Research Memorandum 71-4

ADA 0 79383

SIMPO-I DISTRO--DISTRIBUTION ROTATION MODEL

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.
THE JOPY FUPNISHED TO DDC CONTAINED A
SIGNIFICANT NUMBER OF PAGES WHICH DO TOT
OUT: DOCK LEGIBLY.

OC FILE COP

U. S. Army

Behavior and Systems Research Laboratory

December 1971

DISTRIBUTION STATEMENT A

DDC

Approved for public release; Distribution Unlimited

79 12 18 330

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

in executions and in the common part of the common of the

Joanne M. Witt

(II) Dec 111

Pauline T. Olson, Task Leader

14 Et 2R4-RM-11-41

[12/1CI]

Submitted by: Cecil D. Johnson, Chief Statistical Research Analysis Division

Approved by: J. E. Uhlaner, Director Behavioral Science Research Laboratory

Research Studies are special reports to military management. They are usually prepared to meet requests for research results bearing on specific management problems. A limited distribution is made--primarily to the operating agencies directly involved.

402 197

JOB

The DISTRO model is an adaptation of the SIMPO-I General Matrix Manipulator (GMM). The adaptation was at the direction of a special monitor team from the SIMPO-I Steering Committee, and required by the Program to Improve Management of Army Resources (PRIMAR II).

Based on the GMM, a mass flow model was developed to provide maximum coverage of policy-caused nondeployability. The model depicts the rotation, repreplacement, skill acquisition, and retention aspects of a 3-char.cter MOS. It uses the results of the monthly projection of a basic personnel inventory by the GMM in a special computerized routine to predict distribution capabilities. Specific tour durations and service commitments, permanent and temporary deployability factors, and delays after training or enroute to assignments are constraints on the availability of individuals for reassignment.

The present Research Memorandum describes the system simulated and the sections of the model logic that differ from the GMM. Instructions for model application, a listing of the DISTRO computer programs for the model, and sample input and output are provided.

-A-

<u>Princestronical consisting of the contractions of the contraction of the contractions of the contraction of the </u>

SIMPO I DISTRO -- DISTRIBUTION ROTATION MODEL

COMPENTS		
REQUIREMENT FOR MODEL	Page 1	
HISTORY OF SIMPO I CONCEPTS OF PERSONNEL ASSIGNMENT		
DESCRIPTION OF THE PROBLEM		
THE DISTRO MODEL	9	
DESCRIPTION OF THE DISTRO ROUTINES	1l;	
Section 1. Entry INPUT Section 2. Entry ISUMAR Section 3. Entry MODIFY Section 4. Entry MINIMUM Section 5. Entry IADD	16 18 22 23 21:	
DISTRO SAMPLE PROBLEM	30	
System Design System Flow Distribution Data Output for Sample Problem	30 37 47 59	
DISTRO REFERENCES	89	
APPENDIX: COMPUTER LISTINGS OF DISTRC ROUTINES	90	
TABLES		
Table 1. Parameters Input for DISTRO	17	
2. Definitions of Variables Input to DISTRO	19	
3. Data Input for DISTRO	26	
4. Tour Area Description for GMM-DISTRO S mple Problem	32	
5. Assets at Starting State of the System	3 4	
6. Personnel in Nodes at the Starting State of	38	

rables (Co	nti	nued)	Rage
Table 7	. (GMM input for Sample Problem	40
8		Initial and Final Transfer Rules	43
9	•	Priority-of-fill Rules for Sample Problem	48
10	. !	Tour Area Distributions to Command Elements	52
11	:	DISTRC Parameters Input for Sample Problem	57
12	2. :	DISTRO Command Element Data for Sample Problem	n 60
13	. :	DISTRO Parameters	65
14		Deployables Calculated After First Update of System	69
15	. :	Node and Node Cluster Reguirements	71
16	• 1	Nontransient Fersonnel Eligible for Distribut	ion 73
17	•	Personnel in Nodes After First Time Period	74
18		Summary of Personnel Flow During Time Period One	76
19		Distribution of Personnel From Tour Area to Command Elements	7 8
FIGURES			
Figure :	1.	Node Types in GMM	6
;	2.	Node Type B Flows in GMM	7
;	3.	DISTRO Nodes	12
1	4.	DISTRO Flows	13
	5.	Interface of GMM and DISTRO	15
(6.	Distribution Process	25
•	7.	Flow of Distribution Process in Subroutine ALLOCATE	28
,	Ω	Date Turnt Pau Canala Duablan	76

SIMPO I. DISTRO -- Distribution-Rotation Model

REQUIREMENT FOR MODEL

The major objective of the U. S. Army Behavior and Systems Research Laboratory Work Unit, Simulation of Personnel Operations (SIMPO I), has been to develop computerized models with which management can study and evaluate personnel policy changes. With such models management can consider well in advance the effect of proposed policies in relation to hypothetical events which seem likely to happen in the future.

Under the Program to Improve Management of Army Resources , the original plan was for Project 5-1, "Developing Techniques for Assessing the Impact of Personnel Policies on Deployability", to develop procedures to assess quantitatively the impact of personnel policies on deployment and readiness. Because the goal of this particular project seemed to be almost identical with the SIMPO I objective, formal establishment of an Army study group to work on the requirement was dropped in favor of shifting responsibility to a special Monitor Team from the SIMPO I Steering Committee.

Work toward the goal of insuring that the Army Staff would have appropriate tools to assess the effect of policy changes (or continuance) upon the number of men available for reassignment to

^{1/} Action Plan for PRIMAR II, McKinsey and Company, Inc. Page 1-16

a selected area progressed as a joint effort of the Monitor Team and the SIMPO I staff, with the latter providing plans and the Monitor Team guidance. The final work plan provided by the SIMPO I staff was reported to the Monitor Team in a summary report listing and describing SIMPO I models. Major portions of this report are to be found in BESRL Technical Research Report 1157, Summary of SIMPO I Model Development.

Along with descriptions of all SIMPO I models actually in use in late 1968, the report gave plans for models scheduled for completion by the end of FY 1969. Of particular relevance to PRIMAR II was the plan to adapt and extend a general model to simulate a personnel system designated by the Monitor Team. The personnel system modeled was selected as being one responsive to deployment-inhibiting policies by Staff Officers of the Capabilities and Analysis Division, Diwision of Procurement and Distribution, Deputy Chief of Staff for Personnel (ODCSPER-CAD). The planned model, although similar to other mass flow models coming out of SIMPO I, is concerned with more interacting variables affecting deployment than had been modeled previously.

en de de la comparta de la comparta

HISTORY OF SIMPO I CONCEPTS OF PERSONNEL ASSIGNMENT

SIMPO I has recognized that for results obtained from simulation models to approach what happens in the real system under the
conditions being studied, adequate representation of relevant system
characteristics must be made. These characteristics are dependent

upon the rules used by those responsible for operation of the system and for use of the personnel in the system. Individual differences among system members must also be considered. Depending upon the urgency of the situation (either real or hypothetical) and the hierarchy of values held by management, some members of a system are less likely than others to be used to fill a given job vacancy. Those more likely to be assigned to overseas stations are said to be more "deployable". Within a given set of rules which fully describe the limits: of use of system members for assignment to an area, a dichotomy or "deployable" and "nondeployable" persons can be made from those being considered for such assignment. The model used to predict the status of personnel availability would need to meaningfully relate rules, system variables, and individual characteristics so that only "deployable" persons were used to fill requirements, if its predictions were to be valid.

From the beginning of the SIMPO I effort, BESRL scientists have recognized the need to represent different levels of system

^{2/}SIMPO I models can be compared to the real system with regard to both intermediate and terminal output. Such comparisons can be used either to evaluate the extent regulations are being followed in the system or to determine the adequacy of the model for predicting system outcomes. In other words, a failure of model and system outcomes to agree can be used to pinpoint system failures as well as casting doubt on the validity of the model. Failure to agree may be due to a logical error in the model or to a failure to consider a critical variable. The first kind of error should, for the most part, be completely eliminated prior to validation studies. Comparison with the real system is not required to identify this kind of error.

usefulness for the individuals represented in the models. In the very early bulk flow models, the operating personnel inventory was discounted to make allowance for persons in transient, student, patient, or prisoner status. Later models have had nodes (states) representing stabilized assignments or recent returnees from assignment to combat areas. Some SIMPO I models have monitored time before expected termination of service in order that end-term nondeployability might be represented. Availability indices have been used to approximate the inhibiting effects of miscellaneous categories of nondeployability. Delay between system entry and first assignment has been considered in some models.

The SIMPO I models have become increasingly complex as effort has been made to depict more relevant aspects of the systems being simulated. Very early models represented the personnel system in a steady-state condition with flows between nodes constant across time periods. This was not a bad approxime To long as major shifts in force location or status did not tam place. However, the Vietnam involvement brought a heavy buildup of force in that area. The steady-state models could not realistically reflect the changing situation. SIMPO I then turned to dynamic models in which flows between nodes could be different from one time period to the next. The early dynamic models used a vector of numbers at each node in the model. At each update (each move from one time period to another), groups of individuals completing fixed length assignments were shifted, losses were taken, and groups in block n - 1 moved into block n of each node. Within the node vector, position

HAN A CHEST OF THE PROPERTY OF

represented time in state in the system, in location, or in grade.

By modeling carefully chosen rules for reassignment, and using indices to represent nondeployability, a reasonable abstraction of the real rotation (promotion) system was made.

Different enlistment terms with related variation in reenlistment rates caused SIMPO to move on to a matrix representation of the model nodes. With a matrix it is possible to consider at least two time measurements. Compared to the vector node, the matrix allowed an additional variable to be monitored. The additional time variable was important to modeling the rotation-assignment system, since both time in assignment and time remaining until expected release from the Army need to be considered when reassignments are made. Heavy losses at the end of the first enlistment term can b' simulated at the appropriate time in the matrix-node model. This was not possible in the vector-node model.

SIMPO I models which use matrices for at least some of the nodes are ACCMOD, DYROM II, the Career-NONcareer Model, and the General Matrix Manipulator (Figure 1). The models are individually documented in BESRL reports. (See references 1-4 for reports on the models).

The General Matrix Manipulator (GMM) is a set of flexible, compatible subroutines with which a variety of personnel systems and policies can be modeled. The GMM has been designed to allow for the rules of flow between nodes to be furnished at the time of model use, and to allow the number of nodes to vary from one problem to another (Figure 2). The GMM concept grew out of SIMPO I experience with several

Figure 2. Node Type B flows in the GMM.

specific odels which were efficient for a given system and a limited umber of personnel policies, but which had to be redesigned for each dissimilar system or each new policy. The GMM stores most system information in secondary areas of the computer (high speed discs). Information on system status is alternately transferred to the primary area where necessary calculations are made and then written onto a new disk when the calculations are completed. Thus, at the loss of speed and efficiency, the size of the system possible in the GMM is dramatically increased over the capacity of the other three matrix-node models.

DESCRIPTION OF THE PROBLEM

Existing policies impose constraints on the Army's ability to meet overseas commitments. New policies being considered by management may result in new restrictions. A data projection system which fails to consider existing policies or which does not provide for consideration of anticipated policies fails to present a realistic picture.

THE SECOND OF THE PROPERTY OF

Until a short time ago, distribution capabilities were estimated by Army management on the basis of number of jobs to be filled compared to the total number of men with appropriate skills in the Army. Consideration was not given to such restrictive conditions as recent return from combat assignment or a short period remaining before the end of commitment. Limitations on the usefulness of the early

distribution report were recognized by ODCSPER analysts and the need was expressed for comprehensive model coverage of the many deployment-inhibiting personnel policies in effect.

Distribution of personnel to command elements, one of the five functional areas of Army personnel management, was affected by rotation policy. Many separate policies were involved. Only one year of involuntary service in Vietnam was normally available from a two-year or three-year enlistee. Career service men were allowed to spend two years on family-accompanied assignments for each year spent on unaccompanied assignment. It was too costly of travel and job familiarization training to use a replacement who had only a few months left to serve. Many assignment policies affected only a few individuals each but together affected a significant number. Personnel shortages in a particular grade or skill level were covered by substitutions from the next lower, or schetimes from the second lower level. These and other similar considerations made it desirable to model more than one skill level in the same system and to make provisions to monitor time in tour and time in the system.

Since the GMM monitored two time dimensions in each matrix node and allowed the number of nodes to vary depending upon the systems modeled, plans were made to use the GMM in a distribution-rotation mass-flow model designed to provide maximum coverage of nondeployability.

THE DISTRO MODEL

Although an estimate of distribution capability was needed

on the basis of number of persons available for assignment to each command element - the lowest Army segment directly affected by the central replacement system - a more efficient computer model was achieved by dividing the rotation-assignment system into model nodes on the basis of tour lengths and rotation restrictions. After system flows were simulated between these areas, actual distribution estimates could be made mathematically, considering the priority of elements within the major areas.

Assignment areas represented in DISTRO sample problem were

Twelve-month short tour, ST1

Thirteen-month short tour, ST2

Long tour, III

Stabilized CONUS tour, SB

Other CONUS, 6

Before overseas, Cl

After short tour, C2

After long tour, C3

After CONUS, C4

The Infantry MOS (11B), which was selected for the sample problem, has three skill levels, 11B1, 11B2, and 11B4. Within the two lower skill levels, there are first term individuals under two-year and three-year enlistments. Since representation of end-term nondeployability was required in the model, it was important to provide separate nodes for the different enlistment terms. A total of 40 matrix nodes was required to cover all combinations of assignment area, skill level, and type of enlistment. The

maximum size of any required matrix was 48 by 48, to provide occupants of the CONUS tours at the beginning of the 24-month simulation the possibility of remaining in the same tour the complete simulation period. (The SIMPO I GMM makes all matrices the same size.) See Figure 3 for a tabular display of the nodes. Remember that each node is a 48 by 48 matrix with rows representing months in assignment, and columns representing months in the system. Measurement of time in the system for the career categories in the highest skill level was not a factor under consideration by the DISTRO model. However, the matrix node was required by the GMM concept.

Rotational and assignment flows are shown in Figure 4. In addition to the flows in the figure, DISTRO covers the flow from the lower skill level MOS to the higher and the flow from first to subsequent enlistments. All three types of flow are under control of the priority-of-fill rules input by the analyst. Actual rules used in the DISTRO example are shown later in discussion of the sample problem.

Computer programs for DISTRO are written in FORTRAN for the Control Data 3300 computer, with 32K memory. Two disks are required for use as secondary memory. System simulations have required around five minutes per month simulated.

Commercial designations are given in the interest of specificity of information. Their use does not constitute indorsement by the Army or by BESRL.

Assignment Area

Skill Level						ပ		
Enlistment Class	ST 1	ST 2	LT	SB	ဌ	C2	C3	C4
11 B4	Ö	Career	Career	Career	Career	Career	Career	Career
	Noncareer RA	NC-RA	NC-RA	NC-RA	NC-RA	NC-RA	NC-RA	NC-RA
Z T	Noncareer AUS	NC-AUS	NC-AUS	NC-AUS	NC-AUS	NC-AUS	NC-AUS	NC-AUS
11 81			Same as 1,4 B2					·

Figure 5. DISTRO Nodes

DESCRIPTION OF THE DISTRO ROUTINES

The GMM contains an option, specified with the variable IDISTON, to utilize an additional group of routines, called the DISTRIBUTION-ROTATION Model or DISTRO. These DISTRO routines project distribution capabilities of the personnel system being simulated by the GMM. As the GMM assigns personnel to node clusters representing tour areas, DISTRO determines how many of these assigned personnel are deployable, or non-transients. At the end of the GMM simulation, DISTRO accounts for other nondeployability factors such as patients and prisoners. It then distributes the remaining "deployable" personnel to smaller groups representing command elements.

This integration of the GMM and DISTRO routines to simulate the assignment-distribution-rotation process is illustrated in Figure 5. Although the logical sequence of the GMM routines remains essentially the same, the interspersed DISTRO routines do slightly modify the assignment process by introducing deployability factors.

The DISTRO application has one main subroutine or driver program, called MAINDST. This subroutine has the same function in the distribution process as the GMM driver program, MAINGMM, has in the rotation-assignment process - it determines the logical sequence of events. If the IDISTON variable is positive, MAINGMM relinquishes control to the MAINDST driver subroutine. In turn, MAINDST either performs the necessary function or relinquishes control to another subroutine. After the distribution calculations are completed, MAINGMM regains control and proceeds with the simulation.

MAINDST

MAINDST is a subroutine which consists of five sections with separate entry points. Although all five sections are in the same subroutine, they function as separate entities. In order to familiarize the reader with the distribution process, each section will be presented and described in detail.

Section 1 - Entry INPUT

```
C
C
       SECTION 1
C
      INPUT DISTRIBUTION PARAMETERS
      ENTRY INPIT
      READ 102 . MPRLEV . ISUM
      DO 18 I=1.NPRLEV
       ISTART=I#NT-NT+1
       ISTOP=I+NT
   18 RFAD 101, (PRIO(J), J=ISTART, 1STOP)
       INPR=ISUM+NT
       REAU 102 + (GRPINPR(I) + I=1 + INPR)
      READ 102 + (NCRNODE (1) , I=1 +NT)
      READ 102+NUMELEM+NUMMAT
      READ 102+ (MATGRPS(I), I=1+NUMELEM)
      READ 102+ (BEGROW(I) + ENDROW(I) + BEGCOL(I) + ENDCOL(I) + I=1 + NUMMAT)
C
      PRINT 103
      PRINT 105
      PRINT 106
       J=0
      DO 16 I=1.NUMELEM
       IF (MATGRPS(I).EQ.0)GO TO 14
       J=J+1
      PRINT 109. MATGRPS(I) . REGROW(J) . ENDROW(J) . BEGCOL(J) . FNDCOL(J)
       GO TO 16
   14 PRINT 110
   16 CONTINUE
      PRINT 104. (J, PRIO(J), J=1, ISTOP)
       RFTURN
```

Prior to the month by month simulation within the GMM, Section 1 inputs distribution parameters. This input consists of seven cards, each containing different variables. Table 1 shows the format and contents of

Table 1

Parameters Input for DISTRO

Card 1. (1 Card) FORMAT (4012)

NPRLEV, ISUM

Card 2. (NPRLEV sets of Card 2) FORMAT(8F10.4)

(PRIO(J), J = 1, NT)

Card 3. (1 Card) FORMAT (4012)

(GRPINPR(I), I = 1, INPR)

Card 4. (1 Card) FORMAT (4012)

(NCRNODE(I), I = 1, NT)

Card 5. (1 Card) FORMAT (4012)

NUMELEM, NUMMAT

Card 6. (1 Card) FORMAT (4012)

(MATGRPS(I), I = 1, NUMELEM)

Card 7. (1 Card) FORMAT (4012)

(BEGROW(I), ENDROW(I), BEGCOL(I), ENDCOL(I), I = 1, NUMMAT)

^aDISTRO Parameters Input following Card 1 of GMM setup.

parameters determine the characteristics of the total distribution process by describing the nodes which will be jointly distributed, as well as the nondeployability factors. For example, they specify the rows and columns of each matrix node which will represent transients. Since transients are not deployable and cannot fill requirements within command elements, they must be eliminated from the node cluster distribution totals.

Section 2 - Entry ISUMAR

```
C
C
      SECTION 2
      CALLS SUBPOUTINE SUMMARY WHICH OBTAINS TOTALS
      ENTRY ISUMAR
      INDIV=INIOT=0
      CALL SUMMARY (NUMELEM , INDIV , INTOT)
      CALCULATE MAXIMUM DEPLOYABLE AVAILABLE IN TOUR AREA
C
      J=0
      ISUM1=J=0
      DO 21 I=1. INPR
      IF (GRPINPP(I
                      ).GT.0) GO TO 17
      J=J+1
      MAXUEPL(J)=0
      GO TO 21
   17 ISUM1=ISUM1+1
      MAXDEPL(J)=MAXDEPL(J)+GRPSUM(ISUM1)
   21 CONTINUE
      PRINT 117. ISUM1.J
      RFTURN
```

KITEKKUMI KEKEMINI KEKEMINI KEKEMINI KEKEMINI KELINI KELINI KELINI KELINI KELINI KELINI KEMINI KEMI

Section 2 calculates the total number of deployable personnel, defined as nontransients, within each node and node cluster. The node deployable total consists of all personnel within the matrix node minus personnel in the rows and columns representing transients. The node cluster totals represent personnel who are to be distributed as a single pool, e.g., 11B1's in the short combat tour area.

Table 2

Definitions of Variables Input to DISTRO

1.	MPRLEV	Number of priority of fill levels.
		At each level minimum fill percent-
		ages are applied to each node or
		node cluster requirements to deter-
		mine the number of additional per-
		sonnel needed.

