前言

现市面上树莓派相关教程多而杂,新手用户缺少一个系统的学习方法,本手册针对新手用户而编写,旨在带领大家入门树莓派、熟悉树莓派的开发环境、学习树莓派的基础操作与配置。本手册针对树莓派 4B 编写而成,里面所有内容同样适用于树莓派 3B+与 3B.

如发现本书有疏漏错误之处,请联系店铺客服反馈,我们会及时修订,感谢大家的支持。

树莓派 4B 资料地址: https://www.yahboom.com/study/raspberry4B 密码: nzv8

手机扫描二维码浏树莓派资料

手机扫描二维码购买树莓派及配件

手机扫描二维码进入亚博官方网站

目录

前言	1
目录	2
第一章 树莓派开发环境搭建	4
1、树莓派的简介	4
2、散热片、外壳、散热风扇的安装	7
3、树莓派系统镜像的下载和烧写	8
4、树莓派系统的启动1	0
5、Linux 常用命令以及 vim编辑器的使用1	1
第二章 常用镜像系统的介绍与安装1	3
1、树莓派官方镜像1	3
2、开启 SSH 等功能的 raspb i an 镜像1	4
3、Ubuntu ROS1-melodic 镜像1	4
第三章 树莓派远程登录	5
1、获取树莓派 IP 地址1	5
2、开启 SSH 服务	7
3、putty 远程登录1	8
4、开启 VNC 服务2	0
5、VNC 远程桌面2	1
第四章 树莓派的基础设置24	4
1、树莓派连接 WiFi2	4
2、树莓派文件传输2	5
3、树莓派系统的备份2	6
第五章 树莓派编程	7
1、C 语言编程2	7
2、Python 编程2	9
1、jupyter lab编程3	1

第六章 树莓派的扩展应用介绍	34
1、摄像头	34
2、激光雷达	40
3、深度相机	41
4、远场麦克风阵列	42
6、树莓派制作小车、机器人	43
附录一 树莓派 10 口图示	53
附录二 树莓派开发工具下载	54
附录三 树莓派常用命令	55
附录四 常见问题及回答	57

第一章 树莓派开发环境搭建

1、树莓派的简介

树莓派(英文名 Raspberry Pi) 是为青少年计算机编程教育而设计的只有手掌大小的卡片式电脑,其系统基于 Linux。随着 Windows 10 loT 的发布,我们也将可以用上运行 Windows 的树莓派。自问世以来,受众多计算机发烧友和创客的追捧,曾经一"派"难求。别看其外表"娇小",内"心"却很强大,视频、音频等功能通通皆有,可谓是"麻雀虽小、五脏俱全"。

1.1 树莓派最常用三款型号对比

名称	Raspberry Pi 3B	Raspberry Pi 3B+	Raspberry Pi 4B
soc	Broadcom BCM2837	Broadcom BCM2837B0	Broadcom BCM2711
CPU	64-位 1.2GHz四核 (40nm 工艺)	64-位 1.4GHz四核 (40nm 工艺)	64-位 1.5GHz四核 (28nm 工艺)
GPU	Broadcom VideoCore IV @400MHz	Broadcom VideoCore IV @400MHz	Broadcom VideoCore VI @ 500MHz
蓝牙	蓝牙4.1	蓝牙4.2	蓝牙5.0
USB接口	USB2.0*4	USB2.0*4	US82.0*2/ US83.0*2
HDMI	标准HDMI*1	标准HDMI*3	micro HDMI*2支持4K60
供电接口	micro usb (SV 2.5A)	micro usb (5V 2.5A)	Type C(5V 3A)
多媒体	H.264, MPEG-4 decode (1080p30); H.264 encode(1080p30); OpenGL ES 1.1, 2.0 graphics	H.264, MPEG-4 decode (1080p30); H.264 encode(1080p30); OpenGLES 1.1, 2.0 graphics	H.265 (4Kp60 decode); H.264 (1080p60 decode, 1080p30 encode); OpenGL ES, 3.0 graphics
Wifi网络	802.11n无线 2.4GHz	802.11AC无线 2.4GHz/5GHz 双频Wifi	802.11AC无线 2.4GHz/5GHz 双频Wifi
有线网络	10/100Mb/s以太网	USB 2.0千兆以太网 (300Mb/s)	真千兆以太网(同口可达)
人太网Poe	无	通过额外的HAT以太网 (Poe)供电	通过额外的HAT以太网 (Poe)供电

树莓派基金会在 2019 年 6 月 24 日宣布树莓派 4B 版本发布, 主要特征如下:

- · 1.5GHz 64 位 4 核 ARM Cortex-A72 CPU
- · 双频 802.11ac 无线网卡和蓝牙 5.0
- . 真千兆以太网(网口可达)
- · 1G/2G/4G LPDDR2
- · PoE 支持 (Power-over-Ethernet, with PoE HAT)
- · micro HMDI*2 支持 4K60, USB3.0*2

树莓派 4B 是采用 BCM2711 型号 CPU 构建,是之前 3B+ 上用的博通处理器的更新版本,这个处理器包含完整的性能优化和散热器。这允许更好的时钟频率,并能更准确地监控芯片温度。

Raspberry Pi 4B 与以太网端口现在具有更多带宽,这使其能够提供全千兆吞吐量,而以前的型号只能达到大约 330 兆位。在测试中, Pi 4 B 的速率为 943 Mbps (接近最大 1,000 Mbps)。这几乎是 237Mbps Pi 3B +的五倍。

Raspberry Pi 4B 的核心时钟为 500 MHz 的 VideoCore VI,远优于以前 400 MHz 的 Broadcom VideoCore IV。新的架构可以让它高达 4K 的分辨率,以 60 fps 的速率输出到显示器上,测评对比结果▼▼▼

1.2 树莓派可以做什么

树莓派相当于手掌大小的卡片电脑,当你给树莓派装好系统,配上键盘、鼠标、显示器,就可以将它作为一台微型电脑使用。树莓派自 2012 年发售以来,现在已经是第四代了。和 PC 类似,树莓派也可以被用来理解计算机的工作原理、学习编程、文字处理及游戏等。除此之外,树莓派还可以打造家庭影院、无线路由器、FTP 服务器、代码托管、网络收音机、DIY 街机、智能小车、机器人、人脸识别、语音识别、私有云、智能家居等等。

1.3 树莓派支持的系统有哪些

树莓派就像一个小型电脑,需要安装系统后才可以正常使用,下面是树莓派支持的系统(注:这只是列举一部分,相信在不久的将来,树莓派会支持更多的第三方系统)Arch Linux ARM、Ark OS、ChameleonPi、FreeBSD、Happi Game Center、Instant WebKiosk、IPFire、Lakka、LibreELEC、Kali Linux、Kano OS、Minepion、Moebius、moOdeaudio、NetBSD、NOOBS、OpenELEC、openSUSE、OpenWrt、OSMC、Pardus ARM、Pidora、Pimusicbox、PiNet、Piplay、Puppy Linux、Raspberry Pi Fedora Remix、Raspbian、Rasplex、Raspbmc、Recalbox、Retropie、RISC OS、Runeaudio、Sailfish OS with Raspberry Pi 2、Slackware ARM、Tiny Core Linux、Ubuntu mate、Volumio、Windows 10 物联网核心版、Xbian、XBMC、xv6 等。

1.4 主流操作系统(0S)简介

通过上面的介绍我们可以得知适用于树莓派的系统非常的多,不同人群可以挑选出符合自身需求的系统。树莓派官方推荐的是 Raspberry Pi OS(Raspbian),我常用的也是 Raspberry Pi OS,这也是使用最广泛的树莓派操作系统。除此之外,对于想要学习 ROS 机器人开发的用户,Ubuntu 系统会更为合适。所有第三方系统都会带有自身的特点,他们往往是某一方面特别突出,但是其他的方面兼容性就不是特别好。如果你只是需要某个特定的功能,那么第三方系统也是非常好的选择。

2、散热片、外壳、散热风扇的安装

2.1 散热片的安装

树莓派 4b 散热片粘贴方式:

树莓派 3b+散热片粘贴方式:

2.2 树莓派外壳的安装

安装视频请使用浏览器扫描右侧二维码观看,或输入 网址:

https://www.yahboom.com/study/raspberry4B

密码: nzv8

2.3 散热风扇的安装

风扇的安装都是大同小异,统一是安装在上层外壳的主 CPU 上方,风扇的接线是接在树莓派最外排的从右往左数第二和第三个针脚,红色接第二根针脚,黑色接第三根针脚。

散热风扇电源

3、树莓派系统镜像的下载和烧写

树莓派开发板没有配置板载 FLASH, 因为它支持 SD 卡启动, 所以需要下载相应镜像, 并将其烧写在 SD 卡上, 再启动系统即可。(这个镜像里包含了我们通常所说的bootloader、kernel、文件系统)

我们提供的镜像有树莓派官方 raspbian 系统、已配置修改基础环境的 raspbian 系统、已配置 ROS 环境的 Ubuntu 镜像。后续我们测试其他第三方镜像可正常使用时,也会第一时间更新在资料上。

由于树莓官方系统镜像默认是不开启 SSH 远程服务的,这样没有屏幕的用户会比较难以使用树莓派,针对这一问题,我们提供已开启 SSH 远程服务的系统镜像,烧录这款镜像后可直接远程登录树莓派系统, 所以我们这次烧写系统教程就以《开启 SSH

服务功能的 raspbian 镜像系统》为例。

系统镜像

1.raspbian(官方轻量缓不带倒形化界面) 2.raspbian(官方带囤形界面锁量)

3.raspblan系统(开启SSH等功能

将文件下载到本地后解压,得到一个后缀为 imq 的镜像文件。

Name

Date modified

Type

Size

2019-06-20-raspbian-buster-ssh.img

7/4/2019 8:27 PM

Disc Image File

7,636,992 KB

准备:

- 1. 一张 2G 以上的 SD 卡及读卡器, 最好是高速卡, 推荐 Class4 以上的卡, 卡的 速度直接影响树莓派的运行速度, 笔者建议最好 4G 以上, 否则后续开发空间会不够用。
 - 2.使用专门的格式化工具 SDFormatter 格式化内存卡。
 - 3. windows 系统下安装烧写镜像的工具: Win32DiskImager 该工具在开发环境搭建所需的工具与系统镜像目录下:
 - ™ Win32DiskImager-0.9.5-install.exe

2017/10/25 星期... 应用程序

12,003 KB

直接点击安装。

烧写系统:

- 1. 解压下载的系统压缩文件,得到 imq 镜像文件
- 2. 将 SD 使用卡托或者读卡器后, 连上电脑
- 3. 解压并运行 win32diskimager 工具
- 4. 在软件中选择 img(镜像)文件, "Device"下选择 SD 的盘符, 然后选择"Write" 然后就开始烧写系统了,根据你的 SD 速度,安装过程有快有慢。

5.烧写结束后会弹出完成对话框,说明烧写就完成了,如果不成功,请关闭防火墙一类的软件,重新插入 SD 卡进行烧写。请注意烧写完,windows 系统下看到 SD 卡只有 74MB 了,这是正常现象,因为 linux 下的磁盘分区 Windows 系统下是看不到的!注:烧录成功后,系统可能会提示格式化内存卡,此时请勿将烧录好的内存卡格式化。

4、树莓派系统的启动

1. 树莓派供申

1)与 3B/3B+主板的不同之处是:树莓派 4B 采用 Type-C 供电接口,电源适配器的参数要求是 5V. 3A.电脑的 USB 口无法带动树莓派。

2)通过 GPIO 接口供电,树莓派的 GPIO 接口也可以接受直流电的输入,将直流电正极连接树莓派 5V 引脚,负极连接 GND 引脚。但是与方法一不同的是: GPIO 供电没有保险丝,当电压或电流过高容易将板子直接烧毁。

3)3B+/4B 中新增了一个 POE 功能接口, 只需增加一个 POE 以太网模块, 使用一根以太网电缆即可给树莓派供电。(仅 4B/3B+可用)

