POROUS FILM, ITS PREPARATION AND ITS USE

9. W1588-02

Patent number:

JP7216118

Publication date:

1995-08-15

Inventor:

NISHIYAMA SOJI; others: 03

Applicant:

NITTO DENKO CORP

Classification:

- international:

C08J9/00; B32B27/36; H01M2/16; H01M10/40

- european:

Application number:

JP19940009318 19940131

Priority number(s):

Report a data error here

Also published as:

EP0668156 (A1)

US5480745 (A1)

EP0668156 (B1)

Abstract of JP7216118

PURPOSE:To prepare a film with a shut down starting temp. and a low electric resistance and to improve safety and mechanical strength by drawing uniaxially a laminated film consisting of a PP layer and a PE-contg. PP layer at a low temp. region and drawing it at a high temp. region. CONSTITUTION: A laminated film with a thickness of 15-80mum is obtd. by extruding simultaneously a PP and a mixture of 2-40-wt.% PE and a PP. After this laminated film is, if necessary, heat-treated at 100-160 deg.C for 2-24hr, it is drawn in a uniaxial direction by 20-400% at -20080 deg.C for 2sec-24hr, it, is drawn in the uniaxial direction by 20-400% at -20080 deg.C and then, it is drawn in the same direction by 10-500% at 90-150 deg.C to obtain a porous film wherein the PE content in the thickness direction is 0-20wt.% at the part of the lowest PE content and 21-60wt.% at the part of the highest PE content and the electric resistance in an org. solvent type electrolyte is at most 50MEGA.cm<2> at 20 deg.C and the breaking strength is at least 3.8kg/cm<2> and the shut down starting temp. is 100-145 deg.C.

FIG. 1

Data supplied from the esp@cenet database - Patent Abstracts of Japan

BEST AVAILABLE COPY

(19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3352801号 (P3352801)

(45)発行日 平成14年12月3日(2002.12.3)

(24)登録日 平成14年9月20日(2002.9,20)

(51) Int.Cl. ⁷	識別記号	FI	
CO8J 9/00	CES	C 0 8 J 9/00 CESA	
B 3 2 B 5/18		B 3 2 B 5/18	
H 0 1 M 2/16		H 0 1 M 2/16 P	
10/40		10/40 Z	
# C 0 8 L 23:02		C 0 8 L 23: 02	
		請求項の数7(全 8 頁)	
(21)出願番号	特願平6 -9318	(73)特許権者 000003964	
		日東電工株式会社	
(22)出願日	平成6年1月31日(1994.1.31)	大阪府茨木市下穂積1丁目1番2号	
		(72)発明者 西山 総治	
(65)公開番号	特開平7-216118	大阪府茨木市下穂積1丁目1番2号 日	
(43)公開日	平成7年8月15日(1995.8.15)	東電工株式会社内	
審查請求日	平成12年11月13日(2000.11.13)	(72)発明者 樋口 浩之	
		大阪府茨木市下穂積1丁目1番2号 日	
		東電工株式会社内	
		(72)発明者 松下 喜一郎	
	•	大阪府茨木市下穂積1丁目1番2号 日	
		東電工株式会社内	
		(72)発明者 松嶋 良一	
		大阪府茨木市下穂積1丁目1番2号 日	
		東電工株式会社内	
		審査官 内田 靖惠	
		最終頁に続く	

(54) 【発明の名称】 多孔質フィルム、その製造法およびその用途

1

(57)【特許請求の範囲】

【請求項1】ボリエチレンとボリプロピレンを必須成分として含む多孔質フィルムであって、ボリエチレンとボリプロピレンの合計重量中に占めるボリエチレンの含有量が2~40重量%であり、且つフィルムの厚み方向においてボリエチレンの含有率が変化していることを特徴とする多孔質フィルムにおいて、フィルムの厚み方向において、ボリエチレン含有率が最も低い部分におけるボリエチレン含有率が最も高い部分におけるボリエチレン含有率が最も高い部分におけるボリエチレン含有率が最も高い部分におけるボリエチレン含有率が

【請求項2】表面近傍のポリエチレン含有率が0~20 重量%で、且つフィルムの厚さ方向における中心部分の ポリエチレン含有率が21~60重量%である請求項1 記載の多孔質フィルム。 2

【請求項3】少なくとも一つのポリプロピレン層と、ポリエチレンとポリプロピレンを必須成分とする少なくとも1種の混合物層から成る積層フィルムであって、且つフィルム中におけるポリエチレン含有率が2~40重量%である積層フィルムを成形した後、この積層フィルムを-20℃~80℃の低温度領域で1軸延伸し、次いでこれを90℃~150℃の高温領域で延伸することを特徴とする多孔質フィルムの製造法。

