

天津理工大学

计算机科学与工程学院

实验报告

2017 至 2018 学年 第二学期

实验三 图像灰度变换处理

课程名称	数字图像处理				
学号	20152180	学生姓名	王帆	年级	2015
专业	计算机 科学与技术	教学班号	2	实验地点	主 7-212
实验时间	2018年4月9日 第7节至第8节				
主讲教师	杨淑莹				

实验成绩

软件运行	效果	算法分析	流程设计	报告成绩	总成绩

实验 (三)	实验名称	图像灰度变换处理	
软件环境	Windows Visual Studio 2017		
硬件环境	PC		

实验目的

掌握图像的灰度变换原理, 编程实现图像的灰度变换功能。

实验内容(应包括实验题目、实验要求、实验任务等)

1. 设计并实现一种灰度线性变换。

要求:了解灰度线性变换基本原理,实现灰度线性变换。

说明: 灰度线性变换基本原理

任务:

- (1) 在左视图中打开一幅位图。
- (2)制作一个【灰度线性变换】菜单,将消息映射到右视图中,在右视图中实现灰度线性变换。

2. 设计并实现一种灰度非线性变换。

要求:了解灰度非线性变换基本原理,实现灰度非线性变换。

说明: 灰度非线性变换基本原理

任务:

- (1) 在左视图中打开一幅位图。
- (2)制作一个【**灰度非线性变换**】菜单,将消息映射到右视图中,在右视图中实现灰度对数变换。

实验过程与实验结果

1.设计并实现一种灰度线性变换

原理:

g(x,y) = T(f(x,y))是一个线性或分段线性的单值函数,输出灰度级与输入灰度级呈线性关系的点运算,则由它确定的灰度变换称为灰度线性变换,简称灰度的线性变换。灰度的线性变换公式为: g(x,y) = af(x,y) + b

式中,参数 a 为线性函数的斜率; b 为线性函数在 y 轴的截距; f(x,y)表示输入图的灰度; g(x,y)表示输出图像的灰度。

- a>1,增加图像的对比度
- a<1,减小图像的对比度
- a=1 且 b≠0, 图像整体的灰度值上移或者下移, 也就是图像整体变亮或者变暗, 不会改变图像的对比度。
- a<0 月 b=0, 图像的亮区域变暗, 暗区域变亮
- a=1 且 b=0, 恒定变换, 不变
- a=-1 且 b=255, 图像灰度反转。

实现步骤:

- 1.获取原图像的 Bitmap 对象 objBitmap 的其大小参量,并以此构造新 Bitmap 对象 bitmap;
- 2.迭代实现对 objBitmap 每一个像素点(Pixel)到 bitmap 的反色变换操作: 对每个像素点的 R,G,B 色彩分量分别减去 255 并取相反数,获得反色后的新 R,G,B 色彩分量,并构造当前像素点;
- 3.使用 bitmap 构造全局变量 curBitmap,销毁 bitmap 对象,使用 curBitmap 初始化右侧显示框。

代码:

```
//选项:基本处理-灰度变换-反色变换
private void ToolStripMenuItem_gray_line_Click(object sender, EventArgs e)
   try
   {
       height = objBitmap.Height;
       width = objBitmap.Width;
       Bitmap bitmap = new Bitmap(objBitmap);
       Color color;
       int r, g, b;
       for (int i = 0; i < width; i++)</pre>
           for (int j = 0; j < height; j++)
           {
              color = objBitmap.GetPixel(i, j);
              r = 255 - color.R;
              g = 255 - color.G;
              b = 255 - color.B;
              bitmap.SetPixel(i, j, Color.FromArgb(r, g, b));
           }
       }
       curBitmap = new Bitmap(bitmap);
       bitmap.Dispose();
       this.pictureBox_new.Image = curBitmap;
   }
   catch (Exception ex)
   {
       MessageBox.Show(ex.Message, "错误提示", MessageBoxButtons.OK,
MessageBoxIcon.Stop);
       throw;
   }
}
```

3

图1线性变换(反色变换)

2.设计并实现一种灰度非线性变换

原理:

当灰度图像 f 的各像素点 f(x,y) 的值域在区间 [a,b] (a < b) 上时,可将它按自然对数变换到区间 [c,d] (c < d) 上,从而求得输出图像 g。因此算法的功能是把输入图像区间 [a,b] 对数变换到输出图像的灰度区间 [c,d],灰度值为0时,用一个很小的数 eps 置换后再计算对数值。

输入数组 i [Row] [Co1]=输入图像

输出数组 o[Row][Co1]=输出图像

输入参数=变换前区间两端点

输入参数=变换后区间两端点

对数变换的一般表达式为: t = c * log(1 + s)

其中,c为尺度比例常数,s为原图灰度值,t为变换后的目标灰度值。

实现步骤:

- 1.获取原图像的 Bitmap 对象 objBitmap 的其大小参量,并以此构造新 Bitmap 对象 bitmap;
- 2. 迭代实现对灰度映射表 bMap 的建立:
- 3.迭代实现对 objBitmap 每一个像素点(Pixel)到 bitmap 的灰度映射操作:对每个像素点的 RGB 色彩设置为灰度映射表内对应值,如 bMap[color.R];
- 4.使用 bitmap 构造全局变量 curBitmap, 销毁 bitmap 对象,使用 curBitmap 初始化右侧显示框。

4


```
代码:
//选项: 基本处理-灰度变换-对数变换
private void ToolStripMenuItem_gray_log_Click(object sender, EventArgs e)
   try
   {
       height = objBitmap.Height;
       width = objBitmap.Width;
       Color color;
       int[] bMap = new int[256];
       Bitmap bitmap = new Bitmap(width, height);
       for (int i = 0; i < 256; i++)
           bMap[i] = (int)(Math.Log((double)i + 1.0) / (double)(25 * 0.001) +
0);
           if (bMap[i] < 0)</pre>
              bMap[i] = 0;
           else if (bMap[i] > 255)
              bMap[i] = 255;
           }
       }
       for (int x = 0; x < width; x++)
           for (int y = 0; y < height; y++)
           {
              color = objBitmap.GetPixel(x, y);
              bitmap.SetPixel(x, y, Color.FromArgb(bMap[color.R],
bMap[color.G], bMap[color.B]));
           }
       }
       curBitmap = new Bitmap(bitmap);
       bitmap.Dispose();
       this.pictureBox_new.Image = curBitmap;
   }
   catch (Exception ex)
   {
       MessageBox.Show(ex.Message, "错误提示", MessageBoxButtons.OK,
MessageBoxIcon.Stop);
       throw;
   }
```


效果图:

图 2 非线性变换(对数变换)

附录

参考资料:

- 1. C# 图像处理(三)— 反色处理 linFen 博客园 https://www.cnblogs.com/luluping/archive/2012/07/11/2585552.html
- 2. 图像处理基础(7): 图像的灰度变换 Brook_icv 博客园 https://www.cnblogs.com/wangguchangqing/p/6983680.html
- 3. 6 种图片灰度转换算法 · Issue #4 · aooy/blog · GitHub https://github.com/aooy/blog/issues/4