Prepared for: Town Of Greenwich Greenwich Public Schools 290 Greenwich Avenue Greenwich, CT 06830 Prepared by: AECOM Rocky Hill CT 60148468 January 23, 2012

# MISA Investigation Report

Greenwich High School MISA Construction Project Greenwich, CT



Prepared for: Town Of Greenwich Greenwich Public Schools 290 Greenwich Avenue Greenwich, CT 06830 Prepared by: AECOM Rocky Hill CT 60148468 January 23, 2012

# MISA Investigation Report

Greenwich High School MISA Construction Project Greenwich, CT

Malcolm a Buln

Prepared By: Malcolm A. Beeler

Reviewed By: Michael Doherty, P.E.

Technical Advisory Review by: William A. Baker, P.E.

# **Contents**

| 1.0 | Introdu  | ction.  |                               | 1-1 |
|-----|----------|---------|-------------------------------|-----|
|     | 1.1      | Site De | escription                    | 1-1 |
|     | 1.2      | Conce   | ptual Site Model              | 1-2 |
|     | 1.3      | Applica | able Regulations and Criteria |     |
|     |          | 1.3.1   | Federal Regulations           | 1-2 |
|     |          | 1.3.2   | RSR Criteria                  | 1-2 |
| 2.0 | Investig | gation  | Program                       | 2-1 |
|     | -        | 2.3.1   | Geology                       |     |
|     | :        | 2.3.2   | Hydrogeology                  | 2-2 |
| 3.0 | Analytic | cal Da  | ıta Summary                   | 3-1 |
|     | _        | 3.3.1   | PCBs                          |     |
|     | ;        | 3.3.2   | Metals                        | 3-2 |
|     | ;        | 3.3.3   | PAHs                          |     |
|     | ;        | 3.3.4   | ETPH                          | 3-3 |
|     | ;        | 3.3.5   | Pesticides                    | 3-3 |
| 4.0 | Conclu   | cione   |                               | 4.4 |

AECOM Environment jv

## **List of Tables**

Table 1 –Soil Analytical Data

# **List of Figures**

Figure 1 – Site Location Map

Figure 2 - Site Plan

Figure 3 – Soil Sample Locations and Areas of Concern

Figure 4 – PCB Analytical Data Summary

Figure 5 – Metals Analytical Data Summary

Figure 6 – PAHs Analytical Data Summary

Figure 7 – ETPH Analytical Data Summary

# **List of Appendices**

Appendix A Analytical Data Reports

Appendix B Soil Boring Logs

AECOM Environment 1-1

### 1.0 Introduction

This investigation report details the investigation methods and results of the 2011 soil investigation conducted within the footprint of the Music and Instructional Space Auditorium (MISA) construction area at Greenwich High School (GHS) (the Site) located at 10 Hillside Road in Greenwich, Connecticut. The Owner of the Site is the Town of Greenwich (Owner or Town). This report only covers soil within the footprint of the MISA construction. Site-wide investigation is ongoing and other environmental impacts will be covered under separate reports.

### 1.1 Site Description

The GHS property is located at 10 Hillside Road in Greenwich, Connecticut, which is approximately 73.61 degrees west longitude and 41.04 degrees north latitude. A Site Location Map is provided as **Figure 1** and a site plan indicating property boundaries, major site features, the MISA construction footprint, and sample locations is provided as **Figure 2**.

Information obtained from the Town of Greenwich Tax Assessor's office indicates that the property is currently owned by the Town of Greenwich, the legal size of the property is 54.75 acres, and the parcel number is 07-4511/S. The property was acquired by the Town in 1966 and construction on the initial high school buildings was completed in 1970. Additional construction, including the addition of building wings, was performed in 1990.

Sanborn fire insurance maps indicate that prior to 1966 and purchase of the site by the Town, the property was occupied by several residences and outbuildings at the perimeter and a water body that was located centrally, referred to as an ice pond on the Sanborn maps, with an associated ice house. Historical records indicate that fill was brought onto the property to backfill the pond area prior to and during construction of the school. Additional fill was added to address settling in the western parking area in the early 1970s.

The property is in an area that is zoned for single-family residential use (R-20) and is bounded by residential properties to the north and west, East Putnam Avenue to the south, and Hillside Road to the east. Residential properties are located beyond East Putnam Avenue and Hillside Road. The property is currently in active use as a high school. Improvements include the high school building complex with multiple specific-use wings, paved parking areas, and athletic fields. Utilities serving the property include municipal water, storm drainage, sewer, electricity, and communications. Heating is provided by oil-fired boilers and No. 2 fuel oil for heating is stored on-site in a 15,000-gallon underground storage tank (UST).

A fenced utility area, located on the west side of the school building, encloses a transformer owned and operated by Connecticut Light & Power, an emergency electrical generator with an integral 200-gallon diesel day tank, and a steel storage container used to store maintenance vehicles and small containers of gasoline. A 1,000-gallon diesel UST for the generator is located between the fenced area and the adjacent paved parking area. The remainder of the property is landscaped or wooded. West Brothers Brook enters the property in the northwest, follows the western boundary, then curves east between the football stadium (Field 1) and the baseball diamond (Field 2) before it widens into a small surface water impoundment in the southeast corner of the property. A large section of the brook

AECOM Environment 1-2

is contained within a concrete channel. Water from the impoundment exits the property via a culvert under East Putnam Avenue.

The Natural Resources Conservation Service maps indicate that native soils in the site vicinity are likely to consist generally of sand and gravel with areas of rock outcrops. Historical investigations indicate that native soils at the Site also consist of highly organic soil and peat in the area of the former pond. The United States Geological Survey (USGS) "Surficial Materials Map of Connecticut", dated 1992, indicates thin till at the property location. The "Bedrock Geology Map of Connecticut", produced by CT Department of Environmental Protection and USGS and dated 1985, shows bedrock at the property location as foliated gneiss.

As shown on **Figure 2**, the MISA construction footprint is located at the northwest corner of the existing buildings. The structure located to the south was part of the original construction completed in 1970. The structure located to the east of the MISA footprint was constructed in 1990. Historical aerial photographs and available drawings indicate that the area within the MISA footprint was completed as a parking lot at the time of original construction of the buildings.

### 1.2 Conceptual Site Model

Information gathered during preparation of the Phase I Environmental Site Assessment indicates that fill material of unknown quality was placed at the site prior to and during the construction of the High School between 1966 and 1970. The fill was placed within areas currently occupied by Athletic Fields 2 through 7 and the western parking lot. Historical Sanborn Maps presented in the Phase 1 report showed that residential properties were located on the eastern portion of the Site along Hillside Road and on the southern portion along East Putnam Avenue. As best can be determined from these historical maps, some of these residential properties were located near and within the area of the MISA Footprint.

Thus, from historical site information gathered during the Phase I, the MISA footprint appears to be located at the edge of the area indicated as probably having been filled during construction at the Site. Therefore, potentially impacted soils due to the placement of fill materials are likely present, but expected to be limited, within the MISA footprint.

### 1.3 Applicable Regulations and Criteria

Applicable regulations include the federal PCB regulations in 40 CFR Part 761 and the Connecticut Remediation Standard Regulations (RSRs). This report includes only a soil investigation and did not include an evaluation of groundwater quality; therefore, the sections below will only discuss applicable soil criteria. A site wide groundwater evaluation is being conducted separately.

#### 1.3.1 Federal Regulations

Federal regulations in 40 CFR Part 761, applies if polychlorinated biphenyls (PCBs) are found ≥50 milligrams per kilogram (mg/kg). The federal regulations may also apply to soil with PCB concentrations <50 mg/kg if dilution of PCBs concentrations in soil occurred after 1978.

#### 1.3.2 RSR Criteria

The RSRs contain numeric criteria for soil and include Direct Exposure Criteria (DEC) and Pollutant Mobility Criteria (PMC). For DEC, the RSRs include two sets of criteria; residential (Res) and

AECOM Environment 1-3

industrial/commercial (I/C). The RES DEC are the RSR default criteria, are to be applied to school settings, and are used to evaluate the data discussed in this investigation report.

The RSRs include two sets of numeric criteria for PMC. These are based on the groundwater quality classification at a specific site and the groundwater classification for this Site is GA. Therefore, the GA PMC apply and are used to evaluate the data.

AECOM Environment 2-1

### 2.0 Investigation Program

The following is a discussion of the investigation program for the MISA construction area. The investigation was performed in two phases. The first phase was performed to characterize soil within the entire footprint for containments of concern (COCs) including PCBs, metals, polynuclear aromatic hydrocarbons (PAHs), extractable total petroleum hydrocarbons (ETPH), and pesticides. The second phase was performed to further delineate PCB concentrations in soil where the highest concentration was determined in the first phase. Analytical data reports are included in **Appendix A**.

**Figure 3** presents a site plan of the investigation area with boring locations and Areas of Concern (AOCs). The AOCs are identified based upon analytical results from the investigation which are discussed more fully in Section 3.

During the first phase of the investigation, sixteen soil borings were performed along the 40-foot by 40-foot grid already established for the site and shown on **Figure 2**. Five soil borings were performed along the north-south grid lines designated as 21, 22, and 23 and one boring was performed on the grid line designated as 24. During the second phase of the investigation, an additional eight borings were performed around location AH21-SB206 to more fully delineate PCB impacts identified at this boring. All soil borings are located within the footprint of the Auditorium which will be constructed as part of the MISA project.

Soil borings were planned to be performed to a maximum depth of 20 feet below grade (ft bg). Penetration to this depth allowed for observation and characterization of fill materials and penetration into native materials. During the investigation, all of the borings were terminated short of 20 feet as significant penetration into native materials had been achieved or refusal on bedrock occurred. Soil and fill types were recorded by AECOM field personnel during the field investigation program. Soil boring logs from both phases of the investigation are included in **Appendix B**.

#### 2.3.1 Geology

Soil borings along the 21 transect (those furthest to the west) encountered peat at depths between 9 and 10 ft bg and all borings were terminated at 15 ft bg because significant penetration in what is assumed to be native materials was achieved. Bedrock was not encountered at any of these boring locations. Fill materials were identified above the peat and these consisted of various materials including fine to coarse sands with brick, black sands with various types of debris, and clay with gravel.

Peat was encountered in soil borings along the 22 transect at depths ranging from 5.5 to 10 ft bg except in boring AF22-SB215 (located at the south of this transect nearest to the gym constructed in 1970). Refusal at 16 ft bg occurred during the performance of Al22-SB205 and this is assumed to be the depth of bedrock. Fill materials encountered above the peat layer were similar to those identified along the 21 transect.

Peat was not encountered in any of the soil borings along the 23 transect. Soil consisted of sandy materials with varying amounts of silt and gravel and no debris was identified in these borings. This may indicate the absence of historical fill materials. Refusal was encountered between 11 and 16.5 ft bg in these borings and this is assumed to be the depth of bedrock.

AECOM Environment 2-2

For the single boring performed along the 24 transect, AF24-SB217, soil consisted of sandy materials with gravel and clay. Peat was not identified in this boring and refusal, assumed to be the depth of bedrock, was at 9 ft bg. No debris was identified in this boring.

Soil borings performed during the second phase of the investigation were located on and to the east and west of the 21 transect. Observations of the subsurface geology made during the performance of these borings are consistent with those made during the first phase.

From this limited data set it would appear that peat, assumed to have been present within the historical pond and wetland area that was backfilled during construction of the high school, is only found along transects 21 and 22. Peat was not encountered in the borings along transects 23 and 24 and debris material, indicative of fill, was not identified in these borings either. Thus, these data may indicate that placement of fill is limited to the western area of the MISA footprint which is consistent with the current Conceptual Site Model.

### 2.3.2 Hydrogeology

Hydrogeologic characteristics have not been determined for the site. During the performance of the soil borings, water was typically identified in soil at approximately 10 ft bg. The seasonal low groundwater table is assumed to be at this depth or lower.

AECOM Environment 3-1

### 3.0 Analytical Data Summary

Sixteen borings were performed during the first phase of the investigation program and an additional eight borings were performed during the second phase. During the first phase samples were analyzed for PCBs, metals (RSR 15), PAHs, ETPH, and pesticides as these were the COCs identified in the fill material during limited previous investigation activities at the site. Analytical data are summarized in **Table 1** and the applicable remedial criteria, Res DEC and GA PMC, are also presented in the table. The following summarizes analytical results for the selected analytical parameters.

#### 3.3.1 PCBs

During the first phase of the investigation, three or four analytical samples were collected for analysis of PCBs by EPA Methods 3540 and 8082 from each of the sixteen boring locations. One sample was collected from the surface interval below the asphalt paving (0 to 0.5 or 0 to 1 ft bg), one sample was collected within peat or sands without debris which were assumed to be native materials, and one or two samples were collected of the intermediate fill materials. The fill samples were biased toward the areas with the greatest observed impacts (odor, PID readings, presence of debris, and discoloration). PCB data are summarized on **Figure 4**.

Along the 21 transect, all of the surface interval samples were non-detect for PCBs as were the native material samples which were collected from one-foot intervals between 11 and 15 ft bg. Of the remaining ten samples collected from fill materials, PCBs were detected in five samples, collected between 4 and 7 feet below grade, and were non-detect in the remainder. Of the PCB detections, one was much less than 1 mg/kg (0.0323 mg/kg at AG21-SB214 4.5-5.5), three others were between 1 mg/kg and 5 mg/kg total PCBs, and the maximum determined concentration was 18.8 mg/kg at AH21-SB206 4-5 ft bg.

The Synthetic Precipitation Leachate Procedure (SPLP) was performed on the sample from AH21-SB206 4-5 ft bg as this sample represented the maximum PCB concentration determined within soil in the MISA footprint. Data are presented in **Table 1** and indicate that the GA PMC is not exceeded for this sample.

Along the 22 transect, all of the surface interval samples were non-detect for PCBs except for the sample at AJ22 which had a total PCB concentration of 0.0322 mg/kg. The four native material samples (no native material sample from AH22-SB212) which were collected from one-foot intervals between 8 and 16 ft bg were all non-detect for PCBs. Of the ten samples collected from fill materials, PCBs were detected in five of the samples with a maximum concentration of 0.57 mg/kg.

