A statement (or proposition) is a sentence that is true or false, but not both.

Examples:

$$1 + 2$$

$$1 + 2 = 3$$

$$1 + 2 > 4$$

$$x + y > 4$$

Definition

Let p and q be statements. Then $\sim p$, $p \wedge q$ and $p \vee q$ are statements. $\sim p$ (read as "**not** p") is the **negation** of p. $p \wedge q$ (read as "p and q") is the **conjunction** of p and q. $p \vee q$ (read as "p or q") is the **disjunction** of p and q.

$x \neq 0$

x is an integer	x > 0	x is a positive integer

x > 0	x = 0	$x \ge 0$

Definition (continued)
$$\sim p$$
 is $\begin{cases} \text{true} & \text{if } p \text{ is false} \\ \text{false} & \text{otherwise} \end{cases}$ $p \wedge q$ is $\begin{cases} \text{true} & \text{if } p \text{ is true and } q \text{ is true} \\ \text{false} & \text{otherwise} \end{cases}$ $p \vee q$ is $\begin{cases} \text{true} & \text{if } p \text{ is true or } q \text{ is true (or both)} \\ \text{false} & \text{otherwise} \end{cases}$ (This is an example of a **recursive** definition.)

 $(p \lor q) \land \sim (p \land q)$

(I' ' 1)'	(I'' 1)				
p	q	$p \lor q$	$p \wedge q$	$\sim (p \land q)$	$(p \lor q) \land \sim (p \land q)$
1		1			1

Definition (continued)

We call p and q statement variables.

A compound statement or Boolean expression is a statement constructed from statement variables by using \vee , \wedge and \sim .

Two Boolean expressions P and Q with the same statement variables are **logically equivalent** (denoted $P \equiv Q$) if and only if they have the same truth values for all choices of truth values for the variables.

$(p \lor q) \land r \equiv p \lor (q \land r)?$						
$\sim (p \land q) \equiv$	$(\sim p) \wedge (\sim q)$?				

x < 0	$x \ge 0$	$x < 0 \text{ or } x \ge 0$	$x < 0 \text{ and } x \ge 0$

If a Boolean expression P is always true regardless of the truth values of its statement variables, we call P a **tautology**, denoted $P \equiv T$.

If a Boolean expression Q is always false regardless of the truth values of its statement variables, we call Q a **contradiction**, denoted $Q \equiv F$.

Let t be a tautology and c be a contradiction.

p	t	$p \wedge t$	p	c	$p \lor c$

so t is the **conjunctive identity** and c is the **disjunctive identity**.

Theorem 1.1 For any statement variables p, q and r, a tautology t and a contradiction c,

(a)	Commutativity	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
(b)	Associativity	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$
(c)	Distributivity	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
(d)	Idempotence	$p \wedge p \equiv p$	$p \vee p \equiv p$
(e)	Absorption	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
(f)	De Morgan's Law	$\sim (p \land q) \equiv (\sim p) \lor (\sim q)$	$\sim (p \lor q) \equiv (\sim p) \land (\sim q)$
(g)	Identities	$p \wedge t \equiv p, p \vee t \equiv t$	$p \lor c \equiv p, p \land c \equiv c$
(h)	Negation	$p \lor \sim p \equiv t, \sim (\sim p) \equiv p$	$p \wedge \sim p \equiv c, \sim t \equiv c$

if $x > 1$ then $x + y > 2$	x > 1	x + y > 2

x > 1	x + y > 2	if $x > 1$ then $x + y > 2$

Definition

Let p and q be statements.

Then $p \to q$ (read as "if p then q" or "p implies q" or "q if p") is a **conditional statement**, whose truth table is:

p	q	$p \rightarrow q$

Note

Avoid "p only if q" (confusing).

Definition The **converse** of $p \to q$ is $q \to p$.

 $((p \to q) \land q) \to p \equiv T ?$

p	q	$p \rightarrow q$	$(p \to q) \land q$	$((p \to q) \land q) \to p$

Definition The **inverse** of $p \to q$ is $(\sim p) \to (\sim q)$.

Definition The **contrapositive** of $p \to q$ is $(\sim q) \to (\sim p)$.

Let p and q be statements.

Then $p \leftrightarrow q$ (read as "p if and only if q" and denoted "p iff q") is a **biconditional** statement defined by

p	q	$p \leftrightarrow q$

Definition

Consider the conditional statement $p \to q$. p is a **sufficient** condition for q and q is a **necessary** condition for p.

Theorem (CS4232 Theory of Computation) Every regular language is context-free.

"... Since $\{a^nb^n:n\geq 0\}$ is not regular, therefore it is not context-free ..."

"... Since $\{a^nb^nc^n:n\geq 0\}$ is not context-free, therefore it is not regular ..."

"... Since $\{a^nb^n: n \geq 0\}$ is context-free, therefore it is regular ..."

"... Since $\{a^mb^n: m \geq 0, n \geq 0\}$ is regular, therefore it is context-free ..."