ELES-1984

December 1984

EXPANDED LIQUID ENGINE SIMULATION COMPUTER PROGRAM

ADVANCED USERS MANUAL

Prepared By:

Charles E. Taylor

Aerojet TechSystems Company P.O. Box 13222 Sacramento, California 95813

ACKNOWLEDGEMENTS

The mathematical models used in ELES-1984 are the result of many analysts committing their knowledge and experience to the task of producing simplified, preliminary-design algorithms. The following is a list of contributors:

Roger Anderson

Ed Barth (AFRPL)

Randy Bickford

Kirk Christensen

Don Culver

Jack Dever

Al Epes

Fred Fischietto

Keith Hamlyn (MMDA)

Ross Hewitt

John Hidahl

Bob Holman (SEA)

Jack Ito

Joe Jellison

Craig Judd

Tom Lee

Don Lemke

Bruce Lindley

Barbara Loch/Bicknell (MMDA)

Rich Matlock (AFRPL)

Gregg Meagher

Joe Mellish

Gary Nickerson (SEA)

Charles O'Brien

Dave Perkins (AFRPL)

Bob Schwantes

Adam Siebenhaar

Jim Smith

Charles Taylor

Vic Viteri

Dick Walker

TABLE OF CONTENTS

		Page
1.0	Introduction	1
2.0	Advanced Input Worksheets	3
3.0	Centaur D1-T Sample Case	53

LIST OF TABLES

 $\{ (x_i, y_i)_{1 \leq i \leq k \leq n}, (x_i, y_i)_{1 \leq i \leq k \leq n} \}$

Table No.		Page
3.1	Centaur D1-T Verification Input Notes	108
3.2	Centaur D1-T Weight Summary	125
3.3	Centaur D1-T Verification Summary	126

LIST OF FIGURES

Figure No.		Page
2.1	Basic Worksheet .	4
2.2	Recurrent Input Worksheet	17
2.3	Contingent Input Worksheet	23
.3.1	Centaur D1-T	54
3.2	Centaur D1-T Input Worksheets	56
3.3	ELES Input for Centaur D1-T Verification	105
3.4	ELES Warning Page	113
3.5	ELES Graphical Output	114
3.6	ELES Tankage Summary	115
3.7	ELES Propellant Summary	117
3.8	ELES Engine Site/Weight/Performance Summary	118
3.9	ELES Regenerative Cooling Summary	119
3.10 .	ELES Pressure/Temperature/Flowrate Summary	120
3.11	ELES Turbopump Assembly Summary	121
3.12	ELES Overall Stage Weight Summary	122
3.13	ELES Vehicle Summary	124

1.0 INTRODUCTION

The ELES-1984 computer code is a landmark development in the preliminary systems analysis of liquid rocket vehicles. It is capable of revealing subsystem interactions and design choice impacts on total vehicle performance. Its use enables very rapid determinations of optimum vehicle designs.

The liquid propulsion system models in ELES have been developed by Aerojet TechSystems Company under the auspices of AFRPL during the past few years (1980-1984). The main purpose of ELES is to find optimum vehicle designs for specified mission requirements. Toward that end it is capable of evaluating the size, weight, and performance of system components over a range of design configurations, materials of construction, and operating points. These capabilities allow the code to act as an excellent propulsion system preliminary design training tool.

The objective of this manual is to explain the basic use of the ELES-1984 computer code. The main topics to be covered by this manual include defining a problem statement and formulating an input set for liquid stages in a rocket vehicle. This manual begins where the New Users Guide leaves off and expands the options available to the user.

Use of the non-liquid portions of ELES (solid stage design, trajectory simulation, method of multipliers optimization, etc.) are documented by other sources available through AFRPL.

There are four manuals which describe the operation of the ELES-1984 Computer Program.

Taylor, C. E. Expanded Liquid Engine Simulation Computer Program New Users Guide, Aerojet TechSystems Company, 1984

Taylor, C. E.
Expanded Liquid Engine Simulation Computer Program
Technical Information Manual, Aerojet TechSystems Company, 1984

1.0, Introduction (cont.)

Taylor, C. E. Expanded Liquid Engine Simulation Computer Program Programmers Manual, Aerojet TechSystems Company, 1984

Taylor, C. E. Expanded Liquid Engine Simulation Computer Program Advanced Users Manual, Aerojet TechSystems Company, 1984

Both users guides are concerned with proper formulation and input of a problem statement. The new users guide does so in a more basic manner than the advanced users guide. The technical information manual describes the mathematical algorithms used in ELES to model the various propulsion subsystems. The programmers manual deals with the internal structure of the FORTRAN code, its file structure, and internal communication.

For more information regarding the ELES-1984 computer program contact

Charles E. Taylor Aerojet TechSystems Company P.O. Box 13222 Sacramento, CA 95813 (916) 355-2773

2.0 ADVANCED INPUT WORKSHEETS

Using the liquid stage models in ELES to their fullest potential involves the use of hundreds of inputs. In order to organize the input procedure for those variables, an input worksheet has been developed. The first portion of that worksheet is presented in the ELES New Users Guide, pages 29 through 41. The remainder is presented herein.

The new users worksheet is concerned with a general overview of basic ELES options; that worksheet is the best place to begin. It will be assumed in this manual that the new users worksheet has been completed prior to beginning the advanced users worksheet. That worksheet has been reproduced in Figure 2.1.

There are two major types of input in the advanced users worksheet; 1) recurrent input which must always be considered and 2) contingent input which need only be considered if prior choices dictate.

The recurrent input is shown in Figure 2.2. It includes general inputs, injector related inputs, thrust chamber inputs, and tankage inputs. These should be considered every time ELES is run.

The contingent input worksheet is displayed in Figure 2.3. These inputs relate to tandem tanks, non-conventional tanks, cold gas pressurization, solid gas generator pressurization, turbo-pump assemblies, regen/trans-regen cooling, tankage heat transfer, positive expulsion bladders, user defined propellants, throttling trajectories, and short nozzle designs. Each category need only be considered if it is a part of the design in question.

It is highly recommended that the user photocopy all applicable worksheets and fill them out prior to program execution.

				
STAGE #	Total Number of Stages	Vehicle Payload Wt. (1bm)	Miscellaneous Stage Wt. (15m)	Expendable Stage Wt. (1bm)

modulus of elasticity (psia) design stress (psia) safety factor (-) density (1b/in³)

Upper Interstage Material Properties

Kind of Stage (Circle one)

- l) solid 2) liquid

	ო	0.0	0.0	0.0	0.101	220000.	1.8E6	1.5	
	ı] bm	1bm	Jbm	1b/in ³	psia	psia	ı	
)	INPGEN	INPGEN	INPGEN	INPGEN	INTSTG	INTSTG	INTSTG	INTSTG	INPGEN
	NSTGES	WPAYLD	WMISC	WEXPND	RHOINT	SINST	EINSTG	SFINST	KSTAGE

(cont.) Figure 27

Page

Tank Geometry

Tandem Tanks

monocoque tanks (1) suspended tanks (0) separate domes (0) common domes (1) (Draw Sketch Here)

Pressure Tank Geometry

0) spherical in engine bay
number of tanks
1) suspended forward of forward tank
2) monocoque separate dome
3) monocoque common dome
4) cylindrical in forward tank

propellant tank head ellipse ratio

pressurant tank head ellipse ratio propellant tank dome orientation
 (-1 = convex forward)
 (1 = convex aft propellant location
(1 = fuel aft, not l = fuel not aft

VARIABLE	NAMEL IST	UNITS	DEFAULT
NCTNK	LFLAG	ı	0
MNCQA	TNKGEO		
MNCQF	TNKGEO	ı	
KDOME	TNKGEO	1	,
KPRESS	TNKGEO	1	0
NPRB	TNKGEO	ı	-
ELDOME	INPGEN	1	1.0
ELRP	LTANK	I	1.0
KXATAH KXATFH KXFTAH KXFTFH KPRPA	TNKGEO TNKGEO TNKGEO TNKGEO TNKGEO		N
	and the street of the street o		

<u>·</u>
(cont
igure /
-, LL

Non-Conventional Tanks

(Draw Sketch Here)

Total number of tanks

Tank ellipse ratios

Tank types (1 = CSE, 2 = torus)

Tank contents (1 = 0x, 2 = fuel, 3 = press)

Tank angular location (deg)

Tank radial location

Kind of dimensional input

dimensionless (0) $^{L}_{cyl}$ $^{/D}$; $^{R}_{hub}$ $^{R}_{tube}$

major dimension (in) (1) Rtank ; Rhub Engine angular location (deg)

Engine radial location

Stage Diamater (in)
Forward Skirt Length (in)
Aft Skirt Length (in)

VARIABLE	NAMEL IST	UNITS	DEFAULT
NTANKS	NCTINP	ı	က
ELTNK1-4	NCTINP	l	1.0
KTANK1-4	NCTINP	ı	-
INTNK1-4	NCTINP	t	
TANGL1-4	NCTINP	deg	0.0
RADLO1-4	NCTINP	ı	0.0
KALMOD	NCTINP	1	0
RDIM1-4	NCTINP	ı	2.0
RMAJ1-4	NCTINP	Ë	25.0
ENGAN1-4	NCTINP	deg	0.0
ENGRD1-4	NCTINP	ı	0.0
DMOTOR	INPGEN	in	0.99
FFSKTL	LIQUID	•	0.3
FASKTL	LIQUID	1	0.067

(cont.)

Finure/

S. C.	
4	
αž	

ULT	0										6		0	0	_
DEFAULT			*************************************								1.9		0.0	600.0	_
UNITS	Į		- Contractor	· · · · · · · · · · · · · · · · · · ·							ı	1	$^{1b_{f}}$	psia	
NAMEL IST	LFLAG										LQPERF	LIQENG	LIQUID	INPGEN	•
VARIABLE	IPROP										OFCORE	NTC	FVAC	2	•
Mixture Ratio		2.3	2.2	2.8	0.85	5.0	2.7	3.4	0.6	2.3					
(Circle One)	0) user defined	1) $N_2 O_4 / MMH$	2) MON-25/MHF-3	3) CIF ₅ /MHF-3	4) MON-25/60% MHF-3 + 40% Al	5) LO ₂ /LH ₂	6) LO ₂ /RP-1	7) LO ₂ /CH ₄	8) LF ₂ /LH ₂	9) LF ₂ /N ₂ H ₄	Propellant Mixture Ratio	Number of Engines	Vacuum Thrust Per Engine (1b _f)	Chamber Pressure (psia)	

nt.)	/cle	
uoo)	gr Cya	_
	~\ /	One
Figure	Enginge\	Circle
<u>.,</u>	ū	\mathcal{L}

- Pressure Fed
- Gas Generator Bleed
- Staged Combustion (fuel rich preburner) Expander Cycle (fuel cooled)

 - Staged Reaction (monopropellant fuel)

Gas Generator/Pre-Burner

Tank Outlet Net Positive Suction Pressures

Oxidizer (psia) Fuel (psia)

8

Pump Configuration

- 6383
- Gearbox Single Shaft TPA Twin TPA in series Twin TPA in parallel

Boost Pumps

oxidizer (o = no)

(1 = yes)fuel

VARIABLE	NAMEL IST	UNITS	DEFAULT
KCYCLE	LFLAG		0
			-
OFGGPB	PUMP	1	0.1
GAMGPB	PUMP	ı	1.25
СРССРВ	PUMP	BTU/1b °R	0.721
WMGGPB	PUMP	ı	14.0
OXNPSP	PUMP	psia	10.0
FLNPSP	PUMP	psia	10.0
JCNFIG	PUMP	ı	2
JBPOX	PUMP	ı	0
JBPFL	PUMP	ı	0

	 1	ļ		
Figure (cont.)	Burned Propellant Wt.	Ullage Fractions	Oxidizer	Fue

Propellant Acquisition Device (Circle One)

- none
- 0606430
- transverse collapsing aluminum bladder full bonded rolling diaphram aluminum half bonded rolling diaphram aluminum full bonded rolling diaphram stainless steel half bonded rolling diaphram stainless steel
 - surface tension device
- Propellant Tank Pressurization (Circle One)
 - (KGASOX, KGASFL)
- non-autogenous (KGAS) 0
- i) solid gas generatorc) cold helium
- autogenous

Cold Helium Storage Pressure

Helium Tank Final Pressure Fraction (less than 1.0 indicates blowdown)

-		

VARIABLE	NAMEL IST	UNITS	DEFAULT
WTLPRP	LIQUID	1b.	13250.0
ULLFFL	LTANK	t	0.02
ULLFOX	LTANK	ı	0.02
KACQOX	LFLAG	t	0
KACQFL	LFLAG	t	0
KGASOX	LFLAG	t	0
KGASFL	LFLAG		C
KGAS	LFLAG	ţ	> 0
PICG	90700	psia	4365.0
FPULCG	SOL DG	ı	0.8
		-	

Page 7

DEFAULT 1.25 1.25 1.25 2.0 .5 lb/in3 psi psi psi BTU/1b °R BTU/1n sec °R in UNITS NAMEL IST LIQMAT NCTINP LIQMAT LIQMAT LIQMAT LIQMAT LIQMAT NCTINP MATNK1-4 VARIABLE SFTNK1-4 MATSTR MTNKFL MTNKOX SIGMAX SPHEAT CONDCT TMING TMINGS SFPRTK **SFFLTK** SFOXTK SFSTRC SFL INE MATPT RHO YMOD

	•		
Fuel Tank	Oxidizer Tank	Pressurant Tank	Structure and Skirts

6A1-4V titanium @ 300°F aged 6A1-4V @ 300°F cryoformed 301 CRES @ 500°F aged 301 CRES @ 500°F

1-10 112 13) 15)

user defined 6061-T6 aluminum @ 300°F

Mater, , of Construction (fill in material ID#)

(cont.)

Design Safety Factors	Fuel Tank	Oxidizer Tank	Pressure Tank	Structure and Skirts	lines

One)
er (Circle One
transfe
tank heat
tank
Propellant

(cont.)

Figure 2.7

- ignore tank heat transfer external boundary exposed to conductive source worst case solar radiation ground hold ice formation 3333

Propellant Tank Insulation (in.)

Oxidizer Tank SOFI Thickness SOFI Thickness MLI Thickness Fuel Tank

MLI Thickness

11

		2		
111111111111111111111111111111111111111	Engine Expansion Area Katio	Nozzle Extension Attach Area Ratic	Engine Contraction Ratio	Combustion Chamber Length (in.)

