Office Hour: 1:30-3:30 PM, Th

STAT 610: Discussion 4

1 Summary

• Cramér-Rao Lower Bound Suppose f_{θ} is differentiable as a function of θ and satisfies

$$\frac{d}{d\theta} \int h(x) f_{\theta}(x) dx = \int h(x) \frac{\partial}{\partial \theta} f_{\theta}(x) dx$$

for h(x) = 1 and h(x) = T(x). Then,

$$\operatorname{Var}_{\theta}\{T(\mathbf{X})\} \ge \{\frac{\partial}{\partial \theta}g(\theta)\}^T\{I(\theta)\}^{-1}\{\frac{\partial}{\partial \theta}g(\theta)\},$$

where

$$I(\theta) = \mathbb{E}\left\{\frac{\partial}{\partial \theta} \log f_{\theta}(X) \left[\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]^{T}\right\}.$$

• An alternative way of calculating Fisher information matrix (Lemma 7.3.11) If $f_{\theta}(x)$ satisfies

$$\frac{d}{d\theta} \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} \log f_{\theta}(X) \right) = \int \frac{\partial}{\partial \theta} \left\{ \left(\frac{\partial}{\partial \theta} \log f_{\theta}(X) \right) f_{\theta}(X) \right\}$$

(true for an expential family), then

$$\mathbb{E}_{\theta} \left\{ \left(\frac{\partial}{\partial \theta} \log f_{\theta}(X) \right)^{2} \right\} = -\mathbb{E}_{\theta} \left(\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(X) \right).$$

- Uniform Minimum Variance Unbiased Estimator (UMVUE)
 - **Definition**: T is UMVUE of $g(\theta)$ if T has the smallest variance among all unbiased estimators of $g(\theta)$.
 - Rao-Blackwell Theorem: We learned it in Lecture 2.
 - **Theorem 7.3.19**: UMVUE is unique.
 - Theorem 7.3.20: W is UMVUE $\Leftrightarrow \mathbb{E}(WU) = 0$ for all U satisfying $\mathbb{E}(U) = 0$.
 - **Lehmann-Scheffé Theorem**: If T is complete sufficient for θ . If $\psi(T)$ is an unbiased estimator of $g(\theta)$, then it is the unique UMVUE.
 - There are two way for finding UMVUE.
 - * Find ψ .
 - * Find an unbias estimator W for $g(\theta)$. Then, calculate E[W|T].

Office Hour: 1:30-3:30 PM, Th

2 Questions

- 1. Let X_1, \ldots, X_n be i.i.d. Ber(p). Find the UMVUE of following parameters.
 - p^m , for all $m \leq n$.
 - $P(X_1 + \cdots + X_m = k)$, where m and k are positive integers $\leq n$.
 - Find the UMVUE of $P(X_1 + \cdots + X_{n-1} > X_n)$.

- 2. Let X_1, \ldots, X_n be i.i.d $E(a, \theta)$. Find the UMVUE of following situation.
 - Find the UMVUE of a when θ is known.
 - Find the UMVUE of θ when a is known.
 - Find the UMVUE of a and θ .

3. Suppose that T is a UMVUE of an unknown parameter θ , and for any integer k > 0, we have $\mathbb{E}(T^k) < \infty$. Show that T^k is a UMVUE of $\mathbb{E}(T^k)$.