Fundamentals of MCS (CS)

Grammar, Semantics, and Typing Relation

Outline

- Grammar Structure of the Program
- Evaluation Dynamic Semantics of the Program
- Type System and Typing Static Semantics of the Program

A Lesson from Type Analysis

Types in Computer Science

- * A **type system** is a tractable syntactic method for **proving** the absence of certain **program** behaviors by classifying phrases accord to the kinds of values they compute.
 - The notion of types appear in broader field of study: logic, mathematics, and philosophy.

- * A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases accord to the kinds of values they compute.
 - * a type system can be regarded as calculating a kind of static approximation to the run-time behaviors of the term in a program.

- * a type system can be regarded as calculating a kind of static approximation to the run-time behaviors of the term in a program.
- Example (Fibonacci series)

$$f_1 = 1, f_2 = 2;$$
while $f_1 < 100$ do
 $(f_1, f_2) := (f_2, f_1 + f_2)$
done
$$f_1 = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]$$

* A type system is a tractable syntactic method for **proving the absence of certain program behaviors** by classifying phrases accord to the kinds of values they compute.

function f() = a_complex_test_that_always_gives_true

if f() then 5 else e^{-2i} ("apple" $/\pi$) \Rightarrow type error

- * A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases accord to the kinds of values they compute.
 - * Type-checkers are typically built into compilers and linkers and do their job automatically.

• we come back to this topic next week

Grammar

Syntax of Arithmetic Expressions

t ::=

terms of arithmetic expressions

true

constant true

| false

constant false

I if t then t else t

conditional

10

constant zero

| succ t

successor of t (i.e., t + 1)

| pred t

predecessor of t (i.e., t - 1)

l iszero t

if t is zero?

Examples

- if false then 0 else succ 0⇒ 1
- * succ (succ (succ 0)) $\Rightarrow 3$
- iszero 0⇒ true

- iszero (succ 0)⇒ false
- iszero (pred (succ 0))⇒ true

t ::=

terms of arithmetic expressions

true

constant true

I false

constant false

I if t_1 then t_2 else t_3 conditional

0

constant zero

succ t

successor of t(t + 1)

| pred t

predecessor of t (t - 1)

l iszero t

if t is zero?

Consts(t)

the set of constants in AEs

Consts(true) = { true }

Consts(false) = { false }

if t_1 then t_2 else t_3 conditional

 $Consts(0) = \{ 0 \}$

succ t successor of t(t+1)

pred t predecessor of t(t-1)

iszero t if t is zero?

Consts(t) the set of constants in AEs

Consts(true) = { true }

Consts(false) = { false }

if t_1 then t_2 else t_3 conditional

Consts(0) = { zero }

Consts(succ t) Consts(t)

Consts(pred t) Consts(t)

Consts(iszero t) Consts(t)

```
Consts(t)
                                        the set of constants in AEs
          Consts(true)
                                        = { true }
          Consts(false)
                                        = { false }
          Consts(if t_1 then t_2 else t_3) = Consts(t_1) \cup Consts(t_2) \cup Consts(t_3)
          Consts(0)
                                        = { zero }
          Consts(succ t)
                                        Consts(t)
          Consts(pred t)
                                        Consts(t)
          Consts(iszero t)
                                        Consts(t)
```

t ::=

terms of arithmetic expressions

true

constant true

false

constant false

if t_1 then t_2 else t_3

conditional

0

constant zero

succ t

successor of t(t+1)

pred t

predecessor of t (t - 1)

iszero t

if t is zero?

