

Why do people sit in the corner when it is cold? -Victoria

Cybersecurity

Where Are we?

Networking is critical for nearly all these roles. A solid understanding of networking is fundamental to almost all cybersecurity.

Security Analyst	Security Operations Center Analyst (SOC)	Security Engineer	Systems Engineer	
Cyber Threat Analyst	Cyber Defense Incident Response Analyst Analyst		Intelligence Analyst	
Information Assurance Technician	Risk Analyst	Forensics Investigator	Systems Administrator	
Network Engineer	It Auditor	Application Security Engineer	Penetration Tester	
Information Analyst	formation Analyst Systems Security Analyst		Web Engineer - Application Security	

Today's Objectives

By the end of class, you will be able to:

- Define basic networking terms and explain how data is transmitted over the network.
- Describe how protocols structure and define the data transmitted over the network.
- Outline the OSI Model and explain each layer.
- Compare and contrast the OSI and TCP/UDP model.
- Capture communication over the network using Wireshark.
- Explain the basics of a packet in Wireshark.

Introduction to Networking

A network is a group of computer systems and computing devices that are linked together through communication channels to facilitate communication and resource sharing among a wide range of users.

Network Communication: The Client Server Model

Network communication occurs largely between **clients** and **servers**.

Network Communication: The Client Server Model

Multiple clients often communicate with a single server.

The Journey of a File

Client / Server Model

A lot of this seems like magic!

Client / Server Model

But there's a lot to learn about this "simple" process:

Activity: Explaining Communication

In this activity, you will pair up and think about how some common tasks might fit into the client / server framework.

Activity: Explaining Communication

Instructions:

With a partner, investigate and explain how each of the following might work in communicating over the network:

- ☐ File Transfer
- ☐ Email
- ☐ Web Page

For each scenario, think about and try to explain each of the following:

- ☐ Who is the client? The server?
- ☐ What does the request look like? The response?
- ☐ What work does the client do? The server?
- ☐ What is being communicated?

Use Google to help you in your investigation!

File Transfer:

Web Pages:

Browser receives HTML and renders it into a user display

Server formats the response and sends it to the client (browser).

Email:

For some communication, there may be more than one server behind the scenes doing work.

Networking Definitions

Network: A system of computers and other devices (printers, smart objects) that are connected to each other.

Network Communication: Transmission of data between two or more computers over a network.

Client / Server: Multiple end devices (clients) communicating over a network with a single central computer (server)

Request / Response: A basic method of computer communication, in which one computer sends a request for data to a second computer that responds to that request.

Introduction to Protocols

Request/Response and Binary

All digital data is transmitted via binary.

A Protocol is a set of standardized rules that specify how interactions between communicating entities should work.

How networks communicate and provide structure to the binary data that is transmitted.

Protocol Example: Authentication

PAP: Password Authentication Protocol

PAP Two-Way Handshake

Protocol Example: Authentication

Client request contains bits in a specific order and length, per the standard and rules of the protocol.

1 Byte	1	2 Bytes	1 Byte	Variable	1 Byte	Variable
Code: 1	ID	Length	User name length	User name	Password Length	Password

Protocol Example: Authentication

The server receiving the request will know where to look in the bitstream for content: the username and password.

Ports

Ports are access points used by data that is packaged and interpreted by protocols.

0 - 1023: System Ports

1024 - 49151: Registered Ports

49152 - 65536: Dynamic / Private Ports

Source / Destination Ports

Source Port: Randomly generated from unregistered port range

Destination Port: Dependent on the protocol

Activity: Ports and Protocols

In this activity, you will identify the correct port number and functions for a given list of protocols.

Activities/02_Stu_Ports/ReadMe.md

Times Up! Let's Review.

Ports and Protocols

Today's Objectives: Checkpoint

By the end of class, you will be able to:

- Define basic networking terms and explain how data is transmitted over the network.
- Describe how protocols structure and define the data transmitted over the network.
- Define the OSI Model and explain each layer.
- Compare and contrast the OSI and TCP/UDP model.
- Capture communication over the network using Wireshark.
- Explain the basics of a packet in Wireshark.

The OSI Model

The Open Systems Interconnection (OSI) Model

The OSI Model provides a framework to better categorize and conceptualize the overwhelming volume of ports and protocols.

