- 1. Prove DeMorgan's laws. That is, that $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$.
- 2. Prove that $(A^c)^c = A$.
- 3. Prove that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
- 4. Show that the function $\frac{1}{\beta}\exp(-x/\beta)$ integrates to 1 over x>0 for $\beta>0$.
- 5. Show that the function $\frac{e^{-x}}{(1+e^{-x})^2}$ integrates to 1 over $-\infty < x < \infty$.
- 6. Show that the derivative of the function $(1+e^{-x})^{-1}$ is the function from the previous problem.
- 7. Argue that $\sum_{x=0}^{\infty}e^{-\lambda}\lambda^2/x!=1$ for $\lambda>0.$
- 8. Plot the functions from the previous 3 problems in R.