Dynamic Programming II

Inge Li Gørtz

KT section 6.4 and 6.6

Thank you to Kevin Wayne for inspiration to slides

Subset Sum and Knapsack

Dynamic Programming

- · Optimal substructure
- · Last time
 - · Weighted interval scheduling
- Today
 - Knapsack
 - · Sequence alignment

2

Subset Sum

- Subset Sum
 - Given n items $\{1, ..., n\}$
 - Item i has weight w_i
 - $\bullet \ \operatorname{Bound} \ W$
 - ullet Goal: Select maximum weight subset S of items so that

$$\sum_{i \in S} w_i \leq W$$

- Example
- {2, 5, 8, 9, 12, 18} and W = 25.
- Solution: 5 + 8 + 12 = 25.

- Subset Sum
 - Given n items $\{1,\ldots,n\}$
 - Item i has weight w_i
 - Bound W
 - Goal: Select maximum weight subset S of items so that

$$\sum_{i \in S} w_i \le W$$

- Example
- $\{2, 5, 8, 9, 12, 18\}$ and W = 25.
- Solution: 5 + 8 + 12 = 25.

Subset Sum

Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

Subset Sum

- \mathcal{O} = optimal solution
- Consider element n.
 - Either in \mathcal{O} or not.
 - $n \notin \mathcal{O}$: Optimal solution using items $\{1, ..., n-1\}$ is equal to \mathcal{O} .
 - $n \in \mathcal{O}$: Value of $\mathcal{O} = w_n$ + weight of optimal solution on $\{1, ..., n-1\}$ with capacity $W-w_n$.
- Recurrence
 - OPT(i, w) = optimal solution on $\{1, ..., i\}$ with capacity w.
 - · From above:

$$OPT(n, W) = \max(OPT(n - 1, W), w_n + OPT(n - 1, W - w_n))$$

• If $w_n > W$:

$$OPT(n, W) = OPT(n - 1, W)$$

Subset Sum

$$\mathrm{OPT}(i,w) = \begin{cases} \mathrm{OPT}(i-1,\!w) & \text{if } w < w_i \\ \mathrm{max}(\mathrm{OPT}(i-1,\!w), w_i + \mathrm{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

· Recurrence:

$$\mathrm{OPT}(i,w) = \begin{cases} \mathrm{OPT}(i-1,\!w) & \text{if } w < w_i \\ \mathrm{max}(\mathrm{OPT}(i-1,\!w), w_i + \mathrm{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

Subset Sum

· Recurrence:

$$\mathsf{OPT}(i, w) = \begin{cases} \mathsf{OPT}(i-1, w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1, w), w_i + \mathsf{OPT}(i-1, w-w_i)) & \text{otherwise} \end{cases}$$

Example

• $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

· Recurrence:

$$\mathrm{OPT}(i,w) = \begin{cases} \mathrm{OPT}(i-1,\!w) & \text{if } w < w_i \\ \mathrm{max}(\mathrm{OPT}(i-1,\!w), w_i + \mathrm{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

```
Array M[0...n][0...W]
Initialize M[0][w] = 0 for each w = 0,1,...,W
Subset-Sum(n,W)

Subset-Sum(i,w)
   if M[i][w] empty
    if w < wi
        M[i][w] = Subset-Sum(i-1,w)
   else
        M[i][w] = max(Subset-Sum(i-1,w), wi +
        Subsetsum(i-1,w-wi))
   return M[i][w]</pre>
```


Subset Sum

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), \frac{w_i + \mathsf{OPT}(i-1,\!w-w_i)}{w_i}) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,w), w_i + \mathsf{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

· Recurrence:

$$\mathrm{OPT}(i,w) = \begin{cases} \mathrm{OPT}(i-1,\!w) & \text{if } w < w_i \\ \mathrm{max}(\mathrm{OPT}(i-1,\!w), w_i + \mathrm{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

· Recurrence:

$$\mathrm{OPT}(i,w) = \begin{cases} \mathrm{OPT}(i-1,\!w) & \text{if } w < w_i \\ \mathrm{max}(\mathrm{OPT}(i-1,\!w), w_i + \mathrm{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

Subset Sum

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

- Example
- $\{1, 2, 5, 8, 9\}$ and W = 12

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

```
Subset-Sum(n,W)
 Array M[0...n][0...W]
 Initialize M[0][w] = 0 for each w = 0,1,...,W
 for i = 1 to n
   for w = 0 to W
     if w < w_i
       M[i][w] = M[i-1][w]
       M[i][w] = max(M[i-1][w], w_i + M[i-1][w-w_i])
 return M[n,W]
```


Knapsack

- Knapsack
 - Given n items $\{1,\ldots,n\}$
 - Item i has weight w_i and value v_i
 - Bound W
 - Goal: Select maximum value subset S of items so that

$$\sum_{i \in S} w_i \le W$$

Example

value

Subset Sum

· Recurrence:

$$\mathsf{OPT}(i,w) = \begin{cases} \mathsf{OPT}(i-1,\!w) & \text{if } w < w_i \\ \max(\mathsf{OPT}(i-1,\!w), w_i + \mathsf{OPT}(i-1,\!w-w_i)) & \text{otherwise} \end{cases}$$

- Running time:
 - Number of subproblems = nW
 - Constant time on each entry $\Rightarrow O(nW)$
 - Pseudo-polynomial time.
 - · Not polynomial in input size:
 - whole input can be described in O(n log n + n log w) bits, where w is the maximum weight (including W) in the instance.

Knapsack

Knapsack

- \mathcal{O} = optimal solution
- Consider element n.

- Little III O of flot.
- $n \notin \mathcal{O}$: Optimal solution using items $\{1, ..., n-1\}$ is equal to \mathcal{O} .
- $n\in \mathcal{O}$: Value of $\mathcal{O}=v_n$ + value on optimal solution on $\{1,\ldots,n-1\}$ with capacity $W-w_n$.
- Recurrence
 - OPT(i, w) = optimal solution on $\{1, ..., i\}$ with capacity w.

$$\mathrm{OPT}(i,w) = \begin{cases} \mathrm{OPT}(i-1,w) & \text{if } w < w_i \\ \mathrm{max}(\mathrm{OPT}(i-1,w), v_i + \mathrm{OPT}(i-1,w-w_i)) & \text{otherwise} \end{cases}$$

• Running time O(nW)

Sequence Alignment

Dynamic programming

- · First formulate the problem recursively.
 - · Describe the problem recursively in a clear and precise way.
 - · Give a recursive formula for the problem.
- · Bottom-up
 - · Identify all the subproblems.
 - · Choose a memoization data structure.
 - · Identify dependencies.
 - · Find a good evaluation order.

· Top-down

- · Identify all the subproblems.
- · Choose a memoization data structure.
- · Identify base cases.
- · Remember to save results and check before computing.

Sequence alignment

- · How similar are ACAAGTC and CATGT.
- · Align them such that
 - · all items occurs in at most one pair.
 - · no crossing pairs.
- · Cost of alignment
 - gap penalty δ
 - mismatch cost for each pair of letters α(p,q).
- · Goal: find minimum cost alignment.
- Input to problem: 2 strings X nd Y, gap penalty δ , and penalty matrix $\alpha(p,q)$.

· Subproblem property.

X _{n-1}	Xn
Y _{n-1}	Уm

- · In the optimal alignment either:
 - x_n and y_m are aligned.
 - OPT = price of aligning x_n and y_m + minimum cost of aligning X_{i-1} and Y_{i-1} .
 - · x_n and y_m are not aligned.
 - Either x_n and y_m (or both) is unaligned in OPT. Why?
 - OPT = δ + min(min cost of aligning X_{n-1} and Y_{m} , min cost of aligning X_n and Y_{m-1})

33

35

Sequence alignment

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$\min \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

Penalty matrix

Α	Т							
0	1	2	2					
1	0	2	3					
2	2	0	1					
T 2 3 1 0								
	0 1 2	0 1 1 0 2 2	0 1 2 1 0 2 2 2 0					

Sequence Alignment

· Subproblem property.

- SA(X_i,Y_i) = min cost of aligning strings X[1...i] and Y[1...i].
- · Case 1. Align x_i and y_i.
 - Pay mismatch cost for x_i and y_j + min cost of aligning X_{i-1} and Y_{j-1}.
- Case 2. Leave xi unaligned.
 - Pay gap cost + min cost of aligning X_{i-1} and Y_j.
- · Case 3. Leave y_i unaligned.
 - Pay gap cost + min cost of aligning X_i and Y_{j-1}.

34

Sequence alignment

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

Penalty matrix

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), & \text{otherwise} \\ \delta + SA(X_i, Y_{j-1}), & \text{otherwise} \end{cases}$$

Penalty matrix

	Α	С	G	Т
Α	0	1	2	2
О	1	0	2	3
G	2	2	0	1
Τ	2	3	1	0

37

Sequence alignment

$$SA(X_i,Y_j) = \begin{cases} j\delta & \text{if } i=0\\ i\delta & \text{if } j=0 \end{cases}$$

$$\min \begin{cases} \alpha(x_i,y_j) + SA(X_{i-1},Y_{j-1}), & \text{otherwise} \\ \delta + SA(X_i,Y_{j-1}), & \text{otherwise} \end{cases}$$

		Α	С	Α	Α	G	Т	С
	0	1	2	3	4	5	6	7
С	1							
Α	2							
Т	3							
G	4							
Т	5							

	Α	O	G	Т						
Α	0	1	2	2						
С	1	0	2	3						
G	2	2	0	1						
Т	2	3	1	0						

Penalty matrix

3

Sequence alignment

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$\min \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

		Α	С	Α	Α	G	Т	С
	0	1	2	3	4	5	6	7
О	1							
Α	2							
Τ	3							
G	4							
Т	5							

Penalty matrix

	Α	C	G	Т
Α	0	1	2	2
O	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

39

Sequence alignment

$$SA(X_i,Y_j) = \begin{cases} j\delta & \text{if } i=0\\ i\delta & \text{if } j=0\\ \min \begin{cases} \alpha(x_i,y_j) + SA(X_{i-1},Y_{j-1}),\\ \delta + SA(X_i,Y_{j-1}),\\ \delta + SA(X_{i-1},Y_j) \end{cases} & \text{otherwise} \end{cases}$$

min(1+0, 1+1, 1+1)

		Α	O	Α	Α	G	Т	C
	0	1	2	3	4	5	6	7
С	1	1						
Α	2							
Т	3							
G	4							
Т	5							

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

Penalty matrix

$$SA(X_i, Y_j) = \begin{cases} j\delta \\ i\delta \\ \\ \min \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases} \end{cases}$$

min(0+1, 1+2, 1+1)

		Α	O	Α	Α	G	Т	O
	0	1	2	3	4	5	6	7
О	1	1						
Α	2							
Τ	3							
G	4							
Т	5							

$\delta = 1$

Penalty matrix

if i = 0 if j = 0

otherwise

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

41

Sequence alignment

$$SA(X_i,Y_j) = \begin{cases} j\delta & \text{if } i=0\\ i\delta & \text{if } j=0\\ \min \begin{cases} \alpha(x_i,y_j) + SA(X_{i-1},Y_{j-1}),\\ \delta + SA(X_i,Y_{j-1}),\\ \delta + SA(X_{i-1},Y_j) \end{cases} & \text{otherwise} \end{cases}$$

min(0+1, 1+2, 1+1)

		Α	С	Α	Α	G	Т	С
	0	1	2	3	4	5	6	7
С	1	1	1					
Α	2							
Т	3							
G	4							
Т	5							

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

Penalty matrix

4

Sequence alignment

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$\min \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

min(1+2, 1+3, 1+1)

		Α	С	Α	Α	G	Т	С
	0	1	2	3	4	5	6	7
O	1	1	1					
Α	2							
Τ	3							
G	4							
Т	5							

Penalty matrix

	Α	O	G	Н				
Α	0	1	2	2				
С	1	0	2	3				
G	2	2	0	1				
Т	2	3	1	0				

43

Sequence alignment

$$SA(X_i,Y_j) = \begin{cases} j\delta & \text{if } i=0\\ i\delta & \text{if } j=0 \end{cases}$$

$$\min \begin{cases} \alpha(x_i,y_j) + SA(X_{i-1},Y_{j-1}), & \text{otherwise} \\ \delta + SA(X_i,Y_{j-1}), & \text{otherwise} \end{cases}$$

min(1+2, 1+3, 1+1)

