Лекция 15

Характеристические функции

Мет. і - комплексная единица

 $Mem. e^{it} = \cos t + i \sin t$

Пусть $\xi+i\eta$ - комплексная случайная величина, где ξ - вещественная часть, а η - мнимая часть

Def. $E(\xi + i\eta) = E\xi + iE\eta$

 $\mathbf{Def.}$ Характеристической функций случайной величины ξ называется функция

$$\varphi_{\xi}(t) = Ee^{it\xi}, t \in \mathbb{R}$$

Свойства:

1. Любая случайная величина ξ имеет характеристическую функцию, причем $|\varphi_{\xi}(t)| \leq 1$

Характеристическая функция существует по теореме об абсолютной сходимости интеграла от произведения ограниченной и нормированной функций Докажем неравенство:

$$|\varphi_{\xi}(t)|^2 = |Ee^{it\xi}|^2 = |E\cos t\xi| + iE\sin t\xi|^2 = (E\cos \xi t)^2 + (E\sin \xi t)^2 \le$$

[πο неравенству Йенсена] $\le E\cos^2 \xi t + E\sin^2 \xi t = E(\cos^2 \xi t + \sin^2 \xi t) = E1 = 1$

2. Пусть $\varphi_{\xi}(t)$ - характеристическая функция случайной величины ξ . Тогда характеристическая функция случайной величины $a+b\xi$ равна $\varphi_{a+b\xi}(t)=e^{ita}\varphi_{\xi}(bt)$

$$\varphi_{a+b\xi}(t) = Ee^{it(a+b\xi)} = E(e^{ita} \cdot e^{itb\xi}) = e^{ita}Ee^{itb\xi} = e^{ita}\varphi_{\xi}(bt)$$

3. Характеристическая функция суммы независимых случайных величин равна произведению их характеристических функций

Пусть случайные величины ξ и η - независимы. Тогда $\varphi_{\xi+\eta}(t) = E(e^{it\xi} \cdot e^{it\eta}) = [\text{так как они независимы}] = Ee^{it\xi} \cdot Ee^{it\eta} = \varphi_{\xi}(t) \cdot \varphi_{\eta}(t)$ Аналогично для большего числа величин

4. Пусть $E\xi^k < \infty$. Тогда

$$\varphi_{\xi}(t) = 1 + itE\xi - \frac{t^2}{2}E\xi^2 + \dots + \frac{(it)^k}{k!}E\xi^k + o(|t|^k)$$

$$\varphi_{\xi}(t) = Ee^{it\xi} = E(1 + it\xi + \frac{(it\xi)^2}{2!} + \dots + \frac{(it\xi)^k}{k!} + o(|t|^k)) = 1 + itE\xi \frac{i^2t^2}{2}E\xi^2 + \dots + \frac{(it)^k}{k!}E\xi^k + o(|t|^k)$$

5. Пусть $E\xi^k<\infty.$ Тогда $\varphi_\xi^{(k)}(0)=i^k E\xi^k$

$$E\xi^k < \infty \Longrightarrow$$
 существует k членов разложения в ряд Маклорена: $\frac{\varphi_\xi^{(k)}(0)}{k!} t^k = \frac{i^k E\xi^k}{k!} t^k;$ $\frac{\varphi_\xi^{(k)}(0)}{k!} t^k = i^k E\xi^k$

6. Существует взаимно-однозначное соответствие между распределениями и характеристическими функциями. Зная характеристическую функцию можно восстановить распределение.

 $\it Ex.$ Если распределение абсолютно непрерывное, то его можно восстановить по преобразованию Фурье

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-itx} \varphi_{\xi}(t) dt$$

7. Теорема о непрерывном соответствии

Th. Последовательность случайных величин $\{\xi_n\}$ слабо сходится к ξ тогда и только тогда, когда соответствующая последовательность характеристических функций сходится поточечно к $\varphi_{\xi}(t)$

$$\{\xi_n\} \rightrightarrows \xi \Longleftrightarrow \varphi_{\xi_n}(t) \longrightarrow \varphi_{\xi}(t) \forall t \in \mathbb{R}$$

Характеристические функции стандартных распределений

• Распределение Бернулли

$$\begin{array}{c|ccc} \xi & 0 & 1 \\ \hline p & 1-p & p \end{array}$$

$$\varphi_{\xi}(t) = Ee^{i\xi t} = e^{i\cdot 0\cdot t}p(\xi = 0) + e^{i\cdot 1\cdot t}p(\xi = 1) = 1 - p + pe^{it}$$

