00 Programozás

Konstansok, származtatás

Dr. Hatwagner F. Miklós

Széchenyi István Egyetem, Győr

https://github.com/wajzy/GKxB_INTM119 2024. november 24.

A const típusmódosító változókkal használva

- Konstans változó (paradoxon! → elnevezett konstans)
- Memóriában helyezik el,
- azonnali inicializálást igényel,
- értéke megjelenik a nyomkövető programokban (debugger),
- csak olvasható (fordító biztosítja),
- van típusa (vö. #define).
- Láthatóságuk, hatókörük jobban szabályozható.

Tömbök definiálása, méret megadása

- konstans kifejezéssel,
- konstans kifejezéssel inicializált elnevezett konstanssal,
- vagy tetszőleges kifejezéssel C99 / C++14-től

const

constMain.cpp

```
1 #include <iostream>
  #include "constHeader.h"
  #define MEANING M 42 // no type, cumbersome debugging
4
   void array(int);
6
   int main() {
8
     const int MEANING = 42:
     int meaningCopy = MEANING; // read
9
10
     // MEANING++: // error
     // MEANING = -42; // error
11
```

const

constMain.cpp

```
// size expressed with constant expression
12
     int oldArray1[MEANING M * sizeof(double)]; // OK
13
     int oldArray2[MEANING * sizeof(double)]; // OK
14
15
     array (21);
16
     // std::cout << i << std::endl; // error
17
     std::cout << ci << std::endl; // OK
     std::cout << si << std::endl; // OK
18
19
20
21
   void array(int size) {
22
     // C99+ / C++14+ -> variable size is OK, allocated on stack
     int newArray[size * sizeof(double)];
23
24
```

const

constHeader.h

```
1 // int i = 1; // error, multiple definition of 'i'
2 const int ci = 2; // OK, visible only in defining file scope
3 static int si = 3; // OK, file scope
```

constSource.cpp

```
1 #include "constHeader.h"
```

A constexpr módosító (C++11/14) hatása a függvényekre:

- "Értékeld ki fordításkor!" → gyorsabb programok, lassabb fordítás
- Viszonylag egyszerű függvények készíthetők csak vele (C++11: csak 1 utasítás)
- Csak olyan globális változókra hivatkozhat, melyek konstansok
- Csak constexpr függvényt hívhat, akár önmagát is
- Értékkel kell visszatérnie
- Nem csak konstansokkal "hívható", de akkor az eredmény nem használható konstans inicializálására
- C++11-ben még tiltott volt a prefix ++ operátor használata

constexpr.cpr

```
constexpr double PI = 3.14159;
   constexpr double deg2rad(double degree) {
     return degree * PI / 180.;
6
7
8
   int main() {
     constexpr double right Angle = deg2rad(90):
10
      std::cout << rightAngle << std::endl;
11
     int deg180 = 180:
12
     // the value of 'deg180' is not usable in a constant expression
13
     // constexpr double rad180 = deg2rad(deg180);
14
      double rad180 = deg2rad(deg180); // OK
15
      std::cout << rad180 << std::endl;
16
     return 0:
17
```

fibonacci1.cpp

```
3  constexpr int fibonacci1(int n) {
4    return (n <= 1) ? n : fibonacci1(n-1) + fibonacci1(n-2);
5  }
6
7  int main() {
8    constexpr int i = fibonacci1(32);
9    std::cout << i << std::endl;
10 }</pre>
```

Mérés

```
$ time ./fibonacci1
2178309
real 0m0,005s
user 0m0,005s
svs 0m0.000s
```

fibonacci2.cpp

```
3 int fibonacci2(int n) {
4   return (n <= 1) ? n : fibonacci2(n-1) + fibonacci2(n-2);
5 }
6
7 int main() {
8   int i = fibonacci2(32);
9   std::cout << i << std::endl;
10 }</pre>
```

Mérés

```
$ time ./fibonacci2
2178309
real 0m0,036s
user 0m0,036s
sys 0m0.000s
```

Osztályok tagfüggvényei, sőt, konstruktor is jelölhető constexpr-nek, de

- lacktriangle Az adattagok kvázi konstansok lesznek, amik inicializálása túl későn van a konstruktorban o taginicializáló lista
- Konstans adattagok és referenciák csak taginicializáló listával hozhatók létre.
- Ez egyébként használható lett volna a nem konstans adattagok inicializálására is.
- Példányosításkor a paramétereknek konstansnak kell lenniük.
- A tagfüggvények implicit inline-ok lesznek.

