Attention Is All You Need

The Rise of the Transformer

Jong-Cheol Lee

Department of Statistics Pusan National University

October 29, 2024

Contents

- 1. Introduction
- 2. Seq2seq Model
- 3. Attention Mechanism
 - Dot-Product Attention
 - Main idea: Query, Key, Value

4. Transformer Model

- Overview
- Sub-layers of encoder-decoder
- How the Transformer Works

5. Evaluation

Introduction

Machine Translation

Goal

RNN-based Translation

Example

Fundamental Concepts

Word Embedding

Softmax

$$\begin{pmatrix} 2.0 \\ 1.0 \\ 0.1 \end{pmatrix} \rightarrow \frac{e^z}{e^2 + e^1 + e^{0.1}} \rightarrow \begin{pmatrix} 0.67 \\ 0.23 \\ 0.1 \end{pmatrix}$$

Limitations

- Input-Output Length Constraint
- Word Order Variation Across Languages

Seq2Seq

Encoder-Decoder structure

Encoder-Decoder

Attention: Background & Main Concept

Background

- Information loss of context vector
- $s_1, ..., s_4$: Inefficient vector representation

Assumption

- h_i mainly captures i-th input word
- All s_i , h_i are same-sized vectors

Main Concept

Pay attention to important information in each step of decoder

Dot-Product Attention

Dot-Product Attention

Dot-Product Attention

Main Idea: Query, Key, Value

What is Q, K, V?

Transformer: Background & Main Concept

Problems of Sequential Processing

- Difficulty to parallelize
- Long-term dependency

Main Concept

Using only attention mechanisms to build an encoder-decoder

Transformer: Overview

Model Architecture

Figure 1: The Transformer - model architecture

Hyper Parameters

Hyperparameter	Value
d_{model}	512
d_{ff}	2048
N_{heads}	8
N _{layers}	6

- d_{model}: size of embedded vector (equals with size input and output)
- *d*_{ff}: hidden size of *Feed Forward*
- *N_{heads}*: # of attention heads
- N_{layers}: of layers stacked

Why Self Attention?

An Effect of Self-Attention

Inject contextual information to embedded vector

Self Attention

Q, K, V in Self Attention

Multi-head Attention

Calculate *N*_{heads} **Attention Matrix**

Multi-head Attention

Multi-head Attention Matrix

Residual Connection & Layer Normalization

Attention in Decoder

Positional Encoding

Stacking Encoders and Decoders

Figure 1: The Transformer - model architecture.

How the Transformer Works?

Prediction & Training

Masked Self Attention

Evaluation

Table: Comparison with English-to-German and English-to-French newstest2014 tests

Model	Base	BLEU		Training Cost (FLOPs)	
		EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	CNN	23.75	39.2	1.0×10^{20}	-
Deep-Att + PosUnk [39]	RNN + Attention	-	39.2	-	$1.0 imes 10^{20}$
GNMT + RL [38]	RNN	24.6	39.92	2.3×10^{19}	1.4×10^{20}
ConvS2S [9]	CNN	25.16	40.46	$9.6 imes 10^{18}$	$1.5 imes 10^{20}$
MoE [32]	MoE	26.03	40.56	2.0×10^{19}	1.2×10^{20}
Deep-Att + PosUnk Ensemble [39]	RNN + Attention	-	40.4	-	8.0×10^{20}
GNMT + RL Ensemble [38]	RNN	26.30	41.16	1.8×10^{20}	1.1×10^{21}
ConvS2S Ensemble [9]	CNN	26.36	41.29	7.7×10^{19}	1.2×10^{21}
Transformer (base model)	Transformer	27.3	38.1	3.3×10^{18}	-
Transformer (big)	Transformer	28.4	41.8	2.3×10^{19}	-

References

Attention is All You Need

In Advances in Neural Information Processing Systems, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural Machine Translation by Jointly Learning to Align and Translate
In International Conference on Learning Representations (ICLR), 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.

Sequence to Sequence Learning with Neural Networks
In Advances in Neural Information Processing Systems, 2014.