Teoria dei grafi

Lorenzo Ferrari, Davide Bartoli

December 21, 2022

Table of contents

Introduzione Esempi Definizioni Tipologie di grafi Rappresentazione di graf

Visite su un grafo BFS DFS

Problemi
Componenti connesse
Conclusion

Esempi

Perchè studiamo i grafi?

- ► Tantissimi problemi possono essere ridotti a grafi
- ► I grafi sono bellissimi \(^-^)/

Perchè studiamo i grafi?

- ► Tantissimi problemi possono essere ridotti a grafi
- ► I grafi sono bellissimi \(^-^)/

Tutto è grafo. I grafi trovano applicazione nelle aree più disparate.

Esempi di problemi

- ▶ Data la descrizione di una città, trova il cammino più breve da A a B (o determina che è impossibile raggiungere B da A)
- ► Ci sono N città e conosci la distanza tra ogni coppia di città. Per costruire una strada che collega due città il costo è direttamente proporzionale alla distanza. Trova il costo minimo per connettere tutte e N le città.
- Date relazioni di dipendenza del tipo "il pacchetto x_i va installato prima del pacchetto y_i", trova un ordine per installare tutti i pacchetti o determina che è impossibile.

Definizioni _{Grafo}

Grafo
$$G = (V, E)$$

Un grafo è definito da due insiemi

- V è l'insieme dei nodi/vertici
- E è l'insieme degli **archi**

Nodi e Archi

Nodo

- ► Talvolta chiamati anche *vertici*
- ogni nodo ha una label (un nome univoco)

Nodi e Archi

Node

- ► Talvolta chiamati anche *vertici*
- ogni nodo ha una label (un nome univoco)

Arco

- Ogni arco è definito da una coppia di nodi
- ▶ Un arco connette i nodi che lo definiscono
- ▶ In alcuni casi, un arco puè connettere un nodo a se stesso
- In alcuni casi, un arco può avere un pesc

Esempio

$$G = (V, E)$$

$$V = \{1, 2, 3, 4\}$$

$$E = \{(1,2), (1,3), (1,4), (2,4), (3,4)\}$$

Cammini e Cicli

Cammino

Un cammino di lunghezza n in un grafo G = (V, E) è una sequenza di nodi $v_0, \ldots, v_n \in V$ tale che

$$(\mathsf{v}_{i-1},\mathsf{v}_i)\in \mathsf{E}\ orall\ 1\leq i\leq \mathsf{n}.$$

Un cammino si dice *semplice* se tutti i v_i sono diversi uno dall'altro

Cammini e Cicl

Cammino

Un cammino di lunghezza n in un grafo G = (V, E) è una sequenza di nodi $v_0, \ldots, v_n \in V$ tale che

$$(v_{i-1},v_i)\in E\ \forall\ 1\leq i\leq n.$$

Un cammino si dice semplice se tutti i v_i sono diversi uno dall'altro.

Ciclo

Un ciclo è un cammino in cui il primo e l'ultimo nodo coincidono

Sottografo

Sottografo

Un grafo G' = (V', E') è sottografo di G = (V, E) se e soltanto se $V' \subseteq V$ e $E' \subseteq E$.

Dimensioni di un grafo

Definizioni

- ightharpoonup n = |V|: numero di nod
- ightharpoonup m = |E|: numero di archi

Dimensioni di un grafo

Definizioni

- ightharpoonup n = |V|: numero di nodi
- ightharpoonup m = |E|: numero di archi

Relaioni tra n e m

- ln un grafo non diretto, $m \le \frac{n(n-1)}{2} = O(n^2)$
- ln un grafo diretto, $m \le n^2 n = O(n^2)$

Grafi diretti e non diretti

Grafi diretti G = (V, E)

E è un insieme di coppie ordinate di nodi (u, v)

Grafi indiretti G = (V, E)

ightharpoonup E è un insieme di coppie non ordinate di nodi [u,v]

Grafi ciclici e aciclici

Grafo ciclico

► Contiene dei cicl

Grafo aciclico

► Non contiene cicli

Grafi ciclici e aciclici

Grafo ciclico

► Contiene dei cicl

Grafo aciclico

► Non contiene cicli

Grafi pesati

Grafo pesato

- a ogni arco è associato un peso
- generalmente il peso indica il costo di percorrere quell'arco

Alberi

Albero

Figure Grafo connesso con m = n - 1

Albero radicato

▶ Grafo *connesso* con
 m = n - 1 e in cui un nodo
 è la radice

Caratteristica: un albero non presenta cicli.

Rappresentazioni

Ci sono due implementazioni "classiche"

Rappresentazioni

Ci sono due implementazioni "classiche"

► Matrici di adiacenza

Rappresentazioni

Ci sono due implementazioni "classiche"

- ► Matrici di adiacenza
- Liste di adiacenza

Matrice di adiacenza

Lista di adiacenza

Breadth-first search

Problema

Dato un grafo G = (V, E) e un vertice $r \in V$ (radice), visitare esattamente una volta tutti i vertici del grafo che si possono raggiungere da r.

Breadth-first search (BFS)

Attraversa il grafo visitando i nodi per livelli: prima i nodi a distanza 1 dalla radice, poi a distanza 2, etc.

