$11n_{52} (K11n_{52})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{32} - u^{31} + \dots + b + u, -u^{32} - u^{31} + \dots + a - 1, u^{34} + 2u^{33} + \dots - 2u - 1 \rangle$$

$$I_2^u = \langle b + 1, -u^3 + u^2 + a - u + 2, u^5 - u^4 + 2u^3 - u^2 + u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 39 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{32} - u^{31} + \dots + b + u, \ -u^{32} - u^{31} + \dots + a - 1, \ u^{34} + 2u^{33} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{32} + u^{31} + \dots - 5u^{3} + 1 \\ u^{32} + u^{31} + \dots - u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{32} - 2u^{31} + \dots + u^{2} + u \\ -u^{32} - u^{31} + \dots + u^{2} + 2u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{11} - 2u^{9} - 2u^{7} - u^{3} \\ -u^{11} - 3u^{9} - 4u^{7} - u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 4u^{32} + 4u^{31} + \dots - 3u - 1 \\ 2u^{32} + u^{31} + \dots - u^{2} - 3u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{33} - 11u^{32} - 46u^{31} - 97u^{30} - 238u^{29} - 421u^{28} - 758u^{27} - 1154u^{26} - 1651u^{25} - 2191u^{24} - 2586u^{23} - 2978u^{22} - 2933u^{21} - 2856u^{20} - 2304u^{19} - 1728u^{18} - 973u^{17} - 263u^{16} + 258u^{15} + 646u^{14} + 764u^{13} + 710u^{12} + 560u^{11} + 314u^{10} + 160u^{9} + 16u^{8} - 52u^{7} - 64u^{6} - 51u^{5} - 4u^{4} + 16u^{3} + 18u^{2} + 15u + 3$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{34} - 6u^{33} + \dots + 4u - 1$
c_2	$u^{34} + 10u^{33} + \dots + 2u^2 + 1$
c_3, c_7	$u^{34} - u^{33} + \dots + 32u + 32$
c_5, c_9	$u^{34} - 2u^{33} + \dots + 2u - 1$
c_{6}, c_{8}	$u^{34} + 2u^{33} + \dots - 58u - 17$
c_{10}	$u^{34} + 18u^{33} + \dots + 2u + 1$
c_{11}	$u^{34} - 2u^{33} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{34} - 10y^{33} + \dots + 2y^2 + 1$
c_2	$y^{34} + 34y^{33} + \dots + 4y + 1$
c_3, c_7	$y^{34} - 33y^{33} + \dots - 11776y + 1024$
c_5, c_9	$y^{34} + 18y^{33} + \dots + 2y + 1$
c_{6}, c_{8}	$y^{34} - 22y^{33} + \dots + 682y + 289$
c_{10}	$y^{34} - 2y^{33} + \dots - 18y + 1$
c_{11}	$y^{34} + 38y^{33} + \dots + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.392064 + 0.911772I		
a = -1.220400 + 0.149546I	-0.33123 - 1.99737I	-1.04171 + 3.94659I
b = -0.151137 - 0.378084I		
u = -0.392064 - 0.911772I		
a = -1.220400 - 0.149546I	-0.33123 + 1.99737I	-1.04171 - 3.94659I
b = -0.151137 + 0.378084I		
u = 0.643857 + 0.740919I		
a = 0.444510 + 0.058747I	7.32303 - 1.01150I	0.462803 - 0.538404I
b = -0.919309 - 0.963610I		
u = 0.643857 - 0.740919I		
a = 0.444510 - 0.058747I	7.32303 + 1.01150I	0.462803 + 0.538404I
b = -0.919309 + 0.963610I		
u = 0.631061 + 0.814143I		
a = -1.09866 - 1.38992I	7.11131 + 5.93371I	-0.19300 - 5.69756I
b = -0.986984 + 0.934448I		
u = 0.631061 - 0.814143I		
a = -1.09866 + 1.38992I	7.11131 - 5.93371I	-0.19300 + 5.69756I
b = -0.986984 - 0.934448I		
u = -0.820098 + 0.217356I		
a = -1.021230 - 0.783883I	3.98565 + 7.54944I	-1.73478 - 4.55602I
b = -1.088070 + 0.833628I		
u = -0.820098 - 0.217356I		
a = -1.021230 + 0.783883I	3.98565 - 7.54944I	-1.73478 + 4.55602I
b = -1.088070 - 0.833628I		
u = -0.775445 + 0.276843I		
