Lecture 9: Deep Q-learning

Zhi Wang & Chunlin Chen

Department of Control and Systems Engineering Nanjing University

Nov. 26th, 2020

Contents and Goals

- How we can make Q-learning work with deep networks
 - Use replay buffers, separate target networks
- Tricks for improving Q-learning in practice
 - Double Q-learning, multi-step Q-learning
- Continuous Q-learning methods
- Goals
 - Understand how to implement Q-learning so that it can be used with complex function approximators
 - Understand how to extend Q-learning to continuous actions

Table of Contents

- Q-learning with deep neural networks
 - Problem 1: Correlated samples Solution 1: Replay buffers
 - Problem 2: Moving target Solution 2: Target networks
- Deep deterministic policy gradient (DDPG)
 - Continuous action space
 - Approximate the optimal policy using another network
- 3 Extensions
 - Double Q-learning
 - Multi-step returns
 - Practical tips and examples

Review: Fitted Q-iteration (FQI)

- Full fitted Q-iteration algorithm. Loop:
 - 1. collect dataset $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy π loop for K iterations:
 - 2. set $y_i \leftarrow r_i + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$
 - 3. set $\phi \leftarrow \arg\min_{\phi} \sum_{i} ||Q_{\phi}(s_i, a_i) y_i||^2$

- Online fitted Q-iteration algorithm. Loop:
 - 1. observe one sample (s_i, a_i, r_i, s_i') using behavior policy π
 - 2. set $y_i \leftarrow r_i + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$
 - 3. set $\phi \leftarrow \phi \alpha \frac{dQ_{\phi}(s_i, a_i)}{d\phi} (Q_{\phi}(s_i, a_i) y_i)$

Problem 1: Correlated samples in MDPs

- Online fitted Q-iteration algorithm. Loop:
 - 1. take some action a_i observe (s_i, a_i, r_i, s'_i)
 - 2. set $y_i \leftarrow r_i + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$
 - 3. set $\phi \leftarrow \phi \alpha \frac{dQ_{\phi}(s_i, a_i)}{d\phi} (Q_{\phi}(s_i, a_i) y_i)$
- these samples are correlated!
- Fitted Q-iteration is not gradient descent!

$$\phi \leftarrow \phi - \alpha \frac{\mathrm{d}Q_{\phi}(s_i, a_i)}{\mathrm{d}\phi} \left(Q_{\phi}(s_i, a_i) - \underbrace{\left(r_i + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i') \right)}_{\text{no gradient through target value!}} \right)$$

Review: Supervised learning vs. Sequential decision-making

Supervised learning

- Samples are independent and identically distributed (i.i.d.)
- Given an input, map an optimal output

Reinforcement learning

- Samples are not i.i.d., temporally correlated
- Given an initial state, find a sequence of optimal actions

Correlated samples in online Q-learning

- Online fitted Q-iteration algorithm. Loop:
 - 1. take some action a_i , observe (s_i, a_i, r_i, s'_i)

2. set
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}(s_i, a_i)}{d\phi} \left(Q_{\phi}(s_i, a_i) - \left(r_i + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i') \right) \right)$$

- sequential states are strongly correlated
- target value is always changing

Correlate samples

- Full fitted Q-iteration algorithm. Loop:
 - 1. collect dataset $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy π loop for K iterations:
 - 2. set $y_i \leftarrow r_i + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$
 - 3. set $\phi \leftarrow \arg\min_{\phi} \sum_{i}^{i} ||Q_{\phi}(s_i, a_i) y_i||^2$

- Online fitted Q-iteration. Loop:
 - 1. take some action a_i , observe (s_i, a_i, r_i, s_i')
 - 2. set $y_i = r_i + \gamma \max_{a'_i} Q_{\phi}(s'_i, a'_i)$
 - 3. set $\phi \leftarrow \phi \alpha \frac{dQ_{\phi}(s_i, a_i)}{d\phi} (Q_{\phi}(s_i, a_i) y_i)$

special case with K=1, and one gradient step

How to reduce the correlation between samples?