- 2. ISUM Number of tour areas to be distributed. (e.g., ST2-11B1 = one tour area)
- Number of fill percentages per fill level. NT = the number of nodes or node clusters.

- PRIO(NT)

 Percentages of fill for node or clusters which are input for each fill level and which act like minimum fill rates.
- 5. INPR ISUM + NT
- 6. GRPINPR(INPR)

 Vector designating the tour areas

 within priorities. A zero designates

 a new priority group, consisting of the

 tour areas following the zero. The

 number of priority groups = the number

 of zeroes.

7. NCRNODE(I)

Vector of critical nodes. A "1"

designates that the node corresponding to that element is a critical

node which must be filled to the

initial fill level regardless of other

lower priority node demands. A "0"

designates a noncritical node which can

be filled only as long as the other

nodes maintain their minimum fill levels.

8. NUMELEM

Number of elements in the MATGRPS

vector.

9. NUMMAT

Number of matrices of vectors which are

to be summed individually.

10. MATGRPS (NUMELEM)

Vector determining which matrices or vectors are to be summed individually and which aggregate sums are to be obtained. Each matrix is summed in the order listed in the vector. Upon reading a zero in the vector, the program calculates an aggregate sum of all matrices since the previous zero.

11. BEGROW (NUMMAT)

Vectors which determine respectave in-

ENDROW(NUMMAT) clusive row and column boundaries for

SEECOL(NUMMAT) matrices to be summed.

ENDCOL(NUMMAT)

BEGROW = first row of matrix

ENDROW = last row of matrix

BEGCOL = first column of matrix

ENDCOL = last column of matrix

These boundaries exclude personnel in areas of the matrix which represent transients.

12. PA(ISUM)

Patient or nondeployability rate

for each tour area. This percentage
is subtracted from the tour area nontransient sum prior to distribution to
the command elements.

13. NCAT

Number of command elements to which a tour area is distributed.

14. IDNC(NCAT)

Identification or labels for command

IDNCl(NCAT)

elements within a tour area.

15. RATE(NCAT)

Rate of fill for each command element or percentage of authorizations for the command element which must be filled. 16. NAUCAT (NCAT)

Authorization for each command element for a time period.

Section 2 caluclates these node and node cluster totals twice within the simulation of each time period - once prior to making any assignments and once after all assignments have been accomplished. The first totals of deployables are used during the assignment process to insure a minimum number of deployable personnel within each node cluster. The minimum level of requirements is compared with the variable MAXDEPL, the maximum number of node cluster deployables, in Section 4 of DISTRO.

After all assignments have been made, the deployable totals are again calculated and stored on disks for use at the end of the simulation. These latter totals minus other nondeployability factors will be distributed to specific command elements.

```
Section 3 - Entry MODIFY
C
      SECTION 3
C
      MODIFICATION OF REQUIRFMENTS FOR TIME PERIOD
      ENTRY MCD:FY
      J=LFVEL#NT-NT
      DO 6 I=1 NIT
      MIN(I) = 0
       J=J+1
       IF (IFILL-1)9,10
    9 NEEDS(I) = NED(I) *PRIO(J) - ACT(I)
       IF (NEEDS(T)) 3,4,4
    3 NFEDS(I)=\gamma
       GO TO 4
   10 NF(I) = NEE 'I) *PRIO(I) - ACTUAL(I)
       IF (NE(I)) 11,4,4
   11 NE(I) = 0
    4 IF (MAXDEPI (I ).LT.NEEDS (I )) MIN (I )=1
    6 CONTINUE
       IF(IFILL-1)12,13
   12 PRINT 107. (I, NEEDS(I), I=1,NT)
      PRINT 112. (NED(I), I=1, NT)
      PRINT 113. (ACT(I).I=1.NT)
      ISTART=LEVEL*NT-NT+1
      ISTOP=LEVFL*NT
      PRINT 114.LEVEL. (PRIO(I), J=ISTART, ISTOP)
      PRINT 115. (NCRNODE(I), I=1,NT)
      PRINT 116. (GRPINPR(I), T=1, INPR)
      GO TO 5
   13 PRINT 108.(I,NE(I),I=1.NT)
    5 CONTINUE
                                 22
       RFTURN
```

In order to prevent the higher priority nodes from completely depleting the lower priority nodes, MAINDST inputs several levels of fill percentages. The first level of percentages represents a minimum manning level which must be filled for all node clusters, if possible. Successive levels, which may be higher, must be filled only if personnel are available above the minimum manning level. Section 3 multiplies these fill percentages by the node cluster requirements to obtain the manning levels which will actually be filled. Control then returns to the MAINGMM which attempts to fill these requirements. After the first level has been filled, section 3 again modifies the original requirements, this time using the next highest percentages until the last level has been filled or until no more personnel are available for assignment.

Section 4 - Entry MINIMUM

С SECTION 4 MAINTAINS MINIMUM LEVEL IN TOUR AREAS FNTRY MINIMUM IDEMAND=NFEDS (MATOUT) IF (NCRNODF (MATIN) . EQ. 1) GO TO 25 IF (MAXDEP) (MATOUT) . LE. IDEMANU) GO TO 20 IF ((MAXDEPL (MATOUT) - SYST (M.LEN)).GE. IDEMAND) GO TO >5 Inver=MaxnePL (MATOUT) - IDEMAND IHOLD=SYST (M.LEN) - IOVER SYST (M.LEN) = IOVER GO TO 25 2() IHOLD=SYST (M,LEN) SYST (M+LEN) =0 MIN(MATOUT) = 125 CONTINUE RFTURN

Section 4 maintains a minimum number of deployable personnel within each node cluster. The node clusters cannot be depleted below this level

unless minimum manning levels within the critical nodes cannot be filled. When a node has been depleted to its minimum manning level, a flag variable, called MIN, becomes a positive number. This flag signals the search programs in the GPM, called FILUP and LOCK, to stop searching in this particular node. This signal can be overridden only if personnel are needed to fill up to the minimum level in critical nodes.

Section 5 - Entry IADD

SFCTION 5

C SECTION 5

C CALLS SUBPOUTINE ADDUP WHICH DISTRIBUTES NONE CLUSTERS AMONG
SPECIFIC DISTRIBUTION AREAS.
ENTRY IADO
CALL ALLOCATE
RETURN

At the end of the simulation, MAINGMM transfers control to Section 5 of MAINDST, which in turn calls subroutine ALLOCATE. Subroutine ALLOCATE is the real core of the DISTRO routines; it actually distributes the deployable personnel within each node cluster and time period to specific command elements. This distribution process is illustrated in Figure 6.

Given the number of nontransient personnel calculated in Section 2 of MAINDST during each time period and the percentage of other nondeployability factors for each node cluster, and given the command element authorizations and fill rates, subroutine ALLOCATE distributes the deployable personnel to their respective command elements.

in the commentation of the comment of the same and the commentation of the comment of the commen

In order to accomplish this process, subroutine ALLOCATE inputs five different types of cards listed in Table 3 and defined in Table 2. This

Given:

- (2). Tour Arez Total = Tour Arez Total Transients
 Nontransients

 D = Tour Arez Total * (1 Percent of Nondeployables)
 Nontransients

Distribute: Among Command Elements

Solution:

- (2) If D is greater than £A,

 Distribute A,*R, to Command Element X,

 A,*R, to Command Element Y, etc.

 Surplus = II-£A
 - (b) If D is less than IA,

Distribute D/LA + A, to Command Element X,
D/LA + A2 to Command Element Kzek

Shoatfall = D - IA

FIGURE 6. THE DISTRIBUTION PROCESS IN DISTRO

Table 3

Data Input for DISTRO

Card 1. (1 Card)

FORMAT (8110)

NCAT, (IDNC(J), IDNC1(J), J = 1, NCAT)

Card 4. (IAST Cards) FORMAT(8110) (NAUCAT(
$$J$$
), $J = 1$, NCAT)

DISTRO Data Input follows Card 9 of GMM setup.

data input describes the command elements, their fill rates, and authorizations. Also input are nondeployability percentages for each node cluster. These percentages represent patients, students, and other nondeployables except transients.

The Distribution process in subroutine ALLOCATE, which is flow-charted in Figure 7, will be briefly described. The number of deployable personnel within a node cluster (D) equals the product of the nontransient personnel in that node cluster times one minus the percentage of other nondeployability factors for the node cluster (1-PA). This number, D, must be distributed to command elements which have certain requirements. The total requirements (A) to be matched against D personnel equal the sum of the individual command authorizations times their fill rates. Thus, the problem is simply to distribute D personnel to fill requirements. If there are enough personnel available, i.e., if D is greater than A, then each command element receives its total requirements and the remaining personnel are surplus. Normally, however, manpower requirements exceed the manpower resources, i.e., D is less than A. In this case, each command element receives only a proportion, D A, of its requirements. (This process is repeated for each node cluster in each time period.) The SIMPO II version of DISTRO will modify subroutine ALLOCATE so that it will distribute all personnel based on the world-wide availability.

The DISTRO output presently lists the following details:

1. node cluster

- 2. time period
- 3. node cluster nontransients

- 4. node cluster nondeployability
- 5. node cluster deployables (D)
- 6. command element
- 7. command element authorization
- 8. command element fill rate
- 9. number allocated to command elements
- 10. surplus

Other information can be output at user's demands.

<u>Kerengan dan manggan bangan manggan m</u>

DISTRO SAMPLE PROBLEM

To expect a computer model, based on broad estimates of parameters and system characteristics, to simulate any system accurately is to expect the impossible. In order to output accurate detailed data meaningful to management, the user must provide at least as detailed and accurate a data base for input to the model. ODCSPER CAD has spent an extensive amount of time providing the limited information we now have available for this sample problem. Nevertheless, the data input still contain many There are no data on the time spent in the assignment area or on the time in the service for overseas personnel. Only a gross inventory of components (AUS and RA noncareer versus RA career personnel) within each MOS in the command elements is available, etc. Since the detailed input data are difficult, if not impossible, to obtain at the present time, the systems analyst has made some asaumptions about the available information in the development of data for this demonstration problem.

SYSTEM DESIGN

The system to be modeled covers eight assignment areas of the Infantry MOS family, 11B. Within this MOS family, there are three skill levels: 11B1, 11B2, and 11B4. These skill levels can be further classified by components of AUS and RA noncareer personnel in the 11B1s and 11B2s and RA career personnel in the 11B4s. In order to model all combinations of these eight assignment areas and five skill level-component categories, 40 matrix

nodes are defined (see Table 4). Each node represents one component within one MOS skill level in a specific assignment area. Within the GMM-DISTRO computer routines, the nodes are identified by both a node number and a node reference number. Table 5, printed as part of the computer output, lists the total number of assets in each of the eight assignment areas, referred to as node clusters, and the assets in each of the 40 individual MOS-component areas, referred to as nodes.

In order to spread the assets throughout the time periods in the individual nodes, the personnel are assumed to be evenly distributed throughout the length of the node. For example, of the 9944 assets within the first node (ST1-11B1-RAs), 904 people are placed in each of the eleven time periods in the node. Time in the service is assumed to have a correspondingly even distribution.

Within each of the 40 nodes, the personnel assets are input by the amount of time which they have spent in the tour, or assignment area, and in the system, or service. Row and column coordinates, representing these respective time dimensions, locate each group of personnel in the node. Using program FILL, these coordinates and the number of people located in the position by the coordinates are written onto a permanent storage disk from which they are input to a temporary storage disk by the Tour Deck Setup cards (see Figure 8 for the complete problem data setup).

TABLE 4

TOUR AREA DESCRIPTION FOR GMM-DISTRO SAMPLE PROBLEM

ASSGN. AREA CODE NO.	TYPE	CODE NO.	MOS SKILI LEVEI		COMPONENT	NODE NO.	NODE REFERENCE NO.
1	ST 1	1	11B1		NC-RA	1 .	1,1
					NC-AUS	2	1,2
		2	11B2		NC-RA	3	1,3
					NC-AUS	4	1,4
		3	11B4		CAREER	5	1,5
2	ST 2	4	11B1		NC-RA	6	2,1
					NC-AUS	7	2,2
		5	11B2		NC-RA	8	2,3
					NC-AUS	9	2,4
		6	11B4		CAREER	10	2,5
-							
3	LT	7	1181		NC-RA	11	3,1
		•			NC-AUS	12	3,2
		8	11B2		NC-RA	13	3,3
					NC-AUS	14	3,4
		9	11B4		CAREER	15	3, 5
.	000450						
4 ;	STAB	10	1181		NC-RA	16	4,1
					NC-AUS	17	4,2
		11	11B2		NC-RA	18	4,3
					NC-AUS	19	4,4
		12	11. B 4	32	CAREER	20	4,5
							_

Table 4 Cont.

ASSGN.		TOUR AREA	MOS			NODE
AREA CODE NO.	TYPE	CODE NO.	SKILL LEVEL	COMPONENT	NODE NO.	REFERENCE NO.
5	Cl	13	11B1	NC-RA	21	5,1
				NC-AUS	22 .	5 , 2
		14	11B2	NC-RA	23	5,3
				NC-AUS	24	5,4
		15	11B4	CAREER	25	2,5
6	C 2	16	11B1	NC-RA	26	6,1
				nc-Aus	थ	6,2
		17	11B2	NC-RA	28	6,3
				NC-AUS	29	6,4
		18	11B4	CAREER	30	6 , 5
7	С 3	19	1181	NC-RA	31	7,1
				NC-AUS	32	7,2
		20	J1B5	NC-RA	33	7,3
				NC-AUS	34	7,4
		21	11184	CAREER	<i>3</i> 5	7,5
8	C 4	22	11B1	NC-RA	36	8,1
				NC-AUS	37	8,2
		23	11B2	NC-RA	3 8	3,3
				NC-AUS	39	8,4
		24	1.1B4	CAREER	40	8,5

TABLE 5
ASSETS AT STARTING STATE OF THE SYSTEM

NODE CLUSTER AND NODE TOTALS

NODE	CLUSIFR	ı	=	14081
	MODE	1	=	99+4
	MUDE		=	11863
	t₀Uı)€		=	4264
	NUDE	4	=	6020
	りついと	5	=	6914
E(IUM	CLUSIFR	نے	=	7ხკი
	Ai():)Ê	5		2310
	NUNE	1	=	2310
	MUI)Ē	ห	=	784
	NUNE	y	=	984
	MUITE	10	=	1248
NODE	CLUSTER	3	=	14079
	MUDE	11	=	2734
	MUI)E.	12	=	2352
	NUDE	13		2710
	NUITE			2332
	นบทย			3700
1401)=	CLUSTER	4	=	(385)
	NUOÉ	15	=	. 424
	MUI)E	17	=	1153
	NU1)E	ŢŖ	=	964
	NUI)É	19	=	11/2
	ผบกร	4 0	=	3146
HODE	CLUSTER	ċ	=	12015
	MONE	۷1	=	1720
	NULLE	22	=	615 6
	MUNE	23	=	3169
	MUNE	24	=	3768
	NUI)É	25	=	3700
NODE	JLUSTFR	ь	=	4004
	ŊŨŊĔ	26	=	539
	#iO-)E	21	=	126
	NO)E	64	=	1484
	NUI)£	29	=	1424
	MODE	30	=	2445
NODE	CLUSTER		=	12
	##Un£			14
	NUME	30		U
	NONE	33	=	34
	MOHE	34	=	U
	4UI)È	35	=	24
NUI)E	CLUSIER			ა
	MUDE	36		U
	ういいど			•}
	HUDE			0
2 ₁				U
	いいご	40	=	U

FIGURE 8. DATA INPUT FOR SAMPLE PROBLEM

FIGURE 8 CONTINUED.

Table 6 shows the locations of all personnel at the starting state of the system. The printout gives the time in the service and the time in the tour, followed by the number of assets in each nonzero element in the node. For example, in the first node, there are 904 people in their sixth month in the system and their first month in the tour, 904 in their seventh month in the system and their second month in the tour, etc.

Parameters and control vectors input to the GMM are presented in Table 7. The simulation of eight assignment areas (node clusters) and 40 assignment area-skill level-enlistment groups (nodes) will run from month one to month four. Flow rules include 218 priority-of-fill rules, 48 initial and 20 final transfer rules, and two last resort rules. The LENGTH and OUT vectors respectively specify the length of service and the loss rates for each of the 40 nodes. Vectors, which are input at the beginning of each time period, are tour area requirements (NEEDS(1)-NEEDS(4)), and input from outside the system (IOS(1) - IOS(4)).

SYSTEM FLOW

The data to which the GMM-DISTRO simulation is the most sensitive are the flow parameters and rules. These parameters determine how closely the simulated system reflects the real world situation. Careful design and thorough systems analysis must precede this part of the data preparation. For this

TABLE 6

PERSONNEL IN NODES AT THE STARTING STATE OF THE SYSTEM

ñ	rs rou	SYS TOUR (COL . ROW)	=																	
- -	· ~ #	. 406 406	. ~ 4	, no	406	8 4		406	٥٨	' •==	405	. 01	,	. 406	1	9	406	. 12	~	* 06
ં [*] તા		1070		· c					2 3	}	;	1 2	!		;	: ,	,	!	1	
- -	· ·	1079	- :	u o	1079	ខ្មុ] J	1073	. 9	• : :	679	01	D.	500	=	۵	6201	75	~	6201
, ,	~	1066	ลา	~	1066	67	-	1066	50	, ~ , *	1066		i							
S rj¥		. 1505	. 97 - :	7	.1505		<u> </u>	.1505	02	1	1505	; .	:		· †	,				
, ,	~ D	582 582	V 5	N 0	585	91	3 .	585	*=	* = -	582 582	ئ 2	12	285 282	٠	٠	582	~	~	585
,	a -: -	210 210		N 9.	210 210	8 - 25	101	210	-161-	•я	210	04	S	210	11	٠	210	12	~	210
\$ E	- x	210 210	L 41	°¢ 10°.	210	8 51	۳۵	210 210	9	4:	210 210	91	S)	210	11	9	210	2	· ~	210
17.		246	18-	2	246	19	je r	246	20	* *	246 ···	1			!	i I	:	•		•
2 28	- x	104	1 22	200	104	E 01	F 2	104	*=	+:	104	51	22	104	9	9	104	~	~	104
14 64 51 51 51 51 51 51 51 51 51 51 51 51 51	20	249	~ 5	พร	546	B 25	اء ا	249	69	1=	648	10	្ស	249	=	ۍ	249	75	-	249
12 — 6 13		212	- 3	200	212	15	L 5	212		- 77	212	10	S	212	17	۰	212	21.	~ ,	212
E 4	1 1	629	18	2	629	- 61		619	02	I ¹ →	679	l !						;	į	į
2.	1 1	330	E 21	N 70	330	19		330	207	: 	583 330 330	្រំ	52	330 08F.	۰	۰	330	-	~ !	330
16	- + - +	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	, -37	!	48	. B		1 4 4 2 3 3 1 4 4 5	, 91	; *;	**************************************	97	S,	48	=	` م	88	27	~	ÃÖ.
		103	7 4	ν.	103	.51	. 61	103	16	* 1	103	07 .	ស	103	= '	۰	103	15	~	103
2. 1.	1 . 1	241	97	æ	241	19	٣	241	20	4	241									,

•
받
cont
O
9
41
Table
ಇ
Ĕ

1	566	160	961.	,	325	6	.	•		458	~			N	
	~	7	L.		7	٠.	7.		٠ .	-	~			~	
	. 1	. 11-	21.	!	. 7	12.	12			~	12			. ~	
	566	09	- 961			64	99		-	854	2			~	
		091		:	•				1	1					
	•9 •	90	9	-	1 9	1 6	9		:	9	9			9	
	1	7	1			11	=				-				
	266 266	160	. 196		325 325	64	99			458	900			N N	•
	-5-	122		:	52	2	Ŋ		Ì	S	, r			. જે	
	. 22	111-116	10	1	12	10	10			5	2 01			22 12	
293	, 995 266	160	196	28/	992 325 325	64	99	37.1	-356	458	9 N	-	⊅,	~ ~ ~ ~ ·	
4	* #	71	11	4	*	41	*:	*	*	4	; *	Ξ	*	, 4 2	•
20	11	15	. 6 .	- 20	8, 41	16	. 6 16	20	50	. •	6	36	20	· * I	
293	266 266	160	196 196	782	992 325 325	54	99	37.1	-356	45B	. 1		3	~~~	
۳	3	F.	3 1	3	: ក ក	٠ د	F 01			e e	92 6	9	۳	` ~ £	
19	10	18	- 8 - 15	19	6 6	8 15	 8 15	19	-61-	m į	0 C	<u></u>	61	M 9	
293	266	160	1961	782	992 325 325	49	99	371	-356	458	458 2	_		1 22	
~	ė o	9.5	יי יי		מ מס	No	20	2	-5-	~	2	ъ	. ~	02	
97	44	13	14	91-	B	14	14	18	18	~ :	~	*	10	, N 3v	, F
293	266 266	160 1	196 196	25	992 325 325	24	66 66	11	956	458	1	_	30	~~	•
52	36	1	115		\$ 8 8 8 1 8 8 8			371	35	4					
-	÷ 30	120	÷ 30	Ī	- - 3	~ 2	- 3	7	1	-	9 -1	-		- x - x	
20	7 F	51 12	22 	2 2	17 -253 1 8	-26 6 13	74.39	17	5))	31.6	A	33	S	6 2 2 3 3 4 4 5 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6

۲.

