

Шаровой кран со съёмной крышкой СТМ 0 32

Предназначены для герметичного перекрытия потока среды в технологических установках в нефтяной, газовой, химической, металлургической, энергетической промышленностях, хранении и транспортировании сжиженного природного газа.

Номинальный диаметр	DN 50÷2000 MM
Номинальное давление	PN 1,6÷42,0 МПа
Материал корпуса	ст. 20, ст. 09Г2С, ст. 12Х18Н12М3ТЛ, A350 LF2, A350 LF3, A182 F316 Специальное исполнение по запросу
Производственный ряд	PN 1,6÷10,0 МПа DN 50÷1400 мм PN 16,0 МПа DN 50÷1200 мм PN 25,0 МПа DN 50÷700 мм PN 42,0 МПа DN 50÷400 мм
Климатическое исполнение	FOCT 15150-69
Рабочая температура	-196°C ÷ +750°C - широкий диапазон рабочих температур в зависимости от применяемых материалов
Форма фланцев	ГОСТ 12815-80 Специальное исполнение по запросу
Стандарт испытания герметичности в затворе	FOCT 9544-2015
Оснащение исполнительным механизмом	Ручной, электрический, пневматический Специальное исполнение по запросу

Конструкция шарового крана со съёмной крышкой

Корпус шарового крана со съёмной крышкой представляет собой единую деталь, изготовленную из отливки или поковки. Это уменьшает возможность возникновения утечки, в отличие от шаровых кранов другой конструкции. Такая конструкция шарового крана позволяет осуществлять техническое обслуживание по месту установки.

1	Корпус	12	Болт	23	Уплотнительное кольцо
2	Крышка	13	Крышка	24	Уплотнительное кольцо
3	Шаровой затвор	14	Уплотнительное кольцо	25	Уплотнительное кольцо
4	Седло	15	Фланец исп.механизма	26	Шайба
5	Уплотнительное кольцо	16	Втулка	27	Фрикционная шайба
6	Пружина	17	Втулка	28	Штифт
7	Уплотнительное кольцо 1	18	Прокладка	29	Ввод для герметика
8	Обойма	19	Прокладка	30	Продувочный клапан
9	Стопорное кольцо	20	Шпилька	31	Дренажный клапан
10	Шпиндель	21	Гайка		
11	Шпонка	22	Болт		

Стандартное исполнение

Шпиндель с защитой от вырывания

Антистатическое устройство

Герметичность шарового крана в любом направлении потока

Полнопроходная или неполнопроходная конструкция

Пожаробезопасная конструкция в соответствии с СТ ЦКБА 001-2003, ISO 10497, BS 6755-2

Специальное исполнение

Присоединение к трубопроводу по варианту заказчика

Защитное износостойкое покрытие шаровой пробки и седла

Сёдла с двойным эффектом поршня (Двойная Изоляция со Сбросом)

Сёдла в компоновке - одно седло с двойным эффектом поршня, другое седло с одинарным эффектом поршня

Система двойной блокировки и сброса давления

Аварийное дополнительное уплотнение сёдел и шпинделя

Ввод уплотнительной смазки в зону уплотнения седел и шпинделя

Дренажный клапан

Удлинённый шпиндель

Расширенная крышка

Уплотнение "металл по металлу"

Соответствие материалов требованиям ГОСТ 53678-2009, ГОСТ 53679-2009, EN ISO 15156-1, NACE MR 0103

Опорные поверхности (лапы)

Отличительные особенности

Шаровые краны с верхней съёмной крышкой оптимально подходят в случаях, когда может потребоваться техническое обслуживание по месту установки. С такого шарового крана можно снять крышку для свободного доступа к полости корпуса без демонтажа крана с трубопровода. Серия специальных инструментов для технического обслуживания позволяет извлекать шар из седла. Эта операция технического обслуживания не требует наличия большого пространства вокруг шарового крана, поэтому может выполняться в том числе и в местах с затруднённым доступом.

Корпус шарового крана с верхним доступом выпускается из кованой или литой стали и состоит только из одной детали, закрытой сболченной крышкой.

Конструктивно возможно исполнение как с полным, так и неполным проходом.

Присоединение к трубопроводу в зависимости от технологии возможно во фланцевом исполнении с любым видом уплотнительной поверхности или сварное присоединение.

