Statistics 305/605: Introduction to Biostatistical Methods for Health Sciences

Summary of Review Material

Jinko Graham

2018-10-03

Ch8-10: Inference of a Population Mean

- A statistic is computed from data on a sample; e.g. \bar{X} , the sample average.
- ▶ By contrast, a parameter is a population quantity; e.g. μ , the population average.
- ▶ Statistical inference: Learning about parameters from statistics that are subject to random variation.
 - ightharpoonup e.g. Hypothesize about parameters such as μ .
 - ► Test H_0 : $\mu = 0$ vs. H_a : $\mu \neq 0$.

▶ Key point: Even though the population mean, μ , and the population SD, σ , are unknown, we know the (approximate) distribution of the pivotal quantity

$$T = \frac{\bar{X} - \mu}{s / \sqrt{n}},$$

regardless of the shape of the population distribution for X.

- ▶ This result relies on the CLT, which tells us that (large) sample averages such as \bar{X} are approximately normally distributed.
- ► Many of the statistics we will study are based on averages, so inference of a population mean is a useful template.
- ► Knowing the distribution of the pivotal quantity allows us to construct confidence intervals, calculate *p*-values, test statistical hypotheses, calculate power, etc.

Ch11: Inference for a Difference of Population Means

- ▶ Inference for the difference between two population means is based on either the pivotal quantity *Z* (SDs known) or *T* (SDs unknown).
- lacktriangle Cls are of the form estimate \pm margin of error
 - ▶ the margin of error is a critical value (z^* for Z, t^* for T) times the SE for the estimate.
- ▶ To test $H_0: \mu_1 \mu_2 = 0$ against $H_a: \mu_1 \mu_2 \neq 0$
 - We use our sample of data to compute the observed value t (or z if SDs known) of a test statistic.
 - ▶ We compare this observed value to a reference distribution for the test statistic obtained under H₀.
 - ▶ The p-value is the chance of seeing a value of the test statistic as or more extreme than the value that was observed, under H_0 .
 - ▶ Compare the *p*-value to a significance level α to obtain a test of H_0 against H_a .
- Inference is considered reliable when the parent populations are normal, or when rules-of-thumb about sample sizes for the CLT are satisfied.

Ch14: Inference for Proportions

- ▶ Inference for the difference $p_1 p_2$ between two population proportions is based on a pivotal quantity, also called Z.
- lacktriangle Cls are estimate \pm margin of error, where
 - estimate is the difference between sample proportions, and
 - margin of error is a critical value (z*) times the SE (estimated SD) of the difference in sample proportions.
- ▶ To test $H_0: p_1 p_2 = 0$ against $H_a: p_1 p_2 \neq 0$
 - We use our sample of data to compute the observed value z of a test statistic.
 - We compare this observed value to a reference distribution for the test statistic obtained under H_0 .
 - ▶ The p-value is the chance of seeing a value of the test statistic as or more extreme than the value that was observed, under H_0 .
 - ▶ Compare the *p*-value to a significance level α to obtain a test of H_0 against H_a .
- Inference is considered reliable when there are sufficient numbers of successes and failures in each sample for the CLT to hold.

Ch6: Probability

- Discussed the basic definitions and rules of probability, including the definition of conditional probability.
- ▶ Use Bayes' Theorem to relate $P(A \mid B)$ to
 - $ightharpoonup P(B \mid A), P(A) \text{ and } P(B).$
- Public-health and medical practitioners work with many conditional probabilities every day; e.g.,
 - diagnostic test sensitivity and specificity
 - relative risks and odds ratios
- Case-control data
 - Disease probabilities or risks in the exposure groups cannot be estimated, owing to oversampling of the cases in the study design.
 - However, exposure probabilities in the disease groups can be estimated, allowing us to estimate odds ratios.
 - ► For a rare disease, the odds ratio approximates the relative risk.