ランダムな接続性を有する ネットワークポリマーの緩和挙動

佐々木裕

東亞合成

October 21, 2021

- ❶ はじめに
 - 背景
 - ゴム材料の破壊
 - ランダムな接続性を有するネットワーク
- ② KG 鎖でのシミュレーション結果
 - ランダムな接続性を有するネットワークポリマー
 - 力学的な応答
 - 絡み合いを低減したネットワーク

高分子材料への期待と不安

地球温暖化対策の CO₂ 削減へ向けて、

「自動車を中心とした運送機器の抜本的な軽量化」が提唱されている。

高分子材料への期待

- 現行の鉄鋼主体
 - ⇒ 高分子材料を含むマルチマテリアル化
- 高分子材料によるマルチマテリアル化のポイント
 - 高い比強度の有効利用
 - 特徴を生かした適材適所 ⇔ 適切な接合方法の選択
 - 「接着接合」への高分子の利用
 - 「柔らかさを生かした弾性接着接合」
 - 耐久性、可逆性に優れた材料としてゴム材料に注目

ゴムの破壊と粘弾性

ゴムの破壊

大変形を伴う非線形現象だが、 時間温度換算則の成立が多数報告

亀裂先端近傍での大変形

時間温度換算則の成立

Fig. 1: Ultimate properties of an SBR rubber measured at different strain rates and temperatures. Data plotted against the logarithm of the time to break (4) reduced to -10° C. (Data from work cited in footnote 1.)

Smith T., Stedry P., J. Appl. Phys. (1960) 31 1892

ゴムの破断強度の時間温度依存

粘弾性極限において (高温・低速)

G. J. Lake and A. G. Thomas (1967)

変形速度、温度に依存 破壊包絡線

Smith T., Stedry P., J. Appl. Phys. (1960) 31 1892

ゴムの引き裂きエネルギー

$$\mathcal{T} = \mathcal{T}_0 \times \Phi(\dot{c}, T, \epsilon_0)$$

where \dot{c} is crack velocity and ϵ_0 is applied strain

Andrews 理論

Andrews 理論

- ヒステリシスを示す材料
 - Loading 場と Unloading 場
 - この差が、全体の変形に要した エネルギーの多くを散逸
 - 鎖の破断へのエネルギーが低減

 ⇒ 強靭さの起源。
- 実験的に、● 実験的に、● を求めている。

Andrews, E. H. and Fukahori, Y., J. of Mat. Sci., 12, 1307 (1977)

クラック先端での力学的ヒステリシス

ミクロな緩和現象がマクロな耐久性向上と繋がる?

架橋点近傍の拘束状態に基づく二つのモデル

ストランドと架橋点

架橋点はストランド経由で 直接連結した架橋点以外 の、近接する多数のストラ ンド(図中の×)に囲まれ ている。 ● "Affine NW Model" 加格占は国コロセノ

架橋点は周辺に強く拘束 され巨視的変形と相似に 移動。(Affine 変形)

$$G = \nu k_B T$$
 ν は、ストランドの数密度

● "Phantom NW Model" 架橋点が大きく揺らぎ、 ずり弾性率(G)が低下。

$$G=\xi
u k_B T$$
 $\xi=1-rac{2}{f}$ f は架橋点の分岐数

ランダムな接続性の導入

接続のランダム性を導入

- 接続性を不均一に
 - 接続に位置依存性
- 巨視的な変形後
 - 結節点のゆらぎが 不均一
 - 多様な緩和モード
 - 緩和の長時間化?
- 解析を容易に、
 - 既往研究で反応系
 - ストランド長と 結合数を一定

ランダム構造の模式図

本発表の内容

ランダムな接続性を有するネットワークポリマー

- ◆ ネットワーク構造の接続性にランダム性を導入
 - 各ノードごとにランダムな結合性を導入
 - ストランドの末端間距離がガウス分布
- ランダムネットワーク構造の力学的応答
 - 応力緩和関数
 - 一軸伸長での変形速度依存性
- 絡み合いの影響を確認
 - PPA での絡み合いの可視化
 - Z1-code による比較
- ヒステリシスの確認

