

Class 10 Carboxylic acids

Structure and bonding

Nomenclature

Physical properties

Preparation of carboxylic acids and derivatives

References

Blackman A, Bottle S, Schmid G, Mocerino M and Wille U (2019a), *Chemistry*, 4th edn, John Wiley & Sons, Milton, Qld.

Blackman A, Southam D, Lawrie G, Williamson N, Thompson C and Bridgeman A (2019b), *Chemistry: core concepts*, 2nd edn, John Wiley & Sons, Milton, Qld.

Structure and Bonding

The functional group of a carboxylic acid is the carboxyl group.

The general formula of an aliphatic carboxylic acid is RCOOH.

The general formula of an aromatic carboxylic acid is ArCOOH.

Structure and Bonding

The general formula for each of the four carboxylic acid derived functional groups is given below.

Source: Blackman et al. (2019b:949).

$$\begin{array}{c} O \\ \parallel \\ R \\ C \\ \text{an acid chloride} \end{array} \xrightarrow{H - Cl} \begin{array}{c} O \\ \parallel \\ H - O \\ \end{array} \xrightarrow{H + O \\ R \end{array} \xrightarrow{H - O \\ R \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \begin{array}{c} O \\ \parallel \\ R \\ \end{array} \xrightarrow{H - OR'} \xrightarrow{H - OR'}$$

Structure and Bonding

Acid halides

The functional group is the acyl group bonded to a halogen atom.

Abbreviated to RCOX or ArCOX (X = halide)

DEAKIN DEAKIN COLLEGE DEAKIN

Structure and Bonding

Acid anhydrides

The functional group is 2 acyl groups bonded to an oxygen atom.

It may be symmetrical or mixed.

Structure and Bonding

Esters of carboxylic acids

The functional group is an acyl group bonded to an -OR or an -OAr group.

Source: Blackman et al. (2019b:949).

DEAKIN DEAKI

Structure and Bonding

Amides of carboxylic acids

The functional group is an acyl group bonded to a trivalent nitrogen atom.

Can be classified as primary, secondary or tertiary.

Source: Blackman et al. (2019b:950).

Carboxylic Acids

For the IUPAC name drop the final —e from the parent alkane and replace it with the suffix —oic acid

DEAKIN COLLEGE

Nomenclature

Carboxylic acids

A carboxyl group takes precedence over most other functional groups, including hydroxyl and amino groups, as well as the carbonyl groups of aldehydes and ketones.

DEAKIN COLLEGE DEAKIN

Carboxylic acids

Dicarboxylic acids are named by adding the suffix —dioic, followed by the word acid, to the name of the carbon chain that contains both carboxyl groups.

DEAKIN COLLEGE DEAKIN

Nomenclature

Carboxylic acids

A carboxylic acid containing a carboxyl group bonded to a cycloalkane ring is named by giving the name of the ring and adding the suffix – carboxylic acid

Carboxylic acids

The simplest aromatic carboxylic acid is benzoic acid. Derivatives are named by using numbers and prefixes to show the presence and location of substituents.

Source: Blackman et al. (2019b:954).

DEAKIN DEAK

Naming Carboxylic Acids

- 1. Name the Parent Chain heptane
- 2. Add the Suffix heptanoic acid
- 3. Add the Prefix ethylheptanoic acid
- 4. Include the Locant
 4-ethylheptanoic acid

Acid halides

Change the suffix –ic acid in the name of the parent carboxylic acid to –yl halide

DEAKIN COLLEGE DEAKIN

Nomenclature

Acid anhydrides

Replace the word acid with anhydride

When the anhydride is not symmetrical, both acid groups are named.

Source: Blackman et al. (2019b:956).

$$\begin{array}{c|c} O & O & O & O & O \\ \parallel & \parallel & \parallel & \parallel & \parallel \\ C - O - C & & & CH_3C - O - C & & \\ \end{array}$$
 benzoic anhydride acetic benzoic anhydride (a mixed anhydride)

Esters

The alkyl or aryl group bonded to oxygen is named first.