Система двойной блокировки и сброса давления

Система «Двойной Блокировки со Сбросом» (ДБС) давления обеспечивает способность шарового крана отсечь давление со стороны каждого входного патрубка, а также сбросить среду, скопившуюся между седлами. В арматуре ДБС имеются два седла с однонаправленным уплотнением. В закрытом положении шарового затвора такие седла отсекают давление среды в трубопроводе от полости корпуса арматуры, расположенной между седлами. Если перепад давления на седле меняет знак, оно отходит от пробки, и давление сбрасывается из полости корпуса в трубопровод. Это замечательная возможность, особенно для жидких сред. Ведь если жидкость в полости корпуса нагревается во время работы системы или за счет внешних источников тепла, давление в ней может увеличиться из-за теплового расширения жидкости. При отсутствии седел, уплотняющих в одном направлении, способных сбросить давление, в корпусе арматуры может возникнуть избыточное давление, что неизменно приведет к утечке или разрыву.

В тех отраслях промышленности, где для перекрытия потока среды используются шаровые краны, в ряде случаев требуется второй барьер против давления, с независящей от первого герметичностью. Такая необходимость обычно вызвана либо требованиями техники безопасности, либо спецификой эксплуатации (газоснабжение, жесткие требования к герметичности, чистота проводимой среды и др.). Арматура Двойной Изоляции со Сбросом (ДИС) как нельзя лучше подходит для этих условиях. Изоляция может быть реализована в одном или двух направлениях в зависимости от конфигурации седел.

Седло двунаправленного действия прижимается к шаровой пробке независимо от того, с какой стороны действует давление — снаружи или изнутри крана. Это достигается благодаря изменению эффективного диаметра уплотнения корпуса в ту или иную сторону смещение реверсивного кольца в седле. Такая конфигурация ДИС пригодна для большинства ситуаций, в которых необходимо дублирование герметичности. ДИС сочетает в себе возможность сброса давления из полости корпуса и основные функции конфигурации ДБС.

Характеристики применяемых уплотнительных материалов

Значения давлений для конкретных исполнений корпуса шарового крана определяют максимально допустимые границы применения уплотнительных материалов корпуса по температуре и давлению рабочей среды. Значения температуры и давления могут быть меньше приведённых при определённых конструктивных исполнениях. Для гарантированной работы корпуса шарового крана рабочее давление должно быть на 20% меньше максимально допустимого для данной температуры и уплотнительного материала. Предельные значения выбирать не допускается.

VITON - фторэластомер, из которого изготавливаются уплотнения и, особенно, сальники, прокладки, уплотнительные кольца, уплотнения шпинделей высшего качества для применения в промышленном оборудовании для различных сред. VITON обладает улучшенными температурными свойствами, стойкостью к воздействию агрессивных сред, превосходной теплостойкостью, широкой химической совместимостью, обеспечение чистоты и целостности технологического процесса.

H-NBR - гидрированный бутадиен-нитрильный эластомер. Это термостойкий каучук с высокой стойкостью к воздействию озона и химических веществ. H-NBR обладает лучшими механическими свойствами, такими как прочность при разрыве, относительное удлинение при разрыве, устойчивость к истиранию. H-NBR применяется в основном в тех областях, в которых наряду с высокой устойчивостью к

минеральным маслам также требуется хорошая эластичность при высокой температуре в масле с высоким процентом добавок, например, уплотнительные элементы при добыче сырой нефти и природного газа (также для кислого природного газа).

РТГЕ / Фторопласт-4 (Ф-4) обладает исключительной химической инертностью по отношению практически ко всем агрессивным средам (за исключением расплавов щелочных металлов, хлора). Это качество РТГЕ используется при эксплуатации трубопроводов для транспортировки высоко агрессивных сред, запорной арматуры, прокладочно-уплотнительных деталей контактирующих с агрессивными средами и др.

РЕЕК - полиэфирэфиркетон (ПЭЭК) является линейным, ароматическим, полукристаллическим полимером, который считается одним из самых высокоэффективных термопластических материалов в мире. Полимеры РЕЕК обладают уникальной комбинацией свойств, включающей высокую термостойкость, стойкость к воздействию химических веществ, стойкость к гидролизу, износостойкость, а также электрические и механические свойства.