		Α	С	Α	Α	G	Т	С
	0	1	2	3	4	5	6	7
С	1	1	1	2				
Α	2							
Т	3							
G	4							
Т	5							

Տ <u>–</u> 1

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

Penalty matrix

$$SA(X_i,Y_j) = \begin{cases} j\delta & \text{if } i=0\\ i\delta & \text{if } j=0\\ \min \begin{cases} \alpha(x_i,y_j) + SA(X_{i-1},Y_{j-1}),\\ \delta + SA(X_i,Y_{j-1}),\\ \delta + SA(X_{i-1},Y_j) \end{cases} & \text{otherwise} \end{cases}$$

min(1+3, 1+4, 1+2)

		Α	O	Α	Α	G	Т	O
	0	1	2	3	4	5	6	7
О	1	1	1	2				
Α	2							
Τ	3							
G	4							
Т	5							

Penalty n	natrix
-----------	--------

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

45

Sequence alignment

$$SA(X_i,Y_j) = \begin{cases} j\delta & \text{if } i=0\\ i\delta & \text{if } j=0\\ \min \begin{cases} \alpha(x_i,y_j) + SA(X_{i-1},Y_{j-1}),\\ \delta + SA(X_i,Y_{j-1}),\\ \delta + SA(X_{i-1},Y_j) \end{cases} & \text{otherwise} \end{cases}$$

min(1+3, 1+4, 1+2)

		Α	С	Α	Α	G	Т	С
	0	1	2	3	4	5	6	7
С	1	1	1	2	3			
Α	2							
Т	3							
G	4							
Т	5							

	Α	O	G	Т					
Α	0	1	2	2					
С	1	0	2	3					
G	2	2	0	1					
Т	2	3	1	0					

Penalty matrix

46

Sequence alignment

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$\min \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

min(2+4, 1+5, 1+3)

		Α	С	Α	Α	G	Т	С
	0	1	2	3	4	5	6	7
С	1	1	1	2	3	4		
Α	2							
Т	3							
G	4							
Т	5							

Penalty matrix

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

47

Sequence alignment

$$SA(X_i,Y_j) = \begin{cases} j\delta & \text{if } i=0\\ i\delta & \text{if } j=0\\ \min \begin{cases} \alpha(x_i,y_j) + SA(X_{i-1},Y_{j-1}),\\ \delta + SA(X_i,Y_{j-1}),\\ \delta + SA(X_{i-1},Y_j) \end{cases} & \text{otherwise} \end{cases}$$

		Α	O	Α	Α	G	Т	O
	0	1	2	3	4	5	6	7
С	1	1	1	2	3	4	5	6
Α	2	1	2	1	2	3	4	5
Т	3	2	3	2	3	3	3	4
G	4	3	4	3	4	3	4	5
Т	5	4	5	4	5	4	3	4

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

Penalty matrix

· Time: ⊖(mn)

· Space: ⊖(mn)

49

Sequence alignment

- Use dynamic programming to compute an optimal alignment.
 - · Time: ⊖(mn)
 - Space: Θ(mn)
- Find actual alignment by backtracking (or saving information in another matrix).
- · Linear space?
 - Easy to compute value (save last and current row)
 - How to compute alignment? Hirschberg. (not part of the curriculum).

51

Sequence alignment: Finding the solution

$$SA(X_i,Y_j) = \begin{cases} j\delta & \text{if } i=0\\ i\delta & \text{if } j=0\\ \min \begin{cases} \alpha(x_i,y_j) + SA(X_{i-1},Y_{j-1}),\\ \delta + SA(X_i,Y_{j-1}),\\ \delta + SA(X_{i-1},Y_j) \end{cases} & \text{otherwise} \end{cases}$$

Penalty matrix A C G T A 0 1 2 2 C 1 0 2 3 G 2 2 0 1 T 2 3 1 0

		Α	C	Α	Α	G	Т	О
	0	1	2	3	4	5	6	7
O	1	1	1	2	3	4	5	6
Α	2	1	2	1	2	3	4	5
Т	3	2	3	2	3	3	3	4
G	4	3	4	3	4	3	4	5
Т	5	4	5	4	5	4	3	4

		Α	С	Α	Α	G	Т	С
		←	←	←	←	←	←	←
С	1	ζ.	Γ,	←	←	←	←	ζ.
Α	1	^	Γ.	ς,	ζ.	←	←	←
Т	1	1	1	1	Γ,	Γ,	<	←
G	1	1	ζ,	1	ζ,	Γ,	K	ζ.
Т	1	1	1	1	ζ.	1	Γ,	←