M Beta

10M

Beta

Let X follow a **beta** distribution with parameters a, b, and θ , i.e.

$$X \sim \mathrm{Beta}\ (a,\ b,\ heta)$$

Then, \boldsymbol{X} has the following PDF:

$$f(x) = rac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \Big(rac{x}{ heta}\Big)^a \Big(1-rac{x}{ heta}\Big)^{b-1} rac{1}{x}, \qquad 0 < x < heta$$

A beta distribution's PDF is recognizable from its finite support and its purely polynomial terms, i.e. no negative powers of x, and no exponential or logarithmic terms.

Coach's Remarks

Many students forget the $\frac{1}{x}$ term at the end even though the PDF is available on the exam table. Don't be one of them.

The mean and variance are

$$\mathrm{E}[X] = \frac{a}{a+b} \cdot \theta$$

$$ext{Var}[X] = rac{ab}{\left(a+b
ight)^2\left(a+b+1
ight)} \cdot heta^2$$

Coach's Remarks

Most questions that use the beta distribution will set $m{ heta}$ to $m{1}$. In that case, the PDF simplifies to

$$f(x) = c \cdot x^{a-1} (1-x)^{b-1}, \qquad 0 < x < 1$$

which makes it easier to integrate and recognize as beta.

Example S2.2.5.1

A random variable \boldsymbol{X} has the following PDF:

$$f(x) = 105 x^4 (1-x)^2, \qquad 0 < x < 1$$

Determine the second moment of X.

Solution

Because the PDF has finite support and only consists of polynomial terms, it belongs to a beta distribution. The support is from 0 to 1, which means $\theta = 1$.

The PDF of a beta distribution with $\theta=1$ is in the form of $c\cdot x^{a-1}(1-x)^{b-1}$. Compare this to the PDF given to deduce a=5 and b=3.

$$X \sim \mathrm{Beta}~(5,\,3,\,1)$$

Look up beta's moment formula in the exam table. The second moment is

$$egin{aligned} \mathrm{E}ig[X^2ig] &= rac{ heta^2 a\,(a+1)}{(a+b)\,(a+b+1)} \ &= rac{1^2\,(5)\,(5+1)}{(5+3)\,(5+3+1)} \ &= rac{oldsymbol{5}}{oldsymbol{12}} \end{aligned}$$

Alternative Solution

Alternatively, you can solve using first principles.

$$egin{aligned} \mathrm{E}ig[X^2ig] &= \int_{-\infty}^{\infty} x^2 \cdot f(x) \, \mathrm{d}x \ &= \int_{0}^{1} x^2 \cdot 105 \, x^4 (1-x)^2 \, \mathrm{d}x \ &= 105 \cdot \int_{0}^{1} x^6 \, ig(1-2x+x^2ig) \, \mathrm{d}x \ &= 105 \cdot \int_{0}^{1} ig(x^6-2x^7+x^8ig) \, \mathrm{d}x \ &= 105 \cdot igg[rac{x^7}{7} - rac{2x^8}{8} + rac{x^9}{9}igg]_{0}^{1} \ &= rac{\mathbf{5}}{12} \end{aligned}$$

Uniform

A *uniform* distribution has a constant density. Let X follow a uniform distribution on the interval [a, b], i.e.

$$X \sim \text{Uniform } (a, b)$$

Then, \boldsymbol{X} has the following PDF:

$$f(x)=rac{1}{b-a}, \qquad a \leq x \leq b$$

The mean is the **midpoint** of the interval.

$$\mathbf{E}[X] = \frac{a+b}{2}$$

The variance is

$$\operatorname{Var}[X] = \frac{(a-b)^2}{12}$$

The second raw moment can be easily calculated by adding the variance to the square of the mean. However, some students prefer this shortcut:

$$\mathrm{E}ig[X^2ig] = rac{a^2 + ab + b^2}{3}$$

Coach's Remarks

A uniform distribution on the interval $[0, \theta]$ is equivalent to a beta distribution with parameters a = b = 1 and θ .

Assume X is uniformly distributed on the interval [a, b]. Then, X given it is greater than d, where a < d < b, will be uniformly distributed on the interval [d, b].

$$X \sim \text{Uniform } (a, b)$$

$$X \mid X > d \sim \text{Uniform } (d, b)$$

Shifting X leftwards by d will shift the endpoints of the interval by the same amount. Therefore,

$$X-d\mid X>d\sim ext{Uniform }(0,\,b-d)$$

The figure below illustrates the transition from X to $X\mid X>d$ to $X-d\mid X>d$.

€/ ∪\