

Outline

- What is Pytorch?
- Tensors
- Autograd
- MLP using Pytorch
- Datasets and dataloaders
- Optimizers in Pytorch

What is Pytorch

- PyTorch is an open source machine learning (ML) framework based on the Python programming language and the Torch library, and used for creating deep neural networks
- It's one of the preferred platforms for deep learning research.
- The framework is built to speed up the process between research prototyping and deployment.
- Strong competitive to Tensorflow

Pytorch features

- Dynamic Computation Graph (Autograd): PyTorch supports dynamic computational graphs, meaning the graph is created on the fly, making it highly flexible and easy to debug.
- Tensors: PyTorch operates with multi-dimensional arrays (called Tensors), similar to NumPy arrays, but with GPU acceleration.
- Rich Ecosystem: PyTorch has a wide range of libraries for computer vision (TorchVision), natural language processing (TorchText), and reinforcement learning (TorchRL).
- Scalability: PyTorch can scale seamlessly from research experiments to production models

Tensors

- ► Tensors are multi-dimensional arrays, similar to NumPy arrays, that serve as the fundamental data structure in PyTorch. They allow for efficient computation on CPUs and GPUs.
- Tensors can have any number of dimensions, from 0D (scalar) to ND (multi-dimensional arrays), making them versatile for different types of data (e.g., images, sequences, etc.).
- ▶ GPU Acceleration: Unlike NumPy arrays, PyTorch tensors can be processed on both CPUs and GPUs, enabling faster computation for large datasets and deep learning models.
- Automatic Differentiation: PyTorch tensors can track gradients, which is crucial for backpropagation in neural networks.

Creating Tensors

A tensor can be created simply using the torch library as follows

```
import torch
                                                                                               tensor([1, 2, 3])
                                     t1 = torch.tensor([1,2,3])
Create a tensor with specified values
                                     t1
                                                                                              tensor([0., 0., 0., 0., 0.])
Create a tensor of zeros
                                     t1 = torch.zeros(5)
Create a tensor of ones
                                     t1 = torch.ones(5)
                                                                                              tensor([1., 1., 1., 1., 1.])
                                     import torch
                                     import numpy as np
Create a tensor from numpy array
                                     arr= np.array([1,2,3])
                                                                           tensor([1, 2, 3])
                                     t1 = torch.from numpy(arr)
```

Creating Tensors Cont.

▶ WE can create multi dimensional Tensor (e.g., 2d)

```
Create a 2d tensor
                                  t1 = torch.tensor([[1,2],[3,4]])
                                 t1 = torch.tensor([1.0, 2.0, 3.0], dtype=torch.float32)
Create a tensor with a specific datatype
                                  t1 = torch.randn(3, 3) # create a 3x3 tensor
Create a normal random-valued tensor
                                  of normally distributed random values
Create a uniform random-valued tensor
                                  t1 = torch.rand(3, 3) \# create a 3x3 tensor of
                                  uniformally distributed random values
                                  my list = [1, 2, 3, 4, 5]
Create a tensor from a Python list
                                  tensor = tensor = torch.tensor(my list)
Create a Create a tensor from a numpy
                                  tensor = torch.from numpy(np array)
                                                                             #OR
array
                                  tensor = torch.tensor(np array)
```

One can use tensorName.tolist() to convert a tensor to a python list. Likewise, you can use tensorName.numpy() to convert tensor to numpy array

Basic operations on tensors

- One can perform the basic operations on Tensors very easily
 - Add two tensors

```
t1 = torch.tensor([1,2,3])

t2 = torch.tensor([4,5,6])

t3 = t1+t2

t3
```

Subtract two tensors

```
t1 = torch.tensor([1,2,3])
t2 = torch.tensor([4,5,6])
t3 = t1-t2
t3
tensor([-3, -3, -3])
```

Multiply and divide two tensors

```
t1 = torch.tensor([1,2,3])

t2 = torch.tensor([4,5,6])

t3 = t1*t2

t3

tensor([4, 10, 18])
```

Basic operations on tensors Cont.

Same operation can be done between tensor and scalers

Matrix multiplications, can be performed using the @ operator or matmul method (this one is used to calculate the dot product as the tensors are 1D)

```
t1 = torch.tensor([1,2,3])
t2 = torch.tensor([4,5,6])
t1@t2

t1 = torch.tensor([[1,2],[2,5],[3,1]])
t2 = torch.tensor([[4,5,6]])
t2@t1

tensor([[32,39]])
```

Auto-gradients calculation

- ► Tensors have the ability to track the operations done on them and perform auto differentiation when needed w.r.t any variables (tensors) involved in this operation (function)
- To activate this autograd, you have to pass the attribute requires_grad = True
 - For example,

```
w = torch.tensor([0.2, 0.4], requires grad=True)
```

