Минимизация нормальных форм.

ДНФ, задающая булеву функцию и имеющая наименьшую сложность из всех ДНФ данной функции, называется *минимальной ДНФ* этой функции.

Процесс перехода от функции к её минимальной ДНФ называется *минимизацией* данной функции.

Пусть функция $f(x_1, x_2, ..., x_n)$ задана таблично. Рассмотрим способы отыскания её минимальной ДНФ.

Алгоритм полного перебора нахождения минимальной ДНФ.

- 1) Если $f(x_1, x_2, ..., x_n) \equiv 0$, то в качестве минимальной ДНФ можно взять $x_1 \cdot \overline{x_1}$.
 - Если $f(x_1, x_2, ..., x_n) \equiv 1$, то в качестве минимальной ДНФ можно взять $x_1 \vee x_1 = x_1 \vee x_1 = x_1 \vee x_2 = x_1 \vee x_2 = x_1 \vee x_2 = x_2 \vee x_1 \vee x_2 = x_1 \vee x_2 = x_2 \vee x_2 = x_1 \vee x_2 = x_2 \vee x_2 = x_1 \vee x_2 = x_2 \vee x_2 = x_2 \vee x_2 = x_1 \vee x_2 = x_2 \vee x_2 = x_2 \vee x_2 = x_1 \vee x_2 = x_2 \vee x_2 = x_2 \vee x_2 = x_2 \vee x_2 = x_1 \vee x_2 = x_2 \vee x_2 = x_2 \vee x_2 = x_2 \vee x_2 = x_1 \vee x_2 = x_2 \vee x_2 = x_2 \vee x_2 = x_2 \vee x_2 = x_1 \vee x_2 = x_2 \vee x_2 \vee x_2 = x_2 \vee x_2 \vee$
- 2) Если $f(x_1, x_2, ..., x_n) \neq 0$, то сначала рассмотрим таблицы функций, имеющие сложность ДНФ, равную 1: $x_1, x_1, x_2, x_2, ...$

Если на каком-то шаге найдена формула, соответствующая булева функция которой равна данной функции, то эту формулу и принимаем за минимальную ДНФ. Если ни у одной из формул сложности 1 вектор значений соответствующих булевых функций не совпал с вектором значений исходной функции, рассматриваем все ДНФ сложности 2: $x_1 \cdot x_2, x_1 \cdot x_2, \dots$ и так далее, постепенно увеличивая сложность ДНФ до тех пор, пока не найдём формулу, соответствующая булева функция которой будет иметь тот же вектор значений, что и исходная. Так как сложность в процессе по-

Этот алгоритм устанавливает теоретическую возможность отыскания таким образом минимальной ДНФ, но на практике неприменим, так как требует большого количества операций.

иска лишь возрастает, найденная ДНФ будет минимальной ДНФ

исходной функции.

В дальнейшем будем рассматривать булевы функции, отличные от тождественного нуля.

Элементарная конъюнкция E называется $\frac{umnликантой}{f}$ булевой функции f , если выполнено равенство

$$E \to f \equiv 1 \tag{1}$$

xyz

000

001

010

011

100

101

110

111

0

0

1

0

0

1 1

Импликанта E называется простой импликантой булевой функции f, если при удалении из E любой буквы она перестаёт быть импликантой функции f.

Пример.

Рассмотрим некоторые импликанты функции f, заданной таблично:

$$xyz \to f \equiv 1 \Rightarrow xyz$$
 - импликанта функции f . $xy \to f \equiv 1 \Rightarrow xy$ - импликанта функции f .

$$x \to f \not\equiv 1$$
 $\Rightarrow x y$ не являются импликанта-

ми функции f , значит, xy- простая импликанта функции.

ДНФ, представляющая из себя дизьюнкцию всех простых импликант булевой функции f, называется сокращённой ДНФ этой функции.

Теорема о сокращённой ДНФ.

Вектор значений функции, соответствующей сокращённой ДНФ, совпадает с вектором значений самой функции.

Пусть $S(x_1, x_2, ..., x_n)$ - сокращённая ДНФ булевой функции $f(x_1, x_2, ..., x_n)$. Докажем, что

$$S(x_1, x_2,...,x_n) = f(x_1, x_2,...,x_n)$$
 (2)

Пусть набор $\alpha = (a_1, a_2, ..., a_n)$ таков, что $S(a_1, a_2, ..., a_n) = 1$. Значит, нашлась простая импликанта, которая на наборе α приняла значе-

ние 1. Но так как все единичные наборы импликанты являются также единичными наборами самой функции, то $f(a_1, a_2, ..., a_n) = 1$. Итак, каждый единичный набор сокращённой ДНФ является также

Пусть набор $\beta = (b_1, b_2, ..., b_n)$ таков, что $f(b_1, b_2, ..., b_n) = 1$.

Рассмотрим конъюнкцию $x_1^{b_1} \cdot x_2^{b_2} \cdot ... \cdot x_n^{b_n}$.

единичным набором функции.

Как известно, $x_1^{b_1} \cdot x_2^{b_2} \cdot \dots \cdot x_n^{b_n}(b_1, b_2, \dots, b_n) = 1$.

Если $x_1^{b_1} \cdot x_2^{b_2} \cdot ... \cdot x_n^{b_n}$ - простая импликанта, то и вся сокращённая ДНФ на этом наборе β также равна 1.

Если $x_1^{b_1} \cdot x_2^{b_2} \cdot \dots \cdot x_n^{b_n}$ - не простая импликанта, будем удалять из неё буквы до тех пор, пока не получим простую импликанту $x_1^{b_1} \cdot x_2^{b_2} \cdot \dots \cdot x_k^{b_k}$, которая на наборе β также равна 1, так как $x_1^{b_1} \cdot x_2^{b_2} \cdot \dots \cdot x_k^{b_k} (b_1, b_2, \dots, b_k, b_{k+1}, \dots b_n) = b_1^{b_1} \cdot b_2^{b_2} \cdot \dots \cdot b_k^{b_k} = 1$. Добиться того,

менных, при необходимости, всегда можно добиться переименованием переменных. Раз одна из простых импликант на наборе β равна 1, то и вся сокращённая ДНФ на этом наборе β также равна 1.

чтобы в состав простой импликанты вошли именно первые k пере-

Получили, что каждый единичный набор функции является также и единичным набором сокращённой ДНФ.

Значит, множества единичных наборов $f(x_1, x_2, ..., x_n)$ и $S(x_1, x_2, ..., x_n)$ совпали, а значит, и верно равенство (2).

Теорема о минимальной ДНФ.

Минимальная ДНФ может быть получена из сокращённой ДНФ удалением некоторого (быть может, пустого) множества импликант.

Пусть $M(x_1,x_2,...,x_n)$ является минимальной ДНФ булевой функции $f(x_1,x_2,...,x_n)$. Заметим, что $M(x_1,x_2,...,x_n)$ состоит лишь из простых импликант функции $f(x_1,x_2,...,x_n)$. Действительно, пусть какая-то импликанта E, вошедшая в состав минимальной ДНФ

какая-то импликанта E, вошедшая в состав минимальной дно $M(x_1, x_2, ..., x_n)$, оказалась не простой. Значит, можно из импликанты

E удалить букву и получить элементарную конъюнкцию E^* , которая также является импликантой для исходной булевой функции $f(x_1, x_2, ..., x_n)$, т.е. все её единичные наборы являются также единичными наборами функции $f(x_1, x_2, ..., x_n)$. Все единичные наборы импликанты Е являются также и единичными наборами для импликанты E^* . Составим новую ДНФ $M^*(x_1, x_2, ..., x_n)$ заменой в минимальной ДНФ конъюнкции E на E^* . Множество единичных наборов $M*(x_1,x_2,...,x_n)$ совпадает со множеством единичных наборов $M(x_1, x_2, ..., x_n)$, т.е. они равносильны. Итак, для функции $f(x_1, x_2, ..., x_n)$ получена ДНФ $M*(x_1, x_2, ..., x_n)$, имеющая меньшую сложность, чем $M(x_1, x_2, ..., x_n)$, что противоречит минимальности $M(x_1, x_2, ..., x_n)$. Итак, минимальная ДНФ состоит из некоторых простых импликант функции $f(x_1, x_2, ..., x_n)$, а сокращённая ДНФ – из всех простых импликант функции $f(x_1, x_2, ..., x_n)$. Значит, минимальная ДНФ может быть получена из сокращённой ДНФ удалением некоторого (быть может, пустого) множества импликант.

Импликанты, которые нельзя удалить из сокращённой ДНФ без нарушения равносильности полученной формулы самой функции, называются *ядровыми*.

