Aula 25 – Funções Integráveis à Riemann

Metas da aula: Provar o Critério de Cauchy para Integrabilidade e dar algumas de suas aplicações na determinação da integrabilidade de funções. Demonstrar a integrabilidade do resultado de certas operações não-lineares com funções integráveis. Demonstrar a propriedade da aditividade da integral de uma função em relação à união de intervalos concatenados.

Objetivos: Ao final desta aula, você deverá ser capaz de:

- Saber o significado do Critério de Cauchy para Integrabilidade e como aplicá-lo na investigação sobre a integrabilidade de funções e na demonstração de certas propriedades das funções integráveis;
- Saber a propriedade da aditividade da integral de uma função em relação à união de intervalos concatenados e seu uso no cálculo de integrais.

Introdução

Nesta aula vamos apresentar o Critério de Cauchy para Integrabilidade que será utilizado na determinação da integrabilidade de certas funções e na demonstração de diversas propriedades. A primeira aplicação do Critério de Cauchy que daremos será a demonstração do fato de que toda função contínua é integrável à Riemann.

Entre outras aplicações veremos o Teorema do Sanduíche para Integrais e a integrabilidade do resultado de certas operações não-lineares com funções integráveis como produto, quociente, valor absoluto e composição com funções Lipschitz.

Também vamos estabelecer a propriedade da aditividade da integral em relação à união de intervalos concatenados, isto é, dois intervalos cuja interseção se reduz a um ponto, o qual é um extremo de ambos.

Critério de Cauchy para Integrabilidade

Se $\mathcal{P} = (x_0, x_1, \dots, x_{n-1}, x_n)$ é uma partição de [a, b], denotemos por $\{\mathcal{P}\}$ o conjunto $\{x_0, x_1, \dots, x_{n-1}, x_n\}$.

Dadas duas partições \mathcal{P}_1 e \mathcal{P}_2 de [a,b], dizemos que \mathcal{P}_2 refina ou é

um refinamento para \mathcal{P}_1 e denotamos $\mathcal{P}_2 \prec \mathcal{P}_1$ se $\{\mathcal{P}_2\} \subset \{\mathcal{P}_1\}$. Também usaremos a notação alternativa $\mathcal{P}_1 \succ \mathcal{P}_2$ como tendo o mesmo significado que $\mathcal{P}_2 \prec \mathcal{P}_1$

Um fato imediato a partir das definições que acabamos de dar é que dadas duas partições quaisquer de [a, b], \mathcal{P}_1 e \mathcal{P}_2 , a partição \mathcal{P} tal que $\{\mathcal{P}\}$ $\{\mathcal{P}_1\} \cup \{\mathcal{P}_2\}$ satisfaz $\mathcal{P} \prec \mathcal{P}_1$ e $\mathcal{P} \prec \mathcal{P}_2$. Denotaremos a partição \mathcal{P} assim definida a partir das partições \mathcal{P}_1 e \mathcal{P}_2 por $\mathcal{P}_1 \cup \mathcal{P}_2$.

Lema 25.1

Seja $f:[a,b]\to\mathbb{R}$ e sejam $\mathcal{P}_1,\mathcal{P}_2$ partições de [a,b] com $\mathcal{P}_2\prec\mathcal{P}_1$. Então $S_*(f; \mathcal{P}_1) \le S_*(f; \mathcal{P}_2) \le S^*(f; \mathcal{P}_2) \le S^*(f; \mathcal{P}_1).$

Prova: Seja $\mathcal{P}_1 := \{I_i\}_{i=1}^{n_1} \in \mathcal{P}_2 := \{J_k\}_{k=1}^{n_2}$. Sejam

$$m_{i,1} := \inf\{f(x) : x \in I_i\}, \quad m_{k,2} := \inf\{f(x) : x \in J_k\}$$

e definamos $M_{i,1}$ e $M_{k,2}$ de modo semelhante apenas trocando inf por sup, respectivamente.

Como $\mathcal{P}_2 \prec \mathcal{P}_1$, então dado qualquer intervalo J_k em \mathcal{P}_2 , existe I_i em \mathcal{P}_1 tal que $J_k \subset I_i$. Por outro lado, se $J_k \subset I_i$, então $m_{i,1} \leq m_{k,2}$ e $M_{k,2} \leq M_{i,1}$ (por quê?). Além disso, se $\mathcal{P}_2 \prec \mathcal{P}_1$ então, pela definição da relação \prec , cada intervalo I_i de \mathcal{P}_1 satisfaz $I_i = J_{k_i} \cup J_{k_i+1} \cdots \cup J_{k_i+\nu_i}$ com $J_{k_i+l} \in \mathcal{P}_2$, $l = 0, 1, ..., \nu_i$. Logo,

$$S_*(f; \mathcal{P}_1) = \sum_{i=1}^{n_1} m_{i,1}(x_i - x_{i-1}) = \sum_{i=1}^{n_1} \sum_{l=1}^{\nu_i} m_{i,1}(x_{k_i+l} - x_{k_i+l-1})$$

$$\leq \sum_{i=1}^{n} \sum_{l=1}^{\nu_i} m_{k_i+l,2}(x_{k_i+l} - x_{k_i+l-1}) \quad \text{(por quê?)}$$

$$= \sum_{k=1}^{n_2} m_{k,2}(x_k - x_{k-1}) = S_*(f; \mathcal{P}_2).$$

Analogamente provamos que $S^*(f; \mathcal{P}_2) \leq S^*(f; \mathcal{P}_1)$, o qual deixamos para você como exercício.

Concluímos a prova do lema usando a desigualdade trivial $S_*(f; \mathcal{P}_2) <$ $S^*(f; \mathcal{P}_2).$

Os dois próximos resultados constituem duas versões para o que chamaremos de Critério de Cauchy para Integrabilidade. A primeira versão que damos a seguir se baseia em somas superiores e inferiores.

