

Systemy ekspertowe

Część piąta

Wnioskowanie w systemach regułowych

Autor

Roman Simiński

Kontakt

siminski@us.edu.pl
www.us.edu.pl/~siminski

Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa. Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niż nauka własna jest nielegalne. Dystrybuowanie tego opracowania lub jakiejkolwiek jego części oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Koncepcja systemu z bazą wiedzy - idea

Następuje zmiana filozofii tworzenia systemu. Zamiast klasycznego podejścia algorytmiczego (tzw. programowanie imperatywne):

Algorytmy + struktury danych = programy

Stosujemy podejście deklaratywne:

Wiedza + fakty + wnioskowanie = rozumowanie

Koncepcja systemu z bazą wiedzy - organizacja

- Wiedza ekspercka,
- wiedza książkowa,
- doświadczenie,
- eksperymenty,
- eksploracja danych
- **3**

Aktualne informacje o przedmiocie wnioskowania, np.:

- osobie,
- urządzeniu,
- organizacji,
-

Copyright © Roman Simiński

Strona: 3

System z bazą wiedzy

Koncepcja systemu z bazą wiedzy - czego oczekujemy?

- Wiedza ekspercka,
- wiedza książkowa,
- doświadczenie,
- eksperymenty,
- eksploracja danych
- **3**

Aktualne informacje o przedmiocie wnioskowania, np.:

- osobie,
- urządzeniu,
- organizacji,
- ...

Copyright © Roman Simiński

Strona: 4

Koncepcja systemu z bazą wiedzy - co możemy otrzymać?

Reprezentacja wiedzy w postaci reguł

Istnieje wiele formatów zapisu reguł. Koncepcja jest jednak zwykle ta sama:

Z wykorzystaniem zmiennych zdaniowych:

p – procesor się przegrzewa, q – sprawdź układ chłodzenia $p \rightarrow q$

Z wykorzystaniem predykatów:

P(x) – procesor komp. x się przegrzewa, Q(x) – sprawdź chłodzenie komp. x $P(x) \to Q(x)$

Z wykorzystaniem dwójek *atrybut-wartość*:

if stan_procesora = przegrzany
then akcja_serwisowa = sprawdź_układ_chłodzenia

Przykłady różnych reguł wykorzystujących dwójki atrybut-wartość

```
If cisnienie_oleju = niskie
Then rodzaj_awarii = wyciek_oleju
```

```
If rodzaj_awarii = wyciek_oleju
Then akcja_serwisowa = zatrzymaj_prace_urzadzenia
```

```
If kapital_wlasny = wysoki and cena_akcji = wysoka
Then ryzyko_inwestycyjne = niskie
```

```
If pierwiastek = metal and stan_skupienia = ciecz
Then nazwa = rtec
```

```
If rodzaj_trunku = whisky and ilosc_trunku = pol_litra_na_leb
Then samopoczucie_dnia_nastepnego = kac
```

Regułowa reprezentacja wiedzy pozwala na opisywanie związków przyczynowo—skutkowych, relacji, powiązań. Nie jest istotna dziedzina a charakter opisywanych powiązań.

Co to znaczy, że reguła jest spełniona?

Jeżeli przesłanki reguły są prawdziwe (inaczej mówiąc, są faktami) mówimy, że reguła jest *spełniona* i może zostać *uaktywniona* (odpalona). W wyniku uaktywnienia reguły, jej konkluzja staje sie nowym faktem.

```
\begin{array}{c}
\text{Modus} \\
\text{ponens}
\end{array}

\begin{array}{c}
p \to q \\
\hline
p \\
\hline
q
\end{array}
```

Fakty

stan_procesora = przegrzany

Reguly

r1: **if** stan_procesora = przegrzany **then** akcja_serwisowa = sprawdź_układ_chłodzenia

```
Odpalenie reguły r1

Fakty

stan_procesora = przegrzany

Nowy fakt → akcja_serwisowa = sprawdź_układ_chłodzenia
```

Wnioskowanie - na czym ono polega?

