

TELAS RESISTIVAS

- As telas touch screen com sistema resistivo são formadas por três camadas bem finas, sendo uma resistiva e a outra de vidro normal recoberto por uma camada de metal condutor.
- A camada resistiva é separada da camada condutora por espaçadores, e uma corrente elétrica de baixa intensidade passa entre essas duas camadas.
- Quando se toca a tela, as duas camadas encostam-se, e o dispositivo sente a mudança de campo elétrico naquele ponto e envia suas coordenadas para o computador, que utiliza um programa específico que as traduz e transforma o toque em um comando.
- Em virtude da forma como o sistema percebe o campo elétrico, a mudança de pressão que ocorre na tela pode ser feita por qualquer dispositivo.
- A desvantagem dessas telas é que, por utilizar uma placa metálica, mesmo que seja bem fina, elas deixam passar apenas 75% da luminosidade do monitor.
- Comumente utilizadas em caixas eletrônicos, e equipamentos menos portáteis. Esse tipo de tela é mais simples e costuma ter uma vida útil maior do que as outras. No entanto, elas são um pouco menos responsivas que as capacitivas e funcionam com menos precisão.

TELAS RESISTIVAS

TELAS CAPACITIVAS

- As telas touch screen com sistema capacitivo são formadas por uma camada eletricamente carregada, a camada capacitiva que é colocada sobre o painel do monitor.
- Ao ser tocada, essa camada transmite elétrons para o dedo de forma semelhante ao choque elétrico, mas com intensidade imperceptível. Essa descarga elétrica na tela é sentida pelo computador, que calcula as coordenadas do ponto tocado, transformando-as em um comando para a tela.
- A vantagem do sistema capacitivo em relação ao resistivo é que ele deixa passar mais luminosidade, permitindo a passagem de até 90% da luz do monitor, o que resulta em uma imagem muito mais clara.
- Essa tecnologia é a utilizada pelos iPhones e iTouchs.
- As telas touch screen capacitivas estão presentes na maior parte dos smartphones.

TELAS CAPACITIVAS

TELAS COM ONDA ACÚSTICA

- As telas que utilizam o sistema de onda acústica superficial possuem dois transdutores tanto nas extremidades laterais como na extremidade inferior e na superior da tela, sendo um receptor e o outro emissor.
- Também são instalados refletores sobre a tela que enviam sinal elétrico de um transdutor para outro por meio de ondas.
- Quando a tela é tocada, essas ondas são interrompidas, os sensores calculam o lugar exato do toque e o sistema executa o comando.
- O sistema de onda acústica superficial é considerado o mais eficiente de todos por permitir a passagem de 100% da luminosidade produzida, o que faz com que a imagem possua uma claridade perfeita.
- Não perde precisão mesmo com arranhões, poeira ou gordura na tela.
- Não detecta dedos parados na tela, apenas dedos que se movimentem.

Transmissão de Som por Bluetooth

- Bluetooth é uma tecnologia que permite a transmissão de informações e dados sem a necessidade de conexão entre cabos e drives.
- A tecnologia faz a conexão entre duas fontes de informação em uma curta distância.
- Basicamente, isso é possível por meio de uma radiofrequência, que envia e recebe as informações.
- O Bluetooth foi criado há mais de 20 anos, a partir do interesse de uma grande empresa de tecnologia para telefonia fixa e móvel, mas que só foi possível ser efetivado depois da junção dessa e de outras grandes marcas do mercado.
- Esse tipo de comunicação entre dispositivos é baseado num padrão mundial de comunicação sem fio que tem uma premissa fundamental: consumir pouca quantidade de energia. O pré-requisito é que os aparelhos estejam próximos um do outro para que o fluxo ocorra da melhor maneira possível.
- A transmissão dos dados é feita por meio de radiofrequência, de forma muito semelhante como funcionam os celulares e os aparelhos de rádio (AM e FM), por exemplo.

Transmissão de Som por Bluetooth

- Há três classes categorizadas pela potência total emitida pelos transmissores:
- Classe I: potência máxima de 100 mW (miliWatts), que permitem a cobertura de uma área de cerca de 100 metros;
- Classe 2: potência de 2,5 mW e alcance de até 10 metros;
- Classe 3: potência máxima de 1 mW e alcance de apenas um metro.
- A maioria dos dispositivos comercializados no mercado é da classe 2, pois ela proporciona um bom custo-benefício energético: não consome muito e atende às principais necessidades cotidianas. Um exemplo de aparelho atendido por essa classe são os smartphones.
- Bluetooth 5.0: a versão mais recente da tecnologia permite que você faça transmissões a distâncias de até 40 metros entre transmissor e receptor. A velocidade média aumentou e agora chega a 50 Mb/s e o risco de interferências causadas pelas redes Wi-Fi ou LTE (quarta geração de celulares) também são aperfeiçoamentos importantes.

