1/1

18-40GHz_Ch_42_VHT80_2x2_(Tx-16.5dBm)_CDD

(continuation of the "Final Result" table from column 16 ...)

4/13/2018 9:29:44 PM

Page 326 of 414
Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

5:25:55 PM

Page 327 of 414
Report Date: 07/19/2018

18-40GHz_Ch_44_VHT20_2x2_(Tx-18dBm)_BF

Final Result

Frequency MADY Aver Clinit Margin Mess. Bandwidth Height Pol Azimuth Corr. (dB) (The Continuation or the "Final_Result" table from column 16...)

Frequency Company ment

4/13/2018 11:26:08 PM

Preview Result 1-PK+ FCC 15 Pk 1m Final_Result AVG

Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

18-40GHz_Ch_46_HT40_2x2_(Tx-17dBm)_CDD

Final Result

Finquency | Max | Avera | Limit | Margin | Mean | (Mix) | (Mix)

8:06:33 PM

Page 329 of 414
Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

5:50:37 PM

Page 330 of 414
Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

6:17:43 PM

Page 331 of 414
Report Date: 07/19/2018

1/1

18-40GHz_Ch_151_HT40_2x2_(Tx-24.5dBm)_CDD

(continuation of the "Final Result" table from column 16 ...)

4/13/2018 8:57:36 PM

Page 332 of 414
Report Date: 07/19/2018

1/1

18-40GHz_Ch_155_VHT80_2x2_(Tx-20.5dBm)_CDD

(continuation of the "Final Result" table from column 16 ...

4/13/2018 10:25:41 PM

Report Date: 07/19/2018

18-40GHz_Ch_157_NoHT_2x2_(Tx-25dBm)_CDD

Final Result

Frequency | Margin | Meas, | GByW | GB

4/13/2018 7:10:52 PM

Preview Result 1-PK+ FCC 15 Pk 1m Final_Result AVG

Page 334 of 414
Report Date: 07/19/2018

1/1

18-40GHz_Ch_159_HT40_2x2_(Tx-24.5dBm)_CDD

(continuation of the "Final Result" table from column 16 ...)

4/13/2018 9:00:05 PM

Report Date: 07/19/2018

4/13/2018 7:12:54 PM

Preview Result 1-PK+ FCC 15 Pk 1m Final_Result AVG

Page 336 of 414
Report Date: 07/19/2018

$18-40GHz_Ch_38_VHT40_2x2_(Tx-17dBm)_BF$

Final_Result

Frequency (MHz)	MaxP eak (dBµV	Av era ge (dBµV	Limit (dBµV /m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)

Page 337 of 414
Report Date: 07/19/2018

18-40GHz_Ch_44_VHT40_2x2_(Tx-17dBm)_BF

Final_Result

Frequency (MHz)	MaxP eak (dBµV	Av era ge (dBµV	Limit (dBµV /m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)

(continuation of the "Final_Result" table from column 16 ...)

Frequency	Com

Page 338 of 414
Report Date: 07/19/2018

Page 339 of 414
Report Date: 07/19/2018

4/26/2018

Job # 154507 Report#: 31863618.001

> Preview Result 1-PK+ FCC 15 Pk 1m Final_Result AVG

> > 8:27:07 PM

Page 340 of 414
Report Date: 07/19/2018

4/26/2018

Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

> Preview Result 1-PK+ FCC 15 Pk 1m Final_Result AVG

> > 8:59:46 PM

Page 341 of 414

4/26/2018 9:33:14 PM

Preview Result 1-PK+ FCC 15 Pk 1m Final_Result AVG

Page 342 of 414
Report Date: 07/19/2018

18-40GHz_Ch_42_VHT80_2x2_(Tx-17dBm)_BF

Final_Result

Frequency (MHz)	MaxP eak (dBµV	Av era ge (dBµV	Limit (dBµV /m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)

Frequency	Com

Page 343 of 414
Report Date: 07/19/2018

18-40GHz_Ch_151_VHT40_2x2_(Tx-24dBm)_BF

Final_Result

Frequency (MHz)	MaxP eak (dBµV	Av era ge (dBµV	Limit (dBµV /m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)

18-40GHz_Ch_149_VHT80_2x2_(Tx-21dBm)_BF

Final_Result

Frequency (MHz)	MaxP eak (dBµV	Av era ge (dBµV	Limit (dBµV /m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)

