Appunti Analisi e Progetto di Algoritmi

Domande e Risposte

Capitolo 1 - Nozioni introduttive

1) Cosa si intende per alfabeto?

Un alfabeto è un insieme finito e non vuoto di simboli che vengono identificati mediante la lettera maiuscola \sum (sigma).

Esempio:

- $\rightarrow \Sigma = \{0, 1\}$, l'alfabeto binario;
- $\rightarrow \sum = \{a, b, ..., z\}$, l'alfabeto di tutte le lettere dell'alfabeto;
- $\rightarrow \Sigma = \{0, 1, ..., 9\}$, l'alfabeto delle cifre da 0 a 9.

2) Cosa si intende per stringa?

Una stringa è una sequenza finita di simboli scelti da un alfabeto.

Esempio: Sia l'alfabeto $\Sigma = \{0, 1\}$ binario, le possibili stringhe sono:

- \rightarrow w₁ = 10110
- \rightarrow w₂ = 1101
- \rightarrow w₃ = 100101
- \rightarrow w₁ = <1,0,1,1,0>
- \rightarrow w₂ = <1,1,0,1>
- \rightarrow w₃ = <1,0,0,1,0,1>

Uso le ultime lettere x, y, z dell'alfabeto $\Sigma = \{a, b, ..., x, y, z\}$ per indicare una generica sequenza (o stringa).

Esempio 1:

 $X = \langle x_1, ..., x_n \rangle$

 x_1 = primo simbolo di X

 x_n = ultimo simbolo di X

Esempio 2:

 $X = \langle G, A, T, T, O \rangle$

 $G = x_1$

 $A = x_2$

 $T = x_3$

 $T = x_4$

 $0 = x_5$

Esempio 3:

Con n = 6, ho che

 $Y = \langle y_1, y_2, y_3, y_4, y_5, y_6 \rangle$

Capitolo 2 - LCS (Longest Common Subsequence)

3) Cosa si intende per sequenza?

Si definisce sequenza una successione di elementi topologicamente ordinati presi da un insieme \sum (esempio: $X = \langle 2, 4, 10, 5, 9, 11 \rangle$)

4) Cosa si intende per prefisso di lunghezza k?

Si definisce prefisso di lunghezza k di una sequenza i primi k elementi della sequenza.

Esempi

$$X_3 = \langle 2, 4, 10 \rangle$$

 $X_6 = \langle 2, 4, 10, 5, 9, 11 \rangle = X$
 $X_0 = \langle \rangle$

5) Cosa si intende per sottosequenza comune di due sequenze X e Y? Si definisce sottosequenza comune di due sequenze X e Y, la sottosequenza sia di X che di Y.

Esempio:

```
X = \langle 1, 13, 5, 3, 1, 12, 8, 11, 6, 10, 10 \rangle

Y = \langle 1, 5, 5, 2, 3, 1, 12, 8, 8, 10 \rangle

\langle 5, 3, 1, 8, 10 \rangle è sottosequenza comune di X e Y

\langle 1, 5, 3, 1, 12, 8, 10 \rangle è sottosequenza comune di X e Y
```

6) LCS di due sequenze: teorema (sottostruttura ottima)

Avendo il seguente problema: date due sequenze X di lunghezza m e Y di lunghezza n, trovare la più lunga sottosequenza comune Z di X e Y.

Gli elementi di un problema di ottimizzazione sono:

- → soluzioni ammissibili: tutte le sottosequenze comuni
- → funzione obiettivo: lunghezza
- → output: soluzione ammissibile con la massima lunghezza (LCS)

Date due sequenze:

```
X = \langle x_1, x_2, ..., x_i, ..., x_{m-1}, x_m \rangle

Y = \langle y_1, y_2, ..., y_j, ..., y_{n-1}, y_n \rangle

LCS(X_m, Y_n) \rightarrow Z = \langle z_1, z_2, ..., z_{k-1}, z_k \rangle
```

Sottostruttura ottima

```
a - se x_m = y_n, allora z_k = x_m \&\& \langle z_1, z_2, ..., z_{k-1} \rangle = LCS(X_{m-1}, Y_{n-1})
```

b - se $x_m \neq y_n$, allora se $z_k \neq x_m$ allora $Z = LCS(X_{m-1}, Y_n)$, altrimenti se $z_k \neq y_n$ allora $Z = LCS(X_m, Y_{n-1})$

Equazione di ricorrenza

```
X_{i} = \langle x_{1}, x_{2}, ..., x_{i} \rangle

Y_{j} = \langle y_{1}, y_{2}, ..., y_{j} \rangle

x_{i} = y_{j} \Rightarrow LCS(X_{i}, Y_{j}) = LCS(X_{i-1}, Y_{j-1}) + \langle x_{i} \rangle

x_{i} \neq y_{j} \Rightarrow LCS(X_{i}, Y_{j}) = max\{LCS(X_{i-1}, Y_{j}), LCS(X_{i}, Y_{j-1})\}
```

7) Equazione di ricorrenza LCS

```
\begin{split} X &= \langle x_1, x_2, ..., x_i, ..., x_{m-1}, x_m \rangle \\ Y &= \langle y_1, y_2, ..., y_j, ..., y_{n-1}, y_n \rangle \\ LCS(X_m, Y_n) &\rightarrow Z = \langle z_1, z_2, ..., z_{k-1}, z_k \rangle \\ (i &= 0 \mid\mid j = 0) \rightarrow LCS(X_i, Y_j) = \langle \rangle \\ (i &> 0 \&\& j > 0) \rightarrow 1. \ x_i = y_j \rightarrow LCS(X_i, Y_j) = LCS(X_{i-1}, Y_{j-1}) + \langle x_i \rangle \\ &\qquad \qquad 2. \ LCS(X_i, Y_j) = max\{LCS(X_{i-1}, Y_j), LCS(X_i, Y_{j-1})\} \end{split}
```

Scrittura di LCS in Python

```
def lcs(x, y):
    length_x = len(x)
    length_y = len(y)
    if not x or not y:
        return ""
    else:
        if x[length x - 1] == y[length y - 1]:
            return lcs(x[0:length_x-1], y[0:length_y-1]) + x[length_x - 1]
            return max string(lcs(x[0:length x-1], y), lcs(x, y[0:length y-1]))
def max_string(x, y):
    if len(x) >= len(y):
        return x
    else:
        return y
x = input("Enter first string: ")
y = input("Enter second string: ")
print(lcs(x, y))
```

Output

```
PS C:\Users\gianl\OneDrive\Documenti\Uni_Mi_Bicocca\CDL\3_Anno\Attivita_Didattica\PrimoSemestre\Analisi_Progetto_Algoritmi\Teoria\Esempi> python lcs.py
Enter first string: Cascata
Enter second string: Cascata
Enter second string: Casetta
Casta
PS C:\Users\gianl\OneDrive\Documenti\Uni_Mi_Bicocca\CDL\3_Anno\Attivita_Didattica\PrimoSemestre\Analisi_Progetto_Algoritmi\Teoria\Esempi> python lcs.py
Enter first string: saloon
Enter second string: lontra
lon
PS C:\Users\gianl\OneDrive\Documenti\Uni_Mi_Bicocca\CDL\3_Anno\Attivita_Didattica\PrimoSemestre\Analisi_Progetto_Algoritmi\Teoria\Esempi> python lcs.py
Enter first string: maiale
Enter second string: magica
maia
PS C:\Users\gianl\OneDrive\Documenti\Uni_Mi_Bicocca\CDL\3_Anno\Attivita_Didattica\PrimoSemestre\Analisi_Progetto_Algoritmi\Teoria\Esempi> python lcs.py
Enter first string: magica
maia
PS C:\Users\gianl\OneDrive\Documenti\Uni_Mi_Bicocca\CDL\3_Anno\Attivita_Didattica\PrimoSemestre\Analisi_Progetto_Algoritmi\Teoria\Esempi> python lcs.py
Enter first string: maiale
Enter second string: maiale
Enter second string: magic
mai
```

Ottimizzazione

8) Come è possibile calcolare il valore ottimo di LCS?

Il valore ottimo può essere calcolato in due modi:

- → algoritmo ricorsivo (top-down)
- → algoritmo di PD (bottom-up)

Algoritmo ricorsivo: procedura

```
int \ ottimo\_ricorsivo(i,j)
if \ i = 0 \ \forall \ j = 0 \ then
return \ 0
else
if \ x_i = y_j \ then
c_{i-1,j-1} \leftarrow ottimo\_ricorsivo(i-1,j-1)
return \ c_{i-1,j-1} + 1
else
c_{i-1,j} \leftarrow ottimo\_ricorsivo(i-1,j)
c_{i,j-1} \leftarrow ottimo\_ricorsivo(i,j-1)
return \ max\{c_{i-1,j}, c_{i,j-1}\}
```

Tempi di esecuzione

Caso migliore: $T(n) = \Omega(n)$

Caso peggiore: Albero della ricorsione nel caso peggiore per |X| = |Y| = 3

 $T(n) = O(2^{\min(m,n)})$

Algoritmo iterativo di PD (iterativo)

I passi sono:

- \rightarrow si costruisce una matrice C di m+1 righe e n+1 colonne;
- \rightarrow si riempie C in modo tale che $C[i, j] = c_{i,j}$
- \rightarrow valore ottimo = C[m, n]

Pseudocodice

```
\begin{aligned} & \text{int ottimo\_PD}(X,Y) \\ & \text{for i from 0 to m do} \\ & & & \text{C[i, 0]} \leftarrow 0 \\ & \text{for j from 0 to n do} \\ & & \text{C[0, j]} \leftarrow 0 \\ & \text{for i from 1 to m do} \\ & \text{for j from 1 to n do} \\ & \text{if } x_i = y_j \text{ then} \\ & & \text{C[i, j]} = \text{C[i-1, j-1]} + 1 \\ & \text{else} \\ & & \text{C[i, j]} = \text{max}(\text{C[i-1, j]}, \text{C[i, j-1]}) \\ & \text{return C[m, n]} \end{aligned}
```

9) Stampa LCS ricorsiva

Problema: data la matrice C e gli indici i e j stampare gli elementi della sequenza ricavata mediante LCS.

Input: matrice C e indici i e j di una cella di C

Output: $LCS(X_i, Y_j)$

Pseudocodice

```
\begin{split} &\text{function stampa\_LCS(C, i, j)} \\ &\text{if } i > 0 \text{ and } j > 0 \text{ then} \\ &\text{if } x_i = y_j \text{ then} \\ &\text{stampa\_LCS(C, i-1, j-1)} \\ &\text{print } x_i \\ &\text{else} \\ &\text{if } C[i,j] = C[i-1,j] \text{ then} \\ &\text{stampa\_LCS(C, i-1, j)} \\ &\text{else} \\ &\text{stampa\_LCS(C, i, j-1)} \end{split}
```

10) Qual è lo scopo principale della programmazione dinamica?

La programmazione dinamica è una tecnica di ottimizzazione che viene utilizzata per risolvere problemi complessi dividendo il problema in sottoproblemi più semplici e risolvendo questi ultimi una sola volta, memorizzando i risultati in una struttura dati (solitamente array monodimensionale/multidimensionale). Utilizza la strategia di bottom up, ossia i sottoproblemi vengono risolti uno dopo l'altro a partire da quelli più piccoli fino ad arrivare al più grande.

11) Dimostrare la proprietà della sottostruttura ottima nel problema del calcolo di una LCS

Date le due seguenze

$$X = \langle x_1, x_2, ..., x_i, ..., x_{m-1}, x_m \rangle$$

$$Y = \langle y_1, y_2, ..., y_i, ..., y_{n-1}, y_n \rangle$$

LCS di X e Y è:

$$LCS(X_m, Y_n) \rightarrow Z = \langle z_1, z_2, ..., z_{k-1}, z_k \rangle$$

La dimostrazione della proprietà della sottostruttura ottima si basa su un'analisi di come si costruisce la LCS considerando l'ultimo carattere delle due stringhe.

Caso 1:
$$x_i = y_i$$

Se l'ultimo carattere delle due stringhe X e Y è lo stesso, cioè $x_i = y_j$, allora possiamo affermare che tale carattere farà parte della LCS e il problema si riduce al calcolo della LCS delle sottostringhe che escludono l'ultimo carattere, ovvero X[1, ..., i-1] e Y[1, ..., j-1].

$$LCS(X[1, ..., i], Y[1, ..., j]) = LCS(X[1, ..., i-1], Y[1, ..., j-1]) + 1$$

Ciò rappresenta la soluzione ottima per X[1, ..., i], Y[1, ..., j] a partire dalla soluzione ottima per i sottoproblemi X[1, ..., i-1], Y[1, ..., j-1], dimostrando che la sottostruttura ottima è preservata.

Caso 2:
$$x_i \neq y_i$$

Se invece l'ultimo carattere delle due stringhe è diverso, cioè $x_i \neq y_j$, allora l'ultimo carattere di X o di Y non può far parte della LCS. In tal caso, la LCS sarà la soluzione ottima di uno dei due sottoproblemi seguenti:

- \rightarrow la LCS di X[1, ..., i 1] e Y[1, ..., j] (escludendo l'ultimo carattere di X);
- \rightarrow la LCS di X[1, ..., i] e Y[1, ..., j 1] (escludendo l'ultimo carattere di Y).

Di conseguenza, la lunghezza della LCS sarà la lunghezza massima tra questi due casi:

$$LCS(X[1, ..., i], Y[1, ..., j]) = max\{LCS(X[1, ..., i-1], Y[1, ..., j]), LCS(X[1, ..., i], Y[1, ..., j-1])\}$$

Capitolo 3 - LIS (Longest Increasing Subsequence)

12) Cosa si intende per Increasing Subsequence?

Si definisce Increasing Subsequence la sequenza

$$Z = \langle z_1, z_2, ..., z_{k-1}, z_k \rangle$$

tale che $z_i < z_{i+1}$ per ogni indice i da 1 a k – 1.

Esempi di sequenze crescenti:

- \rightarrow $\langle 2, 4, 10 \rangle$
- → (2, 4, 7, 13, 21)
- $\rightarrow \langle 2 \rangle$

13) Cosa si intende per Longest Increasing Subsequence (LIS)

Data

$$X = (x_1, x_2, ..., x_i, ..., x_{m-1}, x_m)$$

la lunga sottosequenza di X che sia crescente è Z = LIS(X)

Esempio:

$$X = \langle 14, 2, 4, 2, 7, 0, 13, 21, 11 \rangle$$

 $LIS(X) = \langle 2, 4, 7, 13, 21 \rangle$

14) Problema: Longest Increasing Subsequence (LIS)

P: Data una sequenza $X = \langle x_1, x_2, ..., x_m \rangle$, trovare la più lunga sottosequenza crescente Z = LIS(X). P è un problema di ottimizzazione di massimo, dove:

- \rightarrow (m): dimensione del problema
- → Soluzioni possibili: tutte le sottosequenze crescenti di X
- → Funzione obiettivo: lunghezza
- \rightarrow |Z| è il valore ottimo del problema
- → Z è una soluzione ottimale

15) Sottoproblemi e variabili associate

Il sottoproblema di dimensione (i) é definito come segue:

P: Data una sequenza X di m numeri interi, si determini la lunghezza di una tra le più lunghe sottosequenze crescenti di X.