Teorema 25.1 (Critério de Cauchy para Integrabilidade I)

As duas afirmações seguintes são equivalentes:

- (i) $f \in \mathcal{R}[a,b]$;
- (ii) Qualquer que seja $\varepsilon > 0$, existe $\delta = \delta(\varepsilon) > 0$ tal que se \mathcal{P} é uma partição qualquer de [a, b] com $\|\mathcal{P}\| < \delta$, então

$$S^*(f; \mathcal{P}) - S_*(f; \mathcal{P}) < \varepsilon. \tag{25.1}$$

Prova: ((i) \Rightarrow (ii)) Suponhamos $f \in \mathcal{R}[a,b]$. Então, pelo Teorema 24.4, dado $\varepsilon > 0$, podemos obter $\delta' = \delta'(\varepsilon/2)$ tal que se \mathcal{P} é uma partição com $\|\mathcal{P}\| < \delta'$, então $|S^*(f;\mathcal{P}) - L| < \varepsilon/2$ e $|S_*(f;\mathcal{P}) - L| < \varepsilon/2$. Assim, tomando $\delta = \delta(\varepsilon) := \delta'(\varepsilon/2)$, se $\|\mathcal{P}\| < \delta$, então, pela desigualdade triangular,

$$S^*(f; \mathcal{P}) - S_*(f; \mathcal{P}) \le |S^*(f; \mathcal{P}) - L| + |S_*(f; \mathcal{P}) - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

o que demonstra a implicação.

 $((ii)\Rightarrow(i))$ Suponhamos que dado $\varepsilon > 0$ podemos obter $\delta = \delta(\varepsilon) > 0$ tal que para toda partição \mathcal{P} de [a,b] com $\|\mathcal{P}\| < \delta$, temos (25.2). Para $\varepsilon = 1/k$, seja $\delta_k = \delta(1/k)$, $k \in \mathbb{N}$. Podemos supor que $\delta_1 \geq \delta_2 \geq \delta_3 \geq \cdots$, pois se isso não valer podemos trocar por $\delta'_k := \min\{\delta_1, \ldots, \delta_i\}$. Agora, tomamos partições \mathcal{P}_k com $\|\mathcal{P}_k\| < \delta_k$ tais que $\mathcal{P}_1 \succ \mathcal{P}_2 \succ \mathcal{P}_3 \succ \cdots$. Para tanto, primeiro tomamos uma partição \mathcal{P}_1 qualquer com $\|\mathcal{P}_1\| < \delta_1$, dividimos cada subintervalo de \mathcal{P}_1 em subintervalos de comprimento menor do que δ_2 para obter $\mathcal{P}_2 \prec \mathcal{P}_1$; em seguida dividimos cada subintervalo de \mathcal{P}_2 em subintervalos de comprimento menor do que δ_3 para definir \mathcal{P}_3 , e assim por diante.

Temos, $S_*(f; \mathcal{P}_1) \leq S_*(f; \mathcal{P}_2) \leq S_*(f; \mathcal{P}_3) \leq \cdots \leq M(b-a)$, onde $M:=\sup\{f(x): x \in [a,b]\}$ (por quê?). Assim, $(S_*(f; \mathcal{P}_k))$ é uma sequência não-decrescente e limitada superiormente. Logo, existe $L_* := \lim_{k \to \infty} S_*(f; \mathcal{P}_k)$ (por quê?). Analogamente, temos $S^*(f; \mathcal{P}_1) \geq S^*(f; \mathcal{P}_2) \geq S^*(f; \mathcal{P}_3) \geq \cdots \geq m(b-a)$, onde $m:=\inf\{f(x): x \in [a,b]\}$ e, portanto, $(S^*(f; \mathcal{P}_k))$ é uma seqüência não-crescente e limitada inferiormente. Segue que existe $L^* := \lim_{k \to \infty} S^*(f; \mathcal{P}_k)$. Por hipótese temos, $0 \leq S^*(f; \mathcal{P}_k) - S_*(f; \mathcal{P}_k) < 1/k$. Passando ao limite quando $k \to \infty$, obtemos $L^* = L_*$. Ponhamos, $L := L^* = L_*$.

Seja $\varepsilon > 0$ e $\delta := \delta(\varepsilon/3)$ tal que (25.2) vale com $\varepsilon/3$ em lugar de ε , se $\|\mathcal{P}\| < \delta$. Seja $k \in \mathbb{N}$ tal que $|S_*(f; \mathcal{P}_k) - L| < \varepsilon/3$, $|S^*(f; \mathcal{P}_k) - L| < \varepsilon/3$ e

 $S^*(f; \mathcal{P}_k) - S_*(f; \mathcal{P}_k) < \varepsilon/3$. Dada uma partição \mathcal{P} de [a, b] com $\|\mathcal{P}\| < \delta$, definamos $Q_k := P \cup P_k$. Temos

$$S_*(f; \mathcal{P}) \le S_*(f; \mathcal{Q}_k) \le S^*(f; \mathcal{Q}_k) \le S^*(f; \mathcal{P})$$

e

$$S_*(f; \mathcal{P}_k) \le S_*(f; \mathcal{Q}_k) \le S^*(f; \mathcal{Q}_k) \le S^*(f; \mathcal{P}_k).$$

Segue daí e da desigualdade triangular que

$$|S_*(f;\mathcal{P}) - L| \leq |S_*(f;\mathcal{P}) - S_*(f;\mathcal{Q}_k)| + |S_*(f;\mathcal{Q}_k) - L|$$

$$\leq |S_*(f;\mathcal{P}) - S_*(f;\mathcal{Q}_k)| + |S_*(f;\mathcal{Q}_k) - S_*(f;\mathcal{P}_k)| + |S(f;\mathcal{P}_k) - L|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Analogamente, obtemos $|S^*(f;\mathcal{P}) - L| < \varepsilon$. Então, pelo Teorema 24.4, concluímos que $f \in \mathcal{R}[a,b]$.

O critério que acabamos de estabelecer admite a formulação alternativa seguinte, aparentemente distinta porém equivalente.

