3F — Framework for FEMM

13th August 2016

Contents

1	Geometry															2									
	1.1	,	Slots																						2
	1.2	,	Stator	·s																					3
	1.3	(SPM .	Magn	ets																				6
	1.4	,	SPM :	Roto	rs.																				7
2	Wir	nc	ling																						9

Chapter 1

Geometry

1.2 Stators

 $2 \; \mathtt{poles}$

 $p \; \mathtt{poles}$

1.3 SPM Magnets

SPM Rotors 1.4

8

2p poles

Chapter 2

Winding

We will characterise a winding through

Name	Math symbol	Code symbol
N. of phases	m	m
N. of coils	$N_{ m coils}$	coils
N. of turns per coil	$N_{ m turns}$	turns
N. of layers	$N_{ m layers}$	layers

Typically, given a lamination stack with Q slots

$$N_{\rm coils} = \frac{Q}{2} \, N_{\rm layers}$$

so if the number of layers is one, the number of coils is half the number of slots, given the fact that a coil side occupies a full slot.