

https://www.123rf.com/photo_130776341_st 1

BUSINESS INTELLIGENCE & DATA WAREHOUSE

GROUP ASSIGNMENT #2 DATA INTEGRATION DESIGN GROUP D

Anxhelo Zylyftari Amos Mtaita Jacobo De Leon Garcia Jose Ricardo Gomes Dos Santos Iman Hdairis

ABSTRACT

This project consists of designing a one-time historic load of the German Farm Subsidies data using an ETL (Extraction, Transformation and Loading) tool.

At the end of this project the following ETL documents will be ready:

Data Mapping document: A document that describes the default strategy for extracting data from data source, data mapping process, and data quality tracking and metadata approach.

ETL Scripts: The collection of ETL processes created with a data integration tool (i.e. PDI to be specific)

Database backup: A backup file of the database and schema was created after the ETL process has been executed successfully

OBJECTIVE OF THE ETL PROCESS:

- **Extracting:** Gathering raw data from the source systems and writing it to disk in the ETL environment before any significant restructuring of the data takes place.
- Cleaning and conforming: Sending source data through a series of processing steps in the ETL system to improve the quality of the data received from the source, and merging data from two or more sources to create and enforce con-formed dimensions and conformed metrics.
- **Delivering:** Physically structuring and loading the data into the presentation server's target dimensional models.
- Managing. Managing the related systems and processes of the ETL environment in a coherent manner.

1.0 DEVELOP ETL PLAN

A high-level plan is beneficial in order to avoid redesign and rework during the process.

1.1 DRAW THE HIGH-LEVEL PLAN

The high-level schematic provides an overview of the ETL process from the source to the final tables that were loaded into the database. The German farm subsidies data is gathered from two main files; **Recipients (see appendix 1)** file as well as the **Payments (see appendix 2)** file.

High Level Data Staging Plan Schematic

1.2 CHOOSE AN ETL TOOL

There are multiple ETL tools available in the market. Pentaho is the ETL tool used for this course. Pentaho Data Integration features and benefits include: quick installations, 100% Java with cross platform support for Windows, Linux, and Macintosh. Easy to use graphical designer with over 100 out-of-the-box mapping objects including inputs, transforms, and outputs.

https://help.pentaho.com/Documentation/6.0/0J0/0C0/000

1.3 DEVELOP DEFAULT STRATEGIES

Now that the overview plan has been drafted and the ETL tool has been selected, a set of default strategies were developed for the activities in the ETL system.

Kimball highlighted 7 activities in The Data Warehouse Toolkit book, however in this project only the following activities were taken:

1. Extract from each major source system.

The default method for extracting data from each source system was identified. The **Recipient** and **Payments** tables were inputted as csv files into Pentaho. The Schema in mySQL workbench was integrated into transformations.

2. Police data quality for dimensions and particularly facts.

Kimball emphasizes that this is the step that ETL systems add value to the data. The data quality must be monitored during the ETL process rather than waiting for business users to find data problems. Therefore, the following measures were taken:

For the **Recipient table** (german.subsidies.recipient.csv):

- Removed the address2, geo_4, geo1_natlang, geo2_natlang, geo3_natlang, geo4_natlang columns as they don't contain any data and are not relevant.
- Deleted **countrypayment** because it contained DE for all rows
- In the **countryrecipnt** column, the "99" values were replaced by "DE".
- In the **name** column, the "Unknown recipient" values were replaced with a blank (to do easier Queries using Null functions).
- In the **geo_1** column, the "Unknown" values were replaced with a blank.
- In the **town** column, there were 5 values that included the zip code, these zip code values were removed and only the town was kept.

One recommendation is to put constraints on the data entry user, whereby some of these steps could be removed. For example, the data type for countryrecipnt could be predetermined as string.

For the **Payments table** (german.subsidies.payments.csv):

- The globrecipnt_idx attribute is used to identify the recipients of payments, however given that the globalrecipnt_id field is already a unique identifier, it was decided to consider the field as redundant and therefore it was removed.
- Removed the **amount_nat_cur** as it doesn't contain any data and is not relevant.
- Deleted countrypayment because it contained DE for all rows.

1.4 UPDATED SNOWFLAKE SCHEMA

Taking the above points into account, below screenshot is the amended schema.

We decided to remove the <u>Country Payment table</u> because there was only one row "DE" which made it irrelevant.

We also removed the <u>Recipient Location table</u> because of the missing values in the location attributes we had in the recipient table (for example zipcode attribute was missing 492 values).

1.5 EXECUTING THE PROJECT

In order to run the transformations and job smoothly, it is necessary to follow the following steps:

- Unzip the "data_input" folder
- Upload the .mwb file on MySQL Workbench and Forward Engineer to generate the schema
- Use the job/transformations directly from the enclosed folder (do not move the files from their parent folder)

Note: the contents of the parent file should be as follows:

2.0 DATA TRANSFORMATION STEPS

2.1 TRANSFORMATION 1 (TR1): CREATING THE COUNTRY RECIPIENT TABLE D_COUNTRY_RECIPIENT

Step 1 - Input recipient Table: The recipient table is loaded into PDI by using the 'input CSV file' connector as the data provided from the source was in this format. Once loaded, run this step to ensure data is added into PDI ready for transformation. (see appendix 1)

Step 2 - Select Fields needed in the Country Recipient Table: The 'Select Values' transformation phase is used to eliminate the columns that will not be needed in the final fact table. After adding this step run the system to ensure only needed columns remain in the table.

Step 3 - Fix Country Recipient: As part of ensuring data quality, the "99" values in the countryrecipnt column are replaced by "DE".

Step 4 - Sort the table based on the Country Recipient Table: The table was sorted so we can extract only unique values in the next transformation step.

Step 5 - Extract only Unique countryrecipnt Values: Unique values were extracted ensuring data quality.

Step 7 - Add sequence country_id: The sequence step was used to create the country_id which was added as the primary key.

Step 8 - Select Metadata for all Columns: Review the metadata of the table now including the country_id to ensure the correct data type. Run this step to ensure all adjusted metadata information matches with the data in the table.

Step 9 - Reorder the Table Columns : Reordering the table to prepare the table for integration in the database.

Step 10 - Create a Table Output Linked to a MySQL Database: Table is ready for loading into a database. This is done by using the 'Table Output' designer which enables us to link the table to a database while also automatically creating an SQL script that creates the table and also loads the data onto the table. (see appendix 3)

Step 11 - Create a CSV Table: Create a CSV table which will be used for data quality review and checks. (see appendix 3)

Step by Step Overview of Transformation 1 (TR1)

2.2 TRANSFORMATION 2 (TR2): CREATE THE SCHEME DIMENSION TABLE D_SCHEME

Step 1 - Input Payment Table: The payment table is loaded into PDI by using the 'input CSV file' connector as the data provided from the source was in this format. Once loaded, run this step to ensure data is added into PDI ready for transformation. (see appendix 2)

Step 2 - Select Fields needed in the Scheme Table: Select values needed for this table.

Step 3 - Select Metadata for all Columns: Review the metadata information that was loaded together with the table and make adjustments where needed.

Step 4 - Sort the table based on the Glob_Scheme_ID: Sort the table so we can extract only unique values in the next transformation step.

Step 5 - Extract only Unique Glob_Scheme_ID Values: Extract only unique values in order to deduplicate the table ensuring the the scheme table has unique ID's.

Step 6 - Create the Scheme_ID: Create a new unique_id column which will be used as the primary key of the table.

Step 7 - Add the Scheme_ID to the main Table: The created scheme_id is added to the table with the glob_scheme_id in order to create the final d_scheme table.

Step 8 - Create a Table Output Linked to a MySQL Database: The table is ready for loading into a database. This is done by using the 'Table Output' designer which enables us to link the table to a database while also automatically creating an SQL script that creates the table and also loads the data onto the table. (see appendix 4)

Step 9 - Create a CSV Table: Create a CSV table which will be used for data quality review and checks. (see appendix 4)

Step by Step Overview of Transformation 2 (TR2)

2.3 TRANSFORMATION 3 (TR3): CREATING THE RECIPIENT DIMENSION TABLE D_RECIPIENT

Step 1 - Input recipient Table: The recipient table is loaded into PDI by using the 'input CSV file' connector as the data provided from the source was in this format. (see appendix 1)

Step 2 - Select Columns for the Recipient Dimension Table: The 'Select Values' transformation phase was used to eliminate the columns that will not be needed in the recipient dimension table. (see appendix 5)

Step 3 - Select Metadata for all Columns: The metadata information that was loaded together with the table was reviewed and adjusted where needed. (see appendix 6)

Step 4 - Fix Country Recipient: During this step, as part of ensuring data quality, the "99" values in the countryrecipnt column are replaced by "DE".

Step 5 - Lookup the countryrecipnt: Look up the countryrecipnt into our table as the country_id so it can be later used as the foreign key linked to the scheme table.

Step 6 - Fix Recipients Name: As part of the data quality check, there are values in the name column which are classified as "Unknown recipient", these values are replaced with blanks.

