TD18: Oxydoréduction – corrigé

Exercice 1: Couple oxydant-réducteur

On peut former les couples oxydant/réducteur suivants :

• $Cu^{2+}(+II)/Cu(0)$

• $H^+(+I) / H_2(0)$

• $I_2(0) / I^-(-I)$

• Fe³⁺(+III)/Fe(0)

• $Ag^{+}(+I) / Ag(0)$

• Cl₂(0) / Cl⁻(-I)

• $Zn^{2+}(+II)/Zn(0)$

Exercice 2: Nombre d'oxydation

 PbO_4^{3-} : no(O)=-II; no(Pb) = V

 $H_2O_2 : no(H)=+I; no(O)=-I$

 N_2O_5 : no(O)=-II; no(N)=V

 $\mathbf{P}_{2}\mathbf{O}_{5}$: no(O)=-II; no(P)=V ClO_4^- : no(O)=-II; no(Cl)=VII

LiH : no(H)=+I; no(Li)=-I SO_4^{2-} : no(O)=-II; no(S)=VI

Exercice 3 : Demi-équations d'oxydoréduction

On obtient les demi-équations suivantes :

1. $2 \text{ClO}^{-}(\text{ag}) + 4 \text{H}^{+} + 3 \text{e}^{-} \rightleftharpoons \text{Cl}_{2} + 2 \text{H}_{2} \text{O}$

4. $HCOOH(aq) + 4H^+ + 4e^- \rightleftharpoons CH_3OH(aq) + H_2O$

2. $NO_3^-(aq) + 4H^+ + 3e^- \rightleftharpoons NO(g) + 2H_2O$

5. $CH_3CHO(aq) + 2H^+ + 2e^- \rightleftharpoons CH_3CH_2OH(aq)$

 Zn^{2+}

 $2 NO_3$

 NO_3

3. $\operatorname{Cr}_2 \operatorname{O}_7^{2-}(\operatorname{aq}) + 14 \operatorname{H}^+ + 6 \operatorname{e}^- \Longrightarrow 2 \operatorname{Cr}^{3+}(\operatorname{aq}) + 7 \operatorname{H}_2 \operatorname{O}$

Exercice 4 : Loi de Nernst

 $\mathbf{Hg^{2+}/Hg_2^{\ 2+}} \ : 2\,\mathrm{Hg^{2+}} + 2\,\mathrm{e^-} \\ \\ \Longleftrightarrow \mathrm{Hg_2^{\ 2+}}, \\ \mathrm{donc} \ E = E^0 + \frac{RT}{2F} \ln \frac{[\mathrm{Hg^{2+}}]^2}{[\mathrm{Hg_2^{\ 2+}}]} \\ \\ \simeq E^0 + \frac{0.06}{2} \log \frac{[\mathrm{Hg^{2+}}]^2}{c_0[\mathrm{Hg_2^{\ 2+}}]} \\ \\ = \frac{1}{2} \left(-\frac{1}{2} + \frac{1}{2} +$

 $Pb^{2+}/Pb(s) : Pb^{2+} + 2e^{-} \iff Pb(s), donc E = E^{0} + \frac{RT}{2E} \ln[Pb^{2+}] \simeq E^{0} + \frac{0.06}{2} \log \frac{[Pb^{2+}]}{2E}$

PbSO₄(s)/Pb(s) : PbSO₄(s) + 2 e⁻ \Longrightarrow Pb(s) + SO₄²⁻, donc $E = E^0 + \frac{RT}{2F} \ln \frac{c_0}{|sO|^{2-1}}$.

 $\mathbf{AgBr(s)/Ag(s)}$: $\mathbf{AgBr(s)} + \mathbf{e}^- \iff \mathbf{Ag(s)} + \mathbf{Br}^-$, donc $E = E^0 + \frac{RT}{F} \ln \frac{c_0}{\lceil \mathbf{Br} \rceil^-}$

 $\mathbf{BrO_3}^-/\mathbf{Br_2(aq)} : 2\,\mathrm{BrO_3}^- + 12\,\mathrm{H}^+ + 10\,\mathrm{e}^- \Longleftrightarrow \mathrm{Br_2(aq)} + 6\,\mathrm{H_2O}, \,\mathrm{donc}\,\,E = E^0 + \frac{RT}{10F}\ln\frac{[2\,\mathrm{BrO_3}^-]^2[\mathrm{H}^+]^{12}}{[\mathrm{Br}.]_{\mathrm{Co}}^{13}}$

