Victory University Sydney

NIT2222 – ASSIGNMENT 2

Wide Area Network Technologies

Laxmi Gurung;4597925 6-14-2018

Table of Contents

Introduction	2
IPv4 and IPv6 Address Planning	3-4
IPv4 Routing Configuration	3
Addresses Assignment	4
Address Assignment Table	5
Router IP Address Assignment Table	6
Network Topology Diagram	7
OSPF Configurations	8-10
IPv4 OSPF Configuration	8
Router Interfaces Configuration	9
IPv6 OSPF Configuration	10
IPv4 IPv6 Network NAT-PT	11
Verification	12-16
Ping within the IPv6 Network	12
Ping Between IPv6 (HQ) and IPv4 (Branch C)	13
Show Command Screenshots (Router 1)	14
Show Command Screenshots (Router 2)	14-15
Show Command Screenshots (Router 3)	15
Show Command Screenshots (Router 4)	16
Conclusion	16

Introduction

The purpose of this assignment is to assess and test the knowledge that we have attained through the past weeks. This report provides information about the computer network of a small retail business company, ABC Holdings Limited. The business has decided to shift from IPv4 to IPv6, however, only two of its offices, A and C, and their HQ will be moved first because of cost restrictions. The migration of Branch C will be implemented the following year. To execute, this change of network, the company has hired us. This report will show the address planning of the networks as well as the thorough steps to accomplishing this migration.

IPv4 and IPv6 Address Planning – IPv4 Routing Configuration

IPv4 network: 150.50.25.0/24

Branch	150.50.25.	ххх	ххххх	IP Range - /24
HQ	150.50.25	000	00000	150.50.25.0 -
		000	11111	150.50.25.31
Α	150.50.25	001	00000	150.50.25.32 -
		001	11111	150.50.25.63
В	150.50.25	010	00000	150.50.25.64 -
		010	11111	150.50.25.95
С	150.50.25	011	00000	150.50.25.96 -
		011	11111	150.50.25.127
	150.50.25	100	00000	150.50.25.128

		xxx	xx	IP Range - /30
	100	000 000	00	150.50.25.128 – 150.50.25.131
150.50.25.		000	11	130.30.23.131
	101 - 255	Waste		

IPv4 and IPv6 Address Planning - Address Assignment

IPv6 network: 2000:7925::0/48

Branch	IPv6 Network Address/Subnet
HQ	2000:7925:1::0/48
А	2000:7925:2::0/48
В	2000:7925:3::0/48

For NAT Translation

	Branch	IPv4 Network Address
	PC 2	160.11.3.2
HQ	Server 2	160.11.3.10

IPv4 network: 150.50.25.0/24

Branch	IPv4 Network Address/Subnet
С	150.50.25.96/27

For NAT Translation

	Branch	IPv6 Network Address
	PC 1	2000::960B:302
С	Server 1	2000::960B:310

Address Assignment Table

HQ BRANCH	IP ADDRESS
Allocated Subnet Address and Subnet Mask	2000:7925:1::0/48
Network Address	2000:7925:1::0
Default Gateway Address	2000:7925:1::1
Valid Host Address Range	2000:7925:1::1 –
	2000:7925:1:ffff:ffff:ffff:ffffe
Broadcast Address	2000:7925:1:ffff:ffff:ffff:ffff

BRANCH - A	IP ADDRESS
Allocated Subnet Address and Subnet Mask	2000:7925:2::0/48
Network Address	2000:7925:2::0
Default Gateway Address	2000:7925:2::1
Valid Host Address Range	2000:7925:2::1 -
	2000:7925:2:ffff:ffff:ffff:ffffe
Broadcast Address	2000:7925:2:ffff:ffff:ffff:ffff

BRANCH - B	IP ADDRESS
Allocated Subnet Address and Subnet Mask	2000:7925:3::0/48
Network Address	2000:7925:3::0
Default Gateway Address	2000:7925:3::1
Valid Host Address Range	2000:7925:3::1 –
	2000:7925:3:ffff:ffff:ffff:ffffe
Broadcast Address	2000:7925:3:ffff:ffff:ffff:ffff

