Chapter 1

Sets, Logic, Numbers, Relations, Orderings, Graphs, and Functions

In this chapter we review basic terminology and results concerning sets, logic, numbers, relations, orderings, graphs, and functions. This material is used throughout the book.

1.1 Sets

A set $\{x, y, \ldots\}$ is a collection of elements. A set can include either a finite or infinite number of elements. The set \mathcal{X} is *finite* if it has a finite number of elements; otherwise, \mathcal{X} is *infinite*. The set \mathcal{X} is *countably infinite* if \mathcal{X} is infinite and its elements are in one-to-one correspondence with the positive integers. The set \mathcal{X} is *countable* if it is either finite or countably infinite.

Let \mathcal{X} be a set. Then,

$$x \in \mathfrak{X} \tag{1.1}$$

means that x is an element of \mathfrak{X} . If w is not an element of \mathfrak{X} , then we write

$$w \notin \mathfrak{X}.$$
 (1.2)

No set can be an element of itself. Therefore, there does not exist a set that includes every set. The set with no elements, denoted by \emptyset , is the *empty set*. If $X \neq \emptyset$, then X is *nonempty*.

Let $\mathcal X$ and $\mathcal Y$ be sets. The *intersection* of $\mathcal X$ and $\mathcal Y$ is the set of common elements of $\mathcal X$ and $\mathcal Y$, which is given by

$$\mathfrak{X} \cap \mathcal{Y} \triangleq \{x \colon x \in \mathcal{X} \text{ and } x \in \mathcal{Y}\} = \{x \in \mathcal{X}: x \in \mathcal{Y}\} = \{x \in \mathcal{Y}: x \in \mathcal{X}\} = \mathcal{Y} \cap \mathcal{X}, \tag{1.3}$$

The union of X and Y is the set of elements in either X or Y, which is the set

$$\mathfrak{X} \cup \mathfrak{Y} \triangleq \{x \colon x \in \mathfrak{X} \text{ or } x \in \mathfrak{Y}\} = \mathfrak{Y} \cup \mathfrak{X}.$$
 (1.4)

The *complement* of X relative to Y is

$$\mathcal{Y} \backslash \mathcal{X} \triangleq \{ x \in \mathcal{Y} \colon \ x \notin \mathcal{X} \}. \tag{1.5}$$

If \mathcal{Y} is specified, then the *complement* of \mathcal{X} is

$$\mathfrak{X}^{\sim} \triangleq \mathfrak{Y} \backslash \mathfrak{X}. \tag{1.6}$$

The symmetric difference of X and Y is the set of elements that are in either X or Y but not both, which is given by

$$\mathfrak{X} \ominus \mathfrak{Y} \triangleq (\mathfrak{X} \cup \mathfrak{Y}) \setminus (\mathfrak{X} \cap \mathfrak{Y}). \tag{1.7}$$

If $x \in \mathcal{X}$ implies that $x \in \mathcal{Y}$, then \mathcal{X} is a *subset* of \mathcal{Y} (equivalently, \mathcal{Y} contains \mathcal{X}), which is written as

$$\mathfrak{X} \subseteq \mathfrak{Y}.$$
 (1.8)

Equivalently,

$$\mathcal{Y} \supseteq \mathcal{X}.$$
 (1.9)

Note that $\mathcal{X} \subseteq \mathcal{Y}$ if and only if $\mathcal{X} \setminus \mathcal{Y} = \emptyset$. Furthermore, $\mathcal{X} = \mathcal{Y}$ if and only if $\mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{Y} \subseteq \mathcal{X}$. If $\mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{X} \neq \mathcal{Y}$, then \mathcal{X} is a *proper subset* of \mathcal{Y} and we write $\mathcal{X} \subset \mathcal{Y}$. The sets \mathcal{X} and \mathcal{Y} are *disjoint* if $\mathcal{X} \cap \mathcal{Y} = \emptyset$. A *partition* of \mathcal{X} is a set of pairwise-disjoint and nonempty subsets of \mathcal{X} whose union is equal to \mathcal{X} .

The symbols \mathbb{N} , \mathbb{P} , \mathbb{Z} , \mathbb{Q} , and \mathbb{R} denote the sets of nonnegative integers, positive integers, integers, rational numbers, and real numbers, respectively.

A set cannot have repeated elements. Therefore, $\{x,x\} = \{x\}$. A multiset is a finite collection of elements that allows for repetition. The multiset consisting of two copies of x is written as $\{x,x\}_{\mathrm{ms}}$. For example, the roots of the polynomial $p(x) = (x-1)^2$ are the elements of the multiset $\{1,1\}_{\mathrm{ms}}$, while the prime factors of 72 are the elements of the multiset $\{2,2,2,3,3\}_{\mathrm{ms}}$.

The operations " \cap ," " \cup ," " \cup ," " \cup ," " \ominus ," and " \times " and the relations " \subset " and " \subseteq " extend to multisets. For example,

$$\{x, x\}_{\text{ms}} \cup \{x\}_{\text{ms}} = \{x, x, x\}_{\text{ms}}.$$
 (1.10)

By ignoring repetitions, a multiset can be converted to a set, while a set can be viewed as a multiset with distinct elements.

The Cartesian product $X_1 \times \cdots \times X_n$ of sets X_1, \dots, X_n is the set consisting of tuples of the form (x_1, \dots, x_n) , where, for all $i \in \{1, \dots, n\}$, $x_i \in X_i$. A tuple with n components is an n-tuple. The components of a tuple are ordered but need not be distinct. Therefore, a tuple can be viewed as an ordered multiset. We thus write

$$(x_1, \dots, x_n) \in \bigotimes_{i=1}^n \mathfrak{X}_i \stackrel{\triangle}{=} \mathfrak{X}_1 \times \dots \times \mathfrak{X}_n.$$
 (1.11)

 \mathfrak{X}^n denotes $\times_{i=1}^n \mathfrak{X}$.

Definition 1.1.1. A sequence $(x_i)_{i=1}^{\infty} = (x_1, x_2, \ldots)$ is a tuple with a countably infinite number of components. Now, let $i_1 < i_2 < \cdots$. Then, $(x_{i_j})_{j=1}^{\infty}$ is a subsequence of $(x_i)_{i=1}^{\infty}$.

Let \mathfrak{X} be a set, and let $X \triangleq (x_i)_{i=1}^{\infty}$ be a sequence whose components are elements of \mathfrak{X} ; that is, $\{x_1, x_2, \ldots\} \subseteq \mathfrak{X}$. For convenience, we write either $X \subseteq \mathfrak{X}$ or $X \subset \mathfrak{X}$, where X is viewed as a set and the multiplicity of the components of the sequence is ignored. For sequences $X, Y \subset \mathbb{F}^n$, define $X + Y \triangleq (x_i + y_i)_{i=1}^{\infty}$ and $X \odot Y \triangleq (x_i \odot y_i)_{i=1}^{\infty}$, where " \odot " denotes component-wise multiplication. In the case n = 1, we define $XY \triangleq (x_i y_i)_{i=1}^{\infty}$.