MO 19:

LIMITA FUNKCIE A POSTUPNOSTI

Spojitá funkcia:

- Nech f je funkcia definovaná v nejakom okolí bodu a. Hovoríme, že funkcia f je spojitá v bode a, ak k ľubovoľnému $\varepsilon > 0$ existuje $\delta > 0$, tak, že pre všetky x pre ktoré platí $|x-a| < \delta$, platí $|f(x)-f(a)| < \varepsilon$.
- Spojitá funkcia funkcia je spojitá v bode x_0 ak platí: $\lim_{x \to x_0} f(x) = f(x_0)$

Limita funkcie:

- Nech funkcia f je definovaná v nejakom rýdzom okolí bodu a. Hovoríme, že limita funkcie f v bode a sa rovná číslu b, ak pre každú konvergentnú postupnosť $\{a_n\}_{n=1}^{\infty}$ takú, že $a_n \in D(f) \{a\}, a_n \to a$ platí, že postupnosť $f(a_n)$ je tiež konvergentná a $\lim_{n \to \infty} f(a_n) = b$. Vtedy píšeme $\lim_{x \to a} f(x) = b$.
- Limita funkcie f v bode a sa rovná číslu b, ak pre každé (ľubovoľne malé) číslo $\varepsilon > 0$ existuje také číslo $\delta > 0$, že pre všetky x z rýdzeho δ okolia bodu a (t.j. z množiny $(a \delta, a) \cup (a, a + \delta)$) je hodnota f(x) z ε okolia bodu b, t.j. $|f(x) b| < \varepsilon$.

$$\lim_{x \to a} f(x) = b; \ \forall \ \varepsilon > 0; \ \exists \delta > 0; \ \forall \ x; |x-a| < \delta \Rightarrow |f(x)-b| < \varepsilon$$

- Funkcia f definovaná na intervale (a-d, a) má v bode a **limitu zľava**, ak pre každú postupnosť $\{a_n\}_{n=1}^{\infty}$ čísel z tohto intervalu, ktorá konverguje k a platí $f(a_n) \to b$. Vtedy píšeme $\lim_{n \to a^-} f(x) = b$.
- Funkcia f definovaná na intervale (a, a+d) má v bode a **limitu sprava**, ak pre každú postupnosť $\{a_n\}_{n=1}^{\infty}$ čísel z tohto intervalu, ktorá konverguje k a platí $f(a_n) \to b$. Vtedy píšeme $\lim_{n \to a^+} f(x) = b$.
- **Veta:** Funkcia *f* má v bode *a* limitu práve vtedy, keď má v tomto bode limitu zľava aj limitu sprava a tieto dve limity sa rovnajú.
- Uvedené definície a vety možno prirodzeným spôsobom rozšíriť aj na nevlastné limity.
- Tak napríklad funkcia $y = \frac{1}{x}$ má v bode x = 0 nevlastnú limitu, ktorá sa sprava rovná $+\infty$, pretože pre každú postupnosť $\{x_n\}_{n=1}^{\infty}$ takú, že $x_n \to 0$ a $x_n > 0$ platí $\lim_{n \to \infty} \frac{1}{x_n} = +\infty$.
- (<u>Limita postupnosti a funkcie</u> nech f je funkcia definovaná v okolí bodu a, prípadne okrem bodu a, potom funkcia f má v bode a limitu L, ak k ľubovoľnému bodu L, \Box okolie bodu a tak, že pre \Box x \ominus okoliu a, x \neq a, platí: f(x) \ominus okoliu L).

MO 19: LIMITA FUNKCIE A POSTUPNOSTI

Nevlastná limita

• je limita v bodoch $\pm \infty$

Limita postupnosti:

- lim_{n→∞} a_n = a práve vtedy, keď ku každému kladnému reálnemu číslu ε existuje také n∈ N,
 že všetky členy danej postupnosti začínajúc členom a_n+1 patria do intervalu (a-ε, a+ε).
- Postupnosťou reálnych čísel rozumieme zobrazenie $f: N \rightarrow R$. Namiesto f(n) zvyčajne píšeme a_n , postupnosť označujeme $\{a_n\}_{n=1}^{\infty}$.

Konvergencia:

- Hovoríme, že postupnosť $\{a_n\}_{n=1}^{\infty}$ <u>konverguje</u> k číslu a, ak ku každému (ľubovoľnému malému) číslu $\varepsilon>0$ existuje také $n_0\in N$, že pre každý člen postupnosti s indexom $n'\geq n_0$ platí $|a_n-a|<\varepsilon$. Vtedy píšeme $\lim_{n\to\infty}a_n=a$ (alebo stručne $a_n\to a$).
- Postupnosť nazývame **konvergentnou**, ak má limitu, v opačnom prípade ju nazývame **ivergentnou**.

Príklady funkcií nespojitých v bode:

Funkcia spojitá v bode, ale nemá limitu: