Imperative programming - tutorial week 6

Arnold Meijster

Dept. computer science (university of Groningen)

October 8, 2017

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(g(n))$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(g(n))$

 $f(n) \in O(g(n))$ means: "the complexity of f(n) is at most g(n)". The big-O notation yields therefore an upperbound of the 'real' complexity.

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(g(n))$

 $f(n) \in O(g(n))$ means: "the complexity of f(n) is at most g(n)". The big-O notation yields therefore an upperbound of the 'real' complexity.

Formally: $f(n) \in O(g(n))$ if there exist constants c > 0 and N, such that for each n > N we have $f(n) \le c \cdot g(n)$.

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(g(n))$

 $f(n) \in O(g(n))$ means: "the complexity of f(n) is at most g(n)". The big-O notation yields therefore an upperbound of the 'real' complexity.

Formally: $f(n) \in O(g(n))$ if there exist constants c > 0 and N, such that for each n > N we have $f(n) \le c \cdot g(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$2 \cdot n^3 \leq c \cdot 19 \cdot n^2$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(g(n))$

 $f(n) \in O(g(n))$ means: "the complexity of f(n) is at most g(n)". The big-O notation yields therefore an upperbound of the 'real' complexity.

Formally: $f(n) \in O(g(n))$ if there exist constants c > 0 and N, such that for each n > N we have $f(n) \le c \cdot g(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$2 \cdot n^3 \leq c \cdot 19 \cdot n^2$$

Clearly, this cannot be satisfied. Divide both sides by n^2 and we find: $2n \le 19c$. This cannot be true for a fixed c and all n > N.

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(h(n))$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(h(n))$

Formally: $f(n) \in O(h(n))$ if there exist constants c > 0 and N, such that for each n > N we have $f(n) \le c \cdot h(n)$.

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(h(n))$

Formally: $f(n) \in O(h(n))$ if there exist constants c > 0 and N, such that for each n > N we have $f(n) \le c \cdot h(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$2 \cdot n^3 \leq c \cdot 3 \cdot (n+3)^3$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(h(n))$

Formally: $f(n) \in O(h(n))$ if there exist constants c > 0 and N, such that for each n > N we have $f(n) \le c \cdot h(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$2 \cdot n^3 \leq c \cdot 3 \cdot (n+3)^3$$

Choose $c = \frac{2}{3}$

$$2 \cdot n^{3} \leq \frac{2}{3} \cdot 3 \cdot (n+3)^{3}$$
$$2 \cdot n^{3} \leq 2 \cdot (n+3)^{3}$$
$$n^{3} \leq (n+3)^{3}$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $f(n) \in O(h(n))$

Formally: $f(n) \in O(h(n))$ if there exist constants c > 0 and N, such that for each n > N we have $f(n) \le c \cdot h(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$2 \cdot n^3 \leq c \cdot 3 \cdot (n+3)^3$$

Choose $c = \frac{2}{3}$

$$2 \cdot n^{3} \leq \frac{2}{3} \cdot 3 \cdot (n+3)^{3}$$
$$2 \cdot n^{3} \leq 2 \cdot (n+3)^{3}$$
$$n^{3} \leq (n+3)^{3}$$

Choose N = 0, such that this is true for all n > N, so indeed f(n) is O(h(n)).

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(f(n))$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(f(n))$

Formally: $g(n) \in O(f(n))$ if there exist constants c > 0 and N, such that for each n > N we have $g(n) \le c \cdot f(n)$.

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(f(n))$

Formally: $g(n) \in O(f(n))$ if there exist constants c > 0 and N, such that for each n > N we have $g(n) \le c \cdot f(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$19 \cdot n^2 \leq c \cdot 2 \cdot n^3$$

$$19 \leq c \cdot 2 \cdot n$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(f(n))$

Formally: $g(n) \in O(f(n))$ if there exist constants c > 0 and N, such that for each n > N we have $g(n) \le c \cdot f(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$19 \cdot n^2 \leq c \cdot 2 \cdot n^3$$

$$19 \leq c \cdot 2 \cdot n$$

Choose $c = 9\frac{1}{2}$

$$19 \leq 19 \cdot n$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(f(n))$

Formally: $g(n) \in O(f(n))$ if there exist constants c > 0 and N, such that for each n > N we have $g(n) \le c \cdot f(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$19 \cdot n^2 \leq c \cdot 2 \cdot n^3$$

$$19 \leq c \cdot 2 \cdot n$$

Choose $c = 9\frac{1}{2}$

$$19 \leq 19 \cdot n$$

This is true for all n > N = 1, so indeed g(n) is O(f(n)).