	KNOZ	-
Length (in.)	IPLUG	C
Combustion Chamber Length (in.	Nozzle Type (Circle One)	Conical

	2	ı
)	0	 -
conicai	Rao/Bell	Plug Cluster

2
Annular

	VARIABLE	NAMEL IST	UNITS	DEFAULT
	KHXOPT	LFLAG	ı	0
	TSOFIF	TANKHX	ij.	0.0
	TML IF	TANKHX	in.	0.0
	TSOFIO	TANKHX	i.	0.0
~~~~~~~~	TML IO	TANKHX	'n.	0.0
****	EPS	INPGEN	ŧ	10.0
	EPSATT	INPGEN	1	0.1
	CR	LIQENG	i	2.54
	XLC	LIQENG	i.	0.0
	XLN	LIQENG	in.	18.7
	IPLUG	LIQUID	ı	0
	KNOZ	LIQENG	ı	2
	ALFNOZ	NOZZLE	deg	15.0
	RATMLR	LIQENG	ı	7.1.1
	KEXNOZ	LIQENG	1	!
······································				
L	- Parameter Company	4	7	

(cont.) Figure 2

Page 9 r

Combustion Chamber Cooling Method (Circle One)

- **Ablative**
- Regenerative 5)
- Trans-Regen 3)
- Radiation

Nominal Chamber wall material temperature (°R)

Gas wall thermal conductivity (BTU/in sec °R) Gas wall minimum gauge (in.)

12

DIFTBF = $(T_{barrier}-TGWNOM)/(T_{core}-TGWNOM)$

Nozzle Cooling Method (Circle One)

- 1) Ablative
- 2) Regenerative
- Trans-Regen 3)
- Radiation 4)
- Film 2)

Nominal nozzle material temperature (°R)

VARIABLE	NAMEL IST	UNITS	DEFAULT
KOOLTC	LFLAG	l	
TGWNOM	INREGN	°	2000.0
DIFTBF	INREGN	1	1.0
IRPRNT	INREGN	1	0
GWMING	INREGN	Ē	0.025
WALLK	INREGN	BTU/in sec °R	sed0.00039
EPSTRU	INREGN	1	2.0
EPSTRD	INREGN	ı	1.2
TDESTR	INREGN	α. °	2000.0
KOOLNZ	LFLAG	I	4
TNENOM	LIQENG	ϡ	2000.0

(cont.)
Figure

Pressure Drop Across Injector

optimistic)	nominal)	conservative)
<u>:</u>		
ပ	Pc	ပ
	οŧ	
(15%	(52%	(40%

/) こうのこ 三 うなつ	nominal)	is conservative)
2	<u>.</u>	<u>.</u> s
ر	ည	Pc
5	, of	of
9	25%	% 0 1 0 8

Pressure Drop Acorss Valve

(3-30% of Pc)

	zer

VARIABLE	NAMEL IST	UNITS	DEFAULT
FCHGFL	LIQUID	•	0.15
FCHGOX	LIQUID	•	0.15

Γ	VAKIABLE NAMELIS	NAMEL 1S
Ī	FCHGFL	LIQUID
	F CHG0X	LIQUID
	CPVLVF	LIQUID
	רטאוואסט	10110

L	L	

\top	7	

Oxidizer

Fuel

 		<u> </u>	

 L,,	,	<u> </u>	

Oxidizer

Fuel

Pressure Drop Across Lines

(3-30% of Pc)

(1.0 = coarse pattern, 4.0 = nominal pattern)
(15.0 = platelets, 40.0 = hyperthin platelet)

13

Injector Element Density (elem/in 2)

	_
	-
1	11
	IELDEN

	<u></u>
1	11
I	EN
	ELD
	\vdash

7	1
1	11
ı	ES
	10
	IE

Injector Element Type (used to correct drop size)

_	
0ne	
a	
irc	
\mathcal{L}	

۵		
, splash	X doublet, V doublet,	Pre-atomized trinlet
0		
-		

(Groups are in increasing order of atomizing efficiency)

3.0) Showerhead, shear co-ax

FCHGOX	LIQUID	t	0.15
CPVLVF	LIQUID	1	0.409
CPVL VO	LIQUID	ı	0.28
CPL INF	LIQUID	ı	0.172
CPL INO	LIQUID	l	0.207
ELDENS	INJECT	elem/in ²	3.1
I EL DEN	INJECT	ı	-
RMFFL	LQPERF	1	0.33
RMFOX	LQPERF	t	0.33
FLOPEL	INJECT	1	2.0
OXOPEL	INJECT	ı	1.5

^{0.5)} Vortex, swirl coax

Page 11

Translating Nozzle (Circle One)

Figure

- None
- Spring Actuated Gas Deployed Skirt 500

Translating Nozzle Material Density (1b/in³)

Gimbal Angle (deg)

Number of Gimbaling Engines
Engine weight model (Circle One)
-1) input engine weight
0) simplified ablative
1) physical engine wei

- input engine weight simplified ablative engine weight model
 - physical engine weight model
- (use density and strength at temperature) Engine Materials of Construction

3, 25000 psia Aluminum 0.098 lb/in³, 25000 psia Stainless Steel 0.28 lb/in³, 25000 psia Columbium 0.32 lb/in³, 25000 psia Silica Phenolic 0.0632 lb/in³, 25000 psia

			X
CHAMBER	VOZZLE	INJECTOR	/ALVE

VARIABLE	NAMEL IST	UNITS	DEFAULT
KTRNOZ	LIQENG	ı	0
EPTRAT	LIQENG	1	90.09
ROTRNZ	LIQMAT	lb/in ³	0.28
GMBANG	LIQUID	deg	0.9
NGIMB	LIQUID	ı	·
KGPOWR	LIQUID	ı	0
KWTMOD	LFLAG	ŧ	0
RHCABL	LIQMAT	lb/in ³	0.0632
RHCSTR	LIQMAT	1b/in ³	0.0632
RHOGW RHOCLS	LIQMAT	1b/in ³ 1b/in ³	0.28
SIGCHM	LIQMAT	psi psi	25000.0 25000.0
RHONZE SIGNZE TNZMIN	LIQMAT LIQMAT LIQENG	lb/in ³ psi in	0.32 25000.0 0.010
RHOINJ SIGINJ RHOVLV	LIQMAT LIQMAT LIQMAT	1b/in ³ psi ₃ 1b/in ³	0.098 25000.0 0.098
TMIN TOP TMAX	LIQUID LIQUID LIQUID	4 4 4 0 0 0	60.0 75.0 90.0

density strength (1b/in³) (psi)

Stage Operating Temperature Range (°F)

(used with KWTMOD =

Minumum temperature Nominal temperature

Maximum temperature

~
7
Page

DEFAULT

UNITS

0.1

0.

0.

0.

1.0

0.0.0

1.05

0.0

2.5

-

0.

0.

0.

1.0

2.5

PUMP

CXML IN

Engine Bay Lines

	VA	ARI	VARIABLE
	0	X	CXWTNK
	<u></u>	XX	CXNCT1-4
	<u> </u>	XX	CXWFLT
	<u> </u>	CXWOXT	TX
	<u> </u>	CXWPTN	Z.
ines	<u> </u>	CXWSTR	TR
		CXWATL	
	Õ	XWP	ᄅ
	~~~	CXWENG	
	×>	CXVALV	>
Nozzle Extension	X) 	Ş X	<u></u>
	X)	CXMNZE	32
	CX	CXWDUC	<u>ട</u>
	C	CXWGIM	Σ
	×>	CXWTHM	Σ
Injector	CC	CXWIGG	ဌ
sembly	Š	CXWTPA	

Figure (cont.)

Weight Multipliers

_
_
<b>(</b> ' ')
F
യ
Ç,
ā
Ω.,

DEFAULT	2.0	0	0	0.995	0.995	
UNITS	in	1	ı	1	•	
NAMEL IST	LIQENG	LFLAG	LFLAG	LTANK	LTANK	
VARIABLE	XMOUNT	INPEXF	INPEXO	EXPLFL	EXPLOX	

				Fuel expulsion efficiency	Oxidizer expulsion efficiency
Engine Mounting Length Adjustment (1n)	Propellant Expulsion Efficiency	0) calculate	1) input	Fuel expul	a razibiro

Figure (

### Tankage

Line printer characters per inch

Horizontal	,	Vertical

Propellant Acquisition device material density (lb/in. 3 )

(9	
H	(9
교	11
KACQFL	ŏ
<u>₹</u>	КАСОО
~	$\leq$
tank	논
·	tan
fue	č

Cross sectional area of shroud stiffening rings (in.  2 )

forward shroud	aft shroud

17

VARIABLE	NAMEL IST	UNITS	DEFAULT	
 CHRPIX	NCTINP	char/in.	10	·
CHRPIY	NCTINP	char/in.	9	
DACQFL	LTANK LTANK	1b/in. ³ 1b/in. ³	0.1	
 AESSR AFSSR	LTANK LTANK	in ²	0.152	

### Injecter

Injecter orifice discharge coefficients (-)

fuel	×o

Injecter element input (IELDEN = 0)

(-)	
r elements	Orifices (-)
injecter	
of	J-C
Number of	Number of fuel

Number of ox orifices (-)

1	1 1	
	1 1	
	1 1	
: 1		1
! !		
1 1		i i
		1
1		1
	, , ,	
i l	1 1	1
i		
	1 1	
•	1 1	
, ,		
: 1		
: 1		,
: 1		
		ı
1 1		1
1	i i	1
1 1	1 1	i
1		1
		ı
1 1		•
,		K
_		

Barrier liquid film length (in.)

18

Barrier mixing angle (deg.)

<del>/</del>

Page 2 4

VARIABLE NAMELIST
INJECT
INJECT
INJECT
INJECT
INJECT
LQPERF
INJECT
2

## Thrust Chamber

4 11 Engine radiation cooling model (KOOLTC = 4, KOOLNZ

TCA material emissivity

vehicle emissivity in engine bay

ambient temperature  $({}^{\circ}R)$ 

Ablative Chamber/nozzle weight model (KOOLTC = 1, KOOLNZ = 1) (See namelist ABLATE)

reference chamber pressure for chamber - (psia) reference chamber pressure for nozzle - (psia)

Chamber structural safety factor
(KOOLTC = 1 or 4)

reference nozzle thickness (in.)

reference chamber radius (in.)

19

reference throat radius (in.)

Minimum nozzle extension thickness (in.) Engine size/weight input (KWTMOD = -1)

nozzle length (in.)

engine weight (15)

	VARIABLE	NAMEL IST	UNITS	DEFAULT
	EMISTC	LIQENG	1	6.0
	EMISVE	LIQENG	I	0.5
	TAMRAD	LIQENG	° «	260
	PNZREF	LIQENG	psia	125
	PRFCHM	LIQENG	psia	125
	RNZREF	LIQENG	in.	3.74
	RRFCHM	LIQENG	ŗ	5.95
	TNZREF	LIQENG	i	610.
************	SFCHM	LIQENG	1	1.0
	TNZMIN	LIQENG	Ė	0.01
	XUNOZ	LIQENG	ŗ.	76.04
	WTLTCA	LIQENG	<u> 1</u> 2	184.4

(cont.)
2.
Figure

Page 4 of

## Thrust Chamber

Engine Performance (Circle One)

- 0) input engine performance
- 1) calculate engine performance

Engine Performance (KPERF = 0)

One)
(Circle
Regression
Throat

0) no regression

20

$$\Delta r_{t} = C (e^{-at} - 1) + bt$$



			· · · · · · · · · · · · · · · · · · ·						
DEFAULT	_	5523	1.782	314.1	0	.002798	.0005995	.4246	
UNITS	I	ft/sec.	ı	sec.	1	t	ı		, , ,
NAMEL IST	LFLAG	LQPERF	LQPERF	LQPERF	LFLAG	ABLATE	ABLATE	ABLATE	// / / / / / / / / / / / / / / / / / /
VARIABLE	KPERF	CSTARL	OFMTC	XISP	KREG	REGA	REGB	REGC	

General Input

Propellant temperatures input option for library

propellants (IPROP > 0)

(Circle One)

0) use default temperatures

1) input temperatures

minimum fuel temperature (°R)	nominal fuel temperature (°R)	maximum fuel temperature (°R)	minimum ox temperature (°R)	nominal ox temperature (°R)	maximum ox temperature (°R)

5	DEFAULT		varies	varies	varies	varies	varies	varies	
Page	UNITS	ı	°.	° °	<u>د</u> ه	°,	ů,	° °	
	NAMEL IST	LFLAG	LFUEL	LFUEL	LFUEL	LOXID	LOXID	LOXID	
	VARIABLE	IPUTMP	TPMINF	TPNOMF	TPMAXF	TPMINO	TPNOMO	TPMAXO	



Page 6

General Input

Lines full at burnout (Circle One) (0 = No, 1 = Yes)

Miscellaneous on-board propellant (1bm) (remains on stage at burnout)

,		
	fuel [	×o
	4	0

fuel [	×

iterations on temperature schedule	(a value of I performs temperature schedule	calculations only once)
r of		
Number		

105	<b></b> -	0.0	<b>-</b>
UNITS	1	1bm 1bm	
NAMEL IST	LFLAG	INPGEN	LIQUID
VARIABLE	LNFULL	WMISFL WMISOX	T I dwb i

Page 1 o.

)Contingent Input Worksheet Figure /

Tandem Tanks (NCTNK = 0)

Space between suspended tank and structural vehicle wall

aft tank (MNCQA≈ 3)

forward tank (MNCQF = 0)

pressure tank (KPRESS = 1)

Pressure tank insulation density

 $(NCTNK = 0)(1b/in.^3)$ 

Propellant feed line flag (Circle One)

0) external feed line

1) internal feed line

23

Number of pressure bottles in engine bay

 $(KPRESS = \cdot 0)$ 

Figure (cont.)				1 ) ) 5 -		
		VARIABLE	NAMEL IST	UNITS	DEFAULT	
landem lanks (INCLINK = U)						
Stage critical bending moment (NCTNK = $0$ ) (in./ $1b_{ m f}$ )		CBM	LTANK	in./1b _f	0.0	
Maximum carry moment (NCTNK = $0$ )(in./ $1b_f$ )		CMMAX	LTANK	in./lb _f	0.0	
Space between aft and forward tank (KDOME = $0$ ) (in.)		CLRAF	LTANK	in.	0.0	
Space between forward tank and pressure tank (KPRESS = 1-	= 1-3) (in.)	CLRFP	LTANK	Ë	0.0	
Density of pressure tank insulation (1b/m 3 )		RHPTIN	LIQMAT	1b/m ³	0.04	
Insulation thickness for pressure tank (in.)		TINSUL	LIQMAT	i.	0.0	
				· · · · · · · · · · · · · · · · · · ·		
24			:			
			*			
				Manuscript and a second		
			***************************************			

)(cont.)
5
Figure

Page 3 of

Non-conventional tank usable volume ratios

fuel tanks	ox tanks	pressure tanks

Minimum clearance between non-conventional tanks (in.)

Minimum clearnace between nozzles in non-conventional model (in.) Non-conventional tankage drawing mode (Circle One)

- 1) draw three views on one page
- 2) draw three views on separate pages

25

Non-conventional models engine nesting mode (Circle One)

- 1) nest each engine independently
- 2) nest engines to highest common plane
- 3) nest engine exit plane to end of tankage + XMOUNT

Non-conventional tankage thickness option (Circle One)

- 0) variable wall thickness
- 1) constant wall thickness

	VARIABLE	NAMEL IST	UNITS	DEFAULT
	RATNK1-4	NCTINP	ı	1.0
	CLRTNK ENGSPC	NCTINP	in i	2.0
	IDRAW	NCTINP	ı	2
	KNEST	NCTINP	ı	m
· · · · · · · · · · · · · · · · · · ·	KTHCK1-4	NCTINP	1	<u>-</u> -

(cont.
. /
7
Figure

DEFAULT		**************************************	5.0	5.0	.0001	.0001	
$\vdash$					<del></del> -		
UNITS			I	ı	. <u>:</u>	i.	
NAMEL IST			LTANK	LTANK	LTANK	LTANK	
VARIABLE			FLKFCT	OXKFCT	RUFFFL	RUFFOX	
	Non-Conventional Tanks (NCTNK = 1)	Non-conventional tank feed line hydraulics	velocity heads lost in fuel lines including valves, bends, etc.	velocity heads lost in ox lines including valves, bends, etc.	absolute surface roughness of fuel lines (in.)	absolute surface roughness of ox lines (in.)	26

Cold Gas Pressurization

Pressurant Properties (default is Helium)

$\overline{}$
_
heats
specific
οĘ
ratio
ntropic
Isent

specific heat at
Polytropic ratio of specific

Polytropic ratio of specific heat at time equal infinity (-)	Time at which polytropic ratio falls to 1.1 (sec.)

DEFAULT	1.66	0.0	240	4.0	
UNITS	ı	1	ì	lb/1bmole	
NAMEL IST	50T00	COLDG	COLDG	50T00	
VARIABLE	GAMICG	GAMPCG	TIMPCG	WTMCG	

Molecular wt. of pressurant (lb/lbmole)

Figure ( ) (cont.)