TABLE 7

GMM INPUT FOR SAMPLE PROBLEM

P/RAMETER NAME			VALUE INPUI	1
ID			A2	
NTOUR			8	
ITT			40	
FIRST			1	
Last			4	
IFILL			0	
NP			218	
MAXSUB		•	5	
cios			2	
MAXLEN			48	
LRT			2	
PDW			1.00	
IDISTON		1		
IPUNCH			0	
NOTT			68	
NOFIRST			48	
nolast			20	
VECTCI. NAME		<u>_</u> I	CLEMENTS IN VEC	TOR •
needs (1)	53505	7 836	14079	7385
	7934	6081	1002	0

Elements in vectors are presented in a row by row order as they were input for the sample problem.

Table 7 cont.

VECTOR NAME				EI	EMENIS	IN VEC	TOR		
NEEDS (2)	53505		7715		143	08	7428		
	7965		6100		9	96	0		
needs (3)	53505		7473		145	37	71+72		
	7996		6119		9	91	0		
NEEDS ('+)	53505		7473		147	66	7515		
	8027		6138		9	186	0		
105(1)	4450		1 ₁ 450						
102(5)	4450		4450						
102(3)	2575		2575						
105(4)	2575		2575						
LENGTH	12	12	12	12	12	13	13	13	
	13	13	36	36	36	36	36	26	
	26	26	26	26	47	47	47	47	
	47	47	47	47	47	47	47	47	
	47	47	47	47	47	47	47	47	
OUT	.2134	.0970	.109	X	.0656	.0892	.2134	.0970	.1090
	.0656	.0892	.213	34	.0970	.1090	.0656	.0982	.2134
	.0970	.1090	.065	6	.0892	.2134	.0970	.1090	.0656
	.0892	.2134	.097	70	.1090	.0656	.0892	.2134	.0970
	.1090	.0656	.089	92	.0000	.0000	.0000	.0000	.0000

SEMPLE problem the BESRL scientists worked closely with ODCSPER CAD. The complete set of flow rules use in this demonstration run, however, has not been verified by CAD.

Promotions, or horizontal movements, between MOS skill levels are reflected in the initial transfer rules. In the example shown, the following transfers occur:

- At the 17th time period, 90% of the llBls are promoted to the llB2s.
- At the 21st time period, 90% of the 11B2s (RA) and 9% of the 11B2s (AUS) are promoted to the 11B4s (RA); 1% of the remaining 11B2s (AUS) and 1 % of the 11B1s (AUS) are lost or transferred out of the system.
- At the end of the 33rd time period, 100% of the 11Bls (RA) and 11B2s (RA) are lost to the system.

In order to reflect these horizontal movements, 48 initial transfer rules were generated as shown in a computer printout, Table 8. The user must input a separate rule for each node to node movement. In this demonstration run, transfers, or horizontal movements, were not made in the CONUS after CONUS (C5) and the CONUS after STAB (C4) tours.

TOP STATES OF STATES STATES OF STATE

The following rules of vertical movement, flow between assignment area nodes, were modeled:

- Movement time from receipt of orders to movement is three months including one month transient time, i.e., from the time a group is ordered to the ST, three months will elapse before they arrive in the ST.
- 2. Two months delay from graduation from ATT until they can be ordered to ST. (Thus for individuals ordered to CONUS and then to ST, total time to reporting is five months, combining remarks 1 & 2.)
- Transient time for moves from overseas to CONUS is one month.

TABLE 8
INITIAL AND FINAL TRANSFER RULES

TOTAL TRANSFERS		INITIAL TRANSFERS = 48 FINAL THANSFERS	
900_FR3M_1-1-		11_TIME_BENTODS_TO-1+3_ AFTEN-OFTIME LEN!	
2.1 MCRF 006.	AFIER AFIER	17 TIME PERIODS TO 1.4 AFTER 0 TIME PERI 17 TIME PERIODS TO 2.3 AFTER 0 TIME PERI	
5.5 WCH-006-		_11_11ME_PERIOUS_LO_2.4AFTER_O_TIME_FER;	1
1.E MCF- 006.	AFIER	17 TIME PERIOUS TO 3.3 AFTER O TIME PERI	
.900 FRJM 3+2	AFTER	IT TIME PERIOUS TO 3.4 AFTER O TIME PERI	UU3
		ILLINE PERIODS TO +3 AFTER O TIME PERI	Cos
-900 FRJM 4+2	AFIER	17 TIME PERIODS TO 4.4 AFTER O TIME PERI	
.900 FRJM 5.1 900 FRJM 5.2_	.AFIE⊀ <u>AFIER</u>	1/ TIME PERIODS TO 5.3 AFTER 0 TIME PE-: 1/ IIME PERIODS ID 5.4 AFTER 0 TIME PERI	
.900 FRJM 6.1	AFTER	17 TIME PERIODS TO 6.3 AFTER O TIME PERI	
-900 FRJM 6+2	AF TER	17 TIME PERIODS TO 6,4 AFTER O TIME PERI	ひレる
900_E32M_1+3_	_AE.IE3_	21 TIME PERIOUS TO 1.5 AFTER OF THE PERI	
.900 FRJM 2+3	AFTER	21 TIME PERIODS TO 2.5 AFTER O TIME PERI	
.900 FROM 3.3 900 FROM 4.3	AFTER _AETER_	21 TIME PERIODS TO 3.5 AFTER O TIME PERI 21 IIME PERIODS TO 4.5 AFTER O TIME PERI	
•900 FHJM 5+3	AFIER	21 TIME PERIODS TO 5.5 AFTER O TIME PERI	
.900 FRJM 6+3	AFTER	21 TIME PERIOUS TO 6,5 AFTER U TIME PERI	
050_FR2M_1=4_	_AETE3_	21 IIME PERIOUS IO 1.5 AETER O TIME PERI	
-050 FRJM 2+4	AFTER.	21 TIME PEPIODS TO 2.5 AFTER U TIME PERI	
-050 FROM 3+4 -050 FROM 4+4	AFTER AFTER	21 TIME PERIODS TO 3.5 AFTER O TIME PERI Ex. ILME PERIODS TO 4.5 AFTER O TIME PERI	
•050 FRJM 5+4	AFTER	<u>À. LIME PERIONS TO 4.5 AFTER O TIME PERI</u> 21 TIME PERIODS TO 5.5 AFTER O TIME PERI	
.050 FRJM 6+4	AFTER	21 TIME PERIODS TO 6.5 AFTER O TIME PERI	-
010BJM_1.44_		LI TIME PERIOUS TO U.O AFTER O TIME PERI	
**5 MCP= 010*	AFTER	21 TIME PERIODS TO U.O AFTER O TIME PERI	
*010 FHOM 3*4	AFTER	21 TIME PERIOUS TO U.O AFTER O TIME PERI	
-010 FRJM 4+4 -010 FRJM 5+4	<u>AEIER</u> After	21 TIME PERIODS TO 0.0 AFTER 0 TIME PERI 21 TIME PERIODS TO 0.0 AFTER 0 TIME PERI	
.010 FRJM 6.4	AFTER	21 TIME PERIODS TO U.O AFTER O TIME PERI	
.010 FRUM 1.2		21 TIME PERIODS TO DAO AFTER O TIME PERI	
2.5 MCN- 010.	AFTER	21 TIME PERIODS TO U.O AFTER O TIME PERI	1005
.010 FRJM 3.2	AFTER	21 TIME PERIOUS TO U.O AFTER O TIME PERI	
<u>010, 5974, 4.22</u>	AFIER.	<u>21 IIME PERIODS IO 0.0 AETER O TIME PERI</u> 21 TIME PERIODS IO 0.0 AFTER O TIME PERI	
•010 FROM 5•2	AFTER AFTER	21 TIME PERIODS TO 0.0 AFTER 0 TIME PERI	
	_AF IE 3	33 TIME PERIOUS TO O.O. AFTER O. TIME PERI	
1+5 MCH 010+	AFTER	33 TIME PERIODS TO U.O AFTER U TIME PERI	[いりっ
-010 FROM 3+1	AFTER	33 TIME PERIODS TO 0.0 AFTER U TIME PERI	
010 FK2M 491	_AEIER_	11 ILME PERIODS IN D.O. AFIER D. TIME PERI	
*010 FROM 5*1	AFTER	33 TIME PERIODS TO 0.0 AFTER 0 TIME PERI 33 TIME PERIODS TO 0.0 AFTER 0 TIME PERI	
-010 E434 1+3	AFIER.	3 IIME PERIODS TO 0.0 AFTER O TIME PERI	
E.5 MCH 010.	AFTER	33 TIME PERIOUS TO 0.0 AFTER O TIME PERI	
E.E MCH- 010.	AFTER	33 TIME PERIODS TO U.O AFTER O TIME PERI	
010_FRJM_1+3_	AFIER	13 ILME PERIODS TU O.O. AFIER O. TIME CERT	
•010 FRJM 5+3	AFTER	33 TIME PERIODS TO 0.0 AFTER 0 TIME PERI 33 TIME PERIODS FU 0.0 AFTER 0 TIME PERI	
-010 FROM 6+3	AFTEL	33 TIME PERIODS TO 0.0 AFTER 0 TIME PERI 14 TIME PERIODS TO 0.1 AFTER 1 TIME PER	
1.000 FRJM 1.2	AFTER	13 TIME PERIODS TO 6.2 AFTER 1 TIME PER	
1.000 FRJM 1.3	AFTER.	13 TIME PERIODS TO 6.3 AFTER 1 TIME PERI	1063
1-000 FR3M 1-4	AFTER	13 TIME PERIODS TO 6.4 AFTER 1 TIME PER	
1.000 FRJM 1.5	AFTER.	13 TIME PERIODS TO 6.5 AFTER 1 TIME PERI	
1.000 FRJM 2.1	AFTER.	14 TIME PERIODS TO 6,1 AFTER 1 TIME PERI 14 TIME PERIODS TO 6,2 AFTER 1 TIME PERI	
1.000 FRJM 2.3	AFTER.	14 TIME PERIODS TO 6.3 AFTER 1 TIME PER	
1.000 FROM 2.4	AFTER	14 TIME PERIODS TO 0.4 AFTER 1 TIME PER	
1.000 FROM 2.5	AFTER	14 TIME PERIOUS TO D.S AFTER I TIME PERI	【ししコ
1-000 FRJM 3-1	AFTER	37 TIME PERIODS TO 7.1 AFTER 1 TIME PER	
1.000 FROM 3.2	AFTER	3/ TIME PERIODS TO 7.2 AFTER 1 TIME PER 37 TIME PERIODS TO 7.3 AFTER 1 TIME PER	
1.000 FRJM 3.3	AFTER	37 TIME PERIOUS TO 7.3 AFTER 1 TIME PER 37 TIME PERIOUS TO 7.4 AFTER 1 TIME PER	
_1.000_FRUM 3.5_			
1.000 FROM 4.1	Ar TE ti	25 TIME PERIODS TO 8.1 AFTER 1 TIME PER	1005
1.000 FRJM 4.2	AFTER.	25 TIME PERIODS TO 0.2 AFTER 1 TIME PER	
		-CD_IIME_PERIODS_IO_8+3-AFTER_1_FIME_PER	
1.000 FROM 4.4 1.000 FROM 4.5	AFTER.	25 TIME PERIODS TO 8.4 AFTER 1 TIME PERIODS TO 8.5 AFTER 1 TIME PER	
		- 43	_ _

4. No movement between STs.

- 5. Long tour first term assets in Europe must serve six months before they can be sent to ST.
- 6. No one stays in any command longer than 36 months.
- 7. Alaska and SouthCom are not part of the sustaining base.
- 8. STRAF I forces are deploying units and are not part of the sustaining base.

In order to cover these movements, the following general priorities of assignment were developed with three priority levels of fill, r_1 , r_2 , and r_3 .

	INTO	FROM	AFTER
1.	ST1 and	C ¹ 4	0
	r ₂ * ST2	Cl	5
		C3	25
		C2	25
		SB	25
		SB	18
		C 3	18
		C 2	18
		С3	12
2.	LT * r ₃	C4	0
		Cl.	5
		C3	25
		C2	25

The second of th

INTO	FROM	AFTER
	SB	18
	C 3	18
	C2	18
	C3	12
	C2	12
3. SB	ST1	12
	ST2	13
	LT	36
	C2 ·	25
	C2	18
	C2	12
	C 3	25
	СЗ	18
	C 3	12
	C 2	3
	C3	3
4. C2	STI	12
	ST2	13
5. C3	LT	36

Test: Add Cl, C2, C3, and SB for months K through the last month minus the number of months transiency simulated.

(Where K = no. months transiency at the first of the

tour + 1.) If the number in the CONUS tours is less than r_i * the tour authorizations, stop searching. If these tours have more than r_i * the tour authorizations, or if the ST2 and/or LT are critical node clusters, continue searching until the ST2 and LT assets equal 100% * their authorizations.

FROM	AFTER
C4	0
Cl	5
C 3	25
C5 ,	25
SB	25
SB	18
C3	18
C2	18
C3	12
Cl	5
C3	25
C 2	25
SB	18
C 3	18
C2	18
С3	12
	C4 C1 C3 C2 SB SB C3 C2 C3 C2 C3 C2 SB C3 C2 C2 C3 C2 C2 C3 C2 C3 C2 C2 C3 C2 C2 C3 C2 C2 C3 C2 C3 C2

Preparing these general priorities of assignment for input to the computer model requires further specificity of the movement between individual nodes. To demonstrate the complexity of developing these detailed priority-of-fill rules, Table 9 lists the 218 rules input for this simulation. For example, 55 rules are needed to specify the flow into the STI area. It is important to note that the orier in which the priorities are specified determines the flow in the system. The order can reflect subtle assignment procedures, as well as an assignment area priority hierarchy. It is crucial, therefore, to have a close interaction of the systems analyst and the military personnel in order to validate these rules of flow.

The 20 final transfer rules (see last 20 rules in Table 8) in this problem take care of the returnees from the ST1, ST2, LT, SB, and Cl tours who are not needed to fill requirements in other tour areas. These personnel enter the C2, C3, and C4 tour areas.

en der de la company de la com

The Last Resort Tour rules move to the Cl tour area all new system input which is not needed to fill node requirements. In this sample problem, only two rules are employed (see the last two lines of printout in Table 9).

DISTRIBUTION DATA

Since all personnel available for an assignment area are assigned without regard to their component or time of enlistment,

TABLE 9
PRIORITY-OF-FILL RULES FOR SAMPLE PROBLEM

FILL PRIDALTIES FOR SIMULATION & &

100 PERSENT	FR344 No. 1	FIEL PRESIDES	•	
100 PERCENT	FR34. 8, 2	AFTER OPERIODS	INTO 1. 2	MOVEMENT TYPE O
100 PERCENT	FR341 8. 3	AFTER OPERIOUS		MOVEMENT TYPE O
100 PERLENT	FR34 H.	AFIER OPERIOUS	INTO 1. 3	
LOU PERCENT	FR341 8, 5	AFTER OPERIODS	INTO 1. 5	MOREHEN! IAbe 0
100 PERCENT	FR241 5, 1	AFTER SPERIODS	INTO 1, 1	MOVEMENT TYPE U
LOD PERCENT	FROM 5	AFTER SPERIOUS	. INTO 1. 2	MOVEMENT TYPE O
100 PEASENT	FH241 6. 1	AFTER 25PERIODS	INTO 1. I	MOVEMENT TYPE O
100 PERCENT	FR341 6. 2	AFTER 25PERIOUS	INTO 1. 2	MOVEMENT TYPE O
_ 100_RENSENT	FROM Ge I	AFTER 250ERIOUS	INTO	MUVEMENT IYES.
100 PERCENT	FR341 4. 2	AFTER 25PERIODS	INTO 1. 2	MUVEMENT TYPE 0
100 PERSËNT	FROMI 4. 1	AFTER IMPERIOUS	INTO 1. I	MOVEMENT TYPE O
_ 100_PERSENT	ER 241 <u>4</u> _	AFTER INPERIORS	INTO_lo_	MOVEMENT TYPE O
IOU PERCENT	FH34: 6, 1	AFTER IMPERIOUS	INTO 1. 1	MOVEMENT TYPE O
100 PERCENT	FRJ41 6. S .	AFTER 10PERTODS	JN70 1. 2	MOVERENT TIPE O
100 PERSENT	ER3453	AFIER SPERIOUS		HUVEMENT_TYPEO_
100 PERSENT	FRJ4: 5. 4	AFTER SPERIODS	INFO 1. 4	MUVEMENT TYPE O
100 PEHSENT	FR)41 6. 3	AFTER 25PERIOUS	INTO 1. 3	MONEMEAL LANE O
100_PERSENT	FR24be_&	AFIER25REH10US	INTO	MUVEMENT_TYPEO_
100 PERCENT	FR34: 4, 3	AFTER 25FEHIUUS	INTO 1. 3 .	MONEWEW1 LASE 0
100 PERCENT	FRUM 49 4	AFTER 25PEHIOUS	INTO 1. 4	MORFWEAL LARE D
100 PERCENT	ERJAL de 3	AETER] OPENIOUS		MOVEMENT-TYPEO-
100 PERSENT	FR34: 4, 4	AFTER 18PERIOUS	INTO 1. 4	MONEMENT TABE O
100 PERSENT	FR34 6. 3	AFTER 1 UPERIODS	INTO 1. 3	MOVEMENT TYPE 0
100 PERCENT	FRJ <u>4:_6e_6</u>	AFIER IMPERTORS	INTO144	MUVEMENT_TYPE_ 0_
IND PERCENT TRACES	FRJ4: 5. 5 FRJ4: 7. 5	AFTER SPEKIOUS	INTO 1.5	MONEMENT TARE O
100 PERSENT.	FR34: 6. 5	AFTER 25PERIOUS	INTO 1.5	MCVEMENT TIPE 0
100 PERCENT	FR34: 4. 5	AFTER 25PERIOUS AFTER 25PERIODS	iNTO_1.5	MOVEMENT_LTPEO
100 PERCENT	FR34: 4:-5	AFTER 18PERIODS	INTO 1.5 INTO 1.5	MOVEMENT TYPE O
TOU PERCENT	FR24 7. 5	AFIER IMPERIOUS	2NTO 1.5	MOVEMENT TYPE 0
TOU PERCENT	FR24 0, 5	AFTER 18PERIODS	INTO 1. 5	MOVEMENT TYPE O
100 PERCENT	FR34: 7, 5	AFTER 12PERIOUS	INTO 1. 5	MOVEMENT TIPE D
U. P. ROENT	=814 6 1	AFTER OPERIORS	INTO_2.1	MUVEMENT TYPE 0
U PERLENT	FRJ41 8, 2	AFTER GPERIODS	INTO 2. 2	MOVEMENT TYPE 0
O PERCENT	FR24: 8, 3	AFTER OPERIODS	INTO 2, 3	MOVEMENT TYPE O
L PERCENT	FROM BA	AFTER OPERTOUS	1N20 2 4	MOVEMENT TYPE O
o percent	FRJ4 6, 5	AFTER UPERIODS	INTO 2. 5	MUVEMENT TYPE O
BS PERCENT	FR)4: 5. 1	AFTER SPERIOUS	INTO 2. 1	MOVEMENT TYPE 0
BS PERSENT		AFTER SPERIOUS	INTO 2. 2	HUVEHENI_IYPEO_
85 PEACENT	FR34: 6+ 1	AFTER 25PERIOUS	INTO 2. 1	MONFHEN! IAbe 0
85 PERCENT	FR74 6, 2	AFTER 25PERIODS	INTO 2, 2	MOVEMENT TYPE O
B5_PERCENT	FR741 4. 1	AFIER 25PERIOUS		MOVEMENT_TYPE_O_
85 PERCENT	FR34 4. 2	AFTER 25PERTOUS	INTO 2, 2	MUVEMENT TYPE O
85 PERCENT	FRJ4: 4, 1 FRJ4: 4, 2	AFTER 18PERIOUS	INTO 2, I	MOVEMENT TYPE 0
US PERSENT	FRIM 6. 1	AFTER IMPERIORS	INTO 2. 2	
85 PERCENT	FR34 0, 2	AFTER 18PERIODS AFTER 18PERIODS	INTO 2. 1 INTO 2. 2	O BAKE TREMANOM
H5 PERCENT	FR34 5, 3	AFTER SPERTOUS	INTO 2. 3	MOVEMENT TYPE A
85 PERCENT	FRJ4: 5. 4	AFTER SPERIOUS	INTO 2, 4	MOVEMENT TYPE 0
US PERCENT	FR34: 6, 3	- AFTER 25PERIOUS	INTO 2, 3	MUVEMENT TYPE G
85 PERCENT	FR24 6. 4	AFTER SSPERIOUS	INTO 2.4	MUNEMENT TYPE O
85 PERCENT	FRJ4 4. 3	AFTER 25PERIODS	INTO 2, 3	MOVEMENT TYPE O
85 PERCENT	FR34 4. 4	AFTER 25PERIODS	INTO 2. 4	MOVEMENT TYPE 0
BS PERCENT	FR34 6, 3	AFTER IMPERIORS	INTO 2. 3	MOVEMENT TYPE O
85 PERCENT	FROM 4. 4	AFTER 18PERTODS	INTO 2. 4	MUVEHENT TYPE 0
85 PEHCENT	FR34 6.3 .	AFTER 18PERTOUS	into 2, 3	MOVEMENT TYPE O
no Pencent.	FRUM	AFIER_IMPERIOUS	INTO 2. 4	_ MOVEMENT TYPE S
are track titl	film an b	Afite situalis	Into 2. 5	Movinist for a
65 PERCENT	FR34 7, 5	AFTER 25PERTODS	INTO 2.5	MUNEMENT TIPE 0
85 PENCENT	FROM 6. 5	AFTER 25PERIOUS	INTO 2. 5	MUVEMENT TYPE 0
85 PERJENT	FR34 4, 5	AFTER SSPERIOUS	into 2, 5	MUNCHENT TYPE 0
_Ba_PERCENT		MISS BORRIORS	INTO_8. 5	- HUVERENT TYPE D_
us pensent	Man to Ball		INTO 36.5	MUNEMENT TYPE 0
45 PERCENT	7834 de 5	- AFTER LEPENSONS	into 2, s	MOVEMENT TYPE O.
85 PENCEN	_ mm is a		_ into _	MOVEMENT TYPE D

