# Module EA4 – Éléments d'Algorithmique II Outils pour l'analyse des algorithmes

Dominique Poulalhon dominique.poulalhon@irif.fr

Université Paris Diderot L2 Informatique & Math-Info Année universitaire 2019-2020

## La semaine dernière...

apport de l'hypothèse « L est un tableau  $tri\acute{e}$  » sur quelques problèmes manipulant des listes

#### La semaine dernière...

apport de l'hypothèse « L est un tableau  $tri\acute{e}$  » sur quelques problèmes manipulant des listes

 $deux\ exemples\ d'algorithmes\ de\ tri\ par\ comparaisons\ :$ 

#### LA SEMAINE DERNIÈRE...

apport de l'hypothèse « L est un tableau trié » sur quelques problèmes manipulant des listes

deux exemples d'algorithmes de tri par comparaisons :

• le tri par sélection

#### LA SEMAINE DERNIÈRE...

apport de l'hypothèse « L est un tableau trié » sur quelques problèmes manipulant des listes

deux exemples d'algorithmes de tri par comparaisons :

- le tri par sélection
- le tri par insertion

#### La semaine dernière...

apport de l'hypothèse « L est un tableau trié » sur quelques problèmes manipulant des listes

deux exemples d'algorithmes de tri par comparaisons :

- le tri par sélection
- le tri par insertion

tri par comparaisons : algorithme n'utilisant pas d'autre propriété sur les éléments que l'existence d'un ordre total

⇒ les éléments ne peuvent être utilisés que pour des comparaisons deux à deux

#### COMPLEXITÉ

Tri par sélection

 $\Theta(n^2)$  comparaisons dans tous les cas

Tri par insertion

 $\Theta(n^2)$  comparaisons au pire

# Questions

- peut-on être plus précis pour le tri par insertion?
- peut-on faire mieux que  $\Theta(n^2)$  dans le pire cas?

permutation de taille n = bijection de [1, n] dans lui-même

permutation de taille n = bijection de [1, n] dans lui-même

 $\mathfrak{S}_{\mathfrak{n}}=$  ensemble des permutations de taille  $\mathfrak{n}$ 

permutation de taille n = bijection de [1, n] dans lui-même

 $\mathfrak{S}_n$  = ensemble des permutations de taille n

notation bilinéaire : 
$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

permutation de taille n = bijection de [1, n] dans lui-même

 $\mathfrak{S}_{\mathfrak{n}}=$  ensemble des permutations de taille  $\mathfrak{n}$ 

notation bilinéaire : 
$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

notation linéaire : 
$$\sigma = \sigma(1) \ \sigma(2) \ \dots \ \sigma(n)$$



|   |          | 0 |            |
|---|----------|---|------------|
| 1 | <u> </u> |   | <b>-</b> 4 |
| 2 | <u> </u> |   | <b>2</b>   |
| 3 | <u> </u> |   | <b>-</b> 1 |
| 4 | <u> </u> |   | <b>-</b> 6 |
| 5 | <u> </u> |   | <b>-</b> 7 |
| 6 | <u> </u> |   | <b>3</b>   |
| 7 | <u> </u> |   | <b>-</b> 5 |

























$$produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$$

$$produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$$

## Lemme

$$\sigma,\tau\in\mathfrak{S}_n \implies \sigma\tau\in\mathfrak{S}_n$$

(loi de composition interne)

$$produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$$

#### Lemme

$$\sigma, \tau \in \mathfrak{S}_n \implies \sigma \tau \in \mathfrak{S}_n$$

(loi de composition interne)

inverse de  $\sigma$  : application  $\tau$  telle que  $\tau\sigma=id_n=1\ 2\ ...\ n$ 

 $notation: \sigma^{-1}$ 

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$



$$produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$$

## Lemme

$$\sigma, \tau \in \mathfrak{S}_n \implies \sigma \tau \in \mathfrak{S}_n$$

(loi de composition interne)

inverse de  $\sigma$  : application  $\tau$  telle que  $\tau\sigma=id_{\pi}=1\;2\;\dots\;n$ 

notation :  $\sigma^{-1}$ 

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$

produit : 
$$\sigma \tau = \sigma \circ \tau : i \xrightarrow{\tau} \tau(i) \xrightarrow{\sigma} \sigma(\tau(i))$$

# Lemme

$$\sigma, \tau \in \mathfrak{S}_n \implies \sigma \tau \in \mathfrak{S}_n$$

(loi de composition interne)

inverse de  $\sigma$  : application  $\tau$  telle que  $\tau\sigma=id_n=1\ 2\ \dots\ n$ 

notation :  $\sigma^{-1}$ 

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$

$$\bullet \ \sigma \in \mathfrak{S}_{\mathfrak{n}} \implies \sigma^{-1} \in \mathfrak{S}_{\mathfrak{n}}$$

$$produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$$

# Lemme

$$\sigma, \tau \in \mathfrak{S}_n \implies \sigma \tau \in \mathfrak{S}_n$$

(loi de composition interne)

inverse de  $\sigma$  : application  $\tau$  telle que  $\tau\sigma=id_{\pi}=1\;2\;\dots\;n$ 

notation :  $\sigma^{-1}$ 

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$

- $\sigma \in \mathfrak{S}_n \implies \sigma^{-1} \in \mathfrak{S}_n$
- $\sigma \sigma^{-1} = \sigma^{-1} \sigma = id_n : i = \sigma(j) \xrightarrow{\sigma^{-1}} \sigma^{-1}(i) = j \xrightarrow{\sigma} i$



$$produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$$

## Lemme

$$\sigma, \tau \in \mathfrak{S}_n \implies \sigma \tau \in \mathfrak{S}_n$$

(loi de composition interne)

inverse de  $\sigma$  : application  $\tau$  telle que  $\tau\sigma=id_{\pi}=1$  2 ... n

notation :  $\sigma^{-1}$ 

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$

- $\sigma \in \mathfrak{S}_n \implies \sigma^{-1} \in \mathfrak{S}_n$
- $\sigma\sigma^{-1} = \sigma^{-1}\sigma = id_n : i = \sigma(j) \xrightarrow{\sigma^{-1}} \sigma^{-1}(i) = j \xrightarrow{\sigma} i$
- $(\sigma^{-1})^{-1} = \sigma$



$$produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$$

## Lemme

$$\sigma, \tau \in \mathfrak{S}_n \implies \sigma \tau \in \mathfrak{S}_n$$

(loi de composition interne)

inverse de  $\sigma$  : application  $\tau$  telle que  $\tau\sigma=id_{\pi}=1$  2 ... n

notation :  $\sigma^{-1}$ 

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$

- $\sigma \in \mathfrak{S}_n \implies \sigma^{-1} \in \mathfrak{S}_n$
- $\sigma\sigma^{-1} = \sigma^{-1}\sigma = id_n : i = \sigma(j) \xrightarrow{\sigma^{-1}} \sigma^{-1}(i) = j \xrightarrow{\sigma} i$
- $(\sigma^{-1})^{-1} = \sigma$



$$produit: \sigma\tau = \sigma \circ \tau \ : \ i \ \stackrel{\tau}{\longmapsto} \ \tau(i) \ \stackrel{\sigma}{\longmapsto} \ \sigma(\tau(i))$$

## Lemme

$$\sigma, \tau \in \mathfrak{S}_n \implies \sigma \tau \in \mathfrak{S}_n$$

(loi de composition interne)

inverse de  $\sigma$  : application  $\tau$  telle que  $\tau\sigma=id_{\pi}=1\;2\;\dots\;n$ 

notation :  $\sigma^{-1}$ 

$$i \stackrel{\sigma}{\longmapsto} \sigma(i) \stackrel{\tau = \sigma^{-1}}{\longmapsto} i$$

#### Lemme

- $\bullet \ \sigma \in \mathfrak{S}_n \ \Longrightarrow \ \sigma^{-1} \in \mathfrak{S}_n$
- $\sigma \sigma^{-1} = \sigma^{-1} \sigma = id_n : i = \sigma(j) \xrightarrow{\sigma^{-1}} \sigma^{-1}(i) = j \xrightarrow{\sigma} i$
- $(\sigma^{-1})^{-1} = \sigma$

(on dit que  $\mathfrak{S}_n$  a une structure de groupe)

#### TRIS vs. PERMUTATIONS



# TRIS vs. PERMUTATIONS

tableau à trier



tableau trié

# TRIS vs. PERMUTATIONS

tableau à trier



tableau trié

## TRIS vs. PERMUTATIONS

tableau à trier



tableau trié

#### TRIS vs. PERMUTATIONS

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 2 & 6 & 8 & 4 & 1 & 7 & 5 & 3 \end{pmatrix}$$

$$id = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$$

#### TRIS vs. PERMUTATIONS

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 2 & 6 & 8 & 4 & 1 & 7 & 5 & 3 \end{pmatrix}$$
 produit par  $\sigma^{-1}$  
$$id = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$$

#### Tris vs. permutations

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 2 & 6 & 8 & 4 & 1 & 7 & 5 & 3 \end{pmatrix}$$
 produit par  $\sigma^{-1}$  
$$id = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$$

#### Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations



```
 \begin{array}{l} \mbox{point fixe} = \mbox{\'el\'ement } i \in \llbracket 1, n \rrbracket \ t.q. \ \sigma(i) = i \\ \mbox{point mobile} = \mbox{\'el\'ement } i \in \llbracket 1, n \rrbracket \ t.q. \ \sigma(i) \neq i \\ \mbox{support} = \mbox{ensemble des points mobiles de } \sigma \ (\mbox{not\'e Supp}(\sigma)) \\ \end{array}
```

```
\begin{array}{l} \text{point fixe} = \text{\'el\'ement } i \in \llbracket 1, n \rrbracket \text{ t.q. } \sigma(i) = i \\ \text{point mobile} = \text{\'el\'ement } i \in \llbracket 1, n \rrbracket \text{ t.q. } \sigma(i) \neq i \\ \text{support} = \text{ensemble des points mobiles de } \sigma \text{ (not\'e Supp}(\sigma)) \end{array}
```

```
transposition = permutation ayant exactement 2 points mobiles (et donc exactement n-2 points fixes) si Supp(\tau) = \{i, j\}, on note \tau = (i j)
```

```
\begin{array}{l} \mbox{point fixe} = \mbox{\'el\'ement } i \in [\![1,n]\!] \mbox{ t.q. } \sigma(i) = i \\ \mbox{point mobile} = \mbox{\'el\'ement } i \in [\![1,n]\!] \mbox{ t.q. } \sigma(i) \neq i \\ \mbox{support} = \mbox{ensemble des points mobiles de } \sigma \mbox{ (not\'e Supp}(\sigma)) \end{array}
```

```
transposition = permutation ayant exactement 2 points mobiles (et donc exactement n-2 points fixes) si Supp(\tau) = \{i, j\}, on note \tau = (i, j)
```

```
action par produit à gauche : si \sigma \in \mathfrak{S}_n, alors  (\mathfrak{i}\,\mathfrak{j})\;\sigma = (\mathfrak{i}\,\mathfrak{j})\circ\sigma\; :\; k \longmapsto \begin{cases} \mathfrak{i} & \text{si } k = \sigma^{-1}(\mathfrak{j}) \\ \mathfrak{j} & \text{si } k = \sigma^{-1}(\mathfrak{i}) \\ \sigma(k) & \text{sinon} \end{cases}
```



```
point fixe = élément i \in [1, n] t.q. \sigma(i) = i
point mobile = élément i \in [1, n] t.q. \sigma(i) \neq i
support = ensemble des points mobiles de \sigma (noté Supp(\sigma))
```

```
transposition = permutation ayant exactement 2 points mobiles (et donc exactement n-2 points fixes) si Supp(\tau) = \{i, j\}, on note \tau = (i, j)
```

```
action par produit à gauche : si \sigma \in \mathfrak{S}_n, alors  (\mathfrak{i}\,\mathfrak{j})\,\sigma = (\mathfrak{i}\,\mathfrak{j})\circ\sigma \,:\, k \longmapsto \begin{cases} \mathfrak{i} & \text{si } k = \sigma^{-1}(\mathfrak{j}) \\ \mathfrak{j} & \text{si } k = \sigma^{-1}(\mathfrak{i}) \\ \sigma(k) & \text{sinon} \end{cases}  = échange des valeurs \mathfrak{i} et \mathfrak{j}
```



```
point fixe = élément i \in [1, n] t.q. \sigma(i) = i
point mobile = élément i \in [1, n] t.q. \sigma(i) \neq i
support = ensemble des points mobiles de \sigma (noté Supp(\sigma))
```

```
transposition = permutation ayant exactement 2 points mobiles (et donc exactement n-2 points fixes) si Supp(\tau) = \{i, j\}, on note \tau = (i, j)
```

action par produit à droite : si 
$$\sigma \in \mathfrak{S}_n$$
, alors 
$$\sigma \ (\mathfrak{i} \ \mathfrak{j}) = \sigma \circ (\mathfrak{i} \ \mathfrak{j}) \ : \ k \longmapsto \begin{cases} \sigma(\mathfrak{j}) & \text{si } k = \mathfrak{i} \\ \sigma(\mathfrak{i}) & \text{si } k = \mathfrak{j} \\ \sigma(k) & \text{sinon} \end{cases}$$

#### Transpositions

```
\begin{array}{l} \text{point fixe} = \text{\'el\'ement } i \in \llbracket 1, n \rrbracket \text{ t.q. } \sigma(i) = i \\ \text{point mobile} = \text{\'el\'ement } i \in \llbracket 1, n \rrbracket \text{ t.q. } \sigma(i) \neq i \\ \text{support} = \text{ensemble des points mobiles de } \sigma \text{ (not\'e Supp}(\sigma)) \end{array}
```

```
transposition = permutation ayant exactement 2 points mobiles (et donc exactement n-2 points fixes) si Supp(\tau) = \{i, j\}, on note \tau = (i j)
```

```
action par produit à droite : si \sigma \in \mathfrak{S}_n, alors \sigma \ (i \ j) = \sigma \circ (i \ j) \ : \ k \longmapsto \begin{cases} \sigma(j) & \text{si } k = i \\ \sigma(i) & \text{si } k = j \\ \sigma(k) & \text{sinon} \end{cases} = échange des éléments en positions i et j
```

#### Lemme

toute permutation  $\sigma$  possède une unique décomposition en produit de transpositions  $(a_1\ b_1)(a_2\ b_2)\dots (a_\ell\ b_\ell)$  avec la contrainte :

$$\forall i \leqslant \ell, \ a_i < b_i \quad \textit{et} \quad a_1 < a_2 < \dots < a_\ell$$

#### Lemme

toute permutation  $\sigma$  possède une unique décomposition en produit de transpositions  $(a_1\ b_1)(a_2\ b_2)\dots(a_\ell\ b_\ell)$  avec la contrainte :  $\forall i\leqslant \ell,\ a_i< b_i\ et\ a_1< a_2<\dots< a_\ell$ 

De manière équivalente,  $\sigma=\tau_1\dots\tau_n$  avec pour chaque i:  $\tau_i=id\ \ \text{ou}\ \ \tau_i=(i\ b_i)\ \text{avec}\ b_i>i \\ \Longrightarrow \ \text{le nombre de tels produits est donc exactement}\ n!$ 

#### Lemme

toute permutation  $\sigma$  possède une unique décomposition en produit de transpositions  $(a_1\ b_1)(a_2\ b_2)\dots(a_\ell\ b_\ell)$  avec la contrainte :  $\forall i \leq \ell,\ a_i < b_i\ et\ a_1 < a_2 < \dots < a_\ell$ 

De manière équivalente,  $\sigma = \tau_1 \dots \tau_n$  avec pour chaque  $i: \tau_i = id$  ou  $\tau_i = (i \ b_i)$  avec  $b_i > i$   $\Longrightarrow$  le nombre de tels produits est donc exactement n!

Ou encore : tout tableau peut être trié en échangeant l'élément en position 1 avec l'élément en position  $b_1$ , puis l'élément en position 2 avec l'élément en position  $b_2$ , ...



#### Lemme

toute permutation  $\sigma$  possède une unique décomposition en produit de transpositions  $(a_1\ b_1)(a_2\ b_2)\dots (a_\ell\ b_\ell)$  avec la contrainte :

$$\forall i \leqslant \ell, \ a_i < b_i \quad \textit{et} \quad a_1 < a_2 < \dots < a_\ell$$

De manière équivalente,  $\sigma = \tau_1 \dots \tau_n$  avec pour chaque i :

$$\tau_i = id$$
 ou  $\tau_i = (i \ b_i)$  avec  $b_i > i$ 

 $\implies$  le nombre de tels produits est donc exactement n!

Ou encore : tout tableau peut être trié en échangeant l'élément en position 1 avec l'élément en position  $b_1$ , puis l'élément en position 2 avec l'élément en position  $b_2$ , ...

#### Démonstration.

C'est exactement ce que fait le tri par sélection (version en place)...



## RandomPermutation(n)

construire une des n! permutations de taille n selon la loi de probabilité uniforme

### RandomPermutation(n)

construire une des n! permutations de taille n selon la loi de probabilité uniforme

(i.e. : si on exécute tous les comportements (aléatoires) possibles, chaque permutation doit être obtenue le même nombre de fois)

#### RandomPermutation(n)

construire une des n! permutations de taille n selon la loi de probabilité uniforme

(i.e. : si on exécute tous les comportements (aléatoires) possibles, chaque permutation doit être obtenue le même nombre de fois)

Principe : mimer un tri par sélection, en remplaçant la recherche de l'indice du minimum par le tirage aléatoire d'un indice dans le bon intervalle

#### RandomPermutation(n)

construire une des n! permutations de taille n selon la loi de probabilité uniforme

(i.e.: si on exécute tous les comportements (aléatoires) possibles, chaque permutation doit être obtenue le même nombre de fois)

```
from random import randint # générateur uniforme d'entiers
def randomPerm(n) :
   T = [ i+1 for i in range(n) ] # T = [ 1, 2, ..., n ]
   for i in range(n-1) :
        r = randint(i, n-1) # entier aléatoire dans [i, n-1]
        if i != r : T[i], T[r] = T[r], T[i]
   return T
```

#### Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations

#### Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations

#### Lemme

le nombre de permutations de taille n est n!

#### Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations

#### Lemme

le nombre de permutations de taille n est n!

## Corollaire

un algorithme de tri doit avoir n! comportements différents sur les entrées de taille n

#### Lemme

un algorithme de tri par comparaisons est correct si et seulement s'il trie correctement toutes les permutations

#### Lemme

le nombre de permutations de taille n est n!

#### Corollaire

un algorithme de tri doit avoir n! comportements différents sur les entrées de taille n

## Corollaire

un algorithme de tri par comparaisons fait au moins  $\log_2 n!$  comparaisons dans le pire cas parmi les entrées de taille n

## Corollaire

un algorithme de tri par comparaisons fait au moins  $\log_2 n!$  comparaisons dans le pire cas parmi les entrées de taille n

## Corollaire

un algorithme de tri par comparaisons fait au moins  $\log_2 n!$  comparaisons dans le pire cas parmi les entrées de taille n

Question: c'est gros comment, log<sub>2</sub> n!?

#### Corollaire

un algorithme de tri par comparaisons fait au moins  $\log_2 n!$  comparaisons dans le pire cas parmi les entrées de taille n

Question: c'est gros comment, log<sub>2</sub> n!?

## Théorème

 $\log_2 n! \in \Theta(n \log n)$ 

# BORNE INFÉRIEURE POUR LA COMPLEXITÉ DES TRIS PAR COMPARAISONS

#### Corollaire

un algorithme de tri par comparaisons fait au moins  $\log_2 n!$  comparaisons dans le pire cas parmi les entrées de taille n

Question: c'est gros comment, log<sub>2</sub> n!?

# Théorème

 $\log_2 n! \in \Theta(n \log n)$ 

# Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en

 $\Omega(n \log n)$ 

## Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en  $\Omega(n \log n)$ 

## Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en  $\Omega(n \log n)$ 

Rappel : le tri par sélection est de complexité  $\Theta(n^2)$  dans tous les cas, de même que le tri par insertion dans le pire cas

## Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en  $\Omega(n \log n)$ 

Rappel : le tri par sélection est de complexité  $\Theta(n^2)$  dans tous les cas, de même que le tri par insertion dans le pire cas

Questions:

## Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en  $\Omega(n \log n)$ 

Rappel : le tri par sélection est de complexité  $\Theta(n^2)$  dans tous les cas, de même que le tri par insertion dans le pire cas

#### Questions:

 existe-t-il des algorithmes de tri de complexité Θ(n log n) en moyenne? dans le pire cas?

## Corollaire

la complexité dans le pire cas (et en moyenne) d'un algorithme de tri par comparaisons est en  $\Omega(n \log n)$ 

Rappel : le tri par sélection est de complexité  $\Theta(n^2)$  dans tous les cas, de même que le tri par insertion dans le pire cas

#### Questions:

- existe-t-il des algorithmes de tri de complexité Θ(n log n) en moyenne? dans le pire cas?
- quid de la complexité en moyenne du tri par insertion?

tri utilisant la stratégie « diviser-pour-régner »

tri utilisant la stratégie « diviser-pour-régner »

# Étape élémentaire : la fusion de listes triées

tri utilisant la stratégie « diviser-pour-régner »

# Étape élémentaire : la fusion de listes triées 2 3 6 8 4 5 7 1

tri utilisant la stratégie « diviser-pour-régner »



tri utilisant la stratégie « diviser-pour-régner »



tri utilisant la stratégie « diviser-pour-régner »



#### Tri par fusion

tri utilisant la stratégie « diviser-pour-régner »

# Étape élémentaire : la fusion de listes triées

 $\boxed{1}\boxed{2}\boxed{3}\boxed{4}\boxed{5}$ 

tri utilisant la stratégie « diviser-pour-régner »



tri utilisant la stratégie « diviser-pour-régner »

# Étape élémentaire : la fusion de listes triées

8

tri utilisant la stratégie « diviser-pour-régner »

Étape élémentaire : la fusion de listes triées

 $\fbox{1} \fbox{2} \fbox{3} \fbox{4} \fbox{5} \fbox{6} \fbox{7} \fbox{8}$ 

tri utilisant la stratégie « diviser-pour-régner »

# Étape élémentaire : la fusion de listes triées

2 3 6 8 1 4 5 7

1 2 3 4 5 6 7 8

# Étape élémentaire : la fusion de listes triées

```
def fusion(L1, L2) :  # version récursive (mal écrite)
  if len(L1) == 0 : return L2
  elif len(L2) == 0 : return L1
  elif L1[0] < L2[0] :
    return [L1[0]] + fusion(L1[1:], L2)
  else :
    return [L2[0]] + fusion(L1, L2[1:])</pre>
```

# Étape élémentaire : la fusion de listes triées

```
def fusion(L1, L2) :  # version récursive (mal écrite)
  if len(L1) == 0 : return L2
  elif len(L2) == 0 : return L1
  elif L1[0] < L2[0] :
    return [L1[0]] + fusion(L1[1:], L2)
  else :
    return [L2[0]] + fusion(L1, L2[1:])</pre>
```

 $\implies$  complexité  $\Theta(n)$ , où n est la taille de la liste fusionnée

# Étape élémentaire : la fusion de listes triées

```
def fusion(L1, L2) :  # version récursive (mal écrite)
  if len(L1) == 0 : return L2
  elif len(L2) == 0 : return L1
  elif L1[0] < L2[0] :
    return [L1[0]] + fusion(L1[1:], L2)
  else :
    return [L2[0]] + fusion(L1, L2[1:])</pre>
```

 $\implies$  complexité  $\Theta(n)$ , où n est la taille de la liste fusionnée

(enfin, pas telle que la fonction est écrite ci-dessus : chaque appel récursif travaille sur une *copie* de l'une des deux listes... mais c'est facile à résoudre en dérécursivant la fonction ou en passant les indices de début et fin en paramètre)

Exemple d'exécution complète :

 $\boxed{3\ 5\ 7\ 1\ 6\ 4\ 2}$ 

## Exemple d'exécution complète :

3 5 7 1 6 4 2









#### Exemple d'exécution complète :









4









## Exemple d'exécution complète :

1 3 5 7 6 4 2

## Exemple d'exécution complète :

 1
 3
 5
 7
 6
 4
 2



#### Exemple d'exécution complète :

 1
 3
 5
 7
 4
 6
 2











#### Exemple d'exécution complète :



 $oxed{2}$   $oxed{4}$   $oxed{6}$ 







#### Exemple d'exécution complète :



 $oxed{1} oxed{2} oxed{3}$ 







# Exemple d'exécution complète :



Exemple d'exécution complète :

1234567

## Exemple d'exécution complète :

1 2 3 4 5 6 7

# Récapitulatif des étapes de fusion :



```
def tri_fusion(T) : # version trop naïve
  if len(T) < 2 : return T
  else :
    milieu = len(T)//2
    gauche = tri_fusion(T[:milieu])
    droite = tri_fusion(T[milieu:])
    return fusion(gauche, droite)</pre>
```

#### Tri par fusion

```
def tri_fusion(T) : # version trop naïve
  if len(T) < 2 : return T
  else :
    milieu = len(T)//2
    gauche = tri_fusion(T[:milieu])
    droite = tri_fusion(T[milieu:])
    return fusion(gauche, droite)</pre>
(encore beaucoup de recopies de tableaux inutiles...)
```

#### Tri par fusion

```
def tri_fusion(T, debut, fin) :
    ''' trie T entre les indices debut (inclus) et fin (exclue) '''
    if fin - debut < 2 : return T[debut:fin]
    else :
        milieu = (debut + fin)//2
        gauche = tri_fusion(T, debut, milieu)
        droite = tri_fusion(T, milieu, fin)
        return fusion(gauche, droite)</pre>
```







**4** 🗗 ▶



 $\frac{n}{2}$  comparaisons

entre  $\frac{n}{2}$  et n-1 comparaisons

n-1 comparaiso



# Théorème

Le tri fusion d'un tableau de taille n s'effectue en  $\Theta(n \log n)$  comparaisons

## Théorème

Le tri fusion d'un tableau de taille n s'effectue en  $\Theta(n \log n)$  comparaisons

# Corollaire

Le tri fusion est un tri par comparaison asymptotiquement optimal

## Théorème

Le tri fusion d'un tableau de taille n s'effectue en  $\Theta(n \log n)$  comparaisons

# Corollaire

Le tri fusion est un tri par comparaison asymptotiquement optimal

# Points négatifs

- $\Theta(n \log n)$  comparaisons dans tous les cas (et jamais moins)
- ullet la constante cachée dans le  $\Theta$  est importante
- ne trie pas en place : complexité en espace  $\in \Theta(n)$