		VARIABLE	NAMEL IST	STINU	DEFAULT
Solid ga	gas generator pressurization (default is TAL-8)				
	Minimum port to throat area ratio	APATGG	SOLDGG	ı	3.0
	Ratio of equilibrium temperature in propellant tank to minimum operating temperature (TMIN)	BTEQGG	SOLDGG	ı	
	Burn rate coefficient of solid grain (in./sec.)	CBRGG	SOLDGG	in./sec.	0.095
	Design complexity multiplier solid g.g.	CDESGG	SOLDGG	ı	1.25
	Solid grain characteristic velocity (ft./sec.)	csee	SOLDGG	ft./sec.	3932
	Minimum allowable solid grain diameter (in.)	DMINSG	SOLDGG	Ë.	3.0
	Burn rate exponent of solid grain	EBRGG	SOLDGG	ı	0.64
28	Molar fraction of water in combustion products	FH20GG	SOLDGG	ı	0.2662
;	Multiplying factor on ullage pressure to calculate minimum operating g.g. pressure	FPULGG	SOLDGG	1	1.1
	Combustion products ratio of specific heats	GAMGG	SOLDGG	ŀ	1.27
	Temperature sensitivity of g.g. pressure (1/°R)	PIPKGG	SOLDGG	1/°R	0.0036
	Solid grain density (lb/in.³)	RHOGG	SOLDGG	1b/in. ³	0.056
		•	•	-	

(cont.
N
Φ
يــ
nɓ
.00
ù.

pressurization
generator
gas
Solid

	<del></del>	
s generator pressurization	Burn rate temperature sensitivity of	solid arain (1/ºR)

Burn rate temperature sensitivity of solid grain $(1/{}^{\circ}R)$	Gas generator combustion temperature (°R)	Temperature decay time constant	Reference temperature for burn rate coefficient (°R)	Molecular weight of combustion products

DEFAULT	0.0013	2130	100	08	19.0	
UNITS	1/°R	S.	sec.	<u>ц</u> 0	lb/lbmole	
NAMEL IST	SOLDGG	SOLDGG	SOLDGG	SOLDGG	SOLDGG	
VARIABLE	SIGGG	TCMBGG	TDCYGG	TREFGG	WTMGG	

Page 3 nf 30

Pump

Turbine feed location (circle one) (KCYCLE >1)

- 0) feed turbine from regen outlet
- 1) feed turbine from upstream of regen jacket (uses regen bypass flow set by BYPREG)

DEFAULT	0	
SIINN	ı	
NAMEL IST	LFLAG	
VARIABLE	LTURFD	

	(cont.)
(	<b>T</b>
	Figure 2

픱
اح
LJ_

Boost pump fraction of total propellant head rise

fuel	×o

Gas generator/pre-burner control valve pressure drop multiplier

Pressure ratio across gas generator/pre-burner fuel side ox side

	blee
-	gas generator b ) (psia)
	gas (ps
	for = 1
	ressure (KCYCLE
	outlet p cycle)
	Turbine

Number of turbo pump assemblies (Circle One)

- 1) 1 TPA per stage
- 2) I TPA per engine

Autogenous Pressurant temperature (°R)

(KGASFL = 1)	(KGASOX = 1)

0f /	
9	
Page	

	PUM	BPFROX
ARIABLE NAMEL	PUM	BPFRFL
	NAMEL	VARIABLE

046404640464046404640650.650.650.65	
S I I I I A A	
Sd °°°	
NAMEL IST PUMP PUMP PUMP PUMP PUMP PUMP PUMP	
VARIABLE BPFRFL BPFROX CVMLTF PBPRO PTURBO TULLFL TULLFL	

(cont.)
ત્વં
Figure

Ришр

Suction specific speeds of propellant pumps

main fuel pump	main ox pump	fuel boost pump	ox boost pump

(KCYCLE > = 2)
ratio
pressure
turbine
value of
Initial

Turbine pitch line spouting
Turbine

		_
		11
		T 10/0/4/
Velocity		0/2200
spouting \		hlood
bol		4
v		Area ratio of blood
,	32	Anon

0	
rati	
generator or pre-burner contraction ratio	
pre-burner	
or	
generator	
Gas	

(1b/m ² )	
density	
material	
injector	
Gas generator or pre-burner injector material density	
o	
generator	
Gas	

(psi)
· injector yield strength (psi
yield
injector
ourner
o
as generator or pre-t
Gas

_	
$(1b/in.^3)$	
density	
material	
duct	
gas	
Hot	

(psi)
strength
yield
material
duct
gas
hot

	VARIABLE	NAMEL IST	UNITS	DEFAULT
	SSSFL	PUMP		20000
	SSSOX	PUMP	ı	20000
	SSSBPF	PUMP	I	30000
	SSSBPO	PUMP		30000
	TURBPR	PUMP	í	2.0
	UOVERC	PUMP		0.4
	EPSGGB	PUMP	. 1	2.0
	GGCR	PUMP	1	12.
	ROINGG	PUMP	lb/in. ³	0.3
	SYINGG	PUMP	psi	30000
	ROSTAK	PUMP	lb∕in.³	0.3
	SYDUCT	PUMP	isd.	30000
***************************************				

	(cont.)
(	B
	igure

e	1
$\vec{z}$	

TPA Start System design (Circle One)

0) tank head

1) cold gas spin

2) start tanks

3) solid cartridge

### TPA Start System

start valve complexity multiplier
accumulator valve complexity multiplier (ISTART = 2)
solid grain burn rate (ISTART = 3) (in./sec.)
molecular weight of pressurization gas (ISTART = 2)
number of engine restarts
start bottle material density (ISTART = 2) ( $1b/in.^3$ )
start cylinder material density (ISTART = 2) $(1b/in.^3)$
start sphere material density (ISTART = 1) ( $1b/in.^3$ )
start cartridge material density (ISTART = 3) ( $1b/in.^3$
start cartridge grain density (ISTART = 3) (1b/in. 3 )
start bottle yield strength (ISTART = 2) (psi)
start cartridge yield strength (ISTART = 3) (psi)
start cylinder yield strength (ISTART = 2) (psi)
start system sphere yield strength (ISTART = 1) (psi)
start bottle gas temperature (ISTART = 2) ( $^{\circ}$ R)
start system sphere temperature (ISTART = 1) (°R)

VARIABLE	NAMEL IST	SLINO	DEFAULT
ISTART	PUMP	1	0
CV	PUMP	ı	1.0
CVACUM	PUMP	ı	1.0
BURNRA	PUMP	in./sec.	0.14
GASMW	PUMP	lb/lbmole	28.
N.	PUMP	ı	
RHOBOT	PUMP	1b/in. ³	0.16
RHOCYL	PUMP	1b/in. ³	3.3
RHOSPH	PUMP	1b/in. ³	0.1
ROCART	PUMP	1b/in. ³	0.3
ROGRAN	PUMP	lb/in. ³	0.07
SYBOT	dWnd	psi	75000
SYCART	PUMP	psi	100000
SYCYL	PUMP	ps:	30000
SYSPH	PUMP	psi	47000
TBOGAS	PUMP	<u>م</u>	530
ТЅРН	PUMP	° 8	210
		PPB UP~Lager skraun	
		***************************************	

w	
9	
ď	
α.	

믵
2

Figure ( ) (cont.)

TPA Material properties

density	in. ³ )
blade material	= 3 or 4) (1b/
fuel turbine b	(JCNFIG :

	(psi)
מכווסו כא	strength
וומרכן ומו מכווזירא	11 tima te
ر د د	ne blade u
ט ט כ ב	Turbine

	(1b/
(ps1)	nebay)
rengtn	(engineba)
eld st	density
ı ade yı	erial
lurbine blade yleid strengtn	ine mat
_	Propellant line material o
34	Pro

_
(psi)
strength
yield
material
line
Propellant

	3)			
Turbine blade yield strength (psi)	Propellant line material density (enginebay) (lb/in. ³ )	Propellant line material yield strength (psi)	Cold gas valve material density (ISTART = 1)	Accumulator valve material density (ISTART = 2)

`	(cont.)	
	5	_/
	Figure	

## Regen/Trans-regen

		-		
Regen jacket bypass flow fraction (-)	Turbine bypass flow fraction (-)	Cooling channel multiplier (-)	Absolute surfacė roughness of regen channels (in.) (	Maximum depth to width ratio in cooling channels (-)
Reg	Tur	000	Abs	Мах

criter.	
ranspiration cooling	

- use QMAXTR
   input EPSTRD & EPSTRU

35

Regen coolant selection (Circle One)

- 0) oxidizer1) fuel

							<del></del>	
DEFAULT	.000	0.0	1.0	0.00008	5.0	2	<b>F-</b>	
SLINN	I	1	ı	in.	ı	ı	<b>!</b>	
NAMEL IST	INREGN	INREGN	INREGN	INREGN	INREGN	INREGN	INREGN	
VARIABLE	BYPREG	BYPTUR	CHMULT	EPIPE	HOWMAX	IDTRAN	IFREGN	

	)(cont.)
(	
	7
	Figure

Regen/Trans-regen

Number of regen segments in

Cylindrical chamber section	Convergent chamber section	Expansion nozzle section

Maximum heat flux before transpiration cooling

0	(BTU/in. sec.)	

Surface area multiplier on regen cooled engine Surface area multiplier on regen area multiplier on regen

etched platelet thickness	olatelet land thickness	separator platelet thickness	flow passage widths

DEFAULT	ιO	2	S	c 1.0	1.0	.08	-	.04	71.			
UNITS	1		ľ	BTU/in. ² sec	Ì	Ë	ř.	ř.	<u>.</u>			
NAMEL IST	INREGN	INREGN	INREGN	INREGN	INREGN	 INREGN	INREGN	INREGN	INREGN	<u> </u>		
VARIABLE	NCYL	NCON	NNZL	QMAXTR	SAMULT	ТGЕОН	TGEOL	TGEOS	ТСЕОМ			
											 	********

ò	**************************************
15	
Page	

Figure  $\bigcirc$  (cont.)

Regen/Trans-regen	VARIABLE	VARIABLE NAMELIST	STINO	DEFAULT	
Land width of regen cooling channels at throat (in.)	WLTHR	INREGN	in.	.03	
Channel width of regen cooling channels at throat (in.)	WTHR	INREGN	in.	.03	
Transpiration cooling insert					
material density (1b/in. ³ )	RHTRIN	LIQMAT   1b/in.	3 lb/in.	0.28	
thickness (in.)	TRINST	LIQMAT	in.	0.3	

0.28	0.3	°R .0004				
3 1b/in.	in.	BTU/ïńsec°R .0004				
LIQMAT	LIQMAT	INREGN			-	
RHTRIN	TRINST	TRANKM				

thermal conductivity (BTU/in.sec.°R)

Propellant tank heat transfer (Circle One)

- 0) ignore tank heat transfer
- 1) external boundary exposed to conductive source
- 2) worst case solar radiation
- 3) ground hold ice formation

DEFAULT	0
UNITS	
NAMEL IST	LFLAG
VARIABLE	KHXOPT

(cont.)	
2	\ /
Figure	

Tank insulation conductivity flag (Circle One)

- 0) input conductivity of MLI and SOFI
- 1) calculate conductivity of MLI and SOFI

Effective thermal conductivity of MLI (BTU/in.sec.°R)	Effective thermal conductivity of SOFI (BTU/in.sec.°R)
M	SOFI
0 f	0 f
conductivity	conductivity
therma]	therma1
Effective	Effective

SOFI Thermal conductivity constants (KALCON = 1)

K = A + B * T

A (BTU/in.sec.°R)

B (BTU/in.sec.°R²)

39

Insulation density (1b/in.³)
MLI

Radiation shields per inch in MLI (#/in.)

Average stage acceleration (g's)

Iteration counter in heat transfer calcs

DEFAULT		c°R 4.0E-9 c°R 3.5E-7	c°R 3.935E-8 5.676E-10	.002	.00127	40.	2.0	∞	
UNITS	,	BTU/in.sec°R 4.0E-9 BTU/in.sec°R 3.5E-7	BTU/in.sec°R 3.935E-8 BTU/in.sec°R ² 5.676E-1	lb/in.³	1b/in. ³	#/in.	s, b	1	
NAMEL IST	TANKHX	TANKHX	TANKHX TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	
VARIABLE	KALCON	CNSOF I	SOFIA	DNML I	DNSOFI	RADPIN	SACCEL	NITHX	
									_

Fraction of propellant tank nominal ullage pressure at which venting occurs

venting occurs		
WN1Ch	fuel	×o

Stage action time (sec.)

(sec.)
time
ho1d
Stage

MLI environment flag (Circle One)

1) Ground hold with  ${\sf N_2}$  purge

40

- 2) Ground hold with He purge 3) Space hold with  $\rm N_2$  purge depleted to PRGMLI psia
- 4) Space hold with He purge depleted to PRGMLI psia

•	$\overline{}$
	(psia
	ourge gas pressure at space hold conditions
	hold
	space
	at
	pressure
	gas
	MLI purge
	MI

⊥.			0			_	
DEFAULT		-	100	100	<u>-</u> .	2.0E-7	
UNITS	1	1	sec.	sec.	ı	psia	
NAMEL IST	TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	
VARIABLE	FVENTF	FVENTO	FLTTIM	HLDTIM	MLIENV	PRGMLI	

External tank boundary temperature (KHXOPT = 1) ( $^{\circ}$ R)

Space hold heat transfer (KHXOPT = 2)

Earth Infrared heat flux (BTU/sec.in. 2 )

Earth reflectance (albedo)

Average orbital altitude (miles) Angle between earth-sun vector and

Angle between earth-sun vector and vehicle orbital plane (deg)

Stage absorbativity

Solar heat flux (BTU/sec.in. 2 )

41

Ground Hold Ice formation (KHXOPT = 3)

Relative humidity
Ambient temperature (°R)
Wind velocity (MPH)

	1							 			 	 
DEFAULT	560	2.	0.39	125	0.0	0.2	n. ² 8.28E-4	50.	560.	10.		
UNITS	۵. د	BTU/sec.i	1	miles	deg	ı	BTU/sec.i	ı	٥ ۲	нdш		
NAMEL IST	TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	TANKHX		
VARIABLE	TEXBOU	EARIR	EARREF	HXALT	ORBANG	SABSOR	SOLCON	RELHUM	TAMICE	MNDMPH		

Figure 2 (cont.)			Zage Vage	2
Positive Expulsion Bladders	VARIABLE	NAMEL IST	UNITS	DEFA
Space between transverse collapsing bladder and tank wall (in.)				
ox tank	BLSPOX	BLADER	in.	
fuel tank	BLSPFL	BLADER	Ë	•
Bond material density of bonded rolling diaphram				
ox tank (1b/in. ³ )	DBNDOX	BLADER	lb/in. ³	•
fuel tank	DBNDFL	BLADER	lb/in. ³	•
Bladder thickness (for BRD only) (in.)	TBLDOX	BLADER	ŗ	0.
ox tank Street tank Street tank Street tank Street tank Street St	TBLDFL	BLADER	<u>.</u>	0
Bond thickness (for BRD only) (in.)		n-march and restrong		
ox tank		*** * ********************************		
fuel tank				



DEFAULT	.01	.01	. 04	.025	
UNITS	in.	in.	1b/in. ³ 1b/in. ³	Ė.	
NAMEL IST	BLADER	BLADER	BLADER	BLADER	
VARIABLE	BLSPOX	BLSPFL	DBNDOX	TBLDOX	-

## User Defined Propellant

Equivalence Ratio method (performance calculation for user defined propellant combination (IPROP = 0)

ratio
o and mixture
and
ratio
equivalence ratio
ð
Product

Cstar of user propellant at Pc = 
$$500$$
 and at mixture ratio (QFRMX)

Maximum Isp for Pc = 
$$500$$
,  $\varepsilon = 20$ 





- 1)  $N_2O_4/MMH$
- 2) MON-25/MHF-3
- C1F5/MHF-3
- MON-25/60% MHF-3 + 40% A1 4)
- L02/LH2 5)
- L02/RP-1 (9
- L02/CH4
- LF2/LH2 (8
- LF2/N₂H4 6



lant	
ed Propel	
User Defined	

Figure  $\mathcal{A}$  (cont.)

