NABIL SOFT

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2015

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 30 سا و30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (04,5 نقطة)

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس (O;i,j,k) ؛

. $D\left(1;1;4
ight)$ و $C\left(3;3;1
ight)$ ، $B\left(1;2;2
ight)$ ، $A\left(2;1;0
ight)$ و نعتبر النقط

رتية له. x-y+z-1=0 و تعيّن مستويا وأنّ x-y+z-1=0 معادلة ديكارتية له.

. وحدة مساحة $\frac{3\sqrt{3}}{2}$ وحدة مساحة ، ثمّ تحقّق أنّ مساحته هي ABC وحدة مساحة .

. D عين تمثيلا وسيطيا للمستقيم (Δ) العمودي على المستوي (ΔBC) والذي يشمل النقطة (Δ

(ABC) النقطة D على المسقط العمودي للنقطة (4 هي المستوي (4

. (ABC) والمستوي D عيّن إحداثيات النقطة E ثمّ احسب المسافة بين النقطة D

 $\sqrt{3}$ منهما قطر كل منهما E عيّن مركزي سطحي الكرتين اللذين يمسان (ABC) في النقطة

5) احسب حجم رباعي الوجوه ABCD

التمرين الثاني: (04,5 نقطة)

. β مرافق α و α مرافق α مرافق α مع α مرافق α عيّن العددين المركّبين α و α حيث α حيث α عيّن العددين المركّبين α و α حيث α حيث (I

المستوي منسوب إلى المعلم المتعامد والمتجانس B ، A ، O(u,v) و B ، النقط التي لاحقاتها على الترتيب:

$$z_{A} = z_{C} \cdot e^{i\frac{\pi}{3}}$$
 $z_{B} = \overline{z_{A}}$ $z_{A} = -\frac{3}{2} + i\frac{\sqrt{3}}{2}$

الباد. الطبيعي n حتى يكون الأسي ثمّ عيّن قيّم العدد الطبيعي n حتى يكون الأسي ثمّ عيّن قيّم العدد الطبيعي z_C الأسي ثمّ عيّن قيّم العدد الطبيعي المتحد الطبيعي المتحد الأسي ثمّ عيّن قيّم العدد الطبيعي المتحد الطبيعي المتحد المتحدد الطبيعي المتحدد المتحدد الطبيعي المتحدد ا

. حقيق
$$2\left(\frac{z_A}{\sqrt{3}}\right)^{2015} + \left(\frac{z_B}{\sqrt{3}}\right)^{1962} - \left(\frac{z_C}{\sqrt{3}}\right)^{1435}$$
 حقيق (ب

. $z_D = 1 + i$ النقطة ذات اللاحقة D (2

. A إلى D ويحوّل D الذي مركزه D ويحوّل D إلى D

NABIL SOFT

$$\sin\left(\frac{7\pi}{12}\right)$$
 و $\cos\left(\frac{7\pi}{12}\right)$ على الشكل الجبري ثمّ استنتج القيمة المضبوطة لكل من: $\frac{z_A}{z_D}$

. به مسح
$$z=k$$
 حيث مجموعة النقط $z=k$ ذات اللاحقة z التي تحقّق: $z=k$ (1+ i) عيّن مجموعة النقط i

التمرين الثالث: (04,5 نقطة)

.
$$u_{n+1} = (1+u_n)e^{-2}-1$$
 : n عدد طبيعي عدد $u_0 = e^2-1$: $u_0 = e^2-1$ المتتالية العددية المعرّفة ب

$$u_3$$
 و u_2 ، u_1 احسب (1

$$1 + u_n > 0$$
 : اثبت أنّه من أجل كل عدد طبيعي (2

. هل هي متقاربة ؟ علّل (
$$u_n$$
) بيّن أنّ المتتالية (u_n) متناقصة .

$$v_n = 3(1+u_n)$$
 : منع من أجل كل عدد طبيعي (4

أ) أثبت أنّ
$$(v_n)$$
 متتالية هندسية يطلّب تعيين أساسها وحدها الأوّل.

$$\lim_{n\to +\infty} u_n$$
 بدلالة u ، ثمّ احسب v_n اكتب v_n اكتب

.
$$\ln v_0 + \ln v_1 + ... + \ln v_n = (n+1)(-n+2+\ln 3)$$
 : کل n من أجل کل n من أجل کل n من أجل كا بيّن أنّه من أجل كل

التمرين الرابع: (6,5 نقطة)

. $\left(O;i',j
ight)$ المستوي منسوب إلى المعلم المتعامد والمتجانس

$$0;+\infty$$
 على $]0;+\infty$ على $]0;+\infty$ على $]0;+\infty$.

