NOV 1 8 2002 U

ABSTRACT FOR EP 612772

L1 ANSWER 1 OF 1 WPIX (C) 2002 THOMSON DERWENT

AN 1994-265910 [33] WPIX

DNC C1994-121587

TI Luminescing copolymers contg. rare earth complexes as luminescing component - useful in medical diagnostics and for labelling of polymers.

DC A18 A60 A89 B04 E12 G04 J04

IN HEILIGER, L.

PA (FARB) BAYER AG

CYC 10

PI EP 612772 A1 19940831 (199433)* DE 10p <--

R: BE CH DE FR GB IT LI NL

DE 4305959 A1 19940901 (199434) 7p

JP 06256429 A 19940913 (199441) 8p

US 5442021 A 19950815 (199538)

EP 612772 B1 19970604 (199727) DE 11p <--

R: BE CH DE FR GB IT LI NL

DE 59402958 G 19970710 (199733)

ADT EP 612772 A1 EP 1994-102220 19940214; DE 4305959 A1 DE 1993-4305959

6p

19930226; JP 06256429 A JP 1994-43298 19940218; US 5442021 A US 1994-198637 19940218; EP 612772 B1 EP 1994-102220 19940214; DE 59402958 G

DE 1994-502958 19940214, EP 1994-102220 19940214

FDT DE 59402958 G Based on EP 612772

PRAI DE 1993-4305959 19930226

AN 1994-265910 [33] WPIX

AB EP 612772 A UPAB: 19941010

The following are claimed; (A) luminescing copolymers of formula (A)a-(B)b (I) A = a luminescing component; B = a (co)monomer; a = 0.001-20 wt.%; b = 99.0000-30 wt.%. (B) Rare earth complexes of formula M3+(L)n (II), useful as component (A) in (I). M 3+ = a rare earth metal cation; L = a polymerisable complex ligand; n= 1-4. (II) are of formula (IIa) or (IIb).

USE/ADVANTAGE - The copolymers are useful as labels for biologically active molecules, e.g. protein and nucleic aids, in medical diagnostics. They are also useful for labelling plastics. The new copolymers have greater luminescences intensity than corresp. known cpds... Dwg.0/0

ABEQ US 5442021 A UPAB: 19950927

Luminescent copolymers of formula (A)a-(B)b are new, where A is a rare earth metal complex of formula M3+(L)n; M3+ is a rare earth metal cation; L is a polymerisable complex ligand contg. a polymerisable double bond; n is 1-4; B is a radical polymerisable comonomer; and a, b are wt.% of A and B a being 0.0001-20 wt.% and b being 99.9999-80 wt.%. M(3+) is esp. an anion of europium or and A is pref. of formula (II) or (III).

USE/ADVANTAGE - (I) are used in medical diagnosis for marking substance for biologically active molecules, e.g. proteins, nucleic acids, antibodies and aminated gene probes, and for marking plastics. (I) have better luminescence intensity than prior art cpds. Dwg.0/0

ABEQ EP 612772 B UPAB: 19970702

Luminescent copolymers of the structure (A)a-(B)b, wherein A is a complex salt of a rare earth metal of the formula M3+(L)n in polymerised form, in which M is Dy, Sm, Eu or Tb, L is a bidentate ligand contaiing a conjugated n, system, at least one oxygen or nitrogen atom and at least one polymerisable double bond, and n is an integer from 1 to 4, B is a (co)monomer in polymerised form, and a and bare the proportions of A and B in the copolymer, where a is 0.0001 to 20 wt.% and b is 99.9999 to 80 wt.%.

Dwg.0/0

(1) Veröffentlichungsnummer: 0 612 772 A1

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 94102220.4

(1) Int. Cl.5: C08F 246/00, C08F 30/04, C09K 11/06, G01N 33/533

2 Anmeldetag: 14.02.94

Priorität: 26.02.93 DE 4305959

Veröffentlichungstag der Anmeldung: 31.08.94 Patentblatt 94/35

 Benannte Vertragsstaaten: BE CH DE FR GB IT LI NL (1) Anmelder: BAYER AG

D-51368 Leverkusen (DE)

Erfinder: Heiliger, Ludger, Dr. Carl-Rumpff-Strasse 8 D-51373 Leverkusen (DE)

- 54 Lumineszierende Copolymere.
- 57 Lumineszierende Copolymere der Struktur

 $[A]_a - [B]_b$

worin

Α eine lumineszierende Komponente und

В (Co)Monamere darstellt und

a und b die Massenanteile von A und B im Copolymer, worin a 0,0001 bis 20 Gew.-% und b 99,9999 bis

80 Gew.-% ausmacht,

Seltene Erdmetallkomplexe der Formel M3+(L)n - geeignet als Komponente A in Anspruch 1 - worin M3+ das Kation eines seltenen Erdmetalls, L einen polymerisierbaren Komplexligand und n eine ganze Zahl von 1 bis 4 darstellt als deren Vorprodukt und die Verwendung der lumineszierenden Copolymeren in der medizinischen Diagnostik.