In the computer program, 45 and 1005 are treated as 1005

O PERCENT .				
U PERCENT .	FROMI 8. 1	AFTER OPERIODS	JINTO 3. 1	MUVEMENT TYPE O
4. 45 7. 3 7. 44 7	FR)MI '8, 2	AFTER UPERIODS	INTO 3. 2	MOVEMENT TYPE O
U_PERCENT	FRUMI B. 3	AFTER OPERIORS	INTO33	MOVEMENT_TYPEO
O PERCENT	FRJM: 8. 4	AFTER UPERIOUS	INTO 3. 4	MONFWENT JAKE 0
O PERCENT	FROMI B. 5	AFTER UPERIODS	INTO 3. 5	MUVEMENT TYPE 0
SU PERCENT	FROM: 5. 1	AFTER SPERIOUS	INTO31	WONFWENT TABE OF
50 PERCENT	FROM: 5. 2	AFTER SPERTODS	INTO 3. 2	MOVEMENT TYPE 0
50 PERCENT	FROMI 6. I	AFTER 25PERIODS	INTO 3. 1	MOVEMENT TYPE O
50 FERSENT	FROM 60 2	AFTER 25PERIODS	INTO_3.2	MOVEMEN I_TYPE 0-
SU PERCENT	FikDMI 4, 1	AFTER 18PERTODS	INTO 3, 1	MOVEMENT TYPE O
SO PINJENT	FAJMI 4, 2	AFTER 18PER100S	INTO 3. 2	MOVEMENT TYPE 0
50 _Pik2ENI	FROM 6. I	AFILR 14PERTODS	INTO-31-1	MOVEMENT-IYPE0-
50 PERCENT	FR3MI 6, 2	AFTER 18PERIOUS	INTO 3. 2	MOVEMENT TYPE 0
50 PERCENT	ENJM1 0, 1 .	AFTER 12PERIOUS	1NTO 3, 1	MOVEMENT TYPE 0
DO PER LENT.	ERDML_b2	AFTER_12PERIOUS_	INT()3,2	MOVEMENT TYPE 0-
DU PERCENT	FRUMI 5, 3	AFTER SPERIOUS	INTO 3. 3	MOVEMENT TYPE 0
DU PERSENT	FRJM1 5, 4	AFTER SPERIOUS	INTO 3. 4	MOVEMENT TYPE 0
DU PERCENT	ERJ <u>M6</u>			MOVEMENT ITPE 0-
DU PERJENT	FROMI 6+ 4	AFIER 25PERIOUS		MOVEMENT TYPE 0
		AFTER 25PERIODS		MOVEMENT TYPE O
50 PERCENT	FR341 4. 3	AFTER 18PERIOUS	INTO 3, 3	MOVEMENT_TYPEO_
50 PERCENT	FRDML_44	AFTER 18PERIODS	INTO34	
50 PERCENT	FRJM: 6, 3	AFTER ISPERTOUS	INTO 3, 3	
50 PERCENT	FRJMI 0, 4	AFTER 18PERIOUS	INTO 3. 4	
PR SEASENE	EROML 6. J.	AFIER 12PERIODS-	INTO33	MOVEMENT TYPE-0-
SU PERCENT	FRJMI 6, 4	AFTER 12PERIODS	INTO 3, 4	MOVEMENT TYPE 0
50 PERCENT	FRJMI 5, 5	AFTER SPERIODS	INTO 3.5 INTO-3.5	MUVEMENT TYPE 0 MOVEMENT-TYPE - 0
DO PERCENT	FRJM	AETER25PERIOUS		
DO PERCENT	FRJMI 6, 5	AFTER 257ERTOOS	INTO 3, 5	
50 PERCENT	FRJM1 4+ 5	AFTER LUPERIOUS	INTO 3.5	
. 50. PEH-LNI	FKJML	VEIEL -TABERTUME		MOVEMENT-TYPE- 0-
50 PERCENT	FR3M1 6+ 5	AFTER 18PERIOUS	INTO 3. 5	MOVEMENT TYPE O
DO PERCENT	FROMI 7. 5	AFTER 12PERIOUS	INTO 3. 5	MOVEMENT TYPE O
-20-6=4, NI	FRUML 6 15	AFTER 12PERTOUS	INTO3+_5	MOVEMENT_TYPEO_
60 Pi?uLNT	FRJMI 1+ 1	AFTER 12PERIODS	INTO 4. 1	MOVEMENT TYPE 0
OU PERCENT	FRJM1 1, 2	after laperiods	INTO 4. 2'	MOVEMENT TYPE O
. bulkikatini	ERJMICO-1	AFIER	INTO+1	MOVEMENT-TYPE0-
60 PEXSENT	FRJMI 2+ 2	AFTER 1JPERIODS	1NTO . 4. 2	MUVEMENT TYPE 0
60 PEACENT	FROMI 3. 1	AFTER 36PERIOUS	INTO 4, 1	MOVEMENT TYPE O
60.PERSENI	ER34 12	Aeter		MUVEMENI-TYPE 0-
OU PERCENT	FROMI 6. 1	AFTER 25PERIOUS	. INTO 4, 1	MOVEMENT TYPE 0
60 PERCENT	E8741 6 • 5	AFTER ZSPERIODS	INTO 4, 2	MOVEMENT TYPE 0
6U_PEHCENT	EBDWI	AFTER	INJ	MOVEMENI-TYPE0-
60 PEHCENT	FROMI 6. 2	AFTER 18PERIOUS	INTO 4. 2	MOVEMENT TYPE O
60 PERCENT	FR3M: 6. 1	AFTER 12PERIODS	INTO 4, 1	MOVEMENT TYPE 0
_ 60_PEHCENT	FRJML_bZ	AITEN_12PER10DS		MOVEMENT-TYPE -0-
60 PERCENT	FR3MI 7+ 1	AFTER 25PERIODS	INTO 4. 1	MOVEMENT TYPE O
60 PERCENT	FR341 / 2	AFTER 25PERIODS	INTO 4, 2	MOVEMENT TYPE U
60_££K2£N I	FROML 7.	AFTER 18PERTOUS		MOVEMENT_TYPE -0-
60 PERCENT	FR3M1 7. 2	AFTER IMPERIOUS	INTO 4. 2	MUVEMENT TYPE 0
60 PERSENT	FROM: 7. 1	AFTER 12PER: DDS		MOVEMENT TYPE O
60 PERCENT	S1MCR7	AFTER 12PERTOUS	NTO	MOVEMENT TYPEU-
60 PERCENT	FRJM1 6, 1	AFTER ISPEKTODS	INTO 4, 1	MOVEMENT TYPE 0
PO HEMOFWI	FRJ41 6, 2	AFTER ISPERTOUS	INTO 4, 2	MOVEMENT TYPE 0
60 0 16 16 111	FRAME 7. 1	AF IER 13PERTONS		MOVERN EYPL (I
60 1 (111)	min Ti 2"	Al, 11.11. 1319 11 mice		dustrii 13 1339, 10
		AFTER LEPENTOUS		MOVEMENT TYPE 0
60 1 1 1 1	# 01 PCN:	AFIER LEPERIOUS	INTO 4. 4	MOVEMENT TYPE 0
20	FAJ4 2, 3	AFTER 13PERIODS	' INTO 4. 3	MOVEMENT TYPE 0
14	FRJ41 . 2	AFTER-13PERIOUS		MOVEMENT TYPE
	FH 3MI 3. 3	AFTER JEPERTOUS	INTO 4. 3	MOVEMENT TYPE 0
60 WERLENT	FR341 3. 4	AFTER 36PERIOUS	INTO 4. 4	MOVEMENT TYPE 0
60 PERCENT	- 110 11 07 7			
60 HEATENE	ERJM De 3	AFTER_25PERIODS	INTO	
60 HEATEAL		AFTER 25PERIODS AFTER 25PERIODS		MOVEMENT TYPE O
60 PERIENT 60 PERSENT 60 PERCENT	FR)MI 6. 4	AFTER 25PERTOUS	INTO 4. 4	
60 PERIENT 60 PERSENT 60 PERSENT 60 PERSENT 60 PERSENT	FR3MI 6. 4 FR3MI 6. 4 FR3MI 6. 3	AFTER 25PERIOUS AFTER 18PERIOUS	INTO 4, 4 INTO 4, 3	MOVEMENT TYPE O
60 PERIONT 60 PERSENT 60 PERSENT 60 PERSENT 60 PERSENT 60 PERSENT	FRJMI 6. 4 FRJMI 6. 4 FRJMI 6. 3 FRJMI 6. 4	AFTER 25PERIODS AFTER 18PERIODS AFTER 18PERIODS	INTO 4, 4 INTO 4, 3 INTO 4, 4	MOVEMENT TYPE O
60 PERCENT 60 PERCENT 60 PERCENT 60 PERCENT 60 PERCENT 60 PERCENT	FROMI 6. 4 FROMI 6. 4 FROMI 6. 3 FROMI 6. 6 FROMI 6. 3	AFTER 25PERIOUS AFTER 18PERIOUS AFTER 18PERIOUS AFTER 18PERIOUS	INTO 4, 4 INTO 4, 3 INTO 4, 3 INTO 4, 3	MOVEMENT TYPE O MOVEMENT TYPE O MOVEMENT TYPE O
60 PERCENT	FROMI 6. 4 FROMI 6. 3 FROMI 6. 3 FROMI 6. 4 FROMI 6. 4 FROMI 6. 4	AFTER 25PERIOUS AFTER 18PERIOUS AFTER 18PERIOUS AFTER 12PERIOUS AFTER 12PERIOUS	INTO 4, 4 INTO 4, 3 INTO 4, 4 INTO 4, 3 INTO 4, 4	MOVEMENT TYPE O MOVEMENT TYPE O MOVEMENT TYPE O MOVEMENT TYPE O
60 PERCENT 60 PERCENT 60 PERCENT 60 PERCENT 60 PERCENT 60 PERCENT 60 PERCENT 60 PERCENT	FROM: 6. 4 FROM: 6. 3 FROM: 6. 3 FROM: 6. 4 FROM: 6. 4 FROM: 6. 4 FROM: 7. 3	AFTER 25PERIOUS AFTER 18PERIOUS AFTER 18PERIOUS AFTER 12PERIOUS AFTER 25PERIOUS	INTO 4, 4 INTO 4, 3 INTO 4, 6 INTO 4, 3 INTO 4, 4	MOVEMENT TYPE O
60 PERCENT	FRJMI 6. 4 FRJMI 6. 4 FRJMI 6. 3 FRJMI 6. 4 FRJMI 6. 4 FRJMI 6. 4 FRJMI 7. 3 FRJMI 7. 4	AFTER 25PERIOUS AFTER 18PERIOUS AFTER 18PERIOUS AFTER 12PERIOUS AFTER 12PERIOUS AFTER 25PERIOUS AFTER 25PERIOUS	INTO 4, 4 INTO 4, 3 INTO 4, 4 INTO 4, 3 INTO 4, 4 INTO 4, 4	MOVEMENT TYPE O
60 PERCENT	FRJMI 6. 4 FRJMI 6. 4 FRJMI 6. 3 FRJMI 6. 4 FRJMI 6. 4 FRJMI 6. 4 FRJMI 7. 3 FRJMI 7. 4 FRJMI 7. 3	AFTER 25PERIOUS AFTER 18PERIOUS AFTER 18PERIOUS AFTER 12PERIOUS AFTER 25PERIOUS AFTER 25PERIOUS AFTER 18PERIOUS	INTO 4, 4 INTO 4, 3 INTO 4, 4 INTO 4, 3 INTO 4, 4 INTO 4, 4 INTO 4, 3	MOVEMENT TYPE O
60 PERCENT	FROM 6. 3 FROM 6. 3 FROM 6. 3 FROM 6. 3 FROM 6. 4 FROM 7. 3 FROM 7. 4 FROM 7. 3 FROM 7. 3	AFTER 25PERIOUS AFTER 18PERIOUS AFTER 18PERIOUS AFTER 12PERIOUS AFTER 25PERIOUS AFTER 25PERIOUS AFTER 18PERIOUS AFTER 18PERIOUS	INTO 4, 4 INTO 4, 3 INTO 4, 3 INTO 4, 3 INTO 4, 3 INTO 4, 4 INTO 4, 3 INTO 4, 4	MOVEMENT TYPE 0
60 PERCENT	FRJMI 6. 4 FRJMI 6. 4 FRJMI 6. 3 FRJMI 6. 4 FRJMI 6. 4 FRJMI 6. 4 FRJMI 7. 3 FRJMI 7. 4 FRJMI 7. 3	AFTER 25PERIOUS AFTER 18PERIOUS AFTER 18PERIOUS AFTER 12PERIOUS AFTER 25PERIOUS AFTER 25PERIOUS AFTER 18PERIOUS	INTO 4, 4 INTO 4, 3 INTO 4, 4 INTO 4, 3 INTO 4, 4 INTO 4, 3 INTO 4, 3 INTO 4, 3	MOVEMENT TYPE 0

Table 9 cont. GO PERCENT FROMI 7. 4 7. 3 JPER100S MOVEMENT TYPE AFTER INTO 60 PERCENT FRJMI AFTER 3PERIODS INTO 4, 3 MOVEMENT TYPE U 60 PERCENT FRJML 7. AF-TER JPERIOUS INTO MOVEMENT_TYPE FRJMI OU PERSENT 1, AFTER 12PERTOUS INTO 5 MOVEMENT TYPE 6 60 PEHCENT FROMI 13PERIOUS 5 MOVEMENT TYPE 2. 5 AFTER INTO n L GOLFERDENT 36PERTOUS AFTEN MOVEMENT-TYPE 4-4. عك LNTO -11-60 PERCENT 6, AFTER 25PERTODS MOVEMENT INTO 4. 0 IMPERTODS INTO PERCENT 6, AFTER MOVEMENT TYPE FKJ1 PERCENT PERJENT - ROMI 60 AFTER SPERIOUS INTO MUVEMENT TYPE FROM MOVEMENT 5 AFTER 25PERTODS OTNI TYPL 20 PERCENT FH.14. 5 AFTER 18PERTOUS INTO MOVEMENT TYPE 4, Ú PERLENT AFTER たいしょ MUVEMEN (SPERIOUS DINI -TYPE FROM 6. 60 AFTER JPER1005 INTO 5 MOVEMENT TYPE כ ٥ PERCENT FROM APERTOUS MOVEMENT TYPE 7. 5 AFTER OU INTO PERCENT FRQM. AFJER 12PERTOUS MOVEMENT TYPE 50 INTO. .. ه ک PERCENT 1, 6 U FRJY AFTER 12PERTODS INTO 6, 2 MOVEMENT TYPE PERCENT FRJM 13PERTOOS MOVEMENT TYPE 60 AFTER INTO 60 PERCENT EROML AETER. 13PERIODS INTO MOVEMENT- LABE FROM AFTER 6. 1, 3 12PERTODS INTO MOVEMENT TYPE Ω 60 PERSENT FROM AFTER 12PERTODS MOVEMENT TYPE INTO 6. () _ GU_PERCENT FROML AFJER. LIPERIOUS INTO. MOVEMENT. TYPE 6. 60 PERCENT FRJMI INTO MOVEMENT ۷, AFTER 13PEKIODS 6, TYPE 1, AFTER OU PERUENT FRJM. 12PERTODS INTO 6+ MOVEMENT TYPE 13PERTOUS _60_P:KJEN1 FROML 2. AFTER INTO MOVEMENT_TYPE_ 0 60 PERCENT FROMI 4. AFTER 36PERTODS INTO 7. 5. MOVEMENT TYPE 100 PERCENT FROM 0, 1 AFTER UPERTODS INTO MOVEMENT TYPE 100 PERCENT FROML AFIER SPERTODS INTO MOVEMENT_TYPE SPERIOUS 100 PERCENT FROM 5, AFTER INTO MUVEMENT TIPE 3. 100 PERCENT FP341 6, AFTER 25PERTOUS INTO MOVEMENT TIPE ۵ з, JUU PERCENI r 9541_ MOVEMENT TYPE 64 AFIER 25PERTODS INIO. . Ú. 100 PERCENT MOVEMENT TYPE FROM INTO 4, 1 AFTER 25PERTODS з. u 100 PERCENT FRO#: 4. AFTER 25PERTOUS OTNI MUVEMENT TYPE з. PERSENT FROML LEPERTODS MOVEMENT TYPE 6.0 AETER INTO 100 PERCENT **IMCR**3 AFTER 18PERTODS INTO MOVEMENT TYPE 4, 3, 2 100 PERCENT IYPE FROM 4, 2 AFTER 18PERTUDS INTO MUVEMENT 0 100 PERCENT MOVEMENT, TYPE FRJMI . 6 . **AFTER** LARERIOUS LNTO. PERCENT FROMI INTO 3 HOVEMENT TYPE 5, 3 AFTER SPERTODS 100 3. PERCENT FROM AFTER SPERIOUS INTO 3. MOVEMENT TYPE 0 PEHCENT FROML AFTER 25PERTODS INTO MOVEMENT TYPE 100 TOO SEKEE! I FKJM AFILR SEPERIOUS INTO MOVEME VI TYPE 0+ 0 ING PLUENT FILDAL 4 , 3 AFILR 25PER100S INTO 3. 3 MOVENENT TIPL. Û luTo MOVE OF ME 100 11 Fil. J.4. 4. AF II.I? 18PF3CL005 3, TYPE 63 з, э Movement for their 146 1 11 AL IL II 181:1 (Cities) litta :00 PERCENT FROM 100 AFTER 25PERTODS INTO # . 4 E ME + 5 TYPE 3. FROM: 100 PERCENT 4, AFTER 18PERTOUS MJ, CME YI INTO 3 Э. 100 PERCENT 4, AFTER 18PERTOOS INTO TYSMSOCH TIPE O з. OU PERCENT FROME 14.1M2.UF AFTER SPERTODS INTO 3, TYPE ŧί PERCENT FROMI AFTER 25PERIOUS INTO U SULME VI 60 PERCENT FROMI TYPE AFTER 25PERTOUS OTAL HUVEMENT 3. INTO. 60 PERLENT FRUMI AEIFR 25PERTODS HOVEMENT. TYPE ñ. 60 PERCENT TYPE FROM AFTER 4, 18PERIOUS INTO MUVEMENT 7. 5 60 PERCENT FROM IBPERIODS TYPE. AFTER INTO з, MOVEMENT 0 5 60. PERCENT ERUML AFTER 18PERTODS HUVEMENT TYPE INTO-. 5 GO PERSENT INTO TIPE FROMI AFTER 12PERTOUS MUVEMENT Э, 60 PERCENT INCH AFTER SPERIODS OTAL MOVEMENT TYPE (1 TYPL 60.PERSENI FROML AFTER SPERIODS INTO MOVEMEN (-MOVEMENT TYPL 60 PERCENT FROM 6, 3 AFTER 25PERIOUS INTO 3∙ 3 FHOM MOVEMENT TYPE 60 PERCENT AFTER 25PERTODS INTO 3. 4 6, 60 PERCENT FROM AFTER IBPERIOUS INTO. MOVEMENT TYPE 41 3. EROMI 18PERTODS INTO MUVEMENT TYPE PERCENT 4. AFTER 3, 60 PERSENT FRJMI 6, 3 AFTER 18PERTODS OTAL 3 MOVEMENT TYPE 0 .. 60. PERSENT ERDAL AETER PABERTOOS INTO MOVEMENT..... YPC 60 PERCENT MOVEMENT TYPE FRJMI 5, AFTER SPERIODS INTO 3, 1 3, 2 60 PERCENT MOVEMENT **FROMI** 5. AFTER SPERIOUS INTO . OU . PEKSENT INCR. INTO MUVEMENT-TYP: AFTER SSPEKIOUS 1176 FRJMI 25PERTOUS INTO MOVEMENT AF ILR 5 οu MOVEMENT TYPE **60 PERCENT** IMCRE AFTER 18PERTOUS INTO 3, 1 MUVEMENT_TYPE BULPERSENT EROML AFIFR լահፎելմնն ፲ለፒሲ 3, 2 MOVEMENT TYPE 60 PERCENT FRJMI 6, 18PERTODS INTO AFTER 6, 2 AFTER MOVEMENT TYPE 60 PERCENT **FROMI** 18PERTODS INTO 60 PERCENT FROM MOVEMENT IYPE AFTER SPERIOUS INTO SPERIOUS 60 PERCENT FROMI AFIER INTO 5 MOVEMENT TYPE 0 MOVEMENT TYPE 60 PERSENT FROM AFTER SOPERIOUS INTO 3, 5 MOVEMENT TYPE OU. PERSENT EROMI 4. AF.I ÈR 25PERIOUS \mathbf{T} N \mathbf{T} \mathbf{U} INTO MOVEMENT TYPE 60 PERCENT FRJMI 4, 5 IMPERTODS AFTER 3. 3, 5 60 PERCENT IMCH INTO MUVEMENT TYPE AFTER 18PERTODS ISPERTADS ERJMI INTO MUVEMENT TYPE .bo. PERSENT AFTER D. S. FROME AFTER 12PERTOOS INTO MOVEMENT TYPE INTO 50 KEMAINDER OF SYSTEM INPUT FROM OUTSIDE CATEGORY 5.

