

IMPACT OF THE OWEN SOUND SANITARY LANDFILL ON DOMESTIC WATER SUPPLIES, DERBY TOWNSHIP, GREY COUNTY

April, 1976

LABORATOR . MINISTRY OF THE

LIBRARY COPY

JUN 1 0 1976

MINISTRY OF THE ENVIRONMENT

TD 795.7 N68 1976 MOE

Ministry of the Environment

D. A. McTavish
Director
Southwestern Region

ONTARIO MINISTRY OF THE ENVIRONMENT SOUTHWESTERN REGION Technical Support Section

IMPACT OF THE OWEN SOUND
SANITARY LANDFILL ON DOMESTIC
WATER SUPPLIES, DERBY TOWNSHIP
GREY COUNTY

by
Blagoje Novakovic

April, 1976 LONDON

TABLE OF CONTENTS

	Page
List of Figures	iii
List of Tables	iv
SUMMARY	V
INTRODUCTION	1
Location	2
Field Work	4
GEOLOGY	4
Bedrock Geology	4
Surficial Deposits	7
HYDROGEOLOGY	9
Bedrock Hydrostratigraphic Unit	9
Overburden Hydrostratigraphic Unit	10
Groundwater Movement in the Bedrock	11
Hydrogeology in the Vicinity of the Owen Sound Landfill	13
GENERATION, ATTENUATION AND MIGRATION OF LEACHATE	16
GROUNDWATER QUALITY	17
Pollution of Domestic Water Supplies	17
INTERPRETATION OF GROUNDWATER QUALITY	22
CONCLUSIONS	25
RECOMMENDATIONS	27
REFERENCES	29
APPENDIX A: SUMMARY OF WATER WELL RECORDS	31
APPENDIX B: CHEMICAL ANALYSES	37
APPENDIX C: BACTERIOLOGICAL ANALYSES	62

LIST OF FIGURES

igure		Page
1.	Location map	3
2.	Bedrock geology and bedrock topography	6
3.	Thickness of surficial deposits	8
4.	Potentiometric map of the bedrock aquifer system	12
5.	Cross-section showing hydrogeological environments in the area of the Owen Sound landfill	14
6.	Hydrochemical map of the sulphate distribution in the deep overburden-bedrock aquifer system	24

LIST OF TABLES

Table		Page
1.	Selected chemical parameters in the	
	R. Ledingham overburden well (well No.7)	18
2.	Selected chemical parameters in the	
	D. Williton - E. Carman bedrock well (well No. 2981)	20
3.	Selected chemical parameters in the	
	L. Williton overburden well (well No. 697)	21
4.	Selected chemical parameters in the	
	Lincoln Park bedrock well (old well No. 2766)	21
5.	Concentrations of selected chemical	
	parameters in the leachate	22

SUMMARY

The Owen Sound sanitary landfill is located on a kame moraine which according to water well records in the area is comprised of clayey silty sand, gravel, silty sand, and gravel and sand with boulders. These glacial deposits are characterized by poor sorting, variable composition and correspondingly variable permeability. In general, kame moraine deposits are considered to be unsuitable for sanitary landfill sites because of locally high permeability and this site is no exception. The bedrock in the area consists of dolomite with minor shale layers of Guelph-Lockport Formation.

Groundwater quality monitoring in area wells (in response to the local residents' complaints) indicated that groundwater had undergone quality changes in the vicinity of the landfill. Two domestic wells (three families) located in the immediate vicinity of the landfill were adversely affected by the operation of the Owen Sound sanitary landfill. The reduction in sulphate, increase in hardness, alkalinity, chloride, sodium, iron, COD, and presence of phenols and tannins and lignins in these two wells are directly related to the introduction of the leachate into groundwater.

The presence of the Owen Sound sanitary landfill poses a potential pollution hazard to other neighbouring wells and groundwater in general. Therefore, measures should be taken to minimize further impact of the leachate on the local

groundwater system. A planted low permeability cover appropriately graded and drained will reduce infiltration and therefore generation of leachate. Drilling and subsequent pumping of several wells downgradient from the landfill will partially remove pollutants from groundwater and restrict further migration. Some mutually acceptable means of water supply restoration to the affected parties remains to be worked out.

Efforts should be made to find an environmentally acceptable sanitary landfill site and terminate the use of the existing one.

INTRODUCTION

Deterioration of water quality in domestic wells located in the immediate vicinity of the existing Owen Sound landfill first came to our attention early in October, 1975. At that time the area residents approached this Ministry's District Office in Owen Sound and complained that their water supplies were adversely affected by the operation of a nearby solid waste disposal site. Hence, the purpose of this study is to determine the extent and mechanism of groundwater pollution originating from the existing Owen Sound sanitary landfill operation.

The disposal operation at the Owen Sound sanitary landfill site commenced in January of 1971 under a certificate issued by the Ontario Department of Energy Resources Management, Waste Management Branch. The application stated that this landfill site would serve the City of Owen Sound and the Townships of Derby and Sydenham. Fill was to consist of 20 percent domestic waste, 30 percent commercial and 50 percent industrial wastes with the total daily disposal of 500 tons. Using these figures and assuming that disposal operations were carried out five days a week, it was calculated that 660,500 tons of solid wastes were disposed here since the operation commenced until March 1, 1976.

Information from water well records in the area which are on file with the Ontario Ministry of the Environment (OME) were utilized and provided the hydrogeological framework for

this study. Because groundwater quality monitoring is continuing, and additional hydrogeological and pertinent data are being collected a final report may be prepared.

Location

The Owen Sound sanitary landfill site is located about three miles south of the City of Owen Sound. It occupies the northern part of Lot 7, Concession II, Derby Township, Grey County (Figure 1). The study area is located south of the eastwest line passing through Inglis Falls as indicated in Figure 1.

Access to the site is provided by Concession Road 2 which is linked to Provincial Highway No. 10 by the Highway No. 6 bypass.

The area is characterized by hummocky topography and is part of a kame moraine oriented in a northeast-southwest direction. According to Chapman and Putnam (1966) this area is part of the Arran Drumlin Field physiographic region.

The existing landfill occupies part of a swampy area which extends west, north and east from it. The immediate area drains in an easterly direction into the Sydenham River which is about 1,400 feet away.

LEGEND

0,0 Well water sample location Water well and OME well 0697 number; well record River water sample location v 1 with OME Leachate spring Q Water well and well number; no well □6 Cross section location record with OME Landfill $\overline{\mathcal{C}}$ Spring

FIGURE 1. LOCATION MAP.

Field Work

Field work consisted of groundwater quality monitoring in area wells which began in October 1975. This information was supplemented by analyses of available geological and hydrogeological data.

Figure 1 shows the location of water wells in the study area. Indicated well numbers are those as assigned by the Ontario Ministry of the Environment. The one and two digit well numbers shown in the same Figure are domestic wells for which there are no records on file, but from which chemical and bacteriological analyses are available.

GEOLOGY

Bedrock Geology

Bedrock outcrops occur about 9,000 feet northeast of the landfill site, but at the site bedrock is overlain by more than 100 feet surficial deposits.

The bedrock formations within the study area are of Middle and Lower Silurian Age. They have been ascribed to the Amabel, Fossil Hill (Lockport) and Guelph Formations (Liberty, 1966). Both Lockport and Guelph Formations are lithologically quite similar consisting basically of massive dolomite.

A typical Lockport lithology is of grey weathering, bluish grey and blue mottled fine crystalline dolomite. Beds are massive and well jointed; biohermal strata are non-bedded and porous zones and vugs are present.

The Guelph Formation is largely a reefal complex. For the most part, this formation comprises tan to brown, evenly textured, fine to medium crystalline dolomite. Strata are weathered brown, massive and scraggy. Beds range from 4 to 24 inches in thickness (Logan, 1963) and vugs are known to occur.

Several water wells in the vicinity of the solid waste disposal site report shale layers within the massive grey dolomite.

The topography on the bedrock surface differs significantly from that of the present land surface (Figure 2) being somewhat more regular with uniform relief, but a significant bedrock channel occurs about one quarter of a mile west of Sydenham River (Figure 2). This bedrock channel trends in a north-south direction, but its exact location is uncertain because of lack of data. Most probably, its location coincides with the present course of the Sydenham River.

Bedrock geology: After B. A. Liberty, 1966.

Landfill

LEGEND

PALEOZOIC

Control point

MIDDLE AND LOWER SILURIAN

Bedrock surface con-

Guelph Formation: Brown crystalline dolomite

Sequence Surface Continue Su

Amabel and Fossil Hill forma- (approximate)

Safh tions (Lockport): Grey and blue_____

FIGURE 2. BEDROCK GEOLOGY AND BEDROCK TOPOGRAPHY.

crystalline dolomite

Surficial Deposits

Unconsolidated deposits of Pleistocene Age mantle the bedrock over most of the study area.

The existing sanitary landfill site is located on a kame moraine, which is bounded to the east, northeast and north-west by limestone plains (Chapman and Putnam, 1966). To the north, it is bounded by a steep slopes of the Niagara Escarpment that approach a vertical plane. This moraine was formed by the advance of an ice lobe from the basin now occupied by Georgian Bay.

The kame deposits consist of relatively permeable material and the lithology reported in nearby water wells confirms this. The water well records indicate that the kame moraine is comprised of clayey gravel and stones, sandy clay and stones and fine gravel with large boulders. These materials grade northeastward into outwash deposits of irregularly stratified gravel, sand and silt, (Sobanski, 1975).

The thickness of surficial deposits varies from zero to 124 feet (Figure 3). The zone of maximum thickness has north-south trend and coincides with the position of the previously noted bedrock channel.

LEGEND

• Control point

Line of equal overburden (isopach) thickness in feet (interval 20 feet)

Landfill

FIGURE 3. THICKNESS OF SURFICIAL DEPOSITS.

HYDROGEOLOGY

Bedrock Hydrostratigraphic Unit

A few feet, or a few tens of feet of the upper part of the bedrock are permeable and are considered to comprise a single hydrostratigraphic unit.

Bedrock formations have generally the same lithology and consist of dolomite with minor shale. The bedrock is characterized by a fracture type of porosity irregularly distributed through the rocks. The origin of the fractures in such type of rocks varies, but most of them likely originated during and after glaciation as a result of ice loads applied to the brittle rock.

In carbonate rocks of this sort several types of openings occur that contribute to permeability; (a) vertical joints and fissures in the ancient weathered zone within 10 to 20 feet of the bedrock surface, (b) bedding joints within and below the ancient weathered zone, (c) primary intergranular permeability, perhaps enhanced by solution, and (d) permeability associated with biohermal reefs.

Of 46 wells in the area the records of which are on file with this Ministry (Appendix A), only four wells in the immediate vicinity of the sanitary landfill site obtain water from the overburden. Furthermore, when the hydraulic heads in bedrock wells are contoured, the uniform pattern of piezometric

lines suggests hydraulic continuity between all points. Therefore, it is reasoned that the upper several tens of feet of the bedrock represents a continuous artesian aquifer system.