Die Erfindung betrifft lumineszierende Copolymere, Komplexsalz von seltenen Erdmetallen (als Vorprodukte), V rfahren zu deren Herstellung und ihre Verwendung in der medizinischen Diagnostik und zur Markierung von Kunststoffen. Die Copolymere sind aufgebaut aus speziellen lumineszierenden Komplexsalzen von Seltenen Erdmetallen als Monomere und beliebigen Comonomeren. Unter Lumineszenz versteht man die Aussendung elektromagnetischer Strahlung (Licht) bei der Rückkehr von Atomen aus einem angeregten Zustand in den Grundzustand. Dieser Übergang kann aus einem angeregten Singulettzustand oder einem angeregten Triplettzustand erfolgen. Die aus einem Singulettzustand emittierte Strahlung wird als Fluoreszenz bezeichnet, die aus einem Triplettzustand emittierte Strahlung als Phosphoreszenz. Letztere erfordert eine Spinumkehr zwischen Anregung und Energieabgabe, die eine verlängerte Lebensdauer des angeregten Zustandes bewirkt, weshalb die Phosphoreszenz erst nach einer zeitlichen Verzögerung eintritt.

Erfindungsgemäße Copolymere sind dadurch gekennzeichnet, daß sie

- 1. lumineszierende Komplexsalze von Seltenen Erdmetallen mit einer polymerisierbaren Doppelbindung als Monomere einpolymerisiert enthalten, wobei die Phosphoreszenz der organischen Komplex-Liganden auf Seltenerdmetallionen übertragen wird, welche dann selbst die aufgenommene Energie als Fluoreszenz abstrahlen, und
- 2. radikalisch polymerisierbare Comonomere.

15

Polymere mit organischen fluoreszierenden Gruppen sind bekannt. In der medizinischen Diagnostik werden diese als Markierungssubstanzen für biologisch aktive Moleküle wie beispielsweise Proteine oder Nukleinsäuren verwendet (z.B. EP-A-513 560, US-PS 41 166 105). Alle organischen fluoreszierenden Verbindungen konkurieren mit der Hintergrund-, d.h. Eigenfluoreszenz des biologischen Materials (Proteine, Nukleinsäuren). Dieses besitzt Abklingzeiten seiner angeregten Zustände in der gleichen Größenordnung wie die Markierungssubstanzen selbst Die dadurch erhöhten Blindwerte bei der Messung der Fluoreszenz der Markierungssubstanzen vermindern die Nachweisempfindlichkeit beträchtlich unter die theoretisch möglicher Grenze. Durch die längere Lebensdauer des Triplettzustandes sowie die Übertragung von dessen Energie auf das Seltenerdmetallion wird die Fluoreszenz des Metallkation verzögert; sie kann noch gemessen werden, wenn die Emission der biologischen Materialien (Hintergrundfluoreszenz) bereits abgeklungen ist. Das höhere Signal/Rausch-Verhältnis erlaubt daher prinzipiell einen empfindlichen Nachweis des biologischen Materials und daher eine frühere Erkennung von potentiellen Krankheitserregern.

