AOCO: Questões e exercícios adicionais

Parte II

As questões de escolha múltipla (secção 1) e os problemas de resposta aberta (secção 2) foram retirados ou adaptados de testes de AOCO de anos anteriores.

Informação de referência

Field	opcode		Rm	sha	mt	Rn	Rd
Bit positions	31:21		20:16	15:	10	9:5	4:0
a. R-type instru	ction						
Field	1986 or 1984	addres	s	0	Rn	Rt	
Bit positions	31:21		20:12	20:12 11:10		9:5	4:0
b. Load or store	e instruction						
Field	180	ć	address			Rt	
Bit positions	31:24			23:5			4:0
c. Conditional branch instruction							
	31	26 25				0	
	opcode		a	ddress			
	d. Branch			26 bits			

Instrução	Opcode					
ADD	100	0101	1000			
SUB	110	0101	1000			
AND	100	0101	0000			
ORR	101	0101	0000			
LDUR	111	1100	0010			
STUR	111	1100	0000			
CBZ	101	1010	0			
В	000	101				

ALU trabalha em 3 contextos diferentes.

instruções lógico-aritméticas: ALUOp [1:0] = 10
 cálculo de endereços: ALUOp [1:0] = 00
 comparação: ALUOp [1:0] = 01

Para programação, usar também **a folha de consulta** com as instruções mais comuns.

Figura 1: CPU com "multiplexers" e sinais de controlo

1 Questões de escolha múltipla

- 1. Assuma que a saída Read data 2 do banco de registos é sempre 0. Que instrução ARMv8 não é afetada por esta anomalia?
 - A. STUR B. ADD C. CBZ D. LDUR
- 2. Que instrução ARMv8 poderá ser executada se MemtoReg=0, Reg2Loc=1 e ALUSrc=1?
 - A. ORR B. CBZ C. STUR D. LDUR
- 3. Que instrução ARMv8 tem o código 0xCB0201E8?
 - A. ADD X15,X8,X2 B. SUB X2,X15,X8 C. SUB X15,X2,X8 D. SUB X8,X15,X2
- 4. Relativamente a sub-rotinas, qual das seguintes afirmações é falsa?
 - A. Sub-rotinas terminais devem preservar o valor de X30 antes de invocarem outras sub-rotinas.
 - B. Uma sub-rotina do tipo função devolve um valor como resultado.
 - C. Uma sub-rotina do tipo procedimento não devolve resultados.
 - D. Na invocação de uma sub-rotina, o endereço da instrução seguinte é guardado no registo X30.
- 5. Um programa gasta 75 % do tempo em transferências de dados para outro computador via rede sem fios. Quantas vezes é preciso aumentar a velocidade de transferência para obter uma redução do tempo de execução do programa (*speedup*) de duas vezes?
 - A. 4 B. 1,5 C. 3 D. 2

- 6. Para um dado programa, o processador P1 com $F_1 = 1\,\text{GHz}$ apresenta o mesmo tempo de execução que o processador P2 com $F_2 = 1,25\,\text{GHz}$. O tempo de execução de P1 fica maior que o de P2 se:
 - A. passar a usar $F_2 = 1 \,\text{GHz}$;
 - B. aumentar o valor do CPI médio de P2;
 - C. reduzir o valor do CPI médio de P1;
 - D. aumentar 1,3 vezes o período do relógio de P1.
- 7. O tempo de execução de um programa está repartido entre a execução de instruções da classe A (60 % do tempo) e da classe B (40 % do tempo). Qual das seguintes alterações leva ao melhor desempenho?
 - A. diminuir para metade o tempo de execução das instruções de classe A;
 - B. diminuir o tempo de execução das instruções de classe B para um quarto do tempo original;
 - C. reduzir o tempo de execução das instruções de classe A para um terço e aumentar o tempo de execução das instruções de classe B para o dobro;
 - D. reduzir 1,5 vezes o tempo de execução das instruções de classe A e reduzir o tempo de execução das instruções de classe B para metade.
- 8. Um programa de cálculo científico gasta 80 % do seu tempo de execução em operações numéricas. Este tempo está repartido da seguinte forma:
 - operações aritméticas: 40 %
 - operações trigonométricas: 60 %

Um novo método de cálculo das funções trigonométricas reduzirá o respetivo tempo de execução em $4\times$. Qual dos valores indicados se aproxima mais da melhoria de desempenho (speedup) global que esta medida produzirá?

