

# PIC16F87X Data Sheet

28/40-Pin 8-Bit CMOS FLASH
Microcontrollers



## 28/40-Pin 8-Bit CMOS FLASH Microcontrollers

#### Devices Included in this Data Sheet:

- PIC16F873
- PIC16F876
- PIC16F874
- PIC16F877

#### Microcontroller Core Features:

- · High performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- Up to 8K x 14 words of FLASH Program Memory, Up to 368 x 8 bytes of Data Memory (RAM)
   Up to 256 x 8 bytes of EEPROM Data Memory
- Pinout compatible to the PIC16C73B/74B/76/77
- · Interrupt capability (up to 14 sources)
- · Eight level deep hardware stack
- · Direct, indirect and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- · Power saving SLEEP mode
- · Selectable oscillator options
- Low power, high speed CMOS FLASH/EEPROM technology
- Fully static design
- In-Circuit Serial Programming™ (ICSP) via two pins
- Single 5V In-Circuit Serial Programming capability
- In-Circuit Debugging via two pins
- Processor read/write access to program memory
- Wide operating voltage range: 2.0V to 5.5V
- · High Sink/Source Current: 25 mA
- Commercial, Industrial and Extended temperature ranges
- Low-power consumption:
  - < 0.6 mA typical @ 3V, 4 MHz</li>
  - 20 μA typical @ 3V, 32 kHz
  - < 1 μA typical standby current

#### Pin Diagram



#### **Peripheral Features:**

- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- · Two Capture, Compare, PWM modules
  - Capture is 16-bit, max. resolution is 12.5 ns
  - Compare is 16-bit, max. resolution is 200 ns
  - PWM max. resolution is 10-bit
- 10-bit multi-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI<sup>™</sup> (Master mode) and I<sup>2</sup>C<sup>™</sup> (Master/Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit address detection
- Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

#### **Pin Diagrams**



| Key Features<br>PICmicro™ Mid-Range Reference<br>Manual (DS33023) | PIC16F873               | PIC16F874               | PIC16F876               | PIC16F877               |
|-------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Operating Frequency                                               | DC - 20 MHz             |
| RESETS (and Delays)                                               | POR, BOR<br>(PWRT, OST) | POR, BOR<br>(PWRT, OST) | POR, BOR<br>(PWRT, OST) | POR, BOR<br>(PWRT, OST) |
| FLASH Program Memory<br>(14-bit words)                            | 4K                      | 4K                      | 8K                      | 8K                      |
| Data Memory (bytes)                                               | 192                     | 192                     | 368                     | 368                     |
| EEPROM Data Memory                                                | 128                     | 128                     | 256                     | 256                     |
| Interrupts                                                        | 13                      | 14                      | 13                      | 14                      |
| I/O Ports                                                         | Ports A,B,C             | Ports A,B,C,D,E         | Ports A,B,C             | Ports A,B,C,D,E         |
| Timers                                                            | 3                       | 3                       | 3                       | 3                       |
| Capture/Compare/PWM Modules                                       | 2                       | 2                       | 2                       | 2                       |
| Serial Communications                                             | MSSP, USART             | MSSP, USART             | MSSP, USART             | MSSP, USART             |
| Parallel Communications                                           | _                       | PSP                     | _                       | PSP                     |
| 10-bit Analog-to-Digital Module                                   | 5 input channels        | 8 input channels        | 5 input channels        | 8 input channels        |
| Instruction Set                                                   | 35 instructions         | 35 instructions         | 35 instructions         | 35 instructions         |

#### **Table of Contents**

| 1.0   | Device Overview                                                             | 5   |
|-------|-----------------------------------------------------------------------------|-----|
| 2.0   | Memory Organization                                                         | 11  |
| 3.0   | I/O Ports                                                                   |     |
| 4.0   | Data EEPROM and FLASH Program Memory                                        | 41  |
| 5.0   | Timer0 Module                                                               |     |
| 6.0   | Timer1 Module                                                               | 51  |
| 7.0   | Timer2 Module                                                               | 55  |
| 8.0   | Capture/Compare/PWM Modules                                                 | 57  |
| 9.0   | Master Synchronous Serial Port (MSSP) Module                                |     |
| 10.0  | Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART) | 95  |
| 11.0  | Analog-to-Digital Converter (A/D) Module                                    | 111 |
| 12.0  | Special Features of the CPU                                                 | 119 |
| 13.0  | Instruction Set Summary                                                     | 135 |
|       | Development Support                                                         |     |
|       | Electrical Characteristics                                                  |     |
|       | DC and AC Characteristics Graphs and Tables                                 |     |
| 17.0  | Packaging Information                                                       | 189 |
| Appe  | endix A: Revision History                                                   | 197 |
| Appe  | endix B: Device Differences                                                 | 197 |
| Appe  | endix C: Conversion Considerations                                          | 198 |
| Index | Х                                                                           | 199 |
| On-L  | Line Support                                                                | 207 |
| Read  | der Response                                                                | 208 |
| PIC1  | 16F87X Product Identification System                                        | 200 |

#### TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

#### **Most Current Data Sheet**

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

#### **Errata**

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

#### 1.0 DEVICE OVERVIEW

This document contains device specific information. Additional information may be found in the PICmicro™ Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

There are four devices (PIC16F873, PIC16F874, PIC16F876 and PIC16F877) covered by this data sheet. The PIC16F876/873 devices come in 28-pin packages and the PIC16F877/874 devices come in 40-pin packages. The Parallel Slave Port is not implemented on the 28-pin devices.

The following device block diagrams are sorted by pin number; 28-pin for Figure 1-1 and 40-pin for Figure 1-2. The 28-pin and 40-pin pinouts are listed in Table 1-1 and Table 1-2, respectively.

FIGURE 1-1: PIC16F873 AND PIC16F876 BLOCK DIAGRAM



TABLE 1-1: PIC16F873 AND PIC16F876 PINOUT DESCRIPTION

| Pin Name        | DIP<br>Pin# | SOIC<br>Pin# | I/O/P<br>Type | Buffer<br>Type         | Description                                                                                                                                                                                                  |
|-----------------|-------------|--------------|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OSC1/CLKIN      | 9           | 9            | I             | ST/CMOS <sup>(3)</sup> | Oscillator crystal input/external clock source input.                                                                                                                                                        |
| OSC2/CLKOUT     | 10          | 10           | 0             | _                      | Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. |
| MCLR/VPP        | 1           | 1            | I/P           | ST                     | Master Clear (Reset) input or programming voltage input. This pin is an active low RESET to the device.                                                                                                      |
|                 |             |              |               |                        | PORTA is a bi-directional I/O port.                                                                                                                                                                          |
| RA0/AN0         | 2           | 2            | I/O           | TTL                    | RA0 can also be analog input0.                                                                                                                                                                               |
| RA1/AN1         | 3           | 3            | I/O           | TTL                    | RA1 can also be analog input1.                                                                                                                                                                               |
| RA2/AN2/VREF-   | 4           | 4            | I/O           | TTL                    | RA2 can also be analog input2 or negative analog reference voltage.                                                                                                                                          |
| RA3/AN3/VREF+   | 5           | 5            | I/O           | TTL                    | RA3 can also be analog input3 or positive analog reference voltage.                                                                                                                                          |
| RA4/T0CKI       | 6           | 6            | I/O           | ST                     | RA4 can also be the clock input to the Timer0 module. Output is open drain type.                                                                                                                             |
| RA5/SS/AN4      | 7           | 7            | I/O           | TTL                    | RA5 can also be analog input4 or the slave select for the synchronous serial port.                                                                                                                           |
|                 |             |              |               |                        | PORTB is a bi-directional I/O port. PORTB can be software                                                                                                                                                    |
|                 |             |              |               | (4)                    | programmed for internal weak pull-up on all inputs.                                                                                                                                                          |
| RB0/INT         | 21          | 21           | I/O           | TTL/ST <sup>(1)</sup>  | RB0 can also be the external interrupt pin.                                                                                                                                                                  |
| RB1             | 22          | 22           | I/O           | TTL                    |                                                                                                                                                                                                              |
| RB2             | 23          | 23           | I/O           | TTL                    |                                                                                                                                                                                                              |
| RB3/PGM         | 24          | 24           | I/O           | TTL                    | RB3 can also be the low voltage programming input.                                                                                                                                                           |
| RB4             | 25          | 25           | I/O           | TTL                    | Interrupt-on-change pin.                                                                                                                                                                                     |
| RB5             | 26          | 26           | I/O           | TTL                    | Interrupt-on-change pin.                                                                                                                                                                                     |
| RB6/PGC         | 27          | 27           | I/O           | TTL/ST <sup>(2)</sup>  | Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming clock.                                                                                                                                |
| RB7/PGD         | 28          | 28           | I/O           | TTL/ST <sup>(2)</sup>  | Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming data.                                                                                                                                 |
|                 |             |              |               |                        | PORTC is a bi-directional I/O port.                                                                                                                                                                          |
| RC0/T1OSO/T1CKI | 11          | 11           | I/O           | ST                     | RC0 can also be the Timer1 oscillator output or Timer1 clock input.                                                                                                                                          |
| RC1/T1OSI/CCP2  | 12          | 12           | I/O           | ST                     | RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.                                                                                                                   |
| RC2/CCP1        | 13          | 13           | I/O           | ST                     | RC2 can also be the Capture1 input/Compare1 output/<br>PWM1 output.                                                                                                                                          |
| RC3/SCK/SCL     | 14          | 14           | I/O           | ST                     | RC3 can also be the synchronous serial clock input/output for both SPI and I <sup>2</sup> C modes.                                                                                                           |
| RC4/SDI/SDA     | 15          | 15           | I/O           | ST                     | RC4 can also be the SPI Data In (SPI mode) or data I/O (I <sup>2</sup> C mode).                                                                                                                              |
| RC5/SDO         | 16          | 16           | I/O           | ST                     | RC5 can also be the SPI Data Out (SPI mode).                                                                                                                                                                 |
| RC6/TX/CK       | 17          | 17           | I/O           | ST                     | RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.                                                                                                                                        |
| RC7/RX/DT       | 18          | 18           | I/O           | ST                     | RC7 can also be the USART Asynchronous Receive or Synchronous Data.                                                                                                                                          |
| Vss             | 8, 19       | 8, 19        | Р             | _                      | Ground reference for logic and I/O pins.                                                                                                                                                                     |
| VDD             | 20          | 20           | Р             | _                      | Positive supply for logic and I/O pins.                                                                                                                                                                      |

 $Legend: \quad I = input$ 

O = output

I/O = input/output

P = power

— = Not used

TTL = TTL input

ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

- 2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
- 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

#### 2.0 MEMORY ORGANIZATION

There are three memory blocks in each of the PIC16F87X MCUs. The Program Memory and Data Memory have separate buses so that concurrent access can occur and is detailed in this section. The EEPROM data memory block is detailed in Section 4.0.

Additional information on device memory may be found in the PICmicro™ Mid-Range Reference Manual, (DS33023).

FIGURE 2-1: PIC16F877/876 PROGRAM MEMORY MAP AND STACK



#### 2.1 Program Memory Organization

The PIC16F87X devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16F877/876 devices have 8K x 14 words of FLASH program memory, and the PIC16F873/874 devices have 4K x 14. Accessing a location above the physically implemented address will cause a wraparound.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-2: PIC16F874/873 PROGRAM MEMORY MAP AND STACK



#### 2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

| RP1:RP0 | Bank |
|---------|------|
| 00      | 0    |
| 01      | 1    |
| 10      | 2    |
| 11      | 3    |

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

| Note: | EEPROM Data Memory description can be    |
|-------|------------------------------------------|
|       | found in Section 4.0 of this data sheet. |

## 2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register (FSR).

FIGURE 2-3: PIC16F877/876 REGISTER FILE MAP

| ,                                          | File<br>Address |                                            | File<br>Address |                                            | File<br>Address |                                            | File<br>Addre |
|--------------------------------------------|-----------------|--------------------------------------------|-----------------|--------------------------------------------|-----------------|--------------------------------------------|---------------|
| Indirect addr.(*)                          | 00h             | Indirect addr.(*)                          | 80h             | Indirect addr.(*)                          | 100h            | Indirect addr.(*)                          | 180           |
| TMR0                                       | 01h             | OPTION_REG                                 | 81h             | TMR0                                       | 101h            | OPTION_REG                                 | 18            |
| PCL                                        | 02h             | PCL                                        | 82h             | PCL                                        | 102h            | PCL                                        | 182           |
| STATUS                                     | 03h             | STATUS                                     | 83h             | STATUS                                     | 103h            | STATUS                                     | 183           |
| FSR                                        | 04h             | FSR                                        | 84h             | FSR                                        | 104h            | FSR                                        | 184           |
| PORTA                                      | 05h             | TRISA                                      | 85h             |                                            | 105h            |                                            | 18            |
| PORTB                                      | 06h             | TRISB                                      | 86h             | PORTB                                      | 106h            | TRISB                                      | 180           |
| PORTC                                      | 07h             | TRISC                                      | 87h             |                                            | 107h            |                                            | 18            |
| PORTD <sup>(1)</sup>                       | 08h             | TRISD <sup>(1)</sup>                       | 88h             |                                            | 108h            |                                            | 188           |
| PORTE <sup>(1)</sup>                       | 09h             | TRISE <sup>(1)</sup>                       | 89h             |                                            | 109h            |                                            | 189           |
| PCLATH                                     | 0Ah             | PCLATH                                     | 8Ah             | PCLATH                                     | 10Ah            | PCLATH                                     | 18            |
| INTCON                                     | 0Bh             | INTCON                                     | 8Bh             | INTCON                                     | 10Bh            | INTCON                                     | 18            |
| PIR1                                       | 0Ch             | PIE1                                       | 8Ch             | EEDATA                                     | 10Ch            | EECON1                                     | 18            |
| PIR2                                       | 0Dh             | PIE2                                       | 8Dh             | EEADR                                      | 10Dh            | EECON2                                     | 18            |
| TMR1L                                      | 0Eh             | PCON                                       | 8Eh             | EEDATH                                     | 10Eh            | Reserved <sup>(2)</sup>                    | 18            |
| TMR1H                                      | 0Fh             |                                            | 8Fh             | EEADRH                                     | 10Fh            | Reserved <sup>(2)</sup>                    | 18            |
| T1CON                                      | 10h             |                                            | 90h             |                                            | 110h            |                                            | 19            |
| TMR2                                       | 11h             | SSPCON2                                    | 91h             |                                            | 111h            |                                            | 19            |
| T2CON                                      | 12h             | PR2                                        | 92h             |                                            | 112h            |                                            | 19            |
| SSPBUF                                     | 13h             | SSPADD                                     | 93h             |                                            | 113h            |                                            | 19            |
| SSPCON                                     | 14h             | SSPSTAT                                    | 94h             |                                            | 114h            |                                            | 19            |
| CCPR1L                                     | 15h             |                                            | 95h             |                                            | 115h            |                                            | 19            |
| CCPR1H                                     | 16h             |                                            | 96h             |                                            | 116h            |                                            | 19            |
| CCP1CON                                    | 17h             |                                            | 97h             | General                                    | 117h            | General                                    | 19            |
| RCSTA                                      | 18h             | TXSTA                                      | 98h             | Purpose<br>Register                        | 118h            | Purpose<br>Register                        | 19            |
| TXREG                                      | 19h             | SPBRG                                      | 99h             | 16 Bytes                                   | 119h            | 16 Bytes                                   | 19            |
| RCREG                                      | 1Ah             | 0. 20                                      | 9Ah             | 10 27100                                   | 11Ah            | . 5 2 7 1 5 5                              | 19.           |
| CCPR2L                                     | 1Bh             |                                            | 9Bh             |                                            | 11Bh            |                                            | 19            |
| CCPR2H                                     | 1Ch             |                                            | 9Ch             |                                            | 11Ch            |                                            | 19            |
| CCP2CON                                    | 1Dh             |                                            | 9Dh             |                                            | 11Dh            |                                            | 19            |
| ADRESH                                     | 1Eh             | ADRESL                                     | 9Eh             |                                            | 11Eh            |                                            | 19            |
| ADCON0                                     | 1Fh             | ADCON1                                     | 9Fh             |                                            | 11Fh            |                                            | 19            |
| ABOONO                                     | 20h             | 7,000141                                   | A0h             |                                            | 120h            |                                            | 1A            |
| General<br>Purpose<br>Register<br>96 Bytes |                 | General<br>Purpose<br>Register<br>80 Bytes | EFh             | General<br>Purpose<br>Register<br>80 Bytes | . 16Fh          | General<br>Purpose<br>Register<br>80 Bytes | 1E            |
| ·                                          | 7Fh             | accesses<br>70h-7Fh                        | F0h<br>FFh      | accesses<br>70h-7Fh                        | 170h<br>17Fh    | accesses<br>70h - 7Fh                      | 1F            |
| Bank 0                                     |                 | Bank 1                                     |                 | Bank 2                                     |                 | Bank 3                                     | ••            |

Note 1: These registers are not implemented on the PIC16F876.
2: These registers are reserved, maintain these registers clear.

