Statistik och Dataanalys I

Föreläsning 15 - Diskreta sannolikhetsmodeller

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Bernoulliförsök
- Geometrisk f\u00f6rdelning
- Binomialfördelning
- Poissonfördelning

Bernoulliförsök

Bernoulliförsök

- 1 Bara två möjliga utfall: lyckas/misslyckas.
- 2 Samma sannolikhet för lyckas, p, i alla försök.
- 3 Oberoende försök.
- Typexempel: **slantsingling**.
 - ► Lyckas = Krona, Misslyckas = Klave.
 - Sannolikhet p = 0.5 för schysst mynt.
 - Utfall på en singling beror inte på andra singlingar.
- Lyckas/Misslyckas är bara en benämning.
- Död/Levande. Hel/Trasig. Spam/Ham.
- \bigwedge Utan återläggning \Rightarrow inte samma p i olika försök:
 - $ightharpoonup P(1:a \text{ kortet } \spadesuit) = \frac{13}{52}$
 - $P(2:a \text{ kortet } \spadesuit) = \frac{12}{51} \text{ om } 1:a \spadesuit \text{ eller } \frac{13}{51} \text{ om } 1:a \heartsuit, \diamondsuit, \clubsuit.$

Bernoullifördelning

- Två möjliga utfall: lyckad/misslyckad. Binär variabel.
- \blacksquare Vi kan koda lyckat = 1, misslyckat = 0.

$$X = egin{cases} 1 & ext{om Bernoulli-försök lyckat} \ 0 & ext{om Bernoulli-försök misslyckat} \ P(X = x) = egin{cases} p & ext{för } x = 1 \ q & ext{för } x = 0 \end{cases}$$

■ Väntevärde och Varians

$$E(X) = \mu = \sum_{\text{alla } x} x \cdot P(x) = 0 \cdot P(X = 0) + 1 \cdot P(X = 1)$$

$$= 0 \cdot q + 1 \cdot p = p$$

$$Var(X) = \sum_{\text{alla } x} (x - \mu)^2 \cdot P(x) = (0 - p)^2 \cdot q + (1 - p)^2 \cdot p$$

$$= p^2 q + q^2 \cdot p = pq (p + q) = pq$$

Motivation - regression med binära y-variabler

- Bernoulli-fördelning med samma sannolikhet *p*.
- Spamdata: kan lära oss om p från data. $\hat{p} = 0.9$. 🙄
- Spam-filter: ska datorn skicka just detta mejl till Spam?
- SDAII: Logistisk regression där spam sannolikheten *p* beror på förklarande variabler, som i regression.

Geometrisk fördelning

- Email: **spam** eller **ham** (icke-spam).
 - ► P(spam) = p = 0.9
 - P(ham) = q = 1 p = 0.1
- Hur många mejl måste du öppna tills du får ditt första ham?

$$P(\text{f\"orsta ham på fj\"arde mejlet}) = \underbrace{\underbrace{0.9 \cdot 0.9 \cdot 0.9}_{3 \text{ spam}} \cdot \underbrace{0.1}_{\text{ham}}}_{\text{pam}} = 0.9^{3} \cdot 0.1 = 0.0729$$

 \blacksquare Vad är sannolikheten för x st mejl tills första ham?

$$P(\text{första ham på } x:\text{te mejlet}) = 0.9^{x-1} \cdot 0.1$$

Geometrisk slumpvariabel från Bernoulliförsök

X =antal försök *tills första lyckade* inträffar

■ Geometrisk fördelning

$$P(X = x) = q^{x-1}p, \quad \text{for } x = 0$$

X inkluderar försöket där du först lyckas.
Wikipedia kallar detta för för-första-gången-fördelning.

Statistik och Dataanalys I
ST1101

Geometrisk fördelning

Geometrisk fördelning i R

 $X \sim \text{Geom}(p = 0.4)$. Sannolikheten p kallas prob i R.

Beräkning	R kommando
P(X=2)	dgeom(x = 2, prob = 0.4)
$P(X \le 2)$	pgeom(q = 2, prob = 0.4)
Kvantil	qgeom(p = 0.3, prob = 0.4)
10 slumptal	rgeom(n = 10, prob 0.4)

R använder Wikipedias definition av geometrisk fördelning. X räknar antalet misslyckade försök innan första lyckade. Fix:

```
y = rgeom(n = 100, prob = 0.5) # y is number of trials BEFORE first success x = y + 1 # x is number of trials INCLUDING first success
```

Se programkoden Geometric.R på kurssidan.

