Not energ CKM metrix denut is independent.

Constraints: unitary, slobal phase invariance of the quark fields

2 generation race

unitery
$$\rightarrow V = \begin{pmatrix} \cos\theta_{\ell} & e^{i\alpha} & \sin\theta_{\ell} & e^{i\beta} \\ -\sin\theta_{\ell} & e^{i(\alpha+\delta)} & \cos\theta_{\ell} & e^{i(\beta+\delta)} \end{pmatrix}$$

Terms in the legrengian cre invenient under U11) global transformation of any quark field, gi -> eixigi

●4 fields ⇒ con perform 3 such tronsforms to eliminate α, β, and r.

Then weak charged current is

Juit = cos Oc ūl & dl + sin Oc ūl & s. - sin Oc cl & dl + cos Oc cl & s.

3 generation call

9 independent paremeters writing 3 angles and 6 phases

1 6 guark fields, chimete 5 phese

 $\lambda = V_{\rm hs} \approx \sin \theta, \approx az \approx 1$

3 angles and 1 phase (4 three parameters in total)

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(f - i\eta) \\ -\lambda & (-\lambda^2 & A\lambda^2) \\ A\lambda^3(1 - f - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
not

The feet that VCKM has a phase means that the Yukawa metrices his cannot be real. Therefore the Standard Model legrengian violetes CP.

5.4 Nentrino oscillations and mass

We now know that man eigenstates & weak eigenstates for neutrinos are not equivalent. The analoguous mixing matrix in Upuns. If neutrinos are Dirac fermions (like quarks), there are 3 angles and 1 phase (CP violetic in quarks).

If neutrinos are Majorana fermions, 3 angles + 3 phases be no longer independent anti-pertirle field (CP moletion in general)

Dirac fermions: $N^{i} = \mathcal{V}_{R}^{i} = (\mathcal{V}_{R}, \mathcal{V}_{PR}, \mathcal{V}_{ZR})$ Must modify $\mathcal{L}_{up, \phi} = -\sqrt{2} \left(\lambda^{ij} L^{i} \phi R^{j} + \lambda^{ij}_{ij} L^{i} \phi^{c} N^{j} + h.c. \right)$

Exactly like for queeks, Neutrinos get mass because - 5 Mi (VR VL + VL DR)

Majorana Jermions

Neutrinos are electrically neutral, could be its own antiparticle $d^{5}(p) = b^{5}(p)$

Take the (- parity = 1 (m.l.og)

$$V_{R}(x) = V_{L}^{C}(x) = (\overline{V}_{L}^{T}(x))$$

$$(\overline{V}^{T} = V^{C}(x) = Y^{C}((-1)V(x)) = V(x))$$

=> RH nutino field not independent, it's charge conj. of LH field.

Mass term: - 1 & My (Vic Vi + Vi Vic)

This dim 5 cp. is non-renormalisable. This is OK as long as we think of SM as effective field theory at energy scale as scale of "new physics"

Standard Model 14, 15

Summary of ElV theory

Lyunge of - masses fo Wt, Z and Hisss. Wt, Z-H interactions and H-H
interactions

Lept, ϕ - lepton masses, lepton - H interections

Lepton - W[±], Z, X int (PMNS natrix:) oscillations (mixing and probably SP)

Lquark, & - quark masses, quarks - H int.

LEW quark - quarking nith W*, Z, Y

(CKM natrix: quark favour mixing & CP welation)

6. Weak Derays

6.1. Effective lagragion

Weill consider some procesus where energies, momenta « Mw, Mz, so we can use an effective field theory (Fermi week lagrengian)

The weak interaction part of the lagrengem is

$$d_{W} = \frac{9}{2\sqrt{2}} \left(\int_{0}^{A} W_{\mu}^{+} + \int_{0}^{A+} W_{\mu}^{-} \right) \leftarrow \frac{\text{charged}}{\text{current}}$$
 $+ \frac{9}{2\cos\theta_{W}} \int_{0}^{A} Z_{\mu} \leftarrow \frac{\text{nentral}}{\text{current}}$

and the S-metrix is

For small g, can Taylor expend, and assuming no W*, Z in initial /find states.

< f(s(i) = < f() \ \ 1 - \frac{5^2}{8} \int d^4 x' \[J^{h^4}(x) D^{\omega}_{\mu\nu} (x - x') J^{\overline{\gamma}}(x') \]

+ \frac{1}{(05^2Om J_n^{\psi}(x) D_{pv}(x-x') J_n(x')]} + O(\(\sigma^4\)\) \\ \text{Uhere ne'te used Wick's + Leosen and Onv (x-x') = \left(T W_n^{-1}(x) W_n^{\psi}(x')\right)} \\ \text{(Feynmen propagetor) & Same for Z