2. 启动树莓派

烧写好镜像后将 SD 卡直接插入树莓派, 然后给树莓派连接显示器、电源、鼠标、键盘, 打开数据线上的电源开关以后, 就可以进入树莓派系统了。

正常情况下红色电源灯常亮,绿色信号灯不规律闪烁。红灯偶尔出现灭的情况可能是供电不足。

至此,当我们看到显示屏出现了树莓派桌面,表示我们进入了树莓派系统。

5、Linux 常用命令以及 vim 编辑器的使用

1. Linux 常用命令

Linux 下的命令有几千条,以下列出的是在使用树莓时常用的 Linux 命令。

cat /proc/version

查看操作系统版本

cat /proc/cpuinfo

查看主板版本

df -h

查看 SD 存储卡剩余空间

Ifconfig

查看 ip 地址

压缩

tar - zcvf filename.tar.gz dirname

ar - zxvf filename.tar.gz

解压

linux 系统常用 apt(Advanced Package Tool)高级软件工具来安装软件

sudo apt-get install xxx

安装软件。

sudo apt-get update

更新软件列表。

sudo apt-get upgrade

更新已安装软件。

sudo apt-get remove xxx

删除软件。

具体有关 linux 命令的教程:

http://www.runoob.com/linux/linux-command-manual.html

2. Vim 编辑器及其配置

vi 有 3 个模式:插入模式、命令模式、低行模式。

插入模式:在此模式下可以输入字符,按 ESC 将回到命令模式。

命令模式:可以移动光标、删除字符等。

低行模式:可以保存文件、退出 vi、设置 vi、查找等功能(低行模式也可以看作是

命令模式里的)

打开文件、保存、关闭文件(vi 命令模式下使用)

```
//打开 filename 文件
          vi filename
          :w
                     //保存文件
                   //退出编辑器. 如果文件已修改请使用下面的命令
          :q
                     //退出编辑器. 且不保存
          :q!
                     //退出编辑器. 且保存文件
          :wq
   插入文本或行(vi 命令模式下使用,执行下面命令后将进入插入模式,按 ESC 键
可退出插入模式)
                     //在当前光标位置的右边添加文本
          a
                      //在当前光标位置的左边添加文本
          i
                      //在当前行的末尾位置添加文本
          A
                      //在当前行的开始处添加文本(非空字符的行首)
          I
                     //在当前行的上面新建一行
          \mathbf{0}
                     //在当前行的下面新建一行
          0
                    //替换(覆盖)当前光标位置及后面的若干文本
          R
   删除、恢复字符或行(vi 命令模式下使用)
                   //删除当前字符
          X
                   //删除从光标开始的 n 个字符
          nx
                    //删除当前行
          dd
                    //向下删除当前行在内的 n 行
          ndd
                    //撤销上一步操作
          u
                    //撤销对当前行的所有操作
          U
   复制、粘贴(vi 命令模式下使用)
```

 yy
 //将当前行复制到缓存区

 nyy
 //将当前行向下 n 行复制到缓冲区

 yw
 //复制从光标开始到词尾的字符

 nyw
 //复制从光标开始的 n 个单词

 y^
 //复制从光标到行首的内容

第二章 常用镜像系统的介绍与安装

1、树莓派官方镜像

树莓派官方系统镜像右侧扫码下载:

或输入以下网址:

https://www.raspberrypi.com/software/operating-systems/

这上面有多种适用于树莓派的镜像,大家可以选择一适合自己开发需求的镜像下载。本文以 Raspbian 为例,树莓派官方推荐的安装的镜像为

如下图所示,里面预装了 Python, Scratch, Sonic Pi, Java 等编程教育软件, 并带有图形化桌面。

ZIP 存档中包含的镜像文件超过 4GB,如果下载后发现文件已损坏或文件未正确解压,请更换解压软件,尝试使用 7Zip(Windows)或 Unarchiver(Macintosh)。这都是免费的解压软件,并已经过测试,可以正确解压镜像文件。

2、开启 SSH 等功能的 raspbian 镜像

由于官方提供的镜像默认未开启 ssh 服务,部分用户在没有显示屏的情况下难以远程登录树莓派。并且烧录树莓派官方 Raspbian 镜像无法直接连接 WiFi(时区和地区不正确),如果你遇到了这些问题并且不知道如何解决,那么建议你烧录经过我们配置了基础环境的树莓派官方 Raspbian 镜像,该镜像推荐新手使用,镜像说明如下,树莓

派官方系统镜像右侧扫码进入亚博官网下载,密码

nzv8.

- 1.登录用户名: pi 密码: yahboom
- 2.更新下载源为中科大的下载源
- 3.设置时区和地区为中国
- 4.安装 vim 编辑器, gcc 编译器
- 5.开启 SSH 远程服务和 WIFI 连接设置
- 6.显示中文并安装中文输入法
- 7.配置 win10 远程控制登录桌面
- 8.配置 VNC 远程登录桌面,用户名: pi 密码: yahboom
- 9. 安装了 JupyterLab 并设置了开机自启动,网页访问 ip 为 http://<your-ip-address >:8888, 登录密码 yahboom
 - 10.为 JupyterLab 配置了 Widgets 插件
 - 11.安装了 OpenCV4.5.0
 - 12.内置了 OpenCV 系列教程(路径: home/pi/Yahboom_Project)
 - 13.安装了 tensorflow-1.14.0

注意: 购买树莓派 4B 主板套餐的用户, TF 卡发货默认已烧录此镜像, 收到后无需二次烧录镜像。

3、Ubuntu ROS1-melodic 镜像

针对需要学习 ROS 开发的用户,我们提供了一个安装好 ROS 环境的 Ubuntu 镜像,该系统基于 Ubuntu18.04 搭建的,安装了 ROS1-melodic,以及 VNC、JupyterLab、终端终结者等功能,到手即可使用。

用户名: pi, 密码: yahboom

另外,该镜像还集成了以下一些 ROS 配件的功能包:

- 1、ROS 拓展板;
- 2、思岚雷达 A1, S2;
- 3、EAI-X3, EAI-4ROS 雷达;
- 4、Astra 深度相机:
- 5、Intel-D435i 深度相机;
- 6、10轴IMU惯导模块;
- 7、GPS 模块

注意: 购买树莓派 4B-ROS 套餐的用户, TF 卡发货默认已烧录此镜像, 收到后无需二次烧录镜像。

第三章 树莓派远程登录

1、获取树莓派 IP 地址

有显示屏:

将树莓派连接显示器,插上网线或连上 wifi,我此时连接的是 wifi。打开树莓派系统下的命令行终端,输入 **ifconfig** 查看树莓派的 ip 地址。

从图中找到 wlan0 处,在 inet 后面可以查看到树莓派的 ip 地址为 192.168.1.66, 如果你连接的是网线,请在 eth0 处下方的 inet 后面查看树莓派 ip 地址