- A. 1,82 B. 2,40 C. 1,56 D. 2,62
- 9. Uma memória cache com 64 B/bloco contém 32 KiB de dados. Quantos blocos tem?
 - A. 512 B. 2048 C. 256 D. 1024
- 10. Qual das seguintes afirmações sobre uma memória cache do tipo write-through é falsa?
 - A. O conteúdo da memória principal está sempre atualizado.
 - B. No caso de uma falta num acesso de leitura (*read miss*) o valor é lido da memória principal e colocado na *cache* atualizando a etiqueta e alterando o valor de **v** para 1.
 - C. No caso de uma falta num acesso de escrita (*write miss*) o valor é escrito na memória principal e na memória *cache* atualizando a etiqueta e alterando o valor de **v** para 1.
 - D. No caso de um acerto num acesso de leitura (read hit), o valor é lido da memória cache.
- 11. Um CPU está equipado com uma memória cache unificada com taxa de faltas $t_f = 0,1$. Em média, 20 % das instruções de um programa acedem a dados. Qual das seguintes alternativas de split cache apresenta o mesmo desempenho?
 - A. I-cache com $t_f = 20\%$ e D-cache com $t_f = 8\%$;
 - B. I-*cache* com $t_f = 8\%$ e D-*cache* com $t_f = 20\%$;
 - C. I-*cache* com $t_f = 5\%$ e D-*cache* com $t_f = 5\%$;

- D. I-cache com $t_f = 10\%$ e D-cache com $t_f = 20\%$.
- 12. A memória principal usada com um CPU de 2 GHz tem um tempo de acesso de 60 ns. O acesso à memória *cache* demora 0,5 ns. Qual deve ser o valor máximo da taxa de faltas para que o tempo médio de acesso a memória seja 10 ciclos?
 - A. 5% B. 7,5% C. 10% D. 2,5%
- 13. Um programa gasta 50 %do tempo a executar cálculos de vírgula flutuante. Qual é o ganho de rapidez (*speedup*) que se poderia obter se a unidade de vírgula flutuante fosse 5 vezes mais rápida?
 - A. 2,5 B. 5/3 C. 10/3 D. 2
- 14. Qual das seguintes afirmações sobre uma memória cache do tipo write-back é verdadeira?
 - A. Existe a possibilidade de serem feitos 2 acessos a memória principal para apenas um acesso a memória *cache*.
 - B. O conteúdo da memória principal está sempre atualizado.
 - C. Pode haver um acesso a memória principal mesmo que o acesso a memória *cache* seja um acerto (*hit*).
 - D. Não pode ser usada como *D-cache*.
- 15. Considere duas versões do mesmo programa a correrem no mesmo processador. A versão A foi produzida pelo compilador C_A e executa 2×10^{10} instruções; a versão B foi produzida pelo compilador C_B e executa $1,25 \times 10^{10}$ instruções. Para a versão A, o valor de CPI_A é 2. A versão A é 25 % mais rápida que a versão B. Qual é o valor de CPI da versão B?
 - A. $CPI_B = 25/16$ B. $CPI_B = 4$ C. $CPI_B = 57/16$ D. $CPI_B = 3$
- 16. Um programa científico despende 80 % do seu tempo a executar operações de vírgula flutuante. Para tornar o programa 4 vezes mais rápido pretende-se usar uma nova uma unidade de vírgula flutuante. Quanto mais rápida que a anterior deve ser essa unidade?
 - A. 16; B. 8; C. 12; D. É impossível.
- 17. Assuma as seguintes condições iniciais: X0=0x8abc7520 e X2=0x11110000 Determine o valor do registo X0 após ser executada a instrução ORR X0,X0,X2.
 - A. 0x8abc0000 B. 0x9bbd5702 C. 0x9bbd7520 D. 0x8bbc5720
- 18. Uma memória *cache* tem 32 blocos com 8 palavras por bloco e etiquetas de 16 bits. Quantos bits tem cada endereço?
 - A. 24 B. 21 C. 26 D. 32
- 19. Um processador funciona a 3 GHz. Nesse processador, o programa P1 apresenta um CPI médio de 2,4 e o programa P2 apresenta um CPI médio de 2. Sabendo que o tempo de execução de cada um dos programas é 2 s, indique a afirmação verdadeira.
 - A. O programa P2 executa menos instruções que o programa P1.
 - B. O programa P2 executa 3×10^9 instruções.
 - C. Se a frequência baixar para 2 GHz, o programa P2 passa a ser mais rápido que P1.
 - D. Se o CPI de P1 aumentar, P2 fica mais lento que P1.
- 20. O desempenho de uma memória *cache* unificada usada com um CPU de 1 GHz foi considerado insuficiente. Sabendo que o CPI de base é 1, indique a alteração que leva à maior redução do CPI efetivo.

- A. Baixar a taxa de instruções *load/store* de 50 % para 20 %.
- B. Baixar o tempo de acesso à memória externa de 100 ns para 80 ns.
- C. Baixar a taxa de faltas de $15\,\%$ para $10\,\%$.
- D. Nenhuma das outras alterações indicadas reduz o CPI efetivo.

