模块二 代数问题篇

第1节解三角形中的化角类问题(★★★)

内容提要

在三角形中研究某三角代数式的范围,往往通过消元将其化为一个角(单变量)的三角函数研究;对于部分有关边长的范围问题,也可由正弦定理边化角,转化成三角代数式来分析范围.

- 1. 已知某个角或某两个角的关系时,可结合 $A+B+C=\pi$,将目标三角代数式消元化为单变量函数.
- 2. 对于边的齐次分式,可先用正弦定理边化角,再消元化单变量函数.
- 3. 对于知道一边一角求有关边长的问题(例如已知 A 和 b,求 c 的范围),可用正弦定理,由 $\frac{c}{\sin C} = \frac{b}{\sin B}$ 解出 $c = \frac{b \sin C}{\sin B}$,达到化角的目的,再消元化单变量函数.
- 4. 化为单变量函数后,常需要限定角度范围,以下是常见的限定方式:
- ①锐角 $\triangle ABC$ 给定某角: 如给定角 $A(0 < A < \frac{\pi}{2})$,让求 B 的范围,应考虑 B,C 两个内角,由不等式组

$$\begin{cases} 0 < B < \frac{\pi}{2} \\ 0 < C = \pi - A - B < \frac{\pi}{2} \end{cases}$$
 求解 B 的范围;

②钝角 $\triangle ABC$ 给定某角: 如给定角 $A(0 < A < \frac{\pi}{2})$,让求 B 的范围,应讨论 B, C 为钝角两种情况. 若 B 为

两个不等式组的解集取并集,得到 B 的取值范围.

③锐角 $\triangle ABC$ 结合角的关系限定角的范围: 例如给出 A=2B, 让求 B 的范围,则 $C=\pi-A-B=\pi-3B$,

可由不等式组
$$\begin{cases} 0 < A = 2B < \frac{\pi}{2} \\ 0 < B < \frac{\pi}{2} \end{cases}$$
 求解 B 的范围.
$$0 < C = \pi - 3B < \frac{\pi}{2}$$

④锐角 $\triangle ABC$ 结合三角函数关系限定角的范围: 例如,给出 $\sin A = 2\sin B$,让求 B 的范围,可由 $\sin B = \frac{1}{2}\sin A < \frac{1}{2}$,结合 B 为锐角得出 B 的范围是 $(0, \frac{\pi}{6})$.

典型例题

类型 I: 三角代数式的消元

【例 1】已知 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 且 $C = \frac{2\pi}{3}$, 则 $\cos A + \cos B$ 的取值范围是_____.

解析: 已知 C, 可先找到 A 和 B 的关系,将 $\cos A + \cos B$ 化为单变量函数,不妨消 B,

因为
$$C = \frac{2\pi}{3}$$
,所以 $B = \pi - A - C = \frac{\pi}{3} - A$,

化为单变量函数了,下面研究A的范围,

由
$$A+B=\frac{\pi}{3}$$
可得 $A\in(0,\frac{\pi}{3})$,所以 $A+\frac{\pi}{3}\in(\frac{\pi}{3},\frac{2\pi}{3})$,从而 $\sin(A+\frac{\pi}{3})\in(\frac{\sqrt{3}}{2},1]$,

故
$$\sqrt{3}\sin(A+\frac{\pi}{3})\in(\frac{3}{2},\sqrt{3}]$$
,即 $\cos A+\cos B$ 的取值范围是 $(\frac{3}{2},\sqrt{3}]$.

答案: $(\frac{3}{2}, \sqrt{3}]$

【反思】当求范围的代数式中有两个角时,常用这两个角的关系来消元, 化为单变量函数求值域.

【变式 1】在锐角 $\triangle ABC$ 中, $B = \frac{\pi}{3}$,则 $\sin A \sin C$ 的取值范围是_____.

解析: 已知 B,可找到 A 和 C 的关系,并用它来将 $\sin A \sin C$ 消元,不妨消 C,

因为
$$B = \frac{\pi}{3}$$
,所以 $C = \pi - A - B = \frac{2\pi}{3} - A$,

故 sin
$$A$$
 sin C = sin A sin $(\frac{2\pi}{3} - A)$ = sin $A(\frac{\sqrt{3}}{2}\cos A + \frac{1}{2}\sin A)$ = $\frac{\sqrt{3}}{2}\sin A\cos A + \frac{1}{2}\sin^2 A$

$$= \frac{\sqrt{3}}{4}\sin 2A + \frac{1}{2} \times \frac{1 - \cos 2A}{2} = \frac{\sqrt{3}}{4}\sin 2A - \frac{1}{4}\cos 2A + \frac{1}{4} = \frac{1}{2}\sin(2A - \frac{\pi}{6}) + \frac{1}{4},$$

化为单变量函数了,要求值域还需研究A的范围,

因为
$$\Delta ABC$$
 是锐角三角形,所以
$$\begin{cases} 0 < A < \frac{\pi}{2} \\ 0 < C = \frac{2\pi}{3} - A < \frac{\pi}{2} \end{cases}$$
,解得: $\frac{\pi}{6} < A < \frac{\pi}{2}$,

从而
$$\frac{\pi}{6} < 2A - \frac{\pi}{6} < \frac{5\pi}{6}$$
,故 $\frac{1}{2} < \sin(2A - \frac{\pi}{6}) \le 1$,所以 $\frac{1}{2} < \frac{1}{2}\sin(2A - \frac{\pi}{6}) + \frac{1}{4} \le \frac{3}{4}$,故 sin $A\sin C \in (\frac{1}{2}, \frac{3}{4}]$.

答案: $(\frac{1}{2}, \frac{3}{4}]$

【变式 2】(2020・新课标 II 卷) $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\cos^2(\frac{\pi}{2} + A) + \cos A = \frac{5}{4}$.

(1) 求A;

(2) 若
$$b-c=\frac{\sqrt{3}}{3}a$$
,证明: $\triangle ABC$ 是直角三角形.

解: (1) 由题意,
$$\cos^2(\frac{\pi}{2} + A) + \cos A = \sin^2 A + \cos A = 1 - \cos^2 A + \cos A = \frac{5}{4}$$

解得: $\cos A = \frac{1}{2}$, 结合 $0 < A < \pi$ 知 $A = \frac{\pi}{3}$.

(2) (证明直角三角形可看成求角,故将所给条件边化角)

因为
$$b-c=\frac{\sqrt{3}}{3}a$$
,所以 $\sin B-\sin C=\frac{\sqrt{3}}{3}\sin A$,将 $A=\frac{\pi}{3}$ 代入可得 $\sin B-\sin C=\frac{1}{2}$ ①,

(此式有两个变量,但已知A,可利用B和C的关系来消元)

又
$$B+C=\pi-A=\frac{2\pi}{3}$$
,所以 $C=\frac{2\pi}{3}-B$,故 $\sin C=\sin(\frac{2\pi}{3}-B)=\frac{\sqrt{3}}{2}\cos B+\frac{1}{2}\sin B$,

代入式①得
$$\sin B - (\frac{\sqrt{3}}{2}\cos B + \frac{1}{2}\sin B) = \frac{1}{2}$$
,整理得: $\frac{1}{2}\sin B - \frac{\sqrt{3}}{2}\cos B = \frac{1}{2}$,所以 $\sin(B - \frac{\pi}{3}) = \frac{1}{2}$ ②,

曲
$$B+C=\frac{2\pi}{3}$$
可得 $0 < B < \frac{2\pi}{3}$,所以 $-\frac{\pi}{3} < B - \frac{\pi}{3} < \frac{\pi}{3}$,结合式②可得 $B-\frac{\pi}{3} = \frac{\pi}{6}$,故 $B=\frac{\pi}{2}$,

所以ΔABC是直角三角形.

【总结】从上面几道题可以看出,当三角形的三角代数式中有两个或多个角时,可利用题干所给角的关系、内角和为 π 来消元,化为单变量三角代数式分析,且应求出角的准确范围.