Rectangle10.cpp

```
class Rectangle {
        double mWidth;
        double mHeight;
      public:
        constexpr Rectangle (double width, double height) :
8
          mWidth(width), mHeight(height) {}
10
        constexpr double getArea() const {
11
          return mWidth * mHeight:
12
13
14
        constexpr double getPerimeter() const {
15
          return 2 * (mWidth + mHeight);
16
        };
17
   };
```

Rectangle 10.cpp

```
int main() {
    const int width = 5.;
    constexpr Rectangle r1(width, 3.);
    std::cout << "Area: " << r1.getArea() << std::endl;
    std::cout << "Perimeter: " << r1.getPerimeter() << std::endl;
}</pre>
```

Mutató konstans változóra:

- Maga a mutató nem konstans, nem kell inicializálni.
- Mutathat változóra, csak olvashatóvá téve azt.

```
const int ci = 1; // must be initialized
int i = 2;
const int* pci; // the pointer is NOT constant
pci = &ci;
// *pci = 3; // assignment of read—only location '* pci'
pci = &i;
// *pci = 3; // read—only access to 'i'
```

Konstansok és mutatók

Mutató változóra:

Nem tartalmazhatja elnevezett állandó címét, mert a védelem nem kerülhető meg.

```
int* pi = &i; // ok
// pi = &ci; // invalid conversion from 'const int*' to 'int*'
```

Konstans mutató egy változóra:

- Mivel a mutató konstans, inicializálni kell.
- A mutatott változó módosítható, de a mutató nem mutathat máshova.

```
int * const cpi = &i; // must be initialized

* cpi = 3; // OK

int i2 = 4;

// cpi = &i2; // assignment of read—only variable 'cpi'
```

Konstans mutató konstansra:

- Mindent csak olvasni lehet.
- Kiolvasás hátulról előre:
 cpci egy const mutató (*), ami olyan int-et címez, ami const.

Konstansok és referenciák

Referencia konstansra:

- Minden referenciát inicializálni kell.
- Ha változót rendelünk hozzá, akkor az érték ezen keresztül csak olvasható lesz.
- Inicializálható konstans kifejezéssel!

constref.cpp

```
const int ci = 1;
int i = 2;
const int& rci = ci; // references must be initialized
// rci = 3; // assignment of read-only reference 'rci'
const int& rci2 = i; // read-only acces to 'i'
// rci2 = 3; // assignment of read-only reference 'rci2'
const int& rci3 = 3; // OK
```

10 11 A referenciák mindig konstansok.

constref.cpp

14 // int& const cri = i; // 'const' qualifiers cannot be applied to 'int&'

Nem kerülhető meg a védelem konstansot címző nem konstans referenciával.

constref.cpp

// int& ri = ci; // binding reference of type 'int&' to 'const int' discards qualifiers

17

Konstansok és függvények

Ha a függyény paramétere konstans, akkor a fv.-en belül sem változtatható meg az értéke, de a hívót ez nem érdekli (érték szerinti paraméterátadás).

De ha a paraméter mutató vagy referencia, akkor a fv. megváltoztathatná a változó értékét!

```
void pfn(int* pi) {
     *pi *= 2:
5
6
  void rfn(int& ri) {
8
     ri *= 2:
9
```

Konstansok és függvények

constfn.cpp

```
void pcfn(const int* pi) {
12
     // *pi *= 2; // assignment of read—only location '* pi'
13
14
15
    void rcfn(const int& ri) {
16
     // ri *= 2; // assignment of read-only reference 'ri'
17
39
    int main() {
40
     int i = 1:
41
      pfn(&i);
42
      rfn(i):
43
      std::cout << i << std::endl;
44
      const int ci = 5:
45
     // rfn(ci); // binding reference of type 'int&' to 'const int' discards...
```