2_LNTU_5.

HEMALMBERI OF SYSTEM I YOUT FROM OUTSIDE CATEGORY

the 40 nodes are collected into 24 assignment area - MOS skill level groups, or tour areas, for distribution to command elements (refer to Table 4). For example, tour area one inculdes all RA and AUS llBls in the STL. During the GMM simulation, the total minus transients in these tour areas is calculated and stored on a disk for later distribution into the command elements. The specific command elements within each of these tour areas are listed in Table 10.

In order to distribute these tour areas into command elements, the user must input distribution parameters and details for determining manning levels in the specific command elements. Table 11 lists the necessary parameters and vectors input to DISTRO. The three PRIO vectors specify fill percentages which apply during the GMM simulation. The PRIO(1) vector serves as a minimum fill level for all node clusters. For example, authorizations for the second node cluster (ST2) must be filled to 85 percent unless there are needs in the critical node ST1. (Note that in the NCRNODE vector the first element, which corresponds to the ST1, equals one.) In order to apply these fill rates, the vector GRPINPR directs the program to sum the first three nodes and use these assets to fill the first node cluster quota.

The MATGRPS vector directs the calculation of 24 tour area sums of nontransients. The program will sum the non-transients in the first and second nodes, the third and fourth

ABLE 10

LOUR AREA DIGURITURIONS TO COMMUND ELEMENTS

<u>o</u> .	OCUR AREA DESCRIPTION	ID CODE	CONTINUED ELECTRIC DELICATION
<u>1</u>	11 <i>8</i> 1-5 7 1	1Å	Republic of lictnam
	1150-311	Ĉ.,	supublic of lieuna.
	1117 (-07.1	ĴΑ	Acpublic of .ietna
•	1101-002	5.À	Thuilund, Juraveon
		<i>،-</i> ي	Korea
5	117.2-3.22	5A Oï	Thailand, Strateon:
	1104-372		flores
	1104-25	. Q.1	Thuiland, Strateon Korea
i	1181-LT	ŢĀ.	Alaska, Southeon, Jayan, in 11
		TE	Durope
	11B2-L.	GA	Alaska, Southcom, Japan, Jakili
		CB	Europe
,	11F4-LT	9A 9 <u>r</u>	Alaska, Southcom, Januar, II. 211 Europe
1.	11B1-STA 3		-
 -	TTDT-01/79	10A 10B	STRAF II Jointet

Table 10 cont.

CODE NO.	TOUR AREA DESCRIPTION	ID CODE	COMMAND ELEMENT DESCRIPTION
11	11B2-STAB	11A	STRAF II
		11B	Joint Act
12	11B4-STAB	12A	STRAF II
		12 B	Joint Act
13	11B1-C1	13A	CDC
	(Before O/S)	13B	ARADCOM
		13C	AMC
		13D	STRAF III
		13E	STRAF I
		13F	Training Base
14	11B2-C1	14A	CDC
		14B	ARADCOM
		14C	AMC
		14D	STRAF III
		14E	STRAF I
		14F	Training Base
15	11B4-C1	15A	CDC
		15B	ARADCOM
		15C	AMC
		15D	STRAF III
		15E	STRAF I
		15F	Training Base

Table 10 cont.

CODE NO.	TOUR AREA DESCRIPTION	ID CODE	COMMAND ELEMENT DESCRIPTION
16	11B1-C2	16A	CDC
	(After ST)	1 6B	ARADCOM
		16c	AMC
		16D	STRAF III
		16E	STRAF I
	•	16 F	Training Base
17	11B2-C2	17A	CDC
		17B	ARADCOM
		17C	AMC
		17D	STRAF III
		17E	STRAF I
		17F	Training Base
18	11B4-C2	18A	CDC
		18B	ARADCOM
		18c	AMC
		18D	STRAF III
		18E	STRAF I
		18F	Training Base
19	11B1-C3	19A	CDC
	(After LT)	19B	ARADCOM
		19C	AMC ·
		19D	STRAF III
		19E	STRAF I
		19F	Training Base
		54	

Table 10 cont.

CODE NO.	TOUR AREA DESCRIPTION	ID CODE	COMAND ELEMENT DESCRIPTION
20	1162-03	20A	CDC
		208	ARADCON:
		200	.74.£
		20D	STRAF III .
		2011	STRAF I
		20F	Trainin_, Base
21	11B4-03	21A	CDC
		215	ARADCON:
		21C	ALC
		210	STAF III
		21E	STAT I
		ClF	Training Base
22	1131-04	22A	CDC
	(After CONUS)	22B	ARADCOM
		21.0	AFC
		22D	STRAF 1II
		22E	STRAF I
		22 F	Trainin, Base
8 0	11B2 - C4	25A	JDC .
		23B	ARADCOM
		230	ALC:
		230	STRAF III
		23 E	STRAF I
		23 F	Frainin_ Base

Table 10 cont.

CODE NO.	TOUR AREA DESCRIPTION	ID CODE	COMMAND ELEMENT DESCRIPTION
24	11B4-C4	24A	CDC
		24B	ARADCOM
		24C	AMC
		24D	STRAF III
		24E	STRAF I
		24F	Training Base

TABLE 11 DISTRO PARAMETERS INPUT FOR SAMPLE PROBLEM

PARAMETER NAME						VALU	E INPU	T
nprle v							3	
ISUM							24	
NUMELEM							64	
NUMMAT							40	
VECTOR NAME				ELE	ments	IN VEC	TOR	
PRIO(1)	1.00	.85	.50	.50	•50	• 50	.50	.00
PRIO(2)	1.00	1.00	•75	•75	•75	•75	•75	.00
PRIO(3)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	.00
GREINPR	0	1	2	3	0	4	5	6
	0	7	8	9	0	10	11	12
	0	13	14	15	0	16	17	18
	0	19	20	21	0	22	23	24
NCRNODE	1	0	0	0	0	0	0	0
MATGRPS	1	2	0	3	4	0	5	0
	6	7	0	8	9	0	10	0
	11	12	0	13	14	0	15	0
	13	17	0	18	19	0	20	0
	21	22	o	23	5/1	0	25	0
	26	27	0	28	29	0	30	0
	31	32	0	33	34	0	35	0
	36	37	0	38	39	0	40	0
BEGROW	BEGRO BEGRO	W (1) W (36)	to BEG	irow (3 Igrow (5) = 2 40) =	1		

Elements in vectors are presented in a row by row order as they are input.

Table 11 cont.

VECTOR NAME				ELEM	ents I	N VECT	<u>OR</u>	
ENDROW	13.	13	13	13	13	14	14	14
	14	14	37	37	37	37	37	27
	27	27	27	27	47	47	47.	47
	47	47	47	47	47	47	42	42
	42	42	42					
BEGCOL	BEGC	OL(1)	to BEG	COL(40) = 1			
ENDCOL	ENDC	OL(1)	to END	COL(40) = 48			
PA	•30	•30	.30	.20	.20	.20	.10	.10
	.10	.05	.05	.05	.02	.02	.02	.01
	.01	.01	.00	.00	.00	.00	.00	.00

nodes, etc. These nontransients (see the first four elements in each of the BEGROW, ENDROW, BEGCOL, and ENDCOL vectors) are found in rows 2 to 13 and in columns 1 to 48 of each node.

After the month by month simulation occurs, the non-transient totals for the 24 tour areas are distributed to specific command elements based on the data input described in Table 12. The tour areas are distributed in the order listed. After applying nondeployability rates (PA in Table 11) to each tour area nontransient total, command authorizations and fill rates are input to determine manning levels for each command element. In this problem, all command elements within a given tour area have the same fill rates. These rates may, however, vary for each command element. For the 11B4s in the ST1, or tour area three, this means that 100% of the 90% authorizations for the first time period should be filled, if possible.

OUTPUT FOR THE SAMPLE PROBLEM

The output for the GMM-DISTRO, shown for this sample problem, is based on the need to check the program. Other output and summary statistics routines will be developed according to users' demands.

Initially, GMM-DISTRO prints a summary of the DISTRO parameters (see Table 13), including the nodes which are grouped together into tour areas, and the time periods within

TABLE 12
DISTRO COMMAND ELEMENT DATA FOR SAMPLE PROBLEM

	COMMAND ELEMENT								
TOUR AREA	FILL RATE	IDE	NT.	AUTHORIZ 1	ATIONS	FOR TIME 3	PERIODS		
1	1.00	1181	Sla	28358	28358	28358	28358		
2	1.00	1182	Sla	16051	16051	16051	16051		
3	1.00	11B4	Sla	9096	9096	9096	9096		
4	. 85	11B1	S2A	79	77	76	7 5		
			S2B	4544	44 7 5	4404	4334		
5	.85	11B2	S2A	78	77	76	75		
			S2B	1881	1852	1822	1793		
6	.85	1184	S2A	79	7 8	89	7 5		
			S2B	1175	1156	1326	1121		
7	•50	1181	LTA	846	860	874	888		
			LTB	4222	4291	4359	4428		
8	. •50	1182	LTA	983	999	1015	1031		
			LTB	4085	4152	4218	4285		

	COMMAND ELEMENT							
TOUR AREA	FILL RATE	IDE	INT.	AUTHORI 1	ZATIONS 2	FOR TIME 3	PERIODS	
9	.50	11B4	LTA	844	85 7	871	885	
			LTB	3098	3149	3199	3249	
10	. 40	1181	SBA	2068	2080	2092	2104	
			SBB	0	0	0	0	
11	•40	11B2	SBA	74	7 5	7 5	7 6	
			SBB	1994	2005	2017	2028	
12	. 40	11B4	SBA	1254	1261	1269	1277	
			SBB	1995	2007	2019	2030	
13	.30	1131	CIA	31	3 2	3 2	3 2	
			CIB	8	8	8	8	
			CIC	23	23	23	23	
			CID	3 58	360	361.	3 62	
			CIE	270	271	272	273	
			CIF	1404	1409	1414	1420	
14	•30	11B2	CIA	128	128	129	129	
			СТВ	8	8	8	8	
			CIC	8	8	8	8	
				61				

Table 12 Cont.

	COMMAND ELEMENT								
TOUR AREA	FILL RATE	IDE	WT.	AUTHORIZA 1	ATIONS F	ror time <u>3</u>	PERIODS		
			CID	3246	3258	3271	3284		
			CIE	315	316	318	319		
			CIF	49	49	49	49		
	70	2201	et 20.4	l.a	l.a				
15	•30	11B4	CIA	40	40	40	40		
			CIB	8	8	8	8		
			CIC	8	8	8	8		
			CID	357	358	360	361		
			CIE	104	105	105	106		
			CIF	1569	1575	1581	58 7		
16	•20	1181	C2A	12	12	12	12		
			C2B	6	6	6	6		
			CSC	6	6	6	6		
			C2D	158	158	159	159		
			C2B	116	116	117	117		
			C2F	614	616	618	620		
17	.20	1132	C2A	55	5 5	56	56		
			CZB	7	7	7	7		
			C2C	7	7	7	7		

Table 12 Cont.

	·	COMMAND ELEMENT						
TOUR AREA	FILL RATE	ID	ENT.		AUTHORIZ 1	ations 2	FOR TIME	PERIODS
			CSD		1428	1432	1437	1442
			CSE		1.39	139	140	140
			CZF		37	37	37	37
1.8	•20	1.1.184	CSA		73	74	74	74
			CZB		7	7	7	7
			C2C		10	11	11	11
			CZD		601	603	605	607
			CSE		171	172	172	173
			C2F		2633	2641	2649	2657
19	•10	1181	C3A		0	0	0	0
			C3B		0	0	0	0
			C3C		0	0	0	44
			C3D		45	45	45	44
			C3E		30	30	30	179
			C3F		182	181	181	0
20	•10	11B2	C3A		15	15	15	15
			C3B		0	0	0	0
			C3C		0	0	0	0
			C3D		426	j	421	419

Table 12 Cont.

		COMMAND ELEMENT						
TOUR AREA	FILL RATE	IDE	Mr.	AUTHORIZA 1	rions fo	R TIME I	PERIODS	
			C3E	45	45	45	प्रम	
			C3F	15	15	15 .	15	
21	.10	1.1B4	C3A C3D	0 : 0	0 : 0	0 : 0	0 : 0	
			C3E	15	15	15	15	
			C3F	228	227	226	225	
22	•30	1181	C4A : : : :	. 0	0	0 :	0 : :	
23	•30	11B2	C4A : C4F	0 : : : : : : : : : : : : : : : : : : :	0 : : 0	0 : : : 0	0 : : 0	
24	•30	1184	C4A : : :	0 :	0	0 : : 0	0	

TABLE 13

DISTRO PARAMETERS

DISTRIBU	TIUN PARAM	ETERS	~ • •		
-NONDEPLD1	AULFS AT	BEGINMING A	NU END OF		
MATHICES	MITHIN NO	DE CIUSTERS			
		W. V. Mag. Lake.	** **		
-MATHIY :	FIRST ODM	. ماداد کام د	E106+ 601 -	LAST COL	
1	2	13	1	48	
5		13	1	48	.
3	2	13	•	4.0	
4	- 5 ·		<u>1</u> - · · ·	48	
5	S	13 ·		48	-
7	5	14	1	48 48	
·	_	• •	•	70	
8	2	14	1	48	
9	2	14	1	48	
	•	•			
10	. <u>.</u>	14	. 1	48	
11	2	37	,	4.0	
12	<u>5</u>		- 1	48 48	
					•
13	٠ ح - ٠٠٠٠		. 1	48	
14	2	37	1	48	
15	2	37	1	48	
	_	J .	•	70	
16	2	27	1	48	
17	2	27	1	48	
1.0	-		_		
18	5	27 ·	1	48 48	
				-	
20		27	··· ·	48	
		•	•		
51	2	47· 47	1	48	
دد	C.	₩ (ī	ა გ	
23	2	41	1	4 0	
24	. ـــ نج ـ ـــــ	41	1	··· 48 · ····	
			-	-	
				T - Office -	
25	2.	41	1	48	
		41 65		telmos ,	** *** **
					•

Table 13 cont.

26 		47	<u>1</u>	48 48 ·	· /3
28		47 -			
24	5	47	1	48	
30	2	47	1	48	• • • • • • • • • • • • • • • • • • • •
31 32	, 2 , 2	47 `\$7	1	48 48	
33 34	2	47	1	48	
35	2			· ····48 · · ··	
36 37	1 1	····-42·· 42	1	:48 · · · · · · · · · · · · · · · · · · ·	
38 39	1 1	42 42		48 -48	
40	1	44		48	

the nodes which define nontransients. Then the GMM flow rules are presented (see Tables 8 and 9). First the transfer flow rules are printed telling the percentages which are removed from a losing node at a specified time and are input to a gaining node at another specified time period. When the people leave and enter the same cells of the losing and gaining nodes, the user inputs a zero, or blank, for the variable PERDTO.

The fill priorities are then printed. In these rules, a zero percent removed from a node is handled identically to 100 percent removed to make the data preparation easier. When a rule says AFTER 5 periods, personnel are removed in the 5 + 1 time period in the node. Movement type 0 means they will be input into the first time period in the gaining assignment node and in the same time period in the system as in the losing node. This is equivalent to the type 1 flow. Following these priority-of-fill rules are the Last Resort Tour rules (see the last two printout lines of Table 9). In this problem, the two unassigned input categories will be sent to C1.

The personnel system simulated is printed as a group of personnel nodes which include the time in the system and the time in the tour (or node) for all people in the nodes. Zero elements are not printed to conserve space. The starting state of the personnel nodes is printed in Table 6.

At this point in the program, the nodes are updated and the simulation process begins. If any personnel complete LENGTH time periods in a node, a list of these personnel, who are available for another tour assignment, is printed. Since none of the people complete a tour at this time, there is no printout.

Node and node cluster totals are printed. These totals equal the personnel in Table 6 minus personnel who have completed the tours in the update. In this case, the totals are identical to the original matrix since no personnel have completed LENGTH months in the tour. Node and node cluster deployables, defined by the rows and columns which are totaled, are printed as "Output from Subroutine Summary." (see Table 14) These totals of deployables are calculated after the initial transfers and prior to the application of the priority-of-fill rules. For example, the 16th and 17th nodes, defined in Table 4 as NC-RA and NC-AUS 11B1s in the SB, have 924 and 1133 people respectively in the second to the 27th month in the SB tour area and in the first to the 48th month in the system. These personnel collectively equal 2057 nontransient personnel for the SB-11B1 tour area. The sum of 2057, 2136, and 3192 equals the SB deployable total, used as a minimum level below which the SB cannot be depleted unless the SB quotas drop below this total, or personnel are needed for the critical ST1.

