Fitness Comparison by Statistical Testing in Construction of SAT-Based Guess-and-Determine Cryptographic Attacks

Artem Pavlenko, Maxim Buzdalov, Vladimir Ulyantsev

GECCO 2019, July 16

Plaintext 0 0 1 0 1 1 1 0

Alice wants to send a secret message to Bob.

Keystream

Plaintext 0 0 1 0 1 1 1 0

1 0 0 1 1 0 1 1

To do that, she generates a random sequence.

Bob also generates the same random sequence. . .

Eve has eavesdropped matching parts of plaintext and ciphertext.

Example of a keystream generator: Trivium-64

Algebraic cryptoanalysis

Algebraic cryptoanalysis

Algebraic cryptoanalysis

Guess-and-determine attacks

Standard way to solve SAT problems

- ► Take the formula
- ► Pass it to the SAT solver

Guess-and-determine attacks

Standard way to solve SAT problems

- Take the formula
- Pass it to the SAT solver

A possible alternative when solving hard SAT problems

- ► Choose a subset *B* of the formula's variables the guessed bit set
- lterate over all $2^{|B|}$ combinations of their values
- For each combination:
 - ► Take the formula, substitute these variables with their values
 - Pass it to the SAT solver
 - ► If solution found, terminate

Guess-and-determine attacks

Standard way to solve SAT problems

- Take the formula
- Pass it to the SAT solver

A possible alternative when solving hard SAT problems

- ► Choose a subset B of the formula's variables the guessed bit set
- lterate over all $2^{|B|}$ combinations of their values
- For each combination:
 - ▶ Take the formula, substitute these variables with their values
 - Pass it to the SAT solver
 - ► If solution found, terminate
- ► Sometimes this is faster. In cryptanalysis, it happens quite often

Attack time of a guess-and-determine attack

Several definitions possible. We use the following:

- Assume the keystream is infinite
- Set a time limit T for an attempt to solve one piece
 - ▶ Found a solution within $T \rightarrow \text{congratulations!}$
 - ▶ Did not manage to find → continue with the next piece
- ightharpoonup Let p be the (very small) probability that we find a solution:
 - ightharpoonup Expected time of an attack: T/p
 - ▶ Time with 95% of confidence: $\approx 3T/p$

Attack time of a guess-and-determine attack

Several definitions possible. We use the following:

- Assume the keystream is infinite
- Set a time limit T for an attempt to solve one piece
 - ▶ Found a solution within $T \rightarrow \text{congratulations!}$
 - ▶ Did not manage to find → continue with the next piece
- ightharpoonup Let p be the (very small) probability that we find a solution:
 - \triangleright Expected time of an attack: T/p
 - ▶ Time with 95% of confidence: $\approx 3T/p$

What is a good time of an attack?

- ► Any non-trivial result is important
- ► Example: "SHA-1 collisions now 2⁵²"
- ▶ A hint of a weakness → move to non-compromised ciphers until too late!

Direct measurement?

► Well, possible, but it will take way too long

Direct measurement?

► Well, possible, but it will take way too long

Clever indirect measurement

► A Monte-Carlo technique

Direct measurement?

► Well, possible, but it will take way too long

- ► A Monte-Carlo technique
 - Generate a random initial state

Direct measurement?

► Well, possible, but it will take way too long

- ► A Monte-Carlo technique
 - ► Generate a random initial state
 - Compute the keystream of the needed length

Direct measurement?

► Well, possible, but it will take way too long

- ► A Monte-Carlo technique
 - ► Generate a random initial state
 - Compute the keystream of the needed length
 - ▶ Submit it as an input to the solver. We know that the solution exists!

Direct measurement?

► Well, possible, but it will take way too long

- ► A Monte-Carlo technique
 - Generate a random initial state
 - Compute the keystream of the needed length
 - ▶ Submit it as an input to the solver. We know that the solution exists!
 - ▶ Set the time limit equal to $T/2^{|B|}$
 - ▶ The solver may find the solution, or may fail to meet the time limit

Direct measurement?

► Well, possible, but it will take way too long

- ► A Monte-Carlo technique
 - Generate a random initial state
 - Compute the keystream of the needed length
 - ▶ Submit it as an input to the solver. We know that the solution exists!
 - ▶ Set the time limit equal to $T/2^{|B|}$
 - ▶ The solver may find the solution, or may fail to meet the time limit
- ▶ *N* measurements, N_+ successes \rightarrow the attack efficiency is $\approx \frac{N}{N_+} \cdot T$

Direct measurement?

