Summary

- Binary images
- Thresholding
- Mathematic Morphology
 - (also for non binary images)
- Connected components extraction

Binary Images

- In some cases it is necessary/useful to acquire/produce and/or process images whose pixels can only have 0/1 logical values
 - PBM or XBM image formats

00010010001000 00011110001000 00010010001000

Binary Images

- 1 actually can be considered as !=0
- 255 is often used for simplicity

Example

- Real image of blood cells
- We would like to estimate red blood cells
- Anyway they are not isolated (<50%)
- How we can separate them?

Thresholding

- We would like to discard a bruised apple
- How we can select the bruised part?
 - Extract "dark" pixels
- We can only use pixel brightness
- Thresholding:

$$out(r,c) = \begin{vmatrix} 0 & where & in(r,c)$$

Thresholding

- Anyway we have:
 - "Good" apple part
 - Bruised apple part
 - Background
- How we decide about the threshold?

$$out(r,c) = \begin{vmatrix} 0 & where & in(r,c)$$

Thresholding

- Anyway we have:
 - "Good" apple part
 - Bruised apple part
 - Background
- How we decide about the threshold?
- Histogram!

Otsu's Method

- Best threshold computation
- Problem: find a *th* that minimize weighted sum of each group variance

$$\sigma^2(th) = \sigma_1^2(th) \cdot w_1(th) + \sigma_2^2(th) \cdot w_2(th)$$

• w₁(th) & w₂(th) are the probability of belonging to group 1 or 2

$$w_1(th) = \sum_{i=0}^{th-1} h(i)$$

$$w_2(th) = \sum_{i=th}^{L} h(i)$$

Otsu's Method

Otsu's Method

Mathematical Morphology

- Used to extract image components that are useful in the representation and description of region shape, such as
 - boundaries extraction
 - skeletons
 - convex hull
 - morphological filtering
 - thinning
 - pruning

Mathematical Morphology

- Main operations
 - Erosion $\rightarrow \Theta$
 - Dilation $\rightarrow \oplus$
 - Opening $\rightarrow \bigcirc$
 - Closing $\rightarrow \bullet$
 - Hit or Miss $\rightarrow \otimes$

Structuring Element

- Small "mask" to probe the image under study
- Structuring Element features an origin
- Shape and size must be adapted to geometric properties we would like to mask/obtain

Structuring Element

Erosion

- The structuring element B is "moved" (B_z) on the image A for a set of values z belonging to an Euclidean Space E
- The result is the set of z values for which B_z is in A

$$A \ominus B = \left[z \in E^2 : B_z \subseteq A \right]$$

- Practically the structuring element is superimposed on all the pixel of the image.
 - When it completely fits the binary image the result is 1, otherwise 0
 - Logical AND
 - It shrinks image elements

 $A \ominus B$

Erosion

Erosion shrinks the connected sets of 1s of a binary image.

It can be used for

1. shrinking features

2. Removing bridges, branches and small protrusions

Erosion

• Consider the following image

• We can use erosion to separate elements

Dilation ⊕

- Again the structuring element is superimposed on all the pixel of the image.
 - When it hits the binary image the result is 1, otherwise 0
 - Logical OR
- It "dilates" image elements

Dilation \oplus

Dilation expands the connected sets of 1s of a binary image.

It can be used for

1. growing features

2. filling holes and gaps

Erosion + Dilation

- We can use erosion and dilation to remove small details or to fill some gaps
- But they also affect other part of the image...
- Solution
 - Combine them!

Opening/Closing

- Opening
 - Erosion followed by dilation

$$A \circ B = (A \ominus B) \oplus B$$

- Closing
 - Dilation followed by erosion

$$A \circ B = (A \oplus B) \ominus B$$

The same structuring element is used

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d) majority; (e) opening; (f) closing. The structuring element for all examples is a 5×5 square. The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the dot, since it is not wide enough.

Source: Szeliski

Hit or Miss ⊗

• Two "disjoint" structuring elements are used: A e B

$$-A \cap B = \emptyset$$

- Two erosion are used and joined
 - $I \otimes X = (I \ominus A) \cap (I^c \ominus B)$
 - Where I^c is the complement for I and X = (A,B)

	1	
0	1	1
0	0	

- The idea is that A should match shapes and B background
 - It can be seen as an "extended" SE

Hit or Miss ⊗

	1	
0	1	1
0	0	

	1	
1	1	0
	0	0

	0	0
1	1	0
	1	

0	0	
0	1	1
	1	

Other operations

- Other morphological complex operations can be used using union/intersection:
 - Border extraction
 - Skeletonization
 - Thinning

–

Connected Components

- A connected component is a **contiguous** group of pixels that have the **same value**
 - Actually not only binary images

original

thresholded

opening+closing

components

Labelling algorithms for CC

• We assign a unique label to each component

Source: R. Jain

Labbelling algorithms for CC

- Different approaches can be used:
 - Recursive Tracking
 - Parallel Growing
 - Row-by-Row (widely used)

Row by Row Labelling algorithm

- 1st pass:
 - First row:
 - Check left neighboor, do it have the same value?
 - Yes \rightarrow same label
 - No \rightarrow new label
 - Other rows
 - Check left and upper neighboor
 - They have same value and same label → same label
 - Current pixel have some value of only one of them \rightarrow same label of that one
 - They have same value but different label (!) \rightarrow set lowest label and track the equivalence
 - Otherwise \rightarrow new label

Row by Row Labelling algorithm

- 2nd pass:
 - Durig 1st pass we have tracked label equivalences
 - Row by row change labels with lowest equivalent

Labelling algorithms for CC

• Row by Row

Source: Szeliski

Connected Components

connected components of 1's from cleaned, thresholded image

connected components of cluster labels

Grayscale Morphology

- Mathematical morphology can be extended to grayscale images
- Applications
 - Contrast enhancement
 - texture description
 - edge detection
 - thresholding

Grayscale Morphology

- In a grayscale image there is no "object" and "background"
- Min and Max operators are used
- Structuring element is still a mask
- Dilation \rightarrow max element under the mask wins
- Erosion \rightarrow min element under the mask wins
- Opening&Closing as before

Grayscale Morphology

