## José Elias Claudio Arroyo

Departamento de Informática Universidade Federal de Viçosa

INF 332 - 2022/2

## **Outline**

- Introdução
- Problema do Troco
- Soma de Custo Mínimo
- Seleção de Atividades
- 5 Código de Huffman
- 6 Algoritmos Gulosos em Grafos
  - Algoritmos para árvore geradora mínima
  - Algoritmo para Caminho Mínimo

O paradigma guloso sugere a construção de uma solução através de uma sequência de passos.

Em cada passo **escolhe** o item/**elemento mais atractivo** que vê pela frente para fazer parte da solução atual.

O paradigma guloso sugere a construção de uma solução através de uma sequência de passos.

Em cada passo **escolhe** o item/**elemento mais atractivo** que vê pela frente para fazer parte da solução atual.

- Factivel
- Localmente ótima
- Irreversível

O paradigma guloso sugere a construção de uma solução através de uma sequência de passos.

Em cada passo **escolhe** o item/**elemento mais atractivo** que vê pela frente para fazer parte da solução atual.

- Factível: satisfaz as restrições do problema;
- Localmente ótima
- Irreversível

O paradigma guloso sugere a construção de uma solução através de uma sequência de passos.

Em cada passo **escolhe** o item/**elemento mais atractivo** que vê pela frente para fazer parte da solução atual.

- Factível: satisfaz as restrições do problema;
- Localmente ótima: deve ser a melhor escolha local entre todas as escolhas válidas disponíveis nesse passo;
- Irreversível

O paradigma guloso sugere a construção de uma solução através de uma sequência de passos.

Em cada passo **escolhe** o item/**elemento mais atractivo** que vê pela frente para fazer parte da solução atual.

- Factível: satisfaz as restrições do problema;
- Localmente ótima: deve ser a melhor escolha local entre todas as escolhas válidas disponíveis nesse passo;
- Irreversível: uma vez feita, n\u00e3o pode ser desfeita em passos seguintes.

- Algoritmos gulosos são intuitivos, simples e muito rápidos.
- Um algoritmo guloso, geralmente, é útil para resolver problemas de otimização que consistem em determinar uma solução S que minimiza ou maximiza um determinado valor (ou seja, deseja-se encontrar a "melhor"solução dentre todas as soluções possíveis).
- Para alguns problemas, a solução construída resulta numa solução ótima, para outros resulta numa aproximação.
- Normalmente a complexidade de tempo é linear (ou polinomial).
- Um passo de pré-processamento muito comum é ordenar os elementos.
- O difícil é provar a otimalidade da solução.



#### Soluções ótimas obtidas por algoritmos gulosos:

- Troco para sistemas "normais" de moedas;
- Seleção de atividades;
- Código de Huffman.
- Árvore geradora mínima;
- Caminhos mínimos em grafos;

### Aproximações:

- Problema do caixeiro viajante;
- Problema da mochila 0/1;
- Outros problemas de otimização combinatorial.

#### Problema do troco

 Dadas n moedas d<sub>1</sub>,...d<sub>n</sub>, com quantidade ilimitadas. Queremos dar um troco de valor T usando o menor número possível de moedas.

#### Problema do troco

 Dadas n moedas d<sub>1</sub>,...d<sub>n</sub>, com quantidade ilimitadas. Queremos dar um troco de valor T usando o menor número possível de moedas.

### Exemplo

• Dar um troco T = 48c utilizando as seguinte moedas:  $d_1 = 25c$ ,  $d_2 = 10c$ ,  $d_3 = 5c$ ,  $d_4 = 1c$ .

#### Problema do troco

 Dadas n moedas d<sub>1</sub>,...d<sub>n</sub>, com quantidade ilimitadas. Queremos dar um troco de valor T usando o menor número possível de moedas.

### **Exemplo**

• Dar um troco T = 48c utilizando as seguinte moedas:  $d_1 = 25c$ ,  $d_2 = 10c$ ,  $d_3 = 5c$ ,  $d_4 = 1c$ .

#### Solução (estratégia) gulosa:

Ordenar as moedas em ordem decrescente de valor. Ou seja, escolher as moedas em ordem decrescente de valor.

Usar a maior quantidade possível da moeda de maior valor, de forma a não passar o valor do troco.

1 de 25c, 2 de 10c e 3 de 1c, ⇒ total 6 moedas.



