Survival Analysis I (CHL5209H)

Olli Saarela

Cause-specific hazards and cumulative incidence

Nonparametric estimators

Subdistribution hazard models

Multi-state models

Survival Analysis I (CHL5209H)

Olli Saarela

Dalla Lana School of Public Health University of Toronto

olli.saarela@utoronto.ca

March 19, 2019

Survival Analysis I (CHL5209H)

Olli Saarela

Cause-specific hazards and cumulative incidence

Nonparametric

Subdistribution

Multi-state

Example of competing risks

Cause-specific hazards and cumulative incidence

Nonparametric estimators

Subdistributio hazard models

Multi-state

- As seen earlier, the hazard modeling framework generalizes to more than one mutually exclusive event type of interest.
- The time \tilde{T}_i refers to the time of the first event (of any type), and the event type indicator values $\tilde{E}_i \in \{1, \dots, J\}$ refer to J mutually exclusive event types.
- ▶ Equivalently, we could introduce the cause-specific counting processes $\tilde{N}_{ij}(t)$, j = 1, ..., J.
- The cause-specific hazard function for each event type $j \in \{1, ..., J\}$ is defined as

$$\lambda_j(t) \equiv \lim_{h \to 0} \frac{P(t \leq \tilde{T}_i < t + h, \tilde{E}_i = j \mid \tilde{T}_i \geq t)}{h}.$$

Cause-specific hazards and cumulative incidence

Interpretation

- This can be interpreted through the instantaneous probability of an event of a particular type occurring, given that individual i is still at risk at time t (has not experienced event of any type).
- **Each** $\lambda_i(t)$ could be modeled through a Cox model of the form

$$\lambda_{ij}(t) = \lambda_{0j}(t) \exp{\{\beta'_j x_i\}},$$

estimated separately for each $j \in \{1, ..., J\}$.

- If only one event type is of interest, the other cause-specific hazards need not be estimated.
- The above interpretation does not require assuming that the competing causes are independent (given x_i).

Cause-specific hazards and cumulative incidence

- ► The cause-specific cumulative baseline hazards $\Lambda_{0i}(t) = \int_0^t \lambda_{0i}(u) du$ could be estimated through the Breslow estimator.
- However, the cause-specific cumulative hazards $\Lambda_{ij}(t) = \Lambda_{0j}(t) \exp{\{\beta'_i x_i\}}$ do not have a direct relationship to an event time distribution.
- If we are willing to assume that the competing causes are independent (given x_i), taking $1 - \exp\{-\Lambda_{ii}(t)\}$ would correspond to a risk of event type i occurring by time t in the absence of the competing causes.
- However, considering the other competing causes to be absent rarely makes sense.

Cause-specific hazards and cumulative incidence

Nonparametric estimators

Subdistribution hazard models

Multi-state

Cause-specific cumulative incidence

► The risk relevant to real life applications is the cause-specific cumulative incidence function

$$\pi_{ij}(s) = P(\tilde{T}_i \le s, \tilde{E}_i = j \mid x_i)$$

$$= \int_0^s \lambda_{ij}(t) \exp\left\{-\sum_{j=1}^J \Lambda_{ij}(t)\right\} dt.$$

- Note that $1 \pi_{ij}(s)$ is not a survival probability. (Why?)
- Plugging in the Cox model based estimators, this could be estimated as

$$\hat{\pi}_{ij}(s) = \sum_{k:t_k \leq s} \mathrm{d}\hat{\Lambda}_{ij}(t_k) \exp\left\{-\sum_{j=1}^J \hat{\Lambda}_{ij}(t_{k-1})\right\}.$$

Note on terminology: although cumulative incidence and cumulative hazard sound similar, they refer to different concepts. Cause-specific hazards and cumulative incidence

Nonparametric estimators

Subdistribution hazard models

Multi-state

- Using Kaplan-Meier estimator in the presence of competing risks would also involve the assumption that the compering causes are independent.
- ▶ It would estimate the survival probability in the absence of the competing causes (which again rarely makes sense).
- Usually it is more appropriate to estimate cumulative incidence instead, where we can again consider estimators of the form

$$\hat{\pi}_j(s) = \int_0^s \mathrm{d}\hat{\mathsf{\Lambda}}_j(t)\hat{\mathsf{S}}(t),$$

now without covariate information.

