145. Suppose a random sample is taken from a normal distribution with known variance σ^2 . For each observation, a random Y_i is known to have mean βx_i , where x_i is an easily measured observable variable; that is,

$$Y_i \sim N(\beta x_i, \sigma^2), \quad i = 1, 2,, n$$

where each x_i is considered a constant (not a random quantity).

- (a) Find the methods of moments estimator for β .
- (b) Prove the maximum likelihood estimator (MLE) for β is

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}.$$

- (c) Prove the MLE is unbiased.
- (d) Prove the distribution is an exponential family, and use that to find a complete sufficient statistic.
- (e) Is the complete sufficient statistic minimal sufficient?
- (f) What is the Cramér-Rao Lower Bound (CRLB) for the variance of any estimator of β ? The MLE was proven to be unbiased. What is the CRLB for any unbiased estimator of β ?
- (g) What is a uniformly minimum variance unbiased estimator (UMVUE) of β ?
- (h) Is the UMVUE unique? Explain.