

8 Caractérisation inertielle des solides

8.1 Masse et centre de masse (centre d'inertie)

8.1.1 Définitions

Définition - Masse d'un solide indéformable

On peut définir la masse totale d'un solide S par : $M = \int\limits_{P \in S} dm$. Si de plus l'ensemble est fait d'un matériau homogène de masse volumique μ , on a $M = \mu \int\limits_{P \in S} dV$.

Définition - Centre d'inertie d'un solide

La position du centre d'inertie G d'un solide S est définie par $\int_{P \in S} \overrightarrow{GP} dm = \overrightarrow{0}$.

Pour déterminer la position du centre d'inertie d'un solide S, on passe généralement par l'origine du repère associé à S. On a alors $\int\limits_{P \in S} \overrightarrow{GP} \, dm = \int\limits_{P \in S} \left(\overrightarrow{GO} + \overrightarrow{OP}\right) dm = \overrightarrow{OP} \, dm \Leftrightarrow \overrightarrow{OP} \, dm \Leftrightarrow \overrightarrow{MOG} = \int\limits_{P \in S} \overrightarrow{OP} \, dm.$

Méthode - Coordonnées du centre d'inertie

Pour déterminer les coordonnées (x_G, y_G, z_G) du centre d'inertie G du solide S dans la base $(O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$, on a donc :

$$\begin{cases} Mx_G = \mu \int\limits_{P \in S} x_P \, \mathrm{d}V \\ My_G = \mu \int\limits_{P \in S} y_P \, \mathrm{d}V \\ Mz_G = \mu \int\limits_{P \in S} z_P \, \mathrm{d}V \end{cases}$$
 avec $\mathrm{d}V$ volume élémentaire du solide S .

Pour simplifier les calculs, on peut noter que le centre d'inertie appartient au(x) éventuel(s) plan(s) de symétrie du solide.

- 8.1 Masse et centre de masse (centre d'inertie) 18.2 Matrice d'inertie d'un
- 8.2 Matrice d'inertie d'un solide 2

B2-10

Emilien Durif, *Introduction à la dynamique des solides*, Lycée La Martinière Monplaisir, Lyon.

Florestan Mathurin, Géométrie des masses, Lycée Bellevue, Toulouse http://florestan.mathurin.free.fr/.

Robert Papanicola, Opérateurs d'inertie, Lycée Charlemagne, Paris, http://sciences-indus-cpge.papanicola.info/.

FIGURE 8.1 – Toupie

FIGURE 8.2 – Volants d'inertie d'un vilebrequin

Remarque

Centre d'inertie et centre de gravité sont confondus lorsque le champ de pesanteur est considéré comme uniforme en tout point de l'espace.

8.1.2 Centre d'inertie d'un ensemble de solides encastrés entre eux

Méthode - Barycentre d'un assemblage

Soit un solide composé de n solides élémentaires dont la position des centres d'inertie G_i et les masses M_i sont connues. On note $M=\sum\limits_{i=1}^n M_i$. La position du centre d'inertie G de l'ensemble S est donné par :

$$\overrightarrow{OG} = \frac{1}{M} \sum_{i=1}^{n} M_i \overrightarrow{OG_i}.$$

8.1.3 Méthode pour déterminer le centre d'inertie d'un solide [2]

8.2 Matrice d'inertie d'un solide

8.2.1 Opérateur et matrice d'inertie

Définition – Opérateur d'inertie

Soient:

- ▶ un solide S de masse m en mouvement par rapport à un repère $\Re_0 = (O_0; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0});$
- $\Re_S = \left(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$ le repère lié au solide S;
- ► P un point de S tel que $\overrightarrow{OP} = x_p \overrightarrow{i} + y_p \overrightarrow{j} + z_p \overrightarrow{k}$;
- ▶ \overrightarrow{u} un vecteur unitaire lié au solide S tel que $\overrightarrow{u} = u_x \overrightarrow{i} + u_y \overrightarrow{j} + u_z \overrightarrow{k}$.

On appelle opérateur d'inertie l'application linéaire définie par :

$$\overrightarrow{u} \to \overrightarrow{J_{(O,S)}} \left(\overrightarrow{u} \right) = \int_{S} \overrightarrow{OP} \wedge \left(\overrightarrow{u} \wedge \overrightarrow{OP} \right) dm$$

On appelle matrice d'inertie du solide S en O, $I_O(S)$, l'image de cette application linéaire : $\overrightarrow{J_{(O,S)}}(\overrightarrow{u}) = I_O(S)\overrightarrow{u}$.

Définition - Matrice d'inertie

La matrice d'inertie s'écrit ainsi :

$$I_{O}(S) = \begin{pmatrix} \int_{S} \left(y_{p}^{2} + z_{p}^{2} \right) dm & - \int_{S} \left(x_{p} y_{p} \right) dm & - \int_{S} \left(x_{p} z_{p} \right) dm \\ - \int_{S} \left(x_{p} y_{p} \right) dm & \int_{S} \left(x_{p}^{2} + z_{p}^{2} \right) dm & - \int_{S} \left(y_{p} z_{p} \right) dm \\ - \int_{S} \left(x_{p} z_{p} \right) dm & - \int_{S} \left(y_{p} z_{p} \right) dm & \int_{S} \left(x_{p}^{2} + y_{p}^{2} \right) dm \end{pmatrix}_{\Re_{S}}$$

$$= \begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}_{\Re_{S}}.$$

On appelle moments d'inertie par rapport aux axes (O, \overrightarrow{x}) , (O, \overrightarrow{y}) et (O, \overrightarrow{z}) les termes A, B et C.