ДНФ, состоящая из простых импликант, ни одну из которых нельзя удалить без нарушения равносильности полученной формулы самой функции, называются *тупиковыми* ДНФ.

Говорят, что конъюнкция *покрывает* единичный набор, если на этом наборе она принимает значение, равное 1.

Метод Квайна нахождения минимальной ДНФ.

Этап І. Построение из СДНФ сокращённой ДНФ.

Рассмотрим формулу неполного склеивания

$$Ku \vee Ku = Ku \vee Ku \vee K$$
 (3)

Пусть функция $f(x_1, x_2, ..., x_n)$ отлична от константы ноль. Найдём её СДНФ и будем применять, покуда это возможно, формулу (3).

После этого к полученной формуле столько раз, сколько возможно, применим закон поглощения $x \lor x \cdot y = x$. Покажем, что в результате получим сокращённую ДНФ.

Пусть $x_1^{a_1} \cdot x_2^{a_2} \cdot ... \cdot x_k^{a_k}$ - простая импликанта функции $f(x_1, x_2, ..., x_n)$. Тогда все коньюнкции вида $x_1^{a_1} \cdot x_2^{a_2} \cdot ... \cdot x_k^{a_k} \cdot x_{k+1}^{b_{k+1}} \cdot x_{k+2}^{b_{k+2}} \cdot ... \cdot x_n^{b_n}$ тоже будут импликантами функции $f(x_1, x_2, ..., x_n)$ и войдут в состав её СДНФ. Выделим в СДНФ группу дизъюнктивных "слагаемых", имеющих в своём составе коньюнкцию $x_1^{a_1} \cdot x_2^{a_2} \cdot ... \cdot x_k^{a_k}$:

$$\underbrace{\bigvee_{(b_{k+1},\dots,b_n)}}_{(x_{k+1}^{a_1} \cdot x_2^{a_2} \cdot \dots \cdot x_k^{a_k} \cdot x_{k+1}^{b_{k+1}} \cdot \dots \cdot x_n^{b_n}}_{B_n} =$$

$$= \underbrace{\bigvee_{(b_{k+1},\dots,b_n)}}_{(x_{k+1}^{a_1} \cdot x_2^{a_2} \cdot \dots \cdot x_k^{a_k} \cdot x_{k+1}^{b_{k+1}} \cdot \dots \cdot x_{n-1}^{b_{n-1}} \cdot x_n \vee x_1^{a_1} \cdot x_2^{a_2} \cdot \dots \cdot x_k^{a_k} \cdot x_{k+1}^{b_{k+1}} \cdot \dots \cdot x_n^{b_{n-1}} \cdot x_n}_{B_{n-1}} =$$

$$= \underbrace{\bigvee_{(b_{k+1},\dots,b_n)}}_{(b_{k+1},\dots,b_n)} (B_n \vee B_{n-1}) = \dots \underbrace{\bigvee_{(b_{k+1},\dots,b_n)}}_{(b_{k+1},\dots,b_n)} (B_n \vee B_{n-1} \vee \dots \vee x_1^{a_1} \cdot x_2^{a_2} \cdot \dots \cdot x_k^{a_k})$$

Применив формулу поглощения, получим $x_1^{a_1} \cdot x_2^{a_2} \cdot ... \cdot x_k^{a_k}$.

Видим, что каждая простая импликанта будет получена в результате применения формул неполного склеивания и поглощения. Значит, применение формул неполного склеивания и поглощения ко всей СДНФ приводит к сокращённой ДНФ.

Этап II. Построение из сокращённой ДНФ минимальной ДНФ.

По теореме о минимальной ДНФ, минимальная ДНФ получается из сокращённой удалением некоторого множества импликант. Для получения минимальной ДНФ из сокращённой используется матрица Квайна — таблица, число строк в которой равно числу единичных наборов функции, а число столбцов равно количеству простых импликант, вошедших в состав сокращённой ДНФ. С помощью матрицы Квайна выбирается наименьшее число столбцов так, чтобы соответствующий набор импликант покрывал все единичные наборы функции.

Работу метода Квайна проиллюстрируем примером.

Пример.

Найти методом Квайна минимальную ДНФ для функции, заданной векторно: f(x, y, z) = (00111101).

