MECH201 ENGINEERING ANALYSIS

Lecture Notes (Week 6)

Lecturer: Azdiar Gazder

Based on slides by: Cheng Lu & Hongtao Zhu

Office: 236.101A

Email: azdiar@uow.edu.au

Consultation: Appointment by email

MATLAB example scripts

All lecture scripts uploaded weekly to:

https://github.com/AzdiarGazder/MECH201

Please follow the instructions posted there to download and run your local copy of the scripts.

Equation solving

Week 2 - Solving a single variable nonlinear equation.

$$5x^2 - x^3 + 7x^6 = 0$$

Week 3 - Solving multiple variable linear algebraic equations.

$$3x_1 - 0.1x_2 - 0.2x_3 = 7.85$$

$$0.1x_1 + 7x_2 - 0.3x_3 = -19.3$$

$$0.3x_1 - 0.2x_2 + 10x_3 = 71.4$$

Week 5 - Curve fitting and interpolation.

Solving differential equations

Can we solve these differential equations analytically?

$$\frac{dy}{dx} = 5x + 3 \qquad \Longrightarrow y = \int (5x + 3)dx = \frac{5}{2}x^2 + 3x + C$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} = (1+x)^x \longrightarrow y = \int ((1+x)^x) \mathrm{dx}$$

No analytical solution.

Numerical methods
required to calculate the integral.

$$\frac{d^2y}{dx^2} + y\frac{dy}{dx} = x + 2$$

No analytical solution. Numerical methods required to solve the 2nd order differential equation.

This week's topic: Numerical Integration.

Other applications requiring numerical integration

Average of a function f(x) over an interval

from x = a to x = b is:

average =
$$\frac{\int_{a}^{b} f(x)dx}{b-a}$$

Average of a function f(x) over an area

from x = [a, b], and y = [c, d] is

average
$$= \frac{\int_{c}^{d} \int_{a}^{b} f(x,y) dxdy}{(b-a)(d-c)}$$

Numerical Integration

Integral of a function f(x)

Integration means to bring together parts to form a whole.

Integral of function f(x) between x = a and x = b is the area under the curve of f(x) above the x-axis between x = a and x = b.

Numerical Integration methods Newton-Cotes formulae

 Newton-Cotes formulas are the most commonly used numerical integration methods.

 They are based on replacing complicated functions or tabular data by approximating functions.

$$I = \int_{a}^{b} f(x)dx \cong \int_{a}^{b} p_{n}(x)dx$$
$$p_{n}(x) = a_{0} + a_{1}x + \dots + a_{n-1}x^{n-1} + a_{n}x^{n}$$

Integrals – Trapezoidal rule Approach 1

Principle: Use a straight line (i.e. – a **linear function** $f_1(x)$) to approximate the curve f(x) between the limits a and b.

At the limits, the straight line passes through the points:

$$[x_1 = a, y_1 = f(a)]$$
 and $[x_2 = b, y_2 = f(b)]$.

The area below the straight line is a trapezoid.

Integrals – Trapezoidal rule Approach 1

f(x) f(x) f(b) a b x

Linear function $f_1(x)$:

$$f_1(x) = Ax + B$$

Linear function passes through [a, f(a)] and [b, f(b)]. So:

$$f_1(x = a) = A \times a + B = f(a)$$

$$f_1(x = b) = A \times b + B = f(b)$$

$$A = \frac{f(b) - f(a)}{b - a}$$

$$B = \frac{bf(a) - af(b)}{b - a}$$

Integrals – Trapezoidal rule

Use linear function $f_1(x)$ to approx. f(x):

$$f(x) \cong f_1(x)$$

$$I = \int_a^b f(x) dx \cong \int_a^b f_1(x) dx$$

$$I \cong \int_a^b (Ax + B) dx$$

$$I \cong A \frac{x^2}{2} \bigg|_a^b + Bx \bigg|_a^b$$

$$I \cong A \frac{b^2 - a^2}{2} + B(b - a)$$

$$A = \frac{f(b) - f(a)}{b - a}$$
$$B = \frac{bf(a) - af(b)}{b - a}$$

$$I = \int_a^b f(x) dx \cong (b-a) \left(\frac{f(a) + f(b)}{2} \right)$$

Example – Trapezoidal rule

Use the trapezoidal rule to numerically integrate the following function from $\mathbf{a} = \mathbf{0}$ to $\mathbf{b} = \mathbf{0.8}$:

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Solution:

$$a = 0 \rightarrow f(x = a) = 0.2$$

$$b = 0.8 \rightarrow f(x = b) = 0.232$$

$$I = \int_a^b f(x)dx \cong (b-a) \left(\frac{f(a) + f(b)}{2} \right)$$

$$I \cong (0.8 - 0) \left(\frac{0.2 + 0.232}{2} \right) = 0.1728$$

Relative error – Trapezoidal rule

True solution by the analytical method:

$$I = \int_{a}^{b} f(x)dx$$

$$= \int_{0}^{0.8} (0.2 + 25x - 200x^{2} + 675x^{3} - 900x^{4} + 400x^{5})dx$$

$$= \left(0.2x + 25\frac{x^{2}}{2} - 200\frac{x^{3}}{3} + 675\frac{x^{4}}{4} - 900\frac{x^{5}}{5} + 400\frac{x^{6}}{6}\right)_{0}^{0.8}$$

$$= 1.6405$$

Relative error:

$$\left| \varepsilon_{t} \right| = \left| \frac{1.6405 - 0.1728}{1.6405} \right| \times 100\% = 89.5\%$$

How do we improve accuracy?

Multiple-application trapezoidal rule Approach 2

To improve the accuracy of the trapezoidal rule:

Sub-divide the integration interval from a to b into a number of smaller segments and apply the method to each segment.

Increasing the segments reduces the error

Multiple-application trapezoidal rule

- 1. There are n+1 equally spaced base points $(x_0, x_1, x_2, ..., x_n)$.
- 2. x_0 is a and x_n is b.
- 3. There are n segments of equal width.
- 4. Width of the segment (h) is

$$h = \frac{b-a}{n}$$

Multiple-application trapezoidal rule

Integration from a to b is the sum of integrations of n segments:

$$I = \int_{a}^{b} f(x)dx$$

= $\int_{x_{0}}^{x_{1}} f(x)dx + \int_{x_{1}}^{x_{2}} f(x)dx + \dots + \int_{x_{n-1}}^{x_{n}} f(x)dx$

Applying the trapezoidal rule to each segment:

$$\int_{x_0}^{x_1} f(x) dx \cong (x_1 - x_0) \left(\frac{f(x_0) + f(x_1)}{2} \right) = h \left(\frac{f(x_0) + f(x_1)}{2} \right)$$

$$\int_{x_1}^{x_2} f(x) dx \cong (x_2 - x_1) \left(\frac{f(x_1) + f(x_2)}{2} \right) = h \left(\frac{f(x_1) + f(x_2)}{2} \right)$$

$$\int_{x_{n-1}}^{x_n} f(x) dx \cong (x_n - x_{n-1}) \left(\frac{f(x_{n-1}) + f(x_n)}{2} \right) = h \left(\frac{f(x_{n-1}) + f(x_n)}{2} \right)$$

Multiple-application trapezoidal rule

$$I = \int_{x_0}^{x_1} f(x) dx + \int_{x_1}^{x_2} f(x) dx + \dots + \int_{x_{n-1}}^{x_n} f(x) dx$$

$$I \cong h \left(\frac{f(x_0) + f(x_1)}{2} \right) + h \left(\frac{f(x_1) + f(x_2)}{2} \right) + \dots + h \left(\frac{f(x_{n-1}) + f(x_n)}{2} \right)$$

$$I \cong \frac{h}{2} \sum_{i=1}^{n} \left(f(x_{i-1}) + f(x_{i}) \right)$$

or
$$I \cong \frac{h}{2} \left(f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right)$$

Example: Multiple-application trapezoidal rule

Use the 2, 4,...,10 segments trapezoidal rule to numerically integrate the following function from

$$a = 0$$
 to $b = 0.8$:

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Solution:

For n = 2 segments:

$$h = (b-a)/n = (0.8-0)/2 = 0.4$$

$$x_0 = 0$$
, $f(x_0) = 0.2$; $x_1 = 0.4$, $f(x_1) = 2.456$;

$$x_2 = 0.8$$
, $f(x_2) = 0.232$

For n = 4 segments:

$$h = (b-a)/n = (0.8-0)/4 = 0.2$$

$$x_0 = 0, f(x_0) = 0.2; x_1 = 0.2, f(x_1) = 1.288;$$

$$x_2 = 0.4, f(x_2) = 2.456; x_3 = 0.6, f(x_3) = 3.464;$$

$$x_4 = 0.8, f(x_4) = 0.232$$

$$I \cong \frac{h}{2} \sum_{i=1}^{4} (f(x_{i-1}) + f(x_{i}))$$

$$= \frac{0.2}{2} ((f(x_{0}) + f(x_{1})) + (f(x_{1}) + f(x_{2})) + (f(x_{2}) + f(x_{3})) + (f(x_{3}) + f(x_{4})))$$

$$= 1.4848$$

Relative error - Multiple-application trapezoidal rule

True analytical solution = 1.6405

For n = 2 segments:

$$\left| \varepsilon_{t} \right| = \left| \frac{1.6405 - 1.0688}{1.6405} \right| \times 100\% = 34.9\%$$

For n = 4 segments:

$$\left|\epsilon_{t}\right| = \left|\frac{1.6405 - 1.4848}{1.6405}\right| \times 100\% = 9.5\%$$

Many smaller segments = MORE ACCURATE RESULT!!

