Class 17: Structural Induction

Schedule

Problem Set 7 is due tomorrow at 6:29pm.

Next week Friday, 4 November at 11am, **Steve Huffman** (BSCS 2005, co-founder and CEO of Reddit) will give a Computer Science Distinguished Alumni talk in the Rotunda. If you would like to meet with Steve (either at a lunch after the talk or a meeting with students later that afternoon), send me an email with a good reason why you should be invited (only a very limited number of spaces available).

Lists

Definition. A *list* is an ordered sequence of objects. A list is either the empty list (λ) , or the result of prepend(e, l) for some object e and list l.

```
first(prepend(e, l)) = e

rest(prepend(e, l)) = l

empty(prepend(e, l)) = False

empty(null) = True
```

Definition. The *length* of a list, p, is:

Prove: for all lists, p, list_length(p) returns the length of the list p.

Concatenation

Definition. The *concatenation* of two lists, $p = (p_1, p_2, \dots, p_n)$ and $q = (q_1, q_2, \dots, q_m)$ is

$$(p_1, p_2, \cdots, p_n, q_1, q_2, \cdots, q_m).$$

Provide a *constructuve* definition of *concatenation*.

Prove. For any two lists, p and q, length(p + q) = length(p) + length(q).

Induction Summary

	Regular Induction	Invariant Principle	Structural Induction
Works on:	natural numbers	state machines	data types
To prove $P(\cdot)$	for all natural numbers	for all reachable states	for all data type objects
Prove base case(s)	P(0)	$P(q_0)$	P(base object(s))
and inductive step	$\forall m \in \mathbb{N}.$	$\forall (q,r) \in G$.	$\forall s \in \mathit{Type}.$
	$P(m) \implies P(m+1)$	$P(q) \implies P(r)$	$P(s) \implies P(t)$
		-	$\forall t$ constructable from s

Challenge-Response Protocols

- 1. **Verifier:** picks random challenge, *y*.
- 2. **Prover:** proves knowledge of x by revealing f(x, y).
- 3. **Verifer:** can verify prover knows *x* from response, but learns nothing (useful) about *x*.

How can you know the website you are sending your password to is what you think it is?