Examen 2

21 de enero

$\vdash \cap$	ш	ınο
Щ	J WI	ıpu

Resuelve los siguientes problemas explicando con detalle tus respuestas

- 1. Supongamos que tenemos una recta en \mathbb{R}^2 definida en su forma vectorial como $\vec{r}=\langle 3-3k,5k\rangle$. Todos los puntos que están en esta recta experimentan una rotación de $\frac{\pi}{2}$ en el sentido inverso a las manecillas del reloj. Luego, experimentan una reflexión sobre el eje X y finalmente experimentan otra reflexión sobre el eje Y. Dá la ecuación (vectorial o funcional) de la recta que quedó después de aplicarle las tres transformaciones a la recta original.
- 2. Demuestra que si \mathbf{c} es un punto exterior (al círculo \mathcal{C} con centro P) entonces su recta a P bisecta sus dos tangentes a \mathcal{C} . Y además que las distancias a sus pies en \mathcal{C} (es decir, a los puntos de tangencia) son iguales.
- 3. Halla la ecuación del conjunto de puntos G que tienen la propiedad de que la suma de las distancias de cada punto $P\in G$ a los puntos (0,3) y (0,-3) vale $6\sqrt{3}$.
- 4. Demuestra que la ecuación

$$|d(\mathbf{x}, P) - d(\mathbf{x}, Q)| = 2a,$$

define,

- \circ la mediatriz de P y Q para a=0;
- $\circ~$ los rayos complementarios del segmento \overline{PQ} para a=c, y
- \circ el conjunto vacío para a>c.
- 5. Encuentra la transformación afín $f:\mathbb{R}
 ightarrow \mathbb{R}$ que cumple:

1.
$$f(2) = 5$$
 y $f(5) = 2$

2.
$$f(1) = -2 \text{ y } f(2) = 2$$

6. Demuestra, usando la fórmula, que la inversa de cualquier reflexión en \mathbb{R}^2 es ella misma.