SMARTWIZ

GRADE 12 MATHEMATICS EXAM

MARKS: 150	MARKS	
TIME: 3 HOURS		
SCHOOL		
CLASS (eg. 4A)		
SURNAME		
NAME		

Instructions for Learners:

- Read all instructions carefully before you begin the exam.
- Write your full name and student number clearly on the answer sheet/book.
- Answer all questions unless otherwise instructed.
- Show all your work/calculations where necessary.
- Write neatly and clearly.
- Use only a blue or black pen. Do not use correction fluid or tape.
- Electronic devices (calculators, cell phones, etc.) are not allowed unless explicitly permitted.
- Raise your hand if you have any questions.
- Do not talk to other learners during the exam.
- Any form of dishonesty will result in immediate disqualification from the exam.

This exam consists of Five pages, including the cover page.

QUESTION 1: NUMBER PATTERNS [20 marks]

	the sequence: 3; 7; 13; 21; 31; down the 6th term of the sequence.	
1.1.2 Determi	nine a general formula for the nth term.	
	a geometric sequence has a first term of 5 and a common ratio of 3. down the first 4 terms.	
1.2.2 Calculat	ate the 8th term.	
QUESTI	ION 2: FUNCTIONS AND INEQUALITIES [25	marks]
2.1 Sketch the	ne graph of $f(x)=2xf(x) = \frac{2}{x}f(x)=x2$ and show the asymptotes.	
2.2 Solve for 2		
$x^2-5x+6<0x^4$	$x^2 - 5x + 6 < 0x^2 - 5x + 6 < 0$	

2.3 Given the function $g(x)=-x^2+6x-8g(x)=-x^2+6x-8g(x)=-x^2+6x-8$, find the coordinates of	2.3 Giver	n the function	g(x) = -x2 + 6x - 8g(x)	$= -x^2 + 6x - 8$	$8g(x) = -x^2 + 6x - 8$.	, find the coordinates of	the:
---	-----------	----------------	-------------------------	-------------------	---------------------------	---------------------------	------

- Vertex
- Axis of symmetry

QUESTION 3: TRIGONOMETRY [20 marks]

3.1 Simplify the expression:

$$tan[fo]2x+1sec[fo]2x\frac{\tan^2 x + 1}{\sec^2 x}sec2xtan2x+1$$

- 3.2 Given $\tan[fo]\theta=34 \tan \theta = \frac{3}{4} \tan \theta = 43$ and $\theta \in (0\circ,90\circ) + \sin (0^\circ)\theta = 90^\circ + \sin[fo]\theta + \sin \theta = 43$ and $\cos[fo]\theta + \cos \theta = 34 + \sin \theta = 43$ and $\cos[fo]\theta + \cos \theta = 34 + \sin \theta = 43$ and $\cos[fo]\theta + \cos \theta = 34 + \sin \theta = 34 + \sin \theta = 43$ and $\cos[fo]\theta + \cos \theta = 34 + \sin \theta = 34$
- 3.3 Prove the identity:

 $1-\cos[f_0]2x\sin[f_0]x=\sin[f_0]x \setminus \{1-\cos^2 x\}\{ \setminus x\} = \sin x \sin x - \cos 2x = \sin x = \sin$

QUESTION 4: CALCULUS [25 marks]

4.1 Determine the derivative of:

$$f(x)=3x2-2x+1xf(x) = \frac{3x^2-2x+1}{x}f(x)=x3x2-2x+1$$

4.2 Determine the equation of the tangent to the curve $y=x3-4xy=x^3-4xy=x^3-4x$ at the point where x=2x=2x=2.

4.3 Use first principles to find $f'(x)f'(x)f'(x)$ if $f(x)=x^2f(x)=x^2f(x)=x^2$.
QUESTION 5: GEOMETRY & MEASUREMENT [30 marks]
5.1 In the diagram below, ABCDABCDABCD is a cyclic quadrilateral. AB $\ CDAB\ CD$. Angle ABC=78 \circ ABC = 78 $^\circ$ \circABC=78 \circ
AB // / / DC
5.1.1 Calculate angle DABDABDAB.
5.1.2 Give a reason why ABCDABCDABCD is a cyclic quadrilateral.
5.2 The volume of a cylinder is given as 500 cm ³ . The radius is 5 cm. Calculate the height. $V=\pi r^2 hV = \pi r^2 hV = \pi$
QUESTION 6: DATA HANDLING & PROBABILITY [30 marks]
6.1 A class writes a test and the marks (out of 10) are: 3, 4, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10
6.1.1 Draw a box-and-whisker plot for the data. (Sketch on paper)

6.1.2 Find the interquartile range (IQR).
6.2 A bag contains 5 red, 3 blue, and 2 green balls. A ball is chosen at random. 6.2.1 What is the probability that the ball is not green?
6.2.2 If two balls are drawn without replacement, what is the probability that both are red?

END OF PAPER

MYST PATHWORKS

MEMO

QUESTION 1: NUMBER PATTERNS [20 marks]

1.1.1

6th term: 3, 7, 13, 21, 31 \rightarrow next difference = +11 \rightarrow 6th term = 31 + 11 = 42

1.1.2

First differences: 4, 6, 8, $10 \rightarrow$ second differences are constant (+2) \rightarrow quadratic pattern Let Tn=an2+bn+cT_n = an^2 + bn + cTn=an2+bn+c Form equations:

- $a(1)2+b(1)+c=3a(1)^2+b(1)+c=3a(1)2+b(1)+c=3$
- $a(2)2+b(2)+c=7a(2)^2+b(2)+c=7a(2)2+b(2)+c=7$
- $a(3)2+b(3)+c=13a(3)^2+b(3)+c=13a(3)2+b(3)+c=13$ Solve to get: a=1,b=1,c=1a=1,b=1,c=1
- General formula: $Tn=n2+n+1T_n = n^2 + n + 1T_n = n^2 + n^2 +$

1.2.1

Geometric sequence: 5; 15; 45; 135

1.2.2

 $T8 = arn - 1 = 5 \cdot 37 = 5 \cdot 2187 = 10,935T_8 = ar^{n-1} = 5 \cdot 37 = 5 \cdot 2187 = 10,935T8 = arn - 1 = 5 \cdot 37 = 5 \cdot 2187 = 10,935$

QUESTION 2: FUNCTIONS AND INEQUALITIES [25 marks]

THWORKS

2.1

Sketch of $f(x)=2xf(x) = \frac{2}{x}f(x)=x2$:

- Vertical asymptote at x=0x=0x=0, horizontal asymptote at y=0y=0y=0
- Shape: hyperbola

2.2

 $x2-5x+6<0\Rightarrow(x-2)(x-3)<0\Rightarrow x\in(2,3)x^2-5x+6<0$ \Rightarrow (x - 2)(x - 3) < 0 \Rightarrow x \in (2, 3)x2-5x+6<0 \Rightarrow (x-2)(x-3)<0 \Rightarrow x \left(2,3)

2.3

$$g(x)=-x^2+6x-8g(x)=-x^2+6x-8g(x)=-x^2+6x-8$$

- Vertex: $x=-b2a=-6-2=3x = \frac{-b}{2a} = \frac{-6}{2a} = \frac$
- Axis of symmetry: x = 3

QUESTION 3: TRIGONOMETRY [20 marks]

3.1

 $tan[fo]2x+1sec[fo]2x=sec[fo]2xsec[fo]2x=1 \frac{x + 1}{\sqrt x + 1} {\sqrt x$

3.2

Given: $tan[fo]\theta=34 \Rightarrow tan \theta=43 \Rightarrow Opp = 3, Adj = 4 \rightarrow Hyp = 5$

• $\sin \frac{1}{10}\theta = 35,\cos \frac{1}{10}\theta = 45\sin \theta = \frac{3}{5},\cos \theta = 54$

3.3

 $1-\cos[f_0]2x\sin[f_0]x=\sin[f_0]x+\sin[$

QUESTION 4: CALCULUS [25 marks]

4.1

 $f(x)=3x2-2x+1x=3x-2+1x \Rightarrow f'(x)=3-1x2f(x) = \frac{3x^2-2x+1}{x} = 3x-2+\frac{1}{x} = 3x-$

4.2

 $y=x3-4xy = x^3 - 4xy=x3-4x$, x=2x = 2x=2

- $y=8-8=0y=8-8=0 \rightarrow Point: (2, 0)$
- Derivative: $y'=3x2-4y' = 3x^2 4y'=3x2-4$, at x=2x=2x=2: y'=3(4)-4=12-4=8y'=3(4)-4=12-4=8
- Equation of tangent: $y-0=8(x-2) \Rightarrow y=8x-16y 0 = 8(x-2) \setminus Rightarrow y = 8x 16y-0=8(x-2) \Rightarrow y=8x-16$

4.3 (First Principles)

 $f(x) = x2 \Rightarrow f'(x) = \lim_{f \to 0} h \to 0(x+h)2 - x2h = \lim_{f \to 0} h \to 0x2 + 2xh + h2 - x2h = \lim_{f \to 0} h \to 02xh + h2h = \lim_{f \to 0} h \to 0(2x+h) = 2xf(x) = x^2 \setminus k = \lim_{f \to 0} h \to 0 = \lim_{f \to 0} h \to 0(2x+h) = 2xf(x) = x^2 \setminus k = \lim_{f \to 0} h \to 0 = \lim_{f \to 0$

QUESTION 5: GEOMETRY & MEASUREMENT [30 marks]

5.1.1

AB||CDAB \parallel CDAB||CD, and in cyclic quadrilateral, alternate angles are equal:

• $\angle DAB = \angle BCD = 78 \circ \text{ angle DAB} = \text{ angle BCD} = 78 \circ \text{ circ} \angle DAB = \angle BCD = 78 \circ$

5.1.2

Reason: All vertices lie on the circumference of a circle.

5.2

Volume:

 $500=\pi\cdot52\cdot h\Rightarrow 500=25\pi h\Rightarrow h=50025\pi\approx20\pi\approx6.37\ cm500=\pi\cdot52\cdot h\Rightarrow 500=25\pi h\Rightarrow h=50025\pi\approx20\pi\approx6.37\ cm500=\pi\cdot52\cdot h\Rightarrow 500=25\pi h\Rightarrow h=25\pi500\approx\pi20\approx6.37\ cm$

QUESTION 6: DATA HANDLING & PROBABILITY [30 marks]

6.1.1

Marks in order: 3, 4, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10

• Min = 3, Q1 = 4.5, Median = 5.5, Q3 = 7.5, Max = 10 (Draw box-and-whisker accordingly)

6.1.2

$$IQR = Q3 - Q1 = 7.5 - 4.5 = 3$$

6.2.1

Total balls = $10 \rightarrow \text{Not green} = 8$

 $P(\text{not green}) = 810 = 0.8P(\text{text}\{\text{not green}\}) = \frac{8}{10} = 0.8P(\text{not green}) = 108 = 0.8P(\text{n$

6.2.2

 $P(both\ red) = 510 \cdot 49 = 2090 = 29P(\text\{both\ red\}) = \frac\{5\}\{10\}\ \cdot\ \frac\{4\}\{9\} = \frac\{20\}\{90\} = \frac\{2\}\{9\}P(both\ red) = 105 \cdot 94 = 9020 = 92$

TOTAL: 150