FGI 2 [HA], 28. 10. 2013

Arne Struck, Tronje Krabbe

28. Oktober 2013

$$\begin{array}{lcl} L(A_{2.3}) & = & (a^+ + b(cd)^*(c+e)) \\ L^{\omega}(A_{2.3}) & = & (a)^{\omega} + b(cd)^{\omega} \\ \left(L(A_{2.3})\right)^{\omega} & = & (a^+ + b(cd)^*(c+e))^{\omega} \end{array}$$

 2

 $L^{\omega}(A_{2.3})$ bezieht sich auf den Automaten $A_{2.3}$ und verert die Akzeptierte Sprache, wend $(L(A_{2.3}))^{\omega}$ die akzeptierte Sprache in eine neue ω -Sprache verwandelt.

$$L^{\omega}(A_{2.3})$$
 : $(a)^{\omega}$
 $b(cd)^{\omega}$
 $(L(A_{2.3}))^{\omega}$: $(be)^{\omega}$
 $(bc)^{\omega}$

3.

Die Korrektheit des Automaten wird in Aufgabe 2.4 beschrieben, denn er wurde mit dem dort beschriebenen Verfahren konstruiert.

2.4. 1.

Wenn U eine regul Menge ist, dann ist U^ω die Menge aller abzbar unendlichen Konkatenationen von Worten aus U.

Es soll ein Verfahren gefunden werden, das aus einem beliebigen NFA, der U akzeptiert, einen Bchi-Automaten erstellt, der U^{ω} akzeptiert.

2.

Wenn der NFA, der U akzeptiert, mehrere Startzuste hat, mache diese zu normalen Zusten, und f
ge einen neuen Startzustand hinzu, der mit ϵ -Kanten zu jedem der originalen Startzusten fhrt.

An jeden Endzustand des NFA wird nun eine ϵ -Kante zurck zu dem Startzustand hinzugefgt.

- 3. Mit dem Verfahren aus 2. kann mit einem ω -Wort, das aus einer unendlichen Konkatenation aus Worten aus U besteht, mindestens ein Endzustand unendlich oft durchlaufen werden, was die Akzeptanzbedingung eines Bchi-Automaten ist.
- 4. Aufgabe 2.3.3. wurde mit dem hier beschriebenen Verfahren gelst.