GNSS SDK 系列使用手册

北京俊为科技有限公司

目 录

1.	功能简介	. 1
2.	特性参数	. 2
3.	快速上手	. 4
3	3.1 GNSS SDK R1/R2 Pro 采集软件	. 4
3	3.2 单通道采集中频数据排列	5
	3.2.1 按 INT8 存储	6
	3.2.2 按 BIT 存储	6
3	3.3 双通道采集中频数据排列(仅 GNSS SDK R2 Pro)	7
	3.3.1 按 INT8 存储	7
	3.3.2 按 BIT 存储	7
4.	注意事项	. 9
4	4.1 关于传输	. 9
2	4.2 关于低中频采样	9

1. 功能简介

GNSS SDR Development Kit(GNSS SDK) 系列是为GNSS SDR 开发者打造、 具有极致性价比的专用采集设备,采用 SDR 架构,支持 Windows 系统,通过上 位机软件配置一切采集相关参数,支持远程升级。

该系列针对 GNSS 全频段射频信号进行采集,包含 GNSS SDK R1 Pro 和 GNSS SDK R2 Pro 两款配置,分别对应单通道和双通道,前者适合单天线相关应用的数据采集,后者支持双天线相关应用的数据采集。两款采集器均支持外部参考时钟,开放 API 接口,用户可以方便的将此产品集成到实时软件接收机中。

采集器如图 1 所示。

(a) GNSS SDK R1 Pro

(b) GNSS SDK R2 Pro

图 1 GNSS SDK 系列采集器

2. 特性参数

GNSS SDK 系列采集器特性参数见表 1。

表 1 GNSS SDK 系列采集器特性参数

系列	GNSS-SDK Pro								
系统	BeiDou/GPS/GLONASS/Galileo								
内置頻点	B1/B2/B3/L1/L2/L5/G1/G2/E1/E5/E6								
其它頻点	1525~1610MHz/1160~1290MHz 内任意设置								
通道数	1或2								
内部时钟	38.4MHz, 0.5ppm								
外部时钟	1路,SMA,Female								
带宽(MHz)	2.5 、 4.2 、 8.7 、 16.4 、 23.4 、 36								
量化	1~2 bit I/Q或1~3 bit I								
采样率	参考时钟/2,/4,x1,x2,x4								
天线接口	SMA,Female 有源天线馈电:3.3V								
传输接口	USB2.0, Type C								
硬缓存	32MB								
包络尺寸	114mm X 71mm X 26mm								
上位机接口	Open API								
上位机系统	Windows								
上位机软件	GNSS SDK R1 Pro/GNSS SDK R2 Pro								

外部时钟参数要求如下,

- (1) 频率范围: 8~32 MHz。
- (2) 波形:正弦或削波正弦(建议),方波(不建议)。
- (3) 幅度: **0.5~2.5 Vpp**。

GNSS SDK 采集器后面板如图 2 所示,后面板包含两个指标灯: PWR 和 ALM 指标灯。

PWR 为电源指标灯, USB 供电后长亮。

ALM 为告警指示灯,正常工作时不亮。当该指标灯长亮时,请检查:是否

使用外部时钟,且时钟频率及幅度范围满足要求。当该灯持续闪烁时,表明 PC 机不能及时响应 USB 传输操作造成了缓冲溢出,此时 PC 软件会因 USB 数据读取超时报故障。当出现闪烁后只能关闭上位机软件,再重新打开软件复位该指标灯。

(a) GNSS SDK R1 Pro

(b) GNSS SDK R2 Pro

图 2 GNSS SDK 系列后面板

3. 快速上手

驱动安装、硬件连接、数据采集及验证,参见 GNSS SDR 采集器使用视频。

3.1 GNSS SDK R1/R2 Pro 采集软件

GNSS SDK R1 Pro 与 GNSS SDK R2 Pro 根据通道数不同分别提供两款采集软件,如图 3 和图 4 所示。通过采集软件可以对射频、中频、PGA、ADC 及文件 存储等多方面进行精细控制,软件内置了B1I/B1C/B2A/L1/L2/L5/G1/G2/E1b_c/E5a的配置参数,可直接使用;也可以根据需要设置相关参数,再启动采集。

图 3 GNSS SDK R1 Pro 采集软件

图 4 GNSS SDK R2 Pro 采集软件

3.2 单通道采集中频数据排列

中频数据依采样先后顺序按二进制文件存储,包含 INT8 和 BIT 两种格式,文件后缀分别为.dat 和.bin。INT8 格式存储是将原始量化的采样数据转成 INT8,便于使用,但占用空间较大;BIT 格式存储是直接存储原始采样点数据,数据按BIT 排列,占用空间小,适合做长时间数据采集。

量化及存储命名: IQ1_INT8 表示 IQ 1bit 量化,采样点按 INT8 存储; I2_BIT 表示 I 支路 2bit 量化,采样点按 BIT 格式存储。

