МАГНІТНИЙ МОМЕНТ У МАГНІТНОМУ ПОЛІ

Мета роботи

Визначити момент сили, зумовлений магнітним моментом в постійному магнітному полі, як функцію:

- індукції магнітного поля;
- кута між напрямком магнітного поля та магнітного моменту;
- величини магнітного моменту.

1. Робоча формула

Якщо магнітне поле буде неоднорідним, то воно буде різне на різних частини контура, який вміщений у це магнітне поле і, відповідно, на різні частини контура діяти різний обертальний момент. Для того, щоб цього уникнути, бажано використовувати однорідне магнітне поле, що забезпечується завдяки котушкам Гельмгольца.

У даній роботі контур — це пласка петля, що має N витків, по якій тече постійний струм I', діаметр кільця d. А тому, його магнітний момент дорівнює:

$$p_m = I' \frac{N\pi d^2}{4},$$

а обертальний момент тоді визначатиметься як:

$$M = I' \frac{N\pi d^2}{4} B \sin \alpha.$$

Далі, враховуючи, що магнітне поле котушок Гельмгольца пропорційні силі струму, що тебе по ним (B=CI, де C — величина, що залежить від параметрів котушок і називається константою котушок Гельмгольца) можемо записати:

$$M = \frac{\pi}{4} CII'Nd^2 \sin \alpha. \tag{1}$$

1.1. Дослід 1. Залежність обертального моменту від сили струму в контурі

Константами експерименту є величини в табл. ??.

Таблиця 1. Константи експерименту

Величина	Значення
Число витків контура, N	3
Діаметр контура, d , м	0.12
Струм в котушках Гельмгольца, І, А	2.85
Орієнтація контура, $lpha$, $^\circ$	90

Для даного досліду, константу котушок можна обчислити, знаючи коефіцієнт лінійної апроксимації графіка M = M(I'):

$$M = kI'. (2)$$

Виходячи з формули (??) та даних таблиці ?? бачимо, що

$$C = \frac{4k}{IN\pi d^2 \sin \alpha} = 10.35 \cdot k. \tag{3}$$

В експериментах було виміряно момент сили, що діє на контур зі струмом в магнітному полі. Оскільки динамометр прилада градуйований в мН, то для отримання значення моменту, вказані значення сили необхідно домножити на плече, що дорівнює 12 см. Результати занесені до таблиці ??

Таблиця 2. Результати вимірювань

<i>I</i> ′, A	$F, \cdot 10^{-3} \text{ H}$	M , $\cdot 10^{-4}$ H·M
0.00	0.00	0.00
0.50	0.40	0.48
0.80	0.60	0.72
1.00	0.70	0.84
1.50	1.00	1.20
1.90	1.30	1.56
1.70	1.20	1.44
1.20	0.75	0.90

За даними результатами побудовано графік ??.

З лінійної апроксимації результатів (рис. $\ref{puc.}$) бачимо, що коефіцієнт нахилу $k=8.02\cdot 10^{-5}$ H/A, а значення константи котушок можна розрахувати з ($\ref{quadratic}$)

$$C \approx (8.3 \pm 1.2) \cdot 10^{-4} \,\mathrm{T\pi/A}$$

Відносна похибка:

$$\epsilon \approx 15 \%$$
.

Відмінність експериментального значення від теоретичного становить $\left(\frac{C_{\rm exp}}{C_{\rm theor}}-1\right)\cdot 100\,\%=19.74\,\%.$

- 1.2. Дослід 2. Залежність обертального моменту від сили струму в котушках Гельмгольца
- 1.3. Дослід 3. Залежність обертального моменту від орієнтації контура

З лінійної апроксимації результатів (рис. $\ref{puc.}$) бачимо, що коефіцієнт нахилу $k=2.21\cdot 10^{-4}$ H/A, а значення константи котушок можна розрахувати з ($\ref{quadratic}$)

$$C \approx (1.1 \pm 0.6) \cdot 10^{-4} \,\mathrm{Tm/A}$$

- 1.4. Дослід 4. Залежність обертального моменту від площі контура
- 1.5. Дослід 5. Залежність обертального моменту від кількості витків контура
- 2. Обговорення результатів

Висновки