Binomialfördelning

- Geometrisk fördelning:
 - ► Hur många Bernoulli-försök tills första lyckade?
 - Antal försök är slumpmässigt.
- Binomialfördelning:
 - ▶ Hur många lyckade i n Bernoulli-försök med sannolikhet p.
 - ▶ Antal försök n är förbestämt och fixerat.
 - Antal lyckade är slumpmässigt.
- Vi skriver $X \sim Bin(n, p)$ och säger:
- "X är binomialfördelad med parametrar n och p."
- Binomialvariabeln X är summan av n Bernoullivariabler

$$X = X_1 + X_2 + \ldots + X_n$$

Exempel: n = 3 försök med resultat:

 $X_1 = 1$ (Krona första), $X_2 = 1$ (Krona andra) och $X_3 = 0$ (Klave tredje).

$$X = 1 + 1 + 0 = 2$$
 st lyckade (Krona).

Binomialfördelning

Binomialfördelning - väntevärde

Väntevärde i en binomialfördelning? 😱

$$E(X) = \sum_{x=0}^{n} x \cdot P(x)$$

Väntevärde - summa av slumpvariabler.
$$E(X_1+X_2+\ldots,X_n)=E(X_1)+E(X_2)+\ldots+E(X_n)$$

- Väntevärde för varje Bernoulli-variabel: $E(X_i) = p$.
- **V**äntevärde för $X \sim \text{Bin}(n, p)$

$$E(X) = E(X_1) + E(X_2) + \ldots + E(X_n) = \underbrace{p + p + \ldots + p}_{n \text{ st}} = np$$

Binomialfördelning - varians

Varians i en binomialfördelning? 😱 😱 😱

$$E(X) = \sum_{x=0}^{n} (x - \mu)^{2} \cdot P(x)$$

Varians - summa av oberoende slumpvariabler.
$$V(X_1+X_2+\ldots,X_n)=Var(X_1)+Var(X_2)+\ldots+Var(X_n)$$

- Bernoulliförsök är oberoende. V
- Varians för varje Bernoulli-variabel: $Var(X_i) = pq$.
- **Varians för** $X \sim \text{Bin}(n, p)$

$$Var(X) = Var(X_1) + \ldots + Var(X_n) = \underbrace{pq + pq + \ldots + pq}_{n \text{ st}} = \underbrace{npq}_{n \text{ st}}$$

Binomialfördelning - interaktivt

Binomialfördelningens sannolikheter

- Om $X \sim \text{Bin}(n, p)$ vad är egentligen P(X = x)?
- Sannolikheten att få $\{1,1,0\}$ i n=3 försök?

$$p \cdot p \cdot q = p^2 q^1$$

Det finns dock **flera sätt att få** X = 2 i n = 3 försök:

1:a försök	2:a försök	3:e försök	Χ	P(X = x)
1	1	0	2	p^2q
1	0	1	2	p^2q
0	1	1	2	p^2q

- Eftersom dessa tre olika sätt att få X = 2 är disjunkta:
- På samma sätt

$$P(X = 0) = P(\{0, 0, 0\}) = 1 \cdot q^{3}$$

$$P(X = 1) = P(\{1, 0, 0\}, \{0, 1, 0\}, \{0, 0, 1\}) = 3 \cdot pq^{2}$$

$$P(X = 2) = P(\{1, 1, 0\}, \{1, 0, 1\}, \{0, 1, 1\}) = 3 \cdot p^{2}q$$

$$P(X = 3) = P(\{1, 1, 1\}) = 1 \cdot p^{3}$$

 $P(X=2)=3 \cdot p^2 a$

Binomialfördelningens sannolikheter

Sannolikhetsfördelning $X \sim \text{Bin}(3, p)$

	X	0	1	2	3	
Ī	P(x)	q^3	$3 \cdot pq^2$	$3 \cdot p^2 q$	p^3	

Kolla att summan av alla sannolikheter är ett:

$$q^3 + 3 \cdot pq^2 + 3 \cdot p^2q + p^3 = (p+q)^3 = 1^3 = 1$$

Allmänna fallet $X \sim \text{Bin}(n, p)$

$$P(X = x) = {}_{n}C_{x} \cdot p^{x}q^{n-x}$$

 $\square_n C_x$ är antalet sätt ordna x st 1:or bland n observationer.

