

Figure 5.5 The Ehrenfeucht-Fraïssé Game.

at will. Then II is required to respond with some element b_1 of B so that

$$\{(a_1, b_1)\} \in \text{Part}(\mathcal{A}, \mathcal{B}). \tag{5.10}$$

Alternatively, I might have chosen an element b_1 of B and then II would have been required to produce an element a_1 of A such that (5.10) holds. The one-element mapping $\{(a_1,b_1)\}$ is called the *position* in the game after the first move.

Now the game goes on. Again I asks what is the image of an element a_2 of A (or alternatively he can ask what is the pre-image of an element b_2 of B). Then II produces an element b_2 of B (or in the alternative case an element a_2 of A). In either case the choice of II has to satisfy

$$\{(a_1, b_1), (a_2, b_2)\} \in \text{Part}(\mathcal{A}, \mathcal{B}).$$
 (5.11)

Again, $\{(a_1, b_1), (a_2, b_2)\}$ is called the position after the second move. We continue until the position

$$\{(a_1, b_1), \dots, (a_n, b_n)\} \in \operatorname{Part}(\mathcal{A}, \mathcal{B})$$

after the n^{th} move has been produced. If II has been able to play all the moves according to the rules she is declared the winner. Let us call this game $\text{EF}_n(\mathcal{A},\mathcal{B})$. Figure 5.5 pictures the situation after four moves. If II can win repeatedly whatever moves I plays, we say that II has a *winning strategy*.

Example 5.18 Suppose \mathcal{A} and \mathcal{B} are two L-structures and $L = \emptyset$. Thus the structures \mathcal{A} and \mathcal{B} consist merely of a universe with no structure on it. In this singular case any one-to-one mapping is a partial isomorphism. The only thing player II has to worry about, say in (5.11), is that $a_1 = a_2$ if and only if $b_1 = b_2$. Thus II has a winning strategy in $\mathrm{EF}_n(\mathcal{A},\mathcal{B})$ if A and B both have at least n elements. So II can have a winning strategy even if A and B have different cardinality and there could be no isomorphism between them for the

trivial reason that there is no bijection. The intuition here is that by playing a finite number of elements, or even \aleph_0 many, it is not possible to get hold of the cardinality of the universe if it is infinite.

Example 5.19 Let \mathcal{A} be a linear order of length 3 and \mathcal{B} a linear order of length 4. How many moves does I need to beat II? Suppose $A = \{a_1, a_2, a_3\}$ in increasing order and $B = \{b_1, b_2, b_3, b_4\}$ in increasing order. Clearly, if I plays at any point the smallest element, also II has to play the smallest element or face defeat on the next move. Also, if I plays at any point the smallest but one element, also II has to play the smallest but one element or face defeat in two moves. Now in \mathcal{A} the smallest but one element is the same as the largest but one element, while in \mathcal{B} they are different. So if I starts with a_2 , II has to play b_2 or b_3 , or else she loses in one move. Suppose she plays b_2 . Now I plays b_3 and II has no good moves left. To obey the rules, she must play a_3 . That is how long she can play, for now when I plays b_4 , II cannot make a legal move anymore. In fact II has a winning strategy in $\mathrm{EF}_2(\mathcal{A},\mathcal{B})$ but I has a winning strategy in $\mathrm{EF}_3(\mathcal{A},\mathcal{B})$.

We now proceed to a more exact definition of the Ehrenfeucht-Fraïssé Game.