This is followed, as a separate word, by the name of the acid, in which the suffix —ic acid is replaced by the suffix —ate

DEAKIN COLLEGE

Nomenclature

Amides

Drop the suffix -oic acid from the IUPAC name of the parent acid and add -amide

Source: Blackman et al. (2019b:956).

N-ethylbenzamide

N,N-dimethylformamide

Physical Properties

In the liquid and solid states, carboxylic acids are associated by intermolecular hydrogen bonding into dimers.

DEAKIN COLLEGE

Physical Properties

Carboxylic acids have significantly high boiling points because they are polar compounds and form very strong intermolecular hydrogen bonds.

Their boiling points are higher than alcohols, ketones, and aldehydes of similar mass.

Physical Properties

Structure	Name	Molar mass	Number of electrons	Boiling point (°C)	Solubility (g/100 mL H ₂ 0)
CH₃COOH	acetic acid	60.1	32	118	infinite
$\mathrm{CH_{3}CH_{2}CH_{2}OH}$	propan-1-ol	60.1	34	97	infinite
CH ₃ CH ₂ CHO	propanal	58.1	32	48	16
CH ₃ (CH ₂) ₂ COOH	butanoic acid	88.1	48	163	infinite
$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{3}\mathrm{CH_{2}}\mathrm{OH}$	pentan-1-ol	88.1	50	137	2.7
CH ₃ (CH ₂) ₃ CHO	pentanal	86.1	48	103	slight
CH ₃ (CH ₂) ₄ COOH	hexanoic acid	116.2	64	205	1.0
CH ₃ (CH ₂) ₅ CH ₂ OH	heptan-1-ol	116.2	66	176	0.2
CH ₃ (CH ₂) ₅ CHO	heptanal	114.1	64	153	0.1

Source: Blackman et al. (2019a:1395).

Physical Properties

Carboxylic acids are more soluble in water than alcohols, ethers, aldehydes, and ketones of similar molar mass because they form hydrogen bonds with water molecules through their C=O and OH groups.

Source: Blackman et al. (2019a:1395).

hydrophobic (nonpolar) tail

hydrophilic (polar)
head

decanoic acid
(solubility = 0.2 g/100 mL H₂O)

DEAKIN COLLEGE

Preparation of carboxylic acids

Primary alcohols and aldehydes are readily oxidised to carboxylic acids.

DEAKIN COLLEGE

Preparation of carboxylic acids

Hydrolysis of carboxylic acid derivatives

OCH₂CH₃
$$\xrightarrow{\text{H}_2\text{O}}$$
 COOH

ethyl benzoate benzoic acid ethanol

Source: Blackman et al. (2019a:1398).

There are two general types:

Acid-base

Nucleophilic acyl substitution

DEAKIN COLLEGE DEAKIN

Reactions of carboxylic acids and derivatives

Acidity

Carboxylic acids are weak acids

K_a values range from 1×10⁻⁴ to 1×10⁻⁵

$$\begin{aligned} \text{CH}_{3}\text{COOH} + \text{H}_{2}\text{O} &\rightleftharpoons \text{CH}_{3}\text{COO}^{-} + \text{H}_{3}\text{O}^{+} & \text{Source:} \\ \text{Blackman et al.} \\ \text{(2019a:1400).} \end{aligned}$$

$$K_{a} = \frac{[\text{CH}_{3}\text{COO}^{-}][\text{H}_{3}\text{O}^{+}]}{[\text{CH}_{3}\text{COOH}]} = 1.8 \times 10^{-5}$$

$$pK_{a} = 4.74$$

Carboxylic acids are stronger acids than alcohols because resonance stabilises the carboxylate anion by delocalising its negative charge.

This resonance stabilisation does not exist in alkoxide forms.

The electron density map shows the negative charge equally delocalised on the two carboxylate oxygen atoms.

