Міністерство освіти і науки України НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «КИЄВО-МОГИЛЯНСЬКА АКАДЕМІЯ» Факультет інформатики

Протокол до лабораторної роботи №2 3 дисципліни "Математичні методи машинного навчання "

Виконала студентка 3 р.н. спеціальності "Прикладна математика" Антошина Катерина

1. Завдання лабораторної роботи

- 1) Сформувати тестову вибірку зображень з вихідного пакету;
- 2) Провести декомпозицію каналу зеленого кольору тестових зображень з використанням методу головних компонент (PCA):
- 3) Для каналу зеленого кольору тестових зображень обчислити наступні характеристики розподілу значень яскравості пікселів:
 - а) Впорядкувати отримані компоненти вихідного зображення в порядку зменшення значень сингулярних чисел (від найбільшого s_{max} до найменшого s_{min} значення);
 - b) Провести реконструкцію зображення при використанні лише частки (α %) компонентів розкладу, що характеризуються відмінними від нуля сингулярними числами ($s_i \neq 0$). Розглянути випадок, коли α змінюється від $\alpha_{min} = 10$ % до $\alpha_{max} = 100$ % з кроком $\Delta_{\alpha} = 10$ %.
 - с) Порівняти вихідне та реконструйоване зображення за показником середньоквадратичного відхилення (MSE).
 - d) Побудувати графіки залежності $\overline{MSE}(\alpha)$, де $\overline{MSE}-$ значення середньоквадратичного відхилення між вихідним та реконструйованим зображеннями, усереднені по тестовому пакету;
- 4) Провести моделювання каналу зеленого кольору тестових зображень з використанням марківських ланцюгів першого порядку M_1 :
 - а) Отримати стохастичну матрицю для каналу зеленого кольору при обробці пікселів по горизонталі, зліва направо $M_{\vec{1}}(I_{x,y},I_{x+1,y})$;
 - b) В протоколі роботи графічно показати вид марківського ланцюга для діапазону яскравості пікселів $I_{x,y} \in [i\,;i\times 10]$, де i=1;
 - с) Для отриманих марківських ланцюгів перевірити виконання властивості регулярності та рекурентності після проходження 5 ітерацій роботи.

2. Порядок виконання роботи та отримані результати

- 1) Вибірка була сформована з використанням функції random(), в основі якої лежить генератор Мерсена, зі стартовим значенням 1. Згенеровані 250 чисел є номерами картинок, які витягуються з apxiвa mirflickr25k.zip та зберігаються в нову теку на Google Drive, із назвою mirflickr. Після того, зображення конвертуються в масиви numpy і зберігаються в масиві imgs.
- 2) Для декомпозиції каналу зеленого кольору тестових зображень було реалізовано метод головних компонент, а саме, написано функцію decompose reconstruct, у якій створюється об'єкт PCA(n components, svd solver), в якому важливим аргументом ϵ n components, що позначає відсоток або кількість головних компонент, які хочемо отримати (якщо None, тоді з документації n_components == min(n_samples, n_features) - 1, тобто в нашому випадку, декомпозуючи картинку, за кількість компонент вибирається або її ширина, або висота - залежно від того, що менше). Саму ж сингулярну декомпозицію забезпечує метод fit transform(), який знаходить сингулярні вектори (вони ж - головні компоненти), відповідні їм сингулярні числа, дисперсію значень яскравості пікселів зеленого каналу тощо. Для реконструкції зображення застосовується метод inverse transform.

Проведено реконструкцію для першої картинки з вибірки:

Бачимо, що кількість головних компонент рівна ширині зображення: len(pca.components_)==green_img_list[1].shape[1] True

- а) За замовчуванням, сингулярні числа вже відсортовані в спадному порядку.
- b) Результати проведеної реконструкції зображення за використання лише частки компонент розкладу, що характеризуються відмінними від нуля сингулярними числами, наведені відповідно нижче:

с) Порівняння вихідного та реконструйованого зображення за показниками середньоквадратичного відхилення дає нам наступний результат:

$\alpha(\%)$	MSE
10%	1293.923051
20%	1293.923051
30%	1293.923051
40%	1293.923051
50%	1293.923051
60%	1293.923051
70%	979.599934
80%	562.93337
90%	331.180304
100%	2.357554e-26

Графік залежності значення середньоквадратичного відхилення від частки головних компонент, що була використана для реконструкції зображення:

d) Усереднені MSE по тестовому пакету та відповідний графік:

α (%)	Mean MSE
10%	1688.667444
20%	1670.686122
30%	1595.455309
40%	1447.142376
50%	1241.382283
60%	1051.95345
70%	829.148276
80%	588.359894
90%	306.701244
100%	4.985369e-26

- а) Всього станів у марківському ланцюзі 256 (кожний відповідає за значення яскравості пікселя), тому утворена матриця має розмір (256, 256) і містить імовірності переходу від одного стану до іншого. До нормалізації матриця формувалася обробкою значень яскравості пікселів, ідучи по горизонталі, зліва направо.
- b) Графічно наш марківський ланцюг в діапазоні [1:10,1:10] виглядає так:

Для першого графіка використовувалась білінійна інтерполяція, через що він виглядає розмито. У другому випадку - "найближча", тому "кубиками".

с) Проведено дослідження регулярності та рекурентності стохастичної матриці даної марківської моделі після проходження 5 ітерацій роботи. Результат: матриця регулярна та рекурентна. Тобто, на 5-му кроці усі стани досяжні та на діагоналі немає нулів.