Step 7 - Fix Town: There are 5 values in the town column which include the zip code, these values should be removed and only the town should remain. (see appendix 7)

Step 8 - Fix Geo_1: The "Unknown" values in the Geo_1 column are removed.

Step 9 - Create a Table Output Linked to a MySQL Database: The table is ready for loading into a database. This is done by using the 'Table Output' designer which enables us to link the table to a database while also automatically creating an SQL script that creates the table and also loads the data onto the table. (see appendix 8)

Step 10 - Create a CSV Table: Create a CSV table which will be used for data quality review and checks. (see appendix 8)

Step by Step Overview of Transformation 3 (TR3)

2.4 TRANSFORMATION 4 (TR4): CREATING THE PAYMENTS FACT TABLE F_PAYMENTS

Step 1 - Input Payment Table: The payment table is loaded into PDI by using the 'input CSV file' connector as the data provided from the source was in this format. (see appendix 2)

Step 2 - Select Columns for the Final Fact Table: Use the 'Select Values' transformation phase to eliminate the columns that will not be needed in the final fact table. (see appendix 9)

Step 3 - Select Metadata for all Columns: Review the metadata information that was loaded together with the table and make adjustments where needed.

Step 4 - Lookup the Scheme_ID: Look up the glob_scheme_id into our table as the scheme_id so it can be later used as the foreign key linked to the scheme table.

Step 5 - Lookup the Recipient_ID: Look up the globrecipnt_id into our table as the recipient_id so it can be later used as the foreign key linked to the recipient table.

Step 6 - Create a Table Output Linked to a MySQL Database: The table is ready for loading into a database. This is done by using the 'Table Output' designer which enables us to link the table to a database while also automatically creating an SQL script that creates the table and also loads the data onto the table. (see appendix 10)

Step 7 - Create a CSV Table: Create a CSV table which will be used for data quality review and checks. (see appendix 10)

Step by Step Overview of Transformation 4 (TR4)

2.5 FINAL ETL JOB: COMBINING ALL TRANSFORMATIONS

The final process was the creation of an ETL job which combines all transformations into a single process which was used to then load all the data into the database.

3.0 DATABASE BACKUP

A backup file is useful in order to share the database with the schema and the data with related team members, whereby the ELT process does not need to be executed on each machine. This process is faster.

The backup file is generated from the created farm_subsidies database

Under the administration section \rightarrow select Data Export \rightarrow select Farmsubsidies database (make sure to select: Dump Structure and Data, as well as Export to Self-Contained File- meaning only one sql script is created and rename the "dump" file to be "german_farms") \rightarrow click Export \rightarrow "Export Completed"

To load a backfile: MySQL Workbench: Through my administration \rightarrow under Management select Data Import/Restore \rightarrow select Import from Self-Contained File \rightarrow select the path which includes the backup file \rightarrow select Dump Structure and Data \rightarrow click Start Import \rightarrow "Import Completed"

APPENDIX

Appendix 1: Recipient Table (Source CSV File)

name	addre ss1	addre ss2	zipcod e	town	count ryreci pnt	count rypym nt	recipi ent_id	recipi ent_id x	globre cipnt_ id	globre cipnt_ idx	geo_1	geo_2	geo_3	geo_4	geo1_ natla ng	geo2_ natla ng	geo3_ natla ng	geo4_ natla ng	latitu de	longit ude	seriali d
Centralmarkt Roisdorf/Stra elen GmbH			DE- 53332		DE	DE	1	1	DE1	DE1	Nordr hein- Westf alen	Köln	Rhein -Sieg- Kreis						50.76 376	6.984 7	1
Campina GmbH & Co. KG			DE- 50739		DE	DE	2	2	DE2	DE2	Nordr hein- Westf alen	Köln	KöIn						50.97 356	6.946 29	2
NBV / UGA GmbH			DE- 47638		DE	DE	3	3	DE3	DE3	Nordr hein- Westf alen	DVºss eldorf	Kleve						51.44 521	6.268 44	3
Landgard Obst & Gemv ^o se GmbH & Co. K			DE- 53332		DE	DE	4	30124 4	DE4	DE1	Nordr hein- Westf alen	Köln	Rhein -Sieg- Kreis						50.76 376	6.984 7	4
UGA Niederrhein GmbH			DE- 47638		DE	DE	5	3	DE5	DE3	Nordr hein- Westf alen	DVºss eldorf	Kleve						51.44 521	6.268 44	5

Appendix 2: Payments Table (Source CSV File)

