# INTELIGÊNCIA ARTIFICIAL

MACHINE LEARNING

## Grupo 47

#### Alunos:

Brenda Karoline Cruz Nogueira (201701045)-PL5

Igor Gabriel Soares Mélo (201900603)-PL4

## **RESUMO**

O relatório descreve a análise dos dados e resultados baseados em estudo realizado pela Columbia University que tinha como objetivo o uso de Speed Dating para marcação de encontros. Foram desenvolvidos e avaliados modelos de classificação para análise desses dados e, dessa forma, descobrir as tendências de comportamento que levam ao *match* e, consequentemente, ao não *match*.

Para isso, foi necessário o uso de dois algoritmos, a Árvore de Decisão (CART) e o *Naive Bayes*. A linguagem *Python* foi a escolhida para o desenvolvimento do projeto em conjunto com a ferramenta *Colaboratory*, do Google, para compilar e testar o código de forma que ambos os integrantes tivessem acesso simultâneo ao desenvolvimento do trabalho. A linguagem R foi utilizada para auxiliar na análise dos dados.

Os resultados obtidos revelaram que tópicos como a idade do par e o motivo de usar o Speed Dating não costumam influenciar no *match*. Já tópicos como *Prob*, *like* e *date* da entrevista, tiveram certa influência no possível *match*. Dessa forma, a pesquisa mostrou que características muito específicas não costumam aumentar o índice de matches tendo em vista a distribuição quase normal da maioria dos tópicos. Por fim, apesar dos modelos em questão de acurácia não serem muito eficazes, comparados a um *dummy model*, ainda foi possível obter resultados interessantes o que permitiu realizar outros tipos de análise como a precisão e o recall, além de analisar o F1-Score, dessa forma concluiuse que dentre os modelos analisados o Naive Bayes se mostrou mais eficaz nesses parâmetros.

## INTRODUÇÃO

Com base nos dados de um estudo realizado pela Columbia University sobre o uso de *Speed Dating* para marcação de encontros, foi desenvolvido esse trabalho com o objetivo de, com o auxílio de algoritmos de análise de dados, entender e consequentemente tentar prever o comportamento dos participantes. Para isso, o trabalho foi baseado na linguagem Python que conta as bibliotecas Pandas (para análise de dados) e a biblioteca *Scikit-learn* que conta com algoritmos de aprendizagem supervisionada, e foi utilizada a linguagem R para auxiliar na análise dos dados. Foi feito o uso de aprendizagem supervisionada e baseada em modelos como *Batch Learning*, além do uso da Árvore de Decisão (CART) e o *Naive Bayes*. O uso desses métodos e algoritmos permitiu chegar a resultados e conclusões interessantes quanto ao comportamento das pessoas envolvidas na pesquisa.

## **ALGORITMOS**

Com o objetivo de avaliar modelos de classificação para o conjunto de dados apresentados, recorremos a dois algoritmos: CART e *Naive Bayes*.

O CART é um modelo baseado em procura em uma árvore de decisão, no qual é realizado testes lógicos nos nós internos e os nós folha possuem a classe a que determinado caminho percorrido pela árvore corresponde, no caso de ser uma árvore de classificação, como é o nosso caso.

Os nós internos são escolhidos de forma a melhor divide o conjunto de dados, no caso do CART o critério usado em uma árvore de classificação é a **impureza de Gini.** Logo , é escolhido o nó que maximiza a redução da impureza de Gini, ou seja, que maximiza s:

$$s=Gini(t)-Gini(s,t)$$

No qual t é um certo nó e Gini(s,t)=
$$\frac{n_l}{n_t} \times Gini(t_l) + \frac{n_r}{n_t} \times Gini(t_r)$$
 e Gini(t)=1- $\sum_{i=1}^c p_i^2$ .

Onde  $p_i$  representa a frequência dos resultados pertencerem a classe i sobre o número total resultados, em um conjunto de dados no nó t, e  $n_l$ é o número de dados que estão no filho esquerdo, $n_r$  o número de dados que estão no filho direito e  $n_t$  o número total de dedos no nó pai. Logo, devemos comparar a impureza de Gini antes e depois da expansão de um nó.

