Решения на примерни теоретични задачи по ДУПРИЛ

Иво Стратев

15 февруари 2018 г.

Съдържание

1	Задача	1.	2
	1.1 a).		2
	1.2 б).		2
	1.3 в).		3
2	Задача	2	3
	2.1 a).		3
	2.2 б).		3
	2.3 B).		4
	2.4 $\Gamma)$.		4
3	Задача	3.	4
4	Задача	4.	5
5	Задача	5.	6
6	Задача	6.	8
7	Задача	7.	9
8	Задача	8.	11
9	Задача	9.	11
10	Задача	10.	12
11	Задача	11	13
12	Задача	12.	14
13	Задача	13.	15
14	Задача	14.	15
15	Задача	15.	16
16	Задача	16.	17
17	Задача	17.	17

18 Задача 18.	18
19 Задача 19.	19
20 Задача 20.	20
21 Задача 21.	20
22 Задача 22	21
23 Задача 23.	22
24 Задача 24.	22

1 Задача 1.

Колко решения има задачата

1.1 a)

$$\begin{cases} y' = x^3 + y^3 \\ y(3) = 3 \end{cases}$$

Решение:

$$x^3 + y^3 \in C^{\infty}(\mathbb{R}^2)$$

Уравнението е от първи ред. Следователно има единствено решение. (от Теоремата за съществуване и единственост).

1.2 б)

$$\begin{cases} y'^2 - 2xyy' = x^2y^2 + 1\\ y(2) = 1 \end{cases}$$

Решение:

Прехвърляме всичко от едната страна и получаваме

$$\begin{cases} F(x, y, y') = y'^2 - 2xyy' - x^2y^2 - 1 = 0\\ y(2) = 1 \end{cases}$$

Проверяваме вида на точка (2, 1). Заместваме в даното уравнение с

$$r=y'(2),\ y(2),\ x=2,$$
 тоест $F(2,\ y(2),\ r)=0$ получаваме

$$r^2 - 2.2.1 \cdot r - 2^2 \cdot 1^2 - 1 = 0 \implies r^2 - 4r - 5 = 0 \implies (r - 5)(r + 1) = 0.$$

Пресмятаме
$$\frac{\partial}{\partial r}F(2, 1, r) = (r^2 - 4r - 5)' = 2r - 4 = 2(r - 2).$$

 $F(2, 1, 2) \neq 0$. Тогава точката е обикновенна и следователно задачата на Коши има точно две решения (от Лемата за редукцията).

1.3 B)

$$\begin{cases} F(x, y, y') = y'^2 - xyy' + x^2 + y = 0\\ y(1) = 2 \end{cases}$$

Решение:

Търсим на колко е равно y'(1). Заместваме $F(1, y(1), y'(1)) = 0 \implies$

$$(y'(1))^2 - 1.2.y'(1) + 1^2 + 2 = 0 \implies (y'(1))^2 - 2.y'(1) + 3 \implies$$

$$D(F(1, y(1), y'(1))) = 4 - 12 = -8 < 0 \implies \neg \exists y'(1).$$

Следователно задачата няма реално решение.

2 Задача 2

Колко са решенията на системата

2.1 a)

$$\begin{cases} y' = xy^2 + 4 \\ y(1) = 2 \\ y'(1) = 3 \end{cases}$$

Решение:

$$3 = y'(1) = 1.y(1)^2 + 4 = 1.2^2 + 4 = 8 \implies 3 = 8 \implies 4$$

Следователно системата няма решение.

2.2 б)

$$\begin{cases} y' = 2y^2 - 5x \\ y(1) = 2 \\ y'(1) = 3 \end{cases}$$

Решение:

$$3 = y'(1) = 2.y(1)^2 - 5.1 = 8 - 5 = 3 \implies 3 = 3$$

Системата

$$\begin{cases} y' = 2y^2 - 5x \\ y(1) = 2 \end{cases}$$

предасталява задача на Коши, която има едно единствено решение. Уловието y'(1) = 3 е изпълнено. Тогава общата система има единствено решение.

3

2.3 B)

$$\begin{cases} y'' = 2xy' + 3y + x \\ y(1) = 2 \\ y'(1) = 3 \end{cases}$$

Решение:

Преобразуваме системата до еквивалентната ѝ

$$\begin{cases} y'' - 2xy' - 3y = x \\ y(1) = 2 \\ y'(1) = 3 \end{cases}$$

-2x, -3, $x \in C^{\infty}(\mathbb{R})$ тогава дадената система представлява задача на Коши за нехомогенно линейно уравнение от втори ред, следователно системата има единствено решение (при това то е глобално).

2.4 r)

$$\begin{cases} y''' = xy'' + (x+1)y \\ y(1) = 2 \\ y'(1) = 3 \end{cases}$$

Решение:

Преобразуваме системата до еквивалентната ѝ

$$\begin{cases} y''' - xy'' - (x+1)y = 0\\ y(1) = 2\\ y'(1) = 3 \end{cases}$$

-x, $-(x+1) \in C^{\infty}(\mathbb{R})$. Уравнението y''' - xy'' - (x+1)y = 0 е линейно уравнение от 3-ти ред. Множеството от решенията му представлява линейно пространство изоморфно на \mathbb{R}^3 . Имаме дадени две начални условия тогава размерността на линейно пространство, съвпадащо с решенията на системата е 3-2=1. Тоест то е изоморфно на цялата реална права следователно системата има безброй много решения (тя е неопределена).

3 Задача 3.

За уравнението

$$(*) \quad y' + y^2 + x^2 = 2xy + 5$$

намерете частно решение $y_1(x)$ от вида ax + b. Уравнение от какъв тип за z(x) се получава след полагането $y(x) = z(x) + y_1(x)$ в (*)?

