ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 31 Homework 13 Information Theory and Coding Dec. 19, 2017

PROBLEM 1. Suppose U is $\{0,1\}$ valued with $\mathbb{P}(U=0)=\mathbb{P}(U=1)=1/2$. Suppose we

have a distortion measure
$$d$$
 given by $d(u,v) = \begin{cases} 0 & \text{if } u = v, \\ 1 & \text{if } (u,v) = (1,0), \\ \infty & \text{if } (u,v) = (0,1) \end{cases}$.

I.e., we never want to represent a 0 with a 1. Find R(D).

PROBLEM 2. Suppose $\mathcal{U} = \mathcal{V}$ are additive groups with group operation \oplus . (E.g., $\mathcal{U} = \{0, \ldots, K-1\}$, with modulo K addition.) Suppose the distortion measure d(u, v) depends only on the difference between u and v and is given by g(u-v). Let $\phi(D)$ denote $\max H(Z) : E[g(Z)] <= D$.

- a) Show that $\phi(D)$ is convex.
- b) Let (U, V) be such that $E[d(U, V)] \le D$. Show that $I(U; V) >= H(U) \phi(D)$ by justifying

$$I(U;V) = H(U) - H(U|V) = H(U) - H(U-V|V) >= H(U) - H(U-V) >= H(U) - \phi(D).$$

- c) Show that $R(D) >= H(U) \phi(D)$.
- d) Assume now that U is uniform on \mathcal{U} . Show that $R(D) = H(U) \phi(D)$.

PROBLEM 3. Suppose $\mathcal{U} = \mathcal{V} = \mathbb{R}$, the set of real numbers, and $d(u, v) = (u - v)^2$. Show that for any U with variance σ^2 , R(D) satisfies

$$H(X) - (1/2)\log(2\pi \ eD) \le R(D) \le (1/2)\log(\sigma^2/D).$$

PROBLEM 4. Consider a two-way communication system where two parties communicate via a *common* output they both can observe and influence. Denote the common output by Y, and the signals emitted by the two parties by x_1 and x_2 respectively. Let $p(y|x_1, x_2)$ model the memoryless channel through which the two parties influence the output.

We will consider feedback-free block codes, i.e., we will use encoding and decoding functions of the form

enc₁:
$$\{1, ..., 2^{nR_1}\} \to \mathcal{X}_1^n$$
 dec₁: $\mathcal{Y}^n \times \{1, ..., 2^{nR_1}\} \to \{1, ..., 2^{nR_2}\}$
enc₂: $\{1, ..., 2^{nR_2}\} \to \mathcal{X}_2^n$ dec₂: $\mathcal{Y}^n \times \{1, ..., 2^{nR_2}\} \to \{1, ..., 2^{nR_1}\}$

with which the parties encode their own message and decode the other party's messages. (Note that when a party is decoding the other party's message, it can make use of the knowledge of its own message).

We will say that the rate pair (R_1, R_2) is achievable, if for any $\epsilon > 0$, there exist encoders and decoders with the above form for which the average error probability is less than ϵ .

Consider the following 'random coding' method to construct the encoders:

- (i) Choose probability distributions p_i on \mathcal{X}_i , j = 1, 2.
- (ii) Choose $\{\operatorname{enc}_1(m_1)_i : m_1 = 1, \ldots, 2^{nR_1}, i = 1, \ldots, n\}$ i.i.d., each having distribution as p_1 . Similarly, choose $\{\operatorname{enc}_2(m_2)_i : m_2 = 1, \ldots, 2^{nR_2}, i = 1, \ldots, n\}$ i.i.d., each having distribution as p_2 , independently of the choices for enc_1 .

For the decoders we will use typicality decoders:

- (i) Set $p(x_1, x_2, y) = p_1(x_1)p_2(x_2)p(y|x_1, x_2)$. Choose a small $\epsilon > 0$ and consider the set T of ϵ -typical (x_1^n, x_2^n, y^n) 's with respect to p.
- (ii) For decoder 1: given y^n and the correct m_1 , dec₁ will declare \hat{m}_2 if it is the unique m_2 for which $(\text{enc}_1(m_1), \text{enc}_2(m_2), y^n) \in T$. If there is no such m_2 , dec₁ outputs 0. (Similar description applies to Decoder 2.)
- (a) Given that m_1 and m_2 are the transmitted messages, show that $(\operatorname{enc}_1(m_1), \operatorname{enc}_2(m_2), Y^n) \in T$ with high probability.
- (b) Given that m_1 and m_2 are the transmitted messages, and $\tilde{m}_1 \neq m_1$ what is the probability distribution of $(\text{enc}_1(\tilde{m}_1), \text{enc}(m_2), Y^n)$?
- (c) Under the assumptions in (b) show that the

$$\Pr\{(\operatorname{enc}_1(\tilde{m}_1), \operatorname{enc}_2(m_2), Y^n) \in T\} \doteq 2^{-nI(X_1; X_2Y)}.$$

(d) Show that all rate pairs satisfying

$$R_1 < I(X_1; YX_2), \quad R_2 < I(X_2; YX_1)$$

for some $p(x_1, x_2) = p(x_1)p(x_2)$ are achievable.

(e) For the case when X_1 , X_2 , Y are all binary and Y is the product of X_1 and X_2 , show that the achievable region is strictly larger than what we can obtain by 'half duplex communication' (i.e., the set of rates that satisfy $R_1 + R_2 \leq 1$.)

PROBLEM 5. In class, when proving the 'good news'part of the rate distortion theorem we stated that for any given u^n that is typical with respect to p_U , when V^n has i.i.d. p_V components, the probability that (u^n, V^n) is typical with respect to p_{UV} is approximately $2^{-nI(U;V)}$, but gave a heuristic argument for it. In this problem we will give a proof.

To that end fix p_{UV} , and suppose $u^n \in T(p_U, n, \delta)$. For each $u \in \mathcal{U}$, let $J(u) = \{1 \le i \le n : u_i = u\}$ be the indices for which u_i equals u. Suppose V^n has i.i.d. components each distributed according to p_V .

- (a) Let $V(u) = (V_i : i \in J(u))$ denote the subvector of V^n by considering only the indices in J(u). Note that V(u) is of dimension n(u) = |J(u)| with i.i.d. components each distributed according to p_V . What is the probability that V(u) belongs to $T(p_{V|U=u}, n(u), \delta)$, expressed in the form $2^{-n(u)(F(...)+O(\delta))}$?
- (b) Using (a), show that the probability that $V(u) \in T(p_{V|U=u}, n(u), \delta)$ for every $u \in \mathcal{U}$ equals $2^{-n(F+O(\delta))}$ where

$$F = \sum_{u} \frac{n(u)}{n} D(p_{V|U=u} || p_V).$$

(c) Using the fact that u^n is in $T(n, p_U, \delta)$, show that F in (b) equals

$$\sum_{u} p_{U}(u) \sum_{v} p_{V|U=u}(v|u) \log \frac{p_{V|U}(v|u)}{p_{V}(v)} + O(\delta),$$

and conclude that the probability we found in (b) equals $2^{-n(I(U;V)+O(\delta))}$.

- (d) Show that when $u^n \in T(n, p_U, \delta)$ and $V(u) \in T(n(u), p_{V|U=u}, \delta)$ for every $u \in \mathcal{U}$, we will necessarily have (u^n, V^n) belonging to $T(n, p_{UV}, 2\delta + \delta^2)$.
- (e) Conclude that for any $1 \geq \delta' \geq 3\delta$, for any $u^n \in T(n, p_U, \delta)$, with V^n i.i.d. p_V , the probability that $(u^n, V^n) \in T(n, p_{UV}, \delta')$ is at least $2^{-n(I(U;V) + O(\delta))}$.