Towards a Fully Encrypted Internet

CS244 Zakir Durumeric

2013 Snowden Revelations

Explicit evidence that intelligence agencies are globally wiretapping Internet backbone connections

Massive collection of web traffic, emails, instant messages, contact lists, traffic between cloud providers

2014 Heartbleed Vulnerability

Vulnerability in OpenSSL allowed the exposure of the private keys for an estimated 24-55% of the top million most popular websites with HTTPS

Private key leak allowed unencrypting any past traffic for 96% of top million websites

2014 State of Encryption

14% of the Alexa Top Million websites supported HTTPS

- Most didn't prefer HTTPS
- Higher adoption than average websites

2014 State of Encryption

14% of the Alexa Top Million websites supported HTTPS

- Most didn't prefer HTTPS
- Higher adoption than average websites

Most sites used known-weak versions of TLS

- Only 1 of 4 popular sites supported latest TLS 1.2

4% of websites supported perfect forward secrecy (PFS)

2014 State of Encryption

14% of the Alexa Top Million websites supported HTTPS

- Most didn't prefer HTTPS
- Higher adoption than average websites

Most sites used known-weak versions of TLS

- Only 1 of 4 popular sites supported latest TLS 1.2

4% of websites supported perfect forward secrecy (PFS)

Only 1 out of 3 emails were encrypted when sent across the Internet

Encouraging HTTPS Adoption

2014: HTTPS used as a page rank indicator

Early 2018: Mozilla announces that new features will require HTTPS

Late 2018: New Chrome HTTPS indicators

Chrome Page Loads over HTTPS

STARTTLS as seen by Gmail

20	012 —	BEAST attack against TLS 1.0 CBC ciphers. Many folks recommend using RC4 in response
20	012 —	CRIME attack shows that TLS compression is broken
20	013 —	Lucky 13: padding oracle attack against CBC cipher suites
20	014 —	POODLE Attack: padding oracle attack against SSLv3 results in browsers removing support
20	015 —	FREAK Attack: protocol vulnerability in TLS allows attackers to trick clients into using "export-grade" cryptography if server supports Export Grade RSA
2	015 -	Logjam Attack: protocol vulnerability found that enables attackers to downgrade some connections to export grade Diffie-Hellman. Browsers remove traditional D-H support.
2	016 -	RC4 deprecation: after a string of attacks against RC4, major browsers remove support
2	016 —	DROWN attack: cross-protocol attack on export-grade AES
2	016 —	Sweet32: Birthday attacks on 64-bit block ciphers like 3DES
2	017 —	First public SHA-1 collision

2012	+	BEAST attack against TLS 1.0 CBC ciphers. Many folks recommend using RC4 in response
2012	+	CRIME attack shows that TLS compression is broken
2013	+	Lucky 13: padding oracle attack against CBC cipher suites
2014	+	POODLE Attack: padding oracle attack against SSLv3 results in browsers removing support
2015	+	FREAK Attack: protocol vulnerability in TLS allows attackers to trick clients into using "export-grade" cryptography if server supports Export Grade RSA
2015	+	Logjam Attack: protocol vulnerability found that enables attackers to downgrade some connections to export grade Diffie-Hellman. Browsers remove traditional D-H support.
2016	+	RC4 deprecation: after a string of attacks against RC4, major browsers remove support
2016	+	DROWN attack: cross-protocol attack on export-grade AES
2016	+	Sweet32: Birthday attacks on 64-bit block ciphers like 3DES
2017	+	First public SHA-1 collision

Full Timeline: https://www.feistyduck.com/ssl-tls-and-pki-history/

2012	■ BEAST attack against TLS 1.0 CBC ciphers. Many folks recommend using RC4 in response
2012	 CRIME attack shows that TLS compression is broken
2013	Lucky 13: padding oracle attack against CBC cipher suites
2014	POODLE Attack: padding oracle attack against SSLv3 results in browsers removing support
2015	FREAK Attack: protocol vulnerability in TLS allows attackers to trick clients into using "export-grade" cryptography if server supports Export Grade RSA
2015	Logjam Attack: protocol vulnerability found that enables attackers to downgrade some connections to export grade Diffie-Hellman. Browsers remove traditional D-H support.
2016	RC4 deprecation: after a string of attacks against RC4, major browsers remove support
2016	DROWN attack: cross-protocol attack on export-grade AES
2016	Sweet32: Birthday attacks on 64-bit block ciphers like 3DES
2017	First public SHA-1 collision

U.S. Export-Grade Cryptography

Until 1992, the United States severely restricted what cryptographic technology could be exported outside of the country. Loosened slightly.

Early 1990s: Two versions of Netscape Browser — US version had full strength crypto (e.g., 1024-bit RSA, 128-bit RC4) and Export version (40-bit RC2, 512-bit RSA)

1996: Bernstein v. the United States: Ninth Circuit Court of Appeals ruled that software source code was speech protected by the First Amendment and that the government's regulations preventing its publication were unconstitutional

Decision later withdrawn, but U.S. changed policy to allow, no precedent set

Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-Beguelin, and Paul Zimmermann

Diffie-Hellman Key Exchange

First published key exchange algorithm

Public Parameters

- p (a large prime)
- g (generator for group p)

Diffie-Hellman on the Internet

Diffie-Hellman is pervasive on the Internet today

Primary Key Exchange

- SSH
- IPSEC VPNs

Ephemeral Key Exchange

- HTTPS
- SMTP, IMAP, POP3
- all other protocols that use TLS

"Sites that use perfect forward secrecy can provide better security to users in cases where the encrypted data is being monitored and recorded by a third party."

"Ideally the DH group would match or exceed the RSA key size but 1024-bit DHE is arguably better than straight 2048-bit RSA so you can get away with that if you want to."

"With Perfect Forward Secrecy, anyone possessing the private key and a wiretap of Internet activity can decrypt nothing."

2015 Diffie-Hellman Support

Protocol	Support
HTTPS (Top Million Websites)	68%
HTTPS (IPv4, Browser Trusted)	24%
SMTP + STARTTLS	41%
IMAPS	75%
POP3S	75%
SSH	100%
IPSec VPNs	100%

Breaking Diffie-Hellman

Computing discrete log is best known attack against DH

In other words, Given $g^x = y \mod p$, compute x

Number Field Sieve

Breaking Diffie-Hellman

Computing discrete log is best known attack against DH

In other words, Given $g^x = y \mod p$, compute x

Number Field Sieve

Pre-computation is only dependent on *p*!

Breaking Diffie-Hellman

Number Field Sieve

	Sieving	Linear Algebra	Descent
DH-512	2.5 core years	7.7 core years	10 core min.

Lost in Translation

This was known within the cryptographic community

However, not within the systems community

66% of IPSec VPNs use a single 1024-bit prime

Lost in Translation

This was known within the cryptographic community

However, not within the systems community

66% of IPSec VPNs use a single 1024-bit prime

Are the groups used in practice still secure given this "new" information?

512-bit Keys and the Logjam Attack on TLS

Diffie-Hellman in TLS

The majority of HTTPS websites use 1024-bit DH keys

However, nearly 8.5% of Top 1M still support Export DHE

Source	Popularity
Apache	82%
mod_ssl	10%
Other (463 distinct primes)	8%

Normal TLS Handshake

client hello: client random, ciphers (... DHE ...)

server hello: server random, chosen cipher

Normal TLS Handshake

client hello: client random, ciphers (... DHE ...)

server hello: server random, chosen cipher

certificate, p, g, g^a , Sign_{CertKey}(p, g, g^a) g^b

K_{ms}: KDF(*g*^{ab}, *client random*, *server random*)

Normal TLS Handshake

```
client hello: client random, ciphers (... DHE ...)
  server hello: server random, chosen cipher
     certificate, p, g, g<sup>a</sup>, Sign<sub>CertKey</sub>(p, g, g<sup>a</sup>)
   K<sub>ms</sub>: KDF(g<sup>ab</sup>, client random, server random)
 client finished: Sign<sub>Kms</sub>(Hash(m1 | m2 | ...))
 server finished: Sign<sub>Kms</sub>(Hash(m1 | m2 | ...))
```

cr, ciphers (... DHE ...) cr, ciphers (EXPORT_DHE)

K_{ms}: KDF(g^{ab}, client random, server random)

