Билет 11-03 Класс 11

1. На наклоненной под углом $\alpha (\cos \alpha = 3/4)$ к горизонту поверхности лежит брусок, прикрепленный к упругой невесомой и достаточно длинной пружине (см. рис.). Коэффициент трения бруска о поверхность $\mu = 1/6$. Брусок отклоняют вниз вдоль поверхности на расстояние $A_0 = 35$ см от точки O, соответствующей положению равновесия бруска при отсутствии

Шифр

- 1) На каком расстоянии от точки O окажется брусок при первой остановке?
- 2) На каком расстоянии от точки O брусок остановится окончательно?

трения. Затем брусок отпускают, и начинаются затухающие колебания. Если брусок подвесить на этой пружине, то она удлиняется на $x_0 = 32$ см.

- 3) Через какое время брусок остановится окончательно?
- 2. Поршень делит объем герметичного вертикально расположенного цилиндра на две части. Стенки цилиндра хорошо проводят теплоту. Снаружи цилиндра поддерживается постоянная температура T = 373 K. Поршень создает своим весом дополнительное давление $P = P_0 / 5$, где P_0 – нормальное атмосферное давление. Под поршнем в объеме $V_0 = 1\,$ л находится воздух, над поршнем в объеме V_0 - вода массой
- $m_1 = 1,2$ г и водяной пар. Система в равновесии. Цилиндр переворачивают вверх дном. После наступления равновесия под поршнем находится вода и водяной пар, над поршнем – воздух.
 - 1) Найти объем пара в конечном состоянии.
 - 2) Найти массу воды в конечном состоянии.

Объем воды значительно меньше объема цилиндра, масса воды значительно меньше массы поршня. Трением поршня о цилиндр пренебречь. Молярная масса водяного пара $\mu = 18$ г/моль, универсальная газовая постоянная R = 8,31 Дж/(моль·К).

- 3. В цепи, схема которой показана на рисунке, все элементы можно считать идеальными, ЭДС батареи E, сопротивления резисторов $R_1 = r$, $R_2 = 4r$, $R_3 = 3r$, $R_4 = 2r$. До замыкания ключа ток в цепи отсутствовал. Ключ замыкают, а затем через большой промежуток времени ключ размыкают.
- 1) Найти напряжение U на конденсаторе в установившемся режиме при замкнутом ключе.
- 2) Найти количество Q теплоты, выделившейся на резисторе R_1 после размыкания ключа.
 - 3) Найти ток I_0 , текущий через конденсатор сразу после замыкания ключа.
- **4.** Источник с ЭДС E подключен через катушку с индуктивностью L к плоскому конденсатору (см. рис.).

Источник и катушка идеальные. В конденсаторе находится пластина из диэлектрической проницаемостью диэлектрика заполняющая конденсатор. Емкость пустого конденсатора C. Режим в цепи установился. Пластину быстро извлекают из конденсатора так, что заряд конденсатора не успевает измениться.

- 1) Найти напряжение на конденсаторе сразу после извлечения пластины.
- 2) Найти максимальный ток в цепи после извлечения пластины.

5. Тонкая линза с фокусным расстоянием F = 20 см создает действительное изображение точечного источника света S, находящегося на главной оптической оси на расстоянии

 $d = 60\,$ см от линзы. Между источником и линзой на расстоянии

 $L\!=\!30\,$ см от линзы помещают (см. рис.) тонкую стеклянную призму с малым преломляющим углом A = 0.04 радиан при вершине. Призма изготовлена из стекла с показателем преломления n = 1,5.

- 1) Найти расстояние f между линзой и изображением до помещения призмы.
- 2) На какой угол δ отклонится после прохождения призмы луч, идущий от источника вдоль главной оптической оси линзы?
 - 3) Найти смещение изображения после помещения призмы.

Указание: при малых углах α справедливо $\sin \alpha \approx tg\alpha \approx \alpha$.

Класс 11 **Билет 11-04**

1. На наклоненной под углом α ($\cos \alpha = 3/4$) к горизонту поверхности лежит брусок, прикрепленный к упругой невесомой и достаточно длинной пружине (см. рис.). Коэффициент трения бруска о поверхность $\mu = 2/7$. Брусок отклоняют вверх вдоль поверхности на расстояние $A_0 = 41\,$ см от точки O, соответствующей положению равновесия бруска при отсутствии трения. Затем брусок отпускают, и начинаются затухающие колебания. Если брусок подвесить на этой пружине, то она удлиняется на $x_0 = 28\,$ см.

- 1) На каком расстоянии от точки O окажется брусок при первой остановке?
- 2) На каком расстоянии от точки O брусок остановится окончательно?
- 3) Через какое время брусок остановится окончательно?
- **2.** Поршень делит объем герметичного вертикально расположенного цилиндра на две части. Стенки цилиндра хорошо проводят теплоту. Снаружи цилиндра поддерживается постоянная температура $T=373~\rm K$. Поршень создает своим весом дополнительное давление $P=P_0/5$, где P_0 нормальное атмосферное давление. Под поршнем в объеме $V_0=2/3~\rm n$ находится вода массой $m_1=0,75~\rm r$ и водяной пар, над поршнем в объеме $2V_0$ воздух. Система в равновесии. Цилиндр переворачивают вверх дном. После наступления равновесия под поршнем находится воздух, над поршнем вода и водяной пар.
 - 1) Найти объем пара в конечном состоянии.
 - 2) Найти массу воды в конечном состоянии.

Объем воды значительно меньше объема цилиндра, масса воды значительно меньше массы поршня. Трением поршня о цилиндр пренебречь. Молярная масса водяного пара $\mu = 18\,$ г/моль, универсальная газовая постоянная $R = 8,31\,$ Дж/(моль К).

- **3.** В цепи, схема которой показана на рисунке, все элементы можно считать идеальными, ЭДС батареи E, сопротивления резисторов $R_1=r$, $R_2=3r$, $R_3=4r$, $R_4=2r$. До замыкания ключа ток в цепи отсутствовал. Ключ замыкают, а затем через большой промежуток времени ключ размыкают.
- 1) Найти заряд q (модуль и знак) на верхней (по рисунку) обкладке конденсатора в установившемся режиме при замкнутом ключе.
- 2) Найти количество Q теплоты, выделившейся на резисторе R_4 после размыкания ключа.
 - 3) Найти ток I_0 , текущий через конденсатор сразу после замыкания ключа.
- **4.** Источник с ЭДС E подключен через катушку с индуктивностью L к плоскому пустому конденсатору емкостью C (см. рис.). Источник и катушка идеальные. Режим в цепи установился. В конденсатор быстро вносят пластину из диэлектрика с диэлектрической проницаемостью $\varepsilon = 4$ так, что заряд конденсатора не успевает измениться. Пластина полностью заполняет конденсатор.
 - 1) Найти напряжение на конденсаторе сразу после внесения пластины.
 - 2) Найти максимальный ток в цепи после внесения пластины.
- 5. Тонкая линза с фокусным расстоянием F=16 см создает действительное изображение точечного источника света S, находящегося на главной оптической оси на расстоянии d=28 см от линзы. Между источником и линзой на расстоянии L=20 см от линзы помещают (см. рис.) тонкую стеклянную призму с малым преломляющим углом A=0,03 радиан при вершине. Призма изготовлена из стекла с показателем преломления n=1,5.
- 1) Найти расстояние f между линзой и изображением до помещения призмы.
- 2) На какой угол δ отклонится после прохождения призмы луч, идущий от источника вдоль главной оптической оси линзы?
 - 3) Найти смещение изображения после помещения призмы.