- Samples in a single episode:
 - temporally correlated

- Samples from different episodes:
 - i.i.d

Replay buffers: store the data/transitions

- Full fitted Q-iteration algorithm. Loop:
 - 1. collect dataset $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy π loop for K iterations:
 - 2. set $y_i \leftarrow r_i + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$
 - 3. set $\phi \leftarrow \arg\min_{\phi} \sum_{i} ||Q_{\phi}(s_i, a_i) y_i||^2$

- any behavior policy π will work!
- just load data from a buffer here
- ullet still use K=1 and one gradient step

Q-learning with a replay buffer

- Loop:
 - 1. sample a batch $\{(s_j, a_j, r_j, s_j')\}$ from buffer \mathcal{B}

2.
$$\phi \leftarrow \phi - \alpha \sum_{i} \frac{dQ_{\phi}(s_j, a_j)}{d\phi} \left(Q_{\phi}(s_j, a_j) - \left(r_j + \gamma \max_{a'_j} Q_{\phi}(s'_j, a'_j) \right) \right)$$

- Step 1: samples are no longer correlated if they come from different episodes
- Step 2: use multiple samples in the batch for low-variance gradient
- Question: Where does the data come from?
 - Need to periodically feed the replay buffer

Full Q-learning with a replay buffer

- Loop:
 - 1. collect dataset $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy, add it to \mathcal{B} loop for K iterations:
 - 2. sample a batch $\{(s_j, a_j, r_j, s_j')\}$ from buffer ${\cal B}$

3.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{\mathrm{d}Q_{\phi}(s_{j}, a_{j})}{\mathrm{d}\phi} \left(Q_{\phi}(s_{j}, a_{j}) - \left(r_{j} + \gamma \max_{a'_{j}} Q_{\phi}(s'_{j}, a'_{j}) \right) \right)$$

 \bullet K=1 is common, though larger K is more efficient

Table of Contents

- Q-learning with deep neural networks
 - Problem 1: Correlated samples Solution 1: Replay buffers
 - Problem 2: Moving target Solution 2: Target networks
- Deep deterministic policy gradient (DDPG)
 - Continuous action space
 - Approximate the optimal policy using another network
- 3 Extensions
 - Double Q-learning
 - Multi-step returns
 - Practical tips and examples

Problem 2: Moving target in the Bellman equation

- Online fitted Q-iteration algorithm. Loop:
 - 1. take some action a_i observe (s_i, a_i, r_i, s'_i)
 - 2. set $y_i \leftarrow r_i + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i')$
 - 3. set $\phi \leftarrow \phi \alpha \frac{\mathrm{d}Q_{\phi}(s_i, a_i)}{\mathrm{d}\phi} (Q_{\phi}(s_i, a_i) y_i)$
- Samples are correlated: solved by a replay buffer
- Fitted Q-iteration is not gradient descent!
 - ullet Target value changes when the Q-network ϕ is updated!

$$\phi \leftarrow \phi - \alpha \frac{\mathrm{d}Q_{\phi}(s_i, a_i)}{\mathrm{d}\phi} \left(Q_{\phi}(s_i, a_i) - \underbrace{\left(r_i + \gamma \max_{a_i'} Q_{\phi}(s_i', a_i') \right)}_{\text{no gradient through target value!}} \right)$$

The moving target

- Full Q-learning with a replay buffer. Loop:
 - 1. collect dataset $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy, add it to $\mathcal B$ loop for K iterations:
 - 2. sample a batch $\{(s_j, a_j, r_j, s'_j)\}$ from buffer \mathcal{B}

3.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} \left(Q_{\phi}(s_{j}, a_{j}) - \left(r_{j} + \gamma \max_{a'_{j}} Q_{\phi}(s'_{j}, a'_{j}) \right) \right)$$

one gradient step, moving target

- Full fitted Q-iteration algorithm. Loop:
 - 1. collect dataset $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy π loop for K iterations:
 - 2. set $y_i \leftarrow r_i + \gamma \max_{a'_i} Q_{\phi}(s'_i, a'_i)$
 - 3. set $\phi \leftarrow \arg\min_{\phi} \sum_{i} ||Q_{\phi}(s_i, a_i) y_i||^2$

perfectly well-defined, stable regression

Solution 2: Target networks

- Idea: use another Q-network and fix it in the inner loop
 - Targets don't change in the inner loop

Q-learning with replay buffer and target network. Loop:

- 1. save target network parameters: $\phi' \leftarrow \phi$
 - loop for N iterations:
 - 2. collect dataset $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy, add it to \mathcal{B} loop for K iterations:
 - 3. sample a batch $\{(s_j, a_j, r_j, s_j')\}$ from buffer \mathcal{B}
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} \left(Q_{\phi}(s_{j}, a_{j}) \left(r_{j} + \gamma \max_{a'_{j}} Q_{\phi'}(s'_{j}, a'_{j}) \right) \right)$

"Classic" deep Q-network (DQN)

Q-learning with replay buffer and target network. Loop:

- 1. save target network parameters: $\phi' \leftarrow \phi$
 - loop for N iterations:
 - 2. collect dataset $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy, add it to $\mathcal B$ loop for K iterations:
 - 3. sample a batch $\{(s_j, a_j, r_j, s_j')\}$ from buffer \mathcal{B}

4.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} \left(Q_{\phi}(s_{j}, a_{j}) - \left(r_{j} + \gamma \max_{a'_{j}} Q_{\phi'}(s'_{j}, a'_{j}) \right) \right)$$

- Classic deep Q-learning with K = 1. Loop:
 - 1. take some action a_i and observe (s_i, a_i, s'_i, r_i) , add it to \mathcal{B}
 - 2. sample mini-batch $\{(s_i, a_i, r_i, s_i')\}$ from \mathcal{B} uniformly
 - 3. compute $y_j = r_j + \gamma \max_{a_i'} Q_{\phi'}(s_j', a_j')$ using target network $Q_{\phi'}$
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} \left(Q_{\phi}(s_{j}, a_{j}) y_{j} \right)$
 - 5. update ϕ' : copy ϕ every N steps

Alternative target network

- Classic deep Q-learning with K=1. Loop:
 - 1. take some action a_i and observe (s_i, a_i, s'_i, r_i) , add it to \mathcal{B}
 - 2. sample mini-batch $\{(s_j, a_j, r_j, s_j')\}$ from \mathcal{B} uniformly
 - 3. compute $y_j = r_j + \gamma \max_{a_i'} Q_{\phi'}(s_j', a_j')$ using target network $Q_{\phi'}$
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} (Q_{\phi}(s_{j}, a_{j}) y_{j})$
 - 5. update ϕ' : copy ϕ every N steps
- Problem: In one inner loop, time lags for different steps are different!

Alternative target network

- Classic deep Q-learning with K=1. Loop:
 - 1. take some action a_i and observe (s_i, a_i, s'_i, r_i) , add it to \mathcal{B}
 - 2. sample mini-batch $\{(s_j, a_j, r_j, s_j')\}$ from \mathcal{B} uniformly
 - 3. compute $y_j = r_j + \gamma \max_{a_i'} Q_{\phi'}(s_j', a_j')$ using target network $Q_{\phi'}$
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} (Q_{\phi}(s_{j}, a_{j}) y_{j})$
 - 5. update ϕ' : copy ϕ every N steps
- Feels weirdly uneven, can we always have the same lag?
- Popular alternative updating for the target network:

5. update
$$\phi': \phi' \leftarrow \tau \phi' + (1-\tau)\phi$$

• $\tau = 0.99$ works well

Deep Q-learning and fitted Q-iteration

Deep Q-learning (N = 1, K = 1). Loop:

1. save target network parameters: $\phi' \leftarrow \phi$

loop for N iterations:

- 2. collect M transitions $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy, add them to \mathcal{B} loop for K iterations:
 - 3. sample a batch $\{(s_j, a_j, r_j, s_j')\}$ from buffer ${\cal B}$

4.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{\mathrm{d}Q_{\phi}(s_{j}, a_{j})}{\mathrm{d}\phi} \left(Q_{\phi}(s_{j}, a_{j}) - \left(r_{j} + \gamma \max_{a'_{j}} Q_{\phi'}(s'_{j}, a'_{j}) \right) \right)$$

Fitted Q-iteration (written similarly as above). Loop:

- 1. collect M transitions $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy, add them to \mathcal{B} loop for N iterations:
 - 2. save target network parameters: $\phi' \leftarrow \phi$ loop for K iterations:
 - 3. sample a batch $\{(s_j, a_j, r_j, s'_j)\}$ from buffer \mathcal{B}
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} \left(Q_{\phi}(s_{j}, a_{j}) \left(r_{j} + \gamma \max_{a'_{j}} Q_{\phi'}(s'_{j}, a'_{j}) \right) \right)$

A more general view

Deep Q-learning (N = 1, K = 1). Loop:

- 1. save target network parameters: $\phi' \leftarrow \phi$
 - loop for N iterations:
 - 2. collect M transitions $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy, add them to \mathcal{B} loop for K iterations:
 - 3. sample a batch $\{(s_j, a_j, r_j, s_j')\}$ from buffer \mathcal{B}
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}(s_j, a_j)}{d\phi} \left(Q_{\phi}(s_j, a_j) \left(r_j + \gamma \max_{a'_j} Q_{\phi'}(s'_j, a'_j) \right) \right)$

