

PURDUE UNIVERSITY

DEPARTMENT OF STATISTICS

DIVISION OF MATHEMATICAL SCIENCES

ON SUBSET SELECTION PROCEDURES FOR POISSON PROCESSES AND SOME APPLICATIONS TO THE BINOMIAL AND MULTINOMIAL PROBLEMS*

by

Shanti S. Gupta and Wing-Yue Wong Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #457 \(\nu \)

July 1976

This research was supported by the Office of Naval Research under Contract NO0014-75-C-0455 at Purdue University. Reproduction in whole or part is permitted for any purpose of the United States Government.

On Subset Selection Procedures for Poisson Processes and Some Applications to the Binomial and Multinomial Problems*

by

Shanti S. Gupta and Wing-Yue Wong Purdue University

1. Introduction

A

The Poisson process arises in many applications, especially, as a model for arrivals at a store, for arrivals of calls at a telephone exchange, for arrivals of radioactive particles at a Geiger counter, etc. In this paper, the problem of selecting a subset of k different Poisson processes including the best which is associated with the largest value of the mean rate is discussed. Some subset selection procedures are proposed and studied. An application of these procedures to the subset selection problem for the largest probability of a success of k binomial populations, whose parameters are unknown, is considered. Results are also applied to the problem of selecting the largest cell probability from a multinomial distribution, again the cell probabilities being unknown. It should be pointed out that fixed sample subset selection procedures for Poisson distributions have been considered by Gupta and Huang [9] and Goel [5]. Gupta and Nagel [11] have also studied some fixed sample selection procedures for a multinomial distribution. Some parallel selection procedures have been discussed by Alam [1]. Recently Goel [6] also proposed a subset selection procedure for Poisson processes. The procedure of Goel [6] is different from ours.

This research was supported by the Office of Naval Research under contract NOO014-75-C-0455 at Purdue University. Reproduction in whole or part is permitted for any purpose of the United States Government.

Let π_1,\dots,π_k be k Poisson processes with mean rates 2. $\lambda_1^{-1},\dots,\lambda_k^{-1}$, respectively. Let $\lambda_{[1]} \leq \dots \leq \lambda_{[k]}$ denote the ordered set of the values $\lambda_1,\dots,\lambda_k$. The process associated with $\lambda_{[1]}$ ($\lambda_{[k]}$) is defined to be the best process. All through this paper we assume that λ_i^{-1} 's are unknown and that there is no a priori information available about the correct pairing of the ordered $\lambda_{[i]}$ values and the k given Poisson processes. Our problem is to define a subset selection procedure which selects a small, non-empty subset of the k processes and guarantees that the selected subset includes the best process with probability at least P*, $k^{-1} < P^* < 1$. If CS stands for a correct selection then our goal is to define a selection rule R such that

(1.1)
$$\inf_{R} P(CS|R) \geq P^*$$

where α is the set of all k-tuples $(\lambda_1,\ldots,\lambda_k)$, $\lambda_i>0$, $i=1,\ldots,k$.

In Section 2, some subset selection rules for selecting a subset containing the process with the smallest value $\lambda_{[1]}$ are proposed. The probability of a correct selection is evaluated. Some properties of the proposed selection rules are discussed. Section 3 deals with the analogous problem of selecting the process for which the associated value λ is the largest. In Section 4, applications to binomial and multinomial selection problems are considered.

2. Selection Procedures for the Process Associated with λ [1]

In this section, four different selection rules are proposed.

(A) Procedure R_1 and Its Properties

Let $X_1(t), \dots, X_k(t)$ denote the number of arrivals from processes x_1, \dots, x_k during time to respectively. Let $X_{(1)}(t)$ and $x_{(i)}$ be associated

with $\lambda_{[i]}$, i=1,...,k. Let N be a fixed positive integer. We propose a subset selection rule as follows:

 $R_1\colon$ Observe the processes until $\max_{1\leq i\leq k} X_i(t)$ = N. Select process π_i if and only if

(2.1)
$$X_{i}(t) \geq N-c_{1}$$

where $c_1 = c_1(k, P^*, N)$ is the smallest non-negative integer for which the condition (1.1) is satisfied.

Before we derive some properties of the selection rule, we introduce some definitions. Let $\underline{\lambda}=(\lambda_1,\ldots,\lambda_k)\in\mathbb{N}$. Define

(2.2)
$$p_{\underline{\lambda}}(i|R) = P_{\underline{\lambda}}(\pi_{(i)} \text{ is selected}|R).$$

<u>Definition 2.1.</u> A rule R is said to be (reverse) strongly monotone in (i) if

$$p_{\underline{\lambda}}(i \mid R) \text{ is } \begin{cases} (\downarrow)^* \text{ in } \lambda_{\text{[i]}} \text{ when all other components of } \underline{\lambda} \text{ are fixed.} \\ \\ (\uparrow)^* \text{ in } \lambda_{\text{[j]}} (j \neq i) \text{ when all other components of } \underline{\lambda} \text{ are fixed.} \end{cases}$$

Gupta [8] has proved that the subset selection rules which he studied possess the properties of monotonicity and unbiasedness. We recall these definitions (see Santner [17]).

<u>Definition 2.2.</u> The rule R is (reverse) monotone means for all $1 \le i < j \le k$, and $\underline{\lambda} \in \mathbb{R}$,

$$p_{\underline{\lambda}}(\mathbf{i}|\mathbf{R}) \ (\underline{\gamma}) \leq p_{\underline{\lambda}}(\mathbf{j}|\mathbf{R}).$$

Definition 2.3. The rule R is unbiased means for all 1 < i < k, and $x \in C$,

 $p_{\frac{1}{2}}(R \text{ does not select } \pi_{(i)}) > p_{\frac{1}{2}}(R \text{ does not select the best process}).$

Remark 2.1. (1) If a rule R is (reverse) strongly monotone in π _(i) for all i = 1,...,k, then R is (reverse) monotone and

(2.4)
$$\inf_{R} P(CS|R) = \inf_{R} P(CS|R)$$

where $x_0 = \{\underline{\lambda} : \underline{\lambda} = (\lambda_1, \dots, \lambda_n), x > 0\}.$

(2) If R is (reverse) monotone, then it is unbiased.

Let $T_i(N)$ denote the waiting time for N arrivals for the process T_i , $i=1,\ldots,k$. $T_i(N)$ is distributed according to gamma distribution with density given by

(2.5)
$$f_{i,N}(t) = \frac{1}{r(N)} \sum_{i=1}^{N} t^{N-1} e^{-\frac{t}{\Lambda_{i}}}, t > 0$$

It is easy to see that rule R_{1} can be rewritten as follows: Select process π_{1} if and only if

(2.6)
$$T_{\mathbf{j}}(N-c_{\mathbf{j}}) \leq \min_{1 \leq \mathbf{j} \leq \mathbf{k}} T_{\mathbf{j}}(N).$$

Let $T_{(i)}(N)$ denote the unknown waiting time for N arrivals for the process $\pi_{(i)}$, $i=1,\ldots,k$. Then for any $j\in I$,

(2.7)
$$\frac{P_{\lambda}(i,R_{1}) = P_{\lambda}(T_{(i)}(N-c_{1}) \leq \min_{1 \leq j \leq k} T_{(j)}(N))}{\sum_{j=1}^{K} (1-G_{N}(\frac{\lambda_{[j]}}{\lambda_{[j]}} t) dG_{N-c_{1}}(t),}$$

where

(2.8)
$$G_r(x) = \int_0^x \frac{1}{r(r)} t^{r-1} e^{-t} dt.$$

It follows from (2.7) that procedure R_{ij} is reverse strongly monotone in $\pi_{(i)}$ for all $i=1,\ldots,k$. Furthermore

(2.9)
$$\inf_{\Omega} P(CS|R_1) = \inf_{\Omega} P(CS|R_1) = \int_{0}^{\infty} (1-G_N(t))^{k-1} dG_{N-C_1}(t)$$

which is independent of the common unknown parameter. Hence we have proved the following theorem.

Theorem 2.1. The procedure R_1 is reverse strongly monotone in $\pi(i)$ for all $i=1,\ldots,k$, and the infimum of the probability of a correct selection occurs when all the processes are identical and the infimum does not depend on the common unknown parameter.

<u>Remark 2.2.</u> In order to find the selection constant c_1 so as to satisfy the condition (1.1), we solve for the smallest integer $(0 \le c_1 \le N)$ which satisfies

(2.10)
$$\int_{0}^{\infty} \{1-G_{N}(t)\}^{k-1} dG_{N-c_{1}}(t) \geq P^{*}.$$

For given k, N and P*, values of c_1 have been computed along with the actual values of the probabilities.

