TECNICA PARA LA RESOLUCIÓN DE PROBLEMAS CON EL APOYO DEL COMPUTADOR:

Enunciado: Pseudocódigo que nos permita calcular las soluciones de una ecuación de segundo grado, incluyendo los valores imaginarios

PASOS:

1. Análisis y clasificación del enunciado del problema en sus elementos

Elemento	Valor					
	Valor a					
Continue de Dates	Valor b					
Captura de Datos	Valor c					
	$-b \pm \sqrt{b^2 - 4(a)(c)}$					
	2(a)					
Operaciones Aritméticas	Si a $\neq 0$, entonces, d=b*b-4*a*c					
	Si d > 0, entonces, $x1 = (-b + raiz(d))/(2*a)$					
	x2 = (-b - ra'z(d))/(2*a)					
	Si $d < 0$, entonces, $r=(-b)/(2*a)$					
Preguntas	i= raiz (abs(d))/(2*a)					
	Si $d = 0$, entonces, $x1=-b/(2*a)$					
	x2=x1					
Ohaanaadaaaa	¿Cuál es el resultado de una ecuación de segundo grado?					
Observaciones	Court of the same of the court of the segundor grade.					
	El resultado también da los valores imaginarios.					

3. Análisis de Procesos Aritméticos

```
Si a \neq 0, entonces, d=b*b-4*a*c

Si d > 0, entonces, x1= (-b+ \operatorname{raiz}(d)) / (2*a)
x2= (-b- \operatorname{raiz}(d)) / (2*a)

Si d < 0, entonces, r=(-b) / (2*a)
i= \operatorname{raiz} (abs(d)) / (2*a)

Si d = 0, entonces, x1=-b/(2*a)
x2=x1
```

4. Diseño Interfaz Hombre - Máquina

5. Algoritmos

Paso	Descripción					
0	Inicio					
1.	Declarar valor de a					
2.	Leer a					
3.	Declarar valor de b					
4.	Leer b					
5.	Declarar valor de c					
6.	Leer c					
7.	Si a = 0, entonces: escribir" no es una ecuaci ó n de segundo grado"					
8.	Si $a \neq 0$, entonces: $d=b*b-4*a*c$					
9.	Leer d					
10.	Si d > 0, entonces: $x1 = (-b + raiz(d)) / (2*a)$					
	x2 = (-b - raiz(d))/(2*a)					
	Leer x1, x2 Escribir x1, x2					
11.	Si d < 0, entonces: $r=(-b)/(2*a)$					
	i= raíz (abs(d))/(2*a)					
	Leer r, i					
12.	Escribir r, i Si d = 0, entonces: x1=-b/(2*a)					
12.	x2=x1					
	Leer x1, x2					
13.	Escribir x1, x2					
13.	1.111					

6. Tabla de Datos

Identificador	Tipo	Tipo Dat ó	Valor Inicial	Á	mbit	0	Observaciones	Documentación
				Е	Р	S		
a	Variable	real	0,0	Е				Variable donde se va a
								almacenar un dato ingresado
								por el usuario.
b	Variable	real	0,0	Е				Variable donde se va a
								almacenar un dato ingresado
								por el usuario.
С	Variable	Real	0,0	Е				Variable donde se va a
								almacenar un dato ingresado
								por el usuario.
d	variable	real	0,0		P			Variable donde se va a
								almacenar una de las
								respuestas de una operación
								aritmética.
x1	Variable	real	0,0		P	S		Variable donde se va a
								almacenar una de las
								respuestas de una operación
								aritm é tica.
x2	Variable	real	0,0		P	S		Variable donde se va a
								almacenar una de las
								respuestas de una operaci ó n
								aritmética.
r	Variable	real	0,0		P	S		Variable donde se va a
								almacenar una de las
								respuestas de una operación
						<u> </u>		aritmética.
i	Variable	real	0,0		P	S		Variable donde se va a
								almacenar una de las
								respuestas de una operaci ó n
								aritmética.

7. Tabla de Expresiones Aritméticas y Computacionales

Expresiones Aritméticas	Expresiones Computacionales		
Si $a \neq 0$, entonces: $d=b*b-4*a*c$	Si $(v_a) \neq 0$, entonces: $(v_d) = (v_b) * (v_b) -4 * (v_a) * (v_c)$		
Si d > 0, entonces: $x1 = (-b + raiz(d)) / (2*a)$	Si $(v_d) > 0$, entonces: $(v_x1) = (-(v_b) + raiz(v_d)) / (2*(v_a))$		
x2 = (-b - raiz(d)) / (2*a)	$(v_x^2) = (-(v_b) - raiz(v_d))/(2*(v_a))$		
Si d < 0, entonces: $r=(-b)/(2*a)$	Si $(v_d) < 0$, entonces: $(v_r) = (-(v_b))/(2*(v_a))$		
i=raíz (abs(d))/(2*a)	$(v_i) = raíz (abs(v_d))/(2*(v_a))$		
Si $d = 0$, entonces: $x1=-b/(2*a)$	Si $(v_d) = 0$, entonces: $(v_x1) = -(v_b)/(2*(v_a))$		
x2=x1	$(v_x2) = (v_x1)$		

