CPE301 – SPRING 2018

Midterm 1

DO NOT REMOVE THIS PAGE DURING SUBMISSION:

The student understands that all required components should be submitted in complete for grading of this assignment.

NO	SUBMISSION ITEM	COMPLETED (Y/N)	MARKS (/MAX)
1	COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS		
2.	INITIAL CODE OF TASK 1/A		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E		
4.	SCHEMATICS		
5.	SCREENSHOTS OF EACH TASK OUTPUT		
5.	SCREENSHOT OF EACH DEMO		
6.	VIDEO LINKS OF EACH DEMO		
7.	GOOGLECODE LINK OF THE DA		

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Atmega328p Xplained Mini, FTDI, LM34, ESP8266-01.

2. INITIAL/DEVELOPED CODE OF TASK 1/A

```
* Midterm1.c
  * Created: 4/4/2018 2:48:28 PM
  * Author : JSharpHalpin
⊟/* ADC Test
 For an Atmega 48 88 or 168
  Sends ADC results to the serial port
  Set your terminal to 2400 N 8 1
  Atmega168 DIP TX PD1 (pin3)
  Atmega168 DIP RX PD0 (pin2)
 Atmega168 DIP ADC2 PC2 (PIN25) */
 #define F_CPU 16000000UL
                                 //set clock rate at 16 MHz
  #define BAUD 9600
                                 //set baud rate to 9600
 #define MYUBRR F_CPU/16/BAUD-1 //set the UBRR number
 //#define UBRR 1200 51
  //#define UBRR_2400 25 // for 1Mhz
  // #define UBRR 2400 207 // for 8Mhz with .2% error
  // #define UBRR_9600 51 // for 8Mhz with .2% error
  // #define UBRR_19200 25 // for 8Mhz with .2% error
  #include <avr/io.h>
  #include <util/delay.h>
  #include <stdio.h>
 #include <avr/interrupt.h>
  void read_adc(void); // Function Declarations
 void adc_init(void);
  void USART_init( unsigned int ubrr );
  void USART_tx_string(char *data);
 volatile unsigned int adc_temp;
 char outs[20];
□void usart_init(void)
 {
     UCSR0B |= (1<<TXEN0) | (1<<RXEN0) | (1<<RXCIE0) ; // enable receive transmit of usart
     UCSR0C = (1<<UCSZ01) | (1<<UCSZ00);// | (1<<URSEL);
     UBRRØL = BAUD; // Fosc=16MHz, UBRR value = 104 (0x67)
⊡void usart_send( unsigned char ascii)
     while(!(UCSRØA & (1<<UDRE0)));
     UDR0 = ascii;
}
```

```
unsigned char usart_receive(void)
         while (!(UCSRØA & (1<<RXCIE0)));
void send_AT( unsigned char message[])
         unsigned char i=0;
         while(message[i] != '\0')
                 usart_send(message[i]); // This sends data to esp
         }
}
int main(void) {
        unsigned char AT[] = "AT\r\n";
unsigned char CIPMUX[] = "AT+CIPMUX=1\r\n";
unsigned char CIPSTART[] = "AT+CIPSTART=0,\"TCP\",\"api.thingspeak.com\",80\r\n";
unsigned char CIPSEND[] = "AT+CIPSEND=0,110\r\n";
unsigned char CIPSEND[] = "GET https://api.thingspeak.com/apps/thinghttp/send_request?api_key=SBYXUXDC8TLMA50V\r\n";
unsigned char SEND_DATA[] = "GET https://api.thingspeak.com/update?api_key=RLIBH668P4MZTRB6=50\r\n";
        adc_init(); // Initialize the ADC (Analog / Digital Converter)
USART_init(MYUBRR); // Initialize the USART (R$232 interface)
USART_tx_string("Connected!\r\n"); // we're alive!
_delay_ms(125); // wait a bit
sei();
        _delay_ms(200);
send_AT(AT);
        send_AT(AT);
    delay_ms(2000);
send_AT(CIPMUX);
    delay_ms(2000);
send_AT(CIPSTART);
         _delay_ms(2000);
         send_AT(GET_DATA);
         _delay_ms(2000);
send_AT(SEND_DATA);
         while(1)
         }
```

```
void adc_init(void)
     /** Setup and enable ADC **/
    ADMUX = (0<<REFS1) | // Reference Selection Bits
    (1<<REFS0) | // AVcc - external cap at AREF
    (0<<ADLAR) // ADC Left Adjust Result
    (0<<MUX2)| // ANalog Channel Selection Bits
     (1<<MUX1) // ADC2 (PC2 PIN25)
    (0<<MUX0);
    ADCSRA = (1<<ADEN) | // ADC ENable
    (0<<ADSC) | // ADC Start Conversion
    (0<<ADATE) | // ADC Auto Trigger Enable
    (0<<ADIF) // ADC Interrupt Flag
(0<<ADIE) // ADC Interrupt Enable
     (1<<ADPS2) | // ADC Prescaler Select Bits
     (0<<ADPS1)
    (1<<ADPS0);
    // Timer/Counter1 Interrupt Mask Register
    TIMSK1 |= (1<<TOIE1); // enable overflow interrupt
    TCCR1B |= (1<<CS12)|(1<<CS10); // native clock
    TCNT1 = 49911;
                       //set Timer counter
/* READ ADC PINS */
void read_adc(void) {
    unsigned char i =4;
    adc temp = 0;
    while (i--) {
        ADCSRA |= (1<<ADSC);
        while(ADCSRA & (1<<ADSC));
        adc_temp+= ADC;
        _delay_ms(50);
    adc_temp = adc_temp / 8; // Average a few samples
    adc_temp = adc_temp /2;
 /* INIT USART (RS-232) */
∃void USART_init( unsigned int ubrr ) {
     UBRROH = (unsigned char)(ubrr>>8);
     UBRRØL = (unsigned char)ubrr;
     UCSROB = (1 << TXENO); // Enable receiver, transmitter & RX interrupt
     UCSROC = (3 << UCSZ00); //asynchronous 8 N 1
∃void USART_tx_string( char *data ) {
     while ((*data != '\0')) {
         while (!(UCSRØA & (1 <<UDREØ)));
         UDR0 = *data;
         data++;
     }
}
∃ISR(TIMER1_OVF_vect)
                    //call the ADC read function
     read_adc();
     snprintf(outs, sizeof(outs), "%3d\r\n", adc_temp);// print it
     USART_tx_string(outs); //Ouputs a string to the screen
     TCNT1 = 49911;
                             //reset Timer counter
```

3. SCHEMATICS

4. SCREENSHOTS OF EACH TASK OUTPUT (PUTTY OUTPUT)

```
Connected!

AT

AT+CIPMUX=1

AT+CIPSTART=0, "TCP", "api.thingspeak.com", 80

GET https://api.thingspeak.com/apps/thinghttp/send_request?api_key=SBYXUXDC8TLMA50V

GET https://api.thingspeak.com/update?api_key=RLIBH668P4MZTRB6=50

95

89

86

85

84

84

84

83
```

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO

7. GITHUB LINK OF THIS DA

https://github.com/jsharpin/My-Repos

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Joseph Sharp Halpin