Results for different numbers (n) of segments

n	h	ı	ε _t (%)
2	0.4	1.0688	34.9
3	0.2667	1.3695	16.5
4	0.2	1.4848	9.5
5	0.16	1.5399	6.1
6	0.1333	1.5703	4.3
7	0.1143	1.5887	3.2
8	0.1	1.6008	2.4
9	0.0889	1.6091	1.9
10	0.08	1.6150	1.6

Integrals – Simpson's 1/3 rule Approach 1

Principle:

Use a second-order interpolating Lagrange polynomial $(f_2(x))$

$$f_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_0 - x_0)(x_0 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_0 - x_0)(x_0 - x_1)} f(x_2)$$

to approximate the curve (f(x)) between the limits a and b.

f₂(x) passes through three equally spaced points:

$$(x_0,f(x_0)), (x_1,f(x_1))$$
 and $(x_2, f(x_2)). x_1 - x_0 = x_2 - x_1 = h.$

Integrals – Simpson's 1/3 rule

$$I = \int_{a}^{b} f(x)dx \cong \int_{a}^{b} f_{2}(x)dx$$

$$a = x_{0} \quad b = x_{2}$$

$$I = \int_{x_{0}}^{x_{2}} \left[\frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} f(x_{0}) + \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} f(x_{1}) + \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} f(x_{2}) \right] dx$$

$$I \cong \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2))$$

where
$$h = \frac{b-a}{2}$$

Example – Simpson's 1/3 rule

Use Simpson's 1/3 rule to numerically integrate the following function from a = 0 to b = 0.8.

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Solution:

$$x_0 = 0$$
, $f(x_0) = 0.2$; $x_1 = 0.4$, $f(x_1) = 2.456$; $h = \frac{b-a}{2} = 0.4$
 $x_2 = 0.8$, $f(x_2) = 0.232$

$$I \cong \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2)) = \frac{0.4}{3} (0.2 + 4 \times 2.456 + 0.232)$$

= 1.3675

Relative error compared to analytical solution: $\left| \epsilon_{t} \right| = \left| \frac{1.6405 - 1.3675}{1.6405} \right| \times 100\% = 16.6\%$

How do we improve accuracy?

Integrals – Simpson's 1/3 Composite Rule Approach 2

- Sub-divide the integration interval from x₀ to x_n into several segments (n) of equal width:
- Apply Simpson's 1/3 rule to every two segments:

$$I \approx \int_{x_0}^{x_2} f(x)dx + \int_{x_2}^{x_4} f(x)dx + \dots + \int_{x_{n-2}}^{x_n} f(x)dx$$

$$= h \frac{f(x_0) + 4f(x_1) + f(x_2)}{3} + h \frac{f(x_2) + 4f(x_3) + f(x_4)}{3}$$

$$+ \dots + h \frac{f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)}{3}$$

$$I \approx \frac{h}{3} \left\{ f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n) \right\}$$

Note: The total number of segments for Simpson's 1/3 Composite Rule are EVEN

$$1+5+4+1=10$$

Integrals – Simpson's 1/3 Composite Rule

HOW to determine the weights for Simpson's 1/3 Composite Rule

$$I \approx \frac{h}{3} \left\{ f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n) \right\}$$

Example – Simpson's 1/3 Composite Rule

Use Simpson's 1/3 Composite Rule with n = 4 to numerically integrate the following function from a = 0 to b = 0.8.

 $(exact\ value = 1.640533)$

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Solution:

$$n = 4; \quad h = \frac{0.8 - 0}{4} = 0.2; \quad x = 0; \quad 0.2; \quad 0.4; \quad 0.6; \quad 0.8$$

$$f(0) = 0.2 \quad f(0.2) = 1.288 \quad f(0.4) = 2.456 \quad f(0.6) = 3.464 \quad f(0.8) = 0.232$$
First Simpson's 1/3

Second Simpson's 1/3

$$I \cong \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2)) + \frac{h}{3} (f(x_2) + 4f(x_3) + f(x_4))$$

$$= \frac{0.2}{3} (0.2 + 4 \times 1.288 + 2.456) + \frac{0.2}{3} (2.456 + 4 \times 3.464 + 0.232)$$

$$= 1.6235$$

Error wrt true solution =
$$\varepsilon_t = \frac{1.640533 - 1.623467}{1.640533} 100\% = 1.04\%$$

Integrals – Simpson's 3/8 Rule Approach 3

Principle: Use a **third-order polynomial curve** $(f_3(x))$ to approximate the curve f(x) between the limits a and b.

