Data Ingestion from the RDS to HDFS using Sqoop

1. Sqoop Import command

#> sqoop import --connect jdbc:mysql://upgradawsrds.cpclxrkdvwmz.us-east1.rds.amazonaws.com:3306/indiaahs2012_13 --username upgraduser --password upgraduser --table
Key_indicator_districtwise --target-dir /user/root/Key_indicator_districtwise_external

2. Command to see the list of imported data

#> hadoop fs -ls /user/root/Key_indicator_districtwise_external/part*

External table creation in Hive and loading the ingested data into it. Data ingestion verification.

1. Command to create the external table

```
#> CREATE EXTERNAL TABLE Key_indicator_districtwise_ext (
'ID' INT.
'State Name' STRING,
'State District Name' STRING,
`AA_Sample_Units_Total` INT,
`AA_Sample_Units_Rural` INT,
`AA_Sample_Units_Urban` DOUBLE,
`AA_Households_Total` INT,
`AA_Households_Rural` INT,
`AA_Households_Urban` INT,
`AA_Population_Total` INT,
`AA_Population_Rural` INT,
`AA_Population_Urban` INT,
`AA_Ever_Married_Women_Aged_15_49_Years_Total` INT,
`AA_Ever_Married_Women_Aged_15_49_Years_Rural` INT,
`AA_Ever_Married_Women_Aged_15_49_Years_Urban` INT,
`AA_Currently_Married_Women_Aged_15_49_Years_Total` INT,
`AA_Currently_Married_Women_Aged_15_49_Years_Rural` INT,
`AA_Currently_Married_Women_Aged_15_49_Years_Urban` INT,
'AA Children 12 23 Months Total' INT,
`AA_Children_12_23_Months_Rural` INT,
`AA_Children_12_23_Months_Urban` INT,
`BB_Average_Household_Size_Sc_Total` DOUBLE,
`BB_Average_Household_Size_Sc_Rural` DOUBLE,
`BB_Average_Household_Size_Sc_Urban` DOUBLE,
`BB_Average_Household_Size_St_Total` DOUBLE,
`BB_Average_Household_Size_St_Rural` DOUBLE,
`BB_Average_Household_Size_St_Urban` DOUBLE,
`BB_Average_Household_Size_All_Total` DOUBLE,
`BB_Average_Household_Size_All_Rural` DOUBLE,
`BB_Average_Household_Size_All_Urban` DOUBLE,
`BB_Population_Below_Age_15_Years_Total` DOUBLE,
`BB_Population_Below_Age_15_Years_Rural` DOUBLE,
`BB_Population_Below_Age_15_Years_Urban` DOUBLE,
`BB_Dependency_Ratio_Total` DOUBLE,
`BB_Dependency_Ratio_Rural` DOUBLE,
`BB_Dependency_Ratio_Urban` DOUBLE,
`BB_Currently_Married_Illiterate_Women_Aged_15_49_Years_Total` DOUBLE,
```

```
`BB_Currently_Married_Illiterate_Women_Aged_15_49_Years_Rural` DOUBLE,
`BB_Currently_Married_Illiterate_Women_Aged_15_49_Years_Urban` DOUBLE,
`CC_Sex_Ratio_At_Birth_Total` DOUBLE,
`CC_Sex_Ratio_At_Birth_Rural` DOUBLE,
`CC_Sex_Ratio_At_Birth_Urban` DOUBLE,
'CC Sex Ratio 0 4 Years Total' DOUBLE,
`CC_Sex_Ratio_0_4_Years_Rural` DOUBLE,
`CC_Sex_Ratio_0_4_Years_Urban` DOUBLE,
`CC_Sex_Ratio_All_Ages_Total` DOUBLE,
'CC Sex Ratio All Ages Rural' DOUBLE,
'CC Sex Ratio All Ages Urban' DOUBLE,
'DD Person Total' DOUBLE,
`DD_Person_Rural` DOUBLE,
'DD Person Urban' DOUBLE,
`DD_Male_Total` DOUBLE,
`DD_Male_Rural` DOUBLE,
`DD_Male_Urban` DOUBLE,
`DD_Female_Total` DOUBLE,
`DD_Female_Rural` DOUBLE,
`DD_Female_Urban` DOUBLE,
`EE_Marriages_Among_Females_Below_Legal_Age_18_Years_Total` DOUBLE,
`EE_Marriages_Among_Females_Below_Legal_Age_18_Years_Rural` DOUBLE,
`EE_Marriages_Among_Females_Below_Legal_Age_18_Years_Urban` DOUBLE,
`EE_Marriages_Among_Males_Below_Legal_Age_21_Years_Total` DOUBLE,
`EE_Marriages_Among_Males_Below_Legal_Age_21_Years_Rural` DOUBLE,
`EE_Marriages_Among_Males_Below_Legal_Age_21_Years_Urban` DOUBLE,
`EE Married Women 20 24 Years Married Before 18 Years Total` DOUBLE,
`EE_Married_Women_20_24_Years_Married_Before_18_Years_Rural` DOUBLE,
`EE_Married_Women_20_24_Years_Married_Before_18_Years_Urban` DOUBLE,
`EE_Married_Men_25_29_Years_Married_Before_21_Years_Total` DOUBLE,
`EE Married Men 25 29 Years Married Before 21 Years Rural` DOUBLE,
`EE_Married_Men_25_29_Years_Married_Before_21_Years_Urban` DOUBLE,
`EE_Mean_Age_At_Marriage_Male_Total` DOUBLE,
`EE_Mean_Age_At_Marriage_Male_Rural` DOUBLE,
'EE Mean Age At Marriage Male Urban' DOUBLE,
`EE_Mean_Age_At_Marriage_Female_Total` DOUBLE,
`EE_Mean_Age_At_Marriage_Female_Rural` DOUBLE,
`EE_Mean_Age_At_Marriage_Female_Urban` DOUBLE,
`FF Children Attending School Age 6 17 Years Person Total` DOUBLE,
`FF_Children_Attending_School_Age_6_17_Years_Person_Rural` DOUBLE,
`FF_Children_Attending_School_Age_6_17_Years_Person_Urban` DOUBLE,
`FF_Children_Attending_School_Age_6_17_Years_Male_Total` DOUBLE,
`FF_Children_Attending_School_Age_6_17_Years_Male_Rural` DOUBLE,
`FF_Children_Attending_School_Age_6_17_Years_Male_Urban` DOUBLE,
`FF_Children_Attending_School_Age_6_17_Years_Female_Total` DOUBLE,
\verb|`FF_Children_Attending_School_Age_6_17_Years_Female_Rural` DOUBLE, \\
`FF_Children_Attending_School_Age_6_17_Years_Female_Urban` DOUBLE,
`FF_Children_Attended_Before_Drop_Out_Age_6_17_Years_Person_Total` DOUBLE,
\verb|`FF_Children_Attended_Before_Drop_Out_Age_6_17\_Years_Person_Rural`| DOUBLE, |
`FF_Children_Attended_Before_Drop_Out_Age_6_17_Years_Person_Urban` DOUBLE,
`FF_Children_Attended_Before_Drop_Out_Age_6_17_Years_Male_Total` DOUBLE,
`FF_Children_Attended_Before_Drop_Out_Age_6_17_Years_Male_Rural` DOUBLE,
`FF_Children_Attended_Before_Drop_Out_Age_6_17_Years_Male_Urban` DOUBLE,
`FF_Children_Attended_Before_Drop_Out_Age_6_17_Years_Female_Total` DOUBLE,
`FF_Children_Attended_Before_Drop_Out_Age_6_17_Years_Female_Rural` DOUBLE,
`FF_Children_Attended_Before_Drop_Out_Age_6_17_Years_Female_Urban` DOUBLE,
`GG_Children_Aged_5_14_Years_Engaged_In_Work_Person_Total` DOUBLE,
`GG_Children_Aged_5_14_Years_Engaged_In_Work_Person_Rural` DOUBLE,
\verb|`GG_Children_Aged_5_14_Years_Engaged_In_Work_Person_Urban`| DOUBLE, \\
'GG Children Aged 5 14 Years Engaged In Work Male Total' DOUBLE,
`GG_Children_Aged_5_14_Years_Engaged_In_Work_Male_Rural` DOUBLE,
`GG_Children_Aged_5_14_Years_Engaged_In_Work_Male_Urban` DOUBLE,
`GG_Children_Aged_5_14_Years_Engaged_In_Work_Female_Total` DOUBLE,
'GG Children Aged 5 14 Years Engaged In Work Female Rural' DOUBLE,
`GG_Children_Aged_5_14_Years_Engaged_In_Work_Female_Urban` DOUBLE,
`GG_Work_Participation_Rate_15_Years_And_Above_Person_Total` DOUBLE,
```

```
`GG_Work_Participation_Rate_15_Years_And_Above_Person_Rural` DOUBLE,
`GG_Work_Participation_Rate_15_Years_And_Above_Person_Urban` DOUBLE,
`GG_Work_Participation_Rate_15_Years_And_Above_Male_Total` DOUBLE,
`GG_Work_Participation_Rate_15_Years_And_Above_Male_Rural` DOUBLE,
`GG_Work_Participation_Rate_15_Years_And_Above_Male_Urban` DOUBLE,
`GG_Work_Participation_Rate_15_Years_And_Above_Female_Total` DOUBLE,
`GG_Work_Participation_Rate_15_Years_And_Above_Female_Rural` DOUBLE,
`GG_Work_Participation_Rate_15_Years_And_Above_Female_Urban` DOUBLE,
`HH_Prevalence_Disability_Per_100000_Population_Person_Total` DOUBLE,
'HH Prevalence Disability Per 100000 Population Person Rural' DOUBLE,
'HH Prevalence Disability Per 100000 Population Person Urban' DOUBLE,
`HH_Prevalence_Disability_Per_100000_Population_Male_Total` DOUBLE,
`HH_Prevalence_Disability_Per_100000_Population_Male_Rural` DOUBLE,
`HH_Prevalence_Disability_Per_100000_Population_Male_Urban` DOUBLE,
`HH_Prevalence_Disability_Per_100000_Population_Female_Total` DOUBLE,
`HH_Prevalence_Disability_Per_100000_Population_Female_Rural` DOUBLE,
`HH_Prevalence_Disability_Per_100000_Population_Female_Urban` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Severe_Person_Total` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Severe_Person_Rural` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Severe_Person_Urban` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Severe_Male_Total` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Severe_Male_Rural` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Severe_Male_Urban` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Severe_Female_Total` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Severe_Female_Rural` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Severe_Female_Urban` DOUBLE,
'Il Injured By Type Of Treatment Per 100000 Major Person Total' DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Major_Person_Rural` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Major_Person_Urban` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Major_Male_Total` DOUBLE,
'Il Injured By Type Of Treatment Per 100000 Major Male Rural' DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Major_Male_Urban` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Major_Female_Total` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Major_Female_Rural` DOUBLE,
'Il Injured By Type Of Treatment Per 100000 Major Female Urban' DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Minor_Person_Total` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Minor_Person_Rural` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Minor_Person_Urban` DOUBLE,
'Il Injured By Type Of Treatment Per 100000 Minor Male Total' DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Minor_Male_Rural` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Minor_Male_Urban` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Minor_Female_Total` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Minor_Female_Rural` DOUBLE,
`II_Injured_By_Type_Of_Treatment_Per_100000_Minor_Female_Urban` DOUBLE,
`JJ_Acute_Illness_Per_100000_Diarrhoea_Dysentery_Person_Total` DOUBLE,
`JJ_Acute_Illness_Per_100000_Diarrhoea_Dysentery_Person_Rural` DOUBLE,
`JJ_Acute_Illness_Per_100000_Diarrhoea_Dysentery_Person_Urban` DOUBLE,
`JJ_Acute_Illness_Per_100000_Diarrhoea_Dysentery_Male_Total` DOUBLE,
`JJ_Acute_Illness_Per_100000_Diarrhoea_Dysentery_Male_Rural` DOUBLE,
\verb|`JJ_Acute_Illness_Per_100000_Diarrhoea_Dysentery_Male_Urban`DOUBLE, \\
`JJ_Acute_Illness_Per_100000_Diarrhoea_Dysentery_Female_Total` DOUBLE,
`JJ_Acute_Illness_Per_100000_Diarrhoea_Dysentery_Female_Rural` DOUBLE,
`JJ_Acute_Illness_Per_100000_Diarrhoea_Dysentery_Female_Urban` DOUBLE,
`JJ_Acute_Illness_Per_100000_Respiratory_Infection_Person_Total` DOUBLE,
`JJ_Acute_Illness_Per_100000_Respiratory_Infection_Person_Rural` DOUBLE,
`JJ_Acute_Illness_Per_100000_Respiratory_Infection_Person_Urban` DOUBLE,