Запишем функцию в развёрнутом виде:	\boldsymbol{x}	у	\mathcal{Z}	f
Построим сокращённую ДНФ из СДНФ, используя	0	0	0	0
формулы неполного склеивания и поглощения. Для	0	0	1	0
удобства, вместо символов переменных будем работать только с показателями степеней переменных.	0	1	0	1
Например, вместо xz будем употреблять набор 0-1	0	1	1	1
Тогда СДНФ функции будет соответствовать множе-	1	0	0	1
ство всех её единичных наборов. Выпишем единич-	1	0	1	1
ные наборы данной булевой функции в таблицу, раз-	1	1	0	0
бив их на группы в соответствии с количеством	1	1	1	1

единичных компонент в наборах.

Тогда для применения формулы неполного склеивания достаточно просмотреть всевозможные пары наборов, входящих в соседние группы. Результаты склеивания наборов из I полосы поместим во II полосе, а наборы, участвующие в склеиваниях, пометим крес-

010 +	01-
100 +	10-
011+	- 1 1
$1\ 0\ 1\ +$	1 - 1
111+	
I полоса	II полоса

тиком. Во второй полосе снова применяем, насколько возможно, операцию склеивания, записывая результаты в III полосу и т.д.

После завершения процедуры склеивания все простые импликанты попадут в таблицу и не будут помечены крестиком. Помеченые же конъюнкции поглотятся на этапе применения формулы поглощения.

Сокращённая ДНФ данной булевой функции имеет вид: $xy \lor xy \lor yz \lor xz$.

Для получения из сокращённой ДНФ минимальной ДНФ изобразим следующую таблицу - матрицу Квайна. Ядровыми импликантами будут 1 и 4, так как для каждой из них найдётся единичный набор, на котором она одна принимает значение 1.

Выбираем наименьшее число столбцов таких, чтобы для каждой строки из данной таблицы и хотя бы одной единицы в этой строке нашёлся бы по крайней мере один столбец из множества выбранных столбцов, который содержит эту Тогда единицу. дизъюнкция членов, сопоставленных всем

№ простой импликанты	1	2	3	4
простые им- пликанты единичные наборы	$-\frac{1}{xy}$	xy	уz	XZ
010	1			
011	1		1	
100		1		
101		1		1
111			1	1

выбранным столбцам, является минимальной ДНФ.

Для выбора наименьшего числа столбцов, удовлетворяющих перечисленным выше требованиям, составляем символическое выражение $1\cdot(1\vee3)\cdot2\cdot(2\vee4)\cdot(3\vee4)$

Приведём это символическое выражение к ДНФ, используя дистрибутивный закон и формулу поглощения $(A \lor B) \cdot A = A$. Получим: $1 \cdot (1 \lor 3) \cdot 2 \cdot (2 \lor 4) \cdot (3 \lor 4) = 1 \cdot 2 \cdot (3 \lor 4) = 1 \cdot 2 \cdot 3 \lor 1 \cdot 2 \cdot 4$. Сопоставим каждой символической конъюнкции тупиковую ДНФ и выберем из них кратчайшую.

В нашем примере символической конъюнкции 1.2.3 соответствует ДНФ $xy \lor xy \lor yz$, а символической конъюнкции 1.2.4 —

 $xy \lor xy \lor xz$. Каждая из полученных ДНФ является минимальной для данной булевой функции и имеет сложность, равную количеству символов переменных в формуле, т.е. сложность 6.

Метод Карнау нахождения минимальной ДНФ.

Задача отыскания минимальной ДНФ методом Карнау сводится к задаче оптимального покрытия всех единиц специальной таблицы, т.н. *карты Карнау*, прямоугольниками, площадь которых выража-

ется целой неотрицательной степенью двойки, по возможности, используя прямоугольники большей площади.

Карта Карнау для функции f(x,y,z) от трёх переменных имеет вид:

Мы считаем её как бы наклеенной на поверхность цилиндра, т.е. отождествляем верхнюю часть карты Карнау с нижней. Цифры внутри таблицы указывают порядок внесения координат вектора значений функции в карту

z/xy	0	1
)()	1	2

00 | 1 | 01 | 3 | 11 | 7 |

5

10

4

Пример. Найти методом Квайна минимальную ДНФ и минимальную КНФ функции f(x, y, z)=(01110011).

Заполним карту Карнау:

Карнау.

При отыскании минимальной ДНФ покрываем единицы карты Карнау двумя прямоугольниками размерами 2×2 и 2×1, отвечающими импликантам У и хх соответственно, получаем минимальную ДНФ

 $y \lor xz$. Её сложность равна 3.