Решение:

Частното решение $y_1(x) = ax + b$ ще намерим като заместим в даденото уравнение.

$$y'_{1} + y_{1}^{2} + x^{2} = 2xy_{1} + 5 \implies$$

$$y'_{1} + y_{1}^{2} + x^{2} - 2xy_{1} - 5 = 0 \implies$$

$$a + (ax + b)^{2} + x^{2} - 2x(ax + b) - 5 = 0 \implies$$

$$a + a^{2}x^{2} + 2abx + b^{2} + x^{2} - 2ax^{2} - 2bx - 5 = 0 \implies$$

$$(a^{2} - 2a + 1)x^{2} + (2ab - 2b)x + (a + b^{2} - 5) = 0 \implies$$

$$\begin{cases} a^{2} - 2a + 1 = 0 \\ 2(ab - b) = 0 \\ a + b^{2} - 5 = 0 \end{cases} \implies \begin{cases} a = 1 \\ b = bb^{2} = 4 \end{cases} \implies \begin{cases} a = 1 \\ b = \pm 2 \end{cases}$$

Избираме $y_1(x) = x + 2$. Правим смяната $y(x) = z(x) + y_1(x) = z(x) + x + 2$

Получаваме
$$(z(x) + x + 2)' + (z(x) + x + 2)^2 + x^2 = 2x(z(x) + x + 2) + 5 \implies$$

$$z'(x) + 1 + z^{2}(x) + 2(x+2)z(x) + x^{2} + 4x + 4 + x^{2} = 2xz(x) + 2x^{2} + 4x + 5$$

 $z'(x) + z^2(x) + 2z(x) = 0 \implies z' = z^2 + 2z$. Това е уравнение с разделящи се променливи, понеже не зависи от x, както и Бернулиево за $\alpha(x) = 2$ и $\beta(x) = 1$. $(z' = \alpha z + \beta z^2)$.

4 Задача 4.

Дадено е уравнението

$$(**) \quad y' = \frac{x + 2y + 1}{2x + y - 1}$$

а) Намерете пресечната точка (a, b) на двете прави Решение:

$$\begin{cases} x + 2y + 1 = 0 \\ 2x + y - 1 = 0 \end{cases}$$

Решение:

$$\begin{cases} x + 2y + 1 = 0 \\ 2x + y - 1 = 0 \end{cases} \implies \begin{cases} x = -2y - 1 \\ -3y - 3 = 0 \end{cases} \implies \begin{cases} x = -2y - 1 \\ y = -1 \end{cases} \implies \begin{cases} x = 1 \\ y = -1 \end{cases}$$

б) Уравнение от какъв вид се получава за z(t) = y(x - a) - b, като направите смяната на променливите x = t + a и y = z + b в (**)?

Решение:

Правим смяната

$$\begin{cases} x = t + 1 \\ y = z - 1 \end{cases}$$

и заместваме в (**)

$$(z-1)' = \frac{(t+1) + 2(z-1) + 1}{2(t+1) + (z-1) - 1} \implies$$

$$z' = \frac{t + 2z}{2t + z} = \frac{t\left(1 + 2\frac{z}{t}\right)}{t\left(2 + \frac{z}{t}\right)} = \frac{1 + 2\frac{z}{t}}{2 + \frac{z}{t}}$$

Вида на полученото уравнение е хомогенно. След полагане на p=zt се получава уравнение с разделящи се променливи.

5 Задача 5.

Дадена е задачата на Коши

$$\begin{cases} y' = a(x)y + b(x) \\ y(0) = y_0 \end{cases}$$

където $y_0 \in \mathbb{R}$, а коефициентите a(x) и b(x) са непрекъснати функции в интервала (-6, 6). Проверете, че функцията

$$y(x) = e^{\int_0^x a(t) dt} \left(y_0 + \int_0^x b(t)e^{-\int_0^t a(s) ds} dt \right)$$

е решение на задачата на Коши в интервала (-6, 6).

Решение:

Първо ще проверим, че дадената функция изпълнява условието

$$y(x)' = a(x)y(x) + b(x)$$

за целта я диференцираме и получаваме

$$y(x)' = \left[e^{\int_0^x a(t) \, dt} \left(y_0 + \int_0^x b(t) e^{-\int_0^t a(s) \, ds} \, dt \right) \right]' =$$

$$= \left(e^{\int_0^x a(t) \, dt} \right)' \left(y_0 + \int_0^x b(t) e^{-\int_0^t a(s) \, ds} \, dt \right)$$

$$+ e^{\int_0^x a(t) \, dt} \left(y_0 + \int_0^x b(t) e^{-\int_0^t a(s) \, ds} \, dt \right)' =$$

$$= \left(\int_0^x a(t) \, dt \right)' e^{\int_0^x a(t) \, dt} \left(y_0 + \int_0^x b(t) e^{-\int_0^t a(s) \, ds} \, dt \right)$$

$$+ e^{\int_0^x a(t) \, dt} \left(\int_0^x b(t) e^{-\int_0^t a(s) \, ds} \, dt \right)' =$$

$$= a(x)y(x) + e^{\int_0^x a(t) \, dt} \left(b(x) e^{-\int_0^x a(s) \, ds} \right) =$$

$$= a(x)y(x) + e^{\int_0^x a(t) \, dt} \left(e^{\int_0^x a(t) \, dt} \right) =$$

$$= a(x)y(x) + b(x) \implies y'(x) = a(x)y(x) + b(x).$$

Остава да проверим, че $y(0) = y_0$. Ако то е изпълнено дадената функция ще бъде решение на задачата на Коши в интервала (-6, 6), защото там функциите a(x) и b(x) са непрекъснати.

$$y(0) = e^{\int_0^0 a(t) dt} \left(y_0 + \int_0^0 b(t)e^{-\int_0^t a(s) ds} dt \right) =$$

$$= e^0(y_0 + 0) = 1.y_0 = y_0.$$

Следователно

$$y(x) = e^{\int_0^x a(t) dt} \left(y_0 + \int_0^x b(t)e^{-\int_0^t a(s) ds} dt \right)$$

е решение на задачата на Коши

$$\begin{cases} y' = a(x)y + b(x) \\ y(0) = y_0 \end{cases}$$

в интервала (-6, 6).

