

Let it Rot

Coach

罗国杰

Contestant

钱易

彭博

冯施源

Qinjian Zhang

张勤健

Guojie Luo

Yi Qian Bo Peng Shiyuan Feng

ICPC World Finals Luxor

Contents

1	图论		1 5	•	数据结构	16
	1.1	欧拉回路	1		5.1 区间加区间求和树状数组	16
			2			
	1.2		۷		5.2 zkw 线段树	
	1.3	网络最大流 dinic	3		5.3 Link Cut Tree	17
	1.4	最小费用流	3		5.4 FHO Treap	17
	1.5	二分图最大权匹配 KM	4		5.5 pbds tree	17
	1.6	一般图最大匹配 带花树	1		pour free	1,
			-			
	1.7	最小树形图	5 6	,	geometry	17
	1.8	缩点 kasaraju	6		6.1 向量	17
	1.9	缩点 Tarjan	6			
	1.10	缩点点双	6		6.2 直线半平面	
			0		6.3 半平面交	18
	1.11	缩点 边双	6		6.4 线段	18
	1.12	仙人掌	6		6.5 多边形	19
	1.13	2-Sat	7			
	1.14	支配树	7		6.6 线段 in 多边形	19
		F-1001.	7		6.7 图形求交	19
	1.15	三/四元环	/		6.8 凸包	20
	1.16	双极定向	7		6.9 上凸壳	20
	1.17	Tree And Graph	8			
		1.17.1 树的计数 Prufer序列	8		6.10 最小圆覆盖	20
			0		6.11 最近点对	21
		1.17.2 有根树的计数	ð		6.12 凸包直径	21
		1.17.3 无根树的计数	8		6.13 切凸包	
		1.17.4 生成树计数 Kirchhoff's Matrix-Tree Thoerem	8			
		1.17.5 有向图欧拉回路计数 BEST Thoerem	8		6.14 V 🖲	21
			0		6.15 Delaunay 三角剖分	21
		1.17.6 Tutte Matrix	δ		•	
		1.17.7 Edmonds Matrix	8 _			00
	1.18	拟阵交	8 7		geometry3d	22
					7.1 向量	22
_					7.2 平面	23
2	数论		9		7.3 直线	
	2.1	取模还原分数....................................	9			23
	2.2	扩展欧几里得	Q		7.4 凸包	23
			ģ			
	2.3	万能欧几里得	, .	,	Mina	23
	2.4	直线下点数 欧几里得	98		Misc	
	2.5	Stern-Brocot Tree 二分	10		8.1 Pragma	23
	2.6	扩展中国剩余定理	10		8.2 Barrett	23
					8.3 LCS	23
	2.7	Miller-Rabin	10		— n – n – n	
	2.8	Pollard-rho	10		8.4 日期公式	
					8.5 Xorshift	24
3	Math		11			
3			_		피목	24
	3.1	拉格朗日反演....................................	11 9			24
	3.2	分拆数 五边形数	11		9.1 vimrc	24
	3.3	Fast Fourier Transform	11		9.2 bashrc	24
	3.4	Number Theoretic Transform	11		9.3 对拍	24
	3.5	Generating function	11		9.4 编译参数	24
	3.6	全在线卷积	12		9.5 随机素数	24
	3.7	Berlekamp Massey	12		9.6 常数表	24
	3.8	Stericitating Tritisboy	13			
				_	No. of the state o	
	3.9	Simpson 积分		0	注意事项	24
	3.10	黄金三分	13		10.1 测试项目	24
					10.2 bugs	
4	<i></i> 55 +		10		10.2 04.50	21
4	字符串		13			
	4.1	后缀自动机 SAM	13 1	1	tables	25
	4.2	基本子串字典....................................	14		11.1 导数积分	25
	4.3	DAG 剖分	14		13 AT 17 AT	23
				1	图论	
	4.4	exKMP	14]	L		
	4.5	log 个最小后缀	14			
	4.6	SĂ	15 1	l.1	l 欧拉回路	
	4.7	PAM	15 🗆			
				na	mespace Euler {	
	4.8	AC 自动机	10			
	4.9	Manacher	15 ²		bool directed;	
	4.10	Lyndon/最小表示法	16 з		<pre>vector<pii>V[sz];</pii></pre>	
			. 1	- 1	•	1

```
vector<int>ans; // reverse ans in the end
     int vis[sz];
   | int dfs(int x) {
     vector<int>t:
       while (V[x].size()) {
           auto [to,id]=V[x].back();
           V[x].pop back();
          if (!vis[abs(id)])

    vis[abs(id)]=1,t.push_back(dfs(to)),ans.push_back(id);

      rep(i,1,(int)t.size()-1) if (t[i]!=x) ans.clear();
     return t.size()?t[0]:x;
   | }
   | int n,m;
    pii e[sz];
    int deg[sz], vv[sz];
18
     void clr() {
     | rep(i,1,n) V[i].clear(),deg[i]=vv[i]=0;
     | rep(i,1,m) vis[i]=0;
        ans.clear();
       n=m=<mark>0</mark>;
   | }
   void addedge(int x,int y) {
     | chkmax(n,x),chkmax(n,y); ++m;
        e[m]={x,y};
27
        if (directed) {
           V[x].push_back({y,m});
29
        ++deg[x],--deg[y],vv[x]=vv[y]=1;
     ∣ else {
           V[x].push_back({y,m});
           V[y].push_back({x,-m});
          ++deg[x],++deg[y],vv[x]=vv[y]=1;
37
    using vi=vector<int>;
    pair<vi,vi> work() {
   | | if (!m) return clr(),pair<vi,vi>{{1},{}};
      int S=1;
       rep(i,1,n) if (vv[i]) S=i;
        rep(i,1,n) if (deg[i]>0&&deg[i]%2=1) S=i;
        if ((int)ans.size()!=m) return clr(),pair<vi,vi>();
        reverse(ans.begin(),ans.end());
     vi ver,edge=ans;
  | | if (directed) {
          ver={e[ans[0]].fir};
        | for (auto t:ans) ver.push back(e[t].sec);
50
     | }
51
      ∣ else {
           ver={ans[0]>0?e[ans[0]].fir:e[-ans[0]].sec};
           for (auto t:ans) ver.push back(t>0?e[t].sec:e[-t].fir);
```

```
1.2 二分图匹配 | 最小边覆盖
 |A| // 匈牙利,左到右单向边,O(M|match|)
std::vector<int> edge[N];
3 | bool dfs(int x, std::vector<int> & vis, std::vector<int> & match) {
for(int y : edge[x]) if(!vis[y])
s | | if(vis[y] = 1, !match[y] || dfs(match[y], vis, match))
  | return 0;
std::vector<int> match(int nl, int nr) {
| | std::vector<int> vis(nr + 1), match(nr + 1), ret(nl + 1);
| | | | memset(vis.data(), 0, vis.size() << 2);
return ret[0] = 0, ret;
15 }
16 // 最小边覆盖
| 17 | std::pair<std::vector<int>, std::vector<int>> minedgecover(int nl, int nr) {
| std::vector<int> vis(nr + 1), match(nr + 1), ret(nl + 1);
|_{19}| | for(int i = 1;i <= nl;++i) if(dfs(i, vis, match))
20 | | memset(vis.data(), 0, vis.size() << 2);</pre>
|_{22}| | ret[0] = 0:
| for(int i = 1;i <= nl;++i) if(!ret[i]) dfs(i, vis, match);
| std::vector<int> le, ri;
| 25 | | for(int i = 1;i <= nl;++i) if(ret[i] && !vis[ret[i]]) le.push_back(i);
    for(int i = 1;i <= nr;++i) if(vis[i]) ri.push_back(i);</pre>
    return std::make_pair(le, ri);
|_{29} // 匈牙利,左到右单向边,bitset,O(n^2/w|match|)
| using set = std::bitset<N>;
set edge[N]:
bool dfs(int x, set & unvis, std::vector<int> & match) {
s3 | | for(set z = edge[x];;) {
  | | z &= unvis;
  int y = z._Find_first();
  | if(y = N) return 0;
  if(unvis.reset(y), !match[y] || dfs(match[y], unvis, match))
  | | return match[y] = x, 1;
39 | }
std::vector<int> match(int nl, int nr) {
| set unvis; unvis.set();
| std::vector<int> match(nr + 1), ret(nl + 1);
  | for(int i = 1;i <= nl;++i)
  | | if(dfs(i, unvis, match))
45
  for(int i = 1;i <= nr;++i) ret[match[i]] = i;</pre>
```

```
| return ret[0] = 0, ret;
49 }
_{50} // HK, 左到右单向边, O(M\sqrt{|match|})
std::vector<int> e[N];
std::vector<int> matchl, matchr, a, p;
std::vector<int> match(int nl, int nr) {
     matchl.assign(nl + 1, 0), matchr.assign(nr + 1, 0);
    for(;;) {
55
       a.assign(nl + 1, 0), p.assign(nl + 1, 0);
        static std::queue<int> Q;
        for(int i = 1;i <= nl;++i)</pre>
         | if(!matchl[i]) a[i] = p[i] = i, Q.push(i);
       int succ = 0;
     | for(;Q.size();) {
           int x = Q.front(); Q.pop();
           if(matchl[a[x]]) continue;
           for(int y : e[x]) {
           | if(!matchr[y]) {
               \mid for(succ = 1;y;x = p[x])
                 | matchr[y] = x, std::swap(matchl[x], y);
              | break;
         | | if(!p[matchr[y]])
           | | Q.push(y = matchr[y]), p[y] = x, a[y] = a[x];
     if(!succ) break;
75
   | return matchl;
77 } // matchl 是左边每个点匹配的右边点编号
78 std::pair<std::vector<int>, std::vector<int>> minedgecover(int nl, int nr) {
    match(nl, nr);
     std::vector<int> l, r;
   | for(int i = 1;i <= nl;++i) if(!a[i]) l.push_back(i);
     for(int i = 1;i <= nr;++i) if(a[matchr[i]]) r.push back(i);</pre>
  | return {l, r};
83
84 }
```

1.3 网络最大流 | dinic

```
// S 编号最小, T 最大, 或者改一下清空
struct Dinic {
    | struct T {
    | int to, nxt, v;
    | } e[N << 3];
    | int h[N], head[N], num = 1;
    | void link(int x, int y, int v) {
    | | e[++num] = {y, h[x], v}, h[x] = num;
    | | e[++num] = {x, h[y], 0}, h[y] = num; // !!!
    | }
    | int dis[N];
    | bool bfs(int s, int t) {
    | | std::queue<int> Q;
```

```
| for(int i = s;i <= t;++i) dis[i] = -1, head[i] = h[i]; //如果编号不是
          → [S,T], 只要改这里
  | | for(Q.push(t), dis[t] = 0;!Q.empty();) {
16 | | int x = Q.front(); Q.pop();
        for(int i = h[x]; i; i = e[i].nxt) if(e[i ^ 1].v && dis[e[i].to] < 0)
           | dis[e[i].to] = dis[x] + 1, Q.push(e[i].to);
20 | | }
| | | | return dis[s] >= 0;
| | int dfs(int s, int t, int lim) {
  | if(s = t || !lim) return lim;
  | | int ans = 0, mn;
  | | for(int & i = head[s];i;i = e[i].nxt) {
  | \cdot | if (dis[e[i].to] + 1 = dis[s] & (mn = dfs(e[i].to, t, std::min(lim,
            \rightarrow e[i].v)))) {
           | e[i].v -= mn, e[i ^ 1].v += mn;
  30 | | | | if(!lim) break;
31 | | | }
32 | | }
33 | return ans;
  | int flow(int s, int t) {
  | | int ans = 0;
  | for(;bfs(s, t);) ans += dfs(s, t, 1e9);
38 | return ans;
39 | }
40 } G;
```

1.4 最小费用流

```
ı // S 编号最小, T 最大, 或者改一下清空
2 namespace mcmf {
  using pr = std::pair<ll, int>;
  \mid const int N = 10005, M = 1e6 + 10;
    struct edge {
  | | int to, nxt, v, f;
  | } e[M << 1];
    int h[N], num = 1;
     void link(int x, int y, int v, int f) {
  | e[++num] = \{y, h[x], v, f\}, h[x] = num;
  | | e[++num] = \{x, h[y], 0, -f\}, h[y] = num;
12 | }
14 | int vis[N], fr[N];
| 15 | | bool spfa(int s, int t) {
  | | std::queue<int> Q;
| | | | std::fill(d + s, d + t + 1, 1e18); // CHECK
| | | for(d[s] = 0, Q.push(s);!Q.empty();) {
  | | int x = Q.front(); Q.pop(); vis[x] = 0;
19
        | for(int i = h[x];i;i = e[i].nxt)
           | if(e[i].v && d[e[i].to] > d[x] + e[i].f) {
```

```
d[e[i].to] = d[x] + e[i].f;
              | fr[e[i].to] = i;
       | | | if(!vis[e[i].to]) vis[e[i].to] = 1, Q.push(e[i].to);
     | return d[t] < 1e17;
    bool dijkstra(int s, int t) { // 正常题目不需要 dijk
     | std::priority_queue<pr, std::vector<pr>, std::greater<pr>> Q;
     | for(int i = s; i <= t; ++i) dis[i] = d[i], d[i] = 1e18, vis[i] = fr[i] =
         → 0; // CHECK
       for(Q.emplace(d[s] = 0, s);!Q.empty();) {
          int x = Q.top().second; Q.pop();
          if(vis[x]) continue;
          vis[x] = 1;
          for(int i = h[x];i;i = e[i].nxt) {
          | const ll v = e[i].f + dis[x] - dis[e[i].to];
             if(e[i].v \& d[e[i].to] > d[x] + v) {
             | fr[e[i].to] = i;
             \mid Q.emplace(d[e[i].to] = d[x] + v, e[i].to);
       for(int i = s;i <= t;++i) d[i] += dis[i]; // CHECK</pre>
       return d[t] < 1e17;
    std::pair<ll, ll> EK(int s, int t) {
     | spfa(s, t); // 如果初始有负权且要 dijk
  | for(;dijkstra(s, t);) { // 正常可以用 spfa
          ll fl = 1e18;
        for(int i = fr[t];i;i = fr[e[i ^ 1].to]) fl = std::min<ll>(e[i].v,
        | for(int i = fr[t];i;i = fr[e[i ^ 1].to]) e[i].v -= fl, e[i ^ 1].v +=
            ن fl;
        | f += fl, c += fl * d[t];
     return std::make pair(f, c);
57
58 }
59 // in flow problems with lower bounds (or with negative cycles), flow the
    60 // after the first round, revert the auxiliary edges
 1.5 二分图最大权匹配 | KM
```

```
namespace KM {
    | int nl,nr;
    | ll e[sz][sz];
    | ll lw[sz],rw[sz];
    | int lpr[sz],rpr[sz];
    | int vis[sz],fa[sz];
    | ll mnw[sz];
    | void work(int x) {
    | int xx=x;
}
```

```
rep(i,1,nr) vis[i]=0,mnw[i]=1e18;
        while (233) {
         | rep(i,1,nr) if (!vis[i]\delta\delta chkmin(mnw[i],lw[x]+rw[i]-e[x][i]))
              \hookrightarrow fa[i]=x;
           ll mn=1e18; int y=-1;
13
           rep(i,1,nr) if (!vis[i]&&chkmin(mn,mnw[i])) y=i;
           lw[xx]-=mn; rep(i,1,nr) if (vis[i]) rw[i]+=mn,lw[rpr[i]]-=mn; else

    mnw[i]-=mn;
   | | if (rpr[y]) x=rpr[y],vis[y]=1; else { while (y)

    rpr[y]=fa[y],swap(y,lpr[fa[y]]); return; }

17
18 | }
   void init(int nl,int nr) {
   | | assert(nl<=nr);</pre>
        KM::nl=nl,KM::nr=nr;
        rep(i,1,nl) lw[i]=-1e18;
  | | rep(i,1,nl) rep(j,1,nr) e[i][j]=0; // or -1e18
24
25
   void clr() {
        rep(i,1,nl) lpr[i]=lw[i]=0;
        rep(i,1,nr) rpr[i]=rw[i]=vis[i]=fa[i]=mnw[i]=0;
     | rep(i,1,nl) rep(j,1,nr) e[i][j]=0;
29
     void addedge(int x,int y,ll w){chkmax(e[x][y],w),chkmax(lw[x],w);}
    ll work() {
        rep(i,1,nl) work(i);
        ll tot=0;
        rep(i,1,nl) tot+=e[i][lpr[i]];
35
        return tot;
  | }
36
```