Definition 5.20 Suppose L is a vocabulary and $\mathcal{M}, \mathcal{M}'$ are L-structures such that $M \cap M' = \emptyset$. The *Ehrenfeucht–Fra\(\vec{a}\)s\(\vec{e}\) Game* $\mathrm{EF}_n(\mathcal{M}, \mathcal{M}')$ is the game $\mathcal{G}_n(M \cup M', W_n(\mathcal{M}, \mathcal{M}'))$, where $W_n(\mathcal{M}, \mathcal{M}') \subseteq (M \cup M')^{2n}$ is the set of $p = (x_0, y_0, \dots, x_{n-1}, y_{n-1})$ such that:

- **(G1)** For all i < n: $x_i \in M \iff y_i \in M'$.
- (G2) If we denote

$$v_i = \left\{ \begin{array}{ll} x_i & \text{if } x_i \in M \\ y_i & \text{if } y_i \in M \end{array} \right. v_i' = \left\{ \begin{array}{ll} x_i & \text{if } x_i \in M' \\ y_i & \text{if } y_i \in M', \end{array} \right.$$

then

$$f_p = \{(v_0, v_0'), \dots, (v_{n-1}, v_{n-1}')\}$$

is a partial isomorphism $\mathcal{M} \to \mathcal{M}'$.

We call v_i and v_i' corresponding elements. The infinite game $\mathrm{EF}_{\omega}(\mathcal{M},\mathcal{M}')$ is defined quite similarly, that is, it is the game $\mathcal{G}_{\omega}(M \cup M', W_{\omega}(\mathcal{M}, \mathcal{M}'))$, where $W_{\omega}(\mathcal{M}, \mathcal{M}')$ is the set of $p = (x_0, y_0, x_1, y_1, \ldots)$ such that for all $n \in \mathbb{N}$ we have $(x_0, y_0, \ldots, x_{n-1}, y_{n-1}) \in W_n(\mathcal{M}, \mathcal{M}')$.

Note that the game EF_{ω} is a closed game.

Proposition 5.21 Suppose L is a vocabulary and A and B are L-structures. The following are equivalent:

- 1. $\mathcal{A} \simeq_{p} \mathcal{B}$.
- 2. II has a winning strategy in $EF_{\omega}(\mathcal{A}, \mathcal{B})$.

Proof Assume $A \cap B = \emptyset$. Let P be first a back-and-forth set for \mathcal{A} and \mathcal{B} . We define a winning strategy $\tau = (\tau_i : i < \omega)$ for **II**. Since $P \neq \emptyset$ we can fix an element f of P. Condition (5.8) tells us that if $a_1 \in A$, then there are $b_1 \in B$ and g such that

$$f \cup \{(a_1, b_1)\} \subseteq g \in P. \tag{5.12}$$

Let $\tau_0(a_1)$ be one such b_1 . Likewise, if $b_1 \in B$, then there are $a_1 \in A$ such that (5.12) holds and we can let $\tau_0(b_1)$ be some such a_1 . We have defined $\tau_0(c_1)$ whatever c_1 is. To define $\tau_1(c_1, c_2)$, let us assume I played $c_1 = a_1 \in A$. Thus (5.12) holds with $b_1 = \tau_0(a_1)$. If $c_2 = a_2 \in A$ we can use (5.8) again to find $b_2 = \tau_1(a_1, a_2) \in B$ and h such that

$$f \cup \{(a_1, b_1), (a_2, b_2)\} \subseteq h \in P.$$

The pattern should now be clear. The back-and-forth set P guides $\mathbf I\mathbf I$ to always find a valid move. Let us then write the proof in more detail: Suppose we have defined τ_i for i < j and we want to define τ_j . Suppose player $\mathbf I$ has played x_0, \dots, x_{j-1} and player $\mathbf I\mathbf I$ has followed τ_i during round i < j. During the inductive construction of τ_i we took care to define also a partial isomorphism $f_i \in P$ such that $\{v_0, \dots, v_{i-1}\} \subseteq \mathrm{dom}(f_{i-1})$. Now player $\mathbf I$ plays x_j . By assumption there is $f_j \in P$ extending f_{j-1} such that if $x_j \in A$, then $x_j \in \mathrm{dom}(f_j)$ and if $x_j \in B$, then $x_j \in \mathrm{rng}(f_j)$. We let $\tau_j(x_0, \dots, x_j) = f_j(x_j)$ if $x_j \in A$ and $\tau_j(x_0, \dots, x_j) = f_j^{-1}(x_j)$ otherwise. This ends the construction of τ_j . This is a winning strategy because every f_p extends to a partial isomorphism $\mathcal{M} \to \mathcal{N}$.

