Foundation of Cryptography, Lecture 7 Non-Interactive ZK and Proof of Knowledge

Iftach Haitner, Tel Aviv University

Tel Aviv University.

May 21, 2013

Part I

Non-Interactive Zero Knowledge

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

Proof: HW

To reduce interaction we relax the zero-knowledge requirement

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction we relax the zero-knowledge requirement
 - Witness Indistinguishability $\{\langle (P(w_x^1), V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_c \{\langle (P(w_x^2), V^*)(x) \rangle\}_{x \in \mathcal{L}},$ for any $\{w_x^1 \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$ and $\{w_x^2 \in R_{\mathcal{L}}(x)\}_{x \in \mathcal{L}}$

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction we relax the zero-knowledge requirement
 - $\begin{aligned} & \textbf{Witness Indistinguishability} \\ & \{ \langle (\mathsf{P}(w_x^1), \mathsf{V}^*)(x) \rangle \}_{x \in \mathcal{L}} \approx_{\scriptscriptstyle{\mathcal{C}}} \{ \langle (\mathsf{P}(w_x^2), \mathsf{V}^*)(x) \rangle \}_{x \in \mathcal{L}}, \\ & \text{for any } \{ w_x^1 \in R_{\mathcal{L}}(x) \}_{x \in \mathcal{L}} \text{ and } \{ w_x^2 \in R_{\mathcal{L}}(x) \}_{x \in \mathcal{L}} \end{aligned}$
 - Witness Hiding

Claim 1

Assume that $\mathcal{L} \subseteq \{0,1\}^*$ has a one-message \mathcal{ZK} proof (even computational), with standard completeness and soundness,^a then $\mathcal{L} \in \mathcal{BPP}$.

^aThat is, the completeness is $\frac{2}{3}$ and soundness error is $\frac{1}{3}$.

- To reduce interaction we relax the zero-knowledge requirement
 - $\begin{aligned} & \textbf{Witness Indistinguishability} \\ & \{ \langle (\mathsf{P}(w_x^1), \mathsf{V}^*)(x) \rangle \}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{ \langle (\mathsf{P}(w_x^2), \mathsf{V}^*)(x) \rangle \}_{x \in \mathcal{L}}, \\ & \text{for any } \{ w_x^1 \in R_{\mathcal{L}}(x) \}_{x \in \mathcal{L}} \text{ and } \{ w_x^2 \in R_{\mathcal{L}}(x) \}_{x \in \mathcal{L}} \end{aligned}$
 - Witness Hiding
 - 3 Non-interactive "zero knowledge"

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, where $w(x) \in R_{\mathcal{L}}(x)$ for any $x \in \mathcal{L}$ (w is an arbitrary function)
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$
- $\bullet \ \mathcal{ZK} \colon \exists \ \mathsf{PPTM} \ \mathsf{S} \ \text{ s.t. } \\ \{(x,c,\mathsf{P}(x,w(x),c))\}_{x\in\mathcal{L},c\leftarrow\{0,1\}^{\ell(|x|)}} \approx_c \{x,\mathsf{S}(x)\}_{x\in\mathcal{L}}$

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, where $w(x) \in R_{\mathcal{L}}(x)$ for any $x \in \mathcal{L}$ (w is an arbitrary function)
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$
- \mathcal{ZK} : $\exists \text{ PPTM S } \text{ s.t. } \{(x, c, P(x, w(x), c))\}_{x \in \mathcal{L}, c \leftarrow \{0,1\}^{\ell(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}$
- c common (random) reference string (CRS)

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P(x,w(x),c)) = 1] \ge 2/3$, where $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$ for any $x \in \mathcal{L}$ (w is an arbitrary function)
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$
- \mathcal{ZK} : $\exists \text{ PPTM S } \text{ s.t. } \{(x, c, P(x, w(x), c))\}_{x \in \mathcal{L}, c \leftarrow \{0,1\}^{\ell(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}$
- *c* common (random) reference string (CRS)
- CRS is chosen by the simulator

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P(x,w(x),c))=1] \geq 2/3$, where $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$ for any $x \in \mathcal{L}$ (w is an arbitrary function)
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$
- \mathcal{ZK} : $\exists \text{ PPTM S } \text{ s.t. } \{(x, c, P(x, w(x), c))\}_{x \in \mathcal{L}, c \leftarrow \{0,1\}^{\ell(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}$
- *c* common (random) reference string (CRS)
- CRS is chosen by the simulator
- What does the definition stand for?

Definition 2 (\mathcal{NIZK})

- Completeness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P(x,w(x),c))=1] \geq 2/3$, where $w(x) \in \mathcal{R}_{\mathcal{L}}(x)$ for any $x \in \mathcal{L}$ (w is an arbitrary function)
- Soundness: $\Pr_{c \leftarrow \{0,1\}^{\ell(|x|)}}[V(x,c,P^*(x,c))=1] \le 1/3$, for any P^* and $x \notin \mathcal{L}$
- \mathcal{ZK} : $\exists \text{ PPTM S } \text{ s.t. } \{(x, c, P(x, w(x), c))\}_{x \in \mathcal{L}, c \leftarrow \{0,1\}^{\ell(|x|)}} \approx_c \{x, S(x)\}_{x \in \mathcal{L}}$
- *c* common (random) reference string (CRS)
- CRS is chosen by the simulator
- What does the definition stand for?
- Amplification?

Section 1

NIZK in HBM

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

- Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I}
- Verifier only sees the bits in c^H that are indexed by \mathcal{I}
- Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

- Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I}
- Verifier only sees the bits in c^H that are indexed by $\mathcal I$
- Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H
- Soundness, completeness and ZK are naturally defined.

