复习.

- 矩估计. 样本矩= 真实矩.
- 无偏估计. $E_{\theta}T(\vec{X}) = g(\theta), \forall \theta$.
- 最小方差无偏估计UMVUE.
 - (1) 无偏: $E_{\theta}T(\vec{X}) = g(\theta)$,
 - (2) 最小方差: $\operatorname{var}_{\theta} T(\vec{X}) \leq \operatorname{var}_{\theta} \tilde{T}(\vec{X}), \forall \theta$.
- 指数族. $p_{\theta}(x) = S(\theta)h(x) \exp\{\sum_{k=1}^{m} C_{k}(\theta)T_{k}(x)\}.$ 若干条件下, $\phi(T_{1}(\vec{X}), \dots, T_{m}(\vec{X}))$ 为UMVUE. 正态总体时, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ 和 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} \bar{X})^{2}$ 分别是 μ , σ^{2} 的UMVUE.

§7.5 估计的相合性, §7.6 估计的渐近分布

以 $g(\theta)$ 的估计 $\hat{\theta}_n = T(X_1, \dots, X_n)$ 为例.

• $\hat{\theta}_n$ 具有相合性 指:

$$\hat{\theta}_n \xrightarrow{P_{\theta}} g(\theta)(n \to \infty), \forall \theta.$$

数据加大,估计变精确.

- LLN: 样本矩 $\xrightarrow{P_{\theta}}$ 总体矩. 矩估计具有相合性(定理5.2).
- 例5.2. $X \sim U[0, \theta]$. 最大似然估计 $\hat{\theta}_n = \max_{1 \leq i \leq n} X_i$ 相合. 事实上,

$$P_{\theta}(|\hat{\theta}_n - \theta| \ge \varepsilon) = P(\hat{\theta}_n \le \theta - \varepsilon) = P(X \le \theta - \varepsilon)^n \to 0.$$

- $\hat{\theta}_n \not = \underline{\text{m}}\underline{\text{m}}\underline{\text{m}}\underline{\text{m}}\underline{\text{m}}\underline{\text{m}}$ 的指: $\sqrt{n}(\hat{\theta}_n \theta) \stackrel{d}{\to} Z \sim N(0, \sigma^2(\theta)), \forall \theta$.
 - 例6.1 总体 $X \sim N(\mu, \sigma^2)$. $\hat{\mu}_n = \bar{X}$. CLT: $\sqrt{n}(\bar{X} \mu) = \sigma \frac{S_n ES_n}{\sqrt{n\sigma^2}} \stackrel{d}{\to} Z \sim N(0, \sigma^2)$, 渐近正态.

§7.7 置信区间和置信限

• 目标: 给出两个统计量 $\bar{T} = \bar{T}(\vec{X}), \underline{T} = \underline{T}(\vec{X}),$ 使得

$$P_{\theta}(\underline{T} \leqslant g(\theta) \leqslant \bar{T}) \geqslant 1 - \alpha;$$

或找出统计量 $\overline{T} = \overline{T}(\vec{X})$ ($\underline{T} = \underline{T}(\vec{X})$),

$$P_{\theta}(g(\theta) \leqslant \bar{T}) \geqslant 1 - \alpha \quad (P_{\theta}(\underline{T} \leqslant g(\theta)) \geqslant 1 - \alpha).$$

- 置信区间 $[\underline{T}, \overline{T}]$, 或置信上限 \overline{T} (下限 \underline{T}).
- 置信度(置信水平) 1α . 概率的主观置信度含义. α : 犯错概率.

定义7.2. <u>枢轴量</u> 指 $h = h(X_1, \dots, X_n, g(\theta))$ 的分布与 θ 无关. 即有恒定的分布函数F 使得 $P_{\theta}(h \leq x) = F(x), \forall \theta$.

枢轴量h vs 统计量 $T = T(\vec{X})$:

- 从定义的角度: T 只含数据, h 含数据和<mark>待估量 $g(\theta)$ </mark>.
- 从概率的角度: T 的分布依赖于θ;
 h 的分布不依赖于θ, 可依赖于n.
- 从统计的角度: *T* 的值视为已知, 完全由数据确定;
 h 的值视为未知, 依赖于θ, 而θ 未知.

枢轴量法:

- 利用h (根据置信度) 选取a,b, 使得: $P(a \le h \le b) \ge 1 \alpha$.
- 将 $a \le h \le b$ 化为 $\underline{T} \le g(\theta) \le T$, 于是 $P_{\theta}(\underline{T} \le g(\theta) \le \overline{T}) \ge 1 - \alpha$.

例7.2+7.3. $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知(例如, $X \sim N(\mu, 1)$). 求: μ 的置信度为1 $-\alpha$ 的(1) 置信区间, (2) 置信上限.