User defined coolant (should be ox or fuel)

Coolant ideal gas heat capacity constants

	(°R)
	properties
	for coolant
	temperature .
44	Reference

Reference pressure for coolant properties (psia)

## Reference coolant properties

heat capacity (BTU/1b°R)	thermal conductivity (BTU/in.sec.°R)	density (1b/in.³)	viscosity (1b/in sec)

	<del>/</del>													
DEFAULT		3.89	23.2	-9.818	1.666		530	14.7	.725	C. °R	3.85E-6 .0327	5.17E-5	What have been seen as a second	
UNITS		ı	ı	ı	ı	,	°,	psia	BTU/16°R	BTU/in.sec.°R	lb/in. ³	lb/in sec		Per-19-19-19-19-19-19-19-19-19-19-19-19-19-
NAMEL IST		LPROP	LPROP	LPROP	LPROP		LPROP	LPROP	LPROP	LPROP	LPROP	LPROP		
VARIABLE		CPCONA	CPCONB	CPCONC	CPCOND		TREF	PREF	CPREF	CREF	DREF	VREF		***************************************
									 				<del></del>	

### User Defined Propellant Figure ( ) (cont.)

Coolant critical point



Coolant normal boiling point (°R)

Coolant heat transfer constants

45

Coolant ultimate heat flux constants (liquid phase)

+ 62 V (ISat-1)	(BTU/in. ² sec.)	(BTU/in. ³ sec.°R)
5	ပ	$c_2$
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

			<del></del>	 					
DEFAULT	1093	1731	618	.005	.95	4.	c. 4.55	c°R .00686	
STIND	° «	psia	°R	ı	ı		BTU/in. ² sec.	BTU/in.³sec°R	
NAMEL IST	LPROP	LPROP	LPROP	LPROP	LPROP	LPROP	LPROP	LPROP	
VARIABLE	TCRIT	PCRIT	TBOIL	DBMLTK	DBEXPA	DBEXPB	QULTC1	QULTC2	

### User Defined Propellant Figure 2 ( )(cont.)

fuel description (Circle One)

- 0) storable
- 1) cryogenic

ox description (Circle One)

- 0) storable
- 1) cryogenic

Propellant combination description (Circle One)

- 0) not hypergolic
- 1) hypergolic

DEFAULT	0	0		
UNITS	ı	ı	ı	
NAMEL IST	LFLAG	LFLAG	LFLAG	
VARIABLE	ICRYFL	ICRYOX	IHYPER	

Page 25 of

## User Defined Propellant

Fuel ideal gas heat capacity constants

$$C_p = A + BT_r + CT_r^2 + DT_r^3$$

-				
-		لـــا		
	A	B	ပ	Ω

Reference pressure for fuel properties (psia)

## Reference fuel properties

U/1b°R)
ty (BTU/
capaci.
heat

<b>∂</b>		

VARIABLE	NAMEL IST	UNITS	DEFAULT
CPCNAF	I FUE	I	3.89
CPCNBF	LFUEL	1	23.2
CPCNCF	LFUEL	I	-9.818
CPCNDF	LFUEL	J	1.666
TREFFL	LFUEL	<u>د</u> ه	530.
PREFFL	LFUEL	psia	14.7
CPREFF	LFUEL	BTU/15°R	.725
CREFFL	L FUEL	BTU/in.sed°R	0 R 7 C 7 C
DREFFL	LFUEL	1b/in. ³	3.854E-6 .0327
REFSTF	LFUEL	lb/in.	3.794E-4
VREFFL	LFUEL	lb/in sec.	5.17E-5
<del> </del>			
· · · · · · · · · · · · · · · · · · ·			

llant
Propellant
Defined
User

Figure ( (cont.)

Fuel critical point

temperature (°R)	pressure (psia)

pressure (psia)	normal boiling point (°R)	
	<del></del>	
	(I)	

	L
	(BTU/1b)
	point
	boiling point
<u>8</u>	normal
$^{\circ}$	at
l normal boiling point	of vaporization at normal
	0f
norma	heat
Fuel	Fuel

	(BTU	
	point	
	boiling	
	normal	no le)
	at	/1bn
-	Fuel heat of vaporization at normal boiling point (BTU	Fuel molecular weight (1b/1bmole)
	of	cu]s
	heat	mole
i	Fuel	Fuel

bmole)		range (°R)			
Fuel molecular weight (1b/1bmole)		Fuel operating temperature range (°R)	minimum	nominal	maximum
Fuel molecula	48	Fuel operatin			

1093	1093	1731		618	346.5	41.802	510	530	550	
		<u>د</u> °	psia	°.	BTU/1b	lb/lbmole	°,	o °	o K	
		LFUEL	LFUEL	LFUEL	LFUEL	LFUEL	LFUEL	LFUEL	LFUEL	
		TCRITE	PCRITF	TBOILF	DHVAPF	WTMOLF	TPMINF	TPNOMF	TPMAXF	

cont.)	
05) (	
	•
Figure	

## User Defined Propellant

Oxidizer ideal gas heat capacity constants

$$C_{p} = A + BT_{p} + CT_{p}^{2} + DT_{p}^{3}$$

$$A = \begin{bmatrix} A & BT_{p} + CT_{p}^{2} + DT_{p}^{3} \\ A & B \end{bmatrix}$$

$$C = \begin{bmatrix} C & C & C \\ C & C & C \end{bmatrix}$$

Reference temperature for oxidizer properties (°R)

Reference pressure for oxidizer properties (psia)

Reference oxidizer properties

49

°R)	
(BTU/1b	
capacity	
heat	

thermal conductivity (BTU/in.sec.°R

density (1b/in.³)

surface tension (lb/in.)

viscosity (1b/in sec)

	1 1	}	1	
			1 1	
	1 1			
	]			
	1		1 1	
ر				
	~			

	l													 	
DEFAULT	7.9	19.23	-5.018	0	530	14.7		.378	C°R	.05177	1.433E-4	2.225E-5			
UNITS	ı	ŧ	l	ı	° «	psia		BTU/16°R	BTU/in.sec°R	1b/in. ³	lb/in.	lb/in sec			
NAMEL IST	ТОХІВ	LOXID	LOXID	LOXID	LOXID	LOXID		LOXID	LOXID		LOXID	LOXID	······		***************************************
VARIABLE	CPCNAO	CPCNBO	CPCNCO	CPCNDO	TREFOX	PREFOX		CPREFO	CREFOX	DREFOX	REFSTO	VREFOX			
					- <del></del>		****							 	

Figure  $\bigcap$  (cont.)

User Defined Propellant					
	VARIABLE	NAMEL IST	UNITS	DEFAULT	
Oxidier critical point					
temperature (°R)	TCRITO	LOXID	° °	776.5	
pressure (psia)	PCRITO	LOXID	psia	1440	
Oxidizer normal boiling point (°R)	TBOILO	LOXID	a a	529.8	
Oxidizer heat of vaporization at normal boiling point (BTU/1b)	DHVAPO	LOXID	BTU/1b	178.2	
Oxidizer molecular weight (lb/lbmole)	WTMOLO	LOXID	lb/lbmole	92.016	
Oxidizer operating temperature range (°R)					
20 minimum	TPMINO	LOXID	s,	510	
nominal	TPNOMO	LOXID	°,	530	
maximum	TPMAXO	LOXID	۳,	550	
			***************************************		

ğ	
م	
_	-

tory
trajectory
ling
Throttling

Figure  $\left\{ igcap 
ight. 
ight)$  (cont.)

able of nozzle efficiencies	able of chamber efficiencies	able of chamber pressure fractions	lumber of entries in above tables

Throttling profile

tions	
chamber pressure fractions	burn duration (sec.)

Propellant use flag এ

true = burn all propellant

false = burn only through last time interval

* See technical information volume

	,	***************************************					
DEFAULT	*	*	*	7		0.0	TRUE
UNITS	ŀ	ı	ı	ŧ	t ,	sec	Boojean
NAMEL IST	THROT	THROT	THROT	THROT	THROT	THROT	THROT
VARIABLE	ECFTHR	ERETHR	THRPC	NTHEFF	PCTHRT	TIMTHR	LUSEP

(cont.
re re
Figure

### Short Nozzle

liers
<del>.</del>
tipli
τ.
_
Ē
thrust
Š
ڃ
ب
nozzle
77
0
expansion
S.
ä
ĝ
ω
_
xterna
e
×
$\Xi$

base pressure multiplier

expansion thrust multiplier

Annular nozzle (IPLUG = 2)

method of calculating annular throat diameter (Circle One)

0) input diameter (DANEX)

1) calculate diameter (DANEX = FANMOT * DMOTOR)

annular throat diameter (in.)

annular throat diamter fraction of DMOTOR

52

Plug cluster base density (lb/in³)

DEFAULT	0.7	66°.	<del></del>	48	0.8	90.0	0.5	
UNITS	ı	ı	ı	i.	ı	1b/in. ³	Ë	
NAMEL IST	NOZZLE	NOZZLE	NOZZLE	NOZZLE	NOZZLE	LIQMAT	LIQUID	-
VARIABLE	CBMLT		MANDEQ	DANEX	FANMOT	RHOPLB	TPLGBS	-
			······································		····			

### 3.0 CENTAUR D1-T SAMPLE CASE

The Centaur D1-T is a high energy upper stage (Figure 3.1) with multiple restart capability. Two thrust chamber assemblies provide a vacuum thrust of 30,000 lb and a vacuum specific impulse of 444 seconds. The propellants are the cryogenic combination, liquid hydrogen and liquid oxygen. Stage diameter is 10 feet and the length is 30 feet. The propellant tanks are loaded with 24,840 lb of liquid oxygen and 4,910 lb of liquid hydrogen.

The tank structure contains the main propellant (liquid hydrogen and liquid oxygen), establishes primary structural integrity for the Centaur vehicle, and provides support for all Centaur stage airborne systems and components. The propellant tanks are of pressure stabilized monocoque construction formed by a series of short stainless steel cylinders welded together. The ends of the tank are formed by stainless steel bulkheads. The fuel and oxidizer tanks are separated by a double-walled, vacuum insulated intermediate bulkhead. The tank structure cylindrical section is made from 301 CRES (extra hard) stainless steel, 0.014 inch thick. The tank skin is stabilized at all times by internal pressure or by the application of mechanical stretch. After erection, structural integrity is assured by minimum standby pressures of 5 psig in the fuel tank and 10.5 psig in the oxidizer tank. The aft and intermediate bulkheads combine to form a 1.38:1 ellipsoidal LO₂ tank. The forward bulkhead of the LH₂ tank is a combination of ellipsoidal and conical sections. All three bulkheads are fabricated from multiple sections of 301 CRES. The aft bulkhead contains mounting provisions for the engine thrust barrel and all other components and hardware located in the aft section which are not attached to the engines.

Primary vehicle thrust is provided by two Pratt and Whitney RL10A-3-3 engines. These are constant thrust, turbopump-fed, regeneratively-cooled, liquid rocket engines. The engines use liquid hydrogen and liquid oxygen as propellant and are capable of making multiple starts after long coast periods in space. The combustion process is initiated through ignition of the initial flow of propellants (gaseous) with a spark igniter which is an integral part of the engine. Each engine is attached to the vehicle by a



Figure 3.1. Centaur D1-T

### 3.0, Centaur D1-T Sample Case (cont.)

gimbal mount assembly. Power to operate the vehicle hydraulic system is supplied through an accessory drive pad on the engine turbopump assembly. The helium required for engine operation is provided from a storage bottle located on the aft bulkhead. Nominal steady state performance and operating parameters at standard pump inlet conditions and at 200,000 feet altitude are:

Chamber Pressure: 400 psia
Thrust/Engine: 15,000 lb
Mixture Ratio: 5.0:1
Flow Rate/Engine: 33.8 lb/sec
Specific Impulse: 444 sec

Rated Continuous Operation Duration:

The ELES worksheets which were filled out to model Centaur are shown in Figure 3.2. The ELES inputs derived from those worksheets which model the Centaur D1-T are shown in Figure 3.3. Associated with many of the inputs are explanations as to their origin. The comments in the input listing refer to those explanations which are found in Table 3.1.

450 sec

The warning page (Figure 3.4) is designed to draw attention to potential design flaws in the stage under consideration. The warnings for Centaur D1-T indicate that the injector inlet propellant temperatures are fairly well defined, that the propellant tanks could hold more internal pressure without requiring additional wall thickness, and that the aft tank volume is larger than required by the program inputs. No significant problems are indicated.

The tankage summary (Figure 3.5) displays the more important tankage parameters such as dimensions, weights, propellant capacity, boiloff, heat flux, etc. It is followed by the tandem tank graphical output page (Figure 3.6) which displays a scaled drawing of the stage.

ე გ ე

# CENTAUR

STAGE #

Total Number of Stages

Miscellaneous Stage Wt. (lbm) Vehicle Payload Wt. (1bm)

Expendable Stage Wt. (1bm)

	•
roperties	)
Prt.	•
rop	)
Δ.	
terial	
re.	
×	
nterstage	)
ta ta	
rs	
te Car	
<u>,                                    </u>	
oper	
۵	
$\supset$	

density  $(1b/in^3)$ 

design stress (psia)

modulus of elasticity safety factor (-)

56

Kind of Stage (Circle one)

liquid 1) solid

	/			
ties		(psia)	<b></b>	

VARIABLE	NAMEL 1ST	UNITS	DEFAULT
NSTGES	INPGEN	1	ო
 WPAYLD	INPGEN	1bm	0.0
WMISC	INPGEN	mg L	0.0
 WEXPND	INPGEN	1bm	0.0
 RHOINT	INTSTG	1b/in ³	0.101
 SINST	INTSTG	psia	220000.
 EINSTG	INTSTG	psia	1.8E6
 SFINST	INTSTG	•	1.5
 KSTAGE	INPGEN	t	_

( · ) = ( ) / Tank Geometry

andem Tanks  monocoque tanks (1) suspended tanks (0) separate domes (0) common domes (1)
s que tanks (1 ded tanks (0 te domes (0) domes (1)

0) spherical in engine bay Pressure Tank Geometry

suspended forward of forward tank number of tanks

suspended forward of forward
 monocoque separate dome
 monocoque common dome
 cylindrical in forward tank

propellant tank head ellipse ratio pressurant tank head ellipse ratio

propellant tank dome orientation
 (-1 = convex forward)
 (1 = convex aft

not 1 = fuel not aft propellant location
(1 = fuel aft,

	·							
DEFROCT	0		r	, · · ·	0		0.1	
UNITS	3	\$	ſ	ł	ı	1	1 1	
NAMEL IST	LFLAG	TNKGEO	TNKGEO	TNKGEO	TNKGEO	TNKGEO	INPGEN	TNKGEO TNKGEO TNKGEO TNKGEO TNKGEO
VARIABLE	NCTNK	MNCQA	MNCQF	KDOME	KPRESS	NPRB	ELDOME	KXATAH KXATFH KXFTAH KXFTFH KPRPA

ſ	T	·				<del> </del>						
لر ا	DE A	က	0.	<b>,</b>	,	0.0	0.0		0	2.0	25.0	0.0
	UNITS	I	1	ı	ı	deg	1		ł	,	Ë	deg
	NAMEL IST	NCTINP	NCTINP	NCTINP	NCTINP	NCTINP	NCTINP		NCTINP	NCTINP	NCTINP	NCTINP
harden open de la company	VARIABLE	NTANKS	ELTNK1-4	KTANK1-4	INTNK1-4	TANGL1-4	RADL01-4		KALMOD	RDIM1-4	RMAJ1-4	ENGAN1-4 NCTINP
	Non-Conventional Tanks	(Draw Sketch Here) Total number of tanks	Tank ellipse ratios	Tank types (1 = CSE, 2 = torus)	Tank contents (1 g ox, 2 = fuel, 3 = press)	Tank angular Jocation (deg)	Tank radia location	Kipd of dimensional input	dimensionless (0)	major dimension (in)	Rtank ; Rhub	Engine angular location (deg)
	*	<i></i> ₹										

	DMOTOR	INPGEN	Ë
_	FFSKTL	LIQUID	ı
	FASKTL	LIQUID	ı
····			

30

0.0

ENGRD1-4 NCTINP

0.99

0.3

0.067

Forward Skirt Length (in) Stage Diamater (in)

Aft Skirt Length (in)

Engine radial location

Figure (cont.)

