#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸ 서 ᄉ ᆀ file:///D:/05-Covid19_확진자_분석.ipynb

Covid19 확진자 시계열 분석

#01. 작업 준비

패키지 참조하기

```
import sys
sys.path.append("../../")

from datetime import datetime as dt
from datetime import timedelta
from pandas import read_excel, to_datetime
from matplotlib import pyplot as plt
from matplotlib import dates as mdates
from statsmodels.tsa.arima.model import ARIMA
from pmdarima.arima import auto_arima
import seaborn as sb

from helper import set_datetime_index, exp_time_data
```

데이터 가져오기

```
origin = read_excel("https://data.hossam.kr/E06/covid19_seoul_230531.xls
```

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᅯᄉᇸ file:///D:/05-Covid19_확진자_분석.ipynb origin.head()

	서울 시 기 준일	서울시 확진자	서울 시 추 가 확 진	서 울 시 치 료 중	서울 시 퇴원	서울 시 추가 퇴원	서울 시 사망	서울 시 의심 환자 전체	서울 시 의심 환자 검사 중	서울 시 의심 환자 검사 결과 (음 성)	
0	2023- 05-31	6204277	5987.0	0	NaN	NaN	6492	NaN	NaN	NaN	
1	2023- 05-30	6198290	3326.0	0	NaN	NaN	6486	NaN	NaN	NaN	
2	2023- 05-29	6194964	1393.0	0	NaN	NaN	6485	NaN	NaN	NaN	
3	2023- 05-28	6194964	1393.0	0	NaN	NaN	6485	NaN	NaN	NaN	
4	2023- 05-27	6191196	4078.0	0	NaN	NaN	6485	NaN	NaN	NaN	
4	→										

5 rows × 26 columns

#02. 데이터 전처리

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᇩᆺᇵ file:///D:/05-Covid19_확진자_분석.ipynb

필요한 데이터만 추출

df = origin.filter(['서울시 기준일', '서울시 추가 확진'])
df.rename(columns={'서울시 기준일':'date', '서울시 추가 확진':'confirmed'},
df.head()

	date	confirmed
0	2023-05-31	5987.0
1	2023-05-30	3326.0
2	2023-05-29	1393.0
3	2023-05-28	1393.0
4	2023-05-27	4078.0

각 필드의 데이터 타입 확인

외부에서 가져온 데이터는 항상 원하는 타입인지 확인 후 필요하다면 타입 변환을 거쳐야 한다.

df.dtypes

date object confirmed float64

dtype: object

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᅯᄉᆁ file:///D:/05-Covid19_확진자_분석.ipynb

날짜 타입에 대한 형변환

```
df['date'] = to_datetime(df['date'].str.strip(), format='%Y-%m-%d')
df.dtypes
```

```
date
    datetime64[ns]
confirmed    float64
dtype: object
```

결측치 검사

```
df.isna().sum()
```

```
date   0
confirmed  1
dtype: int64
```

결측치 정제

결측치인 경우는 확진자 발생하지 않은 것으로 간주하고 0 으로 치환

```
df2 = df.fillna(0)
df2.isna().sum()
```

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᇩᆺᇵ file:///D:/05-Covid19_확진자_분석.ipynb date 0
confirmed 0
dtype: int64

date 필드를 날짜 형식의 인덱스로 지정

helper 기능 활용

df3 = set_datetime_index(df2, 'date')
df3.head()

	confirmed		
2020-02-05	0.0		
2020-02-06	0.0		
2020-02-07	0.0		
2020-02-08	0.0		
2020-02-09	0.0		

#03. 데이터 검정

이상치는 보이지만 데이터 자체가 실제 발생한 현상이었으므로 정상 데이터로 판단함

exp_time_data(data=df3, yname="confirmed", sd model="a")

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ㅂ ㅆ ᄉ ㅎ️l file:///D:/05-Covid19_확진자_분석.ipynb

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ㅂㅂ 스퀘 file:///D:/05-Covid19_확진자_분석.ipynb

23. 8. 7. 오전 10:50

Covid19 확진자 시계열 분석

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᅯᆺᇸ file:///D:/05-Covid19_확진자_분석.ipynb

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᄸᄉᇸ file:///D:/05-Covid19_확진자_분석.ipynb

#04. ARIMA 분석

분석모델 만들기

```
model = ARIMA(df3['confirmed'], order=(1,0,0), seasonal_order=(1,0,0,7))
fit = model.fit()
print(fit.summary())
```

SARIMAX Results

```
Dep. Variable:
                                      confirmed
                                                  No. Observations:
                   ARIMA(1, 0, 0)x(1, 0, 0, 7)
Model:
                                                  Log Likelihood
Date:
                              Mon, 07 Aug 2023
                                                  AIC
Time:
                                       10:19:43
                                                  BIC
Sample:
                                     02-05-2020
                                                  HOIC
                                   - 05-31-2023
```

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᇩᆺᇵ file:///D:/05-Covid19_확진자_분석.ipynb