【請求項4】ボリエチレンとボリプロビレンを必須成分とし且つボリエチレン重量とボリプロビレン重量の合計中に占めるボリエチレンの含有率の異なる少なくとも2層から成る積層フィルムであって、且つフィルム中におけるボリエチレン含有率が2~40重量%である積層フィルムを成形した後、との積層フィルムを-20℃~80℃の低温度領域で1軸延伸し、次いでこれを90℃~

150℃の高温領域で延伸することを特徴とする多孔質 フィルムの製造法。

【請求項5】ボリエチレンとボリプロビレンを必須成分 として含む多孔質フィルムであって、ポリエチレンとポ リプロピレンの合計重量中に占めるポリエチレンの含有 量が2~40重量%であり、且つフィルムの厚み方向に おいてポリエチレンの含有率が変化していることを特徴 とする多孔質フィルムから成る電池用セパレータ。

【請求項6】請求項1~2のいずれかに記載の多孔質フ ィルムから成る電池用セパレータ。

【請求項7】正極、負極、これら両極間に介在せしめら れたセパレータ、および電解液を有し、このセパレータ が請求項5~6のいずれかに記載の電池用セパレータで あることを特徴とする電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はポリエチレンとポリプロ ピレンを必須成分として含む多孔質フィルム、その製造 法、その多孔質フィルムから成る電池用セパレータおよ びそのセパレータを組み込んだ電池に関する。

[0002]

【従来の技術】種々のタイプの電池が実用に供されてい るが、近年、電子機器のコードレス化等に対応するため の電池として、髙起電力、髙エネルギーが得られ、しか も自己放電が少ないリチウム電池が注目を集めている。 【0003】このリチウム電池の正極構成材料として は、(CFx)nで示されるフッ化黒鉛、MnO,、V 、O、、CuO、Ag、CrO、等の金属酸化物、Ti S,、CuS等の硫化物等が知られており、負極構成材 料としては、金属リチウム、リチウム合金、カーボンや 30 グラファイト等のリチウムイオンを吸着または吸蔵する 能力を有する材料、あるいはリチウムイオンをドーピン グした導電性高分子等が知られている。また、電解液と しては、エチレンカーボネート、プロピレンカーボネー ト、アセトニトリル、ャープチロラクトン、1,2-ジ メトキシエタン、テトラヒドロフラン等の有機溶媒にし iPF, LiCF, SO, LiClO, LiBF 等を電解質として溶解した有機溶媒系電解液が知られ ている。

【0004】かような材料から構成されるリチウム電池 40 は外部短絡や正・負極の誤接続等により異常電流が流れ た場合、これに伴って電池温度が著しく上昇し、これを 組み込んだ機器に熱的ダメージを与える恐れがある。

【0005】そとで、異常電流による電池温度の上昇に 際し、正負両極の短絡防止のために組み込んだセパレー タの電気抵抗を増大させることにより電池反応を遮断 し、温度の過昇を防止して安全を確保することが提案さ れている。

【0006】とのように電池の温度上昇に際し、電気抵

ることにより安全を確保する機能は一般にシャットダウ ン (Shut-down)特性(以下、「SD特性」と いう)と呼ばれ、リチウム電池用セパレータ等にとって は重要な特性である。

【0007】なお、本明細書においては温度の上昇によ り電気抵抗が増大し、その値が200Ω·cm'に達す るときの温度を、以下、「SD開始温度」ということと する。SD開始温度が低すぎる場合は僅かな温度上昇で 電気抵抗の増大が開始されることになり、高すぎる場合 は安全性の確保が不充分となる。現在のところ、SD開 始温度は約100~145 ℃が実用的であると認識され ている。

【0008】更に、電池用セパレータはSD特性の発現 により増大した電気抵抗がSD開始温度を越えた高温度 まで維持されることが安全性の確保の点から望ましい。 この増大した電気抵抗が維持される上限温度を、以下、 「耐熱温度」ということとする。耐熱温度はセパレータ のフィルム形状維持機能と考えることもでき、耐熱温度 を越えるとセパレータは溶融してフィルム形状を維持で 20 きなくなり、電気抵抗は減少に転じ、SD機能は喪失さ れる。

【0009】ところで、SD特性を有するセパレータと しては、例えば、(a)多孔質フィルムの表面にヒュー ズ材料(該多孔質フィルムよりも低融点の材料)を点在 させたもの(特開平1-186751号公報、特開平3 -62449号公報)、(b) 所定温度において実質的 に無孔構造に変化し得る多孔質層と、該温度において多 孔質構造を維持し得る層から成る積層多孔質フィルム (特開昭62-10857号公報、特開平4-1816 51号公報)、あるいは(c)ポリエチレン(以下、 「PE」という)とポリプロピレン(以下、「PP」と いう)の混合物から成る多孔質フィルム(特開平4-2 06257号公報)が知られている。