无屏幕:

在【远程登录软件】中双击【ipscan22.exe】,在 ipscan22 中点击扫描,等到扫描进度条完成以后,可以找到制作商为 Raspberry Pi Foundation 的地址信息,确认为开机状态后记住该条信息的 IP。

从图中得知现在树莓派的 ip 为: 192.168.1.66

2、开启 SSH 服务

官方提供的系统镜像默认是关闭 ssh 服务的,所以在进行远程登录之前需要开启 SSH 服务。

有显示屏:

在命令行输入: sudo raspi-config, 然后回车, 如下图所示

pi@raspberrypi: ~ \$ sudo raspi-config

选择第七项:"5 Interfacing Options",回车,如下图

选择第二项: "SSH", 回车, 如下图

选择是,回车。如下图

最后点选"Finish"完成,等待重启即可。

树莓派有多种方式可以开启 SSH 服务, 其他方式大家可以自行探索。

无显示屏:

将 SD 卡使用读卡器连接到电脑上并打开 sd 卡盘符,直接新建"SSH"文件(无后缀)即可,如下图

部分用户可能会出现在新建一个空白 ssh 文件后,还是无法开启远程服务,此时的解决方案是烧录我们提供的已开启 SSH 镜像。

由于树莓派只有一个串口,当我们开发中需要占用这个串口或者我们希望进行远程开发时(通过一个根网线或无线连接到树莓派),可以借助 Linux 系统特有的一种服

务 SSH 来完成。为了方便开发,我们选择使用 SSH 远程登录操作树莓派。扫描左侧二维码下载远程登录软件:

在【远程登录软件】中双击【PuTTY 0.67.0.0.exe】打开 PUTTY 软件。

www.yahboom.com

用户名是 pi,密码是 raspberry 或者 yahboom。官方提供的镜像密码是 raspberry, 经过我们亚博智能二次配置过的镜像密码为 yahboom。

4、开启 VNC 服务

在命令行输入: sudo raspi-config, 然后回车, 如下图所示

依次操作: Interfacing Options -> VNC -> Yes。之后系统会提示你是否要安装 VNC 服务,输入 \mathbf{v} 之后回车,等待系统自动下载安装完成,一切顺利的话 VNC 服

务就启动了。

5、VNC 远程桌面

在【远程登录软件】中双击【VNC-Viewer-6.19.107-Windows.exe】安装 VNC-Viewer, 安装完成后在桌面双击 VNC-Viewer 打开软件, 依次选择 file->New cnnection

在 VNC Server 栏填写树莓派的 IP 地址+:0, 例如我的树莓派 IP 地址为:

192.168.1.66, 那么我在 VNC Server 栏填写: 192.168.1.66:0, 再点击 ok。

注意:如果登陆失败,可以将登陆的IP地址最后一位数字改为1,比如:192.168.1.66:1

双击电脑图标进行连接,填写树莓派系统的用户名和密码,用户名是 pi,密码是 raspberry 或者 yahboom。官方提供的镜像密码是 raspberry,经过我们亚博智能二次 配置过的镜像密码为 yahboom。

接下来,就进入了远程桌面界面了。

第四章 树莓派的基础设置

1、树莓派连接 WiFi

树莓派刚开始烧录好系统时无法直接连接 WIFI, 因为树莓派官方系统默认的地区和时区是英国,因此我们将地区和时区设置正确以后,就可以正常使用 WIFI 功能了。

在命令行输入: sudo raspi-config, 然后回车, 如下图所示

pi@raspberrypi:~ \$ sudo raspi-config

通过键盘的上下键,移动到第 4 步"localisation Options",回车进入。注:每个系统版本不一样,选择就不一样,我的是在第 4 项,有可能你的是在 5 项,6 项,要仔细观察后选择正确。

选择 change Timezone -> ASIA -> Shanghai

设置好后, 再回到 localisation Options, 回车进入, 选择 I4 change WIFI country-> China

设置成功后,就可以正常连接 WiFi 了!

www.yahboom.com

2、树莓派文件传输

树莓派在打开 SSH 服务后,可以使用【winscpsetup5145】软件进行电脑端和树莓派的文件传输。在【远程登录软件】中双击【WinSCP-5.14.5.RC-Setup.exe】安装,双击打开软件,在主机名处输入树莓派的地址,再依次填写用户名和密码,点击登录。

可选择文件右键上传到树莓派中

3、树莓派系统的备份

树莓派使用 SD 卡来装载系统,如果 SD 卡丢失或者损坏,那么树莓派上的数据都会丢失,所以树莓派系统的备份很重要。

3.1 准备工作

a.树莓派 SD 卡; b.读卡器; c.安装 Win32DiskImager 软件

3.2 Windows 下备份(还原)树莓派

如果没有 linux 操作系统,在 windows 下也是可以备份的,只不过备份下来的文件大小其实是 SD 卡的大小。

先新建一个空白的.img 后缀的文件, 打开 Win32DiskImager, 然后按照下图选择 sd 卡, 选择新建的空白.img 文件, 直接 read 就可以备份系统了。如果需要重装, 直接 选择这个镜像文件, 选择 sd 卡, 点击 Write 就可以恢复了。

优点:操作简单,备份和还原同一软件实现。

缺点:占用空间太大,备份是整卡备份,得到的 IMG 是卡的大小,只能还原到原卡或大于原卡的卡。

第五章 树莓派编程

1、C语言编程

如果使用的是树莓派套餐的出厂官方系统镜像(非ROS),则系统中已配置好使用环境。我们以打印 helloworld 为例来给大家演示。

第一步: 创建存放工程的文件

mkdir C

第二步: 进入该文件

cd C/

第三步: 创建并打开 helloworld.c 文件

nano helloworld.c

第四步:编写程序

```
#include "stdio.h" //包含 stdio 头文件
int main()
{
printf("Hello World!n"); //打印字符 Hello World!
while(1) //while 死循环
{
}
return 0;
}
```

编写完成之后快捷键退出

```
Ctrl + X
```

系统会提示你是否需要保存,按Y回车保存退出

```
\mathbf{Y}
```

第三步: 使用 gcc 进行编译

gcc helloworld.c -o helloworld -lwiringPi

gcc 是对 c 语言编译的声明, -o led0 是输出工程文件到 helloworld 文件(接下来的执行文件), helloworld.c 是刚刚编写的 c 语言程序, -lwiringPi 是库的调用。

第四步:运行编译好的程序

./helloworld

pi@raspberrypi:~/work/example/C \$ gcc helloworld.c -o helloworld -lwiringPi pi@raspberrypi:~/work/example/C \$./helloworld Hello World!