Diagnostische Nachweismethoden mit Seltenerdmetallen sind bekannt (CRC Crit. Rev. Anal. Chem 1987, 18, 105-154; Scand. J. Clin. Lab. Invest. 1988, 48, 389-400). Dabei werden Eu³⁺ Metallkationen mit Aminopolycarbonsäuren komplexiert und an Proteine (ca. 5 bis 15 Eu³⁺/Protein), beispielsweise Streptavidin oder Antikörper gebunden. Nachdem die Proteine die immunologische Erkennungsreaktionen mit ihren zugehörigen Haptenen, bzw. mit den hapten - gelabelten Gensonden - DNA -Hybriden ausgeführt haben, wird der eigentliche Nachweis durch Lumineszenz erbracht. Dazu muß der nicht lumineszente Eu³⁺-Aminopolycarbonsäurekomplex zerstört und das Eu³⁺ mit neu zugefügten UV-Energieüberträger-Liganden komplexiert werden, was einen zusätzlichen Aufwand mit sich bringt (Waschprozesse, unspezifische Wechselwirkungen). Durch die Notwendigkeit des Umkomplexierens ist die Nachweismethode nur begrenzt anwendbar. Die erfindungsgemäßen lumineszierenden Copolymeren benötigen keine Umkomplexierung, da sie unter den Anwendungsbedingungen stabil sind. Dadurch vereinfacht sich die Handhabung und Durchführung der Nachweisreaktionen.

Neuere Entwicklungen (Anal. Chem. 1990, 62, 1841 - 1845; Clin. Chem. 1990, 36, 1497 - 1502) beschreiben Eu³+-Komplexe, die zum Nachweis von Proteinen nicht mehr umkomplexiert werden müssen. Bei diesen ist jedes Eu³+-Ion aber nur mit einem UV-Energieüberträgermolekül komplexiert. Um hohe Lumineszenzintensitäten zu erhalten, was einen empfindlichen Nachweis erst ermöglicht, sind aber mehrere UV-Absorber-Liganden pro Metall-Ion nötig; maximal sind vier möglich (J. Inorg. Nucl. Chem. 1966, 28, 3005 -3018). Daher kann bei dieser Methode hohe Nachweisempfindlichkeit nur mit Vielfachmarkierung des Proteins (bis zu 450 Eu³+/Protein) erreicht werden, was nur in Ausnahmefällen gelingt. Die erfindungsgemäßen Copolymere haben hohe Lumineszenzintensität, da sie bis zu vier UV-Überträgerliganden pro Metallion besitzen. Die erfindungsgemäßen Copolymere erreichen ferner ein wesentlich höheres Eu³+/Protein-Verhältnis (typischerweise zwischen 10³-10⁵), als die bisher beschriebenen. Da es sich bei den erfindungsgemäßen Copolymeren nicht um metallionenmarkierte Proteine (oder andere Biomaterialien) handelt, sondern um synthetische metallionenhaltige Polymerisate, sind sie auch unter Bedingungen einsetzbar, bei denen Üblicherweise Proteine denaturiert werd n (hohe Temp ratur, hohe Ionenstärke der Lösung).

Seltenerdmetallhaltige Polymere sind bekannt und werden beispielsweie in J Appl. Pol. Sc. 1980, 25, 2007-2017 beschrieben. Dort wurden UV-Energieüberträger als Komplexliganden für Eu³⁺ in Polymere eingebaut und diese mit Eu³⁺ beladen. Es wurde gezeigt, daß die mehrfache Koordination eines Metallions mit den polymeren Liganden durch die wachsende sterische Hinderung und abnehmende freie Beweglichkeit der Einfachbindungen stark eingeschränkt ist, und speziell der stark lumineszierende tetrakoordinierte

Komplex überhaupt nicht gebildet wird.

Die erfindungsgemäßen Copolymere enthalten Seltenerdmetallkationen tetrakoordiniert mit UV-Energieüberträger Liganden; Die Kationen werden vor der Polymerisation komplexiert und der fertige Komplex polymerisiert. Daher sind die erfindungsgemäßen Copolymere an Lumineszenzintensität den in der Literatur beschriebenen weit überlegen.

Die erfindungsgemäßen Copolymere sind ferner geeignet, Kunststoffe zu markieren und sie dadurch unterscheidbar zu machen.

Die erfindungsgemäßen Copolymere enthalten folgende Komponenten:

o [A]_a - [B]_b

5

15

20

25

30

35

40

worin

A eine lumineszierende Komponente und

B (Co-)Monomere bedeutet und

a und b die Massen-Anteile von A und B darstellen,

wobei a 0,0001 bis 20 Gew.-% und b 99.9999 bis 80 Gew.-% ausmacht.

Die lumineszierende Komponente A ist ein Komplexsalz eines Seltenen Erdmetalls der Formel

M3+(L)_n

worin

M für Seltenerdmetallkationen wie Dy, Sm, Eu, Tb, und

L für zweizähnige Liganden, die ein konjugiertes π -System und mindestens ein Sauerstoff oder Stickstoffatom enthalten und mindestens eine polymerisierbare C = C-Bindung.