Now assume that we want to apply the following equation

$$z = w. x + b$$

$$\hat{y} = Sigmoid(z)$$

$$w = [2, 5], x = [-10.0, 3.0], b = 1$$

Cont.

let us apply a single forward pass and calculate the gradients manually, then using Pytorch and compare

$$z = 2 * -10 + 5 * 3 + 1 = -4$$

$$\hat{y} = Sigmoid(-4) = 0.0179$$

$$loss = (0.0179 - 1)^2 = 0.964$$

$$\frac{\partial loss}{\partial w_1} = 2 * -0.9821 * sig(-4) * (1 - sig(-4)) * -10 = 0.3469$$

$$\frac{\partial loss}{\partial w_2} = 2 * -0.9821 * sig(-4) * (1 - sig(-4)) * 3 = -0.1041$$

$$\frac{\partial loss}{\partial b} = 2 * -0.9821 * sig(-4) * (1 - sig(-4)) = -0.0347$$

Using Pytorch

```
import torch
w = torch.tensor([2.0, 5.0], requires grad=True)
x = torch.tensor([-10.0, 3.0])
b = torch.tensor(1.0, requires grad=True)
y = torch.tensor(1.0)
z = torch.dot(w, x) + b
y hat = torch.sigmoid(z)
mse loss = (y hat - y) ** 2
mse loss.backward()
print(f"Weighted sum (z): {z.item()}")
print(f"Predicted output (y hat): {y hat.item()}")
print(f"MSE Loss: {mse_loss.item()}")
print(w.grad)
print(b.grad)
```

Weighted sum (z): -4.0 Predicted output (y_hat): 0.01798621006309986 MSE Loss: 0.9643510580062866 tensor([0.3469, -0.1041]) tensor(-0.0347)

MLP using Pytorch

Pytorch has vast amount of functionality that simplifies building neural networks

```
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class MLP(nn.Module):
    def init (self, inputsD, outputD):
        super(MLP, self). init ()
        self.fc1 = nn.Linear(inputsD, 100)
        self.fc2 = nn.Linear(100, 100)
        self.fc3 = nn.Linear(100, outputD)
   def forward(self, X):
       X = F.relu(self.fc1(X))
       X = F.relu(self.fc2(X))
        X = self.fc3(X)
        return X
model = MLP(4, 3)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.005)
```

Code components

- Code components:
- 1. inherits from nn.Module, which has the main functionalities, layers that one might need to build a neural network
- 2. nn.Linear: is the dense layer, in Pytorch it is called linear as it performs linear combinations
- 3. criterion: is the loss function we want to use for training the network
- 4. optimizer: is the optimization method we want to use to train the model (network)
- 5. One might refer to the documentation to find more about layers, loss functions and optimizers
 - https://pytorch.org/docs/stable/nn.html

Dataset(s) and Dataloader(s)

- Before we dive into the training loop, let us discuss about dataloders and datasets
- Dataset is a collection of observations on which you want to train the model. It gives you the ability to define how you want to load and process each observation in your dataset
- **DataLoader** is used to load data from a dataset in batches, enabling efficient training of models. It handles the iteration over the dataset and allows for features like shuffling, batching, and parallel data loading

Datasets

dataset. getitem (0)

To build a custom dataset in pytorch, you have to inherit the **Dataset** class

```
from torch.utils.data import Dataset
import pandas as pd
import torch
class MyDataset(Dataset):
    def __init__(self, data, labels):
        self.X = data
        self.y = labels
    def len (self):
        return len(self.y)
    def getitem (self, idx):
        sample = torch.tensor(self.X[idx], dtype=torch.float32)
        label = torch.tensor(self.y[idx], dtype=torch.long)
        return sample, label
data = pd.read csv("Iris.csv")
x = data.iloc[:,:-1].values
y, = pd.factorize(data.iloc[:,-1].values)
dataset = MyDataset(x, y)
```

	Α	В	С	D	Е
1	SepalLeng	SepalWidtl	PetalLengt	PetalWidth	Species
2	5.1	3.5	1.4	0.2	Iris-setosa
3	4.9	3	1.4	0.2	Iris-setosa
4	4.7	3.2	1.3	0.2	Iris-setosa
5	4.6	3.1	1.5	0.2	Iris-setosa
6	5	3.6	1.4	0.2	Iris-setosa
7	5.4	3.9	1.7	0.4	Iris-setosa
8	4.6	3.4	1.4	0.3	Iris-setosa
9	5	3.4	1.5	0.2	Iris-setosa
10	4.4	2.9	1.4	0.2	Iris-setosa
11	4.9	3.1	1.5	0.1	Iris-setosa
12	5.4	3.7	1.5	0.2	lris-setosa
13	4.8	3.4	1.6	0.2	lris-setosa