2 Problemas de resposta aberta

Nota: Justificar todas as respostas e apresentar todos os cálculos.

- 1. O fragmento de código ARMv8 abaixo aplica a sub-rotina calc aos elementos de uma sequência de "double words" e acumula os resultados das invocações em X21. O endereço-base da sequência está inicialmente em X19 e o número de elementos em X20.
 - (a) Completar o fragmento.

```
mov
                X21, ____
                                // terminar ciclo
ciclo:
        cbz
                X20, L1
                XO, [X19]
        ldur
                                 // invocar sub-rotina
                calc
        add
                X21, X21, ____ // usar o resultado
        add
                X19, X19, ____
                X20, X20, ____
        add
                ciclo
L1:
                // fim da execução do fragmento
calc:
               X1, X1, ____
                                // inicializar X1 com zero
        eor
LC1:
                                 // terminar?
        cbz
               XO,
               X2, X0, 1
        and
        add
               X1, X1, X2
               XO, XO, 1
        lsr
               LC1
LC2:
               XO, ____
        mov
                                 // fim da sub-rotina
        ret
```

- ► Considerar que a sequência processada tem 3 valores: {170, 42, 450}.
- (b) Determinar o número de instruções executadas pela sub-rotina calc quando é chamada pela primeira vez.
 - Assumindo que as instruções de alteração do fluxo de execução (condicional ou incondicional) têm CPI=2 e todas as outras têm CPI=1, determinar também o valor de CPI médio para este fragmento ao processar a sequência indicada. Mostrar todos os cálculos.
- (c) Considerar agora o funcionamento da sub-rotina calc quando recebe argumentos de valor 2^k (k inteiro, $0 \le k \le 63$). Explicar o valor do resultado da sub-rotina e determinar o número de instruções executadas (em função de k).

- 2. A sub-rotina substitui procura a primeira ocorrência de um número N numa sequência de "double words", substituindo esse número por 0 (zero). Os parâmetros da sub-rotina são, por ordem, os seguintes:1) endereço-base da sequência; 2) número de elementos da sequência; 3) valor de N.
 - (a) Completar o código da sub-rotina tendo em atenção as convenções relacionadas com o uso de registos.

```
, final
                                  // terminar?
substitui:
           cbz
                 X5, [X0]
                                  // obter um valor da sequência
           ldur
                  , X5
                                 // é o valor procurado?
           cmp
                  LS1
                 XO, ____, 8
           add
                                  // preparar próxima iteração
                 X1, X1, ____
           sub
                 substitui
                 ____, [XO]
                             // substituir valor na sequência
L1:
           stur
                                  // retornar
final:
           ret
```

- (b) Supondo que a sequência é {12, 56, 17, 21, 72, 7} e que N=21, determinar quantas instruções são executadas pela sub-rotina substitui.
- (c) Suponha que o programa a que pertence a sub-rotina anterior é executado em dois computadores A e B. O período do sinal do relógio dos computadores A e B é 300 ps e 400 ps respetivamente. O número de ciclos de relógio consumidos por instrução (CPI) é 4 no computador A e 2,5 no computador B. Determinar qual dos computadores é o mais rápido a executar o programa.
- 3. A sub-rotina sumsel retorna a soma dos elementos de uma sequência (de N "double words") que pertencem ao intervalo [a; b].Os parâmetros da sub-rotina são, por ordem, os seguintes: 1) endereço-base da sequência; 2) número de elementos da sequência; 3) valor de a; 4) valor de b.
 - (a) Completar a sub-rotina tendo em atenção as convenções relacionadas com o uso de registos.

```
X5, X5, ____
                                     // inicializar acumulador
sumsel:
           eor
                  X1, ____
loop:
                                     // terminar?
           cbz
                  X6, [X0]
           ldur
                  ____, X2
                                  // limite inferior
           cmp
           b.lt
                  cont
                  X6, X3
                                     // limite superior
           cmp
                  cont
                  X5, X5, ____
           add
                  XO, 8
cont:
           add
           add
                  X1, X1,
                 loop
fim:
           mov
                , X5
           ret
```

- (b) Para a sequência {-3, 3, 6, 5, 0, -5, 8, 2, -1} e intervalo [-1; 6], determinar quantas instruções são executadas pela sub-rotina sumsel e qual o resultado.
- (c) O modelo do processador usada para a execução da sub-rotina emprega um sinal de relógio com a frequência de 1 GHz. O tempo de execução da sub-rotina com os dados da alínea (b) é de 170 ns. Determinar o valor médio de ciclos por instrução (CPI).
- 4. Considere o CPU ARMv8 simplificado, apresentado na figura 1, e que o valor em cada registo X_i é i+2. A latência de componentes usados no CPU é a seguinte (componentes não indicados têm latência nula):

