Problem Sheet 7

Math40002, Analysis 1

1. Prove that if $f:[a,b]\to [0,\infty)$ is continuous and $f(c)\neq 0$ for some $c\in [a,b]$, then $\int_a^b f(x)\,dx>0$.

Solution. We can take $c \in (a, b)$ without loss of generality, since if f(x) = 0 for all $x \in (a, b)$ then f(a) = f(b) = 0 as well by continuity. Since $\frac{f(c)}{2} > 0$, we also have

$$\exists \delta > 0 \text{ such that } |x - c| < \delta \implies |f(x) - f(c)| < \frac{f(c)}{2}$$

by the continuity of f at c. Then if $|x-c| \le \delta$ we have $f(x) \ge \frac{f(c)}{2}$. Taking a smaller δ if needed to ensure that $[c-\delta,c+\delta] \subset [a,b]$, we can write

$$\int_{a}^{b} f(x) dx = \int_{a}^{c-\delta} f(x) dx + \int_{c-\delta}^{c+\delta} f(x) dx + \int_{c+\delta}^{b} f(x) dx$$
$$\geq \int_{a}^{c-\delta} 0 dx + \int_{c-\delta}^{c+\delta} \frac{f(c)}{2} dx + \int_{c+\delta}^{b} 0 dx$$

since f(x) is at least 0, $\frac{f(c)}{2}$, and 0 on the intervals $[a, c - \delta]$, $[c - \delta, c + \delta]$, and $[c + \delta, b]$ respectively. We evaluate these integrals one by one to get

$$\int_{a}^{b} f(x) \, dx \ge 0 + \delta \cdot f(c) + 0 > 0.$$

2. Suppose for some $f:[a,b] \to \mathbb{R}$ and integer $n \ge 1$ that the *n*th power f^n of f is integrable. Prove that if n is odd, then f is integrable. Why doesn't this work for n even, and can you find additional hypotheses on f that make it true in that case?

Solution. If n is odd then the nth root function $\sqrt[n]{f^n} : \mathbb{R} \to \mathbb{R}$ is continuous, so if f^n is integrable then so is the composition $\sqrt[n]{f^n} = f$.

When n is even, we still have a continuous $\sqrt[n]{\cdot}:[0,\infty)\to[0,\infty)$, and $f(x)^n\geq 0$ for all x, so we can again conclude that $\sqrt[n]{f^n}$ is integrable. But in this case $\sqrt[n]{f^n}=|f|$, so we have only proved that |f| is integrable. If $f(x)\geq 0$ for all x then f=|f|, so this proves that a nonnegative function f is integrable if f^n is.

3. Let C[a,b] denote the set of continuous functions $f:[a,b]\to\mathbb{R}$, and define a function $d:C[a,b]\times C[a,b]\to\mathbb{R}$ by

$$d(f,g) = \int_{a}^{b} |f(x) - g(x)| dx.$$

1

- (a) Prove that d(f,g) = d(g,f) for all $f,g \in C[a,b]$.
- (b) Prove that $d(f,g) \ge 0$, with equality if and only if f = g.
- (c) Prove the triangle inequality $d(f,g) + d(g,h) \ge d(f,h)$.

These properties say that d is a metric, which is a notion of distance on C[a, b].

(d) Prove that if $f_n \to f$ uniformly on [a, b], then $\lim_{n \to \infty} d(f_n, f) = 0$.

Solution. (a) Since |f - g| = |g - f| on [a, b], their integrals are the same.

- (b) We have $|f(x) g(x)| \ge 0$ for all x by the definition of absolute value, so $\int_a^b |f(x) g(x)| \, dx \ge \int_a^b 0 \, dx = 0$. Since |f(x) g(x)| is continuous, problem 1 says that its integral is zero iff |f(x) g(x)| = 0 for all x, or equivalently f(x) = g(x) for all x.
- (c) The usual triangle inequality says that for all x we have

$$|f(x) - g(x)| + |g(x) - h(x)| \ge |f(x) - h(x)|,$$

and each of the three terms above is continuous and hence integrable, so by basic properties of integration we have

$$\int_{a}^{b} |f(x) - g(x)| dx + \int_{a}^{b} |g(x) - h(x)| dx$$

$$= \int_{a}^{b} (|f(x) - g(x)| + |g(x) - h(x)|) dx$$

$$\geq \int_{a}^{b} |f(x) - h(x)| dx$$

which is equivalent to $d(f, g) + d(g, h) \ge d(f, h)$.

