Modellierung eines verallgemeinterten SEIR-Modells mit prävalenzabhängigen Kontaktraten

Mansur Daschaew, Janina Rastetter und Maren Raus

14. Februar 2022

- SEIR-Modell
 - ODEs
 - Simulation
- Simulation eines Lockdowns
 - Auswirkungen auf den Epidemieverlauf
 - mehrstufiger Lockdown
 - Lockdown anhand von Fallzahlen
- Fallbeispiel Xi'an
 - Vorgehen
 - Daten
 - Parameter
 - ullet Schätzung von δ
 - Anfangswerte
 - Simulationen

Differentialgleichungen

SEIR-Modell:

- S susceptible
- E exposed
- I infectious
-) detected
- R recovered

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dE}{dt} = \beta \frac{SI}{N} - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \gamma I - \delta I$$

$$\frac{dD}{dt} = \delta I - \gamma D$$

$$\frac{dR}{dt} = \gamma I + \gamma D$$

Parameter

Übergangsrate α :

Kehrwert der mittlere Latenzzeit

Transmissionsrate β : Erholungsrate γ : Übertragungen pro S-I Kontakt pro Zeit

Testrate δ :

Kehrwert der mittleren infektiösen Zeit

Testrate für positive Individuen

 \times Rate der positiven Testergebnisse

Schätzung für Transmissionsrate (zu Beginn der Epidemie):

$$\beta = \frac{\mathit{R}_{\rm o}}{\gamma}$$

(R_o Reproduktionszahl)

Simulation

Startwerte:

- Populationsgröße N
- S = N-1, I = 1, E = R = 0

Simulation eines Lockdowns

Simulation eines Lockdowns

- Kontaktrate verändert sich nicht kontinuierlich, sondern abrupt
- Zeitpunkt ist von der Inzidenz abhängig
- Bedingung an β : $\beta(t) = \begin{cases} \phi \beta_0 \text{ falls } I(t) > \tau N \\ \beta_0 \text{ sonst} \end{cases}$, wobei $\phi \in (0,1)$ und $\tau \in (0,1)$

Auswirkungen auf den Epidemieverlauf

mehrstufiger Lockdown

Lockdown anhand von tatsächlichen Fallzahlen

- Einsetzen der Reduktion der Kontaktrate nach Werten von D(t) (detected)
- niedrigere Werte, kleinere Schranke

(a) Fallzahlen (detected cases D) mit Schranke D(t) > 0.01N

(b) Epidemieverlauf

Diskussion

- Schranke τN muss passend gewählt werden
- Zeitspanne zwischen Beginn des Lockdown und Peak

China...

• strikte Null-Covid-Strategie in der Coronapandemie

Number of Daily Cases

Data Sources: Cases and deaths data from JHU CSSE; testing and vaccine data from JHU CCI; and hospitalization data from the U.S. Department of Health and Human Services.

China...

strikte Null-Covid-Strategie in der Coronapandemie
⇒ aktuelles Beispiel: Lockdown in der chinesischen Stadt Xi'an

China...

- strikte Null-Covid-Strategie in der Coronapandemie
 - ⇒ aktuelles Beispiel: Lockdown in der chinesischen Stadt Xi'an
 - \Rightarrow reale Daten

China...

- strikte Null-Covid-Strategie in der Coronapandemie
 - ⇒ aktuelles Beispiel: Lockdown in der chinesischen Stadt Xi'an
 - \Rightarrow reale Daten
- Impfquote von 87.88%, aber bei verwendeter Vakzine kaum Schutz vor Delta
 - ⇒ Annahme: nicht immunisierte Bevölkerung

Vorgehen

- Recherche (Daten zur Infektionslage in Xi'an und zur Deltavariante)
- Berechnung der Parameter
- **3** Schätzung des Parameters δ (verantwortlich für die Identifikation infizierter Individuen)
- Berechnung der Anfangswerte
- Simulation verschiedener Szenerien mit dem Ziel, die Epidemie möglichst schnell ohne Durchseuchung stoppen

Dünne Datenlage

- 9. Dezember 2021: erster Fall
- In den Folgetagen: steigende Infektionszahlen
- 22. Dezember 2021 (+ 13 Tage): 63 Fälle
- 23. Dezember 2021: Lockdown
- 28. Dezember 2021 (+ 19 Tage): 175 Fälle
- 24. Januar 2022: Ende des Lockdowns (nach 32 Tagen), insgesamt ca. 2000 Fälle

Parameter

- R-Wert ≈ 5.5
- $\alpha=1/2$ (mittlere Latzenzeit \approx 4, ansteckend etwa zwei Tag vor Auftreten von Symptomen)
- $\gamma = 1/12$
- $\beta \approx \gamma \cdot R = 5.5/_{12} = 0.468$
- $\phi \approx \gamma/\beta = 1/5.5$
- $\beta \cdot \phi = 1/12$

Beobachtung: Schlechter Fit mit recherchierten Werten

Fallzahlen nach Teststrategie und -qualität

Konsequenz: Erlaube Abweichungen $\Rightarrow \delta = \text{o.o1}$

Fallzahlen nach Teststrategie und -qualität

Anfangswerte (gerundet)

- t = 36
- S = 12996450
- E = 1097
- I = 1731
- C = 56
- R = 666

Verlauf ohne Intervention

Verlauf ohne Intervention

Abbildung: Verlauf ohne Intervention

Kompartment	mpartment Maximum Zeitpunkt d	
I	5076922	80
E	1437318	74
D	433135.2	89

- Verbleibende S: 99439.98 (0.7649229%)
 - \Rightarrow Durchseuchung
- Schritte, bis E und I kleiner 1: 260

Erhöhung der Testungen

Abbildung: Verlauf mit verstärktem Testen

δ	Verbleibende S (in %)	I und E kleiner 1, ab
$\delta_{ur} \cdot 2^{1}$	1.252596	212 (+ 36)
$\delta_{\it ur}\cdot {f 2^2}$	2.687945	196 (+ 36)
$\delta_{\it ur}\cdot {f 2}^3$	7.447852	186 (+ 36)
$\delta_{\it ur}\cdot {f 2}^4$	23.80182	211 (+ 36)
$\delta_{\it ur}\cdot {f 2}^5$	76.87228	589 (+ 36)
$\delta_{\it ur}\cdot {f 2}^6$	99.93514	60 (+ 36)

- ⇒ Erst ab einer Steigerung der Testeffizienz um Faktor 2⁵ ist eine Eindämmung der Epidemie möglich
- ⇒ Bei einer Steigerung der Testeffizienz um Faktor 2⁶ müssten "nur" zwei Monate lang vermehrt getestet werden

Verlauf mit verstärktem Testen: $\delta = \text{o.64}$

Verlauf mit verstärktem Testen: $\delta = \text{o.64}$

Abbildung: Verlauf mit verstärktem Testen: $\delta = \text{o.64}$

Kompartment	Maximum	Zeitpunkt des Maximums	
I	1731	0	
E	1185.318	1	
D	3016.812	9	

Abbildung: Verlauf mit Kontaktreduktion

β	Verbleibende S (in %)	I und E kleiner 1, ab
$\beta_{ur} * 2^{-1}$	11.3365	338 (+ 36)
$\beta_{\it ur}$ * 2 $^{-2}$	65.28979	1184 (+ 36)
1/12	99.79345	898 (+ 36)

- ⇒ Kontaktreduktion verhindert Infektionen, zieht die Epidemie aber in die Länge
- \Rightarrow Um eine Durchseuchung zu verhindern, müssten die Kontakte fast drei Jahre lang reduziert werden

Verlauf mit Kontaktreduktion: $\beta = 1/12$

Verlauf mit Kontaktreduktion: $\beta = 1/12$

Abbildung: Verlauf mit Kontaktreduktion: $\beta = 1/12$

Kompartment	Maximum	Zeitpunkt des Maximums
I	2288.959	5 (+36)
Ε	1097	o (+36)
D	228.0604	29 (+36)

Erhöhung der Testungen und Kontaktreduktion: $\beta = 1/12$

Abbildung: Verlauf mit verstärktem Testen und Kontaktreduktion

δ	Verbleibende S (in %)	I und E kleiner 1, ab
$\delta_{ur} \cdot 2^{1}$	99.88242	456 (+ 36)
$\delta_{\it ur}\cdot {f 2}^{2}$	99.92746	230 (+ 36)
$\delta_{\it ur}\cdot {f 2}^3$	99.95006	117 (+ 36)
$\delta_{\it ur}\cdot {f 2}^4$	99.96137	60 (+ 36)
$\delta_{\it ur}\cdot {f 2}^5$	99.96703	33 (+ 36)
$\delta_{\it ur}\cdot {f 2}^6$	99.96986	20 (+ 36)

- ⇒ Bei extremer Kontaktreduktion wirkt sich die Testeffizienz kaum auf die Anzahl der Infektionen aus, dafür aber sehr stark auf die erforderliche Dauer der Beschränkungen
- ⇒ Die Testeffizienz müsste mindestens um Faktor 2⁴ gesteigert werden, um die Dauer der Einschränkungen gering zu halten (ein bis zwei Monate)

Verlauf mit Kontaktreduktion und verstärktem Testen: $eta={}^{1}\!/{}_{12}$ und $\delta=$ 0.32

Verlauf mit Kontaktreduktion und verstärktem Testen: $\beta = 1/12, \delta = 0.32$

Abbildung: Verlauf mit Kontaktreduktion und verstärktem Testen: $\beta=1/12, \delta=0.32$

Kompartment Maximum		Zeitpunkt des Maximums	
I	1731	0	
E	1097	0	
D	1627.685	7	

Verlauf mit Kontaktreduktion und verstärktem Testen: $\beta=1/12$ und $\delta=0.64$

Verlauf mit Kontaktreduktion und verstärktem Testen: $\beta = 1/12$, $\delta = 0.64$

Abbildung: Verlauf mit Kontaktreduktion und verstärktem Testen: $\beta=1/12, \delta=0.64$

Kompartment	Maximum	Zeitpunkt des Maximums
I	1731	0
Е	1097	o
D	1886.614	5

Erhöhung der Testungen und Kontaktreduktion: $\delta = 1/12$

Abbildung: Verlauf mit verstärktem Testen und Kontaktreduktion

δ	Fälle (gesamt)		
$\delta_{ur} \cdot 2^{1}$	34473.27 (+ 348.5105)		
$\delta_{\it ur}\cdot {f 2^2}$	34566.07 (+ 348.5105)		
$\delta_{\it ur}\cdot {f 2}^3$	34596.05 (+ 348.5105)		
$\delta_{\it ur}\cdot {f 2}^4$	34584.94 (+ 348.5105)		
$\delta_{\it ur}\cdot {f 2}^5$	33786.95 (+ 348.5105)		
$\delta_{ur} \cdot 2^6$	31079.05 (+ 348.5105)		

- ⇒ Fehler bei Parameterwahl, in Xi'an gab es insgesamt nur etwa 2000 Fälle
- \Rightarrow Vermutung zur Fehlerquelle: Lockdown in Xi'an bei t=14, in Simulation bei t=36Schätzung von δ darf sich nicht zu stark auf den Anfangszeitpunkt der Maßnahmen auswirken

Zusammenfassung

Abbildung: Zusammenfassung

Strategie	δ	β	Dauer	Verbleibende S (in %)
_	0.01	5.5/12	8.5 Monate	0.7649229
T	0.64	5.5/12	2 Monate	99.93514
K	0.01	1/12	2.5 Jahre	99.79345
K + T	0.32	1/12	1 Monat	99.96703
K + T	0.64	1/12	3 Wochen	99.96986