А. Код Грея

Ограничение по времени: **2 секунды** Ограничение по памяти: **65 мегабайт**

Код Грея – система счисления, в которой два соседних значения различаются только в одном разряде, изначально был разработан для защиты от ложного срабатывания электромеханических переключателей.

Коды Грея легко получаются из двоичных чисел путём побитовой операции «сложение по модулю 2» с тем же числом, сдвинутым вправо на один разряд.

Студент Василий любит математические эксперименты. Он берёт одно целое положительное число (без ведущих нулей) и записывает его в произвольно выбранной позиционной системе счисления, затем производит операцию аналогичную получению кода Грея в двоичной системе счисления с той лишь разницей, что поразрядное сложение производится по модулю, численно равному основанию системы счисления.

Входные данные

В первой строке записано целое положительное число m $(2 \le m \le 16)$ — основание системы счисления. Во второй строке записано целое положительное число n $(0 \le n \le m^5)$ — результат полученный Василием.

Выходные данные

Исходное число, записанное в позиционной системе счисления с основанием т.

Примеры

Ввод	Вывод
2	1010
1111	
4	1230
1313	
16	F1
F0	

Примечание:

Во входных и выходных данных для обозначения цифр обозначающих величины более 9 используются заглавные латинские буквы: A, B, C, D, E, F соответственно.

В. Заяц в капусте

Ограничение по времени: **2 секунды** Ограничение по памяти: **65 мегабайт**

Студент Василий каждое лето на каникулах уезжает к бабушке в деревню. У бабушки имеется большой огород. Часть этого огорода прямоугольной формы NxM засеяна капустой, которую поедают зайцы из ближайшего леса.

Василий, проводя многочисленные наблюдения, нашёл закономерность, позволяющую определить количество зайцев в капусте.

Капустное поле он представил в виде двумерного массива NxM, заполненного различными целыми числами. Так вот, количество зайцев в точке (x, y) равно количеству квадратов с центром в точке (x, y), сумма чисел внутри которых равна нулю.

Входные данные

В первой строке записано два числа – N и M ($1 \le N, M \le 300$). Далее в N строках дано по M целых чисел по модулю не превышающих 9.

Выходные данные

Выведите единственное число – количество зайцев в капусте.

Примеры

Ввод	Вывод
1 1	0
3	
2 2	1
1 3	
0 1	
3 3	2
2 1 0	
2 -9 3	
4 -1 -2	
3 3	10
0 0 0	
0 0 0	
0 0 0	

С. Стакан

Ограничение по времени: **2 секунды** Ограничение по памяти: **65 мегабайт**

Студент Василий любит пофилософствовать. Однажды, когда он рассуждал о том, стакан наполовину пуст или наполовину полон, сущность математика взяла верх, и он занялся вычислениями.

Стакан Василия имеет форму прямого усеченного конуса, в основании которого лежит круг. Нужно определить, больше или меньше половины количество воды в стакане Василия.

Входные данные

В единственной строке записаны целые положительные числа R_1 , R_2 , H_1 , H_2 – радиусы нижнего и верхнего оснований ($1 \le R_1$, $R_2 \le 100$), высота стакана ($1 \le H_1 \le 100$) и расстояние от нижнего основания стакана до поверхности воды ($0 \le H_2 \le 100$, $H_2 \le H_1$).

Выходные данные

Выведите «<» (без кавычек), если объем воды меньше половины объема стакана, «>», если больше или «=», если стакан наполовину пуст (или полон).

Пример

Ввод	Вывод
2 5 5 5	>
3 1 6 0	<

Ввод	Вывод
4 4 6 3	=

D. Простые суммы

Ограничение по времени: **2 секунды** Ограничение по памяти: **65 мегабайт**

Студент Василий любит простые числа.

И поэтому все числа он раскладывает на суммы простых чисел.

Входные данные

В единственной строке дано целое положительное число N ($2 \le N \le 50$).

Выходные данные

Все разложения числа N в виде суммы простых чисел – равенства, по одному в строке.

Сначала число N, затем =, затем сумма простых чисел.

Разложения должны быть различны – любые два должны различаться элементами, но не их порядком.

Пример

Ввод	Вывод
7	7=5+2
	7=2+3+2
	7=7

Е. Зеркало

Ограничение по времени: **2 секунды** Ограничение по памяти: **65 мегабайт**

Студент Василий сравнивает числа с их «зеркальным» представлением. Зеркальным представлением Василий считает числа, полученные путём записи чисел задом наперёд.

Входные данные

В единственной строке дано целое положительное число без ведущих нулей N $(0 \le N \le 2 \times 10^9)$.

Выходные данные

В единственной строке выведите число без ведущих нулей – большее из «прямой» и «зеркальной» записи.

Примеры

Ввод	Вывод
234456	654432
21	21