Домашнее задание 1

Дедлайн: 2025-03-20, 21:00.

Оцениваемая часть:

1. В красном мешке у Деда Мороза 5 красных и 4 синих шара, а в синем мешке — 3 красных и 10 синих шаров. Сначала Дед Мороз выбирает один из мешков равновероятно. Затем Дед Мороз достаёт из выбранного мешка один шар. А затем Дед Мороз достаёт ещё два шара из *другого* мешка.

Обозначим R — общее число красных извлечённых шаров, и B — общее число синих шаров.

- (a) Составьте табличку распределения случайной величины R.
- (b) Найдите $\mathbb{P}(R$ чётное), $\mathbb{E}(R)$, $\mathbb{E}(2B+7)$, $\mathbb{E}(R\cdot B)$.
- (c) Найдите $\mathbb{P}(R \geq 1, B \geq 1)$, $\mathbb{E}(R \cdot I(B \geq 1))$.

Напоминалочка: I(A) — индикатор события A, случайная величина, равная 1, если событие A произошло и 0 — иначе.

- 2. У Илона Маска две монетки: A-монетка выпадает орлом с вероятностью 0.3, B-монетка выпадает орлом с вероятностью 0.4. Каждая из монеток выпадает либо решкой, либо орлом. Всего Илон делает 100 подбрасываний. Сначала Илон Маск подбрасывает монетку A. Затем он действует по простому правилу: если выпал орёл, то следующей будет подброшена монетка A, если выпала решка, то следующией будет подброшена монетка B. Обозначим X общее число выпавших орлов, Y общее число орлов выпавших на монетке B.
 - (a) Найдите $\mathbb{E}(X)$ и $\mathbb{E}(Y)$.
 - (b) Найдите $\mathbb{E}(XY)$.

Прекрасная неоцениваемая часть в удовольствие:

3. У Маши две монетки: золотая и серебряная. Сначала Маша подкидывает золотую монетку. Если золотая монетка выпала орлом, то Маша подкидывает серебряную монетку один раз. Если золотая монетка выпала решкой — то подкидывает серебряную два раза.

Пусть X — общее количество выпавших орлов на золотой и серебряной монетках.

- (a) Найдите все возможные значения X и их вероятности.
- (b) Каково ожидаемое количество выпавших орлов?
- 4. Вспомним свойство аддитивности вероятности. A: Если задан набор несовместных событий A_1 , A_2 , ..., $(A_i \cap A_j = \emptyset$ при $i \neq j)$, то $\mathbb{P}(\cup A_i) = \sum_i \mathbb{P}(A_i)$.

Докажите, что свойство аддитивности эквивалентно свойству B и свойству C.

- B: Если задан набор вложенных событий $B_1 \subseteq B_2 \subseteq B_3 \dots$, то $\lim_i \mathbb{P}(B_i) = \mathbb{P}(\lim_i B_i)$.
- C: Если задан набор вложенных событий . . . $C_3 \subseteq C_2 \subseteq C_1$, то $\lim_i \mathbb{P}(C_i) = \mathbb{P}(\lim_i C_i)$.
- 5. В шкатулке у Маши 100 пар серёжек. Каждый день утром она выбирает одну пару наугад, носит ее, а вечером возвращает в шкатулку. Проходит год.

- (а) Сколько в среднем пар окажутся ни разу не надетыми?
- (b) Сколько в среднем пар окажутся надетыми не менее двух раз?
- 6. Над озером взлетело 20 уток. Каждый из 10 охотников один раз стреляет в случайно выбираемую им утку. Охотники целятся одновременно, поэтому несколько охотников могут выбрать одну и ту же утку. Величина Y количество выживших уток, X количество попавших в цель охотников.
 - (a) Найдите $\mathbb{E}(X)$, $\mathbb{E}(Y)$, если охотники стреляют без промаха.
 - (b) Как изменятся ответы, если вероятность попадания равна 0.7?

Домашнее задание 2

Дедлайн: 2025-03-27, 21:00.

Оцениваемая часть:

1.

Прекрасная неоцениваемая часть в удовольствие:

1.