Конструкция удлинённого шпинделя

Для защиты сальникового узла от воздействия криогенных или высоких температур рабочей среды при эксплуатации, а также при подземной установке используется конструкция удлинённого шпинделя.

Монтажные и габаритные размеры

Р 1,6 МПа, Р 2,5 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

PN 1,6 MПа, PN 2,5 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.1	L исп.7	LNN	H1	H2	Вес, кг
50	292	295	292	207	85	30
65	330	330	330	211	95	40
80	356	359	356	223	114	57
100	432	435	432	280	140	100
150	559	562	559	275	219	215
200	660	664	660	321	265	407
250	787	791	787	355	315	560
300	838	841	838	470	405	710
350	889	892	889	455	432	760
400	991	994	991	460	451	1100
450	1092	1095	1092	503	472	1512
500	1194	1200	1194	560	560	1930
600	1397	1407	1397	610	600	3200
700	1549	1562	1549	730	710	4600
800	1778	1794	1778	846	830	7085
900	2083	2099	2083	935	933	9100
1000	2337	2337	2337	1012	1030	12790
1200	2540	2540	2540	1190	1230	22600

DN	d	L исп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	40	292	295	292	207	85	25
65	50	330	330	330	210	87	32
80	50	356	359	356	210	87	34
80	65	356	359	356	215	95	50
100	80	432	435	432	225	110	70
150	100	559	562	559	270	143	130
200	150	660	664	660	275	215	250
250	200	787	791	787	320	262	455
300	250	838	841	838	355	310	485
350	250	889	892	889	355	310	665
350	300	889	892	889	475	395	790
400	300	991	994	991	475	395	940
400	350	991	994	991	450	430	908
450	400	1092	1095	1092	460	450	1248
500	400	1194	1200	1194	460	450	1542
500	450	1194	1200	1194	495	470	1740
600	500	1397	1407	1397	550	580	2378

^{*} L исп. 1 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 1

L исп. 7— строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 7

L исп. ПП — строительная длина шарового крана с патрубками под приварку по ГОСТ 28908-91

Р 4,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	292	295	292	211	90	36
65	330	330	330	218	105	50
80	356	359	356	226	119	63
100	432	435	432	286	145	106
150	559	562	559	282	224	221
200	660	664	660	325	270	412
250	787	791	787	360	320	566
300	838	841	838	475	410	715
350	889	892	889	460	437	766
400	991	994	991	465	456	1106
450	1092	1095	1092	508	477	1519
500	1194	1200	1194	565	565	1936
600	1397	1407	1397	617	605	3208
700	1549	1562	1549	738	715	4607
800	1778	1794	1778	850	835	7092
900	2083	2099	2083	942	938	9112
1000	2337	2337	2337	1020	1036	12798
1200	2540	2540	2540	1201	1236	22614

Р 4,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.1	L исп.7	LПП	H1	H2	Вес, кг
50	40	292	295	292	206	80	26
65	50	330	330	330	211	90	40
80	50	356	359	356	211	90	42
80	65	356	359	356	218	105	60
100	80	432	435	432	226	119	82
150	100	559	562	559	286	145	161
200	150	660	664	660	282	224	285
250	200	787	791	787	325	270	536
300	250	838	841	838	360	320	572
350	250	889	892	889	360	320	781
350	300	889	892	889	475	410	916
400	300	991	994	991	475	410	1092
400	350	991	994	991	460	437	1095
450	400	1092	1095	1092	465	456	1462
500	400	1194	1200	1194	465	456	1809
500	450	1194	1200	1194	508	477	2023
600	500	1397	1407	1397	565	565	2774

Р 6,3 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

						-
DN	L исп.1	L исп.7	LNN	H1	H2	Вес, кг
50	292	295	292	240	85	41
65	330	330	330	270	95	52
80	356	359	356	305	116	67
100	432	435	432	275	140	230
150	559	562	559	296	180	420
200	660	664	660	324	275	417
250	787	791	787	365	325	570
300	838	841	838	480	415	720
350	889	892	889	465	442	770
400	991	994	991	470	461	1112
450	1092	1095	1092	512	482	1523
500	1194	1200	1194	570	570	1940
600	1397	1407	1397	622	610	3213
700	1549	1562	1549	742	722	4612
800	1778	1794	1778	855	840	7103
900	2083	2099	2083	947	944	9118
1000	2337	2337	2337	1025	1041	12805
1200	2540	2540	2540	1506	1240	22619