For the converse, suppose $\tau = (\tau_n : n < \omega)$ is a winning strategy of II. Let Q consist of all plays of $EF_{\omega}(\mathcal{A}, \mathcal{B})$ in which player II has used τ . Let P consist of all possible f_p where p is a position in the game $EF_{\omega}(\mathcal{A}, \mathcal{B})$ with an extension in Q. It is clear that P is non-void and has the properties (5.8) and (5.9).

To prove partial isomorphism of two structures we now have two alternative methods:

- 1. Construct a back-and-forth set.
- 2. Show that player II has a winning strategy in EF_{ω} .

By Proposition 5.21 these methods are equivalent. In practice one uses the game as a guide to intuition and then for a formal proof one usually uses a back-and-forth set.

5.6 Back-and-Forth Sequences

Back-and-forth sets and winning strategies of player II in the Ehrenfeucht–Fraïssé Game EF_{ω} correspond to each other. There is a more refined concept, called a back-and-forth sequence, which corresponds to a winning strategy of player II in the finite game EF_n .

Definition 5.22 A back-and-forth sequence $(P_i : i \leq n)$ is defined by the conditions

$$\emptyset \neq P_n \subseteq \ldots \subseteq P_0 \subseteq \operatorname{Part}(\mathcal{A}, \mathcal{B}). \tag{5.13}$$

$$\forall f \in P_{i+1} \forall a \in A \exists b \in B \exists g \in P_i (f \cup \{(a,b)\} \subseteq g) \text{ for } i < n. (5.14)$$

$$\forall f \in P_{i+1} \forall b \in B \exists a \in A \exists g \in P_i (f \cup \{(a,b)\} \subseteq g) \text{ for } i < n. (5.15)$$

If P is a back-and-forth set, we can get back-and-forth sequences $(P_i: i \leq n)$ of any length by choosing $P_i = P$ for all $i \leq n$. But the converse is not true: the sets P_i need by no means be themselves back-and-forth sets. Indeed, pairs of countable models may have long back-and-forth sequences without having any back-and-forth sets. Let us write

$$\mathcal{A} \simeq_p^n \mathcal{B}$$

if there is a back-and-forth sequence of length n for A and B.

Lemma 5.23 The relation \simeq_n^n is an equivalence relation on Str(L).

Proof Exactly as Lemma 5.15.

Example 5.24 We use $(\mathbb{N} + \mathbb{N}, <)$ to denote the linear order obtained by putting two copies of $(\mathbb{N}, <)$ one after the other. (The ordinal of this order is $\omega + \omega$.) Now $(\mathbb{N}, <) \simeq_p^2 (\mathbb{N} + \mathbb{N}, <)$, for we may take

$$\begin{split} P_2 &= \{\emptyset\}. \\ P_1 &= \{\{(a,b)\} : 0 < a \in \mathbb{N}, \ 0 < b \in \mathbb{N} + \mathbb{N}\} \cup \{(0,0)\} \cup P_2. \\ P_0 &= \{\{(a_0,b_0), (a_1,b_1)\} : a_0 < a_1 \in \mathbb{N}, \ b_0 < b_1 \in \mathbb{N} + \mathbb{N}\} \cup P_1. \end{split}$$

Note that $(\mathbb{N}, <) \not\simeq_p^3 (\mathbb{N} + \mathbb{N}, <)$.

Proposition 5.25 Suppose A and B are discrete linear orders (i.e. every element with a successor has an immediate successor and every element with a predecessor has an immediate predecessor) with no endpoints, and $n \in \mathbb{N}$. Then $A \simeq_p^n B$.