depth(true) = 1

depth(false) = 1

if t_1 then t_2 else t_3 conditional

depth(0) = 1

succ t_1 successor of t_1 ($t_1 + 1$)

pred t_1 predecessor of t_1 ($t_1 - 1$)

iszero t_1 if t_1 is zero?

```
depth(true) = 1
```

depth(false) = 1

if t_1 then t_2 else t_3 conditional

depth(0) = 1

 $depth(succ t_1) = 1 + depth(t_1)$

 $depth(pred t_1) = 1 + depth(t_1)$

 $depth(iszero t_1) = 1 + depth(t_1)$

```
depth(true)
                            =1
depth(false)
                             =1
depth(if t_1 then t_2 else t_3) = 1 + max(depth(t_1), depth(t_2), depth(t_3))
depth(0)
                             =1
                            = 1 + \operatorname{depth}(t_1)
depth(succ t_1)
depth(pred t_1)
                            = 1 + depth(t_1)
depth(iszero t_1)
                            = 1 + depth(t_1)
```

```
size(true)
                                       =1
                                       =1
size(false)
size(if t_1 then t_2 else t_3)
                                       = 1 + \operatorname{size}(t_1) + \operatorname{size}(t_2) + \operatorname{size}(t_3)
size(0)
size(succ t_1)
                                       = 1 + size(t_1)
size(pred t_1)
                                       = 1 + size(t_1)
size(iszero t_1)
                                       =1+\operatorname{size}(t_1)
```

Evaluation

t ::=

true

false

if t_1 then t_2 else t_3

terms of Boolean expressions

constant true

constant false

conditional

v :=

true

false

Boolean values

true value

false value

if true then t_2 else $t_3 \rightarrow t_2$

(E-IfTrue)

if false then t_2 else $t_3 \rightarrow t_3$

(E-IFELSE)

$$\frac{t_1 \to t_1'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \to \text{if } t_1' \text{ then } t_2 \text{ else } t_3}$$

(E-IF)

if true then t_2 else $t_3 \rightarrow t_2$

(E-IfTrue)

if false then t_2 else $t_3 \rightarrow t_3$

(E-IFELSE)

$$\frac{t_1 \to t_1'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \to \text{if } t_1' \text{ then } t_2 \text{ else } t_3}$$

(E-IF)

 $\overline{ ext{if true then false else false}} o \overline{ ext{false}}$

E-IFTRUE

if true then t_2 else $t_3 \rightarrow t_2$

(E-IFTRUE)

if false then t_2 else $t_3 \rightarrow t_3$

(E-IFELSE)

$$\frac{t_1 \to t_1'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \to \text{if } t_1' \text{ then } t_2 \text{ else } t_3}$$

(E-IF)

 $\overline{ ext{if true then false else false}} o \overline{ ext{false}} o \overline{ ext{false}}$

if true then t_2 else $t_3 \rightarrow t_2$

(E-IFTRUE)

if false then t_2 else $t_3 \rightarrow t_3$

(E-IFELSE)

$$t_1
ightarrow t_1'$$

(E-IF)

if t_1 then t_2 else $t_3 \rightarrow$ if t'_1 then t_2 else t_3

if true then false else false \rightarrow false E-IFTRUE

if (if true then false else false) then true else true \rightarrow if false then true else true

if true then t_2 else $t_3 \rightarrow t_2$

(E-IFTRUE)

if false then t_2 else $t_3 \rightarrow t_3$

(E-IFELSE)

$$t_1
ightarrow t_1'$$
if t_1 then t_2 else $t_3
ightarrow$ if t_1' then t_2 else t_3

(E-IF)

if true then false else false \rightarrow false E-IFTRUE

On termination of evaluation of Boolean expressions

if true then t_2 else $t_3 \rightarrow t_2$

(E-IFTRUE)

if false then t_2 else $t_3 \rightarrow t_3$

(E-IFELSE)

$$\frac{t_1 \to t_1'}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \to \text{if } t_1' \text{ then } t_2 \text{ else } t_3} \tag{E-IF}$$

Each rule translates a larger expression to a smaller one.

$$t_1 \rightarrow t_2$$
 and $size(t_1) > size(t_2)$ and also $size(t) \ge 0$ for all t .

```
t := \dots
0
succ t
pred t
iszero t
```

$$v ::= \dots$$

$$nv := 0$$

$$succ nv$$

terms of Boolean expressions constant zero successor predecessor zero test

Boolean values numeric values

numeric values zero value successor values

Additional evaluation rules

	t_1	\rightarrow	t_1'	
succ	$\overline{t_1}$	\rightarrow	succ	$\overline{t_1'}$

(E-Succ)