采样点命名: S0 I表示 I 支路第 0 个采样点, S0 Q表示 Q 支路第 0 个采样

点; S0 I[2:0]表示 I 支路第 0 个采样点的 BIT2~BIT0。

特殊符号: xx 表示该数据位保留未用。

3.2.1 按 INT8 存储

表 2 GNSS SDK R1 Pro 或 GNSS SDK R2 单通道采集时按 INT8 存储数据排列

I1/I2/I3_INT8	Byte 0 S0_I	Byte 1 S1_I	Byte 2 S2_I	Byte 3 S3_I	 Byte N-1 SN-1_I	Byte N SN_I
	_					
IO1/IO2 DITE	Byte 0	Byte 1	Byte 2	Byte 3	 Byte N-1	Byte N
IQ1/IQ2_INT8	S0_Q	S0_I	S1_Q	S1_I	SN-1_Q	SN-1_I

3.2.2 按 BIT 存储

表 3 GNSS SDK R1 Pro 或 GNSS SDK R2 单通道采集时按 BIT 存储数据排列

		Byte 0							Byte 1							
I1_BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	S7_I0	S6_I0	S5_I0	S4_I0	S3_I0	S2_I0	S1_I0	S0_I0	S15_I0	S14_I0	S13_I0	S12_I0	S11_I0	S10_I0	S9_I0	S8_I0
		Byte 0											yte 1			
I2_BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	S3	_I[1:0]	S2	_I[1:0]	S1_	I[1:0]	S0_	I[1:0]	S7_	I[1:0]	S6_	I[1:0]	S5_	I[1:0]	S4_	I[1:0]
		Byte 0							Byte 1							
I3_BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		xx		S1_I[2:0]			S0_I[2:0]			xx		S3_I[2:0]			S2_I[2:0]	
																Т
				В	rte 0							В	yte 1			
IQ1_BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	S3 I0	S3_Q0	S2 I0	S2 Q0	S1 I0	S1 Q0	S0 I0	S0 Q0	S7 I0	S7_Q0	S6 I0	S6 Q0	S5 I0	S5 Q0	S4 I0	S4_Q
		Byte 0							Byte 1							
IQ2_BIT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
· -	C1	I[2:0]	C1	Q[2:0]	80	I[2:0]	80	Q[2:0]	62	I[2:0]	62	0[2:0]	62	I[2:0]	62	Q[2:0]

使用按BIT格式存储的中频数据时,需要对采样点数据进行译码。GNSS SDK 提供三种格式的原始数据表示(见应用软件 ADC 设置栏 FORMAT): UNSIGNED (无符号)、SIGN_MAGN (符号幅度)、TWO_COMP (二进制补码)。三种格式的译码表如下面三维数组 SM_TAB[i][j][k]所示,其中,i 为量化数据格式,取 uint(GNSS_SDR_FORMAT)定义的对象值,j 为量化位数索引,等于"实际量化位数-1",k 为原始采样值(参考 API 使用手册,SM_TAB 表在 jw_gnss_sdr_api.h 中定义)。

```
const char SM_TAB[3][3][8] =

{
    // unsigned binary.
    {{-1, 1, 0, 0, 0, 0, 0, 0}, {-3, -1, 1, 3, 0, 0, 0, 0}, {-7, -5, -3, -1, 1, 3, 5,

7}},

// sign/magn format.
    {{1, -1, 0, 0, 0, 0, 0, 0}, {1, 3, -1, -3, 0, 0, 0, 0}, {1, 3, 5, 7, -1, -3, -5, -7}},

// two's complement binary.
    {{1, -1, 0, 0, 0, 0, 0, 0}, {1, 3, -3, -1, 0, 0, 0, 0}, {1, 3, 5, 7, -7, -5, -3, -1}}
};
```

3.3 双通道采集中频数据排列(仅 GNSS SDK R2 Pro)

3.3.1 按 INT8 存储

表 4 GNSS SDK R2 Pro 双通道采集时按 INT8 存储数据排列

3.3.2 按 BIT 存储

表 5 GNSS SDK R2 Pro 双通道采集时按 BIT 存储数据排列

二进制译码表见 3.2.2 小节 SM_TAB 表。

4. 注意事项

4.1 关于传输

USB 传输为主从传输,所有传输均由 Host(即 PC 机)发起,而 Host 是多任务非实时操作系统,所以 Host 响应 USB 传输的速度会影响 GNSS SDR 数据传输。GNSS SDK 系列采集器采用 FPGA 片内缓存+32 MB SDRAM 缓冲,可满足绝大部分主流 PC 实时采集需求。但如果 PC 机性能较差,或采集数据时运行较大的耗时程序,也可能导致丢数。建议使用 I3 及以上配置的机器,采集时尽量少运行 CPU 占用较高的程序。

4.2 关于低中频采样

使用低中频采样时,务必熟知带通采样定理,并正确设置中频频率、中频滤波器带宽及采样频率。