On appelle produit d'inerties par rapport aux axes (O, \overrightarrow{y}) et (O, \overrightarrow{z}) , (O, \overrightarrow{x}) et (O, \overrightarrow{z}) , (O, \overrightarrow{x}) et (O, \overrightarrow{y}) les termes D, E et F.

Propriété -

- ► La matrice d'inertie est une matrice symétrique. Il existe une base dans laquelle elle est diagonalisable. Cette base est appelée base principale d'inertie.
- ► Si $(O, \overrightarrow{x}, \overrightarrow{y})$ est un plan de symétrie du solide, D et E sont nuls.
- ► Si $(O, \overrightarrow{z}, \overrightarrow{x})$ est un plan de symétrie du solide, D et F sont nuls.
- ► Si $(O, \overrightarrow{y}, \overrightarrow{z})$ est un plan de symétrie du solide, E et F sont nuls.
- ► Si un solide admet 2 plans de symétrie, alors *D*, *E* et *F* sont nuls.

Définition - Moment d'inertie par rapport à un axe quelconque

Le moment d'inertie caractérise la répartition de masse d'un solide autour d'un axe $\Delta\left(O, \overrightarrow{u}\right)$. Plus la valeur de l'inertie est grande plus il sera difficile de mettre en mouvement de rotation ce solide autour de l'axe Δ . On note $I_{\Delta}(S)$, le moment d'inertie du solide S autour de l'axe Δ . Son unité est en kg.m².

Si on connaît $I_O(S)$, alors $I_{\Delta}(S) = \overrightarrow{u}^{\top}I_O(S)\overrightarrow{u}$ avec \overrightarrow{u} vecteur unitaire.

Remarque

On a aussi:

 $I_{\Delta}(S) = \int\limits_{S} d_{\Delta}^2 \mathrm{d}m$ où d_{Δ} est la distance entre le point courant P et l'axe Δ .

8.2.2 Déplacement d'une matrice d'inertie – Théorème de Huygens

Théorème - Théorème de Huygens

Soit S un solide de centre d'inertie G, de masse m, d'inertie $I_G(S)$ et d'inertie $I_O(S)$ avec $\overrightarrow{OG} = a\overrightarrow{x} + b\overrightarrow{y} + c\overrightarrow{z}$. Les matrices $I_G(S)$ et $I_O(S)$ exprimées dans la base $\mathfrak{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ sont liées par :

$$\begin{pmatrix} A_O & -F_O & -E_O \\ -F_O & B_O & -D_O \\ -E_O & -D_O & C_O \end{pmatrix}_{\mathfrak{B}} = \begin{pmatrix} A_G & -F_G & -E_G \\ -F_G & B_G & -D_G \\ -E_G & -D_G & C_G \end{pmatrix}_{\mathfrak{B}}$$

$$+ \begin{pmatrix} m \left(b^2 + c^2 \right) & -mab & -mac \\ -mab & m \left(a^2 + c^2 \right) & -mbc \\ -mac & -mbc & m \left(a^2 + b^2 \right) \end{pmatrix}_{\mathfrak{B}} .$$

Si le solide est modélisé par une masse ponctuelle m en G et si on souhaite connaître le moment d'inertie pour un point situé à une distance d de G, on a $I = md^2$.

8.2.3 Changement de base de la matrice d'inertie

Définition - Matrice de Passage

On appelle P_{12} la matrice de passage permettant de passer de la base \mathcal{B}_1 à la base \mathcal{B}_2 . Cette matrice est constituée en colonnes des coordonnées des vecteurs de la base \mathcal{B}_2 écrits dans la base d'origine \mathcal{B}_1 . On l'appelle aussi matrice de changement de base. Cette matrice est inversible.

Dans le cas des matrices de rotation, $P_{12}^{-1} = P_{12}^{\top}$.

Exemple -

Soit $\Re_1\left(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z}\right)$ et $\Re_2\left(O; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z}\right)$ avec $\beta = \left(\overrightarrow{x_1}, \overrightarrow{x_2}\right)$. On a alors $\overrightarrow{x_2} = \cos\beta\overrightarrow{x_1} + \sin\beta\overrightarrow{y_1}$ et $\overrightarrow{y_2} = \cos\beta\overrightarrow{y_2} - \sin\beta\overrightarrow{x_2}$. En conséquences, $P_{12} = \begin{pmatrix} \cos\beta & -\sin\beta & 0 \\ \sin\beta & \cos\beta & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Résultat -

Pour passer $I_A(S)_{\mathfrak{B}_1}$ de \mathfrak{B}_1 et \mathfrak{B}_2 de la on a $I_A(S)_{\mathfrak{B}_2} = P_{12}^{-1}I_A(S)_{\mathfrak{B}_1}P_{12}$.

Xavier Pessoles Sciences Industrielles de l'Ingénieur – PSI★

8.2.4 Détermination de la matrice d'inertie d'un solide [2]

8.2.5 Matrice d'inertie de solides usuels [3]

Cylindre d'axe (G, \vec{z}) de rayon R et de hauteur H

Tige cylindrique (G, \overrightarrow{z}) de rayon négligeable

Sphère pleine de centre C

Parallélépipède de cotés a, b et c

Tube d'axe (G, \overrightarrow{z}) de rayon R et de hauteur H (épaisseur négligeable)

Disque d'axe (G, \vec{z}) d'épaisseur négligeable

Sphère creuse de centre C

Cône (S, \overrightarrow{z}) de rayon R et de hauteur H