	• •	•							
year	countrypayme nt	amount_euros	amt_nat_currc y	payment_id	globpaymnt_i d	globrecipnt_id	globrecipnt_id x	glob_scheme_ id	serialid
2008	DE	3262		912573	DE912573	DE233142	DE233142	DE3	1
2008	DE	570		912574	DE912574	DE233145	DE233145	DE3	2
2008	DE	570		912575	DE912575	DE233146	DE233146	DE3	3
2008	DE	575.77		912576	DE912576	DE233147	DE233147	DE3	4
2008	DE	437.67		912577	DE912577	DE233149	DE233149	DE3	5

Appendix 3: d_country_recipient Table

country_id	Countryrecipnt
1	UK
2	NL
3	LU
4	IE
5	HU
6	GB
7	FR
8	ES
9	DK
10	DE
11	CZ
12	СН
13	BE
14	AT

Appendix 4: d_scheme Table

scheme_id	glob_scheme_id
1	DE9
2	DE8
3	DE7
4	DE6
5	DE5
6	DE4
7	DE3
8	DE2
9	DE16
10	DE15
11	DE14
12	DE13
13	DE12
14	DE11
15	DE10
16	DE1

Appendix 5: Selected Columns for d_recipient Table

Left Column	Туре	Format	Length
recipient_id	Integer	#	15
globrecipnt_id	String		6
name	String		37
address1	String		25
town	String		45
geo_1	String		19
geo_2	String		12
geo_3	String		20
latitude	Number	#.#	8
longitude	Number	#.#	8
zipcode	String		8
countryrecipnt	String		2
serialid	Integer	#	15

Appendix 6: Reviewed Metadata for d_Recipient Table

Column	Rename to	Туре	Length	Precision	Binary to Normal?
name		String	150		N
address1		String	45		N
zipcode		String	10		N
town		String	45		N
recipient_id		Integer	0	0	N
globrecipnt_id		String	10		N
geo_1		String	45		N
geo_2		String	45		N
geo_3		String	45		N
latitude		Number	11	5	N
longitude		Number	10	5	N
serialid		Integer		0	N
countryrecipnt		String	2		N

Appendix 7: Clean Town Column in Recipient Table

In stream field	Out stream field	use RegEx	Search	Replace with	Set empty string?
town		N	4389PC		N
town		N	8911AL		N
town		N	57537		N
town		N	9035EK		N
town		N	6523LD		N

Appendix 8: d_recipient Table

recipient _id	globrecip nt_id	name	address1	town	geo_1	geo_2	geo_3	latitude	longitude	zipcode	country recipnt	serialid	country
1	DE1	Centralm arkt Roisdorf/ Straelen GmbH	Raiffeise nstr. 10		Nordrhei n- Westfale n	Köln	Rhein- Sieg-Kreis	50.8	7	DE-53332	DE	1	10
2	DE2	Campina GmbH & Co. KG	Geldernst ravüe 35		Nordrhei n- Westfale n	Köln	Köln	51	6.9	DE-50739	DE	2	10
3	DE3	NBV / UGA GmbH	Hans- Tenhaeff- Str. 44		Nordrhei n- Westfale n	Düsseld orf	Kleve	51.4	6.3	DE-47638	DE	3	10
4	DE4	Landgard Obst & Gemüse GmbH & Co. K	Raiffeise nstr. 10		Nordrhei n- Westfale n	Köln	Rhein- Sieg-Kreis	50.8	7	DE-53332	DE	4	10
5	DE5	UGA Niederrh ein GmbH			Nordrhei n- Westfale n	DVºsseld orf	Kleve	51.4	6.3	DE-47638	DE	5	10

Appendix 9: Columns for the f_payments Table

Fields	Туре	Format	Length
amount_euros	Number	#.#	7
amt_nat_currcy	Boolean		
glob_scheme_id	String		20
globpaymnt_id	String		8
globrecipnt_id	String		8
payment_id	Integer	#	15
serialid	Integer	#	15
year	Integer	#	15

Appendix 10: f_payments Table

year	amount_euro s	amt_nat_curr cy	payment_id	globpaymnt_i d	globrecipnt_i d	glob_scheme _id	serialid	scheme_id	recipient_id
2008	3262		912573	DE912573	DE233142	DE3	1	7	233142
2008	570		912574	DE912574	DE233145	DE3	2	7	233145
2008	750		912575	DE912575	DE233146	DE3	3	7	233146
2008	575.8		912576	DE912576	DE233147	DE3	4	7	233147
2008	437.7		912577	DE912577	DE233149	DE3	5	7	233149