BRANCH - C	IP ADDRESS
Allocated Subnet Address and Subnet Mask	150.50.25.96/24
Network Address	150.50.25.96
Default Gateway Address	150.50.25.97
Valid Host Address Range	150.50.25.97 – 150.50.25.126
Broadcast Address	150.50.25.127

Address Assignment Table - Router IP Addressing Plan

HQ Router	IP ADDRESS
Fa0/0 (to HQ Branch)	2000:7925:1::1/48
S0/0/0 (to Router A)	2000:7925:4::1/48
S0/1/0 (to Router B)	2000:7925:8::2/48
S0/0/1 (to Router C)	150.50.25.130/30

Router A	IP ADDRESS
Fa0/0 (to Branch A)	2000:7925:2::1/48
S0/0/0 (to HQ Router)	2000:7925:4::2/48
S0/0/1 (to Router B)	2000:7925:6::1/48

Router B	IP ADDRESS
Fa0/0 (to Branch B)	2000:7925:3::1/48
S0/0/0 (to HQ Router)	2000:7925:8::1/48
S0/0/1 (to Router A)	2000:7925:6::2/48

Router C	IP ADDRESS	
Fa0/0 (to Branch C)	150.50.25.97/27	
SO/0/0 (to HQ Router)	150.50.25.129/30	

Network Topology Diagram

OSPF Configurations – Ipv4 OSPF Configurations (between Branch-C and HQ Router)

Codes

Router 1 (Branch C)

ΕN

CONFT

HOSTNAME C

INT F0/0

IP ADD 150.50.25.97 255.255.255.224

NO SHUT

EXIT

INT S0/0/1

IP ADD 150.50.25.129

255.255.255.252

NO SHUT

EXIT

ROUTER OSPF 10

NET 150.50.25.96 0.0.0.255 AREA 10

NET 150.50.25.128 0.0.0.3 AREA 10

EXIT

IP ROUTE 0.0.0.0 0.0.0.0

150.50.25.130

EXIT

Router 2 (HQ)

ΕN

CONFT

HOSTNAME HQ

INT S0/0/1

IP ADD 150.50.25.130

255.255.255.252

NO SHUT

EXIT

IP ROUTE 0.0.0.0 0.0.0.0

150.50.25.129150.50.25.130

EXIT

OSPF Configurations – Router Interfaces Configuration

Codes

Router 2 (HQ)

ΕN

CONFT

INT S0/0/0

IPV6 ADD 2000:7925:4::1/48

NO SHUT

EXIT

INT S0/1/0

IPV6 ADD 2000:7925:8::2/48

NO SHUT

EXIT

INT FO/O

IPV6 ADD 2000:7925:1::1/48

NO SHUT

EXIT

Router 3 (Branch A)

ΕN

CONFT

HOSTNAME A

INT F0/0

IPV6 ADD 2000:7925:2::1/48

NO SHUT

EXIT

INT S0/0/0

IPV6 ADD 2000:7925:4::2/48

NO SHUT

EXIT

INT S0/0/1

IPV6 ADD 2000:7925:6::1/48

NO SHUT

EXIT

Router 4 (Branch B)

ΕN

CONFT

HOSTNAME B

INT FO/O

IPV6 ADD 2000:7925:3::1/48

NO SHUT

INT S0/0/1

IPV6 ADD 2000:7925:6::2/48

NO SHUT

EXIT

INT S0/0/0

IPV6 ADD 2000:7925:8::1/48

NO SHUT

EXIT

OSPF Configurations – Ipv6 OSPF Configurations (for the IPv6 network)

Codes

Router 2 (HQ)

