Learning Opportunity 2-2

- **2-2-1** The SVD can be used for a variety of different purposes. This exercise is about computing the inverse of a matrix with the SVD.
 - 1. Construct a 6×6 random matrix, A, over the rationals, \mathbf{Q} , with rank 6 (i.e. full rank), using a command like A = random_matrix(QQ, 6, algorithm='echelonizable', rank=6, upper_bound=9)
 - 2. Compute the SVD of A, though you will need to do this over RDF since Sage still does not have an exact SVD routine.
 - 3. Combine the three parts of the SVD of A to compute the inverse of A using the *simplest* possible collection of Sage and Python commands. "Simplest" here means the least amount of computation, "least expensive." In particular, *do not* use the .inverse() command nor any version of a solve() command.

Full marks for correct computation, in the simplest possible way.

- **2-2-2** Pieces of the singular value decomposition can do some wonderful things. This exercise will demonstrate that.
 - 1. Construct a random 4×4 matrix, A, of single-digit integers but convert it to a matrix over RDF, as in:
 - B = random_matrix(ZZ, 4, 4, x=-9, y=9).change_ring(RDF)
 - 2. Build the 8×8 block matrix H using Sage's block_matrix() constructor.

$$H = \begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix}$$

Verify that H is Hermitian.

3. Compute U, S, V from the SVD of A. Build the block matrix T using Sage's block_matrix() constructor.

$$T = \frac{1}{\sqrt{2}} \begin{bmatrix} V & -V \\ U & U \end{bmatrix}$$

Verify that T is unitary.

- 4. Compute $T^{-1}HT$, but do not use an inverse, and instead rely on the fact that T is unitary.
- 5. Report as many interesting observations as you can about the result in the previous part. This is the main purpose of this exercise.

Full marks for correct versions of T and H, and a comprehensive discussion of your observations.