Covarianc	e Type:		0	pg		
	coef	std err	Z	P> z	[0.025	
const ar.L1 ar.S.L7 sigma2	5119.1138 0.7469 0.7187 1.145e+07	2109.541 0.006 0.005 44.865	2.427 118.058 141.242 2.55e+05	0.015 0.000 0.000 0.000	984.489 0.735 0.709 1.14e+07	92
Prob(Q): Heteroske	(L1) (Q): dasticity (H) two-sided):	:	92.15 0.00 36.09 0.00	Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):	

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (d
- [2] Covariance matrix is singular or near-singular, with condition number

학습 데이터에 대한 예측치

학습한 데이터에 대한 predict() 함수의 결과값을 내장하고 있다.

fv = fit.fittedvalues
fv.head()

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᇩᆺᇶ file:///D:/05-Covid19_확진자_분석.ipynb

```
2020-02-05 5119.113824

2020-02-06 1037.069449

2020-02-07 959.246146

2020-02-08 861.651335

2020-02-09 741.551616

Freq: D, dtype: float64
```

학습한 내용을 토대로 이후 120일간의 예상치 생성

```
fc = fit.forecast(120)
fc.head()
```

```
2023-06-01 5172.145660

2023-06-02 4877.622197

2023-06-03 4674.759850

2023-06-04 2668.118690

2023-06-05 2610.674418

Freq: D, Name: predicted_mean, dtype: float64
```

시각화

```
last = df3.index.max()
xmin = last-timedelta(days=120)
xmax = last+timedelta(days=120+10)
```

```
Covid19 확진자 시계열 분석
 #01. 작업 준비
   패키지 참조하기
   데이터 가져오기
 #02. 데이터 전처리
   필요한 데이터만 추출
   각 필드의 데이터 타입 확인
   날짜 타입에 대한 형변환
   결측치 검사
   결측치 정제
   date 필드를 날짜 형식의 인덱
   스로 지정
 #03. 데이터 검정
 #04. ARIMA 분석
   분석모델 만들기
   학습 데이터에 대한 예측치
   학습한 내용을 토대로 이후
   120일간의 예상치 생성
   시각화
 #04. AutoARIMA 분석
```

```
vmax = df3['confirmed'][xmin:xmax].max()
xmin, xmax, ymax
(Timestamp('2023-01-31 00:00:00'), Timestamp('2023-10-08 00:00:00'), 619
plt.figure(figsize=(20,8))
# 원본 데이터
sb.lineplot(data=df3, x=df3.index, y='confirmed', label='Original')
# 원본에 대한 학습결과
sb.lineplot(x=fv.index, v=fv.values, label='FittedValues', linestyle='--
# 향후 120일간의 예측값
sb.lineplot(x=fc.index, y=fc.values, label='Predict', linestyle='--', cd
plt.xlabel('Day')
plt.vlabel('Confirmed')
plt.legend()
plt.xlim([xmin, xmax])
plt.ylim([0, ymax*1.2])
# 그래프의 x축이 날짜로 구성되어 있을 경우 형식 지정
monthyearFmt = mdates.DateFormatter('%y.%m.%d')
plt.gca().xaxis.set major formatter(monthyearFmt)
plt.grid()
```

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᅯᆺᇸ file:///D:/05-Covid19_확진자_분석.ipynb

#04. AutoARIMA 분석

분석 수행

수집한 데이터 전체를 적용

```
my_p = 1# AR의 차수 (검증한 결과를 활용)my_d = 0# 차분 횟수 (검증한 결과를 활용)my_q = 0# MA의 차수 (검증한 결과를 활용)my_s = 7# 계절성 주기 (분석가가 판단)model = auto_arima(
```

```
Covid19 확진자 시계열 분석
 #01. 작업 준비
   패키지 참조하기
   데이터 가져오기
 #02. 데이터 전처리
   필요한 데이터만 추출
   각 필드의 데이터 타입 확인
   날짜 타입에 대한 형변환
   결측치 검사
   결측치 정제
   date 필드를 날짜 형식의 인덱
   스로 지정
 #03. 데이터 검정
 #04. ARIMA 분석
   분석모델 만들기
   학습 데이터에 대한 예측치
   학습한 내용을 토대로 이후
   120일간의 예상치 생성
   시각화
 #04. AutoARIMA 분석
```

```
v=df3['confirmed']. # 모델링하려는 시계열 데이터 또는 배열
   start p=0, # p의 시작점
   max_p=my_p,
                    # p의 최대값
   d=my d,
            # 차분 횟수
   start q=0, # q의 시작점
                  # q의 최대값
   max_q=my_q,
   seasonal=True, # 계절성 사용 여부
                  # 계절성 주기
   m=my s,
   start P=0, # P의 시작점
   max P=my p, # P의 최대값
                  # 계절성 차분 횟수
   D=my d,
   start Q=0.
                    # Q의 시작점
                  # Q의 최대값
   max Q=my q,
   trace=True
              # 학습 과정 표시 여부
print(model.summary())
Performing stepwise search to minimize aic
ARIMA(0,0,0)(0,0,0)[7] intercept : AIC=26229.494, Time=0.03 sec
ARIMA(1,0,0)(1,0,0)[7] intercept : AIC=23152.696, Time=0.84 sec
ARIMA(0,0,0)(0,0,0)[7]
                              : AIC=26427.372, Time=0.02 sec
ARIMA(1,0,0)(0,0,0)[7] intercept : AIC=23752.801, Time=0.06 sec
ARIMA(0,0,0)(1,0,0)[7] intercept
                              : AIC=23793.364, Time=1.01 sec
ARIMA(1,0,0)(1,0,0)[7]
                              : AIC=23163.519, Time=0.43 sec
Best model: ARIMA(1,0,0)(1,0,0)[7] intercept
Total fit time: 2.391 seconds
```