Page 345 of 414
Report Date: 07/19/2018

18-40GHz_Ch_157_VHT40_2x2_(Tx-24dBm)_BF

Final_Result

Frequency (MHz)	MaxP eak (dBµV	Av era ge (dBµV	Limit (dBµV /m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)

Page 346 of 414
Report Date: 07/19/2018

Report#: 31863618.001

Band Edge Emissions in the UNII Bands

Test Method

The ANSI C63.10-2013 Section 6.10.5.2 the procedure described was followed testing in an anechoic chamber. The EUT was tested from 9kHz to 40GHz. The preliminary investigation was performed at different data rate to determine the highest power output for each mode. A diag program called QRCT was used to set the AP in continuous Tx mode and also to set the channel, channel power and data rate. This test was conducted on 3 channels for each of the throughput modes. The analyzer was configured as follows.

Cable loss and duty cycle correction were entered as an offset

RBW= 120 kHz< 1 GHz.< 1 MHz

 $VBW = 3 \times RBW$

Span= Per the band under test

SWT= auto

Detector = Per the measurement being made

Test Conditions: Conducted Measurement (SA), Normal Temperature	Date: 4/12-6/18 2018
Antenna Type:	Stamped metal dipole
Duty cycle correction: see sect. 5	Data Rate: 6mbps, MCS0
Ambient Temp.: 23° C	Relative Humidity: 38 %RH