`JJ_Acute_Illness_Per_100000_Respiratory_Infection_Male_Total` DOUBLE,
`JJ_Acute_Illness_Per_100000_Respiratory_Infection_Male_Rural` DOUBLE,
`JJ_Acute_Illness_Per_100000_Respiratory_Infection_Male_Urban` DOUBLE,
'JJ Acute Illness Per 100000 Respiratory Infection Female Total' DOUBLE,
`JJ_Acute_Illness_Per_100000_Respiratory_Infection_Female_Rural` DOUBLE,
`JJ_Acute_Illness_Per_100000_Respiratory_Infection_Female_Urban` DOUBLE,
'JJ Acute Illness Per 100000 Fever All Types Person Total' DOUBLE,
'JJ Acute Illness Per 100000 Fever All Types Person Rural' DOUBLE,
`JJ_Acute_Illness_Per_100000_Fever_All_Types_Person_Urban` DOUBLE,
`JJ_Acute_Illness_Per_100000_Fever_All_Types_Male_Total` DOUBLE,
```

```
`JJ_Acute_Illness_Per_100000_Fever_All_Types_Male_Rural` DOUBLE,
`JJ_Acute_Illness_Per_100000_Fever_All_Types_Male_Urban` DOUBLE,
`JJ_Acute_Illness_Per_100000_Fever_All_Types_Female_Total` DOUBLE,
`JJ_Acute_Illness_Per_100000_Fever_All_Types_Female_Rural` DOUBLE,
`JJ_Acute_Illness_Per_100000_Fever_All_Types_Female_Urban` DOUBLE,
`JJ_Acute_Illness_Per_100000_Any_Type_Of_Acute_Person_Total` DOUBLE,
`JJ_Acute_Illness_Per_100000_Any_Type_Of_Acute_Person_Rural` DOUBLE,
`JJ_Acute_Illness_Per_100000_Any_Type_Of_Acute_Person_Urban` DOUBLE,
`JJ_Acute_Illness_Per_100000_Any_Type_Of_Acute_Male_Total` DOUBLE,
'JJ Acute Illness Per 100000 Any Type Of Acute Male Rural' DOUBLE,
'JJ Acute Illness Per 100000 Any Type Of Acute Male Urban' DOUBLE,
`JJ_Acute_Illness_Per_100000_Any_Type_Of_Acute_Female_Total` DOUBLE,
`JJ_Acute_Illness_Per_100000_Any_Type_Of_Acute_Female_Rural` DOUBLE,
`JJ_Acute_Illness_Per_100000_Any_Type_Of_Acute_Female_Urban` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Person_Total` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Person_Rural` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Person_Urban` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Male_Total` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Male_Rural` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Male_Urban` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Female_Total` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Female_Rural` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Female_Urban` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Government_Person_Total` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Government_Person_Rural` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Government_Person_Urban` DOUBLE,
'JJ Acute Illness And Taking Treatment Government Male Total' DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Government_Male_Rural` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Government_Male_Urban` DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Government_Female_Total` DOUBLE,
'JJ Acute Illness And Taking Treatment Government Female Rural' DOUBLE,
`JJ_Acute_Illness_And_Taking_Treatment_Government_Female_Urban` DOUBLE,
`KK_Symptoms_Of_Chronic_Illness_Per_100000_Person_Total` DOUBLE,
`KK Symptoms Of Chronic Illness Per 100000 Person Rural` DOUBLE,
`KK Symptoms Of Chronic Illness Per 100000 Person Urban` DOUBLE,
`KK_Symptoms_Of_Chronic_Illness_Per_100000_Male_Total` DOUBLE,
`KK_Symptoms_Of_Chronic_Illness_Per_100000_Male_Rural` DOUBLE,
`KK_Symptoms_Of_Chronic_Illness_Per_100000_Male_Urban` DOUBLE,
`KK Symptoms Of Chronic Illness Per 100000 Female Total` DOUBLE,
`KK_Symptoms_Of_Chronic_Illness_Per_100000_Female_Rural` DOUBLE,
`KK_Symptoms_Of_Chronic_Illness_Per_100000_Female_Urban` DOUBLE,
`KK_Chronic_Illness_And_Sought_Medical_Care_Person_Total` DOUBLE,
`KK_Chronic_Illness_And_Sought_Medical_Care_Person_Rural` DOUBLE,
`KK_Chronic_Illness_And_Sought_Medical_Care_Person_Urban` DOUBLE,
`KK_Chronic_Illness_And_Sought_Medical_Care_Male_Total` DOUBLE,
`KK_Chronic_Illness_And_Sought_Medical_Care_Male_Rural` DOUBLE,
`KK_Chronic_Illness_And_Sought_Medical_Care_Male_Urban` DOUBLE,
`KK_Chronic_Illness_And_Sought_Medical_Care_Female_Total` DOUBLE,
`KK_Chronic_Illness_And_Sought_Medical_Care_Female_Rural` DOUBLE,
`KK_Chronic_Illness_And_Sought_Medical_Care_Female_Urban` DOUBLE,
`KK Diag For Chronic III Per 100000 Diabetes Person Total` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Diabetes_Person_Rural` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Diabetes_Person_Urban` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Diabetes_Male_Total` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Diabetes_Male_Rural` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Diabetes_Male_Urban` DOUBLE,
`KK_Diag_For_Chronic_Ill_Per_100000_Diabetes_Female_Total` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Diabetes_Female_Rural` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Diabetes_Female_Urban` DOUBLE,
`KK Diag For Chronic III Per 100000 Hypertension Person Total` DOUBLE,
`KK_Diag_For_Chronic_Ill_Per_100000_Hypertension_Person_Rural` DOUBLE,
`KK_Diag_For_Chronic_Ill_Per_100000_Hypertension_Person_Urban` DOUBLE,
'KK Diag For Chronic III Per 100000 Hypertension Male Total' DOUBLE,
KK Diag For Chronic III Per 100000 Hypertension Male Rural DOUBLE,
`KK Diag For Chronic III Per 100000 Hypertension Male Urban` DOUBLE,
`KK_Diag_For_Chronic_Ill_Per_100000_Hypertension_Female_Total` DOUBLE,
```

```
`KK_Diag_For_Chronic_Ill_Per_100000_Hypertension_Female_Rural` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Hypertension_Female_Urban` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Tb_Person_Total` DOUBLE,
`KK_Diag_For_Chronic_Ill_Per_100000_Tb_Person_Rural` DOUBLE,
`KK_Diag_For_Chronic_Ill_Per_100000_Tb_Person_Urban` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Tb_Male_Total` DOUBLE,
`KK_Diag_For_Chronic_III_Per_100000_Tb_Male_Rural` DOUBLE,
`KK_Diag_For_Chronic_Ill_Per_100000_Tb_Male_Urban` DOUBLE,
`KK_Diag_For_Chronic_Ill_Per_100000_Tb_Female_Total` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Tb_Female_Rural` DOUBLE,
`KK Diagnosed For Chronic Illness Per 100000 Tb Female Urban` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Asthma_Person_Total` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Asthma_Person_Rural` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Asthma_Person_Urban` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Asthma_Male_Total` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Asthma_Male_Rural` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Asthma_Male_Urban` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Asthma_Female_Total` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Asthma_Female_Rural` DOUBLE,
`KK_Diagnosed_For_Chronic_Illness_Per_100000_Asthma_Female_Urban` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Arthritis_Person_Total` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Arthritis_Person_Rural` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Arthritis_Person_Urban` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Arthritis_Male_Total` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Arthritis_Male_Rural` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Arthritis_Male_Urban` DOUBLE,
`KK Diag For Chronic Illness Per 100000 Arthritis Female Total` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Arthritis_Female_Rural` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Arthritis_Female_Urban` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Any_Kind_Person_Total` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Any_Kind_Person_Rural` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Any_Kind_Of_Person_Urban` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Any_Kind_Of_Male_Total` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Any_Kind_Of_Male_Rural` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Any_Kind_Of_Male_Urban` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Any_Kind_Of_Female_Total` DOUBLE,
`KK_Diag_For_Chronic_Illness_Per_100000_Any_Kind_Of_Female_Rural` DOUBLE,
\verb|`KK_Diag_For_Chronic_Illness_Per_100000_Any_Kind_Of_Female_Urban`| DOUBLE, \\
`KK_Chronic_Illness_And_Getting_Regular_Treatment_Person_Total` DOUBLE,
`KK_Chronic_Illness_And_Getting_Regular_Treatment_Person_Rural` DOUBLE,
`KK_Chronic_Illness_And_Getting_Regular_Treatment_Person_Urban` DOUBLE,
`KK_Chronic_Illness_And_Getting_Regular_Treatment_Male_Total` DOUBLE,
\verb|`KK_Chronic_Illness_And_Getting_Regular_Treatment_Male_Rural'| DOUBLE, \\
`KK_Chronic_Illness_And_Getting_Regular_Treatment_Male_Urban` DOUBLE,
\verb|`KK_Chronic_Illness_And_Getting_Regular_Treatment_Female_Total`| DOUBLE, \\
\verb|`KK_Chronic_Illness_And_Getting_Regular_Treatment_Female_Rural`| DOUBLE, \\
`KK_Chronic_Illness_And_Getting_Regular_Treatment_Female_Urban` DOUBLE,
`KK_Chronic_Ill_And_Getting_Regular_Treatment_Govt_Person_Total` DOUBLE,
`KK_Chronic_III_And_Getting_Regular_Treatment_Govt_Person_Rural` DOUBLE,
`KK_Chronic_Ill_And_Getting_Regular_Treatment_Govt_Person_Urban` DOUBLE,
`KK_Chronic_Ill_And_Getting_Regular_Treatment_Govt_Male_Total` DOUBLE,
`KK_Chronic_III_And_Getting_Regular_Treatment_Govt_Male_Rural` DOUBLE,
`KK_Chronic_Ill_And_Getting_Regular_Treatment_Govt_Male_Urban` DOUBLE,
`KK_Chronic_Ill_And_Getting_Regular_Treatment_Govt_Female_Total` DOUBLE,
`KK_Chronic_III_And_Getting_Regular_Treatment_Govt_Female_Rural` DOUBLE,
`KK_Chronic_III_And_Getting_Regular_Treatment_Govt_Female_Urban` DOUBLE,
`LL_Crude_Birth_Rate_Cbr_Total` DOUBLE,
`LL_Crude_Birth_Rate_Cbr_Rural` DOUBLE,
`LL_Crude_Birth_Rate_Cbr_Urban` DOUBLE,
`LL Natural Growth Rate Total` DOUBLE,
`LL_Natural_Growth_Rate_Rural` DOUBLE,
`LL_Natural_Growth_Rate_Urban` DOUBLE,
'LL Total Fertility Rate Total' DOUBLE,
`LL Total Fertility Rate Rural` DOUBLE,
`LL_Total_Fertility_Rate_Urban` DOUBLE,
`LL_Women_20_24_Reporting_Birth_Of_Order_2__Above_Total` DOUBLE,
```

```
`LL_Women_20_24_Reporting_Birth_Of_Order_2__Above_Rural` DOUBLE,
`LL_Women_20_24_Reporting_Birth_Of_Order_2__Above_Urban` DOUBLE,
\verb|`LL_Women_Reporting_Birth_Of_Order_3__Above_Total` DOUBLE, \\
`LL_Women_Reporting_Birth_Of_Order_3__Above_Rural` DOUBLE,
`LL_Women_Reporting_Birth_Of_Order_3__Above_Urban` DOUBLE,
`LL_Women_With_Two_Children_Wanting_No_More_Children_Total` DOUBLE,
`LL_Women_With_Two_Children_Wanting_No_More_Children_Rural` DOUBLE,
`LL_Women_With_Two_Children_Wanting_No_More_Children_Urban` DOUBLE,
`LL_Women_15_19_Years_Who_Were_Already_Mothers_Or_Pregnant_Total` DOUBLE,
`LL_Women_15_19_Years_Who_Were_Already_Mothers_Or_Pregnant_Rural` DOUBLE,
`LL Women 15 19 Years Who Were Already Mothers Or Pregnant Urban` DOUBLE,
`LL_Median_Age_At_First_Live_Birth_Of_Women_15_49_Years_Total` DOUBLE,
`LL_Median_Age_At_First_Live_Birth_Of_Women_15_49_Years_Rural` DOUBLE,
`LL_Median_Age_At_First_Live_Birth_Of_Women_15_49_Years_Urban` DOUBLE,
`LL_Median_Age_At_First_Live_Birth_Of_Women_25_49_Years_Total` DOUBLE,
`LL_Median_Age_At_First_Live_Birth_Of_Women_25_49_Years_Rural` DOUBLE,
`LL_Median_Age_At_First_Live_Birth_Of_Women_25_49_Years_Urban` DOUBLE,
\verb|`LL_Live_Births_Taking_Place_After_An_DOUBLE erval_Of_36_Months_Total`DOUBLE, |
`LL_Live_Births_Taking_Place_After_An_DOUBLEerval_Of_36_Months_Rural` DOUBLE,
`LL_Live_Births_Taking_Place_After_An_DOUBLEerval_Of_36_Months_Urban` DOUBLE,
`LL_Mean_Number_Of_Children_Ever_Born_To_Women_15_49_Years_Total` DOUBLE,
\verb|`LL_Mean_Number_Of_Children_Ever_Born_To_Women_15_49\_Years_Rural`| DOUBLE, \\
`LL_Mean_Number_Of_Children_Ever_Born_To_Women_15_49_Years_Urban` DOUBLE,
`LL_Mean_Number_Of_Children_Surviving_To_Women_15_49_Years_Total` DOUBLE,
`LL_Mean_Number_Of_Children_Surviving_To_Women_15_49_Years_Rural` DOUBLE,
`LL_Mean_Number_Of_Children_Surviving_To_Women_15_49_Years_Urban` DOUBLE,
`LL Mean Number Of Children Ever Born To Women 45 49 Years Total` DOUBLE,
`LL_Mean_Number_Of_Children_Ever_Born_To_Women_45_49_Years_Rural` DOUBLE,
`LL_Mean_Number_Of_Children_Ever_Born_To_Women_45_49_Years_Urban` DOUBLE,
`MM_Pregnancy_To_Women_15_49_Years_Resulting_In_Abortion_Total` DOUBLE,
`MM_Pregnancy_To_Women_15_49_Years_Resulting_In_Abortion_Rural` DOUBLE,
`MM_Pregnancy_To_Women_15_49_Years_Resulting_In_Abortion_Urban` DOUBLE,
`MM_Women_Who_Received_Any_Anc_Before_Abortion_Total` DOUBLE,
`MM_Women_Who_Received_Any_Anc_Before_Abortion_Rural` DOUBLE,
`MM_Women_Who_Received_Any_Anc_Before_Abortion_Urban` DOUBLE,
`MM_Women_Who_Went_For_Ultrasound_Before_Abortion_Total` DOUBLE,
`MM_Women_Who_Went_For_Ultrasound_Before_Abortion_Rural` DOUBLE,
\verb|`MM_Women_Who_Went_For_Ultrasound_Before_Abortion_Urban` DOUBLE, \\
`MM_Average_Month_Of_Pregnancy_At_The_Time_Of_Abortion_Total` DOUBLE,
`MM_Average_Month_Of_Pregnancy_At_The_Time_Of_Abortion_Rural` DOUBLE,
`MM_Average_Month_Of_Pregnancy_At_The_Time_Of_Abortion_Urban` DOUBLE,
`MM_Abortion_Performed_By_Skilled_Health_Personnel_Total` DOUBLE,
`MM_Abortion_Performed_By_Skilled_Health_Personnel_Rural` DOUBLE,
`MM_Abortion_Performed_By_Skilled_Health_Personnel_Urban` DOUBLE,
`MM_Abortion_Taking_Place_In_Institution_Total` DOUBLE,
`MM_Abortion_Taking_Place_In_Institution_Rural` DOUBLE,
`MM_Abortion_Taking_Place_In_Institution_Urban` DOUBLE,
`NN_Current_Usage_Any_Method_Total` DOUBLE,
`NN_Current_Usage_Any_Method_Rural` DOUBLE,
`NN_Current_Usage_Any_Method_Urban` DOUBLE,
`NN_Current_Usage_Any_Modern_Method_Total` DOUBLE,
`NN_Current_Usage_Any_Modern_Method_Rural` DOUBLE,
`NN_Current_Usage_Any_Modern_Method_Urban` DOUBLE,
`NN_Current_Usage_Female_Sterilization_Total` DOUBLE,
`NN_Current_Usage_Female_Sterilization_Rural` DOUBLE,
`NN_Current_Usage_Female_Sterilization_Urban` DOUBLE,
`NN_Current_Usage_Male_Sterilization_Total` DOUBLE,
`NN_Current_Usage_Male_Sterilization_Rural` DOUBLE,
`NN_Current_Usage_Male_Sterilization_Urban` DOUBLE,
'NN Current Usage Copper T lud Total' DOUBLE,
`NN_Current_Usage_Copper_T_lud_Rural` DOUBLE,
`NN_Current_Usage_Copper_T_lud_Urban` DOUBLE,
`NN_Current_Usage_Pills_Total` DOUBLE,
'NN Current Usage Pills Rural' DOUBLE,
`NN_Current_Usage_Pills_Urban` DOUBLE,
`NN_Current_Usage_Condom_Nirodh_Total` DOUBLE,
```

```
`NN_Current_Usage_Condom_Nirodh_Rural` DOUBLE,
`NN_Current_Usage_Condom_Nirodh_Urban` DOUBLE,
`NN_Current_Usage_Emergency_Contraceptive_Pills_Total` DOUBLE,
`NN_Current_Usage_Emergency_Contraceptive_Pills_Rural` DOUBLE,
\verb|`NN_Current_Usage_Emergency_Contraceptive_Pills\_Urban`| DOUBLE,
`NN_Current_Usage_Any_Traditional_Method_Total` DOUBLE,
`NN_Current_Usage_Any_Traditional_Method_Rural` DOUBLE,
`NN_Current_Usage_Any_Traditional_Method_Urban` DOUBLE,
'NN Current Usage Periodic Abstinence Total' DOUBLE,
'NN Current Usage Periodic Abstinence Rural' DOUBLE,
'NN Current Usage Periodic Abstinence Urban' DOUBLE,
`NN_Current_Usage_Withdrawal_Total` DOUBLE,
`NN_Current_Usage_Withdrawal_Rural` DOUBLE,
`NN_Current_Usage_Withdrawal_Urban` DOUBLE,
`NN_Current_Usage_Lam_Total` DOUBLE,
`NN_Current_Usage_Lam_Rural` DOUBLE,
`NN_Current_Usage_Lam_Urban` DOUBLE,
`OO_Unmet_Need_For_Spacing_Total` DOUBLE,
`OO_Unmet_Need_For_Spacing_Rural` DOUBLE,
`OO_Unmet_Need_For_Spacing_Urban` DOUBLE,
`OO_Unmet_Need_For_Limiting_Total` DOUBLE,
`OO_Unmet_Need_For_Limiting_Rural` DOUBLE,
`OO_Unmet_Need_For_Limiting_Urban` DOUBLE,
`OO_Total_Unmet_Need_Total` DOUBLE,
`OO_Total_Unmet_Need_Rural` DOUBLE,
`OO_Total_Unmet_Need_Urban` DOUBLE,
'PP Married Pregnant Women 15 49 Years Registered For Anc Total' DOUBLE,
`PP_Married_Pregnant_Women_15_49_Years_Registered_For_Anc_Rural` DOUBLE,
`PP_Married_Pregnant_Women_15_49_Years_Registered_For_Anc_Urban` DOUBLE,
`PP_Mothers_Who_Received_Any_Antenatal_Check_Up_Total` DOUBLE,
`PP_Mothers_Who_Received_Any_Antenatal_Check_Up_Rural` DOUBLE,
`PP_Mothers_Who_Received_Any_Antenatal_Check_Up_Urban` DOUBLE,
`PP_Mothers_Who_Had_Antenatal_Check_Up_In_First_Trimester_Total` DOUBLE,
`PP_Mothers_Who_Had_Antenatal_Check_Up_In_First_Trimester_Rural` DOUBLE,
`PP_Mothers_Who_Had_Antenatal_Check_Up_In_First_Trimester_Urban` DOUBLE,
`PP_Mothers_Who_Received_3_Or_More_Antenatal_Care_Total` DOUBLE,
`PP_Mothers_Who_Received_3_Or_More_Antenatal_Care_Rural` DOUBLE,
`PP_Mothers_Who_Received_3_Or_More_Antenatal_Care_Urban` DOUBLE,
'PP Mothers Who Received At Least One Tt Injection Total' DOUBLE,
`PP_Mothers_Who_Received_At_Least_One_Tt_Injection_Rural` DOUBLE,
`PP_Mothers_Who_Received_At_Least_One_Tt_Injection_Urban` DOUBLE,
\verb|`PP_Mothers_Who_Consumed_Ifa_For_100_Days_Or_More_Total`| DOUBLE, \\
`PP_Mothers_Who_Consumed_Ifa_For_100_Days_Or_More_Rural` DOUBLE,
`PP_Mothers_Who_Consumed_Ifa_For_100_Days_Or_More_Urban` DOUBLE,
`PP_Mothers_Who_Had_Full_Antenatal_Check_Up_Total` DOUBLE,
`PP_Mothers_Who_Had_Full_Antenatal_Check_Up_Rural` DOUBLE,
`PP_Mothers_Who_Had_Full_Antenatal_Check_Up_Urban` DOUBLE,
`PP_Mothers_Who_Received_Anc_From_Govt_Source_Total` DOUBLE,
`PP_Mothers_Who_Received_Anc_From_Govt_Source_Rural` DOUBLE,
`PP_Mothers_Who_Received_Anc_From_Govt_Source_Urban` DOUBLE,
'PP Mothers Whose Blood Pressure Bp Taken Total' DOUBLE,
`PP_Mothers_Whose_Blood_Pressure_Bp_Taken_Rural` DOUBLE,
`PP_Mothers_Whose_Blood_Pressure_Bp_Taken_Urban` DOUBLE,
`PP_Mothers_Whose_Blood_Taken_For_Hb_Total` DOUBLE,
`PP_Mothers_Whose_Blood_Taken_For_Hb_Rural` DOUBLE,
`PP_Mothers_Whose_Blood_Taken_For_Hb_Urban` DOUBLE,
`PP_Mothers_Who_Underwent_Ultrasound_Total` DOUBLE,
`PP_Mothers_Who_Underwent_Ultrasound_Rural` DOUBLE,
'PP Mothers Who Underwent Ultrasound Urban' DOUBLE,
'QQ Institutional Delivery Total' DOUBLE,
'QQ_Institutional_Delivery_Rural' DOUBLE,
`QQ_Institutional_Delivery_Urban` DOUBLE,
`QQ_Delivery_At_Government_Institution_Total` DOUBLE,
'QQ Delivery At Government Institution Rural' DOUBLE,
'QQ Delivery At Government Institution Urban' DOUBLE,
`QQ_Delivery_At_Private_Institution_Total` DOUBLE,
```

```
`QQ_Delivery_At_Private_Institution_Rural` DOUBLE,
`QQ_Delivery_At_Private_Institution_Urban` DOUBLE,
`QQ_Delivery_At_Home_Total` DOUBLE,
`QQ_Delivery_At_Home_Rural` DOUBLE,
`QQ_Delivery_At_Home_Urban` DOUBLE,
`QQ_Delivery_At_Home_Conducted_By_Skilled_Health_Personnel_Total` DOUBLE,
`QQ_Delivery_At_Home_Conducted_By_Skilled_Health_Personnel_Rural` DOUBLE,
`QQ_Delivery_At_Home_Conducted_By_Skilled_Health_Personnel_Urban` DOUBLE,
`QQ_Safe_Delivery_Total` DOUBLE,
'QQ Safe Delivery Rural' DOUBLE,
'QQ Safe Delivery Urban' DOUBLE,
`QQ_Caesarean_Out_Of_Total_Delivery_In_Government_Total` DOUBLE,
`QQ_Caesarean_Out_Of_Total_Delivery_In_Government_Rural` DOUBLE,
`QQ_Caesarean_Out_Of_Total_Delivery_In_Government_Urban` DOUBLE,
`QQ_Caesarean_Out_Of_Total_Delivery_In_Private_Total` DOUBLE,
`QQ_Caesarean_Out_Of_Total_Delivery_In_Private_Rural` DOUBLE,
`QQ_Caesarean_Out_Of_Total_Delivery_In_Private_Urban` DOUBLE,
`RR_Less_Than_24_Hrs_Stay_In_Institution_After_Delivery_Total` DOUBLE,
`RR_Less_Than_24_Hrs_Stay_In_Institution_After_Delivery_Rural` DOUBLE,
`RR_Less_Than_24_Hrs_Stay_In_Institution_After_Delivery_Urban` DOUBLE,
`RR_Mothers_Who_Received_Within_48_Hrs_Of_Delivery_Total` DOUBLE,
`RR_Mothers_Who_Received_Within_48_Hrs_Of_Delivery_Rural` DOUBLE,
`RR_Mothers_Who_Received_Within_48_Hrs_Of_Delivery_Urban` DOUBLE,
`RR_Mothers_Who_Received_Within_1_Week_Of_Delivery_Total` DOUBLE,
`RR_Mothers_Who_Received_Within_1_Week_Of_Delivery_Rural` DOUBLE,
`RR_Mothers_Who_Received_Within_1_Week_Of_Delivery_Urban` DOUBLE,
'RR Mothers Who Did Not Receive Any Post Natal Check Up Total' DOUBLE,
`RR_Mothers_Who_Did_Not_Receive_Any_Post_Natal_Check_Up_Rural` DOUBLE,
`RR_Mothers_Who_Did_Not_Receive_Any_Post_Natal_Check_Up_Urban` DOUBLE,
`RR_New_Borns_Who_Were_Checked_Up_Within_24_Hrs_Of_Birth_Total` DOUBLE,
`RR_New_Borns_Who_Were_Checked_Up_Within_24_Hrs_Of_Birth_Rural` DOUBLE,
`RR_New_Borns_Who_Were_Checked_Up_Within_24_Hrs_Of_Birth_Urban` DOUBLE,
`SS_Availed_Financial_Assistance_For_Delivery_Under_Jsy_Total` DOUBLE,
`SS_Availed_Financial_Assistance_For_Delivery_Under_Jsy_Rural` DOUBLE,
`SS_Availed_Financial_Assistance_For_Delivery_Under_Jsy_Urban` DOUBLE,
`SS_Availed_Financial_Assis_For_Inst_Delivery_Under_Jsy_Total` DOUBLE,
`SS_Availed_Financial_Assis_For_Inst_Delivery_Under_Jsy_Rural` DOUBLE,
`SS_Availed_Financial_Assis_For_Inst_Delivery_Under_Jsy_Urban` DOUBLE,
`SS_Availed_Financial_Assis_For_Govt_Delivery_Under_Jsy_Total` DOUBLE,
`SS_Availed_Financial_Assis_For_Govt_Delivery_Under_Jsy_Rural` DOUBLE,
`SS_Availed_Financial_Assis_For_Govt_Delivery_Under_Jsy_Urban` DOUBLE,
`TT_Children_Aged_12_23_Months_Having_Immunization_Card_Total` DOUBLE,
`TT_Children_Aged_12_23_Months_Having_Immunization_Card_Rural` DOUBLE,
`TT_Children_Aged_12_23_Months_Having_Immunization_Card_Urban` DOUBLE,
\verb|`TT_Children_Aged_12_23_Months_Who_Have_Received_Bcg_Total`| DOUBLE, |
`TT_Children_Aged_12_23_Months_Who_Have_Received_Bcg_Rural` DOUBLE,
`TT_Children_Aged_12_23_Months_Who_Have_Received_Bcg_Urban` DOUBLE,
`TT_Children_12_23_Months_Received_3_Doses_Of_Polio_Vaccine_Total` DOUBLE,
`TT_Children_12_23_Months_Received_3_Doses_Of_Polio_Vaccine_Rural` DOUBLE,
\verb|`TT_Children_12_23_Months_Received_3_Doses_Of_Polio_Vaccine_Urban`DOUBLE, |
`TT_Children_12_23_Months_Received_3_Doses_Of_Dpt_Vaccine_Total` DOUBLE,
`TT_Children_12_23_Months_Received_3_Doses_Of_Dpt_Vaccine_Rural` DOUBLE,
`TT_Children_12_23_Months_Received_3_Doses_Of_Dpt_Vaccine_Urban` DOUBLE,
\verb|`TT_Children_Aged_12_23_Months_Received_Measles_Vaccine_Total`| DOUBLE, \\
`TT_Children_Aged_12_23_Months_Received_Measles_Vaccine_Rural` DOUBLE,
`TT_Children_Aged_12_23_Months_Received_Measles_Vaccine_Urban` DOUBLE,
`TT_Children_Aged_12_23_Months_Fully_Immunized_Total` DOUBLE,
`TT_Children_Aged_12_23_Months_Fully_Immunized_Rural` DOUBLE,
`TT_Children_Aged_12_23_Months_Fully_Immunized_Urban` DOUBLE,
'TT Children Who Have Received Polio Dose At Birth Total' DOUBLE,
`TT_Children_Who_Have_Received_Polio_Dose_At_Birth_Rural` DOUBLE,
`TT_Children_Who_Have_Received_Polio_Dose_At_Birth_Urban` DOUBLE,
\verb|`TT_Children_Who_Did_Not_Receive_Any_Vaccination_Total` DOUBLE, \\
'TT Children Who Did Not Receive Any Vaccination Rural' DOUBLE,
`TT_Children_Who_Did_Not_Receive_Any_Vaccination_Urban` DOUBLE,
`TT_Children_6_35_Mon_At_Least_1_Vit_A_Dose_Last_6_Months_Total` DOUBLE,
```

```
`TT_Children_6_35_Mon_At_Least_1_Vit_A_Dose_Last_6_Months_Rural` DOUBLE,
\verb|`TT_Children_6_35_Mon_At_Least_1_Vit_A_Dose_Last_6_Months_Urban`DOUBLE, |
`TT_Children_6_35_Mon_Ifa_Tablets_Syrup_Last_3_Months_Total` DOUBLE,
`TT_Children_6_35_Mon_Ifa_Tablets_Syrup_Last_3_Months_Rural` DOUBLE,
`TT_Children_6_35_Mon_Ifa_Tablets_Syrup_Last_3_Months_Urban` DOUBLE,
\verb|`TT_Children_Whose_Birth_Weight_Was_Taken_Total` DOUBLE, \\
`TT_Children_Whose_Birth_Weight_Was_Taken_Rural` DOUBLE,
`TT_Children_Whose_Birth_Weight_Was_Taken_Urban` DOUBLE,
`TT_Children_With_Birth_Weight_Less_Than_2_5_Kg_Total` DOUBLE,
`TT_Children_With_Birth_Weight_Less_Than_2_5_Kg_Rural` DOUBLE,
'TT Children With Birth Weight Less Than 2 5 Kg Urban' DOUBLE,
`UU_Children_Suffering_From_Diarrhoea_Total` DOUBLE,
`UU_Children_Suffering_From_Diarrhoea_Rural` DOUBLE,
`UU_Children_Suffering_From_Diarrhoea_Urban` DOUBLE,
`UU_Children_Diarrhoea_Who_Received_Haf_Ors_Ort_Total` DOUBLE,
\verb|`UU\_Children\_Diarrhoea\_Who\_Received\_Haf\_Ors\_Ort\_Rural` DOUBLE, \\
`UU_Children_Diarrhoea_Who_Received_Haf_Ors_Ort_Urban` DOUBLE,
\verb|`UU\_Children\_Suffering\_From\_Acute\_Respiratory\_Infection\_Total` DOUBLE, \\
`UU_Children_Suffering_From_Acute_Respiratory_Infection_Rural` DOUBLE,
`UU_Children_Suffering_From_Acute_Respiratory_Infection_Urban` DOUBLE,
`UU_Children_Acute_Respiratory_Infection_Sought_Treatment_Total` DOUBLE,
\verb|`UU\_Children\_Acute\_Respiratory\_Infection\_Sought\_Treatment\_Rural`DOUBLE, \\
`UU_Children_Acute_Respiratory_Infection_Sought_Treatment_Urban` DOUBLE,
`UU_Children_Suffering_From_Fever_Total` DOUBLE,
`UU_Children_Suffering_From_Fever_Rural` DOUBLE,
\verb|`UU\_Children\_Suffering\_From\_Fever\_Urban` DOUBLE, \\
\verb|`UU\_Children\_Suffering\_From\_Fever\_Who\_Sought\_Treatment\_Total` DOUBLE, \\
`UU_Children_Suffering_From_Fever_Who_Sought_Treatment_Rural` DOUBLE,
`UU_Children_Suffering_From_Fever_Who_Sought_Treatment_Urban` DOUBLE,
`VV_Children_Breastfed_Within_One_Hour_Of_Birth_Total` DOUBLE,
`VV_Children_Breastfed_Within_One_Hour_Of_Birth_Rural` DOUBLE,
`VV_Children_Breastfed_Within_One_Hour_Of_Birth_Urban` DOUBLE,
`VV_Children_6_35_Mon_Excl_Breastfed_For_At_Least_6_Mon_Total` DOUBLE,
`VV_Children_6_35_Mon_Excl_Breastfed_For_At_Least_6_Mon_Rural` DOUBLE,
`VV_Children_6_35_Mon_Excl_Breastfed_For_At_Least_6_Mon_Urban` DOUBLE,
`VV_Other_Than_Breast_Milk_During_First_6_Months_Water_Total` DOUBLE,
`VV_Other_Than_Breast_Milk_During_First_6_Months_Water_Rural` DOUBLE,
`VV_Other_Than_Breast_Milk_During_First_6_Months_Water_Urban` DOUBLE,
`VV_1st_6_Months_Animal_Formula_Milk_Total` DOUBLE,
`VV_1st_6_Months_Animal_Formula_Milk_Rural` DOUBLE,
`VV_1st_6_Months_Animal_Formula_Milk_Urban` DOUBLE,
`VV_1st_6_Months_Semi_Solid_Mashed_Food_Total` DOUBLE,
`VV_1st_6_Months_Semi_Solid_Mashed_Food_Rural` DOUBLE,
`VV_1st_6_Months_Semi_Solid_Mashed_Food_Urban` DOUBLE,
`VV_1st_6_Months_Solid_Adult_Food_Total` DOUBLE,
`VV_1st_6_Months_Solid_Adult_Food_Rural` DOUBLE,
`VV_1st_6_Months_Solid_Adult_Food_Urban` DOUBLE,
`VV_1st_6_Months_Vegetables_Fruits_Total` DOUBLE,
`VV_1st_6_Months_Vegetables_Fruits_Rural` DOUBLE,
`VV_1st_6_Months_Vegetables_Fruits_Urban` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Water_Total` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Water_Rural` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Water_Urban` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Animal_Formula_Milk_Total` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Animal_Formula_Milk_Rural` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Animal_Formula_Milk_Urban` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Semi_Solid_Mashed_Food_Total` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Semi_Solid_Mashed_Food_Rural` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Semi_Solid_Mashed_Food_Urban` DOUBLE,
'VV Avg Month Other Than Breast Milk Solid Adult Food Total' DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Solid_Adult_Food_Rural` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Solid_Adult_Food_Urban` DOUBLE,
\verb|`VV_Avg_Month_Other_Than_Breast_Milk_Vegetables_Fruits_Total` DOUBLE, |
`VV_Avg_Month_Other_Than_Breast_Milk_Vegetables_Fruits_Rural` DOUBLE,
`VV_Avg_Month_Other_Than_Breast_Milk_Vegetables_Fruits_Urban` DOUBLE,
`WW_Birth_Registered_Total` DOUBLE,
```

```
`WW_Birth_Registered_Rural` DOUBLE,
`WW_Birth_Registered_Urban` DOUBLE,
`WW_Children_Registered_And_Received_Birth_Certificate_Total` DOUBLE,
`WW_Children_Registered_And_Received_Birth_Certificate_Rural` DOUBLE,
\verb|`WW\_Children\_Registered\_And\_Received\_Birth\_Certificate\_Urban`| DOUBLE,
`XX_Women_Who_Are_Aware_Of_Hiv_Aids_Total` DOUBLE,
`XX_Women_Who_Are_Aware_Of_Hiv_Aids_Rural` DOUBLE,
`XX_Women_Who_Are_Aware_Of_Hiv_Aids_Urban` DOUBLE,
`XX_Women_Who_Are_Aware_Of_Rti_Sti_Total` DOUBLE,
'XX Women Who Are Aware Of Rti Sti Rural' DOUBLE,
'XX Women Who Are Aware Of Rti Sti Urban' DOUBLE,
`XX_Women_Who_Are_Aware_Of_Haf_Ors_Ort_Zinc_Total` DOUBLE,
`XX_Women_Who_Are_Aware_Of_Haf_Ors_Ort_Zinc_Rural` DOUBLE,
`XX_Women_Who_Are_Aware_Of_Haf_Ors_Ort_Zinc_Urban` DOUBLE,
`XX_Women_Who_Are_Aware_Of_Danger_Signs_Of_Ari_Pneumonia_Total` DOUBLE,
\verb|`XX_Women_Who_Are_Aware_Of_Danger_Signs_Of_Ari_Pneumonia_Rural'| DOUBLE, \\
\verb|`XX_Women_Who_Are_Aware_Of_Danger_Signs_Of_Ari_Pneumonia_Urban`| DOUBLE, \\
`YY_Crude_Death_Rate_Cdr_Total_Person` DOUBLE,
`YY_Crude_Death_Rate_Cdr_Total_Male` DOUBLE,
`YY_Crude_Death_Rate_Cdr_Total_Female` DOUBLE,
`YY_Crude_Death_Rate_Cdr_Rural_Person` DOUBLE,
`YY_Crude_Death_Rate_Cdr_Rural_Male` DOUBLE,
`YY_Crude_Death_Rate_Cdr_Rural_Female` DOUBLE,
`YY_Crude_Death_Rate_Cdr_Urban_Person` DOUBLE,
`YY_Crude_Death_Rate_Cdr_Urban_Male` DOUBLE,
`YY_Crude_Death_Rate_Cdr_Urban_Female` DOUBLE,
'YY Infant Mortality Rate Imr Total Person' DOUBLE,
`YY_Infant_Mortality_Rate_Imr_Total_Male` DOUBLE,
`YY_Infant_Mortality_Rate_Imr_Total_Female` DOUBLE,
`YY_Infant_Mortality_Rate_Imr_Rural_Person` DOUBLE,
`YY_Infant_Mortality_Rate_Imr_Rural_Male` DOUBLE,
`YY_Infant_Mortality_Rate_Imr_Rural_Female` DOUBLE,
`YY_Infant_Mortality_Rate_Imr_Urban_Person` DOUBLE,
`YY_Infant_Mortality_Rate_Imr_Urban_Male` DOUBLE,
`YY_Infant_Mortality_Rate_Imr_Urban_Female` DOUBLE,
'YY_Neo_Natal_Mortality_Rate_Total' DOUBLE,
`YY_Neo_Natal_Mortality_Rate_Rural` DOUBLE,
`YY_Neo_Natal_Mortality_Rate_Urban` DOUBLE,
`YY_Post_Neo_Natal_Mortality_Rate_Total` DOUBLE,
`YY_Post_Neo_Natal_Mortality_Rate_Rural` DOUBLE,
`YY_Post_Neo_Natal_Mortality_Rate_Urban` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Total_Person` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Total_Male` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Total_Female` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Rural_Person` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Rural_Male` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Rural_Female` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Urban_Person` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Urban_Male` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Urban_Female` DOUBLE,
`ZZ_Crude_Birth_Rate_Total_Lower_Limit` DOUBLE,
`ZZ_Crude_Birth_Rate_Total_Upper_Limit` DOUBLE,
`ZZ_Crude_Birth_Rate_Rural_Lower_Limit` DOUBLE,
`ZZ_Crude_Birth_Rate_Rural_Upper_Limit` DOUBLE,
`ZZ_Crude_Birth_Rate_Urban_Lower_Limit` DOUBLE,
`ZZ_Crude_Birth_Rate_Urban_Upper_Limit` DOUBLE,
`ZZ_Crude_Death_Rate_Total_Lower_Limit` DOUBLE,
`ZZ_Crude_Death_Rate_Total_Upper_Limit` DOUBLE,
`ZZ_Crude_Death_Rate_Rural_Lower_Limit` DOUBLE,
'ZZ Crude Death Rate Rural Upper Limit' DOUBLE,
`ZZ_Crude_Death_Rate_Urban_Lower_Limit` DOUBLE,
`ZZ_Crude_Death_Rate_Urban_Upper_Limit` DOUBLE,
`ZZ_Infant_Mortality_Rate_Total_Lower_Limit` DOUBLE,
'ZZ Infant Mortality Rate Total Upper Limit' DOUBLE,
`ZZ_Infant_Mortality_Rate_Rural_Lower_Limit` DOUBLE,
```

