1/1

慶應義塾大学試験問題 物理学 C (一斉)

2017年11月21日(火)1時限(試験時間50分) 問題用紙 回収不要担当者 神成、木下、佐々田、高野

注意:とくに指示がない場合、答案には結果のみならず、それを導いた過程についても記すこと。また、万一与えられた条件だけでは解けない場合には、適当な量を定義したり、条件を明記した上で解いてよい。電気定数 ϵ_0 、磁気定数 μ_0 、真空中の光速 c の記号は断りなしに使ってよい。

問題 I デカルト座標系 (x,y,z) を用いて考える。x,y,z 軸の正の方向の単位ベクトルを、それぞれ、 e_x , e_y , e_z とする。ベクトル量は $A=A_xe_x+A_ye_y+A_ze_z$ のように e_x , e_y , e_z を用いて表すか、 $A=(A_x,A_y,A_z)$ のように成分表示で表すものとする。

- (1) 真空中で、z 軸上の線上全て $(-\infty < z < \infty)$ に一定の線電荷密度 σ_0 で電荷が分布している。このとき、ガウスの法則を用いて、位置 $\mathbf{r} = (x,y,z)$ における電界 $\mathbf{E}(\mathbf{r})$ を求めなさい。
- (2) z 軸を中心軸とする無限に長い半径 a の円柱の y>0 の部分 (半円柱内) に一定の電荷密度 ρ で電荷が分布している (図 I 参照)。原点 O(0,0,0) における電界 E_O を求めなさい。
 - ヒント: z 軸に垂直な平面内の位置を 2 次元極座標 (r,φ) で表した円柱座標系を用いると、デカルト座標系とは、 $x=r\cos\varphi$ 、 $y=r\sin\varphi$ の関係がある。半円柱内で、座標 r が $r\sim r+dr$ 、座標 φ が $\varphi\sim\varphi+d\varphi$ 、座標 z が $-\infty< z<\infty$ で指定される部分 (微小断面積 $r\,d\varphi\,dr$ をもつ無限に長い柱状の部分) が原点 O(0,0,0) につくる電界 $dE_O(r,\varphi)$ を考える。この部分は、 $x=r\cos\varphi$ 、 $y=r\sin\varphi$ の位置を通過する z 軸 に平行な無限に長い直線上に線電荷密度 $\rho r\,d\varphi\,dr$ で電荷が分布したものと考えることができ、(1) の結果を $dE_O(r,\varphi)$ の計算に利用できる。
- (3) (2) の系で、y < 0 の空間を導体で満たしたとき、導体表面上の原点 O(0,0,0) の直近の位置での面電荷密度 ω を求めなさい。

問題 II 位置 $\mathbf{r} = (x, y, z)$ における電位 $\phi(\mathbf{r})$ が

$$\phi(\mathbf{r}) = \begin{cases} \phi_0 \left\{ \frac{4}{3} - \frac{1}{3} \left(\frac{r}{a} \right)^3 \right\} & \cdots & r \leq a \\ \phi_0 \frac{a}{r} & \cdots & a < r \end{cases}$$

で与えられている。ここで、r = |r|であり、 ϕ_0 、a (> 0) は定数である。

- (1) 位置 $\mathbf{r} = (x, y, z)$ における電界 $\mathbf{E}(\mathbf{r})$ を求めなさい。
- (2) 位置 $\mathbf{r} = (x, y, z)$ における電荷密度 $\rho(\mathbf{r})$ を求めなさい。
- (3) この系の全静電エネルギー U_E を求めなさい。

問題 III 図 III のように、半径 a の球面状の極板 A と半径 b (b > a) の 球面状の極板 B が、中心を共通にして配置してある。球面の 中心を位置ベクトル r の位置における電気伝導率 $\sigma(r)$ が

$$\sigma(r) = \sigma_0 \left(\frac{b}{r}\right)^3 \cdots a \le r \le b$$

となるように導体で満たされている。ここで、r=|r| は原点からの距離、 σ_0 は正の定数である。AB 間の電位差が一定に保たれ、A から B に一定電流 I が流れている場合を考える。

図 III

- (1) AB 間の位置 r における電流密度 i(r) と電界 E(r) を求めなさい。
- (2) AB 間の電位差 V を求め、AB 間の全電気抵抗 R を求めなさい。
- (3) $a < r_1 < r_2 < b$ とするとき、中心からの距離 r が $r_1 < r < r_2$ の領域 (球殻) で単位時間に発生するジュール熱 $P(r_1, r_2)$ を求めなさい。

問題 IV デカルト座標系 (x,y,z) を用いて考える。x,y,z 軸の正の方向の単位ベクトルを、それぞれ、 e_x , e_y , e_z とする。ベクトル量は $A=A_xe_x+A_ye_y+A_ze_z$ のように e_x , e_y , e_z を用いて表すか、 $A=(A_x,A_y,A_z)$ のように成分表示で表すものとする。

真空中にxy面に平行な厚さ2aの無限に広い導体があり、その中を定常電流が流れている。位置 $\mathbf{r}=(x,y,z)$ における電流密度 $\mathbf{i}(\mathbf{r})=\mathbf{i}(x,y,z)$ は

$$m{i}(x,y,z) = \left\{ egin{array}{lll} m{0} & \cdots & z < -a & (真空中) \ & i_0 \left(rac{z}{a}
ight)^3 m{e}_y & \cdots & -a \leq z \leq a & (導体中) \ m{0} & \cdots & a < z & (真空中) \end{array}
ight.$$

で与えられている。 i_0 , a は正の定数である。外部から磁界は加わっていないものとする。

- (1) b を a < b (即ち、-b < -a) を満たす正の定数とする。-b < z となる z に対し、点 A(0,0,z), B(l,0,z), C(l,0,-b), D(0,0,-b) を頂点とする長方形 ABCD を貫く全電流 I(z) を求めなさい。ここで、l は正の定数である。
 - Eとント: -b < z < -a, -a < z < a, a < z の 3 つの領域に分けて考える。
- (2) 位置 $\mathbf{r} = (x,y,z)$ における磁束密度 $\mathbf{B}(x,y,z)$ は導体外の領域 (z < -a または a < z) では $\mathbf{0}$ となる。その理由を述べなさい。
- (3) 位置 r=(x,y,z) における磁束密度 $\mathbf{B}(x,y,z)$ を導体内の領域 $(-a \le z \le a)$ に対して求めなさい。