Report Date: 07/19/2018

Job # 154507

ATUV Rheinland Job # 154507 Report#: 31863618.001

6.6.1 Radiated Band Edge Emissions

Figure 1 U-1_L-BE_ch36_NoHT_2x2_pwr=20.5_73deg_192cm_V_avg

Page 348 of 414 Report Date: 07/19/2018

Figure 2 U-1_L-BE_ch36_NoHT_2x2_pwr=20.5_73deg_192cm_V_pk

Page 349 of 414 Report Date: 07/19/2018

Figure 3 U-1_L-BE_ch36_NoHT_2x2_pwr=20.5_maximize

Page 350 of 414 Report Date: 07/19/2018

Figure 4 U-1_L-BE_ch36_HT20_2x2_pwr=20_241deg_168cm_H_avg

Page 351 of 414 Report Date: 07/19/2018

Figure 5 U-1_L-BE_ch36_HT20_2x2_pwr=20_241deg_168cm_H_pk

Page 352 of 414 Report Date: 07/19/2018

 $\textbf{Figure 6} \text{ U-1_L-BE_ch36_HT20_2x2_pwr=} 20_\text{maximize}$

Page 353 of 414
Report Date: 07/19/2018

Figure 7 U-1_L-BE_ch38_HT40_2x2_pwr=17_74deg_197cm_V_avg

Page 354 of 414 Report Date: 07/19/2018

Figure 8 U-1_L-BE_ch38_HT40_2x2_pwr=17_74deg_197cm_V_pk

Page 355 of 414
Report Date: 07/19/2018

Figure 9 U-1_L-BE_ch38_HT40_2x2_pwr=17_maximize

Page 356 of 414 Report Date: 07/19/2018

Figure 10 U-

1_L-BE_ch42_VHT80_2x2_pwr=16.5_227deg_184cm_H_avg

Page 357 of 414 Report Date: 07/19/2018

Figure 11 U-1_L-BE_ch42_VHT80_2x2_pwr=16.5_227deg_184cm_H_pk

Page 358 of 414 Report Date: 07/19/2018

Figure 12 U-1_L-BE_ch42_VHT80_2x2_pwr=16.5_maximize

Page 359 of 414 Report Date: 07/19/2018

Figure 13 U-1_L-BE_ch36_VHT20_2x2_pwr=18_BF_218deg_209cm_H_avg

Page 360 of 414 Report Date: 07/19/2018

Figure 14 U-1_L-BE_ch36_VHT20_2x2_pwr=18_BF_218deg_209cm_H_pk

Page 361 of 414 Report Date: 07/19/2018

Figure 15 U-1_L-BE_ch36_VHT20_2x2_pwr=18_BF_maximize

Page 362 of 414 Report Date: 07/19/2018

Figure 16 U-1_L-BE_ch38_VHT40_2x2_pwr=17_BF_201deg_292cm_H_avg

Page 363 of 414 Report Date: 07/19/2018

Figure 17U-1_L-BE_ch38_VHT40_2x2_pwr=17_BF_201deg_292cm_H_pk

Page 364 of 414 Report Date: 07/19/2018

Figure 18 U-1_L-BE_ch38_VHT40_2x2_pwr=17_BF_maximize

Page 365 of 414 Report Date: 07/19/2018

Figure 19 U-1_L-BE_ch42_VHT80_2x2_pwr=17_BF_228deg_178cm_H_avg

Page 366 of 414 Report Date: 07/19/2018

Figure 20 U-1_L-BE_ch42_VHT80_2x2_pwr=17_BF_228deg_178cm_H_pk

Page 367 of 414 Report Date: 07/19/2018

Figure 21 U-1_L-BE_ch42_VHT80_2x2_pwr=17_BF_maximize

Page 368 of 414 Report Date: 07/19/2018

Figure 22 U-1_H_BE_NoHT_ch48_pwr-20.5_2x2_CDD_249deg_175cm_V_avg

Page 369 of 414 Report Date: 07/19/2018

Figure 23 U-1_H_BE_NoHT_ch48_pwr-20.5_2x2_CDD_249deg_175cm_V_pk

Page 370 of 414 Report Date: 07/19/2018

Figure 24 U-1_H_BE_HT20_ch48_pwr-20_2x2_CDD_230deg_180cm_V_avg

Page 371 of 414 Report Date: 07/19/2018

Figure 25 U-1_H_BE_HT20_ch48_pwr-20_2x2_CDD_230deg_180cm_V_pk

Page 372 of 414 Report Date: 07/19/2018

Figure 26 U-1_H_BE_HT40_ch46_pwr-17_2x2_CDD_234deg_150cm_V_avg

Page 373 of 414 Report Date: 07/19/2018

Figure 27 U-1_H_BE_HT40_ch46_pwr-17_2x2_CDD_234deg_150cm_V_pk

Page 374 of 414 Report Date: 07/19/2018

 $\textbf{Figure 28} \text{ U-1_H_BE_VHT80_ch42_pwr-16.5_2x2_CDD_251deg_158cm_V_avg}$

