

Московский государственный технический универ имени Н. Э. Баумана

Методические указания

Е.А. Андреев, Д.А. Ягодников

РАСЧЕТ ПРЕДЕЛЬНЫХ ОТКЛОНЕНИЙ ОСНОВНЫХ ПАРАМЕТРОВ РДТТ

Московский государственный технический университет имени Н.Э. Баумана

Е.А. Андреев, Д.А. Ягодников

РАСЧЕТ ПРЕДЕЛЬНЫХ ОТКЛОНЕНИЙ ОСНОВНЫХ ПАРАМЕТРОВ РДТТ

Методические указания к выполнению домашнего задания по курсу «Автоматика и регулирование РДТТ»

Москва Издательство МГТУ им. Н.Э. Баумана 2009

УДК 621.455 ББК 39.65 А654

Рецензент *С.А. Орлин*

Андреев Е.А., Ягодников Д.А.

А654 Расчет предельных отклонений основных параметров РДТТ: Метод. указания. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2009. – 28 с.: ил.

В методических указаниях к выполнению домашнего задания по курсу «Автоматика и регулирование РДТТ» содержатся инженерные методики расчета предельных отклонений основных параметров РДТТ; представлен подробный анализ различных возмущающих факторов, даны зависимости по их определению; приведены примеры расчета, позволяющие лучше разобраться в анализируемых методиках.

Для студентов 5-го и 6-го курсов факультета Э, изучающих курс «Автоматика и регулирование РДТТ».

УДК 621.455 ББК 39.65

Учебное издание

Андреев Евгений Александрович Ягодников Дмитрий Алексеевич

РАСЧЕТ ПРЕДЕЛЬНЫХ ОТКЛОНЕНИЙ ОСНОВНЫХ ПАРАМЕТРОВ РДТТ

Редактор *А.К. Яковлева* Корректор *Г.С. Беляева* Компьютерная верстка *В.И. Товстоног*

Подписано в печать 3.03.2009. Формат 60×84/16. Усл. печ. л. 1,63. Тираж 100 экз. Изд. № 135. Заказ

Издательство МГТУ им. Н.Э. Баумана Типография МГТУ им. Н.Э. Баумана 105005, Москва, 2-я Бауманская ул., 5

© МГТУ им. Н.Э. Баумана, 2009

Цель расчета — определить предельные отклонения давления в камере сгорания $p_{\rm k}$, секундного расхода газов \dot{m} и тяги P при наличии случайных и неслучайных отклонений параметров камеры сгорания, соплового блока, заряда твердого топлива, а также при изменении внешних условий, влияющих на работу ракетного двигателя твердого топлива (РДТТ).

1. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Скорость горения твердого топлива u определяется по формуле $u=u_1\left(\frac{p_{\rm K}}{98066,5}\right)^{\rm V}$ $\varepsilon_{\rm 9\varphi}=u_1'p_{\rm K}^{\rm V}\varepsilon_{\rm 9\varphi}$, где u_1 — коэффициент в законе горения, зависящий от свойств топлива и начальной температуры заряда (единичная скорость горения), $u_1=u_1^{293}\frac{B}{B-(T_{\rm H}-293)}$ или $u_1=u_1^{293}e^{D(T_{\rm H}-293)};\ u_1'=\frac{u_1}{(98066,5)^{\rm V}}.$ Здесь B,D — экспериментальные коэффициенты, $D\approx 1/B;\ T_{\rm H}$ — начальная температура заряда; u_1^{293} — коэффициент при температуре $T_{\rm H}=293\,{\rm K};\ {\rm V}$ — показатель в законе горения; $\varepsilon_{\rm 9\varphi}$ — коэффициент, учитывающий влияние эрозии на скорость горения твердого топлива (эффективный коэффициент горения).

Давление газов у переднего днища камеры сгорания $p_{\kappa 1}$ определяется по формуле:

$$p_{\kappa 1} = \left[\frac{F_{\Gamma} \rho_{T} u_{1}' \sqrt{\chi R_{\kappa} T_{\kappa}}}{A_{k} \varphi_{c} F_{\kappa p}} \right]^{\frac{1}{1 - \nu}}, \tag{1}$$

где $F_{\scriptscriptstyle \Gamma}$ — поверхность горения заряда; $\rho_{\scriptscriptstyle
m T}$ — удельный вес твердого

топлива; $R_{\rm K}T_{\rm K}$ — энергетическая характеристика твердого топлива; $\chi=\chi_{\rm K}\chi_3$ — коэффициент, учитывающий потери энергии на нагрев стенок камеры сгорания χ_3 и на неполноту сгорания твердого топлива $\chi_{\rm K}$; $\phi_{\rm C}$ — коэффициент расхода сопла; $F_{\rm KP}$ — площадь критического сечения сопла; k — показатель политропы расшире-

ния; $A_k = \left[\frac{2}{k+1}\right]^{\frac{k+1}{2(k-1)}} \sqrt{k}$ — комплекс показателя политропы расширения.

Секундный расход газов \dot{m} определяется по формуле:

$$\dot{m} = \frac{\Phi_{\rm c} A_k F_{\rm KP} p_{\rm K3}}{\sqrt{R_{\rm K} T_{\rm K3}}},\tag{2}$$

где $p_{\rm k3}$ — давление торможения на входе в сопло (сечение 3—3 на рисунке); $T_{\rm k3}$ — температура торможения на входе в сопло.

Опыт показывает, что при отсутствии эрозионного горения справедливы соотношения $p_{\rm k3} \approx p_{\rm k1} = p_{\rm k}; \, R_{\rm k} T_{\rm k3} = \chi R_{\rm k} T_{\rm k}.$

Тяга двигателя P определяется по формуле:

$$P = \varphi_1 \varphi_c F_{\kappa p} p_{\kappa} \Phi \left[\frac{p_{a}}{p_{\kappa 3}} \right] - F_{a} p_{H}, \tag{3}$$

где $p_{\rm a}$ — статическое давление на срезе сопла; $p_{\rm H}$ — давление окружающей среды; $F_{\rm a}$ — площадь среза сопла; ϕ_1 — коэффициент скорости, учитывающий потери, вызванные радиальной составляющей скорости, трениями и местными скачками уплотнения: $1+\cos\alpha$

$$\phi_1 = \phi_{ ext{\tiny TP}} rac{1+\coslpha}{2}$$
 ($lpha$ — угол полураствора сопла на срезе; $\phi_{ ext{\tiny TP}}$ —

коэффициент, учитывающий потери на трение и местные скачки уплотнения);

$$\Phi\left[\frac{p_{\mathrm{a}}}{p_{\mathrm{k}3}}\right] = A_k \sqrt{\frac{2k}{k-1}\left[1-\left[\frac{p_{\mathrm{a}}}{p_{\mathrm{k}3}}\right]^{\frac{k-1}{k}}\right]} + \frac{F_{\mathrm{a}}p_{\mathrm{a}}}{\mathbf{\phi}_1\mathbf{\phi}_{\mathrm{c}}F_{\mathrm{kp}}p_{\mathrm{k}3}}$$

- комплекс степени расширения газов.

2. ОПРЕДЕЛЕНИЕ ОТКЛОНЕНИЙ ПАРАМЕТРОВ КАМЕРЫ СГОРАНИЯ, СОПЛОВОГО БЛОКА И ЗАРЯДА ТВЕРДОГО ТОПЛИВА ОТ НОМИНАЛЬНЫХ ЗНАЧЕНИЙ

Площадь поверхности горения заряда твердого топлива может иметь случайные $\delta F_{\Gamma,\text{сл}}$ и неслучайные $\delta F_{\Gamma,\text{нсл}}$ отклонения от номинального значения F_r^* .

Случайные отклонения связаны с изменением геометрических размеров заряда в пределах допуска на изготовление:

$$\delta F_{\Gamma.\mathrm{C.T.}} = \frac{\vec{F_{\Gamma}} - F_{\Gamma}^*}{F_{\Gamma}^*} = \frac{\Delta F_{\Gamma}}{F_{\Gamma}^*}$$
, где * — индекс номинального значения параметра; F_{Γ} — действительная поверхность горения заряда; $\delta F_{\Gamma.\mathrm{C.T.}} = \pm (0,005\dots 0,01)$.

Неслучайные отклонения возможны из-за изменения геометрических размеров заряда при отклонении начальной температуры заряда от номинального значения и определяются по формуле $1 + (\partial F_-)^*$

$$\delta F_{\scriptscriptstyle \Gamma.
m HCJ} = rac{1}{F_{\scriptscriptstyle \Gamma}^*} \left(rac{\partial F_{\scriptscriptstyle \Gamma}}{\partial T_{\scriptscriptstyle
m H}}
ight)^* \Delta T_{\scriptscriptstyle
m H}$$
, где $\Delta T_{\scriptscriptstyle
m H} = T_{\scriptscriptstyle
m H} - 293$.

Плотность твердого топлива может иметь случайные $\delta \rho_{\scriptscriptstyle \rm T.C.T}$ и неслучайные $\delta \rho_{\scriptscriptstyle \rm T.H.C.T}$ отклонения от номинального значения $\rho_{\scriptscriptstyle \rm T.}^*$.

Случайные отклонения возможны из-за отклонений в технологических режимах при изготовлении заряда, а также из- за изменений химического состава топлива в пределах допуска $\delta
ho_{\scriptscriptstyle \mathrm{T,cn}} = \pm (0.005 \dots 0.01).$

Неслучайные отклонения связаны с изменением объема заряда при изменении его начальной температуры и определяется по формуле $\delta \rho_{\scriptscriptstyle \mathrm{T.HCJ}} = \frac{1}{\rho_{\scriptscriptstyle \pm}^*} \left(\frac{\partial \rho_{\scriptscriptstyle \mathrm{T}}}{\partial T_{\scriptscriptstyle \mathrm{H}}} \right)^* \Delta T_{\scriptscriptstyle \mathrm{H}}.$

Отклонения $\delta \rho_{_{\mathrm{T.HCЛ}}}$ и $\delta F_{_{\Gamma.HCЛ}}$ являются функцией одной и той же величины $T_{_{\mathrm{H}}}$ и имеют противоположные по знаку значения (увеличение начальной температуры заряда ведет к тепловому расширению заряда, а значит, к увеличению площади поверхности горения и уменьшению плотности). Поэтому оправданно определение комплекса $F_{_{\Gamma}} \rho_{_{\mathrm{T}}}$ при изменении начальной температуры заряда: $\delta \left(F_{_{\Gamma}} \rho_{_{\mathrm{T}}} \right) = \frac{1}{\left(F_{_{\Gamma}} \rho_{_{\mathrm{T}}} \right)^*} \left(\frac{\partial (F_{_{\Gamma}} \rho_{_{\mathrm{T}}})}{\partial T_{_{\mathrm{H}}}} \right)^* \Delta T_{_{\mathrm{H}}}$. Эту формулу можно преобразовать, если ввести в рассмотрение соотношение $M_{_{\mathrm{T}}} = \left(F_{_{\Gamma}} \rho_{_{\mathrm{T}}} \right) e$, где $M_{_{\mathrm{T}}}$ — масса заряда твердого топлива; e — толщина горящего свода. Поскольку масса заряда не зависит от начальной температуры, то $\delta \left(F_{_{\Gamma}} \rho_{_{\mathrm{T}}} \right) = \frac{1}{-e^*} \left(\frac{\partial e}{\partial T_{_{\mathrm{H}}}} \right)^* \Delta T_{_{\mathrm{H}}}$. Здесь $1 \left(\partial e \right)^*$

 $rac{1}{-e^*} \left(rac{\partial e}{\partial T_{_{
m H}}}
ight)^* = lpha -$ коэффициент линейного расширения топлива, поэтому $\delta\left(F_{_{
m F}}
ho_{_{
m T}}
ight) = lpha \Delta T_{_{
m H}}.$ Единичная скорость горения твердого топлива может иметь

случайные $\delta u_{1{\rm cn}}$ и неслучайные $\delta u_{1{\rm hcn}}$ отклонения от номинального значения u_1^* : $\delta u_1 = \delta u_{1{\rm cn}}^1 + \delta u_{1{\rm cn}}^2 + \delta u_{1{\rm hcn}}^1 + \delta u_{1{\rm hcn}}^2$, где $\delta u_{1{\rm cn}}^1 = \pm (0,01\dots 0,04)$ — относительные случайные отклонения единичной скорости горения, вызванные разбросом технологических режимов и свойств исходного сырья в пределах одной партии зарядов; $\delta u_{1{\rm hcn}}^1 = \frac{1}{u_1^*} \left(\frac{\partial u_1}{\partial T_{\rm H}}\right)^* \Delta T_{\rm H}$ — относительные неслучайные отклонения единичной скорости горения из-за изменения начальной температуры заряда. С учетом зависимости (2) имеем $\left(\frac{\partial u_1}{\partial T_{\rm H}}\right)^* = \frac{u_1^*}{B}$. Тогда $\delta u_{1{\rm hcn}}^1 = \frac{\Delta T_{\rm H}}{B}$.

По этой формуле могут быть также определены $\delta u_{1\mathrm{cn}}^2$ — относительные случайные отклонения единичной скорости горения из-за неточности измерения начальной температуры заряда (обычно эта неточность составляет $\Delta T_{\mathrm{H}}=3\ldots 5\,\mathrm{K}$); $\delta u_{1\mathrm{Hcn}}^2$ — относительные неслучайные отклонения единичной скорости горения при использовании зарядов разных партий (из-за различий в составе и свойствах сырья и разбросов технологических режимов для разных партий; определяются по паспортным данным на партии зарядов и обычно находятся в пределах $0,02\ldots 0,05$).

Энергетическая характеристика твердого топлива $R_{\rm k}T_{\rm k}$ может иметь случайные $\delta R_{\rm k}T_{\rm k.e.n}$ и неслучайные $\delta R_{\rm k}T_{\rm k.hc.n}$ от-клонения от номинального значения $(RT)^*$:

$$\delta R_{\rm k} T_{\rm k} = \delta R_{\rm k} T_{\rm k1cj} + \delta R_{\rm k} T_{\rm k2cj} + \delta R_{\rm k} T_{\rm k1hcj} + \delta R_{\rm k} T_{\rm k2hcj},$$

где $\delta R_{\rm k} T_{\rm k1cn} = \pm (0.005 \dots 0.015)$ — относительное случайное отклонение единичной скорости горения, вызванное разбросом технологических режимов и свойств исходного сырья в пределах одной партии зарядов.

Неслучайные отклонения комплекса $\delta R_{\rm k} T_{\rm k1 hcn}$ зависят от отклонения начальной температуры заряда от номинального значения и определяются по формуле

$$\delta R_{\rm \scriptscriptstyle K} T_{\rm \scriptscriptstyle K1HC,I} = \frac{1}{(R_{\rm \scriptscriptstyle K} T_{\rm \scriptscriptstyle K})^*} \bigg(\frac{\partial R_{\rm \scriptscriptstyle K} T_{\rm \scriptscriptstyle K}}{\partial T_{\rm \scriptscriptstyle H}} \bigg)^* \Delta T_{\rm \scriptscriptstyle H}.$$

Считают, что энергетическая характеристика $R_{\rm \scriptscriptstyle K} T_{\rm \scriptscriptstyle K}$ не зависит от давления при малых отклонениях параметров.

Известно, что $R_{\rm k}T_{\rm k}=R_{\rm k}^*\left(\frac{Hu}{Cv}+\Delta T_{\rm H}\right)$, где Cv — теплоем-кость газа при постоянном объеме; Hu — теплотворная способность топлива. Тогда $\delta R_{\rm k}T_{\rm k1hcn}=\frac{R_{\rm k}^*\Delta T_{\rm H}}{(R_{\rm k}T_{\rm k})^*}=\frac{\Delta T_{\rm H}}{T_{\rm k}^*}$, где $T_{\rm k}^*$ — температура продуктов сгорания при номинальных условиях. По этой формуле определяют $\delta R_{\rm k}T_{\rm k2cn}$ — относительные случайные отклонения силы пороха из-за неточности измерения начальной температуры заряда ($\Delta T_{\rm H}=3\dots 5$ K).

 $\delta R_{\rm k} T_{\rm k2hcn} = \pm (0.01 \dots 0.02)$ — относительные неслучайные отклонения силы пороха при использовании зарядов разных партий (из-за различий в составе и свойствах сырья и разбросов технологических режимов для разных партий).

Коэффициент тепловых потерь может иметь случайные отклонения $\delta\chi_{\rm cn}$, вызванные изменениями толщины стенок камеры сгорания, условий теплопередачи от газа к стенкам камеры и т. п. Значения $\delta\chi_{\rm cn}$ определяют экспериментально. Обычно $\delta\chi_{\rm cn}=\pm(0.002\dots0.03)$.

Коэффициенты ϕ_e и ϕ_1 могут иметь случайные отклонения $\delta\phi_c$ и $\delta\phi_1$, вызванные изменениями геометрических размеров и состояния поверхности сопла в пределах поля допуска на изготов-

ление. Эти отклонения определяются экспериментально и ориентировочно равны $\pm (0,002...0,004)$.

Площадь критического сечения сопла может иметь случайные отклонения $\delta F_{\rm kp.c.r.}$, вызванные изменением диаметра критического сечения, разброса скорости разгара сопла и эрозионного износа поверхности материала соплового вкладыша, а также неслучайные отклонения площади критического сечения сопла $\delta F_{\rm kp.hc.r.}$, вызванные тепловым расширением сопла и разгара сопла.

Случайные отклонения площади критического сечения рассчитывают по формуле $\delta F_{\rm kp.cn} = \delta F_{\rm kp.cn}^1 + \delta F_{\rm kp.cn}^2 + \delta F_{\rm kp.cn}^3$. Случайный разброс площади критического сечения сопла из-за

Случаиныи разорос площади критического сечения сопла из-за допуска на изготовление: $\delta F_{\text{кр.сл}}^1 = \frac{(d^* + \Delta d)^2 - d^{*2}}{d^{*2}} - 1 \cong \frac{2\Delta d}{d^*},$ где d^* — номинальный диаметр критического сечения сопла; Δd — **половина** поля допуска на d^* .

Случайный разброс площади критического сечения сопла, вызванный разбросом скорости разгара сопла:

$$\delta F_{\text{\tiny KP.CJI}}^2 = \frac{(d^* \pm 2\Delta v \tau_{\text{\tiny K}})^2 - d^{*2}}{d^{*2}} - 1 \cong \frac{4\Delta v}{d^*} \tau_{\text{\tiny K}},$$

где \mathbf{t}_{K} — время работы двигателя. В этой формуле принято $\Delta v=\mathrm{const}$ при изменении параметров двигателя. Такой случайный разброс возникает в том случае, когда сопло оборудовано системой программированного уноса массы, т. е. может быть получена зависимость для скорости уноса массы в виде $v=v^*\pm \Delta v$, где v^* — расчетная скорость уноса массы; Δv — разброс скорости уноса массы, носящий случайный характер.

Случайный разброс площади критического сечения сопла, вызванный эрозией материала соплового вкладыша $\delta F_{\rm kp.c.r.}^3$, зависит от свойств материала соплового вкладыша и параметров потока продуктов сгорания и может быть учтен при наличии экспериментальных данных.

Неслучайное отклонение площади критического сечения рассчитывают по формуле $\delta F_{\text{кр.нсл}} = \delta F_{\text{кр.нсл}}^1 + \delta F_{\text{кр.нсл}}^2$.

Неслучайные отклонения площади критического сечения при тепловом расширении соплового вкладыша $\delta F^1_{\mathrm{кр. hc.}}$ определяют по формуле:

$$\delta F_{\text{kp.hch}}^1 = (1 + \alpha \Delta T_{\text{bk}})^2 - 1 \approx 2\alpha \Delta T_{\text{bk}}, \tag{4}$$

где $\Delta T_{\rm BK} = T_{\rm BK} - T_{\rm BK,H}$ ($T_{\rm BK}$ — средняя по объему температура вкладыша; $T_{\rm BK,H}$ — начальная температура вкладыша; α — коэффициент линейного расширения).

