[pp4fpga] Matrix Multiplication

R08943007 黄聖竣

HLS C-sim/Synthesis/Cosim (Screenshot + brief intro):

矩陣乘法是一種根據兩個矩陣得到第三個矩陣的二元運算,第三個矩陣即 前兩者的乘積,矩陣可以用來表示線性映射,矩陣積則可以用來表示線性映射 的複合。因此,矩陣乘法是線性代數的基礎工具,不僅在數學中有大量應用, 在應用數學、物理學、工程學等領域也有廣泛使用。

這次的實驗是用 HLS 實做一個簡單的矩陣乘法, source 如下

```
#include "matrixmultiplication.h"
void matrixmul(int A[N][M], int B[M][P], int AB[N][P]) {
    //#pragma HLS ARRAY_RESHAPE variable=A complete dim=2
//#pragma HLS ARRAY_RESHAPE variable=B complete dim=1
     /* for each row and column of AB */
    row: for(int i = 0; i < N; ++i) {
    col: for(int j = 0; j < P; ++j) {
        //#pcagma HLS PIPELINE II=1
        /* compute (AB)i,j */
        //#
          int ABij = 0;
        product: for(int k = 0; k < M; ++k) {
    ABij += A[i][k] * B[k][j];
           AB[i][j] = ABij;
       }
    }
```

C-sim:

PASS: The output matches the golden output!

Synthesis:

Performance Estimates

□ Timing

□ Summary

Clock	Target	Estimated	Uncertainty		
ap clk	5.00 ns	4.108 ns	0.63 ns		

□ Latency

□ Summary

Latency (cycles)		Latency (absolute)	Interval		
min max		min	max	min	max	Туре
198721	198721	0.994 ms	0.994 ms	198721	198721	none

Detail

■ Instance

∓ Loop

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT	URAM	
DSP	-	-	-	-	-	
Expression	-	-	0	174	-	
FIFO	-	-	-	-	-	
Instance	6	3	442	299	-	
Memory	-	-	-	-	-	
Multiplexer	-	-	-	83	-	
Register	-	-	195	-	-	
Total	6	3	637	556	0	
Available	1590	1260	728400	364200	0	
Utilization (%)	~0	~0	~0	~0	0	

Cosim:

Cosimulation Report for 'matrixmul'

Result

			Latency	Interval			
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	233549	233549	233549	NA	NA	NA

Export the report(.html) using the Export Wizard

System level bring-up (Pynq or U50)

Improvement - throughput, area

對輸入的兩個矩陣做 array partition,並且加上 pipeline II = 1,由 synthesis 比較的 結果(如下圖)可以發現 latency 下降了非常多,但也因為有做 array partition,所以 reosurce 用的也多了不少

Synthesis comparisom:

Performance Estimates										
□ Timing										
Clock	:k		5	solution		improve		,		
ap_clk	Ta	rget	:	5.00 ı	ns	5.00	ns			
	Est	timated	4	4.108	ns	4.10	8 ns			
□ Laten	су									
					sol	ution	ir	mprove		
Latency	(су	cles)	min		198	3721	1	033		
	Latency (absolute)		max 1		198	3721	1	033		
Latency			r	nin	0.9	94 ms	s 5	.165 us		
			r	nax	0.994 ms		s 5	5.165 us		
Interval	(сус	les)	min 19		198	3721	1	1033		
			r	nax	198721		1	1033		
Utilization	ı Es	timates								
		solution	n	improve		•				
BRAM_1	BRAM_18K 6 DSP48E 3		11		,					
DSP48E				96 9508						
FF		637								
LUT		556		316	5					
URAM		0	0							

Cosim:

Cosimulation Report for 'matrixmul'

Result

			Latency	Interval			
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	24952	24952	24952	NA	NA	NA

Export the report(.html) using the Export Wizard

Github: https://github.com/schuang23/MSOC.git