#### Elementos Activos

Teoría de Circuitos II

Oscar Perpiñán Lamigueiro

- Clasificación
- ② Generadores Independientes Reales
- 3 Transformación y Asociación

### Tabla de Clasificación

- ► Tensión o Corriente
- ► Ideal o Real
- ▶ Dependiente o Independiente

#### Generador Ideal



Un **generador de tensión ideal** impone la tensión a la salida (*la corriente depende del circuito*). Se caracteriza por su **fuerza electromotriz** (voltios [V]).



Un **generador de corriente ideal** impone la corriente a la salida (*la tensión depende del circuito*). Se caracteriza por su corriente de generador.

#### Generador Real CC

Los generadores reales tienen pérdidas que se modelan con una resistencia en **serie** (generador de tensión) o en **paralelo** (generador de corriente)





### Generador Real AC

Los generadores reales tienen pérdidas que se modelan con una impedancia en **serie** (generador de tensión) o en **paralelo** (generador de corriente)







$$\bar{I} = \bar{I}_g - \frac{\overline{U}_A}{\overline{Z}_{I_g}}$$

# Generadores Dependientes

### Generadores de Tensión





... de Tensión

... de Corriente

- Clasificación
- ② Generadores Independientes Reales
- 3 Transformación y Asociación

# Ecuación del generador CC



$$U_{AB} = \epsilon_g - R_{\epsilon_g} \cdot I$$



$$I = I_g - \frac{U_{AB}}{R_{I_g}}$$

# Ecuación del generador AC



 $\overline{U}_{AB} = \overline{\epsilon}_g - \overline{Z}_{\epsilon_g} \cdot \overline{I}$ 



# Diagramas Tensión - Corriente

#### Fuente de tensión



$$u(t) = \epsilon_{g} - R_{\epsilon_{g}} \cdot i(t)$$

#### Fuente de corriente



$$u(t) = R_{I_g} \cdot I_g - R_{I_g} \cdot i(t)$$

# Potencia y rendimiento de una fuente



### Potencia y rendimiento de una fuente

La potencia entregada por la fuente es máxima cuando  $R_L = R_g$ .

$$P_L = \frac{\epsilon_{th}^2}{4R_g}$$

► El rendimiento es una función creciente  $(\eta \to 1 \text{ para } R_L \gg R_g)$ .



### Potencia y rendimiento de una fuente

- ▶ En la zona a la derecha del punto de máxima potencia ( $R_L > R_g$ ), la función de potencia tiene una variación suave: los cambios en  $R_L$  tienen un impacto pequeño en  $P_L$ .
- ► Por ejemplo:
  - Para  $R_L = R_g$  se obtiene  $\mu = 0'5$
  - Para  $R_L = 2 \cdot R_g$ , se obtiene  $P_L = 0'89 \cdot P_{max}$  y  $\mu = 0'67$ .
  - Para  $R_L = 3 \cdot R_g$ , se obtiene  $P_L = 0'75 \cdot P_{max}$  y  $\mu = 0'75$ .



- Clasificación
- ② Generadores Independientes Reales
- 3 Transformación y Asociación

# Equivalencia de fuentes

Sólo es posible establecer equivalencia entre fuentes reales.



$$\overline{U}_{AB} = \overline{\epsilon}_{g} - \overline{Z}_{\epsilon_{g}} \cdot \overline{I}$$





$$ar{I} = ar{I}_g - rac{\overline{U}_{AB}}{\overline{Z}_{I_a}}$$

# Conexión en serie de generadores

#### Generadores de Tensión

▶ Pueden conectarse en serie sin restricción.

$$\epsilon_T = \sum_{i=1}^{N} \epsilon_i$$
 $R_{gT} = \sum_{i=1}^{N} R_{gi}$ 

#### Generadores de Corriente

- ▶ Ideal: todas las fuentes deben ser idénticas (valor y sentido).
- ▶ Real: sin restricción, transformación de fuentes para fuente equivalente.

### Conexión en paralelo de generadores

#### Generadores de Tensión

- ▶ Ideal: todas las fuentes deben ser idénticas (valor y polaridad).
- ▶ Real: sin restricción, transformación de fuentes para fuente equivalente.

#### Generadores de Corriente

Pueden conectarse en paralelo sin restricción.

$$I_{gT} = \sum_{i=1}^{N} I_{gi}$$
$$G_{gT} = \sum_{i=1}^{N} G_{gi}$$

### Fuentes dominantes

# Modificación de la geometría de un circuito

Apartado 6 (p. 185) Pastor