.
$$g(x) = x - 3 + \ln x$$
: بالدالة المعرّفة على المجال $g(x) = x - 3 + \ln x$ بالدالة المعرّفة على المجال $g(x) = x - 3 + \ln x$ بالدالة المعرّفة على المجال $g(x) = x - 3 + \ln x$

 $. 2,2 < \alpha < 2,3$:نحقّق أن (3

. و
$$(C_f)$$
 و $f(x) = (1 - \frac{1}{x})(\ln x - 2)$ بمثيلها البياني. و $f(x) = (1 - \frac{1}{x})(\ln x - 2)$ بمثيلها البياني.

$$\lim_{x\to +\infty} f(x)$$
 و $\lim_{x\to +\infty} f(x)$ احسب (1

.
$$f$$
 البيت أنّه من أجل كل x من $g(x) = \frac{g(x)}{x^2}$: $g(x) = \frac{g(x)}{x^2}$ البيات الدالة (2

.
$$f(\alpha)$$
 بيّن أنّ: $f(\alpha) = \frac{-(\alpha-1)^2}{\alpha}$ ؛ ثمّ استنتج حصرا للعدد (3

$$[0\ ;\ e^2]$$
 على المجال ($[C_f]$) ادرس وضعية المجال إلى حامل محور الفواصل ؛ ثمّ أنشئ $[C_f]$ على المجال (4

.
$$F(1)=-3$$
 والتي تحقّق: f على المجال f الدالة الأصلية للدالة f على المجال f

اً بيّن أنّ منحنى الدالة
$$F$$
 يقبل مماسين موازيين لحامل محور الفواصل في نقطتين يُطلب تعيين فاصلتيهما.

.
$$F$$
 عبارة الدالة عبارة الدالة $x\mapsto x$ استنتج عبارة الدالة $x\mapsto x$ الدالة $x\mapsto x$ الدالة $x\mapsto x$ الدالة (2

NABIL SOFT

الموضوع الثاني

التمرين الأول: (04 نقاط)

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس ((O;i,j,k) ؛

.
$$D(1;0;-2)$$
 و $C(3;1;-3)$ ، $B(0;4;-3)$ ، $A(2;4;1)$ و غتبر النقط

أجب بصحيح أو خطأ مع التعليل في كل حالة من الحالات الآتية:

- النقط A ، B و C ليست في استقامية.
- ديكارتية للمستوي (2x + 2y z 11 = 0 (2
- . (ABC) هي المسقط العمودي للنقطة D على المستوي $E\left(3;2;-1\right)$ النقطة (3
 - المستقيمان (AB) و (CD) من نفس المستوي.

$$\left\{ egin{aligned} x=2t-1 \ y=t-1 \ z=-t-1 \end{aligned}
ight.$$
 (5) نمثیل وسیطی للمستقیم $\left\{ egin{aligned} x=2t-1 \ z=-t-1 \end{array}
ight.$

.
$$\{(A;\alpha),(B;\beta)\}$$
 مرجح الجملة $I\left(\frac{3}{5};4;-\frac{9}{5}\right)$ مرجح الجملة α و α و α يوجد عددان حقيقيان α و α انقطة α

التمرين الثاني: (05 نقاط)

في المستوي المنسوب إلى المعلم المتعامد والمتجانس (O;u,v) نعتبر النقط B ، A و B التي لاحقاتها على

.
$$(z_A$$
 هو مرافق $\overline{z_A})$ ، $z_C = -(z_A + z_B)$ و $z_B = -\overline{z_A}$ ، $z_A = 2e^{i\frac{\pi}{6}}$ هو مرافق z_C و z_B ، z_A الترتيب:

- . اكتب كلا من العددين المركّبين z_B و z_C على الشكل الأسي .
- ب) استنتج أنّ النقط A ، A و B تتتمي إلى دائرة (γ) يطلب تعيين مركزها ونصف قطرها.
 - \cdot . C و B ، A والنقط (γ) والنقط الدائرة

.
$$\frac{z_B - z_C}{z_B - z_A} = e^{-i\frac{\pi}{3}}$$
 : نحقق أنّ (2)

- ب) استنتج أنّ المثلث ABC متقايس الأضلاع وأنّ النقطة O مركز ثقل هذا المثلث.
- $|z|=|z-\sqrt{3}-i|$ عيّن وأنشئ (E) مجموعة النقط M ذات اللاحقة z حيث:
 - A الذي مركزه O ويحوّل C إلى C الذي مركزه O الذي ألى C الذي ألى الذي أل
 - [OB] بالدوران r هي محور القطعة المياث بالدوران (E)

التمرين الثالث: (05 نقاط)

المستوي منسوب إلى المعلم المتعامد والمتجانس ((O;i',j)).

