Reijo Jaakkola

Background Two fragments of \mathcal{GI}

Proof

Uniform Guarded Fragments

Reijo Jaakkola

Tampere University

FoSSaCS 2022

Proot Conclusion

Main idea: relativize quantification by atoms.

$$\exists x\exists y\exists z(G(x,y,z)\wedge R(x,y)\wedge R(y,z)\wedge R(z,x))$$

Introduced by Andréka, van Benthem and Németi, who where motivated by the standard translation of modal logic into first-order logic \mathcal{FO} .

Main idea: relativize quantification by atoms.

$$\exists x\exists y\exists z(G(x,y,z)\wedge R(x,y)\wedge R(y,z)\wedge R(z,x))$$

Introduced by Andréka, van Benthem and Németi, who where motivated by the standard translation of modal logic into first-order logic \mathcal{FO} .

• \mathcal{GF} shares several desirable properties with modal logic(s): it has a (generalized) tree-model property, its satisfiability problem is decidable, it has the Łoś–Tarski preservation property, ...

• Quite surprisingly, \mathcal{GF} does not have the *Craig interpolation property* (CIP), while several modal logics do enjoy it.

- Quite surprisingly, \mathcal{GF} does not have the *Craig interpolation property* (CIP), while several modal logics do enjoy it.
- ▶ CIP: If \mathcal{L} is a logic and $\varphi, \psi \in \mathcal{L}$ are sentences such that $\varphi \vDash \psi$, then there exists a sentence $\chi \in \mathcal{L}$ such that

$$\varphi \vDash \chi \vDash \psi$$

and
$$sig(\chi) \subseteq sig(\varphi) \cap sig(\psi)$$
.

- Puttle Quite surprisingly, \mathcal{GF} does not have the Craig interpolation property (CIP), while several modal logics do enjoy it.
- ▶ CIP: If \mathcal{L} is a logic and $\varphi, \psi \in \mathcal{L}$ are sentences such that $\varphi \vDash \psi$, then there exists a sentence $\chi \in \mathcal{L}$ such that

$$\varphi \vDash \chi \vDash \psi$$

and
$$sig(\chi) \subseteq sig(\varphi) \cap sig(\psi)$$
.

The two-variable fragment of GF has CIP [Hoogland & Marx].

- Quite surprisingly, \mathcal{GF} does not have the *Craig interpolation property* (CIP), while several modal logics do enjoy it.
- ▶ CIP: If \mathcal{L} is a logic and $\varphi, \psi \in \mathcal{L}$ are sentences such that $\varphi \vDash \psi$, then there exists a sentence $\chi \in \mathcal{L}$ such that

$$\varphi \vDash \chi \vDash \psi$$

and $sig(\chi) \subseteq sig(\varphi) \cap sig(\psi)$.

▶ The two-variable fragment of \mathcal{GF} has CIP [Hoogland & Marx]. Why?

- Pulse surprisingly, \mathcal{GF} does not have the *Craig interpolation property* (CIP), while several modal logics do enjoy it.
- ▶ CIP: If \mathcal{L} is a logic and $\varphi, \psi \in \mathcal{L}$ are sentences such that $\varphi \vDash \psi$, then there exists a sentence $\chi \in \mathcal{L}$ such that

$$\varphi \vDash \chi \vDash \psi$$

and $sig(\chi) \subseteq sig(\varphi) \cap sig(\psi)$.

- The two-variable fragment of \mathcal{GF} has CIP [Hoogland & Marx]. Why?
- This talk: two syntactical restrictions, which we call uniformity and one-dimensionality, can be used to explain this phenomena.

 Very rough idea: boolean combinations of formulas is allowed only if they have the same free variables.

- Very rough idea: boolean combinations of formulas is allowed only if they have the same free variables.
- The sentence

$$\exists x\exists y \big(\exists z \big(S(x,y,z) \land P(z) \land x = z\big) \land R(x,y) \land S(x,x,y)\big)$$

is uniform, while the sentence

$$\exists x \exists y \exists w (R(x,y) \land \exists z S(x,z,w))$$

is not

onclusions

Main idea: each maximal consecutive sequence of existential quantifiers should leave at most one variable free.

- Main idea: each maximal consecutive sequence of existential quantifiers should leave at most one variable free.
- The sentence

$$\forall x\exists y\exists z(S(x,y,z)\rightarrow (R(x,y)\wedge R(y,z)))$$

is one-dimensional, while the sentence

$$\forall x \forall y (R(x,y) \rightarrow \exists z (S(x,y,z) \land R(x,z)))$$

is not.

roof

To the best of my knowledge, one-dimensionality and uniformity were first mentioned explicitly in [Hella & Kuusisto], where the authors introduced the uniform one-dimensional fragment U₁. To the best of my knowledge, one-dimensionality and uniformity were first mentioned explicitly in [Hella & Kuusisto], where the authors introduced the uniform one-dimensional fragment U₁. The introduction of this logic was partially motivated by the observation that several *polyadic* modal logics are both one-dimensional and uniform.

- To the best of my knowledge, one-dimensionality and uniformity were first mentioned explicitly in [Hella & Kuusisto], where the authors introduced the uniform one-dimensional fragment U₁. The introduction of this logic was partially motivated by the observation that several *polyadic* modal logics are both one-dimensional and uniform.
- $ightharpoonup \mathcal{U}_1$ can be seen as a *polyadic* extension of the two-variable logic.

- To the best of my knowledge, one-dimensionality and uniformity were first mentioned explicitly in [Hella & Kuusisto], where the authors introduced the uniform one-dimensional fragment U₁. The introduction of this logic was partially motivated by the observation that several *polyadic* modal logics are both one-dimensional and uniform.
- U₁ can be seen as a polyadic extension of the two-variable logic. For instance, both logics have NEXPTIME-complete satisfiability problem.[Kieronski & Kuusisto]

- To the best of my knowledge, one-dimensionality and uniformity were first mentioned explicitly in [Hella & Kuusisto], where the authors introduced the uniform one-dimensional fragment U₁. The introduction of this logic was partially motivated by the observation that several *polyadic* modal logics are both one-dimensional and uniform.
- \mathcal{U}_1 can be seen as a *polyadic* extension of the two-variable logic. For instance, both logics have $\operatorname{NExpTIME}$ -complete satisfiability problem.[Kieronski & Kuusisto] Thus it was also very natural to guess that uniform one-dimensional \mathcal{GF} also has CIP.

- To the best of my knowledge, one-dimensionality and uniformity were first mentioned explicitly in [Hella & Kuusisto], where the authors introduced the uniform one-dimensional fragment U₁. The introduction of this logic was partially motivated by the observation that several *polyadic* modal logics are both one-dimensional and uniform.
- \mathcal{U}_1 can be seen as a *polyadic* extension of the two-variable logic. For instance, both logics have $\operatorname{NExpTIME}$ -complete satisfiability problem.[Kieronski & Kuusisto] Thus it was also very natural to guess that uniform one-dimensional \mathcal{GF} also has CIP.

Theorem (J.)

Uniform one-dimensional \mathcal{GF} (\mathcal{UGF}_1) has CIP.

$$\varphi := \exists x \exists y \exists z (G(x, y, z) \land R(x, y) \land R(y, z) \land R(z, x))$$

and

$$\psi \coloneqq \forall x \forall y (R(x,y) \to (A(x) \leftrightarrow \neg A(y))).$$

Now $\varphi \vDash \neg \psi$, but there is no interpolant for this entailment.

Consider the sentences

$$\varphi := \exists x \exists y \exists z (G(x, y, z) \land R(x, y) \land R(y, z) \land R(z, x))$$

and

$$\psi := \forall x \forall y (R(x, y) \rightarrow (A(x) \leftrightarrow \neg A(y))).$$

Now $\varphi \models \neg \psi$, but there is no interpolant for this entailment.

$$\varphi \coloneqq \exists x \exists y (T(x,y) \land \exists z R(x,y,z) \land \exists z S(x,y,z))$$

and

$$\psi := \forall x \forall y \forall z (R(x, y, z) \to (P(y) \leftrightarrow Q(x))))$$
$$\land \forall x \forall y \forall z (S(x, y, z) \to (P(y) \leftrightarrow \neg Q(x))).$$

Now $\varphi \models \neg \psi$, but there is no interpolant for this entailment.

$$\varphi := \exists x \exists y (T(x, y) \land \exists z R(x, y, z) \land \exists z S(x, y, z))$$

and

$$\psi := \forall x \forall y \forall z (R(x, y, z) \to (P(y) \leftrightarrow Q(x))))$$
$$\land \forall x \forall y \forall z (S(x, y, z) \to (P(y) \leftrightarrow \neg Q(x))).$$

Now $\varphi \vDash \neg \psi$, but there is no interpolant for this entailment.

Lemma

Suppose that $\varphi, \psi \in \mathcal{UGF}_1$. Suppose that there is no $\chi \in \mathcal{UGF}_1$ such that $\varphi \vDash \chi \vDash \psi$ and $\operatorname{sig}(\chi) \subseteq \operatorname{sig}(\varphi) \cap \operatorname{sig}(\psi)$. Then there are models $\mathcal A$ and $\mathcal B$ such that $A \vDash \varphi, B \vDash \psi$ and

$$\mathcal{A} \sim_{\operatorname{sig}(\varphi) \cap \operatorname{sig}(\psi)}^{\mathcal{UGF}_1} \mathcal{B}.$$

Suppose that $\varphi, \psi \in \mathcal{UGF}_1$. Suppose that there is no $\chi \in \mathcal{UGF}_1$ such that $\varphi \vDash \chi \vDash \psi$ and $\operatorname{sig}(\chi) \subseteq \operatorname{sig}(\varphi) \cap \operatorname{sig}(\psi)$. Then there are models $\mathcal A$ and $\mathcal B$ such that $\mathcal A \vDash \varphi, \mathcal B \vDash \psi$ and

 $\mathcal{A} \sim_{\operatorname{sig}(\varphi) \cap \operatorname{sig}(\psi)}^{\mathcal{UGF}_1} \mathcal{B}.$

Given such structures $\mathcal A$ and $\mathcal B$, we will construct a third structure $\mathcal U$ (the amalgam) such that

$$\mathcal{A} \sim_{\operatorname{sig}(\varphi)}^{\mathcal{UGF}_1} \mathcal{U}$$

and

$$\mathcal{B} \sim_{\operatorname{sig}(\psi)}^{\mathcal{UGF}_1} \mathcal{U},$$

which shows that $\varphi \wedge \neg \psi$ is satisfiable.

- One-dimensionality and uniformity can be used to explain at least partially why \mathcal{GF} does not have CIP while several other modal logics do have it.
- Further extensions of UGF₁ should be studied, for example with counting quantifiers.
- More constructive proofs for the existence of interpolant are needed (Tableu-algorithms etc.).

- One-dimensionality and uniformity can be used to explain at least partially why \mathcal{GF} does not have CIP while several other modal logics do have it.
- Further extensions of UGF₁ should be studied, for example with counting quantifiers.
- More constructive proofs for the existence of interpolant are needed (Tableu-algorithms etc.).

Thanks! :-)