类型 II: 齐次的边化角, 再消元

【例 2】若
$$\triangle ABC$$
 的面积为 $\frac{\sqrt{3}}{4}(a^2+c^2-b^2)$,且 $\angle C$ 为钝角,则 $\angle B = _____; \frac{c}{a}$ 的取值范围是_____.

式子中出现了
$$ac$$
 和 $\angle B$,所以求面积用 $S = \frac{1}{2}ac\sin \angle B$,由题意, $\frac{1}{2}ac\sin \angle B = \frac{\sqrt{3}}{4}(a^2 + c^2 - b^2)$,

将式①代入得:
$$\frac{1}{2}ac\sin \angle B = \frac{\sqrt{3}}{4} \cdot 2ac\cos \angle B$$
,整理得: $\tan \angle B = \sqrt{3}$,结合 $\angle B \in (0,\pi)$ 可得 $\angle B = \frac{\pi}{3}$;

要求 $\frac{c}{a}$ 的范围,此为边的齐次分式,可先边化角,再利用 $\angle A$ 与 $\angle C$ 的关系消元,

由正弦定理,
$$\frac{c}{a} = \frac{\sin \angle C}{\sin \angle A} = \frac{\sin(\pi - \angle A - \angle B)}{\sin \angle A} = \frac{\sin(\frac{2\pi}{3} - \angle A)}{\sin \angle A} = \frac{\frac{\sqrt{3}}{2}\cos \angle A + \frac{1}{2}\sin \angle A}{\sin \angle A} = \frac{\sqrt{3}}{2\tan \angle A} + \frac{1}{2}$$

因为
$$\angle C$$
为钝角,所以 $\angle A$ 为锐角,从而
$$\begin{cases} 0 < \angle A < \frac{\pi}{2} \\ \frac{\pi}{2} < \angle C = \frac{2\pi}{3} - \angle A < \pi \end{cases}$$
,故 $0 < \angle A < \frac{\pi}{6}$,

所以
$$0 < \tan \angle A < \frac{\sqrt{3}}{3}$$
,从而 $\frac{1}{\tan \angle A} > \sqrt{3}$,故 $\frac{c}{a} = \frac{\sqrt{3}}{2 \tan \angle A} + \frac{1}{2} > 2$.

答案: $\frac{\pi}{3}$, $(2,+\infty)$

【反思】遇到边的齐次分式,可考虑正弦定理边转角,化成例1的角度型代数式,再消元成一元函数研究.

【变式】(2022 • 新高考 I 卷改编) 记 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\sin B = -\cos C$,

求
$$\frac{a^2+b^2}{c^2}$$
 的最小值.

解: $(\sin B = -\cos C$ 约束了 B 和 C 的关系,要找到这一关系,可先化同名)

因为
$$\sin B = -\cos C$$
, 而 $-\cos C = \sin(C - \frac{\pi}{2})$, 所以 $\sin B = \sin(C - \frac{\pi}{2})$,

由 $0 < B < \pi$ 知 $\sin B > 0$, 所以 $\cos C < 0$, 从而 C 为钝角, A , B 均为锐角, 故 $C - \frac{\pi}{2}$ 为锐角,

所以
$$\sin B = \sin(C - \frac{\pi}{2}) \Leftrightarrow B = C - \frac{\pi}{2}$$
,故 $A = \pi - B - C = \pi - (C - \frac{\pi}{2}) - C = \frac{3\pi}{2} - 2C$,