Overburden Hydrostratigraphic Unit

The surficial deposits are considered a single hydrostratigraphic unit because of relatively similar lithological characteristics. In the general vicinity of the landfill site it consists of poorly sorted clayey and silty sand and gravel, silty gravel and large boulders. Mechanical analyses from boreholes located about 2,500 feet north of the existing landfill, revealed the presence of fine to medium sand at depths 25 and 50 feet (Sobanski, 1975).

Four water wells in the immediate vicinity of the landfill site obtain water from the overburden aquifer which consists
of gravel from a depth between 87 and 110 feet below ground
surface. The lateral extent of this gravel deposit is unknown,
but it is thought to be of limited extent. The gravel occurs
immediately above, or a few tens of feet above the bedrock surface
and is considered to be hydraulically connected with the bedrock
aquifer system. A review of additional water well records in the
broader area indicates that the deep sand and gravel aquifer is
not everywhere present.

Little is known about the distribution and presence of a shallow water table aquifer in the area. Of six test holes dug to a depth between 10 and 14 feet in 1969 at the existing

landfill site three of them reported water between 8 and 12 feet while the rest of wells were reported dry. A similar situation was reported at the nearby Lincoln Trailer Park. Thus, it is concluded that the continuous shallow overburden aquifer is absent in the study area, and surficial deposits are relatively permeable.

Groundwater Movement in the Bedrock

In order to have a flow in a groundwater reservoir, the water must have, according to Hubbert (1940) an initial store of mechanical energy in the form of fluid potential. Hence, ground-water flows under the influence of gravity following the most direct route from points of higher potential to points of lower potential.

The information from water wells penetrating bedrock were used to infer groundwater flow system in the bedrock aquifer (Figure 4). Contours of equal potential in the bedrock aquifer system give the direction of groundwater flow as well as the distribution of recharge and discharge zones. By definition, closed contours of equal potential in a groundwater mound indicate recharge, or downward movement (Figure 4). Contours of equal potential near or above ground surface indicates a groundwater discharge area.

LEGEND

• Control point

Potentiometric contour above sea level, in feet (interval 10 feet)

Landfill

FIGURE 4. POTENTIOMETRIC MAP OF THE BEDROCK AQUIFER SYSTEM.

Although, the positions of equipotential lines shown in Figure 5 are somewhat interpretative because of the scarcity of data, it gives general idea of the direction of groundwater flow in the bedrock aquifer system. It is indicative, however, that the existing sanitary landfill site is located in a groundwater recharge area, where groundwater moves downward, then in northerly and easterly directions toward the Sydenham River.

Hydrogeology in the Vicinity of the Owen Sound Landfill

The vertical geologic cross section shown in Figure 5 illustrates hydrogeological environments at the landfill and in nearby wells.

Relatively sparce information indicates absence of a shallow water table over most part of 35 acre landfill. Thus burial of refuse took place in trenches up to 25 feet in depth under unsaturated conditions.

As shown by studies in Illinois (Hughes, Landon, and Farvolden, 1971) infiltration through landfill covers does occur resulting in groundwater mounds within the landfill. Evidence of a mound at the Owen Sound landfill is indicated by the presence of a leachate spring at the toe of the northeast slope of the landfill (Figure 1). Here the leachate migrates laterally from the landfill and flows into the nearby stream and swamp where it undergoes dillution and natural biological breakdown. It is unknown if the leachate represents a perched or true water table.

Analyses of Sydenham River water in July 1975 demonstrated that water quality above and below the landfill site is essentially the same (Appendix B), and it is felt that the diluting capability of the river is large compared to the relatively small amount of leachate which may be getting into Sydenham River.

The movement of leachate from the refuse toward the bedrock constitutes a potential hazard for the deep overburden and bedrock aquifer systems. Percolation tests carried out in connection with the design of the tile field extension at the Lincoln Mobile Home Park gave infiltration rates varying from 0.1 to 0.25 inches/minute. As the base of the landfill is only 80 feet from the top of the water bearing zone and 90 feet from the bedrock (well No. 2981) the travel time for leachate to reach the bedrock is approximately 8 days. This assumes that these percolation rates apply over the total overburden thickness.

The key question is; to what extent will the physical-chemical interactions between the leachate and intervening glacial materials renovate the leachate and thereby minimize the impact on groundwater quality. The evidence shows that dilution does occur as the leachate passes through the overburden, but this process is insufficient to totally renovate the leachate with the result that the leachate enters the deep overburden-bedrock aquifer system and pollutes the potable water supply.

GENERATION, ATTENUATION AND MIGRATION OF LEACHATE

A minor amount of the leachate is derived immediately after implacement of refuse during the initial compaction and settlement of the refuse. The major portion of it is produced by landfill after a certain period of time when decomposition of refuse reaches its maximum. The intensity of refuse decomposition depends on the initial composition of refuse, the presence or absence of oxygen, time of burial, the age of the landfill, the degree of compaction, the temperature and the moisture content (Hughes, Landon and Farvolden, 1971). Water originating from precipitation will accelerate decomposition and will leach various organic and inorganic substances present in the refuse. Decomposition of refuse is aerobic in the early stages, but soon becomes anaerobic.

The most important gases generated by the landfill are carbon dioxide and methane. They are released both to the atmosphere through cover material and to the surrounding ground and groundwater.

In the course of its migration through the ground the leachate is attenuated by dilution due to the infiltration of uncontaminated water, then ion exchange, dispersion, diffusion, mechanical filtration, sorption, chemical precipitation, gaseous exchange and microbial activity.

Fine-grained sediments have a high capacity for attenuating the contaminants, whereas sands and gravels have less ability to attenuate the components of leachate. The rates of groundwater

flow through fractured rocks is relatively high, but the rock retains relatively small amounts of the contaminants.

A literature review on the impact of leachate on ground-water quality leads to the conclusion that the most obvious changes to be expected are increases in total hardness, alkalinity, calcium, magnesium, sodium, potassium, chloride and sulphate (Zanoni, 1973). Other parameters such as iron, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) may also show increases.

GROUNDWATER QUALITY

In order to establish existing groundwater quality at the landfill site, water quality surveys of the deep overburden-bedrock aquifer systems commenced in October, 1975. The chemical and bacteriological analyses are shown in Appendices B and C. The results show that groundwater quality in the two wells nearest to the landfill site have been affected by leachate generated by the landfill. Thus, original groundwater quality in these two wells could not be established.

Pollution of Domestic Water Supplies

Information indicates that at the present time, two domestic well water supplies in the area (serving three families) have become contaminated from the existing landfill site operation.

Two petroleum hydrocarbons components detected

Refers to less than

Chemical oxygen demand

Parts per billion

Not detectable

N.D.

qdd

Table 1. Selected chemical parameters in the R. Ledingham overburden well (Well No. 7)

Date Sampled	Hardness in mg/l	Chloride in mg/l	Apparent colour Hazen units	Turbidity Formazin units	Phenols in ppb	Petroleum Hydrocarbons mq/l	COD in mg/1	Iron Sin mg/l	Sulphate as SO _t in mg/l
	- /6	- 76			4				
Oct. 20/75						N.D.			
Oct. 22/75	320	09	Ŋ	15				1.9	5.0
Oct. 29/75	324	57			7	N.D.	24	2.64	1.0
Nov. 17/75						N.D.			
Nov. 26/75	330	56			< <mark>1</mark>		9.3	1.36	7.0
Dec. 8/75	314	09	10	11		N.D.	11	1.26	6.5
Dec. 15/75						*			
Dec. 22/75	392	53			S		28	1.40	6.5
Jan. 7/76	320	53	30	26	2		30	2.32	0.6
Feb. 3/76	318	53	5	5.6	< <u>1</u>	N.D.	< 2	0.65	0.8
Apr. 6/76	318	53	5	2.6	4		28	0.76	8.0
mg/1 -	Milligra	ms per litre	Milligrams per litre or parts per	million					

The affected wells and families are located immediately north (Well No. 7) and south (Well No. 2981) of the sanitary landfill site (Figure 1).

The chemical parameters, which are listed in Tables 1 and 2 are considered to be indicators of chemical contamination in the R. Ledingham and the D. Williton - E. Carman domestic wells.

Although prior chemical analyses of groundwater from these two wells are not available, there is no doubt that the concentrations of chemical constituents shown in Tables 1 and 2 are above normal. For comparison, Tables 3 and 4 list the same chemical parameters in two other wells which are considered to be unaffected by the existing landfill site, yet, these two wells obtain water from the same hydrogeological environment.

The concentrations of the same five chemical parameters in the leachate generated by this landfill are indicated in Table 5. The high concentrations of hardness, chloride, sodium, COD, phenols and iron in the leachate is obvious and increases in these parameters in nearby private water supplies is a partial basis for concluding that contamination has originated from the landfill.

Selected chemical parameters in the D. Williton - E. Carman bedrock well (Well No. 2981) Table 2.

Sulphate as SO _t in mg/1	< 0 . 5	<0.5		2.0	<0.5		2.0	2.0	1.5	3.0	1.0
Iron in mg/l	3.35	2.24		1.91	2.7		4.45	3.2	2.9	1.90	5.0
COD in mg/1		251			189		253	227	214	103	345
Petroleum Hydrocarbons mg/1		N.D.	N.D.		N.D.	*				N.D.	
Phenols in F ppb				22			41		35	20	59
Turbidity Formazin units	42				30					22	54
Apparent colour Hazen units					40			100	75	30	100
Chloride in mg/1	34.5	35		27	33		36.5	33.5	33	23.0	51
Hardness in mg/l	360	340		326	370		372	336	304	312	392
Date Sampled	Oct. 22/75	Oct. 29/75	Nov. 17/75	Nov. 26/76	Dec. 8/75	Dec. 15/75	Dec. 22/75	Jan. 6/76	Jan. 7/76	Feb. 3/76	Apr. 6/76

Two petroleum hydrocarbons components detected

(269 Selected chemical parameters in the L. Williton overburden well (Well No. Table 3.

Date Sampled	Hardness in mg/l	Chloride in mg/l	Apparent colour Hazen units	Phenols in ppb	COD in mg/1	Iron in mg/1	Sulphate as SO ₄ in mg/l
Nov. 26/75	310	4.0		<1	< 2	0.03	38.0
Dec. 8/75		3.5	<5		<2	0.04	37.0
Feb. 3/76	316	3.5	<5	<1	<2	<0.02	38
Apr. 6/76	306	4.0	< 5	8	17	90.0	37.5

Selected chemical parameters in the Lincoln Park bedrock well (Old Well; No. 2766) Table 4.