Ha a visszatérési érték típusa alaptípus, nincs haszna a const-nak (nem balérték). De ha mutató vagy referencia, a visszatérési érték megváltoztatása tiltható const-tal.

```
int* fnp() {
19
      static int si = 10:
20
21
      return &si:
22
23
24
   const int* fncp() {
      static int si = 20;
25
26
      return &si:
27
```

```
int& fnr() {
     static int si = 30:
30
31
     return si:
32
33
34
   const int& fncr() {
     static int si = 40;
35
36
     return si:
37
```

Konstansok és függvények

constfn.cpp

```
39 int main() {
46    rcfn(ci); rcfn(5); pcfn(&i); pcfn(&ci); // ok
47    *fnp() = 11;
48    // *fncp() = 21; // assignment of read—only location '* fncp()'
49    fnr() = 31;
50    // fncr() = 41; // assignment of read—only location 'fncr()'
```

Konstansok és objektumok

Példány is lehet konstans. Az adattagok többnyire eleve rejtettek, ezért kívülről nem írhatók. Nyilvános, konstans tag: getter elhagyható.

Konstans tagfüggvény konstans objektumon is hívható!

```
Rectangle11.cpp
```

```
class Rectangle {
  public:
    double mWidth; // bad idea
    const double mHeight;

Rectangle(double width, double height) : mHeight(height) {
    mWidth = width;
}
```

Konstansok és objektumok

Rectangle11.cpp

```
double getArea() const {
12
13
          return mWidth * mHeight;
14
15
16
        double getPerimeter() /* const */ {
17
          return 2 * (mWidth + mHeight);
18
        };
19
20
21
    int main() {
22
      const Rectangle r1(5, 3);
23
     // r1.mWidth = 55.; // assignment of member 'Rectangle::mWidth' in
24
      std::cout << "Area: " << r1.getArea() << std::end|; // read-only object
     // std::cout << "Perimeter: " << r1.getPerimeter() << std::endl;
25
26
      // passing 'const Rectangle' as 'this' argument discards qualifiers
27
```

Konstans tagfüggvény is módosíthat egy adattagot, ha az mutable. Cél: érdemi állapotváltozást nem jelentő változások, pl. gyorsítótárak menedzselése.

Rectangle12.cpp

```
class Rectangle {
    mutable bool areaCached;
    mutable double area;
    mutable bool perimeterCached;
    mutable double perimeter;
    public:
    const double mWidth;
    const double mHeight;
```

Konstansok és objektumok

```
Rectangle12.cpp
```

```
12
        Rectangle (double width, double height): mWidth(width), mHeight(height) {
13
          areaCached = perimeterCached = false;
14
15
16
        double getArea() const {
          if (not areaCached) {
17
18
            area = mWidth * mHeight;
19
            areaCached = true:
20
21
          return area:
22
```

(Sajnos) néhány további kivételes helyzetben is módosíthatja a const tagfüggvény a példány állapotát, pl. a tag struktúrát nem lehet lecserélni, de annak tagját már lehet módosítani (tranzitívan).

Egy objektumnak lehet beágyazott objektuma, ami szintén a taginicializáló listán keresztül inicializálható. Ha ezt nem tesszük meg \rightarrow alapértelmezett konstruktor hívása, ha van ilyen.

```
Rectangle13.cpp

4  class Point {
   public:
      const double x;
      const double y;

8      Point(double x, double y) : x(x), y(y) {}
10 };
```

Rectangle13.cpp

```
12
    class Rectangle {
13
        Point ul:
14
        Point br:
15
16
      public:
17
        Rectangle (Point ul, Point br) : ul(ul), br(br) {}
18
19
        double getArea() const {
          return abs(u|x - brx) * abs(u|y - bry);
20
21
22
23
        double getPerimeter() const {
24
          return 2. * (abs(u|x - brx) + abs(u|y - bry));
25
        };
26
```

Beágyazott objektumok inicializálása

Rectangle13.cpp

```
28 int main() {
29    Rectangle r1(Point(0, 3), Point(5, 0));
30    std::cout << "Area: " << r1.getArea() << std::endl;
31    std::cout << "Perimeter: " << r1.getPerimeter() << std::endl;
32 }</pre>
```

Feladat: készítsünk osztályokat egy átlagos alkalmazott, és egy programozó bérének kiszámítására!

