Заняття 5. Хвильова оптика: інтерференція та дифракція світла, закон Малюса.

Аудиторне заняття

- 1. Дві електромагнітні хвилі з довжиною λ інтерферують у вакуумі. Чому дорівнює їхня різниця фаз $\Delta \varphi$, якщо різниця ходу Δ складає а) 0; б) 0,2 λ ; в) 0,5 λ ; г) λ ; д) 1,2 λ ? (№1.17)
- 2. Від двох когерентних джерел, що випромінюють світло з довжиною хвилі λ , промені потрапляють на екран. На екрані спостерігається інтерференційна картина. Коли на шляху одного з променів перпендикулярно до нього помістили мильну плівку з показником заломлення n, інтерференційна картина змінилася на протилежну. При якій найменшій товщині плівки d_{\min} це можливо? (№1.21)
- 3. На скляну пластину нанесено тонкий шар прозорої речовини з показником заломлення n=1,3. Пластина освітлюється паралельним пучком монохроматичного світла з довжиною хвилі $\lambda=640$ нм, який падає на пластину нормально. Яку мінімальну товщину d_{\min} повинен мати шар, щоб відбитий пучок мав найменшу яскравість? Вважати, що показник заломлення скла $n_c=1,5$. (№1.26)
- 4. На дифракційну гратку у напрямі нормалі до її поверхні падає монохроматичне світло. Період гратки d = 2 мкм. Визначити найбільший порядок дифракційного максимуму, який може спостерігатися на цій гратці, для червоного ($\lambda_1 = 0.7$ мкм) та фіолетового ($\lambda_2 = 0.41$ мкм) світла. (№1.37)
- 5. Пучок природнього світла падає на поліровану поверхню скляної пластини з показником заломлення n_2 , яка занурена у рідину. Відбитий від пластини пучок світла утворює кут φ з падаючим пучком. Визначити показник заломлення n_1 рідини, якщо відбите світло максимально поляризоване. (№1.50)
- 6. Кут між площинами поляризації двох поляроїдів α = 70°. Як зміниться інтенсивність світла, що проходить через них, якщо цей кут зменшити у k = 5 разів. (№1.54)

Домашнє завдання

- 1. Різниця фаз $\Delta \varphi$ двох інтерферуючих хвиль дорівнює а) 0; б) 60°; в) π /2; г) π ; д) 2π ; е) 540°. Чому в цьому випадку дорівнює відношення різниці ходу до довжини кожної з хвиль? (№1.18)
- 2. На поверхні калюжі знаходиться плівка гасу. На плівку під кутом $i = 60^{\circ}$ падає паралельний пучок білого світла. При спостереженні у відбитому світлі плівка має зелений колір ($\lambda = 0.52$ мкм). Визначити мінімально можливу товщину плівки d_{\min} . Вважати, що показник заломлення гасу n = 1.4 і це більше, ніж показник заломлення води. (№1.25)
- 3. На дифракційну гратку падає нормально паралельний пучок білого світла. Спектри третього і четвертого порядку частково накладаються один на одного. На яку довжину хвилі λ₀ в спектрі четвертого порядку накладається червона границя (λ = 780 нм) спектра третього порядку? (№1.39)
- 4. Під яким кутом до горизонту β повинно знаходитись Сонце, щоб його промені, відбиті від поверхні моря, були б повністю поляризовані? Вважати, що абсолютний показник заломлення морської води n = 1.33. (№1.52)
- 5. Чому дорівнює кут ϕ між головними площинами поляризатора та аналізатора, якщо інтенсивність природного світла, яке пройшло крізь систему зменшилася у k = 4 рази? Поглинанням світла знехтувати. (№1.55)