Recap: Probability Basics

- Random variable X with a range of values
 - Some aspect of the world with uncertainty
- Distribution P(X) (with outcome unobserved)
 - gives probability for each possible value x
- Joint distribution P(X,Y) (multiple interacting variables)
 - gives probability for each combination of values x, y
- Basic laws: $0 \le P(x) \le 1$ $\sum_{x \in X} P(x) = 1$
- Events: subsets of outcomes: $P(E) = \sum_{x \in E} P(x)$
- Marginal distribution: $P(x) = \sum_{v} P(x, y)$ (marginalization/summing out)
- Conditional distribution: P(x|y) = P(x,y)/P(y)
- Product rule: P(x|y)P(y) = P(x,y) = P(y|x)P(x)
- Chain rule: $P(x_1,...,x_n) = \prod_i P(x_i \mid x_1,...,x_{i-1})$ (repeated application of product rule)

Independence

Two variables X and Y are (absolutely) independent if

$$\forall x,y \qquad P(x,y) = P(x) P(y)$$

- I.e., the joint distribution *factors* into a product of two simpler distributions
- Equivalently, via the product rule P(x,y) = P(x|y)P(y), P(x|y) = P(x) or P(y|x) = P(y)
- We write: $X \perp\!\!\!\perp Y$
- Independence is a simplifying modeling assumption
 - In real: joints are at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Quiz: Independence?

 $\forall t, w \qquad P(t, w) = P(t) P(w)$

P(T)

Т	Р
hot	0.5
cold	0.5

$$P(t) = \sum_{w} P(t, w)$$

P_{2}	(T)	1	W)
12	(-	,	<i>v v</i>	J

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

P_1	(T,	W)
	-	_

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(W)

W	Р
sun	0.6
rain	0.4

$$P(w) = \sum_{t} P(t, w)$$

Example: Independence

n fair, independent coin flips:

P(X)	2)
Н	0.5
Т	0.5

Independence, contd.

- Independence is incredibly powerful
 - Exponential reduction in representation size
- Independence is extremely rare!
- Conditional independence is much more common!!

Conditional Independence

Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: usually red
 - 1 or 2 away: mostly orange
 - 3 or 4 away: typically yellow
 - 5+ away: often green
- Click on squares until confident of location, then "bust"

Video of Demo Ghostbusters with Probability

Ghostbusters model

- Variables and ranges:
 - *G* (ghost location) in {(1,1),...,(3,3)}
 - $C_{x,y}$ (color measured at square x,y) in {red,orange,yellow,green}
- We have two distributions at hand:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor model: $P(C_{x,y} \mid G)$
 - Let's say it depends only on distance to G
 - E.g. $P(C_{1,1} = \text{red} \mid G = (1,1)) = 0.6$
 - $P(C_{1,1} = \text{orange} \mid G = (1,1)) = 0.25$
 - ...

Ghostbusters model, contd.

- Joint distribution $P(G, C_{1,1}, ..., C_{3,3})$
 - has $9 \times 4^9 = 2,359,296$ entries!!!
- Ghostbuster independence:
 - Are $C_{1,1}$ and $C_{1,2}$ independent?
 - i.e., does $P(C_{1,1} = yellow) = P(C_{1,1} = yellow | C_{1,2} = orange)$?
 - No.
- What if G is known?
 - Are $C_{1,1}$ and $C_{1,2}$ still dependent?
 - Sensor model $P(C_{x,y} \mid G)$ depends only on distance to G
 - So $P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3)) = P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3), C_{1,2} = \text{orange})$
 - I.e., $C_{1,1}$ is conditionally independent of $C_{1,2}$ given G

Ghostbusters model, contd.

