See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260641433

Systematic analysis of spectroscopic characteristics of the lanthanide and actinide ions with the 4fN and 5fN (N = 1...14) electronic configurations in a free state

ARTICLE in JOURNAL OF ALLOYS AND COMPOUNDS · JUNE 2014

Impact Factor: 3 · DOI: 10.1016/j.jallcom.2014.02.044

CITATIONS READS 2

4 AUTHORS, INCLUDING:

Chong-Geng Ma

Chongqing University of Posts and Teleco...

60 PUBLICATIONS **319** CITATIONS

SEE PROFILE

73

Mikhail G Brik

University of Tartu

397 PUBLICATIONS 2,390 CITATIONS

SEE PROFILE

FISEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Systematic analysis of spectroscopic characteristics of the lanthanide and actinide ions with the $4f^N$ and $5f^N$ (N = 1...14) electronic configurations in a free state

C.-G. Ma^a, M.G. Brik^{a,b,c,*}, O.-X. Li^a, Y. Tian^a

- ^a College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
- ^b Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia
- ^c Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42200 Czestochowa, Poland

ARTICLE INFO

Article history: Received 23 January 2014 Received in revised form 7 February 2014 Accepted 10 February 2014 Available online 17 February 2014

Keywords: Rare earth ions Actinides Slater parameters Spin-orbit interaction Energy levels

ABSTRACT

Systematic consideration of the spectroscopic properties of the di-, tri- and tetravalent lanthanide and actinide ions in a free state is presented. Variations of the Hartree–Fock calculated Slater parameters F^2 , F^4 , F^6 , spin–orbit interaction constant ζ and averaged values of the 4f, 5f electrons' radial coordinate across both series were considered; functional dependencies between the mentioned quantities were obtained. It has been shown that the F^2 , F^4 , F^6 parameters grow up linearly with the atomic number Z. The spin–orbit interaction constant $\zeta^{1/4}$ is also proportional to Z, and, therefore, to the Slater integrals as well. Moreover, the ratios F^4/F^2 and F^6/F^2 are practically constant for the isovalent ions in the considered series. The energy barycenters of all electronic configurations and the third, fourth and fifth ionization energies were all calculated. The energy barycenter moves up with increasing number of f-electrons until the f-shell becomes half-filled (7 f electrons) and then moves down. The ionization energies increase linearly with atomic number across the considered series. The established relations between F^2 , F^4 , F^6 and ζ reduce the number of independent parameters in the free ion Hamiltonian and can be further applied to the case of crystal-field fitting calculations as the empirical constraints.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There are two particular groups of chemical elements in the periodic table, which share a certain similarity in their properties. These are the so called "lanthanides" and "actinides", which have the 4f and 5f unfilled electron shells, respectively. These names are derived from those of the first elements opening the considered groups: lanthanum (Z=57) and actinium (Z=89). Their f-electron shells are gradually built up by adding one additional electron when moving across the considered series until the f shell becomes completed with 14 electrons. It has also to be mentioned that the unfilled 4f (lanthanides) and 5f (actinides) shells are screened by the completely filled $5s^25p^6$ and $6s^26p^6$ shells, respectively, which strongly decreases influence of environment of these ions on their inner f shells.

The lanthanide ions – also known as the rare earth ions – are widely used in various optical applications, such as laser materials,

E-mail address: brik@fi.tartu.ee (M.G. Brik).

infrared to visible up-conversion materials, phosphors [1–7] and references therein. Recently, the lanthanide ions have increasing utility in biomedical applications [8]. The actinide ions, although resembling lanthanides from the point of view of electronic structure, stand apart due to their radioactivity, which determines their specific areas of application in nuclear energetic and military spheres [9]. For example, the photophysics and photochemistry of actinide ions has been developed to address the safety and security issues arising from nuclear fission [10].

The physical fact behind these applications of lanthanide and actinide ions is that their intraconfigurational f-f transitions manifest themselves as very sharp narrow lines in the experimental absorption/emission spectra due to the screening effect of the completely filled $5s^25p^6$ and $6s^26p^6$ shells on the inner f orbitals. Thus, the main emphasis in the article is placed on the properties of the f electron configurations f, with f varying from 1 to 14.

In Table 1 we give the number of energetic *J*-manifolds (many of which are degenerated) and the number of states for each considered configuration. Those energetic *J*-manifolds arise from the Coulomb interaction between the f electrons and the f electron's spin-orbit (SO) coupling interaction (it should be

^{*} Corresponding author at: Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Estonia. Tel.: +372 7374751.

Table 1Electronic configurations and the number of possible states for the f^N configurations.

Electron configuration	Number of states (including possible orientation of spin)	Number of J manifolds (number of energy levels of
	possible orientation of spin)	free ions)
f^1	14	2
f^2	91	13
f^3	364	41
f^4	1001	107
f ⁵	2002	198
f^6	3003	295
f^7	3432	327
f ⁸	3003	295
f^9	2002	198
f ¹⁰	1001	107
f ¹¹	364	41
f ¹²	91	13
f ¹³	14	2
f ¹⁴	1	1

emphasized that the Slater parameters describing the Coulomb interaction in the f^N configurations cannot be determined for N=1, 13 and 14). Almost all those levels are highly degenerated and can be split further by a crystal field, to form rich energy level schemes with numerous sharp absorption/emission lines in a wide spectral region, from infrared to ultraviolet, depending on the ion considered.

The semi-empirical effective Hamiltonian model operating within the f^N electron configurations has been well developed to understand the electronic energy level structures observed in the f-f transition spectra of lanthanide and actinide ions in solids [1,11,12]. In the model, each effective interaction within the f^N configuration can be expressed as the product of the radial (depending on the radial coordinates of f-electrons only) fitting parameter and the angular (depending on the angular coordinates of f-electrons only) operator. The matrix elements of all operators entering the free ion Hamiltonian acting between the basis wave functions |f^NnSLIM>(S. L. I. M stand for the quantum numbers of the spin, orbital momentum, total momentum and its projection, respectively: n denotes all other quantum numbers needed to distinguish between the states with identical S, L, J, M sets) can be derived from the Racah-Wigner algebra. The values of the radial fitting parameters can be obtained by minimizing the root-mean-square (rms) deviation between the theoretical and experimental energy levels. Such a theoretical method has been systematically implemented for successful interpretation of spectra of trivalent lanthanide and actinide ions in LaCl₃ and LaF₃ by Carnall and his coworkers, and the trend of the obtained fitting parameter values across the whole f-element series has been also analyzed and discussed (see the review article of Liu [13] for more details and literature references). After that, that trend has been applied to other spectroscopic studies of trivalent lanthanide ions in solids to reduce the number of the fitting energy parameters [14].

More recently, Duan and Tanner have also demonstrated the similar trend of the energy parameters of trivalent ions in Cs₂. NaYCl₆ across the whole lanthanide series [15]. It is noticeable that in those above-mentioned publications the main studied objects are the trivalent lanthanide and actinide ions in crystals. However, some other oxidation states of these ions can be encountered. The divalent lanthanide ions (first of all, Eu²⁺) can be found in some materials and they are of paramount importance for persistent phosphors as we all know. Recently, a comparative study of the spectroscopic properties of four isoelectronic ions with the 4f² configuration (La⁺, Ce²⁺, Pr³⁺, Nd⁴⁺) was also published [16]. Obviously, it is very desirable to further extend the trend study to the cases of other oxidation states of all lanthanide and actinide ions – this is one of the main aims of the present study.

In addition, the SO constant ζ_f is linearly related to the atomic number Z to the fourth power according to the theory of atomic structure and spectra proposed by Cowan [17]. Therefore, the relation between the SO constant ζ_f and the atomic number Z given by the previous works will need a complete re-analysis.

Recently we have considered how the spectroscopic properties of the ions with unfilled 3d [18] and 4d/5d shells [19] vary across the whole groups depending on the atomic number and/or oxidation state. In particular, we have shown that the Racah parameters A, B and C and SO constant ζ_d for those 3d, 4d, and 5d ions are all related to the atomic number Z; the linear trends obtained by the scheme we developed in our earlier two papers reduce the number of independent parameters needed for a proper description of the free ions spectra.