Esta estratégia gulosa (que ordena as moedas em ordem decrescente) é:

- Ótima para qualquer sistema "normal" de moedas;
- Não é ótima para algum conjunto de moedas;
  - Por exemplo:  $d_1 = 7c$ ,  $d_2 = 5c$ ,  $d_3 = 1c$  e T = 11c.
  - Estratégia gulosa:  $T = d_1 + 4d_3$ ,  $\Rightarrow 5$  moedas
  - Solução ótima:  $T = 2d_2 + d_3$ ,  $\Rightarrow$  3 moedas

Suponha que somar a e b custa a + b. Por exemplo, somar 4 com 10 custaria 14.

Suponha que somar  $a \in b$  custa a + b. Por exemplo, somar 4 com 10 custaria 14.

Somar um conjunto de n números, por exemplo  $\{12; 4; 8\}$ , existem várias maneiras (ordens) de fazer, resultando custos totais diferentes:

Maneira 1:

$$(12+4) = 16$$
 (custo 16)  
 $16 + 8 = 24$  (custo **24**)  
Custo total = 40

Maneira 2:

$$(12+8) = 20$$
 (custo 20)  
20 + 4 = 24 (custo **24**)  
Custo total = 44

Maneira 3:

$$(4+8) = 12 \text{ (custo } 12)$$
  
 $12 + 12 = 24 \text{ (custo } 24)$   
Custo total = 36

#### Problema da Soma de Custo Mínimo:

Somar um conjunto de *n* números, com o menor custo possível.

#### Estratégia Gulosa:

Escolher em cada passo os dois menores números!

#### Estratégia Gulosa:

Escolher em cada passo os dois menores números!

- quanto menores os números, menor o custo
- a última soma sempre terá o mesmo custo (seja qual for a ordem dos números)
- consideremos os números a, b e c.
   Se a solução gulosa optar por a + b é porque a ≤ c e b ≤ c.
   Sendo assim, o custo de a + b é ≤ que a + c e b + c.
   A última soma terá custo a + b + c.
- a estratégia gulosa sempre determina a solução ótima.

### Algoritmo Guloso:

Entrada: conjunto  $A = \{a_1, a_2, ..., a_n\}$ 

- custo\_total = 0
- Enquanto |*A*| > 1:
  - (a, b) = Remover do conjunto os dois menores números
  - custo\_total = custo\_total + (a + b)
  - A = A ∪ {a + b} //Inserir (a + b) no conjuto A
- return custo\_total

### Algoritmo Guloso:

Entrada: conjunto  $A = \{a_1, a_2, ..., a_n\}$ 

- custo\_total = 0
- Enquanto |A| > 1:
  - (a, b) = Remover do conjunto os dois menores números
  - custo\_total = custo\_total + (a + b)
  - A = A ∪ {a + b} //Inserir (a + b) no conjuto A
- return custo\_total

**Complexidade**: O(n \* T(n)), onde T(n) é o tempo para procurar e remover os dois menores números

#### Algoritmo Guloso2:

- Ordenar de forma crescente o conjunto de n números: {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>}
- $custo\_total = soma = a_1 + a_2$
- Para i = 3 até n faça:
  - $soma = soma + a_i$
  - custo\_total = custo\_total + soma
- return custo\_total

### **Algoritmo Guloso2:**

- Ordenar de forma crescente o conjunto de n números: {a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>}
- $custo\_total = soma = a_1 + a_2$
- Para i = 3 até n faça:
  - $soma = soma + a_i$
  - custo\_total = custo\_total + soma
- return custo\_total

**Complexidade**:  $O(n \log n) + O(n) = O(n \log n)$ 



- Uma atividade a é definida por um intervalo de tempo [s, f], onde s e f são, respectivamente, o início (start) e o término (finish) da atividade.
- Duas atividades x = [s(x), f(x)] e y = [s(y), f(y)] são **disjuntas** se elas **não se sobrepoēm**, ou seja,  $f(x) \le s(y)$  (x é anterior a y) ou  $f(y) \le s(x)$  (y é anterior a x)

### **Exemplos:**

x = [3, 6] e y = [6, 12] são disjuntas. w = [3, 8] e z = [5, 11] não são disjuntas.

• Dado um conjunto de n atividades  $A = \{[s_1, f_1], [s_2, f_2], ..., [s_n, f_n]\}$ , o problema da Seleção de Atividades consiste em determinar o maior subconjunto de atividades disjuntas.

