Exercises II.

Exercise 1.

Use the LPT algorithm to schedule $P2||C_{\text{max}}|$ problem with five tasks, where execution times are (3,3,2,2,2). Compare the resulting solution with an optimal one.

Exercise 2.

Solve Exercise 1 for three processors, n=7 and execution times (5,5,4,4,3,3,3).

Exercise 3.

Consider $P3|prec|C_{max}$ problem with n=9 tasks, where processing times are (3,2,2,2,4,4,4,4,9). Precedence constraints are given by the following graph:

We use list scheduling algorithm with a list sequence coincident with the tasks numbering.

- Find a schedule obtained by list scheduling.
- Increase the number of processors to 4.
- Decrease the processing times by 1.
- Remove the following precedence constraints: (z_4,z_5) and (z_4,z_6) .

Exercise 4.

Prove that the problem $1|r_j,C_j \le d_j|$ is NP-hard.

Exercise 5.

Show that the problem considered in Exercise 4 becomes polynomial-time solvable if p_j =1. Use a reduction to the problem of graph-matching.

Exercise 6.

Schedule $P3|p_j=1$, in-tree $|C_{max}|$ problem with precedence constraints given by the following graph:

