Massive Data Algorithmics

Lecture 8: Range Searching

Range Searching

- We have now discussed structures for special cases of two-dimensional range searching
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$

- Cannot be obtained for general (4-sided) 2d range searching:
- $O(\log_B^c N)$ query requires $\Omega(\frac{N}{B}\frac{\log_B N}{\log_B \log_B N})$ space
- O(N/B) space requires $\Omega(\sqrt{N/B})$ query

- Base tree: Weight balanced tree with branching parameter $\Theta(\log_B N)$ and leaf parameter B on x-coordinates $\Rightarrow O(\log_{log_B N} N) = O(\frac{\log_B N}{\log_R \log_R N})$ height
- Points below each node stored in 4 linear space secondary structures:
 - Right priority search tree
 - Left priority search tree
 - B-tree on y-coordinates
 - Interval (priority search) tree

- Secondary interval tree:
- Points below each node stored in 4 linear space secondary structures:
- Connect points in each slab in y-order
- Project obtained segments in *y*-axis

- Intervals stored in interval tree
 - * Interval augmented with pointer to corresponding points in y-coordinate B-tree in corresponding child node

- Found with 3-sided query in v_1 using right priority search tree
- Found with 3-sided query in v_2 using left priority search tree

- Points in slabs between v_1 and v_2
 - Answer stabbing query with q_3 using interval tree \Rightarrow first point above q_3 in each of the $O(\log_B N)$ slabs
 - Find points using y-coordinate B-tree in $O(\log_B N)$ slabs

- Found with 3-sided query in v_1 using right priority search tree
- Found with 3-sided query in v₂ using left priority search tree

- Points in slabs between v_1 and v_2
 - Answer stabbing query with q_3 using interval tree \Rightarrow first point above q_3 in each of the $O(\log_B N)$ slabs
 - Find points using y-coordinate B-tree in $O(\log_B N)$ slabs

- Found with 3-sided query in v_1 using right priority search tree
- Found with 3-sided query in v_2 using left priority search tree

- Points in slabs between v_1 and v_2
 - Answer stabbing query with q_3 using interval tree \Rightarrow first point above q_3 in each of the $O(\log_B N)$ slabs
 - Find points using y-coordinate B-tree in $O(\log_B N)$ slabs

- Found with 3-sided query in v_1 using right priority search tree
- Found with 3-sided query in v_2 using left priority search tree

- Points in slabs between v_1 and v_2
 - Answer stabbing query with q_3 using interval tree \Rightarrow first point above q_3 in each of the $O(\log_B N)$ slabs
 - Find points using y-coordinate B-tree in $O(\log_B N)$ slabs

Query analysis:

- $O(\log_B N)$ I/Os to find relevant node
- $O(\log_B N + T/B)$ I/Os to answer two 3-sided queries
- $O(\log_B N + \log_B N/B) = O(\log_B N)$ I/Os to query interval tree
- $O(\log_B N + T/B)$ I/Os to traverse $O(\log_B N)$ B-trees
- $\Rightarrow O(\log_B N + T/B) \text{ I/Os}$

Insert:

- Insert x-coordinate in weight-balanced B-tree
 - * Split of v can be performed in $O(w(v)\log_B w(v))$ I/Os

$$\Rightarrow O(rac{\log_B^2 N}{\log_B \log_B N}) \text{ I/Os}$$

- Update secondary structures in all $O(\frac{\log_B N}{\log_B \log_B N})$ nodes on one root-leaf path
 - * Update priority search trees
 - * Update interval tree
 - * Update B-tree

$$\Rightarrow O(\frac{\log_B^2 N}{\log_B \log_B N}) \text{ I/Os}$$

- Delete:
 - Similar and using global rebuilding

Summary: External Range Tree

- 2d range searching in $O(\frac{N}{B} \frac{\log_B N}{\log_B \log_B N})$ space
 - $O(\log_B N + T/B)$ I/O query
 - $O(\frac{\log_B^2 N}{\log_B \log_B N})$ update
- Optimal among $O(\log_B N + T/B)$ query structures

- Recursive subdivision of point-set into two half using vertical/horizontal line
- Horizontal line on even levels, vertical on uneven levels
- One point in each leaf
- \Rightarrow Linear space

- Recursive subdivision of point-set into two half using vertical/horizontal line
- Horizontal line on even levels, vertical on uneven levels
- One point in each leaf
- \Rightarrow Linear space

- Recursive subdivision of point-set into two half using vertical/horizontal line
- Horizontal line on even levels, vertical on uneven levels
- One point in each leaf
- \Rightarrow Linear space

- Recursive subdivision of point-set into two half using vertical/horizontal line
- Horizontal line on even levels, vertical on uneven levels
- One point in each leaf
- \Rightarrow Linear space

- Recursive subdivision of point-set into two half using vertical/horizontal line
- Horizontal line on even levels, vertical on uneven levels
- One point in each leaf
- \Rightarrow Linear space

Query

- Recursively visit nodes corresponding to regions intersecting query
- Report point in trees/nodes completely contained in query

Query analysis

- Horizontal line intersect $Q(N) = 2 + 2Q(N/4) = O(\sqrt{N})$ regions
- Query covers T regions

$$\Rightarrow O(\sqrt{N} + T) \text{ I/Os}$$

Query

- Recursively visit nodes corresponding to regions intersecting query
- Report point in trees/nodes completely contained in query

Query analysis

- Horizontal line intersect $Q(N) = 2 + 2Q(N/4) = O(\sqrt{N})$ regions
- Query covers T regions

$$\Rightarrow O(\sqrt{N} + T) \text{ I/Os}$$

kdB-tree:

- Stop subdivision when leaf contains between $\,B/2\,$ and $\,B\,$ points
- BFS-blocking of internal nodes
- Query as before
 - Analysis as before but each region now contains $\Theta(B)$ points

$$\Rightarrow O(\sqrt{N/B} + T/B) \text{ I/Os}$$

- Simple $O(N/B\log_2 N/B)$ algorithm
 - Find median of y-coordinates (construct root)
 - Distribute point based on median
 - Recursively build subtrees
 - Construct BFS-blocking top-down
- Idea in improved $O(N/B\log_{M/B}N/B)$ algorithm
 - Construct $\sqrt{M/B}$ levels at a time using O(N/B) I/Os

- ullet Sort N points by x- and by y-coordinates using $O(N/B\log_{M/B}N/B)$ I/Os
- Building $\sqrt{M/B}$ levels ($\sqrt{M/B}$ nodes) in O(N/B) I/Os:
 - 1. Construct $\sqrt{M/B} \times \sqrt{M/B}$ grid with $O(N/\sqrt{M/B})$ points in each slab

3. Find slab *s* with median *x*-coordinate

- 4. Scan slab s to find median x-coordinate and construct node
- 5. Split slab containing median *x*-coordinate and update counts
- 6. Recurse on each side of median x-coordinate using grid (step 3)
- \Rightarrow Grid grows to $M/B+\sqrt{M/B}.\sqrt{M/B}=\Theta(M/B)$ during algorithm
- \Rightarrow Each node constructed in $O(N(\sqrt{M/B.B}) \text{ I/Os})$

- \bullet Sort N points by x- and by $y\text{-}\mathrm{coordinates}$ using $O(N/B\log_{M/B}N/B)$ I/Os
- Building $\sqrt{M/B}$ levels ($\sqrt{M/B}$ nodes) in O(N/B) I/Os:
 - 1. Construct $\sqrt{M/B} \times \sqrt{M/B}$ grid with $O(N/\sqrt{M/B})$ points in each slab

- 4. Scan slab s to find median x-coordinate and construct node
- 5. Split slab containing median *x*-coordinate and update counts
- 6. Recurse on each side of median x-coordinate using grid (step 3)
- \Rightarrow Grid grows to $M/B + \sqrt{M/B}.\sqrt{M/B} = \Theta(M/B)$ during algorithm
- \Rightarrow Each node constructed in $O(N(\sqrt{M/B}.B) \text{ I/Os})$

- \bullet Sort N points by x- and by $y\text{-}\mathrm{coordinates}$ using $O(N/B\log_{M/B}N/B)$ I/Os
- Building $\sqrt{M/B}$ levels ($\sqrt{M/B}$ nodes) in O(N/B) I/Os:
 - 1. Construct $\sqrt{M/B} \times \sqrt{M/B}$ grid with $O(N/\sqrt{M/B})$ points in each slab

- 4. Scan slab s to find median x-coordinate and construct node
- 5. Split slab containing median *x*-coordinate and update counts
- 6. Recurse on each side of median x-coordinate using grid (step 3)
- \Rightarrow Grid grows to $M/B + \sqrt{M/B}.\sqrt{M/B} = \Theta(M/B)$ during algorithm
- \Rightarrow Each node constructed in $O(N(\sqrt{M/B}.B) \text{ I/Os})$

- \bullet Sort N points by x- and by $y\text{-}\mathrm{coordinates}$ using $O(N/B\log_{M/B}N/B)$ I/Os
- Building $\sqrt{M/B}$ levels ($\sqrt{M/B}$ nodes) in O(N/B) I/Os:
 - 1. Construct $\sqrt{M/B} \times \sqrt{M/B}$ grid with $O(N/\sqrt{M/B})$ points in each slab

- 4. Scan slab s to find median x-coordinate and construct node
- 5. Split slab containing median *x*-coordinate and update counts
- 6. Recurse on each side of median x-coordinate using grid (step 3)
- \Rightarrow Grid grows to $M/B + \sqrt{M/B}.\sqrt{M/B} = \Theta(M/B)$ during algorithm
- \Rightarrow Each node constructed in $O(N(\sqrt{M/B}.B) \text{ I/Os})$

- \bullet Sort N points by x- and by $y\text{-}\mathrm{coordinates}$ using $O(N/B\log_{M/B}N/B)$ I/Os
- Building $\sqrt{M/B}$ levels ($\sqrt{M/B}$ nodes) in O(N/B) I/Os:
 - 1. Construct $\sqrt{M/B} \times \sqrt{M/B}$ grid with $O(N/\sqrt{M/B})$ points in each slab

- 4. Scan slab s to find median x-coordinate and construct node
- 5. Split slab containing median *x*-coordinate and update counts
- 6. Recurse on each side of median x-coordinate using grid (step 3)
- \Rightarrow Grid grows to $M/B + \sqrt{M/B}.\sqrt{M/B} = \Theta(M/B)$ during algorithm
- \Rightarrow Each node constructed in $O(N(\sqrt{M/B}.B) \text{ I/Os})$

- \bullet Sort N points by x- and by $y\text{-}\mathrm{coordinates}$ using $O(N/B\log_{M/B}N/B)$ I/Os
- Building $\sqrt{M/B}$ levels ($\sqrt{M/B}$ nodes) in O(N/B) I/Os:
 - 1. Construct $\sqrt{M/B} \times \sqrt{M/B}$ grid with $O(N/\sqrt{M/B})$ points in each slab

3. Find slab *s* with median *x*-coordinate

- 4. Scan slab s to find median x-coordinate and construct node
- 5. Split slab containing median *x*-coordinate and update counts
- 6. Recurse on each side of median x-coordinate using grid (step 3)
- \Rightarrow Grid grows to $M/B + \sqrt{M/B}.\sqrt{M/B} = \Theta(M/B)$ during algorithm
- \Rightarrow Each node constructed in $O(N(\sqrt{M/B}.B) \text{ I/Os})$

- ullet Sort N points by x- and by y-coordinates using $O(N/B\log_{M/B}N/B)$ I/Os
- Building $\sqrt{M/B}$ levels ($\sqrt{M/B}$ nodes) in O(N/B) I/Os:
 - 1. Construct $\sqrt{M/B} \times \sqrt{M/B}$ grid with $O(N/\sqrt{M/B})$ points in each slab

- 4. Scan slab s to find median x-coordinate and construct node
- 5. Split slab containing median *x*-coordinate and update counts
- 6. Recurse on each side of median x-coordinate using grid (step 3)
- \Rightarrow Grid grows to $M/B + \sqrt{M/B}.\sqrt{M/B} = \Theta(M/B)$ during algorithm
- \Rightarrow Each node constructed in $O(N(\sqrt{M/B}.B) \text{ I/Os})$

		١.	٠.	٠.	. :
		٠.			
		٠.	· :		• .
<u> </u>	•	•			•
. <u>:</u> ,	. •				•
		·	•		. •
· ·		٠.	Т		

kdB-tree:

- Linear space
- Query in $O(\sqrt{N/B} + T/B)$ I/Os
- Construction in $O(N/B\log_{M/B}N/B)$ I/Os
- Point search in $O(\log_R N)$ I/Os

• Dynamic:

- Deletions relatively easily in $O(\log_B^2 N)$ I/Os (partial rebuilding)

kdB-tree Insertion using Logarithmic Method

- Partition pointset S into subsets $S_0, \dots, S_{logN}, |S_i| = 2^i$ or $|S_i| = 0$
- Build kdB-tree D_i on S_i

- Query: Query each $D_i \Rightarrow \sum_{i=0}^{\log N} O(\sqrt{2^i/B} + T_i/B) = O(\sqrt{N/B} + T/B)$
- Insert: Find first empty D_i and construct D_i out of $1 + \sum_{j=0}^{i-1} 2^j = 2^i$ elements in S_0, S_1, \dots, S_{i-1}
 - $O(2^i/B\log_{M/B}(N/B\log N) \text{ I/Os} \Rightarrow O(1/B\log_{M/B}N/B)$ per moved point
 - Point moved O(logN) times
 - $\Rightarrow O(1/B\log_{M/B}(N/B\log N)) = O(\log_B^2 N)$ I/Os amortized

kdB-tree Insertion and Deletion

- Insert: Use logarithmic method ignoring deletes
- Delete: Simply delete point p from relevant D_i
 - i can be calculated based on # insertions since p was inserted
 - # insertions calculated by storing insertion number of each point in separate B-tree
 - $\Rightarrow O(\log_B N)$ extra update cost
- To maintain O(logN) structures D_i
 - Perform global rebuild after every $\Theta(N)$ updates
 - $\Rightarrow O(1/B\log_{M/B}N/B) = O(\log_B N)$ extra update cost

Summary: kdB-tree

		٠,	. •	:
	• .			
· . ·				•
 · ·.	• •	· T		. ·

- 2d range searching in O(N/B) space
 - Query in $O(\sqrt{N/B} + T/B)$ I/Os
 - Construction in $O(N/B\log_{M/B}N/B)$ I/Os
 - Updates in $O(\log_B^2 N)$ I/Os
- Optimal query among linear space structures

Summary/Conclusion: Tools and Techniques

Tools

- B-trees
- Persistent B-trees
- Buffer trees
- Logarithmic method
- Weight-balanced B-trees
- Global rebuilding

Techniques:

- Bootstrapping
- Filtering