Along the 23 transect, where fill materials were not observed, all five of the surface interval samples were non-detect for PCBs except for AG23-SB216 where PCBs were detected at a concentration of 0.104 mg/kg. PCBs were not detected in the five native material samples, collected from half- or one-foot intervals between 10.5 and 16 ft bg, except in Al23-SB208 10.5-11 ft bg where PCBs were detected at 0.0459 mg/kg. PCBs were detected in only two of the eight intermediate samples collected along this transect with a maximum concentration of 0.0635 mg/kg at AG23-SB216 9-10 ft bg.

AECOM Environment 3-2

Four samples were collected from AF24-SB217 and PCBs were only detected in one of the intermediate samples at 5 to 6 feet below grade and a concentration of 0.0654 mg/kg.

These data indicate that PCBs at a concentration greater than 1 mg/kg were only detected along the 21 transect and that these detections were limited to between 4 and 7 ft bg. No other samples exceeded 1 mg/kg during the first phase of the investigation. SPLP analysis of the sample with the maximum PCB concentration indicated that PCBs do not exceed the GA PMC.

An additional eight borings were performed during the second phase of the investigation. Four borings were performed ten feet distant of the highest detection of PCBs during the first phase (18.8 mg/kg at boring location AH21 from 4 to 5 ft bg). The remaining four borings were performed 20 feet distant from AH21. Three samples were collected at each boring and analyzed for total PCBs. All of the samples were collected from between 2 and 7 ft bg so as to focus on the depth interval with observed PCB impacts.

Two sample results from this additional round of sampling exceeded 50 mg/kg, AH218-SB219 6-7 ft bg (87.2 mg/kg) and AH21D-SB221 4-5 ft bg (72.7 mg/kg). Both of these samples were collected 10-feet distant from AH21D. Overall, PCBs were detected in ten of the twelve samples collected 10-feet distant from AH-21, but other than those two samples that exceeded 50 mg/kg, none of the others exceeded 5 mg/kg. Thus, PCB impacts exceeding 50 mg/kg are extremely limited and no other impacts that exceeded 10 mg/kg were identified in these samples.

None of the analytical results from soil samples collected 20-feet distant from AH21 exceeded 50 mg/kg. Overall, PCBs were detected in seven of the twelve sampled collected 20-feet distant from AH21 and only two results exceeded 10 mg/kg, AH21G-SB224 4-5 (10.2 mg/kg) and AH21H-SB225 5-6 (20.6 mg/kg). All of the samples from AH21F-SB223 were non-detect for PCBs. This boring location was performed furthest towards the east and transect 22. This agrees with the data from the first phase of sampling which indicated that PCB impacts >1 mg/kg were limited to along the 21 transect and didn't extend to the east.

#### **3.3.2 Metals**

Eighteen samples for analysis of the list of metals in the RSRs were collected from nine of the boring locations. The data are presented in **Table 1** and are summarized on **Figure 5**. Only arsenic and lead were found to exceed the Res DEC from the RSRs. Several metals exceed the GA PMC based upon a comparison of the total mass to the remedial standard. However, analysis of two SPLP leachate samples from soil samples with the highest metals concentrations, found that only lead exceeded the GA PMC based upon that evaluation.

As shown on **Figure 5**, metals exceeding remedial criteria are limited to the 21 transect. Samples collected to the west along transects 22, 23, and 24 exhibit much lower concentrations of metals and none exceed applicable criteria. This data observation corresponds with that made for PCBs.

Lead exceeded the RDEC and GA PMC, as determined by SPLP analysis (see **Table 1**) at AF21-SB202 6.5-7 and AH21-SB206 4-5. At both these locations lead was found at concentrations greater than 1,000 mg/kg.

Arsenic exceeded the RDEC of 10 mg/kg at the same two sample locations. However, SPLP test results indicate that arsenic does not exceed the GA PMC at these locations. Other metals that didn't

AECOM Environment 3-3

exceed the RDEC but did exceed the GA PMC (by comparing total mass to the PMC) were determined to comply with the GA PMC by performing SPLP extraction and then analyzing for metals.

#### 3.3.3 PAHs

Eighteen samples for analysis of PAHs by EPA Method 8270 were collected from nine of the boring locations. The data are presented in **Table 1** and are summarized on **Figure 6**. Only Benzo(a)anthracene, Benzo(a)pyrene, and Benzo(b)fluoranthene were found to exceed any of the applicable remedial criteria from the RSRs, RDEC and GA PMC. SPLP analysis was performed on the two samples with the highest concentrations of PAHs and Benzo(a)anthracene was found to exceed the GA PMC at one of these location.

As shown on **Figure 6**, PAHs exceeding remedial criteria are limited to the 21 transect except for AH23-SB204 2-3 ft bg. All other samples collected to the west along transects 22, 23, and 24 exhibit much lower concentrations of PAHs and none exceed applicable criteria. This data observation corresponds with that made for PCBs. SPLP analysis of the sample collected from AH23-SB204 2-3 ft bg indicate that this sample does exceed the GA PMC for Benzo(a)anthracene.

#### 3.3.4 ETPH

Eight samples for ETPH analysis by the Connecticut (CT) ETPH method were collected from four of the boring locations. The data are presented in **Table 1** and are summarized on **Figure 7**. As shown on **Figure 7**, ETPH exceeding remedial criteria are limited to the 21 transect. Samples collected to the west of this transect do not exceed the RDEC or GA PMC. It should be noted that the 1996 RSR criteria apply to the analysis of TPH by EPA Method 418.1. However, they are used for comparison for the samples analyzed by the CT ETPH Method.

### 3.3.5 Pesticides

Four samples for analysis of pesticides by EPA Method 8082 were collected from shallow intervals at four of the boring locations located within the MISA footprint. Only methoxychlor was detected but at concentrations less than the RDEC and the GA PMC. Pesticides are not considered to be a COC within the MISA footprint.

AECOM Environment 4-1

### 4.0 Conclusions

PCBs have been detected in soil at concentrations regulated under the applicable federal regulations in 40 CFR Part 761 and Connecticut state regulations under Section 22a-133k-1 through -3, inclusive. Specifically, soil with total PCB concentrations equal to or greater than 50 milligram per kilogram (≥50 mg/kg) that are classified as PCB Remediation Wastes and additional soil with total PCB concentrations less than 50 mg/kg also regulated under the federal regulations have been identified. Additional COCs in soil include metals (lead and arsenic), PAHs, pesticides, and ETPH. Based on the results of this investigation, a remedial plan should be developed to address PCB-containing materials in accordance with the governing federal regulations under §761.61(a) and the governing state regulations for PCBs and the other COCs as well.

Remediation of these soil impacts should be completed as part of the MISA construction process. However, prior to any construction activities, remediation of PCBs in soil ≥50 mg/kg should be performed. The following are recommend for inclusion in the remedial plan:

- Provide public notice prior to the performance of remedial activities
- Remove soil which contains PCBs regulated under §761.61(a) and soils with concentrations
  of COCs in excess of the RDEC and/or GA PMC or render soil inaccessible following
  construction of the MISA.
- Conduct verification sampling following completion of remedial excavations to determine if remedial goals have been achieved. Expand excavations as needed until remedial goals have been achieved.
- Conduct groundwater sampling to assess the continued effectiveness of soil remediation on groundwater quality.
- Complete a plan to store, handle and dispose of waste in accordance with state and federal regulations.
- Complete a decontamination plan for equipment used during the remediation of PCBs.
- Complete an air monitoring plan that is protective of site workers, other site users, and the surrounding community.
- File a deed restriction in accordance with federal PCB and state of Connecticut regulations.

AECOM Environment

## **Tables**



| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Landing ID                 | T      | T       | T        | AF04 CD000              | AF04 CD000              | AFOA CROOO              | AFOA CDOOO              | AF04 CD000              | AF00 CD045              | AE00 CD045              | AF00 CD045              | AFOO CROAF              | AE00 CD045              | AF00 CD000              | AF02 CD002              | AF00 CD000              | AE04 CD047              | AE04 CD047              | AF04 CD047              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|---------|----------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location ID<br>Sample Date |        |         |          | AF21-SB202<br>10/2/2011 | AF21-SB202<br>10/2/2011 | AF21-SB202<br>10/2/2011 | AF21-SB202<br>10/2/2011 | AF21-SB202<br>10/2/2011 | AF22-SB215<br>10/9/2011 | AF22-SB215<br>10/9/2011 | AF22-SB215<br>10/9/2011 | AF22-SB215<br>10/9/2011 | AF22-SB215<br>10/9/2011 | AF23-SB203<br>10/2/2011 | AF23-SB203<br>10/2/2011 | AF23-SB203<br>10/2/2011 | AF24-SB217<br>10/9/2011 | AF24-SB217<br>10/9/2011 | AF24-SB217<br>10/9/2011 |
| THE PROPERTY OF THE PROPERTY O | · ·                        | GA-PMC | RES DEC | I/C DEC  |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         | AF-24-SB217(0-4)        |
| Scheller (1988) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |        |         |          | 0-0.5                   | 3-3.5                   | 6.5-7                   | 9-9.5                   | 12-13                   | 0-0.5                   | 1-3                     | 1-3                     | 5-6                     | 8-9                     | 0-1                     | 8-9                     | 11.5-12                 | 0-0.5                   | 0-1                     | 0-4                     |
| STATE  |                            | T      | 1       | T        |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| TABLE S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |        | +       |          |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| March   Marc   |                            |        |         |          |                         | 1                       |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| Second   S   |                            | NE NE  | NE NE   | NE NE    | NS                      | 42.1                    | 715                     | NS                      |
| Company   Comp   |                            | 4000   | 0.4000  | 700000   | NC                      | 204                     | 200                     | NC                      | NO                      | NO                      | NO                      | NO                      | NO                      | NO                      | 202                     | 470                     | NC                      | NO                      | NC                      | No.                     |
| STORY STATES AND ALL A | · ·                        |        |         |          |                         | 1                       |                         |                         |                         | 1                       |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Margin   M   |                            |        |         |          |                         | 1                       |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| THE PROPERTY OF THE PROPERTY O |                            |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Note   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979   1979      | . ,                        |        |         |          |                         | 1                       |                         |                         | 1                       | 1                       |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| March   Marc   | Fluoranthene               |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Section   Column      | Fluorene                   |        |         |          |                         | 1                       |                         |                         |                         | 1                       |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| The services of the services o | Naphthalene                |        | 1000000 | 2500000  | NS                      | <364                    | <767                    | NS                      |                         |                         | NS                      | NS                      | NS                      | NS                      | <393                    | <179                    |                         | NS                      | NS                      |                         |
| The second   The color   The   | Phenanthrene               | 4000   | 1000000 | 2500000  | NS                      | <364                    | 1230                    | NS                      | NS                      |                         | NS                      | NS                      | NS                      |                         | <393                    | <179                    |                         | NS                      | NS                      |                         |
| March   Marc   | Pyrene                     | 4000   | 1000000 | 2500000  | NS                      | <364                    | 1540                    | NS                      | <393                    | <179                    | NS                      | NS                      | NS                      | NS                      |
| Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PAH-SPLP (ug/L)*           |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Selection of the control of the cont | Chrysene                   | 4.8    | NA      | NA       | NS                      |
| Secretary (1970) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) (1971) | 1-Methylnaphthalene        | NE     | NA      | NA       | NS                      |
| Property    | 2-Methylnaphthalene        | 49     | NA      | NA NA    | NS                      |
| Second   S   | Acenaphthene               |        | +       | NA       | NS                      | 1                       |                         | NS                      | NS                      | 1                       |                         | NS                      | NS                      |                         | NS                      | NS                      |                         | NS                      | NS                      |                         |
| Marcheller   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Anthracene                 |        |         |          |                         | 1                       |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benzo(a)Anthracene         |        |         |          |                         | 1                       |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzo(k)fluoranthene       |        |         |          |                         | 1                       |                         |                         |                         | 1                       |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| Second   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   1   | Fluoranthene               |        |         |          |                         |                         |                         | _                       |                         | 1                       |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Procession   Pro   | Fluorene                   |        |         |          |                         | 1                       |                         |                         |                         | 1                       |                         | _                       |                         |                         |                         |                         |                         |                         |                         |                         |
| The control of the co |                            |        |         |          |                         | 1                       |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |        |         |          |                         | 1                       |                         | _                       |                         | 1                       |                         | _                       |                         |                         |                         |                         |                         |                         |                         |                         |
| 9899   5.15   27   6806   85   7.30   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   | ,                          | 200    | NA NA   | NA NA    | NS                      |
| Second   C_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | 0.12   | 27      | 8200     | NC                      | -E 22                   | -100                    | NC                      | 46.0                    | -E 10                   | NC                      | NC                      | NC                      | -E 14                   |
| 1968   1970   1970   1970   1970   1970   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971   1971      | · ·                        |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Sender 0,91 72 72 NS 4530 47530 475 NS 165 NS 185 NS 185 NS 185 NS 185 NS 195 NS 195 NS 185 N |                            |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |        |         |          |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Temper   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |        | +       |          |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Per 1 26   250   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   7500   |                            |        |         |          |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Second   S   | Copper                     | 26     |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| 1696     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lead                       |        | 400     | 1000     | NS                      | 61                      | 1830                    | NS                      |                         | NS                      | NS                      | NS                      | NS                      | NS                      |                         | 6.32                    |                         | NS                      | NS                      |                         |
| Selection   1   340   5000   NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercury                    | 0.04   | 20      | 610      | NS                      | 0.0572                  | 0.394                   | NS                      | 0.0752                  | < 0.0303                | NS                      | NS                      | NS                      | <0.0323                 |
| Perform   1072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nickel                     | 2      | 1400    | 7500     | NS                      | 19.8                    | 72.4                    | NS                      | 13.2                    | 13                      | NS                      | NS                      | NS                      | 16.6                    |
| 1   470   1400   NS   258   22.6   NS   NS   NS   NS   NS   NS   NS   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Selenium                   | 1      | 340     | 10000    | NS                      | <1.60                   | 2.55                    | NS                      | <1.52                   | <1.53                   | NS                      | NS                      | NS                      | <2.26                   |
| Inchesis SEP (mgt)   100   2000   61000   18   42   2500   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Silver                     | 0.72   | 340     | 10000    | NS                      | <1.60                   | <1.62                   | NS                      | <1.52                   | <1.53                   | NS                      | NS                      | NS                      | <1.54                   |
| Metals SELF (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vanadium                   |        |         | 14000    | NS                      | 25.8                    | 82.6                    | NS                      | NS                      | 1                       | NS                      | NS                      | NS                      | NS                      |                         | 22.6                    | NS                      | NS                      | NS                      |                         |
| New No.      | Zinc                       | 100    | 20000   | 610000   | NS                      | 82                      | 2500                    | NS                      | 65.6                    | 31.4                    | NS                      | NS                      | NS                      | 49.4                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Metals-SPLP (mg/L)         |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| No.    | Arsenic                    |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Machellan   Mach   | Barium                     |        |         |          |                         | 1                       |                         |                         | 1                       | 1                       |                         |                         |                         |                         |                         |                         | 1                       |                         |                         | 1                       |
| Description   Control      | Beryllium                  |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| NS   NS   NS   NS   NS   NS   NS   NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| March   Marc   |                            |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| March   Marc   | - ' '                      |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Selection   Sele   |                            |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| Name      |                            |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Name      | Selenium                   |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Anadium 0.05 NA NA NA NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Silver                     |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| Fine 5 NA NA NA NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vanadium                   |        |         |          |                         |                         |                         |                         | 1                       |                         |                         |                         |                         |                         |                         |                         | 1                       |                         |                         |                         |
| Pesticides (ug/Kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zinc                       |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
| NS   NS   NS   NS   NS   NS   NS   NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pesticides (ug/Kg)         |        |         |          |                         |                         |                         |                         |                         | -                       |                         | -                       |                         |                         |                         |                         |                         | _                       |                         |                         |
| CBS (ug/Kg) **  roctor 1248 NA NE NE < 10.8 NS 4030 < 28.9 < 86.5 < 20.2 570 492 < 22.6 < 28.8 < 22.9 < 21.6 < 20.6 < 20.8 NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methoxychlor               | 800    | 340000  | 10000000 | <8.67                   | NS                      | <8.75                   | NS                      |
| NA NE NE   NE   <10.8 NS   4030   <28.9   <86.5   <20.2   570   492   <22.6   <28.8   <22.9   <21.6   <20.6   <20.6   <20.8   NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCBs (ug/Kg) **            |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         | 4                       |
| NA NE NE   NE   <10.8 NS   155   <28.9   <86.5   <20.2   <21.6   <21.7   <22.6   <28.8   <22.9   <21.6   <20.6   <20.8   NS   NS   NS   NS   NS   NS   NS   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aroclor 1248               | NA     | NE      | NE       | <10.8                   | NS                      | 4030                    | <28.9                   | <86.5                   | <20.2                   | 570                     | 492                     | <22.6                   | <28.8                   | <22.9                   | <21.6                   | <20.6                   | <20.8                   | NS                      | NS                      |
| PCBs-SPLP (ug/L) rocior 1248 NA NA NA NA NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aroclor 1260               | NA     | NE      | NE       | <10.8                   |                         | 155                     | <28.9                   | <86.5                   | <20.2                   | <21.6                   | <21.7                   | <22.6                   | <28.8                   | <22.9                   | <21.6                   | <20.6                   | <20.8                   | NS                      |                         |
| rocior 1248 NA NA NA NA NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total PCBs                 | 10     | 1000    | 10000    | BRL                     | NS                      | 4185                    | BRL                     | BRL                     | BRL                     | 570                     | 492                     | BRL                     | BRL                     | BRL                     | BRL                     | BRL                     | BRL                     | NA                      | NS                      |
| roclor 1260 NA NA NA NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PCBs-SPLP (ug/L)           |        |         |          |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aroclor 1248               | NA     | NA      | NA       | NS                      |
| otal PCBs 0.5 NA NA NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aroclor 1260               | NA     | NA      | NA       | NS                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total PCBs                 | 0.5    | NA      | NA       | NS                      |