Р 6,3 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	40	292	295	292	210	85	34
65	50	330	330	330	215	95	40
80	50	356	359	356	215	95	46
80	65	356	359	356	223	110	70
100	80	432	435	432	232	124	94
150	100	559	562	559	283	154	280
200	150	660	664	660	287	129	318
250	200	787	791	787	324	275	600
300	250	838	841	838	365	325	719
350	250	889	892	889	365	325	991
350	300	889	892	889	480	415	1191
400	300	991	994	991	480	415	1411
400	350	991	994	991	465	442	1377
450	400	1092	1095	1092	470	461	1856
500	400	1194	1200	1194	470	461	2896
500	450	1194	1200	1194	512	482	2930
600	500	1397	1407	1397	570	570	3518

^{*} L исп. 1 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 1

L исп. 7 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 7

L исп. ПП — строительная длина шарового крана с патрубками под приварку по ГОСТ 28908-91

Р 10,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

_						
DN	L исп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	292	295	292	240	85	41
65	330	330	330	270	95	52
80	356	359	356	305	116	67
100	432	435	432	275	140	230
150	559	562	559	296	180	420
200	660	664	660	324	275	417
250	787	791	787	365	325	570
300	838	841	838	480	415	720
350	889	892	889	465	442	770
400	991	994	991	470	461	1112
450	1092	1095	1092	512	482	1523
500	1194	1200	1194	570	570	1940
600	1397	1407	1397	622	610	3213
700	1549	1562	1549	742	722	4612
800	1778	1794	1778	855	840	7103
900	2083	2099	2083	947	944	9118
1000	2169	2169	2169	1025	1041	12805
1200	2435	2435	2435	1506	1240	22619

PN 10,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DII					114	110	D
DN	d	L исп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	40	292	295	292	210	85	34
65	50	330	330	330	215	95	40
80	50	356	359	356	215	95	46
80	65	356	359	356	223	110	70
100	80	432	435	432	232	124	94
150	100	559	562	559	283	154	280
200	150	660	664	660	287	129	318
250	200	787	791	787	324	275	600
300	250	838	841	838	365	325	719
350	250	889	892	889	365	325	991
350	300	889	892	889	480	415	1191
400	300	991	994	991	480	415	1411
400	350	991	994	991	465	442	1377
450	400	1092	1095	1092	470	461	1856
500	400	1194	1200	1194	470	461	2896
500	450	1194	1200	1194	512	482	2930
600	500	1397	1407	1397	570	570	3518

РИ 16,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	368	371	368	295	110	52
65	419	422	419	260	115	80
80	381	384	381	230	122	110
100	457	460	457	283	154	200
150	610	613	610	329	203	430
200	737	740	737	375	245	800
250	838	841	838	431	275	1000
300	965	968	965	511	322	1300
350	1029	1038	1029	520	443	1695
400	1130	1140	1130	582	390	2560
450	1219	1232	1219	580	487	3400
500	1321	1334	1321	625	605	4400
600	1549	1568	1549	690	625	7200
700	1753	1775	1753	820	723	10400
800	2032	2054	2032	938	870	15950
900	2286	2315	2286	1050	990	20600

Р 16,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	40	368	371	368	161	95	50
65	50	419	422	419	211	84	75
80	50	381	384	381	211	84	70
80	65	381	384	381	220	110	105
100	80	457	460	457	230	122	140
150	100	610	613	610	283	154	273
200	150	737	740	737	329	209	548
250	200	838	841	838	375	245	906
300	250	965	968	965	431	275	1090
350	250	1029	1038	1029	380	324	1495
350	300	1029	1038	1029	511	322	1800
400	300	1130	1140	1130	515	360	2100
400	350	1130	1140	1130	520	360	2300
450	400	1219	1232	1219	536	380	2837
500	400	1321	1334	1321	582	390	3515
500	450	1321	1334	1321	580	485	3875
600	500	1549	1568	1549	629	604	5395

