Aproximatii asimptotice

Fie
$$a_n = n^2 + n$$
, $b_n = n^2$

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = +\infty$$

 $a_n > b_n$, $\forall n \in \mathbb{N}^*$

 $a_n \approx b_n$ pentru "n" suficient de mare!

$$\lim_{n\to\infty}\frac{a_n}{b_n}\ =\ \lim_{n\to\infty}\frac{n^2+n}{n^2}\ =\ 1$$

 $\label{eq:def:DEF:Spunem:DEF:Spunem:DEF:Spunem:DEF:Spunem:Candoua siruri crescatoare (a_n) si (b_n)$ sunt asimptotic egale (au aceeasi rata de crestere) daca

$$\lim_{n\to\infty}\frac{a_n}{b_n} = 1 \text{ siscriem } a_n \sim b_n \text{ .}$$

- DEF: (i) Daca $a_n \sim C n^p$, unde C > 0 sip > 0, spunem ca (a_n) are o rata de crestere polinomiala
- (ii) Daca $a_n \sim C p^n$, unde C > 0 sip > 1, spunem ca (a_n) are o rata de crestere exponentiala

(iii) Daca $a_n \sim C \ln (n)$, unde C > 0,

spunem ca (a_n) are o rata de crestere <u>logaritmica</u>

 $\texttt{Plot}[\{\texttt{E}^\texttt{x}, \texttt{x}^\texttt{4}, \texttt{Log}[\texttt{x}]\}, \{\texttt{x}, \texttt{3}, \texttt{12}\}, \texttt{PlotStyle} \rightarrow \{\texttt{Blue}, \texttt{Red}, \texttt{Green}\}]$ $\texttt{Plot}[\{\texttt{x}, \texttt{Log}[\texttt{x}]\}, \{\texttt{x}, \texttt{1}, \texttt{8}\}, \texttt{PlotStyle} \rightarrow \{\texttt{Orange}, \texttt{Green}\}]$

Ce rata de crestere au sirurile ?

$$a_n = \sqrt{n^3 + n} \rightarrow +\infty$$

$$b_n = \sqrt[n]{n!} \rightarrow +\infty$$

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \rightarrow +\infty$$
 (al n-lea numar armonic)

$$\lim_{n\to\infty}\frac{H_n}{\ln\ (n)}\ =\ 1$$

$$H_{10^9} \approx ln (10^9) \approx 21$$

$$F_1 = F_2 = 1$$
, $F_n = F_{n-1} + F_{n-2}$, $\forall n \ge 3$ (sirul lui Fibonacci)

Table[Fibonacci[n], {n, 1, 20}]

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765}

$F_n \rightarrow +\infty$ (rata de crestere?)

$$\phi = \frac{1+\sqrt{5}}{2} \approx 1.62$$

$$F_{n} = \frac{\phi^{n} - (-\phi)^{-n}}{\sqrt{5}} , \forall n \in \mathbb{N}$$

$$\lim_{n\to\infty}\frac{F_n}{\frac{1}{\sqrt{5}}\phi^n}=1$$

$$c_n = n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$$

Table[Factorial[n], {n, 1, 20}]

 $\{1,\,2,\,6,\,24,\,120,\,720,\,5040,\,40\,320,\,362\,880,\,3\,628\,800,\,39\,916\,800,\,479\,001\,600,\\6\,227\,020\,800,\,87\,178\,291\,200,\,1\,307\,674\,368\,000,\,20\,922\,789\,888\,000,\,355\,687\,428\,096\,000,\\6\,402\,373\,705\,728\,000,\,121\,645\,100\,408\,832\,000,\,2\,432\,902\,008\,176\,640\,000\}$

$$\lim_{n\to\infty}\frac{2000^n}{n!}=0$$

OBS:
$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$
 (formula lui Stirling)

APLICATIE: Numarul de cifre al factorialului (n!)