【0010】これら従来のセパレータにおけるSD特性 の発現機構は次のとおりである。即ち、(a)のセパレ ータは電池の温度が所定値を越えた場合、ヒューズ材料 が溶融しこの溶融成分により多孔質フィルムの微細孔が 閉塞され、その結果、電気抵抗が増大し、それ以上の温 度上昇が防止されるのであり、また、(b)のセパレー タは電池の温度が所定値を越えた場合、一方の多孔質層 が無孔構造に変化することにより電気抵抗が増大し、そ れ以上の温度上昇が防止されるのであり、更に、(c) のセパレータは電池の温度が所定値を越えた場合、PE が溶融しこの溶融PEにより多孔質フィルムの微細孔が 閉塞され、その結果、電気抵抗が増大し、それ以上の温 度上昇が防止されるのである。

[0011]

【発明が解決しようとする課題】上記従来のセパレータ のうちの(a)のタイプは多孔質フィルム表面からのヒ 抗の増大により電池反応を遮断して温度の過昇を防止す 50 ューズ材料の脱落による安全性の低下が懸念される。

いは厚くてもよい。

5

【0012】また、(b)タイプのうちの特開昭62-10857号公報記載のセパレータは、該公報に記載されているように樹脂に充填材または可塑剤を混合した層と、該樹脂とは融点の異なる樹脂に充填材または可塑剤を混合した層から成る積層フィルムを成形し、次いでこの積層フィルムを樹脂を溶解しないが充填材、可塑剤を溶解する溶媒中に浸漬することにより、フィルム中から充填材、可塑剤を抽出除去することにより多孔質化させる方法により製造されるものである。ところが、この方法は溶媒を用いるのでその蒸発揮散が不可避であり製造 10 現場の環境悪化は無論のこと、地球環境への悪影響も懸念される。

【0013】一方、(b)タイプのうちの特開平4-181651号公報記載のセパレータは高融点樹脂層と低融点樹脂層から成る積層フィルムを延伸して多孔質化して得られるものであるので、溶媒の使用に起因する不都合はなく、この点で好ましいものである。また、(c)タイプのセパレータも延伸により得られるものであるので、特開平4-181651号公報記載のセパレータと同様に、溶媒の使用に起因する不都合はなく好ましいものである。しかし、この技術分野における特性向上の要求は強く、高性能化(低電気抵抗化、機械的強度の向上等)の早急な実現が急務である。

【 0 0 1 4 】従って、本発明は実用的な S D 開始温度を有して安全性が高く、しかも低電気抵抗で、機械的強度も大きくて、電池用セパレータとして好適な多孔質フィルムを提供することを主目的とする。

[0015]

【課題を解決するための手段】本発明者は従来技術の有する上記問題を解決するため鋭意研究の結果、PEとPPの混合物から成る多孔質フィルムであって、フィルムの厚み方向におけるPEの含有率を変化させることにより、上記目的を達成できることを見出し本発明を完成するに至った。

【0016】即ち、本発明に係る多孔質フィルムはPEとPPを必須成分として含む多孔質フィルムであって、PEとPPの合計重量中に占めるPEの含有率が2~40重量%であり、且つフィルムの厚み方向においてPE含有率が変化しており、フィルムの厚み方向において、ポリエチレン含有率が最も低い部分におけるポリエチレン含有率が最も高い部分におけるポリエチレン含有率が最も高い部分におけるポリエチレン含有率が最も高い部分におけるポリエチレン含有率が最も高い部分におけるポリエチレン含有率が21~60重量%であることを特徴とするものである。

【0017】本発明の多孔質フィルムはPEとPPを必須成分とするものであり、フィルム構成材料であるPEの重量とPPの重量の合計中に占めるPEの含有率は2~40重量%、好ましくは10~30重量%であり、PPの含有率は60~98重量%、好ましくは70~90重量%である。PEの含有率が2重量%より少なくなるとSD開始温度が高くなって安全性の低下傾向が現れ、

PEの含有率が40重量%よりも多くなると電気抵抗の増加や、機械的強度の低下傾向が現れるので好ましくない。なお、この多孔質フィルムの厚さは、通常、約10~50μmであるが、場合により、これよりも薄くある

【0018】本発明の多孔質フィルムは上記したように PEとPPを必須成分とするものであるが、更に、その フィルム厚み方向においてPEの含有率が変化している Cとが重要である。

