4-2 사각형의 성질 02

점 수

[₩ 단원별 출제 유형 분석, 적중률 100%

학교시험문제 완벽 분석! 학교시험문제와 유형도 똑같다! 적중률 100%를 자랑하는 내신코치 단위 적중 문제

1. 다음 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD 에서 $\angle B = 50$ 이고 $\overline{AB} + \overline{AD} = \overline{BC}$ 일 때, $\angle D$ 의 크기는?

- ① 110°
- ② 115°
- ③ 120°

- **4** 125 °
- (5) 130°

2. 아래 그림과 같은 직사각형 ABCD에서 두 대각 선의 교점이 O이고, \angle ADB= 30° 일 때, $\angle x+\angle y$ 의 크기는?

- ① 112°
- ② 114°
- ③ 116°

- 4 118°
- ⑤ 120°

3. 다음 성질을 모두 만족시키는 사각형을 모두 말하시오.

<조건>

- (개) 두 대각선이 서로 다른 것을 이등분한다.
- (나) 두 대각선의 길이가 같다.

4. 아래 그림과 같은 등변사다리꼴 ABCD에서 $\overline{AB} = \overline{AD} = \overline{DC}$, $\angle ACB = 38^{\circ}$ 일 때, $\angle BAC$ 의 크기는?

- $\bigcirc 60^{\circ}$
- ② 62°
- 364°

- **4** 66°
- © 68°

5. 아래 그림과 같은 평행사변형 ABCD에서 $\overline{AD} = 18 \, \mathrm{cm}, \ \overline{CD} = 15 \, \mathrm{cm}, \ \overline{CE} = 3 \, \mathrm{cm}$ 일 때, \overline{BF} 의 길이는?

- ① 13cm
- ② 14 cm
- ③ 15 cm

- 4 16 cm
- ⑤ 17 cm

6. □ABCD에서 두 대각선의 교점을 ○라 할 때, 다음 중 평행사변형이 아닌 것은?

- ① $\angle A = 75^{\circ}$, $\angle B = 105^{\circ}$, $\angle C = 75^{\circ}$, $\angle D = 105^{\circ}$
- ② $\angle A = 70^{\circ}$, $\angle B = 110^{\circ}$, $\overline{AB} = 5 \text{ cm}$, $\overline{CD} = 5 \text{ cm}$
- $\overline{AB} = 5 \text{ cm}, \overline{BC} = 7 \text{ cm}, \overline{CD} = 5 \text{ cm},$ $\overline{DA} = 7 \text{ cm}$
- ① $\overline{OA} = 4 \text{ cm}$, $\overline{OB} = 3 \text{ cm}$, $\overline{OC} = 4 \text{ cm}$, $\overline{OD} = 3 \text{ cm}$
- ⑤ $\angle A = 50^{\circ}$, $\angle C = 50^{\circ}$, $\angle ABD = 65^{\circ}$, $\angle CBD = 65^{\circ}$

7. 아래 그림에서 마름모 ABCD의 각 변의 중점을 E, F, G, H라 할 때, 다음 □EFGH에 대한 설명 중 옳은 것을 모두 고르면? (정답 2개)

- ① 네 변의 길이가 같다.
- ② 네 각의 크기가 모두 같다.
- ③ 두 대각선이 직교한다.
- ④ 두 대각선의 길이가 같다.
- ⑤ 이웃하는 두 변의 길이가 같다.
- **8.** 다음 그림에서 $\overline{AD}//\overline{EC}$, $\angle ABD = 90$ °이고 $\overline{AB} = 6$ cm, $\overline{DC} = 10$ cm일 때, $\triangle EAD$ 의 넓이를 구하시오.

9. 다음 그림의 평행사변형 ABCD의 대각선 BD에 평행한 직선을 그어 변 BC, CD와의 교점을 각각 E, F라 하자. \triangle ABE = 8 cm²일 때, \triangle DAF의 넓이를 구하시오.

10. 아래 그림과 같은 평행사변형 ABCD에서 ∠A: ∠B=5:4일 때, 다음을 구하시오.

- (1) ∠C의 크기
- (2) ∠ D의 크기
- **11.** 아래 그림과 같은 평행사변형 ABCD에서 \angle D의 이등분선과 \overline{BC} 의 교점을 E라 하고, 점 A에서 \overline{DE} 위에 내린 수선의 발을 F라 하자. \angle B = 56° 일 때, \angle BAF의 크기를 구하시오.

12. 아래 그림과 같이 $\overline{AB}=8$, $\overline{AD}=11$ 인 평행사 변형 ABCD에서 ∠A의 이등분선과 \overline{BC} 의 교점을 F라 하고, ∠D의 이등분선과 \overline{BC} 의 교점을 E라 할 때, \overline{BF} , \overline{CE} 의 길이를 구하시오.

13. 아래 그림과 같이 $\overline{AD}//\overline{BC}$ 인 등변사다리꼴 $\overline{AB}=6$ cm이고 $\overline{AB}=120$ °일 때, 다음 물음에 답하시오.

- (1) ∠B와 ∠C의 크기를 각각 구하시오.
- (2) BC의 길이를 구하시오.
- **14.** 아래 그림에서 $\overline{AC}//\overline{DE}$ 이고 \triangle $ABC = 12 \text{ cm}^2$ 일 때, $\square ABCD$ 의 넓이를 구하시 오.

15. 다음 그림과 같은 평행사변형 ABCD에서 두 대각선의 교점은 O이고, 대각선 AC 위의 한 점 P에 대하여 BP = DP이다. OA = 8 cm, OB = 10 cm일 때, □ ABCD의 넓이를 구하시오.

16. 아래 그림과 같이 직사각형 ABCD에서

 $\overline{AD}=10$ cm, $\overline{AB}=5$ cm, $\overline{ED}=4$ cm이고, 대각 선 AC의 수직이등분선이 두 변 AD, BC와 만나 는 점을 각각 E, F라 할 때, 다음 물음에 답하시 오.

- (1) □ AFCE는 어떤 사각형인지 말하시오.
- (2) □ AFCE의 둘레의 길이를 구하시오.

17. 아래 그림은 한 변의 길이가 8 cm인 두 정사 각형 ABCD와 OEFG를 서로 겹쳐 놓은 것이다. 점 O가 □ABCD의 대각선의 교점일 때, 다음 물 음에 답하시오.

- (1) △OCQ와 합동인 삼각형을 찾으시오.
- (2) 두 정사각형의 겹쳐진 부분인 □OPCQ의 넓이 를 구하시오.

18. 다음 그림과 같은 평행사변형 ABCD의 네 내 각의 이등분선에 의하여 만들어지는 사각형 $\overline{EG}=7~\mathrm{cm}$ 일 때, \overline{HF} 의 길이를 구하시오.

19. 다음 그림의 직사각형 ABCD에서 $\overline{AO} = \overline{OC}$, $\overline{AC} \perp \overline{EF}$, $\overline{BC} = 8$, $\overline{ED} = 2$ 일 때, \overline{EC} 의 길이를 구하시오.

20. $\overline{AD}//\overline{BC}$ 이고 $\angle B = \angle C$ 인 사다리꼴 ABCD에서 $\angle D = 2\angle B + 30$ 일 때, $\angle B$ 와 $\angle D$ 의 크기를 구하시오.

1) ②

오른쪽 그림과 같이 점 A를 지나고 \overline{DC} 에 평행한 직선을 그어 \overline{BC} 와의 교점을 E라 하면

 $\overline{BE} + \overline{EC} = \overline{BC}, \overline{AD} = \overline{EC}$ 이므로 $\overline{AB} = \overline{BE}$

∴
$$\angle AEB = \frac{1}{2} \times (180 \degree - 50 \degree) = 65 \degree$$

 $\angle AEC = 180 \degree - 65 \degree = 115 \degree 0 | □ = 2$
 $\angle D = 115 \degree$

2) ⑤

 $\triangle AOD$ 에서 $\angle OAD = \angle ODA = 30^{\circ}$

$$\therefore \angle y = \angle OAD + \angle ODA = 60^{\circ}$$

$$\angle DBC = \angle ADB = 30^{\circ}$$

$$\therefore \angle x = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

$$\therefore \angle x + \angle y = 120^{\circ}$$

3) 직사각형, 정사각형

- (개) 평행사변형, 직사각형, 마름모, 정사각형
- (내) 등변사다리꼴, 직사각형, 정사각형 따라서 (개), (내)를 모두 만족시키는 사각형은 직사각 형, 정사각형이다.

4) (4)

 \angle DAC = \angle DCA = \angle ACB = 38 $^{\circ}$

$$\angle\,\mathbf{A} = 180^\circ - 76^\circ = 104^\circ$$

$$\therefore \angle BAC = \angle A - \angle DAC = 104^{\circ} - 38^{\circ} = 66^{\circ}$$

5) ③

 $\triangle DAE$, $\triangle CFE$ 는 이등변삼각형이므로

$$\overline{\text{CF}} = 3 \text{ (cm)}$$
 $\therefore \overline{\text{BF}} = 18 - 3 = 15 \text{ (cm)}$

6) ②

7) ②, ④

 $\triangle AEH \equiv \triangle CGF$ (SAS 합동).

△BEF = △DGH (SAS 합동)이므로

 \angle A + 2 \angle AEH = 180 $^{\circ}$, \angle B + 2 \angle BEF = 180 $^{\circ}$ O| \Box

 \angle AEH + \angle BEF = 90 ° \therefore \angle FEH = 90 ° 마찬가지로 \angle EFG = \angle FGH = \angle GHE = 90° 따라서 \square EFGH는 직사각형이다.

8) 30 cm²

AD//BC이므로

$$\triangle EAD = \triangle CAD = \frac{1}{2} \times 10 \times 6 = 30 \text{ (cm}^2)$$

9) 8 cm²

다음 그림과 같이 점 D와 E, B와 F를 이으면

 $\overline{AD}//\overline{BC}$ 이므로 $\triangle ABE = \triangle DBE$

 $\overline{BD}//\overline{EF}$ 이므로 $\triangle DBE = \triangle DBF$

 $\overline{AB}//\overline{DC}$ 이므로 $\triangle DBF = \triangle DAF$

 $\therefore \triangle DAF = \triangle DBF = \triangle DBE = \triangle ABE$ $= 8(cm^2)$

10) (1) 100 ° (2) 80 °

(1) $\angle A = 5x$, $\angle B = 4x$ 라 하면

 $5x + 4x = 180^{\circ}$ 에서 $x = 20^{\circ}$

$$\therefore$$
 $\angle A = 5x = 100^{\circ}$

$$\therefore$$
 $\angle C = \angle A = 100^{\circ}$

(2) \angle B= 4x = 80 ° 0 | □ \blacksquare

$$\angle D = \angle B = 80^{\circ}$$

11) 62°

□ABCD가 평형사변형이므로

$$\angle$$
 CDA = \angle B = 56 $^{\circ}$, \angle DAB = 180 $^{\circ}$ - 56 $^{\circ}$ = 124 $^{\circ}$

$$\therefore \angle ADF = \frac{1}{2} \angle CDA = 28^{\circ}$$

△AFD에서

 $\angle DAF = 180^{\circ} - (\angle AFD + \angle ADF)$

$$=180^{\circ} - (90^{\circ} + 28^{\circ}) = 62^{\circ}$$

$$\therefore \angle BAF = \angle DAB - \angle DAF$$

$$=124\degree - 62\degree = 62\degree$$

12) $\overline{BF} = 8$. $\overline{CE} = 8$

 $\overline{AD}//\overline{BC}$ 이므로 $\angle DAF = \angle BFA$ (엇각)

- $\therefore \angle BAF = \angle BFA$
- $\therefore \overline{BF} = \overline{AB} = 8$

또한, ∠ADE = ∠CED (엇각)

- $\therefore \angle CDE = \angle CED$
- $\therefore \overline{CE} = \overline{CD} = 8$
- **13)** (1) $\angle B = 60^{\circ}$, $\angle C = 60^{\circ}$ (2) 15 cm
- (1) $\angle B = 180^{\circ} \angle A = 180^{\circ} 120^{\circ} = 60^{\circ}$

□ABCD가 등변사다리꼴이므로

$$\angle C = \angle B = 60^{\circ}$$

(2) 다음 그림과 같이 점 D를 지나고 \overline{AB} 에 평행한 직선을 그으면

 $\angle ABE = \angle DEC = 60^{\circ}$

이고

$$\angle EDC = 180^{\circ} - (60^{\circ} + 60^{\circ}) = 60^{\circ}$$

따라서 △DEC는 정삼각형이므로

$$\overline{EC} = \overline{CD} = \overline{DE} = 6$$
 (cm)

또한, $\square ABED$ 는 $\overline{AD}//\overline{BE}$, $\overline{AB}//\overline{DE}$ 이므로 평행 사변형이다.

- $\therefore \overline{BE} = \overline{AD} = 9(cm)$
- $\therefore \overline{BC} = \overline{BE} + \overline{EC} = 9 + 6 = 15 \text{ (cm)}$

14) 18 cm²

 $\overline{AC}//\overline{DE}$ 이므로 밑변을 \overline{AC} 로 하는 ΔADC 와 ΔAEC 는 넓이가 서로 같다.

- $\therefore \Box ABCD = \triangle ABC + \triangle ADC$
- $= \triangle ABC + \triangle AEC = \triangle ABE$

 $\triangle ABC = \frac{1}{2} \times \overline{AB} \times 6 = 120$

 $\overline{AB} = 4(cm)$

 $\therefore \Box ABCD = \Delta ABE = \frac{1}{2} \times (\overline{BC} + \overline{CE}) \times \overline{AB}$ $= \frac{1}{2} \times 9 \times 4 = 18(\text{cm}^2)$

15) 160 cm²

△OBP와 △ODP에서

OB = OD (∵ □ABCD가 평행사변형),

BP = DP, OP는 공통

 \therefore \triangle OBP \equiv \triangle ODP (SSS 합동)

따라서 \angle BOP = \angle DOP = 90 $^{\circ}$ 이다. 즉, 대각선이 서로 다른 것을 수직이등분하므로

□ABCD는 마름모이다.

 $\therefore \Box ABCD = 4 \times \triangle ABO = 4 \times \left(\frac{1}{2} \times 10 \times 8\right)$

 $= 160 (cm^2)$

16) (1) 마름모 (2) 24 cm

(1) $\triangle AOE = \triangle COF$ (ASA 합동)이므로

 $\overline{OE} = \overline{OF}$

따라서 두 대각선이 서로 다른 것을 수직이등분하므로 □AFCE는 마름모이다.

- (2) $\overline{AE} = \overline{AD} \overline{ED} = 10 4 = 6 \text{ (cm)}$
- ∴ (□AFCE의 둘레의 길이)
- $=4\times\overline{AE}=24$ (cm)

17) (1) \triangle OBP (2) 16 cm²

(1) \triangle OCQ와 \triangle OBP에서 $\overline{OC} = \overline{OB}$,

 $\angle OCQ = \angle OBQ, \ \angle COQ = \angle BOQ$

- ∴ △OCQ ≡ △OBP (ASA 합동)
- (2) \triangle OCQ \equiv \triangle OBP이므로 \triangle OCQ = \triangle OBP
- $\therefore \Box OPCQ = \triangle OPC + \triangle OCQ$
- $= \Delta OPC + \Delta OBP$
- $= \triangle OBC = \frac{1}{4} \square ABCD$

$$= \frac{1}{4} \times 8 \times 8 = 16 (\text{cm}^2)$$

18) 7 cm

 $\angle A + \angle B = 180^{\circ}$

△ABE에서

 $\angle EAB + \angle EBA = \frac{1}{2}(\angle A + \angle B) = 90^{\circ}$

 $\therefore \angle AEB = \angle HEF = 90^{\circ}$

마찬가지로

 \angle EHG = \angle EFG = \angle FGH = 90 $^{\circ}$

따라서 $\square EFGH$ 는 직사각형이므로 두 대각선의 길이가 같다. $\therefore \overline{HF} = \overline{EG} = 7 \text{ (cm)}$

19) 6

△AOE와 △COF에서

 $\overline{AO} = \overline{CO}, \ \angle AOE = \angle COF$

∠EAO = ∠FCO (엇각)

- ∴ △AOE = △COF (ASA 합동)
- $\therefore \overline{EO} = \overline{FO}$

두 대각선이 서로 다른 것을 수직이등분하므로 □ AFCE는 마름모이다.

 $\therefore \overline{AF} = \overline{FC} = \overline{CE} = \overline{EA} = 8 - 2 = 6$

20) \angle B = 50 $^{\circ}$, \angle D = 130 $^{\circ}$

$$\angle$$
B = \angle C = \angle a라 하면

□ABCD는 등변사다리꼴

이므로

$$\angle$$
 D + \angle C = 180 $^{\circ}$, 2 \angle a + 30 $^{\circ}$ + \angle a = 180 $^{\circ}$

- \therefore $\angle a = 50^{\circ}$
- $\therefore \angle B = 50^{\circ}$
- \therefore $\angle D = 2 \angle a + 30^{\circ} = 2 \times 50^{\circ} + 30^{\circ} = 130^{\circ}$