OBS:

Numarul de cifre ale unui numar natural nenul x este 1 + [lg (x)]

$$lg (n!) \approx lg \left(\left(\frac{n}{e} \right)^{n} \sqrt{2 \pi n} \right) = n (lg (n) - lg (e)) + \frac{lg (2 \pi n)}{2}$$

n = 1000

$$1 + [lg (1000!)] \approx 1 + [1000 (3 - 0.434) + 1.90] = 2568$$

1000!

 $402\,387\,260\,077\,093\,773\,543\,702\,433\,923\,003\,985\,719\,374\,864\,210\,714\,632\,543\,799\,910\,429\,938\,512\,398\,\times 10^{-3}$ $977\ 012\ 476\ 632\ 889\ 835\ 955\ 735\ 432\ 513\ 185\ 323\ 958\ 463\ 075\ 557\ 409\ 114\ 262\ 417\ 474\ 349\ 347\ 553\ \times 100$ $746\,136\,085\,379\,534\,524\,221\,586\,593\,201\,928\,090\,878\,297\,308\,431\,392\,844\,403\,281\,231\,558\,611\,036\,\times 10^{-6}$ $837\,615\,307\,127\,761\,926\,849\,034\,352\,625\,200\,015\,888\,535\,147\,331\,611\,702\,103\,968\,175\,921\,510\,907\,93$ $967\,146\,674\,697\,562\,911\,234\,082\,439\,208\,160\,153\,780\,889\,893\,964\,518\,263\,243\,671\,616\,762\,179\,168\,$ 909 779 911 903 754 031 274 622 289 988 005 195 444 414 282 012 187 361 745 992 642 956 581 746 3 $628\ 302\ 955\ 570\ 299\ 024\ 324\ 153\ 181\ 617\ 210\ 465\ 832\ 036\ 786\ 906\ 117\ 260\ 158\ 783\ 520\ 751\ 516\ 284\ \times 100$ $225\,540\,265\,170\,483\,304\,226\,143\,974\,286\,933\,061\,690\,897\,968\,482\,590\,125\,458\,327\,168\,226\,458\,066\,\times 10^{-3}$ $526\,769\,958\,652\,682\,272\,807\,075\,781\,391\,858\,178\,889\,652\,208\,164\,348\,344\,825\,993\,266\,043\,367\,660\,\times 10^{-2}$ $694\,527\,224\,206\,344\,631\,797\,460\,594\,682\,573\,103\,790\,084\,024\,432\,438\,465\,657\,245\,014\,402\,821\,885\,\times 10^{-2}$ 252 470 935 190 620 929 023 136 493 273 497 565 513 958 720 559 654 228 749 774 011 413 346 962 $918\ 311\ 021\ 171\ 229\ 845\ 901\ 641\ 921\ 068\ 884\ 387\ 121\ 855\ 646\ 124\ 960\ 798\ 722\ 908\ 519\ 296\ 819\ 372\ \times 1000\ 10$ 388 642 614 839 657 382 291 123 125 024 186 649 353 143 970 137 428 531 926 649 875 337 218 940 5 $586\,765\,752\,344\,220\,207\,573\,630\,569\,498\,825\,087\,968\,928\,162\,753\,848\,863\,396\,909\,959\,826\,280\,956\,\times 10^{-6}$ $121\,450\,994\,871\,701\,244\,516\,461\,260\,379\,029\,309\,120\,889\,086\,942\,028\,510\,640\,182\,154\,399\,457\,156\,\%$

IntegerLength[%]

2568

Calculati rata de crestere a sirului combinarilor $a_n = C_{2n}^n$

Table[Binomial[2n, n], {n, 1, 20}]

{2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705 432, 2704 156, 10 400 600, 40 116 600, 155 117 520, 601 080 390, 2 3 3 3 6 0 6 2 2 0 , 9 0 7 5 1 3 5 3 0 0 , 3 5 3 4 5 2 6 3 8 0 0 , 1 3 7 8 4 6 5 2 8 8 2 0 }