1 【0019】そして、フィルムの厚み方向におけるPE 含有率の変化の態様としては、(イ)フィルムの片面側 部分のPE含有率が低く、他面側部分のPE含有率が高い態様、(ロ)フィルムの表面近傍ではPE含有率が低く、厚み方向の中心部分ではPE含有率が高い態様、

(ハ)フィルムの表面近傍ではPE含有率が高く、厚み方向中心部分ではPE含有率が低い態様、等を挙げることができる。

【0020】このようにフィルムの厚み方向におけるPE含有率の変化は種々の態様であってよいが、いずれの態様においても、PE含有率が最も低い部分におけるPE含有率が0~20重量%で、且つPE含有率の最も高い部分におけるPE含有率が21~60重量%になるようにするのが好適であることが判明している。この好適な具体例として、表面近傍のPE含有率が0~20重量%で、且つフィルムの厚み方向の中心部分のPE含有率が21~60重量%である例を挙げることができる。

【0021】とこで本発明に係る多孔質フィルムにおけるPE含有率について述べる。このPE含有率は多孔質フィルムを構成しているPEの重量(A)とPPの重量(B)の合計中に占めるPE重量の割合であり、下記数1により算出できる。

[0022]

【数1】

【0023】しかし、本発明に係る多孔質フィルムはその厚さ方向においてPE含有率が変化しているので、フィルム全体を通じてのPE含有率、あるいは厚み方向の特定部分におけるPE含有率を上記の数1で算出するのは必ずしも容易でない場合もあり得る。このような場合は、多孔質フィルムの厚さ方向断面をルテニウム酸水溶液の蒸気に曝した後、この断面を透過型電子顕微鏡(TransmissinElectron Microscope、以下、「TEM」という)にて観察し、縦、横が各々1μmである断面積中におけるPE部分(この部分はルテニウム酸により黒色に染色されている)の面積(Dμm²)を求め、下記数2により算出してもよい。なお、数2中におけるEはPEの密度、FはPPの密度である。

7

[0024] 【数2】

PE含有率=
$$\frac{D \times E}{(D \times E) + (1 - D) \times F} \times 100$$

【0025】上記多孔質フィルムを電池用セパレータと して用いる場合には従来のセパレータと同様に、正極と 負極の間にこれを介在せしめて電池を組み立てることが できる。この際、正極、負極、電池ケース、電解液等の 材質やこれら要素の配置構造は何ら格別である必要はな 10 く、従来の電池と同様であってよい。

【0026】かような電池は使用中に何らかの原因で温 度が上昇した場合、セパレータとしての多孔質フィルム の構成材料であるPEが溶融し、この溶融成分により多 孔質フィルムの微細孔が閉塞され、その結果、電気抵抗 が増大し、温度の過昇が防止され安全が保たれる。ただ し、溶融PEによる微細孔閉塞現象は、多孔質フィルム がPEを含有しない部分とPEを含有する部分から成る ときはPE含有部分において生じ、多孔質フィルムがP E含有率の高い部分と低い部分から成るときは、溶融P Eによる微細孔の閉塞は両部分において同時に開始され るが、PE含有率の高い部分で早く終了し、PE含有率 の低い部分での終了はそれよりも遅くなる。

【0027】次に、本発明に係る多孔質フィルムの製造 法について説明する。この製造法も本発明者が開発した 新規なもので、少なくとも一つのPP層と、PEとPP を必須成分とする少なくとも一つの混合物層から成る積 層フィルムであって、且つフィルム中におけるPE含有、 率が2~40重量%である積層フィルムを成形した後、 この積層フィルムを-20℃~80℃の低温度領域で1 軸延伸し、次いでこれを100℃~150℃の高温度領 域で延伸することを特徴とするものである。

【0028】この方法においては、先ず、少なくとも一 つのPP層と、PEとPPを必須成分とする少なくとも 1種の混合物層から成る積層フィルムが成形される。と の積層フィルムは、その必須成分であるPEとPPの合 計重量中に占めるPE含有率が2~40重量%になるよ うにされている。そして、積層フィルムを成形するのに 用いるPEは何ら限定されず、低密度品、中密度品ある いは高密度品のいずれであってもよい。一方、PPも何 40 ら限定されず、アイソタクチックPPあるいはアタクチ ックPPのいずれを使用してもよい。ただし、気孔率の 高い多孔質フィルムを望む場合にはアイソタクチックP Pが好ましく、とりわけ、沸騰したnーヘブタンで抽出 されない部分を90重量%以上(好適には95重量%以 上)の割合で含むものが好ましいことが判明している。 【0029】なお、この積層フィルムの厚さは適宜設定 できるが、後に行う延伸の容易さを考慮すると、約15 ~80μmとするのが好ましい。また、この積層フィル ムのPP層あるいはPEとPPとの混合物層には所望に 50

より老化防止剤、帯電防止剤、充填剤等の添加剤を適量 配合することもできる。

【0030】かような積層フィルムの成形は、例えば、 PPと、PEとPPの混合物を各々用意し、これらを同 時に押し出す方法、PP(またはPEとPPとの混合 物)を押出してフィルム成形し、このフィルム上にPE とPPの混合物(またはPP)を押し出す方法、あるい はPPフィルムと、PEとPPから成るフィルムを各々 成形し、次いでこれらを熱融着する方法等により行うこ とができる。これら方法によれば、PP層と、PEとP Pの混合物層から成る積層フィルム、PEとPPの混合 物層の両面にPP層が設けられた積層フィルム、PP層 の両面にPEとPPの混合物層が設けられた積層フィル ム等が得られる。そして、この積層フィルムにおけるP EとPPの混合層は両者の混合割合が異なる2層以上の 多層であってもよいのである。

【0031】本発明の方法においては所望によりこの積 層フィルムに熱処理を施すことができる。熱処理の方法 は任意であってよく、例えば、加熱されたロールや金属 板に積層フィルムを接触させる方法、積層フィルムを空 気中や不活性ガス中で加熱する方法、積層フィルムを芯 体上にロール状に巻取り、これを気相中で加熱する方法 等を採用できる。なお、積層フィルムを芯体上にロール 状に巻取り、これを気相中で加熱する場合には、ブロッ キング防止のため、積層フィルムに離型性シートを重ね 合わせて巻取ることができる。かような離型性シートと しては、ポリエチレンテレフタレートフィルム、フッ素 樹脂フィルム、あるいは紙やプラスチックフィルムにシ リコーン樹脂、フッ素樹脂等の離型剤を塗布したもの等 を使用できる。

【0032】この熱処理の温度と時間は熱処理の方法等 に応じて設定するが、通常、温度は約100~160 ℃、時間は約2秒~24時間とする。かような熱処理を 施すことにより積層フィルムの結晶化度が高められ、後 に行われる延伸による微細孔の形成が容易となり、気孔 率のより高い多孔質フィルムが得られる。

【0033】とのようにして得られた積層フィルムは次 いで-20℃~80℃(好ましくは0℃~50℃)の低 温度領域で1軸方向に延伸される(以下、-20℃~8 0℃での延伸を「低温延伸」という)。延伸温度がこれ よりも低いと作業中にフィルムの破断を生ずることがあ り、また、延伸温度がこれよりも高いと多孔質化し難く なる。なお、低温延伸の方法は格別である必要はなく、 従来から知られているロール延伸法、テンター延伸法等 を採用できる。

【0034】低温延伸時における延伸率は特に限定され るわけではないが、通常、約20~400%、好ましく は約40~300%である。この延伸率は低温延伸前に おける寸法(L)と低温延伸後の寸法(LB)を用い、 下記数3により求めることができる。

9

【0035】 【数3】

延伸率=
$$\frac{LB-L}{L} \times 100$$

【0036】この低温延伸された積層フィルムは次いで90℃~150℃の高温度領域で延伸される(以下、90℃~150℃での延伸を「高温延伸」という)。この高温延伸は前記低温延伸時における延伸方向と同方向に行われるが、更に、他の方向への延伸を行ってもよい。高温延伸時の温度を上記範囲に設定するのは低温延伸温度を規定したのと同じ理由からであり、温度がこれよりも高いと多孔質化し難い。なお、延伸方法も低温延伸と同様に従来から知られている方法を採用できる。【0037】高温延伸時における延伸率も特に限定されないが、通常、約10~500%、好ましくは約100~300%である。この延伸率は低温延伸前の寸法

(L)、低温延伸後の寸法(LB、即ち、高温延伸前の寸法)および高温延伸後の寸法(LH)を用い、下記数 20 4により求めることができる。

[0038]

【数4】 LH-LB

延伸率=
$$\frac{LH-LB}{L} \times 100$$

【0039】とのようにして得られる多孔質フィルムは低温延伸および高温延伸の際に作用する応力が残留しており、延伸方向に収縮して寸法変化を生じ易いので、延伸後に延伸方向の寸法を収縮させておくことにより、寸30法安定性を高めることができる。この収縮は、例えば、延伸温度と同程度の加熱条件下で行うことができる。収縮の度合いは任意でよいが、通常、延伸後のフィルム寸法が約10~40%減少する程度とする。