 $pred 0 \rightarrow 0$

(E-PredZero)

pred (succ nv_1) $\rightarrow nv_1$

(E-PredSucc)

$$\frac{t_1 \to t_1'}{\mathbf{pred} \ t_1 \to \mathbf{pred} \ t_1'}$$

(E-Pred)

iszero $0 \rightarrow \text{true}$

(E-IsZeroZero)

iszero (succ nv_1) \rightarrow false

(E-IsZeroSucc)

$$\frac{t_1 \to t_1'}{\mathbf{iszero} \ t_1 \to \mathbf{iszero} \ t_1'}$$

(E-IsZero)

Example: Evaluation of a numerical expression

 $pred (succ (pred 0)) \rightarrow pred (succ 0)$

$$\operatorname{pred} (\operatorname{succ} (\operatorname{pred} 0)) \to \operatorname{pred} (\operatorname{succ} 0)$$

$$\frac{t_1 \to t_1'}{\operatorname{succ} t_1 \to \operatorname{succ} t_1'} \tag{E-Succ}$$

$$\mathbf{pred} \ 0 \to 0$$
 (E-PredZero)

pred (succ
$$nv_1$$
) $\to t_1$ (E-PREDSUCC)

$$\frac{t_1 \to t_1'}{\mathbf{pred} \ t_1 \to \mathbf{pred} \ t_1'} \tag{E-PRED}$$

iszero $0 \rightarrow \text{true}$ (E-IsZeroZero)

iszero (succ nv_1) \rightarrow false (E-IsZeroSucc)

$$\frac{t_1 \to t_1'}{\text{iszero } t_1 \to \text{iszero } t_1'}$$
 (E-IsZero)

$$pred (succ (pred 0)) \rightarrow pred (succ 0)$$

$$\frac{}{\text{pred }0} \rightarrow \frac{\text{E-PredZero}}{}$$

$$\frac{t_1 \to t_1'}{\text{succ } t_1 \to \text{succ } t_1'} \tag{E-Succ}$$

$$\mathbf{pred} \ 0 \to 0$$
 (E-PredZero)

pred (succ
$$nv_1$$
) $\to t_1$ (E-PREDSUCC)

$$\frac{t_1 \to t_1'}{\mathbf{pred} \ t_1 \to \mathbf{pred} \ t_1'} \tag{E-PRED}$$

iszero
$$0 \rightarrow \text{true}$$
 (E-IsZeroZero)

iszero (succ
$$nv_1$$
) \rightarrow false (E-IsZeroSucc)

$$\frac{t_1 \to t_1'}{\text{iszero } t_1 \to \text{iszero } t_1'} \tag{E-IsZero}$$

$$pred (succ (pred 0)) \rightarrow pred (succ 0)$$

$$\overline{\text{pred } 0 \to 0}$$
 E-PredZero

$$\frac{t_1 \to t_1'}{\text{succ } t_1 \to \text{succ } t_1'} \tag{E-Succ}$$

$$\mathbf{pred} \ 0 \to 0$$
 (E-PredZero)

pred (succ
$$nv_1$$
) $\to t_1$ (E-PREDSUCC)

$$\frac{t_1 \to t_1'}{\mathbf{pred} \ t_1 \to \mathbf{pred} \ t_1'} \tag{E-PRED}$$

iszero
$$0 \rightarrow \text{true}$$
 (E-IsZeroZero)

iszero (succ
$$nv_1$$
) \rightarrow false (E-IsZeroSucc)

$$\frac{t_1 \to t_1'}{\text{iszero } t_1 \to \text{iszero } t_1'} \tag{E-IsZero}$$

$$pred (succ (pred 0)) \rightarrow pred (succ 0)$$

$$\frac{\overline{\mathbf{pred}\ 0 \to 0}}{\mathbf{succ}\ (\mathbf{pred}\ 0) \to} \xrightarrow{\text{E-PREDZERO}} \mathbf{E-Succ}$$

$$\frac{t_1 \to t_1'}{\operatorname{succ} t_1 \to \operatorname{succ} t_1'} \tag{E-Succ}$$