• Dado um conjunto de n atividades  $A = \{[s_1, f_1], [s_2, f_2], ..., [s_n, f_n]\}$ , o problema da Seleção de Atividades consiste em determinar o **maior subconjunto de atividades disjuntas**.

**Exemplo:** Conjunto com n = 11 atividades  $A = \{[3, 8], [5, 7], [12, 14], [3, 5], [1, 4], [5, 9], [6, 10], [8, 11], [0, 6], [2, 13], [8, 12]\}$ 

 $S = \{[1,4],[5,7],[8,11],[12,14]\}$  é um subconjunto de 5 atividades disjuntas (|S| = 5).

S é máximo?



#### Estratégia Gulosa:

- Ordenar as atividades em ordem crescente do tempo de término f<sub>i</sub>.
- Em seguida, selecionar atividades disjuntas a partir da primeira atividade (alocar por ordem ascendente de f<sub>i</sub>).
- A primeira atividade da lista ordenada sempre será escolhida.
- A próxima atividade i será escolhida **se** seu tempo de inicio  $s_i$  for  $\geq$  do tempo de término  $f_k$  da última atividade k já escolhida.



15/58

#### Exemplo:

- $A = \{[3, 8], [5, 7], [12, 14], [3, 5], [1, 4], [5, 9], [6, 10], [8, 11], [0, 6], [2, 13], [8, 12]\}$
- Ordem ascendente de  $f_i$ :  $A = \{[1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]\}$
- $S = \{[1,4], [5,7], [8,11], [12,14]\}$  é o maior subconjunto de atividades disjuntas.

#### Exemplo:

- $A = \{[3, 8], [5, 7], [12, 14], [3, 5], [1, 4], [5, 9], [6, 10], [8, 11], [0, 6], [2, 13], [8, 12]\}$
- Ordem ascendente de  $f_i$ :  $A = \{[1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]\}$
- $S = \{[1,4], [5,7], [8,11], [12,14]\}$  é o maior subconjunto de atividades disjuntas.

A estratégia gulosa sempre determina a solução ótima.

#### Exercício

Escreva o algoritmo guloso para determinar o maior subconjunto de atividades disjuntas.

A codificação de Huffman é aplicada na compressão de dados.

- Dado um *texto* formado por um conjunto de *n* caracteres (ou símbolos) de um alfabeto  $A = \{c_1, ..., c_n\}$ .
- Para cada caractere c<sub>i</sub> tem-se sua frequência (número de ocorrências no texto): freq(c<sub>i</sub>).
- Determinar uma codificação ou representação binária para cada caractere c<sub>i</sub> do texto tal que o número total de bits usados seja mínimo.

Utilizar uma codificação binária de prefixo: o código de um caractere não pode ser prefixo de outro código. Assim, não haverá ambiguidade para reconhecer um caractere.

- Suponha que temos um arquivo de texto com as seguintes frequências dos caracteres.
- Na tabela são apresentadas duas codificações binárias de prefixo: codificação fixa e codificação variável.

|                                         | а      | b      | С      | d      | е     | f     |
|-----------------------------------------|--------|--------|--------|--------|-------|-------|
| Frequência                              | 45.000 | 13.000 | 12.000 | 16.000 | 9.000 | 5.000 |
| Codificação Fixa (3 bits)               | 000    | 001    | 010    | 011    | 100   | 101   |
| Codificação <b>Variável</b> (1- 4 bits) | 0      | 101    | 100    | 111    | 1101  | 1100  |

|                                 | а      | b      | с      | d      | е     | f     |
|---------------------------------|--------|--------|--------|--------|-------|-------|
| Frequência                      | 45.000 | 13.000 | 12.000 | 16.000 | 9.000 | 5.000 |
| Codificação Fixa (3 bits)       | 000    | 001    | 010    | 011    | 100   | 101   |
| Codificação Variável (1-4 bits) | 0      | 101    | 100    | 111    | 1101  | 1100  |

- Note que temos um arquivo de texto com 100.000 caracteres.
- Usando a codificação fixa, gasta-se 300.000 bits para armazenar o arquivo.
- Se usarmos a codificação variável gastaríamos:  $(45 \times 1 + 13 \times 3 + 12 \times 3 + 16 \times 3 + 9 \times 4 + 5 \times 4) \times 1.000 = 224.000$ bits (25% de economia)
- Como determinar a codificação ótima (com número total de bits mínimo)?



