LA DÉRIVATION E03C

EXERCICE N°2 fonction affine et fonction inverse

Soit $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 3x + 4 \end{cases}$ une fonction affine et soit $f: \begin{cases} \mathbb{R}^* \to \mathbb{R} \\ x \mapsto \frac{1}{x} \end{cases}$ la fonction inverse.

1) Exprimer $f \circ g(x)$ puis $g \circ f(x)$ et déterminer les domaines de définition et de dérivabilité.

$$f \circ g(x) = f(g(x))$$
$$= f(3x+4)$$
$$= \frac{1}{3x+4}$$

Pour que cette fonction soit définie et dérivable, il faut et il suffit que $3x+4\neq 0$. On en déduit que les domaines de définition et de dérivabilité de $f \circ g$ sont tous les deux $\mathbb{R} \setminus \left\{-\frac{4}{3}\right\}$.

Se lit « R privé de moins quatre tiers ».

$$g \circ f(x) = g(f(x))$$

$$= g\left(\frac{1}{x}\right)$$

$$= 3 \times \frac{1}{x} + 4$$

$$= \frac{3}{x} + 4$$

Pour que cette fonction soit définie et dérivable, il faut et il suffit que $x \neq 0$. On en déduit que les domaines de définition et de dérivabilité de $f \circ g$ sont tous les deux $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$

On notera que l'ordre dans lequel on compose a des conséquences sur le domaine de définition (c'est pour cela que la définition de départ a été qualifiée de « partielle »).

2) Exprimer $(f \circ g)'(x)$ puis $(g \circ f)'(x)$.

 $\mathbb{R} \setminus \left\{ -\frac{4}{3} \right\}$ n'est pas un intervalle...

$$\mathbb{R} \setminus \left\{ -\frac{4}{3} \right\} = \left[-\infty ; -\frac{4}{3} \right[\cup \left[-\frac{4}{3} ; +\infty \right[\right] \right]$$

• Pour $x \in \left] -\infty ; -\frac{4}{3} \right[$

 $(f \circ g)(x)$ est de la forme $\frac{1}{u(x)}$, dont la

dérivée s'exprime par $\frac{-u'(x)}{(u(x))^2}$

Done:

$$(f \circ g)'(x) = -\frac{3}{(3x+4)^2}$$

• De la même façon, pour $x \in \left] -\frac{4}{3}$; $+\infty \left[(f \circ g)'(x) = -\frac{3}{(3x+4)^2} \right]$

 \mathbb{R}^* non plus...

 $g \circ f$ est une somme de fonctions de références définies et dérivables sur \mathbb{R}^* .

Donc:

• Pour
$$x \in]-\infty$$
; 0[
 $(g \circ f)'(x) = 3 \times \frac{-1}{x^2} + 0$
 $= -\frac{3}{x^2}$

■ De la même façon, pour $x \in]0$; $+\infty[$ $(g \circ f)'(x) = -\frac{3}{x^2}$

3) Exprimer f'(x) et g'(x).

$$f'(x) = -\frac{1}{x^2}$$

$$g'(x) = 3$$

4) Exprimer $g'(x) \times f'(g(x))$ puis $f'(x) \times g'(f(x))$.

Pour
$$x \in \left] -\infty ; -\frac{4}{3} \right[$$

$$g'(x) \times f'(g(x)) = 3 \times f'(g(x))$$

$$= 3 \times \frac{-1}{(g(x))^2}$$

$$= 3 \times \frac{-1}{(3x+4)^2}$$

$$= \frac{-3}{(3x+4)^2}$$
• De la même façon, pour $x \in \left[-\frac{4}{3} ; +\infty \right]$

Pour
$$x \in]-\infty$$
; $0[$

$$f'(x) \times g'(f(x)) = -\frac{1}{x^2} \times g'(f(x))$$

$$= -\frac{1}{x^2} \times 3$$

$$= -\frac{3}{x^2}$$
De la même façon, pour $x \in]0$; $+\infty[$

 $f'(x) \times g'(f(x)) = -\frac{3}{r^2}$

- De la même façon, pour $x \in \left] -\frac{4}{3}$; $+\infty \left[g'(x) \times f'(g(x)) = \frac{-3}{(3x+4)^2} \right]$
- 5) Comparer les questions 2) et 4).

On obtient les mêmes fonctions dérivées : la ligne concernant l'inverse dans le tableau de la propriété n°5 semble être cas particulier de la composition.