Proof Let P_i consist of $f \in \text{Part}(\mathcal{A}, \mathcal{B})$ with the following property: $f = \{(a_0, b_0), \dots, (a_{n-i-1}, b_{n-i-1})\}$ where

$$a_0 \le \dots \le a_{n-i-1},$$

$$b_0 \le \dots \le b_{n-i-1},$$

and for all $0 \le j < n-i-1$ if $|(a_j, a_{j+1})| < 2^i$ or $|(b_j, b_{j+1})| < 2^i$, then $|(a_j, a_{j+1})| = |(b_i, b_{j+1})|$.

Example 5.26 $(\mathbb{Z},<) \simeq_p^n (\mathbb{Z} + \mathbb{Z},<)$ for all $n \in \mathbb{N}$, but note that $(\mathbb{Z},<) \not\simeq_p (\mathbb{Z} + \mathbb{Z},<)$.

Proposition 5.27 Suppose L is a vocabulary and A and B are L-structures. The following are equivalent:

- 1. $\mathcal{A} \simeq_p^n \mathcal{B}$.
- 2. II has a winning strategy in $EF_n(\mathcal{A}, \mathcal{B})$.

Proof Let us assume $A \cap B = \emptyset$. Let $(P_i : i \leq n)$ be a back-and-forth sequence for \mathcal{A} and \mathcal{B} . We define a winning strategy $\tau = (\tau_i : i \leq n)$ for II. Since $P_n \neq \emptyset$ we can fix an element f of P_n . Condition (5.14) tells us that if $a_1 \in A$, then there are $b_1 \in B$ and g such that

$$f \cup \{(a_1, b_1)\} \subseteq g \in P_{n-1}.$$
 (5.16)

Let $\tau_0(a_1)$ be one such b_1 . Likewise, if $b_1 \in B$, then there are $a_1 \in A$ such that (5.16) holds and we can let $\tau_0(b_1)$ be some such a_1 . We have defined $\tau_0(c_1)$ whatever c_1 is. To define $\tau_1(c_1,c_2)$, let us assume I played $c_1=a_1 \in A$. Thus (5.16) holds with $b_1=\tau_0(a_1)$. If $c_2=a_2 \in A$ we can use (5.13) again to find $b_2=\tau_1(a_1,a_2) \in B$ and h such that

$$f \cup \{(a_1, b_1), (a_2, b_2)\} \subseteq h \in P_{n-2}.$$

The pattern should be clear now. As before, the back-and-forth sequence guides II to always find a valid move. Let us then write the proof in more detail: Suppose we have defined τ_i for i < j and we want to define τ_j . Suppose player I has played x_0, \ldots, x_{j-1} and player II has followed τ_i during round i < j. During the inductive construction of τ_i we took care to define also a partial isomorphism $f_i \in P_{n-i}$ such that $\{v_0, \ldots, v_{i-1}\} \subseteq \text{dom}(f_i)$. Now player I plays x_j . By assumption there is $f_j \in P_{n-j}$ extending f_{j-1} such that if $x_j \in A$, then $x_j \in \text{dom}(f_j)$ and if $x_j \in B$, then $x_j \in \text{rng}(f_j)$. We let $\tau_j(x_0, \ldots, x_j) = f_j(x_j)$ if $x_j \in A$ and $\tau_j(x_0, \ldots, x_j) = f_j^{-1}(x_j)$ otherwise. This ends the construction of τ_j . This is a winning strategy because every f_p extends to a partial isomorphism $\mathcal{M} \to \mathcal{N}$.