Programmer
- baseSalary : int
- bonusMult : double
+ Programmer(salary: int, bonus: double) «constructor»
+ getSalary() : int
+ setSalary(salary : int)
+ setBonus(bonus : double)

A program UML osztálydiagramja.

Employee

10

11

12

13

14

15

```
class Employee {
   int baseSalary;
public:
   Employee(int salary) {
     baseSalary = salary;
   }
   int getSalary() const {
     return baseSalary;
   }
   void setSalary(int salary) {
     baseSalary = salary;
   }
}
```

Programmer

```
class Programmer {
                                                          17
    int baseSalary:
                                                          18
    double bonusMult:
                                                          19
  nublic:
                                                          20
                                                          21
    Programmer(int salary, double bonus) {
                                                          22
      baseSalarv = salarv:
                                                          23
      bonusMu|t = bonus:
                                                          24
    int getSalarv() const {
                                                          25
      return (int)(baseSalary * bonusMult);
                                                          26
                                                          27
    void setSalary(int salary) {
                                                          28
                                                          29
      baseSalarv = salarv :
                                                          30
    void setBonus (double bonus) {
                                                          31
      bonusMult = bonus;
                                                          32
                                                          33
};
                                                          34
```

Származtatás, védett tagok, virtuális függvények

```
main()

int main() {
    Employee e(300000);
    Programmer p(300000, 2.5);
    std::cout << e.getSalary() << std::endl;
    std::cout << p.getSalary() << std::endl;
}</pre>
```

Kimenet

300000

750000

Probléma:

 Hasonló feladatok következménye: kódismétlés (a programozó az alkalmazott egy speciális esete).

Megoldás:

- Származtatás/öröklés (inheritance)
- lacktriangle Õsosztály/szülő osztály (superclass, base class) ightarrow Employee
- $\verb| Leszármazott/származtatott/gyerek osztály (subclass, derived class) \rightarrow \\ \verb| Programmer|$

Származtatás, védett tagok, virtuális függvények

- A leszármazottakban (felül)definiáljuk azokat a függvényeket, amik másképpen fognak viselkedni (getSalary()), mint az ősben vagy teljesen hiányoztak (setBonus()).
- Minden más átöröklődik, kivéve a konstruktort. (Ettől még nem feltétlenül elérhetők ezek a leszármazottban! → private)
- Ösosztálytól örökölt tagok inicializálása a leszármazott dolga, pl. az ős konstruktorának felhasználásával a taginicializáló listán. Ennek hiányában a fordító az ős alapértelmezett konstruktorát hívja.

Employee

10

11

12

13

14

15

```
class Employee {
   int baseSalary;
public:
   Employee(int salary) {
     baseSalary = salary;
   }
   int getSalary() const {
     return baseSalary;
   }
   void setSalary(int salary) {
     baseSalary = salary;
   }
};
```

Programmer

};

```
class Programmer: public Employee {
                                                         17
    double bonusMult:
                                                         18
  public:
                                                         19
    Programmer(int salary.
                             double bonus)
                                                         20
      Employee (salary) {
                                                         21
                                                         22
      bonusMult = bonus
                                                         23
    int getSalary() const {
                                                         24
      // 'int Employee::baseSalary' is private
                                                         25
      // within this context
                                                         26
         return (int)(baseSalary * bonusMult);
                                                         27
      return (int)(Employee::getSalary()
                                                         28
                                                         29
        * bonusMult);
                                                         30
    void setBonus (double bonus) {
                                                         31
                                                         32
      bonusMu|t = bonus:
                                                         33
```

34

```
main()

int main() {
    Employee e(300000);
    Programmer p(300000, 2.5);
    std::cout << e.getSalary() << std::endl;
    std::cout << p.getSalary() << std::endl;</pre>
```

Kimenet

300000

750000

main()

42

43

44

45

46 47 48

```
// Using base class is OK: Programmer inherites from Employee
Employee* eArray[] = { &e , &p };
for(unsigned i=0; i<sizeof(eArray)/sizeof(eArray[0]); i++) {
   // Ooops! Early / static binding!!!
   std::cout << eArray[i]->getSalary() << std::endl;
}</pre>
```

Kimenet

300000

Probléma:

Az ős privát tagjainak elérése körülményes a leszármazottból.