In the present paper we continue this line of research to explore the main spectroscopic parameters of the 4f and 5f ions, i.e., to perform a thorough analysis of the electrostatic (the so called Slater integrals F^2 , F^4 , F^6) and SO interaction parameters for all the doubly, triply, and quadruply charged lanthanide and actinide ions in a free state. We also calculate the averaged values of the second, fourth and sixth power of the 4f or 5f electrons radial coordinate ($\langle r^2 \rangle$, $\langle r^4 \rangle$, $\langle r^6 \rangle$), since these quantities are necessary to calculate the crystal field parameters. The barycenter energies E_{avg} of all considered f^N electron configurations and first ionization energies E_I were calculated and are reported here. We believe that all data accumulated and discussed in this paper will be useful for an analysis of the 4f and 5f ions spectra in various materials.

The structure of the paper is as follows: in Section 2 the Hamiltonian of the free f-ions is described; in Section 3 all relations between the main spectroscopic parameters of free ions and atomic number are derived; Section 4 highlights the behavior of the energy barycenters and ionization energies, and, finally, Section 5 contains the final concluding remarks.

2. Free di-, tri- and tetravalent 4f/5f ions: the structure of the Hamiltonian

The parameterized free-ion Hamiltonian H_{FI} of a f^N (N = 1...13) electron configuration can be written as [1,11,12]:

$$\mathbf{H}_{FI}(\mathbf{f}^{N}) = E_{avg} + \sum_{k=2,4,6} F^{k} \mathbf{f}_{k} + \varsigma_{f} \sum_{i=1}^{N} \mathbf{I}_{i} \cdot \mathbf{s}_{i} + \alpha \mathbf{L}(\mathbf{L} + \mathbf{1}) + \beta \mathbf{G}(\mathbf{G}_{2})$$

$$+ \gamma \mathbf{G}(\mathbf{R}_{7}) + \sum_{i=2,3,4,6,7,8} T^{i} \mathbf{t}_{i} + \sum_{h=0,2,4} M^{h} \mathbf{m}_{h} + \sum_{k=2,4,6} P^{k} \mathbf{p}_{k}$$
(1)

where the italic and bold letters represent the radial fitting parameter and the angular operator, respectively. The first term E_{avg} is the \mathbf{f}^N configuration barycenter energy, which does not cause any energy splitting and can be easily determined by shifting the whole energy splitting pattern so that the ground-state energy is zero. The second term is the Coulomb interaction between the f electrons, where F^k (k = 2,4 and 6) are the Slater parameters (for obvious reasons, these parameters can be defined only for the ions having more than one electron or one positively charged hole in the electron configuration). The $\mathbf{f_k}$ values are eventually some numerical constants, which can be calculated for a given electron configuration with N electrons as [20]:

$$\mathbf{f_k} = \frac{1}{2} \sum_{i,j=1}^{N} \frac{4\pi}{2k+1} \sum_{q=-k}^{k} Y_{kq}^*(\theta_i, \varphi_i) Y_{kq}(\theta_j, \varphi_j), \tag{2}$$

with Y_{kq} being the spherical functions of the f-electrons' coordinates θ , φ with $i \neq j$ for obvious reasons, since this is a pair Coulomb interaction. The third term stands for the f electron's SO interaction, where ζ_f is the SO coupling constant and $\mathbf{l}_i \cdot \mathbf{s}_i$ is the SO interaction operator with the first and second terms being the operators of the angular and spin momenta of an individual electron with index i.

The second and third terms dominate in the Hamiltonian (1) and to a large extent determine the order and sequence of the energy levels. The next four terms are the two- and three-electron Coulomb correlation contributions from the higher configurations with the same parity. The last two terms represent the magnetically and electrostatically correlated interactions. The last six terms only produce very small corrections to the energy levels determined by the second and third terms.

We restrict our analysis to the second and third terms of the Hamiltonian (1) only due to the consideration of the orders of magnitude of the energy splitting caused by each interaction in the free ion Hamiltonian (1). Besides, the calculations of those correction terms are very complicated and as a rule they are treated as the fitting parameters, which can be determined numerically from the procedure of non-linear fitting of the calculated energy level schemes to the experimental ones.

The studied ions were grouped as the di-, tri- and tetravalent ions, whose atomic numbers and electron configurations are listed in Table 2. As seen from the table, increase of the atomic number by unity with keeping the same electric charge of an ion leads to appearance of one additional f-electron in the unfilled shell. Moreover, to cover as many possible oxidation states as possible and to offer a comparative cross-cutting study of spectroscopic properties of the 4f and 5f ions in several groups, we have considered those di-, tri-, and tetravalent ions collected in Table 2.

It should be pointed out that for some divalent ions, due to a particular order in filling the electron shells, the ground state configuration is not of pure f character, but contains one 5d (Gd²⁺) or 6d electron (Ac²⁺, Th²⁺, Pa²⁺, U²⁺, Np²⁺, Cm²⁺). However, the difference between the ground states of these "mixed f–d" and "pure f" configurations is not large. For example, for Gd²⁺, it is about 2400 cm⁻¹ [21]. So, being based on this fact, on one hand, and

Table 2Atomic numbers and electron configurations for the considered di-, tri- and tetravalent 4f and 5f ions. The ground state configurations (if different) are given in the parentheses.

Atomic number Z	Symbol	Divalent	Trivalent	Tetravalent
Electron configuration	n 4f ^N			
57	La	$4f^1$	-	_
58	Ce	$4f^2$	4f1	_
59	Pr	$4f^3$	$4f^2$	$4f^1$
60	Nd	$4f^4$	$4f^3$	$4f^2$
61	Pm	4f ⁵	$4f^4$	$4f^3$
62	Sm	4f ⁶	4f ⁵	$4f^4$
63	Eu	4f ⁷	4f ⁶	4f ⁵
64	Gd	4f8 (4f75d)	4f ⁷	4f ⁶
65	Tb	4f ⁹	4f ⁸	4f ⁷
66	Dy	4f ¹⁰	4f ⁹	4f ⁸
67	Но	4f ¹¹	4f ¹⁰	4f ⁹
68	Er	4f ¹²	4f ¹¹	4f ¹⁰
69	Tm	$4f^{13}$	4f ¹²	4f ¹¹
70	Yb	4f ¹⁴	4f ¹³	4f ¹²
71	Lu	_	4f ¹⁴	4f ¹³
Electron configuration	n 5f ^N			
89	Ac	5f ¹ (6d ¹)	_	_
90	Th	$5f^{2}$ (6 d^{2})	5f ¹	_
91	Pa	$5f^{3}$ ($5f^{2}6d$)	$5f^2$	5f ¹
92	U	5f4 (5f36d)	$5f^3$	$5f^2$
93	Np	5f ⁵ (5f ⁴ 6d)	5f ⁴	$5f^3$
94	Pu	5f ⁶	5f ⁵	5f ⁴
95	Am	5f ⁷	5f ⁶	5f ⁵
96	Cm	5f ⁸ (5f ⁷ 6d)	5f ⁷	5f ⁶
97	Bk	5f ⁹	5f ⁸	5f ⁷
98	Cf	5f ¹⁰	5f ⁹	5f ⁸
99	Es	5f ¹¹	5f ¹⁰	5f ⁹
100	Fm	5f ¹²	5f ¹¹	5f ¹⁰
101	Md	5f ¹³	5f ¹²	5f ¹¹
102	No	5f ¹⁴	5f ¹³	5f ¹²
103	Lr	-	5f ¹⁴	5f ¹³

for the sake of consistency, on the other hand, we consider only pure f configurations for all ions studied in the present paper.

3. Results of calculations: relations between the main spectroscopic parameters for free di-, tri- and tetravalent 4f/5f ions and atomic number Z

The numerical values of the Slater parameters F^2 , F^4 , F^6 and spin–orbit interaction constant ζ_f were calculated by us using the suite of the Cowan programs [17] with relativistic effects taken into account. It should be noted here that there can exist certain discrepancy between the experimentally deduced parameters of the Hamiltonian (1) as reported in various literature sources; the difference can be about 10–20% [20]. As a rule, the Hartree–Fock calculated Slater parameters (and thus, the Racah parameters as well) are somewhat overestimated with respect to those ones, which may be deduced from the experimental spectra; the overall observation is that $F^k_{\rm exp}\approx 0.8F_{HF}$, $\zeta_{\rm fexp}\approx 0.9\zeta_{HF}$ [20]. These scaling coefficients can be introduced, if necessary; they do not question the validity of the obtained results, and we did not use them in our analysis. All parameters calculated in the present work are collected in Table 3.

