# LATHA MATHAVAN ENGINEERING COLLGE

# **ALAGARKOVIL, KIDARIPATTI, MADUARI-625301**

# **DEPARTMENT OF ELECTRONICS AND COMMUNICATION**

**SUB CODE: HX8001** 

SUB NAME: Professional Readiness For Innovation, Employability and

Entrepreneurship

# **Project Report**

# IoT ENABLED – REAL TIME WATER QUALITY MONITORING AND CONTROL SYSTEM

Submitted by,

Kannan J S (911019106005),
Jayashree S (911019106004),
Gayathri S (911019106003),
Ganesh Prabhu B (911019106302),
Madhavan V (911019106006),
Pavasingh M (911019106008).

# **Table of content**

#### 1. INTRODUCTION

- 1. Project Overview
- 2. Purpose

#### 2. LITERATURE SURVEY

- 1. Existing problem
- 2. References
- 3. Problem Statement Definition

#### 3. IDEATION & PROPOSED SOLUTION

- 1. Empathy Map Canvas
- 2. Ideation & Brainstorming
- 3. Proposed Solution
- 4. Problem Solution fit

# 4. **REQUIREMENT ANALYSIS**

- 1. Functional requirement
- 2. Non-Functional requirements

#### 5. PROJECT DESIGN

- 1. Data Flow Diagrams
- 2. Solution & Technical Architecture
- 3. User Stories

#### 6. PROJECT PLANNING & SCHEDULING

- 1. Sprint Planning & Estimation
- 2. Sprint Delivery Schedule
- 3. Reports from JIRA

# 7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 1. Feature 1
- 2. Feature 2
- 3. Database Schema (if Applicable)

#### 8. TESTING

- 1. Test Cases
- 2. User Acceptance Testing

#### 9. RESULTS

1. Performance Metrics

#### 10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

# **INTRODUCTION:**

#### 1. ROJECT OVERVIEW:

Water pollution is one among the most important fears for the green globalization. In order to ensure the safe supply of the drinking water the quality needs to be monitor in real time. In this paper we present a design and development of a coffee cost system for real time monitoring of the water quality in IOT (internet of things). The system contains several sensors—is employed to measuring physical and chemical parameters of the water. The parameters like temperature, pH, turbidity, flow sensor of the water are often measured. The measured values from the sensors are often processed by the core controller. The Arduino model is core controller. Finally, the sensor data are often viewed on internet using WI-FI system. Index Terms—IOT, Sensors, Arduino.

#### **2.PURPOSE:**

There are numerous advances in the twenty-first century, but at the same time, pollutions, heating, and other forms of pollution are forming, and as a result, there is no safe beverage for the world's pollution. Water quality monitoring in real time is becoming more difficult as a result of increasing water scarcity, population growth, and other factors. As a result, better approaches for monitoring water quality metrics in real time are required [1]. The parameters of water quality the concentration of hydrogen ions is measured by pH. It indicates whether or not the water is acidic or alkaline. Pure water has a pH of 7, although it is acidic rather than alkaline. pH ranges from 0 to 14. It should be between 6.5 and 8.5 pH for drinking. Turbidity is a measurement of the unseen suspended particles in water. The greater the turbidity, the greater the risk of diarrhoea, cholera. If the turbidity is low, the water is safe to drink. The temperature sensor detects how hot or cold the

water is. Flow sensor is a device that measures the flow of water. The traditional method of water quality monitoring entails manually collecting water samples from various sites. The use of wireless communication technologies is becoming more common to help people with their personal and daily duties. Many building control, automation, and data collecting applications have been created in recent years. There are numerous advantages, such as minimal cost, ease of installation, and maintenance. The remote device network can be used for a variety of tasks, including agriculture and traffic control, remote health care, forest management, security, and surveillance.

# **2, LITERATURE SURVEY:**

#### 1.EXISTING PROBLEMS AND REFERENCES:

| TITLE      | AUTHOR       | DATE    | PUBLICATION       | PROS/CONS               |
|------------|--------------|---------|-------------------|-------------------------|
| Real Time  | MithilaBarab | 6, June | https://www.resea | 1. To obtain the water  |
| Water      | de           | 2015    | rchgate.net       | monitoring system       |
| Quality    | ,ShrutiDanve |         |                   | with high frequency,    |
| Monitorn g |              |         |                   | high mobility, and low  |
| System     |              |         |                   | powered. 2. Another     |
|            |              |         |                   | important fact of this  |
|            |              |         |                   | system is the easy      |
|            |              |         |                   | installation of the     |
|            |              |         |                   | system that is the base |

|              |             |          |                           | station can be placed at |
|--------------|-------------|----------|---------------------------|--------------------------|
|              |             |          |                           | the local residence      |
|              |             |          |                           | close to the target area |
|              |             |          |                           | and the monitoring task  |
|              |             |          |                           | can be done by any       |
|              |             |          |                           | person with very less    |
|              |             |          |                           | training at the          |
|              |             |          |                           | beginning of the         |
|              |             |          |                           | system installation. 3.  |
|              |             |          |                           | Water pollution can be   |
|              |             |          |                           | easily detected by this  |
|              |             |          |                           | system, which will       |
|              |             |          |                           | help in controlling it.  |
| Internet of  | C S. Geetha | 27, July | https://link.springer.com | 1. power efficient,      |
| things       | and         | 2017     |                           | simpler solution for in- |
| enabled real | S.Gouthami  |          |                           | pipe water quality       |
| time water   |             |          |                           | monitoring based on      |
| quality      |             |          |                           | Internet of Things       |
| monitori ng  |             |          |                           | technology is            |
| system       |             |          |                           | presented. 2. system     |
|              |             |          |                           | also provides an alert   |
|              |             |          |                           | to a remote user, when   |

|            |              |          |                  | there is a deviation of |
|------------|--------------|----------|------------------|-------------------------|
|            |              |          |                  | water quality           |
|            |              |          |                  | parameters from the     |
|            |              |          |                  | pre-defined set of      |
|            |              |          |                  | standard values. 3.     |
|            |              |          |                  | Turbidity is a measure  |
|            |              |          |                  | of cloudiness in the    |
|            |              |          |                  | water. But only         |
|            |              |          |                  | theOpto electronic      |
|            |              |          |                  | devices such as LDR     |
|            |              |          |                  | and LED are used to     |
|            |              |          |                  | measure the turbidity.  |
| EIoTBased  | Sherenismai, | 31,March | https://ieeexplo | 1. Infrastructure and   |
| Water      | DianaW.Daw   | 2022     | re.ieee.org.     | equipment conditions    |
| Manage     | oud,NadhemI  |          |                  | monitoring to predict   |
| ment       | smai,Ronald  |          |                  | any upcoming failures,  |
| Systems:   | Marsh and    |          |                  | leakage, tampering, or  |
| Survey and | Alis.Alshami |          |                  | maintenance needs. 2.   |
| Future     |              |          |                  | This technology can be  |
| Research   |              |          |                  | beneficial in obtaining |
| Direction  |              |          |                  | information, valuable   |
|            |              |          |                  | for making business     |

