ЛАБОРАТОРНАЯ РАБОТА №114

ИЗУЧЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА НА УСТАНОВКЕ С БИПРИЗМОЙ ФРЕНЕЛЯ

Поляков Даниил, 19.Б23-ф3

Цель работы: познакомиться с явлением интерференции на установке с бипризмой Френеля, определить длину волны оптического излучения источника.

Оборудование

- оптическая скамья;
- натриевая лампа с оптической щелью;
- бипризма Френеля;
- объектив (тонкая собирающая линза);
- окулярный микрометр.

Работа проводилась на установке №4.

Расчётные формулы

• Расстояние между двумя положениями объектива:

$$d = |x_2 - x_1|$$

 x_1, x_2 — положения объектива, при которых чётко видно изображение двух мнимых источников света.

• Расстояние между экраном и источником света:

$$L = d\frac{\sqrt{R_1} + \sqrt{R_2}}{\sqrt{R_1} - \sqrt{R_2}}$$

d — расстояние между двумя положениями объектива; R_1, R_2 — расстояние между изображениями мнимых источников при первом и втором положении объектива.

• Расстояние между мнимыми источниками света:

$$2t = \sqrt{R_1 R_2}$$

 R_1 , R_2 — расстояние между изображениями мнимых источников при первом и втором положении объектива.

• Положения максимумов/минимумов интенсивности интерференционной картины:

$$y=\sigma m+y_0$$
 σ — ширина полосы интерференции; $m=0,\pm 1,\pm 2,\ldots$ — номер максимума; Для минимумов: $m=\pm 0.5,\pm 1.5,\pm 2.5,\ldots$; y_0 — положение главного ($m=0$) максимума.

• Ширина полосы интерференции:

$$\sigma=\lambda \frac{L}{2t}$$
 λ — длина волны источника света; L — расстояние между источником света и окуляром; $2t$ — расстояние между мнимыми источниками света.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность прямых измерений:

$$\Delta_{\bar{\textbf{x}}} = \sqrt{t^2 \frac{\displaystyle\sum_{i=1}^{n} (x_i - \bar{\textbf{x}})^2}{n(n-1)} + (\Delta_{\textbf{x}, \text{сист}})^2} \qquad \begin{array}{c} n - \text{количество измерений;} \\ t - \text{коэффициент Стьюдента;} \\ \Delta_{\textbf{x}, \text{сист}} - \text{систематическая погрешность.} \end{array}$$

• Абсолютная погрешность косвенных измерений:

$$\begin{split} & \Delta_{f(x_1, x_2, \ldots)} = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta_{x_2}\right)^2 + \ldots} \\ & \circ \quad \Delta_d = \sqrt{\left(\frac{\partial d}{\partial x_1} \cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial d}{\partial x_2} \cdot \Delta_{x_2}\right)^2} = \sqrt{\Delta_{x_1}^2 + \Delta_{x_2}^2} \\ & \circ \quad \Delta_L = \sqrt{\left(\frac{\partial L}{\partial d} \cdot \Delta_d\right)^2 + \left(\frac{\partial L}{\partial R_1} \cdot \Delta_{R_1}\right)^2 + \left(\frac{\partial L}{\partial R_2} \cdot \Delta_{R_2}\right)^2} = \\ & = \frac{1}{\sqrt{R_1 R_2} (\sqrt{R_1} - \sqrt{R_2})^2} \sqrt{\left(\sqrt{R_1 R_2} (R_1 - R_2) \cdot \Delta_d\right)^2 + \left(dR_2 \cdot \Delta_{R_1}\right)^2 + \left(dR_1 \cdot \Delta_{R_2}\right)^2} \\ & \circ \quad \Delta_{2t} = \sqrt{\left(\frac{\partial 2t}{\partial R_1} \cdot \Delta_{R_1}\right)^2 + \left(\frac{\partial 2t}{\partial R_2} \cdot \Delta_{R_2}\right)^2} = \frac{1}{2\sqrt{R_1 R_2}} \sqrt{\left(R_2 \cdot \Delta_{R_1}\right)^2 + \left(R_1 \cdot \Delta_{R_2}\right)^2} \end{split}$$

Порядок измерений

- 1. Юстируем бипризму и окуляр так, чтобы была чётко видна интерференционная картина и при этом не происходило её смещения при перемещении окуляра.
- 2. Выбираем такое положение окуляра x_0 , при котором имеются два положения объектива, дающие чёткое изображение двух источников. Передвигая объектив, получаем чёткое изображение и снимаем положение x_1 объектива с линейки оптической скамьи по одному из краёв рейтера. Используя окулярный микрометр, измеряем расстояние R_1 между изображениями мнимых источников при данном положении объектива. Затем, при таком же положении окуляра и бипризмы, получаем чёткое изображение при другом положении объектива, измеряем это положение x_2 и расстояние x_2 между изображениями мнимых источников. Повторяем измерения x_1 , x_2 , x_3 , x_4 , x_5 , x_6 ещё два раза при неизменном положении окуляра.
- 3. Убираем объектив с оптической скамьи и получаем интерференционную картину в окуляре. Используя окулярный микрометр, измеряем положения y трёх минимумов слева и трёх минимумов справа от главного максимума.
- 4. Передвигаем окуляр в новое положение x_0 и проводим аналогичные измерения величин x_1 , R_1 , x_2 , R_2 , y, описанные в пунктах 2—3. Всего проводим измерения для трёх различных положений окуляра и неизменном положении бипризмы.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB. Погрешности прямых измерений и коэффициентов аппроксимации рассчитаны с доверительной вероятностью P = 95%.

Приборную погрешность шкалы оптической скамьи примем равной половине цены деления: $\Delta_{x,\,{\rm сист}}=0.05$ см.

Приборную погрешность окулярного микрометра примем равной половине цены деления: $\Delta_{R. \, \text{сист}} = \Delta_{v. \, \text{сист}} = 0.005 \, \text{мм}$.

Таблица 1. Расстояние между источником света и окуляром и расстояние между мнимыми источниками света при разных положениях окуляра

<i>X</i> ₀ , CM	<i>X</i> ₁ , CM	\bar{X}_1 , CM	X_2 , CM	\bar{X}_2 , CM	R_1 , MM	$ar{R}_1$, mm	R_2 , MM	$ar{R}_2$, mm	<i>d</i> , см	L, cm	2 <i>t</i> , мм
55	26.4	26.4 ± 0.2	41.4	41.4 ± 0.2	1.66	1.63 ± 0.07	0.40	0.43	110	4.0	0.04
	26.4		41.4		1.60		0.43	0.43	14.9	46	0.84
	26.5		41.3		1.63		0.46	± 0.07	± 0.2	± 6	± 0.08
60	24.9	25.0 ± 0.3	47.8	47.80 ± 0.05	2.18	2.18 ± 0.02	0.37	0.26	22.0	F 4	0.00
	25.0		47.8		2.17		0.35	0.36	22.8	54	0.89
	25.1		47.8		2.18		0.37	± 0.03	± 0.3	± 2	± 0.04
65	24.2	24.2 ± 0.2	53.4	53.4 ± 0.2	2.55	2.59 ± 0.09	0.30	0.20	20.2	F0	0.00
	24.3		53.5		2.62		0.28	0.30 ± 0.04	29.2	59 ± 3	0.88
	24.2		53.4		2.60		0.31	± 0.04	± 0.2	_ ± 5	± 0.06

Таблица 2. Ширина полосы интерференции при разных положениях окуляра

<i>X</i> ₀ , CM	L, cm	2t, мм	m	y, mm	Ø, MM
			-2.5	0.21	
			-1.5	0.55	
55	46	0.84	-0.5	0.91	0.36
55	± 6	± 0.08	0.5	1.24	± 0.02
			1.5	1.66	
			2.5	2.01	
			-2.5	0.18	
			-1.5	0.54	
60	54	0.89	-0.5	0.94	0.394
	± 2	± 0.04	0.5	1.31	± 0.015
			1.5	1.75	
			2.5	2.14	
			-2.5	0.96	
			-1.5	1.37	
65	59	0.88	-0.5	1.82	0.429
	± 3	± 0.06	0.5	2.20	± 0.015
			1.5	2.67	
			2.5	3.11	

Значения ширины полосы интерференции σ были рассчитаны как коэффициенты пропорциональности линейной аппроксимации полученных зависимостей y(m) при разных положениях окуляра.

График 1. Положения максимумов/минимумов интенсивности интерференционной картины при разных положениях окуляра

При построении графиков положение y_0 главного максимума было принято за 0. Длину волны λ находим как коэффициент пропорциональности зависимости $\sigma\Big(\frac{L}{2t}\Big)$.

График 2. Зависимость ширины полосы интерференции от величины L/2t

Получаем длину волны источника света:

$$\lambda = 640 \pm 20 \text{ HM}$$

Реальные длины волн, излучаемых натриевой лампой: 589.0 и 589.6 нм. Отклонение экспериментального результата от действительного скорее всего связано с отклонением от параксиальной оптики в ходе работы: расстояние между интерференционными полосами увеличивается при удалении от центра интерференционной картины, что связано с недостаточно большим расстоянием между источником света и окуляром. Можно заметить, что, если вычислить длину волны отдельно для каждой точки, с увеличением этого расстояния длина волны уменьшается, т.е. приближается к действительному значению.

Попробуем таким же способом рассчитать длину волны, приняв за ширину интерференционной картины расстояние между ближайшими к центру минимумами:

$$\sigma = y_{0.5} - y_{-0.5}$$

График 3. Зависимость ширины полосы интерференции, вычисленной как расстояние между ближайшими к центру минимумами, от величины L/2t

Получаем длину волны источника света:

$$\lambda = 590 \pm 60 \text{ HM}$$

Полученная таким способом длина волны очень близка к действительной, но погрешность выше, т. к. ширина полосы интерференции в каждом положении окуляра была просто принята равной одному из измерений.

Выводы

Бипризма Френеля позволяет разделить точечный источник света на два когерентных источника, что позволяет наблюдать явление интерференции света. В работе окуляра наблюдалась С помощью картина, интерференционная имевшая непостоянную унидиш полосы интерференции. Была получена длина волны источника света:

$$\lambda = 640 \pm 20 \text{ HM}$$

Реальные длины волн, излучаемых натриевой лампой: 589.0 и 589.6 нм. Отклонение экспериментального результата от действительного скорее всего связано с отклонением от параксиальной оптики в ходе работы. Если принять за ширину интерференционной картины расстояние между ближайшими к центру минимумами и снова рассчитать длину волны, получаем:

$$\lambda = 590 \pm 60 \text{ HM}$$

Полученное таким способом значение ближе к действительному.