a = -0.000113 + 0.147223I	5.05465 + 0.88184I	-0.0341976 + 0.1167760I
b = -0.749373 - 0.980750I		
u = -0.775445 - 0.276843I		
a = -0.000113 - 0.147223I	5.05465 - 0.88184I	-0.0341976 - 0.1167760I
b = -0.749373 + 0.980750I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.255241 + 1.154760I		
a = -1.63194 - 0.61364I	0.59034 - 2.20193I	-5.39762 + 2.89255I
b = -0.719802 - 0.838712I		
u = -0.255241 - 1.154760I		
a = -1.63194 + 0.61364I	0.59034 + 2.20193I	-5.39762 - 2.89255I
b = -0.719802 + 0.838712I		
u = 0.401589 + 1.121620I		
a = 0.740490 + 0.229483I	-4.35229 + 1.60461I	-8.26502 - 1.09622I
b = 0.867707 + 0.523486I		
u = 0.401589 - 1.121620I		
a = 0.740490 - 0.229483I	-4.35229 - 1.60461I	-8.26502 + 1.09622I
b = 0.867707 - 0.523486I		
u = 0.803313		
a = -1.12207	-3.18504	0.914630
b = -0.598522		
u = -0.421626 + 0.667896I		
a = -0.457995 - 0.776702I	0.37642 - 1.53920I	0.52977 + 5.14051I
b = 0.257061 + 0.435953I		
u = -0.421626 - 0.667896I		
a = -0.457995 + 0.776702I	0.37642 + 1.53920I	0.52977 - 5.14051I
b = 0.257061 - 0.435953I		
u = -0.449017 + 1.136970I		_
a = 2.83048 - 1.35162I	-5.63834 - 3.94702I	-6.39479 + 3.36113I
b = 1.307530 + 0.065436I		
u = -0.449017 - 1.136970I		
a = 2.83048 + 1.35162I	-5.63834 + 3.94702I	-6.39479 - 3.36113I
b = 1.307530 - 0.065436I		
u = 0.490186 + 1.136270I		
a = 1.31533 + 1.01208I	-3.70744 + 6.19607I	-6.22304 - 6.67245I
b = 0.706452 - 0.661902I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.490186 - 1.136270I		
a = 1.31533 - 1.01208I	-3.70744 - 6.19607I	-6.22304 + 6.67245I
b = 0.706452 + 0.661902I		
u = -0.316626 + 1.211300I		
a = -1.82873 + 0.86114I	-0.44863 + 3.88868I	-6.63703 - 2.26154I
b = -1.058350 + 0.773720I		
u = -0.316626 - 1.211300I		
a = -1.82873 - 0.86114I	-0.44863 - 3.88868I	-6.63703 + 2.26154I
b = -1.058350 - 0.773720I		
u = -0.548880 + 1.145350I		
a = 0.412467 + 1.244140I	2.49823 - 5.83735I	-3.10039 + 3.72465I
b = -0.692953 + 1.024120I		
u = -0.548880 - 1.145350I		
a = 0.412467 - 1.244140I	2.49823 + 5.83735I	-3.10039 - 3.72465I
b = -0.692953 - 1.024120I		
u = 0.456179 + 1.214870I		
a = -1.73132 - 0.47368I	-6.76337 + 4.50518I	-1.87945 - 4.07859I
b = -0.649218 + 0.049959I		
u = 0.456179 - 1.214870I		
a = -1.73132 + 0.47368I	-6.76337 - 4.50518I	-1.87945 + 4.07859I
b = -0.649218 - 0.049959I		
u = -0.544284 + 1.179770I		
a = -2.56097 + 1.10413I	1.13195 - 12.58770I	-4.92167 + 7.87699I
b = -1.127080 - 0.824983I		
u = -0.544284 - 1.179770I		
a = -2.56097 - 1.10413I	1.13195 + 12.58770I	-4.92167 - 7.87699I
b = -1.127080 + 0.824983I		
u = 0.157297 + 0.676103I		
a = 1.45465 + 1.84751I	-2.09473 + 0.78471I	-6.87662 + 2.65408I
b = 1.034700 - 0.173788I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.157297 - 0.676103I		
a = 1.45465 - 1.84751I	-2.09473 - 0.78471I	-6.87662 - 2.65408I
b = 1.034700 + 0.173788I		
u = 0.637571 + 0.171045I		
a = -0.049058 - 1.073020I	-0.99883 - 1.83078I	-2.95289 + 3.76618I
b = 0.658221 + 0.529258I		
u = 0.637571 - 0.171045I		
a = -0.049058 + 1.073020I	-0.99883 + 1.83078I	-2.95289 - 3.76618I
b = 0.658221 - 0.529258I		
u = -0.592232		
a = 1.92705	-2.64346	-1.59530
b = 1.21971		

II.
