2009 год. Вариант А

- **1А.** Определить, во сколько раз изменится доля молекул водорода, которые имеют скорость, отличающуюся от наиболее вероятной скорости не более, чем на $\pm 3~{\rm m/c}$, при уменьшении температуры газа от 600 K до 400 K? Газ считать идеальным.
- **2А.** В бытовом холодильнике поддерживается температура $T_0=273$ K, а в комнате, где он установлен, $T_1=295$ K. Из-за плохой теплоизоляции холодильника внутрь его из комнаты происходит приток тепла $Q=8\cdot 10^6$ Дж/сутки, и чтобы поддерживать в холодильнике температуру 273 K, требуется непрерывно удалять данную теплоту Q. Найти мощность W, которая необходима для работы холодильника, полагая холодильник идеальной холодильной машиной Карно. Определить, сколько воды в сутки можно испарить в котле, если использовать холодильник как тепловой насос с такой же мощностью для перекачки теплоты из комнаты в котёл, имеющий температуру $T_2=373$ K. Теплота испарения воды $\lambda=2260$ Дж/г.
- **3А.** Работа при изотермическом сжатии 1 кг ртути от давления 1 атм до давления 11 атм равна $A_T=1,86$ мДж. Скорость звука в ртути при той же температуре равна $v_{\rm 3B}=1451$ м/с. Полагая, что плотность ртути равна $\rho=13,6$ г/см³, определить отношение $\gamma=C_P/C_V$.
- **4А.** При температуре ниже 0 °C упругость насыщенных паров над переохлаждённой водой и над льдом по разному уменьшается при понижении температуры, и при определённой температуре насыщенный пар по отношению к воде оказывается пересыщенным паром по отношению ко льду. Этот эффект приводит к росту ледяных частиц в облаках и образованию града и снега. Оценить температуру, при которой наблюдается максимальная разность между упругостью насыщенных паров вблизи капелек воды и вблизи частиц льда $\Delta P = P_{\rm B} P_{\rm A}$ и величину этой разности, считая водяной пар идеальным газом. Давление насыщенного пара над льдом и водой при 0 °C одинаково и равно $P_0 = 610~{\rm IIa}$. Считать при низких температурах постоянными удельную теплоту парообразования $\lambda = 2500~{\rm Дж/r}$ и удельную теплоту плавления $q = 335~{\rm Дж/r}$.
- **5А.** В большом объёме находятся частица-зародыш сферической формы с начальным радиусом $R_0=10^{-2}$ см и малые шарообразные частицы одинакового радиуса $a=10^{-5}$ см и той же плотности (в $\rm r/cm^3$), что и частица-зародыш. Движущиеся независимо друг от друга, малые частицы диффундируют с коэффициентом диффузии $D=3\cdot 10^{-7}$ см 2 /с к частице-зародышу и адсорбируются на её поверхности, в результате чего радиус частицы-зародыша увеличивается (при этом её сферическая форма сохраняется). Определить, во сколько раз возрастёт объём большой частицы через 2 часа, если вдали от неё концентрация малых частиц равна $n_0=10^{13}$ см $^{-3}$.

