Scalable Modeling of Multivariate Longitudinal Data

for Prediction of

Chronic Kidney Disease Progression

Joe Futoma

Mark Sendak

Blake Cameron

Katherine Heller

Am J Nephrol 2012;36:1–10 DOI: 10.1159/000339327 Received: April 2, 2012 Accepted: May 7, 2012 Published online: June 13, 2012

Renal Function Trajectory Is More Important than Chronic Kidney Disease Stage for Managing Patients with Chronic Kidney Disease

Steven J. Rosansky

WJB Dorn Veteran's Hospital, Columbia, S.C., USA

- * Can we use other clinical data (labs and/or vitals) to improve prediction of disease progression?
- * Goal: flexible model for multivariate longitudinal data

Model for a single trajectory

Conditional likelihood factorizes across P labs: $p(\vec{y_i}|z_i, b_i, c_i; x_i) = \prod_{p=1}^{n} p(\vec{y_{ip}}|z_i, b_i, c_i; x_i)$

$$y_{ip}(t) \sim N(\mu_{ip}(t), \sigma_p^2)$$

Population effect

Latent subpopulation curve

Individual long-term deviations

Individual transient deviations (GP)

$$K_p(t, t') = a_p^2 \exp\{-l_p^{-1}|t - t'|\}$$

Inducing Dependence

Dependence between mean functions for the *P* labs in 2 ways:

$$\mu_{ip}(t) \sim \mathcal{GP}(\Lambda^{(p)}x_i + \Phi_z(t)^{\top}\beta_{z_{ip}}^{(p)} + \Phi_l(t)^{\top}b_{ip}, K_p)$$

Long-term deviations are correlated via multivariate normal:

$$\vec{b_i} = (b_{i1}, \dots, b_{iP})^{\top} \sim N(0, \Sigma_b)$$

Subtypes/clusters per lab are correlated via mixture of multinomials:

$$z_{ip}|c_i = g \sim \text{Multinomial}(\Psi_g^{(p)})$$

$$c_i \sim \text{Multinomial}(\pi_i)$$

$$\pi_{ig} = \frac{e^{w_g^\top x_i}}{\sum_{g'=1}^G e^{w_{g'}^\top x_i}}$$

Experimental Setup

- * 6 variables of interest: eGFR, 5 other labs relevant to CKD
- * Cohort of 44,000 patients at Duke with at least moderate stage CKD (Stage 3+) and 5+ measurements for eGFR
- * For each test patient: use data before *t* to predict future labs
- Evaluation for each lab:
 - * average MAE across test patients, in future time windows
- * Baseline: [Schulam & Saria, 2015] trained independently

Quantitative Results

Table 1: Mean Absolute Errors across all labs from 10 fold cross validation. Bold indicates p-value from one-sided, paired t-test comparing methods was < .05. *,**,*** indicate p < .01, < .001, < .0001, respectively.

t = 1

1.46

1.44

0.88***

1.17***

Predictions with data up to...

Schulam

Proposed

Schulam

Proposed

1.02

1.17

0.57***

0.92***

1.35

1.30

0.68***

1.02***

Serum Phos.

Urine ACR

Lab	Model	(1, 2]	(2, 4]	(4, 8]	(8, 19]	(2, 4]	(4, 8]	(8, 19]	(4, 8]	(8, 19]
$_{ m eGFR}$	Schulam	8.86*	10.43*	12.05	13.69	8.84***	11.08**	13.23*	9.39***	12.29*
	Proposed	9.12	10.67	12.28	14.21	9.26	11.73	13.99	10.12	13.07
Serum Alb.	Schulam	0.59	0.79	1.09	1.53	0.60	0.88	1.28	0.63	0.96
	Proposed	0.34***	0.39***	0.47***	0.63***	0.35***	0.45***	0.63***	0.40***	0.58***
Serum Bicarb.	Schulam	1.92	2.06	2.13	2.31	1.93	2.06	2.21	1.89	2.14
	Proposed	1.87	1.97	2.04	2.31	1.89	1.99	2.31	1.87	2.24
Serum Calc.	Schulam	0.74	1.02	1.62	2.89	0.72	1.26	2.27	0.85	1.53
	Proposed	0.37***	0.44***	0.58***	0.80***	0.39***	0.54***	0.80***	0.46***	0.73***

1.44

1.23

1.64

1.44

t=2

1.36

1.30

1.13*

0.88***

1.34

1.25

1.53

1.45

1.17

1.14

0.65***

0.96***

t = 4

1.13

1.11

1.02

0.82***

1.15

1.23

1.41

1.42

Conclusion

- Novel model for multivariate longitudinal clinical data
- Current clinical practice: "clinical gestalt", no evidencebased method to inform decision-making process
- * Future work:
 - More flexible dependence between labs
 - * Jointly predict with events of interest (hospital admissions / high utilization, cardiac events, etc)
 - * More clinically actionable metrics to evaluate models

Acknowledgments

- Contact: jdf38@duke.edu
- Joint work with:
 - Mark Sendak, M.P.P./M.D.
 Candidate
 - C. Blake Cameron, M.D.
 - * Katherine Heller, Ph.D.

Presenting tomorrow at clinical talks!

