מגישים: עומרי גולדברג 208938985, נעה חרדון 312164668

Part 1:

<u>1.</u>

- a. $\{f: [T1 \rightarrow T2\}, g: [T1 \rightarrow T2], a: T1\} \vdash (f(ga)): T2$ false, the type of a is T1, g receives T1 and returns T2, f takes T1 as input and not T2.
- b. $\{x: T1, y: T2, f: [T2 \rightarrow T1]\} \vdash (fy): T1$ true, f receives as input the type T2 like the parameter y type, and returns T1 as the final return.
- c. $\{f: [T1 \rightarrow T2]\} \vdash (lambda(x)(fx)): [T1 \rightarrow T2]$ false, we don't have any information about the type of the parameter x therefore it can be of a type that doesn't match the input type of f, also the lambda returns T2 and not $[T1 \rightarrow T2]$.
- d. $\{f: [T1*T2 \rightarrow T3]\} \vdash (lambda(x)(f \times 100)): [T1 \rightarrow T3]$ false, we don't have any information about the type of the parameter x therefore it can be of a type that doesn't match the input type of f, also the lambda returns T3 and not $[T1 \rightarrow T3]$.

<u>2.</u>

a. ((lambda (x1) (+ x1 1)) 4)

Stage 1: rename bound variables -

 $((lambda (x1) (+ x1 1)) 4) \rightarrow ((lambda (x) (+ x 1)) 4)$

Stage 2: assign type variables for every sub expression -

Expression	Variable
((lambda(x)(+x1))4)	T0
(lambda(x)(+x1))	T1
(+x1)	T2
+	T+
x	Τx
1	Tnum1
4	Tnum4

Stage 3: construct type equations

Expression	Equation
((lambda(x)(+x1))4)	$[Tnum4 \rightarrow T0]$
(lambda(x)(+x1))	$T1=[Tx \rightarrow T2]$
(+x1)	$T+=[Tx*Tnum1\to T2]$
+	$T+=[Number*Number \rightarrow Number]$
1	Tnum1 = Number
4	Tnum4 = Number

Stage 4: solve the equations

Equation	Substitution
$T1 = [Tnum4 \rightarrow T0]$	
$T1 = [Tx \to T2]$	
$T+ = [Tx * Tnum1 \rightarrow T2]$	
$T+=[Number*Number \rightarrow Number]$	{ }
Tnum1 = Number	
Tnum4 = Number	

Step 1: T1 = [Tnum4 \rightarrow T0] \circ substitution = (T1 = [Tnum4 \rightarrow T0]) \rightarrow substitution = substitution \circ (T1 = [Tnum4 \rightarrow T0])

Equation	Substitution
$T1 = [Tx \to T2]$	
$T + = [Tx * Tnum1 \rightarrow T2]$	
$T+=[Number*Number \rightarrow Number]$	$\{T1 = [Tnum4 \rightarrow T0]\}$
Tnum1 = Number	
Tnum4 = Number	

Step 2: $T1 = [Tx \rightarrow T2] = [Tnum4 \rightarrow T0]$, both sides should be splitted.

Equation	Substitution
$T+=[Tx*Tnum1\to T2]$	
$T+=[Number*Number \rightarrow Number]$	
Tnum1 = Number	$(T1 - [T_{max} A \times T0])$
Tnum4 = Number	$\{T1 = [Tnum4 \rightarrow T0]\}$
Tx = Tnum4	
T2 = T0	

Step 3: $T+=[Tx*Tnum1 \rightarrow T2] \circ substitution = (T+=[Tx*Tnum1 \rightarrow T2]) \rightarrow substitution = substitution \circ (T+=[Tx\cdot Tnum1 \rightarrow T2]).$

Equation	Substitution
$T+=[Number*Number \rightarrow Number]$	
Tnum1 = Number	$(T1 - [T_{num}A \setminus T0])$
Tnum4 = Number	$ \left\{ \begin{array}{l} T1 = [Tnum4 \rightarrow T0] \\ T+= [Tx * Tnum1 \rightarrow T2] \end{array} \right\} $
Tx = Tnum4	$(I + - [Ix * I nunt I \rightarrow IZ])$
T2 = T0	