| Location ID                                           | 1            | 1           |              | AF24-SB217       | AF24-SB217       | AF24-SB217       | AF24-SB217       | AG21-SB214         | AG21-SB214           | AG21-SB214           | AG21-SB214         | AG22-SB213         | AG22-SB213       | AG22-SB213           | AG22-SB213         | AG22-SB213       | AG22-SB213       | AG22-SB213         | AG23-SB216         |
|-------------------------------------------------------|--------------|-------------|--------------|------------------|------------------|------------------|------------------|--------------------|----------------------|----------------------|--------------------|--------------------|------------------|----------------------|--------------------|------------------|------------------|--------------------|--------------------|
| Sample Date                                           | 04 840       | DEC DEC     | 1/0 DE0      | 10/9/2011        | 10/9/2011        | 10/9/2011        | 10/9/2011        | 10/9/2011          | 10/9/2011            | 10/9/2011            | 10/9/2011          | 10/9/2011          | 10/9/2011        | 10/9/2011            | 10/9/2011          | 10/9/2011        | 10/9/2011        | 10/9/2011          | 10/9/2011          |
| Sample ID                                             | GA-PMC       | RES DEC     | I/C DEC      | AF-24-SB217(4-5) | AF-24-SB217(5-6) | AF-24-SB217(5-9) | AF-24-SB217(8-9) | AG-21-SB214(0-0.5) | AG-21-SB214(4.5-5.5) | AG-21-SB214(8.0-8.5) | AG-21-SB214(13-14) | AG-22-SB213(0-0.5) | AG-22-SB213(0-4) | AG-22-SB213(0-4) DUP | AG-22-SB213(2-2.5) | AG-22-SB213(5-9) | AG-22-SB213(6-7) | AG-22-SB213(10-15) | AG-23-SB216(0-0.5) |
| Depth Interval                                        |              |             |              | 4-5              | 5-6              | 5-9              | 8-9              | 0-0.5              | 4.5-5.5              | 8-8.5                | 13-14              | 0-0.5              | 0-4              | 0-4                  | 2-2.5              | 5-9              | 6-7              | 10-15              | 0-0.5              |
| CT-ETPH (mg/Kg)                                       |              |             |              | 110              |                  |                  |                  |                    |                      |                      |                    |                    |                  |                      |                    |                  |                  |                    |                    |
| C9-C36 Aliphatic Hydrocarbons                         | NE<br>500    | NE<br>500   | NE<br>0500   | NS               | NS               | NS               | NS               | NS                 | NS                   | NS<br>NS             | NS                 | NS<br>NS           | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Extractable Total Petroleum Hydrocarbons Unidentified | 500<br>NE    | 500<br>NE   | 2500<br>NE   | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NS             | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             | NS<br>NS           | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| PAH (ug/Kg)                                           | NE NE        | NE NE       | I NE         | N5               | N5               | INS              | INS              | INS                | INS                  | INS                  | INS                | NS                 | INS              | INS                  | INS                | INS              | INS              | INS                | NS NS              |
| Chrysene                                              | 1000         | 84000       | 780000       | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | <183               | NS               | <241             | NS                 | NS                 |
| Anthracene                                            | 40000        | 1000000     | 2500000      | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | <183               | NS               | <241             | NS                 | NS                 |
| Benzo(a)anthracene                                    | 1000         | 1000        | 7800         | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | <183               | NS               | <241             | NS                 | NS                 |
| Benzo(a)pyrene                                        | 1000         | 1000        | 1000         | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | <183               | NS               | <241             | NS                 | NS                 |
| Benzo(b)fluoranthene                                  | 1000         | 1000        | 7800         | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | <183               | NS               | <241             | NS                 | NS                 |
| Benzo(k)fluoranthene                                  | 1000         | 8400        | 78000        | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | <183               | NS               | <241             | NS                 | NS                 |
| Fluoranthene                                          | 5600         | 1000000     | 2500000      | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | 245                | NS               | <241             | NS                 | NS                 |
| Fluorene                                              | 5600         | 1000000     | 2500000      | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | <183               | NS               | <241             | NS                 | NS                 |
| Naphthalene                                           | 5600         | 1000000     | 2500000      | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | <183               | NS               | <241             | NS                 | NS                 |
| Phenanthrene                                          | 4000         | 1000000     | 2500000      | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | <183               | NS               | <241             | NS                 | NS                 |
| Pyrene                                                | 4000         | 1000000     | 2500000      | <181             | <175             | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | 329                | NS               | <241             | NS                 | NS                 |
| PAH-SPLP (ug/L)*                                      | 1            |             |              |                  |                  |                  |                  |                    |                      |                      |                    |                    |                  |                      |                    |                  |                  |                    |                    |
| Chrysene                                              | 4.8          | NA<br>NA    | NA<br>NA     | NS<br>NS         | NS               | NS               | NS<br>NS         | NS                 | NS                   | NS<br>NS             | NS<br>NS           | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS<br>NS           | NS                 |
| 1-Methylnaphthalene                                   | NE<br>40     | NA<br>NA    | NA<br>NA     | NS<br>NG         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NS             | NS<br>NG           | NS<br>NS           | NS<br>NS         | NS<br>NS             | NS<br>NG           | NS<br>NG         | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| 2-Methylnaphthalene                                   | 49<br>420    | NA<br>NA    | NA<br>NA     | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NS             | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             | NS<br>NS           | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Acenaphthene<br>Anthracene                            | 2000         | NA<br>NA    | NA<br>NA     | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NS             | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             | NS<br>NS           | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Benzo(a)Anthracene                                    | 0.06         | NA<br>NA    | NA<br>NA     | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NS             | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             | NS<br>NS           | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Benzo(k)fluoranthene                                  | 0.06         | NA<br>NA    | NA<br>NA     | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS                   | NS                 | NS<br>NS           | NS<br>NS         | NS                   | NS<br>NS           | NS               | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Fluoranthene                                          | 280          | NA NA       | NA NA        | NS NS            | NS               | NS               | NS               | NS                 | NS                   | NS NS                | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Fluorene                                              | 280          | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Naphthalene                                           | 280          | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Phenanthrene                                          | 200          | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Pyrene                                                | 200          | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Metals (mg/Kg) **                                     |              |             |              |                  |                  |                  |                  |                    |                      |                      |                    |                    |                  |                      |                    |                  |                  |                    |                    |
| Antimony                                              | 0.12         | 27          | 8200         | NS               | NS               | <4.64            | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | <5.46            | <5.24                | NS                 | <5.84            | NS               | NS                 | NS                 |
| Arsenic                                               | 0.2          | 10          | 10           | NS               | NS               | 3.86             | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | 4.87             | 4.71                 | NS                 | 2.94             | NS               | NS                 | NS                 |
| Barium                                                | 20           | 4700        | 140000       | NS               | NS               | 86               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | 88.1             | 91.5                 | NS                 | 121              | NS               | NS                 | NS                 |
| Beryllium                                             | 0.08         | 2           | 2            | NS               | NS               | 0.608            | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | <0.546           | 0.533                | NS                 | 0.65             | NS               | NS                 | NS                 |
| Cadmium                                               | 0.1          | 34          | 1000         | NS               | NS               | <0.464           | NS               | NS                 | NS                   | NS<br>NS             | NS                 | NS                 | <0.546           | <0.524               | NS                 | <0.584           | NS<br>NS         | NS<br>NS           | NS                 |
| Chromium (Total)***                                   | 1<br>26      | 100<br>2500 | 100<br>76000 | NS<br>NS         | NS<br>NS         | 20.5<br>11.9     | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NS             | NS<br>NS           | NS<br>NS           | 20.1<br>21.4     | 21.5<br>16.7         | NS<br>NS           | 21.3<br>11.8     | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Copper<br>Lead                                        | 0.3          | 400         | 1000         | NS<br>NS         | NS<br>NS         | 7.1              | NS<br>NS         | NS                 | NS<br>NS             | NS                   | NS                 | NS<br>NS           | 51.4             | 37.3                 | NS<br>NS           | 17               | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Mercury                                               | 0.04         | 20          | 610          | NS               | NS<br>NS         | <0.0293          | NS<br>NS         | NS                 | NS                   | NS                   | NS                 | NS                 | 0.0533           | 0.0419               | NS<br>NS           | 0.0525           | NS<br>NS         | NS<br>NS           | NS                 |
| Nickel                                                | 2            | 1400        | 7500         | NS               | NS               | 10.8             | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | 13.8             | 20.2                 | NS                 | 14.2             | NS               | NS                 | NS                 |
| Selenium                                              | 1            | 340         | 10000        | NS               | NS               | <1.39            | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | <1.64            | <1.57                | NS                 | <1.75            | NS               | NS                 | NS                 |
| Silver                                                | 0.72         | 340         | 10000        | NS               | NS               | <1.39            | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | <1.64            | <1.57                | NS                 | <1.75            | NS               | NS                 | NS                 |
| Vanadium                                              | 1            | 470         | 14000        | NS               | NS               | 18.3             | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | 21.9             | 20.7                 | NS                 | 25.1             | NS               | NS                 | NS                 |
| Zinc                                                  | 100          | 20000       | 610000       | NS               | NS               | 30.2             | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | 63.6             | 55.3                 | NS                 | 32.4             | NS               | NS                 | NS                 |
| Metals-SPLP (mg/L)                                    |              |             |              |                  |                  |                  |                  |                    |                      |                      |                    |                    |                  |                      |                    |                  |                  |                    |                    |
| Arsenic                                               | 0.01         | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Barium                                                | 1            | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Beryllium                                             | 0.004        | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Cadmium                                               | 0.005        | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Chromium (Total)                                      | 0.05         | NA<br>      | NA<br>       | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Copper                                                | 1.3          | NA<br>NA    | NA<br>NA     | NS<br>NG         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NG             | NS                 | NS<br>NG           | NS<br>NS         | NS<br>NS             | NS<br>NS           | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Lead                                                  | 0.015        | NA<br>NA    | NA<br>NA     | NS<br>Ne         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NS             | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             | NS<br>NS           | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Mercury<br>Nickel                                     | 0.002<br>0.1 | NA<br>NA    | NA<br>NA     | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NS             | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             | NS<br>NS           | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Nickel<br>Selenium                                    | 0.1          | NA<br>NA    | NA<br>NA     | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS             | NS<br>NS             | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             | NS<br>NS           | NS<br>NS         | NS<br>NS         | NS<br>NS           | NS<br>NS           |
| Silver                                                | 0.036        | NA<br>NA    | NA<br>NA     | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS<br>NS         | NS                 | NS<br>NS             | NS<br>NS             | NS                 | NS<br>NS           | NS<br>NS         | NS<br>NS             | NS<br>NS           | NS               | NS<br>NS         | NS<br>NS           | NS                 |
| Vanadium                                              | 0.05         | NA<br>NA    | NA<br>NA     | NS               | NS<br>NS         | NS<br>NS         | NS               | NS                 | NS                   | NS                   | NS                 | NS<br>NS           | NS               | NS                   | NS                 | NS               | NS<br>NS         | NS<br>NS           | NS                 |
| Zinc                                                  | 5            | NA NA       | NA NA        | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Pesticides (ug/Kg)                                    |              |             |              |                  |                  |                  |                  |                    |                      |                      | -                  |                    |                  |                      |                    |                  |                  |                    |                    |
| Methoxychlor                                          | 800          | 340000      | 10000000     | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| PCBs (ug/Kg) **                                       |              |             |              |                  |                  |                  |                  |                    |                      |                      |                    |                    |                  |                      |                    |                  |                  |                    |                    |
| Aroclor 1248                                          | NA           | NE          | NE           | <20.3            | <20.1            | NS               | <21.8            | <21.6              | <21.7                | <19.7                | <66.8              | <20.4              | NS               | NS                   | <21.2              | NS               | <28.0            | <27.0              | <20.4              |
| Aroclor 1260                                          | NA           | NE          | NE           | <20.3            | 65.4             | NS               | <21.8            | <21.6              | 37.9                 | <19.7                | <66.8              | <20.4              | NS               | NS                   | <21.2              | NS               | <28.0            | <27.0              | 112                |
| Total PCBs                                            | 10           | 1000        | 10000        | BRL              | 65.4             | NS               | BRL              | BRL                | 37.9                 | BRL                  | BRL                | BRL                | NS               | NS                   | BRL                | NS               | BRL              | BRL                | 112                |
| PCBs-SPLP (ug/L)                                      | _            |             | _            |                  |                  |                  |                  |                    |                      |                      |                    |                    |                  |                      |                    |                  |                  |                    |                    |
| Aroclor 1248                                          | NA           | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Aroclor 1260                                          | NA           | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |
| Total PCBs                                            | 0.5          | NA          | NA           | NS               | NS               | NS               | NS               | NS                 | NS                   | NS                   | NS                 | NS                 | NS               | NS                   | NS                 | NS               | NS               | NS                 | NS                 |



