$\underset{\rm Exam~2}{\rm CMPEN}~271-Fall~2010$

Name:	PSU ID:

1.	. (3 pts.) Assuming a word size of 5 bits, interpret 10110 as a 2's complement number.							
	a) -9	b) -10	c) -5	d) 22	e) None of the above.			
2.	(3 pts.) Ass representatio	_	rd size of 5 b	oits, determin	ne the 2's complement			
	a) 11011	b) 10111	c) 10110	d) 11001	e) None of the above.			
3.	(4 pts.) H a) 5	ow many ing	-	_	in a 32:1 mux have? e) None of the above.			
4.	. (3 pts.) How many 2:1 muxes does it take to build a 32:1 mux?							
	a) 3	b) 7	c) 15	d) 31	e) None of the above.			
	Questions 5-7 concern the construction of a bit-slice of a comparator. The questions will ask you to complete the entries in the truth table below denoted by a , b , and c .							
	$G_{in} \mid L_{in} \mid$	$E_{in} \mid x \mid y$	G_{out} L_o	e_{ut} E_{out}				
	$ \begin{array}{c cc} 0 & 0 \\ \hline 1 & 0 \end{array} $	1 1 1 0 0 1	a b					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 0		c				
5.	(2 pts.)Wha	at is the value	e of a ?					
	a) 0	b) 1	c) x					
6.	6. (2 pts.) What is the value of b ?							
	a) 0	b) 1	c) x					
7.	7. (2 pts.) What is the value of c ?							
	a) 0	b) 1	c) x					

You are given the following 4:16 decoder built from 2:4 decoders. Unfortunately, the student who built it wired the select lines in a most unusual fashion. Its your job to label each output with the index which selects it. Most of the outputs have been omitted for clarity.

- 8. (3 pts.) What is the value of the output labeled A?
 - a) y_1
- b) y_2
- c) y_4
- d) y_8

d) y_{12}

- e) None of the above
- 9. (3 pts.) What is the value of the output labeled B?
 - a) y_1
- b) y_6
- c) y_9
- e) None of the above
- 10. **(5 pts.)** Which line of pseudo-code is equivlent to the following piece of hardware. Y is a 4-bit binary number.

- a) if (5 < Y) then Z = X+3 else Z = Y+5;
- b) if (6 < Y) then Z = Y+3 else Z = Y+5;
- c) if (6 > Y) then Z = X+3 else Z = Y+5;
- d) if (5 > Y) then Z = Y+3 else Z = Y+5;

You have a digital design which calls for a circuit which performs the following task (written as a C if/then statement). You have decided on the architecture. Its your job to design to complete the truth table for the the glue-logic box (only an arbitrary portion of the complete truth table is shown).

G6	G12	G18	select			
0	0	0	a			
1	1	0	b			
1	0	1	c			

- 11. (3 pts.) What is the (decimal) value of a in the truth table?
 - a) 0
- b) 1
- c) 2
- 12. (3 pts.) What is the (decimal) value of b in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3
- e) x

e) x

- 13. (3 pts.) What is the (decimal) value of c in the truth table?
 - a) 0
- b) 1
- c) 2
- d) 3

d) 3

e) x

				\mathbf{S}	R	Q+		J	K	Q+
D	Q+	Τ	Q+	0	0	Q	()	0	Q
0	0	0	Q	0	1	0	()	1	0
1	1	1	Q'	1	0	1		1	0	1
	-			1	1	X		L	1	Q'

For questions 14-19 use the following figure. Assume that initial value of \overline{Q} is 0 (as shown in the figure), and that the outputs, after a period of rapid toggling, end-up at 0.

- 14. (3 pts.) What is the value of Q1 at time 25
 - a) 0
- b) 1
- c) toggling
- d) unknown
- 15. (2 pts.) What is the value of Q1 at time 35
 - a) 0
- b) 1
- c) toggling
- d) unknown
- 16. (1 pt.) What is the value of Q1 at time 65
 - a) 0
- b) 1
- c) toggling
- d) unknown
- 17. (2 pts.) What is the value of Q2 at time 25
 - a) 0
- b) 1
- c) toggling
- d) unknown
- 18. (1 pts.) What is the value of Q2 at time 45
 - a) 0
- b) 1
- c) toggling
- d) unknown

For problems 19-23 use the following figure and timing diagram. You should assume that all the devices process 5-bits data values.

- 19. (5 pts.) What is the value of Q at time 15?
 - a) 0
- b) 3
- c) 6
- d) 9
- e) none of the above
- 20. (4 pts.) What is the value of P at time 25?
 - a) 2
- b) 9
- c) 12
- d) 15
- e) none of the above
- 21. (3 pts.) What is the value of A_1 at time 35?
 - a) 5
- b) 9
- c) 12
- d) 18
- e) none of the above
- 22. (2 pts.) What is the value of M at time 45?
 - a) 2
- b) 5
- c) 11
- d) 12
- e) none of the above
- 23. (1 pts.) What is the value of Q at time 55?
 - a) 5
- b) 11
- c) 12
- d) 14
- e) none of the above