学号	姓名
23214321	陈宁浩
23214322	何昌烨
23214323	陈宁浩 何昌烨 胡静静
23214324	黄项龙
23214326	刘润尧
23214329	宋珂
23214326	戴泳涛
23214338	杜冠男
23214339	段培明
23214345	黄瀚
23214353	梁励
23214364	毛睿
23214369	钱甜奕
23214378	吴昊
23214383	徐博研
23214395	赵海洋
23214410	陈东
23214417	陈宁宁
23214421	陈腾跃
23214426	陈煜彦
23214427	崔铮浩
23214427	何鸿荣
23214449	何芷莹
23214452	洪桂航
23214460	黄泽林
23214466	赖柔成
23214474	李宏立
23214478	李茂锦
23214491	梁恒中
23214503	刘星宇
23214509	罗经周
23214534	苏达威
23214542	王辉
23214564	熊泽华
23214565	徐浩耀
23214573	杨坤业
23214576	杨子逸
23214578	杨沅旭
23214570	易钰淇
	勿坛决
23214594	曾家洋
23214600	张珊
23214601	张晓逊
23214615	钟龙广
23214624	庄梓轩
23214625	邹国煌
23220055	李品律

page 140-141

Ex.3

The contour C is the closed triangular path shown below.

To find an upper bound for $\left| \int_C (e^z - \overline{z}) dz \right|$, we let z be a point on C and observe that

$$|e^z - \overline{z}| \le |e^z| + |\overline{z}| = e^x + \sqrt{x^2 + y^2}$$
.

But $e^x \le 1$ since $x \le 0$, and the distance $\sqrt{x^2 + y^2}$ of the point z from the origin is always less than or equal to 4. Thus $|e^z - \overline{z}| \le 5$ when z is on C. The length of C is evidently 12. Hence, by writing M = 5 and L = 12, we have

$$\left| \int_C (e^z - \overline{z}) dz \right| \le ML = 60.$$

Ex.4

Note that if |z| = R(R > 2), then

$$|2z^2-1| \le 2|z|^2+1=2R^2+1$$

and

$$|z^4 + 5z^2 + 4| = |z^2 + 1||z^2 + 4| \ge ||z|^2 - 1||||z|^2 - 4|| = (R^2 - 1)(R^2 - 4).$$

Thus

$$\left| \frac{2z^2 - 1}{z^4 + 5z^2 + 4} \right| = \frac{12z^2 - 11}{|z^4 + 5z^2 + 4|} \le \frac{2R^2 + 1}{(R^2 - 1)(R^2 - 4)}$$

when |z|=R (R>2). Since the length of C_R is πR , then,

$$\left| \int_{C_R} \frac{2z^2 - 1}{z^4 + 5z^2 + 4} dz \right| \le \frac{\pi R (2R^2 + 1)}{(R^2 - 1)(R^2 - 4)} = \frac{\frac{\pi}{R} \left(2 + \frac{1}{R^2} \right)}{\left(1 - \frac{1}{R^2} \right) \left(1 - \frac{4}{R^2} \right)};$$

and it is clear that the value of the integral tends to zero as R tends to infinity.

Ex.5

Here C_R is the positively oriented circle |z| = R(R > 1). If z is a point on C_R , then

$$\left|\frac{\operatorname{Log} z}{z^2}\right| = \frac{|\ln R + i\Theta|}{R^2} \le \frac{\ln R + |\Theta|}{R^2} \le \frac{\pi + \ln R}{R^2},$$

since $-\pi < \Theta \le \pi$. The length of C_R is, of course, $2\pi R$. Consequently, by taking

$$M = \frac{\pi + \ln R}{R^2} \quad \text{and} \quad L = 2\pi R,$$

we see that

$$\left| \int_{C_R} \frac{\text{Log}z}{z^2} \, dz \right| \leq ML = 2\pi \left(\frac{\pi + \ln R}{R} \right).$$

Since

$$\lim_{R\to\infty}\frac{\pi+\ln R}{R}=\lim_{R\to\infty}\frac{1/R}{1}=0,$$

it follows that

$$\lim_{R\to\infty}\int_{C_R}\frac{\text{Log}z}{z^2}\,dz=0.$$

page 149

Ex.2

(a)
$$\int_{i}^{i/2} e^{\pi z} dz = \left[\frac{e^{\pi z}}{\pi} \right]_{i}^{i/2} = \frac{e^{i\pi/2} - e^{i\pi}}{\pi} = \frac{i+1}{\pi} = \frac{1+i}{\pi}.$$

(b)
$$\int_{0}^{\pi+2i} \cos\left(\frac{z}{2}\right) dz = 2 \left[\sin\left(\frac{z}{2}\right) \right]_{0}^{\pi+2i} = 2 \sin\left(\frac{\pi}{2} + i\right) = 2 \frac{e^{i\left(\frac{\pi}{2} + i\right)} - e^{-i\left(\frac{\pi}{2} + i\right)}}{2i} = -i\left(e^{i\pi/2}e^{-1} - e^{-i\pi/2}e\right)$$
$$= -i\left(\frac{i}{e} + ie\right) = \frac{1}{e} + e = e + \frac{1}{e}.$$

(c)
$$\int_{1}^{3} (z-2)^{3} dz = \left[\frac{(z-2)^{4}}{4} \right]_{1}^{3} = \frac{1}{4} - \frac{1}{4} = 0.$$

Ex.3

Note the function $(z-z_0)^{n-1}$ $(n=\pm 1,\pm 2,...)$ always has an antiderivative in any domain that does not contain the point $z=z_0$. So, by the theorem in Sec. 44,

$$\int_{C_0} (z - z_0)^{n-1} dz = 0$$

for any closed contour C_0 that does not pass through z_0 .

Ex.4

 $f_2(z) = \sqrt{r}e^{i\theta/2}(r > 0, \frac{\pi}{2} < \theta < \frac{5\pi}{2})$ 原函数为 $F_2(z) = \frac{2}{3}z^{\frac{3}{2}} = \frac{2}{3}r\sqrt{r}e^{i3\theta/2}$, $f_2(z)$ 在 C_2 上除了 z = 3 以外的值与 $z^{1/2}$ 相等,因此有

$$\int_{C_2} z^{1/2} dz = \int_{-3}^3 f_2(z) dz = F_2(z) \Big|_{-3}^3 = 2\sqrt{3} (e^{i3\pi} - e^{i3\pi/2}) = 2\sqrt{3} (-1 + i)$$

$$\int_{C_2-C_1} z^{1/2} dz = \int_{C_2} z^{1/2} dz - \int_{C_1} z^{1/2} dz = 2\sqrt{3}(-1+i-1-i) = -4\sqrt{3}$$