Average Entropy of a Subsystem *

Don N. Page
CIAR Cosmology Program
Theoretical Physics Institute
Department of Physics
University of Alberta
Edmonton, Alberta
Canada T6G 2J1

Internet: don@page.phys.ualberta.ca

(1993 May 7, minor revisions Aug. 5)

Abstract

If a quantum system of Hilbert space dimension mn is in a random pure state, the average entropy of a subsystem of dimension $m \le n$ is conjectured to be $S_{m,n} = \sum_{k=n+1}^{mn} \frac{1}{k} - \frac{m-1}{2n}$ and is shown to be $\simeq \ln m - \frac{m}{2n}$ for $1 \ll m \le n$. Thus there is less than one-half unit of information, on average, in the smaller subsystem of a total system in a random pure state.

PACS numbers: 05.30.Ch, 03.65.-w, 05.90.+m

^{*}Alberta-Thy-22-93, gr-qc/9305007, Phys. Rev. Lett. 71, 1291 (1993).

One natural way to get entropy, even for a system in a pure quantum state, is to make the coarse graining of dividing the system into subsystems and ignoring their correlations. For example, suppose a system AB with Hilbert space dimension mn and normalized density matrix ρ (a pure state $\rho = |\psi\rangle\langle\psi|$ if $\rho^2 = \rho$, which is equivalent to $Tr\rho^2 = 1$) is divided into two subsystems, A and B, of dimension m and n respectively. (Without loss of generality, take the first subsystem, A, to be the one with the not larger dimension, so $m \le n$.) The density matrix of each subsystem is obtained by the partial trace of the full density matrix ρ over the other subsystem, so

$$\rho_A = t r_B \rho, \tag{1}$$

$$\rho_B = t r_A \rho. \tag{2}$$

The entropy of each subsystem is

$$S_A = -tr\rho_A \ln \rho_A, \quad S_B = -tr\rho_B \ln \rho_B. \tag{3}$$

Unless the two systems are uncorrelated in the quantum sense (which corresponds to the case that $\rho = \rho_A \otimes \rho_B$), the sum of the entropies of the subsystems, which is a coarse graining that ignores the correlations, is greater than the fine-grained entropy S_{AB} of the total system:

$$S_A + S_B > S_{AB} \equiv -tr\rho \ln \rho. \tag{4}$$

In fact, the three entropies S_A , S_B , and S_{AB} obey the triangle inequality [1], so if the entire system AB is in a pure state, which has $S_{AB} = 0$, then $S_A = S_B$, which is an immediate consequence of the well-known fact that ρ_A and ρ_B then have the same set of nonzero eigenvalues.

It may be of interest to calculate how much entropy one typically gets by this coarse graining [2–5]. For example, what is the average, which I shall call

$$S_{m,n} \equiv \langle S_A \rangle,$$
 (5)

of the entropy S_A over all pure states $\rho = |\psi\rangle\langle\psi|$ of the total system? Here the average is defined with respect to the unitarily invariant Haar measure on the space of unit vectors $|\psi\rangle$ in the mn-dimensional Hilbert space of the total system, which is proportional to the standard geometric hypersurface volume on the unit sphere S^{2mn-1} which those unit vectors give when the mn-complex-dimensional Hilbert space is viewed as the 2mn-real-dimensional Euclidean space [2]. Note that since S_A is a nonlinear function of the density

matrix ρ_A , the average $\langle S_A \rangle$ of this entropy function is *not* the same as this function evaluated for the average density matrix $\langle \rho_A \rangle = \mathbf{I}/m$ (the identity matrix acting on the subsystem Hilbert space, divided by its dimension m), which would be an entropy of $S_{max} \equiv \ln m$, the maximum entropy the subsystem A can have. It is convenient to define the average information of the subsystem as the deficit of the average entropy from the maximum,

$$I_{m,n} \equiv S_{max} - \langle S_A \rangle = \ln m - S_{m,n}. \tag{6}$$

Lubkin [2] calculated that, in my notation,

$$\langle tr \rho_A^2 \rangle = \frac{m+n}{mn+1},\tag{7}$$

and hence he estimated that for $m \ll n$,

$$S_{m,n} \simeq \ln m - \frac{m^2 - 1}{2mn + 2}.$$
 (8)