For the converse, suppose $\tau=(\tau_i:i\leq n)$ is a winning strategy of II. Let Q consist of all plays of $\mathrm{EF}_n(\mathcal{A},\mathcal{B})$ in which player II has used τ . Let P_{n-i} consist of all possible f_p where $p=(x_0,y_0,\ldots,x_{i-1},y_{i-1})$ is a position in the game $\mathrm{EF}_n(\mathcal{A},\mathcal{B})$ with an extension in Q. It is clear that $(P_i:i\leq n)$ has the properties (5.13) and (5.14). Note that:

$$P_n = \{\emptyset\}$$

$$P_{n-1} = \{(x_0, \tau_0(x_0)) : x_0 \in A \cup B\}$$

$$P_{n-2} = \{(x_0, \tau_0(x_0), x_1, \tau_1(x_0, x_1)) : x_0, x_1 \in A \cup B\}$$

$$P_0 = \{(x_0, \tau_0(x_0), \dots, x_{n-1}, \tau_{n-1}(x_0, \dots, x_{n-1})) : x_0, \dots, x_{n-1} \in A \cup B\}.$$

5.7 Historical Remarks and References

Back-and-forth sets are due to Fraïssé (1955). The Ehrenfeucht–Fraïssé Game was introduced in Ehrenfeucht (1957) and Ehrenfeucht (1960/1961). Back-and-forth sequences were introduced in Karp (1965). Exercise 5.40 is from Ellentuck (1976). Exercise 5.54 is from Barwise (1975). Exercise 5.71 is from Rosenstein (1982).

Exercises

- 5.1 Show that isomorphism of structures is an equivalence relation in the sense that it is reflexive, symmetric, and transitive.
- 5.2 Suppose L is a finite vocabulary, \mathcal{B} is a countable L-model, and $\{b_n : n < \omega\}$ is an enumeration of the domain B of \mathcal{B} . Suppose \mathcal{A} is a countable L-model. Show that the following are equivalent:

(1)
$$A \cong B$$
.

П

(2) There is an enumeration $\{a_n : n < \omega\}$ of the domain of \mathcal{A} so that for all atomic L-formulas $\theta(x_0, \ldots, x_n)$ and all $n < \omega$ we have

$$\mathcal{A} \models \theta(a_0, \dots, a_n) \iff \mathcal{B} \models \theta(b_0, \dots, b_n).$$

- 5.3 Suppose L is a vocabulary and \mathcal{M} is an L-structure. Show that the set $\operatorname{Aut}(\mathcal{M})$ of automorphisms of \mathcal{M} forms a group under the operation of composition of functions.
- 5.4 Give an example of \mathcal{M} such that $\operatorname{Aut}(\mathcal{M})$ (see the previous exercise) is:
 - 1. The trivial one-element group.
 - 2. A non-trivial abelian group (e.g. the additive group of the integers).
 - 3. A non-abelian group (e.g. the symmetric group S_3).
- 5.5 How many automorphisms do the following structures have.
 - 1. A linear order of n elements.
 - 2. $(\mathbb{N}, <)$.
 - 3. $(\mathbb{Z}, <)$.
 - 4. $(\mathbb{Q}, <)$.
- 5.6 Show that if \mathcal{A} and \mathcal{B} are unary structures, then $\mathcal{A} \cong \mathcal{B}$ if and only if for all $\epsilon: \{1,\ldots,n\} \to \{0,1\}$ we have $|C_{\epsilon}(\mathcal{A})| = |C_{\epsilon}(\mathcal{B})|$. Easier version: Show that if \mathcal{A} and \mathcal{B} are unary structures with a finite universe of size n, then $\mathcal{A} \cong \mathcal{B}$ if and only if for all $\epsilon: \{1,\ldots,n\} \to \{0,1\}$ we have $|C_{\epsilon}(\mathcal{A})| = |C_{\epsilon}(\mathcal{B})|$.
- 5.7 Suppose \mathcal{M} is a unary structure in which every ϵ -constituent has exactly three elements. How many elements does \mathcal{M} have? How many automorphisms does \mathcal{M} have?
- 5.8 $L = \{P_1, \dots, P_m\}$, where each P_i is unary. Show that the number of non-isomorphic L-structures on the universe $\{1, \dots, n\}$ is $\binom{n+2^m-1}{2^m-1}$.
- 5.9 Describe the group of automorphisms of a finite unary structure.
- 5.10 Suppose \mathcal{M} is an equivalence relation with a finite universe such that $EC_n(\mathcal{M})=2$ for each $n=1,\ldots,5$ and $EC_n(\mathcal{M})=0$ for other n. How many elements are there in the universe of \mathcal{M} ? How many automorphisms does \mathcal{M} have?
- 5.11 Show that for any $m \in \mathbb{N}$ there is $m^* \in \mathbb{N}$ such that if $n \geq m^*$ then there are more than n^m non-isomorphic equivalence relations on the universe $\{1,\ldots,n\}$. Conclude that for any $m \in \mathbb{N}$ there is $m^* \in \mathbb{N}$ such that if $n \geq m^*$ then there are more non-isomorphic equivalence relations on the universe $\{1,\ldots,n\}$ than non-isomorphic $\{P_1,\ldots,P_m\}$ -structures, where each P_i is unary.

