

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	,	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	E	L	Т	Р	Total	
	Discrete Structures and Graph Theory	3	0	0	4	7	3	0	0	3	
(PC)		Examination Scheme									
		Component			ISE		MSE		ESE	Total	
66204 /IT204		Theory			75		75		L50	300	
CS201/IT201		Labor	Laboratory								

Pre-requisite C	ourse Codes, if any.					
Course Objective: To teach students how to think logically and mathematically. It provides the						
mathematical f	mathematical foundation that is used in most areas of computer science.					
Course Outcomes (CO):At the End of the course students will be able to						
XXXXX.1	Solve problems using set theory, logic and its various proof techniques.					
XXXXX.2	Apply the concepts of relations, functions, lattices and recurrence relations to solve problems					
XXXXX.3	Apply the concepts of graph, trees and their various types with their traversing					
	techniques to solve problems.					
XXXXX.4	Apply the basics of coding theory and cryptography to solve real world problems.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
XXXXX.1												
XXXXX.2												
XXXXX.3												
XXXXX.4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
XXXXX.1						
XXXXX.2						
XXXXX.3						
XXXXX.4						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze	Evaluate	Create	
---------------------	-------	---------	----------	--------	--

ATTUTE OF LECHYOLOGY

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module	Unit	Topics	Ref.	Hrs.		
No.	No.	Topics	nei.	піз.		
1	Title	Set Theory, Logic and Proofs	1, 2			
	1.1	Finite and infinite set, Union, Intersection, Disjoint, and		2		
		Difference of two sets. Power Set, Partition of Sets, Ordered				
		Sets, De Morgan's Laws, Principle of Inclusion Exclusion				
	1.2	Predicates, Propositions, Conditional Propositions, Logical		6		
		Connectivity, Proposition calculus, Universal and Existential				
		Quantifiers, First order logic, Equivalence, Normal Forms, Introduction to proofs, Mathematical Induction, Strong				
2	Title	Induction, Well-ordering principle, Logical inference Relations, Functions and Lattices	1, 2			
2	Title		1, 2	8		
		Product Sets and Partitions, Paths in relations and Diagraphs, Properties of Relations, Closure of Relation, Equivalence		0		
	2.1	Relations, Operations on Relations, Warshall's Algorithm,				
	2.1	Partially Ordered Sets, External Elements of Partially Ordered				
	Sets, Hasse Diagram Composition of Functions Invertible Functions Recursive					
	2.2	Functions, Hashing, Pigeon hole Principle, Extended PHP		3		
	2.3 Lattice, Sub lattice, Isomorphic Lattices, Properties of Lattice, Special Types of Lattices Recurrence Relations – Introduction, Linear Recurrence Relations					
	with constant coefficients, Homogeneous solutions, Particular					
		Solutions, Total Solutions, Solution by the method of Generating				
	_	functions, solving Recurrence Relations				
3	Title	Graph Theory	1, 2	4		
	3.1	Concepts and terminologies, Graphs as Model (Konigsberg Bridge Problem)				
	3.2	Matrices, Isomorphism, Bipartite Graphs, Directed Graphs				
	3.3	Minimal Spanning Trees-Prim's Algorithm and Kruskal's				
		Algorithm				
4	Title	Graph connectivity	1, 2	6		
	4.1	Cycles – Transport Networks, Max Flows, Matching Problems,				
		Maximum Bipartite Matching, Perfect Matching				
	4.2	4.2 Euler Paths- Circuits, Hamiltonian Paths- Circuits				
	4.3	Coloring Graphs, Chromatic Polynomial, Planer Graphs				
5	Title	Coding Theory	1, 2	4		
	5.1	Hamming Code, Minimum Distance				
	5.2	Number Theory, Modular Arithmetic and applications to				
		cryptography; Diffie-Hellman Algorithm				

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

6		Algebraic Structures - Semi group, Monoids, G groups, Abelian groups, Normal Subgroups	iroups, Cyclic	1, 2	5*	
	Study	groups, Abendin groups, Norman Subgroups				
Total (*Not included) 42						

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Discrete Mathematics and it's applications	Seventh	Kenneth H. Rosen	Tata McGraw- Hill	2013
2	Discrete Mathematical Structures	Sixth	Bernad Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman	Pearson Education	2015

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Elements of Discrete Mathematics	Fourth	C. L. Liu	Tata McGraw- Hill	2012
2	Introduction to graph Theory	Second	Douglas B. West	Pearson Education	2015
3	Discrete Mathematical Structures with Applications to Computer Science	First	Jean-Paul, Tremblay R. Manohar	Tata McGraw- Hill	1987