Colle 12 \sim 14 janvier 2016 \sim Colleur : Isenmann \sim MPSI \sim Trinôme :

Planche 1.

- **Exercice 1.** Calculer la limite x^x lorsque $x \to 0$.
- **Exercice 2.** Calculer la limite en 0 de $x \sin(1/x)$.

Planche 2.

- **Exercice 1.** Calculer la limite de $\frac{x-\sqrt{x}}{\ln(x)+x}$ lorsque $x \to +\infty$.
- **Exercice 2.** Calculer la limite en $+\infty$ de $e^{x-\sin(x)}$.

Planche 3.

- **Exercice 1.** Calculer la limite de $\ln(x) \ln(\ln(x))$ lorsque $x \to 1$.
- Exercice 2. Calculer la limite en 0 de xE(1/x).

Solutions - Planche 1.

Exercice 1. On a $x^x = \exp(x \ln(x))$. Or en 0 par croissance comparée on a $x \ln(x) \to 0$. Donc en passant à l'exponentielle on a $x^x \to 1$ lorsque $x \to 0$.

Exercice 2. On a du sin, on utilise le théorème des gendarmes car x tend vers 0 et sin est bornée. Lorsque $x \to 0$ on a :

$$|x\sin(1/x)| \le |x| \to 0$$

Donc par le théorème des gendarmes,

$$\lim_{x \to 0} x \sin(1/x) = 0$$

Solutions - Planche 2.

Exercice 1. On utilise le trick de la mise en facteurs :

$$\frac{x - \sqrt{x}}{\ln(x) + x} = \frac{x}{x} \frac{1 - \sqrt{x}/x}{1 + \ln(x)/x} = \frac{1 - \sqrt{x}/x}{1 + \ln(x)/x}$$

Or $\sqrt{x}/x \to 0$ et $\ln(x)/x \to 0$ en $+\infty$ par croissance comparée. D'où le machin en entier tend vers 1.

Exercice 2. Du $\sin(x)$. Il va être petit par rapport à x qui tend vers l'infini. On minore donc $x - \sin(x) \ge x - 1$ car $\sin(x) \le 1$. D'où en passant à l'exponentielle qui est croissante on obtient

$$e^{x-\sin(x)} \ge \exp(x-1) \to +\infty$$

D'où

$$\lim_{x \to +\infty} e^{x - \sin(x)} = +\infty$$

Solutions - Planche 3.

Exercice 1. Ça rappelle le coup du $x \ln(x)$ en 0 qui tend vers 0. On s'y ramène en posant $x = e^y$. On a donc

$$\ln(x)\ln(\ln(x)) = \ln(e^y)\ln(\ln(e^y)) = y\ln(y)$$

Mais cette fois y tend vers 0 car x tend vers 1. Donc

$$\lim_{x \to 0} \ln(x) \ln(\ln(x)) = 0$$

Exercice 2. On utilise la définition de la partie entière pour utiliser le théorème des gendarmes. On a

$$1/x - 1 \le E(1/x) \le 1/x$$

Donc en multipliant par $x \ge 0$ on obtient

$$1 - x \le xE(1/x) \le 1$$

Or $1-x\to 1$ lorsque $x\to 0$. Donc par le théorème des gendarmes

$$\lim_{x \to 0} x E(1/x) = 1$$