Structure des ordinateurs - Premier examen - 14 mars 2018

Lisez la totalité du sujet avant de commencer, toutes les questions ainsi que les instructions à la fin.

1. Tableaux de Karnaugh

Pour chacun des tableaux suivants donnez les fonctions simplifiées correspondantes. Les x représentent des états indéterminés.

f1	$\bar{a}\bar{b}$	ā b	a b	$a \overline{b}$
$\bar{c}\bar{d}$	1	1	1	1
$\bar{c} d$	1	0	X	1
c d	1	X	X	1
c d	1	1	1	1

$$f1(a, b, c, d) = \bar{b} + \bar{d}$$

f2(a, b, c, d) =
$$\bar{a} \cdot \bar{b} + \bar{c} \cdot d$$

f3(a, b, c, d) =
$$\bar{a} \cdot b + \bar{b} \cdot d$$

$$f4(a, b, c, d) = \overline{b} \cdot d + \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c}$$

f5(a, b, c, d) =
$$a.\bar{c}.\bar{d} + \bar{a}.\bar{c}.d + a.c.d + \bar{a}.c.\bar{d}$$

$$a \oplus c \oplus d$$

2. Afficheur 5 points

On a découvert une civilisation extra-terrestre qui compte en base 5. Ils disposent donc de 5 chiffres dont les symboles sont :

On dispose d'un afficheur à 5 points permettant d'afficher les chiffres de ce langage, afficheur commandé par 5 entrées A, B, C, D et E de telle manière que si une entrée est à 1, le point correspondant est affiché et si elle est à 0 le point correspondant est éteint. Par exemple voici l'afficheur avec A = 1, B = 0, C = 0, D = 1 et E = 1:

Réalisez le transcodeur du binaire naturel pour des valeurs de 0 à 4 permettant de commander l'afficheur.

- 1) Remplissez **obligatoirement** la table de vérité de ce transcodeur dans le tableau fourni.
- 2) Déterminez les versions les plus simples des fonctions booléennes pilotant cet afficheur en utilisant **obligatoirement** les tableaux de Karnaugh fournis.

E2	E1	E0	Α	В	С	D	Е
0	0	0	1	1	0	1	1
0	0	1	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	1	1	0	1
1	0	0	1	1	1	1	0
1	0	1	Х	Х	Х	Х	Х
1	1	0	Х	Х	Х	Х	Х
1	1	1	Х	Х	Х	Х	Х

Α	$ar{E}_{2.}ar{E}_{1}$	$ar{E_2}$. E_1	$E_{2.}E_{1}$	$E_{2.}ar{E}_{1}$
$ar{E}_0$	1	1	Х	1
E_0	0	0	х	х

$$\mathsf{A} = - \bar{E}_0$$

В	$ar{ar{E}_{2.}ar{E}_{1}}$	$ar{E_2}$, E_1	$E_{2.}E_{1}$	$E_{2.}ar{E}_{1}$
$ar{ar{E}_0}$	1	0	Х	1
E_0	0	1	х	х

$$\mathsf{B} = \ \overline{E}_1.\overline{E}_0 \ + \ E_1.E_0 \ = \overline{\ E_1 \ \oplus \ E_0}$$

С	$ar{E}_{2.}ar{E}_{1}$	$ar{E_2}$, E_1	$E_{2.}E_{1}$	$E_{2.}ar{E}_{1}$
$ar{E}_0$	0	0	Х	1
E_0	0	1	Х	х

$$C = E_2 + E_1.E_0$$

D	$ar{E}_{2.}ar{E}_{1}$	$ar{E}_{2.}E_1$	$E_{2.}E_{1}$	$E_{2.}ar{E}_{1}$
$ar{ar{E}_0}$	1	1	Х	1
E_0	0	0	х	х

$${\rm D}=~\bar{E}_0$$

Е	$ar{ar{E}_{2.}ar{E}_{1}}$	$ar{E_2}$. E_1	$E_{2.}E_{1}$	$E_{2.}ar{E}_{1}$
$ar{E}_0$	1	0	Х	0
E_0	1	1	Х	x

$$\mathsf{E} = \ \bar{E}_2.\bar{E}_1 \ + \ E_0$$

3. Réalisation d'une fonction avec des décodeurs

Soit un décodeur binaire 3 bits standard : il possède 3 entrées E_2 , E_1 , E_0 et 8 sorties S_7 , S_6 , S_5 , S_4 , S_3 , S_2 , S_1 et S_0 et son fonctionnement est :

- exactement une sortie est à 1 à la fois,
- la sortie S_i est à 1 si et seulement si la valeur en binaire formée par le nombre $E_2E_1E_0 = i$.

- 1) Quelles sorties sont à 1 si on applique en entrée
 - a) 000 : S₀
 - b) 100 : S₄
 - c) 011: S₃
 - d) 111: S₇
- 2) Donnez les valeurs des 8 fonctions des 8 sorties

$$S_7 = E_2.E_1.E_0$$

$$S_6 = E_2.E_1.\bar{E}_0$$

$$S_5 = E_2.\overline{E}_1.E_0$$

$$S_4 = E_2.\bar{E}_1.\bar{E}_0$$

$$S_3 = \overline{E}_2.E_1.E_0$$

$$S_2 = \bar{E}_2.E_1.\bar{E}_0$$

$$S_1 = \bar{E}_2.\bar{E}_1.E_0$$

$$S_0 = \bar{E}_2 \cdot \bar{E}_1 \cdot \bar{E}_0$$

3) En utilisant un décodeur de ce type et éventuellement quelques portes, dessinez le circuit de la fonction :