Для нахождения минимальной КНФ покрываем нули карты Карнау двумя прямоугольниками размерами 1×2 , которые соответствуют элементарным дизъюнкциям $y\vee x$ и $y\vee z$. В результате получаем минимальную

 $KH\Phi (y \lor x) \cdot (y \lor z).$

Карта Карнау для функции g(x, y, z, t) от четырёх переменных имеет вид:

Мы считаем её как бы наклеенной на поверхность тора, т.е. отождествляем верхнюю часть карты Карнау с нижней, а правую – с левой. Цифры внутри таблицы указывают порядок внесения координат вектора значе-

 \overline{ZW} 01 11 10 00xy00 3 4 01 5 6 8 11 13 14 16 15 10 9 10 12 11

ний функции в карту Карнау.

Пример. Найти методом Квайна минимальную ДНФ и минимальную КНФ функции

$$g(x, y, z, t) = (1111 \ 1101 \ 1010 \ 0000)$$
.

Покрываем единицы карты Карнау:

Получим минимальную ДНФ:

 $y w \lor x z \lor xw$

Сложность минимальной ДНФ равна 6.

$\frac{zw}{xy}$	00	01	11	10
00	1	\bigcap	1	1
01	1	1	_1	0
11	0	0	0	0
10	1	0	0	1

Отыщем минимальную КНФ функции g(x, y, z, w). Для этого произведём покрытие нулей карты Карнау:

Минимальная КНФ будет иметь вид:

 $(\overline{x} \vee \overline{y}) \cdot (\overline{x} \vee \overline{w}) \cdot (\overline{y} \vee \overline{z} \vee \overline{w}).$

xy zw	00	01	11	10
00	1	1	1	1
01	1	1	1	0
11	0	0	0	0
10	1	0	0	1

Карту Карнау для пяти переменных можно воспринимать, как "двухслойную" карту Карнау для функции от 4 переменных, где верхний слой соответствует значениям x = 0, а нижний — x = 1, причём клетки, образующие "двухслойный" прямоугольник, соответствуют импликантам, в которых переменная x отсутствует.

Цифры внутри таблицы указывают порядок внесения координат вектора значений функции в карту Карнау.

000 1 2 4	3 7
001 5 6 8	7
	/
011 13 14 16 1	5
010 9 10 12 1	1
100 17 18 20 1	9
101 21 22 24 2	23
111 29 30 32 3	81
110 25 26 28 2	27

Двухслойные прямоугольники будем изображать жирными линиями, а однослойные – тонкими.

Пример. Найти методом Квайна минимальную ДНФ и минимальную КНФ функции

 $h(x, y, z, w, t) = (1111 \ 0111 \ 1010 \ 0110 \ 1111 \ 0111 \ 1010 \ 1010).$

Все единицы карты Карнау могут быть покрыты тремя двухслойными прямоугольниками и двумя однослойными. Минимальная ДНФ будет иметь вид:

 $wt \lor zt \lor yt \lor xzwt \lor xyt$.

Её сложность равна 13.

	,	•	
00	01	11	10
1	1	1	
0	1	1	1
0	1	0	1
1	0	0	1
1	1	1	1
0	1	1	1
1	0	0	1
1	0	0	1
	1 0 0 1 1	1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	00 01 11 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0

Для отыскания минимальной КНФ покроем прямоугольниками нули карты Карнау.

Все нули карты Карнау могут быть покрыты тремя двухслойными прямоугольниками и двумя однослойными.

wt xyz	00	01	11	10
000	1	1	1	1
001	0	1	1	1
011	0	1	0	1
010	1	0	0	1
100	1	1	1	1
101	0	1	1	1
111	1	0	0	1
110	1	0	0	1

Минимальная КНФ будет иметь вид:

 $(y \lor w \lor t) \cdot (y \lor z \lor t) \cdot (y \lor z \lor w \lor t) \cdot (x \lor y \lor t) \cdot (x \lor z \lor w \lor t).$

Теорема о сложности минимальной ДНФ.