|             |                                                        |                                                      | decisions, while a                                  |
|-------------|--------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
|             |                                                        |                                                      | realtime history record                             |
|             |                                                        |                                                      | can assist in                                       |
|             |                                                        |                                                      | monitoring changes in                               |
|             |                                                        |                                                      | key physical reservoir                              |
|             |                                                        |                                                      | parameters 3. This                                  |
|             |                                                        |                                                      | work aims to serve as a                             |
|             |                                                        |                                                      | motivation for further                              |
|             |                                                        |                                                      | research concerning                                 |
|             |                                                        |                                                      | IoT-based water                                     |
|             |                                                        |                                                      | management systems                                  |
|             |                                                        |                                                      | designated for oilfield                             |
|             |                                                        |                                                      | applications                                        |
| DeepthiN1,  | 4, July                                                | http://www.ijp rse.com/                              | 1.Water quality should                              |
| ahul R A1,  | 2020                                                   |                                                      | be monitored properly                               |
| Kiran M1 ,  |                                                        |                                                      | to certify whether the                              |
| ishwarya S1 |                                                        |                                                      | quality is good or not.                             |
| PoornaPrajn |                                                        |                                                      | 2. In the paper they                                |
| a K M1      |                                                        |                                                      | used the method called                              |
|             |                                                        |                                                      | data acquisition                                    |
|             |                                                        |                                                      | process for monitoring                              |
|             |                                                        |                                                      | the quality water.                                  |
| í           | ahul R A1 ,<br>Kiran M1 ,<br>shwarya S1<br>PoornaPrajn | Ahul R A1 , 2020  Kiran M1 , shwarya S1  PoornaPrajn | ahul R A1 , 2020  Kiran M1 , shwarya S1 PoornaPrajn |

|             |                |            |                        | 3.Here in this system,   |
|-------------|----------------|------------|------------------------|--------------------------|
|             |                |            |                        | have used Raspberri Pi   |
|             |                |            |                        | as the micro controller. |
|             |                |            |                        |                          |
| IoT Based   | Mohammad       | August 19- | https://www.re         | 1. The main              |
| Realtime    | Salah Uddin    | 21, 2019   | searchgate.net/        | components of            |
| River Water | Chowdurya,     |            | publication/33 3642226 | Wireless Sensor          |
| Quality     | Talha Bin      |            |                        | Network (WSN)            |
| Monitori ng | Emranb         |            |                        | include a                |
| System      | ,SubhasishGh   |            |                        | microcontroller for      |
|             | osha,          |            |                        | processing the system,   |
|             | AbhijitPatha   |            |                        | communication system     |
|             | ka , Mohd.     |            |                        | for inter and intra node |
|             | ManjurAlam a   |            |                        | communication and        |
|             | ,NurulAbsara , |            |                        | several sensors.         |
|             | Karl           |            |                        | 2. Due to the limitation |
|             | Anderssonc,    |            |                        | of the budget, we only   |
|             | Mohammad       |            |                        | focus on measuring the   |
|             | ShahadatHos    |            |                        | quality of river water   |
|             | saind          |            |                        | parameters.              |
|             |                |            |                        | 3.But, This project can  |
|             |                |            |                        | be extended into an      |

|  |  | efficient water      |
|--|--|----------------------|
|  |  | management system of |
|  |  | a local area.        |

# 2.PROBLEM DEFINE STATEMENT:



|               | Common people        | Common people living on Earth who consume            |
|---------------|----------------------|------------------------------------------------------|
| I am          | living a normal life |                                                      |
|               | on Earth             | water in their day-to-day life for different purpose |
|               | Monitor the standard | Wants to monitor the water consumed everyday         |
| I'm trying to | quality of the water | whether the water is contaminated or pure, pH,       |
|               | 1                    | temperature, salinity in it                          |
|               | Don't know to        | Time consuming a lot for process of manual           |
| But           | monitor the quality  | Time consuming a lot for process of manual           |
|               | of water             | testing                                              |
| T.            | Lack of required     | Common people lack knowledge of this type of         |
| Because       | knowledge            | testing, sensors etc.                                |

| Which    | Doubted and fearful | Lack of pure water by changes in environment and    |
|----------|---------------------|-----------------------------------------------------|
| makes me | of the consumed     | also causing various diseases by bacteria and virus |
| feel     | water               | are present in water                                |

# 3. IDEATION & PROPOSED SOLUTION

# **EMPATHY MAP:**



# **BRAINSTORMING AND IDEATION:**

# **Step-1: Team Gathering, Collaboration and Select the Problem Statement**





**Step-2: Brainstorm, Idea Listing and Group**2



# **STEP 3: GROUP IDEA**



# **STEP 4:PRIORITIZE**



# **AFTER YOU COLLABPRATE:**



# 3. Proposed Solution:

| S. No. | Parameter                        | Description                                      |
|--------|----------------------------------|--------------------------------------------------|
| 1.     | Problem Statement (Problem to be | IOT Based Real Time River Water Quality          |
|        | solved)                          | Monitoring and Control System                    |
| 2.     | Idea / Solution description      | 1. To monitor the quality of water using         |
|        |                                  | sensors like Temperature, Potentiometer(pH),     |
|        |                                  | Turbidity, Salinity and so on.                   |
|        |                                  | 2. Collecting those data and storing it in cloud |
|        |                                  | and perform analyse to check if the water is     |
|        |                                  | contaminated or not for drinking.                |
|        |                                  | 3. If the water is contaminated an alert is      |
|        |                                  | made to the user/local authority through SMS     |
|        |                                  | or can be viewed through web application         |
|        |                                  | anytime.                                         |
| 3.     | Novelty / Uniqueness             | Based on the collected data prediction is        |
|        |                                  | made whether the water can be used for           |
|        |                                  | cultivation of specific crops and suitable for   |
|        |                                  | the aquatic animals.                             |

| 4. | Social Impact / Customer              | Algal growth, fertilizers, pesticides cause     |
|----|---------------------------------------|-------------------------------------------------|
|    | Satisfaction                          | river pollution which can impact all living     |
|    |                                       | beings. Better monitoring and control           |
|    |                                       | measures can impact health and vegetation       |
|    |                                       | massively.                                      |
| 5. | <b>Business Model (Revenue Model)</b> | Service based product is developed to serve     |
|    |                                       | the local people to know the quality of water   |
|    |                                       | before consuming it or using it for any         |
|    |                                       | purpose.                                        |
|    |                                       | This prevents health issues or at most loss of  |
|    |                                       | living being.                                   |
| 6. | Scalability of the Solution           | Developing the product as both web and          |
|    |                                       | mobile application it is portable, and data can |
|    |                                       | be accessed from anywhere anytime.              |
|    |                                       | provide a real-time monitoring and a feasible   |
|    |                                       | solution for remote or distant places where     |
|    |                                       | water quality laboratory is not present.        |

