Spoken Recognition Memory

- Spoken Recognition Memory
 - phases in log record
 - ▼ phase 0 WAIT_FOR_USER
 - trans out on key press to PREP
 - ▼ phase 1 PREP
 - trans out on timer to SOUND
 - ▼ phase 2 SOUND
 - trans out on timer to RESPONSE
 - ▼ phase 3 RESPONSE
 - trans out on key press to DELAY
 - ▼ phase 4 DELAY
 - trans out on timer to next PREP or loops at end

beh table values

- stTime is start of phase 1
- endTime is start of phase 2
- promptTime is start of phase 3
- firstResp is time of key press from start of phase 2
- keyEarly is true when key is pressed prior to prompt at start of phase 3

trial analysis

- needed starting at s37e10sr
- reconfigured for SpringReport
 - have to ensure that SpringReport jar is at the end of the list as it contains some other older code
 - confirmed in s34e2sr that results agree with older sliceInfo.txt files
 - ▼ s55e4sr had two experimental sessions due to Dr. Smith interruption
 - log 2 has invalid first and 11th trial as pair and two incomplete trials on end
 - log 3 had two incomplete trials at end
 - some duplicated stimuli between these two experiments
 - use log 2 as is longer
 - ▼ very negative d', key likely reversed for several experiments
 - s35e4sr notebook says patient reversed keys, so changed jKeylsNew
 - s53e9sr reversed jKeyIsNew for calculation

752 of 2073 invalid trials are due to keyEarly

neural analysis

- ▼ length of word varies from 401 1460 ms
 - main parts of word start between 100-200 ms into recording
 - · variable amounts of effective silence at end of recordings
- computing points of power in sound recordings
 - recordings are .wav files
 - tuneR R package to load sample values from .wav
 - some of the recordings have very high frequency oscillations near end, such as with a 's' sound
 - soundTimes variable contains lengths of sounds
- earliest valid key responses are at 437 ms
- spike count values
 - can use endTime (start of phase 2) + firstResp to align to key press, if desired.
 - would need additional time point, perhaps called promptTime, to output end of phase 2 (start of phase 3) if we want to align that way
 - have promptTime in trialInfo.txt now for all experiments and is in the beh dataframe as built
 - can then load .Nse and fet and clu to compute actual counts
 - countsRelPhase.R function to do this
 - countsRelPhaseAllClusters.R loops over all clusters given in df and performs counts relative to specified time column
 - look at fixed interval, say 200-1000 ms, and determine fraction of trials where this contains a response
 - ▼ how to generate counts
 - with Java program
 - ▼ counts for crm and srm up through s35e4sr were generated with PictGameAnalysis.trialCountsReporter
 - and that based counts on phase1TimeSlices
 - ▼ FixedTrialIntervalCountsReporter works for counts based on phase1
 - this needs to be generalized perhaps so can be over-ridden to provide other phase
 - possibly most recently used for RK check this
 - new TrialCountsReporter in SpokenCrmAnalysis based on AbstractPhaseIntervalCountsReporter
 - in R countsRelPhase.R can do this
 - counts relative to end of sound

• endTime + soundEndTime