元素及其化合物·五·「铝 (Al) 及其化合物」

铝的性质

- 1. 物理性质: 具有银白色金属光泽的固体, 密度、硬度均较小, 熔点较低, 有良好的导电、导热性
- 2. 化学性质
 - 与非金属单质反应
 - 与 O₂ 反应: 4 Al + 3 O₂ = ^{点燃} 2 Al₂O₃
 - 与 Cl_2 反应: $2\operatorname{Al} + 3\operatorname{Cl}_2 \stackrel{\stackrel{\text{点燃}}{=\!=\!=\!=}}{=\!=\!=\!=} 2\operatorname{Al}\operatorname{Cl}_3$
 - 与S反应: $2 \text{Al} + 3 \text{S} \stackrel{\Delta}{=} \text{Al}_2 \text{S}_3$
 - 与 H_2O 反应: $2 Al + 6 H_2O = 2 Al(OH)_3 + 3 H_2 \uparrow$
 - 铝在冷的浓硫酸或浓硝酸中钝化
 - 铝与强碱发生反应: 2 Al + 2 NaOH + 6 H₂ = 2 NaAlO₂ + 4 H₂O + 3 H₂↑
 - 铝热反应: 可以与 FeO、 Fe_2O_3 、 Fe_3O_4 、 Cr_2O_3 、 MnO_2 、 V_2O_5 等氧化物反应。用于焊接金属、冶炼难溶金属 $\begin{cases} 2\,Al + Fe_2O_3 \overset{\bar{n}\exists \exists}{\longrightarrow} Al_2O_3 + 2\,Fe \\ 2\,Al + Cr_2O_3 \overset{\bar{n}\exists \exists}{\longrightarrow} Al_2O_3 + 2\,Cr \end{cases}$
- 3. 制备: $2\,\mathrm{Al_2O_3}\left(\mathrm{l}\right)$ = $\frac{\mathrm{ide}}{\mathrm{im}\mathrm{la}\mathrm{T}}$ $4\,\mathrm{Al} + 3\,\mathrm{O_2}\uparrow$

铝、氧化铝和氢氧化铝

 $\mathrm{AlO}_2^- \longleftarrow [\mathrm{Al},\ \mathrm{Al}_2\mathrm{O}_3,\ \mathrm{Al}(\mathrm{OH})_3,\ \mathrm{Al}^{3+},\ \mathrm{AlO}_2^-] \longrightarrow \mathrm{Al}^{3+}$

与酸反应

- 2 Al + 6 H⁺ = 2 Al³⁺ + 3 H₂ ↑ (非氧化性酸)
- $\bullet \ \ Al_2O_3 + 6\,H^+ \ = \ 2\,Al^{3+} + 3\,H_2O$
- $Al(OH)_3 + 3H^+ = Al^{3+} + 3H_2O$

与强碱反应

- $2 \text{ Al} + 2 \text{ OH}^- + 2 \text{ H}_2 \text{O} = 2 \text{ AlO}_2^- + 3 \text{ H}_2 \uparrow$
- $Al_2O_3 + 2OH^- = 2AlO_2^- + H_2O$
- $Al(OH)_3 + OH^- = AlO_2^- + 2H_2O$

Al(OH)₃的电离

- $\bullet \ \ Al(OH)_3 \stackrel{\rm H_2O}{\Longrightarrow} H^+ + AlO_2^- + H_2O$
- $\bullet \ \ Al(OH)_3 \stackrel{H_2O}{ \Longleftrightarrow} Al^{3+} + OH^-$

铝离子

- 1. 与NaOH的相互滴加缓慢滴加并搅拌
 - 将NaOH滴入Al³⁺溶液中
 - **1.** 先出现白色沉淀: $Al^{3+} + 3OH^{-} = Al(OH)_3 ↓$
 - 2. 后沉淀消失: $Al(OH)_3 + OH^- = AlO_2^- + 2H_2O$
 - 将Al³⁺滴入NaOH溶液中
 - **1.** 先无明显现象: $Al^{3+} + 4OH^{-} = AlO_{2}^{-} + H_{2}O$
 - 2. 后产生白色沉淀: $Al^{3+} + 3AlO_2^- + 6H_2O = 4Al(OH)_3 \downarrow$
- 2. 与氨水反应

$$Al^{3+} + NH_3 \cdot H_2O = Al(OH)_3 \downarrow + 3NH_4^+$$

- 3. 双水解反应
 - $\mathrm{Al}^{3+} + 3\,\mathrm{HCO}_{3}^{-} = \mathrm{Al}(\mathrm{OH})_{3}\downarrow + 3\,\mathrm{CO}_{2}\uparrow$
 - $\bullet \ \ Al^{3+} + 3\,CO_3^{2-} + 3\,H_2O \ = \ Al(OH)_3 \downarrow \ + 3\,HCO_3^-$
 - $Al^{3+} + 3AlO_2^- + 6H_2O = 4Al(OH)_3 \downarrow$
 - $2 \, \mathrm{Al^{3+}} + 3 \, \mathrm{S^{2-}} + 6 \, \mathrm{H_2O} \, = \, 2 \, \mathrm{Al(OH)_3} \downarrow \, + 3 \, \mathrm{H_2S} \uparrow$
 - $AlO_2^- + NH_4^+ + H_2O = 4Al(OH)_3 \downarrow + NH_3 \uparrow$
 - $\bullet \ \ 2\,\mathrm{Al^{3+}} + 3\,\mathrm{SiO_3^{2-}} + 6\,\mathrm{H_2O} \ = \ 2\,\mathrm{Al(OH)_3} \downarrow \ + 3\,\mathrm{H_2SiO_3} \downarrow$