The OSI Model depicts the travel of communication through 7 layers, slowly growing the data frame to incorporate aspects like protocol information, security measures, and other pertinent

OSI Model

The OSI Model: Physical Layer

The Physical Layer is responsible for transmission of binary data via a physical medium. Handles how data is physically encoded and decoded.

The OSI Model: Data Link

The Data Link layer establishes links between nodes and provides error-free handling of data transfer over the Physical layer.

The OSI Model: Network Layer

The Network layer is responsible for routing data through physical networks, deciding which physical path the data will take, and ensure that it gets to the correct destination.

The OSI Model: Transport

The Transport Layer is responsible for actually transmitting data across the network. (It puts data onto the network.)

The OSI Model: Session Layer

The Session Layer manages connections between ports on computers and handles data flow.

The OSI Model: Presentation Layer

The Presentation layer is the translator for the network. It formats the data to be presented to the Application layer. Handles data representation, de/encryption, character set translation and conversion.

The OSI Model: Application Layer

The Application Layer is responsible for representing data in a way the consuming application can understand.

Layer 2: Data Link

Layer 3: Network

Layer 1: Physical

Encapsulation / Decapsulation

Encapsulation converts data from an application on the source machine (like an image) into some that can be transmitted.

Encapsulation / Decapsulation

Decapsulation converts transmitted data into something that can be used on the destination's machine application.

OSI Model

Twitter OSI Model

Data Link Layer: Your 280 character tweet is converted into binary 1s and 0s.

Network Layer: Your tweet is routed over various LAN and WANs. (Directing your tweet's travel path).

Transport Layer: Packs up your 280 character tweet and sends it into the Twittershpere.

Session Layer: Provides order to a session. Like the traffic cop of data between transfers.

Presentation Layer: Translates binary 1s and 0s into a comprehensible format.

Application Layer: Your tweet is ready to be viewed by the world!

TCP / IP Model

The Transmission Control Protocol / Internet Potocol Model is another model, more in accordance with cybersecurity issues.

Activity: Fill in the Blanks

In this activity, you will practice familiarizing yourself with the OSI model.

Times Up! Let's Review.

Fill in the Blanks

Take A Break

Intro to Wireshark

Packets and Wireshark

Communication between devices over a network is facilitated through the transfer of packets.

Wireshark is a tool that allows us to look at real communicati on across the network and monitor the network for activities of connected devices.

Packets

Communication between devices over a network is facilitated through the transfer of tiny packets.

Each packet contains:

- The address of its origin
- The address of its destination
- Some information that connects it to related packets being transmitted

Packets

Communication between devices over a network is facilitated through the transfer of tiny packets.

Activity: Install Wireshark

In this activity, you will install the wireshark application.

Instruction sent via Slack.

Instructor Demonstration
Wireshark Walkthrough

9 · @ 8 · G · · d · ·

··+·a/^· 7·%Z^·.M

··mr··C

Time to live: 56
Protocol: UDP (17)

d5 ad 6d 72 9a f1 43

Header checksum: 0xc547 [validation disabled]
8c 85 90 76 23 bd 30 b5 c2 55 79 c8 08 00 45 20

00 39 00 00 40 00 38 11 c5 47 ac d9 0f 64 c0 a8 00 67 01 bb e4 7e 00 25 db 12 10 00 fb 2c 30 04

8b 8e 2b a8 67 2f 5e dd 37 be 25 5a 5e 1e 2c 4d

3. Packet Bytes Pane

Activity: Diving with the Wiresharks

In this activity, you will conduct a capture, investigate a packet capture files, and answer a series of questions about the traffic in a file.

Activities/05-Stu_DivingWiththeWiresharks/readme

Instructor Demonstration
Inspecting a Packet

Activity: My First Sniff

In this activity, you complete your own practice capture.

Instruction sent via Slack.

Today's Objectives

By the end of class, you will be able to:

- Define basic networking terms and explain how data is transmitted over the network.
- Describe how protocols structure and define the data transmitted over the network.
- Define the OSI Model and explain each layer.
- Compare and contrast the OSI and TCP/UDP model.
- Capture communication over the network using Wireshark.
- Explain the basics of a packet in Wireshark.

Any Questions?