8. Diagrama de Flujo de Datos

9. Prueba de Escritorio

Esta en el Excel

10. Pseudocódigo

Algoritmo SOLUCION_ECUACION

// ENUNCIADO=Pseudocódigo que nos permita calcular las soluciones de una ecuación de segundo grado, incluyendo los valores imaginarios

// Definir

Definir v_a Como Real // VARIABLE QUE ALMACENA EL VALOR INTRODUCIDO DE A

Definir v_b Como Real // VARIABLE QUE ALMACENA EL VALOR INTRODUCIDO DE B

Definir v_c Como Real // VARIABLE QUE ALMACENA EL VALOR INTRODUCIDO DE C

Definir v_r Como Real // VARIABLE QUE ALMACENA EL RESULTADO DE LA OPERACION R

Definir v_i Como Real // VARIABLE QUE ALMACENA EL RESULTADO DE LA OPERACION I

Definir v_x1 Como Real // VARIABLE QUE ALMACENA EL RESULTADO DE LA OPERACION X1, PRIMER CORTE CON EL EJER X

Definir v_x2 Como Real // VARIABLE QUE ALMACENA EL RESULTADO DE LA OPERACION X2, SEGUNDO CORTE CON EL EJE X

// VALOR INICIAL:

v a <- 0.0

v_b <- 0.0

v_c <- 0.0

v r <- 0.0

v i <- 0.0

v_x1 <- 0.0

v x2 <- 0.0

// INTRODUCCION DE DATOS

Escribir 'escribe el coeficiente a'

Leer v_a

Escribir 'escribe el coeficiente b'

Leer v_b

Escribir 'escribe el coeficiente c'

Leer v_c

// PROCESO Y SALIDA

Si v_a<>0 Entonces // SE DECIDE SI EL VALOR DE A ES DIFERENTE DE CERO

 $v_d < (v_b * v_b) - 4 * v_a * v_c // PARA OBTENER LA V_D ENTONCES: (EL VALOR B SE MULTIPLICA POR EL VALOR B) SE RESTA CON 4 Y SE MULTIPLICA POR EL VALOR A Y EL VALOR C$

Si v_d<>0 Entonces // SE DECIDE SI V_D ES DIFERENTE DE CERO

Si v_d>0 Entonces // SE DECIDE SI V_D ES MAYOR A CERO

 $v_x1 < -(-v_b+raiz(v_d))/(2*v_a)$ // PARA OBTENER EL PRIMER CORTE DE X : ((SE LE SACA RAIZ CUADRADA A v_d) SE LE SUMA EL VALOR DE B CON EL SIGNO CONTARIO) SE DIVIDE ENTRE (2 MULTIPLICADO POR EL VALOR DE A)

 $v_x^2 < -(-v_b-raiz(v_d))/(2*v_a)$ // PARA OBTENER EL SEGUNDO CORTE DE X : ((SE LE SACA RAIZ CUADRADA A V_D) SE LE RESTA EL VALOR DE B CON EL SIGNO CONTARIO) SE DIVIDE ENTRE (2 MULTIPLICADO POR EL VALOR DE A)

Escribir 'x1=',v x1

Escribir 'x2=',v x2

SiNo // SI EL VALOR DE V D ES MENOR A CERO ENTONCES:

 $v_r <- (-v_b)/(2*v_a)$ // PARA OBTENER V_R : (EL VALOR DE B CON SIGNO CONTRARIO) DIVIDIDO ENTRE (2 MULTIPLICADO POR VALOR DE A)

 $v_i < -raiz(abs(v_d))/(2*v_a)$ // PARA OBTENER v_i : (VALOR ABSOLUTO DEL VALOR B) DIVIDIDO ENTRE (2 MULTIPLICADO POR VALOR DE A) SE LE SACA RAIZ CUADRADA

FinSi

SiNo // SI EL VALOR DE V_D ES IGUAL A CERO ENTONCES:

 $v_x1 < -v_b/(2*v_a)$ // PARA OBTENER EL PRIMER CORTE X: (VALOR DE B CON EL SIGNO CONTRARIO) DIVIDIDO ENTRE (2 MULTIPLICADO POR VALOR DE A)

v_x2 <- v_x1 // EL SEGUNDO CORTE ES IGUAL AL PRIMER CORTE

Escribir 'x1=',v_x1

Escribir 'x2=',v_x2

FinSi

SiNo

Escribir 'no es una ecuacion de segundo grado' // SI EL VALOR DE A ES IGUAL A CERO ENTONCES SE COMUNICA QUE NO ES UNA ECUACION DE SEGUNDO GRADO

FinSi

FinAlgoritmo