Megoldás:

- A védett (protected) tagok elérhetők a saját osztályukban és minden leszármazottban.
- Származtatásnál is használható ez és a private kulcsszó, bár szinte mindig public-ot használunk, azaz nem korlátozzuk tovább az öröklött láthatósági kategóriákat.

Származtatás módja	Láthatóság	
	ősben	leszármazottban
public	public	public
	protected	protected
	private	(nem érhető el)
protected	public	protected
	protected	protected
	private	(nem érhető el)
private	public	private
	protected	private
	private	(nem érhető el)

Mikor érdemes protected vagy private származtatást végezni?

Meglévő implementáció újrahasznosításánál, ha forrásban nem elérhető, de új függvényekkel (pl. más paraméterezés) kellene ellátni.

Probléma:

Konstansol

Az ősre utaló típusú, de a leszármazott egyik példányát címző mutatóval csak az ős függvényét tudjuk hívni.

Megoldás:

- Amikor egy objektum tagfüggvényét hívjuk, mindig eldönthető, hogy az ős vagy a leszármazott felüldefiniált függvényéről van-e szó, és fordítási időben meghatározható annak címe (early/static bindig, korai/statikus kötés).
 Pl. Programmer p(300000, 2.5); p.getSalary(); → 750000
- Viszont egy objektum elérhető az ős típust címző mutatóval is (biztonságos, mert a leszármazott mindennel rendelkezik, amivel az őse). A korai kötés miatt az ősben definiált függvényt tudjuk csak elérni.

- A késői/dinamikus kötés (late/dynamic binding) hatására a fordító virtuális metódustáblát (VMT, vtable) hoz létre, melyben a leszármazottak felüldefiniált függvényeinek címei is benne vannak, melynek segítségével az aktuális objektum típusának megfelelő változat is hívható, típuskényszerítés nélkül.
 - Pl.: Employee* pe = new Programmer(); pe->getSalary(); \rightarrow 300000
- C++-ban késői kötést *virtuális tagfüggvényekkel* (virtual) hozhatunk létre.
- Polimorfizmus (többalakúság): mindig az ős típusát címző mutatót használjuk, de a vele hívott tagfüggvény osztályonként eltérően működik. (A felültöltött tagfüggvények is egyfajta polimorfizmust valósítanak meg.)

Employee

10

11

12

13

14

15

16

```
class Employee {
   protected: // private --> protected
   int baseSalary;
public:   Employee(int salary) {
     baseSalary = salary;
   }
   virtual int getSalary() const {
     return baseSalary;
   }
   void setSalary(int salary) {
     baseSalary = salary;
   }
}
```

Programmer

```
class Programmer: public Employee {
                                                     17
    double bonusMult:
                                                     18
  public:
                                                     19
    Programmer(int salary, double bonus)
                                                     20
    : Employee(salary) {
                                                     21
      bonusMu|t = bonus:
                                                     22
                                                     23
    // implicitely virtual
                                                     24
    /* virtual */ int getSalary() const {
                                                     25
                                                     26
    // OK to access protected member
                                                     27
      return (int)(baseSalarv * bonusMult);
                                                     28
    void setBonus (double bonus) {
                                                     29
      bonusMult = bonus:
                                                     30
                                                     31
};
                                                     32
```

main()

```
int main() {

Employee* eArray[] = { &e, &p };

for(unsigned i=0; i<sizeof(eArray)/sizeof(eArray[0]); i++) {

    // OK! Late / dynamic binding

    std::cout << eArray[i]->getSalary() << std::endl;
}

46 }</pre>
```

Kimenet

300000 750000

Induljunk ki Rectangle12-ből, majd

- a kerület/terület lekérdezést (minden síkidomnál hasonlóan elvégezhető tevékenység) válasszuk külön a számítások elvégzésétől,
- a méretek legyenek módosíthatóak, és
- készítsünk háromszög (Triangle) osztályt is!

