INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

DEPARTMENT OF MATHEMATICS

Problem Sheet-I

Date: 01.10.2018 MA 2120: Transform Techniques

1. Define the following:

- (a) Let $g(t) = te^{t^2}\sin(e^{t^2})$, $t \in [0, \infty)$. Is g continuous on $[0, \infty)$. Does g have exponential order? Show that $\mathcal{L}(g)$ exists?
- (b) Give examples of functions on $[0, \infty)$ which are piecewise continuous.
- 2. Without actually determining it, show that the following functions possess Laplace transform;

(a)
$$\frac{\sin(t)}{t}$$
, $t > 0$

(b)
$$\frac{1-\cos(t)}{t}$$
, $t > 0$

- (c) $t^2 \sinh(t), t \ge 0$.
- 3. Compute the Laplace transform of the following functions;
 - (a) $\cosh^2 w(t)$
 - (b) $\sinh^2(wt)$
- 4. Compute the Laplace transform of the following functions;

(a)
$$f(t) = \sin^3 w(t), t \ge 0$$

(b)
$$f(t) = \cos^3 w(t), t \ge 0$$

- 5. Can $\mathcal{F}(s) = \frac{s}{\log(s)}$, s > 0 be the Laplace transform of some function?
- 6. Find the inverse Laplace transform of the following funcions

(a)
$$\frac{e^{-\pi s}}{s^2 - 2}$$
, $s > \sqrt{2}$

(b)
$$\frac{s}{s^2 + 6s + 1}$$
, $s > 0$

(b)
$$\frac{s}{s^2 + 6s + 1}$$
, $s > 0$
(c) $\frac{s}{(s^2 + a^2)(s^2 + b^2)}$, $a \neq b$

(d)
$$\frac{s}{(s-1)(s+2)(s-3)}$$
, $s > 3$

(e)
$$\frac{1}{s^2(s^2+1)}$$

(f)
$$\frac{1}{s^2(s+4)^2}$$
.

7. Solve

$$y''(t) + y(t) = cu_a(t), y(0) = 0, y'(0) = 1,$$

where c is constant and a > 0.

- 8. Solve $y''(t) + \lambda^2 y(t) = \cos(\lambda t)$, y(0) = 1, $y(\frac{\pi}{2\lambda}) = 1$.
- 9. Solve $y'''(t) + 5y''(t) + 2y'(t) 8y(t) = \sin(t)$, y(0) = 0 = y'(0).
- 10. Solve y''(t) + y'(t) = f(t), y(0) = 1, y'(0) = -1, where $f(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 0, & t > 1. \end{cases}$
- 11. Solve $y''(t) + y(t) = \begin{cases} \cos(t), \ 0 \le t \le \pi \\ 0, \ t > \pi. \end{cases}$
- 12. Solve the following boundary value problems using Laplace transform;

(a)
$$y''(t) + \lambda^2 y(t) = \sin(\lambda t), \ y(0) = 1, \ y(\frac{\pi}{2\lambda}) = \pi.$$

(b)
$$y''(t) + \lambda^2 y(t) = t$$
, $y(0) = 1$, $y(\frac{\pi}{2}) = -1$.

13. Solve the following integral equations;

(a)
$$\int_0^t \cos(\tau) \sin(t-\tau) d\tau = \frac{1}{2} t \sin(t)$$

(b)
$$x(t) = 1 + \int_0^1 \cos(t - \tau) x(\tau) d\tau$$

(c)
$$te^{-at} = 1 + \int_0^t x(\tau)x(t-\tau)d\tau$$
.

- 14. Compute the following;
 - (a) $\cos(t) * \sin(t)$
 - (b) $\sin(t) * t^2$.