1.6 一般图最大匹配 | 带花树

```
namespace blossom {
  vector<int>V[sz];
   | int f[sz];
     int n,match[sz];
     int getfa(int x){return f[x]=x?x:f[x]=getfa(f[x]);}
     void link(int x,int y){V[x].push_back(y),V[y].push_back(x);}
     int pre[sz].mk[sz];
     int vis[sz],T;
     queue<int>q;
     int LCA(int x,int y) {
     | T++;
     \mid for (;; x=pre[match[x]], swap(x,y))
  | | if (vis[x=getfa(x)]=T) return x;
14 | | else vis[x]=x?T:0;
15
| | | void flower(int x,int y,int z) {
| | | | | while (getfa(x)!=z) {
| | | | | pre[x]=y; y=match[x]; f[x]=f[y]=z; x=pre[y];
        | if (mk[y]=2) q.push(y),mk[y]=1;
```

```
void aug(int s){
      for (int i=1;i<=n;i++) pre[i]=mk[i]=vis[i]=0,f[i]=i;</pre>
       mk[s]=1; q.push(s);
       while (q.size()) {
          int x=q.front(); q.pop();
          for (auto v:V[x]) {
             int y=v,z;
             if (mk[y]=2) continue;
             if (mk[y]=1) z=LCA(x,y),flower(x,y,z),flower(y,x,z);
             else if (!match[y]) {
              for (pre[y]=x;y;) x=pre[y],match[y]=x,swap(y,match[x]);
              return;
           else pre[y]=x,mk[y]=2,q.push(match[y]),mk[match[y]]=1;
  | }
  | int work() {
     | rep(i,1,n) if (!match[i]) aug(i);
     | int res=0;
     | rep(i,1,n) res+=match[i]>i;
     | return res;
45
```

1.7 最小树形图

抄罗大的,返回值是边的集合,如果没有最小树形图会返回空集(注意 n=1),可以修改建图。

```
namespace DMST {
  | struct edge {
  | | int u, v, id; ll w;
    | bool operator < (const edge & y) const {
       return w < y.w;
  int ls[M], rs[M], size[M], cc; ll tag[M];
    int fs[N], fw[N], rt[N];
    void put(int x, ll v) {
     | if(x) val[x].w += v, tag[x] += v;
  void pushdown(int x) {
       put(ls[x], tag[x]);
       put(rs[x], tag[x]);
       tag[x] = 0;
17
  int merge(int x, int y) {
     | if(!x || !y) return x | y;
       if(val[y] < val[x]) std::swap(x, y);</pre>
       pushdown(x), rs[x] = merge(rs[x], y);
       if(size[rs[x]] > size[ls[x]]) {
          std::swap(ls[x], rs[x]);
```

```
size[x] += size[y];
  | | return x;
26
27 | }
  | void ins(int & x, const edge & z) {
28
     | val[++cc] = z, size[cc] = 1;
     \mid x = merge(x, cc);
   | void pop(int \delta x) { x = merge(ls[x], rs[x]); }
     edge top(int x) { return val[x]; }
     int find(int x, int * anc) {
     return anc[x] = x ? x : anc[x] = find(anc[x], anc);
     void link(int u, int v, int w, int id) {
     | ins(rt[v], {u, v, id, w});
     int pa[N * 2], tval[N * 2], up[N * 2], end_edge[M], cmt, baned[M];
     std::vector<int> solve(int r) {
   | | std::queue<int> roots;
   | | for(int i = 1;i <= n;++i) {
   | | | fs[i] = fw[i] = i, tval[i] = ++ cmt;
        if(i != r) roots.push(i);
45
46
       std::vector<edge> H;
       std::vector<int> ret;
   | | for(;!roots.empty();) {
        int k = roots.front(); roots.pop();
          if(!rt[k]) return ret;
           edge e = top(rt[k]); pop(rt[k]);
           int i = e.u, j = e.v;
           if(find(i, fs) = k) roots.push(k);
           else {
              H.push_back(e); end_edge[e.id] = tval[k];
              if(find(i, fw) != find(j, fw)) {
               | fw[find(j, fw)] = i;
                ent[k] = e;
            pa[tval[k]] = ++ cmt, up[tval[k]] = e.id;
                put(rt[k], -e.w);
                for(;(e = ent[find(e.u, fs)]).u;) {
                   int p = find(e.v, fs);
                   pa[tval[p]] = cmt;
                   up[tval[p]] = e.id;
                   put(rt[p], -e.w);
                   rt[k] = merge(rt[k], rt[p]);
                   fs[p] = k;
                tval[k] = cmt;
                roots.push(k);
  74
  | | }
75
     | reverse(H.begin(), H.end());
       for(edge i : H) if(!baned[i.id]) {
```

1.8 缩点 | kasaraju

时间复杂度 $O(\frac{n^2}{N})$,可以对于边修改不多的图快速计算。

```
using set = std::bitset<N>;
2 // re 是反向边,需要连好
set e[N], re[N], vis;
std::vector<int> sta;
void dfs0(int x, set * e) {
  vis.reset(x);
     for(;;) {
     | int go = (e[x] & vis)._Find_first();
  | if(go = N) break;
     | dfs0(go, e);
     sta.push_back(x);
std::vector<std::vector<int>> solve() {
     for(int i = 1;i <= n;++i) if(vis.test(i)) dfs0(i, e);</pre>
    vis.set();
    auto s = sta;
    std::vector<std::vector<int>> ret;
    for(int i = n - 1; i >= 0; --i) if(vis.test(s[i])) {
     | sta.clear(), dfs0(s[i], re), ret.push_back(sta);
     }
22
    return ret;
23
```

1.9 缩点 | Tarjan

```
int dfn[sz],low[sz],cc;
stack<int>S; int in[sz];
int bel[sz],T;
void dfs(int x) {
    | dfn[x]=low[x]=++cc; S.push(x),in[x]=1;
    | for (auto v:V[x]) {
    | if (!dfn[v]) dfs(v,x),chkmin(low[x],low[v]);
    | else if (in[v]) chkmin(low[x],dfn[v]);
    | }
    | if (dfn[x]=low[x]) {
    | int y; ++T;
    | do y=S.top(),S.pop(),in[y]=0,bel[y]=T; while (y!=x);
    | }
}
```

1.10 缩点 | 点双

1.11 缩点 | 边双

1.12 仙人掌

```
vector<int>V2[sz], V[sz]; // V2: cactus edges; V: reconstructed tree edges
  int m; // set to n before dfs
  void dfs(int x,int f) {
     static int mark[sz],fa[sz],vis[sz],dep[sz];
  fa[x]=f; vis[x]=1;dep[x]=dep[f]+1;
  | for (auto v:V2[x]) if (v!=f) {
     | if (!vis[v]) dfs(v,x);
       else if (dep[v]<dep[x]) {</pre>
           ++m;
           V[v].push_back(m);
          for (int y=x;y!=v;y=fa[y]) V[m].push_back(y),mark[y]=1;
12
13
  | if (!mark[x]) {
       V[fa[x]].push_back(m),V[m].push_back(x);
17
```

int semi[sz];

```
1.13 2-Sat

rep(i,1,n) if (bel[i<<1]=bel[i<<1|1]) return puts("IMPOSSIBLE"),0;
puts("POSSIBLE");
rep(i,1,n) printf("%d ",bel[i<<1]>bel[i<<1|1]);
1.14 支配树
```

```
1.14 支配树
namespace BuildTree {
  int idom[sz]:
     vector<int>V[sz],ANS[sz]; // ANS: final tree
     int deg[sz];
    int fa[sz][25],dep[sz];
    int lca(int x,int y) {
     if (dep[x]<dep[y]) swap(x,y);</pre>
        drep(i,20,0)
          if (fa[x][i]&&dep[fa[x][i]]>=dep[y])
           | x=fa[x][i]:
        if (x=y) return x;
       drep(i,20,0)
          if (fa[x][i]!=fa[y][i])
         | | x=fa[x][i],y=fa[y][i];
       return fa[x][0];
     void work() {
       queue<int>q;q.push(1);
     while (!q.empty()) {
          int x=q.front();q.pop();
           ANS[idom[x]].push\_back(x);fa[x][0]=idom[x];dep[x]=dep[idom[x]]+1;
           rep(i,1,20) fa[x][i]=fa[fa[x][i-1]][i-1];
           for (int v:V[x]) {
              --deg[v];if (!deg[v]) q.push(v);
             if (!idom[v]) idom[v]=x;
              else idom[v]=lca(idom[v],x);
29
30 }
namespace BuildDAG {
    vector<int>V[sz],rV[sz];
  int dfn[sz],id[sz],anc[sz],cnt;
     void dfs(int x) {
     | id[dfn[x]=++cnt]=x;
     for (int v:V[x]) if (!dfn[v])
          BuildTree::V[x].push_back(v), BuildTree::deg[v]++, anc[v] = x,
             \hookrightarrow dfs(v):
  | }
   int fa[sz].mn[sz];
  int find(int x) {
     | if (x=fa[x]) return x;
        int tmp=fa[x];fa[x]=find(fa[x]);
       chkmin(mn[x],mn[tmp]);
     return fa[x];
```

```
47 | | void work() {
        dfs(1);
        rep(i,1,n) fa[i]=i,mn[i]=1e9,semi[i]=i;
        drep(w,n,2) {
        int x=id[w];int cur=1e9;
           if (w>cnt) continue;
           for (int v:rV[x]) {
            | if (!dfn[v]) continue;
           if (dfn[v]<dfn[x]) chkmin(cur,dfn[v]);</pre>
           | else find(v),chkmin(cur,mn[v]);
           semi[x]=id[cur];mn[x]=cur;fa[x]=anc[x];
58
           BuildTree::V[semi[x]].push back(x);BuildTree::deg[x]++;
  1 }
61
     void link(int x,int y){V[x].push_back(y),rV[y].push_back(x);}
```

1.15 三/四元环

```
static int id[sz].rnk[sz];
  rep(i,1,n) id[i]=i;
 | sort(id+1,id+n+1,[](int x,int y){return pii{deg[x],x}<pii{deg[y],y};});
 | rep(i,1,n) rnk[id[i]]=i;
  rep(i,1,n) for (auto v:V[i]) if (rnk[v]>rnk[i]) V2[i].push_back(v);
6 int ans3=0; // 3-cycle
7 rep(i,1,n) {
s | static int vis[sz];
     for (auto v:V2[i]) vis[v]=1;
10 | for (auto v1:V2[i]) for (auto v2:V2[v1]) if (vis[v2]) ++ans3; // (i,v1,v2)
  | for (auto v:V2[i]) vis[v]=0;
13 | ll ans4=0: // 4-cvcle
14 rep(i,1,n) {
15 | static int vis[sz];
16 | for (auto v1:V[i]) for (auto v2:V2[v1]) if (rnk[v2]>rnk[i])

    ans4+=vis[v2],vis[v2]++;
     for (auto v1:V[i]) for (auto v2:V2[v1]) vis[v2]=0;
```

1.16 双极定向

```
vector<int>G[sz];
namespace bipolar_orientation {
    int dfn[sz],low[sz],cc,p[sz],inv[sz],topo[sz];
    | bool flg,sgn[sz];
    | void dfs(int x,int fa,int s,int t) {
    | | dfn[x]=low[x]=++cc; inv[cc]=x,p[x]=fa;
    | | if (x=s) dfs(t,x,s,t);
    | | for (int y:G[x]) {
    | | | if (x=s&by=t) continue;
    | | | | dfs(y,x,s,t);
    | | | | dfs(y,x,s,t);
    | | | | | chkmin(low[x],low[y]);
    | | | | if (x=s|low[y]>=dfn[x]) flg=1;
```

```
else if (dfn[y]<dfn[x]&&y!=fa) chkmin(low[x],dfn[y]);
int check(int s,int t,int n) { // return topo
 | if (n=1) return topo[1]=1,1;
 | if (s=t) return 0:
   | cc=flg=0; dfs(s,s,s,t);
    if (flg) return 0;
    sgn[s]=0;
    static int pre[sz], suf[sz];
    suf[0]=s,pre[s]=0,suf[s]=t;
    pre[t]=s,suf[t]=n+1,pre[n+1]=t;
    rep(i,3,n) {
     | int v=inv[i];
     | if (!sgn[inv[low[v]]]) {
     | | int P=pre[p[v]];
       | pre[v]=P,suf[v]=p[v];
       suf[P]=pre[p[v]]=v;
     ∣ else {
     | | int S=suf[p[v]];
      pre[v]=p[v],suf[v]=S;
       | suf[p[v]]=pre[S]=v;
       sgn[p[v]]=!sgn[inv[low[v]]];
  for (int x=s,cnt=0;x!=n+1;x=suf[x]) topo[++cnt]=x;
  return 1;
void clr(int n) {
  | rep(i,1,n) dfn[i]=low[i]=p[i]=inv[i]=topo[i]=sgn[i]=0,G[i].clear();
```

1.17 Tree And Graph

1.17.1 树的计数 Prufer序列

树和其prufer编码——对应, 一颗 n 个点的树, 其prufer编码长度为 n-2, 且度数为 d_i 的点在prufer 编码中出现 d_i-1 次.

