# NEW UNIVERSITY TRIGONOMETRY

For

(Pre-University & Higher Secondary Classes)



by

Prof. G.A. Kuchai, M.A.,LL.B.,

Head of the Department of Mathematics, A.S. College Srinagar. Prof. Khazir Mohammad.

M.A.B.T ..

Head of the Department of Mathematics, S.P. College, Srinagar.

Revised by

Prof. Mohi-ud-Din,

M.Sc., LL.B., (ALIG.)

Department of Mathematics

A.S. College, Srinagar.

# Ali Mohammad & Sons,

BOOK SELLERS AND PUBLISHERS, Habba Kadal, Srinagar, KASHMIR.

Published by: Ali Mohammad & Sons, Srinagar, Kashmir.



### PREFACE

This book on Trigonometry has been written to meet the needs of the Pre-University students studying within the jurisdiction of the J. & K. University. Thus it covers the entire syllabus prescribed by the University. What the student has already studied in school or is expected to have studied there has not been touched at all. Moreover, unnecessary details likely to confuse the average student have been avoided as far as possible. Various articles have been explained in such a way that even the weakest student can grasp them provided that he studies these with care. Most of the articles have been illustrated by means of a number of solved examples most of which have been taken from University papers. In short, no pains have been spared to make the book intelligible and, at the same time, interesting.

The authors shall most thankfully receive any valuable suggestions or corrections that might have escaped their notice.

Srinagar May, 1964. Authors

### Syllabus For The Higher Secondary Examination

Sexagesimal and circular units of angular measurements, Trigonometrical ratios and the simple relations connecting them; relations between Trigonometrical ratios of angles differing by multiples of right angles, additions and subtraction Formulae; Trigonometrical Ratios of multiple and sub-multiple angles. General solution of simple Trigonometrical equations; the relations between the sides and the angles of a triangle: logarithms, solution of triangles and simple cases of heights and distances, radii of the circumscribed, inscribed and escribed circles of triangles; areas of a triangle, regular polygon and of a circle; graphs of simple Trigonometrical Functions.

### Syllabus For The Pre-University Examination

Relations between Trigonometrical ratios of angles differing by multiples of right angles, addition and subtraction formulae: Trigonometrical ratios of multiples and submultiples of angles. General solutions of simple Trigonometrical equations; the relations between the sides and the angles of a triangle, simple cases of heights and distances, radii of the circumscribed, inscribed and escribed circles of triangles, area of a triangle, regular polygon and the circle, graphs of simple Trigonometrical unctions.

### CONTENTS

| Chap | nter .                                                                                    | Page       |
|------|-------------------------------------------------------------------------------------------|------------|
| I    | Simple cases of Heights and Distances.                                                    | 1          |
| II   | Relations between Trigonometrical Ratios of angles differing by multiple of right angles. | 11         |
| III  | Addition and Subtraction Formulae.                                                        | 24         |
| IV   | n C Multiple                                                                              | 40         |
| V    | The Sum and Product Formulae.                                                             | 61         |
| VI   | and                                                                                       | 71         |
| VII  | . I D                                                                                     | 88         |
| VIII | the sides and the                                                                         | 103<br>124 |
| IX   | Properties of Triangles.                                                                  | 139        |
| X    | Tion                                                                                      | 157        |
| XI   | Solution of Triangles.                                                                    | 10.        |
| XII  | (a) Areas of a triangle, regular pologon, and a circle.                                   |            |
|      | (b) Graphs of Simple Trigonometrical Functions.                                           | 180        |
| VII  | Contd., Variations of Trigonometrical Ratios and their graphs                             | 188        |
|      | ANSWERS                                                                                   | 208        |
| J    | ammu and Kashmir University Papers                                                        | 215        |

### CHAPTER I

### Heights And Distances

- 1.1 The student has already learnt a lot with regard to the definitions of Trigonometrical Ratios. He has also learnt some fundamental relations thereof, such as  $\sin^2\theta + \cos^2\theta = 1$ ,  $1+\tan^2\theta = \sec^2\theta$ , etc. We now propose to discuss in the present chapter one of the most interesting uses of Trigonometry, viz., the finding of heights without actually measuring them, and finding of distances between two points without actually travelling. Thus it will be found that Trigonometry is very useful in measuring the heights and the distances of points which are otherwise inaccessible, for example, of the moon, the sun and the planets. For the solution of such problems, however, knowledge of some angles and distances is essential. The angles of objects are measured by an instrument known as Theodolite.
- 1.2 Before we illustrate the method of finding heights and distances, we define below Angles of Elevation and Depression.

### Definition :-

Angle of Elevation. If O be an object at a higher level than E, the point of observation, then the angle ZXEO which EO, the st. line from the point of observation to the object observed makes with the horizontal line EX in the vertical clane. OEX is

E 10 Angle of Elevation

in the vertical plane OEX is called the Angle of Elevation of O as seen from E.

Angle of Depression.



If O be an object at a level lower than E, the point of observation, and EX be the horizontal line through E, then the angle \( \sum XEO, \) which EO, the st. line from the point of observation to the point observed, makes with EX is called the Angle of Depression, of O as seen from E.

Note: The Angle of Elevation is sometimes called the Altitude of the object as well.

1.3. In working out problems on Heights and distances, we have to make frequent use of the Trigonometrical Ratios of some acute angles like 0°, 30°, 45°, etc., and the student is already expected to know their values. All the same, he is advised to go through the chart on page 3, which can give him all such information.

| *       | Cosec » | Seco | Co+ θ=   | Tan0= | Gsθ= | Sin 0= | <b>μ</b> |
|---------|---------|------|----------|-------|------|--------|----------|
| 7       | 8       |      | 8        | 0     |      | 0      | 0°       |
| 1. 414  | 2       | 27/2 | 73       | 31-   | 2/3  | 121-   | 3ő       |
| pus     |         |      |          | -     |      | 272    |          |
| T= 1.7. | 2/2     | 2    | <u>-</u> | 27    | 21-  | 23     | 6ő       |
| 32      | -       | 8    | 0        | 8     | 0    | -      | 90°      |
|         |         |      |          | L     |      |        |          |

Note 12 = 1.414 and 13=

### Solved Examples

Ex. 1 A man standing 100 ft. away from the foot of a tower finds that the angle of elevation of the top is 60°. Find the height of the tower.



Sol. Let BC be the tower and A the observer.

Now 
$$\frac{BC}{AB}$$
 = tan BAC or  $\frac{h}{100}$  = tan  $60^{\circ} = \sqrt{3}$ 

or 
$$h = 100 \sqrt{3} \text{ft.}$$

Ex. 2. A cliff is 600 ft. high. A man observes a boat in a lake making angle of depression equal to 45°. Find the distance between the boat and the foot of the cliff.

Sol. Let C be the top of the cliff and A the boat.

Then  $XCA=45^{\circ}$ ; BC=600 ft. and AB=x=?.

Now 
$$\frac{BC}{AB} = \tan \frac{A}{BAC} = 1$$
  
or  $\frac{600}{x} = \tan 45 = 1$ 

or 
$$\frac{600}{x} = 1$$
 or  $x = 600$  ft.



Ex. 3. A man standing on the bank of a river observes angle of elevation subtended by a tree top on the opposite bank to be 45°. On retiring 5 metres the angle of elevation diminishes to 30°; find the height of the tree and the breadth of the river.

Sol. Let C be the top of the tree and F and E the two points of observation.

Let BC=h (the height of the tree)

FB=x (the breadth of the river)



Now given 
$$\overrightarrow{CEF} = 30^{\circ}$$
;  $\overrightarrow{CFB} = 45^{\circ}$   
 $\overrightarrow{CB} = \tan \overrightarrow{CFB}$  or  $\frac{h}{x} = \tan 45 = 1$   
or  $h = x$  ......(i)

Again 
$$\frac{BC}{EB}$$
 = tan  $\widehat{BEC}$  or  $\frac{h}{x+50}$  = tan  $30 = \frac{1}{\sqrt{3}}$ .

or 
$$\sqrt{3} h = x + 50$$
 .....(ii)

Now 
$$h=x$$
 .....(ii)  
 $\sqrt{3} \cdot h=x+50$ 

Substituting the value of h in the (ii)

we have  $\sqrt{3} \cdot x = x + 50$  or  $x(\sqrt{3} - 1) = 50$ 

or 
$$x = \frac{50}{\sqrt{3-1}}$$
 metres.

$$h=x=\frac{50}{\sqrt{3}-1} \text{ metres.}$$

Ex. 4. The angles of depression of two motor cars standing on road and observed from the top of a tower are 45° and 60° respectively. If the cars and tower are in the same vertical plane and the cars 200 ft. apart, find the height of the tower.

(K.U. 1952)

( K. U. 1952 )

gle to



Sol: Let AB be the tower h ft. high. C and D two motor cars 200 ft. apart,

Now 
$$\frac{AB}{BD}$$
 = tan ADB or  $\frac{h}{x+200}$   
= tan  $45^{\circ}$  = 1  
or  $h=200+x...(i)$ 

Again 
$$\frac{AB}{BC}$$
 = tan ACB or  $\frac{h}{x}$  = tan  $60^{\circ} = \sqrt{3}$   
or  $h=x\sqrt{3}$ . ...(ii)  
 $h=x\sqrt{3}$  ...(ii)  
 $h=x\sqrt{3}$  ...(ii)

Substituting the value of x from (ii) in (i)

$$h=200 + \frac{h}{\sqrt{3}} \text{ or } h \left(1 - \frac{1}{\sqrt{3}}\right) = 200$$
or 
$$h = \frac{200}{1} = \frac{200\sqrt{3}}{\sqrt{3}-1} \text{ ft.}$$

$$1 - \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} =$$

- Ex. 5. From a lighthouse the angles of depression of two ships on opposite sides of the lighthouse are observed to be 30° and 45°. If the height of the lighthouse be 300 ft. Find the distance between the ships if the line joining them passes through the foot of the lighthouse. (P.U. 1941)
- Sol. Let AB be the height of the tower=300 ft. Let C and D be the two ships. Then



Let BC=x ft.; DB=y ft. (a) 
$$\frac{AB}{BC} = \tan ACB \text{ or } \frac{300}{x} = \tan 45 = 1$$
  
or  $x = 300$  ft....(i)

or 
$$x=300$$
 ft....(i)

(b) 
$$\frac{AB}{BD}$$
 = tan  $A\widehat{D}B$  or  $\frac{300}{y}$  = tan  $30 = \frac{1}{\sqrt{3}}$  or  $y = 300 \sqrt{3}$  ft.

Distance between the two ships DC

tween the two ships DC 
$$= x + y - 300 - 300 / 3$$
 or  $300 (1 + \sqrt{3})$  ft.  $= x + y - 300 - 300 / 3$  or  $300 (1 + \sqrt{3})$  ft.

- Ex. 6. From the top of a tower the angles of depression of the top and the bottom of a building 100 ft. high are 30° and 60° respectively. Find the height of the tower and distance from the building.
- Sol. Let the tower CD be h ft. high and the distance BC between the tower and the building AB be x ft.

We know (i) 
$$\stackrel{\wedge}{\text{XDA}}$$
 (=DAL = 30°  
(ii)  $\stackrel{\wedge}{\text{XDB}}$  (=DBC)=60°



Now (a) 
$$\frac{DC}{BC}$$
 = tan DBC or  $\frac{h}{x}$  = tan  $60^{\circ} = \sqrt{3}$   
or  $h = x\sqrt{3}$ 

(b) 
$$\frac{DL}{AL}$$
 = tan DAL or  $\frac{h - 100}{\sqrt{3}}$  = tan  $30 = \frac{1}{\sqrt{3}}$  or  $h\sqrt{3} - 1000\sqrt{3} = x$ 

$$h = x\sqrt{3}$$

$$h\sqrt{3} - 1000\sqrt{3} = x$$

$$h\sqrt{3} - 1000\sqrt{3} = x$$

$$(i) \text{ into } (ii)$$

$$(ii)$$

Substituting the value of h from (i) into (ii)  $x\sqrt{3}$ .  $\sqrt{3}-100\sqrt{3}=x$ 

$$x\sqrt{3}$$
.  $\sqrt{3}-100\sqrt{3}=x$   
or  $4x=100\sqrt{3}$  or  $x=\frac{100\sqrt{3}}{4}=25\sqrt{3}$  ft.  
 $h=x\sqrt{2}=25\sqrt{3}x\sqrt{3}$   
 $-75$  ft.

#### EXERCISE 1

A vertical flagstaff stands on a horizontal plane. From a point distant 150 ft. from its foot, the angle of elevation of top is 30°; find the height of the flagstaff.

(H.S.B., Delhi)

- 2. A kite string is 150 yds. long and its angle af elevation is 60°. Find the height of the kite above the ground.
- 3. From the top of a tower 125 ft. a man observes the angle of depression of a tree to be 30°. Find the distance of the tree from the foot of the tower.

4. Find the altitude of the sun when the length of the

shadow of a pole 30 ft. high is 30 \square.

- 5. A chimney 20 ft high standing on the top of a building, subtends an angle whose tangent is at a distance of 70 ft. from the foot of the building. Find the height of the building. (H.S.E. Delhi 1953)
- 6.7 The upper part of a tree broken over by wind, makes an angle of 30° with the ground, and the distance from the root to the point where the top of the tree meets the ground is 30 ft.; what was the height of the tree. (D. Qualifying 1951)
- 7. A vertical post casts a shadow 20 ft, long when the altitude of the sun is 60. Find the length of the shadow when the altitude of the sun is 30°.
- S. The altitude of the top of a chimney is 30, approaching 200 ft. towards it, its magnitude becomes 45. Find the height of the chimney.

  (K.U. 1951)
- 9. A person standing on the bank of a river, observes that the angle subtended by a tree on the opposite bank is 60° when he retires 40 ft. from the bank he finds the angle to be 30°; find the height of the tree and the breadth of the river.

(P.U. 1942 S)

10. The angles of elevation of the top of a tower observed by two observers standing on a road, on the opposite sides of the tower are 30° and 60° respectively. If the observers and the tower are in the same plane and are 500 ft. apart, find the height of the tower.

(K. U. 1953)

- From the top of a tower 100 ft, high, the angles of depression of two objects due north of the tower are 30° and 45°. Find the distance between the objects.
- 12. From a lighthouse the angles of depression of two ships on opposite sides on the lighthouse are observed to be 30° and 45°. If the height of the lighthouse be 300 ft., find the distance between the ships if the line joining them passes the distance between the ships if the line joining them passes through the foot of the lighthouse.
- 13. From the top of a cliff, 300 ft. high the top and bottom of a tower are observed to be 30° and 60 respectively. Find the height of the tower.
- 14. The angles of elevation of two points A and B on a vertical tower are 60° and 30 respectively from a point C on the ground. If AB=100 ft. Find the height of A above the ground and the distance of the tower from C. (Q. Delhi 1949)
- 15. From the top of a tower 100 ft. high angle of elevation of a cloud is 30° and angle of depression of the image in lake is 60°. Find the height of the cloud.
- 16. If p is the length of the perpendicular from A to BC in a triangle ABC, prove that

$$p = \frac{a}{\text{Cot B} + \text{Cot C}}$$
 (P.U. 1941)

17. A verticle tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height h. At a point on the plane, the angle of elevation of the bottom of the flagstaff is  $\alpha$  and that of the top of the flagstaff is  $\beta$ . Prove that the height of

the tower is 
$$\frac{h \tan \alpha}{\tan \beta - \tan \alpha}$$
 " (P.U. 1949)

18. The angle of elevation of a tower from a point A due south of it is x and from a point B due east A is y. If AB=l, show that the height of the tower is given by  $h^2$   $(Cot^2y-Cot^2x)=l^2$  that the height of the tower is given by  $h^2$  (DII 1043)

19. The angular elevation of a tower from a certain point is  $\alpha$ ; at another point in the same horizontal plane and d feet nearer the tower, the elevation is  $90^{\circ}$  -  $\alpha$ , if h be the height of the tower above the horizontal plane, show that

 $h=\frac{1}{2} d \tan 2 \alpha \text{ feet.}$ 

20. AB is a tower standing on a horizontal plane, B being its foot. The elevations of A as observed from P due south and of Q due west of B are \theta and \theta respectively. It PQ is h feet, show that the height of the tower is

### h √Cot²0 -Cot²;

21. A lighthouse of height "a" feet is situated on the edge of a vertical cliff h feet high. From a boat the angle of elevation of the top of the lighthouse is  $\alpha$ . When the boat has been moved x feet directly towards the lighthouse, the angles of elevation of the foot and the top of the lighthouse are  $\alpha$  and 3 respectively. Prove that

 $a \tan \theta = h \tan \beta - \tan \alpha = x \tan^2 \alpha \qquad (K.U. 1962)$ 

### CHAPTER II

Relations between the Trigonometrical ratios of

angles differing by multiple of right angles.

2.1 In the present chapter we shall discuss relations between Trigonometrical ratios of angles differing by multiple of rt. angles. It is very essential for the student to know such relations, and he is advised to understand these as thoroughly as possible.

Functions of ( + #) 2.2



Fig. (iii)

Let the revolving line OP starting from its initial position OX trace out  $\angle \times OP = 0$ . Let the other revolviing line OQ (=OP) starting from OX revolve in the opposite direction through O such that  $\angle XOQ = -\theta$ .

[<×OQ is -ve because it has been traced in clock-wise direction.]

Draw PM \_ or OX and produce it to meet OQ in Q.

Now △s OMP, and OMQ are congruent ... (Why?)

$$QM = -MP 
 OP = OQ$$

...(... They have opposite signs)
...(Construction)

and OM=OM

Note:—(1) The angle (-0) being in the (iv) quadrant, only cosine is positive, while all other ratios are negative.

Note :- (2) How to draw the four figures.

For the sake of convenience, take  $\theta=30^{\circ}$  and then (adding  $90^{\circ}$  each time)  $120^{\circ}$ ,  $210^{\circ}$ , and  $300^{\circ}$ . This will give us the position of OP in all the four quadrants.

Again, take  $-\theta = -30^{\circ}$ ,  $-120^{\circ}$ ,  $-210^{\circ}$ , and  $-300^{\circ}$ , which will give us the position of OQ in all quadrants.

The student is advised to have ample practice in drawing all the four figures.

## 2.3. Functions of $(90^{\circ} - \theta)$



Fig. (ii)





Tig. (i)



Fig. (iii)

Let the revolving line OP starting from OX trace out

Let another revolving line OQ (=OP) start from OX trace out \( \( \times \times \) XOY=90°. Let it then revolve back through \( \theta \), so that an angle \( XOP=0.

Draw PM and QN perpendiculars upon XOX'.  $\angle XOQ = 90^{\circ} - \theta$ . why ?) Now As OMP and ONQ are congruent

.. OM=NQ and MP=ON

Now Sin  $(90^{\circ} - \theta) = \frac{NQ}{OQ} = \frac{OM}{OP}$ OM

$$Cos (90^{\circ} - \theta) = \frac{ON}{OQ} = \frac{MP}{OP} = Sin \theta$$

$$\tan (90^{\circ} - \theta) = \frac{NQ}{ON} = \frac{OM}{MP} = \cot \theta$$

$$\cot (90^{\circ} - \theta) = \frac{ON}{NQ} = \frac{MP}{OM} = \tan \theta$$

$$\sec (90^{\circ} - \theta) = \frac{OQ}{ON} = \frac{OP}{MP} = \csc \theta$$

$$\csc (90^{\circ} - \theta) = \frac{OQ}{NQ} = \frac{OP}{OM} = \sec \theta.$$

Note :- How to draw the figures ?

(i) To get the position of OP in all the four quadrants, take  $\theta=30^{\circ}$ ,  $120^{\circ}$ ,  $210^{\circ}$ ,  $300^{\circ}$ .

(ii) To get the position of OQ in all the four quadrants, take 90°-θ=60°, -30°, -120° and -210°.

### 2.4 Functions of $(90^{\circ} + \theta)$







Let the revolving line start from its initial position OX, trace out  $\angle XOP = \theta$ .

Let another revolving line OQ (=OP) starting from OX trace out  $\angle XOY = 90^{\circ}$ , and then revolve further through  $\theta$ , so that ∠XOQ=90°+θ. Draw PM and QN 1s upon XOX'

.....(Why?) Now △ OMP and ONQ are congruent

.. OM=NQ and -PM=ON (.....: PM and ON are opposite in sign

Now Sin 
$$(90^{\circ}+\theta) = \frac{NQ}{OQ} = \frac{OM}{OP} = Cos \#$$

$$Cos (90^{\circ}+\theta) = \frac{ON}{OQ} = \frac{PM}{OP} = -Sin \#$$

$$tan (90^{\circ}+\theta) = \frac{NQ}{ON} = -\frac{OM}{PM} = -Cot \#$$

$$Cot (90^{\circ}+\theta) = \frac{ON}{NQ} = -\frac{PM}{OM} = -tan \#$$

$$Sec (90^{\circ}+\theta) = \frac{OQ}{ON} = -\frac{OP}{PM} = -Cosec \#$$

$$Cosec (90^{\circ}+\theta) = \frac{OQ}{NQ} = \frac{OP}{OM} = Sec \#$$

Note :-- How to draw the figures ?

- (i) To get the position of OP, take \$\theta = 30 , 120°, 210° and 300°.
- (ii) To get the position of OQ, take  $90^{\circ} + \theta = 120^{\circ}$ ,  $210^{\circ}$ . 300°, 390°.

Important Rule :- How to remember the results of articles 2.3 and 2.4.

The functions of 90° -0, 90° +0 are changed into their Co-functions i.e., Sin into Cos, Cos into Sin, tan into Cot, Cot into tan, and so on. However, the function of 90° - & being in the first quadrant, all ratios are positive, whereas 90°+0 being in the second quadrant, all ratios are negative except Sin and cosec.

The student is advised to understand this important rule thoroughly.

### 2.5 Functions of $(180^{\circ} - \theta)$



Let the revolving line OP starting from OX trace out  $\angle XOP = \theta$ . Let another revolving line OQ (=OP) starting from OX trace out  $\angle XOX' = 180^{\circ}$ , and let then revolve it back through  $\theta$ , so that  $\angle XOQ = 180^{\circ} - \theta$ .

Draw PM and QN perpendiculars upon XOX'. As OMP and ONQ are cangruent ... (Why?)

 $\therefore$  ON=-OM QN=MP

... [ equal but opposite in sign]

Now Sin 
$$(180^{\circ} - \theta) = \frac{NQ}{OQ} = + \frac{PM}{OP} = + \sin \theta$$

Cos  $(180^{\circ} - \theta) = \frac{ON}{OQ} = -\frac{OM}{OP} = -\cos \theta$ 
 $\tan (180^{\circ} - \theta) = \frac{NQ}{ON} = -\frac{MP}{OM} = -\tan \theta$ 

Cot  $(180^{\circ} - \theta) = \frac{ON}{NQ} = \frac{OM}{OP} = -\cot \theta$ 

Sec  $(180^{\circ} - \theta) = \frac{OQ}{ON} = \frac{OP}{OM} = -\cot \theta$ 

Cosec  $(180^{\circ} - \theta) = \frac{OQ}{ON} = \frac{OP}{OM} = -\cot \theta$ 

Cosec  $(180^{\circ} - \theta) = \frac{OQ}{NQ} = \frac{OP}{MP} = -\cot \theta$ 
 $\frac{OQ}{OM} = \frac{OP}{MP} = -\cot \theta$ 
 $\frac{OQ}{OM} = \frac{OP}{MP} = -\cot \theta$ 
 $\frac{OQ}{OM} = \frac{OP}{MP} = -\cot \theta$ 

### 2.6 Functions of $(180^{\circ} + \theta)$



Fig. (iv)

Fig. (iii)

Let the revolving line OP starting from OX trace out  $\angle XOP = \theta$ . Let another revolving line OQ (=OP) starting from OX trace out  $\angle XO X' = 180^{\circ}$ . Let it then revolve further through  $\theta$ , so that  $\angle XOQ = 180^{\circ} + \theta$ .

Draw PM and QN Ls on XOX'

△s OPM and OQN are congruent

...(why?)

$$\therefore ON = -OM$$
$$NQ = -PM$$

Now Sin 
$$(180^{\circ} + \theta) = \frac{NQ}{OQ} = -\frac{PM}{OP} = -\text{Sin } \theta$$

Cos  $(180^{\circ} + \theta) = \frac{ON}{OQ} = -\frac{OM}{OP} = -\text{Cos } \theta$ 

tan  $(180^{\circ} + \theta) = \frac{NQ}{ON} = \frac{-PM}{-OM} = \frac{PM}{OM} = \tan \theta$ 

Cot  $(180^{\circ} + \theta) = \frac{ON}{NQ} = \frac{-OM}{-PM} = \frac{OM}{PM} = \text{Cot } \theta$ 

Sec  $(180^{\circ} + \theta) = \frac{OQ}{ON} = -\frac{OP}{OM} = -\text{Sec } \theta$ 

Cosec  $(180^{\circ} + \theta) = \frac{OQ}{NQ} = -\frac{OP}{PM} = -\text{Cosec } \theta$ 

Note :- How to remember the results of articles 2.5 and 2.6.

The functions of  $180^{\circ}-\theta$  and  $180^{\circ}+\theta$  remain the same, but  $180^{\circ}-\theta$  lying in the second quadrant. only Sin and Cosec are positive, whereas  $180^{\circ}+\theta$  lying in the 3rd quadrant, only an and Cot are positive.

#### 2.7 A VERY IMPORTANT RULE

The student is required to understand the following rule thoroughly. This will enable him to remember the results obtained in articles 2.2-2.6.

1. (a) When an angle is an odd multiple of  $90^{\circ}$ , i.e.,  $90^{\circ}$ ,  $270^{\circ}$ , etc., the functions change into their co-functions, and the sign is determined with the help of the quadrant in which the angle lies, for instance,  $\cos(270^{\circ}-\theta)=-\sin\theta$  (i)

tan 
$$(270^{\circ}-\theta) = +\text{Cot }\theta$$
 (ii)  
Cos  $(90^{\circ}+\theta) = -\text{Sin }\theta$  (iii)  
and so on.

- (i) Here the angle lies in 3rd quadrant.
- (ii) Here the angle lies in 3rd quadrant.
- (iii) Here the angle lies in the 2nd quadrant.
- (b) When the angle is an even multiple of 90°, i.e., 180°, 360°, etc., the functions remain the same, and their signs are determined by the quadrants in which these angles lic.

For example, 
$$\tan (180^{\circ} + \theta) = \tan \theta$$
 ...(i)  

$$\cot (360^{\circ} - \theta) = -\cot \theta$$
 ...(ii)  

$$\sin (360^{\circ} + \theta) = \sin \theta$$
 ...(iii)  
and so on.

- (i) Here the angle lies in the 3rd quadrant
- (ii) Here the angle lies in the 4th quadrant
- (iii) Here the angle lies in the Ist quadrant.
- II. When  $\theta$ , is changed into  $-\theta$  the functions remain the same, but are all negative except Cos and Sec, as the sign is determined by the quadrant in which the angle lies.

For example, 
$$Sin (-\theta) = -Sin \theta$$
  
 $Cos (-\theta) = Cos \theta$  etc.  $\begin{cases} \therefore (-\theta) \text{ lies in } \\ \text{the 4th quadrant} \end{cases}$ 

#### Periodic Functions 2.8

**Def**. A function f(x) is said to be periodic if its value remains unaltered when x is changed into x+a, i.e., f(x) =f(x+a) for all values of x, a is said to be the period of the function.

### 2.8.1 Periods of Sin θ, Cos θ, and tun θ

We know that 
$$Sin (\theta + 2\pi) = Sin \theta$$
   
 $Cos (\theta + 2\pi) = Cos \theta$    
 $Sin (\theta$ 

Thus we see that the values  $\sin \theta$ ,  $\cos \theta$  remain unchanged when  $2\pi$  is added to  $2\theta$ . Hence  $\sin \theta$  and  $\cos \theta$  are periodic functions and their period is  $2\pi$  in each case.

Again 
$$\tan (\theta + \pi) = \tan \theta$$

[Rule I (b) under ]

Which shows that  $\tan \theta$  is also periodic with  $\pi$  as its period.

### Solved Examples

Ex. 1. Find the values of :-

**Sol.** (i) Cot 570°=Cot 
$$(6 < 90^{\circ} : 30^{\circ}) = +\text{Cot } 30^{\circ}) = \sqrt{3}$$

(Here the angle 30° is an even multiple of 90° and lies in the 3rd quadrant)

(ii) 
$$\cos 720^{\circ} = \cos (8 \cdot 90^{\circ} + 0^{\circ}) = 4 \cos 0^{\circ} = 1$$

(Here the angle 0° is an even multiple of 90°, and lies in the 1st quadrant)

(iii) 
$$\tan (-1215^{\circ}) = -\tan 1215^{\circ} = -\tan (13..90^{\circ} + 45^{\circ})$$
  
-\( -\Cot 45^{\circ}) = \Cot 45 = 1

Here the angle 45° is an odd multiple of 90°

 $\therefore$  tan  $(13 \times 90^{\circ} + 45^{\circ})$  will change into its Co = function i.e., Cot  $45^{\circ}$  with ve sign because the angle  $13 \cdot 90^{\circ} - 45^{\circ}$  lies in the 2nd quadrant. Also tan  $(-\theta) = -\tan \theta$ 

Ex. 2. Show that.

Sol. L.H.S. 
$$=$$
Sin  $(4 \times 90^{\circ} + 60^{\circ})$  Cos  $(4 \times 90^{\circ} + 30^{\circ})$   
Cos  $(7 \times 90^{\circ} + 30^{\circ})$  Sin  $(4 \times 90^{\circ} - 30^{\circ})$ 

[: Sin 
$$(-\theta) = -\sin \theta$$
 and Cos  $\theta$ ) = Cos  $\theta$ ]

- Sin 60° Cos 30° + Sin 30° Sin 30

$$-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} - \frac{1}{4} = 1 - R. \text{ H.S.}$$

Ex. 3. If A, B, C are the angles of a triangle prove that :-

(i) 
$$\operatorname{Sin} (A+B) = \operatorname{Sin} C$$
 (ii)  $\operatorname{Cos} \frac{A+B}{2} = \operatorname{Sin} \frac{C}{2}$ 

Sol. (i) 
$$A+B+C=180^{\circ}$$
  
 $A+B=180^{\circ}-C$   
 $\therefore Sin (A+B)=Sin (180^{\circ}-C)=Sin C$ 

(ii) 
$$\frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^{\circ}$$
  
 $\frac{A+B}{2} = 90^{\circ} - \frac{C}{2}$   
 $\therefore \cos \frac{A+B}{2} = \cos(90^{\circ} - \frac{C}{2}) = \sin \frac{C}{2}$ 

Ex. 4. Prove that :-

$$\frac{\cos \theta}{\sin (90^{\circ} + \theta)} + \frac{\sin (-\theta)}{\sin (180^{\circ} + \theta)} - \frac{\tan (90^{\circ} + \theta)}{\cot \theta} = 3$$

$$\mathbf{Sol. L.H.S.} = \frac{\cos \theta}{\sin (90^{\circ} + \theta)} + \frac{\sin (-\theta)}{\sin (180 + \theta)} - \frac{\tan (90^{\circ} + \theta)}{\cot \theta}$$

$$= \frac{\cos \theta}{\cos \theta} + \frac{(-\sin \theta)}{(-\sin \theta)} - \frac{(-\cot \theta)}{\cot \theta}$$

$$= \frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\sin \theta} + \frac{\cot \theta}{\cot \theta} = 1 + 1 + 1$$

$$= 3 = \text{R.H.S.}$$

Ex. 5. Show that  $\sin (n\pi + \theta) = \sin \theta$  or  $-\sin \theta$ , according as n is even or odd.

Sol. Case (i) When n is even.

Let n=2 m (say)

 $\therefore \sin (n\pi + \theta) = \sin (2m\pi + \theta) = \sin \theta$ 

(: this angle lies in the first quadrant for all m)

Case (ii) When n is odd.

Let 
$$n=2 m+1$$
 (Say)

$$\therefore \sin (n\pi + \theta) = \sin \left[ (2 m + 1)\pi + \theta \right] 
= \sin (2m\pi + \pi + \theta) 
= \sin (\pi + \theta) \qquad \dots \text{by case (i)} 
= -\sin \theta$$

#### EXERCISE II

(i) 
$$\cos 1385^{\circ} = \sin 35^{\circ}$$

(ii) 
$$\tan (-965^{\circ}) = -\cot 25^{\circ}$$

(iii) 
$$\sec (990^{\circ} - \theta) = -\csc \theta$$

### 2. Evaluate :-

(i) 
$$\cos \theta + \cos \left(\frac{\pi}{2} + \theta\right) + \cos (\pi + \theta) + \cos \left(\frac{3\pi}{2} + \theta\right)$$

(ii) 
$$\sin^2\left(\frac{3\pi}{2}+\theta\right)+\cos^2\left(\frac{3\pi}{2}-\theta\right)$$

(iii) 
$$\sec^2\left(\frac{7\pi}{2}-\theta\right)-\tan^2\left(\theta-\frac{9\pi}{2}\right)$$

### 3. Prove that :-

(i) 
$$\sin 420^{\circ} \cos 390^{\circ} + \cos (-660^{\circ}) \sin (-330^{\circ})$$

(ii) 
$$\sin 600^{\circ} \cos 330^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$$

### 4. Prove geometrically that :-

(i) 
$$\cos 150^{\circ} = -\cos 30^{\circ}$$

### 5. Show that :-

(i) 
$$\sin (180^{\circ} + A) = -\sin A$$

$$(iv) \cot (270^{\circ} + A) = -\tan A$$

Simplify:—

(i) sin (180°+A) cosec (90°-A)

(ii) tan (180°-A) cosec (180°+A) sin (90°+A)

 $\cos (90^{\circ} + \theta) \sec (-\theta) \tan (180^{\circ} - \theta)$  $\sec (360^{\circ} - \theta) \sin (180^{\circ} + \theta) \cot (90^{\circ} - \theta)$ (iti)

 $\sin (180^\circ + \theta) \cos (270^\circ - \theta)$  $\sin (180^{\circ} - \theta) \cos (270^{\circ} + \theta)$ 

tan (90°-θ)  $\sin (-\theta)$  $\sin (90^{\circ} - \theta)^{+} \sin (180^{\circ} + \theta)^{+} \cot \theta$  $\cos \theta$ 

7. A, B, C, D are the angles of a quadrilateral, prove that (i)  $\sin (A+B)+\sin (C+D)=0$ 

(ii)  $\cos (A+B) = \cos (C+D)$ 

8. A quadrilateral ABCD is inscribed in a circle. Show that.

(ii)  $\cos B + \cos D = 0$ (i) sin A=sin C

and (iii) cos A+cos B+cos C+cos D=0

Find x from the equation

cosec  $(90^{\circ}+A)+x \cos A \cot (90^{\circ}+A)=\sin (90^{\circ}+A)$ 

10. Show that in general,  $\cos (m\pi + \theta) = (-1)^m \cos \theta$ .

### CHAPTER III

### Addition And Subtraction Formulae

- 3.1. To prove geometrically that :-
  - (i)  $\sin (A+B) = \sin A \cos B + \cos A \sin B$
  - (ii) cos (A+B) = cos A cos B-sin A sin B
- and (iii)  $\tan (A+B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$



Let the revolving line starting from its initial position OX, trace out an angle XOY=A. Let it further trace out an angle YOZ=B, so that the angle XOZ=A+B.

Take any point P on OZ and draw PM and PN perpendiculars on OX and OY respectively; from N draw NQ and NR perpendiculars on OX and PM respectively.

Now 
$$\angle RPN = 90^{\circ} - \angle RNP = \angle RNO = \angle NOQ = A$$
  
(i)  $\sin (A + B) = \sin XOZ = \frac{MP}{OP} = \frac{MR + RP}{OP} = \frac{QN + RP}{OP}$   

$$= \frac{QN}{OP} + \frac{RP}{OP}$$

$$\begin{array}{c|cccc}
QN & ON & RP & NP \\
ON & \overline{OP} & \overline{NP} & \overline{OP}
\end{array}$$

[Under QN write the hypotenuse of the it.  $\angle d \triangle$  of which QN is a side. Similarly, under RP write the hypotenuse of the it.  $\angle d \triangle$  of which RN is a side.]

$$= \sin A \cos B + \cos A \sin B$$
 (:  $\angle RPN = A$ )

(ii) 
$$\cos (A+B) = \cos XOZ = \frac{OM}{OP} = \frac{OQ - MQ}{OP} = \frac{OQ - RN}{OP}$$
  

$$= \frac{OQ}{OP} - \frac{RN}{OP} = \frac{OQ}{ON} \cdot \frac{ON}{OP} = \frac{RN}{NP} \cdot \frac{NP}{OP}$$

[Under OQ write the hypotenuse of the rt. d of which OQ is a side. Under RN write the hypotenuse of the rt.  $\angle d\triangle$  of which RN is a side.]

=cos A. cos B - sin A. sin B

$$=\cos A. \cos B-\sin A. \sin B$$
(iii) 
$$\tan (A+B) = \tan XOZ = \frac{MP}{OM} = \frac{MR-RP}{OQ-MQ} = \frac{QN-RP}{OQ-RN}$$

$$= \frac{\overline{QN} + \overline{RP}}{\overline{OQ} + \overline{OQ}}$$

$$= \frac{\overline{OQ} + \overline{OQ}}{1 - \overline{RN}}$$
Denom. by  $\overline{OQ}$ 

$$= \frac{\tan A + \frac{RP}{OQ}}{1 - RP \cdot QQ}$$

$$= \frac{RN \cdot RP}{RP \cdot QQ}$$

But  $\frac{RP}{OQ}$  = tan A, and from two similar  $\triangle$ s RPN and

QON, 
$$\frac{RP}{OQ} = \frac{NP}{ON} = \tan B$$

Hence tan 
$$(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Or, we have :-

tan (A=B) = 
$$\frac{\sin (A+B)}{\cos (A+B)}$$
 =  $\frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$   
=  $\frac{\sin A \cos B}{\cos A \cos B}$  +  $\frac{\cos A \sin B}{\cos A \cos B}$   
=  $\frac{\cos A \cos B}{\cos A \cos B}$  +  $\frac{\sin A \sin B}{\cos A \cos B}$   
=  $\frac{\tan A + \tan B}{1 - \tan A \tan B}$ 

Caution:

[Sin (A+B) is never equal to sin  $A+\sin B$ . Similarly,  $\cos (A+B) \neq \cos A+\cos B$  and  $\tan (A+B) \neq \tan A+\tan B$ ]

Cor. Prove that cot  $(A+B) = \frac{\cot A \cot B - 1}{\cot A + \cot B}$ 

First method: Cot  $(A+B) = \frac{\cos (A+B)}{\sin (A+B)}$ 

 $= \frac{\cos A \cos B - \sin A \sin B}{\sin A \cos B + \cos A \sin B}$ 

 $\frac{\cos A \cos B}{\sin A \sin B} = \frac{\sin A \sin B}{\sin A \cos B} + \frac{\cos A \sin B}{\sin A \sin B}$ 

 $= \frac{\cot A \cot B - 1}{\cot B + \cot A}$   $= \frac{\cot A \cot B - 1}{\cot A + \cot B}$ 

Second Method: We know tan  $(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ 

 $\therefore \cot (A+B) = \frac{1}{\tan (A+B)} = \frac{1-\tan A \tan B}{\tan A + \tan B}$ 

 $= \frac{1 - \cot A}{\cot A} \cdot \frac{1}{\cot B}$ 

 $= \frac{\frac{\text{Cot A. Cot B} - 1}{\text{Cot B} + \text{Cot A}}}{\frac{\text{Cot B} + \text{Cot A}}{\text{Cot A. Cot B}}} = \frac{\frac{\text{Cot A Cot B} - 1}{\text{Cot A} + \text{Cot B}}}{\frac{\text{Cot A} + \text{Cot B}}{\text{Cot A}}}$ 

Note: The student is advised to commit this formula to memory, as he has to make frequent use of it in the forthcoming chapters.

# Addition formula for more than two angles.

To prove that :-

(i) Sin(A+B+C)=Sin A Cos B Cos C+Sin B Cos CCos A+Sin C Cos A Cos B-Sin A Sin B Sin C

Here we have Sin (A+B+C)=Sin [(A+B)+C]

=Sin (A+B) Cos C+Cos (A+B) Sin C

=(Sin A Cos B - Cos A Sin B) Cos C - Cos A Cos B - Sin A Sin B Sin C

=Sin A Cos B Cos C -Sin B Cos A Cos C Sin C Cos A Cos B-Sin A Sin B Sin C

(ii) Cos (A+B+C) = Cos A Cos B Cos C - Cos A Sin B Sin C-Cos B Sin C Sin A -Cos C Sin A Sin B.

Here Cos (A+B+C)=Cos [(A+B)+C]=Cos A-B Cos C

=(Cos A Cos B-Sin A Sin B) Cos C-

(Sin A Cos B+Cos A Sin B) Sin C

=Cos A Cos B Cos C-Cos A Sin B Sin C

-Cos B Sin C Sin A-Cos C Sin A Sin B

(iii) tan (A+B+C)

 $= \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A}$ 

Here we have tan(A+B+C)=tan[(A+B)-C]

tan (A+B)+tan C =  $1 - \tan (A - B) \tan C$ 

1 -tan A tan B +tan C tan A+tan B tan A + tan B tan C 1-tan A tan B

tan A+tan B+tan C- tan A tan B tan C 1-tan A tan B- tan C tan A-tan B tan C

Note: The student is advised to memorize the last for mula.

3.3 To prove geometrically that :-

(i) 
$$Sin (A-B) = Sin A Cos B - Cos A Sin B$$
.

(ii) 
$$Cos (A-B)=Cos A Cos B+Sin A Sin B$$

and (iii) 
$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$



Let the revolving line, starting from its initial position OX, trace out an angle XOY=A. Let it then revolve back so as to trace an angle YOZ=B, so that the angle XOZ=A-B.

O Q M From any point P in OZ, draw PM and PN perpendiculars on OX and OY respectively. From N draw NQ and NR perpendiculars on OX and MP produced.

Then 
$$\angle XOY = RNY = 90^{\circ} - \angle RNP = RPN - A$$
  
Now i) Sin  $(A-B) = Sin \angle XOZ = \frac{MP}{OP} = \frac{MR - PR}{OP}$ 

$$= \frac{QN}{OP} = \frac{QN}{OP} - \frac{PR}{OP}$$

$$= \frac{QN}{ON} \cdot \frac{ON}{OP} = \frac{PR}{NP} \cdot \frac{NP}{OP}$$

[Under QN write the hypotenuse of the rt.  $\angle d \triangle$  of which QN is a side, and under PR write the hypotenuse of the rt.  $\angle d \triangle$  of which PR is a side.

[Under OQ write the hypotenuse of the rt. \( \angle d \triangle \text{ of which} \) OQ is a side, and under NR write the hypotenuse of the rt.  $\angle d\triangle$  of which NR is a side].

=Cos A Cos B+Sin A . Sin B

$$= \text{Cos A Cos B} + \text{Sin A . Sin B}$$

$$(iii) \tan (A - B) = \tan < \text{XOZ} = \frac{MP}{OM} = \frac{MR - PR}{OQ + QM}$$

$$= \frac{QN - PR}{OQ + NR} = \frac{\frac{QN}{OQ} - \frac{PR}{NR}}{1 + \frac{NR}{OQ}}$$

$$= \frac{\tan A - \frac{PR}{OQ}}{1 + \frac{NR}{PR} \cdot \frac{PR}{OQ}}$$

$$= \frac{\tan A - \frac{PR}{OQ}}{1 + \tan A \cdot \frac{PR}{OQ}}$$

But from the similar triangles QON and RPN, we have PR  $\overline{OQ} = \frac{1}{ON} = \tan B$ 

Hence 
$$\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

1

Or, we have :-
$$\tan (A-B) = \frac{\sin (A-B)}{\cos (A-B)} = \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}$$

$$= \frac{\sin A \cos B}{\cos A \cos B} - \frac{\cos A \sin B}{\cos A \cos B} = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

$$= \frac{\cos A \cos B}{\cos A \cos B} + \frac{\sin A \sin B}{\cos A \cos B}$$

$$= \frac{\cos A \cos B}{\cos A \cos B} + \frac{\cos A \cos B}{\cos A \cos B}$$

$$= \frac{\cot A \cot B + 1}{\cot A \cot B + 1}$$

Cor. To prove that Cot (A-B) = Cot A-Cot B

(The proof of this cor is left to the student as an exercise)

Note:—While proving the addition and subtraction formulae, we have drawn figures for the cases where A, B, A+B and A-B are all acute angles. But the same method can be extended to cases where there are obtuse angles as well.

- 3.3.1 The three results obtained in article 3.3 can also be obtained by the method given below, but this will not be the geometrical method.
- (i) To prove that Sin (A-B)=Sin A Cos B-Cos A Sin B. We have Sin (A+B)=Sin A Cos B+Cos A Sin B Put B=-B.

$$\therefore Sin (A-B) = Sin A Cos (-B) + Cos A Sin (-B)$$

$$= Sin A Cos B-Cos A Sin B$$

[::Cos (-B)=Cos B and Sin (-B)=-Sin B.] Similarly, we can prove the other two theorems also.

#### 3.4 A Standard Result

To prove that 
$$\tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan \theta}{1 - \tan \theta}$$

L. H. S. = 
$$\tan \left(\frac{\pi}{4} + \theta\right) = \frac{\tan \frac{\pi}{4} + \tan \theta}{1 - \tan \frac{\pi}{4} \tan \theta}$$

$$= \frac{1 + \tan \theta}{1 - \tan \theta} \left[\because \tan \frac{\pi}{4} = 1\right]$$

Similarly, we can prove that

$$\tan \left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan \theta}{1 - \tan \theta}$$

The student is advised to commit both these results to memory.

#### Solved Examples

Ex. 1 Find the values of Sin 75°, Cos 15°, tan 75°

Sol. (i) 
$$\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ})$$
  
 $= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$   
 $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ 

(ii) 
$$\cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin (45^{\circ} \sin 30)$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}$$

$$= \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

(iii) 
$$\tan 75^\circ = \tan (45^\circ + 30^\circ) = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ}$$

$$=\frac{1+\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$$

Ex. 2 Show that 
$$\frac{\sqrt{3} \cos 23^{\circ} - \sin 23^{\circ}}{2}$$
 Cos 53

**Sol. L. H. S.** = 
$$\frac{\sqrt{3} \cos 23^{\circ} - \sin 23}{2}$$

$$=\frac{\sqrt{3}}{2}$$
 Cos 23°  $-\frac{1}{2}$  Sin 23°

But 
$$\frac{\sqrt{3}}{2}$$
 = Cos 30° and  $\frac{1}{2}$  = Sin 30°

2 .:. L. H. S. = 
$$\cos 30^{\circ} \cos 23^{\circ} - \sin 30^{\circ} \sin 23^{\circ}$$
  
=  $\cos (30^{\circ} + 23^{\circ}) = \cos 53^{\circ} = R$ . H. S. =  $\cos (30^{\circ} + 23^{\circ}) = \cos 53^{\circ} = R$ .

Ex. 3. Show that 
$$\frac{\cos 9^{\circ} - \sin 9^{\circ}}{\cos 9^{\circ} + \sin 9^{\circ}} = \cot 54^{\circ}$$

Sol. 
$$\frac{\cos 9^{\circ} - \sin 9^{\circ}}{\cos 9^{\circ} + \sin 9^{\circ}} = \frac{1 - \frac{\sin 9^{\circ}}{\cos 9^{\circ}}}{1 + \frac{\sin 9^{\circ}}{\cos 9^{\circ}}}$$

[Divide num. and den. by Cos 9°]

$$= \frac{1 - \tan 9^{\circ}}{1 + \tan 9^{\circ}} = \frac{\tan 45^{\circ} - \tan 9^{\circ}}{1 + \tan 45^{\circ} \tan 9^{\circ}}$$

$$(\because \tan 45^{\circ} = 1)$$

$$= \tan (45^{\circ} - 9^{\circ}) = \tan 36^{\circ}$$

$$= \tan (90^{\circ} - 54^{\circ}) = \cot 54^{\circ}$$

Ex. 4. Prove that:-

$$\frac{\operatorname{Sin} (A-B)}{\operatorname{Sin} A \operatorname{Sin} B} + \frac{\operatorname{Sin} (B-C)}{\operatorname{Sin} B \operatorname{Sin} C} + \frac{\operatorname{Sin} (C-A)}{\operatorname{Sin} C \operatorname{Sin} A} = O$$

Sol. L. H. S. 
$$= \frac{\sin A \cos B - \cos A \sin B}{\sin A \sin B}$$

=Cot B-Cot A+Cot C-Cot B+Cot A-Cot C=0=R, H. S.

Ex. 5. Show that :-

(i) 
$$a \cos \theta + b \sin \theta = \sqrt{a^2 + b^2} \cos (\theta - \phi)$$
 where  $\sin \phi = \frac{b}{a}$ 

(ii) 
$$\tan \alpha + \cot 2\alpha = \operatorname{Cose}_{\alpha} 2\alpha$$

Sol. (i) 
$$a \cos \theta + b \sin \theta$$
  
Put  $a = r \cos \varphi$ .....(i) and  $b = r \sin \varphi$ .....(ii)  
Squaring and adding (i) and (ii) we get,  
 $a^2 + b^2 = r^2(\cos^2\varphi \times \sin^2\varphi) \therefore r = \sqrt{a^2 + b^2}$ .  
Also divide (ii) by (i), then we get
$$\tan \varphi = \frac{b}{a}$$

$$\therefore a \cos \theta + b \sin \theta = r [\cos \varphi \cos \theta + \sin \varphi \sin \theta]$$

$$= r \cos (\theta - \varphi)$$

$$= \sqrt{a^2 + b^2} \cos (\theta - \varphi)$$
where  $\tan \varphi = \frac{b}{a}$ 
(ii)  $\tan \alpha + \cot 2\alpha = \frac{\sin \alpha}{\cos \alpha} + \frac{\cos 2\alpha}{\sin 2\alpha}$ 

$$= \frac{\sin 2\alpha \sin \alpha + \cos 2\alpha \cos \alpha}{\sin 2\alpha \cos \alpha}$$

$$= \frac{\cos 2\alpha \cos \alpha + \sin 2\alpha \sin \alpha}{\sin 2\alpha \cos \alpha}$$

(ii) 
$$\tan \alpha + \cot 2\alpha = \frac{\sin \alpha}{\cos \alpha} + \frac{\cos 2\alpha}{\sin 2\alpha}$$

$$= \frac{\sin 2\alpha \sin \alpha + \cos 2\alpha \cos \alpha}{\sin 2\alpha \cos \alpha}$$

$$= \frac{\cos 2\alpha \cos \alpha + \sin 2\alpha \sin \alpha}{\sin 2\alpha \cos \alpha}$$

$$= \frac{\cos (2\alpha - \alpha)}{\sin 2\alpha \cos \alpha} = \frac{\cos \alpha}{\sin 2\alpha \cos \alpha}$$

$$= \frac{\cos (2\alpha - \alpha)}{\sin 2\alpha \cos \alpha} = \frac{\cos \alpha}{\sin 2\alpha \cos \alpha}$$

$$= \frac{1}{\sin 2\alpha} = \csc 2\alpha$$

Sin 
$$2\alpha$$
  
(iii) L.H.S.= $(1+\tan A) [1+\tan (45^{\circ}-A)]$   
 $(::A+B=45^{\circ})$   
 $=(1+\tan A) [1+\frac{\tan 45^{\circ}-\tan A}{1+\tan 45^{\circ}\tan A}]$   
 $=(1+\tan A) [1+\frac{1-\tan A}{1+\tan A}]$ 

(:: tan 45°=1)

=
$$(1+\tan A) \left[ \frac{1+\tan A+1-\tan A}{1+\tan A} \right]$$
  
= $(1+\tan A) \frac{2}{(1+\tan A)} = 2=R.H.S.$ 

Ex. 6. If  $\tan B = \frac{n \operatorname{Sin} A \operatorname{Cos} A}{1-n \operatorname{Sin}^2 A}$ prove that  $\tan (A-B) = (1-n) \tan A$ 

Sol. We have  $\tan B = \frac{n \sin A \cos A}{1 - n \sin^2 A}$ 

$$= \frac{\frac{\sin A \cos A}{\cos^2 A}}{\frac{1}{\cos^2 A} - n \frac{\sin^2 A}{\cos^2 A}}$$

[Divide num. and denom. by Cos2 A]

$$= \frac{n \tan A}{\operatorname{Sec}^2 A - n \tan^2 A} = \frac{n \tan A}{1 + (1 - n) \tan^2 A} \dots (i)$$
[:: 1+tan<sup>2</sup> A=Sec<sup>2</sup> A]

Now L.H.S. =  $\tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ 

$$= \frac{\tan A - \frac{n \tan A}{1 + (1-n) \tan^2 A}}{1 + \tan A \cdot \frac{n \tan A}{1 + (1-n) \tan^2 A}}$$

[Using the result No: (i) for tan B]

$$= \frac{\tan A + (1-n) \tan^3 A - n \tan A}{1 + (1-n) \tan^2 A + n \tan^2 A}$$

$$= \frac{\tan A \left[1 + (1-n) \tan^2 A - n\right]}{1 + \tan^2 A}$$

$$= \frac{\tan A \left(1 + \tan^2 A\right) \left(1 - n\right)}{1 + \tan^2 A}$$

$$= (1-n) \tan A = R.H.S.$$

Ex. 7. Prove that :

(i) 
$$\tan 75^{\circ} - \tan 30^{\circ} - \tan 30^{\circ} \tan 75^{\circ} = 1$$
  
(P. U. 1951)

Sol. (i) We have 
$$45^{\circ} = 75^{\circ} - 30^{\circ}$$
  
 $\therefore$  tan  $45^{\circ} = \tan (75^{\circ} - 30^{\circ})$   
or  $1 = \frac{\tan 75^{\circ} - \tan 30^{\circ}}{1 + \tan 75^{\circ} \tan 30^{\circ}}$   
(::  $\tan 45^{\circ} = 1$ )

or 
$$1+\tan 75^{\circ} \tan 30^{\circ} = \tan 75^{\circ} - \tan 30^{\circ}$$
  
 $\tan 75^{\circ} - \tan 30^{\circ} - \tan 75^{\circ} \tan 30^{\circ} = 1$ .

:. 
$$\tan 75^{\circ} - \tan 30^{\circ} - \tan 75^{\circ} \tan 30^{\circ} = 1$$
.

(ii) 
$$7A = 4A + 3A$$
  
 $\therefore \tan 7A = \tan (4A + 3A) = \frac{\tan 4A + \tan 3 A}{1 - \tan 4A} \cdot \tan 3A$ 

which gives tan 7A-tan 4A-tan 3A=tan 3A. tan 4A. tan 7A.

Ex. 8 If 
$$\sin A = \frac{1}{\sqrt{10}}$$
 and 
$$\sin B = \frac{1}{\sqrt{5}}$$

Prove that A+B=45° when A and B are in the first quadrant.

**Sol.** Sin 
$$A = \frac{1}{\sqrt{10}}$$

$$\therefore \quad \mathbf{Cos} \ \mathbf{A} = \quad \frac{3}{\sqrt{10}}$$





Again, Sin B = 
$$\frac{1}{\sqrt{5}}$$

$$\therefore \quad \text{Cos B} = \frac{2}{\sqrt{5}}$$

If 
$$A + B = 45^{\circ}$$
, then Sin  $(A+B) = \frac{1}{\sqrt{2}}$ 

Now Sin (A+B) = Sin A Cos B + Cos A Sin B

$$= \frac{1}{\sqrt{10}} \cdot \frac{2}{\sqrt{5}} + \frac{3}{\sqrt{10}} \cdot \frac{1}{\sqrt{5}}$$
$$= \frac{2+3}{\sqrt{50}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}}$$

which is true.

Hence A - B=45°

#### EXERCISE III

1. Prove that (i Cos A+45°)=Sin (45°-A)

$$ii = \tan\left(-\frac{\pi}{4} + \theta\right) = \frac{1 + \tan \theta}{1 - \tan \theta}$$

$$(iii)$$
  $\sin (30 - A) = \frac{1}{2} \cos A$   $\frac{\sqrt{3}}{2} \sin A$ 

#### 2. Show that :-

(i) 
$$\frac{\cos (\alpha + \beta)}{\cos \alpha \cos \beta} = 1 - \tan \alpha \tan \beta$$

(ii) 
$$\frac{\sin (\alpha - \beta)}{\sin \alpha \sin \beta}$$
 Cot  $\beta$  Cot  $\alpha$ 

$$\frac{\sin (A - B)}{\sin (A - B)} = \frac{\tan A + \tan B}{\tan A - \tan B}$$

- 3. If Sin  $A = \frac{3}{5}$  and Sin  $B = \frac{4}{5}$ , find Cos (A B) and Sin (A B), A and B being acute.
  - 4. Prove that  $\tan \alpha \tan \beta = \frac{\sec \alpha \sec \beta}{\csc (\alpha \beta)}$
- 5. The cosines of two angles of a triangle are and 15 respectively. Find the cosine of the third angle.
- 6. The sines of two angles are  $\frac{3}{5}$  and  $\frac{5}{13}$ , find the cosine of the 3rd angle.
  - 7. Simplify into single terms :-
  - (i)  $\cos (A+B) \cos A + \sin (A+B) \sin B$
  - (ii)  $\sin(x+y)\cos x \cos(x+y)\sin x$
  - (iii) sin 22° cos 38°+cos 22° sin 38°
    - (iv)  $\sin (\theta + 60^{\circ}) \sin (0 60^{\circ})$
    - 8. Show that :-
    - (i)  $\cos A + \cos (120^{\circ} A) + \cos (120^{\circ} + A) = 0$

(ii) 
$$\frac{\tan \left(\frac{\pi}{4} + A\right) - \tan \left(\frac{\pi}{4} - A\right)}{\tan \left(\frac{\pi}{4} + A\right) + \tan \left(\frac{\pi}{4} - A\right)} = \sin 2A$$

(iii) 
$$\cos (60^{\circ} + \alpha) + \sin (30^{\circ} + \alpha) = \cos \alpha$$

(iv) 
$$\sin \alpha + \sin \left(\alpha + \frac{2\pi}{3}\right) + \sin \left(\alpha + \frac{4\pi}{3}\right) = 0$$

(v) cos (A+B) cos  $B+\sin (A+B)$  sin  $B=\cos A$ 

9. If  $A+B=45^{\circ}$ , show that

$$(\cot A - 1)(\cot B - 1) = 2$$

- 10. Show that :-
- (i) Cos 11° Sin 11° = tan 56°
- (ii)  $\frac{\cos 17^{\circ} + \sin 17^{\circ}}{\cos 17^{\circ} \sin 17^{\circ}} = \tan 62^{\circ}$
- (iii)  $\frac{\cos 37^{\circ} \sin 37}{\cos 37^{\circ} \sin 37^{\circ}} = \cot 8^{\circ}$  (P.U. 1946)
- 11. In a triangle ABC, if Sin C = 2 Sin A Cos B, show that it is an isosceles triangle.

[Hint:—Sin C=Sin (A - B) = Sin A Cos B+Cos A Sin B=2 Sin A Cos B ... (Given)

- : Sin A Cos B-Cos A Sin B=0
- or Sin (A-B)=0 which gives A=B]
- 12. If A+B+C-π, prove that
- (i) tan A+tan B+tan C=tan A tan B tan C
- (ii) Cot B Cot C+Cot C Cot A+Cot A Cot B=1
- (iii)  $\tan \frac{\mathbf{A}}{2} \tan \frac{\mathbf{B}}{2} + \tan \frac{\mathbf{B}}{2} \tan \frac{\mathbf{C}}{2} + \tan \frac{\mathbf{C}}{2} \tan \frac{\mathbf{A}}{2} = 1$ (P.U. 1947)
- (iv) Cot  $\frac{A}{2}$  +Cot  $\frac{B}{2}$  +Cot  $\frac{C}{2}$  =Cot  $\frac{A}{2}$  Cot  $\frac{B}{2}$  × Cot  $\frac{C}{2}$ 
  - 13. Prove that :-
  - (i) tan 2A tan 3A tan 5A=tan 5A-tan 3A-tan 2A
- (ii)  $\tan \frac{\pi}{6} + \tan \frac{\pi}{12} + \tan \frac{\pi}{6} \tan \frac{\pi}{12} = 1$
- (iii) tan 15°+Cot 15°=4
- 14. (i) If  $\tan \alpha = x+1$  and  $\tan \beta = x-1$  prove that  $2 \cot (\alpha \beta) = x^2$

- (ii) If 2 Cos  $(\alpha+\beta)=$ Sec  $(\alpha-\beta)$ , prove that  $\cot^2 \beta = \frac{1+3 \tan^2 \alpha}{1-\tan^2 \alpha}$
- 15. (i) Prove that  $\tan \theta \cot \frac{\theta}{2} = 1 + \sec \theta$

(Hint:—Show that  $\tan \theta \cot \frac{\theta}{2} - 1 = \sec \theta$ )

(ii) If 2 tan  $\beta$ +Cot  $\beta$ =tan  $\alpha$  prove that Cot  $\beta$ =2 tan  $(\alpha-\beta)$  (Allahabad 1935)

#### CHAPTER IV

### Trigonometrical Ratios of Multiple and Sub-multiple Angles.

- 4.1. Multiple angles.
- 4.11. To prove that :-

(ii) 
$$Cos \ 2A = Cos^2 A - Sin^2 A$$
  
=  $2 \ Cos^2 A - I$   
=  $1 - 2 \ Sin^2 A$ 

(iii) 
$$tan = 2.1 - \frac{2 tan A}{1 - tan^2 A}$$

**Proof**: If We have Sin (A+B) = Sin A Cos B + Cos A Sin B.

Putting A = B, we get  $Sin (A \div A) = Sin A Cos A + Cos A Sin A$  $\therefore Sin 2A = 2 Sin A Cos A$ 

Cor. Sin A = 
$$2 \sin \frac{A}{2} \cos \frac{A}{2}$$

**Hint**. Sin A=Sin 
$$\left(\frac{A}{2} + \frac{A}{2}\right)$$
 and proceed as in  $i$ ?

(ii) 
$$Cos (A + B) = Cos A Cos B - Sin A Sin B$$
  
Putting  $A = B$ , we have  
 $Cos (A + A) = Cos A Cos A - Sin A Sin A$   
 $Cos (A + A) = Cos^2 A - Sin^2 A$   
 $Cos (A + A) = Cos^2 A - Sin^2 A$   
 $Cos (A + A) = Cos^2 A - (1 - Cos^2 A)$ 

$$= 2 \cos^2 A - 1$$

$$= 2(1 - \sin^2 A) - 1$$

$$= 1 - 2 \sin^2 A$$
.....(C)

Cor. 
$$\cos A = \cos^2 - \frac{A}{2} - \sin^2 \frac{A}{2}$$
  
 $= 2 \cos^2 \frac{A}{2} - 1$   
 $= 2 \cos^2 \frac{A}{2} - 1$   
 $= 1 - 2 \sin^2 \frac{A}{2}$ 

Hint: Cos A=Cos 
$$\left(\frac{A}{2} + \frac{A}{2}\right)$$
 and proceed as in (ii)

proceed as 
$$A = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
  
(iii) We have  $\tan (A+B) = \frac{\tan A + \tan A}{1 - \tan A \tan A}$   
 $\tan (A+A) = \frac{\tan A + \tan A}{1 - \tan A \tan A}$   
 $\therefore \tan 2 A = \frac{2 \tan A}{1 - \tan^2 A}$ 

# 4.1.2. To prove that

(i) Sin 
$$2A = \frac{2 \tan A}{1 + \tan^2 A}$$

(ii) 
$$\cos 2A = \frac{1-\tan^2 A}{1+\tan^2 A}$$

**Proof**: (i) We have seen that Sin 2A = 2 Sin A Cos ANow 2 Sin A Cos A =  $\frac{2 Sin A Cos A}{Cos^2 A + Sin^2 A}$ 

(: Cos A+Sin A=1

$$\frac{2}{\frac{\sin A \cos A}{\cos^2 A}}$$

$$\frac{\cos^2 A}{\cos^2 A} + \frac{\sin^2 A}{\cos^2 A}$$

$$= \frac{2 \tan A}{1 + \tan^2 A}$$

" We have proved that Cos 2A Cos2 A Sin2 A

Now 
$$\cos^2 A - \sin^2 A = \frac{\cos^2 A - \sin^2 A}{\cos^2 A + \sin^2 A}$$

$$(\because \cos^2 A - \sin^2 A - \sin^2 A)$$

$$= \frac{\cos^2 A}{\cos^2 A} - \frac{\sin^2 A}{\cos^2 A}$$

$$= \frac{\cos^2 A}{\cos^2 A} - \frac{\sin^2 A}{\cos^2 A}$$

Sin<sup>2</sup> A

1152

$$= \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

Cos2 A

#### 4.1.3. Please note that :-

i) 
$$\sin A = \frac{2 \tan \frac{A}{2}}{1 + \tan^2 \frac{A}{2}}$$

(ii) 
$$\cos A = \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}}$$

and (iii) 
$$\tan A = \frac{2 \tan \frac{A}{2}}{1 - \tan^2 \frac{A}{2}}$$

## 4.2 Prove geometrically that

(i) Sin 2A=2 Sin A Cos A

(ii) 
$$\cos 2 A = \cos^2 A - \sin^2 A$$
  
=2  $\cos^2 A - 1$   
=1-2  $\sin^2 A$ 

(iii) 
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$



Take ∠XOP=A. With any point C on OX as centre and radius equal to CO (=a) draw a circle cutting OP and OX in P and X respectively. Join OP, PX and draw PM \( \text{on OX.} \)

(i) Now 
$$\frac{MP}{PC} = Sin \angle PCM = Sin 2A$$

Also MP=OX. 
$$\frac{OP}{OX}$$
  $\frac{MP}{OP} = 2a \cos A \sin A$ 

(Please note this step)

and 
$$MX=CX-CM$$
  
 $OM-MX=2CM......(1)$  by subtraction)

Also OM=OX. 
$$\frac{OP}{OX} \cdot \frac{OM}{OP} = 2a \cos A \cos A$$

(Please note this step)  $=2a \operatorname{Cos}^{2} A \dots (2)$ MX = OX.  $\frac{PX}{OX}$ .  $\frac{MX}{PX} = 2a \sin A \sin A$ and (Please note this step) 2a Sin2 A...... 3 Also  $CM = CP Cos 2A = n Cos 2 A \dots 4$ Subtracting 3) from (2) we get OM - MX = 2a (Cos2A - Sin2A) But OM  $MX = 2CM = 2a \cos 2A \dots$  from (4) :. 2a Cos 2A 2a Cos2A-Sin2A) or Cor 2A = Cos2 1 - Sin2A Again CM=OM OC=OM-a and also CM CX -MX=a-MX But from (4 CM=a Cos 2A and from (2 OM = 2a Cos<sup>2</sup>A Substituting these values of CM and OM in (6) we get a Cos2A = 2a Cos2A -a  $Cos^2A = 2Cos^2A - 1$ Also from (3) MX = 2a Sin2 A ... Substituting the values of MX and GM in 7 we a Cos2A - a 2a Sin2A .. Cos 2.1=1-2 Sin2A iii  $\tan 2A = \frac{MP}{CM} = \frac{2MP}{2CM} = \frac{2MP}{OM - MN}$ [using the result (1)] MP OM MXMP

MP

OM

H

gel

Note: - These results can also conveniently be obtained by making B=A in Article 3.1 chapter III.

# 4.2.1. Two Important Results.

$$1+\cos 2 A=2 \cos^2 A,$$
  
 $1-\cos 2 A=2 \sin^2 A$ 

Note: - The student is advised to commit these results to memory as he has to use these frequently in solving a number of questions.

## 4.3. To prove that

3. To prove that  
(i) 
$$Sin (A+B) Sin (A-B) = Sin^2A - Sin^2B$$
 .....(1)  
 $= Cos^2B - Cos^2A$  .....(2)

$$= Cos^2 B - Cos^2 A \qquad \dots (2)$$

(ii) 
$$Cos(A+B) Cos(A-B) = Cos^2 A - Sin^2 B$$
 .....(3)  
=  $Cos^2 B - Sin^2 A$  .....(4)

$$=Cos^2B-Sin^2A$$
 ......(4)

P. U. 1941, 1944)

#### Proof :-

$$\frac{\sin (A+B) \sin (A-B)}{=(\sin A \cos B+\cos A \sin B)(\sin A \cos B-\cos A \sin B)}$$

$$=(\sin A \cos B+\cos A \sin B)(\sin A \cos B-\cos A \sin B)$$

$$= \sin^{2}A \cos^{2}B - \cos^{2}A \cos^{2}A \sin^{2}B$$

$$= \sin^{2}A (1 - \sin^{2}B) - (1 - \sin^{2}A) \sin^{2}B$$

$$= \sin^{2}A (1 - \sin^{2}B) - (1 - \sin^{2}A - \sin^{2}A) - (1 - \sin^{2}A - \sin^{2}A)$$

$$= \sin^{2}A - \sin^{2}B \qquad .....(1)$$

$$=(1-\cos^2 A)-(1-\cos^2 B)$$

$$= (1 - \cos^2 A) - (1 - \cos^2 B)$$

$$= \cos^2 B - \cos^2 A$$

$$Cos (A+B) Cos (A-B)$$

$$= (Cos A Cos B-Sin A Sin B) (Cos A Cos B+Sin A Sin B)$$

$$= \frac{\cos^2 A \cos^2 B - \sin^2 B}{\cos^2 A (1 - \sin^2 B) - (1 - \cos^2 A) \sin^2 B}$$

$$= \cos^2 A (1 - \sin^2 B) - (1 - \cos^2 A) \sin^2 B$$

$$= \cos^{2} A(1 - \sin^{2} B) - (1 - \cos^{2} A)$$

$$= \cos^{2} A - \sin^{2} B$$
.....(3)

$$= (1 - \sin^2 A) - (1 - \cos^2 B)$$

$$= (1 - \sin^2 A) - (1 - \cos^2 B)$$

$$= \cos^2 B - \sin^2 A$$
.....(4)

#### Solved Examples

Ex. 1. Show that :-

$$i) \frac{\sin 2A}{1 + \cos 2A} = \tan A$$

$$(ii) = \frac{\sin 2A}{1 - \cos A} = \cot A$$

$$(iii) \quad \frac{1 - \cos^2 A}{1 + \cos^2 A} = \tan^2 A$$

Sol. (i) L. H. S.

$$= \frac{\sin 2A}{1 + \cos^2 A} = \frac{2 \sin A \cos A}{1 + (2 \cos^2 A - 1)}$$

$$= \frac{2\operatorname{Sin} A \operatorname{Cos} A}{2\operatorname{Cos}^2 A} = \frac{\operatorname{Sin} A}{\operatorname{Cos} A} = \tan A = R. H. S$$

ii L. H. S. = 
$$\frac{\sin 2A}{1 - \cos 2A} = \frac{2 \sin A \cos A}{1 - (1 - 2 \sin^2 A)}$$

$$= \frac{2 \operatorname{Sin} A \operatorname{Cos} A}{1 - 1 - 2 \operatorname{Sin}^2 A} = \frac{2 \operatorname{Sin} A \operatorname{Cos} A}{2 \operatorname{Sin}^2 A}$$

$$= \frac{\operatorname{Cos} A}{\operatorname{Sin} A} = \operatorname{Cot} A = R. \text{ H. S.}$$

(iii) L. H. S. = 
$$\frac{1 - C_{1.8} 2A}{1 + C_{0.8} 2A} = \frac{1 - (1 - 2 \sin^2 A)}{1 + (2 \cos^2 A - 1)}$$
  
=  $\frac{2 \sin^2 A}{2 \cos^2 A} = \tan^2 A - R$ . H. S.

Note :- The student is advised to remember that :-

(i) 
$$I+Cos 2A=2 Cos^2 A$$

nd (ii) 
$$1 - Cos 2A = 2 Sin^2 A$$

Ex. 2. Prove that

$$\left(\begin{array}{cc} \sin \frac{A}{2} + \cos \frac{A}{2} \right)^2 = 1 + \sin A$$

Sol. L. H. S. = 
$$\left(\frac{\sin^{A}_{2} + \cos^{A}_{2}}{2}\right)^{2}$$
  
=  $\sin^{2}\frac{A}{2} + \cos^{2}\frac{A}{2} + 2\sin\frac{A}{2}\cos\frac{A}{2}$   
=  $1 + 2\sin^{A}_{2}\cos\frac{A}{2}\left(\because \sin^{2}\frac{A}{2} + \cos^{2}\frac{A}{2}\right)$ 

But 2 Sin  $\frac{A}{2}$  Cos  $\frac{A}{2}$  = Sin A ..... why ?

 $\therefore L. H. S. = 1 + Sin A = R. H. S.$ 

Ex. 3. Prove that :-

(i)  $1-\sin 2\theta = (\sin \theta - \cos \theta)^2$ and (ii)  $\cos^4 \theta - \sin^4 \theta = \cos 2\theta$ 

Sol. (i) L. H. S.=1-Sin 2  $\theta$ = Sin<sup>2</sup>  $\theta$ +Cos<sup>2</sup>  $\theta$ -2 Sin  $\theta$  Cos  $\theta$ (: Sin<sup>2</sup>  $\theta$ +Cos<sup>2</sup>  $\theta$ =1) = (Sin  $\theta$ -Cos  $\theta$ )<sup>2</sup>=R. H. S. = (Sin  $\theta$ -Sin<sup>2</sup>  $\theta$ =(Cos<sup>2</sup>  $\theta$ +Sin<sup>2</sup>  $\theta$ ) (Cos<sup>2</sup>  $\theta$ -Sin<sup>2</sup>  $\theta$ ) = Cos<sup>2</sup>  $\theta$ -Sin<sup>2</sup>  $\theta$  (: Cos<sup>2</sup>  $\theta$ +Sin<sup>2</sup>  $\theta$ ) = Cos 2  $\theta$ =R. H. S.

Ex. 4. Prove that :-

Sin (2n+1)  $\theta$  Sin  $\theta = \text{Sin}^2 (n+1) \theta - \text{Sin}^2 n^{\theta}$ 

Sol. R. H. S.= $\sin^2 (n+1) \theta - \sin^2 n \theta$ Put  $(n+1) \theta = A$  and  $n \theta = B$   $\therefore$  R. H. S.= $\sin^2 A - \sin^2 B$ = $\sin (A+B) \sin (A-B)$ 

> Replacing A and B, we get R. H. S.=Sin  $(n+1 \theta+n \theta)$  Sin  $(n+1 \theta-n \theta)$ =Sin  $(2n+1) \theta$  Sin  $\theta$ =L. H. S.

Ex. 5. If 
$$\tan \frac{n}{3} = \sqrt{\frac{1+\epsilon}{1-\epsilon}} \tan \frac{n}{2}$$
, show that

$$\cos \theta = \frac{\cos u - e}{1 - e \cos u}$$

Sol. 
$$\tan \frac{\theta}{2} = \sqrt{\frac{1+\epsilon}{1-\epsilon}} \tan \frac{\pi}{2}$$

Squaring, we get

$$\tan^2 \frac{\theta}{2} = \frac{1 - \epsilon - \tan^2 \frac{\theta}{2}}{1 - \epsilon}$$

or 
$$-\frac{1}{\tan^2 - \frac{\theta}{2}}$$
  $\frac{(1-e)}{1-e-\tan^2 \frac{\theta}{2}}$  By reversing the two sides)

$$\frac{1 + \tan^2 \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}} = \frac{(1 - \epsilon) - (1 + \epsilon) \tan^2 \frac{\theta}{2}}{1 - \epsilon) + (1 - \epsilon) + \tan^2 \frac{\theta}{2}}$$

By divido and compo.

or 
$$\cos \theta = \frac{\left(1 + \tan^2 \frac{u}{2}\right) - \epsilon \left(1 + \tan^2 \frac{u}{2}\right)}{\left(1 + \tan^2 \frac{u}{2}\right) - \epsilon \left(1 + \tan^2 \frac{u}{2}\right)}$$

$$= \frac{1 - \tan^2 \frac{u}{2}}{1 - \tan^2 \frac{u}{2}}$$

$$= \frac{1 - \tan^2 \frac{u}{2}}{1 - \tan^2 \frac{u}{2}}$$

$$= \frac{1 - \tan^2 \frac{u}{2}}{1 + \tan^2 \frac{u}{2}}$$

$$= \frac{1 - \tan^2 \frac{u}{2}}{1 + \tan^2 \frac{u}{2}}$$

#### EXERCISE IV

1. If 
$$Cos A = \frac{3}{5}$$
, find  $Cos 2 A$ 

3. If Sin 
$$A=\frac{1}{7}$$
, find Cos 2A

3. If Sin 
$$A=\frac{12}{13}$$
, find Sin 2A

4/ If tan 
$$0=5$$
, find tan  $2\theta$ 

5. If 
$$\tan \theta = 2$$
, find Sin  $2\theta$  and Cos  $2\theta$ 

#### 6. Prove that :-

(i) Sec 
$$2A + \tan 2A = \tan(-\frac{\pi}{4} + A)$$

(ii) 
$$\frac{1+\sin 2\theta}{1-\sin 2\theta} = \tan^2 \left(\frac{\pi}{4} + 0\right)$$

#### 7. Prove that :-

(i) 
$$\frac{1+\sin 2\theta - \cos 2\theta}{1+\sin 2\theta + \cos 2\theta} = \tan \theta$$

(ii) 
$$\frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta$$

(iii) 
$$\frac{\cos \theta + \sin 2 \theta}{1 - \cos 2\theta + \sin 2\theta} = \cot \theta$$

$$(iv) \frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}=\tan\frac{\theta}{2}$$

8. If  $a \sin \theta = b \cos \theta$ , find the value of  $a \cos 2\theta + b \sin 2\theta$ .

9 (a) If Cos 
$$\theta = \frac{1}{2} \left( a + \frac{1}{a} \right)$$

Show that Cos 
$$2\theta = \frac{1}{2} \left( a^2 + \frac{1}{a^2} \right)$$

P.U. 1946

(b) Prove that 2 Cos 
$$\theta = \sqrt{2+\sqrt{(2+2)}}$$
 Cos  $4\theta$ 

#### 10. Show that :-

$$(ii)$$
 tan  $70^\circ = 2 \tan 50^\circ + \tan 20^\circ$ 

11. If  $\frac{a}{b} = \text{Sec } 2A$ , prove that

$$\sqrt{\frac{a-b}{a-b}} + \sqrt{\frac{a+b}{a-b}} = \frac{2}{\sin 2A}$$

12. Prove that :-

(i) Sin (2A-B) Cos (2B-A) +Cos (2A-B) Sin

(ii) 
$$\cos^2(45^\circ - B) - \sin^2(45^\circ - A) = \sin(A + B) \cos(A - B)$$
  
(A - B)

(iii) 
$$\frac{\sin^2 A - \sin^2 B}{\cos^2 A - \sin^2 B} = \frac{\tan \frac{(A+B)}{\cot (A-B)}}{\cot (A-B)}$$

(iv) 
$$\frac{\sin 3\theta \cos \theta - \cos 3\theta \sin \theta}{\cos^2 2\theta - \sin^2 2\theta} = \tan 4\theta$$

(v) 
$$\frac{\sin 4\theta}{1 + \cos 4\theta} = \frac{1 - \cos 4\theta}{\sin 4\theta} \tan^2 \theta$$

13. If Sin 
$$\theta = \frac{a-b}{a+b}$$
, find  $\tan \frac{\theta}{2}$  (P.U. 1952)

14. If 
$$\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1-e}} \tan \frac{u}{2}$$
, show that
$$\cos \theta = \frac{\cos u - e}{1-e \cos u}$$

Hint: See Ex. 5 (solved)

15. Prove that  $\tan 15^{\circ}$  + Cot  $15^{\circ}$  = u.

[Hint: 
$$\tan 15^{\circ} + \cot 15^{\circ} = \frac{\sin 15^{\circ}}{\cos 15^{\circ}} + \frac{\cos 15}{\sin 15^{\circ}}$$

and proceed?

4.4 To prove that :-

(i) 
$$Sin 3A=3 Sin A-4 Sin^3 A$$

and (iii)  $tan 3 A=3 tan A-tan^3 A$   $1-3 tan^2 A$ 

Proof. (i) 
$$Sin \ 3 \ A = Sin \ (2 \ A + A) = Sin \ 2 \ A \ Cos \ A + Cos \ 2A \ Sin \ A$$

$$= 2 \ Sin \ A \ Cos \ A \cdot Cos \ A + (1 - 2 \ Sin^2 \ A) \ Sin \ A$$

$$= 2 \ Sin \ A \ Cos^2 \ A + (1 - 2 \ Sin^2 \ A) \ Sin \ A$$

$$= 2 \ Sin \ A \ (1 - Sin^2 \ A) + (1 - 2 \ Sin^2 \ A) \times Sin \ A$$

$$= 2 \ Sin \ A \ (1 - Sin^2 \ A) + (1 - 2 \ Sin^2 \ A) \times Sin \ A$$

$$= 3 \ Sin \ A - 4 \ Sin^2 \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos^2 \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos^2 \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos^2 \ A$$

$$= (2 \ Cos^2 \ A - 1) \ Cos \ A - 2 \ Sin^2 \ A \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A - 2 \ Sin^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A - 2 \ Sin^3 \ A) \ Cos^3 \ A \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A - 2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A - 2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A - 2 \ Sin^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A - 2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A - 2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A - 2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A - 2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$= (2 \ Cos^3 \ A) \ Cos^3 \ A$$

$$=$$

Cos<sup>3</sup> A

4 Cos3 A

$$= \frac{3 \tan A (1 + \tan^2 A) - 4 \tan^3 A}{4 - 3 (1 + \tan^2 A)}$$

$$= \frac{3 \tan A (1 + \tan^2 A)}{1 - 3 \tan^2 A}$$

#### Solved Examples

Ex. 1. If 2 Cos 
$$\theta = a + \frac{1}{a}$$
, prove that

$$C_{0s} \ 3 \ \theta = \frac{1}{2} \left( a^3 + \frac{1}{a^3} \right)$$

Sol. 2 Cos 
$$\theta = a + \frac{1}{a}$$

Cubing both sides, we have

8 
$$\cos^{3}\theta = a^{2} + \frac{1}{a^{3}} + 3.a. + \frac{1}{a} \left( a + \frac{1}{a} \right)$$

$$a^{3} = \frac{1}{a^{3}} + 3 + 2 \cos \theta$$

$$a^{4} = \frac{1}{a^{3}} + 6 \cos \theta$$

or 8 
$$\cos^3\theta$$
—6  $\cos\theta = a^3 = \frac{1}{a^3}$ 

or 
$$2(4 \text{ Cos}^3 \ 0 - 3 \text{ Cos} \ 0) = a^3 + \frac{1}{a^3}$$

or 4 
$$\cos^{3}\theta = 3 \cos \theta = \frac{1}{2} \left( -n^{3} + \frac{1}{n^{3}} \right)$$

Or 
$$\cos 3 c = \frac{1}{2} \left( a^3 + \frac{1}{a^3} \right)$$

Ex. 2. Find the value of  $\tan 15^{\circ}$  from the equation.  $3 \tan \theta - 3 \tan^{3} \theta - 1 - 3 \tan^{3} \theta$ 

Sel. We know tan 3 
$$\theta = \frac{3 \tan \theta - \tan^8 \theta}{1 - 3 \tan^4 \theta}$$
  
Put  $\theta = 15^\circ$ 

$$\therefore \tan 3 \theta = \tan 45^{\circ} = 1 = \frac{3 \tan 15^{\circ} - \tan^3 15^{\circ}}{1 - 3 \tan^2 15^{\circ}}$$

$$\therefore 1-3 \tan^2 15^\circ = 3 \tan 15^\circ - \tan^3 15^\circ$$
or  $\tan^3 15^\circ - 3 \tan^2 15^\circ - 3 \tan 15^\circ + 1 = 0$ 
or  $(\tan^3 15^\circ + 1) - (3 \tan^2 15^\circ + 3 \tan 15^\circ) = 0$ 
or  $(\tan 15^\circ + 1) (\tan^2 15^\circ - \tan 15^\circ + 1) - 3 \tan 15^\circ$ 
or  $(\tan 15^\circ + 1) (\tan^2 15^\circ - \tan 15^\circ + 1) = 0$ 

or  $(\tan 15^{\circ}+1)(\tan^2 15^{\circ}-4\tan 15^{\circ}+1)=0$ 

Now tan 
$$15^{\circ}+1 \neq 0$$
  
 $\therefore$  tan  $15^{\circ} \neq -1$ 

or tan 15° = 
$$\frac{4 \pm \sqrt{16-4}}{2}$$

$$= \frac{4 \pm 2\sqrt{3}}{2}$$

$$= 2 \pm \sqrt{3}$$

Now tan 15° < tan 45° i. e., tan 15° < 1 :: tan 15° =  $2-\sqrt{3}$ 

#### EXERCISE V

Show that :-

- 1. Sin A Sin (60°-A) Sin (60°+A) = Sin 3 A
- 2. Cos A Cos (60°-A) Cos (60°+A) = 1 Cos 3 A

3. 
$$\frac{1}{\tan \theta + \tan 3\theta} - \frac{1}{\cot \theta + \cot 3\theta} = \cot 4 \theta$$

4. Prove that 
$$(3 \sin A - \sin 3 A)^{\frac{2}{3}} + (3 \cos A + \cos 3 A)^{\frac{2}{3}} = 4\frac{2}{3}$$

5. 4 Sin A Sin 
$$(A - \frac{\pi}{3})$$
 Sin  $(A - \frac{2\pi}{3})$  = Sin 3A

6. 
$$\sin^3 \theta + \sin^3 (120^\circ - \theta) + \sin^3 (240^\circ + \theta) = -\frac{3}{4} \sin 3\theta$$

7. 
$$\tan A - \tan (60^{\circ} + A) - \tan (120^{\circ} + A) = 3 \tan 3A$$

8. If 
$$x^2 + y^2 = 1$$
, show that  $(3x - 4x^2)^2 + (3y - 4y^3)^2 = 1$ 

[Hint:—Put  $x = \sin \theta$  and  $y = \cos \theta$ ]

#### 4.5. Sub Multiple Angles.

4.5.1. To Express trigonometrical functions of an angle in terms of the cosine of double the angle.

We have Cos 2A=2 Cos2A-1

or 
$$Cos^2 A = \frac{1 + Cos 2A}{2}$$
  

$$\therefore Cos A = \pm \sqrt{\frac{1 + Cos^2 A}{2}} \qquad \dots \dots (1)$$

Again, Cos 2A = 1 = 2 Sin<sup>2</sup> A or 2 Sin<sup>2</sup> A = 1 - Cos 2 A

$$\therefore \sin A = \sqrt{\frac{1 - \cos 2A}{2}} \qquad \dots \dots 2)$$

Dividing (2) by (1) we have

$$\tan A = \pm \sqrt{\frac{1 - \cos 2 A}{1 + \cos 2 A}}$$
 .....(3)

Similarly, we can find Sec A, Cosec A, and Cot A by taking the reciprocals of (1), (2) and (3) respectively.

Important Note. The ambiguity of signs in the above results cannot be removed, unless the quadrant in which A lies is known to us.

For instance, Cox 
$$A = \sqrt{\frac{1 + \cos 2A}{2}}$$
, if A lies either in the 1st

or in the fourth quadrant. But Cos  $A = -\sqrt{\frac{1 + \cos 2 A}{2}}$  if A lies in the second quadrant or in the third quadrant and so on.

This can be illustrated by means of the following example.

Ex. Find the values of Sin 22° 30' and tan 22° 30'

 $=\frac{1}{2}\sqrt{2+\sqrt{2}}$ 

Sol. Put 
$$A=22^{\circ} 30'$$
  $\therefore 2A=45^{\circ}$   
 $\therefore \sin 22^{\circ} 30' = \sqrt{\frac{1-\cos 45^{\circ}}{2}}$ 

$$= \sqrt{\frac{1-\frac{1}{\sqrt{2}}}{2}} = \frac{1}{2} \sqrt{\frac{2-\sqrt{2} \dots (i)}{2}}$$
Again  $\cos 22^{\circ} 30' = \sqrt{\frac{1+\cos 45^{\circ}}{2}} = \sqrt{\frac{1+\frac{1}{\sqrt{2}}}{2}}$ 

.. from (1) and (2), we have

$$\tan 22^{\circ} 30' = \frac{\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}$$

Note: -We have taken the sign before the radicals because angle A is acute.

4.5.2. To express the trigonometrical functions of an angle in terms of the Sine of double the angle.

We know 
$$Sin^2 A + Cos^2 A = 1$$
 ...(1)  
and  $2 Sin A Cos A = Sin 2A$  ...(2)  
 $\therefore$  Adding (1) and (2) we get  
 $Sin^2 A + Cos^2 A + 2 Sin A Cos A = 1 + Sin 2A$   
or  $(Sin A + Cos A)^2 = 1 + Sin 2A$ 

(Sin A+Cos A)<sup>2</sup>=1+Sin 2A  
∴ Sin A+Cos A=±
$$\sqrt{1+Sin}$$
 2A.....(3)

Similarly, subtracting (2) from (1) and taking the square root, we get.

 $Sin A-Cos A=\pm\sqrt{1-Sin 2A...../4}$ 

From (3) and (4) adding and Subtracting, we get

$$\sin A = \frac{1}{2} \left[ \pm \sqrt{1 + \sin 2A} \pm \sqrt{1 - \sin 2A} \right] \dots (5)$$

and 
$$\cos A = \frac{1}{2} | \pm \sqrt{1 + \sin 2A} \mp \sqrt{1 - \sin 2A} | \dots (6)$$

Dividing (5) by (6) we get.

$$\tan A = \frac{(\pm \sqrt{1 + \sin 2A} \pm \sqrt{1 - \sin 2A})}{(\pm \sqrt{1 + \sin 2A} \pm \sqrt{1 + \sin 2A})} \dots (7)$$

Taking reciprocals of (5), (6 and 7) we can get Cosec A.

Sec A and Cot A respectively.

4.5.3. To express the trigonometrical functions of an angle in terms of the tangent of double the angle.

Here we have 
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

or 
$$\tan 2A \tan^2 A + 2 \tan A - \tan 2A = 0$$
  
 $\tan A = \frac{-2 \pm \sqrt{4 + 4 \tan^2 2A}}{2 \tan 2A}$   
 $= \frac{1 \pm \sqrt{1 + \tan^2 2A}}{\tan 2A}$ 

With the help of tan A having thus been found, we can easily find other trigonometrical functions.

4.5.4. From the results 4.5.1 – 4.5.3 on quite independently), we can easily prove that :—

$$ii \quad \cos^{A}_{2} = \pm \sqrt{\frac{1 + \cos A}{2}}$$

$$ii \quad \sin^{A}_{2} = \pm \sqrt{\frac{1 - \cos A}{2}},$$

$$iii \quad \tan^{A}_{2} = \sqrt{\frac{1 - \cos A}{1 + \cos A}}, \text{ and so on.}$$

(ii) 
$$\sin \frac{A}{2} = \frac{1}{2} \left\{ \pm \sqrt{1 + \sin A} \pm \sqrt{1 - \sin A} \right\}$$
  
(ii)  $\cos \frac{A}{2} = \frac{1}{2} \left\{ \pm \sqrt{1 + \sin A} \mp \sqrt{1 - \sin A} \right\}$   
(iii)  $\tan \frac{A}{2} = \frac{\left( \pm \sqrt{1 + \sin A} \pm \sqrt{1 - \sin A} \right)}{\left( \pm \sqrt{1 + \sin A} \mp \sqrt{1 - \sin A} \right)}$ , and so on

and (c) 
$$\tan \frac{A}{2} = \frac{-1 \pm \sqrt{1 + \tan^2 A}}{\tan A}$$

These are left as an exercise for the student.

# 4.6.1. Trigonometric functions of 18° and 72°

Let 
$$18^{\circ} = \theta$$
, so that  $50^{\circ} = 90^{\circ}$ 

Now 
$$20 = 90 - 3\theta$$
  
 $\therefore$  Sin  $2\theta = \text{Sin } (90 - 3\theta) = \text{Cos } 3\theta = 4 \text{ Cos}^3 \theta - 3 \text{ Cos } \theta$ 

or 2 Sin 
$$\theta$$
 Cos  $\theta = 4$  Cos<sup>3</sup>  $0 - 3$  Cos  $\theta$ 

or 
$$2 \sin \theta \cos \theta = 4 \cos^3 \theta - 3 \cos \theta$$
  
or  $2 \sin \theta = 4 \cos^2 \theta - 3$  (Dividing both sides by Co. 0)  
or  $2 \sin \theta = 4 (1 - \sin^2 \theta) - 3$   
or  $4 \sin^2 \theta + 2 \sin \theta - 1 = 0$ 

or 
$$2 \sin \theta = 4(1 - \sin^2 \theta) - 3$$

or 
$$4 \sin^2 \theta + 2 \sin \theta - 1 = 0$$

or 
$$2 \sin \theta = 4(1-\sin^2\theta)-3$$
  
or  $4 \sin^2\theta+2 \sin\theta-1=0$   

$$\therefore \sin \theta = \frac{-2\pm\sqrt{4}+16}{8}$$

$$= \frac{-2+2\sqrt{5}}{8}$$

$$= \frac{\pm\sqrt{5}-1}{4}$$

$$= \frac{\pm\sqrt{5}-1}{4}$$

$$= \frac{100}{8}$$

We will take Sin  $0 = \frac{\sqrt{5}-1}{4}$  because  $\pi = 18^{\circ}$ , is an acute

angle and is, therefore, positive.

Thus Sin 
$$18^\circ = \frac{\sqrt{5-1}}{4}$$

Also, Cos 
$$18^{\circ} = \sqrt{1 - \sin^2 18^{\circ}} = \sqrt{1 - (\frac{\sqrt{5} - 1}{4})^2}$$

$$= \sqrt{1 - \frac{5+1-2\sqrt{5}}{16}} = \sqrt{\frac{16-6+2\sqrt{5}}{\frac{16}{16}}}$$
$$= \sqrt{\frac{10+2\sqrt{5}}{16}} = \sqrt{\frac{10+2\sqrt{5}}{4}}$$

The remaining circular functions can now easily be found from these two ratios.

Again, Sin 72° = Sin /90° - 18°)

$$Cos 18^3 = \frac{\sqrt{10 + 2}\sqrt{5}}{4}$$

and Cos 
$$72^{\circ} = \text{Cos} (90^{\circ} - 18^{\circ})$$
  
= Sin  $18^{\circ} = \frac{\sqrt{5-1}}{4}$ 

Sin 72° and Cos 72° having thus been found we can easily find other ratios such as tan 72°, Cot 72°, etc.,

#### 4.6.2. Trigonometric functions of 36' and 54'.

Let 
$$\theta = 36^\circ$$
, So that  $50 = 180^\circ$   
or  $20 = 180^\circ - 30^\circ$   
or  $\sin 2\theta = \sin (180^\circ - 3\theta) = \sin 3\theta$   
or  $2 \sin \theta \cos \theta = 3 \sin \theta + 4 \sin^3 \theta$   
Dividing both sides by  $\sin \theta$ , we have  $2 \cos \theta = 3 - 4 \sin^2 \theta$   
 $3 - 4(1 - \cos^2 \theta)$   
or  $4 \cos^2 \theta - 2 \cos \theta - 1 = 0$   
 $\therefore \cos \theta = \frac{2 + \sqrt{4 + 16}}{8}$ 

$$=\frac{2+2\sqrt{5}}{8}\qquad \qquad =\frac{\sqrt{5}+1}{4}$$

Vote  $\theta = 36^\circ$ , is an newter angle, therefore, it take  $\cos \theta = \sqrt{5/4}$ , the negative sign having been rejected as such.

Now Sin 36° = 
$$\sqrt{1-\cos^2 36^\circ} = \sqrt{1-\left(\frac{\sqrt{5+1}}{4}\right)}$$
  
=  $\sqrt{1-\frac{5+1+2\sqrt{5}}{16}} = \sqrt{\frac{10-2\sqrt{5}}{16}}$   
=  $\sqrt{\frac{10-2\sqrt{5}}{4}}$ 

With the help of Sin 36 and Cos 36, we can find the remaining trigonometric functions like tan 36°, Sec 36° etc.

Again angles 36° and 54° being complementary we have

Sin 54°=Sin (90° - 36°) = Cos 36°  
= 
$$\frac{\sqrt{5+1}}{4}$$
  
and Cos 54°=Cos (90° - 36°) = Sin 36°  
=  $\frac{\sqrt{10-2\sqrt{5}}}{4}$ 

## EXERCISE VI

Find the values of Sin 18° and Cos 18°.

(K. U. Pre. 1962)

Prove that (i)  $\sin^2 72^\circ - \sin^2 60^\circ - \frac{\sqrt{5} - 1}{8}$ .

(ii) Sin2 36°. Sin2 72°. Sin2 108°. Sin2 144'

$$=\frac{5}{16}$$
.

- Given Cos  $135^{\circ} = -\frac{1}{\sqrt{2}}$ , find Sin  $67\frac{1}{2}$  and Cos  $67\frac{1}{2}$ .
- Find the values of Sin 22½°, Cos 22½°, and tan 22½°.
- Given Sin  $60^{\circ} = \frac{\sqrt{3}}{2}$ , deduce the values of Sin  $30^{\circ}$ and Cos 30°.

6. If 
$$\tan \frac{\theta}{2} = \sqrt{\frac{1-e}{1+e}} \tan \frac{\varphi}{2}$$
 show that
$$\cos \varphi = \frac{\cos \theta - e}{1-e \cos \theta} \qquad (K. U. biter., 1962)$$

- 7. If  $\theta$  is an acute angle and  $\sin \theta = \frac{2ab}{a^2 + b^2}$ , find  $\tan \frac{\theta}{2}$ .
- 8. Show that Cos 36° and Sin 18° are the roots of the equation  $4x^2 2\sqrt{5}$  x = 1 = 0.
  - 9. Find  $\tan \frac{A}{2}$ ,  $\sin \frac{A}{2}$ , and  $\cos \frac{A}{2}$ , if  $\tan A = \frac{21}{20}$

and  $\frac{A}{2}$  lies in the first quadrant.

10. Find the value of tan 15°, from the equation, 3 tan  $\theta$ - $tan^3 \theta = 1 - tan^2 \theta$ .

Hint: In  $\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$ , put  $\theta = 15$  and simplify the resultant equation.

### CHAPTER V

# The sum and Product Formulae

| 5.1 We already know that :-                                                | - 1          |
|----------------------------------------------------------------------------|--------------|
| Sin (A+B)=Sin A Cos B+Cos A Sin B                                          | (1)          |
| Sin (A-B)=Sin A Cos B-Cos A sin B                                          | ii)          |
| Adding and subtracting these two, we get                                   | ****         |
| Sin (A+B)+Sin (A-B)=2 Sin A Cos B                                          | (iii)        |
| and Sin $(A+B)$ -Sin $(A-B)$ = 2 Cos A Sin B                               | (10)         |
| Let $A+B=P$ and $A-B=Q$                                                    |              |
| $\therefore A = \frac{P+Q}{2} \text{ and } B = \frac{P-Q}{2}$              |              |
| Hence from (iii) and (iv), we get                                          |              |
| Sin P+Sin Q=2 Sin $\frac{P+Q}{2}$ Cos $\frac{P-Q}{2}$                      |              |
| and Sin P-Sin Q=2 $\cos \frac{P+Q}{2}$ Sin $\frac{P-Q}{2}$                 |              |
| 5.1.2. Again, we know that :-                                              | 1.1          |
| Cos (A+B)=Cos A Cos B-Sin A Sin B                                          | (v)          |
| Cos (A-B)=Cos A Cos B+Sin A Sin B                                          | $\dots (vi)$ |
| Adding and subtracting these two, we get                                   | /ii\         |
| Cos(A-B)+Cos(A+B)=2 Cos A 2 Cos B                                          | (vii)        |
| and $Cos(A+B)-Cos(A+B)=2 Sin A Sin B$                                      | (viii)       |
| Let $A + B = P$ and $A - B = Q$                                            |              |
| Let $A+B=P$ and $A-B=Q$<br>So that $A=\frac{P+Q}{2}$ and $B=\frac{P-Q}{2}$ |              |
| Hence from (vii) and (viii), we have                                       |              |

Cos P+Cos Q=2 Cos 
$$\frac{P+Q}{2}$$
 Cos  $\frac{P-Q}{2}$ 
and Cos Q-Cos P=2 Sin  $\frac{P+Q}{2}$  Sin  $\frac{P-Q}{2}$ 

5.2 Writing (iii), (i:) and (vii) and (viii) in the reverse order, we have

$$2 \operatorname{Sin} A \operatorname{Cos} B = \operatorname{Sin} (A \cdot B) - \operatorname{sin} (A - B)$$

#### Very Important Note :-

In the above three articles, we have derived the following eight formulae. These are extremely important and the student is advised to master them as thoroughly as possible. Of these, the first jour will enable the student to transform sum on difference into product, where is the last four will enable him to transform product into sum or difference.

1. 
$$\sin P + \sin Q = 2 \sin \frac{P - Q}{2} \cos \frac{P - Q}{2}$$

2. 
$$\sin P = \sin Q = 2 \cos \frac{P+Q}{2} = \sin \frac{P-Q}{2}$$

3. 
$$\cos P + \cos Q = 2 \cos \frac{P+Q}{2} \cos \frac{P-Q}{2}$$

4. Cos Q -Cos P=2Sin 
$$\frac{P+Q}{2}$$
 Sin  $\frac{P-Q}{2}$ 

5. 2 Sin A Cos B=Sin 
$$(A+B)+Sin (A-B)$$

6. 2 Cos A Sin B=Sin 
$$(A+B)$$
 -Sin  $(A-B)$ 

Note: -(i) In formular 5-8, A is greater than B.

(ii) The student is advised to commit all these formulae to memory. Of these the last four require special attention, as it been seen that students lack proper understanding of these as a result of which they commit blunders in degree classes as well.

## Solved Examples

- **Ex.** 1. Express  $\cos 5\theta \cos 7\theta$  as a product.
- **Sol.** Here we have to make use of formula No: (4), and in place of Q we have  $5\theta$  and in place of P we have 7Q

$$\therefore \cos 5\theta - \cos 7\theta = 2 \sin \frac{7\theta + 5\theta}{2} \sin \frac{7\theta - 5\theta}{2}$$

$$= 2 \sin 6\theta \sin \theta$$

**Ex.** 2. Express Sin  $5\theta$  as a sum or difference.

Sol. 
$$\sin 3\theta \sin 5\theta = \frac{1}{2} [2 \sin 3\theta \sin 5\theta]$$
  
=  $\frac{1}{2} [2 \sin 5\theta \sin 3\theta]$   
(Please note these two steps)

Here we have to make use of formula No: (8) In place of A, we have 50 and in place of B, we have 30.

we have 50 and in place of 2, 
$$\theta = \frac{1}{2} [\cos (5\theta - 3\theta) - \cos(5\theta + 3\theta)]$$
  

$$\therefore \frac{1}{2} [2 \sin 5\theta \sin 3\theta] = \frac{1}{2} [\cos (5\theta - 3\theta) - \cos(5\theta + 3\theta)]$$

$$= \frac{1}{2} [\cos 2\theta - \cos 8\theta]$$

Ex. 3. Express Cos 11°+Sin 11° as a product

Sol. Sin 11°=Sin 
$$(90^{\circ}-79^{\circ})$$
  
=Cos  $79^{\circ}$  [: Sin  $(90^{\circ}-\theta)$  Cos  $\theta$ ]  
(Please note this step)

.. Cos 11°+Sin 11°=Cos 11°+Cos 79

Here formula (3) is applicable.

Instead of P, we have 79° and instead of Q, we have 11

.. Cos 79°+Cos 11°=2 Cos 
$$\frac{79°+11°}{2}$$
 Cos  $\frac{79°-11°}{2}$ 

Note: -Before putting the expression into the product form, we have to express either Sine into Cosine or Cosine into Sine.

Ex. 4. Prove that Cos 20°. Cos 30°. Cos 40°. Cos 80°

$$=\frac{\sqrt{3}}{16}$$

$$=\frac{\sqrt{3}}{2}$$
. Cos 20°, Cos 40°, Cos 80°

$$\left(\because \cos 30^\circ = \frac{\sqrt{3}}{2}\right)$$

$$=\frac{\sqrt{3}}{4} (2 \cos 40^{\circ} \cos 20^{\circ}) \cos 80^{\circ}$$

(Please note this step).

$$=\frac{\sqrt{3}}{4}$$
 (Cos 60° + Cos 20°) Cos 80°

[Applying formula no: 7]

$$= \frac{\sqrt{3}}{4} \left[ \frac{1}{2} \cos 80^{\circ} + \cos 20^{\circ} \cos 80^{\circ} \right]$$

 $(:: Cos 60 = \frac{1}{2})$ 

$$=\frac{\sqrt{3}}{8}$$
 (Cos 80°+2 Cos 80° Cos 20°)

$$=\frac{\sqrt{3}}{8} (\cos 80^{\circ} + \cos 100^{\circ} + \cos 60^{\circ})$$

$$= \frac{\sqrt{3}}{8} \left( \cos 80^{\circ} + \cos 100^{\circ} + \frac{1}{2} \right)$$

$$=\frac{\sqrt{3}}{8} (2 \text{ Cos } 90^{\circ} \text{ Cos } 10^{\circ} + \frac{1}{2})$$

(Putting Cos 100° + Cos 80° into products form)

$$=\frac{\sqrt{3}}{16}$$
=R. H. S. (:: Cos 90°=0)

**Ex. 5.** Show that 
$$\frac{\cos \theta - \cos 3\theta}{\sin 3\theta + \sin \theta} = \tan \theta$$
 **Sol. L. H. S.**

$$= \frac{\cos \theta - \cos 3\theta}{\sin 3\theta + \sin \theta} = \frac{2 \sin \frac{\theta + 3\theta}{2} \sin \frac{3\theta - \theta}{2}}{2 \sin \frac{3\theta + \theta}{2} \cos \frac{3\theta - \theta}{2}}$$

[Apply formula No. 4 for the numerator and formula No. (1) for the denominator]

$$= \frac{2}{2} \frac{\sin 2\theta}{\sin 2\theta} \frac{\sin \theta}{\cos \theta} = \frac{\sin \theta}{\cos \theta}$$
$$= \tan \theta = R. H. S.$$

**Ex. 6.** Show that 
$$\frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B} = \tan (A+B)$$
 (K. U.)

L. H. S. = 
$$\frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B}$$
  
=  $\frac{2(\sin^2 A - \sin^2 B)}{2 \sin A \cos A - 2 \sin B \cos B}$   
=  $\frac{2 \sin (A + B) \sin (A - B)}{\sin 2 A - \sin 2 B}$   
=  $\frac{2 \sin (A + B) \sin (A - B)}{\sin 2 A - \sin 2 B}$   
( : 2 Sin A Cos A = Sin 2A etc.,)  
=  $\frac{2 \sin (A + B) \sin (A - B)}{2 \cos (A + B) \sin (A - B)} = \frac{\sin (A + B)}{\cos (A + B)}$   
=  $\tan (A + B) = R$ . H. S.

Ex. 7. Prove that

0

$$\frac{\sin \theta + \sin 3\theta + (\sin 5\theta + \sin 7\theta)}{\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta.$$

Sol. L. H. S. = 
$$\frac{(\sin 7\theta + \sin \theta) + (\sin 5\theta + \sin 3\theta)}{(\cos 7\theta + \cos \theta) + (\cos 5\theta + \cos 3\theta)}$$

$$= \frac{\left(2 \sin \frac{7\theta + \theta}{2} \cos \frac{7\theta - \theta}{2}\right)}{\left(2 \cos \frac{7\theta + \theta}{2} \cos \frac{7\theta - \theta}{2}\right)}$$

$$+ \left(\left(2 \sin \frac{5\theta + 3\theta}{2} \cos \frac{5\theta - 3\theta}{2}\right)\right)$$

$$+ \left(2 \cos \frac{5\theta + 3\theta}{2} \cos \frac{5\theta - 3\theta}{2}\right)$$

$$+ \left(2 \cos \frac{5\theta + 3\theta}{2} \cos \frac{5\theta - 3\theta}{2}\right)$$

$$= \frac{2 \sin 4\theta \cos 3\theta + 2 \sin 4\theta \cos \theta}{2 \cos 4\theta \cos \theta + 2 \cos 4\theta \cos \theta}$$

$$= \frac{2 \sin 4\theta \cos 3\theta + 2 \cos 4\theta \cos \theta}{2 \cos 4\theta \cos \theta + \cos \theta}$$

$$= \frac{2 \sin 4\theta \cos 3\theta + \cos \theta}{2 \cos 4\theta \cos \theta + \cos \theta}$$

$$= \frac{\sin 4\theta}{\cos 4\theta} = \tan 4\theta = R. H. S.$$

Ex. 8. If Sin  $\theta = n$  Sin  $(\theta + 2\alpha)$ 

Show that  $\tan(\theta + \alpha) = \frac{1+n}{1-n} \tan \alpha$ 

**Sol.** We have  $\sin \theta = n \sin (\theta + 2\alpha)$ 

$$\therefore \frac{\sin (\theta + 2\alpha)}{\sin \theta} = \frac{1}{n}$$

By Componendo-Dividendo, we have

$$\frac{\sin (\theta + 2\alpha) + \sin \theta}{\sin(\theta + 2\alpha) - \sin \theta} = \frac{1+n}{1-n} \qquad ...(i)$$
Now L. H. S. 
$$= \frac{\sin (\theta + 2\alpha) + \sin \theta}{\sin (\theta + 2\alpha) - \sin \theta}$$

$$= \frac{2 \sin \frac{\theta + 2\alpha + \theta}{2} \cos \frac{\theta + 2\alpha - \theta}{2}}{2 \cos \frac{\theta + 2\alpha - \theta}{2}}$$

$$= \frac{2 \cos \frac{\theta + 2\alpha + \theta}{2} \sin \frac{\theta + 2\alpha - \theta}{2}}{2 \cos (\theta + \alpha) \sin \alpha} = \tan (\theta + \alpha) \cot \alpha$$

:. From (i) we get

tan 
$$(\theta + \alpha)$$
 Cot  $\alpha = \frac{1+n}{1-n}$   
 $\therefore$  tan  $(\theta + \alpha) = \frac{1+n}{1-n} \tan \alpha$ .

Ex. 9. Show that :-

Cos (36°-A) Cos (36°+A +Cos (54°+A) (Cos 
$$54$$
°-A) =  $Cos 2A$ 

Sol. L. H. S.

$$\frac{1}{2}$$
[2 Cos (36°+A) Cos (36°-A) - 2 Cos (54°+A) × (Cos 54°-A) | -A)

Applying formula no. (7), we get :-

$$= \frac{1}{2} [(\cos 72^{\circ} + \cos 2A) + (\cos 108^{\circ} + \cos 2A)]$$

$$= \frac{3}{2} [(\cos 72^{\circ} + \cos 2A) + (\cos (180^{\circ} - 72^{\circ}) + \cos 2A)]$$

$$= \frac{1}{2} [(\cos 72^{\circ} + \cos 2A) + (\cos (180^{\circ} - 72^{\circ}) + \cos 2A)]$$
(Please note this step)

$$=\frac{1}{2}[(\cos 72^{\circ} + \cos 2A) + (-\cos 72^{\circ} + \cos 2A)]$$

$$(:: \mathbf{Cos} \ (\pi - \theta) = -\mathbf{Cos} \ \theta)$$

$$=\frac{1}{2}\{2 \cos 2A\} = \cos 2A = R. H. S.$$

### EXERCISE VII

- Express the following in the product form :-
- (i)  $\sin 3 \theta + \sin \theta$
- (ii) Sin 6  $\theta$ -Sin 4  $\theta$
- (iii) Cos 2 θ+Cos 8 θ
- (iv)  $\cos \theta \cos 5 \theta$
- (v) Cos 3A-Cos 7A.
- (2) Express the following to the sum form:
- (i) Cos 20°. Cos 40°
- (ii) Sin 11A. Sin A
- (iii) Cos 7A. Sin 3A
- (iv) 2 Sin 7A. Sin 3A
- (v) Sin 8A. Sin 4A
- (vi) Sin 7A. Cos 3A
- (3) Prove that :-
- (i) Sin 51°+Cos 81° = Cos 21°
- (ii) Sin 47°+Cos 77°=Cos 17°
- (iii) Cos 17°-Cos 77°=Sin 47°

Prove the following:-

(4) 
$$\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \tan \frac{\alpha + \beta}{2}$$

(5) 
$$\frac{\sin \alpha - \sin \beta}{\cos \alpha + \cos \beta} = \tan \frac{\alpha - \beta}{2}$$

$$\checkmark (6) \quad \frac{\sin \beta + \sin \alpha}{\cos \beta - \cos \alpha} = \cot \frac{\alpha - \beta}{2}$$

(7) 
$$\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} = \cot \frac{\alpha + \beta}{2}$$

$$(8) \quad \frac{\sin \alpha - \sin \beta}{\sin \alpha + \sin \beta} = \frac{\tan \frac{\alpha - \beta}{2}}{\tan \frac{\alpha + \beta}{2}}$$

(9) 
$$\frac{\cos \beta - \cos \alpha}{\cos \beta + \cos \alpha} = \tan \frac{\alpha + \beta}{2} \tan \frac{\alpha - \beta}{2}$$

$$\int_{-\infty}^{\infty} \frac{\cos 9^{\circ} + \sin 9^{\circ}}{\cos 9^{\circ} - \sin 9^{\circ}} = \tan 54^{\circ}$$

(11) Show that 
$$\frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B} = \tan (A+B)$$

(K.U. Inter. 1960)

Prove that :-

(12) 
$$\frac{\sin 7A + \sin 3A}{\cos 7A + \cos 3A} = \tan 5A$$

(13) 
$$\frac{\cos A - \cos 3A}{\sin 3A - \sin A} = \tan 2A$$

$$\frac{\text{Cos } 7A - \text{Cos } 9A}{\text{Sin } 9A - \text{Sin } 7A} = \tan 8A$$

(15) 
$$\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}$$

(16) 
$$\frac{\sin A + \sin (A+B) + \sin (A+2B)}{\cos A + \cos (A+B) + \cos (A+2B)} = \tan(A+B)$$

(17) 
$$\frac{\sin \theta + \sin 2 \theta + \sin 4 \theta + \sin 5 \theta}{\cos \theta + \cos 2 \theta + \cos 4 \theta + \cos 5 \theta} = \tan 3 \theta$$

(18) 
$$\frac{\sin 4 \theta + 2 \sin 3 \theta + \sin 2 \theta}{\cos 2 \theta - \cos 4 \theta} = \cot \frac{\theta}{2}$$

(19) 
$$\frac{\sin 3 \theta - \sin \theta}{\cos 3 \theta + 2 \cos 2 \theta + \cos \theta} = \tan \frac{\theta}{2}$$

Prove that :-

(20) Cos 
$$(A+B)+Sin$$
  $(A-B)=2$  Sin  $(45^{\circ}+A)\times Cos$   $(45^{\circ}+B)$ 

(Hint :- Put the R. H. S. into sum form)

(22) 
$$\cos A \cos B = \cos^2 \frac{A-B}{2} - \sin^2 \frac{A+B}{2}$$

Cos 2A. Cos 3A-Cos 2A. Cos 7A+Cos A Cos 10A Sin 4A Sin 3A-Sin 2A Sin 5A+Sin 4A Sin 7A =Cot 6A Cot 5A

(24) 
$$\frac{\sin A + \sin 3A}{\cos A + \cos 3A} + \frac{\sin 2A + \sin 4A}{\cos 2A + \cos 4A} = \frac{\sin 5A}{\cos 2A \cos 3A}$$

(25) If A+B+C+D=180°, prove that Cos 2A-Cos 2B+Cos 2C-Cos 2D =4 Sin (A+B) Sin (B+C) Cos (C+A)

(26) prove that :-

(i) Cos 20°, Cos 40°. Cos 80° =  $\frac{1}{8}$ 

(i) Cos 20°, Cos 40°, Cos 80° = 8  
(ii) Sin 20°, Sin 40°, Sin 80°, Sin 90° = 
$$\frac{\sqrt{3}}{8}$$
 (P.U. 1947)

(iii) Cos 20°. Cos 40°. Cos 60°. Cos 80°=
$$\frac{1}{16}$$
 (P.U. 1948)  
(iv) Sin 20°. Sin 40°. Sin 60°. Sin 80°= $\frac{3}{16}$ 

(v) Cos 20°. Cos 30°. Cos 40°.  $80^{\circ} = \frac{\sqrt{3}}{16}$ 

(P. U. 1951)

(vi) Sin 
$$\frac{\pi}{5}$$
Sin  $\frac{2\pi}{5}$ . Sin  $\frac{3\pi}{5}$ . Sin  $\frac{4\pi}{5}$  5

(vii) Cos 36°. Cos 72°. Cos 108°. Cos 144°=16

(27) Prove that :-

 $\sqrt{(i)} (\cos \alpha + \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 = 4 \cos^2 \frac{\alpha + \beta}{2}$ 

 $\forall ii$ )  $(\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 = 4 \sin^2 \frac{\alpha - \beta}{2}$ 

(28) If Cos (A-B)=3 Cos (A+B), prove that Cot A. Cot B=2

(29) Prove that :-

 $\cos \alpha + \cos \beta + \cos \gamma + \cos (\alpha + \beta + \gamma)$ 

= 4  $\cos \frac{\alpha+\beta}{2} \cos \frac{\beta+\gamma}{2} \cos \frac{\gamma+\alpha}{2}$ 

(30) If  $\frac{\cos (\alpha+\beta)}{\cos (\alpha-\beta)} = \frac{\sin (\gamma-\delta)}{\sin (\gamma+\delta)}$ 

Show that tan  $\alpha$ . tan  $\beta$ . tan  $\gamma = \tan \delta$ 

## CHAPTER VI

Trigonometrical Identities and Eliminations.

6.1. Identities. If A, B, C denote the angles of a triangle ABC, then  $A+B+C=180^{\circ}$ .

A number of identical relations hold between the trigonometrical ratios of the angles. The following examples will illustrate the methods employed in to proving these identities.