Step 4: $T+=[Number * Number \rightarrow Number] = [Tx * Tnum1 \rightarrow T2])$, split it now

Equation	Substitution
Tnum1 = Number	
Tnum4 = Number	
Tx = Tnum4	$(T1 = [Tnum4 \rightarrow T0])$
T2 = T0	$ \left\{ \begin{array}{l} T1 = [Tnum4 \rightarrow T0] \\ T+= [Tx * Tnum1 \rightarrow T2] \end{array} \right\} $
Tx = Number	
T2 = Number	

Step 5: substitution of Tnum1

Equation	Substitution
Tnum4 = Number	
Tx = Tnum4	$T1 = [Tnum4 \rightarrow T0]$
T2 = T0	$\left\{egin{aligned} T1 &= [Tnum4 ightarrow T0] \ T+ &= [Tx*Number ightarrow T2] \ Tnum1 &= Number \end{aligned} ight\}$
Tx = Number	(Tnum1 = Number)
T2 = Number	

Step 6: substitution of Tnum4

Equation	Substitution
Tx = Tnum4	$(T1 = [Number \rightarrow T0])$
T2 = T0	$T += [Tx * Number \rightarrow T2]$
Tx = Number	Tnum1 = Number
T2 = Number	

Step 7: substitution of Tx, then substitution of each equation that includes Tx

Equation	Substitution
T2 = T0	$ \begin{cases} T1 = [Number \to T0] \\ T += [Tx * Number \to T2] \end{cases} $
Tx = Number	$T+=[Tx*Number \rightarrow T2]$
T2 = Number	$\left\{\begin{array}{c} Tnum1 = Number \\ \end{array}\right\}$
12 = Number	$Tnum4 = Number \ Tx = Number$

Step 8: substitution of T2

Equation	Substitution
Tx = Number	$ \begin{bmatrix} T1 = [Number \to T0] \\ T+= [Tx * Number \to T2] \end{bmatrix} $
T2 = Number	$\left\{ \begin{array}{c} Tnum1 = Number \\ Tnum4 = Number \\ Tx = Number \\ T2 = T0 \end{array} \right\}$

Step 9: substitution of *Tx with Number*

Equation	Substitution
T2 = Number	$ \begin{cases} T1 = [Number \rightarrow T0] \\ T += [Tx * Number \rightarrow T2] \\ Tnum1 = Number \\ Tnum4 = Number \\ Tx = Number \\ T2 = T0 \end{cases} $

Step 10: $substitution \ of \ T2 \ with \ T0, \ T0 = Number, substitution \ the equations \ with \ T0 \ with \ Number$

Equation	Substitution
	$T1 = [Number \rightarrow Number]$
	$T+=[Tx*Number \rightarrow Number]$
	Tnum1 = Number
	$\left\{ \begin{array}{cc} Tnum4 = Number \end{array} \right\}$
	Tx = Number
	T2 = T0
	T0 = Number

In conclusion the type inference succeeds, the inferred type of T0 is: Number $\,$

b. ((lambda (f1 x1) (f1 x1 1)) 4 +)

Stage 1: rename bound variables -

 $((lambda (f1 x1) (f1 x1 1)) 4 +) \rightarrow ((lambda (f x) (f x 1)) 4 +)$

Stage 2: assign type variables for every sub expression –

Expression	Variable
((lambda (f x) (f x 1)) 4 +)	Т0
(lambda (f x) (f x 1))	T1
(f x 1)	T2
f	Tf
x	Tx
1	Tnum1
4	Tnum4
+	T+

Stage 3: construct type equations

buge 3. construct type equation	7113
Expression	Equation
((lambda (f x) (f x 1)) 4 +)	$T1=[Tnum4 * T + * Tnum1 \rightarrow T0]$
(lambda (f x) (f x 1))	$T1 = [Tf * Tx * Tnum1 \rightarrow T2]$
(f x 1)	$Tf = [Tx * Tnum1 \rightarrow T2]$
1	Tnum1 = Number
4	Tnum4 = Number
+	$T+=[Number * Number \rightarrow Number]$