Dato che $0 \le i \le m$, si ottengono m+1 sottoproblemi e ad ogni sottoproblema di PBR è associata una variabile. Considerato il sottoproblema di dimensione (i), la variabile ad esso associata è c_i ed è così definita:

 c_i = lunghezza di una tra le più lunghe sottosequenze crescenti di X_i .

16) LIS: Teorema e dimostazione della proprietà della sottostruttura ottima

Teorema: Sia X una sequenza di m numeri interi e sia X_i un suo prefisso di lunghezza i con $1 \le i \le m$. Sia Z^i una tra le più lunghe sottosequenze crescenti di X_i e che termina con x_i . Allora vale che $Z^i = Z^*|x_i$, con $Z^* \in W_i$ e $|Z^*| = \max_{w \in W_i}\{|W|\}$ dove W_i è l'insieme di tutte le sottosequenze crescenti di X_j che finiscono con x_j e a cui è possibile concatenare x_i , ovvero

```
W_i = \bigcup_{1 \le j < i: x_j < x_i} \{W sottos equenza crescente di X_j che termina con x_j\}.
```

Dimostrazione: Per assurdo ora si supponga che $Z^*|_{X_i}$ non si la soluzione del problema i – esimo. Allora, relativamente alla soluzione Z^i del problema valgono le sequenti affermazioni:

$$\rightarrow$$
 $Z^i = Z^* | x_i$

$$\rightarrow |Z'| > |Z^*|$$

dove Z' è una qualche sottosequenza crescente di un prefisso più piccolo di X_i . Sia ora z' l'ultimo elemento di Z'. Vale quindi che $z' < x_i$, poichè è stato possibile

concatenare x_i a Z'. Inoltre, sia h < i il più grande indice tale che $x_h = z'$. Di conseguenza, per come è stato definito W_i , si ottiene che $Z' \in W_i$. Infatti Z' è una sottosequenza crescente di X_h , la quale termina con $x_h < x_i$. Ciò però porta ad una contraddizione: infatti dal punto 2 vale che $|Z'| > |Z^*|$, ma ciò è in contraddizione con l'ipotesi che $|Z^*| = \max_{W \in W_i} \{|W|\}$.

17) Equazione di ricorrenza

Un'equazione di ricorrenza è composta da:

 \rightarrow caso base: definisce i casi più semplici che possono essere subito risolti senza ricorrere alle soluzioni dei sottoproblemi più piccoli e lo si ha per un qualunque sottoproblema di dimensione (i) con $i=0 \ \lor i=1$, ossia quando il prefisso considerato è la sequenza vuota oppure è una sequenza composta da un singolo elemento

```
c_i = 1 se i = 1
```

 \rightarrow passo ricorsivo: lo si ha per un qualunque sottoproblema di dimensione (i) tale che i>1, ossia quando si considera un prefisso della sequenza X in input di almeno due elementi e i dati disponibili per calcolare c_i sono: l'input X ed in particolare l'elemento x_i e tutte le variabili $\{c_0,\ldots,c_{i-1}\}$.

Il passo ricorsivo è quindi scrivibile come:

```
c_i = 1 + \max\{c_h \mid 1 \le h < i \land x_h < x_i\}
```

- 11										9
				1						1
	0	1	2	3	3	4	5	6	6	1

18) Algoritmo ricorsivo

```
function LISRic(i):

if i = 1 then

return 1

else

max := 0

for h \leftarrow 1 to i - 1do

if x_h < x_i then

S \leftarrow LISRic(h)

if S > max then

max \leftarrow S

return 1 + max
```

19) Implementazione bottom up

Con la tecnica bottom-up tutti i valori vengono calcolati in modo tale da risolvere ogni sottoproblema una volta sola. Questo permette di risolvere il problema in $O(m^2)$ occupando O(m) memoria.

Procedura

```
function LIS(X):

c[1] \leftarrow 1
\max \leftarrow c[1]
\text{for } i \leftarrow 2 \text{ to m do}
\text{temp} \leftarrow 0
\text{for } h \leftarrow 1 \text{ to } i - 1 \text{ do}
\text{if } (x_h < x_i) \land (c[h] > \text{temp}) \text{ then}
\text{temp} \leftarrow c[h]
c[i] \leftarrow 1 + \text{temp}
\text{if } c[i] > \max \text{ then}
\text{max} \leftarrow c[i]
\text{return max}
```

Capitolo 4 - LICS (Longest Increasing Common Subsequence)
20) Problema: Longest Increasing Common Subsequence (LICS)

P1: Date due sequenze X e Y, rispettivamente di m e n numeri interi, si determini una tra le più lunghe sottosequenze crescenti comuni a X e Y.

```
Esempio: X = \langle 2, 4, 7, 11, 21, 14, 1 \rangle, Y = \langle 2, 7, 4, 23, 21, 14, 1, 8 \rangle

Z = \langle 2, 4, 21 \rangle = LICS(X, Y)
```

P2: Date due sequenze X e Y, rispettivamente di m e n numeri interi, si determini la lunghezza tra le più lunghe sottosequenze crescenti comuni a X e Y. Esempio:

```
X = \langle 2, 4, 7, 11, 21, 14, 1 \rangle

Y = \langle 2, 7, 4, 23, 21, 14, 1, 8 \rangle

|Z| = 3
```

21) Sottoproblemi e variabili associate

Il sottoproblema di dimensione (i, j) è definito come segue:

"Date due sequenze X e Y, rispettivamente di m ed n numeri interi, si determini la lunghezza di una tra le più lunghe sottosequenze crescenti comuni al prefisso X_i e al prefisso Y_i ".

Dato che $0 \le i \le m$ e $0 \le j \le n$, si ottengono $(m+1) \cdot (n+1)$ sottoproblemi (i e j possono valere 0 in quanto si deve considerare anche il caso in cui un prefisso sia la sequenza vuota). Considerato il sottoproblema di dimensione (i,j), la variabile ad esso associata è $c_{i,j}$ ed è così definita:

```
c_{i,j} = lunghezza di una tra le più lunghe sottosequenze crescenti comuni a <math>X_i e Y_j
```

22) Teorema e dimostazione della proprietà della sottostruttura ottima

Teorema: Sia X una sequenza di m numeri interi e sia X_i un suo prefisso di lunghezza i con $1 \le i \le m$. Sia Y una sequenza di n numeri interi e sia Y_j un suo prefisso di lunghezza j con $1 \le j \le n$. Sia $Z^{i,j}$ una tra le più lunghe sottosequenze

crescenti di X_i e Y_j tale che termini con $x_i = y_j$. Allora vale che $Z^{i,j} = Z^*|x_i$, con $Z^* \in W_{i,j}$ e $|Z^*| = \max_{W \in W_{i,j}} \{|W|\}$ dove $W_{i,j}$ è l'insieme di tutte le sottosequenze crescenti comuni di X_h e Y_k che finiscono con x_h = y_k e a cui è possibile concatenare x_i (o y_i), ovvero

 $W_{i,j} = \bigcup_{1 \leq h < i, 1 \leq k < j: x_h = y_k < x_i = y_j} \{ W \text{ sottosequenza comune crescente di } X_h \text{ e } Y_k \text{ che termina con } x_h = y_k \}.$

Dimostrazione: Per assurdo ora si supponga che $Z^*|_{X_i}$ non si la soluzione del problema (i, j) – esimo. Allora, relativamente alla soluzione Z^i del problema valgono le seguenti affermazioni:

- $\rightarrow Z^{i,j} = Z^* | x_i$
- \rightarrow |Z'| > |Z*|

dove Z' è una qualche sottosequenza crescente di un prefisso più piccolo di X_i . Sia ora z' l'ultimo elemento di Z'. Vale quindi che $z' < x_i = y_j$, poichè è stato possibile concatenare x_i (o y_j) a Z'. Inoltre, siano r < i e s < j i più grande indici tale che $x_r = y_s = z'$. Di conseguenza, per come è stato definito W_i , si ottiene che $Z' \in W_{i,j}$. Infatti Z' è una sottosequenza comune crescente di X_r e Y_s , la quale termina con $x_r < x_i$. Ciò però porta ad una contraddizione: infatti dal punto 2 vale che |Z'| > |Z*|, ma ciò è in contraddizione con l'ipotesi che $|Z*| = \max_{W \in W_{i,j}} \{|W|\}$.

