Faculty Name: Prof. José Manuel Magallanes, PhD

Student Name: Samikshya Pandey Class Name: PUBPOL 542 A Wi 21: Computational Thinking For

Governance Analytics

File details: Conducting Regression Analysis

 $File\ Source:\ Merged\ data\ found\ in\ https://github.com/PUBPOL-542-Computational-Thinking/Merge/raw/main/UpdatedTJHemaSamik.csv.$

The following documents provides instructions on conducting a OLS regression analysis.

First, we need to import the excel files that consists of the data we need to analyze. To do so, we provide the location for the excel files and tell R to read the csv/excel file using the code read.csv.

The data name final data is created.

mergecsv = "https://github.com/PUBPOL-542-Computational-Thinking/Merge/raw/main/UpdatedTJHemaSamik.csv"
finaldata = read.csv(mergecsv)
finaldata

##		Country	lessthan5_50	Co	ntinent	FPI	FDI
	1	Albania	33.8	00	Europe		0.19917804
##	2	Algeria	28.6		Africa		0.14482453
##	3	Angola	89.3		Africa		0.15681012
##		Antigua and Barbuda		North	America		0.31441262
##	5	Argentina			America		0.32153085
##	6	Australia	0.7		Oceania	2141404.00	0.90036184
##	7	Austria	0.7		Europe	3867699.00	0.63070452
##	8	Bangladesh	84.5		Asia	764531.00	0.23295973
##	9	Barbados	NA	North	America	24951.00	0.44412541
##	10	Belarus	0.4		Europe	392526.00	0.17650366
##	11	Belgium	0.3		Europe	6062558.00	0.63214582
##	12	Belize	53.0	North	America	18802.00	0.21108365
##	13	Benin	90.6		Africa	10084.00	0.12785479
##	14	Bhutan	38.6		Asia	30902.00	0.19977939
##	15	Bosnia and Herzegovina	3.9		Europe	280006.00	0.25902098
##	16	Botswana	60.4		Africa	61453.00	0.26245126
##	17	Brazil	19.8	South	America	881521.00	0.60049450
##	18	Bulgaria	7.5		Europe	479545.00	0.37759098
##	19	Burkina Faso	92.3		Africa	17089.00	0.13078856
##	20	Burundi	96.8		Africa	4623.00	0.13706477
##	21	Cambodia	NA		Asia	310203.00	0.15388516
##	22	Cameroon	68.9		Africa		0.10302488
##	23	Canada		North	America		0.87771189
##	24	Central African Republic	92.8		Africa		0.05296880
##	25	Chad	86.2		Africa		0.09324554
##	26	Chile			America		0.45953962
##		Colombia		South	America		0.38143748
##		Comoros	62.3		Africa		0.05374534
##		Costa Rica		North	America		0.27699831
##		Croatia	3.8		Europe		0.49692753
	31	Cyprus	0.1		Europe		0.47735870
##		Denmark	0.2		Europe		0.64490145
##	33	Djibouti	70.6		Africa		0.15629709
##	34	Dominica	NA	North	America	6894.00	0.22356336