- Simplify the model using the conditional independence?
- Apply the chain rule to decompose the joint probability model:
 - $P(G, C_{1,1}, ... C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G, C_{1,1}) P(C_{1,3} | G, C_{1,1}, C_{1,2}) ... P(C_{3,3} | G, C_{1,1}, ..., C_{3,2})$
- Now simplify using conditional independence:
 - $P(G, C_{1,1}, ... C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G) P(C_{1,3} | G) ... P(C_{3,3} | G)$
- I.e., conditional independence properties of ghostbuster physics simplify the probability model from *exponential* to *quadratic* in the number of squares

$$9 + 4*9^2$$

Conditional Independence

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- Formally, X is conditionally independent of Y given Z if and only if:

```
\forall x,y,z \qquad P(x\mid y,z)=P(x\mid z) or, equivalently, if and only if \forall x,y,z \qquad P(x,y\mid z)=P(x\mid z)\,P(y\mid z) we write: X \perp\!\!\!\perp Y \mid\!\!\! Z
```

Example: Conditional Independence

- Domain:
 - **Traffic**: there is heavy traffic
 - Umbrella: someone holding umbrella
 - Raining: it is raining
- Any conditional independence to spot out?

Conditional Independence

Domain:

• Fire: there is fire

■ Smoke: there is smoke

■ Alarm: alarm rings

Any conditional independence to spot out?

Bayes Nets

Bayes Nets: Big Picture

Bayes nets: a technique for describing complex joint distributions (models) using simple, conditional distributions

- More properly called graphical models
 - The world is composed of many variables
 - Each variable only interacts *locally* with a few others
 - Local interactions chain together to give global, indirect interactions
 - Use *local* conditional distributions to represent *global* joint distributions
- In coming sessions:
 - Representation
 - Exact inference
 - Approximate inference

Graphical Model Notation

- Nodes: variables (with ranges)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Presence of arcs indicate "direct influence" between variables
 - Formally: absence of arcs encodes conditional independence (more later)

Example: Coin Flips

n independent coin flips

. . .

No interactions between variables: absolute independence

Example: Traffic

Variables:

- T: There is heavy traffic
- U: I'm holding my umbrella
- R: It rains

Example: Smoke alarm

Variables:

• F: There is fire

• S: There is smoke

A: Alarm rings

Quiz: Traffic II

Variables

T: Traffic

R: It rains

L: Low pressure

■ D: Roof drips

■ B: Ballgame

• C: Cavity

Can you design a graphical model?

Example: Car Insurance

Bayes Net Semantics

Bayes Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- Conditional distributions for each node
 - A collection of distributions over X, one conditioned on each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
 - each row is a conditional distribution over X given a specific combination of parent values
- Description of a potentially "causal" process

Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

0.1

0.95

0.9

0.05

true

false

P(E)
true	false
0.002	0.998

Т	E	P(A T,E)	
		true	false
true	true	0.95	0.05
true	false	0.94	0.06
false	true	0.29	0.71
false	false	0.001	0.999

Α	P(M	A)
	true	false
true	0.7	0.3
false	0.01	0.99

Bayes Net Size

- Suppose
 - n variables
 - Maximum range size is d
 - Maximum number of parents is k
- Full joint distribution has size $O(d^n)$
- Bayes net has size $O(n \cdot d^{k+1})$
 - Scales linearly with n as long as connections are local (k is small)

Probabilities in BNs

- Recap: a BN describes a complex, joint distribution using simple, conditional distributions
- How to recover the joint distribution?
 - Take a product of local conditional distributions:

$$P(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i))$$

• i.e., to compute the probability of a full assignment, you need to multiply all the relevant conditionals together.

