

ESP-WROOM-02 WiFi Module

Version 0.3

Espressif Systems IOT Team http://bbs.espressif.com/

Copyright © 2015

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。版权归 © 2015 乐鑫信息科技(上海)有限公司所有。保留所有权利。

目录

1.	产品	概述	4
	1.1.	特点	5
	1.2.	主要参数	6
2.	接口	定义	7
3.	外型	与尺寸	9
4.	功能	描述	10
	4.1.	MCU	10
	4.2.	存储描述	10
	4.2.1.	内置 SRAM与 ROM	10
	4.2.2.	SPI Flash	10
	4.3.	晶振	11
	4.4.	接口说明	12
	4.5.	最大额定值	13
	4.6.	建议工作环境	13
	4.7.	数字端口特征	13
5.	RF 参	>数	14
6.	功耗		14
7.	倾斜	升温	16
8.	原理	<u>图</u>	17

1. 产品概述

乐鑫智能互联平台 ESP8266EX 拥有高性能无线 SOC,给移动平台设计师带来福音,它以最低成本提供最大实用性,为WiFi功能嵌入其他系统提供无限可能。

图1 ESP8266EX 结构图

ESP8266EX 是一个完整且自成体系的 WiFi 网络解决方案,能够独立运行,也可以作为从机搭载于其他 主机 MCU 运行。ESP8266EX 在搭载应用并作为设备中唯一的应用处理器时,能够直接从外接闪存中启 动。内置的高速缓冲存储器有利于提高系统性能,并减少内存需求。

另外一种情况是,ESP8266EX 负责无线上网接入承担 WiFi 适配器的任务时,可以将其添加到任何基于 微控制器的设计中,连接简单易行,只需通过 SPI /SDIO 接口或 I2C/UART 口即可。

ESP8266EX 强大的片上处理和存储能力,使其可通过 GPIO 口集成传感器及其他应用的特定设备,实现了最低前期的开发和运行中最少地占用系统资源。

ESP8266EX 高度片内集成,包括天线开关 balun、电源管理转换器,因此仅需极少的外部电路,且包括前端模组在内的整个解决方案在设计时将所占 PCB空间降到最低。

装有 ESP8266EX 的系统表现出来的领先特征有: 节能在睡眠/唤醒模式之间的快速切换、配合低功率操作的自适应无线电偏置、前端信号的处理功能、故障排除和无线电系统共存特性为消除蜂窝/蓝牙/DDR/LVDS/LCD 干扰。

Espressif Systems 4 Jun 12, 2015

1.1. 特点

- 802.11 b/g/n
- 内置低功耗 32 位 CPU: 可以兼作应用处理器
- 内置 10 bit 高精度 ADC
- 内置 TCP/IP 协议栈
- 内置 TR 开关、balun、LNA、功率放大器和匹配网络
- 内置 PLL、稳压器和电源管理组件
- 支持天线分集
- STBC、1x1 MIMO、2x1 MIMO
- A-MPDU、A-MSDU 的聚合和 0.4 s 的保护间隔
- WiFi @ 2.4 GHz,支持 WPA/WPA2 安全模式
- 支持 STA/AP/STA+AP 工作模式
- 支持 Smart Config 功能(包括 Android 和 iOS 设备)
- HSPI \ UART\ I2C\ I2S\ IR Remote Control\ PWM\ GPIO
- 深度睡眠保持电流为 10 uA, 关断电流小干 5 uA
- 2 ms 之内唤醒、连接并传递数据包
- 802.11b 模式下+ 20 dBm 的输出功率
- 待机状态消耗功率小于1.0 mW (DTIM3)
- 工作温度范围: -40°C 125°C
- 模组通过 FCC, CE, TELEC 认证

1.2. 主要参数

表 1 介绍了该模组的主要参数。

表 1 参数表

类别	参数	说明	
	标准认证	FCC/CE/TELEC	
无线参数	无线标准	802.11 b/g/n	
	频率范围	2.4GHz-2.5GHz (2400M-2483.5M)	
	*************************************	UART/HSPI/I2C/I2S/Ir Remote Contorl	
	数据接口	GPIO/PWM	
	工作电压	3.0~3.6V	
Hardware	工作电流	平均值: 80mA	
Paramaters	工作温度	-40°~125°	
	存储温度	常温	
	封装大小	18mm*20mm*3mm	
	外部接口	N/A	
	无线网络模式	station/softAP/SoftAP+station	
	安全机制	WPA/WPA2	
	加密类型	WEP/TKIP/AES	
Software	升级固件	本地串口烧录 / 云端升级 / 主机下载烧录	
Parameters	软件开发	支持客户自定义服务器	
	1X1171 Q	提供 SDK 给客户二次开发	
	网络协议	IPv4, TCP/UDP/HTTP/FTP	
	用户配置	AT+ 指令集, 云端服务器, Android/iOS APP	

2. 接口定义

ESP-WROOM-02 共接出 18 个接口,表 2 是接口定义。

表 2 ESP-WROOM-02 管脚功能定义

序号	Pin 脚名称	功能说明	
1	3V3	3.3V 供电 (VDD)	
2	EN	芯片使能端,高电平有效	
3	IO14	GPIO14; HSPI_CLK	
4	IO12	GPIO12; HSPI_MISO	
5	IO13	GPIO13; HSPI_MOSI; UART0_CTS	
6	IO15	GPIO15; MTDO; HSPICS; UART0_RTS	
7	IO2	GPIO2; UART1_TXD	
8	100	GPIO0	
9	GND	GND	
10	104	GPIO4	
11	RXD	UART0_RXD; GPIO3	
12	TXD	UART0_TXD; GPIO1	
13	GND	GND	
14	IO5	GPIO5	
15	RST	复位模组	
16	TOUT	检测芯片 VDD3P3 电源电压或 TOUT 脚输入电压(二者不可同时使用)	
17	IO16	GPIO16;接到 RST 管脚时可做 deep sleep 的唤醒。	
18	GND	GND	

注意:

表 3 UART 下载模式

GPIO15	GPIO0	GPIO2
低	低	高

表 4 Flash Boot 模式

GPIO15	GPIO0	GPIO2
低	高	高

表 5 接收灵敏度

参数	最小值	典型值	最大值	单位
输入频率	2412		2484	MHz
输入电阻		50		Ω
输入反射			-10	dB
72.2 Mbps下,PA 的输出功率	14	15	16	dBm
11b 模式下,PA 的输出功率	17.5	18.5	19.5	dBm
灵敏度				
DSSS, 1 Mbps		-98		dBm
CCK, 11 Mbps		-91		dBm
6 Mbps (1/2 BPSK)		-93		dBm
54 Mbps (3/4 64-QAM)		-75		dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)		-72		dBm
邻频抑制				
OFDM, 6 Mbps		37		dB
OFDM, 54 Mbps		21		dB
HT20, MCS0		37		dB
HT20, MCS7		20		dB

3. 外型与尺寸

ESP-WROOM-02 贴片式模组的外观尺寸为 18mm * 20mm * 3mm (如图 2 所示)。该模组采用的是容量为 4MB, 封装为 SOP-150 mil 的 SPI Flash。模组使用的是 3 DBi 的 PCB 板载天线。

图 2 ESP-WROOM-02 模组外观

图 3 ESP-WROOM-02 模组尺寸平面图

表 6 ESP-WROOM-02 模组尺寸对照表

长	宽	高	PAD 尺寸(底部)	Pin 脚间距
18 mm	20 mm	3 mm	0.9 mm x 1.7 mm	1.5 mm

4. 功能描述

4.1. MCU

ESP8266EX 内置 Tensilica L106 超低功耗 32 位微型 MCU,带有 16 位精简模式,主频支持 80 MHz 和 160 MHz,支持 RTOS。目前 WiFi 协议栈只用了 20% 的 MIPS,其他的都可以用来做应用开发。MCU 可通过以下接口和芯片其他部分协同工作:

- 连接存储控制器、也可以用来访问外接闪存的编码 RAM/ROM 接口 (iBus)
- 同样连接存储控制器的数据 RAM 接口 (dBus)
- 访问寄存器的 AHB 接口

4.2. 存储描述

4.2.1. 内置 SRAM与 ROM

ESP8266EX 芯片自身内置了存储控制器,包含 ROM 和 SRAM。MCU 可以通过 iBus、dBus 和 AHB 接口访问存储控制器。这些接口都可以访问 ROM 或 RAM 单元,存储仲裁器以到达顺序确定运行顺序。

基于目前我司 Demo SDK 的使用 SRAM 情况,用户可用剩余 SRAM 空间为:

RAM size < 36kB (station 模式下,连上路由后,heap+data 区大致可用 36KB 左右。)