1									
Date Sampled	te led	Hardness in mg/l	Chloride in mg/l	Apparent colour Hazen units	Turbidity Formazin units	Phenols in ppb	COD in mq/l	Iron in mq/1	Sulphate as SO ₄ in mq/1
Apr.	Apr. 25/75	294	4.0	<5	0.35			0.05	
Sept.	Sept. 17/75	286	5.5	< 5	0.40			0.13	
Nov.	Nov. 26/75	312	5.5			\ \ \	< 2	0.01	31.5
Dec.	Dec. 8/75		5.0	<5			< 2	<0.01	31.5
Dec.	30/75	298	4.5	<5	0.20			0.01	31.5
Jan.	91/1	300	4.5	< 5	0.25			<0.01	30.0
Feb.	3/76	296	4.5	< 5	0.25	\ 	<2	<0.01	31.5
Apr.	9//9	298	5.0	<5	0.20	<1	15	<0.01	33.0

Table 5. Concentrations of selected chemical parameters in the leachate

Date Sampled	Hardness in mg/l	Chloride in mg/l	COD in mg/l	Phenols in ppb	Iron in mg/l
July 9/75	1700	2500	19000		1500
Nov. 5/75		900			
Jan. 7/76	1720	975	7430	1750	770
Feb. 18/76	1620	1100	7088	1475	600
Apr. 6/76	1460	1125	3701	1025	220

Some of the other factors already discussed which contribute to the present problems are summarized below:

- 1. The sanitary landfill site is located in relatively permeable surficial deposits.
- 2. The attenuation of leachate components by the surficial materials is not intensive and negligible in the bedrock.
- 3. To date, water quality has deteriorated in two well nearest to the waste disposal site.

INTERPRETATION OF GROUNDWATER QUALITY

Groundwater chemistry in the area suggests that the dominant controlling mechanisms are (a) dilution, and (b) a combination of sulphate reduction and carbonate buffering. In order to better understand the distribution pattern and its controlling mechanisms further calculations of the activities of the dissolved species in the calcite-dolomite-water system

are necessary taking into account saturation indices for these minerals. This may involve use of a computer and is not within the scope of this report. However, the observed changes in groundwater chemistry point to the chemical reactions which may be superimposed on the carbonate equilibrium system.

The chemical reaction which is taking place here is sulphate reduction. This process is incompletely understood and partly depends on the form of available organic carbon.

According to Hem (1959) methane reduction may proceed as:

SO₄ + CH₄ (þaçteria) HS + H₂O + HCO₃ which yields one mole of HCO₃ for each mole SO₄ reduced. Another type of sulphate reaction discussed by many authors (e.g. Sholkovitz, 1973; Sayles and Manheim, 1975; Kunkle and Shade, 1976) is:

 $2CH_2O + SO_4$ (bacteria) $2HCO_3$ + H_2S where CH_2O represents sources of organic carbon, and results in a two to one increase in bicarbonate to sulphate. Increases in bicarbonate levels are reflected in large alkalinity concentrations in the affected wells.

The existence of sulphate reduction processes in the vicinity of the landfill site is confirmed by the recent bacteriological analyses which indicated increased concentration of sulphate reducing bacteria in three nearest wells to the landfill (Appendix C). Furthermore, as expected from the sulphate

LEGEND

Sampled deep overburden-bedrock well and spring with value of SO, in mg /1

SO₄ in mg /1
Contour of equal concentration of SO₄ in mg/1

Landfill

FIGURE 6. HYDROCHEMICAL MAP OF THE SULPHATE DISTRIBUTION IN THE DEEP OVERBURDEN-BEDROCK AQUIFER SYSTEM.

hydrochemical map (Figure 6) the lowest sulphate concentrations occur in the immediate vicinity of the landfill. Thus, it is postulated that the reducing environment within the landfill has been transferred to the deep overburden-bedrock aquifer system thereby stimulating the observed ongoing sulphate reduction in the wells. The chemistry of sulphate reduction is extremely sensitive to a small changes in oxygen content (Sholkovitz, 1973). Oxygen contents of 0.3 to 0.4 mg/l are sufficient to oxidize organic material which, in turn, will halt sulphate reduction. When the oxygen content falls below 0.1 mg/l and the environmental factors are conducive, sulphate reduction will proceed.

The two most prevalent gases generated in the landfill are methane and carbon dioxide, which could produce sufficient positive pressure to migrate ahead and perhaps upward of
the groundwater gradient and reach the bedrock aquifer and domestic wells ahead of the leachate. Methane aids the sulphate
reduction process by providing carbon and hydrogen for production
of bicarbonate and hydrogen sulphide. Carbon dioxide in water
solution reacts with calcium carbonate present in glacial
materials directly beneath the landfill, liberating calcium
and bicarbonate ions throughout the overburden section.

CONCLUSIONS

Analyses of geological and hydrogeological data at the Owen Sound landfill indicate that relatively complex hydrogeological conditions exist at this landfill. The site is

situated on a kame moraine with a thickness of about 100 feet.

Kame deposits are relatively permeable and the lithology reported in nearby water wells confirms this. Because of this, the kame deposits are considered relatively poor sites for landfill.

Dolomite, with locally reported shale layers which belong to Guelph-Lockport Formation, underly the area.

Groundwater quality monitoring over an area of 11 square miles in the vicinity of the Owen Sound landfill included 20 wells and two springs, provided sufficient data to document background groundwater quality characteristics as well as pronounced quality changes in the nearby domestic wells.

The reduction in sulphate concentrations together with increases in hardness and alkalinity in the deep overburden and carbonate aquifer system in the vicinity of the landfill appear to be related to the sulphate reduction reaction which are created by the landfill leachate. Furthermore, the increases in chloride, sodium, iron, COD and presence of phenols and tannins and lignins in two wells located in the immediate vicinity of the disposal site is directly related to the introduction of these chemical constituents into the aquifer system by the leachate.

The presence of the Owen Sound landfill poses a further threat to the other domestic wells in the area because the pollution front is expected to continue to spread and to adversely affect additional domestic water supplies.

RECOMMENDATIONS

It is obvious from our investigations that pollution of two water wells has occured and that this pollution has originated from the Owen Sound sanitary landfill. It is our opinion that Sections 31 and 32 of the Ontario Water Resources Act have been violated and in this matter we are seeking the advice of our Legal Branch.

It has been our policy to pursue situations of water quantity interference under Section 37 of the Ontario Water Resources Act by acting as an intermediary in seeking restoration of the affected water supplies. We see a parallel situation here where water quality "interference" has occured and as a matter of policy we wish to employ the OWR Act as a means of (a) seeking restoration of affected water supplies, (b) repayment of cost resulting from the interruption of water supply and (c) undertaking an environmental rehabilitation for pollution of the aquifer system.

It is recommended that the City of Owen Sound make further efforts to find an environmentally acceptable sanitary landfill site and terminate use of present one. In order to lessen potential contamination of the other neighbouring domestic wells and groundwater in general it is recommended that efforts be directed to reducing of the amount of the leachate which the site generates. In this regard a planted and compacted clay cover is recommended together with contoured

finished grade which will reduce infiltration into landfilled waste and generation of leachate.

Furthermore, the environmental rehabilitation of the contaminated aquifer should consist of drilling and subsequent pumping of several wells downgradient from the landfill with an attempt to remove pollutants from groundwater and restrict its further migration. To this end, it is recommended that the City hire a qualified hydrogeologist and seeks his opinion in this matter. Details and procedure of remedial measures remains to be worked out by a consulting hydrogeologist in close consultation with this Ministry.

Meanwhile, this Ministry will continue to monitor groundwater quality in the neighbouring wells and the City of Owen Sound will be informed of any additional development.

REFERENCES

- Chapman, L. J., and Putnam, D. F., 1966. The physiography of Southwestern Ontario. The University of Toronto Press, second edition.
- Hem, J. D., 1959. Study and interpretation of the chemical characteristics of natural water: U. S. Geological Survey Water Supply Paper, 1973.
- Hubbert, M. King, 1940. The theory of groundwater motion.

 J. Geol. 48, pp. 785-944.
- Hughes, G. M., Landon, R. A., and Farvolden, R. N., 1971.

 Hydrogeology of solid waste disposal sites in northeastern Illinois. U.S. Environmental Protection Agency,

 Solid Waste Management Branch.
- Kunkle, G. R., and Shade, J. W., 1976. Monitoring ground water quality near a sanitary landfill. Ground Water, V. 14, No. 1, pp. 11-20.
- Liberty, B. A., 1966. Geology of the Bruce Peninsula, Ontario, 40P, 41A, 41H (Parts of, report and 13 maps). Geological Survey of Canada Paper 65-41.
- Logan, Sir. W., 1863. Geology of Canada, Report of Progress from its commencement to 1863, Geological Survey of Canada, Rept.

- Sayles, F. L., and Manheim, F. T., 1975. Interstitial solutions and diagenesis in deeply buried marine sediments: results from the deep sea drilling project. Geochemica et Cosmochimica Acta. V.39, pp. 103-127.
- Sholkovitz, E., 1973. Intersticial water chemistry of the Santa Barbara Basin sediments. Geochemica et Cosmochimica Acta.

 V. 37, no. 9, pp. 2043-2074.
- Sobanski, A. A., 1975. Hydrogeologic investigation of a proposed sanitary landfill site in Lot 8, Concession II Township of Derby. Hydrology Consultants Limited, Mississauga, Ontario.
- Zonini, A. E., 1973. Potential for groundwater pollution from land disposal of solid wastes. CRC Critical Reviews in Environmental Control, May, pp. 225-260.

APPENDIX A SUMMARY OF WATER WELL RECORDS

RECORDS
+
\mathcal{L}
\mathcal{O}_{i}
Ш
X
- 1
FL
山
Ш
\rightarrow
>
~
ER
ш
WATE
4
Z
40
V
>-
/RY
7
>
2_
5
=
ب
SUMMARY

					at the factor of							34	
R COMPILER: K. LYON		LOG AND REMARKS	0-1 topsoil 1-12 yellow clour 12-25 linnestone	0-5 clay 5-20 loose linestone 20-33 brown linestone	0-7/2 brown topsoil 37/2-50 br. Limestone 7/2-20 brown Limestone 50-60 gray Limestone 29-37/2 brown clay 60-75 blue Limestone	0-15 stones and gravel 15-55 white limestone 55-60 brown limestone	0-25 loose limestone 25-86 gregish-white limestone	0-16 booken loose rack 16-87 grey Limestone	0-1 topsoil 1-25 while lime 25-87 thue lime	0-5 soil 5-40 limestone	0-12 soil 12-12 Linestone	0-16 well dug 50-116/2 hard blue 16-25 bad pandday 25-50 gray Limestone	0-15 brown soil and stones 15-95 blue limestone
DATE COMPILED: 31/03/46	MATER	TYPE	И	F	П	Ц	П	u	υL	T	П	L	T
ILED:	EST	HRS.	1	7	-	W	7	7~	- Santan	1	_	_	1/2
OWD	PUMPING TEST	G.P.M.	15	0/	0	00	10	3/4	10	18	77	15	7
ATE (DOWN- (FT.)	6	4	50		54	could easily pure p	21	32	00/	40	72
	STATIC	(FT.)	7	Ø	0	9	9		4	00	21	20	92
	WATER	Found (FF)	25	25-	55	6	ė8	H 00	t to	35	116	115	52
		(E)	25	33	75	09	8	tp tp	48	40	121	116/12 115	95
		(N.)	4	h	6	9	6	5	4	4	6	4-	h
	WELL	TYPE	8.	D 8.	D&.	OR.	8	80	DR.	DR.	DR.	DR.	DR.
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	E	TAQ JIRQ	05/50	12/64	05/41 DR.	07/13 DR.	12/64	osfei DR.	(5/11	07/54	०स्ट-	11/60	OHLO DR.
(S): DERBY		טאוררבא	C. BARTLEY	D. WRIGHT	R. R.S. WRICHT	A.Loucks	D. WRIGHT	M.BELLERBY	R. &S. WRICHT	L. &A. WRIGHT	L. &A. WRIGHT 07/54 DR.	R. R.S. WRIGHT	R. & S. WRIGHT
TOWNSHIP (S):		O VS IN THE	W. LAIRD	C. CRUISE	R. MORRISON	SUNNY-VALLEY PARK	A. WASDELL	H. BELL	R. HEFT	W.A~NABB	J. CROSSLEY	H. METZGER	M. COOK
	ELEV.	(<u>F</u>	225	927	935	920	216	913	\$68	300	923	932	928
	NO	CON	Н	Н	H	1-1		← 1	Н	Н	(} —	Н
GREY	OCATION	107	_	_	7	4	9	9	4	00	00	0	a
	10	TWP											
COUNTY:	WELL		759	653	3445	4234	655	654	657	799	[99]	499	899

_	_
	-

						,						ب	
	DATE COMPILED: 3/03/76 COMPILER: K. LYON	LOG AND REMARKS	0-6 yellow clay 6-50 limestone rock	0-4 top soil 4-35 grey limestone 35-47 blue limestone	0-7 loose rock 7-80 hard gray & blue limastona	0-6 brown clay 116-131 red shala 6-110 grey timestone 110-116 due shale	0-2 top soil 100-102 blue shale 2-56 gray limestone 102-108 red shale 56-100 brown limestone	0-14 clay, gravel, and stones 14-69 brown linestone	0-30 chy, gravel, stones 66-78 hardpan istones 30-33 small boulders 78-82 finegravel 33-66 sand i chay 82-87 coarse gravel	0-44 brown clours stones 120-125 broken 44-110 red soundychay stones limestone 110-120 grey fine gravel	0-5 dug 5-10 brown sand 10-110 teddish brown hadgan fsfores	0-4 topsoil 40-47 hardpan & boulder. 4-10 sand cloud 47-60 tire sound 10-30 bigstones + glavel 60-80 a gavel 2 small	30-40 fine soud 80-8) pers gravel
	31/03/	WATER	И	N	Ц	П	П	Y.	Ц	Ц	T	U	
	ILED:	EST HRS.	2	7	7	4-	7	17	1/2	1/12	_	_	
50	OMP	PUMPING TEST PORMY G.P.M. HRS.	6	3/2	4	6	1/4	∞	20	70	4	6	
COR	ATE O	PUMP DRAW- BOOMN (FT.)	24	09	65	89	93	4	0	4	0/	55	
A H	à	STATIC LEVEL (FT.)	9	15	4	71	12	3(09	53	5 110 110 35	35	
ÆLL		WATER FOUND (FT)	48	75+	40-	28	108	09	48	110 53	110		
<i>></i>		WELL DEPTH (FF.)	50	44	8	191		69	48	125	110	8	
F		Well (IN.)	4	4/2	4	6	4	9	6	4	h	4/2	
A A		WELL	D R.	%	DR.	DR.	8	8	DR.	8.	ž	Z.	
90	ΒY	DATE DRILLED	Of/53 DR.	04/61	06/63 DR. 5	10/63 DR.	04/21 DR. 4 108	1+/01	04161 DR.	69/80	0474 DR.	04/58	
SUMMARY OF WATER WELL RECORDS	(S): DERBY	DRILLER	D. WRIGHT	R. 85. WRIGAT 04/61 DR. 4/2 77	D. WRIGHT	D. WRICHT	R. 8.S. WRIGHT	A.Loucks	R. & S. WRIGHT	R.85.WRIGHT 08/69 DR.	R.85.WRICHT	R. & S. WRUHT 07/58 DR. 41/2 89 89	
S	TOWNSHIP (S):	OWNER	S. KELLING	H. LAMB	W. HICKS	M. HARRIS	J. KEELING	N.TRIBBLE	NOITTION 7	D. WILLITON	928 E. CAMERON	I. FRANKLIN (former owned) E. CAMERON)	
		ELEY. (FT.)	845	885	704	928	217	932	2	947	928	516	
	>-	LON.	Н	Н	Н	I	H	Ħ	Ħ	H	Ħ	Ħ	
	GREY	LOCATION VP. LOT CON	0	6	0	0	0	_	+	1+	00	00	
		L O J											
	COUNTY:	WELL NO.	663	599	949	677	675	3783	£69	2981	4941	969	

CO
3
RECORDS
~
4
\circ
()
\sim
LL
~/
Œ
- [
VELL
سلسا
\rightarrow
>
\sim
TER
1
_
1
7
WAT
/
11
40
\cup
\
/
α
1
MARY
5
SUM
-
(1)
0)

DATE COMPILED: 31/03/76 COMPILER: K. LYON	LOG AND REMARKS		0-10 hardpan istores 50-110 stay sandy clay 20-35 gardistons 110-12 red shale 35-50 toddish clay isand 12-124 shall bedrock	0-14 clayand gravel 4-75 white linestone 75-100 rock and shale	0.73 dwg well 112-145 gray limestone 23-45 gravel 145-154 brown limestone 45-112 haddpan	0-80 sandy clay istone 172-180 red 80-166 Limestone 166-172 blue shale	0-15 clay gravel 80-123 lighthown 16-83 red sandiclay 83-90 gravel	0-40 gravel 124-165 brown 40-110 fed sand Limestone 110-124 boulders Hardpan	0-97 grovel	0-16 clay and stanes 16-80 reck	0-15 clay sandigavel 100-106 blue shale 15-60 large boulders 106-114 red shale 60-100 brown limestone	0.10 sand 36-80 was fone 10.30 graves fone 30.30 graves \$ 560 mg	0-35 clay, hadban, bauldess 35-215 brown Limestone 215-225 dork brown Limestone
51/03/	MATED	TYPE	F	A	H	П	П	T	П	Ц	LL	止	Ц
LED:	EST	HRS.	7	М	7	0	7	7	7	1	7	1/2	7
JOMP.	PUMPING TEST	G.P.M. HRS.	0	0	т	36	4	4	4	103	12	40	41
TE O	PUMP	DRAW- BOWN (FT.)	30	10	6	8	0	-2/12	8	Ó	0?	10	95
۵	STATIC	LEVEL (FT.)	50	44	6]	18	23	45 -2/2	12	22	45	25	25 95 14
		Found (FT)	124	75	15	18	911	160	97	88	90-	&	
		E (E)	124	8	154	180	123 116	5 165 160	46	80	5 114	8	11/70 DR. 5- 225 220,
		(N.)	4	4	h	h	40	4	4	4	4	4	6
	WELL	TYPE	8	8	8	8	K.	8	ž	8	OR.	Ŗ.	8
DERBY	ŒD	TAQ JIRQ	03/83	05/72 DR.	10/64	09/75 DR.	07/71 DR.	11/68	[[[73	02/48 DR.	04/64 DR.	11/56 DR.	1/20
		DKILLEK	R. & S. WRIGHT 09/59	A. Loucks	D. WRKHT	R. & S. WRWHT	W, WRIGHT	W. WRIGHT	W. WRIGHT	M.BELLERBY	D. WRIGHT	D. WRIGHT	W. WRIGHT
TOWNSHIP(S):	C L	CVVIVIER	W. Moulton	W. SAITH	WILSON	LINCOLN TRAILER PARK (Aew well)	H. GELIES	LINCOLN TRAILER PARK (old well)	N. BARBER	G. LEDDINGHAM	B. BELROSE	B. BELROSE	W. KING
	ELEV.	(F)	388	28	900	912	930	935	923	280	850	880	875
		CON.	Ħ	Ħ	目	目	月	目	目	目	目	目	K
GREY	OCATION	10,1	00	0	7	9	9	9	00	0	=	_	9
	100	TWP											
COUNTY:	WELL		669	3883	703	7766 A	3630	2766	4427	406	705	704	3336

(I)
Q
X
0
()
III
RECORDS
WELL
7
-11
ш
Z
7
,
α
Ш
-
1
4
WATER
H
0
>-
2
4
MARY
5
SUM
\supset
S
- /

DATE COMPILED: 31/03/76 COMPILER: K. LYON		LOG AND REMARKS	0-10 soundy soil 10-69 greychy and stones 69-90 brown Linestone	0-4 top soil 4-40 grey limestone 40-62 blue limestone	0-26 clay and grave! 26-42 limestone	0-25 gravel and clay 15-33 clay 33-52'2 Limestone	0-30 dug well 60-95 grey Linestone 30-50 stones; grave 50-60 houdpon; boulders	0-53 clay, gravel, boulders 53-120 livestone	0-17 brown soundy clay 60-33/2 grey 17-33 brown sand 33-60 brown investone	0-4 top soil 44-85 gray Warestone 4.20 grave fighous from 85-112 blue Linestone 20-44 big banders & holdon 112-138 gray Linestone	0-37 clay, glavel with boulders 37-225 Limestone	0-12 clay and boulders 12-81 brown limestone	0-8 brown gavel, stons 54-100 blue shale 8-86 whitelimestone 88-34 brown limestone
31/03/	MATEO	TYPE	П	A	Ц	п	IT	П	ħ	U.	T	Ц	A
LED:	EST	HRS.	_	1	6	12,	_	7	1,2	1	7	7	_
OMPI	NG T	G.P.M. HRS.	0	0	15	4	0	4	7	h	6	17	6
TE C	PUMPING TEST	DRAW- DOWN (FT.)	67	90	10		4	4	0	62	27	18	21
Q	STATIC	LEVEL (FT.)	5	12	80	15	20	76	77	52	28	01	5 100 94 4 21
		Pound (F)	85	62	35-	50	35	70-	4	- 8E		75	7
~			2	79	42	52/12 50	35	120	73h 70	138	225 140,	00	100
SYDENHAM		(IN)	40	4	6	4-	4	5	6	4	И	V	6
DEN	WELL	TYPE	or.	99	8	R.	DR.	OR.	8	8	8	8	Z.
-	E	TAO JIRO	04/69 DR.	(5/01	11/65 DR.	09/so DR.	58/82	03/74 DR.	02/65	12/60	08/74 DR.	09/61 DR.	04/13 DR.
(S): DERBY	0	טאוררבע	R. & S. WRIGHT	R. RS. WRIGHT	A. Loucks	R. & S. WRIGHT	R. R.S. WRIGHT 08/57 DR.	W. WRIGHT	R. & S. WRIGHT 02/65 DR.	R.& S. WRIGHT 12/60 DR.	W. WRICHT	D. WRIGHT	R. & S. WRIGHT
TOWNSHIP (S):		(VV)	V. FARROW	L. VANCE	A.KuHL	W. BEATON	M. JOHNSON	W. KING	C. BARFOOT	T. VOKES	S. STRALTON	M. HAMILTON	CASHWAY LUMBER
	ELEV.	(£	900	018	Sas	900	900	203	798	883	8%	932	915
>-		CON.	K	M	H	N	M	H	H	H	H	月	Į
GREY	OCATION	LoT	1+	=	_	M	4	6	0	0	0	4	9
	100	TWP	Δ	۵	Δ	0	0	0	0	۵	۵	S	S
COUNTY:	WELL		2839	752	780	781	787	4586	783	484	4815	2521	4132

