Projektovanje algoritama

L06. Quicksort. Linearno sortiranje

Algoritmi sortiranja

Naziv algoritma	Očekivano vreme trajanja	Prostorni zahtev
Insertion Sort	$O(n^2)$	unutar niza
Merge Sort	$O(n \lg n)$	dodatni prostor
Heapsort	$O(n \lg n)$	unutar niza
	O(n)	

Quicksort

```
QUICKSORT (A,p,r)

if p < r

q = PARTITION (A,p,r)

QUICKSORT (A,p,q-1)

QUICKSORT (A,q+1,r)
```

Zavadi (*divide***)**: Podelićemo niz A[p..r] u **tri podniza** A[p..q-1], A[q], A[q+1..r] Uslov: svi elementi podniza su veći od svih elemenata prethodnog podniza

Vladaj (conquer): Sortiraćemo svaki podniz rekurzivno (drugi ima samo jedan element)

Combine: Nema potrebe za kombinovanjem; niz je već sortiran.

Quicksort

Quicksort - particionisanje

PARTITION (A,p,r)

```
x = A[r]
i = p - 1
for j = p to r - 1
  if A[j] <= x
    i = i + 1
    exchange A[i] with A[j]
exchange A[i+1] with A[r]
return i + 1</pre>
```

https://visualgo.net/sorting

Quicksort - particionisanje (dokaz tačnosti)

Invarijanta petlje:

- levi podniz: $p \le k \le i \rightarrow A[k] \le x$
- desni podniz: $i + 1 \le k \le j 1 \rightarrow A[k] > x$
- pivot: $k = r \rightarrow A[k] = x$

Inicijalizacija: i = p - 1, j = p

Održavanje: proveriti oba slučaja if uslova

Terminacija: j = r

Quicksort - analiza složenosti

Worst-case

Dešava se kada particionisanje napravi potproblem veličine N-1 i potproblem veličine 0.

- ukoliko pivot bude na kraju!

$$T(n) = T(n-1) + T(0) + \theta(n)$$

heta(n) - particionisanje

$$T(n) = \theta(n^2)$$

Quicksort - analiza složenosti

Best-case

Dešava se kada particionisanje napravi potprobleme veličine N/2.

- ukoliko pivot bude na sredini u svakoj iteraciji!

$$T(n) = 2T\left(\frac{n}{2}\right) + \theta(n)$$

$$T(n) = \theta(n \lg n)$$

Quicksort - analiza složenosti

Average-case

Koje je onda očekivano vreme trajanja Quicksort algoritma?

Posmatrajmo slučaj particionisanja u odnosu 9:1, odn. da se pivot nalazi blizu kraja.

$$T(n) = T\left(\frac{9n}{10}\right) + T\left(\frac{n}{10}\right) + \theta(n)$$

$$T(n) = \theta(n \lg n)$$

Ista složenost će biti kod bilo kog konstantnog odnosa u proporciji!

Algoritmi sortiranja

Naziv algoritma	Očekivano vreme trajanja	Prostorni zahtev
Insertion Sort	$O(n^2)$	unutar niza
Merge Sort	$O(n \lg n)$	dodatni prostor
Heapsort	$O(n \lg n)$	unutar niza
Quicksort	$O(n \lg n)$	unutar niza
	O(n)	

Donja granica za sortiranje?

Stablo odlučivanja

Sortiranja zasnovana na poređenju

 $\Omega(n \lg n)$

Linearno sortiranje - Counting Sort

COUNTING-SORT (A, B, k)

```
let C[0..k] be a new array
for i = 0 to k
 C[i] = 0
for j = 1 to A.length
 C[A[j]] = C[A[j]] + 1
for i = 1 to k
 C[i] = C[i] + C[i-1]
for j = A.length downto 1
 B[C[A[j]]] = A[j]
 C[A[j]] = C[A[j]] - 1
```

$$T(n) = \theta(n)$$

Algoritmi sortiranja

Naziv algoritma	Očekivano vreme trajanja	Prostorni zahtev
Insertion Sort	$O(n^2)$	unutar niza
Merge Sort	$O(n \lg n)$	dodatni prostor
Heapsort	$O(n \lg n)$	unutar niza
Quicksort	$O(n \lg n)$	unutar niza
Counting Sort Radix Sort Bucket Sort	O(n)	dodatni prostor

© Universal Studios, Revealing Homes