由上图可见,运行完程序之后,终端成功打印出"Hello World!",实验完成!

2、Python 编程

如果使用的是树莓派套餐的出厂官方系统镜像(非ROS),则系统中已配置好使用环境。我们以打印 helloworld 为例来给大家演示。

第一步: 创建存放工程的文件

mkdir Python

第二步: 进入该文件

cd Python/

第一步: 创建并打开 helloworld.py 文件

www.yahboom.com

nano helloworld.py

第二步:编写程序

print('Hello World!')#打印字符串

str = 'Hello Yahboom'#打印变量

print(str)

print('1024*2 =',1024*2,' 1024/2 =',1024/2)#打印计算结果(不换行)

List = [1,2,'a',3+3,3*3,str]#打印列表

print(List)

编写完成之后快捷键退出

Ctrl + X

系统会提示你是否需要保存,按Y回车保存退出

Y

第三步: 运行程序

python3 helloworld.py

www.yahboom.com

pi@raspberrypi:~ \$ cd work/Python/
pi@raspberrypi:~/work/Python \$ python3 helloworld.py
Hello World!
Hello Yahboom
1024*2 = 2048 1024/2 = 512.0
[1, 2, 'a', 6, 9, 'Hello Yahboom']

由上图可见,运行完程序之后,终端成功打印出

"Hello World!"-----字符串

'Hello Yahboom'------变量

1024*2 = 2048 1024/2 = 512----计算结果

[1, 2, a, 6, 9, 'Hello Yahboom']----列表

那么. 本次 helloworld 实验完成!

3、jupyter lab 编程

如果使用的是树莓派套餐的出厂官方系统镜像(非ROS),则系统中已配置好使用环境。系统开机自启动 jupyter lab,这节课就来学习如何进入 jupyter lab 编程页面以及如何运行代码。

第一步:运行程序

将电脑和树莓派连接同一个局域网,打开谷歌浏览器(也可以是 Firefox 或 Satari, 其他浏览器可能会出现使用异常),输入 http://< your-ip-address >:8888,再输入登录密码 yahboom,即可进入编程页面。

第二步:运行程序

找到.ipynb 的代码,这里以摄像头显示案例为例。先选中需要运行的代码块,点击图中□就可以直接运行该代码块了,■表示停止当前正在执行的代码块。在代码块的左侧有个[]。当里面为空白时表示未操作;为数字时表示已运行完毕;为'*'时表示正在运行。

注意:在运行完程序之后,需要清理一下运行结果,否则可能会导致其他程序无法显示正常效果或者无法执行,可以通过该步骤重启 kernel 和清空所有输出。

第六章 树莓派的扩展应用

1、摄像头

1. 升级系统

要使用摄像头模块,你必须使用一个较新的操作系。最简单的方法就是直接从树莓派官网去下载一个 Raspbian 的系统镜像然后安装到一个全新的 SD 卡上。不管你用的 Raspbian 系统版本是什么,都强烈推荐你用如下的命令来更新一下系统:

sudo apt-get update

sudo apt-get upgrade

2. 在 raspi-config 中使能摄像头

sudo raspi-config

进入如下界面:

选择第5个,按enter键进入配置

Raspberry Pi Software	Configuration Tool (raspi-config)
1 Change User Password 2 Hostname 3 Boot Options 4 Localisation Options 5 Interfacing Options 6 Overclock 7 Advanced Options 8 Update	Change password for the default u Set the visible name for this Pi Configure options for start-up Set up language and regional sett Configure connections to peripher Configure overclocking for your P Configure advanced settings Update this tool to the latest ve
9 About raspi-config <select></select>	Information about this configurat <finish></finish>

接下来选择第一个 Camera: 使能摄像头

www.yahboom.com

接下来我们重启树莓派。

3. CSI 摄像头模块的使用

1. 将摄像头连接到我们树莓派

注意: 摄像头模块不能热插拔, 请在树莓派断电的情况下进行摄像头的插拔。

2. 操作摄像头

使用树莓派官方摄像头的系统命令 raspistill 获取静态图片,以下是相关命令说明:

1. 一秒钟(时间单位为毫秒)延迟后拍摄一张照片,并命名为 image.jpg

raspistill -t 1000 -o image.jpg

2.拍摄一张自定义大小和帧率的照片

raspistill -t 1000 -o image.jpg -w 640 -h 480 -q 5

3.设置浮雕风格图像特效

raspistill -t 1000 -o image.jpg -ifx emboss

4.获取一张照片并发送至标准输出设备(如显示器)

raspistill -t 1000 -o

Raspivid 的相关命令:

拍摄一段视频: 默认是视频长度为 5s, 分辨率为 1920*1080, 帧率: 17

raspivid -o myvideo.h264

拍摄一段视频:分辨率为 640*480 时间为 10s

raspivid -o myvideo.h264 -t 10000 -w 640 -h 480

注: raspivid 输出的是一段未压缩的 H.264 视频流。为了能让我们普通的视频播放器播放需要安装 gpac 包。

apt-get install -y gpac

然后利用 gpac 包中的 MP4Box 应用将 H.264 格式的视频流转换为每秒 10 帧的 MP4 格式的视频

MP4Box -fps 10 -add myvideo.h264 myvideo.mp4

4. USB 摄像头的使用

1.把摄像头的 USB 口接到树莓派的任意一个 USB 口后再开机。一定要先接摄像头再开机,不然树莓派无法识别。

2.树莓派终端可以用于检测外部摄像头设备的命令是: ls /dev/video* (输入指令后回车, 个别情况可能看不到 video0 也能够使用摄像头)