F1(a, b, c) = $\overline{a}.\overline{b}.\overline{c}$ + $a.\overline{b}.\overline{c}$ + $\overline{a}.b.c$ + a.b.c

4) En utilisant deux décodeurs de ce type et éventuellement quelques portes, dessinez le circuit de la fonction :

 $F2(a, b, c, d, e, f) = \overline{a}.\overline{b}.\overline{c}.\overline{d}.\overline{e}.\overline{f} + a.\overline{b}.\overline{c}.d.e.f + \overline{a}.\overline{b}.\overline{c}.\overline{d}.e.f + \overline{a}.b.c.d.\overline{e}.\overline{f}$

4. Transcodeur

Soient les 2 codes suivants A et B codant les valeurs de 0 à 9 :

Code A:

Valeur	A ₃	A_2	A ₁	A ₀
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	1	0	0
4	1	0	0	0
5	0	1	1	1
6	1	0	1	1
7	1	1	0	1
8	1	1	1	0
9	1	1	1	1

Code B:

Valeur	B ₄	B ₃	B ₂	B ₁	B ₀
0	1	1	0	0	0
1	0	0	1	1	0
2	0	1	0	1	0
3	1	0	0	1	0
4	0	0	0	1	1
5	0	0	1	0	1
6	1	0	0	0	1
7	0	1	0	0	1
8	0	1	1	0	0
9	1	0	1	0	0

Réaliser un transcodeur du code A vers le code B.

Vous **remplirez obligatoirement** les grilles fournies pour la table de vérité et les tableaux de Karnaugh.

Valeur	A ₃	A ₂	A ₁	A ₀	B ₄	B ₃	B ₂	B ₁	B ₀	Valeur
0	0	0	0	0	1	1	0	0	0	0
1	0	0	0	1	0	0	1	1	0	1
2	0	0	1	0	0	1	0	1	0	2
Х	0	0	1	1	х	х	х	х	х	х
3	0	1	0	0	1	0	0	1	0	3
Х	0	1	0	1	х	х	х	х	х	х
Х	0	1	1	0	х	х	х	х	х	х
5	0	1	1	1	0	0	1	0	1	5
4	1	0	0	0	0	0	0	1	1	4
Х	1	0	0	1	х	x	х	x	x	х
Х	1	0	1	0	х	x	x	x	x	х
6	1	0	1	1	1	0	0	0	1	6
Х	1	1	0	0	х	х	х	х	х	х
7	1	1	0	1	0	1	0	0	1	7
8	1	1	1	0	0	1	1	0	0	8
9	1	1	1	1	1	0	1	0	0	9

B_4	$ar{A}_3.ar{A}_2$	$ar{A}_3.A_2$	$A_3.A_2$	$A_3.ar{A_2}$
$ar{A}_1.ar{A}_0$	1	1	х	0
$\bar{A}_1.A_0$	0	х	0	х
$A_1.A_0$	х	0	1	1
$A_1.ar{A_0}$	0	х	0	х

$$B_4 = \bar{A}_3 \cdot \bar{A}_1 \cdot \bar{A}_0 + A_3 \cdot A_1 \cdot A_0$$

B_3	$ar{A}_3.ar{A}_2$	$ar{A}_3.A_2$	$A_3.A_2$	$A_3.ar{A_2}$
$ar{A}_1$. $ar{A}_0$	1	0	х	0
$ar{A}_1$. A_0	0	х	1	х
$A_{1}.A_{0}$	х	0	0	0
A_1 . $\bar{A_0}$	1	х	1	х

$$B_3 = A_1 . \bar{A}_0 + \bar{A}_3 . \bar{A}_2 . \bar{A}_0 + A_3 . \bar{A}_2 . \bar{A}_1$$

B_2	$ar{A}_3.ar{A}_2$	$ar{A}_3.A_2$	$A_3.A_2$	$A_3.ar{A_2}$
$ar{A}_1.ar{A}_0$	0	0	х	0
$\bar{A}_1.A_0$	1	х	0	х
$A_1.A_0$	х	1	1	0
$A_1.ar{A_0}$	0	х	1	х

$$B_2 = A_2 \cdot A_1 + \bar{A_3} \cdot A_0$$

$B_{\scriptscriptstyle 1}$	$ar{A}_3.ar{A}_2$	$ar{A}_3.A_2$	$A_3.A_2$	$A_3.ar{A_2}$
$ar{A}_1.ar{A}_0$	0	1	х	1
$\bar{A}_1.A_0$	1	х	0	х
$A_1.A_0$	х	0	0	0
$A_1.ar{A_0}$	1	х	0	х

	${\pmb B}_0$	$ar{A}_3.ar{A}_2$	$ar{A}_3.A_2$	$A_3.A_2$	$A_3.ar{A_2}$
	$ar{A}_1$. $ar{A}_0$	0	0	х	1
	$\bar{A}_1.A_0$	0	х	1	х
	$A_{1}.A_{0}$	х	1	0	1
	$A_1.ar{A_0}$	0	Х	0	Х

$$B_0 = A_3.\bar{A}_2 + A_3.\bar{A}_1 + \bar{A}_3.A_1.A_0$$

Nom: Prénom: Sujet C

Instructions

Durée de l'examen : 1h30.

Vous devez répondre directement sur le sujet dans les espaces prévus et le rendre.

Tous documents, ordinateurs, calculatrices, **téléphones**, etc. interdits.

Pas de sortie avant la fin de la première demi-heure. Pas d'entrée après la fin de la première demi-heure.

Toute sortie est définitive.

Barème indicatif:

Question 1:5 points. Question 2 : 7 points Question 3 : 5 points Question 4 : 5 points