Figs. 1 and 2 show the variation of the F^2 , F^4 , F^6 parameters against the atomic number Z in the considered groups of ions. As can be easily seen from both figures, all three parameters excellently follow the linear trend of the form $F^k(k=2.4.6) = a_1 + a_2 Z$. The values of the a_1 , a_2 coefficients obtained after a linear fit of the calculated data points are all collected in Table 4. It can be noticed that the absolute values of the a_1 , a_2 coefficients all decrease in the " $F^2 \rightarrow F^4 \rightarrow F^6$ " and "divalent-trivalent-tetravalent ions" directions for both 4f and 5f groups. The strongest dependence of the Slater parameters on Z in each of the di-, tri- and tetravalent ions' groups is realized for the F^2 parameter; the weakest – for the F^6 parameter. If the 4f and 5f ions are compared, then the Slater parameters also behave in a similar way: the a_2 coefficient is the greatest for the F^2 parameter, and the difference between the a2 coefficients for the 4f and 5f ions decreases when moving in the " $F^2 \rightarrow F^4 \rightarrow F^6$ " direction.

Moreover, it is possible to reduce further the number of the independent electrostatic parameters by considering the so called hydrogenic ratios F^4/F^2 and F^6/F^2 [22] (assuming that the 4f (or 5f) radial wave function is the hydrogen-like one).

Fig. 3 shows these calculated ratios for all considered series of isovalent ions. The F^4/F^2 and F^6/F^2 ratios are pretty constant across the considered groups, very slightly depending on the atomic number. In Fig. 3 we give the averaged values of those hydrogenic ratios for each group. Thus, for the di-, tri- and tetravalent 4f ions $\langle F^4/F^2 \rangle = 0.622$, 0.626, 0.629; $\langle F^6/F^2 \rangle = 0.446$, 0.450, 0.453, respectively. For the di-, tri- and tetravalent 5f elements, we obtained the following values: $\langle F^4/F^2 \rangle = 0.646$, 0.652, 0.656; $\langle F^6/F^2 \rangle = 0.471$, 0.478, and 0.482, correspondingly.

As far as the SO constant ζ variation is concerned, it is a well-established fact that it grows linearly with the fourth power of the atomic number $\zeta \sim Z^4$. In other words, a plot of $\zeta^{1/4}$ against Z should be a straight line, as confirmed by Fig. 4. The derived linear equations for $\zeta^{1/4}$ (measured then in cm^{-1/4}) are as follows (Z^* denotes an effective nuclear charge):

divalent 4f :
$$\zeta^{1/4}$$

$$= (-6.39991 \pm 0.17977) + (0.19556 \pm 0.00283)Z$$

$$= 0.19556(Z - 32.73) = 0.19206Z^*$$
 trivalent 4f : $\zeta^{1/4}$
$$= (-5.43241 \pm 0.09300) + (0.18275 \pm 0.00144)Z$$

$$= 0.18275(Z - 29.73) = 0.18275Z^*$$

Table 3 Calculated energy parameters (in cm⁻¹), radial integrals (in \acute{A}^k) and first-ionization energies (in eV) of the f^N configurations for the considered di-, tri- and tetravalent 4f and 5f ions.

