

METHOD AND APPARATUS FOR TACTILELY RESPONSIVE USER INTERFACE

1

FIELD OF THE INVENTION

The present invention relates to user interface devices and in particular to devices providing tactile responsiveness and having programmable force-position profiles defining tactile responsiveness in manipulating a cursor on a screen display.

BACKGROUND OF THE INVENTION

8 In numerous contexts humans perform tasks by interacting with
9 machines via actuators having knobs, dials or linear actuators.
10 Such human interaction in many instances becomes conditioned upon
11 the responsiveness of the actuator. The human operator interacts
12 in accordance with tactile feedback perceived through contact with
13 the actuator knobs, dials or handles.

14 For example, in video or film editing using systems as
15 described in U.S. Patent Nos. 4,937,685 and 4,964,004 which are

1 incorporated herein by reference, an editor edits video image
2 information at a console having a plurality of "control wheels"
3 (i.e. large dials or knobs). The film or video editor controls
4 operation of a composition system from an operator's console, as
5 illustrated in Fig. 1, using two sets of controls, one for each
6 hand, to control the editing process. Each control set includes a
7 plurality of finger switches or pushbuttons 110 clustered proximate
8 to a large rotatable control wheel 112, facilitating tactile
9 operation with minimal hand movement. As the editor is focussing
10 on at least one video monitor, viewing frames of visual source
11 material during the editing function, it is generally the case that
12 the operator will acquire a feel for the various controls and
13 become acclimated to their functionality through tactile feedback
14 therefrom, rather than having to look at the control wheel(s) for
15 visual feedback. Accordingly, more efficient human interaction
16 with, and sensitivity to the composition system is achieved.

17 The control wheels 112 exhibit tactile responsiveness, such as
18 detents or clicks, as they are rotated. Typically, a full rotation
19 of the wheel 112 is correlated to a unit of time, such as one
20 second, of viewing the visual source material being edited. A
21 corresponding number of "frames" of visual source material will be
22 viewed during such a time period, depending on the medium or type
23 of source material being edited. It is most desirable that the
24 number of frames of source material be correlated to the tactile
25 responsiveness, i.e. number of clicks, of the wheel 112 during
26 rotation. For instance, film editing involves standardized source

1 material of which twenty-four (24) frames are provided per second.
2 Thus, it is most desirable that in a full rotation of the wheel 112
3 (presenting one second of source material), the wheel respond with
4 twenty-four (24) clicks, each click corresponding to one frame of
5 the visual source material.

6 While film editing involves source material having twenty-four
7 (24) frames per second, other video medium standards require
8 different frame rates. The frame rate, or number of frames per
9 second according to the National Television System Committee (NTSC)
10 is thirty (30) frames per second, a standard promulgated for
11 television video in the United States. Standards such as PAL and
12 SECAM provide for a standard frame rate of twenty-five (25) frames
13 per second in England and France respectively. New standards for
14 high definition television specify a frame rate of thirty (30) or
15 sixty (60) frames per second.

16 Differing frame rate standards relating to visual source
17 material and the nature of mechanical detents in actuators,
18 presents the problem that multiple actuators are required to
19 facilitate correlation between actuator tactile responsiveness and
20 the various visual source material standards. As illustrated in
21 Fig. 1a, actuators known in the art for providing tactile
22 responsiveness typically incorporate a mechanical detent mechanism.
23 A fixed number of clicks is provided by a spring loaded friction
24 mechanism 111 coacting with a sprocket 113 having a fixed number of
25 cogs or detents corresponding to the desired number of clicks per
26 revolution. Therefore, an actuator having twenty-four fixed

1 detents is required and dedicated for a film editing context, a
2 thirty detent actuator is required for a NTSC video editing system,
3 a twenty five detent actuator is required in the PAL or CCAM video
4 editing context, etc. The plurality of actuators required limits
5 the flexibility of visual source material composition systems and
6 significantly increases the complexity, cost and hardware
7 requirements of a flexible system.

8 In addition to the lack of flexibility of use of fixed
9 mechanical detent actuators, such actuators disadvantageously
10 become worn and suffer tactile responsiveness degradation over
11 time. Other mechanically/spring loaded linear or rotary actuators
12 suffer similar deficiencies.

13 Likewise, other types of actuators or user interface devices
14 are known for permitting users to interact with electronic devices,
15 such as personal computers. Such user interface devices, like a
16 trackball or mouse as disclosed in U.S. Patent No. 4,868,549 ("the
17 '549 patent"), may include tactile responsiveness in the form of
18 resistance to movement of the device as the device is actuated and
19 the cursor moves across predetermined areas of the display screen.

20 In the '549 patent a mouse is disclosed which has an
21 electromagnetic means, in the form of an electromagnet in
22 conjunction with a magnetic surface or an electromagnetic brake,
23 which provides resistance to the movement of a "spherical ball
24 pickup". Feedback or tactile responsiveness is achieved' in one
25 embodiment by controlling the degree of sliding friction between a
26 magnetic portion of the mouse and a magnetic pad surface on which

1 the mouse must be actuated. Disadvantageously, the magnetic pad
2 surface is a requirement in such an embodiment, and the friction
3 forces between the pad and the mouse may be affected in ways that
4 may not be predictable and might be detrimental to the tactile
5 responsiveness.

In another embodiment in the '549 patent, an electromagnetic
brake is included and resistance is provided by the brake directly
to the spherical ball or tracking element. The braking mechanism
is totally self-contained within the mouse eliminating the need for
a magnetic pad surface. However, while the electromagnetic brake
provides a stopping mechanism, it cannot provide a continuous
torque to the tracking element, i.e. no torque is applied when the
tracking element is stopped. Such a mechanism cannot be used to
change tactile responsiveness, e.g. to decrease resistance, as a
function of characteristics of a particular screen display. The
resistance provided is only opposed to motion and cannot aid motion
by actively driving the ball to facilitate ease of motion in
certain display areas or to keep the cursor off of the boundary of
a restricted display area.

SUMMARY OF THE INVENTION

22 The present invention provides an actuator having
23 electronically controllable tactile responsiveness which is
24 flexibly programmable to facilitate provision in a single actuator
25 of torque-position characteristics, such as a selectable number of
26 detents per actuation through its full operative path. In an

1 illustrative case of a rotary actuator the present invention
2 facilitates provision in a single actuator, of torque versus
3 angular position characteristics, such as a selectable number of
4 detents per revolution.

5 According to the invention, an actuator is in communication
6 with a servo motor having a position encoder which outputs position
7 information to a controller that has access to torque-position
8 relation information. The output of the controller is a digital
9 torque signal, in accordance with the torque-position relation
10 information, which is converted to an analog current signal applied
11 to the servo motor to generate torque in the servo motor. The
12 torque, presenting a tactile response to a human interacting with
13 the actuator, is sensed as a detent or a plurality of detents.

14 In further accord with the invention, the controller is a
15 microprocessor which receives position information, from the
16 encoder, through a counter as a position count. Torque-position
17 relation information is stored in microprocessor accessible
18 firmware as a table containing a series of particular torque values
19 corresponding to a series of particular position values. The
20 torque values, output as digital signals and converted by a digital
21 to analog converter, can be modified in accordance with a plurality
22 of stored torque versus position tables to facilitate flexible
23 programming of various torque profiles.

24 Features of the invention include the capacity to store and
25 modify torque profiles and to select one of a predetermined set of
26 torque profiles to provide an actuator with a desired tactile

1 responsiveness. The torque profiles, stored for example, in
2 electrically erasable programmable read only memory can be changed
3 via a computer in communication with the microprocessor. Upon
4 system power down and subsequent power up, a previously entered
5 torque profile can be present as a default profile.

6 In a further embodiment of the invention, a user interface
7 device, such as a trackball or mouse, is provided and implemented
8 with programmable tactile responsiveness. In a mouse or trackball
9 embodiment, the device includes an interface mechanism comprised of
10 at least two sets of wheels that move as a spherical ball or
11 tracking element is actuated by a user. The wheels are aligned on
12 mutually orthogonal axes and each of at least two sets of wheels
13 has a servo motor attached thereto and a position encoder
14 associated with each servo motor. Position information from the
15 position encoder is received by a controller that has access to
16 tactile force information, i.e. torque-display position
17 information.

18 The torque-display position information relates a position or
19 coordinate of a display entity or cursor on a display screen of an
20 electronic device to a force or torque applied to the user
21 interface device, effecting tactile responsiveness of the user
22 interface device as a function of the display screen on which the
23 display entity or cursor is manipulated. The controller, having
24 received the display entity or cursor position information from the
25 position encoders, generates an output which is a digital signal in
26 accordance with the force-display position relation information.

1 The force can be positive or negative, to assist or resist motion.
2 In a disclosed embodiment, a digital torque signal output in
3 accordance with torque-display position information is converted
4 via a digital to analog converter, to an analog current signal
5 which is applied to servo motors to generate torque in the servo
6 motors. The torque generated in the servo motors is translated to
7 the tracking element or ball of the user interface device and
8 perceived by the user as tactile responsiveness that is a function
9 of the position of the cursor on the screen display.

10 Features of the invention include the capability to effect
11 tactile screen boundaries, and "walls" and "troughs" which
12 correspond to button bar functions or icon placement on a drag-down
13 menu, by increasing and decreasing resistance to further
14 manipulation of the interface device by the user, or by aiding
15 motion of the device. "Bumps" and other textures can be
16 implemented on the screen display and tactiley perceived as the
17 cursor is moved. Cell boundaries can be defined by hard stops or
18 "hills" which a cursor will roll off to limit access to screen
19 areas or otherwise provide an indication of cursor position without
20 requiring the user to look at the screen. Different tactile
21 response profiles can be stored to correspond to different screen
22 displays and user applications. Physically impaired people can
23 interface to computer applications without the need for sight or
24 fine motor skills.

DESCRIPTION OF THE DRAWING

These and other features and advantages of the present invention will become more apparent in view of the following detailed description in conjunction with the accompanying drawing, of which:

Fig. 1 is an illustration of an operator's console for editing visual source material in a composition system;

Fig. 1a is a partially broken-away view of an actuator according to the prior art having mechanical detents;

Fig. 2 is a block diagram of a system for providing programmable tactile feedback in an actuator;

Fig. 3 is a block diagram of a system for providing programmable tactile feedback in an actuator, wherein the controller comprises a counter, microprocessor and accessible firmware:

Fig. 3a is an illustrative diagram of an actuator and associated function keys for controlling multiple functions and providing multiple tactile responses in accordance with the selected function.

