Soit l'ensemble d'entraînement suivant :

t	\mathbf{x}_t	y_t
1	[1, 2, 4]	0
2	[2, 2, 2]	0
3	[1, 1, 1]	0
4	[2, 5, 5]	1
5	[3, 3, 3]	1
6	[5, 5, 3]	1

Soit une entrée de test $\mathbf{x} = [4.2, 2.1, 3.7]$.

- (a) Donnez la classe de \mathbf{x} qui serait prédite par l'algorithme des k plus proches voisins basé sur la distance de Manhattan $d_1(\mathbf{x}, \mathbf{x}') = \sum_i |x_i x_i'|$, et ce pour k = 3.
- (b) Donnez également les prédictions pour k=3, mais pour la distance Euclidienne $d_2(\mathbf{x},\mathbf{x}')=\sqrt{\sum_i(x_i-x_i')^2}$.