##	35	Dominican Republic	13.8	North	America	393367.00	0.17905858
	36	Ecuador			America		0.17488688
	37	Egypt	70.4		Africa	2613098.00	
##	38	El Salvador	25.7	North	America	297002.00	0.22879329
##	39	Equatorial Guinea	NA		Africa	3354.00	0.10593032
##	40	Eritrea	NA		Africa	3380.00	0.08361098
##	41	Estonia	1.0		Europe	688950.00	0.28488263
##	42	Ethiopia	85.0		Africa	103584.00	0.13464746
##	43	Fiji	48.6		${\tt Oceania}$	44183.00	0.21740668
##	44	Finland	0.1		Europe	1415408.00	0.73641503
##	45	France	0.2		Europe	8256757.00	0.77707875
##	46	Gabon	32.2		Africa		0.12545852
##	47	Georgia	42.9		Europe		0.30651662
##	48	Germany	0.2		_	16442309.00	
##	49	Ghana	56.9		Africa		0.14493361
##	50	Greece	4.7		Europe	1109189.00	
	51	Grenada			America		0.29496527
##	52	Guatemala		North	America		0.23107600
	53	Guinea	92.3		Africa		0.10549801
	54	Guinea-Bissau	93.4	Q + 1-	Africa		0.10380552
	55	Guyana			America		0.16092123 0.11254802
##	56 57	Haiti Honduras			America America		0.20701154
##	5 <i>1</i>		3.0	North		1426364.00	
##	59	Hungary Iceland	0.2		Europe Europe		0.50920200
##	60	India	87.4		Asia	6799109.00	
##	61	Indonesia	53.2		Asia	3028095.00	
##	62	Ireland	0.7		Europe		0.67312020
##	63	Israel	2.7		Asia		0.55996156
##	64	Italy	3.1		Europe	9492899.00	
##	65	Jamaica		North	America		0.27481329
##	66	Japan	1.0		Asia	10581454.00	0.85917377
##	67	Jordan	18.1		Asia	462557.00	0.38103896
##	68	Kazakhstan	8.6		Asia	525109.00	0.33864823
##	69	Kenya	87.0		Africa	424480.00	0.18637806
##	70	Kiribati	69.4		${\tt Oceania}$	925.00	0.09353153
##	71	Kuwait	NA		Asia	397252.00	0.51866102
##	72	Latvia	4.0		Europe	627882.00	0.25796631
##	73	Lebanon	1.9		Asia	430885.00	0.29978487
##		Lesotho	89.9		Africa		0.14479280
##		Liberia	92.2		Africa		0.12948039
##		Libya	NA		Africa		0.14495303
##		Lithuania	3.8		Europe		0.21916281
##		Luxembourg	0.5		Europe		0.75357300
##		Madagascar	97.3		Africa		0.10033925
##		Malawi	96.7		Africa		0.08255562
##		Malaysia	2.7		Asia		0.64984596
##		Maldives	54.3		Asia		0.17961434
##		Mali	94.9		Africa		0.14128189
##		Malta	0.2		Europe		0.53520727
## ##		Mauritania Mauritius	58.8 12.7		Africa Africa		0.11040888 0.41907090
##		Mexico		North	America		0.41907090
##		Mongolia	28.9	MOT CII	America		0.38211742
##	00	HOUROTIA	20.9		HSIG	01221.00	0.00211/42

##	89	Morocco	31.3	Africa	984641 00	0.36102104
##	90	Mozambique	91.8	Africa		0.14452003
##	91	Myanmar	67.2	Asia		0.13075243
##	92	Namibia	50.1	Africa		0.40106532
##	93	Netherlands	0.5	Europe		0.71647942
##	94	New Zealand	NA	Oceania		0.59054077
##	95	Nicaragua		North America		0.14759944
##	96	Niger	93.4	Africa		0.12854712
##	97	Nigeria	92.0	Africa		0.22954693
##	98	Norway	0.5	Europe		0.66496569
##	99	Oman	NA	Asia		0.39146367
##	100	Pakistan	76.0	Asia	961296.00	0.23933755
##	101	Panama	12.7	North America	125155.00	0.33859685
##	102	Papua New Guinea	86.9	Oceania	18520.00	0.21659438
##	103	Paraguay	17.0	South America	199529.00	0.12279055
##	104	Peru	22.1	South America	872279.00	0.37356547
##	105	Philippines	30.8	Asia	1913429.00	0.36652714
##	106	Poland	2.1	Europe	5628459.00	0.47386059
##	107	Portugal	1.8	Europe	1666766.00	0.72150308
##	108	Qatar	NA	Asia	231493.00	0.53062397
##	109	Romania	15.6	Europe	1264442.00	0.30938628
##	110	Rwanda	91.6	Africa	20173.00	0.09173958
##	111	Samoa	33.9	Oceania	11724.00	0.20346199
##	112	Saudi Arabia	NA	Asia	2194895.00	0.50915480
##	113	Senegal	88.1	Africa	119772.00	0.11101273
##	114	Seychelles	6.6	Africa	18017.00	0.30775678
##	115	Sierra Leone	92.1	Africa	9946.00	0.06779619
##	116	Singapore	NA	Asia	1733921.00	0.71351969
##	117	Slovenia	0.1	Europe	1266490.00	0.38186246
##	118	Solomon Islands	84.7	Oceania	3388.00	0.09186842
##	119	South Africa	57.1	Africa		0.63099885
##	120	South Sudan	84.8	Africa		0.05980796
##	121	Spain	2.2	Europe		0.87340266
	122	Sri Lanka	40.5	Asia		0.27259490
	123	Sudan	73.2	Africa		0.10871744
	124	Suriname		South America		0.20779303
	125	Sweden	0.5	Europe		0.77644378
	126	Switzerland	0.0	Europe		0.96395850
	127	Tajikistan	54.2	Asia		0.09288083
	128	Thailand	8.6	Asia		0.75304329
	129	Togo	90.1	Africa		0.17467067
	130	Tonga	27.5	Asia		0.22962116
	131 132	Trinidad and Tobago Tunisia	18.3	South America Africa		0.36635539 0.24119623
	133					0.50876945
	134	Turkey Turkmenistan	3.0 92.5	Asia, Europe Asia		0.30870943
	135	Uganda	87.8	Africa		0.11770303
	136	Ukraine	4.0	Europe		0.10177443
	137	United Arab Emirates	NA	Asia		0.46262041
	138	Uruguay		South America		0.24814370
	139	Uzbekistan	96.4	Asia		0.18048804
	140	Vanuatu	72.3	Oceania		0.19699873
	141	Zambia	87.2	Africa		0.11706393
##		FIEI	J 2	1111100	. 55 11 . 50	