The property of the column of

TABLE 14

DEPLOYABLES CALCULATED AFTER FIRST UPDATE OF SYSTEM

GIPPL PRUT SURROUTINE SUBBARY

11, (10)	Anna.	HOOF TOTAL	ROWS	CULUMNS	CLUSTER TOTAL
1 (21 112)	1	9944	2-13	1-48	CI, II T I F I I I I I I I I I I I I I I I
1	••	11959	2-13	1-48	
1	3	4664	2-13	1-48	21813
i	4	. 6020	2-13	1-45	
	_	6404	2-13	1-48	10284
. 1	״	84112	2-13	1-46	6402
1	n	8310	2-14	1-48	
1	1	0168	2-14	1-48	4620
1	н	+94	2-14	1-48	
:	••	코크4	2-14	1-48	1968
t	10	1248	2-14	1-48	1,00
		- ·	e	•	1248
i I	11	2739 2332	2-37 2-37	1-48 1-48	
1	11	23.72	2-31	1-40	5071
1	13	2716	2-37	1-48	
ŧ	. 14	5335	2-37	1-48	 E A & D
1	15	3950	2-37	1-48	5048
•	, ,	3/30			3960
1	Já	924	2-27'	1-48	
1	17	1133	2-27	1-48	2057
1	18	964	2-27	1-48	2031
î	19	1172	2-27	1-48	
			2-27	1-48	2136
1	20	31 12	2-21	1-40	3192
1	71	640	2-47	1-45	
1	88	194	2-47	1-48	1424
1	6 1	3138	2-47	1-48	• .• ,
i	74	3958	2-41	1-48	
					7096
i	75	1300	2-47	1-48	
1	26	53 9	2-47	1-48	1300
1	2.7 2.7	726	2-47	1-48	
•	•••			-	1265
1	24	1444	2-47	1-48	• •
1	24	1424	2-47	1-48	2908
. 1	.30	5496	2-47	1-48	
				•	5496
l	31	14 U	2-47 2-47	1-48	
t	32	U	2-41	1-40	14
1	3.3	34	2-47	1-48	
1	34	. 0	2-47	1-48	34
1	٠ عاد	52	2-47	1-48	34
					55
l	36	Ü	1-42	1-48	
1	31	U	1-42	1-46	. 0
1	34	O	1-42	1-48	
1	39	. 0	1-42	1-48	u U
ι	4 ()	υ	1-42	1-48	•
		6			0

As the program begins to apply the priority-of-fill rules, node cluster requirements and shortages, and node requirements and shortages are printed. In this run, only node cluster requirements are used, so the node requirements and shortages are output as zeroes. For each level of priorities, intermediate output of node cluster fill rates (PRIO), quotas (NED), assets (ACT), and modified needs, calculated by multiplying PRIO times NED and subtracting ACT, are printed (see Table 15).

是是是一种,我们是是一种,我们是是一个人,我们是是一个人,我们是一个人,我们是是一个人,我们是是一个人,我们是一个人,我们是一个人,我们就是一个人,我们就是一个人

After all of the priority-of-fill rules have been applied, Subroutine Summary again outputs totals of deployables in the nodes (Table 16), followed by the personnel node distribution (Table 17). This printout of the personnel nodes includes the new personnel input with the application of the priority-of-fill rules.

The final printout for the first time period is a summary of all personnel flow, or movement, which has taken place using the priority-of-fill, the initial transfer, final transfer, and last resort tour rules. Table 18 shows the printout for the first time period. The output columns respectively describe the gaining node cluster and node, the losing node cluster and node, the number of personnel input to the gaining node, the number lost to the system, and the time period in the system and in the tour of the gaining node where the personnel were placed. For example, the first row indicates that 124 men were

TABLE 15

NODE AND NODE CLUSTER REQUIREMENTS

LLUSIER SHUHTAGES = 5.4505 78.75 $140/9$ 7385 1934 6081 1002 0 LLUSIER SHUHTAGES = 14424 0 0 0 0 0 0 930 0 UDITAS = 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			i	•
$ \text{HTAGES} = 5.3505 7835 7934 6081 1002 $ $ \text{HTAGES} = 14424 0 0 0 0 0 0 0 930 $ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0			•
HTAGES = 5.3505	1002	086	0	000
$ \text{HTAGES} = \frac{5.3505}{14.024} \frac{7.385}{14.079} \frac{7.385}{7.385} \frac{7.4}{7.385} \frac{7.4}$	6081	3	9	, 0
HTAGES = 53505	7434	0	0	
HTAGES = 54505 7835 HTAGES = 14424 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	!	0	000	. 0
HTAGES = 53505 HTAGES = 14424 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14019	5	0	
HTAGES = 53505 HTAGES = 14424 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	78 15	0 .	0 0	0 -0 0
HTAGES =0	53505	14424	. 0 0 0	000
NODE S	HOLDSTEN GLOTAS =	NOUE CLJSIER SHOHTAGES =		MODE SHOWINGES = 0

NUDIFIED VEEDS FOR NODE CLUSTERS NUDE CLUSIER NEEDS

		ž
	i	6081
:	;	1934
		7385
- :	:	14079
; eoo ;	624	7835
		53505
÷ n o	~ =	at.C =
		624

0 005° 005° 005° 006° 005° 05× 000° 1 = 01×4.

15072

7385

14079

7836

39081

ACT = LEVEL CHITICA_ VUUE VECTOR. 1 = A CHITICAL NOVE. 0 = NONCRITICAL

71

4.43

Table 15 cont.

							•	•	
							7007	2	<i>!</i>
		•				, P.	4000	4004	:
		:	:			4567	14270		c
		!	!			iO.	!		50 • 750
, 0	•					7385	7385		. 750
LUSTERS				:		14079	14079		0.750
DE C			i						•75(
OK HO	NEEUS 965A	000	0 00	683 0	>	7936	7835		.750
MODIFIED VEEDS FOR NODE CLUSTERS	WODE CLUSIER N	•		•		3350s	43447	u	"HIU = 1.0001.000 .750 .750 .750 .750 .750
1700	Tallors .	1 T	. D. Z	~ #	7	# C C	AL!	1.t. Val.	r S u

	•		1				
			ı			7007	20
	i		:	:	6081	•	6006
	:	,	:	:	9	3	9
	!		:		7434	_	
:0	į	:	:	!	7385	7385	
CLUSTER				,	14079	14079	
FORTH IND MEDS FOR NODE CLUSTERS	NEEDS	905 0 0	၁၀၀ చ જ	•	7836	7836	
IED VREOS	HOUL CLISTER		•	•	408F¢	43447	m
1-00.11	ויטוור כ	- V n a	: , 0 ~ ;	r	HEO =	AC C =	LAVEL

rate = 1.5anl.0anl.0aul.0aul.0aul.0aul.0a

TABLE 16
NONTRANSIENT PERSONNEL MEIGIBLE FOR DISTRIBUTION

CHIPME SHILLOHENS MESS TURING

					•
_		TALL BOOM	40#5		ידיו אפונפחקס־־
1	. 1	9744	2-13	1-40	
	2	11559	2-13	1-48	
1		. 76			
	3	4264	2-13	1-48	
1		9050	2-13	1-+8	
1					
1	5	6984	2-13	1-48	
					0984
	6 -	531a	2-14	1-40-	
1	7	2310	2-14	1-43	
					4620
	-:8	 984	5-:4-	7-48	
1	9	7 94	2-14	1-48	
					1968
1		J.548	2=14-	1-48	
					1244
1	11	2739	2-37	1-45	•
}	- 15	5 335	2-37	1-48	
					5071
1	13	2716	2-37	1-48	
			-7-37-	1-45	
		_	•	•	5048
1	15	3750	2-37	1-48	• • • •
					3960-
1	16	924	2-27	1-48	3.00
ī	17	1133	2-27	1-48	
		1175	E-61	7-40	2057-
1	18	964	3-33	1 40	2031
î			2-27	1-48	
	19	1172	2-27	1-43	
	30	2) 24		•	2136
1	20	3192	2 , 27	1-48	
					3192
}	<u></u>		2-47-		
1	55	2156	2-47	1-45	
_					407 6
_1	53	31 SR	2-47 -	1-48	
1	24	3956	2-47	1-48	
					7096
1	25	3900	2-47	1-46	
		•			3900
}	26	39	2-47	1=48	
ī	27	726	2-47	1-48	
		-	•		1265
	 24		2-47 -	· 1-45	
ī	29	1424	2-47	1-46	
	• •				2408
	· -3 6			1=4U	
					5496
1	31	1+	2-47	1-48	3.20
~	32	-	-2=47		
		_			14
-1		••	2-47	1-48	• •
1	33	46		4-40	
1	33		_ :		
1	33 34		- 5-47-	1=45	
}	3 4	ò	5-47-		34
			_ :	1=45	
1	35		2-47	1-48	34
1 1	34 35 36	2÷	2-47	1-48	
1	35		2-47	1-48	
1 1 1	36 36 37	2÷	2-47 2-47 1-42 1-42	1-48 1-48 1-48	
1 1 1	36 36 37 38	2÷ U 0	2-47 1-42 1-42 1-42	1-48 1-48 1-48	
1 1 1	36 36 37	2÷	2-47 2-47 1-42 1-42	1-48 1-48 1-48	
1 1 1 1 1 1 .	36 36 37 38 39	24 U 0	2-47 2-47 1-42 1-42 1-42 1-42	1-48 1-48 1-48 1-48 1-48	
1 1 1	36 36 37 38	2÷ U 0	2-47 1-42 1-42 1-42	1-48 1-48 1-48	

A CONTRACTOR OF THE CONTRACTOR OF SECURITY AND ADMINISTRATION OF THE SECURITY OF THE SECURITY

TABLE 17

PERSONNEL IN NODES AFTER FIRST TIME PERIOD

	124	111		297 582	210	210			. 401	642.	212	:		330	ж 4	103
	≈ 8	~ xo			۵	. 60		,	Φ.	30	₩.	•		6 0	30	ဆ
	13	13		.u.r	13	<u></u>			- 60	13	13			20	13	13
	126 904	179		29, 582	510	210			104	548	. 212.			330	*	103
	46			·~•	~	٠,			;. •	~		;		~	~	7
	12	977			.4	İż			1.	21	. 12 .				12	12
	129	161	١.	. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	210	210			104	- 546 -	212	:		330	7	103
	·49	0		~v. 7	9	•			9 2	9	•	: !		13	•	٠
	15	15		M	: :	11		***	136		-11	•		13	11	7
	132 404 404	182 1079 1079	1066	300 582 582	~10 ~10	012	546	246	104	642	212	619	583	330 330	4 4 10 20	103
	→ 32 52	⊸ ល'ភ	ស ល	~*=	១ដ	25	ស	κņ	12	12	. w.w	'n	ស	22	សន្ទ	20 Z
	407	.405	21	047	10	: 22	₹,	์ ถึ	23	10	100	21.	23	12	10	10
	1.35 404 904	184 1079 1079	1066 1505	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	220 210 210	210 210	346	; 9 4 2	104 .	244	212	619 .	583	330	2 X	103
	-12	-:=	4 4	- 60	- - =	4=	4	· •	: * =	* =	1=	•	•	1 =	٠	4 =
	<u> </u>	். 18	02	æ m ⊙	16	. 0. 5	80	. 50	*	6.7	6 4		20	* :	4	\$ 4
	1 4 6 6 6 6 7 6 6	185 1079 1079	1066	. 200 130 130 130 130 130 130 130 130 130 1	. 00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	222	846	.48	104	249.	212	619	583	330	3. 3. 4. 4.	103
	-m2	- n e	m m	~ N >	e 0	T 23	m	. w	01		. eg	<u>က</u> 	m	201	E 3	. o .
•	ָרַיבּ אַרָּי. סיפּ אַנִּי	722	¥ . ¥	~ 42	≂ এ	æ 2	61	2	2	30 A	D V	4.	<u>,</u>	E 3	۳ a	ت د
(38)				•					:	:	;	:	•			
NNEL NODES SYS TUDR(COL,HOW)	14,1 904 904	1074	1066	285 285 285	210 210 210	20.0	962	246	1004	24% 24%	222	679	583	330	* *	103
ר 100	~ V >	~ N 5	ม่ม	; 	14 2	ν.Σ.	N.	ú	i Na or i	~ v >		n i	v	N D	۸.۶	AL D
PERSUNNEL NORES SYS TOURTC	272	= 1	e 51	, , ,	- 2	~ 3	= .	•	405	77	.÷.	 E	¥.	N >	~ <u>=</u> _	- 3
FER		,	· • ·	n •		74	_	9		,	· ·	;		2 4		•

1.1 4.7%

TABLE 18

SUMMARY OF PERSONNEL FLOW DURING TIME PERIOD ONE

(ROM																											
TOUR			i																								
Z	~	~	~		~	~	~	_	-		7	~	-	~	-		<u>_</u>	_		_	-	~	7		~	~	~
I																											
SYST	17	9	Ş	7	13	13	7	12	-	9	5	*1	13	75	1	13	12	7.	2	3	20	۴	ø	23		£	-
Z																											
ĕ ⊢	9	4	_	80	T)	a	O	_	. ^	~	ហ	•	~	-	Φ.	_	6 0	9	4	_	•	•	•	0	0	0	0
LOS									بة.			~										يتر					
Z																											
Z	124	921	621	35	135	38	1	. e ₹	177	179	191	182	184	185	187	762	297	663	30.1	30.	908	608	37.3	~	4450	285	450
ZEZ	-	_	_	_				,				_						•	***				,		4	•	7
SUBOUT		~	~	~	~	, 4	-	~	· ~	N	ณ	N	~	N	NJ	ស	S	ഗ	ហ	ហ	ហ	S	ស	ស		ស	N
TOUMOUT									ហ																		0
SUBIN	~			~		-	7	, ,	· ~	~	N	a	~	~	a	ഗ	ស	ស	រភ	ហ	i in	ហ	ഗ	ស	~	ល	N
ナーマ	-	-	-4	-	-	-	-	. ~	• ~	-		-	4	-	-	-4	~4	-	-	· ~	-	-	~	~	'n	•	٠n

Section of the sectio

input into column 17 and row 1 of the node 1,1 from node 5,1 and 36 men were lost to the system. This extensive printout is output for each time period simulated.

At the end of the GMM simulation, DISTRO distributes the tour area totals, less transients, to command elements.

Table 10 shows the printout of the distribution for each tour area and 2: 2. of the four time periods. To illustrate use of the course, look at tour area 4, time period 1. The 4620 nontransients minus a 20 percent patient rate, representing other nondeployability not specifically covered previously by the model, equals 3696 deployable personnel to be distributed to two command elements (defined in Table 7 as Thailand-StratCom and Korea). Eighty-five percent of the 79 and 4544 personnel authorizations, or 67 and 3862, equal the command element manning levels. Only 63 and 3633 personnel are allocated to these command elements, leaving a -233 Surplus, or Shortfall of 233 personnel. Each tour area distribution is output in the same manner.

Even though this example appears complicated, it simulates a MOS with a relatively simple structure and flow. Needless to say, other MOS groups could be much more complex. At this point the bulky output is not useful to management without summarization. Thus, once the types of output needed have been are determined, special routines will be developed to output this information concisely.

TABLE 19

DISTRIBUTION OF PERSONNEL FROM TOUR AREA TO COMMAND ELEMENTS

				:	:		:				
!	AKEA		12007 12007	40061-		20101	AREA SURPLUS:		-8853	8823	-1663
;	COMMANU	15264	15851	14364	13206	1	CUMMAND ALLOCATION		77.7		8578
	COMMANU FILL	24358	28354	26328	2435B	:	COMMANU FILL	1-0ς γ	10051	1 1 1 1 1 1	10051
;	COMMANU AUTH	28338 	2825H	283эн	28758	; !	COMMAND AUTH	16091	16051	. · Icust	
th (00)	COMMAND FILL ELEMENT HATE	1151 SIA 1.00	11#1 SIA 1.00	1161 SIA 1.00	1191 514 1.00		CUMMANN FILL	11H2 SIA 1.00	1192 514 1.00	1142 Sta 1.00	11HP SIA 1.00
JEPLOYABLE TIME	152691	15521	14364 3	13206 4-	JEPLUYABLE:TIME-	PERIOD	71 54 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8348 3	4 8154
HJIIONS FJJH PAIJENT FIINL HAIE	9.50	.31)	• 30	٠ غرا	P411E46	7. A. J.	9.30	Ş		9£•	٠ •
₹	FIRIZ	22313	62012	اجتوا	1001 1001	- /-	10234	10034	•	# % 	13521
1904 1904 480 5				-	1.00k	:	`	V			•.

-6473

	•	cont.		PERIOD	CUMMANN ELEMENT	HATE	AUTH	FILL	CUMMANU ALLOCATION	AREA Surplus
1	りもりと	·· • 30 ··	···· · • • • • • • • • • • • • • • • •	···· 1						
							9,076			-4015
	4 6 4 4	• 30	5/70·					#*** # *P * **	••••	
			•		-		9446		-	-3326
.,1	1414	.30	5581	3						-3320
			,				9096			-3515
1	7705	- 30								
		•					9076	7046	5373	- 4703
FURT	1338	PATIENT	DEPLOYABLE	TIME					• • • • • • • • • • • • • • • • • • • •	
ARREST	FOLAL	HATE		PERTUD						
					CUMMANIT	FILL	COMMAND	COMMAND	COMMANU	AKLA
	4521		16.16		TELEMENT	- PATE	TITUA' '	FILL	ALLOCATION	SURPLUS
••	4550	• %0	3696		1141 524	. 85	19	57	63	
					"1101 S28	85	4544	3862	3633	** "
							•			-233
••	4650	.20	3696	?						
					1 H J 2 5 V.	85	77	65	62	
					1141 254	• 65	44/5	3504	3034	-1/3
4	4200	20	3360	3	• •• ···· · ·	-		• • •		
		•			1181 S2A	.85	76	65	57	
			•		1141 529	. 85	4404	3743	3303	
	1/30	.20	30<3							-448
•	. 1730	• 20	3063	•	IIdi Saa	. 45	/5	64	52	
	•				-1101-258	, 85	4734	3684	29/1	
					• •	•			_ · •	-725
1000		PALLENT								
1. 11.11	1.110	HATE		-hEHIOD.				COMM AND	CUMMANU	AREA
					FLEMENT	RAIL	AUTH	F [1]	ALLOCATION	
•	1956	20		1					ALLOCATION	50111 2013
			_	_	1182 S2A	. 85	78	66. 1599	62	
•					TIPS 258	. 65	1861	1544	1512	
_		•							•	-91
5	1956	-20	1574	2	1132 524	u.c.	12	65	m.t.	
					-11343.630 1135.221		1852 · -		7612 · · ·	
					1106 360		1425	13,4	13.6	-65
5 /	1958	.20	15/4	3						
							76			•
					1145 258	.85	1655	1544	1511	
										-40
• 3	. 1428	.20	15/4	4	1195 25V	. 85	75	64	bЗ	
		• •			1145 25H		1793	1524	1511	
	• .			· • • • • • • •						-14
1 2131	1004	PATIENT	DEPLUYABLE	T[4E						-
FIGH	TOTAL	RAIL			CUMMANO	-FILE	COMMAND	COMMAND	CUMMANU	AHEA
	•	•	•		ELEMENT		AUTH	FILL	ALLOCATION	
r	1248	.20	448	1	-				- '	
					1744 524		(1)	67	6.1	
					11 little (5 m)	* 11,1	1175	11:7-1	*1 l*,	

ጥል ከ1	a 10 c	ont.	-		-						-60
1,001	le , 19., c	0110.50	915	?		٠	u.d	2.0	4.4	.	
					1104 -1144	574	- 85 - 85	1156	ugg -	58 - 857	
					1104	3/H	•05	1126	703	051	-134
*	1040	• 20	St6	3							
					11184	SZAT	~. 85 ·	69	76	. 53	-
			•		1104	52A	• 85	1366	1157	7/9	
			** ******								-3/1
es	436	. 211	740	4	1184	524	• 85		54	41	
					1174	S24	.85 .85	1141	953		
						•		er mine *	• • •	•	-269
		PATIENT	_			•					
h'.	13164	RYLE		PERTOD			e		COMMONIO	COMMONIA	ADE
					ELEV	IANI) AFAIT	PATE	AUTH	f III	ALL OCATION	SURPLUS
1	50 / I	.10	4563	٠ ،	CCF,			A01		COMMANU ALLOCATION 423	30 202
				-	1151	LTA	.50	* P46	423	423	
					1191	LTA	.50	4262	<111	5111	
				_							2029
f	21/1	.10	4563	7					4.3n°	430	
					TIDE	LIA	•50	800 4271	430 4146	2146	
					1101	Lin.	• 50	4271	2140	-	1987
1	50/1	•10	4563	3							
					1191	LTA	•50	414	437	431	
					. 1141	LTR	•20	4359	. 5180	.5180	14164
,	5071	•10	4000								1946
,	3411	• 10	4303		1181	·LTA	.50	- 868	444	444	
					1181	LTR	.50	4468	2214	2214	
	_		•								1302
1116.00		PATTENT					• •				
HIEL	1) I 4L	PATE		PERIOU	011		c	C0444.541D	COMMAND	COMMAND	AREA
					. ELEI	MANI) Ment	PAIL	ALITH	r II I	ALLOCATION	SURPLUS
ø	3648	• 10	4543	1	1, E []	1,6,41		40		ALEGON. TON	30.11. 203
	••	• • •	•	•	1145	LTA	.50	983 4085	442	442	
					- I.J is S	LTA"	· 50	~ 4n85	2043	2043	
				_							5008
14	2040	.10	4543		-11-0	1.74	- 50 -	- 999 4172	500	- 500	
					1122	LTR	•50	4122	40/6	2076	
											1967
3.	78415	-10	4543	3					-		
					1145	LTA	.50	1015	508	50H	
					1142	LTR	.50	4718	2109	2109	1946
25	3(140	.10	4543								1720
.,	36.40	• 1 17	7 7 3	•	1113	1 TA	.50	1031	516	516	
					-1102	'LTR'	50	4285	2143	2143	• •
						- • •					1884
DOOR		PALLENT					_				
AMA	FILAL	HAIÉ	•••	-hEH101)	F ~ :		 E111	COMME	COmstanto	COMMAND	0 m f 11
					Fire	MENT	KAIF	AUTH	r li i	ALLOCATION	SURPLUS
	ひていた	:.10	3564	1 -							55 555
•			•	•	1184	LTA	.50	844	462	422	
							.50		422 1549	1544	
											[59]
		F 12	100								

