Lesson 2.1

Sampling Distributions Based on the Normal Distribution

Introduction

Recall that a random sample of observations is also referred to as an "iid" (independent and identically distributed) sample of observations Y_1, Y_2, \dots, Y_n . That is, these observations are independent and come from the same probability distribution.

Definition

A **statistic**, say T, is a function of the random variables Y_1, Y_2, \dots, Y_n . A statistic can depend om known constants, but it cannot depend on unknown parameters.

To denote the dependence of T on Y_1, Y_2, \dots, Y_n , we may write

$$T = T(Y_1, Y_2, \cdots, Y_n)$$

In addition, while it often be the case that Y_1, Y_2, \cdots, Y_n constitute a random sample, the above definition of T holds in more general setting. In practice, it is common to view Y_1, Y_2, \cdots, Y_n as **data** from an experiment or observational study and T as some summary measure (such as sample mean, sample variance, etc.).

Example 2.1.1

Suppose that Y_1, Y_2, \dots, Y_n is an iid sample from $f_Y(y)$. The following are statistics:

$$\bullet \ T=T(Y_1,Y_2,\cdots,Y_n)=\overline{Y}=\tfrac{1}{n}\sum_{i=1}^n y_i$$

•
$$T = T(Y_1, Y_2, \cdots, Y_n) = \frac{1}{2}[Y_{(n/2)} + Y_{(n/2+1)}]$$

$$\bullet \ T=T(Y_1,Y_2,\cdots,Y_n)=Y_{(1)}$$

•
$$T = T(Y_1, Y_2, \cdots, Y_n) = Y_{(n)} - Y_{(1)}$$

•
$$T = T(Y_1, Y_2, \cdots, Y_n) = S^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \overline{Y})^2$$

It is very important to note that since Y_1, Y_2, \cdots, Y_n are random variables, any statistic $T = T(Y_1, Y_2, \cdots, Y_n)$, being a function of random variables, is also a random variable. Thus, T has its own distribution.

Definition

The probability distribution of a statistic T is called its **sampling distribution**. The sampling distribution of T describes mathematically how the values of T vary in repeated sampling from the population distribution $f_Y(y)$. Sampling distributions play a crucial role in statistics

Example 2.1.2

Suppose Y_1,Y_2,\cdots,Y_n is an iid sample from $N(\mu.\sigma^2)$ and consider the statistic

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

the sample mean. It can be shown (via MGF technique) that

$$\overline{Y} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Furthermore, the quantity

$$Z = \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Example 2.1.2

In the interest of pollution control, an experimenter records Y, the amount of bacteria per unit volum of water (measured in mg/cm^3). The population distribution for Y is assumed to be normal with mean $\mu = 48$ and variance $\sigma^2 = 100$, that is, $Y \sim N(48, 100)$.

- a. What is the probability that the amount of bacteria in single water sample exceeds $50 \, mg/cm^3$?
- b. Suppose the experimenter takes a random sample of n=100 water samples and denote the observations by Y_1, Y_2, \dots, Y_{100} . What is the probability that the sample mean \overline{Y} will exceed $50 \, mg/cm^3$?
- c. How large should the sample size n be so that $P(\overline{Y} > 50) < 0.01$?

SOLUTION: [Left as a classroom exercise!]

The Chi-square distribution

Recall that a chi-square distribution with 1 degree of freedom is a special type of Gamma distribution with $\alpha = 1/2$ and $\beta = 2$. We next show that we can also generate a random variable with a chi-square distribution from a normal distribution.

Example 2.1.3

Suppose that Y_1, Y_2, \dots, Y_n are independent observations from $N(\mu_i, \sigma_i^2)$. Find the distribution of

$$U = \sum_{i=1}^n \left(\frac{Y_i - \mu_i}{\sigma_i}\right)^2$$

SOLUTION

Define for each $i = 1, 2, \dots, n$,

$$Z_i = \frac{Y_i - \mu_i}{\sigma_i}$$

Note of the following facts:

- 1. Z_1, Z_2, \dots, Z_n are independent N(0,1) random variables
- 2. $Z_1^2, Z_2^2, \cdots, Z_n^2$ are independent random variable each with $\chi^2(1)$ [from Example 1.2.3]

Therefore,
$$U = \sum_{i=1}^n \left(\frac{Y_i - \mu_i}{\sigma_i}\right)^2 = \sum_{i=1}^n Z_i^2$$
 has a $\chi^2(n)$ distribution.

REMARK

The case where Y_1,Y_2,\cdots,Y_n are iid from $N(\mu,\sigma^2)$ directly follows from the above result. That is,

$$\sum_{i=1}^n \left(\frac{Y_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$$

Example 2.1.4

Suppose that Y_1,Y_2,\cdots,Y_n are iid observations from $N(\mu,\sigma^2)$. Prove that

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{Y_i - \overline{Y}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

PROOF

First we write

$$\underbrace{\sum_{i=1}^{n} \left(\frac{Y_{i} - \mu}{\sigma}\right)^{2}}_{W_{1}} = \sum_{i=1}^{n} \left(\frac{Y_{i} - \overline{Y} + \overline{Y} - \mu}{\sigma}\right)^{2}$$

$$= \underbrace{\sum_{i=1}^{n} \left(\frac{Y_{i} - \overline{Y}}{\sigma}\right)^{2}}_{W_{2}} + \underbrace{\sum_{i=1}^{n} \left(\frac{\overline{Y} - \mu}{\sigma}\right)^{2}}_{W_{3}}$$

Now, we know that $W_1 \sim \chi^2(n),$ and we can also rewrite W_3 as follows:

$$\begin{split} W_3 &= \sum_{i=1}^n \left(\frac{\overline{Y} - \mu}{\sigma}\right)^2 = n \left(\frac{\overline{Y} - \mu}{\sigma}\right)^2 \\ &= \left(\frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}\right)^2 \sim \chi^2(1) \end{split}$$

So, now we have

$$\begin{split} W_1 &= W_2 + W_3 \\ &= \frac{(n-1)S^2}{\sigma^2} + W_3 \end{split}$$

Note that \overline{Y} and S^2 are independent [proof deferred to advance courses in statistics] and since W_3 and W_2 are functions of \overline{Y} and S^2 , respectively, then W_3 and W_2 are independent.

Since $W_1 \sim \chi^2(n)$, thus, $m_{W_1}(t) = (1-2t)^{-n/2}$. Similarly, since $W_3 \sim \chi^2(1)$, thus, $m_{W_3}(t) = (1-2t)^{-1/2}$.

Now,

$$\begin{split} m_{W_1}(t) &= E[e^{tW_1}] = E[e^{t(W_2 + W_3)}] \\ &= E[e^{tW_2 + tW_3}] \\ &= E[e^{tW_2}] \times E[e^{tW_3}] \\ &= m_{W_2}(t) \times m_{W_3}(t) \end{split}$$

This means that

$$\begin{split} m_{W_2}(t) &= \frac{m_{W_1}(t)}{m_{W_3}(t)} \\ &= \frac{(1-2t)^{-n/2}}{(1-2t)^{-1/2}} \\ &= (1-2t)^{-(n-1)/2} \end{split}$$

Therefore, $W_2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$. QED

Example 2.1.5

In an ecological study examining the effects of a typhoon, researchers choose 9 plots and for each plot record the amount of dead weight material (Y, in grams). Denote the 9 dead weights as Y_1, Y_2, \dots, Y_9 . Assume that these observations are a random sample from N(100, 32).

- a. What is the probability that the sample variance S^2 of the 9 observations is less than 20?
- b. How large should the sample size n be so that $P(S^2 < 20) < 0.01$?

SOLUTION

a. Recall that

$$\frac{(n-1)S^2}{\sigma^2} = \frac{8S^2}{32} \sim \chi^2(8).$$

Hence,

$$P(S^{2} < 20) = P\left[\frac{8S^{2}}{32} < \frac{8(20)}{32}\right]$$
$$= P\left[\chi^{2}(8) < 5\right]$$
$$\approx 0.24$$

This probability can be obtained using R or MS Excel.

b. [Left as a classroom exercise!]

The t distribution

Suppose that $Z \sim N(0,1)$ and that $W \sim \chi^2(\nu)$. If Z and W are independent, then the random variable

$$T = \frac{Z}{W/\nu}$$

has a **t** distribution with ν degrees of freedom. This is denoted as $T \sim t(\nu)$.

The PDF of $T \sim t(\nu)$ is given by

$$f_T(t) = \begin{cases} \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu}\Gamma(\nu/2)} (1+t^2/\nu)^{-(\nu+1)/2}, \ -\infty < t < \infty \\ 0, \ \text{elsewhere} \end{cases}$$

Derivation:

Let $Z \sim N(0,1)$ and $W \sim \chi^2(\nu)$ be independent random variables. The joint PDF of Z and W is

$$f_{Z,W}(z,w) = \underbrace{\frac{1}{\sqrt{2\pi}} e^{-z^2/2}}_{N(0,1)} \times \underbrace{\frac{1}{\Gamma(\nu/2) 2^{\nu/2}} w^{(\nu/2)-1} e^{-w/2}}_{\chi^2(\nu)}$$

for $-\infty < z < \infty$ and w > 0.

Consider the bivariate transformation

$$T = g_1(Z,W) = \frac{Z}{\sqrt{W/\nu}}$$

$$U = g_2(Z,W) = W$$

The support of (Z,W) is $R_{Z,W} = \{(z,w): -\infty < z < \infty, w > 0\}$, while the support of (T,U) is $R_{T,U} = \{(t,u): -\infty < t < \infty, u > 0\}$. Obviously, the vector-valued function g is one-to-one, so the inverse transformations exists and is given by

$$\begin{split} z &= g_1^{-1}(t,u) = t\sqrt{u/\nu} \\ w &= g_2^{-1} = u \end{split}$$

The Jacobian of the transformation is

$$\begin{split} J &= \det \begin{bmatrix} \frac{\partial g_1^{-1}(t,u)}{\partial t} & \frac{\partial g_1^{-1}(t,u)}{\partial u} \\ \frac{\partial g_2^{-1}(t,u)}{\partial t} & \frac{\partial g_2^{-1}(t,u)}{\partial u} \end{bmatrix} \\ &= \det \begin{bmatrix} \sqrt{u/\nu} & t/2\sqrt{u\nu} \\ 0 & 1 \end{bmatrix} \\ &= \sqrt{u/\nu} \end{split}$$

Hence, the joint PDF of (T, U) is,

$$\begin{split} f_{T,U}(t,u) &= f_{Z,W}[g_1^{-1}(t,u),g_2^{-1}(t,u)]|J| \\ &= \frac{1}{\sqrt{2\pi}}e^{-\frac{(t\sqrt{u/\nu})^2}{2}} \times \frac{1}{\Gamma(\nu/2)2^{\nu/2}}u^{(\nu/2)-1}e^{-u/2} \times \left|\sqrt{u/\nu}\right| \\ &= \frac{1}{\sqrt{2\pi}\Gamma(\nu/2)2^{\nu/2}}u^{[(\nu+1)/2]-1}e^{-\frac{u}{2}\left(1+\frac{t^2}{\nu}\right)} \end{split}$$

To get the PDF of T, we integrate the above joint PDF:

$$\begin{split} f_T(t) &= \int_0^\infty f_{T,U}(t,u) \, du \\ &= \int_0^\infty \frac{1}{\sqrt{2\pi} \Gamma(\nu/2) 2^{\nu/2}} u^{[(\nu+1)/2]-1} e^{-\frac{u}{2}\left(1+\frac{t^2}{\nu}\right)} \, du \\ &= \frac{1}{\sqrt{2\pi} \Gamma(\nu/2) 2^{\nu/2}} \int_0^\infty \underbrace{u^{[(\nu+1)/2]-1} e^{-\frac{u}{2}\left(1+\frac{t^2}{\nu}\right)}}_{\text{Gamma(a,b) kernel}} \, du \end{split}$$

where $a = (\nu + 1)/2$ and $b = 2(1 + \frac{t^2}{\nu})^{-1}$. Thus,

$$\begin{split} f_T(t) &= \frac{1}{\sqrt{2\pi}\Gamma(\nu/2)2^{\nu/2}} \int_0^\infty u^{[(\nu+1)/2]-1} e^{-\frac{u}{2}\left(1+\frac{t^2}{\nu}\right)} \, du \\ &= \frac{\Gamma[(\nu+1)/2] \left[2\left(1+\frac{t^2}{\nu}\right)^{-1}\right]^{(\nu+1)/2}}{\sqrt{2\pi}\Gamma(\nu/2)2^{\nu/2}} \int_0^\infty \frac{1}{\Gamma[(\nu+1)/2] \left[2\left(1+\frac{t^2}{\nu}\right)^{-1}\right]^{(\nu+1)/2}} u^{[(\nu+1)/2]-1} e^{-\frac{u}{2}\left(1+\frac{t^2}{\nu}\right)} \, du \\ &= \frac{\Gamma[(\nu+1)/2] \left[2\left(1+\frac{t^2}{\nu}\right)^{-1}\right]^{(\nu+1)/2}}{\sqrt{2\pi}\Gamma(\nu/2)2^{\nu/2}} \\ &= \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu}} \left(1+t^2/\nu\right)^{-(\nu+1)/2} \, \, QED \end{split}$$

FACTS ABOUT THE t DISTRIBUTION:

- continuous and symmetric about 0
- indexed by a parameter called the **degrees of freedom**, denoted by ν (an integer which is related to sample size)
- as $\nu \to \infty$, $t(\nu) \to N(0,1)$; in general the t distribution is less peaked and has more mass in the tails than the standard normal distribution

•
$$E(T)=0$$
 and $V(T)=rac{
u}{
u-2},
u>2$

Suppose Y_1,Y_2,\cdots,Y_n is an iid sample from $N(\mu,\sigma^2).$ We know that

$$\frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

and

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Since \overline{Y} and S^2 are independent so are the above quantities. Thus,

$$t = \frac{\frac{\overline{Y} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} / (n-1)}} = \frac{\overline{Y} - \mu}{S / \sqrt{n}}$$

has a t(n-1) distribution.

The F distribution

Suppose that $W_1 \sim \chi^2(\nu_1)$ and that $W_2 \sim \chi^2(\nu_2)$. If W_1 and W_2 are independent, then the quantity

$$F = \frac{W_1/\nu_1}{W_2/\nu_2}$$

has an F distribution with ν_1 and ν_2 degrees of freedom. We call ν_1 and ν_2 as the numerator and denominator degrees of freedom, respectively.