Wnioskowanie definiuje się na wiele różnych sposobów. Przyjmijmy, że:

- Proces wnioskowania polega na wypracowywaniu nowych stwierdzeń uznawanych za prawdziwe, opierając się na wiedzy zgromadzonej w bazie wiedzy oraz na wcześniej znanych stwierdzeniach.
- Proces wnioskowania odbywa się zgodnie z wybraną metodą wnioskowania, wywodzącą się najczęściej z nauk matematycznych logiki, rachunku prawdopodobieństwa, statystyki.

W systemach z bazą wiedzy proces wnioskowania jest realizowany przez *moduł* wnioskowania. W literaturze anglojęzycznej moduł ten znany jest jako *inference* engine.

Wnioskowanie - czego potrzebujemy?

Dwie podstawowe strategie wnioskowania

Powszechnie wykorzystuje się dwie metody wnioskowania:

Wnioskowanie *w przód*, zwane też wnioskowaniem *progresywnym*. Polega ono na uaktywnianiu reguł spełnionych, a więc takich, których przesłanki są w zbiorze faktów. Uaktywnienie reguły powoduje dopisanie nowego faktu, co może spowodować, że spełniona i potem uaktywniona może zostać kolejna reguła.

Wnioskowanie w przód nie może odbyć się bez faktów. Mówi się, że jest ono **sterowane faktami** (ang. *data driven*).

Wnioskowanie *wstecz*, zwane też *regresywnym*. Polega ono na potwierdzeniu prawdziwości postawionej *hipotezy*, zwanej *celem wnioskowania*. Hipoteza jest potwierdzona wtedy, gdy istnieje reguła, której przesłanki są w bazie faktów a konkluzja zgodna jest z hipotezą. Ustalenie prawdziwości przesłanek może powodować konieczność uaktywnienia wielu reguł.

Wnioskowanie wstecz nie może odbyć się bez ustalonej hipotezy, stanowiącej cel wnioskowania. Mówi się, że jest ono **sterowane celem** (ang. *goal driven*).

Fakty

przedmiot = nudny zmęczenie = tak

Dane wejściowe

Reguly

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: **if** wykład = nudny **and** zmęczenie = tak **then** co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Metody wnioskowania w systemach regułowych

Koncepcja wnioskowania w przód

Fakty

przedmiot = nudny zmęczenie = tak

Dane wejściowe

Szukamy reguł, których przesłanki są faktami

- r2: if wykładowca = nudny then wykład = nudny
- r3: **if** wykład = nudny **and** zmęczenie = tak then co_robić = iść do domu
- r4: **if** wykład = nudny **and** zmęczenie = nie **then** co $robi\acute{c} = i\acute{s}\acute{c}$ na piwo

Fakty

przedmiot = nudny zmęczenie = tak

Dane wejściowe

Reguly

r1: if przedmiot = nudny then wykład = nudny

r2: if wykładowca = nudny then wykład = nudny

r3: **if** wykład = nudny **and** zmęczenie = tak then co robić = iść do domu

r4: **if** wykład = nudny **and** zmęczenie = nie **then** co $robi\acute{c} = i\acute{s}\acute{c}$ na piwo

Fakty

przedmiot = nudny
zmęczenie = tak

Dane wejściowe

Jest jedna taka reguła – r1, uaktywniamy ją, dopisujemy nowy fakt

- r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*
- r3: **if** wykład = nudny **and** zmęczenie = tak **then** co_robić = iść_do_domu
- r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Reguly

r1: if przedmiot = nudny then wykład = nudny

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: **if** wykład = nudny **and** zmęczenie = tak **then** co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Metody wnioskowania w systemach regułowych