【0040】また、多孔質フィルムの延伸方向の寸法が変化しないように規制し、延伸温度またはそれ以上の温度で加熱する所謂「ヒートセット」を施すことによっても前記の収縮処理を施すのと同様に寸法安定性を優れたものとすることとができる。勿論、このヒートセットと上記の収縮の双方を行うことより寸法安定性の向上を図ることもできる。

【0041】上記の方法においては少なくとも一つのPP層と、PEとPPを必須成分とする少なくとも一つの混合物層から成る積層フィルムを用いたが、本発明においてはPEとPPを必須成分とし、且つPE重量とPP重量の合計中に占めるPE含有率の異なる(即ち、PEとPPの混合割合の異なる)少なくとも2層から成る積層フィルムを用いることもできる。この場合は用いる積層フィルムが変わるだけであり、これ以外は上記と全く同様である。

10

【0042】本発明の方法により得られる多孔質フィルムの微細構造は電子顕微鏡により観察できる。例えば、多孔質フィルムの厚さ方向の断面をTEMにより観察(倍率は適宜設定するが、通常、約5000~10000倍である)すると、PE部分とPP部分が互いに独立した相分離構造を有し、PP部分が連続相、PE部分が非連続相として存在しているのが判る。そして、この多孔質フィルムの最大の特徴は、多孔質フィルムの厚さ方向において、PE含有率が変化していること、即ち、フィルムの厚さ方向においてPE部分が均等に点在するのではなく、偏在していることである。なお、観察に際してはルテニウム酸水溶液の蒸気に曝して染色しておくのがよい(PE部分がPP部分よりも黒く染色されるので、PE部分とPP部分の判別が容易になる)。

【0043】図1はPEとPPの混合層の両面にPP層を設けた積層フィルムを用い、とれに上記の方法を適用して得られた多孔質フィルムの微細構造の実例を模式的に示したものである。

【0044】図1において矢印Xは多孔質フィルムの厚さ方向、矢印Yは延伸方向、矢印Zは延伸方向Yに直交する方向を各々示している。また、Aは多孔質フィルムの表面を、Bは延伸方向に直交する方向に沿って切断した断面、Cは延伸方向に沿って切断した断面、DはZ方向に沿って切断した断面を各々示している。

【0045】この多孔質フィルムの各断面B、Cおよび DにおいてはいずれもPP部分1とPE部分2が互いに 独立して存在する相分離構造を有し、PP部分1が連続相を、PE部分2が非連続相を形成している。このよう に、連続相中に非連続相が点在する構造は所謂「海島構造」ということもできる。なお、PP部分1は多孔質であり、PE部分は多孔質であることもあり、微細孔が形成されていないこと(非多孔質)もある。

【0046】そして、この多孔質フィルムにおける最大の特徴はフィルムの厚さ方向において、表面近傍ではPEが存在せず、厚さ方向の中心部分にのみPEが存在しており、フィルムの厚さ方向においてPE含有率が変化していることである。

【0047】PE部分2の長さ(Y方向の寸法)は断面 Cの観察により知ることができ、通常、約0.1~数十 μ mである。また、その幅(Z方向の寸法)は断面Bの 観察により知ることができ、通常、約0.2~5 μ mである。更に、その厚さ(X方向の寸法)は断面Cの観察 により知ることができ、通常、約0.1~2 μ mである。

【0048】また、PP部分1 およびPE部分(多孔質 である場合)2の微細孔3、4の形状は多くの場合長精 円径あるいは矩形である。そして、PP部分における微細孔3の寸法は長径が約0.05~0.3 μm、短径が約0.01~0.1 μmであり、PE部分2における微50 細孔4は長径が約0.1~3 μm、短径が約0.02~

11

5 μmであることが多い。

【0049】かようにして得られる多孔質フィルムは、 液温20℃の有機溶媒系電解液中での電気抵抗値(以 下、「初期電気抵抗」という)が1枚当り約5Ω・cm ² 以下と低く、破断強度も約3.8 kg/cm² 以上と 大きく、しかも、SD開始温度が約100~145℃で あることが判明している。従って、電池用セパレータと して有用である。また、この多孔質フィルムは電池用セ パレータの他、従来の多孔質フィルムと同様に、分離 膜、建築用通気性フィルム、衣料用通気性フィルム等の 10 種々の用途に適用できる。

[0050]