Para dividir os dados, se o atributo for numérico ele começa por ordenar os dados e realiza testes para todos os pontos intermédios. O teste que obtiver melhor desempenho será o que será usado na árvore para a variável. Já em atributos categóricos avalia todos os subconjuntos possíveis do conjunto de valor e o que melhor dividir os dados será usado para a variável.

Já o algoritmo *Naive Bayes* é um classificador probabilístico baseado no "Teorema de *Bayes*", tem como qualidades a sua simplicidade e a rapidez, o que resulta em um bom desempenho em aplicações de *Machine Learning*, além de precisar de uma pequena quantidade de dados de teste para concluir classificações com boa precisão.

A sua principal característica se dá pelo fato dele desconsiderar completamente a correlação entre as variáveis, assim, o tratamento das mesmas se dá de forma independente. Teorema de *Bayes* fornece uma forma de calcular a probabilidade posterior  $P(C \mid X)$  a partir de P(C), P(x) e  $P(X \mid c)$ .



 $P(c|X) = P(x_1|c)xP(x_2|c)x...xP(x_n|c)xP(c)$ 

Onde  $P(c \mid x)$  é a probabilidade posterior da classe (c, alvo) dada preditor (x, atributos), P(c) é a probabilidade original da classe,  $P(x \mid c)$  é a probabilidade que representa a probabilidade de preditor dada a classe e P(x) é a probabilidade original do preditor. Para atributos categóricos , a probabilidade é estimada a partir de tabelas de frequência, já para atributos numéricos podemos assumir uma distribuição normal (gaussiana), de Bernoulli, Multinomial, etc.

## ANÁLISE EXPLORATÓRIA DOS DADOS

Iniciou-se utilizando o *Python* para a importação dos dados e pré-processamento dos mesmos. Primeiramente, foi retirada a primeira coluna indefinida do conjunto de dados, e depois foi requisitada uma descrição dos dados. A tabela a seguir mostra a primeira linha.

|       | id      | partner | age     | age_o   | goal    | date    | go_out  | int_cor<br>r | length  | met     | like    | prob    | match   |
|-------|---------|---------|---------|---------|---------|---------|---------|--------------|---------|---------|---------|---------|---------|
| count | 8377.00 | 8378.00 | 8283.00 | 8274.00 | 8299.00 | 8281.00 | 8299.00 | 8220.00      | 7463.00 | 8003.00 | 8138.00 | 8069.00 | 8378.00 |
|       | 0000    | 0000    | 0000    | 0000    | 0000    | 0000    | 0000    | 0000         | 0000    | 0000    | 0000    | 0000    | 0000    |

Como a variável objetivo é categórica (*match*), observou-se um problema de classificação binária, além disso, no conjunto de preditores temos variáveis numéricas (*age*, *age\_o*, e *int\_corr*) e variáveis categóricas (*goal*, *date*, *go\_out*, *length*, *met*, *like* e *prob*). Não foram considerados o *id* e o *partner* pois eles não agregam informação aos modelos.

Pôde-se ver pela tabela que nem todas as colunas têm a mesma contagem de elementos. Isso se deve aos valores nulos (N/A) nos dados, como por exemplo, em perguntas não respondidas. Por isso, foram substituídos os valores nulos: em *age* e *age\_o* pelo valor inteiro da média dessas variáveis, em *int\_corr* pelo *float* da média com duas casas decimais, e as variáveis categóricas são substituídas pela sua moda.

Utilizando a linguagem R, foram comparados os dados de cada variável ao *match*. Iremos omitir tabelas de frequência e probabilidade pela falta de espaço.

#### Match

Essa é a nossa variável objetivo na qual sabemos ao final da conversa se há match(1) ou n $\tilde{ao}$  match(0).



#### Match

|               | 0         | 1         |
|---------------|-----------|-----------|
| Numérico      | 6998      | 1380      |
| Probabilidade | 0.8352829 | 0.1647171 |

Foi possível observar que a probabilidade nessa amostra de as pessoas não darem *match* é muito maior do *match*.

#### Idade



deram match quanto as pessoas que deram match tem 26 anos, e o desvio padrão dos dois conjuntos foi 3.6 e 3.3 respectivamente.

Em

### Idade do par



Em média, tanto o par das pessoas que não deram match quanto os das pessoas que deram match tem 26 anos, e o desvio padrão dos dois conjuntos foi 3.6 e 3.3 respectivamente.

