SEPARABLE EQUATIONS

The equations dy/dt = cy and dy/dt = cy + s (with constant source s) can be solved by a direct method. The idea is to separate y from t:

$$\frac{dy}{y} = c dt$$
 and $\frac{dy}{y + (s/c)} = c dt$. (2)

All y's are on the left side. All t's are on the right side (and c can be on either side). This separation would not be possible for dy/dt = y + t.

Equation (2) contains differentials. They suggest integrals. The t-integrals give ct and the y-integrals give logarithms:

$$\ln y = ct + \text{constant}$$
 and $\ln \left(y + \frac{s}{c} \right) = ct + \text{constant}.$ (3)

The constant is determined by the initial condition. At t = 0 we require $y = y_0$, and the right constant will make that happen:

$$\ln y = ct + \ln y_0 \quad \text{and} \quad \ln \left(y + \frac{s}{c} \right) = ct + \ln \left(y_0 + \frac{s}{c} \right). \tag{4}$$

Then the final step isolates y. The goal is a formula for y itself, not its logarithm, so take the exponential of both sides (e^{iny}) is y):

$$y = y_0 e^{ct}$$
 and $y + \frac{s}{c} = \left(y_0 + \frac{s}{c}\right) e^{ct}$. (5)

It is wise to substitute y back into the differential equation, as a check.

This is our fourth method for y' = cy + s. Method 1 assumed from the start that $y = Ae^{st} + B$. Method 2 multiplied all inputs by their growth factors $e^{c(t-T)}$ and added up outputs. Method 3 solved for $y - y_{\infty}$. Method 4 is separation of variables (and all methods give the same answer). This separation method is so useful that we repeat its main idea, and then explain it by using it.

To solve dy/dt = u(y)v(t), separate dy/u(y) from v(t)dt and integrate both sides:

$$\int dy/u(y) = \int v(t)dt + C. \tag{6}$$

Then substitute the initial condition to determine C, and solve for y(t).

EXAMPLE 1 $dy/dt = y^2$ separates into $dy/y^2 = dt$. Integrate to reach -1/y = t + C. Substitute t = 0 and $y = y_0$ to find $C = -1/y_0$. Now solve for y:

$$-\frac{1}{y} = t - \frac{1}{y_0}$$
 and $y = \frac{y_0}{1 - ty_0}$.

This solution blows up (Figure 6.15a) when t reaches $1/y_0$. If the bank pays interest on your deposit squared $(y' = y^2)$, you soon have all the money in the world.

EXAMPLE 2 dy/dt = ty separates into dy/y = t dt. Then by integration $\ln y = \frac{1}{2}t^2 + C$. Substitute t = 0 and $y = y_0$ to find $C = \ln y_0$. The exponential of $\frac{1}{2}t^2 + \ln y_0$ gives $y = y_0 e^{t^2/2}$. When the interest rate is c = t, the exponent is $t^2/2$.

EXAMPLE 3 dy/dt = y + t is not separable. Method 1 survives by assuming y =