Overview

COMS 4771 Fall 2019

Overview

- ► What is machine learning?
- ► Basic topics/challenges in machine learning

0 / 24

Applications I

▶ Image classification: Predict bird species depicted in image

Applications II

► Recommender systems: Predict how user would rate a movie (Koren, Bell, and Volinsky, 2009)

1 / 24

2 / 24

Applications III

► Machine translation: Predict French translation of English sentence (Google translate)

Applications IV

► Chess: Predict win probability of a move in given game state (AlphaZero)

Work in ML

- Applied ML
 - ► Collect/prepare data, build/train models, analyze errors
- ► ML developer
 - ► Implement ML algorithms and infrastructure
- ► ML research
 - ► Design/analyze models and algorithms

Mathematical and computational prerequisites

- ▶ Math
 - ► Linear algebra, probability, multivariable calculus, reading and writing proofs
- ► Software/programming
 - ► Much ML work is implemented in python with libraries such as numpy and pytorch

5 / 24

6 / 24

Basic setting: supervised learning

- ► Training data: dataset comprised of *labeled examples*
 - ► Labeled example: a pair (input, label)
- ► Goal: learn function to predict label from input for new examples

Figure 1: Schematic for supervised learning

Examples of functions I

▶ Decision tree

1: if age ≥ 40 then

2: **if** genre = western **then**

3: **return** 4.3

4: **else if** release date > 1998 **then**

5: **return** 2.5

6: **else**

7:

8: end if

9: else if · · · then

10:

11: end if

Examples of functions II

► Linear classifier

1: if $0.335 \cdot x_1 + 2.5 \cdot x_2 + \cdots + 6.35 \cdot x_{10^6} > 4.3$ then

2: **return** spam

3: **else**

4: **return** not spam

5: end if

Examples of functions III

► Neural network

input hidden units output

(a)

Types of prediction problems

- ► Binary classification
 - ► Given an email, is it spam or not?
 - ► (What's the probability that it is spam?)
- ► Multi-class classification
 - ► Given an image, what animal is depicted?
 - ► (Or which animals are depicted?)
- ► Regression
 - ▶ Given clincal measurements, what is level of tumor antigens?
 - ► (In absolute level? Log-scale?)
- Structured output prediction
 - ▶ Given a sentence, what is its grammatical parse tree?
 - ► (Or dependency tree?)
- **.**..

Beyond supervised learning

- Unsupervised learning / probabilistic modeling
- ► Online learning
- ► Reinforcement learning

Challenges in supervised learning

- ► Might not have the right data
- ► Might pick a bad model
- ► Might not fit training data well (under-fitting)
- ► Might fit the training data too well (over-fitting)
- ► Training data could be noisy / corrupted (robustness)
- **▶** ...

Example: over-fitting

- ► Which polynomial degree to use?
- Truth: $y = 0 \cdot x + \text{noise}$
- ► Red points: training data
- ► Green points: unseen data

14 / 24

Example: over-fitting

- ► Which polynomial degree to use?
- ▶ Truth: $y = 0 \cdot x + \text{noise}$
- ► Red points: training data
- ► Green points: unseen data

Example: over-fitting

- ► Which polynomial degree to use?
- Truth: $y = 0 \cdot x + \text{noise}$
- ► Red points: training data
- ► Green points: unseen data

17 / 24

Example: over-fitting

- ► Which polynomial degree to use?
- Truth: $y = 0 \cdot x + \text{noise}$
- ► Red points: training data
- ► Green points: unseen data

Example: over-fitting

- ► Which polynomial degree to use?
- ► Truth: $y = 0 \cdot x + \text{noise}$
- ► Red points: training data
- ► Green points: unseen data

Example: over-fitting

- ▶ Which polynomial degree to use?
- ▶ Truth: $y = 0 \cdot x + \text{noise}$
- ► Red points: training data
- ► Green points: unseen data

Example: over-fitting

- ► Which polynomial degree to use?
- Truth: $y = 0 \cdot x + \text{noise}$
- ► Red points: training data
- ► Green points: unseen data

21 / 24

Example: over-fitting

- ► Which polynomial degree to use?
- Truth: $y = 0 \cdot x + \text{noise}$
- ► Red points: training data
- ► Green points: unseen data

Example: the right data

- ► Given a college applicant, will they graduate if admitted?
- ► What is appropriate training data?
 - ▶ input = past applicant; label = admitted or not
 - ▶ input = past admit; label = graduated or not
 - $\qquad \qquad \textbf{input} = \textbf{past applicant}; \ \textbf{label} = \textbf{graduated or not} \\$

Overview of the rest of the course

- ► Non-parametric methods
 - ► Simple and flexible methods for prediction
- ► Prediction theory
 - ► Statistical model for studying prediction problems
- Regression
 - ► Models and methods for predicting real-valued outcomes
 - ► Inductive bias, features, kernels
- Classification
 - ▶ Models and methods for predicting discrete-valued outcomes
 - ► Surrogate losses, margins, cost-sensitive risk, fairness, ensemble methods
- Optimization
 - ► Convex optimization and neural network training
- Unsupervised learning
 - ▶ Methods for clustering and matrix approximation