Algebra 2R, lista 7.

Zadania oznaczone minusem to ćwiczenia, których nie deklarujemy i nie wybieramy do zadania domowego.

- 1. Załóżmy, że $A, B \subseteq U$, gdzie U jest pewnym ciałem algebraicznie domkniętym, zaś K jest podciałem U.
 - (a)– Udowodnić, że jeśli $A \subset B$ jest algebraicznie niezależny nad K, to zawiera się w pewnej bazie przestępnej zbioru B, nad K. (dla uproszczenia można założyć, że zbiór B jest skończony)
 - (b)
– Udowodnić, że jeśli A jest bazą przestępną zbioru B nad K, to jest też bazą przestępną zbioru $acl_K(B)$ nad K.
 - (c) Udowodnić, że każde dwie dwie bazy przestępne zbioru B nad K są równoliczne (dla uproszczenia wolno założyć, że jedna z tych baz jest skończona).
 - (d) Udowodnić szczegółowo, że jeśli $\{a_i, i \in I\} \subset U$ jest algebraicznie niezależny and K, to $K(a_i, i \in I)$ jest izomorficzne (nad K) z ciałem funkcji wymiernych $K(X_i, i \in I)$.
- 2. (a) Udowodnić, że rozszerzenie $K \subset K(X,Y)$ jest czysto przestępne.
 - (b)– Udowodnić, że rozszerzenie $K \subset K(X_i, i \in I)$ jest czysto przestępne.
- 3. Udowodnić, że zbiór $\{a_1, \ldots, a_n\} \subset U$ jest algebraicznie niezależny nad $K \iff$ nie istnieje niezerowy wielomian $W(X_1, \ldots, X_n) \in K[X_1, \ldots, X_n]$ taki, że $W(a_1, \ldots, a_n) = 0$.
- 4. * Niech U będzie algebraicznym domknięciem ciała $\mathbb{Q}(X,Y,Z)$. Znaleźć wewnątrz U algebraicznie domknięte ciała K i L wymiaru przestępnego 2 (nad \mathbb{Q}) takie, że $K \cap L = \hat{\mathbb{Q}}$. (uwaga: znaczy to, że operator algebraicznego domknięcia nie spełnia prawa modularności, w przeciwieństwie do operatora liniowego domknięcia w przestrzeniach liniowych).
- 5. (a) Udowodnić, że $trdeg(\mathbb{C})=2^{\aleph_0}$ oraz ciało \mathbb{C} ma $2^{2^{\aleph_0}}$ automorfizmów. (wsk.¹) (b)– Załóżmy, że ciała K i L są tej samej charakterystyki, algebraicznie domknięte i mają ten sam wymiar przestępny. Udowodnić, że ciała te są izomorficzne.
- 6. Załóżmy, że $a_0, \ldots, a_{n-1} \in \mathbb{R}$ są algebraicznie niezależne (nad \mathbb{Q}). Udowodnić, że wielomian

$$W(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}$$

jest nierozkładalny nad ciałem $\mathbb{Q}(a_0,\ldots,a_{n-1})$.

7. * Załóżmy, że $a, b, c \in \mathbb{R}$ są algebraicznie niezależne. Udowodnić, że $a^2 + b + c, b^2c, ab + ac^2$ też są algebraicznie niezależne. (Wsk.²)

¹skorzystać ze skończonego charakteru *acl*.

 $^{^2}$ Myśleć geometrycznie, jak w przestrzeni liniowej. Niech $u=a^2+b+c, v=b^2c, w=ab+ac^2$. Wystarczy udowodnić, że $a,b,c\in acl(u,v,w)$. Przedstawić c i a jako wyrażenia wymierne zależne od u,v,w,b. Następnie wskazać wielomian o współczynnikach będących wyrażeniami wymiernymi zależnymi od u,v,w, którego pierwiastkiem jest b.

- 8. Załóżmy, że M jest R-modułem. Udowodnić, że:
 - (a) zbiór $I = \{r \in R : \forall m \in M, rm = 0\}$ jest obustronnym ideałem w R.
 - (b) gdy R jest przemienny, dla $r \in R$ zbiór $M_r = \{m \in M : rm = 0\}$ jest podmodułem M.
- 9. Niech G będzie grupą abelową.
 - (a) Udowodnić, że $End(G, +) = End_{\mathbb{Z}}(G)$ (w tym drugim przypadku chodzi o pierścień endomorfizmów G jako \mathbb{Z} -modułu).
 - (b) Które grupy abelowe G są \mathbb{Z} -modułami prostymi ? Znaleźć ich pierścienie endomorfizmów (są to ciała na mocy tw. Wedderburne'a).
 - (c) Które grupy abelowe G są \mathbb{Z}_n -modułami prostymi ? Znaleźć ich pierścienie endomorfizmów.
 - (d) Opisać pierścień $End(\mathbb{Q}, +)$. Czy jest to pierścień z dzieleniem ? Czy \mathbb{Q} jest \mathbb{Z} -modułem prostym ?
- 10. Udowodnić, że każda niezerowa przestrzeń liniowa V nad ciałem K jest $End_K(V)$ modułem prostym. Znaleźć pierścień endomorfizmów tego modułu.
- 11. Załóżmy, że M jest R-modułem. Wówczas M jest też R'-modułem, gdzie $R' = End_R(M)$ (tego nie trzeba dowodzić). Dla $r \in R$ definiujemy $f_r : M \to M$ przez $f_r(m) = rm$. Udowodnić, że $f_r \in End_{R'}(M)$.