Fig. 4 is a block diagram of a system for providing programmable tactile feedback in an actuator, wherein the system further includes a tachometer sensing motor actuation to generate a corresponding actuation in an associated actuator;

Fig. 5A is a view of a prior art mechanical means for introducing resistance in an exercise machine;

Fig. 5B is a block diagram illustrating implementation of a

1 torque controller according to the invention implemented in an
2 exercise machine;

3 Fig. 6 is a block diagram of a joystick implementation of an
4 actuator with electronically controllable tactile responsiveness;
5 and

6 Fig. 7 is a perspective view, partially broken away, of a
7 trackball implementation of a user interface device according to
8 the invention;

9 Fig. 8A and 8B are front and side views, respectively, of a
10 wheel assembly implemented in the trackball of FIG. 1;

11 Fig. 9 is a plan view of the wheel assembly of Figs. 8A and 8B
12 attached to a motor and encoder assembly;

13 Fig. 10 is a diagrammatic representation of a pair of wheel
14 sets having motors and encoders associated therewith, and
15 contacting the tracking element;

16 Fig. 10A is a diagrammatic representation of a wheel set
17 disposed for a third axis (z-axis) responsiveness;

18 Fig. 11 is a diagrammatic representation of a user interface
19 device according to the invention configured to interface to a
20 personal computer;

21 Fig. 12 is a block diagram of a system according to the
22 invention; and

23 Figs. 13A-13D show a user interface screen and profiles for
24 tactile responsiveness implemented to effect characteristics of the
25 screen.

1 DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

2 Referring now to Fig. 2, an actuator, such as a rotary
3 actuator having a control knob 114 is attached via a shaft to a
4 servo motor 116. In this illustrative embodiment wherein the
5 actuator is for use in a film/video editing context, the servo
6 motor is a PMI 12FVS motor. In the present application, as
7 discussed in greater detail hereinafter, the servo motor is not
8 used as a motor per se, but rather as a torque controller. The
9 motor never runs at a significant amount of its rated revolutions
10 per minute, but operates normally in this application in a stalled
11 or semi-stalled state. The preferred motor 116 has an installed
12 encoder 118. The encoder 118 is a PMI M23, 300 segment modular
13 encoder having an index and providing 300 cycles per revolution,
14 which results in 1200 waveform edges from index to index. Note
15 that in this illustrative embodiment it is important that the
16 encoder be selected to provide a number of edges which is divisible
17 by factors of two, three, five and eight. Thus, position
18 information can be electronically divided to provide an integer
19 number of clicks in selectable modes of 24, 25 and 30 positions per
20 revolution (corresponding to the film/video editing standards of
21 24, 25 and 30 frames per second or revolution, as discussed
22 hereinbefore).

23 The position information received from the encoder 118 is
24 processed by a controller 120 so that it represents a positional
25 count. The controller 120 accesses stored input data 122 in the
26 form of torque-position relation information which correlates a

1 received position count with a related torque value. As noted
2 hereinbefore, the position count, which is a function of encoder
3 output information, can be derived by electronically dividing
4 position information provided by the encoder waveform, as desired
5 into a selected number of positions or position values. The input
6 data 122 accessed by the controller 120 will have stored torque
7 values associated with the selected position values as provided in
8 accordance with the desired torque profile. The controller 120
9 outputs the torque value as a digital signal which is converted by
10 a latchable digital to analog converter 124 to an analog voltage.
11 As a voltage applied to the motor would result in a proportional
12 motor speed, the analog voltage is related to motor torque by
13 generating a proportional motor current using a power amplifier 126
14 in conjunction with a motor power supply 128. The torque related
15 current is applied to the motor 116 to present the desired torque
16 which imparts the desired tactile responsiveness to the control
17 knob 114.

18 In an embodiment illustrated in Fig. 3, the controller 120
19 comprises a counter 130 which receives the servo motor position
20 information from the encoder 118. A microprocessor 132, such as a
21 Motorola 6809, receives a position count from the counter 130
22 providing an indication of servo motor position relative to the
23 index. The count provided by the counter will increment or
24 decrement depending on the direction of the change of position of
25 the servo motor. The microprocessor accesses electrically erasable
26 programmable read only memory 134 (EEPROM) which is programmed with

1 one or more tables of torque-position relation information. Each
2 table defines a particular torque profile specifying a torque value
3 corresponding to a particular position count (i.e. knob/servo motor
4 position).

5 A main application CPU 136 runs an application which requires
6 and defines particular torque profiles for the actuator 114. The
7 main application CPU may run an application which defines the
8 functionality of a control wheel and related function buttons as
9 illustrated in Fig. 3a. In this illustrative embodiment the
10 control wheel has an outer dial 140 which according to the
11 application performs a first function having a fixed number of
12 positions, such as selecting one of a plurality of switch settings.
13 The application can assign a second function to the same outer
14 dial 140 and provide a profile assigning an alternative
15 responsiveness to the outer dial actuator, such as assigning a
16 lever control function having electronically defined stop
17 positions, when a shift key 142 is depressed. An inner control
18 knob 144 similarly can be assigned a first function and
19 corresponding torque profile (such as a free running non-detent
20 scan function), by the application running on the main application
21 CPU, and a second (or other) function and corresponding torque
22 profile (such as a 30 detent per rotation edit mode, as discussed
23 hereinbefore), which is invoked such as by depressing an alt
24 key 146.

25 The main application CPU 136, upon application initialization,
26 down loads the desired torque profiles to the microprocessor

1 accessible EEPROM, via an RS-232 serial, or other communication
2 port. The desired torque profiles reside in EEPROM and are
3 selectable via the microprocessor for providing the desired torque
4 at the appropriate actuator position(s) in accordance with the
5 requirements of the main application. A desired torque profile can
6 be selected by a user operating the control knob 144 or outer
7 dial 140 actuators, alone or with other control functions such as
8 the alt or shift keys, to be responsive in accordance with the
9 first or second function. A change in actuator function, and a
10 corresponding change in actuator responsiveness (i.e. torque
11 profile) can be effected via selected key strokes, such as a shift
12 key or function key implementation discussed.

13 The EEPROM resident tables will not change until a new set of
14 profiles is programmed, i.e down loaded, into the microprocessor
15 accessible memory. Thus, when the system is powered down and
16 subsequently powered up, the previously selected torque profile is
17 resident and available as a default mode for the respective
18 actuators.

19 As illustrated in Fig. 4, the selectable torque profiles and
20 tactile responsiveness of the actuator according to the invention
21 can be implemented so that a second actuator 150 is responsive to
22 a first actuator 114', operating substantially as discussed
23 hereinbefore. In certain operations it is desirable to have two
24 actuators working in conjunction according to a common torque
25 profile. In such a case, the servo motor of one actuator can be
26 used to actually drive a second motor, in addition to its function

1 as a torque controller.

2 For instance, it is desirable when editing film, to turn the
3 first actuator 114' to add one or more frames to one end of the
4 composition material while removing one or the same number of
5 frames from an opposite end of the composition material controlled
6 by the second actuator 150. In such a case, rather than trying to
7 turn the respective control knobs exactly the same amount, it would
8 be best to have the second actuator 150 respond according to the
9 first actuator 114' and its associated torque profile.

10 As the first actuator 114' is manually rotated N clicks as
11 sensed according to its torque profile implemented as discussed
12 hereinbefore with respect to Fig. 3, the encoder 118' and a
13 tachometer 152 associated with the first actuator 114' indicate the
14 direction and speed, respectively, of the first actuator 114' to
15 the microprocessor 132'. The direction and position of the first
16 actuator 114' is received from the encoder 118' through the
17 counter 130'. The rate of change of position, i.e. velocity, is
18 indicated by the tachometer 152 as an analog signal, which must be
19 converted by an analog to digital converter 154 for processing
20 digitally by the microprocessor 132'. The microprocessor 132', in
21 accordance with the count received from the first actuator 114' and
22 a velocity profile, generates a digital signal which is delivered
23 to the second actuator digital to analog converter 156 and
24 converted to an analog signal, increasing power to a second
25 actuator servo motor 158. The power increase to the second
26 actuator servo motor 158 results in an actuation of the second

1 motor in a direction according to the direction sensed, and
2 according to an operation directed by the microprocessor. The
3 microprocessor monitors a second actuator encoder 160 to read a
4 complementary count from the second actuator 150 being driven, and
5 monitors a second actuator tachometer 160 to sense a velocity
6 comparable to that of the first actuator being manually actuated.
7 When the comparisons indicate that the second actuator is actuated
8 in accordance with the manual actuation of the first actuator, the
9 operation is complete.

10 While the implementation of a driven actuator describes a
11 tachometer for determining velocity of the actuators, it will be
12 appreciated that velocity can be derived by the microprocessor
13 using a mathematical operation which takes the first derivative of
14 the rate of change of position information, eliminating the need
15 for a tachometer. Further, although a motor power supply is
16 indicated in Fig. 4 for each servo motor, it can be appreciated
17 that a single power supply can be used for both motors.

18 Although the invention is described herein in the context of
19 an actuator in a film/video editing context, one of ordinary skill
20 in the art will appreciate that selectively programmable tactile
21 responsiveness according to the invention can be provided in many
22 contexts in which mode selection of tactile responsiveness is
23 desirable.

24 While the actuator having electronically controllable tactile
25 responsiveness is described herein as providing a selectable number
26 of detents or clicks per rotation of a control wheel, it can be

1 appreciated that other torque profiles, such as progressively
2 increasing torque in one direction or another or increasing torque
3 to a point of a pseudo hard stop, can be achieved according to the
4 invention by introducing a torque profile which results in an
5 appropriate current applied to the servo motor.

6 Further, although programmable tactile responsiveness is
7 described in the context of a rotary actuator application, it will
8 be appreciated that selectable tactile responsiveness can be
9 implemented according to the invention in other applications and
10 actuator contexts, such as in linear actuator contexts.

11 Referring now to Fig. 5A and 5B, it will be appreciated by
12 those of ordinary skill in the art in view of the foregoing, that
13 the electronically controllable tactile responsiveness according to
14 the invention can be implemented in actuators other than knob type
15 actuators and in contexts other than video or film editing
16 contexts. Various exercise machines have mechanisms for providing
17 resistance, such as the mechanism illustrated in Fig. 5A. The
18 linear motion of an exerciser pulling alternately on the handles
19 300, 302 of Fig. 5B is translated and imparts a rotary motion to a
20 take-up spool 304 (Fig. 5A and 5B). In known exercise machines,
21 resistance is introduced at the take-up spool by tightening a
22 mechanical/spring mechanism 306 (Fig. 5A) which increases the work
23 required to impart linear motion to the handles 300, 302. The
24 system according to the invention and described hereinbefore can be
25 implemented in such a context by introducing a bidirectional servo-
26 motor 308 (Fig. 5B) which is adapted to receive bidirectional

1 torque versus position information in the form of current profiles
2 resulting in resistance similar to that introduced by the
3 mechanical means of 306 of Fig. 5A. The current provided by the
4 torque controller 310 is a function of torque adjust profiles 312
5 which are selectable/programmable and stored in a manner as
6 discussed hereinbefore.