目前 ESP8266EX 片上没有 programmable ROM,用户程序存放在 SPI Flash 中。

4.2.2. SPI Flash

当前 ESP8266EX 芯片支持使用 SPI 接口的外置 Flash, 理论上最大可支持到 16 MB 的 SPI flash。目前该模组外接的是 4 MB 的 SPI Flash。

建议 Flash 容量:

不支持云端升级: 512 kbit

可支持云端升级: 1 MB

支持的 SPI 模式:支持 Standard SPI、Dual SPI、DIO SPI、QIO SPI,以及 Quad SPI。

注意,在下载固件时需要在下载工具中选择对应模式,否则下载后程序将无法得到正确的运行。

4.3. 晶振

目前晶体 40M, 26M 及 24M均支持,使用时请注意在下载工具中选择对应晶体类型。晶振输入输出所加的对地调节电容 C1、C2 可不设为固定值,该值范围在 6pF~22pF,具体值需要通过对系统测试后进行调节确定。基于目前市场中主流晶振的情况,一般 26Mhz 晶振的输入输出所加电容 C1、C2 在 10pF以内;一般 40MHz 晶振的输入输出所加电容 10pF<C1、C2<22pF。

选用的晶振自身精度需在 ±10PPM。晶振的工作温度为 -20°C - 85°C。

晶振位置尽量靠近芯片的 XTAL Pins (走线不要太长),同时晶振走线须用地包起来良好屏蔽。

晶振的输入输出走线不能打孔走线,即不能跨层。晶振的输入输出走线不能交叉,跨层交叉也不行。 晶振的输入输出的 bypass 电容请靠近芯片左右侧摆放,尽量不要放在走线上。

晶振下方 4 层都不能走高频数字信号,最佳情况是晶振下方不走任何信号线,晶振 TOP 面的铺通区域越大越好。晶振为敏感器件,晶振周围不能有磁感应器件,比如大电感等。

Espressif Systems 11 Jun 12, 2015

4.4. 接口说明

表 7 接口说明

接口名称	管脚	功能说明
HSPI 接口	IO12(MISO), IO13(MOSI), IO14(CLK), IO15(CS)	可外接 SPI Flash、显示屏和 MCU 等。
PWM 接口	IO12(R), IO15(G),IO13(B)	demo 中提供 4 路 PWM (用户可自行扩展至 8 路),可用来控制彩灯,蜂鸣器,继电器及电机等。
IR 接口	IO14(IR_T), IO5(IR_R)	IR Remote Control 接口由软件实现,接口使用 NEC 编码及调制解调,采用 38KHz 的调制载波。
ADC 接口	TOUT	可用于检测 VDD3P3 (Pin3,Pin4) 电源电压和 TOUT (Pin6)的输入电压 (二者不可同时使用)。可用于传感器等应用。
I2C 接口	IO14(SCL), IO2(SDA)	可外接传感器及显示屏等
		可外接 UART 接口的设备。
	UART0: TXD(U0TXD), RXD(U0RXD), IO15(RTS),	下载: U0TXD+U0RXD 或者 GPIO2+U0RXD
		通信(UART0): U0TXD, U0RXD, MTDO(U0RTS), MTCK(U0CTS)
		Debug: UART1_TXD(GPIO2)可作为 debug 信息的打印。
UART 接口	IO13(CTS) UART1: IO2(TXD)	UARTO 在 ESP8266EX 上电默认会输出一些打印信息。对此敏感的应用,可以使用UART的内部引脚交换功能,在初始化的时候,将U0TXD,U0RXD分别与U0RTS,U0CTS交换。硬件上将 MTDOMTCK 连接到对应的 外部 MCU 的串口进行通信。
	I2S 输入:	
	IO12 (I2SI_DATA);	
	IO13 (I2SI_BCK);	
126 梓口	IO14 (I2SI_WS);	→ 丽 田 T 文 辉 双 徐 M 珊 和 <i>t</i> t to
I2S 接口	12S 输出:	主要用于音频采集、处理和传输。
	IO15 (I2SO_BCK);	
	IO3 (I2SO_DATA);	
	IO2 (I2SO_WS).	

4.5. 最大额定值

表 8 最大额定值

额定值	条件	值	单位
存储温度		-40 to 125	°C
最大焊接温度		260	°C
供电电压	IPC/JEDEC J-STD-020	+3.0 to +3.6	V

4.6. 建议工作环境

表 9 建议工作环境

工作环境	名称	最小值	典型值	最大值	单位
工作温度		-40	20	125	°C
供电电压	VDD	3.0	3.3	3.6	V

4.7. 数字端口特征

表 10 数字端口特征

端口	典型值	最小值	典型值	最大值	单位
输入逻辑电平低	VIL	-0.3		0.25VDD	V
输入逻辑电平高	VIH	0.75VDD		VDD+0.3	V
输出逻辑电平低	Vol	N		0.1VDD	V
输出逻辑电平高	Vон	0.8VDD		N	V

注意:如无特殊说明,测试条件为: VDD = 3.3 V,温度为 20°C。

5. RF 参数

表 11 RF 参数

描述	最小值	典型值	最大值	单位
输入频率	2400		2483.5	MHz
输入阻抗值		50		ohm
输入反射值			-10	dB
PA 输出功率为 72.2 Mbps	15.5	16.5	17.5	dBm
11b 模式下 PA 输出功率	19.5	20.5	21.5	dBm
接收灵敏度				
CCK, 1 Mbps		-98		dBm
CCK, 11 Mbps		-91		dBm
6 Mbps (1/2 BPSK)		-93		dBm
54 Mbps (3/4 64-QAM)		-75		dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)		-72		dBm
邻频抑制				
OFDM, 6 Mbps		37		dB
OFDM, 54 Mbps		21		dB
HT20, MCS0		37		dB
HT20, MCS7		20		dB

6. 功耗

下列功耗数据是基于3.3V 的电源、25°C 的周围温度,并使用内部稳压器测得。

- [1] 所有测量均在没有 SAW 滤波器的情况下,于天线接口处完成。
- [2] 所有发射数据是基于 90% 的占空比,在持续发射的模式下测得的。

Espressif Systems 14 Jun 12, 2015

表 12 功耗

模式	最小值	典型值	最大值	单位
传送802.11b, ССК 11Mbps, Роит=+17dBm		170		mA
传送802.11g, OFDM 54Mbps, Роит =+15dBm		140		mA
传送 802.11n, MCS7, Роит =+13dBm		120		mA
接收 802.11b, 包长 1024 字节, -80dBm		50		mA
接收802.11g, 包长 1024 字节, -70dBm		56		mA
接收802.11n, 包长 1024 字节, -65dBm		56		mA
Modem-Sleep①		15		mA
Light-Sleep@		0.9		mA
Deep-Sleep③		10		uA
Power Off		0.5		uA

注①: Modem-Sleep 用于需要 CPU一直 处于工作状态 如 PWM 或 I2S 应用等。在保持 WiFi 连接时,如果没有数据传输,可根据 802.11标准 (如 U-APSD),关闭WiFi Modem电路来省电。例如,在 DTIM3时,每 sleep 300mS,醒来3mS 接收AP 的Beacon包等,则整体平均电流约 15mA。

注②: Light-Sleep 用于 CPU 可暂停的应用,如 WiFi 开关。在保持 WiFi 连接时,如果没有数据传输,可根据 802.11标准 (如 U-APSD),关闭WiFi Modem电路并 暂停 CPU 来省电。例如,在 DTIM3 时,每 sleep 300 ms,醒来 3ms 接收 AP 的 Beacon包等,则整体平均电流约 0.9 mA。

注③: Deep-Sleep 不需一直保持WiFi连接,很长时间才发送一次数据包的应用,如每100秒测量一次温度的传感器。例如,每300s醒来后需0.3s-1s连上AP发送数据,则整体平均电流可远小于1mA。

Espressif Systems 15 Jun 12, 2015

7. 倾斜升温

表 13 倾斜升温

倾斜升温 T _S 最大值 - T _L	最大值 3°C/秒	
预热 最小温度值 (T _S Min.) 典型温度值 (T _S Typ.) 最大温度值 (T _S Max.) 时间 (T _S)	150°C 175°C 200°C 60~180 秒	
倾斜升温 (T _L to T _P)	最大值 3°C/秒	
持续时间/温度 (T _L)/时间 (T _L)	217°C/60~150 秒	
温度峰值 (T _P)	最高温度值 260°C,持续 10 秒	
目标温度峰值 (T _P 目标值)	260°C +0/-5°C	
实际峰值 (t _P) 5°C 持续时间	20~40 秒	
倾斜降温	最大值 6°C/秒	
从 25°C 调至温度峰值所需时间 (t)	最大8分钟	

8. 原理图

图 4 ESP-WROOM-02 原理图