Dep. Variable: No. Observations:

SARIMAX Results

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᅯᄉᆁ file:///D:/05-Covid19_확진자_분석.ipynb Model: SARIMAX(1, 0, 0)x(1, 0, 0, 7) Log Likelihood
Date: Mon, 07 Aug 2023 AIC
Time: 10:31:57 BIC
Sample: 02-05-2020 HQIC
- 05-31-2023

Covariance Type:

opg

	coef	std err	Z	P> z	[0.025	
intercept	353.7333	156.606	2.259	0.024	46.791	6
ar.L1	0.7470	0.006	118.022	0.000	0.735	
ar.S.L7	0.7188	0.005	141.243	0.000	0.709	
sigma2	1.145e+07	0.246	4.66e+07	0.000	1.14e+07	1.
Ljung-Box (L1) (Q):			92.24	Jarque-Bera	(JB):	
Prob(Q):			0.00	Prob(JB):		
Heterosked	asticity (H):		38.32	Skew:		
<pre>Prob(H) (two-sided):</pre>			0.00	Kurtosis:		

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (c
- [2] Covariance matrix is singular or near-singular, with condition $numb \in \mathbb{R}$

학습한 데이터와 동일 기간에 대한 예측치 산정

fv = model.fittedvalues()

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ᆸᄸᄉᇸ file:///D:/05-Covid19 확진자 분석.ipynb

```
fv.head()
```

```
2020-02-05 4971.995254

2020-02-06 1007.070260

2020-02-07 931.477784

2020-02-08 836.685212

2020-02-09 720.039704

Freq: D, dtype: float64
```

향후 120일간의 예측치

```
fc = model.predict(n_periods=120)
fc.head()
```

```
2023-06-01 5161.596538

2023-06-02 4859.241954

2023-06-03 4650.529336

2023-06-04 2639.199302

2023-06-05 2578.496296

Freq: D, dtype: float64
```

시각화

```
last = df3.index.max()
xmin = last-timedelta(days=120)
xmax = last+timedelta(days=120+10)
```

```
Covid19 확진자 시계열 분석
 #01. 작업 준비
   패키지 참조하기
   데이터 가져오기
 #02. 데이터 전처리
   필요한 데이터만 추출
   각 필드의 데이터 타입 확인
   날짜 타입에 대한 형변환
   결측치 검사
   결측치 정제
   date 필드를 날짜 형식의 인덱
   스로 지정
 #03. 데이터 검정
 #04. ARIMA 분석
   분석모델 만들기
   학습 데이터에 대한 예측치
   학습한 내용을 토대로 이후
   120일간의 예상치 생성
   시각화
 #04. AutoARIMA 분석
```

```
vmax = df3['confirmed'][xmin:xmax].max()
xmin, xmax, ymax
(Timestamp('2023-01-31 00:00:00'), Timestamp('2023-10-08 00:00:00'), 619
plt.figure(figsize=(20,8))
# 원본 데이터
sb.lineplot(data=df3, x=df3.index, y='confirmed', label='Original')
# 원본에 대한 학습결과
sb.lineplot(x=fv.index, v=fv.values, label='FittedValues', linestyle='--
# 향후 120일간의 예측값
sb.lineplot(x=fc.index, y=fc.values, label='Predict', linestyle='--', cd
plt.xlabel('Day')
plt.vlabel('Confirmed')
plt.legend()
plt.xlim([xmin, xmax])
plt.ylim([0, ymax*1.2])
# 그래프의 x축이 날짜로 구성되어 있을 경우 형식 지정
monthyearFmt = mdates.DateFormatter('%y.%m.%d')
plt.gca().xaxis.set major formatter(monthyearFmt)
plt.grid()
```

#01. 작업 준비

패키지 참조하기

데이터 가져오기

#02. 데이터 전처리

필요한 데이터만 추출

각 필드의 데이터 타입 확인

날짜 타입에 대한 형변환

결측치 검사

결측치 정제

date 필드를 날짜 형식의 인덱 스로 지정

#03. 데이터 검정

#04. ARIMA 분석

분석모델 만들기

학습 데이터에 대한 예측치

학습한 내용을 토대로 이후 120일간의 예상치 생성

시각화

#04. AutoARIMA 분석

ㅂㅂᄉᆐ file:///D:/05-Covid19_확진자_분석.ipynb