(d) For any $\epsilon > 0$, uniform convergence means that we can find an N > 0 such that

$$n \ge N \implies |f_n(x) - f(x)| < \frac{\epsilon}{b-a} \ \forall x \in [a, b].$$

But then for all $n \geq N$ we have

$$d(f_n, f) = \int_a^b |f_n(x) - f(x)| \, dx < \int_a^b \frac{\epsilon}{b - a} \, dx = \epsilon.$$

(We have strict inequality because $\frac{\epsilon}{b-a} - |f_n(x) - f(x)|$ is continuous and strictly positive, hence its integral is also strictly positive.) Thus $0 \le d(f_n, f) < \epsilon$ for all $n \ge N$, and we can find such an N for any $\epsilon > 0$, so this means that $d(f_n, f) \to 0$ as $n \to \infty$.

4. In problem sheet 5 we constructed a smooth (i.e., infinitely differentiable) function $f: \mathbb{R} \to [0, \infty)$ such that f(x) > 0 if and only if $x \in (0, 1)$.

- (a) Construct a smooth, monotone increasing function $g: \mathbb{R} \to [0, \infty)$ such that g(x) = 0 for all $x \leq 0$ and g(x) = 1 for all $x \geq 1$.
- (b) Given a < b < c < d, construct a smooth function $h : \mathbb{R} \to [0, \infty)$ satisfying

$$h(x) = 0$$
 for all $x \notin [a, d]$, $h(x) = 1$ for all $x \in [b, c]$,

and with h monotone increasing on $(-\infty, b]$ and decreasing on $[c, \infty)$.

Solution. (a) We construct g by integrating f. This gives us a constant function for $x \geq 1$ since f(x) = 0 there, but its value won't be 1, so we rescale it and define $g: \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} 0, & x < -1 \\ \frac{1}{c} \int_0^x f(t) dt, & x \ge -1 \end{cases} \quad \text{where } c = \int_0^1 f(x) dx.$$

We claim that g is differentiable, with $g'(x) = \frac{1}{c}f(x)$. Indeed, for all $x \leq 0$ we have g(x) = 0 – when $-1 \leq x \leq 0$ this follows from the fact that f(x) = 0 for $x \leq 0$ – so $g'(x) = 0 = \frac{1}{c}f(x)$ on $(-\infty, 0)$. And for x > -1 the fundamental theorem of calculus tells us that g is differentiable at x with $g'(x) = \frac{1}{c}f(x)$.

Since $g'(x) = f(x) \ge 0$, we know that g is monotone increasing (and hence nonnegative, since it is zero for all $x \le 0$), and it is smooth since its derivative is infinitely differentiable. It only remains now to check that for $x \ge 1$ we have

$$g(x) = \frac{1}{c} \int_0^x f(t) dt = \frac{1}{c} \left(\int_0^1 f(t) dt + \int_1^x f(t) dt \right)$$
$$= \frac{1}{c} \left(\int_0^1 f(t) dt + \int_1^x 0 dt \right) = 1.$$

(b) The functions $h_1(x) = g\left(\frac{x-a}{b-a}\right)$ and $h_2(x) = g\left(\frac{d-x}{d-c}\right)$ are smooth since they are compositions of two smooth functions (one linear in x, and the other one g), and they satisfy

$$h_1(x) = \begin{cases} 0, & x \le a \\ 1, & x \ge b \end{cases}$$
 $h_2(x) = \begin{cases} 0, & x \ge d \\ 1, & x \le c \end{cases}$

with h_1 and h_2 monotone increasing and constant, respectively, on $(-\infty, b]$ and constant and monotone decreasing, respectively, on $[c, \infty)$. It follows that $h(x) = h_1(x)h_2(x)$ has the desired properties: it is smooth, zero precisely outside (a, d) and one precisely on [b, c], and increasing on $(-\infty, b]$ and decreasing on $[c, \infty)$.

- 5. (a) Check that the derivative of $x \log(x) x$ is $\log(x)$.
 - (b) Use Darboux sums to prove for all integers $n \geq 1$ that

$$\log((n-1)!) \le \int_1^n \log(x) \, dx \le \log(n!).$$

(c) Evaluate the integral in (b) and deduce that

$$\frac{1}{n} \le \frac{\log(n!)}{n} - \log\left(\frac{n}{e}\right) \le \log\left(1 + \frac{1}{n}\right) + \frac{\log(n+1)}{n}$$

for all $n \geq 1$.

