4 Komplexitätstheorie

4 Komplexitätstheorie

- 4.1 Die Klassen P und NP
 - 4.1.1 Die Klasse P
 - 4.1.2 Die Klasse NP
 - 4.1.3 P versus NP
- 4.2 NP-Vollständigkeit
- 4.3 NP-vollständige Probleme

4 Komplexitätstheorie

4 Komplexitätstheorie

- 4.1 Die Klassen P und NP
 - 4.1.1 Die Klasse P
 - 4.1.2 Die Klasse NP
 - 4.1.3 P versus NP
- 4.2 NP-Vollständigkeit
- 4.3 NP-vollständige Probleme

Definition 4.10

Eine polynomielle Reduktion einer Sprache $A\subseteq \Sigma_1^*$ auf eine Sprache $B\subseteq \Sigma_2^*$ ist eine Many-One-Reduktion $f\colon \Sigma_1^*\to \Sigma_2^*$, die in polynomieller Zeit berechnet werden kann. Existiert eine solche Reduktion, so heißt A auf B polynomiell reduzierbar und wir schreiben $A\leq_p B$.

Definition 4.10

Eine polynomielle Reduktion einer Sprache $A\subseteq \Sigma_1^*$ auf eine Sprache $B\subseteq \Sigma_2^*$ ist eine Many-One-Reduktion $f\colon \Sigma_1^*\to \Sigma_2^*$, die in polynomieller Zeit berechnet werden kann. Existiert eine solche Reduktion, so heißt A auf B polynomiell reduzierbar und wir schreiben $A\leq_p B$.

Erinnerung: Many-One-Reduktion $f: \Sigma_1^* \to \Sigma_2^*$ erfüllt für alle $x \in \Sigma_1^*$:

$$x \in A \iff f(x) \in B$$
.

Definition 4.10

Eine polynomielle Reduktion einer Sprache $A\subseteq \Sigma_1^*$ auf eine Sprache $B\subseteq \Sigma_2^*$ ist eine Many-One-Reduktion $f\colon \Sigma_1^*\to \Sigma_2^*$, die in polynomieller Zeit berechnet werden kann. Existiert eine solche Reduktion, so heißt A auf B polynomiell reduzierbar und wir schreiben $A\leq_p B$.

Erinnerung: Many-One-Reduktion $f: \Sigma_1^* \to \Sigma_2^*$ erfüllt für alle $x \in \Sigma_1^*$:

$$x \in A \iff f(x) \in B$$
.

Polynomielle Berechenbarkeit:

 $\exists k \in \mathbb{N} : \exists \mathsf{TM} M : \forall x \in \Sigma_1^* : M \text{ berechnet } f(x) \text{ in Zeit } t_M(|x|) = O(|x|^k).$

Theorem 4.11

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\leq_{\rho} B$ gilt.

Ist $B \in P$, so ist auch $A \in P$. Ist $A \notin P$, so ist auch $B \notin P$.

Theorem 4.11

Es seien $A \subseteq \Sigma_1^*$ und $B \subseteq \Sigma_2^*$ zwei Sprachen, für die $A \leq_{\rho} B$ gilt.

Ist $B \in P$, so ist auch $A \in P$. Ist $A \notin P$, so ist auch $B \notin P$.

Beweis: Sei $A \leq_{p} B$ mit polynomieller Reduktion $f \colon \Sigma_{1}^{*} \to \Sigma_{2}^{*}$ und sei $B \in P$.

Sei M_B die TM, die B in polynomieller Zeit entscheidet.

Sei M_f die TM, die f in polynomieller Zeit berechnet.

Theorem 4.11

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\leq_{\rho} B$ gilt.

Ist $B \in P$, so ist auch $A \in P$. Ist $A \notin P$, so ist auch $B \notin P$.

Beweis: Sei $A \leq_{p} B$ mit polynomieller Reduktion $f \colon \Sigma_{1}^{*} \to \Sigma_{2}^{*}$ und sei $B \in P$.

Sei M_B die TM, die B in polynomieller Zeit entscheidet.

Sei M_f die TM, die f in polynomieller Zeit berechnet.

Konstruktion einer TM MA für A:

- 1. Berechne bei einer Eingabe x zunächst f(x) mittels M_f .
- 2. Simuliere anschließend M_B auf f(x).

Theorem 4.11

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\leq_{\rho} B$ gilt.

Ist $B \in P$, so ist auch $A \in P$. Ist $A \notin P$, so ist auch $B \notin P$.

Beweis: Sei $A \leq_p B$ mit polynomieller Reduktion $f \colon \Sigma_1^* \to \Sigma_2^*$ und sei $B \in P$.

Sei M_B die TM, die B in polynomieller Zeit entscheidet.

Sei M_f die TM, die f in polynomieller Zeit berechnet.

Konstruktion einer TM M_A für A:

- 1. Berechne bei einer Eingabe x zunächst f(x) mittels M_f .
- 2. Simuliere anschließend M_B auf f(x).

Korrektheit: Folgt direkt aus der Definition von \leq_p .

Laufzeit: Es gilt

- $t_{M_B}(n) \leq p(n)$ für ein Polynom p,
- $t_{M_f}(n) \le q(n)$ für ein Polynom q.

Laufzeit: Es gilt

- $t_{M_B}(n) \leq p(n)$ für ein Polynom p,
- $t_{M_t}(n) \le q(n)$ für ein Polynom q.

Laufzeit von M_A bei einer Eingabe der Länge n:

$$O(q(n) + p(q(n) + n)).$$

Laufzeit: Es gilt

- $t_{M_B}(n) \leq p(n)$ für ein Polynom p,
- $t_{M_f}(n) \le q(n)$ für ein Polynom q.

