

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

Microsoft® Research

Kaiming He¹, Xiangyu Zhang², Shaoqing Ren³, Jian Sun¹

¹Microsoft Research, ²Xi'an Jiaotong University, ³University of Science and Technology of China

Highlights of SPP-net

- Classification: improves all CNN architectures
- Detection: 24-64x faster than R-CNN
- ILSVRC 2014: #2 in detection, #3 in classification. All details disclosed.

What is SPP-net?

SPP-net is a new network with Spatial Pyramid Pooling (SPP)

input image

(arbitrary size)

convolutional layers

Training SPP-net

Single-size training: simply modify the configuration file

[pool3x3] type=pool pool=max inputs=conv5 sizeX=5	[pool2x2] type=pool pool=max inputs=conv5 sizeX=7	[pool1x1] type=pool pool=max inputs=conv5 sizeX=13	[fc6] type=fc outputs=4096 inputs=pool3x3,pool2x2,pool1x1
stride=4	stride=6	stride=13	example for a 13x13 feature map

Multi-size training: Multiple networks sharing all weights; each network for a single size. Improves scale-invariance.

ILSVRC 2014 Classification

single-model	top-5 val	
Convnet [1]	18.2	ILSVRC 12
ZF [2]	16.0	
Howard's [3]	15.8	ILSVRC 13
Overfeat [4]	14.18	
ours (10-view)	10.95	
ours (96+2-full-view)	9.14	
		-

rank #3 in ILSVRC 2014

multi-model	top-5 test
GoogLeNet	6.66
Oxford VGG	7.32
ours	8.06
Howard	8.11
DeeperVision	9.50
NUS-BST	9.79
TTIC_ECP	10.22
•••	

Fast CNN-based Object Detection

- R-CNN vs. SPP-net: image regions vs. feature map regions
- With features => fine-tuning, SVM, bbox regression

R-CNN: 2000 runs of nets

SPP-Net: 1 net on full image

VOC 2007	SPP-net (1-scale)	SPP-net (5-scale)	RCNN
FT fc7	54.5	55.2	54.2
FT fc7 + bbox	58.0	59.2	58.5
GPU feature time	0.142s	0.382s	9.03s
speed-up vs. RCNN	64x	24x	-

ILSVRC 2014 Detection

rank #2 in ILSVRC 2014

	mAP
NUS	37.21
ours	35.11
UvA	32.02
ours (single-model)	31.84
Southeast-CASIA	30.47
1-HKUST	28.86
CASIA_CRIPAC_2	28.61

internal-data track

more practical than R-CNN

	SPP-net	RCNN
GPU feature time / img	0.6s	32s
40k testing imgs	8 GPU hours	15 GPU days

*conv feature extracting time (Ovefeat-7 architecture, 1-model)

Code, network config, technical report with all details: http://research.microsoft.com/en-us/um/people/kahe/

References

- [1] Imagenet classification with deep convolutional neural networks. NIPS 12
- [2] Visualizing and Understanding Convolutional Neural Networks. arXiv 13
- [3] Some Improvements on Deep Convolutional Neural Network Based Image Classification. arXiv 13
- [4] OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. arXiv 13
- [5] Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 14