# Omni-directional stereoscopy

Paul Bourke (WASP, UWA)





#### **Motivation**

- Correct stereoscopic views require a matching relationship between viewing geometry and rendering geometry. That is, viewer position/relationship to the display is identical to the virtual cameras position/relationship to the projection plane.
- Implications that apply to both flat and surround screen environments.
  - Correct depth and scale relationships only correct for a single viewing position, and hence single viewer.
  - For a non-stationary viewer, head tracking is required to maintain the correct frustums.
- To what extent can these be relaxed for surround stereoscopic projection environments, those intended for an audience.



## Example illustrating depth distortion

- In a non-head tracked environment it is easy to experience the distortions by moving left/right and forward/backward.
- Forward/back results in compression/dilation of space.
  Side to side movement results in shearing of space.
- Easy to see why this occurs. Consider the square on the far right in the below image and its projection onto the left and right projection plane. For a different viewer position the apparent depth of the cube changes.
  - => Movement forward and backward results in a compression and stretching of space.



### Example illustrating multiple observers

- A similar but more serious problem occurs for stereoscopic environments that surround a number of observers or even a single user.
- For a flat display the multiple observers receive increasingly distorted views as their distance from the correct spot increases. In a surround stereoscopic projection space they can receive a totally incorrect view, with zero or inverted stereoscopic image pairs.
- For example, in a cylindrical stereoscopic display an observer looking "forward" needs to receive totally different parallax information compared to an observer looking to the right.
- There can only be one image on the display so how can multiple observers be supported?
- Even a single observer needs different stereo pairs as they look in different directions, even though they may not move.



#### Question?

- Can one present strictly correct stereoscopic content to a number of observers within a large surround projection environment without distortion? Answer: no!
- Can one present stereoscopic content to a number of observers within either a large surround projection environment with an acceptable (unnoticed) level of distortion? Answer: yes!
- Will present the following cases that have been either installed or tested.
  - 1) 10m diameter cylindrical environment, first instance at iCinema, UNSW. This easily supports a dozen participants each optionally looking in different directions.
  - 2) Hemispherical dome, both large (multiple observers) and small (single person).



AVIE, iCinema, UNSW



iDome, WASP, UWA

#### Stereoscopic panoramic images

- Capturing stereoscopic panoramic images employs a slit camera pair separated by the interocular distance. The camera pair rotate about their combined center.
- For continuous rendering no stitching errors. For a finite slit width of rendered material or for photography the stitching issues reduce as the slit width reduces. The stitching issues also reduce with distance.
- There are continuous rotating slit cameras, such as the Roundshot, multipass and vertex shader algorithms for OpenGL.





Roundshot camera

Raytraced stereoscopic cylindrical projection created for PovRay Workflow developed for 3DStudioMax

#### Results

- Within a narrow region directly in front of an observer the stereo pairs are correct.
- As one considers the image left and right from that position the error increases.
- Saved by the limited FOV of the glasses! We don't experience stereo in our peripheral vision.
- Upshot is that multiple observers can be located within the cylinder and all see an acceptable stereo image irrespective of where they are looking.
- The distortions as one moves away from the center of the cylinder still exist but interestingly seem less noticeable compared to the equivalent flat screen shearing effect.



## Stereoscopic fisheye images

- Cast rays through each pixel (or subpixel) in fisheye space from each eye. Simulate head (and therefore eye) position as one pivots ones head about in the dome.
- Easy in a raytracer to arbitrarily define a initial vector for each point on the fisheye projection plane for each eye.
- Still image pairs can be generated by capturing stereo spherical projections.
- Currently implemented for CG and still photography.
- No clear solution for filmed material.









# Example: iDome



Stereoscopic fisheyes calculated from stereoscopic spherical images, courtesy Sarah Kenderdine.

# Concluding remarks

- Cylindrical stereoscopic movies are well established and working at iCinema, as well as other AVIE installations. Includes realtime, photographic, video, and CG content.
- Stereoscopic domes (two at the time of writing) are being deployed by planetarium installers, to-date they are not creating optimal stereosopic fisheye pairs as discussed here, but rather simply parallel fisheye projections with the expected errors as one looks away from the central direction.
- Successful tests have been conducted in the iDome using Christie 120Hz frame doubling stereo-capable DLP projector. (Further tests using analyph pairs.) Main problem at the moment is the unsuitability of the currently available lens from Christie.



