

the same angle sums but $m \angle A_1 \leq \frac{1}{2}(m \angle A)$. *Proof.* Let D be the midpoint of \overline{BC} . Let E be the point such that A-D-E and $\overline{AD}\cong \overline{DE}$. Since $\angle ADC \cong \angle EDB$ as vertical angles, we conclude that $\triangle ADC \cong \triangle EDB$ by SAS. In particular, $\angle CAD \cong$

Lemma 3.5.3. In neutral geometry, for any $\triangle ABC$ there exists $\triangle A_1B_1C_1$ such that the two triangles have

 $\angle BED$, $\angle EBD \cong \angle ACD$. Let $\triangle A_1B_1C_1 = \triangle ABE$. Also, $m \angle A + m \angle B + m \angle C = m \angle BAC + m \angle ABC + m \angle BCA$ $= (m\angle CAD + m\angle BAD) + m\angle ABC + m\angle BCA$ $= m \angle BED + m \angle BAD + m \angle ABC + m \angle EBD$

 $= m\angle BAD + (m\angle ABC + m\angle EBD) + m\angle BED$ $= m\angle BAD + m\angle ABE + m\angle BED$

 $= m \angle A_1 + m \angle B_2 + m \angle C_2$ Therefore, $\triangle ABC$ and $\triangle A_1B_1C_1$ have the same angle sum. Since $m\angle A = m\angle A_1 + m\angle C_1$, where are angle measures are nonnegative real numbers, we have that $m \angle A_1 \le \frac{1}{2}(\angle A)$ or $m \angle C_1 \le \frac{1}{2}(\angle A)$. Switching the labels A_1 and C_1 if necessary, this finishes the proof.

Lemma 3.5.3. In neutral geometry, for any $\triangle ABC$ there exists $\triangle A_1B_1C_1$ such that the two triangles have the same angle sums but $m \angle A_1 \leq \frac{1}{2}(m \angle A)$.

Proof. Let D be the midpoint of \overline{BC} . Let E be the point such that A - D - E and $\overline{AD} \cong \overline{DE}$. Since $\angle ADC \cong \angle EDB$ as vertical angles, we conclude that $\triangle ADC \cong \triangle EDB$ by SAS. In particular, $\angle CAD \cong \angle BED$, $\angle EBD \cong \angle ACD$. Let $\triangle A_1B_1C_1 = \triangle ABE$. Also,

$$\begin{array}{lcl} m \angle A + m \angle B + m \angle C & = & m \angle BAC + m \angle ABC + m \angle BCA \\ & = & (m \angle CAD + m \angle BAD) + m \angle ABC + m \angle BCA \\ & = & m \angle BED + m \angle BAD + m \angle ABC + m \angle EBD \\ & = & m \angle BAD + (m \angle ABC + m \angle EBD) + m \angle BED \\ & = & m \angle BAD + m \angle ABE + m \angle BED \\ & = & m \angle A_1 + m \angle B_2 + m \angle C_2 \end{array}$$

Therefore, $\triangle ABC$ and $\triangle A_1B_1C_1$ have the same angle sum. Since $m\angle A = m\angle A_1 + m\angle C_1$, where our angle measures are nonnegative real numbers, we have that $m\angle A_1 \leq \frac{1}{2}(\angle A)$ or $m\angle C_1 \leq \frac{1}{2}(\angle A)$. Switching the labels A_1 and C_1 if necessary, this finishes the proof.