DEAKIN DEAKI

Reactions of carboxylic acids and derivatives

Reaction with bases

All carboxylic acids react with strong bases to form water-soluble salts.

Carboxylic acids also form water-soluble salts with ammonia and amines.

Acid halide formation

Prepared by treating a carboxylic acid with thionyl chloride, SOCl₂. (Cl replaces –OH)

Acid halides are the most reactive of the derivatives of carboxylic acids.

Reactions with alcohols

Esterification

Treatment of a carboxylic acid with an alcohol in the presence of an acid catalyst gives an ester. Acid-catalysed esterification is reversible.

Source: Blackman et al. (2019a:1406).

$$\begin{array}{c|ccccc} O & & & & O \\ \parallel & & & & H_2SO_4 & & \parallel \\ CH_3COH & + & CH_3CH_2OH & & & CH_3COCH_2CH_3 & + & H_2O \\ \text{acetic acid} & & \text{ethanol} & & & \text{ethyl acetate} \\ & & & & & \text{(ethyl ethanoate)} \end{array}$$

DEAKIN COLLEGE DEAKIN

Reactions with water - hydrolysis

Reaction with water is called <u>hydrolysis</u>
Hydroylsis is an example of a nucleophilic acyl substitution.

The carboxylic acid derivative reacts with water to give a carboxylic acid and H–Y.

$$\begin{matrix} O \\ \parallel \\ C \\ Y \end{matrix} + \begin{matrix} H_2O \end{matrix} \longrightarrow \begin{matrix} O \\ \parallel \\ C \\ OH \end{matrix} + \begin{matrix} H-Y \end{matrix}$$

Reactions with water - hydrolysis

Acid chlorides

Low-molar-mass acid chlorides react very rapidly with water to form carboxylic acids and HCl gas. High-molar-mass acid chlorides are less water soluble so react less rapidly with water.

$$\begin{matrix} O \\ \parallel \\ CH_3CCl + H_2O \end{matrix} \longrightarrow \begin{matrix} O \\ \parallel \\ CH_3COH + HCl \end{matrix}$$

COLLEGE DEAKIN

Reactions with water - hydrolysis

Acid anhydrides

Generally less reactive than acid chlorides. Low-molar-mass anhydrides react readily with water to form 2 molecules of carboxylic acid.

Reactions with water - hydrolysis

Esters are hydrolysed only very slowly

Heating esters in aqueous acid or base speeds up this reaction.

The role of the acid catalyst is to make the carbonyl carbon more susceptible towards attack by water.

Source: Blackman et al. (2019a:1412).

$$\begin{array}{c} O \\ \parallel \\ C \\ OCH_3 \end{array} \ + \ H_2O \ \stackrel{H^+}{\Longleftrightarrow} \ \begin{bmatrix} OH \\ \parallel \\ H_3CO \\ \end{bmatrix} \ \stackrel{H^+}{\Longleftrightarrow} \ R \ C OH \ + \ CH_3OH \\ \\ \text{tetrahedral carbonyl} \\ \text{addition intermediate} \end{array}$$

DEAKIN DEAKIN

Reactions with water - hydrolysis

When carried out with hot aqueous base the reaction is often called saponification meaning "soap making".

Reactions with water - hydrolysis

Amides undergo hydrolysis in hot aqueous acid to give a carboxylic acid and ammonia.

$$\begin{array}{c} O \\ \hline \\ NH_2 + H_2O + HC1 \\ \hline \\ Ph \\ \\ 2\text{-phenylbutanoic acid} \end{array} \\ \begin{array}{c} O \\ \hline \\ OH + NH_4^+Cl^- \\ \hline \\ 2\text{-phenylbutanoic acid} \end{array}$$

In aqueous base, the products of amide hydrolysis are a carboxylic acid and ammonia.

DEAKIN COLLEGE

Reactions with water - hydrolysis

Interconversion of functional derivatives

Increasing reactivity towards nucleophilic acyl substitution