# **SOLUTION FIT:**



# **REQUIREMENT ANALYSIS:**

# **Functional requirements:**

Following are the functional requirements of the proposed solution.

| FR No. | Functional Requirement | Sub Requirement (Story / Sub-Task)          |
|--------|------------------------|---------------------------------------------|
|        | (Epic)                 |                                             |
| FR-1   | User Registration      | Registration through registered credintials |
|        |                        | register confirmation e-mails               |
| FR-2   | User Confirmation      | Confirmation via Email                      |
|        |                        | Confirmation via                            |
|        |                        | OTP/SMS                                     |
| FR-3   | Log in to the System   | Enter the OTP                               |
|        |                        | Check the Credentials                       |
|        |                        | Check the                                   |
|        |                        | Access/Server                               |
| FR-4   | Manage the Modules     | Manage the system Admins of user            |
|        |                        | Manage and Monitor Details of System        |
|        |                        | UserManage the User Roles                   |
|        |                        | Manage the User Accessibility and User      |
|        |                        | PermissionManage User Details Privacy       |

| FR-5 | <b>Check Process Details</b> | Temperature                              |
|------|------------------------------|------------------------------------------|
|      |                              | DetailsPH Details                        |
|      |                              | Turbidity Details                        |
|      |                              | dissolved oxygen level in water          |
|      |                              | presence of chemical substances in water |
| FR-6 | Log out                      | Save the existing measurements           |
|      |                              | Exit                                     |

# **Non-functional Requirements:**

Following are the non-functional requirements of the proposed solution.

| FR No. | Non-Functional Requirement | Description                              |
|--------|----------------------------|------------------------------------------|
| NFR-1  | Usability                  | Make Easier to Use, More Efficiency to   |
|        |                            | Use, Reduction of Errors While Using     |
|        |                            | thisTechniques                           |
| NFR-2  | Security                   | end by end encrypted protocol in Data    |
|        |                            | Authentication, Sensitive data protected |
|        |                            | personally                               |
|        |                            | identifiable information (PII) other     |
|        |                            | informationdetails of users and networks |

| NFR-3 | Reliability  | Provides the objective evidence necessary to    |
|-------|--------------|-------------------------------------------------|
|       |              | makedecisions on managing water quality         |
|       |              | today and in future also.                       |
|       |              | This techniques make good communication         |
|       |              | betweenthe user and the networks and it also    |
|       |              | achieves a better trade-off between costs and   |
|       |              | reliability                                     |
| NFR-4 | Performance  | Implementing Monitoring River Water, by         |
|       |              | using sensing sensor to monitor the river water |
|       |              | parametersmaking more useful for various        |
|       |              | environmental                                   |
|       |              | Usage.                                          |
| NFR-5 | Availability | PH Monitoring, Conductivity                     |
|       |              | Analysis,CDOM(Dissolved Organic                 |
|       |              | Matter),Measure of Carbonate and                |
|       |              | bicarbonate levels in water,this techniques     |
|       |              | made possible by                                |
|       |              | linking information in water                    |
| NFR-6 | Scalability  | Automatic Water Sampler, PH testing, Recording  |
|       |              | the                                             |
|       |              | water temperature, chlorophyll, fluorescence    |
|       |              | analysismeasuring the dissolved oxygen levels.  |

# 5. PROJECT DESIGN

# 5.1. **Data Flow Diagrams**:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

#### **DATA FLOW:**



#### **DATA FLOW DIAGRAM:**



# 5.2. Technical Architecture:

# Real-Time River Water Quality Monitoring and ControlSystem

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2.

Example: The IoT - enabled Water Quality Monitoring (WQM) system enables real-time monitoring of freshwater resources.

# TECHNOLOGY ARCHITECHTURE



REMOTE ACCESS

# WIFI/INTERNET IBM CLOUD IOT WATSON PLATFORM SOLAR POWERED NETWORK NETWORK

# **Industry 2.0 architecture**

**Table-1: Components & Technologies:** 

SENSING WATER QUALITY

THON RANDOM DATA

| S.No | Component           | Description                           | Technology                     |
|------|---------------------|---------------------------------------|--------------------------------|
| 1.   | User Interface      | How user interacts withapplication    | HTML, CSS, Node-Red ,Cloud,etc |
| 2.   | Application Logic-1 | Logic for a process in theapplication | JAVA/PYTH <b>ON</b>            |

| PNT2022TMID47600     | REAL TIME WATER ( | OUALITY MONITORING AND CONTROL SYSTEM |
|----------------------|-------------------|---------------------------------------|
| 11112022111111047000 | NEAL TIME WATER   | OUALITI MOMITORING AND COMTROL STRIEM |

| theapr i cation |
|-----------------|
|-----------------|

| 4.  | Application Logic-3 | Logic for a process in theapplication          | IBM WATSON Assistant                                    |
|-----|---------------------|------------------------------------------------|---------------------------------------------------------|
| 5.  | Database            | Data Type, Configurations etc                  | MySQL, Postgres SQL                                     |
| 6.  | Cloud Database      | Database Service on Cloud                      | IBM DB2, IBM Cloudant etc                               |
| 7.  | File Storage        | File storage requirements                      | IBM Block Storage or Other StorageService or Local File |
|     |                     |                                                | system                                                  |
| 8.  | External API-1      | Purpose of External API used inthe application | IBM Weather API, etc                                    |
| 9.  | External API-2      | Purpose of External API used inthe application | Aadhar API, etc                                         |
| 10. | Machine             | Purpose of External API used                   | Object Recognition Model, etc                           |

| P | NT2022TN | /IID47 | 500 | <br>REA | _TIN | ME ' | WA | TER | QU | JAL | <u>ITY</u> | M( | ON | ITC | <u> PRIN</u> | NG. | <u>AND</u> | ) C( | DN'. | <u> </u> | <u>)L</u> | <u>SYS</u> | TE | M |  |
|---|----------|--------|-----|---------|------|------|----|-----|----|-----|------------|----|----|-----|--------------|-----|------------|------|------|----------|-----------|------------|----|---|--|
|   |          |        | -   | <br>    |      |      |    |     |    |     |            |    |    |     |              |     |            |      |      |          |           |            |    |   |  |

|     | LearningModel          | inthe application      |                                        |
|-----|------------------------|------------------------|----------------------------------------|
|     |                        |                        |                                        |
|     |                        |                        |                                        |
| 11. | Infrastructure (Server | Application Deployment | Local, Cloud Foundry, Kubernetes, etc. |
|     | / Cloud)               | onLocal System / Cloud |                                        |
|     |                        | Local Server           |                                        |
|     |                        | Configuration: Cloud   |                                        |
|     |                        | Server Configuration:  |                                        |

