Worksheet 8 February 16, 2011

- 1. Are there any functions that are both even and odd?
- 2. Can even functions have inverses? Can odd functions have inverses? Are their inverses necessarily even or odd?
- 3. Suppose f(x) is even; is f'(x) necessarily even or odd?
- 4. Suppose f(x) is odd; is f'(x) necessarily even or odd?
- 5. Sketch the graph of $f(\theta) = \tan(2\theta + \pi)$. Then sketch $\frac{df}{d\theta}(\theta)$.
- 6. Suppose $\tan \theta = 0.8$ and $\pi < \theta < 2\pi$. What is $\cos \theta$? Compute this in two ways, and note in what ways they are similar:
 - (i) by drawing and labeling an appropriate right triangle; and
 - (ii) by using a pythagorean identity.
- 7. Is there a real number that is one less than its fourth power?
- 8. Consider the function

$$f(t) = \begin{cases} 2t + 5 & \text{if } t < 1\\ t^2 & \text{if } t \ge 1 \end{cases}$$

- (a) What is the derivative of 2x + 5 at x = 1?
- (b) What is the derivative of x^2 at x = 1?
- (c) Is f differentiable at t = 1? (Be careful! You want to know if the limit of the difference quotient exists; compute the left and right limits separately, by hand.)
- 9. Compute the derivative of $\sin \theta$ at $\theta = \pi$.
- 10. Find all n such that $e^{3\ln(n^2-1)} = 0$. (Careful!)
- 11. Find all m > 0 such that $m^m = m$.
- 12. Find all k such that $2^k = 5^{k-1}$.
- 13. Let $f(y) = \frac{1}{\sqrt{4-y}}$, $g(x) = \sqrt{x}$. What is the domain of $f \circ g$?
- 14. What is the domain of the function $\sqrt{1+\sqrt{t}}$?
- 15. Compute $\lim_{x\to\infty} \sqrt{4x-3} x$
- 16. Define $\chi(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$

Show that $\lim_{x\to 0} \chi(x) = 0$. (Hint: this would be true even if "rational" and "irrational" were replaced with any property and its negation.)