Full name \_

ID NUMBER \_

Read the directions.

1. (4 points) Find the vertex of the following quadratic function.

$$f(x) = 3x^2 - 14x + \frac{58}{3}$$

- A. 0
- B. (0,0)
- **C.**  $(\frac{7}{3},3)$
- D.  $(3, \frac{3}{5})$
- E. (a,b)
- 2. (3 points) Which of the following radical equations has a solution?
  - A.  $\sqrt{2x-17}+3=0$
  - B.  $-7 = \sqrt{6x 2}$
  - C.  $\sqrt{x} + 10 = 0$
  - **D.**  $\sqrt{x+10} = 3$
  - E.  $5 + \sqrt{2x + \frac{1}{2}} = 0$
- 3. (3 points) Solve the inequality and write your answer as an INTERVAL.

$$|3x+2| < 7$$

**Solution.** Writing |3x + 2| < 7 is equivalent to writing

$$-7 < 3x + 2 < 7$$
.

Then we solve this compound inequality as follows:

$$-7 < 3x + 2 < 7 \iff -9 < 3x < 5$$

$$\iff -3 < x < \frac{5}{3}.$$

Drawn on the x-axis, this is



Written as an interval, this is  $(-3, \frac{5}{3})$ .

4. (0 points) How tall is a leprechaun? 3 foot 6

## **USEFUL FORMULAS**

$$\bullet \quad m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\bullet \quad \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

$$\bullet \quad a^0 = 1$$

$$\bullet \quad y = mx + b$$

• 
$$(x-h)^2 + (y-k)^2 = r^2$$

$$\bullet \quad \frac{a^m}{a^n} = a^{m-n}$$

$$\bullet \quad Ax + By = C$$

• 
$$Ax + By = C$$
  
•  $y - y_1 = m(x - x_1)$   
•  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

• 
$$a^2 - b^2 = (a+b)(a-b)$$
 •  $I = Prt$ 

• 
$$I = Prt$$

$$\bullet \qquad (ab)^m = a^m b^m$$

• 
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)^{\bullet}$$
  $A = P + Prt$ 

$$\bullet \quad \frac{1}{a^n} = a^{-n}$$

• 
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)^{\bullet}$$
  $a^2 + b^2 = c^2$ 

• 
$$(a+b)^2 = a^2 + 2ab + b^2$$
 •  $\frac{f(x+h) - f(x)}{h}$ 

$$\frac{f(x+h) - f(x)}{h}$$

• 
$$i = \sqrt{-1}$$

• 
$$(a-b)^2 = a^2 - 2ab + b^2$$
 •  $d = rt$ 

$$\bullet$$
  $d = rt$ 

• 
$$i^2 = -1$$

• 
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 •  $a^m a^n = a^{m+n}$ 

$$a^m a^n = a^{m+n}$$