Alcune applicazioni

- percorso minimo tra due nod
- componenti connesse

Breadth-first search

```
vector<int> adj[100000];
vector<bool> vis(100000);
void bfs(int pos){
  queue<int> q;
  q.push(pos);
  while(!q.empty()){
    int cur=q.front();
    q.pop();
    if(vis[cur])continue;
    vis[cur]=1;
    for(int x:adj[pos]){
      cur.push(x);
```

Depth-first search

Problema

Dato un grafo G = (V, E) e un vertice $r \in V$ (radice), visitare esattamente una volta tutti i vertici del grafo che si possono raggiungere da r.

Depth-first search (DFS)

Attraversa il grafo visitando tutti i nodi raggiungibili da un nodo, poi tutti i noti raggiungibili da quei nodi... Applicazioni:

- ► topological sort
- trovare cicli
- componenti connesse
- ► componenti fortemente connesse

Depth-first search

```
vector<int> adj[100000];
vector<bool> vis(100000);
void dfs(int pos){
  vis[pos]=1;
  for(int x:adj[pos]){
    if(!vis[x]){
      dfs(x);
```

Problema

Dato un grafo G = (V, E) non diretto, trovare il numero di componenti connesse.

Come possiamo contare il numero di componenti connesse?

Come possiamo contare il numero di componenti connesse? Possiamo utilizzare una delle 2 visite viste prima (BFS e DFS).

Come possiamo contare il numero di componenti connesse? Possiamo utilizzare una delle 2 visite viste prima (BFS e DFS).

iteriamo su tutti i nodi, se non sono stati visitati, eseguiamo una visita

Come possiamo contare il numero di componenti connesse? Possiamo utilizzare una delle 2 visite viste prima (BFS e DFS).

- iteriamo su tutti i nodi, se non sono stati visitati, eseguiamo una visita
- in questo modo visitiamo tutti i nodi della stessa componente connessa

Come possiamo contare il numero di componenti connesse? Possiamo utilizzare una delle 2 visite viste prima (BFS e DFS).

- iteriamo su tutti i nodi, se non sono stati visitati, eseguiamo una visita
- in questo modo visitiamo tutti i nodi della stessa componente connessa
- ▶ il numero di visite effettuate è il numero di componenti connesse

Ponti

Ponti

Dato un grafo di $N \le 10~000$ e $M \le 20~000$ archi, trova il minimo numero di archi da costruire per rendere il grafo connesso.

https://training.olinfo.it/#/task/ponti/statement

Ponti

Ponti

Dato un grafo di $N \le 10~000$ e $M \le 20~000$ archi, trova il minimo numero di archi da costruire per rendere il grafo connesso.

https://training.olinfo.it/#/task/ponti/statement

ightharpoonup se M=0 la risposta è N-1

Ponti

Ponti

Dato un grafo di $N \le 10~000$ e $M \le 20~000$ archi, trova il minimo numero di archi da costruire per rendere il grafo connesso.

https://training.olinfo.it/#/task/ponti/statement

- ightharpoonup se M=0 la risposta è N-1
- possiamo considerare ogni componente connessa come un nodo

Ponti

Ponti

Dato un grafo di $N \le 10~000$ e $M \le 20~000$ archi, trova il minimo numero di archi da costruire per rendere il grafo connesso.

https://training.olinfo.it/#/task/ponti/statement

- ightharpoonup se M=0 la risposta è N-1
- possiamo considerare ogni componente connessa come un nodo
- lacktriangle se ci sono K componenti connesse, la risposta è K-1

Ponti

```
• • •
vector<bool> vis;
vector<vector<int>> adj;
void dfs(int v) {
  vis[v] = true;
  for (int u : adj[v]) {
    if (!vis[u]) {
      dfs(u);
```

```
• • •
int n; cin >> n;
int m; cin >> m;
for (int i = 0, a, b; i < m; ++i) {
    cin >> a >> b;
    adj[a].push_back(b);
    adj[b].push_back(a);
int ans = 0;
for (int i = 0; i < n; ++i) {
    if (!vis[i]) {
        dfs(i);
cout << ans << "\n";
```

Problema

Dato un grafo G=(V,E) non diretto, trovare la minima distanza tra due nodi a e b, ovvero il minimo numero di archi da attraversare per raggiungere b partendo da a.

Problema

Dato un grafo G = (V, E) non diretto, trovare la minima distanza tra due nodi a e b, ovvero il minimo numero di archi da attraversare per raggiungere b partendo da a.

Possiamo utilizzare una BFS, dato che visita i nodi ordinati per distanza dal nodo di partenza.

Problema

Dato un grafo G = (V, E) non diretto, trovare la minima distanza tra due nodi a e b, ovvero il minimo numero di archi da attraversare per raggiungere b partendo da a.

- Possiamo utilizzare una BFS, dato che visita i nodi ordinati per distanza dal nodo di partenza.
- Nella coda della BFS teniamo il nodo attuale e la sua distanza da a.

Problema

Dato un grafo G = (V, E) non diretto, trovare la minima distanza tra due nodi a e b, ovvero il minimo numero di archi da attraversare per raggiungere b partendo da a.

- Possiamo utilizzare una BFS, dato che visita i nodi ordinati per distanza dal nodo di partenza.
- Nella coda della BFS teniamo il nodo attuale e la sua distanza da a.
- Quando troviamo b, abbiamo trovato la distanza minima.

Domande?

Introduzione

Esempi

Definizioni

Tipologie di grafi

Rappresentazione di grafi

Visite su un grafo

BFS

DFS

Problemi

Componenti connesse

Conclusion

```
https://cses.fi/problemset/
https://training.olinfo.it/#/task/ponti/statement
https://training.olinfo.it/#/task/tecla/statement
https://training.olinfo.it/#/task/sentieri/statement
```