Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. M. Maurer

Prof. Dr.-Ing. W. Schumacher Prof. em. Dr.-Ing. W. Leonhard

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3836

Klausu	ıraufgaben	Gru	Grundlagen der Elektrotechnik			26.08.2010
Name:			Vorname:			
MatrNr.:			Studiengang:			
E-N	Mail (optional): _					
1:	2:	3:	4:	5:	6:	7:
	ID:		Summe:		Note	:

Alle Lösungen müssen nachvollziehbar bzw. begründet sein.

Für **jede Aufgabe** ein **neues Blatt** verwenden.

Keine Rückseiten beschreiben.

Keine Blei- oder Rotstifte verwenden.

Lösungen auf Aufgabenblättern werden nicht gewertet.

Zugelassene Hilfsmittel:

• Handschriftliche Formelsammlung, zwei Seiten DIN-A4, doppelseitig beschrieben.

Einverständniserklärung

Ich erkläre mich einverstanden, dass meine Note mit Matrikelnummer im Institut für Regelungstechnik ausgehängt wird.

Datum, Unterschrift

1 Gleichstromnetzwerk

Gegeben sei obiges Gleichstromnetzwerk mit 4 Widerständen, einer Strom- und einer Spannungsquelle. Mit Hilfe des Superpositionsverfahrens soll dieses Netzwerk analysiert werden.

- a) Bestimmen Sie mit Hilfe des Superpositionsverfahrens die Spannung U_{R3} am Widerstand R_3 . Verwenden Sie **nicht** das Maschenstromverfahren. (8 Punkte) Hinweis: Nutzen Sie wenn möglich den Spannungsteiler.
- b) Bestimmen Sie bezüglich der Klemmen A und B den Innenwiderstand R_i des Netzwerkes. (3 Punkte)
- c) Skizzieren Sie die Ersatzspannungsquelle bezüglich der Klemmen A und B und bestimmen Sie die Quellspannung U_{ers} sowie den Innenwiderstand der Ersatzspannungsquelle R_i^* . (3 Punkte)
- d) Wie groß ist der Kurzschlussstrom I_k der Ersatzspannungsquelle? Geben Sie I_k als Funktion der Widerstände R_1 , R_2 , R_3 , R_4 und der Quellen U_0 und I_1 an. (2 Punkte)

Gegeben sei: $R_1 = R_2 = R_3 = R_4 = R$

e) Der Kurzschlussstrom I_k soll gleich dem Quellenstrom I_1 sein. Welchen Wert muss $U_0 = f(I_1)$ annehmen? (2 Punkte)

- f) Gegeben sei eine Ersatzstromquelle mit dem Quellenstrom I_{ers} und dem Innenwiderstand R_i' . Die Ersatzquelle sei mit R_L belastet.
 - $\bullet\,$ Skizzieren Sie die Schaltung inklusive des Laststroms $I_L.$
 - Wie lässt sich das Verhältnis von Laststrom zu Quellenstrom $(\frac{I_L}{I_{ers}})$ als Funktion des Widerstandsverhältnisses $\frac{R_L}{R_i'}$ darstellen?
 - Skizzieren Sie zudem den Funktionsverlauf und markieren Sie die charakteristischen Punkte für den Leerlauf- und Kurzschlussfall.

(5 Punkte)

2 Gleichstromnetzwerk

Mit Hilfe des Maschenstromverfahrens soll im gegebenen Gleichstromnetzerk der Strom I_3 durch den Widerstand R_3 berechnet werden. Das Netzwerk besteht aus 7 Widerständen R_1 bis R_7 , der idealen Gleichstromquelle I_1 sowie den idealen Gleichspannungsquellen U_2 und U_3 .

- a) Vereinfachen Sie das Netzwerk auf 3 Maschen und stellen Sie die Matrixgleichung $[R] \cdot [I_M] = [U]$ auf. (7 Punkte)
- b) Berechnen Sie den Strom I_3 . Eliminieren Sie alle quadratischen Terme und bringen Sie das Ergebnis in die Form

$$I_3 = \frac{A \cdot I_1 + B \cdot U_2 + C \cdot U_3}{Nenner}$$

(8 Punkte)

c) Verifizieren Sie den Anteil $\frac{A \cdot I_1}{Nenner}$ durch die Betrachtung der Quelle I_1 und der Verwendung des Strom- oder Spannungsteilers im Sinne des Superpositionsprinzips. (4 Punkte)

- d) Was ist "elektrischer Strom"? Erläutern Sie den Begriff des "elektrischen Stroms" auf Teilchenebene. (4 Punkte)
 - Welche Bewegungen treten bei Raumtemperatur auf?
 - Wann spricht man von einem Strom?
 - Wie sieht die Bewegung eines Elektrons im Leiter bei Stromfluss qualitativ aus?

Hinweis: Fertigen Sie ggf. eine Skizze an.

3 Kondensatornetzwerk

Im gegebenen Netzwerk sind zunächst alle Kondensatoren entladen. Der Kondensator C_1 ist über den Schalter S_1 an die Stromquelle I_0 angeschlossen. Der Schalter S_2 bleibt zunächst geöffnet.

Gegeben sind folgende Größen:

$$R_1=10\Omega,\ I_0=100mA,\ C_1=10\mu F,\ C_2=60\mu F,\ C_3=12\mu F$$

- a) Skizzieren Sie qualitativ den Verlauf des Ladestroms $i_1(t)$ sowie den Verlauf der Spannung $u_1(t)$ während des Ladevorgangs. Welchen Wert hat U_1 nach Abschluss des Ladevorgangs? (3 Punkte)
- b) Berechnen Sie die Energie W, die nach Abschluss des Ladevorgangs im Netzwerk gespeichert ist. Welche Ladung Q_1 ist auf C_1 zu finden? (3 Punkte)

 S_1 werde geöffnet, danach S_2 geschlossen. Das Abklingen der Ladevorgänge sei beendet.

- c) Berechnen Sie die Gesamtkapazität des Netzwerks allgemein und zahlenmäßig.
 (3 Punkte)
- d) Geben Sie die Spannungen $U_1^*,\,U_2^*$ und U_3^* allgemein und zahlenmäßig an. (6 Punkte)
- e) Welche Energie W^* ist nun im Netzwerk vorhanden? (1 Punkt)

- f) Wodurch lässt sich die Energiedifferenz zwischen Aufgabenteil e) und b) erklären? (2 Punkte)
- g) Welche Funktion hat R_1 ? Wie groß ist im geladenen Zustand der Strom i_r ? Was wäre, wenn R_1 weggelassen worden wäre? (3 Punkte)

4 Kondensator

Zwischen den festen Elektroden 1 und 2 eines Plattenkondensators mit der Fläche A liegt eine Elektrode 0 mit gleicher Fläche, die sich in x-Richtung parallel verschieben lässt. In der Mittellage bei x=0 haben die Platten den Abstand x_0 . An den äußeren Elektroden liegen die Spannungsquellen U_1 und U_2 , an der mittleren Elektrode wird die Spannung U_0 gemessen. Der Raum zwischen den Elektroden sei mit Luft ($\varepsilon_r=1$) gefüllt.

Berechnen Sie in Abhängigkeit von der Verschiebung x die folgende Größen allgemein für den Fall, dass alle Ladevorgänge vollständig abgeschlossen sind:

- a) Die Teilkapazitäten C_{10} und C_{02} sowie die Gesamtkapazität C_{12} der Anordnung. (3 Punkte)
- b) Die Spannungen U_{10} und U_{02} über den Teilkapazitäten. (3 Punkte)
- c) Die Spannung U_0 (2 Punkte)

Ab jetzt haben die Spannungsquellen die gleiche Größe $U_1=U_2=U.$

- d) Geben Sie die Spannung U_0 für diesen Fall allgemein an und skizzieren Sie ihren Verlauf über der Verschiebung x ($-x_0 < x < x_0$). (3 Punkte)
- e) Die Änderung der Gesamtladung auf dem Plattensystem bei der Verschiebung der Mittelelektrode ist für folgende Fälle anzugeben und zu begründen (2 Punkte):
 - i) bei angeschlossenen Spannungsquellen U_1 und U_2
 - ii) bei Aufladung der Kondensatorplatten und Abtrennung von den Spannungsquellen

- f) Für x=0 wird der Raum zwischen den Elektroden 0 und 1 durch ein Dielektrikum mit $\varepsilon_r > 1$ gefüllt (siehe Skizze). Wie ändern sich U_{10} , U_{02} , Q_{ges} und U_{ges} , wenn das Dielektrikum ...
 - i) ... bei angeschlossenen Spannungsquellen U_1 und U_2 ...
 - ii) ... nach Aufladung der Kondensatorplatten und Abtrennung von den Spannungsquellen ...
 - ... eingebracht wird? (8 Punkte)

5 Elektromagnetismus

Eine ruhende Anordnung aus dünnem Draht wird von einem homogenen Magnetfeld \overrightarrow{B} senkrecht durchsetzt. Das Magnetfeld ist nach folgender Funktion zeitlich veränderlich:

$$\left|\overrightarrow{B}(t)\right| = B(t) = B_0(1 + \cos(\omega t))$$

Ein Drahtabschnitt der Länge c habe den Widerstand R. An den Klemmen 1,1 und 2,2 können die Drähte der Anordnung unterbrochen werden. Die Rückwirkung der in den Drahtschleifen fließenden Ströme auf das Magnetfeld kann vernachlässigt werden.

a) Bestimmen Sie **allgemein** den Strom i, der sich in einer Leiterschleife mit dem Schleifenwiderstand R_S und der Fläche A einstellen wird. (5 Punkte)

Berechnen und begründen Sie für folgende Fälle die Stöme $i_1(t)$, $i_2(t)$ und $i_3(t)$:

- b) Klemmen 1,1 geschlossen, Klemmen 2,2 offen (3 Punkte)
- c) Klemmen 1,1 und Klemmen 2,2 geschlossen (3 Punkte)
- d) Klemmen 1,1 offen, Klemmen 2,2 geschlossen (3 Punkte)

- e) Berechnen Sie für den Fall d
) die Spannung U_{11} (3 Punkte).
- f) Welche Auswirkungen haben folgenden Änderungen (5 Punkte):
 - $\bullet\,$ Verdopplung der Feldamplitude B_0 auf den Betrag der induzierten Spannung
 - ullet Verdopplung der Frequenz ω auf den Betrag der induzierten Spannung
 - ullet Verdopplung der Frequenz ω auf den Betrag des resultierenden Stroms
 - ullet Verdopplung der Kantenlänge c auf den Betrag der induzierten Spannung
 - Verdopplung der Kantenlänge c auf den Betrag des resultierenden Stroms

6 Magnetischer Kreis

Das Joch eines Hufeisenmagnetes trägt eine Wicklung mit der Windungszahl N_1 , durch die der Gleichstrom I_1 fließt. Der Anker im Abstand x_0 trägt eine Wicklung mit der Windungszahl N_2 , die stromlos ist $(I_2 = 0)$. Joch und Anker bestehen aus dem gleichen Material mit der relativen Permeabilität μ_r . Alle Querschnittsflächen sind quadratisch mit der Kantenlänge a. Streuung im Eisenkreis sind zu vernachlässigen.

- a) Zeichnen Sie das Ersatzschaltbild des magnetischen Kreises. Berechnen Sie allgemein die magnetischen Widerstände des Ersatzschaltbilds auf der mittleren Weglänge.
 (4 Punkte)
- b) Bestimmen Sie allgemein den vom Strom I_1 erzeugten magnetischen Fluss Φ im Joch. (5 Punkte)
- c) Berechnen Sie allgemein die magnetische Flussdichte B_L in den Luftspalten. (2 Punkte)
- d) Ermitteln Sie allgemein die Kraft F, die auf den Anker wirkt. (2 Punkte)

Der Anker wird in x-Richtung gegen das Joch gezogen. Die Bewegung soll zur Vereinfachung der Berechnung mit konstanter Geschwindigkeit v erfolgen. Joch und Anker haben zum Zeitpunkt t=0 den Abstand $x=x_0$. Zum Zeitpunkt $t=t_1$ schlägt das Joch gegen den Anker (x=0).

- e) Bestimmen Sie allgemein die durch die Bewegung des Jochs in der Wicklung N_2 induzierte Spannung $u_2(t)$. (4 Punkte)
- f) Bestimmen Sie die in der Wicklung N_2 induzierte Spannung für den Fall, dass die Luftspaltgröße x=const ist. (1 Punkt)
- g) Skizzieren Sie 1 mögliche Form der Streuung des magnetischen Flusses, die bei dieser Anordnung für x>0 auftreten kann, sowie ihre Modellierung im Ersatzschaltbild. (2 Punkte)

7 Komplexe Wechselstromrechnung

Das skizzierte Netzwerk wird aus einer Wechselspannungsquelle \underline{U}_0 mit der Kreisfrequenz $\omega=80kHz$ gespeist. Durch den Widerstand R fließt der Strom $\underline{I}_R=5mA$. Gegeben sind folgende Größen:

$$R_0 = 1k\Omega, R = 800\Omega, L = 4mH, C = 50nF$$

a) Bestimmen Sie mit Hilfe des Zeigerdiagramms, das alle Ströme und Spannungen enthält, folgende Größen (8 Punkte):

$$\underline{I}_C$$
, \underline{I}_L , \underline{I}_0 , \underline{U} , \underline{U}_{R0} , \underline{U}_0 , φ_0 zwischen \underline{U}_0 und \underline{I}_0 (Maßstab: 1 V = 1 cm, 2 mA = 1 cm)

- b) Durch Parallelschaltung einer Impedanz \underline{Z}_x zur Spannungsquelle \underline{U}_0 soll der Phasenwinkel zwischen \underline{U}_0 und \underline{I}_0 auf $\varphi_0=0^\circ$ eingestellt werden. Bestimmen Sie Art und Größe des erforderlichen Bauelements. (5 Punkte)
- c) Welcher Typ Schwingkreis ist in der Schaltung zu finden? Leiten Sie die Gleichung zur Bestimmung der Resonanzfrequenz her und bestimmen Sie die Resonanzfrequenz ω_0 (unter Vernachlässigung der ohmschen Widerstände). Wird die Resonanzfrequenz im hier vorliegenden Fall gesperrt oder durchgelassen? (6 Punkte)

 Hinweis: $\frac{1}{\sqrt{2}} \approx 0.7$
- d) Geben Sie das Spannungsteilerverhältnis $\frac{\underline{U}}{\underline{U}_0}$ (ohne komplexe Rechnung) für folgende Kreisfrequenzen an (3 Punkte):
 - i) $\omega = 0$
 - ii) $\omega = \omega_0$
 - iii) $\omega = \infty$