Problema de Programação Linear

Objetivo: Maximizar a função objetivo.

Função objetivo:

$$\operatorname{Max} Z = x_1 + 5x_2$$

Restrições:

$$\begin{cases} x_1 + x_2 \le 5 \\ x_1 + 2x_2 \le 6 \\ 2x_1 + x_2 \le 7 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Passo 1: Converter as Desigualdades em Igualdades para Traçar as Retas

1.
$$x_1 + x_2 = 5$$

$$\circ$$
 Se \$ x_1 = 0 \$, então \$ x_2 = 5 \$

$$\circ$$
 Se \$ x_2 = 0 \$, então \$ x_1 = 5 \$

2.
$$x_1 + 2x_2 = 6$$

$$\circ$$
 Se \$ x_1 = 0 \$, então \$ 2x_2 = 6 \Rightarrow x_2 = 3 \$

$$\circ$$
 Se \$ x_2 = 0 \$, então \$ x_1 = 6 \$

3.
$$2x_1 + x_2 = 7$$

$$\circ$$
 Se \$ x_1 = 0 \$, então \$ x_2 = 7 \$

$$\circ$$
 Se \$ x_2 = 0 \$, então \$ 2x_1 = 7 \Rightarrow x_1 = 3,5 \$

Passo 2: Desenhar as Retas no Plano Cartesiano

1. Trace as retas no plano (x_1, x_2) .

Identifique a região viável, que é a área delimitada pelas retas e pelos eixos \$ x_1 \geq 0 \$ e \$ x_2 \geq 0
\$.

Passo 3: Determinar os Vértices da Região Viável

Os vértices são os pontos de interseção das retas. Vamos calcular:

- 1. Interseção entre $x_1 + x_2 = 5$ e $x_1 + 2x_2 = 6$:
 - O Subtraindo a primeira equação da segunda:

$$(x_1 + 2x_2) - (x_1 + x_2) = 6 - 5$$

$$x_2 = 1$$

• Substituindo $x_2 = 1$ na primeira equação:

$$x_1 + 1 = 5 Rightarrow x_1 = 4$$

- Ponto: \$ (4, 1) \$
- 2. Interseção entre $x_1 + x_2 = 5$ e $2x_1 + x_2 = 7$:
 - O Subtraindo a primeira equação da segunda:

$$(2x_1 + x_2) - (x_1 + x_2) = 7 - 5$$

$$x 1 = 2$$

○ Substituindo \$ x_1 = 2 \$ na primeira equação:

$$2 + x_2 = 5 Rightarrow x_2 = 3$$

- \circ Ponto: \$ (2, 3) \$
- 3. Interseção entre $x_1 + 2x_2 = 6$ e $2x_1 + x_2 = 7$:
 - Multiplicando a primeira equação por 2:

$$2x_1 + 4x_2 = 12$$

• Subtraindo a segunda equação da resultante:

$$(2x_1 + 4x_2) - (2x_1 + x_2) = 12 - 7$$

$$3x_2 = 5 \text{ Rightarrow } x_2 = \frac{5}{3}$$

• Substituindo $x_2 = \frac{5}{3}$ na primeira equação:

$$x_1 + 2\left(\frac{5}{3}\right) = 6$$

$$x_1 = 6 - \frac{10}{3} = \frac{18 - 10}{3} = \frac{8}{3}$$

- Ponto: \$\left(\frac{8}{3}, \frac{5}{3}\right) \approx (2.67, 1.67) \$
- 4. Interseção com os eixos:
 - \circ \$ (0,0) \$
 - o \$ (3.5, 0) \$
 - \circ \$ (0, 3) \$

Passo 4: Avaliar a Função Objetivo nos Vértices

- 1. $\$ (0,0) \setminus Rightarrow Z = 0 + 5(0) = 0 \$$
- 2. $\$ (3.5, 0) \setminus Rightarrow Z = 3.5 + 5(0) = 3.5 \$$
- 3. $\$ (0,3) \setminus Rightarrow Z = 0 + 5(3) = 15 \$$
- 4. $\$ (4, 1) \setminus Rightarrow Z = 4 + 5(1) = 9 \$$
- 5. $\$ (2,3) \setminus Rightarrow Z = 2 + 5(3) = 17 \$$
- 6. $\left(\frac{8}{3}, \frac{5}{3}\right) \ Z = \frac{8}{3} + 5\left(\frac{5}{3}\right) = \frac{3}{3} + \frac{25}{3} = \frac{3}{3} = 11$

Passo 5: Identificar a Solução Ótima

O maior valor de \$ Z \$ \(\) in 17, que ocorre no ponto \$ (2, 3) \$.

Resposta Final

$$x_1 = 2$$
, $x_2 = 3$, $Z_{\text{máximo}} = 17$

Portanto, a solução ótima é \$ x_1 = 2 \$, \$ x_2 = 3 \$, e o valor máximo da função objetivo é 17.