6 Задача 6.

Сведете задачата на Коши

$$\begin{cases} y' = y^2 - 2x \\ y(0) = 1 \end{cases}$$

до интегрално уравнение. Намерете първите три последователни приближения (y_0, y_1, y_2) за решението на задачата на Коши.

Решение:

В даденото уравнение $\frac{\partial}{\partial x}y=y^2-2x$ ще сменим променливата x с v получаваме уравнието $\frac{\partial}{\partial v}y=y^2-2v$. Интегрираме го в граници от началното условие до x.

$$\frac{\partial}{\partial v}y(v) = y^2(v) - 2v \quad \Big| \quad \int_0^x dv \implies$$

$$\int_0^x \frac{\partial}{\partial v} y(v) \ dv = \int_0^x y^2(v) - 2v \ dv \implies$$

$$\int_0^x dy = \int_0^x y^2(v) - 2v \ dv \implies$$

$$y(x) - y(0) = \int_0^x y^2(v) - 2v \ dv \Longrightarrow$$

$$y(x) = 1 + \int_0^x y^2(v) - 2v \ dv.$$

Полученото интегрално уравнение

$$y(x) = 1 + \int_0^x y^2(v) - 2v \ dv.$$

е еквивалентно на задачата на Коши

$$\begin{cases} y' = y^2 - 2x \\ y(0) = 1 \end{cases}$$

Дефинираме следната редица от последователни приближения на решението на задачата на Коши по метода на Пикар

$$y_0(x) \equiv y(0) = 1$$

$$\forall n \in \mathbb{N} \quad y_{n+1}(x) = 1 + \int_0^x y_n(v)^2 - 2v \ dv$$

Пресмятаме първите три приближения.

$$y_0(x) \equiv 1$$
 (константа функция)

$$y_1(x) = 1 + \int_0^x y_0(v)^2 - 2v \, dv = 1 + \int_0^x 1 - 2v \, dv = 1$$

$$= 1 + v|_0^x - 2\int_0^x v \, dv = 1 + x - 2\frac{v^2}{2}|_0^x = 1 + x - x^2$$

$$y_2(x) = 1 + \int_0^x y_1(v)^2 - 2v \, dv = 1 + \int_0^x (1 + v - v^2)^2 - 2v \, dv = 1$$

$$= 1 + \int_0^x 1 + 2v + v^2 - 2(1 + v)v^2 + v^4 - 2v \, dv = 1$$

$$= 1 + \int_0^x 1 - v^2 - 2v^3 + v^4 \, dv = 1 + x - \frac{x^3}{3} - \frac{x^4}{2} + \frac{x^5}{5}$$

Отговор:

Интегралното уравнение е $y(x) = 1 + \int_0^x y^2(v) - 2v \ dv$.

Първите триприближения са:

$$y_0(x) = 1$$
$$y_1(x) = 1 + x - x^2$$
$$y_2(x) = 1 + x - \frac{x^3}{3} - \frac{x^4}{2} + \frac{x^5}{5}$$

7 Задача 7.

Приложете теоремата за съществуване и единственост в правоъгълника $\Pi = \{(x,\ y) \mid |x| \leq 2,\ |y| \leq 1\},$ за да намерите интервал, в който съществува решение на задачата на Коши

$$\begin{cases} y' = y^2 - x + 1\\ y(0) = 0 \end{cases}$$

Решение:

 $f(x, y) = y^2 - x + 1 \in C^{\infty}(\mathbb{R}^2)$, тоест f(x, y) е безкрайно гладка и в частност е липшищова. В случая е лесно да се докаже, че f(x, y) по втория аргумент в Π , което ни е необходимо.

Очевидно
$$\Pi = \{(x, y) \mid |x| \le 2, |y| \le 1\} = [-2, 2] \times [-1, 1].$$

Ще си мислим, че сме фиксирали първия аргумент и ще разглеждаме $F_x(y) = f(x, y)$ за фиксирано $x \in [-2, 2]$. От теоремата за крайните нараствания приложена за F_x и $y_1, y_2 \in [-1, 1]$ получаваме $\exists \xi \in [-1, 1]$:

$$|F_x(y_1) - F_x(y_2)| = |F'_x(\xi)(y_1 - y_2)| \Longrightarrow$$

$$|F_x(y_1) - F_x(y_2)| = |F'_x(\xi)(y_1 - y_2)| \Longrightarrow$$

$$|F_x(y_1) - F_x(y_2)| = |F'_x(\xi)||y_1 - y_2| \le \max_{y \in [-1, 1]} |F'_x(y)||y_1 - y_2| \Longrightarrow$$

$$|F_x(y_1) - F_x(y_2)| \le \max_{y \in [-1, 1]} |2y||y_1 - y_2| = 2|y_1 - y_2| \Longrightarrow$$

$$|F_x(y_1) - F_x(y_2)| \le 2|y_1 - y_2|$$

Така чрез теоремата за крайните нараствания доказахме, че наистина F_x е липшищова, от където у f е липшищова по втория си аргумент.

Можем и дирекно да докажем, че F_x е липшищова, без да използваме теорамата за крайните нараствания. Нека отново $y_1, y_2 \in [-1, 1]$ ще намерим оценка отгоре за $|F_x(y_1) - F_x(y_2)|$

$$|F_x(y_1) - F_x(y_2)| = |y_1^2 - x + 1 - (y_2^2 - x + 1)| =$$

$$= |y_1^2 - y_2^2 - x + 1 + x - 1| = |y_1^2 - y_2^2| =$$

$$= |(y_1 - y_2)(y_1 + y_2)| = |y_1 + y_2||y_1 - y_2| \implies$$

$$|F_x(y_1) - F_x(y_2)| = |y_1 + y_2||y_1 - y_2| \le \max_{c, d \in [-1, 1]} |c + d||y_1 - y_2| =$$

$$= |\max_{c \in [-1, 1]} c + \max_{d \in [-1, 1]} d||y_1 - y_2| = |1 + 1||y_1 - y_2| = 2|y_1 - y_2| \implies$$

$$|F_x(y_1) - F_x(y_2)| \le 2|y_1 - y_2|$$

И в двата случая е ясно, че $\forall x \in [-2, 2]$ F_x е липшищова, което значи, че f е липшищова по втория си аргумент.