 $f_3(x)$ passes through four **equally-spaced points** $(x_0,f(x_0)), (x_1,f(x_1)), (x_2,f(x_2))$ and $(x_3,f(x_3))$ such that

$$x_1 - x_0 = x_2 - x_1 = x_3 - x_2 = h$$
.

$$I = \int_a^b f(x) dx \cong \int_a^b f_3(x) dx$$

$$I \cong \frac{3h}{8} (f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3))$$

Example – Simpson's 3/8 Composite Rule

Use Simpson's 3/8 Composite Rule with n = 3 to numerically integrate the following function from a = 0 to b = 0.8.

 $(exact\ value = 1.640533)$

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Solution:
$$n = 3$$
 $h = (b-a)/n = (0.8-0)/3 = 0.2667$ $x = 0$; 0.2667 ; 0.5333 ; 0.8 $f(x_0) = 0.2$; $f(x_1) = 1.4327$; $f(x_2) = 3.4872$; $f(x_3) = 0.232$

$$I \cong \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)] = \frac{0.8}{8} (0.2 + 3 \times 1.4327 + 3 \times 3.4872 + 0.232) = 1.5192$$

Error wrt **true solution** =
$$\left| \epsilon_t \right| = \left| \frac{1.6405 - 1.5192}{1.6405} \right| \times 100\% = 7.4\%$$

Integrals – Which Simpson's Composite Rule should be used?

- Even number of intervals (i.e., n = 4, 6,...)Use Simpson's 1/3 Composite Rule
- Odd number of intervals (i.e., n = 5, 7,...)

Use Simpson's 3/8 Composite Rule for max even numbered intervals

MIXED RULE

Use Simpson's 3/8 rule for the last three intervals

For example, if the total intervals is 9.

Strategy = USE THE MIXED RULE

For intervals 1 to 6, use Simpson's 1/3 Composite Rule. For intervals 7 to 9, use Simpson's 3/8 Composite Rule.

Example – Simpson's Mixed Composite Rule Approach 4

Use Simpson's 3/8 Mixed Composite Rule with n = 5 to numerically integrate the following function from a = 0 to b = 0.8.

$$(exact\ value = 1.640533)$$

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

$$h = (b-a)/n = (0.8-0)/5 = 0.16$$

$$x_0 = 0$$
; $x_1 = 0.16$; $x_2 = 0.32$; $x_3 = 0.48$; $x_4 = 0.64$; $x_5 = 0.8$,

$$f(x_0) = 0.2$$
; $f(x_1) = 1.2969$; $f(x_2) = 1.7434$; $f(x_3) = 3.1860$; $f(x_4) = 3.1819$; $f(x_5) = 0.232$

Simpson's 1/3 Simpson's 3/8
$$I_1 \cong \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] = \frac{0.16}{3} (0.2 + 4 \times 1.2969 + 1.7434) = 0.3803$$

$$I_2 \cong \frac{3h}{8} [f(x_2) + 3f(x_3) + 3f(x_4) + f(x_5)] = \frac{0.48}{8} (1.7434 + 3 \times 3.1860 + 3 \times 3.1819 + 0.232) = 1.2648$$

$$I = I_1 + I_2 = 0.3803 + 1.2648 = 1.6451$$
 $\left| \epsilon_t \right| = \left| \frac{1.6405 - 1.6451}{1.6405} \right| \times 100\% = 0.28\%$

Summary of Integrals (Trapezoidal and Simpson)

Trapezoidal rule (1 interval, 2 points)

$$I = (b-a)\frac{f(a)+f(b)}{2}$$

Composite Trapezoidal rule (any interval n >= 2)

$$I \cong \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

Simpson 1/3 rule (2 intervals, 3 points)

$$I \cong \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Composite Simpson 1/3 rule (even intervals)

$$I \approx \frac{h}{3} \left\{ f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n) \right\}$$

Simpson 3/8 rule (3 intervals, 4 points)

$$I \cong \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$

Composite Simpson 3/8 rule (multiples of 3 interval)

$$I \approx \frac{3h}{8} \sum_{i=0,3,6,\cdots}^{n-3} \left[f(x_i) + 3f(x_{i+1}) + 3f(x_{i+2}) + f(x_{i+3}) \right]$$