#### 2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY

| Address              | Name    | Bit 7                | Bit 6                                                                                         | Bit 5         | Bit 4        | Bit 3          | Bit 2           | Bit 1       | Bit 0   | Value on:<br>POR,<br>BOR | Details<br>on<br>page: |
|----------------------|---------|----------------------|-----------------------------------------------------------------------------------------------|---------------|--------------|----------------|-----------------|-------------|---------|--------------------------|------------------------|
| Bank 0               |         |                      |                                                                                               |               |              |                |                 |             |         |                          |                        |
| 00h <sup>(3)</sup>   | INDF    | Addressing           | ddressing this location uses contents of FSR to address data memory (not a physical register) |               |              |                |                 |             |         |                          | 27                     |
| 01h                  | TMR0    | Timer0 Mo            | ner0 Module Register                                                                          |               |              |                |                 |             |         | xxxx xxxx                | 47                     |
| 02h <sup>(3)</sup>   | PCL     | Program C            | counter (PC)                                                                                  | Least Signif  | icant Byte   |                |                 |             |         | 0000 0000                | 26                     |
| 03h <sup>(3)</sup>   | STATUS  | IRP                  | RP1                                                                                           | RP0           | TO           | PD             | Z               | DC          | С       | 0001 1xxx                | 18                     |
| 04h <sup>(3)</sup>   | FSR     | Indirect Da          | ta Memory                                                                                     | Address Poir  | iter         |                |                 |             |         | xxxx xxxx                | 27                     |
| 05h                  | PORTA   | _                    | ı                                                                                             | PORTA Dat     | ta Latch whe | n written: POI | RTA pins whe    | n read      |         | 0x 0000                  | 29                     |
| 06h                  | PORTB   | PORTB Da             | ata Latch wh                                                                                  | en written: P | ORTB pins v  | hen read       |                 |             |         | xxxx xxxx                | 31                     |
| 07h                  | PORTC   | PORTC Da             | ata Latch wh                                                                                  | en written: P | ORTC pins v  | vhen read      |                 |             |         | xxxx xxxx                | 33                     |
| 08h <sup>(4)</sup>   | PORTD   | PORTD D              | ata Latch wh                                                                                  | en written: P | ORTD pins v  | vhen read      |                 |             |         | xxxx xxxx                | 35                     |
| 09h <sup>(4)</sup>   | PORTE   | _                    | 1                                                                                             | _             | _            | _              | RE2             | RE1         | RE0     | xxx                      | 36                     |
| 0Ah <sup>(1,3)</sup> | PCLATH  | _                    | 1                                                                                             | _             | Write Buffer | for the upper  | 5 bits of the I | Program Cou | unter   | 0 0000                   | 26                     |
| 0Bh <sup>(3)</sup>   | INTCON  | GIE                  | PEIE                                                                                          | TOIE          | INTE         | RBIE           | TOIF            | INTF        | RBIF    | 0000 000x                | 20                     |
| 0Ch                  | PIR1    | PSPIF <sup>(3)</sup> | ADIF                                                                                          | RCIF          | TXIF         | SSPIF          | CCP1IF          | TMR2IF      | TMR1IF  | 0000 0000                | 22                     |
| 0Dh                  | PIR2    | _                    | (5)                                                                                           | _             | EEIF         | BCLIF          | _               | _           | CCP2IF  | -r-0 00                  | 24                     |
| 0Eh                  | TMR1L   | Holding re           | Holding register for the Least Significant Byte of the 16-bit TMR1 Register                   |               |              |                |                 |             |         | xxxx xxxx                | 52                     |
| 0Fh                  | TMR1H   | Holding re           | Holding register for the Most Significant Byte of the 16-bit TMR1 Register                    |               |              |                |                 | xxxx xxxx   | 52      |                          |                        |
| 10h                  | T1CON   | _                    | ı                                                                                             | T1CKPS1       | T1CKPS0      | T10SCEN        | T1SYNC          | TMR1CS      | TMR10N  | 00 0000                  | 51                     |
| 11h                  | TMR2    | Timer2 Mo            | dule Registe                                                                                  | er            |              |                |                 |             |         | 0000 0000                | 55                     |
| 12h                  | T2CON   | _                    | TOUTPS3                                                                                       | TOUTPS2       | TOUTPS1      | TOUTPS0        | TMR2ON          | T2CKPS1     | T2CKPS0 | -000 0000                | 55                     |
| 13h                  | SSPBUF  | Synchrono            | us Serial Po                                                                                  | rt Receive B  | uffer/Transm | it Register    |                 |             |         | xxxx xxxx                | 70, 73                 |
| 14h                  | SSPCON  | WCOL                 | SSPOV                                                                                         | SSPEN         | CKP          | SSPM3          | SSPM2           | SSPM1       | SSPM0   | 0000 0000                | 67                     |
| 15h                  | CCPR1L  | Capture/C            | ompare/PWI                                                                                    | M Register1   | (LSB)        |                |                 |             |         | xxxx xxxx                | 57                     |
| 16h                  | CCPR1H  | Capture/C            | ompare/PWI                                                                                    | M Register1   | (MSB)        |                |                 |             |         | xxxx xxxx                | 57                     |
| 17h                  | CCP1CON | _                    | 1                                                                                             | CCP1X         | CCP1Y        | CCP1M3         | CCP1M2          | CCP1M1      | CCP1M0  | 00 0000                  | 58                     |
| 18h                  | RCSTA   | SPEN                 | RX9                                                                                           | SREN          | CREN         | ADDEN          | FERR            | OERR        | RX9D    | 0000 000x                | 96                     |
| 19h                  | TXREG   | USART Tra            | ansmit Data                                                                                   | Register      |              |                |                 |             |         | 0000 0000                | 99                     |
| 1Ah                  | RCREG   | USART Re             | eceive Data                                                                                   | Register      |              |                |                 |             |         | 0000 0000                | 101                    |
| 1Bh                  | CCPR2L  | Capture/C            | ompare/PWI                                                                                    | M Register2   | (LSB)        |                |                 |             |         | xxxx xxxx                | 57                     |
| 1Ch                  | CCPR2H  | Capture/C            | ompare/PWI                                                                                    | M Register2   | (MSB)        |                |                 |             |         | xxxx xxxx                | 57                     |
| 1Dh                  | CCP2CON |                      | _                                                                                             | CCP2X         | CCP2Y        | CCP2M3         | CCP2M2          | CCP2M1      | CCP2M0  | 00 0000                  | 58                     |
| 1Eh                  | ADRESH  | A/D Result           | Register Hi                                                                                   | gh Byte       |              |                |                 |             |         | xxxx xxxx                | 116                    |
| 1Fh                  | ADCON0  | ADCS1                | ADCS0                                                                                         | CHS2          | CHS1         | CHS0           | GO/DONE         | _           | ADON    | 0000 00-0                | 111                    |

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

- 2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.
- 3: These registers can be addressed from any bank.
- 4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.
- 5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

**TABLE 2-1:** SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

| Address              | Name       | Bit 7                | Bit 6           | Bit 5                     | Bit 4          | Bit 3        | Bit 2             | Bit 1          | Bit 0    | Value on:<br>POR,<br>BOR | Details<br>on<br>page: |
|----------------------|------------|----------------------|-----------------|---------------------------|----------------|--------------|-------------------|----------------|----------|--------------------------|------------------------|
| Bank 1               |            |                      |                 |                           |                |              |                   |                |          |                          |                        |
| 80h <sup>(3)</sup>   | INDF       | Addressing           | g this location | n uses conte              | ents of FSR to | address dat  | a memory (no      | t a physical r | egister) | 0000 0000                | 27                     |
| 81h                  | OPTION_REG | RBPU                 | INTEDG          | T0CS                      | T0SE           | PSA          | PS2               | PS1            | PS0      | 1111 1111                | 19                     |
| 82h <sup>(3)</sup>   | PCL        | Program C            | Counter (PC)    | Least Signif              | icant Byte     |              |                   |                |          | 0000 0000                | 26                     |
| 83h <sup>(3)</sup>   | STATUS     | IRP                  | RP1             | RP0                       | TO             | PD           | Z                 | DC             | С        | 0001 1xxx                | 18                     |
| 84h <sup>(3)</sup>   | FSR        | Indirect Da          | ata Memory A    | Address Poir              | nter           |              |                   |                |          | xxxx xxxx                | 27                     |
| 85h                  | TRISA      | _                    | _               | PORTA Da                  | ta Direction R | Register     |                   |                |          | 11 1111                  | 29                     |
| 86h                  | TRISB      | PORTB Da             | ata Direction   | Register                  |                |              |                   |                |          | 1111 1111                | 31                     |
| 87h                  | TRISC      | PORTC Da             | ata Direction   | Register                  |                |              |                   |                |          | 1111 1111                | 33                     |
| 88h <sup>(4)</sup>   | TRISD      | PORTD D              | ata Direction   | Register                  |                |              |                   |                |          | 1111 1111                | 35                     |
| 89h <sup>(4)</sup>   | TRISE      | IBF                  | OBF             | IBOV                      | PSPMODE        | _            | PORTE Data        | Direction B    | its      | 0000 -111                | 37                     |
| 8Ah <sup>(1,3)</sup> | PCLATH     | _                    | _               | _                         | Write Buffer   | for the uppe | r 5 bits of the I | Program Cou    | ınter    | 0 0000                   | 26                     |
| 8Bh <sup>(3)</sup>   | INTCON     | GIE                  | PEIE            | TOIE                      | INTE           | RBIE         | TOIF              | INTF           | RBIF     | 0000 000x                | 20                     |
| 8Ch                  | PIE1       | PSPIE <sup>(2)</sup> | ADIE            | RCIE                      | TXIE           | SSPIE        | CCP1IE            | TMR2IE         | TMR1IE   | 0000 0000                | 21                     |
| 8Dh                  | PIE2       | _                    | (5)             | _                         | EEIE           | BCLIE        | _                 | _              | CCP2IE   | -r-0 00                  | 23                     |
| 8Eh                  | PCON       | _                    | _               | _                         | _              | _            | _                 | POR            | BOR      | qq                       | 25                     |
| 8Fh                  | _          | Unimpleme            | ented           |                           |                |              |                   |                |          | _                        | _                      |
| 90h                  | _          | Unimpleme            | ented           |                           |                |              |                   |                |          |                          | _                      |
| 91h                  | SSPCON2    | GCEN                 | ACKSTAT         | ACKDT                     | ACKEN          | RCEN         | PEN               | RSEN           | SEN      | 0000 0000                | 68                     |
| 92h                  | PR2        | Timer2 Pe            | riod Register   |                           |                |              |                   |                |          | 1111 1111                | 55                     |
| 93h                  | SSPADD     | Synchrono            | ous Serial Po   | rt (I <sup>2</sup> C mode | ) Address Re   | gister       |                   |                |          | 0000 0000                | 73, 74                 |
| 94h                  | SSPSTAT    | SMP                  | CKE             | D/A                       | Р              | S            | R/W               | UA             | BF       | 0000 0000                | 66                     |
| 95h                  | _          | Unimpleme            | ented           |                           |                |              |                   |                |          | _                        | _                      |
| 96h                  | _          | Unimpleme            | ented           |                           |                |              |                   |                |          | _                        | _                      |
| 97h                  | _          | Unimpleme            | ented           |                           |                |              |                   |                |          | _                        | _                      |
| 98h                  | TXSTA      | CSRC                 | TX9             | TXEN                      | SYNC           | _            | BRGH              | TRMT           | TX9D     | 0000 -010                | 95                     |
| 99h                  | SPBRG      | Baud Rate            | Generator F     | Register                  |                |              |                   |                |          | 0000 0000                | 97                     |
| 9Ah                  | _          | Unimpleme            | ented           |                           |                |              |                   |                |          | _                        | _                      |
| 9Bh                  | _          | Unimpleme            | ented           |                           |                |              |                   |                |          | _                        | _                      |
| 9Ch                  | _          | Unimpleme            | ented           |                           |                |              |                   |                |          | _                        | _                      |
| 9Dh                  | _          | Unimpleme            | ented           |                           |                |              |                   |                |          | _                        | _                      |
| 9Eh                  | ADRESL     | A/D Result           | t Register Lo   | w Byte                    |                |              |                   |                |          | xxxx xxxx                | 116                    |
| 9Fh                  | ADCON1     | ADFM                 | _               |                           | _              | PCFG3        | PCFG2             | PCFG1          | PCFG0    | 0 0000                   | 112                    |

- Legend: x = unknown, u = unchanged, q = value depends on condition, = unimplemented, read as '0', r = reserved.

  Shaded locations are unimplemented, read as '0'.

  Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

  2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

  - These registers can be addressed from any bank.
     PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.
     PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

**TABLE 2-1:** SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

| Address               | Name       | Bit 7                             | Bit 6                                        | Bit 5         | Bit 4          | Bit 3         | Bit 2             | Bit 1          | Bit 0     | Value on:<br>POR,<br>BOR | Details<br>on<br>page: |
|-----------------------|------------|-----------------------------------|----------------------------------------------|---------------|----------------|---------------|-------------------|----------------|-----------|--------------------------|------------------------|
| Bank 2                |            |                                   |                                              |               |                |               |                   |                |           |                          |                        |
| 100h <sup>(3)</sup>   | INDF       | Addressing                        | g this location                              | n uses conte  | nts of FSR to  | address data  | a memory (no      | t a physical r | egister)  | 0000 0000                | 27                     |
| 101h                  | TMR0       | Timer0 Mo                         | dule Registe                                 | r             |                |               |                   |                |           | xxxx xxxx                | 47                     |
| 102h <sup>(3)</sup>   | PCL        | Program C                         | rogram Counter's (PC) Least Significant Byte |               |                |               |                   |                |           | 0000 0000                | 26                     |
| 103h <sup>(3)</sup>   | STATUS     | IRP                               | RP1                                          | RP0           | TO             | PD            | Z                 | DC             | С         | 0001 1xxx                | 18                     |
| 104h <sup>(3)</sup>   | FSR        | Indirect Da                       | ta Memory A                                  | Address Poir  | iter           |               |                   |                |           | xxxx xxxx                | 27                     |
| 105h                  | _          | Unimpleme                         | ented                                        |               |                |               |                   |                |           | _                        | _                      |
| 106h                  | PORTB      | PORTB Da                          | ata Latch wh                                 | en written: P | ORTB pins w    | hen read      |                   |                |           | xxxx xxxx                | 31                     |
| 107h                  | _          | Unimpleme                         | ented                                        |               |                |               |                   |                |           | _                        | _                      |
| 108h                  | _          | Unimpleme                         | ented                                        |               |                |               |                   |                |           | _                        | _                      |
| 109h                  | _          | Unimpleme                         | ented                                        |               |                |               |                   |                |           | _                        | _                      |
| 10Ah <sup>(1,3)</sup> | PCLATH     | _                                 | _                                            | _             | Write Buffer   | for the upper | r 5 bits of the I | Program Cou    | ınter     | 0 0000                   | 26                     |
| 10Bh <sup>(3)</sup>   | INTCON     | GIE                               | PEIE                                         | TOIE          | INTE           | RBIE          | TOIF              | INTF           | RBIF      | 0000 000x                | 20                     |
| 10Ch                  | EEDATA     | EEPROM                            | EEPROM Data Register Low Byte                |               |                |               |                   |                |           | xxxx xxxx                | 41                     |
| 10Dh                  | EEADR      | EEPROM                            | EEPROM Address Register Low Byte             |               |                |               |                   |                |           | xxxx xxxx                | 41                     |
| 10Eh                  | EEDATH     | EEPROM Data Register High Byte    |                                              |               |                |               |                   | xxxx xxxx      | 41        |                          |                        |
| 10Fh                  | EEADRH     | EEPROM Address Register High Byte |                                              |               |                |               |                   |                | xxxx xxxx | 41                       |                        |
| Bank 3                |            |                                   |                                              |               |                |               |                   |                |           |                          |                        |
| 180h <sup>(3)</sup>   | INDF       | Addressing                        | this location                                | n uses conte  | nts of FSR to  | address data  | a memory (no      | t a physical r | egister)  | 0000 0000                | 27                     |
| 181h                  | OPTION_REG | RBPU                              | INTEDG                                       | T0CS          | T0SE           | PSA           | PS2               | PS1            | PS0       | 1111 1111                | 19                     |
| 182h <sup>(3)</sup>   | PCL        | Program C                         | counter (PC)                                 | Least Signi   | ficant Byte    |               | •                 | •              | •         | 0000 0000                | 26                     |
| 183h <sup>(3)</sup>   | STATUS     | IRP                               | RP1                                          | RP0           | TO             | PD            | Z                 | DC             | С         | 0001 1xxx                | 18                     |
| 184h <sup>(3)</sup>   | FSR        | Indirect Da                       | ata Memory A                                 | Address Poir  | iter           |               | •                 | •              | •         | xxxx xxxx                | 27                     |
| 185h                  | _          | Unimpleme                         | ented                                        |               |                |               |                   |                |           | _                        | _                      |
| 186h                  | TRISB      | PORTB Da                          | ata Direction                                | Register      |                |               |                   |                |           | 1111 1111                | 31                     |
| 187h                  | _          | Unimpleme                         | ented                                        |               |                |               |                   |                |           | _                        | _                      |
| 188h                  | _          | Unimpleme                         | ented                                        |               |                |               |                   |                |           | _                        | _                      |
| 189h                  | _          | Unimplemented                     |                                              |               |                |               |                   |                | _         | _                        |                        |
| 18Ah <sup>(1,3)</sup> | PCLATH     | _                                 | _                                            | _             | Write Buffer   | for the upper | r 5 bits of the I | Program Cou    | ınter     | 0 0000                   | 26                     |
| 18Bh <sup>(3)</sup>   | INTCON     | GIE                               | PEIE                                         | TOIE          | INTE           | RBIE          | TOIF              | INTF           | RBIF      | 0000 000x                | 20                     |
| 18Ch                  | EECON1     | EEPGD                             | _                                            | _             | _              | WRERR         | WREN              | WR             | RD        | x x000                   | 41, 42                 |
| 18Dh                  | EECON2     | EEPROM                            | Control Regi                                 | ster2 (not a  | physical regis | ster)         |                   |                |           |                          | 41                     |
| 18Eh                  | _          | Reserved                          | maintain clea                                | ar            |                |               |                   |                |           | 0000 0000                | _                      |
| 18Fh                  | _          | Reserved                          | maintain clea                                | ar            |                |               |                   |                |           | 0000 0000                | _                      |