(这样角就统一为C了,可将齐次分式 $\frac{a^2+b^2}{c^2}$ 边化角,再消元)

$$\text{Figs.} \frac{a^2 + b^2}{c^2} = \frac{\sin^2 A + \sin^2 B}{\sin^2 C} = \frac{\sin^2 (\frac{3\pi}{2} - 2C) + \sin^2 (C - \frac{\pi}{2})}{\sin^2 C} = \frac{\cos^2 2C + \cos^2 C}{\sin^2 C} = \frac{(1 - 2\sin^2 C)^2 + 1 - \sin^2 C}{\sin^2 C}$$

$$= \frac{2 - 5\sin^2 C + 4\sin^4 C}{\sin^2 C} = \frac{2}{\sin^2 C} + 4\sin^2 C - 5 \ge 2\sqrt{\frac{2}{\sin^2 C} \cdot 4\sin^2 C} - 5 = 4\sqrt{2} - 5,$$

当且仅当
$$\frac{2}{\sin^2 C}$$
 = $4\sin^2 C$ 时取等号,此时 $\sin C = \frac{1}{\sqrt[4]{2}}$,故 $\frac{a^2 + b^2}{c^2}$ 的最小值为 $4\sqrt{2} - 5$.

类型III: 非齐次的边化角, 再消元

【例 3】在 $\triangle ABC$ 中,角 A, B, C 的对边分别为 a, b, c,且 $a=3\sin A$, $b=3\sqrt{3}\cos B$,则 B=____; c 的取值范围是

解析: 由 $a=3\sin A$ 可求出外接圆直径,并用它来边角互化,

因为 $a=3\sin A$,所以 $\frac{a}{\sin A}=3$,故 ΔABC 的外接圆直径 2R=3,已知外接圆直径,可直接边化角,

所以 $\frac{b}{\sin B}$ = 3,故 $b = 3\sin B$,又由题意, $b = 3\sqrt{3}\cos B$,所以 $3\sin B = 3\sqrt{3}\cos B$,故 $\tan B = \sqrt{3}$,

结合
$$0 < B < \pi$$
可得 $B = \frac{\pi}{3}$;由 $\frac{c}{\sin C} = 2R = 3$ 可得 $c = 3\sin C$,

因为
$$B = \frac{\pi}{3}$$
,所以 $A + C = \pi - B = \frac{2\pi}{3}$,从而 $C \in (0, \frac{2\pi}{3})$,故 $c = 3\sin C \in (0, 3]$.

答案: $\frac{\pi}{3}$; (0,3]

【反思】本题相比于例 2,边长不再是齐次分式,但当知道 2R的值时,依旧可以使用正弦定理边化角.

【变式】锐角 $\triangle ABC$ 是单位圆的内接三角形,角 A, B, C 的对边分别为 a, b, c, 且 $a^2+b^2-c^2=4a^2\cos A-2ac\cos B$,则 $\frac{ac}{b}$ 的取值范围是(

(A)
$$(2\sqrt{3}, 3\sqrt{3})$$
 (B) $(\sqrt{3}, 3\sqrt{3})$ (C) $(\frac{\sqrt{3}}{2}, 2\sqrt{3})$ (D) $(\frac{\sqrt{3}}{2}, \sqrt{3})$

解析: 所给等式中有 $a^2 + b^2 - c^2$, 这是用余弦定理的标志,

由余弦定理, $c^2 = a^2 + b^2 - 2ab\cos C$,所以 $a^2 + b^2 - c^2 = 2ab\cos C$,

代入题干等式得 $2ab\cos C = 4a^2\cos A - 2ac\cos B$, 化简得: $b\cos C = 2a\cos A - c\cos B$,

所以 $\sin B \cos C = 2 \sin A \cos A - \sin C \cos B$, 从而 $\sin B \cos C + \sin C \cos B = 2 \sin A \cos A$,

故 $\sin(B+C) = 2\sin A\cos A$,又 $\sin(B+C) = \sin(\pi-A) = \sin A$,所以 $\sin A = 2\sin A\cos A$ ①,

由 $0 < A < \pi$ 知 $\sin A > 0$, 所以在①中约去 $\sin A$ 可得 $\cos A = \frac{1}{2}$,故 $A = \frac{\pi}{3}$,