	ER: K. LYON	REMARKS	stones tone stone	astone	stones 100-105 brown stone limestone tone			,	
	DATE COMPILED: 31/63/76 COMPILER: K. LYSN	LOG AND	0-4 topsoil and stones 4-14 grey limestone 14-98 while limestone	0-1 clay 1-35 white limestone 35-50 brown limestone	0-6 brown clay d stones 6-46 brown linestone 40-100 grey linestone				
	31/63/1	WATER TYPE	F	F	Ц				
	ILED:	EST HRS.	1	7	1/2				
SO	TOMP	PUMPING TEST DRAW G.P.M. HRS (FT.)	10	01	86				
COR	ATE 0	PUMPI DRAW- DOWN (FT.)	22	30	65				
- RE	۵	STAT. LEVE! (FT.)	00	4	10				
VELI		WATER FOUND (FT)	65-	4	89				
8		WELL DEPTH (FT.)	38	50	187				
H H		WELL OW.	4	6	h				
A M	HAY	WELL	DR.	DR.	8				
4	SYDENHAM	STAD OBJURO JANA	11/63	19/90	88/88				
SUMMARY OF WATER WELL RECORDS		DRILLER	R. & S. WRIGHT 11/63	D. WRIGHT	J. KEELING R. & S. WRICHT OS/65 DR.				
0)	TOWNSHIP (S):	OWNER	J. H.GREGOR	R. DOWNEY	J. KEELING				
		ELEV. (FT.)	910	917	930				
	γ	LON.	図	X	月				
	GREY	LOCATION IR LOT CON	+	0	0				
	تز	TWP.							
	COUNTY:	WELL NO.	2383	2536	2543				

APPENDIX B
CHEMICAL ANALYSES

CHEMICAL ANALYSES OF WATER

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

					38				
		Phenols	4			7	4	<1	
	1	[57] non[0.08	0.08		70.0	0.26	0.05	
	Phosphorus as P	Soluble	2.013			5.003	700.0	0.003	
	Phosp as Pi	LotoT	0.017 0.013			7.004	0.012	7.004	
	Z	StontiN	1.47	2.9		1.21 0.004 0.003	2.7	1.69 0.004 0.003	
	2n ns	ətintiN	0.007				0.001	0.004	
	Nitrogen	Total Kjeldahl	0.005 0.125 0.001			0.005 0.105 0.001	0.105	0.065	
	ナジス	Free dmmonia	0.005			0.005	<0.005 0.105	0.005	
	(+05)	Sulphatel	27.5	27.0		22.5	17	21.5	
	(17)	Chloride	54	+			11.5	4.0	
	(K)	MuisentoA	6.0	1.4		1.1	1.2	1.2	
	(DV) muibo2	1.9	23.2 16.0		14	4.6	2.1	
	(PM)	Magnesiun		23.2			120		
	(a)	Calcium (79			ht		
		PtibidauT		1.0			0.20		
		Apparent nolos		<5			45		
		Jel Ja Hq	7.43	7.53		2.46	7.50	7.66	
	97U	Conducta	530			515	550	510	
	(20)	Bicarbonati alkalinity (G							
	(£0),	Alkalinity ((278	258		254	258	246	
,	(<u>L</u> O) D)	Hardness	330	272		288	288	282	
		Date	26/11/75	09/02/76		26/11/75	17/02/76	26/11/75	
		Owner	V. Wilson	11		R. Farrow	W.G.Beckett	C Byers	
	noite	Identifica *number	Well	=		2	147	7	

* location is shown in Figure 1; < - Refers to less than.

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH) CHEMICAL ANALYSES OF WATER (CONT'D)

Petroleum						
) T						
30 T						
I C						
bno eninnol eningil						
(7) muimon d)	0.03		0.03		<0.03	
Мапда пе зе (Мп)	0.01		0.01		<0.01	
(b)muimba)	0.04		0.01		×0.01	
Nickel (Ni)	70.0		0.01		70.07	
(u)) naggo)	0.09		90.0		0.02	
(nZ) sniZ	4.4		75.		0.29	
read (Pb)	0.01		0.04		<0.01	
cop	2	7		3.8	77	
908						
(2sH) əbidqlu				< 0.02		
Flouride (F)				<0.4		
Date	26/11/75	09 02 76	26/11/75	17/02/76	26/11/75	
Owner	V.Wilson	11	R. Farrow .	W. 6. Beckett 17/02/76 <0.1 <0.02	C. Byers	
Identification *radmun	well	=	7	177	4	*

* location is shown in Figure 1; BOD - Biochemical oxygen demand; COD - Chemical oxygen demand; IC - Inorganic carbon; TOC - Total organic Carbon; TC-Total carbon; < - Refers to less than

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

-										
	Phenols	41			7		<1		47	
	Iron (Fe)	40.0		<0.05		0.32	a.66	0.3	0.40	
-0	Soluble			0.011	0.00 500.0 900.0		0.001			
Phos	LotoT	0.003		0.012 0.011	900.0		100.0 100.0			
2	StortiN	38.0 < 0.005 < 0.0075 < 0.001 0.69 0.003 0.002		4.8	05 17.00	0.73	0.33		0.68	
200	=	<0.001		900.0	0.007		0.001	0.007		
000	Kjeldahl "	<0.075		0.12	0.185		0.030 0.060 0.001 0.33			
+ Z	Sari ainonima	<0.005	54.	0.02	<0.005		0.030	0.015 0.045		
(+(Oc) stadglus	38.0			25.5	24.5	27.5	28	28.5	
	Chloride (CI	5.0		19.0	20.0	2.5	2.5	2.5	2.0	
()	Potassium (K	0.9			16-6 20.0 25.5 < 0.005 0.185 0.002	0.8	6.0	1.0	0.8	
	Sodium (Na)	2.2			9.6	2.0	1.9		1.8	
(6)	Magnesium(M	34.6			30.0			34	34	
	Calcium (a)	62			112				55	
	Utibida	0.25			0.40	2.1			2.8	
	Apparent nuclos	V2			4.5	757		157	×55	
	pH at lab.	7.67		7.2	7.29	7.70	7:71	49.7	7.64	han
9.	Conductanc	525			820		530		525	less than
(2	Bicarbonate alkalinity (CaCO								248	rsto
((5)	Alkalinity (GCC	239		250	356	258	262	303	248	c-Refersto
(60	Hardness (al	240		412	hoh	296	288		328	
	Date	17/02/76		06/03/75	18 02 76	20/10/75	26/11/75	08 12 75	03/02/76	in Figure
	Owner	J. Smith		I. Franklin	i II	E, Cameron	1	11	11	* location is shown in Figure 1;
Vo	Identification number*	Well		698	=	Thoh	Ξ	=	1	*

CHEMICAL ANALYSES OF WATER (CONT'D)

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

		 41		 			
Petroleum			N.D.				N.D.
) I			50				<i>∞</i>
207			4				24
I C			98				49
bnp eninnpl eningil			0				0
(1) muimon d)					<0.03		
Manganese(Mn)					0.2		
(b)muimba)					<0.01		
Nickel (Ni)					<0.07		
Copper (Cu)					0.01		
(nZ) sniZ					0.11		
read (Pb)					<0.04		
cop	<2		3.8		7.2	77	< Z
gog						1.1	
(2sH) Sbirdglus	<0.02		<0.02				<0.02
Flouride (F)	<0.1		<0.1				
Date	17/02/76 <0.1 <0.02	06/03/75	18/02/76 <0.1 <0.02	20/10/75	26/11/75	08/12/75	03/02/76
Owner	J. Smith	I. Franklin	I. Franklin	E. Cameron	E. Cameron	Į (Z
Identification *randmun	Well 5	869	648	1444	1 hbh	=	Ξ

* bootion is shown in Figure 1; BOD - Biochemical oxygen demand; CDD - Chemical oxygen demand; IC - Inorganic carbon; TOC - Total organic carbon; TOC - Total carbon; TC - Total carbon; N.D. - Not detected; < - Refers to less than.

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

				 4 2						
		Phenols	17		4	<1	77			Et-
		Iron (Fe)	0.38	0.57	0.43	0.73	0.70		6.1	2.64
	SULJOH	Soluble	900.0				400.0			0.001
	Phosphorus	Lotol	0.011 0.006		1,000		800.0			100.0
	Z	atontiN		<0.01	10.07	K.0.34	10.00		40.07	0.01
	กลร	9tintiN	100°C	\\	7,000		000		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.001
	noge	Total	0.075		0.025		0.065			2.125
	+:2	Grandonia	0.015 0.075 0.001 0.58		0.005 0.001 2.001 0.004 0.003		0.005 0.065 0.001 20.00 0.008 0.004			<0.001 0.125 <0.001 <0.01 0.001 <0.001 2.64
	(*05	Sulphate	28.5	30	33.5 (34.0	34.5		10	1.0
	(1)	Chloride (20	2.0	2.0	2.0	2.0		09	57
	(K)	Potassium	0.8	0.9	1.0	6.0	1.0		1.0	1.1
	(ol	N) muibol	2.0	2.0	2.0	1.9	2.0		∞ ∞ ∞	17.8
Ì	(6W)	Magnesium	36.0			35.2	36.0			
	(2	Calcium (C	62			56	12			
;		P+ibidnuT	3.2	5.1		6.0	7.9		(5	
		Apparent	10	52		75	TO		اما	
		pH at lab	7.66	7.71 < 5	7.56	7.63	7.65		7.67	7.89
	97I	Conductan	530		500	520	520			
	(20)	Bicarbonate alkalinity (CaC				263				
;	(_E 0)	Alkalinity (Ga	760	252	244	263	251		277	278
	(_E O) à	Hardness	794	288	7.48	300	288		320	324
		Date	92/40/90	20/10/75	26 11/75	03 08/76	92/40/90	20/10/75	22/10/75	29/10/75
		Owner	E. Cameron	N. Barber		11	ij	R. Ledinghom	Ξ	Ξ
	rion	Identificat number*	hell 4941	4427	=	=	Į.	+	H	=

* Location is shown in Figure 1; < Refers to less than.

