K 10/2

І И І ЗАКОНЫ НЬЮТОНА

Общая задача динамики: причина, величина, направление ускорения ()

(1) I закон Ньютона

$$egin{aligned} N &= mg \ F_m &= F_{mp} \end{aligned} egin{aligned} ec{v} - const \ ext{движение по инерции} \ ext{т.e:} \Sigma ec{F} &= 0 \end{aligned}$$

Вывод: a=0 , если действие тел скомпенсировано

(2) Причина возникновения ускорения

Причина ускорения (a) \longrightarrow нескомпенсированное действие сил

(3) Ускорение при взаимодействии. Масса

Независимо от хар-ра взаимодействия:

$$rac{a_1}{a_2} = rac{a_1'}{a_2'} = rac{a_1''}{a_2''} = \cdots = const$$

$$a_1 < a_2 \longrightarrow$$
 первое тело более инертно

Масса - это мера инертности

4 Сила. І закон Ньютона

Из опыта:
$$rac{a_1}{a_2} = rac{m_2}{m_1} \Rightarrow m_2 = rac{a_1}{a_2} m_1 \Rightarrow m_1 a_1 = m_2 a_2 = F$$

Итак: $ec{F}=mec{a}$ — причина ускорения

Если несколько сил, то:
$$\Sigma ec{F} = m ec{a} \Rightarrow \boxed{ec{a} = rac{\Sigma ec{F}}{m}}$$

$$[F] = \left[\kappa \epsilon \cdot \frac{M}{c^2} = H \right]$$

примечание

ИСО → Инерциальная Система Отсчета
НСО → Неинерциальная Система Отсчета

ш закон ньютона

Силы, с которыми тела действуют друг на друга, равны по модулю и направлены вдоль одной прямой в противоположные стороны

$$-rac{ec{a}_1}{ec{a}_2}=rac{m_1}{m_2}\Rightarrow m_1ec{a}_1=-m_2ec{a}_2\Rightarrow oxedownote ec{F}_{12}=-ec{F}_{21}$$

N3! Силы взаимодействия должны быть:

- Одной природы
- Равны по величине
- Направлены в противоположные стороны вдоль одной прямой
- Приложены к разным телам \Longrightarrow т.е. не уравновешенными

Примеры проявления