Для любой булевой функции $f(x_1, x_2, ..., x_n)$ сложность её минимальной ДНФ не превосходит $n \cdot 2^{n-1}$.

$$l(\Phi_{\min}) \le n \cdot 2^{n-1} \tag{4}$$

Доказательство. Рассмотрим единичный набор функции $f(x_1,x_2,...,x_n)$: $f(a_1,a_2,...,a_n)=1$ и укоротим его до $(a_1,a_2,...,a_{n-1})$. Если $f(a_1,a_2,...,a_n)=1$, то поставим в соответствие укороченному набору конъюнкцию $x_1^{a_1} \cdot x_2^{a_2} \cdot ... \cdot x_{n-1}^{a_{n-1}}$, а если $f(a_1,a_2,...,a_n)=0$, то конъюнкцию $x_1^{a_1} \cdot x_2^{a_2} \cdot ... \cdot x_n^{a_n}$ и составим из всех этих конъюнкций ДНФ. Формулу, описывающую эту ДНФ, обозначим Φ . Тогда каждая конъюнкция, входящая в Φ , будет иметь сложность не выше, чем n, а количество таких конъюнкций не превзойдёт общего количества укороченных наборов, т.е. 2^{n-1} . Таким образом, $I(\Phi_{\min}) \le I(\Phi) \le n \cdot 2^{n-1}$. Покажем, что верхняя оценка достигается. Рассмотрим $f(x_1,x_2,...,x_n) = x_1 + x_2 + ... + x_n$. У этой функции половина всех наборов — единичные, и ни к одной паре конъюнкций, входящих в СДНФ, не применима формула неполного склеивания, т.е. сокращённая ДНФ этой функции совпадает с её минимальной ДНФ и имеет сложность $n \cdot 2^{n-1}$. ■

Частная производная $f_{x_i}^{'}(x_1, x_2, ..., x_n)$ определяется следующим образом:

$$f_{x_{i}}(x_{1},x_{2},...,x_{n}) = f(x_{1},x_{2},...,x_{i-1},0,x_{i+1},...,x_{n}) + f(x_{1},x_{2},...,x_{i-1},1,x_{i+1},...,x_{n}).$$

Пример. Найти частные производные функции f(x, y, z) = (00011011) по каждой из трёх переменных.

Запишем таблицу функции в виде двумерной таблицы:

0	1
0	0
0	1
1	0
1	1
	0 0 0 1

Тогда частные производные будут иметь вид:

Весом булевой функции $f(x_1, x_2, ..., x_n)$ называется количество единиц в векторе её значений. Вес булевой функции $f(x_1, x_2, ..., x_n)$ обозначается, как |f|.

Метод каскадов представления функции в базисе {^, \, -}.

Метод каскадов основан на последовательном применении формул дизъюнктивного разложения по одной переменной

$$f(x_1, x_2, ...x_n) = x_i \cdot f(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n) \lor x_i \cdot f(x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$$
 (5) для различных переменных функции $f(x_1, x_2, ..., x_n)$ и, при необхо-

димости, формулы вычёркивания
$$x \cdot y \lor x = y \lor x$$
. (6)

Сложность формулы, полученной в результате применения метода каскадов, зависит от порядка переменных, к которым применяется формула дизъюнктивного разложения по одной переменной.

Для отыскания оптимального порядка переменных разложения в методе каскадов поступают следующим образом: находят частные производные функции по всем переменным и вес каждой производной и упорядочивают их по невозрастанию веса. Соответствующий порядок переменных и является оптимальным.

Пример. Методом каскадов найти формулу для функции

 $f(x, y, z, t) = (0110\ 1101\ 0100\ 1100)$, сравнить сложности полученных формул в зависимости от порядка разложения перемен-

ных.

Запишем двумерную таблицу функции:

Найдём вес каждой частной производной: $|f_x^{'}|=2$, $|f_y^{'}|=4$, $|f_z^{'}|=6$, $|f_t^{'}|=4$.

zt	00	01	10	11
00	0	1	1	0
01	1	1	0	1
10	0	1	0	0
11	1	1	0	0

Согласно правилу, порядок разложения переменных ztyx является более предпочтительным, чем, например, xyzt. Проверим это. После получения формулы по методу каскадов по возможности упростим её с помощью применения формулы вычёркивания и вынесения за скобки общего конъюнктивного множителя.

$$f(x, y, z, t) = z \cdot f(x, y, 0, t) \lor z \cdot f(x, y, 1, t) =$$

$$= \overline{z} \cdot (0111 \ 0111) \lor z \cdot (1001 \ 0000) =$$

$$= \overline{z}(t(0101) \lor t(1111)) \lor z(t(1000) \lor t(0100)) =$$

$$= \overline{z}(ty \lor t) \lor z(txy \lor txy) = \overline{z}(y \lor t) \lor zx(ty \lor ty).$$

Сложность этой формулы равна 9.