Consistent with the basic probability requirement (1.1), we would like the size of the selected subset to be small. Now, S, the size of the selected subset is a random variable which takes values $1,2,\ldots,k$. Hence one criterion of the efficiency of the procedure R_1 is the expected value of the size of the selected subset. The expected value of S is given by

(2.11)
$$E_{\underline{\lambda}}(S|R_{1}) = \sum_{\substack{i=1\\i=1}}^{k} P_{\underline{\lambda}}(\pi_{(i)} \text{ is selected}|R_{1})$$

$$= \sum_{\substack{i=1\\i=1}}^{k} \bigcap_{\substack{j=1\\j\neq i}}^{k} (1-G_{N}(\frac{\lambda_{(j)}}{\lambda_{(j)}}t))dG_{N-C_{1}}(t).$$

It will now be shown that the maximum of $E_{\underline{i}}(S|R_{1})$ takes place when all the parameters λ_{i} are equal. If we set the m largest parameter $\lambda_{[i]}(1 \le m \le k)$ equal to a common value λ (say), we obtain from (2.11) that

(2.12)
$$E_{\underline{\lambda}}(S,R_{1}) = m \int_{0}^{\infty} (1-G_{N}(t))^{m-1} \cdot \int_{j=1}^{k-m} (1-G_{N}(\frac{\lambda_{j}}{j})) dG_{N-c_{1}}(t)$$

$$+ \sum_{i=1}^{m-k} \int_{0}^{m} (1-G_{N}(\frac{\lambda_{j}}{k}))^{m} \int_{j=1}^{m-k} (1-G_{N}(\frac{\lambda_{j}}{k})) dG_{N-c_{1}}(t) .$$

We now show that the right hand member of (2.12) is a decreasing function of λ for $k^{-1} < P^* < 1$. Since this holds for integer m < k, this proves that the maximum value of $E_{\underline{\lambda}}(S|R_1)$ occurs when $\lambda = \lambda_{[1]}$, and the desired result will follow. To show that $E_{\underline{\lambda}}(S|R_1)$ is monotone, we differentiate $E_{\underline{\lambda}}(S|R_1)$ with respect to λ and show that the derivative is negative for $k^{-1} < P^* < 1$. Differentiation gives

$$(2.13) \qquad \frac{\partial}{\partial t} \; E_{\underline{\lambda}}(S|R_{1}) \; = \; -m \; \sum_{j=1}^{k-m} \; (1-G_{N}(t))^{m-1} \; \sum_{j=1}^{k-m} \; (1-G_{N}(\frac{\lambda}{\lambda}-t))^{k-1} \; dG_{N-c_{1}}(t) \\ \qquad \frac{1}{\Gamma(N)} \; (\frac{\lambda}{\lambda}-t)^{N-1} \; e^{-\frac{\lambda}{\lambda}-1} \; t \; \frac{t}{\lambda} \; dG_{N-c_{1}}(t) \\ \qquad + \; m \; \sum_{j=1}^{k-m} \; \int_{0}^{\infty} \; (1-G_{N}(\frac{\lambda}{\lambda}-t))^{m-1} \; \sum_{j=1}^{k-m} \; (1-G_{N}(\frac{\lambda}{\lambda}-t))^{k-1} \\ \qquad \frac{1}{\Gamma(N)} \; (\frac{\lambda}{\lambda}-1)^{N-1} \; e^{-\frac{\lambda}{\lambda}-1} \; t \; \frac{1}{2} \; t \; dG_{N-c_{1}}(t).$$

If we let $\lambda t = \lambda_{[i]}t'$ in the first integral and drop primes then (2.13) becomes

$$(2.13) \qquad \left\{ \begin{array}{ll} \mathbb{E}_{2}(\mathbb{S}|\mathbb{R}_{1}) + \frac{k-m}{j+1} & 1-G_{N}(\frac{f_{1}}{f_{2}}|\mathbf{t}) & \frac{m-1}{j+1} & \frac{k-m}{j+1} \\ \mathbb{E}_{2}(\mathbb{S}|\mathbb{R}_{1}) + \frac{k-m}{j+1} & 1-G_{N}(\frac{f_{1}}{f_{2}}|\mathbf{t}) & \mathbb{E}_{2}(\frac{f_{1}}{f_{2}}|\mathbf{t}) & \mathbb{E}_{$$

Hence we have proved the following theorem.

Theorem 2.2.

(2.14)
$$\sup_{t \in \mathbb{R}_{1}} E_{t}(S, R_{1}) = k \int_{0}^{\infty} (1 - G_{N}(t))^{-k-1} dG_{N-C_{1}}(t).$$

Invariance and Minimax Properties

Let X_1,\ldots,X_k be a set of observations from k populations (processes) x_1,\ldots,x_k , respectively and R be a procedure which selects x_i with probability $x_i(X_1,\ldots,X_k)$. Then the procedure P is said to be invariant if

$$\varphi_{i}(x_{1},\ldots,x_{i},\ldots,x_{j},\ldots,x_{k}) = \varphi_{j}(x_{1},\ldots,x_{j},\ldots,x_{i},\ldots,x_{k})$$

for all i and j.

It had been shown by Gupta and Studden [13] that for any invariant rule \mathbb{R}^* ,

$$E_{\perp 0}(S R^*) = k P_{\frac{\lambda}{2}0}(CS^*R^*)$$

where $\geq_0 = (s_1, \ldots, s_n) \in S_0$. It follows from Theorem 2.1 and Theorem 2.2 that the rule R_1 is minimax in the sense that it minimizes $\sup_{\mathbb{R}} E_{\underline{\lambda}}(S|R)$ over the class of all invariant rule satisfying the basic P* condition.

(B) Procedure Ro and Its properties

Suppose that the Poisson processes are observed at successive intervals of time, $t > 1,2,\ldots$. Observe the processes until time t_0 .

the smallest value of t, say, when the number of arrivals from one of the processes is equal to or greater than N. Let I denote the set of values i for which $X_j(t_0) \geq N$ and J the set of values j for which $X_j(t_0) \geq N - c_1$ where c_1 is the constant associated with R_1 defined in (2.1). Clearly I \subseteq J. For each j \in J, let t_{j0} be the time such that $X_j(t_{j0}) \geq N - c_1$ and $X_j(t_{j0}-1) \leq N - c_1$, and let $m_j = N - c_1 - X_j(t_{j0}-1)$, $n_j = X_j(t_{j0}) - X_j(t_{j0}-1)$. Similarly for each i \in I, let $m_1' = N - X_j(t_{0}-1)$ and $n_1' = X_j(t_{0}) - X_j(t_{0}-1)$. Let U(m,n) denote the mth smallest observation in a sample of size n from a uniform distribution on the unit interval (0,1). Now we compute

$$U_{j} = t_{j0}^{-1} + U(m_{j}, n_{j}) \qquad \text{for } j \in J$$

$$(2.15)$$

$$U_{j}^{!} = t_{0}^{-1} + U(m_{j}^{!}, n_{j}^{!}) \qquad \text{for } i \in I$$

and propose the following selection rule:

$$R_2$$
: Select process $_j$ ($j \in J$) if and only if

$$(2.16) U_{j} < \min_{i \in I} U_{i}'$$

Note that U_i' and U_j are simply the waiting times for N and N-c₁ arrivals from the processes v_j and v_j , respectively. To see this, observe that if n is a random variable distributed according to the Poisson distribution with mean v_j , then for any given value of v_j .

(2.17)
$$\Pr(U(m,n) \leq t) = \frac{1}{n^{\frac{n}{2}m}} e^{-\frac{n!}{n!}} \frac{n!}{(m-1)!(n-m)!} \int_{0}^{t} x^{m-1} (1-x)^{n-m} dx$$
$$= G_{n}(xt) \qquad 0 \leq t \leq 1.$$

Thus, the arrivals times for a Poisson process can be generated from the observed number of arrivals during the successive unit time intervals and

random observations from a uniform distribution. It follows that for any $\underline{\cdot} \in \cdot,$

$$F(C_{(i)})$$
 is selected $R_i = P_i(C_{(i)})$ is selected P_i).

Hence the rule P_{α} is reverse strongly monotone in $\{(i)\}$ for all $i=1,\ldots,k$. Moreover R_{α} is minimax among the class of invariant rules and

(2.18)
$$\inf_{t \in \mathbb{R}^{n}} P(CS | R_{2}) = \int_{0}^{\pi} (1 - G_{N}(t))^{k-1} dG_{N-C_{1}}(t)$$
$$= \frac{1}{k} \sup_{t \in \mathbb{R}^{n}} E(S | R_{2})^{n}$$

(C) Procedures R_3 and R_A and Their Properties

Let t_0 be a fixed positive number. Observe the number of arrivals $X_1(t_0),\dots,X_k(t_0)$ from processes τ_1,\dots,τ_k during time t_0 , respectively. We propose a rule R_3 as follows:

Ra: Select process of if and only is

$$\frac{X_{1}(t_{0})}{t_{0}} + 1 \ge c_{3} \max_{1 \le j \le k} \frac{X_{j}(t_{0})}{t_{0}}$$

where $c_3 = c_3(k,P^*,t_0)$ is the largest nonnegative number satisfied the condition (1.1).

It is easy to see that for any $\underline{\ }$ = (\cdot_1,\dots,\cdot_k) \in ,

$$p_{\underline{i}}(i R_3) + \frac{t_0}{\sqrt{2}n} e^{-\frac{t_0}{|\underline{i}|}} \frac{1}{|\underline{x}|} (\frac{t_0}{|\underline{x}|})^{x} = \frac{x+t_0}{|\underline{c}_3|} e^{-\frac{t_0}{|\underline{i}|}} \frac{1}{|\underline{y}|} (\frac{t_0}{|\underline{i}|})^{y}$$
(2.29),
$$\frac{1}{|\underline{i}|} \frac{1}{|\underline{x}|} (\frac{t_0}{|\underline{x}|})^{x} = \frac{t_0}{|\underline{x}|} (\frac{t_0}{|\underline{x}|})^{x} = \frac{t_0}{|\underline{x}|} (\frac{t_0}{|\underline{x}|})^{y} =$$

in Gallaws from (2.20) that R_2 is reverse strongly monotone in $\gamma_{i,j}$ for $i=1,\dots,k$. In particular

$$\inf_{\mathbf{r} \in \mathcal{F}_{\mathbf{r}}(\mathcal{F}_{\mathbf{r}}(\mathbf{r}))} = \inf_{\mathbf{r} \in \mathcal{F}_{\mathbf{r}}(\mathcal{F}_{\mathbf{r}}(\mathbf{r}))} \inf_{\mathbf{r} \in \mathcal{F}_{\mathbf{r}}(\mathbf{r})} \left(\frac{\mathbf{r} \cdot \mathbf{r}_{\mathbf{r}}}{\mathbf{r} \cdot \mathbf{r}_{\mathbf{r}}} \right) = \underbrace{\mathbf{r} \cdot \mathbf{r}_{\mathbf{r}}}_{\mathbf{r}}(\mathbf{r} \cdot \mathbf{r}_{\mathbf{r}})$$

$$= \inf_{\mathbf{r} \in \mathcal{F}_{\mathbf{r}}(\mathbf{r})} \mathbf{r}_{\mathbf{r}}(\mathbf{r} \cdot \mathbf{r}_{\mathbf{r}}) = \underbrace{\mathbf{r} \cdot \mathbf{r}_{\mathbf{r}}}_{\mathbf{r}}(\mathbf{r} \cdot \mathbf{r}_{\mathbf{r}})$$

prove the following theorem.