| Landing ID                               |               |                  | ı               | 4000 CD046              | A000 CD046              | A000 CD04C              | ALIO4 A CRO40             | ALIO4 A CRO40             | ALIOAA CDOAO              | ALIOAD CDOAG              | ALIOAD CDOAG              | ALIOAD CDOAG              | ALIOAD CDOAG              | ALIOAC CROSS              | ALIOAC CROSS              | ALIOAC CROSS              | ALIOAD CDOOA              | ALIOAD CDOOA              | ALIOAD CDOOA              |
|------------------------------------------|---------------|------------------|-----------------|-------------------------|-------------------------|-------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Location ID<br>Sample Date               |               |                  |                 | AG23-SB216<br>10/9/2011 | AG23-SB216<br>10/9/2011 | AG23-SB216<br>10/9/2011 | AH21A-SB218<br>11/13/2011 | AH21A-SB218<br>11/13/2011 | AH21A-SB218<br>11/13/2011 | AH21B-SB219<br>11/13/2011 | AH21B-SB219<br>11/13/2011 | AH21B-SB219<br>11/13/2011 | AH21B-SB219<br>11/13/2011 | AH21C-SB220<br>11/13/2011 | AH21C-SB220<br>11/13/2011 | AH21C-SB220<br>11/13/2011 | AH21D-SB221<br>11/13/2011 | AH21D-SB221<br>11/13/2011 | AH21D-SB221<br>11/13/2011 |
| Sample ID                                | GA-PMC        | RES DEC          | I/C DEC         | AG-23-SB216(3-4)        | AG-23-SB216(9-10)       | AG-23-SB216(14-15)      | AH21A-SB218(1-2)-1        | AH21A-SB218(4-5)-1        | AH21A-SB218(5.5-6.5)-1    | AH21B-SB219(2-3)-1        | AH21B-SB219(4-5)-1        | AH21B-SB219(6-7)-1        | AH21B-SB219(6-7)-2        | AH21C-SB220(2-3)-1        | AH21C-SB220(4-5)-1        | AH21C-SB220(5-6)-1        | AH21D-SB221(2-3)-1        | AH21D-SB221(4-5)-1        | AH21D-SB221(5-6)-1        |
| Depth Interval                           |               |                  |                 | 3-4                     | 9-10                    | 14-15                   | 1-2                       | 4-5                       | 5.5-6.5                   | 2-3                       | 4-5                       | 6-7                       | 6-7                       | 2-3                       | 4-5                       | 5-6                       | 2-3                       | 4-5                       | 5-6                       |
| CT-ETPH (mg/Kg)                          |               |                  |                 |                         |                         |                         |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |
| C9-C36 Aliphatic Hydrocarbons            | NE            | NE               | NE              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Extractable Total Petroleum Hydrocarbons | 500           | 500              | 2500            | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Unidentified                             | NE            | NE               | NE              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| PAH (ug/Kg)                              | 1000          | 0.4000           | 700000          | NO                      | NO                      | NO                      | NO                        | NO                        | NO                        | NO                        | NO                        | NO                        | NO                        | NO                        | NO                        | NO                        | NO                        | NO                        | 110                       |
| Chrysene                                 | 1000<br>40000 | 84000<br>1000000 | 780000          | NS<br>NS                | NS<br>NS                | NS<br>NS                | NS<br>NG                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NG                  | NS<br>NS                  | NS<br>NS                  | NS<br>NG                  | NS<br>NS                  | NS<br>NG                  | NS<br>NS                  | NS<br>NG                  |
| Anthracene                               | 1000          | 100000           | 2500000<br>7800 | NS<br>NS                | NS<br>NS                | NS<br>NS                | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  |
| Benzo(a)anthracene Benzo(a)pyrene        | 1000          | 1000             | 1000            | NS<br>NS                | NS                      | NS<br>NS                | NS<br>NS                  | NS                        | NS                        | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS                        | NS                        | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS                        |
| Benzo(b)fluoranthene                     | 1000          | 1000             | 7800            | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Benzo(k)fluoranthene                     | 1000          | 8400             | 78000           | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Fluoranthene                             | 5600          | 1000000          | 2500000         | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Fluorene                                 | 5600          | 1000000          | 2500000         | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Naphthalene                              | 5600          | 1000000          | 2500000         | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Phenanthrene                             | 4000          | 1000000          | 2500000         | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Pyrene                                   | 4000          | 1000000          | 2500000         | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| PAH-SPLP (ug/L)*                         |               |                  |                 |                         |                         |                         |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |
| Chrysene                                 | 4.8           | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| 1-Methylnaphthalene                      | NE            | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| 2-Methylnaphthalene                      | 49            | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Acenaphthene                             | 420           | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Anthracene                               | 2000          | NA<br>           | NA<br>          | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Benzo(a)Anthracene                       | 0.06          | NA<br>NA         | NA<br>NA        | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS<br>NS                  | NS                        | NS                        | NS<br>NS                  | NS                        | NS<br>NS                  | NS<br>NS                  | NS                        | NS                        | NS                        |
| Benzo(k)fluoranthene                     | 0.5           | NA<br>NA         | NA<br>NA        | NS<br>NC                | NS<br>NS                | NS<br>NS                | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NC                  | NS<br>NS                  |
| Fluoranthene                             | 280           | 1                | NA<br>NA        | NS<br>NG                | NS<br>NS                | NS<br>NS                | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | _                         | NS<br>NS                  | NS<br>NC                  | NS<br>NG                  | NS<br>NG                  | NS<br>NC                  | NS<br>NG                  | NS<br>NS                  | NS<br>NC                  | NS<br>NG                  |
| Fluorene                                 | 280<br>280    | NA<br>NA         | NA<br>NA        | NS<br>NS                | NS<br>NS                | NS<br>NS                | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  |
| Naphthalene<br>Phenanthrene              | 200           | NA<br>NA         | NA<br>NA        | NS                      | NS<br>NS                | NS<br>NS                | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS                        | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS                        | NS<br>NS                  | NS                        | NS<br>NS                  |
| Pyrene                                   | 200           | NA<br>NA         | NA<br>NA        | NS                      | NS<br>NS                | NS<br>NS                | NS<br>NS                  | NS                        | NS                        | NS                        | NS                        | NS<br>NS                  | NS<br>NS                  | NS                        | NS                        | NS                        | NS<br>NS                  | NS                        | NS                        |
| Metals (mg/Kg) **                        | 200           | IVA              | INA             | 140                     | 148                     | NO                      | 140                       | NO                        | 140                       | 140                       | 140                       | 140                       | 140                       | 140                       | 140                       | 140                       | 140                       | 143                       | 145                       |
| Antimony                                 | 0.12          | 27               | 8200            | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Arsenic                                  | 0.2           | 10               | 10              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Barium                                   | 20            | 4700             | 140000          | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Beryllium                                | 0.08          | 2                | 2               | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Cadmium                                  | 0.1           | 34               | 1000            | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Chromium (Total)***                      | 1             | 100              | 100             | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Copper                                   | 26            | 2500             | 76000           | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Lead                                     | 0.3           | 400              | 1000            | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Mercury                                  | 0.04          | 20               | 610             | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Nickel                                   | 2             | 1400             | 7500            | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Selenium                                 | 1             | 340              | 10000           | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Silver                                   | 0.72          | 340              | 10000           | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Vanadium                                 | 1             | 470              | 14000           | NS                      | NS<br>NS                | NS<br>NS                | NS<br>NS                  | NS<br>NS                  | NS<br>NG                  | NS<br>NG                  | NS<br>NS                  | NS                        | NS<br>NS                  | NS                        | NS<br>NG                  | NS<br>NG                  | NS<br>NS                  | NS<br>NC                  | NS<br>NG                  |
| Zinc Metals-SPLP (mg/L)                  | 100           | 20000            | 610000          | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
|                                          | 0.01          | NA               | NIA             | Nic                     | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NIC                       |
| Arsenic<br>Barium                        | 0.01          | NA<br>NA         | NA<br>NA        | NS<br>NS                | NS<br>NS                | NS<br>NS                | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  |
| Beryllium                                | 0.004         | NA NA            | NA NA           | NS                      | NS                      | NS                      | NS                        | NS                        | NS NS                     | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Cadmium                                  | 0.005         | NA NA            | NA NA           | NS                      | NS                      | NS                      | NS                        | NS                        | NS NS                     | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Chromium (Total)                         | 0.05          | NA NA            | NA NA           | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Copper                                   | 1.3           | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Lead                                     | 0.015         | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Mercury                                  | 0.002         | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Nickel                                   | 0.1           | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Selenium                                 | 0.05          | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Silver                                   | 0.036         | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Vanadium                                 | 0.05          | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Zinc                                     | 5             | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Pesticides (ug/Kg)                       |               |                  | T               |                         |                         |                         |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |
| Methoxychlor                             | 800           | 340000           | 10000000        | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| PCBs (ug/Kg) **                          |               |                  | l               | ***                     |                         |                         |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |
| Aroclor 1248                             | NA<br>NA      | NE<br>NE         | NE<br>NE        | <24.5                   | <21.2                   | <21.8                   | <14.7                     | 389                       | 4030                      | <29.4                     | 231                       | 85800                     | 77600                     | 227                       | 1310                      | 2240                      | <29.7                     | 72700                     | 166                       |
| Aroclor 1260                             | NA<br>10      | NE<br>1000       | NE              | 37.7                    | 71.2                    | <21.8                   | 15.5                      | 21.1                      | 49.7                      | <29.4                     | 48                        | 1360                      | 846                       | <14.5                     | 505                       | 97.1                      | <29.7                     | <2260                     | <14.2                     |
| Total PCBs PCBs-SPLP (ug/L)              | 10            | 1000             | 10000           | 37.7                    | 71.2                    | BRL                     | 15.5                      | 410.1                     | 4079.7                    | BRL                       | 279                       | 87160                     | 78446                     | 227                       | 1815                      | 2337.1                    | BRL                       | 72700                     | 166                       |
| Aroclor 1248                             | NA            | NA               | NA              | NS                      | NS                      | NS                      | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
| Aroclor 1246<br>Aroclor 1260             | NA<br>NA      | NA<br>NA         | NA<br>NA        | NS                      | NS<br>NS                | NS<br>NS                | NS<br>NS                  | NS<br>NS                  | NS                        | NS<br>NS                  | NS<br>NS                  | NS                        | NS<br>NS                  | NS<br>NS                  | NS                        | NS<br>NS                  | NS<br>NS                  | NS<br>NS                  | NS                        |
| Total PCBs                               | 0.5           | NA<br>NA         | NA<br>NA        | NS                      | NS                      | NS<br>NS                | NS<br>NS                  | NS                        | NS                        | NS                        | NS<br>NS                  | NS                        | NS<br>NS                  | NS                        | NS                        | NS                        | NS                        | NS                        | NS                        |
|                                          | 0.0           | 1 19/1           | 197             | . 110                   |                         | . 110                   |                           |                           | 110                       |                           | . 110                     |                           |                           |                           | , 140                     |                           | , 110                     |                           |                           |



