Transformata Fouriera

Mateusz Kojro

1 Podstawa teoretyczna

1.1 Transformata Fouriera

Transformacje Fourierowskie to dziedzina transformacji pozwalających na przekształcanie funkcji z dziedziny czasu (np. przebiegi natężenia dźwięku w czasie) na funkcje w dziedzinie częstotliwości (np. natężenia dźwięku dla poszczególnych częstotliwości). Jednowymiarową transformatę możemy zapisać jako funkcje $f: \mathbb{R} \to \mathbb{C}$ za pomocą wzoru:

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) \exp\left(-2\pi i x \xi\right) \, dx, \quad \forall \xi \in \mathbb{R}$$
 (1)

gdzie i oznacza jednostkę urojoną a jeżeli x oznacza wartości należące do dziedziny badanej funkcji (W przykładzie badania natężenia dźwięku od czasu będzie miał jednostkę czasu), f(x) jest wartością badanej funkcji dla danego x a ξ oznacza częstotliwość (w przypadku gdy x jest czasem mierzonym w sekundach ξ będzie miało jednostkę Hz) q

1.2 Odwrotna transformata Fouriera

W niektórych sytuacjach możliwe jest odwrócenie transformaty w celu uzyskania oryginalnego sygnału za pomocą tzw. odwrotnej transformaty Fouriera opisanej wzorem:

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) \exp(2\pi i x \xi) \ d\xi, \quad \forall x \in \mathbb{R}$$
 (2)

gdzie \hat{f} oznacza wynik transformaty fouriera dla funkcji f

1.3 Transformaty wielowymiarowe

Transformata Fouriera może zostać uogólniona do n wymiarów korzystając z wzoru:

$$\hat{f}(k) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int f(r) \exp(-ikr) d^n r$$
(3)

w którym $k = [k_1, k_2, \dots, k_n]$

Dyskretne transformaty Fouriera

Dyskretyzacja transformaty Fouriera pozwala na zastosowanie tradycyjnej transformaty do analizy sygnalów mierzonych przez instrumenty (instrument pomiarowy generować będzie dyskretne próbki danych a nie ciągłą funkcje). Dyskretna transfomate możemy opisać za pomocą sumy przekształcającej ciąg próbek jakiegoś sygnału $[x_0, x_1, \ldots, x_{N-1}]$ gdzie $x_i \in \mathbb{R}$ w ciąg harmonicznych tego sygnału oznaczanych: $[X_0, X_1, \ldots, X_{N-1}]$ gdzie $X_n \in \mathbb{C}$ danej wzorem:

$$X_k = \sum_{n=0}^{N-1} x_n \exp\left(\frac{-ikn2\pi}{N}\right), \ 0 \le k \le N-1$$
 (4)

gdzie