^{*} L исп. 1 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 1

L исп. 7— строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 7

L исп. ПП — строительная длина шарового крана с патрубками под приварку по ГОСТ 28908-91

Р 25,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.1	L исп.7	LNN	H1	H2	Вес, кг
50	368	371	368	201	100	56
65	419	422	419	215	110	100
80	470	473	470	230	122	153
100	546	549	546	293	164	278
150	705	711	705	245	416	600
200	832	841	832	465	273	1100
250	991	1000	991	574	330	1438
300	1130	1146	1130	520	427	2017
350	1257	1276	1257	550	456	2612
400	1384	1407	1384	565	487	3890
450	1537	1559	1537	592	527	5100
500	1664	1686	1664	650	630	6678
600	1945	1972	1945	660	640	11700

Р 25,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

			r. =				
DN	d	L исп.1	L исп.7	LNN	H1	H2	Вес, кг
50	40	368	371	368	161	95	50
65	50	419	422	419	211	105	98
80	50	470	473	470	211	105	110
80	65	470	473	470	220	110	150
100	80	546	549	546	229	121	203
150	100	705	711	705	293	164	376
200	150	832	841	832	416	245	703
250	200	991	1000	991	465	273	1273
300	250	1130	1146	1130	574	330	1535
350	250	1257	1276	1257	580	330	2100
350	300	1257	1276	1257	580	427	2698
400	300	1384	1407	1384	630	427	3200
400	350	1384	1407	1384	640	455	3100
450	400	1537	1559	1537	657	493	4200
500	400	1664	1686	1664	657	493	4500
500	450	1664	1686	1664	693	527	5900
600	500	1945	1972	1945	757	620	9200

^{*} L исп. 1 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 1

L исп. 7 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 7

L исп. ПП — строительная длина шарового крана с патрубками под приварку по ГОСТ 28908-91

Варианты оснащения исполнительными механизмами

Неполнооборотные приводы AUMA обеспечат расширенные возможности контроля потоков: расширенный диапазон времени перекрытия, высокую точность и адаптацию к любым условиям работы, безопасное управление и интеллектуальное взаимодействие с арматурой

Червячные редукторы AUMA, производимые с использованием высококачественных материалов и технологий сборки, гарантируют надежность конструкции при работе, эксплуатацию в яюбых климатических условиях, а также во взрывоопасных зонах

Комбинация редуктора и многооборотного электропривода AUMA: передаточное отношение позволяет использовать многооборотные приводы меньших размеров, а соответственно и менее дорогостоящих

Варианты оснащения исполнительными механизмами

Для расчета и выбора типоразмера привода необходимо учитывать факторы, влияющие на значение требуемого крутящего момента. В первую очередь на данное значение влияют перепад давления на рабочем органе, вязкость рабочей среды и наличие механических примесей. Также количество срабатываний арматуры в определенный отрезок времени является решающим фактором при расчете требуемого крутящего момента. Чем реже происходит срабатывание арматуры, тем больший коэффициент запаса следует учитывать.

Для расчета и выбора схемы управления приводом учитываются требования Заказчика по управляющим сигналам и сигналам обратной связи. Данные сигналы должны соответствовать системе АСУТП на предприятии или стыковаться с последней посредством специальных коммутационных устройств/схем.

Для расчета типа присоединения привода к арматуре необходимо обеспечить сопряжение фланца привода и посадочного места на клапанной части. В случае невозможности реализации данного сопряжения, изготавливаются и устанавливаются специальные промежуточные переходные конструкции.

Каждый технологический процесс рассматривается нашими специалистами индивидуально. Все вышеперечисленные технические особенности рассчитываются и реализуются на основании данных Опросного листа, а также данных, дополнительно полученных от Заказчика. В связи с вышеизложенным, будем Вам признательны за предоставление максимально подробной информации.

Рекомендации по заказу

Обращаем Ваше внимание, что задача контроля потока среды требует комплексного решения. Для ее решения необходимо, помимо верного подбора арматуры, осуществить прецизионный подбор приводной части и навесного оборудования.

Данный подбор будет осуществлен оптимально только в случае предоставления Вами полной информации как по характеристикам потока и среды (клапанная часть), так и по параметрам управления, обратной связи (сервопривод и навесное оборудование). Нами приветствуется отображение данной информации в форме опросного листа.