Theorem 2.3. For given P* and any connegative integer r, let $P_1^* = (P^*)^{k-1}$ and let $c_3(r)$ be the largest value such that

$$\frac{\binom{r+t_0}{1+c_3(r)}}{\sum_{i=0}^{\infty} \binom{r}{i} \frac{1}{2^r} \cdot P_i^*, }$$

of $c_3 = \inf\{c_3(r): r > 0\}$, then

Let $\frac{1}{1} \leq \frac{1}{2} \leq \left(\frac{1}{2}, \dots, \frac{1}{2}, 0\right) = \frac{1}{2}$. Then for any

$$\begin{split} \mathbb{E}_{\underline{\underline{I}}}(S|R_3) &= P_{\underline{\underline{I}}}(X_{(1)}(t_0) + t_0 - c_3 - \max_{2 \le j \le k} X_{(j)}(t_0)) + (k-1)P_{\underline{\underline{I}}}(X_{(2)}(t_0) + t_0 \ge \\ & - c_3 - \max_{j \nmid 2} X_j(t_0)) \\ &\leq k - P_{\underline{\underline{I}}}(X_{(1)}(t_0) + t_0 - c_3 X_{(2)}(t_0)) + (k-1)P_{\underline{\underline{I}}}(X_{(2)}(t_0) + t_0 - c_3 X_{(1)}(t_0)) \\ &= k - \frac{1}{2} \frac{c_3 \times - t_0}{1 + c_3} \\ &= k - \frac{1}{2} \frac{c_3 \times - t_0}{1 + c_3} \frac{1}{1 + c_3} \frac{c_3 \times - t_0}{1 + c_3} \frac{c_3$$

$$(2.22) \rightarrow k = \inf_{x \in \Gamma} q(x) + (k-1)\inf_{x \in \Gamma} h(x) = 1 - e^{-\frac{k}{2}} \rightarrow .$$

where g(x) and h(x) are defined in terms of incomplete beta function as follows:

(2.23)
$$q(x) = 1 - I_{\frac{1}{1+c}} \left(\left[\frac{c_3 x - t_0}{1 + c_3} \right] + 1, x - \left[\frac{c_3 x - t_0}{1 + c_3} \right] \right)$$
$$h(x) = 1 - I_{\frac{1}{1+c}} \left(\left[\frac{c_3 x - t_0}{1 + c_3} \right] + 1, x - \left[\frac{c_3 x - t_0}{1 + c_3} \right] \right).$$

Using the same sampling rule as in ${\bf R}_3$, we propose the following conditional procedure.

R₄: Select process i if and only if

$$(2.24) \qquad \frac{X_{i}(t_{0})}{t_{0}} + 1 + c_{0} \max_{1 \le i \le k} \frac{X_{i}(t_{0})}{t_{0}}, \text{ given } \frac{k}{i : 1} X_{i}(t_{0}) = r,$$

where $c_4 \ge 0$ is the maximum value for which the condition (1.1) is satisfied.

Let
$$\underline{\cdot} \in (\cdot_1, \dots, \cdot_s)$$
 , and let

$$s_i = \left(\frac{1}{(k)} + \dots + \frac{1}{(k-i)!}\right), \quad i \in k,$$

(2.25)

$$p_{ij} = \frac{1}{1100}, \quad i = 1, \dots, k.$$

100,00

$$P_{\perp}(CS, R_{4}) = P_{\perp}(X_{(1)}(t_{0}) + t_{0} + c_{4} \max_{2 \le j \le k} X_{(j)}(t_{0}) + \frac{k}{i \le 1} X_{(i)}(t_{0}) = r)$$

$$= \frac{r}{x \ge 0} {r \choose x} p_{k1}^{r} (1 - p_{k1})^{r - x} + (r - x)! \frac{k}{j \ge 2} (\frac{p_{k-1}^{x, j}}{y \ge j!})$$

where the second summation of the right hand side of (2.26) is over all (k-1)-tuples (x_2,\ldots,x_k) of nonnegative integers, such that $0 < x_1 < \min\{\frac{x+t}{c_A}, r-x\}$, $i=2,\ldots,k$, and $\frac{k}{k-2}, x_1 = r-x$.

Recall that the vector $\underline{x} = (x_1, \dots, x_n)$ majorizes the vector $\underline{y} = (y_1, \dots, y_n)$ if $\lim_{\substack{i=1 \ i = 1}} \underbrace{x_{n+1-i}}^{m} \underbrace{y_{n+1-i}}^{y_{n+1-i}}$ for $m = 1, \dots, n-1$, and

and is written $\underline{x} \succ \underline{y}$. A real-valued function $\underline{\cdot}(\underline{x})$ is called a Schur-convex (concave) function if $\underline{\cdot}(\underline{x}) \succeq (\underline{\cdot}) \cdot \underline{\cdot}(\underline{y})$ whenever $\underline{y} \succ \underline{y}$. It is known that (see Rinott [16]) if $\underline{\cdot}(x_1, \ldots, x_k)$ is asymmetric Schur-concave function and (x_1, \ldots, x_k) is a multinomial random vector with parameter N and \underline{p} , then $\underline{E}(\underline{\cdot}, (x_1, \ldots, x_k))$: is Schur-concave in \underline{p} .

Now for a fixed x, the second summation of the right hand member of (2.26) can be expressed as

(2.28)
$$\sum_{j=2}^{k} (r-x)! \frac{k}{j-x} \frac{(p_{k-1}^{x_j}, j)}{(p_{k-1}^{x_j}, j)} = E_{\underline{p}}(y(Y_1, \dots, Y_{k-1}))$$

where

(2.29)
$$\psi(y_1, \dots, y_{k-1}) = \begin{cases} 1 & \text{if } c_4 \max_{1 < j < k-1} v_j < x + t_0 \\ 0 & \text{if } c_4 \max_{1 < j < k-1} v_j < x + t_0 \end{cases}$$

and (Y_1,\ldots,Y_{k-1}) is a multinomial random vector with parameters r-x and

 $P = (p_{k-1,1}, \dots, p_{k-1,k-1})$. Since , is a symmetric Schur-concave function, it follows that $E_p(.(Y_1,...,Y_{k-1}))$ is Schur-concave in p. In other words, if we fix s_{k-1} and $\gamma_{[1]}$, then $\Gamma_{\gamma}(CS,R_4)$ decreases when $\gamma_{[2]}$. $\gamma_{[1]}$. Hence the least favorable configuration is of the form $(\cdot,\ldots,\cdot,\cdot,\cdot,\ldots,\cdot)$ where \cdots 0, \cdots 1. It should be pointed out that the probability of a correct selection under the configuration $(\lambda,\ldots,\lambda,\lambda,\cdots,\ldots,\lambda)$ does not depend on the unknown parameter 3. Also when k=2, the infimum of P(CS R_2) takes place when the two processes are identical. However, when k > 3, the infimum of P(CS ${
m R}_4$) does not necessarily take place at the configuration of the type $(\cdot,\ldots,\cdot,\cdot,\ldots,\cdot)$ as shown by the following example.

First of all, we need some algebraic concepts. Let

(2.30)
$$p(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$$

be a polynomial of degree n. The coefficients $\mathbf{a}_0, \mathbf{a}_1, \dots, \mathbf{a}_n$ are assumed

In particular, when $p(x) = a_0x^2 + a_1x + a_2$, then $D(p) = a_1^2 - 4a_0a_2$. It is well-known that (see [14]) if the polynomial p(x) with real coefficients. not having multiple roots, then D(p) = 0, if the number of pairs of complex conjugate roots of p(x) is even, and D(p) = 0, if this number is odd.

Moreoever, D(p)=0 if and only if p(x) has multiple roots. Now we consider the case when k=3, $c=\frac{2}{9}$, $t_0=1$ and $\frac{3}{1+1}$ $\frac{x}{1+1}$ $\frac{x}{1+1}$

(2.31)
$$(x, \lambda, \delta \lambda), \quad \lambda = 0, \quad \delta > 1.$$

Let $x = (1+2x)^{-1}$. Under the configuration (2.31),

(2.32)
$$P(CS R_4) = P_r(X_{(1)}(t_0)+1 \ge \frac{2}{9} \max_{2 \le i \le 3} X_{(i)}(t_0) | \sum_{i=1}^{3} X_{(i)}(t_0) = 6)$$

$$= 1-P_r(X_{(1)}(t_0) = 0, \max_{2 \le i \le 3} X_{(i)}(t_0) \ge 5 | \sum_{i=1}^{3} X_{(i)}(t_0) = 6)$$

$$= 1-x^5(3-2x) - (\frac{1-x}{2})^5(\frac{1+11x}{2})$$

$$= p(x), say.$$

The derivative p'(x) of p(x) is a polynomial of degree 5. It follows that p'(x) has at most two pairs of complex conjugate roots. Direct computation shows that the discriminant of p'(x) is negative. This implies that p'(x) has three real roots. Since $p'(\frac{1}{3})p'(1) = 0$ and p'(x) < 0 for all $0 \le x < \frac{1}{11}$, there are at most two real roots lying in the interval. Moreover $p'(\frac{33}{352}) \le 0 \le p'(\frac{33}{352}) + \frac{1}{11264}$, and $p'(\frac{1}{4}) \ge 0 \ge p'(\frac{1}{3})$. Now

$$p(\frac{33}{352}) = 0.980578 + p(1) = 0.9805735 + p(0) = 0.984375.$$

This implies that the infimum of p(x) takes place for some x in the closed interval $\left[\frac{33}{352}, \frac{33}{352} + \frac{1}{11264}\right]$. This shows that the least favorable configuration is of the type $(\cdot, \cdot, \cdot, \cdot)$ where $x \in \mathbb{N}$.

The next theorem shows that \mathbb{F}_1 is reverse monotone.

Theorem 2.4. For $1 \le i \le j \le k$ and $j \le (j, \ldots, j) \le j$,

$$P_{2^{-n}(i)}$$
 is selected $P_{4^{-n}(i)}$ is selected $P_{4^{-n}(i)}$.