Computing 512-bit Discrete Logs

We modified CADO-NFS to compute two common primes

1 week pre-computation, individual log ~70 seconds

	polysel	sieving	linalg	descent
	2000-3000 cores		288 cores	36 cores
DH-512	3 hours	15 hours	120 hours	70 seconds

Logjam Mitigation

Browsers

- have raised minimum size to 768-bits
- plan to move to 1024-bit in the future
- plan to drop all support for DHE

Server Operators

- Disable export ciphers!!
- Use a 2048-bit or larger DHE key
- If stuck using 1024-bit, generate a unique prime
- Moving to ECDHE

768- and 1024-bit Keys

Breaking One 1024-bit DH Key

Estimation process is convoluted due to the number of parameters that can be tuned.

Crude estimations based on asymptotic complexity:

	Sieving core-years	Linear Algebra core-years	Descent core-time
RSA-512	0.5	0.33	
DH-512	2.5	7.7	10 mins
RSA-768	800	100	
DH-768	8,000	28,500	2 days
RSA-1024	1,000,000	120,000	
DH-1024	10,000,000	35,000,000	30 days

Custom Hardware

If you went down this route, you would build ASICs

Prior work from Geiselmann and Steinwandt (2007) estimates ~80x speed up from custom hardware.

≈\$100Ms of HW precomputes one 1024-bit prime/year

Custom Hardware

If you went down this route, you would build ASICs

Prior work from Geiselmann and Steinwandt (2007) estimates ~80x speed up from custom hardware.

≈\$100Ms of HW precomputes one 1024-bit prime/year

For context... annual budgets for the U.S.

- Consolidated Cryptographic Program: 10.5B
- Cryptanalyic IT Services: 247M
- Cryptanalytic and exploitation services: 360M

TLS 1.3

TLS 1.3 What's New?

Removed:

- Problematic features from the past like compression, renegotiation
- Known broken ciphers like MD-5, SHA-1, RC4, 3DES, CBC mode, traditional finite-field Diffie-Hellman, export ciphers, user defined groups
- Non-PFS (perfect forward secret) handshakes

Added:

- + Simplified handshake with one fewer round trip
- + Protection against downgrade attacks (e.g., signature over entire exchange)
- + Support for newer elliptic curves (e.g., x25519 and 448)
- + Zero RTT Session Resumption (performance win)

TLS 1.3 Design

TLS 1.3 was finalized in 2018! Process took ~5 years.

One of first major protocols to involve academic community during design. Uncovered multiple attacks, including a downgrade, cross-protocol, and key-sharing attack

Empirical tests helped design a handshake that minimizes interference with broken middle boxes

Web PKI

Web PKI

2010: No visibility into who was trusted to issue certificates

2013: We find that ~700 organizations controlled certificates through large-scale scans of web servers. No assured visibility into certificates—only know if we stumbled upon the cert in the wild

~10-20% of certificate were constructed incorrectly

Example: Turktrust, mis-issued to a certificate in 2012 to a bus station that was capable of signing browser trusted certificates for every website.

Certificate Transparency

Chrome, Firefox, Safari require browser trusted certificates to be present in Certificate Transparency logs

Enabled real-time monitoring of new certificates for problems.

Chrome and Firefox have removed several problematic authorities

Search crt.sh or censys.io for certificates

Let's Encrypt	Symantec Corporation	Corporation GeoTrust Inc.			G	GoDaddy.com				GlobalSign nv-sa			Western Digital Technologies			
					ı											
					ı											
												Ļ				
	StartCom Ltd.	Entrust						Gandi	VeriSign		Trust					
						Ţ						Щ				
	DigiCert Inc	Starfie Techno	eld ologies	Trustwave Holdings												
	Digitorit inio			Unizeto				Т	П	Т	т					
		Interne	et2				П							╁		
COMODO CA Limited	thawte															
		TEREN	NA		•	┖								Щ		
		Hostpoint AG														
cPanel	Amazon					F						Ш	Щ			
		Netwo	ork Solutions													
	TrustAsia Technologies		GeoTrust	Google Inc												
		GeoTru	ust													
	WoSign CA Limited	Actalis	s	Thawte												

Let's Encrypt

CA Market Share 2015 -> 2019 Alexa Top Million Websites