Taller de programación de sistemas. Diseño del ensamblador.

<u>Práctica No. 3.</u> Identificar el tamaño de la instrucción en bytes de acuerdo al modo de direccionamiento (analizar el operando), considerando las diversas bases numéricas y las características propias de cada modo de direccionamiento.

Ejemplo de PASM.INST:

<i>J</i> 1				
Linea	ETIQUETA	CODOP	OPER	MODDIR
1	NULL	ORG	1	
2	NULL	SWI	NULL	INH
3	NULL	ADCA	3	DIR
4	NULL	ADCA	@3	DIR
5	NULL	ADCA	%1111	DIR
6	NULL	ADCA	\$3	DIR
7	NULL	ADCA	257	EXT
8	NULL	ADCA	\$FFF	EXT
9	NULL	ADCA	#3	IMM8
10	NULL	ADCA	#@3	IMM8
11	NULL	ADCA	#%1111	IMM8
12	NULL	ADCA	1,X	IDX
13	NULL	ADCA	255,X	IDX1
14	NULL	ADCA	32768,X	IDX2
15	NULL	ADCA	1,+PC	IDX
16	NULL	ADCA	Α,Χ	IDX
17	NULL	ADCA	257,X	IDX1
18	NULL	ADCA	64444,X	IDX2
19	NULL	ADCA	[1,X]	[IDX2]
20	NULL	ADCA	[6444 , X]	[IDX2]
21	NULL	ADCA	[D,X]	[D,IDX]
22	NULL	BRA	UNO	REL8
23	NULL	LBRA	UNO	REL16

- 1. Los símbolos para identificar las bases numéricas son los siguientes:
 - @ Octal
 - \$ Hexadecimal

% Binario

Si no se tiene un símbolo, entonces el número se encuentra en base 10.

- 2. Los números negativos se expresan en complemento a dos.
- A continuación se describe cada uno de los modos de direccionamiento: 3.

MODO INHERENTE

NO TIENEN OPERANDO

ORG \$FFF NOP INX END

MODO INMEDIATO

Se acepta cualquier base numérica

Rango de 8bits (-256 a 255) y de 16bits(-32,768 a 65,535)

Debe iniciar con #

Cuidado con los inmediatos que no llevan operando

ORG \$FFF #\$55 LDAA #\$1234 LDX #\$67 LDY END

MODO DIRECTO

Se acepta cualquier base numérica

Acepta 8btis pero únicamente en el rango (0 a 255)

ORG \$FFF LDAA \$55 \$0055 LDAA LDX \$20 END

MODO EXTENDIDO

Se acepta cualquier base numérica

Rango de 16bits (-32,768 a 65,535)

Tener cuidado con aquellos códigos de operación que aceptan directo y extendido al validar los rangos

El operando puede ser etiqueta

ORG \$FFF LDAA \$0FF \$FFFF LDAA LDAA VALOR1

END

MODOS INDIZADOS. (5 bits, 9 bits, 16 bits, auto pre/post incremento/decremento, de acumulador, indirecto de acumulador, indirecto de 16 bits)

5 BITS.

FORMA "IDX"

r,

Se acepta cualquier base numérica

Esta formado por dos secciones separadas por una coma, la primer parte es un número y la segunda un registro que puede ser X, Y, SP o PC

```
n,r
     -n,r
Rango de -16 a 15
                  $0
     ORG
                  , X
     LDAA
                  0,X
     LDAA
                  1,X
     LDAA
                  15,X
     LDAA
                  -1, X
     LDAA
                  -16, X
     LDAA
                  -8,Y
     STAB
     END
```

9 BITS.

FORMA "IDX1"

Se acepta cualquier base numérica

Esta formado por dos secciones separadas por una coma, la primer parte es un número y la segunda un registro que puede ser X, Y, SP o PC

n,r –n,r

Rango de -256 a 255

Tener cuidado con los códigos de operación que aceptan IDX y IDX1 al validar los rangos

ORG	\$0
LDAA	255 , X
LDAA	34,X
LDAA	-18,X
LDAA	-256 , X
LDAA	-20 , Y
END	

16 BITS.

FORMA "IDX2"

Se acepta cualquier base numérica

Esta formado por dos secciones separadas por una coma, la primer parte es un número y la segunda un registro que puede ser X, Y, SP o PC

n,r –n,r

Rango de 0 a 65,535

Tener cuidado con los códigos de operación que aceptan IDX, IDX1 e IDX2 al validar los rangos

ORG \$0 LDAA 31483,X END

16 BITS INDIRECTO

FORMA "[IDX2]"

Se acepta cualquier base numérica

Se indica dentro de corchetes

Formado por dos secciones separadas por una coma, la primer parte es un número y la segunda un registro que puede ser X, Y, SP o PC

[n,r] [-n,r]

Rango de 0 a 65,535

ORG \$0 LDAA [10,X] LDAA [31483,X] END

AUTO PRE/POST DECREMENTO /INCREMENTO

FORMA "IDX"

n,-r n,+r

Se acepta cualquier base numérica

Esta formado por dos secciones separadas por una coma, la primer parte es un número y la segunda un registro que puede ser X, Y o SP

n,rn,r+

Rango de 1 a 8

ORG \$0

STAA 1,-SP

STAA 1,SP
STX 2,SP+

STX 2,+SP

INDIZADO DE ACUMULADOR

FORMA "IDX"

END

Esta formado por dos secciones separadas por una coma, la primer parte es un acumulador que puedes ser A, B o D.

```
La segunda un registro que puede ser X, Y, SP o PC
A,r
B,r
D,r

ORG $0
LDAA B, X
LDAA A, X
LDAA D, X
END
```

```
INDIZADO DE ACUMULADOR "D" INDIRECTO.
FORMA [D,IDX]
Se acepta cualquier base numérica
Formado por dos secciones separadas por una coma, la primer parte es el registro D
La segunda un registro que puede ser X, Y, SP o PC
      [D,r]
      ORG
                   $0
                   [D,PC]
      JMP
                   [D, X]
      ADCA
                   [D,SP]
      ADCB
      ADDA
                   [D, Y]
      END
```

MODOS RELATIVOS

Se acepta cualquier base numérica

Rango de 8bits (-128 a 127), de 9bits (-256 a 255) y de 16bits(-32,768 a 65,535)

Los operandos pueden ser etiquetas.

En el caso de 16bits, el código siempre inicia con L

	ORG	\$0
UNO	DS	10
	BRA	UNO
DOS	DS	4096
	LBRA	DOS
	BRA	TRES
TRES	DS	10
	LBRA	CUATRO
CUATRO	DS	10
	END	

Descripción de la práctica:

1. Se deberá tomar en cuenta los modos de direccionamiento posibles para el CODOP dado, y se debe revisar uno a uno cada de los modos de direccionamiento para ver cuál es el adecuado en base al operando.

- 2. Cuando no se encuentre un modo de direccionamiento indicado, se deberá generar un error, el cuál debe ser muy claro:
 - Formato de operando no válido para ningún modo de direccionamiento
 - Formato erróneo de operando para direccionamiento fulanito de tal
 - Operando fuera de rango para direccionamiento fulanito de tal
 - Registro no válido para direccionamiento tal
 - Etc.

Características del reporte.

- 1. Debe de imprimirse, máximo una página.
- 2. No debe de tener faltas de ortografía.
- 3. Debe de tener el nombre del alumno código, grupo y fecha de entrega.
- 4. Descripción del reporte:
 - 1. Describir el algoritmo utilizado
 - 2. No imprimir código.
 - 3. Incluir una conclusión del desarrollo de la práctica