Teorema 25.2 (Critério de Cauchy para Integrabilidade I')

As duas afirmações seguintes são equivalentes:

- (i) $f \in \mathcal{R}[a,b]$;
- (ii') Qualquer que seja $\varepsilon > 0$, existe $\delta = \delta(\varepsilon) > 0$ tal que se \mathcal{P} e \mathcal{Q} são partições quaisquer de [a, b] com $\|\mathcal{P}\| < \delta \|\mathcal{Q}\| < \delta$, então

$$S^*(f; \mathcal{P}) - S_*(f; \mathcal{Q}) < \varepsilon. \tag{25.2}$$

Prova: ((i)⇒(ii')) Inteiramente semelhante à prova da implicação correspondente no Teorema 25.1. Deixamos os detalhes para você como exercício.

((ii') ←(i)) A condição (ii') claramente implica a condição (ii) do Teorema 25.1, que por sua vez implica a condição (i), pelo mesmo Teorema 25.1.

Como anunciado, daremos a seguir a segunda versão Critério de Cauchy para Integrabilidade, a qual é baseada em somas de Riemann.

Teorema 25.3 (Critério de Cauchy para Integrabilidade II)

Seja $f:[a,b]\to\mathbb{R}$. Então as seguintes afirmações são equivalentes:

- (i) $f \in \mathcal{R}[a,b]$;
- (ii) Dado qualquer $\varepsilon > 0$ existe $\delta = \delta(\varepsilon) > 0$ tal que dada qualquer partição $\mathcal{P} := \{[x_{i-1}, x_i]\}_{i=1}^n$ de [a, b] com $\|\mathcal{P}\| < \delta$ e dois conjuntos quaisquer de aferições $t_i, s_i \in [x_{i-1}, x_i]$ para \mathcal{P} definindo partições aferidas $\dot{\mathcal{P}} := \{([x_{i-1}, x_i], t_i)\}_{i=1}^n$ e $\ddot{\mathcal{P}} := \{([x_{i-1}, x_i], s_i)\}_{i=1}^n$, temos

$$|S(f; \dot{\mathcal{P}}) - S(f; \ddot{\mathcal{P}})| < \varepsilon. \tag{25.3}$$

Prova: ((i) \Rightarrow (ii)) Suponhamos que $f \in \mathcal{R}[a,b]$. Pelo Teorema 25.1, existe $\delta > 0$ tal que se \mathcal{P} é uma partição de [a,b] com $\|\mathcal{P}\| < \delta$, então $0 \leq S^*(f;\mathcal{P}) - S_*(f;\mathcal{P}) < \varepsilon$. Agora, dadas duas partições aferidas $\dot{\mathcal{P}}$ e $\ddot{\mathcal{P}}$ com base em \mathcal{P} como na afirmação (ii), temos

 $S_*(f; \mathcal{P}) \leq S(f; \dot{\mathcal{P}}) \leq S^*(f; \mathcal{P})$ e $S_*(f; \mathcal{P}) \leq S(f; \dot{\mathcal{P}}) \leq S^*(f; \mathcal{P})$ (por quê?) e, portanto,

$$|S(f; \dot{\mathcal{P}}) - S(f; \ddot{\mathcal{P}})| \le S^*(f; \mathcal{P}) - S_*(f; \mathcal{P}) < \varepsilon$$
 (por quê?).

 $((ii)\Rightarrow(i))$ Suponhamos que valha (ii). Seja $\varepsilon > 0$ e $\delta = \delta(\varepsilon/2) > 0$ como em (ii) com $\varepsilon/2$ em lugar de ε . Seja $\mathcal{P} := \{[x_{i-1},x_i]\}_{i=1}^n$ uma partição de [a,b] com $\|\mathcal{P}\| < \delta$. Como anteriormente, denotemos $m_i := \inf\{f(x) : x \in [x_{i-1},x_i]\}$ e $M_i := \sup\{f(x) : x \in [x_{i-1},x_i]\}$. Tomemos aferições $t_i, s_i \in [x_{i-1},x_i]$ tais que

$$|f(t_i) - m_i| < \frac{\varepsilon}{2(b-a)}$$
 e $|f(s_i) - M_i| < \frac{\varepsilon}{2(b-a)}$,

o que é sempre possível pelas propriedades do supremo e do ínfimo (por quê?). Façamos, $\dot{\mathcal{P}} := \{([x_{i-1}, x_i], t_i)\}_{i=1}^n$ e $\ddot{\mathcal{P}} := \{([x_{i-1}, x_i], s_i)\}_{i=1}^n$.

Assim, temos

$$0 \leq S^*(f; \mathcal{P}) - S_*(f; \mathcal{P}) \leq |S(f; \dot{\mathcal{P}}) - S(f; \dot{\mathcal{P}})|$$

$$+ \sum_{i=1}^{n} (|M_i - f(s_i)| + |m_i - f(t_i)|)(x_i - x_{i-1})$$

$$< \frac{\varepsilon}{2} + 2\frac{\varepsilon}{2(b-a)}(b-a) = \varepsilon \qquad \text{(por quê?)}.$$

Logo, pelo Teorema 25.1, concluímos que $f \in \mathcal{R}[a, b]$ como desejado.

Como no caso do Teorema 25.1, o Teorema 25.3 também admite uma formulação alternativa aparentemente distinta porém equivalente.

Teorema 25.4 (Critério de Cauchy para Integrabilidade II')

Seja $f:[a,b]\to\mathbb{R}$. Então as seguintes afirmações são equivalentes:

- (i) $f \in \mathcal{R}[a,b]$;
- (ii') Dado qualquer $\varepsilon > 0$ existe $\delta = \delta(\varepsilon) > 0$ tal que dadas quaisquer partições partições aferidas $\dot{\mathcal{P}} := \{(I_i, t_i)\}_{i=1}^n \text{ e } \dot{\mathcal{Q}} := \{(J_l, s_l)\}_{l=1}^m \text{ com}$ $\|\dot{\mathcal{P}}\| < \delta \in \|\dot{\mathcal{Q}}\| < \delta$, então

$$|S(f; \dot{\mathcal{P}}) - S(f; \dot{\mathcal{Q}})| < \varepsilon. \tag{25.4}$$

Prova: ((i)⇒(ii')) Totalmente semelhante à prova da implicação correspondente no Teorema 25.3. Deixamos os detalhes para você como exercício.

((ii')⇒(i)) A condição (ii') claramente implica a condição (ii) do Teorema 25.3, que por sua vez implica a condição (i), pelo próprio Teorema 25.3.