20/58

David A. Huffman (1952), propôs um algoritmo baseado em uma estratégia gulosa.

Codificação de Huffman (estratégia gulosa): Para os caracteres com maior frequência usar códigos menores (i.e. com menor número de bits), enquanto os caracteres com menor frequência usar códigos maiores.

Para representar a codificação de Huffman é usada uma **árvore binária** cujas **folhas** indicam os **caracteres** do alfabeto e cada **aresta** é rotulada com **0** (esquerda) ou **1** (direta).

Para determinar o código de um caractere, percorrer do nó folha até a raiz.

| caractere | código |
|-----------|--------|
| a         | 0      |
| b         | 101    |
| c         | 100    |
| d         | 111    |
| e         | 1101   |
| f         | 1100   |



**Entrada**:  $A = \{a, b, c, d, e, f\}$  com n caracteres e frequência de ocorrência dos caracteres no texto.

|            | а      | b      | С      | d      | e     | f     |
|------------|--------|--------|--------|--------|-------|-------|
| Frequência | 45.000 | 13.000 | 12.000 | 16.000 | 9.000 | 5.000 |

### Algoritmo guloso para construir a árvore de Huffman

 Iniciar com n sub-árvores, cada um contendo um único nó. Cada nó contém o caractere e sua frequência.

a :45

b:13

c:12

[d:16]

e:9

*f* : 5

### Algoritmo guloso para construir a árvore de Huffman

 Iniciar com n sub-árvores, cada um contendo um único nó. Cada nó contém o caractere e sua frequência.



 Unir as duas sub-árvores com as menores frequências, criando uma nova árvore com raiz contendo como frequência a soma das frequências das duas sub-árvores.



### Algoritmo guloso para construir a árvore de Huffman

 Iniciar com n sub-árvores, cada um contendo um único nó. Cada nó contém o caractere e sua frequência.

 Unir as duas sub-árvores com as menores frequências, criando uma nova árvore com raiz contendo como frequência a soma das frequências das duas sub-árvores.

Repita a união até obter uma única árvore









26/58

```
AlgoritmoHuffman (Arvore A[], n){
Construir uma fila de prioridade Q com os n elementos de A;
Para i = 1 até n - 1{
   x = ExtraiMinHeap(Q);
   y = ExtraiMinHeap(Q);
   z = CriaNovoNo();
   z.esq = x; x.pai = z;
   z.dir = y; y.pai = z;
   z.freq = x.freq + y.freq;
   InsereHeap(z, Q);
H = extraiMinHeap(Q);
H.pai = NULL;
```

**Exemplo 2**: Determinar a codificação ótima para os caracteres:

| symbol    | Α    | В   | C   | D   | _    |
|-----------|------|-----|-----|-----|------|
| frequency | 0.35 | 0.1 | 0.2 | 0.2 | 0.15 |

# <u>Árvore</u> de Huffman

0.1 0.15 0.2 0.2 0.35 A

























The resulting codewords are as follows:

| symbol    | A    | В   | C   | D   | _    |
|-----------|------|-----|-----|-----|------|
| frequency | 0.35 | 0.1 | 0.2 | 0.2 | 0.15 |
| codeword  | 11   | 100 | 00  | 01  | 101  |

## Problema da Árvore Geradora Mínima

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

## Problema da Árvore Geradora Mínima

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$



## Problema da Árvore Geradora Mínima

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$





## Problema da Árvore Geradora Mínima

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$









#### O resultado é:

- um sub-grafo gerador;
- uma árvore (conectado e acíclico);
- possui n − 1 arestas para um grafo com n vértices.

- Comece com uma árvore T<sub>1</sub> consistindo de um vértice (qualquer um);
  - Expandir a árvore acrescentando um vértice por vez até produzir uma AGM  $T_n$  (árvore com n vértices).

- Comece com uma árvore T<sub>1</sub> consistindo de um vértice (qualquer um);
  - Expandir a árvore acrescentando um vértice por vez até produzir uma AGM  $T_n$  (árvore com n vértices).
- Em cada iteração é construido uma sub-árvore  $T_{i+1}$  a partir de  $T_i$  através da adição de um vértice.
  - O vértice escolhido é un vértice que não esteja em  $T_i$  e que esteja o mais próximo dos vértices já em  $T_i$  (passo guloso).

- Comece com uma árvore T<sub>1</sub> consistindo de um vértice (qualquer um);
  - Expandir a árvore acrescentando um vértice por vez até produzir uma AGM  $T_n$  (árvore com n vértices).
- Em cada iteração é construido uma sub-árvore T<sub>i+1</sub> a partir de T<sub>i</sub> através da adição de um vértice.
   O vértice escolhido é un vértice que não esteja em T<sub>i</sub> e que esteja o mais próximo dos vértices já em T<sub>i</sub> (passo guloso).
- Pare quando todos os vértices já tiverem sido incluídos na árvore, obtendo a AGM  $T_n$ .



| Tree vertices | Remaining vertices                                                                                          | Illustration      |
|---------------|-------------------------------------------------------------------------------------------------------------|-------------------|
| a(-, -)       | $\mathbf{b}(\mathbf{a}, 3) \ c(-, \infty) \ d(-, \infty)$<br>$\mathbf{e}(\mathbf{a}, 6) \ f(\mathbf{a}, 5)$ | 3 5 f 5 d 6 e 8   |
| b(a, 3)       | $c(b, 1) d(-, \infty) e(a, 6)$<br>f(b, 4)                                                                   | 3 b 1 c 6 6 6 9 8 |



| Tree vertices | Remaining vertices                    | Illustration          |
|---------------|---------------------------------------|-----------------------|
| c(b, 1)       | $d(c,6)\ e(a,6)\ \boldsymbol{f(b,4)}$ | 3 b 1 c 6 d 5 d 6 d 8 |
| f(b, 4)       | d(f, 5) <b>e</b> (f, 2)               | 3 5 7 5 d             |
| e(f, 2)       | d(f,5)                                | 3 5 1 C 6 d 5 d 6 e 8 |
| d(f, 5)       |                                       |                       |



# Minimal spanning tree - Prim's algorithm

### **ALGORITHM** Prim(G)

```
//Prim's algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = \langle V, E \rangle
//Output: E_T, the set of edges composing a minimum spanning tree of G
V_T \leftarrow \{v_0\} //the set of tree vertices can be initialized with any vertex
E_T \leftarrow \emptyset
for i \leftarrow 1 to |V| - 1 do
     find a minimum-weight edge e^* = (v^*, u^*) among all the edges (v, u)
     such that v is in V_T and u is in V - V_T
     V_T \leftarrow V_T \cup \{u^*\}
     E_T \leftarrow E_T \cup \{e^*\}
return E_T
```

Pseudocódigo retirado de: Introduction to the design & analysis of algorithms / Anany Levitin

#### Kruskal's algorithm

Sort the edges in nondecreasing order of lengths.

#### Kruskal's algorithm

- Sort the edges in nondecreasing order of lengths.
- "Grow" tree one edge at a time to produce MST through a series of expanding **forests**  $F_1, F_2, \dots, F_{n-1}$ .

### Kruskal's algorithm

- Sort the edges in nondecreasing order of lengths.
- "Grow" tree one edge at a time to produce MST through a series of expanding **forests**  $F_1, F_2, \dots, F_{n-1}$ .
- On each iteration, add the next edge on the sorted list unless this would create a cycle (If it would, skip the edge).

### Kruskal's algorithm

- Sort the edges in nondecreasing order of lengths.
- "Grow" tree one edge at a time to produce MST through a series of expanding **forests**  $F_1, F_2, \dots, F_{n-1}$ .
- On each iteration, add the next edge on the sorted list unless this would create a cycle (If it would, skip the edge).
- Greedy because always takes the smallest-length edge.

```
ALGORITHM Kruskal(G)
```

```
//Kruskal's algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = \langle V, E \rangle
//Output: E_T, the set of edges composing a minimum spanning tree of G
sort E in nondecreasing order of the edge weights w(e_{i_1}) \leq \cdots \leq w(e_{i_{|E|}})
E_T \leftarrow \varnothing; ecounter \leftarrow 0 //initialize the set of tree edges and its size
k \leftarrow 0
                                   //initialize the number of processed edges
while ecounter < |V| - 1 do
    k \leftarrow k + 1
    if E_T \cup \{e_{i_k}\} is acyclic
          E_T \leftarrow E_T \cup \{e_{i_k}\}; \quad ecounter \leftarrow ecounter + 1
return E_T
```

Pseudocódigo retirado de: Introduction to the design & analysis of algorithms / Anany Levitin



| Tree edges | Sorted list of edges | Illustration |
|------------|----------------------|--------------|
|------------|----------------------|--------------|

**bc** ef ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8



bc bc ef ab bf cf af df ae cd de 1 2 3 4 4 5 5 6 6 8



| Tree edges |         |         | So          | orte        | d li    | st o    | f ed        | lges    |         |         | Illustration            |
|------------|---------|---------|-------------|-------------|---------|---------|-------------|---------|---------|---------|-------------------------|
| ef<br>2    | bc<br>1 | ef<br>2 | <b>ab</b> 3 | bf<br>4     | cf<br>4 | af<br>5 | df<br>5     | ae<br>6 | cd<br>6 | de<br>8 | 3 b 1 c 6 6 5 d 6 6 8 8 |
| ab<br>3    | bc<br>1 | ef<br>2 | ab<br>3     | <b>bf</b> 4 | cf<br>4 | af<br>5 | df<br>5     | ae<br>6 | cd<br>6 | de<br>8 | 3 b 1 c 6 6 7 5 d       |
| bf<br>4    | bc<br>1 | ef<br>2 | ab<br>3     | bf<br>4     | cf<br>4 | af<br>5 | <b>df</b> 5 | ae<br>6 | cd<br>6 | de<br>8 | 3 b 1 c 6 6 d 5 d 6 d 8 |
| df<br>5    |         |         |             |             |         |         |             |         |         |         |                         |

- Uma implementação eficiente para a detecção de ciclos no algoritmo de Kruskal usa a estrutura de dados Conjuntos Disjuntos (Union-Find).
- Como o algoritmo de Kruskal determina várias subárvores (floresta), então cada conjunto contém os vértices de uma subárvore.
- Inicialmente são construídos n subárvores, ou seja, n conjuntos disjuntos, cada um contendo apenas um vértice.
- Cada conjunto é identificado por um vértice, ou seja, cada conjunto possui um vértice representante chamado raiz do conjunto (apontador do conjunto).

- Uma implementação eficiente para a detecção de ciclos no algoritmo de Kruskal usa a estrutura de dados Conjuntos Disjuntos (Union-Find).
- Como o algoritmo de Kruskal determina várias subárvores (floresta), então cada conjunto contém os vértices de uma subárvore.
- Inicialmente são construídos n subárvores, ou seja, n conjuntos disjuntos, cada um contendo apenas um vértice.
- Cada conjunto é identificado por um vértice, ou seja, cada conjunto possui um vértice representante chamado raiz do conjunto (apontador do conjunto).
- A cada passo, dois conjuntos s\u00e3o unidos (o n\u00eamero de conjuntos diminui).
- O algoritmo finaliza quando se obtém apenas um conjunto (uma única árvore).

### O algoritmo de Kruskal utiliza as seguintes operações:

- Make\_Sets():
  - Inicializa os n conjuntos.
  - Cada conjunto conterá um único vértice, ou seja, define-se um conjunto para cada vértice.
  - A raiz de cada conjunto é o único vértice do conjunto.
- Find Set(u): .
  - Procura o conjunto que contem o vértice u e retorna a raiz desse conjunto
  - Note que, dois vértices u e v estarão no mesmo conjunto (ou na mesma árvore) se Find\_Set(u) = Find\_Set(v).
  - Se os vértices u e v estão na mesma árvore, a adição da aresta (u, v) formará um ciclo.
- Union(u, v):
  - Esta operação faz a união dos conjuntos que contêm, respectivamente, os vértices u e v.
  - A união das árvores que contem, respectivamente, os vértices u e v é feita adicionando a aresta (u, v).

```
Kruskal (A: conjunto de arestas, n: número vértices ):
   E_T = \emptyset; //
   Ordenar(A) //arestas ordem crescente de custo;
   Make Sets(n)
   k=0
   Equanto k < |A| e |E_T| < n-1:
       (u, v) = escolhe a k-ésima aresta de A;
       k = k + 1
       Se Find Set(u) = Find Set(v):
              E_T = E_T \cup (\mathbf{u}, \mathbf{v});
              Union(u,v);
   return E_{\tau};
```

### **Exemplo:**



Arestas ordenadas:

$$A = \{(2,3), (1,2), (4,5), (6,7), (1,4), (2,5), (4,7), (3,5), (2,4), ..., (5,6)\}$$

Make\_Sets: forma 7 conjuntos disjuntos



### **Exemplo:**



$$A = \{(2,3), (1,2), (4,5), (6,7), (1,4), (2,5), (4,7), (3,5), (2,4), ..., (5,6)\}$$

Aresta (2,3)

Os vértices 2 e 3 estão em conjuntos diferentes.