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

- Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I}
- ullet Verifier only sees the bits in c^H that are indexed by ${\mathcal I}$
- Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H
- Soundness, completeness and ZK are naturally defined.
- We give a \mathcal{NIZK} for \mathcal{HC} , Directed Graph Hamiltonicity, in the HBM, and then transfer it into a \mathcal{NIZK} for \mathcal{HC} in the standard model.

A CRS is chosen at random, but only the prover can see it. The prover chooses which bits to reveal as part of the proof.

Let c^H be the "hidden" CRS:

- Prover sees c^H , and outputs a proof π and a set of indices \mathcal{I}
- ullet Verifier only sees the bits in c^H that are indexed by ${\mathcal I}$
- Simulator outputs a proof π , a set of indices \mathcal{I} and a partially hidden CRS c^H
- Soundness, completeness and ZK are naturally defined.
- We give a NIZK for HC, Directed Graph Hamiltonicity, in the HBM, and then transfer it into a NIZK for HC in the standard model.
- $\bullet \ \, \text{The latter (standard model)} \,\, \mathcal{NIZK} \,\, \text{for} \,\, \mathcal{HC} \,\, \text{implies a} \,\, \mathcal{NIZK} \,\, \text{for all} \,\, \mathcal{NP} \,\,$

• Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1

- Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1
- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)

- Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1
- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)
- An $n^3 \times n^3$ Boolean matrix is useful: if it contains $n \times n$ Hamiltonian *generalized* sub-matrix, and all its other entries are zeros

- Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1
- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)
- An $n^3 \times n^3$ Boolean matrix is useful: if it contains $n \times n$ Hamiltonian *generalized* sub-matrix, and all its other entries are zeros

- Permutation matrix: an $n \times n$ Boolean matrix, where each row/column contains a single 1
- Hamiltonian matrix: an $n \times n$ adjacency matrix of a directed graph that consists of a single Hamiltonian cycle (note that this is also a permutation matrix)
- An $n^3 \times n^3$ Boolean matrix is useful: if it contains $n \times n$ Hamiltonian generalized sub-matrix, and all its other entries are zeros

Claim 3

Let T be a random $n^3 \times n^3$ Boolean matrix where each entry is 1 w.p n^{-5} . Then, $\Pr[T \text{ is useful}] \in \Omega(n^{-3/2})$.

• The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By extended Chernoff bound, T contains exactly n ones w.p. $\theta(1/\sqrt{n})$.

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By extended Chernoff bound, T contains exactly n ones w.p. $\theta(1/\sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 2 \cdot n^3 \cdot n^{-4} = 1 O(n^{-1})$, no raw or column of T contains more than a single one entry.

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By extended Chernoff bound, T contains exactly n ones w.p. $\theta(1/\sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 - 2 \cdot n^3 \cdot n^{-4} = 1 - O(n^{-1})$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1/\sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.

- The expected # of ones (entries) in T is $n^6 \cdot n^{-5} = n$.
- By extended Chernoff bound, T contains exactly n ones w.p. $\theta(1/\sqrt{n})$.
- Each row/colomn of T contain more than a single one entry with probability at most $\binom{n^3}{2} \cdot n^{-10} < n^{-4}$. Hence, wp at least $1 - 2 \cdot n^3 \cdot n^{-4} = 1 - O(n^{-1})$, no raw or column of T contains more than a single one entry.
- Hence, wp $\theta(1/\sqrt{n})$ the matrix T contains a permutation matrix and all its other entries are zero.
- A random permutation matrix forms a cycle wp 1/n (there are n! permutation matrices and (n-1)! of them form a cycle)

• Common input: a directed graph G = ([n], E)

- Common input: a directed graph G = ([n], E)
- we assume wlg. that n is a power of 2

- Common input: a directed graph G = ([n], E)
- we assume wlg. that n is a power of 2
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} ??

- Common input: a directed graph G = ([n], E)
- we assume wlg. that n is a power of 2
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} ??

- Common input: a directed graph G = ([n], E)
- we assume wlg. that n is a power of 2
- Common reference string T viewed as a $n^3 \times n^3$ Boolean matrix, where each entry is 1 w.p n^{-5} ??

Algorithm 4 (P)

Input: G and a cycle C in G. A CRS $T \in \{0, 1\}_{n^3 \times n^3}$

- If T not useful, set $\mathcal{I} = n^3 \times n^3$ (i.e., reveal all T) and $\phi = \bot$ Otherwise, let H be the (generalized) $n \times n$ sub-matrix containing the hamiltonian cycle in T.
- 2 Set $\mathcal{I} = T \setminus H$ (i.e., reveal the bits of T outside of H)
- **3** Choose $\phi \leftarrow \Pi_n$ s.t. *C* is mapped to the cycle in *H*
- 4 Add all the entries in H corresponding to non edges in G (with respect to ϕ) to \mathcal{I}

Algorithm 5 (V)

Input: a graph G, index set $\mathcal{I} \subseteq [n^3] \times [n^3]$, ordered set $\{T_i\}_{i \in \mathcal{I}}$ and a mapping ϕ

- Accept if all the bits of *T* are revealed and *T* is not useful. Otherwise,
- **②** Verify that $\exists n \times n$ submatrix $H \subseteq T$ with all entries in $T \setminus H$ are zeros.
- **3** Verify that $\phi \in \Pi_n$, and that all entries of H not corresponding to edges of G (according to ϕ) are zeros

Algorithm 5 (V)

Input: a graph G, index set $\mathcal{I} \subseteq [n^3] \times [n^3]$, ordered set $\{\mathcal{T}_i\}_{i \in \mathcal{I}}$ and a mapping ϕ

- Accept if all the bits of *T* are revealed and *T* is not useful. Otherwise,
- **2** Verify that $\exists n \times n$ submatrix $H \subseteq T$ with all entries in $T \setminus H$ are zeros.
- ③ Verify that $\phi \in \Pi_n$, and that all entries of H not corresponding to edges of G (according to ϕ) are zeros

Claim 6

The above protocol is a perfect \mathcal{NIZK} for \mathcal{HC} in the HBM, with perfect completeness and soundness error $1 - \Omega(n^{-3/2})$

Proving Claim 6

• Completeness: Clear

Proving Claim 6

- Completeness: Clear
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G. Hence, ϕ^{-1} maps the cycle in H to an Hamiltonian cycle in G

Proving Claim 6

- Completeness: Clear
- Soundness: Assume T is useful and V accepts. Then ϕ^{-1} maps the unrevealed "edges" of H to the edges of G. Hence, ϕ^{-1} maps the cycle in H to an Hamiltonian cycle in G
- Zero knowledge?

- Choose T at random (i.e., each entry is one wp n^{-5}).
- ② If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \bot$. Otherwise,
- Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T)
- 4 Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros
- lacktriangledown Add the entries in H corresponding to non edges in G to \mathcal{I}
- **6** Output $\pi = (T, \mathcal{I}, \phi)$

- Choose T at random (i.e., each entry is one wp n^{-5}).
- ② If T is not useful, set $\mathcal{I} = \mathbf{n}^3 \times \mathbf{n}^3$ and $\phi = \bot$. Otherwise,
- **3** Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T)
- Let φ ← Π_n. Replace all the entries of H not corresponding to edges of G (according to φ) with zeros
- **3** Add the entries in H corresponding to non edges in G to \mathcal{I}
- **1** Output $\pi = (T, \mathcal{I}, \phi)$
 - Perfect simulation for non useful T's.

- Choose T at random (i.e., each entry is one wp n^{-5}).
- ② If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \bot$. Otherwise,
- Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T)
- **1** Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros
- **3** Add the entries in H corresponding to non edges in G to \mathcal{I}
- **1** Output $\pi = (T, \mathcal{I}, \phi)$
 - Perfect simulation for non useful T's.
 - For useful T, the location of H is uniform in the real and simulated case.

- Choose T at random (i.e., each entry is one wp n^{-5}).
- ② If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \bot$. Otherwise,
- Set $\mathcal{I} = T \setminus H$ (where H is the hamiltonian sub-matrix in T)
- **1** Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros
- **3** Add the entries in H corresponding to non edges in G to \mathcal{I}
- **6** Output $\pi = (T, \mathcal{I}, \phi)$
- Perfect simulation for non useful T's.
- For useful T, the location of H is uniform in the real and simulated case.
- ϕ is a random element in Π_n in both (real and simulated) cases

- Choose T at random (i.e., each entry is one wp n^{-5}).
- ② If T is not useful, set $\mathcal{I} = n^3 \times n^3$ and $\phi = \bot$. Otherwise,
- **3** Set $\mathcal{I} = \mathcal{T} \setminus \mathcal{H}$ (where \mathcal{H} is the hamiltonian sub-matrix in \mathcal{T})
- **1** Let $\phi \leftarrow \Pi_n$. Replace all the entries of H not corresponding to edges of G (according to ϕ) with zeros
- **3** Add the entries in H corresponding to non edges in G to \mathcal{I}
- **6** Output $\pi = (T, \mathcal{I}, \phi)$
 - Perfect simulation for non useful T's.
- For useful T, the location of H is uniform in the real and simulated case.
- ϕ is a random element in Π_n in both (real and simulated) cases
- Hence, the simulation is perfect!

Section 2

From HBM to Standard NIZK

Trapdoor Permutations

Definition 8 (trapdoor permutations)

A triplet (G, f, Inv), where G is a PPTM, and f and Inv are polynomial-time computable functions, is a family of trapdoor permutation (TDP), if:

- On input 1^n , $G(1^n)$ outputs a pair (sk, pk).
- ② $f_{pk} = f(pk, \cdot)$ is a permutation over $\{0, 1\}^n$, for every $n \in \mathbb{N}$ and $pk \in \text{Supp}(G(1^n)_2)$.
- Inv $(sk, \cdot) \equiv f_{pk}^{-1}$ for every $(sk, pk) \in \text{Supp}(G(1^n))$
- **⑤** For any PPTM A, $\Pr_{x \leftarrow \{0,1\}^n, pk \leftarrow G(1^n)_2}[A(pk, x) = f_{pk}^{-1}(x)] = \text{neg}(n)$

Hardcore Predicates for Trapdoor Permutations

Definition 9 (hardcore predicates for TDP)

A polynomial-time computable $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of a TDP (G,f,Inv), if

$$\Pr_{e \leftarrow G(1^n)_2, x \leftarrow \{0,1\}^n} [P(e, f_e(x)) = b(x)] \le \frac{1}{2} + \text{neg}(n),$$

for any PPTM P.

Hardcore Predicates for Trapdoor Permutations

Definition 9 (hardcore predicates for TDP)

A polynomial-time computable $b: \{0,1\}^n \mapsto \{0,1\}$ is a hardcore predicate of a TDP (G, f, Inv), if

$$\Pr_{e \leftarrow \mathsf{G}(1^n)_2, x \leftarrow \{0,1\}^n} [\mathsf{P}(e, f_e(x)) = b(x)] \le \frac{1}{2} + \mathsf{neg}(n),$$

for any PPTM P.

Goldreich-Levin: any TDP has an hardcore predicate (ignoring padding issues)

In the following $n \in \mathbb{N}$ and all operations are modulo n.

 $\bullet \ \mathbb{Z}_n = [n] \text{ and } \mathbb{Z}_n^* = \{x \in [n] \colon \gcd(x,n) = 1\}$

- $\mathbb{Z}_n = [n] \text{ and } \mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in \mathcal{P}$)

- $\mathbb{Z}_n = [n] \text{ and } \mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- \bullet $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

```
In particular, (x^e)^d \equiv x \mod n, for every x \in \mathbb{Z}_n^*, where d \equiv e^{-1} \mod \phi(n)
```

- $\mathbb{Z}_n = [n] \text{ and } \mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- \bullet $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

```
In particular, (x^e)^d \equiv x \mod n, for every x \in \mathbb{Z}_n^*, where d \equiv e^{-1} \mod \phi(n)
```

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n] \text{ and } \mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- \bullet $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

Definition 10 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in \mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1} \bmod \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n] \text{ and } \mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- \bullet $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

Definition 10 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in\mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1}\ \mathrm{mod}\ \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

Factoring is easy \implies RSA is easy.

In the following $n \in \mathbb{N}$ and all operations are modulo n.

- $\mathbb{Z}_n = [n] \text{ and } \mathbb{Z}_n^* = \{x \in [n] : \gcd(x, n) = 1\}$
- \bullet $\phi(n) = |\mathbb{Z}_n^*|$ (equals (p-1)(q-1) for n = pq with $p, q \in \mathcal{P}$)
- For every $e \in \mathbb{Z}_{\phi(n)}^*$, the function $f(x) \equiv x^e$ is a permutation over \mathbb{Z}_n^* .

In particular, $(x^e)^d \equiv x \mod n$, for every $x \in \mathbb{Z}_n^*$, where $d \equiv e^{-1} \mod \phi(n)$

Definition 10 (RSA)

- G(p,q) sets pk=(n=pq,e) for some $e\in\mathbb{Z}_{\phi(n)}^*$, and $sk=(n,d\equiv e^{-1}\ \mathrm{mod}\ \phi(n))$
- $f(pk, x) = x^e \mod n$
- $Inv(sk, x) = x^d \mod n$

Factoring is easy \implies RSA is easy. Other direction?

• Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it.
 For simplicity we assume G(1ⁿ) chooses (sk, pk) as follows

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it.
 For simplicity we assume G(1ⁿ) chooses (sk, pk) as follows
 sk ← {0,1}ⁿ

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it. For simplicity we assume $G(1^n)$ chooses (sk, pk) as follows

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it. For simplicity we assume $G(1^n)$ chooses (sk, pk) as follows

- Let (P_H, V_H) be a HBM \mathcal{NIZK} for \mathcal{L} , and let $\ell(n)$ be the length of the CRS used for $x \in \{0, 1\}^n$.
- Let (G, f, Inv) be a TDP and let b be an hardcore bit for it. For simplicity we assume $G(1^n)$ chooses (sk, pk) as follows

where $PK: \{0,1\}^n \mapsto \{0,1\}^n$ is a polynomial-time computable function.

We construct a \mathcal{NIZK} (P, V) for \mathcal{L} , with the same completeness and "not too large" soundness error.

The protocol

Algorithm 11 (P)

Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRS $c = (c_1, \dots, c_{\ell}) \in \{0, 1\}^{n\ell}$, where n = |x| and $\ell = \ell(n)$.

- Choose $(sk, pk) \leftarrow G(sk)$ and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \dots, b(z_{\ell(n)} = f_{pk}^{-1}(c_{\ell})))$
- 2 Let $(\pi_H, \mathcal{I}) \leftarrow \mathsf{P}_H(x, w, c^H)$ and output $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$

The protocol

Algorithm 11 (P)

Input: $x \in \mathcal{L}$, $w \in R_{\mathcal{L}}(x)$ and CRS $c = (c_1, \dots, c_{\ell}) \in \{0, 1\}^{n\ell}$, where n = |x| and $\ell = \ell(n)$.

- Choose $(sk, pk) \leftarrow G(sk)$ and compute $c^H = (b(z_1 = f_{pk}^{-1}(c_1)), \dots, b(z_{\ell(n)} = f_{pk}^{-1}(c_{\ell})))$
- 2 Let $(\pi_H, \mathcal{I}) \leftarrow \mathsf{P}_H(x, w, c^H)$ and output $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$

Algorithm 12 (V)

Input: $x \in \mathcal{L}$, CRS $c = (c_1, \dots, c_\ell) \in \{0, 1\}^{np}$, and $(\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}})$, where n = |x| and $\ell = \ell(n)$.

- Verify that $pk \in \{0,1\}^n$ and that $f_{pk}(z_i) = c_i$ for every $i \in \mathcal{I}$
- 2 Return $V_H(x, \pi_H, \mathcal{I}, c^H)$, where $c_i^H = b(z_i)$ for every $i \in \mathcal{I}$.

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that *b* is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$).

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \dots, b(f_{pk}^{-1}(c_\ell))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^\ell$.

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \ldots, b(f_{pk}^{-1}(c_\ell))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^\ell$.

Completeness: clear

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \ldots, b(f_{pk}^{-1}(c_\ell))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^\ell$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of pk ∈ {0,1}ⁿ.

Assuming that (P_H, V_H) is a \mathcal{NIZK} for \mathcal{L} in the HBM with soundness error $2^{-n} \cdot \alpha$, then (P, V) is a \mathcal{NIZK} for \mathcal{L} with the same completeness, and soundness error α .

Proof: Assume for simplicity that b is unbiased (i.e., $\Pr[b(U_n) = 1] = \frac{1}{2}$). For every $pk \in \{0,1\}^n$: $\left(b(f_{pk}^{-1}(c_1)), \dots, b(f_{pk}^{-1}(c_\ell))\right)_{c \leftarrow \{0,1\}^{np}}$ is uniformly distributed in $\{0,1\}^\ell$.

- Completeness: clear
- Soundness: follows by a union bound over all possible choice of pk ∈ {0, 1}ⁿ.
- Zero knowledge:?

Proving zero knowledge

Algorithm 14 (S)

Input: $x \in \{0, 1\}^n$ of length n.

- Let $(\pi_H, \mathcal{I}, c^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - ▶ $pk \leftarrow G(U_n)$
 - ► Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - ▶ $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.

Proving zero knowledge

Algorithm 14 (S)

Input: $x \in \{0, 1\}^n$ of length n.

- Let $(\pi_H, \mathcal{I}, c^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - ▶ $pk \leftarrow G(U_n)$
 - ► Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - ▶ $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.
- Exists efficient M s.t. $M(S_H(x)) \equiv S(x)$ and $M(P_H(x, w_x)) \approx_c P(x, w_x)$

Proving zero knowledge

Algorithm 14 (S)

Input: $x \in \{0, 1\}^n$ of length n.

- Let $(\pi_H, \mathcal{I}, c^H) = S_H(x)$, where S_H is the simulator of (P_H, V_H)
- Output $(c, (\pi_H, \mathcal{I}, pk, \{z_i\}_{i \in \mathcal{I}}))$, where
 - ▶ $pk \leftarrow G(U_n)$
 - ► Each z_i is chosen at random in $\{0,1\}^n$ such that $b(z_i) = c_i^H$
 - ▶ $c_i = f_{pk}(z_i)$ for $i \in \mathcal{I}$, and a random value in $\{0,1\}^n$ otherwise.
- Exists efficient M s.t. $M(S_H(x)) \equiv S(x)$ and $M(P_H(x, w_x)) \approx_c P(x, w_x)$
- Distinguishing $P(x, w_x)$ from S(x) is hard

Section 3

Adaptive NIZK

x is chosen after the CRS.

x is chosen after the CRS.

• Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$

x is chosen after the CRS.

• Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$
- Soundness: $\forall f : \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$ $\mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}}[\mathsf{V}(f(c),c,\mathsf{P}^*(c)) = 1 \land f(c) \notin \mathcal{L}] \le 1/3$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$ $\mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}}[\mathsf{V}(f(c),c,\mathsf{P}^*(c)) = 1 \land f(c) \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto cl \cap \{0, 1\}^n$

$$\{(f(c), c, P(f(c), w(f(c)), c \leftarrow \{0, 1\}^{\ell(n)})\}_{n \in \mathbb{N}} \approx_c \{S^f(n)\}_{n \in \mathbb{N}}.$$

x is chosen after the CRS.

- Completeness: $\forall f : \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$ $\mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}}[\mathsf{V}(f(c),c,\mathsf{P}^*(c)) = 1 \land f(c) \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto cl \cap \{0, 1\}^n$

$$\{(f(c), c, \mathsf{P}(f(c), w(f(c)), c \leftarrow \{0, 1\}^{\ell(n)})\}_{n \in \mathbb{N}} \approx_c \{\mathsf{S}^f(n)\}_{n \in \mathbb{N}}.$$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$ $\mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}}[\mathsf{V}(f(c),c,\mathsf{P}^*(c)) = 1 \land f(c) \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto cl \cap \{0, 1\}^n$

$$\{(f(c), c, \mathsf{P}(f(c), w(f(c)), c \leftarrow \{0, 1\}^{\ell(n)})\}_{n \in \mathbb{N}} \approx_c \{\mathsf{S}^f(n)\}_{n \in \mathbb{N}}.$$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$ $\mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}}[\mathsf{V}(f(c),c,\mathsf{P}^*(c)) = 1 \land f(c) \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto cl \cap \{0, 1\}^n$

$$\{(f(c), c, \mathsf{P}(f(c), w(f(c)), c \leftarrow \{0, 1\}^{\ell(n)})\}_{n \in \mathbb{N}} \approx_c \{\mathsf{S}^f(n)\}_{n \in \mathbb{N}}.$$

- Output $(x, c, S_2(x, c, s))$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$ $\mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}}[\mathsf{V}(f(c),c,\mathsf{P}^*(c)) = 1 \land f(c) \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto cl \cap \{0, 1\}^n$

$$\{(f(c), c, \mathsf{P}(f(c), w(f(c)), c \leftarrow \{0, 1\}^{\ell(n)})\}_{n \in \mathbb{N}} \approx_c \{\mathsf{S}^f(n)\}_{n \in \mathbb{N}}.$$

- Output $(x, c, S_2(x, c, s))$

x is chosen after the CRS.

- Completeness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \mathcal{L} \cap \{0,1\}^n$: $\Pr_{c \leftarrow \{0,1\}^{\ell(n)}}[V(f(c),c,P(f(c),w(f(c)),c)) = 1] \ge 2/3$
- Soundness: $\forall f \colon \{0,1\}^{\ell(n)} \mapsto \{0,1\}^n \text{ and } \mathsf{P}^*$ $\mathsf{Pr}_{c \leftarrow \{0,1\}^{\ell(n)}}[\mathsf{V}(f(c),c,\mathsf{P}^*(c)) = 1 \land f(c) \notin \mathcal{L}] \le 1/3$
- \mathcal{ZK} : \exists pair of PPTM's (S_1, S_2) s.t. $\forall f : \{0, 1\}^{\ell(n)} \mapsto cl \cap \{0, 1\}^n$

$$\{(f(c), c, \mathsf{P}(f(c), w(f(c)), c \leftarrow \{0, 1\}^{\ell(n)})\}_{n \in \mathbb{N}} \approx_c \{\mathsf{S}^f(n)\}_{n \in \mathbb{N}}.$$

- Output $(x, c, S_2(x, c, s))$

• Adaptive completeness and soundness are easy to achieve from any non-adaptive \mathcal{NIZK} .

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.
- Not every \mathcal{NIZK} is adaptive (but the above protocol is).

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.
- Not every \mathcal{NIZK} is adaptive (but the above protocol is).

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.
- Not every \mathcal{NIZK} is adaptive (but the above protocol is).

Theorem 15

Assume TDP exist, then every \mathcal{NP} language has an adaptive \mathcal{NIZK} with perfect completeness and negligible soundness error.

- Adaptive completeness and soundness are easy to achieve from any non-adaptive NIZK.
- Not every \mathcal{NIZK} is adaptive (but the above protocol is).

Theorem 15

Assume TDP exist, then every \mathcal{NP} language has an adaptive \mathcal{NIZK} with perfect completeness and negligible soundness error.

In the following, when saying adaptive \mathcal{NIZK} , we mean negligible completeness and soundness error.

Section 4

Simulation Sound NIZK

Simulation Soundness

A \mathcal{NIZK} system (P,V) for \mathcal{L} has *(one-time) simulation soundness*, if \exists a pair of PPTM's $S = (S_1, S_2)$ satisfying the \mathcal{ZK} property of P with respect to \mathcal{L} , such that the following holds \forall pair of PPTM's (P_1^*, P_2^*) : let

Experiment 16 (Exp_{V,S,P^*}^n)

- **2** $(x,p) \leftarrow P_1^*(1^n,c)$

Simulation Soundness

A \mathcal{NIZK} system (P,V) for \mathcal{L} has *(one-time) simulation soundness*, if \exists a pair of PPTM's $S = (S_1, S_2)$ satisfying the \mathcal{ZK} property of P with respect to \mathcal{L} , such that the following holds \forall pair of PPTM's (P_1^*, P_2^*) : let

Experiment 16 (Exp_{V,S,P^*}^n)

- **2** $(x,p) \leftarrow P_1^*(1^n,c)$
- \bullet $\pi \leftarrow S_2(x, c, s)$

We require $\Pr[(r, x, \pi, x', \pi') \leftarrow \operatorname{Exp}_{V,S,P^*}^n : x' \notin \mathcal{L} \wedge V(x', \pi', c) = 1 \wedge (x', \pi') \neq (x, \pi)] = \operatorname{neg}(n).$

• Even for $x \notin \mathcal{L}$, hard to generate additional false proofs

- Even for $x \notin \mathcal{L}$, hard to generate additional false proofs
- Definition only considers efficient provers

- Even for $x \notin \mathcal{L}$, hard to generate additional false proofs
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive

- Even for $x \notin \mathcal{L}$, hard to generate additional false proofs
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive
- Adaptive NIZK guarantees weak type of simulation soundness

- Even for $x \notin \mathcal{L}$, hard to generate additional false proofs
- Definition only considers efficient provers
- (P, V) might be adaptive or non-adaptive
- Adaptive NIZK guarantees weak type of simulation soundness
- Does the adaptive NIZK we seen in class have simulation soundness?

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$ Ingredients:

Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)

We present a simulation sound \mathcal{NIZK} (P, V) for $\mathcal{L} \in \mathcal{NP}$ Ingredients:

Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)

- Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)
- Non-interactive, perfectly-binding commitment Com

- Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)
- Non-interactive, perfectly-binding commitment Com
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(s, r \leftarrow \{0, 1\}^{\ell(|s|)})\}_{s \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*}$

- Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)
- Non-interactive, perfectly-binding commitment Com
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(s, r \leftarrow \{0, 1\}^{\ell(|s|)})\}_{s \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*}$

- Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)
- Non-interactive, perfectly-binding commitment Com
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(s, r \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*}$ * implied by OWP (or TDP)
 - Negligible support: a random string is a valid commitment only with negligible probability.
 - * achieved from any commitment scheme by committing to the same value many times

- Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)
- Non-interactive, perfectly-binding commitment Com
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(s, r \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*}$ * implied by OWP (or TDP)
 - Negligible support: a random string is a valid commitment only with negligible probability.
 - * achieved from any commitment scheme by committing to the same value many times
- 3 Adaptive \mathcal{NIZK} (P_A, V_A) for $\mathcal{L}_A := \{(x, c, s) \colon x \in \mathcal{L} \lor \exists z \in \{0, 1\}^* \colon c = \mathsf{Com}(s, z)\}$

- Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)
- Non-interactive, perfectly-binding commitment Com
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(s, r \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*}$ * implied by OWP (or TDP)
 - Negligible support: a random string is a valid commitment only with negligible probability.
 - * achieved from any commitment scheme by committing to the same value many times
- 3 Adaptive \mathcal{NIZK} (P_A, V_A) for $\mathcal{L}_A := \{(x, c, s) \colon x \in \mathcal{L} \lor \exists z \in \{0, 1\}^* \colon c = \mathsf{Com}(s, z)\}$

- Strong signature scheme (Gen, Sign, Vrfy) (one time suffice)
- Non-interactive, perfectly-binding commitment Com
 - ▶ Pseudorandom range: for some $\ell \in \text{poly}$ $\{\text{Com}(s, r \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*} \approx_c \{u \leftarrow \{0, 1\}^{\ell(|s|)}\}_{s \in \{0, 1\}^*}$ * implied by OWP (or TDP)
 - Negligible support: a random string is a valid commitment only with negligible probability.
 - * achieved from any commitment scheme by committing to the same value many times
- **3** Adaptive \mathcal{NIZK} (P_A, V_A) for $\mathcal{L}_A := \{(x, c, s) : x \in \mathcal{L} \lor \exists z \in \{0, 1\}^* : c = \mathsf{Com}(s, z)\}$ *adaptive WI suffices

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and CRS $r = (r_1, r_2)$

- \bullet $\pi_A \leftarrow \mathsf{P}_A((x,r_1,vk),w,r_2)$
- $\circ \sigma \leftarrow \operatorname{Sign}_{sk}(x, \pi_A)$
- Output $\pi = (vk, \pi_A, \sigma)$

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in R_{\mathcal{L}}(x)$, and CRS $r = (r_1, r_2)$

- $\circ \sigma \leftarrow \operatorname{Sign}_{sk}(x, \pi_A)$

Algorithm 18 (V)

Input: $x \in \{0,1\}^*$, $\pi = (vk, \pi_A, \sigma)$ and a CRS $r = (r_1, r_2)$ Verify that $Vrfy_{vk}((x, \pi), \sigma) = 1$ and $V_A((x, r_1, vk), r_2, \pi_A) = 1$

Algorithm 17 (P)

Input: $x \in \mathcal{L}$ and $w \in \mathcal{R}_{\mathcal{L}}(x)$, and CRS $r = (r_1, r_2)$

- \bullet $\pi_A \leftarrow \mathsf{P}_A((x,r_1,vk),w,r_2)$
- $\circ \sigma \leftarrow \operatorname{Sign}_{sk}(x, \pi_A)$

Algorithm 18 (V)

Input: $x \in \{0, 1\}^*$, $\pi = (vk, \pi_A, \sigma)$ and a CRS $r = (r_1, r_2)$ Verify that $Vrfy_{vk}((x, \pi), \sigma) = 1$ and $V_A((x, r_1, vk), r_2, \pi_A) = 1$

Claim 19

The proof system (P, V) is an adaptive \mathcal{NIZK} for \mathcal{L} with one-time simulation soundness.

• Adaptive Completeness: Clear

- Adaptive Completeness: Clear
- Adaptive ZK:

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:

 - Output $(r = (r_1, r_2), s = (z, sk, vk))$, where r_2 is chosen uniformly at random

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n)$, $z \leftarrow \{0, 1\}^{\ell(n)}$ and $r_1 = \text{Com}(vk, z)$.
 - Output $(r = (r_1, r_2), s = (z, sk, vk))$, where r_2 is chosen uniformly at random
 - ► $S_2(x, r, s = (z, sk, vk))$:

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:

 - Output $(r = (r_1, r_2), s = (z, sk, vk))$, where r_2 is chosen uniformly at random
 - ► $S_2(x, r, s = (z, sk, vk))$:

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:

 - Output $(r = (r_1, r_2), s = (z, sk, vk))$, where r_2 is chosen uniformly at random
 - ► $S_2(x, r, s = (z, sk, vk))$:

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n), z \leftarrow \{0, 1\}^{\ell(n)}$ and $r_1 = \text{Com}(vk, z)$.
 - Output $(r = (r_1, r_2), s = (z, sk, vk))$, where r_2 is chosen uniformly at random
 - ► $S_2(x, r, s = (z, sk, vk))$:

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n), z \leftarrow \{0, 1\}^{\ell(n)}$ and $r_1 = \text{Com}(vk, z)$.
 - Output $(r = (r_1, r_2), s = (z, sk, vk))$, where r_2 is chosen uniformly at random
 - ► $S_2(x, r, s = (z, sk, vk))$:

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:

 - Output $(r = (r_1, r_2), s = (z, sk, vk))$, where r_2 is chosen uniformly at random
 - ► $S_2(x, r, s = (z, sk, vk))$:

 - 3 Output $\pi = (vk, \pi_A, \sigma)$

Proof follows by the adaptive WI of (P_A, V_A) and the pseudorandomness of Com

- Adaptive Completeness: Clear
- Adaptive ZK:
 - ► $S_1(1^n)$:
 - 1 Let $(sk, vk) \leftarrow \text{Gen}(1^n), z \leftarrow \{0, 1\}^{\ell(n)}$ and $r_1 = \text{Com}(vk, z)$.
 - Output $(r = (r_1, r_2), s = (z, sk, vk))$, where r_2 is chosen uniformly at random
 - ► $S_2(x, r, s = (z, sk, vk))$:

Proof follows by the adaptive WI of (P_A, V_A) and the pseudorandomness of Com

 Adaptive soundness: Implicit in the proof of simulation soundness, given below

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $r = (r_1, r_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $r = (r_1, r_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp_{V,S,P^*}^n .

Assuming $\operatorname{Vrfy}_{vk'}((x', \pi_A'), \sigma') = 1$, $x' \notin \mathcal{L}$ and $(x', \pi') \neq (x, \pi)$, then with save but negligible probability:

• vk' is not the signing key in π

Since r_2 was chosen at random by S_1 , the adaptive soundness of (P_A, V_A) yields that $\Pr[V_A(x_A', r_2, \pi_A') = 1] = \text{neg}(n)$.

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $r = (r_1, r_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp^n_{V,S,P^*} .

Assuming $\operatorname{Vrfy}_{vk'}((x', \pi_A'), \sigma') = 1$, $x' \notin \mathcal{L}$ and $(x', \pi') \neq (x, \pi)$, then with save but negligible probability:

- vk' is not the signing key in π
- $\nexists z \in \{0,1\}^*$ s.t. $r_1 = \text{Com}(vk',z)$

Since r_2 was chosen at random by S_1 , the adaptive soundness of (P_A, V_A) yields that $\Pr[V_A(x_A', r_2, \pi_A') = 1] = \text{neg}(n)$.

Let $P^* = (P_1^*, P_2^*)$ be a pair of PPTM's attacking the simulation soundness of (V, S) with respect to \mathcal{L} , and let $r = (r_1, r_2)$, x, π , x' and $\pi' = (vk', \pi'_A, \sigma')$ be the values generated by a random execution of Exp^n_{V,S,P^*} .

Assuming $\operatorname{Vrfy}_{vk'}((x', \pi_A'), \sigma') = 1$, $x' \notin \mathcal{L}$ and $(x', \pi') \neq (x, \pi)$, then with save but negligible probability:

- vk' is not the signing key in π
- $\nexists z \in \{0,1\}^*$ s.t. $r_1 = \text{Com}(vk',z)$
- $\bullet \ x'_{A} = (x', r_{1}, vk') \notin \mathcal{L}_{A}$

Since r_2 was chosen at random by S_1 , the adaptive soundness of (P_A, V_A) yields that $\Pr[V_A(x_A', r_2, \pi_A') = 1] = \text{neg}(n)$.

Part II

Proof of Knowledge

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in \mathcal{NP}$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in \mathcal{NP}$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P, V) be an interactive proof $\mathcal{L} \in \mathcal{NP}$. A probabilistic machine E is a knowledge extractor for (P, V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \text{s.t.} \ \forall x \in \mathcal{L}$ and deterministic algorithm P^* , $E^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x) - \eta(|x|)}$ and outputs $w \in R_{\mathcal{L}}(x)$, where $\delta(x) = \Pr[(P^*, V)(x) = 1]$.

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in \mathcal{NP}$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L} \in \mathcal{NP}$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \text{s.t.} \ \forall x \in \mathcal{L} \ \text{and deterministic algorithm } P^*, \ E^{P^*}(x) \ \text{runs in expected time bounded by } \frac{t(|x|)}{\delta(x) - \eta(|x|)} \ \text{and outputs } w \in R_{\mathcal{L}}(x), \ \text{where } \delta(x) = \Pr[(P^*,V)(x) = 1].$

If (P, V) is a proof of knowledge (with error η), is it has a knowledge extractor with such error.

A property of V

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in \mathcal{NP}$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L} \in \mathcal{NP}$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \text{s.t.} \ \forall x \in \mathcal{L} \ \text{and deterministic algorithm } P^*, \ E^{P^*}(x) \ \text{runs in expected time bounded by } \frac{t(|x|)}{\delta(x) - \eta(|x|)} \ \text{and outputs } w \in R_{\mathcal{L}}(x), \ \text{where } \delta(x) = \Pr[(P^*,V)(x) = 1].$

- A property of V
- Why do we need it?

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in \mathcal{NP}$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L} \in \mathcal{NP}$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \text{s.t.} \ \forall x \in \mathcal{L} \ \text{and deterministic algorithm } P^*, \ E^{P^*}(x) \ \text{runs in expected time bounded by } \frac{t(|x|)}{\delta(x) - \eta(|x|)} \ \text{and outputs } w \in R_{\mathcal{L}}(x), \ \text{where } \delta(x) = \Pr[(P^*,V)(x) = 1].$

- A property of V
- Why do we need it?

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in \mathcal{NP}$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L}\in\mathcal{NP}$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta\colon\mathbb{N}\mapsto\mathbb{R}$, if $\exists t\in\mathsf{poly}\ \mathrm{s.t.}\ \forall x\in\mathcal{L}$ and deterministic algorithm P^* , $\mathsf{E}^{P^*}(x)$ runs in expected time bounded by $\frac{t(|x|)}{\delta(x)-\eta(|x|)}$ and outputs $w\in R_{\mathcal{L}}(x)$, where $\delta(x)=\mathsf{Pr}[(P^*,V)(x)=1]$.

- A property of V
- Why do we need it? Proving that you know the password

The protocol (P, V) is a *proof of knowledge* for $\mathcal{L} \in \mathcal{NP}$, if P convinces V to accepts x, only if it "knows" $w \in R_{\mathcal{L}}(x)$.

Definition 20 (knowledge extractor)

Let (P,V) be an interactive proof $\mathcal{L} \in \mathcal{NP}$. A probabilistic machine E is a knowledge extractor for (P,V) and $R_{\mathcal{L}}$ with error $\eta \colon \mathbb{N} \mapsto \mathbb{R}$, if $\exists t \in \mathsf{poly} \ \text{s.t.} \ \forall x \in \mathcal{L} \ \text{and deterministic algorithm } P^*, \ E^{P^*}(x) \ \text{runs in expected time bounded by } \frac{t(|x|)}{\delta(x) - \eta(|x|)} \ \text{and outputs } w \in R_{\mathcal{L}}(x), \ \text{where } \delta(x) = \Pr[(P^*,V)(x) = 1].$

- A property of V
- Why do we need it? Proving that you know the password
- Relation to ZK.

Claim 21

The \mathcal{ZK} proof we've seen in class for \mathcal{GI} , has a knowledge extractor with error $\frac{1}{2}$.

Claim 21

The \mathcal{ZK} proof we've seen in class for \mathcal{GI} , has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 21

The \mathcal{ZK} proof we've seen in class for \mathcal{GI} , has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 22

The \mathcal{ZK} proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|E|}$.

Claim 21

The \mathcal{ZK} proof we've seen in class for \mathcal{GI} , has a knowledge extractor with error $\frac{1}{2}$.

Proof: ?

Claim 22

The \mathcal{ZK} proof we've seen in class for 3COL, has a knowledge extractor with error $\frac{1}{|E|}$.

Proof: ?