Mixed Simpson (any interval)

$$I \approx \frac{h}{3} \left\{ f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n) \right\}$$

+
$$I \cong \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$

Integrals - Midpoint rule

$$\int_{x_0}^{x_n} f(x)dx = h(f(x_{1/2}) + f(x_{3/2}) + f(x_{5/2}) + \dots + f(x_{n-3/2}) + f(x_{n-1/2}))$$

- 1. $x_0 = a$ is the lower limit and $x_n = b$ is the upper limit.
- 2. Equally spaced points $(x_0, x_1, x_2, ..., x_n)$. h = segment width.
- 3. Use the midpoints $(x_{1/2}, x_{3/2}, x_{5/2}, ..., x_{n-3/2})$ and $x_{n-1/2}$.
- Integral for each segment = the function of the midpoint multiplied by the segment width.
- 5. This method is widely used for improper integrals.

Double integrals

f(x,y) is a 2-D function representing a surface.

A double integral of f(x,y) over a rectangular area ($a \le x \le b$) and ($c \le y \le d$) is represented as:

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

...and is the volume below the surface of f(x,y).

Numerical solution:

Step 1: Integrate along the 1st dimension (say, x) by trapezoidal or Simpson's rules.

Step 2: The result of the first integration is now integrated along the 2nd dimension (now y).

Example – Double integrals

If the temperature of a 8 m x 6 m rectangular heated plate is described by the following function:

$$T(x,y) = 2xy + 2x - x^2 - 2y^2 + 72$$

What is the average temperature?

Solution:

Use 2 segment trapezoidal rule along each direction.

2 segments along the x axis = 3 points x_0 , x_1 and x_2 .

2 segments along the y axis = $3 \text{ points } y_0$, y_1 and y_2 .

Step 1: Applying the 2 segment trapezoidal rule along x for each y value

Step 2: Applying the 2 segment trapezoidal rule along y

average temperature =
$$\frac{\int_{c}^{d} \int_{a}^{b} T(x, y) dx dy}{(b-a)(d-c)}$$
$$= \frac{I}{(b-a)(d-c)} = 56$$

Sequence of double integrals

Is the calculation sequence swappable?

x-direction first followed by y-direction

OR

y-direction first followed by x-direction

Answer: YES!

$$I = \int_{a}^{b} \left\{ \int_{c}^{d} f(x, y) \, dy \right\} dx = \int_{c}^{d} \left\{ \int_{a}^{b} f(x, y) \, dx \right\} dy$$

Techniques to improve accuracy

- High order approximations
 - Multi-application Trapezoidal Rule
 - Simpson's 1/3 composite Rule
 - Simpson's 3/8 composite Rule
 - Simpson's Mixed Rule
 - Midpoint Rule
- Multiple application

 (i.e. using more segments).
- Error correction techniques
 - Richardson's extrapolation
 - High order Romberg integration

Gauss quadrature

Richardson's Extrapolation

The exact value (I) of the integral can be expressed by:

$$I = I(h) + E(h)$$

where,

I(h) = the approximation from an *n*-segment application of trapezoidal rule with step size h =(b - a) / n

E(h) = truncation error which can be expressed as

$$E(h) \cong -\frac{b-a}{12}h^2 \overline{f}''$$

Richardson's Extrapolation

If we make two separate estimates using step sizes (segment widths) of h₁ and h₂:

$$I = I(h_1) + E(h_1) = I(h_2) + E(h_2)$$

$$E(h_1) \cong -\frac{b-a}{12}h_1^2\overline{f}''$$
 $E(h_2) \cong -\frac{b-a}{12}h_2^2\overline{f}''$

If we assume f'' is constant regardless of step size, then:

$$\frac{E(h_1)}{E(h_2)} \cong \frac{h_1^2}{h_2^2} \implies E(h_2) = \frac{I(h_1) - I(h_2)}{1 - (h_1/h_2)^2}$$

$$I = I(h_2) + \frac{1}{(h_1/h_2)^2 - 1} (I(h_2) - I(h_1))$$

Richardson's Extrapolation

If $h_2 = h_1/2$ then:

$$I = I(h_2) + \frac{1}{(2)^2 - 1} (I(h_2) - I(h_1))$$

I is the improved estimate of the integral. It is better than both $I(h_1)$ and $I(h_2)$.

Example – Richardson's Extrapolation

The single and multiple applications of the trapezoidal rule were used to estimate the integral of the following function from a = 0 to b = 0.8:

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

The results are:

Segments	h	Integral	ε _{t,} %
1	0.8	0.1728	89.5
2	0.4	1.0688	34.9
4	0.2	1.4848	9.5

Use Richardson's extrapolation method to improve the estimates of the integral.

