UK. Advanced Chemistry Practice Problems

Kinetics: Rate of Chemical Reactions

The diagram below depicts the progress of a reaction. Each shape and color represents a different substance. The three boxes represent the concentrations of each substance as the indicated time elapses. Refer to the diagram to answer questions 1-4.

- 1. Select all images that represent reactants. There may be more than one reactant.
 - a.
 - b. 🔵
 - C.
- 2. Which statement is true?
 - a. The rate of change of substance is twice the magnitude as the rate of change of substance
 - b. The rate of change of substance is equal to the rate of change of substance
 - c. The rate of change of substance is twice the magnitude as the rate of change of substance ____.
 - d. The rate of change of substance o is equal in magnitude but opposite in sign to the rate of change of substance ...
- 3. If each colored image represents 0.10 M of the substance, determine the rate (in M/s) of change of substance over the first 15 seconds.

Kinetics: Comparing Rate of Change for Reactants and Products

1. Consider the following reaction:

$$2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g)$$

If, at some point during the reaction, the rate of disappearance of N_2O_5 is 0.15 M/s, what is the rate of appearance of O_2 ?

2. Consider the following reaction

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

At some point during the reaction, the rate of appearance of NO is 0.0100 M/s. What is the rate of disappearance of O₂ at this same point in the reaction?

UK. Advanced Chemistry Practice Problems

Kinetics: The Rate Law

1. The rate law of the reaction

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

is rate = $k[H_2][NO]^2$. Which of the following statements is/are **false**?

- a. The reaction is 3rd order overall.
- b. The reaction is 2^{nd} order in H_2 .
- c. The reaction is 2nd order in NO.
- d. The reaction is 1^{st} order in H_2O .
- 2. The rate law of the reaction

$$2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$$

is rate = $k[H_2][NO]^2$. What will be the effect on the rate of the reaction if the concentrations of both H₂ and NO are doubled?