The Iris dataset

Ensure that the data returned as a tensor

Datasets: Another method

One can embed the reading logic inside the dataset class

```
from torch.utils.data import Dataset
import pandas as pd
import torch
class MyDataset(Dataset):
   def init (self, path):
     data = pd.read csv(path)
     self.X = data.iloc[:,:-1].values
     self.y, = pd.factorize(data.iloc[:,-1].values)
   def len (self):
     return len(self.y)
   def getitem (self, idx):
     sample = torch.tensor(self.X[idx], dtype=torch.float32)
     label = torch.tensor(self.y[idx], dtype=torch.long)
     return sample, label
                                                       This can be the
path = '/content/Iris.csv'
                                                      path to the
dataset = MyDataset(path)
                                                       train subset
dataset. getitem (50)
```

Datasets: Another method

You can create helper functions to do subtasks inside the dataset class

```
from torch.utils.data import Dataset
import pandas as pd
import torch
class MyDataset(Dataset):
    def init (self, path):
      data = pd.read csv(path)
      self.X = data.iloc[:,:-1].values
      self.y = self.factorize(data.iloc[:,-1])
    def len (self):
      return len(self.y)
    def getitem (self, idx):
      sample = torch.tensor(self.X[idx], dtype=torch.float32)
      label = torch.tensor(self.y[idx], dtype=torch.long)
      return sample, label
    def factorize(self, labels):
      y, = pd.factorize(labels.values)
      return y
path = '/content/Iris.csv'
dataset = MyDataset(path)
```

Datasets Cont.

- The methods __getitem__ and __len__ have to be implemented to fit your custom dataset
- in this case we know that we will pas a pandas dataframe, therefore, we handle it inside the class
- The __getitem__ method defines how to retrieve a single sample from the dataset
- ► The __len__ method have implementation that return the number of samples in the dataset
 - ► These implementations may differ from one dataset to another based on the data in hand (its structure and type).
 - For images you might need to implement how the image should be processed before returned, for example.

Dataloader

- Now the way you want to feed the dataset into the model is defined by the dataloader
- ► For example, do you want to shuffle the data, what is the size of minibatches, how many CPUs you want to work on your retrieving datafrom the dataset (num_workers)

```
from torch.utils.data import DataLoader

Mydataldr = DataLoader(dataset, batch_size=4, shuffle=True)

for batch in Mydataldr:
    inputs, labels = batch
    print(inputs, labels)
    Shuffle after each epoch
    break
```

This gives the first mini-batch of the dataset

Why shuffling is important

- Shuffling is important during the training of the neural network for several reasons:
- 1. Prevent the network from learning the order of the data samples
- 2. Prevent the model's gradients from giving advantage to early seen examples
 - As the gradient is large at the start and decreasing over time
 - Especially if a Learning Rate Decay technique is used
- 3. Helping in learning from imbalanced datasets
- 4. Randomness in the order of the data helps in the generalization process

Train and test dataloaders

- for training and testing, we need to create dataset and dataloader for the training and for the testing
 - Split them before creating DS & DL
- You might think this is complicated, but this actually is very convenient.
- Practice and you will find it very easy and intuitive

```
class MyDataset(Dataset):
    def init (self, data, labels):
        self.data = data
        self.X = data
        self.y = labels
    def len (self):
        return len(self.data)
    def getitem (self, idx):
        sample = torch.tensor(self.X[idx], dtype=torch.float32)
        label = torch.tensor(self.y[idx], dtype=torch.long)
        return sample, label
data = pd.read csv("Iris.csv")
x = data.iloc[:,:-1].values
y, = pd.factorize(data.iloc[:,-1].values)
X train, X test, y train, y test = train test split(x, y, test size=0.33,
random state=42)
trainDataset = MyDataset(X train, y train)
testDataset = MyDataset(X test, y test)
traindataldr = DataLoader(trainDataset, batch size=8, shuffle=True)
testdataldr = DataLoader(testDataset, batch size=32, shuffle=True)
             Is shuffling really needed here?
```

Step 1: import the needed libraries and define the model

```
from torch.utils.data import Dataset, DataLoader
import pandas as pd
from sklearn.model selection import train test split
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class MLP(nn.Module):
   def init (self):
        super(MLP, self). init ()
        self.fc1 = nn.Linear(4, 100)
        self.fc2 = nn.Linear(100, 100)
        self.fc3 = nn.Linear(100, 3)
   def forward(self, X):
       X = F.relu(self.fc1(X))
       X = F.relu(self.fc2(X))
       X = self.fc3(X)
        return X
```

Step 2: Define the datasets and dataloaders

```
class MyDataset(Dataset):
    def init (self, data, labels):
        self.data = data
        self.X = data
        self.y = labels
    def len (self):
        return len(self.data)
    def getitem (self, idx):
        sample = torch.tensor(self.X[idx], dtype=torch.float32)
        label = torch.tensor(self.y[idx], dtype=torch.long)
        return sample, label
data = pd.read csv("Iris.csv")
x = data.iloc[:,:-1].values
y, = pd.factorize(data.iloc[:,-1].values)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
trainDataset = MyDataset(X train, y train)
testDataset = MyDataset(X_test, y_test)
traindataldr = DataLoader(trainDataset, batch size=8, shuffle=True)
testdataldr = DataLoader(testDataset, batch size=32, shuffle=True)
```

Step 3: Create instance from the model, define the oprimizer and loss function

```
model = MLP(4, 3)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.005)
```

Step 4: Training loop

```
for epoch in range(1000):
    running loss = 0.0
    for inputs, targets in traindataldr:
        optimizer.zero grad()
        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()
        running loss += loss.item()
        test loss, test accuracy = evaluate (model, testdataldr, criterion)
    if epoch % 100 == 0:
        print(f"Epoch {epoch+1}, Loss: {running loss/len(traindataldr)}, and test loss is {test loss}")
```

Step 5: test the model

```
def evaluate(model, dataloader, criterion):
    model.eval()
    test loss = 0.0
    correct = 0
    total = 0
    # Stop calculating the gradients
    with torch.no grad():
        for inputs, targets in dataloader:
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            test loss += loss.item()
            , predicted = torch.max(outputs, 1)
            total += targets.size(0)
            correct += (predicted == targets).sum().item()
    avg loss = test loss / len(dataloader)
    accuracy = 100 * correct / total
    return avg loss, accuracy
```

Important Notes

- During the training, in the training loop, you have to set optimizer.zero_grad(), so the gradients will not accumulate with batches
- ▶ loss.backward() calculates the gradients w.r.t loss and all of the model's parameters
- optimizer.step() updates the parameters of the model based on the gradients
- evaluate function is called inside the training loop to track the test loss along with the training loss, tracking the overfitting
- There is no need for Softmax layer in the model as **CrossEntropyLoss** calculates it internally.
 - if the loss does not calculate the Softmax, then it should be added to the model as a final layer
- model.eval() tells Pytorch that the model is in the evaluation mode, so to ignore regularization layers, like dropout (discussed in the next course)
- with torch.no_grad() is important to prevent the model from calculating or tracking the gradients during the test process
 - In the test no need to calculate the gradients, calculating gradients is for training

Important Notes Cont.

- Learning rate, loss function, batch size, number of layers, activation functions, etc. are called hyperparameters, these need to be tuned manually (based on experience)
- If the learning rate is low, you might need more epochs
- small batch sizes are better during the training, 16, 32, and this depends upon the data size (number of observations)

Overfitting and underfitting

- Training and test (validation) losses have to be close to each other, in good model training
- If the training is much lower than the test (validation) Then the model is overfitting (loosing generalization)
- If both (test loss and training loss) are very high and do not decrease over epochs, then the model is underfitting

Pytorch built-in methods

- Pytorch provides various functionalities to use for building your model
- Activation functions:

Activation Function	PyTorch Function	
ReLU	torch.nn.ReLU()	
LeakyReLU	torch.nn.LeakyReLU()	
Sigmoid	torch.nn.Sigmoid()	
Tanh	torch.nn.Tanh()	
Softmax	torch.nn.Softmax()	

Pytorch built-in methods

- Pytorch provides various functionalities to use for building your model
- Optimizers functions:

Optimizer	PyTorch Function		
SGD	torch.optim.SGD()		
Adam	torch.optim.Adam()		
AdamW	torch.optim.AdamW()		
RMSprop	torch.optim.RMSprop()		

Pytorch built-in methods

- Pytorch provides various functionalities to use for building your model
- Loss functions:

Loss Function	Туре	PyTorch Function
CrossEntropyLoss	Classification	torch.nn.CrossEntropyLoss()
BCELoss	Classification	torch.nn.BCELoss()
NLLLoss	Classification	torch.nn.NLLLoss()
HingeEmbeddingLoss	Classification	torch.nn.HingeEmbeddingLoss()
MSELoss	Regression	torch.nn.MSELoss()
L1Loss	Regression	torch.nn.L1Loss()
SmoothL1Loss	Regression	torch.nn.SmoothL1Loss()
HuberLoss	Regression	torch.nn.HuberLoss()

Practice

- Build a neuralnetwork using Pytorch for regression problem
 - use boston dataset: from sklearn.datasets import load_ boston
- Define the model, datasets and dataloaders and the training loop
 - use MSE, MAE, RMSE to evaluate the performance of your model
- Use different loss functions and model architecture, and compare the results

TRY IT YOURSELF