Segments	h	Integral	ε _t ,%
1	0.8	0.1728	89.5
2	0.4	1.0688	34.9
4	0.2	1.4848	9.5

Combining the estimates for one $(h_1 = 0.8)$ & two segments $(h_2 = 0.4)$:

$$h_2 = h_1/2$$
 \Longrightarrow $I = \frac{4}{3}I(h_2) - \frac{1}{3}I(h_1) = \frac{4}{3} \times 1.0688 - \frac{1}{3} \times 0.1728 = 1.367467$

$$\left| \varepsilon_t \right| = 16.6\%$$

Combining the estimates for two $(h_1 = 0.4)$ & four segments $(h_2 = 0.2)$:

$$h_2 = h_1/2$$
 \Longrightarrow $I = \frac{4}{3}I(h_2) - \frac{1}{3}I(h_1) = \frac{4}{3} \times 1.4848 - \frac{1}{3} \times 1.0688 = 1.623467$

$$\left| \epsilon_t \right| = 1.0\%$$

High order Romberg integration

- Apply Richardson's Extrapolation method twice for the two groups of step sizes:
 - For example, use $h_1 = 0.8$ and $h_2 = 0.4$ for the first time and
 - Then use $h_1 = 0.4$ and $h_2 = 0.2$ for the second time
- Using the previous example, we have 2 estimates of the integral:
 - I_1 = 1.367467 is the less accurate estimate from h_1 = 0.8 and h_2 = 0.4
 - and
 - I_m = 1.623467 is the more accurate estimate from h_1 = 0.4 and h_2 = 0.2
- Now apply the error correction method again.

$$I = \frac{16}{15}I_{m} - \frac{1}{15}I_{1}$$

General form of Romberg integration

$$I_{j,k} \cong \frac{4^{k-1}I_{j+1,k-1} - I_{j,k-1}}{4^{k-1} - 1}$$

k = level of integration

k = 1 returns estimates from the Trapezoidal rule

k = 2 returns estimates from Richardson's extrapolation

j = used to distinguish between more (j+1) and less (j) accurate estimates.

 $I_{i,k}$ = the improved integral after integration level k.

= the more accurate estimate after integration level k-1.

 $f_{j,k-1}$ = the less accurate estimate after integration level k-1.

Example – Romberg Integration

Use Romberg integration to numerically integrate the following function from a = 0 to b = 0.8:

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

Solution:

L06E14_trapezoidalRule_rombergQuadrature.m **

Gauss quadrature

- Strategy of positioning any two points (rather than just the endpoints) on a curve to define a straight line that balance out the positive and negative errors.
- Hence the area evaluated under this straight line provides an improved estimate of the integral.

$$I = \int_a^b f(x) dx = \int_{-1}^1 f(\lambda) d\lambda \cong c_0 f(\lambda_0 c_1 f(\lambda_1) + \dots + c_{n-1} f(\lambda_{n-1}))$$

General form of Gauss quadrature

For the integral estimate of the form:

$$I = \int_{-1}^{1} f(\lambda) d\lambda \cong c_0 f(\lambda_0) + c_1 f(\lambda_1) + \dots + c_{n-1} f(\lambda_{n-1})$$

The unknowns of the general Gauss-Legendre formula are: weighting coefficients = $c_0 \dots c_{n-1}$, and, $\lambda_0 \dots \lambda_{n-1}$

$$I = \sum c_i f(\lambda_i) = ?$$

2 point Gauss-Legendre quadrature

For the integral:

$$I = \int_{-1}^{1} f(\lambda) d\lambda \cong c_0 f(\lambda_0) + c_1 f(\lambda_1)$$

There are **four** unknowns of the 2 point Gauss-Legendre formula: c_0 , c_1 , and x_0 , x_1

Assume:

- The integrals for 4 formulae:

```
y = constant,

y = \lambda,

y = \lambda^2,

y = \lambda^3,

are computed <u>exactly</u>
```

