## INTEGRATED CIRCUIT TOSHIBA TECHNICAL DATA

## TOSHIBA BIPOLAR LINAR INTEGRATED CIRCUIT TA7368P, TA7368F

SILICON MONOLITHIC

## **AUDIO POWER AMPLIFIER**

The TA7368P and TA7368F are suitable for the audio power amplifier of portable cassette tape recorder and radio.

#### **FEATURES**

Very few external parts (Only three capacitors)

Low quiescent current :  $I_{CCO} = 6.6 \text{mA}$  (Typ.) ( $V_{CC} = 6V$ )

**Output Power** 

TA7368P

:  $P_{out} = 720 \text{mW} \text{ (Typ.) } (V_{CC} = 6V, R_L = 4\Omega, THD = 10\%)$ 

:  $P_{out} = 450 \text{mW} \text{ (Typ.) } (V_{CC} = 6V, R_L = 8\Omega, THD = 10\%)$ 

:  $G_V = 40dB \text{ (Typ.)}$ Voltage gain

Operating supply voltage range :  $V_{CC} = 2 \sim 10V$  (Ta = 25°C)



Weight SIP9-P-A : 0.92g (Typ.) SSOP10-P-225 : 0.09g (Typ.)

## **BLOCK DIAGRAM**





The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. These TOSHIBA products are intended for use in general commercial applications (office equipment, communication equipment, measuring equipment, domestic appliances, etc.), please make sure that you consult with us before you use these TOSHIBA products in equipment which requires extraordinarily high quality and/or reliability, and in equipment which may involve the threatening or critical application, including by not limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, combustion control, all types of safety devices, etc. TOSHIBA cannot accept and hereby discalaims liability for any damage which may occur in case the TOSHIBA products are used in such equipment or applications without prior consultation with TOSHIBA.

TECHNICAL DATA

#### PRECAUTION FOR USE AND APPLICATION

### 1. Input stage

The input stage of power amplifier (Equivalent circuit) is comprised of a PNP differential pair (Q2 and Q3) preceded by a PNP emitter follower (Q1) which allows DC referencing of the source signal to ground. This eliminated the need for an input coupling capacitor. However, in case the brush noise of volume becomes a problem, provide serially a coupling capacitor to the input side.

### 2. Adjustment of voltage gain

The voltage gain is fixed at Gy≒40dB by the resistors (R<sub>4</sub> and R<sub>5</sub>) in IC, however, its reduction is possible through adding R<sub>f</sub> as shown in Figure 2. In this case, the voltage gain is obtained by the following equation.

$$G_V = 20 \ell og \frac{R_5 + R_4 + R_f}{R_4 + R_f}$$

It is recommended to use this IC with the voltage gain of  $G_V = 28dB$  or over.

#### 3. Ripple rejection ratio

Adding  $C_{\mbox{RIP}}$ , to ripple terminal 2 as shown in Figure 3, the ripple rejection ratio is improved from -25dB Typ. to -45dB Typ.

#### 4. Power dissipation

Care should be taken to use this IC below maximum power dissipation. Because it may over maximum rating depending on operating condition.

- $P_D = 900 \text{mW} \text{ (Ta} = 25^{\circ}\text{C)}$ TA7368P
- $P_D = 400 \text{mW} \text{ (Ta = 25°C)}$ TA7368F

### 5. Phase-compensation

Small temperature coefficient and excellent frequency characteristic is needed by capacitors below.

- Oscillation preventing capacitors for power amplifier output
- Bypass capacitor for ripple filter
- Capacitor between V<sub>CC</sub> and GND







TECHNICAL DATA

## TA7368P, TA7368F

## **MAXIMUM RATINGS** (Ta = 25°C)

| CHARACTER             | ISTIC   | SYMBOL                | RATING          | UNIT |  |
|-----------------------|---------|-----------------------|-----------------|------|--|
| Supply Voltage        |         | Vcc                   | 14              | V    |  |
| Power Dissipation     | TA7368P | D= (Noto)             | 900             | mW   |  |
| Power Dissipation     | TA7368F | P <sub>D</sub> (Note) | 400             |      |  |
| Operating Temperating | ature   | T <sub>opr</sub>      | <b>- 25∼75</b>  | °C   |  |
| Storage Temperatu     | ire     | T <sub>stg</sub>      | <b>-</b> 55∼150 | °C   |  |

(Note) Derated above  $Ta = 25^{\circ}C$  in the proportion of  $7.2 \, \text{mW} / \, ^{\circ}C$  for TA7368P and of  $3.2 \, \text{mW} / \, ^{\circ}C$  for TA7368F.