Koncepcja wnioskowania w przód

przedmiot = nudny zmęczenie = tak

Dane wejściowe

wukład = nudnu

Reguła r1 już zadziałała, wyłączamy ją z dalszych poszukiwań

- r2: if wykładowca = nudny then wykład = nudny
- r3: **if** wykład = nudny **and** zmęczenie = tak **then** *co_robić* = *iść_do domu*
- r4: **if** wykład = nudny **and** zmęczenie = nie **then** co $robi\acute{c} = i\acute{s}\acute{c}$ na piwo

Fakty

przedmiot = nudny
zmeczenie = tak

Dane wejściowe

wykład = nudny

Nowe fakty

Reguly

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: **if** wykład = nudny **and** zmęczenie = tak **then** co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Fakty

przedmiot = nudny
zmęczenie = tak

Dane wejściowe

wukład = nudnu

Ponownie szukamy reguł, których przesłanki są faktami

- r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*
- r3: **if** wykład = nudny **and** zmęczenie = tak **then** co_robić = iść_do_domu
- r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Fakty

przedmiot = nudny zmęczenie = tak

Dane wejściowe

wykład = nudny

Nowe fakty

Reguly

r1: **if** przedmiot = nudny **then** wykład = nudny

r2: if wykładowca = nudny then wykład = nudny

r3: if wykład = nudny and zmęczenie = tak then co robić = iść do domu

r4: **if** wykład = nudny **and** zmęczenie = nie **then** co $robi\acute{c} = i\acute{s}\acute{c}$ na piwo

Metody wnioskowania w systemach regułowych

Koncepcja wnioskowania w przód

Fakty

przedmiot = nudny zmęczenie = tak

Dane wejściowe

wukład = nudnu

Jest jedna taka regula – r3, uaktywniamy ją, dopisujemy nowy fakt

r2: if wykładowca = nudny then wykład = nudny

 \rightarrow r3: if wykład = nudny and zmęczenie = tak then co robić = iść do domu

r4: **if** wykład = nudny **and** zmęczenie = nie **then** co $robi\acute{c} = i\acute{s}\acute{c}$ na piwo

Fakty

przedmiot = nudny
zmęczenie = tak

Dane wejściowe

wykład = nudny co_robić = iść_do_domu

Nowe fakty

Reguly

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

```
Fakty
       przedmiot = nudny
                                            Dane wejściowe
       zmęczenie = tak
        wukład = nudnu
         Reguła r3 już zadziałała, wyłączamy ją
                 z dalszych poszukiwań
     r2: if wykładowca = nudny then wykład = nudny
     r3: if wykład = nudny and zmęczenie = tak
        then co robić = iść do domu
     r4: if wykład = nudny and zmęczenie = nie
        then co robi\acute{c} = i\acute{s}\acute{c} na piwo
```

Fakty

przedmiot = nudny
zmęczenie = tak

Dane wejściowe

wykład = nudny co_robić = iść_do_domu

Nowe fakty

Reguly

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Fakty

przedmiot = nudny
zmęczenie = tak

Dane wejściowe

Nie ma takich reguł vykład = nudny robić = iść_do_domu

Nowe fakty

- 1: **if** przedmiot = nudny **then** wykład = nudny
- r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*
- r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu
- r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Metody wnioskowania w systemach regułowych

Wynikiem wnioskowania w przód są nowe fakty

Algorytm wnioskowania w przód

Dane wejściowe:

Zbiór reguł: $R = \{r_1, r_2, ..., r_i, ..., r_m\}$

Zbiór faktów: $F = \{f_1, f_2, ..., f_i, ..., f_n\}$

Dane robocze:

Zbiór reguł spełnionych $S \subseteq R$, tzn. takich, których przesłanki są w zbiorze F.

Zbiór reguł aktywowanych $A \subseteq R$, tzn. takich, które zostały odpalone.

