- TEOREMA DE LA BISECTRIZ
- TEOREMA DE MEDIATRIZ
- TEOREMA DE LA BASE MEDIA
- TEOREMA DE LA MEDIANA RELATIVA A LA HIPOTENUSA
- TRIÁNGULOS RECTÁNGULOS NOTABLES

TEOREMA DE LA BISECTRIZ:

 $\theta = \alpha$

Todo punto de la bisectriz de un ángulo equidista de los lados de dicho ángulos.

DEMOSTRACIÓN: a b = aOBSERVACIONES:

DEMOSTRAR QUE: a = b

En los triángulos rectángulos OAP y OBP, α es común y comparten la misma hipotenusa \overline{OP} :

 $m < OPA = m < OPB = 90^{\circ}-\alpha$

Entonces el $\triangle OAP \cong \triangle OBP$ (ALA) AP=PB=a a=bAO=OB=m

trazar

Generalmente cuando se tiene una bisectriz y desde un punto de ella hay una perpendicular, entonces se traza la otra perpendicular para aprovechar la igualdad de sus longitudes.

TEOREMA ADICIONALES:

DEMOSTRAR QUE:

$$X = a + b$$

• Como ABC es isósceles:

$$m < BAC = m < BCA = \alpha$$

 En los triángulos rectángulos ARP y PQC:

$$m < APR = m < CPQ = \theta$$

• Notamos \overline{PC} es bisectriz, trazamos perpendicular \overline{CS} a \overline{PS} .

• Por teorema de la bisectriz:

El □RHCS es rectángulo:

$$\therefore X = a + b$$

TEOREMA DE LA MEDIATRIZ:

Todo punto de la mediatriz equidista de los extremos del segmento.

Si $\stackrel{\leftrightarrow}{L}$ es mediatriz:

Se cumple:
$$a = b$$

SE OBSERVA: ΔAPB es isósceles

 \overline{PH} : ALTURA MEDIANA BISECTRIZ

DEMOSTRAR QUE:

a = b

- En los triángulos rectángulos AHP y BHP
- Como AH=HB=m y \overline{PH} es un cateto común.
- El \triangle AHP \cong \triangle BHP (LAL) m<APH = m<BPH = Θ AP=PB=a \therefore a = b

OBSERVACIONES:

ADMISION UNI 2020 - I

En un triángulo acutángulo ABC, se cumple que $m \angle ABC = 3m \angle ACB$. Si la mediatriz de \overline{BC} interseca a la prolongación de la bisectriz interior \overline{BM} en el punto P, entonces el mayor valor entero de la medida (en grados sexagesimales) del ángulo PCA es

A) 11

B) 12

C) 13

D) 14

E) 15

 $X=\theta$

 $X_{\max(z)}$ =14º

clave D

TEOREMA DE LA BASE MEDIA:

El segmento que tiene por extremos los puntos media de dos lados de un triángulo de denomina BASE MEDIA, el cual es igual a la mitad de la longitud del tercer lado y es paralelo a dicho lado.

Si \overline{MN} es base media:

<u>Se cumple</u>:

$$\overline{MN} // \overline{AC}$$

$$MN = \frac{AC}{2}$$

DEMOSTRACIÓN:

OBSERVACIÓN:

DEMOSTRAR QUE:

$$\overline{MN}$$
 // \overline{AC}

$$MN = \frac{AC}{2} \text{ ó } X=m$$

- Aprovechando BN=NC=b Trazamos \overline{CP} // \overline{AB}
- Entonces $\triangle PCN \cong \triangle MBN$ (ALA) NP=X y PC=a
- Por observación:

Como $\overline{CP}//\overline{AM}$ y AM=CP=a

- AMPC: Paralelogramo
 - $\therefore \overline{MN} // \overline{AC}$
- Además:

$$\therefore MN = \frac{AC}{2}$$

CASOS DE BASE MEDIA

EJEMPLO:

De la grafica, BM=MC, AN=NM. Si BN=12. calcule NH.

• Trazamos \overline{MP} // \overline{NH}

 \overline{HN} : base media del $\triangle APM$

MP=2X (Teo. Base media)

• Como \overline{MP} // \overline{BH}

 \overline{MP} : base media del Δ HBC

AB= 4X (Teo. Base media)

• Entonces:

BN=3X=12

∴X=4

TEOREMA DE LA MEDIANA RELATIVA A LA HIPOTENUSA:

En todo triángulo rectángulo, la longitud de la mediana relativa a la hipotenusa es igual a la mitad de la longitud de la hipotenusa.

Observaciones:

DEMOSTRAR QUE:

$$BM = \frac{AC}{2} \quad \acute{o}$$

$$X = a$$

• Como M es punto medio Trazamos \overline{MN} // \overline{AB}

MN: BASE MEDIA

BN=NC=m

m∢MNC=90º

Por observación:
 El ΔBMC es isósceles

EJEMPLOS:

Entonces cuando tenemos la longitud de la hipotenusa una opción es trazar la mediana relativa a la hipotenusa.

En el grafico, si DC=26. calcule AB

RESOLUCIÓN:

Nos piden AB=X

Dato:

• Como se tiene la longitud de la hipotenusa, trazamos \overline{BM} la mediana relativa a la hipotenusa

Por lo tanto el ABMC es isósceles

m∢MBC=θ

Por ángulos externo

m∢DMB=2θ

Entonces:

El Δ ABM es isósceles

∴X=13

TRIÁNGULOS RECTÁNGULOS NOTABLES

 Entonces el ⊿ARP es notables de 30º y 60º
 ∴X=30º