MTH-204: Worksheet 9

12 April, 2023

Consider the Legendre's differential equation

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0, n = constant$$

Any solution of this equation is called Legendre's function. Let k = n(n + 1).

1. Substitute $y = \sum_{m=0}^{\infty} a_m x^m$ in Legendre's equation and arrive at (1)

$$\sum_{s=0}^{\infty} (s+2)(s+1)a_{s+2}x^s - \sum_{s=2}^{\infty} s(s-1)a_sx^s - \sum_{s=1}^{\infty} 2sa_sx^s + \sum_{s=0}^{\infty} ka_sx^s = 0$$

2. Find a general formula for a_s by equating $x^0, x^1 \& x^n, n \ge 2$ coefficients equal to zero. (1)

(1)

3. Show that series solution is of the form

$$y(x) = a_0 y_1(x) + a_1 y_2(x)$$

where $y_1(x)$ contains only even powers of x while $y_2(x)$ contains only odd powers of x.

- 4. Find first four terms of $y_1(x) \& y_2(x)$. (2)
- 5. Recall that k = n(n + 1). Show that when n is a non-negative even integer $y_1(x)$ reduces to a polynomial and when n is a non-negative odd integer $y_2(x)$ reduces to a polynomial.
- 6. For k = n(n+1) & $n \ge 0$ an integer, if we choose highest coefficient a_n of polynomial $y_1(x)$ or $y_2(x)$ (depending on if n is even or odd), find $p_0(x)$, $p_1(x)$, $p_2(x)$, $p_3(x)$, $p_4(x)$ & $p_5(x)$ where $p_n(x)$ is n^{th} Legendre polynomial. Note that

$$p_n(x) = \begin{cases} y_1(x) & \text{if } n \text{ even} \\ y_2(x) & \text{if } n \text{ odd} \end{cases}$$

and highest coefficient $a_n = \frac{(n!)^2}{2^n(n+1)!}$