Inteligencia artificial en Sistemas Operativos.

Sobre IA y Sistemas Operativos.

- S.O:
 - Administración de memoria,
 - planificación de procesos,
 - Optimización de energía, entre otros.
- IA:
 - Algoritmos
 - Busca optimizar los elementos del S.O

Implementaciones

En áreas de desarrollo de S.O.

Planificación de procesos

En planificación de procesos

- Redes neuronales
- Algoritmos genéticos.

Redes neuronales

Son modelos simples de IA que tratan de emular el funcionamiento del sistema nervioso, emula el modo en que el cerebro humano procesa la información

CAPAS

- Entrada
- Oculta
- salida.

Matemáticamente hablando...

- Entradas: son el conjunto de valores el cual se necesita para predecir el valor de salida, pueden ser como las características o atributos del conjunto de datos.
- Cargas: Valores reales que son asociados a cada característica y menciona la importancia de cada atributo para predecir el valor final. Qué tan importante es el atributo.
- Bias: Cambia la función de activación de cierta capa.
- Función de suma: une las cargas y entradas y encuentra la suma total.
- Función de activación: introduce los modelos no lineales a la red.

Feed new data

Red neuronal en planificación.

Arquitectura propuesta

Fig. 1. Architecture of the proposed operating system

Puntos a considerar

- Dónde se va almacenar esta información del usuario procesada
 - ¿En el bloque de memoria?
- Entrenamiento de la red neuronal
- Falta de flexibilidad
- Es necesario saber que proceso o programa debe planificar con base en el comportamiento del usuario en cierto periodo de tiempo

Algoritmos genéticos

Se basan en realizar búsquedas estocásticas inspiradas en la selección natural, evolución y genética.

ETAPAS

- Selección
- Reproducción
- Cambio

AG:

En concreto...

Crea población inicial Evalúa los cromosomas de la población inicial Repite hasta que se cumpla la condición de parada Selección de los cromosomas más aptos en la nueva población Cruzamiento de los cromosomas de la población Mutación de los cromosomas de la población Evaluación de los cromosomas de la población

Devuele la mejor solución (la más apta) en la población

Implementación y comparación.

Puntos a considerar

- Consume mayor tiempo de ejecución
- más flexible que el empleo de estructuras FIFO

Algoritmo	Método	Ventajas	Desventajas	Mejoras	
Job Shop Scheduling	-Encola la labor de manera lineal	-Manera más simple de planificar -Compatible con todos los sistemas	-Crea un sistema estático. -Limita el multiprocesamient o.	-Usar funciones de multicapas para incrementar la productividad.	
Preemptive Scheduling	-Asigna tiempo quantum para procesar cuando el proceso es tomado por el CPU Posteriormente es regresado a la cola.	-Un solo proceso no puede monopolizar el CPU. -Basado en prioridades de quantum.	-No es el adecuado para procesos basado del usuario de segundo plano	-Los procesos basados en el usuario deben ser programados para sobreescribir tiempo quantum	
Multithreading	-Más de un hilo trabaja concurrentemente en un proceso.	-Mejora el rendimiento del sistema. -Mejor uso de los recursos del CPU.	-Debuggear se vuelve complejo -Incrementa el bloqueo mutuo.	-El algoritmo del banquero puede ser empleado para evitar el bloqueo mutuo pero al emplearlo ,el costo de recursos es mayor.	
Genetic algorithm	-Funciones de selección, cruzamiento y mutaciones para seleccionar el proceso más adecuado	-Supera las limitaciones del algoritmo de proceso más corto.	-El cruzamiento puede obtener resultados no esperadosLos resultados son basados en precisiones probabilísticas.	-Creación de un programa más simple para evitar complejidad. -emplear una función de cruce adaptable.	
Decision Tree Algorithm	-Los nodos con atributos son separados y el resultado es generado por una serie de decisiones.	-Es fácil de implementar -Se puede emplear parámetros no lineales.	-Resultado variable debido a la variabilidad de atributos. -No produce una solución óptima global.	-Limitar el nivel del árbol podría reducir el reajuste del árbol resultante.	
Bayesian System -Basada en probabilio		-Puede emplearse incluso con datos faltantes.	-Computacionalme nte costoso. -No se puede emplear cuando se tengan ciclos.	-Su precisión es muy buena en conjuntos pequeños de datos pero puede tener alto índice de error.	
Neural Network -Trabaja mediante una estructura de capas y su salida o resultado es generado por la función de activación.		-Crea un sistema operativo de usuario específico -Adaptable a diferentes situaciones	-Hardware muy especializado y costoso para procesar datos. -Difícil de interpretar la estructura de la red neuronal.	-Creando un mejor sistema de compresión y alimentación de la red para un rápido computo.	

En sistemas distribuidos Distributed operating systems.

Planificación de procesos

- Algoritmos genéticos
- Busqueda A*

Algoritmo genético

- Arreglo de "n" dígitos donde "n" es el número de procesos.
- Se ordena de izquierda a derecha para determinar la ejecución al procesador.
- Cada individuo de la primera generación o población inicial se genera aleatoriamente seleccionando un proceso no planificado y asignando a un correspondiente procesador.
- Se repite esto hasta que todos los procesos sean asignados.

$$fitness(T) = \frac{avg. \ processors \ utilizati \textbf{n} \times avg. \ acceptable processors \ queues}{maximal \ finishing \ time of \ all \ processes \times comms \ cost \ to \ spread \ processes}$$

Resultados

 A mayor aumento del número de procesadores mayor manejo de cada uno de ellos.

Entrenamiento de la red neuronal

- Capacidad de encontrar una manera de planificar tal que el tiempo total de finalización permaneciera lineal con respecto al número de procesos.
- Al aumentar el número de generaciones de los cromosomas y el tamaño de la población inicial, se aumentaba la calidad de la planificación

Busqueda A*

Con A*:	
Abierta	Cerroda
1. A (0+14)	_
2. C(1+3), B(1+5)	Α
3. B(1+5), F(2+6), G(2+8)	A,C
4. F(2+6), G(2+8), D(2+7), E(2+9)	A,C,B
5 $G(2+8)$, $D(2+7)$, $E(2+9)$, $I(3+4)$, $J(3+2)$	A,C,B,F
6. G(2+8), D(2+7), E(2+9), I(3+4)	A,C,B,F,J
7 G(2+8), D(2+7), E(2+9)	A, C, B, F, J, I
8. (j(2+8), E(2+9)	A,C,B,F,J,I,D
9. G(2+8), E(2+9), H(3+5)	A, C, B, F, J, I, D
10. G(2+8), E(2+9), L(4+7)	A, C, B, F, J, I, P, H
11. E(2+9), L(4+7), K(3+0) 12. E(2+9), L(4+7)	A, C, B, F, J, I, P, H, G
12 E (2+9), L (4+7)	A, C, B, F, J, I, D, H, G, K

Busqueda A*

- Asignación de procesos basada en el tiempo total el tiempo total requerido para completar todo un proceso.(Criterio minimax)
- Los procesadores y sus interconexiones se representaron en el gráfico del procesador.
- Termina cuando todos los módulos se asignaron a procesadores, lo que arrojó una asignación de tareas óptima.

Resultados

- El orden en el que se consideran los procesos para su asignación tuvo un impacto significativo en su desempeño.
- Versión paralela o distribuida que demuestra resultados eficientes de aceleración y menores requisitos de memoria.

En tolerancia al fallo

Permite a un sistema seguir funcionando correctamente en caso de **que se** caiga uno o varios de sus componentes conectados.

Procesos propios y no propios

Los <u>procesos de un sistema operativo</u> <u>generado por virus, worms,</u> entre otros pueden ser clasificados como **no propios**

Los procesos generados por el sistema o algún software son denominados como **propios**.

File Options Proce	ss Module He	elp								
■ p & × i ◇ 4										
Process Name /	ProcessID	File Size	Base Addre	Visible Wind	Hidden Wind	Mem Usage	Mem Usage	Page Faults	Pagefile Usage	Pagefile Pea
ccSvcHst.exe	3352	143,928	0x013D0000	0	3	4192 K	15596 K	17717	5532 K	5668 K
CProcess.exe	5748	36,352	0x00400000	1	5	8668 K	8872 K	2982	4916 K	4916 K
Dwm.exe	3528	92,672	0x00E20000	0	1	28612 K	40032 K	166621	53828 K	62032 K
Explorer.EXE	3628	2,616,320	0x00B50000	4	62	41888 K	43360 K	41009	31020 K	31652 K
FlashUtil10c.exe	4452	257,440	0x00400000	0	0	6108 K	6108 K	1762	1876 K	1876 K
FSRremoS.EXE	2728	20,480	0x00400000	0	3	6312 K	6320 K	1625	2540 K	2600 K
hkcmd.exe	3908	175,640	0x00400000	0	14	9064 K	9112 K	2484	2784 K	2856 K
AStorIcon.exe	3964	284,696	0x001F0000	0	5	21592 K	21608 K	7500	22380 K	23424 K
CO.exe	3872	69,632	0x00400000	0	2	5316 K	5336 K	1566	1616 K	1616 K
explore.exe	3928	673,040	0x003B0000	1	23	34464 K	36684 K	16270	14904 K	17324 K
explore.exe	3484	673,040	0x003B0000	0	41	166892 K	216580 K	136327	166876 K	226084 K
igfxpers.exe	3952	169,496	0x00400000	0	2	7416 K	7468 K	2024	2172 K	2248 K
igfxtray.exe	3884	141,848	0x00400000	0	2	5872 K	5880 K	1614	1748 K	10512 K
jusched.exe	4052	252,296	0x00400000	0	2	10108 K	11132 K	3221	3220 K	3320 K
MCPLaunch.exe	4032	49,976	0x008F0000	0	0	4364 K	4380 K	1159	1300 K	1324 K
Pelmiced.exe	1636	159,744	0x00400000	0	5	7492 K	7648 K	7362	2744 K	2804 K
RtHDVCpl.exe	3836	7,866,912	0x00400000	0	4	9680 K	10180 K	2826	7996 K	8548 K
Module Name /	Base Addre	Module Size \	/ersion	Description	on	Company	Product	Name	Modified Date	File Size

Procedimiento

Los <u>procesos de un sistema operativo</u> <u>generado por virus, worms,</u> entre otros pueden ser clasificados como **no propios**

Los procesos generados por el sistema o algún software son denominados como **propios**.

Resultados

	ProcessID	File Size (KB)	Mem Usage Peak (KB)	Page Faults	Pagefile Peak Usage (KB)	Selj	
P1	L	M	M	VH	Н	Yes	
P2	Н	M	VL	L	M	Yes	
P3	M	L	VL	VL	L	Yes	
P4	Н	M	M	M	M	No	
P5	M	M	L	M	M	Yes	
P6	Н	L	L	M	M	No	
P7	L	M	L	L	M	Yes	
P8	Н	L	Н	VH	Н	Yes	
P9	Н	M	VL	VL	L	No	
P10	Н	L	L	L	M	Yes	
P11	L	M	M	Н	Н	Yes	
P12	M	L	VH	VH	Н	Yes	L
P13	Н	M	VL	L	M	No	
P14	Н	Н	M	M	Н	Yes	
P15	Н	M	L	M	M	Yes	
P16	Н	Н	M	M	Н	No	
P17	M	L	L	VH	M	Yes	
P18	L	L	VL	VL	L	Yes	
P19	Н	Н	VL	L	M	No	
P20	Н	M	L	L	M	No	
P21	Н	M	M	M	M	Yes	
P22	M	M	L	M	M	Yes	
P23	M	Н	M	M	M	Yes	
P24	M	M	M	M	M	Yes	
P25	M	Н	M	M	M	Yes	

Resultados

Parameters Anti-Virus	Scan Time	Accuracy	Detection Rate	Performance Lag	Signature based Detection	Regular Updating Required
AVG Anti-virus	High	High	Normal	Yes	Yes	Yes
Norton Anti-virus	High	High	High	Yes	Yes	Yes
Avast Anti-virus	High	Medium	Normal	Yes	Yes	Yes
Microsoft Security Essentials	Average	High	High	Yes	Yes	Yes
Proposed Approach	Low	Very High	Very High	Yes	No	No

En sistemas embebidos...

Optimización en **energía y velocidad** de procesamiento

Bibliografía

- Amit Kumar*, Shishir Kumar**
 http://www.publishingindia.com/GetBrochure.aspx?query=UERGQnJvY2h1cmVzfC8yMjgwLnBkZnwvMj
 I4MC5wZGY=
- https://nube.iiec.unam.mx/s/5wZSfK92zN4DepW
- Harshit Agarwal and Gaurav Jariwala: Analysis of Process Scheduling Using Neural Network in Operating System:
 - https://www.researchgate.net/publication/338907007 Analysis of Process Scheduling Using Neural Network in Operating System
- New Optimal Solutions for Real-Time Scheduling of Operating System Tasks Based on Neural Networks.https://ksiresearch.org/seke/seke17paper/seke17paper-25.pdf
- Nadeesha O.Ranasinghe: Artificial Intelligence in Dsitributed Operating
 Systems.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.647.123&rep=rep1&type=pdf
- https://fdoperez.webs.ull.es/doc/Conocimiento5.pdf
- https://www.ibm.com/docs/es/spss-modeler/SaaS?topic=networks-neural-model
- Decision Tree based Learning Approach for Identification of Operating System Processes:
 https://www.researchgate.net/publication/269391581_Decision_Tree_based_Learning_Approach_for_Identification_of_Operating_System_Processes