Proof. For
$$1 < i < j < k$$
 and $\underline{x} = (x_1, \dots, x_k) \in$,

$$(2.33) \quad P_{\underline{j}}(i,R_{4}) = P_{\underline{j}}(X_{(i)}(t_{0}) + t_{0} + c_{4} \max_{1 \le j \le k} X_{(j)}(t_{0}) + \sum_{j=1}^{k} X_{j}(t_{0}) = r)$$

$$= \sum_{\underline{j}} \left(\frac{x_{i}^{+x_{j}}}{x_{i}} \right) \left(\frac{1}{[i]!} \frac{1}{[j]!} \right)^{x_{j}} \left(\frac{1}{[i]!} \frac{1}{[j]!} \right)^{x_{j}}.$$

$$= \frac{r!}{\underset{i \ne j}{\stackrel{\wedge}{=}} x_{i}! (x_{i}^{+x_{j}})!} \xrightarrow{\underset{i \ne j}{\stackrel{\wedge}{=}} p_{i,k}^{+}} (p_{ik}^{+p_{jk}})^{x_{i}^{+x_{j}}}.$$

where the first summation is over all k-tuples (x_1,\ldots,x_k) of nonnegative integer such that (i) $\sum\limits_{i=1}^k x_i = r$ and (ii) $x_i + t_0 + c_4 \max\limits_{i \neq i} x_i$; the second summation is over all (x_i,x_j) such that (i) holds and $x_i + t_0 + c_4x_j$. Since the term in the first parenthesis can be written as

$$I_{\frac{[j]}{[j]^{+}[i]}} (\frac{c_{4}(x_{i}+x_{j})-t_{0}}{1+c_{4}}], x_{i}+x_{j}-\frac{c_{4}(x_{i}+x_{j})-t_{0}}{1+c_{4}}]+1)$$

where $I_p(\cdot)$ represents the incomplete beta function, and [x], the integral part of x. Similarly,

$$(2.34) \qquad p_{\underline{\lambda}}(j \cdot R_{4}) = \sum \left(\sum_{x_{i}}^{x_{i}+x_{j}}\right) \left(\frac{\lambda [i]}{\lambda [i]^{+} [j]}\right)^{x_{i}} \left(\frac{\lambda [j]}{\lambda [i]^{+} [j]}\right)^{x_{j}} \cdot \frac{r!}{\sum_{\substack{y=1\\y\neq j\\y\neq j}}^{x_{y}} \left(\frac{x_{i}+x_{j}}{\lambda [i]^{+} [i]}\right)^{x_{i}} \left(\frac{\lambda [i]}{\lambda [i]^{+} [i]}\right)^{x_{j}} \cdot \frac{1}{\lambda [i]^{+} [i]$$

where the summations are respectively over the same regions as that of $p_{\nu}(i|R_4)$. From the fact that

(2.35)
$$I_{p_1}(a,b) = I_{p_2}(a,b) = it - p_1 = p_2$$

it follows that $p_{\chi}(i \, | \, R_{\bm{4}}) \geq p_{\chi}(j \, | \, R_{\bm{4}})$ whenever i < j . This completes the proof.

The following result provides a method to obtain a conservative selection constant for the procedure R_{Λ} .

Proof. For any $\underline{\cdot} = (\cdot_1, \dots, \cdot_k) \in \cdot$,

$$P_{\underline{\lambda}}(CS \mid R_{4}) = P_{r}(X_{(1)}(t_{0}) + t_{0} \leq c_{4} \max_{2 \leq j \leq k} X_{(j)}(t_{0}) \mid \sum_{i=1}^{k} X_{(i)}(t_{0}) = r)$$

$$= 1 - P_{r}(X_{(1)}(t_{0}) + t_{0} \leq c_{4} \max_{2 \leq j \leq k} X_{(j)}(t_{0}) \mid \sum_{i=1}^{k} X_{(i)}(t_{0}) = r)$$

$$\geq 1 - \sum_{j=2}^{k} P_{r}(X_{(1)}(t_{0}) + t_{0} \leq c_{4} X_{(j)}(t_{0}) \mid \sum_{j=1}^{k} X_{(i)}(t_{0}) = r)$$

$$\geq 1 - \sum_{j=2}^{k} \sum_{i=0}^{c_{4}r - t_{0}} \binom{r}{i} (\frac{\lambda_{[i]}}{\lambda_{[i]}^{+}} \binom{1}{[i]})^{i} (\frac{\lambda_{[i]}}{\lambda_{[i]}^{+}} \binom{1}{[i]})^{r - i}$$

$$= \sum_{i=0}^{c_{4}r - t_{0}} \binom{r}{i + c_{4}}$$

$$\geq 1 - (k - 1) \sum_{i=0}^{k} \binom{r}{i} \frac{1}{2^{r}}$$

$$= P^{*}.$$

3. Selection Procedures for the Process Associated with λ [k]

For the analogous problem of selecting the process for which the mean rate is the smallest, we propose the following subset selection rules.

(A) Let N be a fixed positive integer. We observed the processes until, say t_0 , that $\min_{1\leq i\leq k} X_i(t_0)$ = N.

 R_1^* : Select the process π_i if and only if

(3.1)
$$X_{i}(t_{0}) < N + c_{1}^{i},$$

where c_1^* is the smallest non-negative integer such that the basic probability requirement (1.1) is satisfied.

By using similar arguments as given in Section 2, one can show that the procedure R_1^* is strongly monotone in $\pi_{(i)}$ for all $i=1,\ldots,k$. This implies that the infimum of $P(CS[R_1^*])$ takes place when all the process are identical. In fact, the infimum of $P(CS[R_1^*])$ is given by

(3.2)
$$\inf_{t} P(CS|R_1^t) = \int_{0}^{\infty} G_N^{k-1}(t) dG_{N+c_1^t}(t).$$

Also, one can show that

(3.3)
$$\sup_{i} E(S_{1}^{i}R_{1}^{i}) = k \inf_{i} P(CS_{1}^{i}R_{1}^{i}).$$

(B) If the processes are observed at successive intervals of time $t=1,2,\ldots$ We observe the processes until the first time t_0 , say, when $\min_{\substack{i \in k \\ 1 \leq i \neq k}} X_i(t_0) > N$. Let t_i be the time such that $X_i(t_i) \geq N$ and $X_i(t_i-1) < N$, $i=1,\ldots,k$. Let $m_i = N-X_i(t_i-1)$ and $n_i = X_i(t_i)-X_i(t_i-1)$. As in the previous section, we compute

(3.4)
$$U_i = t_i - 1 + U(m_i, n_i), \quad i = 1, ..., k,$$

and propose a selection procedure ${\rm R}_2^+$ as follows:

 R_2' : Retain process τ_i in the selected subset if and only if

$$(3.5) U_{i} > c_{2}^{i} \max_{1 \leq j \leq k} U_{j},$$

where $0 < c_2^2 < 1$ is the largest value for which the condition (1.1) is satisfied. Since \mathbb{F}_i is distributed a $\mathbb{F}_i(N)$, hence thus reduces to the problem of selecting a subsci of k gamma populations which includes the one with the smallest value of scale parameter. It follows from [7] that

- (i) Rule R₂ is strongly monotone in $\pi_{(i)}$ for all i = 1,...,k.
- (ii) $\sup E(S|R_2^+) = k \inf P(CS|R_2^+).$

It should be pointed out that a rule similar to R_2^* has been studied by Goel [6].

- 4. Applications
- (A) A sequential (inverse sampling) subset selection rule for the most probable multinomial event.

Let $\underline{x} = (x_1, \dots, x_k)$ have the multinomial distribution

(4.1)
$$P(\underline{x} = \underline{x}) = (\frac{n}{x_1, \dots, x_k}) \xrightarrow{k} \frac{x_i}{i=1} p_i^{x_i}$$

where $\underline{x} = (x_1, \dots, x_k)$. Let $p_{[1]} \times \dots \times p_{[k]}$ denote the ordered values of p_1, \dots, p_k . The subset selection problem for the multinomial distribution has been considered by Gupta and Nagel [11], Gupta and Huang [9] and Panchapakesan [15]. A related problem has also been discussed by Alam, Seo and Thompson [2], Bechhofer, Elmarghrabi and Morse [3]. In [9] and [11], the authors considered the fixed-sample subset selection rules. The procedure given in [15] is based on a completely sequential sampling scheme in which one observation is taken at a time from the given distribution until the highest cell count is equal to a fixed number N, say.

We consider below a variation of the sampling scheme in [2]. The sampling scheme is given as follows: Let a positive integer N be given, and let n_1, n_2, \ldots denote a sequence of random observations taken from a Poisson distribution with mean λ . Having observed these numbers, take n_i observations from the given multinomial distribution for the ith experiment, $i=1,2,\ldots$. Let π_i denote the cell corresponding to p_i , and let $Y_{i,j}$ denote the cell count in π_i out of n_j observations. Stop sampling as soon as the total count from any

cell is equal to or greater than N. Let t_0 denote the stage at which the experiment terminates, and let $X_i(t) = \sum_{j=1}^{\infty} Y_{ij}$. Then $X_i(t_0-1) + N$ for $i \in 1, \ldots, k$ and $X_i(t_0) > N$ for some i. As in Section 2, let i be the set of values of i for which ${}^\gamma{}_i(t_0)$ - N and J be the set of values of j for which $\Sigma_i(\mathsf{t}_0)$. N=c $_2$ where c_2 is the selection constant associated with rule R $_2$. Take the similar random observations from the uniform distribution on the unit interval (0,1) and obtain the statistics U_i^* and U_i^* as defined in (2.15). Based on the statistics U_i^* 's and U_i^* 's, we select the cell according to the rule R_{2} . Then the problem reduces to that of selecting the Poisson process with maximum mean rate. To see this, suppose the parameter n in (4.1) is a random variable distributed according to a Poisson distribution with mean ... It is easy to show that the cell frequencies X_1, \ldots, X_k are independently distributed according to the Poisson distribution with mean $\lambda p_1, \ldots, \lambda p_{\nu}$, respectively. It follows (2.18) that the least favorable configuration is $(\stackrel{\cdot}{k},\ldots,\stackrel{\cdot}{k}),$ and the infimum of $\Gamma(CS)$ is independent of the parameter $\lambda.$ Moreover, the supremum of the expected subset size is obtained when all the cells are identical and is equal to k inf P(CS). It should be pointed out that when $\lambda > 0$, the rule reduces to the one proposed by Panchapakesan [15].