Absztrakt osztályok

Rectangle 14.h class Rectangle { mutable bool areaCached; mutable double area; mutable bool perimeterCached; mutable double perimeter; double mWidth; double mHeight;

Triangle14.h

```
class Triangle {
   mutable bool areaCached;
   mutable double area;
   mutable bool perimeterCached;
   mutable double perimeter;
   double mA, mB, mC;
6
```

10

Rectangle14.h

Absztrakt osztálvok

```
11
      public:
        Rectangle (
12
13
          double width, double height) {
14
          mWidth = width:
15
          mHeight = height;
16
          invalidateCache():
17
18
19
        void setWidth(double width);
20
        void setHeight (double height);
21
        double getArea() const;
        double getPerimeter() const:
```

Triangle14.h

```
public:
                                           12
  Triangle (
                                           13
                                           14
    double a, double b, double c) {
    mA = a; mB = b; mC = c;
                                           15
                                           16
    invalidateCache();
                                           17
                                           18
  void set A (double a);
                                           19
  void setB(double b);
                                           20
 void setC(double c);
                                           21
  double getArea() const;
                                           22
  double getPerimeter() const:
                                           23
```

Rectangle14.h

```
private:
// called from getArea(),
// must be const
void calcArea() const;
void calcPerimeter() const;

void invalidateCache() {
areaCached = perimeterCached
= false;
}

}
```

Triangle14.h

```
private:
                                             24
    // called from getArea(),
                                             25
    // must be const
                                             26
    void calcArea() const:
                                             27
    void calcPerimeter() const;
                                             28
                                             29
    void invalidateCache() {
                                             30
      areaCached = perimeterCached
                                             31
        = false:
                                             32
                                             33
};
                                             34
```

Rectangle14.cpp

```
void Rectangle::setWidth(double width) {
      mWidth = width:
      invalidateCache();
13
    double Rectangle::getArea() const {
14
      if (not areaCached) {
15
        calcArea();
16
        areaCached = true:
17
18
      return area:
19
29
    void Rectangle::calcArea()
                                 const {
30
      area = mWidth * mHeight:
31
```

Triangle14.cpp

```
void Triangle::setA(double a) {
 mA = a:
  invalidateCache():
double Triangle::getArea()
                             const {
                                                18
  if (not areaCached) {
                                                19
    calcArea();
                                                20
    areaCached = true:
                                                21
                                                22
                                                23
  return area;
                                                24
void Triangle::calcArea() const {
                                                34
  double s = (mA + mB + mC) / 2;
                                                35
  area = sqrt(s * (s - mA) * (s - mB)
                                                36
    * (s - mC));
                                                37
                                                38
```

Absztrakt osztályok

main14.cpp

```
#include "Rectangle14.h"
   #include "Triangle 14.h"
    int main() {
      Rectangle rArray[] = {
        Rectangle (1... 2.), Rectangle (2... 3.), Rectangle (3... 4.)
      }:
8
      const int n = sizeof(rArray)/sizeof(rArray[0]);
9
      for (int i=0; i < n; i++) {
10
        std::cout << "Rectangle_#" << (i+1)
11
                   << "_Area:_" << rArray[i] getArea()</pre>
12
                   << "_Perimeter:_" << rArray[i].getPerimeter()</pre>
13
14
                   << std::endl:
15
```

Kimenet

```
Rectangle #1 Area: 2 Perimeter: 6
Rectangle #2 Area: 6 Perimeter: 10
Rectangle #3 Area: 12 Perimeter: 14
```

Absztrakt osztályok

```
main14.cpp
```

```
16
      const Triangle tArray[] = {
        Triangle (3., 4., 5.), Triangle (5., 12., 13.), Triangle (7., 24., 25.)
17
18
19
      const int m = sizeof(tArray)/sizeof(tArray[0]);
20
      for (int i = 0; i < m; i++) {
        std::cout << "Triangle_\#" << (i+1)
21
22
                   << "...Area:..." << tArray[i].getArea()
23
                   << "...Perimeter :.." << tArrav[i] getPerimeter()</pre>
24
                   << std::endl:
25
         const Shape sArray[] = { ... }; // ?!
26
27
```

Kimenet

```
Triangle #1 Area: 6 Perimeter: 12
Triangle #2 Area: 30 Perimeter: 30
Triangle #3 Area: 84 Perimeter: 56
```

Probléma:

Sok ismétlődő kódrészlet → szükség lenne egy általános síkidomra a származtatáshoz, de az milyen adatokkal írható le? Hogyan számolható ki pl. a kerülete?

