MAT 105 - Probability & Statistics A few special distributions

Name	Distribution	E[X]	Var(X)	Usage
Bernoulli(p)	P(X = 1) = p, P(X = 0) = 1 - p	p	p(1-p)	Returns 1 if the trial (such as a coin toss) is a success.
				Eg: X=1 if a fair coin lands H with $p = 1/2$
Binomial(n,p)	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	Counts the number of successes in n Bernoulli trials.
	,			Eg: number of 6 in 20 die throws is $Bin(20, 1/6)$
Geometric(p)	$P(X = k) = p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	Counts number of Bernoulli trials until the first success.
				Eg: number of trials until a die lands on 5 first is $Geom(1/6)$
Neg Binomial(r,p)	$P(X = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	Counts number of Bernoulli trials until r successes.
	, ,			Eg: number of trials until a coin lands on H 10 times is $NBin(10,1/2)$
$Poisson(\lambda)$	$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	Counts number of rare events. Estimates Bin(n,p) with Pois(np).
				Eg: Finds number of misprints on a page, given the average λ .
$Normal(\mu, \sigma^2)$	use z-score table	μ	σ^2	Describes rv's whose values cluster around the mean.
				Eg: Used to estimate sums of random variables, by normalizing and using CLT.