Collecting Images is Fun

今西 健介(@japlj)

画素数が2のべき乗で正方形状の白黒画像が 大好きな JOI 君の悩みを解決しよう!!

画素数が2のべき乗で正方形状の白黒画像が

大好きな JOI 君の悩みを解決しよう!!

 $(\hat{\omega})$

ここに画像が あるじゃろ

画素数が2のべき乗で正方形状の白黒画像が

大好きな JOI 君の悩みを解決しよう!!

画素数が2のべき乗で正方形状の白黒画像が

大好きな JOI 君の悩みを解決しよう!!

$$(\hat{\omega})$$

画素数が2のべき乗で正方形状の白黒画像が

大好きな JOI 君の悩みを解決しよう!!

```
( ^ ω ^ ) こうじゃ
```

$$\supset ... \subset$$

•••

6.7.

• •

実際の圧縮方法

最初の例で説明

実際の圧縮方法(2)

Images is kun

まず画像全体を見ると、一色ではない

実際の圧縮方法(3)

Images is Aug

四分割して同様に見ていく

実際の圧縮方法(4)

Inages is Aux

上側2つは一色のみなので終了

実際の圧縮方法(5)

Images is Aun

下側はまた四分割を繰り返していく

実際の圧縮方法(6)

Images is Aug

一色でない領域が残ってる間はどんどん分割

実際の圧縮方法(7)

Images is Aug

圧縮後のサイズ = 木の頂点数

改めて問題概要

先ほど作った木は四分木という

【問題】

真っ白な画像の行か列の画素をフリップする クエリが大量に飛んでくるので, 各クエリを処理した後の画像を表す 四分木の頂点数を答えよ

(解くのに四分木の知識は必要ありません)

愚直な解法1

Images is Aug

- ・画像を $2^N \times 2^N$ の配列で用意
- ・クエリはきちんと画素をフリップ
- ・問題文通りに画像を圧縮してみる

計算量は $O(4^NQN)$ ぐらい

→小課題 1 (10点) までなら解ける

愚直な解法2

Inacollection is A.

一回のクエリで,画像を表す四分木はたかだか $^{\prime\prime}$ $2^{N}N$ 頂点ぐらいしか変更されない(後述)

変更される部分だけを更新することにすると 計算量は $O(2^NQN)$ となる

→ 小課題 2 (20点) まで解ける

愚直な解法2の説明

Innages is Aug

1 画素はたかだか N+1 頂点に影響する

頂点数に関する考察

四分木の頂点数は簡単には数えにくい

今見ている範囲が一色しかなければ頂点数 1 そうでなければ再帰してサイズの和に 1 を足す (クッソ複雑な再帰君)

○○の数を数えれば、あとはちょっとうまく やれば OK!!! みたいなものがあると嬉しい

再帰より「○○を数えるだけ」のほうが簡単っぽい

四分木の観察

Inages is Aug

四分木を観察してみよう(観葉四分木)

四分木の観察(2)

Images is his

灰色の頂点の数がわかるとよさそう

頂点数 = 4 * 灰色 + 1

四分木の観察(3)

灰色の頂点とはどんな頂点か?

対応する領域が一色でない (四分割する必要がある) ような頂点が灰色だった

灰色に対応する領域の例

頂点数の数え方

まとめると, 画像を 2x2, 4x4, 8x8, ... に 区切った領域のうち一色でない領域の個数を 数えると頂点数が分かる

4ページ前「○○の数を数えれば,あとはちょっとうまくやれば OK!!! みたいなものがあると嬉しい」

→あった

頂点数の数え方(2)

もちろん一個ずつ数えると

なので、賢い数え方が必要

ひとまず

- 一色でない領域を数えると後々闇が生えるので
- 一色の領域を数えて全体から引くことにする

クエリの特徴を観察

今回のクエリはわりと特殊(観葉クエリ)

行と列のフリップしかこないということを利用 して、一色の領域を爆速で数えられないか?

→ある領域が一色である条件を考えよう

一色条件

この領域が一色に なるためには行と列 の反転され具合が どのようになれば よいだろうか??

一色条件(2)

こういう反転され具合 のやつは何をやっても ダメ

一色条件(3)

こういう反転され具合 のやつも何をやっても ダメ

一色条件(4)

こういう反転され具合 のやつは優秀

就職にも困らない

一色条件(5)

こういう反転され具合 のやつも優秀

就職にも困らない

一色条件(6)

行と列の反転され具合 がそれぞれ同じなら神 ↓

行と列は別に考えられる

頂点数の数え方(3)

k=2,4,8,... (領域の幅) を固定 次の問題を解くことを考えよう

【問題】

画像を $k \times k$ の領域に分割したときに

一色になる領域はいくつあるか?

頂点数の数え方(4)

行と列を別に考えれば、次の問題でよい

【問題】

反転され具合を k 個ごとに分割したときに 全体が同じになっている箇所はいくつあるか?

頂点数の数え方(5)

もっと問題を分離した形にする

【問題】

n 個の O が並んでいる列がある

i 番目を 0,1 フリップするクエリが来るので

各クエリを処理後に、列をk個ごとに分割した

ときに同じ数からなる部分がいくつあるか?

頂点数の数え方(6)

これは segment tree っぽいもので解ける

同じ数からなる区間の数

範囲の和を持っている

 $1 \rightarrow$

 $2 \rightarrow 0$ 0

頂点数の数え方(7)

変更クエリの様子を観察(観葉クエリ Part 2)

同じ数からなる区間の数

範囲の和を持っている

 $0 \rightarrow$

1

 \rightarrow

0

 $3 \rightarrow$

0

1

0

0

8に決まってるだろ!

いい加減にしろ!!

0

0

1

0

0

0

0

0

頂点数の数え方(8)

変更クエリの様子を観察(観葉クエリ Part 2)

同じ数からなる区間の数

範囲の和を持っている

$$) \rightarrow |$$

$$0 \rightarrow 1$$
 1

$$\frac{2}{2} \rightarrow \left[\begin{array}{c|cccc} 0 & 1 & 0 \\ \end{array} \right] \quad 0 \quad \left[\begin{array}{c|cccc} 1 & 0 \\ \end{array} \right]$$

8に決まってるだろ! 0 0 1 0 0 1 0

頂点数の数え方(9)

変更クエリの様子を観察(観葉クエリ Part 2)

同じ数からなる区間の数

範囲の和を持っている

 $0 \rightarrow |$

 $0 \rightarrow \boxed{2}$

頂点数の数え方(10)

あとは仕上げ

各 k = 2, 4, 8, ... に対し

「行について問題を解いた答」×

「列について問題を解いた答」

を足せば,一色の領域の個数が求められる.

計算量

Images is Aug.

各クエリに大して segment tree っぽいものを 更新する計算量は O(N)

 \rightarrow 全体では O(NQ)

小課題 3 (70点) が解ける

得点分布