| Location ID                                           | T         |             | T .           | AH21E-SB222        | AH21E-SB222        | AH21E-SB222        | AH21F-SB223        | AH21F-SB223        | AH21F-SB223        | AH21G-SB224        | AH21G-SB224        | AH21G-SB224        | AH21H-SB225        | AH21H-SB225        | AH21H-SB225        | AH21H-SB225        | AH21-SB206          | AH21-SB206          | AH21-SB206        |
|-------------------------------------------------------|-----------|-------------|---------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|-------------------|
| Sample Date                                           | GA-PMC    | DEC DEC     | I/C DEC       | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 11/13/2011         | 10/2/2011           | 10/2/2011           | 10/2/2011         |
| Sample ID                                             | GA-PMC    | RES DEC     | I/C DEC       | AH21E-SB222(2-3)-1 | AH21E-SB222(4-5)-1 | AH21E-SB222(5-6)-1 | AH21F-SB223(3-4)-1 | AH21F-SB223(4-5)-1 | AH21F-SB223(5-6)-1 | AH21G-SB224(2-3)-1 | AH21G-SB224(4-5)-1 | AH21G-SB224(6-7)-1 | AH21H-SB225(3-4)-1 | AH21H-SB225(4-5)-1 | AH21H-SB225(5-6)-1 | AH21H-SB225(5-6)-2 | AH21-SB206(0-0.5)-1 | AH21-SB206(0-0.5)-2 | AH21-SB206(4-5)-1 |
| Depth Interval                                        |           |             |               | 2-3                | 4-5                | 5-6                | 3-4                | 4-5                | 5-6                | 2-3                | 4-5                | 6-7                | 3-4                | 4-5                | 5-6                | 5-6                | 0-0.5               | 0-0.5               | 4-5               |
| CT-ETPH (mg/Kg)                                       |           |             |               | 110                |                    |                    |                    | 110                |                    |                    |                    |                    |                    |                    |                    |                    |                     |                     |                   |
| C9-C36 Aliphatic Hydrocarbons                         | NE 500    | NE<br>500   | NE<br>0500    | NS                 | NS                 | NS<br>NS           | NS                 | NS                 | NS                 | NS<br>NS           | NS                 | NS                 | NS                 | NS                 | NS<br>NS           | NS                 | NS                  | NS                  | NS                |
| Extractable Total Petroleum Hydrocarbons Unidentified | 500<br>NE | 500<br>NE   | 2500<br>NE    | NS<br>NS            | NS<br>NS            | NS<br>NS          |
| PAH (ug/Kg)                                           | I NE      | NE NE       | INE.          | INS                | INS                | INS                | INS                | N5                 | INS                | NS                 | INS                | N5                 | INS                | INS                | INS                | N5                 | IN5                 | N5                  | NS NS             |
| Chrysene                                              | 1000      | 84000       | 780000        | NS                  | NS                  | 4800              |
| Anthracene                                            | 40000     | 1000000     | 2500000       | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS                 | NS<br>NS           | NS<br>NS           | NS                 | NS                 | NS<br>NS           | NS<br>NS           | NS<br>NS            | NS<br>NS            | 3290              |
| Benzo(a)anthracene                                    | 1000      | 1000        | 7800          | NS                  | NS                  | 5010              |
| Benzo(a)pyrene                                        | 1000      | 1000        | 1000          | NS                  | NS                  | 3590              |
| Benzo(b)fluoranthene                                  | 1000      | 1000        | 7800          | NS                  | NS                  | 3240              |
| Benzo(k)fluoranthene                                  | 1000      | 8400        | 78000         | NS                  | NS                  | 3700              |
| Fluoranthene                                          | 5600      | 1000000     | 2500000       | NS                  | NS                  | 8440              |
| Fluorene                                              | 5600      | 1000000     | 2500000       | NS                  | NS                  | 2420              |
| Naphthalene                                           | 5600      | 1000000     | 2500000       | NS                  | NS                  | 4440              |
| Phenanthrene                                          | 4000      | 1000000     | 2500000       | NS                  | NS                  | 10800             |
| Pyrene                                                | 4000      | 1000000     | 2500000       | NS                  | NS                  | 7760              |
| PAH-SPLP (ug/L)*                                      |           |             |               |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                     |                   |
| Chrysene                                              | 4.8       | NA          | NA            | NS                  | NS                  | <1.05             |
| 1-Methylnaphthalene                                   | NE        | NA          | NA            | NS                  | NS                  | 1.29              |
| 2-Methylnaphthalene                                   | 49        | NA          | NA            | NS                  | NS                  | 1.2               |
| Acenaphthene                                          | 420       | NA          | NA            | NS                  | NS                  | 2.5               |
| Anthracene                                            | 2000      | NA          | NA            | NS                  | NS                  | <1.05             |
| Benzo(a)Anthracene                                    | 0.06      | NA          | NA            | NS                  | NS                  | <0.0526           |
| Benzo(k)fluoranthene                                  | 0.5       | NA          | NA            | NS                  | NS                  | <0.105            |
| Fluoranthene                                          | 280       | NA          | NA            | NS                  | NS                  | <1.05             |
| Fluorene                                              | 280       | NA          | NA            | NS                  | NS                  | 2.02              |
| Naphthalene                                           | 280       | NA          | NA            | NS                  | NS                  | 7.67              |
| Phenanthrene                                          | 200       | NA          | NA            | NS                  | NS                  | 3.38              |
| Pyrene                                                | 200       | NA          | NA            | NS                  | NS                  | <1.05             |
| Metals (mg/Kg) **                                     |           |             | T             |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                     |                   |
| Antimony                                              | 0.12      | 27          | 8200          | NS                  | NS                  | <5.52             |
| Arsenic                                               | 0.2       | 10          | 10            | NS                  | NS                  | 11.9              |
| Barium                                                | 20        | 4700        | 140000        | NS                  | NS                  | 577               |
| Beryllium                                             | 0.08      | 2           | 2             | NS<br>NS           | NS                 | NS<br>NS           | NS                 | NS                 | NS                 | NS<br>NS           | NS<br>NS           | NS                 | NS                 | NS<br>NS           | NS<br>NS           | NS                 | NS                  | NS                  | <0.552            |
| Cadmium                                               | 0.1       | 34          | 1000          | NS<br>NS           | NS                 | NS<br>NS           | NS                 | NS                 | NS                 | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS                 | NS                 | NS<br>NS           | NS                 | NS                  | NS                  | 5.79              |
| Chromium (Total)***                                   | <u> </u>  | 100         | 100           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS<br>NG           | NS<br>NS           | NS<br>NC           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS<br>NG           | NS<br>NS           | NS                  | NS<br>NS            | 71                |
| Copper                                                | 26<br>0.3 | 2500<br>400 | 76000<br>1000 | NS<br>NS            | NS<br>NS            | 312<br>1480       |
| Lead<br>Mercury                                       | 0.04      | 20          | 610           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS                 | NS                 | NS                 | NS<br>NS            | NS<br>NS            | 1.19              |
| Nickel                                                | 2         | 1400        | 7500          | NS<br>NS           | NS                 | NS<br>NS           | NS                 | NS<br>NS           | NS                 | NS                 | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS<br>NS           | NS                 | NS                 | NS                  | NS                  | 52.6              |
| Selenium                                              | 1         | 340         | 10000         | NS<br>NS           | NS                 | NS                 | NS                 | NS                 | NS<br>NS           | NS                 | NS<br>NS           | NS<br>NS           | NS                 | NS<br>NS           | NS                 | NS                 | NS                  | NS                  | <2.21             |
| Silver                                                | 0.72      | 340         | 10000         | NS                 | NS                 | NS                 | NS                 | NS                 | NS NS              | NS                 | NS<br>NS           | NS                 | NS                 | NS                 | NS                 | NS                 | NS                  | NS                  | 2.49              |
| Vanadium                                              | 1         | 470         | 14000         | NS                  | NS                  | 58.3              |
| Zinc                                                  | 100       | 20000       | 610000        | NS                  | NS                  | 1430              |
| Metals-SPLP (mg/L)                                    | 100       | 20000       | 010000        | 110                | 110                | 110                | 1,0                | 110                | 110                |                    | 110                | 110                | 110                | 110                | 110                | 113                | 110                 | 110                 | . 100             |
| Arsenic                                               | 0.01      | NA          | NA            | NS                  | NS                  | <0.0080           |
| Barium                                                | 1         | NA          | NA            | NS                  | NS                  | 0.251             |
| Beryllium                                             | 0.004     | NA          | NA            | NS                  | NS                  | NS                |
| Cadmium                                               | 0.005     | NA          | NA            | NS                  | NS                  | <0.0050           |
| Chromium (Total)                                      | 0.05      | NA          | NA            | NS                  | NS                  | <0.0100           |
| Copper                                                | 1.3       | NA          | NA            | NS                  | NS                  | 0.0145            |
| Lead                                                  | 0.015     | NA          | NA            | NS                  | NS                  | 0.0712            |
| Mercury                                               | 0.002     | NA          | NA            | NS                  | NS                  | <0.00020          |
| Nickel                                                | 0.1       | NA          | NA            | NS                  | NS                  | <0.0100           |
| Selenium                                              | 0.05      | NA          | NA            | NS                  | NS                  | NS                |
| Silver                                                | 0.036     | NA          | NA            | NS                  | NS                  | <0.0100           |
| Vanadium                                              | 0.05      | NA          | NA            | NS                  | NS                  | <0.0100           |
| Zinc                                                  | 5         | NA          | NA            | NS                  | NS                  | 0.0789            |
| Pesticides (ug/Kg)                                    |           |             |               |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                     |                   |
| Methoxychlor                                          | 800       | 340000      | 10000000      | NS                 | 30.5                | 13.7                | NS                |
| PCBs (ug/Kg) **                                       |           |             | 1             |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                     |                   |
| Aroclor 1248                                          | NA        | NE          | NE            | 779                | 1900               | <22.3              | <44.1              | <20.1              | <21.6              | 722                | 9890               | <21.2              | <20.8              | 333                | 7500               | 20300              | <10.9               | <10.9               | 18400             |
| Aroclor 1260                                          | NA        | NE          | NE            | 70.8               | 52.2               | <22.3              | <44.1              | <20.1              | <21.6              | 29.2               | 273                | <21.2              | <20.8              | <21.0              | 149                | 291                | <10.9               | <10.9               | 354               |
| Total PCBs                                            | 10        | 1000        | 10000         | 849.8              | 1952.2             | BRL                | BRL                | BRL                | BRL                | 751.2              | 10163              | BRL                | BRL                | 333                | 7649               | 20591              | BRL                 | BRL                 | 18754             |
| PCBs-SPLP (ug/L)                                      |           |             |               |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                     |                   |
| Aroclor 1248                                          | NA        | NA          | NA            | NS                  | NS                  | 0.29              |
| Aroclor 1260                                          | NA        | NA          | NA            | NS                  | NS                  | <0.200            |
| Total PCBs                                            | 0.5       | NA          | NA            | NS                  | NS                  | 0.29              |