3.安装 mplayer 播放器: sudo apt-get install mplayer -y

```
Selecting previously unselected package libvorbisidecl.
Preparing to unpack .../D-libvorbisidecl 1.2.1 git20100016-0 armhf.deb ...
Unpacking libvorbisidecl (1.2.1 qit20100016-0) ....
Selecting previously unselected package libzymol:armhf.
Preparing to unpack .../4-libzymcl 200al.0.10-1 annhf.deb ...
Unpacking libzymel:armhf (2:1.0.10-1) ...
Selecting previously unselected package uplayer.
Preparing to unpack .../5-mplayer 200al.0.0-0:65 amhf.deb ...
Unpacking mplayer (2:1.0.0-0:b5) ...
Setting up libyorbisidecl (1.2.1 qit20100016-0) ....
Setting up libenca0:armhf (1.19-1) .
Setting up libzymcl:ammhf (2:1.0.10-1) ....
Setting up libaudic2:armhf (1.9.4-8)
Setting up libdirectfb-1.7-7:armhf (1.7.7-9) ....
Setting up mplayer (2:1.3.0-0:65) ...
Processing triggers for libc-bin (2.20-10 rpil) ....
Processing triggers for man-db (2.0.5-2) ...
Processing triggers for mime-support (0.62) ...
pi@raspberrypi:- 0
```

4.安装 fswebcam 视频软件: sudo apt-get install fswebcam -y

```
pi@raspberrypi:~ $ sudo apt-get install fswebcam -y
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 fswebcam
0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 43.5 kB of archives.
After this operation, 116 kB of additional disk space will be used.
Get:1 http://mirrors.zju.edu.cn/raspbian/raspbian buster/main armhf fswebcam arm
hf 20140113-2 [43.5 kB]
Fetched 43.5 kB in 10s (4,434 \text{ B/s})
Selecting previously unselected package fswebcam.
(Reading database ... 156506 files and directories currently installed.)
Preparing to unpack .../fswebcam 20140113-2 armhf.deb ...
Unpacking fswebcam (20140113-2) ...
Setting up fswebcam (20140113-2) ...
Processing triggers for man-db (2.8.5-2) ...
pi@raspberrypi:~ $
```

5.查看 USB 摄像头画面(运行指令后会出现如下图画面): sudo mplayer tv://

确认可以拍摄画面之后,需要通过 ctrl+c 退出,才能进行下一步操作选择一个画面进行拍摄图片。否则同时运行 **mplayer** 和使用 **fswebcam** 命令会报如下摄像头忙碌的错误。

```
pi@raspberrypi:- $ fswebcam -d /dev/video0 --no-banner -r 320x240 -S 10 /home/pl /image.jpg --- Opening /dev/video0...
Trying source module v412...
/dev/video0 opened.
No input was specified, using the first.
Iffor selecting impro 0
VIDIOC S INPUT: Device or resource many
pi@raspberrypi:- 5
```

6.在/home/pi 目录下生成一张当前摄像头拍摄到的实时照片。

在终端输入命令: fswebcam -d /dev/video0 --no-banner -r 320x240 -S 10

/home/pi/image.jpg

输入命令: ls, 可以查找当前目录下的所有文件。

其中

- -d 是配置使用哪个摄像设备
- --no-banner 拍出来照片没水印,不加的话,可能会报字体问题
- -r 后的是图片的宽与高
- -S 跟曝光度设置差不多。从1到10,越来越不刺眼的感觉,如果不设置这个参数或者设置为0的话可能拍出黑照片。

最后的是待保存的图片路径(如果不加路径/home/pi/的话默认保存在当前目录)。

2、激光雷达

如果使用的是 ROS 套餐的出厂镜像 Ubuntu ROS1-melodic,则系统中已配置好使用环境。以手持雷达建图案例为例,连接好激光雷达之后,即可开始测试。

建图启动命令:

roslaunch transbot_nav laser_map.launch map_type:=gmapping robot_model:=astra

· map_type 参数: 建图算法【gmapping, hector, karto, cartographer】, 默认

是【gmapping】。

· robot_model 参数: 仿真模型【astra, camera】。

在 rviz 建图的时候,如果【LaserScan】报错,未能加载激光雷达数据;则选中后,点击【Remove】移除,点击【Add】重新添加。选择相应的话题即可。

执行下面命令保存地图:

bash ~/rplidar_ws/src/transbot_nav/maps/map.sh

地图将被保存到~/rplidar_ws/src/transbot_nav/maps/文件夹下,一个pgm图片,一个yaml文件。

3、深度相机

如果使用的是 ROS 套餐的出厂镜像 Ubuntu ROS1-melodic,则系统中已配置好使用环境。以 ROS+OpenCV 案例为例,连接好深度相机之后,即可开始测试。 启动相机命令:

roslaunch astra_visual opencv_apps.launch

启动 Opency apps 的功能:

roslaunch opencv_apps face_recognition.launch roslaunch opencv apps corner harris.launch

人脸识别

harris 角点检测

目标追踪算法 roslaunch opency apps camshift.launch roslaunch opency apps contour moments.launch # 轮廓矩 roslaunch opency apps convex hull.launch # 多边形轮廓 roslaunch opency apps discrete fourier transform.launch # 离散傅里叶变换算法 # 边缘检测算法 roslaunch opency apps edge detection.launch # 人脸检测算法 roslaunch opency apps face detection.launch # 光流检测算法 roslaunch opency apps fback flow.launch # 轮廓检测 roslaunch opency apps find contours.launch roslaunch opency apps general contours.launch # 一般轮廓检测 # 特征点追踪 roslaunch opency apps goodfeature track.launch # HLS 颜色过滤 roslaunch opency apps hls color filter.launch roslaunch opency apps hough circles.launch # 霍夫圆检测 # 霍夫直线检测 roslaunch opency apps hough lines.launch # HSV 颜色过滤 roslaunch opency apps hsv color filter.launch # LK 光流算法 roslaunch opency apps lk flow.launch roslaunch opency apps people detect.launch # 人体检测算法 # 相位相关位移检测 roslaunch opency apps phase corr.launch # 图像金字塔采样算法 roslaunch opency apps pyramids.launch # RGB 颜色过滤 roslaunch opency apps rgb color filter.launch roslaunch opency apps segment objects.launch # 清除背景检测算法 roslaunch opency apps simple flow.launch # 精简光流算法 # 简单过滤器 roslaunch opency apps smoothing.launch # 阈值图像处理 roslaunch opency apps threshold.launch roslaunch opency apps watershed segmentation.launch # 分水岭分割算法