 $O_2(g)/H_2O_2 : O_2(g) + 2H^+ + 2e^- \Longrightarrow H_2O_2 \text{ donc } E = E^0 + \frac{RT}{2F} \ln \frac{[H^+]^2 p(O_2)}{[H_2O_2] p_0 c_0}$

 $Hg_2Cl_2(s)/Hg(\ell) : Hg_2Cl_2(s) + 2e^- \Longrightarrow 2Hg(\ell) + 2Cl^- \text{ donc } E = E^0 + \frac{RT}{2F} \ln \frac{c_0^2}{|Cl^-|^2}$

 $HClO/Cl_2(g) : 2 HClO + 2 H^+ + 2 e^- \iff Cl_2(g) + 2 H_2O \text{ donc } E = E^0 + \frac{RT}{2F} \ln \frac{[HCLO]^2[H^+]^2 p_0}{p(Cl_1) c_2^4}$

Exercice 5: PILE ZINC/ARGENT

1. Équations aux électrodes :

 $Ag^+ + e^- \longrightarrow Ag(s)$ et $Zn(s) \longrightarrow Zn^{2+} + 2e^-$.

L'équation bilan totale est :

$$2 \operatorname{Ag}^+ + \operatorname{Zn}(s) \longrightarrow 2 \operatorname{Ag}(s) + \operatorname{Zn}^{2+}$$
.

2. La fem de cette pile à t=0 est donnée par $e=E(Ag^+/Ag)$ – $E(Zn^{2+}/Zn)$

La formule de Nernst donne :

•
$$E(Ag^+/Ag) = E^0(Ag^+/Ag) + \frac{RT}{F} \ln \frac{[Ag^+]}{c_0}$$

•
$$E(Zn^{2+}/Zn) = E^{0}(Zn^{2+}/Zn) + \frac{RT}{2F} \ln \frac{[Zn^{2+}]}{[c_{0}]}$$

Avec les données de l'énoncé, on trouve $e = 1,53 \,\mathrm{V}$

3. La constante d'équilibre de cette réaction est $K=10^{\frac{2\times1.53}{0.06}}\simeq10^{51}\gg10^4$, on peut donc considérer que la réaction est totale. On fait un tableau d'avancement :

	$2Ag^{+}$	+	Zn	=	Zn^{2+}	+	2 Ag
état initial état intermédiaire état final	$n_0 \\ n_0 - 2\xi$		excès excès excès		$n_0 \\ n_0 + \xi \\ \frac{3}{2}n_0$		excès excès excès

Chaque atome d'argent a libéré un électron, il y a donc 0,1 mol d'électrons qui ont circulé dans le circuit, de qui correspond à une charge $Q = 0.1 \times F \simeq 9650 \,\mathrm{C}$

Exercice 6: FONCTIONNEMENT D'UNE PILE

- 1. Voir schéma
- 2. Voir schéma
- 3. Ce sont les électrons qui transportent la charge dans le buzzer.
- 4. Dans la pile les porteurs de charge sont les ions. (voir schéma pour le sens de déplacement).
- 5. Équations aux électrodes :

 $Ag^+ + e^- \longrightarrow Ag(s)$ et $Pb(s) \longrightarrow Pb^{2+} + 2e^-$.

L'équation bilan totale est :

 $2\,Ag^{\scriptscriptstyle +} + Pb(s) \longrightarrow 2\,Ag(s) + Pb^{2+}.$ 6. Le quotient de réaction est donné par $Q = \frac{[\text{Pb}^{2+}]c_0}{[\text{Ag}^+]^2}$. À l'instant initial il vaut $Q_0 = \frac{0.1}{0.1^2} = 10$.

7. La constante d'équilibre de la pile est donnée par $K=10^{\frac{2}{0.06}(E_{\mathrm{Ag}^+/\mathrm{Ag(s)}}^0-E_{\mathrm{Pb}^2+/\mathrm{Pb(s)}}^0)}\simeq 10^{31}>Q$. La réaction va donc consommer les réactifs et la pile va débiter du courant. On remarque également que la réaction est totale.