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25° C; Phenols in parts per billion; and pH) CHEMICAL ANALYSES OF WATER (CONT'D)

				43							
	Petroleum					N.D.		N.D.		N.D.	-
) I					89					1
)OT					9					F
	IC					62					
	bno eninnol eningil		**			0					
	(1)muimond)				<0.03						- F
	Manganese(Mn)				40.0						-
	(b))muimbo)				<0.07						
	Nickel (Ni)				<0.07						100
	(u)) naggo)				<0.07						7
	(nZ) sniZ				0.25						
	read (Pb)				10.07						Oxugen demon
	cop	9.0			7>	77	17			24	
	908										BOD - Biochemical
	Sulphide (H2S)	<0.02				<0.0>	< 0.02			0.06	- Bioc
Contract of the last	(7) sbinuol7	< 0.1 < 0.02		co.1			40.4		I'D>		Bob
-	Date	92/40/90		20/10/75 <0.1	26/11/75	03/02/76	06/04/76 ~0.1 ~0.02	20/10/75	22/10/75	29/10/75	Figure 1:
	Owner	E. Cameron		N. Barber	-	=	45	R. Ledingham 20/10/75	ı:		* Location is shown in Figure 1.
	Identification * nadmun	well 4941		4427	=	=	Ic	Ē+	=	=	* 600

Carbon; TC-Total carbon; N.D. - Not detected; < - Refers to less than.

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

				44						
	Phenols			0.12			لم	2	47	4
	[57] non[1.36	1.26		1.40	2.32	0.65	97.0
horus	sldulo2							0.003	0.001	0.004
Phosphorus as Piphorus	LotoT							0.004	0.004	0.005
2	Nitrate				70.07			0.04	10.07	0.03
en as	StintiN				0.003				0.150 0.002 < 0.01 0.004 0.001	0.003
0000	Total Kjeldahl				0.005 0.155 0.003 <0.04				0.150	0.145
ナラ	Sar J Ammonia				0.005				0.04	0.005 0.145 0.003 0.03 0.005 0.001 0.76
(+OS)	Sulphatel				6.5			9.0	0	0.0
(17)	Chloride (376	09		53	53	53	53
(K)	Potassium				1.1			4.0	6.0	1.0
(al	1) muibo2				21.1			17.3	18.4	32.8 16.4
(PM)	Magnesium				32.8				32.4	32.8
(a	Calcium (85				49	757
	P tibidauT				11			56	5.6	2.6
	Apparent rolos				0			30	6	73
	.dol to Hq			7.64	7.82		7.60	7.65	7.56	4.57
azu	Conductai			069	720				089	665
(20)	Bicarbonate alkalinity (Cal								794	
(_E 0),	D) ptinilallA			087	7.85		383	273	794	275
(E(O) a)	Hardness			330	314		392	320	318	318
	Date	03/41/75	17/11/15	26 11 15	08/12/75	15/12/15	22/12/15	07/04/76	02/00/20	91/40/90
	Owner	R. Ledingham	ł	¥	=	7	2	Į	J	13
noita	Identifico number"	Well 7	Ξ	14	[]	=	=	=	=	11

* location is shown in Figure 1; < - Refers to less than.

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

CHEMICAL ANALYSES OF WATER (CONT'D)

		7	45							
Petroleum		N.D.		N.A.	(+)			N.D.		
) J								08		
SOT								18		
J I								79		
bnp eninnpl eningil								0		
Chromium(Cr)	< 0.02		0.03							
Manganese(Mn)	0.40		hh.0							
(b))muimba)	<0.07		K0.07							
Nickel (Ni)			0.04							
(n) naggo	<0.02 <0.01		40.01							
(nZ) sniZ	0.05		0.05							1
read (Pb)	<0.02		<0.01							-
cop			9.3	11		28	30	22	28	-
BOD				5.4						0 000
Sulphide (H ₂ S)								< 0.02	~0.02	C
Flouride (F)									~0.T	
Date	03/11/75	17/11/15	26/11/75	08/12/75	15/12/75	22/12/75	07/01/76	03/02/76	06/04/76 < 0.1 < 0.02	T 1
Owner	R. Ledingham 03/11/75	11	1	-		IJ))	11	-	マー・
Identification number *	Well 7	=	=	×	ت	=	ינ	=	=	*

carbon; TC-Total carbon; N.D. - Not detected; < - Refers to less than; (+) - Two petroleum Rydrocarbon components detected

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

				46							
	Phenols						22			41	
1	Iron (Fe)		3.35	2.24			4.91	2.7		4.45	
Phosphorus as Pi	Soluble			0.003			0.003				
Phose as Pi	LotoT			0.033			0.025 0.003				
Z	StontiN		10:07	4 0.0 A				0.03			
ก ดร	StintiN			0.200 0.001 6.033			0.001 40.01	0.003 < 0.04			
Nitrogen	Total			0.200				0.930			-
12	Free dmmonia			0.005			0.005 0.115	0.005			
(+OS)	Sulphatel		<0.5	< 0.5			2.0	40.5		2.0	
(17)	Chloride (34.5	35.0			27.0	33		36.5	
(K)	Muissatog		0.6	7.0			9.0	0.8		0.7	
(D)	1) muibol		415	28.0			29	34.5		42.5	
(FW)	Magnesium							94			
(p	Calcium (57.5			
	PtibidauT		42					30			
	Apparent nuclos		+					4			
	dol to Hq		J.71	7.87			7.73	7.84		7.65	
nce	Conducta						010	720			
(20)	Bicarbonatia alkalinity (a										
(² 0)	Alkalinity (307	3 (3			243	300		404	
(<u>L</u> O) D)	Hardness		360	348			326	370		372	
	Date		22/10/75	29/10/75	27/11/50	17/11/15	26/11/75	08/12/15	15/12/75	22/12/15	
	Owner		D.Williton E. Carman	И		Ŋ	¥	II	5	J.	
noite	Identifica number*	Well	2984	=	11	>	7	=	ST.	~	

* location is shown in Figure 1; +-Interference; < - Refers to less than.

CHEMICAL ANALYSES OF WATER (CONT'D)

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

			4 /						
Snodnocarbons			N.D.		ė		Ď.		
Petroleum			Ž		A		N.D.	(
) T									
207									
I C									
bnp eninnpl eningil									
(1) muimon d				< 0.05		40.03			
Мапда пе se(Mn)				0.05		10.0			
(b))muimbo)				0.01		CO.07			
Nickel (Ni)				<0.01		<0.01 <0.01			
(n)) naggo				0.01		40.01			
(nZ) sniZ				0.14		90.0			
read (Pb)				0.04		<0.01			
cop			251				189		253
908				000			715		
(2sH) əbi hqlu S									
(7) sbinuol7		Z-0.1							
Date		22/10/15 <0.1	29/10/75	03/11/15	17/11/15	26/11/75	08/11/75	15/12/75	22/12/75
Owner		D.Williton E.Carman		, ,	=	11	h	11	11
Identification * nadmun	Well 2	2981		=	z	Ξ	2	Į.	=

* bocation is shown in Figure 1; BOD - Biochemical oxygen demand; COD - Chemical oxygen demand; IC - Inorganic carbon; TOC - Total organic carbon; TC - Total carbon; N.D. - Not detected; < - Refers to less than; > - Refers to greater than; - Two petroleum Rydrocerbon

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

					10				
		Phenols		35	20	59	77	1 >	
		Iron (Fe)	3.2	2.9	1.90	5.0	<0.01	0.03	90.0
	SU-JOH	Soluble		0.005		700.0			
	Phospharus as P	LotoT		0.026		160.0	0.004 0.003	0.012 0.009	
	Z	Nitrate	< 0.01	0.04	10:0>	0.04	5.7	0.76 0	
	n as	StintiN	V		V	00.	<0.00.0×	007	1,004
	noge	Total Kjeldahl				0.230	.075 ×	0.045	0.020
	ナンフ	Lree ammonia				0.005 0.230 0.001 60.01 0.091 0.004 5.0	<0.005 0.075	0.005 0.045 0.001	K0.005 0.020 0.001
	(705)	Sulphate	2.0	1.5	3.0	1.0	0.0	38.0 0	37 K
	(1)	Chloride (33.5	33	23	54	4	4.0	ru.
	(K)	Muissatol		0.6	0.6	0.6	0.0	7.7	
	(al	N) muibol	36	33	21.6	87	2.0	2.0	
	(PM)1	Magnesium			43.5	52.5	31.8		36.8
	(a	Calcium (C	5.8		54	77	87		
		PtibidauT	39	37	22	49	0.20		
		Apparent	001	75	30	100	<5		C 57
		pH at lab.	7.6	7.74	17.71	7.57	7.44	7.64	7.96
	りても	Conductai			635	815	610	555	260
	(502)	Bicarbonate alkalinity (ad			289				
	(² 0)	Alkalinity (G	286	287	289	320	296	262	263
((an)	Hardness(336	304	312	392	332	310	
		Date	06/01/76	07/10/16	05/02/76	92/40/90	17/02/76	26/11/75	08/12/75
		Owner	D.Williton E.carman	1	2	-	WB.McKay	L. Williton	11
	noit	Identifica number*	Jell 2981	Z	2	=	00	697	=

* location is shown in Figure 1; <- Refers to less than

49

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH) CHEMICAL ANALYSES OF WATER (CONT'D)

			49					
Petroleum			M.D.					
DT			108					
30 T			54					
J I			7.5					
bnp eninnpl eninpil			4					
(hromium(r)						0.03		
Manganese(Mn)						0.01		
(b))muimbo)						0.07		
(iN) laysiN						0.07		
(n)) naggo						0.05		
(nZ) sniZ						60.0		
read (Pb)						0.01		
cop	227	214	103	345	23		< 2	
800							1.0	
(2sH) əbi hqlu S			0.15	70.07	70.0>			
(7) sbinuol7				<0.1 <0.02	7.0>			
Date	06/01/76	94/10/20	03/00/76	92/40/90	17/02/76 <0.1 <0.01	26/11/75	08/12/75	ı
Owner	D. Williton -	1	11	-	W.B. McKay	L.Williton	1)	
Identification * number	Jell 2981	=	Ξ	13	∞	269	=	*

* Location is shown in Figure 1; BOD - Biochemical oxygen demand; COD-Chemical oxygen demand; IC - Inorganic carbon; TOC - Total organic carbon; TOC - Total organic carbon; N.D. - Not detected; < - Refers to less than.