23) Equazione di ricorrenza

Un'equazione di ricorrenza è composta da:

 \Rightarrow caso base: definisce i casi più semplici che possono essere subito risolti senza ricorrere alle soluzioni dei sottoproblemi più piccoli e lo si ha per un qualunque sottoproblema di dimensione (i,j) con $i=0 \lor j=0$ ma anche $x_i != y_j$ ossia quando i due prefissi considerati terminano con due elementi diversi $c_{i,j}=0$

 \rightarrow passo ricorsivo: lo si ha per un qualunque sottoproblema di dimensione (i,j) tale che $x_i = y_j$, ossia quando i due prefissi X_i e Y_j è uguale alla lunghezza della più lunga sottosequenza crescente comune calcolata per un sottoproblema di dimensione minore di $x_i = y_j$ aumentata di uno. Il passo ricorsivo è quindi scrivibile come:

c	i,j =	= 1 +	- ma	$ax\{c$	$_{h,k}$	1 ≤	h <	< i, 1	≤ i	k <	j, x_h	$\langle x_i \rangle$
			1	2	3	4	5	6	7	8	j	
			2	7	4	23	21	14	1	8	y ;	
	1	2	1	0	0	0	0	0	0	0		
	2	4	0	0	2	0	0	0	0	0		
	3	7	0	2	0	0	0	0	0	0		
	4	11	0	0	0	0	0	0	0	0		
	5	21	0	0	0	0	3	0	0	0		
	6	14	0	0	0	0	0	3	0	0		
	7	1	0	0	0	0	0	0	1	0		
	i	Χi										

24) Algoritmo ricorsivo

```
function LICSric(i, j):

if i = 0 \lor j = 0 \lor xi/= yj then

return 0

else

max \leftarrow 0
for h \leftarrow 1 \text{ to } i - 1 \text{ do}
for k \leftarrow 1 \text{ to } j - 1 \text{ do}
if x_h < x_i \text{ then}
S \leftarrow LGCSric(h, k)
if S > max \text{ then}
max \leftarrow S
return 1 + max
```

25) Implementazione bottom up

Con la tecnica bottom-up tutti i valori vengono calcolati in modo tale da risolvere ogni sottoproblema una volta sola. Questo permette di risolvere il problema in $O(m^2 * n^2)$ occupando O(m * n).

Procedura

```
function LICS(X, Y):
         max \leftarrow 0
         for i \leftarrow 1 to m do
                  for j \leftarrow 1 to n do
                           if xi/= yj then
                                     c[i, j] \leftarrow 0
                           else
                                    temp \leftarrow 0
                                     for h \leftarrow 1 to i - 1 do
                                              for k \leftarrow 1 to j - 1 do
                                                       if (x_h < x_i) \land (c[h, k] > temp) then
                                                                temp \leftarrow c[h, k]
                                                       c[i, j] \leftarrow 1 + temp
                                                       if c[i, j] > \max then
                                                                max \leftarrow c[i, j]
         return max
```

Capitolo 5 - Longest Common Subsequence (LCS) con al più K elementi rossi 26) Input e Output del Problema

```
Input: X=\langle x1,x2,x3,\ldots,xm\rangle,\ Y=\langle y1,y2,y3,\ldots,yn\rangle: |X|=m \land |Y|=n \land K\in Z+. Sia ora la funzione
```

```
col: N \rightarrow C \subseteq \sum *
C = {'Rosso', 'Blu', 'Nero'}
```

Output: $|LCS_k(X, Y)| = |\langle z_1, z_2, z_3, ..., z_k \rangle|$ con al più k elementi rossi

27) Definizione dei sottoproblemi e variabili associate

Trovare la LCS dei prefissi X_i e Y_j che ha al più k elementi rossi \rightarrow LCS $_k(X_i, Y_j)$ i \in $\{0, 1, 2, ..., m\}$ j \in $\{0, 1, 2, ..., n\}$ k \in $\{0, 1, 2, ..., K\}$

Numero di sottoproblemi: (m + 1) * (n + 1) * (K + 1)

Coefficiente del sottoproblema di dimensione (i, j, k): $c_{i,j,k}$ è la lunghezza della LCS dei prefissi X_i e Y_j che ha al più k elementi rossi.

28) Equazione di ricorrenza: caso base

```
Se i = 0 \lor j = 0 \rightarrow c_{i,j,k} = 0, t.c. k \in Z^+
```

29) Equazione di ricorrenza: passo ricorsivo

```
Se i > 0 \land j > 0, allora

se x_i \neq y_j \rightarrow c_{i,j,k} = \max\{c_{i-1,j,k}, c_{i,j-1,k}\}

se x_i = y_j \land col(x_i) \neq \text{`Rosso'} \rightarrow c_{i,j,k} = c_{i-1,j-1,k} + 1

se x_i = y_j \land col(x_i) = \text{`Rosso'} \land k > 0 \rightarrow c_{i,j,k} = c_{i-1,j-1,k-1} + 1

se x_i = y_i \land col(x_i) = \text{`Rosso'} \land k = 0 \rightarrow c_{i,j,k} = c_{i-1,j-1,k-1}
```

30) Soluzione del problema

La soluzione di tale problema è il coefficiente $c_{m,n,k}$

31) Algoritmo Bottom Up per il calcolo del valore ottimo

```
function LCS_at_most_k_red(X, Y, K)
       m := X.length
       n := Y.length
       for k := 0 to K do
               for i := 0 to m do
                      c_k[i, 0] := 0
       for k := 0 to K do
               for j := 0 to n do
                       c_k[0, j] := 0
        for k := 0 to K do
               for i := 1 to m do
                       for j := 1 to n do
                              if x_i \neq y_j then
                                      c_k[i, j] := max\{c_k[i - 1, j], c_k[i, j - 1]\}
                              else
                                      if col(x_i) \neq 'Rosso' then
                                              c_k[i, j] := c_k[i - 1, j - 1] + 1
                                      else
                                              if k > 0 then
                                                     c_k[i, j] := c_{k-1}[i - 1, j - 1] + 1
                                              if k = 0 then
                                                     c_k[i, j] := c_{k-1}[i - 1, j - 1]
            return ck[m, n]
```

32) Ricostruzione dell'algoritmo

```
function LCS_most_k_red(i, j, k)  if \ i > 0 \land j > 0 \ then \\  if \ x_i \neq y_j \ then \\  return \ max\{LCS_most_k_red(i-1, j, k), LCS_most_k_red(i, j-1, k)\} \\  else \\  if \ col(x_i) \neq `Rosso' \ then \\  LCS_most_k_red(i-1, j-1, k) \\  print(xi) \\  else \\  if \ k > 0 \ then \\  LCS_most_k_red(i-1, j-1, k-1) \\  print(xi) \\  if \ k = 0 \ then \\  LCS_most_k_red(i-1, j-1, k-1) \\
```

Capitolo 6 - Longest Common Subsequence (LCS) con ingombro minore o uguale di K

33) Input e Output del Problema

```
Input: X=\langle x1,x2,x3,\ldots,xm\rangle,\ Y=\langle y1,y2,y3,\ldots,yn\rangle: |X|=m \land |Y|=n \land K\in Z+. Sia ora la funzione
```

 $w: \sum \rightarrow N$

Output: $|LCS_k(X, Y)| = |\langle z_1, z_2, z_3, ..., z_k \rangle|$ con ingombro al più K

34) Definizione dei sottoproblemi e variabili associate

Trovare la LCS dei prefissi X_i e Y_j con ingombro al più $K \rightarrow LCS_k(X_i, Y_j)$

```
i \in \{0, 1, 2, ..., m\}

j \in \{0, 1, 2, ..., n\}

k \in \{0, 1, 2, ..., K\}
```

Numero di sottoproblemi: (m + 1) * (n + 1) * (K + 1)

Coefficiente del sottoproblema di dimensione (i, j, k): $c_{i,j,k}$ è la lunghezza della LCS dei prefissi X_i e Y_i con ingombro minore.

