ABSTRACT

There is provided a liquid crystal display which exhibits preferable viewing angle characteristics even in a diagonal viewing angle. Optical retardation films of a first type that satisfy $n_{\rm x} > n_{\rm y}$, $n_{\rm z}$ and optical retardation films of a second type that satisfy $n_{\rm x} \cong n_{\rm y} > n_{\rm z}$ are used, and a setting is made to satisfy Rp-t = 2 × (-0.08 × R_{LC} + 58 nm + α) (α = ±30 nm) and Rt-t = (1.05 ± 0.05) × R_{LC} - 47 nm + β (-100 nm $\leq \beta \leq$ 47 nm) where Δ nd represents a retardation R_{LC} in the liquid crystal display; Rp-t represents the sum of retardations Rp in in-plane directions of a plurality of optical retardation films; and Rt-t represents the sum of retardations Rt in the direction of the thickness of the plurality of optical retardation films.