Context-Free Grammars

CS 271, Spring 2014

Dr. Sara Miner More

• • Introduction

- Before today: regular languages
 - DFAs, NFAs
 - Regular expression
 - But not all languages are regular...
- Today: a new class of languages
 - We'll discuss a new way to describe a language by expressing how to generate all of its strings
 - Reference: Sipser textbook Section 2.1

Context-Free Grammars (CFGs): a formal definition

- A CFG G is a 4-tuple (V, Σ, R, S), where
 - V is a finite set called the variables
 - Σ is a finite set, disjoint from V, called the **terminals**
 - R is a finite set of rules
 - $S \in V$ is the **start symbol**
 - Each rule consists of a rightward arrow, with a variable on the LHS and a sequence of variables and/or terminals on the RHS
 - Convention: Variables are usually CAPITAL letters, terminals are usually lower-case letters

• • • Example: A CFG called G₁

• Terminals:
$$\Sigma = \{ +, *, a, b \}$$

Rules (a.k.a. Productions):

$$R = \{ E \rightarrow a, E \rightarrow b, E \rightarrow EOE, O \rightarrow +, O \rightarrow * \}$$

• Start Symbol: S = E

To derive a string in L(G₁), begin with start symbol and repeatedly apply rules until no variables remain.

• • Notation

• If u, v, and w are strings of variables and terminals, and $A \rightarrow w$ is a rule of a grammar, we say

"uAv yields uwv", denoted by

••• Example: A CFG called G₁

Rules of G₁

$$E \rightarrow a$$

$$E \rightarrow b$$

$$E \rightarrow EOE$$

$$0 \rightarrow +$$

$$E \Rightarrow EDE \Rightarrow \alpha DE$$

$$\Rightarrow \alpha + E \Rightarrow \alpha + b$$

$$\Rightarrow a+E \Rightarrow a+b$$

• • • Example: A CFG called G₁

• Terminals:
$$\Sigma = \{ +, *, a, b \}$$

Rules (a.k.a. Productions):

$$R = \{ E \rightarrow a, E \rightarrow b, E \rightarrow EOE, O \rightarrow +, O \rightarrow * \}$$

• Start Symbol: S = E

To derive a string in $L(G_1)$, begin with start symbol and repeatedly apply rules until no variables remain.

The "language of grammar G_1 ", denoted $L(G_1)$, is the set of all strings over Σ that can be generated from these rules, starting from E.

• • • Example: A CFG called G₁

Rules of G₁

E
$$\rightarrow$$
 a
E \rightarrow b
E \rightarrow EOE

These three rules
may be rewritten
on one line:
O \rightarrow +
E \rightarrow a | b | EOE

Equivalent way to write rules of G₁:

We often specify a CFG by writing only its rules.

Convention says that variable on LHS of first rule is start symbol; the rest of formal description can be deduced!

Construct CFG G_2 where $L(G_2) = \{ 0^n1^n \mid n \ge 1 \}$

$$E \rightarrow OBI$$

$$E \rightarrow OEI$$

Construct CFG G_2 where $L(G_2) = \{ 0^n1^n \mid n \ge 1 \}$

- Are you convinced that our construction works?
 - Check for completeness:
 Does G₂ generate every string in { 0ⁿ1ⁿ | n ≥ 1 } ?

Check for consistency:
 Does G₂ generate only the strings in { 0ⁿ1ⁿ | n ≥ 1 } ?

Construct a CFG G_3 where $L(G_3) = \{ w \mid w \text{ is a palindrome over } \{a,b\} \}$

$$S \rightarrow \epsilon$$
 a $a \rightarrow b \rightarrow b$

Construct a CFG G_3 where $L(G_3) = \{ w \mid w \text{ is a palindrome over } \{a,b\} \}$

- Must have same symbol at beginning and end, so insert both within application of one rule
 - Repeat this type of rule as necessary, building up the string from the ends towards the middle
- But, what about last rule used?
 - Is length of string even or odd?
 - If even, last step replaces variable with ε
 - If odd, last step replaces variable with either a or b

Construct a CFG G_3 where $L(G_3) = \{ w \mid w \text{ is a palindrome over } \{a,b\} \}$

- $G_3 = (V, \Sigma, R, S)$, where:
 - $V = \{S\}$
 - $\Sigma = \{a,b\}$
 - R = $\{ S \rightarrow aSa \mid bSb \mid \epsilon \mid a \mid b \}$
 - S is the start symbol

Construct a CFG G_4 where $L(G_4) = \{ 0^a 1^b 0^c \mid a+c=b \}$

$$F \rightarrow OFI$$

Context-Free Languages

- Definition: A language is called context-free if it is generated by a context-free grammar
- How does the class of context-free languages compare to the class of regular languages?
 - How do you know?