(B) A sequential (inverse sampling) rule for selection procedure for k binomial populations

Let γ_1,\ldots,γ_k be k independent binomial populations with parameters p_1,\ldots,p_k respectively. To select a subset of the k populations which contains the population associated with the largest p_i , Gupta and Sobel [12] proposed a fixed-sample procedure which is based on the statistics $\max_{1\leq i\leq k} |X_i-X_i|, \text{ where } X_i \text{ represents the number of successes in n independent } 1\leq i\leq k$ trials from population γ_i . Recently, Gupta, Huang and Huang [10] proposed a

conditional procedure for this problem and gave a lower bound for the infimum of the probability of a correct selection. It should be pointed out that a related problem has been considered by Sobel and Weiss [17].

suppose the number of observations taken as each stage from the k binomial populations, is a random variable distributed according to a Poisson distribution with mean a. Using the same sampling procedure and selection rule as mentioned in part (A) of this section, the problem then reduces to that of selecting the Poisson process with largest mean rate. It follows that the infimum of the probability of a correct selection and the supremum of the expected subset size take place when all the populations are identical. Also the inf P(CS) and the sup E(S) do not depend on the common unknown parameter p and the mean +. Moreover, the selection rule is strongly monotone in $\pi_{\{i\}}$ for all $i=1,\ldots,k$.

Acknowledgment

The authors wish to thank Miss Carol de Branges for programming assistance.

References

- [1] Alam, K. (1971). Selection from Poisson processes. Ann. Inst.Statist. Math., 23, 411-418.
- [2] Alam, K., Seo, K., and Thompson, J. R. (1971). A sequential sampling rule for selecting rule for selecting the most probable multinomial event.

 Ann. Inst. Statist. Math., 23, 365-374.
- [3] Bechhofer, R., Elmarghrabi, S., and Morse, N. (1959). A single-sample multiple-decision procedure for selecting the multinomial event which has the largest probability. Ann. Math. Statist., 30, 102-119.
- [4] Chapman, D. G. (1952). On tests and estimates for the ratio of Poisson means. Ann. Inst. Statist. Math., 4, 45-49.
- [5] Goel, P. K. (1972). A note on the non-existence of subset selection procedures for Poisson populations. Mimeo. Series No. 303, Department of Statistics, Purdue University, West Lafayette, Indiana 47907.

- [6] Goel, P. K. (1975). A note on subset selection procedure with Poisson processes. Unpublished report.
- [7] Gupta, S. S. (1963). On a selection and ranking procedure for gamma populations. Ann. Inst. Statist. Math., 14, 199-216.
- [8] Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules. Technometrics, 7, 225-245.
- [9] Gupta, S. S. and Huang, D. Y. (1975). On subset selection procedures for Poisson populations and some applications to the multinomial selection problems. Applied Probability (ed. Gupta, P. P.) 97-109, North-Holland Publishing Co., Amsterdam.
- [10] Gupta, S. S., Huang, D. Y., and Huang, W. T. (1974). On a conditional procedure for selecting a subset containing the best of several binomial populations. Mimeo. Series No. 346. Department of Statistics, Purdue University, West Lafayette, Indiana 47307.
- [11] Gupta, S. S., and Nagel, K. (1967). On selection and ranking procedures and order statistics from multinomial distributions. Sankhya, Ser. B, 29, 1-34.
- [12] Gupta, S. S., and Sobel, M. (1960). Selecting a subset containing the best of several binomial populations. Contributions to Probability and Statistics (ed. Olkin, I., et. al.), 224-248, Stanford University, Stanford, California.
- [13] Gupta, S. S., and Studden, W. J. (1966). Some aspects of selection and ranking procedures with applications. Mimeo. Series. No. 81, Department of Statistics, Purdue University, West Lafayette, Indiana 47907.
- [14] Mishina, A. P., and Proskurakov, I. V. (1965). Higher Algebra, Pergamon Press, Oxford, London.
- [15] Panchapkesan, S. (1971). On a subset selection procedure for the most probable event in a multinomial distribution. Statistical Decision Theory and Related Topics (ed. Gupta, S. S., and Yackel, J.), 275-298. Academic Press, New York.
- [16] Rinott, Y. (1973). Multivariate majorization and rearrangment inequalities with some applications to probability and statistics, Israel J. Math., 15, 60-77.
- [17] Santner, T. (1975). A restricted subset selection approach to ranking and selection problems. Ann. St.tist., 3, 334-349.
- [18] Sobel, M., and Weiss, G. H. (1972). Play-the-winner rule and inverse sampling for selecting the best of k = 3 binomial populations, Ann. Math. Statist., 43, 1808-1826.

TABLE I

For given k, N, and P*, this table gives the actual minimum P(CSIR $_1$) and the smallest integer c_1 (in parenthesis) necessary to apply the procedure P $_1$.

P *	==	7	5

1/K	2	3	4	5	6	7
2	0.7500 (1)	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)
3	0.8750 (2)	0.8025 (2)	0.7521 (2)	1.0000 (3)	1.0000 (3)	1.0000 (3)
a	0.8125 (2)	0.8967 (3)	0.8662 (3)	0.8419 (3)	0.8217 (3)	0.8044 (3)
5	0.7734 (2)	0.8236 (3)	0.7757 (3)	0.9147 (4)	0.9024 (4)	0.8915 (4)
6	0.8 5 55 (3)	0.7710 (3)	0.8637 (4)	0.8380 (4)	0.8166 (4)	0.7981 (4)
7	0.8 2 81 (3)	0.8523 (4)	0.8097 (4)	0.7762 (4)	0.8884 (5)	0.8 75 8 (5)
9	0.3062 (3)	0.8163 (4)	0.7657 (4)	0.8542 (5)	0.8340 (5)	0.2165 (5)
9	0.7880 (3)	0.7861 (4)	0.3409 (5)	0.8112 (5)	0.7864 (5)	0.7652 (5)
10	0.7728 (3)	6.7604 (4)	0.8081 (5)	0.7737 (.)	0.3552 (6)	0.8392 (6)

P*-.30

. 1 k	?	3	4	5	6	7
2	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)
3	0.3750 (2)	0.8025 (2)	1.0000 (3)	1.0000 (3)	1.0000 (3)	1.0000 (3)
4	0.8125 (2)	0.8967 (3)	0.8662 (3)	0.8419 (3)	0.8217 (3)	0.3044 (3)
5	ე.8 <mark>906</mark> (3)	0.8236 (3)	0.9291 (4)	0.9147 (4)	0.9024 (4)	0.8915 (4)
6	0.8555 (3)	0.8955 (4)	0.8637 (4)	0.8380 (4)	0.8166 (4)	0.9411 (5)
7	0.8 281 (3)	0.8523 (4)	0.0007 (4)	0.7027 (5)	0.3884 (5)	0.8753 (5)
S	0.8062 (3)	0.8163 (4)	0 3781 (5)	0.8542 (5)	0.8340 (5)	0.8165 (5)
Ģ	0.3666 (4)	0.8786 (5)	0.0409 (5)	0.8112 (5)	0.8937 (6)	0.8813 (6)
10	0.8491 (4)	0.3516 (5)	0.8081 (5)	0.5735 (6)	0.8552 (6)	0.8392 (6)

TABLE I (cont'd.)

For given k, N, and P*, this table gives the actual minimum $P(CSIR_{\uparrow})$ and the smallest integer (in parenthesis) necessary to apply the procedure R_{\uparrow} .

P*= .90)

k	<u>a</u> 	3	4	5	6	7
2	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)
3	1.0000 (3)	1.0000 (3)	1.0000 (3)	1.0000 (3)	1.0000 (3)	1.0000 (3)
4	0.9375 (3)	1.0000 (4)	1.6000 (4)	1.0000 (4)	1.0000 (4)	1.0000 (4)
Ę	0.9690 (4)	0.9466 (4)	0.9291 (4)	0.3147 (4)	0.9024 (4)	1.0000 (5)
6	0.9375 (4)	0.9726 (5)	0.9629 (5)	0.9547 (5)	0.9475 (5)	0.9411 (5)
7	0.9102 (4)	0.9395 (5)	0.9194 (5)	0.9027 (5)	0.9722 (6)	0.9685 (6)
8	0.9453 (5)	0.9074 (5)	0.9534 (6)	0.9430 (6)	0.9338 (6)	0.9257 (6)
9	0.9270 (5)	0.9432 (6)	0.9239 (6)	0.9077 (6)	0.9616 (7)	0.9565 (7)
10	0.9102 (5)	0.9209 (6)	0.9535 (7)	0.9429 (7)	0.9336 (7)	0.9252 (7)

P*=.95

r; k	2	3	4	r,	6	7
2	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)	1.0000 (2)
<u>,</u>	1.0000 (3)	1.0000 (3)	7.0000 (3)	1.0009 (3)	1.0000 (3)	1.0000 (3)
4	1.0000 (4)	1.0000 (4)	1.00m (4)	1.9990 (4)	1.00 0 0 (4)	1.0000 (4)
5	0.9 <mark>6</mark> 38 (4)	1.0000 (5)	1.0000 (5)	1.0000 (5)	1.0000 (5)	1.0000 (5)
6	0.9844 (5)	0.9726 (5)	0.9629 (5)	0.9547 (5)	1.0000 (6)	1.0000 (6)
7	0.9 6 48 (5)	0.9860 (6)	0.9803 (6)	0.9762 (6)	0.9722 (6)	0.9685 (6)
8	0.9805 (6)	0.1696 (6)	0.3534 (6)	0.9876 (2)	0.9854 (7)	0.9834 (7)
Q.	0.1672 (6)	p 46.07 (7)	0.3729 773	0.9672 305	0,9616 (7)	0.9565 (7)
10	9.95/9 (6)	the state of the s	0.054 (7)	0.9814 (3)	0.4781 (3)	0.4750 (3)

TABLE II

For given k, N, P* (or c_1) and A, this table gives the actual probability of a correct selection (top), the probability of selecting a non-best population (middle) and the expected proportion (bottom) of population selected in the subset when the rule R_1 is used and the parameters are given by slippage configurations $\Delta\lambda$, λ ,..., λ . For given k and N, each of the four blocks of three numbers correspond to P*=.75, .80, .90 and .95, respectively. Note that for fixed k, N and P*(large) if c_1 =N (from Table I), all three entries in each block are 1, as expected.

