Inteligência Artificial

Redes Neurais Artificiais Introdução

José Luis Seixas Junior

Índice

- Conceitos Básicos.
- Neurônio Biológico.
- Neurônio Artificial.
- Funções de Ativação.

- Computador:
 - Melhor em cálculo e lógica;
 - Multi-tarefas;
 - Base elétrica proveniente da rede elétrica.

- Humano:
 - Melhor em raciocínio e criação;
 - Aprendedor;
 - Base elétrica
 proveninente de
 reações químicas
 (alimento).

 Os primeiros trabalhos de RNA (Redes Neurais Artificiais) surgiram na década de 50.

- O tema se tornou popular para pesquisa científica a partir de 1990.
 - Problema da comunidade matemática;

- Exemplos de aplicações de RNA:
 - Avaliação de imagens ruidosas;
 - Classificação de padrões de escrita e fala;
 - Reconhecimento facial com visão computacional;
 - Sistemas de controle e previsão financeira;
 - Identificação e anomalias e/ou patologias com bases de sinais digitais;
 - Controle automatizado de equipamentos;

- "Redes Neurais Artificiais são modelos computacionais inspirados no sistema nervoso de seres vivos";
- Possuem capacidade de aquisição e manutenção de conhecimento;
- São caracterizadas pela unidade de processamento chamada de neurônio;
 - Computacionalmente representadas por matrizes e vetores de pesos sinápticos.

- Principais Características:
 - Adaptação por experiência: Os pesos sinápticos são modificados de acordo com a entrada de exemplos;
 - Capacidade de Aprendizado: É possível relações dos parâmetros do problema;
 - Habilidade de Generalização: A relação de características adquiridas por processo de treino consegue generalizar um comportamento desconhecido;

- Principais Características:
 - Organização de Dados: Agrupamentos e particularidades podem ser extraídas;
 - Tolerância a falhas: O número elevado de conexões e núcleos de processamento torna as redes um sistema que consegue contornar falhas quando corrompido sensivelmente;
 - Facilidade de Prototipagem: A implementação de parte das arquiteturas é simples por serem baseadas em operações matemáticas elementares;

Neurônio Biológico

Neurônio Biológico

ESTRUTURA INTERNA DO CÉREBRO HUMANO

O CÉREBRO É COMPOSTO DE BILHÕES DE NEURÔNIOS INTERLIGADOS (REDE NEURAL)

Camada de Entrada

Entradas:

- Sinais ou medidas que representam as variações aceitas pela aplicação.
- Pesos Sinápticos:
 - Valores de ponderação da relevância das entradas.
- Combinador Linear:
 - Agregar os valores das entradas produzindo um potencial de ativação (função Soma).
- Limiar de Ativação:
 - Identifica a variação apropriada para o resultado.

- Potencial de Ativação:
 - Resultado produzido com a função soma e o limiar de ativação.
- Função de Ativação:
 - Limitar a saída em um intervalo assumido pela arquitetura.
- Saída:
 - Valor final produzido pelo neurônio em relação ao dado conjunto de entrada.

$$y = \varphi \left(\sum_{i=1}^{n} w_i x_i - \theta \right)$$

Degrau (Heavydise/ Hard Limiter):

Degrau Bipolar (Symmetric Hard Limiter):

Rampa Simetrica:

Logística:

Tangente Hiperbólica:

$$g(u) = \frac{1 - e^{-\beta u}}{1 + e^{-\beta u}}$$
Nível de inclinação

Gaussiana:

Linear:

$$g(u) = u$$

Obrigado.

Dúvidas?