CS-E5885 Modeling biological networks Diffusion processes

Harri Lähdesmäki

Department of Computer Science Aalto University

January 21, 2022

Outline

- Diffusion processes
- ► Stochastic differential equations
- ► Chemical Langevin equation
- ► Reading (see references at the end):
 - ▶ This lecture follows closely Sections 5.5 and 8.3 from (Wilkinson, 2011)

Diffusion processes

- Continuous-time Markov chain with continuous state space are called diffusion processes
- ► Motivation:
 - ▶ Diffusion processes provide a good approximation to biochemical reaction networks
 - ▶ Continuous state space models are easier to work with
- ► This lecture covers a non-technical introduction to diffusion processes

Brownian motion

- \blacktriangleright A univariate Brownian motion B is a continuous-time process defined for t>0 as follows
 - 1. $B_0 = 0$
 - 2. $B_t B_s \sim N(0, t s), \forall t > s$
 - 3. The increment $B_t B_s$ is independent of the increment of a non-overlapping time interval $B_{t'} B_{s'}$, $\forall t > s \geq t' > s'$

Brownian motion

- \triangleright A univariate Brownian motion B is a continuous-time process defined for t > 0 as follows
 - 1. $B_0 = 0$
 - 2. $B_t B_s \sim N(0, t s), \forall t > s$
 - 3. The increment B_t-B_s is independent of the increment of a non-overlapping time interval $B_{t'}-B_{s'}$, $\forall t>s\geq t'>s'$
- From property 2, we see that
 - $ightharpoonup B_t \sim N(0,t)$
 - ▶ If for a small time increment Δt we define process increment $\Delta B = B_{t+\Delta t} B_t$, then

$$\Delta B \sim N(0, \Delta t)$$

 Process increment for a small time increment provides a simulation method for Brownian motion (at fixed time points)

$$B_0 = 0, \;\; B_{\Delta t} = \Delta B^{(1)}, \;\; B_{2\Delta t} = B_{\Delta t} + \Delta B^{(2)}, \;\; B_{3\Delta t} = B_{2\Delta t} + \Delta B^{(3)}, \ldots$$

where $\Delta B^{(i)}$ values denote realizations of the Gaussian-distributed process increment ΔB at each time increment

Brownian motion illustration

Figure: Brownian motion illustration

Diffusion process in 1-dimension

ightharpoonup A 1-dimensional Itô diffusion process X_t is governed by a stochastic differential equation (SDE) of the form

$$dX_t = \underbrace{\mu(X_t)dt}_{\text{deterministic}} + \underbrace{\sigma(X_t)dB_t}_{\text{stochastic}}$$

Diffusion process in 1-dimension

ightharpoonup A 1-dimensional Itô diffusion process X_t is governed by a stochastic differential equation (SDE) of the form

$$dX_t = \underbrace{\mu(X_t)dt}_{\text{deterministic}} + \underbrace{\sigma(X_t)dB_t}_{\text{stochastic}}$$

- ► SDE interpretation is that
 - 1. The process is Markovian
 - 2. The infinitesimal mean of the process is $\mu(X_t)$
 - 3. The infinitesimal variance of the process is $\sigma^2(X_t)$

Diffusion process approximation

▶ In 1-D, given the value of X_t , we can see easily that the process dynamics

$$dX_t = \underbrace{\mu(X_t)dt}_{\text{deterministic}} + \underbrace{\sigma(X_t)dB_t}_{\text{stochastic}}$$

for a small time increment Δt are distributed approximately as

$$\Delta X_t = X_{t+\Delta t} - X_t \sim N(E(\Delta X_t), Var(\Delta X_t)),$$

$$E(\Delta X_t) = \mu(X_t)\Delta t$$
 and $Var(\Delta X_t) = \sigma^2(X_t)\Delta t$