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

				50							
	Phenols	1 >	W				1>				
	Iron (Fe)	0.07	90.0		0.05	0.13	0.04	0.16	-0.01	0.01	
shortus .	sldulo2		400.0								
Phosphorus as P	LotoT		0.008				0.003 0.002				
Z	Nitrate	0.68	29.0			2.0	3.0			3.4	
en as	StintiN		<0.001					0.000	0.007	0.005	
0000	Total Kjeldahl		<0.005 0.045				0.025 0.004	0.005 0.015	0.005 0.015	31.5 0.005 0.025 0.005	
+ - 2	Free Sinommb						0.005	0.005		0.005	
(+0S)	Sulphate (38	37.5				37.5	31.5	31.5	31.5	
(1)	Chloride (3,5	4.0		4.0	5.57	12. FU	5.0	5.0	5.0	
(K)	Muissatog	1.3	1.1				2.0				
	1) muibol	2.9	1.8				3.0				
(6W)	Magnesium	37.2	37.5					31.4	30.8		
(0	Calcium (a	09	62								
	P+ibidauT	6.3	7.9		0.35	0,40				0.15	
	Apparent	67	5		25	15				757	
	dol to Hq	49.5	7.65		7.7	796	7.66	7.97	7.96	7.69	
	Conductar	550	550				2100	260	260		
(502)	Bicarbonate alkalinity (ad	251									
(₂ 0)	Alkalinity (G	151	259		245	256	253	258	259	757	
(500)	Hardness	316	306		294	286	312			300	
	Date	03/02/76	2/ 140/20		25/04/75	17/09/15	26/11/75	08/12/75	08/12/75	30/12/75	
	Owner	L.Williton	11		Lincoln Panc (Well #7:01 well	Catel with top.	н	sample taken et well	ic. Gates kitch. Amp.	Sample at well head	
noit	1dentifica	sell 697	=		2927	رد	I.	ت		=	,

* location is shown in Figure 1; < - Refers to less than

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

			2T						
Petroleum	N.D.								
ЭT	89								
DOT	01								
I C	58								
bno eninnol enineil	0								
Chromium(r)						<0.03			
Manganese(Mn)						10.0>			
(b))muimbo)						40.01			
Nickel (Ni)						<0.01			
Copper (Cu)						<0.01			
(nZ) sniZ						0.32			
read (Pb)						<0.07			
cop	22	17				7 7			
80D									
(2sH) ShidqluS	<0.02	c0.05							
Flouride (F)		co.4		<0.1	< 0.1				1.0>
Date	03/02/76	06/04/76 <0.1 <0.02		25/04/75 <0.1	17/09/75 <0.1	26/11/75	08/12/75	08 12 75	30/12/75
Owner	L.Williton	3		Lincoln Park (well #1;oldwell)					30/12/75 <0.1
Identification * number *	We 12 697	=		2766					

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

)				
	Phenols		<1	< 1	1	17		
1	Iron (Fe)	10.0		r0.07	~0.01	0.88	0.24	
no Pus	sldulo2		0.004 0.003 <0.01		0002 ~0.01	5.003		
Phosphorus as P	LotoT		0.004		0.003	9.00.6	0.005 0.004	
Z	Nitrate	3.30	3.70	2.7	2.80	0.01		
an as	Oitrite	0.005			h00°C		70.007	
nogen	Total	0.070			3.055	0.050 <0.001	0.05T	
ナン	Free	0.005 0.000 0.005 3.30			.0.005	0.010	0.035 0.055 < 0.001 < 0.01	
(+OS)	Sulphate (31.0	30.0	31.5	33.0 <0.005 0.055 0.004 2.80	24.5	21.5	
	Chloride (4.5	4.5	4.5	5.0	7.5	2.5	
(K)	Muissatog		1.9	<u>^</u>	1.8	8.0	1.0	
(p)	1) muibo2		3.0	3.1	2.6	2.5	4.4	
(5W)	Magnesium			32.0	34.0	31.0	27.4	•
(0	Calcium (a			99	89	47	42	
	P+ibidnuT	0.70	0.25	0.25	0.20	12	0.75	
	Apparent	75	<5	70	× 5	20	<5	
	dol to Hq	7.67	7.70	7.55	7.53	7.76	7.89	
971	Conductan			550	555	124	404	
(02)	Bicarbonate alkalinity (CaC			247				
(50)	Alkalinity (G	251	250	247	252	215	76	
(50)	Hardness	298	300	296	198	236	212	
	Date	30/12/75	27/10/10	03/02/76	94/16	17/02/76	17/02/76	
	Owner		Sample faken of C. Gutes Kitch. tof.	1	-	J. Butler	B. Haefling	
noit	Identificat number*	Well 2766	<u> </u>	Į.	Ξ	6	40	

* location is shown in Figure 1; < - Refers to less than.

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25° C; Phenols in parts per billion; and pH)

<u> </u>			33		 	 	
hydrocarbons							TOC - Total organic
Petroleum			N.D				otal o
ЭT			72				0C - 7d
SOT			20				
J I			52				ic carb
bno eninnot eningil			0				Inorganic carbon;
(1)muimond)							1C-1
Manganese(Mn)							mand;
(bJ)muimboJ							COD-Chemical oxygen demand;
Nickel (Ni)							mical ox
(u)) naggo)							D-Che
(nZ) sniZ							
read (Pb)							demar
cop		7.5	22	15	19.5	3.8	oxyger ed: <
908							nemical
Sulphide (H2S)			<0.02	20:05	<0.02	< 0.02	- Bioch
(7) sbinuol7	Z:0>		<0.1	< 0.1	< 0.1	0.1	Bob - 1.0.
Date	30/12/75 <0.1	07/20/70	03/02/76<0.1 <0.02	06/04/76 <0.1 <0.02	17/02/76 < 0.1 < 0.02	17/02/76 0.1 <0.02	Figure 1;
Owner		bates kitch. tap			J. Butler	B. Haefling	* Location is shown in Figure 1; BOD - Biochemical oxygen demand; Carbon: TC-Total carbon: N.D Not detacted:
Identification *	Well 2766	ت	1	2	6	10	* Loca

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

		 J4			 	
Phenols	4				4	
Inon (Fe)	6.44	0.24		0.03	0.02	
a sldulo2	2.004			0.007	0.006	
Soluble soluble	0.005			2003	100.0	
S stontiN	-0.01	0.029		1.05	1	
s etintiN	0.007			1000	-0.00 <u>1</u>	
Tree dimonia 17 00 10 10 10 10 10 10 10 10 10 10 10 10	.035			2.055	2.055	
Z Cammonia	0.010 0.035 < 0.001 0.001 0.005 0.004 0.44			<0.905 0.055 <0.001 1.05 0.003	<0.005 0.055 <0.001 0.17	
Sulphate (504)	20.5			37.0	27.5	
Chloride (CI)	1.5	23.5		6.4	2.0	
(X) muizzato9	6.0			2.0	0 80	
(aN) muibo2	2.8			2.6	1.2	
(pM)muizenpoM	31.0			36.8	29.4	•
Calcium (a)	hh			وو	79	
P+ibidnuT	2.5	2.7		0.30	0.35	
Apparent colour	5	45		< 5	<5 <5	
pH at lab.	7.82	7.93 < 5		7.59	7.68	
Conductance	428			570	484	
Bicarbonate alkalinity (GCOs)						
Alkalinity (GCO3)	208	216		768	240	
Hardness (GO)	737	280		312	268	
Date	17/02/16	17/09/75		17/02/76	17/02/76	
Owner	W. Vanlaar	7664 (well #2; new well)	-	C. Liverance 1	I.Sims 1	
	Well 5630	766A		11	12	

* location is shown in Figure 1, < - Refers to less than

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

Petroleum hydrocarbons							
JL							- J
20 T	-						- 1
I C							7000
bnp eninnpl eningil							
(7)muimond)							101
Manganese(Mn)							. 0000
(b))muimba)							COD - Chemical oxugen demond.
Nickel (Ni)							pical ox
Copper (Cu)							O-Cher
(nZ) sniZ							
read (Pb)							oxygen demand
COD	17			8		6:1	
BOD							BOD - Biochemical
Sulphide (H2S)	70.07			< 0.02	-	<0.02	- Bioch
Flouride (F)	<0.1 <0.02	1.0		1.0>		<0.1	Bob
Date	17/02/76	27/09/75		17/02/76 <0.1 <0.02		17/02/76 <0.1 <0.02	-1
Owner	W. Vanlaar	Lincoln Park (well#2; newwell) 17/09/75 .0.1	-	C.Liverance		I. Sims	* Location is shown in Figure 1;
Identification number*	Well 3630	17664		11		12	* 1000

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

			56							
	Phenols	17								
	Iron (Fe)	0.05	0.04			0.28	0.32	9.28		
horus	Soluble	0.003								
Phosphorus	10toT	0.004 0.003				0.029	0.040 0.015	0.027 0.006		
Z	Nitrate	1.87	1.47			0.61	09.0			
on as	StintiN	0.007				0.007		0.008		
9600	Total Kjeldahl					0.365	0.230	0.275		
1.2	Free ammonia	0.005 0.140				0.020 0.365 0.007 0.61 0.029 0.006	14.5 0.035 0.230 0.007	0.040 0.275 0.008 0.58		
(+05	Sulphate (20	27.0			14.0	14.5	17.0		
(10	Chloride ((17	02			6.5	7.0	7.0		
(K)	Potassium	2.0	7.6			1.0	1.0	1.4		
la)	N) muibo2	80.	3.6			4.1	1.7	4.5		
(5W)	Magnesium		35.8						•	
()	Calcium (C		29							
	P+ibidnuT		0.70							
	Apparent colour		<57							han.
	dol to Hq	7.59	7.63			8.34	8.20	8.75		7
ICE	Conductan	540				487	518	478		o les
(50)	Bicarbonate alkalinity (CaC									- Refers to less
(50)	Alkalinity (G	274	278			2.48	251	256		- Ref
(_e 0) a	Hardness	310	307			264	262	266		\
	Date	26/11/75	09/02/76			27/70/90	51/10/60	st/La/b0		in Figure
	Owner	Springs Inglis Falls Y spring	Sydenham Sportsmen prox	-	Sydennam River	11	11	=		* location is shown in Figure 1;
noit	Identificat number*	Springs	7		Syd	1	2	3		*

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

		 5 /						
Petroleum hydrocarbons Suspended					2.5	9.5	8.5	TOC - Total organic
27								5-Tota
30 T								on; T0
I C								Inorganic carbon;
bno eninnot eningil								Inorgan
(7)muimon4)	<0.03							1C-1
Manganese(Mn)	1							emand;
(b2)muimbo2	<0.01 <0.01							COD - Chemical oxygen demand;
Nickel (Ni)	<0.01 <0.01							emical o
Copper (Cu)	<0.01							OD-Ch
(nZ) sniZ	<0.01							
Lead (Pb)	<0.04							in demo
COD	< 2 > 2	3.9			∞	12	72	oxyge h
800					0.5	1.5	1.5	chemico
Sulphide (H2S)								- Bio
(7) Sbinuol7					Z-0.1	<0.1	<0.1	Bob
Date	26/11/75	09/02/76			09 07 75 -0.1	09/07/75/01	09/07/75 <0.1	Figure 1;
Owner	Inglis Falls Spring	Sydenham Sportsmenty	-	Sydenham River	11	1)	,	* location is shown in Figure 1; BOD - Biochemical oxygen demand
Identification number*	Springs Y	 2		Syd	-1	7	22	* 1000