`ZZ_Infant_Mortality_Rate_Rural_Upper_Limit` DOUBLE,

```
`ZZ_Infant_Mortality_Rate_Urban_Lower_Limit` DOUBLE,
`ZZ_Infant_Mortality_Rate_Urban_Upper_Limit` DOUBLE,
`ZZ_Under_Five_Mortality_Rate_U5MR_Total_Lower_Limit` DOUBLE,
`ZZ_Under_Five_Mortality_Rate_U5MR_Total_Upper_Limit` DOUBLE,
`ZZ_Under_Five_Mortality_Rate_U5MR_Rural_Lower_Limit` DOUBLE,
`ZZ_Under_Five_Mortality_Rate_U5MR_Rural_Upper_Limit` DOUBLE,
`ZZ_Under_Five_Mortality_Rate_U5MR_Urban_Lower_Limit` DOUBLE,
`ZZ_Under_Five_Mortality_Rate_U5MR_Urban_Upper_Limit` DOUBLE,
`ZZ_Sex_Ratio_At_Birth_Total_Lower_Limit` DOUBLE,
`ZZ_Sex_Ratio_At_Birth_Total_Upper_Limit` DOUBLE,
'ZZ Sex Ratio At Birth Rural Lower Limit' DOUBLE,
`ZZ_Sex_Ratio_At_Birth_Rural_Upper_Limit` DOUBLE,
`ZZ_Sex_Ratio_At_Birth_Urban_Lower_Limit` DOUBLE,
`ZZ_Sex_Ratio_At_Birth_Urban_Upper_Limit` DOUBLE
) row format delimited fields terminated by ',
location 's3a://etl-shub/Key_indicator_districtwise_external';
```

2. Command to load the ingested data into the external table

#> load data inpath '/user/root/Key_indicator_districtwise_external/part-m*' into table
Key_indicator_districtwise_ext;

- 3. Queries to verify that the ingestion is correctly accomplished
- a. Query to count the total number of rows along with the screenshots of the data fetched by the query on MySQL Workbench and Hue

Query:

Mysql → select count(*) from Key_indicator_districtwise;

Hue → select count(*) from Key_indicator_districtwise_ext;

MySQL Workbench:

<Screenshot>

Hue:

<Screenshot>

```
40.57s default v text v ?

| Select count(*) from key_indicator_districtwise_ext;
| Select count(*) from key_indicator_districtwise_ext;
| County | Select cou
```

b. Query to select the top 10 rows and first 8 columns along with the screenshots of the data fetched by the query on MySQL Workbench and Hue

Query:

Mysql → SELECT ID ,State_Name,State_District_Name,AA_Sample_Units_Total,AA_Sample_Units_Rural,AA_Sample_Units_Urban, AA_Households_Total,AA_Households_Rural FROM Key_indicator_districtwise where ID <=10;

Hue → SELECT ID ,State_Name,State_District_Name,AA_Sample_Units_Total,AA_Sample_Units_Rural, AA_Sample_Units_Urban, AA_Households_Total,AA_Households_Rural FROM Key_indicator_districtwise_ext where ID <=10;

MySQL Workbench:

<Screenshot>

Hue:

<Screenshot>

Query History		story	Q 🛱 Save	d Queries Q Res	ults (10) Q 🚜	
		id	state_name	state_district_name	aa_sample_units_total	aa,
	1	1	Assam	Barpeta	53	47
	2	2	Assam	Bongaigaon	89	73
Ł	3	3	Assam	Cachar	105	84
	4	4	Assam	Darrang	26	24
	5	5	Assam	Dhemaji	121	10
	6	6	Assam	Dhubri	42	35
	7	7	Assam	Dibrugarh	91	66
	8	8	Assam	Goalpara	64	56
	9	9	Assam	Golaghat	70	61
	10	10	Assam	Hailakandi	10	8

Subset schema creation in Hive to support the analyses

1. Columns used in the subset schema

- 1. State_Name,
- 2. State_District_Name
- 3. AA_Households_Total
- 4. AA_Population_Total
- 5. CC_Sex_Ratio_All_Ages_Total
- 6. LL Total Fertility Rate Total
- 7. YY_Under_Five_Mortality_Rate_U5MR_Total_Person

2. Storage format used

ORC

3. Create and insert command for the default format

```
#> INSERT INTO Key_indicator_districtwise_ext_subset SELECT State_Name,
State District Name,
AA Households Total, AA Population Total,
CC_Sex_Ratio_All_Ages_Total,
LL Total Fertility Rate Total,
YY Under Five Mortality Rate U5MR Total Person FROM Key indicator districtwise ext;
4. Create and insert command for the formats such as ORC
#> CREATE TABLE Key indicator districtwise ext ORC (
'State Name' STRING,
`State_District_Name` STRING,
`AA Households Total` INT,
`AA Population Total` INT,
`CC_Sex_Ratio_All_Ages_Total` DOUBLE,
`LL Total Fertility Rate Total` DOUBLE,
'YY Under Five Mortality Rate U5MR Total Person' DOUBLE)
row format delimited fields terminated by ',' STORED AS ORC tblproperties
("orc.compress"="SNAPPY");
#> INSERT INTO Key_indicator_districtwise_ext_ORC SELECT State_Name,
State District Name,
AA Households Total,
AA_Population_Total,
CC_Sex_Ratio_All_Ages_Total,
LL Total Fertility Rate Total,
YY Under Five Mortality Rate U5MR Total Person FROM Key indicator districtwise ext;
5. Create and insert command for the Hive-HBase integrated table
#> CREATE TABLE Key indicator districtwise ext HIVE HBASE('ID' INT, 'State Name' STRING,
`State_District_Name` STRING,
`AA Households Total` INT,
`AA Population Total` INT,
`CC_Sex_Ratio_All_Ages_Total` DOUBLE,
`LL_Total_Fertility_Rate_Total` DOUBLE,
'YY Under Five Mortality Rate U5MR Total Person' DOUBLE)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" =
":key,cf2:val,cf3:val,cf4:val,cf5:val,cf6:val,cf7:val,cf8:val")
TBLPROPERTIES ("hbase.table.name" = "Key_indicator_districtwise_ext_HBASE_HIVE");
#> insert overwrite table Key indicator districtwise ext HIVE HBASE
SELECT ID, State_Name,
State_District_Name,
AA Households Total,
AA Population Total,
CC_Sex_Ratio_All_Ages_Total,
LL Total Fertility Rate Total,
```

YY_Under_Five_Mortality_Rate_U5MR_Total_Person FROM Key_indicator_districtwise_ext;

6. Screenshot of runtimes against each query given above for the default format, formats such as ORC format as well as Hive-Hbase integration

For default format:

<Screenshot of run time for query 1>

```
1 | SELECT count(*) from Key_indicator_districtwise_ext_subset;
```

```
INFO : 2019-07-15 00:53:32,177 Stage-1 map = 100%, reduce = 0%, cumulative CPU 1.5 8 sec job_1563169911433_0002

INFO : 2019-07-15 06:53:40,856 Stage-1 map = 100%, reduce = 100%, cumulative CPU 3.53 sec

INFO : MapReduce Total cumulative CPU time: 3 seconds 530 msec

INFO : Ended Job = job_1563169911433_0002

INFO : MapReduce Jobs Launched:

INFO : Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.53 sec HDFS Read: 226

51 HDFS Write: 4 SUCCESS

INFO : Total MapReduce CPU Time Spent: 3 seconds 530 msec

INFO : Completed executing command(queryId=hive_20190715065353_cd8d67ae-8602-4698-b 0a0-7a80db087c32); Time taken: 31.181 seconds

INFO : OK
```

<Screenshot of run time for query 2>

```
1 select State_Name, count(*) from Key_indicator_districtwise_ext_subset
  2 group by State Name;
       בארוט : ביטוא-שריום שוושל ביטוא אווער ביטוא אווער ביטוא אווער ביטוא ביטוא ביטוא אווער ביטוא ביט
       4 sec
                                                                                                                                                                                      job_1563169911433_0003
       INFO : 2019-07-15 07:03:08,361 Stage-1 map = 100%, reduce = 100%, Cumulative CPU
       3.96 sec
       INFO : MapReduce Total cumulative CPU time: 3 seconds 960 msec
        INFO : Ended Job = job_1563169911433_0003
       INFO : MapReduce Jobs Launched:
       INFO : Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.96 sec HDFS Read: 230
       90 HDFS Write: 120 SUCCESS
       INFO : Total MapReduce CPU Time Spent: 3 seconds 960 msec
       INFO : Completed executing command(queryId=hive_20190715070202_317d4c8f-e3b4-4020-a
       472-eb826998dddb); Time taken: 32.604 seconds
     TNFO : OK
<Screenshot of run time for query 3>
1 select * from Key_indicator_districtwise_ext_subset where State_Name = 'Uttar Pradesh
```

```
s: 0
INFO : 2019-07-15 07:06:19,327 Stage-1 map = 0%, reduciob_1563169911433_0004
INFO : 2019-07-15 07:06:28,906 Stage-1 map = 100%, reduce = 0%, Cumulative CFU 2.5
7 sec
INFO : MapReduce Total cumulative CPU time: 2 seconds 570 msec
INFO : Ended Job = job_1563169911433_0004
INFO : Stage-Stage-1: Map: 1 Cumulative CPU: 2.57 sec HDFS Read: 19387 HDFS Write: 3703 SUCCESS
INFO : Total MapReduce CPU Time Spent: 2 seconds 570 msec
INFO : Completed executing command(queryId=hive_20190715070606_487495eb-aadd-47d3-b
184-51f4f4355ad7); Time taken: 22.585 seconds
INFO : OK
```

For formats such as ORC:

<Screenshot of run time for query 1>

```
INFO : 2019-07-15 07:37:33,878 Stage-1 map = 100%, reduce = 0%, cumulative CPO 1.77 sec

[job_1563169911433_0009]
INFO : 2019-07-15 07:37:43,442 Stage-1 map = 100%, reduce = 100%, cumulative CPO 4.15 sec
INFO : MapReduce Total cumulative CPU time: 4 seconds 150 msec
INFO : Ended Job = job_1563169911433_0009
INFO : MapReduce Jobs Launched:
INFO : Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 4.15 sec HDFS Read: 236 65 HDFS Write: 4 SUCCESS
INFO : Total MapReduce CPU Time Spent: 4 seconds 150 msec
INFO : Completed executing command(queryId=hive_20190715073737_1470e0e7-99c3-40eb-8 29c-7c386fe675d9); Time taken: 31.741 seconds
INFO : OK
```

1 select count(*) from Key indicator districtwise ext ORC;

<Screenshot of run time for query 2>

```
1 select State_Name, count(*) from Key_indicator_districtwise_ext_ORC group
2 by State_Name;
```

```
INFO : 2019-07-15 07:25:35,797 Stage-1 map = 100%, reduce = 0%, cumulative CPU 1.76 sec

INFO : 2019-07-15 07:25:45,454 Stage-1 map = 100%, reduce - 100%, cumulative CPU 4.3 sec

INFO : MapReduce Total cumulative CPU time: 4 seconds 300 msec

INFO : Ended Job = job_1563169911433_0006

INFO : MapReduce Jobs Launched:

INFO : Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 4.3 sec HDFS Read: 2456 5 HDFS Write: 120 SUCCESS

INFO : Total MapReduce CPU Time Spent: 4 seconds 300 msec

INFO : Completed executing command(queryId=hive_20190715072525_e2a1cdc1-05b7-4374-b 5b7-13a3f3b87784); Time taken: 32.278 seconds

INFO : OK
```

<Screenshot of run time for query 3>

```
1 select * from Key_indicator_districtwise_ext_ORC where State_Name = 'Uttar Pradesh';
```

```
INFO : 2019-07-15 07:22:24,384 Stage-1 map = 0%, reduce - 0%, Cumulative CPU 2.1

2 sec

INFO : MapReduce Total cumulative CPU time: 2 seconds 120 msec

INFO : Ended Job = job_1563169911433_0005

INFO : MapReduce Jobs Launched:

INFO : Stage-Stage-1: Map: 1 Cumulative CPU: 2.12 sec HDFS Read: 22331 HDFS Write: 3703 SUCCESS

INFO : Total MapReduce CPU Time Spent: 2 seconds 120 msec

INFO : Completed executing command(queryId=hive_20190715072222_e3bfd5eb-f572-4f58-a ac3-353da2313aba); Time taken: 21.731 seconds

INFO : OK
```

For Hive-Hbase Integrated Table:

<Screenshot of run time for query 1>

```
INFO : 2019-07-15 07:35:59,477 Stage-1 map = 100%, reduce = 0%, cumulative CPU 3.2
6 sec

INFO : 2019-07-15 07:36:09,106 Stage-1 map = 100%, reduce = 100%, cumulative CPU
5.44 sec

INFO : MapReduce Total cumulative CPU time: 5 seconds 440 msec

INFO : Ended Job = job_1563169911433_0008

INFO : MapReduce Jobs Launched:

INFO : Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 5.44 sec HDFS Read: 172
66 HDFS Write: 4 SUCCESS

INFO : Total MapReduce CPU Time Spent: 5 seconds 440 msec

INFO : Completed executing command(queryId=hive_20190715073535_80f09167-ca02-40bd-b
05c-ec0aa5824dd5); Time taken: 43.215 seconds

INFO : OK
```

1 select count((*) from Key indicator districtwise ext HIVE HBASE;

```
select State_Name, count(*) from Key_indicator_districtwise_ext_HIVE_HBASE group
by State_Name;
```

```
1 select * from Key_indicator_districtwise_ext_HIVE_HBASE where
2 State_Name = 'Uttar Pradesh';
```

```
INFO : 2019-07-15 07:39:45,871 Stage-1 map = 0%, reduce = 0%, Cumulative CPU 3.7 9 sec

INFO : 2019-07-15 07:39:56,455 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 3.7 9 sec

INFO : MapReduce Total cumulative CPU time: 3 seconds 790 msec

INFO : Ended Job = job_1563169911433_0010

INFO : MapReduce Jobs Launched:

INFO : Stage-Stage-1: Map: 1 Cumulative CPU: 3.79 sec HDFS Read: 14103 HDFS Write: 3983 SUCCESS

INFO : Total MapReduce CPU Time Spent: 3 seconds 790 msec

INFO : Completed executing command(queryId=hive_20190715073939_78e94aa1-fbb4-4450-b534-eb7bc230f19c); Time taken: 28.527 seconds

INFO : OK
```

6. Create and insert command for the partition table for analyses 1 & 2.

```
#> CREATE TABLE Key_indicator_districtwise_ext_ORC_PARTITION (
`State_District_Name` STRING,
`AA Households Total` INT,
`AA_Population_Total` INT,
`CC_Sex_Ratio_All_Ages_Total` DOUBLE,
`LL_Total_Fertility_Rate_Total` DOUBLE,
`YY_Under_Five_Mortality_Rate_U5MR_Total_Person` DOUBLE )
PARTITIONED BY ('State_Name' STRING)
row format delimited fields terminated by ','
STORED AS ORC tblproperties ("orc.compress"="SNAPPY");
#> Insert into table Key_indicator_districtwise_ext_ORC_PARTITION partition(State_Name)
select
State_District_Name,
AA Households Total,
AA_Population_Total,
CC_Sex_Ratio_All_Ages_Total,
LL_Total_Fertility_Rate_Total,
YY_Under_Five_Mortality_Rate_U5MR_Total_Person,
State_Name from Key_indicator_districtwise_ext_ORC;
```

The result of each analysis along with the query and the corresponding chart generated in

Hue. Keep optimizations in mind

1. The child mortality rate of Uttar Pradesh

<Query on the table with the chosen format such as orc>

#> select AVG(YY_Under_Five_Mortality_Rate_U5MR_Total_Person) AS CHILD_MORTALITY_RATE from Key indicator districtwise ext ORC where State Name = 'Uttar Pradesh';

<Screenshot of the result>

<Query on the Hive-Hbase integrated table>

#> select AVG(YY_Under_Five_Mortality_Rate_U5MR_Total_Person) AS CHILD_MORTALITY_RATE
from key_indicator_districtwise_ext_hive_hbase where State_Name = 'Uttar Pradesh';

```
35.98s ■ default ▼ text ▼ ② ?
1 select AVG(YY_Under_Five_Mortality_Rate_U5MR_Total_Person) AS CHILD_MORTALITY_RATE
2 from key_indicator_districtwise_ext_hive_hbase where State_Name = 'Uttar Pradesh';
                                                                              default.key ir
 job_1563169911433_0012
 e03-cda077f8a8c3); Time taken: 34.248 seconds
 INFO : OK
  Query History Q 🖾 Saved Queries Q Results (1) Q 🛂
          child_mortality_rate
          90.22857142857143
2. The fertility rate of Bihar
<Query on the table with the chosen format such as orc>
#> select AVG(LL Total Fertility Rate Total) AS FERTILITY RATE from
Key_indicator_districtwise_ext_ORC where State_Name = 'Bihar';
<Screenshot of the result>
                                               24.82s \ detault \ text \ ₹ ?
1 select AVG(LL_Total_Fertility_Rate_Total) AS FERTILITY_RATE
  from Key_indicator_districtwise_ext_ORC
3 where State_Name = 'Bihar';
  c2.internal:8088/proxy/application_1563169911433_0013/
  INFO : Kill Command = \sqrt{\frac{job_1563169911433_0013}{job_1563169911433_0013}}
  bin/hadoop job -kill job_1563169911433_0013
  Query History Q 🖄 Saved Queries Q
                                            Results (1) Q 🛂
           fertility_rate
           3.532432432432432
[II] v
```

<Query on the Hive-Hbase integrated table>

#> select AVG(LL_Total_Fertility_Rate_Total) AS FERTILITY_RATE from
key_indicator_districtwise_ext_hive_hbase where State_Name = 'Bihar';

<Screenshot of the result>

3. State wise child mortality rate and state wise fertility rate and does high fertility correlate with high child mortality?

<Query on the table with the chosen format such as orc>

#> select State_Name,AVG(YY_Under_Five_Mortality_Rate_U5MR_Total_Person) AS
CHILD_MORTALITY_RATE from key_indicator_districtwise_ext_orc group by State_Name;

<Query on the Hive-Hbase integrated table>

#> select State_Name,AVG(YY_Under_Five_Mortality_Rate_U5MR_Total_Person) AS
CHILD_MORTALITY_RATE from key_indicator_districtwise_ext_hive_hbase group by State_Name;

		state_name	child_mortality_rate
ılıl 🔻	1	Assam	71.43478260869566
	2	Bihar	69.62162162163
*	3	Chhattisgarh	62.5
	4	Jharkhand	53.4444444444444
	5	Madhya Pradesh	83.377777777778
	6	Odisha	75.8
	7	Rajasthan	75.0625
	8	Uttar Pradesh	90.22857142857143
	9	Uttarakhand	41.84615384615385

<Chart>

<Query on the table with the chosen format such as orc>

#> select State_Name,AVG(LL_Total_Fertility_Rate_Total) AS FERTILITY_RATE from key_indicator_districtwise_ext_ORC group by State_Name;

<Screenshot of the result>

	state_name	fertility_rate
1	Assam	2.4
2	Bihar	3.532432432432432
3	Chhattisgarh	2.70125
4	Jharkhand	2.894444444444445
5	Madhya Pradesh	3.031111111111111
6	Odisha	2.28
7	Rajasthan	3.028125
8	Uttar Pradesh	3.3978571428571427
9	Uttarakhand	2.022307692307692

<Query on the Hive-Hbase integrated table>

#> select State_Name,AVG(LL_Total_Fertility_Rate_Total) AS FERTILITY_RATE from key_indicator_districtwise_ext_hive_hbase group by State_Name;

	state_name	fertility_rate
1	Assam	2.399999999999995
2	Bihar	3.532432432432432
3	Chhattisgarh	2.70125
4	Jharkhand	2.89444444444445
5	Madhya Pradesh	3.031111111111112
6	Odisha	2.28
7	Rajasthan	3.028125
8	Uttar Pradesh	3.3978571428571427
9	Uttarakhand	2.022307692307692

<Chart>

<Query on the table with the chosen format such as orc>

#> Select state_name,CORR_FERT_MORT,
CASE WHEN CORR_FERT_MORT > 0 then "POSITIVE ASSOSCIATION"
WHEN CORR_FERT_MORT =0 then "NO ASSOSCIATION"
WHEN CORR_FERT_MORT <0 then "NEGATIVE ASSOSCIATION"
END AS CORRELATION_INDICATOR FROM
(select
state name,CORR(LL Total Fertility Rate Total,YY Under Five Morta)</pre>

 $state_name, CORR(LL_Total_Fertility_Rate_Total, YY_Under_Five_Mortality_Rate_U5MR_Total_Person) \ AS$

CORR_FERT_MORT

from key_indicator_districtwise_ext_orc group by state_name)A

	state_name	corr_fert_mort	correlation_indicator
1	Assam	0.3915829744764518	POSITIVE ASSOSCIATION
2	Bihar	0.7233339695538527	POSITIVE ASSOSCIATION
3	Chhattisgarh	0.4551421203097001	POSITIVE ASSOSCIATION
4	Jharkhand	0.7936967288511909	POSITIVE ASSOSCIATION
5	Madhya Pradesh	0.7051529438563544	POSITIVE ASSOSCIATION
6	Odisha	0.3116788576691367	POSITIVE ASSOSCIATION
7	Rajasthan	0.5992209550552275	POSITIVE ASSOSCIATION
8	Uttar Pradesh	0.6297529969287118	POSITIVE ASSOSCIATION
9	Uttarakhand	0.8430609600364916	POSITIVE ASSOSCIATION

<Query on the Hive-Hbase integrated table>

#> Select state_name,CORR_FERT_MORT,

CASE WHEN CORR_FERT_MORT > 0 then "POSITIVE ASSOSCIATION"

WHEN CORR_FERT_MORT =0 then "NO ASSOSCIATION"

WHEN CORR_FERT_MORT <0 then "NEGATIVE ASSOSCIATION"