Vказание: при малых углах α справедливо $\sin \alpha \approx tg\alpha \approx \alpha$.

Билет 11-05 Класс 11

Шифр

1. На наклоненной под углом $\alpha (\cos \alpha = 5/7)$ к горизонту поверхности лежит брусок, прикрепленный к упругой невесомой и достаточно длинной пружине (см. рис.). Коэффициент трения бруска о поверхность $\mu = 7/30$. Брусок отклоняют вниз вдоль поверхности на расстояние $A_0 = 32$ см от точки O, соответствующей положению равновесия бруска при отсутствии трения. Затем брусок отпускают, и начинаются затухающие колебания. Если брусок подвесить на этой пружине, то она удлиняется на $x_0 = 30$ см.

- 1) На каком расстоянии от точки O окажется брусок при первой остановке?
- 2) На каком расстоянии от точки O брусок остановится окончательно?
- 3) Через какое время брусок остановится окончательно?
- 2. Поршень делит объем герметичного вертикально расположенного цилиндра на две части. Стенки цилиндра хорошо проводят теплоту. Снаружи цилиндра поддерживается постоянная температура T = 373 K. Поршень создает своим весом дополнительное давление $P = P_0 / 4$, где P_0 – нормальное атмосферное давление. Под поршнем в объеме $V_0 = 0.5\,$ л находится воздух, над поршнем в объеме $3V_0\,$ - вода массой $m_1 = 0.8$ г и водяной пар. Система в равновесии. Цилиндр переворачивают вверх дном. После наступления равновесия под поршнем находится вода и водяной пар, над поршнем – воздух.
 - 1) Найти объем пара в конечном состоянии.
 - 2) Найти массу воды в конечном состоянии.

Объем воды значительно меньше объема цилиндра, масса воды значительно меньше массы поршня. Трением поршня о цилиндр пренебречь. Молярная масса водяного пара $\mu = 18$ г/моль, универсальная газовая постоянная R = 8,31 Дж/(моль·К).

- 3. В цепи, схема которой показана на рисунке, все элементы можно считать идеальными, ЭДС батареи E, сопротивления резисторов $R_1=r$, $R_2=2r$, $R_3 = 5r$, $R_4 = 4r$. До замыкания ключа ток в цепи отсутствовал. Ключ замыкают, а затем через большой промежуток времени ключ размыкают.
- 1) Найти напряжение U на конденсаторе в установившемся режиме при замкнутом ключе.
- 2) Найти количество теплоты Q, выделившейся на резисторе R_3 после размыкания ключа.
 - 3) Найти ток I_0 , текущий через конденсатор сразу после замыкания ключа.
- **4.** Источник с ЭДС E подключен через катушку с индуктивностью L к плоскому конденсатору (см. рис.). Источник и катушка идеальные. В конденсаторе находится пластина из

диэлектрической проницаемостью диэлектрика $\varepsilon = 5$. заполняющая конденсатор. Емкость пустого конденсатора C. Режим в цепи установился. Пластину быстро извлекают из конденсатора так, что заряд конденсатора не успевает измениться.

- 1) Найти напряжение на конденсаторе сразу после извлечения пластины.
- 2) Найти максимальный ток в цепи после извлечения пластины.
- **5.** Тонкая линза с фокусным расстоянием F = 20 см создает действительное изображение точечного источника света S, находящегося на главной оптической оси на расстоянии $d = 50\,$ см от линзы. Между источником и линзой на расстоянии $L = 25\,$ см

преломляющим углом A = 0,02 радиан при вершине. Призма изготовлена из стекла с показателем преломления n = 1, 6.

1) Найти расстояние f между линзой и изображением до помещения призмы.

от линзы помещают (см. рис.) тонкую стеклянную призму с малым

- 2) На какой угол δ отклонится после прохождения призмы луч, идущий от источника вдоль главной оптической оси линзы?
 - 3) Найти смещение изображения после помещения призмы.

Указание: при малых углах α справедливо $\sin \alpha \approx tg\alpha \approx \alpha$.

Билет 11-06

1. На наклоненной под углом α ($\cos \alpha = 5/6$) к горизонту поверхности лежит брусок, прикрепленный к упругой невесомой и достаточно длинной пружине (см. рис.). Коэффициент трения бруска о поверхность $\mu = 1/5$. Брусок отклоняют вверх вдоль поверхности на расстояние $A_0 = 60$ см от точки O, соответствующей положению равновесия бруска при отсутствии трения. Затем брусок отпускают, и начинаются затухающие колебания. Если брусок подвесить на этой пружине, то она удлиняется на $x_0 = 42$ см.

- 1) На каком расстоянии от точки O окажется брусок при первой остановке?
- 2) На каком расстоянии от точки O брусок остановится окончательно?
- 3) Через какое время брусок остановится окончательно?
- **2.** Поршень делит объем герметичного вертикально расположенного цилиндра на две части. Стенки цилиндра хорошо проводят теплоту. Снаружи цилиндра поддерживается постоянная температура $T=373~\rm K$. Поршень создает своим весом дополнительное давление $P=P_0/4$, где P_0 нормальное атмосферное давление. Под поршнем в объеме $V_0=0,75~\rm n$ находится вода массой $m_1=1~\rm r$ и водяной пар, над поршнем в объеме $5V_0/3$ воздух. Система в равновесии. Цилиндр переворачивают вверх дном. После наступления равновесия под поршнем находится воздух, над поршнем вода и водяной пар.
 - 1) Найти объем пара в конечном состоянии.
 - 2) Найти массу воды в конечном состоянии.

Объем воды значительно меньше объема цилиндра, масса воды значительно меньше массы поршня. Трением поршня о цилиндр пренебречь. Молярная масса водяного пара $\mu = 18\,$ г/моль, универсальная газовая постоянная $R = 8,31\,$ Дж/(моль К).

- **3.** В цепи, схема которой показана на рисунке, все элементы можно считать идеальными, ЭДС батареи E, сопротивления резисторов $R_1=2r$, $R_2=5r$, $R_3=4r$, $R_4=r$. До замыкания ключа ток в цепи отсутствовал. Ключ замыкают, а затем через большой промежуток времени ключ размыкают.
- 1) Найти заряд q (модуль и знак) на нижней (по рисунку) обкладке конденсатора в установившемся режиме при замкнутом ключе.
- 2) Найти количество Q теплоты, выделившейся на резисторе R_2 после размыкания ключа.
 - 3) Найти ток I_0 , текущий через конденсатор сразу после замыкания ключа.
- **4.** Источник с ЭДС E подключен через катушку с индуктивностью L к плоскому пустому конденсатору емкостью C (см. рис.). Источник и катушка идеальные. Режим в цепи установился. В конденсатор быстро вносят пластину из диэлектрика с диэлектрической проницаемостью $\varepsilon = 6$ так, что заряд конденсатора не успевает измениться. Пластина полностью заполняет конденсатор.
 - 1) Найти напряжение на конденсаторе сразу после внесения пластины.
 - 2) Найти максимальный ток в цепи после внесения пластины.
- **5.** Тонкая линза с фокусным расстоянием F=24 см создает действительное изображение точечного источника света S, находящегося на главной оптической оси на расстоянии d=42 см от линзы. Между источником и линзой на расстоянии L=32 см от линзы помещают (см. рис.) тонкую стеклянную призму с малым преломляющим углом
- A = 0,03 радиан при вершине. Призма изготовлена из стекла с показателем преломления n = 1,6.
 - 1) Найти расстояние f между линзой и изображением до помещения призмы.
- 2) На какой угол δ отклонится после прохождения призмы луч, идущий от источника вдоль главной оптической оси линзы?
 - 3) Найти смещение изображения после помещения призмы.