Kombinationer och permutationer

Hur många sätt att välja k element bland n element?								
	med återläggning	utan återläggning						
med ordning	n ^k	$_{n}P_{k}=\frac{n!}{(n-k)!}$						
utan ordning	ej på kurs	$_{n}C_{k}=\frac{n!}{(n-k)!k!}$						

Approximera binomialfördelning med normal

lacksquare Om $X \sim \mathrm{Bin}(n,p)$ så

$$E(X) = \mu = np$$

och

$$Var(X) = \sigma^2 = npq$$

■ Normalapproximation av binomialfördelning

$$X \stackrel{\text{approx}}{\sim} N(np, npq)$$

Approximationen är tillräckligt bra om

$$\textit{np} \geq 10 \text{ och } \textit{nq} \geq 10$$

Man kan också gör en kontinuitetskorrektion som korrigerar för att vi approximerar en diskret fördelning (binomial) med en kontinuerlig (normal), see SDM-boken kapitel 15.5.

Normalapproximation av binomial - interaktivt

Poissonfördelning

- Poissonfördelningen är en fördelning för räknedata (antal).
- lacksquare Om $X \sim \mathrm{Poisson}(\lambda)$ så

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!},$$
 för $x = 0, 1, 2, ...$

Poisson har samma väntevärde och varians:

$$E(X) = \lambda$$
$$Var(X) = \lambda$$

- Exempel:
 - antal buggar i en mjukvara
 - ▶ antal bud i en eBay auktion
 - antal besök till läkaren

Poissonfördelning - interaktivt

Poissonfördelning för antal bud på eBay

- Data från 1000 eBay-auktioner av samlarmynt.
- nBids är antalet budgivare i en given auktion.
- Olika värdefulla och olika reservationspris (lägsta pris).
- Fokus här på de 550 observationer med lägst reservationspris.
- Modell för nBids: $X_1, \ldots, X_n \stackrel{\text{ober}}{\sim} \operatorname{Pois}(\lambda)$.

		nBids	PowerSeller	VerifyID	Sealed	Minblem	MajBlem	LargNeg	LogBook	MinBidShare	Sold	low_res_price
	1	2	0	0	0	0	0	0	-0.224	-0.209	True	low
	2	6	1	0	0	0	0	0	0.607	-0.348	True	low
	3	1	1	0	0	0	0	0	0.033	0.442	True	high
	4	1	0	0	0	1	0	0	0.376	0.144	True	high
	5	4	0	0	0	0	0	1	1.435	-0.41	True	low
	6	2	0	0	0	0	0	0	-0.914	0.632	True	high
	7	2	0	0	0	1	0	0	-0.248	0.295	True	high
	8	2	0	0	0	0	0	0	-0.914	0.632	True	high
	9	2	1	0	0	0	0	0	0.511	0.055	True	high
	10	6	0	0	1	0	0	0	-0.362	0.025	True	high
_	11	n	1	0	n	n	n	n	-n 224	0 477	False	hinh

Wegmann, B. och Villani, M. (2011). Bayesian Inference in Structural Second-Price Common Value Auctions with Bertil Wegmann, *Journal of Business and Economic Statistics*

Punktskattning av modellparametrar

- Modell för nBids: $X_1, \ldots, X_n \stackrel{\text{ober}}{\sim} \operatorname{Pois}(\lambda)$.
- Hur väljer vi parametern λ ? Punktskattning. Estimat. $\hat{\lambda}$.
- **Momentmetoden**: Eftersom $E(X) = \lambda$ så är $\hat{\lambda} = \bar{x}$ rimligt.
- Maximum likelihood: välj det λ som maximerar sannolikheten för datamaterialet. 2
- Maximum likelihood-metoden funkar för alla modeller.
- Minsta-kvadrat-metoden för regression: Regressionslinjen $\hat{y} = b_0 + b_1 \cdot x$ är en skattning av populationens regressionslinje: $\beta_0 + \beta_1 \cdot x$. Mer om det i F22.
- För normalfördelade regressionsdata (F22) är b_0 och b_1 faktiskt också maximum likelihood-skattningar!