Grupa index 146703 Twoje ABCD A=2, B=2, C=6, D=1

Data wykonania 22.1.2024

TTS - PROJEKT 2 - Wzmacniacz tranzystorowy

Na rysunku pokazano klasyczną strukturę wzmacniacza tranzystorowego jednostopniowego.

Wykonaj 2 projekty wzmacniacza na jedną częstotliwość uwzględniając dane liczbowe odpowiadające cyfrom Twojego ABCD:

- A. Zaprojektuj **2 struktury** wzmacniacza tranzystorowego dobierając dwie pary obwodów z Karty obwodów dopasowujących, przy czym <u>każdy obwód powinien być inny</u>.
- B. Oblicz wzmocnienie wzmacniacza w decybelach, wykorzystaj formułę wzmocnienia unilateralnego. Użyj wykresu Smitha do obliczeń.
- C. Oblicz wymiary elektryczne i rzeczywiste linii mikropaskowych obwodów Twoich wzmacniaczy na podanym laminacie podłoża.
- D. Wszystko co zrobiłeś opisz w raporcie na 3-4 strony, narysuj i opisz schematy wzmacniaczy, a także wykonaj rysunki obwodów dopasowujących w dobranej skali.

Rysunek płytki, na której wytrawiono zaprojektowane przez Ciebie obwody dopasowujące wygląda jak na rysunku niżej. Przedstaw w raporcie 2 takie obwody, zaprojektowałeś 2 wersje wzmacniacza.

Umieść Twoje dane w Tabeli.

	${S_{11}}$		$\{S_{21}\}$		${S_{12}}$		${S_{22}}$		A=2	C=6	D=1
В	Mod	Arg	Mod	Arg	Mod	Arg	Mod	Arg	f[MHz]	н/т	ε _R
	0,68	149	5,07	46	0,072	65	0,61	-48	2200	H=0,7[mm] / T=50um	10,2

Wyniki obliczeń podaj obok rysunków obwodów dopasowujących.

Karta obwodów dla wzmacniaczy tranzystorowych dopasowujących impedancję Z_L

Podaj obliczone: l_R , l_M i d.

Podaj obliczone: l_R, l_M i d.

przy obwodzie 2 otwartym 1 dobieram mniej więcej impedancje linii l=1mm, W=2mm ... = 45.15Ohm układ 1 rozawarty lm=4,6 mm lr=6,9 mm W=2mm

.

układ zwarty 2

długości linii przy szerokości scierzki W=2mm lm=4,625mm lr=17,624 – może się nie zmieścić.

.

obliczam dla 3 – sprowadzenie do linii poziomej, i znalezienie współczynnika fali stojącej WFS – ρ

 $Z_{03} = Z_0 * \rho^0,5=92[Ohm] I1=4,6mm w=1,7, I2=8,4 mm, w=0,51 mm$

obliczam dla 4 – sprowadzenie do linii poziomej, i znalezienie współczynnika fali stojącej WFS – ρ Z₀₄=Z₀/ ρ ^0,5=27[Ohm]

I1=12,8 mm w=1,7 mm

12=8mm, w=4,11 mm

Obliczam wzmocnienie

Dane do obliczeń:

Wzór wzmocnienia unilateralnego:

$$G = (1/(1 - |S11|^2) * |S21|^2 * 1/(1 - |S22|^2)) = 69,9553796971254[-]$$

Wzmocnienie : G = 10 * log10 G[-] = 18,4482111815505 [dB]