Математические модели обработки сигналов

Тема 10: Линейные стационарные системы и цифровая фильтрация

Лектор: Кривошеин А.В.

Основные дискретные сигналы (примеры)

Дискретные сигналы — это последовательности чисел $x = \{x[n]\} := \{x[n]\}_{n \in \mathbb{Z}}$.

Множество всевозможных последовательностей будем обозначать за $\ell(\mathbb{Z})$.

Это множество является линейным пространством.

 $\ell_0(\mathbb{Z})$ — линейное пространство финитных последовательностей.

 $\ell_1(\mathbb{Z})$ — банахово пространство абсолютно суммируемых последовательностей.

 $\ell_{\infty}(\mathbb{Z})$ — банахово пространство ограниченных последовательностей.

Единичный импульс
$$\delta = \{\delta[n]\}: \quad \delta[n] = \left\{ \begin{array}{ll} 0, & n \neq 0; \\ 1, & n = 0. \end{array} \right.$$

Фильтрующее свойство : $x[n] = \sum_{k=-\infty}^{+\infty} x[k] \, \delta[n-k], \quad \forall \ n \in \mathbb{Z}.$

Основные дискретные сигналы (примеры)

Единичный скачок — это последовательность $u = \{u[n]\}$ с элементами

$$u[n] = \begin{cases} 1, & n \geq 0; \\ 0, & n < 0. \end{cases}$$

Единичный скачок может быть выражен через единичный импульс как

$$u[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \dots = \sum_{k=-\infty}^{n} \delta[k] = \sum_{k=0}^{+\infty} \delta[n-k], \quad \forall n \in \mathbb{Z}.$$

Обратно, единичный импульс можно выразить через единичный скачок как разность

$$\delta[n] = u[n] - u[n-1], \quad \forall n \in \mathbb{Z}.$$

Основные дискретные сигналы (примеры)

Синусоида: $x[n] = A\cos(2\pi\omega n + \varphi), \forall n \in \mathbb{Z}, 0 \le \omega < 1.$

График синусоидальной последовательности

Число N называется периодом, если $x[n] = x[n+N], \ \forall \ n \in \mathbb{Z}$.

 $A\cos(2\,\pi\,\omega\,n\,+\,arphi)=A\cos(2\,\pi\,\omega\,(n+N)\,+\,arphi)=A\cos(2\,\pi\,\omega\,n\,+\,2\,\pi\,\omega\,N\,+\,arphi)\,,$ N является периодом, только если $\omega=rac{k}{N},\;k\in \mathbb{R}$

Период синусоидальной последовательности

Дискретные системы (цифровые фильтры)

Дискретная система — это оператор $\mathcal{T}: \ell(\mathbb{Z}) \to \ell(\mathbb{Z})$ (областью определения может быть и некоторое подмножество в $\ell(\mathbb{Z})$), при этом

$$\{y[n]\} = \mathcal{T}\{x[n]\},$$

 $y = \mathcal{T}x, \text{ где } x, y \in \ell(\mathbb{Z}).$ (1)

Оператор \mathcal{T} осуществляет преобразование, переводящее входную последовательность $\{x[n]\}$ (входной сигнал) в выходную последовательность $\{y[n]\}$ (выходной сигнал, отклик системы, реакция системы)

Любая система цифровой обработки сигналов может быть описана с помощью дискретной системы.

Примеры фильтров (задержка)

Идеальная система задержки на n_0 отсчетов : $y[n] = x[n-n_0], \ \forall \ n \in \mathbb{Z}$. Идеальная система задержки

Примеры фильтров (скользящее среднее)

Скользящее среднее порядка M:

$$y[n] = \frac{1}{2M+1} \sum_{k=-M}^{M} x[n-k] = \frac{1}{2M+1} (x[n+M] + \dots + x[n] + \dots + x[n-M]),$$

Скользящее среднее

Примеры фильтров (сумматор)

Сумматором называется система, для которой

$$y[n] = \sum_{k=-\infty}^n x[k], \ \ \forall \ \ n \in \mathbb{Z}.$$
 Входной сигнал должен быть таким, что $\sum_{k=-\infty}^0 x[k] \ < \ +\infty.$

Примеры фильтров (down-sampling)