### **ELECTRICAL CHARACTERISTICS FOR TA7368P**

(Unless otherwise specified,  $V_{CC} = 6V$ , f = 1kHz,  $R_g = 600\Omega$ ,  $R_L = 4\Omega$ , Ta = 25°C)

|                        |                 |                      | <u> </u>                                                  |      |      |      |            |
|------------------------|-----------------|----------------------|-----------------------------------------------------------|------|------|------|------------|
| CHARACTERISTIC         | SYMBOL          | TEST<br>CIR-<br>CUIT | TEST CONDITION                                            | MIN. | TYP. | MAX. | UNIT       |
|                        |                 |                      | V <sub>CC</sub> = 3V, V <sub>in</sub> = 0                 | _    | 5.5  | _    |            |
| Quiescent Current      | lccQ            | <b> </b>             | $V_{CC} = 6V$ , $V_{in} = 0$                              | _    | 6.6  | 15   | mA         |
|                        |                 |                      | $V_{CC} = 9V$ , $V_{in} = 0$                              | -    | 7.5  | 18   |            |
|                        |                 |                      | $V_{CC} = 3V$ , $R_L = 4\Omega$ , $THD = 10\%$            | _    | 120  | _    |            |
|                        |                 |                      | $V_{CC} = 6V$ , $R_L = 4\Omega$ , $THD = 10\%$            | 500  | 720  | _    | ]          |
| Output Power           | Pout            | —                    | $V_{CC} = 6V$ , $R_L = 8\Omega$ , $THD = 10\%$            | 300  | 450  | _    | mW         |
|                        |                 |                      | $V_{CC} = 9V$ , $R_L = 8\Omega$ , $THD = 10\%$            | 800  | 1100 | _    | 1          |
|                        | VCC = 9\        |                      | $V_{CC} = 9V$ , $R_L = 16\Omega$ , $THD = 10\%$           | 450  | 610  | _    |            |
| Total Harmonic         | THD             |                      | P <sub>out</sub> = 100mW                                  |      | 0.3  | 1.0  | %          |
| Distortion             | Ind             |                      | Fout = 10011100                                           | _    | 0.5  | 1.0  | 70         |
| Voltage Gain           | GV              | _                    | $V_{in} = 0.5 \text{mV}_{rms}$                            | 37   | 40   | 43   | dB         |
| Output Noise Voltage   | V <sub>no</sub> | _                    | $R_g = 10k\Omega$ , BPF = 20Hz~20kHz                      | _    | 0.2  | 0.5  | $mV_{rms}$ |
| Ripple Rejection Ratio | RR              | _                    | $f_r = 100$ Hz, $V_r = 0.3$ V $_{rms}$ Without C $_{RIP}$ | _    | 25   | _    | dB         |
| Input Resistance       | R <sub>IN</sub> | _                    | _                                                         | _    | 27   | _    | kΩ         |

## **TERMINAL VOLTAGE FOR TA7368P**

Typical terminal voltage at no signal with test circuit. ( $V_{CC} = 6V$ , Ta = 25°C)

| _ * :          |   |      |      |      |   |   |      |    |     |
|----------------|---|------|------|------|---|---|------|----|-----|
| Terminal No.   | 1 | 2    | 3    | 4    | 5 | 6 | 7    | 8  | 9   |
| DC Voltage (V) | 0 | 2.40 | 0.62 | 0.64 | 0 | 0 | 2.61 | NC | 6.0 |

| TA7368P – 3   |
|---------------|
| 1996 – 4 – 22 |
|               |

[Unit: V]

