Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 2

Consigna

Hallar los valores propios y bases de los subespacios propios de la transformación lineal $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ tal que:

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 4a+b+d & 2a+3b+d \\ -2a+b+2c-3d & 2a-b+5d \end{pmatrix}$$

Resolución

Consideremos la base canónica:

$$\mathcal{E} = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$$

Hallemos los transformados de los vectores de la base \mathcal{E} :

•
$$T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ -2 & 2 \end{pmatrix}$$

•
$$T \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ -2 & 2 \end{pmatrix}$$

• $T \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$
• $T \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$

•
$$T \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$$

•
$$T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -3 & 5 \end{pmatrix}$$

Ahora las coordenadas de dichos vectores transformados sería casi equivalente (porque la base es canónica):

•
$$coord_{\mathcal{E}}(T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) = (4, 2-2, 2)$$

$$\begin{array}{ll} \bullet & coord_{\mathcal{E}}(T \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) = (4, 2-2, 2) \\ \bullet & coord_{\mathcal{E}}(T \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}) = (1, 3, 1, -1) \end{array}$$

•
$$coord_{\mathcal{E}}(T\begin{pmatrix}0&0\\1&0\end{pmatrix})=(0,0,2,0)$$

$$\bullet \ \ coord_{\mathcal{E}}(T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}) = (1,1,-3,5)$$

Observación: lo que cambia es la representación, los números son los mismos, porque la base es canónica.

Entonces:

$$_{\mathcal{E}}(T)_{\mathcal{E}} = \begin{pmatrix} 4 & 1 & 0 & 1 \\ 2 & 3 & 0 & 1 \\ -2 & 1 & 2 & -3 \\ 2 & -1 & 0 & 5 \end{pmatrix}$$

Quiero hallar el polinomio característico, para esto, veamos el siguiente recordatorio:

Recordatorio (desarrollo de un determinante por una fila)

Sea $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ una matriz $(a_{i,j})$. Podemos desarrollar el determinante de A por la fila i de la siguiente manera:

$$det(A) = \sum_{j=1}^n (-1)^{i+j} a_{i,j} \cdot det(D_{i,j})$$

Donde $D_{i,j}$ es la matriz obtenida de A eliminando la fila i y la columna j.

Continuación

Utilizando el recordatorio, hallemos el polinomio característico:

$$\begin{split} \mathbf{X}_{T}(\lambda) &= \det(\varepsilon(T)_{\mathcal{E}} - \lambda \mathbb{I}) \\ \mathbf{X}_{T}(\lambda) &= \begin{vmatrix} 4 - \lambda & 1 & 0 & 1 \\ 2 & 3 - \lambda & 0 & 1 \\ -2 & 1 & 2 - \lambda & -3 \\ 2 & -1 & 0 & 5 - \lambda \end{vmatrix} \\ \mathbf{X}_{T}(\lambda) &= (2 - \lambda) \cdot \begin{vmatrix} 4 - \lambda & 1 & 1 \\ 2 & 3 - \lambda & 1 \\ 2 & -1 & 5 - \lambda \end{vmatrix} \\ \mathbf{X}_{T}(\lambda) &= (2 - \lambda) \cdot \begin{vmatrix} \left(-1\right)^{1+1}(4 - \lambda) \cdot \begin{vmatrix} 3 - \lambda & 1 \\ -1 & 5 - \lambda \end{vmatrix} \right) + \\ \left(\left(-1\right)^{1+2} \cdot 1 \cdot \begin{vmatrix} 2 & 1 \\ 2 & 5 - \lambda \end{vmatrix} \right) + \\ \left(\left(-1\right)^{1+3} \cdot 1 \cdot \begin{vmatrix} 2 & 3 - \lambda \\ 2 & -1 \end{vmatrix} \right) + \\ \left(\left(-1\right)^{1+3} \cdot 1 \cdot \begin{vmatrix} 2 & 3 - \lambda \\ 2 & -1 \end{vmatrix} \right) + \\ \left(\left(-1\right)^{1+3} \cdot 1 \cdot \begin{vmatrix} 2 & 3 - \lambda \\ 2 & -1 \end{vmatrix} \right) + \\ \left(-1 \cdot (10 - 2\lambda - 2)) + \\ \left(-2 - 6 - 2\lambda \right) \right) \end{vmatrix} \\ \mathbf{X}_{T}(\lambda) &= (2 - \lambda) \cdot \begin{bmatrix} \left((4 - \lambda) \cdot (\lambda^{2} - 8\lambda + 16) + 1 \right) \\ \left(2\lambda - 8 \right) + \\ \left(2\lambda - 8 \right) \end{bmatrix} \\ \mathbf{X}_{T}(\lambda) &= (2 - \lambda) \cdot \left[\left((4 - \lambda) \cdot (\lambda^{2} - 8\lambda + 16) \right) + 4\lambda - 16 \right] \\ \mathbf{X}_{T}(\lambda) &= (2 - \lambda) \cdot \left[-\lambda^{3} + 12\lambda^{2} - 44\lambda + 48 \right] \end{split}$$

Ahora, debemos factorizar el polinomio de grado 3 para encontrar sus raíces, para esto usamos el siguiente recordatorio:

Recordatorio (teorema de raíces racionales)

Si un polinomio tiene raíces racionales, estas son de la forma $\frac{p}{q}$, donde p es un divisor del término independiente y q es un divisor del coeficiente del término de mayor grado.

