

Department of Computer Science CSCI 2824: Discrete Structures Chris Ketelsen

Sets and Functions

Countable and Uncountable Sets

So far we've discussed sets like $A = \{a, b, c\}$ where, e.g. |A| = 3

Such a set is said to be a finite set or have finite cardinality

But we've not talked much about the cardinality of sets like $\{n \in \mathbb{N} \mid n^2\}$ which clearly has an infinite number of elements

OK, so shouldn't the cardinality of $B = \{n \in \mathbb{N} \mid n^2\}$ be $|B| = \infty$ and we're done?

OK, so shouldn't the cardinality of $B = \{n \in \mathbb{N} \mid n^2\}$ be $|B| = \infty$ and we're done?

Note quite, it turns out that it's useful to break up just how infinite a set is into two classes. Roughly they are described as follows:

Countably Infinite: We could count each member of the set if we had infinite time

Uncountable: We could never even list each element of the set even in infinite time

OK, so shouldn't the cardinality of $B = \{n \in \mathbb{N} \mid n^2\}$ be $|B| = \infty$ and we're done?

Note quite, it turns out that it's useful to break up just how infinite a set is into two classes. Roughly they are described as follows:

Countably Infinite: We could count each member of the set if we had infinite time

Uncountable: We could never even list each element of the set even in infinite time

Def: An infinite set A is called **countable** or **countably infinite** if there is a one-to-one map between the natural numbers and each element of A. A set A is called **uncountable** if it is infinite but not countable.

Example: Show that the set of positive even integers is countable

We want to find a one-to-one map between the positive even integers $\{2, 4, 5, 8, 10, ...\}$ and the natural numbers $\{0, 1, 2, ...\}$

Example: Show that the set of positive even integers is countable

We want to find a one-to-one map between the positive even integers $\{2, 4, 5, 8, 10, ...\}$ and the natural numbers $\{0, 1, 2, ...\}$

This one's pretty straightforward. We have

N		Evens		
0	\Leftrightarrow	2		
1	\Leftrightarrow	4		
2	\Leftrightarrow	6		
	:			

Better Yet: Define function relationship f(n) = 2n + 2

Example: Show that the set of all integers is countable

Example: Show that the set of all integers is countable

We want to find a one-to-one map between the natural numbers and $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$

N		Integers	
0	\Leftrightarrow	0	
1	\Leftrightarrow	-1	
2	\Leftrightarrow	1	
3	\Leftrightarrow	-2	
4	\Leftrightarrow	2	
	÷		

Better Yet: Define function $f(n) = (-1)^n \lfloor (n+1)/2 \rfloor$

Example: The positive rational numbers are countable

$\frac{1}{1}$	$\frac{2}{1}$	$\frac{3}{1}$	$\frac{4}{1}$	$\frac{5}{1}$	$\frac{6}{1}$	•••
$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{2}$	$\frac{5}{2}$	$\frac{6}{2}$	•••
$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{4}{3}$	$\frac{5}{3}$	6 1 6 2 6 3 6 4 6 5	•••
$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	$\frac{5}{4}$	$\frac{6}{4}$	•••
$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$	$\frac{2}{1}$ $\frac{2}{2}$ $\frac{2}{3}$ $\frac{2}{4}$ $\frac{2}{5}$	$\frac{3}{1}$ $\frac{3}{2}$ $\frac{3}{4}$ $\frac{3}{5}$	$\frac{4}{1}$ $\frac{4}{2}$ $\frac{4}{3}$ $\frac{4}{4}$ $\frac{4}{5}$	$\frac{5}{1}$ $\frac{5}{2}$ $\frac{5}{3}$ $\frac{5}{4}$ $\frac{5}{5}$	$\frac{6}{5}$	•••
:	:	:	:	:	:	

Example: The real numbers are uncountable. Let's look at just [0, 1]

```
      0.
      1
      2
      3
      4
      3
      5
      3
      4
      5
      3
      0
      8
      ...

      0.
      9
      8
      0
      8
      0
      9
      0
      9
      0
      9
      ...

      0.
      7
      5
      0
      0
      3
      8
      4
      2
      3
      4
      0
      8
      ...

      0.
      0
      8
      2
      3
      4
      0
      8
      2
      4
      3
      0
      8
      ...

      0.
      5
      9
      8
      2
      3
      6
      1
      5
      3
      8
      9
      4
      ...

      0.
      8
      9
      2
      4
      7
      8
      2
      3
      4
      6
      5
      9
      ...

      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
```

