

HAI DATASET

HIL-BASED AUGMENTED ICS (HAI) DATASET WAS COLLECTED FROM A REALISTIC ICS TESTBED AUGMENTED WITH A HARDWARE-IN-THE-LOOP SIMULATOR THAT EMULATES STEAM-TURBINE POWER GENERATION AND PUMPED-STORAGE HYDROPOWER GENERATION

Version: 1.0

Last updated: February 7, 2020

License: CC BY-SA 4.0

HAI DATASET

HIL-BASED AUGMENTED ICS (HAI) DATASET WAS COLLECTED FROM A REALISTIC ICS TESTBED AUGMENTED WITH A HARDWARE-IN-THE-LOOP SIMULATOR THAT EMULATES STEAM-TURBINE POWER GENERATION AND PUMPED-STORAGE HYDROPOWER GENERATION

BACKGROUND

This dataset was developed for research on anomaly detection in cyber-physical systems (CPSs) such as railways, water-treatment, and power plants. In 2017, we initially launched three laboratory-scale CPS testbeds: GE's turbine testbed, Emerson's boiler testbed, and FESTO's MPS water-treatment testbed. These consisted of relatively simple processes and were operated independently of each other. Next, in 2018, we built a complex process system that combined the three systems with a hardware-in-the-loop (HIL) simulator that emulates thermal power generation and pumped-storage hydropower generation, thus ensuring that their variables were highly coupled and correlated for a richer dataset. In addition, an OPC-UA gateway was installed to allow for data collection from heterogeneous devices. Finally, at the end of 2019, we released a dataset that included data from both normal and anomalous situations corresponding to 34 attack scenarios.

TESTBED

The testbed consists of a boiler, a turbine, a water-treatment component, and an HIL simulator. The boiler process is a water-to-water heat-transfer process involving low pressures and moderate temperatures. The turbine process involves the use of a rotor kit testbed that closely simulates the behavior of an actual rotating machine. Both processes are interconnected with the HIL simulator in order to ensure they remain synchronous with the rotating speed of the steam-power generator. The water-treatment process includes the pumping of water to the upper reservoir and releasing it into the lower reservoir using a pumped-storage hydropower generation model during the HIL simulation. The real-world processes are controlled by three different types of controllers. The boiler process is controlled by Emerson's Ovation distributed control system (DCS) for the water level, flow rate, pressure, temperature, water feed pump, and heater control. The turbine process is controlled by GE's Mark VIe DCS for speed control and vibration monitoring. The water-treatment process is controlled by a Siemens S7-300 PLC for the water level and pump control. A dSPACE® SCALEXIO system is used for the HIL simulations and is interconnected with the real-world processes using a Siemens S7-1500 PLC and ET200 remote IO devices.

DATASET

The dataset was built by collecting 59 points every second from the testbed. The dataset for the normal situation was collected continuously for almost 7 days and the attack dataset was collected with 34 attack scenarios on the six control loops in the PLCs and DCSs. The attack dataset consists of one day's worth of data for 20 attack scenarios on each control loop and two days' worth of data for 14 attacks on multiple control loops. Here, a control loop refers to a system comprising all the software functions needed for measuring and adjusting the variable that controls a given process.

TESTBED OVERVIEW

PROCESS ARCHITECTURE

The process flow of the testbed is shown in Figure 1 and can be divided into four primary processes: the boiler process (P1), the turbine process (P2), the water-treatment process (P3), and the HIL simulation (P4). The HIL simulation enhances the correlation between the three real-world processes at the signal level by simulating thermal power generation and pumped-storage hydropower generation scenarios.

The boiler and turbine processes are used to simulate the thermal power plant, while the water-treatment process is used to simulate the pumped-storage hydropower plant.

FIGURE 1. PROCESS FLOW DIAGRAM.

P1: Boiler Process

The boiler process is a water-to-water heat-transfer process with low pressures and moderate temperatures. The boiler process controls the boiler pressure, temperature, and water level. It also controls the opening and closing rates of the main valve based on the opening rate of the steam valve of the thermal power plant in the HIL simulator. The pressure and temperature of the main pipe and the water level are transmitted to the HIL simulator in real time to determine the amount of power generated.