- ## 1 0.6068800
- 0.7490481 ## 2
- ## 3 0.5739094
- ## 4 0.8255330
- ## 5 0.6067996
- ## 6 0.8023205
- ## 7 0.7859553
- ## 8 0.7101875
- ## 9 0.7649003
- ## 10
- 0.7150669
- ## 11 0.7738822
- ## 12 0.5258123
- ## 13 0.6839244
- ## 14 0.6884582
- ## 15 0.6857747
- ## 16 0.6644014
- ## 17 0.4965359
- ## 18 0.7194204
- ## 19 0.7077064
- ## 20 0.4978104
- ## 21 0.5789372
- ## 22 0.5428803
- ## 23 0.7923923
- ## 24 0.3007314
- ## 25 0.4743631
- ## 26 0.5292681
- ## 27 0.6193316
- ## 28 0.2159101 ## 29
- 0.5844653 0.7002185 ## 30
- ## 31 0.6024292
- ## 32 0.6407437
- ## 33 0.6965424
- ## 34 0.6408365
- ## 35 0.5340516
- ## 36 0.5414830
- ## 37 0.7811567
- ## 38 0.5733249
- ## 39 0.5422373
- ## 40 0.5244487
- ## 41 0.6603419
- ## 42 0.7604579
- ## 43 0.6107052
- ## 44 0.7914551
- ## 45 0.8021559
- ## 46 0.5130172
- ## 47 0.7209770
- ## 48 0.6674078
- ## 49 0.4231702
- ## 50 0.7212464 ## 51 0.6146590
- ## 52 0.6406029
- ## 53 0.5508823
- ## 54 0.6115757

- ## 55 0.6155873
- ## 56 0.6356684
- ## 57 0.5335459
- ## 58 0.6824715
- ## 59 0.3833873
- ## 60 0.5957979
- ## 61 0.6680098
- ## 62
- 0.6429925
- ## 63 0.7457603
- ## 64 0.5277964
- ## 65 0.5394618
- ## 66 0.8389234
- ## 67 0.7146253
- ## 68 0.5675504
- ## 69 0.5957358
- ## 70 0.4594176
- ## 71 0.7854659
- ## 72 0.6486675
- ## 73 0.7823648
- ## 74 0.5072089
- ## 75 0.3555835
- ## 76 0.6509023
- ## 77 0.6431199
- ## 78 0.7782964
- ## 79 0.5547301
- ## 80 0.3243614
- ## 81 0.8093556
- ## 82 0.7286226
- ## 83 0.7491804
- ## 84 0.7788513
- ## 85 0.5000512 ## 86 0.7233781
- ## 87 0.6097551
- ## 88 0.6786496
- ## 89 0.6636147
- ## 90 0.5102428
- ## 91 0.7557051
- ## 92 0.7072083
- ## 93 0.8272909
- ## 94 0.8061357
- ## 95 0.5411191
- ## 96 0.7327073
- ## 97 0.5812165
- ## 98 0.6477642
- ## 99 0.7759047
- ## 100 0.7519640
- ## 101 0.7307849
- ## 102 0.6428054
- ## 103 0.2435544
- ## 104 0.5987251
- ## 105 0.7394740
- ## 106 0.7595357
- ## 107 0.6869475
- ## 108 0.8261111

```
## 109 0.7117417
## 110 0.3784485
## 111 0.5927287
## 112 0.3698774
## 113 0.4590433
## 114 0.7524770
## 115 0.3570445
## 116 0.7922577
## 117 0.7584446
## 118 0.4311946
## 119 0.7421878
## 120 0.3738774
## 121 0.7522793
## 122 0.7554075
## 123 0.6141043
## 124 0.6455230
## 125 0.7961733
## 126 0.7441428
## 127 0.3894490
## 128 0.7742626
## 129 0.6713957
## 130 0.7640336
## 131 0.6548195
## 132 0.6164912
## 133 0.6125297
## 134 0.7120350
## 135 0.4874557
## 136 0.4890976
## 137 0.3977882
## 138 0.5264210
## 139 0.4847626
## 140 0.5880392
## 141 0.4521352
row.names(finaldata) = NULL
```