6.2. Identities holding between Sines of three angles.

Ex. 1. If A+B+C=180°, prove that Sin 2A+Sin 2B+Sin 2C=4'Sin A Sin B Sin C

Sol. L.H.S.=Sin 2A+Sin 2B+Sin 2C

$$= \sin 2A + \sin 2B + \sin 2B$$

$$= 2 \sin \frac{2A + 2B}{2} \cos \frac{2A - 2B}{2} + 2 \sin C \cos C$$

$$= 2 \sin \frac{2A + 2B}{2} \cos \frac{2A - 2B}{2} + 2 \sin C \cos C$$

$$= 2 \sin (A+B) \cos (A-B) + 2 \sin C \cos C$$

$$= 2 \sin (A+B) \cos (A-B) + 2 \sin C \cos C$$

$$= 2 \sin (A+B) \cos (A-B) + 2 \sin C \cos C$$

$$= 2 \sin C \cos (A-B) + 2 \sin C \cos C$$

$$= 2 \sin C \cos (A-B) + 2 \sin C \cos C$$

$$= 2 \operatorname{Sin} C \operatorname{Cos} (A - B) + 2 \operatorname{Sin} (A + B) = \operatorname{Sin}$$

$$(180^{\circ} - C) = Sin C$$

$$= 2 \operatorname{Sin} C[\operatorname{Cos}(A-B) + \operatorname{Cos}(C)]$$

= 
$$2 \sin C[\cos(A-B) + \cos(5)$$
  
=  $2 \sin C[\cos(A-B) + \cos(180^{\circ} - A+B)]$   
=  $2 \sin C[\cos(A-B) + \cos(180^{\circ} - A+B)]$ 

$$( : C = 180^{\circ} - A - B )$$

=2 Sin C[Cos 
$$(A-B)$$
-Cos $(A+B)$ ]

$$[\cdots \frac{\text{Cos} (180^{\circ} - A + B)}{\text{= } -\text{Cos} (A + B)}]$$

=2 Sin C 
$$\left[2 \text{ Sin } \frac{A-B+A+B}{2} \text{ Sin } \frac{A+B-A+B}{2}\right]$$

$$=2 \operatorname{Sin} G \operatorname{\mathsf{L}}^2$$

$$=2 \operatorname{Sin} G \cdot 2 \operatorname{Sin} A \cdot \operatorname{Sin} B = 4 \operatorname{Sin} A \cdot \operatorname{Sin} B \cdot \operatorname{Sin} G$$

$$=2 \operatorname{Sin} G \cdot 2 \operatorname{Sin} A \cdot \operatorname{Sin} B = 4 \operatorname{Sin} A \cdot \operatorname{Sin} B \cdot \operatorname{Sin} G$$

$$= R \cdot H \cdot S \cdot$$

Note:—The student is advised to commit the above result to memory, as many interesting results can be dervied from it. Some of them are explained below:—

We have seen that

Sin 2A+Sin2 B+Sin 2C=4 Sin A Sin B Sin C

(i) Replacing A, B, C by 
$$\frac{\pi}{2} - \frac{A}{2}$$
,  $\frac{\pi}{2} - \frac{B}{2}$ ,  $\frac{\pi}{2} - \frac{B}{2}$ 

 $\frac{C}{2}$  respectively, we get

$$\sin 2\left(\frac{\pi}{2} - \frac{A}{2}\right) + \sin 2\left(\frac{\pi}{2} - \frac{B}{2}\right) + \sin 2\left(\frac{\pi}{2} - \frac{C}{2}\right)$$

$$= 4 \sin \left(\frac{\pi}{2} - \frac{A}{2}\right) \sin \left(\frac{\pi}{2} - \frac{B}{2}\right) \sin \left(\frac{\pi}{2} - \frac{C}{2}\right)$$
or 
$$\sin(\pi - A) + \sin(\pi - B) + \sin(\pi - C) = 4 \sin \left(\frac{\pi}{2} - \frac{A}{2}\right)$$

$$\times Sin \left(\frac{\pi}{2} - \frac{B}{2}\right) Sin \left(\frac{\pi}{2} - \frac{C}{2}\right)$$

or Sin A+Sin B+Sin C=4 Cos 
$$\frac{A}{2}$$
 Cos  $\frac{B}{2}$  Cos  $\frac{C}{2}$ 

$$\left[ :: \operatorname{Sin} (\pi - \theta) = \operatorname{Sin} \theta \text{ and } \operatorname{Sin} \left( \frac{\pi}{2} - \theta \right) \right]$$

=Cosθ]
(ii) Similarly, changing A,B,C, into π-2A, π-2B, π-2C respectively, we have

Sin 
$$2(\pi-2A)$$
+Sin  $2(\pi-2B)$ +Sin  $2(\pi-2C)$   
=4 Sin  $(\pi-2A)$  Sin  $(\pi-2B)$ Sin  $(\pi-2C)$ 

or Sin 
$$(2\pi-4A)$$
 + Sin  $(2\pi-4B)$  + Sin  $(2\pi-4C)$   
=4 Sin  $(\pi-2A)$  Sin  $(\pi-2B)$  Sin  $(\pi-2C)$ 

Ex. 2. If A+B+C=180°, prove that  
Sin A+Sin B+Sin C=4 
$$\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$$
  
(P.U. 1948)

H. S.  
= 
$$(\sin A + \sin B) + \sin C$$
  
=  $2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} + 2 \sin \frac{C}{2} \cos \frac{C}{2}$   
=  $2 \sin \left(90^{\circ} - \frac{C}{2}\right) \cos \frac{A-B}{2} + 2 \sin \frac{C}{2} \cos \frac{C}{2}$   
 $\left(\because \frac{A+B}{2} = 90^{\circ} - \frac{C}{2}\right)$   
=  $2 \cos \frac{C}{2} \cos \frac{A-B}{2} + 2 \sin \frac{C}{2} \cos \frac{C}{2}$   
=  $2 \cos \frac{C}{2} \left(\cos \frac{A-B}{2} + \sin \frac{C}{2}\right)$   
=  $2 \cos \frac{C}{2} \left[\cos \frac{A-B}{2} + \sin \frac{C}{2}\right]$   
=  $2 \cos \frac{C}{2} \left[\cos \frac{A-B}{2} + \cos \frac{A+B}{2}\right]$   
=  $2 \cos \frac{C}{2} \left[\cos \frac{A-B}{2} + \cos \frac{A+B}{2}\right]$   
=  $2 \cos \frac{C}{2} \left[\cos \frac{A-B}{2} + \cos \frac{A+B}{2}\right]$   
=  $2 \cos \frac{C}{2} \left[\cos \frac{A-B}{2} + \cos \frac{A+B}{2}\right]$   
=  $2 \cos \frac{C}{2} \left[\cos \frac{A-B}{2} + \cos \frac{A+B}{2}\right]$ 

6.3. Identities holding between Cosines of three angles.

Sol. L. H. S.=
$$(\cos 2 A + \cos 2 B) + \cos 2 C$$
  
= $2 \cos (A+B) \cos (A-B) + (2 \cos^2 C - 1)$   
= $2 \cos (A+B) \cos (A-B) + (2 \cos^2 C)$   
= $-1+2[\cos (180^\circ - C) \cos (A-B) + \cos^2 C]$   
= $-1+2[-\cos C \cos (A-B) + \cos^2 C]$   
[::  $\cos (\pi - \theta) = -\cos \theta$ ]

$$= -1-2 \text{ Cos } C[\text{Cos } (A-B)-\text{Cos } C]$$

$$= -1-2 \text{ Cos } C[\text{Cos } (A-B)-\text{Cos } (180^{\circ}-\overline{A+B})]$$

$$= -1-2 \text{ Cos } C[\text{Cos } (A-B)+\text{Cos}(A+B)]$$

$$= -1-2 \text{ Cos } C[2 \text{ Cos } A \text{ Cos } B]$$

$$= -1-4 \text{ Cos } A \text{ Cos } B \text{ Cos } C=R, H, S.$$

Ex. 4. If  $A + B + C = 180^{\circ}$ , show that

Cos A - Cos B + Cos C = 1 + 4 Sin  $\frac{A}{2}$  Sin  $\frac{B}{2}$  Sin  $\frac{C}{2}$ (K. U. 1952)

Sol. L. H. S. = 
$$(\cos A - \cos B) + \cos C$$
  
=  $2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} + (1-2 \sin^2 \frac{C}{2})$   
 $(\because \cos 2 \theta = 1-2 \sin^2 \theta)$   
=  $1+2 \cos (90^\circ - \frac{C}{2}) \cos \frac{A-B}{2} - 2 \sin^2 \frac{C}{2}$   
=  $1+2 \sin \frac{C}{2} \cos \frac{A-B}{2} - 2 \sin^2 \frac{C}{2}$   
=  $1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \sin \frac{C}{2}\right]$   
=  $1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \sin (90^\circ - \frac{A+B}{2})\right]$   
=  $1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$   
=  $1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$   
=  $1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$   
=  $1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$   
=  $1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$   
=  $1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$ 

Note :- The student is advised to memorize the above identity.

6.4. Identities holding between the squares of Sines and Cosines of three angles.

Sol. L. H. 
$$S = \cos^2 A + \cos^2 B - \cos^2 C$$
  
 $= 1 - \sin^2 A + \cos^2 B - \cos^2 C$   
 $= 1 + (\cos^2 B - \sin^2 A) - \cos^2 C$   
 $= 1 + (\cos^2 B - \sin^2 A) - \cos^2 C$   
 $= 1 + \cos (A - B) \cos (A - B) - \cos^2 C$   
 $= 1 + \cos (A + B) \cos (A - B) = \cos^2 B$   $\sin^2 A$   
[:  $\cos (A + B) \cos (A - B) - \cos^2 C$   
 $= 1 + \cos (180^\circ - C) \cos (A - B) - \cos^2 C$   
 $= 1 - \cos C \cos (A - B) + \cos C$   
 $= 1 - \cos C \cos (A - B) + \cos (180^\circ - A - B)$   
 $= 1 - \cos C \cos (A - B) - \cos (A + B)$   
 $= 1 - \cos C \cos (A - B) - \cos (A + B)$   
 $= 1 - \cos C \cos (A - B) - \cos (A + B)$   
 $= 1 - \cos C \cos (A - B) - \cos (A + B)$   
 $= 1 - \cos C \cos (A - B) - \cos (A + B)$ 

Ex. 6. If A+B+C=180°, Show that

$$\frac{A + B + C - 100}{\cos^{2} \frac{A}{2} + \cos^{2} \frac{B}{2} + \cos^{2} \frac{C}{2}} = \frac{C}{2} \left(1 + \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}\right)$$

Sol. L. H. S.= 
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2}$$
  

$$= \frac{1 + \cos A}{2} + \frac{1 + \cos B}{2} + \left(1 - \sin^2 \frac{C}{2}\right)$$

$$\left(\because \cos A = 2 \cos^2 \frac{A}{2} - 1 \text{ etc.}\right)$$

$$= \left(\frac{1}{2} + \frac{1}{2} + 1\right) + \frac{1}{2} \left(\cos A + \cos B\right) - \sin^2 \frac{C}{2}$$
(Please note this step)

=2+
$$\frac{1}{2}$$
 (2 Cos  $\frac{A+B}{2}$  Cos  $\frac{A-B}{2}$ )-Sin<sup>2</sup>  $\frac{C}{2}$ 

$$=2 + \cos \frac{A+B}{2} \cos \frac{A-B}{2} - \sin^{2} \frac{C}{2}$$

$$=2 + \cos \left(90^{\circ} - \frac{C}{2}\right) \cos \frac{A-B}{2} - \sin^{2} \frac{C}{2}$$

$$=2 + \sin \frac{C}{2} \cdot \cos \frac{A-B}{2} - \sin^{2} \frac{C}{2}$$

$$=2 + \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \sin \frac{C}{2}\right]$$

$$=2 + \sin \frac{C}{2} \left[\cos \frac{A-B}{2} \sin \left(90^{\circ} - \frac{A+B}{2}\right)\right]$$

$$=2 + \sin \frac{C}{2} \left[\cos \frac{A-B}{2} \cos \frac{A+B}{2}\right]$$

$$=2 + \sin \frac{C}{2} \left[\sin \frac{A}{2} \sin \frac{B}{2}\right]$$

$$=2 + \sin \frac{C}{2} \left[\sin \frac{A}{2} \sin \frac{B}{2}\right]$$

$$=2 + \sin \frac{C}{2} \left[\sin \frac{A}{2} \sin \frac{B}{2}\right]$$

$$=2 + \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$$

Ex. 7. If A+B+C=180°, prove that:

$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2 \sin \frac{A}{2}$$
  
 $\sin \frac{B}{2} \sin \frac{C}{2}$  (P. U. 1949)

(Please note this step)

Sol. L. H. S.=
$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2}$$
  
=  $\frac{1 - \cos A}{2} + \frac{1 - \cos B}{2} + \sin^2 \frac{C}{2}$   
 $(\because 1 - \cos A = 2 \sin^2 \frac{A}{2} \text{ etc.})$   
=  $(\frac{1}{2} + \frac{1}{2}) - \frac{1}{2} (\cos A + \cos B) + \sin^2 \frac{C}{2}$ 

$$= 1 - \frac{1}{2} \left( 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \right) + \sin^{2} \frac{C}{2}$$

$$= 1 - \cos \frac{A+B}{2} \cos \frac{A-B}{2} + \sin^{2} \frac{C}{2}$$

$$= 1 - \cos \left( 90^{\circ} - \frac{C}{2} \right) \cos \frac{A-B}{2} + \sin^{2} \frac{C}{2}$$

$$= 1 - \sin \frac{C}{2} \cos \frac{A-B}{2} + \sin^{2} \frac{C}{2}$$

$$= 1 - \sin \frac{C}{2} \left( \cos \frac{A-B}{2} - \sin \frac{C}{2} \right)$$

$$= 1 - \sin \frac{C}{2} \left( \cos \frac{A-B}{2} - \sin \left( 90^{\circ} - \frac{A+B}{2} \right) \right)$$

$$= 1 - \sin \frac{C}{2} \left( \cos \frac{A-B}{2} - \cos \frac{A+B}{2} \right)$$

$$= 1 - \sin \frac{C}{2} \left( 2 \sin \frac{A}{2} \sin \frac{B}{2} \right)$$

$$= 1 - 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} = R.H.S.$$

6.5. Identities holding between tangents or colangents of three angles.

Ex. 8. If A+B+C=180°, prove that

$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1$$
(K. U. 1949)

Sol. 
$$A+B+C=180^{\circ}$$
  
 $\therefore \frac{A}{2} + \frac{B}{2} = 90^{\circ} - \frac{C}{2}$   
or  $\tan(\frac{A}{2} + \frac{B}{2}) = \tan(90^{\circ} - \frac{C}{2})$ 

or 
$$\frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2}\tan\frac{B}{2}} = \cot\frac{C}{2}$$

$$=\frac{1}{\tan\frac{C}{2}}$$

By Cross-Multiplication, we get

$$\tan \frac{A}{2} \tan \frac{C}{2} + \tan \frac{B}{2} \tan \frac{C}{2} = 1 - \tan \frac{A}{2} \tan \frac{B}{2}$$
or 
$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} - \tan \frac{A}{2} = 1$$

Ex. 9. If A+B+C=180°, prove that

$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \times$$

 $Cot \frac{C}{2}$ 

Sol. 
$$\frac{A}{2} + \frac{B}{2} = 90^{\circ} - \frac{C}{2}$$

$$\therefore \quad Cot\left(\frac{A}{2} + \frac{B}{2}\right) = Cot\left(90^{\circ} - \frac{C}{2}\right)$$
or 
$$\frac{Cot\left(\frac{A}{2} + Cot\left(\frac{B}{2}\right)\right)}{Cot\left(\frac{A}{2} + Cot\left(\frac{B}{2}\right)\right)} = tan\left(\frac{C}{2}\right)$$

$$\left[ \because \cot (A+B) = \frac{\cot A \cot B - 1}{\cot A + \cot B} \right]$$

$$= \frac{1}{\cot \frac{C}{2}}$$

By Cross-Multiplication, we get

By Cross-Multiplication, we get
$$\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cot \frac{C}{2} - \cot \frac{C}{2} \cdot \cot \frac{A}{2} + \cot \frac{B}{2}$$

$$\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cot \frac{C}{2} - \cot \frac{C}{2} \cdot \cot \frac{A}{2} + \cot \frac{C}{2}$$

$$Cot \frac{1}{2} \cdot Cot \frac{1}{2} \cdot$$

Ex. 10. Prove that

Ex. 10. Prove that 
$$\frac{\text{Cot }A + \text{Cot }B}{\text{tan }A + \text{tan }B} + \frac{\text{Cot }B + \text{Cot }C}{\text{tan }B + \text{tan }C} + \frac{\text{Cot }C + \text{Cot }A}{\text{tan }C + \text{tan }A} = 1,$$
 if  $A + B + C = 180^{\circ}$ 

Sol. L.H.S.

H.S.
$$= \frac{1}{\tan A} + \frac{1}{\tan B} + \frac{1}{\tan B} + \frac{1}{\tan C} + \frac{1}{\tan C} + \frac{1}{\tan A}$$

$$= \frac{\tan A + \tan B}{\tan A + \tan B} + \frac{\tan B + \tan C}{\tan B + \tan C} + \frac{\tan C + \tan A}{\tan C + \tan A}$$

$$= \frac{\tan A + \tan B}{\tan A + \tan B} + \frac{\tan B + \tan C}{\tan B + \tan C} + \frac{\tan C + \tan A}{\tan C + \tan A}$$

$$= \frac{1}{\tan A + \tan B} + \frac{1}{\tan B + \tan C} + \frac{1}{\tan C + \tan A}$$

$$= \frac{1}{\tan A + \tan B} + \frac{1}{\tan B + \tan C} + \frac{1}{\tan C + \tan A}$$

$$= \frac{\tan C + \tan A + \tan B}{\tan A + \tan B} + \frac{\cos C}{\cot A}$$

 $A + B = 180^{\circ} - C$ 

Now 
$$A+B=10$$
  
 $\therefore \tan (A+B)=\tan(180^{\circ}-C)$ 

$$\frac{\tan (A+B) = \tan (10)}{\cot \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}} = -\tan C \qquad \therefore \tan (\pi - 0) = -\tan \theta$$

By cross-multiplication, we get

tan A+tan B=-tan C+tan A tan B tan C

tan A+tan B=-tan C+tan A. tan B. tan C  

$$\cdot$$
 tan A+tan B+tan C=tan A. tan B+tan

Substituting this value of tan A+tan B+tan C in (1) we have

L. H. S. = 
$$\frac{\tan A \cdot \tan B}{\tan A \cdot \tan C} = 1 = R \cdot H \cdot S$$
.

# EXERCISE VIII

(A) Identities holding between Sines of three angles.

.. If A+B+C=180°, show that:

1. 
$$\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$$

2.  $\sin A + \sin B - \sin C = 4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}$ 

3. Sin 2A+Sin 2B+Sin 2C=4 Sin A Sin B Sin C (K. U. 1955)

4. Sin 2A-Sin 2B+Sin 2C=4 Cos A Sin B Cos C (K. U. 1953)

(B) Identities holding between Cosines of three angles.

If A+B+C=180°, prove that:

5. Cos A+Cos B+Cos C=1+4 Sir. 
$$\frac{A}{2}$$
 Sin  $\frac{B}{2}$  Sin  $\frac{C}{2}$ 

6. Cos 2A+Cos 2B+Cos 2C =-1-4 Cos A Cos B Cos C

7. Cos 2A+Cos 2B-Cos 2C =1-4 Sin A Sin B Cos C (K. U. 1949)

8.  $\cos \frac{A}{2}$ .  $\cos \frac{B-C}{3} + \cos \frac{B}{2} + \cos \frac{C-A}{2} + \cos \frac{C}{2}$ .  $\cos \frac{A-B}{2} = \sin A + \sin B + \sin C$ (P. U. 1943)

(C) Identities holding between the Squares of Sines and Cosines of three angles.

If A+B+C=180°, prove that

9. Sin2 A+Sin2 B+Sin2 C=1-2 Sin A Sin B Sin C

10. Cos<sup>2</sup> A+Cos<sup>2</sup> B+Cos<sup>2</sup> C=1-2 Cos A Cos B Cos C And hence show that

Cos A. Cos B. Cos C is less than 1

(K. U. Pre. 1962)

[Hint:-(ii) L. H. S. is necessarily+ve. So must be the R. H. S. Hence Cos A Cos B Cos C is less than \frac{1}{2}]

11. 
$$\sin \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2 \sin \frac{A}{2} \cos \frac{B}{2}$$

 $\sin^2 \frac{\mathbf{C}}{2}$ 

12. 
$$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} - \sin^2 \frac{C}{2} = 1 - 2 \cos \frac{A}{2}$$

$$\cos \frac{B}{2} = \sin \frac{C}{2}$$

13. 
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2(1+\sin \frac{A}{2})$$

$$\operatorname{Sin} \frac{\mathsf{B}}{2} \operatorname{Sin} \frac{\mathsf{C}}{2}$$

14. 
$$\cos^2 A + \cos^2 B - \cos^2 C$$
  
= 1-Sin A Sin B Cos C

(D) Identities holding between tangents and Cotangents of three angles.

If A+B+C=180, prove that

(K. U. Pre. 1962)

18. Cot 
$$\frac{A}{2}$$
 +Cot  $\frac{B}{2}$  + Cot  $\frac{C}{2}$  = Cot  $\frac{A}{2}$  Cot  $\frac{B}{2}$ 

19. 
$$\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan$$

$$\frac{A}{2}=1$$

(K. U. 1949)

20. Cot A+Cot B+Cot C
=Cot A. Cot B. Cot C+Cosec A Cosec B × Cosec C

(E) Miscellaneous Identities

If A+B+C=180°, prove that

21.  $\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = 8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$  (K. U. 1958)

22. 
$$\frac{\cos A}{\sin B. \sin C} + \frac{\cos B}{\sin C. \sin A} + \frac{\cos C}{\cos A. \sin B} = 2$$

23. If x+y+z=xyz, prove that

(i) 
$$\frac{2x}{1-x^2} + \frac{2y}{1-y^2} + \frac{2z}{1-z^2} = \frac{2x}{1-x^2} \cdot \frac{2y}{1-y^2} \cdot \frac{2z}{1-z^2}$$

(ii) 
$$x(1-y^2)(1-z^2)+y(1-z^2)(1-x^2)+z(1-x^2)(1-y^2)=4xyz$$

[Hint:—Result (ii) follows immediately by multiplying (i) by  $(1-x^2)(1-y^2)(1-z^2)$ ]

If A+B+C=180°, prove that :-

24. 
$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$$

$$= 4 \cos \frac{\pi + A}{4} \cos \frac{\pi + B}{4} \cos \frac{\pi - C}{4}$$

25. 
$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$$
  
=1+4  $\sin \frac{\pi - A}{4} \sin \frac{\pi - B}{4} \sin \frac{\pi - C}{4}$ 

#### 6. 6. Eliminations

No hard and fast rules can be laid down for eliminating Trigonometrical functions from given equations. However, if, for instance, from two given equations, we get  $\sin \theta = x$  and  $\cos \theta = y$ , then we have  $1 = \sin^2 \theta + \cos^2 \theta = x^2 + y^2$ .

Hence  $x^2+y^2=1$  is the required eliminant as it is free from  $\theta$ . The following solved examples will illustrate the methods.

Ex. 1. Eliminate 
$$\theta$$
 from :—

 $a \cos \theta + b \sin \theta = C$ 
 $b \cos \theta - a \sin \theta = d$ 

Sol. Squaring and adding these two equations, we get 
$$a^2(\cos^2\theta + \sin^2\theta) + b^2(\cos^2\theta + \sin^2\theta) = C^2 + d^2$$
 or  $a^2 + b^2 = c^2 + d^2$ 

(:  $\cos^2 \theta + \sin^2 \theta = 1$ )

which is the eleminant.

Ex. 2. Eliminate  $\theta$  from the equations:—

$$x \cos \theta + y \sin \theta = c$$
  
 $a \cos \theta + b \sin \theta = d$ 

Sol. We have 
$$x \cos \theta + y \sin \theta - c = 0$$
  
 $a \cos \theta + b \sin \theta - d = 0$ 

By Cross-multiplication, we get

$$\frac{\cos \theta}{bc - yd} = \frac{\sin \theta}{dx - ca} = \frac{1}{bx - ay}$$

$$\therefore \cos \theta = \frac{bc - yd}{bx - ay} \text{ and } \sin \theta = \frac{dx - ca}{bx - ay}$$

Squaring and adding these two, we get

$$1 \equiv \cos^2 \theta + \sin^2 \theta = \left(\frac{bc - yd}{bx - ay}\right)^2 + \left(\frac{dx - ca}{bx - ay}\right)^2$$

or  $(bx-ay)^2=(bc-yd)^2+(dx-ca)^2$  which is the required eliminant.

Ex. 3. Eliminate  $\theta$  from the equations:  $x=a \sin \theta$ ;  $y=b \cot \theta$ 

Sol. From the first equation,  

$$\sin \theta = \frac{x}{a} : \cot \theta = \sqrt{\frac{a^2 - x^2}{x}}$$

Substituting this value of  $\cot \theta$  in second equation, we get.



$$y=b.\sqrt{\frac{a^2-x^2}{x}}$$

$$x^2y^2=b^2(a^2-x^2)$$

which is the required eliminant.

**Ex.** 4. Eliminate  $\theta$  from :-

Cosec  $\theta$ -Sin  $\theta=m$  and sec  $\theta$ -Cos  $\theta=n$ 

Sol. From the given equations, we get

om the given equations, we get 
$$1-\sin^2\theta=m\sin\theta$$
 or  $\cos^2\theta=m\sin\theta$  or  $\cos^2\theta=m\sin\theta$ 

and 
$$1-\cos^2\theta=n\cos\theta$$

or 
$$\sin^2 \theta = n \cos \theta$$

Now 
$$\cos^2 \theta = m \sin \theta$$

and 
$$\sin^2 \theta = n \cos \theta$$

.. By dividing (ii) by (i), we get

$$\tan^2 \theta = \frac{n}{m} \cot \theta$$

or

$$\tan^3 \ \theta = \frac{n}{m}$$

$$\tan^3 \theta = \frac{n}{m}$$
 or  $\tan \theta = \left(\frac{n}{m}\right)^{\frac{1}{3}}$ 

$$\therefore \sin \theta = \frac{n^{\frac{1}{3}}}{\sqrt{m^{\frac{2}{3}} + n^{\frac{2}{3}}}}$$
and Cosec  $\theta = \frac{\sqrt{m^{\frac{2}{3}} + n^{\frac{2}{3}}}}{\sqrt{n^{\frac{2}{3}} + n^{\frac{2}{3}}}}$ 

Substituting these values of Sin  $\theta$  and Cosec  $\theta$  in the equation Cosec  $\theta$ -Sin  $\theta$ =m, we have

3.

$$\frac{\sqrt{m^{\frac{2}{3}} + n^{\frac{2}{3}}}}{n^{\frac{1}{3}}} - \frac{n^{\frac{1}{3}}}{\sqrt{m^{\frac{2}{3}} + n^{\frac{2}{3}}}} = m$$
or
$$\frac{m^{\frac{2}{3}}}{n^{\frac{1}{3}} \sqrt{m^{\frac{2}{3}} + n^{\frac{2}{3}}}} = m$$
or
$$\frac{m^{\frac{2}{3}}}{\sqrt{m^{\frac{2}{3}} + n^{\frac{2}{3}}}} = mn^{\frac{1}{3}}$$
or
$$\frac{1}{\sqrt{m^{\frac{2}{3}} + n^{\frac{2}{3}}}} = (mn)^{-\frac{2}{3}}$$

Which is the required eliminant.

#### EXERCISE IX

Eliminate  $\theta$  from the equations:—

1. (i) 
$$x=a \cos \theta$$
,  $y=a \sin \theta$   
(ii)  $x=a \cos \theta$ ,  $y=b \sin \theta$   
(iii)  $x=a \sec \theta$ ,  $y=b \operatorname{Cosec} \theta$   
(iv)  $x=a \sec \theta$ ,  $y=b \tan \theta$ 

2. (v) 
$$x=a \operatorname{Sec} \theta$$
,  $y=b \operatorname{Cot} \theta$   
2. (i)  $x=\operatorname{Sin} \theta + \operatorname{Cos} \theta$ ,  $y=\operatorname{Sin} \theta - \operatorname{Cos} \theta$ 

(ii) 
$$x=5 \cos \theta - 7 \sin \theta$$
,  $y=4 \cos \theta + 9 \sin \theta$ 

(iii) 
$$3 \tan \theta + \sec \theta = p$$
,  $\tan \theta - \sec \theta = q$   
 $x = \sin (\theta + \alpha)$ ,  $y = \cos (\theta - \beta)$ 

4. 
$$\frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^2 - b^2 \text{ and}$$

$$\frac{ax}{\sin \theta} + \frac{by}{\sin^2 \theta} = 0$$

$$\frac{\cos^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = 0$$

- 5.  $x = \cos^2 \theta \sin^2 \theta$ ,  $y = 2 \sin \theta \cos \theta$
- 6.  $x=a \cos 2\theta, y=b \sin \theta$
- 7.  $x=\sin\theta+\cos\theta$ ,  $y=\sin^3\theta+\cos^3\theta$
- 8. If  $\tan \theta + \sin \theta = m$ and  $\tan \theta - \sin \theta = n$ prove that  $m^2 - n^2 = 4\sqrt{mn}$ 
  - 9. Eliminate  $\theta$  and  $\varphi$  from  $\sin \theta + \sin \varphi = p$ ;  $\cos \theta + \cos \varphi = q$  and  $\cos (\theta \varphi) = r$
- 10. If  $x=\gamma \sin \theta \cos \varphi$   $y=\gamma \sin \theta \sin \varphi$   $z=\gamma \cos \theta$ Show that  $x^2+y^2+z^2=z^2$

#### CHAPTER VII

## Trigonometrical Equations

7.1 (a) Values of Sine.

We know that : -

 $\sin \theta = 0$ 

Sin  $\pi=0$ , Sin  $3\pi=0$ 

Sin  $4\pi = 0$ , and so on.

 $\therefore \text{ If Sin } \theta=0, \text{ then } \theta=0, \pi, 2\pi, 3\pi, \dots$ 

or

 $\theta = n\pi$  where n = 0 or anyother  $+v\epsilon$  or  $-v\epsilon$  integer.

Hence if  $Sin \theta = 0$ , then

 $\theta = n\pi$  where n = 0, 1, 2, 3.

(b) values of Cosine:

We know that :-

Cos  $\frac{\pi}{2} = 0$ , Cos  $\frac{3\pi}{2} = 0$ , Cos  $\frac{5\pi}{2} = 0$ , Cos  $\frac{7\pi}{2} = 0$  and so on

 $\therefore$  If  $\cos \theta = 0$  then

$$\theta = \frac{\pi}{2} \; ; \; \frac{3\pi}{2} \; , \; \frac{5\pi}{2} \; , \dots .$$

or  $\theta =$  any odd multiple of  $\frac{\pi}{2}$ 

Hence if Cos H = 0, then

$$\theta = (2n+1) - \frac{\pi}{2}$$
 where  $n = 0, 1, 2, 3, \dots$ 

7.2. Find a general expression for angles having the same sine.

Sol. Let a be the least angle, positive or negative, having the same sine as Sine  $\theta$ . Then Sin  $\theta = \sin \alpha$ 

or 
$$\sin \theta - \sin \alpha = 0$$

or 
$$2 \cos \frac{\theta + \alpha}{2} \sin \frac{\theta - \alpha}{2} = 0$$

Either Cos 
$$\frac{\theta + \alpha}{2} = 0$$
 or Sin  $\frac{\theta - \alpha}{2} = 0$   

$$\therefore \frac{\theta + \alpha}{2} = (2\gamma + 1)\frac{\pi}{2}$$
 
$$\therefore \frac{\theta - \alpha}{2} = p\pi \text{ (article 7 (a))}$$
 or  $\theta = (2\gamma + 1)\pi - \alpha \dots (1)$  or  $\theta = 2p\pi + \alpha \dots (2)$ 

Combining results (1) and (2) we get

 $\theta = n\pi + (-1)^n \alpha$  where n is zero or  $\alpha - ve$  or +ve integer. This combined result agrees with result (1) if n is odd and with result (2) if n is even.

find a general expression for all angles having the same Cor. Cosecant.

Here Cosec θ=Cosec α

Which gives  $\sin \theta = \sin \alpha$ 

(This is the same as article 7.2)

7.3. Find a general expression for all angles having the same Cosine.

Let a be the least angle having the same Cosine as Cos  $\theta$ .

i.e. 
$$\cos \theta = \cos \alpha$$
  
or  $\cos \alpha - \cos \theta = 0$ 

$$\therefore 2 \sin \frac{\theta + \alpha}{2} \sin \frac{\theta - \alpha}{2} = 0$$

Either Sin 
$$\frac{\theta + \alpha}{2} = 0$$
 Or  $\frac{\theta - \alpha}{2} = 0$  Which gives  $\frac{\theta + \alpha}{2} = K\pi$  Which gives  $\frac{\theta - \alpha}{2} = p\pi$  or  $\theta = 2p\pi + \alpha$ 

Combining these two results, we get

 $\theta = 2n\pi \pm \alpha$  where n is zero

or a positive or negative integer.

Cor. Find the general expression for all angles having the same Secant.

Sol. Let  $\alpha$  be the least angle (+ve or -ve) having same Secant as Sec  $\theta$ , then

Sec # Sec z

Which gives  $\cos \alpha = \cos \theta$ 

(This is the same as article 7.3)

- 7.4 Find the general expression for all angles having the same tangent.
  - Sol. Let  $\alpha$  be the least angle having the same tangent and tangent  $\theta$

i.c.  $\tan \theta = \tan \alpha$ 

$$\frac{\sin \theta}{\cos \theta} = \frac{\sin \alpha}{\cos \theta}$$

 $\sin \theta \cos \alpha - \cos \theta \sin \alpha = 0$  $\cos \theta \cos \alpha$ 

or 
$$\frac{\sin (\theta - \alpha)}{\cos \theta \cos \alpha} = 0$$

$$\therefore \quad \operatorname{Sin} (\theta - \alpha) = 0$$

Which gives  $\theta - \alpha = n\pi$  $\vdots$   $\theta = n\pi + \alpha$ 

[article 7 (a)]

Cor. Find the general expression for all angles having the same

Sol. Let  $\alpha$  be the least angle (+ve or -ve) having the Same Cotangent as Cot  $\theta$ , then.

Cot  $\theta = \cot \alpha$ 

which gives  $\tan \theta = \tan \alpha$ (This is the same as article 7.4) : In all the cases, we have to find a the least angle, and put it in radians.

Solved Examples

Ex. 1. Solve the following:

(i) Sin 
$$\theta = \frac{\sqrt{3}}{2}$$
 (ii) Sec  $\theta = \frac{2}{\sqrt{3}}$  (iii)  $\tan \theta = \sqrt{3}$ 

Sol.

(i) Sin  $\theta = \frac{\sqrt{3}}{2}$  Here the least angle for which  $\sin^{1}\theta = \frac{\sqrt{3}}{2} \text{ is } 60^{\circ}$ 

$$\alpha=60^{\circ}=\frac{\pi}{3}$$

Hence 
$$\theta = n\pi + (-1)^n - \frac{\pi}{3}$$
 (article 7.2)

(ii) Sec 
$$\theta = \frac{2}{\sqrt{3}}$$
  

$$\therefore \cos \theta = \frac{\sqrt{3}}{2}$$
Here  $\alpha = 30^{\circ} = \frac{\pi}{6}$ 

Hence 
$$\theta = 2n\pi \pm \frac{\pi}{6}$$
 (article 7.3)

(iii) 
$$\tan \theta = \sqrt{3}$$
 Here  $\alpha = 60^{\circ} = \frac{\pi}{3}$ 

Hence 
$$\theta = n\pi + \frac{\pi}{3}$$
 (article 7.4)

Ex. 2 Solve the following equations:

(ii)  $\tan \theta + 1 = 0$  (iii)  $2 \sin \theta + 1 = 0$ (i)  $\cos \theta = -\frac{1}{2}$ Sol. (i)  $\cos \theta = -\frac{1}{2}$ 

The least angle lying between 0 and 2m and satisfying this equation is  $120^{\circ}$  or  $\frac{2\pi}{3}$ 

$$0 \quad j \quad cos \theta = \cos \frac{2\pi}{3}$$

Hence 
$$\theta = 2n\pi \pm \frac{2\pi}{3}$$

(ii) Here  $\tan \theta = -1$ 

The least angle lying between 0 and  $2\pi$  and satisfying the given equation  $135^{\circ}$  or  $=\frac{3\pi}{4}$ 

$$\therefore \quad \theta = n\pi + \frac{3\pi}{4}$$

(iii) Here Sin  $\theta = -\frac{1}{2}$  and the least angle lying between 0 and  $2\pi$  and satisfying this equation is 210°

or 
$$\frac{7\pi}{6}$$

$$\theta = n\pi + (7)^n \frac{7\pi}{6}$$

Ex. 3. Solve :-

(i) 
$$\cos 9\theta = \frac{1}{\sqrt{2}}$$
 (ii)  $\sin 2\theta = 2 \cos \theta$ 

(iii)  $4 \operatorname{Sin}^2 \theta = 3$ 

Sol. (i) Here 
$$\cos \theta = \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4}$$

$$9\theta = 2n\pi \pm \frac{\pi}{4}$$

which gives 
$$\theta = \frac{1}{9} \left[ 2n\pi \pm \frac{\pi}{4} \right]$$

(ii) Here Sin  $2\theta-2$  Cos  $\theta=0$ or  $2 \sin \theta \cos \theta-2$  Cos  $\theta=0$ or  $2 \cos \theta$  (Sin  $\theta-1$ ) =0 either  $2 \cos \theta=0$  $\therefore$  Cos $\theta=0$ 

or  $\sin\theta - 1 = 0$ 

$$\theta = (2n+1) \frac{\pi}{2} \therefore \sin \theta = 1 = \sin \frac{\pi}{2}$$
$$\therefore \theta = p\pi + (-1)^{p} \frac{\pi}{2}$$

(iii) 
$$4 \sin^2 \theta = 3$$

This gives Sin  $\theta = \pm \frac{\sqrt{3}}{2}$ 

Now  $\sin \theta = \frac{\sqrt{3}}{2} = \sin \frac{\pi}{3}$  $\theta = n\pi + (-1)^n \frac{\pi}{3}$ 

Again,  $\sin \theta = -\frac{\sqrt{3}}{2} = \sin\left(\pi + \frac{\pi}{3}\right) = \sin\frac{4\pi}{3}$ 

 $\theta = p\pi + (-1)^p \frac{4\pi}{3}$ 

or  $\theta = p\pi - (-1)^p \frac{\pi}{3}$  if we take -ve angle.

**Ex.** 4. What is the most general value of  $\theta$  which satisfies the equations:—

Sec  $\theta = -\sqrt{2}$ ; Cot  $\theta = 1$ 

Sol. Sec  $\theta = -\sqrt{2}$ 

or  $\cos \theta = -\frac{1}{\sqrt{2}} = \cos \frac{3\pi}{4}$ 

 $\theta = 2n\pi \pm \frac{3\pi}{4} \qquad \dots (1)$ 

Also Cot  $\theta = 1$ 

or  $\tan \theta = 1 = \tan \frac{\pi}{4}$ 

 $\theta = n\pi + \frac{\pi}{4} \qquad \dots (2)$ 

Clearly the values common to (1) and (2) are given by

$$\theta = (2m+1)\pi + \frac{\pi}{4}$$

Ex. 5. Solve the equations:

(i) 
$$\cos 3 \theta = \sin 2 \theta$$

(ii) 
$$\tan n\theta = \cot m\theta$$

(iii) 4 
$$\cos^2 \theta - 4 \sin \theta = 1$$

Sol. (i) 
$$\cos 3 \theta = \sin 2 \theta = \cos(\frac{\pi}{2} - 2 \theta)$$

or 
$$3 \theta = 2n\pi \pm \left(\frac{\pi}{2} - 2 \theta\right)$$
  $\left[\because \alpha = \frac{\pi}{2} - 2 \theta\right]$ 

$$\therefore \alpha = \frac{\pi}{2} - 2 \theta$$

or 3 
$$\theta \pm 2$$
  $\theta = 2n\pi \pm \frac{\pi}{2}$ 

or 
$$(3\pm 2) \theta = (4n\pm 1) \frac{\pi}{2}$$

$$\therefore \theta = \frac{(4n\pm 1)\pi}{2(3\pm 2)}$$

(ii) 
$$\tan n\theta = \cot m\theta = \tan(\frac{\pi}{2} - m\theta)$$

or 
$$n\theta = K\pi + \left(\frac{\pi}{2} - m\theta\right)$$
  $\left[\because \alpha = \frac{\pi}{9} - m\theta\right]$ 

$$\left[\because \alpha = \frac{\pi}{2} - m\theta\right]$$

or 
$$(n+m)$$
  $\theta = k\pi + \frac{\pi}{2}$ 

or 
$$(m+n) \theta = \frac{2k\pi + \pi}{2}$$

$$=(2k+1)\frac{\pi}{2}$$

$$\therefore \theta = \frac{2k+1}{m+n} \cdot \frac{\pi}{2}$$

iii) 4 
$$\cos^2 \theta - 4 \sin \theta = 1$$

or 
$$4(1-\sin^2\theta)-4\sin^2\theta-1=0$$

(Please note this Step.)

or 
$$4 \operatorname{Sin}^2 \theta + 4 \operatorname{Sin} \theta - 3 = 0$$

or Sin 
$$\theta = \frac{-4 \pm \sqrt{16 + 48}}{8} = \frac{-4 \pm 8}{8} = \frac{1}{2}, -\frac{3}{2}$$

Now Sin 
$$\theta = \frac{1}{2} = \sin \frac{\pi}{6}$$
 Here  $\alpha = -\frac{\pi}{6}$ 

$$\therefore \theta = n\pi + (-1)^n \frac{\pi}{6}$$

The second value being  $-\frac{3}{2}$  is impossible because Sin  $\theta$ cannot be numerically greater than 1.

#### EXERCISE X

Find the most general values of  $\theta$  satisfying the equations:

1. Sin 
$$2\theta = 0$$

2. Sin 
$$\theta = \frac{1}{2}$$

2. 
$$\sin \theta = \frac{1}{2}$$
 3.  $\sin \theta = -\frac{1}{2}$ 

4. Sin 
$$3\theta = \frac{\sqrt{3}}{2}$$

5. Sin 
$$\theta = p$$

Sin 
$$3\theta = \frac{\sqrt{3}}{2}$$
 5. Sin  $\theta = p$  6. Cosec  $\theta = \frac{1}{q}$ 

7. Sin 
$$2\theta = \sin 2\alpha + 8$$
. Cosec  $\theta = \operatorname{Cosec} \alpha$ 

9. Cos 
$$\theta = \frac{1}{\sqrt{2}}$$
 10. Cos  $\theta = -\frac{1}{2}$  11. Cos  $4\theta = \frac{\sqrt{3}}{2}$ 

12. 
$$\cos \theta = p$$

13. 
$$\cos m\theta = \cos n\theta$$

14. Cot 
$$\theta = \sqrt{3}$$

Cot 
$$\theta = \sqrt{3}$$
 15. tan  $\theta = -1$ 

16. 
$$\tan \theta = \frac{3}{4}$$

17. 
$$\tan \theta = p$$

17. 
$$\tan \theta = p$$
 18.  $\cos 3x = \sin 2x$ 

19. 
$$\cos m\theta = \sin n\theta$$
 20.  $\tan 2\theta = \cot 5\theta$ 

21. 
$$\cot^2 \theta = 3$$

22. 
$$\tan 3\theta \tan 5\theta = 1$$

(Hint:—tan  $3\theta = \text{Cot } 5\theta$ )

23. 5 
$$\tan^{1} \theta - 1 = 4 \tan^{2} \theta$$

24. 
$$\sin^2 \theta - 2 \cos \theta + \frac{1}{4} = 0$$

25. 
$$2 \cos^2 \theta - 7 \cos \theta + 5 = 0$$

26. 
$$\sec^4 \theta - 6 \sec^2 \theta + 8 = 0$$

Find the most general value of  $\theta$  satisfying the following equations simultaneously:-

27. Sin 
$$\theta = -\frac{1}{2}$$
 and tan  $\theta = \frac{1}{\sqrt{3}}$ 

28. Cot 
$$\theta = -\sqrt{3}$$
 and Sin  $\theta = -\frac{1}{2}$ 

29. Sec 
$$\theta = -\sqrt{2}$$
 and Cot  $\theta = 1$ 

Solve the equations :-

30. Cos 
$$(A-B)=\frac{1}{2}$$
 and Sin  $(A+B)=\frac{1}{2}$ 

31. 
$$\cos(2x+3y)=\frac{1}{2}$$
 and  $\cos(3x+2)=\frac{\sqrt{3}}{2}$ 

(P. U. 1944)

32. 
$$\tan (A+B+C) = \sqrt{3}$$
  
 $\tan (A-B+C) = 1$ 

and 
$$\tan (A+B-C) = \frac{1}{\sqrt{3}}$$

7.5 Solution of different types of Trigonometrical Equations.

(a) Equations of the form  $a \cos \theta + b \sin \theta = c$ In this type of equation, we proceed as under :— Put  $a = \gamma \cos \varphi$  and  $b = \gamma \sin \varphi$  where  $\gamma$  is a + ve quantity Squaring and adding, we get

 $\sqrt{a^2+b^2} = \gamma$  and by division, we get  $\tan \varphi = \frac{b}{a}$  After making these substitutions, the given equation is reduced to the following form  $\gamma$ 

Cos 
$$\varphi$$
 Cos  $\theta + \gamma$  Sin  $\varphi$  Sin  $\theta = \mathbb{C}$   
or  $\gamma$  Cos  $(\theta - \varphi) = \mathbb{C}$   
or Cos  $(\theta - \varphi) = \frac{\mathbb{C}}{\gamma} = \frac{\mathbb{C}}{\sqrt{a^2 + c^2}} = -\mathbb{C}$ os  $\alpha$  (Say)  
 $\therefore$  By article 7.3, we have  $\theta - \varphi = 2n \pi \pm \alpha$   
Which gives  $\theta = 2n \pi \pm \alpha + \varphi$   
Where  $\tan \varphi = \frac{b}{a}$  and  $\cos \alpha = \frac{\mathbb{C}}{\sqrt{a^2 + b^2}}$ 

Note: The equation  $a \operatorname{Cos} \theta + b \operatorname{Sin} \theta = c \operatorname{can}$  also be solved by the substitution  $a = \gamma \operatorname{Sin} \varphi$  and  $b = \gamma \operatorname{Cos} \varphi$  and we get two different solutions by adopting two different methods. But these do differ from each other at all, which is shown below:

**Ex.** Solve the equation  $\sqrt{3} \cos \theta + \sin \theta = \sqrt{2}$ 

## Sol. First method :-

Put  $\sqrt{3}=\gamma$  Cos  $\alpha$  and  $1=\gamma$  Sin  $\alpha$  so that  $\gamma=2$  and  $\tan\alpha=\frac{1}{\sqrt{3}}$  or  $\alpha=\frac{\pi}{6}$  Now the given equation is reduced to  $\gamma$  Cos  $(\theta-\alpha)=\sqrt{2}$ 

or Cos 
$$(\theta - \alpha) = \frac{\sqrt{2}}{\gamma} = \frac{\sqrt{2}}{2} = \frac{\sqrt{1}}{2} = \text{Cos } \frac{\pi}{4}$$
  
or  $0 - \alpha = 2n\pi \pm \frac{\pi}{4}$  (article 7·3)  
or  $0 = 2n\pi \pm \frac{\pi}{4} + \alpha$   
 $= 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{6} \dots (i)$  ( $\because \alpha = \frac{\pi}{6}$ )

# Second Method :-

Put  $\sqrt{3}=\gamma \sin \alpha$  and  $1=\gamma \cos \alpha$ 

So that  $2=\gamma$  and  $\tan \alpha = \sqrt{3}$ 

or 
$$\alpha = \frac{\pi}{3}$$

Now the equation is reduced to

$$\gamma \sin (\theta + \alpha) = \sqrt{2}$$
or Sin  $(\theta + \alpha) = \frac{\sqrt{2}}{\gamma} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}} = \frac{\sin \frac{\pi}{4}}{4}$ 

or 
$$\theta + \alpha = n\pi + (-1)^n \quad \frac{\pi}{4}$$

$$\theta = n \pi + (-1)^n - \frac{\pi}{4} - \alpha$$

$$=n\pi+(-1)^n\frac{\pi}{4}-\frac{\pi}{3} \qquad .....(2)$$

We shall now show that solutions (1) and (2) are the same.

When n is even, (2) takes the form

$$2k \pi + \frac{\pi}{4} - \frac{\pi}{3}$$
 i.e.,  $2k\pi - \frac{\pi}{12}$ 

When n is odd, (2) takes the form

$$(2m-1)\pi = \frac{\pi}{4} = \frac{\pi}{3}$$
 i.e.,  $2m\pi + \pi = \frac{7\pi}{12}$  or  $2m\pi = \frac{5\pi}{12}$ 

Now (2) takes the following two forms :-

$$i) \quad 2k \pi = \frac{\pi}{12} \text{ and } \quad ii \quad 2m \pi = \frac{5\pi}{12}$$
But  $\frac{5\pi}{12} = \frac{\pi}{4} = \frac{\pi}{6}$  and  $\frac{\pi}{12} = \frac{\pi}{4} = \frac{\pi}{6}$ 

Hence (2) can be put as

$$2 n \pi_{\perp} = \frac{\pi}{4} + \frac{\pi}{6}$$
 which is the same as solution (1)

Note (2) The student is at liberty to adopt either the First Method or the Second Method.

(b) Equations reducible to the form

a Cos # |-b Sin #=C.

Ex. 
$$\sqrt{2} \operatorname{Sec} \theta + \tan \theta = 1$$

Sol. This can be put as

$$\sqrt{2}. \quad \frac{1}{\cos \theta} = \frac{\sin \theta}{\cos \theta} = 1$$

or 1 2 Sin # Cos #

This gives  $\cos U$   $\sin h$   $\sqrt{2}$  and can be solved by the method explained above.

(c) Equations in olving more than the multiple angles.

Ex. Solve the equation

Sol. The equation can be written as

$$(\cos 3x + \cos x) + \cos 2x = 0$$

or 
$$2 \cos \frac{3x+x}{2} \cos \frac{3x-x}{2} + \cos 2x = 0$$

or 
$$2 \cos 2x \cos x + \cos 2x = 0$$

or 
$$\cos 2x(2 \cos x + 1) = 0$$

Either Cos 
$$2x=0$$
 which gives

$$2x = (2n+1)\frac{\pi}{2}$$

or 
$$x=(2n+1)^{\frac{\pi}{4}}$$

or 
$$2 \cos x+1=0$$
  
which gives

$$\begin{array}{r}
\cos x = -\frac{1}{2} \\
= \cos \frac{2\pi}{3}
\end{array}$$

or 
$$x=2n\pi \pm \frac{2\pi}{3}$$

# Solved Examples

Ex. 1. Solve the equation

$$\sin x - \cos x = \sqrt{2}$$

(K. U. Pre. 1962)

Sol. Sin  $x - \cos x = \sqrt{2}$ 

Put  $1=\gamma \cos \theta$  and  $1=\gamma \sin \theta$ 

So that  $\sqrt{2}=\gamma$  and  $\tan\theta=1$  or  $\theta=\frac{\pi}{4}$  The given equation, therefore, takes the form

$$\gamma(\cos\theta \sin x - \sin\theta \cos x) = \sqrt{2}$$

or 
$$\sqrt{2} \sin(x-\theta) = \sqrt{2}$$

or 
$$\operatorname{Sin}(x-\theta)=1=\operatorname{Sin}\frac{\pi}{2}$$

or 
$$x-\theta=n\pi+(-1)^{\frac{n}{2}}$$

or 
$$x=n\pi+(-1)^n\frac{\pi}{2}+\theta$$

$$=n\pi+(-1)^{n}\frac{\pi}{2}+\frac{\pi}{4}$$

# Ex. 2. Solve the equation Cosec $\theta = \sqrt{3 + \cot \theta}$

Sol. The equation can be reduced to the form  $\sqrt{3}$  Sin  $\theta$  +Cos  $\theta=1$ 

(Multiplying both sides by Sin 8)

Put 
$$\sqrt{3}=r \cos \varphi$$
 and  $1=r \sin \varphi$   
So that  $2=r$  and  $\tan \varphi = \frac{1}{\sqrt{3}}$  or  $\varphi = \frac{\pi}{6}$ 

... The equation becomes  $r \sin (\theta + \varphi) = 1$ 

or 
$$\operatorname{Sin} (\theta + \varphi) = \frac{1}{r} = \frac{1}{2} = \operatorname{Sin} \frac{\pi}{r}$$

or 
$$\theta + \varphi = n\pi + (-1)^{\frac{n}{2}}$$

or 
$$\theta = n\pi + (-1)^n \frac{\pi}{6} - \varphi$$

$$=n\pi+(-1)^n\frac{\pi}{6}-\frac{\pi}{6}$$

**Ex.** 3. If  $\tan (\pi \cos \theta) = \cot(\pi \sin \theta)$ 

Prove that :-

$$\operatorname{Cos}\left(\theta - \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$$

**Sol.**  $\tan (\pi \cos \theta) = \cot (\pi \sin \theta)$ 

$$=\tan\left(\frac{\pi}{2}-\pi \sin\theta\right)$$

$$\therefore \pi \operatorname{Cos} \theta = \frac{\pi}{2} - \pi \operatorname{Sin} \theta$$

or 
$$\cos \theta + \sin \theta = \frac{1}{2}$$

Putting  $1=\gamma \cos \alpha$  and  $1=\gamma \sin \alpha$ 

we get:—(i) 
$$\sqrt{2}=\gamma$$
 and (ii)  $\alpha=\frac{\pi}{4}$ 

the equation takes the form

$$\gamma (\cos \theta \cos \alpha + \sin \theta \sin \alpha) = \frac{1}{2}$$
or 
$$\gamma \cos (\theta - \alpha) = \frac{1}{2}$$

or 
$$\gamma \cos(\theta-\alpha)=\frac{1}{2}$$

or 
$$\sqrt{2} \cos(\theta - \frac{\pi}{4}) = \frac{1}{2}$$

$$\cos\left(\theta - \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}$$

Ex. 4. Solve the Equations

$$\cos 5 \theta - \sin \theta = \sin 3 \theta - \cos 3 \theta$$

Sol. The equation can be put as

$$(\cos 5\theta + \cos 3\theta) - (\sin 3\theta + \sin \theta) = 0$$

$$2 \cos \frac{5\theta + 3\theta}{2} \cos \frac{5\theta - 3\theta}{2} - 2 \sin \frac{3\theta + \theta}{2}$$

$$\cos \frac{3\theta - \theta}{2} = 0$$

or 2 Cos  $4\theta$  Cos  $\theta$ -2 Sin  $2\theta$  Cos  $\theta$ =0

or 2 Cos 
$$\theta$$
 (Cos  $4\theta$  – Sin  $2\theta$ ) = 0

Either 2 Cos 
$$\theta = 0$$
  
which gives Cos  $\theta = 0$   
or  $\theta = (2n+1) \frac{\pi}{2}$ 

or

or 
$$\cos 4\theta - \sin 2\theta = 0$$
  
or  $\cos 4\theta = \sin 2\theta$   

$$= \cos \left(\frac{\pi}{2} - 2\theta\right)$$
or  $4\theta = n\pi \pm \left(\frac{\pi}{2} - 2\theta\right)$ 
or  $4\theta \pm 2\theta = n\pi \pm \frac{\pi}{2}$ 
or  $(4\pm 2)\theta = (2n\pm 1)\frac{\pi}{2}$ 

$$\therefore \theta = (2n+1)\frac{\pi}{12} \text{ and } \theta = (2n-1)\frac{\pi}{12}$$

#### EXERCISE XI

## Solve the following equations :-

1. Sin 
$$\theta + \cos \theta = \sqrt{2}$$

2. 
$$\cos \theta + \sqrt{3} \sin \theta = \sqrt{2}$$

3. 
$$\cos \theta + \sqrt{3} \sin \theta = 2$$

4. Sin 
$$\theta + \sqrt{3}$$
 Cos  $\theta = 1$ 

5. 
$$\sqrt{3} \operatorname{Sin} \theta - \operatorname{Cos} \theta = \sqrt{2}$$

6. Cosec 
$$\theta = \cot \theta + \sqrt{3}$$

7. 
$$\sqrt{3}$$
 Cot  $\theta = 2$  Cosec  $\theta - 1$ 

8. 
$$\sqrt{3} \tan \theta = 1 + \sec \theta$$

9. 
$$\cos 3\theta + \cos 5\theta = \cos \theta$$

10. 
$$\sin 3\theta + \sin \theta = \sin 2\theta$$

11. Sin 
$$7\theta$$
—Sin  $3\theta$ =Sin  $\theta$ 

12. 
$$\sin \theta + \sin 3\theta - \sin 4\theta = 0$$

13. Sin 
$$2x + \sin 4x = \cos x + \cos 3x$$

14. 
$$\cos 2\theta - 5 \cos \theta = 2$$

15. Cos 
$$m\theta = \cos n\theta$$

16. 
$$\cos m\theta = \sin n\theta$$

17. 
$$\tan (\pi \cot \theta) = \cot (\pi \tan \theta)$$

18. Sin 
$$m\theta = \cos n\theta$$

19. 
$$\cos 3x = \sin x$$

20. 
$$\tan 3x = \cot x$$

21. 
$$2(\sin^4 \theta + \cos^4 \theta) = 1$$

22. 
$$\cos 3\theta + 8 \cos^3 \theta = 0$$

23. Sin 
$$3\theta = 8 \operatorname{Sin}^2 \theta$$

24. 
$$\cos^2 \theta - \cos \theta \sin \theta - \sin^2 \theta = 1$$

25. 
$$\tan \theta + \tan 2\theta + \tan 3\theta = 0$$

# CHAPTER VIII

Relations between the sides and the angles of a triangle.

8.1. In the present chapter, we will establish certain important relations between the sides and the angles of a triangle. The student will thus come across many important things like "Sine Formula", "Cosine Formula", "Projection Formula", etc. "For the sake of convenience, we denote the angles of the triangle ABC by the capital letters A, B, and C, and the sides opposite to these angles by small letters a, b and c respectively.

# 8.2. Sine Formula

To prove that in any triangle ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

i.e., the sines of the angles of a triangle are proportional the opposite sides.

Proof :—In the △ABC

draw AD⊥BC or BC produced





Fig. (iii)

Case I. When ABC is an acute angled triangle. In the rt.  $\angle d$   $\angle ABD$ ,  $\frac{AD}{c} = \sin B$ .  $\therefore AD = c \sin B ...(i)$ 

Also, in the 11.  $\angle d \triangle ADC$ ,  $\frac{AD}{b} = Sin C$ 

... AD=b Sin C...

from (i) and (ii),
we have c Sin B=b
Sin C

Sin C

Sin C

Sin B

Similarly,
a
b

Sin A

Sin B

Hence
a

Sin A

Sin C

ABC is a rt.  $\angle d$   $\triangle$ .

In the rt.  $\angle d$   $\triangle$ .

ABC,  $\frac{AD}{C}$  = Sin B

... AD c Sin B...(i)

Also AD=AC AC Sin C (∵ Sin C=Sin 90 =1)

... AD= b Sin C

from (i) and (ii) we have b Sin C c Sin B bSin B Sin C

Similarly  $\frac{a}{\sin A} = \frac{b}{\sin B}$ Hence  $\frac{a}{\sin A} = \frac{a}{b}$ 

ABC is an obtuse  $\angle d \triangle$ . In the rt.  $\angle d \triangle ABD, \underline{AD}$ =Sin B  $\therefore$  AD=c Sin B ...(1) Also, from the rt.  $\angle d$   $\triangle ACD$ , AD=Sin  $(\pi - C)$ =Sin C : AD=b Sin C ...(11) from (i) and (ii) we get b Sin C=cSin B Sin B Sin C Similarly, Sin A Sin B Hence

Case III. When

Note: - The student is advised to draw all the three figures and derive the formula from all of them.