• Биномиальное распределение

$$P(\xi = k) = C_n^k p^k q^{n-k}, \quad k = 0, 1, ..., n$$

Если $t\in B_{n,p},$ то $\xi=\xi_1+\xi_2+\xi_3+\cdots+\xi_n,$ где $\xi_i\in B_p$ - независимы

$$\varphi_{\xi}(t) = (\varphi_{\xi_n}(t))^n = (1 - p + pe^{it})^n$$

• Распределение Пуассона

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, \dots, n$$

$$\varphi_{\xi}(t) = Ee^{it\xi} = \sum_{k=0}^{\infty} e^{itk} p(\xi = k) = \sum_{k=0}^{\infty} e^{itk} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^{it})^k}{k!} = e^{-\lambda} e^{\lambda e^{it}} = e^{\lambda(e^{it}-1)}$$

Следствие: распределение Пуассона устойчиво относительно суммирования

 $\exists \xi \in \Pi_{\lambda}, \eta \in \Pi_{\mu}$, они независимы. Тогда $\xi + \eta \in \Pi_{\lambda + \mu}$

По третьему свойству $\varphi_{\xi+\eta}(t)=\varphi_{\xi}(t)\cdot \varphi_{\eta}(t)=e^{\lambda(e^{it}-1)}e^{\mu(e^{it}-1)}=e^{(\lambda+\mu)(e^{it}-1)}$ - характеристическая функция распределения Пуассона $\Pi_{\lambda+\mu}$

• Стандартное нормальное распределение
$$f_{\xi}(x) = \frac{1}{2\pi}e^{-\frac{x^2}{2}}$$

$$\varphi_{\xi}(t) = Ee^{it\xi} = \int_{-\infty}^{\infty}e^{itx}f_{\xi}(x)dx = \int_{-\infty}^{\infty}e^{itx}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{1}{2}(x^2-2itx)}dx = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{1}{2}(x^2-2itx-t^2)e^{-\frac{t^2}{2}}}dx = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{(x-it)^2}{2}}d(x-it) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}\sqrt{2\pi}}e^{-\frac{t^2}{2}}$$
 • Нормальное распределение

$$\xi \in N(a, \sigma^2)$$

Если $\eta \in N(0,1)$, то $\xi = a + \sigma \eta \in N(a, \sigma^2)$

По второму свойству $\varphi_{\xi}(t)=e^{ita}\varphi_{\eta}(\sigma t)=e^{ita-\frac{\sigma^2t^2}{2}}$

Следствие: нормальное распределение устойчиво относительно суммирования

Если $\xi \in N(a_1, \sigma_1^2), \eta \in N(a_2, \sigma_2^2)$ и они независимы, то $\xi + \eta \in N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$

$$\varphi_{\xi+\eta}(t)=\varphi_{\xi}(t)\varphi_{\eta}(t)=e^{ita_1-\frac{\sigma_1^2t^2}{2}}e^{ita_2-\frac{\sigma_2^2t^2}{2}}=e^{it(a_1+a_2)-\frac{(\sigma_1^2+\sigma_2^2)t^2}{2}}$$
- характеристическая функция $N(a_1+a_2,\sigma_1^2+\sigma_2^2)$

Доказательства теорем через свойства характеристических функций

Докажем некоторые теоремы с помощью характеристических функций

Закон больших чисел Хинчина

Для доказательства закона больших чисел Хинчина докажем такую лемму:

$$\left(1 + \frac{x}{n} + o\left(\frac{1}{n}\right)\right)^n \underset{n \to \infty}{\longrightarrow} e^x$$

$$\left(1+\frac{x}{n}+o\left(\frac{1}{n}\right)\right)^n=e^{n\ln\left(1+\frac{x}{n}+o\left(\frac{1}{n}\right)\right)}=e^{n\left(\frac{x}{n}+o\left(\frac{1}{n}\right)+o\left(\frac{x}{n}+o\left(\frac{1}{n}\right)\right)\right)}=e^{n\left(\frac{x}{n}+o\left(\frac{1}{n}\right)+o\left(\frac{1}{n}\right)\right)}=e^{x+no\left(\frac{1}{n}\right)}\xrightarrow[n\to\infty]{}e^x$$

Тh. Закон больших чисел Хинчина

Пусть $\xi_1, \xi_2, \dots, \xi_n$ - последовательность независимых одинаково распределенных случайных величин с конечным матожиданием. Тогда $\frac{S_n}{n} = \frac{\xi_1 + \dots + \xi_n}{n} \stackrel{p}{\longrightarrow} E\xi_1$

Обозначим $a = E\xi_1$

Ранее было доказано, что сходимость по вероятности к константе эквивалентно к слабой сходимости. Поэтому достаточно доказать, что $\frac{S_n}{n} \rightrightarrows a$

По теореме о непрерывном соответствии остается доказать, что $\varphi_{\frac{S_n}{n}}(t) \longrightarrow \varphi_a(t) = e^{ita}$

По четвертому свойству $\varphi_{\xi_1}(t) = 1 + itE\xi_1 + o(|t|) = 1 + ita + o(|t|)$

$$\varphi_{\frac{S_n}{n}}(t) = [\text{по второму свойству}] = \varphi_{S_n}\left(\frac{t}{n}\right) = \left(\varphi_{\xi_1}\left(\frac{t}{n}\right)\right)^n = \left(1 + ia\frac{t}{n} + o\left(\left|\frac{t}{n}\right|\right)\right)^n \xrightarrow{\text{по лемме}} e^{ita} = \varphi_a(t)$$

Центральная предельная теорема

Тh. Центральная предельная теорема Ляпунова, 1901 г.