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

			58				
	Phenols	17					
	Iron (Fe)	92.0					
SU-JOU	Soluble						
Phosphorus as Pi	LotoT	7.004					
Z	Nitrate	10.0					
n as	Mitrite	0.001					
Ni+00ge	Total	> 350.					
+12	Free ammonia	0.010 0.035 <0.001 < 0.01 0.004 0.002					
(+05)	Sulphate(42					
	Chloride (2.0					
(K)	Potassium	4.0					
(pl	N) muibol	2.0					
(6W)	Magnesium	37.8				•	
(0	Calcium (a	84					
	P+ibidnuT	7.7					
	Apparent colour	15					
	dol to Hq	7.65					than
927	Conductar	500					
(202)	Bicarbonate alkalinity (Cal						rs to
-	Alkalinity (G	235					-Refers to less
(500)	Hardness	276					V
	Date	92/ho/90					in Figure
	Owner	R. Lunau					* location is shown in Figure 1;
noit	Identifica number*	well 6					*

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

		59				
Petroleum						
ЭT						}
30 T						F
I C						
bnp eninnal eningil						
(1) muimond						
Manganese(Mn)						COD-Chemical actions done
(b2)muimbo2						- 200
Nickel (Ni)						- Columbia
(LO) naqqod						7000
(nZ) sniZ						
read (Pb)						oxugen demond.
COD	3.7					
BOD Supride (n2)	02					iochemic
Flouride (F) Sulphide(H ₂ S)	< 0.1 < 0.02					BOD - Biochemical
Date						-
Owner	R.Lunau					* Location is shown in Figure 1.
Identification *radmun	well					* 600

Chemical oxygen demand; IC - Inorganic carbon; IOC - Total organic carbon; TC-Total carbon; <- Refers to less than

CHEMICAL ANALYSES OF LEACHATE

(Constituents in milligrams per litre, except Apparent colour in Hazen units, Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

			60					
Phenols			1750	514	1025			7
Iron (Fe)	1500		, 014	5141,009	220 1025			
3 sldulo2	0.035	< 0.05	0.030	0.043		 		
Sold lotoT	2.5	5.0	2.15	1	1.80 0.037			
S stortiN			0.05	0.451 < 0.01 0.0	0.3			
a stintiN	7.60.0	0.300 < 0.10	0.443	0.451	0.145			
Tree dimonia N	100	tot	85.5	78.0	79.0			
Z Sundaman daman id	16	13	66.0	55.0				
(+DZ) stordqluZ	30	+		+	22.0 56.5			
Chloride (CI)	2500	006	995	1100	1125			
(X) muisento9	180	167.5	130	128	120			
(all) muibol	22.50	970	016	096	930			an
(pM)muizenpaM				(40	136		•	s than
Calcium (Ca)				480	700			to less
<u>y</u> tibidnuT				3250	1180			
Apparent rolos				+	6.50 3000			Refers
del to Hq	6.32		6.25	6.51	6.50			V
Conductance	10200	7800	7350	7150	0001		4	ence
Bicarbonate alkalinity (CaCOs)								-Interference
Alkalinity (GCO3)	1230		188	1740	2442			+ -Int
Hardness (GD)	1700		1720	1620	1460			·
Date	19/07/75	05/11/75	07/01/16	18/02/76	91/40/90			in Figure
Owner	Over Sound andfill-NE slove	11	l)	II	11			* Location is shown in Figure
Identification number*	Leachate 1	=	=	=	=			*

(Constituents in milligrams per litre, except Apparent colour in Hazen units; Turbidity in Formazin units; Conductance in micromhos/cm at 25°C; Phenols in parts per billion; and pH)

		- ₁	61				 	
sp?jor papuadsns	1169	3212	1102					nic
Petroleum				4				Inorganic carbon; TOC - Total organic
JT				2440				1 2 2 5 7
SOT				2280				on; T0
ΙC				09				ic carb
bno eninnoT eningil				200				norgan
(n)muimon4)		< 0.40						10-7
(nM) esen a gna M		23						emand;
(b))muimba)		0.15						Chemical oxygen demand;
Nickel (Ni)		070						mical 0)
(us) naggos		< 0.20						COD-Che
(nZ) sniZ		2.9						
Lead (Pb)		0.70						oxygen demand;
cop	19000	8620	4500 7430	7088	3701			oxyger
800	5100	0089	4500					BOD - Biochemical
Sulphide (H2S)				+	<0.03			- Broc
Flouride (F)				0.2	0.5			Bob -
Date	17/07/75	05/11/75	07/01/76	18/02/76	92/40/90			
Owner or source	owensound langfill NE 1105e))	11					* Location is shown in Figure 1;
Identification * namber *	Leachate	11	=	ĭ	-			*

APPENDIX C BACTERIOLOGICAL ANALYSES

BACTERIOLOGICAL ANALYSES OF WATER

	Sulphate									
	Ps eudomonas aerugino sa					0			-	
	Enterococcus		0		0	4>	2		0	
	Coliform bacteria	0	0		22	8	0			
)	Background	640	0		. 7	8	2		0	
	Fecal	0	0		9	h>	0		0	
	Date	11/06/75	26/11/75		26/11/75	6/01/76	26/11/75		17/02/75	
	Owner	Inglis Falls Afring			V. Wilson	- =	R. Farrow		W.G. Beckett 17/02/75	
	Identification number*	Spring			Well	=	7		2	

* Location is shown in Figure 1: <- Refers to less than

BACTERIOLOGICAL ANALYSES OF WATER (Results per 100 ml)

	Sulphate reducers					< 30				Absent	
	Ps eudomonas aerugino sa			`.		0					
	Enterococcus	0	0					0	0	0	
	Coliform bacteria	0	2	10	0			0	0		
	Background	ф	7.7.	380	. 0			0	0	0	,
	Fecal	0	0	0	0			0	0	0	
	Date	26/11/75	17/02/76	6/03/75	12/03/75	18/02/76		20/10/15	26/11/76	03 02 /76	
	Owner	C. Byers	J. Smith	I. Franklin 6/03/75	#	-		N. Barber	II	=	
	Identification *nsdmun	1	5	698	11	=		4427		=	

* location is shown in Figure 1; < - Refers to less than

BACTERIOLOGICAL ANALYSES OF WATER (Results per 100 ml)

	Sulphate	250			Fresent	009/7				Absent	
	Pseudomonas aeruginosa							0	0		
	Enterococcus			0	0	0		0	7,7	4	
(HIII) DOT ()	Coliform bacteria			0	0	0		0	47	. 0	
לוווי סבל ושל בי ומנישול	Background			96	0	0		90	800	0	
	Fecal			0	0	0		0	h >	0	
	Date	18/02/76		26/11/75	03/02/76	18/02/76		26/11/75	06/01/76	03/02/76	
	Owner	N.Barber		R. Ledingham 26/11/75	-	<u>.</u> 1		D.Williton-E.Carman 26/11/75	=) If	
	Identhication number*	well 4427			=	=		2981	=	=	

* Location is shown in Figure 1; < -. Refers to less than

BACTERIOLOGICAL ANALYSES OF WATER (Results per 100 ml)

								_		
	Sulphate reducers	110					Phesent	230		
	Ps eudomonas aerugino sa									
	Enterococcus			0		0	0			1
	Coliform bacteria			0		0	0			
	Background			0		0	0			
	Fecal			0		0	0			
	Date	18/02/76		17/02/75		26/11/76	03/02/76	92/20/81		
	Owner	D.Williton-E.Grman 18/02/76		W.B. McKay	-	L.Williton	-	ij		
	Identification *nadmun			8		647	=	Ξ		

* location is shown in Figure 1; < - Refers to less than

BACTERIOLOGICAL ANALYSES OF WATER (Results per 100 ml)

				,						
	Sulphate				Absent	<30				
	Pseudomonas aeruginosa				34					
	Enterococcus	h >	0	8	0			0		
	Coliform bacteria	0	0	0	0			0		
	Background	0	0	70	0			h		
	Fecal	0	0	0	0			0		4
	Date	52/40/21	51/00/11	26/11/75	03 02 46	18 02 (76		17/02/76		
	Owner	Linkoln Park (Well#1,010 Well	11	11	11	1)	-	J. Butlet		
	Identification *namber*	ی	=	=	=	-		0		

* Location is shown in Figure 1; <- Refers to less than

BACTERIOLOGICAL ANALYSES OF WATER (Results per 100 ml)

			 ,							
Con the control of th	Sulphate									
	Pseudomonas aeruginosa			54						
	Enterococcus	0		0		0		0		
	Coliform bacteria	0		0		0		7	-	
	Background	0		0		0		0		
	Fecal	0		0		0		0		
	Date	17/02/76		17/02/76		,17/09/75		17 02/76		
	Owner	W. Vanlaar		B. Hoefling	-	27664 Lincoln Park Well+2new 17/09/75		C.Liverance		
	Identification *nadmun	Well 3630		10		27664		14		

* Location is shown in Figure 1.

BACTERIOLOGICAL ANALYSES OF WATER

	Sulphate reducers					Aboent	30		
	Ps eudomonas aerugino sa			14					
	Enterococcus	0		0	0	4			
	Coliform bacteria	0		0	0	0			-
	Background	0		0	. 0	0			
	Fecal	0		0	0	0			
	Date	17/02/76		20/10/75	26 11/75	03/02/76	18 02 76		
	Owner	I. Sims		E. Cameron	ĭ		1)		
	Identification **nadmun	well 12		1464	Ξ	=	-		

* location is shown in Figure 1.

BACTERIOLOGICAL ANALYSES OF LEACHATE

		· · · · · · · · · · · · · · · · · · ·		 				
	Sulphate reducers	≥ 24,000						
	Pseudomonas aerugino sa							
	Enterococcus							
	Coliform		1					
	Background							
	Fecal							
	Date	18/02/15						
	Owner- location	Owen Sound Jani- tary landfill -NE Jope			·			
	Tdentification *nadmun	Leachate 1 pring						

* location is shown in Figure 1; = - Refers to greater than or equal to.

NOV 1 2 19761

Ont. Ministry of the Environment. Southwestern Region. Technical....

Impact of Owen Sound sanitary landfill on domestic water.....

I 1976 Copy I

DATE ISSUED TO

N.A.CHOWDHRY-APP.SCI.

SEP 3 1976 HAWKYARD. W.Q.