However, he was unable to calculate $S_{m,n}$ exactly. Lloyd and Pagels [3], apparently unaware of Lubkin's work, as I was also when I did my calculations, made progress from a slightly different angle by calculating the probability distribution of the eigenvalues of ρ_A for random pure states ρ of the entire system. The result, after inserting the differentials that were used in the calculation [6] but which were not given explicitly in the paper [3], and after changing variables to the eigenvalues p_i , is

$$P(p_1, \dots, p_m) dp_1 \dots dp_m \propto \delta(1 - \sum_{i=1}^m p_i) \prod_{1 \le i < j \le m} (p_i - p_j)^2 \prod_{k=1}^m (p_k^{n-m} dp_k).$$
 (9)

The normalization constant for this probability distribution is given only implicitly by the requirement that the total probability integrate to unity. Although they also did not calculate $S_{m,n}$ exactly, Lloyd and Pagels [3] came to the same qualitative conclusion as Lubkin [2], that for $m \ll n$ the typical entropy of the (much) smaller subsystem is very nearly maximal.

Here I shall show that for $1 \ll m \leq n$,

$$S_{m,n} \simeq \ln m - \frac{m}{2n'} \tag{10}$$

which agrees with Eq. (8) above from Lubkin [2] in the region of overlap but does not require $m \ll n$. An exact calculation for m = 2 and m = 3 led me to the tentative conjecture that the exact general formula for $m \leq n$ is

$$S_{m,n} = \sum_{k=n+1}^{mn} \frac{1}{k} - \frac{m-1}{2n},\tag{11}$$

which rather remarkably agrees with what I later calculated exactly for m = 4 and m = 5, so I now think it would be surprising if it were not always correct, though I have not yet found a proof for this conjecture. Furthermore, for large n, the asymptotic expansion for Eq. (11) is

$$S_{m,n} = \ln m - \frac{m^2 - 1}{2mn} + \sum_{j=1}^{\infty} B_{2j} \frac{m^{2j} - 1}{2jm^{2j}n^{2j'}}$$
(12)

where B_{2j} are the Bernoulli numbers, which fits both Eqs. (8) and (10) when $n \gg 1$.

To calculate $S_{m,n}$, it is convenient to define $q_i = rp_i$ and

$$Q(q_{1},...,q_{m})dq_{1}...dq_{m} \equiv \prod_{1 \leq i < j \leq m} (q_{i} - q_{j})^{2} \prod_{i=1}^{m} (e^{-q_{i}}q_{i}^{n-m}dq_{i})$$

$$\propto e^{-r}r^{mn-1}P(p_{1},...,p_{m})dp_{1}...dp_{m-1}dr. (13)$$

Then

$$S_{m,n} \equiv \langle S_A \rangle = -\int (\sum_{i=1}^{m} p_i \ln p_i) P(p_1, \dots, p_m) dp_1 \dots p_{m-1}$$

$$= \psi(mn+1) - \frac{\int (\sum_{i=1}^{m} q_i \ln q_i) Q dq_1 \dots dq_m}{mn \int Q dq_1 \dots dq_m}, \quad (14)$$

using, for integral N,

$$\int_0^\infty e^{-x} x^N \ln x dx = N! \psi(N+1) = \Gamma'(N+1) = N! (\sum_{k=1}^N \frac{1}{k} - \mathbf{C}), \tag{15}$$

where **C** is Euler's constant, which, after some algebra, one can see cancels out from the final expression for $S_{m,n}$, leaving a rational number for each pair of integers m and n.

One can readily calculate by hand that for $n \ge 2$,

$$S_{2,n} = \sum_{k=n+1}^{2n-1} \frac{1}{k'} \tag{16}$$

which, for example, gives $S_{2,2} = 1/3$, slightly less than one-half $S_{max} = \ln 2$ in that case, and for $n \ge 3$,

$$S_{3,n} = \sum_{k=n+1}^{3n} \frac{1}{k} - \frac{1}{n'},\tag{17}$$

both of which are fit by Eq. (11), which they suggested as a generalization. For m > 3, the expression for Q is too cumbersome for Eq. (14) to be readily evaluated by hand, but I was able to calculate it for m = 4 and m = 5 with the aid of *Mathematica* 2.0, after putting in by hand the correct value of the integral of Eq. (15), which *Mathematica* 2.0 evaluates incorrectly. Both of these values of m also fit Eq. (11). For m > 5 I ran into another apparent bug in *Mathematica* 2.0 which I have not yet figured out how to circumvent, but the likelihood that the agreement of my calculations of $S_{4,n}$ and $S_{5,n}$ with Eq. (11) is due to accident or error seems less than the likelihood that my conjectured Eq. (11) is in fact exact for all m.

However, because I have not yet found any proof of Eq. (11), it appears worthwhile to derive an approximate expression for $S_{m,n}$ for large m and n, which I now do. In this limit,

$$S_{m,n} \simeq -\sum_{i=1}^{m} p_i \ln p_i = -\sum_{i=1}^{m} \frac{q_i}{r} \ln \frac{q_i}{r}$$
 (18)

for p_i 's which maximize $P(p_1 \dots p_m)$ or q_i 's which maximize $Q(q_1, \dots, q_m)$. Now

$$-\ln Q(q_1,\ldots,q_m) = -\sum_{1 \le i < j \le m} \ln(q_i - q_j)^2 + \sum_{i=1}^m [q_i - (n-m)\ln q_i]$$
 (19)

is the potential energy for m unit charges on the q-line in two dimensions due to their mutual electrostatic repulsion, a uniform external unit electric field in the negative q direction, and another superposed external electric field of strength (n-m)/q in the positive q direction from n-m external charges fixed at the origin.

For large m and n, we can also make the continuum approximation of $m\sigma(x)dx$ "charges" (eigenvalues of the "most typical" density matrix ρ_A) in the range dx of the rescaled variable x=q/m, so σ is a normalized linear density (with respect to x) of eigenvalues. The equilibrium condition (maximization of Q or minimization of the electrostatic energy $-\ln Q$) gives the integral equation, with $w\equiv (n-m)/m$,

$$\int \frac{\sigma(x)dx}{x - x'} = \frac{w - x'}{x'} \tag{20}$$

for x' in the range where $\sigma(x') > 0$, say $0 \le a < x' < b$ for some constants a and b that would depend on w. This is a Fredholm equation of the first

kind [7], but with the troublesome feature that the right hand side is only given for part of the real axis, a < x' < b, where $\sigma(x') > 0$.

The solution can be found as a special case of the Riemann-Hilbert problem: "to find a function, harmonic in a certain plane region D, assuming that on some parts of its contour we are given the values of the required function, and on others the values of its normal derivative" [8]. Here we want the charge density, which is (minus) the normal derivative of the electrostatic potential due to $\sigma(x)$ just above the real axis between a and b, given the tangential derivative for a < x < b (which must cancel the tangential derivative of the given external electrostatic potential for the charges to be in equilibrium) and the fact that the normal derivative is zero elsewhere just above the real axis (and is zero at infinity), with D being the upper half Euclidean plane. In our special case, the solution is given by the following theorem [9,10]: Given the finite Hilbert transformation

$$f(x) = \frac{1}{\pi} \int_{-1}^{1} \frac{\phi(y)dy}{y - x},\tag{21}$$

the inverse Hilbert transformation is given by

$$\phi(x) = -\frac{1}{\pi} \int_{-1}^{1} \sqrt{\frac{1 - y^2}{1 - x^2}} \frac{f(y)dy}{y - x} + \frac{C}{\sqrt{1 - x^2}},$$
 (22)

where the principal parts are taken for both integrals, and where

$$C = \frac{1}{\pi} \int_{-1}^{1} \phi(y) dy$$
 (23)

is an arbitrary constant.

Applying this theorem to our problem, singularities can be avoided at a and b if

$$a = 2 + w - 2\sqrt{1 + w}, \quad b = 2 + w + 2\sqrt{1 + w}.$$
 (24)

Then the charge density (normalized density of eigenvalues of the typical ρ_A) is

$$\sigma(x) = \frac{\sqrt{-x^2 + 2(2+w)x - w^2}}{2\pi x} = \frac{\sqrt{(x-a)(b-x)}}{2\pi x}.$$
 (25)

This gives, under our large (m, n) approximation,

$$S_{m,n} \simeq \ln n - \frac{m}{2n} \int_{a}^{b} \sigma(x) x \ln x dx$$

$$= \ln n - \frac{2}{\pi} \int_{-1}^{1} dy y \sqrt{1 - y^2} \ln(2 + w + 2\sqrt{1 + w}y)$$

$$= \ln n - \frac{2}{\pi} \int_{0}^{2\pi} d\theta \sin^2 \theta \ln \sqrt{1 + 2r \cos \theta + r^2}, \tag{26}$$

with

$$y \equiv \frac{2x - a - b}{b - a} \equiv \cos \theta, \ r \equiv \sqrt{1 + w} \equiv \sqrt{\frac{n}{m}} \ge 1.$$
 (27)

The argument of the logarithm of the last integral is the distance from a point on the unit circle in the (y,z) plane to a point at distance r along the negative real axis from the center. Thus the integral can be viewed as yet another electrostatic potential in two dimensions, at y = -r from a $\sin^2 \theta$ charge distribution around the unit circle, which is a monopole plus a quadrupole, and this works out to give

$$S_{m,n} \simeq \ln n - 2 \ln r - \frac{1}{2r^2} = \ln m - \frac{m}{2n'}$$
 (28)

which is Eq. (10).

Thus we see that when the dimensions m and n of both subsystems A and B are large, and when the joint system is in a random pure state, the smaller subsystem A (with dimension m) typically has nearly maximal entropy $\ln m$. The average deviation or information in the smaller subsystem is

$$I_{m,n} = \frac{m}{2n} + O(\frac{1}{mn}),\tag{29}$$

and is always less than one half of a natural logarithmic unit. That is, for a typical pure quantum state of a large system, the smaller subsystem is very nearly maximally mixed, showing little signs that the total system is pure.

Another way of putting it is to say that if the subsystems A and B were broken up into tiny sub-subsystems, which typically would each be very nearly maximally mixed, there would be virtually no information is the sub-subsystems considered separately. For quantum information, the whole system contains more information than the sum of the information in the separate parts, and in this case almost all the information giving the precise pure state of the entire system, $\ln m + \ln n$ units, is in the correlations of the sub-subsystems. The result above shows that for a typical pure state of the entire system, very little of the information, roughly m/(2n) unit, is in the correlations within the smaller subsystem A itself, roughly $\ln n - \ln m + m/(2n)$ units is in the correlations within the larger subsystem B itself, and the remaining roughly $2 \ln m - m/n$ units of information are in the correlations beween the larger and smaller subsystems.

Acknowledgments: The hospitality of the Aspen Center for Physics in Colorado and of Kip Thorne and Carolee Winstein at their home in Pasadena, California, where the major part of this research was accomplished,

is gratefully acknowledged, as is the California Institute of Technology, the University of California at Santa Barbara, and the Journées Relativistes '93 at the Université Libre de Bruxelles, where this work was reported. Thanks are also due Seth Lloyd for informing me of his paper with the late Heinz Pagels and clarifying what the differentials should be for their probability distribution. At the April Brussels meeting, after my calculations were completed, Esteban Calzetta kindly informed me of the earlier work on this subject by Elihu Lubkin, who then graciously sent me his more recent paper with Thelma Lubkin and provided useful discussions and corrections by e-mail. Financial support was provided in part by the Natural Sciences and Engineering Research Council of Canada.

References

- [1] H. Araki and E. H. Lieb, Commun. Math. Phys. 18, 160 (1970).
- [2] E. Lubkin, J. Math. Phys. **19**, 1028 (1978); cf. E. Lubkin and T. Lubkin, "Average Quantal Behavior and Thermodynamic Isolation," University of Wisconsin-Milwaukee preprint WISC-MILW-92-TH-12 (June 1992), to be published in Int. J. Theor. Phys.
- [3] S. Lloyd and H. Pagels, Ann. Phys. 188, 186 (1988).
- [4] D. N. Page, "Black Hole Information" (University of Alberta report Alberta-Thy-23-93, hep-th/9305040), to be published in *Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics, University of Waterloo, 13–15 May, 1993*, edited by R. B. Mann and R. G. McLenaghan (World Scientific, Singapore, 1994).
- [5] D. N. Page, "Information in Black Hole Radiation" (University of Alberta report Alberta-Thy-24-93, hep-th/9306083), submitted to Phys. Rev. Lett.
- [6] S. Lloyd (private communication).
- [7] See, e.g., J. Mathews and R. L. Walker, *Mathematical Methods of Physics*, 2nd ed. (W. A. Benjamin, New York, 1970), p. 300.
- [8] S. G. Mikhlin, Integral Equations and Their Applications to Certain Problems in Mechanics, Mathematical Physics and Technology (Pergamon, New York, 1957), p. 296.
- [9] F. G. Tricomi, Quart. J. Math. 2, 199 (1951).
- [10] F. G. Tricomi, Integral Equations (Interscience, New York, 1957), p. 173.