STAT 500 Homework 1

Vu Thi-Hong-Ha; NetID: 851924086

August 28, 2020

1 Question 1

Experiment I:

- Experimental units: Pots of one-week-old seedlings.
- Observation units: The fresh weight of each seedling.
- Treatment: Low or high nitrogen treatment.
- Response variables: Biomass.
- Replication: yes. Six pots for each genotype; for each genotype, three pots for different treatments.
- Blocking: no. Treatment is done within genotypes, but genotypes are a factor of interest.
- Randomization: yes. For each genotype, the researchers randomly assigned three pots to a nitrogen level.

Experiment II:

- Experimental units: Introductory business statistics 226 classes.
- Observation units: Final exam scores.
- Treatment: Using clickers to respond to questions or not.
- Response variables: Student learning.
- Replication: no. There is only one class subjected to each treatment.
- Blocking: no. There is no grouping of similar experimental units other than using clickers and not using clickers (i.e. treatment and untreatment).
- Randomization: yes. The professor tossed a coin to choose the class to use clickers. Other sources of bias are reduced (same books, same assignments, same exams).

2 Question 2

Design 1:

- Experimental units: farms.
- Observation units: the ribeye area of steers in the farms at slaughter.
- Treatment: 5 different diets.
- Replication: no. There is only one farm subjected to each diet.
- Blocking: no.
- Randomization: yes.

Design 2:

- Experimental units: steers.
- Observation units: the ribeye area of steers in the farms at slaughter.
- Treatment: 5 different diets.
- Replication: yes. There are five steers subjected to each diet.
- Blocking: yes. Farms can be a blocking factor. This is also a balanced design where the number of replicates in each treatment is equal.
- Randomization: yes.

Therefore, design 2 is better.

3 Question 3

- (a) This study is an experiment because the patients are subjected to treatment or not, then the effects of treatment are observed.
- (b)
- Experimental units: patients.

- Response variable: surviving time.
- Observation unit: the time each patient survive in three years following the second treatment.
- Replication: yes. There are 57 patients being treated the second time, and 43 patients not being treated.
- Blocking: no.
- Blinding: no. Patients are asked if they agree to be treated the second time, so they know that they are being treated or not.
- Control of extraneous variation: yes. Every patient is treated with the highest current standard of care, so the variation between patients' conditions might be minimized.
- The study compares treatment group with an untreatment group (control group).
- However, the conclusion from this study might not be used to generalize for every population because the sample is not random (only limited to recruited patients). The conclusions can be used to infer causal relationship related to the treatment.

4 Question 4

(a)

Statistics	Variety A	Variety B
Q1	142	132
Q3	156	145
IQR	14	13
Median	149	137
Sample Mean	149	137.7778
Sample Std. Dev.	9.22910996	9.13658

(b)

Box plot of Yield for each Variety

(c) From (a) and (b), we can see that there is some variation but not much between individuals in each variety, which is expected. There is no extreme value or outlier in both of the varieties. The yield of plants in variety A tend to be higher, but this needs to be tested. The variety A seems to be symmetric (median = mean), and the variety B

is slightly right skewed.

(d)

Null hypothesis: The difference between mean yield of the two variety is 0.

Alternative hypothesis: The difference between mean yield of the two variety is not 0.

Observed test statistics: 11.2222.

By doing permutation 10000 times, we get the differences that look like this:

Differences in Mean's for the First 20 Permutation's

diff	mean2	n2	mean1	n1	_sample_	Obs
3.00000	141.889	18	144.889	18	1	1
-0.44444	143.611	18	143.167	18	2	2
2.88889	141.944	18	144.833	18	3	3
-4.88889	145.833	18	140.944	18	4	4
4.77778	141.000	18	145.778	18	5	5
-2.11111	144.444	18	142.333	18	6	6
1.77778	142.500	18	144.278	18	7	7
1.00000	142.889	18	143.889	18	8	8
1.00000	142.889	18	143.889	18	9	9
1.88889	142.444	18	144.333	18	10	10
-1.88889	144.333	18	142.444	18	11	11
-1.00000	143.889	18	142.889	18	12	12
-4.66667	145.722	18	141.058	18	13	13
-2.11111	144.444	18	142.333	18	14	14
0.77778	143.000	18	143.778	18	15	15
0.77778	143.000	18	143.778	18	16	16
-3.77778	145.278	18	141.500	18	17	17
-0.11111	143.444	18	143.333	18	18	18
5.44444	140.667	18	146.111	18	19	19
3.66867	141.556	18	145.222	18	20	20

Out of 10000 differences obtained by permutation, there are 8 differences that are more extreme than the observed difference:

Differences as Extreme as the Observed Difference (11.2222)

Obs	_sample_	n1	mean1	n2	mean2	diff
1	799	18	137.722	18	149.056	-11.3333
2	1628	18	149.667	18	137.111	12.5556
3	2627	18	149.056	18	137.722	11.3333
4	3939	18	137.167	18	149.611	-12.4444
5	4766	18	137.389	18	149.389	-12.0000
6	8787	18	149.000	18	137.778	11.2222
7	9441	18	137.667	18	149.111	-11.4444
8	9579	18	137.667	18	149.111	-11.4444

Hence, the approximate p-value is $\frac{8}{10000} = 0.0008$. Therefore, we reject the null hypothesis at the significance level of 0.05.

In conclusion, the two varieties do not produce equal yields. If we carry out one tail t-test, we can also see that

Question 5 **5**

- (a) The observed sample mean difference is $\left|\frac{4.8+5.2+5.0}{3}-\frac{7.7+8.2+8.1}{3}\right|=3$ (b) The number of ways to assign treatment label is $\frac{6!}{3!\times 3!}=20$.
- (c) Permuted dataset:

` /											
Al	l Permuta	tion	S	22	8	7.7	8.2				
				23	8	4.8	8.1				
Obs	_sample_	у1	y2	24	8	5.2	5.0				
1	1	8.2	5.0	25	9	5.2	5.0				
2	1	5.2	7.7	26	9	4.8	8.1				
3	1	8.1	4.8	27	9	8.2	7.7				
4	2	8.1	5.0	28	10	8.1	7.7				
5	2	4.8	7.7	29	10	8.2	5.0				
6	2	5.2	8.2	30	10	4.8	5.2				
7	3	5.0	7.7	31	11	7.7	8.2	46	16	4.8	8.2
8	3	8.2	4.8	32	11	4.8	8.1	47	16	8.1	5.2
9	3	5.2	8.1	33	11	5.0	5.2	48	16	7.7	5.0
10	4	7.7	8.1	34	12	5.2	8.1	49	17	8.2	5.2
11	4	5.2	4.8	35	12	8.2	4.8	50	17	8.1	5.0
12	4	5.0	8.2	36	12	7.7	5.0	51	17	7.7	4.8
13	5	5.2	8.2	37	13	7.7	8.2	52	18	8.2	7.7
14	5	8.1	5.0	38	13	8.1	5.2	53	18	8.1	5.2
15	5	7.7	4.8	39	13	5.0	4.8	54	18	5.0	4.8
16	6	4.8	8.2	40	14	4.8	8.2	55	19	7.7	4.8
17		5.0	5.2	41		8.1	5.2	56	19	8.1	5.0
18		7.7	8.1	42		7.7	5.0	57	19	5.2	8.2
19		5.0	8.1	43		4.8	7.7	58	20	5.2	5.0
20		5.2		44		5.2		59	20	8.2	8.1
21	7		8.2	45		8.1		60	20	4.8	7.7

Difference between samples:

Differences in Means for the all Permutations

diff	mean2	n2	mean1	n1	_sample_	Obs
1.33333	5.83333	3	7.16667	3	1	1
-0.93333	6.96667	3	6.03333	3	2	2
-0.73333	6.88887	3	6.13333	3	3	3
-1.06667	7.03333	3	5.96667	3	4	4
1.00000	6.00000	3	7.00000	3	5	5
-1.33333	7.16667	3	5.83333	3	6	6
-3.00000	8.00000	3	5.00000	3	7	7
-1.20000	7.10000	3	5.90000	3	8	8
-0.86667	6.93333	3	6.06667	3	9	9
1.06667	5.96667	3	7.03333	3	10	10
-1.33333	7.16667	3	5.83333	3	11	11
1.06667	5.96667	3	7.03333	3	12	12
0.86667	6.08887	3	6.93333	3	13	13
0.73333	6.13333	3	6.86667	3	14	14
-0.93333	6.96667	3	6.03333	3	15	15
0.73333	6.13333	3	6.86667	3	16	16
3.00000	5.00000	3	8.00000	3	17	17
1.20000	5.90000	3	7.10000	3	18	18
1.00000	6.00000	3	7.00000	3	19	19
-0.86667	6.93333	3	6.06667	3	20	20

(d) There are two values of difference that are as extreme as the observed value. So p-value = $\frac{2}{20}$ = 0.1. Hence, we fail to reject the null that the mean difference is 0 at the significance level of 0.05.

6 Question 6

(a)
$$2E(2Y_1+3)=2(2E(Y_1)+3)=2(2\mu_1+3)=4\mu_1+6$$

$$E(Y_1+Y_2+Y_3)=\mu_1+\mu_2+\mu_3$$
(b)
$$E(c)=c$$

$$Var(c)=0$$
(c)
$$Var(Y_1-Y_2)=E[(Y_1-Y_2)^2]-(E[Y_1-Y_2])^2=E(Y_1^2)-2E(Y_1Y_2)+E(Y_2^2)-E(Y_1)^2+2E(Y_1)E(Y_2)-E(Y_2)^2=Var(Y_1)+Var(Y_2)-2(E(Y_1Y_2)-E(Y_1)E(Y_2))$$

$$Y_1\text{ and }Y_2\text{ are independent, so }E(Y_1Y_2)=E(Y_1)E(Y_2). \text{ Then }Var(Y_1-Y_2)=Var(Y_1)+Var(Y_2)=2\sigma^2$$

$$Var(\frac{Y_1+Y_2}{2})=\frac{1}{4}Var(Y_1+Y_2)=\frac{1}{4}\times2\sigma^2=\frac{\sigma^2}{2}$$
(d)
$$Var(\sum_{i=1}^n Y_i)=E[(\sum_{i=1}^n Y_i)^2]-(E[\sum_{i=1}^n Y_i])^2$$

$$E[(\sum_{i=1}^n Y_i)^2]=E[\sum_{i=1}^n \sum_{j=1}^n Y_iY_j]=\sum_{i=1}^n \sum_{j=1}^n E[Y_iY_j]$$

$$(E[\sum_{i=1}^n Y_i])^2=(\sum_{i=1}^n E[Y_i])^2=\sum_{i=1}^n \sum_{j=1}^n E[Y_i]E[Y_j]$$

$$Var(\sum_{i=1}^n Y_i)=\sum_{i=1}^n \sum_{j=1}^n E[Y_iY_j]-\sum_{i=1}^n \sum_{j=1}^n E[Y_i]E[Y_j]=\sum_{i=1}^n \sum_{j=1}^n cov(Y_i,Y_j)=\sum_{i=1}^n cov(Y_i,Y_i)=\sum_{i=1}^n Var(Y_i)=n\times\sigma^2$$

(for
$$Y_i$$
 independent for all pairs $i \neq j$)
$$Var(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n^2}Var(\sum_{i=1}^{n}Y_i) = \frac{\sigma^2}{n}$$