Propellant Combination (Circle One)

Nominal Mixture Ratio

49

4

раде

0) user defined

1)  $N_2O_4/MMH$ 

2.3

2) MON-25/MHF-3

3) CIF₅/MHF-3

2.8

2.2

0.85

5.0

2.7

3.4

4) MON-25/60% MHF-3 + 40% A1

5) LO₂/LH₂

6) LO₂/RP-1

7)  $LO_2/CH_4$ 

8) LF₂/LH₂

9.0

2.3

9) LF₂/N₂H₄

59

5.0

Propellant Mixture Ratio

0

15000

Vacuum Thrust Per Engine  $(1b_{\mathfrak{f}})$ 

Number of Engines

Chamber Pressure (psia)

DEFAULT	0	1.9	0.00
UNITS	ı	ı	lbf psia
NAMEL IST	LFLAG	LQPERF	LIQENG LIQUID INPGEN
VARIABLE	I PROP	OFCORE	NTC FVAC PC

Figure (cont.)
Enging( er Cycle (Circle )

49

ე. ტე ტე

0) Pressure Fed

Gas Generator Bleed

Staged Combustion (fuel rich preburner)
 Expander Cycle (fuel cooled)
 Staged Reaction (monopropellant fuel)

Gas Generator/Pre-Burner

Mixture Ratio Ratio of Specific Heats Specific Heat (BTU/1b °R) Molecular Weight

3.25

Tank Outlet Net Positive Suction Pressures

Oxidizer (psia)

60

Fuel (psia)

200

Pump Configuration

1) Gearbox

Single Shaft TPA Twin TPA in series Twin TPA in parallel

Boost Pumps

oxidizer (0 = n0)fuel (1 = yes)

VARIABLE	NAMEL IST	UNITS	DEFAULT
KCYCL E	LFLAG	1	0
0FGGPB	PUMP	ı	0.1
GAMGPB	PUMP	1	1.25
СРССРВ	PUMP	BTU/1b °R	0.721
WMGGPB	PUMP		14.0
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
OXNPSP	PUMP	psia	10.0
FLNPSP	PUMP	psia	10.0
JCNFIG	PUMP	8	2
		The second se	
JBPOX	PUMP	ı	0
JBPFL	PUMP	•	0

Q. (cont.) Figur

Page

Burned Propellant Wt. 2775

Ullage Fractions

0xidizer

て0.0 40.0

Fuel

Propellant Acquisition Device (Circle One)

ransverse collapsing aluminum bladder

full bonded rolling diaphram - aluminum half bonded rolling diaphram - aluminum

full bonded rolling diaphram - stainless steel

diaphram - stainless steel surface tension device half bonded rolling 9

opropellant Tank Pressurization (Circle One)

(KGASOX, KGASFL)

non-autogenous (KGAS) 0

solid gas generator cold helium

1) autogenous

Cold Helium Storage Pressure

Helium Tank Final Pressure Fraction
 (less than 1.0 indicates blowdown)



VARIABLE	NAMEL IST	UNITS	DEFAULT
WTLPRP	ainbii	16.	13250.0
ULLFFL	LTANK	ı	0.02
ULLFOX	LTANK	•	0.05
касоох	LFLAG	•	0
KACQFL	LFLAG	ŧ	0
KGASOX	LFLAG	1	0
KGASFL	LFLAG	1	0
KGAS	LFLAG	ı	2
PIC6	90700	c.	4365 0
FPULCG	50,100	1	0.8

(cont.)	of Construction material ID#)
Figure 3.2.	Mate (fil

user defined	6061-T6 aluminum @ 300°F	6A1-4V titanium @ 300°F	aged 541-4V @ 300°F	cryoformed 301 CRES 0 500°F	aged 301 CRES @ 500°F
1-10)	=	12)	13	14	(5)

Fuel Tank
Oxidizer Tank
Pressurant Tank
Structure and Skirts

 14	71	11

Design Safety Factors

Fuel Tank Oxidizer Tank Pressure Tank Structure and Skirts lines

1.25	1.25	1.5	1.25	2,0

Table   Tabl		-	2		<u>-</u> -	R 0.035 0.035	1.25	1.25	1.5	1.25	2.0	S.	
UNITS	1	t	1	ì	,	1b/in3 psi psi BTU/1b °R BTU/in sec °R in	,	,	,	,	l	ı	
NAMEL IST	LIQMAT	LIQMAT	LIQMAT	LIQMAT	NCTINP	LIQMAT LIQMAT LIQMAT LIQMAT LIQMAT LIQMAT	LIQMAT	LIQMAT	LIOMAT	LIQMAT	LIQMAT	NCTINP	
VARIABLE	MTNKFL	MTNKOX	MATPT	MATSTR	MATNK1-4	RHO YMOD SIGMAX SPHEAT CONDCT TMING	SFFLTK	SFOXTK	SFPRTK	SFSTRC	SFL INE	SFTNK1-4	

DEFAULT 0 0.0 0.0 0.0 0.0 10.0 0. 2.54 0.0 15.0  $\sim$ 1.177 18.7 UNITS i. <u>:</u> <u>.</u> in. <u>.</u> __ i. deg INPGEN NAMEL IST TANKHX TANKHX TANKHX INPGEN LIQENG LIQUID NOZZLE TANKHX LIQENG LIQENG LIQENG LIQENG LIQENG LFLAG VARIABLE TSOF IF TSOF IO KHXOPT RATMLR ALFNOZ **KEXNOZ EPSATT** TML IF TML IO IPLUG KN0Z EPS XLC XLN CR external boundary exposed to conductive source 6.0 0.0% 0.0/2 4.0 6 Propellant tank heat transfer (Circle One) ground hold ice formation KN0Z Oxidizer Tank SOFI Thickness SOFI Thickness MLI Thickness MLI Thickness Nozzle Extension Attach Area Ratic Propellant Tank Insulation (in.) Combustion Chamber Length (in.) IPLUG 0 0 Engine Expansion Area Ratio Engine Contraction Ratio Plug Cluster Fuel Tank Rao/Bell Conical Annular Nozzle Type (Circle One) 63

rigure 3

Combustion Chamber Cooling Method (Circle One)

Figure

- 1) Ablative
- Regenerative 2)
- Trans-Regen
- 4) Radiation

Nominal Chamber wall material temperature (°R)

12050

Regen/Trans-Regen input Output a regen summary (0 = no, 1 = yes)

Gas wall minimum gauge (in.)

Gas wall thermal conductivity (2TU/in sec °R)

64

DIFTBF = (T_{barrier}-TGWNOM)/(T_{core}-TGWNOM)

Nozzle Cooling Method (Circle One)

- Ablative
- Regenerative 2)

Trans-Regen

- Radiation 4)
- Film 5)

Nominal nozzle material temperature (°R)



VAR	VARIABLE	NAMEL IST	UNITS	DEFAULT
X 0 V	KOOL TC	LFLAG	ı	<u></u>
191	TGWNOM	INREGN	° «	2000.0
	DIFTBF	INREGN	ı	0.
IR	IRPRNT	INREGN	1	0
EM C	GWMING	INREGN	Ë	0.025
WAI	WALLK	INREGN	BTU/in sec	se¢0.00039
EP	EPSTRU	INREGN	ı	2.0
EP	EPSTRD	INREGN	1	1.2
10T	TDESTR	INREGN	80	2000.0
	KOOLNZ	LFLAG	1	4
TN T	TNENOM	LIQENG	a°.	2000.0



Figure (cont.)					Page 10	60001	
Pressure Drop Across Injector			VARIABLE	NAMEL IST	UNITS	DEFAULT	
(15% of Pc is optimistic)	Fuel	891.0	FCHGFL	LIQUID	'	0.15	
of Pc is	Oxidizer	0.114	FCHGOX	LIQUID	ı	0.15	
Pressure Drop Acorss Valve	ŗ	697	1				
(3-30% of Pc)	ruei	0737	CPVLVF	LIQUID	ı	0.409	
	Oxidizer	0.369	CPVLVO	LIQUID	ı	0.28	
Pressure Drop Across Lines	<u>.</u>	• •	, C	2		C T T	
(3-30% of Pc)	- ນ 3	Z.0.7	C 1 1 3 7	L1401D	ı	2/1.0	
•	Oxidizer	0.07	CPL INO	LIQUID	1	0.207	
Injector Element Density (elem/in ² )							
<pre>(1.0 = coarse pattern, 4.0 = nominal (15.0 = platelets, 40.0 = hyperthin</pre>	<pre>pattern) platelet)</pre>	79.6	ELDENS	INJECT	elem/in ²	3.1	
65		(IELDEN = 1)	IELDEN	INJECT	ı		
Injector Element Type (used to correct drop size)							
(Circle One) 3.0) Showert	3.0) Showerhead, shear co-ax	-ax					
	1.0) like-doublets, splash plate.	sh plate.	RMFFL	LQPERF	1	0.33	
(Groups are in increasing X doublet, V order of atomizing efficiency)	let, V doublet, omized triplet		RMFOX	LQPERF	ı	0.33	
0.5)	Swir	0.7	FLOPEL	INJECT	ı	2.0	
0.33) unlike	<b>)</b> —	ke doublet	OXOPEL	INJECT	ı	3.	

(cont.) Figure

Page 11

Translating Nozzle (Circle One)

Spring Actuated Gas Deployed Skirt None

Translating Nozzle Material Density (1b/in³)

Gimbal Angle (deg)

Number of Gimbaling Engirus
Engine weight model (Circle One)
-1) input engine weight
0) simplified ablative
1) physical engine we

input engine weight simplified ablative engine weight model

physical engine weight model

(use density and strength at temperature) Engine Materials of Construction

66

density strength (1b/in³) (psi)

Stainless Steel 0.28 lb/in3, 25000 psia Columbium 0.32 lb/in3, 25000 psia Silica Phenolic 0.0632 lb/in3, 25000 psia 25000 psia 0.098 lb/im³

8	25 K	25K	X
.28	32	.28	22
CHAMBER	NOZZLE	INJECTOR	VALVE

>	
5	
`	
5	
١	
-	
•	
~	
_	
$\bar{}$	
2	
-	
`	
5	
)	
٠	
)	
Ξ	
2	
-	
-	
5	
3	
-	
-	
-	

4 Juminum

(used with KWTMOD =

Stage Operating Temperature Range (°F) Minumum temperature

Nominal temperature Maximum temperature

9

60.0 75.0 90.0

LIQUID LIQUID LIQUID

TMIN TOP TMAX

	· ·	 			<del></del>		<del></del>						
DEFAULT	Ç	50.0	0.28	0.9	<b></b>	0	0	0.0632	0.0632	0.28	25000.0 25000.0	0.32 25000.0 0.010	0.098 25000.0 0.098
UNITS		ı	1b/in ³	deg	ı	ı	ľ	1b/in ³	1b/in ³	1b/in ³ 1b/in ³	psi psi	lb/in ³ psi in	15/in ³ psi ₃ 15/in ³
NAMEL IST	I TOENG	L IQENG	LIQMAT	LIQUID	LIQUID	LIQUID	LFLAG	LIQMAT	LIQMAT	LIQMAT	LIQMAT	LIQMAT LIQMAT LIQENG	LIQMAT LIQMAT LIQMAT
VARIABLE	KTRNO7	DPTRAT	ROTRNZ	GMBANG	NGIMB	KGPOWR	KWTMOD	RHCABL	RHCSTR	RHOGW RHOCL S	SIGCHM SIGCLS	RHONZE SIGNZE TNZMIN	RHOINJ SIGINJ RHOVLV

Page 12 of 49

VARIABLE	NAMEL IST	UNITS	DEFAULT
CXWTNK	CXWMLT	1	1.7
CXNCT1-4	NCTINP	ı	0.0
CXWFLT	CXWMLT	1	1.0
CXWOXT	CXWMLT	ı	0.
CXWPTN	CXWMLT	١	1.0
CXWSTR	CXWMLT	l	1.0
CXWATL CXWFTL CXWPTL	CXWMLT CXWMLT CXWMLT	1 1 1	0.00
CXWENG	CXWMLT	1 1	1.05
CXVALV	CXWMLT		0.0
CXWNZE	CXWMLT	ŀ	-
CXMDUC	PUMP	ı	2.5
CXWGIM	CXWMLT	ı	1.0
СХМТНМ	CXWMLT	ı	1.0
CXWIGG	PUMP	ı	1.0
CXWTPA	CXWMLT	ı	0.1
CXWL IN	PUMP	ı	2.5
			:

## Use fast

										7.5							
Figure (cont.) Weightipliers	All Tanks	Fuel Tanks	Oxidizer Tanks	Pressure Tanks	Structure	Propellant Lines	Total Engine	Injector	Valve	Chamber Chamber	Nozzle Extension	Hot Gas Ducts	Gimbal System	Thrust Mount	Gas Generator Injector	Turbo Pump Assembly	Engine Bay Lines

49
4
ζ,
ί7 .α .Ω΄ .Φ

VARIABLE	NAMEL IST	UNITS	DEFAULT
XMOUNT	LIQENG	in	2.0
INPEXF	LFLAG	1	0
INPEXO	LFLAG	ı	
EXPLFL	LTANK	1	0.995
EXPLOX	LTANK		0.995
			M

Engine Mounting Length Adjustment (in)

(cont.)

Figure 32.

Propellant Expulsion Efficiency

0) calculate

1) input

Oxidizer expulsion efficiency Fuel expulsion efficiency

68



Page 14

Tankage

Line printer characters per inch

Horizontal Vertical Propellant Acquisition device material density (lb/in. 3 )

fuel tank (KACQFL = 6) ox tank (KACQOX = 6)

Cross sectional area of shroud stiffening rings  $(in.^2)$ 

forward shroud aft shroud

NCTINP NCTINP
NCTINP
L TANK L TANK
LTANK



DEFAULT

UNITS

NAMEL IST

VARIABLE

Page 1

0.77

INJECT

CDIFL

INJECT

CDIOX

0.72

336

672

500

#### Injecter

Injecter orifice discharge coefficients (-)



_
0
11
(IELDEN
input
element
_
Injecter

Number of injecter elements (-)

Number of fuel orifices (-)

Number of ox orifices (-)



 		<u></u>	 				
f	ı	1	in.	deg.			
INJECT	INJECT	INJECT	LQPERF	INJECT	 ALC:	 	
NEL EM	NFLORF	NOXORF	XLFL	ALFMIX			

Barrier mixing angle (deg.)

0.15

0.





#### Thrust Chamber

Engine Performance (Circle One)

input engine performance	calculate engine performance	
0	<u>-</u>	
	$\overline{}$	

Engine Performance (KPERF = 0)

Delivered C* (ft/sec.)

Overall engine mixture ratio (-)

Delivered vacuum Isp (sec.)



Throat Regression (Circle One)

0) no regression

2) input regression coefficients (REGA, REGB, REGC)

Š.

Page 17 (PERF LFLAG - 17.782  SSTARL LQPERF FT/Sec. 5523  SFMTC LQPERF - 17.782  ISP LQPERF Sec. 314.1  REG LFLAG - 0.002798  EGA ABLATE0005995  EGG ABLATE4246												
Page NAMELIST UNITS LQPERF ft/sec. LQPERF	DEFROCT	_		1.782	314.1	0	.002798	.0005995	.4246			
L QPE L QPE L QPE L QPE L QPE ABLAT ABLAT	UNITS	1	ft/sec.	ı	sec.	ı		ı	t		and the company of the constraint of the constra	
ARIABLE CPERF CSTARL SEMTC TISP EGA EGB	NAMEL IST	LFLAG	LQPERF	LQPERF	LQPERF	LFLAG	ABLATE	ABLATE	ABLATE			
> × × × × ×	VARIABLE	KPERF	CSTARL	OFMTC	XISP	KREG	REGA	REGB	REGC	t	<del></del>	



General Input

Propellant temperatures input option for library

propellants (IPROP  $\approx 0$ )

(Circle One)

0) use default temperatures

input temperatures	minimum fuel temperature $({}^{\circ}R)$	nominal fuel temperature (°R)	maximum fuel temperature (°R)	minimum ox temperature (°R)	nominal ox temperature (°R)	maximum ox temperature (°R)

81	DEFAULT	0	varies	varies	varies	varies	varies	varies	
Page	UNITS		°,	°	<u>د</u> ه	° «	°R	č.	
	NAMEL IST	LFI.AG	LFUEL	LFUEL	LFUEL	LOXID	LOXID	LOXID	
	VARIABLE	IPUTMP	TPMINF	TPNOMF	TPMAXF	TPMINO	TPNOMO	TPMAXO	

a

Figure ( ) (cont.)

DEFAULT

UNITS

NAMEL IST

VARIABLE

LFLAG

LNFULL

Page 19

General Input

Lines full at burnor (CITCLe One)
(0 = No. (1 = Yes)

Miscellaneous on-board propellant (lbm) (remains on stage at burnout)

•		
, ס	13/	O
	fuel	XO

0.0

1bm

INPGEN

WMISFL

0.0

lbm

INPGEN

WMISOX

Number of iterations on temperature schedule (a value of 1 performs temperature schedule calculations only once)

LIQUID

NTMPIT

74

Space between suspended tank and structural vehicle wall

forward tank 
$$(MCQF = 0)$$

Pressure tank insulation density

 $(NCTNK = 0)(1b/in.^3)$ 

Propellant feed line flag (Circle One)

- 0) external feed line
- l) internal feed line

75

Number of pressure bottles in engine bay

_
$\circ$
•
H
S
S
w
$\propto$
Ω.
$\sim$
$\overline{}$

	VARIABLE	NAMEL IST	UNITS	DEFAULT
	TSPCA	LTANK		0.0
	TSPCF	LTANK	<u>.</u>	0.0
· · · · · · · · · · · · · · · · · · ·	TSPCP	LTANK	i.	0.0
	RHOINS	MATER	lb∕in.³	.0414
	KL INEA	TNKGEO	l	<b>-</b>
···	NPRB	TNKGEO	ı	
	1.00			
	***************************************	<del>*************************************</del>		

DENALT	0.0	0.0	0.0	0.0	0.04	0.0	
UNITS	in./1b _f	in./1b _f	'n.	'n.	lb/m ³	in.	
NAMEL IST	LTANK	LTANK	LTANK	LTANK	LIQMAT	LIQMAT	
VARIABLE	CBM	CMMAX	CLRAF	CLRFP	RHPTIN	TINSUL	

Space between forward tank and pressure tank (KPRESS = 1-3) (in.)  $\mid$ 

Insulation thickness for pressure tank (in.)

Density of pressure tank insulation  $(1b/m^3)$ 

Space between aft and forward tank (KDOME = 0) (in.)

Stage critical bending moment (NCTNK = 0) (in./lb_f)

Tandem Tanks (NCTNK = 0)

Figure (cont.)

Maximum carry moment (NCTNK = 0)(in./lb $_{
m f}$ )



(NCTNK = 1)Non-Conventional Tanks le volume ratios Non-conventional tank usar

fuel tanks

ox tanks

pressure tanks

tanks (in.) tiona Minimum clearance between non-conven

-conventional Minimum clearnace between nozzles in model (in.)

Non-conventional tankage drawing mode (Chrcle One)

- øne page 1) draw three views on

separate pares

2) draw three views o

77

Non-conventional models engine nesting mode (Cirrle One)

- 1) nest each engine independently
- nest engines to highest common plane 2)
- XMOUNT ne exit plane to end of tankage nest eng 3)

Non-conventional tarkage thickness option (Circle One)

- variable wall thickness ()
- constant wall thickness

		*			
DEFAULT	1.0	2.0	2	m	<del></del>
STINU	1	 	ı	t	t
NAMEL IST	NCTINP	NCTINP	NCTINP	NCTINP	NCTINP
VARIABLE	RATNK1-4	CLRTNK ENGSPC	IDRAW	KNEST	KTHCK1-4

Non-Conventional Tanks (NCTNK = 1)  Non-Conventional Tanks (NCTNK = 1)  Non-Conventional Tank feed line hydraufics  Non-conventional Tank feed line hydrau					
Mon-conventional Tank feed link hydrayics  Mon-conventional tank feed link hydrayics  welocity heads lost in the lines including valves, byds, etc.  velocity heads lost in or lines including valves, byds, etc.  absolute surface roudness of ful lines (in.)  RUFFRL LTANK in  RUFFRL LTANK in		VARIABLE	NAMEL IST	UNITS	DEFAULT
Non-conventional tank feed line hydraufics  velocity heads lost in Tep lines including valves, badds, etc.  velocity heads lost in ox lines including valves bends etc.  absolute surface roughness of full lines (in.)  RUFFIL LTAMK in0  absolute surface oughness of ox lines (in.)  RUFFOX LTAMK in0	Non-Conventional Tanks (NCTNK = 1)				
velocity heads lost in reclines including valves, bads, etc.  velocity heads lost in okilines including valves bends etc.  absolute surface roughness of oxilives (in.)  RUFFOX LTANK in  RUFFOX LTANK in	line hydrau				
velocity heads lost in oxilhes including valves bends etc.  absolute surface roughness of fuel lines (in.)  absolute surface oughness of ox lives (in.)  RUFFEL LTANK in0	b te	FLKFCT	LTANK	1	5.0
absolute surface roughness of fue lines (in.)  RUFFOX LTANK in.  RUFFOX LTANK in.	ox 1 nees bends	OXKFCT	LTANK	ı	5.0
absolute surface oughness of ox lines (in.)  RUFFOX LTANK in.	of fuel	RUFFFL	LTANK	in.	.0001
78	oughness of ox	RUFFOX	LTANK	in.	.0001
	78				

(cont.)

Figure

DEFAULT	1.66	1.0	240	4.0	
UNITS	I	1	1	lb/lbmole	
NAMEL IST	90T00	90 T00	COLDG	50700	
VARIABLE	GAMICG	GAMPCG	TIMPCG	WTMCG	

		VARIABLE	NAMEL IST	UNITS	DEFAULT
Solid gas	s generator pressuritation (default is TAL-8)				
	Minimum port to throat area ratio	APATGG	SOLDGG	ı	3.0
•	Ratio of equilibrium temperature in propellant tank to minimum operating temperature (TMIN)	BTEQGG	SOLDGG	ı	1.5
	Burn rate coefficient of solid grain (in./sec.)	CBRGG	SOLDGG	in./sec.	0.095
	Design complexity multiplier solid g.g.	CDESGG	SOLDGG	ı	1.25
	Solid grain characteristic velocity (ft./sec.)	5980	SOLDGG	ft./sec.	3932
	Minimum allowable solid grain drameter (in.)	DMINSG	SOLDGG	'n.	3.0
	Burn rate exponent of solid grain	EBRGG	SOLDGG	ł	0.64
80	Molar fraction of water in combustion products	FH20GG	SOLDGG	ı	0.2662
	Multiplying factor on ullage pressure to calculate minimum operating g.g. pressure	FPULGG	SOLDGG	ı	<del></del>
	Combustion products ratio of specific hears	GAMGG	990708	ı	1.27
	Temperature sensitivity of g.g. pressure (Tv°R)	PIPKGG	SOLDGG	1/°R	0.0036
	Solid grain density (lb/in. ³ )	RHOGG	SOLDGG	1b/in. ³	0.056
				-	
					-

) (cont.)

Figure (

	r					
DEFAULT	0.0013	2130	100	80	19.0	
STINU	1/°R	ر 8	sec.	Li_ 0	lb/lbmole	
NAMEL IST	SOLDGG	SOLDGG	SOLDGG	SOLDGG	S0LD66	
VARIABLE	\$1666	TCMBGG	TDCYGG	TREFGG	WTMGG	
				-		

13 age 7/ 04

Figure 3.2. (cont.)

	<del></del>	
DEFAULT	0	
UNITS	1	
NAMEL IST	LFLAG	
VARIABLE	LTURFD	

 feed turbine from upstream of regen jacket (uses regen bypass flow set by BYPREG) Turbine feed location (circle one) (KCYCLE >1) feed turbine from regen outlet

0

Pump

page 27 ~ 49

Figure 3.2. (cont.)

Pump

DEFAULT		
UNITS		
NAMEL IST	LFLAG	
VARIABLE	LTURFD	

(cont.)
Figure (

Pump

Boost pump fraction of total propellant head rise

.00%	
fuel	×o

Gas generator/pre-burner control valve pressure drop multiplier

Pressure ratio across gas generator/pre-burner

10	10
fuel side	ox side

Türbine outlet pressure (for gas generator bleed cycle) (KCYCLE = 1) (psia)

Number of turbo pump assemblies (Circle One)

Autogenous Pressurant temperature (°R)

$$\left( \text{KGASFL} = 1 \right)$$

$$(KGASOX = 1)$$

_	.0464	.0464	0.65		1.2	1.2	20.	2	800	008	
DEFAULT	70.	.04	· .		<u></u>	<b></b>			∞	Φ	
UNITS	1.	i			1	ı	psia	. 1	°	α,	
NAMEL IST	PUMP	PUMP	PUMP		PUMP	PUMP	PUMP	PUMP	PUMP	PUMP	
VARIABLE	BPFRFL	BPFROX	CVMLTF	,	PBPRF	PBPRO	PTURBO	KPUMP	TULLFL	TULLOX	

DEFAULT

UNITS

NAMEL IST

VARIABLE

20000

PUMP

SSSFL

PUMP

SSSOX

PUMP

SSSBPF

20000

30000

30000

PUMP

SSSBPO

2.0

PUMP

TURBPR

0.4

PUMP

2.0

PUMP

12.

PUMP

0.3

1b/in.³

PUMP

30000

psi

PUMP

0.3

167 in. 3

PUMP

30000

ps:

PUMP

	(cont.)
(	
	igure (

Pump

Suction specific speeds of propellant pumps

main fuel pump

main ox pump

fuel boost pump

ox boost





8
<u>д</u>

8
0
dwnd







2) !! ٨

Initial value of turbine pressure ratio (KCYCLE

<b>_</b> •	
B	
0	





	 <del></del>	· · · · · · · · · · · · · · · · · · ·	·	
	3)			
	ന			


$\widehat{}$		The same of the sa
<b>~</b> )		

UOVERC	EPSGGB	GGCR	ROINGG	SYINGG	ROSTAK	SYDUCT

isentropic	
d by	
dividec	
velocity velocity	
pitch line spouting	
Turbine	84

Area ratio of bleed nozzle (KCYCLE = 1)

Gas generator or pre-burner contraction ratio

Gas generator or pre-burner injector material density (1b/m`

Gas generator or pre-burner injector yield strength (psi)

Hot gas duct material density  $(1b/in.^3)$ 

Hot gas duct material yield strength (psi)

0 DEFAULT 0.14 0.16 3.3 0.3 0.1 100000 28. 0.07 75000 30000 Page **30 o**′ lb/lbmole lb/in.³ in./sec. 1b/in.³ 1b/in.³  $1b/in.^3$ UNITS lb/in.³ psi psi ps i NAMEL IST PUMP VARIABLE CVACUM ISTART BURNRA RHOBOT RHOSPH ROGRAN RHOCYL ROCART SYCART GASMW SYBOT SYCYL SYSPH start cartridge material density (ISTART = 3) (lb/in. 3 ) start cylinder material density (ISTART = 2)  $(1b/in.^3)$  start sphere material density (ISTART = 1)  $(1b/in.^3)$ start system sphere yield strength (ISTART = 1) (psi) accumulator valve complexity multiplier (ISTART = 2) start bottle material density (ISTART = 2)  $(1b/in.^3)$ start cartridge grain density (ISTART = 3) (1 $b/in.^3$ ) molecular weight of pressurization gas (ISTART = 2) start cartridge yield strength (ISTART = 3) (psi) start cylinder yield strength (ISTART = 2) (psi) start bottle yield strength (ISTART = 2) (psi) solid grain burn rate (ISTART = 3) (in./sec.) start valve complexity multiplier (Circle One) number of engine restarts cartridge cold gas spin start tanks TPA Start System design tank head Figure ( ) (cont.) solid TPA Start System 0 2)

Pump

530

47000

ps i

PUMP PUMP

**BOGAS** 

**ISPH** 

start system sphere temperature (ISTART = 1) (°R)

start bottle gas temperature (ISTART = 2) (°R)

(cont.)
aure\

Pump

TPA Material properties

C	?
	(1b/in.
	density
	material
•	effective
	PA.

_
( ps 1
strength
ultimate
blade
Turbine

(psi)
strength
yield
blade
Turbine

98
Propellant line material density (enginebay) (lb/in.

Propellant line material yield strength (psi)
Cold gas valve material density (ISTART = 1)

Accumulator valve material density (ISTART = 2)

	3	

(cont.)	
Figure	

#### Regen/Trans-regen

Regen jacket bypass flow fraction (-) | 0.3/3 Turbine bypass flow fraction (-)

Cooling channel multiplier (-)

Absolute surface roughness of regen channels

Maximum depth to width ratio in cooling chann

]	
	7
1.	
V	7
•	

· .	
	~
	4.6
	( <del>-</del> )

	4.62
(in.)	nels (-)

cer i a		& EPSTRU
Transpiration cooling criteria (Circle One)	1) use QMAXTR	2) input EPSTRD & EPSTRU

87

Regen coolant selection (Circle One)

oxidizer	fuel	
0	=	

ğ

DEFAULT	0.0	0.0	1.0	0.00008	5.0	2	-	
DEF		<del> </del>			·			,
UNITS	1	1	ı	'n.	ı	ı		
NAMEL IST	INREGN	INREGN	INREGN	INREGN	INREGN	INREGN	INREGN	
VARIABLE	BYPREG	BYPTUR	CHMULT	EPIPE	HOWMAX	IDTRAN	IFREGN	

#### Regen/Trans-regen

Number of regen segments in

Maximum heat flux before transpiration cooling

Surface area multiplier on regen cooled engine

Transpiration section platelet dimensions (in.) etched platelet thickness

separator platelet thickness platelet land thickness

flow passage widths

	r				 <del></del>		 				 	 
DEFAULT		S	S	Ŋ	0. 1.0	0.	.08	<u> </u>	.04	٦4.		
UNITS		ŧ	ſ	ı	BTU/in. ² sec	ı	.c	in.	ë.	Ľ		
NAMEL IST		INREGN	INREGN	INREGN	INREGN	INREGN	INREGN	INREGN	INREGN	INREGN		
VARIABLE		NCYL	NCON	NNZF	QMAXTR	SAMULT	ТСЕОН	TGEOL	TGEOS	TGEOW		-

. (cont.) Figure

Regen/Trans-regen

Land width of regen cooling channels at throat (in.)

Channel width of regen cooling channels [ at throat (in.)

6	
9	
3	
•	



Transpiration cooling insert

				/
ing insert	material density (lb/in. ³ )	thickness (in.)	thermal conductivity (BTU/in.sec.°R)	

VARIABLE	NAMEL IST	UNITS	DEFAULT
WLTHR	INREGN	in.	.03
WTHR	INREGN	i.	.03
RHTRIN	LIQMAT	3 1b/in.	0.28
TRINST	LIQMAT	'n.	0.3
TRANKM	INREGN	BTU/insed°R .0004	°R .0004
			.,

7	
35	
(1)	

Transfer
Heat
Tank

Figure  $\left( \right)$  (cont.)

Propellant tank heat transfer (Circle One)

- 0) ignore tank heat transfer
- external boundary exposed to conductive source
- 2) worst case solar radiation
- 3) ground hold ice formation

	,	
DEFAULT	0	
UNITS	ı	
NAMEL_IST	LFLAG	
VARIÄBLE	KHXOPT	-



## Tank Heat Transfer

Tank insulation conductivity flag (Circle One)

- 0) input conductivity of MLI and SOFI
- calculate conductivity of MLI and SOFI

Effective thermal conductivity of SOFI (BTU/in.sec.°R) Effective thermal conductivity of MLI (BTU/in.sec.°R)

SOFI Thermal conductivity constants (KALCON = 1)

A (BTU/in.sec.°R)

B (BTU/in.sec.°R²)



Insulation density  $(1b/in.^3)$ SOFI Z Z

Radiation shields per inch in MLI (#/in.)

Average stage acceleration (g's)

Iteration counter in heat transfer calcs

VARIABLE	NAMEL IST	UNITS	DEFAULT
KALCON	TANKHX	ı	
CNMLI	TANKHX TANKHX	BTU/in.sec°R BTU/in.sec°R	c°R 4.0E-9 c°R 3.5E-7
 SOFIA	TANKHX	BTU/in.sec°R 3.935E-8 BTU/in.sec°R ²	c°R 3.935E-8 c°R2
F W	,	m	5.676E-10
UNML I	ANKHX	lb/in.č	.002
 DNSOFI	TANKHX	16/in. ³	.00127
 RADPIN	TANKHX	#/in.	40.
 SACCEL	TANKHX	s, b	2.0
 XHLIN	TANKHX	1	∞
			-



er	
Transfer	
Heat	
Tank F	
1	

Figure( ) (cont.)

Fraction of propellant tank nominal ullage pressure at which venting occurs



Stage action time (sec.)

Stage hold time (sec.)



MLI environment flag (Circle One)

- Ground hold with N₂ purge
- Space hold with  $N_2$  purge depleted to PRGMLI psia Ground hold with He purge 3)

92

MLI purge gas pressure at space hold conditions (psia)

Space hold with He purge depleted to PRGMLI psia

	<del>,</del>		<del></del>						
DEFAULT				. 100	100		7 10 6	Z.UE-/	
UNITS		ı	ı	sec.	sec.	•		co C	
NAMEL IST		TANKHX	TANKHX	TANKHX	TANKHX	TANKHX	T AN X X X X X X X X X X X X X X X X X X	ANNAN	-
VARIABLE		FVENTF	FVENTO	FLTTIM	HLDTIM	MLIENV	W U W U	י אמאר ו	-
									-

## Tank Heat Transfer

External tank boundary temperature (KHXOPT = 1) (°R)

Space hold heat transfer (KHXOPT = 2)

Earth Infrared heat flux (BTU/sec.in. 2 ) Earth reflectance (albedo)

Average orbital altitude (miles)

Angle between earth-sun vector and vehicle orbital plane (deg)

Stage absorbativity

Solar heat flux (BTU/sec.in. 2 )

93



Wind velocity (MPH)



VARIABLE	NAMEL IST	UNITS	DEFAULT
TEXBOU	TANKHX	o R	260
EARIR	TANKHX	BTU/sec.i	2
EARREF	TANKHX	1	1.35E-4 0.39
HXALT	TANKHX	miles	125
 ORBANG	TANKHX	qeg	0.0
 SABSOR	TANKHX	` <b>t</b>	0.2
 SOLCON	TANKHX	BTU/sec.i	n. ² 8.28E-4
 RELHUM	TANKHX	ı	50.
 TAMICE	TANKHX	& °	560.
 Hdwown	TANKHX	nph	10.
 ,		•	,



fuel tank

ox tank

fuel tank

ox tank

94

fuel tank

ox tank

fuel tank

ox tank

Positive Expulsion Bladders

Figure ( ) (cont.)

-		
r		
,		
(		
-		
(		

(cont.)

Figure

# User Defined Propellant

user defined formance calculation for 0) Equivalence Ratio method (per propellant combination (IPROP

	}	L
ratio		
mixture		
and		
atio		_
equivalence satio		
0£		•
Product		

tor	20	•
lant	11 ω	
propellant	= 500	•
Mixture ratio of user	maximum Isp at Pc	



- $^{-1}$ )  0
- 2) MON-25/MH-
- 3) C1F5/MH-
- 4) MON-36/60% MHF-3 + 40% A1
- 5) LO2//LH2
- 6) U2/RP-1
- 7)/L02/CH4
- 8 LF2/LH2
- 9) LF2/N₂H4

DEFAULT	2.249	2.03	5689	328.8	5934		
UNITS	1	•	ft./sec.	sec.	٥ م	ı	
NAMEL IST	LPROP	LPROP	LPROP	LPROP	LPROP	LPROP	,
VARIABLE	CONREF	OFRMX	CSRMX	SPRMX	TRMX	IPRSIM	



The land	VARI	1
licar Dafinad Pronallant		Forth to the part of the forth the contract to

User defined coolant (should be ox or fuel)

(cont.)

Figure (

Coolant ideal gas heat capacity constants

S

				>
DIr				
+				
A + BTr + CTr ²				
BTr	Ŭ ∀	ر <u> </u>	ں	
+				
Hi				

Reference temperature for coolant properties (°R) 689

Reference pressure for coolant properties (psia)

Reference

coolant properties	heat capacity (BTU//Ib°R)	thermal conductivaty (BTU/in.sec.°R)	density (lb/in.?)	viscosity (lb//n sec)

VARIABLE	NAMEL IST	UNITS	DEFAULT
 CPCONA	LPROP	ı	3.89
CPCONB	LPROP	1	23.2
 CPCONC	LPROP	1	-9.818
 CPCOND	LPROP	1	1.666
 TREF	LPROP	o °	530
 PREF	LPROP	psia	14.7
 CPREF	LPROP	BTU/16°R	.725
 CREF	LPROP	BTU/in.sec	ر. ۲. ۲.
 DREF	LPROP	lb/in. ³	3.85E-6 .0327
 VREF	LPROP	lb/in sec	5.17F-5

DEFAULT	1093	1731	618	.005	.95	4.	c. 4.55	c°R .00686	
UNITS	° °	psia	° °	١	ì	1	BTU/in. ² sec.	BTU/in. ³ sec°R	
NAMEL IST	LPROP	LPROP	LPROP	LPROP	LPROP	LPROP	LPROP	LPROP	
VARIABLE	TCRIT	PCRIT	TBOIL	DBMLTK	DBEXPA	NBEXPB	QULTC1	QULTC2	

C ₁ (BTU/in. ² sec.) (C ₂ (PTU/in. ³ sec.°R)	
$qult = C_1 + C_2 \sqrt{(Tsat-T)}$	
Coolant ultimate heat flux constants (liquid ohase)	O
g ===	31
×	
$N_{u} = K R^{\alpha} p^{\beta}$	
Coolant heat transfer constants	S
Coolant normal boiling point (R)	S
pressure (psia)	
temperature (°R)	
Coolant critical point	O
User Defined Propellant	۱ –
Figure ( cont.)	ш

fuel description (Circle One)

User Defined Propellan

Figure( ) (cont.)

0) storalle

1) cryogen

ox description (Circle Ove

1) cryogenic

0) storable

DEFAULT	0	0	<b>,</b> -	
UNITS	ı	ı	ı	
NAMEL IST	LFLAG	LFLAG	LFLAG	
VARIABLE	ICRYFL.	ICRYOX	IHYPER	

Propellant combination description (Crcle 0) not hypergol 1) hypergolic

98

Figure ( ) (cont.)

				)
	VARIABLE	NAMEL IST	UNITS	DEFAULT
•	CPCNAF	LFUEL	ı	3.89
	CPCNBF	LFUEL	ı	23.2
•	CPCNCF	LFUEL	ı	-9.818
	CPCNDF	LFUEL	i	1.666
	TREFFL	LFUEL	°	530.
	PREFFL	LFUEL	psia	14.7
		•		

ser Defined Propellart	as leat capacity	+ 01	B	Q	Reference temperature for fuel properties (°R)	erence pressure for fuel properties (peia)	Reference fuel properties	heat capacity (BTU/1b°R)	thermal conductivity (BTM/in.sec.°R)	density (lb/in. ³ )	surface tension (lb/jh.)	viscosity (lb/in sec)	•
User					Refere	Reference 6	Refere						

.725

BTU/15°R

LFUEL

CPREFF

CREFFL

LFUEL BTU/in.sed°R LFUEL 1b/in.³ 3.854E-6 LFUEL 1b/in.

1b/in. |3.794E-4

LFUEL

REFSTF

DREFFL

5.17E-5

LFUEL | 1b/in sec.

VREFFL

	·				 										
DEFAULT	7.9	19.23	-5.018	0	530	14.7	.378	C°R TOTA	1./58E-6 .05177	1.433E-4	2.225E-5			All Annual A	
UNITS	1	1	ı	ì	°,	psia	BTU/16°R	BTU/in.sec°R	lb/in. ³	lb/in.	lb/in sec				
NAMEL IST	ΠΟΧΙD	LOXID	LOXID	LOXID	LOXID	LOXID	LOXID	LOXID	LOXID	LOXID	LOXID	<del>, , , , , , , , , , , , , , , , , , , </del>			
VARIABLE	CPCNAO	CPCNBO	CPCNCO	CPCNDO	TREFOX	PREFOX	CPREFO	CREFOX	DREFOX	REFSTO	VREFOX				
							 						<del></del>		•

	roberties (°R) (Ties (psia) (In.sec.R)	
Figure (cont.)  User Defined Propellatt  Oxidizer ideal gas heat capacity constants $C_p = A + BT_r + T_r^2 + DT_r^3$ B  C  C  C  C  D  D	xidizer propritizer proprities es U/16 9R) ity (BTU/in.	density (lb/in. ³ ) surface tension (lb/in.) viscosity (lb/in sec)



DEFAULT	*	*	*	7	1.0	0.0	TRUE	
UNITS	•	1	ı	i	1	sec	Boolean	
NAMEL IST	THROT	THROT	THROT	THROT	THROT	THROT	THROT	
VARIABLE	ECFTHR	ERETHR	THRPC	NTHEFF	PCTHRT	TIMTHR	LUSEP	-
								•

		cies	ncies	e fractions	/e tables		re fractions	(sec.)		propellant	nly through last time interval		ion volume
Figure (cont.)	Throttling trajectory	Table of nozzle efficiencies	Table of chamber efficiencies	Table of chamber pressure fractions	Number of entries in above tables	Throttling profile	chamber pressure fractions	burn duration (sec.)	Propellant use flag	true = burn all	false = burn only		* See technical information volume

	·						
DEFAULT	0.99	<b>;</b>	48	0.8	90.0	0.5	-
STINO	1 1	1	ř.	i	1b/in. ³	<u>-</u>	
NAMEL IST	NOZZLE NOZZLE	NOZZLE	NOZZLE	NOZZLE	LIQMAT	LIQUID	
VARIABLE	CBMLT CTMLT	MANDEQ	DANEX	FANMOT	RHOPLB	TPLGBS	

Plug cluster base density (lb/in ³ )
annular throat diamter fraction of DMOTOR
annular throat diameter (in/)
1) calculate diameter (DANEX = FANMOT * DMOTOR)
0) input diameter (DANEX)
method of calculating annular threat diameter (Circle One)
Annular nozzle (IPLUG = 2)
expansion thrust multiplier
base pressure multiplier
External expansion nozzle thrust multipliers
Short Nozzle
Figure (cont.)

```
CENTAUR D VERIFICATION
                               2/14/84
MINEGET
   INDES=1.
    ICPF = 0.
   DELMIN=.07.
   DEL=5.
  ITLIM=500. TLIMIT=900..
 IPLOT=0.
   IFRINT=0.2.2.2.1.
С
ũ
C
  IOFT=92,42.
   IERRMU=0.
   ICBUF=13.
   06JSCL=1..
$ E NE
SNLF
IF NL
SINFGEN
  NSTGES=1.
  KSTAGE=2.2.2.
( >>>>>> SEE NOTE 1
  WM1SC=1692..
  1-4405.
  D#010F=4*125.
  : LLOME = 1.38.
C >>>>> SEE NOTE 2
  EFS=57.,
  FPSATT=6.,
  wMISFL=131..
  -MIS0x=0..
$ t N L
SINTSTG
$5 NL
IN022LE
SLAD
PLATER
$€N0
$FILMNT
SEND
SPROPEL
ELNÚ
LASTRAL
SENE.
SGUIDA
TINE
SAEROU
4 ENL
STHVST
SEND
$ 0 R ;
SENU
$LIGUID
FVAC=15000.,
C >>>>> SEE NOTE 3
  wTLPRP=29750..
C >>>>> SEE NOTE 4
  FASKTL=1.,
  FFSKTL=0.04.
  GME ANG = 16 . .
  KGPOLR=1.
  NG 1 MB = 2 .
C >>>>>> SEL NOTE 5
  FCmGFL=.168.
  FCHGOX=.114.
  CPLINF = . 02 .
  CFLIN0=.02.
  CPVLVC=.367.
  CFVLVF = . 437 .
```

Figure 3.3. ELES Input for Centaur D1-T Verification (Sheet 1 of 3)

```
15N0
SLFLAC
C >>>>> SEE NOTE 6
  KHXOFT=1.
  KWTMOD=1.
C >>>>> SEE NOTE 7
   KGASOX=1,
   KGASFL=1.
  IPROP=5.
C >>>>>> SEE NOTE 8
  KCYCLE = 3.
  KOOLTC=2.
  K00LNZ=2.
  KACGFL=6.
  KACGOX=6.
 LNFULL=1.
SENE
SLTANK
 ULLFFL=.02.
 ULLFOX=.02.
$END
$TNKGEO
C >>>>> SE: NOTE 9
 NPRB=2.
  MNCGF=1.
  MNCGA=1.
   KXFTFH=-1,
  KXFIAn=-1.
   KXATEH=-1.
   KXATAH=1.
  KUOME = 1 .
   KERPA=0.
   KLINE A = 0 .
SENE.
$BLADE 6
$END
$COLU6
U >>>>> SEE NOTE 10
  P106=3500..
 FPULC6=1.1.
SEND
$S0L066
SEND
SPUMP
  TULLFL = 100.,
  TULLOX=250.,
   PBPRF=1.C1.
  PBPR0=1.01,
C >>>>> SEE NOTE 11
  SSSFL=5800.,
  SSS0X=5800..
 SSSEPF=15000..
 SSSBF0=200J0.,
C >>>>> SEE NOTE 12
 BPFRFL=.008.
( >>>>> SEE NOTE 13
  TUREPR=1.4.
( >>>>> SEE NOTE 15
  J8PFL=1.
  JBP0X=1.
C >>>>> SEL NOTE 14
 FLNPSP=4..
  OXNPSP=8..
  ISTART=3,
  KPUMP=2,
C >>>>> SEE NOTE 16
  GAMGPB=1.46.
 CPGGPB=3.25.
  wMGGP6=2.0.
  JOBF 16=1.
```

Figure 3.3. ELES Input for Centaur D1-T Verification (Sheet 2 of 3)

```
SENE
SINJECT
C >>>>> SEL NOTE 17
  ELDENS=2.61.
  OXOPEL=1..
  FLOFEL=1.,
  IELDEN=1.
$END
SLIGING
C >>>>> SEL NOTE 18
 XLN=5.,
  XLU=7.6.
  CR = 4 . 0 .
  KEXN02=1.
  RATMLR=1.1868.
   NTC=2.
BENL
SINREGN
C >>>>> SEE NOTE 19
  BYPREG=0.313.
  GWMING=0.01275.
  TGWNOM=2050.,
  WALLK= . 000215 .
  HG . MAX=4.62.
  BYFTUR=0.0.
  IFREGN=1.
  IRPRNT=1,
  WTHR = . 065 .
  WLTHR=.025.
  OIF T8F = 1.0.
  SAMULT=1.641,
SENL
SABLATE
SEND
SLIGMAT
C >>>>> SEE NOTE 20
  MATET=12.
  SIGCHM=9.0E6.
  $16CLS=6.0E5.
  RH01NJ= . 28 .
  RHOVLV= . 28.
  MAISTR=11.
  MINKFL=14.
  MINKOX=14.
$ENU
SCXWMLT
C >>>>>> SEE NOTE 21
  CXWCHM=1.5.
SE NL
SLPROP
SENU
$LQFERF
C >>>>> SEE NOTE 22
  RMFFL=1.0:
  HMF 0 X = 1 . 0 .
  OFCORE=5.0.
SEND
STHROT
$END
$LFUEL
$END
SLOXID
SEND
$NCTINP
 SENL
STANKHX
 C >>>>>> SEE NOTE 23
   TML IF = 0.018.
   TML10=0.018.
   TSOF IF = .50 .
    TSOFI0=.50.
   TEXEOU=550..
   HLDTIM=300.,
   FLTTIM=300.,
 $F No
```

Figure 3.3. ELES Input for Centaur D1-T Verification (Sheet 3 of 3)

# TABLE 3.1

#### CENTAUR D1-T VERIFICATION INPUT NOTES

- 1. Miscellaneous weight (WMISC) based on the table of Centaur weights shown in Table II, the miscellaneous weight input (WMISC) was determined. It includes ACS, electrical, guidance, instrumentation, and separation hardware.
- 2. Attach area ratio (EPSATT) is set equal to 6 in order to indicate the beginning of the tube construction of the regen cooled nozzle.
- 3. The burned propellant (WTLPRP) does not include residuals, boiloff, or auxiliary propellant. (Auxiliary propellant is included in WMISFL & WMISOX).
- 4. Skirt lengths are determined by FASKTL & FFSKTL. FFSKTL of 0.04 indicates a small skirt to which payload can be attached. FASKTL of 1.0 indicates that the aluminum interstage spans the entire engine bay.
- 5. The injector pressure drops were found in the literature to be 68.6 and 46.7 psi for the fuel and oxidizer circuits respectively. Using the injector face pressure of 408.2 psia from the pressure and temperature schedule calculated by ELES, the values of FCHGFL and FCHGOX are calculated. The values of CPLINO, CPLINF, CPVLVO and CPVLVF were estimated from pump and boost pump pressure schedules.
- 6. Tank heat transfer was chosen to simulate ground hold conditions at nominal conditions.
- 7. Tank pressurization is primarily autogenous when operating at steady state however there is a helium system on-board for making up any pressurization deficit. Cold gas pressurization was therefore chosen by setting KGASOX = 1, KGASFL = 1.

