Calculus Cheat Sheet for Computer Science

1 Limits

Definition:

A limit describes the value a function approaches as the input approaches a certain point.

$$\lim_{x \to c} f(x) = L$$

means that as x approaches c, f(x) approaches L.

1.1 Key Properties

- 1. $\lim_{x\to c} [f(x) + g(x)] = \lim_{x\to c} f(x) + \lim_{x\to c} g(x)$
- 2. $\lim_{x\to c} [f(x)g(x)] = \lim_{x\to c} f(x) \cdot \lim_{x\to c} g(x)$
- 3. $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c} f(x)}{\lim_{x\to c} g(x)}$ (if $g(x) \neq 0$)

1.2 Example

$$\lim_{x \to 2} (3x + 5) = 3(2) + 5 = 11$$

1.3 Applications

• Algorithm Analysis: Determine the asymptotic behavior as input size grows large

2 Derivatives

Definition:

The derivative of f(x) measures the rate at which f(x) changes with respect to x:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

2.1 Key Rules

- 1. Constant Rule: $\frac{d}{dx}[c] = 0$
- 2. Power Rule: $\frac{d}{dx}[x^n] = nx^{n-1}$
- 3. Exponential Rule: $\frac{d}{dx}[e^x] = e^x$
- 4. Logarithmic Rule: $\frac{d}{dx}[\ln(x)] = \frac{1}{x}$
- 5. Product Rule: $\frac{d}{dx}[uv] = u'v + uv'$
- 6. Chain Rule: $\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$

2.2 Examples

1.
$$\frac{d}{dx}[x^3] = 3x^2$$

$$2. \ \frac{d}{dx}[\sin(x)] = \cos(x)$$

3. Let
$$f(x) = (3x + 2)^2$$
:
Using the Chain Rule:
 $f'(x) = 2(3x + 2)(3) = 6(3x + 2)$

2.3 Applications

• Optimization: Minimize/maximize costs or performance metrics

• Gradient Descent: Minimize loss functions in machine learning

3 Integrals

Definition:

The integral of a function calculates the area under its curve:

$$\int f(x) \, dx$$

3.1 Common Formulas

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
 (for $n \neq -1$)

$$2. \int e^x dx = e^x + C$$

3.
$$\int \frac{1}{x} dx = \ln|x| + C$$

3.2 Examples

1.
$$\int 3x^2 dx = x^3 + C$$

$$2. \int e^x dx = e^x + C$$

3.
$$\int (x^2 + 3x) dx = \frac{x^3}{3} + \frac{3x^2}{2} + C$$

3.3 Applications

 \bullet ${\bf Data}$ ${\bf Analysis:}$ Analyze continuous data distributions

• Simulations: Compute areas and physical quantities in graphics engines

4 Partial Derivatives

Definition:

Partial derivatives calculate the rate of change of a multivariable function with respect to one variable while keeping others constant:

$$\frac{\partial}{\partial x}f(x,y)$$

2

4.1 Example

Let
$$f(x, y) = x^2y + 3y^2$$
:

$$1. \ \frac{\partial f}{\partial x} = 2xy$$

$$2. \ \frac{\partial f}{\partial y} = x^2 + 6y$$

4.2 Applications

• Neural Networks: Calculate gradients for backpropagation

• Optimization: Optimize multivariable cost functions

5 Key Formulas Recap

1. Derivative: $\frac{d}{dx}[x^n] = nx^{n-1}$

2. Integral: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$

3. Product Rule: $\frac{d}{dx}[uv] = u'v + uv'$

4. Chain Rule: $\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$

5. L'Hôpital's Rule:

For indeterminate forms:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$