CMPT 409/981: Optimization for Machine Learning

Lecture 15

Sharan Vaswani

October 31, 2024

Recap: Online Optimization

Generic Online Optimization (w_0 , Algorithm \mathcal{A} , Convex set $\mathcal{C} \subseteq \mathbb{R}^d$)

- 1: **for** k = 1, ..., T **do**
- 2: Algorithm \mathcal{A} chooses point (decision) $w_k \in \mathcal{C}$
- 3: Environment chooses and reveals the (potentially adversarial) loss function $f_k:\mathcal{C}\to\mathbb{R}$
- 4: Algorithm suffers a cost $f_k(w_k)$
- 5: end for

Application: Prediction from Expert Advice: Given d experts,

$$\mathcal{C} = \Delta_d = \{w_i | w_i \geq 0 \; ; \; \sum_{i=1}^d w_i = 1\}$$
 and $f_k(w_k) = \langle c_k, w_k \rangle$ where $c_k \in \mathbb{R}^d$ is the loss vector.

Application: **Imitation Learning**: Given access to an expert that knows what action $a \in [A]$ to take in each state $s \in [S]$, learn a policy $\pi : [S] \to [A]$ that imitates the expert, i.e. we want that $\pi(a|s) \approx \pi_{\text{expert}}(a|s)$. Here, $w = \pi$ and $\mathcal{C} = \Delta_A \times \Delta_A \dots \Delta_A$ (simplex for each state) and f_k is a measure of discrepancy between π_k and π_{expert} .

1

Online Optimization

- Recall that the sequence of losses $\{f_k\}_{k=1}^T$ is potentially adversarial and can also depend on w_k .
- **Objective**: Do well against the *best fixed decision in hindsight*, i.e. if we knew the entire sequence of losses beforehand, we would choose $w^* := \arg\min_{w \in \mathcal{C}} \sum_{k=1}^T f_k(w)$.
- **Regret**: For any fixed decision $u \in C$,

$$R_T(u) := \sum_{k=1}^T [f_k(w_k) - f_k(u)]$$

When comparing against the best decision in hindsight,

$$R_T := \sum_{k=1}^T [f_k(w_k)] - \min_{w \in C} \sum_{k=1}^T f_k(w).$$

• We want to design algorithms that achieve a *sublinear regret* (that grows as o(T)). A sublinear regret implies that the performance of our sequence of decisions is approaching that of w^* .

Online Convex Optimization

• Online Convex Optimization (OCO): When the losses f_k are (strongly) convex loss functions.

Example 1: In prediction with expert advice, $f_k(w) = \langle c_k, w \rangle$ is a linear function.

Example 2: In imitation learning, $f_k(\pi) = \mathbb{E}_{s \sim d^{\pi_k}}[\mathsf{KL}(\pi(\cdot|s) || \pi_{\mathsf{expert}}(\cdot|s)])$ where d^{π_k} is a distribution over the states induced by running policy π_k .

Example 3: In online control such as LQR (linear quadratic regulator) with unknown costs/perturbations, f_k is quadratic.

• In Examples 2-3, the loss at iteration k+1 depends on the *learner*'s decision at iteration k.

Online Convex Optimization

• Online-to-Batch conversion: If the sequence of loss functions is i.i.d from some fixed distribution, we can convert the regret guarantees into the traditional convergence guarantees for the resulting algorithm.

Formally, if f_k are convex and $R(T) = O(\sqrt{T})$, then taking the expectation w.r.t the distribution generating the losses,

$$\mathbb{E}\left[\frac{R_T}{T}\right] = \mathbb{E}\left[\frac{\sum_{k=1}^T [f_k(w_k)] - \sum_{k=1}^T f_k(w^*)}{T}\right] \geq \sum_{k=1}^T \left[f(\bar{w}_T) - f(w^*)\right] = O\left(\frac{1}{\sqrt{T}}\right)$$

where $f(w) := \mathbb{E}[f_k(w)]$ (since the losses are i.i.d) and $\bar{w}_T := \frac{\sum_{k=1}^T w_k}{T}$ (since the losses are convex, we used Jensen's inequality).

