Multimodal Interaction Lab **EE4R Automatic Spoken Language Processing** **Types of HMM **BIRMINGHAM** **B

Objectives

- To understand the differences between types of HMM
- Notes: pp 38-43

Multimodal Interaction Lab

Discrete HMMs

 If VQ is used, then a state output PDF b_i is defined by a list of probabilities-

 $b_{i}(m) = \text{Prob}(y_{t} = z_{m} \mid x_{t} = s_{i})$

- The resulting HMM is a **discrete HMM**
- Common in mid-1980/ early-1990s
- Computational advantages
- Disadvantages
 - VQ may introduce non-recoverable errors
 - Choice of metric *d* for VQ?
- Outperformed by Continuous HMM

Continuous HMMs

- Without VQ, b_i(y) must be defined for any y in the (continuous) observation set S
- Hence discrete state output PDFs no longer viable
- Use parametric continuous state output PDFs Continuous HMMs
- Choice of PDF restricted by mathematical tractability and computational usefulness (see "HMM training & recognition" later)
- Most people begin with Gaussian PDFs
- Resulting HMMs called Gaussian HMMs

EE4R Automatic Spoken Language Processing

Gaussian HMMs

• State output PDFs are multivariate Gaussian

$$b_i(y) = \frac{1}{\sqrt{(2\pi)^d |C_i|}} \exp\left\{-\frac{1}{2} (y - m_i)' C_i^{-1} (y - m_i)\right\}$$

*m*_i and *C*_i are the mean vector and covariance matrix which define *b*_i

Multimodal Interaction Lab

Gaussian HMMs - Issues

- Significant computational savings if covariance matrix can be assumed to be diagonal
- In general, Gaussian PDFs are not flexible enough to model speech pattern variability accurately
 - In many applications (e.g. modelling speech from multiple speakers) a unimodal PDF is inadequate
 - Even if unimodal PDF is basically OK there may be more subtle inadequacies

EE4R Automatic Spoken Language Processing

Gaussian Mixture Densities Example - 2 component Gaussian mixture $\begin{array}{c} 0.146 \\ 0.135 \\ 0.125 \\ 0.025 \\ 0.$

EE4R Automatic Spoken Language Processing

Gaussian Mixture HMMs

- Any PDF can be approximated arbitrarily closely by a Gaussian mixture PDF with sufficient components
- But...
 - More mixture components require more data for robust model parameter estimation
 - Parameter smoothing and sharing needed (e.g. 'tied mixtures', 'grand variance',...)
- Gaussian mixture HMMs widely used in systems in research laboratories.

Relationship with Neural Networks

- 'Classical' HMM training methods focus on fitting state output PDFs to data (modelling), rather than minimizing overlap between PDFs (discrimination).
- NNs are good at discrimination
- **But** NNs poor at coping with time-varying data
- Research interest in 'hybrid' systems which use NNs to relate the observations to the states of the underlying Markov model.

EE4R Automatic Spoken Language Processing

Summary

- Types of HMM
- Discrete HMMs
- Continuous HMMs
- Gaussian HMMs
- Gaussian Mixture HMMs

Multimodal Interaction Lab