Нека
$$M = \max_{(x, y) \in \Pi} f(x, y) = \max_{(x, y) \in \Pi} y^2 - x + 1 = \max_{y \in [-1, 1]} y^2 + \max_{x \in [-2, 2]} (-x) + 1 = 1^2 - \min_{x \in [-2, 2]} x + 1 = 2 - (-2) = 2 + 2 = 4.$$

Нека $h=\min(2,\,\frac{1}{M})=\min(2,\frac{1}{4})=\frac{1}{4}.$ Тогава съществува решение на задачата на Коши в интервала $(0-h,\,0+h)=\left(-\frac{1}{4},\,\frac{1}{4}\right).$

8 Задача 8.

Докажете, че решението на задачата на Коши

$$\begin{cases} y' = xy^2 - x^3 \\ y(0) = 1 \end{cases}$$

е четна функция.

Решение:

Нека $\varphi(x)$ е непрекъснато решение на задачата на Коши в интервала (α, β) . Тоест нека $\varphi'(x) = x\varphi^2(x) - x^3$ и $\varphi(0) = 1$. Нека $\psi(x) = \varphi(-x)$. Тогава $\psi(0) = \varphi(-0) = \varphi(0) = 1$.

$$\psi'(x) = (\varphi(-x)) = \varphi'(-x)(-x)' = -\varphi'(-x) =$$

$$= -((-x)\varphi^{2}(-x) - (-x)^{3}) = -(-x\varphi^{2}(-x) + x^{3}) =$$

$$= x\varphi^{2}(-x) - x^{3} = x\psi^{2}(x) - x^{3} \implies \psi'(x) = x\psi^{2}(x) - x^{3}$$

Следователно $\psi(x)$ е решение на същата задача на Коши в интервала (γ, δ) . От теоремата за съществуване и единственост следва, че

$$\forall x \in (\alpha, \beta) \cap (\gamma, \delta) \varphi(x) \equiv \psi(x) \equiv \varphi(-x).$$

Следователно $\varphi(x)$ е четна функция и $(\gamma, \delta) = (\alpha, \beta)$.

9 Задача 9.

За уравнението $(x^2+y^2+x)dx+ydy=0$ намерете интегриращ множите от вида $\mu(x^2+y^2)$.

Решение:

Нека $P(x, y) = x^2 + y^2 + x$ и Q(x, y) = y и $t(x, y) = x^2 + y^2$ Ако $\mu(t)$ е интегриращ

множеител за Pdx + Qdy = 0, то

$$\frac{\partial}{\partial y}\mu P = \frac{\partial}{\partial x}\mu Q \implies$$

$$\mu'yP + \mu P'y = \mu'xQ + \mu Q'x \implies$$

$$\mu(P'y - Q'x) = \mu'xQ - \mu'yP \implies$$

$$\mu(P'y - Q'x) = \mu't.t'x.Q - \mu't.t'y.P \implies$$

$$\mu(P'y - Q'x) = \mu't(t'x.Q - t'y.P) \implies$$

$$\frac{\mu't}{\mu} = \frac{P'y - Q'x}{t'x.Q - t'y.P} = \frac{2y - 0}{2xy - 2y(x^2 + y^2 + x)} \implies$$

$$\frac{\mu't}{\mu} = -\frac{1}{x^2 + y^2} = -\frac{1}{t} \implies$$

$$\frac{\partial}{\partial t}\mu(t)\frac{1}{\mu(t)} = -\frac{1}{t} \mid \int \partial t \implies$$

$$\int \frac{1}{\mu}\partial \mu = -\ln|t| + c \implies$$

$$\ln|\mu| = -\ln|t| + C \implies \ln|\mu.t| = c \mid e \implies$$

$$|\mu.t| = e^c \implies \mu.t = C \implies \mu = \frac{C}{t} = \frac{C}{x^2 + y^2}.$$

Тогава един интегрирац множител е $\mu(x^2 + y^2) = \frac{1}{x^2 + u^2}$.

10 Задача 10.

Намерете особените точки за уравнението

$$x(y'^2 + 4) = 2yy'$$

Има ли уравнението особени решения?

Решение:

Нека $F(x, y, z) = x(z^2 + 4) - 2yz$ и нека $(x_0, y_0) \in \mathbb{R}^2$. Тогава търсим корените на уравнението $F(x_0, y_0, z) = 0$. Тоест $x_0(z^2 + 4) - 2y_0z = 0$.

Да разгледаме частния случай когато $x_0 = 0$. Тогава получаваме, че $y_0 z = 0$.

Ако $y_0 = 0$ то получаваме, че всяко $z \in \mathbb{R}$ е корен. Тогава имаме и че $\frac{\partial}{\partial z} F(0, 0, z) = \frac{\partial}{\partial z} 0 = 0$. Тоест точката (0, 0) е особена.

Ако $y_0 \neq 0$ то директно следва, че корен е z = 0. Тогава пресмятаме $\left(\frac{\partial}{\partial z}F(0, y_0, z)\right)(0) = (-2y_0)(0) = -2y_0 \neq 0$. Тогава точките от вида $(0, y_0) : y_0 \in \mathbb{R} \setminus \{0\}$ са обикновени.

Ако
$$x_0 \neq 0$$
 то $F(x_0, y_0, z) = x_0 z^2 - 2y_0 z + 4x_0 = 0$.
$$D_{F(x_0, y_0, z)} = 4y_0^2 - 16x_0^2 = 4(y_0^2 - 4x_0^2).$$

Ако $y_0^2 - 4x_0^2 < 0$ то уравнението няма реални корени.