- If the distribution generating the losses is a uniform discrete distribution on n fixed data-points, then $f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$ and we are back in the finite-sum minimization setting.
- Hence, algorithms that attain $R(T) = O(\sqrt{T})$ can result in an $O\left(\frac{1}{\sqrt{T}}\right)$ convergence (in terms of the function values) for convex losses.

Online Gradient Descent

The simplest algorithm that results in sublinear regret for OCO is Online Gradient Descent.

Online Gradient Descent (OGD): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, OGD suffers a cost $f_k(w_k)$ and uses the function to compute

$$w_{k+1} = \Pi_C[w_k - \eta_k \nabla f_k(w_k)]$$

where $\Pi_C[x] = \arg\min_{y \in C} \frac{1}{2} \|y - x\|^2$.

Claim: If the convex set $\mathcal C$ has a diameter D i.e. for all $x,y\in\mathcal C$, $\|x-y\|\leq D$, for an arbitrary sequence of losses such that each f_k is convex and differentiable, OGD with a non-increasing sequence of step-sizes i.e. $\eta_k\leq \eta_{k-1}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2$$

5

Online Gradient Descent - Convex functions

Proof: Using the update $w_{k+1} = \prod_{\mathcal{C}} [w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in \mathcal{C}$,

$$\|w_{k+1} - u\|^2 = \|\Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)] - u\|^2 = \|\Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)] - \Pi_{\mathcal{C}}[u]\|^2$$

Since projections are non-expansive i.e. for all x, y, $\|\Pi_{\mathcal{C}}[y] - \Pi_{\mathcal{C}}[x]\| \le \|y - x\|$,

$$\leq \|w_{k} - \eta_{k} \nabla f_{k}(w_{k}) - u\|^{2}$$

$$= \|w_{k} - u\|^{2} - 2\eta_{k} \langle \nabla f_{k}(w_{k}), w_{k} - u \rangle + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$

$$\leq \|w_{k} - u\|^{2} - 2\eta_{k} [f_{k}(w_{k}) - f_{k}(u)] + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$
(Since f_{k} is convex)

$$\implies 2\eta_{k}[f_{k}(w_{k}) - f_{k}(u)] \leq [\|w_{k} - u\|^{2} - \|w_{k+1} - u\|^{2}] + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$

$$\implies R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} - \|w_{k+1} - u\|^{2}}{2\eta_{k}} \right] + \sum_{k=1}^{T} \frac{\eta_{k}}{2} \|\nabla f_{k}(w_{k})\|^{2}$$

Online Gradient Descent - Convex functions

Recall that
$$R_T(u) \leq \sum_{k=1}^T \left[\frac{\|w_k - u\|^2 - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2$$
.

$$\sum_{k=1}^{T} \left[\frac{\|w_k - u\|^2 - \|w_{k+1} - u\|^2}{2\eta_k} \right]$$

$$= \sum_{k=2}^{T} \left[\|w_k - u\|^2 \cdot \left(\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} \right) \right] + \frac{\|w_1 - u\|^2}{2\eta_1} - \frac{\|w_{T+1} - u\|^2}{2\eta_T}$$

$$\leq D^2 \sum_{k=2}^{T} \left[\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} \right] + \frac{D^2}{2\eta_1} = D^2 \cdot \left[\frac{1}{2\eta_T} - \frac{1}{2\eta_1} \right] + \frac{D^2}{2\eta_1} = \frac{D^2}{2\eta_T}$$
(Since $\|x - y\| \leq D$ for all $x, y \in \mathcal{C}$)

Putting everything together,

$$R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \left\| \nabla f_k(w_k) \right\|^2$$