由树得到序列: 总共需要 n-2 步,第 i 步在当前的树中寻找具有最小标号的叶子节点,将与其相连的点的标号设为Prufer序列的第 i 个元素 p_i ,并将此叶子节点从树中删除,直到最后得到一个长度为 n-2 的Prufer 序列和一个只有两个节点的树。

由序列得到树: 先将所有点的度赋初值为 1, 然后加上它的编号在Prufer序列中出现的次数, 得到每个点的度; 执行 n-2 步, 第 i 步选取具有最小标号的度为 1 的点 u 与 v = p_i 相连, 得到树中的一条边, 并将 u 和 v 的度减一. 最后再把剩下的两个度为 1 的点连边, 加入到树中.

相关结论: n 个点完全图,每个点度数依次为 $d_1,d_2,...,d_n$,这样生成树的棵树为: $\frac{(n-2)!}{(d_1-1)!(d_2-1)!...(d_n-1)!}$. 左边有 n_1 个点,右边有 n_2 个点的完全二分图的生成树棵树为 $n_1^{n_2-1} \times n_2^{n_1-1}$. m 个连通块,每个连通块有 c_i 个点,把他们全部连通的生成树方案数: $(\sum c_i)^{m-2} \prod c_i$

1.17.2 有根树的计数

首先, 令 $S_{n,j}=\sum_{1\leq j\leq n/j}$; 于是 n+1 个结点的有根树的总数为 $a_{n+1}=\frac{\sum_{j=1}^n j a_j S_{n-j}}{n}$. 注: $a_1=1,a_2=1,a_3=2,a_4=4,a_5=9,a_6=20,a_9=286,a_{11}=1842$.

1.17.3 无根树的计数

n 是奇数时, 有 $a_n - \sum_{i=1}^{n/2} a_i a_{n-i}$ 种不同的无根树.

n 时偶数时,有 $a_n - \sum_{i=1}^{n/2} a_i a_{n-i} + \frac{1}{2} a_{n/2} (a_{n/2} + 1)$ 种不同的无根树

1.17.4 生成树计数 Kirchhoff's Matrix-Tree Thoerem

Kirchhoff Matrix T = Deg - A, Deg 是度数对角阵, A 是邻接矩阵. 无向图度数矩阵是每个点度数; 有向图度数矩阵是每个点入度.

邻接矩阵 A[u][v] 表示 $u \to v$ 边个数, 重边按照边数计算, 自环不计入度数.

无向图生成树计数: c = |K| 的任意1个 n1 阶主子式 |

有向图外向树计数: c = | 去掉根所在的那阶得到的主子式 |

1.17.5 有向图欧拉回路计数 BEST Thoerem

$$\operatorname{ec}(G) = t_{w}(G) \prod_{v \in V} (\operatorname{deg}(v) - 1)!$$

其中 \deg 为入度 (欧拉图中等于出度), $t_w(G)$ 为以 w 为根的外向树的个数. 相关计算参考生成树计数. 欧拉连通图中任意两点外向树个数相同: $\mathbf{t}_v(G) = \mathbf{t}_w(G)$.

以 1 结尾的欧拉路径计数就是把 deg 视为出度,把 deg(1) 的贡献改为 deg(1)!.

1.17.6 Tutte Matrix

Tutte matrix A of a graph G = (V, E):

$$A_{ij} = \begin{cases} x_{ij} & \text{if } (i,j) \in E \text{ and } i < j \\ -x_{ij} & \text{if } (i,j) \in E \text{ and } i > j \\ 0 & \text{otherwise} \end{cases}$$

where x_{ij} are indeterminates. The determinant of this skew-symmetric matrix is then a polynomial (in the variables x_{ij} , i < j): this coincides with the square of the pfaffian of the matrix A and is non-zero (as a polynomial) if and only if a perfect matching exists.

1.17.7 Edmonds Matrix

Edmonds matrix A of a balanced (|U| = |V|) bipartite graph G = (U, V, E):

$$A_{ij} = \begin{cases} x_{ij} & (u_i, v_j) \in E \\ 0 & (u_i, v_j) \notin E \end{cases}$$

where the x_{ij} are indeterminates. G 有完美匹配当且仅当关于 x_{ij} 的多项式 $det(A_{ij})$ 不恒为 0. 完美匹配的个数等于多项式中单项式的个数.

1.1/8 拟阵交

```
// max size, minimum weight
namespace MatroidIntersection {
   int K;
   ll W[sz]; // weight
   int in[sz]; // ans
   namespace Check { // implementation needed
```

```
// recommend writing checker here
          void init() {}
          // return {-1} if no cycle; return cycle otherwise.
          vector<int> cycleA(int x) {}
          vector<int> cycleB(int x) {}
          // not necessary
          void check() {init();}
      bool work() { // try augment
          using pli=pair<ll,int>;
          static vector<int> V[sz];
          static pli dis[sz]:
18
          static int fr[sz];
          Check::init();
          rep(i,1,K) V[i].clear();
          vector<int>A,B;
          rep(i,1,K) if (!in[i]) {
23
              auto cyca=Check::cycleA(i);
              if (cyca.size()=1u&&cyca[0]=-1) A.push_back(i);
25
              else for (auto y:cyca) V[y].push_back(i);
              auto cycb=Check::cycleB(i);
              if (cycb.size()=1u&&cycb[0]=-1) B.push_back(i);
              else for (auto y:cycb) V[i].push_back(y);
          rep(i,1,K) dis[i]={ll(1e18),K+1},fr[i]=0;
          priority_queue<pair<pli,int>, vector<pair<pli,int>>,
32

    greater<pair<pli,int>>>q;
          for (auto x:A) dis[x]=\{W[x],0\},q.push(\{dis[x],x\});
33
          while (!q.empty()) {
              auto [ww,x]=q.top(); q.pop();
              if (dis[x]!=ww) continue;
              for (auto v:V[x])
                  if (chkmin(dis[v],{dis[x].fir+W[v],dis[x].sec+1}))
                      q.push(\{dis[v],v\}),fr[v]=x;
          pli mn={ll(1e18),K+1}; int mnp=-1;
          for (auto x:B) if (chkmin(mn,dis[x])) mnp=x;
          if (mnp=-1) return 0;
          for (int x=mnp;x;x=fr[x]) in[x]^=1;
          Check::check();
          return 1;
     void clr() {
          rep(i,1,K) in[i]=0;
50
```

```
| | std::swap(x, y), std::swap(a, b);
| | a -= x / y * b, x %= y;
| | return {x, a};
| // q = x/a (mod p), x \le A, |a| 取到最小值
```

2.2 扩展欧几里得

```
// result : -b < x < b AND -a < y <= a when a,b != 0
void exgcd(ll a, ll b, ll & x, ll & y) {
  | if(!b) return x = 1, y = 0, void();
  | exgcd(b, a % b, y, x), y -= a / b * x;
}
```

2.3 万能欧几里得

```
」 // 万欧
2 // 前提 : r < q, r >= q 先提几个 U 出来再用
₃ / // 使用: Y * q <= X * p + r, 斜率 p/q, U表示向上, R表示到达一个顶点, 先一些 U 再一个 R
4 template<class T>
5 T power(T a, ll k) {
。 // 有效率需求可以改为半群乘法
  | if(!k) return T();
8 | T res = a;
9 | for(--k;k;) {
  \mid if(k & 1) res = res + a;
| | | | | if(k >>= 1) a = a + a;
12 | }
13 | return res;
15 template<class T>
16 T solve(ll p, ll q, ll r, ll l, T U, T R) {
| | | return solve(p % q, q, r, l, U, power(U, p / q) + R);
| if (!m) return power(R, l);
| ll cnt = l - ((__int128)q * m - r - 1) / p;
|z| | return power(R, (q - r - 1) / p) + U + solve(q, p, (q - r - 1) % p, m - 1,
      \hookrightarrow R, U) + power(R, cnt);
```

2.4 直线下点数|欧几里得

 $n < 2^{32}, 1 \le m < 2^{32}$

$$result = \sum_{i=0}^{n-1} \lfloor \frac{ai+b}{m} \rfloor \pmod{2^{63}}$$

2 数论

2.1 取模还原分数

```
u64 floor_sum(u64 n, u64 m, u64 a, u64 b) {
    | u64 ans = 0;
    | for(;;) {
    | | if(a >= m) ans += n * (n - 1) / 2 * (a / m), a %= m;
    | | if(b >= m) ans += n * (b / m), b %= m;
    | | u64 ymax = a * n + b; // use u128 if it's big
```

2.5 Stern-Brocot Tree 二分

```
using cp = std::complex<ll>;
cp fracBS(ll n, ll m, auto f) {
  | bool dir = 1, A = 1, B = 1;
    cp lo(0, 1), hi(1, 1); // hi can be (1, 0), f(hi) must be true
  | if (f(lo)) return lo;
  | while(A || B) {
     | ll adv = 0, s = 1;
     | for (int x = 0;s;(s *= 2) >>= x) {
          adv += s;
          cp mid = lo * adv + hi;
          if (mid.real() > n || mid.imag() > m || dir = !f(mid)) {
          | adv -= s, x = 2;
       hi += lo * adv, dir = !dir;
       swap(lo, hi);
       A = B, B = adv;
  | return dir ? hi : lo;
20 } // 返回值是最小的使得 f 为真的
   // 另外一个是最大的使得 f 为假的
```

2.6 扩展中国剩余定理

```
ll exCRT(ll a1, ll p1, ll a2, ll p2) {
    | ll a, b, gcd = std::gcd(p1, p2);
    | if((a1 - a2) % gcd)
    | | return -1;
    | exgcd(p1, p2, a, b);
    | ll k = i128((a2 - a1) % p2 + p2) * (a + p2) % p2;
    | return p1 / gcd * k + a1;
}
```

2.7 Miller-Rabin

```
using f64 = long double;
ll p;
f64 invp;
void setmod(ll x) {
    | p = x, invp = (f64) 1 / x;
}
ll mul(ll a, ll b) {
    | ll z = a * invp * b + 0.5;
    | ll res = a * b - z * p;
    | return res + (res >> 63 & p);
}
```

```
|_{12}| ll pow(ll a, ll x, ll res = 1) {
|_{13}| | for(;x;x >>= 1, a = mul(a, a))
|_{14}| | | if(x & 1) res = mul(res, a);
15 | return res;
16 }
| bool checkprime(ll p) {
|_{18}| | if(p = 1) return 0;
   | setmod(p);
   \mid ll d = __builtin_ctzll(p - 1), s = (p - 1) >> d;
   | for(ll a : {2, 3, 5, 7, 11, 13, 82, 373}) {
   | | if(a \% p = 0)
   | | | continue;
23
   \mid  \mid ll x = pow(a, s), y;
   | | for(int i = 0; i < d; ++i, x = y) {
   | | | if(y = 1 \delta \delta x != 1 \delta \delta x != p - 1)
   | | | return 0;
   | | if(x != 1) return 0;
32
   return 1;
33 }
```

2.8 Pollard-rho

```
ı|ll rho(ll n) {
2 | if(!(n & 1)) return 2;
  static std::mt19937 64 gen((size t)"hehezhou");
  | ll x = 0, y = 0, prod = 1;
  | auto f = [8](ll o) { return mul(o, o) + 1; };
  | for(int t = 30, z = 0;t % 64 || std::gcd(prod, n) = 1;++t) {
  | if (x = y) x = ++ z, y = f(x);
  if(ll q = mul(prod, x + n - y)) prod = q;
|x| = f(x), y = f(f(y));
  | return std::gcd(prod, n);
std::vector<ll> factor(ll x) {
std::vector<ll> res;
|a| | auto f = [\delta](auto f, ll x) {
|x| | if(x = 1) return;
if(checkprime(x)) return res.push_back(x);
| | | | | f(f, y), f(f, x / y); 
  | f(f, x), sort(res.begin(), res.end());
  | return res;
23
```

3 Math

3.1 拉格朗日反演

$$G(F(x)) = H(x) \Rightarrow [x^n]G(x) = \frac{1}{n}[u^{n-1}]H'(u)(\frac{u}{F(u)})^n$$

$$G(F(x)) = x \Rightarrow [x^n]H(G(x)) = \frac{1}{n}[u^{n-1}]H'(u)(\frac{u}{F(u)})^n$$

$$G(F(x)) = x \Rightarrow [x^n]G^k(x) = \frac{k}{n}[u^{n-k}](\frac{u}{F(u)})^n$$

3.2 分拆数 五边形数

$$\prod_{i\geq 1} (1-x^i) = \sum_{k=-\infty}^{\infty} (-1)^k x^{\frac{k(3k-1)}{2}}$$