Diffusion approximation example

- ▶ Recall the immigration-death process from Lecture 2 (Wilkinson, 2011, Section 5.4.3)
- ▶ For an infinitesimal time increment dt (when the state at time t is $x \in \mathbb{Z}_{\geq 0}$)

$$P(X_{t+dt} = x - 1) = x\mu dt$$

$$P(X_{t+dt} = x) = 1 - (\lambda + x\mu) dt$$

$$P(X_{t+dt} = x + 1) = \lambda dt$$

Diffusion approximation example

- ▶ Recall the immigration-death process from Lecture 2 (Wilkinson, 2011, Section 5.4.3)
- lacktriangle For an infinitesimal time increment dt (when the state at time t is $x\in\mathbb{Z}_{\geq 0}$)

$$P(X_{t+dt} = x - 1) = x\mu dt$$

$$P(X_{t+dt} = x) = 1 - (\lambda + x\mu) dt$$

$$P(X_{t+dt} = x + 1) = \lambda dt$$

▶ The same equations hold for the process updates

$$P(dX_t = -1) = x\mu dt$$

$$P(dX_t = 0) = 1 - (\lambda + x\mu) dt$$

$$P(dX_t = 1) = \lambda dt$$

Diffusion approximation example (2)

▶ We can compute explicitly the expectation and variance of the process increments, i.e.

$$E(dX_t) = \sum_{dX_t} dX_t \cdot P(dX_t)$$

$$= -1 \cdot x\mu dt + 0 \cdot (1 - (\lambda + x\mu)dt) + 1 \cdot \lambda dt$$

$$= (\lambda - x\mu)dt$$

Diffusion approximation example (2)

▶ We can compute explicitly the expectation and variance of the process increments, i.e.

$$E(dX_t) = \sum_{dX_t} dX_t \cdot P(dX_t)$$

$$= -1 \cdot x\mu dt + 0 \cdot (1 - (\lambda + x\mu)dt) + 1 \cdot \lambda dt$$

$$= (\lambda - x\mu)dt$$

$$Var(dX_t) = \sum_{dX_t} (dX_t - E(dX_t))^2 \cdot P(dX_t) = \dots = (\lambda + x\mu)dt$$

Diffusion approximation example (2)

▶ We can compute explicitly the expectation and variance of the process increments, i.e.

$$E(dX_t) = \sum_{dX_t} dX_t \cdot P(dX_t)$$

$$= -1 \cdot x\mu dt + 0 \cdot (1 - (\lambda + x\mu)dt) + 1 \cdot \lambda dt$$

$$= (\lambda - x\mu)dt$$

$$Var(dX_t) = \sum_{dX_t} (dX_t - E(dX_t))^2 \cdot P(dX_t) = \dots = (\lambda + x\mu)dt$$

▶ Using the approximation $\Delta X_t \sim N(E(\Delta X_t), Var(\Delta X_t))$, we obtain a diffusion approximation for the immigration-death process

$$dX_t = (\lambda - x\mu)dt + \sqrt{\lambda + x\mu}dB_t$$

Diffusion approximation example (3)

▶ A realization of the diffusion approximation of the immigration-death process

Figure 5.10 A single realisation of the diffusion approximation to the immigration-death process with parameters $\lambda=1$ and $\mu=0.1$, initialised at X(0)=0. Note that this realisation appears to dip below zero near the time origin.

Figure: Figure 5.10 from (Wilkinson, 2011)

Wiener process

- ▶ A *d*-dimensional Brownian motion *W* (often called Wiener process) has *d* independent components, each of which is a univariate Brownian motion
- ► Thus,
 - 1. $W_0 = 0$ (zero-vector of length d)
 - 2. $W_t W_s \sim N(0, (t-s) \cdot I_d)$, $\forall t > s$ (I_d is the identity matrix with size d)
 - 3. The increment $W_t W_s$ is independent of the increment $W_{t'} W_{s'}$, $\forall t > s \geq t' > s'$

