

Deep Learning and Optimization

Unpacking Transformers, LLMs and Diffusion

Session 4

olivier.koch@ensae.fr

slack #ensae-dl-2025

Key ingredients to practical deep learning (activation, regularization, normalization, residual networks, etc.)

Recurrent networks struggle to learn long-term dependencies (vanishing gradients) and are slow/inefficient to train (sequential, not parallel, processing)

We learned tensor-based DL and applied it to MNIST.

Session	Date	Topic
1	05-02-2025	Intro to Deep Learning Practical: micrograd
2	12-02-2025	DL fundamentals
3	19-02-2025	DL Fundamentals II
	26-02-2025	Pas de cours
4	05-03-2025	Attention & Transformers Practical: GPT from scratch
5	12-03-2025	DL for computer vision Practical: Convnets for CIFAR-10
6	19-03-2025	VAE & Diffusion models Practical: diffusion from scratch Quiz/Exam

The restaurant refused to serve me a ham sandwich because it only cooks vegetarian food. In the end, they just gave me two slices of bread. Their ambiance was just as good as the food and the service.

Query vector q_1 Key vector k_1

The restaurant refused to serve me a ham sandwich because it only cooks vegetarian food. In the end, they just gave me two slices of bread. Their ambiance was just as good as the food and the service.

Query vector q_2 Key vector k_2

Source: Tom Yeh, 2024

Scaled Dot-Product Self-Attention

$$Sa[X] = V \cdot Softmax \left[\frac{K^T Q}{\sqrt{D_q}} \right]$$

Scaled Dot-Product Self-Attention

$$Sa[X] = V \cdot Softmax \left[\frac{K^T Q}{\sqrt{D_q}} \right]$$
 Quadratic in X!
 $Sa[X] = V \cdot Softmax \left[\frac{X^T \Omega_K^T \Omega_Q X}{\sqrt{D_q}} \right]$

Multi-head attention (for N heads)

Multi-head attention (for N heads)

Tokenizing the input

Figure 12.9 The input embedding matrix $\mathbf{X} \in \mathbb{R}^{D \times N}$ contains N embeddings of length D and is created by multiplying a matrix Ω_e containing the embeddings for the entire vocabulary with a matrix containing one-hot vectors in its columns that correspond to the word or sub-word indices. The vocabulary matrix Ω_e is considered a parameter of the model and is learned along with the other parameters. Note that the two embeddings for the word an in \mathbf{X} are the same.

Pretraining for BERT-like encoder

Fine-tuning to specific tasks: review prediction

Fine-tuning to specific tasks: text classification

Pretraining for GPT-like decoder

Task: predict future tokens

Encoder-decoder architecture for translation with cross-attention

Cross-attention

Figure 1: The Transformer - model architecture.

Source: <u>Attention is All you Need</u>

Positional encoding

Vocabulary embedding table

embedding size x vocab size

Position embedding table

embedding size x block size

Figure 1: The Transformer - model architecture.

Practical 4: Let's build a GPT-like encoder!

Task: predict future tokens

First, you know Caius Marcius is chief enemy to the people.

18

47

56

57

22 13

	18	47	56	57	22	13
	22	31	82	16	46	81
Batch	46	36	32	82	10	11
	74	59	82	91	60	38
	27	21	37	26	42	18

	X					Υ						
	18	47	56	57	22	13	47	56	57	22	13	42
	22	31	82	16	46	81	31	82	16	46	81	32
Batch	46	36	32	82	10	11	36	32	82	10	11	69
	74	59	82	91	60	38	59	82	91	60	38	41
	27	21	37	26	42	18	21	37	26	42	18	77

Example 30

	X					
	18	47	56	57	22	13
	22	31	82	16	46	81
Batch	46	36	32	82	10	11
	74	59	82	91	60	38
	27	21	37	26	42	18


```
ones = torch.zeros(2, 2) + 1

twos = torch.ones(2, 2) * 2

threes = (torch.ones(2, 2) * 7 - 1) / 2

fours = twos ** 2

sqrt2s = twos ** 0.5
```

```
powers2 = twos ** torch.tensor([[1, 2], [3, 4]])
fives = ones + fours
dozens = threes * fours
```



```
a = torch.rand((2,4,3))
```

a.transpose()

```
a = torch.rand((2,4,3))
a.transpose()
```

TypeError: transpose() received an invalid combination of arguments

```
a = torch.rand((2,4,3))
```

a.transpose(-2, -1)

a.shape

torch.Size([2, 3, 4])

```
a = torch.rand(2, 3)
b = torch.rand(3, 2)
print(a * b)
```

```
a = torch.rand(2, 3)
b = torch.rand(3, 2)
print(a * b)
```

RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1

```
a = torch.rand(2, 3)
b = torch.rand(3, 2)
print(a @ b)
```

This works!

@ is for matrix multiplication

* is for element-wise multiplication

Tensor broadcasting

```
a = torch.rand(2, 3)
b = torch.rand(1, 3)
print(a * b)
This works!
```

Tensor broadcasting

```
a = torch.tensor([[1, 2, 1], [2, 5, 1]])
b = torch.ones(1, 3) + 1

print(a * b)

tensor([[ 2., 4., 2.],
       [ 4., 10., 2.]])
```

Tensor broadcasting

Brodcasting rules:

Comparing the dimension sizes of the two tensors, going from last to first:

Each dimension must be equal, or

One of the dimensions must be of size 1, or

The dimension does not exist in one of the tensors

```
a = torch.rand(5, 4, 3)
b = torch.rand(1, 3, 6)
print(a @ b)
```

```
a = torch.rand(5, 4, 3)
b = torch.rand(1, 3, 6)
print(a @ b)
```

This works!

```
a = torch.rand(1, 5, 4, 3)
b = torch.rand(3, 1, 3, 6)
print(a @ b)
```

```
a = torch.rand(1, 5, 4, 3)
b = torch.rand(3, 1, 3, 6)
print(a @ b)
```

This works!

$$xbow = wei @ x # (B, T, T) x (B, T, C) --> (B, T, C)$$

This is because pytorch is <u>channel-last</u> for memory optimization.

A linear layer nn.Linear(in, out) implements:

$$y = x.A^T + b$$

and not

$$y = A.x + b$$

Therefore the shape of A is (out, in)


```
tril = torch.tril(torch.ones(T,T))
wei = torch.zeros((T,T))
wei = wei.masked_fill(tril == 0, float('-inf'))
tensor([[0., -inf, -inf],
     [0., 0., -inf],
     [0., 0., 0.]]
wei = F.softmax(wei, dim=-1)
tensor([[1.0000, 0.0000, 0.0000],
     [0.5000, 0.5000, 0.0000],
     [0.3333, 0.3333, 0.3333]])
```

Beware of concatenation in multi-head

Getting started

```
class Head(nn.Module):
    """ one head of self-attention """

def __init__(self, head_size):
    super().__init__()
    self.key = nn.Linear(..., ..., bias=False)
    ...

def forward (self, x):
    B, T, C = x.shape
    k = self.key(x) # (B,T,C)
    ...
```

Getting started

```
class Head(nn.Module):
  """ one head of self-attention """
  def __init__(self, head_size):
    super().__init__()
    self.key = nn.Linear(..., ..., bias=False)
  def forward (self, x):
    B, T, C = x.shape
    k = self.key(x) \# (B,T,C)
    q = \dots
    # compute self attention scores (affinities)
    wei = ...
    wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
    wei = F.softmax(wei, dim=-1)
```

Practical 4 summary

- 1. Self-attention by hand
- 2. Self-attention in pytorch
- 3. GPT piece-by-piece
- 4. GPU goes rrr!

Dataset: Shakespeare's corpus (input.txt)