BIP Project

Riccardo Mastellone
Tommaso Carpi
Lorenzo Bisi
Marco Edemanti
Andrea Bellotti

Outline

- 1. Data Exploration
- 2. Feature Extraction
- 3. The Model
 - a. XGBoost
 - b. ARMA
- 4. Conclusions

Data Exploration

Feature Construction

What about the GPS data?

Some insights after some mining...

Feature Construction

_	Region	Name of the region (e.g. Tuscany, Sicily)	
	Area	Nord, Centre or South	
	Island	Whether is an island	
	Population	Inhabitants of the city	
ta	Min Distance	Minimum distance to the nearest subarea	
GPS Data	Density	Number of subareas within a 10km radius	
	Instruction index	Upper secondary education attainment rate	
	Average income	The average income	
	Income Gini index	The Gini index of the distribution of the incomes	
	Work force	Percentage of population that can work	
	Occupation	Percentage of the work force that has a job	

What can we do next?

- Both categorical and numerical features are present
- High number of features in the extended dataset
- Data are a temporal series

Initial attempts

Regression Trees, Time Series, Neural Networks

Our plan:

- XGBoost
- ARMA/ARMAX
- Hybrid

Evaluation Metrics

Mean Average Prediction Error

Represents the overall evaluation of the error

$$MAPE1 = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

Maximum Absolute Prediction Error

Provides an estimate of the worst error

$$MAPE2 = max\left(|A_t - F_t|\right)$$

XGBoost

- Grid Search in order to find the set of parameters
 - max_depth : 10 (maximum depth of a tree)
 - min_child_weight: 10 (minimum number of instances needed to be in each node)
- Train the model for the offline evaluation.
 - Last 10 days of the training set
 - Evaluate MAPE 1 and MAPE 2

XGBoost - Results

MAPE1	Category 1	Category 2
2016 only	0.260363	0.410086
All years	0.228507	0.363510
Without 2014	0.234723	0.386823

MAPE2	Category 1	Category 2
2016 only	2.979166	2.062500
All years	2.854167	2.104167
Without 2014	3.006944	2.131944

Feature importance -15451 timestamp **-**6920 giorno dell anno -6413 giorno del mese -5295 giorno della settimana -3817 sottoarea **-**3145 zona min_distanza **-**3030 2579 abitanti **-**2369 categoria -2221 2168 forza lavoro --2165 occupazione --1950 settimana_dell_anno = indice_istruzione = **-**1940 reddito medio --1869 gini index ----1655 anno ______1056 festivo ———812 mese ——414 densita -333 Features regione_CAM —296 regione LAZ -296 zona italia Sud -249 regione LOM -243 regione_PUG -233 zona italia Centro -166 regione_PIE =145 regione_SIC =128 regione_LIG =120 regione TOS =118 zona italia Nord =102 isola -79 regione_VEN •53 regione_EMR •49 regione_MAR 47 regione_SAR 43 regione_CAL •40 regione_FVG -30 regione_TAA 28 regione_BAS 11 regione UMB 9 regione_MOL 5

regione ABR 4

0

2000

4000

6000

8000

F score

10000

12000

14000

16000

ARMA - Autoregressive Moving Average

$$y(t) = -\alpha_1 y(t-1) - \ldots - \alpha_n y(t-n) + \beta_0 u(t) + \beta_1 u(t-1) + \ldots + \beta_n u(t-n)$$

- Data Are Time Series
- Stationarity Tests
- Outlier Analysis
- ARMAX

ARMA - Stationarity (before outlier adjustment)

> kpss.test(datats)

KPSS Test for Level Stationarity

data: datats

KPSS Level = 0.76127, Truncation lag parameter = 6, p-value = 0.01

Warning message:

In kpss.test(datats) : p-value smaller than printed p-value

ARMA - Stationarity (after outlier adjustment)

Partial ACF -0.3 -0.1 -0.7 -0.1 -0.7 -0.1 -0.1 -0.3 Lag

PACF (Partial Autocorrelation Function) Test

```
Coefficients:

ar1 ar2 ma1 ma2 A099 A0108 A0121 A0131 A0181 TC429 A0639
0.7787 -0.3013 -1.5047 0.5443 11.6434 7.5141 7.7488 13.2642 12.6196 4.9900 5.2241
s.e. 0.0798 0.0362 0.0780 0.0751 1.2264 1.2285 1.2272 1.2273 1.2267 0.9783 1.2288

sigma^2 estimated as 1.708: log likelihood=-1461.25
AIC=2946.5 AICc=2946.87 BIC=3003.71

Outliers:
type ind time coefhat tstat
1 A0 99 2014:99 11.643 9.494
```

AO 108 2014:108

AO 121 2014:121

TC 429 2015:64

AO 639 2015:274

AO 131 2014:131 13.264 10.807 AO 181 2014:181 12.620 10.288

7.514 6.117

7.749 6.314

4.990 5.100

5.224 4.251

ARMA - Outliers

ARMAX

- KPIs as exogenous variables
 - DayOfTheWeek
 - Month
 - IsHoliday
- Optimal Model Not Found
- ARMAX(2,0,7)

ARMA - Results

Model	Category	MAPE1	MAPE2
ARMA	Category1	0.3130079	4.260563
ARMA	Category2	0.458818	2.540146
ARMA(outliers adjusted)	Category1	0.3436393	4.10951
ARMA(outliers adjusted)	Category2	0.4413407	2.317809
ARMAX(2,0,7)	Category1	0.8150487	

Model Hybrid

Hybrid	MAPE1	MAPE2
Category1	0.219272	2.782712
Category2	0.358711	1.989423

Summary of the results

Model	Category	MAPE1	MAPE2
ARMA	Category1	0.313008	4.260563
ARMA	Category2	0.458818	2.540146
XGBoost	Category1	0.228507	2.854167
XGBoost	Category2	0.363510	2.104167
Hybrid	Category1	0.219272	2.782712
Hybrid	Category2	0.358711	1.989423

Conclusions

- Extraction and addition of features improved a lot the quality of the prediction
- Two completely different approaches that perform well
- Time Series approach performs well even if processes are not stationary
- Hybrid of the two models performs even better
- All the models perform better with Category1