Assignment 4 and 5

Problem Set 4 & 5: Neural Networks

In this overloaded problem set, we will study neural network training from the perspective of maximum likelihood and maximum a posteriori parameter learning, and Bayesian parameter learning (optional). We will also study various neural network architectures such as neural network with L2 regularization, autoencoder, generative adversarial network, recurrent neural network. We will use MNIST data set (our old friend) and Tensorflow, but the skills learned from this problem set will be easily transferable to other images, non-images, and neural network packages.

1. (5 points) We will train a neural network to identify the digit on a image in the MNIST data set from a

trainin	g data set. Th	nis neural network has 10 softmax o	output nodes generating	where m=0,1,,9.
Let	be the	images arranged into a vector,	be the label of the imag	ge , be the
	-	the neural network, and be to all network to maximize the log likeli	the index of a pattern in the the thood of observing the training	•
		es and minimizes the criterion function of al network to maximize the a posterior lik		
2 (a). (5 1000 tra example criterion	points) Build a ining images (1 s at a time, a lea function on tes	is one that minimizes the criterion neural network with 1 hidden layer of 30 00 images per digit). Train the network for arning rate η =0.1. Plot the training error, the ting data set of a separate 1000 testing implies absolute changes of weights divided by	sigmoid nodes, and an output layer or 30 complete epochs, using mini- testing error, criterion function on tages (100 images per digit), and th	batches of 10 training training data set,
2 (b). (5	points) Repeat	2 (a) with 2 hidden layers of 30 sigmoid r	nodes each, 3 hidden layers of 30 si	igmoid nodes each, and with
		zation and . (You will repeat nes each for 1, 2, 3 hidden layers with reg		er network; 1 for 3 hidden
		ct and train convolutional neural network		

3. (Optional) Train GAN to generate the images for the 10 digits from random noise. Train autoencoder network with linear and sigmoid activation functions for principle component analysis. Train recurrent neural network to accept the 28 rows and output the digit of the image.

them for 1-3 degrees clockwise and counter clockwise, and shifting them for 3 pixels in 8 different directions. You can find

many tutorials on those techniques, and our emphasize is that we understand those techniques.

4. (Optional) Train Bayesian neural network with variational and sampling based method using <u>Edward</u> and Tensorflow. We will cover Bayesian neural network in the lecture.