境界要素法のプログラムについて

プログラムの概要

導体モデルの作成

導体表面を平面図形で分割

三角形のみからなる場合

STLファイルとして モデルを作成

長方形のみからなる場合

どのファイルを用いるか 未定

三角形、長方形の両方からなる場合

どのファイルを用いるか 未定

ファイルの読み込み, データの作成

STLファイルの場合(三角形)

Python ライブラリ <u>numpy-stl</u> を使用し、 STLファイルから三角形頂点を得る

三角形頂点情報から<u>必要なデータ</u>を 作成し、CSVファイルに保存

長方形の場合

長方形頂点情報から<u>必要なデータ</u>を 作成し、CSVファイルに保存

連立方程式を解く

Intel MKLライブラリを使用して、連立一次方程式をとく、dgesvを利用

必要なデータ(三角形)

必要なデータ a, b, p0, n1, n2, n3

* n I, n 2, n 3 は単位ベクトル

必要なデータ(長方形)

必要なデータ a, b, p0, n1, n2, n3

* n I, n 2, n 3 は単位ベクトル

係数行列について

-	
- 10	
- 1	
- 1	
-	
-	
- 1	
- 1	
- 1	
- 1	
- 1	
-	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
-	
-	
- 1	
-	
- 1	
- 1	
- 1	
-	
- 1	
-	
-	