Dies schließt auch ringförmige und insbesondere aromatische Verbindungen ein. Die Liganden müssen so auf das Zentralmetallion abgestimmt sein, daß eine Energieübertragung möglich ist, d.h. die Emissionswellenlänge der Phosphoreszenz der Liganden darf nur maximal 50 nm kleiner sein, als die Absorptionswellenlänge des Metallions.

n ist eine ganze Zahl von 1 bis 4, bevorzugt 3 oder 4, insbesondere 4. Als Liganden sind folgende bevorzugt:

1.

$$R^{1}$$
 R^{2}

$$H_3C$$
 H_3C
 H_4C
 H_3C
 H_4C
 H_4C

50

55

 $X = NH, O, S; R^* = H, CH_3$

 $R^2 = R^3 = COOM, PO_3M, PO_2M, OH, NH_2, SM, H$

M = Na, K, NH₄, H

2.

$$R^4 = (CH_2 = CH^-)_n^-$$

 $\left\langle \left\langle \right\rangle \right\rangle$

$$R^5 = CH_2 = C$$

$$CH_{2} = C$$
 $CH_{3}(H)$
 $CH_{2} = C$
 $CH_{3}(H)$

 $R^6 := C_n F_{2n+1}, C_n H_{2n+1}$ n = 1-8

3.

$$\sum_{R^2} N - \sum_{N=-R^2}^{R^1}$$

R¹, R², R³ wie oben beschrieben Besonders bevorzugte lumineszierende Komponenten sind:

$$\begin{array}{c|c}
CH_3 & OH \\
NH-C-NH & COO^{\Theta} \\
CH_2 & CF_3
\end{array}$$

$$\begin{array}{c|c}
CH_2 & Eu^{3+}
\end{array}$$

Die polymerisierbaren Liganden werden durch eine Reaktion von geeigneten, funktionelle Gruppen tragenden Monomeren wie beispielsweise (Meth)-Acrylsäurechlorid, Isocyanatoethylmethacrylat, Isopropenyl-α,α-dimethyl-benzylisocyanat, Chlormethylstyrol, Chloroacetoxypropyl-oder -ethylmethacrylat mit geeigneten UV Energieüberträgern über Alkyl-, Ester-, Säureamid, Urethan-, Harnstoff- und/oder Thioharnstoff-Gruppierungen gebildet.

CH=CH2

Als (Co-)Monomere B kommen in Frage:

10

15

20

25

40

α,β-ungesättigte Verbindungen wie Styrol, α-Methyl-styrol, Vinyltoluol, substituierte Vinyltoluole, Vinylpyridin, Acrylnitril und die Ester der Acryl- und Methacrylsäure. Bevorzugt sind die Ester der (Meth)Acrylsäure mit 1 bis 20 C-Atomen im Alkoholteil; beispielhaft seien genannt:

Methyl(meth)acrylat, Ethyl(meth)acrylat, n-Propyl(meth)-acrylat, iso-Propyl(meth)acrylat, n-Butyl(meth)acrylat, iso-Butyl(meth)acrylat, tert.-Butyl(meth)acrylat und 2-Ethylhexyl(meth)acrylat. Gut geeignet sind auch Methacrylsäureester cycloaliphatischer Alkohole, wie Cyclo-hexylmethacrylat, Furfurylmethacrylat, Vinylester, wie Vinylacetat, -propionat, Maleinsäureanhydrid, Itaconsäureanhydrid,

wobei die Monomeren B auch miteinander in verschiedenen Verhältnissen gemischt werden können.

Der Massenanteil von a in den erfindungsgemäßen Copolymeren ist 0,0001 bis 20 Gew.-%, bevorzugt 0,01 bis 10 Gew.-%, besonders bevorzugt 0,1 bis 5 Gew.-%.

Der Massenanteil von b ist 99,9999 bis 80 Gew.-%, bevorzugt 99,99 bis 90 Gew.-%, besonders bevorzugt 99,9 bis 95 Gew.-%.

Die erfindungsgemäßen Copolymere können unvernetzt (linear) sein, mit Molmassen von 1.000 bis 10.000.000,

vorzugsweise 5.000 bis 1.000.000, vorzugsweise sind sie jedoch vernetzt. Die erfindungsgemäßen Copolymere können als wäßrige Dispersion vorliegen, mit Polymerteilchen von 30 bis 5.000 nm, vorzugsweise 40 bis 2.000 nm, besonders bevorzugt 50 bis 2.000 nm Durchmesser.

Für diagnostische Anwendungen sind als Comonomere B der erfindungsgemäßen Copolymere polare Monomere wie (Methyl-)Methacrylat, Ethylenglykoldimethacrylat, gegebenenfalls zusammen mit wasserlöstichen Monomeren wie Acrylnitril, (Meth-)Acrylsäure, Hydroxyethyl(meth-)acry-lat, Dimethylaminoethylmethacrylat, besonders bevorzugt, die die unspezifischen Wechselwirkungen mit Biomaterialien unterdrücken können. Bevorzugt werden erfindungsgemäße Copolymere in Form von wäßrigen Dispersionen, mit Polymerteilchen von 30 bis 6.000 nm, vorzugsweise 40 bis 3.000 nm, besonders bevorzugt 40 bis 2.000 nm Durchmes-ser. Es können Metall³¹/Protein-Verhältnisse von 10² bis 10⁷ erreicht werden, je nach Partikeldurchmesser.

Die wäßrigen Dispersionen können nach bekannten Verfahren der Emulsions-, bzw. Suspensionspolymerisation hergestellt werden, wobei als Radikalinitiatoren beispielsweise Azobisisobutyronitril, Benzoylperoxid oder Alkali, bzw. Ammonium Peroxydisulfat verwendet werden können. Dazu werden die meist wasserunlöslichen lumineszierend n Komponenten A und die Comonomeren B mit Hilfe eines Emulgators

bzw. Dispergators in Wasser emulgi rt, bzw. dispergiert und dann polymerisiert. Als Emulgator bzw. Dispergator eignen sich beispielsweise Alkali- oder Ammonium-Salz von Alkylsulfaten sowie Alkylsulfonaten (C₆-C₁₅) oder Fettsäuren. Ferner können polymere Emulgatoren bzw. Dispergatoren wie beispielsweise Polyvinylpyrolidon, Polyvinylalkohol oder verseifte und teilverseifte Styrol/Maleinanhydrid-Copolymerisats oder die in EP-A-334 032 beschriebenen Polyesterurethane verwendet werden. Als Saat-Latex eignen sich beispielsweise Polystyrol- oder Polymethylmethacrylat-Latizes bzw. Dispersionen. Der Latex bzw. die Dispersion kann von eventuell verbliebenen, molekular gelösten Bestandteilen durch Zentrifugation gereinigt werden. Dieses Produkt kann direkt mit biologisch relevanten Molekülen wie beispielsweise Proteinen, Antikörpern, aminierten Gensonden über eine Carbodiimid-Kopplung kovalent verknüpft werden und in diagnostischen Nachweissystemen eingesetzt werden.

Bei der Anwendung der erfindungsgemäßen Copolymeren zur Kunststoffmarkierung richtet sich die Wahl der Monomeren B nach dem Kunststoff. Beispielsweise ist zur Markierung von Polymethylmethacrylat und von Polyamiden wie Polyamid-6 oder Polyamid-6,6, Methylmethacrylat oder Acrylamid als Monomer B besonders bevorzugt. Zur Markierung von Polystyrol, Styrol/Butadien-Copolymerisat und Poly-(oxycarbonyloxy-1,4-phenylenisopropyliden-1,4-phenylen) ist Styrol als Monomer B besonders bevorzugt. Zur Markierung von Polyethylen, Polypropylen und deren Copolymeren wie Ethylenvinylacetat-Copolymer ist Stearylmethacrylat gegebenenfalls zusammen mit Methylmethacrylat im Gewichtsverhältnis 10:1 bis 30:1 als Monomer B besonders bevorzugt. Zur Markierung von Polyethylenterephthalat, Styrol/Butadien-Acrylnitrilterpolymerisat und von Styrol/Acrylnitril-Copolymerisat ist eine Mischung aus 72 Gew.-% Styrol und 28 Gew.-% Acrylnitril als Comonomere B besonders bevorzugt.

Es können auch bereits markierte Kunststoffe als Marker für weitere Kunststoffe eingesetzt werden. So läßt sich ein mit einem erfindungsgemäßen Copolymeren aus einer lumineszierenden Komponente A und Methylmethacrylat als Monomer B markiertes Polymethylmethacrylat zur Markierung von Polyamiden verwenden.

Die erfindungsgemäßen Copolymeren für die Kunststoffmarkierung können durch Emulsionspolymerisation hergestellt werden, wobei nicht der Latex selbst, sondern das daraus isolierte Copolymer zur Markierung verwendet Kunststoffen mit den erfindungsgemäßen Copolymeren (oder deren Legierungen) ist durch mechanisches Mischen, Kneten und/oder Extrudieren möglich. Beispielsweise kann der zu markierende Kunststoff mit dem erfindungsgemäßen Copolymer bei einer Temperatur mindestens 10 °C oberhalb der Erweichungstemperatur des Bestandteils mit der höchsten Erweichungstemperatur vermischt, verknetet oder extrudiert werden Üblicherweise beträgt die erforderliche Menge des erfindungsgemäßen Copolymer 0,001 bis 10 Gew.-%, bevorzugt 0,005 bis 5 Gew.-%, besonders bevorzugt 0,01 bis 2 Gew.-% des markierten Kunststoffs.

Beispiele

25

35

40

45

55

Lumineszierende Komponenten

Beispiel 1

a) 0,05 MoI (7,65 g) p-AminosalicyIsäure werden mit 0,05 MoI (10,95 g) m-TMI® (α - α -DimethyI-misopropenyIbenzyIisocyanat) und einer SpateIspitze 2,6-Bis¹butyIphenoI in 100 ml trockenem Aceton 6 Stunden unter Rückfluß erhitzt. Der entstandene Niederschlag wird abgesaugt, mit kaltem Aceton nachgewaschen und getrocknet. Die ¹H-NMR und IRAnalyse ergibt N-(α , α -DimethyI-m-isopropenyIbenzyI)-N'(-p-salicyI)harnstoff als reines Produkt. (δ ¹H 6,7 und 8,8 ppm, ν _{C-H} Harnstoff = 1.630 cm⁻¹) Ausbeute ca. 63 %

b) NH4 [Tb(C20H21N2O4)4]

0,2 g Ligand aus Beispiel 1a) und 0,06 g Tb(NO₃)₃ • 5H₂O werden separat in je 3 ml Methanol gelöst. Die beiden Lösungen werden vereinigt und 0,5 ml konzentrierte Amrnoniaklösung zugetropft, wobei sich ein Niederschlag bildet, Dieser wird abgesaugt, mit Wasser gewaschen und im Hochvakuum getrocknet. Der ¹⁵⁹Tb-Gehalt wurde elementaranalytisch zu 10,1 % Tb bestimmt.

elektriken.

V 4 1 1 1

Beispiel 2

a) 0,05 Mol (13,25 g) 1-(2-Naphthoy1)-3,3,3-tri-fluoroaceton werden in 50 ml Methanol gelöst. Dann wird 0,05 Mol (11,32 g) Natriummethanolat aus einer 30 Gew.-%igen Natriummethanolat-Lösung in Methanol langsam bei 0 °C zudosiert, auf Zimmertemperatur erwärmt, 0,05 Mol (7,63 g) Chlormethylstyrol zugegeben und 16 Stunden auf Rückfluß erhitzt. Der entstandene feine Ni derschlag (NaCl) wird

EP 0 612 772 A1

abfiltriert, die Lösung im Wasserstrahlvakuum auf ca. 1/3 des Ausgangsvolumens eingeengt und mit soviel Wasser versetzt, daß sich der entstandene Niederschlag gerade löst. Die organische Phase wird abgetrennt, die wäßrige Phase zweimal mit Chloroform ausgeschüttelt, die vereinigten organischen Phasen über Natriumsulfat getrocknet, filtriert und eingedampft. Die Rohprodukte werden auf einer Kieselgelsäule (0,063 bis 0,2 mm) in einem Lösungsmittelgemisch aus Toluol:Methylenchlorid:Ethylacetat: Methanol im Verhältnis 5:3:1:0,5 gereinigt. (δ¹⁹ F-76,6 ppm, Ausbeute an 1-(2-Naphtoyl)-1-chlormethylstyrol-3,3,3-trifluoroaceton: ca. 25 % der Theorie.

b) NH₄[Eu(C₂₃H₁₆F₃O₂)₄]

0,1 g Ligand aus Beispiel 2a) und 0,023 g EuCl₃ 6 H₂O werden separat in 2 ml Methanol gelöst. Die beiden Lösungen werden vereinigt und 0,2 ml konzentrierte Ammoniaklösung zugetropft, wobei sich ein Niederschlag bildet, Dieser wird abgesaugt, mit Wasser gewaschen und im Hochvakuum getrocknet. Der ¹⁵ Eu-Gehalt wurde elementaranalytisch zu 9,0 % En bestimmt.

