

Introduction/Background:

- -NBA Season just completed first half of it's 82 game season marked by the All-Star Break festivities (held on March 7th 2021)
- -Trade Deadline approaching (March 25th)
- -Celtics Majority Owner, Wycliffe "Wyc" Grousbeck would like to solicit data driven analysis of their current roster, do they have a team composed of "playoff caliber" players?
- -Celtics current record: 19-17 heading into the All-Star break

Problem Statement

-Using both supervised and unsupervised machine learning, can I create a classification model to determine whether a current player and their statistics thus far this season are "playoff caliber"?

Premodeling Methodology

- -Acquire data and statistics for each player over previous 30 years:
 - -Basic Stats: (points per game, rebounds, assists, blocks, steals fg%, 3pt%)
 - -Advanced Stats: (player efficiency rating, true shooting %, box plus minus,

win shares per 48)

- -Establish player tiers (different tiers should have different expectations associated with being labeled playoff caliber)
- -Defining playoff caliber: if the player's team made the playoffs that year they are denoted as playoff caliber

Acquiring Data

-All data acquired through scraping different team tables found through basketball composite database site: https://www.basketball-reference.com/

Advanced Stats Info:

- -PER (player efficiency rating): Player Efficiency Rating is the overall rating of a player's per-minute statistical production. The league average is 15.00 every season.
- -True Shooting %: what a player's shooting percentage would be if we accounted for free throws and 3-pointers. True Shooting Percentage = Total points / $[(FGA + (0.44 \times FTA))]$
- -BPM: uses a player's box score information, position, and the team's overall performance to estimate the player's contribution in **points above league average per 100 possessions played (league avg 0.0)**
- -Win Shares Per 48: takes into account the various things a basketball player does to win or lose a game, and weighs them appropriately to provide a Win Share

Player Tiers (2021)

- -Major Players: 30+ mpg, responsible for the bulk of production
- -Core Players: 20-29.9 mpg, "6th man", starters who split time
- -Rotational Players:10-19.0 mpg, spot minutes, younger or verteran players
- -Reserve Players: <10 mpg, situational players

Name: mpg, dtype: float64 count 494,000000 19.751012 mean 9.775469 std min 1.600000 25% 11.525000 50% 19.900000 75% 28,375000 37.800000 max Name: mpg, dtype: float64

Player Tiers (All 30 Years)

count	13945.0	00000
mean	20.3	398745
std	10.1	L68311
min	0.0	00000
25%	12.0	00000
50%	19.8	300000
75%	28.8	300000
max	43.7	700000
	• -	

EDA Statistics: Advanced Metrics

- -Advanced statistics w/
 'in_playoffs' hue shows we should
 be able to build a classification
 model effectively
- -Sidenote: Displaying high degrees of multicollinearity, but not surprising since all cuts of impact/contributions similarly based on player performance. (shouldn't affect our model predictive power)

KMeans Clustering: By Decade

Decade Clusters for All Major Players (over 30 years

labels	0	2	1
year	1995.017889	2005.635936	2015.368597
games_played	71.981216	72.460019	68.576837
mpg	34.900537	35.110536	33.401002
fg%	0.470748	0.458312	0.463898
3pfg%	0.257787	0.294197	0.319150
rebounds	6.229964	6.016839	5.948552
assists	3.838104	3.661430	3.936303
steals	1.259213	1.129633	1.134521
blocks	0.731485	0.675165	0.626392
points_per_game	16.435242	16.512700	17.187751
player_efficiency	17.138283	17.453998	18.018708
true_shooting	0.541538	0.541243	0.556043
plus_minus	1.470572	1.534807	1.836971
win_shares_percentage	0.122292	0.123344	0.126518
in_playoff	0.567979	0.511759	0.526726

Decade Clusters for All Major "Playoff Caliber" Players (over 30 years

labels	2	0	1
year	1994.462069	2004.438757	2014.958095
games_played	73.074138	74.341865	71.215238
mpg	35.020862	35.281901	33.762286
fg%	0.482962	0.462371	0.474617
3pfg%	0.261128	0.293892	0.322697
rebounds	6.496034	6.137294	6.198095
assists	3.942759	3.823949	4.122857
steals	1.298621	1.170567	1.170667
blocks	0.786552	0.726874	0.677524
points_per_game	16.729655	16.789031	17.787619
player_efficiency	17.973966	18.130713	19.064571
true_shooting	0.554362	0.544912	0.566998
plus_minus	2.445172	2.363803	2.873524
win_shares_percentage	0.148347	0.144976	0.152910
in_playoff	1.000000	1.000000	1.000000

