Loi de khi-carré (p.217)

La loi khi-carré est une autre loi continue. La fonction de densité est donnée par :

$$f(x) = \frac{1}{\Gamma(\frac{v}{2})2^{\frac{v}{2}}} x^{\frac{v}{2}-1} e^{-\frac{x}{2}}$$
 où $x > 0$

où v est un entier positif appelé nombre de degrés de liberté. On peut montrer que :

$$E(X) = v$$
 et $Var(X) = 2v$

On écrit $X \sim \chi^2_v$ pour signifier que X suit une loi khi-carré à v degrés de liberté.

Théorème 1 Soit $Z \sim \mathcal{N}(0,1)$. Alors $Z^2 \sim \chi_1^2$.

Théorème 2 Soit $X_1, X_2, ..., X_n$ des variables aléatoires indépendantes telles que $X_i \sim \chi^2_{v_i} \quad \forall i \in \{1, ..., n\}$. Alors :

$$X = X_1 + X_2 + \dots + X_n \sim \chi_v^2$$
 où $v = \sum_{i=1}^n v_i$

Théorème 3 Soit un échantillon $X_1, X_2, ..., X_n$ tiré d'une population normale de moyenne μ et de variance σ^2 . Alors :

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_n^2$$

Loi de Student (p.220)

La loi de Student est une autre loi continue. Soit W et V deux variables aléatoires indépendantes où $W \sim \mathcal{N}(0,1)$ et $V \sim \chi^2_v$. Alors la variable :

$$T = \frac{W}{\sqrt{\frac{V}{v}}} \sim t_v$$

On peut montrer que : E(T) = 0 et $Var(T) = \frac{v}{v-2}$ si v > 2

Approximation de la loi binomiale par la loi normale (p.164)

Par le théorème limite central et le fait que X représente la somme des résultats d'épreuves indépendantes de Bernoulli (de sorte $\mathrm{E}(X)=np$ et $\mathrm{V}(X)=np(1-p)$), si n est grand :

$$P(X = x) \approx \Phi\left(\frac{x - np}{\sqrt{np(1 - p)}}\right)$$

Cette approximation est assez juste tant que np > 5 et $p \le \frac{1}{2}$ ou tant que n(1-p) > 5 pour $p > \frac{1}{2}$. La loi binomiale étant discrète alors que la loi normale est continue, il est courant d'effectuer une correction pour la continuité. La façon usuelle de procéder consiste à soit ajouter ou soustraire une demie-unité à l'entier.

FIGURE 1 – Approximation d'une loi binomiale $B(20, \frac{1}{2})$ par une loi normale.

Loi de Fisher (p.222)

Soit W et Y des variables indépendantes suivant des lois de khi-carré ayant respectivement u et v degrés de libertés. Alors :

$$F = \frac{W/u}{Y/v} \sim F_{u,v}$$

F suit une loi de Fisher avec u degrés au numérateur et v degrés au dénominateur.