TRASFORMAZIONE DI SCHEMI

Obiettivo della progettazione logica

- Si tratta di "tradurre" lo schema concettuale in uno schema logico relazionale che rappresenti gli stessi dati in maniera corretta ed efficiente.
- · Questo richiede una ristrutturazione del modello concettuale
- · Osservazione:
 - · Non si tratta di una pura e semplice traduzione. Infatti
 - alcuni costrutti dello schema concettuale non sono direttamente rappresentabili
 - Nel modello logico è necessario tenere conto delle prestazioni

Dati di ingresso e uscita

- · Ingresso:
 - · schema concettuale
 - informazioni sul carico applicativo (dimensioni dei dati e caratteristiche delle operazioni)
 - · modello logico

- Uscita:
 - schema logico
 - · documentazione associata

Progettazione logica relazionale

La trasformazione di uno schema ad oggetti in uno schema relazionale avviene eseguendo i seguenti passi:

- rappresentazione delle associazioni uno ad uno e uno a molti;
- 2. rappresentazione delle associazioni molti a molti o non binarie;
- 3. rappresentazione delle gerarchie di inclusione;
- 4. identificazione delle chiavi primarie;
- 5. rappresentazione degli attributi multivalore;
- 6. appiattimento degli attributi composti.

Obiettivo:

- · rappresentare le stesse informazioni;
- · minimizzare la ridondanza:
- produrre uno schema comprensibile, per facilitare la scrittura e manutenzione delle applicazioni.

ESEMPIO - Schema concettuale

ESEMPIO -Traduzione logica di un'associazione una

AnnoNascita

1982

1984

1983

1984

Provincia

Schema:

Studenti(Nome: string, Matricola: string, Provincia: string, AnnoNascita:int)

Esami(Materia: string, Candidato*: string, Data: string, Voto: int)

Nome

Bonini

Studenti

Matricola Isaia 071523 PΙ 067459 LU Rossi Bianchi 079856 LI

075649

Relazioni:

primaria

Chiave

Esami

	<u>'</u>	<u> </u>	
<u>Materia</u>	Candidato*	Data	Voto
BD	0/1523	12/01/06	28
BD	067459	15/09/06	30
FP	079856	25/10/06	30
BD	075649	27/06/06	25
LMM	071523	10/10/06	18

PΙ

Attributo aggiunto

ESEMPIO: ALTRE SOLUZIONI???

Studenti(Nome: string, Matricola: string, Provincia: string, AnnoNascita:int)

Esami(Numero:int, Materia: string, Candidato*: string, Data: string, Voto: int)

Studenti(Nome: string, <u>Matricola</u>: string, Provincia: string, AnnoNascita:int, <u>Esame*:int</u>)

Esami(Numero: int, Materia: string, Data: string, Voto: int)

ESEMPIO: ALTRE SOLUZIONI???

Studenti(Nome: string, <u>Matricola</u>: string, Provincia: string, AnnoNascita:int) Esami(Numero:int, <u>Materia</u>: string, <u>Candidato*</u>: string, Data: string, Voto: int)

Studenti(Nome: string, <u>Matricola</u>: string, Provincia: string, AnnoNascita:int, Esame*:int)

Esami(Numero: int, Materia: string, Data: string, Voto: int)

Studenti(Nome: string, <u>Matricola</u>: string, Provincia: string, AnnoNascita:int)

Esami(Numero: int, Materia: string, Data: string, Voto: int)

StudentiEsami(Esame*: int, Candidato*: string)

Quale preferire?

Il modello relazionale

Esame e Numero corrispondono ad un ID dell'esame (non al codice della materia)

Altra soluzione?

4.62

Rappresentazione delle associazioni uno a molti

 le associazioni uno a molti si rappresentano aggiungendo agli attributi della relazione rispetto a cui l'associazione è univoca una chiave esterna che riferisce l'altra relazione.

Esempi - Associazione 1 a 1

- Dirige(Professori, Dipartimenti)
 ha cardinalità (1:1):
 - · Un professore può o non può dirigere un solo dipartimento
 - · Un dipartimento deve avere un (solo) professore come dirigente

Esempi

Rappresentazione delle associazioni uno ad uno

 le associazioni uno a uno si rappresentano aggiungendo la chiave esterna ad una qualunque delle due relazioni che riferisce l'altra relazione, preferendo quella rispetto a cui l'associazione è totale, nel caso in cui esista un vincolo di totalità

Vincoli sulla cardinalità delle associazioni uno a molti e uno ad uno

 La direzione dell'associazione rappresentata dalla chiave esterna è detta "la diretta" dell'associazione.

- Vincoli sulla cardinalità delle associazioni uno a molti ed uno ad uno:
 - · univocità della diretta.
 - totalità della diretta: si rappresenta imponendo un vincolo not null sulla chiave esterna:
 - univocità dell'inversa e totalità della diretta: si rappresenta imponendo un vincolo not null ed un vincolo di chiave sulla chiave esterna.

