

Modelo atómico

Autores:

- Valentino Rao Leg. 402308
- Ignacio Ismael Perea Leg. 406265
- Manuel Leon Parfait Leg. 406599
- Gonzalo Filsinger Leg. 400460
- Agustín Coronel Leg. 402010
- Santiago Pannunzio Leg. 402350
- Marcos Raúl Gatica Leg. 402006
- **Curso:** 2R1.
- Asignatura: Física electrónica.
- Institución: Universidad Tecnológica Nacional Facultad Regional de Córdoba

<u>Índice</u>

1.	INTRODUCCIÓN	1			
2.	. FUNDAMENTOS TEÓRICOS				
	2.1. Modelo atómico de Thomson				
	2.2. La excitación atómica				
	2.3. Espectros atómicos	1			
	2.4. Series espectrales	1			

1. INTRODUCCIÓN

El siguiente informe busca detallar las prácticas de laboratorio para determinar:

- El valor de la mayor longitud de onda de la serie de Paschen.
- La longitud de onda de la línea espectral correspondiente a la transición del hidrógeno de estado $n = 6 \rightarrow 3$.
- Longitud de onda de un fotón emitido por un átomo de hidrógeno al pasar de estado 10 al funda-
- Energía para extraer un electrón del átomo de hidrógeno IV. De líneas de absorción. en el estado n = 2.
- Diferencia de potencial necesaria para acelerar los electrones para que emita la primera línea de la serie de Balmer.

2. FUNDAMENTOS TEÓRICOS

Modelo atómico de Thomson

El modelo consiste en una masa de carga positiva sobre el cual quedan inmersas cargas negativas [ver figura a continuación]. Las demostraciones que fundamentaban este modelo del átomo no eran del todo adecuados debido al uso de los instrumentos de medición que se usaba.

La excitación atómica

Se sabe de dos mecanismos fundamentales capaces de excitar a un átomo:

- I. Provocando una interacción del átomo con otra que un electrón pase cerca del núcleo atómico).
- II. Cuando un átomo recibe luz en cantidad suficiente para excitarlo.

Esto se asocia a darle energía de manera externa al átomo para que uno de sus electrones salte a un nivel de energía más alto (estado excitado). En ese punto, el átomo se vuelve inestable y buscará liberar la energía

absorbida (haciéndolo en forma de fotones) para regresar a su estado más estable. El o los fotones emitidos producen una línea espectral característica de la energía emitida (base de espectros de emisión).

Espectros atómicos 2.3.

Consiste en el análisis de la longitud de onda de una fuente luminosa. Hay cuatro tipos de clases de espectros:

- I. Continuos de emisión.
- II. De líneas de emisión.
- III. Continuos de absorción.

I - Continuos de emisión

Es aquel que ocurre en sólidos a altas temperaturas, como un filamento de tungsteno o wolframio de una lámpara eléctrica.

II - De líneas de emisión

Se produce por descargas eléctricas en vapor de gas a altas temperaturas. Los espectros de emisión se caracterizan por tener líneas claras sobre un fondo oscuro.

III - Continuos de absorción Ocurre al hacer pasar un espectro continuo de emisión a través de un material de estado líquido o sólido. Se puede ver una franja con colores faltantes, aquellos que fueron absorbidos por el material en cuestión.

IV - De líneas de absorción Ocurre cuando la luz pasa por un gas o vapor, el cual absorve algunas de las energías incidentes.

Series espectrales

partícula de tal forma que parte de la energía cinética or de las longitudes de onda presentes en un espectro Son un conjunto matemático que determinan el valatómico.

Series espectrales del hidrógeno

Antes de la formulación de un modelo atómico robusto, los científicos determinaron experimentalmente un conjunto de series espectrales:

Nota: para todos los casos, R es la constante de Raydberg y es igual a $1,097,10^7 \frac{1}{m}$

■ Serie de Lyman: funciona para la emisión ultra violeta del hidrógeno, o sea, a altas frecuencias.

$$\frac{1}{\lambda} = R(1 - \frac{1}{n^2})$$
 $[n = 2, 3, 4, \dots]$

 Serie de Balmer: funciona para la emisión en el espectro visible.

$$\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{n^2}) \quad [n = 3, 4, 5, \dots]$$

 Serie de Paschem: funciona para la emisión ultra violeta del hidrógeno a altas frecuencias.

$$\frac{1}{\lambda} = R(\frac{1}{3^2} - \frac{1}{n^2}) \quad [n = 4, 5, 6, \dots]$$

 Serie de Brackett: funciona para la emisión infrarroja, en bajas frecuencias.

$$\frac{1}{\lambda} = R(\frac{1}{4^2} - \frac{1}{n^2}) \quad [n = 5, 6, 7, \dots]$$

 Serie de Pfund: funciona para la emisión infrarroja.

$$\frac{1}{\lambda} = R(\frac{1}{5^2} - \frac{1}{n^2}) \quad [n = 6, 7, 8, \dots]$$