Ion	La ²⁺	Ce ²⁺	Pr ²⁺	Nd ²⁺	Pm ²⁺	Sm ²⁺	Eu ²⁺	Gd ²⁺	Tb ²⁺	Dy ²⁺	Ho ²⁺	Er ²⁺	Tm ²⁺	Yb ²⁺	
$4f^{N} \\$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
E_{avg} F^2	940	10,238	25,915	39,478	50,221	67,310	94,022	72,092	59,295	51,817	38,122	18,200	3726	0	
F ⁴	_	80,374 49,798	85,636 53,142	90,328 56,116	94,615 58,825	98,622 61,352	102,408 63,734	106,014 65,999	109,486 68,176	112,834 70,271	116,084 72,303	119,256 74,283	122,343 76,208	125,372 78,095	
F ⁶	_	35,647	38,065	40,212	42,167	43,989	45,705	47,335	48,901	50,408	51,867	53,290	54,672	56,026	
r^2	470	580	698	825	960	1106	1264	1433	1615	1810	2019	2244	2484	2740	
	0.5704	0.5041	0.4469	0.4038	0.3699	0.3419	0.3184	0.2984	0.2809	0.2653	0.2516	0.2393	0.2282	0.2181	
r ⁴	0.8618	0.6821	0.5366	0.4398	0.3711	0.3193	0.2792	0.2473	0.2212	0.1997	0.1815	0.1661	0.1529	0.1415	
r ⁶ E _I	2.6921 19.558	1.9440 20.468	1.3713 21.733	1.0301 22.794	0.8085 23.694	0.6548 24.473	0.5433 25.148	0.4598 25.731	0.3953 26.241	0.3445 26.678	0.3037 27.055	0.2703 27.380	0.2431 27.646	0.2200 27.869	
LĮ			Pr ³⁺							20.078 Dy ³⁺				27.803 Yb ³⁺	, 3+
$4f^N$	La ³⁺ 0	Ce ³⁺ 1	Pr ³	Nd ³⁺ 3	Pm ³⁺ 4	Sm ³⁺ 5	Eu ³⁺ 6	Gd ³⁺ 7	Tb ³⁺ 8	Dy ³ *	Ho ³⁺ 10	Er ³⁺ 11	Tm ³⁺ 12	13	Lu ³⁺ 14
E_{avg}	-	1378	12,709	30,985	46,244	58,030	76,814	105,850	80,893	66,373	57,825	42,459	20,393	4359	0
F^2	-	-	96,681	100,645	104,389	107,971	111,416	114,742	117,981	121,132	124,214	127,240	130,201	133,119	135,996
F^4	-	-	60,533	63,030	65,383	67,630	69,786	71,865	73,886	75,850	77,768	79,650	81,489	83,300	85,085
F ⁶	-	-	43,509	45,309	47,003	48,619	50,169	51,662	53,113	54,523	55,899	57,248	58,566	59,864	61,142
$\overset{\zeta_f}{r^2}$	_	689 0.3724	808 0.3472	937 0.3215	1075 0.2999	1225 0.2812	1387 0.2648	1561 0.2504	1749 0.2374	1950 0.2258	2165 0.2153	2396 0.2057	2643 0.1969	2906 0.1888	3187 0.1814
r^4	_	0.3156	0.2785	0.2409	0.2333	0.1874	0.1678	0.1514	0.1375	0.1256	0.1154	0.1064	0.0986	0.0916	0.0855
r^6	-	0.5070	0.4300	0.3505	0.2918	0.2473	0.2123	0.1846	0.1620	0.1435	0.1281	0.1151	0.1042	0.0948	0.0866
E_I	-	38.510	39.164	40.423	41.534	42.530	43.421	44.219	44.941	45.584	46.163	46.685	47.140	47.548	47.910
. a N		Ce ⁴⁺	Pr ⁴⁺	Nd ⁴⁺	Pm ⁴⁺	Sm ⁴⁺	Eu ⁴⁺	Gd ⁴⁺	Tb ⁴⁺	Dy ⁴⁺	Ho ⁴⁺	Er ⁴⁺	Tm ⁴⁺	Yb ⁴⁺	Lu ⁴⁺
4f ^N		0	1	2	3	4	5 65 021	6	7	8	9	10	11	12	13 5048
E_{avg} F^2		_	1826 -	14,864 109,481	35,383 112,901	52,216 116,217	65,021 119,442	85,385 122,583	116427 125,662	88,967 128,677	73,029 131,639	63,578 134,560	46,661 137,430	22,591 140,266	143,071
F^4		_	_	69,009	71,147	73,217	75,226	77,180	79,093	80,965	82,801	84,611	86,387	88,142	89,875
F^6		-	-	49,736	51,271	52,757	54,198	55,599	56,970	58,311	59,626	60,921	62,192	63,447	64,687
$\overset{\zeta_f}{r^2}$		-	913 0.2876	1047 0.2726	1190 0.2568	1345 0.2427	1512 0.2301	1692 0.2188	1885 0.2085	2093 0.1992	2315 0.1906	2553 0.1827	2806 0.1754	3077 0.1686	3365 0.1623
r ⁴		_	0.2876	0.2726	0.2368	0.2427	0.2301	0.2188	0.2083	0.1992	0.1906	0.1827	0.1734	0.1668	0.1625
r^6		_	0.1916	0.1697	0.1456	0.1262	0.1105	0.0975	0.0867	0.0776	0.0699	0.0632	0.0575	0.0525	0.0481
E_I		-	59.890	60.476	61.788	62.993	64.098	65.110	66.046	66.902	67.690	68.419	69.078	69.685	70.243
= cN	Ac ²⁺	Th ²⁺	Pa ²⁺	U ²⁺	Np ²⁺	Pu ²⁺	Am ²⁺	Cm ²⁺	Bk ²⁺	Cf ²⁺	Es ²⁺	Fm ²⁺	Md ²⁺	No ²⁺	
5f ^N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
E_{avg}		2 9354	3 21,752	4 32,802	5 42,253	6 56,642	7 71,912	8 59,772	9 53,162	10 48,586	11 37,347	12 20,725	13 7056	14 0	
	1 1636	2	3	4	5	6	7	8	9	10	11	12	13	14	
F_{avg} F^2 F^4 F^6	1 1636 - -	2 9354 53,181 33,835 24,509	3 21,752 58,224 37,220 27,025	4 32,802 62,604 40,164 29,217	5 42,253 66,534 42,805 31,184	6 56,642 70,161 45,240 32,998	7 71,912 73,533 47,503 34,685	8 59,772 76,733 49,648 36,283	9 53,162 79,767 51,679 37,796	10 48,586 82,689 53,633 39,251	11 37,347 85,493 55,505 40,646	12 20,725 88,219 57,324 41,999	13 7056 90,855 59,080 43,306	14 0 93,433 60,796 44,583	
F_{avg} F^2 F^4 F^6	1 1636 - - - 818	2 9354 53,181 33,835 24,509 1087	3 21,752 58,224 37,220 27,025 1356	4 32,802 62,604 40,164 29,217 1631	5 42,253 66,534 42,805 31,184 1914	6 56,642 70,161 45,240 32,998 2209	7 71,912 73,533 47,503 34,685 2516	8 59,772 76,733 49,648 36,283 2838	9 53,162 79,767 51,679 37,796 3175	10 48,586 82,689 53,633 39,251 3530	11 37,347 85,493 55,505 40,646 3906	12 20,725 88,219 57,324 41,999 4290	13 7056 90,855 59,080 43,306 4704	14 0 93,433 60,796 44,583 5133	
E_{avg} F^2 F^4 F^6 ζ_f r^2	1 1636 - - - 818 1.4234	2 9354 53,181 33,835 24,509 1087 1.1504	3 21,752 58,224 37,220 27,025 1356 0.9669	4 32,802 62,604 40,164 29,217 1631 0.8404	5 42,253 66,534 42,805 31,184 1914 0.7466	6 56,642 70,161 45,240 32,998 2209 0.6732	7 71,912 73,533 47,503 34,685 2516 0.6138	8 59,772 76,733 49,648 36,283 2838 0.5645	9 53,162 79,767 51,679 37,796 3175 0.5228	10 48,586 82,689 53,633 39,251 3530 0.4870	11 37,347 85,493 55,505 40,646 3906 0.4559	12 20,725 88,219 57,324 41,999 4290 0.4284	13 7056 90,855 59,080 43,306 4704 0.4041	14 0 93,433 60,796 44,583 5133 0.3822	
F_{avg} F^2 F^4 F^6	1 1636 - - - 818	2 9354 53,181 33,835 24,509 1087	3 21,752 58,224 37,220 27,025 1356	4 32,802 62,604 40,164 29,217 1631	5 42,253 66,534 42,805 31,184 1914	6 56,642 70,161 45,240 32,998 2209	7 71,912 73,533 47,503 34,685 2516	8 59,772 76,733 49,648 36,283 2838	9 53,162 79,767 51,679 37,796 3175	10 48,586 82,689 53,633 39,251 3530	11 37,347 85,493 55,505 40,646 3906	12 20,725 88,219 57,324 41,999 4290	13 7056 90,855 59,080 43,306 4704	14 0 93,433 60,796 44,583 5133	
E_{avg} F^2 F^4 F^6 ζ_f r^2 r^4	1 1636 - - - 818 1.4234 4.5026 26.2187 14.279	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526	14 0 93,433 60,796 44,583 5133 0.3822 0.3157	
E_{avg} F^2 F^6 ζ_f r^2 r^4 r^6 E_I	1 1636 - - - 818 1.4234 4.5026 26.2187	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm ³⁺	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺	Lr ³⁺
E_{avg} F^2 F^4 F^6 ζ_f r^2 r^6 E_I	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4	6 56,642 70,161 45,240 32,998 2099 0.6732 0.9849 2.7931 20,988 Pu ³⁺ 5	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am ³⁺ 6	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺	12 20,725 88,219 57,324 41,999 4290 0,4284 0,3960 0,7299 26,767 Fm ³⁺ 11	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13	14
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{2} r^{4} r^{6} E_{I}	1 1636 - - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am ³⁺ 6 65,955	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm ³⁺ 11 41,763	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117	14 0
E_{avg} F^2 F^4 F^6 ζ_f r^2 r^6 E_I	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4	6 56,642 70,161 45,240 32,998 2099 0.6732 0.9849 2.7931 20,988 Pu ³⁺ 5	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am ³⁺ 6	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺	12 20,725 88,219 57,324 41,999 4290 0,4284 0,3960 0,7299 26,767 Fm ³⁺ 11	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13	14
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{6} E_{1} E_{avg} E_{1}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26,767 Fm ³⁺ 11 41,763 92,626	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ^{3*} 13 8117 97,635	14 0 100,058
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{6} E_{1} E_{avg} E_{1}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - 1329	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm³+ 7 81,142 81,792 53,298 39,078	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm³+ 11 41,763 92,626 60,521 44,456 4553	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28,359 No ³⁺ 13 8117 97,635 63,848 46,931 5411	14 0 100,058 65,456 48,126 5868
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{2} r^{4} r^{6} E_{I} E_{avg} F^{2} F^{4} F^{6} E_{r}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - 1329 0.8614	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20,988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm³+ 7 81,142 81,792 53,298 39,078 3078 0.4945	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26,767 Fm³+ 11 41,763 92,626 60,521 44,456 4553 0.3862	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28,359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478	14 0 100,058 65,456 48,126 5868 0.3310
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{2} r^{4} r^{6} E_{I} E_{avg} F^{2} F^{4} C_{f}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - 1329 0.8614 1.4303	3 21,752 58,224 37,220 27,025 1356 0,9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 1.1496	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5515	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm³+ 7 81,142 81,792 53,298 3078 0.4945 0.4773	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ^{3*} 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26,767 Fm³+ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660 0.2638	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478 0.2386	14 0 100,058 65,456 48,126 5868 0.3310 0.2169
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{2} r^{4} r^{6} E_{I} E_{avg} F^{2} F^{4} F^{6} E_{r}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - 1329 0.8614	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20,988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm³+ 7 81,142 81,792 53,298 39,078 3078 0.4945	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26,767 Fm³+ 11 41,763 92,626 60,521 44,456 4553 0.3862	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28,359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478	14 0 100,058 65,456 48,126 5868 0.3310
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{2} r^{4} r^{6} E_{I} E_{avg} F^{2} F^{4} F^{6} C_{f}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ^{3*} 1 2658 - - - 1329 0.8614 1.4303 4.0689	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 1.1496 2.9820	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261 2.1695	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657 1.6401	6 56,642 70,161 45,240 32,298 22,09 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447 1.2745	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³* 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5515 1.0141	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792 53,298 39,078 30,78 0.4945 0.4773 0.8210	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176 0.6759	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684 0.5630	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276 0.4748	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26,767 Fm³+ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930 0.4040	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ^{3*} 12 23,338 95,153 62,200 45,705 4975 0.3660 0.2638 0.3472	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478 0.2386 0.3004	14 0 100,058 65,456 48,126 5868 0.3310 0.2169 0.2618
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{2} r^{4} r^{6} E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{6} C_{f}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - 1329 0.8614 1.4303 4.0689 28.326 Th ⁴⁺ 0	3 21,752 58,224 37,225 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 1.1496 2.9820 29.661 Pa ⁴⁺	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261 2.1695 31,419 U ⁴⁺ 2	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657 1.6401 33.044 Np ⁴⁺ 3	6 56,642 70,161 45,240 32,998 22,09 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447 1.2745 34.575 Pu ⁴⁺ 4	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5321 0.5515 1.0141 36.013 Am⁴+ 5	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792 53,298 39,078 30,78 0.4945 0.4773 0.8210 37,389 Cm ⁴⁺ 6	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176 0.6759 38.691 Bk ⁴⁺ 7	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684 0.5630 39,947 Cf ⁴⁺ 8	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25.913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276 0.4748 41.142 Es ⁴⁺ 9	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm ³⁺ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930 0.4040 42.300 Fm ⁴⁺ 10	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.2638 0.3472 43.404 Md ⁴⁺ 11	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 97,635 63,848 46,931 5411 0.3478 0.2386 0.3004 44.476 No ⁴⁺ 12	14 0 100,058 65,456 48,126 5868 0.3310 0.2169 0.2618 45.501 Lr ⁴⁺ 13
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{2} r^{4} r^{6} E_{avg} F^{2} r^{4} r^{6} E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{4} r^{6} E_{I}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - - 1329 0.8614 1.4303 4.0689 28.326 Th ⁴⁺ 0	3 21,752 58,224 37,225 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 1.1496 2.9861 Pa ⁴⁺ 1 3624	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261 2.1695 31,419 U ⁴⁺ 2 15,230	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657 1.6401 33.044 Np ⁴⁺ 3 31,862	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447 1.2745 34.575 Pu ⁴⁺ 4 45,583	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5515 1.0141 36.013 Am⁴+ 5 57,071	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792 53,298 39,078 3078 0.4945 0.4773 0.8210 37,389 Cm ⁴⁺ 6 74,847	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176 0.6759 38.691 Bk ⁴⁺ 7 89,448	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684 0.5630 39,947 Cf ⁴⁺ 8 74,777	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276 0.4748 41.142 Es ⁴⁺ 9 66,664	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm ³⁺ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930 0.4040 42.300 Fm ⁴⁺ 10 60,424	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660 0.2638 0.3472 43,404 Md ⁴⁺ 11 46,190	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478 0.2386 0.3004 44,476 No ⁴⁺ 12 25,980	14 0 100,058 65,456 48,126 5868 0.3310 0.2169 0.2618 45.501 Lr ⁴⁺ 13 9237
$E_{avg} = F^{2}$ F^{4} F^{6} ξ_{f} f^{2} f^{4} f^{6} E_{1} $5f^{N}$ E_{avg} F^{2} f^{4} f^{6} ξ_{f} f^{2} f^{4} f^{6} ξ_{f} f^{2} f^{4} f^{6} f^{2} f^{5} f^{8} f^{2} f^{8} f^{2} f^{9} f^{2}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14,3456 15.621 Th ³⁺ 1 2658 - - 1329 0.8614 1.4303 4.0689 28.326 Th ⁴⁺ 0	3 21,752 58,224 37,225 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 1.1496 2.9661 Pa ⁴⁺ 1 3624	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261 2.1695 31,419 U ⁴⁺ 2 15,230 74,359	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657 1.6401 33.044 Np ⁴⁺ 3 31,862 77,494	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447 1.2745 34.575 Pu ⁴⁺ 4 45,583 80,497	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5515 1.0141 36.013 Am⁴+ 5 57,071 83,371	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792 53,298 39,078 3078 0.4945 0.4773 0.8210 37.389 Cm ⁴⁺ 6 74,847 86,158	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176 0.6759 38.691 Bk ⁴⁺ 7 89,448 88,849	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684 0.5630 39,947 Cf ⁴⁺ 8 74,777 91,478	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276 0.4748 41,142 Es ⁴⁺ 9 66,664 94,033	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm ³⁺ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930 0.4040 42,300 Fm ⁴⁺ 10 60,424 96,541	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660 0.2638 0.3472 43,404 Md ⁴⁺ 11 46,190 98,990	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478 0.2386 0.3004 44,476 No ⁴⁺ 12 25,980 101402	14 0 100,058 65,456 48,126 5868 0.3310 0.2169 0.2618 45.501 Lr ⁴⁺ 13 9237 103764
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{2} r^{4} r^{6} E_{avg} F^{2} r^{4} r^{6} E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{4} r^{6} E_{I}	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - - 1329 0.8614 1.4303 4.0689 28.326 Th ⁴⁺ 0	3 21,752 58,224 37,225 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 1.1496 2.9861 Pa ⁴⁺ 1 3624	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261 2.1695 31,419 U ⁴⁺ 2 15,230	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657 1.6401 33.044 Np ⁴⁺ 3 31,862	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447 1.2745 34.575 Pu ⁴⁺ 4 45,583	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5515 1.0141 36.013 Am⁴+ 5 57,071	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792 53,298 39,078 3078 0.4945 0.4773 0.8210 37,389 Cm ⁴⁺ 6 74,847	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176 0.6759 38.691 Bk ⁴⁺ 7 89,448	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684 0.5630 39,947 Cf ⁴⁺ 8 74,777	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276 0.4748 41.142 Es ⁴⁺ 9 66,664	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm ³⁺ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930 0.4040 42.300 Fm ⁴⁺ 10 60,424	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660 0.2638 0.3472 43,404 Md ⁴⁺ 11 46,190	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478 0.2386 0.3004 44,476 No ⁴⁺ 12 25,980	14 0 100,058 65,456 48,126 5868 0.3310 0.2169 0.2618 45.501 Lr ⁴⁺ 13 9237