• • Parse trees

- A parse tree from a grammar G = (V, Σ, R, S) is labeled tree rooted at S where:
 - each leaf of tree is labeled with some $a \in \Sigma$,
 - each non-leaf of tree is labeled with some a ∈ V, and
 - if tree contains subtree:

then $A \rightarrow x_1 x_2 ... x_m \in \mathbb{R}$

RULES of G₁:

 $E \rightarrow a$

 $E \rightarrow b$

 $E \rightarrow EOE$

 $0 \rightarrow +$

O → *

Derivation of a string:

$$E \Rightarrow EOE \Rightarrow bOE \Rightarrow b*E \Rightarrow b*EOE$$

 $\Rightarrow b*aOE \Rightarrow b*a+E \Rightarrow b*a+a$

RULES of G₁:

$$E \rightarrow a$$

$$E \rightarrow b$$

$$E \rightarrow EOE$$

$$\bigcirc \rightarrow +$$

$$0 \rightarrow *$$

Derivation of a string:

$$E \Rightarrow EOE \Rightarrow bOE \Rightarrow b*E \Rightarrow b*EOE$$

 $\Rightarrow b*aOE \Rightarrow b*a+E \Rightarrow b*a+a$

The generated string may be read by reading the leaves of the completed parse tree from left to right.

RULES of G₁:

$$E \rightarrow a$$

$$E \rightarrow b$$

$$E \rightarrow EOE$$

$$O \rightarrow +$$

$$O \rightarrow *$$

Derivation of a string:

$$E \Rightarrow EOE \Rightarrow bOE \Rightarrow b*E \Rightarrow b*EOE$$

 $\Rightarrow b*aOE \Rightarrow b*a+E \Rightarrow b*a+a$

Second derivation of same string:

$$E \Rightarrow EOE \Rightarrow E*E \Rightarrow E*EOE \Rightarrow E*EOa$$

 $\Rightarrow E*E+a \Rightarrow E*a+a \Rightarrow b*a+a$

These 2 derivations of same string correspond to same parse tree

Derivation 1:

$$E \Rightarrow EOE \Rightarrow bOE \Rightarrow b*E$$

 $\Rightarrow b*EOE \Rightarrow b*aOE$
 $\Rightarrow b*a+E \Rightarrow b*a+a$

Derivation 2:

$$E \Rightarrow EOE \Rightarrow E^*E \Rightarrow E^*EOE$$

 $\Rightarrow E^*EOa \Rightarrow E^*E+a$
 $\Rightarrow E^*a+a \Rightarrow b^*a+a$

RULES of G₁:

$$E \rightarrow a$$

$$E \rightarrow b$$

$$E \rightarrow EOE$$

$$0 \rightarrow +$$

$$0 \rightarrow *$$

Derivation of a string:

$$E \Rightarrow EOE \Rightarrow bOE \Rightarrow b*E \Rightarrow b*EOE$$

 $\Rightarrow b*aOE \Rightarrow b*a+E \Rightarrow b*a+a$

Second derivation of same string:

$$E \Rightarrow EOE \Rightarrow E*E \Rightarrow E*EOE \Rightarrow E*EOa$$

 $\Rightarrow E*E+a \Rightarrow E*a+a \Rightarrow b*a+a$

Third derivation of same string:

$$E \Rightarrow EOE \Rightarrow EOa \Rightarrow E+a \Rightarrow EOE+a$$

 $\Rightarrow EOa+a \Rightarrow E*a+a \Rightarrow b*a+a$

Derivations 1 and 3 correspond to different parse trees

Derivation 1:

$$E \Rightarrow EOE \Rightarrow bOE \Rightarrow b*E$$

 $\Rightarrow b*EOE \Rightarrow b*aOE$
 $\Rightarrow b*a+E \Rightarrow b*a+a$

Derivation 3:

$$E \Rightarrow EOE \Rightarrow EOa \Rightarrow E+a$$

 $\Rightarrow EOE+a \Rightarrow EOa+a$
 $\Rightarrow E^*a+a \Rightarrow b^*a+a$

So, how should we interpret the string?

Should b*a+a represent
 b*(a+a)
 or
 (b*a)+a

- The answer matters...consider value of the expression, say, when b=5 and a=2.
 - If compiler encounters this expression in source code, we don't want any confusion about what the programmer intended

• • • Ambiguity

- When a string can be derived from a grammar in two fundamentally different ways, we say the string can be ambiguously derived.
 - e.g., b*a+a is ambiguously derived in G₁
- When any string in a language is ambiguously derived in a grammar G, then G is said to be an ambiguous grammar.
 - e.g., G₁ is an ambiguous grammar because b+a+a is ambiguously derived in it

Ambiguity: Dangling Else Problem

 Suppose the CFG describing a programming language contains the following rules

IfStmt → if B then S | if B then S else S

How should this code be interpreted?

if x>0 then if y<0 then output yes else output no

• • Ambiguity: Dangling Else Problem

IfStmt → if B then S | if B then S else S

if x>0 then if y<0 then output yes else output no

```
\begin{array}{lll} & \text{if } x > 0 \\ & \text{then} \\ & \text{if } y < 0 \\ & \text{then output yes} \\ & \text{else output no} \end{array} \qquad \begin{array}{ll} & \text{if } x > 0 \\ & \text{then output yes} \\ & \text{else output no} \end{array}
```

• • • Ambiguity

- To demonstrate that a specific string s can be ambiguously derived, one can:
 - Give two different parse trees for s, or
 - Give two different *leftmost* derivations for s
 - (A leftmost derivation is one in which, at each step, the leftmost nonterminal remaining in the string is replaced.)

