PROYECTO AUTOMATAS

Juan Pablo Sibecas juan.sibecas@gmail.com Autómatas y Control Discreto, Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina

Febrero de 2024

Resumen

1. Introducción

2. Desarrollo

2.1. Modelo del Sistema Físico

2.1.1. Subsistema de Izaje

Segunda ley de Newton del lado tambor:

$$J_{hd+hEb}\frac{d\omega_{hd}}{dt} = T_{hd}(t) + T_{hEb}(t) - b_{hd}\omega_{hd}(t) - T_{hdl}(t)$$
(1)

Segunda ley de Newton del lado motor:

$$J_{hm+hb}\frac{d\omega_{hm}}{dt} = T_{hm}(t) + T_{hb}(t) - b_{hm}\omega_{hm}(t) - T_{hml}(t)$$
(2)

relacion de transmision

$$i_h = \frac{\omega_{hm}(t)}{\omega_{hd}(t)} = \frac{T_{hd}(t)}{T_{hml}(t)} \tag{3}$$

si reemplazo 3 en 2 y despejo $T_{hd}(t)$

$$T_{hd}(t) = J_{hm+hb} \frac{d\omega_{hd}}{dt} i_h^2 - b_{hm}\omega_{hd}(t) i_h^2 + i_h (T_{hm}(t) + T_{hb}(t))$$
(4)

reemplazando en 1 y operando se obtiene

$$(J_{hd+hEb} + J_{hm+hb}i_h^2) \frac{d\omega_{hd}}{dt} = -(b_{hd} + b_{hm}i_h^2)\omega_{hd}(t) + i_h(T_{hm}(t) + T_{hb}(t)) + T_{hEb}(t) - T_{hdl}(t)$$
como $T_{hdl}(t) = F_{hw}(t) * r_{hd}, 2V_h = r_{hd} * \omega_{hd}(t) \text{ y } V_h = -\frac{dl_h(t)}{dt} \text{ y dividiendo por } r_{hd}$:

$$2\frac{(J_{hd+hEb} + J_{hm+hb}i_h^2)}{r_{hd}^2}\frac{d^2l_h(t)}{dt^2} = -2\frac{(b_{hd} + b_{hm}i_h^2)}{r_{hd}^2}\frac{dl_h(t)}{dt} - \frac{i_h}{r_{hd}}(T_{hm}(t) + T_{hb}(t)) - \frac{T_{hEb}(t)}{r_{hd}} + F_{hw}(t)$$
(6)

Reemplazando por parametros equivalentes:

$$M_{Eh}\ddot{l}_{h}(t) = -b_{Eh}\dot{l}_{h}(t) - \frac{i_{h}}{r_{hd}}(T_{hm}(t) + T_{hb}(t)) - \frac{T_{hEb}(t)}{r_{hd}} + F_{hw}(t)$$
(7)

Donde

$$M_{Eh} = 2 \frac{(J_{hd+hEb} + J_{hm+hb}i_h^2)}{r_{hd}^2}$$
 (8)

$$b_{Eh} = 2\frac{(b_{hd} + b_{hm}i_h^2)}{r_{hd}^2} \tag{9}$$

(10)

2.1.2. Subsistema Carro

Segunda ley de Newton del lado tambor:

$$J_{td}\frac{d\omega_{td}(t)}{dt} = T_{td}(t) - b_{td}\omega_{td}(t) - T_{tdl}(t)$$
(11)

Segunda ley de Newton del lado motor:

$$J_{tm+tb}\frac{d\omega_{tm}(t)}{dt} = T_{tm}(t) + T_{tb}(t) - b_{tm}\omega_{tm}(t) - T_{tml}(t)$$
(12)

relacion de transmision

$$i_t = \frac{\omega_{tm}(t)}{\omega_{td}(t)} = \frac{T_{td}(t)}{T_{tml}(t)}$$
(13)

si reemplazo 13 en 12 y despejo $T_{td}(t)$

$$T_{td}(t) = J_{tm+tb} \frac{d\omega_{td}(t)}{dt} i_t^2 - b_{tm}\omega_{td}(t) i_t^2 + i_t (T_{tm}(t) + T_{tb}(t))$$
(14)

Reemplazo 14 en 11 y reordeno:

$$(J_{td} + J_{tm+tb} * i_t^2) \frac{d\omega_{td}(t)}{dt} = i_t (T_{tm}(t) + T_{tb}(t)) - (b_{td} + b_{tm}i_t^2)\omega_{td}(t) - T_{tdl}(t)$$
(15)

Como $\omega_{td}(t)r_{td} = V_{td}(t)$, $F_{tw}(t)r_{td} = T_{tdl}(t)$ y $V_{td}(t) = \frac{dx_{td}}{dt}$ y dividiendo por r_{td} :

$$\frac{(J_{td} + J_{tm+tb} * i_t^2)}{r_{td}^2} \frac{d^2 x_{td}(t)}{dt^2} = -\frac{(b_{td} + b_{tm} i_t^2)}{r_{td}^2} \frac{d x_{td}(t)}{dt} + \frac{i_t}{r_{td}} (T_{tm}(t) + T_{tb}(t)) - F_{tw}(t)$$
(16)

Reemplazando por parametros equivalentes se obtiene la ecuacion del tambor del subsistema carro:

$$M_{Etd}\ddot{x_{td}}(t) = -b_{Etd}\dot{x_{td}}(t) + \frac{i_t}{r_{td}}(T_{tm}(t) + T_{tb}(t)) - F_{tw}(t)$$
(17)

La ecuacion de movimiento del carro es:

$$M_t \ddot{x}_t(t) = -b_t \dot{x}_t(t) + F_{tw}(t) + 2F_{hw}(t) \sin \theta_l(t)$$
(18)

Y la fuerza transmitida por el cable del subsistema carro es:

$$F_{tw}(t) = K_{tw}(x_{td}(t) - x_t(t)) + b_{tw}(\dot{x_{td}}(t) - \dot{x_t}(t))$$
(19)

seria un sistema acoplado? preguntar si se resuelve asi

3. Resultados

4. Conclusión