Water in the main water tank is pumped and supplied to the heat-transfer system (P1.2), which subsequently sends the water at a constant temperature and pressure to the return water system (P1.3). The water temperature and pressure are then converted into the current steam temperature and pressure values for the HIL simulator's steam-turbine power generator (P4.1).

Finally, the water is returned to the main water tank, thus ensuring that the water level in the return water tank remains constant (P1.3).

The boiler system consists of eleven sensors, three actuators (two pumps and a heater), and six valves for keeping the water temperature, water pressure, water level, and flow rate constant. The operator can control five setpoints via the OWS (Operator Workstation).

P2: Turbine Process

We used a GE Rotor Kit (Bently Nevada Asset Condition Monitoring) that closely simulates the behavior of an actual rotating machine. It consists of a motor system with a direct current motor speed control device and a rotor system that allows for coupling and includes a rotor shaft, two balance wheels, two journal bearings, and a bearing block. The motor speed remains synchronous with the rotating speed of the thermal power generator model in the HIL simulator.

The turbine system consists of a speedometer and four vibration-monitoring proximity probes to keep the motor speed constant. The operator sets the turbine RPM setpoint through the OWS and can control the motor turbine with precision.

P3: Water-Treatment Process

The water-treatment process includes the pumping of water to the upper reservoir and releasing it back into the lower reservoir using the hydropower turbine model in HIL simulation.

The water-treatment system uses seven sensors, two actuators (a pump and a heater), and an outflow control valve to control the flow and pressure from the return water tank (P3.2) to the main water tank (P3.1) as well as the water level in the main water tank (P3.1).

The hydraulic pressure, flow rate, and water level of the upper water tank are transmitted to the HIL simulator in real time to determine the amount of power generated.

P4: Hardware-In-the-Loop Simulation

This simulation system consists of two synchronous generator models (steam-turbine power generator and pumped-storage hydropower generator) and one power grid model that includes the local load demand and is connected to an infinite bus.

An HIL-based simulator was developed to combine the three control systems (boiler, turbine, and water treatment) to form a combined power generation system.

The temperature and pressure of the boiler system are used to determine the pressure and temperature of the steam entering the steam turbine model (P4.1, STM). The output power of the STM is controlled with an internal steam governor. The power generator model (P4.2) then generates the corresponding electrical power. Meanwhile, the hydro turbine model (P4.3, HTM) and power generator model (P4.4) calculate the amount of output power generated based on the discharge from the water-treatment system. Both power generator models are controlled to ensure that the frequency of the microgrid load is 60 Hz (P4.5).

To control the amount of power generated based on the input load, it is necessary to determine the opening/closing rates of the valves of the thermal power plant and pumped-storage power plant. This allows one to determine the valve opening/closing rates for each control system (i.e., the boiler and water treatment systems).

TESTBED COMPONENTS

The real-world processes are controlled by three different types of controllers. The boiler process is controlled by Emerson's Ovation DCS for the water level, flow rate, pressure, temperature, water feed pump, and heater control. The turbine process is controlled by GE's Mark VIe DCS for speed control and vibration monitoring. The water-treatment process is controlled by a Siemens S7-300 PLC for the water level and pump control. The HIL simulator, which is a dSPACE modular simulator, is interconnected with the real-world processes through a Siemens S7-1500 PLC and ET200 remote IO devices.

FIGURE 2. TESTBED COMPONENTS AND DATA FLOW.

PROCESS CONTROLLERS

Boiler (P1) Controllers

Emerson's Ovation DCS has four feedback loops to control the water level, pressure, temperature, and outflow:

FIGURE 3. ARCHITECTURE OF BOILER PROCESS.

P1-PC: Pressure Control

P1-PC is a feedback controller that controls two pressure-control valves (PCV01D and PCV02D) to maintain the pressure (PIT01) between the main and return water tanks as per the operator's setpoint command (B2016).

FIGURE 4. PRESSURE CONTROL OF BOILER.

P1-LC: Level Control

P1-LC is a feedback controller that controls a level-control valve (LCV01D) to maintain the water level (LIT01) of the return water tank as per the operator's setpoint command (B3004). In addition, feed-forward control is used to rapidly suppress any disturbances in the outflow rate (FCV03D).

FIGURE 5. LEVEL CONTROL OF BOILER.

