ECUACIONES NO LINEALES (Primera parte)

ANÁLISIS NUMÉRICO/MÉTODOS MATEMÁTICOS Y NUMÉRICOS

(75.12/95.04/95.13)

CURSO TARELA

PROBLEMA:

Hallar la raíz de $f(x) = \frac{x^2}{4} - sen(x)$ en el intervalo [1,6; 2] con un error absoluto de 0,02 por los métodos:

- a. Bisección
- b. Regula Falsi
- c. Punto Fijo

Calcular orden de convergencia para cada uno.

FUNCIÓN:

BISECCIÓN

Pasos a seguir:

- 1. Definir el intervalo $[a_0, b_0]$.
- 2. Calcular $f(a_0)$ y $f(b_0)$, verificando que $f(a_0) * f(b_0) < 0$.
- 3. Calcular $m_1 = \frac{a_0 + b_0}{2}$.
- 4. Calcular $f(m_1)$.
- 5. Si $S[f(m_1)] = S[f(a_0)]$, entonces $a_1 \to m_1$. Caso contrario, $b_1 \to m_1$
- 6. Calcular el error absoluto: $\varepsilon_1 = |m_1 m_0| = \frac{b_0 a_0}{2}$
- 7. Repetir a partir de '2' hasta cumplir que $\varepsilon_{k+1} < 0.02$

BISECCIÓN

k	a_k	b_k	$f(a_k)$	$f(b_k)$	m_{k+1}	$f(m_{k+1})$	$arepsilon_{k+1}$
0	1,6	2,0	-0,360	0,091	1,80000	-0,164	0,200
1	1,8	2,0	-0,164	0,091	1,90000	-0,044	0,100
2	1,9	2,0	-0,044	0,091	1,95000	0,022	0,050
3	1,9	1,9500	-0,044	0,022	1,92500	-0,012	0,025
4	1,925	1,9500	-0,012	0,022	1,93750	0,005	0,013

Raíz:

$$x = 1,94 \pm 0,02$$

BISECCIÓN

¿Puedo determinar la cantidad de pasos que necesito para hallar la raíz de la función con la tolerancia deseada?

$$\frac{b_0 - a_0}{2^n} < \varepsilon_{TOL} \qquad \Rightarrow \quad n > \log_2\left(\frac{b_0 - a_0}{\varepsilon_{TOL}}\right)$$

$$n = 5$$

REGULA FALSI:

Pasos a seguir:

- 1. Definir el intervalo $[a_0, b_0]$.
- 2. Calcular $f(a_0)$ y $f(b_0)$, verificando que $f(a_0) * f(b_0) < 0$.
- 3. Calcular $m_1 = a_0 (b_0 a_0) \frac{f(a_0)}{f(b_0) f(a_0)}$.
- 4. Calcular $f(m_1)$.
- 5. Si $S[f(m_1)] = S[f(a_0)]$, entonces $a_1 \to m_1$. Caso contrario, $b_1 \to m_1$
- 6. Calcular el error absoluto: $\varepsilon_1 = |m_1 m_0|$
- 7. Repetir a partir de '2' hasta cumplir que $\varepsilon_{k+1} < 0.02$

REGULA FALSI:

k	a_k	b_k	$f(a_k)$	$f(b_k)$	m_{k+1}	$f(m_{k+1})$	$arepsilon_{k+1}$
0	1,6	2,0	-0,35957	0,09070	1,91942	-0,018794	
1	1,9194	2,00	-0,01879	0,09070	1,93325	-0,000659	0,013830
2	1,9333	2,00	-0,00066	0,09070	1,93374	-0,000023	0,000482
3	1,93374	2,00	-0,000023	0,09070	1,93375	-0,000001	0,000017
4	1,933753	2,00	-0,000001	0,09070	1,93375	0,000000	0,000001
5	1,933754	2,00	0,000000	0,09070	1,93375	0,000000	0,000000

Raíz:

$$x = 1,93 \pm 0,02$$

PUNTO FIJO:

Pasos a seguir:

- 1. Definir el intervalo [a, b].
- 2. Definir g tal que si f(c) = 0, entonces g(c) = c
- Probar que se cumplen las condiciones de existencia y de unicidad del punto fijo.
- 4. Elegir un valor semilla x_0 e Iterar: $x_1 = g(x_0)$
- 5. Calcular $\varepsilon_1 = |x_1 x_0|$
- 6. Repetir a partir de '4' hasta cumplir que $\varepsilon_{k+1} < 0.02$

PUNTO FIJO:

Necesitaríamos probar que la función g(x) = x - f(x)cumple con las condiciones de existencia y unicidad del punto fijo en el intervalo.

Cumple condición de existencia. Cumple condición de unicidad.

PUNTO FIJO:

k	x_k	x_{k+1}	$arepsilon_{k+1}$
0	1,60	1,95957	0,360
1	1,95957	1,92496	0,035
2	1,92496	1,93653	0,012
3	1,93653	1,93286	0,004

Raíz:

$$x = 1,94 \pm 0,02$$

ORDEN DE **CONVERGENCIA:**

$$\lim_{n\to\infty}\frac{\varepsilon_{n+1}}{\varepsilon_n^P}=\lambda$$

$$\frac{\varepsilon_{n+1}}{\varepsilon_n^{P}} = \lambda = \frac{\varepsilon_n}{\varepsilon_{n-1}^{P}}$$

$$\Rightarrow \ln \varepsilon_{n+1} - \mathbf{P} * \ln \varepsilon_n = \ln \varepsilon_n - \mathbf{P} * \ln \varepsilon_{n-1}$$

Para punto fijo:

$$P = \frac{ln\left(\frac{\varepsilon_{n+1}}{\varepsilon_n}\right)}{ln\left(\frac{\varepsilon_n}{\varepsilon_{n-1}}\right)}$$

$$P = \frac{\ln\left(\frac{\varepsilon_{n+1}}{\varepsilon_n}\right)}{\ln\left(\frac{\varepsilon_n}{\varepsilon_{n-1}}\right)} \qquad P = \frac{\ln\left(\frac{0,004}{0,012}\right)}{\ln\left(\frac{0,012}{0,035}\right)} \approx 1,03$$