Laufzeit von M_A bei einer Eingabe der Länge n:

$$O(q(n) + p(q(n) + n)).$$

Die Verschachtelung zweier Polynome ist wieder ein Polynom.

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V'\subseteq V$ mit $|V'|\le k$, sodass jede Kante aus E zu mindestens einem

Knoten aus V' inzident ist?

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V' \subseteq V$ mit $|V'| \le k$, sodass jede Kante aus E zu mindestens einem

Knoten aus V' inzident ist?

Theorem 4.12

Es gilt CLIQUE \leq_{p} VC.

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V' \subseteq V$ mit $|V'| \le k$, sodass jede Kante aus E zu mindestens einem Knoten aus V' inzident ist?

Theorem 4.12

Es gilt CLIQUE \leq_{ρ} VC.

Beweis: Reduktion f mit f((G, k)) = ((G', k')).

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V' \subseteq V$ mit $|V'| \le k$, sodass jede Kante aus E zu mindestens einem

Knoten aus V' inzident ist?

Theorem 4.12

Es gilt CLIQUE \leq_{ρ} VC.

Beweis: Reduktion f mit f((G, k)) = ((G', k')).

Sei G' = (V', E') mit V' = V.

E' enthält genau die Kanten, die E nicht enthält, d. h.

$$E' = \{\{x,y\} \mid x,y \in V, x \neq y, \{x,y\} \notin E\}.$$

Außerdem sei k' = n - k für n = |V|.

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V' \subseteq V$ mit $|V'| \le k$, sodass jede Kante aus E zu mindestens einem

Knoten aus V' inzident ist?

Theorem 4.12

Es gilt CLIQUE \leq_{p} VC.

Beweis: Reduktion f mit f((G, k)) = ((G', k')).

Sei G' = (V', E') mit V' = V.

E' enthält genau die Kanten, die E nicht enthält, d. h.

$$E' = \{\{x,y\} \mid x,y \in V, x \neq y, \{x,y\} \notin E\}.$$

Außerdem sei k' = n - k für n = |V|.

Reduktion *f* kann in polynomieller Zeit berechnet werden.

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k

zu zeigen: *G* enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Rightarrow ": Sei $C \subseteq V$ eine k-Clique in G.

Dann ist $D = V \setminus C$ ein Vertex Cover in G' der Größe $k' = n - k = |V \setminus C|$.

zu zeigen: *G* enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Rightarrow ": Sei $\mathbb{C} \subseteq V$ eine k-Clique in G.

Dann ist $D = V \setminus C$ ein Vertex Cover in G' der Größe $k' = n - k = |V \setminus C|$.

Annahme: D kein VC in G'.

 \Rightarrow Es existiert $\{x,y\} \in E'$ mit $x \notin D$ und $y \notin D$, also $x,y \in C$.

zu zeigen: *G* enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Rightarrow ": Sei $C \subseteq V$ eine k-Clique in G.

Dann ist $D = V \setminus C$ ein Vertex Cover in G' der Größe $k' = n - k = |V \setminus C|$.

Annahme: D kein VC in G'.

 \Rightarrow Es existiert $\{x,y\} \in E'$ mit $x \notin D$ und $y \notin D$, also $x,y \in C$.

 $\Rightarrow \{x,y\} \in E \text{ (da } C \text{ Clique in } G)$

zu zeigen: *G* enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Rightarrow ": Sei $C \subseteq V$ eine k-Clique in G.

Dann ist $D = V \setminus C$ ein Vertex Cover in G' der Größe $k' = n - k = |V \setminus C|$.

Annahme: D kein VC in G'.

- \Rightarrow Es existiert $\{x,y\} \in E'$ mit $x \notin D$ und $y \notin D$, also $x,y \in C$.
- $\Rightarrow \{x,y\} \in E \text{ (da } C \text{ Clique in } G)$
- $\Rightarrow \{x,y\} \notin E'$

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Leftarrow ": Sei $D \subseteq V' = V$ ein Vertex Cover der Größe k' in G'. Dann ist $C = V \setminus D$ eine k-Clique in G für $k = |V \setminus D| = n - k'$.

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k

" \Leftarrow ": Sei $D \subseteq V' = V$ ein Vertex Cover der Größe k' in G'.

Dann ist $C = V \setminus D$ eine k-Clique in G für $k = |V \setminus D| = n - k'$.

Annahme: C keine Clique in G.

 \Rightarrow Es existieren $x, y \in C$ mit $\{x, y\} \notin E$.

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k

" \Leftarrow ": Sei D ⊆ V′ = V ein Vertex Cover der Größe k′ in G'.

Dann ist $C = V \setminus D$ eine k-Clique in G für $k = |V \setminus D| = n - k'$.

Annahme: C keine Clique in G.

 \Rightarrow Es existieren $x, y \in C$ mit $\{x, y\} \notin E$.

 $\Rightarrow \{x,y\} \in E'$.

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k

" \Leftarrow ": Sei $D \subseteq V' = V$ ein Vertex Cover der Größe k' in G'.

Dann ist $C = V \setminus D$ eine k-Clique in G für $k = |V \setminus D| = n - k'$.

Annahme: C keine Clique in G.

 \Rightarrow Es existieren $x, y \in C$ mit $\{x, y\} \notin E$.

 $\Rightarrow \{x,y\} \in E'$.

 $\Rightarrow x \in D$ oder $y \in D$ (da D Vertex Cover in G')

Kürzeste-Wege-Problem:

Eingabe: gerichteter Graph G=(V,E) mit $w\colon E\to \mathbb{N}_0$, Start $s\in V$, Ziel $t\in V,\ W\in \mathbb{N}_0$

Frage: Existiert in G ein s-t-Weg P mit Gewicht $\sum_{e \in P} w(e)$ höchstens W?

beschränktes Kürzeste-Wege-Problem (BKWP):

Eingabe: gerichteter Graph G = (V, E) mit $w: E \to \mathbb{N}_0$, $\mathbf{c}: \mathbf{E} \to \mathbb{N}_0$, Start $s \in V$, Ziel $t \in \mathbb{N}_0$

 $V, W \in \mathbb{N}_0, \mathbf{C} \in \mathbb{N}_0$

Frage: Existiert in G ein s-t-Weg P mit Gewicht $\sum_{e \in P} w(e)$ höchstens W und Kosten

 $\sum_{e \in P} c(e)$ höchstens C?

beschränktes Kürzeste-Wege-Problem (BKWP):

Eingabe: gerichteter Graph G = (V, E) mit $w : E \to \mathbb{N}_0$, $\mathbf{c} : \mathbf{E} \to \mathbb{N}_0$, Start $s \in V$, Ziel $t \in \mathbb{N}_0$

 $V, W \in \mathbb{N}_0, \mathbf{C} \in \mathbb{N}_0$

Frage: Existiert in G ein s-t-Weg P mit Gewicht $\sum_{e \in P} w(e)$ höchstens W und Kosten

 $\sum_{e \in P} c(e)$ höchstens C?

Theorem 4.13

Es gilt KP \leq_p BKWP.

Beweis:

Eingabe \mathcal{I} für KP:

Nutzenwerte p_1, \ldots, p_n , Gewichte w_1, \ldots, w_n , Kapazität t, Nutzenschranke z

Beweis:

Eingabe \mathcal{I} für KP:

Nutzenwerte p_1, \ldots, p_n , Gewichte w_1, \ldots, w_n , Kapazität t, Nutzenschranke z

Konstruiere daraus Eingabe \mathcal{I}' für BKWP: $P = \max_i p_i$, $\tilde{p}_i = P - p_i$, W = t, C = nP - z

Beweis:

Eingabe \mathcal{I} für KP:

Nutzenwerte p_1, \ldots, p_n , Gewichte w_1, \ldots, w_n , Kapazität t, Nutzenschranke z

Konstruiere daraus Eingabe \mathcal{I}' für BKWP: $P = \max_i p_i$, $\tilde{p}_i = P - p_i$, W = t, C = nP - z

zu zeigen:
$$\exists I \subseteq \{1,\ldots,n\}: \sum_{i\in I} p_i \geq z \text{ und } \sum_{i\in I} w_i \leq t$$

$$\iff$$

$$\exists \ s ext{-}t' ext{-} ext{Pfad}\ T \ ext{in}\ G ext{:} \ \sum_{e\in T} w(e) \leq W \ ext{und}\ \sum_{e\in T} c(e) \leq C$$

$$P = \max_i p_i \text{ und } \tilde{p}_i = P - p_i W = t C = nP - z$$

"⇒": Annahme: $\exists I \subseteq \{1, ..., n\} : \sum_{i \in I} p_i \ge z \text{ und } \sum_{i \in I} w_i \le t$

$$P = \max_i p_i \text{ und } \tilde{p}_i = P - p_i W = t C = nP - z$$

"⇒": Annahme:
$$\exists I \subseteq \{1, ..., n\} : \sum_{i \in I} p_i \ge z \text{ und } \sum_{i \in I} w_i \le t$$

Konstruiere s-t'-Weg T in G, der für $i \in I$ die (w_i, \tilde{p}_i) -Kante nutzt und für $i \notin I$ die (0, P)-Kante.

$$P = \max_i p_i \text{ und } \tilde{p}_i = P - p_i W = t C = nP - z$$

"⇒": Annahme:
$$\exists I \subseteq \{1, ..., n\} : \sum_{i \in I} p_i \ge z \text{ und } \sum_{i \in I} w_i \le t$$

Konstruiere s-t'-Weg T in G, der für $i \in I$ die (w_i, \tilde{p}_i) -Kante nutzt und für $i \notin I$ die (0, P)-Kante.

Es gilt
$$\sum_{i \in I} w_i + \sum_{i \notin I} 0 = \sum_{i \in I} w_i \le t = W$$

$$P = \max_i p_i \text{ und } \tilde{p}_i = P - p_i W = t C = nP - z$$

"⇒": Annahme:
$$\exists I \subseteq \{1, ..., n\} : \sum_{i \in I} p_i \ge z \text{ und } \sum_{i \in I} w_i \le t$$

Konstruiere s-t'-Weg T in G, der für $i \in I$ die (w_i, \tilde{p}_i) -Kante nutzt und für $i \notin I$ die (0, P)-Kante.

Es gilt
$$\sum_{i \in I} w_i + \sum_{i \notin I} 0 = \sum_{i \in I} w_i \le t = W$$
 und

$$\sum_{i\in I} \tilde{p}_i + \sum_{i\notin I} P = \sum_{i\in I} (P-p_i) + \sum_{i\notin I} P = nP - \sum_{i\in I} p_i \leq nP - z = C.$$

$$P = \max_i p_i \text{ und } \tilde{p}_i = P - p_i W = t C = nP - z$$

"⇐": Annahme: $\exists s$ -t′-Weg mit $w(T) \le W$ und $c(T) \le C$.

$$P = \max_i p_i \text{ und } \tilde{p}_i = P - p_i W = t C = nP - z$$

"⇐": Annahme: $\exists s$ -t′-Weg mit $w(T) \le W$ und $c(T) \le C$.

Konstruiere Lösung / für KP: Es sei $i \in I$ genau dann, wenn T die (w_i, \tilde{p}_i) -Kante nutzt.

$$P = \max_i p_i \text{ und } \tilde{p}_i = P - p_i W = t C = nP - z$$

"⇐": Annahme: $\exists s$ -t′-Weg mit $w(T) \le W$ und $c(T) \le C$.

Konstruiere Lösung / für KP: Es sei $i \in I$ genau dann, wenn T die (w_i, \tilde{p}_i) -Kante nutzt.

Es gilt
$$\sum_{i \in I} w_i = \sum_{e \in T} w(e) \le W = t$$

$$P = \max_i p_i \text{ und } \tilde{p}_i = P - p_i W = t C = nP - z$$

"⇐": Annahme: $\exists s$ -t′-Weg mit $w(T) \le W$ und $c(T) \le C$.

Konstruiere Lösung / für KP: Es sei $i \in I$ genau dann, wenn T die (w_i, \tilde{p}_i) -Kante nutzt.

Es gilt
$$\sum_{i \in I} w_i = \sum_{e \in T} w(e) \le W = t$$
 und

$$c(T) = \sum_{i \in I} \tilde{p}_i + \sum_{i \notin I} P = \sum_{i \in I} (P - p_i) + \sum_{i \notin I} P = nP - \sum_{i \in I} p_i \leq C = nP - z.$$

$$P = \max_i p_i$$
 und $\tilde{p}_i = P - p_i$ $W = t$ $C = nP - z$

"⇐": Annahme:
$$\exists s$$
- t ′-Weg mit $w(T) \le W$ und $c(T) \le C$.

Konstruiere Lösung / für KP: Es sei $i \in I$ genau dann, wenn T die (w_i, \tilde{p}_i) -Kante nutzt.

Es gilt $\sum_{i \in I} w_i = \sum_{e \in T} w(e) \le W = t$ und

$$c(T) = \sum_{i \in I} \tilde{p}_i + \sum_{i \notin I} P = \sum_{i \in I} (P - p_i) + \sum_{i \notin I} P = nP - \sum_{i \in I} p_i \leq C = nP - z.$$

Daraus folgt

$$\sum_{i} p_i \geq z$$
.

Übung: $A \leq_{p} B$ und $B \leq_{p} C \Rightarrow A \leq_{p} C$.

Übung: $A \leq_{p} B$ und $B \leq_{p} C \Rightarrow A \leq_{p} C$.

Definition 4.14

Eine Sprache L heißt NP-schwer, wenn $L' \leq_p L$ für jede Sprache $L' \in NP$ gilt. Ist eine Sprache L NP-schwer und gilt zusätzlich $L \in NP$, so heißt L NP-vollständig.

Übung: $A \leq_{\rho} B$ und $B \leq_{\rho} C \Rightarrow A \leq_{\rho} C$.

Definition 4.14

Eine Sprache L heißt NP-schwer, wenn $L' \leq_p L$ für jede Sprache $L' \in NP$ gilt. Ist eine Sprache L NP-schwer und gilt zusätzlich $L \in NP$, so heißt L NP-vollständig.

Theorem 4.15

Gibt es eine NP-schwere Sprache $L \in P$, so gilt P = NP.

Übung: $A \leq_{p} B$ und $B \leq_{p} C \Rightarrow A \leq_{p} C$.

Definition 4.14

Eine Sprache L heißt NP-schwer, wenn $L' \leq_p L$ für jede Sprache $L' \in NP$ gilt. Ist eine Sprache L NP-schwer und gilt zusätzlich $L \in NP$, so heißt L NP-vollständig.

Theorem 4.15

Gibt es eine NP-schwere Sprache $L \in P$, so gilt P = NP.

Beweis: Sei $L' \in NP$ beliebig. Dann gilt $L' \leq_{p} L$. Wegen $L \in P$ folgt daraus $L' \in P$.

Übung: $A \leq_{p} B$ und $B \leq_{p} C \Rightarrow A \leq_{p} C$.

Definition 4.14

Eine Sprache L heißt NP-schwer, wenn $L' \leq_p L$ für jede Sprache $L' \in NP$ gilt. Ist eine Sprache L NP-schwer und gilt zusätzlich $L \in NP$, so heißt L NP-vollständig.

Theorem 4.15

Gibt es eine NP-schwere Sprache $L \in P$, so gilt P = NP.

Beweis: Sei $L' \in NP$ beliebig. Dann gilt $L' \leq_p L$. Wegen $L \in P$ folgt daraus $L' \in P$.

Korollar 4.16

Es sei L eine NP-vollständige Sprache. Dann gilt $L \in P$ genau dann, wenn P = NP gilt.

Definition 4.17

Eine Formel der Form x oder $\neg x$ für eine Variable x heißt Literal. Ein Literal x nennen wir positives Literal und ein Literal $\neg x$ nennen wir negatives Literal.

Eine aussagenlogische Formel φ ist in konjunktiver Normalform (KNF), wenn sie eine Konjunktion von Disjunktionen von Literalen ist, d. h. wenn sie die Gestalt

$$\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \ell_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \in \mathbb{N}$ gilt und $\ell_{i,j}$ für jedes i und j ein Literal ist.

Die Teilformeln $\bigvee_{i=1}^{m_i} \ell_{i,j}$ nennen wir die Klauseln von φ .

Definition 4.17

Eine Formel der Form x oder $\neg x$ für eine Variable x heißt Literal. Ein Literal x nennen wir positives Literal und ein Literal $\neg x$ nennen wir negatives Literal.

Eine aussagenlogische Formel φ ist in konjunktiver Normalform (KNF), wenn sie eine Konjunktion von Disjunktionen von Literalen ist, d. h. wenn sie die Gestalt

$$\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \ell_{i,j} \right)$$

hat, wobei $n, m_1, \ldots, m_n \in \mathbb{N}$ gilt und $\ell_{i,j}$ für jedes i und j ein Literal ist.

Die Teilformeln $\bigvee_{i=1}^{m_i} \ell_{i,j}$ nennen wir die Klauseln von φ .

SAT: Entscheide für gegebene Formel φ in KNF, ob sie eine **erfüllende Belegung** besitzt.

Theorem 4.18 (Satz von Cook und Levin)

SAT ist NP-vollständig.

Theorem 4.18 (Satz von Cook und Levin)

SAT ist NP-vollständig.

Beweis:

SAT ∈ NP: Beweis analog zu CLIQUE und zum Rucksackproblem

Theorem 4.18 (Satz von Cook und Levin)

SAT ist NP-vollständig.

Beweis:

SAT ∈ NP: Beweis analog zu CLIQUE und zum Rucksackproblem

SAT ist NP-schwer: Sei $L \in NP$ beliebig. Zu zeigen: $L \leq_p SAT$.

Theorem 4.18 (Satz von Cook und Levin)

SAT ist NP-vollständig.

Beweis:

SAT ∈ NP: Beweis analog zu CLIQUE und zum Rucksackproblem

SAT ist NP-schwer: Sei $L \in \mathsf{NP}$ beliebig. Zu zeigen: $L \leq_{\rho} \mathsf{SAT}$.

Es gibt NTM $M=(Q,\Sigma,\Gamma,\Box,q_0,\bar{q},\delta)$, die L in polynomieller Zeit entscheidet.

Sei p ein Polynom, sodass $t_M(n) \le p(n)$ für alle $n \in \mathbb{N}$ gilt.

Theorem 4.18 (Satz von Cook und Levin)

SAT ist NP-vollständig.

Beweis:

SAT ∈ NP: Beweis analog zu CLIQUE und zum Rucksackproblem

SAT ist NP-schwer: Sei $L \in \mathsf{NP}$ beliebig. Zu zeigen: $L \leq_{\rho} \mathsf{SAT}$.

Es gibt NTM $M = (Q, \Sigma, \Gamma, \Box, q_0, \bar{q}, \delta)$, die L in polynomieller Zeit entscheidet.

Sei p ein Polynom, sodass $t_M(n) \leq p(n)$ für alle $n \in \mathbb{N}$ gilt.

Ziel: Finde polynomiell berechenbare Funktion $f \colon \Sigma^* \to \{0,1\}^*$, die $x \in \Sigma^*$ in eine aussagenlogische Formel f(x) in KNF übersetzt, sodass

$$x \in L \iff f(x)$$
 ist erfüllbar.

Idee: Simuliere mithilfe der Formel $\varphi = f(x)$ die NTM M auf der Eingabe x.

Idee: Simuliere mithilfe der Formel $\varphi = f(x)$ die NTM M auf der Eingabe x.

Seien K und K' Konfigurationen von M.

Gibt es in K einen Rechenschritt, der zu K' führt, so schreiben wir $K \vdash K'$.

Idee: Simuliere mithilfe der Formel $\varphi = f(x)$ die NTM M auf der Eingabe x.

Seien K und K' Konfigurationen von M.

Gibt es in K einen Rechenschritt, der zu K' führt, so schreiben wir $K \vdash K'$.

 K_0 sei die initiale Konfiguration

Idee: Simuliere mithilfe der Formel $\varphi = f(x)$ die NTM M auf der Eingabe x.

Seien K und K' Konfigurationen von M.

Gibt es in K einen Rechenschritt, der zu K' führt, so schreiben wir $K \vdash K'$.

K₀ sei die initiale Konfiguration

 φ soll genau dann erfüllbar sein, wenn es eine Folge von Konfigurationen K_1, K_2, \ldots, K_ℓ mit $\ell \leq p(n)$ und $K_0 \vdash K_1 \vdash K_2 \vdash \ldots \vdash K_\ell$ gibt, wobei K_ℓ eine akzeptierende Endkonfiguration ist.

Modifikation von M: Füge neuen Zustand q_{akz} hinzu. Geht M in \bar{q} über und akzeptiert x, so wird stattdessen q_{akz} erreicht und nicht mehr verlassen.

Modifikation von M: Füge neuen Zustand q_{akz} hinzu. Geht M in \bar{q} über und akzeptiert x, so wird stattdessen q_{akz} erreicht und nicht mehr verlassen.

Modifikation von M: Füge neuen Zustand q_{akz} hinzu. Geht M in \bar{q} über und akzeptiert x, so wird stattdessen q_{akz} erreicht und nicht mehr verlassen.

 \Rightarrow Nur noch Rechenwege der Länge genau p(n) relevant.

Modifikation von M: Füge neuen Zustand q_{akz} hinzu. Geht M in \bar{q} über und akzeptiert x, so wird stattdessen q_{akz} erreicht und nicht mehr verlassen.

 \Rightarrow Nur noch Rechenwege der Länge genau p(n) relevant.

Ziel der Konstruktion:

Die Formel φ ist **genau dann erfüllbar**, wenn es eine Folge von Konfigurationen $K_1, K_2, \ldots, K_{p(n)}$ von M mit $K_0 \vdash K_1 \vdash K_2 \vdash \ldots \vdash K_{p(n)}$ gibt, wobei in $K_{p(n)}$ der Zustand q_{akz} angenommen wird und K_0 die initiale Konfiguration von M bei Eingabe x ist.

Definition der Variablen: Die Variablen codieren die Konfigurationen $K_0, \ldots, K_{p(n)}$.

Definition der Variablen: Die Variablen codieren die Konfigurationen $K_0, \ldots, K_{p(n)}$.

• Q(t,q) für $t \in \{0,\ldots,p(n)\}$ und $q \in Q$

$$Q(t,q) = \begin{cases} 1 & \text{falls in } K_t \text{ Zustand q angenommen wird} \\ 0 & \text{sonst} \end{cases}$$

Definition der Variablen: Die Variablen codieren die Konfigurationen $K_0, \ldots, K_{p(n)}$.

• Q(t,q) für $t \in \{0,\ldots,p(n)\}$ und $q \in Q$

$$Q(t,q) = \begin{cases} 1 & \text{falls in K}_t \text{ Zustand q angenommen wird} \\ 0 & \text{sonst} \end{cases}$$

• H(t,j) für $t \in \{0,\ldots,p(n)\}$ und $j \in \{-p(n),\ldots,p(n)\}$ $H(t,j) = \begin{cases} 1 & \text{falls Kopf in K}_t \text{ auf Zelle j steht} \\ 0 & \text{sonst} \end{cases}$

Definition der Variablen: Die Variablen codieren die Konfigurationen $K_0, \ldots, K_{p(n)}$.

• Q(t,q) für $t \in \{0,\ldots,p(n)\}$ und $q \in Q$

$$Q(t,q) = \begin{cases} 1 & \text{falls in K}_t \text{ Zustand q angenommen wird} \\ 0 & \text{sonst} \end{cases}$$

• H(t,j) für $t \in \{0, ..., p(n)\}$ und $j \in \{-p(n), ..., p(n)\}$

$$H(t,j) = \begin{cases} 1 & \text{falls Kopf in K}_t \text{ auf Zelle j steht} \\ 0 & \text{sonst} \end{cases}$$

• S(t,j,a) für $t \in \{0,\ldots,p(n)\}, j \in \{-p(n),\ldots,p(n)\}$ und $a \in \Gamma$ $S(t,j,a) = \begin{cases} 1 & \text{falls Zelle j in } K_t \text{ das Zeichen a enthält} \\ 0 & \text{sonst} \end{cases}$

Definition der Variablen: Die Variablen codieren die Konfigurationen $K_0, \ldots, K_{p(n)}$.

• Q(t,q) für $t \in \{0,\ldots,p(n)\}$ und $q \in Q$

$$Q(t,q) = \begin{cases} 1 & \text{falls in } K_t \text{ Zustand q angenommen wird} \\ 0 & \text{sonst} \end{cases}$$

• H(t,j) für $t \in \{0, ..., p(n)\}$ und $j \in \{-p(n), ..., p(n)\}$

$$H(t,j) = \begin{cases} 1 & \text{falls Kopf in K}_t \text{ auf Zelle j steht} \\ 0 & \text{sonst} \end{cases}$$

• S(t, j, a) für $t \in \{0, ..., p(n)\}, j \in \{-p(n), ..., p(n)\}$ und $a \in \Gamma$

$$S(t,j,a) = \begin{cases} 1 & \text{falls Zelle j in } K_t \text{ das Zeichen a enthält} \\ 0 & \text{sonst} \end{cases}$$

Anzahl Variablen polynomiell in n, denn p ist Polynom und |Q| und $|\Gamma|$ sind Konstanten.

Codierung einzelner Konfigurationen:

Ziel: Stelle sicher, dass die Variablen für festes $t \in \{0, \dots, p(n)\}$

eine Konfiguration K_t codieren.

Codierung einzelner Konfigurationen:

Ziel: Stelle sicher, dass die Variablen für festes $t \in \{0, ..., p(n)\}$ eine Konfiguration K_t codieren.

Konkret: Jede erfüllende Belegung von φ muss dergestalt sein,

• dass es genau ein $q \in Q$ mit Q(t,q) = 1 gibt,

Codierung einzelner Konfigurationen:

Ziel: Stelle sicher, dass die Variablen für festes $t \in \{0, ..., p(n)\}$ eine Konfiguration K_t codieren.

Konkret: Jede erfüllende Belegung von φ muss dergestalt sein,

- dass es genau ein q ∈ Q mit Q(t, q) = 1 gibt,
- dass es genau ein j $\in \{-p(n), \dots, p(n)\}$ mit H(t, j) = 1 gibt und

Codierung einzelner Konfigurationen:

Ziel: Stelle sicher, dass die Variablen für festes $t \in \{0, ..., p(n)\}$ eine Konfiguration K_t codieren.

Konkret: Jede erfüllende Belegung von φ muss dergestalt sein,

- dass es genau ein $q \in Q$ mit Q(t,q) = 1 gibt,
- dass es genau ein j $\in \{-p(n), \ldots, p(n)\}$ mit H(t,j)=1 gibt und
- dass es für jedes $j \in \{-p(n), \dots, p(n)\}$ genau ein $a \in \Gamma$ mit S(t, j, a) = 1 gibt.

Für diese Bedingungen muss jeweils für eine Variablenmenge codiert werden, dass genau eine der Variablen auf 1 und alle anderen auf 0 gesetzt sind.

Für diese Bedingungen muss jeweils für eine Variablenmenge codiert werden, dass genau eine der Variablen auf 1 und alle anderen auf 0 gesetzt sind.

Für eine Variablenmenge $\{y_1, \dots, y_m\}$ kann dies durch die Formel

$$(y_1 \vee \ldots \vee y_m) \wedge \bigwedge_{i \neq j} (\neg y_i \vee \neg y_j)$$

in KNF erreicht werden.

Für diese Bedingungen muss jeweils für eine Variablenmenge codiert werden, dass genau eine der Variablen auf 1 und alle anderen auf 0 gesetzt sind.

Für eine Variablenmenge $\{y_1, \dots, y_m\}$ kann dies durch die Formel

$$(y_1 \vee \ldots \vee y_m) \wedge \bigwedge_{i \neq j} (\neg y_i \vee \neg y_j)$$

in KNF erreicht werden.

Länge dieser Formel: $O(m^2)$

Für diese Bedingungen muss jeweils für eine Variablenmenge codiert werden, dass genau eine der Variablen auf 1 und alle anderen auf 0 gesetzt sind.

Für eine Variablenmenge $\{y_1, \dots, y_m\}$ kann dies durch die Formel

$$(y_1 \vee \ldots \vee y_m) \wedge \bigwedge_{i \neq j} (\neg y_i \vee \neg y_j)$$

in KNF erreicht werden.

Länge dieser Formel: $O(m^2)$

Wir können auf diese Weise die o. g. drei Bedingungen mit einer Formel φ_t der Länge $O(p(n)^2)$ in KNF codieren.

Wir müssen als nächstes codieren, dass K_t für jedes $t \in \{1, \dots, p(n)\}$ eine direkte Nachfolgekonfiguration von K_{t-1} ist.

Wir müssen als nächstes codieren, dass K_t für jedes $t \in \{1, \dots, p(n)\}$ eine direkte Nachfolgekonfiguration von K_{t-1} ist.

Bandinhalt darf sich nur in der Zelle ändern, an der sich der Kopf befindet:

$$\bigwedge_{j=-\rho(n)}^{\rho(n)} \bigwedge_{a\in\Gamma} \big((S(t-1,j,a) \land \neg H(t-1,j)) \Rightarrow S(t,j,a) \big).$$

Wir müssen als nächstes codieren, dass K_t für jedes $t \in \{1, \dots, p(n)\}$ eine direkte Nachfolgekonfiguration von K_{t-1} ist.

Bandinhalt darf sich nur in der Zelle ändern, an der sich der Kopf befindet:

$$igwedge_{j=-
ho(n)} igwedge_{a\in \Gamma} ig((S(t-1,j,a) \land \lnot H(t-1,j)) \Rightarrow S(t,j,a) ig).$$

 $A \Rightarrow B$ kann durch den äquivalenten Ausdruck $\neg A \lor B$ ersetzt werden.

Wir müssen als nächstes codieren, dass K_t für jedes $t \in \{1, \dots, p(n)\}$ eine direkte Nachfolgekonfiguration von K_{t-1} ist.

Bandinhalt darf sich nur in der Zelle ändern, an der sich der Kopf befindet:

$$igwedge_{j=-
ho(n)} igwedge_{a\in \Gamma} ig((S(t-1,j,a) \land \lnot H(t-1,j)) \Rightarrow S(t,j,a) ig).$$

 $A \Rightarrow B$ kann durch den äquivalenten Ausdruck $\neg A \lor B$ ersetzt werden.

Wendet man dann noch das De Morgansche Gesetz an, dass $\neg(A \land B)$ äquivalent zu $\neg A \lor \neg B$ ist, so erhält man die folgende Formel in KNF:

$$\bigwedge_{=-\rho(n)}^{\rho(n)} \bigwedge_{a \in \Gamma} \left(\neg S(t-1,j,a) \lor H(t-1,j) \lor S(t,j,a) \right).$$

Wir müssen als nächstes codieren, dass K_t für jedes $t \in \{1, \dots, p(n)\}$ eine direkte Nachfolgekonfiguration von K_{t-1} ist.

Bandinhalt darf sich nur in der Zelle ändern, an der sich der Kopf befindet:

$$igwedge_{j=-
ho(n)} igwedge_{a\in \Gamma} \Big(ig(S(t-1,j,a) \land \lnot H(t-1,j) ig) \Rightarrow S(t,j,a) \Big).$$

 $A \Rightarrow B$ kann durch den äquivalenten Ausdruck $\neg A \lor B$ ersetzt werden.

Wendet man dann noch das De Morgansche Gesetz an, dass $\neg(A \land B)$ äquivalent zu $\neg A \lor \neg B$ ist, so erhält man die folgende Formel in KNF:

$$\bigwedge_{j=-p(n)}^{p(n)} \bigwedge_{a\in\Gamma} \left(\neg S(t-1,j,a) \vee H(t-1,j) \vee S(t,j,a)\right).$$

Länge: O(p(n))

Nun müssen wir noch erreichen, dass im Schritt von K_{t-1} zu K_t ein durch δ beschriebener Rechenschritt ausgeführt wird.

Nun müssen wir noch erreichen, dass im Schritt von K_{t-1} zu K_t ein durch δ beschriebener Rechenschritt ausgeführt wird.

Betrachte für jedes $q \in Q$, jedes $j \in \{-p(n), \dots, p(n)\}$ und jedes $a \in \Gamma$ die Formel

$$\Rightarrow \bigvee_{((q,a),(q',a',D))\in\delta} (Q(t,q') \wedge H(t,j+D) \wedge S(t,j,a')),$$

wobei $D \in \{-1,0,+1\}$ statt $D \in \{L,N,R\}$ die Bewegung des Kopfes angibt.

Nun müssen wir noch erreichen, dass im Schritt von K_{t-1} zu K_t ein durch δ beschriebener Rechenschritt ausgeführt wird.

Betrachte für jedes $q \in Q$, jedes $j \in \{-p(n), \dots, p(n)\}$ und jedes $a \in \Gamma$ die Formel

$$\Rightarrow \bigvee_{((q,a),(q',a',D))\in\delta} (Q(t,q') \wedge H(t,j+D) \wedge S(t,j,a')),$$

wobei $D \in \{-1, 0, +1\}$ statt $D \in \{L, N, R\}$ die Bewegung des Kopfes angibt.

Es gibt eine äquivalente Formel in KNF, die konstante Länge besitzt.

Nun müssen wir noch erreichen, dass im Schritt von K_{t-1} zu K_t ein durch δ beschriebener Rechenschritt ausgeführt wird.

Betrachte für jedes $q \in Q$, jedes $j \in \{-p(n), \dots, p(n)\}$ und jedes $a \in \Gamma$ die Formel

$$egin{aligned} ig(Q(t-1,q) \wedge H(t-1,j) \wedge S(t-1,j,a)ig) \ & igvee_{((q,a),(q',a',D)) \in \delta} ig(Q(t,q') \wedge H(t,j+D) \wedge S(t,j,a')ig), \end{aligned}$$

wobei $D \in \{-1, 0, +1\}$ statt $D \in \{L, N, R\}$ die Bewegung des Kopfes angibt.

Es gibt eine äquivalente Formel in KNF, die konstante Länge besitzt. Konjugieren wir die Formeln für jede Wahl von q, j und a, so erhalten wir eine Formel der Länge O(p(n)).

Nun müssen wir noch erreichen, dass im Schritt von K_{t-1} zu K_t ein durch δ beschriebener Rechenschritt ausgeführt wird.

Betrachte für jedes $q \in Q$, jedes $j \in \{-p(n), \dots, p(n)\}$ und jedes $a \in \Gamma$ die Formel

$$(Q(t-1,q) \wedge H(t-1,j) \wedge S(t-1,j,a))$$

$$\Rightarrow \bigvee_{((q,a),(q',a',D)) \in \delta} (Q(t,q') \wedge H(t,j+D) \wedge S(t,j,a')),$$

wobei $D \in \{-1, 0, +1\}$ statt $D \in \{L, N, R\}$ die Bewegung des Kopfes angibt.

Es gibt eine äquivalente Formel in KNF, die konstante Länge besitzt. Konjugieren wir die Formeln für jede Wahl von q, j und a, so erhalten wir eine Formel der Länge O(p(n)).

Zusammen erhalten wir somit für jedes $t \in \{1, ..., p(n)\}$ eine Formel $\varphi_{\to t}$ in KNF, die codiert, dass K_t eine direkte Nachfolgekonfiguration von K_{t-1} ist.

Codierung der initialen Konfiguration:

$$\varphi_{\mathsf{init}} = Q(0, q_0) \land H(0, 0) \land \bigwedge_{i=1}^n S(0, i-1, x_i) \land \bigwedge_{j=-p(n)}^{-1} S(0, j, \square) \land \bigwedge_{j=n}^{p(n)} S(0, j, \square)$$

Codierung der initialen Konfiguration:

$$arphi_{\mathsf{init}} = Q(0,q_0) \land H(0,0) \land \bigwedge_{i=1}^n S(0,i-1,x_i) \land \bigwedge_{j=-p(n)}^{-1} S(0,j,\square) \land \bigwedge_{j=n}^{p(n)} S(0,j,\square)$$

Zusammensetzen der Formel:

Setze alle Teilformeln zusammen und codiere zusätzlich, dass nach p(n) Schritten der Zustand q_{akz} erreicht werden soll:

$$arphi = arphi_{\mathsf{init}} \wedge \left(igwedge_{t=0}^{oldsymbol{p}(n)} arphi_t
ight) \wedge \left(igwedge_{t=1}^{oldsymbol{p}(n)} arphi_{ o t}
ight) \wedge Q(oldsymbol{p}(n), q_{\mathsf{akz}}).$$

Codierung der initialen Konfiguration:

$$arphi_{\mathsf{init}} = Q(0, q_0) \land H(0, 0) \land \bigwedge_{i=1}^n S(0, i-1, x_i) \land \bigwedge_{j=-p(n)}^{-1} S(0, j, \square) \land \bigwedge_{j=n}^{p(n)} S(0, j, \square)$$

Zusammensetzen der Formel:

Setze alle Teilformeln zusammen und codiere zusätzlich, dass nach p(n) Schritten der Zustand q_{akz} erreicht werden soll:

$$arphi = arphi_{\mathsf{init}} \wedge \left(igwedge_{t=0}^{p(n)} arphi_t
ight) \wedge \left(igwedge_{t=1}^{p(n)} arphi_{
ightarrow t}
ight) \wedge Q(p(n), q_{\mathsf{akz}}).$$

Diese Formel ist in KNF und besitzt eine Länge von $O(p(n)^3)$.

Codierung der initialen Konfiguration:

$$arphi_{\mathsf{init}} = Q(0,q_0) \land H(0,0) \land \bigwedge_{i=1}^n S(0,i-1,x_i) \land \bigwedge_{j=-p(n)}^{-1} S(0,j,\square) \land \bigwedge_{j=n}^{p(n)} S(0,j,\square)$$

Zusammensetzen der Formel:

Setze alle Teilformeln zusammen und codiere zusätzlich, dass nach p(n) Schritten der Zustand q_{akz} erreicht werden soll:

$$arphi = arphi_{\mathsf{init}} \wedge \left(igwedge_{t=0}^{p(n)} arphi_t
ight) \wedge \left(igwedge_{t=1}^{p(n)} arphi_{
ightarrow t}
ight) \wedge Q(p(n), q_{\mathsf{akz}}).$$

Diese Formel ist in KNF und besitzt eine Länge von $O(p(n)^3)$.

Sie kann für ein gegebenes $x \in \Sigma^*$ in polynomieller Zeit konstruiert werden.

Es gibt genau dann eine erfüllende Belegung für φ , wenn es eine Folge von Konfigurationen $K_1, K_2, \ldots, K_{p(n)}$ von M mit $K_0 \vdash K_1 \vdash K_2 \vdash \ldots \vdash K_{p(n)}$ gibt, wobei in $K_{p(n)}$ der Zustand q_{akz} angenommen wird und K_0 die initiale Konfiguration bei Eingabe x ist.

Es gibt genau dann eine erfüllende Belegung für φ , wenn es eine Folge von Konfigurationen $K_1, K_2, \ldots, K_{p(n)}$ von M mit $K_0 \vdash K_1 \vdash K_2 \vdash \ldots \vdash K_{p(n)}$ gibt, wobei in $K_{p(n)}$ der Zustand q_{akz} angenommen wird und K_0 die initiale Konfiguration bei Eingabe x ist.

Dies ist genau dann der Fall, wenn $x \in L$ gilt.

Somit gilt
$$L \leq_{p} SAT$$
.