CS4423: Networks

Week 8, Part 1: Introduction to Random Networks

Dr Niall Madden
School of Maths, University of Galway

05 March 2025)

Class Test 2pm tomorrow!

Details:

- ► LENS reports: email Niall today!
- ► Locations: see announcement!
- Content:
 - Similar to Problem Set 2
 - Nothing from this week.
 - No networkx
 - Focus on skills, rather than theory.
- ▶ Bring a pen. And maybe a calculator (?).
- ▶ If you miss the test, for any reason, your grade will be based on the assignments (20%) and the final exam (80%).

Outline

Today, all notes will be based on these slides (no Jupyter).

- 1 Random Models of Networks
- 2 Erdö-Rényi Random Graph ModelsSome examples
- 3 Random samples
 - The two Erdös-Rényi Models
 - Model A: $G_{ER}(n, m)$
 - Model B: $G_{ER}(n, p)$

Slides are at:

https://www.niallmadden.ie/2425-CS4423

Random Models of Networks

Random Models of Networks

One of the remaining "big" ideas for us to study in CS4423 is that of **Random Networks**. In a sense, we are not so interested in their randomness. It is more like we decide on the general structure of networks, but then choose a particular example by tossing a coin, or rolling dice.

What we are interested in:

- ► The **statistical properties** of very large networks, such as average degree, the number of 3-cycles, or the size of component.
- ▶ How well our random networks share these properties.

Erdö-Rényi Random Graph Models

A Random Graph¹ is a *mathematical model* of a family of networks, where certain parameters (like the number of nodes and edges) have fixed values, but other aspects (like the actual edges) are randomly assigned.

The simplest example of a random graph is in fact a network with fixed numbers n of nodes and m of edges, randomly placed between the vertices.

Although a random graph is not a specific object, many of its properties can be described precisely in the form of **expected values** or **probability distributions**.

¹https://en.wikipedia.org/wiki/Random_graph

Suppose our network G = (X, E) has |X| = n nodes. Then we know the most number of edges t can have is:

$$\binom{n}{2} = \frac{n!}{(n-2)!2!} = \frac{n(n-1)}{2}.$$

- Our goal is to randomly select edges on the vertex set X.
 That is, pick at random elements from the set (^X₂) of pairs of nodes.
- So we need a procedure for selecting m from N objects randomly, in such a way that each of the $\binom{N}{m}$ subsets of the N objects is an equally likely outcome.
- ► We first discuss sampling m values in the range $\{0, 1, ..., N-1\}$.

- 1. Suppose we choose a natural number N, and real number $p \in [0,1]$
- 2. Then iterate over each element of the set $\{0, 1, ..., N-1\}$.
- 3. For each, we pick a random number $x \in [0,1)$].
- 4. If x < p, we keep that number. Otherwise remove it from the set.

When we are done, how many elements do we expect in the set if p = m/N for some chosen m?

And what is the likelihood if there being, say k elements in the set?

We are creating random samples. The size of each is a random number, k.

Claim: Expected value: E[k] = Np = m.

Proof: This is a binomial distribution²

- ► The probability of a specific subset of size k to be chosen is $p^k(1-p)^{N-k}$.
- ► There are $\binom{N}{k}$ subsets of size k. So the probabilty P(k) of the sample to have size k is $P(k) = \binom{N}{k} p^k (1-p)^{N-k}$.

We use the following facts

(i)
$$j\binom{N}{j}p^j = Np\binom{N-1}{j-1}p^{j-1}$$
,

(ii)
$$(1-p)^{N-j} = (1-p)^{(N-1)-(j-1)}$$
,

(iii)
$$(p + (1 - p))^r = 1$$
 for all r .

²https://en.wikipedia.org/wiki/Binomial_distribution

Expected value:

$$E[k] = \sum_{j=0}^{N} jP(j) = \sum_{j=0}^{N} j \underbrace{\binom{N}{j} p^{j} (1-p)^{N-j}}_{\text{Formula for } P(j)}$$

$$= \underbrace{Np \sum_{l=0}^{N-1} \binom{N-1}{l} p^{l} (1-p)^{(N-1)-l}}_{\text{From (i),(ii),(ii)}} = Np, \quad (1)$$

substituting l = k - 1,

Next week, we'll look a some computational examples, as well as an algorithm for choosing exactly m numbers from a set of N.

For now, we'll just assume it can be done...

Model A: $G_{ER}(n, m)$

Uniformly selected edges

ER Model $G_{ER}(n,m)$: Uniform Random Graphs

Let $n \geq 1$, let $N = \binom{n}{2}$ and let $0 \leq m \leq N$. The model $G_{ER}(n,m)$ consists of the ensemble of graphs G on the n nodes $X = \{0,1,\ldots,n-1\}$, and m randomly selected edges, chosen uniformly from the $N = \binom{n}{2}$ possible edges.

Equivalently, one can choose uniformly at random one network in the **set** $\mathcal{G}(n, m)$ of all networks on a given set of n nodes with exactly m edges.

The two Erdös-Rényi Models

Randomly selected edges

ER Model $G_{FR}(n,p)$: Random Edges

Let $n \geq 1$, let $N = \binom{n}{2}$ and let $0 \leq p \leq 1$. The model $G_{ER}(n,p)$ consists of the ensemble of graphs G on the n nodes $X = \{0,1,\ldots,n-1\}$, with each of the possible $N = \binom{n}{2}$ edges chosen with probability p.

The probability P(G) of a particular graph G = (X, E) with $X = \{0, 1, \dots, n-1\}$ and m = |E| edges in the $G_{ER}(n, p)$ model is

$$P(G) = p^m (1-p)^{N-m}.$$

The two Erdös-Rényi Models

Model B: $G_{ER}(n, p)$

Of the two models, $G_{ER}(n, p)$ is the more studied. They are many similarities, but do differ. For example:

- 1. $G_{ER}(n, m)$ will have m edges with probability 1.
- 2. A graph in $G_{ER}(n, p)$ with have m edges with probability $\binom{N}{m} p^m (p-1)^{N-m}$.