(d) Conclude that $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = e$.

Remark: this is a weak version of Stirling's formula $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

- Solution. (a) We have $\frac{d}{dx}(x \log x) = \log(x) + x \frac{1}{x} = \log(x) + 1$ by the product rule, so $\frac{d}{dx}(x \log(x) x) = (\log(x) + 1) 1 = \log(x)$.
- (b) We know that $\log(x)$ is integrable on [1, n] since it is continuous, so if we take the partition P = (1, 2, ..., n) of [1, n] then we have

$$L(\log(x), P) \le \int_{1}^{n} \log(x) \, dx \le U(\log(x), P).$$

Since log(x) is monotone increasing, we compute that

$$L(\log(x), P) = \sum_{i=1}^{n-1} \log(i) \cdot 1 = \log(1 \cdot 2 \cdot \dots \cdot (n-1)) = \log((n-1)!)$$

$$U(\log(x), P) = \sum_{i=1}^{n-1} \log(i+1) \cdot 1 = \log(2 \cdot 3 \cdot \dots \cdot n) = \log(n!),$$

so we put these together to get $\log((n-1)!) \leq \int_1^n \log(x) dx \leq \log(n!)$.

(c) We use part (a) and the fundamental theorem of calculus to evaluate

$$\int_{1}^{n} \log(x) \, dx = x \log(x) - x \Big|_{x=1}^{x=n} = n \log(n) - (n-1).$$

Then part (b) says that $n \log(n) - (n-1) \le \log(n!)$, or

$$\frac{1}{n} \le \frac{\log(n!)}{n} - \log(n) + 1 = \frac{\log(n!)}{n} - \log\left(\frac{n}{e}\right)$$

after some rearranging. Similarly, if we let m=n-1 then the leftmost inequality from (b) tells us that

$$\log(m!) \le (m+1)\log(m+1) - m$$

and we divide through by m and rearrange to get

$$\frac{\log(m!)}{m} - \log(m) + 1 \le \left(1 + \frac{1}{m}\right) \log(m+1) - \log(m)$$
$$= \log\left(\frac{m+1}{m}\right) + \frac{\log(m+1)}{m}.$$

Relabeling the variable n gives $\frac{\log(n!)}{n} - \log\left(\frac{n}{e}\right) \le \log\left(1 + \frac{1}{n}\right) + \frac{\log(n+1)}{n}$.

(d) Applying the squeeze theorem to part (c) shows us that

$$\lim_{n \to \infty} \left(\frac{\log(n!)}{n} - \log\left(\frac{n}{e}\right) \right) = 0,$$

or equivalently

$$\lim_{n \to \infty} \log \left(\frac{\sqrt[n]{n!}}{n/e} \right) = 0 \implies \lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n/e} = 1.$$

We apply the algebra of limits to conclude that $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = e$.

- 6. (*) Let $f:[N,\infty)\to[0,\infty)$ be a nonnegative, monotone decreasing function.
 - (a) Let $S_n = \sum_{k=N}^n f(k)$ for all integers $n \geq N$. Use Darboux sums to prove that

$$S_n - f(N) \le \int_N^n f(x) \, dx \le S_{n-1}.$$

(b) Prove that the series $\sum_{k=N}^{\infty} f(k)$ converges if and only if the limit

$$\int_{N}^{\infty} f(x) dx \stackrel{def}{=} \lim_{x \to \infty} \int_{N}^{x} f(t) dt$$

(called an improper integral) exists. This is the integral test for convergence.

(c) Prove that if the series $S = \sum_{k=N}^{\infty} f(k)$ converges, so $I = \int_{N}^{\infty} f(x) dx$ exists, then $I \leq S \leq I + f(N)$.

Solution. (a) Fix an integer $n \geq N$ and consider the partition

$$P_n = (N, N+1, N+2, \dots, n)$$

of [N, n). Since f is monotone decreasing we can compute the Darboux sums of f with respect to P:

$$L(f, P_n) = \sum_{k=N}^{n-1} f(k+1),$$
 $U(f, P_n) = \sum_{k=N}^{n-1} f(k).$

We proved on the last problem sheet that f is integrable on [N, n] since it is monotone, so we have

$$\sum_{k=N+1}^{n} f(k) = L(f, P_n) \le \int_{N}^{n} f(x) \, dx \le U(f, P_n) = \sum_{k=N}^{n-1} f(k).$$

The left and right sides are $S_n - f(N)$ and S_{n-1} respectively.

(b) (\Leftarrow) If $I = \int_N^\infty f(x) dx$ exists then for any $\epsilon > 0$, there is an $M \geq 0$ such that

$$n \ge M \Rightarrow \left| \int_{N}^{n} f(x) \, dx - I \right| < \epsilon.$$

We use this together with part (a) to deduce that

$$n \ge M \implies S_n \le \int_N^n f(x) \, dx + f(N) < I + f(N) + \epsilon.$$

The sequence (S_n) of partial sums is therefore bounded above, and it is increasing since $f(n) \geq 0$ for all n, so it converges.

 (\Longrightarrow) If $\sum_{k=N}^{\infty} f(k)$ converges to some S, then given $\epsilon > 0$, there is an $M \ge 0$ such that

$$n \ge M \implies |S_n - S| = \left| \sum_{k=N}^n f(k) - S \right| < \epsilon.$$

Using part (a), we have

$$n \ge M + 1 \implies \int_{N}^{n} f(x) dx \le S_{n-1} < S + \epsilon.$$

Now the function $F(x) = \int_{N}^{x} f(t) dt$ is increasing, since for any x < y we have

$$F(y) = \int_{N}^{y} f(t) dt = \int_{N}^{x} f(t) dt + \int_{x}^{y} f(t) dt$$
$$\geq \int_{N}^{x} f(t) dt + \int_{x}^{y} 0 dt = F(x),$$

and it is bounded above since for any $x \ge N$ we have $F(x) \le F(m) < S + \epsilon$ for some integer $m \ge \max(x, M+1)$. Thus the limit $\lim_{x \to \infty} F(x) = \int_N^\infty f(t) \, dt$ exists, as desired.

Remark: we can't use the fundamental theorem of calculus to assert that $F'(x) = f(x) \ge 0$ and thus prove that F(x) is increasing, because we do not know that f is continuous.

(c) In part (b) we proved for any $\epsilon > 0$ and all large enough x and n that $\int_{N}^{x} f(t) dt < S + \epsilon$ and $S_{n} < I + f(N) + \epsilon$ respectively, so

$$I = \lim_{x \to \infty} \int_{N}^{x} f(t) dt \le S + \epsilon, \qquad S = \lim_{n \to \infty} S_n \le I + f(n) + \epsilon.$$

These hold for any $\epsilon > 0$, so we must actually have $I \leq S$ and $S \leq I + f(N)$.

7. Consider for any real s the series $\sum_{n=1}^{\infty} \frac{1}{n^s}$.

- (a) Prove that this series is not convergent if $s \leq 0$.
- (b) Use the integral test to prove that for s > 0, the series converges if and only if s > 1. If s > 1, show that $\frac{1}{s-1} < \zeta(s) < \frac{s}{s-1}$.
- (c) Prove for any a > 1 that the series converges uniformly to a continuous function on $[a, \infty)$, and hence it defines a continuous function $\zeta : (1, \infty) \to \mathbb{R}$ called the *Riemann zeta function*. Can it be extended continuously to $[1, \infty)$?
- (d) (Harder!) Prove that $\zeta(s)$ is continuously differentiable, and compute its derivative. It may help to first show that $\lim_{x\to\infty}\frac{\log(x)}{x^{\epsilon}}=0$ for any $\epsilon>0$.
- Solution. (a) If s=0 or s<0 then $\lim_{n\to\infty}\frac{1}{n^s}$ is 1 or ∞ , and since it is not 0 the series does not converge in either case.
- (b) Since $f(x) = \frac{1}{x^s}$ is nonnegative and monotone decreasing on $[1, \infty)$, the series $\sum_{n=1}^{\infty} \frac{1}{n^s}$ converges if and only if the limit

$$\int_{1}^{\infty} \frac{1}{t^{s}} dt = \lim_{x \to \infty} \int_{1}^{x} \frac{1}{t^{s}} dt$$

exists. We apply the fundamental theorem of calculus: if $s \neq 1$ then

$$\int_{1}^{x} \frac{1}{t^{s}} dt = \left. \frac{t^{1-s}}{1-s} \right|_{t=1}^{t=x} = \frac{x^{1-s} - 1}{1-s}.$$

As $x \to \infty$, this diverges if p < 1 and converges to $\frac{1}{s-1}$ if s > 1. If instead s = 1 then we have

$$\lim_{x \to \infty} \int_1^x \frac{1}{t} dt = \lim_{x \to \infty} \log(t) \Big|_{t=1}^{t=x} = \lim_{x \to \infty} \log(x) = \infty.$$

So the improper integral $\int_{1}^{\infty} \frac{1}{t^{s}} dt$ exists if and only if s > 1, and if it exists then it is equal to $\frac{1}{s-1}$, so by part (c) we have

$$\frac{1}{s-1} \le \sum_{n=1}^{\infty} \frac{1}{n^s} \le \frac{1}{s-1} + 1,$$

or
$$\frac{1}{s-1} \le \zeta(s) \le \frac{s}{s-1}$$
.

(c) We apply the Weierstrass M-test. Setting $b = \frac{1+a}{2}$, so that 1 < b < a, we define $M_n = \frac{1}{n^b}$ for all s, and then we have

$$\left|\frac{1}{n^s}\right| \le \frac{1}{n^b} = M_n \text{ for all } s \in [a, \infty).$$

The series $\sum_{n=1}^{\infty} M_n$ converges to $\zeta(b)$, so the M-test says that $\sum_{n=1}^{\infty} \frac{1}{n^s}$ converges uniformly on $[a, \infty)$ to a continuous function $\zeta(s)$.

Since $\zeta(s)$ is continuous on any interval $[a,\infty)$, if we are given x>1 then we know that ζ is continuous on $[\frac{1+x}{2},\infty)$, and this interval contains x, so in particular $\zeta(s)$ is continuous at s=x. Thus it is continuous on all of $(1,\infty)$. From part (b) we have $1<(s-1)\zeta(s)< s$ for all s>1, and so $\lim_{s\downarrow 1}(s-1)\zeta(s)=1$ by the squeeze theorem. If it were possible to extend $\zeta(s)$ continuously to s=1, then the algebra of limits would also tell us that $\lim_{s\downarrow 1}(s-1)\zeta(s)=0\zeta(1)\neq 1$, and this is a contradiction.

(d) We write $f_n(x) = \sum_{k=1}^n \frac{1}{k^x}$ for all $n \ge 1$. Since $\frac{1}{n^x} = e^{-x \log(n)}$ has derivative $(-\log(n))e^{-x\log(n)} = \frac{-\log(n)}{n^x}$, we compute that

$$f'_n(x) = -\sum_{k=1}^n \frac{\log(x)}{k^x}.$$

Given x > 1, we set $a = \frac{1+x}{2}$ and b = x+1, so that $x \in (a,b)$ and $f_n \to f$ on [a,b]. Since we already know that $f_n \to \zeta$ uniformly on [a,b], if we can show that f'_n converges uniformly on [a,b] then it will follow that ζ is differentiable on [a,b] (and in particular at s = x), with

$$\zeta'(s) = \lim_{n \to \infty} f'_n(s) = -\sum_{n=1}^{\infty} \frac{\log(n)}{n^s}.$$

The f'_n are continuous on [a, b], so their uniform limit ζ' will be continuous on [a, b] as well and in particular at s = x.

To prove that f'_n converges uniformly on [a, b], we again apply the Weierstrass M-test. Let $\epsilon = \frac{a-1}{2} > 0$. We have $\log(n) < n^{\epsilon}$ for all sufficiently large n, because l'Hôpital's rule says that

$$\lim_{x \to \infty} \frac{\log(x)}{x^{\epsilon}} = \lim_{x \to \infty} \frac{1/x}{\epsilon x^{\epsilon - 1}} = \lim_{x \to \infty} \frac{1}{\epsilon x^{\epsilon}} = 0.$$

Thus if we set $M_n = \frac{1}{n^{1+\epsilon}}$, then for all $s \geq a$ and large enough n we have

$$\left| -\frac{\log(n)}{n^s} \right| < \frac{n^{\epsilon}}{n^a} = \frac{1}{n^{a-\epsilon}} = \frac{1}{n^{1+\epsilon}} = M_n.$$

The series $\sum_{n=1}^{\infty} M_n$ converges to $\zeta(1+\epsilon)$, so the M-test says that $f'_n(s) = -\sum_{k=1}^{n} \frac{\log(k)}{k^s}$ converges uniformly on [a,b], as desired.