XII. Nemzetközi Magyar Matematika Verseny

Eger, 2003. ápr. 15-19.

12. osztály

- 1. feladat: Oldjuk meg a valós számok halmazán a $6 \cdot \frac{x^2+1}{x^2+11} = \sqrt{\frac{11x-6}{6-x}}$ egyenletet!

 Kubatov Antal (Kaposvár)
- **2. feladat:** Az f(x) függvényre tetszőleges x valós szám esetén teljesül, hogy $2 \cdot f(x) + f(1-x) = x^2$. Milyen n pozitív egész számra igaz, hogy $f(1) + f(2) + \ldots + f(n) = 19 \cdot n$?

Némethy Katalin (Budapest)

3. feladat: Az x_n sorozatot a következőképpen definiáljuk: $x_1 = \frac{1}{2}$, és $x_{k+1} = x_k^2 + x_k$. Határozzuk meg az $S_{100} = \frac{1}{x_1+1} + \frac{1}{x_2+1} + \ldots + \frac{1}{x_{100}+1}$ összeg egész részét!

Kántor Sándorné (Debrecen)

4. feladat: Az ABC hegyesszögű háromszög magasságainak a BC, CA és AB oldalakon lévő talppontjai rendre T_1 , T_2 és T_3 , a háromszög magasságpontja M, körülírt és beírt körének a sugara R és r. Bizonyítsuk be, hogy

$$MT_1 \cdot MT_2 \cdot MT_3 \le \frac{R \cdot r^2}{2}!$$

Bíró Bálint (Eger)

- 5. feladat: Határozzuk meg azokat az x, y valós számokat melyekre $x^{\log_3 y} + y^{\log_x 3} + 3^{\log_3 x} = x + y + 3!$ Kovács Béla (Szatmárnémeti)
- 6. feladat: Oldjuk meg a valós számhármasok halmazán a következő egyenletet:

$$\sqrt{5(x^2 + 2yz)} + \sqrt{6(z^2 + 2zx)} + \sqrt{5(z^2 + 2xy)} = 4(x + y + z)!$$

Pintér Ferenc (Nagykanizsa)