Solved Examples (By means of Sine Formula.)

Ex. 1. Prove that in any ABC

$$a \cos \frac{B-C}{2} = (b+c) \cos \frac{B+C}{2}$$

(K. U. Pre. 1962)

Sol. We have to prove that

$$a \cos \frac{B-C}{2} = (b+c) \cos \frac{B+C}{2}$$

Which is the same as

$$\frac{a}{b+c} = \frac{\cos \frac{B+C}{2}}{\cos \frac{B-C}{2}}$$

Now 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \text{ (Say)}$$

$$\therefore a = k \operatorname{Sin} A, b = k \operatorname{Sin} B, c = k \operatorname{Sin} C$$

L. H. S. 
$$=\frac{a}{b+c} = \frac{k \operatorname{Sin} A}{k(\operatorname{Sin} B + \operatorname{Sin} C)} = \frac{\operatorname{Sin} A}{\operatorname{Sin} B + \operatorname{Sin} C}$$

$$= \frac{2 \sin \frac{A}{2} \cos \frac{A}{2}}{2 \sin \frac{B+C}{2} \cos \frac{B-C}{2}}$$

$$= \frac{\cos \frac{B+C}{2} \cos \frac{A}{2}}{\cos \frac{A}{2} \cos \frac{B-C}{2}}$$

$$\begin{cases} :(i) \quad \sin \frac{A}{2} = \sin \left(\frac{\pi}{2} - \frac{B+C}{2}\right) = \cos \frac{B+C}{2} \\ (ii) \quad \sin \frac{B+C}{2} = \sin \left(\frac{\pi}{2} - \frac{A}{2}\right) = \cos \frac{A}{2} \end{cases}$$

(ii) 
$$\operatorname{Sin} \frac{B+C}{2} = \operatorname{Sin} \left( \frac{\pi}{2} - \frac{A}{2} \right) = \operatorname{Cos} \frac{A}{2}$$

$$= \frac{\frac{\text{Cos } \frac{B+C}{2}}{\text{Cos } \frac{B-C}{2}} = \text{R. H S.}$$

Note: - If possible, small letters should be kept on one side before the question is attempted.

Ex. 2. In any triangle ABC, prove that

$$(i) \frac{\cos B}{\cos C} = \frac{c - b \cos A}{b - c \cos A}$$

(ii) 
$$\frac{a \sin (B-C)}{b^2-c^2} = \frac{b \sin (C-A)}{c^2-a^2} = \frac{c \sin (A-B)}{a^2-b^2}$$
(K. U. 1961)

Sol. (i) 
$$\frac{\cos B}{\cos C} = \frac{c - b \cos A}{b - c \cos A}$$
  
 $c - b \cos A \quad k \sin C - k \sin B$ 

R. H. S. 
$$= \frac{c - b \operatorname{Cos} A}{b - c \operatorname{Cos} A} = \frac{k \operatorname{Sin} \mathbf{C} - k \operatorname{Sin} \mathbf{B} \operatorname{Cos} \mathbf{A}}{k \operatorname{Sin} \mathbf{B} - k \operatorname{Sin} \mathbf{C} \operatorname{Cos} \mathbf{A}}$$

$$\binom{\cdot \cdot b = k \operatorname{Sin B and}}{c = k \operatorname{Sin C}}$$

$$= \frac{\sin C - \sin B \cos A}{\sin B - \sin C \cos A} = \frac{\sin (\pi - A + B) - \sin B \cos A}{\sin (\pi - C + A) - \sin C \cos A}$$

$$= \frac{\sin (A+B) - \sin B \cos A}{\sin (C+A) - \sin C \cos A} \left[ \because \sin (\pi-\theta) = \sin \theta \right]$$

$$= \frac{\sin A \cos B}{\cos C \sin A}$$

$$=\frac{\cos B}{\cos C}=L.$$
 H. S.

(ii) 
$$\frac{a \sin (B-C)}{b^2-c^2} = \frac{k \sin A \sin (B-C)}{k^2 \sin^2 B - k^2 \sin^2 C}$$
$$= \frac{1}{k} \cdot \frac{\sin (\pi - \overline{B+C}) \sin (B-C)}{\sin^2 B - \sin^2 C}$$

$$= \frac{1}{k} \cdot \frac{\sin (B+C) \sin (B-C)}{\sin (B+C) \sin (B-C)} = \frac{1}{k}$$
[:: Sin<sup>2</sup> B-Sin<sup>2</sup> C=Sin (B+C) Sin (B-C)]

Similarly, we can show that

Similarly, we can see 
$$\frac{b \sin (C-A)}{c^2-a^2} = \frac{c \sin (A-B)}{a^2-b^2} = \frac{1}{k}$$
  

$$\therefore \frac{a \sin (B-C)}{b^2-c^2} = \frac{b \sin (C-A)}{c^2-a^2} = \frac{c \sin (A-B)}{a^2-b^2} = \frac{1}{k}$$

**Ex.** 3. In any triangle ABC, if  $a \cos A = b \cos B$ , then the triangle is either isosceles or right-angled.

Sol. 
$$a \operatorname{Cos} A = b \operatorname{Cos} B$$
  
or  $k \operatorname{Sin} A \operatorname{Cos} A = k \operatorname{Sin} B \operatorname{Cos} B$   
or  $\operatorname{Sin} A \operatorname{Cos} A = \operatorname{Sin} B \operatorname{Cos} B$   
or  $\operatorname{Sin} A \operatorname{Cos} A = \operatorname{Sin} B \operatorname{Cos} B$   
or  $\operatorname{Sin} A \operatorname{Cos} A = \operatorname{Sin} B \operatorname{Cos} B$   
or  $\operatorname{Sin} 2A = \operatorname{Sin} 2B$   
or  $\operatorname{Sin} 2A = \operatorname{Sin} 2B$   
or  $\operatorname{Sin} 2 A = \operatorname{Sin} 2B$   
or  $\operatorname{2} A = \operatorname{2} B$ 

Which shows that the triangle is isosceles.

A = B

Which shows that the transfer  
Again, Sin 2 A=Sin 2 B  

$$= Sin (\pi - 2B)$$
or  $2A = \pi - 2B$   
or  $2(A+B) = \pi$   
or  $2(A+B) = \pi$   

$$= \pi$$

$$= \pi$$
the beautiful the  $\pi$  is rt.  $\pi$  is rt.  $\pi$  decay that the  $\pi$  is rt.  $\pi$  decay that

 $A+B=\frac{\pi}{2}$  which shows that the  $\triangle$  is rt.  $\angle d \triangle$ .

#### 8.2.1. Napier's Analogies

To prove that in any triangle ABC,

(i) 
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c}$$
 Cot  $\frac{A}{2}$ 

(ii) 
$$\tan \frac{C-A}{2} = \frac{c-a}{c+a}$$
 Cot  $\frac{B}{2}$ 

(iii) 
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b}$$
 Cot  $\frac{C}{2}$ 

Proof:—We shall prove only one of these analogies: (i) (Say),
The remaining two can be proved similarly.

(i) 
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c}$$
 Cot  $\frac{A}{2}$ 

This is the same thing as:

$$\frac{\tan\frac{B-C}{2}}{\cot\frac{A}{2}} = \frac{b-c}{b+c}$$

or 
$$\tan \frac{B-C}{2}$$
  $\tan \frac{A}{2} = \frac{b-c}{b+c}$   $\left( : \frac{1}{\cot \frac{A}{2}} = \tan \frac{A}{2} \right)$ 

R. H. S. = 
$$\frac{b-c}{b+c}$$
= 
$$\frac{K \sin B - K \sin C}{K \sin B + K \sin C}$$

$$= \frac{\operatorname{Sin B-Sin C}}{\operatorname{Sin B+Sin C}} = \frac{2 \operatorname{Cos}}{2} \frac{\frac{B+C}{2}}{\operatorname{Sin}} \frac{\operatorname{Sin}}{\frac{B+C}{2}} \frac{\frac{B-C}{2}}{\operatorname{Cos}}$$

$$= \frac{\operatorname{Cos}\left(\frac{\pi}{2} - \frac{A}{2}\right) \operatorname{Sin} \frac{B - C}{2}}{\operatorname{Sin}\left(\frac{\pi}{2} - \frac{A}{2}\right) \operatorname{Cos} \frac{B - C}{2}} = \frac{\operatorname{Sin} \frac{A}{2} \operatorname{Sin} \frac{B - C}{2}}{\operatorname{Cos} \frac{A}{2} \operatorname{Cos} \frac{B - C}{2}}$$

$$= \frac{\sin \frac{B-C}{2}}{\cos \frac{B-C}{2}} \cdot \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} = \tan \frac{B-C}{2} \tan \frac{A}{2}$$

$$= \text{L. H. S.}$$

# 8.3. Projection Formulae :

In any triangle ABC, show that :-

(i) 
$$a=b Cos C+c Cos B$$

(ii) 
$$b=c Cos A+a Cos C$$

and (iii) 
$$c=a \cos B+b \cos A$$

Proof: (i) 
$$a=b \operatorname{Cos} C+c \operatorname{Cos} B$$

R. H. S. 
$$=b \operatorname{Cos} C + c \operatorname{Cos} B$$

$$=K (\operatorname{Sin} B \operatorname{Cos} C + \operatorname{Sin} C \operatorname{Cos} B)$$

$$=K (\operatorname{Sin} (B+C))$$

$$=K \operatorname{Sin} (180^{\circ}-A)$$

$$=K \operatorname{Sin} A = a$$

We can similarly prove formulae (ii) and (iii) as well.

Alternative Method (Geometrical)



In the ABC, draw AD \(\perp \) BC

Now 
$$a=BC=BD+DC$$
  
But  $\frac{BD}{c} = \sin B$  ::  $BD=c \sin B$ 

and 
$$\frac{DC}{b} = Sin C$$
 :  $DC = b Sin C$ 

Hence 
$$a=c \sin B + b \sin C$$

Note: We have taken the triangle ABC as an acute-angled triangle, but the formulae can be derived from any triangle, acute, obtuse, or right-angled.

#### EXERCISE XII

Prove the following identities in a triangle ABC:-

1. 
$$c \sin \frac{A-B}{2} = (a-b) \cos \frac{C}{2}$$

21 
$$c \cos \frac{A-B}{2} = (a+b) \sin \frac{C}{2}$$

3. 
$$a \operatorname{Cos} A + b \operatorname{Cos} B = c \operatorname{Cos} (A - B)$$

4. 
$$c (\text{Cos A} + \text{Cos B Cos C}) = b \text{Sin}^2 \text{ C}$$

5. 
$$a^2 \sin^2 B - b^2 \sin^2 A = 2ab \sin (A - B)$$

6. 
$$b^2 - c^2 = a \ (b \cos C - c \cos B)$$

7. 
$$a \cos (B - C) - b \cos (C - A) + c \cos (A - B)$$
  
=  $\sin 2 A + \sin 2 B + \sin 2 C$ 

S. 
$$a \operatorname{Sin} (B - C) + b \operatorname{Sin} (C - A) + \epsilon \operatorname{Sin} (A - B) = O$$

9. 
$$\frac{a \cos B - b \cos A}{c} = \frac{\sin^2 A - \sin^2 B}{\sin^2 C}$$

$$\sim 11. \quad \frac{\sin (A-B)}{\sin (A-B)} = \frac{a^2-b^2}{c^2}$$

In any triangle ABC, prove that :

12. 
$$\frac{a \sin (B - C)}{b^2 c^2} = \frac{b \sin (C - A)}{c^2 - a^2} = \frac{s \sin (A - B)}{a^2 - b^2}$$

13. 
$$\frac{h \operatorname{Sec} B + r \operatorname{Sec} C}{\tan B + \tan C} = \frac{r \operatorname{Sec} C + n \operatorname{Sec} A}{\tan C + \tan A}$$

$$= \frac{u \operatorname{Sec} \mathbf{A} + b \operatorname{Sec} \mathbf{B}}{\tan \mathbf{A} + \tan \mathbf{B}}$$

(P.U. 1944)

14. In any 
$$\triangle ABC$$
, if  $\frac{Cos A}{a} = \frac{Cos B}{b}$ , Show that the triangle is isosceles.

15. If C=60°, show that

$$\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$$

16. In a △ ABC, show that

$$\frac{b^2 - c^2}{a^2} \sin 2A + \frac{c^2 - a^2}{b^2} \sin 2B + \frac{a^2 - b^2}{c^2} \sin 2C = 0$$

17. If the sides a, b, c of a  $\triangle$  ABC are in A.P., show that

$$\cos \frac{B-C}{2} = 2 \sin \frac{A}{2}$$

18. If  $\angle A = 60^{\circ}$ , prove that

$$b+c=2a$$
 Cos  $\frac{B-C}{2}$ 

8.4. Cosine Formula

In any triangle ABC, show that:

(i) 
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

(ii) Cos B=
$$\frac{c^2+a^2-b^2}{2ca}$$

and (iii) 
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Where a, b, c denote the sides of BC, CA, and AB respectively.

Proof: (i) We have to prove that

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

We will take three different figures, i.e. fig. (i) in which  $\angle A$  is acute, fig. (ii) in which  $\angle A$  is obtuse, and fig. (iii) in which  $\angle A=90^{\circ}$ .





From the acuteangled  $\triangle$  ABC (acuteangled at A), we have.

$$BC^2 = CA^2 + AB^2 - 2CA.AD$$

or 
$$a^2 = b^2 + c^2 - 2b$$
. AD

$$But \quad \frac{AD}{C} = Cos A$$

or AD=
$$c \cos A$$
  
 $\therefore a^2 = b^2 + c^2 - 2bc$   
Cos A

Hence 
$$\frac{\cos A}{b^2+c^2-a^2}$$

$$= \frac{b^2+c^2-a^2}{2bc}$$

From the obtuseangled ABC (obtuse-angled at A), we have.

$$BC^2 = CA^2 + AB^2 + 2 CA \cdot AD$$

or 
$$a^2 = b^2 + c^2 + 2b$$
. AD

But 
$$C$$

$$= Cos(\pi - A)$$

$$= -Cos A$$

$$\therefore AD = -C Cos A$$

$$\therefore a^2 = b^2 + c^2 - 2bc$$

$$Cos A$$

Hence Cos A
$$= \frac{b^2 + c^2 - a^2}{2bc}$$

From the rightangled  $\triangle$  ABC (right-angled at A) we have

$$BC^2 = CA^2 + AB^2$$

or 
$$a^2 = b^2 + c^2$$
  
=  $b^2 + c^2 - 2bc$   
Cos 90°

$$\begin{array}{c} (:\cdot \cos 90^{\circ} = 0) \\ = b^{2} + c^{2} - \\ 2bc \cos A \end{array}$$

Hence Cos A
$$= \frac{b^3 + c^3 - a^2}{2bc}$$

8.5 Deduction of (i) Cosine formula and (ii) Projection for mula from Sine formula

mula from Sine formula

Sol. (i) 
$$b^2+c^2-a^2 = K^2(Sin^2 B+Sin^2 C-Sin^2 A)$$
 $= K^2\{Sin^2 B+Sin (C+A) Sin (C-A)\}$ 
 $= K^2\{Sin^2 B+Sin B Sin (C-A)\}$ 
 $(: C+A=\pi-B)$ 
 $= K^2 Sin B \{Sin B+Sin (C-A)\}$ 
 $= K^2 Sin B \{Sin (C+A)+Sin (C-A)\}$ 
 $[: B=\pi-(C+A)]$ 
 $= K^2 Sin B \{2 Sin C Cos A\}$ 
 $= K Sin B \cdot 2 K Sin C \cdot Cos A$ 
(Please note this step)
 $= b \cdot 2 \cdot c Cos A \cdot (: b=k Sin B \text{ and } c=k Sin C)$ 
 $= 2bc Cos A$ 
 $\therefore Cos A = \frac{b^2+c^2-a^2}{2bc}$  Similarly, Cos B and Cos Cos A can be found.

- (ii) This has already been deduced in article 8.3.
- 8.5.1. Deduction of (i) Sine formula, and projection formula from Cosine formula.

Sol. (i) We have 
$$\frac{a}{\sin A} = \frac{a}{\sqrt{1 - \cos^2 A}}$$

$$= \frac{a}{\sqrt{1 - \left(\frac{b^2 + c^2 - a^2}{2bc}\right)^2}}$$
 (By Cosine formula)

$$= \frac{2abc}{\sqrt{(2bc+b^2+c^2-a^2)(2bc-b^2-c^2+a^2)}}$$

$$= \frac{2abc}{\sqrt{(a+b+c)(b+c-a)(c+a-b)(a+b-c)}}$$

The R. H. S. is a symmetrical expression in a, b, c. We can similarly show that  $\frac{b}{\sin B}$  and  $\frac{c}{\sin C}$  are each equal to the same

symmetrical expression. Hence  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

$$\frac{(a)}{b} \cos C + c \cos B = b \frac{a^2 + b^2 - c^2}{2ab} + c \cdot \frac{a^2 + c^2 - b^2}{2ca} = \frac{2a^2}{2a} = a$$

$$\therefore b \operatorname{Cos} C + c \operatorname{Cos} B = a$$

Similarly, we can show that

$$a \cos B + b \cos A = a$$

### EXERCISE XIII

In any triangle ABC, prove that :-

In any triangle ABC, prove 
$$\frac{1}{c}$$
  $\frac{\cos A}{a} = \frac{\cos A}{a} = \frac{\cos B}{a} = \frac{\cos C}{abc} = \frac{a^2 + b^2 + c^2}{2abc}$ 

$$\sim 2$$
.  $(a^2 - b^2 - c^2) \tan B = (a^2 + b^2 - c^2) \tan C$ 

3. 
$$b^2 - c^2 \cos A + \frac{c^2 - a^2}{b} \cos B + \frac{a^2 - b^2}{c} \cos C = 0$$

4. 2 (be Cos A – ca Cos B – ab Cos C) = 
$$a^2 + b^2 + c^2$$

Hint:—This is the same as Q.1)

5. 
$$b^2 = \frac{c^2}{a^2} \sin 2A + \frac{c^2 - a^2}{b^2} \sin 2B$$
,  $\frac{a^2 - b^2}{a^2} \sin 2C = 0$ 

6. 
$$4\left(b\varepsilon \cos^2\frac{\Lambda}{2}+\varepsilon a \cos^2\frac{B}{2}+ab \cos^2\frac{C}{2}\right)$$

$$=(a+b-c)^2$$

[Hint: 2 
$$\cos^2 \frac{A}{2} = 1 + \cos A \cot ...$$
]

7. 
$$2 \left[ a \operatorname{Sin}^{-1} \left[ \frac{C}{2} + C \operatorname{Sin}^{-1} \left[ \frac{A}{2} \right] \right] \right] c + a - b$$

[Hint: 
$$-2 \operatorname{Sin}^2 \frac{G}{2} = 1 \operatorname{Cos} G$$
 etc.  $\frac{7}{3}$ 

18. 
$$(b-\epsilon) \cos A = \epsilon + a \cdot \cos P \cdot (a+b) \cos C \cdot (a-b+\epsilon)$$

9. 
$$a(b \operatorname{Cos} C - \iota \operatorname{Cos} B) = b^2 - \iota^2$$

10. In the triangle ABC, BC=14" CA=15" and AB=13". Without using tables, find the values of Cos C, Sin C and Sin A.

(K. U. Pre. 1962)

[Ans: 
$$Cos C=\frac{3}{5}$$
,  $Sin C=\frac{4}{5}Sin A=\frac{56}{65}$ ]

- 8.6. Trigonometrical Ratios of half the angles in terms of sides
- (a) Sines of half the angles.

We know that 
$$\cos A = \frac{b^2 - \epsilon^2 - a^2}{2b\epsilon}$$

But Cos A=1-2 Sin<sup>2</sup> 
$$\frac{\Lambda}{2}$$

$$\therefore 2 \sin^2 \frac{A}{2} = 1 - \cos A = 1 - \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{2bc - b^2 - c^2 + a^2}{2bc}$$

or 
$$\sin^2 \frac{A}{2} = \frac{a^2 - (b^2 - 2bc + c^2)}{4bc}$$

$$= \frac{a^2 - (b - c)^2}{4bc} = \frac{(a + b - c)(a - b + c)}{4bc}$$
(i)

Put a+b+c=2s

$$a+b-c=2(s-c)$$

and a-b+c=2(s-b)

$$\therefore (i) \text{ gives, } \sin^2 \frac{A}{2} = \frac{2(s-\epsilon) \cdot 2(s-b)}{4bc}$$

$$= \frac{(s-b)(s-\epsilon)}{bc}$$

$$Sin \stackrel{A}{=} \sqrt{\frac{(s-b)(s-c)}{bc}}$$

Similarly, Sin 
$$\frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}$$

and 
$$\operatorname{Sin} \frac{\mathbf{C}}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$$

(b) Cosines of half the angles.

$$\cos A = 2 \cos^2 \frac{A}{2} - 1$$

But Cos A= 
$$\frac{b^2+c^2-a^2}{2bc}$$

.. from (i) we have

2 
$$\cos^2 \frac{A}{2}$$
 -1= $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ 

or 2 
$$\cos^2 \frac{A}{2} = \frac{b^2 + c^2 - a^2}{2bc} + 1$$

$$= \frac{b^2 + c^2 - a^2 + 2bc}{2bc}$$

$$=\frac{(b+c)^2-a^2}{2bc}$$

or 
$$\cos^2 \frac{A}{2} = \frac{(b+c)^2 - a^2}{4bc}$$

$$=\frac{(b+c+a)(b+c-a)}{4bc}$$

.....(ii)

Now put a+b+c=2s

$$b+c-a=2(s-a)$$

.. From (ii) we have

$$\cos^2 \frac{A}{2} = \frac{2s. \ 2(s-a)}{4bc}$$
$$= \frac{s(s-a)}{bc}$$

$$\therefore \quad \cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$

Similarly, Cos 
$$\frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$$

and 
$$\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$$

(c) Tangents of half the angles.

$$\tan \frac{A}{2} = \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} = \frac{\sqrt{\frac{(s-b)(s-c)}{bc}}}{\sqrt{\frac{s(s-a)}{bc}}}$$

[Results obtained in (a) and (b)]

$$=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

Similarly, 
$$\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$$
  
and  $\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ 

Another Method : (Direct Method)

Cos 
$$A = \frac{b^2 + c^2 - a^2}{1}$$
 But Cos  $A = \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}}$ 

$$\therefore \frac{1-\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}} = \frac{b^2+c^2-a^2}{2bc}$$

1+tan<sup>2</sup> 
$$\frac{1}{2}$$
 or  $\tan^2 \frac{A}{2} = \frac{2bc-b^2-c^2+a^2}{2bc+b^2+c^2-a^2} = \frac{a^2-(b-c)^2}{(b+c)^2-a^2}$ 

$$= \frac{(a+b-c)(a-b+c)}{(a+b+c)(b+c-a)} = \frac{2(s-c).2(s-b)}{2s.2(s-a)}$$
(Putting  $a+b+c=2s$ )

$$=\frac{(s-h)(s-c)}{s(s-a)}$$

$$\therefore \tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

Note:—We have taken the radicals with the positive sign, because  $\frac{A}{2}$ ,  $\frac{B}{2}$ ,  $\frac{C}{2}$  are all acute.

8.7. To find the Sine of any angle in terms of the sides of a triangle.

Here we have

Sin 
$$A=2$$
 Sin  $\frac{A}{2}$ -Cos  $\frac{A}{2}$ 

$$= 2 \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{-c}{bc}}$$

$$= \frac{2}{bc} \sqrt{\frac{s(s-a)(s-b)(s-c)}{s(s-a)(s-b)(s-c)}}$$
Similarly, Sin  $B = \frac{2}{ca} \sqrt{s(s-a)(s-b)(s-c)}$ 
and
$$Sin C = \frac{2}{ab} \sqrt{s(s-a)(s-b)(s-c)}$$

Cor. From this article it follows that

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
$$= \frac{2\sqrt{s(s-a)(s-b)(s-c)}}{abc}$$

8.8. To find the area of a triangle in terms of its sides.



Draw AD \(\precedet BC\). Let us denote the sides BC, CA, AB by a, b, c respectively.

Now area of the triangle  $= \frac{1}{2}. BC.AD$   $= \frac{1}{2}. a AD$   $= \frac{1}{2} ab Sin C$ 

$$\left( :: \frac{AD}{b} = Sin C \right)$$

$$= \frac{1}{2} \cdot ab \cdot 2 \cdot \sin \frac{C}{2} \cdot \cos \frac{C}{2}$$

$$= \frac{1}{2} \cdot ab \cdot 2 \cdot \sqrt{\frac{(s-a)(s-b)}{ab}} \sqrt{\frac{s(s-c)}{ab}}$$

$$= \frac{ab}{ab} \cdot \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{s(s-a)(s-b)(s-c)}$$
Where  $a+b+c=2s$ 

This formula is known as Hero's Formula.

# Solved Examples

Ex. 1. In any  $\triangle ABC$ , prove that:—  $c \cos^2 \frac{B}{2} + b \cos^2 \frac{C}{2} = S$ 

Sol. L. H. S. = 
$$\epsilon \cos^2 \frac{B}{2} + b \cos^2 \frac{C}{2}$$
  
=  $\epsilon \cdot \frac{s(s-b)}{\epsilon a} + b \cdot \frac{s(s-\epsilon)}{ab}$   
=  $\frac{s(s-b)}{a} + \frac{s(s-\epsilon)}{a} = \frac{2s^2 - sb - s\epsilon}{a}$   
=  $\frac{2s^2 - sb - s\epsilon - sa + sa}{a}$ 

(Please note this step)

$$= \frac{2s^{2}-s(a+b+c)+sa}{a}$$

$$= \frac{2s^{2}-2s^{2}+sa}{a}$$

$$= s=R. H. S.$$
(:: a+b+c=2s)

Ex. 2. In any triangle ABC, prove that

$$(b+c-a)$$
 Sin  $\frac{A}{2}=2a$  Sin  $\frac{B}{2}$  Sin  $\frac{C}{2}$ 

Sol. R. H. S. = 
$$2a \sin \frac{B}{2} \sin \frac{C}{2}$$

$$=2a \sqrt{\frac{(s-c)(s-a)}{ca}} \sqrt{\frac{(s-a)(s-b)}{ab}}$$

$$=2(s-a) \sqrt{\frac{(s-b)(s-c)}{bc}} = 2(s-a) \sin \frac{A}{2}$$

$$=(2s-2a) \sin \frac{A}{2} = (a+b+c-2a) \sin \frac{A}{2}$$

$$=(b+c-a) \sin \frac{A}{2} = L. H. S.$$

Ex. 3. If the sides of a triangle are in A. P. prove that  $\cot \frac{A}{2} \cot \frac{C}{2} = 3$ 

Sol. We have  $\cot \frac{A}{2}$ .  $\cot \frac{C}{2} = 3$ 

$$\therefore \sqrt{\frac{s(s-a)}{(s-b)(s-c)}} \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} = 3$$

or 
$$\frac{s}{s-b} = 3$$

or 
$$3s-3b=s$$

or 
$$2s = 3b$$

or 
$$a+b+c=3b$$

(:: 2s = a + b + c)

or a+c=2b which is true.

Ex. 4. If  $a^2$ ,  $b^2$ ,  $c^2$  are in A. P., show that Cot A, Cot B, Cot C are also in A. P.

Sol. Cot A, Cot B, Cot C will be in A. P.

if 
$$\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C} = 2 \frac{\cos B}{\sin B}$$

if 
$$\frac{b^2+c^2-a^2}{2bc.\ ak} + \frac{a^2+b^2-c^2}{2ab.\ ck} = 2\frac{c^2+a^2-b^2}{2ca.\ bk}$$

$$\left[ \because \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = k \text{ (say)} \right]$$
if  $(b^2+c^2-a^2) + (a^2+b^2-c^2) = 2(c^2+a^2-b^2)$ 
if  $2b^2 = 2c^2 + 2a^2 - 2b^2$ 

if  $4b^2 = 2c^2 + 2a^2$ 

if  $2b^2 = c^2 + a^2$ 

which is true.

**Ex.** 5. If Cos A = Sin B - Cos C, prove that the  $\triangle$  ABC is a

11. ∠d △. Sol. We have Cos A+Cos C=Sin B or 2 Cos  $\frac{A+C}{9}$  Cos  $\frac{A-C}{9}=2$  Sin  $\frac{B}{2}$  Cos  $\frac{B}{2}$ or 2 Cos  $\left(90^{\circ} - \frac{B}{2}\right)$  Cos  $\frac{A-C}{2} = 2 \sin \frac{B}{2}$  Cos  $\frac{B}{2}$  $2 \sin \frac{B}{2} \cos \frac{A-C}{2} = 2 \sin \frac{B}{2} - \cos \frac{B}{2}$ or  $\cos \frac{A-C}{2} = \cos \frac{B}{2}$ or  $\frac{A-C}{2} = \frac{B}{2}$ 

A = B + CHence \( A = 90°, \text{ which proves the question.} \)

# EXERCISE XIV

In a ABC, prove that

In a 
$$\triangle$$
 ABC, prove  $\frac{A}{2}$  ABC, prove  $\frac{A}{2}$ 

$$1. (i) \quad s = a \quad \cos^2 \frac{B}{2} + b \cos^2 \frac{A}{2}$$

$$= b \quad \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2}$$

$$=c \cos^2 \frac{A}{2} + a \cos^2 \frac{C}{2}$$

$$\frac{\sqrt{2}}{2}$$
.  $s-c=a$   $\sin^2\frac{B}{2}=h\sin^2\frac{A}{2}$ 

$$V_3$$
. =  $\cos^2 \frac{A}{2} + \cos \cos^2 \frac{B}{2} + ab \cos^2 \frac{C}{2} = s^2$ 

\*4. 
$$\frac{\cos^2 \frac{A}{2}}{a} + \frac{\cos^2 \frac{B}{2}}{b} + \frac{\cos^2 \frac{C}{2}}{c} = \frac{s^2}{abc}$$

5. 
$$\frac{\cot \frac{B}{2}}{\cot \frac{C}{2}} = \frac{a-b-c}{a-b-c}$$

6. 
$$\tan \frac{A}{2} = \tan \frac{B}{2} = \frac{a - b}{\epsilon}$$

$$\tan \frac{A}{2} = \tan \frac{B}{2}$$

7. 
$$\frac{\text{Cot } \frac{A}{2} - \text{Cot } \frac{B}{2}}{\text{Cot } \frac{B}{2} - \text{Cot } \frac{B}{2}} = \frac{a - b}{b - c}$$

S. 
$$(s-a) \tan \frac{A}{2} = (s-b) \tan \frac{B}{2} = (s-c) \tan \frac{C}{2}$$

9. 
$$\int \left(\tan \frac{B}{2} + \tan \frac{C}{2}\right) = a \cot \frac{A}{2}$$

$$-(s-a)\left[\begin{array}{ccc} \operatorname{Cot} & \frac{B}{2} + \operatorname{Cot} & \frac{C}{2} \end{array}\right]$$

10. In a ABC, if 2h=c+a, prove that  $2 \cot \frac{B}{2} = \cot \frac{A}{2} + \cot \frac{C}{2}$ 

- If in a  $\triangle$  ABC,  $a \cos^2 \frac{C}{2} + \epsilon \cos^2 \frac{A}{2} = \frac{3b}{2}$  show that its sides are in AP.
  - 12. If a, b, c are in H. P., prove that  $\sin^2 \frac{A}{3}$ ,  $\sin^2 \frac{B}{3}$ ,  $\sin^2 \frac{C}{3}$  are also in H. P.

[Hint: -Start with 
$$\sin^2 \frac{B}{2} = \frac{2 \sin^2 \frac{A}{2} \sin^2 \frac{C}{2}}{\sin^2 \frac{A}{2} + \sin^2 \frac{C}{2}}$$

- 13. If  $\tan \frac{A}{2}$ ,  $\tan \frac{B}{2}$ ,  $\tan \frac{C}{2}$  be in A. P. show that Cos A, Cos B, Cos C are also in A. P.
  - 14. If a+b=3c, prove that :—

(i) 
$$\operatorname{Sin} \frac{A}{2} \operatorname{Sin} \frac{B}{2} = \operatorname{Sin} \frac{C}{2}$$

(ii) 
$$\cot \frac{A}{2} \cot \frac{B}{2} = 2$$

(iii) 
$$\cot \frac{A}{2} + \cot \frac{B}{2} = \cot \frac{C}{2}$$

In a ABC, rt. angled at C, prove that :-

(i) 
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b}$$
 (ii)  $\sin^2 \frac{B}{2} = \frac{c-a}{2c}$ 

(ii) 
$$\sin^2 \frac{B}{2} = \frac{c-a}{2c}$$

(iii) 
$$\cos^2 \frac{A}{2} = \frac{b+c}{2c}$$

(iii) 
$$\cos^2 \frac{A}{2} = \frac{a+b}{2c}$$
 (iv)  $\tan \frac{A}{2} = \frac{a-b+c}{a+b+c}$ 

(v) 
$$a \left( (1+\tan \frac{B}{2}) = (1-\tan \frac{B}{2})(b+c) \right)$$

#### CHAPTER IX

# Properties of Triangles

9. 1. To prove that  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$  when R is the radius of the Circumcircle of the triangle ABC.





Proof: Let O be the circumcentre. Join BO and produce it to meet the circumcircle at D. Join CD.

In fig. (i)  $\angle A$  is acute,  $\angle A = \angle D$  because these are the angles in the same segment. In fig. (ii)  $\angle A$  is obtuse, and  $\angle D = \pi - A$  because ABDC is a cyclic quadrilateral. In fig. (iii) a = 2R, and  $\angle A = 90^{\circ}$ 

Now, in the  $\triangle BCD$  in fig (i)

$$\sin D = \frac{BC}{BD} \qquad (\therefore \angle BCD = 90)$$

or Sin A = 
$$\frac{a}{2R}$$
 :  $D = \angle A$  and  $BD = 2R$ 

In the  $\triangle BCD$  in fig. (ii).

$$Sin D = \frac{BC}{BD}$$

or 
$$Sin(\pi - A) = \frac{a}{2R}$$

$$\therefore (\angle \mathbf{D} = \pi - A)$$

or Sin A = 
$$\frac{a}{2R}$$

Lastly, in the ABC in fig (iii)

$$\frac{BC}{DC} = 1 \qquad (:: B & D \text{ coincide})$$

or

$$\frac{a}{2R} = 1 = \sin 90^{\circ}$$

$$= \sin A \qquad (\cdot, \cdot \angle A = 90^{\circ})$$

Similarly, it can be shown that

$$\frac{b}{\sin B} = 2R \tan \frac{c}{\sin C} = 2R$$

Hence 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

#### Another Expression

To prove that  $R = \frac{abc}{4\Delta}$  where  $\Delta$  denotes the area of the triangle ABC

We know that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

Take 
$$\frac{a}{\sin A} = 2R$$
 .....(i)

Now 
$$L_2 = \frac{1}{2} b \epsilon \sin A$$
 (Article 8.8)

which gives Sin  $A = \frac{2}{tc}$ 

Substituting  $\frac{2}{\hbar c}$  for Sin A in (i) we get

$$-\frac{a}{2} = 2R$$

$$-\frac{a}{bc}$$

$$R = \frac{ab_i}{4\Delta}$$

#### 9.2. Radius of the in-Circle

To prove that  $r = \frac{\Delta}{s}$  where r is the radius of the Circle inscribed in the  $\Delta$  ABC and 2s = a + b + c



Let IA, IB, IC be the bisectors of the angles A, B, C respectively of the ABC. They will be concurrent, and let them meet in I. From I draw ID, IE, and IF perpendiculars to BC, CA, and AB respectively. Then we know that ID = IE = IF = r

Now 
$$\triangle ABC = \triangle IBC + \triangle ICA + \triangle IAB$$
  
or  $\triangle = \frac{1}{2} ra + \frac{1}{2} rb + \frac{1}{2} rc$   
 $= \frac{1}{2} r (a + b + c)$   
 $= \frac{1}{2} r . 2s = rs$   
 $\therefore r = \frac{\triangle}{s}$ 

# Another Expression

# To prove that :-

(i) 
$$r=(s-a) \tan \frac{A}{2}$$

(ii) 
$$r=(s-b)$$
 tan  $\frac{B}{2}$ 

(iii) 
$$r=(s-c)$$
 tan  $\frac{C}{2}$ 



Proof: We know that :-

$$2s = a + b + c = BC + CA + AB$$
= (BD+DC) + (CE+EA) + (AF+FB)  
= (BD+BF) + (DC+CE) + (AE+AF)  
= 2BD+2DC+2AE

[: BD=BF, DC=CE, AE=AF being tangents from external points B, C, D to the circle]

or 
$$2s=2(BD+DC+AE)$$

or 
$$s=(BD+DC)+AE$$
  
= $BC+AE=a+AE$ 

.....(i)

Now from the rt. angled AIE, we have

$$\frac{AE}{r} = \cot \frac{A}{2} \qquad \therefore AE = r \cot \frac{A}{2}$$

.. from (i) we have

$$s=a+r$$
 Cot  $\frac{\Lambda}{2}$ 

Hence 
$$r = (s-a)$$
 tan  $\frac{A}{2}$ 

Similarly, we can prove that :-

$$r = (s - b) \tan \frac{B}{2}$$
and  $r = (s - c) \tan \frac{C}{2}$ 

### 9.3. Radii of the escribed circle

To prove that  $r_1 = \frac{\triangle}{s-a}$  where  $r_1$  is the radius of the circle touching the side BC of the  $\triangle$ ABC.



Let A  $I_1$  be the internal bisector of the angle A and B $I_1$ , C $I_1$  be the external bisectors of the angles B and C meeting at  $I_1$ , the centre of the escribed circle touching the side BC (opposite to A) at D. Draw  $I_1D$ ,  $I_1E$ , and  $I_1F \perp s$  to BC, and CA and CB (produced) respectively. Let  $r_1$  be the e-radius of the circle touching BC.

Then, 
$$I_1D = I_1E = I_1F = r_1$$
  
Now  $ABC = I_1AB + \Delta I_1AC - \Delta I_1BC$   
or  $I = \frac{1}{2} \frac{r_1c + \frac{1}{2} \frac{r_1b - \frac{1}{2} r_1a}{r_1a} = \frac{1}{2} \frac{r_1(c+b-a)}{r_1(c+b-a)}$  .....(i)  
Put  $a \vdash b \vdash c = 2s$   
 $\therefore b \vdash c - a = 2(s - a)$   
 $\therefore$  from (i) we get  
 $\Delta = \frac{1}{2} \cdot r_1 \cdot 2(s-a)$ 

Hence 
$$r_1 = \frac{\triangle}{s-a}$$

Similarly, we can prove that :-

$$r_2 = \frac{\Delta}{s - b}$$
 and  $r_3 = \frac{\Delta}{s - c}$ 

Where  $r_2$  and  $r_3$  are the radii of the circles touching the sides CA and AB respectively.

# Another Expression

To prove that  $r_1 = s \tan \frac{A}{2}$ 

Proof :- We know that

$$2s = AB + BC + CA$$

$$= AB + (BD + DC) + CA$$

$$= (AB + BD) + (DC + CA)$$
.....(1)

But BD=BF and DC=CE (tangents drawn from external points) B and C to the circle with centre I1)

... From (i) we get

$$2s = (AB + BF) + (AC + CE)$$

$$= AF + AE$$

$$= 2AF \qquad (\because AE = AF ; tangents from A)$$
or  $s = AF$ 

Now from the rt. angled △ I1AF,

$$\frac{AF}{r_1} = \cot \frac{A}{2}$$
 ::  $AF = r_1 \cot \frac{A}{2}$ 

.. From (ii) we get :-

$$S=r_1$$
 Cot  $\frac{A}{2}$ 

Which gives  $r_1 = s \tan \frac{A}{2}$ 

Similarly, we can Prove that :-

$$r_2 = s \tan \frac{\mathbf{B}}{2}$$
 and  $r_3 = s \tan \frac{\mathbf{C}}{2}$ 

#### Solved Examples.

We give below a number of solved examples. The student is advised to read these carefully. Those marked with an esterisk may be taken as articles.

Fix. 1. Prove that (i) 
$$r = \frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}}$$

and (ii)  $r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$ 

Sol. (i) R. H. S. = 
$$\frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}}$$

$$= \frac{a \sqrt{\frac{(s-c)(s-a)}{ca}} \sqrt{\frac{(s-a)(s-b)}{ab}}}{\sqrt{\frac{s(s-a)}{bc}}} \times \sqrt{\frac{bc}{s(s-a)}}$$

$$= a \sqrt{\frac{(s-c)(s-a)}{ca}} \times \sqrt{\frac{(s-a)(s-b)}{ab}} \times \sqrt{\frac{bc}{s(s-a)}}$$

$$= \frac{\sqrt{(s-a)(s-b)(s-c)}}{\sqrt{s}} = \frac{\sqrt{s(s-a)(s-b)(s-c)}}{s} = \frac{\Delta}{s}$$
[::  $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$ ]
$$= r = L. H. S.$$

(ii) R. H. S.=4R Sin 
$$\frac{A}{2}$$
 Sin  $\frac{B}{2}$  Sin  $\frac{C}{2}$ 

$$=4. \frac{abc}{4\Delta} \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{(s-c)(s-a)}{ca}}$$

$$\sqrt{\frac{(s-a)(s-b)}{ab}}$$

$$= \frac{(s-a)(s-b)(s-c)}{\triangle} = \frac{s(s-a)(s-b)(s-c)}{s. \triangle}$$
$$= \frac{\triangle^2}{s. \triangle} = \frac{\triangle}{s} = r = L. H. S.$$

Ex. 2. If R and r denote respectively the radii of the circumcircle and incircle of any triangle ABC, prove that

$$\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = \frac{1}{2Rr}$$
(K.U. 1961)

Sol. L. H. S. =  $\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab}$ 

$$= \frac{a+b+c}{abc} = \frac{2s}{abc}$$
R. H. S. =  $\frac{1}{2Rr} = \frac{1}{2r} = \frac{1}{2r} = \frac{2s}{abc}$ 

.. L. H. S.=R. H. S.

Ex. 3. If A, A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub> be the areas of the in-circle and three e-circles of a triangle, show that

$$\frac{1}{\sqrt{A}} = \frac{1}{\sqrt{A_1}} + \frac{1}{\sqrt{A_2}} + \frac{1}{\sqrt{A_3}}$$

Sol. We have  $A=\pi r^2$ ,  $A_1=\pi r_1^2$ ,  $A_2=\pi r_2^2$  and  $A_3=\pi r_2^2$ 

We have 
$$A = \pi r$$
,  $A_1 = \pi r_1$ ,  $A_2 = \frac{1}{2}$   

$$\therefore R. H. S. = \frac{1}{\sqrt{\pi r_1}} + \frac{1}{r_2} + \frac{1}{\sqrt{\pi r_2}} + \frac{1}{\sqrt{\pi r_3}}$$

$$= \frac{1}{\sqrt{\pi}} \left[ \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} \right]$$

$$= \frac{1}{\sqrt{\pi}} \left[ \frac{1}{\Delta} + \frac{1}{\Delta} + \frac{1}{\Delta} + \frac{1}{\Delta} \right]$$

$$= \frac{1}{\sqrt{\pi}} \left[ \frac{s-a}{\Delta} + \frac{s-b}{\Delta} + \frac{s-c}{\Delta} \right]$$

$$= \frac{1}{\sqrt{\pi}} \cdot \frac{3s - (a+b+c)}{\Delta} = \frac{1}{\sqrt{\pi}} \cdot \frac{s}{\Delta} = \frac{1}{\sqrt{\pi r}} = \frac{1}{\sqrt{\Lambda}}$$

#### Ex 4.\* Prove that

$$r_1 = \frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}$$

Sol. R.H.S. = 
$$\frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}$$

$$\frac{a\sqrt{\frac{s(s-b)}{ca}}\sqrt{\frac{s(s-c)}{ab}}}{\sqrt{\frac{s(s-a)}{bc}}}$$

$$= a\sqrt{\frac{s(s-b)}{ca}}\sqrt{\frac{s(s-c)}{ab}}\sqrt{\frac{bc}{s(s-a)}}$$

$$= \frac{\sqrt{s(s-b)(s-c)}}{\sqrt{s-a}} = \frac{\sqrt{s(s-a)(s-b)(s-c)}}{\sqrt{s-a}}$$
(Mark this step)

$$=$$
  $\frac{\Delta}{s-a}$   $r_1$ 

#### Ex. 5. Prove that

2 R2 Sin A Sin B Sin C=

Sol. L.H.S. = 2R2 . Sin A . Sin B . Sin C.

$$=2.R^2.\frac{a}{2R}.\frac{b}{2R}.\frac{c}{2R}$$

$$\left[ : \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \right]$$

$$= \frac{abc}{4R} = \frac{abc}{4} \cdot \cdot \frac{4\Delta}{abc} = \Delta = R.H.S.$$

Ex. 6. Prove that

Sol. L.H.S. = 
$$\frac{s-a}{a} \cdot \frac{s-b}{b} \cdot \frac{s-b}{c}$$
  
=  $\frac{s(s-a)(s-b)(s-c)}{s \cdot abc}$  (Please mark this step)  
=  $\frac{\Delta^2}{s \cdot abc}$  [:  $\sqrt{s(s-a)(s-b)(s-c)} = \Delta$ ]  
R.H.S. =  $\frac{r}{4R} = \frac{\Delta^2}{4 \cdot abc} = \frac{\Delta^2}{s \cdot abc} = L.H.S.$ 

Ex. 7. Show that  $\cos A + \cos B + \cos C = 1 + \frac{r}{R}$  (K.U. 1953)

Sol. Cos A+Cos B+Cos C=2 Cos 
$$\frac{A+B}{2}$$
 Cos  $\frac{A-B}{2}$ 

$$+1-2 \sin^{2} \frac{C}{2}$$

$$=1+2 \cos \left(90^{\circ} - \frac{C}{2}\right) \cos \frac{A-B}{2} - 2 \sin^{2} \frac{C}{2}$$

$$=1+2 \sin \frac{C}{2} \cos \frac{A-B}{2} - 2 \sin^{2} \frac{C}{2}$$

$$=1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \sin \frac{C}{2}\right]$$

$$=1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \sin \left(90^{\circ} - \frac{A+B}{2}\right)\right]$$

$$=1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$$

$$=1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$$

$$=1+2 \sin \frac{C}{2} \left[\cos \frac{A-B}{2} - \cos \frac{A+B}{2}\right]$$

$$=1+4 \operatorname{Sin} \frac{A}{2} \operatorname{Sin} \frac{B}{2} \operatorname{Sin} \frac{C}{2}$$

$$=1+4 \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{(s-c)(s-a)}{ca}}$$

$$\sqrt{\frac{(s-a)(s-b)}{ab}}$$

$$=1+4 \frac{(s-a)(s-b)(s-c)}{abc}$$

$$=1+4 \cdot \frac{s(s-a)(s-b)(s-c)}{s \cdot abc} = 1+\frac{4\Delta^{2}}{s \cdot abc}$$

$$R.H.S.=1+\frac{r}{R}=1+\frac{s}{\frac{abc}{4\Delta}} = 1+\frac{4\Delta^{2}}{s \cdot abc}$$

$$=L.H.S$$

**Ex. 8.** If  $p_1$ ,  $p_2$ ,  $p_3$  are the perpendiculars from the angular points of a triangle to the opposite sides, show that

(i) 
$$p_1 = \frac{a}{\text{Cot B} + \text{Cot C}}$$
 (ii)  $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{r}$  and (iii)  $8 \text{ R}^3 = \frac{a^2b^2c^3}{p_1p_2p_3}$   
Sol. We have  $\Delta = \frac{1}{2} p_1 a = \frac{1}{2} p_2 b = \frac{1}{2} p_3 c$ .

 $p_1 = \frac{2\triangle}{a}, p_2 = \frac{2\triangle}{b}, p_3 = \frac{2\triangle}{c}$ 

(i) 
$$p_1 = \frac{a}{\text{Cot B} + \text{Cot C}}$$

R.H.S. 
$$\frac{a}{\cos B} + \frac{\cos C}{\sin C} = \frac{a \sin B \sin C}{\cos B \sin C + \cos C \sin C}$$

$$= \frac{a \sin B \sin C}{\sin (B+C)} = \frac{a \sin B \sin C}{\sin (\pi-A)}$$

$$= \frac{a \operatorname{Sin B} \operatorname{Sin C}}{\operatorname{Sin A}} = \frac{a \cdot \frac{b}{2R} \cdot \frac{c}{2R}}{\frac{a}{2R}}$$

$$= \frac{bc}{2R} = \frac{bc}{2 \cdot \frac{abc}{4\triangle}} = \frac{-2\triangle}{a} = \text{L.H.S.}$$

$$(ii) \quad \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{r}$$

$$\text{L.H.S.} = \frac{a}{2\triangle} + \frac{b}{2\triangle} + \frac{c}{2\triangle}$$

$$= \frac{1}{2\triangle} (a+b+c) = \frac{2s}{2\triangle} = \frac{s}{\triangle} = \frac{1}{r}$$

$$(iii) \quad 8 \operatorname{R}^3 = \frac{a^2b^2c^2}{p_1p_2p_3}$$

$$\text{R.H.S.} = \frac{a^2b^2c^2}{p_1p_2p_3} = \frac{a^2b^2c^2}{a \cdot \frac{2\triangle}{b}} \cdot \frac{2\triangle}{c} = \frac{a^3b^3c^3}{8\triangle^3}$$

$$= 8\left(\frac{abc}{4\triangle}\right)^3 = 8 \cdot \operatorname{R}^3$$

$$\left(\therefore \frac{abc}{4\triangle} = \operatorname{R}\right)$$

**Ex.** 9. If  $\alpha$ ,  $\beta$ ,  $\gamma$  be the distances of the vertices of a  $\triangle$  from the incentre, prove that  $\alpha\beta\gamma s = abcr$ 

Sol. As is clear from the figure,

$$\alpha = IA = r \operatorname{Cosec} \frac{A}{2}$$

$$\beta = IB = r \operatorname{Cosec} \frac{B}{2}$$

and 
$$\gamma = IC = r \operatorname{Cosec} \frac{C}{2}$$

Now, L.H.S=αβγs



$$= r \operatorname{Cosec} \frac{A}{2} \cdot r \operatorname{Cosec} \frac{B}{2} \cdot r \operatorname{Cosec} \frac{C}{2} \cdot s$$

$$= r^{3} \sqrt{\frac{bc}{(s-b)(s-c)}} \sqrt{\frac{ac}{(s-c)(s-a)}}$$

$$\sqrt{\frac{ab}{(s-a)(s-b)}} \cdot s$$

$$= r^{3} \cdot \frac{abc \cdot s}{(s-a)(s-b)(s-c)}$$

$$= \frac{\triangle^{3}}{s^{3}} \cdot \frac{abc \cdot s^{2}}{s(s-a)(s-b)(s-c)} = \frac{\triangle^{3}}{s} \cdot \frac{abc}{\triangle^{2}}$$

$$= \frac{\triangle}{s} \cdot abc = abc \cdot r = R.H.S.$$

Ex. 10. Prove that

$$R = \frac{abc \left( \text{Cot A} + \text{Cot B} + \text{Cot C} \right)}{a^2 + b^2 + c^2}$$

Sol. R.H.S. = 
$$\frac{ab\varepsilon \left(\text{Cot A} + \text{Cot B} + \text{Cot C}\right)}{a^2 + b^2 + c^2}$$

$$= \frac{abc}{a^8 + b^2 + c^2} \left[ \frac{\cos A}{\sin A} + \frac{\cos B}{\sin B} + \frac{\cos C}{\sin C} \right]$$

$$= \frac{abc}{a^{2} + b^{2} + c^{2}} \begin{cases} b^{2} + c^{2} - a^{2} & c^{2} + a^{2} - b^{2} \\ 2bc & + \frac{2ca}{2ca} \\ 2R & 2R \end{cases}$$

$$\left. + \frac{a^2 + b^2 - c^2}{2ab} - \left. - \right\}$$

$$=\frac{abc}{a^{2}+b^{2}+c^{2}}\cdot\begin{bmatrix}2R & (b^{2}+c^{2}-a^{2})\\ 2 & abc\end{bmatrix}+\frac{2R(c^{2}+a^{2}-b^{2})}{2abc}\\ +\frac{2R(a^{2}+b^{2}-c^{2})}{2abc}\end{bmatrix}$$

= 
$$\frac{abc}{a^2+b^2+c^2}$$
 .  $\frac{2R}{2abc}$   $(a^2+b^2+c^2) = R = L.H.S$ 

### EXERCISE XV

In any △ ABC, prove that :-

2. 
$$Rr(Sin A+Sin B+Sin C)= \triangle$$
.

3. 
$$rr_1=r_2$$
  $r_3$   $\tan^2\frac{A}{2}$ . 4.  $\tan\frac{A}{2}=\frac{rr_1}{\triangle}$ 

5. 
$$r^3 \cot^2 \frac{A}{2} \cot^2 \frac{B}{2} \cot^2 \frac{C}{2} = r_1 r_2 r_3$$
.

$$\checkmark 6. \quad \frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\triangle^2}$$

7. (i) 
$$r\left(\operatorname{Cot} \frac{A}{2} + \operatorname{Cot} \frac{B}{2} + \operatorname{Cot} \frac{C}{2}\right) = s$$

$$(ii)$$
  $r=aSin$   $\frac{B}{2}Sin$   $\frac{C}{2}Sec$   $\frac{A}{2}$ 

8. 
$$a \operatorname{Cot} A + b \operatorname{Cot} B + c \operatorname{Cot} C = 2R + 2r$$
.

9. 
$$\frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c} - \frac{1}{s} = \frac{4r}{\triangle}$$

11: 
$$\sin A + \sin B + \sin C = \frac{s}{R}$$

13. 
$$a \operatorname{Cos} A + b \operatorname{Cos} B + c \operatorname{Cos} C = 4R \operatorname{Sin} A \operatorname{Sin} B \operatorname{Sin} C$$
.

14. 
$$\frac{a \cos A + b \cos B + c \cos C}{a + b + c} = \frac{r}{R}$$

15. 
$$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2 + \frac{r}{2r}$$

16. 
$$(i)$$
  $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$ .

(ii) 
$$r_1+r_2+r_3-r=4R$$
  
(iii)  $r_2r_3+r_3r_1+r_1r_2=s^2$   
(iv)  $(r_1-r)(r_2+r_3)=a^2$ 

(iv) 
$$(r_1-r)(r_2+r_3)=a^2$$

17. (i) 
$$(r_1+r_2) \tan \frac{C}{2} = (r_3-r) \cot \frac{C}{2} = c$$

(ii) 
$$(r_2+r_3) \sqrt{\frac{rr_1}{r_2r_3}} = a$$

(iii) 
$$4\triangle \operatorname{Cot} A = b^2 + c^2 - a^2$$

$$(s-a) = r_1(s-a) = r_2(s-b) = r_3(s-c) = \triangle$$

$$(v)$$
 16 R<sup>2</sup>  $rr_1r_2r_3 = a^2b^2c^2$ 

18. 
$$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$$

19. 
$$\left(\frac{1}{r} - \frac{1}{r_1}\right)\left(\frac{1}{r} - \frac{1}{r_2}\right)\left(\frac{1}{r} - \frac{1}{r_5}\right) = \frac{16}{r^2(a+b+c)^2}$$

20. 
$$a = \frac{r_1(r_2 + r_3)}{(r_1r_2 + r_2r_3 + r_3r_1)}$$

21. (i) 
$$\frac{r_1}{bc} + \frac{r_2}{ca} + \frac{r_3}{ab} = \frac{1}{r} - \frac{1}{2R}$$
  
(ii)  $(r_1 - r)(r_2 - r)$   $(r_3 - r) = 4Rr^2$ 

22. 
$$\frac{r_2 + r_3}{(s-a) \sin A} = \frac{r_3 + r_1}{(s-b) \sin B} = \frac{r_1 + r_2}{(s-c) \sin C}$$

## CHAPTER X

# Logarithms and Their Use

## Definition :

45

Let a, x, and N be three numbers or quantities related by the equation az=N, then x is called the logarithm of the number N to the base a, and is denoted as  $x = \log_a N$ . It is, therefore, the index of the power to which the base must be raised, that it may be equal to the given number. Log (abbreviation of logarithm) is an Operator which when operated on any number 'N' means, "Find out the number 'x' to which 'a' has to be raised to give the number N." e.g. 23=8; here 3 the index of the power of 2 is the logarithm of 8 to the base 2, which quantity when developes a power 3 becomes 8. This idea is symbolically expressed as 3=log<sub>2</sub>8.

- **Ex. 1.** (i)  $a^1=a$  or  $1=\log_a a$ ; i.e., 1 is the logarithm of a to the base a. [Note: Logarithm of a number to the same number as base is always one].
- (ii) a0=1 or loga 1=0; i.e. [Logarithm of 1 is always zero, whatever base be taken.]
- (iii)  $2^4=16$  or  $\log_2 16=4$ ; also  $4^2=16$  or  $\log_4 16=2$ , [Note:-Logarithms of the same number to different bases are different].
- (iv) 3.5 = 1.73205 or  $5 = \log_3 1.73205$ ;  $5^{-2} = \frac{1}{2.5} = 04$ , or logs 04=- 2. [Note: Logarithms of numbers greater than one are positive and of numbers less than one are nagative.]
  - (v) 103=1000 or log10 1000=3; 105=100000 or log<sub>10</sub> 100000=5 etc.

[Logarithms of numbers to the same base increase as the numbers increase.]

**Ex.** 2. Evaluate:  $(i) \log_9 27$ ,  $(ii) \log_4 5$ ,  $(iii) \log_3 ...3$ ,  $(iv) \log_a 0$ .

[Ans: (i) 1.5. (ii) -.5 (iii) -1, (io) -\infty.]

10.2 Theorems on Logarithms:

(a) The Logarithm of a Product of two or more numbers is equal to the sum of the logarithms of its factors.

First law of indices gives  $a^m \times a^n = a^{m+n}$ . (i)

Let  $a^m = x$  &  $a^n = y$  i.e.  $\log_a x = m$  and  $\log_a y = n$ , (ii) [By definition]

Now, (i) becomes from (ii),  $a^{m+n} = xy$  or  $\log_a xy = m + n$ : From (ii),  $\log_a xy = \log_a x + \log_a y$ . (1)

Similarly,  $\log_a y_1 z = \log_a x_1 + \log_a z = \log_a x + \log_a y + \log_a z$ .

Ex. 3.  $\log_a 2310 = \log_a (2 \cdot 3 \times 5 \times 7 \times 11)$ =  $\log_a 2 + \log_a 3 + \log_a 5 + \log_a 7 + \log_a 11$ .

(h) The logarithm of a quotient of two quantities is equal to the difference of the logarithms of the numerator and the denominator.

Second Law of Indices gives 
$$\frac{a^m}{a^n} = a^{m-n}$$
. (i)

Put as before  $a^m = x$  and  $a^n = y$ ,

i.e. 
$$m = \log_a x$$
, and  $n = \log_a y$ ; (ii)

Now, (i) with the help of (ii), becomes  $a^{m-n} = \frac{x}{y}$ .

From definition,  $\log_a \frac{\lambda}{\nu} = m - n$ =  $\log_a \nu - \log_a \nu$  from (ii)

$$\log_a \frac{x}{y} = \log_a x - \log_a y. \tag{2}$$

Ex. 4  $\log_{10} \frac{15}{38} = \log_{10} 15 - \log_{10} 38$ ,

$$= \log_{10}(3 \times 5) - \log_{10}(2 \times 19), = \log_{10}3 + \log_{10}5 - \log_{10}2 - \log_{10}19.$$

(c) The logarithm of any number having a power is equal to the logarithm of the same number multiplied by the index of its power.