Como primeiro exemplo de aplicação do Critério de Cauchy vamos provar a seguir a integrabilidade à Riemann das funções contínuas num intervalo fechado [a, b].

Teorema 25.5 (Integrabilidade das Funções Contínuas)

Se $f:[a,b]\to\mathbb{R}$ é contínua em [a,b], então $f\in\mathcal{R}[a,b]$.

Prova: Segue do Teorema 17.2 que f é uniformemente contínua em [a, b]. Portanto, dado $\varepsilon > 0$ existe $\delta = \delta(\varepsilon) > 0$ tal que se $t, s \in [a, b]$ e $|t - s| < \delta$, então $|f(t) - f(s)| < \varepsilon/(b-a)$.

Seja $\mathcal{P} = \{I_i\}_{i=1}^n$ uma partição de [a,b] com $\|\mathcal{P}\| < \delta$. Sejam $\dot{\mathcal{P}} :=$ $\{(I_i,t_i)\}_{i=1}^n$ e $\ddot{\mathcal{P}}:=\{(I_i,s_i)\}_{i=1}^n$ duas partições aferidas com os mesmos subintervalos de \mathcal{P} . Temos

$$|S(f; \dot{\mathcal{P}}) - S(f; \ddot{\mathcal{P}})| \le \sum_{i=1}^{n} |f(t_i) - f(s_i)|(x_i - x_{i-1}) \le \frac{\varepsilon}{(b-a)}(b-a) = \varepsilon. \quad \text{(por quê?)}$$

Como $\varepsilon > 0$ é arbitrário, pelo Teorema 25.3 concluímos que $f \in \mathcal{R}[a, b]$.

Em seguida utilizamos o Critério de Cauchy para estabelecer um resultado frequentemente útil na verificação da integrabilidade à Riemann de funções num intervalo [a, b].

Teorema 25.6 (Teorema do Sanduíche para Integrais)

Seja $f \in \mathcal{R}[a, b]$. Então $f \in \mathcal{R}[a, b]$ se, e somente se, para todo $\varepsilon > 0$ existem funções α_{ε} e ω_{ε} em $\mathcal{R}[a, b]$ com

$$\alpha_{\varepsilon}(x) \le f(x) \le \omega_{\varepsilon}(x)$$
 para todo $x \in [a, b],$ (25.5)

e tais que

$$\int_{a}^{b} (\omega_{\varepsilon} - \alpha_{\varepsilon}) < \varepsilon. \tag{25.6}$$

Prova: (\Rightarrow) Esta implicação é trivial pois basta tomar $\alpha_{\varepsilon} = \omega_{\varepsilon} = f$ para todo $\varepsilon > 0$.

 (\Leftarrow) Seja $\varepsilon > 0$. Sejam α_{ε} e ω_{ε} funções em $\mathcal{R}[a,b]$ satisfazendo (25.5) e (25.6) com $\varepsilon/3$ em lugar de ε . Como α_{ε} e ω_{ε} pertencem a $\mathcal{R}[a,b]$, existe $\delta = \delta(\varepsilon) > 0$ tal que se $\dot{\mathcal{P}}$ é uma partição aferida qualquer de [a,b] com $\|\dot{\mathcal{P}}\| < \delta$, então

$$\left| S(\alpha_{\varepsilon}; \dot{\mathcal{P}}) - \int_{a}^{b} \alpha_{\varepsilon} \right| < \frac{\varepsilon}{3} \quad e \quad \left| S(\omega_{\varepsilon}; \dot{\mathcal{P}}) - \int_{a}^{b} \omega_{\varepsilon} \right| < \frac{\varepsilon}{3}. \tag{25.7}$$

Seja \mathcal{P} uma partição qualquer de [a,b] com $\|\mathcal{P}\| < \delta$ e $\dot{\mathcal{P}}, \ddot{\mathcal{P}}$ duas partições aferidas com os mesmos subintervalos de \mathcal{P} . Segue das desigualdades em (25.7) que

$$-\frac{\varepsilon}{3} + \int_a^b \alpha_{\varepsilon} < S(\alpha_{\varepsilon}; \dot{\mathcal{P}}) \quad e \quad S(\omega_{\varepsilon}; \dot{\mathcal{P}}) < \frac{\varepsilon}{3} + \int_a^b \omega_{\varepsilon},$$

o mesmo também valendo em para $S(\alpha_{\varepsilon}; \ddot{\mathcal{P}})$ e $S(\omega_{\varepsilon}; \ddot{\mathcal{P}})$.

Devido a (25.5), temos $S(\alpha_{\varepsilon}; \dot{\mathcal{P}}) \leq S(f; \dot{\mathcal{P}}) \leq S(\omega_{\varepsilon}; \dot{\mathcal{P}})$, bem como $S(\alpha_{\varepsilon}; \ddot{\mathcal{P}}) \leq S(f; \ddot{\mathcal{P}}) \leq S(\omega_{\varepsilon}; \ddot{\mathcal{P}})$. Assim, vale que

$$S(f; \dot{\mathcal{P}}), S(f; \ddot{\mathcal{P}}) \in \left(-\frac{\varepsilon}{3} + \int_{a}^{b} \alpha_{\varepsilon}, \frac{\varepsilon}{3} + \int_{a}^{b} \omega_{\varepsilon}\right).$$

Portanto,

$$|S(f; \dot{\mathcal{P}}) - S(f; \ddot{\mathcal{P}})| < \frac{2\varepsilon}{3} + \int_{a}^{b} (\omega_{\varepsilon} - \alpha_{\varepsilon}) < \frac{2\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Segue então do Critério de Cauchy 25.3 que $f \in \mathcal{R}[a, b]$.

Exemplos 25.1

(a) Sejam $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ seqüências satisfazendo $a_0:=1>a_1>a_2>a_3>\cdots>0$, $\lim a_n=0$ e $|b_n|< M$ para um certo M>0. Seja

103

 $f: [0,1] \to \mathbb{R}$ definida por f(0) := 0 e $f(x) := b_n$ para $x \in (a_n, a_{n-1}],$ para $n \in \mathbb{N}$ com $a_0 = 1$. Então $f \in \mathcal{R}[0,1]$ e $\int_0^1 f = \sum b_n (a_{n-1} - a_n)$. Observe que a série $\sum b_n(a_{n-1}-a_n)$ é convergente devido às hipóteses sobre a_n e b_n (por quê?).

