TD Thermodynamique

Conduction thermique

Régime variable

1 Solides reliés par un isolant

(Centrale PC 2021) Soit deux solides S_1 et S_2 de même capacité thermique C et reliés par un tube de polystyrène P, de section S, de longueur I, de conductivité thermique λ et de capacité thermique négligeable. Au temps t=0, S_1 et S_2 sont aux températures respectives T_1^0 et T_2^0 avec $T_1^0 > T_2^0$.

FIG. 1

La résolution sera menée en supposant les échanges thermiques très lents.

- 1. Pourquoi la température peut-elle être considérée comme uniforme dans les deux solides?
- 2. Montrez que la température est une fonction affine dans P.
- 3. Trouvez $T_1(t)$ et $T_2(t)$.
- 4. Calculez la variation d'entropie entre l'état initial et l'état final où l'équilibre thermique est établi.

2 Sensation de chaud et de froid

(Mines MP 2017) Deux barres de très grandes longueurs et de même section S ont des conductivités λ_1 et λ_2 , des masses volumiques μ_1 et μ_2 et des capacités thermiques massiques c_1 et c_2 . Initialement uniformément aux températures T_1 et T_2 , elles sont mises en contact en x=0 et à t=0. Leurs surfaces latérales sont parfaitement calorifugées.

1. Écrivez l'équation de diffusion thermique pour x < 0 et x > 0 et exprimez les diffusivités thermiques D_1 et D_2 des deux barres.

FIG. 2 : Graphe de la fonction erf.

2. Il est très fréquent, dans certains domaines comme les mathématiques statistiques, d'introduire la *fonction erf*, appelée aussi fonction erreur, définie par l'expression suivante, et représentée figure 2.

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \quad \operatorname{avec} \quad \lim_{x \to \pm \infty} \operatorname{erf}(x) = \pm 1$$
 (1)

On admet que $f(x,t) = \text{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$ est solution de l'équation précédente. Calculez f(0,t) et $\partial f/\partial x(0,t)$.

3. On cherche un champ de température tel que :

$$T_1(x < 0, t) = A_1 + B_1 f(x, t)$$
 et $T_2(x > 0, t) = A_2 + B_2 f(x, t)$ (2)

Calculez la température T_J à la jonction des deux barres en fonction T_1 , T_2 et des effusivités thermiques $E_i = \sqrt{\mu_i c_i \lambda_i}$.

4. Calculez la température de contact entre la main à 37 °C et le bois ou l'acier à 20 °C. Données : E_{main} = 1800 SI, E_{bois} = 400 SI et E_{acier} = 14 000 SI.