Example: Coin Flips

$$P(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i))$$

 $P(X_1)$

h	0.5
t	0.5

$P(X_2)$

h	0.5
t	0.5

Р	(X_n)
h	0.5

D/V

h	0.5
t	0.5

$$P(h, h, t, h) = P(h)P(h)P(t)P(h)$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

$$P(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i))$$

P(R)

+r	1/4
-r	3/4

 $P(+r, -t) = P(+r)P(-t|+r) = \frac{1}{4} * \frac{1}{4}$

P(T|R)

+r +t 3/4 -t 1/4

+t	1/2
-t	1/2

Example: Theft $P(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i))$

P(E)		
true	false	
0.002	0.998	

P	(+t,	-e,	+a,	-j,	-m)	$) = \bar{i}$)
---	------	-----	-----	-----	-----	---------------	---

P(+t) P(-e) P(+a|+t,-e) P(-j|+a) P(-m|+a)

=.001x.998x.94x.1x.3

=.000028

Т	Е	P(A T,E)	
		true	false
true	true	0.95	0.05
true	false	0.94	0.06
false	true	0.29	0.71
false	false	0.001	0.999

Α	P(M A)		
	true false		
true	0.7	0.3	
false	0.01	0.99	

Α	P(J	A)	Calls	calls	Α	P(M	A)
	true	false				true	fa
true	0.9	0.1			true	0.7	
false	0.05	0.95			false	0.01	C

Conditional independence in BNs

Compare the Bayes net probabilities

$$P(x_1,...,x_n) = \prod_i P(x_i \mid parents(X_i))$$

with the chain rule (valid for all distributions)

$$P(x_1,...,x_n) = \prod_i P(x_i \mid x_1,...,x_{i-1})$$

- Are they identical? Why?
 - Assume (without loss of generality) that $X_1,...,X_n$ sorted in topological order according to the graph (i.e., parents before children), so:

$$Parents(X_i) \subseteq X_1,...,X_{i-1}$$

Assume conditional independences:

$$P(x_i \mid x_1,...,x_{i-1}) = P(x_i \mid parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Conditional Independence Assumptions

 Each node, given its parents, is conditionally independent of all its nondescendants in the graph

Each node, given its *MarkovBlanket*, is conditionally independent of all other nodes in the graph

MarkovBlanket refers to the parents, children, and children's other parents.

BN Design: Traffic

- Causal direction
 - Rain causes Traffic to be heavy

P(R,T)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

BN Design: Traffic

Reverse causality?

P(R,T)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

BN Design: Theft

- Causal:
 - Theft
 - Earthquake
 - Alarm

BN Design: Theft

- Alarm
- Theft
- Earthquake

Α	P(T A)		
	true	false	
true	?		
false			

Α	Т	P(E A,T)	
		true	false
true	true		
true	false		
false	true		
false	false		

Causality?

- When Bayes nets reflect the true causal patterns:
 - Often simpler (more sparse)
 - Often easier to think about
 - Often easier to aquire from experts
- But, BNs not actually need to be causal
 - Sometimes, there is no causal net existing over a domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arcs that reflect correlation, not causation
- What do the arcs really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Inference by Enumeration in Bayes Net

- Reminder of inference by enumeration:
 - Any probability of interest can be computed by summing entries from the joint distribution: $P(Q \mid e) = \alpha \sum_{h} P(Q, h, e)$
 - With a BN: can obtain entries of the joint distribution by multiplying the corresponding conditional probabilities
- $P(T \mid j, m) = \alpha \sum_{e,a} P(T, e, a, j, m)$ $= \alpha \sum_{e,a} P(T) P(e) P(a \mid T, e) P(j \mid a) P(m \mid a)$
- So inference in Bayes nets means computing sums of products of numbers:
 - sounds easy!!
- Problem: sums of exponentially many products!
 - Exponential to the number of hidden variables

Can we do better?

- P(T)P(+e)P(+a|T,+e)P(j|+a)P(m|+a)
 - $+ \frac{P(T)P(-e)}{P(+a|T,-e)}P(j|+a)P(m|+a)$
 - + P(T)P(+e)P(-a|T,e)P(j|-a)P(m|-a)
 - + P(T)P(-e)P(-a|T,-e)P(j|-a)P(m|-a)

Lots of repeated subexpressions!

Next Week: Variable Elimination