			გ -	= 0.1		
N/K	2	3	4	5	6	7
3	0 .9993 0.2487 0.6240	0.9985 0.2481 0.4982	0.9978 0.2475 0.4350	0.000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
	0.9993 0.2487 0.6240	0.9985 0.2481 0.4982	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
3	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
N\k	2	3	4	5	6	7
4	0.9997 0.0686 0.5342	0.9999 0.3168 0.5445	0.9998 0.3167 0.4874	0.9997 0.3165 0.4531	0.9997 0.3163 0.4302	0.9996 0.3162 0.4138
	0.9997 0.0686 0.5342	0.9999 0.3168 0.5445	0.9998 0.3167 0.4874	0.9997 0.3165 0.4531	0.9997 0.3165 0.4302	0.9996 0.3162 0.4138
7	0.9999 0.3170 0.6585	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000
	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

N k	2	3	4	5	6	7
	0.9999	0.9999	0.9999	1.0000	1.0000	1.0000
	0.0199	0.0968	0.0968	0.3790	0.3789	0.3789
	0.5099	0.3979	0.3226	0.5032	0.4824	0.4676
5	1.0000 0.0139 0.5484	0.9999 0.0968 0.3979	1.0000 0.3790 0.5342	1.0000 0.3790 0.5032	1.0000 0.3789 0.4824	1.0000 0.3789 0.4676
	1.0000 0.3791 0.6895	1.0000 0.3790 0.5860	1.0000 0.3790 0.5342	1.0000 0.3790 0.5032	1.0000 0.3789 0.4824	1.0000 1.0000 1.0000
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.3791	1.0000	1.0000	1.0000	1.0000	1.0000
	0.6895	1.0000	1.0000	1.0000	1.0000	1.0000
N k	2	3	4	5	6	7
	1.0000 0.0297 0.5148	1.0000 0.0297 0.3531	1.0000 0.1276 0.3457	1.0000 0.1276 0.3021	1.0000 0.1276 0.2730	1.0000 0.1276 0.2522
	1.0000 0.0297 0. 5148	1.0000 0.1276 0.6237	1.0000 0.1276 0.3457	1.0000 0.1276 0.3021	1.0000 0.1276 0.2730	1.0000 0.4355 0.5161
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.1276	0.4355	0.4355	0.4355	0.4355	0.4355
	0.5638	0.6237	0.5766	0.5484	0.5296	0.5161
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.4355	0.4355	0.4355	0.4355	1.0000	1.0000
	0.7178	0.6237	0.5766	0.5484	1.0000	1.0000
N k	2	3	4	5	6	7
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0092	0.0415	0.0415	0.0415	0.1603	0.1603
	0.5046	0.3610	0.2812	0.2332	0.3002	0.2802
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0092	0.0415	0.0415	0.1603	0.1603	0.1603
	0.5046	0.3610	0.2812	0.3282	0.3002	0.2802
,	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000
	0.0415	0.1603	0.1603	0.1603	0.4868	0.4868
	0.5208	0.6579	0.3702	0.3282	0.5724	0.5601
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.1603	0.4868	0.4868	0.4863	0.4868	0.4868
	0.5801	0.6579	0.6151	0.5895	0.5724	0.5601

;			· · · · · · · · · · · · · · · · · · ·	1		26
n'k	2	3	4	5	6	7
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0028	0.0134	0.0134	0.0554	0.0554	0.0554
	0.5014	0.3422	0.2600	0.2443	0.2129	0.1904
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0028	0.0134	0.0554	0.0554	0.0554	0.0554
	0.5014	0.3422	0.2916	0.2443	0.2129	0.1904
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0554	0.0554	0.1942	0.1942	0.1942	0.1942
	0.5277	0.3703	0.3957	0.3554	0.3285	0.3093
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.1942	0.1942	0.1942	0.5335	0.5335	0.5335
	0.5971	0.4628	0.3957	0.6268	0.6112	0.6001
N K	2	3	4	5	6	7
ç	1.0000 0.0009 0.5004	1.0000 0.0043 0.3362	1.0000 0.0186 0.2640	1.0000 0.0186 0.2149	1.0000 0.0186 0.1822	1.0000 0.0186 0.1588
	1.0000 0.0043 0.5021	1.0000 0.0186 0.3457	1.0000 0.0186 0.2640	1.0000 0.0186 0.2149	1.0000 0.0712 0.2260	1.0000 0.0712 0.2039
•	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0186	0.0712	0.0712	0.0712	0.2289	0.2289
	0.5093	0.3808	0.3034	0.2570	0.3574	0.3391
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0712	0.2289	0.2289	0.2289	0.2289	0.2289
	0.5356	0.4860	0.4217	0.3831	0.3574	0.3391
NX	2	3	4	5	6	7
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0003	0.0014	0.0062	0.0062	0.0250	0.0250
	0.5001	0.3343	0.2546	0.2049	0.1875	0.1643
10	1.0000 0.0014 0.5006	1.0000 0.0062 0.3374	1.0000 0.0250 0.2546	1.0000 0.0250 0.2200	1.0000 0.0250 0.1875	1.0000 0.0250 0.1643
	1.0000 0.0062 0.5031	1.0000 0.0250 0.3500	1.0000 0.0887 0.3165	1.0000 0.0387 0.2710	1.0000 0.0887 0.2 4 06	1.0000 0.0887 0.2189
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	0.0250	0.0887	0.0887	0.2640	0.2640	0.2640
	0.5125	0.3925	0.3165	0.4112	0.3866	0.3691

For given k, N, P* (or c_1) and a, this table gives the actual probability of a correct selection (top), the probability of selecting a non-best population (middle) and the expected proportion (bottom) of populations selected in the subset when the rule R_1 is used and the parameters are given by slippage configurations 5A, A,...,A. For given k and N, each of the four blocks of three numbers correspond to P*=.75, .80, .90 and .95, respectively.

Note that for fixed k, N and P* (large) if c_1 =N (from Table I), all three entries in each block are 1, as expected.

	$\delta = 0.3$						
N K	2	3	4	5	6	7	
3	0.9877 0.5448 0.7663	0.9766 0.5326 0.6806	0.9665 0.5218 0.6330	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
	0.9877 0.5448 0.7663	0.9766 0.5326 0.6806	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
3	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
N k	2	3	4	5	6	7	
4	0.9884 0.3267 0.6576	0.9945 0.6440 0.7608	0.9919 0.6386 0.7269	0.9895 0.6336 0.7047	0.9872 0.6288 0.6885	0.9849 0.6244 0.6759	
	0.9884 0.3267 0.6576	0.9945 0.6440 0.7608	0.9919 0.6386 0.7269	0.9895 0.6336 0.7047	0.9872 0.6288 0.6885	0.9849 0.6244 0.6759	
	0.9972 0.6499 0.8235	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	

NK	2	3	4	5	6	7
	0.9910	0.9938	0.9909	0.9975	0.9969	0.9963
	0.2048	0.4150	0.4105	0.7228	0.7204	0.7181
	0.5979	0.6080	0.5556	0.7777	0.7665	0.7579
5	0.9968	0.9938	0.9981	0.9975	0.9969	0.9963
	0.4199	0.4150	0.7253	0.7228	0.7204	0.7181
	0.7084	0.6080	0.7935	0.7777	0.7665	0.7579
J	0.9994	0.9987	0.9981	0.9975	0.9969	1.0000
	0.7307	0.7279	0.7253	0.7228	0.7204	1.0000
	0.8650	0.8182	0. 793 5	0.7777	0.7665	1. 0 000
	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
	0.7307	1.0000	1.0000	1.0000	1.0000	1.0000
	0.8650	1.0000	1.0000	1.0000	1.0000	1.0000
N K	2	3	4	5	6	7
	0.9973	0.9634	0.9975	0.9967	0.9960	0.9952
	0.2743	0.2711	0.5006	0.4981	0.4957	0.4935
	0.6358	0.6618	0.6249	0.5979	0.5791	0.5651
6	0.9973 0.2743 0.6358	0.9983 0.5032 0.6249	0.9975 0.5006 0.5979	0.9967 0.4981 0.5791	0.9960 0.4957 0.8171	0.9991 0.78 68
O	0.9992	0.9997	0.9996	0.9994	0.9993	0.9991
	0.5060	0.7915	0.7903	0.7891	0.7879	0.78 6 8
	0.7526	0.8609	0.8426	0.8312	0.8231	0.8171
	0.9999	0.9997	0.9996	0.9994	1.0000	1.0000
	0.7928	0.7915	0.7903	0.7891	1.0000	1.0000
	0.8963	0.8609	0.8426	0.8312	1.0000	1.0000
N K	2	3	4	5	6	7
	0.9979	0.9984	0.9977	0.9969	0.9989	0.9987
	0.1810	0.3436	0.3416	0.3398	0.5775	0.5762
	0.5895	0.5618	0.5056	0.4712	0.6478	0.6366
7	0.9979	0.9984	0.9977	0.9991	0.9989	0.9987
	0.1810	0.3436	0.3416	0.5789	0.5775	0.5762
	0.5895	0.5618	0.5056	0.6629	0.6478	0.6366
,	0.9992	0.9996	0.9993	0.9991	0.9998	0.9998
	0.3456	0.5817	0.5803	0.5789	0.8383	0.8378
	0.6724	0.7210	0.6850	0.6629	0.8652	0.8609
	0.9998	0.9999	0.9999	0.9999	0.9998	0.9998
	0.5832	0.8400	0.8395	0.8389	0.8383	0.8378
	0.7915	0.8933	0.8796	0.8711	0.8652	0.8609