► Well, possible, but it will take way too long

- ► A Monte-Carlo technique
 - Generate a random initial state
 - Compute the keystream of the needed length
 - ▶ Submit it as an input to the solver. We know that the solution exists!
 - ▶ Set the time limit equal to $T/2^{|B|}$
 - ▶ The solver may find the solution, or may fail to meet the time limit
- ▶ N measurements, N_+ successes \rightarrow the attack efficiency is $\approx \frac{N}{N_+} \cdot T$
- ▶ Estimation of the attack time just got $2^{|B|}$ times faster!

Evolutionary algorithms for attack construction

Problem definition

► Find the guessed bit set B with the smallest estimated attack time

Evolutionary algorithms for attack construction

Problem definition

▶ Find the guessed bit set *B* with the smallest estimated attack time

Settings

- ▶ Individual = a bit mask, where one-bits define the guessed bit set
- ► Fitness = the attack time as above

Evolutionary algorithms for attack construction

Problem definition

▶ Find the guessed bit set B with the smallest estimated attack time

Settings

- ▶ Individual = a bit mask, where one-bits define the guessed bit set
- Fitness = the attack time as above

Existing techniques

- lacktriangle Local search, simulated annealing, tabu search, $(\mu + \lambda)$ -style EAs
- ► Features: stochastic fitness, non-instant evaluation

Darrell in da house!1

Darrell in da house!1

Darrell in da house!1

Quick answer: the crypto-nature of the problem implies the enormous number of non-zero Walsh coefficients!

Monte-Carlo fitness → multiple measurements

- ightharpoonup Existing approaches in the domain: fixed number of evaluations (≈ 500)
- ▶ Proposed: check whether more measurements are needed using statistical testing

Monte-Carlo fitness → multiple measurements

- ightharpoonup Existing approaches in the domain: fixed number of evaluations (pprox 500)
- ▶ Proposed: check whether more measurements are needed using statistical testing

Domain-related special features

- Fitness is evaluated on a distributed cluster
- lacktriangle Inefficient to do measurements one by one ightarrow use batches of pprox 100 measurements

Monte-Carlo fitness → multiple measurements

- ightharpoonup Existing approaches in the domain: fixed number of evaluations (pprox 500)
- ▶ Proposed: check whether more measurements are needed using statistical testing

Domain-related special features

- Fitness is evaluated on a distributed cluster
- lacktriangle Inefficient to do measurements one by one ightarrow use batches of pprox 100 measurements

Statistical tests employed: significant difference \rightarrow save computations

- Wilcoxon rank sum test
- Barnard's test (a simple test to compare two variables with two outcomes)

$Monte-Carlo\ fitness \rightarrow multiple\ measurements$

- ightharpoonup Existing approaches in the domain: fixed number of evaluations (pprox 500)
- ▶ Proposed: check whether more measurements are needed using statistical testing

Domain-related special features

- Fitness is evaluated on a distributed cluster
- lacktriangle Inefficient to do measurements one by one ightarrow use batches of pprox 100 measurements

Statistical tests employed: significant difference \rightarrow save computations

- Wilcoxon rank sum test
- Barnard's test (a simple test to compare two variables with two outcomes)
- ▶ p-values, multiple comparisons etc. Statistics is a lie, but it is the lesser evil

Experiments

- ightharpoonup Simple GA, population size N=10, five experiments, 12 wall-clock hours each
- ▶ ROKK SAT solver, time limit for each run is 10 seconds
- ▶ Time limit for the final attack time is further refined

		Time		#individuals	#individuals
Cipher	B	limit	Attack time	w/ stats	w/o stats
A5/1			$2.19 \cdot 10^{12}$	1471	341
Bivium	28	2.715	$1.15\cdot 10^{12}$	3616	2439
Trivium-64	21	2.373	$3.23 \cdot 10^{7}$	3398	1323
Trivium-96	35	2.485	$1.24\cdot 10^{12}$	2494	1299

Assessment of statistical tests

Cipher	Wilcoxon only	Barnard only	Both	None
A5/1	215	146	1182	5812
Bivium	3786	946	9381	3974
Trivium-64	1943	560	5951	8476
Trivium-96	738	318	3322	8092

Conclusion

- ▶ An interesting application of evolutionary algorithms to serious cryptanalysis
- ► A few world records have been broken (for simplified ciphers however)
- Using statistical testing when comparing Monte-Carlo fitnesses was helpful
 - ightharpoonup The number of tested individuals increased by a factor from 1.5× to 4.3×
- ► The methodology is still young → more to come!

Conclusion

- ▶ An interesting application of evolutionary algorithms to serious cryptanalysis
- ► A few world records have been broken (for simplified ciphers however)
- Using statistical testing when comparing Monte-Carlo fitnesses was helpful
 - ightharpoonup The number of tested individuals increased by a factor from 1.5× to 4.3×
- ► The methodology is still young → more to come!

Thanks for listening!