Operational Techniques for Higher-Order Coalgebras

Henning Urbat

Friedrich-Alexander-Universität Erlangen-Nürnberg

DutchCATS

June 2024

Recent Work

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, H. Urbat: Towards a Higher-Order Mathematical Operational Semantics.

POPL'23 & JFP Special Issue

H. Urbat, S. Tsampas, S. Goncharov, S. Milius, L. Schröder: Weak Similarity in Higher-Order Mathematical Operational Semantics.

LICS'23

S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat: Logical Predicates in Higher-Order Mathematical Operational Semantics.

FOSSACS'24

S. Goncharov, S. Milius, S. Tsampas, H. Urbat: Bialgebraic Reasoning on Higher-Order Program Equivalence.

LICS'24

Contextual Equivalence [Morris '68]

When are two programs p, q of a higher-order language equivalent?

$$\lambda$$
-calculus, Haskell, OCaml, . . .

Contextual Preorder

$$p \lesssim_{\text{ctx}} q$$

for all program contexts $C[\cdot]$: C[p] terminates $\Longrightarrow C[q]$ terminates.

Contextual Equivalence

$$p \approx_{\text{ctx}} q$$

$$p \lesssim_{\text{ctx}} q \text{ and } q \lesssim_{\text{ctx}} p.$$

⊕ Hard to reason about directly \(\sim \) need efficient (coinductive) techniques!

Coinductive Proof Techniques for Contextual Preorder

Coinductive Proof Techniques for Contextual Preorder

- Powerful and robust, applicable to a wide variety of languages.
- Ad hoc every language needs its own definitions and soundness result!
- Soundness proofs long, error-prone, boiler-plate!

Coinductive Proof Techniques for Contextual Preorder

- Powerful and robust, applicable to a wide variety of languages.
- 😊 Ad hoc every language needs its own definitions and soundness result!
- Soundness proofs long, error-prone, boiler-plate!

This Talk

A language-independent approach based on (higher-order) coalgebras.

Towards an Abstract Theory of Contextual Preorder

Towards an Abstract Theory of Contextual Preorder

Prerequisite for a language-independent approach: an abstract notion of

"higher-order language" and "operational semantics".

This is provided by

Higher-Order Abstract GSOS (extending Turi & Plotkin '97).

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Operational model

$$\gamma: \Lambda \to \Lambda + \Lambda^{\Lambda}$$
 \uparrow
 λ -terms

Example: Untyped CBN λ -calculus

Categorical Abstraction

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\overline{\lambda x.p \xrightarrow{q} p[q/x]}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{\lambda x.p \xrightarrow{q} p[q/x]}{q}$$

Operational model

$$\gamma: \Lambda \to \Lambda + \Lambda^{\Lambda}$$
 \uparrow
 λ -terms

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Operational model

$$\gamma: \Lambda \to \Lambda + \Lambda^{\Lambda}$$
 \uparrow
 λ -terms

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Operational model

$$\gamma: \Lambda \to \Lambda + \Lambda^{\Lambda}$$
 λ -terms

Syntax [Fiore, Turi & Plotkin '99]

$$p, q ::= x \mid p q \mid \lambda x.p$$

$$\mathbb{C} = \textbf{Set}^{\mathbb{F}} \qquad \big(\mathbb{F} = \textbf{finite cardinals and functions}\big).$$
 untyped variable contexts

...e.g. $\Lambda \in \mathbf{Set}^{\mathbb{F}}$, $\Lambda(n) = \{ \lambda \text{-terms in free vars } x_1, \dots, x_n \}$.