TECHNICAL DATA

## TA7368P, TA7368F

## **ELECTRICAL CHARACTERISTICS FOR TA7368F**

(Unless otherwise specified,  $V_{CC} = 6V$ , f = 1kHz,  $R_q = 600\Omega$ ,  $R_L = 8\Omega$ ,  $Ta = 25^{\circ}C$ )

|                        |                 |                      | 3                                                                 |      |      |      |            |
|------------------------|-----------------|----------------------|-------------------------------------------------------------------|------|------|------|------------|
| CHARACTERISTIC         | SYMBOL          | TEST<br>CIR-<br>CUIT | TEST CONDITION                                                    | MIN. | TYP. | MAX. | UNIT       |
|                        |                 |                      | $V_{CC} = 3V, V_{in} = 0$                                         | _    | 5.5  | _    |            |
| Quiescent Current      | lccQ            | —                    | $V_{CC} = 6V$ , $V_{in} = 0$                                      | _    | 6.6  | 15   | mΑ         |
|                        |                 |                      | V <sub>CC</sub> = 9V, V <sub>in</sub> = 0                         | _    | 7.5  | 18   |            |
|                        |                 |                      | $V_{CC} = 3V$ , $R_L = 4\Omega$ , $THD = 10\%$                    | _    | 120  | _    |            |
| Output Power           | Pout            | —                    | $V_{CC} = 6V$ , $R_L = 8\Omega$ , $THD = 10\%$                    | 300  | 450  | _    | mW         |
|                        |                 |                      | $V_{CC} = 9V, R_L = 16\Omega, THD = 10\%$                         | 450  | 610  | _    |            |
| Total Harmonic         | THD             |                      | D 100m\\/                                                         |      | 0.3  | 1.0  | %          |
| Distortion             | וחט             | -                    | P <sub>out</sub> = 100mW                                          | _    | 0.5  | 1.0  | 70         |
| Voltage Gain           | GV              | _                    | $V_{in} = 0.5 \text{mV}_{rms}$                                    | 37   | 40   | 43   | dB         |
| Output Noise Voltage   | V <sub>no</sub> | -                    | $R_g = 10k\Omega$ , BPF = 20Hz~20kHz                              | _    | 0.2  | 0.5  | $mV_{rms}$ |
| Ripple Rejection Ratio | RR              | _                    | $f_r = 100$ Hz, $V_r = 0.3$ V $_{rms}$ , Without C <sub>RIP</sub> | _    | 25   | _    | dB         |
| Input Resistance       | RIN             | _                    | _                                                                 | _    | 27   | _    | kΩ         |

### **TERMINAL VOLTAGE FOR TA7368F**

Typical terminal voltage at no signal with test circuit. ( $V_{CC} = 6V$ ,  $Ta = 25^{\circ}C$ )

|                |    |     |    |   | <u> </u> |      |      |   |   |      |
|----------------|----|-----|----|---|----------|------|------|---|---|------|
| Terminal No.   | 1  | 2   | 3  | 4 | 5        | 6    | 7    | 8 | 9 | 10   |
| DC Voltage (V) | NC | 6.0 | NC | 0 | 2.40     | 0.62 | 0.64 | 0 | 0 | 2.61 |

| TA7368P – 4   |  |
|---------------|--|
| 1996 – 4 – 22 |  |
|               |  |

[Unit: V]

TECHNICAL DATA

## **TEST CIRCUIT**

TA7368P



※ Pin® : Non-connection

### TA7368F



※ Pin①, ③: Non-connection

| TA7368P - 5   |  |
|---------------|--|
| 1996 – 4 – 22 |  |
|               |  |

TECHNICAL DATA

## TA7368P, TA7368F





0.03

0.1

0.3



TECHNICAL DATA

## TA7368P, TA7368F









(mA)

QUIESCENT CURRENT





TA7368P - 7 1996 - 4 - 22 TOSHIBA CORPORATION

TECHNICAL DATA

## TA7368P, TA7368F



## % F + PCB

By being mounted on certain PCB's, flat packages increase the heat dissipating efficiency.

Data shown on the left is resulted from the measurement on the PCB recommended by Toshiba.

 $(\theta j - T : Thermal resistance)$ 

## Printed circuit board



60×47.5 (mm)

Material : Phenol resin

Thickness of copper leaf:  $35\mu m$ 

Plate thickness : 1.6mm

TECHNICAL DATA

## TA7368P, TA7368F

OUTLINE DRAWING

SIP9-P-A Unit: mm





Weight: 0.92g (Typ.)

| TA7368P – 9   |  |
|---------------|--|
| 1996 – 4 – 22 |  |
|               |  |

TECHNICAL DATA



Weight: 0.10g (Typ.)

| TA7368P – 10* |
|---------------|
| 1996 – 4 – 22 |
|               |