

Prof. Fabrício J. Barth

fbarth@tancredo.br

Faculdades Tancredo Neves

Objetivo

Apresentar os conceitos básicos para o desenvolvimento de sistemas para TV Digital.

Sumário

- Introdução:
 - História da TV.
 - O que é TV Digital?
 - Exemplos de Aplicações para TV Digital.
- Funcionamento
 - Multiplexação, Transmissão e Recepção
 - Arquitetura e Especificações
- Java TV
 - **Xlets**
- **DVB-MHP e XIeTView**
- Algumas Referências

O que significa "TV" (hoje)?

Como é implementado?

Transmissão

Recepção (apenas)

Produção

O que é TV Digital?

Uma breve história da TV

- ◆1936: BBC Londres camêra gerando o sinal, enviando-o diretamente para a antena (tudo ao vivo e preto e branco);
- Década de 50: televisão colorida;
- ◆1956: surgimento do videoteipe = possibilidade de edição;
- Ainda na década de 50: aumento dos canais e necessidade do controle remoto;
- 1980: ilhas de edição digitais passaram a oferecer mais flexibilidade e maiores recursos aos editores;
- 1990: primeiros experimentos com transmissão digital;
- Hoje em dia: tv analógica + set top box
- Aparelhos receptores totalmente digitais

O que é TV Digital?

Produção digital

Transmissão digital

Receptor digital

O que é TV Digital?

Imagens com maior definição – alguns chamam de maior "qualidade"

Recursos Interativos

 Possibilidade de convergência com outros serviços

O que é interatividade?

De 1953 até 1957 Canal CBS Winky Dink and You!

Recursos Interativos

TV Digital Interativa

TV Digital Interativa - Exemplos

Electronic
Program
Guide:
guia de
programação
e conteúdo das
emissoras

TV Digital Interativa -Exemplos

Aplicação
específica:
programas que
seguem junto ao
programa de TV
assistido

TV Digital Interativa -Exemplos

Mecanismo de busca de programas de TV

Outros "aparelhos" muito utilizados ... Hoje em dia ...

Exemplos de convergência para o usuário final

Internet Banking na TV

Guia de rotas e ruas na TV

Leitor de e-mail na TV

MSN, Blog, Orkut ... Na TV ?!?!

Convergência de Serviços

Voltando das nuvens...

Transmissão digital

Receptor digital

Produção digital

Como funciona?

Como funciona (visão geral)

Multiplexação e Transmissão

Formato para transporte e compressão

DSM-CC

Um dos formatos de transmissão de dados mais eficiente para broadcast

Os dados são transmitidos intercalados

Dado 6
Dado 2
Dado 5
Dado 3

Os usuários podem selecionar um dos dados transmitidos a qualquer momento

Recepção MPEG-2 Data Transport Data Service Demux Engine Blend Audio + Video Signal to Display

Arquitetura genérica

Aplicações

Middleware

Compressão

Transporte

Transmissão e Modulação

Americana (ATSC)

Japonesa (ISDB)

Européia (DVB)

Americana (ATSC)

Middleware = DASE (DTV Application Software Environment)
Compressão de audio = Dolby AC-3
Compressão de vídeo = MPEG-2

Transporte = MPEG-2

Middleware = ARIB (Association of Radio Industries and Businesses)

Compressão de audio = MPEG-2 ACC

Compressão de vídeo = MPEG-2

Transporte = MPEG-2

Européia (DVB)

Middleware = MHP (Multimedia Home Plataform)
Compressão de audio = MPEG-2
Compressão de vídeo = MPEG-2
Transporte = MPEG-2

Middleware

Americana (ATSC-DASE)

Todos baseados na especificação JavaTV

Isto não significa interoperabilidade entre os padrões! :-(

Java TV

Japonesa (ISDB-ARIB)

Européia (DVB-MHP)

Java TV

(http://java.sun.com/products/javatv/)

Java TV Applications = Xlets

O seu conceito é similar aos dos Applets e Midlets. Foi introduzido pela SUN na especificação JavaTV. Os Xlets possuem uma interface que permite com que uma fonte externa possam controla-los (Application Manager).

Desenvolvendo um Xlet: Tutorial Rápido (1)

Criar uma classe e implementar a interface Xlet:

```
import javax.tv.xlet.Xlet;
import javax.tv.xlet.XletContext;
import javax.tv.xlet.XletStateChangeException;
```

public class Exemplo1 implements Xlet {

Desenvolvendo um Xlet: Tutorial Rápido (2)

Implementar cada um dos métodos da interface Xlet:

public void destroyXlet(boolean unconditional)
public void initXlet(XletContext context)
public void pauseXlet()
public void startXlet()

Estados do XIet

O application manager (AM) carrega a classe principal do Xlet (Loaded)

Xlet inicializado =
AM invoca o método
initXlet(XletContext) Initialised e Paused

destroyXlet() = libera
todos os recursos

(www.mhp-interactive.org)

Xlet Contexts

- Cada Xlet possui associado a ele uma instância da classe javax.tv.xlet.XletContext (informações e interação com o ambiente).
- Métodos da Interface XletContext:
 - notifyDestroyed(): notifica ao ambiente que o XIet foi destruído.
 - notifyPaused(): o Xlet interrompeu a sua execução. resumeRequest(): um Xlet parado deseja retornar a sua execução.