Third law of indices gives 
$$(u^m)^n = a^{m_n}$$
 (i)

Third law of indices gives 
$$(a^m)^n = a^m$$
  
Put  $a^m = x$  i.e  $m = \log_a x$ .

... If 
$$x^m = a^{mn}$$
, by definition,  $m^n = \log_a \lambda^n$ 

.. If 
$$x^m = a^{mn}$$
, by definition,  $m^n = \log_a x$   
or  $\log_a x^n = n \log_a x$ .

Ex. 5.  $\log_{10} 27 = \log_{10} 3^3 = 3 \log_{10} 3$ .

(d) Conversion of a logarithm of a number from one base to the other :

Let y and y be the logarithms of a number N to bases a and b respectively, then, by definition of logarithms, we have

espectively, then, by definition 
$$x = \log_a N$$
 or  $a^x = N$ ,  $b^y = \log_b N$  or  $b^y = N$ ,  $a^x = b^y$ .

Raising both the sides of (i) to  $\frac{1}{x}$  and  $\frac{1}{y}$ , we get

$$a=b$$
 and  $b=a$  respectively. (ii)

Applying the definitions again in (ii), we get

$$\frac{y}{x}\log_b a, \frac{x}{y} = \log_a b.$$

Multiplying (iii) together, we get very important result

$$\log_b a \times \log_a b = \frac{y}{x} \times \frac{x}{y} = 1,$$

$$\therefore \log_b a \times \log_a b = 1$$

$$\therefore \log_b a \times \log_a b = 1$$

$$\therefore \log_b a \times \log_a b = 1$$
(4)

For conversion, substituting from (i) and (iii) and applying

rsion, substituting from (4)
$$\frac{\log_b N}{\log_a N} = \frac{y}{x} = \log_b a = \frac{1}{\log_a l},$$
(5)

$$\log_a N = \frac{\log_a N}{\log_a b}.$$
 (5)

Also, 
$$\frac{\log_a N}{\log_b N} = \frac{x}{y} = \log_a b = \frac{1}{\log_b a}$$
:  
 $\therefore \log_a N = \frac{\log_b N}{\log_b a}$ . (6)

Ex. 6. 
$$\log_{4} 3 = \log_{10} 3 \times \log_{4} 10 = \log_{10} 3 \times \frac{1}{\log_{10} 4}$$
.  
[::  $\log_{1} 10 \times \log_{10} 4 = 1$ ]

Note. The readers are requested kindly to note the following mistakes generally committed in taking logarithms;

- (i)  $\log_a (x+y) = \log_a x + \log_a y$  which is absurd.
- (ii)  $\log_a (x^y + y^x) = y \log_a x + x \log_a y$  which is also fundamentally wrong.
- (iii)  $\log_a 5x = 5 \log_a x$  in place of  $\log_a 5 + \log_a x$

#### EXERCISE XVI

- 1. Simplify the following and express the results in the logarithmic form:
  - (i) 2.5, (ii) 27-5, (iii) 16.75, (iv) 256-25.
- 2. From the definition, show that  $x^y = e^{y \log x}$ .

[Alld. 1945]

- 3. Evaluate: (i) log<sub>7</sub>343, (ii) log<sub>2</sub>·5, (iii) log<sub>-01</sub> 100. (iv) log<sub>4</sub>64.
- 4. If x, y, z are positive, prove that

$$\log \frac{x^2}{yz} + \log \frac{y^2}{zx} + \log \frac{z^2}{xy} = 0.$$

5. Simplify: 
$$(i \mid \log_a \frac{\sqrt{4 \times 27^{\frac{1}{3}}}}{36^{\frac{1}{2}}}, (ii) \log_a \left(\frac{45^2}{28^3} - \frac{\sqrt{76^4}}{81}\right)$$

(iii) 
$$\log_a \frac{-\sqrt{100 \times 65^2}}{628^{-\frac{1}{8}} \times 52}$$
, (iv)  $\log_a \frac{112^{\frac{3}{4}} \div 343^{-\frac{1}{8}}}{28^2 \times 512^{-\frac{1}{6}}}$ 

6. If 
$$a = \log \frac{5}{6}$$
,  $b = \log \frac{10}{9}$ ,  $c = \log \frac{25}{24}$ , prove that  $\log 2 = b + c - 3a$ . [Alld. 1936]

- 7. (a) Show that  $\log_a b \times \log_b c \times \log_c a = 1$ .
  - (b)  $\log_{2a} a = x$ ,  $\log_{3a} 2a = y$ ,  $\log_{4a} 3a = z$ , show that xyz+1=2yz.

## 10.3 Common logarithms.

It is not always that actual value of logarithm of a number to any base is obtained exactly, for instance, the value of  $\log_4 181$  lies between 3 and 4; since, if  $\log_4 181 = x$ , then  $4^x = 181$ . Considering the multiples of 4 nearest to 181, we observe  $4^3 < 181 < 4^4$  or  $4^3 < 4^x < 4^4$  i.e. 3 < x < 4. Hence the value is 3 plus some fraction. The integral part in the value of the logarithm of a number is called Characteristic of the logarithm, and fractional part its Mantissa. In Logarithmic tables, we get only the fractional part of the value, calculated either to the base 'e' a transendental number approximately equal to 2.7, or reckoned to the base 10. Logarithms to the former base are ealled Natural or Napierian, while to the latter base Common Logarithms. For all practical purposes, it is the Common system of logarithms we use, as 10 is mostly adopted as radix in the numerical calculations.

Note: If no base of a logarithm is mentioned, it should be considered as 10. In practice, common logarithms are expressed without base.

Ex. 7. (i)  $\log 2340 = 3.3692$ .

[Here 3 is characteristic and '3692 the decimal positive fraction is mantissa.]

(ii)  $\log .000234 = 4.3692$ .

[Here the characteristic is negative and equal to 3692.

Note: The characteristic may be positive or negative but Negative characteristic is written with a har over it, to separate it from the +ve mantissa. Ex. 8. Find the characteristic and mantissa when  $\log 0.0234 = -1.6308$ .

Here 
$$-1.6308 = -1 - .6308 = -2 + 1 - .6308$$
  
=  $-2 + .3692 = 2.3692$ .

Hence, -2 is the characteristic and +3692 is the mantissa.

- 10.4 Advantages of the common system of Logarithms.
- (i) The characteristic of the logarithm of any number to the base 10 can be found out by inspection of the number of digits in the integral part, or the number of seros after the decimal point and before the first zignificant digit.
- (ii) The mantissa of logarithms of all numbers consisting of the same digits and in the same order are the same; i.e. the mantissa remains unchanged if the number is multiplied or divided by any multiple of 10.
  - 10.5. Case I—The characteristic of all numbers greater than one to the base 10 is positive integer and always one less than the number of digits in the integral part of the numbers.

Let 
$$10^0 = 1$$
, i.e.  $0 = \log_{10} 1$ . (i)  
 $10^1 = 10$ . i.e.  $1 = \log_{10} 10$ . (ii)  
 $10^2 = 100$ . i.e.  $2 = \log_{10} 100$ . (iii)  
 $10^3 = 1000$ . i.e.  $3 = \log_{10} 1000$ . (iv)

- (a) We observe, from (i) and (ii), that numbers lying between I and 10, i.e. having one digit in the integral part, have their logarithms between 0 and 1 (only a + ve droper fraction). Thus,  $\log_{10} 3.705 = 0 + f$ .
- (b) From (ii) and (iii), we find numbers lying between 10 and 100 (i.e. two digit-numbers in the integral part) have their logarithms between 1 and 2.

Thus,  $\log_{10} 43.201 = 1 + f$ .

(c) From (iii) and (iv), we see a number having three digits in the integral part, lies between 100 and 1000, and has its logarithms between 2 and 3.

Thus,  $\log_{10} 758 \cdot 1 = 2 + f$ .

(d) And so generalising, a number N(>I) having n digits in the integral part lies between  $10^{n-1}$  and  $10^n$  and will have its logarithm between n-1 and n.

Thus,  $\log_{10} N = (n-1) + f$ .

Hence, we have the above rule for numbers greater than one.

10.6. Case II. The characteristic of logarithm to the base 10 of any number less than one is always negative and one more than the number of zeros after the decimal point and before the first significant digit.

Consider the following:

$$10^{\circ}=1$$
, i.e.  $\log_{10}1=0$ .

$$10^{-1} = \frac{1}{10} = 1$$
, i.e.  $\log_{10} 1 = -1$ .

$$10^{-2} = \frac{1}{10^2} = 0$$
, i.e.  $\log_{10} 01 = -2$ .

$$10^{-8} = \frac{1}{10^3} = 001$$
, i.e.  $\log_{10} 001 = -3$ .

and so on.

(a) We observe, from (i) and (ii), that any number lying between 1 and 1 has no zero after the decimal point and before the first significant digit and its logarithm lies between 0 and 1, i.e a negative proper fraction which can be expressed as -1+f, and its characteristic is -1.

Thus.  $\log_{10}$  '2045 = -1+f.

(b) From (ii) and (iii), we see that any number lying between 1 and 01 has one zero immediately after the decimal point and before the first significant digit and its logarithm lies between -1 and -2 i.e. -2+f, and its characteristic is -2.

Thus,  $\log_{10} .045003 = -2 + f$ .

(e) From (iii) and (iv), we see that any number lying between 01 and .001 has two zeros immediately after the decimal point and before the first significant digit and its logarithm lies between -2 and -3 i.e. -3+f, and its characteristic is -3.

Thus.  $\log_{10} .004503 = -3 + f$ .

(d) And so generalising, a number N (<1), having n zeros immediately after the decimal point and before the first significant digit, lies between  $10-\binom{n+1}{2}$  and  $10^{-n}$  and will have its logarithm between  $-\binom{n+1}{2}$  and -n and characteristic as  $-\binom{n+1}{2}$ .

Thus,  $\log_{10} N = -(n+1) + f$ 

Note (i) When N=1, logarithm is zero.

Note (ii) When N is negative, logarithm is imaginary hence, a negative number has no logarithms.

Note (iii) Conventionally, negative characteristic and positive mantissa is denoted by placing a minus sign above the characteristic.

Thus, log N=n+1 'abcd......where f='abcd....,N has n zeros between the decimal sign and before the first significant digit.

Ex 9. Find the characteristics of logarithms of

(a) 5.234, (2) .0043, (c) 421.3, (d) .2005.

Sol. (a) The given number is greater than one, and the number of digits in the integral part is one.

 $\therefore$  Characteristic=1-1=0.

(b) The given number is less than one, and the number of zeros immediately after the decimal point and before the first significant digit is two.

 $\therefore$  Characteristic = -(2+1) = -3.

(c) The given number is greater than one and has three digits in the integral part.

... Characteristic=3-1=2.

(d) The given number is less than one, and there is no zero after the decimal point and before the first significant digit.

 $\therefore$  The characteristic = -(0+1) = -1.

## EXERCISE XVII

Write, by inspection, the characteristics of the logarithms of the following:

- (i) 1.523; (ii) 305.2; (iii) 527000; (iv) .2405 (v) .00201; (vi) .0000070403; (vii) .450000001; (viii) .08; (ix) 20 1; (x) 200001.
  - 10.7. The mantissa of logarithms of all numbers consisting of the same digits and in the same order is the same.

**Proof**—All numbers consisting of the same digits and arranged in the same order, only differ in the position of the decimal point, Thus all such numbers which have the same digits as N (a given number), will be either divided or multiplied by any multiple of 10, and will be included in the group of N×10° where m is any + ve or—ve integer.

Let log N=I'abcd.....where I is the characteristic and 'abcd.....the mantissa,

then, 
$$\log (N \times 10^m) = \log N + \log 10^m$$
 [from (1) § 9.2]  
=  $\log N + m \log 10$  [from (3) § 9.2]  
= I abcd...+m [:  $\log_{10} 10 = 1$ ]  
=  $(1+m)$  abcd.....

We observe that 'abcd.. the mantissa remains the same, but the characteristic has changed from I to I+m with the change of number from N to N×10<sup>m</sup>. I+m is positive or negative integer. Thus, if the position of the decimal point be changed or any number of zeros added to the right, the mantissa does not change.

- Ex. 10. Given log 2345=3.3701, find the values of (i) log 23.45, (ii) log .2345, (iii) log .00002345, (iv) log 2345000
- (i)  $\log 23.45 = \log \frac{2345 \times 10^{-2} = \log 2345 + \log 10^{-2}}{= 3.3701 2 = 1.3701}$ .
- (ii)  $\log 2345 = \log 2345 \times 10^{-4} = \log 2345 + \log 10^{-4}$ =3.3701-4=1.3701.
  - (iii)  $\log 0.00002345 = \log 2345 \times 10^{-8} = \log 2345 + \log 10^{-8} = 3.3701 8 = 5.3701$ .

- iv)  $\log 2345000 = \log 2345 \times 10^3 = \log 2345 + \log 10^3 = 3.3701 + 3 = 6.3701$ .
- Note 1. —We observe, from the above example, that mantissa is independent of the position of decimal point. All numbers here have the same order of digits 2345, and have the same mantissa as 3701, only the characteristic varying.
- Note 2:—The effect of multiplying a number by any integral power of 10 (+ ve or negative) is to produce another number having the same order of digits by merely shifting the decimal point.
- Ex. 11 Find the number of digits in  $(14)^2-2^8$  given log 2 = 30103, log 3 = 4771213.

Sol. Let 
$$x = (\frac{1}{4})^2 \times 2^8 = 4^2 \cdot 3^2 \cdot 2^2 \cdot 1^2 \times 2^8$$
,  $= 3^2 \times 2^{14}$ .

$$\log x = 2 \log 3 + 14 \log 2,$$

$$= 2 \times 4771213 + 14 \times 30103$$

$$= 9542426 + 4.21442,$$

$$= 5.1686626.$$

 $\therefore$  x or  $(11)^2 \times 2^8$  is a number the logarithm of which has bias characteristic. Hence, the number of digits in x=5+1=6.

Note: [ :: Characteristic is one less than the number of digits.

... The number of digits is one more than the characteristic.]

#### EXERCISE XVIII

- Given log 4.317=.6352, and log .0127=2.1038, find, by inspection, the values of:—
  - (i) log 4317, (ii) log 12.7 (iii) log 1004317,
  - (iv) log 127 (v) log 4317, (vi) log 127.
  - (vii) log 127000
  - Given log 2='30103, log 3='4771, log 7='8451.
     Find the digits in the integral part of the following numbers:
    - (i)  $9^{27} \times 16^{4}$ , (ii)  $(12.5)^{100}$ , (iii)  $5^{200}$ , (io)  $(980)^{49}$ .

3. Find the number of zeros after the decimal point and before the first significant digit in the following:

(i) 
$$3^{-25}$$
, (ii)  $(0081)^{100}$ , (iii)  $(00025)^{49}$ , (iv)  $(\frac{1}{2100})$ 

## 10. 8 Use of Four Figure Log Tables.

Tables for common logarithms are used when the numbers are not integral powers of 10, and they have a fractional part (mantissa) in the value of logarithm. When this mantissa extends only to four figures after the decimal point in any set of tables, they are called Four-figured Tables. An extract from four-figured Tables will explain points of the use of tables:

# USE OF FOUR FIGURE LOG TABLE

|    | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 123 | 456 | 789 |
|----|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|
| 75 | 8751 | 8756 | 8762 | 8768 | 8774 | 8779 | 8785 | 8791 | 8797 | 8802 | 112 | 233 | 455 |
| 16 | 8808 | 8814 | 8820 | 8825 | 8831 | 8837 | 8842 | 8848 | 8854 | 8859 | 112 | 233 | 455 |

10.8.1. When the mantissa of the logarithm of a number is required from the four-figured tables, we have to make the number four-digited by approximating to 4 digits if it has more than four digits, or by adding zeros on the right if it has less than four digits. We have to take four significant digits from the left irrespective of the decimal point. The two digits from the left of the given number will be found in the extreme left column in the Tables headed by a vacant square. The third digit from the left is to be taken from one of the ten columns headed by 0, 1, .....9; and the fourth digit of the given number from the left is to be found from one of the nine columns of Mean Differences, the small columns, on the right.

Ex. 12. From the extract above, find the value of (i) log 76.85, (ii) log .0007507, (iii) log .75385.

(i) Neglecting the decimal point the digits of the number are 7685. Now looking up for 76 in the extreme left column

and moving along the row across 76, we get 8854 in the column headed by 8 (third figure of the number). Moving further in the same row in the Difference Columns under 5 (the fourth digit), we get 3 which stands for '0003. Hence mantissa is equal to '8854 plus '0003 or '8857. The characteristic, by § 9.5, is evidently one. Thus log 76.85=1.8857.

(ii) Here the significant digits of the number are 7507. Proceeding along the horizontal row across 75, in the vertical column under 0, we get 8808 and the number in difference columns vertically under 7 is 4; the work may be arranged as

log '000750=4'8808 from § 9.5 Difference for 7=0004log '0007503=4'8812

(iii) Here '75385='7539 correct upto four places of decimal pt. Now proceeding along the horizontal row across 75, under vertical column headed by 3, we get 8768, and moving further in the Difference Columns under 9 we find 5. Thus

 $\log .753 = 1.8768$ Diff. for 9 = .0005

:. log. 7539=1.8773

Thus, log '75385=1'8773 approximately.

Note: We can find, from the Tables here, that log '7538 and log '7539 are the same as 1.8773. This means that the mantissas of the two numbers have no differences upto four places. In the subsequent figures, the difference will occur and the two values are never the same.

10.8.2. Antilogarithms: If the logarithm of a number is given, the number is called the antilogarithm of the given quantity. This is just the reverse of taking logarithms. Let  $x = \log_a N$ , then  $N = \operatorname{antilog_a x}$ . Thus, the operator 'antilog' on any quantity, means number which is the result of raising the base to that quantity (the quantity being index of the power of base).

# 10.8.3. How to find Antilogarithms?

# Ex. 13. Find Antilog 3.8778, from antilog tables.

## ANTILOG TABLE

|     | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 123 | 456 789    |
|-----|------|------|------|------|------|------|------|------|------|------|-----|------------|
| -87 | 7413 | 7430 | 7447 | 7464 | 7482 | 7499 | 7516 | 7534 | 7551 | 7568 | 235 | 7910 12316 |

Arrange the result thus,

| antilog<br>'877 | No.<br>7.534 | headed by 7 and in the row                                       |
|-----------------|--------------|------------------------------------------------------------------|
| Diff. for .0008 | 13           | (a number in Diff. Clms. headed by 8 and in the row across '87). |
| .8778           | 7.547        |                                                                  |

· ... antilog '8778=7.547.

Hence, antilog 3.8778=.007547 (by Note (ii), above]

Ex. 14. Find the eleventh root of '007547.

Sol. Set 
$$x=(.007547)^{\frac{1}{11}}$$
,  
or  $\log x = \frac{1}{11} \log (.007547)$ ,  
or  $\log x = \frac{1}{11} (3.8778)$ ,  
 $= \frac{1}{11} (\overline{11} + 8.8778)$ ,  
 $= 1.8071$ .  
 $\therefore x = \text{antilog } 1.8071$ ,  
 $= .6413 \text{ (From antilog tables.)}$ 

,

## 10.8.4. Tables of Logarithmic Trigonometric numbers.

In many problems, where trigonometric calculations are required, we come across with the logarithms of trigonometrical numbers. Expressions like log Sine, log Cosine, log tan etc. are usually required in solutions of triangles. One of the ways of finding the logarithms of trigonometrical numbers is first to find the Sine, Cosine, tangent etc. of the given angle from the Tables of Natural Functions, and then to find the logarithm of the obtained number from the Tables of Logarithms. For example to calculate log tan 52°, first find tan 52°=1.2799 from tables of Natural tangents and then consult the log-tables to get log 1.2799=1072. Thus, log tan 52°=1072.

To avoid the inconvenience of using two tables, separate tables giving logarithms of trigonometrical numbers have been calculated. An extract from four-figure Tables of logarithmic tangents is given below.

## LOGARITHMS OF TANGENTS

| grees | 0,1    | 6    | 12'  | 18   | 24   | 30   | 36   | 42   | 48   | 54   | Mean | Diff<br>4 5 |  |
|-------|--------|------|------|------|------|------|------|------|------|------|------|-------------|--|
| 9     |        | 0 1  | 0.2  | 0.5  | 0.4  | 0.5  | 0 6  | 0.7  | 0.8  | 0.9  | 1-23 | 4 5         |  |
| 14    | 1.9848 | 9864 | 8879 | 9894 | 9909 | 9924 | 9939 | 955  | 9970 | 9985 | 358  | 10 13       |  |
| 5     | .0000  | 0015 | 0030 | 0045 | 0061 | 0076 | 0091 | 0106 | 0121 | 0136 | 358  | 10 13       |  |

## Ex. 15. Find log tan 44°32'.

log tan 44°30′=1.9924 [In the row across 44° and column headed by 30′]

Diff. for 2'=.0005 [In the Diff. column under 2'] log tan  $44^{\circ}32'=1.9929*$  add in the case of tangent.

Note.: With the increase of angles from 0 to 90°, the Difference is added in the case of logarithms of Sine, Secant and tangent, and subtracted in the case of logarithms of Cosine, Cosecant and Cotangent.

**Ex. 16.** Find x, if  $\log \tan x = .0128$ .

The given number is not in the Tables; the one nearest to it and less than it is '0121 in the column under 48' across 45°.

 $\therefore$  log tan 45°48'='0121.

But '0128-'0121='0007; this difference 7 is not found in the Difference Columns, while we find 5 under 2' and 8 under 3' in the Diff. Columns, 3' is selected, as 7 is nearer to 8 than to 5, and is added in 45°48'.

... log tan 45°51'='0128

Hence  $x=45^{\circ}51'$ .

Note: The value in the above example could have been interpolated by the Principle of Proportional Parts but this principle is more suited to seven-figured tables rather than in four-figured tables where the above method gives sufficiently accurate results.

## 10.9. Tabular Logarithms.

As the Sine, Cosine of an angle is always less than one, the characteristics of their logarithms are always negative, which is also the case with logarithms of the tangent of angles less than 45° and Cotangent of angles greater than 45°; to avoid the inconvenience of printing the negative characteristics, in some cases, the values of logarithms are tabulated by adding 10 to the true values of log arithms of trigonometric numbers and such values are called Tabular logarithms. The symbol L is used to denote these 'tabular logarithms'.

Thus, log tan 44°32′=1.9929

While L tan 44°32′=10+log tan 44°32′ =10+1.9229 =9.9929

Note: To get the true value of logarithm of trigonometric number, the corresponding Tabular value must be diminished by 10.

Note 2. In terms of tabular logarithms, the extract of Ex. 10.8.4. will be read thus:

## Tabular Logarithmic tangents.

| 225     |         | ٠,   | ,    | ,    | ,    | ,    | ,    | ,    |      |      | Mean | Diff  |
|---------|---------|------|------|------|------|------|------|------|------|------|------|-------|
| Degrees | o'      | 6    | 12   | 18   | 24   | 30   | 36   | 42   | 48   | 56   | 123  | 4 5   |
| 44      | 9.9848  | 9864 | 9879 | 9994 | 9909 | 9924 | 9939 | 9955 | 9970 | 9985 | 358  | 10 19 |
| 46      | 10-0000 | 0016 | 0030 | 0045 | 0061 | 0076 | 0091 | 0106 | 0121 | 0136 | 358  | 10 1  |

### 10.10. Principle of Proportional Parts.

In case the angle contains integral number of degrees and minutes, the tabular logarithm is directly obtained from the tables; but when the angle contains seconds also, the value of the logarithm is interpolated by the principle of proportional parts which states that the increase in the logarithm of a number is proportional to the increase in the number itself. When used in connection with logarithms of trigonometric numbers, we may state:

"The small differences between the angles are proportional to the corresponding differences between the logarithms of the trigonometrical numbers of those angles".

**Ex. 17.** Given L 
$$\cos 34^{\circ}44' = 9.9147729$$
 and L  $\cos 34^{\circ}45' = 9.9146852$ .

find the value of L Cos 34°44'27".

diff. for 1'= 0000877.

For an increase of 1' or 60" in the angle, there is decrease of 10000877 in the logarithm, hence for an increase of 27" in the

angle, the corresponding decrease is  $\frac{27}{60}$  . 0000877 i.e. 0000395.

Ex. 18. Find in degrees, minutes and seconds the angle whose Sine is '6, given that

Let x be the required angle. log Sin x=log '6=1'7781513

L Sin 
$$x=10 + \log \sin x = 9.7781513$$

L Sin x=
$$10 + \log \sin x = 3.7782870$$
  
L Sin x =  $9.7781513$  L Sin  $36^{\circ}53' = 9.7782870$ 

L Sin x = 
$$9.7781513$$
 L Sin 36°52′= $9.7781186$   
L Sin 36°52′= $9.7781186$  L Sin 36°52′= $9.7781186$   
diff. for 1′=1684

diff. = 
$$327$$
 diff.  $327 \times 60^{\circ} = 11.7^{\circ}$   
Corresponding increase in the angle =  $\frac{327 \times 60^{\circ}}{1684} = 11.7^{\circ}$ 

Note: In the application of principle of proportional parts to the trigonometrical numbers, it is always to be kept in view that all the co-numbers decrease with the increase in the angle.

## EXERCISE XIX

- 1. Show that  $\log 2 = \log \frac{133}{65} + 2 \log \frac{13}{7} \log \frac{143}{90} + \log \frac{77}{171}$
- 2. Solve the following Equations, given  $\log 2 = 30103$ ,  $\log$ 3='47712, log 7='84510 :
  - (i) 2°·32°=5°-1.
  - (ii) 730+8+4x+2=73x+1+4x+3.
  - (iii) 720 22-4 = 38x-7.

- 3. Find the number of digits in 255.
- 4. Find the number of digits in 343,
- 5. Given Sin 23°15'='3947439, Sin 23°16'='3950111, find Sin 23°15'20'.
- Given L Sin 23°15′=9.59530, L Sin 23°16′=9.59658, find L Sin 23°15′20″.
- 7. Given L Cos 24°4′=9.9605048, L Cos 24°5′=9.9604484, find L Cos 24°4′32″.
- 8. Given L Sin  $14^{\circ}6'=9\cdot386704$ , find L Cosec  $14^{\circ}6'$ . [Hint: Sin  $\theta \times \text{Cosec } \theta=1$ , ... L Sin  $\theta+\text{L Cosec } \theta=20$  etc.]
- 9. Find the angle x, where L Cot x=9.5254782, given L Cot  $71^{\circ}27'=9.5257779$ , L Cot  $71^{\circ}28'=9.5253589$ .
- Find the time in which a pice will amount to a rupee if rate of interest being allowed 7% compound interest. Given log 2=:3010, log 1:07=:0294.

## CHAPTER XI

## Solution of Triangles

# 11.1. Elements of a triangle.

Let ABC be a triangle. The capital letters A, B, C denote the angles and the small letters a, b, c represent respectively the sides opposite to these angles. Thus the three angles and three sides together make up the six fundamental elements of a triangle. We know from geometry that a triangle is uniquely drawn if we are given:

- (i) One side and any two angles, the sum of the given angles being less than 180°.
  - (ii) Two sides and the included angle.
- (iii) Two sides and the angle opposite to one of them. (There may be ambiguity if the given angle is opposite to smaller of the given sides.)
- (iv) Three sides, every side being less than the sum of the other two.

Thus, we observe that necessary data to determine the shape and size of a triangle (except in one case when only three angles are known) is that three of its elements must be known out of which one must be a side. This process of calculating the unknown three elements from the given three elements of a triangle is called Solution of triangles.

# 11.2. Solution of a right angled triangle.

In art. ∠ed △, the right angle is always known out of the three elements which determine the triangle completely. Out of these other two elements. for solution, at least one must always be a side. A rt. angle, thus, can be completely solved under the following cases:

- (i) The two adjacent sides other than the hypotenuse be known.
- (ii) The hypotenuse and any other side be known.
- (iii) The hypotenuse and any other angle be known.
- (iv) Any angle and any side other than the hypotenuse be known.



Let ABC be a right angled triangle right angled at C, c will be the hypotenuse, a and b, the two adjacent sides.

Case (i) Given a, and b

To find A,  $\tan A = \frac{a}{b}$  (1)

For logarithmic calculations, L tan A=10+log a-log b. To find B, 90°-A=B (2)

To find C, 
$$\frac{c}{a}$$
 = Cosec A or C = a Cosec A (3)

For logarithmic culculations, [log c=log a+10-L Sin A. Hence (1), (2) & (3) determine all the three unknown elements A, B, c.

Note: The hypotenuse c is also given by  $c = \sqrt{a^2 + b^2}$  but this relation is not suitable for logarithmic work.

Case (ii). Given c and a.

To find 
$$A_{r} = \sin A$$
. (1)

For logarithmic calcutations, L Sin A=log a-log c+10

To find B, (a) 
$$90^{\circ}$$
 -A=B

To find b, (a) b= (2)

To find b, (a) 
$$b = \sqrt{(c+a)} (c-a)$$
  
(b)  $b = c \operatorname{Cos} A$   
(c)  $b = a \operatorname{Cot} B$  (3)

In all the above relations, logarithmic calculations can be adopted.

Case (iii) Given c and A.

To find B, 
$$90^{\circ} - A = B$$
 (1)

To find 
$$a$$
,  $a=c$  Sin A (2)

To find 
$$b$$
,  $b = c \operatorname{Sin} B \operatorname{or} c \operatorname{Cos} A$  (3)

Case (iv) Given A, a

To find B, 
$$B=90^{\circ}-A$$
 (1)

To find 
$$b$$
,  $b=a \operatorname{Cot} A$  (2)

To find 
$$c$$
,  $c=a$  Cosec A (3)

For logarithmic calculations, (2) and (3) become

$$\log b = \log a - L \tan A + 10$$
, and

 $\log c = \log a - L \sin A + 10$ , respectively.

Ex. 1. The length of the perpendicular from one angle of a triangle upon the base is 3 inches, and the lengths of the sides containing this angle are 4 and 5 inches. Find the angles, having given log 2=.30103, log 3=.4771213, L Sin 36°52′=9.7781186; diff. for 1'=1684, L Sin 48°35′=9.8750142, diff. for 1'=1115.

Now,

$$\sin A = \frac{3}{4}$$

... L Sin A=
$$10 + \log 3 - 2 \log 2$$
  
=  $10 + 4771213 - 60206$ 



Here, L Sin A=9.8750613

$$\frac{\text{L Sin } 48^{\circ}35' = 9.8750142}{\text{diff.}} = 471$$

1

1115) 28260 (25 2230

diff. for 1'=1115

5575 385

$$=\frac{471}{1115} \times 60^{\circ}$$

$$=25^{\circ} \text{ nearly.}$$

Also, Sin B = 
$$\frac{3}{5} = \frac{3 \times 2}{10}$$

or L Sin B=
$$10 + \log 3 + \log 2 - \log 10$$
  
= $9 + .4771213 + .30103 \doteq 9.7781513$ 

.. L Sin B = 
$$9.7781513$$
  
L Sin  $36^{\circ}52' = 9.7781186$  diff. for  $1' = 1684$  diff. =  $327$ 

$$\therefore \text{ diff.} = \frac{327 \times 60''}{1684} = 11.6'' \qquad \frac{1684}{1684}$$

$$= 12'' \text{ nearly} \qquad 2780$$
Hence, B=36°52′12''. \qquad 1684

Ex. 2. To determine the breadth AB of a canal, an observer places himself at C in the straight line AB produced through B and then walks 100 yds. at right angles to this line. He then finds that AB and BC subtend angles 15° and 25° at his eyes. Find the breadth of the canal, given

Let AB be the canal and O the new position of the observer. Draw AD perp. from A on OB produced, then



Taking tabular logarithms, we get

log AB+L Cos 25°-10=log 100+L Cos 75°-L Cos 40°

or log AB=10+2+9.4129962-9.8842540-9.9572757

or log AB=21.4129962-19.8415297 =1.5714665.

Now,  $\log 37.280 = 1.5714759$   $\log AB = 1.5714665$   $\log 37.279 = 1.5714643$   $\log 37.279 = 1.5714643$  Diff. for <math>001 = .0000116 Diff. = .00000022

 $\therefore \quad \text{Diff.} = \frac{.0000022 \times .001}{.0000116} = .00019 \text{ nearly.}$ 

 $\therefore$  AB=37.279+.00019=37.27919 yds.

#### EXERCISE XX

- 1. Solve the triangle ABC, where  $C=90^{\circ}$ , a=50,  $B=75^{\circ}$ .
- If a=30, b=300, find A in order that B may be a rt. angle, having given L Sin 5°44′=8'9995595,
  diff. for 1′='0012565.
- 3. In a  $\triangle$ , a=384, b=330,  $C=90^\circ$ , find other angles, given  $\log 11=1.0413927$ ,  $\log 20=1.3010300$ , L tan  $49^\circ19'=10.0656886$ , L tan  $49^\circ20'=10.0659441$ .
- 4. A tower 150 ft. high throws a shadow 75 ft. long upon the horizontal plane upon which it stands. Find the sun's altitude, having given log 2='30103, L tan 63°26' = 10'3009994, L tan 63°27'=10'3013153.
- 5. Solve the triangle of which two sides are equal to 10 and 20, and of which the included angle is 90°; given log 2='30103, and L tan 26°33'=9'6986847.

diff. for 1'=3160.

11. 4. Solution of oblique Angled Triangles.

Case I. Given two angles and one side, to solve the triangle.

Let a, A and B be given, then the third angle  $C = 180^{\circ}$ -(A+B) For the rest we can apply the Sine Formula

$$\therefore b = \frac{a \sin B}{\sin A}, c = \frac{a \sin C}{\sin A}$$

$$\left[ \because \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \right]$$

Ex. 3. In a  $\triangle$  ABC, A=72° 43', B=64° 23' and c=473. Find C, b, and a

Sol. 
$$C=180^{\circ}-(A+B)=180^{\circ}-(72^{\circ} 43'+64^{\circ} 23')$$
  
=  $180^{\circ}-(137^{\circ} 6')=42^{\circ} 54'$ 

Now by Sine Formula,  $\frac{a}{\sin A} = \frac{c}{\sin C}$ 

$$\therefore a = \frac{c \sin A}{\sin C}$$

$$a = 663.4$$

Again by Sin formula,  $\frac{b}{\sin B} = \frac{c}{\sin C}$ 

$$\therefore b = \frac{c \sin B}{\sin C}$$

∴ 
$$\log b = \log \frac{c \sin B}{\sin C} = \log c + \log \sin B - \log \sin C$$
  
 $= \log 473 + \log \sin 64^{\circ} 23' - \log \sin 42^{\circ} 54'$   
 $= 2.6749 + 1.9553 - 1.8330 = 2.7972$   
 $= \log 626.9$   
∴  $b = 626.9$ 

#### EXERCISE XXI

Solve the triangle, given :-

- 1. B=88° 36'; C=31° 55' a=53
- 2.  $B=64^{\circ} 23'$ ;  $C=72^{\circ} 43' a=18.92$

Find b and c

- 3. a=226.9;  $B=73^{\circ} 55'$ ;  $C=39^{\circ} 45'$
- 4. B=64° 23'; C=72° 43'; a=18.9
- 5. A=66° 38'; B=26° 14'; c=32.42

# 11.5. Case II Given three sides a, b, c of a triangle to solve the triangle.

Since the sides are known, the semiperimeter s, and the quantities s-a, s-b, and s-c can be found out easily. Also

$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

$$\therefore \log \tan \frac{A}{2} = \frac{1}{2} \left[ \log (s-b) + \log (s-c) - \log s - \log (s-a) \right]$$

This will give us  $\frac{A}{2}$ . Doubling this, we can get A.

Similarly, we can get from the formula

$$\tan\frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$$

and C can lastly be got from the equation

$$c = 180^{\circ} - (A + B)$$

Ex. 4. Solve the triangle whose sides

$$a=32, b=40, c=66$$

(P.U. 1946)

Sol. 
$$2s=32+40+66=138$$
 :  $s=69$   
 $s-a=37$ ,  $s-b=29$ ,  $s-c=3$ 

Now log tan 
$$\frac{A}{2} = \log \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \log \sqrt{\frac{29 \times 3}{69 \times 37}}$$

$$= \frac{1}{2} [\log 29 + \log 3 - \log 69 - \log 37]$$

$$= \frac{1}{2} [1 \cdot 4624 + \cdot 4771 - 1 \cdot 8388 - 1 \cdot 5682]$$

$$= \frac{1}{2} [1 \cdot 9395 - 3 \cdot 4070]$$

$$= \frac{1}{2} [-2 + 3 \cdot 9395 - 3 \cdot 4070]$$
(Please note this step)
$$= 1 + \cdot 2662 = 1 \cdot 2662 = \log \tan 10^{\circ} 28'$$

$$\therefore \frac{A}{2} = 10^{\circ} 28' \text{ or } A = 20^{\circ} 56'$$
Similarly,  $\log \tan \frac{B}{2} = \log \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$ 

$$= \log \sqrt{\frac{3 \times 37}{69 \times 29}}$$

$$= \frac{1}{2} [\log 3 + \log 37 - \log 69 - \log 29]$$

$$= \frac{1}{2} [\cdot 4771 + 1 \cdot 5682 - 1 \cdot 8388 - 1 \cdot 4624]$$

$$= \frac{1}{2} [\cdot 2 \cdot 0453 - 3 \cdot 3012]$$

$$= \frac{1}{2} [-2 + \cdot 7441] = \log \tan 13^{\circ} 15'$$

$$\therefore B = 26^{\circ} 30'$$
and  $C = 180^{\circ} - (A + B) = 180^{\circ} - (47^{\circ} 26')$ 

$$= 132^{\circ} 34'$$

### EXERCISE XXII

Solve the triangle, if

1. 
$$a=31$$
,  $b=42$ ,  $c=57$ 

2. 
$$a=4584$$
,  $b=5140$ ,  $c=3624$ , find A

3. 
$$a=8$$
 ,  $b=9$ ,  $c=10$ 

4. 
$$a=32$$
,  $b=40$ ,  $c=66$ 

5. 
$$a = 229.2$$
,  $b = 181.2$ ,  $c = 257$ 

6. Find the area of the △ABC, the radius of the incircle, and solve it when

$$a=725$$
 ft.,  $b=548$  ft.,  $c=474$  ft., given

# 11.6 Case III. when two sides and the included angle are given, to solve the triangle

Let the given sides be a and b (a>b) and C the included angle. Now from the formula

$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \operatorname{Cot} \frac{C}{2} \text{ (Napier's Analogy)}$$

$$= \frac{a-b}{a+b} \tan \left[ \frac{\pi}{2} - \frac{C}{2} \right]$$

we get (by taking logarithms)

$$\log \tan \frac{A-B}{2} = \log (a-b) - \log (a+b) + \log \tan \left(-\frac{\pi}{2} - \frac{C}{2}\right)$$

From this we can get 
$$\frac{A-B}{2}$$
 (i)

Also 
$$\frac{A+B}{2} = 90^{\circ} - \frac{C}{2}$$
 (ii)

... from (i), (ii) we can get A and B

Lastly, the side a can be found from the formula

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

This will give us  $a = \frac{b \operatorname{Sin} A}{\operatorname{Sin} B}$ 

Hence  $\log a = \log b = \log \sin A - \log \sin B$ 

Ex. 5. Solve the triangle, when :-
$$b=237, c=158, A=66^{\circ} 40'$$
Sol.  $b+c=395, b-c=79, B+C=180^{\circ}-66^{\circ} 40'$ 

$$=113^{\circ} 20'$$
Also  $\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2} = \frac{b-c}{b+c} \tan \frac{B+C}{2}$ 

$$= \frac{79}{395} \tan 56^{\circ} 40'$$

$$\log \frac{B-C}{2} = \log \left[ \frac{1}{3} \tan 56^{\circ} 40' \right]$$

$$= \log 56^{\circ} 40' - \log 5$$

$$= 1820 - 6990$$

$$= -5170 = 1.4830$$

$$\begin{array}{l} \therefore \frac{B-C}{2} = 16^{\circ} \ 55' \\ \text{or } B-C = 33^{\circ} \ 50' \\ \text{Also } B+C = 113^{\circ} \ 20' \\ \therefore B = 73^{\circ} \ 55' \ \text{and } C = 39^{\circ} \ 45' \end{array}$$

Also by Sine Formula 
$$a = \frac{c \sin A}{\sin C}$$

∴ 
$$\log a = \log c + \log \sin A - \log \sin C$$
  
=  $\log 158 + \log \sin 66^{\circ} 40'$   
-  $-\log \sin 39^{\circ} 45'$   
=  $2 \cdot 19866 + 1 \cdot 96294 - 1 \cdot 80581$   
=  $2 \cdot 35579 = \log (226 \cdot 9)$   
∴  $a = 226 \cdot 9$ .

Ex. 6. a=9, b=7,  $C=47^{\circ} 25'$ , find other angles it being given that  $\log 2 = 3010300$ 

L tan  $15^{\circ}-53'=9.4541479$ L tan  $66^{\circ}-17'-30''=10.3573942$ Difference for 1'=.0004797.

Sol. 
$$C=47^{\circ} 25'$$
  $\therefore A+B=180^{\circ}-(47^{\circ} 25')$   
or  $\frac{A+B}{2}=66^{\circ} 17' 30'$  .....(i)

Now 
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b}$$
 Cot  $\frac{C}{2} = \frac{a-b}{a+b} \tan \frac{A+B}{2}$   
=  $\frac{1}{8} \tan 66^{\circ} 17' 30''$ 

Taking tabular logarithms, we get

L tan 
$$\frac{A-B}{2}$$
 =L tan 66° 17′ 30″-3 log 2  
=10·3573942-3×·3010300  
=10·3573942-9030900  
=9·4543042

L tan  $15^{\circ}-53'=9.4541479$ Diff = 1563

Now diff. for 60"=4797

$$\therefore \text{ Diff.} = \frac{1563 \times 60''}{4797} = 19'' \cdot 5$$

... L tan 
$$\frac{A-B}{2}$$
 = L tan  $15^{\circ}-53'-19''\cdot 5$   
...  $\frac{A-B}{2}$  =  $15^{\circ}-53'-19\cdot 5''$  ....(ii)

From (i) and (ii) we get

$$A=82^{\circ}-10'-49.5'$$

$$B=50^{\circ}-24'+10.5''$$

### EXERCISE XXIII

Solve the triangle, if

1. 
$$a=21.35$$
,  $b=35.21$ ,  $\angle C=50^{\circ}-48'$  find B (P.U. 1954)

2. 
$$b=25.1$$
,  $c=14.7$  and  $A=47^{\circ}$  (P.U. 1948)

3. 
$$b=237$$
,  $c=158$ ,  $A=66^{\circ}-40^{\circ}$ 

- 4. b=11, c=9,  $A=32^{\circ}-30'$
- 5. b=37.2, c=22.3,  $A=29^{\circ}-38'$
- If b=14, c=11, A=60°, find the remaining angles of the △ABC, it being given that log 2='30103, log 3='47712
   L tan 11°-44'-29"=9'31774
- 7. If b=27, c=23,  $A=44^{\circ}-30'$  find B and C, having been given that  $\log 2=30103$ , L Cot  $22^{\circ}-15'=10\cdot3881591$ , L tan  $11^{\circ}-3'=9\cdot2906713$  diff. for 1'=0006711
- 8. In a  $\triangle$ ABC, c=1400, b=1300 and  $A=60^{\circ}$ , find B and C, given  $\log 3=4771213$ , L  $\tan 3^{\circ}-40'=8.8067422$ .
- 11.7 Case IV. Given two sides and the angle opposite to one of them (Ambiguous Case may arise).

Let a, c and A are given. We also suppose that A is not a right angle  $(\S 10.3)$ .

Law of Sines is the only formula required for solution. We know  $\frac{b}{\sin B} = \frac{a}{\sin A} = \frac{c}{\sin C} = 2R$ , hence

- (a) First find R from  $\log 2R = \log a L \sin A + 10$ .
- (b) Find C from Sin C=.  $\frac{c}{2R}$
- (c) Find  $B=180^{\circ}-(A+C)$ , and b=2R Sin B.

If the  $\triangle$  is real i.e. the datas given are consistent, we observe that  $\epsilon$  must be less than or equal to 2R as no side of a triangle can be greater than the diameter of its circumcircle. Hence, at the time of finding C, the following possibilities may arise:

- (i)  $\frac{c}{2R} = 1$  or Sin C=1, i.  $\epsilon$ . C is definite—a rt. angle.
- (ii)  $\frac{c}{2R}$  < 1 whence Sin C =  $\frac{c}{2R}$  leads to two possible values of C, one in the 1st quadrant (acute), and another in the 2nd quadrant (obtuse); but (a) if  $a \ge c$  or  $A \ge C$ , C

cannot be obtuse, it must be acute since there cannot be two obtuse angles in a  $\triangle$ ; (b) if, on the other hand, a < c so that A < C, the given value A should necessarily be acute, (for, when C is acute, A must be acute, and if C is obtuse A cannot be obtuse because of non-occurence of two obtuse angles in a triangle). Thus both the values of C given by (ii) above are possible, C may be acute and greater than A, or obtuse. In case, therefore, the given angle A is opposite to the smaller of the given sides (a < c), there may be ambiguity. (unless, as in (i), the angle opposite to the larger of the sides is a rt. angle) and two different triangles can be found to satisfy the given data; this case is called Ambiguous Case of the solution of triangles.

10. 8. Discussion of Ambiguous Case another way trigonometrically.

Sine formula also gives  $Sin C = \frac{c Sin A}{a}$ .

- (i) If c Sin A>a, we have Sin C>1 which is impossible and there is no triangle with the given elements.
- (ii) If c Sin A=a, then Sin C=1 ... C=90° Hence, if A<90° (acute), there is one triangle, (Rt. angled); if A>90° (obtuse), there is no triangle, since A+B+C=180°, the value of C=90° is inadmissible.
- (iii) If c Sin A < a, Sin C < 1 and there may be two real values of C, one acute and the other obtuse which are supplementary. These values may not always hold together, for,
- (a) If c < a, then C < A, hence C must be acute whether A be acute or obtuse, for, in the latter case, two obtuse angles in a triangle are never possible. and thus there is only one triangle.
- (b) If c=a, then Sin C=Sin A. C=A or  $180^{\circ}$ —A, the latter value is not possible since  $A+B+C=180^{\circ}$ , and the former value is admissible only if A<90; thus, if A is acute, there is one triangle (Isosceles), and if A is obtuse, there is no triangle;

(c) if c>a then C>A; and if also A is obtuse  $(A>90^\circ)$ , there can be no triangle as there cannot be two obtuse angles in a triangle; if  $A<90^\circ$  (acute) both values of C are admissible corresponding to which there will be two values of B and hence also two values of b, since

B=180°-(A+C) and 
$$b=\frac{a \sin B}{\sin A}$$
; there are, there-

fore, two triangles satisfying the above conditions.

Hence, for the ambiguous case, the given angle should be acute and the side opposite to the given angle be less than the other side under (iii) [i.e. c Sin .1 < a < c]

### To sum up

c Sin A a no solution.  $c \sin A = a$ ,  $A < 90^{\circ}$ . one solution. A>90°, no solution  $c \sin A < a, c < a,$ one solution.  $c = a, A < 90^{\circ},$ me solution.  $c = a, A > 90^{\circ},$ no solution. c>a, A>90°. no solution. c>0, A 90°, two solutions.

# 10.9 Treatment of the ambiguous case geometrically.

Let us show geometrically how the ambiguity arises. We are given the elements (a, c, A) as before.

(A) Let A be acute.

Construct LAM on aline AL equal to the given angle. From AM cut off AB equal to the given side  $\epsilon$ . Draw BN perp. to AL say (p).

Then, Sin  $A = \frac{BN}{c}$ ,

or BN=c Sin A=p.

To find the position of the third vertex C, describe a circle with centre B and radius equal to a. It will meet AL for consistency. The following cases may arise according as





- (i) The circle meets AL in no points i.e. a p.

  No real triangle.
- (ii) The circle touches AL at N i.e. a = BN = p.

One Right angled triangle.





- (iii) The circle cuts AL in two points i.e. a > p. or c Sin A < a, three sub-cases arise according as:—
  - (a) The circle cuts AL in two points C<sub>1</sub> and C<sub>2</sub> which

be on the opposite sides of A (one on the side of A as L and the other opposite to it). Here a>p, and also >c. Hence, only one triangle with the given data  $(ABC_1)$ .



(b) The circle cuts AL in two points in such a way that one of the pts.  $C_2$  coincides with A. Here, p < a and  $a = \varepsilon$ 

Only one isosceles triungle.

(c) The circle cuts AL in two pts. such that both the points  $C_1$  and  $C_2$  be on the same side of A as L. Here, p < a and a < c, both the  $\triangle s$  ABC<sub>1</sub> and ABC<sub>2</sub> satisfy the given data;



(C<sub>2</sub> being equal to  $180^{\circ} - C_1$ ). Two triangles possible with the given data.



### (B) Let A be obluse.

We observe that no triangle is possible satisfying the data, if  $c \ge a$ ; and only one triangle is possible if  $c \angle a$ . One triangle ABC, only.

# 10.10 Algebraic treatment of the ambiguous Case.

Given a, c, A, we have from the Cosine formula (§ 8.7)  $a^2 = b^2 + c^2 - 2bc \operatorname{Cos} A$ 

or  $b^2-2bc$  Cos  $A-c^2-a^2=0$  a quadratic equation.

Solving for b, we get

$$b = \frac{2c \cos A \pm \sqrt{4c^2 \cos^2 A - 4(c^2 - a^2)}}{2}$$

$$=c \cos A \pm \sqrt{a^2-c^2 \sin^2 A}$$
.

Thus b may have two real values for the given data,

say 
$$b_1 = c \cos A + \sqrt{a^2 - c^2 \sin^2 A}$$
, and

$$b_2 = c \operatorname{Cos} A - \sqrt{a^2 - c^2} \operatorname{Sin}^{-2} A.$$

- 1. Let A be acute, then we observe as follows :-
  - (a) If  $a < c \sin A$ , or  $a^2 c^2 \sin^2 A < 0$ , the two values of b are imaginary and hence no real triangle with given data.
  - (b) If a=c Sin A, or  $a^2-c^2$  Sin<sup>2</sup>A=0, the values of b are equal and real  $(b_1=b_2=c \cos A)$ , Hence the triangles are coincident and there is only one triangle satisfying the data.
- (c) If a > c Sin A or  $a^2 c^2$  Sin<sup>2</sup> A>0, the two values of b will be real and two real triangles satisfying the given data will be possible only if  $b_1$  and  $b_2$  both are positive, for in case,  $b_1$  or  $b_2$  is negative the triangles formed by them will contain not the given angle A but its suplementary 180°-A.

Thus for the ambiguous case, apart from a > c Sin A,

c Cos A 
$$\pm \sqrt{a^2 - c^2 \operatorname{Sin}^2 A} > 0$$
  
or  $c^2 \operatorname{Cos}^2 A > a^2 - c^2 \operatorname{Sin}^2 A$ ,  
or  $c^2 > a^2$  i.e.  $c > a$ .

- If (i)  $c \cos A = \sqrt{a^2 c^2 \sin^2 A}$  or c = a, Only the value  $b_1$  of b will be available and the other i. c.  $b_2 = 0$ , hence only one triangle is given with the given data (an Isosceles  $\Delta$ ).
  - (ii)  $c \operatorname{Cos} A < \sqrt{a^2 c^2} \operatorname{Sin}^2 A \operatorname{or} c < a$ .

Only one triangle satisfying the data will be possible as be will become negative.

11. Let A be obtuse, c Cos A will be negative, and hence  $b_2=c \operatorname{Cos} A - \sqrt{a^2-c^2} \operatorname{Sin}^2 A$  will always be negative, thus, if the other value  $b_1$  is positive, there is only one triangle possible.

Now 
$$b_1 = c \operatorname{Cos} A + \sqrt{a^2 - c^2 \operatorname{Sin}^2 A} > 0$$
  
if  $\sqrt{a^2 - c^2 \operatorname{Sin}^2 A} > -c \operatorname{Cos} A$   
or  $a^2 - c^2 \operatorname{Sin}^2 A > c^2 \operatorname{Cos}^2 A$   
or  $a^2 > c^2$  i.e.,  $a > c$ .

In case a=c,  $b_2=0$  and  $b_1=2c$  Cos A, which is negative hence no triangle.

In case a < c,  $c \operatorname{Cos} A + \sqrt{a^2 - c^2} \operatorname{Sin}^c A < 0$ , hence both the values of b are negative and no triangle can be possible.

#### EXERCISE

- 1. Discuss the ambiguities in the solution of triangles.
  (Patna 1951)
- 3. Test the ambiguity of the triangle

if 
$$10 + \log a > \log c + L \sin A$$
.

- 4. Show the following in the ambiguous case when a, c and A are given, and c > a > c Sin A;
- (i)  $b_1+b_2=2$  c Cos A; (ii)  $b_1$   $b_2=c^2-a^2$  where  $b_1$  and  $b_2$  are two values of b.

[Hint: use § 10.10]

- If a, b, A are given, and if c<sub>1</sub> and c<sub>2</sub> are the values of the third side, prove that
  - (i)  $c_1 c_2 = 2\sqrt{a^2 b^2} \sin^4 A$

(ii) 
$$\cos \frac{C_1 - C_2}{2} = \frac{b \sin A}{a}$$
. [Alld. 1941]

(iii)  $c_1 - c_2 = 2a \operatorname{Cos} B$ .

[Hint: Solve  $a^2=b^2+c^2-2bc$  Cos A for c,  $C_1-C_2$  is the vertical angle of the Isos.  $\triangle$  B<sub>1</sub> CB<sub>2</sub> ]

- 6. If b, c, and B of a △ are given, and if a₁, a₂ are two values of the third side in the two solutions, A₁ and A₂ being the corresponding opposite angles, prove that
  - (i)  $a_1^2 + a_2^2 2a_1a_2 \cos 2B = 4b^2 \cos^2 B$ ; [**Hint**:  $a_1 + a_2 = 2c \cos B$ ,  $a_1 a_2 = c^2 - b^2$ ]
  - (ii)  $\frac{(b+a)^2}{1+\cos A} + \frac{(b-c)^2}{1-\cos A} = \frac{2c^2}{\sin^2 C}$  [Banarus, 1942]

**Hint**: start with  $\tan^2 \frac{B-C}{2} = \frac{(b-c)^2}{(b+c)^2} \cot^2 \frac{A}{2}$ 

- If c<sub>1</sub> and c<sub>2</sub> be the values of the third side and B<sub>1</sub>, C<sub>1</sub> and B<sub>2</sub>, C<sub>2</sub> be the other two angles of the two triangles in an ambiguous case, then
  - (i)  $(c_1-c_2)^2+(c_1+c_2)^2 \tan^2 A=4a^2$ ,
  - (ii)  $\frac{\operatorname{Sin} C_1}{\operatorname{Sin} B_1} + \frac{\operatorname{Sin} C_2}{\operatorname{Sin} B_2} = 2 \operatorname{Cos} A$

[Hint: use  $\frac{\sin C_1}{\sin B_1} = \frac{c_1}{b}$ ,  $\frac{\sin C_2}{\sin B_2} = \frac{c_2}{b}$ ,

 $c_1+c_2=2b$  Cos A etc.]

- Ex. 13. Point out, giving reasons, the number of solutions in the triangles having the following data:—
  - (i)  $A=30^{\circ}$ , c=10, a=4; (ii)  $A=30^{\circ}$ , c=10, a=5;
  - (iii)  $A=30^{\circ}$ , c=10,  $a=5\sqrt{2}$ ;
  - (iv)  $A=30^{\circ}$ , c=10, a=10;
  - (v)  $A=60^{\circ}$ , c=10,  $a=10\sqrt{3}$ ,
  - (vi)  $A=120^{\circ}, c=10, a=5$ ;
  - (vii)  $A=120^{\circ}$ , c=10,  $a=10\sqrt{3}$ .
  - Sol. (i) Here the angle is opposite to the smaller side.

From the Sine formula, Sin C=  $\frac{c \sin A}{a} = \frac{10 \sin 30^{\circ}}{4} = \frac{5}{4}$ 

Thus, Sin C>1 which is impossible, and there is no [§ 10.9 (a) (i)-]

(ii) The given angle is opposite to the smaller side.

We know, as before, Sin C = 
$$\frac{c \sin A}{a} = \frac{10 \sin 30^{\circ}}{5} = 1$$

... C=90° or its supplement which is also 90°

Now, 
$$A=30^{\circ}$$
,  $C=90^{\circ}$ . .:  $B=180^{\circ}-(30^{\circ}+90^{\circ})=60^{\circ}$ .

and 
$$b = \frac{c \sin B}{\sin C} = \frac{10 \sin 60^{\circ}}{\sin 90^{\circ}} = 5\sqrt{3}$$
.

The A is rt. angled, only one solution; the two solutions are coincident. [ § 10.9 (A) (ii) ]

(#) The given angle is opposite to the smaller side.

Again, Sin C 
$$\frac{c \sin A}{a} = \frac{10 \sin 30^{\circ}}{5\sqrt{2}} = \frac{1}{\sqrt{2}}$$
.

Here C=45° or its supplement 135°. Let them be C1 and  $C_2$ ; and since  $A+C_1=33^{\circ}+45^{\circ}=75^{\circ}$ .

 $\Lambda + C_2 = 30^\circ + 135^\circ = 165^\circ$ , each is less than  $180^\circ$ ; both the values of C are valid and so there are two solutions. This is the ambiguous case.

$$B_{1} = 180^{\circ} - (A + C_{1}) = 180^{\circ} - 75^{\circ} = 105^{\circ},$$

$$B_{2} = 180^{\circ} - (A + C_{2}) = 180^{\circ} - 165^{\circ} = 15^{\circ},$$

$$b_{1} = \frac{a \sin B_{1}}{\sin A} = \frac{5\sqrt{2} \sin 105^{\circ}}{\sin 30^{\circ}} = \frac{5\sqrt{2}}{\frac{1}{2}} \cdot \frac{\sqrt{3+1}}{2\sqrt{2}}$$

$$= 5(\sqrt{3+1})$$

$$b_{2} = \frac{a \sin B_{2}}{\sin A} = \frac{5\sqrt{2} \cdot \sin 15^{\circ}}{\sin 30^{\circ}} = \frac{5\sqrt{2} \cdot (\sqrt{3-1})}{\frac{1}{2}}$$

The solutions are

(i) 
$$C_1 = 45^\circ$$
,  $B_1 = 105^\circ$ ,  $b_1 = 5 (\sqrt{3} + 1)$ .

(ii) 
$$C_1 = 45$$
,  $B_1 = 105$ ,  $b_1 = 5$  ( $\sqrt{3} + 1$ ).  
(ii)  $C_2 = 135^\circ$ ,  $B_2 = 15^\circ$ ,  $b_2 = 5$  ( $\sqrt{3} - 1$ ).  
[§ 10.9 (A) (iii) (c) ]

(iv) Again, Sin C = 
$$\frac{\epsilon \sin A}{a} = \frac{10 \sin 30^{\circ}}{10} = \frac{1}{2}$$
.

.:  $C=30^{\circ}$  or  $150^{\circ}$ , the second value of C is invalid as  $A+C=30^{\circ}+150^{\circ}$  must be less than  $180^{\circ}$ . Hence, there is only one solution the triangle is Isosceles;  $A=C=30^{\circ}$ ,  $B=120^{\circ}$  and  $b=10\sqrt{3}$ . [§ 10.9 (a) (iii) (b) ]

(v) Here the given angle is opposite to the greater side.