3.3 Fast Fourier Transform

```
using db = double:
using cp = std::complex<db>;
3 // cp::real, cp::imag, std::conj, std::arg
const db pi = std::acos(-1);
5 int rev[N], lim;
6 cp wn[N];
void init(int len) {
  | lim = 2 << std::__lg(len - 1);
  | for(static int i = 1;i < lim;i += i) {
     | for(int j = 0; j < i; ++j) {
        | wn[i + j] = std::polar(1., db(j) / i * pi);
12
     for(int i = 1;i < lim;++i) {</pre>
     | rev[i] = rev[i >> 1] >> 1 | (i % 2u * lim / 2);
18 void DFT(cp * a) {
     for(int i = 0;i < lim;++i) {</pre>
      if(rev[i] < i) std::swap(a[rev[i]], a[i]);</pre>
     for(int i = 1;i < lim;i += i) {</pre>
     | for(int j = 0; j < lim; j += i + i) {
         | for(int k = 0; k < i; ++k) {
         | cp x = a[i + j + k] * wn[i + k];
           | a[i + j + k] = a[k + j] - x;
           | a[k + j] += x;
32 void IDFT(cp * a) {
   | DFT(a), std::reverse(a + 1, a + lim);
   | for(int i = 0;i < lim;++i)
     | a[i] /= lim;
35
```

3.4 Number Theoretic Transform

```
int rev[N], wn[N], lim, invlim;
  int pow(int a, int b, int ans = 1) {
  | for(;b;b >>= 1, a = (u64) a * a % mod) if(b & 1)
    \mid ans = (u64) ans * a % mod;
    return ans;
  void init(int len) {
  | lim = 2 << std::__lg(len - 1);
  | invlim = mod - (mod - 1) / lim;
    for(static int i = 1;i < lim;i += i) {</pre>
       wn[i] = 1;
       const int w = pow(3, mod / i / 2);
     | for(int j = 1; j < i; ++ j) {
       | wn[i + j] = (u64) wn[i + j - 1] * w % mod;
  | for(int i = 1;i < lim;++i) {
    | rev[i] = rev[i >> 1] >> 1 | (i % 2u * lim / 2);
|<sub>21</sub>|void DFT(int * a) {
| for(int i = 0;i < lim;++i) t[i] = a[rev[i]];
  | for(int i = 1;i < lim;i += i) {
    | for(int k = i & (1 << 19); k--;)
     | | if(t[k] >= mod * 9ull) t[k] -= mod * 9ull;
  | | for(int j = 0; j < lim; j += i + i) {
  | | | for(int k = 0; k < i; ++k) {
  | | | | t[i + j + k] = t[k + j] + (mod - x), t[k + j] += x;
  | for(int i = 0;i < lim;++i) a[i] = t[i] % mod;
36 void IDFT(int * a) {
37 | DFT(a), std::reverse(a + 1, a + lim);
  | for(int i = 0;i < lim;++i)
    | a[i] = (u64) a[i] * invlim % mod;
```

3.5 Generating function

```
void cpy(int * a, int * b, int n) {
    | if(a != b) memcpy(a, b, n << 2);
    | memset(a + n, 0, (lim - n) << 2);
}

void inv(int * a, int * b, int n) { // b = inv(a) mod x^n
    | if(n = 1) return void(*b = pow(*a, mod - 2));

static int c[N], d[N];
| int m = (n + 1) / 2;
| inv(a, b, m);
| init(n + m), cpy(c, b, m), cpy(d, a, n);</pre>
```

```
DFT(c), DFT(d):
     for(int i = 0; i < \lim; ++i) c[i] = (u64) c[i] * c[i] % mod * d[i] % mod;
     IDFT(c);
13
     for(int i = m; i < n; ++i) b[i] = norm(mod - c[i]);
15
_{16} | void log(int * a, int * b, int n) { // b = log(a) (mod x^n)
     static int c[N], d[N];
     inv(a, c, n), init(n + n);
     for(int i = 1; i < n; ++i) d[i - 1] = (u64) a[i] * i % mod;
     cpy(d, d, n - 1), cpy(c, c, n);
     DFT(c), DFT(d);
     for(int i = 0; i < \lim_{i \to +i} c[i] = (u64) c[i] * d[i] % mod;
     IDFT(c), *b = 0;
     for(int i = 1; i < n; ++i) b[i] = pow(i, mod - 2, c[i - 1]);
24
25 }
```

3.6 全在线卷积

```
struct oc {
     std::vector<int> f, g, res;
     std::vector<std::vector<int>> fa, fb;
    int n, p;
     oc(int n) : f(n), g(n), res(n), n(n), p(0) { }
     void push(int v0, int v1) {
     | f[p] = v0;
       res[p] = (res[p] + (u64) f[0] * v1 + (u64) g[0] * v0) % mod;
       g[p++] = v1;
       static int A[N], B[N];
       int lb = p & -p;
       init(lb * 2);
       memset(A, 0, lim << 2);
       memset(B, 0, lim << 2);
       for(int i = 0; i < lb; ++i) A[i] = g[p - lb + i], B[i] = f[p - lb + i];
15
       DFT(A), DFT(B);
       if(lb = p) {
          fa.emplace back(A, A + lim);
          fb.emplace back(B, B + lim);
          for(int i = 0; i < \lim_{i \to +i} A[i] = (u64) A[i] * B[i] % mod;
          auto & C = fb[std:: lg(lim)], & D = fa[std:: lg(lim)];
          for(int i = 0; i < \lim_{t \to 0} (u64) A[i] * C[i * 2] + (u64)
             \hookrightarrow B[i] * D[i * 2]) \% mod:
     | IDFT(A);
     | for(int j = p; j 
          → lb]) % mod;
27 | }
28 };
29 struct Exp : oc {
    std::vector<int> res;
     Exp(int n) : oc(n), res(n) { }
  void push(int v) {
     | if(!res[0]) return void(res[0] = 1);
     \mid oc::push(res[p], v * u64(p + 1) % mod);
```

```
| res[p] = (u64) oc :: res[p - 1] * inv[p] % mod;
  | }
37 };
38 | struct Ln : oc {
   | std::vector<int> res; int fi;
   | Ln(int n) : oc(n), res(n), fi(0) {}
     void push(int v) {
   | | if(!fi) return void(fi = 1);
   | | oc::push(res[p] * (u64) p % mod, v);
   | res[p] = ((u64) v * p + mod - oc::res[p - 1]) % mod * inv[p] % mod;
46 };
47 struct Inv : oc {
  | std::vector<int> res; int fi;
     Inv(int n) : oc(n), res(n), fi(0) {}
     void push(int v) {
     | res[p] = fi ? (oc::res[p] + (u64) v * res[0]) % mod * (mod - res[0]) %
          \hookrightarrow mod : pow(fi = v, mod - 2);
        oc::push(res[p], v);
53
54 };
```

3.7 Berlekamp Massey

```
vector<int> berlekamp_massey(const vector<int> &a) {
vector<int> v, last; // v is the answer, 0-based
  \mid int k = -1, delta = 0;
  | for (int i = 0; i < (int)a.size(); i++) {
     | int tmp = 0;
       for (int j = 0; j < (int)v.size(); j++)</pre>
        | tmp = (tmp + (long long)a[i - j - 1] * v[j]) % p;
       if (a[i] = tmp) continue;
       if (k < 0) {
10
       | k = i; delta = (a[i] - tmp + p) % p;
       v = vector<int>(i + 1); continue; }
       vector<int> u = v;
       int val = (long long)(a[i] - tmp + p) *
        | qpow(delta, p - 2) % p;
      | if (v.size() < last.size() + i - k)
        v.resize(last.size() + i - k);
     | (v[i - k - 1] += val) \% = p;
     | for (int j = 0; j < (int)last.size(); j++) {
       | v[i - k + j] = (v[i - k + j] -
          | (long long)val * last[j]) % p;
        | if (v[i - k + j] < 0) v[i - k + j] += p; }
| if ((int)u.size() - i < (int)last.size() - k) {
  | if (delta < 0) delta += p; } }
  \mid for (auto \delta x : v) x = (p - x) % p;
  | v.insert(v.begin(), 1); //一般是需要最小递推式的, 处理一下
  | return v; }
  // \forall i, \sum_{j=0}^{m} a_{i-j} v_j = 0
```

3.8 线性规划 | 单纯形法

```
using db = long double;
2 const db eps = 1e-16;
int sgn(db x) { return x < -eps ? -1 : x > eps; }
4 namespace LP {
    const int N = 21, M = 21;
     int n, m; // n : 变量个数, m : 约束个数
  | db a[M + N][N], x[N + M];
  | // 约束: 对于 1 <= i <= m : a[i][0] + \sum j x[j] * a[i][j] >= 0
   | // x[j] >= 0
    // 最大化 \sum_j x[j] * a[0][j]
     int id[N + M];
     void pivot(int p, int o) {
       std::swap(id[p], id[o + n]);
       db w = -a[o][p];
       for(int i = 0; i <= n; ++i) a[o][i] /= w;
       a[o][p] = -1 / w;
       for(int i = 0;i <= m;++i) if(sgn(a[i][p]) && i != o) {</pre>
           db w = a[i][p]; a[i][p] = 0;
           for(int j = 0; j <= n; ++ j) a[i][j] += w * a[o][j];
     db solve() { // nan : 无解, inf : 无界, 否则返回最大值
     | for(int i = 1; i <= n + m; ++i) id[i] = i;
        for(;;) {
           int p = 0, min = 1;
           for(int i = 1;i <= m;++i) {
           | if(a[i][0] < a[min][0]) min = i;
           if(a[min][0] >= -eps) break;
           for(int i = 1; i <= n; ++i) if(a[min][i] > eps && id[i] > id[p]) {
           | p = i;
           if(!p) return nan("");
           pivot(p, min);
        for(;;) {
           int p = 1;
           for(int i = 1; i \le n; ++i) if(a[0][i] > a[0][p]) p = i;
           if(a[0][p] < eps) break;
           db min = INFINITY; int o = 0;
           for(int i = 1;i <= m;++i) if(a[i][p] < -eps) {</pre>
            | db w = -a[i][0] / a[i][p]; int d = sgn(w - min);
           | if(d < 0 || !d && id[i] > id[o]) o = i, min = w;
           if(!o) return INFINITY;
           pivot(p, o);
     for(int i = 1;i <= m;++i) x[id[i + n]] = a[i][0];</pre>
       return a[0][0];
50
```

3.9 Simpson 积分

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{3n} (f(x_{0}) + 4\sum_{i=1}^{n/2} f(x_{2i-1}) + 2\sum_{i=1}^{n/2-1} f(x_{2i}) + f(x_{n}))$$

$$\approx \frac{3(b-a)}{8n} (f(x_{0}) + 3\sum_{i=1}^{n/3} (f(x_{3i-1}) + f(x_{3i-2})) + 2\sum_{i=1}^{n/3-1} f(x_{3i}) + f(x_{n}))$$

3.10 黄金三分

4 字符串

4.1 后缀自动机 | SAM

需要两倍点数量。

```
int ch[N][26], lk[N], len[N], nd = 1, las = 1;
void extend(int c, int k) {
  \mid int x = ++ nd, p = las; las = x;
  \mid len[x] = len[p] + 1;
  | for(; p && !ch[p][c]; p = lk[p]) ch[p][c] = x;
    if(!p) return lk[x] = 1, void();
    int q = ch[p][c];
    if(len[q] = len[p] + 1)
    | return lk[x] = q, void();
    int cl = ++ nd;
    len[cl] = len[p] + 1;
    memcpy(ch[cl], ch[q], 104);
    lk[cl] = lk[q], lk[q] = lk[x] = cl;
  for(; p \&\& ch[p][c] = q; p = lk[p]) ch[p][c] = cl;
| static int bin[N];
    memset(bin, 0, sizeof (int) * (n + 1));
  | for(int i = 1; i <= nd; i++) ++ bin[len[i]];
  | for(int i = 1; i <= n; i++) bin[i] += bin[i - 1];
    for(int i = nd; i; i--) A[bin[len[i]]--] = i;
```

4.2 基本子串字典

```
for(int i = 2; i <= T[0].nd; i++) {</pre>
   + int x = T[0].A[i];
   | int R = T[0].r[x], L = R - T[0].len[x] + 1;
   | int y = T[1].fnd(T[1].ed[L], R - L + 1);
   | if(T[1].len[y] = R - L + 1) {
   | | ++ cnt; T[0].tag[x] = cnt; T[1].tag[y] = cnt;
     | rt[0][cnt] = x, rt[1][cnt] = y;
_{10} | for(int o = 0; o < 2; o++)
in for(int i = T[o].nd; i > 1; i--) {
   | int x = T[o].A[i];
     if(T[o].tag[x]) continue;
     for(int k = 0; k < 26; k++)
      if(T[o].ch[x][k]) T[o].tag[x] = T[o].tag[T[o].ch[x][k]];
15
_{17} | for(int o = 0; o < 2; o++)
_{18} for(int i = 2; i <= T[o].nd; i++) {
| | |  int x = T[o].A[i];
20 | | vec[o][T[o].tag[x]].pb(x);
|z_1| // vec[0] : from left to right, node id of the columm , vec[1] : from down
_{22} // U : T[0].r[rt] - T[0].len[rt] + 1, D = U + vec[1][t].size() - 1, L = R -
     \rightarrow vec[0][t].size() + 1, R = T[0].r[rt]
int x = T[0].fnd(T[0].ed[r], r - l + 1);
_{24} int blk = T[0].tag[x];
_{25} // distance to the right , 0 - base
int rp = T[0].r[rt[0][blk]] - T[0].r[x];
_{27} // distance to the up // the upper - right point is (T[0].r[rt] -
     \hookrightarrow T[0].len[rt] + 1, T[0].r[rt])
int lp = T[0].r[x] - (r - l) - (T[0].r[rt[0][blk]] - T[0].len[rt[0][blk]] +
    → 1);
```