 $pred 0 \rightarrow 0$ (E-PredZero)

pred (succ nv_1) $\rightarrow t_1$ (E-PREDSUCC)

$$\frac{t_1 \to t_1'}{\mathbf{pred} \ t_1 \to \mathbf{pred} \ t_1'} \tag{E-PRED}$$

iszero $0 \rightarrow \text{true}$ (E-IsZeroZero)

iszero (succ nv_1) \rightarrow false (E-IsZeroSucc)

$$\frac{t_1 \to t_1'}{\text{iszero } t_1 \to \text{iszero } t_1'}$$
 (E-IsZero)

$$pred (succ (pred 0)) \rightarrow pred (succ 0)$$

$$\frac{\mathbf{pred} \ 0 \to 0}{\mathbf{succ} \ (\mathbf{pred} \ 0) \to \mathbf{succ} \ 0} \xrightarrow{\text{E-PREDZERO}} \text{E-Succ}$$

$$\frac{t_1 \to t'_1}{\operatorname{succ} t_1 \to \operatorname{succ} t'_1} \tag{E-Succ}$$

 $pred 0 \rightarrow 0$ (E-PredZero)

pred (succ nv_1) $\to t_1$ (E-PREDSUCC)

$$\frac{t_1 \to t_1'}{\mathbf{pred} \ t_1 \to \mathbf{pred} \ t_1'} \tag{E-PRED}$$

iszero $0 \rightarrow \text{true}$ (E-IsZeroZero)

iszero (succ nv_1) \rightarrow false (E-IsZeroSucc)

$$\frac{t_1 \to t_1'}{\text{iszero } t_1 \to \text{iszero } t_1'}$$
 (E-IsZero)

$pred (succ (pred 0)) \rightarrow pred (succ 0)$

$$\frac{\overline{\mathbf{pred}\ 0 \to 0}\ \text{E-PREDZERO}}{\mathbf{succ}\ (\mathbf{pred}\ 0) \to \mathbf{succ}\ 0} \xrightarrow{\text{E-Succ}} \mathbf{E-PRED}$$

$$\frac{\mathbf{pred}\ (\mathbf{succ}\ (\mathbf{pred}\ 0)) \to \mathbf{succ}\ 0}{\mathbf{pred}\ (\mathbf{succ}\ (\mathbf{pred}\ 0)) \to \mathbf{succ}\ 0} \xrightarrow{\mathbf{pred}\ (\mathbf{succ}\ (\mathbf{pred}\ 0)) \to \mathbf{succ}\ 0} \mathbf{E-PRED}$$

$$\frac{t_1 \to t_1'}{\mathbf{succ} \ t_1 \to \mathbf{succ} \ t_1'}$$

(E-Succ)

 $pred 0 \rightarrow 0$

(E-PredZero)

pred (succ nv_1) $\rightarrow t_1$

(E-PredSucc)

Q: Can we use the E-PredSucc rule instead of E-Pred?

 $\frac{t_1 \to t_1'}{\mathbf{pred} \ t_1} \to \mathbf{pred} \ t_1'$

(E-Pred)

iszero $0 \rightarrow \text{true}$

(E-IsZeroZero)

A: No (but why not?)

iszero (succ nv_1) \rightarrow false (E-IsZeroSucc)

$$\frac{t_1 \to t_1'}{\text{iszero } t_1 \to \text{iszero } t_1'}$$
 (E-IsZero)

$$\frac{\frac{1}{\text{pred }0 \to 0} \text{ E-PREDZERO}}{\text{succ (pred }0) \to \text{succ }0} \xrightarrow{\text{E-Succ}} \text{E-PRED}$$

$$\frac{\text{pred }(\text{pred }0) \to \text{pred (succ }0)}{\text{pred (succ }0)} \xrightarrow{\text{E-PRED}}$$

$$\frac{t_1 \to t_1'}{\operatorname{succ} t_1 \to \operatorname{succ} t_1'} \tag{E-Succ}$$

