Contrôle Continu. NOM, Prénom:

Consignes. Durée 30'. L'utilisation de tout document ou dispositif électronique est interdite. Vos réponses doivent être justifiées.

Exercice 1 On rappelle que: (i) $A \leftrightarrow B$ est une abréviation pour $(\neg A \lor B) \land (A \lor \neg B)$ et (ii) \equiv dénote l'équivalence logique. De suite une liste d'assertions, donnez une preuve de celles qui sont vraies et un contre-exemple pour celles qui sont fausses.

- 1. Une formule A est valide si et seulement si $\neg A \equiv \mathbf{0}$.
 - Solution 1. Vrai. A valide ssi pour tout $[\![A]\!]v=1$ ssi pour tout $[\![\neg A]\!]v=0$ ssi $\neg A\equiv \mathbf{0}$.
- 2. Une formule A est satisfaisable si et seulement si $\neg A \equiv 1$.
 - Solution 2. Faux. Par exemple 0 n'est pas satisfaisable mais $\neg 0 \equiv 1$.
- 3. L'opérateur \leftrightarrow est associatif, à savoir: $(x \leftrightarrow y) \leftrightarrow z \equiv x \leftrightarrow (y \leftrightarrow z)$
 - SOLUTION 3. Vrai. Vérification avec table de vérité (8 cas). Ou encore plus simple en utilisant 7 on remarque que dans \mathbb{Z}_2 on a (x+y+1)+z+1=x+(y+z+1)+1.
- 4. $\mathbf{0}$ est l'élément neutre pour \leftrightarrow , à savoir: $x \leftrightarrow \mathbf{0} \equiv x$.
 - Solution 4. Faux. Par exemple, $\mathbf{1} \leftrightarrow \mathbf{0} \equiv \mathbf{0}$. Plus en général, $x \leftrightarrow \mathbf{0} \equiv \neg x$.
- 5. L'opérateur \leftrightarrow est idempotent, à savoir: $(x \leftrightarrow x) \equiv x$.
 - Solution 5. Faux. On a $x \leftrightarrow x \equiv 1$.
- 6. La formule $x \leftrightarrow y$ définit une fonction $g: \mathbf{2}^2 \to \mathbf{2}$. On peut construire une formule DNF qui définit la fonction g et dont la taille est au plus 10.
 - Solution 6. Vrai. $(\neg x \land \neg y) \lor (x \land y)$ définit g est a taille 9.
- 7. Soit g la fonction de l'assertion précedente. On peut construire un polynôme multi-linéaire en deux variables sur \mathbb{Z}_2 qui définit la fonction g.
 - SOLUTION 7. Vrai. $((x+1)(y+1) + xy = xy + x + y + 1 + xy = x + y + 1) \mod 2$. On peut remarquer que $(x \leftrightarrow y) \equiv \neg (x \oplus y)$.
- 8. Toute fonction booléenne $f: \mathbf{2}^n \to \mathbf{2}, n \geq 1$, est définissable par une formule qui utilise les opérateurs $\mathbf{0}, \leftrightarrow et \land et n$ variables x_1, \ldots, x_n .
 - Solution 8. Vrai. $\neg A \equiv (A \leftrightarrow \mathbf{0})$ et on sait qu'avec \land et \neg on peut définir toutes les fonctions.
- 9. Toute fonction $f: \mathbf{2}^n \to \mathbf{2}$, $n \ge 1$ est définissable par une formule qui utilise les opérateurs $\mathbf{1}, \leftrightarrow et \land et n$ variables x_1, \ldots, x_n .
 - Solution 9. Faux. Les seules fonctions unaires qu'on peut définir sont la fonction identité et la fonctions constante 1. En effet:

$$(x \leftrightarrow x) \equiv (\mathbf{1} \leftrightarrow \mathbf{1}) \equiv \mathbf{1} \quad (x \leftrightarrow \mathbf{1}) \equiv (\mathbf{1} \leftrightarrow x) \equiv x$$

$$(\mathbf{1} \wedge \mathbf{1}) \equiv \mathbf{1} \quad (x \wedge x) \equiv (x \wedge \mathbf{1}) \equiv (\mathbf{1} \wedge x) \equiv x .$$