Key observation

 $\Lambda \text{ carries the initial algebra of the endofunctor } \Sigma \colon \textbf{Set}^{\mathbb{F}} \to \textbf{Set}^{\mathbb{F}},$

$$\sum X = V + X \times X + \delta X.$$

$$V(n) = n \qquad \delta X(n) = X(n+1)$$
11

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{\lambda x.p \xrightarrow{q} p[q/x]}{}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Behaviour

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

is a higher-order coalgebra

$$\gamma \colon \Lambda \to B(\Lambda, \Lambda)$$

for the **behaviour bifunctor**

$$B \colon (\mathbf{Set}^{\mathbb{F}})^{\mathsf{op}} \times \mathbf{Set}^{\mathbb{F}} o \mathbf{Set}^{\mathbb{F}}, \qquad B(X,Y) = Y + Y^X.$$

Example: Untyped CBN λ -calculus

$$p, q := x \mid pq \mid \lambda x.p$$

Operational rules

$$\frac{p \to p'}{(\lambda x. p) q \to p[q/x]} \quad \frac{p \to p'}{p q \to p' q}$$

$$\overline{\lambda x.p \xrightarrow{q} p[q/x]}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax (
$$\Sigma \colon \mathbb{C} \to \mathbb{C}$$
)

Initial algebra $\mu\Sigma$

Oper. model (
$$B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$$
)

Oper. model (
$$B\colon \mathbb{C}^\mathsf{op} imes \mathbb{C} o \mathbb{C}$$
) $\gamma\colon \mu\Sigma o B(\mu\Sigma, \mu\Sigma)$

r. model (
$$B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$$

Example: Untyped CBN λ -calculus

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) \ q \to p[q/x]}{\lambda x.p \xrightarrow{q} p[q/x]} \frac{p \to p'}{p \ q \to p' \ q}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax (
$$\Sigma \colon \mathbb{C} \to \mathbb{C}$$
)

Initial algebra $\mu\Sigma$

Oper. model ($B\colon \mathbb{C}^{\mathsf{op}}\! imes\!\mathbb{C} o \mathbb{C}$)

Oper. model $(B\colon \mathbb{C}^{\mathsf{op}} imes \mathbb{C} o \mathbb{C})$

 $\gamma\colon \mu \Sigma o B(\mu \Sigma, \mu \Sigma)$

Example: Untyped CBN λ -calculus

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{\overline{\lambda x.p \xrightarrow{q} p[q/x]}}{}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax ($\Sigma : \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Higher-Order GSOS law

$$\Sigma(X \times B(X, Y))$$

$$\downarrow \varrho_{X,Y} \qquad \text{dinat. in } X, \text{ nat. in } Y$$

$$B(X, \Sigma^*(X + Y))$$

Oper. model (
$$B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$$
)

$$\gamma \colon \mu \Sigma \to \mathcal{B}(\mu \Sigma, \mu \Sigma)$$

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{p \to p'}{(\lambda x.p) \ q \to p[q/x]} \frac{p \to p'}{p - q \to p' \ q}$$

$$\frac{\lambda x.p \xrightarrow{q} p[q/x]}{}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Higher-Order GSOS law

$$\sum (X \times B(X, Y))$$

$$\downarrow \varrho_{X,Y} \qquad \text{dinat. in } X, \text{ nat. in } Y$$

$$B(X, \sum^* (X + Y))$$

Oper. model (B: $\mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{p \to p'}{(\lambda x.p) \ q \to p[q/x]} \frac{p \to p'}{p \ q \to p' \ q}$$

$$\frac{\lambda x.p \xrightarrow{q} p[q/x]}{}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Higher-Order GSOS law

$$\Sigma(X \times B(X, Y))$$

$$\downarrow \varrho_{X,Y} \qquad \text{dinat. in } X, \text{ nat. in } Y$$

$$B(X, \Sigma^*(X + Y))$$

Oper. model ($B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{\lambda x.p \xrightarrow{q} p[q/x]}{q}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Higher-Order GSOS law

$$\Sigma(X \times B(X, Y))$$

$$\downarrow \varrho_{X,Y} \qquad \text{dinat. in } X, \text{ nat. in } Y$$

$$B(X, \Sigma^*(X + Y))$$

Oper. model ($B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Example: Untyped CBN λ -calculus

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Operational model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu \Sigma$