Получим формулу методом каскадов, выбрав порядок разложения xyzt.

$$f(x, y, z, t) = \overline{x} \cdot f(0, y, z, t) \lor x \cdot f(1, y, z, t) =$$

$$= \overline{x} \cdot (0110 \ 1101) \lor x \cdot (0100 \ 1100) =$$

$$= \overline{x} (\overline{y} (0110) \lor y (1101)) \lor x (\overline{y} (0100) \lor y (1100)) =$$

$$= \overline{x} (\overline{y} (\overline{z} t \lor t \overline{z}) \lor y (z \lor t)) \lor x (\overline{y} \overline{z} t \lor y \overline{z}) =$$

$$= \overline{x} (\overline{y} (\overline{z} t \lor t \overline{z}) \lor y (z \lor t)) \lor x \overline{z} (\overline{y} t \lor y) =$$

$$= \overline{x} (\overline{y} (\overline{z} t \lor t \overline{z}) \lor y (z \lor t)) \lor x \overline{z} (t \lor y).$$

Сложность этой формулы равна 13.

Видим, что применение алгоритма, использующего веса частных производных, даёт хороший результат.

<u>Теорема о сложности формулы, полученной методом каска-</u> дов.

Для любой булевой функции $f(x_1, x_2, ..., x_n)$ сложность формулы, полученной методом каскадов, не превосходит $3 \cdot 2^{n-1} - 2$.

$$l(\Phi_{\kappa a c \kappa}^{(n)}) \le 3 \cdot 2^{n-1} - 2 \tag{7}$$

<u>Доказательство.</u> Применим метод математической индукции, проведя индукцию по числу переменных булевой функции.

- 1) Проверка неравенства (7) при n=1.
- Функции от одной переменной x_1 , отличные от константы, задаются формулами x_1 или x_1 , каждая из которых имеет сложность 1. Правая часть неравенства (7) при n=1 будет равна
 - $3 \cdot 2^{1-1} 2 = 3 2 = 1$, что показывает справедливость (7) при n = 1. 2) Допустим, что при n = k неравенство (7) выполняется,

$$l(\Phi_{wack}^{(k)}) \le 3 \cdot 2^{k-1} - 2$$

3) Докажем справедливость оценки при n = k+1: $l(\Phi_{n=m}^{(k+1)}) \le 3 \cdot 2^k - 2$.

Разложим $f(x_1, x_2, ..., x_{k+1})$ по последней переменной:

$$f(x_1, x_2, ..., x_{k+1}) = \overline{x_{k+1}} \cdot f(x_1, x_2, ..., x_k, 0) \lor x_{k+1} \cdot f(x_1, x_2, ..., x_k, 1).$$

Пусть функции $f(x_1,x_2,...,x_{k+1})$, $f(x_1,x_2,...,x_k,0)$ и $f(x_1,x_2,...,x_k,1)$ реализуются по методу каскадов соответственно формулами $\Phi_{\kappa ac\kappa}^{(k+1)}$, $\Phi_{\kappa ac\kappa}^{(k)}$ и $\Phi_{\kappa ac\kappa}^{(k)}$. Формула $\Phi_{\kappa ac\kappa}^{(k+1)}$ имеет сложность, на 2 превышаю-

щую сумму сложностей формул $\Phi_{\kappa a c \kappa \, 0}^{(k)}$ и $\Phi_{\kappa a c \kappa \, 0}^{(k)}$.

По допущению индукции, верны оценки $l(\Phi_{\kappa ac\kappa\,0}^{(k)}) \leq 3\cdot 2^{k-1}-2$ и $l(\Phi_{\kappa ac\kappa\,1}^{(k)}) \leq 3\cdot 2^{k-1}-2$. Тогда будем иметь:

$$l(\Phi_{\kappa a c \kappa}^{(k+1)}) = l(\Phi_{\kappa a c \kappa}^{(k)}) + l(\Phi_{\kappa a c \kappa}^{(k)}) + 2 \le 3 \cdot 2^{k-1} - 2 + 3 \cdot 2^{k-1} - 2 + 2 = 3 \cdot 2^{k} - 2.$$

На основании метода математической индукции утверждаем, что неравенство (7) выполняется для всех натуральных значениях n.