Exemplo de Aplicação/Melhoria

GALAXY BUDS2

Deixe o ruído fora da conversa

Ligações nítidas com três microfones e uma unidade de captura de voz integrada. O Galaxy Buds2 aprende e ainda filtra barulhos indesejados para você dividir seu mundo com a família e os amigos. O design compacto minimiza as interrupções do vento e garante nitidez às chamadas ao ar livre. ²

Dois microfones externos (com tecnologia de direcionamento de captação da voz)

Um microfone interno

(VPU)

CANCELAMENTO DE RUÍDO ATIVO

Escolha o som que deseja ouvir

Dois microfones detectam o ruído ambiente e o cancelamento de ruído ativo bloqueia o som indesejado. Ele reduz até 98% do ruído de fundo para você mergulhar nas suas músicas, jogos, audiolivros e podcasts favoritos. ^{3, 4}

SOM PERSONALIZÁVEL

Seu som, suas regras.

Suas experiências acústicas são personalizadas com o Galaxy Buds2. Com seis configurações de equalizador disponíveis, você encontrará o som perfeitamente envolvente para se manter imerso.

Versão de Bluetooth

Bluetooth v5.2

Eyeborg

- Um dia, Rob Spence estava praticando tiro quando segurou sua espingarda por cima de seu olho direito "como eles fazem nos filmes". O resultado foi um acidente que o fez perder o mesmo olho.
- 34 anos depois do ocorrido, ele formou uma parceria com um grupo de engenheiros que desenvolveram a câmera para substituir sua prótese, que ele vinha usando todo esse tempo.
- O dispositivo transmite o feed de vídeo sem fio para um computador ou um monitor de mão, sendo possível capturar cores e movimento com determinada eficiência. Não foi revelada a resolução da imagem, infelizmente.
- Contudo, Spence só consegue capturar vídeo com a câmera por 3 minutos, uma vez que o aparelho superaquece dentro da sua cavidade ocular. A câmera também não fica conectada ao nervo do seu antigo olho humano e, por isso, não serve para ajudá-lo a enxergar.
- Além da câmera e do transmissor, existe uma pequena bateria de 3V dentro do dispositivo.

Eyeborg

- O eletrocardiograma nada mais é que um exame não invasivo, ou seja, é um exame em que não é necessário fazer nenhum tipo de corte ou qualquer outro procedimento de maior complexidade no paciente, além de ser indolor.
- O seu funcionamento ocorre por meio da medição, de uma forma bem simplificada, das correntes elétricas que o músculo cardíaco emite.
- O eletrocardiograma (ou ECG) é um exame rotineiro, muito utilizado nos check-ups médicos e nos prontos-socorros.
- Para realizar o exame, o paciente deve se deitar em uma maca, de barriga para cima, com um pequeno aparelho de nome eletrocardiógrafo, o qual é usado para fazer o registro do ECG no computador.
- Posteriormente, o técnico em eletrocardiograma irá colocar os eletrodos grudados junto à pele de seus braços (faces anteriores dos punhos), pernas (faces ântero-mediais) e tórax do paciente, que irão captar os estímulos elétricos de seu coração ou as repercussões deles à distância.
- Sua pele precisa estar bem limpa e desengordurada nos locais onde os eletrodos serão fixados.
- Muitas vezes o técnico em eletrocardiograma aplica um gel sob a pele para facilitar a captação desses estímulos.

• ECG ou Eletro CardioGraphy é um método para medir alguns parâmetros importantes do coração humano. Ele emite valores analógicos que produzem um sinal específico que se parece com o mostrado abaixo.

- Como visível, o sinal tem alguns picos e características importantes que são de importância biológica. Eles estão marcados ao lado.
- Cada intervalo tem um intervalo de valor ideal e o desvio desse intervalo pode estar vinculado a uma doença específica. Aqui estão as principais partes de um sinal de ECG.
- P wave é a onda final à esquerda do complexo QRS.
- QRS complex É um impulso gerado pela contração ventricular.
- T wave É uma onda líder diretamente no complexo QRS.
- U wave Nem sempre é observada devido ao seu baixo valor de pico.