$\begin{array}{c} E_{avg} \\ F^2 \\ F^4 \\ F^6 \\ \zeta_{f} \\ r^2 \\ r^4 \\ r^6 \\ E_1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - - 1329 0.8614 1.4303 4.0689 28.326 Th ⁴⁺ 0 - -	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 2.9820 29.661 Pa ⁴⁺ 1 3624 - - - 1812	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261 2.1695 31.419 U ⁴⁺ 2 15,230 74,359 48,597 35,658 2083	5 42,253 66,534 42,805 31,1184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657 1.6401 33.044 Np ⁴⁺ 3 31,862 77,494 50,695 37,222 2369	6 56,642 70,161 45,240 32,098 22,09 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447 1.2745 34.575 Pu ⁴⁺ 4 45,583 80,497 52,702 38,718 2669	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5321 0.5515 1.0141 36.013 Am⁴+ 5 57,071 83,371 54,021 40,148 2985	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792 53,298 39,078 3078 0.4945 0.4773 0.8210 37.389 Cm ⁴⁺ 6 74,847 86,158 56,480 41,533 3317	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176 0.6759 38.691 Bk ⁴⁺ 7 89,448 88,849 58,272 42,867 3665	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684 0.5630 39,947 Cf ⁴⁺ 8 74,777 91,478 60,022 44,170 4031	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276 0.4748 41.142 Es ⁴⁺ 9 66,664 94,033 61,720 45,433 4421	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm ³⁺ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930 0.4040 42.300 Fm ⁴⁺ 10 60,424 96,541 63,386 46,672 4819	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660 0.2638 0.3472 43,404 Md ⁴⁺ 11 46,190 98,990 65,010 47,879 5249	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478 0.2386 0.3004 44,476 No ⁴⁺ 12 25,980 101402 66,609 49,068 5693	14 0 100,058 65,456 48,126 5868 0.3310 0.2169 0.2618 45,501 Lr ⁴⁺ 13 9237 103764 68,173 50,229 6158
$\begin{array}{c} E_{avg} \\ F^2 \\ F^4 \\ F^6 \\ \zeta_{f} \\ r^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ F$	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - - 1329 0.8614 1.4303 4.0689 28.326 Th ⁴⁺ 0 - -	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 1.1496 2.9820 29.661 Pa ⁴⁺ 1 3624 - - - 1812 0.6514	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261 2.1695 31.419 U ⁴⁺ 2 15,230 74,359 48,597 35,658 2083 0.5995	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657 1.6401 33.044 Np ⁴⁺ 3 31,862 77,494 50,695 37,222 2369 0.5519	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447 1.2745 34.575 Pu ⁴⁺ 4 45,583 80,497 52,702 38,718 2669 0.5116	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5321 0.5515 1.0141 36.013 Am⁴+ 5 57,071 83,371 54,621 40,148 2985 0.4769	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792 53,298 39,078 30,78 0.4945 0.4773 0.8210 37.389 Cm ⁴⁺ 6 74,847 86,158 56,480 41,533 3317 0.4464	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176 0.6759 38.691 Bk ⁴⁺ 7 89,448 88,849 58,272 42,867 3665 0.4198	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684 0.5630 39,947 Cf ⁴⁺ 8 74,777 91,478 60,022 44,170 4031 0.3960	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25.913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276 0.4748 41.142 Es ⁴⁺ 9 66,664 94,033 61,720 45,433 4421 0.3747	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm³+ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930 0.4040 42.300 Fm⁴+ 10 60,424 96,541 63,386 46,672 4819 0.3554	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660 0.2638 0.3472 43.404 Md ⁴⁺ 11 46,190 98,990 65,010 47,879 5249 0.3380	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478 0.2386 0.3004 44.476 No ⁴⁺ 12 25,980 101402 66,609 49,068 5693 0.3220	14 0 100,058 65,456 48,126 5868 0.3310 0.2169 0.2618 45.501 Lr ⁴⁺ 13 9237 103764 68,173 50,229 6158 0.3075
E_{avg} F^{2} F^{4} F^{6} ζ_{f} r^{2} r^{4} r^{6} E_{1} F^{2} F^{4} F^{6} ζ_{f} F^{2} F^{4} F^{6} ζ_{f} F^{2} F^{4} F^{6} C_{1} C_{2} C_{2} C_{3} C_{4} C_{5} $C_$	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - - 1329 0.8614 1.4303 4.0689 28.326 Th ⁴⁺ 0 - -	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 1.1496 2.9820 29.661 Pa ⁴⁺ 1 3624 - - - 1812 0.6514 0.7625	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261 2.1695 31,419 U ⁴⁺ 2 15,230 74,359 48,597 35,658 2083 0.5995 0.6508	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657 1.6401 33.044 Np ⁴⁺ 3 31,862 77,494 50,695 37,222 2369 0.5519 0.5532	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447 1.2745 34.575 Pu ⁴⁺ 4 45,583 80,497 52,702 38,718 2669 0.5116 0.4764	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5321 0.5515 1.0141 36.013 Am⁴+ 5 57,071 83,371 54,621 40,148 2985 0.4769 0.4150	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792 53,298 39,078 3078 0.4945 0.4773 0.8210 37.389 Cm ⁴⁺ 6 74,847 86,158 56,480 41,533 3317 0.4464 0.3647	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176 0.6759 38.691 Bk ⁴⁺ 7 89,448 88,849 58,272 42,867 3665 0.4198 0.3232	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684 0.5630 39,947 Cf ⁴⁺ 8 74,777 91,478 60,022 44,170 4031 0.3960 0.2883	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25,913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276 0.4748 41.142 Es ⁴⁺ 9 66,664 94,033 61,720 45,433 4421 0.3747 0.2589	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm ³⁺ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930 0.4040 42.300 Fm ⁴⁺ 10 60,424 96,541 63,386 46,672 4819 0.3554 0.2335	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660 0.2638 0.3472 43,404 Md ⁴⁺ 11 46,190 98,990 65,010 47,879 5249 0.3380 0.2117	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478 0.2386 0.3004 44.476 No ⁴⁺ 12 25,980 101402 66,609 49,068 5693 0.3220 0.1928	14 0 100,058 65,456 48,126 5868 0,3310 0,2169 0,2618 45,501 Lr ⁴⁺ 13 9237 103764 68,173 50,229 6158 0,3075 0,1763
$\begin{array}{c} E_{avg} \\ F^2 \\ F^4 \\ F^6 \\ \zeta_{f} \\ r^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ r^4 \\ r^6 \\ E_I \\ \\ 5f^N \\ E_{avg} \\ F^2 \\ F$	1 1636 - - 818 1.4234 4.5026 26.2187 14.279 Ac ³⁺ 0 - - -	2 9354 53,181 33,835 24,509 1087 1.1504 2.9579 14.3456 15.621 Th ³⁺ 1 2658 - - - 1329 0.8614 1.4303 4.0689 28.326 Th ⁴⁺ 0 - - -	3 21,752 58,224 37,220 27,025 1356 0.9669 2.0678 8.4146 17.174 Pa ³⁺ 2 12,459 65,387 42,303 30,883 1588 0.7690 1.1496 2.9820 29.661 Pa ⁴⁺ 1 3624 - - - 1812 0.6514	4 32,802 62,604 40,164 29,217 1631 0.8404 1.5511 5.4809 18.558 U ³⁺ 3 27,098 69,091 44,790 32,737 1860 0.6903 0.9261 2.1695 31.419 U ⁴⁺ 2 15,230 74,359 48,597 35,658 2083 0.5995	5 42,253 66,534 42,805 31,184 1914 0.7466 1.2170 3.8230 19.816 Np ³⁺ 4 39,501 72,526 47,094 34,455 2143 0.6275 0.7657 1.6401 33.044 Np ⁴⁺ 3 31,862 77,494 50,695 37,222 2369 0.5519	6 56,642 70,161 45,240 32,998 2209 0.6732 0.9849 2.7931 20.988 Pu ³⁺ 5 49,930 75,769 49,268 36,076 2440 0.5755 0.6447 1.2745 34.575 Pu ⁴⁺ 4 45,583 80,497 52,702 38,718 2669 0.5116	7 71,912 73,533 47,503 34,685 2516 0.6138 0.8171 2.1168 22.079 Am³+ 6 65,955 78,840 51,324 37,607 2751 0.5321 0.5321 0.5515 1.0141 36.013 Am⁴+ 5 57,071 83,371 54,621 40,148 2985 0.4769	8 59,772 76,733 49,648 36,283 2838 0.5645 0.6893 1.6469 23.116 Cm ³⁺ 7 81,142 81,792 53,298 39,078 30,78 0.4945 0.4773 0.8210 37.389 Cm ⁴⁺ 6 74,847 86,158 56,480 41,533 3317 0.4464	9 53,162 79,767 51,679 37,796 3175 0.5228 0.5906 1.3118 24.091 Bk ³⁺ 8 67,488 84,622 55,187 40,486 3420 0.4623 0.4176 0.6759 38.691 Bk ⁴⁺ 7 89,448 88,849 58,272 42,867 3665 0.4198	10 48,586 82,689 53,633 39,251 3530 0.4870 0.5119 1.0628 25.027 Cf ³⁺ 9 60,002 87,370 57,021 41,851 3780 0.4338 0.3684 0.5630 39,947 Cf ⁴⁺ 8 74,777 91,478 60,022 44,170 4031 0.3960	11 37,347 85,493 55,505 40,646 3906 0.4559 0.4484 0.8753 25.913 Es ³⁺ 10 54,583 90,028 58,792 43,169 4162 0.4088 0.3276 0.4748 41.142 Es ⁴⁺ 9 66,664 94,033 61,720 45,433 4421 0.3747	12 20,725 88,219 57,324 41,999 4290 0.4284 0.3960 0.7299 26.767 Fm³+ 11 41,763 92,626 60,521 44,456 4553 0.3862 0.2930 0.4040 42.300 Fm⁴+ 10 60,424 96,541 63,386 46,672 4819 0.3554	13 7056 90,855 59,080 43,306 4704 0.4041 0.3526 0.6162 27.576 Md ³⁺ 12 23,338 95,153 62,200 45,705 4975 0.3660 0.2638 0.3472 43.404 Md ⁴⁺ 11 46,190 98,990 65,010 47,879 5249 0.3380	14 0 93,433 60,796 44,583 5133 0.3822 0.3157 0.5248 28.359 No ³⁺ 13 8117 97,635 63,848 46,931 5411 0.3478 0.2386 0.3004 44.476 No ⁴⁺ 12 25,980 101402 66,609 49,068 5693 0.3220	14 0 100,058 65,456 48,126 5868 0.3310 0.2169 0.2618 45.501 Lr ⁴⁺ 13 9237 103764 68,173 50,229 6158 0.3075

