Lab session

Agenda

- Introduction
- Lab1 ☐ LTspice familiarity
- Lab2

 ☐ SRAM cell simulation
- Lab3 □

Introduction

- Tool : LTSPICE
- Model files: Arizona State University PTM
 - 16nm PTM-MG <u>HP NMOS</u>, <u>HP PMOS</u>
 - NFET:
 http://ptm.asu.edu/modelcard/PTM-MG/modelfiles/hp/16nfet.p
 m
 - PFET:
 http://ptm.asu.edu/modelcard/PTM-MG/modelfiles/hp/16pfet.p
 m
- Nominal supply: 850mV
 - Supply variation : +/-10%
- Channel length: 20nm (Min: 10nm; Maximum: 30nm)
- Width:
 - For a planar FET; width is a number
 - For a Fin FET; width is number of fins

Width of finfets

Effective Channel Width = (2 * Height of Fin) + Thickness of the fin

$$W = (2*w1) + w2$$

hfin= 2.6e-008; 26nm=w1

tfin= 1.2e-008 ; 12nm=w2

For 16nm; for a single fin device

Device width = 64nm

Total width of an 'n' fin device: n*64nm

We have to do this because LT spice does not understand finfet width or atleast I could not find it.

Figure 1: Structure of FinFET

http://www.signoffsemi.com/finfet/

Model Name:	NMOS	ОК
Length(L):	20n	Cancel
Width(W):	320n	
Drain Area(AD):		
Source Area(AS):	·	
Drain Perimeter(PD):		
Source Perimeter(PS):		
No. Parallel Devices(M):		
MOS I=20n w=320n		

Models

- PTM models are BSIM CMG level 72 models
- LTSPICE does not understand level 72

```
.model nfet nmos level = 72
```

Change this to level 9

.model pfet pmos level = 9

Use spice directive to include model files

Questions

Lab1

LAB 1

Agenda

- Understand basic analysis types in LTSpice
- Run an inverter transient and DC analysis
- Assignment :
 - Calculate power of a nominal sized inverter driving a load of 1fF /5fF
 - Calculate Fan out of 1 (FO1) and Fan out of 4 (FO4) delay of nominally sized inverter at nominal and +/-10% supply
 - Calculate leakage power of a 50fin inverter and compare it with a 22nm planar FET inverter of same width

Analysis type

- Ltspice supports following analysis types
 - Transient
 - We will be using this in most of our work.
 - DC
 - A bit to find dc-operating points
 - -AC
 - Gain analysis

Simple RC circuit (Tran)

Simple RC circuit (AC analysis)

Inverter (tran)

Model Name:	NMOS	ОК
Length(L):	20n	Cancel
Width(W):	320n	
Drain Area(AD):		
Source Area(AS):		
Drain Perimeter(PD):		
Source Perimeter(PS):		
No. Parallel Devices(M):		

Inverter (dc)

Model Name:	PMOS	OK
Length(L):	20n	Cancel
Width(W):	320n	
Drain Area(AD):		
Source Area(AS):		
Drain Perimeter(PD):		
Source Perimeter(PS):		
No. Parallel Devices(M):		
OS I=20n w=320n		

Model Name:	NMOS	OK
Length(L):	20n	Cancel
Width(W):	320n	
Drain Area(AD):		
Source Area(AS):		
Drain Perimeter(PD):		
Source Perimeter(PS):		
No. Parallel Devices(M):		

Inverter (ac)

Model Name:	PMOS	ОК
Length(L):	20n	Cancel
Width(W):	320n	
Drain Area(AD):		
Source Area(AS):		
Drain Perimeter(PD):		
Source Perimeter(PS):		
No. Parallel Devices(M):		

Model Name:	NMOS	ОК
Length(L):	20n	Cancel
Width(W):	320n	
Drain Area(AD):		
Source Area(AS):		
Drain Perimeter(PD):		
Source Perimeter(PS):		
No. Parallel Devices(M):		

Pending items

- Create symbol
- Use symbol for analysis

6T SRAM cell

LAB 2

6T SRAM cell

6T SRAM cell

6T SRAM CELL SNM

• E. Seevinck, F. J. List and J. Lohstroh, "Static-noise margin analysis of MOS SRAM cells," in *IEEE Journal of Solid-State Circuits*, vol. 22, no. 5, pp. 748-754, Oct. 1987, doi: 10.1109/JSSC.1987.1052809.

Fig. 4. (a), (b) Circuit diagrams of SRAM cells when accessed, with static-noise sources V_a inserted.

6T SRAM (SNM)

Reference

https://engineering.purdue.edu/~vlsi/ECE559
 _Fall09/HW/HW6_Solution.pdf

Assignment

Redo the exercise for 8T and 10T Sram cell