ASSIGNMENT-10

NAME : P.HANSINI REDDY

ROLL NO : 2403A510D5

BATCH: 01-CSAI

COURSE : AI ASSISTED CODING

TASK-1:

Code:

```
def calcFact(n):
    result = 1
    for i in range(1, n):
        result = result * i
    return result
def main():
    num = 5
    FACT = calcFact(num)
    print("the factorial of", num, "is", FACT)
    t = 10
    if FACT > 10:
        print("BIG Number")
        print("small number")
main()
the factorial of 5 is 24
BIG Number
```

PROMPT FOR AI:

P Below is a Python program to calculate the factorial of a number and print a message based on the value of another number. review this code and do the following: Identify and correct basic errors in the code (e.g., logical, indentation, or unnecessary variables).def calcFact(n): result = 1 x = 0 for i in range(1, n): result = result * i return result def main(): num = 5 FACT = calcFact(num) print("the factorial of", num, "is", FACT) t = 10 if FACT > 10: print("BIG Number") else: print("small number") main() Suggest improvements for code readability and PEP8 formatting. Add inline comments explaining what each part of the code does. Explain why any changes were made.

CODE AFTER CORRECTION:

```
det calculate_tactorlal(number):
    The factorial of the number.
    result = 1
    for i in range(1, number + 1):
        # Multiply the result by the current number in the loop
result *= i # Equivalent to result = result * i
    return result
    Main function to demonstrate calculating factorial and printing a message.
    # Define the number for factorial calculation
    # Calculate the factorial of the number
    factorial_result = calculate_factorial(num)
    print(f"The factorial of {num} is {factorial_result}") # Using f-string for better readability
    # Define a threshold for comparison
    threshold = 10
    # Check if the factorial result is greater than the threshold
    if factorial_result > threshold:
        print("BIG Number")
        print("small number")
# Execute the main function
    main()
The factorial of 5 is 120
```

TASK-2:

CODE:

```
def f1(xX):
    a = 0
    b = 1
    Zz = [a, b]
    while c <= xX:
        d = a + b
        Zz.append(d)
        a = b
        b = d
        c = c + 1
    return Zz
def m():
    NN = 10
    ans = f1(NN)
    print("fib series till", NN, ":", ans)
m()
fib series till 10: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
```

PROMPT:

CODE:

```
def generate_fibonacci_sequence(limit):
       limit: The maximum number of elements in the sequence.
   second_number = 1
   fibonacci_sequence = [first_number, second_number]
       next_number = first_number + second_number
       fibonacci_sequence.append(next_number)
       first_number = second_number
       second_number = next_number
       count += 1
   return fibonacci_sequence
     def main():
         Main function to demonstrate generating and printing the Fibonacci sequence.
         sequence limit = 10
         fibonacci_series = generate_fibonacci_sequence(sequence_limit)
         # Print the generated sequence
         print("Fibonacci series up to", sequence_limit, ":", fibonacci_series)
     if __name__ == "__main__":
         main()
₹ Fibonacci series up to 10 : [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
```

TASK-3:

PROMPT:

Write a python script with 3-4 functions

CODE:

```
def greet(name):
      print(f"Hello, {name}!")
    def add_numbers(a, b):
      return a + b
    def multiply_numbers(x, y):
    def is_even(number):
      return number % 2 == 0
    greet("Colab user")
    sum_result = add_numbers(5, 3)
    print(f"Sum: {sum_result}")
    product_result = multiply_numbers(4, 6)
    print(f"Product: {product_result}")
    print(f"Is 7 even? {is_even(7)}")
    print(f"Is 10 even? {is_even(10)}")
→ Hello, Colab user!
    Sum: 8
    Product: 24
    Is 7 even? False
    Is 10 even? True
```