

e-mail: reis.william@unb.br

Disciplina: Mecânica do Voo Professor: William Reis Silva

Lista de exercícios 2 – Vetores e sistemas de referência

Em todas as questões abaixo, utilizou-se a aproximação de Terra plana

- 1. Utilizando o Teorema de Coriolis, calcule $\left[\dot{\pmb{V}}_{NED}\right]_b$ em função de $\pmb{\omega}_b^{b,NED} = [P\ Q\ R]$, $\dot{\pmb{V}}_b = \left[\dot{U}\ \dot{V}\ \dot{W}\right]$ e $\pmb{V}_b = [U\ V\ W]$. Obs:
- Fornecer resposta em formato vetorial e componente a componente.
- $\left[\dot{V}_{NED}\right]_{b}$ é a derivada da velocidade avaliada no sistema NED, mas representada em S_{b} .
- Veja que todos os vetores estão em S_b , não há necessidade de conversão de sistema de referência.
- Teorema de Coriolis: $\dot{\boldsymbol{v}}_b = \dot{\boldsymbol{v}}_a + \boldsymbol{\omega}^{ab} \times \boldsymbol{v}$
- 2. É possível entender o significado físico dos diversos termos que compõem a aceleração inercial através da análise do movimento de uma mosca sobre um disco girante. Examine as componentes da aceleração sofrida pela mosca quando ela:
 - i. Está estacionada sobre o disco girando com velocidade angular constante
 - ii. Está estacionada sobre o disco girando com velocidade angular variável
 - iii. Se move em direção ao centro do disco girante com velocidade aparente V.
 - iv. Se move em direção perpendicular a R com velocidade aparente V.

- 3. Supondo um objeto de massa constante, tem-se que ${\pmb F}=m{\ddot r}_i$, em que ${\pmb F}$ é a força total (ou seja, o somatório de forças) aplicada, ${\bf r}$ é a posição do objeto, e o duplo "i" indica derivada no sistema inercial. Utilizando a aproximação de Terra plana, o sistema S_{NED} pode ser considerado inercial e, portanto, ${\ddot r}_i={\dot V}_{NED}$. Com as informações acima e utilizando a questão 1, escreva ${\dot V}_b$ em função de m, ${\pmb F}_b=\left[F_{xb}\,F_{yb}\,F_{zb}\right]$, ${\pmb \omega}_b^{b,NED}$ e ${\pmb V}_b$. Escreva nas formas vetorial e componente a componente.
- 4. Acelerômetros medem o somatório das forças específicas (F/m), excetuando a força específica gerada pela gravidade (para todos os efeitos práticos, força específica é o mesmo que aceleração em relação ao sistema inercial). Uma forma de instalar acelerômetros é prendê-lo à aeronave com eixos alinhados, de forma que o sistema de coordenadas do sensor é igual ao da aeronave. Considerando um acelerômetro instalado no centro de massa de uma aeronave, qual é sua medida a_b ? Tente fornecer respostas distintas, em função de \dot{V}_{NED} , de \dot{V}_b e das forças. Obs: decomponha $F_b = F_{b,A} + F_{b,T} + D_b^{NED} g_{NED}$ ao fornecer a resposta em função de forças, em que $F_{b,A}$ são forças de origem aerodinâmica e $F_{b,T}$ são forças de origem propulsiva.

- 5. Como obter \dot{V}_b a partir de a'_b ?
- 6. Considere agora que o acelerômetro está instalado em uma posição r_b' fixa em relação ao centro de massa da aeronave. Sabendo que a aceleração inercial do acelerômetro é dada por $\ddot{r}_{AC_i} = \ddot{r}_{CG_i} + \ddot{r}_b' = \dot{V}_{b_{NED}} + \ddot{r}_b'$, obtenha:
 - i. a'_{k}
 - ii. \dot{V}_b a partir de a'_b
- 7. Seja uma aeronave de massa m, cuja atitude atual é definida pelos ângulos ψ , θ , ϕ , em um local cuja aceleração da gravidade é g_0 . Suponha que a aeronave está em movimento não acelerado (velocidade constante, em linha reta), e que a aproximação de Terra plana possa ser utilizada. Há um acelerômetro posicionado exatamente no centro de gravidade da aeronave.
 - i. Qual a medida do acelerômetro?
 - ii. Considerando ψ = 120°, θ = 15°, ϕ = 30° e g_0 = 9,81 m/s², qual a medida do acelerômetro?
 - iii. Deduza como obter θ e ϕ a partir de medidas de acelerômetro sob as condições de voo da questão, a partir da medida obtida em a). Obs: Veja que não há como obter ψ .
 - iv. Teste a fórmula utilizando o resultado encontrado no item b.
- 8. A segunda lei de Newton para movimentos de rotação é:

$$T = \dot{H}$$

Em que

$$H_h = I_h \omega_h^{bi}$$

E $T \in \mathbb{R}^3$, $H \in \mathbb{R}^3$, $J \in \mathbb{R}^{3 \times 3}$ e os subscritos b e i indicam, respectivamente, sistema do corpo S_b e sistema inercial (S_{NED} ou S_{ECI} , conforme o caso). Pode-se considerar J_b constante. Considerando as informações acima:

- i. Calcule T_b
- ii. Calcule $\dot{\boldsymbol{\omega}}_{h}^{bi}$