A more general view

- Online fitted Q-iteration: evict immediately, process 1, process 2, and process 3 run at the same speed
- DQN: process 1 and process 3 run at the same speed, process 2 is slow
- Fitted Q-iteration: process 3 is in the inner loop of process 2, which is in the inner loop of process 1

Table of Contents

- Q-learning with deep neural networks
 - Problem 1: Correlated samples Solution 1: Replay buffers
 - Problem 2: Moving target Solution 2: Target networks
- Deep deterministic policy gradient (DDPG)
 - Continuous action space
 - Approximate the optimal policy using another network
- 3 Extensions
 - Double Q-learning
 - Multi-step returns
 - Practical tips and examples

What's the problem with continuous actions?

- Full fitted Q-iteration algorithm. Loop:
 - 1. collect dataset $\{(s_i, a_i, r_i, s_i')\}$ using behavior policy π loop for K iterations:
 - 2. set $y_i \leftarrow r_i + \gamma \max_{a'_i} Q_{\phi}(s'_i, a'_i)$
 - 3. set $\phi \leftarrow \arg\min_{\phi} \sum_{i} ||Q_{\phi}(s_i, a_i) y_i||^2$

- Classic deep Q-learning. Loop:
 - 1. take some action a_i and observe (s_i, a_i, s'_i, r_i) , add it to \mathcal{B}
 - 2. sample mini-batch $\{(s_j, a_j, r_j, s_i')\}$ from \mathcal{B} uniformly
 - 3. compute $y_j = r_j + \gamma \max_{a'_j} Q_{\phi'}(s'_j, a'_j)$ using target network $Q_{\phi'}$
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} \left(Q_{\phi}(s_{j}, a_{j}) y_{j} \right)$
 - 5. update ϕ' : copy ϕ every N steps

The target value involves the max operator

- Classic deep Q-learning. Loop:
 - 1. take some action a_i and observe (s_i, a_i, s'_i, r_i) , add it to \mathcal{B}
 - 2. sample mini-batch $\{(s_j, a_j, r_j, s_j')\}$ from \mathcal{B} uniformly
 - 3. compute $y_j = r_j + \gamma \max_{a'_j} Q_{\phi'}(s'_j, a'_j)$ using target network $Q_{\phi'}$
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} (Q_{\phi}(s_{j}, a_{j}) y_{j})$
 - 5. update ϕ' : copy ϕ every N steps

$$\pi(a|s) = \begin{cases} 1 & \text{if } a = \arg\max_{a} Q_{\phi}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

- ullet target value $y_j = r_j + \gamma {
 m max}_{a_j'} \, Q_{\phi'}(s_j', a_j')$
 - particularly problematic, need another inner loop of optimization
 - Question: how to perform the optimization, i.e., the max operator?

Option 1: Stochastic optimization

- The action space is typically low-dimensional
 - What about stochastic optimization?

The simplest solution: uniform sampling

- $\max_a Q(s, a) \approx \max\{Q(s, a_1), ..., Q(s, a_n)\}$
- $(a_1, ..., a_n)$ sampled from the some distribution (e.g., uniform)

- + dead simple
- + efficiently parallelizable
- -not very accurate

More accurate solution: Cross-entropy method (CEM)

Simple iterative stochastic optimization:

- 1. Draw a sample from a probability distribution
- 2. Minimize the cross-entropy between this distribution and a target distribution to produce a better sample in the next iteration

works OK, for up to about 40 dimensions

A simple example of maximizing f(x). Loop:

- 1. Obtain N samples: $\boldsymbol{X} \sim \mathsf{SampleGaussian}(\mu, \sigma^2; N)$
- 2. Evaluate objective function f(X) at sampled points
- 3. Sort ${\pmb X}$ by $f({\pmb X})$ in descending order: ${\pmb X} \leftarrow \operatorname{sort}({\pmb X},f)$
- 4. Update sampling distribution by the top M elites: $\mu \leftarrow \text{mean}(\boldsymbol{X}(1:M)), \quad \sigma^2 \leftarrow \text{var}(\boldsymbol{X}(1:M))$

Objective:

$$x^* = \arg\max_{x} \frac{f}{f}(x)$$

$$\downarrow a^* = \arg\max_{a} \frac{Q}{g}(s, a)$$

Many stochastic optimization solutions...

- Covariance matrix adaptation evolution strategy (CMA-ES)
 - an evolutionary algorithm for difficult non-linear non-convex black-box optimization problems in continuous domain
- Many more solutions...

Option 2: Easily maximizable Q-functions

- Use function class that is easy to optimize
 - e.g., the quadratic function

$$Q_{\phi}(s, a) = -\frac{1}{2}(a - \mu_{\phi}(s))^{T} P_{\phi}(s)(a - \mu_{\phi}(s)) + V_{\phi}(s)$$

• NAF: Normalized Advantage Functions

$$\arg\max_{a} Q_{\phi}(s, a) = \mu_{\phi}(s)$$

$$\max_{a} Q_{\phi}(s, a) = V_{\phi}(s)$$

- + no change to algorithm
- + just as efficient as Q-learning
- loses representational power

Table of Contents

- Q-learning with deep neural networks
 - Problem 1: Correlated samples Solution 1: Replay buffers
 - Problem 2: Moving target Solution 2: Target networks
- Deep deterministic policy gradient (DDPG)
 - Continuous action space
 - Approximate the optimal policy using another network
- 3 Extensions
 - Double Q-learning
 - Multi-step returns
 - Practical tips and examples

Option 3: learn an approximate maximizer

- Lillicrap et al., "Continuous control with deep reinforcement learning," ICLR 2016.
 - Deep deterministic policy gradient (DDPG)
 - Really approximate deep Q-learning in the continuous action domain
- $\max_a Q_{\phi}(s, a) = Q_{\phi}(s, \arg \max_a Q_{\phi}(s, a))$
- idea: train another network $\mu_{\theta}(s)$ such that

$$\mu_{\theta}(s) \approx \underset{a}{\arg\max} Q_{\phi}(s, a)$$

• **Question**: how to optimize this deterministic "actor" $\mu_{\theta}(s)$?

Q-learning with continuous actions

• idea: train another network $\mu_{\theta}(s)$ such that

$$\mu_{\theta}(s) \approx \underset{a}{\operatorname{arg\,max}} Q_{\phi}(s, a)$$

• how? just solve $\theta \leftarrow \arg \max_{\theta} Q_{\phi}(s, \mu_{\theta}(s))$

$$\frac{\mathrm{d}Q_{\phi}(s,\mu_{\theta}(s))}{\mathrm{d}\theta} = \frac{\mathrm{d}Q_{\phi}}{\mathrm{d}a} \cdot \frac{\mathrm{d}a}{\mathrm{d}\theta} = \frac{\mathrm{d}Q_{\phi}}{\mathrm{d}\mu_{\theta}(s)} \cdot \frac{\mathrm{d}\mu_{\theta}(s)}{\mathrm{d}\theta}$$

new target

$$y_j = r_j + \gamma Q_{\phi'}(s_j', \mu_{\theta}(s_j')) \approx r_j + \gamma Q_{\phi'}(s_j', \underset{a_j'}{\arg\max} Q_{\phi'}(s_j', a_j'))$$

DDPG network architecture

error as the loss function

Backpropagate the critic:

$$\nabla_{\phi} = \frac{\mathrm{d}Q_{\phi}(s, a)}{\mathrm{d}\phi} \left(Q_{\phi}(s, a) - y \right)$$

Backpropagate the actor:

$$\nabla_{\theta} = \frac{\mathrm{d}Q_{\phi}}{\mathrm{d}\mu_{\theta}(s)} \cdot \frac{\mathrm{d}\mu_{\theta}(s)}{\mathrm{d}\theta}$$

Backpropagate using -Q as the loss function

Backpropagate using Bellman

Deep deterministic policy gradient (DDPG)

- Loop:
 - 1. take some action a_i and observe (s_i, a_i, s'_i, r_i) , add it to \mathcal{B}
 - 2. sample mini-batch $\{(s_j, a_j, r_j, s'_j)\}$ from \mathcal{B} uniformly
 - 3. compute $y_j = r_j + \gamma Q_{\phi'}(s'_j, \mu_{\theta'}(s'_j))$ by target networks $Q_{\phi'}$ and $\mu_{\theta'}$

4.
$$\phi \leftarrow \phi - \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} \left(Q_{\phi}(s_{j}, a_{j}) - y_{j} \right)$$

- 5. $\theta \leftarrow \theta + \beta \sum_{j} \frac{\mathrm{d}Q_{\phi}}{\mathrm{d}\mu_{\theta}(s_{j})} \frac{\mathrm{d}\mu_{\theta}(s_{j})}{\mathrm{d}\theta}$
- 6. update ϕ', θ' : $\phi' \leftarrow \tau \phi' + (1 \tau)\phi$, $\theta' \leftarrow \tau \theta' + (1 \tau)\theta$
- The behavior policy π :
 - The target greedy policy is $\pi^*(s) = \mu_{\theta}(s)$, actually
 - Add some exploration noise to the target greedy policy, just like ε-greedy in tabular Q-learning

$$\pi(a|s) \sim \mathcal{N}(\mu_{\theta}(s), \sigma^2)$$

Review: Actor-critic algorithms

- Loop:
 - 1. sample $\{s_i, a_i, r_i, s_i'\}$ from $\pi_{\theta}(a|s)$ (run it on the robot)
 - 2. policy evaluation: fit $\hat{V}^{\pi}_{\phi}(s)$ to sampled reward sums
 - 3. evaluate $\hat{A}^\pi(s_i,a_i)=r_i+\gamma\hat{V}^\pi_\phi(s_i')-\hat{V}^\pi_\phi(s_i)$
 - 4. policy improvement: $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(a_{i}|s_{i}) \hat{A}^{\pi}(s_{i}, a_{i})$
 - 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

DDPG vs. Actor-critic

- DDPG. Loop:
 - 1. take some action a_i and observe (s_i, a_i, s'_i, r_i) , add it to \mathcal{B}
 - 2. sample mini-batch $\{(s_j, a_j, r_j, s'_j)\}$ from \mathcal{B} uniformly
 - 3. compute $y_j = r_j + \gamma Q_{\phi'}(s'_j, \mu_{\theta'}(s'_j))$ by target networks $Q_{\phi'}$ and $\mu_{\theta'}$
 - 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}(s_{j}, a_{j})}{d\phi} \left(Q_{\phi}(s_{j}, a_{j}) y_{j} \right)$
 - 5. $\theta \leftarrow \theta + \beta \sum_{j} \frac{\mathrm{d}Q_{\phi}}{\mathrm{d}\mu_{\theta}(s_{j})} \frac{\mathrm{d}\mu_{\theta}(s_{j})}{\mathrm{d}\theta}$
 - 6. update ϕ', θ' : $\phi' \leftarrow \tau \phi' + (1 \tau)\phi$, $\theta' \leftarrow \tau \theta' + (1 \tau)\theta$

- Actor-critic. Loop:
 - 1. sample $\{s_i, a_i, r_i, s_i'\}$ from $\pi_{\theta}(a|s)$ (run it on the robot)
 - 2. policy evaluation: fit $\hat{V}_{\phi}^{\pi}(s)$ to sampled reward sums
 - 3. evaluate $\hat{A}^{\pi}(s_i, a_i) = r_i + \gamma \hat{V}_{\phi}^{\pi}(s_i') \hat{V}_{\phi}^{\pi}(s_i)$
 - 4. policy improvement: $\nabla_{\theta} J(\theta) \approx \sum_{i} \nabla_{\theta} \log \pi_{\theta}(a_{i}|s_{i}) \hat{A}^{\pi}(s_{i}, a_{i})$
 - 5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Review: Q-learning vs. SARSA

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

- Q-learning approximates the optimal action-value function for an optimal policy, $Q \approx Q_* = Q_{\pi_*}$
 - The target policy is greedy w.r.t Q, $\pi(a|s) = \arg\max_a Q(s,a)$
 - ullet The behavior policy can be others, e.g., b(a|s)=arepsilon-greedy

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

- SARSA approximates the action-value function for the behavior policy, $Q \approx Q_\pi = Q_b$
 - The target and the behavior policy are the same, e.g., $\pi(a|s) = b(a|s) = \varepsilon$ -greedy

DDPG vs. Actor-critic

DDPG

- The actor: approximate the optimal policy $a^*\mu_{\theta}(s) = \arg\max_a Q_{\phi}(s,a)$
- ullet The critic: approximate the optimal action-value function Q_ϕ^*
- Off-policy, more sample efficient

Actor-critic

- The actor: approximate the current policy $a \sim \pi_{\theta}(a|s)$
- \bullet The critic: approximate the state-value function V_ϕ^π for given policy π
- On-policy, at least converge to a local optimum

Table of Contents

- Q-learning with deep neural networks
 - Problem 1: Correlated samples Solution 1: Replay buffers
 - Problem 2: Moving target Solution 2: Target networks
- Deep deterministic policy gradient (DDPG)
 - Continuous action space
 - Approximate the optimal policy using another network
- 3 Extensions
 - Double Q-learning
 - Multi-step returns
 - Practical tips and examples

Overestimation in Q-learning

- ullet target value $y_j = r_j + \gamma \max_{\substack{a'_j \ ext{this is the problem}}} Q_{\phi'}(s'_j, a'_j)$
- ullet Imagine we have two random variables: x_1 and x_2

$$\mathbb{E}[\max(x_1, x_2)] \ge \max(\mathbb{E}[x_1], \mathbb{E}[x_2])$$

- $Q_{\phi'}(s',a')$ is not perfect it looks "noisy"
- hence $\max_{a'} Q_{\phi'}(s', a')$ overestimates the next value!
- note that $\max_{a'} Q_{\phi'}(s', a') = Q_{\phi'}(s', \arg \max_{a'} Q_{\phi'}(s', a'))$
 - ullet action selected according to $Q_{\phi'}$
 - ullet value also comes from $Q_{\phi'}$

Double Q-learning

- $\mathbb{E}[\max(x_1, x_2)] \ge \max(\mathbb{E}[x_1], \mathbb{E}[x_2])$
- note that $\max_{a'} Q_{\phi'}(s', a') = Q_{\phi'}(s', \arg \max_{a'} Q_{\phi'}(s', a'))$
 - ullet action selected according to $Q_{\phi'}$
 - value also comes from $Q_{\phi'}$
 - if the noise in the two parts is decorrelated, the problem goes away!
- IDEA: don't use the same network to choose the action and evaluate value!
- "double" Q-learning: use two networks

$$Q_{\phi_A}(s, a) \leftarrow r + \gamma Q_{\phi_B}(s', \underset{a'}{\arg\max} Q_{\phi_A}(s', a'))$$
$$Q_{\phi_B}(s, a) \leftarrow r + \gamma \underset{a'}{Q_{\phi_A}}(s', \underset{a'}{\arg\max} Q_{\phi_B}(s', a'))$$

• if the two Q-networks, Q_{ϕ_A} and Q_{ϕ_B} , are noisy in different ways, there is no problem

Double Q-learning in practice

- Where to get two Q-functions?
 - just use the current and target networks!
- standard Q-learning: $y = r + \gamma Q_{\phi'}(s', \arg \max_{a'} Q_{\phi'}(s', a'))$
- double Q-learning: $y = r + \gamma Q_{\phi'}(s', \arg \max_{a'} Q_{\phi}(s', a'))$
 - just use current network (not target network) to evaluate action
 - still use target network to evaluate value

Table of Contents

- Q-learning with deep neural networks
 - Problem 1: Correlated samples Solution 1: Replay buffers
 - Problem 2: Moving target Solution 2: Target networks
- Deep deterministic policy gradient (DDPG)
 - Continuous action space
 - Approximate the optimal policy using another network
- 3 Extensions
 - Double Q-learning
 - Multi-step returns
 - Practical tips and examples

n-step bootstrapping: Combine MC and one-step TD

- Neither MC or one-step TD is always the best, we generalize both methods so that one can shift from one to the other smoothly as needed to meet the demands of a particular task
- One-step TD: In many applications, one wants to be able to update the action very fast to take into account anything that has changed
- However, bootstrapping works best if it is over a length of time in which a significant and recognizable state change has occurred

n=1	n-step TD	$n = \infty$
TD(0)	\leftrightarrow	MC

n-step TD prediction

 Perform an update based on an intermediate number of rewards, more than one, but less than all of them until termination

Recall MC and TD(0) updates

In MC updates, the target is the complete return

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t+1} R_T$$

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

$$= V(S_t) + \alpha [R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t+1} R_T - V(S_t)]$$

In TD(0) updates, the target is the one-step return

$$G_{t:t+1} = R_{t+1} + \gamma V(S_{t+1})$$

$$V(S_t) \leftarrow V(S_t) + \alpha [G_{t:t+1} - V(S_t)]$$

$$= V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

n-step TD update rule

• For *n*-step TD, set the target as the *n*-step return

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

• All n-step returns can be considered approximations to the complete return, truncated after n steps and then corrected for the remaining missing terms by $V(S_{t+n})$

$$V(S_t) \leftarrow V(S_t) + \alpha [G_{t:t+n} - V(S_t)]$$

= $V(S_t) + \alpha [R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n}) - V(S_t)]$

