LLIÇÓ 9: MATRIUS SIMÈTRIQUES I MATRIUS ORTOGONALS IDEES CLAU, DEFINICIONS, PROPIETATS, MÈTODES...

La matriu transposada

La matriu transposada de A, A^t, és la que té per columnes les files de A.

- La transposada de la suma és la suma de les transposades: $(A + B)^t = A^t + B^t$.
- La transposada del producte d'un escalar per una matriu és el producte de l'escalar per la transposada de la matriu: $(\alpha A)^t = \alpha A^t$.
- La transposada del producte és el producte de les transposades en ordre contrari: $(AB)^t = B^tA^t$.
 - Els rangs d'una matriu i la seua de la transposada són iguals: rang $A^t = \text{rang } A$.
 - Si A és invertible, la inversa de la transposada és la transposada de la inversa: $\left(\mathsf{A}^{-1}\right)^t = \left(\mathsf{A}^t\right)^{-1}$.

Matrius simètriques i antisimètriques

Una matriu A és *simètrica* si $A^t = A$.

Una matriu A és *antisimètrica* si $A^t = -A$.

- Les matrius simètriques o antisimètriques són quadrades.
- La suma, el producte per un escalar i la inversa de les matrius simètriques també són simètriques.
- El producte de matrius simètriques A i B és una matriu simètrica si i només si les matrius commuten.

La matriu A^tA

- El producte escalar real és igual a un producte de matrius: $\vec{u} \cdot \vec{v} = \vec{u}^t \vec{v}$.
 - Si A és una matriu real, les entrades de la matriu A^tA són els productes escalars de les columnes de A:

$$A^{t}A = \begin{bmatrix} \vec{a}_{1} \cdot \vec{a}_{1} & \vec{a}_{1} \cdot \vec{a}_{2} & \cdots & \vec{a}_{1} \cdot \vec{a}_{n} \\ \vec{a}_{2} \cdot \vec{a}_{1} & \vec{a}_{2} \cdot \vec{a}_{2} & \cdots & \vec{a}_{2} \cdot \vec{a}_{n} \\ \vdots & \vdots & \vdots & \vdots \\ \vec{a}_{n} \cdot \vec{a}_{1} & \vec{a}_{n} \cdot \vec{a}_{2} & \cdots & \vec{a}_{n} \cdot \vec{a}_{n} \end{bmatrix}$$

Matrius ortogonals

Una matriu quadrada Q és *ortogonal* si $Q^tQ = I$

- Una matriu Q és ortogonal sí i només sí la seua inversa és la transposada Q^t .
- Una matriu Q és ortogonal sí i només sí les seues columnes són ortonormals.
- Les matrius ortogonals conserven normes, angles, longituds i distàncies.

Cas complex: matriu adjunta i matrius hermítiques, antihermítiques i unitàries

- La matriu adjunta A* és la transposada conjugada de A (el resultat de transposar i canviar totes les entrades pels complexos conjugats).
- Una matriu A és hermítica si $A^* = A$.
- Una matriu A és antihermítica si $A^* = -A$.
- Una matriu quadrada U és unitària si $U^*U = I$.