Ако $y_0^2-4x_0^2=0$, тоест $y_0=\pm 2x_0$ Получаваме един корен на уравнението, който е $z_{1,\,2}=\frac{y_0}{x_0}$. Пресмятаме $\left(\frac{\partial}{\partial z}F(x_0,\,y_0,\,z)\right)\left(\frac{y_0}{x_0}\right)=(2x_0z-2y_0)\left(\frac{y_0}{x_0}\right)=0$. Тогава точките $\{(r,\,\pm 2r)\mid r\in\mathbb{R}\setminus\{0\}\}$ са особени. Но ние получихме, че точката $(0,\,0)$ също е особена. Тогава правите y(x)=2x и y(x)=-2x са криви изцяло от особени точки. Заместваме в уравнението $x(y'^2+4)=2yy'$ с y=2x. Получаваме x(4+4)=8x=2.2x.2. Тогава правата y(x)=2x е особено решение. Заместваме и с y=-2x и получаваме x(4+4)=8x=2.(-2x).(-2), което значи и че правата y=-2x е особено решение на даденото уравнение.

Ако
$$y_0^2-4x_0^2>0$$
 то уравнението $F(x_0,\ y_0,\ z)=0$ има два корена $z_{1,\ 2}=\frac{y_0\pm\sqrt{y_0^2-4x_0^2}}{x_0}.$ Пресмятаме $\left(\frac{\partial}{\partial z}F(x_0,\ y_0,\ z)\right)(z_{1,\ 2})=(2x_0z-2y_0)(z_{1,\ 2})=$ $=2(y_0\pm\sqrt{y_0^2-4x_0^2})-2y_0=\pm2\sqrt{y_0^2-4x_0^2}\neq 0$ тогава точките $\{(c,\ d)\mid c\in\mathbb{R}\backslash\{0\},\ |c|>2|d|\}$ са обикновени.

Отговор:

Всички особени точки са точките от вида $\{(r, \pm 2r) \mid r \in \mathbb{R}\}$ и уравнението $x(y'^2+4)=2yy'$ има две особени решения y(x)=2x и y(x)=-2x.

11 Задача 11

Като използвате теоремата за единственост на решението на задачата на Коши за линейни уравнения, докажете, че всяко решение на уравнението y'' + y = 0 може да се представи като линейна комбинация на функциите $\sin x$ и $\cos x$.

Решение:

Ние знаем, че $\sin x$ е решение на задачата на Коши

$$\begin{cases} y'' + y = 0 \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$

и $\cos x$ е решение на задатачата на Коши

$$\begin{cases} y'' + y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

Също така детерминанта на Вронски на двете функции

 $\forall x \in \mathbb{R} \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \sin^2 x + \cos^2 x = 1 \neq 0$ тоест те са линейно независими тогава всяко решение на уравнението y'' + y = 0 се представя като тяхна ли-

тогава всяко решение на уравнението y'' + y = 0 се представя като тяхна линейна комбинация. Сега ще докажем само чрез теоремата за единственост на решението на задачата на Коши за линейни уравнения, че всяко решение на y'' + y = 0 се представя като линейна комбинация на $\sin x$ и $\cos x$. Нека

$$\varphi(x) = a \sin x + b \cos x$$

$$\varphi(0) = a.0 + b.1 = b$$

$$\varphi'(0) = a.1 + b.0 = a \implies$$

$$\varphi(x) = \varphi'(0) \sin x + \varphi(0) \cos x$$

$$\varphi''(x) = -a \sin x - b \cos x = -\varphi(x) \implies$$

$$\varphi''(x) + \varphi(x) = -\varphi(x) + \varphi(x) = 0$$

следователно $\varphi(x)$ е единствено решение на задачата на Коши

$$\begin{cases} y'' + y = 0 \\ y(0) = a \\ y'(0) = b \end{cases}$$

$$\varphi(x) = \begin{pmatrix} \varphi(0)\cos x \\ \varphi'(0)\sin x \end{pmatrix} \in l\left(\begin{pmatrix} \cos(0) \\ \cos'(0) \end{pmatrix}\cos x, \begin{pmatrix} \sin(0) \\ \sin'(0) \end{pmatrix}\sin x \right)$$

12 Задача 12.

Възможно ли е да се допират графиките на две различни решения на уеавнението $y'' - xy' + x^2y = 1$? Защо?

Решение:

Нека y_1, y_2 са две решения на уравнението $y'' - xy' + x^2y = 1$, които се допират. Тогава $\exists a, b, c \in \mathbb{R} : y_1(a) = y_2(a) = b$ (графиките им минават през една обща точка) и $y_1'(a) = y_2'(a) = c$ (допират се, имат обаща допирателна в точката (a, b)). Допускаме, че $y_1 \not\equiv y_2$. За y_1 е изпълнено

$$\begin{cases} y_1'' - xy_1' + x^2y_1 = 1\\ y_1(a) = b\\ y_1'(a) = c \end{cases}$$

за y_2 е изпълнено

$$\begin{cases} y_2'' - xy_2' + x^2y_2 = 1\\ y_2(a) = b\\ y_2'(a) = c \end{cases}$$

, но тогава $y_1,\ y_2$ са решение на една и съща задача на Коши

$$\begin{cases} y'' - xy' + x^2y = 1\\ y(a) = b\\ y'(a) = c \end{cases}$$

От теоремата за съществуване и единственост на задача на Коши за линейно уравнение следва, че $y_1 \equiv y_2$, но това противоречи на допускането. Следователно не е възможно графиките на две различни решения на уравнението $y'' - xy' + x^2y = 1$ да се допират.

13 Задача 13.

Нека $\varphi(x)$ е непродължимото решение на задачата на Коши

$$\begin{cases} y'' = x^2y + 1\\ y(0) = 1\\ y'(0) = 0 \end{cases}$$

а) Какъв е дефиниционния интервал на $\varphi(x)$?