Пусть $\xi_1, \xi_2, \dots, \xi_n$ - последовательность независимых одинаково распределенных случайных величин с конечным вторым моментом $(D\xi_1 < \infty)$

Обозначим $a = E\xi_1, \sigma^2 = D\xi_1$. Тогда

$$\frac{S_n - na}{\sigma \sqrt{n}} \rightrightarrows N(0, 1)$$

Пусть $\eta_i = \frac{\xi_i - a}{\sigma}$ - стандартизованная случайная величина

$$E\eta_i = 0, D\eta_i = 1$$

Обозначим
$$Z_n = \eta_1 + \dots + \eta_n = \frac{(\xi_1 + \dots + \xi_n) - na}{\sigma} = \frac{S_n - na}{\sigma}$$

Надо доказать, что если $\frac{Z_n}{\sqrt{n}} \Rightarrow N(0,1)$

По четвертому свойству $\varphi_{\eta_1}(t) = 1 + itE\eta_1 - \frac{t^2}{2}E\eta_1^2 + o(t^2) = 1 - \frac{t^2}{2} + o(t^2)$

$$\varphi_{\frac{Z_n}{\sqrt{n}}} = \varphi_{Z_n} \left(\frac{t}{\sqrt{n}} \right) = \left(\varphi_{\eta_1} \left(\frac{t}{\sqrt{n}} \right) \right)^n = \left(1 - \frac{\left(\frac{t}{\sqrt{n}} \right)^2}{2} + o\left(\left(\frac{t}{\sqrt{n}} \right)^2 \right) \right)^n = \left(1 - \frac{t^2}{2n} + o\left(\left(\frac{t}{\sqrt{n}} \right)^2 \right) \right)^n \xrightarrow[n \to \infty]{} e^{-\frac{t^2}{2}} - e^{-\frac{t^2}{2}} = e^{-\frac{t^2}{2}} - e^{-\frac{t^2}{2}} = e^{-\frac{t^2}{2}}$$

характеристическая функция $\dot{N}(0,1)$

Предельная теорема Муавра-Лапласа

Th. Пусть $v_n(A)$ - число появления события A при n независимых испытаний, p - вероятность успеха при одном испытании, q=1-p. Тогда $\frac{v_n(A)-np}{\sqrt{npq}} \rightrightarrows N(0,1)$

$$v_n(A) = \xi_1 + \xi_2 + \dots + \xi_n = S_n$$
, где $\xi_i \in B_p$ и независимы, $E\xi_1 = p, D\xi_1 = pq$ По ЦПТ $\frac{v_n(A) - np}{\sqrt{npq}} = \frac{S_n - nE\xi_1}{\sqrt{nD\xi_1}} \Rightarrow N(0,1)$

Следствие. Интегральная формула Лапласа:

$$\overline{p(k_1 \le v_n \le k_2)} = p\left(\frac{k_1 - np}{\sqrt{npq}} \le \frac{v_n - np}{\sqrt{npq}} \le \frac{k_2 - np}{\sqrt{npq}}\right).$$
 Обозначим $\eta = \frac{v_n - np}{\sqrt{npq}}$
$$p\left(\frac{k_1 - np}{\sqrt{npq}} \le \frac{v_n - np}{\sqrt{npq}} \le \frac{k_2 - np}{\sqrt{npq}}\right) = F_{\eta}\left(\frac{k_2 - np}{\sqrt{npq}}\right) - F_{\eta}\left(\frac{k_1 - np}{\sqrt{npq}}\right) \xrightarrow[n \to \infty]{} F_0\left(\frac{k_2 - np}{\sqrt{npq}}\right) - F_0\left(\frac{k_1 - np}{\sqrt{npq}}\right),$$
 где
$$F_0(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$$

Nota. Аналогичным образом ЦПТ применяется для приближенного вычисления вероятностей, связанных с суммами большого числа независимых одинаковых случайных величин, заменяя стандартизованную сумму на стандартное нормальное распределение. Возникает вопрос: какова погрешность данного вычисления?

Th. Неравенство Берри-Эссеена

В условиях ЦПТ для ξ_1 с конечным третьим моментом можно оценить так:

$$\left| p \left(\frac{S_n - nE\xi_1}{\sqrt{nD\xi_1}} < x \right) - F_0(x) \right| \le C \frac{E|\xi_1 - E\xi_1|^3}{\sqrt{n(D\xi_1)^3}} \forall x \in \mathbb{R}$$

Nota. На практике берут C = 0.4, точная оценка сверху C < 0.77