Copolymere als Marker für Polyethylen (PE)

Same Same

Beispiel 3

5

10

15

35

0,25 g EuCl₃•6H₂O, 1,575 g Substanz aus Beispiel 2a) und 0,645 g N,N-Dimethylaminoethylmethacrylat werden in 135,5 ml Methanol gelöst und die Komplexbildung durch UV-Anregung bei 366 nm geprüft (starkes rotes Leuchten). Dann wird 3,57 g Ethylenglykoldimethacrylat, 28,5 g Stearylmethacrylat und 0,35 g Azobisisobutyronitril zugegeben, die Apparatur evakuiert, mit Reinststickstoff belüftet, dieser Vorgang noch zweimal wiederholt und auf 65 °C erhitzt. Bereits nach wenigen Stunden zeigt sich ein weißer Niederschlag, wobei nach 16 h Reaktionszeit der gesamte Ansatz vollständig ausgefallen ist. Der Niederschlag wird abgesaugt, mit Methanol nachgewaschen und getrocknet. Ausbeute: 90 % der Theorie eines unter UV-Anregung intensiv rot leuchtenden Pulvers.

Beispiel 4

Analog Beispiel 3 werden 0,25 g Tb(NO₃)₃ • 5H₂O mit 1,23 g Substanz aus Beispiel 1a)und 0,55 g N,N'-Dimethylaminoethylmethacrylat in 54,9 ml Dimethylacetamid komplexiert (grünes Leuchten nach Anregung bei 366 nm) und nach Zugabe von 1,72 g Ethylenglykoldimethacrylat, 13,7 g Stearylmethacrylat und 0,17 g Azobisisobutyronitril 16 h bei 65 °C polymerisiert. Nach Absaugen des Niederschlages und Waschen mit Methanol wird das Filtrat in Methanol gefällt, abgesaugt, nachgewaschen und getrocknet. Ausbeute: 89 % der Theorie eines unter UV-Anregung intensiv grün leuchtenden Pulvers.

生活的 医大路内侧 医多头头 化二唑二唑二唑二唑 医硫化二唑硷二唑硷 化二烷基二二

Copolymere als Marker für Polymethylmethacrylat

Beispiel 5 und 6

Die Beispiele 3 und 4 werden mit folgender Änderung wiederholt: statt Stearylmethacrylat wird die gleiche Menge Methylmethacrylat verwendet.

Einarbeitung der Polymermarker in Polyethylen

45 Beispiel 7

Ein Haake Rheometer Kneter, Fassungsvolumen 50 ml, wird auf 130 °C geheizt und 44 g Polyethylen-Granulat (LDPE, Firma Novex Exp. 2184) eingefüllt. Nach 10 Minuten Kneten werden 0,37 g Substanz aus Beispiel 3 sowie 0,185 g Substanz aus Beispiel 4 zugegeben und noch 15 Minuten bei dieser Temperatur geknetet. Das Polymerisat enthält somit je ca. 20 bis 25 ppm Metallionen und Farbstoffe.

Einarbeitung der Polymermarker in Polymethylmethacrylat

Attended to the state of the st

Beispiel 8

55

Der Versuch aus Beispiel 7 wird mit folgenden Änderungen wiederholt: Polyethylen-Granulat wird durch granuliertes Polymethylmethacrylat (Röhm GmbH, Darmstadt), sowie die Substanzen aus Beispiel 3 und 4 werden durch die Produkte aus Beispiel 5 und 6 ersetzt und die Knetertemperatur bei 200 °C gehalten.

Herstellung von Copolymeren für diagnostische Anwendungen

5 Beispiel 9

0,25 g EuCl₃•6H₂O, 1,575 g Substanz aus Beispiel 2 und 0,645 g N,N'-Dimethylaminoethylmethacrylat werden in 135,5 ml Methanol gelöst und die Komplexbildung durch UV-Anregung bei 366 nm geprüft (starkes rotes Leuchten). Dann wird das Methanol im Hochvakuum bei Zimmertemperatur abdestilliert und 3,57 g Ethylenglykoldimethacrylat und 28,5 g Methylmethacrylat zugegeben. Diese Lösung wird zu einer wäßrigen Dispersion aus 8 g Polyesterurethan gemäß EP-A-334 032 Beispiel Oligourethan 1, 0,6 g 4,4'-Azobis-(4-cyanopentancarbonsäure) und 700 ml entionisiertem Wasser, gegeben, 30 Minuten gerührt und auf 65 °C erhitzt und 16 Stunden gerührt. Die Rohemulsion wird durch ein Polyamidtuch mit Maschenweite 30 µm filtriert und durch dreimaliges Zentrifugieren und Wiederauffüllen mit entionisiertem Wasser von eventuellen monomeren Verunreinigungen gereinigt. Der pH-Wert der Emulsion wird mit Natronlauge auf 8,5 eingestellt. Die Emulsion besitzt Teilchen eines Durchmessers von 140 nm, entsprechend ca. 12.000 Eu³⁺ Metallatome pro Latexteilchen.

Die Nachweisgrenze der Emulsion liegt bei normaler Blitzlampen-Anregung bei 331 nm und Detektion 615 nm bei 10⁻¹¹ mol Eu³⁺ Ionen pro Liter, d.h. bei ca. 10⁻¹⁵ mol Latexteilchen pro Liter. Die Quantenausbeute der Latexlösung liegt bei Einstrahlung von 331 nm bei 15 %. Die Emulsion kann direkt zum Markieren von Proteinen wie beispielsweise Streptavidin, biologisch relevanten Antikörpern oder aminierten Gensonden verwendet werden.

Beispiel 10

25 <u>Deispiei</u>

Der Ansatz von Beispiel 9 wird, mit folgender Änderung wiederholt: Statt 0,25 g EuCl₃ • 6H₂O und 1,575 g Substanz aus Beispiel 2 werden 0,38 g Tb(NO₃)₃ • 5H₂O mit 1,45 g Substanz aus Beispiel 1 verwendet` Der resultierende Latex hat einen mittleren Teilchendurchmesser von 120 nm und fluoresziert bei 546 nm unter Anregung bei 333 nm. Die Tb³⁺-Konzentration errechnet sich zu 7.500 pro Latexteilchen.

Patentansprüche

1. Lumineszierende Copolymere der Struktur

35

40

45

 $[A]_a - [B]_b$

worin A

eine lumineszierende Komponente und

В

(Co)Monomere darstellt und

a und b

die Massenanteile von A und B im Copolymerisat, worin a 0,0001 bis 20 Gew.-% und b 99,9999 bis 30 Gew.-% ausmacht.

- 2. Seltene Erdmetallkomplexe der Formel M³⁺(L)_n geeignet als Komponente A in Anspruch 1 worin M³⁺ das Kation eines seltenen Erdmetalls, L einen polymerisierbaren Komplexligand und n eine ganze Zahl von 1 bis 4 darstellt.
- 3. Seltene Erdmetallkomplexe gemäß Anspruch 2, worin M3+ das Ion der Europium oder der Terbium ist.
- 50 4. Seltene Erdmetallkomplexe der Formeln

25

- 5. Verwendung der lumineszierenden Copolymere gemäß Anspruch 1 in der medizinischen Diagnostik.
- **30**

and the second state of the

- 35
- and the first of the first of the second of the protection of the second of the second
- **50**

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeidung EP 94 10 2220

ategorie	Kennzeichnung des Dokum	EINSCHLÄGIGE DOKUMENTE nnzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile			KLASSIFIKATION DER ANMELDUNG (Int.CL5)	
(WO-A-89 08682 (TOM UNIVERSITET IMENI	SKY GOSUDARSTVENN V.V. KUIBYSHEVA)	Y	1-3	C08F246/00 C08F30/04)
۱	GB-A-959 679 (BAYE) * Anspruch 1 *	R)	•	1	C09K11/06 G01N33/533	
	•					•
		· William				
						,
		· .				
	•	1				
					RECHERCHIE SACHGEBIETE	RTE (Int.Cl.5)
				•	C08F C09K	
		* * * * * * * * * * * * * * * * * * *				
	·					
	•.					e .
	•					4. <u>7</u> .1
	*				÷ . 	•
	- 1975年 サナン 15 - 1975年 - カーの研				·	
						٠.
Der vor	liegende Recherchenbericht wurd	le für alle Patentansprüche er Abschlaßdatun der Re			Pritito	
	DEN HAAG	27. Mai 19		1	wenberg, C	

EPO FORM LSD CO.C. (POCCO)