Wiener process

- ▶ A *d*-dimensional Brownian motion *W* (often called Wiener process) has *d* independent components, each of which is a univariate Brownian motion
- ► Thus,
 - 1. $W_0 = 0$ (zero-vector of length d)
 - 2. $W_t W_s \sim N(0, (t-s) \cdot I_d), \forall t > s \ (I_d \text{ is the identity matrix with size } d)$
 - 3. The increment $W_t W_s$ is independent of the increment $W_{t'} W_{s'}$, $\forall t > s \geq t' > s'$
- As with the univariate Brownian motion, for small time increment Δt we can define a process increment

$$\Delta W_t = W_{t+\Delta t} - W_t \sim N(0, \Delta t \cdot I_d)$$

which again provides a simulation algorithm (with fixed time points/increments)

$$W_0 = 0, \quad W_{\Delta t} = \Delta W^{(1)}, \quad W_{2\Delta t} = W_{\Delta t} + \Delta W^{(2)}, \quad W_{3\Delta t} = W_{2\Delta t} + \Delta W^{(3)}, \dots$$

where $\Delta W^{(i)}$ values denote realizations of the Gaussian-distributed process increment ΔW

Wiener process illustration

Figure: Wiener process illustration

Stochastic differential equation model

ightharpoonup A *d*-dimensional Itô diffusion process X_t is governed by a stochastic differential equation (SDE) model of the form

$$dX_t = \mu(X_t)dt + \Psi(X_t)dW_t,$$

- $lacksquare X_t \in \mathbb{R}^d$ is the state vector in continuous space
- $m{\mu} \; : \; \mathbb{R}^d
 ightarrow \mathbb{R}^d$ is a deterministic drift function / vector
- ullet Ψ : $\mathbb{R}^d o \mathbb{R}^d imes \mathbb{R}^d$ is a (d imes d)-dimensional diffusion matrix
- $ightharpoonup W_t$ is a *d*-dimensional Wiener process

Stochastic differential equation model

ightharpoonup A *d*-dimensional Itô diffusion process X_t is governed by a stochastic differential equation (SDE) model of the form

$$dX_t = \mu(X_t)dt + \Psi(X_t)dW_t,$$

- $lacksquare X_t \in \mathbb{R}^d$ is the state vector in continuous space
- $m{\mu} \; : \; \mathbb{R}^d
 ightarrow \mathbb{R}^d$ is a deterministic drift function / vector
- ullet Ψ : $\mathbb{R}^d o \mathbb{R}^d imes \mathbb{R}^d$ is a (d imes d)-dimensional diffusion matrix
- $ightharpoonup W_t$ is a *d*-dimensional Wiener process
- ▶ Loosely speaking, the SDE can be considered as a recipe for constructing a realization of X_t from a realization of a d-dimensional Wiener process

Stochastic differential equation model

ightharpoonup A *d*-dimensional Itô diffusion process X_t is governed by a stochastic differential equation (SDE) model of the form

$$dX_t = \mu(X_t)dt + \Psi(X_t)dW_t,$$

where

- $X_t \in \mathbb{R}^d$ is the state vector in continuous space
- $\mu : \mathbb{R}^d \to \mathbb{R}^d$ is a deterministic drift function / vector
- $\Psi: \mathbb{R}^d \to \mathbb{R}^d imes \mathbb{R}^d$ is a (d imes d)-dimensional diffusion matrix
- $ightharpoonup W_t$ is a d-dimensional Wiener process
- ▶ Loosely speaking, the SDE can be considered as a recipe for constructing a realization of X_t from a realization of a d-dimensional Wiener process
- ▶ The diffusion process approximation for the 1-D model discussed above generalizes directly to multivariate processes, i.e., given the value of X_t

$$\Delta X_t = X_{t+\Delta t} - X_t \sim N(E(\Delta X_t), Var(X_t)),$$

$$E(\Delta X_t) = \mu(X_t) \Delta t$$
 and $Var(X_t) = \Sigma(X_t) \Delta t = \Psi(X_t) \Psi(X_t)^T \Delta t$

