Computer Architecture Past Paper

Lecture 1 Intro

Moore's law and Dennard scaling

- y2010p5q2 (a,b)
- y2021p5q1 (a,b)
 - Explores technology scaling and critical paths. •

Lecture 2 Digital system design

Part 1A Digital Electronics, ECAD practicals, Reading and writing SystemVerilog

- y2020p5q1
 - Moore's law, wire scaling, timing analysis and some SystemVerilog.
- y2019p5q1
 - Conditional operators
 - sequential vs. continuous assignment, resets and synchronisation in SystemVerilog.
- y2018p5q1
 - Assignment operations
 - statement ordering in SystemVerilog
- y2017p5q1
 - State transitions.
- y2016p5q1
 - Bugs finding
- y2015p5q1
 - what high-level operation the low-level state machine performs.
- y2011p5q1

Lecture 3 Eight great ideas i

- y2020p5q2 (a-b)
 - o making the common case fast, see more at Lecture 11

Moore's law

• See Lecture 1

Lecture 4 RISC-V ISA

y2021p5q1 (c,d)

• Explores calling conventions and RISC-V assembler.

Lecture 5 Five-step Executable

- y2018p5q2
 - RISC-V machine code format some and implications on pipelines.

Lecture 6 Pipeline

- y2021p5q2
- y2017p5q2
 - Explores fallacies and pitfalls.
- y2016p5q2, y2007p6q2,

Lecture 8 Memory hierarchies (Cache)

- y2020p5q2 (c-g)
- y2019p5q2
- y2009p5q3
 - o Write policies.

Lecture 9 OS (hardware support)

- y2015p5q2
 - Memory hierarchy and memory protection
 - skip part (d), no longer covered
- y2011p5q3
 - Caches and TLBs

Interrupts/Exceptions

• y2019p5q2 (b)

Lecture 10 Alternative ISA

From Cambridge's EDSAC through to today's CISC machines.

- y2008p6q2
 - RISC, CISC and stack machines.
- y2006p6q2
 - o register vs. stack machines; caches.

Lecture 11 SoC, DRAM

Flynn's taxonomy; Amdahl's and Gustafson's laws

- y2016p5q3 (a)
- y2020p5q3 (a,b)

• y2018p5q3 (a)

Lecture 12 MSI

- y2015p5q3 (a)
- y2017p5q3
- y2018p5q3 (b)

Lecture 13 Memory consistency model (hardware support)

• y2015p5q3 (b)

Lecture 14 GPU

- y2016p5q3 (b)
- y2019p5q3 (d,f,e)

Lecture 15 CUDA, OpenCL

• y2019p5q3 (a,b,c)

Lecture 16 Future

• y2020p5q3 (c,d,e)