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(h(n))$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(h(n))$

Formally: $g(n) \in O(h(n))$ if there exist constants c > 0 and N, such that for each n > N we have $g(n) \le c \cdot h(n)$.

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(h(n))$

Formally: $g(n) \in O(h(n))$ if there exist constants c > 0 and N, such that for each n > N we have $g(n) \le c \cdot h(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$19 \cdot n^2 \leq c \cdot 3 \cdot (n+3)^3$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(h(n))$

Formally: $g(n) \in O(h(n))$ if there exist constants c > 0 and N, such that for each n > N we have $g(n) \le c \cdot h(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$19 \cdot n^2 \leq c \cdot 3 \cdot (n+3)^3$$

Choose $c = \frac{19}{3}$

$$19 \cdot n^{2} \leq \frac{19}{3} \cdot 3 \cdot (n+3)^{3}$$

$$19 \cdot n^{2} \leq 19 \cdot (n+3)^{3}$$

$$n^{2} \leq (n+3)^{3}$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $g(n) \in O(h(n))$

Formally: $g(n) \in O(h(n))$ if there exist constants c > 0 and N, such that for each n > N we have $g(n) \le c \cdot h(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$19 \cdot n^2 \leq c \cdot 3 \cdot (n+3)^3$$

Choose $c = \frac{19}{3}$

$$19 \cdot n^{2} \leq \frac{19}{3} \cdot 3 \cdot (n+3)^{3}$$

$$19 \cdot n^{2} \leq 19 \cdot (n+3)^{3}$$

$$n^{2} \leq (n+3)^{3}$$

This is true for all n > N = 0, so indeed g(n) is O(h(n)).

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(f(n))$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(f(n))$

Formally: $h(n) \in O(f(n))$ if there exist constants c > 0 and N, such that for each n > N we have $h(n) \le c \cdot f(n)$.

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(f(n))$

Formally: $h(n) \in O(f(n))$ if there exist constants c > 0 and N, such that for each n > N we have $h(n) \le c \cdot f(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$3 \cdot (n+3)^3 \le c \cdot 2 \cdot n^3$$

 $3n^3 + 27n^2 + 81n + 81 \le c \cdot 2n^3$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(f(n))$

Formally: $h(n) \in O(f(n))$ if there exist constants c > 0 and N, such that for each n > N we have $h(n) \le c \cdot f(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$3 \cdot (n+3)^3 \le c \cdot 2 \cdot n^3$$

 $3n^3 + 27n^2 + 81n + 81 \le c \cdot 2n^3$

Choose c = 96

$$3n^3 + 27n^2 + 81n + 81 \le 96 \cdot 2n^3 = 192 \cdot n^3 = 3n^3 + 27n^3 + 81n^3 + 81n^3$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(f(n))$

Formally: $h(n) \in O(f(n))$ if there exist constants c > 0 and N, such that for each n > N we have $h(n) \le c \cdot f(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$3 \cdot (n+3)^3 \le c \cdot 2 \cdot n^3$$

 $3n^3 + 27n^2 + 81n + 81 \le c \cdot 2n^3$

Choose c = 96

$$3n^3 + 27n^2 + 81n + 81 \le 96 \cdot 2n^3 = 192 \cdot n^3 = 3n^3 + 27n^3 + 81n^3 + 81n^3$$

This is true for all n > N = 1, so indeed h(n) is O(f(n)).

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(g(n))$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(g(n))$

Formally: $h(n) \in O(g(n))$ if there exist constants c > 0 and N, such that for each n > N we have $h(n) \le c \cdot g(n)$.

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(g(n))$

Formally: $h(n) \in O(g(n))$ if there exist constants c > 0 and N, such that for each n > N we have $h(n) \le c \cdot g(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$3 \cdot (n+3)^3 = 3n^3 + 27n^2 + 81n + 81 \leq c \cdot 19 \cdot n^2$$

$$\frac{3}{19}n^3 + \frac{27}{19}n^2 + \frac{81}{19}n + \frac{81}{19} \leq c \cdot n^2$$

$$\frac{3}{19}n + \frac{27}{19} + \frac{81}{19n} + \frac{81}{19n^2} \leq c$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(g(n))$

Formally: $h(n) \in O(g(n))$ if there exist constants c > 0 and N, such that for each n > N we have $h(n) \le c \cdot g(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$3 \cdot (n+3)^3 = 3n^3 + 27n^2 + 81n + 81 \leq c \cdot 19 \cdot n^2$$

$$\frac{3}{19}n^3 + \frac{27}{19}n^2 + \frac{81}{19}n + \frac{81}{19} \leq c \cdot n^2$$

$$\frac{3}{19}n + \frac{27}{19} + \frac{81}{19n} + \frac{81}{19n^2} \leq c$$

Clearly, this cannot be true. For example $n = \frac{19c}{3}$:

$$\frac{3}{19} \cdot \frac{19c}{3} + \frac{27}{19} + \frac{81}{19\frac{19c}{3}} + \frac{81}{19(\frac{19c}{3})^2} \le c$$

$$c + \frac{27}{19} + \frac{81}{19\frac{19c}{3}} + \frac{81}{19(\frac{19c}{3})^2} \le c$$

Let $f(n) = 2 \cdot n^3$, $g(n) = 19 \cdot n^2$, and $h(n) = 3 \cdot (n+3)^3$. Prove or refute the following claim: $h(n) \in O(g(n))$

Formally: $h(n) \in O(g(n))$ if there exist constants c > 0 and N, such that for each n > N we have $h(n) \le c \cdot g(n)$.

In this concrete example, this means that there $\exists c > 0$, N such that $\forall n > N$:

$$3 \cdot (n+3)^3 = 3n^3 + 27n^2 + 81n + 81 \leq c \cdot 19 \cdot n^2$$

$$\frac{3}{19}n^3 + \frac{27}{19}n^2 + \frac{81}{19}n + \frac{81}{19} \leq c \cdot n^2$$

$$\frac{3}{19}n + \frac{27}{19} + \frac{81}{19n} + \frac{81}{19n^2} \leq c$$

Clearly, this cannot be true. For example $n = \frac{19c}{3}$:

$$\frac{3}{19} \cdot \frac{19c}{3} + \frac{27}{19} + \frac{81}{19\frac{19c}{3}} + \frac{81}{19(\frac{19c}{3})^2} \le c$$

$$c + \frac{27}{19} + \frac{81}{19(\frac{19c}{3})} + \frac{81}{19(\frac{19c}{3})^2} \le c$$

We now have a contradiction, because $\frac{27}{19} + \frac{81}{19\frac{19c}{3}} + \frac{81}{19(\frac{19c}{3})^2} \ge 0$.

7.4.2 Manhattan walks

We are located at the origin of a grid with integer coordinates and want to walk to (i,j) (where $i \ge 0$ and $j \ge 0$). At each grid point, we are allowed to move one step to the north or to the east.

- Design a recursive function F(i,j) that computes the number of possible walks from (0,0) to (i,j).
- ② Find a closed expression (i.e. a formula without recursion) for F(i,j) and prove its correctness by means of an inductive proof.

We find the following recurrence F(i,j):

•
$$F(i,0) =$$

We find the following recurrence F(i, j):

- F(i,0) = 1
- F(i,0) =

We find the following recurrence F(i, j):

- F(i,0) = 1
- F(i,0) = 1
- F(i,j) =

We find the following recurrence F(i, j):

- F(i,0) = 1
- F(i,0) = 1
- F(i,j) = F(i-1,j) + F(i,j-1)

We find the following recurrence F(i, j):

- F(i,0) = 1
- F(i,0) = 1
- F(i,j) = F(i-1,j) + F(i,j-1)

A recursive implementation would be:

```
int numPaths(int i, int j) {
  if ((i==0) || (j==0)) {
    return 1;
  }
  return numPaths(i-1, j) + numPaths(i, j-1);
}
```

Every path consists of i steps to the right and j steps upwards.

Every path consists of i steps to the right and j steps upwards.

Define R = "step right" and U = "step upwards". Every sequence in which i times an R and j times a U occurs is therefore a valid path from (0,0) to (i,j).

Every path consists of i steps to the right and j steps upwards.

Define R= "step right" and U= "step upwards". Every sequence in which i times an R and j times a U occurs is therefore a valid path from (0,0) to (i,j).

So, you might me tempted to say that the total number of paths is (i + j)!.

Every path consists of i steps to the right and j steps upwards.

Define R = "step right" and U = "step upwards". Every sequence in which i times an R and j times a U occurs is therefore a valid path from (0,0) to (i,j).

So, you might me tempted to say that the total number of paths is (i + j)!.

However, we have to correct for counting paths multiple times (you cannot distinguish R_0R_1 from R_1R_0).

Every path consists of i steps to the right and j steps upwards.

Define R = "step right" and U = "step upwards". Every sequence in which i times an R and j times a U occurs is therefore a valid path from (0,0) to (i,j).

So, you might me tempted to say that the total number of paths is (i + j)!.

However, we have to correct for counting paths multiple times (you cannot distinguish R_0R_1 from R_1R_0).

All occurrences of R can be permuted in i! ways:

for example $R_1R_2R_3$, $R_1R_3R_2$, $R_2R_1R_3$, $R_2R_3R_1$, $R_3R_1R_2$, $R_3R_2R_1$

Every path consists of i steps to the right and j steps upwards.

Define R = "step right" and U = "step upwards". Every sequence in which i times an R and j times a U occurs is therefore a valid path from (0,0) to (i,j).

So, you might me tempted to say that the total number of paths is (i + j)!.

However, we have to correct for counting paths multiple times (you cannot distinguish R_0R_1 from R_1R_0).

All occurrences of R can be permuted in i! ways:

for example $R_1R_2R_3$, $R_1R_3R_2$, $R_2R_1R_3$, $R_2R_3R_1$, $R_3R_1R_2$, $R_3R_2R_1$

The same holds for U which can be permuted in j! ways. So, we find:

$$F(i,j) = \frac{(i+j)!}{i! \cdot j!}.$$

Every path consists of i steps to the right and j steps upwards.

Define R = "step right" and U = "step upwards". Every sequence in which i times an R and j times a U occurs is therefore a valid path from (0,0) to (i,j).

So, you might me tempted to say that the total number of paths is (i + j)!.

However, we have to correct for counting paths multiple times (you cannot distinguish R_0R_1 from R_1R_0).

All occurrences of R can be permuted in i! ways:

for example $R_1R_2R_3$, $R_1R_3R_2$, $R_2R_1R_3$, $R_2R_3R_1$, $R_3R_1R_2$, $R_3R_2R_1$

The same holds for U which can be permuted in j! ways. So, we find:

$$F(i,j) = \frac{(i+j)!}{i! \cdot j!}.$$

We prove it using mathematical induction:

Every path consists of i steps to the right and j steps upwards.

Define R = "step right" and U = "step upwards". Every sequence in which i times an R and j times a U occurs is therefore a valid path from (0,0) to (i,j).

So, you might me tempted to say that the total number of paths is (i + j)!.

However, we have to correct for counting paths multiple times (you cannot distinguish R_0R_1 from R_1R_0).

All occurrences of R can be permuted in i! ways:

for example $R_1R_2R_3$, $R_1R_3R_2$, $R_2R_1R_3$, $R_2R_3R_1$, $R_3R_1R_2$, $R_3R_2R_1$

The same holds for U which can be permuted in j! ways. So, we find:

$$F(i,j) = \frac{(i+j)!}{i! \cdot j!}.$$

We prove it using mathematical induction: base cases are i = 0 and j = 0:

$$F(0,j) = 1 = \frac{j!}{j!} = \frac{(0+j)!}{0! \cdot j!}.$$

$$F(i,0) = 1 = \frac{i!}{i!} = \frac{(i+0)!}{i! \cdot i!}.$$

$$F(i,j) = F(i-1, j) + F(i, j-1)$$

$$F(i,j) = F(i-1, j) + F(i, j-1)$$

$$= \frac{(i-1+j)!}{(i-1)! \cdot j!} + \frac{(i+j-1)!}{i! \cdot (j-1)!}$$

$$F(i,j) = F(i-1, j) + F(i, j-1)$$

$$= \frac{(i-1+j)!}{(i-1)! \cdot j!} + \frac{(i+j-1)!}{i! \cdot (j-1)!}$$

$$= \frac{i(i-1+j)!}{i(i-1)! \cdot j!} + \frac{j(i+j-1)!}{i! \cdot j(j-1)!}$$

$$F(i,j) = F(i-1, j) + F(i, j-1)$$

$$= \frac{(i-1+j)!}{(i-1)! \cdot j!} + \frac{(i+j-1)!}{i! \cdot (j-1)!}$$

$$= \frac{i(i-1+j)!}{i(i-1)! \cdot j!} + \frac{j(i+j-1)!}{i! \cdot j(j-1)!}$$

$$= \frac{i(i-1+j)!}{i! \cdot j!} + \frac{j(i+j-1)!}{i! \cdot j!}$$

$$F(i,j) = F(i-1, j) + F(i, j-1)$$

$$= \frac{(i-1+j)!}{(i-1)! \cdot j!} + \frac{(i+j-1)!}{i! \cdot (j-1)!}$$

$$= \frac{i(i-1+j)!}{i(i-1)! \cdot j!} + \frac{j(i+j-1)!}{i! \cdot j(j-1)!}$$

$$= \frac{i(i-1+j)!}{i! \cdot j!} + \frac{j(i+j-1)!}{i! \cdot j(j-1)!}$$

$$= \frac{(i+j)(i+j-1)!}{i! \cdot j!}$$

$$F(i,j) = F(i-1, j) + F(i, j-1)$$

$$= \frac{(i-1+j)!}{(i-1)! \cdot j!} + \frac{(i+j-1)!}{i! \cdot (j-1)!}$$

$$= \frac{i(i-1+j)!}{i(i-1)! \cdot j!} + \frac{j(i+j-1)!}{i! \cdot j(j-1)!}$$

$$= \frac{i(i-1+j)!}{i! \cdot j!} + \frac{j(i+j-1)!}{i! \cdot j(j-1)!}$$

$$= \frac{(i+j)(i+j-1)!}{i! \cdot i!} = \frac{(i+j)!}{i! \cdot i!} QED.$$

The integer root of a natural number x is the greatest integer r such that $r*r \le x$. In this exercise we will implement two different versions of the function isqrt:

```
int isqrt(int x); // greatest r such that r*r \le x
```

- (a) Linear search: use a linear search algorithm to implement the body of the function isqrt.
- (b) Binary search: use a binary search algorithm to implement the body of the function isqrt. Introduce two variables p and q and maintain the invariant $p*p \le x \le q*q$.
- (c) Determine the time complexity of both algorithms. Which version is more efficient?

```
Linear search:
int isqrt(int x) {
  int w = 0;
  while ((w+1)*(w+1) <= x) {
    w++;
  }
  return w;
}</pre>
```

```
Binary search: invariant p*p \le x < q*q
int isqrt(int x) {
  int p = 0;
  int q = x+1;
  while (p != q - 1) {
    int m = (p + q)/2;
    if (m*m \le x) {
     p = m;
    } else {
      q = m;
  return p;
```

```
Binary search: invariant p*p \le x < q*q
int isqrt(int x) {
  int p = 0;
  int q = x+1;
  while (p != q - 1) {
    int m = (p + q)/2;
    if (m*m \le x) {
     p = m;
    } else {
      q = m;
  return p;
}
```

Clearly, binary search is faster than linear search: $O(\log n)$ vs. O(n).

7.4.4. Bisection method for finding roots

In this exercise, we consider the function $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$. The values a, b, c and d are natural numbers.

Write a function that, using binary search, returns a double value x such that the absolute value of f(x) is less than 0.0001.

7.4.4. Bisection method for finding roots

```
double f(int a, int b, int c, int d, double x) {
  return a*x*x*x + b*x*x + c*x + d;
}
double absval(double n) {
  return (n < 0 ? -n : n);
}</pre>
```

7.4.4. Bisection method for finding roots

```
double bisection(int a, int b, int c, int d) {
  double left=-1, right=1, mid;
  while (f(a, b, c, d, left) > 0) {
    left *= 2;
  while (f(a, b, c, d, right) <= 0) {
    right *= 2;
  // invariant: f(a,b,c,d,left) \le 0 \le f(a,b,c,d,right)
  while (absval(f(a,b,c,d,left)) >= 0.0001) {
    mid = (left + right)/2;
    if (f(a,b,c,d,mid) \le 0) {
      left = mid;
    } else {
      right = mid;
  return left;
```

Given is the declaration:

```
int alt[N][N];
```

Think of alt as a landscape, where alt[x][y] denotes the altitude at (x,y).

(a) [Easy] Write a code fragment that counts the number of points that have an altitude below a given altitude w. The time complexity of your algorithm should be quadratic in N. For example, if w=20, we count the number of **bold face** figures in the following matrix:

1	16	25	22	0	1	17	20	19	29
9	22	7	1	5	16	13	3	14	24
12	6	13	16	14	20	9	14	11	6
16	0	2	13	8	2	16	14	3	16
25	16	20	27	7	3	5	27	24	22
23	23	2	29	14	26	26	14	8	19
25	19	9	18	29	20	27	15	8	18
27	20	27	12	21	1	14	12	6	26
16	7	8	12	3	16	15	15	18	0
13	2	11	29	9	23	15	24	7	12

```
int alt[N][N] = {
  {7, 13, 14, 25, 25, 27, 29, 29, 32, 33},
  \{6, 11, 12, 23, 24, 25, 27, 29, 32, 32\},\
  \{6, 9, 12, 22, 22, 23, 27, 29, 30, 30\},\
  \{6, 9, 10, 20, 20, 23, 25, 25, 27, 28\},\
 \{6, 9, 10, 18, 20, 21, 21, 23, 25, 25\},\
 \{6, 7, 10, 16, 16, 19, 21, 22, 23, 23\},\
 \{5, 5, 8, 14, 15, 17, 19, 21, 21, 23\},\
 \{5, 5, 6, 12, 12, 15, 16, 17, 18, 19\},\
 \{5, 5, 6, 10, 12, 14, 15, 16, 17, 19\},\
 \{3, 5, 6, 8, 9, 9, 9, 10, 11, 13\}
};
int easy(int w) {
  int i, j, cnt = 0;
  for (i = 0; i < N; i++) {
    for (j = 0; j < N; j++) {
      cnt += (alt[i][j] < w);</pre>
  return cnt;
}
```

- (b) [Intermediate] Again, consider the array arr, with some extra restrictions:
 - If $x0 \le x1$ then $alt[x0][y] \le alt[x1][y]$ for all y.
 - If y0 <= y1 then alt[x][y0] <= alt[x][y0] for all x.

Think of alt as a slope of which the altitude does not decrease if one moves to the east or north (or north-east).

7	13	14	25	25	27	29	29	32	33
6	11	12	23	24	25	27	29	32	32
6	9	12	22	22	23	27	29	30	30
6	9	10	20	20	23	25	25	27	28
6	9	10	18	20	21	21	23	25	25
6	7	10	16	16	19	21	22	23	23
5	5	8	14	15	17	19	21	21	23
5	5	6	12	12	15	16	17	18	19
5	5	6	10	12	14	15	16	17	19
3	5	6	8	9	9	9	10	11	13

Write a code fragment that counts the number of points that have an altitude below a given altitude w. The time complexity of your algorithm should be of the order N*log N. [Hint: Use a binary search per row.]

```
int binarySearch(int length, int arr[], int value) {
  int left = 0, right = length;
  while (left + 1 < right) {
    int mid = (left + right)/2;
    if (value < arr[mid]) {</pre>
      right = mid; /* right is lowered */
    } else {
      left = mid; /* left is raised */
  return left;
int intermediate(int w) {
  int cnt = 0;
  for (int i = 0; i < N; i++) {
    int j = binarySearch(N, alt[i], w-1);
    if (alt[i][j] < w) {</pre>
      cnt += j + 1;
  return cnt;
```

(c) [Hard] The same exercise as in (b), but now with a linear time complexity (i.e. of the order \mathbb{N}).

(c) [Hard] The same exercise as in (b), but now with a linear time complexity (i.e. of the order \mathbb{N}).

```
int hard(int w) {
  int i=0, j=0, cnt=0;
  while ((i < N) && (j < N)) {
    if (alt[i][j] >= w) {
        i++;
    } else {
        cnt += N-i;
        j++;
    }
}
return cnt;
}
```