단순선형회귀분석

Park Beomjin¹

¹ University of Seoul

1 예제1: 발길이와 앞팔길이 데이터

- 발길이와 앞팔길이 데이터는 S 대학교 학생들 중 무작위로 남녀 각각 16명을 추출하여 조사한 자료로 발길이와 앞팔길이를 포함하고 있다. 단순선형회귀모형을 통해 두변수의 관계성을 분석해보자.
- 데이터 읽기

```
libname reg "C:\Users\User\Desktop\19학년도 회귀분석 및 실습\";

PROC IMPORT datafile = "C:\Users\User\Desktop\19학년도 회귀분석 및 실습\
Data\Week2 Data\aflength.csv" dbms = csv replace
out = reg.aflength;
getnames = yes;
LABEL foot = "발길이" forearm = "팔안쪽길이" gender = "성별";
RUN;
```

• 데이터의 요약정보 보기

```
PROC CONTENTS data = reg.aflength;
RUN;
```

데이터셋 이름	WORK.AFLENGTH	관측값	32
멤버 유형	DATA	변수	3
엔진	V9	인덱스	0
생성일	2019.03.11 19:29:46	관측값 길이	24
마지막 수정일	2019.03.11 19:29:46	삭제된 관측값	0
보호		압축여부	아니요
데이터셋 유형		정렬	아니요
레이블			
데이터 표현	WINDOWS_64		
인코딩	euc-kr Korean (EUC)		

	변수와 속성 리스트(오름차순)										
#	변수	유형	길이	출력형식	입력형식	레이블					
1	foot	숫자	8	BEST12.	BEST32.	발길이					
2	forearm	숫자	8	BEST12.	BEST32.	팔안쪽길이					
3	gender	문자	3	\$3.	\$3.	성별					

• 팔안쪽길이와 발길이의 산점도 확인하기

TITLE "팔안쪽길이와 발길이의 산점도";

PROC SGPLOT DATA = reg.aflength;
SCATTER X = forearm Y = foot; /* X, Y 변수의 산점도 작성 */
REG X = forearm Y = foot; /* 산점도에 추정회귀직선을 추가로 표시*/
RUN;

• 팔안쪽길이와 발길이에 대한 상관분석하기

PROC CORR data = reg.aflength FISHER(rho0 = 0); /* 상관관계분석 */
VAR foot; /* FISHER 옵션: 상관관계에 대한 검정과 신뢰구간을 계산한다*/
WITH forearm;
RUN;

							단순	통계	량					
		변	수	N	평	[균 표	준편차	합	최솟값	3	태댓값 레	미블		
		fo	rearm	32	240,906	525 16	6.62753	7709	201.00000	272.	00000 필	한쪽길이		
		fo	ot	32	241.187	750 17	7.75358	7718	200.00000	277.	00000 별	일이		
					Н				=, N = 32 A Prob > fo	rl				
						orearm 알만쪽길			0,989 <,00					
					I	다이슨 :	삼관통계	량 (I	피셔의 z 변형	타)				
													H0:Rhc	=Rho(
	조합 변수	N	표본 실	!관계	수 피	서의 z	편의 3	도정 성	삼관계수 추	정값	95%	신뢰한계	Rho0	p &
변수														

```
• 팔안쪽길이와 발길이에 대한 회귀분석하기
   - 반응변수 Y : 발길이
   - 설명변수 X : 팔안쪽길이
   - 모형 : Y = \beta_0 + \beta_1 X + \epsilon, \epsilon \sim N(0, \sigma^2)
• 최소제곱법을 직접 계산해 회귀계수 구하기
 proc means data = reg.aflength noprint;
         var foot forearm;
         output out = mean_set mean = /autoname;
 run;
 /*x, y 평균 구해서 저장하기
 데이터 가져와서 foot, forearm 두 변수에 대해 평균을 계산해서 mean_set에 저장
 이때, 이름은 autoname으로 자동 지정되게 */
 data aflength;
         if _n_ = 1 then set mean_set (drop = _freq_ _type_);
         set reg.aflength;
         diff_foot = foot - foot_mean;
         diff_forearm = forearm - forearm_mean;
         squ_diff_forearm = diff_forearm**2;
         pro_var = diff_foot*diff_forearm;
 run:
 /* mean_set과 example.aflength를 결합하여 한번에 계산하려고 사용한 코드
 mean\_set에서 \_freq\_와 \_type\_을 버리고 가져온 후 밑에 식들을 계산*/
 proc means data = aflength noprint;
         var pro_var squ_diff_forearm;
         output out = sum_set sum = /autoname;
 /*mean계산과 마찬가지로 sum 계산하기 위함*/
 data beta_set;
         if _n_ = 1 then set sum_set;
```

set mean_set;

```
beta_1 = pro_var_sum / squ_diff_forearm_sum;
beta_0 = foot_mean - beta_1*forearm_mean;
drop _type_ _freq_ pro_var_sum squ_diff_forearm_sum forearm_mean foot_mean;
run;
/*sum_set과 mean_set을 결합하여 beta1과 beta0만 저장할수 있게 만든다*/
```

• PROC REG 를 이용한 회귀분석 하기

PROC REG data = reg.aflength; /*잔차의 산점도 패널 출력*/
MODEL foot = forearm / R; /* 잔차분석을 위한 통계값을 출력하는 옵션 사용*/
RUN;

		An	aly	sis of V	aria	ance			
Sourc	e	DF		Sum of quares	5	Mean Square	F	Value	Pr > F
Model		1	949	98.22721	949	9498.22721 9.08826		045.11	<.0001
Error		30	27	72.64779					
Correc	cted Total	31	977	70.87500					
	Root MSE			3.01467				0.9721	
	Dependen	t Me	an	V - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	750 A	Adj R-S	q	0.9712	
	Coeff Var			1.249	93				
		Pa	ırar	neter Es	stim	ates			
Variable	Label	DF	1 500	aramete Estimat	1000	Standar Erro		t Value	Pr > t
Intercept	Intercept	1		-12.4192	20	7.8628	4	-1.58	0.1247
forearm	팔안쪽길이	1		1.0527	22	0.0325	6	32.33	<.0001

• 추정된 회귀모형을 통한 반응변수 Y의 평균 추정 값에 대한 신뢰구간 및 새로운 값에 대한 예측구간 구하기

```
PROC REG data = reg.aflength;
MODEL foot = forearm / CLM CLI;
RUN;
```

Output Statistics												
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	95% CI	_ Mean	95% CL	Predict	Residual				
	233	231.8117	0.6067	230.5726	233.0508	225,5315	238.0920	1.1883				
2	242	241.2862	0.5329	240.1978	242.3746	235,0339	247.5384	0.7138				
3	242	241.2862	0.5329	240.1978	242.3746	235,0339	247.5384	0.7138				
4	238	242,3389	0.5341	241.2481	243,4297	236,0862	248,5916	-4.3389				
5	246	243.3916	0.5373	242.2944	244.4889	237.1378	249.6454	2.6084				

2 예제2 : Quadratic 데이터

- Quadratic 데이터는 두 변수 Y, X에 대한 자료이다. 두 변수에 대해 단순선형회귀모 형을 적합하고 결과를 확인해보자.
 - 반응변수 Y: Y
 - 설명변수 X : X
 - 모형 : $Y = \beta_0 + \beta_1 X + \epsilon$, $\epsilon \sim N(0, \sigma^2)$
- 데이터 읽고 산점도 그리기

```
PROC IMPORT datafile = "C:\Users\User\Desktop\19학년도 회귀분석 및 실습\Data\Week2
out = quadratic;
getnames = yes;
RUN;

TITLE "Quadratic 데이터 산점도";
PROC SGPLOT DATA = quadratic;
SCATTER X = X Y = Y; /* X, Y 변수의 산점도 작성 */
```

• X와 Y 변수의 회귀분석을 진행한 후, aflength 데이터의 회귀분석 결과와 차이점이 무엇인지 탐색하기.

REG X = X Y = Y; /* 산점도에 추정회귀직선을 추가로 표시*/

```
PROC REG data = quadratic;
MODEL y = x;
RUN;
```

RUN;