Übungen zu Funktionentheorie 1

Sommersemester 2020

Blatt 4

Prof. Dr. R. Weissauer Dr. Mirko Rösner

Abgabe auf Moodle bis zum 22. Mai

Jede Aufgabe ist vier Punkte wert.

15. Aufgabe: Seien $\alpha, \gamma : [0, 1] \to \mathbb{C}$ gegeben durch

$$\alpha(t) = \exp(2\pi i t) \quad \text{and} \quad \gamma(t) = \begin{cases} 3t & 0 \le t \le 1/3 \ , \\ 3(i-1)t-i+2 & 1/3 < t \le 2/3 \ , \\ 3i(1-t) & 2/3 < t \le 1 \ . \end{cases}$$

- (a) Zeigen Sie, dass α und γ geschlossene Wege sind.
- (b) Berechnen Sie explizit die Kurvenintegrale $\oint_{\gamma} z^2 dz$ und $\oint_{\alpha} \frac{1}{z} dz$.

16. Aufgabe: Sei $U\subseteq\mathbb{R}^n$ eine nichtleere offene Teilmenge. Zeigen Sie die Äquivalenz folgender Aussagen:

- 1. U ist wegzusammenhängend. Das bedeutet für je zwei Punkte $\xi, \eta \in U$ existiert ein Weg $\gamma: [0,1] \to U$ mit $\gamma(0) = \xi$ und $\gamma(1) = \eta$.
- 2. Jede stetig partiell differenzierbare Funktion $f:U\to\mathbb{R}$ mit Ableitung Df=0 ist konstant.

17. Aufgabe: Sei $U\subseteq\mathbb{C}$ offen und nichtleer und sei $f:U\to\mathbb{C}$ holomorph. Zeigen Sie:

- (a) Wenn $f(z) \in \mathbb{R}$ für alle $z \in U$, dann ist f lokalkonstant.
- (b) Wenn |f(z)| = 1 für alle $z \in U$, dann ist f lokalkonstant.

Hinweis: Cauchy-Riemannsche Differentialgleichungen.

18. Aufgabe: Für welche reellen Zahlen a, b ist $u(x+iy) = x^2 + 2axy + by^2$ der Realteil einer holomorphen Funktion? Geben Sie alle möglichen Imaginärteile an. Hinweis: Cauchy-Riemannschen Differentialgleichungen.