Simplify the math by assuming integration intervals of -1 to +1

2 point Gauss quadrature

Determining the constants:

$$c_0 f(\lambda_1) + c_1 f(\lambda_1) = \int_{-1}^1 1 d\lambda = \lambda \Big|_{-1}^{+1} = (1) - (-1) = 2$$

$$c_0 f(\lambda_1) + c_1 f(\lambda_1) = \int_{-1}^1 \lambda d\lambda = \frac{\lambda^2}{2} \Big|_{-1}^{+1} = \left(\frac{1}{2}\right) - \left(\frac{(-1)^2}{2}\right) = 0$$

$$c_0 f(\lambda_1) + c_1 f(\lambda_1) = \int_{-1}^1 \lambda^2 d\lambda = \frac{\lambda^3}{3} \Big|_{-1}^{+1} = \left(\frac{1}{3}\right) - \left(\frac{(-1)^3}{3}\right) = \frac{2}{3}$$

$$c_0 f(\lambda_1) + c_1 f(\lambda_1) = \int_{-1}^1 \lambda^3 d\lambda = \frac{\lambda^4}{4} \Big|_{-1}^{+1} = \left(\frac{1}{4}\right) - \left(\frac{(-1)^4}{4}\right) = 0$$

Solve the 4 algebraic equations for the 4 unknowns c_0 , c_1 , and x_0 , x_1

Constants for the Gauss-Legendre formulae

# Points	Weighting Factors, c_i	Function Arguments, x_i
2	$c_0 = 1.0$ $c_1 = 1.0$	$x_0 = -1/\sqrt{3}$ $x_1 = 1/\sqrt{3}$
3	$c_0 = 5/9$ $c_1 = 8/9$ $c_2 = 5/9$	$x_0 = -\sqrt{3/5}$ $x_1 = 0.0$ $x_2 = \sqrt{3/5}$
4	$c_0 = (18 - \sqrt{30})/36$ $c_1 = (18 + \sqrt{30})/36$ $c_2 = (18 + \sqrt{30})/36$ $c_3 = (18 - \sqrt{30})/36$	$x_0 = -\sqrt{525 + 70\sqrt{30}} / 35$ $x_1 = -\sqrt{525 - 70\sqrt{30}} / 35$ $x_2 = \sqrt{525 - 70\sqrt{30}} / 35$ $x_3 = \sqrt{525 + 70\sqrt{30}} / 35$

Simplified integration via 2 – point Gauss quadrature

$$I = \int_{a}^{b} f(x) dx$$

Substitute

$$x = \frac{(b+a) + (b-a)x_d}{2}$$

$$dx = \frac{(b-a)}{2} dx_d$$

$$I = \int_{-1}^{1} f(\frac{(b+a) + (b-a)x_d}{2}) \frac{(b-a)}{2} dx_d$$

$$I \cong f(\frac{(b+a)+(b-a)(-1/\sqrt{3})}{2})\frac{(b-a)}{2} + f(\frac{(b+a)+(b-a)(1/\sqrt{3})}{2})\frac{(b-a)}{2}$$

Example – 2 pt Gauss quadrature

Use Gauss quadrature to numerically integrate the following function:

$$I = \int_{2}^{6} (x^{2} + 5x + 3) dx$$

Solution:

Step 1: Change the variables

$$x = \frac{b+a}{2} + \frac{b-a}{2}\lambda = \frac{6+2}{2} + \frac{6-2}{2}\lambda = 4+2\lambda$$

$$dx = \frac{(b-a)}{2}d\lambda = \frac{(6-2)}{2}d\lambda = 2d\lambda$$

Step 2: Substitute and change the integral

$$I = \int_{2}^{6} (x^{2} + 5x + 3) dx \qquad f(x)$$

$$= \int_{-1}^{1} [(4 + 2\lambda)^{2} + 5 \cdot (4 + 2\lambda) + 3] * 2d\lambda = \int_{-1}^{1} 2[(4 + 2\lambda)^{2} + 5 \cdot (4 + 2\lambda) + 3] d\lambda$$

Step 3: The transformed function

$$f(\lambda) = 2[(4+2\lambda)^2 + 5 \cdot (4+2\lambda) + 3]$$

Step 4: Values at the 2 Gauss quadrature points

$$f(\frac{1}{-\sqrt{3}}) = 2\left[(4 + 2\frac{1}{-\sqrt{3}})^2 + 5 \cdot (4 + 2\frac{1}{-\sqrt{3}}) + 3 \right] = 50.64445$$

$$f(\frac{1}{\sqrt{3}}) = 2\left[(4 + 2\frac{1}{\sqrt{3}})^2 + 5 \cdot (4 + 2\frac{1}{\sqrt{3}}) + 3 \right] = 111.68888$$

Step 5: The numerical solution to the integral

$$I = \int_{a}^{b} f(x)dx = \int_{-1}^{1} f(\lambda)d\lambda \cong f(\frac{1}{-\sqrt{3}}) + f(\frac{1}{\sqrt{3}}) = 50.64445 + 111.68888 = 161.3333$$