Megoldás:

- Absztrakt (abstract) osztály: csak öröklési céllal hozzák létre, nem példányosítható a nem implementált, ún. pure virtual tagfüggvények (absztrakt metódus) miatt
- Ha egy absztrakt osztály kizárólag pure virtual tagfüggvényeket tartalmaz: interfész (interface) \rightarrow elvárt szolgáltatáscsomag előírására

Absztrakt osztályok

Absztrakt osztályok

Shape15.h

```
class Shape {
     protected: // private --> protected
       mutable bool area Cached:
       mutable double area;
       mutable bool perimeter Cached:
9
       mutable double perimeter;
     public:
10
       Shape() {
         invalidateCache();
13
```

15

16

18

19 20

22

```
Shape15.h
    double getArea() const;
    double getPerimeter() const;
  protected: // private --> protected
    virtual void calcArea() const = 0; // pure
    virtual void calcPerimeter() const = 0; // virtual
    void invalidateCache() {
      areaCached = perimeterCached = false;
```

Absztrakt osztályok

```
Shape15.cpp
  #include "Shape15.h"
2
  double Shape::getArea() const {
     if(not areaCached) {
       calcArea():
      area Cached = true;
6
8
    return area:
9
```

Rectangle15.h

```
#include "Shape15.h"
5
   // inheritance; base class -> subclass / derived class
   class Rectangle : public Shape {
8
       double mWidth:
9
       double mHeight;
10
     public:
       // implicit call of base class's default constructor
11
        Rectangle (double width, double height) {
12
13
         mWidth = width:
14
         mHeight = height;
15
```

```
roid setWidth(double width);
void setHeight(double height);
protected:
virtual void calcArea() const;
virtual void calcPerimeter() const;
};
```

13

14

15

Rectangle 15.cpr

```
#include "Rectangle15.h"

void Rectangle::setWidth(double width) {
   mWidth = width;
   invalidateCache();
}

void Rectangle::calcArea() const {
   area = mWidth * mHeight;
```

Triangle15.cpp

main15.cpp

```
#include <iostream>
  #include <typeinfo> // typeid() uses RTTI
   #include "Shape15.h"
   #include "Rectangle15.h"
   #include "Triangle15.h"
6
   int main() {
8
     // cannot create array of abstract objects
     Shape* sArray[] = {
10
       // new calls constructor
11
       new Rectangle (1., 2.), new Rectangle (2., 3.),
12
       new Triangle (3., 4., 5.), new Triangle (5., 12., 13.)
13
     const int n = sizeof(sArray)/sizeof(sArray[0]):
14
```

```
main 15.cpp
```

Kimenet

```
9Rectangle #1 Area: 2 Perimeter: 6

9Rectangle #2 Area: 6 Perimeter: 10

8Triangle #3 Area: 6 Perimeter: 12

8Triangle #4 Area: 30 Perimeter: 30
```

```
main 15.cpp
22
      std::cout << (std::is abstract <Shape >()
23
          ? "Shape,, is,, abstract."
24
           : "Shape__is_NOT__abstract.")
25
        << std::endl:
26
      std::cout << (std::is abstract < Rectangle >()
27
          ? "Rectangle is abstract."
28
           : "Rectangle is NOT abstract.")
29
        << std::endl:
```

Kimenet

30

Shape is abstract.

Rectangle is ${\tt NOT}$ abstract.

