Question 1 [Short Answers – 45 points]. Consider the following relation schemas

$$R(A,B)$$

 $T(B,C)$

and their instances

$$r(A,B) = \{ \langle a,b \rangle, \langle a,c \rangle, \langle c,d \rangle, \langle b,e \rangle \}$$

 $t(B,C) = \{ \langle b,e \rangle, \langle d,h \rangle, \langle b,f \rangle, \langle a,d \rangle, \langle a,e \rangle \}$

(1.a) [10 points] Compute the result of the following relational algebra expression:

$$\pi_{A,C}(r \bowtie_{LEFT} t)$$

Answer:

A	C
a	e
a	f
С	h
a	NULL
b	NULL

(1.b) [15 points] Express $r \bowtie_{\text{LEFT}} t$ in (1.a) using *only* the primary relational algebra operators $(\cup, \cap, -, \rho, \sigma, \pi, \times)$ according to the definition of \bowtie_{LEFT} .

Answer:

$$r \bowtie_{\text{LEFT}} t = (r \bowtie t) \cup ((r - \pi_{\text{\tiny A,B}}(r \bowtie t)) \times \{(\text{NULL})\})$$

(1.c) [10 points] Compute the result of the following SQL query:

SELECT R.A, COUNT(T.C) AS C_COUNT FROM R, T
WHERE R.A = T.B
GROUP BY R.A;

Answer:

A	C_COUNT
a	4
b	2

(1.d) [10 points] Compute the result of the following SQL query:

SELECT T.B, COUNT(T.C) AS C_COUNT FROM T GROUP BY T.B HAVING COUNT(T.C) > 1

Answer:

S.B	C_COUNT
b	2
a	2

Question 2 [Relational Algebra – 60 points]. Consider the following database schema computer products:

```
Computer(<u>maker, model</u>, category)
Model(<u>num, speed, ram, hd, price</u>)
Maker(<u>name</u>, address, phone)
```

Where

- maker indicates the manufacturer of the computer
- category takes values such as "desktop", "laptop", "server";
- Following inclusion dependencies hold
 - o maker \subseteq name
 - o $model \subset num$

Express following queries in relational algebra:

(2.a) [10 points] "Find all the makers who make some laptop(s)"

Answer:

```
\pi_{maker}(\sigma_{category="laptop"}(Computer))
```

(2.b) [15 points] "Find all the makers who make at lease three different desktop models"

Answer:

```
\begin{split} \pi_{maker}(\sigma_{model1 \neq model2 \, \land \, model2 \neq model3 \, \land \, model3 \neq model1} \\ & (\rho_{model1 \leftarrow model}(\sigma_{category="desktop"}(Computer)) \\ & \bowtie \rho_{model2 \leftarrow model}(\sigma_{category="desktop"}(Computer)) \\ & \bowtie \rho_{model3 \leftarrow model}(\sigma_{category="desktop"}(Computer)))) \end{split}
```


Question 3 [SQL – 40 points]. Given the schema in Question 3, express following queries in SQL:

(3.a) [15 points] "Find all laptop models and their makers"

Answer:

SELECT maker, model FROM Computer

WHERE category = "laptop"

(3.b) [20 points] "Find all makers who make the most expensive server"

Answer:

SELECT C.maker

FROM Computer C, Model M
WHERE C.category = "server" AND
C.model = M.num AND

M.price = (SELECT MAX(price) FROM Model)

(3.c) [20 points] "Find all desktop models with the highest speed/price ratio, and return them along with their makers"

Answer:

SELECT C.maker, C.model
FROM Computer C, Model M
WHERE C.model = M.num AND

M.speed/M.price ≥ ALL (SELECT (speed/price) FROM Model)

Question 5 [True/False questions – 40 points]. For each of the following statements, indicate whether they are true of false. A correct answer is worth 5 points, no answer is worth 0 points, wrong answer is worth -3 points. The minimum you can receive on this question is 0/40.

(4.a) __T_ In SQL DDL, there can be zero or one primary key declarations in each create table statement;

(4.b) <u>F</u> Atomicity means that each database transaction executes as if there are no other transactions running;

(4.c) _F_ A relation with 5 attributes can have more than 100 keys and superkeys;

(4.d) F In SQL, relations are sets of tuples and can't have any duplicates;

(4.e) _T_ In SQL, views can be updated just like database relations;

(4.f) \underline{F} $S \bowtie R = S \times R$, if S and R don't share any attributes, and $S \bowtie R = S \cup R$, if S and R have the same attributes.

(4.g) F Consider relations R(A,B) and S(B,C). If B is a primary key for S, then $R \bowtie S$ may contain more tuples than R does.

 $R \bowtie S$ has, at most, the cardinality of R, since each tuple in R shares its B value with at most one tuple in S (since B is a primary key for S).

(4.h) Frojection operators commute. That is, $\pi_X(\pi_Y(R)) = \pi_Y(\pi_X(R))$, holds for every relation R and all sets of attributes X and Y