Universidade Federal do Ceará Campus Sobral

Métodos Numéricos – 2020.2 (SBL0081)

Prof. Rui F. Vigelis

1a Avaliação Progressiva

Nome:			

- 1. Represente no sistema F(10, 3, 5, 5) os números:
 - (a) $x_1 = 1473,62$;
 - **(b)** $x_2 = 0.00064931;$
 - (c) $x_3 = -0.08996$;
 - (d) $x_4 = 6712,721.$
- **2.** Aplique o método da bissecção para encontrar a raiz da função $f(x) = x 3\cos(x)$ no intervalo [0, 2], com tolerância $(b_n a_n)/2 < \delta = 10^{-1}$.
- 3. Usando o método da posição falsa, encontre a raiz da função $f(x) = \operatorname{sen}(x) \ln(x)$ no intervalo [2, 3], com tolerância $|f(x_n)| < \varepsilon = 5 \times 10^{-4}$.
- **4.** Aplique o método da iteração de ponto fixo para encontrar a raiz da função $f(x) = x^3 x 5$ no intervalo [0,3], com função de iteração $g(x) = (x+5)^{1/3}$, ponto inicial $x_0 = 1,0$, e tolerância $|f(x_{n+1})| < \varepsilon = 10^{-3}$. Verifique as hipóteses que garantem a convergência do método.
- **5.** Use o método de Newton para encontrar a raiz da função $f(x) = x e^{-x}$ no intervalo [0,1], com ponto inicial $x_0 = 0.5$ e tolerância $|f(x_{n+1})| < \varepsilon = 5 \times 10^{-3}$.
- **6.** Aplique o método das secantes para encontrar a raiz positiva da função $f(x) = x 3 \ln(x)$, com pontos iniciais $x_0 = 1,0$ e $x_1 = 1,5$, e tolerância $|f(x_{n+1})| < \varepsilon = 10^{-3}$.