【実施例】以下、実施例により本発明を更に詳細に説明 する。なお、以下において、PEとPPの混合割合を示 す「部」は「重量部」を意味する。

【0051】実施例1

メルトインデックス (以下、「MI」という) が2のア イソタクチックPPと、これと同じPP70部とMIが 1. 3の高密度PE30部から成る混合物をTダイ押出 機を用い、ダイス温度230℃で2層同時押出法によ り、厚さ約16μmのPP層と、厚さ約16μmのPE とPPの混合層から成る長尺の積層フィルムを得、次い でとれを空気中において温度150℃で5分間加熱して 熱処理する。

【0052】との熱処理済みの積層フィルムを温度25 ℃で長尺方向に延伸率が70%になるように低温延伸 し、次いで、温度100℃で同方向に延伸率が130% になるように髙温延伸する。その後、温度115℃にお いて延伸方向の寸法を20%収縮させ、更に、該延伸方 向の寸法が変化しないように規制して120℃で2分間 30 加熱してヒートセットすることにより、厚さ24μm、 初期電気抵抗が1. 3Ω·cm² である多孔質フィルム を得た。

【0053】この多孔質フィルムはPE重量とPP重量 の合計中に占めるPE含有率が13重量%であった。そ して、片面から厚さ方向の中心部に向かって約12 mm までの部分におけるPE含有率は0重量%、他面から厚 さ方向の中心部に向かって約12 µmまでの部分におけ るPE含有量は30重量%であり、厚さ方向においてP E含有率が変化していた。

【0054】また、この多孔質フィルムのSD開始温 度、耐熱温度および破断強度を下記要領で測定した結果 は表 1 に示すとおりであった。なお、表 1 におけるSD 開始温度および耐熱温度の単位は「℃」であり、破断強 度の単位は「kg/cm'」である。

【0055】(SD開始温度および耐熱温度)多孔質フ ィルムの延伸方向の長さが一定になるように2辺を固定 する。そして、これを所定の各温度に15分間維持し、 次に室温にて電気抵抗を測定し、温度と電気抵抗の相関 関係を示すグラフ(図2)を作成し、このグラフからS 50 12

D開始温度および耐熱温度を読み取る。

【0056】電気抵抗の測定はJIS C 2313に 準じて行った。電解液としては、プロビレンカボネート と1.2-ジメトキシエタンを同容量ずつ混合した液 に、電解質として過塩素酸リチウムを1モル/リットル の濃度になるように溶解したものを使用した。

【0057】そして、抵抗計(国洋電気工業株式会社 製、LCRメーターKC-532) により1KHzの交 流抵抗を測定し、下記数5により多孔質フィルムの電気 抵抗値R(Ω·cm²)を算出した。なお、数5中のR Bは電解液(液温20℃)の電気抵抗値(Ω)、Rは電 解液中に多孔質フィルムを浸漬した状態で測定した電気 抵抗値(Ω)、Sは多孔質フィルムの断面積(c m^2) である。

[0058]

【数5】

 $R = (RB - R) \times S$

【0059】なお、ここで使用している電気抵抗測定セ ルは若干の漏れ電流があるため、無孔のフィルムにおい 20 ても最大で600Ω·cm² 程度の電気抵抗値しか測定 できないものである。

【0060】(破断強度)引張試験機(株式会社島津製 作所製、オートグラフAG-2000A)を用い、チャ ック間隔20mm、引張速度200mm、温度25℃の 条件で多孔質フィルムをその延伸方向に引っ張って破断 時の強度を測定した。なお、測定試料の幅は10mmと した。

[0061]

【表 1 】

	SD開始温度	耐熱温度	破断強度
実施例 1	135	170	4.5
実施例2	1 4 0	1 7 0	4. 9
実施例3	1 3 5	170	4. 1
実施例4	1 3 3	170	3.8
比較例 1	1 3 5	170	3. 0
比較例 2	1 3 3	170	2. 8
比較例3	155	170	4.4

40

【0062】実施例2

Tダイ押出機(ダイス温度を240℃に設定)を用いる3層同時押出法により、MIが0.5のアイソタクチックPP70部とMIが0.4の高密度PE30部から成る混合層(厚さ約10μm)の両面にMI0.5のアイソタクチックPPから成る厚さ約10μmの層が各々形成された積層フィルムを成形する。

【0063】との積層フィルムを用い、実施例1と同様に熱処理、低温延伸、高温延伸、収縮処理およびヒートセットを順次行って、厚さ $24\mu m$ 、初期電気抵抗 $1.0\Omega \cdot cm^2$ の多孔質フィルムを得た。

【0064】との多孔質フィルムはPE重量とPP重量の合計中に占めるPE含有率が7重量%であった。そして、両表面から厚さ方向の中心部に向かって約8 μ mまでの部分におけるPE含有率は各々0重量%、厚さ方向の中心部分(この部分の厚さは約8 μ m)におけるPE含有率は30重量%であり、厚さ方向においてPE含有率が変化していた。また、この多孔質フィルムの特性は表1に示すとおりであった。

