Multi. Stat. HW1

赵浩宇 2016012390

1 Problem 1

If we let the distribution to be N(0,1), the percentage the the data that lies outside the outside bars is about to be 0.7%.

Proof.

$$Q_3 = \Phi^{-1}(0.75) \approx 0.6745$$

 $Q_1 = -Q_3 \approx -0.6745$
 $IQR = Q_3 - Q_1 \approx 1.349$

$$upper_outlier = Q_3 + 1.5 \cdot IQR$$
$$= 0.6745 + 1.5 \times 1.349$$
$$= 2.698$$
$$\approx 2.7$$

So the portion that is bigger than the upper outside bar is about

$$1 - \Phi^{-1}(2.7) \approx 0.0035$$

So the portion that lie outside the outside bars should be about $0.007 \approx 0.7\%$.

If the data follow the distribution $N(0, \sigma^2)$, then the portion should also be about 0.7%.

We can get the data follow the distribution $N(0, \sigma^2)$ by multiplying the standard normal distribution by σ , and the quantiles, IQR, and the value of the outside bars are also multiplied by σ . The data follows $N(0, \sigma^2)$ that lies outside the outside bars also lies outside the outside bars (of the dist. N(0,1)) when it is devided by σ , so the percentage of data that lies outside the outside bars in this problem is the same as the previous problem.

2 Problem 2

a.

b.

The figure above is the matrix scatter plots for the first five variables.

 \mathbf{c}

The correlation matrix with 5 and 4 digits is showned below.

```
> round(cor(data),4)
                        indus
                                                                               tax ptratio
          crim
                                 chas
                                                                        rad
                                                                                                    lstat
                   zn
                                          nox
                                                         age
                                                                dis
                                                                                             black
                                                                                                             medv
        1.0000 -0.2005 0.4066 -0.0559
                                      0.4210 -0.2192 0.3527 -0.3797
                                                                     0.6255 0.5828 0.2899 -0.3851 0.4556 -0.3883
crim
        -0.2005 1.0000 -0.5338 -0.0427 -0.5166 0.3120 -0.5695 0.6644 -0.3119 -0.3146 -0.3917 0.1755 -0.4130 0.3604
ΖN
        0.4066 -0.5338 1.0000 0.0629 0.7637 -0.3917
                                                     0.6448 -0.7080
indus
                                                                     0.5951 0.7208 0.3832 -0.3570 0.6038 -0.4837
       -0.0559 -0.0427 0.0629 1.0000 0.0912 0.0913 0.0865 -0.0992 -0.0074 -0.0356 -0.1215 0.0488 -0.0539 0.1753
chas
nox
        0.4210 -0.5166 0.7637
                               0.0912 1.0000 -0.3022 0.7315 -0.7692 0.6114 0.6680 0.1889 -0.3801 0.5909 -0.4273
ΓM
        -0.2192 0.3120 -0.3917 0.0913 -0.3022 1.0000 -0.2403 0.2052 -0.2098 -0.2920 -0.3555 0.1281 -0.6138 0.6954
        0.3527 -0.5695  0.6448  0.0865  0.7315 -0.2403  1.0000 -0.7479
                                                                     0.4560 0.5065 0.2615 -0.2735 0.6023 -0.3770
dis
        -0.3797 0.6644 -0.7080 -0.0992 -0.7692 0.2052 -0.7479 1.0000
                                                                    -0.4946 -0.5344 -0.2325 0.2915 -0.4970 0.2499
rad
        0.6255 -0.3119  0.5951 -0.0074  0.6114 -0.2098  0.4560 -0.4946
                                                                     1.0000 0.9102 0.4647 -0.4444 0.4887 -0.3816
tax
        0.5828 -0.3146
                       0.7208 -0.0356
                                      0.6680 -0.2920
                                                     0.5065 -0.5344
                                                                     0.9102
                                                                            1.0000
                                                                                    0.4609 -0.4418
                                                                                                    0.5440 -0.4685
ptratio
       0.2899 -0.3917 0.3832 -0.1215 0.1889 -0.3555 0.2615 -0.2325 0.4647 0.4609 1.0000 -0.1774 0.3740 -0.5078
       -0.3851 0.1755 -0.3570 0.0488 -0.3801 0.1281 -0.2735 0.2915 -0.4444 -0.4418 -0.1774 1.0000 -0.3661 0.3335
        0.4556 -0.4130 0.6038 -0.0539 0.5909 -0.6138 0.6023 -0.4970 0.4887 0.5440 0.3740 -0.3661 1.0000 -0.7377
lstat
       -0.3883 0.3604 -0.4837 0.1753 -0.4273 0.6954 -0.3770 0.2499 -0.3816 -0.4685 -0.5078 0.3335 -0.7377 1.0000
medv
>
```

3 Problem 3

Proof.

$$r_{xy} = \frac{1}{n} \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{s_x \cdot s_y}$$

According to the conditions, the data was changed linearly, we can get:

$$s_i = ax_i + b$$

$$t_i = cy_i + d$$

$$\overline{s} = a\overline{x} + b$$

$$\overline{t} = c\overline{y} + d$$

$$s_s = as_x$$

$$s_t = cs_y$$

Then we can get:

$$\begin{split} r_{st} &= \frac{\sum_{i=1}^{n} \left(s_{i} - \overline{s}\right) \left(t_{i} - \overline{t}\right)}{n \cdot s_{s} \cdot s_{t}} \\ &= \frac{\sum_{i=1}^{n} \left(ax_{i} + b - a\overline{x} - b\right) \left(cy_{i} + d - c\overline{y} - d\right)}{n \cdot a \cdot s_{x} \cdot c \cdot s_{y}} \\ &= \frac{1}{n} \frac{\sum_{i=1}^{n} a \cdot \left(x_{i} - \overline{x}\right) \cdot c \cdot \left(y_{i} - \overline{y}\right)}{a \cdot s_{x} \cdot c \cdot s_{y}} \\ &= \frac{1}{n} \frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right) \left(y_{i} - \overline{y}\right)}{s_{x} \cdot s_{y}} \\ &= r_{xy} \end{split}$$

So the linear transformation does not change the sample correlation.