- (1) 查表取x 使得 $P(|Z| \le x) = 1 \alpha$. 于是 $P(\left|\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma}\right| \le x) = 1 - \alpha$.
- 概率论角度: $\bar{X} \in [\mu \frac{\sigma}{\sqrt{n}}x, \mu + \frac{\sigma}{\sqrt{n}}x]$, 随机点 \bar{X} 落在确定区间中,事件,计算概率. 统计学角度: $\mu \in [\bar{X} \frac{\sigma}{\sqrt{n}}x, \bar{X} + \frac{\sigma}{\sqrt{n}}x]$, 已知区间(可由数据得到)覆盖未知点 μ .
- (2) 上限: 找 $\bar{\mu}$ 使得 $P(\mu \leqslant \bar{\mu}) = 1 \alpha$. 故查表取y 使得 $P(Z \geqslant -y) = 1 \alpha$, 于是 $P(\frac{\sqrt{n}(\bar{X} \mu)}{\sigma} \geqslant -y) = 1 \alpha$, $P(\mu \leqslant \bar{X} \frac{\sigma}{\sqrt{n}}y) = 1 \alpha$, $\bar{\mu} = \bar{X} \frac{\sigma}{\sqrt{n}}y$.

例7.4. $X \sim N(\mu, \sigma^2)$, 其中 σ^2 未知. 求: μ 的置信度为 $1 - \alpha$ 的置信区间.

- $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1)$ 仍然成立.
- 不是枢轴量!

枢轴量只能含数据和待估量,不含(其他未知的)讨厌参数 σ^2 . 用 $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$ 给出的区间,端点含 σ^2 ,不是统计量.

• 用统计量 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \hat{\sigma}^2$ 代替 σ . 将证明

$$h(\vec{X}, \mu) := \frac{\sqrt{n}(X - \mu)}{\sqrt{S^2}}$$

是枢轴量, 其分布是t(n-1).

• 取x 使得 $P(|h| \le x) = 1 - \alpha$ (附表2), 得 到 $[\bar{X} - \frac{\hat{\sigma}}{\sqrt{n}}x, \bar{X} + \frac{\hat{\sigma}}{\sqrt{n}}x]$.

目标:
$$h(\vec{X}, \mu) = \frac{\sqrt{n}(\bar{X} - \mu)}{\sqrt{S^2}} = \frac{\sqrt{n}(\bar{X} - \mu)}{\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})^2}}$$
 是枢轴量.

- $\chi^2(n)$, 自由度为n 的 χ^2 分布 指 $Z_1^2 + \cdots + Z_n^2$ 的分布, 其中 $Z_1, \cdots, Z_n \sim \text{i.i.d. } N(0,1)$.
- t(n), 自由度为n 的t分布 指 $\frac{Z}{\sqrt{\frac{1}{n}T_n}}$ 的分布, 其中 $Z \sim N(0,1)$, $T_n \sim \chi^2(n)$, 且Z, T_n 相互独立.
- 定理7.1. 存在 $Z_1, \dots, Z_n \sim N(0,1)$ i.i.d. 使得分子 $\sqrt{n}(\bar{X} \mu) = \sigma Z_1$, 分母中的 $\sum_{i=1}^n (X_i \bar{X})^2 = \sigma^2(Z_2^2 + \dots + Z_n^2)$. 于是 $h(\vec{X}, \mu) \sim t(n-1)$.

定理7.1的证明. $\diamondsuit Y_i = X_i^*$, 即 $X_i = \mu + \sigma Y_i$,

则 $Y_1, \dots, Y_n \sim \text{i.i.d. } N(0,1).$

• 分子 $\sqrt{n}(\bar{X} - \mu) = \sigma \sqrt{n}\bar{Y}$. 分母中的 $\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sigma^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2$.

• 取正交矩阵
$$A = \begin{pmatrix} \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\ * & \cdots & * \\ \vdots & \ddots & \vdots \\ * & \cdots & * \end{pmatrix}$$
. $\diamondsuit Z_i = \sum_k a_{ik} Y_k$.

- $\vec{Z} \stackrel{d}{=} \vec{Y}$: $EZ_i = EY_i = 0$, $EZ_iZ_j = \sum_{k,\ell} a_{ik} a_{j\ell} EY_k Y_\ell = \sum_k a_{ik} a_{jk} = 1_{\{i=j\}} = EY_i Y_j$.
- $Z_1 = \frac{1}{\sqrt{n}} \sum_i Y_i = \sqrt{n} \bar{Y}, \ \frac{1}{n} \sum_i (Y_i \bar{Y})^2 = \frac{1}{n} \sum_i Y_i^2 \bar{Y}^2, \ \mathbb{I}$

$$\sum_{i} (Y_i - \bar{Y})^2 = \sum_{i} Z_i^2 - Z_1^2 = Z_2^2 + \dots + Z_n^2.$$

总结: $X \sim N(\mu, \sigma^2)$. 求 μ 的置信度为 $1 - \alpha$ 的置信区间.

- 若 σ^2 已知, 取 $h_1 = \frac{\sqrt{n}(X-\mu)}{\sigma}$, 得到 $[\bar{X} \frac{\sigma}{\sqrt{n}}x, \bar{X} + \frac{\sigma}{\sqrt{n}}x], P(|Z| > x) = \alpha$.
- 若 σ^2 未知, 取 $h_2 = \frac{\sqrt{n}(X-\mu)}{\sqrt{S^2}} = \frac{\sqrt{n}(X-\mu)}{\hat{\sigma}},$ 得到 $[\bar{X} - \frac{\hat{\sigma}}{\sqrt{n}}y, \bar{X} + \frac{\hat{\sigma}}{\sqrt{n}}y],$ 其中 $P(|T_{n-1}| > y) = \alpha.$
- 若 σ^2 已知, h_2 仍然是枢轴量, 但不如 h_1 好:
 - (1) 以 $\alpha = 0.2$ 为例. 附表2表明 y_{n-1} 单调下降, 故 $y_n \ge y_{\infty}$. 而 $y_{\infty} = x$, 因为 $T_{n-1} \stackrel{d}{=} \frac{Z_1}{\sqrt{\frac{1}{n-1}(Z_2^2 + \cdots Z_n^2)}} \stackrel{d}{\to} Z_1$.
 - (2) σ 是确定的, 但 $\hat{\sigma}$ 是随机的.
 - (3) 用 h_2 相当于少用了 σ^2 的信息, 因此估计不精确.

例7.5. $X \sim N(\mu, \sigma^2)$. 试求 σ^2 的置信度为 $1 - \alpha$ 的置信上限.

•
$$(n-1)S^2 = \sum_{i=1}^n (X_i - \bar{X})^2 = \sigma^2 \sum_{i=2}^n Z_i^2$$
.

$$\sharp \chi h(\vec{X}, \sigma^2) := \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

- 希望 σ^2 小,因此 $\frac{(n-1)S^2}{\sigma^2}$ 大. 从而,取x 使得 $P(\chi^2(n-1) \ge x) = 1 \alpha$. 于是 $P(\sigma^2 \le \frac{(n-1)S^2}{x} =: \overline{\sigma^2}) = 1 - \alpha$.
- -般来说, 目标是估计 σ^2 的上限.

例7.1. $X \sim \text{Exp}(\lambda)$. 求 λ 的置信度为 $1 - \alpha$ 的置信区间.

- $P(X > x) = e^{-\lambda x}$, $EX = \frac{1}{\lambda}$. 指数分布乘以常数后还是指数分布: $P(X > ax) = e^{-a\lambda x}$. 利用期望调参数: $\frac{1}{a}\lambda X \sim \operatorname{Exp}(a)$ (: $\frac{1}{a}\lambda EX = \frac{1}{a}$). 取a = 1, $\lambda X \sim \operatorname{Exp}(1)$; $\mathbb{R}a = \frac{1}{2}$, $2\lambda X \sim \operatorname{Exp}(\frac{1}{2})$.
- Z_1, Z_2 i.i.d.~ $N(0,1), \, \mathbb{M}Z_1^2 + Z_2^2 \sim \operatorname{Exp}(\frac{1}{2})$. 因为 $R = \sqrt{Z_1^2 + Z_2^2} \, \operatorname{有密度函数} r e^{-\frac{r^2}{2}}, \, r > 0. \, (\operatorname{第八次课})$ $R^2 \, \operatorname{的密度为} p(x) \stackrel{r = \sqrt{x}}{=} r e^{-\frac{r^2}{2}} \frac{dr}{dx} = r e^{-\frac{r^2}{2}} \frac{1}{2r} = \frac{1}{2} e^{-\frac{1}{2}x}, \, x > 0.$
- $2\lambda \bar{X} = \frac{1}{n}(2\lambda X_1 + \dots + 2\lambda X_n) =: h$ 为枢轴量. 其中 $\sum_{i=1}^n 2\lambda X_i \stackrel{d}{=} Z_1^2 + \dots + Z_{2n}^2 = \chi_{2n}^2$ 服从 $\chi^2(2n)$.
- 取a, b 使得 $P(\chi_{2n}^2 < a) = P(\chi_{2n}^2 > b) = \frac{1}{2}\alpha$, (附表3) 知 $P(a \le 2\lambda n\bar{X} \le b) = 1 \alpha$, 置信区间 $\left[\frac{a}{2n\bar{X}}, \frac{b}{2n\bar{X}}\right]$.