Online Gradient Descent - Convex, Lipschitz functions

Claim: If the convex set $\mathcal C$ has a diameter D i.e. for all $x,y\in\mathcal C$, $\|x-y\|\leq D$, for an arbitrary sequence of losses such that each f_k is convex, differentiable and G-Lipschitz, OGD with $\eta_k=\frac{\eta}{\sqrt{k}}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq \frac{D^2 \sqrt{T}}{2\eta} + G^2 \sqrt{T} \eta$$

Proof: Since the step-size is decreasing, we can use the general result from the previous slide,

$$R_T(u) \le \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2 \le \frac{D^2}{2\eta_T} + \frac{G^2}{2} \sum_{k=1}^T \eta_k$$
 (Since f_k is G -Lipschitz)

$$\implies R_T(u) \le \frac{D^2 \sqrt{T}}{2\eta} + \frac{G^2 \eta}{2} \sum_{k=1}^T \frac{1}{\sqrt{k}} \le \frac{D^2 \sqrt{T}}{2\eta} + G^2 \sqrt{T} \eta \qquad \text{(Since } \sum_{k=1}^T \frac{1}{\sqrt{k}} \le 2\sqrt{T}\text{)}$$

• In order to find the "best" η , set it such that $D^2/2\eta = G^2\eta$, implying that $\eta = D/\sqrt{2}G$ and $R_T(u) \leq \sqrt{2}\,DG\,\sqrt{T}$. Hence, OGD with a decreasing step-size attains sublinear $\Theta(\sqrt{T})$ regret for convex, Lipschitz functions.

Online Mirror Descent

- The OGD update at iteration k can also be written as: $w_{k+1} = \arg\min_{w \in \mathcal{C}} \left[\langle \nabla f_k(w_k), w \rangle + \frac{1}{2n_k} \|w w_k\|_2^2 \right]$
- Online Mirror Descent (OMD) generalizes gradient descent by choosing a strictly convex, differentiable function $\phi : \mathbb{R}^d \to \mathbb{R}$ (referred to as the *mirror map*) to induce a distance measure.
- ϕ induces the Bregman divergence $D_{\phi}(\cdot,\cdot)$, a distance measure between points x,y,z

$$D_{\phi}(y,x) := \phi(y) - \phi(x) - \langle \nabla \phi(x), y - x \rangle.$$

Geometrically, $D_{\phi}(y,x)$ is the distance between the function $\phi(y)$ and the line $\phi(x) + \langle \nabla \phi(x), y - x \rangle$ which is tangent to the function at x.

• Using D_{ϕ} as the distance measure results in the mirror descent update:

$$w_{k+1} = \operatorname*{arg\,min}_{w \in \mathcal{C}} \left[\langle
abla f_k(w_k), w
angle + rac{1}{\eta_k} D_\phi(w, w_k)
ight]$$

• Setting $\phi(x) = \frac{1}{2} \|x\|^2$ results in $D_{\phi}(y, x) = \frac{1}{2} \|y - x\|^2$ and recovers OGD.

Online Mirror Descent – Example

- For prediction with expert advice, $C = \Delta_d = \{w_i | w_i \ge 0 ; \sum_{i=1}^d w_i = 1\}$ and we want a distance metric between probabilities.
- Typically use the negative-entropy mirror map i.e. $\phi(w) = \sum_{i=1}^{d} w_i \ln(w_i)$.
- For $u, v \in \mathcal{C}$, the corresponding Bregman divergence $D_{\phi}(u, v)$ can be calculated as:

$$D_{\phi}(u,v) = \phi(u) - \phi(v) - \langle \nabla \phi(v), u - v \rangle = \phi(u) - \phi(v) - \langle \log(v) + 1, u - v \rangle$$

$$(
abla \phi(u) = \log(u) + 1$$
, where $\log(\cdot)$ is element-wise)

$$(\nabla \phi(u) = \log(u) + 1, \text{ where } \log(\cdot) \text{ is element-wise})$$

$$= \sum_{i=1}^{d} u_i \log(u_i) - \sum_{i=1}^{d} v_i \log(v_i) - \left[\sum_{i=1}^{d} u_i \log(v_i) - \sum_{i=1}^{d} v_i \log(v_i)\right] - \sum_{i=1}^{d} (u_i - v_i)$$

$$= \sum_{i=1}^{d} u_i \log\left(\frac{u_i}{v_i}\right) = \text{KL}(u||v). \qquad (\sum_{i=1}^{d} u_i = \sum_{i=1}^{d} v_i = 1)$$

