Лабораторная работа №11

Имитационное моделирование

Екатерина Канева, НФИбд-02-22

Содержание

1	Цель работы	5		
2	Задание	6		
3	Выполнение лабораторной работы	7		
4	Выводы	15		
Сг	писок литературы			

Список иллюстраций

3.1	Лист System	7
3.2	Множества цветов.	7
3.3	Переменные	8
3.4	Фнукции	8
3.5	Лист Arrivals	8
3.6	Лист Server	9
3.7	Лист System после задания параметров на графе	9
3.8	Лист Arrivals после задания параметров на графе	10
3.9	Лист Server после задания параметров на графе	10
3.10	Содержимое Queue_Delay.log	11
3.11	Скрипт для построения графиков	12
3.12	График значений задержки в очереди.	12
3.13	Глобальная переменная longdelaytime	13
3.14	График периодов превышения задержки	14

Список таблиц

1 Цель работы

Построить модель M|M|1 в CPN Tools.

2 Задание

- 1. Построить модель М|М|1.
- 2. Выполнить мониторинг параметров модели, построить графики.

3 Выполнение лабораторной работы

Модель состояла из 3 листов. Сначала я построила лист System (рис. 3.1):

Рис. 3.1: Лист System.

Далее я задала декларации системы: множества цветов (рис. 3.2), переменные (рис. 3.3), функции (рис. 3.4) модели.

```
▼ System

▼ colset UNIT = unit timed;
▼ colset INT = int;
▼ colset Server = with server timed;
▼ colset JobType = with A | B;
▼ colset Job = record jobType : JobType *
AT : INT;
▼ colset Jobs = list Job;
▼ colset ServerxJob = product Server * Job timed;
```

Рис. 3.2: Множества цветов.

Рис. 3.3: Переменные.

```
▼fun expTime (mean: int) =
    let
    val realMean = Real.fromInt mean
    val rv = exponential((1.0/realMean))
    in
    floor (rv+0.5)
    end;
▼fun intTime() = IntInf.toInt (time());
▼fun newJob() = {jobType = JobType.ran(), AT = intTime()}
```

Рис. 3.4: Фнукции.

Далее я построила листы Arrivals (рис. 3.5) и Server (рис. 3.6):

Рис. 3.5: Лист Arrivals.

Рис. 3.6: Лист Server.

Потом я задала параметры модели на графах сети. Там было много параметров, поэтому вся информация будет на картинках (рис. 3.7, 3.8 и 3.9):

Рис. 3.7: Лист System после задания параметров на графе.

Рис. 3.8: Лист Arrivals после задания параметров на графе.

Рис. 3.9: Лист Server после задания параметров на графе.

Далее я приступила к мониторингу сети. Для этого с помощью палитры Monitoring установила точку останова на переход Start, новый монитор назвала Ostanovka, функцию Predicate изменила на следующую:

```
in
   predBindElem bindelem
end
```

Потом выбрала Data Coll, установила снова на Start, назвала Queue Delay и изменила функцию Observer на следующую:

Далее я запустила моделирование, выполнила более 300 шагов, получила на выводе файл Queue_Delay.log (рис. 3.10):

-		/ho	me/ope	enmodelica/	output/logfiles/Queue_Delay.log - Mousepad
Файл	Правка	Поиск	Вид	Документ	Справка
2 0 1 3 0 2 4 129 5 131 6 209 7 187 8 227 9 157 10 152 11 65 1 12 0 1 13 0 1	ta count 3 163 6 659 3 11 79 4 13 79 5 17 90 6 20 99 7 22 10 8 25 11 9 28 12 10 30 12 1 33 133 2 36 146 3 39 162	0 5 8 8 41 98 90 38 7	time		

Рис. 3.10: Содержимое Queue_Delay.log.

Далее я построила график значений задержки в очереди, для этого я написала следующий код — он также подходит и для графика, который надо будет построить позже (рис. 3.11):

```
/home/openmodelica/output/logfiles/graph_plot-Mousepad
Файл Правка Поиск Вид Документ Справка

1 #!/usr/bin/gnuplot -persist
2
3 set encoding utf8
4 set term pngcairo font "Helvetica,9"
5
6 # set out "plot1.png"
7 # plot "Queue_Delay.log" using ($4):($1) with lines
8
9 set out "plot2.png"
10 plot [0:][0:1.2] "Long_Delay_Time.log" using ($4):($1) with lines
```

Рис. 3.11: Скрипт для построения графиков.

Получился следующий график (рис. 3.12):

Рис. 3.12: График значений задержки в очереди.

Далее я с помощью палитры Monitoring снова установила точку останова на переход Start, новый монитор назвала Queue Delay Real, функцию Observer изменила на следующую:

```
fun obs (bindelem) =
  let
  fun obsBindElem (Server'Start (1, {job, jobs, proctime}))
```

После этого я получила файл Queue_Delay_Real.log, похожий на Queue_Delay.log, только здесь значения имеют действительный тип. После этого я с помощью палитры Monitoring я снова установила Data Coll на Start. Теперь новый монитор я назвала Long Delay Time и сделала следующйю функцию Observer:

```
fun obs (bindelem) =
  if IntInf.tiInt(Queue_Delay.last())>=(!longdelaytime)
    then 1
  else 0
```

Далее было необходимо определить глобальную переменную longdelaytime, которая бы была границей для большой задержки (рис. 3.13):

Рис. 3.13: Глобальная переменная longdelaytime.

После этого я немного изменила скрипт для построения графика в GNU Plot (рис. 3.11) и построила график (рис. 3.14), демонстрирующий, в какие периоды времени значения задержки в очереди превышали заданное значение 200:

Рис. 3.14: График периодов превышения задержки.

Когда значение графика равно 1, была задержка больше допустимой, когда 0 — превышения не было. Видим, что если ставить переменную 200, то задержка редко превышала допустимую.

4 Выводы

Построили модель M|M|1 в CPN Tools.

Список литературы