Nonparametric estimators

Subdistribution hazard models

Multi-state

Non-parametric estimator for cumulative incidence

- Substitute in Nelson-Aalen estimator for the increment of the cause-specific cumulative hazard $\mathrm{d}\hat{\Lambda}_j(t)$ and Kaplan-Meier estimator for the overall survival function $\hat{S}(t)$.
- ▶ This gives a non-parametric estimator of the form

$$\hat{\pi}_j(s) = \sum_{k: t_k \leq s} \frac{d_{jk}}{n_k} \hat{S}_{\mathrm{KM}}(t_{k-1}),$$

where d_{jk} is the number of events of type j that occurred at time t_k , and where

$$\hat{\mathcal{S}}_{\mathrm{KM}}(t) = \prod_{k:t_k \leq t} \left(1 - rac{\sum_{j=1}^J d_{jk}}{n_k}
ight).$$

Cause-specific hazards and cumulative incidence

Nonparametric estimators

Subdistribution hazard models

Multi-state

Although the cause-specific hazard is interpretable in itself, it does not directly tell how the covariates are related to the cumulative incidence.

▶ One can define an alternative hazard function

$$\psi_j(t) \equiv \lim_{h \to 0} \frac{P(t \leq \tilde{T}_i < t + h, \tilde{E}_i = j \mid \tilde{T}_i \geq t \text{ or } (\tilde{T}_i < t, \tilde{E}_i \neq j))}{h}$$

called the subdistribution hazard.

- Note that the added condition here does not mean that someone who has experienced an event of type other than *j* would still be at risk for *j* (since the first event has already taken place).
- ► However, such individuals would be included in the denominator (riskset) in the estimation.

Subdistribution hazard models

Connection to cumulative incidence

The reason we would be interested in subdistribution. hazard is that it is related to the cumulative incidence function by

$$\psi_j(t) = -\frac{\mathrm{d}\log(1-\pi_j(t))}{\mathrm{d}t},$$

or alternatively,

$$\pi_j(t) = 1 - \exp\{-\Psi_j(t)\},\,$$

where
$$\Psi_j(t) = \int_0^t \psi_j(u) du$$
.

Cause-specific hazards and cumulative incidence

parametric estimators

Subdistribution hazard models

Multi-state

Fine & Gray model

Similar to Cox model, the subdistribution hazard can be modeled as a function of covariates, and assumed to be proportional:

$$\psi_{ij}(t) = \psi_{0j}(t) \exp{\{\gamma'_j x_i\}}.$$

- ► Such a model is known as the Fine & Gray model.
- The interpretation of the regression coefficients here relates to the subdistribution hazard function, whereas the usual Cox model coefficients relate to the cause-specific hazard function.
- ► The regression estimates combined with a Breslow-type estimator for the cumulative subdistribution baseline hazard can be used to estimate individual specific cumulative incidence through

$$\hat{\pi}_{ij}(s) = 1 - \exp\{-\hat{\Psi}_{0j}(s)\exp\{\hat{\gamma}'_i x_i\}\}.$$

Survival Analysis I (CHL5209H)

Olli Saarela

Cause-specifi hazards and cumulative incidence

Nonparametric

Subdistribution

Multi-state models

Example of multi-state model

Cause-specifi hazards and cumulative incidence

Nonparametri estimator

Subdistribution hazard models

Multi-state

Multi-state models

- ► The survival analysis setting generalizes further to situations where we want to consider more than one possible event for the same individual.
- ► The events can be related to transition between states in a multi-state model.
- ► The possible events in the example are transplantation, death while on the waiting list, and death after transplantation, each characterized by its own transition intensity function.
- ➤ Similar to cause-specific hazards, if we are only interested in one type of transition, the others need not be modeled.
- However, the probabilities related to the multi-state model can generally be complicated functions of all intensity functions.
- ► Certain comparisons related to the multi-state model (here comparison of $\lambda_2(t)$ and $\lambda_3(t)$) could be addressed through time-dependent covariates.