P1-FC: Flow Rate Control

P1-FC is a feedback controller that controls a flow-control valve (FCV03D) to maintain the outflow rate (FT03) for the return water tank as per the operator's setpoint command (B3005).

FIGURE 6. FLOW RATE CONTROL OF BOILER.

P1-TC: Temperature Control

P1-TC is a feedback controller that controls two flow-control valves (FCV01D and FCV02D) in the heat-transfer system to maintain the temperature (TIT01) of the main vessel as per the operator's setpoint command (B4022). Cascade control with feedforward compensation to the flow controller (inner loop) based on the water flow is used to improve the speed of response to fluctuations in the water flow.

FIGURE 7. TEMPERATURE CONTROL OF BOILER.

Turbine (P2) Controllers

GE's Mark VIe DCS has only one feedback loop for controlling the motor speed. The HIL simulator (P4-STM) generates the setpoint trajectories for speed control (P2-SC).

FIGURE 8. PROCESS ARCHITECTURE OF TURBINE.

P2-SC: Speed Control

P2-SC starts ramping the motor speed from zero to the minimum controlling speed at a constant rate and then enables engagement control with a PI controller to regulate the motor speed (SIT01) to be as close as possible to the speed setpoint (SD01).

FIGURE 9. SPEED CONTROL OF TURBINE.

Water-Treatment (P3) Controllers

Siemens's SIMATIC S7 PCL has only one feedback loop to control the water level of the upper reservoir:

FIGURE 10. PROCESS ARCHITECTURE OF WATER-TREATMENT PLANT.

P3-LC: Level Control

P3-LC controls the level-control valve (LCV01) and the pump (PP01) by adjusting the discharge and pumping demands of the HIL simulator (P4.HTM).

FIGURE 11. LEVEL CONTROL OF WATER-TREATMENT PLANT.

POINTS

Our SCADA system has 59 points, which are listed in the table shown below. SCADA systems typically consist of data elements called points (or tags), with each point representing a single variable measured or controlled by the system.

No	Point Name	Range	Unit	Description
1	P1.B2004	0–10	bar	Heat-exchanger outlet pressure setpoint
2	P1.B2016	0–10	bar	Pressure demand to follow P1.B2004 and electrical load from steam turbine model
3	P1.B3004	0–720	mm	Water level setpoint in return water tank
4	P1.B3005	0–2500	L/H	Water outflow rate setpoint from return water tank
5	P1.B4002	0–100	°C	Heat-exchanger outlet temperature setpoint
6	P1.B4005	0–100	-	Temperature cascade control (On : 1, Off : 0)
7	P1.B400B	0–2500	L/H	Water outflow rate setpoint from heating water tank
8	P1.B4022	0–100	°C	Temperature demand to follow P1. B4005 and electrical load from steam-turbine model
9	P1.FCV01D	0–100	%	Position command for FCV01 valve
10	P1.FCV01Z	0–100	%	Current position of FCV01 valve
11	P1.FCV02D	0–100	%	Position command for FCV02 valve
12	P1.FCV02Z	0–100	%	Current position of FCV02 valve
13	P1.FCV03D	0–100	%	Position command for FCV03 valve
14	P1.FCV03Z	0–100	%	Current position of FCV03 valve
15	P1.FT01	0–2500	mmH ₂ O	Digital value of FT01 flow transmitter
16	P1.FT01Z	0–3190	L/H	Water inflow rate into return water tank
17	P1.FT02	0–2500	mmH ₂ O	Digital value of FT02 flow transmitter
18	P1.FT02Z	0–3190	L/H	Conversion from P1.FT02 to outflow rate at heating water tank
19	P1.FT03	0–2500	mmH ₂ O	Digital value of FT03 flow transmitter
20	P1.FT03Z	0–3190	L/H	Conversion from P1.FT03 to outflow rate at return water tank
21	P1.LCV01D	0–100	%	Position command for LCV01 valve
22	P1.LCV01Z	0–100	%	Current position of LCV01 valve
23	P1.LIT01	0–720		Water level of return water tank
24	P1.PCV01D	0–100	%	Position command for PCV01 valve
25	P1.PCV01Z	0–100	%	Current position of PCV01 valve
26	P1.PCV02D	0–100	%	Position command for PCV2 valve
27	P1.PCV02Z	0–100	%	Current position of PCV02 valve
28	P1.PIT01	0–10	bar	Heat-exchanger outlet pressure
29	P1.PIT02	0~10	bar	Water supply pressure of heating water pump

