Graphs

CS223: Data Structures

Definitions

- A graph is a non-linear data structure that enables representing relationships between different types of data.
- Real Applications:
 - Google maps, social media, web Page searching, City Planning, Traffic Control, Transportation & Navigation, Travelling Salesman Problems, GSM mobile phone networks
- There are two main parts of a graph G(V,E):
 - The vertices (nodes) where the data is stored (V).
 - The edges (connections) which connect the nodes (E).
 - represented as pairs of vertices (u,v), where u,v ∈ V.
- In the right graph:
 - $V = \{0, 1, 2, 3\}$
 - $E = \{(0,1), (0,2), (0,3), (1,2)\}$
 - $G = \{V, E\}$

- A path is a sequence of edges that allows you to go from a vertex, e.g., 0, to another vertex, e.g., 2.
 - Example: (0-1, 1-2) and (0-2) are paths from vertex 0 to vertex 2.
 - The length of a path is defined as the number of edges in the path.
- A vertex is said to be adjacent to another vertex if there is an edge connecting them. Vertices 2 and 3 are not adjacent because there is no edge between them.

- Graphs can be undirected or directed
 - **Undirected graph:** The relationship exists in both directions (bi-directional) i.e. the edges do not point in any specific direction.
 - Directed graph: The relationships are based on the direction of the edges.
 - It can be a one way relationship or a two-way relationship, but it must be explicitly stated.
 - In a directed graph, the edge e is an ordered pair (u,v).
 - An edge (u,v) is incident from vertex u and is incident to vertex v.

(a) An undirected graph and (b) a directed graph.

The degree of a vertex is the number of edges incident to that vertex For directed graph,

the in-degree of a vertex v is the number of edges that have v as the head

the out-degree of a vertex v is the number of edges that have v as

the tail

- A loop is an edge from a vertex onto itself. It is denoted by (v, v) (e.g., (a,a)).
- A simple path is a path where no vertices are repeated along the path (dbc, abc).
- A cycle is a path with at least one edge such that the first and last vertices are the same (e.g., bcdb, cdbc, dbcd).
 - A cycle can have length one (i.e. a self loop).

- Reachability and Connectivity. A vertex v is reachable from a vertex u in G if there is a path starting at v and ending at u in G.
 - We use R_G(v) to indicate the set of all vertices reachable from v in G.
 - e.g., $R_G(b) = \{c, d\}$

- Connected graph: any two vertices are connected by some path
- An undirected graph is connected if all vertices are reachable from all other vertices.

- A connected graph is strongly connected if it is a connected graph as well as a directed graph.
 - if all vertices are reachable from all other vertices.
- A connected graph is weakly connected if it is
 - a directed graph that is not strongly connected, but,
 - · the underlying undirected graph is connected

- Let n #vertices, and m = #edges
- A complete graph: one in which all pairs of vertices are adjacent
- How many total edges in a complete graph?
 - Undirected graph:

- n = 5m = (5 * 4)/2 = 10
- (b) Complete undirected graph.
- Each of the n vertices is incident to n-1 edges, however, we would have counted each edge twice! Therefore, intuitively, m = n(n-1)/2.
- Therefore, if a graph is not complete, m < n(n -1)/2
- Directed graph

•
$$m = n(n - 1)$$

$$n = 4$$

 $m = (4 * 3) = 12$

(a) Complete directed graph.

Subgraph: subset of vertices and edges forming a graph

(i), (ii), (iii), and (iv) are subgraphs of G₁

• Subgraph: subset of vertices and edges forming a graph

(i), (ii), (iii), and (iv) are subgraphs of G₂

Representation using a 2D Array

- A Graph can be represented by an adjacency matrix.
- An adjacency matrix is 2D array of V x V vertices. Each row and column represent a vertex.
- Adjacency matrices have a value $a_{i,j} = 1$ if nodes i and j share an edge; 0 otherwise.
 - If the value of any element a[i][j] is 1, it represents that there is an edge connecting vertex i and vertex j.
- The degree of a vertex is $\sum_{j=0}^{n-1} adj_mat[i][j]$
- For a directed graph, the row sum is the out_degree, while the column sum is the in_degree.
 - In_d(v_i) = $\sum_{j=0}^{n-1} adj_mat[j][i]$
 - Out_d(v_i) = $\sum_{j=0}^{n-1} adj_mat[i][j]$
- The adjacency matrix for an undirected graph is symmetric;
- The adjacency matrix for a digraph need not be symmetric.

Representation using a linked list

- An adjacency list represents a graph as an array of linked list.
- The index of the array represents a vertex and each element in its linked list represents the other vertices that form an edge with the vertex.
- Degree of a vertex in an undirected graph is # of nodes in adjacency list
- If |E| is close to the number of vertices then G is considered Sparse and an adjacency list is preferred.

• If |E| is close to the maximum number of edges in G then it is considered **Dense** and the adjacency matrix is preferred.

GRAPH TRAVERSAL/ SEARCHING

- How to traverse a graph or find a path between two nodes of the graph?
 - Breadth-First-Search (BFS)
 - Depth-First-Search (DFS)

Breadth First Traversal

- Similar to traversing a tree level-by-level
 - Nodes at each level
 - Visited from left to right
 - All nodes at any level i
 - Visited before visiting nodes at level i + one
- Start several paths at a time, and advance in each, one step at a time
 - Expand shallowest unexpanded node

BREADTH-FIRST-TRAVERSAL

Can be implemented efficiently using a queue

```
Input: s as the source node
BFS (G, s)
let Q be queue.
Q.enqueue(s)
mark s as visited
while ( Q is not empty)
v = Q.dequeue( )
for all neighbors w of v in Graph G
if w is not visited
Q.enqueue( w )
mark w as visited
```

Breadth First Traversal

Breadth First Traversal

Node	Adjacency List
A	F, C, B
В	A, C, G
С	A, B, D, E, F, G
D	C, F, E, J
E	C, D, G, J, K
F	A, C, D
G	B, C, E, K
J	D, E, K
K	E, G, J

Adjacency list for graph G

Current	Status Status										
Node	QUEUE	Processed Nodes	Α	В	С	D	Е	F	G	J	K
			1	1	1	1	1	1	1	1	1
	Α		2	1	1	1	1	1	1	1	1
Α	FCB	Α	3	2	2	1	1	2	1	1	1
F	CBD	AF	3	2	2	2	1	3	1	1	1
С	BDEG	AFC	3	2	3	2	2	3	2	1	1
В	DEG	AFCB	3	3	3	2	2	3	2	1	1
D	EGJ	AFCBD	3	3	3	3	2	3	2	2	1
E	GJK	AFCBDE	3	3	3	3	3	3	2	2	2
G	JK	AFCBDEG	3	3	3	3	3	3	3	2	2
J	K	AFCBDEGJ	3	3	3	3	3	3	3	3	2
K	EMPTY	AFCBDEGJK	3	3	3	3	3	3	3	3	3

For the above graph the breadth first traversal sequence is: A F C B D E G J K.

Breadth First Traversal

Example

Adjacency Lists

A:B,D B:C,F C:E,G,H G:E,H E:B,F F:A D:F H:A

Traversal starting from Node H.

BREADTH-FIRST-SEARCH (BFS)

• BFS can be implemented efficiently using a queue

BFS-iterative

```
Set found to false
Enqueue(startVertex)
Do
Dequeue(vertex)
IF vertex == endVertex
Set found to true
ELSE
Enqueue all adjacent vertices onto queue
WHILE !queue.lsEmpty() AND !found
IF(!found)
Write "Path does not exist"
```

BREADTH-FIRST-SEARCH (BFS)

rear	front
	A

Add A to queue

rear	front
	В

Dequeue A Add B

D C

Dequeue B Add C, D

$$\begin{array}{cc} \underline{\text{rear}} & \underline{\text{front}} \\ & D \end{array}$$

Dequeue C Nothing to add

found destination - done!