Union(2,3):



Union consiste em mudar as raízes dos elementos do menor conjunto.

### **Exemplo:**



$$A = \{(2,3), (1,2), (4,5), (6,7), (1,4), (2,5), (4,7), (3,5), (2,4), ..., (5,6)\}$$

Aresta (1,2)

Os vértices 1 e 2 estão em conjuntos diferentes.

#### **Union**(1,2):











### **Exemplo:**



$$A = \{(2,3), (1,2), (4,5), (6,7), (1,4), (2,5), (4,7), (3,5), (2,4), ..., (5,6)\}$$

Aresta (4,5)

Os vértices 4 e 5 estão em conjuntos diferentes.

#### **Union**(4,5):



### **Exemplo:**



$$A = \{(2,3), (1,2), (4,5), (6,7), (1,4), (2,5), (4,7), (3,5), (2,4), ..., (5,6)\}$$

Aresta (6,7)

Os vértices 6 e 7 estão em conjuntos diferentes.

#### **Union**(6,7):







#### **Exemplo:**



$$A = \{(2,3), (1,2), (4,5), (6,7), (1,4), (2,5), (4,7), (3,5), (2,4), ..., (5,6)\}$$

Aresta (1,4)

Os vértices 1 e 4 estão em conjuntos diferentes.

#### **Union**(1,4):



### **Exemplo:**



$$A = \{(2,3), (1,2), (4,5), (6,7), (1,4), (2,5), (4,7), (3,5), (2,4), ..., (5,6)\}$$

Aresta (2,5)

Os vértices 2 e 5 estão no mesmo conjunto.



4□ > 4□ > 4 = > 4 = > = 9<0</li>

#### **Exemplo:**



$$A = \{(2,3), (1,2), (4,5), (6,7), (1,4), (2,5), (4,7), (3,5), (2,4), ..., (5,6)\}$$

Aresta (4,7)

Os vértices 4 e 7 estão em conjuntos diferentes.

#### Union(4,7):





#### Union:



52/58

### Shortest paths

- For a given vertex called the source in a weighted connected graph, find shortest paths to all its other vertices.
- We are not interested in a single path that starts at the source and visits all the other visits (this is the TSP!)
- We ask for a family of paths, each leading from the source to a different vertex

```
ALGORITHM Dijkstra(G, s)
    //Dijkstra's algorithm for single-source shortest paths
    //Input: A weighted connected graph G = \langle V, E \rangle with nonnegative weights
              and its vertex s
    //Output: The length d_v of a shortest path from s to v
                and its penultimate vertex p_v for every vertex v in V
    //
     Initialize(Q) //initialize priority queue to empty
    for every vertex v in V
         d_v \leftarrow \infty; p_v \leftarrow \text{null}
          Insert(Q, v, d_v) //initialize vertex priority in the priority queue
    d_s \leftarrow 0; Decrease(Q, s, d_s) //update priority of s with d_s
     V_T \leftarrow \emptyset
    for i \leftarrow 0 to |V| - 1 do
          u^* \leftarrow DeleteMin(Q) //delete the minimum priority element
          V_T \leftarrow V_T \cup \{u^*\}
          for every vertex u in V - V_T that is adjacent to u^* do
              if d_{u*} + w(u^*, u) < d_u
                   d_u \leftarrow d_{u^*} + w(u^*, u); \quad p_u \leftarrow u^*
                    Decrease(Q, u, d_u)
```





 $v(p_v, d_v)$ 

### Tree vertices Remaining vertices

### Illustration

$$a(-, 0)$$
  $b(a, 3) c(-, \infty) d(a, 7) e(-, \infty)$ 



b(a, 3) 
$$c(b, 3+4) d(b, 3+2) e(-, \infty)$$



$$d(b, 5)$$
  $c(b, 7) e(d, 5+4)$ 



 $\mathbf{c}(\mathbf{b}, 7) \qquad \qquad \mathbf{e}(\mathbf{d}, \mathbf{9})$ 



e(d, 9)

The shortest paths (identified by following nonnumeric labels backward from a destination vertex in the left column to the source) and their lengths (given by numeric labels of the tree vertices) are as follows:

```
from a to b: a-b of length 3
from a to d: a-b-d of length 5
from a to c: a-b-c of length 7
from a to e: a-b-d-e of length 9
```