 Note: Giving one leftmost and one rightmost derivation for s is <u>not</u> sufficient – these two derivations might correspond to the same parse tree.

••• Example: grammar G₅

- A → BC B → 1B1 | 1 C → 1C1 | ε
 - What is $L(G_5)$?
 - Show that grammar G₅ is ambiguous.

Leftmost don't chim

$$A \Rightarrow BC \Rightarrow 1C \Rightarrow 11C1 \Rightarrow 111$$
 $A \Rightarrow BC \Rightarrow 1B1C \Rightarrow 111C \Rightarrow 111$

••• Chomsky Normal Form (CNF)

- Chomsky Normal Form is a special format for CFGs, with restrictions on what the rules can look like
 - Named for Noam Chomsky, MIT linguist
 - Helpful in reasoning about what strings can be derived from a CFG

••• Chomsky Normal Form (CNF)

 Definition: A CFG G with start symbol S is in Chomsky Normal Form if every rule is in of one of the two following forms:

$$A \rightarrow BC$$

$$A \rightarrow a$$

where a is any terminal, A is any variable, and B and C are any variables except S.

In addition, the rule $S \rightarrow \epsilon$ is allowed, but ϵ may not appear elsewhere in the grammar.

• • • Example: a grammar in CNF

$$S \rightarrow a \mid YZ \mid \epsilon$$

 $Y \rightarrow ZZ \mid ZY \mid c$
 $Z \rightarrow YY \mid b$

- For a CFG G in CNF, how many derivation steps are needed to generate a string s made up of n terminals?
 - Knowing this helps us design an algorithm to check if s is in L(G)

for string of length n, need exactly 2n-1 steps

••• Theorem

- Any context-free language can be expressed by a context-free grammar in Chomsky Normal Form.
 - Proof: provide algorithm to convert any CFG into an equivalent CFG in CNF

Given a CFG, how can we put it into Chomsky Normal Form?

- Step 1. Create a new start symbol S_0 , and add rule $S_0 \rightarrow S$. This ensures that start symbol isn't on RHS of any rule.
- Step 2. Remove rules of form A → ε, and "fix up": for each rule with a RHS that includes A, add a copy of that rule with A removed. Do this for all combinations.
- Step 3. Remove rules of form $A \rightarrow B$ (so-called "unit rules"), and "fix": for each rule $B \rightarrow RHS$ add a rule $A \rightarrow RHS$
- Step 4. Put remaining rules in proper form. May require introducing new variables. Reuse new variables where possible, to keep resulting grammar cleaner.

• • Practice

Put the following CFG into CNF

DAdd new start symbol:

So >> S

S >> ABS | 2

A >> xyz | 2

B -> WB | V

Remove A> $Z^{\circ} \rightarrow Z$ $S \rightarrow ABS \mid \xi \mid BS$ $A \rightarrow \times \sqrt{2}$

 $R \rightarrow WB \mid V$

Remove S-> E $S_0 \rightarrow S \mid S$ S -> ABS | & BS | AB | B $A \rightarrow \times YZ$ B -> WB V

Remove unit vule S >> B

So >> S/E

S -> ABS | BS | AB | X | WB | V

A -> XYZ

B -> WB | V

Remove unit rule So > S

So > X | E | ABS | BS | AB | WB | V

S -> ABS | BS | AB | WB | V

A -> xyz

B -> WB | V

y) Put remaining rules in proper torn a Introduce new variable C: 50 -> 2 A0 B5 AB WB V S -> [AC] | BS | AB | WB | V XVZ B > WB | V Introduce new variable D: SO -> E/AC/BS/AB/(DB)/V S -> AC | BS | AD | [DB] / V $A \rightarrow \times Y^{Z}$ $B \rightarrow |DB| | \vee$ $\begin{array}{ccc} C & \rightarrow & BS \\ \hline \end{array}$

(d) Introduce new variable to So
$$\rightarrow$$
 2 | AC | BS | AB | DB | V

S \rightarrow AC | BS | AB | DB | V

A \rightarrow XEI

B \rightarrow DB | V

C \rightarrow BS

D \rightarrow W

E \rightarrow Y2

Distroduce new varibles F, G, H

So > E | AC | BS | AB | DB | V

S -> AC | BS | AB | DB | V

A -> FE | D -> W

B -> DB | V

C -> BS | F -> X