Page 375 of 414 Report Date: 07/19/2018

Figure 29 U-1_H_BE_VHT80_ch42_pwr-16.5_2x2_CDD_251deg_158cm_V_pk

Report Date: 07/19/2018

Figure 30 U-1_H_BE_VHT20_ch48_pwr-20_2x2_BF_262deg_123cm_V_avg

Page 377 of 414 Report Date: 07/19/2018

Figure 31 U-1_H_BE_VHT20_ch48_pwr-20_2x2_BF_262deg_123cm_V_pk

Page 378 of 414
Report Date: 07/19/2018

Figure 32 U-1_H_BE_VHT40_ch46_pwr-17_2x2_BF_234deg_232cm_V_avg

Page 379 of 414 Report Date: 07/19/2018

Figure 33 U-1_H_BE_VHT40_ch46_pwr-17_2x2_BF_234deg_232cm_V_pk

Page 380 of 414 Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

Figure 34 U-1_H_BE_VHT80_ch42_pwr-17_2x2_BF_263deg_216cm_V_avg

Page 381 of 414 Report Date: 07/19/2018

Figure 35 U-1_H_BE_VHT80_ch42_pwr-17_2x2_BF_263deg_216cm_V_pk

Page 382 of 414 Report Date: 07/19/2018

Figure 1 U-3_L-BE_ch149_NoHT_2x2_pwr=25_117deg_150cm

Page 383 of 414 Report Date: 07/19/2018

Figure 2 U-3_H-BE_ch165_NoHT_2x2_pwr=25_217deg_150cm_V

Page 384 of 414 Report Date: 07/19/2018

Figure 3 U-3_L-BE_ch149_HT20_2x2_pwr=25_260deg_170cm_V

Page 385 of 414 Report Date: 07/19/2018

Figure 4 U-3_H-BE_ch165_HT20_2x2_pwr=25_125deg_150cm_V

Page 386 of 414 Report Date: 07/19/2018

Figure 5 U-3 L-BE_ch151_HT40_2x2_pwr=24.5_132deg_250cm_V

Page 387 of 414 Report Date: 07/19/2018

Figure 6 U-3_H-BE_ch159_HT40_2x2_pwr=24.5_130deg_208cm_V

Page 388 of 414 Report Date: 07/19/2018

Figure 7 U-3_L-BE_ch155_VHT80_2x2_pwr=20.5_141deg_191cm_V

Page 389 of 414 Report Date: 07/19/2018

Figure 8 U-3_H-BE_ch155_VHT80_2x2_pwr=20.5_127deg_206cm_V

Page 390 of 414 Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

Figure 9 U-3_L-BE_ch149_VHT20_2x2_pwr=25_BF_133deg_200cm_V

Page 391 of 414 Report Date: 07/19/2018

Figure 10 U-3_H-BE_ch165_VHT20_2x2_pwr=25_BF_135deg_159cm_V

Page 392 of 414 Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

Figure 11 U-3_L-BE_ch151_VHT40_2x2_pwr=24_BF_230deg_134cm_H

Page 393 of 414 Report Date: 07/19/2018

Figure 12 U-3_H-BE_ch159_VHT40_2x2_pwr=24_BF_137deg_250cm_V

Page 394 of 414 Report Date: 07/19/2018

Figure 13 U-3_L-BE_ch155_VHT80_2x2_pwr=21_BF_268deg_224cm_V

Page 395 of 414 Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

Figure 14 U-3_H-BE_ch155_VHT80_2x2_pwr=21_BF_202deg_150cm_V

Page 396 of 414 Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

Conducted power line emissions

Test Method

The ANSI C63.10-2013 Section 11.9.2.2.4 Conducted method was used to measure the channel power output. The preliminary investigation was performed at different data rate to determine the highest power output for each mode. A diag program called QRCT was used to set the AP in continuous Tx mode and also to set the channel, channel power and data rate.

Vasona Data: Formally Assessed Peaks

rabbila Bata . 1 billiany rebooded 1 bare							
No	Frequency R	aw dBu\Ca	able Los Fa	ctors dLe	evel dBuMeasuremLine	Limit dBu N	largin dEPass /Fai
1 (17)	0.388946	40.3	0.1	0.06	40.46 Quasi PeaLive	58.09	-17.63 Pass
2 (13)	0.188204	56.36	0.07	0.03	56.46 Quasi PeaLive	64.12	-7.65 Pass
3 (19)	0.659026	37.17	0.12	0.04	37.34 Quasi PeaLive	56	-18.66 Pass
4 (14)	0.15	46.03	0.07	0.03	46.14 Quasi PeaLive	66	-19.86 Pass
5 (15)	0.248132	46.06	0.08	0.01	46.14 Quasi PeaLive	61.82	-15.68 Pass
6 (20)	0.326092	39.42	0.09	0	39.51 Quasi PeaLive	59.55	-20.04 Pass
11 (17)	0.388946	31.19	0.1	0.06	31.35 Average Live	48.09	-16.74 Pass
12 (13)	0.188204	41.78	0.07	0.03	41.88 Average Live	54.12	-12.23 Pass
13 (19)	0.659026	22.97	0.12	0.04	23.14 Average Live	46	-22.86 Pass
14 (14)	0.15	19.36	0.07	0.03	19.47 Average Live	56	-36.53 Pass
15 (15)	0.248132	29.45	0.08	0.01	29.53 Average Live	51.82	-22.29 Pass
16 (20)	0.326092	28.64	0.09	0	28.74 Average Live	49.55	-20.81 Pass

2.4GHz ch 1 conducted powerline emissions

Page 397 of 414 Report Date: 07/19/2018

Power Line Conducted Emissions Template: LISN B Cond Class B Filename: c:\program files\emisoft - vasona\results\pathfinder1.emi

Vasona I	Data : Formal	ly Assesse	d Peaks				
No	Frequency R	aw dBu\Ca	able Los Fa	ctors dLe	evel dBuMeasuremLine	Limit dBu N	largin dEPass /Fai
1 (6)	0.187864	55.31	0.07	0.03	55.41 Quasi Pea Neutral	64.13	-8.72 Pass
2 (1)	0.176188	55.82	0.07	0.03	55.92 Quasi PeaLive	64.66	-8.74 Pass
3 (2)	0.15	52.55	0.07	0.03	52.65 Quasi Pea Neutral	66	-13.35 Pass
4 (3)	0.15	52.5	0.07	0.03	52.61 Quasi PeaLive	66	-13.39 Pass
5 (5)	0.238621	47.58	0.08	0.01	47.67 Quasi PeaLive	62.14	-14.47 Pass
6 (6)	0.187864	38.71	0.07	0.03	38.82 Average Neutral	54.13	-15.31 Pass
7 (1)	0.176188	37.79	0.07	0.03	37.89 Average Live	54.66	-16.77 Pass
8 (4)	0.472353	39.07	0.11	0.04	39.22 Quasi Pea Neutral	56.47	-17.25 Pass
9 (9)	0.20024	45.78	0.07	0.02	45.88 Quasi Pea Neutral	63.6	-17.72 Pass
10 (7)	0.484725	28.36	0.11	0.03	28.5 Average Neutral	46.26	-17.76 Pass
11 (5)	0.238621	33.98	0.08	0.01	34.07 Average Live	52.14	-18.07 Pass
12 (7)	0.484725	37.46	0.11	0.03	37.6 Quasi Pea Neutral	56.26	-18.66 Pass
13 (4)	0.472353	27.55	0.11	0.04	27.7 Average Neutral	46.47	-18.77 Pass
14 (8)	0.293319	38.12	0.08	0.01	38.21 Quasi Pea Neutral	60.43	-22.22 Pass
15 (9)	0.20024	30.13	0.07	0.02	30.22 Average Neutral	53.6	-23.38 Pass
16 (8)	0.293319	26.79	0.08	0.01	26.88 Average Neutral	50.43	-23.55 Pass
17 (10)	0.533246	32.13	0.11	0.04	32.28 Quasi Pea Neutral	56	-23.72 Pass
18 (10)	0.533246	21.31	0.11	0.04	21.45 Average Neutral	46	-24.55 Pass
19 (3)	0.15	26.85	0.07	0.03	26.95 Average Live	56	-29.05 Pass
20 (2)	0.15	26.63	0.07	0.03	26.73 Average Neutral	56	-29.27 Pass