Tab	le 19	cont.	 .		1184 LTA 1184 LTA	•50 •50	R57 3149	1575 424	429 1575	
**	1750	.10	-3564=	3						1560
		•		_	1184 LTA	•50	8/1 3199	436	436	
					1104 LTH		3179	1000	1900	1528
,	3950	•10	3504		IIHA LTA	. 56	845	443	443	
		•					3249		1645	
t atric	ED.Jet	PATIENT	DEPLOYABLE	TIME						1440
A trees	Dist.	ROTE		PERTUD						
					ELEMENT	RAIE	AUTH	r ILL	CUMMAND ALLOCATION	SURPLUS
r n	2007	-05	1954 "	- : - 1	1141 604	. 40	2000	427	ALLOCATION 827 0	
					1191 244	.40	2 (103 0	0	0	
	1031	•07	1454			-				112/
		• (1181 SBA	•40	2090	835	К БН	
		•			-1191 Sad	1.40	- 0	0.	0	1144
10	7687	•05	19/7	3	- 4 5 - 4 4 - 1 6 5 - 1		0 - 5075 .	* "	41.4%	
					1191 2HV	•40	5445	0	0 0	
111	2114	• 0 >	2013							1140
	, , , ,	•05	2013		1181 SBA	.40	2104	842		
					11al Suu	40	,	0	U	1171
lex		MATIENT	DEPLOYABLE							
	1 11 71	RAJE		PERLUD		F [L L	COMMAND	COMMAND	COMMAND	AREA
۱ ,	~} 3ti	• 05	2029	1	ELFMENT	RATE	HTUA	FILL	ALLUCATION	SURPLUS
,	- , 50	•03		'	1107 SRA	• 40	/4 1994	30	3()	
								798	8ל7	1201
i 1	८१ ३६	• 05	2029						-	
					1145 284	• 4 U		805 208	905 508	
; i	2130	• U Ś	2029	د سامته میشد. وا		 ·	- ··	••••		1197
, ,	, (),	•03	2027		1182 SA4	.40	15	30	3n	
					T182 S84-	40	2017 -	807	807	1145
1)	2136	• 05	2029	4				•	4.	
		•			1145 2411	•40	2028	411 .30	0E [18	
		11471500	South the aut of	Tuc-						11,68
FORM			JEHFOLARFE.)					
					CUMMAND	FILL	COMMAND AUTH	COMMANU FILL	COMMANU ALLOCATION	AHĒA SUKPLUS
17	3176	•05	SEGE	1	_					50 600
			•	. .	1184 SBA 1184 SBB	• 40 • 40	1754 1995	502 748	5U7 748	
_			3 5 5/3		• • - • •					1/37
1.	11 7.	• 05	3032	7	1134 584	. 40	1,401	404	4,04	
					III atti	111	'au ;	80.4	nu j	

Tat	1e 19	cont.									1725
17	3177	05	5035	3	114.	co.	. A				
					-1164 -1166	-288-	• 4U	1269	508	808	
					1,04	Unn	• • •	2019	000	808	1716
12	31 45	• 05	2606	4							,
-	•				-1184	-SRA-	-40		···-511···	51 <u>1</u>	
			•		11114	584	-40	2030	615	815	
lour	13JR	PATIENT	DEPLOYABLE-	TIME							1709
AHLE A	TOTAL.	RATE		PERIOD							
					COM	ПИАМ	FILL	COMMAND	COMMANIJ	COMMAND	AHEA
و ۱	14.46				-ELF	MENT .	-RATE	T-AUTH	··· FILL	- ALLOCATION	Y SURPLUS
٠,	1424	•02	1345	. 1 .	1141	٠.	20	31 A			
					1141 _1161	CIV.	~_30		9		
					1161	Cic	.30	43	7	7	
					1101	Cin	.30	ąż _g	107	107	
		-			1131	CIF	.30	7/0	81.	ر 8	••••
					11-1	Cle	0د .	1404	421	. 441	_
1.3	9426	.02	9768								768
•		• • • •	7100	ε,	1181	Cla	. 30	32 8 23 360 2/1	10	10	
			•		1101	CIR	.30	-1.	ž	ڏِ-	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1181	CIC.	30	53 -	7	2	
					1161	Cli	-30	360	108	108	
					.1141-	- C1E-	30	7409		اة 423	
					-11	O į r		1409	723	4-3	9137
13	14215	• 02	18141	3							
					1.121	CIA-	:30 -	32 8 43	~ 10	10	
			1		1181	CIR	• 30	8	5	2	
	•	-) 147 Taff	しょし			· 1 AM -	108	
					1181	CIF	.30	772 1414	82	82	
					1181	CIF	.30	1414	424	464	
						* ***				•	17508
lj	21305	•08	22439	4		٥	•. •.	***			
					-11H1-	-C14	•30 : 3a	32 32	10	. <u></u>	
					1101	Cir	.30	- 5/3. 305 - 5/3.	7	7	
					1181	Cin	.30	362	109	109	
		-			1141.	CIF	0L.	- 513.	85	82	• ••
					1101	ClF	.30	1440	420	460	
Louis	1.) - 1	PATIENT	DEPLOYABLE							.	55503
AKEL	MATCI	RATE	DE COLUDE	PERIOD							
				•	COM	MAND	FILL	COMMAND	COMMANU	COMMAND	ARLA
					-ELE	1ENT	-RATE	" AUTH " "	FILL	ALLOCATION	SURPEUS
1 +	1040	•02	6954	1							
					1142	CIA	ال 4۱	144	38		
					1142	Cir	.30	ស ខ	2	- 2 2	
					1162	Cin	. 30	3246	914	974	
		·			1192	CIF	0	312 -	· ···· 45	· · · y5	- · · - ·-··
					1145	CIF	. Jū	44	15	ls	
14	3320		5215						 .	** *****	5828
• •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7217	2	1162	CIA	. 30	128	38	HE.	
					1142	CIR	0 د .	я.	خ	ž	
					1102	CIC	. 10	8 4 1 114	è	م	
					1100	1.10	, 10	1 1111	911	911	
									•	•	

TO THE SECOND SE

1104 C17	Tabl	e 19 (3546 1774 1774 1300	.02 .02 .02 .03 .03	3417	4 TIME PEH100	1184 C18 1184 C10 1184 C10 1184 C16 1184 C16 1184 C17	RATE3030303030	129 8 8 3271 319 49 129 49 219 49 49 49 49 1509	95 15 39 2 981 95 15 39 2 2 39 15 COMMANU FILL 12 2 107 31 471	34 2 2 34 34 3 4 3 4 3 4 3 4 3 4 3 4 3 4	4086 2343 594 AHLA SUHPLUS
15 325 •02 318 4	ליו	5 5 0	•92 -			1184 C16 1184 C16 1184 C16 1184 C16 1184 C16 1184 C16 1184 C16 1184 C16	.30 .30 .30 .30 .30 .30 .30	8 358 105 1575 	2 107 32 473 12 2 2 108 32	2 107 37 4/3 17 2 7 10n 32	321
COMMAND COMMAND COMMAND COMMAND AREA ELEMENT RATE AUTH FILE ALLOCATION SURPLUS 16 1255 •01 1252 1 160 CPA •20 17 2 2	1 д -с	ארמן	PATIENT			1194 C18 1194 C10 -1194-C10 1194 C15 1194 C15	06. 06. 06. 06.	н 10F 101	5 801 5 5	1 1 54 16	<u>.</u>
		•	•	1252		COMMAND ELEMENT LIPL CPA	RATE	HTUA	+ ILL ر	ALLUCATION	

m_ v	- 10 -		***	1181 Cau	.20				
180	ble 19 c	ont.		1181 (20		" 5 154	1 عد	ا خد	
				11d1 C2F		116	23	ذی	
				1101C2E		F14 "	123	143	
		- •						_	1070
16	1 < 65	.01	1525	S		•			
			*****	11:11-624		15	2	s	
			•	1141 C24		6	1	1	
		•		1141 CSC		6	1	1	
						- 158	"" 32	32	•
				TINI CSE		116	23	43	
				1101 C2F	• 60	616	123	143	
16	1015	•01	2984 -	2	• • •		• •	••	1070
• • •	70.1.7	•01	2304 ,	3					
				1]U] C2A		15	1.		
						6"	-	1	
				1191 C20		. 6	.1	1	
		-		1171 CSE 1141 CSU		159	32	32	
								. وح	
				1141 Cat	-20	418	124	164	444.4
: 4	5 I 24	.01	5107					-	7801
			~~ 0 1	1191 C2A	۸ د .	12		71	
				1191 024		_	2 1	2	
						6.	1		-
			-	1101 C20		ารรั	بزد	ا ع	
				1151 525		117	21. 23	63	
				1141 CAF		640		144	
								••	4924
iciti		PALLENT		IME					
4.145 9	I I I I AL	HATE	PE	Riun: -					
							COMMANII	COMMAND	AKÉK
	-			ELFMENT	RAIL	AUIT	FILL	ALLUCATION	SUKPLUS
٠,	くろのい	• 0 1	.5818	1	•	*	•		-
				1195 CS4		55	11	11	
		_		1195 CSH		7	1	1	
		·		1145 CaC		7	1	1	
				1195 CSJ		1448	286	200	
				1172 C2F		96 1	ZB	۷۶	
17				1145. CSE 1145. CSE			८ B		
	עוויינ	- 0.1		1195, Cat.		96 1	ZB	۷۶	 2544
• •	સગદર	•01	<8/8	5 1145. C>E	.20	- 72	- Zñ. 7:	2 h	2544
••	ያትበዩ	• 0 1	c8/8	5 1185 CSV 5 1185 CSE	~~.20	- 76	- 28 7	25 1	2544 -
••	ያ ነ 08	•01	<8/8	1145 C54 5 1185 C54 1185 C56	50	- 75	28. 7.	11	2544 -
• •	ዓ ህዩ	•01	c8/8	1145 C54 1145 C54 	.20 .20 .20	37 37 35 7 /	2B. 7.	29 1 11 1	2544 -
• •	ዓ ህሁ	•01	c8/8	1145, C50 1145, C50 1145, C50 1145, C50 5	.20	95, 95, 7 1 1432	11 1 1 286	11 1 1 286	25 44
	४५७४	•01	<8/8	1145 CSE 1142 CSU 1145 CSU 1145 CSU 2 1145 CSE 1145 CSE	.20	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	11 1 1 286 28	11 1 1 1 286	25 44
•	४५७४	•01	<8/8	1145, C50 1145, C50 1145, C50 1145, C50 5	.20	95, 95, 7 1 1432	11 1 1 286	11 1 1 286	
	ን ነ ገኑ.	•01 •01		1145 CSE 1145 CSE 1145 CSE 1145 CSE 1145 CSE 5	.20	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	11 1 1 286 28	11 1 1 1 286	2544
			<8/8 28/8	3 1145 CSE 1145 CSE 1145 CSE 1145 CSE 1145 CSE 1145 CSE	.20 .20 .20 .20 .20	7 149 37 15 17 39 37	11 1 1 286. 28	11 1 1 1 286 28	
				3 1145 C54 1145 C54 1145 C54 1145 C54 1145 C54 1145 C54	.20 .20 .20 .20 .20	139 37	286 · 28 · 7	11 1 1 1 286	
				1145 C54	.20 .20 .20 .20 .20	139 37 	286 28 7	28 / / 11 1 1 286 28 7	
				1145, CSE 1147, CSE 1148, CSE	.20 .20 .20 .20 .20 .20	139 37 7 1432 139 37	286 - 28 - 7 - 11 - 1 - 1 - 1 - 1 - 1 - 1	29 / 11 1 286 28 7	
			29/8	1145 C54 1145 C54 1145 C54 1145 C54 1145 C54 1145 C54 1145 C54 1145 C54 1145 C54 1145 C54	.20 .20 .20 .20 .20 .20 .20	139 37 7 1432 139 37 	11 1 1 286 28 7	25 11 1 1 256 26 7 11 1 257	
			29/8	1142 C26 1142 C24 1142 C24 1142 C24 1142 C24 1142 C24 1143 C24 1144 C26 1145 C26	20 02, 02, 02, 02, 02, 02, 02, 02, 02, 0	139 37	286 - 28 - 7 - 11 - 1 - 1 - 1 - 1 - 1 - 1	25 / 11 1 256 26 7 11 1 257 26	· 2544
17	2431.	•61	29/8	1145 CSE	20 02, 02, 02, 02, 02, 02, 02, 02, 02, 0	139 37 7 1432 139 37 	286 286 287 287 287	11 1 286 28 7 11 1 287 287	 2544 ^
17	2431.	•61	29/8	1145 CSE	20 02, 02, 02, 02, 02, 02, 02, 02, 02, 0	139 37	286 286 287 287 287	25 / 11 1 256 26 7 11 1 257 26	· 2544
	2431.	•61	29/8	1145 CSE	20 02, 02, 02, 02, 02, 02, 02, 02, 02, 0	139 37	286 286 287 287 287	11 1 1 286 28 7 1 1 1 287 26	 2544 ^
17	2431.	•61	29/8	1145 CSE	.20 .20 .20 .20 .20 .20 .20 .20 .20 .20	139 37 7 1432 139 37 	11 1 1 286 28 7 - 11 1 287 287	11 1 1 286 28 7 1 1 1 287 26 7	 2544 ^
17	2431.	•61	29/8	1145 C54 1145 C54	20 20 20 20 20 20 20 20 20 20	139 37 7 1432 139 37 7 1437 1437 140 37	11 1 286 28 7 7 28 7 28 7	11 1 1 200 20 20 7 11 1 207 26 7	 2544 ^
17	2431.	•61	29/8	1195 C54	20 20 20 20 20 20 20 20 20 20	139 37 7 1432 139 37 7 1437 140 37	11 1 286 28 7 7 11 287 28 7	11 1 1 286 28 7 1 1 1 287 26 7	 2544 ^

Te	ble 19	cont.					. ZU		140 37	- 2H 7	- ¢н 1	2542
TOUR		PATIENT	JEPLUYAHLE-								* *	
AHEA	MAL	HATE		PERIOD	COM	484.65	5 111		MMANI)	COMMAND	COMMAND	AHEA
									UTH		ALLOCATION	
1 -	2470	•01	5441	1		_					_	
		:			1104	. C24	.20 -		13 7	15	15]	
						C>C			10	ځ	1	
					1104	C2D	.20		6U1	2 120	120	
							. 20 ^		1/1	34	34	
			•		1104	Cat	.20		1645	761	541	4746
1.99	50/0	-01	6017	2						•		
					1104	C>4	.20		14	15	15	
						CZR			7	1	1	
					1134		. ZU	_	4,03	. 2 141	2 141	
						Car	.20		172	34	34	
		•	·- · ·					· -	2641	- ラベタ	548 "	
			2204	•								5310
1.11	6/54	•01	6696	3	~1 1 HA	Co.s			- 74	- 15	15	-
					1104		.60		7	ĩ	ı	
					11.54		• 40		11	ટ		
									405			
						C>F			1 /2 2649	34 530	۵۵ ن ک ک	
						<u>-</u>	-				0	5973
10	74.50	• 0 1	7,375	4			_		_		_	
				====	1194 1194-	C24			7.	15	15	
		•					.20		ıí	ځ	1 6	
						C20	-20		11 607 1/3	121	141	
			• • •		1!74		.20	-		35	جا ک ا	
					11 14	CPF	-20		5421	53]	531	6670
ىنىزە:	HLCI	MATTENT	DEPLOYABLE-	~ -T IME-					_			0010
MAT K	THAL	HATE	• • • • • • • • • • • • • • • • • • • •	PERIOD						•		
											CUMMANU	AREA
	14	0	14		- ELE	דוישה	" HAIE	. ,	חוטה	FILL	ALLOLAIJUN	SURPLUS
17	17	v	**	•	1181	CRa	.10		0	e	0	
		-			1-1 == 1				0	- U	0 -	•
						CRC	.10		.0	υ 5	Ģ	
						C311	.10		45 · 30	٠ . غ	3 2	
						ÇZF	.10		185	18	10	
									-			-12
14	. 14	- 0	14					• - •				•
					1141	C30	•10		0	0		
					11-5	CRC	. 16		ñ	บั	Ô	
					1141	C311	.19		45	5	. d	
						Cac	-10		ብይ	. 16	/	-
	•	•			114)	CHE	10		. :81	16	10	-12
ju	14	0	14	3								₩=
-						1, 14			t)	17	ıl	
					11.	1 1 114	. 10		"	*1	••	

ሞልን	le 19	cont.			11HI~C3C	10-		0 -		-
Tat	116 19	COHO.				.10	45	Š	ۆ	
						.10	30	3	2	
					-1141-CAF			18	70	
							•		•	-12
19	14	Ü	14	4						
					_1141 C .34		0 -	c · ·	0	
					ilol Cad	.10	0	U	0	
		•			TIMI CAC	• i u	44	4	ራ	
					f1R1C3#	10		4	· · · · · · ·	•
					1141 C3F	.10	1/9	18	10	
					1101 C3F	.10	0	Q	•)	
								*	,	-12
tour	الزر أ	SVITCHI	DEPLOYABLE	TIME	•					
ri r	1 1126	HAIE	•	PERIOD						
					- COMMAND.	FILL	"COMMAND"	COMMAND	COMMAIND	~ AREA
					ELEMENT	RATE	AUTH	FILL	ALLOCATION	SURPLUS
40	34	O	34	l						
					J145.C3V.	10	. 15	2	!	
					11 12 C3A	.16	9	. 0	ij	
					1145 CAC	.10	Ô	Ü	i,	
					"1162"C30"		426	- ′ * +3 ~ ·	~ · 2á	-
					1145 C3F		45	5	, د	
					1102 C3F		15	ے خ	1	
									- *	-16
64	34	1)	34	5						-10
			•	_	1102 C34	.19	15	2	1	
			····		"1182 C3H"			7	, <u>,</u> ,	
					1175 Cac	.10	ő	ິນ	()	
					1145 C30	.10	443	-	٠,٠	
					1132 Car			42 5		
					1187 Car	.10	15	2	.3	
					1107 C1	•10	10	2	1	
20	34							-	_	-17
~''	.,,,	v		3	1140 00.					
					1195 C3V	-10	15	٤	1	
					1145 Can	.le	0	٠		
					_1195_C3C_	.10~	- 0	U	. 11	
					1195 C30	-10	421	42	∠ _i ,	
		-			1192 C3F	- 10		<u></u> 5	3	
					_1195_CJE.	- 10	15	2	1	
34	116	4.								-17
20	34	U	34					_		
					1145 C47	-10 -	-	2	Ł	
					HAS CAU	-10	O.	U	£,	
					1195 CaC	-10	0	Ů _	U	
		••			_1145_C31,_			42	54	
					1'45 Cam	-10	44	4	J	
					1145 C3E	-10	15	2	1	
		•								· · -16
LOOK	אננו	HYLLEAL	SIBAYOJYJC	TIHE						
A HIA	Dist	RAIL		HERTOD						
					UMWW2J	FILE	COMMAND :	"COMMAKI)	COMMAND	AREA
					ELEMENT	RATE	AUTH	t ILL	ALLULATION	SURPLUS
21	22	Ú	22	1					= '	_
					11114 CAA	7110 1	. 0 .	~ O	· 6 ·	
					1104 CAR	.10	0	:)	Ü	
					11 te Car	-10	ō	0	i	
		· - •			-1104-C3D		0	0-	11	=
	•				11-14 C3F	.10	15	?	ż	
					1184 LAF	.10	248	ونب	20	
					, 	•	•			- (
• 4			:11							- •

t st	v ·	. 18 3	1184 CRF 1184 CRF 1184 CRF	.10	15 247	۶۶ ۲ ۲	0 ·	
18	υ,	.19 3	1184 (24			~	18	
	•		1104 (54			•		· - 5
			1154 CAR	.10 .10 -	. 0	0	U U	
			1104 CAC 1104 CAN	.10	0 0	U 9	0	
			lina Caf		15 246	۲ د ع	1	
			-,04 01				• •	-1
10	0	16	1184 CRA	.10	0	O .	0	
			1144 C3A 11344 C3C =	.10	. 0	0 ()	9 0	
			1144 Can 1144 Car	.10 .10	a 15	. t <i>i</i>	e i	
			11184 C3F	. 10-	725	23	15	- - 4
4 :) J# 4		JEPLUYABLE TIME PERIOD		-				-,
n 131nt		- PERIOD	CUMMAHIO	FILL	COMMAND	COMMANI	CUMMANU	AREA
·	U	· · · · · · · · · · · · · · · · · · ·	ELFMENT	KAIE -	- HIUA	+144	ALLOCATION	SURPLUS
			1101 C45	. 30 . 30	0 U	U U	0 0	
			"1103 CAC 1151 Can	.30 .30	·	U D	9	
			1141 CAF	. 30	ŋ	U	v	
			11a) C4F	. • 30	. 0	O	υ	ย
t)	ı U	0 2	11-1 641	. 30	G	9	9	
			119] Can 119] Can	. 39 . 30	ე ს	9 (t	t.	
		· A. A VARIABLE MAD BY AND SEE A AMERICAN	1151 C46	.30 ·	- 0	0	ŋ O	
			1181 C4F	.30	Ü	0	Ü	
	, 4)	0 3	, -		•			U
			1]31 CA4 "1141 C49"	.30 ")	0	i. O	11 0	
			11:31 C4r	.30	9	Ů	6	
		4 4 ***********************************	TING CAF	. 30	t)	U	11	
			1101 (46	. 30	0	Ü	41	U
? · ·	, 9	··· 0	1151 644	.30	0	v	Ó	
			Ilmi Can	0 د .	0	ı)	() f2	
			1101 (40	.30	Ð	a	Ų	
			114) CAF	. •30	. 0	Ü	9	
	-							0
	: ← PATIENT	ORPLOYABLE TIME						
- 		DEPLOYABLE TIME PERTOPOLIS		1 11 1	t estimate .	Lagrant come	1 111 11/11/11	63 FE 24
			t tal esti-	1 111	i Glioni i	tipolista	i tuniki,H	egiste in
				1 111	e definence a	tipintosti	i liropo,it	हास ह
? · ·	ı 9	0	115] C46 115] C46 116] C46 116] C46 116] C46 116] C46	08. 02. 02. 02. 05. 05.	0 0 0 0 0	ប ប ប ប ប ប	0 0 1, U	

