Homework 4 - Quantum Mechanics I

NAME/S:	 SCORE:	
,		

Deadline: Thursday 2nd March 2023 by 10:00am (submission only on paper)

Credits: 20 points \rightarrow 20 credits Number of problems: 4

Type of evaluation: Formative Evaluation

- This homework consists of problems related to the formalism of quantum mechanics.
- You may submit this assignment either individually or in pairs. If you work in pairs, only 1 copy is needed. Submitted assignments should have maximum two authors.
- Please solve the following problems and highlight the answers.
 - 1. (7 points) Quantum mechanical operators
 - (a) Show that projection operators are idempotent, i.e., that $\hat{P}^2 = \hat{P}$.
 - (b) Calculate the eigenvalues of the Hermitian matrix: $\begin{pmatrix} 2 & i \\ -i & 2 \end{pmatrix}$
 - (c) The raising and lowering operators for the quantum harmonic oscillator satisfy the following: $\hat{a}_{+}|n\rangle = \sqrt{n+1}|n+1\rangle$, $\hat{a}_{-}|n\rangle = \sqrt{n}|n-1\rangle$ for energy eigenstates $|n\rangle$ with energy E_{n} . Calculate the first-order shift in the n=2 energy level due to the perturbation: $\Delta H = V(\hat{a}_{-} + \hat{a}_{+})^{2}$, where V is constant.
 - (d) Show that the position and momentum operators are hermitian. Using these results, construct the hermitian conjugate of the raising ladder operator that we used to study the quantum harmonic oscillator, $\hat{a}_{+} = \frac{1}{\sqrt{2\hbar m\omega}}(-i\hat{p} + m\omega x)$.

2. (6 points) Mathematical formalism of quantum mechanics

- (a) Consider the orthonormal states $|1\rangle$, $|2\rangle$, and $|3\rangle$. For which value of x are the following states, $|\Psi_1\rangle = 5|1\rangle 3|2\rangle + 2|3\rangle$ and $|\Psi_2\rangle = |1\rangle 5|2\rangle + x|3\rangle$, orthogonal?
- (b) Assuming that $\gamma \in \mathbb{R}$ (but not necessarily positive), for what range of γ is the function $f(x) = x^{\gamma 1}$ in Hilbert space, on the interval (0, 1)? What about x f(x) and $\frac{d}{dx} f(x)$?
- (c) Let $|n\rangle$ be the normalised n-th energy eigenstate of the 1D harmonic oscillator. We know that $\hat{H}|n\rangle = \hbar\omega(n+\frac{1}{2})|n\rangle$. If $|\psi\rangle$ is a normalised ensemble state that can be expressed as a linear combination of the eigenstates as follows: $|\psi\rangle = \frac{1}{\sqrt{14}}|1\rangle \frac{2}{\sqrt{14}}|2\rangle + \frac{3}{\sqrt{14}}|3\rangle$, what is the expectation value of the energy operator in this ensemble state?

3. (3 points) Hamiltonian, eigenvalues and eigenvectors

Consider a quantum system in a state, $|\Psi\rangle$:

$$\Psi = \frac{1}{\sqrt{3}} \begin{bmatrix} i \\ -i \\ i \end{bmatrix}$$

The Hamiltonian is represented by the matrix shown below:

$$\hat{H} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- (a) Determine the eigenvalues and eigenvectors of \hat{H} . What do the eigenvalues represent?
- (b) Which eigenvalue of \hat{H} is most likely to emerge from a measurement?
- (c) Find $\langle H \rangle$, $\langle H^2 \rangle$, and σ_H .

4. (4 points) Dirac notation: brakets and dual basis

Consider a 3D vector space spanned by an orthonormal basis $|1\rangle$, $|2\rangle$, $|3\rangle$. In this basis, let the $|\Psi_0\rangle$ and $|\Psi_1\rangle$ kets be:

$$|\Psi_0\rangle = \frac{1}{\sqrt{2}}|1\rangle + \frac{i}{2}|2\rangle + \frac{1}{2}|3\rangle$$

$$|\Psi_1\rangle = \frac{1}{\sqrt{3}}|1\rangle + \frac{i}{\sqrt{3}}|3\rangle$$

- (a) Are these kets normalised? If not, normalise them.
- (b) Write $\langle \Psi_0 |$ and $\langle \Psi_1 |$ in terms of the dual basis $\langle 1 |$, $\langle 2 |$, $\langle 3 |$.
- (c) Find $\langle \Psi_0 | \Psi_1 \rangle$ and $\langle \Psi_1 | \Psi_0 \rangle$, and confirm that $\langle \Psi_1 | \Psi_0 \rangle = \langle \Psi_0 | \Psi_1 \rangle^*$.
- (d) Find all the matrix elements of the operators $\hat{M}_{01} = |\Psi_0\rangle \langle \Psi_1|$, $\hat{M}_{00} = |\Psi_0\rangle \langle \Psi_0|$, and $\hat{M}_{11} = |\Psi_1\rangle \langle \Psi_1|$ in this basis, and construct their respective matrices, are they hermitian?