GHz ch 149 conducted powerline emissions

Page 398 of 414 Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

8 Photos

Conducted measurements setup

Page 399 of 414 Report Date: 07/19/2018

Conducted Output Power Measurement

Page 400 of 414
Report Date: 07/19/2018

Powerline conducted emissions setup

Page 401 of 414 Report Date: 07/19/2018

Radiated Emissions 9k-30 MHz front

Page 402 of 414
Report Date: 07/19/2018

Radiated Emissions 9k-30 MHz rear

Page 403 of 414
Report Date: 07/19/2018

Radiated Emissions 30-1000 MHz

Page 404 of 414
Report Date: 07/19/2018

Radiated Emissions 1-18 GHz rear

Page 405 of 414
Report Date: 07/19/2018

Radiated Emissions 1-18 GHz front

Page 406 of 414
Report Date: 07/19/2018

Radiated Emissions 18-40 GHz front

Page 407 of 414
Report Date: 07/19/2018

Radiated Emissions 18-40 GHz rear

Page 408 of 414
Report Date: 07/19/2018

Report#: 31863618.001 Tel: (925) 249-9123, Fax: (925) 249-9124

Measurement Equipment Used

Equipment	Manufacturer	Model #	Serial/Inst#	Last Cal mm/dd/yy	Next Cal mm/dd/yy	Test
Bilog Antenna	Sunol Sciences	JB3	A102606	06/15/2016	06/15/2018	RE
Horn Antenna	Sunol Science	DRH118	A040806	11/11/2016	11/11/2018	RE
Horn Antenna	Com-Power	AHA-840	105005	05/26/2017	05/26/2019	RE
Amplifier	Sonoma Instruments	310	165516	01/23/2018	01/23/2019	RE
Spectrum Analyzer	Rohde & Schwarz	ESI	832340/001	01/22/2018	01/22/2019	RE
Spectrum Analyzer	Agilent	MXE	52260210	01/22/2018	01/22/2019	RE
Spectrum Analyzer	Agilent	PXA	US51350291	01/22/18	01/22/19	CE (Tx)
LISN	Com-Power	n/a	12100	01/24/18	01/24/19	CE
Power Sensors	Rohde & Schwarz	OSP-B157	26160467	01/18/2018	01/18/2019	CE (Tx)
Spectrum Analyzer	Rohde & Schwarz	FSW67	104088	06/11/2018	06/11/2019	CE (Tx)

Note: CE=Conducted Emissions, CI=Conducted Immunity, DP=Disturbance Power, EFT=Electrical Fast Transients, ESD=Electrostatic Discharge, FLI=Flicker, HAR=Harmonics, MF=Magnetic Field Immunity, NCR=No Calibration Required, RE=Radiated Emissions, RI=Radiated Immunity, SI=Surge Immunity, VDSI=Voltage Dips and Short Interruptions

