Partiel 1

Durée : trois heures

Documents et calculatrices non autorisés

Nom:	Prénom :	Classe:
Consignes : – aucune autre feuille, que celles – aucune réponse au crayon de p	s agrafées fournies pour répondre, ne sera corrigée. papier ne sera corrigée.	
Exercice 1 (4 points)	l	
1. Déterminer, via la règle de	d'Alembert, la nature de la série $\sum u_n$ où pour tout $n \in \mathbb{N}$	*, $u_n = \frac{10^n}{n \cdot 4^{2n+1}}$.
2. Déterminer, via la règle de	Cauchy, la nature de la série $\sum v_n$ où pour tout entier $n\geqslant$	$2, v_n = \frac{n}{\left(\ln(n)\right)^n}.$

Exercice 2 (4 points)

$$\text{Soient } A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 1 \end{array} \right) \text{ et } B = \left(\begin{array}{ccc} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{array} \right).$$

A et B sont-elles diagonalisables dans $\mathcal{M}_3(\mathbb{R})$? Si oui, déterminer D et P.

N.B. : l'obtention des sous-espaces propres sous forme de sous-espaces engendrés doit découler d'un raisonnement clair et non pas d'une manière hasardeuse en prenant directement des valeurs particulières.

[suite du cadre page suivante]

Exercice 3 (3,5 points)

Soient
$$a \in \mathbb{R}$$
 et $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2-a & a-2 & a \end{pmatrix}$.

2. Discuter de la diagonalisabilité de A dans $\mathscr{M}_3(\mathbb{R})$ suivant les valeurs de a.

Exercice 4 (3,5 points)

Soit le système d'équations différentielles suivant : $\left\{ \begin{array}{l} x'(t)=x(t)+8y(t) \\ y'(t)=x(t)+3y(t) \end{array} \right. .$

On note $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

1. Déterminer $A \in \mathcal{M}_2(\mathbb{R})$ telle que X'(t) = AX(t).

[suite du cadro page suivante]

2. Diagonaliser A en explicitant D et P. On écrira $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, avec a < b, où a et b sont à déterminer.

3. [Vérifier que vous avez bien pris a < b dans la matrice D obtenue dans la question précédente]. En déduire x(t) et y(t) en fonction de t.

Exercice 5 (4 points)

$$\mathscr{B}=\left(E_{11}=\left(\begin{array}{cc}1&0\\0&0\end{array}\right),E_{12}=\left(\begin{array}{cc}0&1\\0&0\end{array}\right),E_{21}=\left(\begin{array}{cc}0&0\\1&0\end{array}\right),E_{22}=\left(\begin{array}{cc}0&0\\0&1\end{array}\right)\right)\,\mathrm{de}\,\mathscr{M}_2(\mathbb{R}).$$

2. Soit $\Delta: \left\{ \begin{array}{ccc} \mathscr{M}_2(\mathbb{R}) & \longrightarrow & \mathbb{R}_2[X] \\ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) & \longmapsto & (a+d)X^2 + (b+c)X + d - c \end{array} \right.$

Déterminer la matrice de Δ relativement aux bases canoniques de $\mathcal{M}_2(\mathbb{R})$ et $\mathbb{R}_2[X]$.

Exercice 6 (2 points)

Soit $(a_1, ..., a_n) \in \mathbb{R}^n$. Calculer le déterminant suivant (sous forme factorisée) en précisant les transformations effectuées