Dane wyjściowe:

Zbiór F rozszerzony o nowe fakty: f_{n+1} , f_{n+1} , ... f_k : $F = \{f_1, f_2, ... f_i, ... f_n, f_{n+1}, f_{n+1}, ... f_k\}$

Algorytm wnioskowania w przód

Algorytm:

Na podstawie F i R wyznacz zbiór S

While $S \neq \emptyset$ Do

Wybierz regułę $r_i \in S$ zgodnie z obowiązującą strategią doboru reguł

Uaktywnij regułę r_i i dopisz jej konkluzję do F

Dopisz regułę r_i do zbioru A

Na podstawie F i R - A wyznacz zbiór S

Endwhile

Modyfikacja algorytmu wnioskowania w przód

Wnioskowanie *w przód* generuje nowe fakty. W przypadku dużej liczby reguł liczba nowych faktów może rosnąć lawinowo. Powoduje to dwa problemy:

- Merytoryczny jak interpretować nowe fakty, których jest potencjalnie dużo? Czy wszystkie nowe fakty są użyteczne?
- Techniczny generowanie wszystkich możliwych faktów może być czasochłonne.

Aby ograniczyć zachłanność algorytmu wnioskowania w przód, można wprowadzić *cel wnioskowania*. Jeżeli w trakcie wnioskowania wygenerowany zostanie fakt zgodny z celem, wnioskowanie jest kończone.

Cel wnioskowania reprezentuje zatem informację, jaką chcemy od systemu uzyskać.

Metody wnioskowania w systemach regułowych

Modyfikacja algorytmu wnioskowania w przód

Dane wejściowe:

Zbiór regul: $R = \{r_1, r_2, ..., r_i, ..., r_m\}$

Zbiór faktów: $F = \{f_1, f_2, ..., f_i, ..., f_n\}$

Cel: g

Dane robocze:

Zbiór reguł spełnionych $S \subseteq R$, tzn. takich, których przesłanki są w zbiorze F.

Zbiór reguł aktywowanych $A \subseteq R$, tzn. takich, które zostały odpalone.

Dane wyjściowe:

Zbiór F rozszerzony o nowe fakty: $f_{n+1}, f_{n+1}, ... f_k$: $F = \{f_1, f_2, ... f_i, ... f_n, f_{n+1}, f_{n+1}, ... f_k\}$

Copyright © Roman Simiński

Strona: 32

Modyfikacja algorytmu wnioskowania w przód

Algorytm:

Na podstawie F i R wyznacz zbiór S

While $S \neq \emptyset$ And $g \notin F$ Do

Wybierz regułę $r_i \in S$ zgodnie z obowiązującą strategią doboru reguł

Uaktywnij regułę r_i i dopisz jej konkluzję do F

Dopisz regułę r_i do zbioru A

Na podstawie F i R - A wyznacz zbiór S

Endwhile

Copyright © Roman Simiński

Metody wnioskowania w systemach regułowych

Koncepcja wnioskowania wstecz

Wnioskowanie wstecz ma potwierdzić prawdziwość postawionej hipotezy.

Hipoteza ta staje się głównym celem wnioskowania.

Cel

co_robić = iść_do_domu

Hipoteza

Metody wnioskowania w systemach regułowych

Koncepcja wnioskowania wstecz

Cel

co robić = iść do domu

Hipoteza

Fakty

przedmiot = nudny zmęczenie = tak

Sprawdzamy czy cel wnioskowania nie jest czasem faktem

r2: if wykładowca = nudny then wykład = nudny

r3: **if** *wykład* = *nudny* **and** *zmęczenie* = *tak* then co robić = iść do domu

r4: **if** wykład = nudny **and** zmęczenie = nie then co_robić = iść_na_piwo

Koncepcja wnioskowania wstecz

Cel

co_robić = iść_do_domu

Hipoteza

Fakty

przedmiot = nudny zmęczenie = tak

Cel nie jest faktem, szukamy reguły której konkluzja pasuje do celu

r2: if wykładowca = nudny then wykład = nudny

r3: **if** wykład = nudny **and** zmęczenie = tak **then** co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Koncepcja wnioskowania wstecz