7 Similarly, referring now to Fig. 6, programmable tactile
8 responsiveness can be implemented in an actuator such as a joystick
9 actuator 400. In such a context, torque profiles are stored in
10 tables within a torque controller 402 in the form of at least two
11 tables for containing profiles to control motors in at least two
12 axes. A first servo motor 403 is attached to a sphere 404 to which
13 a joystick 406 is fixed. The first motor 403 is fixed to the
14 sphere 404 to which the joystick is fixed and controls the tactile
15 responsiveness of the joystick 406 as it is linearly actuated in
16 directions indicated by the arrow A-B. The linear motion of the
17 joystick in the direction A-B is translated into a rotary motion by
18 a shaft 408 forming an axis about which the joystick 406 rotates in
19 a limited manner. The torque controller 402 contains at least one
20 profile table that determines the current provided to the first
21 servo motor 403 and ultimately determines the particular
22 responsiveness of joystick 406 as it is actuated in directions A-B.

23 A second servo motor 410 is mounted to a fixed frame or
24 surface 412 and controls responsiveness of the joystick 406 as it
25 is actuated in the direction indicated by arrow C-D. An assembly
26 comprised of the sphere 404, joystick 406 and first motor 403 is

1 capable of limited rotation about an axis formed by a shaft 414
2 which is connected at a first end to the second motor 410 and at a
3 second end to a bearing 416. As the joystick 406 is actuated in
4 the direction C-D, the sphere 404, and first motor 403 to which the
5 joystick 406 is attached is actuated having a responsiveness as
6 determined by at least a second profile table stored in the torque
7 controller 402.

8 Although the illustrative embodiments of the exercise
9 implementation and joystick implementation describe controlled
10 tactile responsiveness in a single axis and double axis context
11 respectively, it will be appreciated by those of ordinary skill in
12 the art that tactile responsiveness can be implemented in a
13 plurality of axes greater than 2.

14 Furthermore, it will be appreciated by those of ordinary skill
15 in the art that various mechanisms, such as the spool of the
16 exerciser implementation, are useful for translating torque into
17 linear force and/or linear force into rotational torque, and that
18 the tables discussed hereinbefore while containing torque versus
19 position profiles can be programmed to comprise force versus linear
20 position profiles.

21 Referring now to Figs. 7-9, a user interface device can be
22 implemented according to the invention, to include tactile
23 responsiveness as a function of the position of a display entity,
24 e.g. cursor, on a screen display. In this illustrative embodiment
25 a trackball 500 is implemented including a plurality of sets of
26 drive wheels 502 which contact a tracking member or ball 504. As

1 will be understood by those of ordinary skill in the art,
2 manipulation of the tracking member or ball 504 effects
3 manipulation or movement of a cursor on a screen display (not shown
4 in Figs. 7-9). The details of construction and manufacture of a
5 trackball and/or mouse implementation will be understood by those
6 of ordinary skill in the art, and therefore will not be presented
7 here other than to present significant components and their
8 interrelationships.

9 In this illustrative embodiment, the tracking member or ball
10 is interconnected in the user interface device by an
11 interconnection mechanism comprised of sets of drive wheels. Each
12 of the sets of drive wheels 502, best illustrated in Figs. 8A and
13 8B, is comprised of a hub 506 about which at least one frame
14 structure 508 is configured. The frame(s) 508 have a plurality of
15 frame portions each extending longitudinally through a respective
16 one of a plurality of barrel-shaped gripping members 510.
17 Preferably, the outside radius of a large portion of the gripping
18 members 510 is equal to the outside radius of the drive wheels 502.
19 Two drive wheels are used, offset slightly, to make the contact
20 with the ball 504 smooth so as to avoid a "bumpy" feeling as the
21 ball 504 is actuated and in turn actuates the wheels 502. The
22 gripping members are each rotatable around the frame portion that
23 extends through and supports it. The gripping members 510 are made
24 of a polymeric material suitable for establishing gripping contact
25 with the ball 504. In this illustrative embodiment, as illustrated
26 in Fig. 8A, two frames 508 are configured about the hub 506. The

1 gripping members 510 are offset or staggered in order to compensate
2 for gaps between gripping members on a respective frame, to
3 maintain a gripping member in contact with the ball 504 at all
4 times.

5 Each pair of frames 508 attached to a common hub 506 and with
6 associated gripping members 510, constitutes a wheel set that is
7 attachable, as illustrated in Fig. 9, to a servo motor 512 and
8 encoder 514 to form a drive/position assembly 516. In this
9 illustrative embodiment the drive/position assembly servo motor is
10 used actively as a motor. The servo motor may be a Pittman Model
11 No. 8322 (manufactured by Pittman, Harleysville, PA), which
12 optionally comes with an integrated optical encoder which fulfills
13 the encoder requirement. At least one drive/position assembly 516
14 is configured to apply torque and sense position along a respective
15 one of mutually orthogonally disposed axes, e.g. an x-axis
16 corresponding to cursor movement across a display screen, a y-axis
17 orthogonally disposed with respect to the x-axis and corresponding
18 to cursor movement up and down on a screen, and a z-axis
19 orthogonally disposed with respect to the x and y axes and
20 corresponding to cursor movement in and out of a screen in a three
21 dimensional configuration. In some instances, as described
22 hereinafter, a wheel set is attached to a motor without an encoder,
23 or just a bearing 518 to implement a complementary slave assembly
24 520 when it may not be desirable to include additional servo motors
25 and/or encoders. The referenced servo motor, without an encoder,
26 may be employed passively as a bearing.