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
 Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

- 3: These registers can be addressed from any bank.
  4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.
- **5:** PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

#### 2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the  $\overline{\text{TO}}$  and  $\overline{\text{PD}}$  bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

#### REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

| R/W-0 | R/W-0 | R/W-0 | R-1 | R-1 | R/W-x | R/W-x | R/W-x |
|-------|-------|-------|-----|-----|-------|-------|-------|
| IRP   | RP1   | RP0   | TO  | PD  | Z     | DC    | С     |
| bit 7 |       |       |     |     |       |       | bit 0 |

bit 7 IRP: Register Bank Select bit (used for indirect addressing)

1 = Bank 2, 3 (100h - 1FFh)

0 = Bank 0, 1 (00h - FFh)

bit 6-5 RP1:RP0: Register Bank Select bits (used for direct addressing)

11 = Bank 3 (180h - 1FFh)

10 = Bank 2 (100h - 17Fh)

01 = Bank 1 (80h - FFh)

00 = Bank 0 (00h - 7Fh)

Each bank is 128 bytes

bit 4 **TO**: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred

bit 3 **PD**: Power-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

(for borrow, the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result

bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high, or low order bit of the source register.

#### 2.2.2.2 OPTION\_REG Register

The OPTION\_REG Register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

#### REGISTER 2-2: OPTION\_REG REGISTER (ADDRESS 81h, 181h)

| R/W-1 | R/W-1  | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------|--------|-------|-------|-------|-------|-------|-------|
| RBPU  | INTEDG | T0CS  | T0SE  | PSA   | PS2   | PS1   | PS0   |
| bit 7 |        |       |       |       |       |       | bit 0 |

Note:

bit 7 RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

bit 6 INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RB0/INT pin

0 = Interrupt on falling edge of RB0/INT pin

bit 5 TOCS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI pin

0 = Internal instruction cycle clock (CLKOUT)

bit 4 **T0SE**: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI pin

1:128

0 = Increment on low-to-high transition on RA4/T0CKI pin

bit 3 **PSA**: Prescaler Assignment bit

111

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

bit 2-0 **PS2:PS0**: Prescaler Rate Select bits

| Bit Value | TMR0 Rate | WDT Rate |
|-----------|-----------|----------|
| 000       | 1:2       | 1:1      |
| 001       | 1:4       | 1:2      |
| 010       | 1:8       | 1:4      |
| 011       | 1:16      | 1:8      |
| 100       | 1:32      | 1 : 16   |
| 101       | 1:64      | 1:32     |
| 110       | 1 · 128   | 1:64     |

1:256

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented I  | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device

Note:

#### 2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

#### REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

| R/W-0 | R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE   | PEIE  | T0IE  | INTE  | RBIE  | TOIF  | INTF  | RBIF  |
| bit 7 |       |       |       |       |       |       | bit 0 |

Note:

bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

bit 6 PEIE: Peripheral Interrupt Enable bit

1 = Enables all unmasked peripheral interrupts

0 = Disables all peripheral interrupts

bit 5 **T0IE**: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt

bit 4 INTE: RB0/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt

0 = Disables the RB0/INT external interrupt

bit 3 RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt

0 = Disables the RB port change interrupt

bit 2 T0IF: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

bit 1 INTF: RB0/INT External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

bit 0 RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared (must be cleared in software).

0 = None of the RB7:RB4 pins have changed state

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

#### 2.2.2.4 PIE1 Register

The PIE1 register contains the individual enable bits for the peripheral interrupts. **Note:** Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

#### REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

| R/W-0                | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0  | R/W-0  |
|----------------------|-------|-------|-------|-------|--------|--------|--------|
| PSPIE <sup>(1)</sup> | ADIE  | RCIE  | TXIE  | SSPIE | CCP1IE | TMR2IE | TMR1IE |
| bit 7                |       |       |       |       |        |        | bit 0  |

bit 7 **PSPIE**(1): Parallel Slave Port Read/Write Interrupt Enable bit

1 = Enables the PSP read/write interrupt

0 = Disables the PSP read/write interrupt

bit 6 ADIE: A/D Converter Interrupt Enable bit

1 = Enables the A/D converter interrupt0 = Disables the A/D converter interrupt

bit 5 RCIE: USART Receive Interrupt Enable bit

1 = Enables the USART receive interrupt0 = Disables the USART receive interrupt

bit 4 TXIE: USART Transmit Interrupt Enable bit

1 = Enables the USART transmit interrupt

0 = Disables the USART transmit interrupt

bit 3 SSPIE: Synchronous Serial Port Interrupt Enable bit

1 = Enables the SSP interrupt

0 = Disables the SSP interrupt

bit 2 **CCP1IE**: CCP1 Interrupt Enable bit

1 = Enables the CCP1 interrupt

0 = Disables the CCP1 interrupt

bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit

1 = Enables the TMR2 to PR2 match interrupt

0 = Disables the TMR2 to PR2 match interrupt

bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit

1 = Enables the TMR1 overflow interrupt

0 = Disables the TMR1 overflow interrupt

Note 1: PSPIE is reserved on PIC16F873/876 devices; always maintain this bit clear.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

#### 2.2.2.5 PIR1 Register

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

#### REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

| R/W-0                | R/W-0 | R-0  | R-0  | R/W-0 | R/W-0  | R/W-0  | R/W-0  |
|----------------------|-------|------|------|-------|--------|--------|--------|
| PSPIF <sup>(1)</sup> | ADIF  | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF |
| bit 7                |       |      |      |       |        |        | bit 0  |

Note:

- PSPIF<sup>(1)</sup>: Parallel Slave Port Read/Write Interrupt Flag bit bit 7
  - 1 = A read or a write operation has taken place (must be cleared in software)
  - 0 = No read or write has occurred
- bit 6 ADIF: A/D Converter Interrupt Flag bit
  - 1 = An A/D conversion completed
  - 0 = The A/D conversion is not complete
- RCIF: USART Receive Interrupt Flag bit bit 5
  - 1 = The USART receive buffer is full 0 = The USART receive buffer is empty
- bit 4 TXIF: USART Transmit Interrupt Flag bit
  - 1 = The USART transmit buffer is empty
  - 0 = The USART transmit buffer is full
- bit 3 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag
  - 1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are:
    - SPI
      - A transmission/reception has taken place.
    - I<sup>2</sup>C Slave
      - A transmission/reception has taken place.
    - I<sup>2</sup>C Master
      - A transmission/reception has taken place.
      - The initiated START condition was completed by the SSP module.
      - The initiated STOP condition was completed by the SSP module.
      - The initiated Restart condition was completed by the SSP module.
      - The initiated Acknowledge condition was completed by the SSP module.
      - A START condition occurred while the SSP module was idle (Multi-Master system).
      - A STOP condition occurred while the SSP module was idle (Multi-Master system).
  - 0 = No SSP interrupt condition has occurred.

#### CCP1IF: CCP1 Interrupt Flag bit bit 2

#### Capture mode:

- 1 = A TMR1 register capture occurred (must be cleared in software)
- 0 = No TMR1 register capture occurred

#### Compare mode:

- 1 = A TMR1 register compare match occurred (must be cleared in software)
- 0 = No TMR1 register compare match occurred

#### PWM mode:

Unused in this mode

- bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
  - 1 = TMR2 to PR2 match occurred (must be cleared in software)
  - 0 = No TMR2 to PR2 match occurred
- TMR1IF: TMR1 Overflow Interrupt Flag bit bit 0
  - 1 = TMR1 register overflowed (must be cleared in software)
  - 0 = TMR1 register did not overflow

Note 1: PSPIF is reserved on PIC16F873/876 devices; always maintain this bit clear.

|   | $\sim$ | Δ | n | ฝ  |
|---|--------|---|---|----|
| L | EU     | ᆮ | n | u. |

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

#### 2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 peripheral interrupt, the SSP bus collision interrupt, and the EEPROM write operation interrupt.

#### REGISTER 2-6: PIE2 REGISTER (ADDRESS 8Dh)

| U-0   | R/W-0    | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0  |
|-------|----------|-----|-------|-------|-----|-----|--------|
| _     | Reserved | _   | EEIE  | BCLIE | _   | _   | CCP2IE |
| bit 7 |          |     |       |       |     |     | bit 0  |

bit 7 Unimplemented: Read as '0'

bit 6 Reserved: Always maintain this bit clear

bit 5 Unimplemented: Read as '0'

bit 4 **EEIE**: EEPROM Write Operation Interrupt Enable

1 = Enable EE Write Interrupt0 = Disable EE Write Interrupt

bit 3 BCLIE: Bus Collision Interrupt Enable

1 = Enable Bus Collision Interrupt

0 = Disable Bus Collision Interrupt

bit 2-1 Unimplemented: Read as '0'

bit 0 CCP2IE: CCP2 Interrupt Enable bit

1 = Enables the CCP2 interrupt

0 = Disables the CCP2 interrupt

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

#### 2.2.2.7 PIR2 Register

The PIR2 register contains the flag bits for the CCP2 interrupt, the SSP bus collision interrupt and the EEPROM write operation interrupt.

Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

#### REGISTER 2-7: PIR2 REGISTER (ADDRESS 0Dh)

| U     | -0 | R/W-0    | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0  |
|-------|----|----------|-----|-------|-------|-----|-----|--------|
| _     | _  | Reserved | _   | EEIF  | BCLIF | _   | _   | CCP2IF |
| bit 7 |    |          |     |       |       |     |     | bit 0  |

Note:

bit 7 Unimplemented: Read as '0'

bit 6 Reserved: Always maintain this bit clear

bit 5 Unimplemented: Read as '0'

bit 4 **EEIF**: EEPROM Write Operation Interrupt Flag bit

1 = The write operation completed (must be cleared in software) 0 = The write operation is not complete or has not been started

bit 3 BCLIF: Bus Collision Interrupt Flag bit

1 = A bus collision has occurred in the SSP, when configured for I2C Master mode

0 = No bus collision has occurred

bit 2-1 **Unimplemented:** Read as '0'

bit 0 CCP2IF: CCP2 Interrupt Flag bit

Capture mode:

1 = A TMR1 register capture occurred (must be cleared in software)

0 = No TMR1 register capture occurred

Compare mode:

1 = A TMR1 register compare match occurred (must be cleared in software)

0 = No TMR1 register compare match occurred

PWM mode: Unused

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

#### 2.2.2.8 PCON Register

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT), and an external  $\overline{\text{MCLR}}$  Reset.

BOR is unknown on POR. It must be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

#### REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-1 |
|-------|-----|-----|-----|-----|-----|-------|-------|
| _     | _   | _   | _   | _   | _   | POR   | BOR   |
| bit 7 |     |     |     |     |     |       | bit 0 |

Note:

bit 7-2 **Unimplemented:** Read as '0' bit 1 **POR**: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0 BOR: Brown-out Reset Status bit

1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

#### 2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0>  $\rightarrow$  PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3>  $\rightarrow$  PCH).

FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS



#### 2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, "Implementing a Table Read" (AN556).

#### 2.3.2 STACK

The PIC16F87X family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.
  - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

#### 2.4 Program Memory Paging

All PIC16F87X devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the return instructions (which POPs the address from the stack).

Note: The contents of the PCLATH register are unchanged after a RETURN or RETFIE instruction is executed. The user must rewrite the contents of the PCLATH register for any subsequent subroutine calls or GOTO instructions.

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

## EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

```
ORG 0x500
         BCF PCLATH, 4
         BSF PCLATH, 3
                        ;Select page 1
                        ; (800h-FFFh)
         CALL SUB1 P1
                       ;Call subroutine in
                        ;page 1 (800h-FFFh)
                        ;page 1 (800h-FFFh)
         ORG 0x900
SUB1 P1
                        ; called subroutine
                        ;page 1 (800h-FFFh)
         RETURN
                        ;return to
                        ; Call subroutine
                        ;in page 0
                        ; (000h-7FFh)
```

## 2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-6.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

#### **EXAMPLE 2-2: INDIRECT ADDRESSING**

|          | MOVLW | 0x20  | ;initialize pointer  |
|----------|-------|-------|----------------------|
|          | MOVWF | FSR   | ;to RAM              |
| NEXT     | CLRF  | INDF  | clear INDF register; |
|          | INCF  | FSR,F | ;inc pointer         |
|          | BTFSS | FSR,4 | ;all done?           |
|          | GOTO  | NEXT  | ;no clear next       |
| CONTINUE |       |       |                      |
|          | :     |       | ;yes continue        |
|          |       |       | _                    |

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING



#### 3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro™ Mid-Range Reference Manual, (DS33023).

#### 3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register 1).

**Note:** On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

#### **EXAMPLE 3-1: INITIALIZING PORTA**

|       |         |     | • • • | ALIZINO I OKTA        |
|-------|---------|-----|-------|-----------------------|
| BCF   | STATUS, | RP0 | ;     |                       |
| BCF   | STATUS, | RP1 | ;     | Bank0                 |
| CLRF  | PORTA   |     | ;     | Initialize PORTA by   |
|       |         |     | ;     | clearing output       |
|       |         |     | ;     | data latches          |
| BSF   | STATUS, | RP0 | ;     | Select Bank 1         |
| MOVLW | 0x06    |     | ;     | Configure all pins    |
| MOVWF | ADCON1  |     | ;     | as digital inputs     |
| MOVLW | 0xCF    |     | ;     | Value used to         |
|       |         |     | ;     | initialize data       |
|       |         |     | ;     | direction             |
| MOVWF | TRISA   |     | ;     | Set RA<3:0> as inputs |
|       |         |     | ;     | RA<5:4> as outputs    |
|       |         |     | ;     | TRISA<7:6>are always  |
|       |         |     | ;     | read as '0'.          |
|       |         |     |       |                       |

## FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS



## FIGURE 3-2: BLOCK DIAGRAM OF RA4/TOCKI PIN



TABLE 3-1: PORTA FUNCTIONS

| Name         | Bit# | Buffer | Function                                                                        |
|--------------|------|--------|---------------------------------------------------------------------------------|
| RA0/AN0      | bit0 | TTL    | Input/output or analog input.                                                   |
| RA1/AN1      | bit1 | TTL    | Input/output or analog input.                                                   |
| RA2/AN2      | bit2 | TTL    | Input/output or analog input.                                                   |
| RA3/AN3/VREF | bit3 | TTL    | Input/output or analog input or VREF.                                           |
| RA4/T0CKI    | bit4 | ST     | Input/output or external clock input for Timer0. Output is open drain type.     |
| RA5/SS/AN4   | bit5 | TTL    | Input/output or slave select input for synchronous serial port or analog input. |

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

| Address | Name   | Bit 7 | Bit 6 | Bit 5 | Bit 4                         | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:<br>POR,<br>BOR | Value on all other RESETS |
|---------|--------|-------|-------|-------|-------------------------------|-------|-------|-------|-------|--------------------------|---------------------------|
| 05h     | PORTA  | _     | _     | RA5   | RA4                           | RA3   | RA2   | RA1   | RA0   | 0x 0000                  | 0u 0000                   |
| 85h     | TRISA  | _     | _     | PORTA | PORTA Data Direction Register |       |       |       |       |                          | 11 1111                   |
| 9Fh     | ADCON1 | ADFM  | _     | _     | _                             | PCFG3 | PCFG2 | PCFG1 | PCFG0 | 0- 0000                  | 0- 0000                   |

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and  $\overline{SS}$  enabled, the A/D converter must be set to one of the following modes, where PCFG3:PCFG0 = 0100, 0101, 011x, 1101, 1111.

#### 3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Three pins of PORTB are multiplexed with the Low Voltage Programming function: RB3/PGM, RB6/PGC and RB7/PGD. The alternate functions of these pins are described in the Special Features Section.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION\_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 3-3: BLOCK DIAGRAM OF RB3:RB0 PINS



Four of the PORTB pins, RB7:RB4, have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

This interrupt-on-mismatch feature, together with soft-ware configureable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, "Implementing Wake-up on Key Strokes" (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION\_REG<6>).

RB0/INT is discussed in detail in Section 12.10.1.

FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS



TABLE 3-3: PORTB FUNCTIONS

| Name                   | Bit# | Buffer                | Function                                                                                                                                       |
|------------------------|------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| RB0/INT                | bit0 | TTL/ST <sup>(1)</sup> | Input/output pin or external interrupt input. Internal software programmable weak pull-up.                                                     |
| RB1                    | bit1 | TTL                   | Input/output pin. Internal software programmable weak pull-up.                                                                                 |
| RB2                    | bit2 | TTL                   | Input/output pin. Internal software programmable weak pull-up.                                                                                 |
| RB3/PGM <sup>(3)</sup> | bit3 | TTL                   | Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.                                                  |
| RB4                    | bit4 | TTL                   | Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.                                                      |
| RB5                    | bit5 | TTL                   | Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.                                                      |
| RB6/PGC                | bit6 | TTL/ST <sup>(2)</sup> | Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock. |
| RB7/PGD                | bit7 | TTL/ST <sup>(2)</sup> | Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data.  |

Legend: TTL = TTL input, ST = Schmitt Trigger input

- Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
  - 2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
  - **3:** Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

| Address   | Name       | Bit 7 | Bit 6                           | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:<br>POR,<br>BOR | Value on all other RESETS |
|-----------|------------|-------|---------------------------------|-------|-------|-------|-------|-------|-------|--------------------------|---------------------------|
| 06h, 106h | PORTB      | RB7   | RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 |       |       |       |       |       | RB0   | xxxx xxxx                | uuuu uuuu                 |
| 86h, 186h | TRISB      | PORTB | PORTB Data Direction Register   |       |       |       |       |       |       | 1111 1111                | 1111 1111                 |
| 81h, 181h | OPTION_REG | RBPU  | INTEDG                          | T0CS  | T0SE  | PSA   | PS2   | PS1   | PS0   | 1111 1111                | 1111 1111                 |

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

#### 3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When the I<sup>2</sup>C module is enabled, the PORTC<4:3> pins can be configured with normal I<sup>2</sup>C levels, or with SMBus levels by using the CKE bit (SSPSTAT<6>).

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination, should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

FIGURE 3-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE) RC<2:0>,



FIGURE 3-6: PORTC E

PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE) RC<4:3>



- Note 1: I/O pins have diode protection to VDD and Vss.
  - 2: Port/Peripheral select signal selects between port data and peripheral output.
  - **3:** Peripheral OE (output enable) is only activated if peripheral select is active.

data and peripheral output.

peripheral select is active.

3: Peripheral OE (output enable) is only activated if

TABLE 3-5: PORTC FUNCTIONS

| Name            | Bit# | Buffer Type | Function                                                                                        |
|-----------------|------|-------------|-------------------------------------------------------------------------------------------------|
| RC0/T1OSO/T1CKI | bit0 | ST          | Input/output port pin or Timer1 oscillator output/Timer1 clock input.                           |
| RC1/T1OSI/CCP2  | bit1 | ST          | Input/output port pin or Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output. |
| RC2/CCP1        | bit2 | ST          | Input/output port pin or Capture1 input/Compare1 output/PWM1 output.                            |
| RC3/SCK/SCL     | bit3 | ST          | RC3 can also be the synchronous serial clock for both SPI and I <sup>2</sup> C modes.           |
| RC4/SDI/SDA     | bit4 | ST          | RC4 can also be the SPI Data In (SPI mode) or data I/O (I <sup>2</sup> C mode).                 |
| RC5/SDO         | bit5 | ST          | Input/output port pin or Synchronous Serial Port data output.                                   |
| RC6/TX/CK       | bit6 | ST          | Input/output port pin or USART Asynchronous Transmit or Synchronous Clock.                      |
| RC7/RX/DT       | bit7 | ST          | Input/output port pin or USART Asynchronous Receive or Synchronous Data.                        |

Legend: ST = Schmitt Trigger input

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

| Address | Name  | Bit 7 | Bit 6     | Bit 5     | Bit 4   | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:<br>POR,<br>BOR | Value on all other RESETS |
|---------|-------|-------|-----------|-----------|---------|-------|-------|-------|-------|--------------------------|---------------------------|
| 07h     | PORTC | RC7   | RC6       | RC5       | RC4     | RC3   | RC2   | RC1   | RC0   | xxxx xxxx                | uuuu uuuu                 |
| 87h     | TRISC | PORTC | Data Dire | ection Re | egister |       |       |       |       | 1111 1111                | 1111 1111                 |

Legend: x = unknown, u = unchanged

#### 5.0 TIMERO MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- · Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- · Interrupt on overflow from FFh to 00h
- · Edge select for external clock

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Additional information on the Timer0 module is available in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).

Timer mode is selected by clearing bit T0CS (OPTION\_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION\_REG<5>). In Counter mode, Timer0 will increment either on every rising, or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (OPTION\_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 5.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. Section 5.3 details the operation of the prescaler.

#### 5.1 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

FIGURE 5-1: BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER



## 5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

#### 5.3 Prescaler

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the

Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. This prescaler is not readable or writable (see Figure 5-1).

The PSA and PS2:PS0 bits (OPTION\_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

**Note:** Writing to TMR0, when the prescaler is assigned to Timer0, will clear the prescaler count, but will not change the prescaler assignment.

#### REGISTER 5-1: OPTION\_REG REGISTER

| R/W-1 | R/W-1  | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------|--------|-------|-------|-------|-------|-------|-------|
| RBPU  | INTEDG | T0CS  | T0SE  | PSA   | PS2   | PS1   | PS0   |
| bit 7 |        |       |       |       |       |       | bit 0 |

| bit 7   | RBPU                                                                                                                                                      |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 6   | INTEDG                                                                                                                                                    |
| bit 5   | <b>T0CS</b> : TMR0 Clock Source Select bit<br>1 = Transition on T0CKI pin<br>0 = Internal instruction cycle clock (CLKOUT)                                |
| bit 4   | <b>T0SE</b> : TMR0 Source Edge Select bit<br>1 = Increment on high-to-low transition on T0CKI pin<br>0 = Increment on low-to-high transition on T0CKI pin |
| bit 3   | PSA: Prescaler Assignment bit  1 = Prescaler is assigned to the WDT  0 = Prescaler is assigned to the Timer0 module                                       |
| bit 2-0 | PS2:PS0: Prescaler Rate Select bits                                                                                                                       |
|         | Bit Value TMR0 Rate WDT Rate                                                                                                                              |
|         |                                                                                                                                                           |

| 1:2     | 1:1                                         |
|---------|---------------------------------------------|
| 1:4     | 1:2                                         |
| 1:8     | 1:4                                         |
| 1:16    | 1:8                                         |
| 1:32    | 1:16                                        |
| 1:64    | 1:32                                        |
| 1 : 128 | 1:64                                        |
| 1 : 256 | 1 : 128                                     |
|         | 1:4<br>1:8<br>1:16<br>1:32<br>1:64<br>1:128 |

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

Note: To avoid an unintended device RESET, the instruction sequence shown in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER0

| Address               | Name       | Bit 7  | Bit 6      | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:<br>POR,<br>BOR | Value on all other RESETS |
|-----------------------|------------|--------|------------|---------|-------|-------|-------|-------|-------|--------------------------|---------------------------|
| 01h,101h              | TMR0       | Timer0 | Module's F | Registe | r     |       |       |       |       | xxxx xxxx                | uuuu uuuu                 |
| 0Bh,8Bh,<br>10Bh,18Bh | INTCON     | GIE    | PEIE       | TOIE    | INTE  | RBIE  | TOIF  | INTF  | RBIF  | 0000 000x                | 0000 000u                 |
| 81h,181h              | OPTION_REG | RBPU   | INTEDG     | T0CS    | T0SE  | PSA   | PS2   | PS1   | PS0   | 1111 1111                | 1111 1111                 |

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

# 10.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The USART module also has a multi-processor communication capability using 9-bit address detection.

#### REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R-1  | R/W-0 |
|-------|-------|-------|-------|-----|-------|------|-------|
| CSRC  | TX9   | TXEN  | SYNC  | _   | BRGH  | TRMT | TX9D  |
| bit 7 |       |       |       |     |       |      | bit 0 |

bit 7 CSRC: Clock Source Select bit

Asynchronous mode:

Don't care

Synchronous mode:

1 = Master mode (clock generated internally from BRG)

0 = Slave mode (clock from external source)

bit 6 **TX9**: 9-bit Transmit Enable bit

1 = Selects 9-bit transmission

0 = Selects 8-bit transmission

bit 5 TXEN: Transmit Enable bit

1 = Transmit enabled

0 = Transmit disabled

Note: SREN/CREN overrides TXEN in SYNC mode.

bit 4 SYNC: USART Mode Select bit

1 = Synchronous mode

0 = Asynchronous mode

bit 3 Unimplemented: Read as '0'

bit 2 BRGH: High Baud Rate Select bit

Asynchronous mode:

1 = High speed

0 = Low speed

Synchronous mode:

Unused in this mode

bit 1 TRMT: Transmit Shift Register Status bit

1 = TSR empty

0 = TSR full

bit 0 **TX9D:** 9th bit of Transmit Data, can be parity bit

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

#### REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

| SPEN   RX9   SREN   CREN   ADDEN   FERR   CERR   RX9D |  | SPEN | RX9 | SREN | CREN | ADDEN | FERR | OERR | RX9D |
|-------------------------------------------------------|--|------|-----|------|------|-------|------|------|------|
|-------------------------------------------------------|--|------|-----|------|------|-------|------|------|------|

bit 7 SPEN: Serial Port Enable bit

1 = Serial port enabled (configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)

0 = Serial port disabled

bit 6 RX9: 9-bit Receive Enable bit

1 = Selects 9-bit reception 0 = Selects 8-bit reception

bit 5 SREN: Single Receive Enable bit

Asynchronous mode:

Don't care

Synchronous mode - master:

1 = Enables single receive

0 = Disables single receive

This bit is cleared after reception is complete.

Synchronous mode - slave:

Don't care

bit 4 CREN: Continuous Receive Enable bit

Asynchronous mode:

1 = Enables continuous receive

0 = Disables continuous receive

Synchronous mode:

1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)

0 = Disables continuous receive

bit 3 ADDEN: Address Detect Enable bit

Asynchronous mode 9-bit (RX9 = 1):

1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8> is set

0 = Disables address detection, all bytes are received, and ninth bit can be used as parity bit

bit 2 FERR: Framing Error bit

1 = Framing error (can be updated by reading RCREG register and receive next valid byte)

0 = No framing error

bit 1 **OERR**: Overrun Error bit

1 = Overrun error (can be cleared by clearing bit CREN)

0 = No overrun error

bit 0 **RX9D:** 9th bit of Received Data (can be parity bit, but must be calculated by user firmware)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

## 10.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 10-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 10-1. From this, the error in baud rate can be determined.

It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

#### 10.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 10-1: BAUD RATE FORMULA

| SYNC | BRGH = 0 (Low Speed)                      | BRGH = 1 (High Speed)      |
|------|-------------------------------------------|----------------------------|
| 0    | (Asynchronous) Baud Rate = Fosc/(64(X+1)) | Baud Rate = Fosc/(16(X+1)) |
| 1    | (Synchronous) Baud Rate = Fosc/(4(X+1))   | N/A                        |

X =value in SPBRG (0 to 255)

TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

| Address | Name  | Bit 7    | Bit 6                        | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0     | Value on:<br>POR,<br>BOR | Value on<br>all other<br>RESETS |
|---------|-------|----------|------------------------------|-------|-------|-------|-------|-------|-----------|--------------------------|---------------------------------|
| 98h     | TXSTA | CSRC     | TX9                          | TXEN  | SYNC  | -     | BRGH  | TRMT  | TX9D      | 0000 -010                | 0000 -010                       |
| 18h     | RCSTA | SPEN     | RX9                          | SREN  | CREN  | ADDEN | FERR  | OERR  | RX9D      | 0000 000x                | 0000 000x                       |
| 99h     | SPBRG | Baud Rat | Baud Rate Generator Register |       |       |       |       |       | 0000 0000 | 0000 0000                |                                 |

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

| BAUD<br>RATE<br>(K) | F       | osc = 20 M | lHz                         | F       | osc = 16 N | lHz                         | Fosc = 10 MHz |            |                             |
|---------------------|---------|------------|-----------------------------|---------|------------|-----------------------------|---------------|------------|-----------------------------|
|                     | KBAUD   | %<br>ERROR | SPBRG<br>value<br>(decimal) | KBAUD   | %<br>ERROR | SPBRG<br>value<br>(decimal) | KBAUD         | %<br>ERROR | SPBRG<br>value<br>(decimal) |
| 0.3                 | -       | -          | -                           | -       | -          | -                           | -             | -          | -                           |
| 1.2                 | 1.221   | 1.75       | 255                         | 1.202   | 0.17       | 207                         | 1.202         | 0.17       | 129                         |
| 2.4                 | 2.404   | 0.17       | 129                         | 2.404   | 0.17       | 103                         | 2.404         | 0.17       | 64                          |
| 9.6                 | 9.766   | 1.73       | 31                          | 9.615   | 0.16       | 25                          | 9.766         | 1.73       | 15                          |
| 19.2                | 19.531  | 1.72       | 15                          | 19.231  | 0.16       | 12                          | 19.531        | 1.72       | 7                           |
| 28.8                | 31.250  | 8.51       | 9                           | 27.778  | 3.55       | 8                           | 31.250        | 8.51       | 4                           |
| 33.6                | 34.722  | 3.34       | 8                           | 35.714  | 6.29       | 6                           | 31.250        | 6.99       | 4                           |
| 57.6                | 62.500  | 8.51       | 4                           | 62.500  | 8.51       | 3                           | 52.083        | 9.58       | 2                           |
| HIGH                | 1.221   | -          | 255                         | 0.977   | -          | 255                         | 0.610         | -          | 255                         |
| LOW                 | 312.500 | -          | 0                           | 250.000 | -          | 0                           | 156.250       | -          | 0                           |

| DALID       |        | Fosc = 4 M | Hz                          | Fosc = 3.6864 MHz |            |                             |  |
|-------------|--------|------------|-----------------------------|-------------------|------------|-----------------------------|--|
| RATE<br>(K) | KBAUD  | %<br>ERROR | SPBRG<br>value<br>(decimal) | KBAUD             | %<br>ERROR | SPBRG<br>value<br>(decimal) |  |
| 0.3         | 0.300  | 0          | 207                         | 0.3               | 0          | 191                         |  |
| 1.2         | 1.202  | 0.17       | 51                          | 1.2               | 0          | 47                          |  |
| 2.4         | 2.404  | 0.17       | 25                          | 2.4               | 0          | 23                          |  |
| 9.6         | 8.929  | 6.99       | 6                           | 9.6               | 0          | 5                           |  |
| 19.2        | 20.833 | 8.51       | 2                           | 19.2              | 0          | 2                           |  |
| 28.8        | 31.250 | 8.51       | 1                           | 28.8              | 0          | 1                           |  |
| 33.6        | -      | -          | -                           | -                 | -          | -                           |  |
| 57.6        | 62.500 | 8.51       | 0                           | 57.6              | 0          | 0                           |  |
| HIGH        | 0.244  | -          | 255                         | 0.225             | -          | 255                         |  |
| LOW         | 62.500 | -          | 0                           | 57.6              | -          | 0                           |  |

#### TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

| BAUD<br>RATE<br>(K) | F        | osc = 20 M | Hz                          | F        | osc = 16 M | Hz                          | Fosc = 10 MHz |            |                             |
|---------------------|----------|------------|-----------------------------|----------|------------|-----------------------------|---------------|------------|-----------------------------|
|                     | KBAUD    | %<br>ERROR | SPBRG<br>value<br>(decimal) | KBAUD    | %<br>ERROR | SPBRG<br>value<br>(decimal) | KBAUD         | %<br>ERROR | SPBRG<br>value<br>(decimal) |
| 0.3                 | -        | -          | -                           | -        | -          | -                           | -             | -          | -                           |
| 1.2                 | -        | -          | -                           | -        | -          | -                           | -             | -          | -                           |
| 2.4                 | -        | -          | -                           | -        | -          | -                           | 2.441         | 1.71       | 255                         |
| 9.6                 | 9.615    | 0.16       | 129                         | 9.615    | 0.16       | 103                         | 9.615         | 0.16       | 64                          |
| 19.2                | 19.231   | 0.16       | 64                          | 19.231   | 0.16       | 51                          | 19.531        | 1.72       | 31                          |
| 28.8                | 29.070   | 0.94       | 42                          | 29.412   | 2.13       | 33                          | 28.409        | 1.36       | 21                          |
| 33.6                | 33.784   | 0.55       | 36                          | 33.333   | 0.79       | 29                          | 32.895        | 2.10       | 18                          |
| 57.6                | 59.524   | 3.34       | 20                          | 58.824   | 2.13       | 16                          | 56.818        | 1.36       | 10                          |
| HIGH                | 4.883    | -          | 255                         | 3.906    | -          | 255                         | 2.441         | -          | 255                         |
| LOW                 | 1250.000 | -          | 0                           | 1000.000 |            | 0                           | 625.000       | -          | 0                           |

| BAUD        | F       | osc = 4 MH | łz                          | Fosc = 3.6864 MHz |            |                             |  |
|-------------|---------|------------|-----------------------------|-------------------|------------|-----------------------------|--|
| RATE<br>(K) | KBAUD   | %<br>ERROR | SPBRG<br>value<br>(decimal) | KBAUD             | %<br>ERROR | SPBRG<br>value<br>(decimal) |  |
| 0.3         | -       | -          | -                           | -                 | -          | -                           |  |
| 1.2         | 1.202   | 0.17       | 207                         | 1.2               | 0          | 191                         |  |
| 2.4         | 2.404   | 0.17       | 103                         | 2.4               | 0          | 95                          |  |
| 9.6         | 9.615   | 0.16       | 25                          | 9.6               | 0          | 23                          |  |
| 19.2        | 19.231  | 0.16       | 12                          | 19.2              | 0          | 11                          |  |
| 28.8        | 27.798  | 3.55       | 8                           | 28.8              | 0          | 7                           |  |
| 33.6        | 35.714  | 6.29       | 6                           | 32.9              | 2.04       | 6                           |  |
| 57.6        | 62.500  | 8.51       | 3                           | 57.6              | 0          | 3                           |  |
| HIGH        | 0.977   | -          | 255                         | 0.9               | -          | 255                         |  |
| LOW         | 250.000 | -          | 0                           | 230.4             | -          | 0                           |  |

#### 10.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-to-zero (NRZ) format (one START bit, eight or nine data bits, and one STOP bit). The most common data format is 8-bits. An on-chip, dedicated, 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- · Asynchronous Transmitter
- · Asynchronous Receiver

# 10.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 10-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be

enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

- **Note 1:** The TSR register is not mapped in data memory, so it is not available to the user.
  - 2: Flag bit TXIF is set when enable bit TXEN is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 10-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 10-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM



#### PIC16F87X

When setting up an Asynchronous Transmission, follow these steps:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

#### FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION



#### FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)



#### TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

| Address                | Name   | Bit 7                | Bit 6    | Bit 5  | Bit 4     | Bit 3     | Bit 2  | Bit 1  | Bit 0  | Value on:<br>POR,<br>BOR | Value on<br>all other<br>RESETS |
|------------------------|--------|----------------------|----------|--------|-----------|-----------|--------|--------|--------|--------------------------|---------------------------------|
| 0Bh, 8Bh,<br>10Bh,18Bh | INTCON | GIE                  | PEIE     | TOIE   | INTE      | RBIE      | TOIF   | INTF   | R0IF   | 0000 000x                | 0000 000u                       |
| 0Ch                    | PIR1   | PSPIF <sup>(1)</sup> | ADIF     | RCIF   | TXIF      | SSPIF     | CCP1IF | TMR2IF | TMR1IF | 0000 0000                | 0000 0000                       |
| 18h                    | RCSTA  | SPEN                 | RX9      | SREN   | CREN      |           | FERR   | OERR   | RX9D   | 0000 -00x                | 0000 -00x                       |
| 19h                    | TXREG  | USART Tra            | nsmit Re | gister |           |           |        |        |        | 0000 0000                | 0000 0000                       |
| 8Ch                    | PIE1   | PSPIE <sup>(1)</sup> | ADIE     | RCIE   | TXIE      | SSPIE     | CCP1IE | TMR2IE | TMR1IE | 0000 0000                | 0000 0000                       |
| 98h                    | TXSTA  | CSRC                 | TX9      | TXEN   | SYNC      |           | BRGH   | TRMT   | TX9D   | 0000 -010                | 0000 -010                       |
| 99h                    | SPBRG  | Baud Rate            | Generato |        | 0000 0000 | 0000 0000 |        |        |        |                          |                                 |

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

# 10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter, operating at x16 times the baud rate; whereas, the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It

is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, and no further data will be received. It is therefore, essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

FIGURE 10-4: USART RECEIVE BLOCK DIAGRAM



#### FIGURE 10-5: ASYNCHRONOUS RECEPTION



When setting up an Asynchronous Reception, follow these steps:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register.
- If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

#### TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

| Address                | Name   | Bit 7                | Bit 6                        | Bit 5  | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Value oi<br>POR,<br>BOR | 1: | Value on<br>all other<br>RESETS |
|------------------------|--------|----------------------|------------------------------|--------|-------|-------|--------|--------|--------|-------------------------|----|---------------------------------|
| 0Bh, 8Bh,<br>10Bh,18Bh | INTCON | GIE                  | PEIE                         | TOIE   | INTE  | RBIE  | TOIF   | INTF   | R0IF   | 0000 00                 | 0x | 0000 000u                       |
| 0Ch                    | PIR1   | PSPIF <sup>(1)</sup> | ADIF                         | RCIF   | TXIF  | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 00                 | 00 | 0000 0000                       |
| 18h                    | RCSTA  | SPEN                 | RX9                          | SREN   | CREN  |       | FERR   | OERR   | RX9D   | 0000 -0                 | 0x | 0000 -00x                       |
| 1Ah                    | RCREG  | USART R              | Receive Rec                  | gister | •     |       | •      | •      |        | 0000 00                 | 00 | 0000 0000                       |
| 8Ch                    | PIE1   | PSPIE <sup>(1)</sup> | ADIE                         | RCIE   | TXIE  | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 00                 | 00 | 0000 0000                       |
| 98h                    | TXSTA  | CSRC                 | TX9                          | TXEN   | SYNC  | _     | BRGH   | TRMT   | TX9D   | 0000 -0                 | 10 | 0000 -010                       |
| 99h                    | SPBRG  | Baud Rat             | Baud Rate Generator Register |        |       |       |        |        |        |                         |    | 0000 0000                       |

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

# 11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has five inputs for the 28-pin devices and eight for the other devices.

The analog input charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation. The A/D conversion of the analog input signal results in a corresponding 10-bit digital number. The A/D module has high and low voltage reference input that is software selectable to some combination of VDD, Vss, RA2, or RA3.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D clock must be derived from the A/D's internal RC oscillator.

The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register0 (ADCON0)
- A/D Control Register1 (ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be the voltage reference), or as digital I/O.

Additional information on using the A/D module can be found in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).

#### REGISTER 11-1: ADCON0 REGISTER (ADDRESS: 1Fh)

| bit 7 | ADCSU | СПЗ2  | СПОТ  | СПЗО  | GO/DONE | _   | bit 0 |
|-------|-------|-------|-------|-------|---------|-----|-------|
| ADCS1 | ADCS0 | CHS2  | CHS1  | CHS0  | GO/DONE | _   | ADON  |
| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0   | U-0 | R/W-0 |

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRC (clock derived from the internal A/D module RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4)

101 = channel 5, (RE0/AN5)(1)

110 = channel 6, (RE1/AN6)(1)

111 = channel 7, (RE2/AN7)(1)

bit 2 GO/DONE: A/D Conversion Status bit

#### If ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion)
- 0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

bit 1 **Unimplemented**: Read as '0'

bit 0 ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and consumes no operating current

#### Note 1: These channels are not available on PIC16F873/876 devices.

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented bi | t, read as '0'     |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

| U-0   | U-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|-------|-----|-------|-----|-------|-------|-------|-------|
| ADFM  | _   | _     | _   | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 |     |       |     |       |       |       | bit 0 |

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

bit 6-4 Unimplemented: Read as '0'

bit 3-0 **PCFG3:PCFG0**: A/D Port Configuration Control bits:

| PCFG3:<br>PCFG0 | AN7 <sup>(1)</sup><br>RE2 | AN6 <sup>(1)</sup><br>RE1 | AN5 <sup>(1)</sup><br>RE0 | AN4<br>RA5 | AN3<br>RA3 | AN2<br>RA2 | AN1<br>RA1 | AN0<br>RA0 | VREF+ | VREF- | CHAN/<br>Refs <sup>(2)</sup> |
|-----------------|---------------------------|---------------------------|---------------------------|------------|------------|------------|------------|------------|-------|-------|------------------------------|
| 0000            | Α                         | Α                         | Α                         | Α          | Α          | Α          | Α          | Α          | Vdd   | Vss   | 8/0                          |
| 0001            | Α                         | Α                         | Α                         | Α          | VREF+      | Α          | Α          | Α          | RA3   | Vss   | 7/1                          |
| 0010            | D                         | D                         | D                         | Α          | Α          | Α          | Α          | Α          | Vdd   | Vss   | 5/0                          |
| 0011            | D                         | D                         | D                         | Α          | VREF+      | Α          | Α          | Α          | RA3   | Vss   | 4/1                          |
| 0100            | D                         | D                         | D                         | D          | Α          | D          | Α          | Α          | Vdd   | Vss   | 3/0                          |
| 0101            | D                         | D                         | D                         | D          | VREF+      | D          | Α          | Α          | RA3   | Vss   | 2/1                          |
| 011x            | D                         | D                         | D                         | D          | D          | D          | D          | D          | Vdd   | Vss   | 0/0                          |
| 1000            | Α                         | Α                         | Α                         | Α          | VREF+      | VREF-      | Α          | Α          | RA3   | RA2   | 6/2                          |
| 1001            | D                         | D                         | Α                         | Α          | Α          | Α          | Α          | Α          | Vdd   | Vss   | 6/0                          |
| 1010            | D                         | D                         | Α                         | Α          | VREF+      | Α          | Α          | Α          | RA3   | Vss   | 5/1                          |
| 1011            | D                         | D                         | Α                         | Α          | VREF+      | VREF-      | Α          | Α          | RA3   | RA2   | 4/2                          |
| 1100            | D                         | D                         | D                         | Α          | VREF+      | VREF-      | Α          | Α          | RA3   | RA2   | 3/2                          |
| 1101            | D                         | D                         | D                         | D          | VREF+      | VREF-      | Α          | Α          | RA3   | RA2   | 2/2                          |
| 1110            | D                         | D                         | D                         | D          | D          | D          | D          | Α          | Vdd   | Vss   | 1/0                          |
| 1111            | D                         | D                         | D                         | D          | VREF+      | VREF-      | D          | Α          | RA3   | RA2   | 1/2                          |

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

| Legend:            |                  |                                           |  |
|--------------------|------------------|-------------------------------------------|--|
| R = Readable bit   | W = Writable bit | U = Unimplemented bit, read as '0'        |  |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared $x = Bit$ is unknown |  |

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 11-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

To determine sample time, see Section 11.1. After this acquisition time has elapsed, the A/D conversion can be started.

These steps should be followed for doing an A/D Conversion:

- 1. Configure the A/D module:
  - Configure analog pins/voltage reference and digital I/O (ADCON1)
  - Select A/D input channel (ADCON0)
  - Select A/D conversion clock (ADCON0)
  - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
  - · Clear ADIF bit
  - · Set ADIE bit
  - Set PEIE bit
  - · Set GIE bit

- 3. Wait the required acquisition time.
- 4. Start conversion:
  - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
  - Polling for the GO/DONE bit to be cleared (with interrupts enabled); OR
  - Waiting for the A/D interrupt
- Read A/D result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before the next acquisition starts.

FIGURE 11-1: A/D BLOCK DIAGRAM



#### 11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-2. The maximum recommended impedance for analog sources is  $10~\mathrm{k}\Omega$ . As the impedance is decreased, the acquisition time may be decreased.

After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 11-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the PICmicro™ Mid-Range Reference Manual (DS33023).

#### **EQUATION 11-1: ACQUISITION TIME**

Tacq = Amplifier Settling Time +
Hold Capacitor Charging Time +
Temperature Coefficient

= Tamp + Tc + Tcoff
=  $2\mu$ s + Tc + [(Temperature -25°C)(0.05 $\mu$ s/°C)]

Tc = Chold (Ric + Rss + Rs) In(1/2047)
= -120pF (1k $\Omega$  + 7k $\Omega$  + 10k $\Omega$ ) In(0.0004885)
=  $16.47\mu$ s

Tacq =  $2\mu$ s +  $16.47\mu$ s + [(50°C -25°C)(0.05 $\mu$ s/°C)
=  $19.72\mu$ s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- 3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

#### FIGURE 11-2: ANALOG INPUT MODEL



# 11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires a minimum 12TAD per 10-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal A/D module RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6  $\mu s.$ 

Table 11-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

| AD Clock                | Source (TAD) | Maximum Device Frequency |
|-------------------------|--------------|--------------------------|
| Operation               | ADCS1:ADCS0  | Max.                     |
| 2Tosc                   | 00           | 1.25 MHz                 |
| 8Tosc                   | 01           | 5 MHz                    |
| 32Tosc                  | 10           | 20 MHz                   |
| RC <sup>(1, 2, 3)</sup> | 11           | (Note 1)                 |

- **Note 1:** The RC source has a typical TAD time of 4 μs, but can vary between 2-6 μs.
  - 2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.
  - 3: For extended voltage devices (LC), please refer to the Electrical Characteristics (Sections 15.1 and 15.2).

#### 11.3 Configuring Analog Port Pins

The ADCON1 and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, any pin configured as an analog input channel will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
  - 2: Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the device specifications.

#### 11.4 A/D Conversions

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next

acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.

In Figure 11-3, after the GO bit is set, the first time segment has a minimum of TCY and a maximum of TAD.