Для определения $\delta F_{\text{кр.нсл}}^1$ необходимо знать изменение $T_{\text{вк}}$ по времени работы двигателя, которое может быть приближенно описано уравнением $\frac{T_{\text{вк}\,\text{max}}-T_{\text{вк}}}{T_{\text{вк}\,\text{max}}-T_{\text{вк.н}}}=e^{-0.3\tau}$, где $T_{\text{вк}\,\text{max}}$ — максимальная температура, до которой может быть прогрет вкладыш, в первом приближении равная температуре продуктов сгорания в области критического сечения сопла.

Неслучайное отклонение площади критического сечения при разгаре соплового вкладыша $\delta F_{\mathrm{кp. hcn}}^2$ определяют по формуле:

$$\delta F_{\text{kp.Hc.II}}^{2} = \left(1 + \frac{2\int_{0}^{\tau} v d\tau}{d_{\text{kp}}^{*}}\right)^{2} - 1, \tag{5}$$

где v — скорость разгара.

Скорость разгара зависит от свойств материала вкладыша, параметров потока и состава продуктов сгорания. Для заданного топлива и материала вкладыша скорость разгара можно определить по экспериментальной зависимости от давления в камере: $v = C_1 p_{\rm k}^n$, где C_1 , n — экспериментальные коэффициенты.

Если ожидаемый диапазон изменения давления в камере сгорания невелик ($\pm(15\dots20)$ % от номинала), то с достаточной степенью точности можно считать $v\approx$ const. Тогда соотношение (5)

можно упростить и записать в виде
$$\delta F_{\text{кр.нсл}}^2 = \left(1 + \frac{2v\tau}{d_{\text{кр}}^*}\right)^2 - 1.$$

Площадь среза сопла может иметь случайные отклонения $\delta F_{\rm a}$, вызванные изменениями диаметра сопла на срезе в пределах допуска на изготовление. Ориентировочно в расчетах можно принимать $\delta F_{\rm a}=\pm(0.03\ldots0.04)$.

Неслучайные отклонения, связанные с нагревом сопла, невелики и их обычно не учитывают в расчетах.

Начальная температура заряда может иметь неслучайные отклонения $\Delta T_{\rm H}$, которые измеряют перед запуском двигателя,

и случайные отклонения, обусловленные точностью изменения $\pm (3\dots 5)$ K, а также неравномерностью температурного поля заряда.

Комплекс $\Phi\left[\frac{p_{\rm a}}{p_{\rm k3}}\right]$ имеет случайные отклонения при наличии случайных отклонений параметров $\phi_1,\ \phi_{\rm c},\ F_{\rm kp}$ и $F_{\rm a}.$ Значения $\delta\Phi_{\rm cn}$ определяют по формуле:

$$\delta\Phi_{\text{сл}} = (-\delta\phi_{1\text{сл}} - \delta\phi_{\text{с.сл}} - \delta F_{\text{кр.сл}} + \delta F_{\text{а.сл}})f_4^*,$$
 где $f_4^* = \frac{\left(rac{p_{ ext{a}}}{p_{ ext{k3}}}
ight)^{rac{k-1}{k}}}{f_1^2 + \left(rac{p_{ ext{a}}}{p_{ ext{k3}}}
ight)^{rac{k-1}{k}}}; \ f_1^* = \sqrt{rac{2k}{k-1}\left[1 - \left(rac{p_{ ext{a}}}{p_{ ext{k3}}}
ight)^{rac{k-1}{k}}
ight]}.$

Относительное значение: $\bar{\Phi}_{\rm cn} = \delta\Phi_{\rm cn} + 1$. Значения предельных случайных отклонений $\delta\Phi_{\rm cn}^{\rm npeq}$ определяют по формуле: $\delta\Phi_{\rm cn}^{\rm npeq} = \pm f_4^* \sqrt{\delta\phi_1^2 + \delta\phi_{\rm c}^2 + \delta F_{\rm kp}^2 + \delta F_{\rm a}^2}$.

Неслучайные отклонения $\delta\Phi_{\text{н.с.}}$ возможны при изменении площади критического сечения сопла из-за теплового расширения или разгара. Определить $\delta\Phi_{\text{нс.}}$ при известных $\delta F_{\text{кр.нс.}}$ можно по формуле $\delta\Phi_{\text{нс.}} = -f_4^* \delta F_{\text{кр.нс.}}$.

3. ОПРЕДЕЛЕНИЕ ПРЕДЕЛЬНЫХ ОТКЛОНЕНИЙ p_{κ}, \dot{m} И P, ВЫЗВАННЫХ СЛУЧАЙНЫМИ ОТКЛОНЕНИЯМИ ПАРАМЕТРОВ КАМЕРЫ СГОРАНИЯ, СОПЛОВОГО БЛОКА И ЗАРЯДА

Используя формулы (1), (2), (3), путем их логарифмирования, последующего дифференцирования и замены дифференциалов конечными приращениями можно получить относительные отклонения $p_{\rm k}$, \dot{m} , P и $I_{\rm y}$ в окрестностях заданного режима при наличии отклонений влияющих параметров.

$$egin{align} \delta p_{\scriptscriptstyle \mathrm{K}} &= rac{1}{1-\mathrm{v}} imes \ & imes \left[\delta
ho_{\scriptscriptstyle \mathrm{T}} + \delta u_1 + \delta F_{\scriptscriptstyle \mathrm{\Gamma}} + rac{1}{2} \delta \chi + rac{1}{2} \delta (R_{\scriptscriptstyle \mathrm{K}} T_{\scriptscriptstyle \mathrm{K}}) - \delta \phi_{\scriptscriptstyle \mathrm{C}} - \delta F_{\scriptscriptstyle \mathrm{KP}}
ight]; \end{align}$$

$$\delta P = \frac{P^* + p_{\rm H} F_{\rm a}^*}{P^*} \times \times \left[\delta \phi_{\rm c} + \delta \phi_{\rm 1} + \delta p_{\rm \kappa} + \delta F_{\rm \kappa p} + \delta \Phi\right] - \frac{p_{\rm H} F_{\rm a}^*}{P^*} \delta F_{\rm a}; \qquad (7)$$

$$\delta \dot{m} = \frac{1}{1 - \nu} \times$$

$$\times \left[\delta \rho_{\text{T}} + \delta u_1 + \delta F_{\text{F}} + \frac{\nu}{2} \delta \chi + \frac{\nu}{2} \delta (R_{\text{K}} T_{\text{K}}) - \nu \delta \varphi_{\text{c}} - \nu \delta F_{\text{Kp}} \right]; \quad (8)$$

$$\delta I_{\text{V}} = \delta P - \delta \dot{m}. \quad (9)$$

Поскольку при получении формул (6)—(9) имела место линеаризация (замена дифференциалов конечными приращениями), то они справедливы для малых отклонений параметров камеры сгорания, соплового блока и заряда (не более 3...5% от номинала), носящих, как правило, случайный характер. Относительные отклонения влияющих параметров рассчитываются для конкретного РДТТ по его известным характеристикам (чертежи, результаты испытаний, данные аналогов) по методике, изложенной в разд. 2. Учет отклонений, которые не могут быть отнесены к малым, производится по методике, изложенной в разд. 4.

Согласно правилам теории вероятностей, среднеквадратичное отклонение суммы независимых случайных величин равно корню квадратному из суммы квадратов среднеквадратичных отклонений слагаемых. Для нормально распределенных случайных величин это правило распространяется и на предельные отклонения. Принимая, что все случайные предельные отклонения параметров заряжания подчиняются закону нормального распределения, записывают выражения для предельных случайных отклонений основных параметров РДТТ.

Предельное отклонение давления в камере сгорания определяют по формуле

$$\begin{split} \delta p_{\text{к.с.п}}^{\text{пред}} &= \pm \frac{1}{1 - \nu} \bigg\{ \delta F_{\text{г.с.n}}^2 + \delta \rho_{\text{т.с.n}}^2 + \delta \phi_{\text{с.с.n}}^2 + \left(\frac{\delta \chi_{\text{с.n}}}{2} \right)^2 + \\ &+ \left[\frac{\delta (R_{\text{k}} T_{\text{k}})_{\text{с.n}}}{2} \right]^2 + \delta F_{\text{кр.с.n}}^2 + \delta u_{\text{1c.n}}^2 \bigg\}^{1/2}. \end{split} \tag{10}$$

Предельное отклонение секундного расхода газов определяют по формуле

$$\delta \dot{m}_{\text{cn}}^{\text{пред}} = \pm \frac{1}{1 - \nu} \left\{ \delta F_{\text{r.cn}}^2 + \delta \rho_{\text{т.cn}}^2 + \delta \phi_{\text{c.cn}}^2 + \left(\nu \frac{\delta \chi_{\text{cn}}}{2} \right)^2 + \left[\nu \frac{\delta (R_{\text{k}} T_{\text{k}})_{\text{cn}}}{2} \right]^2 + (\nu \delta F_{\text{kp.cn}})^2 + \delta u_{\text{1cn}}^2 \right\}^{1/2}.$$
(11)

Предельное отклонение тяги двигателя определяют по формуле

$$\delta P_{\text{сл}}^{\text{пред}} = \pm \left\{ a^2 \Big[(\delta \phi_{\text{с.сл}})^2 + (\delta \phi_{\text{1сл}})^2 + (\delta p_{\text{к.сл}}^{\text{пред}})^2 + (\delta F_{\text{кр.сл}})^2 + (\delta \Phi_{\text{сл}}^{\text{пред}})^2 \Big] + (\delta \Phi_{\text{сл}}^{\text{пред}})^2 \right\}^{1/2}, \tag{12}$$
 где $a = \frac{P^* + p_{\text{H}} F_{\text{a}}^*}{P^*}, b = \frac{p_{\text{H}} F_{\text{a}}^*}{P^*}.$

4. ОПРЕДЕЛЕНИЕ ОТКЛОНЕНИЙ $p_{\mathbf{k}}$, \dot{m} И P, ВЫЗВАННЫХ НЕСЛУЧАЙНЫМИ ОТКЛОНЕНИЯМИ ПАРАМЕТРОВ КАМЕРЫ СГОРАНИЯ, СОПЛОВОГО БЛОКА И ЗАРЯДА

Изменение скорости горения твердого топлива между партиями при использовании зарядов разных партий необходимо учитывать, так как при этом возникают неслучайные отклонения единичной скорости горения u_1 . В этом случае определяют $\delta u_{1\text{HC}} = \frac{u_1 - u_1^*}{u_1^*}$, где u_1^* — единичная скорость горения партии, по которой определяли номинальные параметры двигателя. Если партий несколько, то могут быть выделены минимальное и максимальное значения единичной скорости горения u_1 min и u_1 max, а следовательно, рассчитаны неслучайные отклонения максимального и минимального значений единичной скорости горения $\delta u_{1\text{Heл}}^{\text{min}}$ и $\delta u_{1\text{Heл}}^{\text{min}}$ соответственно.

