8	(a)	$k = \alpha / \beta \times \beta / \alpha = 1$	B1
		, .	
	(b)	$\alpha \beta = 15$ and $\alpha + \beta = -m$	M1 A1
		$-h = \alpha \beta + \beta \alpha$	M1
		$=\frac{\alpha^2+\beta^2}{\alpha\beta}$	N/1
		lphaeta	M1
		$(\alpha + \beta)^2 - 2\alpha\beta$	M1
		$=\frac{(\alpha+\beta)^2-2\alpha\beta}{\beta\alpha}$	
			A1 oe
		$\Rightarrow h = \frac{30 - m^2}{15}$	
	(c)	$\alpha \beta = 15 \implies \alpha(2 \alpha + 1) = 15$	M1
		$2\alpha^2 + \alpha - 15 = 0$	
		$(2 \alpha - 5)(\alpha + 3) = 0$	M1
		$\alpha = 2 \frac{1}{2}$ or $\alpha = -3$	A1
	(1)		M1
	(d)	$\beta = 2 \times 2\frac{1}{2} + 1 = 6 \text{ or } \beta = 2 \times -3 + 1 = -5$ $m = -(\alpha + \beta) = -(2\frac{1}{2} + 6) \text{ or } -(-3 - 5)$	M1
		$m = -(\alpha + \beta) = -(2.72 + 0) \text{ or } -(-3 - 3)$ m = -8.1/2 or 8	A1
			13
9	(a) $BD^2 = 5^2 + 6^2 = 61$, $BC^2 = 8^2 + 6^2 = 100$, $CD^2 = 8^2 + 5^2 = 89$		M1 A2, 1, 0
		$61 + 89 - 2\sqrt{61}\sqrt{89}\cos BDC$	M1
	cos $BDC = 25/\sqrt{(61 \times 89)}$ = 0.3393 $\angle BDC = 70.2^{\circ}$ (b) Area $BDC = \frac{1}{2} \sqrt{61} \sqrt{89} \sin 70.2^{\circ}$ = 34.7 cm ² (3sf)		A1
			A1
			M1 A1ft
			A1 allow 34.6
	(c) Area $DAC = \frac{1}{2} \times 5 \times 8 = 20$		B1
			M1 A1
	(d) $20 = \frac{1}{2} \times \sqrt{89} \times AE \implies AE = \frac{40}{\sqrt{89}}$		IVII AI
	(e) Angle is ∠BEA		M1 identify angle
	tan $BEA = 6/AE = 6\sqrt{89/40}$		M1 A1ft
	= 1.415		
	$\Rightarrow \angle l$	$BEA = 54.8^{\circ}$	A1
			16