Децимация (компрессор, уплотнитель, англ. down-sampling):

$$y[n] = (x \downarrow M)[n] = x[M n], \ \forall \ n \in \mathbb{Z}, \ M \in \mathbb{N}.$$

Действие заключается в выбрасывании из входного сигнала M-1 отсчёта из каждых M отсчётов и сохранения каждого M-го отсчёта. Компрессор (Down-sampling)

Примеры фильтров (up-sampling)

Up – sampling:
$$y[n] = (x \uparrow M)[n] = \begin{cases} x[k] & n = M k, k \in \mathbb{Z}, \\ 0 & n \neq M k, k \in \mathbb{Z}. \end{cases}$$

Действие заключается во вставке M-1 нуля между всеми отсчётами. Up-sampling

График входного сигнала {x[n]}: Входной сигнал x[n]= u[n] Параметр М -Добавить график входного сигнала График выходного сигнала {y[n]}:

Линейные стационарные системы

Пусть $x_1, x_2 \in \ell(\mathbb{Z}), y_i[n] = \mathcal{T}\{x_i[n]\}, i = 1, 2.$

№ Линейность:

$$\mathcal{T}$$
 { $\alpha x_1[n] + \beta x_2[n]$ } = $\alpha \mathcal{T}$ { $x_1[n]$ } + $\beta \mathcal{T}$ { $x_2[n]$ }, где $\alpha, \beta \in \mathbb{C}$.

Скользящее среднее, up-sampling, down-sampling — это линейные системы;

 $y[n] = (x[n])^2, \forall n \in \mathbb{Z}$, нелинейная система;

Пусть $x \in \ell(\mathbb{Z})$, $\{y[n]\} = \mathcal{T}\{x[n]\}$.

Стационарность (инвариантность к сдвигу): если для $\forall n_0 \in \mathbb{Z}$:

 $\mathcal{T}\{x[n-n_0]\}=\{y[n-n_0]\}$, то есть сдвиг входной последовательности влечёт такой же сдвиг выходной.

Примеры: скользящее среднее — стационарная система; down-sampling не является стационарной системой.

Нестационарность down-sampling

Линейные стационарные системы

Линейные стационарные системы (Linear shift-invariant system, LTI systems) — это важный класс дискретных систем.

Любая ЛС система может быть полностью охарактеризована откликом на δ -импульс.

Пусть $\delta = \{\delta[n]\}$ — единичный импульс, $h = \{h[n]\} = \mathcal{T}\{\delta[n]\}$ — отклик ЛС системы на единичный импульс.

Пусть
$$x \in \ell_0(\mathbb{Z})$$
 и $y = \{y[n]\} = \mathcal{T}\{x[n]\}$. Известно, что $x[n] = \sum_{k=-\infty}^{+\infty} x[k] \, \delta[n-k]$.

Тогда, из линейности :
$$\{y[n]\} = \mathcal{T}\{x[n]\} = \sum_{k=-\infty}^{+\infty} x[k] \, \mathcal{T}\{\delta[n-k]\} = \sum_{k=-\infty}^{+\infty} x[k] \, \{h[n-k]\}.$$

To есть
$$\forall n \in \mathbb{Z} \quad y[n] = \sum_{k=-\infty}^{+\infty} x[k] \, h[n-k].$$

Последовательность y – это результат дискретной свёртки : $y = \{y[n]\} = \{x[n]\} * \{h[n]\} = x * h$.

Дискретная свёртка играет важную роль в цифровой обработке сигналов, поскольку является явной реализацией ЛС системы.

Случаи, когда свёртка имеет смысл:

$$h \in \ell_1(\mathbb{Z}), \ x \in \ell_1(\mathbb{Z}), \$$
тогда $y \in \ell_1(\mathbb{Z}).$

$$h \in \ell_0(\mathbb{Z}), \ x \in \ell(\mathbb{Z}), \$$
тогда $y \in \ell(\mathbb{Z}).$

$$h \in \ell_2(\mathbb{Z}), \; x \in \ell_2(\mathbb{Z}), \;$$
тогда $y \in \ell_\infty(\mathbb{Z}).$

Дискретная свёртка

$$\forall n \in \mathbb{Z} \quad y[n] = \sum_{k=-\infty}^{+\infty} x[k] h[n-k].$$

Каждый отсчёт выходного сигнала с номером n - это результат

- 1. поэлементного умножения последовательностей $\{x[k]\}_k$ и $\{h[n-k]\}_k$
- 2. последующего суммирования произведений вида x[k] h[n-k] по индексу k.

Отсюда следует, что для подсчёта y[n] используются BCE отсчёты двух последовательностей.

Дискретная свертка

Свойства дискретной свёртки:

Коммутативность: x * h = h * x (доказательство через замену переменной суммирования)

$$\sum_{k=-\infty}^{+\infty} x[k] h[n-k] = \sum_{k=-\infty}^{+\infty} x[n-k] h[k]$$

Дистрибутивность: $x*(h_1+h_2)=x*h_1+x*h_2$. (доказательство через линейность)

Ассоциативность: $h_1*(h_2*h_3)=(h_1*h_2)*h_3$ $(h_1,h_2,h_3\in\ell_1(\mathbb{Z})).$

Полезное свойство свёртки: свёртка сигнала x с единичным импульсом δ равна сигналу x.

Из
$$x[n] = \sum_{k=-\infty}^{+\infty} x[k] \, \delta[n-k] \, \forall n \in \mathbb{Z} \Rightarrow x * \delta = x.$$

Свёртка сигнала x с единичным импульсом δ сдвинутым на n_0 приводит к задержке сигнала на n_0 .

$${x[n]} * {\delta[n - n_0]} = {x[n - n_0]}.$$

Импульсная характеристика ЛС-системы

Любая ЛС система \mathcal{T} характеризуется откликом на единичный импульс δ : $h = \mathcal{T} \delta$.

Последовательность h называется импульсной характеристикой (ИХ) системы.

Каскадное (последовательное) соединение двух ЛС-систем:

Параллельное соединение ЛС-систем:

Примеры импульсных характеристик

Идеальная система задержки:

$$h[n] = \delta[n - n_0], \quad \forall n \in \mathbb{Z}.$$

Скользящее среднее:

$$h[n]=rac{1}{2\,M+1}\sum_{k=-M}^M\delta[n-k], \quad orall \ n\in\mathbb{Z}, \quad$$
 или $h[n]=\left\{egin{array}{ll} rac{1}{2\,M+1}, & -M\leq n\leq M \ 0, & ext{иначе} \end{array}
ight..$

Сумматор:

$$h[n] = \sum_{k=-\infty}^{n} \delta[k] = u[n], \quad \forall \ n \in \mathbb{Z}.$$

ЛС системы с импульсной характеристикой, имеющей КОНЕЧНОЕ число ненулевых отсчётов, называют системами с конечной импульсной характеристикой (КИХ-системой, англ. Finite Impulse Response, FIR).

ЛС системы с импульсной характеристикой, имеющей БЕСКОНЕЧНОЕ число ненулевых отсчётов, называют системами с бесконечной импульсной характеристикой (БИХ-системой, англ. Infinite Impulse Response, IIR).

Комплексные экспоненты и ЛС системы

Пусть \mathcal{T} — некоторая ЛС система с ИХ $h = \{h[n]\} \in \ell_1(\mathbb{Z})$. Найдём отклик этой системы на комплексную экспоненциальную последовательность $\{x[n]\} = \{e^{2\pi i \omega n}\}$, где $\omega \in [0, 1]$.

$$y[n] = \sum_{k=-\infty}^{+\infty} h[k] x[n-k] = \sum_{k=-\infty}^{+\infty} h[k] e^{2\pi i \omega (n-k)} = e^{2\pi i \omega n} \left(\sum_{k=-\infty}^{+\infty} h[k] e^{-2\pi i \omega k} \right), \ \forall \ n \in \mathbb{Z}.$$

Положим
$$\hat{h}(\omega) := \sum_{k=-\infty}^{+\infty} h[k] e^{-2\pi i \omega k}$$
.

Ряд сходится абсолютно и равномерно $\Rightarrow \hat{h}(\omega)$ непрерывная функция.

В итоге: $y[n] = \hat{h}(\omega) e^{2\pi i \omega n}$, $\forall n \in \mathbb{Z}$.

Таким образом, $\mathcal{T}\left\{e^{2\pi i \omega n}\right\} = \hat{h}(\omega) \left\{e^{2\pi i \omega n}\right\}$

Комплексные экспоненты и ЛС системы

 $\{e^{2\pi\,i\,\omega\,n}\}$ — это собственный вектор оператора ${\mathcal T}$ с собственным числом $\hat{h}(\omega)$.

Собственное число $\hat{h}(\omega)$ называют **комплексной частотной характеристикой** (КЧХ) системы.

$$\hat{h}(\omega) = \left| \hat{h}(\omega) \right| e^{i \arg(\hat{h}(\omega))},$$

 $\left| \hat{h}(\omega) \right|$ называют **амплитудной частотной характеристикой** (АЧХ) системы,

 $\arg(\hat{h}(\omega))$ называют **фазочастотной характеристикой** (ФЧХ) системы.

КЧХ $\hat{h}(\omega)$ — это ДВПФ от импульсной характеристики h.

Если $h \in \ell_0(\mathbb{Z})$, то есть последовательность с конечным числом ненулевых отсчетов, то $\hat{h}(\omega)$ является тригонометрическим полиномом.

Пусть $h, x \in \ell_1(\mathbb{Z})$. Тогда

ДВП Φ свёртки : $x*h \stackrel{\text{ДВП}\Phi}{\longleftrightarrow} \hat{x}(\omega) \hat{h}(\omega)$ — это произведение ДВП Φ .

$$\text{DTFT}\left\{x*h\right\}(\omega) \ = \ \sum_{n\in\mathbb{Z}} \left(\sum_{k\in\mathbb{Z}} h[n-k] \, x[k]\right) e^{-2\,\pi\,i\,n\,\omega} \ = \ \sum_{k\in\mathbb{Z}} x[k] \, e^{-2\,\pi\,i\,k\,\omega} \, \sum_{n\in\mathbb{Z}} h[n-k] \, e^{-2\,\pi\,i\,(n-k)\,\omega} \ = \hat{x}(\omega) \, \hat{h}(\omega) \,.$$

Примеры КЧХ линейных стационарных систем

Найдем КХЧ для идеальной системы задержки:

$$\{y[n]\} = \{x[n-n_0]\}, \quad$$
где $n_0 \in \mathbb{Z}$.

Поскольку $h[n] = \delta[n - n_0]$, то

$$\hat{h}(\omega) = \sum_{n=-\infty}^{+\infty} \delta[n-n_0] e^{-2\pi i \omega n} = e^{-2\pi i \omega n_0}.$$

Отметим, что АЧХ и ФЧХ будут иметь вид

$$|\hat{h}(\omega)| = 1$$
, $\operatorname{Arg}(\hat{h}(\omega)) = -2 \pi \omega n_0$.

Примеры КЧХ линейных стационарных систем

ИХ скользящего среднего имеет вид

$$h[n] = \left\{ egin{array}{ll} rac{1}{2\,M+1} & -M \leq n \leq M \\ \mathrm{O} & \mathrm{иначe} \end{array}
ight.$$

Её КЧХ имеет вид

$$\hat{h}(\omega) = \frac{1}{2\,M+1} \sum_{n=-M}^{M} e^{2\,\pi\,i\,n\,\omega} = \frac{1}{2\,M+1} \; \frac{e^{2\,\pi\,i\,\omega\,M} \left(1 - e^{-2\,\pi\,i\,\omega\,(2\,M+1)}\right)}{1 - e^{-2\,\pi\,i\,\omega}} \; = \; \frac{1}{2\,M+1} \; \frac{\sin(\pi\,\omega(2\,M+1))}{\sin(\pi\,\omega)}$$

Графики АЧХ и ФЧХ скользящего среднего

ЛС системы в частотной области

Пусть h — это импульсная характеристика системы ЛС системы \mathcal{T} .

 \hat{h} — это КЧХ ЛС системы. Отклик системы на сигнал x определяется с помощью свертки

$$y = \mathcal{T}x \iff y = h * x.$$

Спектр отклика является произведением КЧХ системы \hat{h} на спектр сигнала \hat{x} .

$$\hat{y}(\omega) = \hat{h}(\omega) \hat{x}(\omega).$$

Классификация ЛС систем

Классификация ЛС систем проводится в зависимости от вида КЧХ (а точнее АЧХ).

Частоты близкие к нулю будем считать низкими. Частоты около $\pm \frac{1}{2}$ - высокими.

ЛС системы будем называть также фильтрами, применение ЛС системы — фильтрацией.

Низкочастотный (low-pass) фильтр пропускает низкие частоты и подавляет высокие.

Высокочастотный (high-pass) фильтр пропускает высокие частоты и подавляет низкие.

Полосовой (полосно-пропускающим, band-pass) фильтр пропускает все частоты из некоторого интервала частот.

Полосно-заграждающим (режекторным, band-stop) фильтр НЕ пропускает частоты из некоторого интервала частот.

Пример работы band-pass фильтра

Результат применения полосового фильтра (band-pass) к изображению, пропускающего частоты из интервала (ω 1, ω 2)

Идеальные фильтры

КЧХ идеального фильтра имеет вид кусочно-постоянной функции.

Например, идеальный низкочастотный (НЧ) фильтр

$$\hat{h}_{\mathrm{lp}}(\omega) = \left\{ egin{array}{ll} 1, & |\omega| < \omega_0, \\ 0, & \omega_0 \leq |\omega| \leq rac{1}{2}, \end{array}
ight.$$
 где ω_0 — называется частотой среза (англ. cut — $\mathit{offfrequency}$).

Импульсная характеристика идеального НЧ фильтра имеет вид:

$$\begin{split} h_{\rm lp}[n] &= \int\limits_{-1/2}^{1/2} \hat{h}_{\rm lp}(\omega) \, e^{2\pi i \, \omega \, n} \, d \, \omega \, = \int\limits_{-\omega_0}^{\omega_0} e^{2\pi i \, \omega \, n} \, d \, \omega \, = \\ &\frac{1}{2 \, \pi \, i \, n} \Big(e^{2\pi i \, \omega_0 \, n} - \, e^{-2 \, \pi \, i \, \omega_0 \, n} \Big) = \frac{\sin(2 \, \pi \, \omega_0 \, n)}{\pi \, n}, \, \, \forall \, \, n \, \in \, \mathbb{Z}. \end{split}$$

$$\{2 \omega_0 \operatorname{sinc}(2 \pi \omega_0 n)\} \stackrel{\text{DTFT}}{\longleftrightarrow} \operatorname{rect}\left(\frac{\omega}{2 \omega_0}\right)$$

 $\operatorname{rect}(t)$ — характеристическая функция отрезка $\left[-\frac{1}{2},\frac{1}{2}\right]$.

Идеальные фильтры

Идеальный высокочастотный фильтр (ВЧ) фильтр

$$\hat{h}_{\mathrm{hp}}(\omega) \ = \ 1 - \hat{h}_{\mathrm{lp}}(\omega) \ = \ \left\{ \begin{array}{ll} 1, & |\omega| < \omega_0, \\ 0, & \omega_0 \leq \ |\omega| \leq \ \frac{1}{2} \end{array} \right. = 1 - \ \mathrm{rect}\bigg(\frac{\omega}{2 \, \omega_0}\bigg).$$

Импульсная характеристика идеального НЧ фильтра имеет вид:

$$h_{\rm hp}[n] = \delta[n] - \frac{\sin(2\pi\omega_0 n)}{\pi n}.$$

Идеальный полосно-пропускающий фильтр (англ. bandpass).

$$\hat{h}_{\mathrm{bp}}(\omega) = \left\{ egin{array}{ll} 1, & |\omega \pm \omega_c| \leq \omega_0, \\ 0, & \mathrm{uhave}, \end{array} \right.$$

причём ширина окрестности такова, что $0 < \omega_c - \omega_0 < \omega_c + \omega_0 < \frac{1}{2}$ или $\omega_0 < \min \left\{ \omega_c, \frac{1}{2} - \omega_c \right\}$.

По свойствам ДВПФ, коэффициенты полосно-пропускающего фильтра имеют вид

$$h_{\rm bp}[n] = \left(e^{2\pi i \,\omega_{\rm c} \,n} + e^{-2\pi i \,\omega_{\rm c} \,n}\right) \frac{\sin(2\pi \,\omega_{\rm o} \,n)}{\pi \,n} = 2\cos(2\pi \,\omega_{\rm c} \,n) \frac{\sin(2\pi \,\omega_{\rm o} \,n)}{\pi \,n}.$$

Идеальные фильтры

Идеальные фильтры имеют бесконечное число ненулевых отсчётов в импульсной характеристике (БИХ-фильтр).

Элементы последовательности стремятся к нулю не быстрее, чем $\frac{1}{n}$.

Кроме того, можно показать, что такой фильтр не реализуем, то есть нет алгоритма который бы за конечное число операций подсчитывал бы выходной отсчёт.

При приближении идеального фильтра с помощью обнуления коэффициентов возникает эффект Гиббса: вблизи точек разрыва функции $\hat{h}_{ ext{lp}}(\omega)$ возникают незатухающие колебания.

Частичные суммы ДВП
$$\Phi$$
 : $\hat{h}_{\mathrm{lp}}^{M}(\omega) = \sum_{m=-M}^{M} h_{\mathrm{lp}}[m] \, e^{-2\,\pi\,i\,m\,\omega}$.

Графики КЧХ идеального НЧ фильтра и частичных сумм

$$h_{ ext{lp}}^M[n] = egin{array}{ccc} h_{ ext{lp}}[n], & |n| \leq M, \ 0, & ext{иначе} \end{array}.$$
 Фактически,

 $h_{
m lp}^{M}~-$ это наилучшее приближение последовательности $h_{
m lp}~$ подпространством финитных последовательностей (с носителем $[-M,M] \cap \mathbb{Z}$) в $\ell_2(\mathbb{Z})$.

Или $\hat{h}_{
m lp}^M(\omega)$ — это наилучшее приближение функции $\hat{h}_{
m lp}(\omega)$ с помощью тригонометрических полиномов степени не выше M в $L_2[-\frac{1}{2},\frac{1}{2}]$.

Разработка КИХ-фильтра

Требования к фильтру формулируются в терминах КЧХ, это так называемые спецификации фильтра.

Стандартные спецификации на примере НЧ фильтра, с частотой среза 1/4 (в нормализованных частотах).

Полоса пропускания (англ. passband) — это полоса частот, в которой сигнал не подвергается изменениям.

Полоса задержки (англ. stopband) — это полоса частот, в которой сигнал подавляется.

Полоса перехода (англ. transition band) — это полоса частот, расположенная между полосой пропускания и полосой подавления.

Мгновенный переход между этими полосами в рамках реализуемого фильтра невозможен.

Строгие значения о или 1 для полосы задержки или полосы пропускания в рамках реализуемого фильтра невозможны.

Вводятся допуски (англ. tolerances). Например,

допуск 20% для полосы пропускания ($\delta_p = 0.2$) и 10% в полосе задержки ($\delta_s = 0.1$),

частота среза полосы пропускания f_{pass} и частота начала подавления сигнала f_{stop} .

Для идеального фильтра: $\delta_p = \delta_s = 0$, $f_{\rm pass} = f_{\rm stop} = \omega_0 = 1/4$.

Более низкие допуски и узкая полоса перехода влекут увеличение носителя фильтра.

Разработка КИХ-фильтра

Алгоритм Парка-МакКлеллана (англ. the Parks-McClellan algorithm, Remez Exchange) —это алгоритм для разработки оптимального фильтра. Оптимальность в смысле нормы в L_{∞} для КЧХ, то есть минимизируется максимальное отклонение от идеального фильтра в полосе пропускания и задержки.

В ходе итерационной процедуры определяются коэффициенты фильтра и число этих коэффициентов.

Особенность: равные колебания в passband и stopband.

В Python можно использовать scipy.signal.remez

АЧХ в log-масштабе отображается в децибелах.

Если максимальная амплитуда КЧХ равна $G = \max_{\omega \in [0,1]} |\hat{h}(\omega)|$. То

$$\hat{h}_{\text{db}}(\omega) = 20 \log_{10} \left(\left| \hat{h}(\omega) \right| / G \right).$$