Report Date: 07/19/2018

Job # 154507

Job # 154507 Report#: 31863618.001

10 Test Plan

10.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

10.2 Equipment Under Test (EUT)

Table 4: EUT Specifications

EUT Specifications					
Dimensions	6in in diameter				
DC Input	110 VDC				
Environment	Indoor				
Operating Temperature Range:	-20 / 60C				
Multiple Feeds:	✓ Yes and how many 2✓ No				
Product Marketing Name (PMN)	Norton Core Mini				
Hardware Version Identification Number (HVIN)	518				
Firmware Version Identification Number (FVIN)	n/a				
802.11ac Radio					
Operating Mode	802.11ac,802.11n				
Transmitter Frequency Band	2400-2483.5 GHz 5150-5250 GHZ 5725-5850 GHz				
Operating Bandwidth	20,40,80 MHz				
Antenna Type	4 Stamped metal dipoles				
Antenna Gain	2.7dbi@2.4GHz 4.5dbi@5GHz				
Modulation Type	CCK, OFDM,BPSK,QPSK,16-QAM,64-QAM,256-QAM				
Data Rate	1 Mbps to MCS08				

Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

Table 5: Antenna Information

Number	Antenna Type	Description	Max Gain (dBi)
Antenna 1	Internal	Max. peak gain at 2.4 GHz	+2.7
Antenna 2	Internal	Max. peak gain at 5 GHz	+4.5

Table 6: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
Ethernet	CAT5 UTP	☐ Yes	Metric:	⊠ M

Table 7: Supported Equipment

Equipment	Manufacture r	Model	Serial	Used for		
Laptop	Lenovo	20DF003 WUS	00392-918- 500002-85320	Running test software		
Ethernet cable	(generic)	n/a	n/a	Communication link		
Laptop AC adapter	Lenovo	ADLX65 NPC2A	11S36200282 ZZ204/8S0JX	Power supply		
Note: None.						

Report Date: 07/19/2018

Job # 154507 Report#: 31863618.001

Table 8: Description of Sample used for Testing

Table 6: Description of Sample used for Testing							
Device	Serial	RF Connection	CFR47 Part 15.247 2017 CFR47 Part 15.247 2017 RSS247: 2017				
	PP #1	Internal	TX Emissions.				
Norton Core Mini	PP #2	Direct via SMA Connection	Transmit Power, Occupied Bandwidth, Out of Band Emission,				

 Table 9: Test specifications and mode of operation

Test	Mode
------	------

Page 412 of 414
Report Date: 07/19/2018

Occupied Bandwidth		
CFR 47 15.247 2018	2.4GHz HT20,HT40,VHT20,VHT40 CH 1,3,6,11	
CFR 47 15.409 2018	5.0 ghZ NONHT20,HT40,HT80,Vht20,VHT40,VHT80 36,38,42,44,46,48,149151,157,159,155,165	СН
RSS 247:2013 5.2 6.2	30,30,12,11,10,10,11,131,131,133,133,103	
Output Power	2.4GHz HT20,HT40,VHT20,VHT40 CH 1,3,6,11	
CFR47 15.247 2018 (b3), CFR47 15.247 2018	5.0 ghZ NONHT20,HT40,HT80,Vht20,VHT40,VHT80	СН
RSS 247:2013 5.2 6.2	36,38,42,44,46,48,149151,157,159,155,165	
Out of Band Emission	2.4GHz HT20,HT40,VHT20,VHT40 CH 1,3,6,11	
CFR47 15.247 2018 (d), RSS 247:2013 5.2 6.2		
Band-Edge (Conducted)	2.4GHz HT20,HT40,VHT20,VHT40 CH 1,3,6,11	
FCC Part 15.205, 15.209	5.0 ghZ NONHT20,HT40,HT80,Vht20,VHT40,VHT80 36,38,42,44,46,48,149151,157,159,155,165	СН
Transmitted Spurious Emission	2.4GHz HT20,HT40,VHT20,VHT40 CH 1,3,6,11	
(30 MHz – 1GHz)	5.0 ghZ NONHT20,HT40,HT80,Vht20,VHT40,VHT80	СН
FCC Part 15.205, 15.209	36,38,42,44,46,48,149151,157,159,155,165	
Transmitted Spurious Emission	2.4GHz HT20,HT40,VHT20,VHT40 CH 1,3,6,11	
(Above 1GHz)		СН
FCC Part 15.205, 15.209	36,38,42,44,46,48,149151,157,159,155,165	
AC Conducted Emission		
FCC Part 15.207	Any single channel in each band	

Job # 154507

Report#: 31863618.001

Note: All VHTxx channels include beamforming gain

Page 413 of 414
Report Date: 07/19/2018

10.3 Block Diagram

Radiated emissions test setup

Conducted Tx emissions setup

Page 414 of 414
Report Date: 07/19/2018