2119116s **佐野海徳**

HW51

巡回群 G の生成元を a,単位元を 1 で表す。G の部分群を H と書く。H の元はすべて生成元のべき $a^i(i\in\mathbb{Z})$ で書ける。a=1,つまり G が単位元だけでなる群のときは自明。また、H が単位元 1 のみからなる G の部分群であるとき、H は巡回群。 $a\neq 1$ として H は単位元 1 の他にも元を持つとすると、 $S=\{i\in\mathbb{Z}|i>0\&a^i\in H\}$ となる集合 S を考える。H についての仮定と $a^{-i}\in H\Leftrightarrow a^i\in H$ から $S\neq\emptyset$ がわかる。したがって S は最小元 m をもつ。このとき $H=<a^m>$ が成り立つ。このとき $a^m>\subseteq H$ は明らか。逆に $a^n(n\in\mathbb{Z})$ とする。 a^m で割ると a^m a^m