END AS CORRELATION_INDICATOR FROM

(select

 $state_name, CORR(LL_Total_Fertility_Rate_Total, YY_Under_Five_Mortality_Rate_U5MR_Total_Person) \ AS \ CORR_FERT_MORT$

from key_indicator_districtwise_ext_hive_hbase group by state_name)A

<Screenshot of the result>

	state_name	corr_fert_mort	correlation_indicator
1	Assam	0.39158297447645185	POSITIVE ASSOSCIATION
2	Bihar	0.7233339695538527	POSITIVE ASSOSCIATION
3	Chhattisgarh	0.4551421203097001	POSITIVE ASSOSCIATION
4	Jharkhand	0.7936967288511909	POSITIVE ASSOSCIATION
5	Madhya Pradesh	0.7051529438563545	POSITIVE ASSOSCIATION
6	Odisha	0.3116788576691367	POSITIVE ASSOSCIATION
7	Rajasthan	0.5992209550552275	POSITIVE ASSOSCIATION
8	Uttar Pradesh	0.6297529969287118	POSITIVE ASSOSCIATION
9	Uttarakhand	0.8430609600364916	POSITIVE ASSOSCIATION

<Chart>

4. Find top 2 districts per state with the highest population per household

<Query on the table with the chosen format such as orc>

#> WITH A as (select State_Name,state_district_name,AA_Population_Total/AA_Households_Total AS POPULATION_PER_HOUSEHOLD from key_indicator_districtwise_ext_ORC) SELECT State_Name,state_district_name,POPULATION_PER_HOUSEHOLD from (select State_Name,state_district_name,POPULATION_PER_HOUSEHOLD, ROW_NUMBER() OVER(PARTITION BY State_Name ORDER BY POPULATION_PER_HOUSEHOLD DESC) AS RANK from A) B where B.RANK IN (1,2)

<Screenshot of the result>

```
WITH A as (select State_Name,state_district_name,AA_Population_Total/AA_Households_Total AS POPULATION_PER_HOUSEHOLD
from key_indicator_districtwise_ext_ORC )

SELECT State_Name,state_district_name,POPULATION_PER_HOUSEHOLD
from (select State_Name,state_district_name,POPULATION_PER_HOUSEHOLD,
ROW_NUMBER() OVER( PARTITION BY State_Name ORDER BY POPULATION_PER_HOUSEHOLD DESC) AS RANK from A ) B where B.RANK IN (1,2)
```

INFO : Total MapReduce CPU Time Spent: 4 seconds 340 msec
INFO : Completed executing command(queryId=hive_20190715085353_72e0386d-c9c0-473f-a883-ea6f801ffb69); Time taken: 24.731 seconds
INFO : OK

	state_name	state_district_name	population_per_household
1	Assam	Dhemaji	5.2103445894620535
2	Assam	Marigaon	4.978445126406547
3	Bihar	Gopalganj	5.979195301761839
4	Bihar	Nawada	5.944978455419291
5	Chhattisgarh	Durg	4.716408016844732
6	Chhattisgarh	Rajnandgaon	4.651162790697675
7	Jharkhand	Kodarma	5.868167462952465
8	Jharkhand	Giridih	5.787106964805766
9	Madhya Pradesh	Jhabua	5.5903925014645575
10	Madhya Pradesh	Sehore	5.366774132372464
11	Odisha	Bhadrak	4.765950743055191
12	Odisha	Jajapur	4.494145867839397
13	Rajasthan	Dhaulpur	5.81097222222222
14	Rajasthan	Barmer	5.629192111322455
15	Uttar Pradesh	Sant Ravidas Nagar (Bhadohi)	6.210831290394473
16	Uttar Pradesh	Baghpat	6.11956799591002
17	Uttarakhand	Udham Singh Nagar	5.1164532900989546
18	Uttarakhand	Nainital	4.748913659550349

<Query on the Hive-Hbase integrated table>

#> WITH A as (select State_Name,state_district_name,AA_Population_Total/AA_Households_Total AS POPULATION_PER_HOUSEHOLD from key_indicator_districtwise_ext_hive_hbase) SELECT State_Name,state_district_name,POPULATION_PER_HOUSEHOLD from (select State_Name,state_district_name,POPULATION_PER_HOUSEHOLD, ROW_NUMBER() OVER(PARTITION BY State_Name ORDER BY POPULATION_PER_HOUSEHOLD DESC) AS RANK from A) B where B.RANK IN (1,2)

```
WITH A as (select State_Name,state_district_name,AA_Population_Total/AA_Households_Total AS POPULATION_PER_HOUSEHOLD

from key_indicator_districtwise_ext_hive_hbase )

SELECT State_Name,state_district_name,POPULATION_PER_HOUSEHOLD

from (select State_Name,state_district_name,POPULATION_PER_HOUSEHOLD,

ROW_NUMBER() OVER( PARTITION BY State_Name ORDER BY POPULATION_PER_HOUSEHOLD DESC) AS RANK

from A ) B where B.RANK IN (1,2)
```

```
INFO : Total MapReduce CPU Time Spent: 6 seconds 450 msec
```

 $INFO: {\tt Completed executing command(queryId=hive_20190715085656_84a79f76-d654-4cb2-bc99-1622a6f3334b); \ Time \ taken: \ 38.002 \ seconds \ taken: \ take$

INFO : OK

	state_name	state_district_name	population_per_household
1	Assam	Dhemaji	5.2103445894620535
2	Assam	Marigaon	4.978445126406547
3	Bihar	Gopalganj	5.979195301761839
4	Bihar	Nawada	5.944978455419291
5	Chhattisgarh	Durg	4.716408016844732
6	Chhattisgarh	Rajnandgaon	4.651162790697675
7	Jharkhand	Kodarma	5.868167462952465
8	Jharkhand	Giridih	5.787106964805766
9	Madhya Pradesh	Jhabua	5.5903925014645575
10	Madhya Pradesh	Sehore	5.366774132372464
11	Odisha	Bhadrak	4.765950743055191
12	Odisha	Jajapur	4.494145867839397
13	Rajasthan	Dhaulpur	5.81097222222222
14	Rajasthan	Barmer	5.629192111322455
15	Uttar Pradesh	Sant Ravidas Nagar (Bhadohi)	6.210831290394473
16	Uttar Pradesh	Baghpat	6.11956799591002
17	Uttarakhand	Udham Singh Nagar	5.1164532900989546
18	Uttarakhand	Nainital	4.748913659550349

<Chart>

5. Find top 2 districts per state with the lowest sex ratios

<Query on the table with the chosen format such as orc>

#> SELECT State_Name,state_district_name,sex_ratio from (select
State_Name,state_district_name,CC_Sex_Ratio_All_Ages_Total AS SEX_RATIO, ROW_NUMBER()
OVER(PARTITION BY State_Name ORDER BY CC_Sex_Ratio_All_Ages_Total) AS RANK from
key_indicator_districtwise_ext_ORC) A where A.RANK IN (1,2)

```
1 SELECT State_Name,state_district_name,sex_ratio
2 from (select State_Name,state_district_name,CC_Sex_Ratio_All_Ages_Total AS SEX_RATIO,
3 ROW_NUMBER() OVER( PARTITION BY State_Name ORDER BY CC_Sex_Ratio_All_Ages_Total) AS RANK
4 from key_indicator_districtwise_ext_ORC ) A where A.RANK IN (1,2)
5
6
7
8
```

INFO : Total MapReduce CPU Time Spent: 4 seconds 70 msec

 $INFO: {\tt Completed executing command(queryId=hive_20190715085959_0dfdbda1-ae9d-4c62-8c1b-b4d4d3c39199); \ Time \ taken: 26.193 \ seconds \ taken: 26.193 \$

INFO : OK

	state_name	state_district_name	sex_ratio
1	Assam	Kamrup	925
2	Assam	North Cachar Hills	941
3	Bihar	Pashchim Champaran	894
4	Bihar	Khagaria	900
5	Chhattisgarh	Koriya	937.3
6	Chhattisgarh	Bilaspur	948.43
7	Jharkhand	Dhanbad	913
8	Jharkhand	Bokaro	917
9	Madhya Pradesh	Morena	833.13
10	Madhya Pradesh	Datia	852.12
11	Odisha	Sonapur	941
12	Odisha	Jharsuguda	944
13	Rajasthan	Karauli	837
14	Rajasthan	Dhaulpur	838
15	Uttar Pradesh	Gautam Buddha Nagar	836.82
16	Uttar Pradesh	Shahjahanpur	853.67
17	Uttarakhand	Haridwar	884.93
18	Uttarakhand	Udham Singh Nagar	914.31

<Query on the Hive-Hbase integrated table>

#> SELECT State_Name,state_district_name,sex_ratio from (select
State_Name,state_district_name,CC_Sex_Ratio_All_Ages_Total AS SEX_RATIO, ROW_NUMBER()
OVER(PARTITION BY State_Name ORDER BY CC_Sex_Ratio_All_Ages_Total) AS RANK from
key_indicator_districtwise_ext_hive_hbase) A where A.RANK IN (1,2)

```
1 SELECT State_Name, state_district_name, sex_ratio
2 from (select State_Name, state_district_name, CC_Sex_Ratio_All_Ages_Total AS SEX_RATIO,
3 ROW_NUMBER() OVER( PARTITION BY State_Name ORDER BY CC_Sex_Ratio_All_Ages_Total) AS RANK
4 from key_indicator_districtwise_ext_hive_hbase ) A where A.RANK IN (1,2)
5
6
7
8
9
```

INFO : The url to track the job: http://ip-10-0-0-153.ec2.internal:8088/proxy/application_1563169911433_0024/
INFO : Starting Job = job_1563169911433_0024, Tracking URL = http://ip-10-0-0-153.ec2.internal:8088/proxy/application_1563169911433_0024/
INFO : Kill Command = /opt/cloudera/parcels/CDH-5.15.1-1.cdh5.15.1.p0.4/lib/hadoop/bin/hadoop job -kill job_1563169911433_0024

	state_name	state_district_name	sex_r	atio
1	Assam	Kamrup	925	
2	Assam	North Cachar Hills	941	
3	Bihar	Pashchim Champaran	894	
4	Bihar	Khagaria	900	
5	Chhattisgarh	Koriya	937.3	
6	Chhattisgarh	Bilaspur	948.43	3
7	Jharkhand	Dhanbad	913	
8	Jharkhand	Bokaro	917	
9	Madhya Pradesh	Morena	833.13	3
10	Madhya Pradesh	Datia	852.12	2
11	Odisha	Sonapur	941	
12	Odisha	Jharsuguda	944	
13	Rajasthan	Karauli		837
14	Rajasthan	Dhaulpur		838
15	Uttar Pradesh	Gautam Buddha Nagar		836.82
16	Uttar Pradesh	Shahjahanpur		853.67
17	Uttarakhand	Haridwar		884.93
18	Uttarakhand	Udham Singh Nagar		914.31

<Chart>