 $\begin{array}{ll} \text{tetravalent 4f}: \zeta^{1/4} & \text{divalent 5f}: \zeta^{1/4} \\ &= (-4.86638 \pm 0.05956) + (0.17606 \pm 0.00009)Z & = (-14.97853 \pm 0.69153) + (0.23113 \pm 0.00723)Z \\ &= 0.17606(Z - 27.64) = 0.17606Z^* & = 0.23113(Z - 64.81) = 0.23113Z^* \end{array}$

Fig. 1. Dependence of the F^2 , F^4 , F^6 parameters on the atomic number for the divalent (a), trivalent (b) and tetravalent (c) 4f ions.

Atomic number, Z

Nd Pm Sm Eu Gd

 F^6 =-31183.95+1353.59 Z

Fig. 2. Dependence of the F^2 , F^4 , F^6 parameters on the atomic number for the divalent (a), trivalent (b) and tetravalent (c) 5f ions.

Atomic number, Z

96 97

99 100 101 102 103

trivalent 5f :
$$\zeta^{1/4}$$
 = $(-12.35019 \pm 0.36986) + (0.20563 \pm 0.00383)Z$ = $0.20563(Z - 60.06) = 0.20563Z^*$

tetravalent 5f :
$$\zeta^{1/4}$$

$$= (-10.97840 \pm 0.24443) + 0.19305 \pm 0.00252)Z$$

$$= 0.19305(Z - 56.87) = 0.19305Z^*$$

Table 4 Linear approximations $a_1 + a_2 Z$ of the Slater parameters F^2 , F^4 and F^6 as functions of the atomic number Z.

		4f ions		5f ions				
		a_1 , cm ⁻¹	a₂, cm ^{−1} /at.number	a_1 , cm ⁻¹	a ₂ , cm ⁻¹ /at.number			
Divalent ions	F ²	-130,428.62 ± 3676.62	3676.62 ± 89.23	-238,506.92 ± 9350.29	3270.85 ± 97.32			
	F^4	$-82,612.02 \pm 3737.27$	2310.41 ± 58.30	$-161,536.70 \pm 6360.04$	2191.03 ± 66.20			
	F^6	$-59,672.22 \pm 2728.48$	1663.49 ± 42.56	$-120,996.33 \pm 4734.37$	1631.76 ± 49.28			
Trivalent ions	F^2	$-93,815.31 \pm 3248.91$	3248.91 ± 46.12	$-193,109.92 \pm 5193.31$	2855.93 ± 53.50			
	F^4	$-58,338.49 \pm 1969.81$	2027.99 ± 30.25	$-130,266.05 \pm 3575.50$	1906.87 ± 36.83			
	F^6	-41,837.26 ± 1440.70	1456.23 ± 22.13	$-97,633.32 \pm 2681.56$	1420.14 ± 27.62			
Tetravalent ions	F^2	-72,429.77 ± 1900.76	3042.09 ± 28.98	$-169,408.29 \pm 3488.87$	2667.98 ± 35.76			
	F^4	$-43,942.72 \pm 1248.61$	1889.27 ± 19.04	$-113,647.18 \pm 2412.12$	1769.28 ± 24.72			
	F^6	$-31,183.951 \pm 912.90$	1353.59 ± 13.92	-85,101.95 ± 1819.53	1316.94 ± 18.65			

Fig. 3. Dependence of the F^4/F^2 and F^6/F^2 ratios on the atomic number for the divalent, trivalent and tetravalent 4f (a) and 5f (b) ions. The lines are the guides to the eye only. The averaged values of the ratios are given in the figure.

Again, the slopes of these linear dependences all decrease when increasing the ions' oxidation state. It can be observed that the $\zeta^{1/4}$ dependence for the 5f ions is steeper than for the 4f ones.

Since the F^2 , F^4 and F^6 parameters and the SO constant $\zeta^{1/4}$ are proportional to the atomic number Z, they should be also proportional to each other, as is evidenced by Fig. 5. The linear relations between them are given below. All calculated results are expressed in cm⁻¹; the coefficient before $\zeta^{1/4}$ is measured in cm^{-3/4}.

Divalent 4f ions:

$$\begin{split} F^2 &= (-12522.97 \pm 1443.08) + (19173.54 \pm 234.08)\zeta^{1/4} \\ F^4 &= (-8528.79 \pm 978.11) + (12050.29 \pm 158.66)\zeta^{1/4} \\ F^6 &= (-6334.88 \pm 723.06) + (8676.59 \pm 117.28)\zeta^{1/4} \end{split} \tag{3}$$

Fig. 4. Linear dependencies of the $\zeta^{1/4}$ value on the atomic number for the di-, triand tetravalent 4f (a) and 5f (b) ions.

Trivalent 4f ions:

$$\begin{split} F^2 &= (1563.49 \pm 858.78) + (17953.47 \pm 132.41)\zeta^{1/4} \\ F^4 &= (1193.84 \pm 588.48) + (11207.31 \pm 90.74)\zeta^{1/4} \\ F^6 &= (909.56 \pm 437.00) + (8047.71 \pm 67.38)\zeta^{1/4} \end{split} \tag{4}$$

Tetravalent 4f ions:

$$\begin{split} F^2 &= (10878.51 \pm 586.41) + (17390.82 \pm 87.60)\zeta^{1/4} \\ F^4 &= (7793.47 \pm 403.93) + (10800.70 \pm 60.34)\zeta^{1/4} \\ F^6 &= (5882.61 \pm 300.08) + (7738.37 \pm 44.82)\zeta^{1/4} \end{split} \tag{5}$$

Fig. 5. Dependence of the calculated F^2 , F^4 and F^6 parameters on the $\zeta^{1/4}$ value for the di-, tri- and tetravalent 4f (a) and 5f (b) ions. The straight lines are the linear fits, whose equations can be found in the text.

Divalent 5f ions:

$$F^{2} = (-31271.26 \pm 487.73) + (14769.30 \pm 367.03)\zeta^{1/4}$$

$$F^{4} = (-22725.27 \pm 360.42) + (9894.71 \pm 49.53)\zeta^{1/4}$$

$$F^{6} = (-17617.14 \pm 36.85) + (7368.99 \pm 36.85)\zeta^{1/4}$$
(6)

Trivalent 5f ions:

$$\begin{split} F^2 &= (-24154.33 \pm 284.80) + (14210.35 \pm 37.27)\zeta^{1/4} \\ F^4 &= (-17463.93 \pm 232.40) + (9489.05 \pm 30.41)\zeta^{1/4} \\ F^6 &= (-13625.38 \pm 180.48) + (7067.13 \pm 23.62)\zeta^{1/4} \end{split} \tag{7}$$

Tetravalent 5f ions:

$$F^{2} = (-20023.65 \pm 213.43) + (13984.44 \pm 27.10)\zeta^{1/4}$$

$$F^{4} = (-14214.10 \pm 179.65) + (9309.26 \pm 22.81)\zeta^{1/4}$$

$$F^{6} = (-11091.25 \pm 143.93) + (6929.39 \pm 18.27)\zeta^{1/4}$$
(8)

Therefore, if one out of four parameters $(F^2, F^4, F^6, \text{ or } \zeta)$ is known for any of the di-, tri- or tetravalent 4f (5f) ions, the remaining

Fig. 6. Calculated barycenter energies E_{avg} of the $4f^N$ (a) and $5f^N$ (b) electron configurations.

three parameters for that ion can all be reliably estimated using the above given linear equations and hydrogenic ratios.

The non-energetical quantities calculated in the present work are the moments of the electron density of the f-electrons for all considered ions, they were found in a standard and a straightforward way by a numerical integration of the following expression:

$$\langle r^k \rangle = \int_0^\infty r^{k+2} |R_{nf}(r)|^2 dr, \tag{9}$$

where k=2, 4, 6; $R_{nj}(r)$ is the corresponding radial wave function with n being a principal quantum number (4 or 5), and f corresponds to the orbital quantum number l=3 for f-electrons. The data given in Table 3 show that the $\langle r^k \rangle$ values systematically decrease with increase of atomic number and oxidation state; the obtained results can be used for calculations of the parameters of crystal field acting upon the 4f and 5f ions in crystals. Considering the decreasing dependence of $\langle r^k \rangle$ related to crystal-field parameters, one can easily conclude that the crystal-field effects on the f electrons should exhibit a decreasing trend across the considered nf series (provided the interatomic distances are kept constant and only the central f ion is changed).

4. Results of calculations: barycenters of the $4f^N$ and $5f^N$ electron configurations

The barycenter energies E_{avg} of all considered f^N electron configurations were calculated by employing the f-shell programs of Reid with the obtained Slater and SO parameter values. The obtained

results are listed in Table 3 and plotted in Fig. 6. There is a characteristic " Λ -shape", which is preserved for all considered electron configurations, with the maximal energy E_{avg} achieved for the ions in the middle of the considered series.