Если эти отклонения невелики (менее 0,05), то для определения соответствующих отклонений $p_{\rm K}$, \dot{m} и P можно использовать линеаризованные зависимости (1), (2) и (3) в виде

$$\delta p_{\kappa u}^{\min} = \frac{1}{1 - \nu} \delta u_{1\text{HCJ}}^{\min}, \quad \delta p_{\kappa u}^{\max} = \frac{1}{1 - \nu} \delta u_{1\text{HCJ}}^{\max}; \tag{13}$$

$$\delta \dot{m}_u^{\min} = \frac{1}{1 - \nu} \delta u_{1\text{HC}\Pi}^{\min}, \quad \delta \dot{m}_u^{\max} = \frac{1}{1 - \nu} \delta u_{1\text{HC}\Pi}^{\max}; \tag{14}$$

$$\delta P_u^{\min} = \frac{1+b}{1-v} \delta u_{1\text{HCJ}}^{\min}, \quad \delta P_u^{\max} = \frac{1+b}{1-v} \delta u_{1\text{HCJ}}^{\max}.$$
 (15)

Если $|\delta u_{1\text{нсл}}^{\text{min}}|$ и $|\delta u_{1\text{нсл}}^{\text{max}}|>0.05$, то для определения соответствующих отклонений $p_{\text{к}},\dot{m}$ и P нужно использовать зависимости (1), (2) и (3) в виде

$$\delta p_{\kappa u}^{\min} = \left(\bar{u}_{1 \text{HCI}}^{\min}\right)^{\frac{1}{1-\nu}} - 1, \quad \delta p_{\kappa u}^{\max} = \left(\bar{u}_{1 \text{HCI}}^{\max}\right)^{\frac{1}{1-\nu}} - 1; \tag{16}$$

$$\delta \dot{m}_u^{\min} = \left(\bar{u}_{1\text{HCJ}}^{\min}\right)^{\frac{1}{1-\nu}} - 1, \quad \delta \dot{m}_u^{\max} = \left(\bar{u}_{1\text{HCJ}}^{\max}\right)^{\frac{1}{1-\nu}} - 1, \tag{17}$$

$$\delta P_u^{\min} = (1+b) \left[\left(\bar{u}_{1\text{HC}\Pi}^{\min} \right)^{\frac{1}{1-\nu}} - 1 \right],$$

$$\delta P_u^{\max} = (1+b) \left[\left(\bar{u}_{1\text{HC}\Pi}^{\max} \right)^{\frac{1}{1-\nu}} - 1 \right],$$
(18)

где $\bar{u}_{1\text{нсл}\,\text{min}}=\frac{u_{1\,\text{min}}}{u^*},\; \bar{u}_{1\text{нсл}}^{\text{max}}=\frac{u_{1\,\text{max}}}{u^*}$ — относительные значения минимального и максимального значений единичной скорости горения (связаны с относительными отклонениями формулой $\delta u=\bar{u}-1$).

Отклонение начальной температуры заряда от номинального значения обычно не удовлетворяет условию $\delta T_{\text{н.нсл}} \leq 0.05$, поэтому для учета влияния отклонений начальной температуры заряда на $p_{\text{к}}$, \dot{m} и P необходимо использовать зависимости (1), (2) и (3) в виде (16), (17) и (18).

Из уравнения (3) получают соотношение

$$\begin{split} \bar{p}_{\scriptscriptstyle K} = & \left[\frac{F_{\scriptscriptstyle \Gamma}}{F_{\scriptscriptstyle \Gamma}^*} \frac{\rho_{\scriptscriptstyle T}}{\rho_{\scriptscriptstyle T}^*} \frac{u_1}{u_1^*} \sqrt{\frac{\chi R_{\scriptscriptstyle K} T_{\scriptscriptstyle K}}{\chi \left(R_{\scriptscriptstyle K} T_{\scriptscriptstyle K}\right)^*}} \right]^{\frac{1}{1-\nu}}. \end{split}$$
 Практически $\left(\frac{\partial F_{\scriptscriptstyle \Gamma}}{\partial T_{\scriptscriptstyle H}} \right)^* \approx \left(\frac{\partial \rho_{\scriptscriptstyle T}}{\partial T_{\scriptscriptstyle H}} \right)^* \approx \left(\frac{\partial \left(R_{\scriptscriptstyle K} T_{\scriptscriptstyle K}\right)}{\partial T_{\scriptscriptstyle H}} \right)^* \approx 0, \end{split}$

поэтому $\bar{p}_{{\scriptscriptstyle {
m K}}T_{{\scriptscriptstyle {
m H}}}}=(\bar{u}_1)^{\frac{1}{1-{\scriptstyle {
m V}}}}$.

Аналогично получают $\bar{P}_{T_{\mathrm{H}}}=(\bar{u}_{1})^{\frac{1}{1-\nu}}$ и $\bar{m}_{T_{\mathrm{H}}}=(1+b)\times (\bar{u}_{1})^{\frac{1}{1-\nu}}-b.$

Соответствующие относительные отклонения δp_{κ} , $\delta \dot{m}$ и δP определяют по формулам $\delta p_{\kappa} = \overline{p_{\kappa}} - 1$, $\delta \dot{m} = \overline{\dot{m}} - 1$, $\delta P = \overline{P} - 1$.

Изменение площади критического сечения за счет теплового расширения вкладыша (определяют по формуле (4)) приводит к отклонению $p_{\rm K}$, \dot{m} и P от номинальных значений и может быть

учтено по формулам
$$\bar{p}_{\mathbf{k}t_{\mathbf{k}}} = \left(\frac{1}{\bar{F}_{\mathbf{k}\mathbf{p}t_{\mathbf{k}}}}\right)^{\frac{1}{1-\nu}}, \; \bar{m}_{t_{\mathbf{k}}} = \left(\frac{1}{\bar{F}_{\mathbf{k}\mathbf{p}t_{\mathbf{k}}}}\right)^{\frac{1}{1-\nu}},$$
 $\bar{P}_{\mathbf{k}} = (1+b)\left(\frac{1}{\bar{F}_{\mathbf{k}\mathbf{p}t_{\mathbf{k}}}}\right)^{\frac{1}{1-\nu}} \bar{\Phi}\left[\frac{p_{\mathbf{a}}}{p_{\mathbf{k}}}\right] - b.$

Эти зависимости справедливы и при определении влияния разгара сопла на параметры двигателя, т. е. для определения $\bar{p}_{\kappa v}$, \bar{m}_v и \bar{P}_v . Если $|\delta F_{\kappa p}| \leqslant 0{,}05$ (практически имеет место при тепловом расширении сопел), то можно пользоваться линеаризованными зависимостями (1), (2) и (3) в виде $\delta p_{\kappa t_{\kappa}} = \frac{1}{1-\nu} \delta F_{\kappa p t_{\kappa}}$, $\delta \dot{m}_{t_{\kappa}} = \frac{\nu}{1-\nu} \delta F_{\kappa p t_{\kappa}}$, $\delta P_{t_{\kappa}} = \frac{1+b}{1-\nu} \delta F_{\kappa p t_{\kappa}}$.

5. ОПРЕДЕЛЕНИЕ СУММАРНЫХ ПРЕДЕЛЬНЫХ ОТКЛОНЕНИЙ p_{κ} , \dot{m} И P В СЛУЧАЕ НЕРЕГУЛИРУЕМОГО СОПЛА

Суммарные предельные относительные отклонения параметров $p_{\rm K}$, \dot{m} и P с учетом влияния случайных и неслучайных воздействий могут быть найдены по формулам

$$\delta p_{\text{k}\Sigma}^{\text{max}} = \delta p_{\text{kch}}^{\text{max}} + \delta p_{\text{k}u}^{\text{max}} + \delta p_{\text{k}T_{\text{H}}}^{\text{max}} + \delta p_{\text{k}t_{\text{k}}} + \delta p_{\text{k}v}, \tag{19}$$

$$\delta p_{\kappa \Sigma}^{\min} = \delta p_{\kappa c_{\text{I}}}^{\min} + \delta p_{\kappa u}^{\min} + \delta p_{\kappa T_{\text{H}}}^{\min} + \delta p_{\kappa t_{\kappa}} + \delta p_{\kappa v}, \tag{20}$$

$$\delta \dot{m}_{\Sigma}^{\max} = \delta \dot{m}_{\text{\tiny CJI}}^{\max} + \delta \dot{m}_{u}^{\max} + \delta \dot{m}_{T_{\text{\tiny H}}}^{\max} + \delta \dot{m}_{t_{\text{\tiny K}}} + \delta \dot{m}_{v}, \qquad (21)$$

$$\delta \dot{m}_{\Sigma}^{\min} = \delta \dot{m}_{\text{cm}}^{\min} + \delta \dot{m}_{u}^{\min} + \delta \dot{m}_{T_{\text{H}}}^{\min} + \delta \dot{m}_{t_{\kappa}} + \delta \dot{m}_{v}, \tag{22}$$

$$\delta P_{\Sigma}^{\max} = \delta P_{\text{ch}}^{\max} + \delta P_{u}^{\max} + \delta P_{T_{\text{H}}}^{\max} + \delta P_{t_{\text{K}}} + \delta P_{v}, \tag{23}$$

$$\delta P_{\Sigma}^{\min} = \delta P_{c\pi}^{\min} + \delta P_{u}^{\min} + \delta P_{T_{H}}^{\min} + \delta P_{t_{K}} + \delta P_{v}, \tag{24}$$

где $\delta N_{\rm c, T}^{\rm max}$ — максимальное отклонение искомого параметра за счет случайных отклонений параметров двигателя (N — условное обозначение параметра); $\delta N_{\rm c, T}^{\rm min}$ — минимальное отклонение искомого параметра за счет случайных отклонений параметров двигателя; $\delta N_u^{\rm max}$ — максимальное отклонение искомого параметра за счет отклонения скорости горения топлива от номинального значения; $\delta N_u^{\rm min}$ — минимальное отклонение искомого параметра за счет отклонения скорости горения топлива от номинального значения; $\delta N_{T_{\rm H}}^{\rm max}$ — максимальное отклонение искомого параметра за счет отклонения начальной температуры заряда от номинального значения; $\delta N_{T_{\rm H}}^{\rm min}$ — минимальное отклонение искомого параметра за счет отклонения начальной температуры заряда от номинального значения; $\delta N_{T_{\rm H}}^{\rm min}$ — минимальное отклонение искомого параметра за счет теплового расширения соплового вкладыша; δN_v — отклонение искомого параметра за счет разгара соплового вкладыша.

Формулы (19)—(24) позволяют определить предельные отклонения основных параметров двигателя в любой момент времени работы двигателя, т. е. получить зависимости

$$\begin{split} &\delta p_{\text{k}\Sigma}^{\min} = f\left(\tau\right), & \delta p_{\text{k}\Sigma}^{\max} = f\left(\tau\right), \\ &\delta \dot{m}_{\Sigma}^{\min} = f\left(\tau\right), & \delta \dot{m}_{\Sigma}^{\max} = f\left(\tau\right), \\ &\delta P_{\Sigma}^{\min} = f\left(\tau\right), & \delta P_{\Sigma}^{\max} = f\left(\tau\right) \end{split}$$

и найти поле возможных отклонений основных параметров по времени работы двигателя.

6. ПРИМЕРЫ ОПРЕДЕЛЕНИЯ СУММАРНЫХ ПРЕДЕЛЬНЫХ ОТКЛОНЕНИЙ ПАРАМЕТРОВ РДТТ

Пример 1. Определить предельные отклонения основных параметров РДТТ, вызванные случайными и неслучайными отклонениями параметров заряда, камеры сгорания, соплового блока и внешними условиями.

Исходные данные

а) Характеристики заряда:

$$u = u_1 p^{\text{V}}, \text{M/c};$$

 $u_1 = 0.710^{-3};$
 $v = 0.53;$

```
B = 340;
R_{\mathrm{k}}=351,5\frac{\mathrm{Дж\cdot кг}}{\mathrm{K}};
T^* = 2400 \,\mathrm{K};
k = 1,25;
F = \text{const} в течение всего времени работы двигателя;
\tau = 40 \, \text{с} — время работы двигателя;
\delta u_{1c\pi} = \pm 0.03;
\delta u_{1\text{HCH}} = \pm 0.04:
\delta \rho_{\rm T, CT} = \pm 0,006;
\delta F_{\rm r,cu} = \pm 0.008;
\delta(R_{\rm k}T_{\rm k})_{1{
m cm}}=\pm0.01;
\delta \chi_{c\pi} = \pm 0,002;
\delta T_{\rm HCII} = \pm 3 \, {\rm ^oC};
\rho_{\rm f} = 1600 \, {\rm kg/m}^3.
      б) Характеристики камеры сгорания:
p_1^* = 4 \cdot 10^6 \, \text{Ha};
\chi_{\kappa} = 0.98;
\chi_3 = 0.98.
      в) Характеристики соплового блока:
d_{\text{kd}}^* = 60 \cdot 10^{-3} \,\text{m};
d_{2}^{*} = 170 \cdot 10^{-3} \,\mathrm{m};
\varphi_1 = 0.99 [\varphi_{TD} = 0.995];
\varphi_c = 0.98;
материал соплового вкладыша — вольфрам;
v=0:
T_{\text{\tiny K}} = 0,95\,T^* при \tau = 8\,\mathrm{c};
\delta \varphi_1 = \pm 0,002;
\delta \varphi_{c} = \pm 0,002;
\Delta d_{\rm KD} = \pm 0.03 \cdot 10^{-3} \,\mathrm{M}.
      г) Внешние условия работы:
p_{\rm H} = 0.05 \cdot 10^6 \, {\rm Ha}:
t_{\rm H} = (-10) \dots (+30) \,{}^{\rm o}{\rm C};
T_{\rm u}^* = 20 \,{\rm ^oC}.
```

Порядок расчета

 $m = 3 \cdot 10^{-4};$ $p_{\rm a} = p_{\rm H} = 0.05 \cdot 10^6 \, \text{Ha}.$

Принимаем

Основные параметры:

$$D = \frac{1}{B} = \frac{1}{340} = 2,94 \cdot 10^{-3};$$

 $\chi = \chi_{_K}\chi_3 = 0.98 \cdot 0.98 = 0.96;$

$$T_{\text{\tiny K}} = 0.95 \, T^* = 0.95 \cdot 2400 = 2280 \, \text{K};$$

$$F_{\mathrm{a}} = rac{\pi \left(d_{\mathrm{a}}^{*}
ight)^{2}}{4} = rac{3,14 \cdot \left(60 \cdot 10^{-3}
ight)^{2}}{4} = 0,023 \; \mathrm{m}^{2};$$

$$F_{\mathrm{kp}} = \frac{\pi \left(d_{\mathrm{kp}}^*\right)^2}{4} = \frac{3.14 \cdot \left(170 \cdot 10^{-3}\right)^2}{4} = 2.827 \cdot 10^{-3} \; \mathrm{m}^2;$$

$$A_k = \sqrt{k} \left(\frac{2}{k+1}\right)^{\frac{k+1}{2(k-1)}} = \sqrt{1,25} \left(\frac{2}{1,25+1}\right)^{\frac{1,25+1}{2\cdot(1,25-1)}} = 0,658;$$

$$\Phi\left[\frac{p_{\rm a}}{p_{\rm \kappa}}\right] = A_k \sqrt{\frac{2k}{k-1} \left[1 - \left(\frac{p_{\rm a}}{p_{\rm \kappa}}\right)^{\frac{k-1}{k}}\right]} + \frac{F_{\rm a}p_{\rm a}}{\varphi_1 \varphi_{\rm c} F_{\rm \kappa p} p_{\rm \kappa}} = \frac{105 - 10}{2}$$

$$=0.658\sqrt{\frac{2\cdot 1,25}{1,25-1}\left[1-\left(\frac{0,05\cdot 10^{6}}{4\cdot 10^{6}}\right)^{\frac{1,25-1}{1,25}}\right]}+\\ +\frac{0,023\cdot 0,05\cdot 10^{6}}{0,99\cdot 0,98\cdot 2,827\cdot 10^{-3}\cdot 4\cdot 10^{6}}=1,693;$$

$$P = \mathbf{\phi}_1 \mathbf{\phi}_{\mathrm{c}} F_{\mathrm{Kp}} p_{\mathrm{K}} \mathbf{\Phi} \left[\frac{p_{\mathrm{a}}}{p_{\mathrm{K}}} \right] - F_{\mathrm{a}} p_{\mathrm{H}} =$$

$$= 0.99 \cdot 0.98 \cdot 2.827 \cdot 10^{-3} \cdot 4 \cdot 10^{6} \cdot 1.693 - 0.023 \cdot 0.05 \cdot 10^{6} = 1.745 \cdot 10^{4} H = 17.45 \text{ kH};$$

$$f_{1}^{*} = \sqrt{\frac{2k}{k-1} \left[1 - \left(\frac{p_{a}}{p_{\kappa}}\right)^{\frac{k-1}{k}}\right]} =$$

$$= \sqrt{\frac{2 \cdot 1,25}{1,25 - 1} \left[1 - \left(\frac{0,05 \cdot 10^6}{4 \cdot 10^6} \right)^{\frac{1,25 - 1}{1,25}} \right]} = 2,416;$$

$$f_{+}^{*} = \frac{\left(\frac{p_{a}}{p_{K}}\right)^{\frac{k-1}{k}}}{f_{+}^{*2} + \left(\frac{p_{a}}{p_{K}}\right)^{\frac{k-1}{k}}} = \frac{\left(\frac{0.05 \cdot 10^{6}}{4 \cdot 10^{6}}\right)^{\frac{1.25-1}{1.25}}}{2.416 + \left(\frac{0.05 \cdot 10^{6}}{4 \cdot 10^{6}}\right)^{\frac{1.25-1}{1.25}}} = 0.067;$$

$$a = \frac{P + p_{H}F_{a}}{P} = \frac{1.745 \cdot 10^{4} + 0.05 \cdot 10^{6} \cdot 0.023}{1.745 \cdot 10^{4}} = 1.065;$$

$$b = \frac{p_{H}F_{a}}{P} = \frac{0.05 \cdot 10^{6} \cdot 0.023}{1.745 \cdot 10^{4}} = 0.065.$$
Случайные отклонення параметров камеры сгорания, соплового блока и заряда твердого топлива от номинальных значений:
$$\delta F_{r.c.r} = 0.008 \text{ (дано)};$$

$$\delta \rho_{r.c.r} = 0.008 \text{ (дано)};$$

$$\delta u_{c.n} = \delta u_{1c.n} + \delta u_{2c.n};$$

$$\delta u_{1c.n} = 0.03 \text{ (дано)};$$

$$\delta u_{2c.n} = \frac{\Delta T}{B} = \frac{3}{340} = 8.824 \cdot 10^{-3};$$

$$\delta u_{c.n} = 0.03 + 8.824 \cdot 10^{-3} \approx 0.039;$$

$$\delta (R_{K}T_{K})_{c.n} = 0.01 \text{ (дано)};$$

$$\delta (R_{K}T_{K})_{2c.n} = m\Delta T = 3 \cdot 10^{-4} \cdot 3 = 9 \cdot 10^{-4};$$

