赋能正确率介于 0.75 至 0.85 的题目

1.7,0.814 抛掷一枚均匀的骰子 (刻有 1.2.3.4.5.6) 三次, 得到的数字依次记作 a.b.c, 则 a+bi(i) 为虚数 单位) 是方程 $x^2 - 2x + c = 0$ 的根的概率是_ $_{1,8,0.814}$ 设常数 $a>0,\ (x+rac{a}{\sqrt{x}})^9$ 展开式中 x^6 的系数为 $4,\$ 则 $\lim_{n o\infty}(a+a^2+\cdots+a^n)=$ _____. $_{2,2,0.814}$ 已知抛物线 C 的顶点在平面直角坐标系原点,焦点在 x 轴上,若 C 经过点 M(1,3),则其焦点到准线 的距离为_____ $_{2,8,0.791}$ 如图, 在 $\triangle ABC$ 中, 若 AB = AC = 3, $\cos \angle BAC = \frac{1}{2}$, $\overrightarrow{DC} = 2\overrightarrow{BD}$, 则 $\overrightarrow{AD} \cdot \overrightarrow{BC} = \underline{\hspace{1cm}}$. 3.6,0.791 甲、乙两人从 5 门不同的选修课中各选修 2 门, 则甲、乙所选的课程中恰有 1 门相同的选法有_ 种. 7,6,0.818 里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道, 在由 2 名中国运动员和 6 名外国运动员 组成的小组中, 2 名中国运动员恰好抽在相邻泳道的概率为 $_{8,6,0.795}$ 已知 $f(x)=\sin\frac{\pi}{3}x,$ $A=\{1,2,3,4,5,6,7,8\},$ 现从集合 A 中任取两个不同元素 s、t, 则使得 $f(s)\cdot f(t)=0$ $_{8,9,0.773}$ 将边长为 10 的正三角形 ABC, 按 "斜二测" 画法在水平放置的平面上画出为 $\triangle A'B'C'$, 则 $\triangle A'B'C'$ 中最短边的边长为__ 12,5,0.841 用半径 1 米的半圆形薄铁皮制作圆锥型无盖容器, 其容积为______ 立方米. $_{12,8,0.773}$ 在无穷等比数列 $\{a_n\}$ 中, $\lim_{n\to\infty}(a_1+a_2+\cdots+a_n)=\frac{1}{2}$, 则 a_1 的取值范围是______. 12,9,0.841 某班班会准备从含甲、乙的 6 名学生中选取 4 人发言, 要求甲、乙两人至少有一人参加, 那么不同的 发言顺序有_____种. $\frac{x^2}{a^2} + \frac{y^2}{3} = 1 \ (a > 0)$ 上的一点 P 也在抛物线 $y^2 = \frac{9}{4}x$ 上,抛物线焦点为 F_3 , 若 $|PF_3| = \frac{25}{16}$, 则 $\triangle PF_1F_2$ 的面积为_____ 19,9,0.814 数列 $\{a_n\}$ 的通项公式是 $a_n = 2n-1$ $(n \in \mathbb{N}^*)$, 数列 $\{b_n\}$ 的通项公式是 $b_n = 3n$ $(n \in \mathbb{N}^*)$, 令集合 $A=\{a_1,a_2,\cdots,a_n,\cdots\},\,B=\{b_1,b_2,\cdots,b_n,\cdots\},\,n\in\mathbf{N}^*.$ 将集合 $A\cup B$ 中的所有元素按从小到大的顺序排 列, 构成的数列记为 $\{c_n\}$. 则数列 $\{c_n\}$ 的前 28 项的和 $S_{28}=$ ______. f(x) = $\begin{cases} (5-a)x+1, & x<1, \\ (a>0, a \neq 1)$ 是实数集 R 上的增函数,则实数 a 的取值 $a^x, \qquad x \geq 1 \end{cases}$ 范围为_____ $\mathfrak{L}_{21,1,0.818}$ 集合 $P = \{x | 0 \le x < 3, x \in \mathbf{Z}\}, M = \{x | x^2 \le 9\}, 则 P \cap M = _____.$ $_{22,5,0.810}$ 不等式 $\frac{1}{|x-1|} \ge 1$ 的解集为_____. a_1, a_2, a_3, a_4 是 1, 2, 3, 4 的一个排列, 若至少有一个 i (i = 1, 2, 3, 4) 使得 $a_i = i$ 成立, 则满足此条