Grafikus felületű, eseményvezérelt program modellje interfésszel

- Button: ha rákattintanak, ClickEvent eseményt küld egy ClickListenernek
- A ClickListenert megvalósító objektumnak fel kell iratkozni a Button eseményére

ClickEvent.h

```
class Button;

class ClickEvent {
 public:
 const Button& button;
 ClickEvent(const Button& button): button(button) {}
};
```

ClickListener.h

```
#include "ClickEvent.h"

class ClickListener {
   public:
    virtual void clickPerformed(const ClickEvent& ce) = 0;
};
```

Listener.h

```
#include <string>
   #include "ClickListener.h"
   #include "Button h"
7
8
    class Listener : public ClickListener {
9
        const std::string name;
10
      public:
11
        Listener(const std::string& name) :
                                               name(name) {}
        void subscribeTo(Button& button) {
12
13
          button addClickListener(this);
14
15
        virtual void clickPerformed(const ClickEvent& ce) {
16
          std::cout << name << "...received...a...click...event...from..."
17
                     << ce.button.getLabel() << std::endl;
18
19
    };
```

Button.h

```
class Button {
8
        const std::string label;
        int top, bottom, left, right;
10
        const int maxListeners;
11
        int numListeners:
12
        ClickListener** listeners:
13
      public:
14
        Button(const std::string& label, int t, int b, int l, int r)
        : |abe|(|abe|), maxListeners(10) {
15
16
          top = t;
17
          bottom = b:
18
          left = 1:
19
          right = r:
20
          numListeners = 0:
21
          listeners = new ClickListener*[maxListeners];
22
```

```
Button.h
        const std::string& getLabel() const {
23
24
          return label:
25
             addClickListener(ClickListener* listener);
26
27
        void onClick(int row, int col) const;
28
        ~Button() {
29
          delete[] listeners;
30
31
```

Button.cpp

```
#include "Button.h"
 2
    bool Button::addClickListener(ClickListener* listener) {
      if (numListeners < maxListeners) {</pre>
        listeners[numListeners++] = listener;
        return true:
8
      return false:
9
10
11
    void Button::onClick(int row. int col) const {
      if (row>=top and row<=bottom and co|>=|eft and co|<=right) {
12
        for (auto i=0; i < numListeners; i++) { // auto-detected type
13
          listeners[i]->clickPerformed(ClickEvent(*this));
14
15
16
17
```

eventMain.cpp

```
#include <iostream>
   #include <string>
   #include "Listener.h"
   #include "Button.h"
 5
   int main() {
      Button b1("Button1", 0, 100, 0, 100);
 8
      Button b2("Button2", 0, 100, 150, 250);
      Listener |1("Listener1");
10
      |1 . subscribeTo(b1);
11
      |1 . subscribeTo(b2);
12
      Listener |2 ("Listener2");
13
      12 . subscribe To (b1);
      std::string row, col;
14
```

Interfészek

```
eventMain.cpp

while (std::cout << "row:", std::getline(std::cin, row), !row.empty()) {
    int r = stoi(row);
    std::cout << "col:"; getline(std::cin, col);
    int c = stoi(col);
    b1.onClick(r, c);
    b2.onClick(r, c);
}
</pre>
```

Kimenet

row: 0 col: 0

Listener1 received a click event from Button1 Listener2 received a click event from Button1

row: 0 col: 150

Listener1 received a click event from Button2

row: 0 col: 300

row:

- C++-ban létezik többszörös öröklődés (a legtöbb nyelv csak interfészekből enged többet megvalósítani, melyekre külön kulcsszó is van, pl. Java)
- Ha egy őstől több útvonalon is örököl egy leszármazott, nem lesz egyértelmű, melyiket kellene használni \rightarrow virtuális öröklés (vagy a probléma elodázása ::-ral)

Többszörös öröklődés

```
diamond1.cpp
```

```
class A {
      public:
        int i:
    class B :
               public A {
      public:
8
        int i:
9
    };
10
11
    class C
               public A {
      public:
        int i:
14
```

```
// multiple inheritance
                                               16
class D : public B, public C {
                                               17
                                               18
  public:
                                               19
    int k:
};
                                               20
                                               21
int main(){
                                               22
    D obi:
                                               23
    obi i = 42:
                                               24
    return 0;
                                               25
                                               26
```

Kimenet

```
diamond1.cpp: In function 'int main()':
diamond1.cpp:26:9: error: request for member 'i' is ambiguous
        obj.i = 42;
diamond1.cpp:5:9: note: candidates are: int A::i
        int i;
diamond1.cpp:5:9: note:
                                        int A::i
```

diamond2.cpp

```
class B : virtual public A {
  public:
    int j;
};

class C : virtual public A {
  public:
    int j;
};
```

