# Assignment Project Exam Help Node Embeddings https://tutorcs.com/

WeChat: cstutorcs

## Recap: Traditional ML For Graphs

Given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network nets.) that mans features to labels.

Input Structure cstutordsearning Algorithm Prediction

Feature engineering (node-level, edge-level, graph
https://tutorcs.com

Prediction

Algorithm

Downstream

prediction task

level features)

## **Graph Representation Learning**

Graph Representation Learning alleviates the need to do feature engineering every single times signment Project Exam Help



## **Graph Representation Learning**

Goal: Efficient task-independent feature learning for machine learning with graphs!

Assignment Project Exam Help



## Why Embedding?

- Task: Map nodes into an embedding space
  - Similarity of embeddings between nodes indicates their similarity in the network.
    - similarity in the network.

      Assignment Project Exam Help
      For example: Both nodes are close to each other (connected by tansed and torcs.com
  - Encode network information
  - WeChat: cstutorcs
     Potentially used for many downstream predictions



## **Example Node Embedding**

 2D embedding of nodes of the Zachary's Karate Club network:



## Node Embeddings: Assignment Project Exam Help Encoder, and Decoder

WeChat: cstutorcs

#### Setup

- Assume we have a graph G:
  - V is the vertex set.
  - A is the Andjeguemeyn to Patrix (ta Escume Hoehary).
  - For simplicity: No/node features or extra information is used

WeChat: cstutorcs

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

#### **Embedding Nodes**

- Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph



## **Embedding Nodes**



#### Node Embeddings Summary

- Encoder ENC maps from nodes to embeddings
- 2. Define a node similarity function (i.e., a measure of similarity sing the eniginal petwork) Help
- 3. Decoder DEC maps from embeddings to the https://tutorcs.com similarity score
- 4. Optimize the parameters of the encoder so that:

$$\begin{array}{c} \text{DEC}(\mathbf{z}_{v}^{T}\mathbf{z}_{u}) \\ \text{Similarity}(u,v) \approx \mathbf{Z}_{v}^{T}\mathbf{Z}_{u} \\ \text{in the original network} \end{array}$$
 Similarity of the embedding

#### Two Key Components

Encoder: maps each node to a low-dimensional vector

 $\frac{d}{\text{dimensional}}$   $\text{ENC}(v) = \mathbf{z}_v \quad \text{embedding}$  node in the input graph

• Similarity function: specifies how the relationships in the original network

## "Shallow" Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

$$v \in \mathbb{I}^{|\mathcal{V}|}$$
Indicator vector, all zeroes except a one in column indicating node  $v$ 

## "Shallow" Encoding

Simplest encoding approach: Encoder is just an embedding-lookup



## "Shallow" Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

Assignment Project Exam Help

Each node is assigned a unique
https://tutorcs.com
embedding vector
(i.e., we directly optimize
the embedding of each node)

#### Framework Summary

- Encoder + Decoder Framework
  - Shallow encoder: embedding lookup
  - Parametersigo optimize ja with inchetpins node embeddings  $\mathbf{z}_u$  for all nodes  $u \in V$  https://tutorcs.com
  - We will cover deep encoders (GNNs)
     WeChat: cstutorcs
  - Decoder: based on node similarity.
  - Objective: maximize  $\mathbf{z}_v^T \mathbf{z}_u$  for node pairs (u, v) that are similar

#### How to Define Node Similarity

- Key choice of methods is how they define node similarity.
- Should two sistes that experimental entire the dding if they... https://tutorcs.com
  - are linked?
    WeChat: cstutorcs
  - share neighbors?
  - have similar "structural roles"?

## Random Walk Approaches Assignment Project Exam Help for Node Embeddings

WeChat: cstutorcs

#### A Note on Node Embeddings

- We will now learn node similarity definition that uses random walks, and how to optimize embeddings for such a similarity measure.
- Random walks is unsupervised/self-supervised way of learning node embeddings.
  - We are not utilizing: node are selected.
  - We are not utilities in adecteatures.
- These embeddings are task independent
  - They are not trained for a specific task but can be used for any task.

#### **Notation**

- **Vector**  $\mathbf{z}_{u}$ :
  - The embedding of node u (what we aim to find).
- Probability  $P(v | \mathbf{z}_u)$ :

  The (predicted) probability of visiting node v on random walks starting from node u.

Our model prediction based on  $\mathbf{z}_u$ WeChat: cstutorcs

#### Random Walk



## Random Walk Embeddings

#### Assignment Project Exam Help

 $\mathbf{Z}_{u}^{\mathbf{T}}\mathbf{Z}_{v}$  https://tutoprobability that u and v we chat: cstutores over the graph

## Random Walk Embeddings

1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy k

https://tutorcs.com

WeChat: cstutorcs

 $P_R(v|u)$ 

2. Optimize embeddings to encode these random walk statistics:

 $\theta \propto P_R(v|u)$ 

 $\mathbf{Z}_{j}$ 

Similarity in embedding space (Here: dot product= $cos(\theta)$ ) encodes random walk "similarity"

## Why Random Walks

- 1. **Expressivity:** Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information. Assignment Project Exam Help Idea: if random walk starting from node u visits v with high https://tittorusarchv are similar (high-order multi-hop information). WeChat: cstutorcs
- Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks.

