Informatica e Tecnologie della Comunicazione Digitale

Docente:

Miguel Ceriani (ceriani@di.uniroma1.it)

Lezioni:

Mercoledì/Giovedì/Venerdì 9-11

Ricevimento (su appuntamento):

Mercoledì 14-16 a viale Regina Elena 295, palazzina F, 1º piano

Lezione 15:
Linguaggi di
Programmazione:
Labirinti

Risolvere Labirinti

Claude Shannon, 1952

Risolvere Labirinti

- in informatica spesso studiamo giochi perché rappresentano problemi reali in un contesto controllato e ben definito
- dobbiamo guidare un topo in un labirinto fino a raggiungere una fetta di formaggio
- problemi reali collegati:
 - trovare la strada migliore per raggiungere una destinazione (es., Google Maps)
 - guidare un robot in un ambiente completamente o parzialmente sconosciuto (es., rover spaziali, robot per le emergenze, auto senza conducente)

Risolvere Labirinti

Input:

- labirinto
- posizione topo
- posizione formaggio

Output:

 strada (se esiste) che permette al topo di raggiungere il formaggio

Risolvere Labirinti: Due Varianti

- 1. Visione Globale, ho tutte le informazioni:
 - configurazione labirinto (per ogni casella tutti i muri che ha attorno)
 - posizione/direzione del topo
 - posizione del formaggio
- 2. Visione Locale, ho informazioni parziali:
 - presenza o meno di muri davanti, a sinistra e a destra del topo
 - presenza o meno di formaggio dove si trova il topo

Risolvere Labirinti: Risoluzione Due Varianti

1. Visione Globale:

avendo tutte le informazioni posso calcolare una strada (se esiste), possibilmente ottimale.

2. Visione Locale:

devo guidare il topo per esplorare ed acquisire informazioni sul labirinto, fino a trovare il formaggio; il primo tentativo non potrà mai essere ottimale, perché non conosco ancora il labirinto.

Risolvere Labirinti: Variante Locale

- tutte e due le versioni del problema sono interessanti ed hanno applicazioni concrete
- noi da ora in poi analizzeremo solo variante locale

Linguaggio

- stesse istruzioni di base della tartaruga
- diverso insieme di funzioni predefinite

Funzioni Predefinite 1/2: Azioni

- avanti()
 fa avanzare il topo di un passo
- destra()
 fa girare il topo a destra di 90°
- sinistra()
 fa girare il topo a sinistra di 90°

Valori Booleani

- per adesso abbiamo manipolato valori numerici (numero di passi, gradi, contatori nei cicli for) o stringhe di testo (la lettera che identificava un colore);
- quando per una grandezza possiamo avere solo due possibilità (0 o 1, acceso o spento, vero o falso) lo chiamiamo valore booleano;
- ogni valore booleano si può esprimere con una affermazione che è vera o falsa; perciò un valore booleano può assumere valore vero o falso.

Funzioni Predefinite 2/2: Informazioni

tutte restituiscono valori booleani:

- qui_formaggio()
 restituisce vero se il topo si trova dove c'è il formaggio, falso
 altrimenti
- strada_avanti()
 restituisce vero se si può andare avanti (non c'è un muro), falso
 altrimenti
- strada_destra()
 restituisce vero se si può andare a destra, falso altrimenti
- strada_sinistra()
 restituisce vero se si può andare a sinistra, falso altrimenti

Problemi e Programmi: dal generale al particolare

Problema Generale

scrivere un programma che dato qualunque input (labirinto e posizioni) trova il risultato (porta il topo al formaggio)

Problema Particolare

per una particolare categoria di input (es., tutti i labirinti che hanno solo due curve), scrivere un programma che dato qualunque input in quella categoria trova il risultato

Caso Singolo

per un particolare input, scrivere un programma che lo risolva; li useremo per introdurre il sistema.

Programma

avanti()

destra()

avanti()

Programma

```
RIPETI(4) {
   avanti()
   destra()
   avanti()
   sinistra()
}
```