N k .	2	3	4	F ₁	6	7
1	0.9984 0.1206 0.5595	0.9937 0.2340 0.4809	0.490a 0.2327 0.4240	0.9991 0.4126 0.5299	0.9989 0.4115 0.5094	0.9987 0.4104 0.4944
3	0.9984 0.1206 0.5595	0.9927 0.2340 0.488)	0.9993 0.4137 0.5601	0.9991 0.4126 0.5299	0.9989 0.4115 0.5094	0.9987 0.4104 0.4944
	0.9998 0.4161 0.7079	0.9996 0.4149 0.6098	0.9998 0.6495 0.7371	0.9998 0.6438 0.7190	0.9997 0.6480 0.7067	0.9997 0.6473 0.6977
:	0.9999 0.6511 0.3255	0.9999 0.6503 0.7668	0.9998 0.6495 0.7371	1.0000 0.8766 0.9013	1.0000 0.8763 0.3970	1.0000 0.8761 0.6930
N·k	2	3	4	Γ,	6	7
9	0.9988 0.0308 0.5398	0.9990 0.1595 0.4393	0.9994 0.2910 0.4681	0.9992 0.2902 0.4320	0.9990 0.2894 0.4077	0.998% 0.2%% 0.3%C1
	0.9995 0.1603 0.5799	0.9996 0.2918 0.5277	0.9994 0.2910 0.4681	0.9992 0.2902 0.4320	0.9997 0.4811 0.5676	0.9996 0.4805 0.5547
9	0.9998 0.2927 0.6462	0.9999 0.4832 0.6554	0.9998 0.4825 0.6118	0.9998 0.4818 0.5854	0.9999 0.7082 0.7569	0.9999 0.7079 0.7496
	0.9999 0.4839 0.7419	1.0000 0.7094 0.8063	0.9999 0.7090 0.7818	0.9999 0.7086 0.7669	0.9999 0.7082 0.7569	0.9999 0.70 7 9 0. 749 6
N K	2	3	4	5	6	7
:	0.9992 0.0545 0.5268	0.9992 0.1089 0.4056	0.9998 0.2023 0.5178	0.9993 0.2028 0.3621	0.9997 0.3494 0.4578	0.9996 0.3489 0.4419
10	0.9996 0.1094 0.5545	0.9997 0.2038 0.4691	0.9998 0.203 0.5128	0. 9998 0.3499 0.4799	0.9 <mark>99</mark> 7 0.3494 0.4578	0.9996 0.3489 0.4419
10	0.9998 0.2044 0.6021	0.9999 0.3510 0.5673	1.0000 0.5468 0.6601	0.9999 0.5464 0.6371	0.9999 0.5460 0.6217	0.9999 0.5457 0.6106
	0.9999 0.3515 0.6757	1.0000 0.5472 0.6331	1.0000 0.5468 0.6601	1,0000 0,759 4 0,0075	1,0000 0,7592 0,7594	1.0000 0.7590 0.7935

TABLE II (cont'd.)

For given k, N, P* (or c_1) and δ , this table gives the actual probability of a correct selection (top), the probability of selecting a non-best population (middle) and the expected proportion (bottom) of populations selected in the subset when the rule R_1 is used and the parameters are given by slippage configurations $\delta\lambda$, λ ,..., λ . For given k and N, each of the four blocks of three numbers correspond to P*=.75, .80, .90 and .95 respectively. Note that for fixed k, N and P* (large) if c_1 =N (from Table I), all three entries in each block are 1, as expected.

7 2 6 0.9336 0.9092 1.0000 1.0000 0.9630 1.0000 0.6462 1.0000 1.0000 1.0000 0.7037 0.6719 0.8333 0.7591 0.7120 1.0000 1.0000 1.0000 1.0000 1.0000 0.9630 0.9336 1.0000 1.0000 0.7037 0.6719 1.0000 1.0000 1.0000 1.0000 0.7591 0.8333 1.0000 1.0000 1.0000 1.0000 3 1.0000 $N\!\!\setminus^{\!k}$ 2 3 5 6 7 0.9547 0.9771 0.9677 0.9593 0.9517 0.9446 0.7852 0.7704 0.5391 0.7575 0.7460 0.7357 0.8491 0.8197 0.7469 0.7976 0.7656 0.7803 0.9771 0.9677 0.9547 0.9593 0.9517 0.9446 0.7852 0.7704 0.5391 0.7575 0.7460 0.7357 0.7469 0.8491 0.8197 0.7976 0.7803 0.7656 4 0.9877 1.0000 1.0000 1.0000 1.0000 1.0000 0.8025 1.0000 1.0000 1.0000 1.0000 1.0000 0.8951 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

			,	• 5			
N/K	2	3	4	5	6	7	
:	0. 954 7 0.4294 0.6920	0.9669 0.6274 0.7405	0.9534 0.6092 0.6952	0.9856 0.0437 0.8721	0.9827 0.8370 0.8619	0.9799 0.8309 0.8522	
5	0.9322 0.6488 0.8155	0.9669 0.6274 0.7405	0.9888 0.8510 0.8854	0.9856 0.8437 0.8721	0.9827 0.8370 0.8619	0.9799 0.8309 0.8522	
	0.9959 0.8683 0.9321	0.9922 0.3591 0.9035	0.9888 0.8510 0.8854	0.9856 0.8437 0.8721	0.9827 0.8370 0.8619	1.0000 1.0000 1.0000	
1	0.9959 0.8683 0.9321	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 3.0000 1.0000	1.0000 1.0000 1.0000	
!\\k	2	3	4	5	6	7	
б	0.9803 0.5318 0.7561	0.9634 0.5110 0.6618	0.9313 0.7115 0.7789	0.9761 0.7009 0.7560	0.9713 0.6914 0.7380	0.9667 0.6827 0.7233	
	0.9803 0.5313 0.7561	0.9870 0. 72 32 0.8111	0.9813 0.7115 0.7789	0.9761 0.7009 0.7560	0.9713 0.6914 0.7380	0.9929 0.8918 0.9063	
	0.9931 0.7366 0.8649	0.9974 0.9074 0.9374	0.9962 0.9030 0.9263	0.9950 0.8990 0.9182	0.9939 0.3953 0.9117	0.9929 0.8918 0.9063	
	0.9986 0.9122 0.9554	0.9924 0.9074 0.9374	0.9962 0.9030 0.9263	0.9950 0.8990 0.9182	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
N k	2	3	4	5	6	7	
	0.9803 0.4407 0.7105	0.9843 0.6085 0.7737	0.9775 0.5959 0.6913	0.9712 0.5847 0.6620	0.9886 0.7767 0.8120	0.9867 0.7710 0.8018	
	0.9803 0.4407 0.7105	0.9843 0.6085 0.7337	0.9775 0.5959 0.6913	0.9906 0.7829 0.82 4 4	0.9886 0.7767 0.8120	0.9867 0.7710 0.8018	
7	0.9917 9.6228 0.8073	0.9 <mark>95</mark> 0 0.7968 0.8983	0.9928 0.7896 0.8404	0.9906 0.7829 0.8244	0.9979 0.9325 0.9434	0.9975 0.9306 0.9401	
	0.9974 0.8049 0.9012	0.9991 0.9390 0.9590	0.9987 0.9367 0.9522	0.9983 0.9345 0.9473	0 .997 9 0.9325 0.9434	0.9975 0.9306 0.9401	

N K	2	3	4	5	6	7
	0.9812	0.9832	0.9759	9.9877	0.9850	0.9825
	0.3685	0.5137	0.5017	0.6750	0.6673	0.6611
	0.6749	0.6702	0.6.93	9.7375	0.7207	0.7070
8	0.9812	0.9832	0.9905	9.9877	0.9850	0.9825
	0.3685	0.5137	0.6318	9.6750	0.6678	0.6611
	0.6749	0.6702	0.7597	9.7375	0.7207	0.7070
	0.9966	0.9934	0.9972	0.9964	0.9956	0.9948
	0.7009	0.6914	0.8478	0.8438	0.8400	0.8364
	0.8487	0.7920	0.8852	0.8743	0.8659	0.8590
	0.9990	0.9981	0.9972	0.9994	0.9993	0.9992
	0.3569	0.8522	0.8478	0.9574	0.9563	0.9552
	0.9280	0.9008	0.8852	0.9658	0.9634	0.9615
N k	2	3	4	5	6	7
	0.9826	0.9832	0.9892	0.9860	0.9830	0.9802
	0.3102	0.4356	0.5884	0.5305	0.5731	0.5663
	0.6464	0.6181	0.6886	0.6616	0.6414	0.6255
	0.9912	0.9926	0.9892	0.9860	0.9938	0.9927
	0.4480	0.5972	0.5384	0.58 05	0.7441	0.7395
	0.7196	0.7290	0.6806	0.6616	0.7857	0.7757
à	0.9961	0.9973	0.9961	0.9949	0.9983	0.9980
	0.6069	0.7598	0.7542	0.7190	0.3860	0.8838
	0.80 1 5	0.8390	0.8147	0.7082	0.9047	0.9001
	0.3936	0.9993	0.9990	0.9987	0.9983	0.9980
	0.7659	0.8932	0.2967	0.8883	0.8860	0.8838
	0.8823	0.9286	0.9178	0.9103	0.9047	0.9001
N k	2	3	4	5	6	7
	0.9841	0.9838	0.9887	0.9853	0.9925	0.9912
	0.2626	0.3708	0.5069	0.4993	0.6538	0.6488
	0.6233	0.5751	0.6273	0.5962	0.7103	0.6977
	0.9915	0.9922	0.9887	0.9939	0.9925	0.9912
	0.3816	0.5152	0.5069	0.6591	0.6538	0.6488
	0.6866	0.6742	0.6273	0.7261	0.7103	0.6977
10	0.9960	0.9968	0.9984	0.9979	0.99 7 5	0.9970
	0.5245	0.6709	0.8115	0.8081	0.80 5 0	0.8020
	0.7602	0.7795	0.8582	0.8461	0.83 7 1	0. 8 298
1 2 3 4	0.9984 0.6776 0.8380	0.9989 0.8151 0.8764	0.9984 0.8115 0.8582	0.9995 0.9205 0.9363	0.9994 0.9191 0.4325	0.9993 0.9178 0.9295

TABLE II (cont'd.)

