SSY098 - Image Analysis

Lecture 6 - (More) Convolutional Neural Networks

Torsten Sattler (slides adapted from Olof Enqvist)

Jan. 20	Introduction, Linear classifiers and filtering		
Jan. 23	Filtering, gradients, scale	lah 1	
Jan. 27	Local features	Lab 1	
Jan. 30	Learning a classifier		
Feb. 3	Feb. 3 Convolutional neural networks		
Feb. 6	More convolutional neural networks		
Feb. 10	Robust model fitting and RANSAC	Lab 3	
Feb. 13	Image registration		
Feb. 17	Camera Geometry	Lab 4	
Feb. 20	More camera geometry		
Feb. 24	Generative neural networks		
Feb. 27	Generative neural networks		
Mar. 2	TBA		
Mar. 9	TBA		

Neural Networks

Optimize all network parameters via gradient descent:

$$\theta^{(k+1)} = \theta^{(k)} - \mu \sum_{i} \nabla L_i(\theta) \approx \theta^{(k)} - \mu \nabla L_i(\theta)$$

Compute derivative of partial loss for each parameter wk

Training a neural network

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

$$\frac{\partial L_i}{\partial w_k} = x_k \xi' \sum_j \tilde{w}_j \frac{\partial L_i}{\partial \tilde{y}_j}$$

Today

- Recap: Convolutional Neural Networks
- Fully Convolutional Neural Networks
- Convolutional Layers
- Overfitting, Part II

Convolutional Neural Networks

Fully Connected Layers

Fully Connected Layers

Number parameters: $w \cdot h \cdot w' \cdot h'$

Fully Connected Layers

Number parameters: $w \cdot h \cdot w' \cdot h'$

Redundancy

But no locality

Convolutional Layers

Translation Invariance

	Па	ISIAI	.1011
A STATE OF THE PARTY OF THE PAR	A CONTRACTOR OF THE PROPERTY O	A STATE OF THE PARTY OF THE PAR	
		R. M.	

$$I \star \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$$

$$I \star w$$

$$\max\{I \star w, 0\}$$

implemented as matrix-vector multiplication:

$$\operatorname{vec}(\mathcal{J}) = F\operatorname{vec}(\mathcal{I})$$

$$\sum_{u=1}^{16} \sum_{v=1}^{16} \sum_{i=1}^{10} w_{uvi} x_{uvi}$$

implemented as matrix-vector multiplication:

Fully Convolutional Neural Networks

Recognition / Classification

Is there a robin in this image?

Convolutional Neural Network for Classification

Convolutional Neural Network for Classification

Input image size needs to be fixed during training!

Convolutional Neural Network for Classification

Input image size needs to be fixed during training!

How to get a per-pixel decision?

Instance Segmentation

Semantic Segmentation

image source: Mapillary

Human Pose Estimation

Needs multiple decisions.

Human Pose Estimation

Needs multiple decisions.

Just apply network in sliding window fashion?

Human Pose Estimation

Needs multiple decisions.

Just apply network in sliding window fashion? Works, but slow!

Fully-Convolutional Networks

Faster approach:

From Fully-Connected to Fully-Convolutional

- Fully-connected layer is still a convolutional layer
- Can convert a network with fully-connected into fully-convolutional network:
 - Simply reshape matrix from fully-connected layer into a filter
 - Produces the same result on the input volume of the fullyconnected layer
 - See example on black board

Fully-Convolutional Networks

Faster approach:

But: Memory intensive at full resolution

Fully-Convolutional Network for Detection

Pooling increases receptive field size!

Fully-Convolutional Network for Detection

Fully-Convolutional Network for Detection

Increasing the Receptive Field by (Max-)Pooling

Advantage: Introduces robustness to small shifts

Increasing the Receptive Field by (Max-)Pooling

Advantage: Introduces robustness to small shifts

... but we might not always want that

$$w = \frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	O	0	0	0	0	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	О	5	5	0	О	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

1

$$w = \frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	0	0	0	Ο	Ο	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	0	5	5	О	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	

I

 $w = \frac{1}{5}$

	0	1	0
•	1	1	1
	0	1	0

0	0	0	Ο	0	0	0
0	Ο	0	0	0	0	0
0	0	5	10	5	0	0
O	0	10	10	5	0	0
O	0	5	5	0	0	0
O	0	0	0	О	0	0
0	0	0	0	0	0	0

stride

0	2	

1

$$w = \frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	О	0	Ο	0	0	0
0	0	5	10	5	0	0
0	О	10	10	5	0	0
0	О	5	5	О	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	2	0

1

$$w=\frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	O	O	0	О	0	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	0	5	5	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	2	0
2		

1

$$w=\frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	0	О	O	О	0	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	0	5	5	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	2	0
2	8	

1

$$w = \frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	О	0	0	0	О	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	0	5	5	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	2	0
2	8	1

1

$$w=\frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	О	О	О	О	О	0
0	Ο	5	10	5	0	0
0	О	10	10	5	О	0
0	О	5	5	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0	2	0
2	8	1
0		

I

Learnable Alternative: Strided Filtering

$$w=\frac{1}{5}$$

0	1	0
1	1	1
0	1	0

0	0	0	0	0	0	0
0	0	О	0	0	0	0
0	0	5	10	5	0	0
0	0	10	10	5	0	0
0	0	5	5	0	O	0
0	0	О	0	0	0	0
0	0	0	0	0	0	0

0	2	0
2	8	1
0	1	

1

$$I \star w$$

Strided Convolutions

Strided Convolutions

What if we want to increase resolution?

Standard view: Multiple pixels contribute to one pixel

X	X	X	X	X
x	X	X	X	X
X	X	X	X	X
X	X	X	X	X
X	X	X	x	X

Strided filtering reduces resolution

Transposed strided filtering increases resolution

3

2

12

0,25	0,5	0,25
0,5	1	0,5
0,25	0,5	0,25

0,25	0,5	0,25
0,5	1	0,5
0,25	0,5	0,25

0,25	0,5	0,25
0,5	1	0,5
0,25	0,5	0,25

4	3	2	3	4
5	4	3	4	5
6	5	4	5	6
4	6	8	6	4
2	7	12	7	2

4	0	2	0	4
0	0	0	0	0
6	0	4	0	6
0	0	0	0	0
2	0	12	0	2

Transposed Convolutions

- Not to be confused with matrix transpose
- Parameters are learned, not computed from the downsampling filtering stage
- Also known as:
 - fractionally strided convolutions
 - deconvolution (misleading, since transposed convolutions do not undo effect of convolution)

Standard convolution:

Standard convolution:

Standard convolution:

Standard convolution:

Standard convolution:

Dilated Convolutions

Standard convolution:

Standard convolution:

Standard convolution:

Standard convolution:

Standard convolution:

Overfitting, Part II

Overfitting

10 data points - Fitting 10th degree polynomial

$$y = x^2$$

224

VGG-16 architecture

Overfitting

224

Conv 64 3x3

Conv 64 3x3

max pooling

conv 1

Overfitting

conv 1

224

Conv 64 3x3

Conv 64 3x3 max pooling

conv 2

Conv 128 3x3 Conv 128 3x3

max pooling

224

Overfitting

VGG-16 architecture

Conv Conv max conv 1 64 3x3 64 3x3 pooling 224 Conv Conv max conv 2 128 3x3 128 3x3 pooling Conv Conv Conv max conv 3 256 3x3 256 3x3 256 3x3 pooling 224

Overfitting

VGG-16 architecture

224

224

Conv 64 3x3

Conv

128 3x3

Conv

256 3x3

Conv

512 3x3

Conv 64 3x3

Conv

128 3x3

Conv

256 3x3

Conv

512 3x3

max pooling

max

pooling

Conv 256 3x3

Conv 512 3x3

max pooling

max pooling conv 1

conv 2

conv 3

conv 4

Overfitting

224

Conv	Conv	max
64 3x3	64 3x3	pooling
Conv	Conv	max
128 3x3	128 3x3	pooling
Conv	Conv	Conv
256 3x3	256 3x3	256 3x3
Conv	Conv	Conv

Conv 512 3x3

512 3x3

Conv 512 3x3

512 3x3

Conv 512 3x3

512 3x3

pooling max

nax

max pooling

pooling

conv 1

conv 2

conv 3

conv 4

conv 5

Overfitting

224

conv 1	max pooling	Conv 64 3x3	Conv 64 3x3	
conv 2	max pooling	Conv 128 3x3	Conv 128 3x3	
conv 3	Conv 256 3x3 max pooling	Conv 256 3x3	Conv 256 3x3	1
conv 4	Conv 512 3x3 pooling	Conv 512 3x3	Conv 512 3x3	
conv 5	Conv 512 3x3 max pooling	Conv 512 3x3	Conv 512 3x3	
	FC soft max	FC 4096	FC 4096	

Overfitting

conv 1		max pooling	Conv 64 3x3	Conv 64 3x3	
conv 2		max pooling	Conv 128 3x3	Conv 128 3x3	
conv 3	max pooling	Conv 256 3x3	Conv 256 3x3	Conv 256 3x3	224
conv 4	max pooling	Conv 512 3x3	Conv 512 3x3	Conv 512 3x3	
conv 5	max pooling	Conv 512 3x3	Conv 512 3x3	Conv 512 3x3	138M parameters!
	soft max	FC 1000	FC 4096	FC 4096	

Data Augmentation

Regularization

$$L(w_1,\ldots,w_n)+c\sum_i w_i^2$$

Dropout

Dropout

Randomly disable neurons for each minibatch

Dropout

3

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). <u>Imagenet large scale visual recognition challenge</u>. arXiv preprint arXiv:1409.0575. [web]

14 million images of 1000 classes

VGG-16 architecture

VGG-16 architecture

VGG-16 architecture

VGG-16 architecture

Fix weights

VGG-16 architecture

Fix weights

Train on limited data

Low-level features: corners, edges, ...

Mid-level features

Higher-level features: object parts & objects

Lessons Learned

- Main lessons from this lecture
 - Convolutional neural networks
 - Layers: Fully connected, convolutional, activation functions, max pooling, strides & dilated filters
 - Fully convolutional networks
 - Handling overfitting
- Next lecture: Robust Model Fitting

Next Lecture

Jan. 20	Introduction, Linear classifiers and filtering			
Jan. 23	Filtering, gradients, scale	Lab 1		
Jan. 27	an. 27 Local features			
Jan. 30	1. 30 Learning a classifier			
Feb. 3	Convolutional neural networks	Lab 2		
Feb. 6	More convolutional neural networks			
Feb. 10	Robust model fitting and RANSAC	Lab 2		
Feb. 13	Image registration	Lab 3		
Feb. 17	Camera Geometry			
Feb. 20	More camera geometry	Lab 4		
Feb. 24	Generative neural networks			
Feb. 27	Generative neural networks			
Mar. 2	TBA			
Mar. 9	TBA			