Deep Q-learning with *n*-step bootstrapping

- \bullet Q-learning target: $y_{j,t} = r_{j,t} + \gamma \max_{a'_{j,t+1}} Q_{\phi'}(s'_{j,t+1}, a'_{j,t+1})$
 - ullet these are the only values that matter if $Q_{\phi'}$ is bad!
 - these values are important if $Q_{\phi'}$ is good
- Construct multi-step targets, *N*-step return estimator:

$$y_{j,t} = \sum_{t'=t}^{t+N-1} \gamma^{t'-t} r_{j,t'} + \gamma^N \max_{a'_{j,t+N}} Q_{\phi'}(s'_{j,t+N}, a'_{j,t+N})$$

Table of Contents

- Q-learning with deep neural networks
 - Problem 1: Correlated samples Solution 1: Replay buffers
 - Problem 2: Moving target Solution 2: Target networks
- Deep deterministic policy gradient (DDPG)
 - Continuous action space
 - Approximate the optimal policy using another network
- 3 Extensions
 - Double Q-learning
 - Multi-step returns
 - Practical tips and examples

Simple practical tips for Q-learning

- Q-learning takes some care to stabilize
 - Test on easy, reliable tasks fist, make sure your implementation is correct

Figure: From T. Schaul, J. Quan, I. Antonoglou, and D. Silver. "Prioritized experience replay". arXiv preprint arXiv:1511.05952 (2015), Figure 7

- Large replay buffers help improve stability
 - Looks more like fitted Q-iteration
- It tasks time, be patient might be no better than random for a while
- Start with high exploration and gradually move to high exploitation

Advanced tips for Q-learning

Bellman error gradients can be big; clip gradients or use Huber loss

$$\mathcal{L}(x) = \begin{cases} x^2/2 & \text{if } |x| \leq \delta \\ \delta |x| - \delta^2/2 & \text{otherwise} \end{cases}$$

- Double Q-learning helps a lot in practice, simple and no downsides
- ullet N-step returns also help a lot, but have some downsides
- Schedule exploration (high to low) and learning rates (high to low)
 - Adam optimizer can help too
- Run multiple random seeds, it's very inconsistent between runs

Q-learning with convolutional networks

- Mnih et al., "Human-level control through deep reinforcement learning," 2013.
- Use replay buffer and target network
- One-step backup, one gradient step
- Can be improved a lot with double Q-learning (and other tricks)

Q-learning on a real robot

- Gu et al., "Robot manupulation with deep reinforcement learning and ...," 2017.
- Continuous actions with NAF (quadratic in actions)
- Use replay buffer and target network
- One-step backup, four gradient steps per simulator step for efficiency
- Parallelized across multiple robots

Review

- Q-learning with deep neural networks
 - Replay buffers
 - Target networks
- Generalized fitted Q-iteration
- Deep deterministic policy network
 - Deep Q-learning for continuous action space
 - Another network for approximating optimal policy
 - Off-policy
- Extensions
 - Double Q-learning
 - Multi-step Q-learning

Learning objectives of this lecture

- You should be able to...
 - Use deep neural networks to approximate Q-functions, be able to implement deep Q-learning with replay buffers and target networks
 - Use deep deterministic policy gradient for continuous actions
 - Know double Q-learning for addressing the overestimation problem
 - Know deep Q-learning with *n*-step returns

Deep Q-learning suggested readings

- Lecture 8 of CS285 at UC Berkeley, Deep Reinforcement Learning,
 Decision Making, and Control
 - http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-8.pdf
- DRL Q-learning papers
 - Mnih et al. (2013). Human level control through deep reinforcement learning:
 Q-learning with convolutional networks for playing Atari.
 - Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double
 Q-learning: a very effective trick to improve performance of deep Q-learning.
 - Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous Q-learning with actor network for approximate maximization.
 - Wang, Schaul , Hessel, van Hasselt, Lanctot , de Freitas (2016). Dueling network architectures for deep reinforcement learning: separates value and advantage estimation in Q-function.
 - Z. Ren, et al., Self-Paced Prioritized Curriculum Learning With Coverage Penalty in Deep Reinforcement Learning, TNNLS, 2018.

Homework 5

- Study the DDPG algorithm in detail
- Implement the DDPG algorithm on problems 1 & 2
 - Problem 1: the point maze navigation, continuous state-action space $(s, a \in \mathbb{R}^2, s \in [-0.5, 0.5]^2, a \in [-0.1, 0.1]^2)$
 - Problem 2: the MuJoCo HalfCheetah, make the robot run forward
 - Compare DDPG with policy gradient and actor-critic algorithms
- Write a report introducing the algorithms and your experimentation
 - Explanations, steps, evaluation results, visualizations...
 - Submit the code and the report to yuanyang@smail.nju.edu.cn

THE END