| Location ID                                                             | 1            |             | I            | AH21-SB206        | AH21-SB206        | AH21-SB206          | AH22-SB212         | AH22-SB212       | AH22-SB212         | AH22-SB212        | AH22-SB212         | AH23-SB204          | AH23-SB204        | AH23-SB204        | AH23-SB204            | Al21-SB211         | Al21-SB211         | Al21-SB211       | Al21-SB211           |
|-------------------------------------------------------------------------|--------------|-------------|--------------|-------------------|-------------------|---------------------|--------------------|------------------|--------------------|-------------------|--------------------|---------------------|-------------------|-------------------|-----------------------|--------------------|--------------------|------------------|----------------------|
| Sample Date                                                             | 0.4 0440     | DEC DEC     | VO DEC       | 10/2/2011         | 10/2/2011         | 10/2/2011           | 10/9/2011          | 10/9/2011        | 10/9/2011          | 10/9/2011         | 10/9/2011          | 10/2/2011           | 10/2/2011         | 10/2/2011         | 10/2/2011             | 10/9/2011          | 10/9/2011          | 10/9/2011        | 10/9/2011            |
| Sample ID                                                               | GA-PMC       | RES DEC     | I/C DEC      | AH21-SB206(8-9)-1 | AH21-SB206(8-9)-2 | AH21-SB206(11-12)-1 | AH-22-SB212(0-0.5) | AH-22-SB212(4-5) | AH-22-SB212(5.5-6) | AH-22-SB212(8-10) | AH-22-SB212(14-15) | AH23-SB204(0-0.5)-1 | AH23-SB204(2-3)-1 | AH23-SB204(7-8)-1 | AH23-SB204(15.5-16)-1 | Al-21-SB211(0-0.5) | AI-21-SB211(4.5-5) | Al-21-SB211(6-8) | Al-21-SB211(6-8) DUP |
| Depth Interval                                                          |              |             |              | 8-9               | 8-9               | 11-12               | 0-0.5              | 4-5              | 5.5-6              | 8-10              | 14-15              | 0-0.5               | 2-3               | 7-8               | 15.5-16               | 0-0.5              | 4-5.5              | 6-8              | 6-8                  |
| CT-ETPH (mg/Kg)                                                         | l 115        | NE.         | N.E.         | NO                | NO                | NO                  | NO                 | NO               | 22.2               |                   | NO                 | NO                  | NO                | NO                | NO                    | NO                 | 757                | NO               | NO.                  |
| C9-C36 Aliphatic Hydrocarbons  Extractable Total Petroleum Hydrocarbons | NE<br>500    | NE<br>500   | NE<br>2500   | NS<br>NS          | NS<br>NS          | NS<br>NS            | NS<br>NS           | NS<br>NS         | 98.6<br>98.6       | 99.7<br>99.7      | NS<br>NS           | NS<br>NS            | NS<br>NS          | NS<br>NS          | NS<br>NS              | NS<br>NS           | 757<br><b>757</b>  | NS<br>NS         | NS<br>NS             |
| Unidentified                                                            | NE           | NE          | NE           | NS<br>NS          | NS                | NS<br>NS            | NS<br>NS           | NS<br>NS         | 98.6               | 99.7              | NS<br>NS           | NS<br>NS            | NS<br>NS          | NS<br>NS          | NS                    | NS<br>NS           | 757                | NS               | NS                   |
| PAH (ug/Kg)                                                             | INE.         | I NE        | INE          | 143               | 143               | N3                  | ING                | 143              | 96.0               | 99.1              | N3                 | ING                 | ING               | 143               | 143                   | 143                | 731                | 143              | ING                  |
| Chrysene                                                                | 1000         | 84000       | 780000       | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 9740              | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Anthracene                                                              | 40000        | 1000000     | 2500000      | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 10000             | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Benzo(a)anthracene                                                      | 1000         | 1000        | 7800         | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 11900             | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Benzo(a)pyrene                                                          | 1000         | 1000        | 1000         | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 10300             | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Benzo(b)fluoranthene                                                    | 1000         | 1000        | 7800         | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 9680              | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Benzo(k)fluoranthene                                                    | 1000         | 8400        | 78000        | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | <9220             | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Fluoranthene                                                            | 5600         | 1000000     | 2500000      | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 30900             | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Fluorene                                                                | 5600         | 1000000     | 2500000      | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | <9220             | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Naphthalene                                                             | 5600         | 1000000     | 2500000      | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | <9220             | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Phenanthrene                                                            | 4000         | 1000000     | 2500000      | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 34300             | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| Pyrene                                                                  | 4000         | 1000000     | 2500000      | <179              | <181              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 21600             | <179              | NS                    | NS                 | NS                 | NS               | NS                   |
| PAH-SPLP (ug/L)*                                                        | 1            |             | 1            | 1:0               | 110               | 1:0                 | 1:0                | 110              | A:0                | NC                | 1:0                | 1:0                 | 4                 | 1:0               | 1:0                   | 1:0                | 1:0                | 110              |                      |
| Chrysene                                                                | 4.8<br>NE    | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS<br>NS          | NS<br>Ne            | NS<br>Ne           | NS<br>NS         | NS<br>NS           | NS                | NS<br>NS           | NS<br>NS            | <1.11             | NS<br>NS          | NS<br>NC              | NS<br>NS           | NS<br>Ne           | NS<br>NS         | NS<br>NS             |
| 1-Methylnaphthalene                                                     | NE<br>49     | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS<br>NS          | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS<br>NS          | NS<br>NS           | NS<br>NS            | <1.11             | NS<br>NS          | NS<br>NS              | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| 2-Methylnaphthalene<br>Acenaphthene                                     | 49           | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS<br>NS          | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS<br>NS          | NS<br>NS           | NS<br>NS            | <1.11<br>8.9      | NS<br>NS          | NS<br>NS              | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| Anthracene                                                              | 2000         | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS<br>NS          | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS<br>NS          | NS<br>NS           | NS<br>NS            | 2.66              | NS<br>NS          | NS<br>NS              | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| Benzo(a)Anthracene                                                      | 0.06         | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS                | NS<br>NS            | NS<br>NS           | NS               | NS                 | NS                | NS<br>NS           | NS                  | 0.0844            | NS                | NS<br>NS              | NS<br>NS           | NS                 | NS<br>NS         | NS                   |
| Benzo(k)fluoranthene                                                    | 0.5          | NA NA       | NA NA        | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | <0.111            | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Fluoranthene                                                            | 280          | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 2.01              | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Fluorene                                                                | 280          | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 5.8               | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Naphthalene                                                             | 280          | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | <1.11             | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Phenanthrene                                                            | 200          | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 11.2              | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Pyrene                                                                  | 200          | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 1.33              | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Metals (mg/Kg) **                                                       |              |             |              |                   |                   |                     |                    |                  |                    |                   |                    |                     |                   |                   |                       |                    |                    |                  |                      |
| Antimony                                                                | 0.12         | 27          | 8200         | <4.66             | <4.87             | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | <5.17             | <5.28             | NS                    | NS                 | NS                 | NS               | NS                   |
| Arsenic                                                                 | 0.2          | 10          | 10           | 1.87              | 1.96              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 3.01              | 1.9               | NS                    | NS                 | NS                 | NS               | NS                   |
| Barium                                                                  | 20           | 4700        | 140000       | 52.5              | 44.3              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 118               | 74.7              | NS                    | NS                 | NS                 | NS               | NS                   |
| Beryllium                                                               | 0.08         | 2           | 2            | <0.466            | <0.487            | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 0.61              | 0.648             | NS                    | NS                 | NS                 | NS               | NS                   |
| Cadmium                                                                 | 0.1          | 34          | 1000         | <0.466            | <0.487            | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS                | NS<br>NS           | NS<br>NS            | <0.517            | <0.528            | NS<br>NG              | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| Chromium (Total)***                                                     | 26           | 100<br>2500 | 100<br>76000 | 12.1<br>11.3      | 12.2<br>11.1      | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS<br>NS          | NS<br>NS           | NS<br>NS            | 24.4<br>15.3      | 13.5<br>7.74      | NS<br>NS              | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| Copper<br>Lead                                                          | 0.3          | 400         | 1000         | 15.9              | 18.8              | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS                | NS<br>NS           | NS<br>NS            | 33.8              | 5.6               | NS                    | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| Mercury                                                                 | 0.04         | 20          | 610          | <0.0300           | <0.0309           | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 0.0328            | <0.0296           | NS                    | NS                 | NS                 | NS               | NS                   |
| Nickel                                                                  | 2            | 1400        | 7500         | 9.97              | 9.83              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 14.3              | 7.73              | NS                    | NS                 | NS                 | NS               | NS                   |
| Selenium                                                                | 1            | 340         | 10000        | <1.40             | <1.46             | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | <1.55             | <1.59             | NS                    | NS                 | NS                 | NS               | NS                   |
| Silver                                                                  | 0.72         | 340         | 10000        | <1.40             | <1.46             | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | <1.55             | <1.59             | NS                    | NS                 | NS                 | NS               | NS                   |
| Vanadium                                                                | 1            | 470         | 14000        | 15.6              | 15.5              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 25.3              | 15.4              | NS                    | NS                 | NS                 | NS               | NS                   |
| Zinc                                                                    | 100          | 20000       | 610000       | 23.3              | 23.2              | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | 54.6              | 22.4              | NS                    | NS                 | NS                 | NS               | NS                   |
| Metals-SPLP (mg/L)                                                      |              |             |              |                   |                   |                     |                    |                  |                    |                   |                    |                     |                   |                   |                       |                    |                    |                  |                      |
| Arsenic                                                                 | 0.01         | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | NS                | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Barium                                                                  | 1            | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | NS                | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Beryllium                                                               | 0.004        | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | NS                | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Cadmium                                                                 | 0.005        | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | NS                | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Chromium (Total)                                                        | 0.05         | NA<br>      | NA<br>       | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | NS                | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Copper                                                                  | 1.3          | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS<br>NS          | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS                | NS<br>NS           | NS<br>NS            | NS<br>NS          | NS<br>NS          | NS<br>NS              | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| Lead                                                                    | 0.015        | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS<br>NE          | NS<br>NE            | NS<br>NE           | NS<br>NS         | NS<br>NE           | NS<br>Ne          | NS<br>NE           | NS<br>NE            | NS<br>NE          | NS<br>NS          | NS<br>NS              | NS<br>Ne           | NS<br>NE           | NS<br>NS         | NS<br>NE             |
| Mercury<br>Nickel                                                       | 0.002<br>0.1 | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS<br>NS          | NS<br>NC            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS<br>NS          | NS<br>NS           | NS<br>NS            | NS<br>NS          | NS<br>NS          | NS<br>NS              | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| Nickei<br>Selenium                                                      | 0.1          | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS<br>NS          | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS<br>NS          | NS<br>NS           | NS<br>NS            | NS<br>NS          | NS<br>NS          | NS<br>NS              | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| Silver                                                                  | 0.036        | NA<br>NA    | NA<br>NA     | NS<br>NS          | NS<br>NS          | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS<br>NS          | NS<br>NS           | NS<br>NS            | NS<br>NS          | NS<br>NS          | NS<br>NS              | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS<br>NS             |
| Vanadium                                                                | 0.036        | NA<br>NA    | NA<br>NA     | NS                | NS<br>NS          | NS<br>NS            | NS<br>NS           | NS<br>NS         | NS<br>NS           | NS                | NS<br>NS           | NS<br>NS            | NS<br>NS          | NS<br>NS          | NS                    | NS<br>NS           | NS<br>NS           | NS<br>NS         | NS                   |
| Zinc                                                                    | 5            | NA<br>NA    | NA<br>NA     | NS                | NS                | NS<br>NS            | NS<br>NS           | NS               | NS                 | NS                | NS<br>NS           | NS<br>NS            | NS<br>NS          | NS                | NS                    | NS                 | NS<br>NS           | NS               | NS                   |
| Pesticides (ug/Kg)                                                      | <u> </u>     |             |              | .,5               | 1.5               |                     |                    |                  |                    | 5                 |                    |                     |                   |                   |                       |                    |                    |                  | 1.5                  |
| Methoxychlor                                                            | 800          | 340000      | 10000000     | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | NS                | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| PCBs (ug/Kg) **                                                         |              |             |              |                   |                   |                     |                    |                  |                    |                   |                    |                     |                   |                   |                       |                    |                    |                  |                      |
| Aroclor 1248                                                            | NA           | NE          | NE           | <21.7             | <20.7             | <35.9               | <20.9              | <20.9            | <27.7              | NS                | <21.5              | <21.3               | <22.3             | <21.7             | <22.6                 | <21.8              | 5160               | <21.4            | <21.0                |
| Aroclor 1260                                                            | NA           | NE          | NE           | <21.7             | <20.7             | <35.9               | <20.9              | 74.2             | 452                | NS                | <21.5              | <21.3               | <22.3             | <21.7             | <22.6                 | <21.8              | 464                | <21.4            | <21.0                |
| Total PCBs                                                              | 10           | 1000        | 10000        | BRL               | BRL               | BRL                 | BRL                | 74.2             | 452                | NS                | BRL                | BRL                 | BRL               | BRL               | BRL                   | BRL                | 5624               | BRL              | BRL                  |
| PCBs-SPLP (ug/L)                                                        |              |             |              |                   |                   |                     |                    |                  |                    |                   |                    |                     |                   |                   |                       |                    |                    |                  |                      |
| Aroclor 1248                                                            | NA           | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | NS                | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Aroclor 1260                                                            | NA           | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | NS                | NS                | NS                    | NS                 | NS                 | NS               | NS                   |
| Total PCBs                                                              | 0.5          | NA          | NA           | NS                | NS                | NS                  | NS                 | NS               | NS                 | NS                | NS                 | NS                  | NS                | NS                | NS                    | NS                 | NS                 | NS               | NS                   |



| Location ID                                   |               |                    |                    | Al21-SB211                      | Al22-SB205<br>10/2/2011 | Al22-SB205<br>10/2/2011 | Al22-SB205                     | Al22-SB205                             | Al22-SB205<br>10/2/2011 | Al23-SB208                      | Al23-SB208                      | Al23-SB208                    | Al23-SB208                        | AJ21-SB210<br>10/9/2011 | AJ21-SB210                           | AJ21-SB210                               | AJ21-SB210                           | AJ21-SB210                           | AJ21-SB210<br>10/9/2011 |
|-----------------------------------------------|---------------|--------------------|--------------------|---------------------------------|-------------------------|-------------------------|--------------------------------|----------------------------------------|-------------------------|---------------------------------|---------------------------------|-------------------------------|-----------------------------------|-------------------------|--------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|-------------------------|
| Sample Date<br>Sample ID                      | GA-PMC        | RES DEC            | I/C DEC            | 10/9/2011<br>Al-21-SB211(14-15) | Al22-SB205(0-1)-1       | Al22-SB205(2-3)-1       | 10/2/2011<br>Al22-SB205(6-7)-1 | <b>10/2/2011</b><br>Al22-SB205(9-10)-1 | Al22-SB205(15-16)-1     | 10/9/2011<br>AI-23-SB208(0-0.5) | 10/9/2011<br>Al-23-SB208(0.5-2) | 10/9/2011<br>AI-23-SB208(6-7) | 10/9/2011<br>Al-23-SB208(10.5-11) | AJ-21-SB210(0-0.5)      | <b>10/9/2011</b><br>AJ-21-SB210(0-4) | <b>10/9/2011</b><br>AJ-21-SB210(4.5-5.5) | <b>10/9/2011</b><br>AJ-21-SB210(5-9) | <b>10/9/2011</b><br>AJ-21-SB210(6-7) | AJ-21-SB210(14-15)      |
| Depth Interval                                |               |                    |                    | 14-15                           | 0-1                     | 2-3                     | 6-7                            | 9-10                                   | 15-16                   | 0-0.5                           | 0.5-2                           | 6-7                           | 10.5-11                           | 0-0.5                   | 0-4                                  | 4.5-5.5                                  | 5-9                                  | 6-7                                  | 14-15                   |
| CT-ETPH (mg/Kg) C9-C36 Aliphatic Hydrocarbons | NE            | NE                 | NE                 | 930                             | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Extractable Total Petroleum Hydrocarbons      | 500           | 500                | 2500               | 930                             | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Unidentified                                  | NE            | NE                 | NE                 | 930                             | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| PAH (ug/Kg) Chrysene                          | 1000          | 84000              | 780000             | NS                              | NS                      | <184                    | NS                             | <178                                   | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | <1750                                    | NS                                   | NS                                   | <1040                   |
| Anthracene                                    | 40000         | 1000000            | 2500000            | NS                              | NS<br>NS                | <184                    | NS                             | <178                                   | NS<br>NS                | NS                              | NS<br>NS                        | NS                            | NS                                | NS<br>NS                | NS<br>NS                             | <1750                                    | NS                                   | NS                                   | <1040                   |
| Benzo(a)anthracene                            | 1000          | 1000               | 7800               | NS                              | NS                      | <184                    | NS                             | <178                                   | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | <1750                                    | NS                                   | NS                                   | <1040                   |
| Benzo(a)pyrene                                | 1000          | 1000               | 1000               | NS                              | NS                      | <184                    | NS                             | <178                                   | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | <1750                                    | NS                                   | NS                                   | <1040                   |
| Benzo(b)fluoranthene Benzo(k)fluoranthene     | 1000          | 1000<br>8400       | 7800<br>78000      | NS<br>NS                        | NS<br>NS                | <184<br><184            | NS<br>NS                       | <178<br><178                           | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | <1750<br><1750                           | NS<br>NS                             | NS<br>NS                             | <1040<br><1040          |
| Fluoranthene                                  | 5600          | 1000000            | 2500000            | NS                              | NS<br>NS                | <184                    | NS<br>NS                       | <178                                   | NS                      | NS                              | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | <1750                                    | NS                                   | NS<br>NS                             | <1040                   |
| Fluorene                                      | 5600          | 1000000            | 2500000            | NS                              | NS                      | <184                    | NS                             | <178                                   | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | <1750                                    | NS                                   | NS                                   | <1040                   |
| Naphthalene                                   | 5600          | 1000000            | 2500000            | NS                              | NS                      | <184                    | NS                             | <178                                   | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | <1750                                    | NS                                   | NS                                   | <1040                   |
| Phenanthrene                                  | 4000<br>4000  | 1000000<br>1000000 | 2500000<br>2500000 | NS<br>NS                        | NS<br>NS                | <184<br><184            | NS<br>NS                       | <178<br><178                           | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | <1750<br><1750                           | NS<br>NS                             | NS<br>NS                             | <1040<br><1040          |
| Pyrene PAH-SPLP (ug/L)*                       | 4000          | 1000000            | 2500000            | INS                             | INS                     | <104                    | INS                            | <170                                   | INO                     | INS                             | INO                             | INS                           | INS                               | INO                     | INS                                  | <1750                                    | INS                                  | INS                                  | <1040                   |
| Chrysene                                      | 4.8           | NA                 | NA                 | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| 1-Methylnaphthalene                           | NE            | NA                 | NA                 | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| 2-Methylnaphthalene                           | 49<br>420     | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NS                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS<br>NS                             | NS<br>NS                             | NS<br>NS                |
| Acenaphthene Anthracene                       | 2000          | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NS                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS<br>NS                             | NS<br>NS                             | NS<br>NS                |
| Benzo(a)Anthracene                            | 0.06          | NA NA              | NA NA              | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Benzo(k)fluoranthene                          | 0.5           | NA                 | NA                 | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Fluoranthene                                  | 280           | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NG                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NG                | NS                              | NS<br>NG                        | NS<br>NS                      | NS<br>NS                          | NS<br>NG                | NS<br>NS                             | NS<br>NS                                 | NS<br>NG                             | NS<br>NG                             | NS<br>NC                |
| Fluorene<br>Naphthalene                       | 280<br>280    | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NS                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS<br>NS                             | NS<br>NS                             | NS<br>NS                |
| Phenanthrene                                  | 200           | NA                 | NA                 | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Pyrene                                        | 200           | NA                 | NA                 | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Metals (mg/Kg) **                             | 0.40          | 0.7                | 0000               | 110                             | NO                      | 4.00                    | 7.04                           | NO                                     | NO                      | NO                              | NO                              | NO                            | NO                                | NO                      | 5.04                                 | NO                                       | 5.40                                 | NO                                   | NO                      |
| Antimony<br>Arsenic                           | 0.12          | 27<br>10           | 8200<br>10         | NS<br>NS                        | NS<br>NS                | <4.86<br><b>4.25</b>    | <7.01<br><b>2.44</b>           | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | <5.24<br>10                          | NS<br>NS                                 | <5.43<br>1.74                        | NS<br>NS                             | NS<br>NS                |
| Barium                                        | 20            | 4700               | 140000             | NS                              | NS                      | 96.7                    | 166                            | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | 99.6                                 | NS                                       | 48.7                                 | NS                                   | NS                      |
| Beryllium                                     | 0.08          | 2                  | 2                  | NS                              | NS                      | 0.656                   | 1.26                           | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | <0.524                               | NS                                       | <0.543                               | NS                                   | NS                      |
| Cadmium                                       | 0.1           | 34                 | 1000               | NS                              | NS                      | <0.486                  | <0.701                         | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | <0.524                               | NS                                       | <0.543                               | NS                                   | NS                      |
| Chromium (Total)*** Copper                    | 1<br>26       | 100<br>2500        | 100<br>76000       | NS<br>NS                        | NS<br>NS                | 25.8<br>15.8            | 19.2<br>8.42                   | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | 22<br>15.4                           | NS<br>NS                                 | 11.3<br>12.1                         | NS<br>NS                             | NS<br>NS                |
| Lead                                          | 0.3           | 400                | 1000               | NS                              | NS                      | 27.9                    | 56.7                           | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | 148                                  | NS                                       | 13.4                                 | NS                                   | NS                      |
| Mercury                                       | 0.04          | 20                 | 610                | NS                              | NS                      | 0.0393                  | 0.0586                         | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | 0.153                                | NS                                       | <0.0314                              | NS                                   | NS                      |
| Nickel                                        | 2             | 1400               | 7500               | NS                              | NS                      | 14.3                    | 11.3                           | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | 13.8                                 | NS                                       | 11.6                                 | NS                                   | NS                      |
| Selenium<br>Silver                            | 0.72          | 340<br>340         | 10000<br>10000     | NS<br>NS                        | NS<br>NS                | <1.46<br><1.46          | <2.10<br><2.10                 | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | <2.15<br><1.57                       | NS<br>NS                                 | <1.63<br><1.63                       | NS<br>NS                             | NS<br>NS                |
| Vanadium                                      | 1             | 470                | 14000              | NS                              | NS                      | 27.2                    | 17.8                           | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | 22.9                                 | NS<br>NS                                 | 13                                   | NS                                   | NS                      |
| Zinc                                          | 100           | 20000              | 610000             | NS                              | NS                      | 40.4                    | 12.6                           | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | 82.6                                 | NS                                       | 26.7                                 | NS                                   | NS                      |
| Metals-SPLP (mg/L)                            |               | T                  |                    |                                 |                         |                         |                                |                                        |                         |                                 |                                 |                               |                                   |                         |                                      |                                          |                                      |                                      |                         |
| Arsenic<br>Barium                             | 0.01          | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NS                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS<br>NS                             | NS<br>NS                             | NS<br>NS                |
| Beryllium                                     | 0.004         | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS                      | NS<br>NS                | NS                             | NS<br>NS                               | NS<br>NS                | NS                              | NS                              | NS<br>NS                      | NS                                | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS                                   | NS                                   | NS                      |
| Cadmium                                       | 0.005         | NA                 | NA                 | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Chromium (Total)                              | 0.05          | NA                 | NA<br>             | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Copper<br>Lead                                | 1.3<br>0.015  | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NS                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS<br>NS                             | NS<br>NS                             | NS<br>NS                |
| Mercury                                       | 0.015         | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NS                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS<br>NS                             | NS                                   | NS<br>NS                |
| Nickel                                        | 0.1           | NA                 | NA                 | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Selenium                                      | 0.05          | NA                 | NA                 | NS                              | NS                      | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| Silver<br>Vanadium                            | 0.036<br>0.05 | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NS                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS<br>NS                             | NS<br>NS                             | NS<br>NS                |
| Vanadium<br>Zinc                              | 5             | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NS                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS<br>NS                             | NS<br>NS                             | NS<br>NS                |
| Pesticides (ug/Kg)                            |               |                    |                    |                                 |                         |                         |                                |                                        |                         |                                 |                                 |                               |                                   |                         |                                      |                                          |                                      |                                      |                         |
| Methoxychlor                                  | 800           | 340000             | 10000000           | NS                              | <8.46                   | NS                      | NS                             | NS                                     | NS                      | NS                              | NS                              | NS                            | NS                                | NS                      | NS                                   | NS                                       | NS                                   | NS                                   | NS                      |
| PCBs (ug/Kg) **                               | NA            | NE                 | N.E.               | 460.0                           | -10.0                   | NO                      | -24.0                          | -24.0                                  | -24.2                   | -20.0                           | -22.4                           | -20.0                         | -20.0                             | -20.0                   | NC                                   | 4200                                     | NC                                   | -24.0                                | .60.0                   |
| Aroclor 1248<br>Aroclor 1260                  | NA<br>NA      | NE<br>NE           | NE<br>NE           | <62.6<br><62.6                  | <10.6<br><10.6          | NS<br>NS                | <31.2<br><31.2                 | <21.6<br><21.6                         | <21.3<br><21.3          | <22.0<br><22.0                  | <23.4<br><23.4                  | <20.8<br><20.8                | <20.9<br><b>49.8</b>              | <20.8<br><20.8          | NS<br>NS                             | 1390<br>30.5                             | NS<br>NS                             | <21.2<br><21.2                       | <62.6<br><62.6          |
| Total PCBs                                    | 10            | 1000               | 10000              | BRL                             | BRL                     | NS                      | BRL                            | BRL                                    | BRL                     | BRL                             | BRL                             | BRL                           | 49.8                              | BRL                     | NS                                   | 1420.5                                   | NS                                   | BRL                                  | BRL                     |
| PCBs-SPLP (ug/L)                              |               | T                  |                    |                                 |                         |                         |                                |                                        |                         |                                 |                                 |                               |                                   |                         |                                      |                                          |                                      |                                      |                         |
| Aroclor 1248                                  | NA<br>NA      | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NG                | NS<br>NG                | NS<br>NG                       | NS<br>NS                               | NS<br>NG                | NS                              | NS<br>NG                        | NS<br>NS                      | NS<br>NS                          | NS<br>NG                | NS<br>NG                             | NS<br>NG                                 | NS                                   | NS                                   | NS<br>NS                |
| Aroclor 1260 Total PCBs                       | NA<br>0.5     | NA<br>NA           | NA<br>NA           | NS<br>NS                        | NS<br>NS                | NS<br>NS                | NS<br>NS                       | NS<br>NS                               | NS<br>NS                | NS<br>NS                        | NS<br>NS                        | NS<br>NS                      | NS<br>NS                          | NS<br>NS                | NS<br>NS                             | NS<br>NS                                 | NS<br>NS                             | NS<br>NS                             | NS<br>NS                |
| TOTAL TODO                                    | 0.0           | INA                | INA                | I INO                           | INO                     | INO                     | INO                            | INO                                    | INO                     | INO                             | INO                             | INO                           | INO                               | INO                     | INO                                  | INO                                      | INO                                  | INO                                  | INO                     |



| Location ID<br>Sample Date<br>Sample ID                                 | GA-PMC         | RES DEC            | I/C DEC            | AJ22-SB209<br>10/9/2011<br>AJ-22-SB209(0-0.5) | AJ22-SB209<br>10/9/2011<br>AJ-22-SB209(1-3) | AJ22-SB209<br>10/9/2011<br>AJ-22-SB209(5-6) | AJ22-SB209<br>10/9/2011<br>AJ-22-SB209(7-8) | AJ23-SB207<br>10/2/2011<br>AJ23-SB207(05)-1 | AJ23-SB207<br>10/2/2011<br>AJ23-SB207(2.5-3)-1 | AJ23-SB207<br>10/2/2011<br>AJ23-SB207(2.5-3)-2 | AJ23-SB207<br>10/2/2011<br>AJ23-SB207(6-6.5)-1 | AJ23-SB207<br>10/2/2011<br>AJ23-SB207(13-13.5)- |
|-------------------------------------------------------------------------|----------------|--------------------|--------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------------|
| Depth Interval                                                          |                |                    |                    | 0-0.5                                         | AJ-22-SB209(1-3)<br>1-3                     | AJ-22-SB209(5-6)<br>5-6                     | 7-8                                         | 0-0.5                                       | AJ23-5B207(2.5-3)-1<br>2.5-3                   | AJ23-SB207(2.5-3)-2<br>2.5-3                   | 6-6.5                                          | 13-13.5                                         |
| CT-ETPH (mg/Kg)                                                         | T              |                    | T=                 |                                               |                                             |                                             |                                             |                                             |                                                |                                                |                                                |                                                 |
| C9-C36 Aliphatic Hydrocarbons  Extractable Total Petroleum Hydrocarbons | NE<br>FOO      | NE<br>FOO          | NE<br>2500         | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | 33.3                                           | 35.6                                           | 44.8                                           | NS<br>NC                                        |
| Unidentified                                                            | 500<br>NE      | 500<br>NE          | 2500<br>NE         | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | 33.3<br>33.3                                   | 35.6<br>35.6                                   | 44.8<br>44.8                                   | NS<br>NS                                        |
| PAH (ug/Kg)                                                             | INC            | IVE                | IVL                | NS                                            | NO                                          | ING                                         | 140                                         | IVO                                         | 33.3                                           | 33.0                                           | 44.0                                           | 140                                             |
| Chrysene                                                                | 1000           | 84000              | 780000             | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <394                                           | <400                                           | <359                                           | NS                                              |
| Anthracene                                                              | 40000          | 1000000            | 2500000            | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <394                                           | <400                                           | <359                                           | NS                                              |
| Benzo(a)anthracene                                                      | 1000           | 1000               | 7800               | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <394                                           | <400                                           | <359                                           | NS                                              |
| Benzo(a)pyrene                                                          | 1000           | 1000               | 1000               | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <394                                           | <400                                           | <359                                           | NS                                              |
| Benzo(b)fluoranthene                                                    | 1000           | 1000               | 7800               | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <394                                           | <400                                           | <359                                           | NS                                              |
| Benzo(k)fluoranthene                                                    | 1000           | 8400               | 78000              | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <394                                           | <400                                           | <359                                           | NS                                              |
| Fluoranthene                                                            | 5600           | 1000000            | 2500000            | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <394                                           | <400                                           | <359                                           | NS                                              |
| Fluorene                                                                | 5600           | 1000000            | 2500000            | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NG                                    | <394<br><394                                   | <400                                           | <359                                           | NS<br>NS                                        |
| Naphthalene<br>Phenanthrene                                             | 5600<br>4000   | 1000000<br>1000000 | 2500000<br>2500000 | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | <394                                           | <400<br><400                                   | <359<br><359                                   | NS<br>NS                                        |
| Pyrene                                                                  | 4000           | 1000000            | 2500000            | NS                                            | NS<br>NS                                    | NS                                          | NS<br>NS                                    | NS                                          | <394                                           | <400                                           | <359                                           | NS<br>NS                                        |
| PAH-SPLP (ug/L)*                                                        | 4000           | 1000000            | 2000000            | 140                                           | 140                                         | 140                                         | 140                                         | 140                                         | <b>400</b> 4                                   | V400                                           | 4000                                           | 110                                             |
| Chrysene                                                                | 4.8            | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| I-Methylnaphthalene                                                     | NE             | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| 2-Methylnaphthalene                                                     | 49             | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Acenaphthene                                                            | 420            | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Anthracene                                                              | 2000           | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Benzo(a)Anthracene                                                      | 0.06           | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Benzo(k)fluoranthene                                                    | 0.5            | NA<br>NA           | NA<br>NA           | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Fluoranthene                                                            | 280            | NA<br>NA           | NA<br>NA           | NS<br>NS                                      | NS<br>NE                                    | NS<br>Ne                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                       | NS<br>Ne                                       | NS<br>NS                                       | NS<br>NC                                        |
| Fluorene<br>Naphthalene                                                 | 280<br>280     | NA<br>NA           | NA<br>NA           | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                        |
| Phenanthrene                                                            | 200            | NA<br>NA           | NA<br>NA           | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                        |
| Pyrene                                                                  | 200            | NA<br>NA           | NA NA              | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Wetals (mg/Kg) **                                                       | 200            | 14.                | 141                | .,,9                                          | 110                                         |                                             | 11.5                                        | 11.5                                        | 11.5                                           | 110                                            | 11.0                                           |                                                 |
| Antimony                                                                | 0.12           | 27                 | 8200               | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <5.55                                          | <5.20                                          | <4.98                                          | NS                                              |
| Arsenic                                                                 | 0.2            | 10                 | 10                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | 3.96                                           | 3.15                                           | 1.63                                           | NS                                              |
| Barium                                                                  | 20             | 4700               | 140000             | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | 83.5                                           | 73                                             | 66.9                                           | NS                                              |
| Beryllium                                                               | 0.08           | 2                  | 2                  | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | 0.613                                          | <0.520                                         | 0.735                                          | NS                                              |
| Cadmium                                                                 | 0.1            | 34                 | 1000               | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <0.555                                         | <0.520                                         | <0.498                                         | NS                                              |
| Chromium (Total)***                                                     | 1              | 100                | 100                | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | 19.2                                           | 15.9                                           | 16                                             | NS                                              |
| Copper                                                                  | 26             | 2500               | 76000              | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | 10.5                                           | 10.6                                           | 14                                             | NS                                              |
| Lead                                                                    | 0.3            | 400                | 1000               | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | 27.3                                           | 26.2                                           | 6.83                                           | NS<br>NC                                        |
| Mercury<br>Nickel                                                       | 0.04           | 20<br>1400         | 610<br>7500        | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | 0.0542<br>10.1                                 | 0.059<br>8.69                                  | <0.0311<br><b>7.65</b>                         | NS<br>NS                                        |
| Selenium                                                                | 1              | 340                | 10000              | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | <1.67                                          | <1.56                                          | <1.50                                          | NS<br>NS                                        |
| Silver                                                                  | 0.72           | 340                | 10000              | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | <1.67                                          | <1.56                                          | <1.50                                          | NS                                              |
| Vanadium                                                                | 1              | 470                | 14000              | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | 21.1                                           | 18                                             | 18.9                                           | NS                                              |
| Zinc                                                                    | 100            | 20000              | 610000             | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | 37.9                                           | 34.9                                           | 24.6                                           | NS                                              |
| Metals-SPLP (mg/L)                                                      |                |                    |                    |                                               |                                             |                                             |                                             |                                             |                                                |                                                |                                                |                                                 |
| Arsenic                                                                 | 0.01           | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| 3arium                                                                  | 1              | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Beryllium                                                               | 0.004          | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Cadmium                                                                 | 0.005          | NA<br>             | NA<br>             | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Chromium (Total)                                                        | 0.05           | NA<br>NA           | NA<br>NA           | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                        |
| Copper                                                                  | 1.3            | NA<br>NA           | NA<br>NA           | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                        |
| Lead<br>Mercury                                                         | 0.015<br>0.002 | NA<br>NA           | NA<br>NA           | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                        |
| Vickel                                                                  | 0.002          | NA<br>NA           | NA<br>NA           | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                        |
| Selenium                                                                | 0.05           | NA NA              | NA NA              | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Silver                                                                  | 0.036          | NA NA              | NA NA              | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| /anadium                                                                | 0.05           | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Zinc                                                                    | 5              | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Pesticides (ug/Kg)                                                      |                |                    |                    |                                               |                                             |                                             |                                             |                                             |                                                |                                                |                                                |                                                 |
| Methoxychlor                                                            | 800            | 340000             | 10000000           | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| PCBs (ug/Kg) **                                                         |                | 1                  |                    |                                               |                                             |                                             |                                             |                                             |                                                |                                                |                                                |                                                 |
| Aroclor 1248                                                            | NA             | NE                 | NE<br>             | <21.6                                         | 106                                         | 138                                         | <32.5                                       | <20.2                                       | NS                                             | NS                                             | <20.9                                          | <20.2                                           |
| Aroclor 1260                                                            | NA<br>10       | NE<br>4000         | NE<br>40000        | 34.8                                          | <21.5                                       | <22.7                                       | <32.5                                       | <20.2                                       | NS<br>NS                                       | NS<br>NS                                       | <20.9                                          | <20.2                                           |
| Total PCBs PCBs-SPLP (ug/L)                                             | 10             | 1000               | 10000              | 34.8                                          | 106                                         | 138                                         | BRL                                         | BRL                                         | NS                                             | NS                                             | BRL                                            | BRL                                             |
| Aroclor 1248                                                            | NA             | NA                 | NA                 | NS                                            | NS                                          | NS                                          | NS                                          | NS                                          | NS                                             | NS                                             | NS                                             | NS                                              |
| Arocior 1248<br>Arocior 1260                                            | NA<br>NA       | NA<br>NA           | NA<br>NA           | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                        |
| Fotal PCBs                                                              | 0.5            | NA<br>NA           | NA<br>NA           | NS<br>NS                                      | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                    | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                       | NS<br>NS                                        |
| · ODO                                                                   | 1 0.0          | 1 17/1             | 197                |                                               | 110                                         | 110                                         |                                             |                                             |                                                | 110                                            |                                                | . 110                                           |

Greenwich High School

Table 1 **AECOM** 

Greenwich, CT

#### Notes:

This is a summary table. Only detected chemicals are presented.

<0.010 = Not detected above given laboratory reporting limit.

Bold = Detected above reporting limit.

For screening purposes only - Orange highlighted cells exceed the 20x rule for GA\_PMC.

Blue highlighted cells exceed RES DEC.
Green highlighted cells exceed I/C DEC.

Yellow highlighted cells exceed GA\_PMC for SPLP analytical results.

RES DEC = Residential Direct Exposure Criteria.

I/C DEC = Industrial/Commercial Direct Exposure Criteria.

GA-PMC = Pollutant Mobility Criteria for GA-classified groundwater areas.

NE = Criteria has not been established

NS = Not sampled for this constituent.

ug/Kg = microgram per kilogram

mg/Kg = miligram per kilogram

mg/L = miligram per Liter

Criteria in italics require CT DEEP approval.

\* Critiria listed for comparision to PAH SPLP results are RSR GA Groundwater Protection Critiera

\*\* For screening purposes only, listed GA-PMC for inorganics and PCBs mass analysis are RSR GA-PMC (leachate analysis based) multiplied by 20.

\*\*\* For screening purposes only, RES DEC and I/C DEC critiera for hexavalen chromium compared to total chromium results. If screening with this critieria suggests a potential exceedances, then chromium specific analysis should be run to identify actual exceedances.

Codified criterion for arsenic GWPC is 50 ug/L, but the revised Drinking Water Action Level is 10 ug/L, which also revises the GA PMC from 0.05 mg/L to 0.01 mg/kg and the GB PMC from 0.5 mg/L to 0.1 mg/L, to be protective of human health.

Codified critierion for lead RES DEC is 500 mg/kg, but the recommended clean-up criteria in 400 mg/kg to be protective of human health.

AECOM Environment

# **Figures**





SOURCE: MAPCARD - USGS STAMFORD, CT QUAD. 1984 LAT 41.0399 LONG. -73.6127 ELEVATION = 63'

#### **AECOM Environment**

500 ENTERPRISE DRIVE, SUITE 1A ROCKY HILL, CONNECTICUT 06067 T 860.263.5800 F 860.263.5777 www.aecom.com



# FIGURE 1 SITE LOCATION MAP

GREENWICH HIGH SCOOL 10 HILLSIDE ROAD, GREENWICH, CT

| DATE:         | PROJECT NUMBER: | FIG. No: |
|---------------|-----------------|----------|
| DECEMBER 2011 | 60225155        | 1        |

 $\varpi$ 

 $\triangleright$ 

 $\Box$ 

 $\circ$ 

PATH/FILENAME: P:\60225155 - GHS\GREENWICH HIGH SCHOOL\ORIGINAL DRAWING FILES\MISA INVESTIGATION\60225155-01D.DWG LAST UPDATE: Tuesday, February 14, 2012 11:23:17 AM PLOT DATE: Tuesday, February 14, 2012 11:24:09 AM  $\supset$  $\Box$  $\circ$  $\Box$ ARCH D - 3-7-05P.2 P5 9 8-015/16 3-01/4 23'-69116' 19-69/16 P5. P5.5 (P) 17-11 6'-6' 17-11 1'-7 15/16 GB-6- - -GB-7 -GB-5 -⊨ ++GB-8 = = = -GB-9 = GB-20° GB-20 GB-20 GB-21 2  $\sim$ GB-26 900 900 0 0 ° - GB-66 9 9LOPE 1:12 Depth (ft) Boning #10 (48.5') Bott [29.5'] Elev {42.5'} Low {45.5'} High Depth (ft) Total PCBs (ND ND ND ND ND #6 @ !2' T#B E-W #4 @ !2' T#B N-S THE LANGE THIS S \_GB-52  $\mathcal{G}$ FIGURE 4
PCB ANALYTICAL DATA SUMMARY
MISA INVESTIGATION REPORT ENWICH HIGH SCHOOL 10 HILLSIDE RD GREENWICH, CT P7.5 PC-2 7[46-6] S.303 12-11 2-2 5-3718 6-03/16 5'-3' 211-10 P1.9 P2.2 P2.3 LEGEND (3.1) P5.3a P5.9 P5.8 P5.6 P4.1 P5.1 ND = NOT DETECTED ABOVE LABORATORY REPORTING LIMITS MISA PROJECT SOIL BORING LOCATION (AECOM, 2011) BLUE SHADING REPRESENTS RDEC EXCEEDANCE 6 SHEET FILE NO. CAD FILE JOB 60225155-01D  $\circ$  $\Box$  $\Box$  $\triangleright$ 

PATH/FILENAME: P:\60225155 - GHS\GREENWICH HIGH SCHOOL\ORIGINAL DRAWING FILES\MISA INVESTIGATION\60225155-01D.DWG LAST UPDATE: Tuesday, February 14, 2012 11:23:17 AM PLOT DATE: Tuesday, February 14, 2012 11:25:39 AM  $\supset$  $\Box$  $\cap$  $\Box$ ARCH D - 3-7-05웃 P.2 P2 9 7' - 0" 7'-2" 10 - 2" 8-015/16 3-81/4 23' - 8 9/16' 23' - 8 9/16" 23' - 8 9/16" P5.8 (P5) P5.7 P5.5 P2.5 P3.6 P3.5 17-11 10-0 6-6 9-1 6-6 17-110 1-715/16 0 - 4 3/4 GB-7 - +GB-8 - - - -GB-9 -GB-14 GB-20 GB-20 GB-20 GB-21 GB-20 ----SLOPE 1:12 2  $\sim$ **6** 8 GB-26 # # 9 0 0 GB-33 @ @ R 2 5 SLAB 2-2.5 6-7 9 9 9 9 SLOPE 1:12 AG23-SB216 54-51 12" SLAB 12" T#B E-W 012" T#B N-S (TYP.) A I COM Boning # (46.5) [29.5] [42.5] [45.5] ng/kg)
5.01
3.59
3.24
ND
ND
ND 9-10 (mg/kg) ND ND ND 4 #6 @ 12' T#B E-W #4 @ 12' T#B N-S 702 H E 3- H HH GB-47\_  $\mathcal{G}$  $\mathcal{O}_{1}$ FIGURE 6
PAHS ANALYTICAL DATA SUMMARY
MISA INVESTIGATION REPORT ENWICH HIGH SCHOOL 10 HILLSIDE RD GREENWICH, CT P7.5 6-6.5 2.5-3 4.5-5.5 14-15 22'-0" 12-11 10 15/16 AJ23-SB207 PAHs 211-10 P2.6 LEGEND (P3.1) P5.9 P4.1 P5.8 (mg/kg) ND ND ND ND ND = NOT DETECTED ABOVE LABORATORY REPORTING LIMITS MISA PROJECT SOIL BORING LOCATION (AECOM, 2011) BLUE SHADING REPRESENTS RDEC EXCEEDANCE ng/kg) ND ND ND ND 6 SHEET CAD FILE FILE NO. JOB 60225155-01D 0  $\varpi$ 

 $\triangleright$ 

 $\bigcirc$ 

 $\Box$