Once we have imported the data set, we need to ensure the data structure is fit for analysis. To learn more about the data, we call the functions str to learn details of data frame.

```
### veryfying data structure
str(finaldata, width = 50, strict.width = 'cut')
## 'data.frame':
                    141 obs. of 6 variables:
##
    $ Country
                  : chr
                          "Albania" "Algeria" "Ango"..
    $ lessthan5_50: num
                         33.8 28.6 89.3 NA 12.2 0.7..
    $ Continent
                  : chr
                         "Europe" "Africa" "Africa"..
                         67629 996868 67381 10557 8...
##
    $ FPI
                  : num
##
    $ FDI
                         0.199 0.145 0.157 0.314 0...
                  : num
##
    $ FIEI
                  : num
                         0.607 0.749 0.574 0.826 0...
```

Now to conduct a regression analysis, the first process is to develop hypothesis against which the anlysis will be conducted. For the purpose of this anlysis, we have developed 3 set of hypothesis

Hypothesis 1 FDI decreases as percentage of population earning less than \$5.50 increases

Hypothesis 2 FPI decreases as percentage of population earning less than \$5.50 increases

Hypothesis 3 Percentage of population earning less than \$5.50 decreases as FPI and FIEI advances

```
## hypothesis 1 : FDI decreases as percentage of population earning less than $5.50 increases
hypo1 = formula(FDI~ lessthan5_50)

#hypothesis 2: FPI decreases as percentage of population earning less than $5.50 increases
hypo2 = formula(FPI~ lessthan5_50)

#hypothesis 3: Percentage of population earning less than $5.50 decreases as FPI and FIEI advances
hypo3 =formula(lessthan5_50~ FPI*FIEI )
```

After explaining the hypothesis, we need to get the results. Since the dependent variables are not a binary outcome, we can use OLS regression for analysis.

The regression analysis required uses the code glm. This code fits the generalized linear models. We can observe results below:

Reading results: We call the functions summary to obtain results for each of our hypotheses.

Interpreting from the summary of result, we can learn that:

For the first hypothesis: Can we observe a decrease in FDI when the poverty rate (percentage of people earning less than 5.50 falls) Interpretation for hypothesis 1. We can observe an indirect relationship between poverty and FDI like we had initially hypothesize.

