2021年度 日本留学試験(第1回)

試験問題

The Examination

2021年度 日本留学試験

数学(80分)

【コース 1 (基本, Basic)・コース 2 (上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

Ⅰ 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 3. コース1は1~13ページ, コース2は15~27ページにあります。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号), または、 0から9までの数が一つずつ入ります。適するものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A** , **BC** などが繰り返し現れる場合, 2度目以降 は、 **A** , **BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 $(\sqrt{})$ の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し、 $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) \mathbf{C} に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。

【解答用紙】

Α		0	1	2	3	4	(5)	6	0	8	9
В	Θ	0	1	2		4	(5)	6	0	8	9
С	Θ	0	1	2	3		6	6	0	8	9
D	0	0	1	2	3	4	(5)	6	0	8	9
E	Θ	0	0	2	3	4	(5)	6	0	8	9

4. 解答用紙に書いてある注意事項も必ず読んでください。

※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*	*		
名 前				

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを<u>一つだけ</u>選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。

< 解答用	紙記入例 >
解答コー	ス Course
コース 1 Course 1	コース 2 Course 2
0	•

選択したコースを正しくマークしないと、採点されません。

Г	-	_	
	1		
	1		

問 1 2 つの 2 次関数

$$f(x) = -2x^2$$
, $g(x) = x^2 + ax + b$

を考える。関数 g(x) は次の 2 つの条件を満たしている。

- (i) g(x) の値は x=3 で最小になる。
- (ii) g(4) = f(4)
- (1) 条件 (i) より a=- **A** である。さらに,条件 (ii) より b=- **BC** を得る。したがって,関数 g(x) の最小値は **DE** である。
- f(x) = g(x) を満たす x で 4 と異なるものを求めよう。x は

$$x^2 - \boxed{\mathbf{F}} x - \boxed{\mathbf{G}} = 0$$

を満たすから、x = - **H** である。

(3) - \mathbf{H} $\leq x \leq 4$ において,f(x)-g(x) の値は x= \mathbf{I} のとき最大になり,その値は \mathbf{JK} である。

- (2) 以下,この勝負を4回実行するとき,次の確率を求めよう。ただし,取り出したカードは毎回元の袋に戻すこととする。
 - (i) Aが3勝以上する確率は N である。
 - (ii) Aが1勝1敗2引き分けになる確率は P である。
 - (iii) A の勝つ回数と B の勝つ回数が同じになる確率は UV である。したがって、 UV A の勝つ回数が B の勝つ回数より多くなる確率は UV である。

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{Y}$, $oxed{Z}$ はマークしないでください。

H

次の文中の **C** , **D** , **F** , **G** には, 下の選択肢 ① ~ ⑨ の 中から適するものを選び、その他の「には適する数を入れなさい。

1 辺の長さが 1 である正四面体 OABC を考える。x は 0 < x < 1 を満たす数とし,辺 AB を x:(1-x) に内分する点を P,辺 BC を x:(1-x) に内分する点を Q とする。また, $\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, $\overrightarrow{\mathrm{OB}} = \overrightarrow{b}$, $\overrightarrow{\mathrm{OC}} = \overrightarrow{c}$ とおく。このとき, $\cos \angle \mathrm{POQ}$ の値の範囲を求めよう。

 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} \overrightarrow{l}

$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a} = \boxed{ A }$$

を満たす。

次に、
$$\overrightarrow{OP}$$
 と \overrightarrow{OQ} は、 $\overrightarrow{OP} = \boxed{\textbf{C}}$ 、 $\overrightarrow{OQ} = \boxed{\textbf{D}}$ と表せるから $|\overrightarrow{OP}| = |\overrightarrow{OQ}| = \sqrt{\boxed{\textbf{E}}}$ 、 $|\overrightarrow{OP} \cdot \overrightarrow{OQ}| = \boxed{\textbf{F}}$

となる。よって

$$\cos \angle POQ = \frac{1}{\boxed{\textbf{G}}} - \frac{\boxed{\textbf{H}}}{\boxed{\blacksquare}}$$

である。

したがって、これより、求める値の範囲は

$$\frac{\boxed{\mathsf{J}}}{\boxed{\mathsf{K}}} < \cos \angle \mathrm{POQ} \le \frac{\boxed{\mathsf{L}}}{\boxed{\mathsf{M}}}$$

である。

$$\textcircled{0} \quad (1-x)\overrightarrow{a} + x\overrightarrow{b} \qquad \qquad \textcircled{1} \quad x\overrightarrow{a} + (1-x)\overrightarrow{b} \qquad \qquad \textcircled{2} \quad (1-x)\overrightarrow{b} + x\overrightarrow{c}$$

$$(1-x)\overrightarrow{b} + x\overrightarrow{c}$$

$$(3) \quad \overrightarrow{xb} + (1-x)\overrightarrow{c}$$
 $(4) \quad x^2 + x + 1$

$$(4)$$
 $x^2 + x + 1$

$$6 x^2 - x - 1$$

$$(7) \quad \frac{1}{2} \left(-x^2 + x + 1 \right)$$

6
$$x^2 - x - 1$$
 7 $\frac{1}{2}(-x^2 + x + 1)$ **8** $\frac{1}{2}(-x^2 - x + 1)$

注) 正四面体:regular tetrahedron,内分する:divide internally

問 2 複素数平面上の 3 点 $A(\alpha)$, $B(\beta)$, $C(\gamma)$ を頂点とする三角形 ABC において

$$\frac{\gamma - \alpha}{\beta - \alpha} = 1 - i$$

であるとする。以下、偏角 θ の範囲は $0 \le \theta < 2\pi$ とする。

(1) 複素数 $\frac{\gamma - \alpha}{\beta - \alpha}$ を極形式で表すと

$$\frac{\gamma - \alpha}{\beta - \alpha} = \sqrt{\frac{\mathbf{N}}{\mathbf{N}}} \left(\cos \frac{\mathbf{O}}{\mathbf{P}} \pi + i \sin \frac{\mathbf{O}}{\mathbf{P}} \pi \right)$$

である。よって,点 C は,点 B を点 A を中心として $\boxed{ \begin{tabular}{c} {\bf Q} \\ \hline {\bf R} \end{tabular} }$ だけ回転し,さらに点

A からの距離を $\sqrt{\mathbf{S}}$ 倍した点である。これより、複素数 $w=\frac{\gamma-\beta}{\alpha-\beta}$ の絶対値と偏角は

$$|w| = \boxed{ extbf{T}}, \quad \arg w = \boxed{ extbf{U}} \pi$$

である。

(2) $\alpha + \beta + \gamma = 0$ とすると

$$|\alpha|:|\beta|:|\gamma|=\sqrt{\mathbf{W}}:\sqrt{\mathbf{X}}:\sqrt{\mathbf{Y}}$$

である。

注) 複素数平面:complex plane,偏角:argument,極形式:polar form

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{oxed}$ はマークしないでください。

III

関数

$$f(x) = 8^{x} + 8^{-x} - 3\left(4^{1+x} + 4^{1-x} - 2^{4+x} - 2^{4-x}\right) - 24$$

の最小値と、最小値をとるときのxの値を求めよう。

$$4^x + 4^{-x} = t^2 -$$
 A , $8^x + 8^{-x} = t^3 -$ **B** t

であるから

$$f(x) = t^3 -$$
CD $t^2 +$ EF t

と表せる。この右辺の t の関数を g(t) とおくと、その導関数は

$$g'(t) =$$
 $G \left(t - H \right) \left(t - I \right)$

である。ただし、 H < I とする。

ここで、 $2^x + 2^{-x} = t$ であるから t のとる値の範囲は

$$t \geqq \boxed{\mathsf{J}}$$

である。

$$t=$$
 $oxed{J}$ のとき g $(oxed{J})=$ $oxed{KL}$ であり、 $t>$ $oxed{J}$ のとき $g(t)$ は $t=$ $oxed{M}$ で、極大値 $oxed{NO}$ $t=$ $oxed{P}$ で、極小値 $oxed{QR}$

をとる。

したがって、f(x) の最小値は lacksquare であり、そのときの x の値は

$$x = \boxed{f U}$$
 , $\log_2\left(\boxed{f V} \pm \sqrt{\boxed{f WX}}\right) - \boxed{f Y}$

である。

注) 導関数: derivative

[III] の問題はこれで終わりです。[III] の解答欄 $oldsymbol{Z}$ はマークしないでください。

IV

k は正の実数とする。2曲線

$$C_1: y = \sin^2 x$$
, $C_2: y = k \cos 2x$ $\left(0 \le x \le \frac{\pi}{2}\right)$

を考える。2 曲線 C_1 , C_2 と y 軸で囲まれる部分の面積を S_1 とし,2 曲線 C_1 , C_2 と直線 $x=\frac{\pi}{2}$ で囲まれる部分の面積を S_2 とする。このとき, S_2-S_1 の値は k の値に関係なく一定であることを示そう。

等式 $\sin^2 x = k \cos 2x$ を満たす x を α とおくと

$$\sin \alpha = \sqrt{\begin{array}{c|c} k \\ \hline \mathbf{A} & k + \overline{\mathbf{B}} \end{array}}$$
 , $\cos \alpha = \sqrt{\begin{array}{c|c} k + \overline{\mathbf{C}} \\ \hline \mathbf{D} & k + \overline{\mathbf{E}} \end{array}}$

である。

次に S_1 , S_2 を求めると

$$S_{1} = \frac{\mathbf{F}}{\mathbf{G}} \int_{0}^{\alpha} \left\{ \left(\mathbf{H} \cdot k + \mathbf{I} \right) \cos \mathbf{J} \cdot x - 1 \right\} dx$$

$$= \frac{\mathbf{K}}{\mathbf{L}} \cdot \left\{ \sqrt{k \left(k + \mathbf{M} \right)} - \alpha \right\},$$

$$S_{2} = \frac{\mathbf{N}}{\mathbf{O}} \cdot \left\{ \sqrt{k \left(k + \mathbf{P} \right)} - \alpha \right\} + \frac{\pi}{\mathbf{Q}}$$

である。したがって

$$S_2 - S_1 = \frac{\pi}{\boxed{\mathbf{R}}}$$

となり、 $S_2 - S_1$ の値は k の値に関係なく一定である。

[V] の問題はこれで終わりです。 [V] の解答欄 [S] ~ [V] はマークしないでください。 [V] はマークしないでください。 [V] はマークしないでください。 解答用紙の解答コース欄に「コース [S] が正しくマークしてあるか, もう一度確かめてください。

この問題冊子を持ち帰ることはできません。