

Projeto de Orientação a Objetos

Relacionamento de classes

Relacionamentos - Associação e Multiplicidade

Tipos	Significa
01	Zero ou uma instância. A notação nm indica n para m instâncias.
0* ou *	Não existe limite para o número de instâncias.
1	Exatamente uma instância.
1*	Ao menos uma instância.

Modelo de Classes

- Classe Concreta
- Uma classe é representada na forma de um retângulo, contendo duas linhas que separam 3 partes.
- Nome
- Atributos
- Métodos

Pessoa

-nome: String

-idade: int

-sexo: String

-dataNascimento: String

+nasce(data: String)

Relacionamentos - Associação

- Exemplo de Departamento e Empregado
- Este tipo de relacionamento também supõe entidades independentes entre si.
- Caso uma delas deixe de existir, a outra permanece.
- Um exemplo clássico é o relacionamento Departamento -> Empregado.

Relacionamentos - Associação

- O relacionamento tem navegabilidade bidirecional
 - Um objeto Departamento temos acesso a todos os objetos do tipo Empregado (empregrados[]) e em cada objeto de Empregado temos uma ligação com o objeto Departamento (dept).
- A navegabilidade pode ser unidirecional.
 - O objeto Empregado poderia ter o acesso ao objeto Departamento. Nesse caso, a linha do relacionamento no diagrama de classes deve ter uma seta apontando a navegação.

Relacionamentos - Dependência ou Uso

- Ocorre quanto uma classe A apenas usa a instância de uma outra classe B, geralmente para que a classe A use um serviço da classe B.
- Por exemplo: vai ser criado um applet em uma página web, o applet usa um objeto g do tipo Graphics que é onde ele pode desenhar na tela.

Relacionamentos - Composição

- Descreve uma classe que contém outras classes
 - Visualiza-se uma relação todo-parte
- As partes dependem da existência do todo
 - Se o todo deixa de existir, também deixam de existir as partes.
- O todo contém as partes (e não referências para as partes)
- Quando o todo desaparece, todas as partes também desaparecem
- Nenhuma das partes poder pertencer a mais de um todo.
- Por isso, neste tipo de relacionamento, a cardinalidade da classe que representa o "todo" é sempre 1.

Relacionamentos - Composição

Relacionamentos - Agregação

- Associação em que um objeto é parte de outro, de tal forma que a parte pode existir sem o todo.
- Um objeto contendo referências para outros objetos
 - O primeiro seja o todo
 - Os objetos referenciados sejam as partes do todo.
- A diferença entre os relacionamentos de associação e agregação ainda é algo de bastante discussão entre os gurus.
- De forma geral, utiliza-se agregação para enfatizar detalhes de uma futura implementação (perspectiva de implementação).

Relacionamentos - Agregação

- A agregação como o todo contendo as partes.
- A agregação é denotada por um losango não preenchido em uma das extremidades da linha que liga as duas classes.
- Um projetista para participar de mais de uma equipe de projetos.
- O projeto deixa de existir, mas os projetistas podem estar em outros projetos.

Relacionamentos - Generalização

- Classe mais específica herda tudo da classe mais geral
 - Atributos
 - Operações
 - Associações
- Uma classe pode ser tanto uma subclasse quanto uma superclasse
- A generalização normal é representada por uma linha entre as duas classes que fazem o relacionamento, sendo que se coloca uma seta no lado da linha onde se encontra a superclasse indicando a generalização

