Network Security

Three Laws of Secure Computing

1. Don't buy a computer.

2. If you do buy a computer, don't plug it in.

3. If you do plug it in, sell it and return to step 1

The 12 Step Program

- Identify network assets
- 2. Analyze security risks
- 3. Analyze security requirements and tradeoffs
- 4. Develop a security plan
- 5. Define a security policy
- 6. Develop procedures for applying security policies

The 12 Step Program (continued

- 7. Develop a technical implementation strategy
- 8. Achieve buy-in from users, managers, and technical staff
- 9. Train users, managers, and technical staff
- 10. Implement the technical strategy and security procedures
- 11. Test the security and update it if any problems are found
- 12. Maintain security

Network Assets

- Hardware
- Software
- Applications
- Data
- □ Intellectual property
- □ Trade secrets
- Company's reputation

Security Risks

- □ Hacked network devices
 - Data can be intercepted, analyzed, altered, or deleted
 - User passwords can be compromised
 - Device configurations can be changed
- □ Reconnaissance attacks
- Denial-of-service attacks

Security Tradeoffs

- Tradeoffs must be made between security goals and other goals:
 - Affordability
 - Usability
 - Performance
 - Availability
 - Manageability

A Security Plan

- High-level document that proposes what an organization is going to do to meet security requirements
- Specifies time, people, and other resources that will be required to develop a security policy and achieve implementation of the policy

Security

- □ Per RFC 2196, "The Site Security Handbook," a security policy is a
 - "Formal statement of the rules by which people who are given access to an organization's technology and information assets must abide."
- □ The policy should address
 - Access, accountability, authentication, privacy, and computer technology purchasing guidelines

Security Mechanisms

- Physical security
- Authentication
- Authorization
- Accounting (Auditing)
- Data encryption
- Packet filters
- Firewalls
- Intrusion Detection Systems (IDS)
- Intrusion Prevention Systems (IPS)

THE CIA

Modularizing Security Design

- Security defense in depth
 - Network security should be multilayered with many different techniques used to protect the network
- Belt-and-suspenders approach
 - Don't get caught with your pants down

Modularizing Security Design

- Secure all components of a modular design:
 - Internet connections
 - ■Public servers and e-commerce servers
 - Remote access networks and VPNs
 - Network services and network management
 - ■Server farms
 - User services
 - Wireless networks

Securing Internet Connections

- Physical security
- □ Firewalls and packet filters
- Audit logs, authentication, authorization
- Well-defined exit and entry points
- Routing protocols that support authentication

Securing Public Servers

- Place servers in a DMZ that is protected via firewalls
- Run a firewall on the server itself
- Enable DoS protection
 - □ Limit the number of connections per timeframe
- Use reliable operating systems with the latest security patches
- Maintain modularity
 - Front-end Web server doesn't also run other services

Security Topologies

Web, File, DNS, Mail Servers

Security Topologies

Web, File, DNS, Mail Servers

Securing Remote-Access & VPN's

- Physical security
- Firewalls
- Authentication, authorization, and auditing
- Encryption
- One-time passwords
- Security protocols
 - CHAP
 - RADIUS
 - IPSec

Securing Network Services

- Treat each network device (routers, switches, and so on) as a high-value host and harden it against possible intrusions
- Require login IDs and passwords for accessing devices
 - Require extra authorization for risky configuration commands
- Use SSH rather than Telnet
- Change the welcome banner to be less welcoming

Securing Server Farms

- Deploy network and host IDSs to monitor server subnets and individual servers
- Configure filters that limit connectivity from the server in case the server is compromised
- □ Fix known security bugs in server operating systems
- Require authentication and authorization for server access and management
- □ Limit root password to a few people
- Avoid guest accounts

Securing User Services

- Specify which applications are allowed to run on networked
 PCs in the security policy
- Require personal firewalls and antivirus software on networked
 PCs
 - Implement written procedures that specify how the software is installed and kept current
- Encourage users to log out when leaving their desks
- Consider using 802.1X port-based security on switches

Vulnerability Scanners - Nessus

- □ Pros
 - Large plugin or signature base
 - You can customize and create new plugins
- □ Cons
 - ■Taken over by Tenable no longer free
 - Purchasing plans for new plugins
 - Shareware plug-ins are seven days behind

Vulnerability Scanners - GFI LANguard

- □ Pros
 - Port Scanner, Enumeration, and Vulnerability Scanner
 - Many features such as SNMP and SQL brute force
 - Great for Windows networks
- □ Cons
 - Lacks extensive signatures for other operating systems
 - Look to Nessus for scanning heterogeneous networks