4.3 DAG 剖分

```
void build() {
  | for(int i = 2; i <= nd; i++)
     | e[lk[i]].pb(i);
    static int q[N], d[N];
  | for(int i = 1; i <= nd; i++)
     | for(int j = 0; j < 26; j++)|
        | if(ch[i][j]) ++ d[ch[i][j]];
  | int hd = 1, tl = 0;
  | q[++ tl] = 1;
    while(hd <= tl) {</pre>
  \mid | int x = q[hd ++];
  | | for(int i = 0; i < 26; i++)
         | if(ch[x][i]) {
13
         \mid int v = ch[x][i];
         | if((--d[v]) = 0) q[++tl] = v;
  | static ll f[N], h[N];
```

```
19 | for(int i = tl, x; i; i--) {
  | | f[x = q[i]] ++;
  | | for(int j = 0; j < 26; j++)|
  | | | if(ch[x][j]) f[x] += f[ch[x][j]];
23
  | for(int i = 1, x; i <= tl; i++) {
  | | h[x = q[i]] ++;
   | | for(int j = 0; j < 26; j++)
     | | if(ch[x][j]) h[ch[x][j]] += h[x];
28
  | static int nx[N], fr[N];
  | for(int i = 1; i <= nd; i++) {
     | for(int j = 0; j < 26; j++)|
        | if(ch[i][j] && f[ch[i][j]] > f[nx[i]]) nx[i] = ch[i][j];
   | | for(int j = 0; j < 26; j++)|
     | | if(ch[i][j] && h[i] > h[fr[ch[i][j]]]) fr[ch[i][j]] = i;
  fr[0] = nx[0] = 0;
   | static bool vis[N];
  | for(int i = 1; i <= nd; i++) {
     | if(fr[nx[i]] = i) son[i] = nx[i], vis[son[i]] = 1;
```

4.4 exKMP

```
| static int lcp[N]:
1 int mx=1, pt=1; lcp[1]=n;
for(int i=2; i<=n; i++){</pre>
4 | if(i<=mx) lcp[i]=min(lcp[i-pt+1],mx-i+1);</pre>
    while(i+lcp[i]<=n && S[i+lcp[i]]=S[1+lcp[i]]) ++lcp[i];</pre>
    if(i+lcp[i]-1>mx) pt=i, mx=i+lcp[i]-1;
```

4.5 log 个最小后缀

```
for(int i = 1; i <= n; i ++) {</pre>
                      St.pb(i); vector<int> nw;
                       for(auto t : St) {
                       | bool ok = true:
                                   while(!nw.empty()){
                                      int x = nw.back();
                                                if(S[i] > S[i-t+x]) ok = false;
                                       if(S[i] >= S[i-t+x]) break; nw.pop_back();
             | if(ok \&\& (nw.empty() || (i - t + 1 <= t - nw.back()))) nw.pb(t);
             | } St = nw;
|_{13}| for (int x : St){
14 | bool FLAG = true;
| while(nx.size()){
|_{17}| | if(S[x + lcp] > S[y + lcp]){ FLAG = false; break; } nx.pop back();
|x| + |x| + |x| = x - x + 1 \le x - x + 1 
 <sub>19</sub>|} // in segmentree, work(L, ans, rpos), work(R, ans, rpos), then return ans
```

```
4.6 SA
 _{1} | char s[N]; int m, rk[N * 2], sa[N], tmp[N * 2], h[N], y[N];
void Sort(){
   | for(int i=1;i<=m;i++) c[i] = 0;
     for(int i=1;i<=n;i++) c[rk[i]]++;</pre>
     for(int i=1;i<=m;i++) c[i] += c[i-1];
     for(int i=n;i>=1;i--) sa[c[rk[y[i]]]--] = y[i];
s void get sa(){
     for(int i=1;i<=n;i++) rk[i] = s[i], y[i] = i; Sort();</pre>
     for(int k=1;k<=n;k<<=1){</pre>
     | int ret = 0;
       | for(int i=n-k+1;i<=n;i++) y[++ret] = i;
        for(int i=1;i<=n;i++) if(sa[i] > k) y[++ret] = sa[i] - k;
        for(int i = 1; i <= n; i++) swap(rk[i], tmp[i]);</pre>
        rk[sa[1]] = 1; int num = 1;
        for(int i=2;i<=n;i++){</pre>
            if(tmp[sa[i]] = tmp[sa[i-1]] \delta tmp[sa[i]+k] = tmp[sa[i-1]+k])
             | rk[sa[i]] = num;
         | else rk[sa[i]] = ++num;
      | } m = num;
22
23 }
24 void get_h(){
   | int k = 0;
     for(int i=1;i<=n;i++){</pre>
      | if(rk[i]=1) continue;
      | int j = sa[rk[i]-1]; if(k) k--;
        while(i+k \le n \delta \delta j+k \le n \delta \delta s[i+k] = s[j+k]) k++;
     | h[rk[i]] = k;
31
 4.7 PAM
```

```
namespace pam {
  int ch[N][26], len[N], lk[N], rp, las, nd, top[N], d[N];
  | void init() { rp = 0, las = nd = 1, len[1] = -1, lk[0] = 1; }
  | // remember to set S[0] = *
    int jmp(int x) { while(S[rp - len[x] - 1] != S[rp]) x = lk[x]; return x; }
    void ins(int c) {
    | ++ rp; int p = jmp(las);
       if(!ch[p][c]) {
          int x = ++ nd;
          len[x] = len[p] + 2;
          lk[x] = ch[jmp(lk[p])][c];
          ch[p][c] = x;
          if(len[x] - len[lk[x]] = d[lk[x]])
           \mid top[x] = top[lk[x]], d[x] = d[lk[x]];
          else {
             top[x] = x;
             d[x] = len[x] - len[lk[x]];
```

4.8 AC 自动机

4.9 Manacher

```
S[1] = '%';
for(int i = 1; i <= len; i++){
    | S[i << 1] = '&';
    | S[i << 1|1] = s[i];
}
len = len << 1 | 1;
S[++len] = '&';
S[++len] = '$;
int mx = 0, id = 0, ans = 0;
for(int i = 1; i <= len; i++){
    | if(mx > i) p[i] = min(p[id * 2 - i], mx - i);
    | else p[i] = 1;
    | while(S[i - p[i]] = S[i + p[i]]) ++p[i];
    | if(i + p[i] > mx) id = i, mx = i + p[i];
    | ans = max(ans, p[i] - 1);
}
```

4.10 Lyndon/最小表示法

```
vector <int> duval(vector <int> S) {
  | int i = 0, j, k, s = S.size(); vector <int> ans;
   while(i < s) {</pre>
  | | j = i, k = i + 1;
    | while(j < s && k < s && S[j] <= S[k]) {
       | if(S[j] = S[k]) ++ j;
    | | else j = i; ++ k;
     | } while (i \le j) \{ ans.pb(i + k - j - 1); i += k - j; \}
  vector <int> min_rep(vector <int> S) {
  | int k = 0, i = 0, j = 1, n = S.size();
    while (k < n && i < n && j < n) {
    | if (S[(i + k) \% n] = S[(j + k) \% n]) k ++;
     ∣ else {
15
         S[(i + k) \% n] > S[(j + k) \% n] ? i = i + k + 1 : j = j + k + 1;
        | if (i = j) i ++; k = 0;
18
    } i = min(i, j);
    rotate(S.begin(), S.begin() + i, S.end()); return S;
```

4.11 Runs

```
1 // need lcp and lcs
bool cmp(int x, int y){
| | int l = lcp(x, y);
4 | if(x + l > n) return true;
5 | if(y + l > n) return false;
   \mid return S[x + l] < S[y + l];
s set <pi> ex;
void ins(int l, int r) {
| | | | int p = r - 1;
   | int l1 = lcp(l, r);
   | int l2 = lcs(l - 1, r - 1);
   | int L = l - l2, R = r + l1 - 1;
   | if(R - L + 1 >= 2 * p) {
   | | auto iter = ex.lower_bound(pi(L, R));
   \mid if(iter != ex.end() && *iter = pi(L, R)) return;
     | ex.emplace_hint(iter, pi(L, R));
     | runs.pb((run){L, R, p});
19
20 }
21 void Run(int o){
     static int s[N];
     int top = 0; s[++top] = n + 1;
     for(int i = n; i; i--){
   | | while(top > 1 && cmp(i, s[top]) = o) --top;
     | ins(i, s[top]), s[++top] = i;
27 | }
28 }
```

5 数据结构

5.1 区间加区间求和树状数组

```
// 后缀加,前缀求和
struct BIT {
    | ll a[N], b[N];
    | void add(ll p, int v) {
    | | for(int i = p;i < N;i += i & -i)
    | | | a[i] += v, b[i] += p * v;
    | }
    | ll qry(ll p) {
    | | ll res = 0;
    | | for(int i = p;i;i &= i - 1) res += (p + 1) * a[i] - b[i];
    | return res;
    | }
    | void add(int l, int r, int v) { add(l, v), add(r + 1, -v); }
    | | ll qry(int l, int r) { return qry(r) - qry(l - 1); }
} bit;
```

5.2 zkw 线段树

```
struct seg {
   | ll o[1 << 20]; int L;
     void upt(int x) {
   | o[x] = o[x << 1] + o[x << 1 | 1];
  void init(int n, int * w) {
   | L = 2 << std:: lg(n + 1);
s | | for(int i = 1; i <= n; ++i) o[i + L] = w[i];</pre>
9 | | for(int i = L;i >= 1;--i) upt(i);
10 | }
| | | void upt(int p, int v) {
| | | | | for(o[p += L] += v;p >>= 1;upt(p));
  | ll gry(int l, int r) {
15 | | l += L - 1, r += L + 1;
| 16 | | | 11 ans = 0;
17 | | for(; l ^ r ^ 1; l >>= 1, r >>= 1) {
  | | | if((l & 1) = 0) ans += o[l ^ 1];
        | if((r \& 1) = 1) ans += o[r ^ 1];
   | | return ans;
  | // if there is no I
\mid if(l = r) return o[l + L];
   | | | ll le = o[l + L], ri = o[r + L];
|<sub>27</sub>| | | l += L, r += L;
  | | for(; l ^ r ^ 1; l >>= 1, r >>= 1) {
|_{29}| + |_{1} \text{ if}((l & 1) = 0) \text{ le = le + o[l }^1];
|_{30}| | | if((r & 1) = 1) ri = o[r ^ 1] + ri:
31 | | }
     | return le + ri;
```

```
34 } sgt;
 5.3 Link Cut Tree
int son[N][2], fa[N], rev[N];
int get(int x, int p = 1) { return son[fa[x]][p] = x; }
void update(int x) { }
int is_root(int x) { return !(get(x) || get(x, 0)); }
void rotate(int x) {
  | int y = fa[x], z = fa[y], b = get(x);
  if(!is_root(y)) son[z][get(y)] = x;
  | son[y][b] = son[x][!b], son[x][!b] = y;
  fa[son[y][b]] = y, fa[y] = x, fa[x] = z;
  | update(y);
void put(int x) {
     if(x) rev[x] = 1, std::swap(son[x][0], son[x][1]);
void down(int x) {
    if(rev[x]) {
     | put(son[x][0]);
     | put(son[x][1]);
     | rev[x] = 0;
void pushdown(int x) {
     if(!is_root(x)) pushdown(fa[x]);
     down(x);
void splay(int x) {
     for(pushdown(x);!is_root(x);rotate(x)) if(!is_root(fa[x]))
     | rotate(get(x) ^{\circ} get(fa[x]) ? x : fa[x]);
     update(x):
void access(int x) {
     for(int t = 0;x;son[x][1] = t, t = x, x = fa[x])
     \mid splay(x);
void makeroot(int x) {
    access(x), splay(x), put(x);
```

5.4 FHQ Treap

```
int root.cc:
struct hh{int w,pri,ch[2],size;}tr[sz];
#define ls(x) tr[x].ch[0]
#define rs(x) tr[x].ch[1]
5 | void pushup(int x){tr[x].size=1+tr[ls(x)].size+tr[rs(x)].size;}
6 int newnode(int w) {
7 ++CC;
  | tr[cc].w=w,tr[cc].pri=rnd(1,int(1e9)),tr[cc].size=1;
  | return cc;
int merge(int x,int y) {
```

```
| | | | |  if (!x||!y) return x+y;
   if (tr[x].pri<tr[y].pri) return rs(x)=merge(rs(x),y),pushup(x),x;</pre>
   return ls(y)=merge(x,ls(y)),pushup(y),y;
void split(int x,int w,int &a,int &b) {
| if (!x) return a=b=0,void();
| if (tr[x].w<=w) a=x,split(rs(x),w,rs(x),b);
else b=x,split(ls(x),w,a,ls(x));
   | pushup(x);
```

5.5 pbds tree

```
#include <bits/extc++.h>
using namespace __gnu_pbds;
s template<class T> // insert, erase, join, order_of_key, find_by_order(return

    iterator), order is 0-index

using Tree = tree<T, null_type, std::less<T>, rb_tree_tag,

    tree_order_statistics_node_update>;
```

geometry

6.1 向量

```
using db = long double:
2 const db eps = 1e-10;
 _{3} db sgn(db x) { return x < -eps ? -1 : x > eps; }
db eq(db x, db y) { return !sgn(x - y); }
s struct p2 {
6 | db x, y;
    db norm() const { return x * x + y * y; }
    db abs() const { return std::sqrt(x * x + y * y); }
    db arg() const { return atan2(y, x); }
10 };
|| db arg(p2 x, p2 y) |
| | | db a = y.arg() - x.arg();
  \mid if(a > pi) a -= pi * 2;
| if(a < -pi) a += pi * 2;
  | return a;
p2 r90(p2 x) { return {-x.y, x.x}; }
19 p2 operator - (p2 x, p2 y) { return {x.x - y.x, x.y - y.y}; }
p2 operator / (p2 x, db y) { return {x.x / y, x.y / y}; }
|p|_{21} p2 operator * (p2 x, db y) { return {x.x * y, x.y * y}; }
|_{23} | db operator * (p2 x, p2 y) { return x.x * y.y - x.y * y.x; }
| 25 | int half(p2 x){return x.y < 0 || (x.y = 0 && x.x <= 0); }
int half(p2 x){return x.y < -eps || (std::fabs(x.y) < eps \delta\delta x.x < eps);}
|z| bool cmp(p2 a, p2 b) { return half(a) = half(b) ? a * b > 0 : half(b); }
bool cmp_eq(p2 A, p2 B) { return half(A) = half(B) & eq(A \star B, 0); }
|29|// 判断 A, B, C 三个向量是否是逆时针顺序
30 // 如果是, 返回 1
|₃₁|// 如果 (A, B), (C, B) 同方向共线,返回 -1
```

