Elements of DeFi

https://web3.princeton.edu/elements-of-defi/

Professor Pramod Viswanath

Princeton University

Lecture 6: CFMMs

Last lecture: Decentralized Exchanges

- Most basic element of finance: Market Making
- Traditional Market Makers
 - Limit Order Books
 - Peer-to-peer, centralized
 - hard to decentralize
- Automated Market Makers
 - Peer-to-pool-to-peer, can be decentralized
 - Basic example

This Lecture: CFMMs and their properties

- Look at CFMMs from trader's perspective
 - Recall: basics and pricing
 - Slippage
 - Arbitrage
 - Relation with curvature
- Look at CFMMs from liquidity provider's perspective
 - Impermanent Loss
 - Arbitrage Loss
 - Picking the bonding curve
 - Fees

Recall: Automated Market Makers

- Keep a pool of orders that can satisfy any incoming trade
- Entities with large amount of idle liquidity pitch in to make the pool– liquidity providers (LPs)

Recall: CFMMs

CFMM: Constant Function Market Makers

Use Bonding Curves to constrain reserves

$$\psi(x,y) = \psi(x + \Delta_x, y - \Delta_y)$$
OR
 $\psi(x,y) = constant$

Recall: Pricing in CFMMs

- For a general curve what is the price at any point?
- Price = To buy a small amount of ETH, how much USD should I pay?
- Slope of the tangent
- Formula:

$$Price = P_x = \frac{dy}{dx} = -\frac{\partial_x \psi}{\partial_y \psi}$$

Recall: Pricing in CFMM

Uniswap, Sushiswap:

$$xy = constant$$
 $P_x = \frac{y}{x}$

Balancer:

$$x^{\theta}y^{1-\theta} = constant \Rightarrow P_x = \frac{\theta y}{(1-\theta)x} \stackrel{\text{\text{def}}}{\Rightarrow} 10.0$$

• Constant Price:

$$x + y = constant \implies P_x = 1$$

• Curve:

$$x + y + \frac{\alpha}{xy} = constant$$

Slippage

- The price is defined for a small trade
- What if you want to do a larger trade?
 Does the price you pay stay constant with size?
- Slippage is the amount of asset you lose out on because of the price change
- E.G:
 - You want to sell 1 ETH
 - You want to sell 2 ETH

Slippage and Curvature

- E.G:
 - You want to sell 1 ETH
 - You want to sell 2 ETH

- What is the slippage in both cases?
- If trade size doubles, then slippage?
- Reason?
 - Price depends on tangent, slippage depends on curvature!
- As a trader, you would like to have low slippage

Arbitrage

- What is arbitrage?
- Riskless profit obtained by exploiting price differences
- What happens after arbitrage?
- Both pools reach same price arbitrage no longer profitable after this

Arbitrage and Curvature

- Arbitrage between two CFMMs what is the trade?
- Which one undergoes a larger change in price? Why?

Arbitrage and Curvature

- Arbitrage between two CFMMs- what is the trade?
- Which one undergoes a larger change in price? Why?

Liquidity Providers: Loss and risks

- We now look at CFMMs from the perspective of LPs (Liquidity Provider)
- They facilitate the market via their assets
- What risks/losses can they face? two types
- How should they recover these losses? fees

Impermanent Loss (Loss-Vs-Holding)

Looking from the LP's perspective:

- What happens when price goes from 1 USD to 4 USD?
- Compare with the old reserves held static
- Value of old reserves = 100 + 4x100
 USD
- Value of new reserves = 200 + 4x50
 USD
- What happens when price goes back to 1 USD?

Impermanent Loss (Loss-Vs-Holding)

Impermanent Loss:

- Value of reserves if held static Value of reserves under CFMM
- Always positive! Why?
- CFMM always sells off the token appreciating in value

- Loss disappears when price moves back to the reference point – impermanent
- What is the bet that LPs are making?

Arbitrage Loss (Loss-Vs-Rebalancing)

 Same situation as before – price jumps from 1 USD to 4 USD

What is the trade that CFMM does?

 If CFMM "knew" the real price, what would the trade have looked like?

Loss due to arbitrage = 100 USD

Arbitrage Loss (Loss-Vs-Rebalancing)

Value of trade assuming external price –
 Value of trade assuming AMM price

Is also equal to the profit made by the arbitrageur

Is non-recoverable and cumulative

 Loss proportional to price volatility (Millionis et al, 2022)

Difference between the two losses

Impermanent Loss

Is path-independent

- Recovered when price reaches
 Cannot be recovered initial point again
- Can be hedged against

 Depends only on final and initial prices

Arbitrage Loss

Is path-dependent

Need fees to make up for loss

Depends external price volatility

Choosing the right curve

Lesson for the trader:

 Lesser the curvature, better trading quality because of less slippage

 Lesser the curvature, larger profit through arbitrage

Uniswap vs Curve

Choosing the right curve

Lesson for the LP:

 If prices expected to be correlated/stable : use less curvature

 If prices expected to be uncorrelated/independe nt : use more curvature

Uniswap vs Curve

Fees

 In exchange of allocating liquidity for trades, LPs take fee from asset coming in

$$\psi(x,y) = \psi\big(x + \gamma \Delta_x, y - \Delta_y\big)$$
 USE THIS CONDITION FOR SMALL TRADES

• Typically, $\gamma \approx 0.99$

Induces an effective ask and a bid price

$$P^{ask} = P_{x}/\gamma$$
$$P^{bid} = \gamma P_{x}$$

EXERCISE: PROVE THIS

Problems with CFMMs: Capital Inefficiency

Capital inefficiency: Less capital efficiency than LOBs - why?

- LPs cannot move liquidity around
- Was possible in LOBs

Problems with CFMMs: Arbitrage Loss

Arbitrage loss:

- increases with volatility (recall in the tradfi case, more volatility gave more profit) -> Fees have to give a return and cover these losses
- LPs are sitting ducks easily fleeced by arbitrageurs
- "If I see a Uniswap LP in the wild, I go up to them, shake their hand and thank them for their service"
 - Mark Twain (probably)

Problems with CFMMs: Front Running

MEV : Sandwich Attack

- User wants to do a normal trade :
 - Buy 50 ETH, (has to pay 100 USD)

- If miner sees a large buy txn,
 - introduce a buy txn just before it: buy 10 ETH
 - Put the txn
 - introduce a sell txn just after it : sell 10 ETH
- Miner gets profit with no risk: 39 USD
- User gets a worse price: 139 USD

Next Lecture

- Make CFMMs more capital efficient
 - LP's POV : Concentrated liquidity move liquidity around
 - Trader's POV: DEX aggregators Batching + Routing avoid arbitrage losses

Private CFMMs – to avoid MEV

CFMMs as derivatives

LECTURE ENDS