$$I_2^u = \langle b+1, \ -u^3+u^2+a-u+2, \ u^5-u^4+2u^3-u^2+u-1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - u^{2} + u - 2\\-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - u^{2} + u - 1\\-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} - u^{2} + u - 1\\-1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} - u^{2} + u - 1\\-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3}\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3}\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3}\\u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^4 + 7u^3 8u^2 + 6u 12$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^5$
c_2, c_4	$(u+1)^5$
c_3, c_7	u^5
c_5	$u^5 - u^4 + 2u^3 - u^2 + u - 1$
c_6	$u^5 + u^4 - 2u^3 - u^2 + u - 1$
c_8,c_{11}	$u^5 - u^4 - 2u^3 + u^2 + u + 1$
<i>c</i> ₉	$u^5 + u^4 + 2u^3 + u^2 + u + 1$
c_{10}	$u^5 + 3u^4 + 4u^3 + u^2 - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^5$
c_3, c_7	y^5
c_5, c_9	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$
c_6, c_8, c_{11}	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_{10}	$y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.339110 + 0.822375I		
a = -1.12878 + 1.10766I	-1.97403 - 1.53058I	-5.00899 + 6.23673I
b = -1.00000		
u = -0.339110 - 0.822375I		
a = -1.12878 - 1.10766I	-1.97403 + 1.53058I	-5.00899 - 6.23673I
b = -1.00000		
u = 0.766826		
a = -1.37029	-4.04602	-9.63840
b = -1.00000		
u = 0.455697 + 1.200150I		
a = -2.18608 - 0.87465I	-7.51750 + 4.40083I	-13.17182 - 3.02310I
b = -1.00000		
u = 0.455697 - 1.200150I		
a = -2.18608 + 0.87465I	-7.51750 - 4.40083I	-13.17182 + 3.02310I
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^{34} - 6u^{33} + \dots + 4u - 1)$
c_2	$((u+1)^5)(u^{34}+10u^{33}+\cdots+2u^2+1)$
c_{3}, c_{7}	$u^5(u^{34} - u^{33} + \dots + 32u + 32)$
c_4	$((u+1)^5)(u^{34}-6u^{33}+\cdots+4u-1)$
<i>C</i> ₅	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)(u^{34} - 2u^{33} + \dots + 2u - 1)$
c_6	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)(u^{34} + 2u^{33} + \dots - 58u - 17)$
c ₈	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)(u^{34} + 2u^{33} + \dots - 58u - 17)$
c_9	$ (u5 + u4 + 2u3 + u2 + u + 1)(u34 - 2u33 + \dots + 2u - 1) $
c_{10}	$(u^5 + 3u^4 + 4u^3 + u^2 - u - 1)(u^{34} + 18u^{33} + \dots + 2u + 1)$
c_{11}	$(u^5 - u^4 - 2u^3 + u^2 + u + 1)(u^{34} - 2u^{33} + \dots + 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^5)(y^{34} - 10y^{33} + \dots + 2y^2 + 1)$
c_2	$((y-1)^5)(y^{34} + 34y^{33} + \dots + 4y + 1)$
c_3, c_7	$y^5(y^{34} - 33y^{33} + \dots - 11776y + 1024)$
c_5, c_9	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)(y^{34} + 18y^{33} + \dots + 2y + 1)$
c_{6}, c_{8}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)(y^{34} - 22y^{33} + \dots + 682y + 289)$
c_{10}	$(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)(y^{34} - 2y^{33} + \dots - 18y + 1)$
c_{11}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)(y^{34} + 38y^{33} + \dots + 2y + 1)$