23	Table '19	a o in the						• •	
	Tante Tà	COHU.	-	1152 C44	.30	0	0	U	
				1102 C4A	UŁ.	Ô	U	U	
				1117-040	30		. 0 -	·	
				1102 C411	. 30	0	U	9	
				1105 CAP	. 20	ø	0	U	
		-		11H2 C4F	.30"	0	0	. 0	-
									U
23	U	٠, ٥	` 0	3					
				1142. C4V.	•30	0 .	- o - ·	. 0	
				11d2 C44	.30	0	U	t _r	
				1107 C40	. 30	0	U	Ú	
				7]H2 C41)	30	- 0 -	υ υ -	t	
				1102 CAF	. 30	0	U	c	
				1197 Car	-30	Ō	g	ť.	
						·• · · · ·			Ú
43	ប	ŋ	Ú	4					
				1142 C4A	. 30	U	Ü	e	
				1102 Ca4	30	- 0 -	0	Q	
				1182 C4C	. 30	Ó	U	0	
				1132 Cm	. 37	9	. 0	e)	
		•	~	11m2 C4F	.30	Ü	U	O	
				11-17 CAF	. 30	Ó	Ú	t <i>;</i>	
									U
1005	سرو: ،	PALIENT	JELLOTABLE	TIME					
rat A	T) i4L	HAIL	þi	H100					
				CUMMAND	FILL	CUMMANI)	CUMMAND	CUMMANU	AHLA
			·	" ELFNENT	RATE	AUTH	FILL	ALLOCATION	SURPLUS
24	17	U	0	1					
				11:14 C4A	.30	n	'9	u	
				1144 C4A	. 30	0	0	"	
			•	11d4 C4r	. 10	Ŏ	Ú	Ü	
				1194 C4D		ō	Ō	Ü	
	-			1194 CAF	.30	9	Ö	(,	
				1174 CAF		Ü	ú	11	
					•	•			ប
24	υ	u	. 0	-2					
	-	-	•	1184 C44	0د .	0	9	v	
				1194 C4R	.00	ō	Ü	ō	
				11114 CAC	. 20	0		Ú	
				1154 C40		ŏ	o o	Ü	
				1184 CAF	ناد.	o	Ü	Ü	
				1184 646	- 30	· ŏ -	-· - å-	Ü	
				. (•••	•	•	•	U
۷4	U		t)	3					•
	•	-		1184-C44	30	0	·· · · ·	0	
				1104 C44	.30	ŏ	ō	e	
				1174 C40	. 30	õ	Ü	Ü	
				1184 CAN			<u>ö</u> -		
				11M4 CAF	. 30	ŏ	ō	ů	
				1104 C4F	. 30	ŭ	ŏ	Š	
				1104 64.	•	•	-	•	Ü
24	tr	U	0	4					•
~~	•	•	•	•					
:									
			av. •== .=.a					۸ ۰۰۰۰	
	•	•		1146 C4A		0	0	•	
				HINA CAR		0	0	Ű	
				11 34 646		0	0	9.	
				1134 Can		O	0	U	
				111, 12	• 10	4	11	11	

REFERENCES

- 1. Olson, Pauline T. ACCMOD: A SIMPO-I dynamic flow model to project enlisted accession needs. BESRL Research Study 68-2. April 1962.
- Olson, Pauline T. DYROM II: SIMPO-I model representing the Army upper enlisted grades. BESRL Research Study 69-2. March 1969.
- McMullen, Robert L. SIMPO-I Career Noncareer model. BESRL Technical Research Report 1162. June 1970. (AD 710 364)
- 4. Witt, Joanne M. and Adele P. Narva. SIMPO-I General Matrix Manipulator. BESRL Technical Research Report 1165. January 1971.
- 5. Olson, Pauline T., Richard C. Sorenson, Kenneth W. Haynam, Joanne M. Witt, and Elizabeth N. Abbe. Summary of SIMPO-I model development. BESRL Technical Research Report 1157. February 1969. (AD 692 790)

APPENDIX		-	•	-				
	^	u	u	L.	RI'	г	 - 1	7
	•	•	r	r.	IX.		-	٨

COMPUTER LISTINGS OF DISTRO SUBROUTINES

SECTION 1 INPUT DISTRIBUTION PARAMETERS ENTRY INPUT READ 102, NPRLEV, ISUM DO 18 I=1.NPRLEV ISTART=I*NT-NT+1 ISTOP=I#NY 18 READ 101, (PRIO(J), J=ISTART, ISTOP)

TOTAL IN PRIORITY GROUP-TRANSIENTS.

92

C C C

C

```
INPR=ISUM+NT
      READ 102 + (GRPINPR(I) + I=1 + INPR)
      READ 102 + (NCRNODE (I) + I=1+NT)
      RFAD 102 NUMELEM NUMMAT
      READ 102+(MATGRPS(I)+I=1+NUMELEM)
READ 102+(BEGROW(I)+ENDROW(I)+BEGCOL(I)+ENDCOL(I)+I=1+NUMMAT)
C
      PRINT 103
      PRINT 105
PRINT 106
       J=0
      DO 16 I=1.NUMELEM
       IF (MATGRPS (I) . EQ. 0) GO TO 14
      PRINT 109.MATGRPS(I).BEGROW(J).ENDROW(J).BEGCOL(J).FNDCOL(J)
   GO TO 16
14 PRINT 110
   16 CONTINUE
       PRINT 104. (J. PRIO (J), J=1, ISTOP)
C
       SECTION 2
      CALLS SUBROUTINE SUMMARY WHICH OBTAINS TOTALS ENTRY ISUMAR
       INDIV=INTOT=0
       CALL SUMMARY (NUMELEM, INDIV, INTOT)
C
       CALCULATE MAXIMUM DEPLOYABLE AVAILABLE IN TOUR AREA
       J=0
       ISUM1=J=0
       DO 21 I=1.INPR
                        ).GT.0) GO TO 17
       IF (GRPINPR(I
       J=J+1
       MAXDEPL(J)=0
G0 T0 21
   17 ISUM1=ISUM1+1
       MAXDEPL(J) = MAXDEPL(J) + GRPSUM(ISUM1)
   21 CONTINUE
       PRINT 117, ISUM1, J
       RETURN
C
       SFCTION 3
       MODIFICATION OF REQUIREMENTS FOR TIME PERIOD
       ENTRY MODIFY
       J=LEVEL*NT-NT
       DO 6 I=1.NT
       MIN(I)=0
       J=J+1
       IF(IFILL-))9,10
     9 NEEDS(I)=NED(I)*PRIO(J)-ACT(I)
       IF (NEEDS(1))3,4,4
     3 NEEDS(I)=n
       GO TO 4
    10 NE(I)=NEE(I)*PRIO(I)-ACTUAL(I)
       IF (NE(I)) 11 • 4 • 4
    11 NE(I)=0
     4 IF (MAXDEP) (I ).LT.NEEDS(I ))MIN(I )=1
       CONTINUE
        If(IfILL-1)12,13
    12 PRINT 107, (I, NEEDS(I), I=1,NT)
       PRINT 112. (NED(I), I=1.NT)
       PRINT 113. (ACT(I).I=1.NT)
       ISTART=LEVEL+NT-NT+1
                                           93
```

```
ISTOP=LEVFL*NT
      PRINT 114.LEVEL, (PRIO(1).I=ISTART, ISTOP)
      PRINT 115. (NCRNODE (I). I=1.NT)
      PRINT 116. (GRPINPR(I).1=1.INPR)
      Gn To 5
   13 PRINT 108. (I, NE(I), I=1,NT)
    5 CONTINUE
      RFTURN
C
      SECTION 4
C
      CALLS SUBROUTINE ADDUP WHICH DISTRIBUTES NODE CLUSTERS AMONG
         SPECIFIC DISTRIBUTION AREAS.
C
      ENTRY IADD
      CALL ALLOCATE
      RETURN
      SECTION 5
      MAINTAINS MINIMUM LEVEL IN TOUR AREAS
      ENTRY MINIMUM
      IDEMAND=NFEDS (MATOUT)
      IF (NCRNODF (MATIN) . EQ. 1) GO TO 25
      IF (MAXDEPL (MATOUT) . LE. IDEMAND) GO To 20
      IF ((MAXDEPL (MATOUT) - SYST (M.LEN)).GE. IDEMAND) GO TO 25
      IOVER=MAXDEPL (MATOUT) - ILEMAND
      IHOLD=SYST (M+LEN) -IOVER
      SYST (M.LEN) = IOVER
      GO TO 25
   20 IHOLD=SYST (M.LEN)
      SYST (M.LEN) =0
      MIN(MATOUT) = 1
   25 CONTINUE
      RETURN
      SUBROUTINE DISTRO FORMATS
  101 FORMAT (8F10-4)
  102 FORMAT (4012)
  103 FORMAT (24HODISTRIBUTION PARAMETERS/)
  104 FORMAT (13HONOUS CLUSTER+5X+9HFILL RATE/(18+10X+ F5-3)/)
  105 FORMAT(/40HONONDEPLOYABLES AT BEGINNING AND END OF /30HOMATRICES W
     11THIN NODF CLUSTERS)
  106 FORMAT(7HOMATRIX,2X,9HFIRST ROW,2X,8HLAST ROW,2X,9HFIRST COL,2X,8H
     ILAST COL)
  107 FORMAT(/33HOMODIFIED NEEDS FOR NODE CLUSTERS/13HONODE CLUSTER,3X,5
     1HNEEDS/(17,9X,15))
  108 FORMAT (/25HOMODIFIED NEEDS FOR NODES/5HONODE+3X,5HNFEDS/(15,3X,15)
     1)
  109 FORMAT(15,4X,16,5X,15,5X,16,5X,15)
  110 FORMAT(/)
  112 FORMAT (7HONEC = +1018)
  113 FORMAT (7H0ACT = +1018)
  114 FORMAT (7HOLEVEL .13,/(8HOPRIO = ,10F5.3))
  115 FORMAT(60HOCRITICAL NODE VECTOR. 1 = A CRITICAL NODE, 0 = NONCRIT
      1ICAL/(2013))
  116 FORMAT (37HOTOUR AREAS WITHIN PRIORITY GROUPS = /(2013))
  117 FORMAT (9HnISUM] = +15,4HJ = +14)
C
      END
```

Here the contract of the contr

FORTRAN DIAGNOSTIC RESULTS FOR DISTRO

```
SUBROUTINF ALLOCATE
         COMMON
                       NOFIRST
                                   .NOLAST
                                              +NoTT
                                                         .ITRTIME
                                                                    . INTEG
         COMMON
                        ΙP
                                   .INE (48)
                                              , IFND
                                                          .0UTTT(200)
         COMMON
                       OUTST (200) + OUTTO (200)
                                                         .001S0(200)
        COMMON
                       PCT (200)
                                   .PERD (200) .JK
                                                         .SYST (48.48)
        COMMON
                       PA(100)
                                   •NAV(100) •LFNGTH(100)
                                                                     +OUT (100)
        COMMON
                       INTOUR (22m)
                                              . INSUB (220)
                                                                     OUTTOUR (220)
        COMMON
                       100 (220)
                                   .OUTSUB (220)
                                                         .AFTFR(220)
        COMMON
                       PER (220)
                                   .RATE (100)
                                                         .NEEDS(10) .NE(10.10)
                       IOS(10)
NTOUR
        COMMON
                                   .NED(10)
                                              *NFE (100)
                                                         .IFILL
         COMMON
                                                                    MAXLEN
                                              +CTOS
                                                         •PERDTO (200)
        COMMON
                       PDW
                                   ·LSTRSTO(10)
                                                         .LSTRSTT(10)
        COMMON
                       STRSTS(10)
                                              • ITT
                                                         .MAXSUB
                                                                    +ACT(10)
        COMMON
                       NSIT(10)
                                  , INOS (10,10)
                                                         . IGRADE (220)
        COMMON
                        REP (220) . ITYPE (220)
                                                         .PEROUT (220)
        COMMON
                       IDISTON
                                             +GRPSUM(100)
                                  . ISUM
                                                                    PRIO(100)
        COMMON
                       BEGROW (100)
                                              • ENDROW (100)
                                                                    *BEGCOL (100)
        COMMON
                       ENDCOL (100)
                                              +MATSUM (100)
                                                                    •MATGRPS (100)
        COMMON
                       TYPE (100) + SUB (100)
                                             +NIIM(100) .ACTUAL(100)
        COMMON
                       NPRLEV
                                  .NT
                                             , IHOLD
                                                         .LEN
                                                                    .LEVEL
        COMMON
                       NCRNODE (1n0)
                                                                               . M
                                             MIN(100) .GRPINPR(100)
        COMMON
                       MAXDEPL (100)
         FOLLOWING COMMON STATEMENTS USED ONLY IN ALLOCATE
 C
        COMMON
                      NACTDEP (100)
                                             ·NAURATE (100)
                                                                    + IDNC (100)
        COMMON
                       IDNC1 (100)
                                             •NAUCAT (100)
        INTEGER
                       TYPE
                                  ,SUB
                                             +ACTUAL
                                                        .ENDCOL
        INTEGER
                      CIOS
                                  SYST
                                             OUTSUB
                                                        .OUTTOUR
        INTEGER
                                                                    +AFTER
                      ACT
                                  .OUTTO
                                             .Outso
                                                        .OUTTT
        INTEGER
                                                                    OUTST
                      PERD
                                  · GRPSUM
                                             .BFGROW
                                                        . ENDROW
        INTEGER
                                                                    *BEGCOL
                      DEPLOY
                                  •SURPLUS
                                             +TOTAUTH
        INTEGER
                      PERDTO
 C
        SUBROUTINE ALLOCATE DISTRIBUTES RESOURCES AMONG COMMAND ELEMENTS WITHIN
 Č
C
C
        DEFINITION OF VARIABLES TOUR AREAS TO BE DISTRIBUTED
C
Č
        NCAT=NUMBER OF COMMAND ELEMENTS TO WHICH A TOUR AREA IS DISTRIBUTED
C
        IDNC=IDENTIFICATION FOR COMMAND ELFMENTS WITHIN TOUR AREAS
C
C
        RATE=RATE OF FILL FOR COMMAND ELEMENTS.
C
        DEPLOY=NUMBER OF DEPLOYABLE PERSONNEL WITHIN A TOUR AREA PA=PATIENT RATE FOR EACH TOUR AREA
        NAUCAT (NCAT) = AUTHORIZATION FOR EACH COMMAND ELEMENT
C
        NAURATE (NCAT) = PERSONNEL AUTHORIZED + RATE OF FILL FOR EACH COMMAND ELEMEN
C
        NACTDEP (NCAT) = NUMBER ACTUALLY DEPLOYED OR ASSIGNED TO A COMMAND ELFMENT
C
Ċ
C
        TOTAUTH(ISUM) = TOTAL AUTHORIZATIONS FILL RATES FOR TOUR AREAS.
        SURPLUS=UNASSIGNED DEPLOYABLE PERSONNEL
C
C
C
      PRINT 103
       INTEG=INTFG-1
      READ 101. (PA(I).I=1.ISUM)
C
      DO 20 1=1.ISUM
      PRINT 105
      READ 102.NCAT. (IDNC(J).IDNC1(J).J=1.NCAT)
      READ 101+(RATE(J)+J=1+NCAT)
C
```

```
Do 20 K=1.INTEG
      RFAD 100, (NAUCAT (J), J=1.NCAT)
C
       DETERMINES DEPLOYABLE PERSONNEL FOR EACH TOUR AREA
      PRINT 189
      CALL RANRFAD (14. GRPSUM. ISUM. K)
      DFPLOY=GRPSUM(I) + (1-PA(I))
      PRINT 106.I
                     .GRPSUM(I).PA(I).DEPLny.K
      TOTAUTH=0
       DETERMINES PERCENT OF AUTHORIZATIONS WHICH MAY BE FILLED
      DO 5 J=1.NCAT
      NAURATE(J)=NAUCAT(J)*RATE(J) + .5
      TOTAUTH=TOTAUTH+NAURATE (J)
C
      X1=DEPLOY
      X2=TOTAUTH
      XINTER=X1/X2
C
      DO 40 J=1.NCAT
      IF (DEPLOY.GT. TOTAUTH) GO TO 15
      NACTDEP(J)=XINTER*NAURATE(J)+.5
      GO TO 40
   15 NACTDEP(J)=NAURATE(J)
   40 PRINT 107.IDNC(J).IDNC1(J).RATE(J).NAUCAT(J).NAURATF(J).NACTDEP(J)
      SURPLUS=DFPLOY-TOTAUTH
   20 PRINT 108. SURPLUS
C
       FORMATS
  100 FORMAT(8I10)
  101 FORMAT(16F5.4)
  102 FORMAT(15.(10(A4.A3)))
  103 FORMAT (/14HODISTRIBUTIONS)
  105 FORMAT(1X.4HTOUR.3X.4HTOUR.2X.7HPATTENT.2X.10HDEPLOYABLE.3X.4HTIME
     1/1X+4HAREA+2X+5HTOTAL+3X+4HRATE+16X-6HPERION/43X+7HCOMMAND+2X+4HFI
     2LL+2X+7HCOMMAND+2X+7HCOMMAND+2X+7HCOMMAND+7x+4HAREA/43X+7HELEMENT+
     32x+4HRATE.3X,4HAUTH+4X+7H FILL +2X.10HALLOCATION+2x.7HSURPLUS)
  106 FORMAT (14.18.F7.2.112.18)
  107 FORMAT(42x+A4+1x+A3+F5.2+19+19,19)
  108 FORMAT (87x+17)
  109 FORMAT(1H#)
      RFTURN
         END
```

FORTRAN DIAGNOSTIC RESULTS FOR ALLOCATE

NO ERRORS