Higher-Order GSOS law

$$\Sigma(X \times B(X, Y))$$

$$\downarrow^{\varrho_{X,Y}} \text{ dinat. in } X, \text{ nat. in } Y$$

$$B(X, \Sigma^*(X + Y))$$

Oper. model ($B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$)

 $\gamma \colon \mu \Sigma \to \mathcal{B}(\mu \Sigma, \mu \Sigma)$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} o \mathbb{C}$)

Initial algebra $\mu\Sigma$

Instances:

- ightharpoonup Untyped and typed λ -calculi
- Effectful λ-calculi
 e.g. nondeterministic, probabilistic
- ► Evaluation: CBN, CBV, . . .

Higher-Order GSOS law

$$\Sigma(X \times B(X, Y))$$

$$\downarrow \varrho_{X,Y} \text{ dinat. in } X, \text{ nat. in } Y$$

$$B(X, \Sigma^*(X + Y))$$

Oper. model (
$$B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$$
)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Abstract Modelling of Operational Semantics

Concrete/Abstract

- 1. Syntax
- 2. Program terms
- 3. Behaviour type
- 4. Operational model
- 5. Operational rules

- 1. $\Sigma \colon \mathbb{C} \to \mathbb{C}$
- 2. Initial algebra $\mu\Sigma$
- 3. $B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$
- 4. $\gamma: \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$
- 5. Higher-order GSOS law

Towards an Abstract Theory of Contextual Preorder

Goal: A language-independent theory of operational techniques based on

Higher-Order Abstract GSOS.

Towards an Abstract Theory of Contextual Preorder

Goal: A language-independent theory of operational techniques based on

Higher-Order Abstract GSOS.

Contextual Preorder

$$p \lesssim_{\mathrm{ctx}} q \quad \text{ iff } \quad \forall \, C[\cdot] \colon \, C[p] \text{ terminates } \implies C[q] \text{ terminates}.$$

A relation R on programs is

▶ adequate if it preserves termination:

$$R(p,q)$$
 implies (p terminates \implies q terminates).

▶ a congruence if it is respected by all language operations.

... e.g.
$$R(p,q)$$
 implies $R(\lambda x. p, \lambda x. q)$.

Observation

The contextual preorder \lesssim_{ctx} is the greatest adequate congruence.

Contextual Preorder for Functor Algebras

Recall: A **congruence** on an algebra $\Sigma A \xrightarrow{a} A$ is a subalgebra $R \rightarrowtail A \times A$.

Definition (Abstract Contextual Preorder)

Given a preorder $O \rightarrowtail \mu\Sigma \times \mu\Sigma$ of **observations**, let

$$\lesssim_{\mathrm{ctx}}^{O} \rightarrowtail \ \mu\Sigma \times \mu\Sigma$$

be the greatest congruence on $\mu\Sigma$ contained in O.

exists if $\mathbb C$ cocomplete + well-powered + extensive and Σ finitary

Example (λ -calculus)

$$\lesssim_{\text{ctx}}^{O} = \lesssim_{\text{ctx}} \text{ for } O = \{(p,q) \mid p \text{ terminates } \implies q \text{ terminates } \}.$$

Abstract Modelling of Operational Semantics

Concrete/Abstract

- 1. Syntax
- 2. Program terms
- 3. Behaviour type
- 4. Operational model
- 5. Operational rules
- 6. Contextual preorder

- 1. $\Sigma \colon \mathbb{C} \to \mathbb{C}$
- 2. Initial algebra $\mu\Sigma$
- 3. $B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$
- 4. $\gamma: \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$
- 5. Higher-order GSOS law
- 6. $\lesssim_{\mathrm{ctx}}^{O} (O \rightarrow \mu \Sigma \times \mu \Sigma)$

Towards an Abstract Theory of Contextual Preorder

Towards an Abstract Theory of Contextual Preorder

Applicative Simulations (Untyped CBN λ -Calculus)

An **applicative simulation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p,q),

$$p \to p' \implies \exists q'. \, q \to^* q' \land R(p', q')$$

$$p = \lambda x. p' \implies \exists q'. \, q \to^* \lambda x. q' \land \forall e \in \Lambda. R(p'[e/x], q'[e/x]).$$

("Related functions send the same input to related outputs")

Equivalently: R is a weak simulation on the LTS $\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$.

Applicative Simulations (Untyped CBN λ -Calculus)

An **applicative simulation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p,q),

$$\begin{array}{ccccc} p \to p' & \Longrightarrow & \exists q'.\, q \to^\star q' \ \land \ R(p',q') \\ p = \lambda x.p' & \Longrightarrow & \exists q'.\, q \to^\star \lambda x.q' \ \land \ \forall e \in \Lambda. \ R(p'[e/x],q'[e/x]). \end{array}$$

("Related functions send the same input to related outputs")

Equivalently: R is a weak simulation on the LTS $\gamma : \Lambda \to \Lambda + \Lambda^{\Lambda}$.

Soundness Theorem

Applicative similarity \lesssim_{app} is an adequate congruence. Hence

$$p \lesssim_{app} q$$
 implies $p \lesssim_{ctx} q$.

Proof: Difficult (Howe's method).

Applicative Simulations (Untyped CBN λ -Calculus)

An **applicative simulation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p,q),

$$\begin{array}{ccccc} p \to p' & \Longrightarrow & \exists q'.\, q \to^\star q' \ \land \ R(p',q') \\ p = \lambda x.p' & \Longrightarrow & \exists q'.\, q \to^\star \lambda x.q' \ \land \ \forall e \in \Lambda. \ R(p'[e/x],q'[e/x]). \end{array}$$

("Related functions send the same input to related outputs")

Equivalently: R is a weak simulation on the LTS $\gamma : \Lambda \to \Lambda + \Lambda^{\Lambda}$.

Soundness Theorem

Applicative similarity \lesssim_{app} is an adequate congruence. Hence

$$p \lesssim_{app} q$$
 implies $p \lesssim_{ctx} q$.

Proof: Difficult (Howe's method). **Generalization to HO GSOS?**

Towards an Abstract Theory of Contextual Preorder

A **logical relation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p, q),

$$p o p' \implies \exists q'. \ q o^* \ q' \ \land \ R(p', q')$$
 $p = \lambda x. p' \implies \exists q'. \ q o^* \ \lambda x. q' \ \land \ \forall R(d, e). \ R(p'[d/x], q'[e/x]).$
("Related functions send related inputs to related outputs")

A **logical relation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p, q),

$$p \to p' \implies \exists q'. \ q \to^* q' \land R(p', q')$$
$$p = \lambda x. p' \implies \exists q'. \ q \to^* \lambda x. q' \land \forall R(d, e). \ R(p'[d/x], q'[e/x]).$$

("Related functions send related inputs to related outputs")

Construction: Step-indexed logical relation $\mathcal{L} = \bigcap_n \mathcal{L}_n$

$$\mathcal{L}_0 = \Lambda \times \Lambda$$
 and $\mathcal{L}_{n+1}(p,q)$ iff

$$p o p' \implies \exists q'. \ q o^* \ q' \ \land \ \mathcal{L}_n(p', q')$$

 $p = \lambda x. p' \implies \exists q'. \ q o^* \ \lambda x. q' \ \land \ \forall \mathcal{L}_n(d, e). \ \mathcal{L}_n(p'[d/x], q'[e/x]).$

A **logical relation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p, q),

$$p \to p' \implies \exists q'. \ q \to^* q' \land R(p', q')$$
$$p = \lambda x. p' \implies \exists q'. \ q \to^* \lambda x. q' \land \forall R(d, e). \ R(p'[d/x], q'[e/x]).$$

("Related functions send related inputs to related outputs")

Construction: Step-indexed logical relation $\mathcal{L} = \bigcap_n \mathcal{L}_n$

$$\mathcal{L}_0 = \Lambda \times \Lambda$$
 and $\mathcal{L}_{n+1}(p,q)$ iff

$$p \to p' \implies \exists q'. \ q \to^* q' \land \mathcal{L}_n(p', q')$$

$$p = \lambda x. p' \implies \exists q'. \ q \to^* \lambda x. q' \land \forall \mathcal{L}_n(d, e). \ \mathcal{L}_n(p'[d/x], q'[e/x]).$$

Soundness Theorem

 ${\cal L}$ is a logical relation, and an adequate congruence.