偏铝酸根

- 1. 与强酸相互滴加,缓慢滴加并搅拌
 - 将H₂SO₄滴入AlO₂溶液中
 - 1. 先出现白色沉淀: $AlO_2^- + H^+ + H_2O = Al(OH)_3 \downarrow$
 - 2. 后沉淀消失: $Al(OH)_3 + 3H^+ = Al^{3+} + 3H_2O$
 - 将AlO⁻2滴入H₂SO₄溶液中
 - **1.** 先无明显现象: $AlO_2^- + 4H^+ = Al^{3+} + 2H_2O$
 - 2. 后产生白色沉淀: $Al^{3+} + 3AlO_2^- + 6H_2O = 4Al(OH)_3 \downarrow$
- 2. 与碳酸反应

立即生成Al(OH)3沉淀且不溶解。

- CO_2 过量: $AlO_2^- + 2H_2O + CO_2 = Al(OH)_3 \downarrow + HCO_3^-$
- CO_2 少量: $2AlO_2^- + 3H_2O + CO_2 = 2Al(OH)_3 \downarrow + CO_3^{2-}$
- 3. 与铵盐溶液反应

$$NH_4^+ + AlO_2^- + H_2O = Al(OH)_3 \downarrow + NH_3 \uparrow$$

氢氧化铝

制备

- $Al^{3+} + NH_3 \cdot H_2O = Al(OH)_3 \downarrow + 3NH_4^+$
- $AlO_2^- + 2H_2O + CO_2 = Al(OH)_3 \downarrow + HCO_3^-$

• $Al^{3+} + 3AlO_2^- + 6H_2O = 4Al(OH)_3 \downarrow$

用途

- 1. Al:铝合金, 航空航天材料
- 2. Al₂O₃: 耐热材料; 炼铝原料; 刚玉(红宝石、蓝宝石)
- 3. Al(OH)3: 净水剂;制酸剂(治疗胃酸过多);阻燃剂
- 4. 可溶性铝盐: 净水剂 (明矾: KAl(SO₄)₂·12H₂O)

铝及其重要化合物的转化

1.
$$2 \text{ Al} + 6 \text{ H}^+ = 2 \text{ Al}^{3+} + 3 \text{ H}_2 \uparrow$$

$$2.2 \text{ Al} + 2 \text{ OH}^- + 2 \text{ H}_2 \text{O} = 2 \text{ AlO}_2^- + 3 \text{ H}_2 \uparrow$$
 (记忆:4213,四个2、一个3)

3.
$$4\,\mathrm{Al} + 3\,\mathrm{O}_2 \stackrel{\mathrm{Al}\!\!\!/}{=\!\!\!=\!\!\!=} 2\,\mathrm{Al}_2\mathrm{O}_3$$
 $2\,\mathrm{Al} + \mathrm{Fe}_2\mathrm{O}_3 \stackrel{\mathrm{Al}\!\!\!/}{=\!\!\!=\!\!\!=} \mathrm{Al}_2\mathrm{O}_3 + 2\,\mathrm{Fe}$

5.
$$2 \operatorname{Al}(OH)_3 \stackrel{\Delta}{=\!=\!=} \operatorname{Al}_2O_3 + 3 \operatorname{H}_2O$$

$$6.\,\mathrm{Al_2O_3} + 6\,\mathrm{H^+} \ = \ 2\,\mathrm{Al^{3+}} + 3\,\mathrm{H_2O}$$

$$7. \, \mathrm{Al_2O_3} + 2 \, \mathrm{OH^-} \ = \ 2 \, \mathrm{AlO_2^-} + \mathrm{H_2O}$$

8.
$$Al(OH)_3 + 3H^+ = AlO^{3+} + 3H_2O$$

9.
$$Al^{3+} + 3OH^{-} = Al(OH)_3 \downarrow$$

10.
$$AlO_2^- + H^+ + H_2O = Al(OH)_3 \downarrow$$

11.
$$Al(OH)_3 + OH^- = AlO_2^{-+} + 2H_2O$$

$${\bf 12.\,AlO_2^-} + 4\,{\rm H^+}\ =\ Al^{3+} + 2\,{\rm H_2O}$$

13.
$$Al^{3+} + 4OH^{-} = AlO^{2-} + 2H_2O$$

氧化铝无法一步反应为氢氧化铝