35) Equazione di ricorrenza: caso base

```
Se i = 0 v j = 0 v k = 0 \rightarrow c_{i,j,k} = 0, t.c. k \in Z+
```

36) Equazione di ricorrenza: passo ricorsivo

```
Se i > 0 \land j > 0, allora

se x_i \neq y_j \rightarrow c_{i,j,k} = \max\{c_{i-1,j,k}, c_{i,j-1,k}\}

se x_i = y_j \land w(x_i) \leq k \rightarrow c_{i,j,k} = \max\{c_{i-1,j-1,k-w(x_i)} + 1, c_{i-1,j-1,k-1}\}

se x_i = y_i \land w(x_i) > k \land k > 0 \rightarrow c_{i,i,k} = c_{i-1,i-1,k}
```

37) Soluzione del problema

La soluzione di tale problema è il coefficiente $c_{m,n,K}$

38) Algoritmo Bottom Up

```
function LCS_ingombro_most_k(X, Y, K)
        m := X.length
        n := Y.length
        for k := 0 to K do
                for i := 0 to m do
                        c_k[i, 0] := 0
        for k := 0 to K do
                for j := 0 to m do
                        c_k[0, j] := 0
        for k := 0 to K do
                for i := 1 to m do
                        for j := 1 to n do
                                if x_i \neq y_i then
                                        c_k[i, j] := \max\{c_k[i-1, j], c_k[i, j-1]\}
                                else
                                        if w(x_i) \le k then
                                                c_k[i,j] := max\{c_{k\text{-}w(xi)}[i-1,j-1]+1\text{ , }c_k[i-1,j-1]\}
                                        else
                                                c_k[i, j] := c_k[i - 1, j - 1]
        return ck[m, n]
```

39) Ricostruzione dell'algoritmo

```
function \ LCS\_ing\_most\_k(i,j,k) \\ if \ i > 0 \land j > 0 \ then \\ if \ x_i \neq y_j \ then \\ return \ max\{LCS\_ing\_most\_k(i-1,j,k), LCS\_ing\_most\_k(i,j-1,k)\} \\ else \\ if \ w(x_i) <= k \ then \\ return \ max\{LCS\_ing\_most\_k(i-1,j,k-w(x_i)), \\ LCS\_ing\_most\_k(i-1,j-1,k-1)\} \\ print(xi) \\ else \\ return \ LCS\_ing\_most\_k(i-1,j-1,k)
```

Capitolo 7 - Longest Alternative Common Subsequence (LACS) con colori alternanti

```
40) Input e Output del Problema
```

```
Input: X = \langle x1, x2, x3, ..., xm \rangle, Y = \langle y1, y2, y3, ..., yn \rangle: |X| = m \land |Y| = n
Sia ora:
col: N \rightarrow C = \{R, N, B\}
Output: |LCS_k(X, Y)| = |\langle z_1, z_2, z_3, ..., z_k \rangle| con colori alternanti.
```

Considerare che

```
\phi(x) = \begin{cases} \text{rosso} & x < 5 \\ \text{blu} & 5 \le x \le 10 \\ \text{verde} & x > 10 \end{cases}
```

41) Definizione dei sottoproblemi e variabili associate

Trovare la LCS dei prefissi X_i e Y_i con colori alternanti associati.

```
i \in \{0, 1, 2, ..., m\}

j \in \{0, 1, 2, ..., n\}
```

Numero di sottoproblemi: (m + 1) * (n + 1)

Coefficiente del sottoproblema di dimensione (i, j, k): $c_{i,j}$ è la lunghezza della LCS dei prefissi X_i e Y_i con con colori alternanti associati.

42) Equazione di ricorrenza: caso base

```
Se i = 0 \lor j = 0 \rightarrow c_{i,j} = 0.
```

43) Equazione di ricorrenza: passo ricorsivo

```
Se i > 0 \land j > 0, allora

se x_i \neq y_j \rightarrow c_{i,j} = \max\{c_{i-1,j}, c_{i,j-1}\}

se x_i = y_j \rightarrow c_{i,j} = 1 + \max\{c_{h,k} \mid 1 \leq h < i, 1 \leq k < j, \varphi(x_i) = \varphi(x_h)\}
```

44) Soluzione del problema

La soluzione di tale problema è $\max\{ci,j \mid 1 \le i \le m, 1 \le j \le n\}$

45) Algoritmo Bottom Up

```
function LACS(X, Y)
       max := 0
       for i := 1 to m do
               for j := 1 to n do
                       if x_i \neq y_j then
                               c[i, j] := 0
                        else
                               temp := 0
                               for h := 1 to i-1 do
                                        for k := 1 to j-1 do
                                               if (\phi(x_h) = \phi(x_i)) \land (c[h,k] > temp) then
                                                        temp \leftarrowc[h,k]
                               c[i, j] := 1 + temp
                       if c[i, j] > max then
                               max := c[i,j]
       return max
```

46) Algoritmo di Stampa

```
function LACSric(i, j)

if i = 0 \lor j = 0 \lor xi \ne yj then

return 0

else

max \leftarrow 0

for h \leftarrow 1 to i-1 do

for k \leftarrow 1 to j-1 do

if \varphi(x_h) = \varphi(x_i) then

S \leftarrow LACSric(h,k)

if S > max then

max \leftarrow S

return 1+max
```

Capitolo 8 - Weighted Interval Scheduling

47) Input e Output del Problema

Input: $A = \{1, ..., n\}$ con $([si, ei), vi), \forall i \in \{1, ..., n\},$ dove

- s_i → indica il tempo di inizio dell'attività;
- $e_i \rightarrow$ tale che $e_i \leq s_i$, indica il tempo di fine dell'attività (si noti che ei non appartiene all'intervallo che specifica la durata dell'attività);
- v_i → indica il valore dell'attività

Due attività vengono definite compatibili se non si sovrappongono:

$$[s_i, e_i) \cap [s_j, e_j) = \emptyset$$

La funzione

$$COMP : \mathcal{P}(\{1, ..., n\}) \rightarrow \{True, False\}$$

determina se l'insieme A contiene tutte attività compatibili

$$\mathtt{COMP}(A) = \begin{cases} True & \text{se } \forall i,j \in A \text{ con } i \neq j, [s_i,e_i) \cap [s_j,e_j) = \emptyset \\ False & \text{altrimenti} \end{cases}$$

La funzione

$$V: \mathcal{P}(\{1,\ldots,n\}) \to \mathbb{R}_+$$

determina il valore complessivo del sottoinsieme S di attività A.

$$V(A) = \begin{cases} \sum_{i \in A} v_i & \text{se } A \neq \emptyset \\ 0 & \text{se } A = \emptyset \end{cases}$$

Output: Determinare $S \subseteq \{1, ..., n\}$ tale che

$$\mathtt{COMP}(S) = True \ \land \ \mathtt{V}(S) = \max_{A \subseteq \{1, \dots, n\}: \ \mathtt{COMP}(A) = True} \{\mathtt{V}(A)\}$$

48) Definizione dei sottoproblemi e variabili associate

In questo caso il sottoproblema i – esimo viene associato al sottoinsieme i – esimo tale che

$$\mathtt{COMP}(S) = True \ \land \ \mathtt{V}(S) = \max_{A \subseteq \{1, \dots, n\}: \ \mathtt{COMP}(A) = True} \{\mathtt{V}(A)\}$$

La variabile associata è la coppia (OPT_i, S_i) tale che:

 $OPT_i = V(S_i)$, ossia il valore di un sottoinsieme di $\{1, ..., i\}$ che contiene attività mutualmente compatibili di peso massimo S_i

Numero di sottoproblemi: (m + 1)

49) Equazione di ricorrenza: caso base

Se
$$i = 0 \rightarrow S_i = \emptyset \land OPT_i = 0$$

50) Equazione di ricorrenza: passo ricorsivo

Se i > 0, allora si definisce

 $\psi(i) = \max\{j \mid j < i \land comp(\{i, j\}) = true\}$

assumendo che $max\{\emptyset\} = 0$.