6.2 直线半平面

```
struct line : p2 {
2 | db z;
  | // a * x + b * y + c (= or >) 0
| | | line() = default:
   | line(db a, db b, db c) : p2\{a, b\}, z(c) \{\}
   | line(p2 a, p2 b) : p2(r90(b - a)), z(a * b) { } // 左侧 > 0
    db operator ()(p2 a) const { return a % p2(*this) + z; }
    line perp() const { return {y, -x, 0}; } // 垂直
    line para(p2 o) { return {x, y, z - (*this)(o)}; } // 平行
10 };
p2 operator & (line x, line y) {
p2{p2{x.z, x.y}} * p2{y.z, y.y}, p2{x.x, x.z} * p2{y.x, y.z} /
       \hookrightarrow -(p2(x) * p2(y));
  | // 注意此处精度误差较大,以及 res.y 需要较高精度
<sup>15</sup>|p2 proj(p2 x, line l){return x - p2(l) * (l(x) / l.norm());}//投影
16 | p2 refl(p2 x, line l){return x - p2(l) * (l(x) / l.norm()) * 2;}//对称
n/db dist(line l, p2 x={0, 0}){return l(x) / l.abs();}//有向点到线距离
18 | bool is_para(line x, line y){return eq(p2(x) * p2(y), 0);}//判断线平行
polis_perp(line x, line y){return eq(p2(x) % p2(y), 0);}//判断线垂直
20 | bool online(p2 x, line l) { return eq(l(x), 0); } // 判断点在线上
int ccw(p2 a, p2 b, p2 c) {
  \mid int sign = sgn((b - a) * (c - a));
  \mid if(sign = 0) {
   | if(sgn((b - a) \% (c - a)) = -1) return 2;
   \mid if((c - a).norm() > (b - a).norm() + eps) return -2;
26
  | return sign;
27
29 db det(line a, line b, line c) {
     p2 A = a, B = b, C = c;
   | return c.z * (A * B) + a.z * (B * C) + b.z * (C * A);
33 db check(line a, line b, line c) { // sgn same as c(a & b), 0 if error
```

```
| return sgn(det(a, b, c)) * sgn(p2(a) * p2(b)); | bool paraS(line a, line b) { // 射线同向 | return is_para(a, b) && p2(b) > 0; | | |
```

6.3 半平面交

```
std::vector<p2> HPI(std::vector<line> vs) {
| auto cmp = [](line a, line b) {
  if(paraS(a, b)) return dist(a) < dist(b);</pre>
4 | return ::cmp(p2(a), p2(b));
5 | };
sort(vs.begin(), vs.end(), cmp);
  int ah = 0, at = 0, n = size(vs);
     std::vector<line> deq(n + 1);
     std::vector<p2> ans(n);
     deg[0] = vs[0]:
  | for(int i = 1; i <= n; ++ i) {
  | | line o = i < n ? vs[i] : deq[ah];
     if(paraS(vs[i - 1], o)) continue;
  | | for(;ah < at && check(deq[at - 1], deq[at], o) < 0;) -- at;//maybe <=
  \mid if(i != n) for(;ah < at && check(deq[ah], deq[ah + 1], o) < 0;) ++ ah;
  | | if(!is para(o, deg[at])) {
17 | | | ans[at] = o & deq[at];
          deq[++at] = o;
19
20 | }
  | if(at - ah <= 2) return {};
    return {ans.begin() + ah, ans.begin() + at};
```

6.4 线段

```
1 struct seg {
 2 | p2 x, y;
     seg() {}
     seg(const p2 \& A, const p2 \& B) : x(A), y(B) {}
     bool onseg(const p2 & o) const {
     | return (o - x) % (o - y) < eps &\text{$\text{s}} std::fabs((o - x) * (o - y)) < eps;
 9 db dist(const seg & o, const p2 & x) {
| if((o.x - o.y)) \% (x - o.y) <= eps) return (x - o.y).abs();
| if((o.y - o.x) % (x - o.x) <= eps) return (x - o.x).abs();
   | return fabs((0.x - x) * (0.y - x) / (0.x - 0.y).abs());
13 | }
14 bool is isc(const seg & x, const seg & y) {
| 16 | | ccw(x.x, x.y, y.x) * ccw(x.x, x.y, y.y) <= 0 &&
     | ccw(y.x, y.y, x.x) * ccw(y.x, y.y, x.y) <= 0;
| db dist(const seg & x, const seg & y) {
|z_0| | if(is isc(x, y)) return 0;
|z_1| | return std::min({dist(y, x.x), dist(y, x.y), dist(x, y.x), dist(x, y.y)});
```

```
| }
  6.5 多边形
                                                                                                                                        | return 1;
 using polygon = std::vector<p2>;
2 // counter-clockwise
                                                                                                                                     6.7 图形求交
db area(const polygon & x) {
_{4} | db res = 0:
                                                                                                                                    struct circle : p2 { db r; };
    for(int i = 2;i < (int) x.size();++i) {</pre>
                                                                                                                                    2 std::vector<p2> operator δ (circle o, line l) {
        | res += (x[i - 1] - x[0]) * (x[i] - x[0]);
                                                                                                                                    | p2 v = 1, Rv = r90(v); db L = 1.abs();
                                                                                                                                    | db d = l(p2(0)) / L, x = 0.r * 0.r - d * d;
     | return res / 2;
                                                                                                                                       | if(x < -eps) return {};
                                                                                                                                       \mid x = std::sqrt(x * sgn(x));
10 bool is convex(const polygon & x, bool strict = 1) {
                                                                                                                                       | p2 z = p2(o) - v * (d / L), p = Rv * (x / L);
    | // warning, maybe wrong
                                                                                                                                       \mid return \{z + p, z - p\};
    const db z = strict ? eps : -eps;
                                                                                                                                    。 } // l 如果是构造函数给出,那么返回交点按射线顺序
    for(int i = 2;i < (int) x.size() + 2;++i) {</pre>
                                                                                                                                    10 std::vector<p2> operator & (circle o, seg s) {
        if((x[(i-1) % x.size()] - x[i-2]) * (x[i % x.size()] - x[i-2]) < (x[i % 
                                                                                                                                       | std::vector<p2> b;
                                                                                                                                       | for(p2 x : (o & s.to_l()))
15 | }
                                                                                                                                       | | if(s.onseg(x)) b.push_back(x);
    return 1;
                                                                                                                                       | return b;
17 | }
ɪs int contain(const std::vector<p2> & a, p2 o) { // 简单多边形包含判定
                                                                                                                                   16 std::vector<p2> operator δ (circle o0, circle o1) {
        bool in = 0:
                                                                                                                                   |p| | p2 tmp = (p2(o1) - p2(o0)) * 2.;
        for(int i = 0;i < (int) a.size();++i) {</pre>
                                                                                                                                   18 | return 00 & line(tmp.x, tmp.y, o1.r * o1.r - o0.r * o0.r + o0.norm() -
        | p2 x = a[i] - o, y = a[(i + 1) \% a.size()] - o;
                                                                                                                                               → o1.norm());
        if(x.y > y.y) std::swap(x, y);
         | if(x.y \le eps \& y.y > eps \& x * y < -eps) in ^= 1;
                                                                                                                                   20 std::vector<p2> tang(circle o, p2 x) {
         if(std::fabs(x * y) < eps & x % y < eps) return 2; // 在线段上,看情况改
                                                                                                                                       | db d = (x - p2(o)).abs();
25
                                                                                                                                   | | if(d <= o.r + eps) return {};
        return in;
26
                                                                                                                                        | return o & circle{x, sqrt(d * d - o.r * o.r)};
                                                                                                                                   25 // 三角形 (0, a, b) 和圆 o 的交的有向面积 * 2
  6.6 线段 in 多边形
                                                                                                                                   db intersect(circle o, p2 a, p2 b) {
bool contains(p2 x, p2 y, const std::vector<p2> & a) {
                                                                                                                                   |a| = a - p2(0), b = b - p2(0); o.x = o.y = 0;
using pr = std::pair<double, int>;
                                                                                                                                       | int va = a.abs() <= o.r + eps;
std::vector<pr> e = {pr(-inf, 0), pr(inf, 0)};
                                                                                                                                       | int vb = b.abs() <= o.r + eps;
    | p2 t = y - x;
                                                                                                                                        | if(va && vb) return a * b;
     | auto f = [&](p2 a, p2 b, p2 c, p2 d) {
                                                                                                                                           auto v = o \delta seg\{a, b\}; // 注意这里, 有必要改一下 onseg, 去掉平行判定
        | return (b - a).abs() * ((c - a) * (d - c)) / ((b - a) * (d - c));
                                                                                                                                           if(v.empty()) return arg(a, b) * o.r * o.r;
     | };
                                                                                                                                           db sum = 0;
     | for(int i = 0;i < (int) a.size();++i) {
                                                                                                                                           sum += va ? a * v[0] : arg(a, v[0]) * o.r * o.r;
        | p2 u = a[i], v = a[(i + 1) \% a.size()];
                                                                                                                                       \mid sum += vb ? v.back() * b : arg(v.back(), b) * o.r * o.r;
     \mid int a = sgn(t * (u - x));
                                                                                                                                       | if(v.size() > 1) sum += v[0] * v[1];
        \mid int b = sgn(t * (v - x));
                                                                                                                                           return sum;
        \mid if(a != b) e.emplace_back(f(x, y, u, v), b - a);
                                                                                                                                   39 // 有向弓形面积 * 2, arg 不能改
sort(e.begin(), e.end());
                                                                                                                                   40 db csegS(circle o, p2 a, p2 b) {
    | int sum = 0; db R = t.abs();
                                                                                                                                   |a_1| + a = a - p2(o);
     | for(int i = 0;i + 1 < (int) e.size();++i) {
                                                                                                                                       | b = b - p2(o);
17 | | sum += e[i].second:
                                                                                                                                       | db d = b.arg() - a.arg();
        | if(sum = 0 && std::max(e[i].first, 0.) + eps < std::min(e[i +
                                                                                                                                       | if(d < 0) d += pi * 2;
                \hookrightarrow 1].first, R)) {
                                                                                                                                       | return d * o.r * o.r - a * b;
              | return 0;
                                                                                                                                   46 }
```

6.8 凸包

结果为逆时针。

```
_{1} db cross(p2 x, p2 y, p2 z) { return (y.x - x.x) * (z.y - x.y) - (y.y - x.y) *
    \hookrightarrow (z.x - x.x); }
std::vector<p2> gethull(std::vector<p2> o) {
  | rgs::sort(o, [](p2 x, p2 y) { return eq(x.x, y.x) ? x.y < y.y : x.x < y.x;
  | o.erase(unique(o.begin(), o.end(), [](p2 x, p2 y) {
  \mid return eq(x.x, y.x) && eq(x.y, y.y);
  | }), o.end());
7 | std::vector<p2> s;
  | for(int i = 0;i < (int) o.size();++i) {
  | | for(;s.size() >= 2 && cross(s.rbegin()[1], s.back(), o[i]) <= eps;)
     | s.push_back(o[i]);
12
   for(int i = o.size() - 2, t = s.size(); i >= 0; --i) {
     | for(;s.size() > t && cross(s.rbegin()[1], s.back(), o[i]) <= eps;)
        | s.pop_back();
     | s.push_back(o[i]);
  | if(s.size() > 1) s.pop back();
  | return s;
20 } // 把两个 eps 改成 -eps 可求出所有在凸包上的点
int findmin(std::vector<p2> & a, auto cmp) {
  | int l = 0, r = a.size() - 1, d = 1;
  | if(cmp(a.back(), a[0])) std::swap(l, r), d = -1;
  | for(;(r - l) * d > 1;) {
  | | int mid = (l + r) >> 1;
     if(cmp(a[mid], a[mid - d]) && cmp(a[mid], a[l])) {
     \mid r = mid;
30
  | }
32 | return l;
33 } // cmp is less, and a.size()>0 plz
int contains(std::vector<p2> & a, p2 x) {
     auto it = lower bound(a.begin() + 2, a.end(), x, [\delta](p2 x, p2 y) {
     | return cross(a[0], x, y) > 0;
  | });
  | ll c0 = cross(it[-1], *it, x), c1 = cross(a[0], a[1], x);
```

```
| if(it != a.end() && c0 >= 0 && c1 >= 0) {
| return c0 > 0 && c1 > 0 && cross(a.back(), a[0], x) > 0 ? IN : ON;
| else {
| return 0;
| }
| // a.size()>2 plz
```

6.9 上凸壳

结果显然为顺时针。

```
std::vector<p2> gethull(std::vector<p2> o) {
  | sort(o.begin(), o.end(), [](p2 x, p2 y) {
     | if(x.x = y.x) 
        | return x.y > y.y; // gt \Rightarrow lt
     | | return x.x < y.x;
  | });
   | std::vector<p2> stack;
  \mid for(p2 x : o) {
  \mid if(stack.size() && stack.back().x = x.x) {
        continue;
13
14 | | for(;stack.size() >= 2 && cross(stack.rbegin()[1], stack.back(), x) >=
          \hookrightarrow 0;) { // gt \Rightarrow lt
15 | | | stack.pop_back();
16 | | }
| | | stack.push_back(x);
18 | }
19 | return stack;
```

6.10 最小圆覆盖

```
struct circle : p2 { db r; };
     circle incircle(p2 a, p2 b, p2 c) {
     | db A = (b - c).abs(), B = (c - a).abs(), C = (a - b).abs();
                 | return \{(a * A + b * B + c * C) / (A + B + C), fabs((b - a) * (c - a)) / (a + B + C)\} 
                                            \hookrightarrow (A + B + C)};
     5 } // 三点确定内心,不是最小圆覆盖内容
     6 circle circumcenter(p2 a, p2 b, p2 c) {
     |p| + |p| 
     |p| = |p| 
    9 | return {0, (a - 0).abs()};
|10|}// 三点确定外心
| circle cir(p2 a, p2 b) { // 根据直径生成圆
| return {(a + b) / 2, (a - b).abs() / 2};
| s | circle mincircle(std::vector<p2> a) { // 最小圆覆盖, 需要 shuffle
| | circle o = {a[0], 0};
| 17 | | int n = a.size();
| | | | for(int i = 1;i < n;++i) {
| if(in(o, a[i])) continue;
                                  | o = cir(a[0], a[i]);
```

```
| for(int j = 1; j < i; ++ j) {
          if(in(o, a[j])) continue;
          o = cir(a[j], a[i]);
          for(int k = 0; k < j; ++k) {
          if(in(o, a[k])) continue;
          | o = circumcenter(a[i], a[j], a[k]);
  return o;
6.11 最近点对
db mindist(std::vector<p2> a) {
  | db ans = 1e18:
  | sort(a.begin(), a.end(), [](p2 x, p2 y) { return x.x < y.x; });
  \mid ans = (a[0] - a[1]).abs();
  auto solve = [8](auto s, int l, int r) {
```

| | if(l + 1 = r) return; \mid int mid = $(l + r) \gg 1$;

