Math 285 Lecture Note: Week 2

Daesung Kim

1 Classification of Differential Equations

There are several types of differential equations. Suppose that we consider a differential equation with unknown function f. This function f can be a function of one variable (time for example) or several variables (like space and time). Let

$$f = f(t, x, \cdots).$$

Definition 1.1. An ordinary differential equation (ODE) is an equation with f = f(t) and the derivatives in one variable. A partial differential equation (PDE) is an equation with $f = f(t, x, \dots)$ and the derivatives in several variables.

Example 1.2.

$$\begin{split} \frac{d^2f}{dx^2} + f &= 0 \qquad \text{(Harmonic oscillator)} \\ \frac{d^2f}{dx^2} + \sin(f) &= 0 \qquad \text{(Motion of pendulum)} \\ \frac{\partial^2f}{\partial x^2} + \frac{\partial^2f}{\partial y^2} &= 0 \qquad \text{(Laplace equation)} \\ \frac{\partial f}{\partial t} &= \frac{\partial^2f}{\partial x^2} \qquad \text{(Heat equation)} \\ \frac{\partial^2f}{\partial t^2} &= \frac{\partial^2f}{\partial x^2} \qquad \text{(Wave equation)} \end{split}$$

Notation 1.3. We use the notations

$$\frac{\partial^2 f}{\partial x^2} = f_{xx}, \qquad \frac{\partial^2 f}{\partial x \partial t} = f_{xt}, \dots$$

Definition 1.4. A system of differential equations is a collection of differential equations with several unknown functions. For example,

$$\begin{cases} \frac{df}{dx} = 3f(x) - g(x), \\ \frac{dg}{dx} = 2f(x) + g(x). \end{cases}$$

Definition 1.5. The order of a differential equation is the order of the highest derivative that appears in the equation. For example, the heat equation

$$\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2}$$

is of order 2.

Another way to categorize differential equations is linearity. In general, a differential equation can be written as

$$F(t, x, \cdots, f, f', f'', \cdots) = 0$$

where t, x, \cdots are variables and f, F are functions.

Definition 1.6. We consider an ODE given by

$$F(t, y, y', \cdots, y^{(n)}) = 0$$

where y is a function of t and $y^{(n)}$ denotes the n-th derivative. We say the ODE is linear if F is linear, that is,

$$F(t, y, y', \dots, y^{(n)}) = a_0(t)y^{(n)} + a_1(t)y^{(n-1)} + \dots + a_n(t)y + g(t) = 0.$$

If not, we say it is nonlinear.

Example 1.7. Note that

$$y'' + 2y' - 3y = \tan(t)$$

is a second-order linear differential equation and

$$y'' + \sin(y) = 0, \qquad yy'' = y^2$$

are nonlinear equations.

Definition 1.8. A solution of the ODE given by

$$F(t, y, y', \cdots, y^{(n)}) = 0$$

on the interval (α, β) is a function $\phi(t)$ such that

$$F(t, \phi, \phi', \cdots, \phi^{(n)}) = 0$$

for every $t \in (\alpha, \beta)$.

Example 1.9. Note that $y = \phi(t) = e^t$ is a solution to the second order linear ODE

$$y'' - y = 0$$

for all $t \in \mathbb{R}$. To verify this, we substitute y with e^t , i.e.,

$$\phi''(t) - \phi(t) = e^t - e^t = 0.$$

Note also that e^t is not the only solution. $\psi(t) = e^{-t}$ is also a solution. Furthermore, any linear combination of $\phi(t)$ and $\psi(t)$ is also a solution. That is,

$$f(t) = a\phi(t) + b\psi(t)$$

is a solution for $a, b \in \mathbb{R}$. A particular example of this linear combination is $\sinh(t)$ and $\cosh(t)$.

2 Linear equations; method of integrating factors

In this section, we focus on how to find an explicit solution to the first order linear ODE of the form

$$F(t, y, y') = 0$$

where F is linear. In other words, we consider the following form

$$P(t)\frac{dy}{dt} + Q(t)y = R(t)$$

where P(t), Q(t), R(t) are given functions. For example,

$$t\frac{dy}{dt} - y = t^2 e^{-t}.$$

In this case P(t) = t, Q(t) = -1, and $R(t) = t^2 e^{-t}$. The idea of solving this type of ODEs is to use the product rule:

$$\frac{d}{dt}(P(t)y) = P(t)\frac{dy}{dt} + P'(t)y.$$

If we have P'(t) = Q(t), then

$$P(t)\frac{dy}{dt} + Q(t)y = \frac{d}{dt}(P(t)y) = R(t)$$

$$P(t)y = \int R(t) dt$$

$$y = \frac{1}{P(t)} \int R(t) dt.$$

Example 2.1. Consider an ODE

$$(t^3+1)\frac{dy}{dt} + 3t^2y = \sin t.$$

Since $P(t) = (t^3 + 1)$ and $Q(t) = 3t^2 = P'(t)$, it follows from the previous argument that

$$y = \frac{1}{t^3 + 1} \int \sin t \, dt = \frac{-\cos t + C}{t^3 + 1}$$

is a solution to the ODE.

In general, Q(t) may not be the derivative of P(t). Before dealing with general cases, we consider the case where P(t) and Q(t) are constants.

Example 2.2. Consider an ODE

$$\frac{dy}{dt} + 2y = t.$$

The idea is to multiply a new function $\mu(t)$

$$\mu(t)\frac{dy}{dt} + 2\mu(t)y = t\mu(t).$$

If we have $\mu'(t) = 2\mu(t)$, then we can apply the previous technique. To find such a function μ , we solve the ODE

$$\frac{1}{\mu} \frac{d\mu}{dt} = 2$$

$$\ln |\mu(t)| = 2t + C$$

$$\mu(t) = Ce^{2t}.$$

Let $\mu(t) = e^{2t}$, then the original ODE can be written as

$$e^{2t} \frac{dy}{dt} + 2e^{2t}y = \frac{d}{dt}(e^{2t}y) = te^{2t}$$

$$e^{2t}y = \int te^{2t} dt$$

$$= \frac{1}{2}(te^{2t} - \int e^{2t} dt)$$

$$= \frac{1}{4}(2te^{2t} - e^{2t} + C)$$

and so

$$y = \frac{1}{4}(2t - 1 + Ce^{-2t}).$$

Example 2.3. Consider an ODE

$$y' - 3y = \cos t, \qquad y(0) = 0.$$

Solving the auxiliary ODE

$$\frac{d\mu}{dt} = -3\mu,$$

we let $\mu(t) = e^{-3t}$. Then the original ODE gives

$$\mu(t)y' - 3\mu(t)y = \frac{d}{dt}(\mu(t)y) = \mu(t)\cos t$$

$$e^{-3t}y = \int e^{-3t}\cos t \, dt$$

$$= \frac{1}{10}e^{-3t}(\sin t - 3\cos t) + C$$

$$y(t) = \frac{1}{10}(\sin t - 3\cos t) + Ce^{3t}.$$

Since

$$y(0) = -\frac{3}{10} + C = 0,$$

we get

$$y(t) = \frac{1}{10}(\sin t - 3\cos t + 3e^{3t}).$$

We are ready to discuss how to solve a first order linear ODE

$$P(t)\frac{dy}{dt} + Q(t)y = R(t).$$

By dividing P(t) of both sides, we consider a first order linear ODE of the standard form

$$\frac{dy}{dt} + p(t)y = r(t)$$

where p(t), r(t) are given. We introduce a new function $\mu(t)$ and multiply by $\mu(t)$

$$\mu(t)\frac{dy}{dt} + \mu(t)p(t)y = \mu(t)r(t).$$

We want to find $\mu(t)$ such that

$$\frac{d}{dt}\mu(t) = \mu(t)p(t).$$

Indeed, we have

$$\frac{1}{\mu(t)}\frac{d}{dt}\mu(t) = \frac{d}{dt}(\ln|\mu(t)|) = p(t)$$

and

$$\ln|\mu(t)| = \int p(t) \, dt.$$

Let $\mu(t) = \exp(\int p(t) dt)$, then $\mu'(t) = \mu(t)p(t)$. Thus,

$$\mu(t)\frac{dy}{dt} + \mu(t)p(t)y = \mu(t)\frac{dy}{dt} + \mu'(t)y = (\mu(t)y)' = \mu(t)r(t).$$

Therefore, we get

$$y = \frac{1}{\mu(t)} \int \mu(t) r(t) dt.$$

Example 2.4. Consider

$$t\frac{dy}{dt} - y = t^2 e^{-t}.$$

Dividing by t of both sides, we get

$$\frac{dy}{dt} - \frac{1}{t}y = te^{-t}$$

and so $p(t) = -\frac{1}{t}$ and $r(t) = te^{-t}$. The previous argument yields

$$\ln |\mu(t)| = \int p(t) dt = -\int \frac{1}{t} dt = -\ln |t| + C,$$

$$\mu(t) = \frac{C}{t}$$

where C is an arbitrary constant. Thus, solutions of the equation are

$$y(t) = \frac{1}{\mu(t)} \int \mu(t) r(t) dt$$
$$= \frac{1}{C} t \int \frac{C}{t} t e^{-t} dt$$
$$= t \int e^{-t} dt$$
$$= t(-e^{-t} + C).$$

Example 2.5. Consider an ODE

$$(\cos t)\frac{dy}{dt} + (\sin t)y = \cos^3 t, \qquad y(0) = 2$$

for $t \in (-\pi/2, \pi/2)$. As before, we consider

$$\mu(t)\frac{dy}{dt} + \mu(t)\tan ty = \mu(t)\cos^2 t.$$

Then, the auxiliary ODE is

$$\frac{d\mu}{dt} = \mu(t) \tan t$$

$$\ln |\mu(t)| = \int \tan t \, dt$$

$$= \ln |\sec t| + C$$

$$\mu(t) = C \sec t.$$

Simply, we put $mu(t) = \sec t$ then

$$\mu(t)\frac{dy}{dt} + \mu(t)\tan ty = \frac{d}{dt}(\mu(t)y) = \sec t \cos^2 t = \cos t$$
$$y = \cos t \int \cos t \, dt = \cos t (\sin t + C).$$

Since y(0) = C = 2, we obtain

$$y = (\sin t + 2)\cos t.$$

3 Nonlinear differential equations; separable equations

In this section, we discuss how to solve nonlinear first order ODEs. Previously, we have seen an ODE of the form

$$\frac{dy}{dt} = F(y).$$

The idea was to bring F(y) to the other side and apply the Chain rule, which leads to

$$\frac{d}{dt}(G(y)) = \frac{1}{F(y)}\frac{dy}{dt} = 1$$

and so G(y) = t + C. This method indeed works for a more general ODE. Consider a first order ODE of the form

$$\frac{dy}{dt} = F(t, y).$$

where F(t, y) is a product of functions $F_1(t)$ and $F_2(y)$. Then,

$$\frac{1}{F_2(y)}\frac{dy}{dt} = F_1(t).$$

If we find a function G such that $G'(y) = \frac{1}{F_2(y)}$, then

$$\frac{d}{dt}(G(y)) = F_1(t),$$

$$G(y) = \int F_1(t) dt.$$

Example 3.1. Consider an ODE

$$y' = \frac{x^2y}{1+x^3}.$$

Then,

$$\frac{1}{y}\frac{dy}{dx} = \frac{x^2}{1+x^3}.$$

To apply the chain rule, we find a function G(y) such that

$$G'(y) = \frac{1}{y}.$$

By integrating of the both sides, we get

$$G(y) = \ln|y| + C.$$

Let C = 0, then

$$\ln|y| = \int \frac{x^2}{1+x^3} dx = \frac{1}{3} \ln|1+x^3| + C = \ln(e^C|1+x^3|^{\frac{1}{3}}).$$

Thus, the solution is

$$y = C|1 + x^3|^{\frac{1}{3}}$$

This method can be understood in terms of differential forms. We can rewrite the previous form of ODEs as

$$\frac{dy}{dx} = F_1(x)F_2(y)$$

$$\frac{1}{F_2(y)} dy = F_1(x) dx$$

$$-F_1(x) dx + \frac{1}{F_2(y)} dy = 0.$$

So, we simply consider an ODE of the form

$$M(x) dx = N(y) dy$$
.

In this case, we take integration of both sides with respect to x and y respectively, which yields

$$\int M(x) \, dx = \int N(y) \, dy.$$

Such an equation is said to be separable.

Example 3.2. Consider an ODE

$$xdx + ye^{-x}dy = 0,$$
 $y(0) = 1.$

Then,

$$xe^{x}dx = -ydy$$

$$\int xe^{x}dx = -\int ydy$$

$$(x-1)e^{x} = -\frac{1}{2}y^{2} + C$$

$$y^{2} = 2(1-x)e^{x} + C$$

$$y = \pm\sqrt{2(1-x)e^{x} + C}.$$

Since y(0) = 1, the sign is plus and we get

$$y(0) = 1 = \sqrt{2 + C},$$

which yields C = -1. Therefore, the solution is

$$y = \sqrt{2(1-x)e^x - 1}.$$

References

[BD] Boyce and DiPrima, Elementary Differential Equations and Boundary Value Problems, 10th Edition, Wiley

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address:}$ daesungk@illinois.edu