For the ions in the first half of the lanthanide and actinide series (before Gd and Cm) the barycenters of the divalent electronic configurations are higher than those of the tri- and tetravalent ones. For the ions following Gd and Cm, the order of the energies is changed and becomes (in the decreasing order): tetravalent-trivalent-divalent. A special case of the Gd and Cm ions is that the order of the barycenters is different from the described above: trivalent (the highest)-tetravalent (medium)-divalent (the lowest). It is also worthwhile noting that inside each group (di-, tri-, and tetravalent ions) the barycenter energy has a maximum value for the half-filled configurations, having 7 f-electrons.

A particular feature of the more-than-half filled electron shells with N electrons is that they can be treated as the "filled" shells with 14-N positive holes. As such, the number of states for the f^N and f^{14-N} configurations is equal and is decreasing when moving to the left and to the right from N=7. This decrease of number of states would compress the overall spitting of the f states after going over half-filled electron configurations with N=7. At the same time, it can be noted that the Coulomb interaction parameters and SO constant increase with increasing atomic number. Then, due to increased Hamiltonian parameters, the barycenters of the more-than-half filled configurations are higher than those ones of the conjugate less-than-half filled configurations, thus producing an asymmetric Λ -shape, as shown in Fig. 6.

An additional energetic characteristic of the considered electronic configurations is the first ionization energy, which is equal

Fig. 7. Calculated first ionization energies E_I for the $4f^N$ (a) and $5f^N$ (b) electron configurations. Experimental data (if available) are shown by empty symbols.

to the energy needed to remove one f electron to convert, for example, a divalent ion into a trivalent one, a trivalent ion into a tetravalent one and so on. This energy has been also calculated (Table 3); it is plotted in Fig. 7 against the atomic number Z. As seen from Fig. 7, for both lanthanide and actinide ions this ionization energy E_I is a practically perfect linear function of the atomic number; the equations of the linear fits are all given in the graph.

The slope of these linear fits of the ionization energies increase with oxidation state (with moving to the ionization energies of higher order), and when moving from the 4f to the 5f ions. We could find the corresponding experimental energies for some ions from the considered group; these data were taken from the wellknown web-site http://www.webelements.com and are shown in Fig. 7 by the open symbols. As can be seen from that figure, only for the lanthanides there is a complete set of the experimental data on the third and fourth ionization energies. No experimental data are available on the fifth ionization energy, except for Pr. Finally. the experimental ionization energies of the actinides were practically not found at all, except for the third and fourth ionization energies of Th. Overall agreement between the calculated and experimental ionization energies for lanthanides is good (Fig. 7), especially for the first half of the lanthanide series; it can be noticed that for the second half of this group there exists a small systematic overestimation of the calculated energy by about 4-5 eV, which may be related to the well-known overestimation of the Hartree-Fock calculated energies.

5. Conclusions

In the present paper we have given a systematic overview of the spectroscopic parameters of the di-, tri- and tetravalent lanthanide and actinide ions in a free state. We have calculated the Slater parameters F^2 , F^4 and F^6 for all ions in the considered series; these parameters were shown to increase linearly with the atomic number Z. The value of $\zeta^{1/4}$ (where ζ is the SO constant) grows linearly with Z. It has been also demonstrated that the hydrogenic ratios F^4/F^2 and F^6/F^2 remain practically constant within each group of the considered ions.

We also found a linear relation between the F^2 , F^4 and F^6 parameters and $\zeta^{1/4}$. As a main outcome of all these calculations, it turns out to be possible to evaluate all considered parameters using the linear expressions derived in the present paper, which significantly reduces the number of the independent parameters in the free ion Hamiltonian. In other words, knowledge of the atomic number Z and oxidation state of a particular ion from the considered groups is sufficient to restore all four parameters F^2 , F^4 , F^6 and ζ . We also mention that the reported here values of all calculated parameters can be used for crystal field analysis of energy levels of the considered 4f and 5f ions in crystals and/or glasses.

Important energetic characteristics of the considered electron configurations – energy barycenters and third, fourth, and fifth ionization energies – have been all calculated for the considered electronic configurations. The graphs of these quantities against the atomic number revealed that the first one has a clearly-pronounced "A-shape", reaching its maximum for the configurations with 7 f-electrons (half-filled f-shell), whereas the second one increases monotonically and linearly across the considered series. Comparison of the calculated and experimental (if available) ionization energies yielded good agreement.

As a future prospect and development of the presented in this paper results, we mention that they can be readily applied to the crystal field calculations of energy level splittings of the f^N configurations, because the relations between the Coulomb interaction parameters, SO constants and atomic numbers remain valid for various crystals, as was shown for 4f ions in elpasolites [15] and

3d ions in garnets [18]. More application-related results based on the developed approach are going to be reported soon by us.

Acknowledgments

C.-G. Ma acknowledges financial support from National Natural Science Foundation of China (Grant Nos. 11204393 and 11274299) and Estonian Science Foundation (Grant No. 8699). M.G. Brik appreciates support from the European Regional Development Fund (Centre of Excellence "Mesosystems: Theory and Applications", TK114), Internationalisation Programme DoRa, Marie Curie Initial Training Network LUMINET (Grant Agreement No. 316906), Jan Dlugosz University for the visiting professorship in November—December 2013 and the Programme for the Foreign Experts offered by Chongqing University of Posts and Telecommunications. Q.-X. Li and Y. Tian are supported by Natural Science Foundation Project of CQ CSTC (Grant No. 2010BB4116) and Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ110515), respectively.

References

[1] G.K. Liu, in: G.K. Liu, B. Jacquier (Eds.), Spectroscopic Properties of Rare Earths in Optical Materials, Tsinghua University Press & Springer-Verlag (Berlin), Heidelberg, 2005, p. 1.

- [2] G. Huber, S. Kück, M. Pollnau, Solid-State Lasers, in: F. Träger (Ed.), Springer Handbook of Lasers and Optics, Springer-Verlag, Berlin, Heidelberg, 2007.
- [3] B. Henderson, R.H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge University Press, 2000.
- [4] S. Kück, Appl. Phys. B 72 (2001) 515.
- [5] J.-C.G. Bünzli, S.V. Eliseeva, in: Comprehensive Inorganic Chemistry II, From Elements to Applications, vol. 8, second ed., 2013, pp. 339–398.
- [6] J.-C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 34 (2005) 1048.
- [7] J.-C.G. Bünzli, Acc. Chem. Res. 39 (2006) 53.
- [8] F. Wang, X.-G. Liu, Chem. Soc. Rev. 38 (2009) 976.
- [9] J.M. Haschke, J.L. Stakebake, in: L.R. Morss, N.M. Edelstein, J. Fuger, J.J. Katz (Eds.), The Chemistry of the Actinide and Transactinide Elements, vol. 5, Springer Publishing Company, Dordrecht, The Netherlands, 2006, p. 3199.
- [10] L.S. Natrajan, Chem. Soc. Rev. 256 (2012) 1583.
- [11] W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, J. Chem. Phys. 90 (1989) 3443.
- [12] B.G. Wybourne, Spectroscopic Properties of Rare Earths, Interscience Publishers (John Wiley & Sons, Inc.), New York, 1965.
- [13] G.-K. Liu, J. Solid State Chem. 178 (2005) 489.
- [14] C.-G. Ma, M.G. Brik, W. Ryba-Romanowski, H.C. Swart, M.A. Gusowski, J. Phys. Chem. A 116 (2012) 9158.
- [15] C.K. Duan, P.A. Tanner, J. Phys. Chem. A 114 (2010) 6055.
- [16] Y.Y. Yeung, P.A. Tanner, Chem. Phys. Lett. 590 (2013) 46.
- [17] R.D. Cowan, The Theory of Atomic Structure and Spectra, University of California Press, Berkeley, 1981.
- [18] M.G. Brik, A.M. Srivastava, Opt. Mater. 35 (2013) 1776.
- [19] C.-G. Ma, M.G. Brik, J. Lumin. 145 (2014) 402.
- [20] C.A. Morrison, Crystal Fields for Transition-Metal Ions in Laser Host Materials, Springer-Verlag, 1992.
- [21] A. Kramida, Yu. Ralchenko, J. Reader and NIST ASD Team (2013), NIST Atomic Spectra Database (ver. 5.1), National Institute of Standards and Technology, Gaithersburg, MD. https://physics.nist.gov/asd (19.11.13).
- [22] J.P. Elliott, B.R. Judd, W.A. Runciman, Proc. R. Soc. Lond., A 240 (1957) 509.