 \mid db mx = a[mid].x; | | s(s, l, mid), s(s, mid, r); static std::vector<p2> b; b.clear(); inplace_merge(a.begin() + l, a.begin() + mid, a.begin() + r, [](p2 x, \hookrightarrow p2 y) { return x.y < y.y; }); | for(int i = l;i < r;++i) if(fabs(a[i].x - mx) <= ans) b.push_back(a[i]);</pre>

| | for(int j = i - 1; j >= 0 && b[i].y <= b[j].y + ans;--j) ans = \hookrightarrow std::min(ans, (b[i] - b[j]).abs()); | }; solve(solve, 0, a.size()); return ans;

for(int i = 1;i < (int) b.size();++i)</pre>

6.12 凸包直径

18

```
db convex_diameter(std::vector<p2> & o) {
 \mid int n = size(o);
  \mid db max = 0:
  | for(int i = 0, j = 0; i < n; ++i) {
  | for(;j + 1 < n \& (o[j] - o[i]).abs() < (o[j + 1] - o[i]).abs();) ++ j;
    | max = std::max(max, (o[j] - o[i]).abs());
  | return max;
9 // 凸包直径
```

6.13 切凸包

```
std::vector<p2> cut(const std::vector<p2> & o, line l) {
std::vector<p2> res;
3 | int n = size(o);
4 | for(int i = 0;i < n;++i) {
  | p2 a = o[i], b = o[(i + 1) \% n];
     | if(sgn(l(a)) >= 0) res.push_back(a); // 注意 sgn 精度
```

```
| if(sgn(l(a)) * sgn(l(b)) < 0) res.push_back(line(a, b) & l);
9 | if(res.size() <= 2) return {};</pre>
10 return res:
11 } // 切凸包
```

6.14 V图

```
| std::vector<line> cut(const std::vector<line> & o, line l) {
1 | std::vector<line> res:
   \mid int n = size(o):
     for(int i = 0;i < n;++i) {</pre>
   | | line a = o[i], b = o[(i + 1) \% n], c = o[(i + 2) \% n];
        int va = check(a, b, l), vb = check(b, c, l);
      | if(va > 0 || vb > 0 || (va = 0 && vb = 0)) {
        | res.push back(b);
   | | if(va >= 0 && vb < 0) {
   | | res.push_back(l);
12
13 | }
   if(res.size() <= 2) return {};</pre>
15 | return res;
16 } // 切凸包
| 17 | line bisector(p2 a, p2 b) { return line(a.x - b.x, a.y - b.y, (b.norm() -
    \rightarrow a.norm()) / 2); }
std::vector<std::vector<line>> voronoi(std::vector<p2> p) {
19 | int n = p.size();
     auto b = p; shuffle(b.begin(), b.end(), gen);
   | const db V = 1e5; // 边框大小, 重要
   std::vector<std::vector<line>> a(n, {
   | | \{ V, 0, V * V \}, \{ 0, V, V * V \},
   | \{-V, 0, V * V\}, \{0, -V, V * V\},
24
25 | });
   | for(int i = 0;i < n;++i) {
   | | for(p2 x : b) if((x - p[i]).abs() > eps) {
   \mid \cdot \mid \cdot \mid a[i] = cut(a[i], bisector(p[i], x));
30
   | }
   | return a;
```

6.15 Delaunay 三角剖分

```
using i128 = __int128;
using Q = struct Quad*;
  p2 arb(LLONG_MAX, LLONG_MAX);
4 struct Quad {
    Q rot, o; p2 p = arb; bool mark;
    p2& F() { return r() -> p; }
7 | | Q& r() { return rot->rot; }
s | Q prev() { return rot->o->rot; }
9 | Q next() { return r()->prev(); }
10 } *H;
```

```
|| | | | return (b - a) * (c - a);
13 | }
14 bool circ(p2 p, p2 a, p2 b, p2 c) { // p 是否在 a, b, c 外接圆中
   | i128 p2 = p.norm(), A = a.norm() - p2, B = b.norm() - p2, C = c.norm() -

→ p2;

   | a = a - p, b = b - p, c = c - p;
     return (a * b) * C + (b * c) * A + (c * a) * B > 0;
19 Q link(p2 orig, p2 dest) {
   | Q r = H ? H : new Quad{new Quad{new Quad{new Quad{0}}}};
   | H = r \rightarrow 0; r \rightarrow r() \rightarrow r() = r;
   + for(int i = 0;i < 4;++i)
   | r = r -> rot, r -> p = arb, r -> o = i & 1 ? r : r -> r();
     r \rightarrow p = orig, r \rightarrow F() = dest;
   return r;
25
26 }
void splice(Q a, Q b) {
     std::swap(a -> o -> rot -> o, b -> o -> rot -> o);
     std::swap(a \rightarrow o, b \rightarrow o);
30
31 Q conn(Q a, Q b) {
   \mid Q q = link(a -> F(), b -> p);
     splice(q, a -> next());
   \mid splice(q -> r(), b);
   | return q;
std::pair<Q, Q> rec(const std::vector<p2> & s) {
   | int N = size(s);
   \mid if(N \le 3) {
   | Q a = link(s[0], s[1]), b = link(s[1], s.back());
   | if(N = 2) return {a, a -> r()};
   \mid | splice(a -> r(), b);
   | | | ll side = cross(s[0], s[1], s[2]);
   \mid \ \mid \ Q \ c = side ? conn(b, a) : 0;
     | return {side < 0 ? c->r() : a, side < 0 ? c : b -> r() };
   | }
_{47} | #define H(e) e -> F(), e -> p
#define valid(e) (cross(e->F(), H(base)) > 0)
   \mid int half = N / 2;
   | auto [ra, A] = rec({s.begin(), s.end() - half});
   | auto [B, rb] = rec({s.end() - half, s.end()});
   \mid while((cross(B -> p, H(A)) < 0 && (A = A -> next())) \mid
   | | (cross(A \rightarrow p, H(B)) > 0 \& (B = B \rightarrow r() \rightarrow o)));
   \mid Q base = conn(B -> r(), A);
   if(A \rightarrow p = ra \rightarrow p) ra = base \rightarrow r();
   \mid if(B -> p = rb -> p) rb = base;
#define DEL(e, init, dir) Q e = init -> dir; if(valid(e)) \
   | for(;circ(e -> dir -> F(), H(base), e -> F());) { \
   | Qt = e \rightarrow dir; \setminus
      | splice(e, e -> prev()); \
   \mid splice(e -> r(), e -> r() -> prev()); \
      | e -> o = H, H = e, e = t; \setminus
```

```
|64| | for(;;) {
                            DEL(LC, base \rightarrow r(), o);
                            DEL(RC, base, prev());
                           if(!valid(LC) && !valid(RC)) break;
                            if(!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
          \mid \cdot \mid base = conn(RC, base -> r());
          | | else
 r_1 | | base = conn(base -> r(), LC -> r());
72
 73 | return {ra, rb};
 rs | std::vector<p2> triangulate(std::vector<p2> a) {
                 sort(a.begin(), a.end()); // unique
           if((int)size(a) < 2) return {};</pre>
          | Q e = rec(a).first;
          | std::vector<Q> q = {e};
|so| | while(cross(e -> o -> F(), e -> F(), e -> p) < 0) e = e -> o;
|s_1| #define ADD { Q c = e; do { c -> mark = 1; a.push back(c -> p); \
|q| = |q| + |q| 
83 | ADD; a.clear();
|s_4| | for(int qi = 0;qi < (int) size(q);) if(!(e = q[qi++]) -> mark) ADD;
85 | return a;
 ss|} // 返回若干逆时针三角形 \{t[0][0], t[0][1], t[0][2], t[1][0], \dots\}
```

7 geometry3d

7.1 向量

```
struct p3 {
2 | db x, y, z;
3 | db norm() const { return x * x + y * y + z * z; }
4 | db abs() const { return std::sqrt(norm()); }
5 };
_{6} | p3 operator + (p3 x, p3 y){ return {x.x + y.x, x.y + y.y, x.z + y.z}; }
7 | p3 operator - (p3 x, p3 y){ return {x.x - y.x, x.y - y.y, x.z - y.z}; }
s|p3 operator * (p3 x, db y) { return {x.x * y, x.y * y, x.z * y}; }
9 p3 operator / (p3 x, db y) { return {x.x / y, x.y / y, x.z / y}; }
10 p3 operator * (p3 x, p3 y) { // 三维叉积需要更高的精度
| | | return {
| | | | | | x.y * y.z - x.z * y.y,
14 | X.X * Y.Y - X.Y * Y.X
15 | };
| 17 | db operator % (p3 x, p3 y) {    return x.x * y.x + x.y * y.y + x.z * y.z; }
|_{18}| p3 perpvec(p3 x) {
| return fabs(x.x) > fabs(x.z) ? p3{ x.y, -x.x, 0 } : p3{0, -x.z, x.y};
|20|} // 找到一个与给定向量垂直的向量
|<sub>21</sub>|db area(p3 a, p3 b, p3 c) {            return ((b - a) * (c - a)).abs();        } // 三角形面积两
| 22 | db volume(p3 d, p3 a, p3 b, p3 c) { // 四面体有向体积六倍
|_{23}| | return (d - a) % ((b - a) * (c - a));
```

```
7.2 平面

struct plane {
    | p3 n; db d; // n dot x = d
    | plane() {}
    | plane(p3 a, p3 b, p3 c) : n((c - a) * (b - a)) { d = n % a; }
    | db side(p3 x) const { return n % x - d; }
    | db dist(p3 w) const { return side(w) / n.abs(); }
    | p3 proj(p3 w) const { return w - n * (side(w) / n.abs()); }
}

7.3 直线
```

```
struct line3 {
    p3 d. o: // kd + o
  line3() {}
   | line3(p3 p, p3 q) : d(q - p), o(p) {}
    line3(plane p1, plane p2): d(p1.n * p2.n) { // 平面交出直线
     | o = (p2.n * p1.d - p1.n * p2.d) * d / d.norm();
    db dist(p3 p) const { return (d * (p - o)).abs() / d.abs(); }
     p3 proj(p3 p) const { return o + d * (d % (p - o)) / d.norm(); }//投影
     p3 relf(p3 p) const { return proj(p) * 2 - p; } // 对称
     p3 operator δ (const plane δ p) const { // 线与平面交
     | return o - d * p.side(o) / (p.n % d);
   }
13
14 };
15 db dist(line3 l1, line3 l2) {
     p3 n = l1.d * l2.d:
    if(n.abs() < eps) return l1.dist(l2.o);</pre>
     return abs((l2.o - l1.o) % n) / n.abs();
p3 closestOnL1(line3 l1, line3 l2) {
     p3 n2 = l2.d * (l1.d * l2.d);
     return l1.0 + l1.d * ((l2.0 - l1.0) % n2) / (l1.d % n2);
23 }
24 bool ispara(plane p1, plane p2){return(p1.n * p2.n).abs() < eps;}//判断是否平行
zs|bool ispara(line3 p1, line3 p2){return(p1.d * p2.d).abs() < eps;}//判断是否平行
26 bool isperp(plane p1, plane p2){return fabs(p1.n % p2.n) < eps;}//判断是否垂直
pool isperp(line3 p1, line3 p2){return fabs(p1.d % p2.d) < eps;}//判断是否垂直
28 line3 perpthrough(plane p, p3 o){return line3(o, o + p.n);}//过平面一点做垂线
```

7.4 凸包

8 Misc

8.1 Pragma

```
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse4,popcnt,abm,mmx,avx,avx2")
#pragma pack(1) // default=8
```

8.2 Barrett

```
| struct DIV {
| u64 x;
| void init(u64 v) { x = -1ull / v + 1; }
| }; // 带误差版本 x = -1ull/v;
| // ret=ans while x*(y-1)<2^64, ans-1<=ret<=ans while x<2^64
| u64 operator / (const u64 & x, const DIV & y) {
| return (u128) x * y.x >> 64;
| }
```

8.3 LCS

```
int lim;
struct bitset {
    static const int B = 63;
    u64 a[N / B + 1];
    void set(int p) { a[p / B] |= 1ull << (p % B); }
    bool test(int p) { return a[p / B] >> (p % B) & 1; }
    void run(const bitset & o) {
        | u64 c = 1;
        | for(int i = 0;i < lim;++i) {
        | u64 x = a[i], y = x | o.a[i];
        | | x += x + c + (~y & (1ull << 63) - 1);
        | | a[i] = x & y, c = x >> 63;
        | | }
        | dp;
}
```

8.4 日期公式

8.5 Xorshift

```
u64 xorshift(u64 x) { x ^= x << 13; x ^= x >> 7; x ^= x << 17; return x; }
u32 xorshift(u32 x) { x ^= x << 13; x ^= x >> 17; x ^= x << 5; return x; }
```

9 配置

9.1 vimrc

```
set si ci ts=4 sw=4 nu cino=j1 backup undofile
syntax on
map<F9> <ESC>:!make %<<CR>
map<F10> <ESC>:!./%<<CR>
map<F4> <ESC>:!gdb %<<CR>
```

9.2 bashrc

```
export CXXFLAGS='-g -Wall -fsanitize=address,undefined -Dzqj -std=gnu++20'
mk() { g++ -02 -Dzqj -std=gnu++20 $1.cpp -o $1; }
ulimit -s 1048576
ulimit -v 1048576
```

