ЗАВДАННЯ для Лабораторної роботи №3

Метою роботи ε пошук моделі оптимальної складності, причому наперед не відомо, яку саме підмножину всіх регресорів/аргументів містить така модель. Тому необхідно сконструювати і перевірити алгоритми для її пошуку.

- 1. Задано: вибірка n, m, $X[n \times m]$, $y[n \times 1]$; алгоритм МНКО; критерій C_p . Потрібно: запрограмувати алгоритми пошуку моделі оптимальної складності за допомогою МНКО для встановлення того, які саме регресори є зайвими (неінформативними), і вилучити їх з моделі, залишивши в ній тільки інформативні (істинні).
- 2. Задано число $s_0 < m$ істинних аргументів/регресорів, на яких сформовано істинну модель $y^0 = X^*\theta_0^*$; $X^*[n \times s_0]$ матриця довільно вибраних (невідомо як розміщених) s_0 стовпців матриці X. Решта $m-s_0$ стовпців відповідають зайвим (неінформативним) аргументам.
- 3. Як і в 2-й роботі, елементи матриці X формуються генератором випадкових чисел, вектор $y = y^0 + \xi$, де ξ випадковий вектор з заданою дисперсією. Для простоти нехай $\sigma^2 = 0.3$ і не змінюється.
- 4. Один раз обчислюється розширена матриця нормальної системи рівнянь для повної моделі (для всіх m регресорів) $W = [X^TX : X^Ty]$, $X = [x_1x_2 ... x_m]$, яка використовується в усіх алгоритмах. Ця матриця зберігається в початковому вигляді, а всі розрахунки виконуються в робочій/допоміжній матриці $W_{sub}[H : h]$ такої ж розмірності.

Матриці W та W_{sub} спочатку мають однаковий вигляд:

$x_1^T x_1$	$x_1^T x_2$		$x_1^T x_m$	$x_1^T y$
• • •		••	•••	•••
				• • •
$x_m^T x_1$			$x_m^T x_m$	$x_m^T y$

Запрограмувати 3 алгоритми з використанням МНКО:

5. А1 (метод кореляційного включення):

Крок 1: Порахувати парні кореляції:

$$k(x_j, y), \quad j = \overline{1, m}$$

Крок 2: Впорядкувати кореляції в порядку спадання:

$$k_1 = k_{max}, k_2, \dots, k_m; k_j > k_{j+1}$$

і запам'ятати відповідний порядок нового розміщення регресорів j_1, \dots, j_m , наприклад $[3, 8, 1, \dots, m, \dots, 7]$.

Крок 3: переписати в матрицю W_{sub} рядки і стовпці початкової матриці W в порядку номерів j_1, \dots, j_m : в перший рядок і стовпець W_{sub} записуємо з W рядок і стовпець з номером j_1 , який відповідає k_1 , і т.д.

Крок 4: застосувати МНКО до елементів матриці W_{sub} , тобто знайти параметри послідовності m моделей.

Крок 5: для кожної з цих моделей обчислити вихід моделі \hat{y}_s , s=1,...,m, та відповідне значення критерію $C_p(s)$.

Крок 6: визначити оптимальну складність s^* з мінімальним значенням критерію, тобто s^* : $Cp(s) \to min$.

Крок 7: запам'ятати s^* , структуру (порядок слідування регресорів) моделі та її параметри θ^* , а також значення критерію як вихід алгоритму.

Це ϵ 1-й варіант фіксованого (кореляційного) формування послідовності включення регресорів у модель.

6. А2 (метод випадкового включення):

Крок 1: задати K — число варіантів ланцюжків включення аргументів у модель. Наприклад, K = 20; 50; 100.

Крок 2: K разів випадковим чином генерувати послідовність включення регресорів, щоразу запам'ятовуючи цю послідовність $j_1, ..., j_m$.

Далі виконуються в циклі K разів ті ж кроки 3-7, що і в алгоритмі $\mathbf{A1}$. На першому кроці циклу запам'ятовуємо $s^*, j_1, ..., j_{s^*}, \theta^*, C_p(s^*)$, а на кожному наступному порівнюємо результат із тим, що в пам'яті: якщо отриманий $C_p(s^*)$ виявився меншим, то запам'ятовуємо всю нову інформацію, а в іншому випадку нічого не змінюємо. І таким чином виконуємо усі K ітерацій.

Мета: встановити, якого K достатньо для побудови правильної моделі. Це ϵ 2-й варіант *випадкового* формування послідовностей включення регресорів у модель.

7. АЗ (метод перебірного включення):

Крок 1: Будуємо всі моделі складності 1 (т штук):

$$s = 1$$
: $\hat{y}_{1j} = \hat{\vartheta}_{1j}x_j$, $\hat{\vartheta}_{1j} = \frac{x_j^T y}{x_i^T x_j}$, $j = \overline{1, m}$

Знаходимо j^* як розв'язок задачі $C_p(j) \to \min_{j=1,m}$, і переносимо рядок і стовпчик матриці W під таким номером на перші місця матриці W_{sub} .

Крок 2: Будуємо в циклі всі m-1 моделей складності s=2, вважаючи, що на першому місці знаходиться аргумент x_{i^*} , а далі додаємо по одному всі інші:

$$s = 2$$
: $\hat{y}_{2j} = \hat{\theta}_{1j^*} x_{j^*} + \hat{\theta}_{2l} x_l$, $l = \overline{2, m}$

Зрозуміло, що при цьому щоразу для оцінювання параметрів використовуємо алгоритм МНКО, а саме його 2-й крок.

Знаходимо l^* як розв'язок задачі $C_p(j^*,l) \to \min_{l=2,m}$, і переносимо рядок і стовпчик під таким номером на другі місця.

I так далі, до s = m, фактично виконуючи в циклі по s від 1 до m операції кроків 3-5 з першого алгоритму.

При цьому для кожного s запам'ятовуємо «рекордну» для цієї складності s інформацію $s, j_1, ..., j_s, \hat{\theta}_s, C_p(s)$, причому на першому кроці запам'ятовуємо те, що стосується s=1, а на кожному наступному порівнюємо результат із тим, що в пам'яті: якщо отриманий $C_p(s)$ виявився меншим, то записуємо всю нову інформацію, а в іншому випадку нічого не змінюємо. В кінці циклу (при s=m) фактично отримаємо всю інформацію про модель оптимальної складності: $s^*, j_1, ..., j_{s^*}, \theta^*, C_p(s^*)$.

Таким чином тут загалом отримуємо перебір $[m+(m-1)+(m-2)+\cdots+1]$ (знайдіть формулу цієї суми!) варіантів моделей різної структури, що дає порядок складності m^2 замість експоненційної складності 2^m при повному переборі всіх можливих варіантів структур моделей.

Це 3-й варіант *перебірного*, покрокового, спрямованого формування послідовності включення регресорів у модель («найскоріший спуск»).

Зауваження: Замість другого та/або третього алгоритму можна запропонувати свій власний — наприклад, на основі генетичних операторів.

8. Основне Завдання:

1) Виконати Лабораторну роботу №2 для того ж Тесту 1:

$$y^0 = 3x_1 - 2x_2 + x_3 \mid s_0 = 3, m = 5$$

але регресори з розмістити у зворотному порядку, тобто послідовність регресорів [1,2,3,4,5] замінити на [5,4,3,2,1]. Побудувати графіки трьох критеріїв — їх мінімуми повинні бути при s=5, адже значущими регресорами ε 3, 2, 1, а 5 і 4 — зайвими. Це означа ε , що заданий у початковій вибірці порядок аргументів, як правило, не дозволя ε вилучити неінформативні аргументи.

- 2) Запрограмувати вказані 3 алгоритми A1, A2 та A3 для пошуку моделі оптимальної складності (або замість A2 запропонувати власний алгоритм).
- 3) Подати на вхід кожної програми Тест 1 зі зворотним порядком регресорів, і дослідити, як вони «відкривають» істинну структуру моделі.
- 4) Дослідити алгоритми на великому тестовому прикладі m=15; $s_0=10$:

$$y^0 = \vartheta_1^0 x_1 + \dots + \vartheta_{s^0}^0 x_{s^0}$$
, де ϑ_0^0 — випадкові цілі числа: $\vartheta_j^0 \in [1, 10]$.

5) Для кожного прикладу розмістити отримані результати так, щоб їх зручно було порівнювати, і зробити належні висновки щодо порівняльної ефективності «відкриття» істинної структури моделі трьома алгоритмами.

Увага: Заохочується розв'язання власної *реальної* задачі: + від 2 до 5 балів!