Again, Sin C = 
$$\frac{c \sin A}{a} = \frac{10 \sin 60^{\circ}}{10\sqrt{3}} = \frac{1}{2}$$

.: C=30° or its supplement 150°.

The obtuse value of C (150°) is rejected.

Hence,  $C+A=150^{\circ}+60^{\circ}=210^{\circ}$  is greater than 180°.

There is, therefore, only one solution.

A=60°, C=30°, B=90° and 
$$b=20°$$
.  
[§ 10.9 (a) (iii) (a) ]

(vi) The angle is obtuse and is opposite to the smaller side.

Sin C=
$$\frac{c \sin A}{a} = \frac{10 \sin 120^{\circ}}{5} = \sqrt{3}$$
.

Since Sin C > 1, no value of C is valid, hence the triangle is impossible.  $[\S 10.9 (b)]$ 

(vii) The angle is obtuse and is opposite to the greater side.

Sin C=
$$\frac{c \sin A}{a} = \frac{10 \sin 120^{\circ}}{10\sqrt{3}} = \frac{1}{2}$$

.: C=30° or its supplement 150°.

The value 150° is invalid as C+A (=270°) is greater than 180°. C=30° is the only valid solution. Hence there is only one triangle.

B=180°-(A+C)=180°-(120°+30°)=30°.  
C=30°, 
$$b = \frac{10\sqrt{3}}{3}$$
. [§ 10.9 (b)]

**Ex.** 14. If a=5 ft., b=8 ft. and  $A=35^{\circ}$ , find approximately the smaller value of c, having given  $\log 2=301030$ ,

L Sin 35°=9.758591, L Sin 31° 35'42"=9.719258,

L Sin  $66^{\circ}35' = 9.962672$ , L Sin  $66^{\circ}36' = 9.962727$ . log 456706 = 5.659637.

Sin B = 
$$\frac{b \text{ Sin A}}{a} = \frac{8 \text{ Sin } 35^{\circ}}{5} = \frac{2^{4}}{10} \text{ Sin } 35^{\circ}$$
;  
 $\therefore$  L Sin B=4 log 2-log 10+L Sin 35°  
=1.20412-1+9.758591  
=9.962711

Now,

L Sin B = 9.962711 L Sin 66°36′ = 9.962727 L Sin 66°35′ = 9.962672 L Sin 66°35′ = 9.962672 Diff. = 39 diff. for 
$$1' = 55$$
 =  $\frac{39 \times 60''}{55} = 42''$  nearly.

$$\therefore B = 66^{\circ}35'42''$$
 or  $180^{\circ} - 66^{\circ}35'42''$   
i.e.  $B_1 = 66^{\circ}35'42''$ ,  $B_2 = 113^{\circ}24'18''$ .

Hence,

$$C_1 = 110^{\circ} - (B_1 + A) = 180^{\circ} - (66^{\circ}35'42'' + 35^{\circ})$$
  
=  $180^{\circ} - 101^{\circ}35'42'' = 78^{\circ}24'18''$ ,  
 $C_2 = 180^{\circ} - (B_2 + A) = 180^{\circ} - (113^{\circ}24'18'' + 35^{\circ})$   
=  $180^{\circ} - 148^{\circ}24'18'' = 31^{\circ}35'42''$ .

.. The required side c is opposite to C<sub>2</sub> in the triangle A B<sub>2</sub> C<sub>2</sub>.

Now, from the Sine formula

$$c = \frac{a \sin C_2}{\sin A} = \frac{5 \sin 31^{\circ}35'42''}{\sin 35''},$$

### EXERCISE XXIV

- 1. [In a triangle ABC, if a=20, c=30, L Sin A = 9.5228787, find C, log 3=:4771213.
- 2. Find out which of the following data give the ambiguous solution and why?
  - (i)  $A=:30^{\circ}$ , a=200 ft., c=250 ft.
  - (it)  $A=30^{\circ}$ , a=200 ft., c=125 ft.
  - (iii)  $A=30^{\circ}$ , a=125 ft., c=250 ft.

Find the smaller value of the third side in the ambiguous case, and third side and other angles in all the cases.

Given log 2='30103, L Sin 8°41'=9'1789001,

 $\log 6.03893 = .7809601$ , L Sin  $180^{\circ}12'40'' = 9.49485$ ,

L Sin 38°41'=9'7958800 [Patna 1942, Alld. 1935.]

- 3. If a=9, b=12,  $A=30^\circ$ , find c, having given  $\log 2 = 30103$ ,  $\log 3 = 47712 \log 171 = 223301$ ,  $\log 368 = 256635$ , L Sin 11°48′39″=931108, L Sin 41°48′39″=982391, and L Sin 108°11′21″=9.97774.
- 4. Find the other angles of a triangle when one angle is 112°4′, the side opposite to it is 573 ft. long, and another side is 394 ft. long, given log 5.73=.7581564, log 3.94=.5954962. L Cos 22°4′=9.9669614.

L Sin 39°35′=9.8042757, L Sin 39°36′=9.8044284.
[ Alld. 1939]

5. If a=8, b=12.5 and  $A=33^{\circ}15'$ , show that the triangle has two solutions and find out other angles, given  $\log 2=30103$ , L Sin  $33^{\circ}15'=3.73901$ , L Sin  $58^{\circ}50'=9.93230$ , Diff. for 10'=00077.

### CHAPTER XII

- (a) Areas of a triangle, regular Polygon and a circle.
- (b) Graphs of Simple Trigonometrical Functions.

### 12.1. Area of a triangle.



Let ABC be the given triangle, such that BC=a, CA=b, and AB=c. Draw AD  $\perp$  to BC.

Now area of the  $\triangle$  ABC=  $=\frac{1}{2}$  BC.AD  $=\frac{1}{2}$ . a. AD  $=\frac{1}{2}$ . a. AD  $=\frac{1}{2}$ . a. AD  $=\frac{1}{2}$ . a. AD .....(i)

From (i) we get  $\triangle$  ABC= $\frac{1}{2}$ , a, b Sin C Similarly, we can show that  $\triangle = \frac{1}{2}bc$  Sin A.  $= \frac{1}{2}ca$  Sin B.

Now Sin A=2 Sin 
$$\frac{A}{2}$$
 Cos  $\frac{A}{2}$ 

$$= 2 \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{s(s-a)}{bc}}$$

$$= \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}$$

$$\therefore = \frac{1}{2} bc \sin A = \frac{1}{2} bc \cdot \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{s(s-a)}(s-b)(s-c)$$

Again, 
$$b = \frac{a \sin B}{\sin A}$$
 and  $c = \frac{a \sin C}{\sin A}$ 

$$\left[ \because \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \right]$$

$$\therefore \triangle = \frac{1}{2} bc \operatorname{Sin} A = \frac{1}{2}. \frac{a \operatorname{Sin} B}{\operatorname{Sin} A} \cdot \frac{a \operatorname{Sin} C}{\operatorname{Sin} A}. \operatorname{Sin} A$$

$$= \frac{1}{2} \frac{a^2 \operatorname{Sin} B \operatorname{Sin} C}{\operatorname{Sin} A}$$

$$= \frac{1}{2} \frac{a^2 \operatorname{Sin} B \operatorname{Sin} C}{\operatorname{Sin} A}$$
Similarly,  $\triangle = \frac{1}{2} \frac{b^2 \operatorname{Sin} C \operatorname{Sin} A}{\operatorname{Sin} B}$ 
and  $\triangle = \frac{1}{2} \frac{c^2 \operatorname{Sin} A \operatorname{Sin} B}{\operatorname{Sin} C}$ 

Hence the area of a \( \triangle ABC can be put in any of the following three ways:-

1.  $\triangle = \frac{1}{2}ab$  Sin  $C = \frac{1}{2}bc$  Sin  $A = \frac{1}{2}ca$  Sin B [one half product of any two sides and the included angle]

2. 
$$\triangle = \sqrt{s(s-a)(s-b)(s-c)}$$
 where  $a+b+c=2s$ 

3. 
$$\triangle = \frac{1}{2} \frac{a^2 \operatorname{Sin B} \operatorname{Sin C}}{\operatorname{Sin A}} = \frac{1}{2}. \frac{b^2 \operatorname{Sin C} \operatorname{Sin A}}{\operatorname{Sin B}} = \frac{1}{2}. \frac{c^2 \operatorname{Sin A} \operatorname{Sin B}}{\operatorname{Sin C}}$$

12.2 Def—Regular polygon:—A polygon whose sides and angles are equal is called a Regular Polygon.

12.2.1. Radius of the circumscribed circle of a Regular plygon of n sides

Let CABD.....be the regular Polygon of n sides. Draw OA and OB as bisectors of angles A and B. Let them meet at O. From O draw OL $\perp$  to AB. Then if AB=a, AL =  $\frac{a}{2}$ . Now O is the centre of the circumscribed circle, such that OA=OB=R is the circum radii. As the number of sides is n,  $\angle$  AOB= $\frac{a}{2}$ .



$$\therefore \angle AOL = \frac{1}{2}. \quad \frac{2\pi}{n} = \frac{\pi}{n}$$

Now from the rt. 
$$\angle d \triangle AOL$$
, we have

$$\frac{AL}{AO} = Sin \ AOL$$
or
$$\frac{a}{2R} = Sin \frac{\pi}{n}$$

$$R = \frac{a}{2} Cosec \frac{\pi}{n}$$

# 12.2.2 Radius of the inscribed circle of a regular Polygon.



As before, draw OA and OB bisectors of angles A and B so as to meet at O. Then O is the centre of the circle. Draw OL \(\percent{L}\) to AB. Then OL=r is the radius of the inscribed circle, and

$$AL = \frac{a}{2}$$
 if  $AB = a$ 

Now from the rt. ∠d. △ AOL, we have

$$\frac{AL}{OL} = \tan AOL$$

$$\frac{a}{2r} = \tan \frac{\pi}{n} \text{ which gives}$$

$$r = \frac{a}{2} \cot \frac{\pi}{n}$$

# 12.3.1 Area of a Regular Polygon in terms of R (circum-radius)

Area of the whole polygon of n sides = n times the area of the  $\triangle AOB$ 

$$= n \times \frac{1}{2} \times OA \times OB \times Sin \quad AOB$$
(article 12·1)
$$n \times \frac{1}{2} \times R \times R \times Sin \quad \frac{2\pi}{n}$$

$$= \frac{n}{2} R^2 \quad Sin \quad \frac{2\pi}{n}$$



# 12.3.2. Area of a Regular polygon in terms of its side and r.

The whole area=n time the area of the △AOB

$$= n \times \frac{1}{2} \times OL \times AB$$

$$(:: \frac{1}{2} \times base \times altitude)$$

$$= \frac{1}{2}. n. r. a.$$

$$= \frac{1}{2}. n. a. \frac{a}{2} \cot \frac{\pi}{n}$$

$$\left( \because r = \frac{a}{2} \cot \frac{\pi}{n} \right)$$

$$= \frac{na^2}{4} \operatorname{Cot} \frac{\pi}{n}$$



$$= \frac{n}{2} \times r \times 2r \tan \frac{\pi}{n}$$
$$= nr^2 \tan \frac{\pi}{n}$$

# 12.4 An Important Limit

To prove that  $Lt \frac{\sin \theta}{\theta} = 1$  where

 $\theta \rightarrow 0$ 

θ is measured in radians Proof.



Let  $\angle AOB = \theta$  radians, when AB is the arc of the circle whose radius is OB, and the centre is O.

Draw BD \(\perp\) to OA and produce it to meet the arc of the circle again in **C**.

At B and C draw tangents to the circle to meet OA produced in T.

Now BDC 
$$<$$
 arc BAC  $<$ ! (BT+TC) or 2BD  $<$  2 arc BA  $<$  2 BT or BD  $<$  arc BA  $<$  BT

Dividing by OB, we get

$$\frac{BD}{OB} < \frac{arc\ BA}{OB} < \frac{BT}{OB}$$

But 
$$\frac{BD}{OB} =_{Sin} \theta$$

$$\frac{\text{arc BA}}{\text{BA}} = \theta$$

$$\left( \because \frac{l}{r} = \theta \right)$$

and 
$$\frac{BT}{OB} = \tan \theta$$

 $\therefore$  we get  $\sin \theta < \theta < \tan \theta$ 

Dividing by  $\sin \theta$ , we have

$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$$

which shows that  $\frac{\theta}{\sin \theta}$  lies between 1 and  $\frac{1}{\cos \theta}$ 

But Lt 
$$\frac{1}{\cos \theta} = \frac{1}{1} = 1$$
,

... Lt  $\frac{\theta}{\sin \theta}$  lies between 1 and 1  $\theta \rightarrow 0$ 

or Lt 
$$\frac{\theta}{\sin \theta} = 1$$

or Lt 
$$\frac{\sin \theta}{\theta} = 1$$

## 12.4.1. Area of a circle of radius r and its circumference.

(i) Let AB be the side of a regular polygon of n sides inscribed in a circle of radius r and centre O.

> Then area of the polygon = n times the area of the  $\triangle$  AOB =  $\frac{n \cdot 1}{2}$ . r. r. Sin AOB =  $\frac{nr^2}{2}$  Sin  $\frac{2\pi}{n}$



If the number of the sides of the polygon is increased indefinitely, this area becomes the area of the circle.

... The area of the circle=Lt 
$$\frac{\pi r^2}{2}$$
 Sin  $\frac{2\pi}{n}$ 

$$= \operatorname{Lt} \frac{nr^2}{2} \frac{2\pi}{n} \frac{\operatorname{Sin} \frac{2\pi}{n}}{2\pi}$$

$$n \to \infty \qquad n$$

(Please note this step)

$$= \operatorname{Lt} \pi r^{2}. \quad \frac{2\pi}{n}$$

$$= \operatorname{Lt} \pi r^{2}. \quad \frac{2\pi}{n}$$

$$n$$

$$[ :: \text{ If } n \to \infty, \frac{2\pi}{n} - \infty ]$$

$$as \frac{2\pi}{n} \to 0$$

$$= \pi r^2 \qquad \left( \because \text{Lt } \frac{\sin \theta}{\theta} = 1 \right)$$

$$\theta \to 0$$

(ii) Perimeter of the polygon=n. AB

$$= n. \ 2r \sin \frac{\pi}{n}$$
$$= 2nr \sin \frac{\pi}{n}$$

This perimeter will become the circumference of the circle if the number of sides increases indefinitely.

... the circumference=Lt 
$$2nr$$
  $\sin \frac{\pi}{n}$ 
 $n \to \infty$ 

=Lt  $2 nr$ .  $\frac{\pi}{n} = \frac{\sin \frac{\pi}{n}}{\frac{\pi}{n}}$ 

Please note this step)

$$=2\pi r$$

$$\begin{cases} \sin \frac{\pi}{n} \\ \therefore \text{ Li} & \pi \\ \frac{\pi}{n} \to 0 & n \end{cases} = 1$$

### Solved examples

**Ex. 1.** If R, r be the radii of the circumcircle and the circle inscribed in a regular polygon of n sides, each side being of length a, prove that

$$R+r=\frac{1}{2} \ a \ \operatorname{Cot}\left(\frac{\pi}{2n}\right)$$
Sol. We have  $R=\frac{a}{2 \sin \frac{\pi}{n}} \ \operatorname{and} \ r=\frac{a}{2 \tan \frac{\pi}{n}}$ 

$$\therefore R + r = \frac{1}{2} \cdot a \cdot \left( \frac{1}{\sin \frac{\pi}{n}} + \frac{1}{\tan \frac{\pi}{n}} \right)$$

$$= \frac{a}{2} \left( \frac{1 + \cos \frac{\pi}{n}}{\sin \frac{\pi}{n}} \right) = \frac{a}{2} \cdot \frac{2 \cos^2 \frac{\pi}{2n}}{2 \sin \frac{\pi}{2n} \cos \frac{\pi}{2n}}$$
$$= \frac{A}{2} \cot \left( \frac{\pi}{2n} \right)$$

- Ex. 2. If an equilateral triangle and a regular hexagon have the same perimeter, prove that their areas are in the ratio of 2:3
  - Sol. Let the perimeter of each=6a  $\therefore$  each side of the  $\triangle = 2a$ and each side of the regular

hexagon=
$$a$$
  
Now area of the  $\triangle = \frac{1}{2} bc \sin A$   
 $= \frac{1}{2} 2a \cdot 2a \cdot \sin 60^{\circ}$   
 $= 2a^{2} \frac{\sqrt{3}}{2} = a^{2} \sqrt{3}$   
Also area of the hexagon= $\frac{6(a)^{2}}{4}$  Cot  $30^{\circ}$   
 $\begin{bmatrix} \because \text{ area} = \frac{na^{2}}{4} \text{ Cot } \frac{\pi}{n} \end{bmatrix}$ 

$$= \frac{3}{2}, a^2 \cdot \sqrt{3} = \frac{3\sqrt{3}}{2} a^2$$

$$\therefore \text{ ratio} = \frac{\sqrt{3}a^2}{3\sqrt{3}a^2} = \frac{2}{3}$$

### CHAPTER VII (Continued)

## Variations of Trigonometrical Ratios and their Graphs

12.5. To trace the variations of Sin θ as θ increases continuously from 0° to 360°, and to exhibit them graphically.

In the figure  $\angle XOP = \theta$ .

Let the revolving line OP be of constant length, say 1.

Now  $\sin^{\theta} = \frac{MP}{OP}$ .

OP being constant, we have to observe the variations of MP.

First Quadrant. In the first quadrant when  $\theta=0^{\circ}$ 



M and P coincide and therefore MP is zero, so that Sin  $0^{\circ}=0$ . As  $\theta$  increases, MP and therefore Sin  $\theta$  increases, till when  $\theta=90^{\circ}$  MP=OP and hence Sin  $90^{\circ}=1$  Thus in the first quadrant as  $\theta$  varies from  $0^{\circ}$  to  $90^{\circ}$ , Sin  $\theta$  is positive and varies from 0 to 1, i.e., increases from 0 to 1.

Second Quadrant. As  $\theta$  increases, MP is positive and decreases so that  $\sin \theta$  is positive and decreases: and when  $\theta = 180^{\circ}$ , MP vanishes and therefore

 $\sin 180 = 0$ .

Thus in the second quadrant  $\sin \theta$  varies from 1 to 0 i.e., decreases from 1 to 0 and is positive because MP is positive.

**Third Quadrant**. As  $\theta$  increases, MP is negative and increases in magnitude so that  $\sin \theta$  is negative and increases in magnitude.

When  $\theta=270^{\circ}$ , MP=OP in magnitude and  $\therefore$  Sin  $270^{\circ}=-1$ . Thus in the third quadrant Sin  $\theta$  varies from 0 to -1 and is negative because MP is negative.

Fourth Quadrant. As  $\theta$  increases, MP is negative and decreases in magnitude, so that Sin  $\theta$  is negative and decreases in magnitude. When  $\theta=360^{\circ}$ , MP is zero, so that sin  $360^{\circ}=0$ .

Thus in the fourth quadrant Sin  $\theta$  varies from -1 to  $\theta$  and is negative, because MP is negative.

TABLE FOR THE SINE GRAPH

| °ဝ                  | 0      | 360         | 0      |
|---------------------|--------|-------------|--------|
| -30                 | 5      | 330 360     | 5      |
| -60                 | 87     | 300         | 18     |
| .06-                | 7      |             | ī      |
| -120 -90            | 87     | 210 240 270 | 18     |
| -150                | 5.     | 210°        | 5      |
| - 180               | 0      | 180         | 0.     |
| -210                | 2      | 150         | 5.     |
| -240                | 18.    | 120         | .87    |
| -270                |        | °06         | -      |
| -300 -270 -240 -210 | .87    | 900         | 18.    |
| 360 -330            | ċ      | 30°         | i      |
| 360                 | 0      | °           | 0.     |
| x =                 | SIN X= | ۳<br>۲      | SIN X= |



The Sin Graph

12 6. To trace the variations of Cos θ as 0 varies continuously from 0° to 360° and to exhibit them graphically.

Referring to the figure of Article 12.5,  $\cos \theta = \frac{OM}{OP}$ .

So the variations in Cos 9 depend upon the variations in the values of OM.

First Quadrant. In the first quadrant when  $\theta=0^{\circ}$ , M and P coincide and therefore OM=OP and hence Cos  $0^{\circ}=1$ . As  $\theta$  increases, OM and therefore Cos  $\theta$  decreases, till when  $\theta=90$ . OM is zero, and hence Cos  $90^{\circ}=0$ .

Thus in the first quadrant  $\cos \theta$  varies from 1 to 0, i. e., decreases and is positive, because OM is positive.

**Second Quadrant**. As  $\theta$  increases, OM is negative and increases in magnitude, consequently  $\cos \theta$  is negative and increases in magnitude, till when  $\theta = 180^{\circ}$ , OM=OP in magnitude and hence  $\cos 180^{\circ} = -1$ .

Thus in the second quadrant  $\cos \theta$  varies from 0 to -1 and is negative because OM is negative.

Third Quadrant. As  $\theta$  increases, OM is still negative and decreases in magnitude; so that  $\cos \theta$  is negative and decreases in magnitude, till when  $\theta=270^{\circ}$ , OM is zero and therefore  $\cos 270^{\circ}=0$ .

Thus in the third quadrant  $\cos \theta$  varies from -1 to 0 and is negative, because OM is negative.

Fourth Quadrant. As  $\theta$  increases, OM is positive and increases so that Cos  $\theta$  is positive and increases, till when  $\theta = 360^{\circ}$ , OM=OP, and therefore Cos  $360^{\circ} = 1$ ,

Thus in the fourth quadrant  $\cos \theta$  varies from 0 to 1 and is positive, because OM is positive.

| I     |  |
|-------|--|
| GRAPH |  |
| ٩     |  |
| Œ     |  |
| O     |  |
| ш     |  |
| Z     |  |
| SIN   |  |
| 0     |  |
| 0     |  |
|       |  |
| I     |  |
| I     |  |
| 1     |  |
| ~     |  |
| H     |  |
| FOR   |  |
| ш     |  |
| ш     |  |
|       |  |
| BL    |  |
| D     |  |
| -     |  |
|       |  |

| 00                 | -               | 3.60       | -      |
|--------------------|-----------------|------------|--------|
| -30                | .87             | 30Ö 3 · 6° | .87    |
| -60                | . 52            | 300        | ·      |
| -90                | 0               | 270        | 0      |
| -120               | . 5             | 240        | 5      |
| -150               | 18              | 210        | 87     |
| -180               | 7               | 150 180    | 7      |
| -210               | 87              |            | 87     |
| 300 -270 -240 -210 | 5               | 120        | . 5    |
| -270               | 0               | 000        | 0      |
| -300               | <u>د</u>        | 60,        | io     |
| 360 -330           | .87             | 30°        | .87    |
| 360                | 6 <del></del> 1 | °o         | -      |
| × =                | = x 500         | x          | =x sco |



Cosine Graph

12.7 To trace the variations of tan θ us θ varies continuously from 0° to 360° and to exhibit them graphically.

Referring to the figure of article 12.5  $\tan \theta = \frac{MP}{OM}$ .

So the variations in tan  $\theta$  depend upon the variations in both MP and OM.

First Quadrant. In the first quadrant when  $\theta = 0^{\circ}$ , M and P coincide so that MP is zero and OM=OP and therefore  $\tan 0^{\circ} = 0$ .

As  $\theta$  increases, MP increases, and OM decreases and therefore on both these accounts  $\tan \theta$  increases. When OP has turned through an angle which is slightly less than a right angle so that P is very near to Y, OM is very small and MP is very nearly equal to OP or I and consequently  $\tan \theta$  is very large; therefore by taking an angle sufficiently near to  $90^\circ$  we can make the tangent as large as we please. This fact is, for the sake of brevity expressed thus: the tangent of  $90^\circ$  is infinite.

In the first quadrant, therefore,  $\tan\theta$  increases from 0 to  $\infty$  (infinity), and is positive, because MP and OM are both positive.

Second Quadrant. As # increases slightly, OM becomes negative while remaining small, and MP is positive and very nearly equal to OP or 1, so that the corresponding tangent is very large and negative. As  $\theta$  increases in magnitude, OM increases in magnitude while MP decreases, so that tan # decreases in magnitude, till when  $\theta = 180^{\circ}$ . MP is zero, and OM = OP = 1 and therefore tan  $180^{\circ} = 0$ .

In the second quadrant, therefore,  $\tan\theta$  varies from  $-\infty$  to 0 and is negative, because OM is negative and MP is positive.

Third Quadrant. As # increases, OM and MP both become negative and OM decreases in magnitudes while MP increases in magnitude, so that  $\tan \theta$  is positive and increases, till when  $\theta \rightarrow 270^{\circ}$ ; OM $\rightarrow 0$  and MP $\rightarrow$ OP=1 and  $\therefore$  tan 270° is infinite.

In the third quadrant, therefore, tan  $\theta$  varies from 0 to  $\infty$  and is positive, because OM and MP are both negative.

Fourth quadrant. As  $\theta$  increses slightly, OM is small but becomes positive, while MP remains negative, and very nearly equal to OP or 1 so that the corresponding tangent is very large and negative. As  $\theta$  increases, OM increases and MP decreases in magnitude, so that  $\tan \theta$  decreases in magnitude, till when  $\theta = 360^{\circ}$ , MP is zero and OM=OP=1 [and therefore  $\tan 360^{\circ} = 0$ .

In the fourth quadrant, therefore,  $\tan \theta$  varies from  $-\infty to[0]$  and is negative, because OM is positive and MP is negative.

Note 1. It tollows that  $\tan \theta$  is capable of assuming any real value whatever.

Note 2. It also follows that there are two angles lying between 0° and 360°, which have a given tangent; if the given tangent is positive, one of the angles lies between 0° and 90° and the other between 180° and 270°, but if the given tangent is negative, then one of the angles lies between 180° and 180° and the other between 270° and 360°.

TABLE FOR THE TANGENT GRAPH

| 00             | .58    | 50.360                       | 8      |
|----------------|--------|------------------------------|--------|
| ο <b>Σ</b> -   | - i    | 330                          | -58    |
| 09-            | -1.7   | 300                          | 1.1-   |
| 0+06-          | 8      | 180210 240270 270<br>- 0° +0 | 8      |
| -90:0          | 8      | 0,20                         | 8      |
| -150           | 1-1    | 240                          | 1.7    |
| -120           | 58     | 210                          | .58    |
| 081-           | 0      | 180                          | 0      |
| -510。          | 58     | 150                          | -58    |
| -240           | 1.1    | 120                          | -1.7   |
| 0+075-         | 8      | 0°+<br>0°+                   | 8      |
| 0-07s-         | 8      | 0 30 60 90-                  | 8      |
| -300           | 17     | °9                           | 1.1    |
| -300°<br>-350° | .58    | 30                           | .58    |
| -360           | 0      | o°                           | 0      |
| 11 **          | an x = |                              | tan x= |



The Tangent Graph

As  $\theta$  increases, OM decreases and MP increases; so that Cot  $\theta$  decreases, till when  $\theta=90^{\circ}$ , OM is zero and MP=OP=1 and consequently Cot 90°=0.

Thus in the first quadrant Cot  $\theta$  varies from  $\infty$  to 0 and is positive, because OM and MP are both positive.

Second quadrant. As  $\theta$  increases, OM becomes negative and increases in magnitude, while MP is positive and decreases, so that  $Cot \theta$  is negative and increases in magnitude, till when  $\theta$  is very near to 180°, MP is very small and OM is very nearly equal to OP or I and, therefore, Cot 180° is negative and infinite.

Thus in the second quadrant Cot # varies from 0 to  $-\infty$  and is negative because OM is negative and MP is

positive.

Third quadrant. As  $\theta$  is slightly greater than 180°, OM and MP both become negative and MP is small, and OM is very nearly equal to OP or 1, so that Cot  $\theta$  is positive and infinite. As  $\theta$  increases, MP increases in magnitude while OM decreases in magnitude so that  $\cot \theta$  is positive and decreases in magnitude, till when  $\theta=270^{\circ}$ , OM is zero and MP=OP or 1 and therefore Cot 270°=0.

Thus in the third quadrant Cot  $\theta$  varis from  $+\alpha$  to 0and is positive, because OM and MP are both

negative.

Fourth Quadrant. As  $\theta$  increases, OM becomes positive and increases while MP is negative and decreases in magnitude, so that  $\theta$  is negative, and increases in magnitude, till when  $\theta$  is very near to 360°, MP is small and OM is very nearly equal to OP or I and therefore Cot 360° is negative and infinite.

Thus in the fourth quadrant Cot  $\theta$  varies from 0 to -∞ and is negative, because OM and MP have opposite

sign.

Note 1. It follows that Cot  $\theta$  is capable of assuming any

real value whatever.

Note 2. It also follows that there are two angles lying between 0° and 360°, which have a given Cotangent; if the given Cotangent is positive, one of the angles lies between 0° and 90°, and the other between 180° and 2.0°; but if the given Cotangent is negative then one of the angles lies between 90° and 180° and the other between 270° and 360°.

TABLE FOR THE COTANGENT GRAPH

| °0 ·       | 8      | 300 330 360 | 9     |
|------------|--------|-------------|-------|
| -30。       | 1:1-   | 330         | 7.1-  |
| .09-       | 58     | 300         | 95,-  |
| -06-       | 0      | 270         | 0     |
| -1200      | 28     | 240 270     | .58   |
| -120°      | 1.     | 210         | 1.7   |
| 0+081-     | 8      | -000+       | 8     |
| 0-081-     | 8      | 180         | 8     |
| -210       | 17     | 150°        | -1:7  |
| -240       | 58     | 120°        | 50    |
| - 270°     | 0      | 90°         | 0     |
| -300°      | .58    | 909         | 50    |
| -330。      | 1.7    | 30°         | 1.1   |
| °0+°09E -  | 8      | 00          | 8     |
| <b>1</b> × | C01 X= | x =         | COTX= |



The Co-tangent Graph

12.9 To trace the variations of Secant 0 as # varies continuously from 0° to 360°, and to exhibit them graphically.

Referring to the figure of Article 12.5 Sec $^{\mu} = \frac{OP}{OM}$ .

OP being constant; we have to observe the variations of OM.

First Ouadrant. When  $\theta$  is zero. M and P coincide, so that OM=OP and consequently  $\sec 0^{\circ} = 1$ . As  $\theta$  there are sets of that Sec  $\theta$  increases; when  $\theta$  is very near to  $90^{\circ}$ , OM is very near to 0 and therefore, Sec  $90^{\circ}$  is infinite.

Thus in the first quadrant Sec # varies from 1 to 00

and is positive because OM is positive.

Second Quadrant. As  $\theta$  increases slightly, OM becomes negative and remains small, so that Sec  $\theta$  is negative and infinite. As  $\theta$  increases, OM increases in magnitude so that Sec  $\theta$  is negative and decreases in magnitude till when  $\theta = 180^{\circ}$ . OM equals OP in magnitude and therefore Sec  $180^{\circ} - 1$ .

Thus in the second quadrant Sec & varies from & to

- 1 is negative, because OM is negative.

Third Quadrant. As  $\theta$  increases, OM remains negative and decreases in magnitude; so that Sec  $\theta$  is negative and increases in magnitude; when  $\theta$  comes nearer and nearer to 270° OM becomes smaller and smaller therefore Sec  $\theta$  becomes larger and larger; hence Sec 270° is infinite and negative.

Thus in the third quadrant Sec # varies from -1 to

- and is negative, because OM is negative.

Fourth Quadrant. As  $\theta$  increases slightly, OM becomes positive and remains small and therefore  $\sec \theta$  is positive and infinite. As  $\theta$  increases, OM increases and therefore  $\sec \theta$  decreases till when  $\theta = 360^\circ$ , OM = OP and therefore  $\sec 360^\circ = 1$ .

Thus in the fourth quadrant Sec # varies from a to 1

and is positive because OM is positive.

Note 1. It follows that Sec  $\theta$  never lies between 1 and -1 and that it is sapable of assuming any real value not lying between 1 and -1.

Note 2. It also follows that there are two angles lying between 0° and 360°, which have a given Secant, if the given Secant is positive, one of the angles lies between 0° and 90° and the other between 270° and 360° but if the given Secant is negative, then the angles lie between 90° and 270°.

TABLE FOR THE SECENT GRAPH

|       | 00     |      | 360                |       |
|-------|--------|------|--------------------|-------|
| 1     | -30。   | 1.2  | 300 330 360        | 1.2   |
| t     | °09 -  | 2    | 300                | 2     |
| -     | °0+06- | 8    | 270°               | 3     |
|       | 0-06-  | 00   | 270 270<br>-0° +0° | 8     |
| -     | -150   | -2.  | 240                | -2    |
| 1     | 091-   | -1-2 | 210                | -1.2  |
|       | -180   | -    | 180                | 7     |
|       | -210。  | -1-2 | 150                | -1.2  |
|       | -240   | 7    | 120                | -2    |
|       | 0+012- | 8    | °0°0<br>+          | 8     |
| 5     | 0-072- | 0    | °0°0               | 8     |
| IADLL | -300   | 0    | 609                | 2     |
|       | -330   | 1.2  | 30°                | 1.2   |
|       | - 360° | -    | °o                 |       |
|       | 3=     | Secx | 2=2                | Secte |



The Secant Graph

3.9.1. To trace the variations of Cosec 0 as 8 varies continuously from 0 to 360° and to exhibit them graphically.

Referring to the figure of Art. 12.5

Cosec  $\theta = \frac{OP}{MP}$ .

OP being constant, we have to observe the variations

First Quadrant. When  $\theta$  is very small. MP is positive and very small and as  $\theta \rightarrow 0$ , MP $\rightarrow 0$  and  $\therefore$  Cosec  $\theta \rightarrow \infty$ , so of MP. that Cosec  $\theta$  is infinite to start with. As  $\theta$  increases, MP increases and therefore Cosec 0 decreases, till when 0=90°. Ml' equals OP and therefore Cosec 90°=1.

Thus in the first quadrant Cosec 0 varies from to 1

and is positive because MP is positive.

Second Quadrant. As # increases, MP is positive and decreases, so that the Cosec  $\theta$  increases; when  $\theta$  approaches nearer and nearer to 180°, MP approaches zero, so that Cosec 180° is infinite.

Thus in the second quadrant Cosec 0 varies from 1

to  $\infty$  and is positive because MP is positive.

Third Quadrant. As  $\theta$  increases slightly, MP is small but

becomes negative, so that Cosec # is negative and infinite

As 0 increases, MP increases in magnitude so that Cosec # decreases in magnitude till when  $\theta=270^\circ$ , MP equals OP in magnitude and therefore Cosec  $270^{\circ} = -1$ .

Thus in the third quadrant Cosec # varies from

to -1 and is negative, because MP is negative.

Fourth Quadrant. As  $\theta$  increases, MI' remains negative and decreases in magnitude; so that Cosec  $\theta$  is negative and increases in magnitude. When  $\theta$  approaches nearer and nearer to 360°, MP approaches zero and therefore Cosec # becomes larger and larger; hence Coses 360° is negative and infinite.

Thus in the fourth quadrant Cosec " varies from

to  $-\infty$  and is negative, because MP is negative.

Note 1.—It follows that  $Cosec \theta$  never lies between I and 1 and that it is capable of assuming any real value not lying

between 1 and -1. Note 2.-It also follows that there are two angles lying between 0° and 360° which have a given Cosecant; if the given Cosecant is positive, the angles lie between 0° and 180°; but if the given Cosecant is negative, the angles lie between 180° and 360°.

TABLE FOR THE COSECANT GRAPH

| oO -     | 8      | 360     | 8      |
|----------|--------|---------|--------|
| -30°     | -5     | 330     | -2     |
| 09-      | -1.2   | 300     | -1.2   |
| 。06-     | 7      | 240.270 | T      |
| -1500    | -1.2   | 240     | 1.2    |
| -120     | 7      | 180 210 | 27     |
| -160,+0. | 1      | 180     | 1      |
| .0-081-  | +      | 180     | +      |
| 012-     | 2      | 0.00    | 0      |
| -240     | - 2    | °03     | 3      |
| - 270°   | _      | 000     | -      |
| - 300    | 1.7    | 900     | 1.2    |
| °088 -   | 2      | 30°     | 7      |
| Q+09E-   | 3      | %       | 4.     |
| " X      | COSFC= | 11      | COSEC- |



The Cosecant Graph

Ex. 1. Show that Sin 50°>Cos 50°.

The angle is in the first quadrant where  $\sin \theta$  increases from 0 to 1 and  $\cos \theta$  decreases from 1 to 0. But at 45°  $\sin \theta$  increases each of them is  $\frac{1}{\sqrt{2}}$ . After reaching 45°,  $\sin \theta$  increases while  $\cos \theta$  decreases.

.: Sin 50° - cos 50 .

Ex. 2. Determine whether Sin A + Cos A is positive or negative when A = 136.

The angle is in the second quadrant where Sin A is positive and Cos A is—ve. Also in this quadrant Sin A decreases from I to 0 whereas Cos A decreases from 0 to —1 and therefore Cos A increases in magnitude. At 135 Sin A and Cos A are equal in magnitude (though opposite in sign). Therefore after that (i. e., at 136°) Cos A is greater than Sin A in magnitude and is negative, ... Sin A+Cos A is—ve at A=136°.

This can also be done as follows :-

Sin 136° = Sin (180° - 44°) = Sin 44°

 $\cos 136^{\circ} = \cos (180^{\circ} - 44^{\circ}) = -\cos 44^{\circ}$ .

Thus at 136°, Sin A+Cos A=Sin 44°-Cos 44°. But it is easy to argue, as is done in Ex. 1, that Cos 44° > Sin 44°.

... Sin 44 - Cos 41 is negative.

### EXERCISE XXV

### 1. Prove that

(i) tan A-Cot A is positive when A=53.

- (ii) Sin A-Cos B is not negative when A and B are between 45° and 90°.
- 2. Prove that Sin A+Cos A is positive if A lies between 45° and 135°, but negative if A is between 135° and 225°.
- 3. Trace the variations of Sin  $\theta$  as  $\theta$  varies from  $-\pi$  to  $\pi$  and exhibit them by means of a graph. (P. U. 1942 S.)
- 4. Draw the graph of  $y=\sin x$  as x varies from 0° to 180° and from the graph find out the values of x when (i)  $\sin x=3$ . (ii)  $\sin x=6$ . (P. U.)

- 5. Draw the graph of  $y=\cos x$  when x varies from  $-\pi$  to  $\pi$  and make use of the graph to solve the equations (i)  $\cos x = \frac{4}{5}$ . (ii)  $\cos x = -\frac{3}{5}$ .
- 6. With the same axes draw graphs of  $y = \sin x$  and  $y = \cos x$  for  $0 < x < 2\pi$  and read off from your graph the roots of the equation  $\sin x = \cos x$ .
- 7. Use the graph of  $y=\tan x$  to solve the equations (i)  $\tan x = \frac{1}{2}$ . (ii)  $\tan x = -3$ .

[Hint: -Here  $\tan x = \frac{1}{2}$ . Let  $y = \tan x$  :  $y = \frac{1}{2}$ . Thus draw the graph  $y = \tan x$  and read where  $y = \frac{1}{2}$  cuts it.]

- 8. Draw the graph  $y=\tan x$  for values of x lying between 0° and  $180^{\circ}$ ; show by means of this graph that x=35 is a solution of x=50 tan x, where x is measured in degrees.
- 9. Trace the changes in (i) Sin  $2\theta$ , (ii) tan  $2\theta$ , (iii) Sec  $2\theta$ , as  $\theta$  varies from  $0^{\circ}$  to  $180^{\circ}$  and exhibit them by means of graphs.
- 10. Trace the changes in Cos  $\theta$  as  $\theta$  varies from 0 to  $2\pi$  and exhibit them graphically.
- 11. Solve graphically the equation  $3 \sin x = \cos x + 2$  where x is acute.

[Hint. Draw the graphs of y=3 Sin x and  $y=2 + \cos x$  with the same axes.]

#### ANSWERS

#### EXERCISE I

8. 
$$100(\sqrt{3}+1)$$
 ft.

11. 
$$100(\sqrt{3}-1)$$
 ft. 12.  $300(\sqrt{3}+1)$  ft.

#### EXERCISE II

6. (i) 
$$-\tan A$$
 (ii) 1 (iii)  $-1$  (iv) 1 (v) 3

#### EXERCISE III

6. 
$$-\frac{33}{66}$$
 (if both are acute)

7. (i) 
$$Cos A$$
 (ii)  $Sin y$  (iii)  $\frac{\sqrt{3}}{2}$ 

$$(iii)\frac{\sqrt{3}}{2}$$

#### EXERCISE 1V

1. 
$$-\frac{7}{26}$$
 2.  $\frac{17}{10}$  3.  $\pm \frac{120}{100}$ 

13. 
$$\sqrt{a} + \sqrt{b}$$

#### EXERCISE VI

1. 
$$\frac{\sqrt{5}-1}{4}$$
;  $\frac{\sqrt{10}+2\sqrt{5}}{4}$ 

3. 
$$\sqrt{\frac{\sqrt{2}-1}{2\sqrt{2}}}$$
;  $\sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}$ 

4. 
$$\sqrt{\frac{\sqrt{2}-1}{2\sqrt{2}}}$$
;  $\sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}$ ;  $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$ 

5. 
$$\frac{1}{2}$$
,  $\frac{\sqrt{3}}{2}$  7.  $\frac{a}{b}$  .  $\frac{b}{a}$ 

9. 
$$\frac{3}{7}$$
,  $\frac{3}{\sqrt{58}}$ ,  $\frac{7}{\sqrt{58}}$ 

10. 
$$2-\sqrt{3}$$

#### EXERCISE VII

- (i)  $2 \operatorname{Sin} 2 \theta \operatorname{Cos} \theta$  (ii)  $2 \operatorname{Cos} 5 \theta \operatorname{Sin} \theta$  (iii)  $2 \operatorname{Cos} 5 \theta \operatorname{Sin} \theta$  (iv)  $2 \operatorname{Sin} 3 \theta \operatorname{Sin} 2 \theta$
- (v) 2 Sin 5 A Sin 2 A
- 2.
  - (i)  $\frac{1}{2}[\cos 60^{\circ} + \cos 20^{\circ}]$  (ii)  $\frac{1}{2}[\cos 10A \cos 12A]$
  - (iii) 1[Sin 10A-Sin 4A] (iv) Cos 4A-Cos 10A
  - (v) 1[Cos 4A-Cos 12A] (vi) 1[Sin 10A+Sin 4A]

#### EXERCISE IX

1. (i) 
$$x^2 + y^2 = a^2$$

(ii) 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(iii) 
$$\frac{a^2}{x^2} + \frac{b^2}{y^2} = 1$$

$$(iv) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

(v) 
$$\frac{x^2}{a^2} - \frac{b^2}{y^2} = 1$$

(ii) 
$$(9x+7y)^2+(4x-5y)^2=(73)^2$$

(iii) 
$$q(q-p)=2$$

2. (i) 
$$x^2+y^2=2$$
  
(ii)  $q(q-p)=2$   
(iii)  $q(q-p)=2$   
(ii)  $(9x+7y)^2+(4x-5y)^2=(73)^2$   
3.  $x^2+y^2-2xy \sin (\alpha+\beta)$   
 $=\cos^2 (\alpha+\beta)$ 

4. 
$$(ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 - b^2)^{\frac{2}{3}}$$
 5.  $x^2 + y^2 = 1$ 

5. 
$$x^2+y^2=1$$

6. 
$$1-\frac{x}{a}=\frac{2y^2}{b^2}$$

7. 
$$x(x^2-3)+2y=0$$

#### EXERCISE X

1. 
$$\frac{n\pi}{2}$$

1. 
$$\frac{n\pi}{2}$$
 2.  $n\pi + (-1)^n \frac{\pi}{6}$  3.  $n\pi - (-1)^n \frac{\pi}{6}$ 

3. 
$$n\pi - (-1)^n \frac{\pi}{6}$$

4. 
$$\frac{n\pi}{3} + (-)^n \frac{\pi}{9}$$
 5.  $n\pi + (-1)^n \alpha$ 

5. 
$$n\pi + (-1)^n \alpha$$

when  $\sin \alpha = p$ 

6. 
$$n\pi + (-1)^n \times \text{where Sin } \times q$$

7. 
$$\frac{n\pi}{2} + (-1)^{r} \alpha$$
 8.  $n\pi = -1$   $r \alpha$ 

9. 
$$2n\pi \pm \frac{\pi}{4}$$

10. 
$$2n\pi \pm \frac{2\pi}{3}$$

11. 
$$\frac{n\pi}{2} \pm \frac{\pi}{21}$$

12. 
$$2n\pi \pm x$$
 when  $\cos x = p$ 

13. 
$$\frac{2k\pi}{m-kn}$$

14. 
$$n_{\overline{n}} = \frac{\pi}{6}$$

15. 
$$n\pi = \frac{3\pi}{4}$$

17. 
$$n\pi + \alpha$$
 where  $\tan \alpha = \rho$ 

18. 
$$\frac{(4n-1)\pi}{2(3-2)}$$

19. 
$$\frac{4k-1}{2(m-n)}$$

20. 
$$\theta = (2n-1)^{\frac{\pi}{6}}$$
 21.  $\theta = n\pi \pm \frac{\pi}{6}$ 

21. " "
$$\pi = \frac{\pi}{6}$$

22. 
$$2n + \frac{\pi}{16}$$
 23  $n\pi \pm \frac{\pi}{1}$ 

24. 
$$2n\pi = \frac{\pi}{3}$$

26. 
$$n\pi = \frac{\pi}{3}$$
,  $n\pi = \frac{\pi}{4}$ 

$$27 2n\pi + \frac{7\pi}{6}$$

27 
$$2n\pi + \frac{7\pi}{6}$$
 28.  $2n\pi - \frac{\pi}{6}$ 

$$2n+1)\pi$$

$$2n+1)\pi = \frac{\pi}{1} \qquad 30. \quad \left(n+\frac{m}{2}\right)\pi \pm \frac{\pi}{6} = (-1)\pi - \frac{\pi}{12}$$

and 
$$\binom{m}{2} - n$$
 ) =  $\frac{\pi}{6} - (-1)\pi \frac{\pi}{12}$ 

11. 
$$\lambda = \left(6r\pi - 4r\pi - \frac{\pi}{2} \pm \frac{2\pi}{3}\right)$$

$$v = \frac{1}{2} \left( 6n\pi - 4 \right) + \pi - \frac{\pi}{2} \right)$$

32. 
$$A = (m+n)^{-\frac{\pi}{2}} + \frac{5\pi}{24}$$
  
 $B = (l-m)^{-\frac{\pi}{2}} + \frac{\pi}{24}$ 

and  $C=(l-n)\frac{\pi}{2}+\frac{\pi}{12}$  where l, m, nare integers.

#### EXERCISE XI

1. 
$$2 n\pi + \frac{\pi}{4}$$

2. 
$$2 n\pi + \frac{7\pi}{12}$$

3. 
$$2 n\pi + \frac{\pi}{3}$$

4. 
$$2 n\pi + \frac{\pi}{2}$$

5. 
$$2 n\pi + \frac{5\pi}{12}$$

6. 
$$2 n\pi$$
,  $2 n\pi + \frac{2\pi}{3}$ 

7. 
$$2 n\pi - \frac{\pi}{6}$$

8. 
$$(2n-1)\pi$$
,  $2n\pi + \frac{\pi}{3}$ 

9. 
$$n\pi + \frac{\pi}{2}$$
,  $\frac{n\pi}{2} \pm \frac{\pi}{12}$  10.  $\frac{n\pi}{2}$ ,  $2 n\pi \pm \frac{\pi}{3}$ 

10. 
$$\frac{n\pi}{2}$$
, 2  $n\pi + \frac{\pi}{3}$ 

11. 
$$\frac{n\pi}{3}$$
,  $\frac{n\pi}{2} \pm \frac{\pi}{12}$ 

12. 
$$\frac{n\pi}{2}$$
, 2  $n\pi$ ,  $\frac{2}{3}$   $n\pi$ 

13. 
$$n\pi + \frac{\pi}{2}, \frac{4n+\pi}{10}$$

14. 
$$2 n\pi \pm \frac{2\pi}{3}$$

15. 
$$\frac{2 p\pi}{m+n}$$

16. 
$$\frac{(4p+1)}{m\pm n}$$
.  $\frac{\pi}{2}$ 

17. 
$$\tan \theta = \frac{(2n+1) \pm \sqrt{4n^2 + 4n - 15}}{4}$$

18. 
$$p\pi + (-1)^{\rho} \frac{\pi}{2}$$

$$\frac{\pi}{m + (-1)^{\rho} n}$$

19. 
$$n\pi \pm \frac{\pi}{2}$$
 $3 \pm 1$ 

$$20. \quad n\pi + \frac{\pi}{2}$$

21. 
$$\frac{n\pi}{2} \pm \frac{\pi}{4}$$

22. 
$$(2n+1)^{\frac{\pi}{2}}$$
;  $n\pi \pm \frac{\pi}{3}$ 

23.  $n\pi$  or  $n\pi + (-1)^n \alpha$ . where Sin  $\alpha = 32$ 

24.  $n\pi$ ,  $n\pi - \varphi$  where  $\tan \varphi = \frac{1}{2}$ 

 $\frac{n\pi}{3}$ ;  $n\pi \pm \alpha$  where  $\tan \alpha = \frac{1}{\sqrt{2}}$ 25.

#### EXERCISE XVI

1. (i)  $\sqrt{2}$ ,  $\log_2 1.414 = .5$  (ii)  $\frac{1}{3}$ ,  $\log_{27} .3 = -.5$ (iii) 8, log<sub>16</sub><sup>8</sup>= ·75 (iv) ·25, log<sub>256</sub>·25=-·25

3. (i) 3 (ii) -1 (iii) -1 (iv) 3

5. (i) 8  $(\log_a^3 - \log_a^2) - 5 \log_a^7$ (iii)  $\frac{1.5}{2} \log_a^2 + 3 \log_a^5 + 4 \log_a^{13}$  (iv)  $-\frac{9}{4} \log_a^7$ 

#### EXERCISE XVII

(i) 0 (ii) 2 (iii) 5 (iv) -1

(v) -3 (vi) -6 (vii) -1 (viii) -2

(ix) 1 (x) 5

#### EXERCISE XVIII

1. (i) 3.6352 (ii) 1.1038 (iii) 3.6352 (iv) 2.1038 (v) 1.6352 (vi) 1.1038

2. (i) 31 (ii) 110 (iii) 140 (iv) 126 (iv) 39 3. (i) 11 (ii) 209 (iii) 176 (iv) 39

#### EXERCISE XIX

2. (i) -1.256 app. (ii) .03 (iii) 107.7 app.

3. 7 4. 21 5. ·3948330 6. 9·59573

7. 9·9604747 8. 10·6132960 9. 17°27′ 43°

10. 16.43 years.

#### EXERCISE XX

1. 
$$A=15^{\circ}$$
,  $b=50 \ (2-\sqrt{3})$ .  $c=50 \ (\sqrt{6}+\sqrt{2})$ 

2. 
$$5^{\circ}-44'-20''$$
; 3.  $A=49^{\circ}-20'-30''$ ;  $B=40^{\circ}-39'-30''$ .

4. 
$$36^{\circ}-26'-7'7''$$
 5.  $26^{\circ}-33'-54''; 63^{\circ}-26-6''; 60\sqrt{5}$  ft.

#### EXERCISE XXI

1. 
$$b=61.51$$
,  $c=32.51$ ;  $A=59^{\circ} 30'$ 

2. 
$$b = 25.07$$
  $c = 26.55$ 

3. 
$$b=237$$
,  $c=1.581$ ,  $A=66^{\circ}\ 20'$ 

4. 
$$A-42^{\circ}$$
 54',  $b=25.07$   $\epsilon=25.56$ 

5. 
$$87^{\circ} 8'$$
;  $a=298$ ,  $b=14.35$ 

#### EXERCISE XXII

1. 
$$A=32^{\circ}-12'$$
;  $B=46^{\circ}-12'$ ;  $C=101-36'$   
2.  $A=60^{\circ}-10'$ ;  $A=10^{\circ}-28'$ ;  $B=58^{\circ}-46'$ 

2. 
$$A=60^{\circ}\ 10'$$
  $A=49^{\circ}\ 28'$ ;  $B=58^{\circ}\ 46'$ 

2. 
$$A = 60^{\circ} 10^{\circ}$$
  $A = 49^{\circ} 28^{\circ}$ ;  $B = 26^{\circ} - 30^{\circ}$ ;  $A = 49^{\circ} 28^{\circ}$ ;  $A = 60^{\circ} - 56^{\circ}$ ;  $B = 26^{\circ} - 30^{\circ}$ ;  $C = 132^{\circ} - 34^{\circ}$ ;  $C = 91^{\circ} - 42^{\circ}$ 

4. 
$$A=20^{\circ}-56^{\circ}$$
;  $B=26^{\circ}-30^{\circ}$ ;  $C=91^{\circ}-42^{\circ}$   
5.  $A=60^{\circ}-10^{\circ}$ ;  $B=28^{\circ}-8^{\circ}$ ;  $C=91^{\circ}-42^{\circ}$ 

6. Area=551300 sq. ft.; 
$$r=148.68$$
 ft.

7. 
$$A=90^{\circ}-4'$$
;  $B=48^{\circ}-6'$ ;  $C=40^{\circ}-50'$   
EXERCISE XXIII

#### 1. B=41°-22'

2. 
$$B=97^{\circ}-30'$$
,  $C=35^{\circ}-30'$ ,  $a=18.51$ 

3. 
$$B=73^{\circ}-35'$$
,  $C=39^{\circ}-45'$   
 $a=226.9$ 

4. 
$$B=92^{\circ}-41'$$
,  $C=54^{\circ}-49'$ ,  $a=5.917$ 

5. 
$$B=118^{\circ}-37'$$
;  $C=31^{\circ}-45'$   
 $a=20.95$ 

7. 
$$B=78^{\circ}-48'-52''$$
;  $C=56^{\circ}-41'-'8$ 

8. 
$$B=56^{\circ}-19'-46''$$
;  $C=63^{\circ}-40'-14''$ 

### EXERCISE XXIV

- 1.  $30^{\circ}$ ; 2. (i) Two Solutions:  $b_1 = 60^{\circ}3893$  B<sub>1</sub> =  $8^{\circ}$  -41'; B<sub>2</sub>=111°-19', C<sub>1</sub>=141°-19', C<sub>2</sub>=38°-41' (ii) Only one solution: C=18°-12'-40", B=131°
  - (iii) Only one solution:  $C=90^{\circ}$ ,  $B=60^{\circ}$
- 3. 17·1 or 3·68
  4. 39°-35′-10"; 28°-20′-50"
- 5.  $B_1 = 58^{\circ} 56' 56''$ .  $B_2 = 121^{\circ} 3' 4''$  $C_1 = 87^{\circ} - 48' - 7''$ ,  $C_2 = 25^{\circ} - 41' - 53''$

## JAMMU AND KASHMIR UNIVERSITY PAPERS

#### K. U. 1957

1. (a) Define a radian, show that it is a constant angle and express it in sexagesimal measure correct to the nearest second.

What is the difference between  $\pi$  and  $\pi$  radians?

(b) If G, D, C be the number of grades, degrees and radians in any angle, prove that

$$\frac{D}{9} = \frac{G}{10} = \frac{20C}{\pi}$$

- 2. (a) Prove that  $Sec^2\theta = 1 + tan^2 \theta$  where  $\theta$  is any angle.
- (b) Prove the identity (Sin  $x + Sec(x)^2 + (Cosec(x + Cos(x))^2)$ =  $(1 + Sec(x) + Cosec(x))^2$ .
- (c) Two posts of the same height stand on either side of a pad 120 ft. wide; at a point in the road between the posts, the levations of the tops of the pillars are 60° and 30°. Find height of the posts and the position of the point.
  - 3. (a) Prove that for all values of  $\theta$ ,  $\tan (\pi + \theta) = \tan \theta$ .
- (b) Draw the graph of  $\tan \theta$  for  $0 \leqslant \theta \leqslant 2\pi$  and find from the graph the values of  $\theta$  which satisfy the equation  $\tan \theta$ 
  - (c) Prove that  $\tan \theta \tan \left(-\frac{\pi}{2} \pm \theta\right) \pm 1$
  - 4. (a) If  $\alpha + \beta + \gamma = -\frac{\pi}{2}$ , prove that

tan  $\alpha$  tan  $\beta$ +tan  $\beta$  tan  $\gamma$ +tan  $\gamma$  tan  $\alpha=1$ .

- (b) Find the circular functions of 18°.
- (c) Prove that Cos 20° Cos 40° Cos 60° Cos 80 =  $\frac{1}{16}$ .
- 5. (a) To prove that in any  $\triangle ABC$ ,  $\frac{B-C}{\tan \frac{B-C}{2}} = \frac{b-c}{b+c}$

- (b) If a, b, c are in H. P,, prove that  $\sin^2 \frac{A}{2}$ ,
- $\sin^2 \frac{B}{2}$ ,  $\sin^2 \frac{C}{2}$  are also in H. P.
  - (c) Solve the equation Sin 4  $\theta$ =Sin  $\theta$ .
  - 6. (a) If a=182.5, b=82.5,  $A=72^{\circ}$  15', solve the triangle.
  - (b) Prove the formula  $R = \frac{a}{2 \text{ Sin A}} = \frac{b}{2 \text{ Sin B}} = \frac{c}{2 \text{ Sin C}}$ , where R is the circumradius of a triangle ABC.

#### K. U. 1958

- 1. (a) Show that the length of an arc subtending an angle  $\theta$  radians at the centre of a circle of radius r, is  $r\theta$ .
- (b) A pendulum 8 ft. long oscillates through an angle of 9°; what is the length of the path its extremity describes between the extreme positions?
- (c) The angles of a quadrilateral are in A. P. and the greatest is double the least; express the least angle in degrees and grades.
- 2. (a) Construct angles between 0° and 360° whose tangent is 2 and find their Secants and Cosecants.
  - (b) Prove that  $(\tan \theta + \sec \theta)^2 = \frac{\text{Cosec } \theta + 1}{\text{Cosec } \theta 1}$
- (c) In a cyclic quadrilateral ABCD, show that: Cos A+Cos C=0 and Cos B+Cos D=0.
- 3. (a) Two men A and B, 1360 yds. apart observe an aeroplane C at the same instant and find the respective angles of elevations to be 45° and 60°. If the plane ABC is vertical, find the height of the aeroplane.
- (b) Draw the graphs of  $\tan \theta$  and  $\cot \theta$  between  $\theta=0$  and  $\theta=\pi$  and from your graph find the values of  $\theta$  which satisfy  $\tan \theta = \cot \theta$ .
  - 4. (a) Prove that  $Cos (A+B) Cos (A-B) = Cos^2 A Sin^2 B$ (b) Prove that  $Sin 70^\circ - Cos 80 = Cos 40^\circ$ .

- (c) Prove that, if  $A+B+C=180^{\circ}$ , then  $\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = 8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
- (a) Solve Sin  $\theta + \sin 2\theta + \sin 3\theta = 0$ .
  - (b) In any triangle ABC, prove that  $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$  where a+b+c=2s.
  - (c) Prove that  $Sin A+Sin B+Sin C=\frac{s}{R}$  in any ABC where R is the Circum-radius and a+b+c=2s
- 6. (a) Given  $\log 2 = 30103$ , find the number of digits
- (b) If A=50, b=1071, a=873; find to the nearest ond, angle B. Given  $\log 1.071 = .029789$ , L Sin  $50^{\circ} = 9.884254$ , Sin  $70^{\circ} = 9.972986$ , L Sin  $70^{\circ} = 9.973032$ ,  $\log 8.73 = .1014$ .

#### K. U. 1959

- 1. (a) Prove that the radian is a constant angle.
  - (b) Show that  $\frac{\tan A + \sec A 1}{\tan A \sec A + 1} = \frac{1 + \sin A}{\cos A}$
- 2. (a) Trace the changes in the sign and magnitude of the trigonometrical ratios of an angle as the angle increases from 0° to 360°.
  - (b) Find a solution of the equation,  $3 \tan \theta + \cot \theta = 5 \operatorname{Cosec} \theta$ .
- 3. (a) Prove geometrically that Cos (A-B)=Cos A Cos B+Sin A Sin B.
  - (b) Find the expansion of Cos 3 A.
- 4. (a) In a  $\triangle ABC$  if  $a \cos^2 \frac{C}{2} + c \cos^2 \frac{A}{2} = \frac{3b}{2}$ , show that the sides of the triangle are in A. P.
  - (b) Prove that  $\log_b^m = \log_b^m \times \log_b^b$

5. (a) If A+B+C=180°, Prove that
$$\frac{\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2}}{1} = 1 - 2 \sin \frac{A}{2} \sin \frac{B}{2}}{\sin \frac{C}{2}}$$
Sin  $\frac{C}{2}$ 

(b) In a △ ABC prove that

$$R = \frac{a}{2 \sin A}$$
.

#### K.U. 1960

1. (a) Prove that (1+Cot A+tan A) (Sin A-Cos A)  $= \frac{\text{Sec }A}{\text{Cosec}^2 A} - \frac{\text{Cosec }A}{\text{Sec}^2 A}$ 

- (b) From the top of a cliff, 200 feet high, the angles of depression of the top and bottom of a tower are observed to be 30° and 60° respectively; find the height of the tower.
- 2. (a) Prove geometrically that Sin (A+B)=Sin A Cos B+Cos A Sin B.
  - (b) Show that  $\sin^2 A \sin^2 B = \tan (A+B)$
  - 3. (a) If  $A+B+C=180^{\circ}$  then show that  $\sin^2 A + \sin^2 B + \sin^2 C = 2+2 \cos A \cos B \cos C$ .
    - (b) Solve the equation:  $\sin \theta + \sin 7\theta = \sin 4\theta$ .
  - 4. (a) Prove that (i)  $\log_a \left(\frac{m}{n}\right) = \log_a m \log_a n$ , (ii)  $\log_a (m^u) = n \log_a n m$ .
    - (b) Show that in any  $\triangle$  ABC,  $Cos C = \frac{a^2+b^2-c^2}{2ab}$
  - 5. If  $b=\sqrt{3}$ , c=1 and  $A=30^{\circ}$ , then solve the  $\triangle ABC$ .
- (b) If r be the radius of the incircle of the triangle ABC, then Show that  $r = \frac{\triangle}{s}$ , where  $\triangle$  and s denote respectively the area and the semi-perimeter of the triangle ABC.

#### K.U. 1961

1. (a) Prove that

SinA = 
$$\frac{2 \tan A/2}{1 + \tan^2 A/2}$$
 and Cos A =  $\frac{1 - \tan^2 A/2}{1 + \tan^2 A/2}$ .

- (b) The shadow of a tower standing on a level plane is found to be 60 feet longer when the sun's altitude is  $30^{\circ}$  than when it is  $45^{\circ}$ . Prove that the height of the tower is  $30 (1+\sqrt{3})$  feet.
  - 2. (a) Prove that  $Sin (A+B) Sin (A-B) = Sin^2 A Sin^2 B$ and  $Cos (A+B) Cos (A-B) = Cos^2 A - Sin^2 B$
- =Sec A. Show that  $1+\tan A$  tan  $A/2=\tan A$  Cot A/2-1
  - 3. (a) If A+B+C=180°, prove that tan A/2 tan B/2+tan B/2 tan C/2+tan C/2 tan A/2=1
    (b) Solve the equation Sin θ+Sin 5θ=Sin 3θ.
- 4. (a) Having given  $\log 3 = 4771213$ , find the number of digits in  $3^{62}$ .
  - (b) In any ABC, prove that

$$\frac{a \sin (B-C)}{b^2-c^2} = \frac{b \sin (C-A)}{c^2-a^2} = \frac{c \sin (A-B)}{a^2-b^2}.$$

5. (a) Show that in any triangle ABC,

$$\tan (B-C)/2 = \frac{b-c}{b-c} \cot A/2.$$

(b) If R and r denote respectively the radii of the circumcircle and the incircle of any triangle ABC, prove that 1/bc+1/ca+1/ab=1/2Rr.

### Higher Secondary 1961 (J & K. University)

- Note: Do questions worth 44 marks. Complete questions are to be attempted].
- 1. (a) Prove that a radian is an angle of constant magnitude.
- (b) Express 2.2 radian in the Sexagesimal and Centesimal Systems.

- 2. (a) Express all the circular functions of  $\theta$  in terms of  $\cos \theta$ .
- (b) Given that  $\tan \theta = \frac{2}{3}$ , when  $\theta$  lies in third quadrant, find the other circular functions of  $\theta$ .

Or

Eliminate 
$$\theta$$
 from  $a \cos \theta + b \sin \theta + c = 0$   
 $a_1 \cos \theta + b_1 \sin \theta + c_1 = 0$ 

3. (a) Prove that the logarithm of the product of two factors is equal to the sum of the logarithms of the factors.

(b) If 
$$a^2+b^2=7ab$$
, then  $\log\left(\frac{a+b}{3}\right)$ 

 $=\frac{1}{2} (\log a + \log b)$ 

4. (a) Solve the equation  $5^{7-4s}-2^{r+5}$ , given that Log 2=3010.

- (b) Given that Log 2=3010, find the position of the first significant figure in  $2^{-35}$
- 5. (a) AD is the bisector of  $\angle A$  of the  $\triangle ABC$ , meeting BC in D. Prove that

$$BD = \frac{a \operatorname{Sin C}}{\operatorname{Sin C+Sin B}}, CD = \frac{a \operatorname{Sin B}}{\operatorname{Sin C+Sin B}}$$
(b) In a  $\triangle$  ABC, if  $\frac{\operatorname{Cos A}}{a} = \frac{\operatorname{Cos B}}{b} = \frac{\operatorname{Cos C}}{a}$ ,

Prove that the triangle is equilateral.

6. A circle with radius R passes through the vertices A, B and C of the △ ABC. Find that the

$$\triangle ABC = \frac{Production}{4R}$$

Or

At a point 200 ft, from the base of a tower which stands on a horizontal plane, the angle of elevation of the top is 60°. Find the length of the tower.

# TABLES OF LOGARITHMS

#### LOGARITHMS

|          | 0                    | 1     | 2     | 3       | 4     | 5            | .6    | 7            | 8     | 9            | 128   | 4 5         | 6    | 78             | 5  |
|----------|----------------------|-------|-------|---------|-------|--------------|-------|--------------|-------|--------------|-------|-------------|------|----------------|----|
| 10       | 0000                 | 0043  | 0086  | 0128    | 0170  |              |       |              |       |              | 5913  | 17 21       |      | 30 34          |    |
| 11       | 0414                 | 0453  | 0492  | 0531    | 0569  | 0212         | 0253  | 0294         | 0334  | 03/4         | 4812  | 16 20       |      | 27 31          | 1  |
| 8.1      | 100                  |       |       | J. Line | _     | 0607         | 0645  | 0682         | 0719  | 0755         | 47 11 | 15 18       | 22   | 26 29          | -  |
| 12       | 0792                 | 0828  | 0864  | 0899    | 0934  | 0969         | 1004  | 1038         | 1072  | 1106         | 37 11 | 14 18       |      | 25 28          | _  |
| 13       | 1139                 | 1173  | 1206  | 1239    | 1271  |              |       | - 3          |       | X to         | 3610  | 1316        | 19   | 23 20          | 2  |
| 14       | 1461                 | 1492  | 1523  | 1553    | 1584  | 1303         | 1335  | 1367         | 1399  | 1430         | 36 9  | 12 15       |      | 22 25          | ٠, |
|          |                      |       |       | 0.20    | 1200  | 1614         | 1644  | 1673         | 1703  | 1732         | 36 9  | 1214        | 17   | 20 23          | 2  |
| 15       | 1761                 | 1790  | 1818  | 1847    | 1875  | 1903         | 1931  | 1959         | 1987  | 2014         | 36 8  | 11 14       |      | 20 23<br>19 22 |    |
| 16       | 2041                 | 2068  | 2095  | 2122    | 2148  | -            |       | 17.7         | 955   |              | 36 8  | ACCORDED TO |      | 19 22          | s  |
| 17       | 2304                 | 2330  | 2355  | 2380    | 2405  | 2175         | 2201  | 2227         | 2253  | 2279         | 35 8  | 1013        | -    | 18 20          | -  |
| 10       |                      |       |       |         |       | 2430         | 2455  | 2480         | 2504  | 2529         | 35 8  | 1012        | 15   | 17 20          |    |
| 18       | 2553                 | 2577  | 2601  |         | 2648  | 2672         | 2695  | 2718         | 2742  | 2765         | 25 7  | 911         | 14   | 17 19          | 9  |
| 19       | 2788                 | 2810  | 2833  | 2856    | 2878  |              | 7.7   |              |       |              | 24 7  | 911         | 13   | 1618           |    |
| 20       | 3010                 | 3032  | 3054  | 3075    | 3096  | 2900<br>3118 | 3139  | 2945<br>3160 | 3181  | 3201         | 24 6  | 811         | 13   | 15 17          | 1  |
| 21       | 3222                 | 3243  | 3263  | 3284    | 3304  | 3324         | 3345  | 3365         | 3385  | 3404         | 24 6  | 810         | 12   | 14 16          | 1  |
| 23       | 3017                 | 3030  | 3655  | 3674    | 3692  | 3711         | 3729  | 3747         | 3766  | 3784         | 24 6  |             | 601  | 14 15          | 7  |
| 24<br>25 | 3002                 | 3820  | 3838  | 3856    | 3874  | 3892         | 3909  | 3927         | 3945  | 3962         | 24. 5 | 1000        | 201  | 1214           |    |
| 26       | 4150                 | 4166  | 4183  | 4200    | 4216  | 4232         | 4249  | 4265         | 4281  | 4133         | 23 5  |             | 100  | 12 14          | и  |
| 23       | 4314                 | +330  | 4346  | 4362    | 4378  | 4393         | 4409  | 4425         | 4440  | 4456<br>4609 | 23 5  |             | 9    | 1113           | 1  |
| 29       | 4024                 | 4039  | 4054  | 4009    | 4083  | 4698         | 4713  | 4728         | 4742  | 4757         | 13 4  | 6 7         | 12.3 | 10 12          | 8  |
| 30       |                      | 4786  | 4800  | 4814    | 4829  | 4843         | 4857  | 4871<br>5011 | 4886  | 4900         | T. 1  | 6 7         | 2    | EC 233         | Ю  |
| 82       | 1 5051               | 5005  | 5079  | 5092    | 5105  | 5119         | 5132  | 5145         | 5150  | 5172         | 13 4  | 5 7         | 8    | 911            | Я  |
| 83<br>84 | 1,2102               | 5198  | 5211  | 5353    | 5237  | 5250         | 5263  | 5276         | 5289  | 5302<br>5428 | 13 4  | 5 6         | 8    | 910            | e  |
| 35       | 5441                 | 5453  | 5465  | 5478    | 5490  | 5502         | 5514  | 5527         | 5530  | 15551        | 12 4  | 5 6         | 7    | 910            |    |
| 87       | 50 2                 | 5694  | 5705  | 5599    | 5729  | 5740         | 5752  | 5647         | 5658  | 5670<br>5786 | 12 4  | 5 6         | 7    | 810            |    |
| 33       | 13/                  | 5922  | 12051 | 15032   | 5843  | 5855         | 15866 | 5877         | 5888  | 5899         | 12 3  | 5 6         | 7    | 8 9            | g  |
| 40       | 6021                 | 6031  | 6042  | 6053    | 5064  | 6075         | 6085  | 6006         | 6100  | 6010         |       | 4 5         | 7    | 8 9            |    |
| 41<br>C2 | 10150                | 0139  | 0149  | 0100    | 10170 | 10180        | 16101 | 6201         | 16212 | 6222         | 112 3 | 4 5         | 6    | 7 8            |    |
| 44       | 6335                 | 10345 | 10335 | 10305   | 10375 | 10385        | 10305 | 16105        | 6415  | 15422        | 12 3  | 4 5         | 6    | 7 8            |    |
| 45       | 6532                 | 5542  | 6551  | 6561    | 6571  | 6580         | 0493  | 6503         | 6513  | 5522         | 12 3  | 4 5         | 6    | 7 8            |    |
| 43       | 1100000              |       |       |         |       |              |       |              |       |              |       | 4 5         | 6    | 7 8            |    |
| 48       | 6721<br>6812<br>6902 | 6821  | 6830  | 6839    | 6848  | 6857         | 6866  | 6875         | 688   | 6803         | 12 3  | 4 5         | 5    | 67             |    |
| 48       | 6902                 | 6911  | 6920  | 6928    | 6937  | 6946         | 6955  | 6964         | 6972  | 6981         | 12 3  | 4 4         | 5    | 57             |    |

### LOGARITHMS

|          | 0            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8      | 8                      | 4            | 6        | 6            | 7                                       | 8      | 9            | 128  | 456       | 78  |
|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|--------------|----------|--------------|-----------------------------------------|--------|--------------|------|-----------|-----|
| 50       | 6990         | 6998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7007   | 7016                   | 7024         | 7033     | 7042         | 7050                                    | 7059   | 7067         | 123  | 345       | 67  |
| 51       | 7076         | 7084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7093   | 7101                   | 7110         | 7118     | 7126         | 7135                                    | 7143   | 7152         | _    | 345       |     |
| 52       | 7160         | 7168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7177   | 7185                   | 7193         | 7202     | 7210         | 7218                                    | 7220   |              |      | 345       | 66  |
| 53       | 7243         | 7251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7259   | 7267                   | 7275         | 7234     | 7292         | 7300                                    | 7308   | 100000       | 122  | 345       | 66  |
| 64       | 7324         | Sept. 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00   | 7348                   | 25000.4      |          |              |                                         |        | 7396         |      | 7 1 7     | 56  |
| 55       | 7404         | 7412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 7427                   |              |          |              | 7459                                    | 7465   | 7474<br>7551 | 122  | 345       | 56  |
| 56<br>57 | 7482         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 7505<br>7582           |              |          | 7604         | 7612                                    | 7610   |              | 122  | 345       | 56  |
| 68       | 7634         | 7642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7649   | 7057                   | 7664         |          |              |                                         |        |              | 112  | 344       | 56  |
| 69       | 7709         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7723   | the first of the first |              | 7745     | 7752         |                                         | 7767   |              | 112  | 344       | 56  |
| 30       | 7782         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000 | 7803                   | 7810         | 7818     | 7825         | 7832                                    | 7839   | 7846         | 112  | 344       | 56  |
| 61       | 7853         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 7875                   |              |          |              |                                         |        | 7917         | 112  | 344       | 56  |
| 62       | 7924         | and the second s |        | 7945                   |              |          | 7956         | 7973                                    | 7980   | 7987         | 112  | 334       | 56  |
| 63       | 7993         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8007   |                        | 8021         | 8028     | 8035         | 20                                      |        | 8055         | 112  | 334       | 55  |
| 64       | 8062         | 8069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8075   | 8062                   | 1 TO 1 OF 1  | 1500 500 | 8102         | 2                                       | 8.329  | 8122         | 0.00 | 334       | 55  |
| 56       | 8129         | 8136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -      |                        | -            |          | 8169         |                                         | 3182   | 8189         |      | 334       | 55  |
| 66       |              | 8202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -      |                        | 8222         |          | 8235         |                                         | 8248   | 8319         | 112  | 334       | 55  |
| 67<br>68 | 8261         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8274   |                        | 8287<br>8351 | 8293     | 8363         |                                         | 8376   | - An         |      | 334       | 45  |
| 69       | 8325         | 8395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8338   | 8407                   | 8414         | 8420     | 0 1          | 8432                                    |        | 8445         | 112  | 234       | 45  |
| 10       |              | ( Z ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8463   |                        |              | 8;82     | The Colorest | F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        | 8500         | 112  | 234       | 45  |
| 71       | 8451         | Reto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8525   | 8531                   | 8537         | 8543     | 8549         | 8555                                    | 8561   | 8567         | 112  | 234       | 45  |
| 72       | 8573         | 8070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rege   | Reat                   | 8507         | 8603     | 8600         | 8615                                    | 8621   | 8627         | 112  | 234       | 45  |
| 73       | 8633         | 8630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8645   | 8051                   | 8657         | 8663     | 8000         | 8075                                    | 1008   | 9093         | 112  | 235       | 45  |
| 74       | 8692         | 8698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8704   | 8710                   | 8716         | 8722     | 8727         | 8733                                    | 8739   | 8745         | 112  | 233       | 43  |
| 75       | 8751         | 8756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8762   | 8768                   | 8774         | 8779     | 8785         | 8791                                    | 8797   |              |      | 233       |     |
| 76       | 8808         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 8825                   |              | 8837     | 8842         | 8848                                    | 8854   | 8015         | 112  | 233       | 34  |
| 77       | 8865         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 8882                   | 8887         | 8093     | 8899         | 8060                                    | 806:   | 8071         | 112  | 233       | 44  |
| 78       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 8938                   |              | 0004     | 8954<br>9009 | 0015                                    | 0020   | 9925         | 112  | 7 7 7 7 7 | 1   |
| 79       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 8993<br>9047           |              |          |              |                                         |        |              |      |           | 14: |
| 80       | 9031         | 9030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9042   | 9101                   | 0105         | 0112     | 0117         | 0122                                    | 9128   | 9133         | 112  | 233       |     |
| 81<br>82 | 9005         | 0143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9030   | 9154                   | 9159         | 9165     | 9170         | 9175                                    | 9180   | 9186         | 112  | 277       | 44  |
| 83       | 9191         | 9196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9201   | 9205                   | 0212         | 9217     | 9222         | 9227                                    | 19232  | 9230         | 115  | 233       |     |
| 84       | 9243         | 9248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9253   | 9258                   | 9263         | 9269     | 9274         | 9279                                    | 9284   | 9239         | 112  | 233       | 14  |
| 85       | 0204         | 0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0104   | 9300                   | 0315         | 9320     | 9325         | 9330                                    | 9335   | 9340         | 112  | 233       | 1   |
| 86       | 9345         | 9350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9355   | 9360                   | 9365         | 9370     | 19375        | 9380                                    | 9305   | 9390         | 11.  | -33       | 200 |
| 87       |              | 9400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3405   | 0410                   | 0415         | 9420     | 19425        | 9430                                    | 194.15 | 9440         | 9    | 16.48     | 54  |
| 89       | 9445         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9455   |                        |              | 9409     | 9474<br>9523 | 94/9                                    | 9533   | 9538         | 011  | 227       | 34  |
| 89       | 9494         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 9509                   |              |          |              |                                         |        | 9536         |      | 2:        | 34  |
| ခဲ့ဝ     | 9542         | 9547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9552   | 9557<br>9605           | 9502         | 9500     | 95/1         | 6524                                    | 49:8   | 9533         |      | 223       | 200 |
| 91       | 9570         | 9595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9647   | 9652                   | 0657         | 9661     | 9656         | 6671                                    | 9675   | 9680         | 011  | 22 7      | 34  |
| 93       | 9685         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9694   | 9600                   | 9703         | 19700    | 9713         | 9717                                    | 9/22   | 91-1         | 011  | 2 = 3     | 54  |
| 24       | 9731         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0741   | 9745                   | 9750         | 9754     | 9759         | 9763                                    | 9700   | 9773         | 011  |           | 34  |
| 95       | li .         | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10005  | 0701                   | 0705         | csm      | 0805         | 0800                                    | 0814   | 9818         | 011  | 22        | 34  |
| 94       | 0822         | 0827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10832  | 19836                  | 9841         | 14845    | 19850        | 9054                                    | 9059   | 20.03        | 011  | 223       | 34  |
|          | 11 - 3       | 9872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9877   | 9881                   | 9886         | 9890     | 9894         | 9899                                    | 9903   | 9908         | 011  |           |     |
| 98       | 9912<br>9956 | 9917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9921   | 9926                   | 9930         | 9934     | 9939         | 9743                                    | 0001   | 9006         | 011  | 233       | 33  |
| עש       | 9956         | 9961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19905  | 9939                   | 9974         | 34/0     | 19903        | 3301                                    | 1777-  |              | -    |           | _   |

| 1   | 0                    | 1                              | 2     | 3            | 4                 | 5            | 8            | 7                 | 8                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 456                   | 788            |
|-----|----------------------|--------------------------------|-------|--------------|-------------------|--------------|--------------|-------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|
| 00  | 1000                 | 1002                           | 1005  | 1007         | 1009              | 1012         | 1014         | 1016              | 1019                      | 1021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111                   | 223            |
| 01  | 1023                 | 1026                           | 1028  | 1030         | 1033              | 1035         | 1038         | 1040              | 1042                      | 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111                   | 223            |
| 02  | 9.005                | A COLUMN TO THE REAL PROPERTY. |       |              |                   |              | 1062         |                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111                   | 221            |
| 03  | 1072                 | 1374                           |       |              |                   |              | 1086         |                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111                   | 22             |
| 04  | 1096                 | 1009                           | 1102  | Landau Toler | the second second | 1,10,000,000 | 1112         | 100 march 100 mm  | The state of the state of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE STA | Branch Committee      | 22:            |
|     |                      | 10.54                          |       | Name 1 49    |                   | 100          | 1000         | Lorentz William   | 100000                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000                  | 10.0           |
| 35  | 1122                 | 1125                           |       |              |                   |              | 1138         |                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112                   | 22             |
| 08  | 1148                 |                                |       |              |                   |              | 1164         |                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112                   | 22             |
| 07  | 1175                 | 1178                           |       |              | 2000              |              | 1191         | 10000             |                           | PRINCIPLE OF THE PRINCI | 7. Y. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 112                   | 22             |
| 08  | 1202                 | 1205                           |       |              | _                 |              | 1219         | The second second |                           | 1227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/20/20              | 22             |
| 00  | 1230                 | 1233                           |       |              |                   | 1000         | 1247         |                   | 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112                   | 22             |
| 10  | 1259                 | 1262                           |       | 1268         | 1271              | 1274         | 1276         | 1279              | 1282                      | 1285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 112                   | 22             |
| 11  | 1288                 | 1291                           | 1294  | 1297         | 1300              | 1303         | 1306         | 1309              | 1312                      | 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122                   | 22             |
| 12  | 1318                 | 1321                           | 1324  | 1327         | 1330              | 1334         | 1337         | 1340              | 1343                      | 1346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122                   | 22             |
| 13  | 1349                 | 1352                           | 1355  | 1358         | 1361              | 1365         | 1368         | 1371              | 1374                      | 1377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122                   | 23             |
| 14  | 1                    | 1334                           | 1387  | 1390         | 1393              | 1396         | 1400         | 1403              | 1406                      | 1409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122                   | 23             |
| 15  | 1413                 | 1416                           | 1410  | 1422         | 1426              | 1420         | 1432         | 1435              | 1430                      | 1442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122                   | 23             |
| 16  | 1445                 | 000                            |       | 1455         |                   |              |              | 1469              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122                   | 23             |
| 17  | 1479                 |                                |       |              |                   |              | 1500         | 1503              |                           | 1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122                   | 23             |
| 18  | 1514                 | 1517                           |       | 1524         |                   | 1531         |              | 1538              |                           | 1545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122                   | 23             |
| 19  | 1549                 | 1552                           |       | 1560         | 1563              | 1567         |              | 1574              |                           | 1581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0252                | 1 - 2          |
| 20  | 1585                 | 1000                           | A-2-3 |              | 100               |              |              | 100000            |                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOM                   | 33             |
| 21  | 1622                 |                                |       | 1596         |                   | 1603         |              | 1611              |                           | 1618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122                   | 100            |
| 23  |                      | 1663                           | 1629  | 1033         | 1037              | 1041         | 1644         | 1048              | 1052                      | 1056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222                   | 33             |
| 23  | 1608                 | 1003                           | 1007  | 1071         | 1075              | 1079         | 1683         | 1087              | 1090                      | 1094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |
| 24  | 1738                 | 1702                           | 1700  | 1710         | 1714              | 1710         | 1722         | 1720              | 1730                      | 1734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222                   | 33             |
| 22  |                      |                                |       |              |                   |              | 1762         |                   |                           | 1774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222                   | 33             |
| 25  | 1778                 | 1782                           | 1786  | 1791         | 1795              | 1799         | 1803         | 1307              | 1811                      | 1816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 222                   | 33             |
| -28 | 1320                 | 1824                           | 1828  | 1832         | 1837              | 1841         | 1845         | 1849              | 1854                      | 1858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 223                   | 33             |
| 27  | 1002                 | 1900                           | 1571  | 1075         | 1879              | 1384         | 1555         | 1892              | 1897                      | IGOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 223                   |                |
| .28 | 1905                 | 1910                           | 1914  | 1919         | 1923              | 1928         | 1932         | 1936              | 1941                      | 1945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 223                   |                |
| 20  | 1950                 | 1954                           | 1959  | 1963         | 1968              | 1972         | 1977         | 1982              | 1986                      | 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 223                   |                |
| 30  | 1995                 | 2000                           | 2004  | 2000         | 2014              | 2018         | 2023         | The second second |                           | 2037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 223                   | 0.3            |
| 31  | 2042                 | 2046                           | 2051  | 2056         | 2061              | 2061         | 2070         | 2075              | 2080                      | 2081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 34             |
| -58 | 2089                 | 2094                           | 2009  | 2104         | 2100              | 2113         | 2118         | 2123              | 2128                      | 2122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 223                   | 34             |
| -83 | 2138                 | 2143                           | 2148  | 2153         | 2158              | 2163         | 2168         | 2173              | 2178                      | 2182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 223                   | 24             |
| -84 | 2188                 | 2193                           | 2198  | 2203         | 2208              | 2213         | 2218         | 2223              |                           | 2234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 223                   |                |
| 35  | 2239                 | 2244                           |       |              |                   |              |              |                   |                           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 233                   | 100            |
| .30 |                      |                                | 2301  | 2307         | 2212              | 2217         | 2370         | 2275              | 2250                      | 2250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 233                   | 1000           |
| 87  | 2344                 | 2350                           | 2355  | 2360         | 2266              | 2271         | 2323         | 2328              | 2333                      | 2339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 233                   |                |
| 88  | 2399                 | 2404                           | 2410  | 2415         | 2421              | 2127         | 2377         | 2302              | 2300                      | 2393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                |
| .80 | 2455                 |                                | 2466  | 2472         | 2477              |              | 2432<br>2489 | 2438              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 233                   | Profit and the |
| 40  | 11                   |                                |       |              |                   |              | -409         | 2495              | 2500                      | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 233                   | 45             |
| -41 | 2570                 | 2576                           | 2582  | 2588         | 2535              | 2541         | 2547         | 2553              | 2559                      | 2564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 234                   | 45             |
| -42 | 11 000               |                                | 1-3   | 1-1-0        |                   | 1 4 1 1 1    | 2000         | 2012              | 2018                      | 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 234                   | 45             |
| .48 | 2602                 | 2608                           | 2704  | 2649<br>2710 | 2055              |              | 100          |                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 1.00           |
| .44 | 2754                 | 2761                           | 2767  | 2773         |                   |              | 2729         | 2735              |                           | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 334                   |                |
| 45  | 11                   | 1                              |       |              |                   |              |              |                   | 2805                      | 2812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 334                   | 45             |
| -48 | 2818                 |                                |       | 2838         |                   |              | 3858         | 2864              | 2871                      | 2877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 334                   | 55             |
| .42 | 2884                 | 2891                           | 2097  | 2904         | 12011             | COVE         |              | 1                 |                           | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control of the second |                |
| 10  | 2951                 | 2958                           | 2905  | 3973         | 2979              | 2985         | 2992         | 2990              | 3006                      | 3013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 334                   | 15             |
| -40 | 2951<br>3020<br>3090 | 3027                           | 3034  | 30,11        | 3048              | 3055         | 3002         | 3060              | 3076                      | 3083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 334                   | 166            |
| 40  | 3090                 | 300                            | 3105  | 3113         | 13119             | 3125         | 2122         | 2141              | 2148                      | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.7.4                | 16             |

L

### ANTILOGARITHMS

| , N  | 0 1                  | 1              | 2          | 8                         | 4                        | 6        | 6          | 7                     | 8        | 9                                        | ), 9 | 8   | à:   | Ď     | 8    | 7     | 8    | 9   |
|------|----------------------|----------------|------------|---------------------------|--------------------------|----------|------------|-----------------------|----------|------------------------------------------|------|-----|------|-------|------|-------|------|-----|
| 50   | 3162                 | 1170           | 3177       | 3184                      | 3192                     | 3199     | 3206       | 3214                  | 3921     | 3228                                     | 1 1  | 2   | 3    | 4     | 4    | 5     | 6    | 7   |
| . 1  | 0.00                 | 200            | 3251       | 0                         | - 22                     | - C 12 M | 3281       |                       |          | 3304                                     | 1 2  | 3   | 3    | 4     | 5    | 5     | 6    | 7   |
| 62   | 3230                 |                | 3327       | A CONTRACTOR              | 3342                     | 3350     | 3357       | 3365                  | 3373     | 3381                                     | 1 2  | 23  | 3    | 4     | 5    | 5     | 6    | 7   |
| 53   | 3388                 | 100            | 3494       | The same                  | 3420                     | 3428     | 3430       | 3443                  |          |                                          | 1 3  | 112 | 3    | 4     | 5    | 6     | 6    | 7   |
| 64   | 3467                 |                | 3463       | A CONTRACTOR              |                          |          | 1          | 3524                  |          | 22                                       | 1 2  |     | 3    | 4     | 5    | 6     |      |     |
| 55   | 2548                 | 3550           | 3565       | 3573                      | 3581                     | 3589     | 3597       | 3606                  | 36 4     | 3532                                     | 1 3  |     | 3    | 4     | 5    | 6     | 7    | 8   |
| 56   | 3631                 | 3039           | 1638       | 1000                      | 3664                     | 3673     |            | 3590                  |          |                                          | 1    | 3   | 11.0 | 4     | 5    | 6     | 5    | S   |
| 57   | 3715                 |                | 12777      | 1741                      | 17750                    | 1750     | 13/0/      | 3779                  | 3,04     | 3793                                     | 1    | 1 3 | 100  | 4     | 5    | 6     | 7    | 8   |
| -58  | 3802                 |                |            |                           | 3H37                     | 3040     | 3955       | 3954                  | 13007    | 3977                                     |      | 3   | J    | 5     | 5    | 6     | 7    | 8   |
| .69  | 3890                 |                |            | 3917                      |                          | 3936     | 100        |                       |          |                                          | 1    | 2 3 | 1    |       | 6    | 6     | 4    | 8   |
| 60   | 3981                 | 3990           | 3999       | 4009                      | 4018                     | 4027     |            | 14040                 | 1955     | 4150                                     | 1    | 3   | 1.   | 6     | 6    | 7     | 8    | 9   |
| 81   | 4974                 | 4603           | 4093       | 4102                      | 4111                     | 4121     |            | and the second second | 8336     | 4150<br>4350                             | 1    | 13  |      | 5     | ō    | 17    | 3    | 9   |
| -62  | 4159                 |                |            |                           | 4207                     | 4217     |            |                       |          | 4355                                     |      | 2 3 | 1    | 5     | G    | 7     | 3    | 9   |
| 63   | III To a contract to | 4270           | 1420       |                           | 430 <u>5</u><br>4400     | 3010     | 3.16       | 1430                  | 4145     | 14457                                    | 11   | 23  | 4    | 5     | 6    | 7     | 3    | ()  |
| 64   | 4305                 | 4375           | 1 0        |                           |                          |          |            |                       |          |                                          | 1    | 23  | 1    | 5     | 6    | 7     | 3    | 9   |
| 65   | 4457                 | 4477           |            |                           | 4505                     | 47.0     | 14031      | 4645                  |          | 1607                                     |      | 2   | 14   | 5     | 0    | 7     |      | 10  |
| -86  | 4571                 | W 1774         | 459        | 4603                      | 47:1                     | 3717     | 3742       |                       |          | 4275                                     |      | 2   | 3    | 5     | 2    | 5     |      | 10  |
| 67   | 4077                 | 1000           | 1 1860     |                           | 1831                     |          | 114351     | 3503                  | 1775     | 4077                                     | 1    | 7.3 | 4    | 0     | 7    | 10    | 1.55 | 10  |
| 68   | 4750                 |                | 11.        |                           | 4943                     |          |            | 4977                  | 1955     | Smy                                      | 11   | 93  | 5    | · O   | 7    | 8     | 1    | 10  |
| 59   | 11                   | 1              | 1          |                           | 10000                    | 1 2000   | Jech.      | drive                 | Trent    | 0117                                     | 11   | 71  | X    | 1     | 1    | 1 3   |      | 11  |
| 70   | 5012                 | 202            | 1 252      | 2 510                     | 5050                     | 138      | 5200       | 15215                 | 1500     | 1 5236                                   | 1    | 9.4 |      | 0     | 7    | 100   | 10   |     |
| 71   | 5129                 | 1314           | 15.7       | 2 (28.                    | -07                      | 1530     | 15321      | 533                   | 3.4      | 515                                      | 1    | 21  |      | 12    | 7    | 1.    | 10   |     |
| 72   | 5370                 | 638            | 1 510      | 5 540                     | 5420                     | 543      | 3 5043     | 545                   | 4300     | 1 1 1 1 1                                | 15   | 7.  |      | Y     | 6    | 1 0   | 10   | 17  |
| 74   | THE WARRY            | 1 5 5 5 5 5    |            | 1 1 5 5 6 4               |                          |          | # 1 -3 J 1 |                       |          |                                          |      |     |      |       |      | 1     | W    |     |
| 75   |                      |                |            |                           |                          |          |            |                       |          |                                          |      |     |      |       |      |       | 131  |     |
| 76   | 5754                 | 570            | 5 578      | 1 379                     | 1 5608                   | 1582     | 1 303      | 15/4                  | 1250     |                                          | 1    | 1   | 13   | 1 /   | . 4  | 100   | 11   | 1   |
| 77   | 588                  | 1590           | 11991      | 6 592                     | 594<br>9 594             | 595      | 7 597      | 2 50                  | 1 200    | 0.001                                    | 1    | 3.  | -    | 7     | 8    | 10    | 111  | 1   |
| 78   | 5888                 | 003            | 9 603      | 3 606                     | 1 0681                   | 609      | 5 010      | 9165                  | A TONK   | F 6293                                   | Li   | 1   | 8 1  | 1 9   | 1.9  | 10    | 111  | 4   |
| 79   | A 76863              | . 1 For 1 Sec. | TO FEEL TO | 4 050                     | 0.1024                   | 01243    | 1 243      |                       |          |                                          |      |     |      |       |      | 17    |      |     |
| 80   | 5110                 |                |            | The same and the same and |                          |          |            | - 1 4 2 7             | 7 1 1 1  | C 10 10 10 10 10 10 10 10 10 10 10 10 10 |      |     |      | - 1   |      |       |      |     |
| 81   | (445)                | 647            | 1 045      | 0.070                     | 1 1021                   | 027      | 0.24       | 1.00                  | 183      | 100                                      | 11:  | W   | 1    | 5. 7  | 0    | (1)   | 1    | 1   |
| 87   | (600)                | 662            | 2 663      | 71613                     | 1 6516<br>1 662<br>3 682 | 1020     | 1 153      | 6 085                 | His      | 1. 1195                                  | 2    | 1   | 1    | - 1   | 1    | . 1.  | T.   | 1   |
| 84   | 676                  | 577            | 60,679     | 12 650                    | 1004                     | 0.650    | A 78.4     | 1 7161                | 704      | 9 000                                    | 1 2  | 3   | 5 3  | . 1   | 11.  | . 1.1 | ь,   | , 1 |
| 1 24 |                      |                |            |                           |                          |          |            |                       |          |                                          |      |     |      |       | 1    | 12    | T.   | 1 1 |
| 80   | 707                  | 1.700          | 6 711      | 3 215                     | 9 714                    | 3 7 10   | 1          | 5 10                  | 1-34     | 11 73 8                                  | 1/2  | Ŷ.  |      | 1 1   | 10   | 1     | 1.5  | 1   |
| 8.5  | 7:4                  | 4 1720         | 1 (7.7)    | na pres                   | X 1237                   | 1/5.     |            | a1500                 | x 12 C f | V 1580                                   | 5 2  |     | 1    | 7     | 1.37 | 13    | 2.1  | ( ) |
| 6.7  | 741                  | 3 74           | 01711      | 74                        | 4 746<br>8 765           | 6 767    | 4 7/19     | 1 770                 | 97772    | 7 274                                    | 5 3  | 4   | 31   | 7 '   |      | 1.    | . 1. | . 1 |
| 81   | 750                  | 70             | 1 /0       | 5 781                     | 8 705                    | 4 78     | 767        | u 758                 | 9 790    | 7 79                                     | 8 3  | A   | 8    | 1     |      | Hô.   | 2 ** |     |
| 8    | 1.75                 | 100            |            |                           | 801                      | 7 803    | 1, 805     | 4 807                 | 2 107    | 1 610                                    | 0 3  | 4   | 0    | 7 1   | 113  | 13    | 3.1  | 5.1 |
| 1-30 | 794                  | 3 139          | 7.79       | 00 1 50                   | 5 820<br>5 820           | 4 833    | 2 624      | 1 820                 | 0 627    | 9 8.0                                    | 1    | 4   | (1   |       | 111  | B     | 3 4  | 1   |
| 1 8  | 913                  | 8 617          | 7 8 0      | sb 81                     | 5 820<br>5 835           | 261      | 4 915      | 3 100                 | 3 847    | 2 10                                     | 1.   | 4   |      | 1 1/  | y 10 | 1     | . 1  | 0.1 |
| 100  | 1 031                | 1 80           | 1 86       | 17.85                     | 6 855<br>6 859           | 0 801    | 0 54       | 0 805                 | 0 867    | 0                                        | 1    | 1   | XX I | 5 40  | 11   | 11    | 4 1  | :   |
| 1 2  | 4 871                | 0 85           | 10 67      | 54 87                     | n 859                    | 86       | 0 663      | 1 295                 | 1 057    |                                          | ð1   | 0   | , 1  | 2.04  | 7.1  | 1     | 5 1  | 7 1 |
| 1    |                      | 1 60           | 12 80      | 54 80                     | n 879<br>14 899          | 5 90     | 6 90       | 6 90                  | 7 900    | NA PROPERTY.                             | T    |     | 1    | do ge | 1 13 | 1     | 51   | 7 1 |
| 10   | 6 691                | 3 09           | 23 09      | 62 01                     | 14 899<br>51 920         | 4 192    | 6 924      | 7 920                 | 5 929    | y - 174 1                                | 11   | 14  | 2    | 0.5   | 1    | T     | 4.1  | 7:  |
| 1.0  | 7 011                | 1 01           | 6 01       | 70 90                     | 910                      | 9 94     | 1 940      | 2 948                 | 4 95     | 01                                       | C    | 1   | 7    | 12 1  |      |       |      |     |
|      | 8 955                | 0 00           | 72 95      | 94 96                     | 16 99)                   | 0 91     | 1 968      | 1 979                 | 97       | 0.000                                    | 3    |     | 7    | 91    | 1 1  | . 1   | 61   | r 2 |
|      | 977                  | 9 05           | ac lak     | 17 98                     | 16 903                   | 3 95     | 50,990     | 197                   | 14 A.V.  | 25 25                                    | 1.   | -   | _    |       | -    |       | _    | -   |

### NATURAL SINES

| Legroca | o      | 8          | 12    | 18                     | 24"  | 80'                          | 88   | 18     | 48   | 54         | Diff     | esan<br>erences |
|---------|--------|------------|-------|------------------------|------|------------------------------|------|--------|------|------------|----------|-----------------|
| Š       | 0,0    | 0.1        | 0°.2  | 0°.3                   | 0°.4 | 0°.5                         | 0°.6 | 09.7   | o°.8 | 0.0        | 1 2 3    | 4 5             |
| 0       | 0000   |            |       | 0052                   | 0070 | 0087                         | 0105 | 0122   | 0140 | 0157       | 369      | 12 15           |
| 1       | , 0175 | 0192       | 05:00 | 0227                   | 0244 | 0262                         | 0279 | 0297   | 0314 | 0332       | 1 6 0    | 12 15           |
| 2       | .0319  | 0300       | 0384  | 0401                   | 0419 | 0436                         | 0454 | 0471   | 0488 | 0506       | 1360     |                 |
| Z       | 10523  | 2541       | 10558 | 0576                   | 0593 | 0610                         | 0628 | 0645   | 0663 | 0680       | 1 6 0    | 22.00           |
| 4       | -0598  | 0715       | 0732  | 0750                   | 0767 | 0785                         | 0802 | 0819   | 0837 | 0854       | 369      |                 |
| Б       | 0872   | 100        | 0906  |                        | 0941 | 0958                         | 0976 | 0993   | 1011 | 1028       | 369      | 12 14           |
|         | 1-1215 |            | 1080  |                        | 1115 |                              |      |        |      | 1201       |          | 12 14           |
| D       | 1 79   | 1230       | 1253  | 1271                   | 1283 | 1305                         | 1323 | 1340   | 1357 | 1374       | 369      | 12 14           |
| 8       | 1.7333 | 1409       | 1426  | 1444                   | 1451 | 1478                         | 1495 | 1513   | 1530 | 1547       | 369      | 12 14           |
| 8       | 1200   | 1263       | 1599  | 1616                   |      |                              | 1668 |        |      | 1719       | 369      | 12 14           |
| 10      | 1736   | 1754       | 1771  | 1788                   | 1805 | 1822                         | 1840 | 1857   | 1874 | 1891       | 360      | 12 14           |
| 11      | .1958  | 1925       |       |                        | 1977 | 1994                         |      |        |      | 2062       |          | 11 14           |
| 12      | .2079  |            | 2113  | -                      | 2147 | and the second second second |      | 2198   |      | 2232       |          | 11 14           |
| 13      | .2250  | Comment of | 2284  |                        | 2317 | 2334                         | 2351 | 2368   | 2385 | 2402       |          | 11 14           |
| 14      | .2410  | 2436       | 2453  | 2479                   | 2457 | 2504                         | 2521 | 2538   | 2554 | 2571       | 368      | 11 14           |
| 15      | .2583  | 2605       | 2622  | 2639                   | 2656 | 2672                         | 2689 | 2706   | 2723 | 2740       | 368      | 11 14           |
| U       | .2750  | 2773       | 2790  | 2807                   | 2823 | 2840                         |      |        | 2890 | 2907       | 368      | 11 14           |
| 17      | 12024  | 2940       | 2957  | 2974                   | 2990 | 3007                         | 3024 | 3040   | 3057 | 3074       |          | 11 14           |
| 16      | .3030  | 3107       | 3123  | 3140                   | 3156 | 3173                         | 3100 | 3206   | 2227 | 2 . 20     | 2 6 8    |                 |
| 19      | .3250  | 3272       | 3289  | 3305                   | 3322 | 3338                         | 3355 | 3371   | 3387 | 3404       | 3 5 8    | 11 14           |
| 10      | 13420  | 3437       | 3453  | 3469                   | 3436 | 3502                         | 3518 | 3535   | 3561 | 2567       | 2 . 8    |                 |
| 81      | 13584  | 3600       | 3616  | 3633                   | 3649 | 3665                         | 3681 | 3607   | 3714 | 3730       | 3 5 8    | 11 14           |
| 22      | '3746  | 3762       | 3778  | 3795                   | 3811 | 3827                         | 1843 | 3859   | 3875 | 3891       | 3 5 8    | 11 14           |
| :8      | 13907  | 3923       | 3939  |                        |      | 3987                         | 4003 | 4019   | 4035 | 4051       |          | 11 14           |
| 24      | .4007  | 4083       | 4099  | 4115                   |      | 4147                         | 4163 |        |      | C-1 (-2 V) | 3 5 8    | 11 13           |
| 5       | 4226   | 4243       | 4258  | 4274                   | 4289 | 4305                         | 4321 | 4337   | 4352 | 4368       |          | 11 13           |
| 03      | 4384   | 4399       | 4415  | A THE PARTY OF THE RES | 4446 |                              | 4478 |        |      |            |          | 10 13           |
| 27      | 4540   | 4555       | 4571  | 4586                   | 4602 | 4617                         |      |        | 4664 | 4679       |          | 10 13           |
| 8.8     | 4695   | 4710       | 4726  | 4741                   | 4756 | 4772                         |      |        |      |            | 3 5 8    | 10 13           |
| 0       | -348   | 4333       | 4879  | 4894                   | 4909 | 4924                         | 4939 | 4955   | 4970 | 4985       | 3 5 8    | 10 13           |
| 0       | .2000  | 5015       | 5030  | 5045                   | 5060 | 5075                         | 5090 | 5105   | 1000 | 5135       | 50 TO 50 | 10 13           |
| 81      | .\$150 | 5165       | 5180  | 5195                   |      |                              | 5240 |        |      |            |          | 10 12           |
| 88      | .2299  | 5314       | 5329  | 5344                   | 5358 |                              | 5388 | 5402   | 5417 | 5432       | 1        | 10 12           |
| 5       | .5446  | 5461       |       |                        | 5505 | 5519                         | 5534 | 5548   | 5563 | 5577       | 2 5 7    | 10 12           |
| 4       | .5592  | 5606       | 5621  | 5635                   | 5650 | 5664                         | 5678 | 5693   | 5707 | 5721       |          | 10 12           |
| 6       | 57.36  | 5750       | 5764  | 5779                   | 5793 | 5807                         | 5821 | 5835   | 5850 | 5864       | 2 5 7    | 10 12           |
| 88      | .5878  | 5692       | 5906  |                        | 5934 |                              | 5962 | 5976   | 5990 | 6004       | 257      | 9 12            |
| 17      | -601N  | 6032       | 0040  | 00000                  | 6074 |                              | 610. |        |      |            | 2 5 7    | 9 12            |
| 0       | 6157   |            |       |                        |      | 0425                         | 6239 | 6252   |      | 6280       | 2 5 7    | 9 11            |
| 9       |        |            | 6320  | 0334                   | 6347 | 6361                         | 6374 | 6388   |      | 6414       | 1 4 7    | 9 11            |
| 0       | -6428  |            |       | 6468                   | 6481 | 6494                         | 6508 | 6521   | 6534 | 5547       | 2 4 7    | 9 11            |
| 1       | 1950.  | 0174       | 0587  | 66000                  | 6613 | 6626                         | 6639 | 6652   | 6665 | 6678       | 2 4 7    | 9 11            |
| 12      | .0001  | 0.04       | 5717  | 5730                   | 6743 | 6756                         | 6760 | 6782   | 6704 | 6800       | 2 4 6    | 9 111           |
| 88      | 6820   | 0433       | 2545  | 6558                   | 0871 | 6884                         | 6806 | 6000 i | 6021 | 6024       |          | 8 11            |
|         | 0947   | 0659       | 772   | 0984                   | 6937 | 7009                         | 7022 | 7014   | 7046 | 7050       | 2 4 6    | 8 10            |

### NATURAL SINES

| 8       | 0'    | 6'             | 12             | 18'  | 24'     | 30    | 36'                                     | 42    | 48'   | 54'   | Diffe | reno | 2   |
|---------|-------|----------------|----------------|------|---------|-------|-----------------------------------------|-------|-------|-------|-------|------|-----|
| Degroes | 0.0   | 0,·1           | 0°.2           | 0°.3 | 0°.4    | 0°-5  | o°.6                                    | 0°.7  | o°.8  | 0°-9  | 123   | 4    | 5   |
| £5      | .7071 | 7083           | 7096           | 7108 | 7120    | 7133  | 7145                                    | 7157  | 7169  | 7181  | 2 4 6 |      |     |
| 48      | 7193  | 7206           | 7218           | 7230 | 7242    | 7254  | 7266                                    |       | 7290  | 7302  | 2 4 6 |      |     |
| 47      | 7314  | 7325           | 7337           | 7349 |         | 7373  | 7385                                    |       | 7408  |       | 2 4 6 | 8    | 10  |
| 43      |       | 7443           | 7455           | 7466 |         | 7490  | 7501                                    | 7513  | 7524  | 7536  | 2 4 6 |      | 10  |
| 49      | .7547 | 7558           | 7570           | 7581 | 7593    | 7604  | 7615                                    | 7627  | 7638  | 7649  | 2 4 6 | 8    | 1   |
| 50      | .7660 | 7672           | 7683           | 7694 |         | 7716  | 7727                                    | 7738  | 7749  | 7760  | 2 4 6 | 7    |     |
| 61      | .7771 | 7782           | 7793           | 7804 | 7815    | 7826  | 7837                                    | 7848  | 7859  | 7869  | 2 4 5 | 7    | •   |
| 52 .    | 7880  | 7891           | 7902           | 7912 |         | 7934  | 7944                                    | 7955  | 7965  | 7976  | 2 4 5 | 7    |     |
| 53      | .7986 | 7997           | 8007           | 8018 |         | 8039  |                                         | 8059  |       | 8080  | 2 3 5 | 17   | 1   |
| 54      | .8090 | 8100           | 8111           | 8121 | 8131    | 8141  | 8151                                    | 8161  | 8171  | 8181  | 2,35  | 1    |     |
| 85      | -8:92 | 8202           | 8211           | 8221 | 8231    | 8241  | 8251                                    | 8261  | 8271  | 8281  | 2 3 5 | 7    | 3   |
| 58      | 8290  | 8300           | 8310           | 8320 | 8329    | 8339  | 8348                                    | 8358  | 8368  | 8377  | 2 3 5 | 6    |     |
| 57      | -3387 | 8396           | 8406           | 8415 | 8425    | 8434  |                                         | 8453  | 8462  | 8471  | 2 3 5 | 6    | 1   |
| 58      | .8480 |                | 8499           | 8508 | 8517    | 8526  |                                         | 8545  | 8554  | 8563  | 2 3 5 | 6    | 1   |
| 59      | -8572 | 8581           | 8590           | 8599 | 8607    | 8616  | 8625                                    | 8634  | 8643  | 8652  | 1 3 4 | 6    | 1 / |
| 60      | -8660 | University III | 3678           | 8686 | 8695    | 8704  | 8712                                    | 8721  | 8729  | 8738  | 1 3 4 | 6    |     |
| 61      | -8746 |                | 8763           | 8771 | 8780    | 8788  | 8796                                    | 8805  |       | 3821  | 1 3 4 | 6    |     |
| 62      | -8829 |                | 18846          | 8854 | 8562    | 8870  | 8878                                    | 8886  | 8894  | 8902  | 134   | 5    |     |
| 03 !    |       | 8918           |                | 8934 | 8942    | 8949  |                                         | 8965  | 1     | 3980  | 1 3 4 | 5    |     |
| 64      | -8988 | 8996           | 9003           | 9011 | 9018    | 9026  | 9033                                    | 9041  | 9048  | 3050  | 1 3 4 | 5    |     |
| 65      | -9063 |                | 9078           |      | 9092    | 0100  | 9107                                    | 9114  | 9121  | 9128  | 1 2 4 | 5    |     |
| 68      |       | 9143           | 0150           |      |         |       |                                         | 19184 |       | 9198  | 1 2 3 | 15   | (   |
| 67      | .9205 | 9212           | 9219           | 9225 | 9232    | 9239  | 9245                                    | 9252  | 9259  | 9265  | 1 2 3 | 4    | (   |
| 68      | -9272 | 9278           | 9285           | 9291 | 9298    | 9304  | 9311                                    | 9317  | 9323  | 19550 | 1 2 3 | 4    |     |
| 89      | -9336 | 9342           |                | 9354 | 9361    | 9367  | 9373                                    | 9379  | 9385  | 9391  | 1 2 3 | 4    |     |
| 70      | -9397 | 9403           | 20 20 20 20    | 9415 | 1000000 | 9426  | 9432                                    | 9438  | 9144  | 9449  | 1 2 3 | 4    |     |
| 72      | 9455  | 9461           | 9466           | 9:72 | 9478    | 9483  | 9489                                    | 9494  | 9500  | 9505  | 1 2 3 | 4    |     |
| 73      | 9511  | 9516           | 9521           | 9527 | 9532    | 9537  | 9542                                    | 9548  | 9553  | 9558  | 1 2 3 | 3    | 3   |
| 73      | 9563  | 9568           | 0573           | 9578 | 9583    | 9588  | 9593                                    | 9593  | 9003  | 9003  | 1 2 2 | 13   | 4   |
| 74      | -9613 | 9617           | 9622           | 9627 | 9632    | 9636  | 9641                                    | 9046  | 9650  | 9055  | 1 2 2 | 13   |     |
| 75      | -9659 | 0664           | 9668           | 9673 | 9677    | 9681  | 9686                                    | 9690  | 9694  | 9699  | 1 1 2 | 3    |     |
| 78      | 9703  |                | I Committee of | 9715 | 9720    | 9724  | 9728                                    | 9732  | 9736  |       | 1 1 2 | 3    |     |
| 77      | 9744  | 0748           | 0751           | 0755 | 9759    | 9763  | 9767                                    |       | 9774  |       | 1 1 2 | 3    |     |
| 78      | 9781  | 9785           | 9789           | 9792 | 9790    | 9799  | 19803                                   | 9806  | 9810  | 9813  | 1 1 2 | 2    |     |
| 79      | .9816 |                | 19823          | 9826 | 9829    | 9833  | 9530                                    | 9539  | 9042  | 9845  |       | 1    |     |
| 80      | 9848  | 100 000        | 9854           | 0857 | 9860    | 9863  | 9866                                    | 9569  | 9571  | 9874  | 011   | 2    |     |
| 81      | 9577  |                | 9882           |      | 9888    | 9890  | 9893                                    | 9895  | 9393  | 9900  | 0 1 1 | 2    |     |
| 32      | .0003 | 9905           | 9907           |      | 9912    | 0014  | 9917                                    | 9919  | 9021  | 9923  | 0 1 1 | 1    | 1   |
| 83      | 9925  | 9928           | A 150 150 150  |      | 9934    | 9936  | 9938                                    | 9940  | 9942  | 9943  | 0 1 1 | 1    | Ů,  |
| 61      | .9915 | 9947           | 9949           | 9951 | 9952    | 9954  | 9956                                    | 9957  | 9959  | 9900  | 1000  | 1    |     |
| 85      | -9052 | 9963           | 9965           |      | 9968    |       | 100000000000000000000000000000000000000 |       | 9973  |       |       | !    |     |
| 68      | -9976 | 9977           | 9978           |      |         | 9981  | 9982                                    |       |       | 9985  | 001   | :    |     |
| 87      | .9986 |                | 9988           |      |         | 9990  |                                         | 9992  | 9993  |       | 000   | 0    | 0   |
| 83      | 9994  | 9995           | 9995           | 1    | nanh    | 0007  | 0007                                    | 9997  | 9993  | 9998  | 000   | 0    | 0   |
| 89      |       | 9999           |                | 9999 | 9999    | 1.000 | 1.000                                   | 1.070 | 1.000 | 1.000 | 000   | -    | 7   |
| 20      | 1.000 | 1""            |                | 1    |         | ,     |                                         |       |       |       |       | -    |     |

#### NATURAL COSINES

[Numbers in difference columns to be subtracted, not added.]

