Data Prediction Model and Machine Learning

Online course #7

Regression: Linear Regression

Linear Regression?

Profit of the video ∝ the number of views

Video	Views	Profit
1	1	3
2	2	6
3	3	5
4	4	8
5	5	7
6	6	6
7	7	9

Views

Sum of Squared Errors =
$$E_1^2 + E_2^2 + E_3^2 + E_4^2 + E_5^2 + E_6^2 + E_7^2$$

$$SSE = \sum_{i=1}^{7} E_i^2 = 1^2 + 2^2 + 1.5^2 + 3^2 + 0^2 + 2^2 + 2^2 = 24.25$$

Profit

Sum of Squared Errors =
$$E_1^2 + E_2^2 + E_3^2 + E_4^2 + E_5^2 + E_6^2 + E_7^2$$

$$SSE = \sum_{i=1}^{7} E_i^2 = 1^2 + 1^2 + 2^2 + 2^2 + 1^2 + 3^2 + 0.2^2 = 20.04$$

Profit

Views

To find a better fitting line

To find a better fitting line

To minimize the SSE

Objective: Find the line which **minimizes** the sum of squared error

To minimize the SSE

Objective: Find the line which **minimizes** the sum of squared error

Min(SSE)

$$SSE = \sum_{i} E_{i}^{2} = \sum_{i} \{Y_{i} - (\alpha + \beta X_{i})\}^{2}$$

$$\frac{\partial}{\partial \alpha} \sum_{i} \{Y_i - (\alpha + \beta X_i)\}^2 = 0$$
$$\frac{\partial}{\partial \beta} \sum_{i} \{Y_i - (\alpha + \beta X_i)\}^2 = 0$$

Given

$$SS_{xx} = \sum_{i} (X_i - \overline{X}_i)^2$$

$$SS_{xy} = \sum_{i} (X_i - \overline{X}_i) \times (Y_i - \overline{Y}_i)$$

$$\beta = \frac{SS_{xy}}{SS_{xx}}$$

$$\alpha = \overline{Y}_i - \beta \overline{X}_i$$

$$\alpha = \overline{Y}_i - \beta \overline{X}_i$$

In Sum!

Model: Y = 3.4 + 0.7X

 $\sum_{i} E_{i}^{2}$

How good our model is: The R squared

$$Var(Y) = \sum_{i=1}^{7} (Y - \overline{Y})^2$$

$$Var(line) = \sum_{i=1}^{7} (Y - \widehat{Y}_i)^2$$

How good our model is: The R squared

$$Var(Y) = \sum_{i=1}^{7} (Y - \bar{Y})^{2}$$

$$R^{2} = \frac{Var(Y) - Var(line)}{Var(Y)}$$

$$Var(line) = \sum_{i=1}^{7} (Y - \hat{Y}_{i})^{2}$$

How good our model is: The R squared

Let's get back to the first example

Video	Views	Profit
1	1	3
2	2	6
3	3	5
4	4	8
5	5	7
6	6	6
7	7	9

```
x=c(1:7)
y=c(3,6,5,8,7,6,9)
par(pty="s")
plot(x,y)
```


Learning model with linear model function (lm)

Video	Views	Profit
1	1	3
2	2	6
3	3	5
4	4	8
5	5	7
6	6	6
7	7	9

```
lr.model<-lm(y~x)
summary(lr.model)</pre>
```

```
##
## Call:
## lm(formula = v \sim x)
                                E_i
   Residuals:
## -1.143e+00 1.143e+00 -5.714e-01 1.714e+00 1.110e-16 -1.714e+00 5.714e-01
##
   Coefficients:
               Estimate Std. Error t value Pr(>|t|)
            \alpha = 3.4286
                            1.1429
                                     3.000
                                              0.0301 *
## (Interc
             \beta = 0.7143
## x
                            0.2556
                                      2.795
                                              0.0382 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.352 on 5 degrees of freedom
## Multiple R-squared: 0.6098, Adjusted R-squared: 0.5317
## F-statistic: 7.813 on 1 and 5 DF, p-value: 0.03821
```

Model interpretation


```
##
## Call:
## lm(formula = y \sim x)
                                E_i
   Residuals:
              1.143e+00 -5.714e-01 1.714e+00 1.110e-16 -1.714e+00 5.714e-01
##
   Coefficients:
               Estimate Std. Error t value Pr(>|t|)
             \alpha = 3.4286
                            1.1429
                                      3.000
                                              0.0301 *
   (Interc
             \beta = 0.7143
                            0.2556
                                      2.795
                                              0.0382 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.352 on 5 degrees of freedom
  Multiple R-squared: 0.6098, Adjusted R-squared: 0.5317
## F-statistic: 7.813 on 1 and 5 DF, p-value: 0.03821
```

Model: Y = 3.4 + 0.7X

Prediction

Views	Profit
8	3.4 + 0.7 * 8 = 9
9	3.4 + 0.7 * 9 = 9.7
10	3.4 + 0.7 * 10 = 10.4

```
new.data=data.frame(x=c(8:10))
predict(lr.model, new.data)
```

Model: Y = 3.4 + 0.7X

When the number of features is two

Profit of the video ∝ the number of views

Views	Ads	Profit
1	2	4
2	3	5
3	2	5
4	1	4
5	4	8
6	3	6
7	4	10

To minimize the SSE

$$Profit_i = \alpha + \beta Views_i + \gamma Ads_i + \varepsilon_i$$

Objective: Find the line which minimizes the sum of squared error

Min(SSE)

$$SSE = \sum_{i} E_{i}^{2} = \sum_{i} \{Profit_{i} - (\alpha + \beta Views_{i} + \gamma Ads_{i})\}^{2}$$

$$\frac{\partial}{\partial \alpha} \sum_{i} \{Profit_{i} - (\alpha + \beta Views_{i} + \gamma Ads_{i})\}^{2} = 0$$

$$\frac{\partial}{\partial \beta} \sum_{i} \{ Profit_i - (\alpha + \beta Views_i + \gamma Ads_i) \}^2 = 0$$

$$\frac{\partial}{\partial y} \sum_{i} \{Profit_i - (\alpha + \beta Views_i + \gamma Ads_i)\}^2 = 0$$

$$\rightarrow \alpha, \beta, \gamma$$

$$Profit = \alpha + \beta * View + \gamma * Ads$$

Linear regression Pros & Cons

Pros	Cons
Simple model	Overly-simplistic
Computationally efficient	Linearity assumption
Easy interpretability	Severely-affected by outliers
	Independence of variables
	Assumes Homoskedacity
	Inability to determine Feature importance