Решение:

 x^2 , $1 \in C^{\infty}(\mathbb{R})$. Реда на уравнението е втори и са дадени две начални условия в една и съща точка тогава дадената задача на Коши има единствено решение φ дефинирано в цялото \mathbb{R} .

б) Каква е най-малката стойност на φ ? Защо ?

Решение:

 $\varphi(0)=0$ и $\varphi''(0)=0^2\varphi(0)+1=1>0$ следователно в 0 се реализира локален минимум за φ . Ако $\varphi(x)\geq 0 \implies \varphi''(x)=x^2\varphi(x)+1\geq 1>0$. $\varphi(0)=1>0$. След като $\varphi(0)=1>0$ то в околност на 0 $\varphi>0 \implies \varphi''>0 \implies \varphi$ е изпъкнала функция. Тогава φ няма други екстремуми освен в 0, в който има локален минимум тогава най-малката стойснот е $\varphi(0)=1$.

14 Задача 14.

На чертежаса изобразени графиките на три непрекъснати в интервала [a, b] функции $f_1(x)$, $f_2(x)$, $f_3(x)$. Линейно зависими ли са функциите $f_1(x)$, $f_2(x)$, $f_3(x)$ в интервала [a, b]? Защо?

a)

На графиката се вижда, че $\exists c, d \in [a, b]$, за които да е изпълено

$$f_3(c) = f_3'(c) = f_3'(d) = f_3(d) = 0$$
$$0 < f_1(c) < f_2(c)$$
$$f_1(d) > f_2(d) > 0$$

Да допуснем, че f_1 , f_2 и f_3 са линейно зависими то тогава $\forall x \in [a, b] \exists c_1, c_2, c_3 \in \mathbb{R} : (c_1, c_2, c_3) \neq (0, 0, 0) \land c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) = 0$, но тогава $(c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x))' = (0)' = 0 \implies c_1 f_1'(x) + c_2 f_2'(x) + c_3' f_3(x) = 0$ Следователно

$$\begin{cases} c_1 f_1(c) + c_2 f_2(c) = 0 \\ c_1 f_1(d) + c_2 f_2(d) = 0 \end{cases} \implies \begin{cases} c_1 f_1(c) = -c_2 f_2(c) \\ c_1 f_1(d) = -c_2 f_2(d) \end{cases} \implies \begin{cases} c_1 \ge -c_2 \\ c_1 \le c_2 \end{cases} \implies$$

$$c_1 = c_2 = 0$$
 (линейно независими са)

Така получаваме, че $\forall x \in [a, b]$ $c_3 f_3(x) = 0$, от графиката е ясно, че $f_3 \not\equiv 0$ тогава $c_3 = 0$, но това значи, че f_1 , f_2 и f_3 са линейно независими.

б)

На графиката се вижда, че f_1 и f_2 са линейни фунции с ненулев наклон пресичащи се в една обаща точка, в която и двете функции се нулират. Тогава

$$f_{1}(x) = p_{1}x + q_{1} \land p_{1} \neq 0$$

$$f_{2}(x) = p_{2}x + q_{2} \land p_{2} \neq 0$$

$$\exists x_{0} \in [a, b] : f_{1}(x_{0}) = f_{2}(x_{0}) = 0 \Longrightarrow$$

$$p_{1}x_{0} + q_{1} = 0 \land p_{2}x_{0} + q_{2} = 0 \Longrightarrow$$

$$q_{1} = -p_{1}x_{0} \land q_{2} = -p_{2}x_{0} \Longrightarrow$$

$$f_{1}(x) = p_{1}(x - x_{0})$$

$$f_{2}(x) = p_{2}(x - x_{0}) \Longrightarrow$$

$$p_{2}f_{1}(x) - p_{1}f_{2}(x) = p_{2}p_{1}(x - x_{0}) - p_{1}p_{2}(x - x_{0}) \equiv 0$$

 $p_1,\ p_2 \neq 0$ тогава $f_1,\ f_2$ са линейно зависими, но тогава $f_1,\ f_2$ и f_3 са линейно зависими.

15 Задача 15.

Пресметнете детерминанта на Вронски на двойката функции $y_1(x) = 2 - 3x^2$ и $y_2(x) = 2x^3 + 1$. Могат ли $y_1(x)$ и $y_2(x)$ да са решения в интервала (-2, 2) на едно и също линейно уравнение

$$y''(x) + a(x)y'(x) + b(x)y = 0$$

с непрекъснати коефициенти $a(x),\ b(x)\in C(-2,\ 2)?$ Защо?

Решение:

$$W(y_1, y_2)(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = \begin{vmatrix} 2 - 3x^2 & 2x^3 + 1 \\ -6x & 6x \end{vmatrix} =$$

$$= 6x(2 - 3x^2 + 2x^3 + 1) = 6x(3 - 3x^2 + 2x^3)$$

Получаваме $W(y_1, y_2)(0) = 0 \neq 6(3-3+2) = 12 = W(y_1, y_2)(1)$. Следователно $y_1(x)$ и $y_2(x)$ не са решение на y''(x) + a(x)y'(x) + b(x)y = 0 в интервала (-2, 2).

16 Задача 16.

При какви стойности на реалния параметър k уравнението

$$y'' + ky = \sin \pi x$$

няма нито едно периодично решение?

Решение:

Нулевата функция е решение на хомогенното уравнение y'' + ky = 0. Но това значи, че частно решение на $y'' + ky = \sin \pi x$ е решение на същото уравние не зависимо от стойността на параметъра k.

Очевидно $\sin \pi x \in l(\sin \pi x, \cos \pi x) = l(e^{0+i\pi}) = l(e^{0-i\pi})$. Тогава частното решение е от вида $x^s(a\sin \pi x + b\cos \pi x)$, където s е кратността на двойката комплексно спрегнати корени $\pm i\pi$ на характеристичното уравнение $\lambda^2 + k = 0$. Ако s = 0 частното решение е периодично, това се случва, когато $k \neq \pi^2$. Тогава ако $k = \pi^2$ частното решение е непериодично. Тогава решението на уравнението е от следния вид $y(x) = c_1 \sin \pi x + c_2 \cos \pi x + x(a\sin \pi x + b\cos \pi x)$, което очевидно е непериодично.