Similar reading can be done for hypothesis 2 and hypothesis 3.

```
### Seeing results
# For the first hypothesis: Can we observe a decrease in FDI when the poverty rate (percentage of peopl
summary(Result1)
```

```
##
## Call:
```

```
## glm(formula = hypo1, family = "gaussian", data = finaldata)
##
## Deviance Residuals:
       Min
                  1Q
##
                        Median
                                       3Q
                                                Max
## -0.33148 -0.10082 -0.00274
                                0.07349
                                            0.45416
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                0.5097954 0.0217208
                                       23.47
                                                <2e-16 ***
## lessthan5_50 -0.0045418 0.0004019 -11.30
                                                <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for gaussian family taken to be 0.02599656)
##
##
       Null deviance: 6.5442 on 125 degrees of freedom
## Residual deviance: 3.2236 on 124 degrees of freedom
     (15 observations deleted due to missingness)
## AIC: -98.317
##
## Number of Fisher Scoring iterations: 2
### Interpretation for hypothesis 1. We can observe an indirect relationship between poverty and FDI li.
### Results for hypothesis 2
summary(Result2)
##
## Call:
## glm(formula = hypo2, family = "gaussian", data = finaldata)
##
## Deviance Residuals:
       Min
                   1Q
                        Median
                                       3Q
                                                Max
## -2055528 -1189794
                        -476872
                                   114913 14283255
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                2163918
                            298266
                                    7.255 3.83e-11 ***
## (Intercept)
## lessthan5 50
                 -24318
                               5518 -4.407 2.24e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for gaussian family taken to be 4.901977e+12)
##
      Null deviance: 7.0305e+14 on 125 degrees of freedom
## Residual deviance: 6.0785e+14 on 124 degrees of freedom
     (15 observations deleted due to missingness)
## AIC: 4043.4
##
## Number of Fisher Scoring iterations: 2
```

```
## results for hypothesis 3
summary(Result3)
##
## Call:
## glm(formula = hypo3, family = "gaussian", data = finaldata)
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -67.421 -26.629
                     -5.349
                               25.517
                                        68.242
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.047e+02 1.489e+01
                                      7.029 1.29e-10 ***
               -5.681e-06 8.152e-06 -0.697 0.487165
## FPI
## FIEI
               -9.518e+01 2.405e+01 -3.958 0.000128 ***
                                       0.208 0.835550
                2.418e-06 1.162e-05
## FPI:FIEI
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for gaussian family taken to be 998.722)
##
##
       Null deviance: 160982 on 125 degrees of freedom
## Residual deviance: 121844 on 122 degrees of freedom
     (15 observations deleted due to missingness)
## AIC: 1233.7
## Number of Fisher Scoring iterations: 2
Now after obtaining the regression values, we need to test for the better model. The first way to do this by
using a chi-square distribution test.
### Searching for a better model
anova(Result1, Result2, test = "Chisq")
## Warning in anova.glmlist(c(list(object), dotargs), dispersion = dispersion, :
## models with response '"FPI"' removed because response differs from model 1
## Analysis of Deviance Table
##
## Model: gaussian, link: identity
##
## Response: FDI
##
## Terms added sequentially (first to last)
##
```

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

##

##

```
## NULL
                                 125
                                         6.5442
## lessthan5_50 1 3.3207
                                 124
                                         3.2236 < 2.2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
anova(Result2, Result3, test = "Chisq")
## Warning in anova.glmlist(c(list(object), dotargs), dispersion = dispersion, :
## models with response '"lessthan5_50"' removed because response differs from
## model 1
## Analysis of Deviance Table
##
## Model: gaussian, link: identity
## Response: FPI
##
## Terms added sequentially (first to last)
##
##
##
                    Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                                   125 7.0305e+14
## lessthan5_50 1 9.5202e+13
                                   124 6.0785e+14 1.048e-05 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Now, since Result 2 is better and Result 1 and Result 3 is better than result 2, we can conclude that Hypothesis 3, i.e Result 3 fits the model best.

To confirm the results, we can also test the residual value for all three hypothesis. No test the residual, we call the package rsq for library.

```
## Checking the Rsquare to understand the residual value for all 3 hypothesis
library(rsq)
rsq(Result1, adj = T)

## Warning in cbind(y, yfit): number of rows of result is not a multiple of vector
## length (arg 1)

## Warning in wt * vresidual(y, f0$fitted.values, family = family(f0))^2: longer
## object length is not a multiple of shorter object length

## [1] 0.5562347

rsq(Result2, adj = T)

## Warning in cbind(y, yfit): number of rows of result is not a multiple of vector
## length (arg 1)

## Warning in cbind(y, yfit): longer object length is not a multiple of shorter
## object length
```

```
## [1] 0.1776667
```

```
rsq(Result3, adj = T)
```

[1] 0.2245085

dwplot(Result3,by_2sd = F)

We can now proceed to visualize the data. For this, we need to call two package from library, dotwhisker and ggplot.

Using the code dwplot, we plot the predicted value of Result 3 against 2 standard deviation.

```
# summary plots to visualize the data
library(dotwhisker)
## Warning: package 'dotwhisker' was built under R version 4.0.4
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.0.4
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.3.2
## Current Matrix version is 1.2.18
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a
## Registered S3 method overwritten by 'broom.mixed':
    method
##
                from
##
    tidy.gamlss broom
library(ggplot2)
```


To capture the result of predicted value againsts given value, we can also use margins. For this, we must call margins from library.

The two graph uses data value collected for Result 3 and result 1.

```
# Using the margins library
library(margins)
```

 $\mbox{\tt \#\#}$ Warning: package 'margins' was built under R version 4.0.4

cplot(Result3, 'lessthan5_50')

cplot(Result1, 'lessthan5_50')

Another way to visaluze the result is looking for interactions between our values. To do this, we can call for perspe code, as can be oberved below.

Looking into the interactions
persp(Result3)

The above codes above, therefore, shows a tutorial in conducting regression analysis in R. Thank you!