A deriválás alkalmazásai

1. Vizsgáljuk meg monotonitás, lokális és abszolút szélsőérték szempontjából az alábbi függvényt!

$$e^{2x}(x+1),$$
 gy.: $e^x(x^2+1)$

2. Vizsgáljuk meg monotonitás, lokális szélsőérték és konvexitás szempontjából az alábbi függvényeket!

$$\frac{x+1}{x-1}$$
, gy: $\frac{1}{x^2+1}$

3. Alkalmazzuk a L'Hospital szabályt, ha lehet. Ha nem, oldjuk meg másként!

a)
$$\lim_{x\to 0} \frac{\sin(3x)}{\ln(1+4x)}$$
, b) $\lim_{x\to 0} \frac{1-\cos(2x)}{e^{x^2}-1}$, c) $\lim_{x\to 0} \frac{\arctan x^2}{\sin 2x}$

d)
$$\lim_{x \to \infty} \frac{e^{4x} + e^x}{e^{3x} + e^{2x}}$$
, e) $\lim_{x \to 0+} x \ln x$, f) $\lim_{x \to 0+} (\cos x)^{1/x}$

4. Hány megoldása van az alábbi egyenleteknek?

a)
$$2x^3 + 15x^2 + 36x - 1 = 0$$
, **b)** $x^4 + 6x^2 - 2 = 0$

b)
$$x^4 + 6x^2 - 2 = 0$$