1 To implement a two dimensional user interface device, e.g.
2 trackball or mouse, the tracking element or ball 504 is configured
3 to have at least two drive/position assemblies 516 positioned with
4 the gripping members 510 in contact with the ball. As illustrated
5 in Fig. 10, a first drive/position assembly 516 is positioned with
6 the gripping members of its wheel set in contact with the ball, and
7 includes a servo motor and encoder. A first complementary slave
8 assembly 520 is positioned opposed to the first drive/position
9 assembly 516 and has gripping members of its wheel set engaging the
10 side of the ball 504 opposite the first drive/position assembly
11 516.

12 A second drive/position assembly 516' is positioned on an axis
13 orthogonal with respect to the first drive/position assembly 516
14 and has a servo motor and encoder attached thereto. A second
15 complementary slave assembly 520' is positioned opposed to the
16 second drive/position assembly 516' and has gripping members of its
17 wheel set engaging the side of the ball 504 opposite the second
18 drive/position assembly 516'. In the illustrative two dimensional
19 implementation, the complementary slave assemblies include motors
20 that are slaved to the motors of the drive/position assemblies.
21 Such slaved motors produce a complementary torque to assist the
22 drive/position assemblies in applying a more balanced torque to the
23 ball. It will be appreciated that a less expensive device can be
24 implemented according to the invention by merely having the wheel
25 sets opposed to the drive/position assemblies configured with a
26 bearing to passively engage the ball.

1 As illustrated in Fig. 10A, in implementing a three
2 dimensional user interface device according to the invention, a
3 drive/position assembly 516'' is positioned along a circumference
4 of the ball 504 such that the orientation of the wheel set is
5 orthogonally disposed with respect to the orientation of the wheel
6 sets of the x and y axis assemblies (in Fig. 10A for simplicity
7 only one wheel set 516 is shown exemplifying the orientation of the
8 x and y axis assemblies). The z-axis drive/position assembly 516''
9 is preferably configured with a complementary slave assembly 520''
10 disposed along an axis that is perpendicular to an axis along which
11 the drive/position assembly 516'' is disposed. Although the
12 functionality of a two dimensional implementation is described
13 hereinafter for ease of explanation, it will be appreciated that a
14 z-axis drive/position assembly and complementary slave assembly can
15 readily be implemented in a user interface device that is
16 responsive in three dimensions.

17 Referring now to Figs. 11 and 12, the drive/position
18 assemblies 516 and complementary slave assemblies 520 are
19 configured with the ball 504 (not shown in Figs. 11 and 12), as a
20 user interface device 500 in a system that includes an electronic
21 device or computer system 528 with a screen 530 on which a cursor
22 is positioned on a screen display or graphical user interface, as
23 known in the art. The computer to which the user interface device
24 500 is connected has an operating system and is capable of running
25 various application programs which result in various screen
26 displays on which the cursor is manipulated using the user

1 interface device 500.

2 The user interface device 500 includes at least a first and
3 second drive/position assembly 516, 516' each with a servo motor
4 534 and encoder 536 and associated first and second complementary
5 slave assemblies 520, 520' for respectively sensing y-axis and x-
6 axis ball movement to be translated into a cursor position on the
7 display. In this illustrative embodiment, each of the servo motors
8 in the drive/position assemblies is connected in series with its
9 respective complementary slave assembly motor which results in the
10 motor pairs seeing the same current. In the present application
11 each servo motor 534 is not used as a motor per se, but rather as
12 a torque controller. The motor never runs at a significant amount
13 of its rated revolutions per minute, but operates normally in this
14 application in a stalled or semi-stalled state. The preferred
15 motor, as discussed hereinabove, has an installed encoder 536. The
16 encoder 536 is matched to the motor and the motor application as
17 appreciated by one of ordinary skill in the art.

18 The computer or electronic device 528, as known in the art,
19 is configured to accept an interface board 532 which includes the
20 mechanisms required to electronically interface the user interface
21 device 500 to the computer system 528 and display 530. The
22 interface board 532 is typically configured to reside in an I/O
23 slot of the computer 528 and includes a microprocessor 538 which
24 communicates with the computer 528 via a serial communication
25 channel 540. In the embodiment illustrated in Fig. 11, the
26 interface board 532 comprises a counter 542 associated with each

1 encoder 536. Each counter 542 receives servo motor position
2 information from the encoder 118. The microprocessor 538, such as
3 a Motorola 6809, receives a position count from each counter 542
4 providing an indication of position of each servo motor relative to
5 an index. The count provided by the counter will be incremented or
6 decremented depending on the direction of the change of position of
7 the servo motor relative to the index, which is indicative of a
8 change in position of the ball and the cursor on the screen
9 display.

10 The microprocessor 538 accesses torque profile information
11 from a storage mechanism as a function of the coordinate position
12 indicated via the encoders, i.e. x-axis position and y-axis
13 position. The storage mechanism can be internal to the
14 microprocessor and/or external in the form of additional torque
15 profile storage 545 (such as EEPROM, ROM, disk, CDROM etc). The
16 torque profile information provides an indication of a torque or
17 force to be applied by/to the motor. The torque is a function of
18 the position of the cursor on the screen and a function of the
19 particular screen display on which the cursor is being manipulated.

20 As in the embodiments described hereinbefore, the torque
21 value, in this case a value for each motor or axis, is output from
22 the storage mechanism as a digital signal which is converted by a
23 latchable digital to analog converter (D/A) 544 to an analog
24 voltage. As a voltage applied to the motor would result in a
25 proportional motor speed, the analog voltage is related to motor
26 torque by generating a proportional motor current using a power

1 driver or amplifier 546 (for each motor). The torque related
2 current is applied to the motor(s) 516, 516', 520, 520', to present
3 the desired torque which imparts the desired tactile responsiveness
4 to the ball 504.

5 The computer 528 runs an application, or several applications,
6 which requires and defines particular torque profiles for the user
7 interface device 500. Each screen display of an application
8 running on the computer has torque profile information associated
9 with that particular screen display to effect a corresponding
10 particular tactile responsiveness for that screen display. The
11 torque profile information which is being processed is stored in
12 the microprocessor. Additional torque profile information which is
13 not immediately required for a running screen display can be stored
14 in external memory associated with the microprocessor 545. The
15 torque profile information represents a spatial array that
16 indicates the relationship of motor currents or torques as a
17 function of position parameters for each axis present in the
18 embodiment. In this illustrative embodiment the array must contain
19 torque information for x and y axis motor pairs as a function of
20 the x and y coordinate position of the cursor on the particular
21 screen display(s).

22 Preferably, a large volume of torque profile information
23 defining the tactile responsiveness of numerous screen displays of
24 an application software package or an operating system is stored in
25 a database associated with a particular application or applications
26 that run on the computer. As illustrated in Fig. 12, the computer

1 typically runs an operating system or main application 550 which is
2 stored on some external storage medium such as a disk or CD ROM and
3 paged or transferred to the computer's main memory as the
4 application code is running.

5 A database of torque profiles 552, as part of an application
6 running under the operating system or with the application 550,
7 defines the tactile responsiveness of the user interface device
8 based on the screen displays of the application(s). The torque
9 profile information 552 is accessible to the application(s) or
10 operating system(s) via the application's application program
11 interface (API), as known in the art. The torque profiles relate
12 the tactile responsiveness of the user interface device 500 to the
13 graphical user interface(s) or screen display(s) of the application
14 550, as respective torque profiles are downloaded or made available
15 to the microprocessor 538 on the interface board 532 to generate
16 the appropriate digital signals in response to the position
17 information received from the encoders, as discussed hereinbefore.

18 A user interface device driver 554 facilitates communication
19 between the microprocessor 538 on the interface board 532 for the
20 user interface device 500, and the host computer 528. The
21 microprocessor computes coordinates for a change of cursor position
22 by processing the information received from the encoders and
23 information known about the original position of the cursor as
24 provided by the host computer over the serial channel 540. The
25 driver communicates the information related to cursor position to
26 and from the host computer which effects actual positioning of the

1 cursor. In the present embodiment, the driver 554 is generic to
2 the user interface device 500 and is modified slightly from a mouse
3 or trackball I/O device driver as known in the art, in that the
4 driver 554, through an interface to the torque profile information
5 552 and application software 550 coordinates the downloading of
6 appropriate torque profile information to the microprocessor based
7 on indications from the application 550 as to the appropriate
8 torque profile.

9 Based on the application being run on the host 528, the driver
10 554 running on the host communicates relevant torque profile
11 information to the microprocessor 538. The driver also
12 communicates information to the microprocessor regarding the
13 present position of the cursor on the display screen of the host
14 528. In response to the coordinate information of the cursor on
15 the display screen, the microprocessor 538 generates digital
16 information corresponding to the appropriate torque relative to the
17 position of the cursor on the screen, in accordance with the
18 relevant torque-position profile for that screen display. The D/A
19 544 for each axis receives the digital torque information and
20 produces the appropriate analog signal to the power driver(s) 546
21 which generate a current to apply the positive or negative torque
22 to the motors resulting in the applicable tactile responsiveness of
23 the ball 504.

24 When the trackball or mouse is moved to effect a movement of
25 the cursor on the display screen 530, each encoder 536 sends
26 position information to the microprocessor 538. Position

information in this illustrative embodiment includes an indication of the direction and number of steps the encoder is changed in response to actuation of the associated wheel set in contact with the manually manipulated ball 504. The microprocessor 538 receives the magnitude and direction information and tracks the position in the spatial array of relevant torque profile information to determine the appropriate torque corresponding to the position information received. The microprocessor 538 communicates the position information to the user interface device driver which effects a change in the position of the cursor by communicating with the computer as is appreciated by those of skill in the art. The microprocessor 538 also conveys torque information to the servo motors, via the D/As and power drivers as described, to effect appropriate tactile responsiveness based on cursor position within the screen display of the particular application and torque-position information.

The torque-position information stored and made accessible to the microprocessor for implementing tactile responsiveness of the user interface device according to the invention can be used to implement various tactile responses as a function of position of the cursor on the screen display. Boundaries for cursor containment and restricted display areas can be implemented by effecting stops using maximized motor torque. Among other responsiveness, tactile "hills" and "troughs" can be implemented to define tactile contours of a graphical user interface such as illustrated in Figs. 13A-13D. In this particular example of an

1 application, a graphical user interface includes a header showing
2 a command options banner as it appears on the display screen (Figs.
3 13a and 13B).

4 The command options banner is a button bar on which a cursor
5 is positioned by a user using a user interface device to point and
6 click to effect certain functionality. The various commands, i.e.
7 "File," Options," "Window," "Help" can be delineated by tactile
8 boundaries according to the invention, so that the proper
9 positioning of the cursor within an appropriate area to click and
10 invoke the command can be easily done and can be tactiley
11 perceptible. With or without fine motor skills or vision, the user
12 actuates the user interface device according to the invention and
13 feels the position of the cursor on the screen display. Tactile
14 boundaries are programmed, as discussed hereinbefore and as
15 illustrated in Figs 13C and 13D, so that higher resistance is
16 perceived at the boundaries with little or no resistance felt when
17 the cursor is properly positioned.

18 Moving the cursor vertically on the screen toward the button
19 bar the user will perceive neutral or no resistance in the
20 unrestricted area 560. A sharp increase in torque will be felt as
21 the lower boundary 562 of the button bar is encountered. When the
22 cursor is actuated to a position between the lower boundary and an
23 upper boundary, i.e. in a trough 564, no resistance is perceived.
24 As the upper boundary 566 is approached the torque increases and as
25 the absolute boundary of the screen is encountered increased torque
26 effects a perceptible stop 568. It should be noted that positive

1 and negative torques can be generated according to the invention so
2 that the user interface device includes a tendency to urge the
3 cursor into a position centered within the boundaries.

4 Likewise, when the user interface device is actuated to move
5 the cursor horizontally along the button bar, as illustrated in
6 Fig. 13D, boundaries are established that urge the cursor into the
7 proper position to activate the desired menu selection.

8 It should be appreciated that in addition to boundaries formed
9 by hills and troughs and walls, the tactile responsiveness of the
10 user interface device according to the invention can be used to
11 implement "texturing" that is tactiley perceptible. Slight
12 increases in torque can be programmed at selected distances with
13 lesser torque therebetween such that a feeling of bumpiness can be
14 implemented as the cursor is actuated across a screen display.
15 Elasticity, in the form of increasing torque to a point of reverse
16 torque, can be implemented to simulate perceived stretching or
17 resiliency. Furthermore, given the active nature of the torque
18 assistance capability of the motor(s) in the user interface device
19 according to the invention, motion assistance can be effected to
20 make the device roll off of a bump or hill without manual
21 assistance (such an application is especially useful where a user
22 may not have fine motor skills).

23 The EEPROM resident tables or arrays of torque profile
24 information will not change until a new set of profiles is
25 programmed, i.e down loaded, into the microprocessor accessible
26 memory. Thus, when the system is powered down and subsequently

1 powered up, the previously selected torque profile is resident and
2 available as a default mode for the respective actuators, unless a
3 particular default state is desired and provided.

4 Although the invention is described hereinbefore with a
5 singular screen display, it will be appreciated by those of
6 ordinary skill in the art that the torque position information can
7 be structured in a manner such that screens can be nested, and
8 their corresponding profiles nested so that invoking a new screen
9 from a present screen invokes a corresponding new set of torque
10 position information.

11 It should be appreciated that although tables or arrays of
12 torque profile information are discussed in the illustrative
13 embodiment herein for relating cursor screen position with tactile
14 responsiveness of the user interface device, torque values may be
15 calculated "on the fly" for particular screen displays rather than
16 storing values associated with particular positions. Additionally,
17 rather than having the user interface device providing information
18 regarding position and changes thereof, torque values may be
19 associated with particular cursor locations on a particular screen
20 display such that the screen generates the position information
21 which is processed according to the invention to provide resultant
22 tactile responsiveness.

23 In the embodiment where a slave motor is connected in series,
24 the slave motor will see the same current as the motor with which
25 it is connected in series. In such a master/slave motor pair, the
26 motors should be virtually identical motors to effect smoothness of

1 rotation of the ball or tracking element. However, in order to
2 minimize cost of a system according to the invention, it will be
3 appreciated that it may be preferable to exclude the slave motor in
4 favor of a passive bearing.

5 The description of the invention hereinbefore relates to a
6 trackball, but it will be appreciated that tactile responsiveness
7 according to the invention can be implemented in various other user
8 interface devices, including a mouse, joysticks and other devices
9 requiring actuation and benefitting from the tactile responsiveness
10 as a function of position. Further, while "a cursor" is
11 manipulated in the embodiment described herein, that term is used
12 generically to describe something manipulated in a user interface
13 of an electronic device, and it should be appreciated that any of
14 various symbols and interface or display resident entities can be
15 manipulated with tactile responsiveness, such as cursors, icons,
16 windows, menus, or the like.

17 While various embodiments of the invention illustrated herein
18 describe a main CPU to execute an application program requiring and
19 defining torque profiles for an actuator, and a separate 6809
20 microprocessor implementing firmware specifying torque-position
21 relationships, one of ordinary skill in the art will appreciate
22 that torque-position relationships can be implemented in the
23 application CPU without the microprocessor or via numerous other
24 microcontrollers. Further, while it is described that the torque
25 profiles are in EEPROM accessible to the microprocessor it will be
26 appreciated that the torque profiles can be stored in

1 microprocessor resident or other storage means, such as ROM, RAM,
2 PALs and the like, and accessed accordingly to implement the
3 desired tactile responsiveness in an actuator.

4 Although the invention has been shown and described with
5 respect to exemplary embodiments thereof, various other changes,
6 additions and omissions in the form and detail thereof may be made
7 therein without departing from the spirit and scope of the
8 invention.