Per determinare il passo ricorsivo si distinguono i due casi:

 $ightarrow i
otin S_i$: se l'attività i non appartiene alla soluzione, allora è sufficiente considerare l'insieme di attività $\{1,...,i-1\}$ e si può dunque considerare la soluzione del sottoproblema di dimensione subito minore, ossia $\mathtt{OPT}_i = \mathtt{OPT}_{i-1}$ e $S_i = S_{i-1}$

 $\rightarrow i \in S_i$: se l'attività i appartiene alla soluzione, allora è necessario andare a determinare la soluzione del sottoproblema di dimensione minore ad i di peso massimo e il cui insieme di attività risulta essere compatibile con l'attività i. Risulta dunque possibile considerare la soluzione del sottoproblema di dimensione $\psi(i)$ e aggiungere a questa l'attività i. Si ottiene dunque:

$$OPT_i = OPT_{\psi(i)} + v_i \ e \ S_i = S_{\psi(i)} \cup \{i\}$$

Risulta guindi

$$OPT_i = \max\{OPT_{i-1}, OPT_{\psi(i)} + v_i\}$$

51) Soluzione del problema

La soluzione di tale problema è la coppia (OPT_n, S_n)

52) Algoritmo Bottom Up

```
function WIS(n) OPT[0] \leftarrow 0 S \leftarrow \emptyset for i \leftarrow 1 \text{ to n do} V_1 \leftarrow OPT[i-1] V_2 \leftarrow OPT[\psi(i)] + vi OPT[i] \leftarrow \max\{V1, V2\} if V_1 \geq V_2 \text{ then} S[i] \leftarrow S[i-1] else S[i] \leftarrow S[\psi(i)] \cup \{i\} return (OPT[n], S[n])
```

Capitolo 9 - Hateville

54) Input e Output del Problema

```
Input: X = \{1, ..., n\} \land d_i, \forall i \in \{1, ..., n\}

Output: S \subseteq \{1, ..., n\} : COMP(S) = true \land D(s) = max\{D(A), A \subseteq X_n : COMP(A)\}
```

55) Definizione dei sottoproblemi e variabili associate

Dato un insieme $X = \{1, ..., i\}$ rappresentante i primi i abitanti di Hateville, trovare un suo sottoinsieme, che rispetti la compatibilità, che massimizzi il denaro raccolto.

```
Input: \{1, ..., i\} \land d_j, \forall j \in \{1, ..., j\}
Output: S_i \subseteq \{1, ..., i\} : COMP(S_i) = true \land D(S_i) = max\{D(A), A \subseteq X_n : COMP(A)\}
```

56) Equazione di ricorrenza: caso base

Se i=0, allora significa che non ci sono abitanti in Hateville e quindi non c'è nessuno che può partecipare alla colletta. Se i=1, allora significa che c'è un solo abitante in Hateville e quindi non è necessario fare nessuna scelta per evitare di inserire i vicini.

Il caso base è:

$$\mathsf{OPT}_i = \begin{cases} 0 & \text{se } i = 0 \\ d_1 & \text{se } i = 1 \end{cases}$$

$$S_i = \begin{cases} \emptyset & \text{se } i = 0 \\ \{1\} & \text{se } i = 1 \end{cases}$$

57) Equazione di ricorrenza: passo ricorsivo

Il passo ricorsivo si ha per un qualunque sottoproblema di dimensione (i) con

i>1, ossia quando ci sono almeno due abitanti in Hateville. Si ha quindi:

$$\mathtt{OPT}_i = \max\{\mathtt{OPT}_{i-1}, \mathtt{OPT}_{i-2} + d_i\}$$

$$S_i = \begin{cases} S_{i-1} & \text{se } \mathtt{OPT}_{i-1} \geq \mathtt{OPT}_{i-2} + d_i \\ S_{i-2} \cup \{i\} & \text{altrimenti} \end{cases}$$

58) Soluzione del problema

La soluzione del problema é (OPT_n, S_n) .

59) Algoritmo Bottom Up

```
function HatevilleRic(i) if i = 0 then return (0, \emptyset) else  (V_1, S_1) := \text{HatevilleRic}(i-1)   (V_2, S_2) := \text{HatevilleRic}(i-2)   V_2 := V_2 + d_i   S_2 := V_2 \cup \{i\}  if V_1 \ge V_2 then return (V_1, S_1) else return (V_2, S_2)
```

60) Ricostruzione dell'algoritmo

```
\begin{aligned} &\text{function HatevilleRic(n)} \\ &\text{OPT[0]} := 0 \\ &\text{S[0]} := 0 \\ &\text{OPT[1]} := d_1 \\ &\text{S[1]} := \{1\} \\ &\text{for } i := 2 \text{ to n do} \\ &\text{V}_1 := \text{OPT[i-1]} \\ &\text{V}_2 := \text{OPT[i-2]} + d_i \\ &\text{if } V_1 \geq V_2 \text{ then} \\ &\text{S[i]} := \text{S[i-1]} \\ &\text{OPT[i]} := V_1 \\ &\text{else} \\ &\text{S[i]} := \text{S[i-2]} \cup \{i\} \\ &\text{OPT[i]} := V_2 \\ &\text{return (OPT[n], S[n])} \end{aligned}
```

Capitolo 10 - Edit Distance

61) Definizione del problema

Date due sequenze $X = \langle x_1, ..., x_m \rangle$ e $Y = \langle y_1, ..., y_n \rangle$, rispettivamente di lunghezza m ed n definite su un alfabeto Σ , si determini il minimo numero di operazioni elementari che permette di trasformare X in Y.

62) Definizione dei sottoproblemi e variabili associate

Date due sequenze $X = \langle x_1, ..., x_m \rangle$ e $Y = \langle y_1, ..., y_n \rangle$, rispettivamente di lunghezza m ed n definite su un alfabeto Σ , si determini il minimo numero di operazioni elementari che permette di trasformare X_i in Y_j . L'equazione $\delta_{i,j}$ è il numero minimo di operazioni elementari che permette di trasformare X_i in Y_i .

63) Equazione di ricorrenza: caso base

Il caso base si ha per un qualunque sottoproblema di dimensione (i,j) con i=0 $\land j=0$, ossia quando uno dei due prefissi considerati è la sequenza vuota.

$$\delta_{i,j} = \begin{cases} 0 & \text{se } i = 0 \land j = 0 \\ j & \text{se } i = 0 \land j > 0 \\ i & \text{se } i > 0 \land j = 0 \end{cases}$$

64) Equazione di ricorrenza: passo ricorsivo

Il passo ricorsivo si ha per un qualunque sottoproblema di dimensione (i,j) con i>0 $\land j>0$, ossia quando entrambi i prefissi considerati non sono vuoti.

$$\delta_{i,j} = \min \begin{cases} \delta_{i-1,j-1} & \text{se } x_i = y_j \\ 1 + \min\{\delta_{i,j-1}, \delta_{i-1,j}, \delta_{i-1,j-1}\} & \text{se } x_i \neq y_j \end{cases}$$

65) Soluzione del problema

La soluzione del problema è $\partial_{m,n}$.