Exercice 7 : CAPACITÉ D'UNE PILE

1. (Essentiellement la même pile que celle de l'exercice 5)

Équations aux électrodes : $Ag^+ + e^- \longrightarrow Ag(s)$ et $Zn(s) \longrightarrow Zn^{2+} + 2e^-$. L'équation bilan totale est :

Pb

 Pb^{2+}

 $2 NO_3$

$$2 \operatorname{Ag}^+ + \operatorname{Zn}(s) \longrightarrow 2 \operatorname{Ag}(s) + \operatorname{Zn}^{2+}.$$

buzzer

Ag

 Ag^+

NO₃

- 2. La pile débite 15 mA pendant 5 heures, la charge qui a circulé est donc Q=it= 15 \times 10⁻³ \times 5 \times 3600 = 270 C.
- 3. Chaque électron qui circule dans le circuit est produit par le dépôt d'un ion Ag⁺ sur l'électrode d'argent, le nombre de moles d'électrons ayant circulé est $n_e=\frac{Q}{F}=\frac{270}{96500}=2.8\times 10^{-3}$ mol la masse d'argent déposée est $m_{\rm Ag}=n_e M({\rm Ag})\simeq 302$ mg 4. Pour chaque ${\rm Ag}^+$ qui réagit il y a $\frac{1}{2}$ Zn²⁺ qui apparaît, il y a donc $n_{\rm Zn}=\frac{n_e}{2}=1.4\times 10^{-3}$ mol d'ions Zn²⁺ qui sont apparus.
- Dans l'état final, la concentration en Zn²⁺ sera de $C_f = C + \Delta C = C + n_{Zn}/V = 0.114 \, \text{mol L}^{-1}$
- 5. La quantité maximale d'électrons que peut faire circuler cette pile est égale à la quantité d'ions Ag+ initialement présents, soit $n_e^{max}=5 imes 10^{-3}$ mol et la quantité d'électricité correspondante est $Q_{max}=n_e^{max}F\simeq 482\,{
 m C}$

Exercice 8 : Dosage de l'eau oxygénée

- 1. On écrit les demi-équations de réaction :
 - $MnO_4^- + 8H^+ + 5e^- \iff Mn^{2+} + 4H_2O$
 - $O_2 + 2H^+ + 2e^- \Longrightarrow H_2O_2$

Donc on obtient l'équation de la réaction de dosage suivante :

 $5 H_2 O_2 + 2 MnO_4^- + 6 H^+ \Longrightarrow 2 Mn^{2+} + 8 H_2 O + 5 O_2$

- 2. Protocole : On prélève 10,0 mL de H₂O₂ avec une pipette jaugée, et on le verse dans un bécher, avec agitateur magnétique. On verse ensuite progressivement avec une burette graduée le MnO₄. On repère l'équivalence avec le changement de couleur de la solution (incolore avant quand tout le MnO₄ réagit instantanément donc disparaît, et violet après quand il reste en solution).
- 3. La quantité d'ions permanganate introduits à l'équivalence est $n_{\text{MnO}_4-} = C'V'_E = 3,52 \times 10^{-3} \, \text{mol.}$ La quantité de H_2O_2 ayant réagi est donc telle que $\frac{n_{\text{H}_2\text{O}_2}}{\frac{5}{5}} = \frac{n_{\text{MnO}_4}}{2}$ (faire un tableau d'avancement!). La concentration en H_2O_2 est donc :

$$[H_2O_2] = \frac{n_{H_2O_2}}{V_E} = \frac{5n_{MnO_4}^-}{2V_E} = \frac{5C'V_E'}{2V_E} = 0.88 \text{ mol}L^{-1}$$

 $[\mathrm{H_2O_2}] = \frac{n_{\mathrm{H_2O_2}}}{V} = \frac{5n_{\mathrm{MnO_4}^-}}{2V} = \frac{5C'V_E'}{2V} = 0,88\,\mathrm{molL^{-1}}$ et le titre massique est $t = [\mathrm{H_2O_2}]M(\mathrm{H_2O_2}) = 30\,\mathrm{gL^{-1}}$, ce qui correspond bien à la valeur annoncée.