**Note:** The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 11-3: A/D CONVERSION TAD CYCLES



#### 11.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D

Format Select bit (ADFM) controls this justification. Figure 11-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's'. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 11-4: A/D RESULT JUSTIFICATION



#### 11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/ $\overline{DONE}$  bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To allow the conversion to occur during SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

#### 11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D

| Address               | Name   | Bit 7                | Bit 6      | Bit 5    | Bit 4         | Bit 3      | Bit 2       | Bit 1        | Bit 0   | Value on<br>POR,<br>BOR | Value on<br>MCLR,<br>WDT |
|-----------------------|--------|----------------------|------------|----------|---------------|------------|-------------|--------------|---------|-------------------------|--------------------------|
| 0Bh,8Bh,<br>10Bh,18Bh | INTCON | GIE                  | PEIE       | TOIE     | INTE          | RBIE       | TOIF        | INTF         | RBIF    | 0000 000x               | 0000 000u                |
| 0Ch                   | PIR1   | PSPIF <sup>(1)</sup> | ADIF       | RCIF     | TXIF          | SSPIF      | CCP1IF      | TMR2IF       | TMR1IF  | 0000 0000               | 0000 0000                |
| 8Ch                   | PIE1   | PSPIE <sup>(1)</sup> | ADIE       | RCIE     | TXIE          | SSPIE      | CCP1IE      | TMR2IE       | TMR1IE  | 0000 0000               | 0000 0000                |
| 1Eh                   | ADRESH | A/D Resul            | t Register | High Byt | te            |            |             |              |         | xxxx xxxx               | uuuu uuuu                |
| 9Eh                   | ADRESL | A/D Resul            | t Register | Low Byte | е             |            |             |              |         | xxxx xxxx               | uuuu uuuu                |
| 1Fh                   | ADCON0 | ADCS1                | ADCS0      | CHS2     | CHS1          | CHS0       | GO/DONE     | _            | ADON    | 0000 00-0               | 0000 00-0                |
| 9Fh                   | ADCON1 | ADFM                 | _          | _        | _             | PCFG3      | PCFG2       | PCFG1        | PCFG0   | 0- 0000                 | 0- 0000                  |
| 85h                   | TRISA  | _                    | _          | PORTA    | Data Directio | n Register |             |              |         | 11 1111                 | 11 1111                  |
| 05h                   | PORTA  | _                    | _          | PORTA    | Data Latch w  | hen writte | n: PORTA pi | ns when re   | 0x 0000 | 0u 0000                 |                          |
| 89h <sup>(1)</sup>    | TRISE  | IBF                  | OBF        | IBOV     | PSPMODE       | _          | PORTE Da    | ta Direction | n bits  | 0000 -111               | 0000 -111                |
| 09h <sup>(1)</sup>    | PORTE  | _                    | _          | _        | _             | _          | RE2 RE1 RE0 |              |         | xxx                     | uuu                      |

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers/bits are not available on the 28-pin devices.

FIGURE 15-21: A/D CONVERSION TIMING



**TABLE 15-13: A/D CONVERSION REQUIREMENTS** 

| Param<br>No. | Sym  | Charac                        | cteristic             | Min      | Тур†     | Max | Units | Conditions                                                                                                                                                                                                  |
|--------------|------|-------------------------------|-----------------------|----------|----------|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130          | TAD  | A/D clock period              | Standard(F)           | 1.6      | _        | _   | μs    | Tosc based, VREF ≥ 3.0V                                                                                                                                                                                     |
|              |      |                               | Extended( <b>LF</b> ) |          | _        |     | μs    | Tosc based, VREF ≥ 2.0V                                                                                                                                                                                     |
|              |      |                               | Standard(F)           | 2.0      | 4.0      | 6.0 | μs    | A/D RC mode                                                                                                                                                                                                 |
|              |      |                               | Extended( <b>LF</b> ) |          | 6.0      | 9.0 | μs    | A/D RC mode                                                                                                                                                                                                 |
| 131          | TCNV | Conversion time (not (Note 1) |                       | _        | 12       | TAD |       |                                                                                                                                                                                                             |
| 132          | TACQ | Acquisition time              |                       | (Note 2) | 40       | _   | μs    |                                                                                                                                                                                                             |
|              |      |                               |                       | 10*      | ı        | Ι   | μs    | The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD). |
| 134          | Tgo  | Q4 to A/D clock start         |                       | _        | Tosc/2 § | _   | _     | If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.                                                            |

<sup>\*</sup> These parameters are characterized but not tested.

Note 1: ADRES register may be read on the following TcY cycle.

<sup>†</sup> Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

<sup>§</sup> This specification ensured by design.

<sup>2:</sup> See Section 11.1 for minimum conditions.

# 12.0 SPECIAL FEATURES OF THE CPU

All PIC16F87X devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator Selection
- RESET
  - Power-on Reset (POR)
  - Power-up Timer (PWRT)
  - Oscillator Start-up Timer (OST)
  - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code Protection
- ID Locations
- · In-Circuit Serial Programming
- · Low Voltage In-Circuit Serial Programming
- In-Circuit Debugger

PIC16F87X devices have a Watchdog Timer, which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits is used to select various options.

Additional information on special features is available in the PICmicro™ Mid-Range Reference Manual, (DS33023).

#### 12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. The erased, or unprogrammed value of the configuration word is 3FFFh. These bits are mapped in program memory location 2007h.

It is important to note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

#### REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)(1)

| CP1                 | CP0 | DEBUG                                                                      | _                                                                          | WRT                                                 | CPD                                          | LVP                                                      | BODEN                                                                                   | CP1                  | CP0 | PWRTE | WDTE | F0SC1 | F0SC0 |
|---------------------|-----|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|-----|-------|------|-------|-------|
| bit13               |     |                                                                            |                                                                            |                                                     |                                              |                                                          |                                                                                         |                      |     |       |      |       | bit0  |
| bit 13-1<br>bit 5-4 | 2,  | 11 = Code<br>10 = 1F00<br>10 = 0F00<br>01 = 1000<br>01 = 0800<br>00 = 0000 | e protect<br>Oh to 1FF<br>Oh to 0FF<br>Oh to 1FF<br>Oh to 0FF<br>Oh to 1FF | ion off<br>Fh code<br>Fh code<br>Fh code<br>Fh code | protecte<br>protecte<br>protecte<br>protecte | ed (PIC1<br>ed (PIC1<br>ed (PIC1<br>ed (PIC1<br>ed (PIC1 | Protection b<br>16F877, 876<br>16F874, 873<br>16F874, 873<br>16F874, 873<br>16F874, 873 | 5)<br>3)<br>5)<br>5) |     |       |      |       |       |
| bit 11              |     |                                                                            | cuit Deb                                                                   | ugger dis                                           | abled, R                                     | B6 and                                                   | RB7 are ge<br>RB7 are de                                                                |                      | •   | •     |      |       |       |
| bit 10              |     | Unimpler                                                                   | mented:                                                                    | Read as                                             | <b>'1'</b>                                   |                                                          |                                                                                         |                      |     |       |      |       |       |
| bit 9               |     |                                                                            | tected p                                                                   | rogram n                                            | nemory r                                     | may be                                                   | ole<br>written to by<br>be written t                                                    |                      |     |       |      |       |       |
| bit 8               |     | <b>CPD:</b> Dat<br>1 = Code<br>0 = Data I                                  | protection                                                                 | on off                                              |                                              |                                                          | d                                                                                       |                      |     |       |      |       |       |
| bit 7               |     | 1 = RB3/F                                                                  | PGM pin                                                                    | has PGN                                             | /l functio                                   | n, low v                                                 | ıming Enabl<br>oltage progı<br>e used for p                                             | amming               |     | i     |      |       |       |
| bit 6               |     | <b>BODEN</b> : 1 = BOR 0 = BOR 0                                           | enabled                                                                    | ut Reset                                            | Enable t                                     | oit <sup>(3)</sup>                                       |                                                                                         |                      |     |       |      |       |       |
| bit 3               |     | <b>PWRTE</b> : 1 = PWR 0 = PWR                                             | Γ disable                                                                  | ed                                                  | Enable bi                                    | <sub>it</sub> (3)                                        |                                                                                         |                      |     |       |      |       |       |
| bit 2               |     | <b>WDTE</b> : W<br>1 = WDT<br>0 = WDT                                      | enabled                                                                    |                                                     | nable bit                                    |                                                          |                                                                                         |                      |     |       |      |       |       |
| bit 1-0             |     | FOSC1:F<br>11 = RC 0<br>10 = HS 0<br>01 = XT 0<br>00 = LP 0                | oscillator<br>oscillator<br>oscillator                                     |                                                     | Selectio                                     | n bits                                                   |                                                                                         |                      |     |       |      |       |       |

- **Note 1:** The erased (unprogrammed) value of the configuration word is 3FFFh.
  - 2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.
  - 3: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.

#### 12.2 Oscillator Configurations

#### 12.2.1 OSCILLATOR TYPES

The PIC16F87X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

LP Low Power CrystalXT Crystal/Resonator

HS High Speed Crystal/Resonator

• RC Resistor/Capacitor

# 12.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-1). The PIC16F87X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 12-2).

FIGURE 12-1: CRYSTAL/CERAMIC
RESONATOR OPERATION
(HS, XT OR LP
OSC CONFIGURATION)



Note 1: See Table 12-1 and Table 12-2 for recommended values of C1 and C2.

- 2: A series resistor (R<sub>s</sub>) may be required for AT strip cut crystals.
- 3: RF varies with the crystal chosen.

# FIGURE 12-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)



TABLE 12-1: CERAMIC RESONATORS

|                      | Ranges Tested: |             |             |  |  |  |  |  |  |  |  |  |
|----------------------|----------------|-------------|-------------|--|--|--|--|--|--|--|--|--|
| Mode Freq. OSC1 OSC2 |                |             |             |  |  |  |  |  |  |  |  |  |
| XT                   | 455 kHz        | 68 - 100 pF | 68 - 100 pF |  |  |  |  |  |  |  |  |  |
|                      | 2.0 MHz        | 15 - 68 pF  | 15 - 68 pF  |  |  |  |  |  |  |  |  |  |
|                      | 4.0 MHz        | 15 - 68 pF  | 15 - 68 pF  |  |  |  |  |  |  |  |  |  |
| HS                   | 8.0 MHz        | 10 - 68 pF  | 10 - 68 pF  |  |  |  |  |  |  |  |  |  |
|                      | 16.0 MHz       | 10 - 22 pF  | 10 - 22 pF  |  |  |  |  |  |  |  |  |  |

These values are for design guidance only. See notes following Table 12-2.

|             | Resonators Used:               |             |  |  |  |  |  |  |
|-------------|--------------------------------|-------------|--|--|--|--|--|--|
| 455 kHz     | Panasonic EFO-A455K04B         | ± 0.3%      |  |  |  |  |  |  |
| 2.0 MHz     | Murata Erie CSA2.00MG          | ± 0.5%      |  |  |  |  |  |  |
| 4.0 MHz     | Murata Erie CSA4.00MG          | ± 0.5%      |  |  |  |  |  |  |
| 8.0 MHz     | Murata Erie CSA8.00MT          | ± 0.5%      |  |  |  |  |  |  |
| 16.0 MHz    | Murata Erie CSA16.00MX         | ± 0.5%      |  |  |  |  |  |  |
| All resonat | ors used did not have built-in | capacitors. |  |  |  |  |  |  |

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

| Osc Type | Crystal<br>Freq. | Cap. Range<br>C1 | Cap. Range<br>C2 |
|----------|------------------|------------------|------------------|
| LP       | 32 kHz           | 33 pF            | 33 pF            |
|          | 200 kHz          | 15 pF            | 15 pF            |
| XT       | 200 kHz          | 47-68 pF         | 47-68 pF         |
|          | 1 MHz            | 15 pF            | 15 pF            |
|          | 4 MHz            | 15 pF            | 15 pF            |
| HS       | 4 MHz            | 15 pF            | 15 pF            |
|          | 8 MHz            | 15-33 pF         | 15-33 pF         |
|          | 20 MHz           | 15-33 pF         | 15-33 pF         |

These values are for design guidance only. See notes following this table.

|         | Crystals Used         |          |  |  |  |  |  |  |  |
|---------|-----------------------|----------|--|--|--|--|--|--|--|
| 32 kHz  | Epson C-001R32.768K-A | ± 20 PPM |  |  |  |  |  |  |  |
| 200 kHz | STD XTL 200.000KHz    | ± 20 PPM |  |  |  |  |  |  |  |
| 1 MHz   | ECS ECS-10-13-1       | ± 50 PPM |  |  |  |  |  |  |  |
| 4 MHz   | ECS ECS-40-20-1       | ± 50 PPM |  |  |  |  |  |  |  |
| 8 MHz   | EPSON CA-301 8.000M-C | ± 30 PPM |  |  |  |  |  |  |  |
| 20 MHz  | EPSON CA-301 20.000M- | ± 30 PPM |  |  |  |  |  |  |  |
|         | С                     |          |  |  |  |  |  |  |  |

- **Note 1:** Higher capacitance increases the stability of oscillator, but also increases the start-up time.
  - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
  - **3:**  $R_s$  may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
  - **4:** When migrating from other PICmicro devices, oscillator performance should be verified.

#### 12.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 12-3 shows how the R/C combination is connected to the PIC16F87X.

FIGURE 12-3: RC OSCILLATOR MODE



#### **12.3 RESET**

The PIC16F87X differentiates between various kinds of RESET:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any RESET condition. Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset (POR), on the  $\overline{\text{MCLR}}$  and WDT Reset, on  $\overline{\text{MCLR}}$  Reset during

SLEEP, and Brown-out Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The  $\overline{\text{TO}}$  and  $\overline{\text{PD}}$  bits are set or cleared differently in different RESET situations as indicated in Table 12-4. These bits are used in software to determine the nature of the RESET. See Table 12-6 for a full description of RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 12-4.

These devices have a  $\overline{\text{MCLR}}$  noise filter in the  $\overline{\text{MCLR}}$  Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive  $\overline{\text{MCLR}}$  pin low.

#### FIGURE 12-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT



#### 12.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions. For additional information, refer to Application Note, AN007, "Power-up Trouble Shooting", (DS00007).

#### 12.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

#### 12.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay is over (if PWRT is enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or Wake-up from SLEEP.

#### 12.7 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 $\mu$ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

#### 12.8 Time-out Sequence

On power-up, the time-out sequence is as follows: The PWRT delay starts (if enabled) when a POR Reset occurs. Then OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F87X device operating in parallel.

Table 12-5 shows the RESET conditions for the STA-TUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

# 12.9 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has up to two bits depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if bit BOR cleared, indicating a BOR occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable and is, therefore, not valid at any time.

