

Build Your Own OctopusDB: Blinktopus Edition

Ali Hashaam, Ali Memon, Guzel Mussilova, Pavlo Shevchenko Scientific Project: Databases for Multi-Dimensional Data, Genomics and Modern Hardware
July 10, 2017

Table of Contents

Motivation/Problem Statement

Background

Conceptual Idea and Implementation

Evaluation Setup and Results

Related Work

Conclusion and Future Work

Demonstration

1. Companies need to pick only specialized DBMSs, each tailored to their specific use-case.

- 1. Companies need to pick only specialized DBMSs, each tailored to their specific use-case.
 - ⇒ Need for *one size fits all system* (e.g. HTAP)

- 1. Companies need to pick only specialized DBMSs, each tailored to their specific use-case.
 - ⇒ Need for one size fits all system (e.g. HTAP)
- **2.** Support OLAP queries for analysis over real-time data (i.e., freshness).

- 1. Companies need to pick only specialized DBMSs, each tailored to their specific use-case.
 - \Rightarrow Need for one size fits all system (e.g. HTAP)
- Support OLAP queries for analysis over real-time data (i.e., freshness).
 - \Rightarrow Explore the techniques related to more interactive queries (e.g. *Approximate Query Processing*)

Background

1. OctopusDB

- uses logs as a primary storage
- mimicks several types of systems (OLAP, OLTP, etc.) by representing them as *Storage Views*

Background

1. OctopusDB

- uses logs as a primary storage
- mimicks several types of systems (OLAP, OLTP, etc.) by representing them as Storage Views

2. BlinkDB

• Successfully integrates AQP techniques into its architecture

Conceptual Idea and Implementation

Figure 1: OctopusDB Architecture.

Conceptual Idea and Implementation

Which synopses to pick?

- Equi-depth histograms
 - suitable for range queries
 - simple to implement and interpretate
- Sketches
 - HyperLogLog
 - DISTINCT COUNT queries
 - DataSketches library by Yahoo ¹

¹https://yahooeng.tumblr.com/post/125390948446/data=sketches ← ≣ → → へ ⊙

Evaluation Setup

Machine

- CentOS Linux 7.1.1503
- Java SDK 8u131-b11-linux-x64
- 2 Intel(r) Xeon (TM) E5-2630 v3s CPU @ 3.2GHz processors (8 cores each) and 1024 GiB memory

Benchmark Datasets

• TPC-H datasets (Orders and Lineitems)

Experiments

- 1. Average response time for a range query on the Orders table with various scaling factors and predicate selectivity
- **2.** Average response time for a count-range query on the Orders table. Comparison with an equi-depth histogram
- **3.** Average response time for a count distinct query on the Orders table. Comparison with a HLL sketch

Results. Experiment 1

Results. Experiment 2

Results. Experiment 3

Related Work

1. Apache Samza

- · logs as a primary structure
- replicates logs on multiple nodes

2. Rodent Store

- represents data in the various physical layouts
- provides DBAs a high-level interface to specify the data physical representation by means of storage algebra

3. Snappy Data

- AQP Support
- Uses numerous types of synopses (samples, sketches)
- User defines the level of accuracy and the number of column sets to approximate the results

Thank you! Any questions?

FAKULTÄT FÜR INFORMATIK

Literature

- Jindal, Alekh. "The mimicking octopus: Towards a one-size-fits-all database architecture." VLDB PhD Workshop. 2010.
- Dittrich, Jens, and Alekh Jindal. "Towards a One Size Fits All Database Architecture." CIDR. 2011.
- **3.** Jindal, Alekh. "OctopusDB: flexible and scalable storage management for arbitrary database engines." (2012).
- **4.** Mozafari, Barzan, and Ning Niu. "A Handbook for Building an Approximate Query Engine." IEEE Data Eng. Bull. 38, no. 3 (2015): 3-29.
- Cormode, Graham, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. "Synopses for massive data: Samples, histograms, wavelets, sketches." Foundations and Trends in Databases 4, no. 13 (2012): 1-294.