

Mapeamento

Representação - Tipos

- Contínuo
 - Métrico
- Discreto (decomposição)
 - Métrico
 - Topológico

DCC 111

Introdução à Robótica - Localizção e Mapeamento

Mapeamento

Representação

- Características importantes
 - A precisão deve ser apropriada para a tarefa
 - Complexidade x Custo computacional
- Mapeamento
 - Tarefa de criar uma representação do mundo a partir das informações coletadas pelo sensor

DCC 27

ntrodução à Robótica - Localizção e Mapeamento

Mapeamento

Mapeamento

- Dados direto do sensor (raw data)
 - Grande volume de dados, pouca distinção
 - Ex: O ponto no espaço medido pelo sensor
- Características de baixo-nível
 - Médio volume de dados, deve ser extraída
 - Ex: Retas e outras formas geométricas
- Características de alto-nível
 - Pouco volume de dados, perda de informação
 - Ex: Carro, porta, placa, marco, ...

DCC 17

Introdução à Robótica - Localizção e Mapeamento

Mapa métrico

Contínuo

- Representação "exata" do ambiente
 - Representa todos os detalhes (alta precisão)
- Grande volume de dados
 - Será que precisamos de toda essa informação?
 - Extrair certas características
 - Paredes → Segmentos de retas

DCC 111

Introdução à Robótica - Localizção e Mapeamento

Mapa métrico

Decomposição em células

- Problemas
 - Sensores possuem ruído, e um pequeno erro na leitura pode marcar uma célula como ocupada
 - Valor binário de ocupação
- Como tratar esses problemas?
 - Incerteza → Probabilidade
 - Mapa probabilístico

DCC 17

Introdução à Robótica - Localizção e Mapeamento

Mapa topológico

- Representa o mundo como um grafo
 - Vértices: Correspondem a locais "importantes"
 - Arestas: Conexão física entre os locais
- Navegação
 - Capaz de localizar-se nos vértices
 - Saber transitar entre os vértices

DCC 17

stroducão à Robótica - Localizcão e Maneamento

Mapeamento

Desafios

- Mundo real é dinâmico
 - Objetos são trocados de lugar
 - Pessoas transitam pelo ambiente
- Percepção também é um desafio
 - Sensores são ruidosos
 - Extração de informação útil é difícil
 - Oclusões

DCC 11

Introdução à Robótica - Localizção e Mapeamento

Localização

- Tarefa fundamental
 - Determinar a posição (pose) do robô
- Diferentes representações
 - Coordenadas, métrica, topológica, ...
- Absoluta x Relativa
 - Sempre é relativa a um referencial
- Local x Global

DCC M

Introdução à Robótica - Localizção e Mapeamento

Localização

- Principais desafios
 - Erros nos sensores
 - Ruído
 - Aliasing
 - Erros nos atuadores
 - Erros nos modelos (simplificações)

DCC 1111

Introdução à Robótica - Localizção e Mapeamento

Localização

- Por que não utilizar sempre GPS?
 - Não está disponível em todos os ambientes
 - Edificações, cavernas, subaquático, Marte, ...
 - Baixo desempenho para sistemas mais críticos
 - Precisão
 - Taxa de aquisição de dados
 - Tamanho do receptor
 - Random walk

DCC 27

Introdução à Robótica - Localizção e Mapeamento

Introdução

- Principais formas de localização
 - Dead reckoning

(relativa)

- Filtro de Kalman
- Baseada em marcos/mapas (absoluta)
 - Localização de Markov
 - Localização de Monte Carlo

DCC 111

Introdução à Robótica - Localizção e Mapeamento

Odometria

- Dead Reckoning
 - Processo de calcular a posição atual utilizandose a posição (atual) previamente calculada
- Simples
 - Integração a partir das velocidades
 - Utilizar o modelo cinemático
- Sujeita a erros acumulativos

DCC 11

ntroducão à Robótica - Localizção e Maneamento

Odometria

- Classificação dos erros
 - Determinístico (sistemático)
 - Erro repetitivo, afeta todas as medidas igualmente
 - Solução: Realizar uma calibração do sistema
 - Não determinístico (não sistemático)
 - Erro aleatório devido a eventos não previstos
 - Solução: Modelagem dos erros

DCC 17

ntrodução à Robótica - Localizção e Mapeamento

Odometria Problemas - Como resolver esses problemas? - Utilizar outras informações para melhorar - Fusão sensorial → Filtro de Kalman - Bússola - Giroscópios - Acelerômetros - ... - Observação Nova estimativa

Localização baseada em marcos ■ Utilizar marcos em posições conhecidas ■ Principalmente para correção das estimativas ■ Podem ser utilizados como localização global ■ Marcos podem ser "naturais" ou artificiais ■ Árvore, porta, corredor, ... ■ Marcos adicionados no ambiente

Localização baseada em marcos Vantagem Melhora a estimativa obtida pela odometria Desvantagem Pode ser difícil identificar os marcos E se existirem marcos semelhantes? Nem sempre é possível modificar o ambiente Caro

DCC 111

Localização baseada em marcos Problemas Ainda demanda uma estimativa inicial A posição do marco também é incerta Considerando limitações dos sensores Problema do robô raptado Transporte para um outro local do ambiente Como se localizar sem informação anterior?