De fato, dado $\varepsilon>0$, como $\lim a_n=0$, existe $N_0=N_0(\varepsilon)$ tal que $0 < a_n < \varepsilon/(2M)$ para $n \ge N_0$. Definimos

$$\alpha_{\varepsilon} = \begin{cases} b_n, & x \in (a_n, a_{n-1}], \ n = 1, \dots, N_0 \\ -M, & x \in [0, a_{N_0}] \end{cases}, \tag{25.8}$$

$$\omega_{\varepsilon} = \begin{cases} b_n, & x \in (a_n, a_{n-1}], \ n = 1, \dots, N_0 \\ M, & x \in [0, a_{N_0}] \end{cases}$$
 (25.9)

Do Teorema 24.3(iv) temos que α_{ε} e ω_{ε} , assim definidas, pertencem a $\mathcal{R}[0,1]$ e valem (25.5) e (25.6). Logo, pelo Teorema 25.6, segue que $f \in \mathcal{R}[0,1]$. Além disso, do Teorema 24.3(i) e da desigualdade (25.5) segue que

$$\int_{a}^{b} \alpha_{\varepsilon} \le \int_{a}^{b} f \le \int_{a}^{b} \omega_{\varepsilon}.$$

Como

$$\lim_{\varepsilon \to 0} \int_a^b \alpha_{\varepsilon} = \lim_{\varepsilon \to 0} \int_a^b \omega_{\varepsilon} = \lim_{N \to \infty} \sum_{n=1}^N b_n (a_{n-1} - a_n) = \sum_{n=1}^\infty b_n (a_{n-1} - a_n),$$

segue que $\int_a^b f = \sum b_n (a_{n-1} - a_n)$.

(b) O Critério de Cauchy para Integrabilidade 25.3 pode ser usado para mostrar que uma função $f:[a,b] \to \mathbb{R}$ $n \tilde{a} o$ é integrável à Riemann. Para isso basta mostrarmos que: Existe $\varepsilon_0 > 0$ tal que para qualquer $\delta > 0$ existem partições aferidas \dot{P} e \ddot{P} possuindo os mesmos subintervalos de uma partição \mathcal{P} de [a,b] com $\|\mathcal{P}\| < \delta$ e tais que $|S(f; \dot{P}) - S(f; \ddot{P})| \ge \varepsilon_0.$

Aplicaremos essa observação à função de Dirichlet $f:[0,1]\to\mathbb{R}$ definida por f(x) := 1 se $x \in [0,1]$ é racional e f(x) := 0 se $x \in [0,1]$ é irracional.

De fato, podemos tomar $\varepsilon_0 = \frac{1}{2}$. Se \dot{P} e \ddot{P} são partições aferidas correspondentes a uma mesma partição \mathcal{P} qualquer de [a,b], tais que as aferições de \dot{P} são racionais, enquanto as aferições de \ddot{P} são irracionais, teremos sempre $S(f; \dot{\mathcal{P}}) = 1$, ao passo que $S(f; \ddot{\mathcal{P}}) := 0$ (por quê?). Devido à densidade dos racionais e dos irracionais em [0, 1],

podemos tomar partições \mathcal{P} com normas arbitrariamente pequenas e formar partições aferidas $\dot{\mathcal{P}}$ e $\ddot{\mathcal{P}}$ como mencionado. Concluímos então que a função de Dirichlet não é integrável à Riemann.

Operações Não-Lineares com Funções Integráveis

No resultado a seguir vamos estabelecer o bom comportamento de $\mathcal{R}[a,b]$ em relação às operações de produto, quociente, tomada do módulo ou valor absoluto e composição com funções Lipschitz.

Teorema 25.7

Seja $f, g \in \mathcal{R}[a, b]$. Então:

- (i) $fg \in \mathcal{R}[a,b]$;
- (ii) Se $|g(x)| > \eta > 0$ para $x \in [a, b]$, então $f/g \in \mathcal{R}[a, b]$;
- (iii) $|f| \in \mathcal{R}[a,b] \in \left| \int_a^b f \right| \le \int_a^b |f|.$
- (iv) Se $f([a,b]) \subset [c,d]$ e $H:[c,d] \to \mathbb{R}$ é uma função Lipschitz, então $H \circ f \in \mathcal{R}[a,b]$.

Prova: (i) Como $f,g \in \mathcal{R}[a,b]$, pelo Teorema 24.2 existe M>0 tal que $|f(x)| \leq M$ e $|g(x)| \leq M$ para $x \in [a,b]$. Além disso, pelo Teorema 25.1, dado $\varepsilon > 0$, existe $\delta = \delta(\varepsilon) > 0$ tal que se \mathcal{P} é uma partição de [a,b] com $\|\mathcal{P}\| < \delta$, então

$$0 \le S^*(f; \mathcal{P}) - S_*(f; \mathcal{P}) < \frac{\varepsilon}{2M}$$
 e $0 \le S^*(g; \mathcal{P}) - S_*(g; \mathcal{P}) < \frac{\varepsilon}{2M}$.

Seja $\varepsilon > 0$ dado. Tomemos um tal $\delta = \delta(\varepsilon) > 0$ como mencionado. Seja $\mathcal{P} := \{I_i\}_{i=1}^n$ uma partição de [a,b] com $\|\mathcal{P}\| < \delta$, e sejam $\dot{\mathcal{P}} := \{(I_i,t_i)\}_{i=1}^n$, $\ddot{\mathcal{P}} := \{(I_i,s_i)\}_{i=1}^n$ duas partições aferidas associadas possuindo os mesmos subintervalos de \mathcal{P} , $I_i := [x_{i-1},x_i]$. Sejam

$$M_i^f := \sup\{f(t) : t \in [x_{i-1}, x_i]\}, \qquad m_i^f := \inf\{f(t) : t \in [x_{i-1}, x_i]\},$$

e M_i^g , m_i^g definidos analogamente com g em lugar de f. Temos

$$|S(fg; \dot{\mathcal{P}}) - S(fg; \ddot{\mathcal{P}})| = \left| \sum_{i=1}^{n} (f(t_i)g(t_i) - f(s_i)g(s_i))(x_i - x_{i-1}) \right|$$

$$\leq \sum_{i=1}^{n} |f(t_i)g(t_i) - f(s_i)g(s_i)|(x_i - x_{i-1})$$

$$= \sum_{i=1}^{n} |(f(t_i)g(t_i) - f(t_i)g(s_i)) + (f(t_i)g(s_i) - f(s_i)g(s_i))|(x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{n} (|f(t_i)||g(t_i) - g(s_i)| + |g(s_i)||f(t_i) - f(s_i)|)(x_i - x_{i-1})$$

$$\leq M \sum_{i=1}^{n} (M_i^g - m_i^g)(x_i - x_{i-1}) + M \sum_{i=1}^{n} (M_i^f - m_i^f)(x_i - x_{i-1})$$

$$= M(S^*(g; \mathcal{P}) - S_*(g; \mathcal{P})) + M(S^*(f; \mathcal{P}) - S_*(f; \mathcal{P}))$$

$$< M \frac{\varepsilon}{2M} + M \frac{\varepsilon}{2M} = \varepsilon.$$

Como $\varepsilon > 0$ é arbitrário, segue do Teorema 25.3 que $fg \in \mathcal{R}[a,b]$.

(ii) Basta provar que $1/g \in \mathcal{R}[a,b]$ e então aplicar o ítem (i) a f e 1/g. Provemos então que $1/g \in \mathcal{R}[a,b]$. Dadas duas partições aferidas de [a,b], $\dot{\mathcal{P}} := \{(I_i,t_i)\}_{i=1}^n$ e $\ddot{\mathcal{P}} = \{(I_i,s_i)\}_{i=1}^n$, possuindo os mesmos subintervalos de uma partição $\mathcal{P} := \{I_i\}_{i=1}^n$, $I_i := [x_{i-1},x_i]$, temos

$$|S(1/g; \dot{\mathcal{P}}) - S(1/g; \ddot{\mathcal{P}})| = \left| \sum_{i=1}^{n} \left(\frac{1}{g(t_i)} - \frac{1}{g(s_i)} \right) (x_i - x_{i-1}) \right|$$

$$\leq \sum_{i=1}^{n} \frac{|g(s_i) - g(t_i)|}{|g(t_i)||g(s_i)|} (x_i - x_{i-1})$$

$$\leq \frac{1}{\eta^2} \left(S^*(g; \mathcal{P}) - S_*(g; \mathcal{P}) \right). \quad \text{(por quê?)}$$

Seja $\varepsilon > 0$ dado. Como g é integrável, existe $\delta = \delta(\varepsilon) > 0$ tal que se $\|\mathcal{P}\| < \delta$, então $0 \leq S^*(g; \mathcal{P}) - S_*(g; \mathcal{P}) < \eta^2 \varepsilon$. Assim, se $\dot{\mathcal{P}}$ e $\ddot{\mathcal{P}}$ são partições aferidas com os mesmos subintervalos de uma partição \mathcal{P} com $\|\mathcal{P}\| < \delta$, pela estimativa que acabamos de fazer teremos

$$|S(1/g; \dot{\mathcal{P}}) - S(1/g; \ddot{\mathcal{P}})| < \frac{1}{\eta^2} \eta^2 \varepsilon = \varepsilon.$$

Segue então do Teorema 25.3 que $1/g \in \mathcal{R}[a,b]$, o que conclui a prova de (ii).

(iii) De novo, dadas duas partições aferidas de [a, b], $\dot{\mathcal{P}} := \{(I_i, t_i)\}_{i=1}^n$ e $\ddot{\mathcal{P}} = \{(I_i, s_i)\}_{i=1}^n$, possuindo os mesmos subintervalos de uma partição $\mathcal{P} :=$

$$\{I_i\}_{i=1}^n, I_i := [x_{i-1}, x_i], \text{ temos}$$

$$|S(|f|; \dot{\mathcal{P}}) - S(|f|; \dot{\mathcal{P}})| = \left| \sum_{i=1}^{n} (|f(t_{i})| - |f(s_{i})|)(x_{i} - x_{i-1}) \right|$$

$$\leq \sum_{i=1}^{n} ||f(t_{i})| - |f(s_{i})||(x_{i} - x_{i-1})$$

$$\leq \sum_{i=1}^{n} ||f(t_{i})| - |f(s_{i})||(x_{i} - x_{i-1})$$

$$\leq S^{*}(f; \mathcal{P}) - S_{*}(f; \mathcal{P}). \quad \text{(por quê?)}$$

Como nos ítens anteriores, usamos o Teorema 25.1 para obter que existe $\delta > 0$ tal que o último membro da desigualdade anterior é menor que ε se $\|\mathcal{P}\| < \delta$ e então usamos o Teorema 25.3 para concluir que $|f| \in \mathcal{R}[a,b]$.

O fato de que $\left|\int_a^b f\right| \leq \int_a^b |f|$ segue de $f \leq |f|, -f \leq |f|$ e do Teorema 24.3(i). Deixamos os detalhes da demonstração para você como exercício.

(iv) Por definição, dizer que $H:[c,d]\to\mathbb{R}$ é Lipschitz significa que existe C>0 tal que $|H(y)-H(z)|\leq C|y-z|$, para $y,z\in[c,d]$. Mais uma vez, dadas duas partições aferidas de [a,b], $\dot{\mathcal{P}}:=\{(I_i,t_i)\}_{i=1}^n$ e $\ddot{\mathcal{P}}=\{(I_i,s_i)\}_{i=1}^n$, possuindo os mesmos subintervalos de uma partição $\mathcal{P}:=\{I_i\}_{i=1}^n,\ I_i:=[x_{i-1},x_i],\ \text{temos}$

$$|S(H(f); \dot{\mathcal{P}}) - S(H(f); \ddot{\mathcal{P}})| = \left| \sum_{i=1}^{n} (H(f(t_i)) - H(f(s_i)))(x_i - x_{i-1}) \right|$$

$$\leq \sum_{i=1}^{n} |H(f(t_i)) - H(f(s_i))|(x_i - x_{i-1})$$

$$\leq C \sum_{i=1}^{n} |f(t_i) - f(s_i)|(x_i - x_{i-1})$$

$$\leq C(S^*(f; \mathcal{P}) - S_*(f; \mathcal{P})).$$

Da mesma forma que no ítem anterior, usamos os Teoremas 25.1 e 25.3 para concluir que $H \circ f \in \mathcal{R}[a, b]$. Deixamos os detalhes para você como exercício.

O Teorema da Aditividade

A seguir estabeleceremos o fato de que a integral é uma "função aditiva" do intervalo sobre o qual a função é integrada. O significado preciso dessa

propriedade ficará claro no enunciado do resultado.

Teorema 25.8

Seja $f:[a,b]\to\mathbb{R}$ e $c\in(a,b)$. Então $f\in\mathcal{R}[a,b]$ se, e somente se, suas restrições a [a, c] e [c, b] são ambas integráveis à Riemann. Nesse caso vale

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f. \tag{25.10}$$

Prova: (\Rightarrow) Suponhamos que $f \in \mathcal{R}[a,b]$. Seja $\varepsilon > 0$ e tomemos $\delta = \delta(\varepsilon) > 0$ como no enunciado do Teorema 25.4. Seja $f_1 := f|[a,c]$ e sejam $\dot{\mathcal{P}}_1$ e $\dot{\mathcal{Q}}_1$ partições aferidas de [a, c] com $\|\mathcal{P}_1\| < \delta$ e $\|\mathcal{Q}_1\| < \delta$. Combinando-se \mathcal{P}_1 e $\dot{\mathcal{Q}}_1$ com uma mesma partição aferida qualquer de [c,b] com norma $<\delta$ podemos estender \dot{P}_1 e \dot{Q}_1 a partições aferidas \dot{P} e \dot{Q} de [a,b] satisfazendo $\|\dot{\mathcal{P}}\| < \delta \in \|\dot{\mathcal{Q}}\| < \delta$. Além disso, teremos

$$S(f_1; \dot{P}_1) - S(f_1; \dot{Q}_1) = S(f; \dot{P}) - S(f; \dot{Q}),$$

já que usamos a mesma partição aferida de [c,d] para estender $\dot{\mathcal{P}}_1$ e $\dot{\mathcal{Q}}_1$ a $\dot{\mathcal{P}}$ e Q, respectivamente.

Como $\|\dot{\mathcal{P}}\| < \delta$ e $\|\dot{\mathcal{Q}}\| < \delta$, então $|S(f_1;\dot{\mathcal{P}}_1) - S(f_1;\dot{\mathcal{Q}}_1)| < \varepsilon$. Segue então do Teorema 25.4 que $f_1 \in \mathcal{R}[a, c]$.

De forma quase idêntica se demonstra que $f_2 := f[c, b]$ está em $\mathcal{R}[c, b]$.

 (\Leftarrow) Suponhamos agora que $f_1 = f|[a,c]$ e $f_2 = f|[c,d]$ estão em $\mathcal{R}[a,c]$ e $\mathcal{R}[c,b]$, respectivamente, e sejam $L_1:=\int_a^c f_1$ e $L_2:=\int_c^b f_2$. Então, dado $\varepsilon > 0$ existe $\delta_1 > 0$ tal que se $\dot{\mathcal{P}}_1$ é uma partição aferida de [a,c] com $\|\dot{\mathcal{P}}_1\| < 0$ δ_1 , vale $|S(f_1; \dot{\mathcal{P}}_1) - L_1| < \varepsilon/3$. Do mesmo modo, existe $\delta_2 > 0$ tal que se $\dot{\mathcal{P}}_2$ é uma partição aferida de [c,d] com $\|\dot{\mathcal{P}}_2\|<\delta_2$, então $|S(f_2;\dot{\mathcal{P}}_2)-L_2|<\varepsilon/3$.

Como f_1 é limitada em [a, c] e f_2 é limitada em [c, b] (por quê?), segue que f é limitada em [a,b]. Seja M>0 tal que $|f(x)|\leq M$ para $x\in [a,b]$. Definamos $\delta = \delta(\varepsilon) := \min\{\delta_1, \delta_2, \varepsilon/6M\}$ e seja $\dot{\mathcal{P}}$ uma partição aferida de [a,b] com $\|\hat{\mathcal{P}}\| < \delta$. Vamos provar que

$$|S(f; \dot{\mathcal{P}}) - (L_1 + L_2)| < \varepsilon. \tag{25.11}$$

Se c é um dos pontos da partição \mathcal{P} cujos subintervalos são os mesmos de $\dot{\mathcal{P}}$, repartimos $\dot{\mathcal{P}}$ numa partição aferida $\dot{\mathcal{P}}_1$ de [a,c] e uma partição aferida $\dot{\mathcal{P}}_2$ de [c,b]. Como $S(f;\dot{\mathcal{P}}) = S(f_1;\dot{\mathcal{P}}_1) + S(f_2;\dot{\mathcal{P}}_2)$, e como $\dot{\mathcal{P}}_1$ tem norma menor que δ_1 e \mathcal{P}_2 tem norma menor que δ_2 , a desigualdade (25.11) segue imediatamente da desigualdade triangular.

Se c não é um ponto de $\mathcal{P}:=(a=x_0,x_1,\ldots,x_n=b)$, então existe $k\leq n$ tal que $c\in(x_{k-1},x_k)$. Sejam $\dot{\mathcal{P}}=\{([x_{i-1},x_i],t_i)\}_{i=1}^n,\,\dot{\mathcal{P}}_1$ a partição aferida de [a,c] definida por

$$\dot{\mathcal{P}}_1 := \{(I_1, t_1), \dots, (I_{k-1}, t_{k-1}), ([x_{k-1}, c], c]\},\$$

e $\dot{\mathcal{P}}_2$ a partição aferida de [c,b] definida por

$$\dot{\mathcal{P}}_2 := \{([c, x_k], c), (I_{k+1}, t_{k+1}), \dots, (I_n, t_n)\},\$$

com $I_i := [x_{i-1}, x_i]$. Um cálculo simples mostra que

$$S(f; \dot{\mathcal{P}}) - S(f_1; \dot{\mathcal{P}}_1) - S(f_2; \dot{\mathcal{P}}_2) = f(t_k)(x_k - x_{k-1}) - f(c)(x_k - x_{k-1})$$
$$= (f(t_k) - f(c))(x_k - x_{k-1}).$$

Segue daí que

$$|S(f; \dot{\mathcal{P}}) - S(f_1; \dot{\mathcal{P}}_1) - S(f_2; \dot{\mathcal{P}}_2)| \le 2M(x_k - x_{k-1}) < \varepsilon/3.$$
 (25.12)

Mas como $\|\dot{\mathcal{P}}_1\| < \delta \le \delta_1$ e $\|\dot{\mathcal{P}}_2\| < \delta \le \delta_2$, temos que

$$|S(f_1; \dot{\mathcal{P}}_1) - L_1| < \varepsilon/3$$
 e $|S(f_2; \dot{\mathcal{P}}_2) - L_2| < \varepsilon/3$,

o qual juntamente com (25.12) nos dá (25.11). Como $\varepsilon > 0$ é arbitrário, concluímos que $f \in \mathcal{R}[a,b]$ e que (25.10) vale.

Definição 25.1

Se $f \in \mathcal{R}[a, b]$ e se $\alpha, \beta \in [a, b]$ com $\alpha < \beta$, definimos

$$\int_{\beta}^{\alpha} f := -\int_{\alpha}^{\beta} f \quad e \quad \int_{\alpha}^{\alpha} f := 0. \tag{25.13}$$

O Teorema da Aditividade juntamente com a definição que acabamos de dar facilmente implicam o seguinte resultado cuja demonstração se resume à verificação de todos os possíveis casos dependendo do ordenamento entre α, β, γ , e será deixada para você como exercício (veja o exercício 12).

Teorema 25.9

Se $f \in \mathcal{R}[a,b]$ e α, β, γ são quaisquer números em [a,b], então

$$\int_{\alpha}^{\beta} f = \int_{\alpha}^{\gamma} f + \int_{\gamma}^{\beta} f. \tag{25.14}$$

Exercícios 25.1

- 1. Seja $f:[a,b] \to \mathbb{R}$. Mostre que $f \notin \mathcal{R}[a,b]$ se, e somente se, existe $\varepsilon_0 > 0$ tal que para todo $n \in \mathbb{N}$ existem partições aferidas $\dot{\mathcal{P}}_n$ e $\dot{\mathcal{Q}}_n$ com $\|\dot{\mathcal{P}}_n\| < 1/n \text{ e } \|\dot{\mathcal{Q}}_n\| < 1/n \text{ tais que } |S(f;\dot{\mathcal{P}}_n) - S(f;\dot{\mathcal{Q}}_n)| \ge \varepsilon_0.$
- 2. Considere a função f definida por f(x) := x+1 para $x \in [0,1]$ racional, e f(x) := 0 para $x \in [0,1]$ irracional. Mostre que f não é integrável à Riemann.
- 3. Se $S(f; \mathcal{P})$ é uma soma de Riemann qualquer de $f: [a, b] \to \mathbb{R}$, mostre que existe uma função degrau (veja exercício 13) $\varphi:[a,b] \to \mathbb{R}$ tal que $\int_a^b \varphi = S(f; \dot{\mathcal{P}}).$
- 4. Suponha que f é contínua em [a,b], que $f(x) \ge 0$ para todo $x \in [a,b]$ e que $\int_a^b f = 0$. Prove que f(x) = 0 para todo $x \in [a, b]$.
- 5. Mostre que a hipótese de que f é contínua no exercício anterior não pode ser retirada.
- 6. Se f e g são contínuas em [a,b] e se $\int_a^b f = \int_a^b g$, prove que existe $c \in (a, b)$ tal que f(c) = g(c).
- 7. Se f é limitada por M em [a,b] e se a restrição de f a todo intervalo [c,b] com $c \in (a,b)$ é integrável à Riemann, mostre que $f \in \mathcal{R}[a,b]$ e que $\int_c^b f \to \int_a^b f$ quando $c \to a+$. [Dica: Seja $\alpha_c(x) := -M$ e $\omega_c(x) := M$ para $x \in [a,c)$ e $\alpha_c(x) = \omega_c(x) := f(x)$ para $x \in [c,b]$. Aplique o Teorema do Sanduíche para Integrais 25.6.]
- 8. Use o exercício anterior para mostrar que a função $f:[0,1]\to\mathbb{R}$ definida por $f(x) := \operatorname{sen}(1/x)$ para $x \in (0,1]$ e f(0) := 0 pertence a $\mathcal{R}[0,1].$
- 9. Se f é contínua em [a,b], mostre que existe $c \in [a,b]$ tal que $\int_a^b f =$ f(c)(b-a). Esse resultado é às vezes chamado de Teorema do Valor Médio para Integrais.
- 10. Suponhamos que $f:[a,b] \to \mathbb{R}$, que $a=c_0 < c_1 < \cdots < c_m = b$ e que a restrição de f a $[c_{i-1}, c_i]$ pertence a $\mathcal{R}[c_{i-1}, c_i]$ para $i = 1, \ldots, m$. Prove que $f \in \mathcal{R}[a,b]$ e

$$\int_{a}^{b} f = \sum_{i=1}^{m} \int_{c_{i-1}}^{c_i} f.$$

[Dica: Use o Teorema 25.8 e Indução Matemática.]

- 11. Suponha que a > 0 e que $f \in \mathcal{R}[-a, a]$.
 - (a) Se f é par (isto é, se f(-x)=f(x) para todo $x\in[-a,a]$), então $\int_{-a}^a f=2\int_0^a f.$
 - (b) Se f é *impar* (isto é, se f(-x) = -f(x) para todo $x \in [-a, a]$), então $\int_{-a}^a f = 0$.
- 12. Prove o Teorema 25.9.