Let's suppose we can list them all, and look for a contradiction

Example: The real numbers are uncountable. Let's look at just [0, 1]

```
      0.
      1
      2
      3
      4
      3
      5
      3
      4
      5
      3
      0
      8
      ...

      0.
      9
      8
      0
      8
      0
      9
      0
      9
      0
      9
      ...

      0.
      7
      5
      0
      0
      3
      8
      4
      2
      3
      4
      0
      8
      ...

      0.
      0
      8
      2
      3
      4
      0
      8
      2
      4
      3
      0
      8
      ...

      0.
      5
      9
      8
      2
      3
      6
      1
      5
      3
      8
      9
      4
      ...

      0.
      8
      9
      2
      4
      7
      8
      2
      3
      4
      6
      5
      9
      ...

      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
```

Let's suppose we can list them all, and look for a contradiction

Contradiction: We'll construct a number that can't be in the list

Example: The real numbers are uncountable. Let's look at just [0, 1]

```
      0.
      1
      2
      3
      4
      3
      5
      3
      4
      5
      3
      0
      8
      ...

      0.
      9
      8
      0
      8
      0
      9
      0
      9
      0
      9
      ...

      0.
      7
      5
      0
      0
      3
      8
      4
      2
      3
      4
      0
      8
      ...

      0.
      0
      8
      2
      3
      4
      0
      8
      2
      4
      3
      0
      8
      ...

      0.
      5
      9
      8
      2
      3
      6
      1
      5
      3
      8
      9
      4
      ...

      0.
      8
      9
      2
      4
      7
      8
      2
      3
      4
      6
      5
      9
      ...

      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...

      0.
      8
      9
      2
      4
      7
      8
      2
      3
      4
      6
      5
      9
      .
```

Let's suppose we can list them all, and look for a contradiction

Contradiction: We'll construct a number that can't be in the list

Strategy: Set the k^{th} digit of our new number based on the k^{th} digit of the k^{th} number in list according to a rule

Example: The real numbers are uncountable. Let's look at just [0, 1]

```
      0.
      1
      2
      3
      4
      3
      5
      3
      4
      5
      3
      0
      8
      ...

      0.
      9
      8
      0
      8
      0
      9
      0
      9
      0
      9
      ...

      0.
      7
      5
      0
      0
      3
      8
      4
      2
      3
      4
      0
      8
      ...

      0.
      0
      8
      2
      3
      4
      0
      8
      2
      4
      3
      0
      8
      ...

      0.
      5
      9
      8
      2
      3
      6
      1
      5
      3
      8
      9
      4
      ...

      0.
      8
      9
      2
      4
      7
      8
      2
      3
      4
      6
      5
      9
      ...

      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...

      0.
      8
      9
      2
      4
      7
      8
      2
      3
      4
      6
      5
      9
      .
```

Rule:

- If k^{th} digit of the k^{th} number is a 3, our number's is a 5
- If k^{th} digit of the k^{th} number is not a 3, our number's is a 3

Example: The real numbers are uncountable. Let's look at just [0, 1]

```
      0.
      1
      2
      3
      4
      3
      5
      3
      4
      5
      3
      0
      8
      ...

      0.
      9
      8
      0
      8
      0
      9
      0
      9
      0
      9
      ...

      0.
      7
      5
      0
      0
      3
      8
      4
      2
      3
      4
      0
      8
      ...

      0.
      0
      8
      2
      3
      4
      0
      8
      2
      4
      3
      0
      8
      ...

      0.
      5
      9
      8
      2
      3
      6
      1
      5
      3
      8
      9
      4
      ...

      0.
      8
      9
      2
      4
      7
      8
      2
      3
      4
      6
      5
      9
      ...

      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
      ...
```

Rule:

- If k^{th} digit of the k^{th} number is a 3, our number's is a 5
- If k^{th} digit of the k^{th} number is not a 3, our number's is a 3

$$m = 0.333553 \cdots$$

Claim: Our constructed number, m, can't already be in the list

Argument:

- 1. m isn't the 1^{st} number b/c their 1^{st} digits don't match
- 2. m isn't the 2^{nd} number b/c their 2^{nd} digits don't match
- 3. m isn't the 3rd number b/c their 3rd digits don't match

and so on and so on ..

Thus we've constructed an m that can't be in the list

This is our contradiction that proves that the real numbers in [0, 1] are uncountable

This proof is called Cantor's Diagonal Argument

