

TRAILBLAZERS

INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR

TEAM ID - 24102

Estimated Vehicle Cost, Weight & Specs.

Category	Items	Cost (₹)	Components	Weight (kg)	VEHICLE	MEASUREMENT/DIMENSIONS			
			Roll Cage	32	STATISTIC	FRONT		REAR	
Frame	Steel tubes, Sheet metal, Welding Supplies, Rollcage	35,000	batteries	19	S	Length/Dia.	Width	Length/Dia.	Width
	Padding, etc.		Transmission(PMSM motor, Controller, FNR,Speed reduction gear-box, CV joint	30	Overall Vehicle	Length =	71.2"	Width = 63.4"	
Wheels and Tyres	Rims and Tyres	48,000	Shafts)		Track Width	59.0	5"	58.58	"
Suspension	Shocks, Springs, Uprights,Spindles,	30,000	Wheels	34	Wheel Base		61.	02"	
Charles .	A-Arms	19,000	Suspension Assembly(Shocker, wishbone)	24	Ground Clearance	12"		12"	
Steering	Rack & Pinion, Steering Column, Steering Wheel, Tie	19,000	Charing Assessblutes de solumn	16	Wheel/Type	23"	10"	23"	10"
Braking	rods, etc. Calipers, Master	15,000	Steering Assembly(rack, column, steering wheel, tie rod, hub,uprights)	10	Maximum Speed	43km/hr			
DIAKING	Cylinders, Disc, Brake lines, etc.	13,000			Gradeability		88.7	74 %	
Power Train		60,000	Braking Assembly(disc, callipers, brake lines,	10	Stopping Distance	6.874 m			
Safety Equipments	Driver's Suit, Seat Belts, Seat, Fire Extinguishers, Kill Switch, etc.	60,000	master cylinders) Seat & Panels	10	Kerb Weight		180) kg	
Adr. II		F 000	Miscellaneous(fasteners, safety	5	Weight Distribution	40%	6	60%	
Miscellaneous	Fasteners, Brake oil, Gear oil, Electricals, etc.	5,000	equipments, etc.)	J			4.04	21.	
					Sprung Mass		180) kg	
Total		2,72,000	Total	180	Unsprung Mass		80	kg	

MEMBER	OUR SPEC	IFICATIONS		BOOK CATIONS
	Primary Members	Secondary Members	Primary Members	Secondary Members
Material	AISI 4130	AISI 4130	AISI 4130	-
Size(mm)	29.21*1.65	25.4*1.2	25*3	>25.4*0.89
Bending Stiffness	2790.55Nm ²	1371.79Nm²	2619.416Nm²	1056.3Nm²
Bending Strength	428.88Nm	242.374Nm	373.10Nm	150.12Nm

Priorities

- **BAJA Rulebook**
- **Drivers** comfort
- **Drivers Safety**
- Cost to Manufacture
- Lightweight Rollcage

Ergonomic Analysis

- Upper Arm Score=+1
- Lower Arm Score=+1
- Wrist Score=+1
- Neck Score=+1
- Trunk Score=+1
- Leg Score(REBA)=+2
- Leg Score(RULA)=+1
- Force/Load Score=1
- Muscle Score=+1
- Activity Score=+1
- Coupling Score=0

	RULA	REBA
Table A	1	2
Table B	1	1
Table C	2	2
Final Score	2	3

Design Process

*Pictures shown here on Structural Simulation are Deformation pictures and the deformation is scaled for visualization.

INDEX

Force Load

MATERIAL PROPERTIES		
Carbon Content	0.3	
Yield Strength	460 MPa	
Ultimate Strength	560 Mpa	
Percentage Elongation	21.50	
Modulus of Elasticity	205	

	Load case	F.O.S	Von mises Stress(MPa)	Displacement (Max) (mm)
Front Impact	10G	1.52	305.6	3.65
Side Impact	4.5 G	1.091	422.4	8.616
Rollover	3 G	1.752	262.6	3.177
Torsion	2.5 G (M)	1.616	284.4	5.734
Rear Impact	4.5 G	1.811	255.3	7.125

	Mesh type	Element Size	Solver
Structural Simulation	Tetrahedral	7mm	Nastran

FRONT

REAR

SUSPENSIO

PARAMETER

Double A Arm, H-arm with Single Type Damper to Lower Upper Link Roll Centre Height 262.96 mm 343.9 mm CG Height 24" 24" Camber/Toe/Castor -0.25/0.35/0.72° -0.45/0.35/0° Kingpin Inclination 5.11° Scrub Radius 0.537" 0.62 0.58 **Motion Ratio** 2.99 Hz 2.69 Hz Ride Frequency **Spring Rate** 4.884 N/mm 5.189 N/mm 12.705 N/mm Wheel Rate 15.426 N/mm Ride Rate 3.059 N/mm 3.194 N/mm Sprung Mass 36 kg 54 kg

DECISION MATRIX

Types	FRONT (1-10)			REAR (1-10)		
Sub	Macpherson	Double-wish bone	Trailing arm	Semi-trailing	H-arm	Double-wishb one
Size & weight	5	7	3	4	8	7
Wheel control	3	8	8	7	8	9
Independent movement	3	9	5	3	9	9
Stability	3	8	8	6	9	8
Complexity	6	8	4	5	9	8
Total	20	40	28	25	43	39
CONTRACTOR OF THE PROPERTY OF	THE RESERVE OF THE PARTY OF THE		The second second			

Steering Condition

Understeer

STEERING & WHEEL GEOMETRY

12 inches

CENTRALIZ	ED RACK	WHEEL GEOMETRY		
AND PINION	STEERING	Camber Angle	-0.25°	
Wheelbase	1550 mm	Toe Angle	0.35°	
Front-1500mm Rear - 1488mm		Castor Angle	0.72°	
		Castor Offset	4.64 mm	
MIn. Turning Radius	4284.33	Kingpin Angle	5.11°	
Ackermann Percentage	70.06 %	Kingpin Offset	At Wheel - 39.29 mm At Ground - 13.63 mm	

$W_f = 1500 \text{ mm}$	I-	w_f	
$W_r = 1488 \text{ mm}$	δ_i	80	
l = 1550 mm		200	
R = 4284.33 mm	Inner wheel	Oute	
$\delta_o = 17.11^{\circ}$	mace:	· · · · · · · · · · · · · · · · · · ·	_
$\delta_i = 23.68^{\circ}$	7000		
Ackermann perc.= 70.06%		c	
Center of rotation δ_i	R		
•	R_{I}	w _r	

Percentage	. 3.33 /3	rungpin eneet	At Ground	d - 13.63 mm	
Steering Angles	Inner - 23.68°	STEERING SPECIFICATIONS			
	Outer - 17.11°	Steering Column Type		Collapsible	
Rack Length	14 inches	J 71			
Rack Travel	231.96 mm	Tie Rod Length		473.14 mm	
TRACK TRAVEL	201.0011111	Lock to Lock Angle		540°	
Steering Ratio	11.4 : 1				
Steering Effort	74 N	Tie Rod Material		AISI 4340	
<u> </u>		Upright and Whe	el HUb	AI 6061 T6	
Torque on Pinion	11250 N-mm	Material	-		

Steering Wheel Diameter

RAKIN

	6	
, JIH		1111
उत्तिष्टर जार उत्तिष्टर जार बाव व्यक्ति		४% स्टान निसी मा १०४०००

Pedal Force

SPECIFICATIONS

Deceleration

Braking Force

Pedal Ratio Pedal Travel

Brake Pad Area

Mean Braking Radius (front/rear)

0.105m / 0.095m **Coefficient of Friction of Brake Pad** 0.4 9.909 m/s^2

0.2921 m **Static Rolling Radius Static Axle Load(front/rear)** 981 N/ 1471.5 N

Dynamic Axle Load(front/rear) 1863.9 N/588.6 N

VALUES

400

6:1

167.64 mm

706.858 mm²

4954.586 N

Weight Transfer (40 km/hr to 0 km/hr) 99.09 kg (990.9 N)

497.576 Nm/ 452.342 Nm **Brake Torque Applied (Front/Rear)**

326.667 Nm /103.158 Nm **Brake Torque Required (Front/Rear)**

Coefficient of Friction of Road Stopping Distance (40 km/hr to 0 km/hr)

Stonning Time (40 km/hr to 0 km/hr)

6.228 m

0.6

1 212 c

1. Inboards in Rear, Outboards in Front.

2. Front - Rear Applied Braking Force Split (70:30) 3. All wheels of the ATV lock together.

Braking Circuit

BRAKING SYSTEM

PARTICULARS OF BRAKING SYSTEM AND TYRES				
Parts	Quantity	Specifications		
Master Cylinder	2	0.75" dia. & Stroke length – 1.1"		
Brake Caliper	4	30 mm dia.		
Brake Disc	4	220 mm (F)/ 200 mm(R) dia.		
Brake Fluid	-	DOT4		
Tyres	4	BKT 23x10x10		

POWERTRAIN

MOTOR SPECIFICATION

Motor Type	Permanent Magnet Synchronous Motor 48V		Gear Ratio	Power on Wheels(W)	Torq whe	
		Continuous	6	1.11E+04		
Rated Current(A)	95	18.23(Nm)@24 20rpm	7	1.29E+04		
Rated Speed (RPM)	2500±200		8	1.48E+04		
Rated Torque(Nm)	18.23@2420	Max 62.65(Nm)@48	6	7.65E+03		
Output Max	62.65@486	6rpm	7	8.93E+03		
Torque(Nm)			8	1.02E+04		
Continuous Rated Power(Kw)@RPM	4096@2503	Gear material: Tensile Strength:		AISI 4340 745 Mpa 470 MPa 140 GPa 80 GPa		
Max. Power(Kw)@RPM	4619@2420	Yield Strength: Bulk Modulus: Shear Modulus:				
Efficiency(η)	>88%	Hardness, Brinell Thermal Property		217		
Number of Poles	8	Thermal expansion Thermal Conduct		12.3μm/m°C 44.5 W/mK		

44.415

38.07

33.31

8.9

7.64

6.68

43.752

51.044

58.336

150.36

175.41

200.48

149.7331

174.6886

199.6441

514.5791

600.3422

686.1054

FNR SPECIFICATIONS

- **Specification**: 1 module, 20 teeth, bevel gear with 2 x M4 screw holes, 8mm shaft, 1 input shaft drive 2 forward and reverse output shafts (2 output shafts rotating in opposite directions).
- 1:1 Right Angle Bevel Gearbox for Simple DIY Mechanical Application.

MOTOR CONTROLLER SPECIFICATIONS MOTOR CONTROLLER CONNECTION CIRCUIT DIAGRAM

Rated Voltage	48V
Peak Protection DC Current	250A
Rated DC Current	250A
Rated Power	7500W
Under Voltage Protection	42V
Natural cooling Ambient Temperature	20-60 degree C
Throttle Voltage	1V to 4.5V
Ambient Temperature	20-60°C

BATTERY PACK SPECIFICATIONS

Battery Pack:

50V Capacity- 70Ah

Cell Arrangement: 14 Series, 14 Parallel

Total Weight: 20 kg (Approx)

Cell Specification:

26650 5000mAh Cylindrical Li-ion rechargeable cell

Normal voltage: 3.6V

Charging voltage $4.2 \pm 0.05 \, V$

Discharge ending voltage: 2.75±0.05 V Standard charging current: 0.5C(2500mA) Standard discharge current 0.5C(2500mA)

Max recommended charge and discharge cell body temperature

Charge:0~60°C, Discharge:-20~60°C

Weight: 93±3g

GLV SYSTEM & COMPONENTS

	Components	Specification	Components	Specification	
	Ignition Switch or Master Switch	Operating Voltage: 12 V Connector Type: Plug In Actuator Type: Rotatory Weight: 480 g	READY-TO-DRIVE-SOUND (RTDS)	Rated Voltage: 12 VDC Sound Pressure Level: 85 to 95 decibels Max. Current: 10 mA Weight: 3 g	
1	Kill Switch:	Current Rating: 200 A Power/Voltage: 12 V	LV Harness	Harness is made from ISI approved cables of 1 mm ² . Length of LV harness will be supplied: - 3.5 mtrs	
1	Brake Light	Brightness: 100 lm Color: Red			
		Color Temperature: 41 K Operating Wattage: 55 W Operating Voltage: 12 V	HV Harness	HV Harness is made from ISI approved cables of 16 mm ² . Length of HV Harness supplied: - 1.5 mtrs	
	TRACTIVE-SYSTEM-ACTIVE LIGHT (TSAL)	Light Colour: Amber Voltage: 12 V Light Source Type: LED Power:12W IP Rating:IP65 Frequency: 2 Hz	Reverse Alarm	Noise Level: 110 dB Voltage: 12 V Weight: 249 g	

Team

Designing & Simulation

A	ASSEMBLY	FAILURE MODE	CAUSES OF FAILURE	EFFECTS OF FAILURE	S	0	D	RPN	CURRENT DESIGN CONTROL
			,	Frame structure will become prone to failure.			5	36	{P}-Choose material with appropriate/high factor of safety(FOS),effective design and analysis.
जिप्पाल जागाम प्राप्त स्वाम मिक्सिया स्रोत्र का प्राप्त कार्याक्ष स्वाद का प्रश्लेक्षा ज्ञान स्वाद स्वाद का प्रश्लेक्षा स्वाद स्वाद स्वाद स्वाद स्वाद स्वाद क्षेत्रकारी प्रिष्टा एवं पेक्सियों संस्ता, विवयु		-	excess load and impact loading	Driver safety is at risk			7 10	126 200	{D}-Constant testing of the frame under different loads.
	Battery Pack	regime	non-uniformity on the anode	Battery failure			1	80	{P}-current limiters, avoid overcharging{D}-temperature monitoring
		_	pitting corrosion on the cathode Al current collector.	Battery failure			1	80	
4			insufficient cooling	Reduced power output, damage to motor components, and risk of system failure			7	24	{P}-Incorporating thermal management strategies. {D}Use temperature sensors to continuously monitor motor's temperature.
Ξ	Transmission System	_		Gear noise, power loss, total failure of transmission system.			1	17	{P}-Use high quality gears and proper lubrication.{D}-Use vibration sensors to detect unusual vibrations due to damage to gears.
PFM			issues, or sensor failures.	Inability to control the power delivery to motor efficiently, leading to erratic performance.			1	21	{P}-Redundant sensors for critical parameters.{D}-Diagnostic capabilities in the controller to identify issues.
	Steering System	wheel.	Excess load applied by driver.	Inability to control the vehicle.			8	64	{P}-Buying of steering wheel from a reputed manufacturer . Regular testing for the proper working of steering wheel.
	Braking System			Damage to vehicle in undesirable conditions			1	9	{P}-Proper torquing for the fitment using torque wrench {D}-Use of torque meter to ensure proper torquing .
NEA		fluid	Wrong selection of material ,joint dimension ,mismatch in rake pipe and master cylinder.	Braking system failure			2	40	{P}-Simulation for burst pressure ,stress and strain design calculation for flared thread dimension . {D}-Material test dimension measurement + burst pressure measurement +100% part leak test for 200 bar for 30 sec.
DFN		brake pedals due to fatigue	Excess application of load by driver causes axial load to exceed yield strength of material.	Brake failure risking drive's safety			1	10	{P}-Choose material with high FOS and buying the pedal from reputed manufacturer.{D}-Regular testing of proper working of pedals.
		control arms	stress of material due to excess load and impact	Damage to suspension. System and rough Operation or non-operation of the vehicle.			7	112	{P}-Choose material with high FOS and according to vehicle specification; effective design and analysis. {D}-Regular testing of the control arms under different conditions.
TRAILBI AZERS ∡		structural failure	,crushing and tensile stress	Damage to suspension system and rough operation or non-operation of the vehicle			2	32	{P}-choose material with high FOS and according to vehicle specifications. {D}-Regular testing of the Knuckles.
SAE HEST CHAPTER	Wheels		Damage by debris pollution.	•			1	8	{P}-Buying of wheel rims from a reputed manufacturer regular testing of wheel rims.
	S=9	SEVERITY <mark>8 9 10</mark>	O=OCCURRENCE 1	2 D=DETECTION RANKIN	IG R	PN=RISK	PRIORIT	Y NUME	SER {P}Prevention {D}Detection

COMPONENT	DESIGN VALIDATION & TESTING			
	Structural Simulation while designing the chassis			
Frame	Dynamic Crash Simulation in Radioss			
	Welding the rods in CAD for manufacture ability			
Ergonomics	Rapid Upper Limb Assessment / Rapid Entire Body Assessment			
CVT	Modeling CVT of BAJA ATV using MATLAB, Simulink & Simscape			
Brake Disk	Thermal Stress for brakes for testing brake failure			
Suspension	Dynamic Analysis of bump and roll in Lotus Software			
A-Arm & H-Arm	Structural/ Dynamic Analysis for A-Arm and H-Arm			
Upright/Wheel Hub	Structural Simulation for upright and Wheel Hub			
	Creating C.N.C tool paths for manufacturing ability			
Steering	Simulating Steering System using software packages			

Diya Hansda

Arunabh Bagchi

COLLEGE F	OUTSIDE FACILITIES	
CAD/CAM LAB	Drilling Machine	FRP Fabrication
TIG Welding Machine	Cutting Tools	FRP Moulding
Universal Testing Machine	Bench and Hand Grinder	Hydraulic Press Fit
Electric Arc Welding Machine	Vertical Milling Centre (VMC)	Emission Test Equipment
Production lathe	Shaping Machine	Tyre Balancing
		Panel Fabrication

VMC

Milling Machine Lathe Machine

INDEX

Market Analysis

Calculations

Drilling Machine

Shaping Machine