C

O

1 S

2

3

4

_

O

1 S

2 A,B

3

4

Q

1 S

2 A,B

3 B,C,D

4

F

Q

- 1 S
- 2 A,B
- 3 B,C,D
- 4 C,D,E,F

Q

- 2 A,B
- 3 B,C,D
- 4 C,D,E,F
- 5 D,E,F,G,H

Q

- 3 B,C,D
- 4 C,D,E,F
- 5 D,E,F,G,H
- 6 E,F,G,H

Q

- 4 C,D,E,F
- 5 D,E,F,G,H
- 6 E,F,G,H
- 7 F,G,H

Q

5 D,E,F,G,H

6 E,F,G,H

7 F,G,H

8 G,H

Q

6 E,F,G,H

7 F,G,H

8 G,H

9 H

Q

6 E,F,G,H

7 F,G,H

8 G,H

9

Q

- 1 S
- 2 A,B
- 3 B,C,D
- 4 C,D,E,F
- 5 D,E,F,G,H
- 6 E,F,G,H
- 7 F,G,H
- 8 G,H
- 9 H

- Similar to binary tree preorder traversal
- Once a possible path is found, continue the search until the end of the path
- What is the idea behind DFS?
 - Travel as far as you can down a path
 - Back up as little as possible when you reach a "dead end" (i.e., next vertex has been "marked" or there is no next vertex)
 - Expand deepest unexpanded node
- General algorithm for depth first traversal at a given node v (recursive)

```
DFS-recursive(G, s):
    mark s as visited
    for all neighbours w of s in Graph G:
        if w is not visited:
            DFS-recursive(G, w)
```

General algorithm for depth first traversal at a given node v (recursive)

```
DFS-recursive(G, s):
    mark s as visited
    for all neighbours w of s in Graph G:
        if w is not visited:
            DFS-recursive(G, w)
```

General algorithm for depth first traversal at a given node v (non-recursive)

```
DFS(G,v) (v is the vertex where the search starts)
     Stack S := {}; (start with an empty stack)
     for each vertex u, set visited[u] := false;
     push S, v;
     while (S is not empty) do
      u := pop S;
      if (not visited[u]) then
        visited[u] := true;
        for each unvisited neighbour w of uu
          push S, w;
      end if
     end while
   END DFS()
```

Example

Adjacency Lists

A:B,D B:C,F C:E,G,H G:E,H E:B,F F:A D:F

Traversal starting from Node H.

Node	Adjacency List							
A	F, C, B							
В	A, C, G							
С	A, B, D, E, F, G							
D	C, F, E, J							
E	C, D, G, J, K							
F	A, C, D							
G	B, C, E, K							
J	D, E, K							
K	E, G, J							

Adjacency list for graph G

Current Node	Stack	Processed Nodes	Status								
			Α	В	С	D	Е	F	G	J	K
			1	1	1	1	1	1	1	1	1
	Α		2	1	1	1	1	1	1	1	1
Α	BCF	A	3	2	2	1	1	2	1	1	1
F	BCD	AF	3	2	2	2	1	3	1	1	1
D	BCEJ	AFD	3	2	2	3	2	3	1	2	1
J	BCEK	AFDJ	3	2	2	3	2	3	1	3	2
K	BCEG	AFDJK	3	2	2	3	2	3	2	3	3
G	BCE	AFDJKG	3	2	2	3	2	3	3	3	3
E	ВС	AFDJKGE	3	2	2	3	3	3	3	3	3
С	В	AFDJKGEC	3	2	3	3	3	3	3	3	3
В	EMPTY	AFDJKGECB	3	3	3	3	3	3	3	3	3

For the above graph the depth first traversal sequence is: $\textbf{A} \ \textbf{F} \ \textbf{D} \ \textbf{J} \ \textbf{K} \ \textbf{G} \ \textbf{E} \ \textbf{C} \ \textbf{B}.$

OUTPUT : A

OUTPUT: A B OUTPUT: A B D

OUTPUT : A B D E

OUTPUT: ABDEF

OUTPUT: ABDEFC

DFS can be implemented efficiently using a stack

```
DFS-iterative
Set found to false
 Push(startVertex)
 DO
  Pop(vertex)
  IF vertex == endVertex
  Set found to true
  ELSE
    Push all adjacent vertices onto stack
 WHILE !stack.IsEmpty() AND !found
```

IF(!found)
 Write "Path does not exist"

 \bigcirc

Q

1 S

2

3

4

 \mathbf{O}

1 S

2 A,B

3

4

 \mathbf{O}

1 S

2 A,B

3 C,D,B

4

Q

- 1 S
- 2 A,B
- 3 C,D,B
- 4 G,H,D,B

Q

- 1 S
- 2 A,B
- 3 C,D,B
- 4 G,H,D,B
- 5 H,D,B

Q

- 1 S
- 2 A,B
- 3 C,D,B
- 4 G,H,D,B
- 5 H,D,B
- 6 D,B

Q

- 1 S
- 2 A,B
- 3 C,D,B
- 4 G,H,D,B
- 5 H,D,B
- 6 D,B