 $_{23,9,0.795}$ 在 $\triangle ABC$ 中, $\angle A=90^{\circ}$, $\triangle ABC$ 的面积为 1. 若 $\overrightarrow{BM}=\overrightarrow{MC}$, $\overrightarrow{BN}=4\overrightarrow{NC}$, 则 $\overrightarrow{AM}\cdot\overrightarrow{AN}$ 的最小值

a_{n} 数列 $\{a_{n}\}$ 的前 n 项和为 S_{n} ,若点 (n,S_{n}) $(n\in\mathbf{N}^{*})$ 在函数 $y=\log_{2}(x+1)$ 的反函数的图像上,则
a_n = $ {}_{26,9,0.814}$ 抛物线 $y^2=-8x$ 的焦点与双曲线 $\frac{x^2}{a^2}-y^2=1$ 的左焦点重合,则这条双曲线的两条渐近线的夹角 .
为
$_{27,10,0.814}$ 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $a_1=1,2S_n=a_na_{n+1}(n\in\mathbf{N}^*)$, 若 $b_n=(-1)^n\frac{2n+1}{a_na_{n+1}}$, 则数列 $\{b_n\}$ 的前 n 项和 $T_n=$
$g_{28,9,0.837}$ 已知函数 $f(x) = \begin{cases} \log_2 x, & 0 < x < 2, \\ (\frac{2}{3})^x + \frac{5}{9}, & x \geq 2. \end{cases}$ 若函数 $g(x) = f(x) - k$ 有两个不同的零点,则实数 k 的取
值范围是
$_{29,10,0.837}$ 若三棱锥 $S-ABC$ 的所有的顶点都在球 O 的球面上, $SA\perp$ 平面 ABC , $SA=AB=2$, $AC=4$
$\angle BAC = \frac{\pi}{3}$,则球 O 的表面积为
$_{30,8,0.837}$ 在约束条件 $ x+1 + y-2 \leq 3$ 下,目标函数 $z=x+2y$ 的最大值为
32,10,0.767 三条侧棱两两垂直的正三棱锥, 其俯视图如图所示, 主视图的边界是底边长为 2 的等腰三角形, 则主
视图的面积等于
$_{33,10,0.810}$ 若将函数 $f(x)= \sin(\omega x-\frac{\pi}{8}) \;(\omega>0)$ 的图像向左平移 $\frac{\pi}{12}$ 个单位后,所得图像对应的函数为偶函
数, 则 ω 的最小值是
$_{34,8,0.791}$ 已知正四棱锥 $P-ABCD$ 的棱长都相等, 侧棱 PB 、 PD 的中点分别为 M 、 N , 则截面 AMN 与底
面 ABCD 所成的二面角的余弦值是
$_{34,10,0.837}$ 若适合不等式 $ x^2-4x+k + x-3 \leq 5$ 的 x 的最大值为 3 , 则实数 k 的值为
$_{35,10,0.791}$ 已知定义在 R 上的函数 $f(x)$ 满足: ① $f(x)+f(2-x)=0$; ② $f(x)-f(-2-x)=0$; ③ 在 $[-1,1]$
上的表达式为 $f(x) = \begin{cases} \sqrt{1-x^2}, & x \in [-1,0], \\ 1-x, & x \in (0,1] \end{cases}$,则函数 $f(x)$ 与函数 $g(x) = \begin{cases} 2^x, & x \leq 0, \\ \log_{\frac{1}{2}}x, & x > 0 \end{cases}$ 的图像在区间
[-3,3] 上的交点的个数为
36,5,0.786 若圆锥的侧面积是底面积的 2 倍, 则其母线与轴所成角的大小是
$_{37,5,0.791}$ 若圆柱的侧面展开图是边长为 $_{4\mathrm{cm}}$ 的正方形, 则圆柱的体积为 cm^3 (结果精确到 $_{0.1\mathrm{cm}^3}$).
$a_{1,8,0.837}$ 无穷等比数列 $\{a_n\}$ 的通项公式 $a_n=(\sin x)^n,$ 前 n 项的和为 $S_n,$ 若 $\lim_{n o\infty}S_n=1,$ $x\in(0,\pi),$ 则
$x = \underline{\hspace{1cm}}$
41,9,0.767 给出下列函数: ① $y = x + \frac{1}{x}$; ② $y = x^2 + x$; ③ $y = 2^{ x }$; ④ $y = x^{\frac{2}{3}}$; ⑤ $y = \tan x$; ⑥ $y = \sin(\arccos x)$;
① $y=\lg(x+\sqrt{x^2+4})-\lg 2$. 从这 7 个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率
是
$_{42,10,0.837}$ 已知直线 $l_1:mx-y=0, l_2:x+my-m-2=0.$ 当 m 在实数范围内变化时, l_1 与 l_2 的交点 P 恒
在一个定圆上,则定圆方程是
$_{43,6,0.837}$ 从集合 $\{-1,1,2,3\}$ 随机取一个为 m ,从集合 $\{-2,-1,1,2\}$ 随机取一个为 n ,则方程 $\dfrac{x^2}{m}+\dfrac{y^2}{n}=1$ 表
示双曲线的概率为

为_____.

 $_{43,10,0.791}$ 椭圆的长轴长等于 m, 短轴长等于 n, 则此椭圆的内接矩形的面积的最大值为______. $f(x) = \begin{vmatrix} 2\sin x & -\cos 2x \\ 1 & \cos x \end{vmatrix}$,则函数 f(x) 的单调递增区间是_ $_{45,9,0.837}$ $(1+2x)^n$ 的二项展开式中,含 x^3 项的系数等于含 x 项的系数的 8 倍,则正整数 n=____ $_{46,5,0.767}$ 如图的三个直角三角形是一个体积为 $_{20cm}$ 的几何体的三视图, 则 $_{h} =$ 48,9,0.814 已知抛物线型拱桥的顶点距水面 2 米时, 量得水面宽为 8 米. 当水面下降 1 米后, 水面的宽为 米. 49,9,0.814 设函数 $f(x) = \log_m x (m > 0$ 且 $m \neq 1)$, 若 m 是等比数列 $\{a_n\} (n \in \mathbb{N}^*)$ 的公比, 且 $f(a_2 a_4 a_6 \cdots a_{2018}) = 1$ 7, 则 $f(a_1^2) + f(a_2^2) + f(a_3^2) + \cdots + f(a_{2018}^2)$ 的值为_____ 50,9,0.791 已知 f(x) 是定义在 [-2,2] 上的奇函数, 当 $x \in (0,2]$ 时, $f(x) = 2^x - 1$, 函数 $g(x) = x^2 - 2x + m$. 如 果对于任意的 $x_1 \in [-2, 2]$, 总存在 $x_2 \in [-2, 2]$, 使得 $f(x_1) \leq g(x_2)$, 则实数 m 的取值范围是______. $\sin(x-y)\cos x - \cos(x-y)\sin x = \frac{3}{5}$,则 $\tan 2y$ 的值为______. 54,7,0.837 设定义在 R 上的奇函数 y = f(x), 当 x > 0 时, $f(x) = 2^x - 4$, 则不等式 $f(x) \le 0$ 的解集是 55,10,0.767 现有 5 位教师要带 3 个班级外出参加志愿者服务, 要求每个班级至多两位老师带队, 且教师甲、乙不 能单独带队,则不同的带队方案有__ 56,7,0.837 函数 $y = \sqrt{x^2 + 2} + \frac{1}{\sqrt{x^2 + 2}}$ 的最小值为_____. $_{56,8,0.837}$ 试写出 $(x-\frac{1}{x})^7$ 展开式中系数最大的项_____ x 57,2,0.814 已知集合 $A = \{x | |x-2| < a\}, B = \{x | x^2 - 2x - 3 < 0\},$ 若 $B \subseteq A$, 则实数 a 的取值范围是______. 57,6,0.767 已知 F_1, F_2 是椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 的两个焦点,P 为椭圆上一点,且 $\overrightarrow{PF_1} \perp \overrightarrow{PF_2}$,若 $\triangle PF_1F_2$ 的面积为 9, 则 b =____ 57,8,0.791 设等差数列 $\{a_n\}$ 的公差为 d, 若 $a_1,a_2,a_3,a_4,a_5,a_6,a_7$ 的方差为 1, 则 d=______. $_{58,1,0.791}$ 设集合 $M=\{x|x^2=x\},\,N=\{x|\log_2x\leq 0\},\,$ 则 $M\cup N=$ _____. $\frac{1}{\cos(\pi+x)}$ $\frac{2}{\cos(\pi+x)}$ $\frac{4}{2}$ 中的元素 $\frac{3}{2}$ 的代数余子式的值等于 $\frac{3}{2}$,则实数 x 的取值集合为_