 $pred 0 \rightarrow 0$ (E-PredZero)

 $\operatorname{\mathbf{pred}} (\operatorname{\mathbf{succ}} nv_1) \to t_1 \qquad (\text{E-PredSucc})$

$$rac{t_1
ightarrow t_1'}{ ext{pred } t_1
ightarrow ext{pred } t_1'}$$
 (E-PRED)

iszero $0 \rightarrow \text{true}$ (E-IsZeroZero)

iszero (succ nv_1) \rightarrow false (E-IsZeroSucc)

$$\frac{t_1 \to t_1'}{\text{iszero } t_1 \to \text{iszero } t_1'}$$
 (E-IsZero)

$$\frac{ \frac{}{\mathbf{pred} \ 0 \to 0} \ E\text{-PREDZERO}}{\mathbf{succ} \ (\mathbf{pred} \ 0) \to \mathbf{succ} \ 0} \frac{ E\text{-Succ}}{ E\text{-Succ}} \\ \frac{\mathbf{succ} \ (\mathbf{pred} \ 0) \to \mathbf{succ} \ 0}{\mathbf{pred} \ (\mathbf{succ} \ (\mathbf{pred} \ 0)) \to \mathbf{pred} \ (\mathbf{succ} \ 0)} \ E\text{-PRED}$$

$$\frac{t_1 \to t_1'}{\mathbf{succ} \ t_1 \to \mathbf{succ} \ t_1'}$$

(E-Succ)

pred $0 \rightarrow 0$

(E-PredZero)

pred (succ nv_1) $\rightarrow nv_1$

(E-PredSucc)

 $t_1 \rightarrow t_1'$ pred $t_1 \rightarrow \text{pred } t'_1$

(E-Pred)

iszero $0 \rightarrow \text{true}$

(E-IsZeroZero)

iszero (succ nv_1) \rightarrow false (E-IsZeroSucc)

E-PredSucc の右辺の t1 は nv1 の誤り Q: pred (succ 0) について E-Pred は適用できる か?

A: できない.

理由: succ 0 は値だから、ここまでは、授業のな かでの説明のとおり、値 v については $v \rightarrow v'$ と ならない。これが値の定義。このため Pred の仮 定が成立しないため Pred を適用できない.

Q: pred 0 → 0 に0が二箇所に出現するがそれぞれ syntactic element か semantic domain か

at this

$$\frac{t_1 \to t_1'}{\mathbf{iszero} \ t_1 \to \mathbf{iszero} \ t_1'}$$

(E-IsZero)

Previous derivation tree (T₁)

$$\frac{\overline{\mathbf{pred}\ 0 \to 0}\ E\text{-}PREDZERO}{\mathbf{succ}\ (\mathbf{pred}\ 0) \to \mathbf{succ}\ 0} \xrightarrow{E\text{-}SUCC} \\ \overline{\mathbf{pred}\ (\mathbf{succ}\ (\mathbf{pred}\ 0)) \to \mathbf{pred}\ (\mathbf{succ}\ 0)} \ E\text{-}PRED$$

Another derivation tree (T₂)

$$\frac{}{\mathbf{pred} \ (\mathbf{succ} \ 0) \to 0} \ \text{E-PredSucc}$$

- * Their combined meaning is: pred(succ (pred 0)) \rightarrow pred(succ 0) \rightarrow 0
- * pred(succ (pred 0)) \rightarrow * 0

Type System

Types in Computer Science

- * A **type system** is a tractable syntactic method for **proving** the absence of certain **program** behaviors by classifying phrases accord to the kinds of values they compute.
 - The notion of types appear in broader field of study: logic, mathematics, and philosophy.

- * A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases accord to the kinds of values they compute.
 - * a type system can be regarded as calculating a kind of static approximation to the run-time behaviors of the term in a program.

