Applied ML for veterinary epidemiologists

ISVEE pre-conference workshop - Day 4

Session 2 - Neural network fundamentals

Dr Tom Brownlie

Machine learning is turning things (data) into numbers and finding patterns in those numbers.

The computer does this part.

How?

Code & math.

We're going to be writing the code.

Why use machine learning (or deep learning)?

What is deep learning?

Traditional programming

- 2. Season chicken
- 3. Preheat oven
- 4. Cook chicken for 30-minutes
- 5. Add vegetables

makes

ML/DL approach

figures out

- 1. Cut vegetables
- 2. Season chicken
- 3. Preheat oven
- 4. Cook chicken for 30-minutes
- 5. Add vegetables

Family trees

Deep Learning with OPyTorch

What is PyTorch?

- Most popular research deep learning framework
- Writes fast deep learning code in Python (and supports GPU runtimes)
- Able to access many prebuilt deep learning models (TorchHub etc.)
- Whole stack. Preprocesses data, models data, deploys to applications/cloud
- Originally designed in-house by Meta. Now open sourced and used by Tesla, Microsoft and OpenAI etc.

Why PyTorch?

Repository Creation Date

What is a tensor?

What are neural networks?

Inputs

Numerical encoding

Learns representations (patterns, features, weights)

Representatio n outputs

[[0.983,0.004,0.013], [0.110,0.889,0.001], [0.023,0.027,0.985], ..., **Outputs**

1. Cut veg...

Hey Siri, what's the weather today?

Ramen spagetti

These are tensors

What are neural networks?

These are tensors

What is a tensor?

A generalization of vectors and matrices to higher dimensions.

Tensor dimensions

Matrix multiplication (dot product)

Supervised learning

Tensor attributes

Attribute	Meaning	Code
Shape	The length (number of elements) of each of the dimensions of a tensor.	tensorshape
Rank/dimensions	The total number of tensor dimensions. A scalar has rank 0, a vector has rank 1,a matrix is rank 2, a tensor has rank n.	tensandmortensar.size()
Speci <c axis="" dimension<br="" or="">(e.g. "1st axis" or "0th dimension")</c>	A particular dimension of a tensor.	tenso[Ojtensof,1]

What are we going to cover?

Resources

Course tutors

Google's in-built native LLM

https://pytorch.org/

HOW TO CONFUSE MACHINE LEARNING

print("Let's Code")

https://github.com/ingenum-ai/ISVEE_deepLearning_2024/

Open Notebook 2...