9.3 对拍

需要 chmod +x

9.4 编译参数

-D_GLIBCXX_DEBUG : STL debug mode -fsanitize=address : 内存错误检查 -fsanitize=undefined : UB 检查

9.5 随机素数

979345007 986854057502126921 935359631 949054338673679153 931936021 989518940305146613 984974633 972090414870546877 984858209 956380060632801307

9.6 常数表

n	lo	g ₁₀ n	n!	C(n, n/2)) LCM	$(1 \dots n)$	P_n
2	0.3010	2999	2		2	2	2
3	0.4771	7712125 6		:	3	6	
4	4 0.60205999		24	(5	12	
5	5 0.69897000		120	10)	60	
6			720	20	-	60 420	
7			5040	3:	-		
8	0.9030	8998	40320	70	-	840 2520	
9	0.9542	24251	362880	120	5		
10		1	3628800	25		2520	42
11	1.0413		39916800	462	2	27720	56
12	12 1.0791812 15 1.1760912		179001600	92		27720 360360	
15			1.31e12	643	5		
20	1.3010		2.43e18	18475	-	232792560	
25	1.39794001		1.55e25	520030		71144400	1958 5604
30	1.47712125		2.65e32	155117520	-	1.444e14	
P_n	3733840		20422650	966467 ₆₀	1905	190569292 ₁₀₀	
n	≤	10	100	1e3	1e4	1e5	1e6
max	$\omega(n)$	2	3	4	5	6	7
max	d(n)	4	12	32	64	128	240
π	(n)	4	25	168	1229	9592	78498
n	≤	1e7	1e8	1e9	1e10	1e11	1e12
max	$\omega(n)$	8	8	9	10	10	11
max	d(n)	448	768	1344	2304	4032	6720
π	(n)	664579	5761455	5.08e7	4.55e8	4.12e9	3.7e10
n	≤	1e13	1e14	1e15	1e16	1e17	1e18
max	$\omega(n)$	12	12	13	13	14	15
max	d(n)	10752	17280	26880	41472	64512	103680
$\pi(n)$ Prime number theorem: $\pi(x) \sim x$)

10 注意事项

10.1 测试项目

pbds tree, float128, int128, long double submit 命令, printfile, MLE ?= RE, pragma, axv2, python,

10.2 bugs

看数据范围(多测总和), 变量 shadow, 清空, long long, 数组大小, 模数, MLE?, 对拍记得看输出在不在变, 输出格式, inf 开小, 答案初值, STL 重构导致引用失效, 极端情况 (n=1)

11 tables

11.1 导数积分

$$\begin{array}{lll} \left(\frac{u}{v}\right)' = \frac{u'v - uo'}{v^2} & (\arctan x)' = \frac{1}{1+x^2} & (\arcsin x)' = \frac{1}{\sqrt{1+x^2}} \\ (ax)' = (\ln a)a^x & (\arccos x)' = -\frac{1}{1+x^2} & (\arccos x)' = \frac{1}{\sqrt{1-x^2}} \\ (\cot x)' = \sec^2 x & (\arccos x)' = -\frac{1}{x\sqrt{1-x^2}} & (\arctan x)' = \frac{1}{\sqrt{x^2-1}} \\ (\sec x)' = \tan x \sec x & (\arccos x)' = \frac{1}{x\sqrt{1-x^2}} & (\arctan x)' = \frac{1}{1-x^2} \\ (\arcsin x)' = \frac{1}{\sqrt{1-x^2}} & (\tanh x)' = \sech^2 x & (\arccos x)' = -\frac{1}{|x|\sqrt{1+x^2}} \\ (\arccos x)' = -\frac{1}{\sqrt{1-x^2}} & (\operatorname{sech} x)' = -\operatorname{sech} x \tanh x \\ (\operatorname{csch} x)' = -\operatorname{sech} x \coth x \\ \end{array}$$

$ax^2 + bx + c(a > 0)$

1.
$$\int \frac{\mathrm{d}x}{ax^2 + bx + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}} + C & (b^2 < 4ac) \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| + C & (b^2 > 4ac) \end{cases}$$

2.
$$\int \frac{x}{ax^2+bx+c} dx = \frac{1}{2a} \ln|ax^2+bx+c| - \frac{b}{2a} \int \frac{dx}{ax^2+bx+c}$$

$\sqrt{\pm ax^2 + bx + c}(a > 0)$

1.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{a}} \ln |2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C$$

2.
$$\int \sqrt{ax^2 + bx + c} dx = \frac{2ax+b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac-b^2}{8\sqrt{a^3}} \ln|2ax + b| + 2\sqrt{a} \sqrt{ax^2 + bx + c}| + C$$

3.
$$\int \frac{x}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a} \sqrt{ax^2 + bx + c} - \frac{b}{2\sqrt{a^3}} \ln|2ax + b| + 2\sqrt{a} \sqrt{ax^2 + bx + c}| + C$$

4.
$$\int \frac{dx}{\sqrt{c_+ h x_- a x^2}} = -\frac{1}{\sqrt{a}} \arcsin \frac{2ax - b}{\sqrt{h^2 + 4ac}} + C$$

5.
$$\int \sqrt{c + bx - ax^2} dx = \frac{2ax - b}{4a} \sqrt{c + bx - ax^2} + \frac{b^2 + 4ac}{8\sqrt{a^3}} \arcsin \frac{2ax - b}{\sqrt{b^2 + 4ac}} + C$$

6.
$$\int \frac{x}{\sqrt{c+bx-ax^2}} dx = -\frac{1}{a} \sqrt{c+bx-ax^2} + \frac{b}{2\sqrt{a^3}} \arcsin \frac{2ax-b}{\sqrt{b^2+4ac}} + C$$

$\sqrt{\pm \frac{x-a}{x-b}}$ 或 $\sqrt{(x-a)(x-b)}$

1.
$$\int \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}} = 2\arcsin\sqrt{\frac{x-a}{b-x}} + C \ (a < b)$$

2.
$$\int \sqrt{(x-a)(b-x)} dx = \frac{2x-a-b}{4} \sqrt{(x-a)(b-x)} + \frac{(b-a)^2}{4} \arcsin \sqrt{\frac{x-a}{b-x}} + C, (a < b)$$

三角函数的积分

1.
$$\int \tan x \, \mathrm{d}x = -\ln|\cos x| + C$$

2.
$$\int \cot x dx = \ln|\sin x| + C$$

3.
$$\int \sec x dx = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C = \ln \left| \sec x + \tan x \right| + C$$

4.
$$\int \csc x dx = \ln \left| \tan \frac{x}{2} \right| + C = \ln \left| \csc x - \cot x \right| + C$$

$$5. \int \sec^2 x dx = \tan x + C$$

6.
$$\int \csc^2 x \, \mathrm{d}x = -\cot x + C$$

7.
$$\int \sec x \tan x dx = \sec x + C$$

8.
$$\int \csc x \cot x dx = -\csc x + C$$

9.
$$\int \sin^2 x dx = \frac{x}{2} - \frac{1}{4} \sin 2x + C$$

10.
$$\int \cos^2 x dx = \frac{x}{2} + \frac{1}{4} \sin 2x + C$$

11.
$$\int \sin^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx$$

12.
$$\int \cos^n x dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x dx$$

13.
$$\int \frac{dx}{\sin^n x} = -\frac{1}{n-1} \frac{\cos x}{\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}$$

14.
$$\int \frac{dx}{\cos^n x} = \frac{1}{n-1} \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}$$

15.

$$\int \cos^m x \sin^n x dx$$

$$= \frac{1}{m+n} \cos^{m-1} x \sin^{n+1} x + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x dx$$

$$= -\frac{1}{m+n} \cos^{m+1} x \sin^{n-1} x + \frac{n-1}{m+1} \int \cos^m x \sin^{n-2} x dx$$

16.
$$\int \frac{\mathrm{d}x}{a+b\sin x} = \begin{cases} \frac{2}{\sqrt{a^2 - b^2}} \arctan \frac{a\tan \frac{x}{2} + b}{\sqrt{a^2 - b^2}} + C & (a^2 > b^2) \\ \frac{1}{\sqrt{b^2 - a^2}} \ln \left| \frac{a\tan \frac{x}{2} + b - \sqrt{b^2 - a^2}}{a\tan \frac{x}{2} + b + \sqrt{b^2 - a^2}} \right| + C & (a^2 < b^2) \end{cases}$$

17.
$$\int \frac{dx}{a+b\cos x} = \begin{cases} \frac{2}{a+b} \sqrt{\frac{a+b}{a-b}} \arctan\left(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}\right) + C & (a^2 > b^2) \\ \frac{1}{a+b} \sqrt{\frac{a+b}{a-b}} \ln\left|\frac{\tan \frac{x}{2} + \sqrt{\frac{a+b}{b-a}}}{\tan \frac{x}{2} - \sqrt{\frac{a+b}{b-a}}}\right| + C & (a^2 < b^2) \end{cases}$$

18.
$$\int \frac{\mathrm{d}x}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \arctan\left(\frac{b}{a} \tan x\right) + C$$

19.
$$\int \frac{dx}{a^2 \cos^2 x - b^2 \sin^2 x} = \frac{1}{2ab} \ln \left| \frac{b \tan x + a}{b \tan x - a} \right| + C$$

20.
$$\int x \sin ax dx = \frac{1}{a^2} \sin ax - \frac{1}{a} x \cos ax + C$$

21.
$$\int x^2 \sin ax dx = -\frac{1}{a}x^2 \cos ax + \frac{2}{a^2}x \sin ax + \frac{2}{a^3} \cos ax + C$$

22.
$$\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax + C$$

23.
$$\int x^2 \cos ax dx = \frac{1}{a}x^2 \sin ax + \frac{2}{a^2}x \cos ax - \frac{2}{a^3} \sin ax + C$$

反三角函数的积分 (其中 a > 0)

1.
$$\int \arcsin \frac{x}{a} dx = x \arcsin \frac{x}{a} + \sqrt{a^2 - x^2} + C$$

2.
$$\int x \arcsin \frac{x}{a} dx = (\frac{x^2}{2} - \frac{a^2}{4}) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{x^2 - x^2} + C$$

3.
$$\int x^2 \arcsin \frac{x}{a} dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{1}{9}(x^2 + 2a^2)\sqrt{a^2 - x^2} + C$$

4.
$$\int \arccos \frac{x}{a} dx = x \arccos \frac{x}{a} - \sqrt{a^2 - x^2} + C$$

5.
$$\int x \arccos \frac{x}{a} dx = \left(\frac{x^2}{2} - \frac{a^2}{4}\right) \arccos \frac{x}{a} - \frac{x}{4} \sqrt{a^2 - x^2} + C$$

6.
$$\int x^2 \arccos \frac{x}{a} dx = \frac{x^3}{3} \arccos \frac{x}{a} - \frac{1}{9} (x^2 + 2a^2) \sqrt{a^2 - x^2} + C$$

7.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2) + C$$

8.
$$\int x \arctan \frac{x}{a} dx = \frac{1}{2} (a^2 + x^2) \arctan \frac{x}{a} - \frac{a}{2} x + C$$

9.
$$\int x^2 \arctan \frac{x}{a} dx = \frac{x^3}{3} \arctan \frac{x}{a} - \frac{a}{6}x^2 + \frac{a^3}{6} \ln(a^2 + x^2) + C$$

指数函数的积分

1.
$$\int a^x dx = \frac{1}{\ln a} a^x + C$$

2.
$$\int e^{ax} dx = \frac{1}{a} a^{ax} + C$$

3.
$$\int xe^{ax} dx = \frac{1}{a^2} (ax - 1)a^{ax} + C$$

4.
$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$

5.
$$\int x a^x dx = \frac{x}{\ln a} a^x - \frac{1}{(\ln a)^2} a^x + C$$

6.
$$\int x^n a^x dx = \frac{1}{\ln a} x^n a^x - \frac{n}{\ln a} \int x^{n-1} a^x dx$$

7.
$$\int e^{ax} \sin bx dx = \frac{1}{a^2 + b^2} e^{ax} (a \sin bx - b \cos bx) + C$$

8.
$$\int e^{ax} \cos bx dx = \frac{1}{a^2 + b^2} e^{ax} (b \sin bx + a \cos bx) + C$$

9.
$$\int e^{ax} \sin^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \sin^{n-1} bx (a \sin bx - nb \cos bx) + \frac{n(n-1)b^2}{a^2 + b^2 n^2} \int e^{ax} \sin^{n-2} bx dx$$

10.
$$\int e^{ax} \cos^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \cos^{n-1} bx (a \cos bx + nb \sin bx) + \frac{n(n-1)b^2}{a^2 + b^2 n^2} \int e^{ax} \cos^{n-2} bx dx$$

对数函数的积分

$$1. \int \ln x dx = x \ln x - x + C$$

2.
$$\int \frac{dx}{x \ln x} = \ln \left| \ln x \right| + C$$

3.
$$\int x^n \ln x dx = \frac{1}{n+1} x^{n+1} (\ln x - \frac{1}{n+1}) + C$$

4.
$$\int (\ln x)^n dx = x(\ln x)^n - n \int (\ln x)^{n-1} dx$$

5.
$$\int x^m (\ln x)^n dx = \frac{1}{m+1} x^{m+1} (\ln x)^n - \frac{n}{m+1} \int x^m (\ln x)^{n-1} dx$$

STL 积分/求和 (need std::)

1.
$$\int_0^1 t^{x-1} (1-t)^{y-1} dt = beta(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

2.
$$\int_0^{+\infty} t^{num-1}e^{-t}dt = tgamma(num) = e^{lgamma(num)} = \Gamma(num)$$

3.
$$\int_0^{phi} \frac{d\theta}{\sqrt{1-k^2\sin^2\theta}} = ellint_1(k, phi)$$

4.
$$\int_0^{phi} \sqrt{1 - k^2 \sin^2 \theta} d\theta = ellint_2(k, phi)$$

5.
$$\int_{num}^{+\infty} \frac{e^{-t}}{t} dt = -expint(-num)$$

6.
$$\sum_{n=1}^{+\infty} n^{-num} = riemann_zeta(num)$$

7.
$$\frac{2}{\sqrt{\pi}} \int_0^{arg} e^{-t^2} dt = erf(arg)$$