# **Table-2: Application Characteristics:**

| S.No | Characteristics           | Description                                                               | Technology                                          |
|------|---------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|
| 1.   | Open- Source Framework s  | List the open-sourceframeworks used                                       | Technology of OpenSource framework                  |
| 2.   | Security  Implementations | List all the security / access controls implemented, use of firewalls etc | e.g. SHA-256, Encryptions, IAM Controls, OWASP etc. |

# PNT2022TMID47600 REAL TIME WATER QUALITY MONITORING AND CONTROL SYSTEM

| 3. | Scalable Architecture | Justify the scalability of architecture (3 – tier, Microservices) | Technology used |
|----|-----------------------|-------------------------------------------------------------------|-----------------|
| 4. | Availability          | Justify the availability of application                           | Technology used |
| 5. | Performance           | Design consideration for the performance of the application       | Technology used |

# **5.3. User Stories:**

| <b>User Type</b>                            | Functional                         | User Story<br>Number | User Story /<br>Task                                                                                      | Acceptance criteria                                       | Priority | Release  |
|---------------------------------------------|------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|----------|
|                                             | Requirement (Epic)                 | Number               | Task                                                                                                      | criteria                                                  |          |          |
| Customer<br>(Mobile<br>user/remote<br>user) | Registration                       | USN-1                | As a user, I can register for the application by entering my email, password, and confirming my password. | I can access<br>my account /<br>dashboard                 | High     | Sprint-1 |
|                                             | Notification                       | USN-2                | As a user, I will receive confirmation email once I have registered for the application                   | I can receive<br>confirmation<br>email & click<br>confirm | High     | Sprint-1 |
|                                             | Signup<br>through third<br>parties | USN-3                | As a user, I can register for the                                                                         | I can register<br>& access the<br>dashboard               | Low      | Sprint-2 |

| PNT2022TMID476 | 00 REAL   | TIME WATER ( | QUALITY MONI<br>  application | TORING AND C<br>  with    | ONTROL SY | STEM        |
|----------------|-----------|--------------|-------------------------------|---------------------------|-----------|-------------|
|                |           |              | through                       | Facebook                  |           |             |
|                |           |              | Facebook                      | Login                     |           |             |
|                |           | USN-4        | As a user, I can register     | I can register and access | Medium    | Sprint-1    |
|                |           |              | for the                       | the dashboard             |           |             |
|                |           |              | application                   | with Google               |           |             |
|                |           |              | through                       | credentials               |           |             |
|                |           |              | Gmail                         |                           |           |             |
|                | Login     | USN-5        | As a user, I can log into     | I can register and access | High      | Sprint-1    |
|                |           |              | the                           | the dashboard             |           |             |
|                |           |              | application                   | through the               |           |             |
|                |           |              | by entering                   | application               |           |             |
|                |           |              | email &                       | cred                      |           |             |
|                |           |              | password                      |                           |           |             |
|                | Dashboard |              |                               |                           |           |             |
| Customer       |           | USN-6        | As I am a                     | Each and                  | High      | Each sprint |
| (Web user)     |           |              | customer I                    | every process             |           |             |
|                |           |              | need a proper                 | was under                 |           |             |
|                |           |              | support and                   | firewall                  |           |             |
|                |           |              | service                       | /security                 |           |             |
|                |           |              |                               | protocol                  |           |             |
| Customer       |           | USN-7        | 24/7 service                  |                           |           | Sprint 3    |
| Care           |           |              | can provided                  |                           |           |             |
| Executive      |           | USB-8        | by company<br>Who will        | A 11 41                   | TT: - 1-  | Elin        |
| Administrator  |           | USB-8        | have the                      | All the access was with   | High      | Each sprint |
|                |           |              | entire access                 | encrypted                 |           |             |
|                |           |              | of this                       |                           |           |             |
|                |           |              | project                       |                           |           |             |

# 6. PROJECT PLANNING & SCHEDULING:

| Sprint                      |             |                                                                                                          |                                                                                        |        |                       |                               |
|-----------------------------|-------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------|-----------------------|-------------------------------|
|                             | Functional  | User                                                                                                     | User Story / Task                                                                      | Story  | Priority              | Team                          |
|                             | Requirement | Story                                                                                                    |                                                                                        | Points |                       | Members                       |
|                             | (Epic)      | Number                                                                                                   |                                                                                        |        |                       |                               |
| Sprint-1 Registration USN-1 |             | As a user, I can register for the application by entering my email, password, and confirmingmy password. | 2                                                                                      | High   | Kannan,<br>Jayashree. |                               |
| Sprint-1                    |             | USN-2                                                                                                    | As a user, I will receive confirmation emailonce I have registered for the application | 1      | High                  | Gnash<br>prabhu,<br>gayathri. |
| Sprint-2                    |             | USN-3                                                                                                    | As a user, I can register for the applicationthrough Facebook                          | 2      | Low                   | Gnash<br>prabhu,<br>gayathri. |
| Sprint-1                    |             | USN-4                                                                                                    | As a user, I can register for the applicationthrough Gmail                             | 2      | Medium                | Gnash<br>prabhu,<br>gayathri. |
| Sprint-1                    | Login       | USN-5                                                                                                    | As a user, I can log into the application byentering email & password                  | 1      | High                  | Kannan,<br>Jayashree.         |
|                             | Dashboard   |                                                                                                          |                                                                                        |        | High                  |                               |

| Sprint     | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story / Task                                                                                                                         | Story<br>Points | Priority | Team<br>Members               |
|------------|-------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-------------------------------|
| Sprint - 2 | User<br>interface<br>experience     | USN-6                   | As a user I need a proper user interface for the project which was contain the graphical representation of received data from the sensors | 2               | High     | Kannan,<br>Jayashree.         |
| Sprint - 2 |                                     | USN-7                   | As a user, I can create a IBM cloud account forthe data base which should able to store the data and gather the data from the sensors     | 1               | Medium   | Gnash<br>prabhu,<br>gayathri. |
| Sprint - 2 |                                     | USN-8                   | As I a user I can create node-red app for providing commands to the sensors in the IBM cloud                                              | 2               | Medium   | Kannan,<br>Jayashree.         |
| Sprint - 2 |                                     | USN-9                   | As a user, I can create IOT Watson assistant for converting the sensors data to the digital data                                          | 2               | Low      | Gnash<br>prabhu,<br>gayathri. |
| Sprint - 2 |                                     | USN-10                  | As a user, I can create a fast to SMS app For providing alert the user which consuming water was not have the quality of consumable       | 1               | High     | Kannan,<br>Jayashree.         |
| Sprint - 2 |                                     | USN-11                  | As I a user, I can make cloudant data base in the IBM cloud for storing the data from the sensorsfor future references                    | 2               | High     | Kannan,<br>Jayashree.         |
| Sprint - 3 | App interface creation              | USN-12                  | As I a user, I can use the MIT APP INVERTER for creating the user interface which contains interface between of IBM cloud                 | 1               | Medium   | Gnash<br>prabhu,<br>gayathri. |
| Sprint - 3 |                                     | USN-13                  | As I am a user, I can<br>create a dashboard which<br>was containing graphical<br>representing the<br>sensors measurements                 | 1               | Medium   | Gnash<br>prabhu,<br>gayathri. |

| Sprint - | USN-14 | As I am a user, I can save or | 2 | High | Kannan,    |
|----------|--------|-------------------------------|---|------|------------|
| 3        |        | delete the previous           |   |      | Jayashree. |
|          |        | measurements which            |   |      |            |
|          |        | was contain the sensor        |   |      |            |
|          |        | measurements                  |   |      |            |
| Sprint - | USN-15 | As I am a user, I need the    | 2 | High | Kannan,    |
| 3        |        | devices was properly          |   |      | Jayashree. |
|          |        | insulated and the devices     |   |      | -          |
|          |        | was must be a water           |   |      |            |
|          |        | resistant                     |   |      |            |

| Sprint   | Functional  | User   | User Story / Task               | Story  | Priority | Team       |
|----------|-------------|--------|---------------------------------|--------|----------|------------|
|          | Requirement | Story  |                                 | Points |          | Members    |
|          | (Epic)      | Number |                                 |        |          |            |
| Sprint - |             | USN-16 | As I am a user, I can create    | 1      | Low      | Gnash      |
| 3        |             |        | the devices whichwas            |        |          | prabhu,    |
|          |             |        | implemented in the project      |        |          | gayathri.  |
|          |             |        | should be maintain properly     |        |          |            |
|          |             |        | with the particular interval of |        |          |            |
|          |             |        | time                            |        |          |            |
| Sprint   |             | USN-17 | As I am a user, I need a        | 2      | Low      | Kannan,    |
| -3       |             |        | simultaneous data               |        |          | Jayashree. |
|          |             |        | collecting data from the        |        |          |            |
|          |             |        | sensors and also save           |        |          |            |
|          |             |        | the received data               |        |          |            |
|          |             |        | to the cloudant                 |        |          |            |
|          |             |        | /clouddashboard                 |        |          |            |
| Sprint   |             | USN-18 | As a user, I can manage         | 1      | High     | Kannan,    |
| -3       |             |        | the devices which was           |        |          | Jayashree. |
|          |             |        | implemented in the project      |        |          |            |
| Sprint   | User        | USN-19 | As a admin, I can               | 1      | High     | Kannan,    |
| -3       | development |        | manage all the devices          |        |          | Jayashree. |
|          |             |        | andfind the drawbacks           |        |          |            |
|          |             |        | and also rectify that           |        |          |            |

| Sprint |              | USN-20 | As a admin, I can            | 1 | Medium | Gnash      |
|--------|--------------|--------|------------------------------|---|--------|------------|
| -3     |              |        | manage the devices           |   |        | prabhu,    |
|        |              |        | which was not working        |   |        | gayathri.  |
|        |              |        | not properly I should        |   |        |            |
|        |              |        | replace                      |   |        |            |
|        |              |        | that device                  |   |        |            |
| Sprint |              | USN-21 | As a admin, I can            | 1 | Low    | Gnash      |
| -3     |              |        | monitor the devices          |   |        | prabhu,    |
|        |              |        | whichwas sending the         |   |        | gayathri.  |
|        |              |        | correct data or not          |   |        |            |
| Sprint |              | USN-22 | As a admin, I can make       | 2 | High   | Kannan,    |
| -3     |              |        | changes in the user          |   |        | Jayashree. |
|        |              |        | interface which was          |   |        |            |
|        |              |        | able to understand the       |   |        |            |
|        |              |        | measurements was             |   |        |            |
|        |              |        | easily understandable        |   |        |            |
|        |              |        | by                           |   |        |            |
|        |              |        | user/industry person         |   |        |            |
| Sprint | User command | USN-23 | As a admin, I can create the | 2 | High   | Kannan,    |
| -4     | centre       |        | command option in            |   |        | Jayashree. |
|        |              |        | the user interface           |   |        |            |
|        |              |        | and able to perform          |   |        |            |
|        |              |        | thedevices based on          |   |        |            |
|        |              |        | the commands                 |   |        |            |
| Sprint |              | USN-24 | As a user, I can give the    | 2 | Medium | Gnash      |
| -4     |              |        | command to the device        |   |        | prabhu,    |
|        |              |        | which was already able       |   |        | gayathri.  |
|        |              |        | understand the command       |   |        |            |
|        |              |        | and also perform the         |   |        |            |
|        |              |        | function which               |   |        |            |
|        |              |        | was mention in the command   |   |        |            |

# PNT2022TMID47600 REAL TIME WATER QUALITY MONITORING AND CONTROL SYSTEM

| Sprint | USN-25 | As a user, I can need user  | 2 | Medium | Gnash      |
|--------|--------|-----------------------------|---|--------|------------|
| -4     |        | interface was alwaysbe an   |   |        | prabhu,    |
|        |        | eco-friendly which was      |   |        | gayathri.  |
|        |        | designed in the user        |   |        |            |
|        |        | interface                   |   |        |            |
| Sprint | USN-26 | As a user, I need a user    | 1 | High   | Kannan,    |
| -4     |        | interface which was         |   |        | Jayashree. |
|        |        | contains HTTP               |   |        |            |
|        |        | command format and          |   |        |            |
|        |        | also                        |   |        |            |
|        |        | should contain the web page |   |        |            |
|        |        | interface                   |   |        |            |

| Sprint    | Functional  | User   | User Story / Task                                                                 | Story  | Priority | Team                          |
|-----------|-------------|--------|-----------------------------------------------------------------------------------|--------|----------|-------------------------------|
|           | Requirement | Story  |                                                                                   | Points |          | Members                       |
|           | (Epic)      | Number |                                                                                   |        |          |                               |
| Sprint -4 |             | USN-27 | As a user, I can make the measurements was also capable to know the web interface | 1      | Low      | Gnash<br>prabhu,<br>gayathri. |
| Sprint -4 |             | USN-28 | As a user, I need a proper statement of the measurements of the data and also     | 1      | Low      | Gnash<br>prabhu,<br>gayathri. |

# Project Tracker, Velocity & Burndown Chart:

| Sprint   | Total<br>Story<br>Points | Duration | Sprint Start Date | Sprint End Date (Planned) | Story Points Completed (as on Planned End Date) | Sprint Release Date (Actual) |
|----------|--------------------------|----------|-------------------|---------------------------|-------------------------------------------------|------------------------------|
| Sprint-1 | 20                       | 6 Days   | 24 Oct 2022       | 29 Oct 2022               | 20                                              | 29 Oct 2022                  |
| Sprint-2 | 20                       | 6 Days   | 31 Oct 2022       | 05 Nov 2022               | 20                                              | 05 Nov 2022                  |
| Sprint-3 | 20                       | 6 Days   | 07 Nov 2022       | 12 Nov 2022               | 20                                              | 12 Nov 2022                  |
| Sprint-4 | 20                       | 6 Days   | 14 Nov 2022       | 19 Nov 2022               | 20                                              | 19 Nov 2022                  |

# **Velocity:**

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit(story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

The average velocity (AV) per iteration unit =3.33

## **Burndown Chart:**

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.



#### 7. CODING & SOLUTIONING:

#### 7.1.FEATURE:

#### HTML CODE FOR USER REGSTATION;

| <html></html>                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------|
| <head></head>                                                                                                        |
| <title>&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Registration Page&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;</title> |
|                                                                                                                      |
| <body></body>                                                                                                        |
| <br>br>                                                                                                              |
| <br>br>                                                                                                              |
| <form></form>                                                                                                        |
| user credintials                                                                                                     |
| <label> Firstname </label>                                                                                           |
| <input name="firstname" size="15" type="text"/><br>>                                                                 |
| <label> Middlename: </label>                                                                                         |
| <input name="middlename" size="15" type="text"/><br><br><br><br>dr>                                                  |
| <label> Lastname: </label>                                                                                           |
| <pre><input name="lastname" size="15" type="text"/><br/></pre>                                                       |

```
</select>
project domain
<label> internet of things </label>
<br>>
<br>>
<br>>
<label>
Gender:
</label><br>
<input type="radio" name="male"/> Male <br>
<input type="radio" name="female"/> Female <br>
<input type="radio" name="Prefer not to say"/> Prefer not to say
<br/>br>
<br>>
<br>>
<label>
contact details</details> :
</label>
<input type="text" name="country code" value="+91" size="2"/>
<input type="text" name="phone" size="10"/> <br> <br>>
Address
<br/>br>
```

```
<textarea cols="80" rows="5" value="address">
</textarea>
<br>> <br>>
Email:
<input type="email" id="email" name="email"/> <br>
<br>> <br>>
Password:
<input type="Password" id="pass" name="pass"> <br>
<br>> <br>>
Re-type password:
<input type="Password" id="repass" name="repass"> <br> <br/>br>
<input type="button" value="Submit"/>
</form>
</body>
alternte contact details
<input type="text" name="country code" value="+91" size="2"/>
<input type="text" name="phone" size="10"/> <br> <br>>
alternate email id
<input type="altrernate email id" name="alternate email"/> <br>
<br>> <br>>
<body>
<html>
```

#### **OUTPUT:**





#### **USER LOGIN PAGE CREATION USING HTML CODE:**

```
<!DOCTYPE html>
<html>
<head>
<h1> Real time water quality monitoring system</h1>
<metaname="viewport" content="width=device-width, initial-scale=1">
<style>
body {font-family: Arial,Impact, 'Arial Narrow Bold', sans-serif, sans-serif;}
/* Full-width input fields */
input[type=text], input[type=password] {
 width: 150;
 padding: 23px 24px;
 margin: 8px 0;
 display: inline-block;
 border: 1px solid #ccc;
 box-sizing: border-box;
/* Set a style for all buttons */
button {
 background-color: #04AA6D;
 color:blue;
 padding: 15px 21px;
 margin: 8px 0;
 border: none;
 cursor: pointer;
 width: 102;
button:hover {
 opacity: 0.7;
/* Extra styles for the cancel button */
.cancelbtn {
 width: min-content
 padding: 10px 18px;
 background-color: #f4455f
```

```
/* Center the image and position the close button */
{.imgcontainer { }
 text-align: right: ;
 margin: 24px 0 12px 0;
 position: relative
img {Real time water quality monitoring and control system}: {
 width: 56;
 border-radius:50%;
.container {
 padding: 16px;
span.psw {
 float: right;
 padding-top: 16px;
/* The Modal (background) */
.modal {
 display: none; /* Hidden by default */
 position: fixed; /* Stay in place */
 z-index: 1; /* Sit on bottom*/
 left: 0;
 top: 0;
 width: 100%; /* full width */
 height: 100%; /* medium height */
 overflow: auto; /* Enable scroll if needed */
 background-color: ybg(0,0,0); /* Fallback color */
 background-color: rgba(0,0,0,0.4); /* Black w/ transprenant */
 padding-top: 60px;
/* Modal Content/Box */
.modal-content {
 background-color: #fefefe;
 margin: 5% auto 15% auto; /* 5% from the top, 15% from the bottom and centered */
 border: 1px solid #888;
```

```
width: 65%; /* Could be more or less, depending on screen size */
/* The Close Button (x) */
.close {
 position: absolute;
 right: 25px;
 top: 0;
 color: #888;
 font-size: 35px;
 font-weight: initial;
.close:hover,
.close:focus {
 color: red;
 cursor: pointer;
/* Add Zoom Animation */
.animate {
 -webkit-animation: animatezoom 0.6s;
 animation: animatezoom 0.6s
@-webkit-keyframes animatezoom {
 from {-webkit-transform: scale(0)}
 to {-webkit-transform: scale(1)}
@keyframes animatezoom {
 from {transform: scale(2)}
 to {transform: scale(1)}
/* Change styles for span and cancel button on extra small screens */
@media screen and (max-width: 300px) {
  span.psw {
    display: block;
     float: none;
  .cancelbtn {
     width: 100%;
```

```
</style>
</head>
<body>
<h2>Modal Login Form</h2>
<button onclick="document.getElementById('id01').style.display='block'"</pre>
style="width:auto;">Login</button>
<div id="id01" class="modal">
 <form class="modal-content animate" action="/action_page.php" method="post">
   <div class="imgcontainer">
      <span onclick="document.getElementById('id01').style.display='none'"</pre>
class="close" title="Close Modal">×</span>
    </div>
    <div class="container">
      <label for="uname"><b>Username</b></label>
      <input type="text" placeholder="Enter Username" name="uname" required>
      <label for="psw"><b>Password</b></label>
      <input type="password" placeholder="Enter Password" name="psw" required>
      <label for="captch"></label><123gh@><label>
      <input type="captcha" 123@g="Enter captcha" name="captcha" requried>
      <button type="submit">Login</button>
      <label>
        <input type="checkbox" checked="checked" name="remember"> Remember me
      </label>
    </div>
   <div class="container" style="background-color:#f1f1f1">
      <button type="button"</pre>
onclick="document.getElementById('id01').style.display='none'"
class="cancelbtn">Cancel</button>
      <span class="psw">Forgot <a href="#">password?</a></span>
    </div>
 </form>
</div>
```

```
<script>
// Get the modal
var modal = document.getElementById('id03');

// When the user clicks anywhere outside of the modal, close it
window.onclick = function(event) {
    if (event.target == modal) {
        modal.style.display = "none";
    }
}
</body>
</html>
```

### **OUTPUT:**



### Real time water quality monitoring system

**Modal Login Form** 







## **FEATURE 2:**

#### PYTHON DATA FOR RANDOM DATA PUBLISHING:

#### **DEVELOP THE PYTHON SCRIPT:**

| # -*- coding: utf-8 -*-            |
|------------------------------------|
| ппп                                |
| reated on Fri Nov 11 07:57:51 2022 |
| @author: KANNAN                    |
| нин                                |
| import random                      |

},

}

}

"auth": {

```
PNT2022TMID47600
 import time
 #IBM Watson IOT Platform
 #pip install wiotp-sdk
 import wiotp.sdk.device
 myConfig = {
    "identity": {
      "orgId": "eqfbco",
      "typeId": "REAL_TIME_WATER_QUALITY_MONITORING",
      "deviceId": "PNT2022TMID47600"
```

```
def myCommandCallback(cmd):
```

"token": "T-axiVGwn\*pPDJJ&bW"

```
print("Message received from IBM IoT Platform: %s" % cmd.data['command'])
  m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
while True:
  temp=random.randint(-20,125)
  hum=random.randint(0,100)
  PH=random.randint(0,14)
  O2=random.randint(0,100)
  myData={'temperature':temp, 'humidity':hum, 'phvalue':PH, 'dissolved_oxygen':O2}
  client.publishEvent(eventId="status", msgFormat="json", data=myData, qos=0, onPublish=None)
  print("Published data Successfully: %s", myData)
  client.commandCallback = myCommandCallback
  time.sleep(5)
client.disconnect(5)
```

## 8. TESTING

#### **8.1.TEST CASES:**

#### 8.1 .1.NODE-RED TESTING:

#### NODE-RED DASHBOARD





#### PUBLISHING DATA TO THE IBM IOT WATSON PLATFORM:



#### GETTING THE DATA FROM THE PYTHON THROUGH THE

#### IBMWATSON DEVICE TO THE NODE-RED



## **SORING THE USER DATA FROM THE WEB UI INTERFACE:**



#### USING CLOUDANT DATABASE TO STORE THE USER INFORMATION



#### REAL TIME WATER QUALITY MONITORING AND CONTROL SYSTEM



## 8.2. USER ACCEPTANCE TESTING:

#### **8.2.1. USER REGISTATION FORM:**



## **8.2.2.USER LOGIN PREVIEW**



#### Real time water quality monitoring system

**Modal Login Form** 



## 8.2.3.BUILDING A MOBILE APP:

#### **USING MIT APP INVENTOR:**



## 9.RESULTS:



## **9.1. PERFORMANCE METRICES:**



# USING PYTHON CODE SUCCESFULLY PUBLISHED TO THE CLOUD DEVICE AND ALSO NODE-RED





## **10.ADVANTAGES AND TESTING:**

#### **10.1. ADVANTAGES:**

- Use to measure the quality of water.
- Use to analyze which the water was capable to drink.
- Access the device through Remotely.
- Access and Understand the procedure was User Friendly.
- Easily Monitor the device.
- Everyone should able to have some basics of knowledge of water consuming.

#### 10.2. DISADVANTAGES:

- Regular maintain of device
- Always should provide the high Speed Internet.

## 11. CONCLUSION:

Water turbidity, PH, and temperature are monitored using a water detection sensor that has a unique advantage and is already connected to a IBM CLOUD. The technology can automatically monitor water quality, is low-cost, and does not require personnel to be on duty.

As a result, water quality testing will most likely be more cost-effective, convenient, and quick. The method is very adaptable. This system may be used to monitor different water quality metrics by simply replacing the matching sensors and modifying the required software packages. The procedure is straightforward. The system can be expanded to track hydrologic, air pollution, industrial, and agricultural output, among other things. It is widely used and has a large number of applications. Keeping embedded devices in the environment for monitoring allows the environment to protect itself. (i.e., smart environment). This will necessitate the deployment of sensor devices in the environment for data collection and processing. We can bring the environment to life by placing sensor devices in it, allowing it to communicate with other things over the network. The end user will then have access to the collected data and analysis results via Wi-Fi.

## 12. FUTURE SCOPE:

To develop the device this was able to access through the GPS module and also to get the vales from the sensors with high speed of internet connectivity

To get the graphical representation of the measurements in real time monitoring

And also to store the previous data from the sensor to the cloud storing device

## **13.APPENDIX:**

## 13.1. SOURCE CODE:

**User registration source code:** 

| <html></html>                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------|
| <head></head>                                                                                                        |
| <title>&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Registration Page&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;</title> |
|                                                                                                                      |
| <body></body>                                                                                                        |
| <br><br>                                                                                                             |
| <br><br>                                                                                                             |
| <form></form>                                                                                                        |
| user credintials                                                                                                     |
| <label> Firstname </label>                                                                                           |
| <input name="firstname" size="15" type="text"/><br>>                                                                 |
| <label> Middlename: </label>                                                                                         |
| <input name="middlename" size="15" type="text"/><br>>                                                                |
| <label> Lastname: </label>                                                                                           |
| <input name="lastname" size="15" type="text"/>                                                                       |

```
</select>
project domain
<label> internet of things </label>
<br>>
<br/>br>
<br>>
<label>
Gender:
</label><br>
<input type="radio" name="male"/> Male <br>
<input type="radio" name="female"/> Female <br>
<input type="radio" name="Prefer not to say"/> Prefer not to say
<br/>br>
<br>>
<br>>
<label>
contact details</details> :
</label>
<input type="text" name="country code" value="+91" size="2"/>
<input type="text" name="phone" size="10"/> <br> <br>>
Address
<br/>br>
```

```
<textarea cols="80" rows="5" value="address">
</textarea>
<br>> <br>>
Email:
<input type="email" id="email" name="email"/> <br>
<br>> <br>>
Password:
<input type="Password" id="pass" name="pass"> <br>
<br>> <br>>
Re-type password:
<input type="Password" id="repass" name="repass"> <br> <br>
<input type="button" value="Submit"/>
</form>
</body>
alternte contact details
<input type="text" name="country code" value="+91" size="2"/>
<input type="text" name="phone" size="10"/> <br> <br>>
alternate email id
<input type="altrernate email id" name="alternate email"/> <br>
<br>> <br>>
<body>
<html>
```

## User login source code:

```
<!DOCTYPE html>
<html>
<head>
<h1> Real time water quality monitoring system</h1>
<metaname="viewport" content="width=device-width, initial-scale=1">
<style>
body {font-family: Arial,Impact, 'Arial Narrow Bold', sans-serif, sans-serif;}
/* Full-width input fields */
input[type=text], input[type=password] {
 width: 150;
 padding: 23px 24px;
 margin: 8px 0;
 display: inline-block;
 border: 1px solid #ccc;
 box-sizing: border-box;
}
/* Set a style for all buttons */
```

```
button {
 background-color: #04AA6D;
 color:blue;
 padding: 15px 21px;
 margin: 8px 0;
 border: none;
 cursor: pointer;
 width: 102;
}
button:hover {
 opacity: 0.7;
}
/* Extra styles for the cancel button */
.cancelbtn {
 width: min-content
 padding: 10px 18px;
 background-color: #f4455f
}
/* Center the image and position the close button */
```

```
{.imgcontainer { }
 text-align: right: ;
 margin: 24px 0 12px 0;
 position: relative
}
img {Real time water quality monitoring and control system}: {
 width: 56;
 border-radius:50%;
}
.container {
 padding: 16px;
span.psw {
 float: right;
 padding-top: 16px;
}
/* The Modal (background) */
.modal {
```

```
display: none; /* Hidden by default */
 position: fixed; /* Stay in place */
 z-index: 1; /* Sit on bottom*/
 left: 0;
 top: 0;
 width: 100%; /* full width */
 height: 100%; /* medium height */
 overflow: auto; /* Enable scroll if needed */
 background-color: ybg(0,0,0); /* Fallback color */
 background-color: rgba(0,0,0,0.4); /* Black w/ transprenant */
 padding-top: 60px;
}
/* Modal Content/Box */
.modal-content {
 background-color: #fefefe;
 margin: 5% auto 15% auto; /* 5% from the top, 15% from the bottom and centered */
 border: 1px solid #888;
 width: 65%; /* Could be more or less, depending on screen size */
}
/* The Close Button (x) */
```

```
.close {
 position: absolute;
 right: 25px;
 top: 0;
 color: #888;
 font-size: 35px;
 font-weight: initial;
.close:hover,
.close:focus {
 color: red;
 cursor: pointer;
/* Add Zoom Animation */
.animate {
 -webkit-animation: animatezoom 0.6s;
 animation: animatezoom 0.6s
}
@-webkit-keyframes animatezoom {
```

```
from {-webkit-transform: scale(0)}
 to {-webkit-transform: scale(1)}
}
@keyframes animatezoom {
 from {transform: scale(2)}
 to {transform: scale(1)}
}
/* Change styles for span and cancel button on extra small screens */
@media screen and (max-width: 300px) {
 span.psw {
   display: block;
   float: none;
 }
 .cancelbtn {
   width: 100%;
 }
</style>
</head>
<body>
```

```
<h2>Modal Login Form</h2>
<button
                               onclick="document.getElementById('id01').style.display='block'"
style="width:auto;">Login</button>
<div id="id01" class="modal">
 <form class="modal-content animate" action="/action_page.php" method="post">
  <div class="imgcontainer">
              onclick="document.getElementById('id01').style.display='none'"
                                                                              class="close"
   <span
title="Close Modal">×</span>
  </div>
  <div class="container">
   <label for="uname"><b>Username</b></label>
   <input type="text" placeholder="Enter Username" name="uname" required>
   <label for="psw"><b>Password</b></label>
   <input type="password" placeholder="Enter Password" name="psw" required>
   <label for="captch"></label><123gh@><label>
   <input type="captcha" 123@g="Enter captcha" name="captcha" requried>
```

```
<button type="submit">Login</button>
   <label>
    <input type="checkbox" checked="checked" name="remember"> Remember me
   </label>
  </div>
  <div class="container" style="background-color:#f1f1f1">
   <button
               type="button"
                                 onclick="document.getElementById('id01').style.display='none'"
class="cancelbtn">Cancel</button>
   <span class="psw">Forgot <a href="#">password?</a></span>
  </div>
 </form>
</div>
<script>
// Get the modal
var modal = document.getElementById('id03');
// When the user clicks anywhere outside of the modal, close it
window.onclick = function(event) {
  if (event.target == modal) {
```

```
modal.style.display = "none";
}
</script>
</body>
</html>
```

## **Python source code:**

```
# -*- coding: utf-8 -*-
"""

reated on Fri Nov 11 07:57:51 2022

@author: KANNAN
"""

import random
import time

#IBM Watson IOT Platform

#pip install wiotp-sdk
import wiotp.sdk.device

myConfig = {
```

```
"identity": {
    "orgId": "eqfbco",
    "typeId": "REAL_TIME_WATER_QUALITY_MONITORING",
    "deviceId": "PNT2022TMID47600"
  },
  "auth": {
    "token": "T-axiVGwn*pPDJJ&bW"
  }
}
def myCommandCallback(cmd):
  print("Message received from IBM IoT Platform: %s" % cmd.data['command'])
  m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
while True:
  temp=random.randint(-20,125)
  h=random.randint(0,100)
  PH=random.randint(0,14)
  o2=random.randint(0,100)
  myData={'temperature':temp, 'humid':h, 'phvalue':PH, 'dissolved_oxygen':o2}
  client.publishEvent(eventId="status", msgFormat="json", data=myData, qos=0, onPublish=None)
  print("Published data Successfully: %s", myData)
```

## REAL TIME WATER QUALITY MONITORING AND CONTROL SYSTEM

PNT2022TMID47600

client.command Callback = myCommand Callback

time.sleep(5)

client.disconnect(5)

## **GITHUB LINK:**

 $\underline{https://github.com/IBM-EPBL/IBM-Project-54604-1662357024/tree/main}$ 

## **PROJECT DEMO:**

https://youtu.be/SpBPjXhHsiI