of students who obtained marks between 40 and 45, using data:

Marks	No. of Students		
30-40	31		
40-50	42		
5060	51		
60-70	35		
70-80	31		

Interpolate by means of Gauss's Backward (b) formula the population of a town for the year 1974, given that:

Year	Population (in thousands)
1939	12
1949	15
1959	20
1969	27
1979	39
1989	52

Section-E

8. (a) Evaluate:

$$\int_{0}^{6} \frac{dx}{1+x^2}$$

by using Simpson's $\frac{1}{3}$ rd rule.

Use Trapezoidal rule to evaluate $\int_0^1 x^3 dx$ considering five sub-intervals.

5,5

9. (a) Given that:

X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

find
$$\frac{dy}{dx}$$
 at $x = 1.1$.

(b) The function $y = 3xe^{-x}$ is tabulated below: (3, 0.4481), (4, 0.2198) and (5, 0.1011). Find $\frac{dy}{dx}$ at x = 3, 4 and 5 and compare your results

with the exact values.