2009 год. Вариант Б

- **1Б.** После обработки результатов измерения распределения атомов по абсолютным значениям скорости в парах $^{108}{\rm Ag}$ выяснилось, что в интервалах скоростей $v_1=303\pm1$ м/с и $v_2=606\pm1$ м/с имелось одинаковое количество атомов. Определите температуру паров $^{108}{\rm Ag}$.
- **2Б.** Айсберг массой $m=10^{10}$ кг, имеющий температуру $T_0=273$ К, дрейфует в течении Гольфстрим, температура воды которого $T_1=295$ К. Найти максимальную работу тепловой машины, использующей Гольфстрим как нагреватель и айсберг как холодильник, за то время, когда весь айсберг растает. Определить, сколько воды можно испарить в котле за счёт этой работы, если использовать её в тепловом насосе для перекачки теплоты из течения Гольфстрим в котёл с температурой $T_2=373$ К. Теплота плавления льда q=335 Дж/г, теплота испарения воды $\lambda=2260$ Дж/г.
- **3Б.** При 20 °C и давлении 1 атм плотность воды равна $\rho=998~{\rm кг/m^3}$, коэффициент объёмного расширения воды $\alpha=1.8\cdot 10^{-4}~{\rm K^{-1}}$, термический коэффициент давления $\beta=3.6~{\rm K^{-1}}$, а отношение теплоёмкостей $C_P/C_V=1.1$. Определить по этим данным скорость звука в воде при этой температуре.
- **4Б.** При температуре ниже 0 °C упругость насыщенных паров над переохлаждённой водой и над льдом по разному уменьшается при понижении температуры, и при определённой температуре насыщенный пар по отношению к воде оказывается пересыщенным паром по отношению ко льду. Этот эффект приводит к росту ледяных частиц в облаках и образованию града и снега. Оценить, во сколько раз изменится отношение $P_{\rm n}/P_{\rm B}$ упругости насыщенных паров над льдом к упругости насыщенных паров над переохлаждённой водой при понижении температуры от -5 °C до -20 °C, считая водяной пар идеальным газом. Давление насыщенного пара над льдом и водой при 0 °C одинаково, удельную теплоту плавления считать при низких температурах постоянной и равной q=335 Дж/г.
- **5Б.** В большом объёме находится шарообразная частица с начальным радиусом $R_0=1$ мм. Частица разрушается с поверхности (при этом шарообразная форма частицы сохраняется) и вблизи её поверхности непрерывно образуется «газ» из малых частиц сферической формы радиуса $a=10^{-5}$ см и концентрацией $n_0=10^{13}~{\rm cm}^{-3}$. Малые частицы диффундируют с коэффициентом диффузии $D=9\cdot 10^{-6}~{\rm cm}^2/{\rm c}$, в окружающий объём, и вдали от большой частицы их концентрация равна нулю. Определить время τ , за которое объём разрушающейся частицы уменьшится в 2 раза.

2010 год. Вариант А

1А. Температура воздуха внутри жилого помещения равна $T_1=295~{\rm K}$, а за окном — $T_0=273~{\rm K}$. Сечение столкновений молекул изменяется с температурой таким образом, что коэффициент вязкости газа в указанном диапазоне температур можно аппроксимировать формулой $\eta=\eta_0(T/T_0)^{0,7}$, где η_0 — значение коэффициента вязкости воздуха при температуре T_0 . Во сколько раз среднее число двойных столкновений молекул воздуха, происходящих в единичном объёме за единицу времени в помещении, отличается от соответствующей величины за окном?

2А. Если кинетическая энергия молекул $\varepsilon \geqslant \varepsilon_{\pi} = 0.84$ эВ, то при их столкновении с твёрдой поверхностью на ней происходят химические реакции. Оценить, во сколько раз изменится доля молекул, реагирующих в единицу времени, при увеличении температуры газа от $T_0 = 300~{\rm K}$ до $T_1 = 320~{\rm K}$. Концентрация молекул постоянна, распределение молекул по скоростям — максвелловское.

3А. Колебательная характеристическая температура молекулы хлора $\theta = 780$ К. Определить минимальный номер n колебательного уровня, на котором при T = 1000 К находится не более 1% молекул хлора.

4А. В некотором диапазоне параметров состояния V и T политропа 1 моля водорода с теплоёмкостью C аппроксимируется уравнением

$$VT^{1,1-\frac{C}{R}}e^{\frac{\beta T}{R}} = B,$$

где β и B — константы, R — универсальная газовая постоянная. Водород в соответствующем диапазоне параметров подчиняется уравнению состояния идеального газа. Найдите значение теплоёмкости на политропе C и определите зависимость молярной теплоёмкости $C_v(T)$ для водорода в этом диапазоне параметров состояния, если известно, что для политропы, проходящей через точку $V_0 = 1.7 \, \mathrm{m}^3/\mathrm{моль}$, $T_0 = 40 \, \mathrm{K}$ значение константы $B = 7.87 \cdot 10^{-2} \, \mathrm{m}^3/(\mathrm{моль \cdot K})$. Получите численное значение $C_V(T_0)$.

