

Smart Card

- ◆Memory size is described in bits / bytes
- Memory size is referring to the application memory
 - EEPROM erasable, if authorized
- Memory card storage, 104 bits to 16 Kbits
- ◆CPU card 8bits/16 bits, 8051 or 6805 core
 - ROM 3Kbytes to 32 Kbytes
 - RAM ~100 bytes to 1 Kbytes
 - **EEPROM 512 bytes to 32 Kbytes**

Smart Card Standard ISO-7816

- ◆Part 1 Physical Characteristics
- ◆Part 2 Dimensions & Locations of Contacts
- ◆Part 3 Electronic Signals & Transmission Protocol
- ◆Part 4 Inter-industry Command For Interchange

ISO-7816 Part 3 -- Answer To Reset

TS TO TA1 TB1 TC1 TD1 TA2 TB2 TC2 TD2 .T1..Tk Tck

TS = Initial Character

T0 = Format Character

Y1,K

TA1 = FI,DI

TB1 = II,PI1

TC1 = N

TD1 = Y2, T

TA2 = specific mode

TB2 = PI2

TC2 = specific

TD2 = Y3, T

TD2 = Y3,T

T1..Tk = historical

characters

ISO-7816 Part 4 -- File Structures

Header
System Information

Body

Sequence Of Byte Application Data

TRANSPARENT FILE

Header

System Information

Body

Record #1

Record #2

Record #3

Rest of records

Last Record #N

LINEAR FIXED FILE

ISO-7816 Part 4 -- File Structures

LINEAR VARIABLE FILE

CYCLIC FILE

ISO-7816 Part 4 -- Inter-industry Commands

- **ERASE BINARY**
- **◆**VERIFY
- **◆MANAGE CHANNEL**
- **◆EXTERNAL AUTHENTICATE**
- ◆GET CHALLENGE
- ◆INTERNAL AUTHENTICATION
- **SELECT FILE**
- READ BINARY
- ◆READ RECORD

- **◆GET RESPONSE**
- **◆**ENVELOPE
- **◆**GET DATA
- **◆WRITE BINARY**
- **◆WRITE RECORD**
- **UPDATE BINARY**
- **◆PUT DATA**
- **◆UPDATE RECORD**
- **APPEND RECORD**

Credit

Administrative Commands

- Create File
- Delete File
- Create Record
- Set Lock
- ◆ PIN Unblock
- Reload PIN
- Application Block
- Application Unblock

Smart Card Security Attributes

- **♦**File access
 - Read, write, update/erase
 - Access locks
 - Access in plain or ciphered
 - Secured messaging
 - Invalidate, rehabilitate

- Command execution
 - File selection
 - Read command
 - Write command
 - Erase command
 - Authentication command
 - Credit command
 - Debit command

Security Mechanism

- Passive authentication
 - VERIFY command with PIN / password
- Active authentication
 - **☞INTERNAL AUTHENTICATION** with challenge
 - EXTERNAL AUTHENTICATION with response to challenge

Security Mechanism

- Data authentication
 - READ, WRITE, UPDATE command with secured messaging
 - Protecting access channel
- Data encipherment
 - READ, WRITE, UPDATE command with ciphered data

COS Techniques

- **♦** Security
 - At implementation level
 - At command definition level
- ◆Flexibility
 - **COS** development process
 - Security policy
- Reliability
 - Stress reduction of EEPROM cell
 - Anti-tearing

(acs)

File Header - MF / DF Header

The MF/DF header has the following structure:

Byte 0 File descriptor byte

Byte 1-2 File ID

Byte 3-4 File size allocated

Byte 5 DF State AND mask

Byte 6 DF body size

Byte 7-8 Create / Delete Access

Byte 9-10 File size remaining

SC

File Header - Transparent / TLV / Variable Record File

The transparent header has the following structure:

Byte 0 File descriptor byte

Byte 1-2 File ID

Byte 3-4 File size allocated

Byte 5-6 Read Access

Byte 7-8 Update Access

(

File Header Linear / Cyclic Record File

The file header has the following structure:

Byte 0 File descriptor byte

Byte 1-2 File ID

Byte 3-4 Number of record; Record

length

Byte 5-6 Read access

Byte 7-8 Update access

File Access

B7	B6	B5		B4	В3	B2	B1	B0	Description
1_		1 - Level		-	-	-	70 -	-	1 = Ciphered
T	1			-	-	-	-	-	1 = MAC
-	- 1			-	-	-	-	-	0 = key in current DF, 1 = parent DF
-	-	-		x	X	x	x	X	11111 indicates that the key is session key else indicates key number in the key file

B7	В6	B5	B4	В3	B2	B1	В0	Description
X	X	X	-	-	-	- 1	-	Access Logic
-	-	-	X	X	X	X	X	Access State

Key File - Key Record Descriptor

Each key record contains the following fields:

Byte 0, bit 7-5 ACTIVE_LOGIC

Byte 0, bit 4-0 ACTIVE_STATE

Byte 1, bit 4-0 NEXT_STATE

Byte 1, bit 7-5 RFU

Byte 2-3 Key capability

Byte 4,5 max error/

usage counter

Byte 6,7 error / usage counter

Byte 8 – XX key content

Active Logic

001 - Less Than (<)

010 - Less Or Equal (<=)

011 – Equal (==)

100 – Greater Or Equal (>==)

101 – Greater (>)

110 - Not Equal (!=)

111 - Never

State

- ◆ COS has a state {0,1,2..31}
- State is defined by a 5 bits field
- State = 0 is the power-on default state (ALWAYS)
- ◆ State = 31 is the NEVER (LOCKED) state
- State is changed by a secret code presentation or key authentication
- Active Logic, Active State set the pre-condition to use a secret code / key
- Next State of secret code / key change to state machine
- ◆ If the state machine matches the Access, access is authorized