4、远场麦克风阵列

如果使用的是 ROS 套餐的出厂镜像 Ubuntu ROS1-melodic,则系统中已配置好使用环境。以声源定位获取角度案例为例,连接好麦克风阵列之后,即可开始测试。

启动命令:

roscore

rosrun speech_command xf_get_angle.py

```
nano@nano-desktop:~$ roscore
... logging to /home/nano/.ros/log/bc0d4e9a-4b9f-11ed-a8aa-48b02d67af59/roslaunc
h-nano-desktop-15400.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://nano-desktop:38829/
ros_comm version 1.14.13
```

```
mano@nano-desktop:~
nano@nano-desktop:~

nano@nano-desktop:~$ rosrun speech_command xf_get_angle.py

Open the serial

('angle: ', 334.0)

('angle: ', 335.0)

('angle: ', 237.0)

('angle: ', 245.0)
```

在测试中,我们可以在终端使用 rostopic echo 的功能,来打印出/xf_angle 这个话题数据,终端输入:

rostopic echo /xf angle

```
mano@nano-desktop:~

mano@nano-desktop:~$ rostopic echo /xf_angel
data: 266
...
data: 292
...
data: 265
```

得到唤醒角度后,我们可以进行一些功能拓展,比如说召唤机器人/ros 小车。

5、树莓派小车、机器人

树莓派作为大名鼎鼎的嵌入式开发板的生态之王,有着太多优秀的应用。例如连接摄像头可以完成人脸识别、颜色识别等图像处理工作,还可以用来制作 ROS 机器人、机械臂、摄像头云台,在通过制作智能小车的过程中我们可以学习树莓派的编程,包括c语言或 python 语言的编程学习,也可以学习 ROS 机器人开发,熟悉机器人工作原理。

以下是树莓派智能小车、机器人的展示。

树莓派机械狗 DOGZILLA S1

DOGZILLA S1 是一款具有十二自由度桌面级 AI 机器狗,它机身灵活可操作性强,不仅能全向移动、六维姿态控制,内部还搭载 9 轴 IMU、关节位置传感器反馈自身姿态和关节转角与力矩,底层协处理器结合逆运动学算法,能解算出多种运动步态和运动叠加效果。主处理器采用 AI 边缘计算热门主板树莓派 4B,支持 Python 编程,结合摄像头可实现多种 AI 视觉趣味玩法。还支持 ROS 开发者进行 RVIZ、GAZEBO 仿真,适合仿生类机器人爱好者。

扫描以下二维码查看资料:

raspbot 树莓派 AI 视觉小车

Raspbot 是一款基于图像视觉的 AI 人工智能小车,它以树莓派为主控,OpenCV 为图像处理库,以主流的 Jupter Lab 为开发工具,使用 Python3 为主要编程语言。搭配二自由度摄像头云台、直流 TT 电机,实现人脸跟踪,颜色跟随,二维码识别,手势识别,物体识别,车牌识别,视觉巡线等多种智能 AI 识别玩法,适合用于学习机器人开发和入门视觉图像处理。

扫描以下二维码查看资料:

树莓派-4WD 智能视觉机器人

树莓派-4WD 是一款基于树莓派的 AI 多功能智能小车, 拥有海量的 AI 识别玩法, 比如人脸检测, 颜色识别, 物体识别, 手势识别, 二维码识别等等, 除此之外, 机身配备了丰富的硬件传感器, 例如七彩探照灯、蓝牙、超声波、红外避障传感器、巡线模块、二自由度云台等等, 丰富的硬件配置让树莓派-4WD 只能小车拥有更多样的可玩性。适合用于传感器原理学习、机器人开发和入门视觉图像处理。

扫描以下二维码查看资料:

DOFBOT 机械臂

Dofbot Al 视觉机械臂支持树莓派和 JETSON NANO 两款主控,使用 Python3 为主要编程语言。摄像头与机械臂机身一体式设计,"手眼合一"的视觉识别让机械臂显得更加灵动;它不仅可以实现颜色识别追踪与抓取,还能人体特征识别互动,甚至进行垃圾分类模型训练垃圾分拣;通过 ROS 机器人操控系统,简化了 6 自由度串行总线舵机复杂运动控制。适合学习机械臂开发和图像视觉开发。

扫描以下二维码查看资料:

ROS 智盒

ROS 智盒是一款基于 ROS 操作系统开发的桌面级半实物仿真平台,它支持 JETSON NANO 4GB 和树莓派 4B 主控,并搭载了激光雷达、深度相机、语音识别等 高性能硬件配置,可以实现建图、人体特征识别、语音交互控制等;ROS 智盒特邀古月 居原班人马,定制了 45 节专业视频课程,帮助初学者从零开始学习 ROS.

扫描以下二维码查看资料:

TRANSBOT

Transbot 是一款基于 ROS 机器人操作系统开发的履带式智能机器人,结构特点是履带式设计具备一定的越障能力,同时车载简易机械臂可以实现移动抓取。Transbot 支持 JETSON NANO 4GB 和树莓派 4B 主控,并搭载了激光雷达、高清摄像头/深度相机等高性能硬件配置,可实现机器人运动控制、遥控通讯、建图导航、跟随避障、自动驾驶、机械臂 Movelt 仿真等应用。Transbot 配套 ROS 课程均提供教学课程文档和视频讲解演示,帮助初学者轻松入门 ROS 或进行二次开发。

扫描以下二维码查看资料:

ROSMASTER X3

ROSMASTER X3 是一款基于 ROS 机器人操作系统开发的麦轮全向移动机器人,结构特点是拥有摆式悬挂设计的麦克纳姆轮地盘,可以灵活的全向移动。Transbot 支持 Jetson 系列主板和树莓派 4B 作为主控,并搭载了激光雷达、深度相机等高性能硬件配置,可实现机器人运动控制、遥控通讯、建图导航、跟随避障、自动驾驶、人体特征识别等应用,ROSMASTER 配套 103 节 ROS 课程,均提供教学课程文档和中英文字幕讲解视频,手把手教您入门 ROS,玩转 ROS 机器人应用。

扫描以下二维码查看资料:

ROSMASTER X3 PLUS

ROSMASTER X3 PLUS 是一款基于 ROS 机器人操作系统开发的麦轮全向移动机器人,结构特点是拥有大尺寸的全向移动底盘,还有配备了一个带摄像头的 6 自由度的车载机械臂,并加上一个加高支架的深度相机,视觉更广阔、可以灵活的完成抓取、搬运的功能。ROSMASTER X3 PLUS 支持 Jetson 系列主板和树莓派 4B 作为主控,并搭载了激光雷达、深度相机、语音交互模块等高性能硬件配置,可实现建图导航、自动驾驶、人体特征识别、物体搬运、语音控制等应用。适合学习机械臂开发、机器人开发、入门 ROS 机器人应用。

扫描以下二维码查看资料:

ROSMASTER R2

ROSMASTERR2 是一款基于 ROS 机器人操作系统开发的阿克曼转向结构的移动小车,结构特点是现代汽车结构的阿克曼转向底盘,对比两轮或者三轮的小车具有更好的稳定性,而对于四轮小车则有有更好的灵活性,对比以上型号的小车更适合进行自动驾驶研究。

ROSMASTERR2 支持 Jetson 系列主板和树莓派 4B 作为主控,并搭载了激光雷达、深度相机、语音交互模块等高性能硬件配置,可实现机器人运动控制、遥控通讯、建图导航、跟随避障、自动驾驶、人体特征动作识别、语音交互控制等应用,适合学习自动驾驶开发、入门 ROS 机器人应用。

扫描以下二维码查看资料:

附录一 树莓派 I0 口图示

引脚定义

Raspberry Pi GPIO Header + PoE Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power	00	DC Power 5v	02
03	GPIO02 (SDA1, PC)	00	DC Power 5v	04
05	GPIO03 (SCL1 , I°C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(PC ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40
01	TR01	00	TR00	02
		MARKET CO.		

TR02

04

03

TR03

附录二 树莓派开发工具下载

资料网址: https://www.yahboom.com/study/raspberry4B 密码: nzv8

在进入资料主界面后,找到下面的【树莓派开发环境所需工具及其他】,里面内容有树莓派原理图、格式化与镜像烧写软件、远程登录软件与汇总资料下载链接,请输入提取码 nzv8 获取。

树莓派开发环境所需工具及其他

41.树莓派原理图 🕠

2.格式化与镜像烧写软件

🛮 3.远程登录软件 🕠

资料汇总下载 🗘

手机扫描二维码浏树莓派资料

手机扫描二维码进入亚博智能官方网站

附录三 树莓派常用命令

1.1s (列出目录)

在 Linux 系统当中, ls 命令可能是最常被运行的。

pi@raspberrypi:/\$ Is

选项与参数:

-a:全部的文件,连同隐藏档(开头为,的文件)一起列出来(常用)

-d: 仅列出目录本身. 而不是列出目录内的文件数据(常用)

-l: 长数据串列出, 包含文件的属性与权限等等数据; (常用)

2. cd (切换目录)

cd 是 Change Directory 的缩写,这是用来变换工作目录的命令。

pi@raspberrypi:/ \$ cd /

// 切换到根目录

pi@raspberrypi:/ \$ cd /home/pi //绝对路径切换

pi@raspberrypi:~ \$ cd ~

//切换到当前用户目录

pi@raspberrypi:~ \$ cd..

//切换到上级目录

3. pwd (显示目前所在的目录)

pwd 是 Print Working Directory 的缩写,也就是显示目前所在目录的命令。 pi@raspberrypi:/home \$ pwd

4. mkdir (创建新目录)

如果想要创建新的目录的话,那么就使用 mkdir (make directory)吧。 pi@raspberrypi:~/Desktop \$ mkdir test //创建文件夹为 test 的目录

5. rmdir (删除空的目录)

pi@raspberrypi:~/Desktop \$ rmdir test //删除 test 目录

6. rm (移除文件或目录)

如果想要移除有内容的目录则可以使用 rm 命令

pi@raspberrypi:~/Desktop \$ rm -r test //删除当前输入位置的 test 文件

附录四 常见问题及回答

1、树莓派用户名密码是什么? root 用户密码是什么?

答:用户名是: pi,密码是: raspberry 或者 yahboom; root 用户原始系统是没有开启的。开启只要设置了 root 密码就可以,方法如下: sudo passwd root,输入两次密码则可以开启 root 用户,切换 root 方法:输入: su,输入密码即可以。

2、买的官方系统卡无法进入系统,或者自己烧写镜像后界面卡一个页面,左边是树莓派标志,右边是一个二维码,底下写的 This board require newer software,是怎额回事?

答: 1.卡是插在树莓派上的, 不是通过读卡器插在树莓派 USB 口上的!!!

2.如果烧录的是旧镜像,或第三方镜像,暂不支持最新的树莓派硬件,树莓派将会卡在 开机页面,提示访问树莓派官网下载最新的镜像。解决方案则是烧录树莓派官方最新镜像。

3、树莓派烧录了系统无法通过 wifi 上网?

答:在你点击 wifi 图标时,系统已经提示你需要设置地区,所以在设置好地区后即可正常 WiFi 上网,设置地区方法:

5、树莓派插上网线灯不亮或者无法上网没有 ip?

答: 灯不亮, 先要保证系统能正常启动看到树莓派桌面, 或者能远程登录; 以上排除后, 可以通过命令自己设置有线的 ip,输入: ifconfig eth0 down; ifconfig eth0 up; ifconfig eth0 192.168.1.11(这里 ip 需要设置跟家里一个网段)。

6、树莓派7寸屏非官方屏问题,无法触摸,突然黑屏,无法点亮?

答:注意:由于7寸屏直接接在4B上USB口电源不足,故要单独接一个充电器才可以正常触摸和显示,注意单独供电的USB不能直接接在电脑USB,这样可能会控制电脑,不能控制树莓派。无法点亮,背面有个开关需要拨在ON档,烧写系统最好能烧写我们已经配置好的镜像测试。或者烧录原始镜像并安装我们的驱动即可。

7、树莓派系统安装到 SD 卡上之后,内存只有几十 M?

答:这个属于正常现象,因为 linux 和 windows 文件结构不一样,需要看大小,可以用 SDFormat 格式化后就会恢复到原始大小。需要看真实大小可以在 linux 下用命令查看 df -h 查看,也可以恢复空间。

其他常见问题解答请访问以下网址或扫描如下二维码查看:

https://www.yuque.com/docs/share/f1f588ab-628d-4dfd-9f4f-725f1f10914a?#