Отговор $k = \pi^2$.

17 Задача 17.

Дадено е уравнението

$$y'' + ay' + 4y = 0$$

където a е реален параметър.

- а) При какви стойности на a всички решения на уравнението са ограничени за $x \in \mathbb{R}$?
- б) При какви стойности на a всички решения на уравнението клонят към 0 при $x \to -\infty$?
- в) При какви стойности на a уравнението има поне едно периодично решение различно от $y(x)\equiv 0$?

Решение:

Даденото уравнение от хомогенно линейно втори ред. Тогава то или има два различни реални корена λ_1 , λ_2 или има един двоен реален корен λ или има двойка комплексно спрегнати корени γ , $\overline{\gamma}$.

В случая на два реални и различни корена общия вид на решенията е $y(x)=c_1e^{\lambda_1x}+c_2e^{\lambda_2x}$, и двете базисини функции $e^{\lambda_1x},\ e^{\lambda_2x}$ са неограничени, което значи, че и общото решение е неограничено. Това се случва когато е изпълнено неравенството $a^2-16>0$ или |a|>4. За да клони общото решение към 0 при

 $x \to -\infty$. То трябва да имаме поне един положителен корен и той да е по-голям по абсолютна стойност от отрцателния, ако има такъв. Двата корена на характеристичното уравнение са

 $\lambda_{1,\,2}=\frac{-a\pm\sqrt{a^2-16}}{2}.$ Ако a>4 това няма как да е изпълнено. Тогава за да имаме по-голям по абсолютна стойност положителен корен със сигурност трябва да изпълнено неравенството a<-4, което е и достатъчно условие положителния корен да е по абсолютна стойност по-голям от отрицателния.

В случая двоен корен, ФСР на системата е $\{e^{\lambda x}, xe^{\lambda x}\}$ и двете фунцкиции отново са неограничени, тогава и решението е неограничено. Двойният корен е $\lambda=-2$. Тогава общото решение на уравнението е $y(x)=c_1e^{-2x}+c_2xe^{-2x}$ и в такъв случай $\lim_{x\to -\infty}y(x)=\lim_{x\to -\infty}c_1e^{-2x}+c_2xe^{-2x}=\infty\neq 0$.

В случая на двойка комплексно спрегнати корени от вида $\alpha \pm i\beta$ ФСР на уравнението е $\{e^{\alpha}\cos\beta x,\ e^{\alpha}\sin\beta x\}$ общото решение е тяхна линейна комбинация, която е ограничена и периодична функция. Това е изпълнено, когато $a^2-16<0$ или |a|<4.

Отговори:

- a) |a| < 4
- б) a < -4
- B) |a| < 4

18 Задача 18.

Дадено е уравниението

$$(x-1)y'' + (x-2)y' - y = 0, x > 0$$

а) Намерете две частни решения на уравнението от вида $y_1(x) = e^{ax}$ и $y_2(x) = bx + c, \ b \neq 0.$

Решение:

Заместваме в уравнението с $y_1(x) = e^{ax}$ и получаваме

$$(x-1)a^{2}e^{ax} + (x-2)ae^{ax} - e^{ax} = 0 \implies$$

$$a^{2}(x-1) + (x-2)a - 1 = 0 \implies$$

$$(a^{2} + a)x - (a^{2} + 2a + 1) = 0 \implies$$

$$\begin{cases} a(a+1) = 0 \\ (a+1)^{2} = 0 \end{cases} \implies a = -1$$

Тогава $y_1(x) = e^{-x}$ е частно решение. Заместваме и с $y_2(x) = bx + c$

$$(x-1).0 + (x-2)b - bx - c = 0 \implies$$

$$bx - 2b - bx - c = 0 \implies$$

$$2b + c = 0 \implies c = -2b$$

Имаме условието $b \neq 0$ тогава избираме b = 1 и получаваме решението $y_2(x) = x - 2$.

б) Покажете, че намерените частни решения $y_1(x)$ и $y_2(x)$ са линейно независими в интервала $(1, +\infty)$.

Решение:

Пресмятаме детерминанта на вронски на намерените частни решения.

$$W(y_1, y_2)(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = \begin{vmatrix} e^{-x} & x - 2 \\ -e^{-x} & 1 \end{vmatrix} = e^{-x}(1 + x - 2) = e^{-x}(x - 1)$$

$$\forall x \in (1, +\infty) \ e^{-x} \neq 0 \implies e^{-x}(x-1) = 0 \iff (x-1) = 0 \iff x = 1$$

$$\implies \forall x \in (1, +\infty) \quad 0 \neq e^{-x}(x-1) = W(y_1, y_2)(x)$$

Следователно y_1 и y_2 са линейно независими в интервала $(1, +\infty)$.

в) Намерете общото решение на уравнението.

Доказахме, че y_1 и y_2 са линейно независими в интервала $(1, +\infty)$. Те са две на брой и са решения на на лийено хомогенно уравнение от втори ред с непрекъснати коефициенти, тогава те образуват ФСР на линейното пространство съвпадащо с решенията на хомогенното линейно уравнение. Следователно общото решение на уравнеието един

$$y(x) = c_1 e^{-x} + c_2(x-2)$$

19 Задача 19.

Нека x(t) и y(t) са решение на системата

$$\begin{cases} \dot{x} = x + 2y + e^t \\ \dot{y} = 4x + 3y \end{cases}$$

Намерете линейно диференциално уравнение с постоянни коефициенти, което се удовлетворява от функцията x(t).