Stage 4: solve the equations

Equation	Substitution
$T1 = [Tnum4 * T + * Tnum1 \rightarrow T0]$	
$T1 = [Tf * Tx * Tnum1 \rightarrow T2]$	
$Tf = [Tx * Tnum1 \rightarrow T2]$	{ }
Tnum1 = Number	\ \
Tnum4 = Number	
$T+=[Number*Number \rightarrow Number]$	

```
Step 1: T1 = [Tnum4 * T +* Tnum1 \rightarrow T0] \circ substitution = (T1 = [Tnum4 * T +* Tnum1 \rightarrow T0]) \rightarrow substitution = substitution \circ (T1 = [Tnum4 * T +* Tnum1 \rightarrow T0])
```

Equation	Substitution
$T1 = [Tf * Tx * Tnum1 \rightarrow T2]$	
$Tf = [Tx * Tnum1 \rightarrow T2]$	
Tnum1 = Number	$\{T1 = [Tnum4 * T + * Tnum1 \rightarrow T0]\}$
Tnum4 = Number	
$T+=[Number*Number \rightarrow Number]$	

Step 2: $T1 = [Tnum4 * T + * Tnum1 \rightarrow T0] = [Tf * Tx \rightarrow T2]$, both sides should be splitted.

Equation	Substitution
$Tf = [Tx * Tnum1 \rightarrow T2]$	
Tnum1 = Number	
Tnum4 = Number	
$T+=[Number*Number \rightarrow Number]$	$\{T1 = [Tnum4 * T + * Tnum1 \rightarrow T0]\}$
Tf = Tnum4	
Tx = T +	
Tnum1 = Tnum1	

Step 3: $Tf = [Tx * Tnum1 \rightarrow T2] \circ \text{substitution} = (Tf = [Tx * Tnum1 \rightarrow T2]) \rightarrow \text{substitution} = \text{substitution} \circ (Tf = [Tx * Tnum1 \rightarrow T2]).$

Equation	Substitution
Tnum1 = Number	
Tnum4 = Number	
$T+=[Number*Number \rightarrow Number]$	$(T1 = [Tnum4 * T + * Tnum1 \rightarrow T0])$
Tf = Tnum4	$\left\{ Tf = [Tx * Tnum1 \rightarrow T2] \right\}$
Tx = T +	
Tnum1 = Tnum1	

Step 4: substitution of Tnum1

Equation	Substitution
Tnum4 = Number	
$T+=[Number*Number \rightarrow Number]$	$(T1 = [Tnum4 * T + * Number \rightarrow T0])$
Tf = Tnum4	$ Tf = [Tx * Number \rightarrow T2] $
Tx = T +	Tnum1 = Number
Tnum1 = Tnum1	

Step 5: substitution of Tnum4

Equation	Substitution
$T+=[Number*Number \rightarrow Number]$	$(T1 = [Number * T + * Number \rightarrow T0])$
Tf = Tnum4	$Tf = [Tx * Number \rightarrow T2]$
Tx = T +	Tnum1 = Number
Tnum1 = Tnum1	Tnum4 = Number

Step 6: substitution of T +

Equation	Substitution
Tf = Tnum4	$T1 = [Number * [Number * Number \rightarrow Number] * Number \rightarrow T0]$
Tx = T +	$Tf = [Tx * Number \rightarrow T2]$
Tnum1 = Tnum1	Tnum4 = Number
	$T += [Number * Number \rightarrow Number]$

Step 7: $Tf = Tnum4 = [Tx * Number \rightarrow T2]$, number cannot be a composite expression.

In conclusion the type inference failed, $(f \times 1) = (4 + 1)$, isn't a legal procedure.

Question 2.2

b. the wrapped function returns Promise<R> because a promise represents the result of an asynchronous operation and in this function we want to know if we succeed to know the type or not.

Part 3:

Question 3.1

```
Typing rule define:
For every: type environment _Tenv,
variable _x1
expressions _e1 and
type expressions _S1, _U1:
If _Tenv |- _x1 : _S1
    _Tenv |- _e1 : _U1
    _Tenv |- _S1 = _U1
Then _Tenv |- (define _x1 _e1) : void
```

```
Typing rule set:
```