High order Gauss quadrature

$$I = \int_{-1}^{1} f(\lambda) d\lambda \cong c_0 f(\lambda_0) + c_1 f(\lambda_1) + \dots + c_n f(\lambda_n)$$

Points	Weighting Factors	Function Arguments	Truncation Error
2	$c_0 = 1.0000000$ $c_1 = 1.0000000$	$x_0 = -0.577350269$ $x_1 = 0.577350269$	$\cong f^{(4)}(\xi)$
3	$c_0 = 0.5555556$ $c_1 = 0.8888889$ $c_2 = 0.5555556$	$x_0 = -0.774596669$ $x_1 = 0.0$ $x_2 = 0.774596669$	$\cong f^{(6)}(\xi)$
4	$c_0 = 0.3478548$ $c_1 = 0.6521452$ $c_2 = 0.6521452$ $c_3 = 0.3478548$	$x_0 = -0.861136312$ $x_1 = -0.339981044$ $x_2 = 0.339981044$ $x_3 = 0.861136312$	$\cong f^{(8)}(\xi)$
5	$c_0 = 0.2369269$ $c_1 = 0.4786287$ $c_2 = 0.5688889$ $c_3 = 0.4786287$ $c_4 = 0.2369269$	$x_0 = -0.906179846$ $x_1 = -0.538469310$ $x_2 = 0.0$ $x_3 = 0.538469310$ $x_4 = 0.906179846$	$\cong f^{(10)}(\xi)$
6	$c_0 = 0.1713245$ $c_1 = 0.3607616$ $c_2 = 0.4679139$ $c_3 = 0.4679139$ $c_4 = 0.3607616$ $c_5 = 0.1713245$	$x_0 = -0.932469514$ $x_1 = -0.661209386$ $x_2 = -0.238619186$ $x_3 = 0.238619186$ $x_4 = 0.661209386$ $x_5 = 0.932469514$	$\cong f^{(12)}(\xi)$

HOME READING Improper integrals

For the case of integrals with a lower limit of $-\infty$ and/or an upper limit of ∞ :

$$I = \int_{-\infty}^{b} f(x) dx$$

$$I = \int_{-\infty}^{-A} f(x) dx + \int_{-A}^{b} f(x) dx$$
 Choose a value for A. Here A is a positive value.
$$x = \frac{1}{t}$$

$$I = \int_{-1/A}^{0} \frac{1}{t^2} f(\frac{1}{t}) dt$$

$$\int_{-A}^{b} f(x) dx$$
 Midpoint rule Trapezoidal, Simpson's

midpoint rules

Example – Improper Integrals

Estimate the improper integral:

$$I = \int_{-\infty}^{1} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$

Solution:

Choose A = 2.

$$I = \int_{-\infty}^{-2} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx + \int_{-2}^{1} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

$$\int_{-\infty}^{-2} e^{-x^{2}/2} dx \qquad = \frac{1}{t} \qquad \int_{-1/2}^{0} \frac{1}{t^{2}} e^{-1/(2t^{2})} dt$$

Use the mid-point rule with h = 1/8:

$$\int_{-1/2}^{0} \frac{1}{t^2} e^{-1/(2t^2)} dt \approx \frac{1}{8} (f(x_{-7/16}) + f(x_{-5/16}) + f(x_{-3/16}) + f(x_{-1/16}))$$
$$= \frac{1}{8} (0.3833 + 0.0612 + 0 + 0) = 0.0556$$

Use Simpson's 1/3 rule with h = 0.5

$$\int_{-2}^{1} e^{-x^{2}/2} dx = (1 - (-2)) \frac{0.1353 + 4(0.3247 + 0.8825 + 0.8825) + 2(0.6065 + 1) + 0.6065}{3(6)}$$

$$= 2.0523$$

$$I = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{-2} e^{-x^2/2} dx + \int_{-2}^{1} e^{-x^2/2} dx \right) = \frac{1}{\sqrt{2\pi}} (0.0556 + 2.0523)$$
$$= 0.8409$$

Mid-Semester Exam

- When = Monday, 4 September 2023 at 12:30 pm (Week 7).
- Where = Bldg. 24, Room 201
- Duration = 1 hour 45 minutes.
- Exam syllabus = Lectures from Weeks 1 to 6.
- The exam question paper must not be removed from the exam venue. It must be returned along with the exam answer book.
- This is a restricted exam. You are allowed only one (1) double-sided A4 sheet of handwritten or typed notes in the form of a hardcopy.
- You are allowed the use of a UOW-approved calculator.
- Electrical devices, such as computers, mobile phones etc., are NOT allowed.
- Five multiple choice questions and four calculations need to be answered.