

Fused Gromov-Wasserstein barycenter with application on graphs

Zhichen Zeng 10/13

- Motivation
- Preliminaries
- Fused Gromov-Wasserstein barycenter
- Experiments
- Takeaways

- Motivation
- Preliminaries
- Fused Gromov-Wasserstein barycenter
- Experiments
- Takeaways

Motivation

- Networks are everywhere
 - Alignment (node-level)
 - Clustering (subgraph-level)
 - Comparison (graph-level)
- Distance measures at different levels are important

Motivation

- Common distance measures
 - Invalid in certain cases
 - Ignore underlying structure

KL divergence: $KL(P||Q) = \int p(x)log\frac{p(x)}{q(x)}dx$

JS divergence: $JS(P||Q) = \frac{1}{2}KL(P||\frac{P+Q}{2}) + \frac{1}{2}KL(Q||\frac{P+Q}{2})$

Total variation: $\frac{1}{2} \int |p(x) - q(x)| dx$

Hellinger distance: $\sqrt{\int (\sqrt{p(x)} - \sqrt{q(x)})^2 dx}$

 L_2 distance: $\int (p(x) - q(x))^2 dx$

 χ_2 distance: $\int \frac{(p(x)-q(x))}{q(x)} dx$

KL(p1,p2), KL(p1,p3): invalid JS(p1,p2), JS(p1,p3): invalid $\frac{1}{2} \int |p_1(x) - p_2(x)| dx = \frac{1}{2} \int |p_1(x) - p_3(x)| dx = 1$

Optimal transport and Wasserstein distance

- Motivation
- Preliminaries
 - Optimal transport and Wasserstein distance
 - Gromov-Wasserstein distance
 - Fused Gromov-Wasserstein distance
- Fused Gromov-Wasserstein barycenter
- Experiments
- Takeaways

- Optimal Transport
 - How to transport P(x) to Q(x) with minimum effort? $\min_{\boldsymbol{T}} \sum_{x \in \boldsymbol{P}, y \in \boldsymbol{Q}} \boldsymbol{T}(x, y) d(x, y)$

- Wasserstein distance
 - Given:
 - Two distribution density $P_1 \in \mathbb{R}^{n_1}$, $P_2 \in \mathbb{R}^{n_2}$
 - Attribute matrices $X_1 \in \mathbb{R}^{n_1 \times d}$, $X_2 \in \mathbb{R}^{n_2 \times d}$
 - A cross-cost matrix $C \in \mathbb{R}^{n_1 \times n_2}$ based on X_1 and X_2
 - Output:
 - The p-Wasserstein distance between P_1 and P_2 :

$$W_{p}(\boldsymbol{P_{1}},\boldsymbol{P_{2}}) = \left(\min_{\boldsymbol{T} \in \Pi(\boldsymbol{P_{1}},\boldsymbol{P_{2}})} \sum_{\substack{x \in \boldsymbol{P_{1}} \\ y \in \boldsymbol{P_{2}}}} \boldsymbol{C^{p}(x,y)} \boldsymbol{T}(x,y)\right)^{1/p}$$

$$\left(\sum_{x \in \boldsymbol{P_{1}}} \boldsymbol{T}(x,y) = \boldsymbol{P_{2}} \\ \sum_{y \in \boldsymbol{P_{2}}} \boldsymbol{T}(x,y) = \boldsymbol{P_{1}}\right)$$

Minimum effort of transporting P_1 to P_2 in terms of distance between samples

Gromov-Wasserstein

Distance L(x, y, x', y')

c(a, b)
Wasserstein Distance

- Given:

- Two distribution density ${\pmb P_1} \in \mathbb{R}^{n_1}$, ${\pmb P_2} \in \mathbb{R}^{n_2}$
- Two intra-cost matrices $C_{P_1} \in \mathbb{R}^{n_1 \times n_1}$, $C_{P_2} \in \mathbb{R}^{n_2 \times n_2}$

- Output:

• The p-GW distance between P_1 and P_2 :

$$\operatorname{GW}_{p}(\boldsymbol{P_{1}},\boldsymbol{P_{2}}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{P_{1}},\boldsymbol{P_{2}})} \left(\sum_{\substack{x_{i},x_{j} \in \boldsymbol{P_{1}} \\ y_{l},y_{m} \in \boldsymbol{P_{2}}}} \underbrace{\left(\boldsymbol{C_{P_{1}}}(x_{i},x_{j}) - \boldsymbol{C_{P_{2}}}(y_{l},y_{m})\right)^{p}} \boldsymbol{T}(x_{i},y_{l}) \boldsymbol{T}(x_{j},y_{m}) \right)^{1/p}$$

Similar pairwise relation across distributions

Minimum effort of transporting P_1 to P_2 in terms of distance between sample pairs

- Fused Gromov-Wasserstein (FGW) distance
 - Linear combination of W_p and GW_p

$$\begin{aligned} & \operatorname{FGW}_{p}(\boldsymbol{P_{1}}, \boldsymbol{P_{2}}) \\ &= \min_{\boldsymbol{T} \in \Pi(\boldsymbol{P_{1}}, \boldsymbol{P_{2}})} \left[\sum_{\substack{x_{i}, x_{j} \in \boldsymbol{P_{1}} \\ y_{l}, y_{m} \in \boldsymbol{P_{2}}}} \left((1 - \alpha) \boldsymbol{C}^{p}(x_{i}, y_{l}) + \alpha \left(\boldsymbol{C_{P_{1}}}(x_{i}, x_{j}) - \boldsymbol{C_{P_{2}}}(y_{l}, y_{m}) \right)^{p} \right) \boldsymbol{T}(x_{i}, y_{l}) \boldsymbol{T}(x_{j}, y_{m}) \right]^{1/p} \end{aligned}$$

- Special case: L_2 norm as cross-cost, p=2
 - $W_2^2(P_1, P_2) = \min_{T \in \Pi(P_1, P_2)} \langle C, T \rangle; C(x, y) = ||X_1(x) X_2(y)||_2^2$
 - $GW_2^2(P_1, P_2) = \min_{T \in \Pi(P_1, P_2)} \langle L, T \rangle; L = C_{P_1}^2 P_1 \mathbf{1}_{n_2}^T + \mathbf{1}_{n_1} P_2^T C_{P_2}^{2^T} 2C_{P_1} T C_{P_2}^T$
 - $\operatorname{FGW}_{2}^{2}(\boldsymbol{P}_{1}, \boldsymbol{P}_{2}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{P}_{1}, \boldsymbol{P}_{2})} \langle (1 \alpha)\boldsymbol{C} + \alpha \boldsymbol{L}, \boldsymbol{T} \rangle$

- Motivation
- Preliminaries
- Fused Gromov-Wasserstein barycenter
 - Problem definition
 - Optimization
- Experiments
- Takeaways

A distribution close to given distributions in terms of FGW distance

• Given:

- distribution density P_1, \dots, P_K
- weight for each distribution $\lambda_1, \dots, \lambda_K$
- intra-cost matrices C_{P_1} , ..., C_{P_K}
- Barycenter density $\mathbf{Q} \in \mathbb{R}^m$

• Output:

- Intra-cost matrix $\boldsymbol{C}_{\boldsymbol{Q}} \in \mathbb{R}^{m \times m}$
- Attribute matrix $X_0 \in \mathbb{R}^{m \times d}$

$$\operatorname{argmin}_{\boldsymbol{C_0},\boldsymbol{X_0}} \sum_{k=1}^{K} \lambda_k \operatorname{FGW}(\boldsymbol{P_k},\boldsymbol{Q})$$

 $= \operatorname{argmin}_{\boldsymbol{C_Q},\boldsymbol{X_Q}} \sum_{k=1}^K \lambda_k \min_{\boldsymbol{T_k} \in \Pi(\boldsymbol{P_k},\boldsymbol{Q})} \langle (1-\alpha)\boldsymbol{C}_k + \alpha \boldsymbol{L}_k, \boldsymbol{T}_k \rangle$

where
$$\begin{cases} \boldsymbol{C}_{k}(x,y) = \left\| \boldsymbol{X}_{\boldsymbol{P}_{k}}(x,:) - \boldsymbol{X}_{\boldsymbol{Q}}(y,:) \right\|_{2} \\ \boldsymbol{L}_{k} = \boldsymbol{C}_{\boldsymbol{P}_{k}}^{2} \boldsymbol{P}_{k} \boldsymbol{1}_{m}^{T} + \boldsymbol{1}_{n_{k}} \boldsymbol{Q}^{T} \boldsymbol{C}_{\boldsymbol{Q}}^{2^{T}} - 2\boldsymbol{C}_{\boldsymbol{P}_{k}} \boldsymbol{T}_{k} \boldsymbol{C}_{\boldsymbol{Q}}^{T} \end{cases}$$

- Block Coordinate Descent
 - Iteratively minimize w.r.t. T_k , X_0 , C_0
- Fix $oldsymbol{X}_{oldsymbol{Q}}^{(t-1)}$, $oldsymbol{C}_{oldsymbol{Q}}^{(t-1)}$; Optimize $oldsymbol{T}_{k}^{(t)}$
 - Observation: $oldsymbol{T}_1^{(t)}$, ..., $oldsymbol{T}_K^{(t)}$ are decoupled
 - Solve K problems respectively

$$T_k^{(t)} = \underset{T \in \Pi(P_k, Q)}{\operatorname{argmin}} \left\langle (1 - \alpha) C_k^{(t-1)} + \alpha L_k^{(t-1)}, T \right\rangle$$

where $\begin{cases} \boldsymbol{C}_{k}(x,y) = \left\| \boldsymbol{X}_{\boldsymbol{P}_{k}}(x,:) - \boldsymbol{X}_{\boldsymbol{Q}}(y,:) \right\|_{2} \\ \boldsymbol{L}_{k} = \boldsymbol{C}_{\boldsymbol{P}_{k}}^{2} \boldsymbol{P}_{k} \boldsymbol{1}_{m}^{T} + \boldsymbol{1}_{n_{k}} \boldsymbol{Q}^{T} \boldsymbol{C}_{\boldsymbol{O}}^{2^{T}} - 2\boldsymbol{C}_{\boldsymbol{P}_{k}} \boldsymbol{T}_{k} \boldsymbol{C}_{\boldsymbol{O}}^{T} \end{cases}$

- Sinkhorn algorithm for solution
 - Entropy regularization → strict convexity
 - Iterative matrix scaling → coupling constraint

- $|T_k\rangle$
- Fix $T_k^{(t)}$, $X_Q^{(t-1)}$; Optimize $C_Q^{(t)}$ where $\begin{cases} c_k(x,y) = \|X_{P_k}(x,z) X_Q(y,z)\|_2 \\ L_k = c_{P_k}^2 P_k \mathbf{1}_m^T + \mathbf{1}_{n_k} Q^T c_Q^{2^T} 2c_{P_k} T_k c_Q^T \end{cases}$
- $\begin{aligned} & \operatorname{argmin}_{\boldsymbol{C_Q},\boldsymbol{X_Q}} \sum\nolimits_{k=1}^K \lambda_k \, \min_{\boldsymbol{T_k} \in \Pi(\boldsymbol{P_K},\boldsymbol{Q})} \langle (1-\alpha)\boldsymbol{C}_k + \alpha \boldsymbol{L}_k, \boldsymbol{T}_k \rangle \\ & \text{where} \begin{cases} & \boldsymbol{C_k}(x,y) = \left\| \boldsymbol{X_{P_k}}(x,:) \boldsymbol{X_Q}(y,:) \right\|_2 \\ & \boldsymbol{L_k} = \boldsymbol{C_{P_k}^2} \boldsymbol{P_k} \boldsymbol{1}_m^T + \boldsymbol{1}_{n_k} \boldsymbol{Q}^T \boldsymbol{C_Q^T}^T 2\boldsymbol{C_{P_k}} \boldsymbol{T}_k \boldsymbol{C_Q^T} \end{aligned}$

$$\boldsymbol{C}_{\boldsymbol{Q}}^{(t)} = \underset{\boldsymbol{C}_{\boldsymbol{Q}}}{\operatorname{argmin}} \sum_{k=1}^{K} \lambda_{k} \left\langle \boldsymbol{1}_{n_{k}} \boldsymbol{Q}^{T} \boldsymbol{C}_{\boldsymbol{Q}}^{2^{T}} - 2 \boldsymbol{C}_{\boldsymbol{P}_{k}} \boldsymbol{T}_{k}^{(t)} \boldsymbol{C}_{\boldsymbol{Q}}^{T}, \boldsymbol{T}_{k}^{(t)} \right\rangle$$

- First-order optimality

$$\boldsymbol{C}_{\boldsymbol{Q}}^{(t)} = \frac{\sum_{k=1}^{K} \lambda_k \boldsymbol{T}_{\boldsymbol{k}}^{(t)^T} \boldsymbol{C}_{\boldsymbol{P}_{\boldsymbol{k}}} \boldsymbol{T}_{\boldsymbol{k}}^{(t)}}{\boldsymbol{Q} \boldsymbol{Q}^T}$$

Average of $\emph{\textbf{C}}_{\emph{\textbf{P}}_{\emph{\textbf{k}}}}$ based on $\lambda_{\emph{\textbf{k}}}$ and $\emph{\textbf{T}}_{\emph{\textbf{k}}}^{(t)}$

$$\left(\boldsymbol{T}_{k}^{(t)^{T}} \otimes \boldsymbol{T}_{k}^{(t)^{T}}\right) \operatorname{vec}\left(\boldsymbol{C}_{\boldsymbol{P}_{k}}\right)$$

row (i,j), column (l,m): $\pmb{T}_k^{(t)}(l,i)$ $\pmb{T}_k^{(t)}(m,j)$ Similarity between intra-relation $(l,m) \in \pmb{P}_k$ and $(i,j) \in \pmb{Q}$

• Fix $T_k^{(t)}$, $C_Q^{(t)}$; Optimize $X_Q^{(t)}$ where $\begin{cases} c_k(x,y) = \|X_{P_k}(x,z) - X_Q(y,z)\|_2 \\ L_k = c_{P_k}^2 P_k \mathbf{1}_m^T + \mathbf{1}_{n_k} Q^T c_Q^{T^T} - 2c_{P_k} T_k c_Q^T \end{cases}$

$$\operatorname{argmin}_{\boldsymbol{C_Q},\boldsymbol{X_Q}} \sum\nolimits_{k=1}^{M} \lambda_k \, \operatorname{min}_{\boldsymbol{T_k} \in \Pi(\boldsymbol{P_K},\boldsymbol{Q})} \langle (1-\alpha)\boldsymbol{C_k} + \alpha \boldsymbol{L_k}, \boldsymbol{T_k} \rangle$$

$$\operatorname{where} \begin{cases} \boldsymbol{C_k}(x,y) = \left\| \boldsymbol{X_{P_k}}(x,:) - \boldsymbol{X_Q}(y,:) \right\|_2 \\ \boldsymbol{L_k} = \boldsymbol{C_{P_k}^2} \boldsymbol{P_k} \boldsymbol{1_m^T} + \boldsymbol{1_{n_k}} \boldsymbol{Q^T} \boldsymbol{C_Q^{2^T}} - 2\boldsymbol{C_{P_k}} \boldsymbol{T_k} \boldsymbol{C_Q^T} \end{cases}$$

$$\begin{split} \boldsymbol{X}_{\boldsymbol{Q}}^{(t)} &= \operatorname{argmin}_{\boldsymbol{X}_{\boldsymbol{Q}}} \sum_{k=1}^{K} \lambda_{k} \left\langle \boldsymbol{C}_{\boldsymbol{k}}^{(t)}, \boldsymbol{T}_{\boldsymbol{k}}^{(t)} \right\rangle \\ \text{where } \boldsymbol{C}_{\boldsymbol{k}}^{(t)} &= \overline{\operatorname{diag} \left(\boldsymbol{X}_{\boldsymbol{k}} \boldsymbol{X}_{k}^{T} \right) \boldsymbol{1}_{m}^{T}} + \overline{\boldsymbol{1}_{n_{k}}} \operatorname{diag} \left(\boldsymbol{X}_{\boldsymbol{Q}}^{(t)} \boldsymbol{X}_{\boldsymbol{Q}}^{(t)^{T}} \right) - 2 \ \boldsymbol{X}_{\boldsymbol{k}} \boldsymbol{X}_{\boldsymbol{Q}}^{(t)^{T}} \\ & \operatorname{constant} & \boldsymbol{1}_{n_{k}} \boldsymbol{T}_{\boldsymbol{k}} = \boldsymbol{Q} \end{split}$$

$$X_{Q}^{(t)} = \operatorname{argmin}_{X_{Q}} \sum_{k=1}^{K} \lambda_{k} \left\| \operatorname{diag}\left(Q^{\frac{1}{2}}\right) X_{Q} - \operatorname{diag}\left(Q^{-\frac{1}{2}}\right) T_{k}^{(t)^{T}} X_{k} \right\|^{2}$$

$$X_{Q}^{(t)} = \operatorname{diag}(Q^{-1}) \sum_{k=1}^{K} \lambda_{k} T_{k}^{(t)^{T}} X_{k}$$

Average of node attribute X_k based on λ_k and $T_{\nu}^{(t)}$

Algorithm 1 FGW barycenter

Input distributions P_1, \ldots, P_K ; weight $\lambda_1, \ldots, \lambda_K$; intra-cost matrices $\mathbf{C}_{P_1}, \ldots, \mathbf{C}_{P_K}$; attribute matrices $\mathbf{X}_1, \ldots, \mathbf{X}_K$; barycenter distribution Q

Output intra-cost matrix C_Q ; attribute matrix X_Q

- 1: Initialize $\mathbf{T}_k^{(0)}, \mathbf{C}_{\boldsymbol{Q}}^{(0)}, \mathbf{X}_{\boldsymbol{Q}}^{(0)};$
- 2: **for** $t = 1, 2, \dots$ **do**
- 3: Update $\mathbf{T}_{k}^{(t)}$ based on $\mathbf{C}_{Q}^{(t-1)}, \mathbf{X}_{Q}^{(t-1)}$ via Sinkhorn algorithm.
- 4: Update intra-cost $\mathbf{C}_{\boldsymbol{Q}}^{(t)} = \frac{\sum_{k=1}^{K} \lambda_k \mathbf{T}_k^{(t)^T} \mathbf{C}_{\boldsymbol{P}_k} \mathbf{T}_k^{(t)}}{\mathbf{Q} \mathbf{Q}^T}$.
- 5: Update attribute matrix $\mathbf{X}_{Q}^{(t)} = \operatorname{diag}(\mathbf{Q}^{-1}) \sum_{k=1}^{K} \lambda_k \mathbf{T}_{k}^{(t)^T} \mathbf{X}_{k}$.
- 6: end for
- 7: return $\mathbf{T}_k, \mathbf{C}_{\boldsymbol{Q}}, \mathbf{X}_{\boldsymbol{Q}}$.

- Motivation
- Preliminaries
- Fused Gromov-Wasserstein barycenter
- Experiments
- Takeaways

Experiments

FGW barycenter for graphs

$$-G_1 = \{V_1, A_1, X_1\}, G_2 = \{V_2, A_2, X_2\}$$

$$-P_1 = \frac{\mathbf{1}_{|V_1|}}{|V_1|}, P_2 = \frac{\mathbf{1}_{|V_2|}}{|V_2|}$$

- Cross-cost $C: L_2$ norm between X_1, X_2
- Intra-cost C_{P_1} , C_{P_2} : adjacency matrices A_1 , A_2
- WD: node relation; attribute
- GWD: edge relation; structure

Experiments

Graph barycenter

Graph classification (FGW distance as SVM kernel)

Table 1. Average classification accuracy on the graph datasets with vector attributes.

Vector Attributes	BZR	COX2	CUNEIFORM	ENZYMES	PROTEIN	SYNTHETIC
FGW sp	85.12 \pm 4.15 *	$\textbf{77.23} \pm \textbf{4.86}$	$\textbf{76.67} \pm \textbf{7.04}$	71.00 ± 6.76	$\textbf{74.55} \pm \textbf{2.74}$	$\textbf{100.00} \pm \textbf{0.00}$
HOPPERK PROPAK	84.15 ± 5.26 79.51 ± 5.02	79.57 ± 3.46 77.66 ± 3.95	32.59 ± 8.73 12.59 ± 6.67	45.33 ± 4.00 71.67 \pm 5.63 *	71.96 ± 3.22 61.34 ± 4.38	$\begin{array}{c} 90.67 \pm 4.67 \\ 64.67 \pm 6.70 \end{array}$
PSCN k = 10 $PSCN k = 5$	$80.00 \pm 4.47 \\ 82.20 \pm 4.23$	71.70 ± 3.57 71.91 ± 3.40	25.19 ± 7.73 24.81 ± 7.23	$\begin{array}{c} 26.67 \pm 4.77 \\ 27.33 \pm 4.16 \end{array}$	67.95 ± 11.28 71.79 ± 3.39	$100.00 \pm 0.00 \\ 100.00 \pm 0.00$

Experiments

Clustering

- Motivation
- Preliminaries
- Fused Gromov-Wasserstein barycenter
- Experiments
- Takeaways

Takeaways

- Motivation
- Preliminaries
 - OT, WD, GWD, FGWD
- Fused Gromov-Wasserstein barycenter
 - Block coordinate descent
 - Optimize transport plan T_k : solve K optimal transport problems
 - Optimize intra-cost C_{o} : Average of C_{k} based on λ_{k} and T_{k}
 - Optimize attribute X_Q : Average of X_k based on λ_k and T_k
- Experiments
 - Graph barycenter
 - Graph classification
 - Graph clustering

References

- [1] Peyré, Gabriel, and Marco Cuturi. "Computational Optimal Transport." arXiv preprint arXiv:1803.00567 (2018).
- [2] Peyré, Gabriel, Marco Cuturi, and Justin Solomon. "Gromov-wasserstein averaging of kernel and distance matrices." International Conference on Machine Learning. PMLR, 2016.
- [3] Chen, Liqun, et al. "Graph optimal transport for cross-domain alignment." International Conference on Machine Learning. PMLR, 2020.
- [4] Vayer, Titouan, et al. "Fused gromov-wasserstein distance for structured objects." Algorithms 13.9 (2020): 212.
- [5] Cuturi, Marco. "Sinkhorn distances: Lightspeed computation of optimal transport." Advances in neural information processing systems 26 (2013).

Thanks for listening! Q&A

Zhichen Zeng 10/13