$$\delta (R_{K}T_{K})_{2c.n} = m\Delta T = 3 \cdot 10^{-4} \cdot 3 = 9 \cdot 10^{-4};$$

$$\delta (R_{K}T_{K})_{2c.n} = 0.001 + 9 \cdot 10^{-4} \approx 0.011;$$

$$\delta \chi_{c.n} = 0.002$$

$$\delta \varphi_{c} = 0.002$$

$$\delta \varphi_{c} = 0.002$$

$$\delta F_{a} = 0.03 - \text{имеет только случайный характер};$$

$$\delta F_{Kp.c.n} = \delta F_{Kp.c.n1} + \delta F_{Kp.c.n2} + \delta F_{Kp.c.n3};$$

$$\delta F_{Kp.c.n} = \delta F_{Kp.c.n1} + \delta F_{Kp.c.n2} + \delta F_{Kp.c.n3};$$

$$\delta F_{Kp.c.n} = \frac{2\Delta d_{Kp}}{d_{Kp}} = \frac{2 \cdot 0.03 \cdot 10^{-3}}{60 \cdot 10^{-3}} = 1 \cdot 10^{-3};$$

$$\delta F_{Kp.c.n} = 3 \text{ (дано)};$$

$$\delta \Phi_{C.n} = (-\delta \varphi_{1} - \delta \varphi_{c} - \delta F_{Kp.c.n} + \delta F_{a}) f_{4}^{*} = (-0.002 - 0.002 - 1 \cdot 10^{-3} + 0.03) \cdot 0.067 = 1.664 \cdot 10^{-3};$$

$$\Phi \Phi_{C.n} = (-\delta \Phi_{C.n} + 1 = 1.664 \cdot 10^{-3} + 1 \approx 1.002.$$

Предельные случайные отклонения, вызванные случайными отклонениями параметров камеры сгорания, соплового блока и заряда, определяем по формулам (10), (11), (12):

$$\begin{split} &\delta\Phi_{\text{cn}}^{\text{прел}} = f_4^* \sqrt{\delta\varphi_1^2 + \delta\varphi_c^2 + \delta F_{\text{kp.cn}}^2 + \delta F_a^2} = \\ &= 0.067 \sqrt{0.002^2 + 0.002^2 + (1 \cdot 10^{-3})^2 + 0.03^2} = 2.637 \cdot 10^{-3}; \\ &\delta p_{\text{k.cn}}^{\text{прел}} = \frac{1}{1 - \nu} \left[\delta\rho_{\text{t.cn}}^2 + \delta u_{\text{cn}}^2 + \delta F_{\text{r.cn}}^2 + \left(\frac{1}{2} \delta\chi \right)^2 + \right. \\ &+ \left. \left(\frac{1}{2} \delta \left(R_{\text{k}} T_{\text{k}} \right)_{\text{cn}} \right)^2 + \delta\varphi_c^2 + \delta F_{\text{kp.cn}}^2 \right]^{1/2} = \\ &= \frac{1}{1 - 0.53} \left[0.006^2 + 0.039^2 + 0.008^2 + \left(\frac{1}{2} \cdot 0.002 \right)^2 + \right. \\ &+ \left. \left(\frac{1}{2} \cdot 0.011 \right)^2 + 0.002^2 + \left(1 \cdot 10^{-3} \right)^2 \right]^{1/2} = 0.086; \\ &\delta \dot{m}_{\text{cn}}^{\text{прел}} = \frac{1}{1 - \nu} \left[\delta\rho_{\text{t.cn}}^2 + \delta u_{\text{cn}}^2 + \delta F_{\text{r.cn}}^2 + \left(\frac{\nu}{2} \delta\chi \right)^2 + \right. \\ &+ \left. \left(\frac{\nu}{2} \delta \left(R_{\text{k}} T_{\text{k}} \right)_{\text{cn}} \right)^2 + \delta\varphi_c^2 + \left(\nu \delta F_{\text{kp.cn}} \right)^2 \right]^{1/2} = \\ &= \frac{1}{1 - 0.53} \left[0.006^2 + 0.039^2 + 0.008^2 + \left(\frac{0.53}{2} \cdot 0.002 \right)^2 + \right. \\ &+ \left. \left(\frac{0.53}{2} \cdot 0.011 \right)^2 + 0.002^2 + \left(0.53 \left(1 \cdot 10^{-3} \right) \right)^2 \right]^{1/2} = 0.086; \\ &\delta P_{\text{cn}}^{\text{npen}} = \left[a^2 \left(\delta\varphi_1^2 + \delta\varphi_c^2 + \left(\delta p_{\text{k.cn}}^{\text{npen}} \right)^2 + \delta F_{\text{kp.cn}}^2 + \left(\delta \Phi_{\text{cn}}^{\text{npen}} \right)^2 \right) + \\ &+ b^2 \delta F_a^2 \right]^{1/2} = \left[1.065^2 \cdot \left(0.002^2 + 0.002^2 + 0.086^2 + \right. \\ &+ \left. \left(1 \cdot 10^{-3} \right)^2 + \left(2.637 \cdot 10^{-3} \right)^2 \right) + 0.065^2 \cdot 0.03^2 \right]^{1/2} = 0.092. \end{split}$$

Отклонения, вызванные неслучайными отклонениями параметров камеры сгорания, соплового блока и заряда, определяем следующим образом.

 $ar{u}_{1\, ext{min}}=rac{B}{B-(T_{ ext{min}}-T_{ ext{H}})}=rac{340}{340-(-10-20)}=0,\!919;$ $ar{u}_{1\, ext{max}}=rac{B}{B-(T_{ ext{max}}-T_{ ext{H}})}=rac{340}{340-(30-20)}=1,\!03;$

$$\delta \dot{m}_{u}^{\min} = [\bar{u}_{1 \min}]^{\frac{1}{1-\nu}} - 1 = [0.919]^{\frac{1}{1-0.53}} - 1 = -0.165;$$

$$\delta \dot{m}_{u}^{\max} = [\bar{u}_{1 \max}]^{\frac{1}{1-\nu}} - 1 = [1.03]^{\frac{1}{1-0.53}} - 1 = 0.066;$$

 $\delta p_{\kappa u}^{\min} = [\bar{u}_{1 \min}]^{\frac{1}{1-\nu}} - 1 = [0.919]^{\frac{1}{1-0.53}} - 1 = -0.165;$

 $\delta p_{\kappa u}^{\text{max}} = [\bar{u}_{1 \text{ max}}]^{\frac{1}{1-\nu}} - 1 = [1,03]^{\frac{1}{1-0,53}} - 1 = 0,066;$

$$= \left([0,919]^{\frac{1}{1-0,53}} - 1 \right) (1+0,065) - 1 = -1,175;$$

$$\delta P_u^{\text{max}} = \left([\bar{u}_{1\,\text{max}}]^{\frac{1}{1-\nu}} - 1 \right) (1+b) - 1 =$$

 $\delta P_u^{\min} = \left(\left[\bar{u}_{1 \min} \right]^{\frac{1}{1-\nu}} - 1 \right) (1+b) - 1 =$

 $\delta u_{1 \min} = \bar{u}_{1 \min} - 1 = 0.919 - 1 = -0.081;$ $\delta u_{1 \max} = \bar{u}_{1 \max} - 1 = 1.03 - 1 = 0.03;$

$$= \left([1,03]^{\frac{1}{1-0.53}} - 1 \right) (1+0.065) - 1 = -0.93.$$

2. Определяем отклонения из-за разных партий

 $\delta u_{1\text{HC}\pi} = 0.04; \quad \bar{u}_{1\text{HC}\pi} = \delta u_{1\text{HC}\pi} + 1 = 0.04 + 1 = 1.04;$ $\bar{p}_{\text{K}T_{\text{H}}} = [\bar{u}_{1\text{HC}\pi}]^{\frac{1}{1-\nu}} = [1.04]^{\frac{1}{1-0.53}} = 1.087;$

$$\begin{split} &\delta p_{\text{\tiny K}T_{\text{\tiny H}}} = \bar{p}_{\text{\tiny K}T_{\text{\tiny H}}} - 1 = 1,087 - 1 = 0,087; \\ &\bar{m}_{T_{\text{\tiny H}}} = [\bar{u}_{1\text{\tiny HCJ}}]^{\frac{1}{1-\nu}} = [1,04]^{\frac{1}{1-0,53}} = 1,087; \\ &\delta \dot{m}_{T_{\text{\tiny H}}} = \bar{m}_{T_{\text{\tiny H}}} - 1 = 1,087 - 1 = 0,087; \end{split}$$

$$\begin{split} \bar{P}_{T_{\rm H}} &= (1+b) \left[\bar{u}_{1_{\rm HCJ}} \right]^{\frac{1}{1-\nu}} - b = \\ &= (1+0,065) \left[1,04 \right]^{\frac{1}{1-0,53}} - 0,065 = 1,093; \\ \delta P_{T_{\rm H}} &= \bar{P}_{T_{\rm H}} - 1 = 1,087 - 1 = 0,093. \end{split}$$

3. Отклонения из-за изменения площади критического сечения за счет теплового расширения вкладыша. $\tau=8\,\mathrm{c};\;T_{\mathrm{K}}=0.95\,T^*=0.95\cdot2400=2280\,\mathrm{K};$

$$T_{ ext{вк}}^{ ext{max}} = rac{2}{k+1} T_{ ext{k}} = rac{2}{1,25+1} \cdot 2280 = 2027 \, ext{K},$$
 тогда $a = rac{1}{7} \ln \left[20 \left(1 - rac{T_{ ext{H}}}{T^{ ext{max}}}
ight)
ight] = rac{1}{8} \ln \left[20 \left(1 - rac{293}{2027}
ight)
ight] = 0,355.$

Находим изменение температуры вкладыша в интервале времени 0...40 с и приводим коэффициент линейного расширения для соответствующих температур для вольфрамового вкладыша (табл. 1.1): $T_{\rm BK} = T_{\rm BK}^{\rm max} - e^{-a\tau} \left(T_{\rm BK}^{\rm max} - T_{\rm H} \right)$.

Таблица 1.1

		1 иолица 1.1
τ, c	$T_{\scriptscriptstyle m BK},^{\circ}{ m C}$	$lpha \cdot 10^6$, 1/град
0,0	293	4,45
1,0	811	4,80
2,0	1174	5,18
4,0	1608	6,22
6,0	1821	6,72
8,0	1925	7,26
10,0	1977	7,26
40,0	2027	7,26

$$\begin{split} \bar{F}_{\text{Kp}t_{\text{K}}} &= [1 + \alpha \left(T_{\text{BK}} - T_{\text{H}} \right)]^{2}; \\ \delta F_{\text{Kp}t_{\text{K}}} &= \bar{F}_{\text{Kp}t_{\text{K}}} - 1; \\ \bar{p}_{\text{K}t_{\text{K}}} &= \left[\frac{1}{\bar{F}_{\text{Kp}t_{\text{K}}}} \right]^{\frac{1}{1 - \nu}}; \\ \delta p_{\text{K}t_{\text{K}}} &= \bar{p}_{\text{K}t_{\text{K}}} - 1; \\ \bar{\dot{m}}_{t_{\text{K}}} &= \left[\frac{1}{\bar{F}_{\text{Kp}t_{\text{K}}}} \right]^{\frac{1}{1 - \nu}}; \\ \delta \dot{m}_{t_{\text{K}}} &= \dot{m}_{t_{\text{K}}} - 1; \\ \bar{P}_{t_{\text{K}}} &= (1 + b) \left[\frac{1}{\bar{F}_{\text{Kp}t_{\text{K}}}} \right]^{\frac{1}{1 - \nu}} \bar{\Phi}_{\text{CJ}} - b; \\ \delta P_{t_{\text{K}}} &= \bar{P}_{t_{\text{K}}} - 1. \end{split}$$

τ, c	$\overline{F}_{\mathtt{Kp}t_\mathtt{K}}$	$\delta F_{\mathrm{\kappa}\mathrm{p}t_{\mathrm{\kappa}}}$	$\overline{p}_{\mathbf{k}t_{\mathbf{k}}}$	$\delta p_{{\scriptscriptstyle{\mathbf{K}}}t_{{\scriptscriptstyle{\mathbf{K}}}}}$	$\overline{\dot{m}}_{t_{\mathtt{k}}}$	$\delta \overline{\dot{m}}_{t_{\kappa}}$	$\overline{P}_{t_{\kappa}}$	$\delta P_{t_{\kappa}}$
0,0	1,000	0,000	1,000	0,000	1,000	0,000	1,000	0,000
1,0	1,005	0,005	0,989	-0,011	0,989	-0,011	0,991	-0,009
2,0	1,009	0,009	0,981	-0,019	0,981	-0,019	0,982	-0,018
4,0	1,016	0,016	0,967	-0,033	0,967	-0,033	0,966	-0,034
6,0	1,021	0,021	0,957	-0,043	0,957	-0,043	0,956	-0,044
8,0	1,024	0,024	0,951	-0,049	0,951	-0,049	0,949	-0,051
10,0	1,025	0,025	0,949	-0,051	0,949	-0,051	0,947	-0,053
40,0	1,026	0,026	0,947	-0,053	0,947	-0,053	0,946	-0,054

- 4. Отклонения, вызванные разгаром сопла, равны нулю (поскольку $v=0;~\Delta v=0$): $\delta p_{\kappa v}=0;~\delta \dot{m}_v=0;~\delta P_v=0.$
- 5. Определяем по формулам (19)—(24) предельные отклонения основных параметров двигателя:

```
\begin{array}{l} \tau=0 \text{ c}; \\ \delta p_{_{\rm K}\Sigma}^{\rm max}=0.086+0.066+0.087+0+0=0.239; \\ \delta p_{_{\rm K}\Sigma}^{\rm min}=-0.086-0.165-0.087+0+0=-0.338; \\ \delta \dot{m}_{_{\rm \Sigma}}^{\rm max}=0.086+0.066+0.087+0+0=0.239; \\ \delta \dot{m}_{_{\rm \Sigma}}^{\rm min}=-0.086-0.165-0.087+0+0=-0.338; \\ \delta P_{_{\rm \Sigma}}^{\rm min}=-0.086-0.165-0.087+0+0=0.257; \\ \delta P_{_{\rm \Sigma}}^{\rm max}=0.092+0.07+0.093+0+0=0.257; \\ \delta P_{_{\rm \Sigma}}^{\rm min}=-0.092-0.175-0.093+0+0=-0.359; \end{array}
```

```
\begin{array}{l} \mathbf{t}=1\ \mathbf{c};\\ \delta p_{\mathrm{k}\Sigma}^{\mathrm{max}}=0.086+0.066+0.087-0.011+0=0.228;\\ \delta p_{\mathrm{k}\Sigma}^{\mathrm{min}}=-0.086-0.165-0.087-0.011+0=-0.348;\\ \delta \dot{m}_{\Sigma}^{\mathrm{max}}=0.086+0.066+0.087-0.011+0=-0.228;\\ \delta \dot{m}_{\Sigma}^{\mathrm{min}}=-0.086-0.165-0.087-0.011+0=-0.348;\\ \delta \dot{p}_{\Sigma}^{\mathrm{min}}=-0.086-0.165-0.087-0.011+0=-0.348;\\ \delta P_{\Sigma}^{\mathrm{max}}=0.092+0.07+0.093-0.009+0=0.245;\\ \delta P_{\Sigma}^{\mathrm{min}}=-0.092-0.175-0.093-0.009+0=-0.37 \end{array} и т. д.
```

Таблица 1.3

_	$\delta p_{_{\mathbf{K}}\Sigma}^{\mathrm{max}}$	$\delta \dot{m}_{\Sigma}^{ m max}$	$\delta P_{\Sigma}^{ m max}$
τ, c	$\delta p_{_{ extbf{K}}\Sigma}^{ ext{min}}$	$\delta \dot{m}_{\Sigma}^{ m min}$	$\delta P_{\Sigma}^{ m min}$
0	0,239	0,239	0,257
	-0,338	-0,338	-0,359
1	0,228	0,228	0,245
	-0,348	-0,348	-0,370
2	0,220	0,220	0,236
	-0,357	-0,357	-0,379
4	0,205	0,205	0,221
	-0,371	-0,371	-0,394
6	0,195	0,195	0,210
	-0,381	-0,381	-0,405
8	0,189	0,189	0,204
	-0,387	-0,387	-0,411
10	0,187	0,187	0,202
	-0,389	-0,389	-0,413
40	0,186	0,186	0,201
	-0,390	-0,390	-0,415

Пример 2. Определить предельные отклонения основных параметров РДТТ с учетом разгара критического сечения сопла.

Исходные данные

- а) Характеристики заряда, камеры сгорания и внешних условий те же, что и в примере 1, кроме $\tau=10\,\mathrm{c};$
- б) Характеристики соплового блока те же, что и в примере 1, кроме следующих:

материал вкладыша — пластмасса;

$$v = 0,25 \text{ mm/c} = 0,25 \cdot 10^{-3} \text{ m/c};$$

$$\delta v = \pm 2\% = 0.02$$
.

Порядок расчета

Расчет проводим аналогично примеру 1 до определения $\delta F_{\rm kp.cn}$. Далее определим:

 $\delta F_{\text{кр.сл}} = \delta F_{\text{кр.сл1}} + \delta F_{\text{кр.сл2}} + \delta F_{\text{кр.сл3}};$

$$\begin{split} &\delta F_{\text{кр.сл}} = \frac{4\Delta v}{d_{\text{кр}}^*} \tau = \frac{4\cdot 5\cdot 10^{-6}}{0.03\cdot 10^{-3}} \cdot 10 = 3,333\cdot 10^{-3};\\ &\delta F_{\text{кр.сл}3} = 0;\\ &\delta F_{\text{кр.сл}} = 4,333\cdot 10^{-3};\\ &\delta T_{\text{HC}\Pi} = 3 \text{ (дано)};\\ &\delta \Phi_{\text{сл}} = (-\delta \phi_1 - \delta \phi_\text{c} - \delta F_{\text{кр.сл}} + \delta F_\text{a}) \, f_4^* =\\ &= \left(-0,002 - 0,002 - 4,333\cdot 10^{-3} + 0,03\right)\cdot 0,067 = 1,442\cdot 10^{-3};\\ &\bar{\Phi}_{\text{сл}} = \delta \Phi_{\text{сл}} + 1 = 1,664\cdot 10^{-3} + 1 \approx 1,001. \end{split}$$
 Предельные случайные отклонения, вызванные случайными отклонениями параметров камеры сгорания, соплового блока и заряда:
$$\delta \Phi_{\text{сл}}^{\text{пред}} = f_4^* \sqrt{\delta \phi_1^2 + \delta \phi_\text{c}^2 + \delta F_{\text{кр.сл}}^2 + \delta F_\text{a}^2} =\\ &= 0,067 \sqrt{0,002^2 + 0,002^2 + (4,333\cdot 10^{-3})^2 + 0,03^2} = 2,026\cdot 10^{-3};\\ &\delta p_{\text{к.сл}}^{\text{пред}} = \frac{1}{1 - \nu} \left[\delta \rho_{\text{т.сл}}^2 + \delta u_{\text{сл}}^2 + \delta F_{\text{г.сл}}^2 + \left(\frac{1}{2}\delta \chi\right)^2 + \left(\frac{1}{2}\delta \left(R_{\text{к}} T_{\text{к}}\right)_{\text{сл}}\right)^2 + \frac{1}{2} \left(\frac{1}{2}\delta \left(R_{\text{k}} T_{\text{k}}\right)_{\text{сл}}\right)^2 + \frac{1}{2} \left(\frac{1}{2}\delta \left(R_{\text{k}} T_{\text{k}}\right)_{\text{сл}}\right)^2 + \frac{1}{2} \left(\frac{1}{2}\delta \left(R_{\text{k}} T_{\text{k}}\right)_{\text{cл}}\right)^2 + \frac{1}{2} \left(R_{\text{k}} T_{\text{k}}\right)^2 +$$

 $\delta F_{\text{\tiny KP.C} \Pi 1} = \frac{2\Delta d_{\text{\tiny KP}}}{d_{\text{\tiny KP.}}^*} = \frac{2 \cdot 0.03 \cdot 10^{-3}}{60 \cdot 10^{-3}} = 1 \cdot 10^{-3};$

 $\Delta v = \delta v = 0.02 \cdot 0.25 \cdot 10^{-3} = 5 \cdot 10^{-6};$

 $\left. + \delta \phi_{\rm c}^2 + \delta F_{\rm kp.ch}^2 \right]^{1/2} = \frac{1}{1-0.53} \bigg[0.006^2 + 0.039^2 + 0.008^2 + 0.$ $+ \left(\frac{1}{2} \cdot 0{,}002\right)^2 + \left(\frac{1}{2} \cdot 0{,}011\right)^2 + 0{,}002^2 + \left(4{,}333 \cdot 10^{-3}\right)^2 \bigg]^{1/2} =$ = 0.087; $\delta \dot{m}_{ ext{c.f.}}^{ ext{пред}} = rac{1}{1- extstyle
otag} \left| \delta
ho_{ ext{ iny T.C.f.}}^2 + \delta u_{ ext{c.f.}}^2 + \delta F_{ ext{ iny F.C.f.}}^2 + \left(rac{ extstyle
u}{2} \delta \chi
ight)^2 +
ight.$

 $+\left(rac{\mathrm{v}}{2}\delta\left(R_{\mathrm{k}}T_{\mathrm{k}}
ight)_{\mathrm{c}\mathrm{n}}
ight)^{2}+\delta\varphi_{\mathrm{c}}^{2}+\left(\mathrm{v}\delta F_{\mathrm{kp.cn}}
ight)^{2}
ight]^{1/2}=$ $= \frac{1}{1 - 0.53} \left[0.006^2 + 0.039^2 + 0.008^2 + \left(\frac{0.53}{2} \cdot 0.002 \right)^2 + \right.$

 $+\left(\frac{0.53}{2}\cdot 0.011\right)^{2}+0.002^{2}+\left(0.53\cdot \left(4.333\cdot 10^{-3}\right)\right)^{2}\right]^{1/2}=0.086;$ $=\sqrt{a^2\left(\delta\phi_1^2+\delta\phi_{\mathrm{c}}^2+(\delta p_{\mathrm{k.c.}}^{\mathrm{пред}})^2+\delta F_{\mathrm{kp.c.}}^2+(\delta\Phi_{\mathrm{c.}}^{\mathrm{пред}})^2\right)+b^2\delta F_{\mathrm{a}}^2}=$

$$\begin{split} & = \bigg[1,\!065^2 \Big(0,\!002^2 + 0,\!002^2 + 0,\!086^2 + (4,\!333 \cdot 10^{-3})^2 + \\ & + (2,\!026 \cdot 10^{-3})^2\Big) + 0,\!065^2 \cdot 0,\!03^2\bigg]^{1/2} = 0,\!093. \end{split}$$

Отклонения, вызванные неслучайными изменениями параметров камеры сгорания, соплового блока и заряда, определяем следующим образом.

Расчет проводим аналогично примеру 1 до п. 3.

- 3. Тепловым расширением пренебрегаем: $\delta p_{{
 m k}t_{
 m k}}=0;\; \delta \dot{m}_{t_{
 m k}}=0;\; \delta P_{t_{
 m k}}=0;$
 - 4. Отклонения, вызванные разгаром сопла:

$$\begin{split} \bar{F}_{\mathrm{Kp}v} &= \left(1 + \frac{2v\tau}{d_{\mathrm{Kp}}^*}\right)^2; \\ \delta F_{\mathrm{Kp}v} &= \bar{F}_{\mathrm{Kp}v} - 1; \\ \bar{p}_{\mathrm{K}v} &= \left[\frac{1}{\bar{F}_{\mathrm{Kp}v}}\right]^{\frac{1}{1-v}}; \\ \delta p_{\mathrm{K}v} &= \bar{p}_{\mathrm{K}v} - 1; \\ \bar{m}_v &= \left[\frac{1}{\bar{F}_{\mathrm{Kp}v}}\right]^{\frac{1}{1-v}}; \\ \delta \dot{m}_v &= \dot{\bar{m}}_v - 1; \\ \bar{P}_v &= (1+b) \left[\frac{1}{\bar{F}_{\mathrm{Kp}v}}\right]^{\frac{1}{1-v}} \bar{\Phi}_{\mathrm{C}\pi} - b; \\ \delta P_v &= \bar{P}_v - 1. \end{split}$$

Сведем результаты в табл. 2.1.

Таблица 2.1

τ, c	$\overline{F}_{\mathrm{\kappa}\mathrm{p}v}$	$\delta F_{\mathrm{\kappa p}v}$	$\overline{p}_{{\scriptscriptstyle \mathrm{K}} v}$	$\delta p_{{ ext{ iny K}}v}$	$\overline{\dot{m}}_v$	$\delta \overline{\dot{m}}_v$	\overline{P}_v	δP_v
0,0	1,000	0,000	1,000	0,000	1,000	0,000	1,000	0,000
2,0	1,034	0,034	0,932	-0,068	0,932	-0,068	0,929	-0,071
4,0	1,068	0,068	0,870	-0,130	0,870	-0,130	0,863	-0,137
6,0	1,103	0,103	0,813	-0,187	0,813	-0,187	0,802	-0,198
8,0	1,138	0,138	0,760	-0,240	0,760	-0,240	0,745	-0,255
10,0	1,174	0,174	0,711	-0,289	0,711	-0,289	0,694	-0,306

5. Определяем по формулам (19)—(24) предельные отклонения основных параметров двигателя:

$$\tau = 0 c$$
;

$$\begin{split} \delta p_{\kappa\Sigma}^{\text{max}} &= 0.087 + 0.066 + 0.087 + 0 + 0 = 0.24; \\ \delta p_{\kappa\Sigma}^{\text{min}} &= -0.087 - 0.165 - 0.087 + 0 + 0 = -0.339; \\ \delta \dot{m}_{\Sigma}^{\text{max}} &= 0.086 + 0.066 + 0.087 + 0 + 0 = 0.239; \\ \delta \dot{m}_{\Sigma}^{\text{min}} &= -0.086 - 0.165 - 0.087 + 0 + 0 = -0.338; \\ \delta P_{\Sigma}^{\text{max}} &= 0.093 + 0.07 + 0.093 + 0 + 0 = 0.257; \\ \delta P_{\Sigma}^{\text{min}} &= -0.093 - 0.175 - 0.093 + 0 + 0 = -0.36; \end{split}$$

$$\tau = 2 c$$
;

$$\begin{split} &\delta p_{\kappa\Sigma}^{\max} = 0.087 + 0.066 + 0.087 + 0 - 0.068 = 0.172; \\ &\delta p_{\kappa\Sigma}^{\min} = -0.087 - 0.165 - 0.087 + 0 - 0.068 = -0.407; \\ &\delta \dot{m}_{\Sigma}^{\max} = 0.086 + 0.066 + 0.087 + 0 - 0.068 = 0.171; \\ &\delta \dot{m}_{\Sigma}^{\min} = -0.086 - 0.165 - 0.087 - 0.011 + 0 = -0.406; \\ &\delta P_{\Sigma}^{\max} = 0.092 + 0.07 + 0.093 + 0 - 0.071 = 0.185; \\ &\delta P_{\Sigma}^{\min} = -0.092 - 0.175 - 0.093 + 0 - 0.071 = -0.432 \end{split}$$

ит.д.

Результаты расчета сводим в табл. 2.2.

Таблица 2.2

τ, c	$\delta p_{_{\mathbf{K}\Sigma}}^{\mathrm{max}}$	$\delta \dot{m}_{\Sigma}^{ m max}$	$\delta P_{\Sigma}^{ m max}$
	$\delta p_{_{ ext{K}}\Sigma}^{ ext{min}}$	$\delta \dot{m}_{\Sigma}^{ m min}$	$\delta P_{\Sigma}^{ m min}$
0	0,240	0,239	0,257
	-0,339	-0,338	-0,360
2	0,172	0,171	0,185
	-0,407	-0,406	-0,432
4	0,109	0,108	0,118
	-0,469	-0,468	-0,499
6	0,052	0,051	0,057
	-0,526	-0,525	-0,560

τ, c	$\delta p_{_{\mathbf{K}}\Sigma}^{\mathrm{max}} \ \delta p_{_{\mathbf{K}}\Sigma}^{\mathrm{min}}$	$\delta \dot{m}_{\Sigma}^{ m max} \ \delta \dot{m}_{\Sigma}^{ m min}$	$\delta P_{\Sigma}^{ m max} \ \delta P_{\Sigma}^{ m min}$
8	-0,00057	-0,00157	0,0012
	-0,57900	-0,57800	-0,6160
10	-0,04900	-0,05000	-0,0510
	-0,62700	-0,62600	-0,6680

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Бабкин А.И., Белов С.В., Рутовский Н.Б., Соловьев Е.В. Основы теории автоматического управления ракетными двигательными установками. М.: Машиностроение, 1978.
- 2. *Белов С.В.* Методическое пособие по выполнению домашнего задания по курсу «Регулирование двигателей». Рукопись (имеется на кафедре 3-1).

ОГЛАВЛЕНИЕ

1. Основные теоретические сведения	3
2. Определение отклонений параметров камеры сгорания, соплового	_
блока и заряда твердого топлива от номинальных значений	5
3. Определение предельных отклонений $p_{\mbox{\tiny K}},$ \dot{m} и $P,$ вызванных слу-	
чайными отклонениями параметров камеры сгорания, соплового	
блока и заряда	10
4. Определение отклонений $p_{\rm k}, \dot{m}$ и $P,$ вызванных неслучайными	
отклонениями параметров камеры сгорания, соплового блока и за-	
ряда	12
5. Определение суммарных предельных отклонений $p_{\kappa},\ \dot{m}$ и P в	
случае нерегулируемого сопла	14
6. Примеры определения суммарных предельных отклонений пара-	
метров РДТТ	15

Список рекомендуемой литературы.....