【0065】実施例3

Tダイ押出機(ダイス温度を240℃に設定)を用いる3層同時押出法により、MIが0.5のアイソタクチックPP60部とMIが0.4の高密度PE40部から成る混合層(厚さ約13μm)の両面に、MI0.5のアイソタクチックPP90部とMIが0.4の高密度PE10部の混合物から成る厚さ約13μmの層が各々形成された積層フィルムを成形する。

【0066】との積層フィルムを用い、実施例1と同様に熱処理、低温延伸、高温延伸、収縮処理およびヒートセットを順次行って、厚さ 25μ m、初期電気抵抗1. $5\Omega \cdot cm^2$ の多孔質フィルムを得た。

【0067】 この多孔質フィルムはPE重量とPP重量の合計中に占めるPE含有率が17重量%であった。そして、両表面から厚さ方向の中心部に向かって約 8μ mまでの部分におけるPE含有率は各 α 10重量%、厚さ方向の中心部分(この部分の厚さは約 8μ m)におけるPE含有率は40重量%であり、厚さ方向においてPE含有率が変化していた。また、この多孔質フィルムの特性は表1に示すとおりであった。

【0068】実施例4

MIが0.5のアイソタクチックPP80部とMIが0.4の高密度PE20部から成る混合物をTダイ押出機を用い、ダイス温度230℃にて押し出して厚さ20μmのフィルムを得る。

【0069】一方、これとは別にMIが0.5のアイソタクチックPP50部とMIが0.4の高密度PE50部から成る混合物をTダイ押出機を用い、ダイス温度230℃で押し出して厚さ20μmのフィルムを得る。

【0070】上記のフィルム1枚ずつを重ね合わせ温度 152℃に調整したラミネートロールを通し積層フィル 50 14

ムを得る。この積層フィルムを用い、実施例 1 と同様に 熱処理、低温延伸、高温延伸、収縮処理およびヒートセットを順次行って、厚さ $2.5 \mu m$ 、初期電気抵抗 $2.2 \Omega \cdot c m^2$ の多孔質フィルムを得た。

【0071】この多孔質フィルムはPE重量とPP重量の合計中に占めるPE含有率が35重量%であった。そして、片面から厚さ方向の中心部に向かって約12μmまでの部分におけるPE含有率は20重量%、他面から厚さ方向の中心部に向かって約12μmまでの部分におけるPE含有率は50重量%であり、厚さ方向においてPE含有率が変化していた。また、この多孔質フィルムの特性は表1に示すとおりであった。

【0072】比較例1

MIが2.0のアイソタクチックPP70部とMIが 1.3の高密度PE30部から成る混合物をTダイ押出 機を用い、ダイス温度230℃にて押し出して厚さ41 μmのフィルムを得た。

【0073】このフィルムを用い、実施例1同様に熱処理、低温延伸、高温延伸、収縮およびヒートセットを順20次行い、厚さ26μm、初期電気抵抗1.5Ω・cm²の多孔質フィルムを得た。この多孔質フィルムの特性は表1に示されているように、破断強度が小さめであった

【0074】比較例2

PPとPEの混合割合をPP60部、PE40部とする と以外は比較例1と同様に作業して多孔質フィルム (厚さ25 μ m、初期電気抵抗1.8 Ω ·cm²)を得 た。この多孔質フィルムの特性は表1に示されており、 破断強度が一層小さめであった。

0 【0075】比較例3

PPとPEの混合割合をPP87部、PE13部とする こと以外は比較例1と同様に作業して、厚さ24 μ m、 初期電気抵抗1.1 Ω ·cm²の多孔質フィルムを得 た。この多孔質フィルムの特性は表1に示されており、 強度は大きいが、SD開始温度が高めであった。

[0076]

【発明の効果】本発明の方法によれば簡単な操作で多孔質フィルムをえることができ、この多孔質フィルムは機械的強度が大きく、また、電池用セパレータとして用いたときは実用的なSD開始温度を示し安全性が高い利点がある。

【図面の簡単な説明】

【図1】本発明に係る多孔質フィルムの微細構造の実例を示す模式図である。

【図2】本発明に係る多孔質フィルムのSD特性の実例を示すグラフである。

【符号の説明】

- 1 PP部分
- 2 PE部分

フロントページの続き

(56)参考文献 特開 昭49-61301 (JP, A)

(58)調査した分野(Int.C1.7, DB名)

C08J 9/00

B32B 5/18

HO1M 2/16

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLORED OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox