Daniel Andrés Mendoza

Camilo Serrano

Taller EDO

1.

Al aplicar el método de Euler para solucionar $\frac{dT}{dt} = \frac{-\epsilon \gamma S(T + (t) - Te + 1)}{mC}$ solo se grafica el campo de pendientes, mas no la solución.

```
metodoEuler <- function(f, h, xi, yi, xf)
{
    N = (xf - xi) / h
    x = y = numeric(N+1)
    x[1] = xi;
    y[1] = yi;
    i = 1
    while (i <= N)
    {
        x[i+1] = x[i]+h
        y[i+1] = y[i]+(h*f(x[i],y[i]))
        i = i+1
    }
    return (data.frame(X = x, Y = y))
}</pre>
```


Por otro lado, el método de runge kutta nos da la siguiente solución:

```
rk4<-function(dy, ti, tf, yo, h, graficar=TRUE, numpendientes=10){
 t<-seq(ti, tf, h)
 y<-c(yo)
 cat("x |y
                   |kı
                                     |k3
                                                       |error absoluto\n")
                            k2
                                              |k4
 for(i in 2:length(t)){
  k_1=h^*f(dy, t[i-1], y[i-1])
  k_2=h^*f(dy, t[i-1]+h/2, y[i-1]+k_1^*(o.5))
  k_3=h^*f(dy, t[i-1]+h/2, y[i-1]+k_2^*(0.5))
  k_4=h^*f(dy, t[i-1]+h, y[i-1]+k_3)
  y < -c(y, y[i-1]+1/6*(k_1+2*k_2+2*k_3+k_4))
  cat(t[i\text{-}1],"\mid",y[i\text{-}1],"\mid",k_1,"\mid",k_2,"\mid",k_3,"\mid",k_4,"\mid
",obtenerErrorAbsoluto(t[i-1],y[i-1]),"\n")
 if (graficar){
```

```
graficarCampoPendiente(min(t), max(t), min(y), max(y), dy, numpendientes, "RK4")
graficarSolucionNumerica(t, y)
}
rta<-list(w=y, t=t)
}</pre>
```


3.

```
Ejecutar el método de Euler imprimiendo los valores, obtenemos el siguiente resultado. metodo Euler <- function (dy, h, xi, yi, xf)  \{ N = (xf - xi) / h   x = y = numeric (N+1)   x[1] = xi;   y[1] = yi;   i = 1
```

```
while (i \le N)
  x[i+1] = x[i]+h
  y[i+1] = y[i]+(h*f(x[i],y[i]))
  i = i+1
  cat("y(",x[i],") = ", y[i]," \setminus n")
  #print(x[i])
  #print(y[i])
 return (data.frame(X = x, Y = y))
 y(0.1) = 1
y( 0.2 ) =
y( 0.3 ) =
              1.01
              1.03
 y(0.5) = 1.1
 y(0.6) = 1.15
 y(0.8) = 1.28
 y(0.9) = 1.36
 y(1.1) = 1.55
y(1.2) = y(1.3) =
y(1.6) = 2.2
y(1.7) = 2.36
 y(1.8) = 2.53
y(1.9) = 2.71
y(2) = 2.9
4.
La implementación del método de Euler quedó así:
metodoEuler <- function(dy, h, xi, yi, xf,m)
{
 i = 1
 while (i <= m)
  k1 = h*dy(xi,yi)
```

```
k2 = h*dy(xi+h,yi+k1)
yi = yi + (k1+k2)/2
xi = xi + h
cat("y(",xi,") = ", yi,"\n")
#print(x[i])
#print(y[i])
i = i +1
}
```

5.

Al correr el método de Euler modificado se obtienen los siguientes valores:

Comparado con los valores de Euler original:

```
0.5
0.1
      y = 1.2
      y=1.429
                       0.0
0.3
      y=1.6879
0.4
      , y= 1.97769
                       -0.5
0.5
      y = 2.299459
        y = 2.654405
                       0
0.7
        y = 3.043845
0.8
        y = 3.46923
                                                                 2
                           -3
                                   -2
                                          -1
0.9
      y = 3.932153
```

La respuesta a la ecuación diferencial es:

$$y = e^{x}(e^{2}e^{-x} + xe^{-x} + 1)$$

El método modificado se asemeja más a la respuesta, en el m[etodo original el error de y es más grande a medida que x avanza.

7.

Aplicando el método de Runge Kutta de tercer orden se obtienen los siguientes datos y la siguiente gráfica:

X	-rl	TO 1	lk1	lk2		lk3		lerror abs	501	uto
0 1	1	0.2	T	0.21475	0.	23195 0		101.01		
0.1	1	1.215158	Ė	0.2305158	1	0.2457916	1	0.2636226	- 1	0.1048165
0.2	Î	1.461376	Î	0.2621376	Ť	0.2779945	Ť	0.2965227	Ť	0.2185703
0.3	1	1.739816	- 1	0.2949816	1	0.3114806	1	0.3307795	- 1	0.3400979
0.4	1	2.051763	1	0.3291763	1	0.3463851	1	0.3665357	1	0.4681134
0.5	Î	2.398638	Î	0.3648638	Î	0.382857	1	0.4039488	1	0.6011956
0.6	Î	2.782012	Î	0.4022012	Ĺ	0.4210612	Ĩ.	0.4431933	Ĩ.	0.737774
0.7	Î.	3.203618	Ĩ	0.4413618	Î	0.4611799	Ĵ	0.4844616	- Î	0.8761127
0.8	Î	3.665375	Î	0.4825375	Î	0.5034144	Î	0.5279667	Ĥ	1.014293
0.9	Î.	4.169402	Î	0.5259402	Ť	0.5479872	Ť	0.5739437	Ť	1.150196

Aplicando el método de Runge Kutta de cuarto orden se obtienen los siguientes datos y la siguiente gráfica:

X	ly		k1	k2	k3	k4	error absoluto
0	1	0.2	1	0.21475	0.2154875	0.2305487	0
0.1	1	1.215171	- 1	0.2305171	0.2457929	0.2465567	0.2621727 0.1048288
0.2	1	1.461402		0.2621402	0.2779972	0.2787901	0.2950192 0.2185966
0.3	Ĩ.	1.739858	T.	0.2949858	0.3114851	0.31231	0.3292168 0.3401402
0.4	Ĩ.	2.051823	T	0.3291823	0.3463914	0.3472519	0.3649075 0.4681739
0.5	Î.	2.398719	1	0.3648719	0.3828655	0.3837652	0.4022485 0.6012768
0.6	Ï.	2.782116	T	0.4022116	0.4210722	0.4220152	0.4414132 0.7378787
0.7	Ť	3.20375	1	0.441375	0.4611937	0.4621846	0.4825934 0.8762442
0.8	1	3.665537	- 1	0.4825537	0.5034314	0.5044753	0.5260012 1.014455
0.9	1	4.169599	i i	0.5259599	0.5480078	0.5491102	0.5718709 1.150392

Aplicando el método de Euler:

En ambos casos, el método de Runge Kutta fue más preciso que el método de Euler.