- . و $f(x) = \frac{4x+1}{x+1}$. و $f(x) = \frac{4x+1}{x+1}$. الدالة المعرّفة على المجال $f(x) = \frac{4x+1}{x+1}$.
 - .[0;+ ∞ [الدالة f على المجال عيّن اتجاه تغير الدالة

$egin{aligned} \mathbf{B} & \mathbf{T} & \mathbf{S} & \mathbf{F} & \mathbf{T} \\ \mathbf{S} & \mathbf{S} & \mathbf{F} & \mathbf{F} & \mathbf{F} \end{aligned}$ ادرس وضعية (C_f) بالنسبة إلى المستقيم (D) ذي المعادلة (C_f)

- - (0;6] مثّل (C_{f}) و (D) على المجال (0;6]

.
$$\begin{cases} v_0 = 5 \\ v_{n+1} = f\left(v_n\right) \end{cases} \quad \begin{cases} u_0 = 2 \\ u_{n+1} = f\left(u_n\right) \end{cases}$$
 عتبر المتتاليتين $\left(v_n\right) \in \left(v_n\right)$ المعرّفتين على '\' كما يلي: (II

- . (1) أ) أنشئ على حامل محور الفواصل الحدود: u_1 ، u_2 ، u_1 ، u_3 و v_2 ، v_1 ، v_2 ، v_3 و v_3 دون حسابها. (v_n) و (u_n) فمّن اتجاه تغیر وتقارب کل من المتتالیتین
 - $\alpha = \frac{3+\sqrt{13}}{2}$: حيث $\alpha < v_n \le 5$ و $2 \le u_n < \alpha$ نه من أجل كل α من $\alpha < v_n \le 5$ و $\alpha < v_n \le 5$ (v_n) و (u_n) استنتج اتجاه تغیر کل من المتتالیتین
 - . $v_{n+1} u_{n+1} \le \frac{1}{3} (v_n u_n) : \Lambda$ من n کل n کل (1) أثبت أنّه من أجل كل n من n
 - $v_n u_n \le \left(\frac{1}{3}\right)^{n-1}$: بین أنّه من أجل كل n من n كل بین أنّه من أجل
 - . (v_n) و (u_n) من من $\lim_{n\to+\infty}(v_n-u_n)=0$ ؛ ثمّ حدّد نهایة کل من $(v_n)=0$

التمرين الرابع: (06 نقاط)

- $g(x) = 1 2x e^{2x-2}$: با الدالة العددية المعرفة على با با والدالة العددية المعرفة على با والدالة العددية المعرفة على با
 - 1) ادرس اتجاه تغير الدالة g على بنا.
- . $0,36 < \alpha < 0,37$: ثمّ تحقّق أنّ : g(x) = 0 بيّن أنّ المعادلة g(x) = 0 تقبل حلا وحيدا وحيدا
 - . استنتج إشارة g(x) على = 3
 - . $f(x) = xe^{2x+2} x + 1 : + 1$ الدالة العددية المعرّفة على الدالة العددية المعرّفة المعرّفة على الدالة العددية المعرّفة المعرّفة على الدالة العددية العددية
 - . $\left(O;ec{i}\,,ec{j}
 ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}
 ight)$
 - . $f'(x) = e^{2x+2} g(-x)$: من x من أجل كل x من أجل كل أ (1
 - . $[-lpha;+\infty[$ ب] استنتج أنّ الدالة f متناقصة تماما على $]-\infty;-lpha[$ ومتزايدة تماما على
 - . f عند f
 - احسب النتيجة هندسيا. ا $\lim_{x\to\infty} \left[f(x) + x 1 \right]$ احسب (3
 - . y=-x+1 ادرس وضعية C_f بالنسبة إلى المستقيم (Δ) الذي معادلته النسبة إلى بالنسبة الح
 - . $f\left(-\alpha\right)\approx0,1$ فنشئ $\left(\Delta\right)$ على المجال $\left(C_{f}\right)$ على المجال (5
 - . $2f(x)+f'(x)-f''(x)=1-2x-3e^{2x+2}$: من أجل كل x من أجل كل x من أجل كا أنه من أبل كا أنه من أبل كا أنه من أبل كا أنه كا أنه من أبل كا أنه كا
 - \cdot باستنتج دالة أصلية للدالة f على \dot{f}