Quiz 5

MATH 19B - Discussion Section C November 10, 2016

Name & ID #:_____

Directions: Leave your final answer in exact form and box it in.

Formulas: You may find the following useful:

$$\sin^2(x) + \cos^2(x) = 1$$
, $1 + \tan^2(x) = \sec^2(x)$, and $1 + \cot^2(x) = \csc^2(x)$

and the Binomial Theorem:

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$
 where $\binom{n}{i} = \frac{n!}{i!(n-i)!}$ and $n \in \mathbb{N}$

- (1) (a) Argue why $\int_0^1 \frac{x^4(1-x)^4}{1+x^2} dx > 0$.
 - (b) Evaluate: (Hint: Expand and use long division to simplify)

$$\int_0^1 \frac{x^4 (1-x)^4}{1+x^2} \, \mathrm{d}x$$

- (c) Explain using the results of parts (a) and (b) to prove $\pi < \frac{22}{7}$. This approximation for π has been known since antiquity and the first proof of the inequality was provided by Archimedes in the 3rd century BCE.
- (2) A charged rod of length \mathcal{L} produces an electric field, along the x direction, at a point $\mathcal{P}(a,b) \in \mathbb{R}^2$ and is given by:

$$\mathbf{E}_{x}(\mathcal{P}) = \int_{-a}^{\mathcal{L}-a} \frac{x\lambda(x)}{4\pi\epsilon_{0}(x^{2}+b^{2})^{\frac{3}{2}}} \,\mathrm{d}x$$

where λ is the *charge density* per unit length on the rod and ϵ_0 is the *permittivity of free space*. Evaluate the integral to determine an expression for the electric field assuming that λ is constant.