Tags: #logbook - Denison

Links:

Logbook_07_220203

A Numeric Project

A.1 Notes

We can create quartic dispersion by

which cancels the dispersion of the SMF for β_2 and β_3 , leaving only β_4 nonzero (and making it larger in magnitude).

A.2 Results

Using quartic__220203__grid.m:

```
03__quartic__202202031402__grid.fig
```


03__quartic__202202031402__grid.fig

A.3 Outcomes

• These results have been superseded by those in Logbook_08_220207

A.4 To Do

- ✓ Run and get a stable solution for the soliton, and then use that as the starting solution
 - So that we aren't hitting it while it is forming
- Create bifurcation plots:
 - x axis is a parameter, e.g. frequency shift
 - y axis is peak wavelength
 - Plot the peak wavelength after a certain number of roundtrips (e.g. 10, 20, 30) in a vertical line for a given frequency shift
 - Then repeat for the next frequency shift
 - Hopefully the plots join up horizontally to make a line or a bifurcation