- 1. Uma urna contém N bolas, N conhecido, das quais θ são brancas e $N-\theta$ são verdes, θ desconhecido. Considere o experimento que consiste em retirar n < N bolas, uma a uma, da urna, SEM reposição. Seja $X_i = 1$ se a i-ésima bola extraída da urna é branca e $X_i = 0$, caso contrário, i = 1, ..., n. Suponha, a priori, que θ é distribuído segundo o modelo uniforme sobre o conjunto $\{0, 1, ..., N\}$.
- a) Obtenha a distribuição a posteriori de θ dado $X_1=1, X_2=1, ..., X_{n-1}=1, X_n=0.$
- b) Obtenha a posteriori de θ dado $X_1 + X_2 + ... + X_n = n 1$.
- c) Obtenha a posteriori de θ dado
 $X_1=1,X_2=1,...,X_j=1,X_{j+1}=0,...,X_n=0.$
- d) Obtenha a distribuição a posteriori de θ dado $X_1+X_2+\ldots+X_n=j.$
- **2.** Refaça o exercício anterior, considerando, a priori, que θ é distribuído segundo o modelo binomial (N,p), 0 . No item (d), mostre que a distribuição a posteriori do número de bolas brancas dentre as <math>N-n bolas remanescentes na urna é binomial. Quais os parâmetros dessa distribuição?
- **3.** Refaça o exercício 1, considerando, a priori, que θ é distribuído segundo o modelo hipergeométrico de parâmetros A, B e N, com $A+B \geq N$. No item (d), mostre que a distribuição a posteriori do número de bolas brancas dentre as N-n bolas remanescentes na urna é hipergeométrica de parâmetros A-j, B-(n-j) e N-n.
- **4.** Uma urna contém θ bolas, numeradas de 1 a θ , $\theta \in \{2, 3, 4, 5\}$. Uma bola é extraída da urna "ao acaso". Seja X o número da bola retirada. Considere, a priori, θ é distribuído segundo o modelo uniforme sobre $\{2, 3, 4, 5\}$. Obtenha a distribuição a posteriori de θ dado X = 3. Qual seria a distribuição a posteriori de θ dado X = 5?
- **5.** Uma urna contém θ bolas, numeradas de 1 a θ , $\theta \in \{2, 3, ..., 100\}$. Duas bolas são retiradas SEM reposição da urna. Seja X_i o número da i-ésima bola extraída da urna, i = 1, 2. Considere, a priori, θ distribuído segundo o modelo uniforme sobre $\{2, 3, ..., 100\}$.
- a) Obtenha a distribuição a posteriori de θ dado $X_1=16$ e $X_2=4$.
- b) Obtenha a distribuição a posteriori de θ dado $X_1 = 4$ e $X_2 = 16$.
- c) Obtenha a distribuição a posteriori de θ dado $\max\{X_1,X_2\}=16.$
- **6.** Uma urna contém θ bolas, numeradas de 1 a θ , $\theta \in \{k, k+1, ...\}$, $k \in \mathbb{N}^*$ conhecido. Considere o experimento que consiste em retirar n bolas, n < k, uma a uma, da urna, SEM reposição. Seja X_i o número da i-ésima bola extraída da urna, i = 1, ...n. Mostre

que para qualquer distribuição a priori para θ , a distribuição a posteriori de θ dado $X_1 = x_1, X_2 = x_2, ..., X_n = x_n$ coincide com a distribuição a posteriori de θ dado $\max\{X_1, X_2, ..., X_n\} = \max\{x_1, x_2, ..., x_n\}$.

- 7. Uma urna contém 5 bolas, das quais θ_1 são brancas, θ_2 são verdes e $5 \theta_1 \theta_2$ são amarelas. Duas bolas são retiradas, uma a uma, SEM reposição da urna. Seja $X_i = (1,0,0)$, se a i-ésima bola retirada da urna é branca, $X_i = (0,1,0)$, se é verde, e $X_i = (0,0,1)$ se é amarela, i = 1,2. Suponha que $\theta = (\theta_1,\theta_2)$ é distribuído, a priori, segundo o modelo uniforme no espaço paramétrico $\Theta = \{(u,v) \in \mathbb{N}^2 : u+v \leq 5\}$.
- a) Obtenha a distribuição a posteriori de θ dado $X_1 = X_2 = (1, 0, 0)$.
- b) Obtenha a distribuição a posteriori de θ dado $X_1 = (0,0,1)$ e $X_2 = (1,0,0)$.
- c) Obtenha a distribuição a posteriori de θ dado $X_1=(1,0,0)$ e $X_2=(0,0,1)$.
- 8. Suponha que a proporção de itens defeituosos em um grande lote produzido, θ , é 0, 1 ou 0, 2. Suponha ainda que, a priori, $\mathbb{P}(\theta = 0, 1) = 0, 6$ e $\mathbb{P}(\theta = 0, 2) = 0, 4$. Seis itens são selecionados ao acaso do lote e inspecionados. Seja $X_i = 1$ se o i-ésimo item inspecionado é defeituoso e $X_i = 0$, caso contrário, i = 1, ..., 6.
- a) Obtenha a posteriori de θ dado $X_1 = 1, X_2 = 0, X_3 = 0, X_4 = 0, X_5 = 1, X_6 = 0.$
- b) Obtenha a distribuição a posteriori de θ dado $\sum_{i=1}^{6} X_i = 2$.
- 9. Considere novamente as condições do exercício 8. Suponha que n itens são selecionados ao acaso do lote e inspecionados. Seja $X_i=1$ se o i-ésimo item inspecionado é defeituoso e $X_i=0$, caso contrário, i=1,...,n.
- a) Obtenha a posteriori de θ dado $X_1 = x_1, X_2 = x_2, ..., X_n = x_n$.
- b) Obtenha a distribuição a posteriori de θ dado $\sum_{i=1}^{n} X_i = \sum_{i=1}^{n} x_i$.
- c) Sob quais condições sobre $\lim_{n\to\infty} \bar{x}_n$ vale $\lim_{n\to\infty} \mathbb{P}(\theta = \frac{1}{10} | \sum_{i=1}^n X_i = \sum_{i=1}^n x_i) = 1$ onde $\bar{x}_n = \frac{x_1 + \ldots + x_n}{n}$.
- 10. Considere $\Theta = \mathbb{N} = \{0, 1, 2, ...\}$. Suponha que X, dado $\theta = i$, seja uniformemente distribuída no conjunto $\{i, i+1, i+2\}$. Suponha, a priori, que $\theta \sim Poisson(\lambda_0), \lambda_0 > 0$. Obtenha a distribuição a posteriori de θ dado X = x, x = 0, 1, 2,
- 11. Considere novamente o problema do avião desaparecido visto em aula. Considere agora que $\Theta = \{1, 2, 3, ...k\}$. Seja p_i a probabilidade a priori do avião estar na região i, i = 1, 2, ..., k. Seja α_i a probabilidade de uma busca na região i ser malsucedida quando, de fato, o avião desapareceu naquela região, i = 1, 2, ..., k.
- a) Obtenha a distribuição a posteriori de θ se uma busca na região 1 é malsucedida. Para $i, j \neq 1, i \neq j$, compare a razão entre as probabilidades a posteriori de $\theta = i$ e

- $\theta = j$ com a correspondente razão de probabilidades a priori.
- b) Obtenha a distribuição a posteriori de θ sabendo que m buscas, uma na região 1, uma na região 2,..., uma na região m, m < k, foram todas malsucedidas. (Observação: Suponha que buscas sucessivas malsucedidas não alteram as probabilidades de novas buscas malsucedidas)
- 12. Considere $\Theta = \mathbb{N}^* = \{1, 2, ...\}$. Suponha que X, dado $\theta = i$, seja uniformemente distribuída no conjunto $\{1, ..., i\}$. Suponha, a priori, que $\mathbb{P}(\theta = i) = i(1-p)^2 p^{i-1} \mathbb{I}_{\{1,2,...\}}(i)$. Obtenha a distribuição a posteriori de θ dado X = x, x = 1, 2, Qual é a distribuição de θx dado X = x?
- **13.** Refaça os exercícios 1, 2 e 3, considerando que a urna contém N bolas, das quais θ_1 são da cor 1, θ_2 são da cor 2, ..., θ_k são da cor k e $N \sum_{i=1}^k \theta_i$ são da cor k+1. Especifique, nesse caso, espaço paramétrico, espaço amostral e distribuições a priori e a posteriori para o parâmetro de interesse $\theta = (\theta_1, \theta_2, ..., \theta_k)$.
- 14. Classifique cada um dos itens a seguir em verdadeiro ou falso, justificando.
- a) Sejam X_1 e X_2 variáveis aleatórias identicamente distribuídas. Então X_1 e X_2 são permutáveis.
- b) Sejam X_1 e X_2 variáveis aleatórias permutáveis. Então o coeficiente de correlação entre X_1 e X_2 é não-negativo.
- c) Sejam $X_1, ..., X_n$ variáveis aleatórias permutáveis. Então $(X_i, X_j), i \neq j$, possui a mesma distribuição que (X_1, X_2) .
- d) Sejam $X_1, ..., X_n$ variáveis aleatórias de Bernoulli permutáveis. Então a distribuição condicional de $X_1, ..., X_n$ dado $\sum_{i=1}^n X_i = t, \ t \in \{0, 1, ..., n\}$, é uniforme no conjunto $\{(u_1, ..., u_n) \in \{0, 1\}^n : \sum_{i=1}^n u_i = t\}$.
- e) Sejam $X_1, ..., X_n$ variáveis aleatórias de Bernoulli permutáveis. Então o coeficiente de correlação entre X_1 e X_2 é não-negativo.