- * a type system can be regarded as calculating a kind of static approximation to the run-time behaviors of the term in a program.
- Example (Fibonacci series)

$$f_1 = 1$$
, $f_2 = 2$; $f_1 = 1$, $f_2 = 2$, $f_3 = 3$, $f_4 = 5$, while $f_1 < 100$ do $f_5 = 8$, $f_6 = 13$, $f_7 = 21$, $f_8 = 34$, $(f_1, f_2) := (f_2, f_1 + f_2)$ $f_9 = 55$, $f_{10} = 89$, ...

* A type system is a tractable syntactic method for **proving the absence of certain program behaviors** by classifying phrases accord to the kinds of values they compute.

```
function f() =
  a_complex_test_that_always_gives_true;
```

if f() then 5 else e^{-2i} ("apple" $/\pi$) \Rightarrow type error

- * A type system is a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases accord to the kinds of values they compute.
 - * Type-checkers are typically built into compilers and linkers and do their job automatically.

Type annotations to assist typecheckers

```
    f1 = 1, f2 = 2;
    while f1 < 100 do (f1, f2) := (f2, f1+f2) done</li>
```

```
* int f1 = 1, f2 = 2;
while f1 < 100 {
   int t = f1;
   f1 = f2; f2 = t + f2;
}</pre>
```

Efficiency of type checking algorithms

- We are interested in type checking algorithms that are efficient, but ...
 - * The computational complexity of System-F (the type system of ML) is O(e^{depth of scopes})
 - * For undecidable type systems, there are type checking "heuristics" that halt quickly in most cases of practical interest.

What type systems are good for?

- Detecting errors
- Abstraction
- Documentation
- Language safety
- Efficiency

Types in Error Detection

- Programmers working in richly typed languages often remark: programs tend to "just work" once they pass the type checker.
- Example: Counting money with mixed currency

```
    double dollar = 5.50, euro = 7.30;
    double sum = dollar + euro; // Bug: missing currency conversion
```

Types in Program Abstraction

- Type system enforces disciplined programming
 - Example: Currency conversion library
 type currency = Yen(Int) | Dollar(Float) | Euro(Float)
 function toYen: currency → currency
 function toDollar: currency → currency
 function toEuro: currency → currency
 function total: currency List → currency
- import Currency;var y = toYen(total [Yen(1000), Dollar(5.50), Euro(7.30)])

Array module

- * Array.make: int $\rightarrow \alpha \rightarrow \alpha$ array let $v = Array.make 3 1.0 <math>\Rightarrow$ [| 1.0; 1.0; 1.0|]
- * Array.length: α array \rightarrow int Array.length $v \Rightarrow 3$
- * Array.append: α array $\rightarrow \alpha$ array $\rightarrow \alpha$ array let $v2 = Array.append <math>v = v \Rightarrow [1 \ 1.0; 1.0; 1.0; 1.0; 1.0; 1.0]$
- * Array.fill: α array \rightarrow pos: int \rightarrow len: int \rightarrow α \rightarrow unit Array.fill v2 \sim pos: 2 \sim len: 2 5.0 \Rightarrow [| 1.0; 1.0; 5.0; 5.0; 1.0; 1.0|]

Types in Language safety

- * Safety: a safe language protects its own abstractions.
 - * Example (Array) The programmer expects the content of an array can change only by using the array update operation on the array.
 - * int a = 1, b[2]; printf("a = %u\n", a); $\Rightarrow 1$ for (int i = 0; i <= 2; i++) b[i] = 100 - i; printf("a = %u\n", a); $\Rightarrow 2$

Type system vs Safety

	Statically Checked	Dynamically Checked
Safe	ML, Haskell, Java, C#,	LISP, Basic, Scheme, Python, Ruby, JavaScript,
Unsafe	C, C++	

Types and Efficiency

C	1.12
Java	1.71
Fortran	1.95
Scala	2.07
LISP*	2.15
Haskell	2.15
C#	2.42
OCaml	3.15
JavaScript*	4.27
Smalltalk*	20.27
Python*	41.79
Ruby*	70.74

Typing

Types (kinds of values)

T ::=

Types

Bool type of booleans

Nat

type of natural numbers

Typing Relation

true : Bool (T-True)

false : Bool (T-FALSE)

 $\frac{t_1 : Bool}{\mathbf{if} \ t_1 \ \mathbf{then} \ t_2 \ \mathbf{else} \ t_3 : T} \tag{T-IF}$

 $0: \mathbf{Nat}$ (T-Zero)

 $\frac{t_1 : \mathbf{Nat}}{\mathrm{succ}\ t_1 : \mathbf{Nat}} \tag{T-Succ}$

 $\frac{t_1 : \mathbf{Nat}}{\mathrm{pred} \ t_1 : \mathbf{Nat}} \tag{T-PRED}$

 $\frac{t_1 : \mathbf{Nat}}{\mathbf{iszero} \ t_1 : \mathbf{Bool}}$ (T-IsZero)

Example: a type of an arithmetic expression

Q: How can we assure ourselves that "if iszero 0 then 0 else pred 0" evaluates to a natural number?

Q: the type of "if iszero 0 then 0 else pred 0"?

$$\frac{t_1:Bool}{\mathbf{if}\ t_1\ \mathbf{then}\ t_2\ \mathbf{else}\ t_3:T} \tag{T-IF}$$

$$0: \mathbf{Nat}$$
 (T-Zero)

$$\frac{t_1 : \mathbf{Nat}}{\mathrm{succ}\ t_1 : \mathbf{Nat}} \tag{T-Succ}$$

$$\frac{t_1 : \mathbf{Nat}}{\mathrm{pred}\ t_1 : \mathbf{Nat}} \tag{T-PRED}$$

$$\frac{t_1 : \mathbf{Nat}}{\mathbf{iszero} \ t_1 : \mathbf{Bool}}$$
 (T-IsZero)

true : Bool (T-True)

false : Bool (T-False)

 $\frac{t_1 : Bool}{\mathbf{if} \ t_1 \ \mathbf{then} \ t_2 \ \mathbf{else} \ t_3 : T} \tag{T-IF}$

 $0: \mathbf{Nat}$ (T-Zero)

 $\frac{t_1 : \mathbf{Nat}}{\mathbf{succ} \ t_1 : \mathbf{Nat}}$ (T-Succ)

 $\frac{t_1 : \mathbf{Nat}}{\mathrm{pred} \ t_1 : \mathbf{Nat}}$ (T-PRED)

 $\frac{t_1 : \mathbf{Nat}}{\mathbf{iszero} \ t_1 : \mathbf{Bool}}$ (T-IsZero)

Uniqueness theorem:

If $t: T_1$ and also $t: T_2$ then $T_1 = T_2$.

Progress theorem:

Suppose t is a well-typed term (t:T for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Preservation theorem:

Uniqueness theorem:

If $t: T_1$ and also $t: T_2$ then $T_1 = T_2$.

Progress theorem:

Suppose t is a well-typed term (t:T for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Preservation theorem:

- Uniqueness theorem: A well-typed term is not stuck.
 If t: T₁ and also t: T₂ then expression is stuck if it is not a value and also it is not irreducible by any evaluation rule.

 Progress theorem:
 - Suppose t is a well-typed term (t: T for some T). Then either t is a value or else there is some t' with $t \to t'$.
- Preservation theorem:

Uniqueness theorem:

If $t: T_1$ and also $t: T_2$ then $T_1 = T_2$.

Progress theorem:

Suppose t is a well-typed term (t:T for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Preservation theorem:

Uniqueness theorem:

If $t: T_1$ and also $t: T_2$ then $T_1 = T_2$.

Progress theorem:

Suppose t is a well-typed term (t: T for some T). Then either t is a value or else the well-typed term takes a step of evaluation, then the resulting

* Preservation theorem: term is also well typed.