| 100                        | o                                         | 6"                                    | 1                                     | 18                           | 24'                                   | 30'                                   | 36"                          | 42'                                  | 48'                                  | 54                                   | Me<br>Differ                                       | en<br>reoces | 3                                       |
|----------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|------------------------------|---------------------------------------|---------------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------|--------------|-----------------------------------------|
| Degra                      | 0.0                                       | 00.1                                  | 0 .                                   | 00.3                         | 0°.4                                  | 00,12                                 | 00                           | 0°-7                                 | 08                                   | 00.9                                 | 123                                                | 4            | 5                                       |
| 01004                      | ·9998<br>·9994<br>·9986                   | 1.000<br>9998<br>9993<br>9985<br>9974 | 1.000<br>9998<br>9993<br>9984<br>9973 | 9997<br>9992<br>9983         | 1.000<br>9997<br>9991<br>9982<br>9971 | 1*000<br>9997<br>9990<br>9981<br>9969 | 9990                         | 9979                                 | 9999<br>9995<br>9988<br>9978<br>9965 | 9977                                 | 000                                                | 0 0 1 1 1 1  | 0011                                    |
| 00000                      | ·9962<br>·5945<br>·9925<br>·9903<br>·9877 | 9960<br>9943<br>9923<br>9900<br>9874  | 9959<br>9942<br>9921<br>9898<br>9871  | 9940<br>9919<br>9895         | 9956<br>9938<br>9917<br>9893<br>9866  | 9954<br>9936<br>9914<br>9890<br>9863  | 9952<br>9934<br>9912         | 9951<br>3932<br>9910<br>9885         | 9949<br>9930<br>9907<br>9882<br>9854 | 9947<br>9928<br>9905<br>9880         | 011                                                | 1 2 2 2 2    | ***                                     |
| 10                         | ·9848<br>·9316<br>·9781<br>·9744<br>·9703 | 9845<br>9813<br>9778<br>9740<br>9699  | 9842<br>9810<br>9774<br>9736<br>9694  | 9806<br>9770                 | 9836<br>9803<br>9767<br>9728<br>9686  | 9833<br>9799<br>9763<br>9724<br>9681  |                              | 9826<br>9792<br>9755                 | 9823<br>9789<br>9751<br>9711<br>9668 | 9820<br>9785<br>9748<br>9797<br>9664 | I I 2<br>I I 2<br>I I 2<br>I I 2<br>I I 2<br>I I 2 | 2 3 3 3 3    | A to the taken                          |
| 16<br>17<br>18<br>19       | 9659<br>9613<br>9563<br>9311<br>9455      | 9695<br>9608<br>9558<br>9505<br>9449  | 9650<br>9603<br>9553<br>9500<br>9444  | 9598<br>9548<br>9494         | 9593<br>9542                          | 9636<br>9588<br>9537<br>9483<br>9426  |                              | 9627<br>9578<br>9527<br>9472<br>9415 | 9522<br>9573<br>9521<br>9466<br>9409 | 9516<br>9461                         | 1 2 2<br>1 2 2<br>1 2 3<br>1 2 3<br>1 2 3          | 3 3 4 4      | Total St. P. P.                         |
| 20<br>21<br>22<br>28<br>28 | 19397<br>19336<br>19373<br>19205<br>19135 | 9391<br>9330<br>9265<br>9198<br>9128  | 9385<br>9323<br>9259<br>9191<br>9121  | 9317<br>9252<br>9184         |                                       | 9171                                  | 9293<br>9232<br>9164         | 9354<br>9291<br>9225<br>9157<br>9085 | 9285,<br>9219<br>9150                | 9278<br>9212<br>9143                 | 1 2 3                                              | 5            | 111111111111111111111111111111111111111 |
| 26<br>27<br>27<br>23       | -9063<br>-8988<br>-8910<br>-8829<br>-8746 | 8902<br>8821<br>8738                  | 8729                                  | 8965<br>8886<br>8805<br>8721 | 9033<br>8957<br>8878<br>8796<br>8712  | 8949<br>8870<br>8788                  | 8862<br>8780                 | 9011<br>8934<br>8854<br>8771<br>8686 | 8846                                 | 8996<br>8918<br>8838<br>8755<br>8669 | 1 3 4<br>1 3 4<br>1 3 4                            | 5            | The same of                             |
| 30<br>31<br>83<br>83<br>84 | -8666<br>-8572<br>-8480<br>-8387<br>-8390 | 8563                                  | 8368<br>8271                          | 8545<br>8453<br>8358<br>8261 | 8348<br>8251                          | 8526<br>8434<br>8339<br>8241          | 8425<br>8425<br>8329<br>8231 | 8599<br>8508<br>8415<br>8320<br>8221 | 8499<br>8406<br>8310                 | 8396                                 | 1 3 4<br>2 3 5<br>2 3 5<br>2 3 5<br>2 3 5          | 6            | Sec 50 50 50 50                         |
| 85<br>87<br>89<br>89       | *8191<br>*8090<br>*7986<br>*7880<br>*7771 | 7975<br>7869<br>7760                  | 8070<br>7965<br>7859<br>7749          | 8059<br>7955<br>7848<br>7738 | 7944<br>7837<br>7727                  | 8039<br>7934<br>7826<br>7716          | 8028<br>7923<br>7815<br>7705 | 8121<br>8018<br>7912<br>7804<br>7694 | 8007<br>7902<br>7793<br>7683         | 7997<br>7891<br>7782<br>7672         | 2 3 5<br>2 4 5<br>2 4 5<br>2 4 6                   | 7 7 7        | 8 9 9 9                                 |
| 60<br>62<br>63<br>44       | 7560<br>7547<br>7431<br>7376<br>7193      | 7649<br>7836<br>7420<br>7302<br>7184  | 7 6 3 6 1                             | 76121                        | 70.00                                 | 7 600                                 |                              | 7581<br>7466<br>7349<br>7230         |                                      |                                      | 2 4 6<br>2 4 6<br>2 4 6<br>2 4 6<br>2 4 6          | 0 .          | 0                                       |

|         |          |       | STATE OF THE PARTY |        | 041         | 9N      | 86'                   | 42       | 48'                         | 64'               | AL SU          | Me    |     | 5   |
|---------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|---------|-----------------------|----------|-----------------------------|-------------------|----------------|-------|-----|-----|
| Degrada | 0,0      | 0°·I  | 0,.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0°.3   | 94'<br>0°-4 | 0°.5    | 0°·6                  | 0°.7     | 0°.8                        | 03.9              | 1              | 23    | 4   | 5   |
| 15      | 7071     | 7059  | 7046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7034   | 7022        | 7009    | 6997                  | 6984     |                             | 6959              |                | 46    | 8   | 10  |
| 66      | -6947    | 6934  | 6921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6909   | 6896        | 6884    | 6571                  | 6858     |                             |                   |                | 46    | 9   | 11  |
| 47      | -6820    | 6807  | 6794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |             | 6756    |                       | 6730     | 1 -                         | The second second |                | 4 7   | 9   | 11  |
| 68      | -6691    | 6678  | 6665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6652   | 6639        | 6626    | 1 0 -                 | 6468     |                             | 1.0               |                | 4.7   | 9   | 11  |
| 49      | -6561    | 6547  | 6534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 6508        | 6494    | 1 -                   | 1        | 1 2000                      | 1 -               |                | 4 7   | 9   | 11  |
| 50      | -6428    | 6414  | 6401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6388   | 6374        | 6361    | 6347                  |          |                             | 1 4               |                | 5 7   | 9   |     |
| 61      | -6293    | 6280  | 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6252   |             | 6225    | 6211                  | 2 1 1    |                             | 1 200             |                | 5 7   | 9   |     |
| 53      | -6157    | 6143  | 1 6 - v -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6115   | 6101        |         | 6074                  |          |                             | 1 -5              |                | 5 7   | 9   | 1.  |
| 58      | -6013    |       | 5990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 5962        | 5948    |                       | To be be | - 1 5 O A                   | 1                 | - 1            | 57    | 9   | 1   |
| 54      | -5878    |       | 5850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5835   | 5821        | 1       | 1 - 2 -               | 1        | 3 3 3 3                     | 1.5               | - 10           | 7     | 110 | 1   |
| 138     | .5736    | 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5693   | 5678        | 5664    |                       |          | -                           | 1 -1              | -              | 2 5 7 | 15  |     |
| 50      | -5592    |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 60  | 15534       | 5519    |                       | 549      |                             |                   |                | 2 5 7 | 15  |     |
| 67      | .5446    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5300        |         | The state of the same | 534      |                             | 1 3 3 3           |                | 2 5 7 | 116 | T   |
| 68      | -5299    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5 5240      | 1       | 1 1 1 1 1 1 1 1       |          | -                           | 5 1 mm            |                | 3 5 6 | 11  | ) [ |
| 60      | -5150    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5 5090      | 507     |                       | 1 0      | -                           |                   |                | 2 . 1 | 110 | 2 0 |
| 00      | 11       | 1 .0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 495    | 5 493       |         |                       |          |                             | 2 1 2 2           |                | 1 5   | 1   | / 5 |
| 61      | 11 .4845 | 182   | 1 481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 480  | 2 478       | 477     |                       | 6 474    | to the second second second | 9.1.940           |                | 25    | 1   |     |
| 62      | 1460     | 467   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.0 . 6 -   |         | 7 460                 | 2 45     | 55 457                      | 5 43              | gal            | 15    | 8 1 | 5 T |
| 83      | ·4540    | 452   | 4 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91449  | 3 441       | 124     | 2 414                 | 1        | 31 441                      | 8 42              | 42             | 3 5   | 3 1 | 1 1 |
| 84      | 1 -478   | 4 436 | 8 435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 433  | 7 432       | 1 430   | 1.                    | 3 8 32   |                             | 100               | - 6            | 10    | 8 1 | 1   |
| ř.      | 41       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 9 416       | 3 414   |                       |          | the second second second    | 0.00              | 23             | 200   | SI  | 1   |
| 63      |          |       | 1 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 401  | 9 400       | 3   390 | 7 397                 | 1 39     |                             | -                 | 62             |       | 8 1 | 1   |
| 87      | N.       | 0 0   | 1 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 385  | 9 384       | 3 302   | The second second     | 1 37     | 95   377                    |                   | 00             | 3 3   | 8 1 | 2   |
| 1 68    |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 369  | 7 1 308     | 1 300   | 1 2 1                 | 9 30     |                             |                   | 37             | 3 5   | 8 1 |     |
| 69      |          |       | 7 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 5 351       | 0 350   | 3 100                 | 36 34    |                             | 191100            | 72             | 7 0   | 511 | 1   |
| 6       | . 11     |       | 14 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37 337 | 1 335       | 5 333   |                       | 22 33    | 05 32                       |                   | 07             | 13 3  | 8 1 | 1   |
| 76      | 11 -     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 320 | 6 319       | 0 317   | 3 31                  | 56 31    |                             |                   | 140            |       | 8   | 7   |
| 75      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 30  | 10 305      | 4 300   |                       | 0 - 0    |                             |                   | 73             |       | 813 | 1.1 |
| 17      | 44       |       | - 1 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28     | 4 289       |         |                       | N. B. C. | 39 26                       | 10164             | 105            | 36    | 8   | 11  |
| 17      |          | 2 11  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      | 26 268      |         |                       |          | 3.                          |                   |                | 36    | - 1 | 1.1 |
| 17      |          |       | 11 U.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54 25  | 38 252      | 1 25    | OF THE A              |          |                             |                   | 267            |       | 8   | 11  |
| 17      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85 23  | 68 23       | 1 23    |                       |          |                             | 200               | 096            | 100   | 5)  | 11  |
| 17      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 21  | 98 211      | 21      |                       |          | -d                          |                   |                | 110   | 9   | 1.1 |
| 17      | - 11     |       | 62 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45 20  | 28 20       |         | 1 0                   |          | 111                         | and the second    | 754            | A     | 9   | LI  |
|         | 9 1.19   | 8 18  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 57 18       |         | 1 62                  |          | 100                         | 2010              | 582            |       | 9   | 12  |
| 1       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02 16  | 85 16       | 68 16   | 50 10                 |          |                             | 126 1             | 109            | 13 6  |     | 12  |
|         |          | 64 15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 15  | 13 14       | 95 14   | 76 14                 | 98       | 10.0 M + 2                  | 53 1              | 236            | 136   | 9   | 12  |
|         | 2 1.13   |       | 74 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57 113 | 40 13       | 23 113  | 02 1                  | -        |                             | 80 1              | 003            | 136   | 9   | 12  |
|         | 3 112    |       | 11 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84 11  | 67 111      | 49 11   | 32 111                | 41 0     | - / -                       |                   | and the second |       | 9   | 12  |
|         | - 11     | ASTIC | 28 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111 00 | 93 09       | 70 09   | 2010                  | G 1      |                             | C4 15             | 715            | 136   | 9   | 12  |
| 10      | or 1     | 0     | Real of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37 0   | 319 08      | 02 07   | 85 07                 | 67 0     |                             | 4.0               | 541            | 100   | 9   | 12  |
| 10      | 60. 98   | 72 0  | 680 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 561 0  | 545 06      | 28 0    | 10 01                 | 93 0     | 576 0                       | 184 0             | 266            | 3 6   |     | 1.2 |
| 13      | 37 -09   | 22 0  | 506 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 488 0  | 171 04      | 154 0   | 130 0.                | 11910    | AUT O                       | 209 0             | 192            |       |     | 12  |
|         | 88 0     | 49 0  | 332 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 314 0  | 297 0       | 279 10  | W2 0                  | -4-4     |                             |                   | 017            |       | 9   | 33  |
|         |          | 75 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140 0  | 122 0       | 105 0   | 087 0                 | 070      | 25-                         | 33                |                | 4     |     |     |
|         |          | 000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1           |         | 1                     | 1        |                             |                   |                | 2-    | -   | _   |

### NATURAL TANGENTS

| Degroes | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6'            | 18     | 18           | 24    | 80'   | 88      | 48     | 48   |              |      | lean | DH   |       |      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--------------|-------|-------|---------|--------|------|--------------|------|------|------|-------|------|
| De      | 0°0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1           | 0°.2   | 00.3         | 0°.4  | 0°.5  | 0°-6    | 00.7   | 00.8 | 00.9         | 1    | 2    | 8    | 4     |      |
| 0       | .0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0017          | 0035   | 0052         | 0070  | 0087  | 0105    | 0122   | 0140 | 0157         | 17   | 6    | 9    | 12    | 1    |
| 1       | .0175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0192          | 0209   | 0227         | 0244  |       |         |        |      | 0332         | 13   | 6    |      | 12    | 100  |
| 8       | .0349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0367          | 0384   | 0402         | 0419  | 0437  | 0454    | 0472   | 0489 | 0507         | li   | 6    | - 1  | 12    | LIG. |
| 8       | .0524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0542          | 0559   | 0577         | 0594  |       | 0629    |        |      | 0682         | _    | 6    |      | 12    |      |
| 4       | .0099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0717          | 0734   | 0752         | 0769  | 0787  | 0805    | 0822   | 0840 | 0857         | Ĭš   | 6    |      | 12    |      |
| 5       | -0875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 0910   | 0928         | 0945  | 0963  | 0981    |        |      |              | -    | 6    | - 1  | 12    |      |
| 0       | .:021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 1086   | 1104         | 1122  | 1139  | 1157    | 1175   | 1192 | 1210         | li   | 6    |      | 12    |      |
| 7       | .1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 1263   | 1281         | 1299  | 1317  | 1334    | 1352   | 1370 | 1388         | 13   |      | -    | 12    |      |
| 8       | 1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , ,           | 1441   | 1459         | 1477  | 1495  | 1512    | 1530   | 1548 | 1566         | 13   |      |      | 12    |      |
| 9       | .1534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1002          | 1620   |              | 1655  | 1673  | 1691    | 1709   | 1727 | 1745         | _    |      | - 1  | 12    | 1    |
| 103     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1781          | 1799   | 1817         | 1835  | 1853  | 1871    | 1890   | 1908 | 1926         | 1    | 6    | 0    | 12    | 1    |
| 11      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        | 1998         | 2016  | 2035  | 2053    | 2071   | 2089 |              | _    | -    | - 1  | 12    |      |
| 10      | A STATE OF THE STA | 2144          | 2162   | 2180         | 2199  | 2217  | 2235    | 2254   | 2272 | 2290         | 3    |      | -    | 12    |      |
| 13      | 2309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2327          |        |              |       | 2401  | 2419    |        |      |              | _    |      |      | 2     |      |
|         | .2493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2512          | 2530   | 100          | 2568  | 2586  | 2005    | 2623   | 37.5 | 2661         | -    | 6    | 9 1  | 2     | I    |
| 15      | .2679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 2717   |              |       | 2773  |         | 2811   | 2830 | 2849         | 3    | 6    | 9 1  | 3     | 1    |
| 17      | 2867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 2905   |              | 2943  | 2962  | 2981    | 3000   | 3019 | 3038         | 3    |      | - 1  | -     | I    |
| 13      | 3057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3076          | 3090   | 3115         | 3134  | 3153  | 3172    | 3191   | 3211 | 3230         | 3    | 6 t  | 0 1  | 3     | 1    |
| 10      | 3249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3209          | 3200   | 3307         | 3327  | 3340  | 3365    | 3385   | 3404 | 3424         | 3    | 6 1  | 0 1  | 3     | 1    |
| - 11    | 3443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3403          | 3402   | 3502         | 3522  | 3541  | 3501    | 3581   | 3000 | 3620         | 3    | 7 1  | 0 1  | 3     | 1    |
| 20      | 13640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3059          | 3679   | 3699         | 3719  | 3739  | 3759    | 3779   | 3799 | 3819         | 3    | 7 1  | oli  | 3     | 1    |
| 32      | .3939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3059          | 3079   | 3899         | 3919  | 3939  | 3959    | 3979   | 4000 | 4020         | 2    | 7 10 | 5 1  | 3     | 1    |
| 23      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4061<br>4265  | 4001   | 4.01         | 4166  | 4144  | 4101    | 4101   | 4204 | 422A         | 2    |      | 1 0  |       | 1    |
| 21      | 4452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 C 25 To 1 | 4494   | 4515         | 4576  | 4540  | 4509    | 4390   | 4411 | 4431         | 3    | 7 10 | 2110 |       | 1    |
| 25      | 4653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4684          | 40.00  | Property and |       | 4557  | 1000000 | 4599   |      |              | 0.00 | 7 1  | 1    | 4     | 1    |
| .3      | .4877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |        | 4042         | 4740  | 4770  | 4791    | 4813   | 4834 | 4856         | 4    | 7 1  | 1 1  | 4     | 1    |
| 27      | .5095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5117          | 5130   | 5161         | 5184  | 5206  | 5228    | 5029   | 5051 | 5073<br>5295 | 4    | 7 1  |      | -     | 1    |
| 23      | .5317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5340          | 5362   | 5384         | 5407  | 5430  | 5452    | 5475   | 5272 | 5520         | 4    | 7 1  | 1    | -     | I    |
| 20      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5566          | 5589   | 5612         | 5635  | 5658  | 5681    | 5704   | 5727 | 5750         | 4    | 9    |      | -     | Į    |
| 30      | .5774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5797          | 5820   | 5844         | 5867  | £800  | FOLA    | 1000   | 6.   | 0-           | 200  | 8 1: | -    | 7     | 1    |
| 31      | .60009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6032          | 2001   | WOO I        | 01041 | 01281 | 01521   | 117h   | 6200 | 6444         |      | 8 1: |      | 6 :   |      |
| 1 23    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~/3          | 024/   | 01221        | OTEDI | 0771  | 6305    | 6420   | 6445 | 6460         | 4    | 8 12 |      | 6 :   |      |
| 88      | 7774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.3          | ~344 P | 2200         | 0594  | 0010  | 6644    | 6660   | 6604 | 6720         |      | 8 13 |      | 6 :   |      |
| 34      | .0745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0771          | 6796   | 6822         |       |       | 6899    | 6924   | 6950 | 6976         |      | 13   |      |       | 2 1  |
| 5       | 7002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7028          | 7054   | 7080         | 7107  | 7122  | 7150    | 7196   | **** | 7239         |      | 100  |      |       | 7    |
| 88      | 7265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-7-1         | 13.31  | / 140 [      | /4/41 | 74001 | 74271   | 74541  | ~    | OI           | -    | 113  |      | 8 2   |      |
| 88      | 1230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1303          | 13901  | /OIG         | 7040  | 7073  | 7701    | 7720   | 7757 | 7785         | 5 6  | 14   |      | 8 2   | -    |
| 69      | 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (-4-          | 10091  | 1090         | 7920  | 7954  | 7983    | 8012   | 8040 | 8069         | 5 6  | 14   |      |       | ì    |
| 10      | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 8156   |              | 0214  | 8243  | 8273    | 8302   | 8332 | 8361         | 5 10 | 15   | 120  | 1.100 | 5    |
| 11      | 8391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8421          | 8451   | 8481         | 8511  | 8541  | 8571    | 8601   | 8622 | 966-         |      | ωī   | 13   |       |      |
| 12      | T 445 Aur. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8724          | -/ 24  | ~,~,         | 0010  | 004/1 | 00781   | AOIO I | XALL | 20           |      | -1   | 1    | 5/4/5 | 6    |
|         | 9125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9036          | 0201   | 9099         | 9131  | 9163  | 9:25    | 9228   | 9260 | 9293         | 5 11 | 16   | 21   | ,     | 7    |
| 94      | ·9325<br>·9657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000          | 9726   | 0750         | 9457  | 9490  | 95 13   | 9556   | 9590 | 9623         | 611  | 17   | 22   | 2     | 8    |
| -1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7.          | 11-2   | 7/24         | 9/93  | 9027  | 9861    | 9896   | 9930 | 2000         | 611  | 17   | 129  |       | _    |

### NATURAL TANGENTS

| -        |            |                   |                |                   | 04/         | 00                           | 90'      | 42'     | 48'       | 54'       | 1              | dean    | Differ  | caces  |       |
|----------|------------|-------------------|----------------|-------------------|-------------|------------------------------|----------|---------|-----------|-----------|----------------|---------|---------|--------|-------|
| Degrees  | 000        | 0°·1              | 12'<br>0°-2    | 0°·3              | 24'<br>0°·4 | 0°·5                         | 0°-6     | 0°.7    | o°-8      | 00.9      | 1              | 2       | 3       | 4      | 5     |
| -        |            | 1000              |                | 2105              | 0141        | 0176                         | 0212     | 0247    | 0283      | 0319      | 6              | 12      | 18      | 24     | 30    |
| 5        | 1.0000     | 0035              | .007,0         | 0105              |             | 0538                         | 0575     | 0612    | 0049      | 0686      | 6              | 13      | 19      | 25     | 32    |
| 8        | 1.0355     | 0392              |                | 0837              | 0875        | 0913                         | 0951     | 0990    | 1028      | 1067      | 7              | 13      | 20      | 27     | 33    |
| 17       | 1-0734     | The second second | 6              | The second second | 1263        | 1303                         | 1343     | 1383    | 1423      | 1875      | 1 7            | 14      | 21      | 28     | 31    |
| 48<br>49 | 1-1504     |                   | 0-             |                   | 1667        | 1708                         | 1750     | 1792    | 1833      | 1000      | ١,             | 14      | 22      | 29     | 36    |
| 60       | III        |                   | 1.2            |                   | 2088        | 2131                         | 2174     | 2218    | 2201      | 2305      | 8              | 15      | 23      | 30     | 38    |
| 50<br>61 | 1-1918     |                   |                | 0 -               | 2527        | 2572                         | 2617     | 2662    | 3175      | 3222      |                | 16      |         | 31     | 39    |
| 52       | 11         | -0.4              | 2892           | 2938              |             |                              | 3079     | 3127    | 1000      | _         | 8              | 16      | 25      | 33     | 41    |
| 53       |            |                   | 3367           |                   |             |                              |          | 4124    |           |           | 9              | 17      | 20      | 34     | 43    |
| 54       |            |                   | 3869           |                   |             |                              | 1        | 1.      | 1500      |           | 9              | 18      | 27      | 36     | 45    |
| 60       | 11         |                   | 438            | 4442              | 4496        |                              |          |         | 0.        |           |                | 19      |         | 38     | 48    |
| 56       |            | 488               | 493            | 499               |             |                              |          | 5818    |           | 5941      | 10             |         |         | 40     | 1 - 4 |
| 67       |            | 545               | 8 5517         | 7   5577          |             | 1 /                          | 1 . 0 .  |         | 6512      |           |                |         |         | 43     | - 6   |
| 58       |            | 3 606             | 6 012          | 1 / 0             |             | /                            |          |         | 7182      |           |                | 23      | 4       | 1      |       |
| 5        | 1.664      | 3 670             |                | 1 225             | 1           | 1-1-                         | 0.00     | -0-4    | 7893      | 7966      | 12             | - 1     | 36      | 48     |       |
| 6        | 0 1 1.732  |                   | 10             | 10/               |             | 0                            |          | 0       | 8650      |           |                |         | A       |        | 4.4   |
| 6        |            | 0.00              | - 10-6         | -                 | - 012       | 8 0010                       | 929      | 937     | 945       | 954       |                |         | 200     |        | 100   |
| 6        | 2 1.830    |                   | and the second | - 1 -00           | - 000       | 2:00                         | 7 2.01   | 5 2.02  | 33 2.03   | 3 2 041   | 3 1            |         |         | 1 / .  |       |
| 6        | 3 1.90     | 6 97              | 4 068          | 6 077             | 8 087       | 2 096                        | 5 106    |         |           | 1 134     | and the second |         |         | 10     | 2     |
|          | 2.050      | 3 03              | 16             | 12/               | 2 184       | 2 194                        | 3 204    | 5 214   |           |           | 2 1:           | 7 3 8 3 |         | 1 -    | 3     |
|          | B 2-1.     | 15 15             | 6 26           | 2 278             | 1 288       | 9 299                        | 8 310    |         |           | 1         |                | 0 4     | 6 .     |        |       |
|          | 20.25      | 59 30             | 72   270       | 39 39             | 6 40        | 3 414                        | 2 420    |         |           |           | 6 2            |         | 3 6     |        | 7 10  |
|          | PO 11 0.45 | ri Lix            | 70   50        | 06 1 34           | .7 1 3      | 11 22                        |          |         |           |           |                |         | 7 7     | 1 9    | 5 11  |
|          | 89. 1 2.00 | \$1 101           | 87 193         | 25 04             | 4           | 3                            | 1        |         |           | 00        | _              | 6 5     | 2 7     | 10     | 4 13  |
|          | h          | 70 76             | 25 77          | 76 79             | 29   80     | 03 023                       | 9 839    | 7 855   | 37 3.04   |           |                |         | 8 8     | 7 11   | 0 14  |
|          | 71 2.90    | 1 2 1 0 2         | CASTINA        | 13193             | 44 17/      |                              |          | 0 210   | 06 230    |           |                |         | 4 9     |        | 9 10  |
| 1        | A          | 77 00             | 41 I I ON      | 40 11             | 341.7       | - A 1 - V                    | 300 1000 |         |           | 20 40.    | 5              | 36      | 2 10    |        | 3 20  |
| ١        | MO 1 2.25  | 20                | 111 31         | 22   33           | 32   33     | 44   3/:                     |          | 5 65    |           | 06 700    | )2             |         | 31 12   | 10     | 0.00  |
| 1        | 74 1 3'4   | 74 5              | 105   53       | 139 33            | 10 20       |                              |          | 100     |           | 20 98     | 12             | 46      | 93 13   | /      | 6 2   |
| 1        | 75 1 2.7   | 201 17            | 82 78          | 48 31             | 18 03       | 91 00                        |          | 76 23   | 03 26     | 35 29     | 72             | 53 10   | 07 16   | 0 2    | 3 -   |
| ١        | MG 1 4.0   | 102 10            | 103 10         | 713110            | 144         | 33                           | 2 1 50   | 82 58   | 01 62     | 52 60     |                | Mea     | n diffe | rence  | cea   |
| 1        | 77 4.3     | 315 3             | 602 4          | 267 8             | 88 8        |                              | 00       | D4 5.0  | 045 5.0   | 501 5.00  | 9/0            | 1       | o be    | \$ dim | cent  |
| ١        | 78 4.7     | 046 7             | 453 7          | 122 2             | 24 3        | 20 20                        | CC I AA  | 80 1 50 | 20   33   | 10        |                |         | ccura   | LO.    |       |
| ١        | 79 5.1     | 446 1             | 929            |                   |             |                              | -9 6.0   | 405 6.1 | 066 6-1   | 7426.2    | 434            |         |         |        |       |
| - 1      | 80 5.6     | 713 7             | 297 7          | 594 0             | 150 6       |                              |          | 20 1 2  | 40 1 9    | - 11      |                |         |         |        |       |
|          | 61 6-3     | 133               | 0006 2         | 002 3             | 962 4       |                              | -0 16.   | AL M    | X12   U1  | 10 0 -    | 1              |         |         |        |       |
|          | 88 7       | 31                | 616            | 863 5             | 126 6       |                              | A CA     | 62 10.0 | 1 1 4 1 4 | ~ ) ~ 7 3 |                |         |         |        |       |
|          | 84 9       | 5144              | 077            | 845               | 0.02        | 0 20 10                      | .39 110  | 20 10   | 10        | 62 12     | 20.            |         |         |        |       |
|          | 132 8      |                   | 11.66          | 1-911             | 2-16 1      | 2-43 12                      | 71 1     | .00     | 30 13     | 80 18     | 46             |         |         |        |       |
|          |            | -20               | 11-67          | 1 5.00 1          | 2.401       | 2.00                         | 22       | 04 1    | 00 26     | 103 127   | .27            |         |         |        |       |
|          |            | 20.03             | 19.74          | 20 45 2           | 1.20        | 2.02 2                       | 8.10     | 0.02    | 107 A     | 74 5      | 5.08           |         |         |        |       |
|          |            | 3-64              | 36-14          | 31.823            | 3.09        | 5.00 3                       | 14.611   | 13.2 10 | 010 2     | 50.5 57   | 13.0           |         |         |        |       |
| 1        |            | 7-29              | 63.66          | 71-02             | 1.02        | 2.02 23<br>5.80 3<br>95.49 1 | 7        |         |           |           |                |         |         |        | _     |
| 1        | 80         | ∞                 |                |                   |             |                              |          | ·       |           |           |                |         |         |        |       |

### LOGARITHMS OF SINES

| Dagrees                    | 0'                                             | 8                                    | 12                                     | 18'                                            | 24                                   | 30                                   | 36                                   | 42                                   | 48'                                    | 84"                                  |                                                        | EDOS)                        |
|----------------------------|------------------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------------------------|------------------------------|
| Dag                        | 0,0                                            | 0.1                                  | 00.2                                   | 00.3                                           | 9.4                                  | 0°.5                                 | 0°·6                                 | 00.7                                 | 00.8                                   | 00.9                                 | 1 2 3                                                  | 4                            |
| 0 1 2 8 9                  | 2.2419<br>2.5428<br>2.7188<br>2.8435           | 2832<br>5640<br>7330                 | 3.5429<br>3210<br>5842<br>7468<br>8647 |                                                | 3880<br>6220<br>7731                 | 9408<br>4179<br>6397<br>7857<br>8946 | 4459<br>6567<br>7979                 |                                      | 2·1450<br>4971<br>6889<br>5213<br>9226 | 7041<br>8326                         | 16 32 48                                               | 648                          |
| 5<br>7<br>8<br>9           | 2·9403<br>1·0192<br>1·0859<br>1·1436<br>1·1943 | 9489<br>0264<br>0920<br>1489<br>1991 | 9573<br>0334<br>0981<br>1542<br>2038   | 9655<br>0403<br>1040<br>1594<br>2085           | 0472<br>1099<br>1646                 | 9816<br>0539<br>1157<br>1697<br>2176 | 9894<br>0605<br>1214<br>1747<br>2221 | 9970<br>0670<br>1271<br>1797<br>2266 | 1.0046<br>0734<br>1326<br>1847<br>2310 | 0797                                 | 13 26 39<br>11 22 33<br>10 19 29<br>8 17 25<br>8 15 23 | 52 6<br>44 5<br>38 4<br>34 4 |
| 10<br>11<br>12<br>13<br>14 | 1·2397<br>1·2806<br>1·3179<br>1·3521<br>1·3837 | 2439<br>2845<br>3214<br>3554<br>3867 | 2482<br>2883<br>3250<br>3586<br>3897   | 2524<br>2921<br>3284<br>3618<br>3927           | 2959                                 | 2606<br>2997<br>3353<br>3682<br>3986 | 2647<br>3034<br>3387<br>3713<br>4015 | 2687<br>3070<br>3421<br>3745<br>4044 | 2727<br>3107<br>3455<br>3775<br>4073   | 2767<br>3143<br>3488<br>3806<br>4102 | 7 14 20<br>6 12 19<br>6 11 17<br>5 11 16<br>5 10 15    | 27 3<br>25 3<br>23 2<br>21 2 |
| 16<br>17<br>18<br>19       | 1.4130<br>1.4403<br>1.4659<br>1.4900<br>1.5126 | 4158<br>4430<br>4684<br>4923<br>5148 | 4186<br>4456<br>4709<br>4946<br>5170   | 4214<br>4482<br>4733<br>4969<br>5192           | 4242<br>4508<br>4757<br>4992<br>5213 | 4269<br>4533<br>4781<br>5015<br>5235 | 4296<br>4559<br>4805<br>5037<br>5256 | 4323<br>4584<br>4829<br>5060<br>5278 | 4350<br>4609<br>4853<br>5082<br>5299   | 4377<br>4634<br>4876<br>5104<br>5320 | 5 9 14<br>4 9 13<br>4 8 12                             | 18 2<br>17 2<br>16 20        |
| 20<br>21<br>22<br>23<br>24 | T-5341<br>T-5543<br>T-5736<br>T-5919<br>T-6093 | 5361<br>5563<br>5754<br>5937<br>6110 | 5382<br>5583<br>5773<br>5954<br>6127   | 5792<br>5972                                   | 5621<br>5810<br>5990                 | 5443<br>5641<br>5828<br>6007<br>6177 | 5463<br>5660<br>5847<br>6024<br>6194 | 5484<br>5679<br>5865<br>6042<br>6210 | 5504<br>5698<br>5883<br>6059<br>6227   | 5523<br>5717<br>5901<br>6076<br>6243 | 3 7 10<br>3 6 10<br>3 6 0<br>3 6 0<br>3 6 8            | 141                          |
| 25<br>26<br>27<br>28<br>29 | T-6259<br>T-6418<br>T-6570<br>T-6716<br>T-6856 | 6276<br>6434<br>6585<br>6730<br>6869 | 6449<br>6600<br>6744                   | 6308<br>6465<br>6615<br>6759<br>6896           | 6480<br>6629<br>6773                 | 6495<br>6644<br>6787                 | 6801                                 | 6371<br>6526<br>6673<br>6814         | 6387<br>6541<br>6687<br>6828<br>6963   | 6403<br>6556<br>6702<br>6842<br>6977 | 3 5 8 3 5 7 2 5 7 2 4 7                                | 11 13 10 13 10 13 9 12 9 11  |
| 31<br>32<br>33<br>34       | 1-6990<br>1-7118<br>1-7242<br>1-7361<br>1-7476 | 7373<br>7487                         | 7144<br>7266<br>7384<br>7498           | 7500 7                                         | 7168<br>7190<br>7407<br>7520         | 7181                                 | 7068<br>7193<br>7314<br>7430         | 7080<br>7205<br>7326<br>7442         | 7093<br>7218<br>7338<br>7453<br>7564   | 7106<br>7230<br>7349<br>7464<br>7575 | 2 4 6<br>2 4 6<br>2 4 6<br>2 4 6<br>2 4 6              | 8 10<br>8 10<br>8 10         |
| 15<br>16<br>17<br>18<br>19 | 1.7893<br>1.7989                               | 7703<br>7805<br>7903<br>7998         | 7713<br>7815<br>7913<br>8007           | 7618 7<br>7723 7<br>7825 7<br>7922 7<br>8017 8 | 734 7<br>835 7<br>932 7              | 744<br>844<br>941<br>935             | 7754<br>7854<br>7951<br>Boss         | 7764<br>7864<br>7960                 | 7874                                   | 7682<br>7785<br>7884<br>7979<br>8072 | 2 4 5 2 3 5 2 3 5 2 3 5                                | 7 7 7 6 6 8                  |
| 11 12 13                   | 1.8169<br>1.8255<br>1.8138                     | 8178<br>8264<br>8346                 | 8187 8                                 | 3108 8<br>3105 8<br>3282 3<br>3362 8           | 204 8<br>289 8                       | 213 8<br>297 8                       | 305                                  | 8143 8<br>8230 8<br>8313 8           | 3238<br>322                            | 8161<br>8247<br>8330                 | 3 4                                                    | 677677                       |

| 200                         | 0                                              | 6'                                   | 12                                   | 18                                   | 24'                                  | 30,                                  | 88                                   | 42                                   | AS'                                   | 54                                   |      | D!            | dur         | ine.                                     | -         |
|-----------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|------|---------------|-------------|------------------------------------------|-----------|
| Degree                      | 0,0                                            | 0.1                                  | 0°.2                                 | 0.3                                  | 0°.4                                 | o°.5                                 | 0°.6                                 | 0°.7                                 | 0°.8                                  | 0.0                                  | 1    | 2             | 3           | 4                                        | 5         |
| 46<br>47<br>48<br>49        | 1.8569<br>1.8641                               | 8502<br>8577<br>8648<br>8718<br>8784 | 8584<br>8655<br>8724                 |                                      | 8738                                 | 8606;                                | 8613<br>8683                         | 8620<br>8690<br>8758                 | 8627<br>8637                          | 3562<br>2534<br>8704<br>8771<br>8836 | 1    | 2 2 2 2       | 4 4 3 3 3 3 | 5 5 5 4 4                                | 66665     |
| 50<br>51<br>52<br>53<br>54  | 1.8843<br>1.8905<br>1.8965<br>1.9023<br>1.9080 | 9029                                 | 8917<br>8977<br>9035                 | 8862<br>8923<br>8983<br>9041<br>9096 | 1000                                 | 8874<br>8935<br>8995<br>9052<br>9107 | 9000<br>9057                         | 8887<br>8947<br>9006<br>9063<br>9118 | \$893<br>8953<br>9012<br>9069<br>9123 | 8899<br>8959<br>9018<br>9018<br>9138 | 1 1  | 2             | 33333       | 4 4 4 4 4                                | 55555     |
| 55<br>63<br>67<br>68<br>59  | 1.9284                                         | 9191                                 | 9144<br>9196<br>9246<br>9294<br>9340 | 9149<br>9201<br>9251<br>9298<br>9344 | 9255                                 | 9160<br>9211<br>9260<br>9308<br>9353 | 9215                                 | 9270                                 | 9175<br>9235<br>9275<br>9322<br>9367  | 9181<br>9231<br>9279<br>9315<br>9371 | 1    | 2 2           | 333333      | 33333                                    | 20000     |
| 60<br>61<br>63<br>63<br>64  | 1.9418<br>1.9459<br>1.9499                     | 9422                                 | 9384<br>9427<br>9467<br>9506<br>9544 | 9388<br>9431<br>9471<br>9510<br>9548 | 9393<br>9435<br>9475<br>9514<br>9551 | 9397<br>9439<br>9479<br>9518<br>9555 | 940:<br>9443<br>9483<br>9522<br>9558 | 9406<br>9447<br>9487<br>9525<br>9502 | 9470<br>9451<br>9493<br>9529<br>9566  | 9414<br>9455<br>9495<br>9533<br>9569 |      | M 12 14 15 15 | 20000       | 2000                                     | *******   |
| 66<br>67<br>68<br>69        | 1.9573<br>1.9607<br>1.9640<br>1.9672<br>1.9702 | 9611                                 | 9580<br>9614<br>9647<br>9678<br>9797 | 9517                                 | 9587<br>9621<br>9653<br>9684<br>9713 | 9590<br>9624<br>9656<br>9687<br>9716 | 9617<br>9639<br>9590                 | 9597<br>9531<br>9631<br>9693<br>9722 | 9634<br>9634<br>9666<br>9495<br>9724  | 9504<br>9537<br>9659<br>9699<br>9727 |      | 1 1 2         | 2322        | e u m u m                                | mmma a    |
| 70<br>71<br>72<br>78<br>-74 | 1.9730<br>1.9757<br>1.9782<br>1.9806<br>1.9828 | 9733<br>9759<br>9785<br>9808<br>9831 | 9735<br>9752<br>9787<br>9811<br>9833 | 9813                                 | 9741<br>9767<br>9792<br>9815<br>9837 | 9743<br>9770<br>9794<br>9817<br>9839 | 9772<br>9797<br>9820                 | 9749<br>9775<br>9759<br>9843<br>9843 | 9751<br>9777<br>9361<br>9824<br>9845  | 9754<br>9750<br>9804<br>9815<br>9517 | 000  | B 40 00 00 00 | 31.51       | 3 3 3 3 3                                | REMER     |
| 76<br>76<br>77<br>78<br>79  | 1.9849<br>1.9869<br>1.9887<br>1.9904<br>1.9919 | 174 11 11 11 11 11                   | 9353<br>9873<br>9891<br>9997<br>9922 | 9875<br>9892<br>9909                 | 9857<br>9876<br>9894<br>9910<br>9925 | 9896                                 | 9880<br>9897<br>9913                 | 9863<br>9882<br>9899<br>9915<br>9929 | 9865<br>9284<br>9901<br>9916<br>9731  | 9867<br>9865<br>9961<br>9918<br>9931 | 000  | 0             | - 1         | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |           |
| 80<br>81<br>82<br>88<br>84  |                                                | 9947                                 | 9936<br>9949<br>9960<br>9969<br>9978 | 9950<br>9961<br>9970                 | 9939<br>9951<br>9962<br>9971<br>9979 | 9940<br>9953<br>9963<br>9972<br>9980 | 9953<br>9964<br>9973                 | 9981                                 | 9958<br>9975<br>9932                  | 9057<br>9975<br>9983                 | 0000 | 000           | 1 0 0       | 2 4 2 5                                  | 1 1 1 1 1 |
| 86<br>87<br>88<br>89        | Ī-9989<br>Ī-9994                               | 9990<br>9994<br>9998                 | 9985<br>9995<br>9995                 | 9991<br>9995<br>9998                 | 9986<br>9991<br>9596<br>9998<br>0000 | 9996<br>9990                         | 9992<br>9990<br>9990                 | 9993<br>9999<br>9999                 | 9993<br>9997<br>9999                  |                                      | 000  | 0000          | 000         | 0000                                     | 0000      |

### LOGARITHMS OF COSINES

[Numbers in difference columns to be subtracted, not added.]

| 100    | 0                     | 6            | 12           | 18'   | 24"                                     | 30    | 86"               | 42           | 48"                      | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DI    | Mea |     |
|--------|-----------------------|--------------|--------------|-------|-----------------------------------------|-------|-------------------|--------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|
| Degroe | 000                   | 0.1          | 00.3         | 0,.3  | 0°.4                                    | 0°.5  | 0°6               | 00.7         | 00.8                     | 00.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12    | 8   | 4   |
| 0      | 0.0000                | 0000         | 0000         | 0000  | 0000                                    | 0000  | 0000              | 0000         | 0000                     | Ī-9999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00    | 0   | 0   |
| ĭ      | 1.9999                |              | 9999         |       |                                         | 9999  | 9998              | 9998         | 9998                     | 9998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00    | 0   | 0   |
| 2      | 1.9997                |              |              |       |                                         |       | 9996              |              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00    | 0   | 0   |
| 8      | 1.9994                |              |              | 9993  | 9992                                    |       |                   | 9991         |                          | 9990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00    | 0 0 | 0   |
| 4      | 1.9989                | 10000        | 1            |       |                                         | 2.2   | The second second | 9985         | 9985                     | 9984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00    | 0   |     |
| 8      | T-9983                |              | 100000       | 9981  | 9981                                    | 9980  | 9979              | 9978         | 9978                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.   | 0 0 | ,   |
| 8      | 1.9976                |              | 9975         | 9974  | 9973                                    | 9972  |                   | 9970         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000   | 1   |     |
| 8      | I-9968                | 9967         | 9966         | 9965  |                                         |       |                   |              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 001   |     |     |
| 9      | I-9958<br>T-9946      | 9956         | 9955         | 9954  |                                         |       |                   | 9950         | 100.00                   | No. of the last of | 001   |     | . 1 |
| 0      | Ī-9934                |              | 9944         | 9943  | 17.50                                   | 9940  | 0.070             |              | 65.79                    | 9935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 001   | 1   |     |
| ĭ      | 1.9919                | 9932         | 9931         | 9929  |                                         | 9927  | 9925              |              | 1                        | 9921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 001   | 1   | 1   |
| 2      | 1.9904                |              | 9901         | 9899  | 9913                                    | 9896  |                   | 9909         | 1 - 5 .                  | 9906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011   | 1   | 16  |
| 3      | 1.9887                | 9885         | 9884         | 9882  |                                         | 9878  |                   | 9892<br>9875 |                          | 9889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011   | 13  |     |
| 4      | 1.9869                | 9867         | 9865         | 9863  |                                         |       | 9857              | 9855         | 9873<br>9853             | 9871<br>9851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OII   | 13  |     |
| 5      | T-9849                | 9847         | 9845         | 9843  | 115000000000000000000000000000000000000 | 9839  |                   | The second   |                          | 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 1.  |     |
| 0      | 1-9828                | 9826         | 9824         | 9822  | 9820                                    | 9817  | 9837              |              | 9833                     | 9831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011   | 1   | 2   |
| 7      | 1.9806                | 9804         | 9801         | 9799  |                                         | 9794  | 9792              |              | 9811                     | 9808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OII   | 1:  | 3   |
| 8      | 1.9782                | 9780         | 9777         | 9775  | 9772                                    | 9770  | 9767              | 0764         | 0762                     | 9785<br>9759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 011   | 13  | 3   |
| 9      | 1.9757                | 9754         | 9751         | 9749  | 9746                                    | 9743  | 9741              | 9738         | 9735                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1:  | -   |
| 0      | 1.9730                | 9727         | 9724         | 9722  | 9719                                    | 9716  | 0712              | 0710         | 100000                   | 9733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4     |     | •   |
| 1      | I-9702                | 9699         | 9696         | 9693  | 9690                                    | 9687  | 9684              | 0681         | 9707                     | 9704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011   | 13  | .3  |
| 3      | 1.9072                | 9009         | 9666         | 9662  | 9659                                    | 9656  | 9653              | 9650         | 0647                     | 9675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 011   | 1 3 | .2  |
| 3      | 1.9640                | 9037         | 9034         | 9631  | 9627                                    | 9624  | 9621              | 9617         | 9614                     | 9611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112   | 13  | -3  |
| 1      | 1-9607                | 9604         | 9601         | 9597  | 9594                                    | 9590  | 9587              | 9583         | 9580                     | 9576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 2   | 3   |
| 6      | 1.9573                |              |              | 9562  |                                         | 200   | 9551              | 0            | 100                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | •   | 3   |
| 6      | I-9537                | 9533         | 9529         | 9525  | 9522                                    | 18120 | 9514              |              | 9544                     | 9540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1 2 | 2   | 3   |
| 7      | 19499                 | 9495         | 9491         | 9487  | 9483                                    | 9479  | 9475              |              |                          | 9503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112   | 3   | 3   |
| 3      | 1.9459                | 9455         | 9451.        | 9447  | 9443                                    |       | 9435              |              | 9427                     | 9422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112   | 3   | 3   |
| 9      | 2000                  | 2 0 11 2 1   | 9410         | 9406  | 9401                                    |       | 9393              |              | 9384                     | 9380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112   | 3   | 3   |
| 0      | 1.9375                | 9371         | 9367         | 9362  | 9358                                    |       | 9349              |              | 9340                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 833   | ,   | 7   |
| 1      | 1.9331                | 9326         | 9322         | 9317  | 2112                                    | 308   | 0202              | 3208         | 9294                     | 9335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1 2 | 3   | 4   |
| 3      | 1-9284                | 9279         | 9275         | 9270  | 9205                                    | 9260  | 9255              |              |                          | 9241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 2   | 3   | 1   |
| 4      | 1.9236<br>1.9186      | 4-21         | 9220         | 9221  | 9215                                    | 9211  | 9206              |              |                          | 9191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 3   | 3   | :   |
|        | S 200 MAR             | 2000         | 9175         |       |                                         | 9160  | 9155 9            |              |                          | 9139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 3   | 3   | 2   |
| 5      | 1.9134                | 9128         | 9123         | 9118  |                                         | 107   | 9101              | 2006         | 1000                     | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23    |     |     |
| 7      | 1.9080<br>1.9023      | 9074         | 9009         | 9003  | 2057                                    | 052   | 2046 9            | 1041         | the second second second | 9029 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -     | :   | 5   |
| 8      |                       | _            |              | 9006  | 1000                                    | 995   | 8 6865            | 1082         | _                        | 8971 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 3   | 7   | 5   |
| 9      |                       |              | 8953<br>8893 | 8882  |                                         | 935 1 | 920 8             | 923          | 8917                     | 8911 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23    | -   | 5   |
| 0      | And the second second |              |              |       | and the                                 | 074   | 868 8             | 862 1        | 8855                     | 8849 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 3   | 4   | š   |
|        | T-8778                | 8771         | 8830         | 0023  | 817                                     | 810   | 804 8             |              | 2 2000                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23    |     | 80  |
| 2      | 1.8711                | 8704         | 8607         | 3600  | 23. 6                                   | 143 6 | 738 8             | 731          | 724                      | 8718 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 3   | -   | ş   |
| 8      | T-8641                | 8704<br>8634 | 8627         | 3620  | 612                                     | 070   | 8 699             | 662 8        | 3655                     | 8648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 3   | Š   | ĕ   |
| 1      | T-8641<br>F-8569      | 8562         | 8555         | 547 8 | 540                                     | 520 6 | 598 8             | 591 8        | 584                      | 577 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24    | 5   | 6   |
| -      | ) on                  |              | -4-          | 311   | 340 0                                   | 334 6 | 325 8             | 517          | 510                      | 5502 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34    | 5   | 6   |

LOGARITHMS OF COSINES
[warrders in difference columns to be subtracted, not added.]

| 120.1                      | -6                                             | 6.                                   | 12                                   | 13'                                  | 21                                   | 83                                    | 38'                                  | €2"                                  | 48'                                  | 54'                                  | Mesn<br>Differences                       |                      |  |
|----------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|----------------------|--|
| Degram                     | 0,0                                            | 0.1                                  | 0°.2                                 | 00.3                                 | 0°.4                                 | 0°.5                                  | 0°6                                  | 0°-7                                 | 0.8                                  | 0°.9                                 | 1 2 8                                     | 4 5                  |  |
| 65                         | T-8418<br>T-6338<br>T-8235<br>T-8235           | 8,37<br>8,10<br>8330<br>8247<br>8161 | 8238<br>8238                         | 8472<br>8394<br>8313<br>8250<br>8143 | 8464<br>8386<br>8305<br>8221<br>8134 | 8457<br>8378<br>8297<br>8213<br>8125  | 8449<br>8370<br>5:39<br>8204<br>8117 | 8441<br>8362<br>8280<br>8195<br>8108 | 8433<br>8354<br>8272<br>8187<br>8099 | 8426<br>8346<br>8264<br>8178<br>8090 | I 3 4 I 3 4 I 3 4 I 3 4                   | 5 6 6                |  |
| 50<br>51<br>09<br>53<br>53 | T-8081<br>T-7989<br>T-7893<br>T-7795<br>T-7692 | 7979<br>7884<br>7785                 | 3663<br>7970<br>7874<br>7774<br>7671 | 8053<br>7950<br>7864<br>7764<br>7661 | 8044<br>7951<br>7854<br>7754<br>7650 | 8035<br>7941<br>7844<br>7744<br>7640  | 8026<br>7932<br>7635<br>7734<br>7629 | 8017<br>7922<br>7825<br>7723<br>7618 | 8007<br>7913<br>7815<br>7713<br>7607 | 7998<br>7903<br>7805<br>7703<br>7597 | 2 3 5<br>2 3 5<br>2 3 5<br>2 3 5<br>2 4 5 | 6 7 7 7              |  |
| 55<br>68<br>67<br>68<br>69 | 1.7361                                         | 75/5<br>7464<br>7349<br>7230<br>7106 | 7453<br>7338<br>7218                 | 7553<br>7442<br>7326<br>7205<br>7680 | 7542<br>7430<br>7314<br>7193<br>7658 | 7531<br>7419<br>7302<br>7181<br>7055  | 7520<br>7407<br>7290<br>7168<br>7042 | 7509<br>7396<br>7278<br>7156<br>7029 | 7498<br>7384<br>7266<br>7144<br>7016 | 7487<br>7373<br>7254<br>7131<br>7003 | 2 4 6 2 4 6 2 4 6 2 4 6                   | 818                  |  |
| 61<br>62<br>63<br>64       | T-6990<br>T-6856<br>T-6716<br>T-6570<br>T-6418 | 6977<br>6842<br>6702<br>6556         | 6963<br>6525<br>6687<br>6541         | 6514<br>6673<br>6526                 | 6937<br>6301<br>6659<br>6510<br>6356 | 6923<br>6787<br>6644<br>6495<br>6340  | 6910<br>6773<br>6629<br>6480<br>6324 | 6896<br>6759<br>6615<br>6465<br>6308 | 6883<br>6744<br>6600<br>6449<br>6292 | 6869<br>6730<br>6585<br>6434<br>6276 | 2 4 7<br>2 5 7<br>2 5 7<br>3 5 8<br>3 5 8 | 101                  |  |
| 65<br>66<br>67<br>68<br>69 | T·6259<br>T·6093<br>T·5919<br>T·5736<br>T·5543 | 6243<br>6076<br>5901<br>5717         | 6227<br>6059<br>5883                 | 6210                                 | 6194<br>6024<br>5847                 | 6177<br>6007<br>5828<br>5641<br>5443  | 6161<br>5990<br>5810<br>5621<br>5423 | 6144<br>5972<br>5792<br>5602<br>5402 | 5954<br>5773<br>5583<br>5382         | 5937<br>5754<br>5563<br>5361         | 3 6 9<br>3 6 9<br>3 6 10                  | and the second of    |  |
| 70<br>71<br>78<br>73<br>74 | Ī·5341<br>Ī·5126<br>Ī·4900<br>Ī·4659<br>Ī·4403 | 5320<br>5104<br>4876<br>4634         | 5299<br>5082<br>4853<br>4609         | 5278<br>5060<br>4829                 | 5256<br>5037<br>4805<br>4559<br>4296 | 5235<br>5015<br>4781<br>4533<br>4210  | 5213<br>4992<br>4757<br>4508<br>4242 | 5192<br>4969<br>4733<br>4482<br>4 14 | 5170<br>4946<br>4709<br>4456<br>4186 | 5148<br>4923<br>4684<br>4430<br>4158 | 4 8 12                                    | 15 1                 |  |
| 76<br>76<br>77<br>78<br>79 | 1:4130                                         | 4102<br>3806<br>3488<br>3143         | 4073                                 | 4044<br>3745<br>3421<br>3070<br>2687 | 4015<br>3713<br>3387<br>3034<br>2647 | 3986<br>3682<br>3353,<br>2997<br>2656 |                                      | 3927<br>3618<br>3284<br>2921<br>2524 | 3897<br>3586<br>3250<br>2883<br>2482 | 3867<br>3554<br>3214<br>2845<br>2439 |                                           | 21 2<br>23 2<br>25 3 |  |
| 81<br>82<br>83<br>84       | Ī·2397<br>Ī·1943<br>Ī·1436<br>Ī·6859<br>Ī·0192 | 2353<br>1895<br>1381<br>0797         | 2310<br>1847<br>1326<br>0734         | 2266<br>1797<br>1271<br>0670         | 2221<br>1747<br>1214<br>0605         | 2175<br>1697<br>1157<br>C519          | 2131<br>1646<br>1099<br>0472         | 1594<br>1040<br>0493                 | 2038<br>1542<br>0981<br>0334         | 1931<br>1489<br>0920<br>0264         | 8 15 25<br>8 17 25<br>10 19 25            | 30 C<br>34 4<br>38 4 |  |
| 38<br>87<br>88<br>88       | 2.9403<br>2.8436<br>2.7188<br>2.5428<br>2.2410 | 9315<br>8326<br>7041<br>5206         | 9226<br>8213<br>6889<br>4971         | 9135<br>8098<br>6731<br>4723         | 9042<br>7979<br>6567<br>4459         | 8946<br>7857<br>6397<br>4179          | 8849<br>7731<br>6220<br>3880         | 8749<br>7002<br>6035<br>3558         | 8647<br>7468<br>5842<br>3210         | 8543<br>7330<br>5640<br>2832         | 16 32 4                                   | 0.00                 |  |

### LOGARITHMS OF TANGENTS

| 8                                                 | 0,0                                            | 0°.1                                 | 12'                                    | 18'<br>0°-3                            | 24'<br>0°.4                            | 30'<br>0°.5                            | 36°                                          | 0°-7                                   | 48'<br>o°-8                            | 54'<br>0°-9                            | I                    | Mea       |                              |
|---------------------------------------------------|------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------|-----------|------------------------------|
| Degrees                                           |                                                |                                      |                                        |                                        |                                        |                                        |                                              |                                        |                                        |                                        | 1 2                  | 3         | 4                            |
| S-SS                                              | - 00<br>2·2419<br>2·5431<br>2·7194<br>2·8446   |                                      | 3·5429<br>3211<br>5845<br>7475<br>8659 | 3.7190<br>3559<br>6038<br>7609<br>8762 | 3·8439<br>3881<br>6223<br>7739<br>8862 | 3-9409<br>4181<br>6401<br>7865<br>8960 | 2.0200<br>4461<br>6571<br>7988<br>9056       | 2·0870<br>4725<br>6736<br>8107<br>9150 | 2·1450<br>4973<br>6894<br>8223<br>9241 | 5208<br>7046<br>8336                   |                      | 2 48      | 648                          |
| 56755                                             | 2-9420<br>1-0216<br>1-0891<br>1-1478<br>1-1997 | 9506<br>0289<br>0954<br>1533<br>2046 | 9591<br>0360<br>1015<br>1587<br>2094   | 9674<br>0430<br>1076<br>1640<br>2142   | 9756<br>0499<br>1135<br>1693<br>2189   | 9836<br>0557<br>1194<br>1745<br>2236   | 9915<br>0633<br>1252<br>1797<br>2282         | 9992<br>0699<br>1310<br>1848<br>2328   | 1.0068<br>0764<br>1367<br>1898<br>2374 | E-0143<br>0828<br>1423<br>1948<br>2419 | 112                  | 2 34      | 45 5<br>39 4<br>35 4         |
| 10                                                | T·2463<br>T·2887<br>T·3275<br>T·3634<br>T·3968 | 2507<br>2927<br>3312<br>3668<br>4000 | 2551<br>2967<br>3349<br>3702<br>4032   | 2594<br>3005<br>3385<br>3736<br>4064   | 2637<br>3046<br>3422<br>3770<br>4095   | 2680<br>3085<br>3458<br>3804<br>4127   | 2722<br>3123<br>3493<br>3837<br>4158         | 2764<br>3162<br>3529<br>3870<br>4189   | 2805<br>3200<br>3564<br>3903<br>4220   | 2846<br>3237<br>3599<br>3935<br>4250   | 71<br>61<br>61<br>61 | 421       | 28 3<br>26 3<br>24 3<br>22 2 |
| 15                                                | 1.4281<br>1.4575<br>1.4853<br>1.5118<br>1.5370 | 4311<br>4603<br>4880<br>5143<br>5394 | 4341<br>4632<br>4907<br>5169<br>5419   | 4371<br>4660<br>4934<br>5195<br>5443   | 4400<br>4688<br>4961<br>5220<br>5467   | 4430<br>4716<br>4987<br>5245<br>5491   | 4459<br>4744<br>5014<br>5270<br>5516         |                                        | 4517<br>4799<br>5066<br>5320<br>5563   | 4546<br>4826<br>5092<br>5345<br>5587   | 544                  |           | I Dusc                       |
| 10                                                | 7-5611<br>7-5842<br>7-6064<br>7-6279<br>7-6486 | 5634<br>5864<br>6086<br>6300<br>6506 | 5658<br>5887<br>6168<br>6321<br>6527   | 5681<br>5909<br>6129<br>6341<br>6547   | 5704<br>5932<br>6151<br>6362<br>6567   | 5727<br>5954<br>6172<br>6383<br>6587   | 5750<br>5976<br>6194<br>6404<br>6607         | 5773<br>5998<br>6215<br>6424<br>6627   | 5796<br>6020<br>6236<br>6445<br>6647   | 5819<br>6042<br>6257<br>6465<br>6667   | 4 4 3                | 7 11 7 10 | 15 1<br>15 1<br>14 1<br>14 1 |
| 5 06 07 05 09 09 09 09 09 09 09 09 09 09 09 09 09 | 1.6687<br>1.6882<br>1.7072<br>1.7237<br>1.7438 | 6706<br>6901<br>7090<br>7275<br>7455 | 6726<br>6920<br>7109<br>7293<br>7473   | 6746<br>6939<br>7128<br>7311<br>7491   | 6765<br>6958<br>7146<br>7330<br>7509   | 6785<br>6977<br>7165<br>7348<br>7526   | 6804<br>6996<br>7183<br>7366<br>7544         | 6824<br>7015<br>7202<br>7384<br>7562   | 6843<br>7034<br>7220<br>-7402<br>7579  | 6863<br>7053<br>7238<br>7420<br>7597   | 3                    | 7 10      | 13 1<br>12 1<br>12 1<br>12 1 |
| 10 18 13 14                                       | T-7614<br>T-7788<br>T-7958<br>T-8125<br>T-8290 | 7632<br>7805<br>7975<br>8142<br>8306 | 7649<br>7822<br>7992<br>8158<br>8323   | 7667<br>7839<br>8008<br>8175<br>8339   | 7684<br>7856<br>8025<br>8191<br>8355   | 7701<br>7873<br>8042<br>8208<br>8371   | 7719<br>7890<br>8059<br>82 <b>24</b><br>8388 | 7736                                   | 7753<br>7924<br>8092<br>8357<br>8420   | 77,1-<br>7941<br>8109<br>8274<br>8436  | mr/mm                | 998888    | 12 :<br>11 :<br>11 :<br>11 : |
| 15<br>38<br>37<br>39                              | 1.8452<br>1.8613<br>1.8771<br>1.8928<br>1.9084 | 8468<br>8629<br>8787<br>8944<br>9099 | 8484<br>8644<br>8803<br>8959<br>9115   | 8501<br>8660<br>8818<br>8975<br>9130   | 8517<br>8676<br>8834<br>8990<br>9146   | 8533<br>8692<br>8850<br>9006<br>9161   | 8549<br>8703<br>8865<br>9022<br>9176         | 8565<br>8724<br>8881<br>9037<br>9192   | 8581<br>8740<br>8897<br>9053<br>9207   | 8597<br>8755<br>8912<br>9068<br>9223   | 3 3 3 3              | 588888    | 11 10 10 10                  |
| 10<br>11<br>13<br>15<br>14                        | 1.9238<br>1.9392<br>1.9544<br>1.9597<br>1.9848 | 9254<br>9407<br>9560<br>9712<br>9864 | 9269<br>9422<br>9575<br>9727<br>9879   | 9284<br>9438<br>9590<br>9742<br>9894   | 9300<br>9453<br>9605<br>9757<br>9909   | 9315<br>9468<br>9621<br>9772<br>9924   | 9330<br>9483<br>9536<br>9788<br>9939         | 9346<br>9499<br>9651<br>9803<br>9955   | 9361<br>9514<br>9666<br>9818           | 9376<br>9529<br>9681<br>9833<br>9985   | 3333                 | 5 8 8 8 8 | 10                           |