Решение:

Диференцираме уравнението с лява част съдържаща х и получаваме

$$\ddot{x} = \dot{x} + 2\dot{y} + e^t = \dot{x} + 8x + 6y + e^t$$

От същото уравнение изразяваме y и получаваме $2y = \dot{x} - x - e^t$. Заместваме в полученото уравнение и получаваме

$$\ddot{x} = \dot{x} + 8x + 3(\dot{x} - x - e^t) + e^t \implies$$

$$\ddot{x} = 4\dot{x} + 5x - 2e^t \implies \ddot{x} - 4\dot{x} - 5x = 2e^t$$

Отговор: $\ddot{x} - 4\dot{x} - 5x = 2e^t$

20 Задача 20.

Приложете теоремата за съществуване и единственост в цилиндъра $G=\{(t,\ x,\ y)\ |\ |t|\le 2,\ x^2+y^2\le 1\},$ за да намерите интервал, в който съществува решение на задачата на Коши

$$\begin{cases} \dot{x} = x + 3y \\ \dot{y} = 2x^2 + y \\ x(0) = 0 \\ y(0) = 0 \end{cases}$$

Решение:

Нека
$$M=\max_{x^2+y^2\leq 1}\sqrt{(x+3y)^2+(2x^2+y)}\leq \sqrt{(1+3)^2+(2+1)^2}=\sqrt{16+9}=\sqrt{25}=5$$
 и нека $h=\min\left(2,\frac{1}{M}\right)=\min\left(2,\frac{1}{5}\right)=\frac{1}{5}.$ Тогава $t\in(-h,\ h)=\left(-\frac{1}{5},\,\frac{1}{5}\right)$

21 Задача 21.

Сведете задачата на Коши

$$\begin{cases} \dot{x} = 1 - y \\ \dot{y} = x + t \\ x(0) = 0 \\ y(0) = 1 \end{cases}$$

до система от две интегрални уравнения. Намерете първите три последователни приближения $(x_0, y_0; x_1, y_1, x_2, y_2)$ на решението на задачата на Коши.

Решение:

$$\dot{x}(t)=1-y\implies \int_0^t \dot{x}(s)\;ds=\int_0^t 1-y(s)\;ds\implies x(t)-x(0)=\int_0^t 1-y(s)\;d\implies x(t)=\int_0^t 1-y(s)\;ds$$

$$\dot{y}=x+t\implies \int_0^t \dot{y}\;dt=\int_0^t x(s)+s\;ds\implies y(t)-y(0)=\int_0^t x(s)+s\;ds\implies y(t)=1+\int_0^t x(s)+s\;ds\;{\rm Toraba}$$
 задачата на Коши е еквивалентната със следнта

система от две интегрални уравнениея

$$\begin{cases} x(t) = \int_0^t 1 - y(s) \, ds \\ y(t) = 1 + \int_0^t x(s) + s \, ds \end{cases}$$

Дефинираме следните функционални редици

$$\forall n \in \mathbb{N} \ x_n(x) = \begin{cases} 0 & , \ n = 0 \\ \int_0^t 1 - y_{n-1}(s) \ ds & , \ n > 0 \end{cases} \forall n \in \mathbb{N} \ y_n(x) = \begin{cases} 1 & , \ n = 0 \\ 1 + \int_0^t x_{n-1}(s) + s \ ds & , \ n > 0 \end{cases}$$

Тогава $x_0 = 0, y_0 = 1$. Пресмятаме последователно x_1, y_1, x_2, y_2 .

$$x_1 = \int_0^t 1 - 1 \, ds = 0, \quad y_1 1 + \int_0^t s \, ds = 1 + \frac{t^2}{2}, \, x_2 = \int_0^t 1 - (1 + \frac{s^2}{2}) \, ds = -\frac{s^3}{6}$$

$$y_2 = 1 + \int_0^t s \, ds = 1 + \frac{t^2}{2}$$

22 Задача 22

Нека функциите x(t) и y(t) удовлетворяват системата

$$\begin{cases} \dot{x} = xy \\ \dot{y} = x^2 \end{cases}$$

а) Покажете, че $x^2(t)-y^2(t)$ не зависи от t.

Решение:

Пресмятаме
$$\frac{\partial}{\partial t}x^{2}(t) - y^{2}(t) = 2x\dot{x} - 2y\dot{y} = 2x^{2}y - 2yx^{2} = 0$$

Следователно $x^2-y^2=C$, тоест x^2-y^2 не зависи от t, което означава, че функцията $u(x,\ y)=x^2-y^2$ е пръв интеграл на системата.

б) Определете равновесните точки на системата. Начертайте фазов портрет на системата. Кои равновесни точки са устойчиви?

Решение:

Особените точки на системата са решенията на системата

$$\begin{cases} \dot{x} = xy = 0\\ \dot{y} = x^2 = 0 \end{cases}$$

Следователно ординатата ос е права от особени точки и други особени точки няма.

Понеже $u(x, y) = x^2 - y^2$ е пръв интеграл на системата то всички фазови криви са от вида $x^2 - y^2 = C$, които представляват хипербули. Системата

$$\begin{cases} \dot{x} = xy \\ \dot{y} = x^2 \end{cases}$$

задава векторно поле, което определя посоката на движение по хипербулите.

23 Задача 23.

24 Задача 24.

На чертежа са изобразени няколко фазови криви и всички равновесни точки $A,\ B,\ C,\ D,\ E$ на системата

$$\begin{cases} \dot{x} = f(x, y) \\ \dot{y} = g(x, y) \end{cases}$$

където $f(x, y), g(x, y) \in C^1(\mathbb{R})$. За кои от равновесните точки можем със сигурност да твърдим, че са неустойчиви? Кои от равновесните точки е възможно да са устойчиви?

Решение:

От четрежа се вижда, че движийки се по начертаните фазови криви се отдалечаваме от C и D (има стрелки излизащи от тях). Тогава за C и D със сигурност можем да твърдим, че са неустойчиви. Останлите точки, може да са всякакви понеже не са дадени всички фазови криви и не знам с тях какво точно се случва.

Отговор:

Със сигурност неустойчиви: C и D.

Възможно устойчиви: $A,\ B$ и E.