- Existem muitos outros recursos também, mas esses são os principais. Com base nas formas das características acima, seu intervalo, bem como o intervalo entre eles, podemos diagnosticar uma série de doenças cardíacas e irregularidades. Por exemplo:
- Batimento cardíaco irregular ou ausência de onda P: Fibrilação Atrial
- Frequência cardíaca em repouso de mais de 100: taquiarritmia
- Taquiarritmia e onda delta: síndrome de Wolf-Parkinson-White ou WPW
- Onda P dente de serra: flutter atrial
- Depressão do segmento ST: pode indicar isquemia
- Elevação do segmento ST: pode indicar infarto do miocárdio

SENSOR DE ECG AD8232

- O sensor de ECG AD8232 é o sensor de ECG mais comumente usado e disponível, que é acessível e pode ser usado para fins de hobby.
- Para um sistema de 3 leads, existem dois canais que são usados.
- A posição esquerda é geralmente usada para mulheres e é a razão pela qual os três eletrodos são chamados de RA, LA e RL. No entanto, este método de colocação de eletrodos produz mais ruído e, portanto, é preferível que os eletrodos sejam colocados conforme mostrado na posição correta, especialmente para pacientes hospitalares.

Nome do eletrodo	Cor do eletrodo	Localização
RA	Vermelho	Braço direito
LA	Amarelo	Braço esquerdo
RL	Verde	Perna direita

SENSOR DE ECG AD8232

• O AD8232 da Analog Devices é um sensor de ECG de 3 derivações, que foi convertido em vários módulos e interrupções pela Sparkfun e outros fabricantes de produtos eletrônicos. Todas as interrupções geralmente contêm os seguintes pinos:

Board label	Pin Function	Arduino UNO Connection
GND	Ground	GND
3.3V	3.3V power input	3V3
OUTPUT	Analog output of the sensor	A0
LO-	Leads-Off Detect -	D8
LO+	Leads-Off Detect +	D9
\overline{SDN}	Shutdown	optional

• O pino de desligamento é usado para enviar o sensor AD8232 para o modo de espera, durante o qual ele consome apenas uma corrente de 200nA. Geralmente, esse modo não é usado porque os dados do sensor de ECG devem ser obtidos continuamente, mas podemos codificar de forma que o módulo entre no modo de espera quando os eletrodos são removidos ou ao pressionar um botão. Alguns esquemas possíveis são mostrados abaixo.

SENSOR DE ECG AD8232

- Calculando a Variabilidade da Frequência Cardíaca (VFC) usando o Sensor de ECG AD8232:
- A variabilidade da frequência cardíaca ou VFC é calculada da seguinte forma:
 - HRV = HR/60 RR interval
- Portanto, para calcular o VFC, precisamos primeiro do HR. Mas I minuto é muito tempo. Portanto, usamos uma janela de 10 segundos para calcular os dois parâmetros.
 - HR = (RR peaks in 10 seconds)*6
 - HRV = HRV = HR/60 RR interval

Dúvidas?

Referências

https://brasilescola.uol.com.br/fisica/touch-

<u>screen.htm#:~:text=As%20telas%20touch%20screen%20com%20sistema%20capacitivo%20s%C3%A3o%20formadas%20por,el%C3%A9trico%2C%20mas%20com%20intensidade%20impercept%C3%ADvel.</u>

https://emporiodocelular.com.br/blog/como-funcionam-as-telas-touch-screen/

https://frahm.com.br/som-via-

bluetooth/#:~:text=Bluetooth%20%C3%A9%20uma%20tecnologia%20que,envia%20e%20recebe%20as%20informa%C3%A7%C3%B5es.

https://sonorizacaodeambientes.com.br/blog/transmissor-audio-bluetooth/

https://www.samsung.com/br/audio-sound/galaxy-buds/galaxy-buds2-graphite-sm-

r177nzkpzto/?utm_source=google&utm_medium=ppc&utm_campaign=br_pd_ppc_google_hearables-galaxy-buds2_launch_cad15-a0767_text_none_paid-cdm-\$none\$-

fone%20sem%20fio%20samsung&utm_content=none&utm_term=fone%20sem%20fio%20samsung&cid=br_pd_ppc_google_hearables-galaxy-buds2_launch_cad15-a0767_text_none_paid-cdm-\$none\$-fone%20sem%20fio%20samsung&keeplink=true

21

Referências

https://revistagalileu.globo.com/Tecnologia/noticia/2014/05/conheca-o-eyeborg-o-cineasta-que-tem-um-olho-eletronico.html

https://www.tecmundo.com.br/robotica/107585-eyeborg-canadense-implanta-camera-dentro-olho-vidro-video.htm

https://www.conexasaude.com.br/blog/eletrocardiograma-ecg-para-que-serve-e-como-e-feito/

https://capsistema.com.br/index.php/2021/07/06/compreendendo-os-sensores-de-ecg-e-como-programa-los-para-diagnosticar-varias-condicoes-medicas/