Proof: Easier than for \lesssim_{app} , but tedious.

A **logical relation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p, q),

$$p \to p' \implies \exists q'. \ q \to^* q' \land R(p', q')$$
$$p = \lambda x. p' \implies \exists q'. \ q \to^* \lambda x. q' \land \forall R(d, e). \ R(p'[d/x], q'[e/x]).$$

("Related functions send related inputs to related outputs")

Construction: Step-indexed logical relation $\mathcal{L} = \bigcap_n \mathcal{L}_n$

$$\mathcal{L}_0 = \Lambda \times \Lambda$$
 and $\mathcal{L}_{n+1}(p,q)$ iff

$$p \to p' \implies \exists q'. \ q \to^* q' \land \mathcal{L}_n(p', q')$$

$$p = \lambda x.p' \implies \exists q'. \ q \to^* \lambda x.q' \land \forall \mathcal{L}_n(d, e). \ \mathcal{L}_n(p'[d/x], q'[e/x]).$$

Soundness Theorem

 ${\cal L}$ is a logical relation, and an adequate congruence.

Proof: Easier than for \lesssim_{app} , but tedious. Generalization to HO GSOS?

Towards an Abstract Theory of Contextual Preorder

Now: Categorical abstraction via **relation liftings**.

Relation Liftings

 $\mathbf{Rel}(\mathbb{C})$: Cat. of relations $R \rightarrowtail X \times X$ and relation-preserving morphisms

A **relation lifting** of $B \colon \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$ is a bifunctor \overline{B} such that

Relation Liftings

 $\mathbf{Rel}(\mathbb{C})$: Cat. of relations $R \rightarrowtail X \times X$ and relation-preserving morphisms

A **relation lifting** of $B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$ is a bifunctor \overline{B} such that

$$\begin{array}{ccc} \operatorname{Rel}(\mathbb{C})^{\operatorname{op}} \times \operatorname{Rel}(\mathbb{C}) & \stackrel{\overline{B}}{\longrightarrow} & \operatorname{Rel}(\mathbb{C}) \\ \downarrow & & \downarrow \\ \mathbb{C}^{\operatorname{op}} \times \mathbb{C} & \stackrel{B}{\longrightarrow} & \mathbb{C} \end{array}$$

Example: $B(X, Y) = Y^X$ on Set

$$(R \subseteq X \times X, S \subseteq Y \times Y) \mapsto \overline{B}(R, S) \subseteq Y^X \times Y^X$$

where

$$\overline{B}(R,S)(f,g)$$
 iff $\forall x, x'. R(x,x') \implies S(fx,gx')$

A **logical relation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p, q),

$$p \to p' \implies \exists q'. \ q \to^* q' \land R(p', q')$$
$$p = \lambda x. p' \implies \exists q'. \ q \to^* \lambda x. q' \land \forall R(d, e). \ R(p'[d/x], q'[e/x]).$$

Equivalently:
$$R \leq (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(R,R)]$$

A **logical relation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p, q),

$$p \to p' \implies \exists q'. \ q \to^* q' \land R(p', q')$$

$$p = \lambda x. p' \implies \exists q'. \ q \to^* \lambda x. q' \land \forall R(d, e). \ R(p'[d/x], q'[e/x]).$$

Equivalently:
$$R \leq (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(R,R)]$$

Construction: Step-indexed logical relation $\mathcal{L} = \bigcap_n \mathcal{L}_n$

$$\mathcal{L}_0 = \Lambda \times \Lambda$$
 and $\mathcal{L}_{n+1}(p,q)$ iff

$$p \to p' \implies \exists q'. \ q \to^* q' \land \mathcal{L}_n(p', q')$$

$$p = \lambda x. p' \implies \exists q'. \ q \to^* \lambda x. q' \land \forall \mathcal{L}_n(d, e). \ \mathcal{L}_n(p'[d/x], q'[e/x]).$$

Equivalently:
$$\mathcal{L}_{n+1} = (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(\mathcal{L}_n, \mathcal{L}_n)]$$

Applicative Simulations (Untyped CBN λ -Calculus)

An **applicative simulation** $R \rightarrow \Lambda \times \Lambda$ satisfies, for R(p,q),

$$\begin{array}{cccc} p \to p' & \Longrightarrow & \exists q'.\, q \to^\star q' \ \land \ R(p',q') \\ \\ p = \lambda x.p' & \Longrightarrow & \exists q'.\, q \to^\star \lambda x.q' \ \land \ \forall e \in \Lambda. \ R(p'[e/x],q'[e/x]). \end{array}$$

Equivalently: $R \leq (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(\Delta, R)].$

Abstract Modelling of Operational Semantics

Concrete/Abstract

- 1. Syntax
- 2. Program terms
- 3. Behaviour type
- 4. Operational model
- 5. Operational rules
- 6. Contextual preorder
- 7. Applicative simulation
- 8. Logical relation
- 9. Step-indexed log. relation

1.
$$\Sigma \colon \mathbb{C} \to \mathbb{C}$$

- 2. Initial algebra $\mu\Sigma$
- 3. $B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$
- 4. $\gamma: \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$
- 5. Higher-order GSOS law
- 6. $\lesssim_{\text{ctx}}^{O} (O \rightarrow \mu \Sigma \times \mu \Sigma)$
- 7. $R \leq (\gamma \times \widetilde{\gamma})^{-1} \overline{B}(\Delta, R)$
- 8. $R \leq (\gamma \times \widetilde{\gamma})^{-1} \overline{B}(R, R)$
- 9. $\mathcal{L}_{n+1} = (\gamma \times \widetilde{\gamma})^{-1} \overline{B}(\mathcal{L}_n, \mathcal{L}_n)$

Towards an Abstract Theory of Contextual Preorder

Now: An abstract congruence result!

Congruence Theorem for HO Abstract GSOS [LICS '23, '24]

- ▶ Applicative similarity on $\gamma: \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.
- ▶ The logical relation \mathcal{L} on $\gamma \colon \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

if

the weak model $\widetilde{\gamma}$ is a lax higher-order bialgebra.

Congruence Theorem for HO Abstract GSOS [LICS '23, '24]

- ▶ Applicative similarity on $\gamma: \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.
- ▶ The logical relation \mathcal{L} on $\gamma \colon \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

if

the weak model $\widetilde{\gamma}$ is a lax higher-order bialgebra.

cf. Bonchi, Petrișan, Pous, Rot '15

Congruence Theorem for HO Abstract GSOS [LICS '23, '24]

- ▶ Applicative similarity on $\gamma: \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.
- ▶ The logical relation \mathcal{L} on $\gamma \colon \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

if

the weak model $\widetilde{\gamma}$ is a **lax higher-order bialgebra**.

rules remain sound for weak transitions

$$\frac{p \to p'}{p \, q \to p' \, q} \quad \rightsquigarrow \quad \frac{p \to^* p'}{p \, q \to^* p' \, q}$$

Congruence Theorem for HO Abstract GSOS [LICS '23, '24]

- ▶ Applicative similarity on γ : $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.
- ▶ The logical relation \mathcal{L} on $\gamma \colon \mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

if

the weak model $\widetilde{\gamma}$ is a lax higher-order bialgebra.

Take-home message:

- ► The two most popular higher-order operational techniques work for the same abstract reason.
- ► The lax-bialgebra condition isolates the language-specific core of their congruence properties and is usually easy to check.

Conclusion and Perspectives

