Exercise 1*

Draw a graphical representation of the complete lattice $(2^{\{a,b,c\}},\subseteq)$ and compute supremum and infimum of the following sets:

- 1. $\sqcap\{\{a\},\{b\}\}=?$
- 2. $\sqcup \{\{a\}, \{b\}\} = ?$
- 3. $\sqcap\{\{a\},\{a,b\},\{a,c\}\}=?$
- 4. $\sqcup \{\{a\}, \{a,b\}, \{a,c\}\} = ?$
- 5. $\sqcap\{\{a\},\{b\},\{c\}\}=?$
- 6. $\sqcup \{\{a\}, \{b\}, \{c\}\} = ?$
- 7. $\sqcap \{\{a\}, \{a,b\}, \{b\}, \emptyset\} = ?$
- 8. $\sqcup \{\{a\}, \{a,b\}, \{b\}, \emptyset\} = ?$

Solution of Exercise 1

The complete lattice:

- 1. $\sqcap \{\{a\}, \{b\}\} = \emptyset$
- 2. $\sqcup \{\{a\}, \{b\}\} = \{a, b\}$
- 3. $\sqcap\{\{a\},\{a,b\},\{a,c\}\}=\{a\}$
- 4. $\sqcup \{\{a\}, \{a,b\}, \{a,c\}\} = \{a,b,c\}$

- 5. $\sqcap \{\{a\}, \{b\}, \{c\}\} = \emptyset$
- 6. $\sqcup \{\{a\}, \{b\}, \{c\}\} = \{a, b, c\}$
- 7. $\sqcap \{\{a\}, \{a,b\}, \{b\}, \emptyset\} = \emptyset$
- 8. $\sqcup \{\{a\}, \{a,b\}, \{b\}, \emptyset\} = \{a,b\}$

Exercise 2

Prove that for any partially ordered set (D, \sqsubseteq) and any $X \subseteq D$, if supremum of X $(\sqcup X)$ and infimum of X $(\sqcap X)$ exist then they are uniquely defined. (Hint: use the definition of supremum and infimum and antisymmetry of \sqsubseteq .)

Solution of Exercise 2

We prove the claim for the supremum (least upper bound) of X. The arguments for the infimum are symmetric. Let $d_1, d_2 \in D$ be two supremums of a given set X. This means that $X \sqsubseteq d_1$ and $X \sqsubseteq d_2$ as both d_1 and d_2 are upper bounds of X. Now because d_1 is the least upper bound and d_2 is an upper bound we get $d_1 \sqsubseteq d_2$. Similarly, d_2 is the least upper bound and d_1 is an upper bound so $d_2 \sqsubseteq d_1$. However, from antisymmetry and $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1$ we get that $d_1 = d_2$.

Exercise 3

Let (D, \Box) be a complete lattice. What are $\Box \emptyset$ and $\Box \emptyset$ equal to?

Solution of Exercise 3

- $\sqcup \emptyset = \bot = \sqcap D$.
- $\sqcap \emptyset = \top = \sqcup D$.

Exercise 4*

Consider the complete lattice $(2^{\{a,b,c\}},\subseteq)$. Define a function $f:2^{\{a,b,c\}}\to 2^{\{a,b,c\}}$ such that f is monotonic.

• Compute the greatest fixed point by using directly the Tarski's fixed point theorem.

• Compute the least fixed point by using the Tarski's fixed point theorem for finite lattices (i.e. by starting from \perp and by applying repeatedly the function f until the fixed point is reached).

Solution of Exercise 4

For example we define f as follows (note that there are many possibilites):

S	f(S)
Ø	<i>{a}</i>
$\{a\}$	$\{a\}$
$\{b\}$	$\{a\}$
$\{c\}$	$\{a\}$
$\{a,b,c\}$	$\{a,b\}$
$\{a,b\}$	$\{a,b\}$
$\{a,c\}$	$\{a,b\}$
$\{b,c\}$	$\{a,b\}$

The function f is monotonic which we can verify by a case inspection.

• According to Tarski's fixed point theorem, the greatest fixed point gfp(f) is given by $gfp(f) = \sqcup A$, where

$$A = \left\{ x \in 2^{\{a,b,c\}} \mid x \sqsubseteq f(x) \right\}.$$

In our case, by the definition of f, we get $A = \{\emptyset, \{a\}, \{a,b\}\}$. The supremum of A in $2^{\{a,b,c\}}$ is $\{a,b\}$. So, by Tarski's fixed point theorem, the greatest fixed point of f is $\{a,b\}$.

• First note that $\bot = \Box 2^{\{a,b,c\}} = \emptyset$. We now repeatedly apply f until it stabilizes

$$f(\emptyset) = \{a\}$$

$$f(f(\emptyset)) = f(\{a\}) = \{a\}$$

and hence the least fixed point of f is $\{a\}$.

Exercise 5

Consider the following labelled transition system.

$$s \longleftrightarrow b \longleftrightarrow a$$

$$s \longleftrightarrow s_1 \longleftrightarrow s_2$$

Compute for which sets of states $[X] \subseteq \{s, s_1, s_2\}$ the following formulae are true.

- $X = \langle a \rangle tt \vee [b] X$
- $X = \langle a \rangle t t \vee ([b] X \wedge \langle b \rangle t t)$

Solution of Exercise 5

- $X = \langle a \rangle t t \vee [b] X$
 - The equation holds for the following sets of states: $\{s_2, s\}, \{s_2, s_1, s\}$.
- $\bullet \ X = \langle a \rangle t t \vee ([b] X \wedge \langle b \rangle t t)$
 - The equation holds only for the set $\{s_2\}$.