

Cams: Session 1

Thomas Callens Santiago Iregui Rincon Qiao Qiao Seyyed Ali Mousavi Mohammadi Lander Vanroye Nico Tobias Huebel

Motion and Vibration: Part Motion

Introduction

- Type of cam mechanism
 - Linear translating follower
 - $S = f(\theta)$
 - with S: displacement follower
 - and θ : cam angle
- You will do both a synthesis and an analysis

Assignment

Four parts:

- 1. Define motion law ("hefwet") (Chapter 7)
- 2. Synthesis of cam- and follower geometry (Chapter 8)
- Dynamical analysis with rigid follower (Chapter 8)
 - design spring to keep contact
 - design flywheel
- 4. Dynamical analysis with flexible follower (Chapter 9)
 - link with Vibrations ("Trillingen") course

Full assignment: on Toledo!

Numerical data assignment

- in the exercise session, each **group** gets assigned a number when filling in sheet of paper
- Your numerical data can be found in the file num_data.html on Toledo
 - contains desired displacements follower
 - contains functional forces on follower

Matcam + manual

- Matlab function *matcam.m* offers support for:
 - Composing motion law ("hefwet")
 - Determining geometry of cam + follower
 - Calculate contact forces
- Rest of the assignment, you will need to implement yourself
- Manual: check on Toledo!

Practicalities

- Deadlines
 - linkages: TBA (announced on Toledo)
 report preferably in English, but not mandatory + has no
 influence on the grading
 - cams: TBA (to be confirmed on Toledo)
- Question hours
 - linkages: TBA (announced on Toledo)
 - cams: TBA (to be confirmed on Toledo)
- Discussion forum for questions on linkages and cams outside exercise sessions
 - Asking in English may get you a faster response time!

