1 ultrafilter

Definition 1.1 (Filter) F is a filter iff

$$A, B \in F \implies A \cap B \in F \tag{1}$$

$$\emptyset \notin F$$
 (2)

$$B\supseteq A\in F\implies B\in F \tag{3}$$

Definition 1.2 (Ultrafilter)

$$A \subseteq X \implies A \in U \text{ or } X - A \in U \tag{4}$$

Theorem 1.3 Ultrafilter convergence defines a topology.

Theorem 1.4 A space is

- 1. compact iff every ultrafilter converges.
- 2. Hausdorff iff every ultrafilter converges to at most one point.
- 3. compact-Hausdorff iff every ultrafilter converges to exactly one point

2 Stone-Čech compactification

Let X be a space.

Definition 2.1 (ultra)

Definition 2.2 (ultra: $A \to \text{ultra}\,A$) Suppose $\alpha \in A$. Let ultra α be the ultrafilter generated by α .

Definition 2.3 (lim:ultra $^2X\to ultra\, X)$ Let $U\in ultra^2\, X.$ Suppose $U=\{U_i\}$ where U_i a subset of ultra X. Then define

$$\lim U = \bigcup_{V \in U} \bigcap_{\mathfrak{u} \in V} \mathfrak{u} \tag{5}$$

Theorem 2.4 $\lim U: \text{ultra}^2\, X \to \text{ultra}\, X$

Proof. I claim

$$F_{\mathfrak{i}} :\equiv \bigcap_{\mathfrak{u} \in U_{\mathfrak{i}}} \mathfrak{u} \tag{6}$$

is a filter. To see this, note every filter on X contains X. Hence F_{i} is nonempty. The other filter axioms remain true after taking intersections.

Now pick arbitrary F_{α} and F_{β} as defined in eq. (6). I claim there is some F_{γ} (and corresponding U_{γ}) such that $F_{\alpha} \cup F_{\beta} \subseteq F_{\gamma}$. It suffices to find the corresponding U_{γ} . Let $U_{\gamma} = U_{\alpha} \cap U_{\beta}$. Equation (1) guarantees $U_y \in U$. Then

$$\bigcap_{u \in U_{\gamma}} u \supseteq \left(\bigcap_{u \in U_{\alpha}} u\right) \cup \left(\bigcap_{u \in U_{\beta}} u\right)$$
$$F_{\gamma} \supseteq F_{\alpha} \cup F_{\beta}$$

Hence

$$\lim U :\equiv \bigcup_i F_i$$

is a filter.

Finally, I claim $\lim U \in ultra X$. Suppose $A \subseteq X$. Then let $ultra A \subseteq ultra X$ be the set of ultrafilters that contain A. I claim ultra $(A^{C}) = (ultra A)^{C}$; as $(ultra A)^{C}$, the set of ultrafilters that do not contain A, is ultra (A^{C}) , the set of ultrafilters that contain A^{C} . This is

a rewording of eq. (4). By eq. (4), either ultra $A \in U$ or ultra $(A^C) \in U$. Suppose, without loss of generality, that ultra $A \in U$. Then

$$F_A := \bigcap_{\mathfrak{u} \in \mathsf{ultra}\, A} \mathfrak{u} \subseteq \bigcap_{\mathfrak{u} \in U} \mathfrak{u}$$

Note F_A is a filter containing A. Then $\lim U$ contains A. Equation (4) holds. Theorem 2.5 ($\lim \circ \text{ultra} = \text{id}$) Let $u \in \text{ultra} X$. Then $\lim \circ \text{ultra} u = u$ as every set

ultrafilter monad

containing u is in ultra u.

For this section, we will distinguish between ultra and η . Here, ultra: haus \rightarrow Chaus is the functor part of the monad, and $\eta: id \to ultra$ is the unit, and lim : $ultra^2 \to ultra$ is the multiplication.

Theorem 3.1 The coherence conditions

and

$$\begin{array}{c} \text{ultra}(X) \xrightarrow{\eta_{\text{ultra}(X)}} \text{ultra}^2(X) \\ \downarrow^{\text{ultra}(\eta_X)} & \downarrow_{\lim_X} \\ \text{ultra}^2(X) \xrightarrow{\lim_X} \text{ultra}(X) \end{array}$$

(8)

hold

Proof. Consider eq. (7). Let $\mathcal{U} \in \mathtt{ultra}^3 \, X.$ The goal is to show

 $\lim \circ \text{ultra}(\lim) \mathcal{U} = \lim \circ \lim \mathcal{U}$

First, consider $\lim \circ ultra(\lim) \mathcal{U}$. Then

$$\begin{split} \lim \circ \text{ultra}(\lim) &= \bigcup_{U \in \mathcal{U}} \left(\bigcap_{u \in \bigcup_{V \in U} \bigcap_{v \in V} v} u \right) \\ &= \bigcup_{U \in \mathcal{U}} \left(\bigcup_{V \in U} \bigcap_{u \in V} \bigcap_{v \in u} v \right) \\ &= \bigcup_{u \in \mathcal{U}} \bigcap_{V \in U} \bigcup_{u \in V} \bigcap_{v \in u} v \\ \lim \circ \lim &= \bigcup_{u \in \mathcal{U}} \bigcap_{V \in U} \bigcup_{u \in V} \bigcap_{v \in u} v \end{split}$$