#### Goal

Esse atributo mostra qual o objetivo principal ao participar neste evento. Pela tabela, o maior número de encontros provém das pessoas que têm o objetivo de passar uma noite divertida, seguido das pessoas que querem conhecer pessoas novas e o menor número de encontros se encontra nas pessoas que procuram um relacionamento sério.





No geral, para cada categoria existem mais pessoas que não deram *match*, logo, a categoria que a pessoa se encontra não afetou o *match*.

Observa-se a razão entre *matches*/ não *matches* em relação a cada motivação:

|                          | 1         | 2         | 3         | 4         | 5         | 6         |
|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| matches / não<br>matches | 0.2057104 | 0.1914557 | 0.1883239 | 0.2040000 | 0.2000000 | 0.1736695 |

<sup>1 (</sup>passar uma noite divertida), 2 (conhecer pessoas novas), 3 (conseguir um encontro), 4 (procurar um relacionamento sério), 5 (dizer que consegui) e 6(outro).

Após fazer a razão entre os *matches* e os não *matches* foi obtida a tabela acima. Todas têm uma proporção de *match* parecida.







Pelo gráfico de barras a maioria dos encontros se deram nas pessoas que saem para encontros 4 vezes por mês seguida das pessoas que saem para encontros várias vezes por ano o menor número se encontra nas pessoas que saem várias vezes por semana.

No geral podemos notar que para cada categoria existem mais pessoas que não deram match, logo a categoria que a pessoa se encontra não afeta o match ou não.

| Nº Encontros             | 1         | 2         | 3         | 4         | 5         | 6         | 7         |
|--------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| matches / não<br>matches | 0.4461538 | 0.2674897 | 0.2548077 | 0.2179104 | 0.1835786 | 0.1666667 | 0.1734861 |

Dentre as categorias, a categoria que deu mais matchs foi a categoria 1, em que as pessoas vão a encontros várias vezes na semana, nesse caso, se diferencia bastante das outras, porém tem uma quantidade pequena na amostra.

#### Go out

A maioria dos encontros se dá nos indivíduos que saem duas vezes por semana, seguido dos indivíduos que saem várias vezes por semana, o menor número é nos indivíduos que quase nunca saem.



No geral, para cada categoria existe um número maior de rejeição em todos os casos, porém podemos observar que o maior número de não matches se encontra na segunda categoria, os que saem duas vezes por semana, e nos match primeira categoria, que saem várias vezes por semana.

|                             | 1              | 2          | 3          | 4          | 5          | 6          | 7          |
|-----------------------------|----------------|------------|------------|------------|------------|------------|------------|
| matches /<br>não<br>matches | 0.2410841<br>7 | 0.19184466 | 0.17409639 | 0.14503817 | 0.13103448 | 0.15116279 | 0.02777778 |

Ao calcular a razão para cada categoria, vimos que a categoria que tem uma menor proporção de match dentre todas é a categoria 7, que se diferencia bastante das outras que possuem uma proporção bem parecida, apesar de estarem em menor quantidade.

Int\_corr



Os dois histogramas são aproximadamente simétricos, a média dos não matchs é de uma correlação de 0.19 enquanto que a dos matchs é de 0.22 tem correlações bem próximas, no geral também apresentam uma distribuição dos dados parecida. Mostrando que a correlação entre os ratings de interesses (desporto, museus, caminhadas, música, filmes, livros, etc.) do participante e do seu par não influencia tanto os matches.

## length

Pode-se ver que a maioria dos indivíduos achou a entrevista muito curta, seguido dos que acharam a entrevista com um tamanho adequado. Poucos indivíduos acharam longa.





para cada categoria há um maior Observa-se a tabela da razão.

No geral , número de rejeição.

|                       | 1         | 2         | 3         |
|-----------------------|-----------|-----------|-----------|
| matches / não matches | 0.1828847 | 0.3111111 | 0.2158188 |

As pessoas que disseram que a entrevista era muito longa tiveram um maior índice de *match* dentre as outras duas categorias, porém ela representa uma quantidade muito pequena dos dados da amostra.

#### Met

O número de encontros nos quais os pares que já se conheciam é parecido com os que não se conheciam.



Observamos que no grupo dos *matches* haviam mais pessoas que se conhecem do que as que não se conhecem, e dos que não deram match tem mais pessoas que não conheciam

|                       | 0         | 1         |
|-----------------------|-----------|-----------|
| matches / não matches | 0.1673706 | 0.2323988 |

Ao fazermos a razão, observou-se que há mais matches quando as pessoas já se conhecem.

#### Like

No gráfico do número de encontros para cada categoria, observa-se que os valores 0, 4.5, 5.5 etc. representam uma parcela muito pequena, por isso, para uma melhor análise gráfica e descritiva dos dados esses valores foram ignorados.



Na amostra existiam mais pessoas que gostaram do seu par em um nível 7, seguido de um nível 6. E no geral, também haviam mais não *matches* do que *matches*. Porém, observou-se que a distribuição dos não *matches* e dos *matches* teve uma leve diferença, com isso, observou-se a tabela da razão a seguir.

|                             | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10             |
|-----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| matches /<br>não<br>matches | 0.0185<br>1852 | 0.0136<br>3636 | 0.0102<br>0408 | 0.0238<br>0952 | 0.0594<br>3775 | 0.14390<br>897 | 0.2363<br>1990 | 0.5005<br>8893 | 0.590733<br>59 | 0.801980<br>20 |

Pode-se ver que a proporção de *matches* é maior para os *likes* a partir do 6 até 10 e menor nos demais. Tem-se uma divisão clara dos dados nesse caso. Logo, a probabilidade de *match* é maior se a pessoa gosta da outra em uma escala de 6 a 10 e de não *match* numa escala de 0 a 5.

#### Prob

Assim como antes, no gráfico do número de encontros para cada categoria pode-se ver que os valores 4.5, 5.5 etc. representam uma parcela muito pequena, por isso, para uma melhor análise gráfica e descritiva dos dados esses valores foram ignorados.

#### prob



Observou-se que a maior parte das pessoas disse que a probabilidade de o par ter gostado de si é de 5 e a menor é 0. E no geral, havia mais pessoas que não deram *match* do que *match* para cada

categoria. Mas, assim como na categoria anterior, a distribuição dos *matches* e dos não *matches* tem uma diferença.

|                                     | 0              | 1              | 2              | 3              | 4              | 5              | 6              | 7              | 8              | 9              | 10             |
|-------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| match<br>es /<br>não<br>match<br>es | 0.0652<br>1739 | 0.0323<br>3831 | 0.0568<br>6275 | 0.0694<br>8640 | 0.0990<br>5660 | 0.1538<br>0405 | 0.2247<br>5856 | 0.3139<br>5349 | 0.4751<br>1312 | 0.6971<br>8310 | 0.8613<br>8614 |

Observou-se que conforme cresce a probabilidade de o par ter gostado do indivíduo, maior é a chance de dar *match*.

## Experiências e resultados

Foram implementados dois tipos de métodos de aprendizagem supervisionada: CART e Naive Bayes.

Para obtenção de uma estimativa de desempenho confiável, utilizou-se o método Holdout, em que se divide aleatoriamente o conjunto de dados em treino e teste. Utilizou-se 70% para treino e 30% para teste. Esse conjunto treino teste foi fixado (com o *random\_state=9*) para ser utilizado nos dois modelos.

#### **CART**

Primeiramente fixou-se uma instância do modelo (*random\_state=9*). Ao fazer o modelo sem um *pre-pruning*, ou *post-pruning* a árvore retornada foi a imagem a seguir.



Portanto, é muito provável que ela esteja fazendo *overfitting* de dados, ou seja, ele não generaliza bem para exemplos não conhecidos. Nesse caso, para prevenir o sobreajustamento, optou-se pelo *pre-pruning*, ou pelo *post-pruning*.

O pre-pruning pode definir restrições para o tamanho da árvore, como:

- 1. Número mínimo de amostras para uma divisão de nós
- 2. Número mínimo de amostras para um nó de término
- 3. Profundidade máxima da árvore
- 4. Número máximo de nós de término
- 5. Número máximo de atributos a considerar para uma divisão

Já o post-pruning faz uma árvore de decisão com alto grau de profundidade e depois poda a árvore, removendo ramos com pouca qualidade de acordo com uma estimativa.

Ao analisar as opções pode-se perceber que as opções 1 e 2 não faziam sentido para o problema analisado, pois como a quantidade valores para cada classe é desbalanceada seriam muito pequenas as regiões em que a classe *match* seria majoritária nos dados, logo não faz sentido definir um valor mínimo. Já o número máximo de nós de término não é adequado pois pode-se ter situações variadas que queira-se explorar, e excluiu-se o 5 pois iria selecionar aleatoriamente um número de variáveis a considerar, podendo excluir as mais significativas para o modelo.

Com relação ao *post-pruning*, o scikit-learn tem a opção *Post pruning decision trees with cost complexity pruning* que se decidiu por não explorar no momento.

Portanto, foi decidido uma restrição a profundidade da árvore para uma altura igual 3, pois a partir de um teste com alturas entre 1 e 100 no python, foi visto que essa altura deu uma melhor acurácia e melhor precisão (que voltará a ser tratado mais adiante), além de uma melhor visualização da árvore.

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/\_classification.py:1272: \_warn\_prf(average, modifier, msg\_start, len(result)) melhor score: altura 3 melhor precision: altura 3 melhor recall: altura 18



Observou-se que na árvore gerada utilizando o algoritmo CART com *pre-pruning*, a primeira variável selecionada foi o *like*. Como visto na análise dos dados, ela é a que melhor divide os dados para o *match* ou *não match*, ou seja, apresenta uma menor "impureza de gini", logo depois tem-se a *probabilidade*, que também resulta em folhas com um menor valor de Gini.

Viu-se que o algoritmo escolheu o *date* e o *met*, sendo que os separados por *met* apresentaram um valor de gini muito alto e resultou em folhas mais "incertas" sobre o seu resultado. O date também se destacou resultando em folhas com melhor valor de Gini do que o *met*. Como esperado, a maioria das folhas deram como predição a classe 0, isso foi devido a maioria dos encontros terem dado *não match*.

### Naive Bayes

Na análise dos dados as distribuições das variáveis não apresentam nenhum padrão específico mas são aproximadamente simétricas na maioria dos casos, logo, foi assumida uma distribuição normal para a população, ou seja, utilizou-se a probabilidade como gaussiana para o Naive Bayes.

Não foi necessária uma correção de laplace pois não obteve-se nenhuma probabilidade 0 nos dados.

## Avaliação

#### Accuracy

A seguir tem-se uma tabela do valor do *accuracy* (1- (proporção das previsões incorretas)), ou seja, quantos dos exemplos foram classificados corretamente.

|          | CART sem pruning | CART com pruning | Naive Bayes |
|----------|------------------|------------------|-------------|
| Accuracy | 76.17%           | 84,92%           | 83,17%      |

Tem que ter-se em consideração que nessa situação a acurácia pode ser enganosa, pois, caso considerado o *dummy model* que sempre prevê o rótulo mais frequente no conjunto de treinamento, no caso o não *match*, tem uma acurácia de 84,47%, ou seja tem-se que considerar outras métricas para não validar como modelo ótimo um modelo que falha em acertar os *matches*.

#### Matriz de confusão, precision e recall

A matriz de confusão permite visualizar facilmente quantos exemplos foram classificados corretamente e erroneamente em cada classe, que ajuda a entender se o modelo está favorecendo uma classe em detrimento da outra.

|            |   | Classe previs         | Classe prevista |                       |      |             |      |  |  |
|------------|---|-----------------------|-----------------|-----------------------|------|-------------|------|--|--|
|            |   | CART sem pre-prunning |                 | CART com pre-prunning |      | Naive Bayes |      |  |  |
|            |   | 1                     | 0               | 1                     | 0    | 1           | 0    |  |  |
| Classe     | 1 | 130                   | 261             | 34                    | 357  | 95          | 296  |  |  |
| verdadeira | 0 | 338                   | 1785            | 22                    | 2101 | 127         | 1996 |  |  |

A partir da matriz de confusão de cada um dos modelos, obteve-se as métricas *precision* e *recall*. Considerou-se como positivos os *matches* (1) e os negativos os *não matches* (0).

O *precision* dá a proporção de verdadeiros positivos dentre todos classificados como positivos e o *recall* é a proporção de previsão de positivos dentre aqueles que realmente eram positivos.

|                                                                | CART sem pre-<br>prunning | CART com<br>pre-prunning | Naive Bayes |
|----------------------------------------------------------------|---------------------------|--------------------------|-------------|
| Precision<br>(TruePositives/(TruePositives<br>+FalsePositives) | 27,78%                    | 60,71%                   | 42,80%      |
| Recall<br>(TruePositives/(TruePositives<br>+FalseNegatives)    | 33,25%                    | 8,70%                    | 24,30%      |

Observou-se que para o *precision* o melhor modelo foi o CART com o pre- pruning, já para recall foi o CART sem o pre-pruning. Isso se deve ao fato de o CART c/ pre-pruning ter generalizado mais casos para os não *matches*, logo tem-se uma quantidade menor de falsos *matches* porém uma quantidade maior de falsos não *matches*. Já o CART s/ pre-pruning realizou uma análise mais específica, portanto chega em mais casos em que dá match.

O *Naive Bayes* tem um recall mais baixo em relação à acurácia . Isso se deve ao fato de o *Naive Bayes* considerar as probabilidades, e como há muito mais probabilidades de classificar categoria 0 na maioria dos casos, ele diminui a quantidade de previsões 1 erradas, o que aumenta o precision e aumenta previsões erradas de 0 diminuindo o recall.

A precisão pode ser usada em uma situação em que os Falsos Positivos são considerados mais prejudiciais que os Falsos Negativos, já o recall pode ser usado em casos em que os Falsos Negativos são considerados mais prejudiciais que os Falsos Positivos. No exemplo utilizado, dar *match* ou não, não se tem casos que seriam mais prejudiciais, então foi válido considerar a métrica F1-score que faz uma média harmônica entre precisão e recall.a

|                                                                      | CART s/ pre-pruning | CART c/ pre-pruning | Naive Bayes |
|----------------------------------------------------------------------|---------------------|---------------------|-------------|
| F1-score $\frac{2 \times precisão \times recall}{precisão + recall}$ | 30,27%              | 15,21%              | 31%         |

O F1-Score é uma maneira de observar somente uma métrica ao invés de duas em certas situações. O CART c/ pre-pruning é baixo, pois o recall é baixo.

## Limitações

No CART , para as variáveis categóricas se realiza uma divisão dos dados em subconjuntos, porém na árvore ele trata a divisão das variáveis categóricas como numéricas, ou seja, pelos pontos intermédios e não pelo subconjunto. Isso se deve pelo *scikit-learn* não oferecer suporte a variáveis categóricas.

Isso também acontece no *Naive Bayes* ao fazer um *Gaussian Naive Bayes*. Esse problema também poderia ser contornado ao usar *Categorical Naive Bayes* o que iria afetar as variáveis numéricas.

## Conclusão

Na análise exploratória dos dados, pôde-se ver que no geral os dados não dividem claramente os dados, e que em cada variável categórica a classe 0 tem uma quantidade maior do que 1. Porém em algumas situações tem-se uma separação mais clara dos dados, sendo estes escolhidos pelo CART para iniciar o modelo. O que faz com que os dois modelos sejam interpretáveis.

Foi possível concluir que o modelo gerado pelo *Naive Bayes* foi melhor dentre os demais, pois deu uma acurácia alta e apesar de não ter dado uma valores de precisão e recall altos, ainda se saiu melhor que os demais numa comparação geral dessas duas situações, ou seja, obteve um melhor F1-Score. Também foi possível observar que o CART com o *pruning* acabou por fazer *underfitting* dos dados, ou seja, gerou um modelo demasiado simples.

Também há outras hipóteses que poderiam ser consideradas como outras profundidades máximas para o CART, por exemplo a altura 18 que dava o melhor recall ou o *post-pruning* não considerado.

## Referências Bibliográficas

https://pandas.pydata.org/docs/user\_guide/index.html#user-guide

https://medium.com/kunumi/m%C3%A9tricas-de-avalia%C3%A7%C3%A3o-em-machine-learning-classifica%C3%A7%C3%A3o-49340dcdb198

https://scikit-learn.org/stable/modules/tree.html

https://scikit-learn.org/stable/modules/naive bayes.html

https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html

| https://www.vooo.pro/insights/um-tutorial-completo-sobre-a-modelagem-baseada-em-tree-arvore-do-zero-em-r-python/ |
|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |
|                                                                                                                  |