I-Mem	Add	Mux	ALU	Regs	D-Mem	Control	ALU control	
400	100	30	130	220	350	80	40	(ps)

(a) Indique o valor dos seguintes sinais de entrada/saída de componentes e sinais de controlo para a execução da instrução CBZ X1, fim:

- (b) Determine o caminho crítico da instrução STUR X7, [X2, #-4] e a respetiva latência.
- (c) Determine a partir de que valor da latência da unidade de controlo o sinal Write data de D-Mem pertence ao caminho crítico da instrução STUR.
- 5. A tabela seguinte apresenta o conteúdo (em hexadecimal) de uma memória *cache* do tipo *write-back* com 8 blocos de 8 bytes usada como *D-cache* num CPU com endereços de 16 bits.

bloco	conteúdo						etiqueta	v	d		
	7	6	5	4	3	2	1	0			
0	aa	СС	de	hf	34	33	11	01	235	1	0
1	bb	ad	45	4f	af	de	21	99	391	1	1
2	СС	34	ab	1f	56	cd	ff	ff	023	1	1
3	dd	67	22	2b	32	56	32	21	198	0	1
4	ee	32	11	9f	aa	ba	ab	bb	311	1	0
5	ff	10	00	04	01	02	03	04	278	0	0
6	11	03	41	32	СС	dd	ee	ff	212	1	1
7	22	01	65	01	05	06	07	80	387	0	1

- (a) Como é decomposto o endereço para acesso à memória cache? Justifique.
- (b) Indique (se possível) o valor (byte) em memória principal no endereço 0xc467. Justifique.
- (c) Explique quais as alterações que ocorrem na *cache* e na memória principal durante a leitura do valor (byte) residente no endereço 0xe48d.
- 6. Um CPU com endereços de 24 bits está equipado com uma memória *cache* de dados do tipo *write-through*. Etiqueta e índice têm, respetivamente, 14 e 6 bits de comprimento.
 - (a) Determinar o número de blocos e o número de bytes por bloco desta memória cache.
 - (b) Considerar a seguinte situação. São realizadas sucessivamente leituras (de uma palavra) das seguintes posições de memória:

0x3B7C94, 0x3B6C90, 0x3B6C98, 0x3B6C94

Quantos blocos são transferidos de memória principal para memória *cache* por causa dos três últimos acessos?

- (c) A memória *cache* é usada num sistema em que a penalidade de faltas é de 80 ciclos. Qual deve ser o valor máximo da taxa de faltas desta *cache* para que o número médio de ciclos de protelamento *no acesso a dados* não exceda 10?
- 7. A tabela seguinte apresenta o conteúdo de uma memória *cache* do tipo *write-through* com 8 blocos de 4 bytes usada como *D-cache* num CPU com endereços de 32 bits.

	Conteúdo				Etiqueta	v
0	aa	ff	СС	33	123456a	0
1	12	34	56	78	7bcd001	1
2	88	b0	3с	2b	7fffd55	1
3	71	ab	3f	6d	7fffd55	1
4	34	ff	13	aa	07f9910	0
5	78	00	9с	23	0000893	1
6	7a	10	9f	a3	2900002	1
7	99	43	65	b4	7f01d12	0

- (a) Como é decomposto o endereço para acesso à memória cache? Justifique.
- (b) Apresente, justificando, o conteúdo da memória *cache* após a execução das seguintes operações (se em algum caso não for possívelconhecer o conteúdo escreva "indeterminado"). Cada registo Rx tem 32 bits.

1:	R1	\leftarrow	0xfafafafa
2:	R4	\leftarrow	R3+R2
3:	R4	\leftarrow	0x0ff32210
4:	R5	\leftarrow	MEM[R4]
5:	R5	\leftarrow	R4-R1
6:	R6	\leftarrow	0xffffaaa8
7:	MEN	1[R	6+4] ← R1

	Conteúdo	Etiqueta	v
0			
1			
2			
3			
4			
5			
6			
7			

8. Um CPU tem endereços de 20 bits e usa uma memória *cache* com 1 palavra/bloco. A memória *cache* do tipo *write-back* usa 6 bits para cada índice e 12 bits para cada etiqueta. Uma parte do conteúdo da memória *cache* está indicada (em hexadecimal) na tabela seguinte:

	conteúdo	etiqueta	v	d
0	12345678	ABC	1	1
1	6548FEAB	123	0	0
2	3C1F56FD	678	1	0
3	AFD12498	567	1	1
4	6198FA34	B7C	1	0
5	1929AAAA	8D1	0	1

- (a) Determinar o número de blocos e o número total de bits usados na memória cache.
- (b) Determinar, se possível, a posição em memória do valor 0x6198FA34.
- (c) Determinar, se possível, qual o valor atualmente armazenado na posição de memória 0x5670C.

Fim.

2019/20