Review of Online Optimization

Online optimization

- Special case: bandit optimization
- UCB
 - Construct set of statistically plausible models
 - Optimize optimistically
- Thompson Sampling
 - Sample from posterior model distribution
 - Optimize sampled model
- TS ≅ randomized approximation of UCB

Time-Varying Action Sets

- Actions sets $\mathbb{X}_1, \mathbb{X}_2, \mathbb{X}_3, \cdots$
 - Each observed immediately before decision
- UCB and TS
 - Can be applied with time-varying action sets
 - Simply maximize over current action set
 - Regret analysis extends
- Contextual models
 - Think of meta-action as context-action pair
- Adaptive adversaries
 - Think of meta-action as adversary-self action pair
- Cautious learning
 - Restrict to conservative actions

Facets of Statistical Learning

Generalization

- How to predict what we haven't seen from what we have seen?
- Supervised and unsupervised learning
- Regression and classification

Exploration

- How to act when actions influence observations?
- Online learning and MABs
- UCB, Thompson sampling, etc.

Delayed consequences

- How to assign credit to past actions?
- Reinforcement learning

• How to effectively combine these remains open

• For many methods, regret can be exponential in horizon or # states

Reinforcement Learning

- Current state and action influence
 - Immediate reward
 - State transition
- Delayed consequences via state dynamics
- Do delayed consequences matter?
 - Robotics
 - Web site content optimization
 - Online education
 - Medical treatments

Markov Decision Processes

- Start with a simple case
 - finite horizon
 - finite state and action sets
 - time-inhomogeneous transition and reward distributions

Sequence of H actions

State and reward distributions

$$s_0 \sim \rho(\cdot)$$
 $s_{t+1} \sim P_{t,a_t}(\cdot|s_t)$ $r_t \sim R_{t,a_t}(\cdot|s_t)$

Policies and Value Functions

• (Deterministic) policy

$$\mu = (\mu_0, \dots, \mu_{H-1})$$
 $a_t = \mu_t(s_t)$

• Objective
$$\max_{\mu} \mathbb{E} \left[\sum_{t=0}^{H-1} r_t \mid a_t = \mu_t(s_t) \right]$$

Value functions

$$V_t^{\mu}(s) = \mathbb{E}\left[\sum_{\tau=t}^{H-1} r_{\tau} \mid a_{\tau} = \mu_{\tau}(s_{\tau}), s_t = s\right]$$

• Optimal value function

$$V_t^*(s) = \max_{\mu} V_t^{\mu}(s)$$

A policy is optimal iff

$$\mu_t(s) \in \arg\max_{a \in \mathcal{A}} \left(\overline{R}_{t,a}(s) + \sum_{s' \in \mathcal{S}} P_{t,a}(s'|s) V_{t+1}^*(s') \right)$$

State-action value functions

$$Q_t^{\mu}(s,a) = \overline{R}_{t,a}(s) + \sum_{s' \in \mathcal{S}} P_{t,a}(s'|s) V_{t+1}^{\mu}(s')$$

$$Q_t^*(s,a) = \overline{R}_{t,a}(s) + \sum_{s} P_{t,a}(s'|s) V_{t+1}^*(s')$$

Stochastic policies

Value Iteration

Computing the optimal value function

$$V_H^*(s) = 0$$

$$V_t^*(s) = \max_{a \in \mathcal{A}} \left(\overline{R}_{t,a}(s) + \sum_{s' \in \mathcal{S}} P_{t,a}(s'|s) V_{t+1}^*(s') \right)$$

Computing an optimal policy

$$\mu_t(s) \in \arg\max_{a \in \mathcal{A}} \left(\overline{R}_{t,a}(s) + \sum_{s' \in \mathcal{S}} P_{t,a}(s'|s) V_{t+1}^*(s') \right)$$

Computing optimal state-action values

$$Q_{H-1}^*(s,a) = \overline{R}_{t,a}(s)$$

$$Q_{t}^{*}(s, a) = \overline{R}_{t,a}(s) + \sum_{s' \in S} P_{t,a}(s'|s) \max_{a' \in A} Q_{t+1}^{*}(s', a')$$

Infinite-Horizon Problems

- Discounted reward MDP $(S, A, R, P, \alpha, \rho)$
 - Time-homogeneous
 - Discount factor $\alpha \in (0,1)$
 - Policy $\mu = (\mu_0, \mu_1, ...)$
 - Objective

$$\max_{\mu} \mathbb{E} \left[\sum_{t=0}^{\infty} \alpha^t r_t \mid a_t = \mu_t(s_t) \right]$$

- Average reward MDP (S, A, R, P, ρ)
 - Objective

$$\max_{\mu} \liminf_{H \to \infty} \frac{1}{H} \mathbb{E} \left[\sum_{t=0}^{H-1} r_t \mid a_t = \mu_t(s_t) \right]$$