For given k, N, P* (or c_1) and δ , this table gives the actual probability of a correct selection (top), the probability of selecting a non-best population (middle) and the expected proportion (bottom) of populations selected in the subset when the rule R_1 is used and the parameters are given by slippage configurations $\delta\lambda$, λ ,..., λ . For given k and N, each of the four blocks of three numbers correspond to P*=.75, .80, .90 and .95, respectively. Note that for fixed k, N and P* (large) if c_1 =N (from Table I), all three entries in each block are 1, as expected

Note that for fixed k, N and P* (large) if c_1 =N (from Table I), all three entries in each block are 1, as expected.

A $\delta = 0.7$ 5 6 7

NK	2	3	4 ^δ	= 0.7	6	7	
	0.9302 0.7965 0.8633	0.8816 0.7458 0.7911	0.8445 0.7078 0.7420	1.0000 (3) 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
3	0.9302 0.7965 0.8633	0.8811 0.7458 0.7911	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
3	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
N K	2	3	4	5	6	7	
	0.9036 0.6831 0.7933	0.9492 0.8518 0.8842	0.9310 0.8290 0.8545	0.9156 0.8100 0.8312	0.9022 0.7938 0.8118	0.8903 0.7795 0.7953	
4	0.9036 0.6831 0.7933	0.9492 0.8518 0.8842	0.9310 0.8290 0.8545	0.9156 0.8100 0.8312	0.9022 0.7938 0.8118	0.8903 0.7795 0.7953	
7	0.9713 0.8803 0.9258	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	
	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	

N.k	2	3	4	5	6	7
	0.8919	0.9183	0.8 <mark>9</mark> 01	0.9627	0. 956 1	0.9501
	0.6055	0.7426	0.7100	0.8899	0.88 0 0	0.8712
	0.7 4 87	0.8012	0.7550	0.9044	0.8927	0.8825
5	0.9534	0.9183	0.9701	0.9627	0.9561	0.9501
	0.7846	0.7 4 26	0.9011	0.8899	0.8800	0.8712
	0.9690	0.8012	0.9183	0.9044	0.8927	0.8825
	0.9882	0.9784	0.9701	0 .9 627	0.9561	1.0000
	0.9 296	0.9140	0.9011	0.8899	0.8800	1.0000
	0.9589	0.9355	0.9183	0.9044	0.8927	1.0000
1	0.9882	1.0000	1.0000	1.0000	1.0000	1.0000
	0.9296	1.0000	1.0000	1.0000	1.0000	1.0000
	0.9589	1.0000	1.0000	1.0000	1.0000	1.0000
i k	2	3	4	5	6	7
	0.9425	0.8998	0. 9451	0.9320	0.9204	0.9100
	0.7087	0.6610	0.8078	0.7893	0.7733	0.7592
	0.8434	0.7406	0.8421	0.8179	0.7978	0.7807
6 6	0.9 4 25 0.7087 0.8434	0.9601 0.8296 0.8731	0.9451 0.0078 0.8421	0.9320 0.7893 0.8179	0.92 <mark>04</mark> 0.7733 0.7978	0.9779 0.9258 0.9333
O	0.9779	0.9909	0.9872	0.9838	0.9807	0.9779
	0.9562	0.9605	0.943.	0.9367	0.9310	0.9259
	0.9171	0.9638	0.9541	0.9462	0.3393	0.9373
	0.9951	0.9909	0.9872	0.9838	1.0000	1.0000
	0.9586	0.9503	0.9431	0.9367	1.0000	1.0000
	0.9769	0.9638	0. 954 1	0.9462	1.0000	1.0000
N k	2	3	4	5	6	7
į	0.9340	0.9467	0.9269	0.9098	0.9604	0.9547
	0.6468	0.7563	0.7294	0.7069	0.8525	0.8429
	0.7914	0.8198	0.7738	0.7476	0.8705	0.8589
7	0.9340	0.9467	0.9269	0.9666	0.9604	0.9 54 7
	0.6468	0.7563	0.7294	0.8632	0.8525	0.8 42 9
	0.7914	0.8198	0.7788	0.8839	0.8705	0.8589
	0.9703	0.9810	0.9734	0.9666	0.9917	0.9904
	0.7897	0.8891	0.8753	0.8632	0.9606	0.9577
	0.8300	0.0197	0.8998	0.8839	0.9653	0.9623
	0.9897	0.9962	0.9946	0.9931	0.9917	0.9904
	0.9 054	0.9712	0.9674	0.9638	0.9606	0.9577
	0.9476	0.9796	0.9742	0.9697	0.9658	0.9623

N K	2	3	4	5	6	7
	0.9322	0.9370	0.9139	0.9518	0.9431	0.9351
	0.5949	0.6937	0.6640	0.7938	0.7797	0.7669
	0.7635	0.7748	0.7265	0.8254	0.8068	0.7910
8	0.9322	0.9370	0.9615	0.9518	0.9431	0.9351
	0.5949	0.6937	0.8099	0.7938	0.7797	0.7669
	0.7635	0.7742	0.3478	0.8254	0.8068	0.7910
	0.9850	0.9724	0.9874	0.9840	0.9808	0.9779
	0.8509	0.8286	0.9203	0.9128	0.9059	0.8997
	0.9180	0.8765	0.9371	0.9270	0.9184	0.9109
	0.9953	0.9911	0.9874	0.9971	0.9964	0.9959
	0.9384	0.9287	0.9203	0.9794	0.9776	0.9760
	0.9669	0.9495	0.9371	0.9829	0.9808	0.9788
N K	2	3	4	5	6	7
	0.9301	0.9303	0.9520	0.9400	0.9293	0.9195
	0.5504	0.6399	0.7503	0.7315	0.7151	0.7005
	0.7403	0.7367	0.8007	0.7732	0.7508	0.7318
9	0.9610	0.9655	0.9520	0.9400	0.9702	0.9657
	0.6789	0.7723	0.7503	0.7315	0.8482	0.8392
	0.8199	0.8367	0.8007	0.7732	0.8685	0.8573
	0.9811	0.9861	0.9803	0.9750	0.9909	0.9895
	0.7988	0.8815	0.8690	0.8580	0.9409	0.9370
	0.3900	0.9329	0.8969	0.8814	0.9492	0.9445
	0.9926	0.9959	0.9941	0.9925	0.9909	0.9895
	0.8960	0.9547	0.9496	0.9451	0.9409	0.9370
	0.9443	0.9684	0.9608	0.9545	0.9492	0.9445
N k	2	3	4	5	6	7
	0.9293	0.9257	0.9445	0.9308	0.9608	0.9550
	0.5117	0.5931	0.6969	0.6765	0.7924	0.7314
	0.7205	0.7040	0.7588	0.7274	0.8205	0.8062
10	0.9583	0.9600	0.9445	0.9671	0.9608	0.9550
	0.6327	0.7910	0.6969	0.8046	0.792 4	0.7814
	0.7955	0.8007	0.7588	0.8371	0.8205	0.8062
	0.9781	0.9815	0.9901	0.9874	0.9848	0.9824
	0.7502	0.8339	0.9112	0.9040	0.89 74	0.8913
	0.8642	0.8831	0.9309	0.9206	0.9119	0.9043
	0.9901	0.9931	0.9901	0.9965	0.9958	0.9951
	0.8522	0.9192	0.9112	0.9657	0.9632	0.9609
	0.9211	0.9439	0.9309	0.9719	0.9686	0.9657

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	READ INSTRUCTIONS BEFORE COMPLETING FORM
i i	RECIPIENT'S CATALOG NUMBER
Mimeograph Series #457	
On Subset Selection Procedures for Poisson Processes and Some Applications to the	Technical Rept.
Binomial and Multinomial Problems,	Mimeo. Series #457
Shanti S. Gupta and Wing-Yue/Wong	NØ0014-75-C-0455
PERFORMING ORGANIZATION NAME AND AUGRESS	10 PROGRAM ELEMENT, PROJECT, TASK
Purdue University	10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of Statistics W. Lafayette, IN 47907 (16)	NR-042-243
Office of Naval Research	Jul y 10 76
Washington, DC Monitoring ASEN IN NAME & ADDRESS II Hillocone Front Conferenting Offices	NUMBER OF PAGES 36 15 SECURITY CLASS, (at th)
- WOOD ON TO NOT A CONTROL OF THE CO	Unclassified
	UNCTESSIFICATION DOWNGRADING
6 C.STRIBUTION STATEMENT of this Report	
Approved for public release, distribution unlimit	
2 TO STATE OF THE PROPERTY OF	in. Report)
SUPPLEMENTARY NOTES	in. Report)
<u> </u>	
SUPPLEMENTARY NOTE: SEY WORDS (Construe to every and if mecessary and identify by plack number	
** SUPPLEMENTARY NOTE: *** *** **** **** **** **** **** ***	ection, waiting times, (> 2) Poinson processes.
R SUPPLEMENTARY NOTE: Poisson processes, subset selection, correct selection by Stock numbers expected subset size, slippage configuration. ABSTRACT Continue on recorse side II measure and Liberty by block numbers This paper deals with selection procedures for k Selection rule R 1s proposed and its properties	ection, waiting times, (> 2) Poinson processes, and efficiency are investiga-
*** SUPPLEMENTARY NOTE: *** *** *** *** *** *** *** *** *** *	(> 2) Poinson processes. and efficiency are investigation in the control of the c

TOTALLY CEASSIFICATION OF THIS PAGE MAIN DATA EMOTED
correct selection, the probability of selecting a non-best population, and the expected proportion in the selected subset are tabulated for certain slippage configurations (Table II). Another rule R_3 based on the number of arrivals in
a fixed time and R_4 , a conditional version of R_3 , are proposed and studied.
Applications to the selection of binomial populations and multinomial cells are described.