Esempio - Associazione molti a molti

Esempio - Associazione molti a molti

ESEMPIO - Traduzione logico (ricorsione)

Schema:

Studenti(Nome: string, <u>Matricola</u>: string, Provincia: string, AnnoNascita:int,, <u>TutorStudente*: string</u>)

Studenti

Nome	Matricola	Provincia	AnnoNascita	MatrTutor*
Isaia	071523	PI	1982	067459
Rossi	067459	LU	1984	071523
Bianchi	079856	LI	1983	071523
Bonini	075649	PI	1984	071523/7

Studenti

Esempio - Associazione molti a molti (ricorsione)

Rappresentazione delle associazioni molti a molti

 Un'associazione molti a molti tra due classi si rappresenta aggiungendo allo schema una nuova relazione che contiene due chiavi esterne che riferiscono le due relazioni coinvolte; la chiave primaria di questa relazione è costituita dall'insieme di tutti i suoi attributi.

TRASFORMAZIONE DI SCHEMI A OGGETTI IN RELAZIONALI

Traduzione delle gerarchie

Rappresentazione delle gerarchie fra classi

- il modello relazionale non può rappresentare direttamente le gerarchie
- Bisogna eliminare le gerarchie, sostituendole con classi e relazioni:
 - accorpamento delle figlie della gerarchia nel genitore (relazione unica)
 - 2. accorpamento del genitore della gerarchia nelle figlie (partizionamento orizzontale)
 - 3. sostituzione della gerarchia con relazioni (partizionamento verticale)

Accorpamento delle figlie della gerarchia nel genitore (relazione unica)

Se A_0 è la classe genitore di A_1 ed A_2 , le classi A_1 e A_2 vengono eliminate ed accorpate ad A_0

Ad A_0 viene aggiunto un attributo (Discriminatore) che indica da quale delle classi figlie deriva una certa istanza, e gli attributi di A_1 ed A_2 vengono assorbiti dalla classe genitore, e assumono valore nullo sulle istanze provenienti dall'altra classe.

Infine, una relazione relativa a solo una delle classi figlie viene acquisita dalla classe genitore e avrà comunque cardinalità minima uguale a 0, in quanto gli elementi dell'altra classe non contribuiscono alla relazione.

Accorpamento delle figlie della gerarchia nel genitore (relazione unica)

- Classe Corsi con due attributi Codice (la chiave), Nome e con due sottoclassi di tipo partizione:
 - CorsiInterni, con un attributo Crediti,
 - · CorsiEsterni, con due attributi CorsoDiLaurea, AnnoAccademico.

Accorpamento delle figlie della gerarchia nel genitore (relazione unica)

Accorpamento del genitore della gerarchia nelle figlie (partizionamento orizzontale)

• La classe genitore A_0 viene eliminata, e le classi figlie A_1 ed A_2 ereditano le proprietà (attributi, identificatore e relazioni) dell'classe genitore

Accorpamento del genitore della gerarchia nelle figlie (partizionamento orizzontale)

- Classe Corsi con due attributi Codice (la chiave), Nome e con due sottoclassi di tipo partizione:
 - · CorsiInterni, con un attributo Crediti,
 - · CorsiEsterni, con due attributi CorsoDiLaurea, AnnoAccademico.

sostituzione della gerarchia con relazioni Accorpamento del genitore della gerarchia nelle figlie (partizionamento orizzontale)

• il partizionamento orizzontale divide gli elementi della superclasse in più relazioni diverse, per cui non è possibile mantenere un vincolo referenziale verso la superclasse stessa; in conclusione, questa tecnica non si usa se nello schema relazionale grafico c'è una

sostituzione della gerarchia con relazioni (partizionamento verticale)

- La gerarchia si trasforma in due associazioni uno a uno che legano rispettivamente la classe genitore con le classi figlie.
- In questo caso non c'è un trasferimento di attributi o di associazioni e le classi figlie A_1 ed A_2 sono identificate esternamente dalla classe genitore A_0 .

• Nello schema ottenuto vanno aggiunti dei vincoli: ogni occorrenza di A_0 non può partecipare contemporaneamente alle due associazioni, e se la gerarchia è totale, deve partecipare ad almeno una delle due

sostituzione della gerarchia con relazioni (partizionamento verticale)

- Classe Corsi con due attributi Codice (la chiave), Nome e con due sottoclassi di tipo partizione:
 - CorsiInterni, con un attributo Crediti,
 - · CorsiEsterni, con due attributi CorsoDiLaurea, AnnoAccademico.

sostituzione della gerarchia con relazioni (partizionamento verticale)

Riepilogo: LE SOTTOCLASSI

Esempio - Campo-multivalore

· Gestione persone con «più» indirizzi email

CodiceFiscale	Email_1 Email_2 Email_3			
RSSMRT	RSS@	MRT@	RMT@	
BNCGNN	BNC@			

CodiceFiscale	IndirizziEmail
RSSMRT	RSS@
RSSMRT	MRT@
RSSMRT	RMT@
BNCGNN	BNC@

GLI ATTRIBUTI MULTIVALORE

Rappresentazione delle proprietà multivalore

Corsilnterni		
Codice Crediti Docenti	:int «PK» «FK(Corsi)» :int :seq [Nome :string, Cognome :string]	

Appiattimento degli attributi composti

DocentiCorsiInterni		
Codice	:int «PK» «FK(CorsiInterni)»	
Nome	:string «PK»	
Cognome	:string «PK»	

Primo compitino di Basi di Dati - 3/4/2019 - VARIANTE

 Variante: i reclami possono essere redatti da clienti registrati nella base di di dati di cui interessano nome, cognome, anno nascita, città

Schema logico - Primo compitino di Basi di Dati - 3/4/2019