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS

| Oscillator Configuration | Power            | -up       | Brown-out        | Wake-up from |  |  |
|--------------------------|------------------|-----------|------------------|--------------|--|--|
| Oscillator Configuration | PWRTE = 0        | PWRTE = 1 | Brown-out        | SLEEP        |  |  |
| XT, HS, LP               | 72 ms + 1024Tosc | 1024Tosc  | 72 ms + 1024Tosc | 1024Tosc     |  |  |
| RC                       | 72 ms            |           | 72 ms            | _            |  |  |

TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE

| POR | BOR | то | PD |                                                         |
|-----|-----|----|----|---------------------------------------------------------|
| 0   | х   | 1  | 1  | Power-on Reset                                          |
| 0   | х   | 0  | х  | Illegal, TO is set on POR                               |
| 0   | х   | х  | 0  | Illegal, PD is set on POR                               |
| 1   | 0   | 1  | 1  | Brown-out Reset                                         |
| 1   | 1   | 0  | 1  | WDT Reset                                               |
| 1   | 1   | 0  | 0  | WDT Wake-up                                             |
| 1   | 1   | u  | u  | MCLR Reset during normal operation                      |
| 1   | 1   | 1  | 0  | MCLR Reset during SLEEP or interrupt wake-up from SLEEP |

Legend: x = don't care, u = unchanged

TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS

| Condition                          | Program<br>Counter    | STATUS<br>Register | PCON<br>Register |
|------------------------------------|-----------------------|--------------------|------------------|
| Power-on Reset                     | 000h                  | 0001 1xxx          | 0x               |
| MCLR Reset during normal operation | 000h                  | 000u uuuu          | uu               |
| MCLR Reset during SLEEP            | 000h                  | 0001 0uuu          | uu               |
| WDT Reset                          | 000h                  | 0000 luuu          | uu               |
| WDT Wake-up                        | PC + 1                | uuu0 0uuu          | uu               |
| Brown-out Reset                    | 000h                  | 0001 1uuu          | u0               |
| Interrupt wake-up from SLEEP       | PC + 1 <sup>(1)</sup> | uuu1 0uuu          | uu               |

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

**Note 1:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

| Register   |     | Dev | ices |     | Power-on Reset,<br>Brown-out Reset | MCLR Resets,<br>WDT Reset | Wake-up via WDT or<br>Interrupt |
|------------|-----|-----|------|-----|------------------------------------|---------------------------|---------------------------------|
| W          | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| INDF       | 873 | 874 | 876  | 877 | N/A                                | N/A                       | N/A                             |
| TMR0       | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| PCL        | 873 | 874 | 876  | 877 | 0000h                              | 0000h                     | PC + 1 <sup>(2)</sup>           |
| STATUS     | 873 | 874 | 876  | 877 | 0001 1xxx                          | 000q quuu <b>(3)</b>      | uuuq quuu <sup>(3)</sup>        |
| FSR        | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| PORTA      | 873 | 874 | 876  | 877 | 0x 0000                            | 0u 0000                   | uu uuuu                         |
| PORTB      | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| PORTC      | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| PORTD      | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| PORTE      | 873 | 874 | 876  | 877 | xxx                                | uuu                       | uuu                             |
| PCLATH     | 873 | 874 | 876  | 877 | 0 0000                             | 0 0000                    | u uuuu                          |
| INTCON     | 873 | 874 | 876  | 877 | 0000 000x                          | 0000 000u                 | uuuu uuuu(1)                    |
| PIR1       | 873 | 874 | 876  | 877 | r000 0000                          | r000 0000                 | ruuu uuuu <sup>(1)</sup>        |
|            | 873 | 874 | 876  | 877 | 0000 0000                          | 0000 0000                 | uuuu uuuu(1)                    |
| PIR2       | 873 | 874 | 876  | 877 | -r-0 00                            | -r-0 00                   | -r-u uu(1)                      |
| TMR1L      | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| TMR1H      | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| T1CON      | 873 | 874 | 876  | 877 | 00 0000                            | uu uuuu                   | uu uuuu                         |
| TMR2       | 873 | 874 | 876  | 877 | 0000 0000                          | 0000 0000                 | uuuu uuuu                       |
| T2CON      | 873 | 874 | 876  | 877 | -000 0000                          | -000 0000                 | -uuu uuuu                       |
| SSPBUF     | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| SSPCON     | 873 | 874 | 876  | 877 | 0000 0000                          | 0000 0000                 | uuuu uuuu                       |
| CCPR1L     | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| CCPR1H     | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| CCP1CON    | 873 | 874 | 876  | 877 | 00 0000                            | 00 0000                   | uu uuuu                         |
| RCSTA      | 873 | 874 | 876  | 877 | 0000 000x                          | 0000 000x                 | uuuu uuuu                       |
| TXREG      | 873 | 874 | 876  | 877 | 0000 0000                          | 0000 0000                 | uuuu uuuu                       |
| RCREG      | 873 | 874 | 876  | 877 | 0000 0000                          | 0000 0000                 | uuuu uuuu                       |
| CCPR2L     | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| CCPR2H     | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| CCP2CON    | 873 | 874 | 876  | 877 | 0000 0000                          | 0000 0000                 | uuuu uuuu                       |
| ADRESH     | 873 | 874 | 876  | 877 | xxxx xxxx                          | uuuu uuuu                 | uuuu uuuu                       |
| ADCON0     | 873 | 874 | 876  | 877 | 0000 00-0                          | 0000 00-0                 | uuuu uu-u                       |
| OPTION_REG | 873 | 874 | 876  | 877 | 1111 1111                          | 1111 1111                 | uuuu uuuu                       |
| TRISA      | 873 | 874 | 876  | 877 | 11 1111                            | 11 1111                   | uu uuuu                         |
| TRISB      | 873 | 874 | 876  | 877 | 1111 1111                          | 1111 1111                 | uuuu uuuu                       |
| TRISC      | 873 | 874 | 876  | 877 | 1111 1111                          | 1111 1111                 | uuuu uuuu                       |
| TRISD      | 873 | 874 | 876  | 877 | 1111 1111                          | 1111 1111                 | uuuu uuuu                       |
| TRISE      | 873 | 874 | 876  | 877 | 0000 -111                          | 0000 -111                 | uuuu -uuu                       |
| PIE1       | 873 | 874 | 876  | 877 | r000 0000                          | r000 0000                 | ruuu uuuu                       |
|            | 873 | 874 | 876  | 877 | 0000 0000                          | 0000 0000                 | uuuu uuuu                       |

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

<sup>2:</sup> When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

<sup>3:</sup> See Table 12-5 for RESET value for specific condition.

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

| Register | Devices |     | Power-on Reset,<br>Brown-out Reset | MCLR Resets,<br>WDT Reset | Wake-up via WDT or<br>Interrupt |           |           |
|----------|---------|-----|------------------------------------|---------------------------|---------------------------------|-----------|-----------|
| PIE2     | 873     | 874 | 876                                | 877                       | -r-0 00                         | -r-0 00   | -r-u uu   |
| PCON     | 873     | 874 | 876                                | 877                       | qq                              | uu        | uu        |
| PR2      | 873     | 874 | 876                                | 877                       | 1111 1111                       | 1111 1111 | 1111 1111 |
| SSPADD   | 873     | 874 | 876                                | 877                       | 0000 0000                       | 0000 0000 | uuuu uuuu |
| SSPSTAT  | 873     | 874 | 876                                | 877                       | 00 0000                         | 00 0000   | uu uuuu   |
| TXSTA    | 873     | 874 | 876                                | 877                       | 0000 -010                       | 0000 -010 | uuuu -uuu |
| SPBRG    | 873     | 874 | 876                                | 877                       | 0000 0000                       | 0000 0000 | uuuu uuuu |
| ADRESL   | 873     | 874 | 876                                | 877                       | xxxx xxxx                       | uuuu uuuu | uuuu uuuu |
| ADCON1   | 873     | 874 | 876                                | 877                       | 0 0000                          | 0 0000    | u uuuu    |
| EEDATA   | 873     | 874 | 876                                | 877                       | 0 0000                          | 0 0000    | u uuuu    |
| EEADR    | 873     | 874 | 876                                | 877                       | xxxx xxxx                       | uuuu uuuu | uuuu uuuu |
| EEDATH   | 873     | 874 | 876                                | 877                       | xxxx xxxx                       | uuuu uuuu | uuuu uuuu |
| EEADRH   | 873     | 874 | 876                                | 877                       | xxxx xxxx                       | uuuu uuuu | uuuu uuuu |
| EECON1   | 873     | 874 | 876                                | 877                       | x x000                          | u u000    | u uuuu    |
| EECON2   | 873     | 874 | 876                                | 877                       |                                 |           |           |

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition, r = reserved, maintain clear

- Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).
  - 2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
  - 3: See Table 12-5 for RESET value for specific condition.

FIGURE 12-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)



#### 12.10 Interrupts

The PIC16F87X family has up to 14 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt, and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or GIE bit.

FIGURE 12-9: INTERRUPT LOGIC



The following table shows which devices have which interrupts.

| Device        | TOIF | INTF | RBIF | PSPIF | ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | EEIF | BCLIF | CCP2IF |
|---------------|------|------|------|-------|------|------|------|-------|--------|--------|--------|------|-------|--------|
| PIC16F876/873 | Yes  | Yes  | Yes  |       | Yes  | Yes  | Yes  | Yes   | Yes    | Yes    | Yes    | Yes  | Yes   | Yes    |
| PIC16F877/874 | Yes  | Yes  | Yes  | Yes   | Yes  | Yes  | Yes  | Yes   | Yes    | Yes    | Yes    | Yes  | Yes   | Yes    |

#### 12.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION\_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit, GIE, decides whether or not the processor branches to the interrupt vector following wake-up. See Section 12.13 for details on SLEEP mode.

#### 12.10.2 TMR0 INTERRUPT

An overflow (FFh  $\rightarrow$  00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 5.0).

#### 12.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 3.2).

#### 12.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and STATUS register). This will have to be implemented in software.

For the PIC16F873/874 devices, the register W\_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., If W\_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1). The registers, PCLATH\_TEMP and STATUS\_TEMP, are only defined in bank 0.

Since the upper 16 bytes of each bank are common in the PIC16F876/877 devices, temporary holding registers W\_TEMP, STATUS\_TEMP, and PCLATH\_TEMP should be placed in here. These 16 locations don't require banking and therefore, make it easier for context save and restore. The same code shown in Example 12-1 can be used.

#### **EXAMPLE 12-1:** SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

```
MOVWF
         W TEMP
                            ;Copy W to TEMP register
SWAPF
         STATUS, W
                            ; Swap status to be saved into W
CLRF
         STATUS
                            ; bank 0, regardless of current bank, Clears IRP, RP1, RP0
MOVWF
         STATUS_TEMP
                            ; Save status to bank zero STATUS_TEMP register
MOVF
         PCLATH, W
                            ;Only required if using pages 1, 2 and/or 3
MOVWF
         PCLATH TEMP
                            ;Save PCLATH into W
         PCLATH
CLRF
                            ; Page zero, regardless of current page
:(ISR)
                            ; (Insert user code here)
MOVF
         PCLATH TEMP, W
                            ;Restore PCLATH
MOVWF
         PCLATH
                            ; Move W into PCLATH
SWAPF
         STATUS TEMP, W
                            ;Swap STATUS TEMP register into W
                            ; (sets bank to original state)
MOVWF
         STATUS
                            ; Move W into STATUS register
                            ;Swap W_TEMP
SWAPE
         W TEMP, F
SWAPF
         W TEMP, W
                            ;Swap W TEMP into W
```

#### 12.12 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 12.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION\_REG register.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.
  - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 12-10: WATCHDOG TIMER BLOCK DIAGRAM



TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS

| Address  | Name         | Bit 7 | Bit 6                | Bit 5 | Bit 4 | Bit 3                | Bit 2 | Bit 1 | Bit 0 |
|----------|--------------|-------|----------------------|-------|-------|----------------------|-------|-------|-------|
| 2007h    | Config. bits | (1)   | BODEN <sup>(1)</sup> | CP1   | CP0   | PWRTE <sup>(1)</sup> | WDTE  | FOSC1 | FOSC0 |
| 81h,181h | OPTION_REG   | RBPU  | INTEDG               | T0CS  | T0SE  | PSA                  | PS2   | PS1   | PS0   |

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 12-1 for operation of these bits.

#### 12.17 In-Circuit Serial Programming

PIC16F87X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware to be programmed.

When using ICSP, the part must be supplied at 4.5V to 5.5V, if a bulk erase will be executed. This includes reprogramming of the code protect, both from an onstate to off-state. For all other cases of ICSP, the part may be programmed at the normal operating voltages. This means calibration values, unique user IDs, or user code can be reprogrammed or added.

For complete details of serial programming, please refer to the EEPROM Memory Programming Specification for the PIC16F87X (DS39025).

#### 12.18 Low Voltage ICSP Programming

The LVP bit of the configuration word enables low voltage ICSP programming. This mode allows the microcontroller to be programmed via ICSP using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH, but can instead be left at the normal operating voltage. In this mode, the RB3/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. During programming, VDD is applied to the MCLR pin. To enter Programming mode, VDD must be applied to the RB3/PGM, provided the LVP bit is set. The LVP bit defaults to on ('1') from the factory.

Note 1: The High Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.

- 2: While in Low Voltage ICSP mode, the RB3 pin can no longer be used as a general purpose I/O pin.
- **3:** When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device.
- 4: RB3 should not be allowed to float if LVP is enabled. An external pull-down device should be used to default the device to normal operating mode. If RB3 floats high, the PIC16F87X device will enter Programming mode.
- 5: LVP mode is enabled by default on all devices shipped from Microchip. It can be disabled by clearing the LVP bit in the CONFIG register.
- **6:** Disabling LVP will provide maximum compatibility to other PIC16CXXX devices.

If Low Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB3/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when programming is entered with VIHH on MCLR. The LVP bit can only be charged when using high voltage on  $\overline{\text{MCLR}}$ .

It should be noted, that once the LVP bit is programmed to 0, only the High Voltage Programming mode is available and only High Voltage Programming mode can be used to program the device.

When using low voltage ICSP, the part must be supplied at 4.5V to 5.5V, if a bulk erase will be executed. This includes reprogramming of the code protect bits from an on-state to off-state. For all other cases of low voltage ICSP, the part may be programmed at the normal operating voltage. This means calibration values, unique user IDs, or user code can be reprogrammed or added.

#### 13.0 INSTRUCTION SET SUMMARY

Each PIC16F87X instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F87X instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

| Field | Description                                                                                                                                                         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f     | Register file address (0x00 to 0x7F)                                                                                                                                |
| W     | Working register (accumulator)                                                                                                                                      |
| b     | Bit address within an 8-bit file register                                                                                                                           |
| k     | Literal field, constant data or label                                                                                                                               |
| x     | Don't care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. |
| d     | Destination select; $d = 0$ : store result in W, $d = 1$ : store result in file register f. Default is $d = 1$ .                                                    |
| PC    | Program Counter                                                                                                                                                     |
| ТО    | Time-out bit                                                                                                                                                        |
| PD    | Power-down bit                                                                                                                                                      |

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1  $\mu s$ . If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2  $\mu s$ .

Table 13-2 lists the instructions recognized by the MPASM $^{TM}$  assembler.

Figure 13-1 shows the general formats that the instructions can have.

**Note:** To maintain upward compatibility with future PIC16F87X products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS



A description of each instruction is available in the PICmicro™ Mid-Range Reference Manual, (DS33023).

### PIC16F87X

TABLE 13-2: PIC16F87X INSTRUCTION SET

| Mnemonic, |      | Description                  | Cycles  |        | 14-Bit ( | Opcode | •    | Status   | Notes |
|-----------|------|------------------------------|---------|--------|----------|--------|------|----------|-------|
| Opera     | ands | Description                  |         | MSb    |          |        | LSb  | Affected | Notes |
|           |      | BYTE-ORIENTED FILE REGIS     | TER OPE | RATIO  | NS       |        |      |          |       |
| ADDWF     | f, d | Add W and f                  | 1       | 0.0    | 0111     | dfff   | ffff | C,DC,Z   | 1,2   |
| ANDWF     | f, d | AND W with f                 | 1       | 00     | 0101     | dfff   | ffff | Z        | 1,2   |
| CLRF      | f    | Clear f                      | 1       | 00     | 0001     | lfff   | ffff | Z        | 2     |
| CLRW      | -    | Clear W                      | 1       | 00     | 0001     | 0xxx   | xxxx | Z        |       |
| COMF      | f, d | Complement f                 | 1       | 00     | 1001     | dfff   | ffff | Z        | 1,2   |
| DECF      | f, d | Decrement f                  | 1       | 00     | 0011     | dfff   | ffff | Z        | 1,2   |
| DECFSZ    | f, d | Decrement f, Skip if 0       | 1(2)    | 00     | 1011     | dfff   | ffff |          | 1,2,3 |
| INCF      | f, d | Increment f                  | 1       | 00     | 1010     | dfff   | ffff | Z        | 1,2   |
| INCFSZ    | f, d | Increment f, Skip if 0       | 1(2)    | 00     | 1111     | dfff   | ffff |          | 1,2,3 |
| IORWF     | f, d | Inclusive OR W with f        | 1       | 00     | 0100     | dfff   | ffff | Z        | 1,2   |
| MOVF      | f, d | Move f                       | 1       | 00     | 1000     | dfff   | ffff | Z        | 1,2   |
| MOVWF     | f    | Move W to f                  | 1       | 00     | 0000     | lfff   | ffff |          |       |
| NOP       | -    | No Operation                 | 1       | 00     | 0000     | 0xx0   | 0000 |          |       |
| RLF       | f, d | Rotate Left f through Carry  | 1       | 00     | 1101     | dfff   | ffff | С        | 1,2   |
| RRF       | f, d | Rotate Right f through Carry | 1       | 00     | 1100     | dfff   | ffff | С        | 1,2   |
| SUBWF     | f, d | Subtract W from f            | 1       | 00     | 0010     | dfff   | ffff | C,DC,Z   | 1,2   |
| SWAPF     | f, d | Swap nibbles in f            | 1       | 00     | 1110     | dfff   | ffff |          | 1,2   |
| XORWF     | f, d | Exclusive OR W with f        | 1       | 00     | 0110     | dfff   | ffff | Z        | 1,2   |
|           |      | BIT-ORIENTED FILE REGIST     | ER OPER | RATION | IS       |        |      |          |       |
| BCF       | f, b | Bit Clear f                  | 1       | 01     | 00bb     | bfff   | ffff |          | 1,2   |
| BSF       | f, b | Bit Set f                    | 1       | 01     | 01bb     | bfff   | ffff |          | 1,2   |
| BTFSC     | f, b | Bit Test f, Skip if Clear    | 1 (2)   | 01     | 10bb     | bfff   | ffff |          | 3     |
| BTFSS     | f, b | Bit Test f, Skip if Set      | 1 (2)   | 01     | 11bb     | bfff   | ffff |          | 3     |
|           |      | LITERAL AND CONTROL          | OPERATI | ONS    |          |        |      |          |       |
| ADDLW     | k    | Add literal and W            | 1       | 11     | 111x     | kkkk   | kkkk | C,DC,Z   |       |
| ANDLW     | k    | AND literal with W           | 1       | 11     | 1001     | kkkk   | kkkk | Z        |       |
| CALL      | k    | Call subroutine              | 2       | 10     | 0kkk     | kkkk   | kkkk |          |       |
| CLRWDT    | -    | Clear Watchdog Timer         | 1       | 00     | 0000     | 0110   | 0100 | TO,PD    |       |
| GOTO      | k    | Go to address                | 2       | 10     | 1kkk     | kkkk   | kkkk |          |       |
| IORLW     | k    | Inclusive OR literal with W  | 1       | 11     | 1000     | kkkk   | kkkk | Z        |       |
| MOVLW     | k    | Move literal to W            | 1       | 11     | 00xx     | kkkk   | kkkk |          |       |
| RETFIE    | -    | Return from interrupt        | 2       | 00     | 0000     | 0000   | 1001 |          |       |
| RETLW     | k    | Return with literal in W     | 2       | 11     | 01xx     | kkkk   | kkkk |          |       |
| RETURN    | -    | Return from Subroutine       | 2       | 00     | 0000     | 0000   | 1000 |          |       |
| SLEEP     | -    | Go into standby mode         | 1       | 00     | 0000     | 0110   | 0011 | TO,PD    |       |
| SUBLW     | k    | Subtract W from literal      | 1       | 11     | 110x     | kkkk   | kkkk | C,DC,Z   |       |
| XORLW     | k    | Exclusive OR literal with W  | 1       | 11     | 1010     | kkkk   | kkkk | Z        |       |

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

**Note:** Additional information on the mid-range instruction set is available in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).

<sup>2:</sup> If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

<sup>3:</sup> If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

#### 13.1 Instruction Descriptions

| ADDLW            | Add Literal and W                                                                                                 |  |
|------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Syntax:          | [ <i>label</i> ] ADDLW k                                                                                          |  |
| Operands:        | $0 \le k \le 255$                                                                                                 |  |
| Operation:       | $(W) + k \to (W)$                                                                                                 |  |
| Status Affected: | C, DC, Z                                                                                                          |  |
| Description:     | The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register. |  |

| BCF              | Bit Clear f                          |
|------------------|--------------------------------------|
| Syntax:          | [ <i>label</i> ] BCF f,b             |
| Operands:        | $0 \le f \le 127$<br>$0 \le b \le 7$ |
| Operation:       | $0 \rightarrow (f {<} b {>})$        |
| Status Affected: | None                                 |
| Description:     | Bit 'b' in register 'f' is cleared.  |

| ADDWF            | Add W and f                                                                                                                                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] ADDWF f,d                                                                                                                                                  |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                 |
| Operation:       | (W) + (f) $\rightarrow$ (destination)                                                                                                                              |
| Status Affected: | C, DC, Z                                                                                                                                                           |
| Description:     | Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. |

| BSF              | Bit Set f                                                              |
|------------------|------------------------------------------------------------------------|
| Syntax:          | [label] BSF f,b                                                        |
| Operands:        | $\begin{aligned} 0 &\leq f \leq 127 \\ 0 &\leq b \leq 7 \end{aligned}$ |
| Operation:       | $1 \rightarrow (f < b >)$                                              |
| Status Affected: | None                                                                   |
| Description:     | Bit 'b' in register 'f' is set.                                        |
|                  |                                                                        |

| ANDLW            | AND Literal with W                                                                                            |
|------------------|---------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] ANDLW k                                                                                      |
| Operands:        | $0 \le k \le 255$                                                                                             |
| Operation:       | (W) .AND. (k) $\rightarrow$ (W)                                                                               |
| Status Affected: | Z                                                                                                             |
| Description:     | The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register. |

| BTFSS            | Bit Test f, Skip if Set                                                                                                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] BTFSS f,b                                                                                                                                                                              |
| Operands:        | $0 \le f \le 127$<br>$0 \le b < 7$                                                                                                                                                             |
| Operation:       | skip if $(f < b >) = 1$                                                                                                                                                                        |
| Status Affected: | None                                                                                                                                                                                           |
| Description:     | If bit 'b' in register 'f' is '0', the next instruction is executed.  If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2Tcy instruction. |

| ANDWF            | AND W with f                                                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] ANDWF f,d                                                                                                                         |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                 |
| Operation:       | (W) .AND. (f) $\rightarrow$ (destination)                                                                                                          |
| Status Affected: | Z                                                                                                                                                  |
| Description:     | AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. |

| BTFSC            | Bit Test, Skip if Clear                                                                                                                                                                                      |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] BTFSC f,b                                                                                                                                                                                            |
| Operands:        | $0 \le f \le 127$<br>$0 \le b \le 7$                                                                                                                                                                         |
| Operation:       | skip if $(f < b >) = 0$                                                                                                                                                                                      |
| Status Affected: | None                                                                                                                                                                                                         |
| Description:     | If bit 'b' in register 'f' is '1', the next instruction is executed.  If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction. |

# PIC16F87X

| CALL             | Call Subroutine                                                                                                                                                                            | CLRWDT           | Clear Watchdog Timer                                                                                                                           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] CALL k                                                                                                                                                                           | Syntax:          | [label] CLRWDT                                                                                                                                 |
| Operands:        | $0 \le k \le 2047$                                                                                                                                                                         | Operands:        | None                                                                                                                                           |
| Operation:       | $(PC)+1 \rightarrow TOS,$<br>$k \rightarrow PC<10:0>,$<br>$(PCLATH<4:3>) \rightarrow PC<12:11>$                                                                                            | Operation:       | 00h → WDT<br>0 → WDT prescaler,<br>1 → $\overline{100}$                                                                                        |
| Status Affected: | None                                                                                                                                                                                       |                  | 1 → PD                                                                                                                                         |
| Description:     | Call Subroutine. First, return                                                                                                                                                             | Status Affected: | TO, PD                                                                                                                                         |
|                  | address (PC+1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction. | Description:     | CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.                          |
| CLRF             | Clear f                                                                                                                                                                                    | COMF             | Complement f                                                                                                                                   |
| Syntax:          | [label] CLRF f                                                                                                                                                                             | Syntax:          | [ label ] COMF f,d                                                                                                                             |
| Operands:        | $0 \le f \le 127$                                                                                                                                                                          | Operands:        | 0 ≤ f ≤ 127                                                                                                                                    |
| Operation:       | 00h  (f)                                                                                                                                                                                   |                  | d ∈ [0,1]                                                                                                                                      |
|                  | $1 \rightarrow Z$                                                                                                                                                                          | Operation:       | $(\bar{f}) \rightarrow (destination)$                                                                                                          |
| Status Affected: | Z                                                                                                                                                                                          | Status Affected: | Z                                                                                                                                              |
| Description:     | The contents of register 'f' are cleared and the Z bit is set.                                                                                                                             | Description:     | The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'. |
| CLRW             | Clear W                                                                                                                                                                                    | DECF             | Decrement f                                                                                                                                    |
| Syntax:          | [ label ] CLRW                                                                                                                                                                             | Syntax:          | [label] DECF f,d                                                                                                                               |
| Operands:        | None                                                                                                                                                                                       | Operands:        | $0 \le f \le 127$                                                                                                                              |
| Operation:       | $00h \rightarrow (W)$                                                                                                                                                                      |                  | d ∈ [0,1]                                                                                                                                      |
|                  | $1 \rightarrow Z$                                                                                                                                                                          | Operation:       | (f) - 1 $\rightarrow$ (destination)                                                                                                            |
| Status Affected: | Z                                                                                                                                                                                          | Status Affected: | Z                                                                                                                                              |
| Description:     | W register is cleared. Zero bit (Z) is set.                                                                                                                                                | Description:     | Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.           |

| DECFSZ           | Decrement f, Skip if 0                                                                                                                                                                                                                                                                             | INCFSZ           | Increment f, Skip if 0                                                                                                                                                                                                                                                                         |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] DECFSZ f,d                                                                                                                                                                                                                                                                               | Syntax:          | [ label ] INCFSZ f,d                                                                                                                                                                                                                                                                           |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                                                                                                                                                 | Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                                                                                                                                             |
| Operation:       | (f) - 1 $\rightarrow$ (destination);<br>skip if result = 0                                                                                                                                                                                                                                         | Operation:       | (f) + 1 $\rightarrow$ (destination),<br>skip if result = 0                                                                                                                                                                                                                                     |
| Status Affected: | None                                                                                                                                                                                                                                                                                               | Status Affected: | None                                                                                                                                                                                                                                                                                           |
| Description:     | The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.  If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead making it a 2TCY instruction. | Description:     | The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.  If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2Tcy instruction. |
| gото             | Unconditional Branch                                                                                                                                                                                                                                                                               | IORLW            | Inclusive OR Literal with W                                                                                                                                                                                                                                                                    |
| Syntax:          | [ label ] GOTO k                                                                                                                                                                                                                                                                                   | Syntax:          | [ label ] IORLW k                                                                                                                                                                                                                                                                              |
| Operands:        | $0 \le k \le 2047$                                                                                                                                                                                                                                                                                 | Operands:        | $0 \le k \le 255$                                                                                                                                                                                                                                                                              |
| Operation:       | $k \rightarrow PC < 10:0 >$                                                                                                                                                                                                                                                                        | Operation:       | (W) .OR. $k \rightarrow (W)$                                                                                                                                                                                                                                                                   |
|                  | PCLATH<4:3> → PC<12:11>                                                                                                                                                                                                                                                                            | Status Affected: | Z                                                                                                                                                                                                                                                                                              |
| Status Affected: | None                                                                                                                                                                                                                                                                                               | Description:     | The contents of the W register are                                                                                                                                                                                                                                                             |
| Description:     | GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.                                                                                                                  |                  | OR'ed with the eight bit literal 'k'. The result is placed in the W register.                                                                                                                                                                                                                  |
| INCF             | Increment f                                                                                                                                                                                                                                                                                        | IORWF            | Inclusive OR W with f                                                                                                                                                                                                                                                                          |
| Syntax:          | [ label ] INCF f,d                                                                                                                                                                                                                                                                                 | Syntax:          | [ label ] IORWF f,d                                                                                                                                                                                                                                                                            |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                                                                                                                                                 | Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                                                                                                                                             |
| Operation:       | (f) + 1 $\rightarrow$ (destination)                                                                                                                                                                                                                                                                | Operation:       | (W) .OR. (f) $\rightarrow$ (destination)                                                                                                                                                                                                                                                       |
| Status Affected: | Z                                                                                                                                                                                                                                                                                                  | Status Affected: | Z                                                                                                                                                                                                                                                                                              |
| Description:     | The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in                                                                                                                                                       | Description:     | Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in                                                                                                                                                    |

incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in

register 'f'.

the result is placed back in

register 'f'.

# **PIC16F87X**

| MOVF             | Move f                                                                                                                                                                                                                                                    |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Syntax:          | [ label ] MOVF f,d                                                                                                                                                                                                                                        |  |  |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                                                                                                        |  |  |
| Operation:       | $(f) \to (destination)$                                                                                                                                                                                                                                   |  |  |
| Status Affected: | Z                                                                                                                                                                                                                                                         |  |  |
| Description:     | The contents of register f are moved to a destination dependant upon the status of d. If d = 0, destination is W register. If d = 1, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected. |  |  |

| NOP              | No Operation  |
|------------------|---------------|
| Syntax:          | [label] NOP   |
| Operands:        | None          |
| Operation:       | No operation  |
| Status Affected: | None          |
| Description:     | No operation. |
|                  |               |
|                  |               |
|                  |               |
|                  |               |

| MOVLW            | Move Literal to W                                                                          |
|------------------|--------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] MOVLW k                                                                          |
| Operands:        | $0 \leq k \leq 255$                                                                        |
| Operation:       | $k \to (W)$                                                                                |
| Status Affected: | None                                                                                       |
| Description:     | The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's. |

| RETFIE           | Return from Interrupt                                   |
|------------------|---------------------------------------------------------|
| Syntax:          | [ label ] RETFIE                                        |
| Operands:        | None                                                    |
| Operation:       | $\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$ |
| Status Affected: | None                                                    |

| MOVWF            | Move W to f                                |
|------------------|--------------------------------------------|
| Syntax:          | [ label ] MOVWF f                          |
| Operands:        | $0 \le f \le 127$                          |
| Operation:       | $(W) \rightarrow (f)$                      |
| Status Affected: | None                                       |
| Description:     | Move data from W register to register 'f'. |

| RETLW            | Return with Literal in W                                                                                                                                                |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] RETLW k                                                                                                                                                         |
| Operands:        | $0 \leq k \leq 255$                                                                                                                                                     |
| Operation:       | $k \rightarrow (W);$<br>TOS $\rightarrow$ PC                                                                                                                            |
| Status Affected: | None                                                                                                                                                                    |
| Description:     | The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction. |

#### 

RLF

one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

Rotate Left f through Carry

C Register f

#### **SLEEP**

Syntax: [ label ] SLEEP
Operands: None

Operation:  $00h \rightarrow WDT$ ,

 $0 \rightarrow WDT$  prescaler,

 $1 \to \overline{\overline{10}}, \\ 0 \to \overline{PD}$ 

Status Affected: TO, PD

Description: The power-down status bit,  $\overline{PD}$  is

cleared. Time-out status bit,  $\overline{\text{TO}}$  is set. Watchdog Timer and its

prescaler are cleared.

The processor is put into SLEEP mode with the oscillator stopped.

#### **RETURN Return from Subroutine** Syntax: [label] RETURN Operands: None Operation: $TOS \rightarrow PC$ Status Affected: None Description: Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

| RRF              | Rotate Right f through Carry                                                                                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] RRF f,d                                                                                                                                                                                    |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                                                 |
| Operation:       | See description below                                                                                                                                                                              |
| Status Affected: | С                                                                                                                                                                                                  |
| Description:     | The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. |
|                  | C Register f                                                                                                                                                                                       |

# SUBLWSubtract W from LiteralSyntax:[label] SUBLW kOperands: $0 \le k \le 255$ Operation: $k - (W) \to (W)$ Status Affected:C, DC, ZDescription:The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

| SUBWF               | Subtract W from f                                                                                                                                                           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:             | [ label ] SUBWF f,d                                                                                                                                                         |
| Operands:           | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                          |
| Operation:          | (f) - (W) $\rightarrow$ (destination)                                                                                                                                       |
| Status<br>Affected: | C, DC, Z                                                                                                                                                                    |
| Description:        | Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. |

# **PIC16F87X**

| SWAPF            | Swap Nibbles in f                                                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] SWAPF f,d                                                                                                                                                  |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                 |
| Operation:       | $(f<3:0>) \rightarrow (destination<7:4>),$<br>$(f<7:4>) \rightarrow (destination<3:0>)$                                                                            |
| Status Affected: | None                                                                                                                                                               |
| Description:     | The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in register 'f'. |

| XORLW            | Exclusive OR Literal with W                                                                                       |
|------------------|-------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] XORLW k                                                                                          |
| Operands:        | $0 \leq k \leq 255$                                                                                               |
| Operation:       | (W) .XOR. $k \rightarrow (W)$                                                                                     |
| Status Affected: | Z                                                                                                                 |
| Description:     | The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register. |

| XORWF            | Exclusive OR W with f                                                                                                                                                       |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] XORWF f,d                                                                                                                                                  |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                                          |
| Operation:       | (W) .XOR. (f) $\rightarrow$ (destination)                                                                                                                                   |
| Status Affected: | Z                                                                                                                                                                           |
| Description:     | Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. |