No	Point Name	Range	Unit	Description	
30	P1.TIT01	-50 to 150	°C	Heat-exchanger outlet temperature	
31	P1.TIT02	-50 to150	℃	Temperature of heating water tank	
32	P2.SIT01	0–3600	RPM	Current motor speed	
33	P2.SD01	0–3600	RPM	User speed demand	
34	P2.VT01	0–15	V	Phase lag signal of key phasor probe near motor	
35	P2.VYT02	-10 to 10	μm	Shaft-vibration-related Y-axis displacement near first mass wheel	
36	P2.VXT02	-10 to 10	μm	Shaft-vibration-related X-axis displacement near first mass wheel	
37	P2.VYT03	-10 to 10	μm	Shaft-vibration-related Y-axis displacement near second mass wheel	
38	P2.VXT03	-10 to 10	μm	Shaft-vibration-related X-axis displacement near second mass wheel	
39	P2.24VDC	0–30	V	DCS power supply	
40	P2.Auto	0, 1	-	System auto/manual mode	
41	P2.Emgy	0, 1	-	Emergency-stop input	
42	P2.On	0, 1	-	System on/off input	
43	P2.TripEx	0, 1	-	Trip exit input	
44	P3.LT01	0–90	%	Water level in upper tank	
45	P3.LH01	0–100	%	High water level setpoint	
46	P3.LL01	0–100	%	Low water level setpoint	
47	P3.LCP01D	0–27648	-	Speed command for feed water pump	
48	P3.LCV01D	0–27648	-	Position command for LCV01 valve	
49	P4.LD	200–600	MW	Total electrical load demand	
50	P4.ST_FD	-0.01 to 0.01	Hz	Frequency deviation of steam-turbine model	
51	P4.ST_PO	200–450	MW	Output power of steam-turbine model	
52	P4.ST_PT01	0–27648	-	Digital value of steam pressure in steam-turbine model	
53	P4.ST_TT01	0–27648	-	Digital value of steam temperature in steam-turbine model	
54	P4.ST_LD	200–450	MW	Electrical load demand for steam-turbine model	
55	P4.ST_PS	0–450	MW	Scheduled power demand of steam-turbine model	
56	P4.HT_FD	0.01 to 0.01	Hz	Frequency deviation of hydropower-turbine model	
57	P4.HT_PO	0–100	MW	Output power of hydropower-turbine model	
58	P4.HT_LD	0–100	MW	Electrical load demand for steam-turbine model	
59	P4.HT_PS	0–100	MW	Scheduled power demand of hydropower-turbine model	

ATTACK OVERVIEW

SCENARIO CONFIGURATION

All scenarios were configured using the four variables of a closed-control loop, namely, the setpoints (SPs), process variables (PVs), control variables (CVs), and control parameters (CPs).

FIGURE 12. ATTACK MODEL BASED ON CONTROL LOOP.

NORMAL SITUATION

During normal operation, it is assumed that the operator operates the control facility in a routine manner via the HMI. The operator monitors the PV value of the current sensor displayed on the HMI and changes the SPs of the various control devices to operate the control facility. When the control process moves out of the normal range, the values of the physical parameters, such as the pressure and water level, change abnormally, and the hybrid control system enters an abnormal operating state.

Through experiments, we confirmed the normal range of the SPs for which the entire process was stable by changing the value of each SP. We used the HMI operation task scheduler to periodically set the SPs to random values within the normal range to simulate the benign scenario.

No	Point	Unit	Min/max	Normal range
1	P1.B2004	bar	0–10	0.03–0.1
2	P1.B3004	mm	0–720	400–500
3	P1.B3005	L/H	0–2500	1000–1100
4	P1.B4002	°C	0–100	31–32
5	P2.SP01	rpm	0–3600	0–100
6	P3.SP01	%	0–100	70
7	P3.SP02	%	0–100	10

ATTACK SCENARIO

An abnormal operating condition is one where some of control facilities are out of the normal range and operate in an unpredictable state owing to an attack or a device malfunction.

