1) Is 1729 a Carmichael number?

Ans: A composite integer in that satisfies the congruence bn-1=1 (mod in) for all positive integers b with gcd(b,in)=1 is called a carmichael number.

The integer 1729 is a carmichael number. To se

- -1991729 is composite, since 1729 = 7.13.19
- if gcd(b, 1729) = 1, then gcd(b, 7) = 1, then gcd(b, 7) = 1.
- Using Fermatis Little Theorem: $bb \equiv 1 \pmod{7}$, $b^{12} \equiv 1 \pmod{13}$, $b^{18} \equiv 1 \pmod{19}$;
- Then, $b^{1728} = (b^6)^{2.88} = 1^{288} \ge 1 \pmod{7}$ $b^{1728} = (b^{12})^{144} \ge 1 \pmod{13}$ $b^{1728} = (b^{12})^{144} \ge 1 \pmod{13}$ $b^{1728} = (b^{18})^{95} = 1 \pmod{19}$
- -It follows What BIRBEI (mod 1729) for all positive integers b with gcd (b, 1729)=1. Hence, 1729 is a carmichael number

2) Primitive Root (Generator) of 2*23?

Ans: To find a primitive root (generator) of 21/3, we seek an integer g such What:

{ g',g2,---, g p(23) } mod 23={1,2,---,22}

Since, 23 is prime, we know!

 $\phi(23) = 22$

we want! orde (9)= 22

That means $gk \not\equiv 1 \mod 23$ for any K(22, and) $g^{22} \equiv 1 \mod 23$

Test orders using prime factors of 22: factor 22 = 2.11

We test a candidate $g \in \{2,3,4,...,22\}$. For each 3 candidate, check: $-g^{22/2} \not\equiv 1 \mod 23$

- 9²²/11 \neq 1 mod 23

If both are true, g is a primitive root modulo 23'

letis try g=5: - 51 mod 23:

 $-5^{2} = 29 = 2$ $-5^{4}(5^{2})^{2} = 4$ $-5^{8} = 16$

-50 $6'' = 98.5^2$. $5^1 = 16.2.5 = 160 \mod 23$ -160 $\mod 23 = 160 - 6.23 = 160 - 138 = 72$; not 1 $-5^2 = 29 \mod 23 = 2$; $\neq 1$ So, $5'' \not\equiv 1 \mod 23$, $5^2 \not\equiv 1 \mod 23$ thus, 5 is a primitive root of = 223

3) W Is < Z11,+, *) a Ring?

Aist. The set ZII = {0,1,2,--,10} with operators to and . modulo 11, forms a ring because it satisfies the following or ring properties!

- a. Additive Abelian Group!
 (711,+) is closed, associative, has identify 0, inverses, and is commutative.
- b. Multiplication closure & Associativity:
 a * 6 mod 11 & 811
 is associative
- C. Distributive Laws!
 - a. (btc) z a. b+a.c mod 11 - (atb).c=a.c+b.c mod 11

4) Is $\langle 737, 4 \rangle$, $\langle 735, 1 \rangle$ are abelian group?

Ans: (737,+) is an abelian group because

- Closure: atb mod 37 € 737

- Associativity: inherited from integer addition

- Identity: 0

- Inverses: For every a, -a mod 37 € Z37

- Comutative: Tes

XZ39,X) is not an abelian group because.

- Zzz= {0,1,-..,343, but under multiplications only elements coprime to 35 have inverses.

-since 36 is not prime, not all at 735/803

have inverses.

- Enample: ged (9,35) = 5 > 5 is no inverse mod35

5) Let's take p=2 and n=3 that makes the GF(ph) = GF(23) then solve this concretly with polynomial arithmetic approach.

Ans: To solve GP(23) using the polynomial withmen approach, follow these concise steps:

1. setup field parameters:

All binary polynomials of degree 23:

{0,1,x,x+1, x2, x2+1, x2+x, x2+x+1}

2. Choose Irreducible polynomial

4 (n) = x3+x+1

field as ht/2 = h = (2) [n] / (n3+n+1)

3. Field construction?

- The power of of give nonzero elements!

 $\alpha^{0}.21, \alpha^{1}=\alpha, \alpha^{2}=\alpha^{2}, \alpha^{3}=\alpha +1, --$

- All GF(23) elements! 501/285 3

{0,1,0,02,03=011,24=02+d,05=02+0+1,06=02+1}

4. Example operation!

Let's compute (n+1) (x2+n) mod (n3+n+1)

- Multiply: (n+1) (n2+x) = n3+n2+n2+n2 43+n

- Reduce mod not not 1:

235 x+1= x3+x= (x+1)+x=1

50, (KH) (n2+x) = 1 mod (n3+n+1) and the demonstrations Bost 16 solve OFCES) using the

CONTRACTOR STATE STATE NAME OF THE PARTY OF