В случае пожелания заказчика по поставке комплектного оборудования (шаровой кран, привод, навесное оборудование) последнее поставляется в сборе или собирается непосредственно на объекте. Гарантийные обязательства распространяются в полном объеме на всю сборочную единицу.

По требованию заказчика возможно осуществление помощи (силами наших специалистов) непосредственно на объекте на любой стадии процесса заказа:

- заполнение опросных листов;
- диагностика существующей схемы управления;
- монтаж и позиционирование оборудования (поэтапное и единовременное) непосредственно на объекте;
 - пусконаладочные работы;
 - обучение обслуживающего персонала.

Опросный лист на запорную арматуру

Заказчин	: / Конечный потреб	итель:							
Адрес:									
Тел/факс	, E-mail:								
Проект /	Объект реконструкц	ии:							
Технолог	ическая позиция: _								
1	1		🗆 Шаровой кран			□ Задвижка			
1 Тип арматуры			Дисковый затвор		□ Другое				
2	Марка ранее уста	новленной арматуры (замена)							
3	Условный диамет	р Ду, мм							
4	Условное давлени	ие Ру, МПа/бар							
5	Требуемое количе	ество, шт.			•				
6		Агрегатное состояние	□ Жидкость □ Га		аз 🗆 Пар				
7	Рабочая среда	Название рабочей среды / состав							
8	т аоочал среда	Максимальное рабочее давление, МПа/бар							
9		Максимальная рабочая температура, °С			,				
10		Пожаробезопасное исполнение		□ Да		□ Нет			
11		Материал корпуса		Чугун		🗆 Углеродистая сталь			
''		патериал корпуса		□ Нержавеющая сталь			🗆 Другое		
12		Материал рабочего органа	□ Чугун			Углеродистая сталь			
'-	Исполнение	7.11.5 [7.11.7]		Нержавеющая сталь		□ Дру	гое		
13		Герметичность затвора							
14		Уплотнение затвора			1		T		
15		Присоединение к трубопроводу		Фланцевое		риварное	□ Резьбовое		
		привованновно и грусопроводу		Межфланцевое		□ Друго	DE		
16	Макс. перепад давления в закрытом положении, МПа/ бар								
17	характеристики	Условная пропускная способность Kvy, м³/ч							
18		Направление подачи среды		Одностороннее		□ 2-х ст	гороннее		
19		Тип привода		Ручной		□ Элект	рический		
17	Характеристики			Пневматический		□ Другое			
20	привода	Время открытия / закрытия, сек							
21		Степень защиты от внешнего		□ IP66		□ IP67			
		воздействия		□ 1Р68 □ Другое		1			
22			□ Exia □ Exd						
		Степень взрывозащиты		Общепромышленное	шленное		·		
23		Электрический, напряжение питания □ ~380 В □ ~220 В □=				□= 24 B			
24		Электрический, управляющий сигнал							
25		Электрический, сигнал обратной связи							
26		Пневматический, способ подачи		Простого действия		□ Дв	ойного действия		

27		Минимальное давление воздуха необходимое для работы привода, МПа/бар						
28		Положение безопасности		Открыт	□ Закрыт		□ Текущее положение	
29	Степень защиты от внешнего воздействия		IP66			IP67		
27		степень защиты от внешнего воздействия		IP68			Другое	
20		Степень варывозациты		Exia			Exd	
30				Общепромышленно	е исполнение		Другое	
31		Датчик конечных положений		Да			Нет	
32	Навесное оборудование	Ручной дублер		Да			Нет	
33	осорудование	Электромагнитный клапан для		Да			Нет	
34		Позиционер для пневмопривода		Да			Нет	
35		Фильтр-редуктор, тип пневмоприсоединения G/NPT						
36		Другие принадлежности (указать)						
37		Место установки		Помещение	🗆 Откр. плои	Ц.	□ Подземная	
38		Размер присоединяемого трубопровода						
39	Установка	Материал трубы						
40		Комплект ответных фланцев	□ Да				□ Нет	
41		Температура окружающей среды	Мин.			Макс.		
	Дополнительная и	информация:						
42								
Контакті	ное лицо	Должность По	ДПИС	b	()NO)	
Дата заг	полнения	«»		20 г.				