Data Visualization in R

Genevieve Housman

AGAR Workshop

August 3, 2018

Session Outline

- Basics of ggplot2
 - scatter plots, bar plots, histograms, boxplots, heatmaps
- Basics of Gviz
 - ideogram, genome axis, sequence, data, annotation, gene region tracks
- Applying ggplot2 and Gviz to VCF data

Basics of ggplot2

ggplot2

- What
 - third graphics system for R (along with base and lattice)
 - implementation of the *Grammar of Graphics* by Leland Wilkinson (2005)
- When
 - Written by Hadley Wickham in 2005
- Why
 - Follows a grammar and supports a continuum of expertise
- How...

Other Graphics Systems

base

- Start with plot function (or similar)
- Use annotation functions to add/modify (text, lines, points, axis)
- Convenient, mirrors how we think of building plots and analyzing data
- Cannot go back once plot has started (i.e. to adjust margins); need to plan in advance
- Difficult to "translate" to other plot types once a new plot has been created

lattice

- Plots created with single function call (xyplot, bwplot, etc.)
- Annotation in plot is not intuitive
- Good for putting many plots on a screen (to see how y changes with x across levels of z)
- Cannot "add" to plot once created; requires intense preparation
- Sometimes awkward to specify entire plot in a single function call

Other Graphics Systems

base

with(airquality, plot(Temp, Ozone))

lattice

xyplot(Ozone ~ Temp, airquality)

ggplot2:

ggplot(airquality, aes(Temp, Ozone)) +
 geom point()

ggplot2: Grammar of Graphics

- a coherent system for describing and building graphs
- allows for a theory of graphics on which to build new graphics

ggplot2: Grammar of Graphics

"In brief, the grammar tells us that a statistical graphic is a **mapping** from data to **aesthetic** attributes (colour, shape, size) of **geometric** objects (points, lines, bars). The plot may also contain statistical transformations of the data and is drawn on a specific coordinate system"

from ggplot2 book

- ggplot is the main function
- supply data to visualize
- map variables to *aes*thetic attributes
- *geom*etric objects define what you see
- statistical transformations summarize data
- positions adjust placement of data in space
- coordinate systems put data on plane of graphic
- faceting subsets the data to show multiple plots

Graphing Template

Let's try building some plots!

ggplot2: Preparing Data

sample.details

prop.reads

gene.counts

Samples	Species	TimePoint	CellDensity	CellViability	RNAConcentration
ΗО	human	0	0.8	0.890	377
Н1	human	1	1.0	0.875	257
Н2	human	2	0.6	0.810	109
C0	chimp	0	0.9	0.930	219
C1	chimp	1	1.0	0.390	160
C2	chimp	2	0.3	0.715	90

Samples	NumTotal	NumMapped	PropMapped	NumUnmapped
ΗО	34275201	27787986	0.810732	6487215
Н1	28978629	23861725	0.823425	5116904
Н2	30053417	25009798	0.832178	5043619
C0	30406842	24611163	0.809396	5795679
C1	40051004	33819900	0.844421	6231104
C2	17178516	14776677	0.860184	2401839

	НΟ	Н1	Н2	C0	C1	C2	
ENSG0000000003	4628	5940	3809	5079	6506	2623	
ENSG0000000005	177	4	4	29	0	0	
ENSG00000000419	2589	1255	1876	1501	1252	370	
ENSG0000000457	309	695	316	582	2451	268	
ENSG0000000460	997	591	434	1165	1407	156	
ENSG00000000971	1	0	0	0	0	0	

ggplot2: Preparing Data


```
ggplot(data = scores)
```

```
PC6 Species TimePoint CellDensity CellViability RNAConcentration
Samples
               PC1
                         PC2
                                    PC3
                                               PC4
                                                         PC5
    C0 -282135.133 -37806.44
                                          57289.09 -55611.44 2.451884e-08
                               38659.90
                                                                             chimp
                                                                                                     0.9
                                                                                                                 0.930
                                                                                                                                    219
    C1 377327.549 -87787.33
                               36933.51
                                          78383.35 11784.00 -1.178564e-08
                                                                             chimp
                                                                                                    1.0
                                                                                                                0.390
                                                                                                                                    160
           6222.875 179894.96
                               91593.70 -26106.48 16969.88 8.236373e-09
                                                                             chimp
                                                                                                     0.3
                                                                                                                0.715
                                                                                                                                     90
    HO -285924.073 -64966.96 -34484.24
                                         11975.85 60066.66 3.190043e-09
                                                                                                    0.8
                                                                                                                0.890
                                                                                                                                    377
                                                                             human
         83237.796 -93318.89
                                1087.82 -137655.43 -16395.06 -2.644546e-08
                                                                                                    1.0
                                                                                                                0.875
                                                                                                                                    257
                                                                             human
     H2 101270.985 103984.66 -133790.69 16113.62 -16814.04 2.278867e-09
                                                                                                     0.6
                                                                                                                0.810
                                                                             human
                                                                                                                                    109
```

```
ggplot(data = scores) +
  geom_point(
    mapping = aes(x = PC1, y = PC2)
)
```



```
ggplot(data = scores) +
  geom_point(
    mapping = aes(x = PC1, y = PC2, color = Species)
)
```



```
ggplot(data = scores) +
  geom_point(
    mapping = aes(x = PC1, y = PC2, <MAPPINGS>)
)
```



```
ggplot(data = scores) +
  geom_point(
    mapping = aes(x = PC1, y = PC2, <MAPPINGS>)
)
```


supplying data mapping aesthetics splitting into facets

```
ggplot(data = scores) +
  geom_point(
    mapping = aes(x = PC1, y = PC2)
  ) +
  facet_wrap(<FORMULA>)
```


facet_wrap(~ Species, nrow = 2)

facet_wrap(~ TimePoint)

facet_grid(Species ~ TimePoint)

```
ggplot(data = scores) +
  geom_point(mapping = aes(x = PC1, y = PC2, color = as.factor(TimePoint), shape = Species), size = 5) +
  ggtitle("PCA of Raw Gene Count Data") +
  xlab(paste("PC1: ", round(summary(pca_genes)$importance[2,1],3)*100, "% variance explained", sep="")) +
  ylab(paste("PC2: ", round(summary(pca_genes)$importance[2,2],3)*100, "% variance explained", sep=""))
```


ggplot2: Building a Plot - point

```
ggplot(data = scores) +
  geom_point(
    mapping = aes(x = TimePoint, y = CellViability)
)
```


ggplot2: Building a Plot - smooth

```
ggplot(data = scores) +
  geom_smooth(
    mapping = aes(x = TimePoint, y = CellViability)
)
```



```
ggplot(data = scores) +
     <GEOM_FUNCTION> (
        mapping = aes(x = TimePoint, y = CellViability, <MAPPINGS>)
)
```


ggplot2: Building a Plot - multiple

```
ggplot(data = scores) +
    <GEOM_FUNCTION_1> (<MAPPINGS>) +
    <GEOM_FUNCTION_2> (<MAPPINGS>) +
```

```
ggplot(data = scores, <MAPPINGS>) +
    <GEOM_FUNCTION_1> () +
    <GEOM_FUNCTION_2> () +
```



```
geom_point()
geom_smooth()
```

```
geom_point(color = Species)
     geom smooth()
```

```
geom_point(color = Species)
geom_smooth(color = Species)
```

```
geom_point(color = Species)
geom_smooth(newdata, color = Species)
```

```
ggplot(data = prop.reads) +
   stat_count(
    mapping = aes(x = Species),
)
```



```
ggplot(data = prop.reads) +
  geom_bar(
    mapping = aes(x = Species, y = NumMapped),
    stat = "identity"
)
```



```
ggplot(data = prop.reads) +
  geom_bar(
  mapping = aes(x = Species, y = NumMapped, <MAPPINGS>),
  stat = "identity"
)
```


Try changing the fill to different variables. Instead of Species, try TimePoint.

supplying data mapping aesthetics defining geometric describing statistic adjusting coordinate

```
ggplot(data = prop.reads) +
   geom_bar(
    mapping = aes(x = Species, y = NumMapped),
    stat = "identity"
   ) +
<COORDINATE_FUNCTION>
```


supplying data mapping aesthetics defining geometric describing statistic changing position


```
ggplot(data = prop.reads) +
  geom_bar(mapping = aes(x = Samples, y = NumMapped, fill = Species), stat = "identity", color= "black") +
  ggtitle("Mapped Reads for All Samples") +
  ylab("Number of Mapped Reads") +
  xlab("Samples") +
  geom_hline(yintercept=10000000) +
  theme(axis.text.x=element_text(angle=90, hjust=1)) +
  scale_y_continuous(labels=comma)
```


Try plotting the number of total reads and unmapped reads per sample.


```
ggplot(data = prop.reads) +
  geom_bar(mapping = aes(x = Samples, y = NumTotal, fill = Species), stat = "identity", color= "black") +
  ggtitle("Total Reads for All Samples") +
  ylab("Number of Total Reads") +
  xlab("Samples") +
  geom_hline(yintercept=10000000) +
  theme(axis.text.x=element_text(angle=90, hjust=1)) +
  scale_y_continuous(labels=comma)
```

```
ggplot(data = prop.reads) +
  geom_bar(mapping = aes(x = Samples, y = NumUnmapped, fill = Species), stat = "identity", color= "black") +
  ggtitle("Unmmapped Reads for All Samples") +
  ylab("Number of Unmapped Reads") +
  xlab("Samples") +
  geom_hline(yintercept=10000000) +
  theme(axis.text.x=element_text(angle=90, hjust=1)) +
  scale_y_continuous(labels=comma)
```

ggplot2: Building a Plot - histogram

```
ggplot(data = gene.counts, mapping = aes(x = H0) +
  geom_histogram()
```


ggplot2: Building a Plot - histogram

```
ggplot(data = gene.counts, mapping = aes(x = H0)) +
    geom_histogram(binwidth = 5000, fill = "blue", color = "black") +
    labs(title = "Histogram of Gene Counts in H0", y = "Frequency", x = "Gene Counts") +
    theme_bw()
```


ggplot2: Building a Plot - boxplot

```
ggplot(data = prop.reads) +
  geom_boxplot(
    mapping = aes(x = Species, y = NumMapped)
)
```


ggplot2: Building a Plot - boxplot

```
ggplot(data = prop.reads) +
   geom_boxplot(
      mapping = aes(x = as.factor(TimePoint), y = NumMapped)
)
```



```
ggplot(data = cors.melt) +
  geom_tile(mapping = aes(x=Var1, y=Var2, fill=value))
```



```
ggplot(data = cors.melt) +
  geom_tile(mapping = aes(x=Var1, y=Var2, fill=value), color =
  scale_fill_gradient(low = "white", high = "steelblue")
```



```
ggplot(data = half.cors.melt) +
  geom_tile(mapping = aes(x=Var1, y=Var2, fill=value), colour = "white") +
  scale_fill_gradient(low = "white", high = "steelblue")
```


supplying data mapping aesthetics defining geometric

guides(fill = guide_legend(title.vjust = 0.1)) +
theme_minimal()


```
grid.newpage()
print(heatmap.plot, vp = viewport(x = 0.4, y = 0.5, width = 0.8, height = 1.0))
print(dendro.plot, vp = viewport(x = 0.90, y = 0.445, width = 0.2, height = 1.0))
```



```
grid.newpage()
print(heatmap.plot, vp = viewport(x = 0.4, y = 0.5, width = 0.8, height = 1.0))
print(dendro.plot, vp = viewport(x = 0.90, y = 0.445, width = 0.2, height = 1.0))
```



```
grid.newpage()
print(heatmap.plot, vp = viewport(x = 0.4, y = 0.5, width = 0.8, height = 1.0))
print(dendro.plot, vp = viewport(x = 0.90, y = 0.43, width = 0.2, height = 0.77))
```


ggplot2: Saving Plots

Option #1: ggsave()

```
ggplot(data = scores) +
  geom_point(mapping = aes(x = PC1, y = PC2, color = Species))
ggsave(filename = "PCA-plot1.png", path = "./", width = 10, height = 7)
```

Option #2: png(), pdf(), jpg()

```
png(filename = "./PCA-plot2.png", width = 10, height = 7, units = "in", res = 300)
ggplot(data = scores) +
   geom_point(mapping = aes(x = PC1, y = PC2, color = Species))
dev.off()
```

ggplot2: Everything Else!

Information about additional functions can be found at:

https://ggplot2.tidyverse.org/reference/

Basics of Gviz

(can use ggbio as an alternative)

Gviz

- What
 - structured visualization framework to plot any type of data alongof large genomic coordinates
- When
 - integrated into Bioconductor 6.5 years ago
- Why
 - flexible and allows integration of publicly available genomic annotations (UCSC, ENSEMBL, biomaRt)
- How...

Gviz

 Layout similar to UCSC browser – different data types represented by different track classes

Track Layout [Data range coordinates] Genomic coordinates

Gviz: A Typical Session

	segnames	th 40977 ranges and 10 metadata corporates ranges strand		source	type	score	phase	HO	Н1	Н2	C0	C1	C2
	<rle></rle>	<iranges></iranges>	<rle></rle>	<factor></factor>		<numeric></numeric>	<integer></integer>	<character></character>	<character></character>	<character></character>	<character></character>	<character></character>	<character></character>
[1]	chr1	887132-887142	*	rtracklayer	sequence feature	<na></na>	<na></na>	65	30	212	1	1	0
[2]	chr1	973495-973505	*	rtracklayer	sequence_feature	<na></na>	<na></na>	78	201	177	43	121	70
[3]	chr1	999920-999930	*	rtracklayer	sequence_feature	<na></na>	<na></na>	2	1	2	2	96	24
[4]	chr1	998123-998133	*	rtracklayer	sequence_feature	<na></na>	<na></na>	4	1	1	2	63	15
[5]	chr1	1008012-1008022	*	rtracklayer	sequence_feature	<na></na>	<na></na>	0	2	2	2	6	0
[40973]	chrY	22972174-22972184	*	rtracklayer	sequence_feature	<na></na>	<na></na>	0	0	0	0	0	0
[40974]	chrY	23023718-23023728	*	rtracklayer	sequence_feature	<na></na>	<na></na>	0	0	0	0	0	0
[40975]	chrY	23383479-23383489	*	rtracklayer	sequence_feature	<na></na>	<na></na>	0	0	0	0	0	0
[40976]	chrY	23476963-23476973	*	rtracklayer	sequence_feature	<na></na>	<na></na>	0	0	0	0	0	0
[40977]	chr6_mann_hap4	1821010-1821020	*	rtracklayer	sequence_feature	<na></na>	<na></na>	0	1	0	3	0	2
	_				_								
seginfo: 93 sequences (1 circular) from hq19 genome													

	<rle></rle>	<iranges></iranges>	<rle></rle>	<pre><character></character></pre>	<character></character>	<character></character>	<character></character>	<character></character>	<character< th=""></character<>
[1]	chr1	887132-887142	*	65	30	212	1	1	
[2]	chr1	973495-973505	*	78	201	177	43	121	-
[3]	chr1	999920-999930	*	2	1	2	2	96	2
[4]	chr1	998123-998133	*	4	1	1	2	63	:
[5]	chr1	1008012-1008022	*	0	2	2	2	6	
[40973]	chrY	22972174-22972184	*	0	0	0	0	0	
[40974]	chrY	23023718-23023728	*	0	0	0	0	0	
[40975]	chrY	23383479-23383489	*	0	0	0	0	0	
[40976]	chrY	23476963-23476973	*	0	0	0	0	0	
[40977]	chr6 mann hap4	1821010-1821020	*	0	1	0	3	0	

Gviz: A Typical Session

```
iTrack <- IdeogramTrack(genome = "hg19", chromosome = "chr18")
xTrack <- GenomeAxisTrack()
gTrack <- GeneRegionTrack(txdb, chromosome = "chr18")
sTrack <- SequenceTrack(Hsapiens, chromosome = "chr18")
dTrack <- DataTrack(gtf[seqnames(gtf) == "chr18"], name = "gene count data")
plotTracks(list(iTrack, xTrack, gTrack, sTrack, dTrack))</pre>
```


Gviz: A Typical Session - adjust view

plotTracks(list(iTrack, xTrack, gTrack, sTrack, dTrack), from = 3270080, to = 3270110)

Gviz: A Typical Session - adjust view

plotTracks(list(iTrack, xTrack, gTrack, sTrack, dTrack))

plotTracks(list(iTrack, xTrack, gTrack,
sTrack, dTrack), extend.left = 0.25,
extend.right = 1e+07)

Gviz: A Typical Session – setting parameters

```
displayPars(gTrack) <-
list(background.panel =
"#FFFEDB", col = NULL)

plotTracks(list(iTrack, xTrack,
gTrack, sTrack, dTrack), from =
3240000, to = 3280000)</pre>
```

plotTracks(list(iTrack, xTrack, gTrack,
sTrack, dTrack), from = 3240000, to =
3280000, background.panel = "#FFFEDB",
background.title = "darkblue")

Gviz: A Typical Session - plot reverse strand

plotTracks(list(iTrack, xTrack, gTrack, sTrack, dTrack), from = 3240000,
to = 3280000, reverseStrand = TRUE)

Gviz: Track Types

IdeogramTrack

 view of the displayed region on a schematic model of a chromosome with chromosome band information from UCSC

GenomeAxisTrack

• genomic axis or scale indicator with optional highlighted regions

SequenceTrack

 genomic sequence in letter or false color representation depending on the zoom level

DataTrack

 numeric values (single or grouped) along with genomic coordinates, can be plotted in several ways

AnnotationTrack

 generic annotation features (with at least start, stop, strand, and chromosome information), optional grouping

GeneRegionTrack

 gene or transcript models with grouping on the level of exons and transcripts, can be fetched dynamically from Ensembl as the BiomartGeneRegionTrack child class

Gviz: Ideogram Track

Purpose

indicate the currently displayed genomic range in the context of the current chromosome

Inputs

- fetch chromosome band information from UCSC
- data.frame

Details

• after first connection to UCSC, fetched results are cashed for duration of R session

Gviz: Ideogram Track

```
iTrack <- IdeogramTrack(genome = "hg19", chromosome = "chr1")
plotTracks(iTrack, from = 1.5e+08, to = 2.17e+08, showId = FALSE,
showBandId = TRUE, cex.bands = 0.5)</pre>
```


Gviz: Genome Axis Track

Purpose

 indicate the currently displayed genomic range either as an x-axis with evently spaced tick marks or as a scaled reference

Inputs

NA

Details

• ranges on the axis can be highlighted (e.g., to indicate stretches of N nucleotides)

Gviz: Genome Axis Track

```
xTrack <- GenomeAxisTrack()
plotTracks(xTrack, from = 1.5e+08, to = 2.17e+08)</pre>
```


Gviz: Genome Axis Track

Purpose

show genomic sequence of the currently displayed region

Inputs

- DNAStringSet
- Bsgenome
- FASTA file (indexed or not indexed)
- 2bit file

Details

 depending on the zoom level, sequences will be shown as individual letters, as color-coded boxes, or as a horizontal line

```
sTrack <- SequenceTrack(Hsapiens, chromosome = "chr1")
plotTracks(sTrack, from = 1.5e08, to = 150000050)</pre>
```

TAACTTTTTAGATAGTAGGTGGTATTCAATAATACTTATGTTTTCACTAG

```
sTrack <- SequenceTrack(Hsapiens, chromosome = "chr1")
plotTracks(sTrack, from = 1.5e08, to = 150000050, add53 = TRUE,
complement = TRUE)</pre>
```

TAACTTTTTAGATAGTAGGTGGTATTCAATAATACTTATGTTTTCACTAG

5' A A C T T T T T A G A T A G T A G G T G G T A T T C A A T A A T A C T T A T G T T T T C A C T A 3'

```
sTrack <- SequenceTrack(Hsapiens, chromosome = "chr1")
plotTracks(sTrack, from = 1.5e08, to = 2.17e+08)</pre>
```

TAACTTTTTAGATAGTAGGTGGTATTCAATAATACTTATGTTTTCACTAG

Purpose

numeric data along genomic coordinates

Inputs

- IRanges (+ chromosome, strand, and data matrix)
- Granges
- various file types (WIG, BedGraph, BigWig, BAM)

Details

• flexible visualization options (e.g., line charts, scatter plots, box plots, bar charts), sample grouping, and data transformations

```
dTrack <- DataTrack(gtf, name = "Gene Count")
plotTracks(dTrack, chromosome = "chr1", from = 1.5e08, to = 1.51e+08)</pre>
```



```
dTrack <- DataTrack(gtf)</pre>
plotTracks(dTrack, chromosome = "chr1", from = 1.5e08, to = 1.51e+08, type = <type>)
```



```
dTrack <- DataTrack(gtf)
plotTracks(dTrack, chromosome = "chr1", from = 1.5e08, to = 1.51e+08,
type = c("a", "p", "confint"))</pre>
```



```
dTrack <- DataTrack(gtf)
colnames(mcols(gtf))
plotTracks(dTrack, chromosome = "chr1", from = 1.5e08, to = 1.51e+08,
type = c("heatmap"), showSampleNames = TRUE, cex.sampleNames = 0.6)</pre>
```



```
dTrack <- DataTrack(gtf, name = "Gene Count",</pre>
                            groups = rep(c("human", "chimp"), each = 3))
plotTracks(dTrack, chromosome = "chr1", from = 1.5e08, to = 1.51e+08, type = <type>)
                                                                                            smooth
                                                                                                                histogram
        boxplot
                             heatmap
                                                                                                                 horizon
                                         dTrack <- DataTrack(gtf, name = "Gene Count", groups = colnames(mcols(gtf)))</pre>
                                         plotTracks(dTrack, chromosome = "chr1", from = 1.5e08, to = 1.51e+08, type =
                                         "horizon", showSampleNames = TRUE, cex.sampleNames = 0.6)
```


Purpose

- simple annotation features with at least start, stop, strand, and chromosome information
- items can be grouped and colored according to type

Inputs

- IRanges (+ chromosome and strand as separate arguments)
- GRanges
- GRangesList
- various file types (WIG, BedGraph, BigWig, BAM)

Details

- overlapping items are stacked for optimal utilization of available plotting space
- depending on the available space and resolution some items may be merged
- additional information for each annotation item can be added by means of the DetailsAnnotationTrack child class

```
annoTrack <- AnnotationTrack()
plotTracks(list(annoTrack, dTrack), from = 1.5e08, to = 1.51e+08)</pre>
```

```
annoTrack <- AnnotationTrack(start = st, end =
ed, strand = str, genome = "hg19", chromosome =
"chr1", feature = "test", group = gr, id =
paste("annTrack item", 1:4), name = "generic
annotation", stacking = "squish")</pre>
```

```
annoTrack <- AnnotationTrack(range =
df, genome = "hg19", chromosome =
"chr1", name = "generic annotation",
stacking = "squish")</pre>
```

```
annoTrack <- AnnotationTrack(range
= gr, name = "generic annotation",
stacking = "squish")</pre>
```



```
shape = "box"
featureAnnotation = "id"
```

```
shape = "ellipse"
featureAnnotation = "feature"
fontcolor.feature = "darkblue"
```

```
groupAnnotation = "group"
just.group = "right"
```

```
groupAnnotation = "group"
  just.group = "above"
```

```
plotTracks(annoTrack, stacking = "dense")
```


plotTracks(denseAnnTrack, showOverplotting = TRUE)

Gviz: Gene Region Track

Purpose

gene model annotations

Inputs

- IRanges (+ chromosome and strand as separate arguments)
- GRanges
- GRangesList
- TranscriptDb
- various file types (WIG, BedGraph, BigWig, BAM)
- direct import from Ensembl via biomaRt interface

Details

 modeling of exon, transcript, and gene relationships; support for human-readable gene symbols and for coding and non-coding elements

Gviz: Gene Region Track

```
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
gTrack <- GeneRegionTrack(txdb, chromosome = "chr1")
plotTracks(gTrack,from = 1.5e08, to = 1.51e+08)</pre>
```

```
head(gene(gTrack))
[1] "100287102" "10028
> head(transcript(gTrack))
[1] "uc010nxq.1" "uc00:
> head(exon(gTrack))
[1] "uc010nxq.1_1" "uc0
> head(symbol(gTrack))
[1] "uc010nxq.1" "uc00:
```

Gviz: Gene Region Track

transcriptAnnotation = "gene"

```
uc010pbv.2
                             uc001euq.4
                                          uc001evj.2
                                                                 uc009wmg.2
                                           uc010pci.1
                             uc009wls.4
                                                                 uc001evw.4
          uc001etx.3
                             uc010pcd.2
                                               uc001evm.2
                                                                  uc009wmf.2
                                               uc001evk.2
          uc010pbx.2
                              uc001eur.4
                                                                  uc001evv.2 HIH
                              uc031por.1
                                               uc001evI.2
                                                                  uc001evu.2
or.1 | uc001etv.4
                             uc009wlt.4
                                                 uc001evn.3
                                                                    uc009wmh.3
             uc001euk.3
                               uc001euv.3
                                                 uc010pcj.2
                                                                     uc001evy.3
etq.3
                               uc001eus.3
                                                                     uc001evz.3
                                                       uc009wma.2
 uc001ets.3 III
               uc001eum 4
                               uc010pce.2
                                                       uc001evp.2
                                                                      uc001ewa 2
  uc021oyc.1
               uc009wlo.3
                               uc009wlu.3
                                                       uc009wmb.2
                                                                         uc001ewk.1
  uc001etu.3
               uc009wlp.2
                               uc021oyd.1
                                                       uc009wmc.2
                                                       uc009wmd.2
  uc001ett.3
               uc010pca.2
                               uc001eut.3
                                                        uc009wme.2
      uc010pbu.2
                               uc010pcf.2
                                                        uc001evs.2
       uc001etw.3
                               uc031pos.1
       uc010pbw.1
                                  uc001euw.3
                                                        uc010pck.2
       uc001evr.2
           uc010pbz.2
                                  uc009wlw.3
                                                        uc021oyg.1
          uc010pby.2
                                  uc001eux.3
           uc001euc 3
                                  uc010pcg.2
                                                                       uc001ewd 3
            uc001eud.3
                                   uc021ove.1
                                                                        uc001ewg.3 📗
           uc001eue.3
                                                                        uc001ewf.3
                                   uc009wlx.3
           uc001ety.2
                                    uc001eva.3
                                                                        uc010pcn.2
           uc001etz.2
                                    uc010pch.2
                                                                        uc001ewh.1
            uc001euh.3
                                     uc001euz.3
                                                                         uc001ewi.1 H-
               uc010pcb.2
                                                                        uc001ewi.1 H
                                     uc021oyf.1
                uc009wlg.1
                                        uc001evc.3
                                                                         uc010pco.1 H
                  uc010pcc.1
                                        uc001evd.3
                                        uc001eve.3
                                         uc001evg.3
                                         uc001evh.3
                                         uc009wlv.3
                                         uc009wlz.1
                                         uc001evf.3
                                         uc001evi.3
```


transcriptAnnotation = "transcript"

Gviz: Biomart Gene Region Track

Gviz: Biomart Gene Region Track

col.line = NULL
col = NULL

stackHeight = 0.3

stackHeight = 0.3
transcriptAnnotation="symbol"

stackHeight = 0.3
transcriptAnnotation="symbol"
collapseTranscripts = TRUE
 shape = "arrow"

Gviz: UCSC Track

plotTracks(list(iTrack, xTrack, knownGenes, refGenes, ensGenes, cpgIslands, snpLocations),
from = 1.5e08, to = 1.51e+08, showTitle = FALSE)

```
knownGenes <- UcscTrack()
refGenes <- UcscTrack()
ensGenes <- UcscTrack()
cpgIslands <- UcscTrack()
snpLocations <- UcscTrack()
xTrack <- GenomeAxisTrack()
iTrack <- IdeogramTrack()</pre>
```


Gviz: Highlighting Regions of Interests

Applying ggplot2 and Gviz to VCF Data

VCF Data: Basic Plots

References and Additional Information

The B Craphics Cookbook by Winston

The R Graphics Cookbook by Winston Chang (examples in base plots and in ggplot2)

ggplot2 web site (http://ggplot2.org)

ggplot2 mailing list (http://goo.gl/OdW3uB), primarily for developers

https://ggplot2.tidyverse.org/#learning-ggplot2

http://r4ds.had.co.nz/data-visualisation.html

http://r4ds.had.co.nz/graphics-for-communication.html

https://www.datacamp.com/courses/data-visualization-with-ggplot2-1

https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

https://learnr.wordpress.com/2010/01/26/ggplot2-quick-heatmap-plotting/

http://www.sthda.com/english/wiki/ggplot2-quick-correlation-matrix-heatmap-r-software-and-

data-visualization

https://jcoliver.github.io/learn-r/008-ggplot-dendrograms-and-heatmaps.html

https://bioconductor.org/packages/devel/bioc/vignettes/Gviz/inst/doc/Gviz.pdf

http://genomicsclass.github.io/book/pages/visualizing_NGS.html

https://www.biostars.org/p/18954/

https://cran.r-project.org/web/packages/egg/vignettes/Ecosystem.html

https://bioconductor.org/packages/release/bioc/vignettes/ggbio/inst/doc/ggbio.pdf

http://www.sthda.com/english/wiki/ggbio-visualize-genomic-data

https://ggvis.rstudio.com/

https://knausb.github.io/vcfR_documentation/

https://cran.r-project.org/web/packages/vcfR/vignettes/intro_to_vcfR.html

Shared scripts from the Gilad lab at UChicago

Florian Hahne's Visualizing genomic features with the Gviz package (December 10, 2012)

Allan Just and Andrew Rundle's EPIC Short Course (June 23, 2011)

Karthik Ram's Data Visualization with R & ggplot2 (September 2, 2013)

Roger Peng's Plotting with ggplot2: Part 1 https://www.youtube.com/watch?v=HeqHMM4ziXA