Указание: при малых углах α справедливо $\sin \alpha \approx tg\alpha \approx \alpha$.

2017 год

Класс 11

Шифр
(заполняется секпетапём)

Билет 11-07

- 1. Груз массой m = 100 г прикреплен к концу однородного каната массой 3m и длиной l = 70 см. Другой конец каната прикреплен к вертикальной оси. Канат и груз вращаются вокруг оси, скользя по гладкой горизонтальной поверхности. Частота вращения n = 1 с⁻¹. Размер груза много меньше длины каната.
 - 1) Найти минимальную силу натяжения каната.
 - 2) Во сколько раз максимальная сила натяжения каната больше минимальной?
- **2.** Рабочим веществом тепловой машины является гелий в Р количестве ν . Цикл машины изображен на диаграмме зависимости давления P от температуры T (см. рис.). Процесс 1-2 изобарный, процесс 2-3 идет с прямо пропорциональной зависимостью давления от температуры, процесс 3-1 изотермический. Температуры в состояниях 2 и 1 отличаются в 2 раза. КПД машины равен η . Температура в состоянии 1 равна T_1 .

- 1) Найти работу газа за цикл.
- 2) Найти количество теплоты Q(Q>0), отведенной от газа за О пикл.

Замечание: единица количества вещества - моль.

3. В однородное электрическое поле напряжённостью E влетает система из двух небольших шариков массой m, один из которых несет заряд q>0, другой несет противоположный заряд -q (см. рис.). Шарики соединены невесомой твердой незаряженной спицей длины l. В некоторый момент шарики имели одинаковую скорость V перпендикулярную силовым линиям поля, а спица составляла малый угол α_0 с силовыми линиями (и угол $\frac{\pi}{2}-\alpha_0$ с направлением скорости).

- 1) Через какое минимальное время спица вернется в положение, которое параллельно начальному?
 - 2) Найти максимальную скорость шарика с зарядом q.
 - 3) Найти угловую скорость вращения спицы в моменты, когда она будет составлять угол $\alpha = \alpha_0/3$ с направлением поля.

Действием силы тяжести пренебречь. Скорость V намного меньше скорости света.

4. В электрической цепи, схема которой показана на рисунке, все элементы идеальные, ключ разомкнут, тока в цепи нет. Ключ на некоторое время замыкают, а затем размыкают. Заряд, протекший через катушку индуктивностью L при разомкнутом ключе, оказался в 3 раза больше заряда, протекшего через катушку при замкнутом ключе. После размыкания ключа в цепи выделилось количество теплоты Q.

- 1) Найти ток, протекавший через резистор сразу после размыкания ключа.
- 2) Найти ток, протекавший через резистор перед размыканием ключа.
- **5.** С помощью линзы на экране получено увеличенное изображение предмета, расположенного перпендикулярно главной оптической оси линзы. Отношение фокусного расстояния линзы к расстоянию между предметом и экраном оказалось равным 3/16. Найти отношение расстояния между предметом и линзой к расстоянию между предметом и экраном.

2017 год

Класс 11

Шифр	
(заполняется секпетапём)	

Билет 11-08

- **1.** Брусок массой m = 90 г прикреплен к концу однородной веревки массой 4m и длиной l = 36 см. Другой конец веревки прикреплен к вертикальной оси. Веревка и брусок вращаются вокруг оси, скользя по гладкой горизонтальной поверхности. Период вращения T = 0, 6 с. Размер бруска много меньше длины веревки.
 - 1) Найти минимальную силу натяжения веревки.
 - 2) Во сколько раз максимальная сила натяжения веревки больше минимальной?
- **2.** Рабочим веществом тепловой машины является гелий в Р количестве ν . Цикл машины изображен на диаграмме зависимости давления P от температуры T (см. рис.). Процесс 1-2 изобарный, процесс 2-3 идет с прямо пропорциональной зависимостью давления от температуры, процесс 3-1 изотермический. Температуры в состояниях 2 и 1 отличаются в 1,5 раза. КПД машины равен η . Количество теплоты, отведенной от газа за цикл, равно Q(Q>0).

- 1) Найти работу газа за цикл.
- 2) Найти температуру газа в состоянии 1.

Замечание: единица количества вещества - моль.

3. В однородное электрическое поле напряжённостью E влетает система из двух небольших шариков массой m, один из которых несет заряд q>0, другой несет противоположный заряд -q (см. рис.). Шарики соединены невесомой твердой незаряженной спицей длины l. В некоторый момент шарики имели одинаковую скорость V перпендикулярную силовым линиям поля, а спица составляла малый угол α_0 с силовыми линиями (и угол $\frac{\pi}{2}-\alpha_0$ с направлением скорости).

- 1) Через какое минимальное время спица будет параллельна силовым линиям поля?
- 2) Найти максимальную скорость шарика с зарядом -q.
- 3) Найти угловую скорость вращения спицы в моменты, когда она будет составлять угол $\alpha = 2\alpha_0/3$ с направлением поля.

Действием силы тяжести пренебречь. Скорость V намного меньше скорости света.

4. В электрической цепи, схема которой показана на рисунке, все элементы идеальные, ключ разомкнут, тока в цепи нет. Индуктивность катушки равна L. Ключ на некоторое время замыкают, а затем размыкают. Заряд, протекший через источник в 2,5 раза больше заряда, протекшего через резистор после размыкания ключа. После размыкания ключа в цепи выделилось количество теплоты Q.

- 1) Найти ток, протекавший через резистор сразу после размыкания ключа.
- 2) Найти ток, протекавший через резистор перед размыканием ключа.
- **5.** С помощью линзы на экране получено уменьшенное изображение предмета, расположенного перпендикулярно главной оптической оси линзы. Отношение фокусного расстояния линзы к расстоянию между предметом и экраном оказалось равным 2/9. Найти отношение расстояния между линзой и экраном к расстоянию между предметом и экраном.

2017 год

Класс 11

Шифр	
(заполняется секпетапём)	

Билет 11-09

- 1. Груз массой m = 80 г прикреплен к концу однородного каната массой 2m и длиной l = 100 см. Другой конец каната прикреплен к вертикальной оси. Канат и груз вращаются вокруг оси, скользя по гладкой горизонтальной поверхности. Частота вращения n = 2 с⁻¹. Размер груза много меньше длины каната.
 - 1) Найти минимальную силу натяжения каната.
 - 2) Во сколько раз максимальная сила натяжения каната больше минимальной?
- **2.** Рабочим веществом тепловой машины является гелий в P количестве ν . Цикл машины изображен на диаграмме зависимости давления P от температуры T (см. рис.). Процесс 1-2 изобарный, процесс 2-3 идет с прямо пропорциональной зависимостью давления от температуры, процесс 3-1 изотермический. Температуры в состояниях 2 и 1 отличаются в 3 раза. КПД машины равен η . Температура в состоянии 1 равна T_1 .

- 1) Найти работу газа за цикл.
- 2) Найти количество теплоты Q(Q>0), отведенной от газа за О шикл.

Замечание: единица количества вещества - моль.

3. В однородное электрическое поле напряжённостью E влетает система из двух небольших шариков массой m, один из которых несет заряд q>0, другой несет противоположный заряд -q (см. рис.). Шарики соединены невесомой твердой незаряженной спицей длины l. В некоторый момент шарики имели одинаковую скорость V перпендикулярную силовым линиям поля, а спица составляла малый угол α_0 с силовыми линиями (и угол $\frac{\pi}{2}-\alpha_0$ с направлением скорости).

- 1) Через какое минимальное время спица вернется в положение, которое параллельно начальному?
- 2) Найти максимальную скорость шарика с зарядом q.
- 3) Найти угловую скорость вращения спицы в моменты, когда она будет составлять угол $\alpha = \alpha_0/4$ с направлением поля.

Действием силы тяжести пренебречь. Скорость V намного меньше скорости света.

4. В электрической цепи, схема которой показана на рисунке, все элементы идеальные, ключ разомкнут, тока в цепи нет. Ключ на некоторое время замыкают, а затем размыкают. Заряд, протекший через катушку индуктивностью L при замкнутом ключе, оказался в 2 раза больше заряда, протекшего через катушку при разомкнутом ключе. После размыкания ключа в цепи выделилось количество теплоты Q.

- 1) Найти ток, протекавший через резистор сразу после размыкания ключа.
- 2) Найти ток, протекавший через резистор перед размыканием ключа.
- **5.** С помощью линзы на экране получено увеличенное изображение предмета, расположенного перпендикулярно главной оптической оси линзы. Отношение фокусного расстояния линзы к расстоянию между предметом и экраном оказалось равным 5/36. Найти отношение расстояния между предметом и линзой к расстоянию между предметом и экраном.

2017 год

Класс 11

Шифр	
(заполняется секретарём)	

Билет 11-10

- **1.** Брусок массой m = 50 г прикреплен к концу однородной веревки массой 5m и длиной l = 80 см. Другой конец веревки прикреплен к вертикальной оси. Веревка и брусок вращаются вокруг оси, скользя по гладкой горизонтальной поверхности. Период вращения T = 1 с. Размер бруска много меньше длины веревки.
 - 1) Найти минимальную силу натяжения веревки.
 - 2) Во сколько раз максимальная сила натяжения веревки больше минимальной?
- **2.** Рабочим веществом тепловой машины является гелий в P количестве ν . Цикл машины изображен на диаграмме зависимости давления P от температуры T (см. рис.). Процесс 1-2 изобарный, процесс 2-3 идет с прямо пропорциональной зависимостью давления от температуры, процесс 3-1 изотермический. Температуры в состояниях 2 и 1 отличаются в 2,5 раза. КПД машины равен η . Количество теплоты, отведенной от газа за цикл, равно Q(Q>0).

- 1) Найти работу газа за цикл.
- 2) Найти температуру газа в состоянии 1.

Замечание: единица количества вещества - моль.

3. В однородное электрическое поле напряжённостью E влетает система из двух небольших шариков массой m, один из которых несет заряд q>0, другой несет противоположный заряд -q (см. рис.). Шарики соединены невесомой твердой незаряженной спицей длины l. В некоторый момент шарики имели одинаковую скорость V перпендикулярную силовым линиям поля, а спица составляла малый угол α_0 с силовыми линиями (и угол $\frac{\pi}{2}-\alpha_0$ с направлением скорости).

- 1) Через какое минимальное время спица будет параллельна силовым линиям поля?
- 2) Найти максимальную скорость шарика с зарядом -q.
- 3) Найти угловую скорость вращения спицы в моменты, когда она будет составлять угол $\alpha = 3\alpha_0/4$ с направлением поля.

Действием силы тяжести пренебречь. Скорость V намного меньше скорости света.

4. В электрической цепи, схема которой показана на рисунке, все элементы идеальные, ключ разомкнут, тока в цепи нет. Индуктивность катушки равна L. Ключ на некоторое время замыкают, а затем размыкают. Заряд, протекший через источник в 3,5 раза больше заряда, протекшего через резистор после размыкания ключа. После размыкания ключа в цепи выделилось количество теплоты Q.

- 1) Найти ток, протекавший через резистор сразу после размыкания ключа.
- 2) Найти ток, протекавший через резистор перед размыканием ключа.
- **5.** С помощью линзы на экране получено уменьшенное изображение предмета, расположенного перпендикулярно главной оптической оси линзы. Отношение фокусного расстояния линзы к расстоянию между предметом и экраном оказалось равным 4/25. Найти отношение расстояния между линзой и экраном к расстоянию между предметом и экраном.

Олимпиада «Физтех» 26.02.2017. Физика. Решения. Б. 11-03

- **1. 1)** Пусть брусок остановился первый раз по другую сторону от т. O на расстоянии A_1 от нее. Из ЗСЭ можно показать, что $A_0 A_1 = 2\mu x_0 \cos \alpha = 8$ см. Отсюда $A_1 = A_0 2\mu x_0 \cos \alpha = 27$ см.
- 2) Идут колебания с уменьшающейся амплитудой (расстояние до т. O). Из 3СЭ можно показать, что при движении как вверх, так и вниз амплитуда уменьшается каждый раз на $\Delta = 2\mu x_0 \cos \alpha = 8$ см. Зона покоя $x < \mu x_0 \cos \alpha = 4$ см, где x расстояние от т. O. Если остановка в зоне покоя, то остановка навсегда. У нас $A_0 = 35$, $A_1 = 27$, $A_2 = 19$, $A_3 = 11$, $A_4 = 3$. Совершено 4 полуколебания, остановка на 3 см ниже т. O.
- 3) Период колебаний без затухания $T=2\pi\sqrt{m/k}=2\pi\sqrt{x_0/g}$. Каждое полуколебание длится $\tau=T/2$, так как это часть колебания со смещенным положением равновесия из-за действия постоянной силы трения. У нас $t=4\tau=4\pi\sqrt{x_0/g}\approx 1,6\sqrt{2}\approx 2,3$ (c).
- **2.** Пар в начальном и конечном состояниях насыщенный, его давление P_0 .
 - 1) Для воздуха $(P_0 + P)V_0 = (P_0 P)(2V_0 V)$. $V = \frac{1}{2}V_0 = 0,5$ л.
 - **2**) Пусть m масса пара вначале. $P_0V_0=\frac{m}{\mu}RT$, $P_0V=\frac{m-\left(m_2-m_1\right)}{\mu}RT$.

$$m_2 = m_1 + \frac{P_0(V_0 - V)\mu}{RT} = m_1 + \frac{P_0V_0\mu}{2RT} \approx 1, 2 + 0, 3 = 1, 5 \text{ (r)}.$$

3. 1) В установившемся режиме ток через конденсатор не идет. $U = \frac{E}{R_3 + R_4} R_3 - \frac{E}{R_1 + R_2} R_1 = \frac{2}{5} E$.

2)
$$W = \frac{1}{2}CU^2 = \frac{2}{25}CE^2$$
. $Q_{13} + Q_{24} = W$, $\frac{Q_{13}}{Q_{24}} = \frac{R_2 + R_4}{R_1 + R_3} = \frac{3}{2}$. $Q_{13} = \frac{3}{5}W = \frac{6}{125}CE^2$. $Q = Q_{13}\frac{R_1}{R_1 + R_3} = \frac{3}{250}CE^2$.

3)
$$I = \frac{E}{R_1 R_3 / (R_1 + R_3) + R_2 R_4 / (R_2 + R_4)} = \frac{12}{25} \frac{E}{r}$$
. $I_0 = I \frac{R_3}{R_1 + R_3} - I \frac{R_4}{R_2 + R_4} = \frac{1}{5} \frac{E}{r}$.

- **4. 1)** $U = \varepsilon E = 3E$.
 - **2**) При максимальном токе напряжение на конденсаторе E . Изменение энергии конденсатора

$$\Delta W_C = \frac{CE^2}{2} - \frac{C\left(\varepsilon E\right)^2}{2} = \frac{CE^2}{2} \left(1 - \varepsilon^2\right). \text{ Работа источника } A = \left(CE - \varepsilon CE\right)E = CE^2\left(1 - \varepsilon\right). \text{ По 3СЭ}$$

$$A = \Delta W_C + \frac{1}{2}LI_m^2. \quad I_m = \left(\varepsilon - 1\right)E\sqrt{\frac{C}{I}} = 2E\sqrt{\frac{C}{I}}.$$

$$A = \Delta W_C + \frac{1}{2}LI_m^2. \quad I_m = (\varepsilon - 1)E\sqrt{\frac{1}{L}} = 2E\sqrt{\frac{1}{L}}$$

- **5. 1**) $f = \frac{dF}{d-F} = 30$ cm.
 - **2**) $\delta = (n-1)A = 0.02$ pag.
 - 3) Смещение источника $h = (d-L)\delta$. Смещение изображения

$$H = h\frac{f}{d} = \frac{(d-L)\delta f}{d} = \frac{(d-L)(n-1)AF}{d-F} = 0,3 \text{ cm}.$$

- **1. 1)** Пусть брусок остановился первый раз по другую сторону от т. O на расстоянии A_1 от нее. Из ЗСЭ можно показать, что $A_0 A_1 = 2\mu x_0 \cos \alpha = 12$ см. Отсюда $A_1 = A_0 2\mu x_0 \cos \alpha = 29$ см.
- 2) Идут колебания с уменьшающейся амплитудой (расстояние до т. O). Из 3СЭ можно показать, что при движении как вверх, так и вниз амплитуда уменьшается каждый раз на $\Delta = 2\mu x_0 \cos \alpha = 12$ см. Зона покоя $x < \mu x_0 \cos \alpha = 6$ см, где x расстояние от т. O. Если остановка в зоне покоя, то остановка навсегда. У нас $A_0 = 41$, $A_1 = 29$, $A_2 = 17$, $A_3 = 5$. Совершено 3 полуколебания, остановка на 5 см ниже т. O.
- 3) Период колебаний без затухания $T=2\pi\sqrt{m/k}=2\pi\sqrt{x_0/g}$. Каждое полуколебание длится $\tau=T/2$, так как это часть колебания со смещенным положением равновесия из-за действия постоянной силы трения. У нас $t=3\tau=3\pi\sqrt{x_0/g}\approx 0,6\sqrt{7}\approx 1,6$ (c).
- **2.** Пар в начальном и конечном состояниях насыщенный, его давление P_0 .
 - 1) Для воздуха $(P_0 P)2V_0 = (P_0 + P)(3V_0 V)$. $V = \frac{5}{3}V_0 = \frac{10}{9}$ л.
 - **2**) Пусть m масса пара вначале. $P_0V_0 = \frac{m}{\mu}RT$, $P_0V = \frac{m \left(m_2 m_1\right)}{\mu}RT$.

$$m_2 = m_1 + \frac{P_0(V_0 - V)\mu}{RT} = m_1 - \frac{2P_0V_0\mu}{3RT} \approx 0,75 - 0,26 = 0,49 \text{ (r)}.$$

3. 1) В установившемся режиме ток через конденсатор не идет. $U = \frac{E}{R_3 + R_4} R_3 - \frac{E}{R_1 + R_2} R_1 = \frac{5}{12} E$.

$$q = \frac{5}{12}CE$$

2)
$$W = \frac{1}{2}CU^2 = \frac{25}{288}CE^2$$
. $Q_{13} + Q_{24} = W$, $\frac{Q_{13}}{Q_{24}} = \frac{R_2 + R_4}{R_1 + R_3} = 1$. $Q_{24} = \frac{W}{2} = \frac{25CE^2}{2 \cdot 288}$. $Q = Q_{24} \frac{R_4}{R_2 + R_4} = \frac{5}{288}CE^2$.

3)
$$I = \frac{E}{R_1 R_3 / (R_1 + R_3) + R_2 R_4 / (R_2 + R_4)} = \frac{1}{2} \frac{E}{r}$$
. $I_0 = I \frac{R_3}{R_1 + R_3} - I \frac{R_4}{R_2 + R_4} = \frac{1}{5} \frac{E}{r}$.

- **4. 1)** $U = E / \varepsilon = E / 4$.
 - **2**) При максимальном токе напряжение на конденсаторе E. Изменение энергии конденсатора

$$\Delta W_C = \frac{\varepsilon C E^2}{2} - \frac{\varepsilon C \left(E/\varepsilon\right)^2}{2} = \frac{C E^2}{2\varepsilon} \left(\varepsilon^2 - 1\right).$$
 Работа источника $A = \left(\varepsilon C E - C E\right) E = C E^2 \left(\varepsilon - 1\right).$ По 3СЭ

$$A = \Delta W_C + \frac{1}{2}LI_m^2$$
. $I_m = (\varepsilon - 1)E\sqrt{\frac{C}{\varepsilon L}} = 3E\sqrt{\frac{C}{4L}}$.

- **5. 1**) $f = \frac{dF}{d F} \approx 37$ cm.
 - **2**) $\delta = (n-1)A = 0.015$ pag.
 - 3) Смещение источника $h = (d-L)\delta$. Смещение изображения

$$H = h\frac{f}{d} = \frac{\left(d-L\right)\delta f}{d} = \frac{\left(d-L\right)\left(n-1\right)AF}{d-F} = 0,16 \text{ cm}.$$

- **1. 1)** Пусть брусок остановился первый раз по другую сторону от т. O на расстоянии A_1 от нее. Из ЗСЭ можно показать, что $A_0 A_1 = 2\mu x_0 \cos \alpha = 10$ см. Отсюда $A_1 = A_0 2\mu x_0 \cos \alpha = 22$ см.
- 2) Идут колебания с уменьшающейся амплитудой (расстояние до т. O). Из 3СЭ можно показать, что при движении как вверх, так и вниз амплитуда уменьшается каждый раз на $\Delta=2\mu x_0\cos\alpha=10\,$ см. Зона покоя $x<\mu x_0\cos\alpha=5\,$ см, где x- расстояние от т. O. Если остановка в зоне покоя, то остановка навсегда. У нас $A_0=32, A_1=22, A_2=12, A_3=2$. Совершено 3 полуколебания, остановка на 2 см выше т. O.
- 3) Период колебаний без затухания $T=2\pi\sqrt{m/k}=2\pi\sqrt{x_0/g}$. Каждое полуколебание длится $\tau=T/2$, так как это часть колебания со смещенным положением равновесия из-за действия постоянной силы трения. У нас $t=3\tau=3\pi\sqrt{x_0/g}\approx 0, 3\sqrt{30}\approx 1,6$ (c).
- **2.** Пар в начальном и конечном состояниях насыщенный, его давление P_0 .
 - 1) Для воздуха $(P_0 + P)V_0 = (P_0 P)(4V_0 V)$. $V = \frac{7}{3}V_0 = \frac{7}{6}$ л.
 - **2**) Пусть m масса пара вначале. $P_0 3V_0 = \frac{m}{\mu} RT$, $P_0 V = \frac{m \left(m_2 m_1\right)}{\mu} RT$.

$$m_2 = m_1 + \frac{P_0 (3V_0 - V) \mu}{RT} = m_1 + \frac{2P_0 V_0 \mu}{3RT} \approx 0.8 + 0.2 = 1 \text{ (r)}.$$

3. 1) В установившемся режиме ток через конденсатор не идет. $U = \frac{E}{R_3 + R_4} R_3 - \frac{E}{R_1 + R_2} R_1 = \frac{2}{9} E$.

2)
$$W = \frac{1}{2}CU^2 = \frac{2}{81}CE^2$$
. $Q_{13} + Q_{24} = W$, $\frac{Q_{13}}{Q_{24}} = \frac{R_2 + R_4}{R_1 + R_3} = 1$. $Q_{13} = \frac{1}{2}W = \frac{1}{81}CE^2$. $Q = Q_{13}\frac{R_3}{R_1 + R_3} = \frac{5}{486}CE^2$.

3)
$$I = \frac{E}{R_1 R_3 / (R_1 + R_3) + R_2 R_4 / (R_2 + R_4)} = \frac{6}{13} \frac{E}{r}$$
. $I_0 = I \frac{R_3}{R_1 + R_3} - I \frac{R_4}{R_2 + R_4} = \frac{1}{13} \frac{E}{r}$.

- **4.1**) $U = \varepsilon E = 5E$.
 - **2**) При максимальном токе напряжение на конденсаторе E . Изменение энергии конденсатора

$$\Delta W_C = \frac{CE^2}{2} - \frac{C\left(\varepsilon E\right)^2}{2} = \frac{CE^2}{2} \left(1 - \varepsilon^2\right). \ \ \text{Работа источника} \ \ A = \left(CE - \varepsilon CE\right)E = CE^2\left(1 - \varepsilon\right). \ \ \text{По 3СЭ}$$

$$A = \Delta W_C + \frac{1}{2}LI_m^2. \ \ I_m = \left(\varepsilon - 1\right)E\sqrt{\frac{C}{I}} = 4E\sqrt{\frac{C}{I}} \ .$$

- **5. 1**) $f = \frac{dF}{d-F} \approx 33$ cm.
 - **2**) $\delta = (n-1)A = 0.012$ pag.
 - 3) Смещение источника $h = (d-L)\delta$. Смещение изображения

$$H = h\frac{f}{d} = \frac{(d-L)\delta f}{d} = \frac{(d-L)(n-1)AF}{d-F} = 0,2 \text{ cm}.$$

- **1. 1)** Пусть брусок остановился первый раз по другую сторону от т. O на расстоянии A_1 от нее. Из 3СЭ можно показать, что $A_0 A_1 = 2\mu x_0 \cos \alpha = 14$ см. Отсюда $A_1 = A_0 2\mu x_0 \cos \alpha = 46$ см.
- 2) Идут колебания с уменьшающейся амплитудой (расстояние до т. O). Из 3СЭ можно показать, что при движении как вверх, так и вниз амплитуда уменьшается каждый раз на $\Delta = 2\mu x_0 \cos \alpha = 14$ см. Зона покоя $x < \mu x_0 \cos \alpha = 7$ см, где x расстояние от т. O. Если остановка в зоне покоя, то остановка навсегда. У нас $A_0 = 60$, $A_1 = 46$, $A_2 = 32$, $A_3 = 18$, $A_4 = 4$. Совершено 4 полуколебания, остановка на 4 см выше т. O.
- 3) Период колебаний без затухания $T=2\pi\sqrt{m/k}=2\pi\sqrt{x_0/g}$. Каждое полуколебание длится $\tau=T/2$, так как это часть колебания со смещенным положением равновесия из-за действия постоянной силы трения. У нас $t=4\tau=4\pi\sqrt{x_0/g}\approx 0,4\sqrt{42}\approx 2,6$ (c).
- **2.** Пар в начальном и конечном состояниях насыщенный, его давление P_0 .
 - 1) Для воздуха $(P_0 P)\frac{5}{3}V_0 = (P_0 + P)\left(\frac{8}{3}V_0 V\right)$. $V = \frac{5}{3}V_0 = \frac{5}{4}$ л.
 - **2**) Пусть m масса пара вначале. $P_0V_0=\frac{m}{\mu}RT$, $P_0V=\frac{m-\left(m_2-m_1\right)}{\mu}RT$.

$$m_2 = m_1 + \frac{P_0(V_0 - V)\mu}{RT} = m_1 - \frac{2P_0V_0\mu}{3RT} \approx 1 - 0.3 = 0.7 \text{ (r)}.$$

3. 1) В установившемся режиме ток через конденсатор не идет. $U = \frac{E}{R_3 + R_4} R_3 - \frac{E}{R_1 + R_2} R_1 = \frac{18}{35} E$.

$$q = -CU = -\frac{18}{35}CE$$

2)
$$W = \frac{CU^2}{2} = \frac{18^2}{2 \cdot 35^2} CE^2$$
. $Q_{13} + Q_{24} = W$, $\frac{Q_{13}}{Q_{24}} = \frac{R_2 + R_4}{R_1 + R_3} = 1$. $Q_{24} = \frac{W}{2} = \frac{18^2 CE^2}{4 \cdot 35^2}$. $Q = Q_{24} \frac{R_2}{R_2 + R_4} = \frac{27}{490} CE^2$.

3)
$$I = \frac{E}{R_1 R_3 / (R_1 + R_3) + R_2 R_4 / (R_2 + R_4)} = \frac{6}{13} \frac{E}{r}$$
. $I_0 = I \frac{R_3}{R_1 + R_3} - I \frac{R_4}{R_2 + R_4} = \frac{3}{13} \frac{E}{r}$.

- **4.1)** $U = E/\varepsilon = E/6$.
 - **2)** При максимальном токе напряжение на конденсаторе E . Изменение энергии конденсатора

$$\Delta W_C = \frac{\varepsilon C E^2}{2} - \frac{\varepsilon C \left(E/\varepsilon\right)^2}{2} = \frac{C E^2}{2\varepsilon} \left(\varepsilon^2 - 1\right).$$
 Работа источника $A = \left(\varepsilon C E - C E\right) E = C E^2 \left(\varepsilon - 1\right).$ По 3СЭ
$$A = \Delta W_C + \frac{1}{2} L I_m^2.$$
 $I_m = \left(\varepsilon - 1\right) E \sqrt{\frac{C}{\varepsilon L}} = 5 E \sqrt{\frac{C}{6L}}.$

- **5. 1)** $f = \frac{dF}{d-F} = 56$ cm.
 - **2**) $\delta = (n-1)A = 0.018$ pag.
 - 3) Смещение источника $h = (d L)\delta$. Смещение изображения

$$H = h \frac{f}{d} = \frac{(d-L)\delta f}{d} = \frac{(d-L)(n-1)AF}{d-F} = 0,24 \text{ cm}.$$

1.1) $F_{MIN} = m\omega^2 l = m(2\pi n)^2 l \approx 2.8 \text{ H.}$

- **2**) По второму закону Ньютона $F_{\text{MAX}} F_{\text{MIN}} = M \, \omega^2 \, \frac{l}{2}$. $F_{\text{MAX}} \, / \, F_{\text{MIN}} = 1 + \frac{M}{2m} = \frac{5}{2}$.
- **2.** $Q_{12} = \nu C_P (T_2 T_1) = \nu \frac{5}{2} R T_1$. $\eta = \frac{A}{Q_{12}}$. $Q_{12} Q = A$.
 - **1**) $A = \frac{5}{2} v R \eta T_1$.
 - **2**) $Q = \frac{5}{2} vR(1-\eta)T_1$.

Замечание: ответы $A = (1 - \ln 2) \nu R T_1$, $Q = (1, 5 + \ln 2) \nu R T_1$ тоже правильные.

- 3. Период колебаний $T=2\pi\sqrt{\frac{l/2}{qE/m}}=2\pi\sqrt{\frac{lm}{2qE}}$. Циклическая частота $\Omega=\frac{2\pi}{T}=\sqrt{\frac{2qE}{lm}}$.
 - $1) \ t = T = 2\pi \sqrt{\frac{lm}{2qE}} \ .$
 - 2) $V_{MAX} = V + \Omega \alpha_0 \frac{l}{2} = V + \alpha_0 \sqrt{\frac{qEl}{2m}}$.
 - 3) $\left(\frac{\alpha_0/3}{\alpha_0}\right)^2 + \left(\frac{\omega}{\Omega\alpha_0}\right)^2 = 1$. $\omega = \frac{4}{3}\alpha_0\sqrt{\frac{qE}{lm}}$.
- **4.1**) $Q = \frac{1}{2}LI_0^2$. $I_0 = \sqrt{\frac{2Q}{L}}$.
- **2**) При замкнутом ключе $I_{\scriptscriptstyle R}={
 m const}$, $I_{\scriptscriptstyle L}$ изменяется от нуля до $I_{\scriptscriptstyle 0}$ в течение $\, au$. Тогда $\,q_{\scriptscriptstyle R-O\!N}=I_{\scriptscriptstyle R} au$,

 $q_{\scriptscriptstyle L-ON}=rac{1}{2}I_{\scriptscriptstyle 0} au$, $q_{\scriptscriptstyle R-OF}=q_{\scriptscriptstyle L-OF}$. Можно показать, что $q_{\scriptscriptstyle R-ON}=q_{\scriptscriptstyle R-OF}$. По условию $q_{\scriptscriptstyle L-OF}=3q_{\scriptscriptstyle L-ON}$. Отсюда

$$I_{R} = \frac{3}{2} I_{0} = \frac{3}{2} \sqrt{\frac{2Q}{L}} \; .$$

5. По условию $\frac{F}{d+f} = \frac{3}{16}$. По формуле линзы $\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$. Надо найти $x = \frac{d}{d+f}$. Ответ: $x = \frac{1}{4}$.

1. 1)
$$F_{MIN} = m\omega^2 l = m(2\pi/T)^2 l \approx 3.5 \text{ H.}$$

2) По второму закону Ньютона
$$F_{M\!A\!X} - F_{M\!I\!N} = M\,\omega^2\,\frac{l}{2}$$
 . $F_{M\!A\!X} \,/\, F_{M\!I\!N} = 1 + \frac{M}{2m} = 3$.

2.
$$Q_{12} = \nu C_P (T_2 - T_1) = \frac{5}{4} \nu R T_1$$
. $\eta = \frac{A}{Q_{12}}$. $Q_{12} - Q = A$.

1)
$$A = \frac{\eta}{1-\eta} Q$$
.

2)
$$T_1 = \frac{4}{5} \cdot \frac{1}{1 - \eta} \cdot \frac{Q}{vR}$$
.

Замечание: ответы
$$A = \frac{2-4\ln 1.5}{3+4\ln 1.5}Q$$
, $T_1 = \frac{4Q}{\left(3+4\ln 1.5\right)\nu R}$ тоже правильные.

3. Период колебаний
$$T=2\pi\sqrt{\frac{l/2}{qE/m}}=2\pi\sqrt{\frac{lm}{2qE}}$$
 . Циклическая частота $\Omega=\frac{2\pi}{T}=\sqrt{\frac{2qE}{lm}}$.

1)
$$t = \frac{T}{4} = \frac{\pi}{2} \sqrt{\frac{lm}{2qE}}$$
.

2)
$$V_{MAX} = V + \Omega \alpha_0 \frac{l}{2} = V + \alpha_0 \sqrt{\frac{qEl}{2m}}$$

3)
$$\left(\frac{2\alpha_0/3}{\alpha_0}\right)^2 + \left(\frac{\omega}{\Omega\alpha_0}\right)^2 = 1$$
. $\omega = \frac{\sqrt{10}}{3}\alpha_0\sqrt{\frac{qE}{lm}}$.

4.1)
$$Q = \frac{1}{2}LI_0^2$$
. $I_0 = \sqrt{\frac{2Q}{L}}$.

2) При замкнутом ключе
$$I_R=\mathrm{const}$$
 , I_L изменяется от нуля до I_0 в течение τ . Тогда $q_{R-ON}=I_R\tau$,

$$q_{\scriptscriptstyle L-ON}=rac{1}{2}I_{\scriptscriptstyle 0} au$$
 . Можно показать, что $q_{\scriptscriptstyle R-ON}=q_{\scriptscriptstyle R-OF}$. По условию $q_{\scriptscriptstyle R-ON}+q_{\scriptscriptstyle L-ON}=rac{5}{2}q_{\scriptscriptstyle R-OF}$. Отсюда

$$I_{R} = \frac{1}{3} I_{0} = \frac{1}{3} \sqrt{\frac{2Q}{L}} \; .$$

5. По условию
$$\frac{F}{d+f} = \frac{2}{9}$$
. По формуле линзы $\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$. Надо найти $x = \frac{f}{d+f}$. Ответ: $x = \frac{1}{3}$.

1. 1)
$$F_{MIN} = m\omega^2 l = m(2\pi n)^2 l \approx 13 \text{ H.}$$

2) По второму закону Ньютона
$$F_{M\!A\!X} - F_{M\!I\!N} = M\,\omega^2\,\frac{l}{2}$$
. $F_{M\!A\!X}\,/\,F_{M\!I\!N} = 1 + \frac{M}{2m} = 2$.

2.
$$Q_{12} = \nu C_P (T_2 - T_1) = 5\nu RT_1$$
. $\eta = \frac{A}{Q_{12}}$. $Q_{12} - Q = A$.

1)
$$A = 5\nu R\eta T_1$$
.

2)
$$Q = 5\nu R(1-\eta)T_1$$
.

Замечание: ответы $A = (2 - \ln 3) \nu R T_1$, $Q = (3 + \ln 3) \nu R T_1$ тоже правильные.

3. Период колебаний
$$T=2\pi\sqrt{\frac{l/2}{qE/m}}=2\pi\sqrt{\frac{lm}{2qE}}$$
 Циклическая частота $\Omega=\frac{2\pi}{T}=\sqrt{\frac{2qE}{lm}}$.

$$1) \ t = T = 2\pi \sqrt{\frac{lm}{2qE}} \ .$$

2)
$$V_{MAX} = V + \Omega \alpha_0 \frac{l}{2} = V + \alpha_0 \sqrt{\frac{qEl}{2m}}$$
.

3)
$$\left(\frac{\alpha_0/4}{\alpha_0}\right)^2 + \left(\frac{\omega}{\Omega\alpha_0}\right)^2 = 1$$
. $\omega = \frac{\sqrt{30}}{4}\alpha_0\sqrt{\frac{qE}{lm}}$.

4.1)
$$Q = \frac{1}{2}LI_0^2$$
. $I_0 = \sqrt{\frac{2Q}{L}}$.

2) При замкнутом ключе $I_{\scriptscriptstyle R}={
m const}\,,\;I_{\scriptscriptstyle L}$ изменяется от нуля до $I_{\scriptscriptstyle 0}$ в течение $\, au$. Тогда $\,q_{\scriptscriptstyle R-ON}=I_{\scriptscriptstyle R} au$,

 $q_{\scriptscriptstyle L-ON}=rac{1}{2}I_{\scriptscriptstyle 0} au$, $\ q_{\scriptscriptstyle R-OF}=q_{\scriptscriptstyle L-OF}$. Можно показать, что $\ q_{\scriptscriptstyle R-ON}=q_{\scriptscriptstyle R-OF}$. По условию $\ q_{\scriptscriptstyle L-ON}=2q_{\scriptscriptstyle L-OF}$. Отсюда

$$I_{R} = \frac{1}{4} I_{0} = \frac{1}{4} \sqrt{\frac{2Q}{L}} \; .$$

5. По условию
$$\frac{F}{d+f} = \frac{5}{36}$$
. По формуле линзы $\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$. Надо найти $x = \frac{d}{d+f}$. Ответ: $x = \frac{1}{6}$.

1.1)
$$F_{MIN} = m\omega^2 l = m(2\pi/T)^2 l \approx 1,6$$
 H.

2) По второму закону Ньютона
$$F_{MAX} - F_{MIN} = M \, \omega^2 \, \frac{l}{2}$$
. $F_{MAX} / F_{MIN} = 1 + \frac{M}{2m} = \frac{7}{2}$.

2.
$$Q_{12} = vC_P(T_2 - T_1) = \frac{15}{4}vRT_1$$
. $\eta = \frac{A}{Q_{12}}$. $Q_{12} - Q = A$.

$$1) A = \frac{\eta}{1-\eta} Q.$$

2)
$$T_1 = \frac{4}{15} \cdot \frac{1}{1 - \eta} \cdot \frac{Q}{vR}$$
.

Замечание: ответы
$$A = \frac{6-4\ln 2.5}{9+4\ln 2.5}Q$$
, $T_1 = \frac{4Q}{\left(9+4\ln 2.5\right)\nu R}$ тоже правильные.

3. Период колебаний
$$T=2\pi\sqrt{\frac{l/2}{qE/m}}=2\pi\sqrt{\frac{lm}{2qE}}$$
 . Циклическая частота $\Omega=\frac{2\pi}{T}=\sqrt{\frac{2qE}{lm}}$.

1)
$$t = \frac{T}{4} = \frac{\pi}{2} \sqrt{\frac{lm}{2qE}}$$
.

2)
$$V_{MAX} = V + \Omega \alpha_0 \frac{l}{2} = V + \alpha_0 \sqrt{\frac{qEl}{2m}}$$

3)
$$\left(\frac{3\alpha_0/4}{\alpha_0}\right)^2 + \left(\frac{\omega}{\Omega\alpha_0}\right)^2 = 1$$
. $\omega = \frac{\sqrt{14}}{4}\alpha_0\sqrt{\frac{qE}{lm}}$.

4. 1)
$$Q = \frac{1}{2}LI_0^2$$
. $I_0 = \sqrt{\frac{2Q}{L}}$.

2) При замкнутом ключе $I_{\scriptscriptstyle R}={
m const}$, $I_{\scriptscriptstyle L}$ изменяется от нуля до $I_{\scriptscriptstyle 0}$ в течение au . Тогда $q_{\scriptscriptstyle R-ON}=I_{\scriptscriptstyle R} au$,

 $q_{\scriptscriptstyle L-ON}=rac{1}{2}I_{\scriptscriptstyle 0} au$. Можно показать, что $q_{\scriptscriptstyle R-ON}=q_{\scriptscriptstyle R-OF}$. По условию $q_{\scriptscriptstyle R-ON}+q_{\scriptscriptstyle L-ON}=rac{7}{2}q_{\scriptscriptstyle R-OF}$. Отсюда

$$I_{R} = \frac{1}{5} I_{0} = \frac{1}{5} \sqrt{\frac{2Q}{L}} \; .$$

5. По условию
$$\frac{F}{d+f} = \frac{4}{25}$$
. По формуле линзы $\frac{1}{d} + \frac{1}{f} = \frac{1}{F}$. Надо найти $x = \frac{f}{d+f}$. Ответ: $x = \frac{1}{5}$.

Олимпиада «Физтех». 26.02.2017. МФТИ Критерии оценивания Билеты 11-03, 11-04, 11-05, 11-06

Задача 1. (10 очков)		
1) Ответ на 1-й вопрос		
2) Ответ на 2-й вопрос		
3) Аналитический ответ на 3-й вопрос без объяснения 1 очко		
Аналитический ответ на 3-й вопрос с объяснением 4 очка		
За отсутствие численного ответа на 3-й вопрос оценку не снижать.		
Задача 2. (10 очков)		
1) Есть понимание, что давление пара равно P_0		
Ответ на 1-й вопрос		
2) Ответ на 2-й вопрос 5 очков		
•		
Задача 3. (10 очков)		
1) Ответ на 1-й вопрос		
2) Есть понимание, как делится тепло при посл. и парал. соед. 1 очко		
Ответ на 2-й вопрос		
3) Есть понимание, что C закорочен (экв. схема, слова) 1 очко		
Ответ на 3-й вопрос		
Задача 4. (10 очков)		
1) Ответ на 1-й вопрос		
2) Найдено напряжение или заряд на C при макс. токе		
Записан ЗСЭ 1 очко		
Найдено изменение энергии конденсатора 1 очко		
Найдена работа источника 1 очко		
Ответ на 2-й вопрос		
Задача 5. (10 очков)		
1) Ответ на 1-й вопрос		
2) Ответ на 2-й вопрос		
3) Найдено смещение источника		
Ответ на 3-й вопрос		

Олимпиада «Физтех». 26.02.2017. МФТИ Критерии оценивания Билеты 11-07, 11-08, 11-09, 11-10

Задача 1. (10 очков)			
1) Аналитический ответ на 1-й вопрос	ιa		
Численный ответ на 1-й вопрос	0		
2) Правильное ур-е 2 зак. Ньютона для каната (веревки) 3 очн			
Ответ на 2-й вопрос			
	(u		
Задача 2. (10 очков)			
1) Есть все ур-я для ответа на 1-й вопрос	ка		
Ответ на 1-й вопрос			
2) Есть все ур-я для ответа на 2-й вопрос			
Ответ на 2-й вопрос 3 очк	la		
Задача 3. (10 очков)			
·	·		
1) Найден период	ia		
Ответ на 1-й вопрос			
2) Ответ на 2-й вопрос			
3) Ответ на 3-й вопрос 3 очн	ка		
D 4 (10)			
Задача 4. (10 очков)			
1) Ответ на 1-й вопрос			
2) Есть понимание, что I_R =const			
Есть понимание, что I_L линейный	O		
Показано, что заряд через R при зам. и раз. ключе одинаков 2 очк	ca		
Ответ на 2-й вопрос	ca		
Задача 5. (10 очков)			
Есть все необходимые ур-я	ка		

Ответ 8 очков