OFFSHORE-TO-NEARSHORE WAVE TRANSFORMATION

(Simplified Approach Using Linear Wave Theory)

Overview

This program processes wave data from an input CSV file, computes nearshore wave parameters at a specified depth, and generates:

- output.csv Contains the computed results.
- report.txt Provides descriptive statistics of both input and computed variables.

USAGE

```
./transpose input_csv coast_dir depth_d
```

Arguments:

- input_csv: CSV input file (with columns: datetime, swh, mwd, pp1d)
- coast dir: Coastline orientation in degrees (clockwise from North)
- depth d: Local depth (meters)

CSV INPUT FORMAT

The input CSV file should be comma-separated with at least the following columns:

```
datetime, swh, mwd, ppld, [additional columns ignored]
```

OUTPUT CSV FORMAT

The generated output.csv will contain the following comma-separated columns:

```
datetime, swh_offshore, mwd_offshore, pp1d, L0, L, kh, alpha_offshore, alpha_local, swh_
```

Computed Parameters

```
Parameter
                                                  Description
L0
                Deep-water wavelength: L0 = g * T^2 / (2\pi)
                Local wavelength, solved from L = L0 * tanh((2\pi * depth_d) / L)
                Wave number (k = 2\pi / L) times local depth (h)
kh
alpha_offshore Offshore wave approach angle relative to coastline
alpha_local
               Local wave angle after refraction
mwd local
                Local mean wave direction, adjusted from offshore mwd
Ks
                Shoaling coefficient
Kr
                Refraction coefficient
Hb
                Breaking wave height (Miche, 1944): Hb = 0.142 * L * tanh((2\pi * depth d) / L)
swh_local
                Local significant wave height (minimum of swh * Ks * Kr and Hb)
```

Note: Waves arriving from directions between $coast_dir$ and $coast_dir + 180^{\circ}$ (i.e., from the land side) are set to **zero**.

Report File Details

The report.txt file provides:

- **A descriptive statistics report for each output variable with additional percentiles at 1%, 10%, 25%, 50% (median), 75%, 90%, and 99%.
- **A table displaying the annual maxima for swh_offshore and swh_local, with the final row indicating the overall maximum for each variable. The command line used to run the program at the top of the report.

COMPILATION

To compile the program, use the following command:

```
g++ -03 -fopenmp -march=native -std=c++17 -Wall -Wextra -pedantic - Wconversion -Wsign-conversion -static -static-libgcc -static-libstdc++ -o transpose transpose.cpp
```

This command enables **optimizations** and includes several **compiler warnings** to ensure code quality.