Exercises 73

- 5.12 Show that if \mathcal{A} and \mathcal{B} are equivalence relations, then $\mathcal{A} \cong \mathcal{B}$ if and only if for all $\kappa \leq |A \cup B|$ we have $EC_{\kappa}(\mathcal{A}) = EC_{\kappa}(\mathcal{B})$. Easier version: Show that if \mathcal{A} and \mathcal{B} are equivalence relations with a finite universe of size n, then $\mathcal{A} \cong \mathcal{B}$ if and only if for all $m \leq n$ we have $EC_m(\mathcal{A}) = EC_m(\mathcal{B})$.
- 5.13 Describe the group of automorphisms of a finite equivalence relation.
- 5.14 Show that if \mathcal{M} and \mathcal{N} are countable dense linear orders, then $\mathcal{M} \cong \mathcal{N}$ if and only if $SG(\mathcal{M}) = SG(\mathcal{N})$. Demonstrate that this is not true for non-dense countable linear orders or for uncountable dense linear orders.
- 5.15 Show that two well-orders \mathcal{M} and \mathcal{N} are isomorphic if and only if $o(\mathcal{M}) = o(\mathcal{N})$.
- 5.16 Prove that two well-founded trees $\mathcal M$ and $\mathcal N$ are isomorphic if and only if $\mathrm{stp}_{\mathcal M}=\mathrm{stp}_{\mathcal N}.$
- 5.17 Prove that two successor structures \mathcal{M} and \mathcal{N} are isomorphic if and only if $CC_a(\mathcal{M}) = CC_a(\mathcal{N})$ for all $a \in \mathbb{N} \cup \{\infty\}$. Easier version: Prove that two successor structures \mathcal{M} and \mathcal{N} both of which have only finitely many components are isomorphic if and only if $CC_a(\mathcal{M}) = CC_a(\mathcal{N})$ for all $a \in \mathbb{N} \cup \{\infty\}$.
- 5.18 Show that any uncountable collection of countable non-isomorphic successor structures has to contain a successor structure with infinitely many cycle components.
- 5.19 Describe the group of automorphisms of a successor structure with n \mathbb{Z} -components and m_i i-cycle components for $i=1,\ldots,k$.
- 5.20 Give an example of an infinite structure \mathcal{M} with no substructures $\mathcal{N} \neq \mathcal{M}$.
- 5.21 Consider $\mathcal{M}=(\mathbb{Z},+)$. What is $[X]_{\mathcal{M}}$, if X is
 - $1. \{0\},$
 - 2. {1},
 - 3. $\{2, -2\}$.
- 5.22 Consider $\mathcal{M} = (\mathbb{Z}, +, -)$. What is $[X]_{\mathcal{M}}$, if X is $\{13, 17\}$?
- 5.23 Suppose \mathcal{M} is a successor structure consisting of the standard component and two five-cycles. Show that there are exactly four possibilities for the set $[X]_{\mathcal{M}}$.
- 5.24 Show that the universe of $[X]_{\mathcal{M}}$ is the intersection of all universes of substructures \mathcal{N} of \mathcal{M} such that $X \subseteq \mathcal{N}$.
- 5.25 Prove Lemma 5.12.
- 5.26 Show that every Boolean algebra \mathcal{M} is isomorphic to a substructure of $(\mathcal{P}(A),\subseteq)$, where A is the set of all ultrafilters of \mathcal{M} . (This is the so-called *Stone's Representation Theorem.*)

