

Parallel IO NHR Workshop

<Panagiotis Adamidis>
Deutsches Klimarechenzentrum (DKRZ)

The German Climate Computing Center Supercomputing for Earth System Research

Prof. Dr. Thomas Ludwig *Deutsches Klimarechenzentrum (DKRZ)*

Parallel IO NHR Workshop

- Anja Gerbes (TU Dresden)
- Anna Fuchs (University of Hamburg)
- Jannek Squar (University of Hamburg)

ICON DYAMOND R2B10 2.5km Resolution 01.08.2016 at 00:00

Parallel IO NHR Workshop

Dinner at Rudolph's in HafenCity Ericusspitze 2-4, 20457 Hamburg

https://www.rudolphs-hamburg.de/

7.5.2024 @ 7pm

Ericusspitze 2-4, 20457 Hamburg

I/O in Climate Modeling

<Panagiotis Adamidis>
Deutsches Klimarechenzentrum (DKRZ)

Contributions

- Luis Kornblueh (MPI-Met)
- Thomas Jahns (DKRZ)
- Xingran Wang (DKRZ)
- Harald Braun (Eviden)

I/O in Climate Modeling

- A lot of data
- A lot of data movement

Climate Models @ DKRZ

- High Resolution
 - Resolving small scale physical processes
- Coarse Resolution
 - Simulating longer periods (80000 100000 years)
 - Complete glacial cycles

ICON Grid Resolutions

Global:

grid	number of cells	avg. resolution
R2B04	20480	158 km
R2B05	81920	79 km
R2B06	327680	40 km
R2B07	1310720	20 km
R2B09	20971520	5 km
R2B10	83886080	2.5 km
R2B11	335544320	1.25 km

Local Area: HD(CP)² nested grids over Germany 625m, 315m, 256m

Serial I/O in ICON

Serial I/O in ICON

< Panagiotis Adamidis> Parallel IO NHR Workshop 24.05.2024

Asynchronous I/O in ICON

Asynchronous I/O in ICON

Asymchronous I/O in ICON

Worker PE 1 to PE N-1 are computing Worker PE 1 to PE N-1 are computing I/O Proc PE 0 is gathering data and then writes the file Worker PE 1 to PE N-1 are computing Worker PE 1 to PE N-1 are computing Number of PEs

time

Asynchronous File Parallel I/O in ICON

Asynchronous File-Parallel I/O in ICON

Asynchronous ("Parallel") I/O in ICON

HD(CP)² Phase-I Final Experiment

- 3 Domains (625m, 312m, 156m)
- Output of 169 variables (2D/3D) at different intervals (9s, 10s,5min,15min,30min,1hour)
- 1 model day on 500 mistral nodes
 - with 4 MPI Processes x 6 OpenMP threads per node
 - Wallclock: 7days 6hours
 - Total size of Data: 48 TB

ICON-Parallel Asynchronous Output

CDI-PIO

Parallel I/O in ICON

Example with 9 Compute PEs and 2 I/O PEs

YAXT: Yet Another eXchange Tool

Redistribution of data between two sets of processes

Tuning of CDI-PIO

- Max single stream performance = 1 GB/s
- Performance in CDI-PIO
 - of parallel GRIB output < 1GB/s
 - of parallel NetCDF4 < 1GB/s

Tuning CDI-PIO through ROMIO-Hints

Tuning of CDI-PIO via ROMIO-Hints

- striping_factor: determines on how many OST's (object storage targets) a file will be distributed
- striping_unit: size of stripes in Byte
- Performance = f(IO_PES/node, striping_factor, striping_size,.....)
 - Striping_factor = g (nHosts, maxStripes)
 - Striping_unit = k * (1024*1024 Byte)

GRIB Output Benchmark

- 120 variables a 768x384x95 and 100 timesteps
- 256 nodes Mistral

IO-PES/node	Striping_unit	Striping_factor	Time [s]	Size[GB]	Rate [GB/s]
4	4194304	1	910,07	676	0,74
1	4194304	64	163,22	676	4,14
2	4194304	64	125,52	676	5,39
4	4194304	64	111,81	676	<u>6,05</u>

CDI-PIO NetCDF4(HDF5)

IO-rates

CDI-PIO NetCDF4(HDF5)

IO-rates

Parallel I/O in ICON

JUWELS Booster Cluster

R2B09 (5km) Experiment using 3 Output Files and 20 I/O Server

CDI-PIO output	duration[sec]	Percent in total	Classic async.	duration[sec]	Percent in total
total	952.7	-	total	3183.2	_
wrt_output	262.6	27.6%	wrt_output	2484.6	78%

R2B09 (5km) Experiment using 16 Output Files und 20 I/O Server

CDI-PIO output	duration[sec]	Percent in total	Classic async. I/O	duration[sec]	Percent in total
total	1036.0	_	total	699.15	_
wrt_output	340.8	33%	wrt_output	4.79	0.69%

Tuning CDI-PIO: data traffic among IO-Server

Different types of Domain Decomposition affect the data traffic among IO-Server at different levels (CDI-PIO/YAXT, HDF5, MPI, ROMIO)

CDI generates with YAXT Z-decomposition

HDF5 uses decomposition in x,y,z-direction

ROMIO might change the decomposition again for its own needs

Time to Solution

Time to Solution

Conclusion: Co-Design

Thank you for your attention