Modeling

- -Tried out a handful of classification models (KNN, RandomForest, Bagging etc..) most effective models for each tier either LogisticRegression or SVM
- -Tier 1: Major Players **SVM** Train Acc: 82.6% / Test Acc: 81.3%
- -Tier 2: Core Players LogReg Train Acc: 78.5% / Test Acc: 76.1%
- -Tier 3: Rotational Players **LogReg** Train Acc: 74.1% / Test Acc: 72.0%
- -Tier 4: Reserve Players **SVM** Train Acc: 74.1% / Test Acc: 63.7%

Model Intuition: Do the Results Make Sense?

-Compared our classification results to the 1st place team of the Western Conference: the 27-9 Utah Jazz and last place team: the 8-29 Minnesota Timberwolves

-Jazz: 14 Playoff Caliber, 2 Non-Playoff Caliber

-TWolves: 2 Playoff Caliber, 14 Non-Playoff Caliber

Celtics Analysis: Major Players

- -3 Non Playoff Caliber, 1 Playoff Caliber
- "...Asked if he thinks, as currently constituted, the Celtics are good enough to win a title, he replied 'I do not.' (excerpt from interview with Celtics GM Danny Ainge)
- -As a Celtics fan, these model results & interview made me cry :'(

Image source: https://images.app.goo.gl/umbQBWJvTCV5Z7JA9

Celtics Analysis: Core Players

- -1 out of 3 core players classified as playoff caliber: Daniel Theis
- -Rookie Peyton Pritchard and verteran big man, Tristan Thompson, non-playoff caliber
- -Theis, a Center, has shown he can hit 3s at a 37% rate this half--valuable in today's game

Image source: https://images.app.goo.gl/TRyA5U815Sdk9YTh7

Celtics Analysis: Rotational Players

- -3 of the 7 rotational players classify as "playoff caliber": Rob Williams, Semi Ojeleye, Carsen Edwards
- -Player to Watch: Rob Williams--first round of modeling he was not "playoff caliber" but after a strong week of play model changed his classification

Image source: https://images.app.goo.gl/sJhV6VbCrcw5K96P8

Celtics Analysis: Reserve Players

- -Both Celtic reserves qualified as playoff caliber
- -While reserves certainly add value, not the tier we want with the higher percentage of playoff caliber players
- -Tacko Fall is 7'5" tall.

Recommendations

- -Major Players: Despite Celts stars not faring well with model, I suggest keeping current stars. Kemba is trending upwards coming off knee injury, Tatum & Brown 2 young stars with tremendous potential
- -Core Players: Explore trade options here, either big man can go (depending on return), Pritchard worth keeping, high percentage from beyond the arc, also only a rookie
- -Rotational Players: Keep Robert Williams, rest of the players can be worth packaging in a trade to acquire a potential playoff caliber core player here.
- -Reserve Players: Keep fan favorite Tacko Fall, as mentioned he's 7'5" tall!

Next Steps/Model Reflection

- -Model imperfections: presence of multicollinearity in our features makes it difficult to analyze individual features
- -Also we trained with a full season worth of data, while we are predicting solely with only a half season, so model does not incorporate for potential 2nd half improvements
- -Difficult to quantify the effect of statistics having a great player on a bad team, his metrics may be hampered by poor support around him. (might qualify as playoff caliber on one team, but not on the other)

Questions & Additional Celtics Articles

-Kemba Trade Rumors:

https://www.masslive.com/celtics/2021/02/kemba-walker-trade-rumors-celtics-tried-like-hell-to-trade-guard-danny-ainge-knew-knee-wasnt-right-report.html

-The Two Jays (Tatum & Brown):

https://www.espn.com/nba/story/_/id/30984749/why-jayson-tatum-jaylen-brown-enough-boston-celtics-season

 $\underline{\text{https://www.celticsblog.com/2021/3/11/22321297/the-evolution-of-jayson-tatums-shot-making-ability-boston-celtics-nbauer} \\$

-Danny Ainge on a Potential Mid-Season Trade:

https://nesn.com/2021/03/boston-celtics-trade-rumors-danny-ainge-tpe/