O que é MHP?

É um *middleware* aberto desenvolvido pelo consórcio DVB (www.dvb.org)

Aplicações

Desenvolvedores independentes Diferentes provedores de serviço Distintas áreas de aplicação

Interface Genérica

Receptores/Terminais MHP Implementações Independentes. Hardwares diferentes. Softwares diferentes. Vários tipos de receptores.

MHP Profiles

- O conceito de *Profile* está conectado com uma área de aplicação, por conseqüência: com as capacidades de um set-top-box (equipamento).
- MHP é baseado em três profiles:
 - 1. Enhanced Broadcast Profile (MHP 1.0): define as capacidades mais básicas do padrão. É utilizado quando o terminal não possui canal de retorno.
 - 2. Interactive TV Profile (MHP 1.0): este profile é utilizado em equipamentos com canal retorno.
 - Internet Access Profile (MHP 1.1): fornece acesso à Internet. Necessita de um equipamento com memória e capacidade de processamento muito mais amplo do que os atuais equipamentos possuem.

(www.mhp.org)

Arquitetura – Principais Componentes

(www.mhp-interactive.org)

Aplicações MHP

- Uma aplicação MHP pode ser baseada em DVB-HTML ou DVB-J (mais popular).
- DVB-J: estas aplicações são escritas em JAVA usando o conjunto de classes da API MHP e consiste de um conjunto de arquivos de classes que são enviados junto com o serviço (XIets).

Administração de Recursos

- Um receptor de TV Digital é normalmente um dispositivo com poucos recursos disponíveis.
- São várias as aplicações rodando e compartilhando os mesmos recursos.
- Importância de se ter um mecanismo de administração de recursos adequado e eficiente.
- Para auxiliar as aplicações na administração dos recursos: resource notification API (org.davic.resources).

Componentes da parte Gráfica

- Provavelmente uma das partes mais complexas da especificação MHP.
- Existem inúmeras variáveis que devem ser consideradas:

Mudança na aparência (aspect ratio) (4:3) (16:9).

Necessidade de componentes transparentes.

Não existe Window Manager: esta estrutura de dados é muito complexa para ser utilizada por um receptor.

Só existe controle remoto

- Definição da parte gráfica = classes já definidas no AWT do Java + especificação HAVI - Home Audio Video Interoperability (www.havi.org).
- java.awt.* = herdou algumas características, por exemplo: Component e Container.
- java.havi.ui.* = cria os componentes de interface.
- org.dvb.ui.* = para habilitar transparência na camada gráfica.
- org.dvb.event.* = para tratar eventos.

Background Layer

Video Layer

Graphics Layer (Overlay layer)

(0,0) in normalized and screen coordinate spaces

HGraphicsDevice

(0, 0) in AWT coordinate space

Application root window

(1.0, 1.0) in normalized coordinate space (720, 576) in

screen coordinate space

Processo de interação dos usuários com as aplicações

Processo de interação dos usuários com as aplicações (cont.)

As principais classes para tratar eventos são:

org.dvb.event.EventManager: define que aplicação escuta que evento. O objeto único é acessado através de org.dvb.event.EventManager.getInstance()

org.dvb.event.UserEvent: o objeto desta classe representa um evento de entrada.

org.dvb.event.UserEventRepository: contêm o conjunto de objetos da classe UserEvent que a aplicação está disposta a tratar.

org.dvb.event.UserEventListener: é uma classe que escuta os eventos, que recebe e trata os eventos.

- Quando o controle remoto é pressionado é gerado um evento do tipo java.awt.event.KeyEvents
- Os códigos das teclas são definidos em: org.havi.ui.event.HrcEvent

Service Information API

- Fornece um conjunto de classes que acessa as tabelas sobre informações dos serviços que são encontradas no transport stream do DVB.
- Tipos de informações encontradas:
 - Quais são os serviços (canais) disponíveis ?
 - Quais são os programas por canal?
 - Qual a duração, o início de cada programa?
- Package org.dvd.si

Service Selection API

- A Service Selection API usa a Service Information API com o objetivo de encontrar o serviço que foi solicitado (i.e., pelo usuário, aplicação, etc).
- Esta API usa a Tuning API e o Java Media Framework para mudar para o correspondente transport stream e mostrar o serviço correto.

Comentários sobre o desenvolvimento de Aplicações

Lembrar sempre que o receptor de TV Digital é um ambiente limitado:

Recursos de sistema limitados (memória e disco);

Interfaces de usuários restritas e diferentes;

Necessidade de um código eficiente!

A Interface do Usuário deve ser projetada com cuidado!

Interoperabilidade e Usabilidade

SONY

Panasonic

PHILIPS

Gostei da idéia. Como eu começo a "brincar"?

XleTView
Emulador para Visualizar Xlets MHP
Projeto Open-Source
http://xletview.sourceforge.net/index.php

Referências Bibliográficas

- MHP (www.mhp.org)
- DVB (www.dvb.org)
- The Interactive TV (www.mhp-interactive.org)
- Home Audio Video Interoperability (www.havi.org)
- Java TV (http://java.sun.com/products/javatv/)
- Digital Audio Video Council (www.davic.org)
- XletView (http://sourceforge.net/projects/xletview)