Firstly, we simulated several single attacks (SA) and evaluated their effects on control while considering the attack target, attack time, and method for each control loop:

Attack	Attack Target			Description	
Name	Loop	Var	Point	- Description	
SA1	P1-PC	SP1	P1.B2016	Decrease SP value of P1-PC and then restore in form of trapezoidal profile (hiding SP changes in HMI)	
SA2	P1-PC	SP1	P1.B2016	Decrease SP value of P1-PC and then restore in form of trapezoidal profile (hiding SP changes in HMI	
SAZ		PV1	P1.PIT01	Try to maintain previous sensor value	
SA3	P1-PC	CV1	P1.PCV01D	Close press control valve of P1-PC and then restore to normal.	
SA4	P1-PC	CV1	P1.PCV01D	Close press control valve of P1-PC and then restore to normal.	
U/AT	1110	PV1	P1.PIT01	Try to maintain previous sensor value	
SA5	P1-FC	SP1	P1.B3005	Decrease SP value of P1-FC and then restore in form of trapezoidal profile (hiding SP changes in HMI)	
SA6	P1-FC	SP1	P1.B3005	Decrease SP value of P1-FC and then restore in form of trapezoidal profile (hiding SP changes in HMI)	
OAO	1-60	PV1	P1.FT03	Try to replay previous sensor value	
SA7	P1-LC	SP1	P1.B3004	Increase SP value of P1-LC and then restore in form of trapezoidal profile (hiding SP changes in HMI)	
SA8	P1-LC	SP1	P1.B3004	Increase SP value of P1-LC and then restore in form of trapezoidal profile (hiding SP changes in HMI)	
SAO		PV1	P1.LIT01	Try to replay previous sensor value	
SA9	P1-LC	CV1	P1.LCV01D	Open level control valve of P1-LC and then restore in form of trapezoidal profile	
SA10	P1-LC	CV1	P1.LCV01D	Open level control valve of P1-LC and then restore in form of trapezoidal profile	
SAIU		PV1	P1.LIT01	Try to replay previous sensor value	
SA11	P2-SC	SP1	P2.SP01	Decrease SP value of P2-SC and then restore to normal (hiding SP changes in HMI)	
SA12	P2-SC	SP1	P2.SP01	Decrease SP value of P2-SC and then restore to normal (hiding SP changes in HMI)	
JAIZ		PV1	P2.SIT01	Try to replay previous sensor value	
0.1.10	P3-LC	SP2	P3.SP02	Decrease SP value of P3-LC and then restore to normal (hiding SP changes in HMI)	
SA13		CV2	P3.LCV01	Increase opening rate of level-control valve (P3-LC) and then restore to normal	
	P3-LC	SP1	P3.SP01	Increase SP value of P3-LC and then restore to normal (hiding SP changes in HMI)	
SA14		CV1	P3.LCP01	Increase pump drive rate of level-control pump (P3-LC) and then restore to normal	

Subsequently, the attack scenarios were extended to consider 19 multiple attacks (MA) at the same time by simultaneously executing a combination of SAs.

Attack Name	Single attacks						
Allack Name	Name	Variables	Points				
MA01	SA12	P2-SC-SP1PV1	P2.SP01, P2.SIT01				
III/O1	SA02	P1-PC-SP1PV1	P1.B2016, P1.PIT01				
MA02	SA11	P2-SC-SP1	P2.SP01				
MAGE	SA03	P1-PC-CV1	P1.PCV01D				
MA03	SA12	P2-SC-SP1PV1	P2.SP01, P2.SIT01				
MAGG	SA10	P1-LC-CV1PV1	P1.LCV01D, P1.LIT01				
MA04	SA11	P2-SC-SP1	P2.SP01				
MAOT	SA05	P1-FC-SP1	P1.B3005				
MA05	SA14	P3-LC-SP1CV1	P3.SP01, P3.LCP01				
MAGG	SA01	P1-PC-SP1	P1.B2016				
MA06	SA14	P3-LC-SP1CV1	P3.SP01, P3.LCP01				
MAGG	SA08	P1-LC-SP1PV1	P1.B3004, P1.LIT01				
MA07	SA14	P3-LC-SP1CV1	P3.SP01, P3.LCP01				
WAOT	SA09	P1-LC-CV1	P1.LCV01D				
MA08	SA07	P1-LC-SP1	P1.B3004				
1117.100	SA06	P1-FC-SP1PV1	P1.B3005, P1.FT03				
MA09	SA03	P1-PC-CV1	P1.PCV01D				
1117 100	SA06	P1-FC-SP1PV1	P1.B3005, P1.FT03				
MA10	SA02	P1-PC-SP1PV1	P1.B2016, P1.PIT01				
MAIO	SA05	P1-FC-SP1	P1.B3005				
MA11	SA13	P3-LC-SP2CV2	P3.SP02, P3.LCV01				
MATT	SA02	P1-PC-SP1PV1	P1.B2016, P1.PIT01				
MA12	SA01	P1-PC-SP1	P1.B2016				
MAIZ	SA05	P1-FC-SP1	P1.B3005				
MA13	SA13	P3-LC-SP2CV2	P3.SP02, P3.LCV01				
MAIO	SA01	P1-PC-SP1	P1.B2016				
MA14	SA13	P3-LC-SP2CV2	P3.SP02, P3.LCV01				
	SA09	P1-LC-CV1	P1.LCV01D				
MA15	SA13	P3-LC-SP2CV2	P3.SP02, P3.LCV01				
MAIO	SA05	P1-FC-SP1	P1.B3005				
MA16	SA11	P2-SC-SP1	P2.SP01				
MAIO	SA13	P3-LC-SP2CV2	P3.SP02, P3.LCV01				
MA17	SA11	P2-SC-SP1	P2.SP01				
1917517	SA07	P1-LC-SP1	P1.B3004				
MA18	SA07	P1-LC-SP1	P1.B3004				
MAIO	SA01	P1-PC-SP1	P1.B2016				
MA19	SA09	P1-LC-CV1	P1.LCV01D				
IVIAIS	SA03	P1-PC-CV1	P1.PCV01D				

DATASET

DATA FILES

The data are presented in four CVS files separately for two sets of the normal and attack situations; the filenames uniquely identify the start and end times for data collection.

DATA FIELDS

The data are listed in 64 columns. The first column represents the local time in the form "yyyy-MM-dd hh:mm:ss +09:00," while the remaining 59 columns show the recordings of the SCADA points. The last four columns are the attack labels, where a nonzero value means that an attack occurred. Here, the column "attack" is for all process, while the remaining columns are for the corresponding process.

TIMETABLE

	Attack Name	Attack Variables	Attack Points	Attack Sta	rt Time
1	SA08	P1-LC-SP1PV1	P1.B3004, P1.LIT01		13:40
2	SA09	P1-LC-CV1	P1.LCV01D	19-10-29	14:35
3	SA10	P1-LC-CV1PV1	P1.LCV01D, P1.LIT01		15:45
4	SA05	P1-FC-SP1	P1.B3005		16:30
5	SA07	P1-LC-SP1	P1.B3004		8:50
6	SA01	P1-PC-SP1	P1.B2016		9:40
7	SA02	P1-PC-SP1PV1	P1.B2016, P1.PIT01		10:35
8	SA03	P1-PC-CV1	P1.PCV01D	19-10-30	11:37
9	SA04	P1-PC-CV1PV1	P1.PCV01D, P1.PIT01	19-10-30	12:30
10	SA12	P2-SC-SP1PV1	P2.SP01, P2SIT01		14:30
11	SA14	P3-LC-SP1CV1	P3.SP01, P3.LCP01		15:35
12	SA13	P3-LC-SP2CV2	P3.SP02, P3.LCV01		16:33
13	SA11	P2-SC-SP1	P2.SP01		8:42
14	4 MA01	P2-SC-SP1PV1	P2.SP01, P2SIT01		10:30
14		P1-PC-SP1PV1	P1.B2016, P1.PIT01		10:30
15	MA02	P2-SC-SP1	P2.SP01		11:33
15	IVIAU2	P1-PC-CV1	P1.PCV01D	19-10-31	11:34
16	SA12	P2-SC-SP1PV1	P2.SP01, P2SIT01	19-10-31	13:25
17	MA03	P2-SC-SP1PV1	P2.SP01, P2SIT01		14:30
''	IVIAUS	P1-LC-CV1PV1	P1.LCV01D, P1.LIT01		14:31
18	MA04	P2-SC-SP1	P2.SP01		15:41
18	IVIAU4	P1-FC-SP1	P1.B3005		15:42

	Attack Name	Attack Variables	Attack Points	Attack Sta	ırt Time
19	MA05	P3-LC-SP1CV1	P3.SP01, P3.LCP01		16:30
	WAGG	P1-PC-SP1	P1.B2016		16:29
20	MA06	P3-LC-SP1CV1	P3.SP01, P3.LCP01		9:30
20	WAGG	P1-LC-SP1PV1	P1.B3004, P1.LIT01		9:29
21	MA07	P3-LC-SP1CV1	P3.SP01, P3.LCP01		10:41
	WIAO7	P1-LC-CV1	P1.LCV01D		10:42
22	SA14	P3-LC-SP1CV1	P3.SP01, P3.LCP01		11:23
23	MA08	P1-LC-SP1	P1.B3004		12:31
	1717 100	P1-FC-SP1PV1	P1.B3005, P1.FT03		12:32
24	MA09	P1-PC-CV1	P1.PCV01D	19-11-01	13:41
	WAGS	P1-FC-SP1PV1	P1.B3005, P1.FT03		13:42
25	SA01	P1-PC-SP1	P1.B2016		14:23
26	MA10	P1-PC-SP1PV1	P1.B2016, P1.PIT01		15:31
	WATO	P1-FC-SP1	P1.B3005		15:32
27	SA06	P1-FC-SP1PV1	P1.B3005, P1.FT03		16:18
28	MA11	P3-LC-SP2CV2	P3.SP02, P3.LCV01		17:20
20	IVIZATI	P1-PC-SP1PV1	P1.B2016, P1.PIT01		17:20
29	MA12	P1-PC-SP1	P1.B2016	19-11-04	15:31
23	IVIATZ	P1-FC-SP1	P1.B3005		15:32
30	MA13	P3-LC-SP2CV2	P3.SP02, P3.LCV01	19-11-04	17:20
30	IVIATO	P1-PC-SP1	P1.B2016		17:20
31	MA14	P3-LC-SP2CV2	P3.SP02, P3.LCV01		9:30
31	IVIA 14	P1-LC-CV1	P1.LCV01D		9:31
32	MA15	P3-LC-SP2CV2	P3.SP02, P3.LCV01		10:20
32	WATS	P1-FC-SP1	P1.B3005		10:20
33	SA11	P2-SC-SP1	P2.SP01		11:23
34	MA16	P2-SC-SP1	P2.SP01	19-11-05	12:30
34	IVIAIO	P3-LC-SP2CV2	P3.SP02, P3.LCV01	19-11-03	12:30
35	MA17	P2-SC-SP1	P2.SP01		14:45
33	IVIA I 7	P1-LC-SP1	P1.B3004		14:45
36	MA18	P1-LC-SP1	P1.B3004		16:20
	IVIATO	P1-PC-SP1	P1.B2016		16:20
37	SA09	P1-LC-CV1	P1.LCV01D		17:23
38	MAAQ	P1-LC-CV1	P1.LCV01D	19-11-06	8:58
	MA19	P1-PC-CV1	P1.PCV01D	19-11-00	8:59

ABBREVIATIONS

<u>C</u>		
<u>D</u>	CV	Control Variable
E	DCS	Distributed Control System
<u>H</u>	FC FCV FIT FT	Flow Controller Flow Control Valve Flow Indicator Transmitter Flow Transmitter
<u>L</u>	НМІ	Human Machine Interface
<u>P</u>	LC LCV LIT LLH LLL LLN LSH LSHL LSL	Level Controller Level Control Valve Level Indicator Transmitter Liquid Level [High] Liquid Level [Low] Liquid Level [Normal] Level Switch [High] Level Switch [High/Low] Level Switch [Low] Level Transmitter
<u>s</u>	PC PCL PCV PIT PLC PV	Pressure Controller Process Control Loop Pressure Control Valve Pressure Indicator Transmitter Programmable Logic Controller Process Variable
I	SC SI SIT SP SS	Speed Controller Speed Indicator Speed-Indicator Transmitter Setpoint Steam Supply
<u>v</u>	TCV TIT TT	Temperature Control Valve Temperature-Indicator Transmitter Temperature Transmitter
	VT	Vibration Transmitter