Solutions to EECS 451 Exam 3, 12/11/1998

1.

- $x[n] = y[n] \delta[n]$ where $y[n] = a^n u[n]$ so $Y_k = \sum_{n=0}^{N-1} a^n e^{-j2\pi k n/N} = \sum_{n=0}^{N-1} [ae^{-j2\pi k/N}]^n = \frac{1-a^N}{1-ae^{-j2\pi k/N}}$. So $X_k = \frac{1-a^N}{1-ae^{-j2\pi k/N}} 1$. [1U/16G correct. Many sampled z-Transform, despite $L = \infty$.]
- Since x[n] is time-limited to L=4, $X_k=X(\omega)|_{\omega=2\pi k/N}$ for $N\geq L$. Thus the 8 values given are samples of $X(\omega)$ every $\pi/4$ around unit circle. So the 4-point DFT is $[5,3,1,3]_4$.

2.

- $x[n] = 3 \, \delta[n+2] + 7 \, \delta[n] + 2 \, \delta[n-11] + 4 \, \delta[n-13]$ and the 11-point IDFT yields $\boxed{x_p[n] = \{9,0,4,0,0,\ 0,0,0,0,3,\ 0\}_{11}.} \ \ \textit{[5U/13G correct. confusion between } x((n))_N \ \textit{and} \ x_p[n] \ \textit{[} 5 \, \text{[} 5 \, \text{[} 6 \, \text{[} 6 \, \text{[} 6 \, \text{]} \text{]} \text{]} \ \textit{[} 5 \, \text{[} 6 \, \text{[} 6 \, \text{]} \text{]} \ \textit{[} 6 \, \text{[} 6 \, \text{]} \text{]} \ \textit{[} 6 \, \text{[} 6 \, \text{]} \text{]} \ \textit{[} 6 \, \text{[} 6 \, \text{]} \text{]} \ \textit{[} 6 \, \text{[} 6 \, \text{]} \text{]} \ \textit{[} 6 \, \text{[} 6 \, \text{]} \ \textit{[} 6 \, \text{]} \ \textit{[} 6 \, \text{[} 6 \, \text{]} \ \textit{[} 6 \, \text{[} 6 \, \text{]} \ \textit{[} 6 \, \text{]} \ \textit{[$
- $x((n))_N = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j2\pi kn/N}$ so $x((n))_4 = 2e^{j2\pi n/4} + 2e^{j2\pi 3n/4} = 4\cos(\pi/2n)$. In time-limited case, $x[n] = x((n))_4$ for n = 0, 1, 2, 3 and is 0 otherwise, so $x[n] = \{4, 0, -4, 0\}$. Thus $X(\omega) = 4 4e^{-j2\omega}$. [10U/19G correct. A few used (5.1.39) correctly.]

3.

- $x[n] = \sin(\pi/2n) = \{0, 1, 0, -1\}_4$ so $X_k = e^{-j2\pi k/4} e^{-j2\pi 3k/4} = -2j\sin((\pi/2)k) = \{0, -2j, 0, 2j\}_4$. [10U/20G correct.]
- $y[n] = H(\pi/2)\sin((\pi/2)\,n + \angle H(\pi/2))$, where $H(\omega) = 1 e^{-j2\omega}$ so $H(\pi/2) = 1 e^{-j\pi} = 2$. Thus $y[n] = 2\,x[n]$ and $Y_k = 2X_k = \{0, -4j, 0, 4j\}$. [13U/23G correct.]
- If $T = 2 \operatorname{msec} \text{ or } F_s = 500 \operatorname{Hz}$, then $x[n] = \sin(\pi n) = 0$ so $X_k = 0$. [17U/23G correct.]

4.

- $\bullet \ \boxed{y[n] = \frac{1}{2}x((n))_N.} \ [\textit{5U/10G correct.}]$
- $x((n))_4 = \{0, 8, 16, 24\}$ so y[n] is 6, 4, 12, 8, 0 for the values of n given. [6U/17G correct.]

5.

- $q(n) = X((-n))_{10}/10$ so q = [0.7 0.4 0 0 0.5 0 0 0.2 0.1 0]. [15G correct.]

Exam scores, with approximate grades:

²⁸ Graduate Students: Mean=79.9, Median=81.5, Std=16.3

a 100 100 100 99 98 98 96 94 91 89 89 86 86, b 83 80 78 78 77 75 73, ? 67 65 60 59 59 57 54, c 46

²⁵ Undergraduate Students: Mean=62.1, Median=63, Std=19.3

a 98 92 87 81 79 78 77, b 72 71 71 71 63 63 63 58 57 55 ? 50 50, c 44 42 ? 37 35 33, d 25