ΕN

CONFT

IPV6 UNICAST-ROUTING

IPV6 ROUTER OSPF 10

ROUTER-ID 1.1.1.1

EXIT

INT FO/O

IPV6 OSPF 10 AREA 10

EXIT

INT S0/0/0

IPV6 OSPF 10 AREA 10

EXIT

INT S0/1/0

IPV6 OSPF 10 AREA 10

EXIT

Router 3 (Branch A)

EN

CONFT

IPV6 UNICAST-ROUTING

IPV6 ROUTER OSPF 10

ROUTER-ID 2.2.2.2

EXIT

INT F0/0

IPV6 OSPF 10 AREA 10

EXIT

INT S0/0/0

IPV6 OSPF 10 AREA 10

EXIT

INT S0/0/1

IPV6 OSPF 10 AREA 10

EXIT

Router 4 (Branch B)

ΕN

CONFT

IPV6 UNICAST-ROUTING

IPV6 ROUTER OSPF 10

ROUTER-ID 3.3.3.3

EXIT

INT FO/O

IPV6 OSPF 10 AREA 10

EXIT

INT S0/0/0

IPV6 OSPF 10 AREA 10

EXIT

INT S0/0/1

IPV6 OSPF 10 AREA 10

EXIT

IPv4 IPv6 Network NAT-PT

Codes:

Router 1 (HQ)

ΕN

CONFT

INT S0/0/1

IPV6 NAT

EXIT

INT FO/O

IPV6 NAT

IPV6 NAT V4V6 SOURCE 150.50.25.98 2000::960B:302

IPV6 NAT V4V6 SOURCE 150.50.25.100 2000::960B:310

IPV6 NAT PREFIX 2000::/96

IPV6 NAT V6V4 SOURCE 2000:7925:1::2 160.11.3.2

IPV6 NAT V6V4 SOURCE 2000:7925:1::100 160.11.3.10

EXIT

IPV6 UNICAST-ROUTING

IP ROUTE 0.0.0.0 0.0.0.0 150.50.25.129

Router 1 (Branch C)

IP ROUTE 0.0.0.0 0.0.0.0 150.50.25.130 EXIT

Verification – Ping within the IPv6 Network

Ping from PC2(HQ) to PC3(Branch B)

```
Pinging 2000:7925:3::2 with 32 bytes of data:

Reply from 2000:7925:3::2: bytes=32 time=1ms TTL=126

Reply from 2000:7925:3::2: bytes=32 time=1ms TTL=126

Reply from 2000:7925:3::2: bytes=32 time=2ms TTL=126

Reply from 2000:7925:3::2: bytes=32 time=1ms TTL=126

Ping statistics for 2000:7925:3::2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 2ms, Average = 1ms
```

Ping from PC2(HQ) to Server4(Branch B)

```
Pinging 2000:7925:3::100 with 32 bytes of data:

Reply from 2000:7925:3::100: bytes=32 time=3ms TTL=126
Reply from 2000:7925:3::100: bytes=32 time=2ms TTL=126
Reply from 2000:7925:3::100: bytes=32 time=5ms TTL=126
Reply from 2000:7925:3::100: bytes=32 time=3ms TTL=126
Ping statistics for 2000:7925:3::100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 2ms, Maximum = 5ms, Average = 3ms
```

Ping from Server3(Branch A) to Server2(HQ)

```
Pinging 2000:7925:1::100 with 32 bytes of data:

Reply from 2000:7925:1::100: bytes=32 time=3ms TTL=126

Reply from 2000:7925:1::100: bytes=32 time=1ms TTL=126

Reply from 2000:7925:1::100: bytes=32 time=1ms TTL=126

Reply from 2000:7925:1::100: bytes=32 time=1ms TTL=126

Ping statistics for 2000:7925:1::100:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 3ms, Average = 1ms
```

Ping from PC3(Branch A) to PC3(Branch B)

```
Pinging 2000:7925:3::2 with 32 bytes of data:

Reply from 2000:7925:3::2: bytes=32 time=1ms TTL=126

Reply from 2000:7925:3::2: bytes=32 time=1ms TTL=126

Reply from 2000:7925:3::2: bytes=32 time=2ms TTL=126

Reply from 2000:7925:3::2: bytes=32 time=1ms TTL=126

Ping statistics for 2000:7925:3::2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 2ms, Average = 1ms
```

Verification – Ping between IPv6 (HQ) and IPv4 (Branch C)

Ping from PC1(Branch C) to Server2(HQ)

```
Pinging 160.11.3.10 with 32 bytes of data:

Reply from 160.11.3.10: bytes=32 time=1ms TTL=126

Ping statistics for 160.11.3.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 1ms, Average = 1ms
```

Ping from Server1(Branch C) to PC2(HQ)

```
Pinging 160.11.3.2 with 32 bytes of data:

Reply from 160.11.3.2: bytes=32 time=2ms TTL=126
Reply from 160.11.3.2: bytes=32 time=1ms TTL=126
Reply from 160.11.3.2: bytes=32 time=1ms TTL=126
Reply from 160.11.3.2: bytes=32 time=1ms TTL=126

Ping statistics for 160.11.3.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 2ms, Average = 1ms
```

Ping from PC2(HQ) to PC1(Branch C)

```
Pinging 2000::960b:302 with 32 bytes of data:

Reply from 2000::960B:302: bytes=32 time=lms TTL=126
Reply from 2000::960B:302: bytes=32 time<lms TTL=126
Reply from 2000::960B:302: bytes=32 time=lms TTL=126
Reply from 2000::960B:302: bytes=32 time<lms TTL=126
Ping statistics for 2000::960B:302:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms</pre>
```

Ping from Server2(HQ) to Server1(Branch C)

```
Pinging 2000::960b:310 with 32 bytes of data:

Reply from 2000::960B:310: bytes=32 time<1ms TTL=126

Ping statistics for 2000::960B:310:

    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

Verification - Show Command Screenshot (Router 1)

Show ip route:

```
C#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile,
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter
area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external
type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E -
EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia -
IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 150.50.25.130 to network 0.0.0.0
     150.50.0.0/16 is variably subnetted, 2 subnets, 2 masks
        150.50.25.96/27 is directly connected, FastEthernet0/0
C
        150.50.25.128/30 is directly connected, Serial0/0/0
     0.0.0.0/0 [1/0] via 150.50.25.130
```

Verification – Show Command Screenshot (Router 2)

Show ipv6 route:

```
HQ#show ipv6 route
IPv6 Routing Table - 12 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route, M - MIPv6
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS
summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 -
OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
       D - EIGRP, EX - EIGRP external
    2000:7925:1::/48 [0/0]
    via ::, FastEthernet0/0
    2000:7925:1::1/128 [0/0]
L
    via ::, FastEthernet0/0
    2000:7925:2::/48 [110/65]
    via FE80::230:A3FF:FE63:A201, Serial0/0/0
    2000:7925:3::/48 [110/65]
    via FE80::201:C9FF:FE7D:5401, Serial0/1/0
    2000:7925:4::/48 [110/128]
0
     via FE80::230:A3FF:FE63:A201, Serial0/0/0
    2000:7925:6::/48 [110/128]
    via FE80::201:C9FF:FE7D:5401, Serial0/1/0
    via FE80::230:A3FF:FE63:A201, Serial0/0/0
0
    2000:7925:8::/48 [110/128]
    via FE80::201:C9FF:FE7D:5401, Serial0/1/0
    2000:9725:4::/48 [0/0]
    via ::, Serial0/0/0
   2000:9725:4::1/128 [0/0]
    via ::. Serial0/0/0
    2000:9725:8::/48 [0/0]
     via ::, Serial0/1/0
   2000:9725:8::2/128 [0/0]
    via ::, Serial0/1/0
   FF00::/8 [0/0]
    via ::, Null0
```

Show ipv6 nat translations:

HQ#sh	ow ipv6 nat translations	
Prot	IPv4 source	IPv6 source
	IPv4 destination	IPv6 destination
	150.50.25.100	2000::960B:310
	160.11.3.10	2000:7925:1::100
	150.50.25.100	2000::960B:310
	160.11.3.2	2000:7925:1::2
	150.50.25.100	2000::960B:310
	150.50.25.129	2000::960B:202
	150.50.25.98	2000::960B:302
	160.11.3.10	2000:7925:1::100
	150.50.25.98	2000:7923:1::100 2000::960B:302
	130.30.23.30	2000960B.302
	160.11.3.2	2000:7925:1::2
	150.50.25.98	2000::960B:302
	160.11.3.10	2000:7925:1::100
	160.11.3.2	2000:7925:1::2

Verification - Show Command Screenshot (Router 3)

Show ipv6 route:

```
A#show ipv6 route
IPv6 Routing Table - 12 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route, M - MIPv6
       I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 -
OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
D - EIGRP, EX - EIGRP external
O 2000:7925:1::/48 [110/65]
     via FE80::250:FFF:FECC:B101, Seria10/0/0
  2000:7925:2::/48 [0/0]
     via ::, FastEthernet0/0
L 2000:7925:2::1/128 [0/0]
     via ::, FastEthernet0/0
O 2000:7925:3::/48 [110/65]
     via FE80::201:C9FF:FE7D:5402, Serial0/0/1
C 2000:7925:4::/48 [0/0]
     via ::, Serial0/0/0
L 2000:7925:4::2/128 [0/0]
     via ::, Serial0/0/0
C 2000:7925:6::/48 [0/0]
     via ::, Serial0/0/1
L 2000:7925:6::1/128 [0/0]
via ::, Serial0/0/1
O 2000:7925:8::/48 [110/128]
     via FE80::201:C9FF:FE7D:5402, Serial0/0/1
  2000:9725:4::/48 [110/128]
     via FE80::250:FFF:FECC:B101, Seria10/0/0
0 2000:9725:8::/48 [110/128]
     via FE80::250:FFF:FECC:B101, Serial0/0/0
  FF00::/8 [0/0]
    via ::, Null0
```

Verification – Show Command Screenshot (Router 4)

Show ipv6 route:

```
B#show ipv6 route
IPv6 Routing Table - 12 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route, M - MIPv6
       II - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS
summary
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 -
OSPF ext 2
       ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
       D - EIGRP, EX - EIGRP external
   2000:7925:1::/48 [110/65]
0
    via FE80::201:43FF:FE22:8A01, Serial0/0/0
0
   2000:7925:2::/48 [110/65]
    via FE80::230:A3FF:FE63:A202, Serial0/0/1
C
    2000:7925:3::/48 [0/0]
    via ::, FastEthernet0/0
   2000:7925:3::1/128 [0/0]
    via ::, FastEthernet0/0
  2000:7925:4::/48 [110/128]
    via FE80::230:A3FF:FE63:A202, Serial0/0/1
  2000:7925:6::/48 [0/0]
    via ::, Serial0/0/1
  2000:7925:6::2/128 [0/0]
L
    via ::, Serial0/0/1
  2000:7925:8::/48 [0/0]
С
    via ::, Serial0/0/0
  2000:7925:8::1/128 [0/0]
L
    via ::, Serial0/0/0
0
  2000:9725:4::/48 [110/128]
    via FE80::201:43FF:FE22:8A01, Serial0/0/0
    2000:9725:8::/48 [110/128]
    via FE80::201:43FF:FE22:8A01, Serial0/0/0
  FF00::/8 [0/0]
     via ::, Null0
```

Conclusion

All the codes and screenshots have been included in this report to prove the results of my design. OSPF has be applied to both IPv4 and IPv6 networks and v4v6 NAT has also been integrated in order for Branch C and HQ to communicate. Through this assignment, I have shown the knowledge I have gained during this semester.