Day4cont

Olivia Wu

2024-02-20

Problem 1.30

a) The scatterplot shows a strong curve.

Nitrogen Assimilation vs. Mass

b) The scatterplot is more linear, but there are outliers as the log mass gets closer to 1.

Log Nitrogen Assimilation vs. Log Mass

c) I would rather use the plot in part (b) because it is more linear. The equation for this is $logN \hat{a}ssim = -1.887 + 0.371 \cdot logMass$

```
##
## Call:
## lm(formula = logNassim ~ logMass)
##
## Residuals:
##
        Min
                       Median
                                     3Q
                  1Q
                                             Max
##
   -1.26089 -0.11558 0.02162 0.16725
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
   (Intercept) -1.88738
                           0.01841 -102.53
                                              <2e-16 ***
                0.37096
                           0.01332
                                      27.85
##
  logMass
                                              <2e-16 ***
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 0.2501 on 251 degrees of freedom
##
     (14 observations deleted due to missingness)
## Multiple R-squared: 0.7555, Adjusted R-squared: 0.7545
## F-statistic: 775.6 on 1 and 251 DF, p-value: < 2.2e-16
```

d) Map: 1 (red), 2 (blue), 3 (black), 4 (green), 5 (orange). Each group was mostly linear, but the stage 4 and 5 groups showed more curve.

Log Nitrogen Assimilation vs. Log Mass

e) Map: Fgp (red), not Fgp (blue). The free-growth period plants had a more linear trend.

Log Nitrogen Assimilation vs. Log Mass

Problem 1.34

a) The trend over time is different for each semester. In the fall, it is a weak negative association. In the spring, it is a weak positive association.

Math Enrollment in the Fall from 2001-2011

Math Enrollment in the Spring from 2001-2011

b) I disagree with the statement because the scatterplot of fall vs. spring has a very weak negative linear association.

Spring vs. Fall

c) They could be talking about the 2003 year where the Fall enrollment was 343 and the Spring enrollment was 288.

```
##
## Call:
## lm(formula = Spring ~ Fall, data = MthEnr)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
                     1.913
                             20.674
                                     48.978
##
   -46.740 -24.050
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 351.0585
                           106.4710
                                      3.297
                                             0.00927 **
## Fall
                -0.3266
                             0.3713
                                    -0.880
                                             0.40195
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 33.09 on 9 degrees of freedom
## Multiple R-squared: 0.07916, Adjusted R-squared: -0.02315
## F-statistic: 0.7737 on 1 and 9 DF, p-value: 0.4019
```

Spring vs. Fall

d) The slope of the fitted line without the point (-1.048) is less than the slope of the fitted line with the point (-0.327). Since the slope changed a lot, this point is influential.

```
##
## Call:
## lm(formula = Spring[Fall != 343] ~ Fall[Fall != 343], data = MthEnr)
##
## Residuals:
##
                1Q Median
                                ЗQ
       Min
                                       Max
   -30.500 -17.353
                   -6.058
                           22.711
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     548.0094
                                106.7236
                                           5.135 0.000891 ***
## Fall[Fall != 343]
                     -1.0483
                                  0.3805
                                         -2.755 0.024870 *
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 24.94 on 8 degrees of freedom
## Multiple R-squared: 0.4868, Adjusted R-squared: 0.4227
## F-statistic: 7.589 on 1 and 8 DF, p-value: 0.02487
```

Spring vs. Fall (Point Removed)

Problem 1.45

a) The times do not have a symmetric distribution. They are centered around 194.5 minutes, and there is a moderate spread.

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 161.0 171.5 194.5 191.6 203.8 235.0
```

Boxplot of Times

b) The plot with Runs is most linear.

Time vs. Runs Time vs. Margin Time (minute) Time (minute) 0 200 200 000 8 0 0 0 0 0 o 8 09 160 0 0 5 10 15 20 1 2 3 4 5 Runs Margin Time vs. Pitchers Time vs. Attendance Time (minute) Time (minute) 0 200 160 200 0 0 0 0 0 0 160 0 0 0 6 7 8 9 11 20000 30000 50000 10 40000

c) The best predictor variable is the number of runs in a game. The regression equation is $\hat{Time} = 148.043 + 4.181 \cdot Runs$. On average, an increase of 1 run tends to result in an increase of 4.181 minutes of Time of the game.

Attendance

```
##
## Call:
## lm(formula = Time ~ Runs, data = bball)
##
## Residuals:
##
                1Q
                    Median
                                 ЗQ
                                        Max
  -17.670 -11.604
                    -1.117
                             7.378
                                     34.330
##
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                148.043
                             11.995
                                    12.342 3.53e-08 ***
##
  (Intercept)
  Runs
                                      3.868
                                            0.00224 **
##
                  4.181
                              1.081
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 15.34 on 12 degrees of freedom
## Multiple R-squared: 0.5549, Adjusted R-squared: 0.5178
## F-statistic: 14.96 on 1 and 12 DF, p-value: 0.002237
```

Pitchers

d) The residual plot shows an even scatter, but the boxplot implies a slight right skew.

Residuals vs Fit

Problem 1.46

a) The CIN-MIL point has an extreme x-value and it is far from the mean value. It has leverage. However, the slope of the regression line without the CIN-MIL point would be 4.299 compared to 4.181. The slope would not change much, so the CIN-MIL point is not too influential.

```
##
## Call:
## lm(formula = Time[Time != 235] ~ Runs[Time != 235], data = bball)
##
## Residuals:
##
      Min
                1Q
                   Median
                                3Q
                                       Max
  -17.662 -11.766
                   -1.858
                             8.740
                                    34.338
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      146.972
                                  17.673
                                           8.316 4.51e-06 ***
## Runs[Time != 235]
                        4.299
                                   1.779
                                           2.416
                                                   0.0342 *
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 16.02 on 11 degrees of freedom
## Multiple R-squared: 0.3468, Adjusted R-squared: 0.2874
## F-statistic: 5.839 on 1 and 11 DF, p-value: 0.03422
```


- b) look to part a)
- c) Removing the point had little change on the linearity of the other graphs. The CIN-MIL point has an influence on distinguishing the more linear pattern between Time vs. Runs and Time vs. Pitchers

Time vs. Margin

Time vs. Pitchers

Time vs. Attendance