- 5.27 Show that every tree every element of which has height $<\omega$ is isomorphic to a substructure of the tree $(A^{<\omega}, \leq)$ for some set A.
- 5.28 Suppose $L = \emptyset$. Show that any two infinite L-structures are partially isomorphic.
- 5.29 Suppose $L = \{P_1, \dots, P_n\}$ is a *unary* vocabulary. Suppose we have two L-structures \mathcal{M} and \mathcal{N} satisfying the following condition: For all $\epsilon: \{1, \dots, n\} \to \{0, 1\}$ and all $m \in \mathbb{N}$ it holds that

$$|C_{\epsilon}(\mathcal{M})| = m \iff |C_{\epsilon}(\mathcal{N})| = m.$$

Show that this is a necessary and sufficient condition for the two structures to be partially isomorphic.

- 5.30 Suppose that two equivalence relations \mathcal{M} and \mathcal{N} satisfy the following conditions for all $n, m < \omega$:
 - 1. $EC_n(\mathcal{M}) = m \iff EC_n(\mathcal{N}) = m$.
 - If one has exactly m infinite classes, then so does the other. In symbols:

$$\sum_{\aleph_0 \le \kappa \le |M|} EC_{\kappa}(\mathcal{M}) = m \iff \sum_{\aleph_0 \le \kappa \le |N|} EC_{\kappa}(\mathcal{N}) = m.$$

Show that these are a necessary and sufficient condition for the two structures to be partially isomorphic.

5.31 For elements t of a well-founded tree \mathcal{M} we can define

$$\operatorname{dom}(\operatorname{stp}'_{\mathcal{M},t}) = \{\operatorname{stp}'_{\mathcal{M},s} : s \in \operatorname{ImSuc}(t)\}$$

$$\operatorname{stp}_{\mathcal{M},t}'(\operatorname{stp}_{\mathcal{M},s}') = \min(\aleph_0, |\{s' \in \operatorname{ImSuc}(t) : \operatorname{stp}_{\mathcal{M},s}' = \operatorname{stp}_{\mathcal{M},s'}'\}|).$$

Suppose \mathcal{M} and \mathcal{N} are well-founded trees such that $\mathrm{stp}'_{\mathcal{M}} = \mathrm{stp}'_{\mathcal{N}}$. Show that \mathcal{M} and \mathcal{N} are partially isomorphic. Give an example of two well-founded partially isomorphic trees that are not isomorphic.

- 5.32 Suppose that \mathcal{M} and \mathcal{N} are successor structures, $f \in \operatorname{Part}(\mathcal{M}, \mathcal{N})$. Show:
 - 1. f maps elements of the standard component of \mathcal{M} to elements of the standard component of \mathcal{N} .
 - 2. f maps elements of a cycle component of \mathcal{M} of size n to elements of a cycle component of \mathcal{N} of size n.
 - 3. f maps elements of a \mathbb{Z} -component of \mathcal{M} to elements of a \mathbb{Z} -component of \mathcal{N} .
- 5.33 Suppose that two successor structures \mathcal{M} and \mathcal{N} satisfy the following conditions for all $n, m < \omega$: