Grupa lab. 1	Przedmiot Podstawy Sztucznej Inteligencji	vykonania. 2018							
Nr ćwicz. 2	Temat ćwiczenia. Budowa i działanie sieci jednowarstwowej								
Imię i nazwisko. Katarzyna Giąd			Ocena i uwagi						

Część teoretyczna

Celem projektu było poznanie budowy i działania jednowarstwowych sieci neuronowych oraz uczenie rozpoznawania wielkości liter.

Sieć neuronowa jest rodzajem architektury systemu komputerowego. Taka sieć przetwarza dane przez neurony pogrupowane w warstwie. Odpowiednie wyniki są uzyskiwane w procesie uczenia, który polega na modyfikowaniu wag tych neuronów, które są odpowiedzialne za błąd.

W tym projekcie skupimy się nad jednym z rodzajów sieci neutronowej – **sieci jednowarstwowej.** Jest ona zespołem kilku neuronów, przetwarzających sygnały z tych samych wejść (które nie tworzą warstwy neuronowej – nie zachodzi w nich proces obliczeniowy). W zależności od typu funkcji aktywacji sygnał jest przekazywany do wyjścia sieci. Wartości wektora wyjściowego porównywane są z zadanym wektorem uczącym.

Sieć jednokierunkowa jednowarstwowa

Część praktyczna

Projekt został zrealizowany za pomocą pakietu MATLAB.

Zadaniem było zaimplementowanie jednowarstwowej sieci neuronowej. Zgodnie z definicją jednowarstwowej sieci neutronowej możemy skorzystać z dwóch modeli – pierwszym z nich jest tworzony w poprzednim projekcie (za pomocą omówionej funkcji newp). Drugim sposobem jest utworzenie jednowarstwowej sieci za pomocą funkcji newlin z biblioteki $Neural\ Network\ Toolbox$. Funkcja $newlin(P,\ T,\ ID,\ LR)$ przyjmuje następujące parametry: P – macierz wejściowa, T - macierz wynikowa, ID – wektor ewentualnego opóźnienia na wejściu, LR – wskaźnik nauki.

Pierwszym krokiem było wygenerowanie tablicy wejściowej zawierającej 10 małych i 10 wielkich liter (Litery A, B, C, D, E, H, I, K, L, F). Litery te zostały przedstawione w formie tablicy 5x5. Następnie taki obraz "zbinaryzowano" (polom białym przypisano wartość *0*, a polom zamalowanym wartość *1*). Następnie z przypisanych wartości utworzono ciąg binarny.

Przykład:

Li	ter	a	Krok 1 (binaryzacja):					Krok 2 (utworzenie ciągu):
			0	1	1	1	0	
			1	0	0	0	1	
			1	0	0	0	1	01110 10001 10001 11111 10001
			1	1	1	1	1	
			1	0	0	0	1	

Pozostałe litery:

Litera wielka	Kod	Litera mała	Kod					
	01110 10001 10001 11111 10001		01100 00010 01110 10010 01111					
	11100 10010 11100 10010 11100		10000 10000 11100 10010 11100					
	11110 10000 10000 10000 11110		00000 00000 01100 10000 01100					
	11100 10010 10010 10010 11100		00010 00010 01110 10010 01110					
	11110 10000 11100 10000 11110		01100 10010 11100 10000 01100					

10001 10001 11111 10001 10001	10000 10000 11110 10010 10010
10000 10000 10000 10000 10000	10000 00000 10000 10000 10000
10010 10100 11000 10100 10010	10000 10000 10100 11000 10100
10000 10000 10000 10000 11110	10000 10000 10000 10000 11100
11110 10000 11100 10000 10000	01100 10000 11100 10000 10000

Wszystkie te ciągi binarne zapisano w tablicy $Learn_in$ – każda litera została zapisana w innej kolumnie. Wygenerowano również tablicę $Learn_out$, w której przechowywano jest informację, czy litera jest wielka (wartość 1) lub mała (wartość 0).

W poniższej tabeli zgromadzono dane i liczby obrazujące efekty uczenia sieci obiema metodami (zmienna *efekt*), ilość epok potrzebnych do nauczenia sieci w zależności od zmiany współczynnika uczenia, jak również błędu średnio kwadratowego.

Błąd ś.k.		0.001			0.01		0.1					
Wsp ucze nia	0.001	0.01	0.1	0.001	0.01	0.1	0.001	0.01	0.1			

Lite ra\ Fun kcja	new p	newl in																
A	1	0.02 71	1	0.02 71	1	0.02 710	1	- 0.06 39	1	- 0.06 41	1	- 0.06 41	1	1.01 22	1	1.02 16	1	1.02 16
a	0	0.03 6	0	0.00 36	0	0.00 36	0	0.01 05	0	0.01 05	0	0.01 05	0	0.14 60	0	0.14 20	0	0.14 20
В	1	1.02 26	1	1.02 26	1	1.02 26	1	1.05 00	1	1.05 01	1	1.05 01	0	0.57 67	0	0.57 46	0	0.57 46
b	0	- 0.03 71	0	- 0.03 71	0	- 0.03 71	0	0.04	0	- 0.05 16	0	- 0.05 16	0	0.30 74	0	0.30	0	0.30
С	1	0. 9452	1	0.94 52	1	0.94 52	1	1.00 73	1	1.00 73	1	1.00 73	1	0.99 44	1	1.00 00	1	1
С	0	- 0.20 43	0	- 0.20 43	0	- 0.20 43	0	- 0.83 87	0	- 0.83 88	0	- 0.83 88	0	- 0.19 55	0	- 0.20 20	0	- 0.20 20
D	1	- 0.37 26	1	- 0.37 27	1	- 0.37 27	1	0.58 54	1	0.58 54	1	0.58 54	1	0.74 60	1	0.74 73	1	0.74 73
d	0	0.02 23	0	0.02 23	0	0.02 23	0	0.04 81	0	0.04 81	0	0.04 81	0	0.04 19	0	0.03 66	0	0.03 66
E	1	1.03 69	1	1.03 69	1	1.03 69	1	1.00 09	1	1.00 09	1	1.00 09	1	0.81 92	1	0.82 08	1	0.82 08
e	0	- 0.03 36	0	- 0.03 36	0	- 0.03 36	0	- 0.06 13	0	- 0.06 13	0	- 0.06 13	0	0.30 04	0	0.29 81	0	0.29 81
F	1	1.00 14	1	1.00 14	1	1.00 14	1	0.94 16	1	0.94 16	1	0.94 16	1	0.79 14	1	0.79 42	1	0.79 42
f	0	0.03 55	0	0.03 55	0	0.03 55	0	0.13 15	0	0.13 16	0	0.13 16	0	0.42 67	0	0.42 70	0	0.42 70
Н	1	0.99 55	1	0.99 55	1	0.99 55	1	1.00 64	1	1.00 64	1	1.00 64	1	0.67 91	1	0.67 90	1	0.67 90
h	0	0.44 46	0	0.44 45	0	0.44 45	0	0.54 13	0	0.54 14	0	0.54 14	0	0.40 76	0	0.40 53	0	0.40 53
I	1	0.96 49	1	0.96 49	1	0.96 49	1	0.79 89	1	0.79 90	1	0.79 90	1	0.56 10	1	0.56 31	1	0.56 31
i	0	0.00 45	0	0.00 45	0	0.00 45	0	0.05 88	0	0.05 88	0	0.05 88	0	0.41 66	0	0.41 80	0	0.41 80
K	1	0.21 44	1	0.21 44	1	0.21 44	1	0.61 84	1	0.61 84	1	0.61 84	1	0.75 36	1	0.75 74	1	0.75 74
k	0	0.77	0	0.77	0	0.77	0	0.43	0	0.43	0	0.43	0	0.36	0	0.36	0	0.36

		70		7		70		24		24		24		23		09		09
L	1	1.00 04	1	1.00 04	1	1.00 04	1	0.85 82	1	0.85 83	1	0.85 83	1	0.58 88	1	0.58 97	1	0.58 97
l	0	0.09	0	0.09	0	0.09	0	0.29 66	0	0.29 66	0	0.29 66	0	0.52 18	0	0.52 20	0	0.52 20
Licz ba epok	6	1028 06	6	1028 1	6	1028 1	6	1133 2	6	1133	6	1133	5	161	5	16	5	16

Wygenerowałam również wykresy obrazujące, jak długo (ile epok) i z jakim błędem śródkwadratowym zmienia się funkcja ucząca, dla wsp. uczenia równemu 0.001.

Wnioski

- Obie funkcje generują błędy, ponieważ sieci są tylko imitacją myślenia człowieka, nie zaś jego realnym odzwierciedleniem.
- Warto zauważyć, że dokładności zmiennej *efekt* są różne dla *newlin* i *newp* dla funkcji *newp* otrzymujemy dokładność do jedności, natomiast dla funckji *newlin* przyjmujemy wartości z dokładnością 10⁻⁴.
- Funkcja newlin generuje większą ilość błędów niż funkcja newp. Może to wynikać z faktu, że dane wejściowe przechodzące przez perceptron obliczane są przez tyle współczynników wagowych, ile jest danych wejściowych. Natomiast w funkcji newlin dane wejściowe przechodzą przez ilość wag równej kwadratowi ilości danych wejściowych. Każda z tych wag zawiera również swoje błędy śródkwadratowe. Takie błędy potrafią mieć ogromne znaczenie dla wyniku zmiennych.
- Najmniejsze błędy generują funkcje, gdzie parametry uczenia oraz błąd śródkwadratowy są sobie równe.
- Najszybciej sieć neuronowa uczy się, gdy błąd średniokwadratowy jest najniższy. Warto
 jednak zauważyć, że nie zawsze dłuższy czas nauki gwarantuje większą skuteczność
 treningu.

Listing kodu źródłowego

```
close all; clear all; clc;
węzeł wejściowy
% -> ponieważ nasze obrazy przyjmują rozmiar 5x5,
%zatem węzeł wejściowy może przyjąć 25 wartości 0 lub 1
%ustawione pionowo
wart_out = 1; %ilość wyjść z sieci
%metoda 1 - perceptron
%net = newp(wart_in, wart_out);
%metoda 2 - tworzenie sieci jednowarstwowej
net = newlin(wart_in, wart_out, 0, 0.01);
%kolumnowa reprezentacja binarna każdej litery
   % A a B b C c D d E e F f H h I i K k L l
Learn_in = [0\ 0\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1];
    111010101111100000000;
    1110101011111000000000;
    10001001101000001000:
    1011101011111111111111;
    1110001101000000000000;
    10000000000011000000:
    101110101111111111111;
    01110101111111100100;
    01110111111111000100;
    010000110000110000000;
    10000000000010000000;
    1000000000000000001000;
    10000000000010000000;
    101111101011111111111;
    011111111110000000011:
    0111111111100000001111;
    0100100110001100101010;
```

Learn out = [10101010101010101010]; % 1 - duża litera, 0 - mała litera

```
net.name = 'Wielkosc liter';
net.trainParam.epochs = 30000;
net.trainParam.goal = 0.001; %błąd średniokwadratowy
net.trainParam.mu = 0.01; %nie jest potrzebna w metodzie 2, gdzie
%określiliśmy współczynnik uczenia
%net.trainParam.showWindow = false;
net = train(net, Learn_in, Learn_out); %uczenie sieci
%litery do testu
test_A = [0;1;1;1;0;
      1;0;0;0;1;
      1;0;0;0;1;
      1;1;1;1;1;
      1;0;0;0;1];
test_a = [0;1;1;0;0;
      0;0;0;1;0;
      0;1;1;1;0;
      1;0;0;1;0;
      0;1;1;1;1];
test_B = [1;1;1;0;0;
      1;0;0;1;0;
      1;1;1;0;0;
      1;0;0;1;0;
      1;1;1;0;0];
test_b = [1;0;0;0;0;
      1;0;0;0;0;
      1;1;1;0;0;
      1;0;0;1;0;
      1;1;1;0;0];
test_C = [1;1;1;1;0;
      1;0;0;0;0;
      1;0;0;0;0;
      1;0;0;0;0;
      1;1;1;1;0];
test_c = [0;0;0;0;0;0;
      0;0;0;0;0;
      0;1;1;0;0;
      1;0;0;0;0;
      0;1;1;0;0;
test_D = [1;1;1;0;0;
      1;0;0;1;0;
      1;0;0;1;0;
      1;0;0;1;0;
      1;1;1;0;0];
test_d = [0;0;0;1;0;
      0;0;0;1;0;
      0;1;1;1;0;
      1;0;0;1;0;
      0;1;1;1;0];
```

```
test_E = [1;1;1;1;0;
      1;0;0;0;0;
      1;1;1;0;0;
      1;0;0;0;0;
      1;1;1;1;0];
test_e = [0;1;1;0;0;
      1;0;0;1;0;
      1;1;1;0;0;
      1;0;0;0;0;
      0;1;1;0;0];
test_F = [1;1;1;1;0;
      1;0;0;0;0;
      1;1;1;0;0;
      1;0;0;0;0;
      1;0;0;0;0];
test_f = [0;1;1;0;0;
      1;0;0;0;0;
      1;1;1;0;0;
      1;0;0;0;0;
      1;0;0;0;0];
test_H = [1;0;0;0;1;
      1;0;0;0;1;
      1;1;1;1;1;
      1;0;0;0;1;
      1;0;0;0;1];
test_h = [1;0;0;0;0;
      1;0;0;0;0;
      1;1;1;1;0;
      1;0;0;1;0;
      1;0;0;1;0];
test_I = [1;0;0;0;0;
      1;0;0;0;0;
      1;0;0;0;0;
      1;0;0;0;0;
      1;0;0;0;0];
test_i = [1;0;0;0;0;
      0;0;0;0;0;
      1;0;0;0;0;
      1;0;0;0;0;
      1;0;0;0;0];
test_K = [1;0;0;1;0;
      1;0;1;0;0;
      1;1;0;0;0;
      1;0;1;0;0;
      1;0;0;1;0];
test_k = [1;0;0;0;0;
      1;0;0;0;0;
      1;0;1;0;0;
      1;1;0;0;0;
      1;0;1;0;0];
test_L = [1;0;0;0;0;0;
       1;0;0;0;0;
```

```
1;0;0;0;0;
       1;0;0;0;0;
       1;1;1;1;0];
test_l = [1;0;0;0;0;
      1;0;0;0;0;
      1;0;0;0;0;
      1;0;0;0;0;
      1;1;1;0;0];
efekt1 = sim(net, test_A); %test sieci
efekt2 = sim(net, test_a);
[efekt1 efekt2]
if round(efekt1) <= 0 %zaokrąglenie</pre>
  disp('Mała litera');
else
  disp('Wielka litera');
end
if round(efekt2) <= 0
  disp('Mała litera');
else
  disp('Wielka litera');
end
```