• The KL-divergence is a standard way to measure the distance between probability distributions. For distributions u, v, $\mathsf{KL}(u||v) := \sum_{i=1}^d u_i \, \log\left(\frac{u_i}{v_i}\right)$ is non-negative and equal to zero iff u = v.

Online Mirror Descent

The OMD update can be equivalently written as:

GD in dual space: $w_{k+1/2} = (\nabla \phi)^{-1} (\nabla \phi(w_k) - \eta_k \nabla f_k(w_k))$

Bregman projection: $w_{k+1} = \arg\min_{w \in \mathcal{C}} D_{\phi}(w, w_{k+1/2})$

Prove in Assignment 3!

Online Mirror Descent – Example

For prediction with expert advice, $\mathcal{C} = \Delta_d = \{w_i | w_i \geq 0 \; ; \; \sum_{i=1}^d w_i = 1\}$, $\phi(w) = \sum_{i=1}^d w_i \ln(w_i)$ is the negative-entropy mirror map and $g_k := \nabla f_k(w_k)$, then the OMD update can be written as: (prove in Assignment 3!)

- GD in dual space: $w_{k+1/2}[i] = w_k[i] \exp(-\eta_k g_k[i])$
- Bregman projection: $w_{k+1}[i] = \frac{w_{k+1/2}[i]}{\|w_{k+1/2}\|_1}$
- Multiplicative weights update:

$$w_{k+1}[i] = \frac{w_k[i] \exp(-\eta_k g_k[i])}{\sum_{j=1}^d w_k[j] \exp(-\eta_k g_k[j])}$$

If $w_0[i] = \frac{1}{d}$ for all $i \in [d]$, then, for all k,

$$w_{k+1}[i] = \frac{\exp\left(-\sum_{m=1}^{k} \eta_m g_m[i]\right)}{\sum_{j=1}^{d} \exp\left(-\sum_{m=1}^{k} \eta_m g_m[j]\right)}$$

Online Mirror Descent - Convex, Lipschitz functions

In order to analyze OMD, we will make some assumptions about C, f_k and ϕ .

- **Assumption 1**: C is a convex set and $\forall k$, f_k is a convex function.
- Assumption 2: $\forall k$, f_k is G-Lipschitz in the ℓ_p norm (for $p \geq 1$), implying that $\forall w \in \mathcal{C}$,

$$\|\nabla f_k(w)\|_p \leq G$$

• Assumption 3: ϕ is ν strongly-convex in the ℓ_q norm (for $q \ge 1$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$) i.e.

$$\phi(y) \ge \phi(x) + \langle \nabla \phi(x), y - x \rangle + \frac{\nu}{2} \|y - x\|_q^2$$

- Example: For prediction from expert advice,
- ullet $\mathcal{C}=\Delta_d$ is a convex set and $f_k(w_k)=\langle c_k,w_k
 angle$ is a convex function.
- If the costs are bounded by M, then, $\|\nabla f_k(w)\|_{\infty} = \|c_k\|_{\infty} \leq M$. Hence, $p = \infty$, G = M.
- ullet If $\phi(w)$ is negative-entropy, then by Pinsker's inequality, q=1 and $\nu=1$ i.e.

$$\phi(y) - \phi(x) - \langle \nabla \phi(x), y - x \rangle = D_{\phi}(y, x) = \mathsf{KL}(y||x) \ge \frac{1}{2} \|y - x\|_{1}^{2}.$$