题干说 $\triangle ABC$ 是单位圆的内接三角形,所以其外接圆半径是 1,故可用它对非齐次分式 $\frac{ac}{b}$ 边化角,

由正弦定理, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R = 2$,所以 $a = 2\sin A$, $b = 2\sin B$, $c = 2\sin C$,

$$tx \frac{ac}{b} = \frac{2\sin A \cdot 2\sin C}{2\sin B} = \frac{\sqrt{3}\sin C}{\sin B} = \frac{\sqrt{3}\sin(\pi - A - B)}{\sin B} = \frac{\sqrt{3}\sin(\frac{2\pi}{3} - B)}{\sin B}$$

$$= \frac{\sqrt{3}(\sin\frac{2\pi}{3}\cos B - \cos\frac{2\pi}{3}\sin B)}{\sin B} = \frac{\sqrt{3}(\frac{\sqrt{3}}{2}\cos B + \frac{1}{2}\sin B)}{\sin B} = \frac{3}{2\tan B} + \frac{\sqrt{3}}{2},$$

还需求B的范围,A已知,可由B和C都是锐角来建立不等式组,

因为
$$\triangle ABC$$
 是锐角三角形,所以 $\begin{cases} 0 < B < \frac{\pi}{2} \\ 0 < C = \frac{2\pi}{3} - B < \frac{\pi}{2} \end{cases}$, 从而 $\frac{\pi}{6} < B < \frac{\pi}{2}$, 故 $\tan B > \frac{\sqrt{3}}{3}$,

所以
$$0 < \frac{1}{\tan B} < \sqrt{3}$$
,故 $\frac{\sqrt{3}}{2} < \frac{3}{2 \tan B} + \frac{\sqrt{3}}{2} < 2\sqrt{3}$,即 $\frac{ac}{b}$ 的取值范围是($\frac{\sqrt{3}}{2}$, $2\sqrt{3}$).

答案: C

【例 4】锐角 $\triangle ABC$ 的内角 A, B, C 的对边分别是 a, b, c,已知 $B = \frac{\pi}{3}$, c = 1,求 $\triangle ABC$ 的面积的取值范围.

解法 1: 已知 B和 c,求面积把它们都用起来,由题意, $S_{\Delta ABC} = \frac{1}{2}ac\sin B = \frac{\sqrt{3}}{4}a$,

所以只需求 a 的范围,可将 a 边化角,借助角来分析,因为 $\frac{a}{\sin A} = \frac{c}{\sin C}$,所以 $a = \frac{c\sin A}{\sin C} = \frac{\sin A}{\sin C}$

有A, C两个变量, 可利用它们的关系消元,

$$S_{\Delta ABC} = \frac{\sqrt{3}}{4} a = \frac{\sqrt{3} \sin A}{4 \sin C} = \frac{\sqrt{3} \sin(\pi - B - C)}{4 \sin C} = \frac{\sqrt{3} \sin(\frac{2\pi}{3} - C)}{4 \sin C} = \frac{\sqrt{3} (\frac{\sqrt{3}}{2} \cos C + \frac{1}{2} \sin C)}{4 \sin C} = \frac{3}{8 \tan C} + \frac{\sqrt{3}}{8},$$

由
$$\Delta ABC$$
 为锐角三角形知
$$\begin{cases} 0 < C < \frac{\pi}{2} \\ 0 < A = \frac{2\pi}{3} - C < \frac{\pi}{2} \end{cases}$$
 解得: $\frac{\pi}{6} < C < \frac{\pi}{2}$,所以 $\tan C > \frac{\sqrt{3}}{3}$,

从而
$$0 < \frac{1}{\tan C} < \sqrt{3}$$
,故 $\frac{\sqrt{3}}{8} < \frac{3}{8\tan C} + \frac{\sqrt{3}}{8} < \frac{\sqrt{3}}{2}$,所以 ΔABC 的面积的取值范围为 $(\frac{\sqrt{3}}{8}, \frac{\sqrt{3}}{2})$.

解法 2: 按解法 1 得到 $S_{\Delta ABC} = \frac{\sqrt{3}}{4}a$ 后,也可直接从边入手,分析 a 的范围,先把 b 也用 a 表示,

由余弦定理,
$$b^2 = a^2 + c^2 - 2ac\cos B$$
,将 $B = \frac{\pi}{3}$, $c = 1$ 代入得 $b^2 = a^2 - a + 1$,

因为
$$\Delta ABC$$
 为锐角三角形,所以
$$\begin{cases} a^2+b^2-c^2>0 \\ a^2+c^2-b^2>0, \text{ to } \begin{cases} a^2+a^2-a+1-1>0 \\ a^2+1-(a^2-a+1)>0, \text{ 解得: } \frac{1}{2} < a < 2, \\ a^2-a+1+1-a^2>0 \end{cases}$$

所以
$$\frac{\sqrt{3}}{8} < S_{\Delta ABC} = \frac{\sqrt{3}}{4} a < \frac{\sqrt{3}}{2}$$
,故 ΔABC 的面积的取值范围为 $(\frac{\sqrt{3}}{8}, \frac{\sqrt{3}}{2})$.

【反思】①解法 1 将求 S 的范围转化为求 a 的范围,此时虽不知道 2R,但由于知道一边一角,仍可用正弦 定理边化角,转化为例 2 类型的角度相关范围问题;②A 为锐角 \Leftrightarrow $\cos A > 0 \Leftrightarrow b^2 + c^2 - a^2 > 0$.

强化训练

1.
$$(\star\star)$$
 ΔABC 的内角 A , B , C 的对边分别为 a , b , c , 已知 $B=150^\circ$, $\sin A+\sqrt{3}\sin C=\frac{\sqrt{2}}{2}$, 则 $C=$ _____.

- 2. $(2022 \cdot 黑龙江期中 \cdot \star \star)$ 已知 ΔABC 的内角 A, B, C 的对边分别为 a, b, c, 且 $C = \frac{\pi}{3}$, 则 $\frac{\cos B}{\cos A}$ 的取值范围是 .
- 3. $(2022 \cdot 浙江模拟 \cdot \star \star \star \star)$ 在 ΔABC 中,内角 A,B,C 的对边分别为 a,b,c,已知 $a \tan B = b \tan A$,则 $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2}$ 的取值范围是_____.

4. (2022・黑龙江模拟改・★★★)在锐角 $\triangle ABC$ 中,已知 $A = \frac{\pi}{3}$,则 $\frac{c}{b}$ 的取值范围为_____.

5. (★★★) 在锐角 $\triangle ABC$ 中, BC=1, B=2A,则 $\frac{AC}{\cos A}$ 的值等于____, AC 的取值范围为____.

- 6. $(2016 \cdot 北京卷 \cdot \star \star \star)$ 在 ΔABC 中, $a^2 + c^2 = b^2 + \sqrt{2}ac$.
- (1) 求角B的大小;
- (2) 求 $\sqrt{2}\cos A + \cos C$ 的最大值.
- 7. $(2023 \cdot 四川绵阳模拟改 \cdot \star \star \star \star)$ 在锐角 ΔABC 中,角 A, B, C 的对边分别为 a, b, c, 已知 $b\cos A a\cos B = a$,求 $\sqrt{3}\sin B + 2\sin^2 A$ 的取值范围.
- 8. $(2022 \cdot 安徽凤阳模拟改 \cdot ★★★★)$ 在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 且 $\sin(A-\frac{\pi}{6})\cos(A+\frac{\pi}{3})=-\frac{1}{4}$, A 为锐角.
 - (1) 求A;
 - (2) 若 $\triangle ABC$ 为锐角三角形,且 a=1,求 $\triangle ABC$ 的周长的取值范围.

- 9. $(2022 \cdot 辽宁铁岭期末 \cdot ★★★★)$ 在锐角 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 已知 c=4, 且 $\sqrt{3}(b\sin C + c\sin B) = 4a\sin C\sin B$.
- (1) 求角A的大小;
- (2) 求边 b 的取值范围.

《一数•高考数学核心方法》