Continuación

Ahora que conocemos la forma de las raíces, podemos concluir que las raíces del polinomio de tercer grado anterior están incluidas en la lista: $\{\pm 1, \pm 2, \pm 4, \pm 6, \pm 8, \pm 12, \pm 16, \pm 24, \pm 48\}$

Probemos con 2:

$$-2^3 + 12 \cdot 2^2 - 44 \cdot 2 + 48 = -8 + 48 - 88 + 48 = 0$$

Entonces 2 es raíz de dicho polinomio, por lo que lo puedo factorizar usando Ruffini:

Por lo tanto, puedo expresar el polinomio de tercer grado como:

$$-\lambda^3 + 12\lambda^2 - 44\lambda + 48 = (\lambda - 2)(-\lambda^2 + 10\lambda - 24)$$

Entonces ahora hallemos las raíces del polinomio de segundo grado usando Bhaskara:

$$\lambda = \frac{-10 \pm \sqrt{10^2 - 4 \cdot (-1) \cdot (-24)}}{2}$$

$$\lambda = \frac{-10 \pm \sqrt{100 - 96}}{-2}$$

$$\lambda = \frac{-10 \pm \sqrt{4}}{-2}$$

$$\lambda = \frac{-10 \pm 2}{-2}$$

$$\lambda_1 = \frac{-8}{-2}; \quad \lambda_2 = \frac{-12}{-2}$$

$$\lambda_2 = 4; \quad \lambda_3 = 6$$

Por lo tanto, las raíces del polinomio característico son $\lambda_1=2,\,\lambda_2=4,\,\lambda_3=6.$

Observación: En este caso hallamos el 2 de dos formas diferentes, 2 es raíz doble del polinomio característico.

Ahora hallemos los subespacios propios asociados a cada valor propio, para lo que debemos resolver el siguiente sistema:

$$\begin{pmatrix}
4 - \lambda & 1 & 0 & 1 & 0 \\
2 & 3 - \lambda & 0 & 1 & 0 \\
-2 & 1 & 2 - \lambda & -3 & 0 \\
2 & -1 & 0 & 5 - \lambda & 0
\end{pmatrix}$$

Subespacio $\lambda_1 = 2$

El sistema que queremos resolver en este caso es:

$$\left(\begin{array}{ccc|cccc}
2 & 1 & 0 & 1 & 0 \\
2 & 1 & 0 & 1 & 0 \\
-2 & 1 & 0 & -3 & 0 \\
2 & -1 & 0 & 3 & 0
\end{array}\right)$$

Observemos que la primera es CL de la segunda, y la tercera es CL de la cuarta, por lo que podemos decir que:

•
$$z = -y - 2x$$

•
$$y = 2x + 3z \Rightarrow y = 2x - 3y - 6x \Rightarrow 4y = -4x \Rightarrow y = -x$$

Y con esto puedo decir que:

•
$$z = -y - 2x = x - 2x = -x$$

•
$$y = -x$$

Por lo tanto:

$$S_2 = \{ \begin{pmatrix} \alpha & -\alpha \\ \beta & -\alpha \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \}$$

La base de este subespacio podría ser:

$$\left\{ \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

Subespacio $\lambda_2 = 4$

El sistema que queremos resolver en este caso es:

$$\left(\begin{array}{ccc|ccc}
0 & 1 & 0 & 1 & 0 \\
2 & -1 & 0 & 1 & 0 \\
-2 & 1 & -2 & -3 & 0 \\
2 & -1 & 0 & 1 & 0
\end{array}\right)$$

Observemos que la segunda es CL de la cuarta, por lo que podemos decir que:

- y = -z
- $z = -2x + y \Rightarrow z = -2x z \Rightarrow 2z = -2x \Rightarrow z = -x$

•
$$-2x + y - 2w - 3z = 0 \Rightarrow -2x + (-z) - 2w - 3(-x) = 0 \Rightarrow -2x + x - 2w + 3x = 0 \Rightarrow 2x - 2w = 0 \Rightarrow x = w$$

Y con esto puedo decir que:

- $y = -z \Rightarrow y = x \Rightarrow y = w$
- $z = -x \Rightarrow z = -w$
- x = w

Por lo tanto:

$$S_4 = \{ \begin{pmatrix} \alpha & \alpha \\ \alpha & -\alpha \end{pmatrix} \mid \alpha \in \mathbb{R} \}$$

La base de este subespacio podría ser:

$$\left\{ \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \right\}$$

Subespacio $\lambda_3 = 6$

El sistema que queremos resolver en este caso es:

$$\begin{pmatrix}
-2 & 1 & 0 & 1 & 0 \\
2 & -3 & 0 & 1 & 0 \\
-2 & 1 & -4 & -3 & 0 \\
2 & -1 & 0 & -1 & 0
\end{pmatrix}$$

Observemos que la primera es CL de la cuarta, por lo que podemos decir que:

- $\begin{array}{l} \bullet \quad z = -y + 2x \\ \bullet \quad x = \frac{3y-z}{2} \Rightarrow x = \frac{4y-2x}{2} \Rightarrow x = 2y x \Rightarrow x = y \\ \bullet \quad y = 2x + 4w + 3z \end{array}$

Y con esto puedo decir que: - $z=-y+2x \Rightarrow z=-y+2y \Rightarrow z=y$ - x=y $y = 2x + 4w + 3z \Rightarrow y = 2y + 4w + 3y \Rightarrow -4y = 4w \Rightarrow y = -w$

Poniendo todo en función de w:

- z = -w
- x = -w
- y = -w

Por lo tanto:

$$S_6 = \{ \begin{pmatrix} -\alpha & -\alpha \\ \alpha & -\alpha \end{pmatrix} \mid \alpha \in \mathbb{R} \}$$

La base de este subespacio podría ser:

$$\left\{ \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix} \right\}$$