General Instruction

- Submit your work in the Dropbox folder via BeachBoard (Not email or in class).
- Submit the separate files as they are. (no zip file)
- 1. (10 points) Implement a program to compute π value using Monte Carlo simulation method. Use Python 3 and the name pi.py
 - (a) The program should generate n points to compute π for $n \in \{10^3, 10^4, 10^5, 10^6\}$.
 - (b) You can use math.pi to compute error rates.
 - (c) Please follow the output format. (Fix precisions using "0:.nf".format)

```
n = 10 ^ 3 pi = 3.096000 error = 1.4513 %
n = 10 ^ 4 pi = 3.136800 error = 0.1526 %
n = 10 ^ 5 pi = 3.145280 error = 0.1174 %
n = 10 ^ 6 pi = 3.140568 error = 0.0326 %
```

- 2. Consider Figure 1, and implement a program to answer the query $\vec{P}(C|\neg s, w)$ by using Gibbs (MCMC) sampling. The program should generate 1,000,000 samples to estimate the probability. Use Python 3 and the name gibbs.py
 - (a) (8 points) Show $\vec{P}(C|\neg s, r), \vec{P}(C|\neg s, \neg r), \vec{P}(R|c, \neg s, w), \vec{P}(R|\neg c, \neg s, w).$
 - (b) (16 points) Show the transition probability matrix $Q \in \mathbb{R}^{4\times 4}$ where q_{ij} = transition probability from S_i to S_j in Figure 2.
 - (c) (20 points) Show the probability of the query $\vec{P}(C|\neg s, w)$
 - (d) Please follow the output format. (Fix precisions using "0:.nf".format)

Part A. The sampling probabilities

Part B. The transition probability matrix

	S1	S2	S3	S4
S1				
S2				
S3				
S4				

Part C. The probability for the query $P(C|-s,w) = \langle ..., ... \rangle$

Figure 1: A multiply connected network with conditional probability tables

Figure 2: Possible states diagram