66) Algoritmo Ricorsivo

```
\begin{aligned} & \text{procedure EDRIC}(i,j) \\ & \text{if } i = 0 \lor j = 0 \text{ then} \\ & \text{if } i = 0 \text{ then} \\ & \text{return } j \\ & \text{else} \\ & \text{return } i \\ & \text{else} \\ & \text{if } x_i = y_j \text{ then} \\ & \text{return EDRIC}(i-1,j-1) \\ & \text{else} \\ & ins \leftarrow 1 + \text{EDRIC}(i,j-1) \\ & del \leftarrow 1 + \text{EDRIC}(i-1,j) \\ & rep \leftarrow 1 + \text{EDRIC}(i-1,j-1) \\ & \text{return MIN}(ins,del,rep) \end{aligned}
```

67) Algoritmo Bottom Up

```
\begin{aligned} & \text{procedure ED}(X,Y) \\ & \text{for } i \leftarrow 0 \text{ to } m \text{ do} \\ & \delta[i,0] \leftarrow i \\ & \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\ & \delta[0,j] \leftarrow j \\ & \text{for } i \leftarrow 1 \text{ to } m \text{ do} \\ & \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\ & \text{if } x_i = y_j \text{ then} \\ & \delta[i,j] \leftarrow \delta[i-1,j-1] \\ & \text{else} \\ & \delta[i,j] \leftarrow 1 + \text{MIN}(\delta[i,j-1],\delta[i-1,j],\delta[i-1,j-1]) \\ & \text{return } \delta[m,n] \end{aligned}
```

Capitolo 11 - Interleaving

68) Definizione del problema

Date tre sequenze, definite su un alfabeto Σ :

```
X=\langle x_1,\ldots,x_m \rangle, tale che |X|=m Y=\langle y_1,\ldots,y_n \rangle, tale che |Y|=n W=\langle w_1,\ldots,w_{m+n} \rangle, tale che |W|=m+n
```

stabilire se W è un interleaving di X e Y, ovvero se X e Y si possono trovare come due sottosequenze disgiunte in W.

69) Definire il coefficiente che risolve i vari sottoproblemi

Il coefficiente $s_{i,j}$ determina se W_{i+j} è interleaving dei prefissi X_i e Y_j .

70) Equazione di ricorrenza: caso base

Se $i=0 \lor j=0$, ossia uno dei prefissi è vuoto, allora risulta necessario considerare i seguenti casi:

 \rightarrow se $i=0 \land j=0$, allora si avrebbe che W_{i+j} rappresenta la sequenza vuota e quindi vale che $s_{i,j}=True$;

 \rightarrow se $i=0 \land j>0 \land w_j=y_j$, allora w_j è interleaving solo se lo è anche $W_{i,j-1}$ e quindi $s_{i,j}=s_{i,j-1}$;

 \rightarrow se $i=0 \land j>0 \land w_j \neq y_j$, allora w_j non può essere interleaving e quindi $s_{i,j}=False$;

 \rightarrow se $i=0 \land j>0 \land w_i \neq x_i$, allora w_j non può essere interleaving e quindi $s_{i,j}=False$;

 \rightarrow se $i=0 \land j>0 \land w_i=x_i$, allora w_j è interleaving solo se lo è anche $W_{i-1,j}$ e quindi $s_{i,j}=s_{i-1,j}$;

Riassumendo si avrebbe:

$$s_{i,j} = \begin{cases} True & \text{se } i = 0 \land j = 0 \\ s_{i,j-1} & \text{se } i = 0 \land j > 0 \land w_j = y_j \\ False & \text{se } i = 0 \land j > 0 \land w_j \neq y_j \\ s_{i-1,j} & \text{se } i > 0 \land j = 0 \land w_i = x_i \\ False & \text{se } i > 0 \land j = 0 \land w_i \neq x_i \end{cases}$$

71) Equazione di ricorrenza: passo ricorsivo

Se $i > 0 \land j > 0$, ossia nessuno dei due prefissi è vuoto, allora risulta necessario considerare i seguenti casi:

- \rightarrow se $w_{i+j} \neq x_i \land w_{i+j} \neq y_j$, allora w_{i+j} non può essere interleaving e quindi $s_{i,j} = False$;
- \rightarrow se $w_{i+j} = x_i \wedge w_{i+j} \neq y_j$, allora w_{i+j} è interleaving solo se lo è anche $W_{i-1,j}$ e quindi $s_{i,j} = s_{i-1,j}$;
- se $w_{i+j} \neq x_i \land w_{i+j} = y_j$, allora w_{i+j} è interleaving solo se lo è anche $W_{i,j-1}$ e quindi $s_{i,j} = s_{i,j-1}$;
- \rightarrow se $w_{i+j}=x_i \wedge w_{i+j}=y_j$, allora w_{i+j} è interleaving solo se lo è $W_{i-1,j}$ e $W_{i,j-1}$ e quindi $s_{i,j}=s_{i-1,j} \vee s_{i,j-1}$

$$s_{i,j} = \begin{cases} False & \text{se } w_{i+j} \neq x_i \land w_{i+j} \neq y_j \\ s_{i-1,j} & \text{se } w_{i+j} = x_i \land w_{i+j} \neq y_j \\ s_{i,j-1} & \text{se } w_{i+j} \neq x_i \land w_{i+j} = y_j \\ s_{i-1,j} \lor s_{i,j-1} & \text{se } w_{i+j} = x_i \land w_{i+j} = y_j \end{cases}$$

72) Soluzione del problema

La soluzione del problema è $s_{m,n}$.

Capitolo 12 - Knapsack

73) Input e Output del Problema

```
Input: X = \{1, ..., n\}: (v_i, w_i), \forall i \in \{1, ..., n\}
Output: S \subseteq \{1, ..., n\}: W(S) \leq C \land V(S) = \max_{A \subseteq \{1, ..., n\}: W(A) \leq C} \{V(A)\}
```

74) Definizione dei sottoproblemi e variabili associate

Dato un insieme $\{1, ..., i\}$ di oggetti, trovare un suo sottoinsieme di ingombro complessivo $\leq C$ e di massimo valore complessivo. Si ha quindi:

```
Input: X_i = \{1, ..., i\}: (v_i, w_i), \forall j \in \{1, ..., i\}
```

Output: $S \subseteq \{1, ..., i\}: W(S_{i,c}) \le c \land V(S_{i,c}) = max_{A \subseteq \{1, ..., i\}: W(A) \le c} \{V(A)\}$

Dato che $0 \le i \le n$ si ottengono (n+1) sottoproblemi, ad ognuno dei quali è associata una coppia di variabili. Si ha quindi (OPT_i, S_i) , dove:

 $OPT_{i,c} = V(S_{i,c})$, ossia il valore di un sottoinsieme di $\{1, ..., i\}$ di ingombro complessivo $\leq c$ e di massimo valore complessivo.