## Unsupervised Feature Learning

- Intuition: Find embedding of nodes in d-dimensional space that preserves similarityignment Project Exam Help
- Idea: Learn node embedding such that https://tutorcs.com nearby nodes are close together in the network.
- Given a node u, how do we define nearby nodes?
  - $N_R(u)$  ... neighbourhood of u obtained by some random walk strategy R.

#### Feature Learning as Optimization

- Given G = (V, E),
- Our goal is to learn a mapping  $f: u \to \mathbb{R}^d$ :

$$f(u) = \mathbf{z}_u$$
Assignment Project Exam Help

Log-likelihoodopjectivercs.com

$$\max_{f} \sum_{u \in V} \frac{|\mathbf{z}_u|}{|\mathbf{z}_u|} |\mathbf{z}_u|$$

- $N_R(u)$  is the neighborhood of node u by strategy R
- Given node u, we want to learn feature representations that are predictive of the nodes in its random walk neighborhood  $N_R(u)$ .

## Random Walk Optimization

- 1. Run **short fixed-length random walks** starting from each node u in the graph using some random walk strategy Assignment Project Exam Help
- 2. For each node u collect  $N_R(u)$ , the multiset\* of https://tutorcs.com nodes visited on random walks starting from u.
- 3. Optimize embeddings action of the second of u, predict its neighbors  $N_{\rm R}(u)$ .

$$\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u}) \implies \text{Maximum likelihood objective}$$

## Random Walks: Summary

- Run short fixed-length random walks starting from each node on the graph
- For each node u collect  $N_R(u)$ , the multiset of Assignment Project Exam Help nodes visited on random walks starting from u.
- 3. Optimize embeddings (using Stochastic Gradient Descent): WeChat: cstutorcs

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

## How should we Randomly walk?

- So far we have described how to optimize embeddings given a random walk strategy R
- What strategies should we use to run these random walks?

- https://tutorcs.com
   Simplest idea: Just run fixed-length, unbiased random walks stahting from each node
- (i.e., DeepWalk from Perozzi et al., 2013)
  - The issue is that such notion of similarity is too constrained
- How can we generalize this?

#### Overview of node2vec

- Goal: Embed nodes with similar network neighborhoods close in the feature space.
- We frame this goal as a maximum likelihood optimization groblem rindependent to the downstream prediction task.
- Key observation: Flexible notion of network neighborhoody  $N_{R}(u)$  of node u leads to rich node embeddings
- Develop biased  $2^{\rm nd}$  order random walk R to generate network neighborhood  $N_R(u)$  of node u

Reference: Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

#### Node2vec: Biased Walks

Idea: use flexible, biased random walks that can trade off between local and global views of the network (Geometro) between local and global views



#### Node2vec: Biased Walks

Two classic strategies to define a neighborhood  $N_R(u)$  of a given node u:



Walk of length 3 ( $N_R(u)$  of size 3):

$$N_{BFS}(u) = \{s_1, s_2, s_3\}$$
 Local microscopic view  $N_{DFS}(u) = \{s_4, s_5, s_6\}$  Global macroscopic view

#### BFS vs. DFS



#### Interpolating BFS and DFS

Biased fixed-length random walk  $m{R}$  that given a node  $m{u}$  generates neighborhood  $m{N}_{m{R}}(m{u})$ 

- Two parameters: Project Exam Help
  - Return paratter tytorcs.com
    - Return backetolthe oranious node
  - In-out parameter q:
    - Moving outwards (DFS) vs. inwards (BFS)
    - Intuitively, q is the "ratio" of BFS vs. DFS

#### **Biased Random Walks**

## Biased 2<sup>nd</sup>-order random walks explore network neighborhoods:

- Rnd. walkjusitstraversededgec(sp.w)andiapow at w
- Insight: Neighbors of w can only be: https://tutorcs.com



Idea: Remember where the walk came from

#### **Biased Random Walks**

Walker came over edge (s<sub>1</sub>, w) and is at w.
Where to go next?



- p, q model transition probabilities
  - p ... return parameter
  - q ... "walk away" parameter

#### Biased Random Walks

 Walker came over edge (s<sub>1</sub>, w) and is at w. Where to go next?



**DFS-like** walk: Low value of q

segmented based on distance from  $s_1$ 

 $N_R(u)$  are the nodes visited by the biased walk

#### Node2vec Algorithm

- 1. Compute random walk probabilities
- 2. Simulate r random walks of **length** l starting from each node u
- 3. Optimize the mode 2 vec objective (using Stochastic Gradient Descent) cs

#### **Properties:**

- 1) Linear-time complexity
- 2) All 3 steps are individually parallelizable

#### Summary so far

- Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original perwork roject Exam Help
- https://tutorcs.com
   Different notions of node similarity:
  - Naïve: similar if two nodes are connected.
  - Neighborhood overlap (covered in Topic 5)
  - Random walk approaches

#### Summary so far

- No one method wins in all cases....
  - E.g., node2vec performs better on node classification while alternative methods perform better on link prediction (Goyal and Ferrara, 2017 survey).

https://tutorcs.com

Random walk approaches are generally more efficient.

#### So what method should I use..?

Choose definition of node similarity that matches your application.

#### **Learning Outcomes**

We discussed graph representation learning, a way to learn node and graph embeddings for downstream tasks, without feature engineering.

Assignment Project Exam Help

- Encoder-decoder framework:
  - Encoder: embedding fookup om
  - Decoder: predict score based on embedding to match node similarity
- Node similarity measure: (biased) random walk
  - Examples: Node2Vec