Euler-Maruyama algorithm

▶ If we define the increment in the diffusion process X_t using a small time increment Δt , then SDE can be interpreted as the limit (w.r.t. Δt) of the following difference equation

$$\Delta X_t = X_{t+\Delta t} - X_t = \mu(X_t) \Delta t + \Psi(X_t) \Delta W_t$$

Euler-Maruyama algorithm

▶ If we define the increment in the diffusion process X_t using a small time increment Δt , then SDE can be interpreted as the limit (w.r.t. Δt) of the following difference equation

$$\Delta X_t = X_{t+\Delta t} - X_t = \mu(X_t) \Delta t + \Psi(X_t) \Delta W_t$$

 \blacktriangleright For finite Δt this leads to the Euler-Maruyama algorithm for simulating SDEs

$$X_{t+\Delta t} = X_t + \mu(X_t)\Delta t + \Psi(X_t)\Delta W_t,$$

where again $\Delta W_t \sim N(0, \Delta t \cdot I_d)$

Euler-Maruyama algorithm

▶ If we define the increment in the diffusion process X_t using a small time increment Δt , then SDE can be interpreted as the limit (w.r.t. Δt) of the following difference equation

$$\Delta X_t = X_{t+\Delta t} - X_t = \mu(X_t) \Delta t + \Psi(X_t) \Delta W_t$$

 \blacktriangleright For finite Δt this leads to the Euler-Maruyama algorithm for simulating SDEs

$$X_{t+\Delta t} = X_t + \mu(X_t)\Delta t + \Psi(X_t)\Delta W_t,$$

where again $\Delta W_t \sim N(0, \Delta t \cdot I_d)$

The above equation can be applied recursively (from initial value X_{init} at time t=0 or other initial time) to obtain a value of the process for time points $0, \Delta t, 2\Delta t, \ldots$

$$egin{aligned} X_0 &= X_{\mathsf{init}} \ X_{\Delta t} &= X_0 + \mu(X_0) \Delta t + \Psi(X_0) \Delta W^{(0)} \ X_{2\Delta t} &= X_{\Delta t} + \mu(X_{\Delta t}) \Delta t + \Psi(X_{\Delta t}) \Delta W^{(1)}, \ldots \end{aligned}$$

where $\Delta W^{(i)}$ values are realizations of $N(0, \Delta t \cdot I_d)$

Illustration of Euler-Maruyama

 Consider dynamics of a stochastic variant of a so-called Van der Pol system defined as the following SDE

$$dX_t = \mu(X_t)dt + \Psi(X_t)dW_t,$$

where

- $lacksymbol{ iny} X_t = (X_{t1}, X_{t2})^T \in \mathbb{R}^2$ is the state vector in continuous space
- $m{\mu} \; : \; \mathbb{R}^2
 ightarrow \mathbb{R}^2$ is a deterministic drift function / vector

$$\mu\left(\left[\begin{array}{c}X_{t1}\\X_{t2}\end{array}\right]\right)=\left[\begin{array}{c}X_{t2}\\(1-X_{t1})^2X_{t2}-X_{t1}\end{array}\right]$$

ullet Ψ : $\mathbb{R}^d o \mathbb{R}^d imes \mathbb{R}^d$ is a (d imes d)-dimensional diffusion matrix

$$\Psi(X_t) = \sigma^2 \cdot I_2 \text{ or } \Psi(X_t) = N(X_t | (-2, 0)^T, I_2)$$

(in the latter the diffusion function is just the value of the normal density at X_t , not a random variable)

 $ightharpoonup W_t$ is a *d*-dimensional Wiener process

Illustration of Euler-Maruyama (2)

Figure: Dynamics of stochastic Van der Pol simulated by the Euler-Maruyama (Yildiz et al., 2018)

Chemical Langevin equation

- Motivation: use diffusion approximation of the true process to accelerate simulation of biochemical reaction networks
- ► Recall:
 - ▶ For coupled chemical reaction networks: $X^* = X + Sr$ or $\Delta X = Sr$
 - ▶ The Poisson timestep (approximative) simulation method

Chemical Langevin equation

- Motivation: use diffusion approximation of the true process to accelerate simulation of biochemical reaction networks
- ► Recall:
 - ▶ For coupled chemical reaction networks: $X^* = X + Sr$ or $\Delta X = Sr$
 - ▶ The Poisson timestep (approximative) simulation method
- In an infinitesimal interval dt the change in state, dXt, is SdR_t , where dR_t is a v-vector whose ith element is a random variable with density

$$\operatorname{Po}(h_i(X_t,c_i)dt)$$

▶ Recall that for a random variable $Z \sim Po(\lambda)$ mean and variance are:

$$E(Z) = Var(Z) = \lambda$$

Chemical Langevin equation

- Motivation: use diffusion approximation of the true process to accelerate simulation of biochemical reaction networks
- ► Recall:
 - ▶ For coupled chemical reaction networks: $X^* = X + Sr$ or $\Delta X = Sr$
 - ▶ The Poisson timestep (approximative) simulation method
- In an infinitesimal interval dt the change in state, dXt, is SdR_t , where dR_t is a v-vector whose ith element is a random variable with density

$$Po(h_i(X_t,c_i)dt)$$

▶ Recall that for a random variable $Z \sim Po(\lambda)$ mean and variance are:

$$E(Z) = Var(Z) = \lambda$$

▶ Thus by matching the first two moments, mean and variance, we obtain

$$dR_t = h(X_t, c)dt + \operatorname{diag}\{\sqrt{h(X_t, c)}\}dW_t,$$

where
$$h(X, c) = (h_1(X, c_1), \dots, h_{\nu}(X, c_{\nu}))^T$$

Chemical Langevin equation (2)

▶ We now obtain the diffusion approximation

$$dX_t = SdR_t$$

$$= S\left(h(X_t, c)dt + \operatorname{diag}\{\sqrt{h(X_t, c)}\}dW_t\right)$$

$$= Sh(X_t, c)dt + S\operatorname{diag}\{\sqrt{h(X_t, c)}\}dW_t$$

▶ This is called the chemical Langevin equation

Chemical Langevin equation (2)

▶ We now obtain the diffusion approximation

$$dX_t = SdR_t$$

$$= S\left(h(X_t, c)dt + \operatorname{diag}\{\sqrt{h(X_t, c)}\}dW_t\right)$$

$$= Sh(X_t, c)dt + S\operatorname{diag}\{\sqrt{h(X_t, c)}\}dW_t$$

- This is called the chemical Langevin equation
- Notice that
 - $X_t \in \mathbb{R}^u$, where u denotes again the number of species
 - \triangleright S is the stoichiometric matrix that has size u-by-v, where v denotes the number of reactions
 - ▶ $h(X_t, c) \in \mathbb{R}_+^v$ is a vector that has length v
 - ▶ $\operatorname{diag}\{\sqrt{h(X_t,c)}\}$ is a matrix that has size v-by-v
 - $lacktriangledown dW_t \in \mathbb{R}^v$, i.e., a vector that has as many elements as there are reactions

Chemical Langevin equation (2)

▶ We now obtain the diffusion approximation

$$dX_t = SdR_t$$

$$= S\left(h(X_t, c)dt + \operatorname{diag}\{\sqrt{h(X_t, c)}\}dW_t\right)$$

$$= Sh(X_t, c)dt + S\operatorname{diag}\{\sqrt{h(X_t, c)}\}dW_t$$

- This is called the chemical Langevin equation
- Notice that
 - $X_t \in \mathbb{R}^u$, where u denotes again the number of species
 - ▶ S is the stoichiometric matrix that has size u-by-v, where v denotes the number of reactions
 - ▶ $h(X_t, c) \in \mathbb{R}_+^v$ is a vector that has length v
 - $\operatorname{diag}\{\sqrt{h(X_t,c)}\}$ is a matrix that has size v-by-v
 - $ightharpoonup dW_t \in \mathbb{R}^v$, i.e., a vector that has as many elements as there are reactions
- Notice that if there is no diffusion (Wiener process), then we retrieve the continuous deterministic model

$$dX_t = Sh(X_t, c)dt$$

References

- Darren J. Wilkinson, Stochastic Modelling for Systems Biology, Chapman & Hall/CRC, 2011
- ▶ Yildiz C, Heinonen M, Mannerström H, Intosalmi J, and Lähdesmäki H, Learning stochastic differential equations with Gaussian processes without gradient matching, In *IEEE International Workshop on Machine Learning for Signal Processing*, 2018.