Abstract Algebra Summary

Xue Leyang

March 5, 2017

1 The System of Natural Number

1.1 Prosuct Set

Definition 1.1.1. The product set $S \times T$ ofteo arbitrary sets S and T is a set of pairs $(s,t), s \in S, t \in T$. In general $\prod S_i = S_1 \times S_2 \times \cdots \times S_r$ is the collection of r-tuples (s_1, s_2, \cdots, s_r) , where $s_i \in S_i$. If (s_1, s_2, \cdots, s_r) and $(s'_1, s'_2, \cdots, s'_r)$ are equal, we have $s_1 = s'_1, s_2 = s'_2, \cdots, s_r = s'_r$.

1.2 Mapping

Definition 1.2.1. A mapping α of set S onto set T if $\forall t \in T, \exists s \in S \Rightarrow \alpha(s) = t$, we also write the image of s in T as $s\alpha$ or s^{α} . The image set of S is denoted as $S\alpha$ or S^{α} .

If α is a one-to-one mapping, s is unique for every t, and we call a inverse mapping α^{-1} which is one-to-one of T onto S

Definition 1.2.2. Resultant or Product of mapping is denoted as $\alpha\beta$, where α maps set S onto set T and β maps set T onto set U. Mapping of S onto U can be written as $S(\alpha\beta) = (S\alpha)\beta$, and same for each element.

Remark. Mapping of a set into itself is called transformations.

Definition 1.2.3. Identity mapping, denoted $\mathbb{1}_S$, its product with any transformation α , $\mathbb{1}_S \alpha = \alpha = \alpha \mathbb{1}_S$

Theorem 1.2.1. If α is a one-to-one mapping of S onto T and has inverse α^{-1} , then $\alpha\alpha^{-1} = \mathbb{1}_S$ and $\alpha^{-1}\alpha = \mathbb{1}_T$. Conversely, if $\alpha: S \mapsto T$ and $\beta: T \mapsto S$ such that $\alpha\beta = \mathbb{1}_S$ and $\beta\alpha = \mathbb{1}_T$, then α, β are one-to-one mapping and $\beta = \alpha^{-1}$

1.3 Equivalence Relations

Definition 1.3.1. The equivalence relation \sim of a pair of element satisfies:

1. $a \sim a$ (reflective property).

- 2. $a \sim b \implies b \sim a$ (symmetric property)
- 3. $a \sim b$ and $b \sim c \implies a \sim c$ (transitive property)

Definition 1.3.2. An equivalence class

Theorem 1.3.1. Two equivalence classes are either identical or mutually exclusive

Proof. Suppose we have an equivalence class [a] of element a, if $b \in [a]$, then $[b] \subseteq [a]$; hence by maximality of [b], we conclude [b] = [a].

Corollary 1.3.1.1. The collection of distinct equivalence classes gives a decomposition of the set S into multually exculsive subsets. Conversely, suppose a set $S = \bigcup S_i$, where S_i are multually exclusive, we can define relation \mathcal{R} as $a \sim b \iff$ subsets S_i, S_j containing a, b are identical.

- 2 Groups
- 3 Rings
- 4 Fields