Appendix: Mathematical Derivations for Recursive Kernel Model (Ilianne's Law) – v2

1. Recursive Kernel Formalism

Let the field $\psi(x, t)$ evolve under a memory-integrated operator:

$$\psi(t) = \psi_0 + \int_{0^t} K(t - t') \, \psi(t') \, dt'$$

Where K(t - t') is the memory kernel representing recursive feedback. The system becomes non-Markovian and history-dependent.

1.1 Dimensional Analysis Table

Term | Expression | Dimensional Unit

Term	Expression	Dimensional Unit
Field (ψ)	Scalar recursive potential	Energy density (J/m³)
Memory Kernel (K)	Weighting over time difference	s ⁻¹ (inverse time)
Harmonic Mode (a_{lm})	Coefficient in Y22 expansion	Unitless (normalized)
Power Spectrum (C_ℓ)	<	a_{lm}

Field (ψ) | Scalar recursive potential | Energy density (J/m³)

Memory Kernel (K) | Weighting over time difference | s⁻¹ or 1/time

Harmonic Mode (a_ $\{\ell m\}$) | Coefficient in Y_ $\{\ell m\}$ expansion | Unitless (normalized)

Power Spectrum $(C_{\ell}) | \langle |a_{\ell}| \rangle |$ Unitless (normalized power)

2. Laplace Domain Transformation

Transform to Laplace domain:

$$\mathcal{L}\{\phi(t)\} = \psi(s) = \psi_0 / (1 - K(s))$$

Where:

$$K(s) = \mathcal{L}\{K(t)\} = \int_0^\infty e^{-st} K(t) dt$$

Resonance condition:

Instability when 1 - $K(s) = 0 \Rightarrow \text{pole in } \psi(s)$

This defines conditions for resonance or recursive blow-up.

3. Recursive Coupling in Angular Harmonics

Assume harmonic expansion of source field:

$$S(k, \tau) = \Sigma_{\ell,m} a_{\ell,m}(\tau) Y_{\ell,m}(k)$$

Recursive evolution with memory kernel:

S_Ilianne(k,
$$\tau$$
) = S(k, τ) + $\int_0^{\Lambda} \tau K(\tau - \tau') S(k, \tau') d\tau'$

Now consider recursive coupling of harmonic modes:

$$a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_1 \ell_2 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_1, m_2\} \langle \ell_1 m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_{\ell} \{\ell_1, \ell_2, m_2 | \ell_m \rangle a_{\ell} = \sum_$$

$$Y_{\ell 1} = Y_{\ell 1} = Y_{\ell 2} = Y_{\ell m} \langle \ell 1 = 1 \rangle \langle$$

Truncation: ℓ _max = 6 for practical simulation

4. Recursive Modulation of Power Spectrum

Angular power spectrum:

$$C_{\ell} = \langle |a_{\ell}|^2 \rangle$$

Under recursive modulation:

$$C_{\ell}(\tau) = C_{\ell}(0) + \int_{0}^{\tau} \tau K(\tau - \tau') C_{\ell}(\tau') d\tau'$$

In Clebsch-weighted form:

$$C_{\ell}(\tau) = \Sigma_{\ell}[\ell 1, \ell 2] \langle \ell 1 \ \ell 2 \ | \ \ell \rangle^{2} \int K(\tau - \tau') C_{\ell}[\ell 1](\tau') C_{\ell}[\ell 2](\tau') d\tau'$$

Example: $K(\tau) = e^{-\tau/\tau_0}$, $\tau_0 = 1$

5. Isochoric Instability Threshold

Under volume constraint:

 $dV_{\psi}/dt = 0 \Rightarrow$ no energy dissipation

Recursive accumulation:

$$\psi(x, t) = \psi_0(x) + \int_0^t K(t - t') \psi(x, t') dt'$$

Singularity: $\partial^2 \psi / \partial t^2 \rightarrow \infty$ as $t \rightarrow t_c$

6. Recursive Multipole Modulation (CMB)

Define modulated spectrum:

$$C_{\ell}^{-1}$$
 Ilianne = $C_{\ell}^{-1} \Lambda CDM [1 + \varepsilon_{\ell} \cos(\omega_{\ell} B + \delta_{\ell})]$

 ε_{ℓ} : amplitude, ω_{ℓ} : frequency, δ_{ℓ} : phase offset, B: curvature

Where:

 ϵ_{ℓ} : modulation amplitude

 ω_{ℓ} : lattice frequency

 δ_{ℓ} : phase offset

B: global curvature constraint

This reproduces observed low-\ell anomalies (multipole suppression, Axis of Evil).

Summary of Derivation Tools

7. Kernel Function Examples & Graphs

 $K(\tau)$ forms:

- Exponential: $K(\tau) = e^{-\tau/\tau_0}$

- Power-law: $K(\tau) = (\tau + \varepsilon)^{-n}$

- Oscillatory: $K(\tau) = \cos(\omega \tau) e^{-\tau/\tau_0}$

Graphs: To be added in Phase 2

8. Physical Interpretation Overview

- Recursive feedback \rightarrow phase-locking in CMB
- Isochoric constraint \rightarrow field pressure trap
- Departure from inflation \rightarrow memory-based emergence

Summary of Derivation Tools

Domain	Equation Component	Role
Time Evolution	$\psi(s) = \psi_0 / [1 - K(s)]$	Memory-stability criterion (Laplace domain)
Angular Coupling	CG-weighted recursion	Multipole transitions in CMB harmonics
Spectral Modulation	$C_{\ell} = C_{\ell} + \int K C_{\ell}$	Recursive evolution of angular power spectrum
Collapse Condition	$\partial^2 \psi \ / \ \partial t^2 \ \rightarrow \ \infty$	Isochoric singularity (runaway feedback)
Physical Kernel	$K(\tau - \tau')$: exp, power-law, etc.	Kernel form determines feedback signature