- 1 はじめに
 - 背黒
 - ゴム材料の破壊
 - ランダムな接続性を有するネットワーク
- ② KG 鎖でのシミュレーション結果
 - ランダムな接続性を有するネットワークポリマー
 - 力学的な応答
 - 絡み合いを低減したネットワーク

ランダムな接続性を有するネットワーク

作成のアルゴリズム

- 実空間で 8-Chain Model で初期構造を作成。
 - 除去したジオメトリーに対応したトポロジーモデル
- - エッジ交換して、ネットワーク構造にランダムな接続 性を導入
- ◎ 対応する実空間でのネットワーク初期構造を作成
- 設定して、Slow Push Off により初期構造を緩和

四分岐ネットワークの力学応答

一軸伸張結果

- 伸張速度の低下により ネオフッキアンに漸近
- ANM よりも応力は高い

応力緩和関数 G(t)

- ステップ変形 ($\lambda = 2.0$)
- 最長緩和の長時間化
- ANM よりも高弾性率

Z1-code での確認

Z1-code での絡み合い

ホモポリマーとの比較

- Z は一本鎖あたりの絡み合い
- 今回のネットワークは、 ホモポリマーと同等

	Homo	4 Chain NW
Segments	50	48
Chains	200	768
Entanglements	204	800
Entangled Chains	134	557
$< Z >_{Z1}$	1.02	1.04

<u>Z1-code</u>とは

- 絡み合いを可視化、定量化するアルゴリズム ^a
- ^aM. Kröger, Comput. Phys. Commun. 168, 209 (2005)

絡み合いを低減したネットワーク

NPT 計算での初期構造の緩和

- 密度の低い初期状態から NPT 計算により圧縮して、
- 絡み合いを極力排除した初期構造を作成した。

絡み合いを低減したネットワーク

PPA での<mark>絡み合い</mark>

• 4-Chain-NPT

4-Chain-NVT

応力緩和関数 G(t)

- ステップ変形 ($\lambda = 2.0$)
- 弾性率が PNM に漸近

絡み合いの効果について

M. Rubinstein, S. Panyukov, Macromolecules, 35, 6670 (2002)

$$G_c = \nu k_B T \left(1 - \frac{2}{\phi} \right), \quad G_e = \frac{4}{7} \nu k_B T L$$

where ν is the number density of network chains, and L is the number of slip-links per network chain

Z1-code for NPT

	NPT	NVT
Chains	768	
ν	0.018	
$G_c = \nu \times (1 - 2/4)$	0.009	
Entanglements	278	800
Entangled Chains	249	557
L	278/768=0.36	800/768=1.04
$G_e = 4/7 \times \nu \times L$	0.004	0.011
$G_{calcd.} = G_c + G_e$	0.013	0.020
$G_{measd.}$	0.013	0.022

TetraPEG gel での先行研究

濃度依存での力学応答の変化

- 合成時の濃度に依存して、
 - Phantom Network model から、
 - Affine Network model へと遷移

Y. Akagi et al, Macromolecules 46, 3, 1035 (2013)

ヒステリシスの検討

計算条件

- 変形:一軸伸長、コーシーひずみ
- 伸張速度: $\dot{\lambda} = 1E 4[1/\tau]$
- 4-Chain-NVT

• 4-Chain-NPT

Constrained Junction Model

伸長時の緩和現象

- 伸長時に
 - ストランドに直交する他の鎖の影響が緩む
 - 架橋点およびストランドへの規制が緩和

P.J.Flory, J.C.P., 66 5720 (1977)

おわりに

本発表の内容

- ネットワーク構造の接続性にランダム性を導入
 - 各ノードごとにランダムな結合性を導入
 - ストランドの末端間距離がホモポリマーと対応するランダムなネットワーク構造
- ランダムネットワーク構造の力学的応答
 - 比較的長時間での緩和を確認
 - アフィンネットワークモデル程度の高い弾性率
- 絡み合いを低減したネットワーク構造との比較で、
 - Trapped Entanglements が緩和後の弾性率に影響
 - ファントムネットワークモデルへと漸近
 - ヒステリシスの発現が増加