75) Equazione di ricorrenza: caso base

Se
$$i = 0 \lor c = 0$$
, allora vale

$$OPT_{i,c} = 0 \land S_{i,c} = \emptyset$$
 se $i = 0 \lor c = 0$

76) Equazione di ricorrenza: passo ricorsivo

Quando $i>0 \land c>0$, allora risulta necessario considerare i seguenti casi: $\rightarrow w_i>c$: se l'oggetto ha ingombro maggiore della capacità, allora l'oggetto non può appartenere alla soluzione e quindi si va a considerare la soluzione del sottoproblema di dimensione minore i-1,c. In questo caso

$$OPT_{i,c} = OPT_{i-1,c} \land S_{i,c} = S_{i-1,c} \text{ se } w_i > c$$

 $\rightarrow w_i \le c$: allora risulta necessario tenere in considerazione due casi:

a. $i \notin S_i$: se l'oggetto i non appartiene alla soluzione allora risulta necessario considerare l'insieme $\{1, ..., i-1\}$ e quindi:

$$OPT_{i,c} = OPT_{i-1,c} \land S_{i,c} = S_{i-1,c}$$
 se $i \notin S_i$

b. $i \in S_i$: se l'oggetto i appartiene alla soluzione allora vale:

$$OPT_{i,c} = OPT_{i-1,c-w_i} + v_i \land S_{i,c} = S_{i-1,c-w_i} \cup \{i\} \text{ se } i \in S_i$$

Riassumendo si ha:

$$\mathtt{OPT}_{i,c} = \begin{cases} \mathtt{OPT}_{i-1,c} & \text{se } w_i > c \\ \max\{\mathtt{OPT}_{i-1,c}, \mathtt{OPT}_{i-1,c-w_i} + v_i\} & \text{altrimenti} \end{cases}$$

e

$$S_{i,c} = \begin{cases} S_{i-1,c} & \text{se } w_i > c \\ S_{i-1,c} & \text{se } \mathsf{OPT}_{i-1,c} \geq \mathsf{OPT}_{i-1,c-w_i} + v_i \\ S_{i-1,c-w_i} \cup \{i\} & \text{altrimenti} \end{cases}$$

77) Soluzione del problema

La soluzione del problema è $(0PT_{n,C}, S_{n,C})$.

 $\rightarrow E \subseteq V^2$

 $\rightarrow W: E \rightarrow R^+: w(i,j) = w_{i,j}$

```
78) Algoritmo Bottom Up
procedure KP(n, C)
     for i \leftarrow 0 to n do
         \mathsf{OPT}[i,0] \leftarrow 0
         S[i,0] \leftarrow \emptyset
     for c \leftarrow 0 to C do
         \mathsf{OPT}[0,c] \leftarrow 0
         S[0,c] \leftarrow \emptyset
     for i \leftarrow 1 to n do
         for c \leftarrow 1 to C do
             if w_i > c then
                  \mathsf{OPT}[i,c] \leftarrow \mathsf{OPT}[i-1,c]
                  S[i, c] \leftarrow S[i-1, c]
              else
                  V_1 \leftarrow \mathtt{OPT}[i-1,c]
                  V_2 \leftarrow \mathsf{OPT}[i-1,c-w_i] + v_i
                  OPT[i, c] \leftarrow MAX(V_1, V_2)
                  if V_1 \geq V_2 then
                       S[i,c] \leftarrow S[i-1,c]
                  else
                       S[i, c] \leftarrow S[i-1, c-w_i] \cup \{i\}
     return (OPT[n, C], S[n, C])
79) Algoritmo Ricorsivo
procedure KPric(i,c)
     if i = 0 \lor c = 0 then
         return (0, \emptyset)
     else
         if w_i > c then
             return KPRIC(i-1,c)
         else
             (V_1, S_1) \leftarrow \text{KPric}(i-1, c)
             (V_2, S_2) \leftarrow \text{KPric}(i-1, c-w_i)
             V_2 \leftarrow V_2 + v_i
             if V_1 \geq V_2 then
                  return (V_1, S_1)
             else
                 return (V_2, S_2 \cup \{i\})
Capitolo 13 - Grafi: Floyd - Warshall
80) Input e Output del Problema
Input: Si ha un grafo G = (V, E, W) (senza cappi) orientato e pesato tale che:
\rightarrow V = \{v_1, v_2, ..., v_n\}
```


$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1,2), (1,5), (2,3), (2,4), (4,3), (5,2), (5,4)\}$$

Output: Per ogni coppia di vertici i e j, trovare il cammino di peso minimo (cammino minimo) che parte da i e finisce in j.

81) Definizione dei sottoproblemi e variabili associate

Il coefficiente $d_{i,j}^k$ determina il peso del cammino minimo dal vertice i al vertice j, con vertici intermedi $\in \{1, ..., k\}$ se k > 0 senza vertici intermedi se k = 0. Vale quindi $k \in \{0, 1, ..., n\}, i \in \{1, ..., n\}, j \in \{1, ..., n\}$ Qui si mostra la matrice \mathbf{W} dei pesi

W	1	2	3	4	5
1	0	9	16	∞	2
2	∞	0	∞	7	13
3	∞	1	0	8	8
4	8	8	1	0	8
5	∞	8	8	3	0

Qui si mostra la matrice π dei predecessori

82) Equazione di ricorrenza: caso base

Se
$$k = 0$$
, allora:
 $\rightarrow d_{i,j}^0 = 0$, se $i = j$;

$$ightarrow d_{i,j}^0 = w_{ij}$$
, se $i \neq j \land (i,j) \in E$

$$ightarrow d_{i,j}^0 = \infty$$
, se $i \neq j \land (i,j) \notin E$

Riassumendo

$$d_{i,j}^0 = \begin{cases} 0 \\ w_{ij} \\ \infty \end{cases}$$

Per quanto riguarda i predecessori valgono le seguenti condizioni:

$$\rightarrow \pi^0_{i,j} = NIL$$
, se $i = j$;

$$ightarrow \pi^0_{i,j} \, = \, 0$$
 , se $i \neq j \, \wedge \, (i,j) \, \in \, E$

$$\rightarrow \pi_{i,j}^0 = NIL$$
, se $i \neq j \land (i,j) \notin E$

Riassumendo

$$\pi^0_{i,j} \; = \begin{cases} NIL \\ 0 \\ NIL \end{cases}$$

83) Equazione di ricorrenza: passo ricorsivo

Se k > 0, allora vale che:

$$\rightarrow$$
 se $k \notin p$, allora

$$d_{i,j}^k = d_{i,j}^{k-1} e \pi_{i,j}^k = \pi_{i,j}^{k-1}$$

$$\rightarrow$$
 se $k \in p$, allora

$$d_{i,j}^k = d_{i,k}^{k-1} + d_{k,j}^{k-1} e \pi_{i,j}^k = \pi_{k,j}^{k-1}$$

Riassumendo

$$\begin{aligned} & d_{i,j}^k = \min\{d_{i,j}^{k-1}, d_{i,k}^{k-1} + d_{k,j}^{k-1}\} \\ & \pi_{i,j}^k = \begin{cases} \pi_{i,j}^{k-1} \\ \pi_{k,j}^{k-1} \end{cases} \end{aligned}$$

84) Soluzione del problema

Le soluzioni del problema sono $d_{i,j}^n$ e $\pi_{i,j}^n$

85) Algoritmo Bottom Up

```
Procedura calcola valori ottimi FW(V,E,W)
    D_0 \leftarrow M
    \Pi^0 \leftarrow (n x n) matrix of NIL values
    for i ← 1 to n do
         for j ← 1 to n do
              if i \neq j and w_{ij} \neq \infty then
                  \Pi^{0}[i,j] \leftarrow i
    for k ← 1 to n do
         for i ← 1 to n do
              for j ← 1 to n do
                  D^{k}[i,j] \leftarrow D^{k-1}[i,j]
                  \Pi^{k}[i,j] \leftarrow \Pi^{k-1}[i,j]
                  if i \neq k and j \neq k then
                       if D^{k}[i,j] > D^{k-1}[i,k] + D^{k-1}[k,j] then
                           D^{k}[i,j] \leftarrow D^{k-1}[i,k] + D^{k-1}[k,j]
                           \Pi^{k}[i,j] \leftarrow \Pi^{k-1}[k,j]
```