5А. В цилиндрическом сосуде с теплоизолирующей боковой поверхностью находится $\nu=3$ моля двухатомного идеального газа. Торцы сосуда поддерживаются при постоянной температурах T_0 и $T_1=aT_0$. Найти изменение энтропии газа, если a изменяется от значения 2 до 4. Коэффициент теплопроводности газа считать постоянным в данном температурном диапазоне.

Указание. Использовать предположение об установлении локального равновесного состояния в каждом элементарном объёме газа.

2010 год. Вариант Б

1Б. Атмосферное давление за бортом самолёта, летящего на большой высоте, равно $P_1=26.5~\mathrm{k\Pi a}$, а температура — $T_1=223~\mathrm{K}$, в пассажирском салоне давление равно $P_0=75~\mathrm{k\Pi a}$ и температура $T_0=295~\mathrm{K}$. Сечение столкновений молекул

изменяется с температурой таким образом, что коэффициент теплопроводности газа в указанном диапазоне температур можно аппроксимировать формулой $\varkappa=\varkappa_0(T/T_0)^{0.86}$, где \varkappa_0 — значение коэффициента теплопроводности воздуха при температуре T_0 . Во сколько раз число столкновений, испытываемых молекулой воздуха в единицу времени с другими молекулами воздуха внутри пассажирского салона, отличается от соответствующей величины в окружающей самолёт атмосфере? Различия в химическом составе воздуха внутри самолёта и в окружающей атмосфере можно не учитывать, зависимостью теплоёмкости воздуха от температуры — пренебречь.

2Б. В сосуде при температуре 300 К находятся равные количества двух газов с одинаковыми молярными массами. Если кинетическая энергия молекул превышает порог ($\varepsilon \geqslant \varepsilon_{\pi}$), то при их столкновении с твёрдой поверхностью на ней происходят химические реакции. Оценить отношение долей молекул 1-го и 2-го газов, реагирующих в единицу времени, если пороговые энергии реакции для них равны $\varepsilon_{\pi 1}=0.63$ эВ и $\varepsilon_{\pi 2}=0.84$ эВ. Распределение молекул по скоростям — максвелловское.

3Б. Колебательная характеристическая температура молекулы йода $\theta = 305$ К. Определить максимальный номер n колебательного уровня, на котором при T = 395 К находится не менее 1% молекул йода.

4Б. В некотором диапазоне параметров состояния P и T политропа 1 моля водорода с теплоёмкостью C аппроксимируется уравнением

$$PT^{\frac{C}{R}-2,48}e^{\frac{\alpha T^2}{R}} = A.$$

где α и A — константы, R — универсальная газовая постоянная. Водород в соответствующем диапазоне параметров подчиняется уравнению состояния идеального газа. Найдите значение теплоёмкости на политропе C и определите зависимость молярной теплоёмкости $C_v(T)$ для водорода в этом диапазоне параметров состояния, если известно, что для политропы, проходящей через точку $P_0=40$ Па, $T_0=20$ К значение константы A=581 Па·К. Получите численное значение $C_v(T_0)$.

5Б. В цилиндрическом сосуде с теплоизолирующей боковой поверхностью, закрытым подвижным поршнем, находится $\nu=2$ моля одноатомного идеального газа. Торец цилиндра поддерживается при постоянной температуре T_0 , подвижный поршень, обеспечивающий постоянство давления газа в цилиндре, имеет температуру $T_1=aT_0$. Найти изменение энтропии газа, если a изменяется от значения 2 до 4. Коэффициент теплопроводности газа считать постоянным в данном температурном диапазоне.

Указание. Использовать предположение об установлении локального равновесного состояния в каждом элементарном объёме газа.