Cel

Hipoteza

Fakty

Reguly

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r4: **if** wykład = nudny **and** zmęczenie = nie **then** co_robić = iść_na_piwo

Cel

co_robić = iść_do_domu

Hipoteza

Fakty

przedmiot = nudny zmęczenie = tak

Reguła r3 potwierdzi hipotezę jeżeli jej przesłanki są prawdziwe, czyli są faktami

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: **if** wykład = nudny **and** zmęczenie = tak **then co_robić = iść_do_domu**

> r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Cel

co_robić = iść_do_domu

Hipoteza

Fakty

przedmiot = nudny zmęczenie = tak

Reguly

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: if wykładowca = nudny then wykład = nudny

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Cel

co_robić = iść_do_domu

Hipoteza

Fakty

przedmiot = nudny zmęczenie = tak

Warunek **wykład** = **nudny** niestety nie jest faktem, a może uda się taki fakt wywnioskować?

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Cel

co robić = iść do domu

Hipoteza

wykład = nudny

Hipoteza pośrednia

Fakty

przedmiot = nudny zmęczenie = tak

Reguly

r1: **if** przedmiot = nudny **then** wykład = nudny

r2: if wykładowca = nudny then wykład = nudny

r3: if wykład = nudny and zmęczenie = tak then co robić = iść do domu

r4: **if** wykład = nudny **and** zmęczenie = nie **then** $co_robi\acute{c} = i\acute{s}\acute{c}_na_piwo$

Cel $co_robić = iść_do_domu$ Hipotezawykład = nudnyHipoteza pośrednia

Fakty

Zawieszamy dowodzenie hipotezy głównej, stawiamy hipotezę pośrednią i staramy się ją dowieść

R

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu

> r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Cel $co_robi\acute{c} = i\acute{s}\acute{c}_do_domu$ Hipotezawykład = nudnyHipoteza pośrednia

Fakty

Szukamy reguły której konkluzja pasuje do celu pośredniego

R

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: if wykładowca = nudny then wykład = nudny

r3: if wykład = nudny and zmęczenie = tak then co robić = iść do domu

> r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Znaleźliśmy dwie takie reguły. Trzeba na razie wybrać jedną, wybieramy pierwszą w kolejności

Fakty

- r1: **if** przedmiot = nudny **then** wykład = nudny
- r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*
- r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu
 - r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Reguła r1 potwierdzi hipotezę pośrednią jeżeli jej przesłanki są prawdziwe, czyli są faktami

Fakty

- r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*
- r2: **if** wykładowca = nudny **then** wykład = nudny
- r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu
 - r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Cel co robić = iść do domu

Hipoteza

Hipoteza pośrednia

Fakty

przedmiot = nudny zmęczenie = tak

Reguly

r1: if przedmiot = nudny then wykład = nudny

r2: if wykładowca = nudny then wykład = nudny

r3: if wykład = nudny and zmęczenie = tak then co robić = iść do domu

r4: **if** wykład = nudny **and** zmęczenie = nie **then** $co_robi\acute{c} = i\acute{s}\acute{c}_na_piwo$

Metody wnioskowania w systemach regułowych

Koncepcja wnioskowania wstecz

Copyright © Roman Simiński Strona : 46

then $co_robi\acute{c} = i\acute{s}\acute{c}_na_piwo$

r4: **if** wykład = nudny **and** zmęczenie = nie

Fakty

Przesłanka jest w zbiorze faktów,
hipoteza pośrednia jest potwierdzona
i staje się faktem

r1: if przedmiot = nudny then wykład = nudny

r2: if wykładowca = nudny then wykład = nudny

r3: if wykład = nudny and zmęczenie = tak
then co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie

Copyright © Roman Simiński Strona: 47

then $co_robi\acute{c} = i\acute{s}\acute{c}_na_piwo$

Cel

co_robić = iść_do_domu

Hipoteza

wykład = nudny

Hipoteza pośrednia

Fakty

przedmiot = nudny zmęczenie = tak wykład = nudny

Reguly

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: if wykładowca = nudny then wykład = nudny

r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu

> r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Cel $co_robić = iść_do_domu$ Hipotezawykład = nudnyHipoteza pośrednia

Fakty

Wracamy do zawieszonego chwilowo dowodzenia głównego celu wnioskowania

R

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: if wykładowca = nudny then wykład = nudny

r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Cel

co robić = iść do domu

Hipoteza

wykład = nudny

Hipoteza pośrednia

Fakty

Warunek **wykład = nudny** jest faktem, sprawdzamy drugi warunek

r1: **if** przedmiot = nudny **then** wykład = nudny

r2: if wykładowca = nudny then wykład = nudny

r3: if wykład = nudny and zmęczenie = tak then co robić = iść do domu

r4: **if** wykład = nudny **and** zmęczenie = nie **then** $co_robi\acute{c} = i\acute{s}\acute{c}_na_piwo$

Cel $co_robi\acute{c} = i\acute{s}\acute{c}_do_domu$ Hipoteza wykład = nudny Hipoteza pośrednia Fakty przedmiot = nudny zmęczenie = tak wykład = nudny

Reguly

r1: **if** *przedmi*ot = *nudny* **then** *wykład* = *nudny*

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Cel

co robić = iść do domu

Hipoteza

wykład = nudny

Hipoteza pośrednia

Fakty

Oba warunki przesłanki są w zbiorze faktów, hipoteza główna jest potwierdzona i staje się faktem

r1: **if** przedmiot = nudny **then** wykład = nudny

r2: if wykladowca = nudny then wyklad = nudny

r3: if wykład = nudny and zmęczenie = tak then co robić = iść do domu

r4: **if** wykład = nudny **and** zmęczenie = nie **then** $co_robi\acute{c} = i\acute{s}\acute{c}_na_piwo$

Cel

co_robić = iść_do_domu

Hipoteza

wykład = nudny

Hipoteza pośrednia

Fakty

przedmiot = nudny zmęczenie = tak wykład = nudny **co_robić = iść_do_domu**

Reguly

r1: **if** *przedmiot* = *nudny* **then** *wykład* = *nudny*

r2: **if** *wykładowca* = *nudny* **then** *wykład* = *nudny*

r3: if wykład = nudny and zmęczenie = tak then co_robić = iść_do_domu

r4: if wykład = nudny and zmęczenie = nie then co_robić = iść_na_piwo

Wynikiem wnioskowania wstecz jest potwierdzenie (lub nie) postawionej hipotezy

Algorytm wnioskowania wstecz

Dane wejściowe:

Zbiór reguł:
$$R = \{r_1, r_2, ... r_i, ... r_m\}$$

Zbiór faktów:
$$F = \{f_1, f_2, ..., f_i, ..., f_n\}$$

Dane robocze:

Zbiór reguł konkurencyjnych $S \subseteq R$, tzn. takich, których konkluzje są zgodne z g.

Zbiór reguł aktywowanych $A \subseteq R$, tzn. takich, które zostały odpalone.

Dane wyjściowe:

Czy
$$g \in F$$
?

Algorytm wnioskowania wstecz

```
Function WnioskowanieWstecz( g ) : Boolean;
Begin
   If g \in F Then
        Hipoteza g jest potwierdzona
       return True
   Else
       Na podstawie g i R wyznacz zbiór S
       Repeat
            Wybierz regułę r_i \in S zgodnie z obowiązującą strategią doboru reguł
           przesłankaPrawdziwa = True
           Foreach przesłanka p reguły r_i Do
               przesłankaPrawdziwa := (p \in F)
               If Not przesłankaPrawdziwa Then
                   przesłankaPrawdziwa = WnioskowanieWstecz( p )
        Until przesłankaPrawdziwa Or S = \emptyset
   return przesłankaPrawdziwa
End
```