ΑΛΓΟΡΙΘΜΟΙ-Εαρινό εξάμηνο 2022

Ομάδα Ασκήσεων #2

- **Άσκ.** 1 (Βαθ. 2) Έστω σύνολο n εργασιών $V = \{v_1, v_2, \ldots, v_n\}$. Για κάθε εργασία v_i δίνεται χρονική διάρκεια d_i και μία λίστα $V_i \subseteq V$ με εργασίες που πρέπει να έχουν ολοκληρωθεί πριν ξεκινήσει η v_i .
 - (a) Δ ιατυπώστε μία συνθήκη ώστε το σύνολο εργασιών V να είναι εφικτό.
 - (β) Σχεδιάστε και αναλύστε αλγόριθμο που υπολογίζει τον ελάχιστο χρόνο ολοκληρώσεως του V.
- **Άσκ. 2** (Βαθ. 3) Δίνεται προσανατολισμένος βεβαρημένος γράφος και με κάθε ακμή χρωματισμένη είτε με μπλε είτε με κόκκινο χρώμα, έτσι ώστε να μην υπάρχει μονοχρωματικός κύκλος. Σχεδιάστε και αναλύστε αλγόριθμο ο οποίος σε είσοδο δύο κόμβων (s,t) βρίσκει το ελαφρύτερο μονοπάτι από τον s στον t που αλλάζει χρώμα ακριβώς μία φορά από μπλε σε κόκκινο. (Δηλαδή, αν (s,u_1,\ldots,u_k,t) το μονοπάτι, τότε υπάρχει i ώστε οι ακμές $(s,u_1),\ldots,(u_{i-1},u_i)$ είναι μπλε και οι ακμές $(u_i,u_{i+1}),\ldots,(u_k,t)$ είναι κόκκινες.)

(Υπόδειξη: τοπολογική διάταξη, αντιστροφή φοράς ακμών.)

- **Άσκ. 3** (Βαθ. 3) Δίνεται βεβαρημένος γράφος G=(V,E,w) και ένα ελάχιστο συνδετικό δένδρο T του G. Σε κάθε βήμα ο G αλλάζει προσθέτοντας μία νέα ακμή με το βάρος της ή διαγράφοντας μία υπάρχουσα. Σχεδιάστε και αναλύστε αλγόριθμο που με είσοδο την αλλαγή (ο αλγόριθμος γνωρίζει επίσης τα G και T) υπολογίζει ένα νέο ελάχιστο συνδετικό δένδρο για τον νέο γράφο.
- **Άσκ.** 4 (Βαθ. 2) Στο πρόβλημα «Δύο-κλίκες» δίνεται γράφος G και ακέραιος k και πρέπει να αποφανθούμε αν υπάρχουν δύο ξένες κλίκες (χωρίς κοινούς κόμβους) μεγέθους τουλάχιστον k. Δείξτε ότι πρόβλημα είναι NP-πλήρες.

Προθεσμία: 13 Ιουνίου