# CENTAUR D1-T VERIFICATION INPUT NOTES

- 8. Expander power cycle is chosen by setting KCYCLE = 3. In order to be consistent with that cycle and a fuel regen cooled LOX/LH₂ engine, the following variables must also be set; IPROP = 5, KOOLTC = 2, KOOLNZ = 2, IFREGN = 1.
- 9. The geometry of the Centaur is specified by the geometry flags in namelist TNKGEO.
- 10. The storage pressure of the helium bottle is set to 3300 psia by the variable PICG. The blowdown pressure of the bottle is set to 10% higher than the downstream pressure requirement using FPLUCG = 1.1.
- 11. The suction specific speeds were input in order to limit the RPM of each pump to their actual valves. Using the equation

NPSH = 
$$(N Q^{1/2}/S_s)^{4/3}$$

It can be seen that RPM and suction specific speed are linearly proportionate for a given flowrate and net positive suction head.

- 12. The boost pump head rise is calculated as a fraction of the total head rise required. The default value for that fraction is 0.0464. In order to fit the actual data of the Centaur, the fuel head rise fraction was set to .008 using the variable BFPRFL. (The oxidizer value of BPFROX was left at the default).
- 13. Although the turbine pressure ratio (TURBPR) is calculated in ELES, a starting vaue of 1.4 is used to aid in quicker convergence to the final value.

#### CENTAUR D1-T VERIFICATION INPUT NOTES

- 14. The net positive suction pressure to the most upstream pumps (in this case the boost pumps) is specified by FLNPSP and OXNPSP.
- The pump design selection flags used for Centaur are JBPFL and JBPOX which identify boost pump use, ISTART which specifies number of engine restarts, KPUMP which indicates each engine as having its own TPA, and JCNFIG which calls for gearbox driven pumps.
- 16. The gas properties of the turbine drive fluid must be specified. The inputs GAMGPB, CPGGPB, and WMGGPB indicate the ratio of specific heats, constant pressure heat capacity, and molecular weight respectively.
- 17. The description of the injector includes the number of injector elements. For the general case it is better to specify an element density which is selected with the flag IELDEN. The default value of the element density (IELDEN) is 3.1 elements/in.². For Centaur the value is 216 elements/82.9 in.² = 2.61 elements/in.².
- 18. The combustion chamber geometry is input in namelist LIQENG. The inputs are all straight-forward except RATMLR which is calculated with the formula

RATMLR = 
$$L_{noz}/[(\frac{\varepsilon + 1009}{1612.1}) \frac{R_t (\sqrt{\varepsilon} - 1)}{0.26795}]$$

= 1.1868 for the RL-10

#### CENTAUR D1-T VERIFICATION INPUT NOTES

19. Characteristics of the regen cooling jacket are specified in namelist INREGN. The RL-10 chamber is made from Type 347 stainless steel tubes with wall thicknesses of 0.01275 inches. The walls are forced to that thickness by setting GWMING = 0.01275 and the material strength SIGCHM to a very big number.

The wall operating temperature and thermal conductivity are set with the inputs TGWNOM and WALLK. DIFTBF of 1.0 tells ELES to make the combustion gas barrier temperature equal to the core temperature.

All of the fuel coolant does not pass through the regen jacket in order to allow for some control of the TPA. The fraction of total fuel flow which bypasses the regen jacket (BYPREG) is equal to 0.313. Of the flow which does pass through the regen jacket, it all passes through the turbine; BYPTUR is therefore 0.0.

The flags IFREGN and IRPRNT tell ELES to cool using fuel and to output a summary of the cooling jacket.

The geometry of the milled cooling slots are modified to simulate the tube construction of the RL-10. The throat geometry is specified by WTHR and WLTHR. The channel width (WTHR) is set equal to the tube diameter and the land width (WLTHR) is set equal to twice the tube wall thickness. The surface area available for heat transfer is multiplied by 1.641 (SAMULT) in order to simulate tubes. The maximum channel height to width ratio (HOWMAX) is set to 4.62 in order to empirically arrive at the approximate regen pressure drop displayed by the RL-10.

# CENTAUR D1-T VERIFICATION INPUT NOTES

Materials of construction are identified in namelist \$LIQMAT. The engine is made from type 347 stainless steel. The material strengths which are input for the chamber (SIGCHM and SIGCLS) are not the actual values for 347SS, however, because the stress calculations correspond to a milled slot design (not the actual tube design) in which thermal stresses are often controlling. Values for SIGCHM and SIGCLS have been input which result in the known tube thicknesses. The densities of the valve and injector (RHOINJ and RHOVLV) have been input to correspond with stainless steel.

The propellant tanks are made from 301 CRES having wall thicknesses of 0.014 inches. Because 301 CRES is material number 14 in the materials library and has a minimum gauge of .014, the material MTNKFL and MTNKOX are set to 14. The interstage is made of aluminum and MATSTR is therefore set to 11.

- 21. Because we have forced the chamber to look like a tube bundle we must multiply it by some factor to tie it together structurally. Based on engineering judgment, a value of 1.5 was chosen.
- 22. The shear coax elements of the RL-10 have a droplet size correction factor of 1.0 as reflected in the values of RMFFL and RMFOX. The engine operates at a mixture ratio of 5.0 (OFCORE = 5.0).
- 23. The insulation used on the Centaur propellant tankk is both MLI and combined fiberglass-MLI. That condition is simulated with 0.5 inches of SOFI and 0.018 inches of MLI on both tanks. The heat transfer scenario was selected as a constant boundary temperature (TEXBOU) of 550°R. The times available for heat transfer before and during flight (HLDTIM and FLTTIM) were selected as 300 seconds each.

THE FCLLOWING WARNINGS CCCUR FOR STAGE 1

EL TEMPERATURES USED FOR VAPORIZATION WERE MOST RECENT CORRECTED VALUES 521.2

164.7

518.0

MINIMUM GAUGE DESIGNS AFT TANK WALL THICKNESS

MINIMUM GAUGE DESIGNS FORWARD TANK WALL THICKNESS

AFT TANK ULLAGE INCPEASED BY GEOMETRY CONSTRAINT

Figure 3.4. ELES Warning Page



Figure 3.5. ELES Graphical Output

EXPANCER CYCLE (FUEL SIZE)  EXPANCER CYCLE (FUEL SIZE)  AFT TANK CONTAINS CXIZIZER  FUEL TANK IS PRESSURIZEC AUTCGENOUSLY  GXIZIZER TANK IS PRESSURIZES AUTCGENOUSLY	
<i>(</i> )	~
ΔI	<del></del>
7	Μ,
103	67
×	a D
- 2 →	,
F	
ر خ ت ت	ت
4 N ™	ŭ.
¥ 0 0 0	
/ \25	^
.\/3~	<u>.</u>
	r )
m m m	تعا
117	ر د
117	t
F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*
F S S S	$\mathcal{L}$
S I A	
8 J F 7 X	- i
F 200	_
× × ×	<u>.</u>
K E E E E E E E E E E E E E E E E E E E	۹ د
	 v
GE SUMMARY FOR STACE F1  EXPANCER CYCLE (FLEL SIGE)  AFT TANK CONTAINS CXICIZER  FUEL TANK IS PRESSUFIZEC AUTOGENOUSLY  CXICIZEF TANK IS PRESSUPIZES AUTOGENOUSLY	TANK MATERIALS (OX - CRES 301.) (FUEL - CRES 301.)
TANKAGE SUMMARY FOR STACE FI EXFANCER CYCLE (FLEL S) AFT TANK CONTAINS CXICI FUEL TANK IS PRESSUFIZE CXICIZEF TANK IS PRESSI	_
<b>∢</b> ¥.	
Z :4	
<b>-</b>	

DIMENSIONS (CINCHES)		*** ** ** ** ** **** *****************	
) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	2 20 6	•	
	1 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		42.0E
1012E 0120E EEE07	0 • 0 0 0	TANK	554.2
	5/6.5	PRESSURE TANK	
NOZZLE LENGTH	48.4	. TANK CONSTRUCTION LEIGHT	417.8
	12.6		
٠ ي	14.8	STRUCTURAL WALL	•
MOUNT LENGTH	2 • 0		
		FORWARD SKIRT	0 0 0
TANK HEAD ELLIPSE RATIO	1.3		
PRESSURE TANK ELLIPSE RATIO			٠
AFT TANK HEAD HEIGHT	43.3	PRESSURE TANK TACTION	
FORWARD TANK HEAD HEIGHT	4	FIGURE TANK TATOL	
PRESSURE TANK HEAD HEIGHT		CATOMAT TARK TARK	184 • 0
PRESSURE TANK DIAMETER		CAIDILER FARM INCULATION	87•€
AFT TANK CYLINDRICAL LENGTH			
FOREARD TANK CYLTNOSICAL CRACTE		REVERSE HEAD STIFFENER	J • 0
DOFCCEOF TARK CYLINDRICAL LENGIN	7	FUEL ACQUISITION SYSTEM	10.7
TALSSONE TANA CITINDAICAL LNGTH		OXIDIZER ACQUISITION SYSTEM	8.6
		PRESSURANT CONTROL HARDWARE	( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
AFT LINE CIAMETER	1.64	TANK LINES	3 -
FORWARD LINE DIAMETER	1.66		• `
AFT SKIRT LENGTH	121,06	BURNED FUEL	
FORWARD SKIRT LENGTH	1.73	BURNED OXICIAER	٠.
		SIDLAI	
STRUCTURAL MALL THICKNESS	0.057	TONION DESCRIPTION OF THE PROPERTY OF THE PROP	⊃ ! O ;
AFT TANK WALL THICKNESS		CATULATION AND AND AND AND AND AND AND AND AND AN	, e e e
MARE	. 400		£ 8 ° C
0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 0 0	CAIDIZER AUTGGENGUS PRESSURANT	203.2
1 C N N	000.0	HOLD TIME FUEL BOILOFF	11.5
2	6.014	HOLD TIME OX BOILOFF	21.6
CKNESS	C.014	FLIGHT FUEL ECILCEF	
PRESSURE TANK DOME THICKNESS	000.0	FLIGHT OXIDIZER BUILCFF	2 7 7
2 3 C L C E L C E E E E E E E E E E E E E E	c		• •
TOTAL THE TRANSPORT	<b>-</b>	MISC EXPENDED FUEL	•
TIPE TIPE A	Ω	SC EXPENDE	J = 9
A IANK ML1 1	C		,
CALGIZER TANK SOFI THICKNESS	C. 50	PISCELLANECUS WEIGHT	
TANK INSUL!	()		ייני ט
		THE POST OF THE PO	•
		INPUT MINIMUM SAFETY FACTORS	
LUEL INK HEAL FLOX (BIU/HR IN++2)	6.75		
OX TANK HEAT FLUX(BTU/ER IN++2)	6.64		
FUEL BOILOFF RATE (LB/SE'C)	0.038		7 6 7
OX BOILCFF RATE (LB/SEC)	0.000	CXTOTZER TARK	بر د: ۵ د: ۷
		FUEL TANK	1 + 2 =
		AND FOREST CONTROL	37.4
		100001C	€3 4 1 •

Figure 3.6. ELES Tankage Summary

# 3.0, Centaur D1-T Sample Case (cont.)

The propellant summary page (Figure 3.7) gives some of the more important propellant properties over the operating range of the stage.

The engine size, weight, and performance summary (Figure 3.8) addresses many of the detailed engine design parameters. Size information includes chamber length and diameter, throat dimensions, and nozzle contour. A detailed engine weight breakdown is included. The engine performance is specified by individual loss mechanisms which are applied to the ideal one dimensional equilibrium as well as overall and stream tube operating points.

The regenerative cooling summary (Figure 3.9) describes the heat transfer characteristics of the combustion chamber. Each station is a location along the regen cooled portion of the chamber and can be identified by the area ratio column. Regen flow is counter-current such that station No. 1 is at the nozzle exit of the regen cooled chamber.

The pressure and temperature schedules (Figure 3.10) shows the pressure and temperature at various key points in the propellant feed system as well as pressure and temperature changes across key sections of the feed system. A flowrate schedule is also included in this table showing flowrates through the major components of the feed system.

The TPA system (Figure 3.11) gives detailed descriptions of the pumps and turbines involved in the engine design under consideration. Speeds, dimensions, efficiencies, and flowrates are given.

The overall stage weight summary (Figure 3.12) is a list of all items in the stage which contribute to its weight. Inert weights are presented separately from propellant or pressurant weights.

PROPELLANT SUMMARY FOR STAGE #1
PROPELLANT COMBINATION IS LOZZEHZ

		2.5	40.0 0.0025 25.0	40.0 0.0025 25.0	48.0 0.002€ 25.0
NOMINAL FROFELLANT BULK CENSITY(LB/IN**?)= 0.0397	··· Fuel ···	20.8 NOMINAL TANK PRESSURE (PSIA)	66.0 C.0471 NOMINAL PROPELLANT TEMP(DEGR) C.0471 AOMINAL DENSITY(LE/IN**3) 12.8 AOMINAL VAPOR PRESSURE(PSIA)	60.0 0.0471 HAX TEMP DENSITY(LB/IN**3) 12.8 PAX TEMP VAPCR PRESSURE(PSIA)	60.0 0.0471 MIN TEMP DENSITY(LB/IN**3) 12.8 FIN TEMP VAPOR PRESSURE(PSIA)
NCMINAL F	OXICIZER	NCMINAL TANK PRESSURE(PSIA) 20.	NOMINAL PROPELLANT TEMP(DEGR) 166.0 NOMINAL DENSITY(LB/IN**3) C.34 NOMINAL VAPCR PRESSURE(PSIA) 12.8	MAX PROPELLANT TEMP(DEGR) 160.0 MAX TEMP DENSITY(LB/IN**3) 0.04 MAX TEMP VAPOR PRESSURE(FSIA) 12.8	MIN PROPELLANT TEMP(DEGR) 160.0 MIN TEMP DENSITY(LB/IN**3) 0.04 MIN TEMP VAPOR PRESSURE(PSIA) 12.8

Figure 3.7. ELES Propellant Summary

Figure 3.8. ELES Engine Size/Weight/Performance Summary

ENGINE SIZE*WEIGHT.8 PERFORMANCE SUMMARY FOR STAGE #1

EXPANDER CYCLE (FUEL SIDE)

CHAMBER IS REGEN COOLES (MILLED SLCT CONSTRUCTION)

NOZZLE IS REGEN COOLED (TUBE CONSTRUCTION)

FROFELLANT COMPINATION IS LOZZLH?

THE FOLLOWING IS THE REGENERATIVE COOLING SUMMARY FOR STAGE #1

THE ENGINE IS A FUEL, GOOLED CONVENTIONAL CHAMBER AND INTERNAL EXPANSION NOZZLE

		* * * * * * * * * * * * * * * * * * *
		**************************************
·		HC 349E - 02 - 02 - 02 - 02 - 02 - 02 - 02 - 0
SECTIONS SECTIONS		HG • 562E-04 • 928E-04 • 177E-03 • 443E-03 • 147E-02 • 1147E-02 • 116E-02 • 779E-03 • 779E-03 • 779E-03
PER PER S		164 107E + 02 107E + 02 125E + 03 169E + 03 169E + 03 113E + 04 885E + 03 772E + 03 778E + 03 778E + 03 816E + 03 816E + 03 816E + 03 816E + 03
NOZZLE SECTIONS CONVERGENT CHAM CYLINDRICAL CHAM		10 4 4 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
L CN G L CN G L CN G		6 4 8 E = 01 1 6 8 E = 01 2 6 7 E + 00 1 6 8 E + 00 1 6 8 E + 00 1 7 9 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
6.609 INCH 1.126 INCH 1.526 INCH	SEC DECR)	V • 720E+ • 123E+01 • 258E+02 • 670E+02 • 636E+04 • 308E+04 • 318E+04 • 131E+04 • 152E+04 • 158E+04 • 158E+04 • 171E+04
மி மி ம	00 (BTU/IN 2050.	H 1247EF 01 201EF 01 2247EF 01 3842EF 01 383EF 00 383EF 00 383EF 00 363EF 00 3714EF 00 3714EF 00 3714EF 00 3714EF 00
BOUNDS TO THE EOUNDS TO THE BOUNES TO THE	Ω. Σ	.555 .555 .555 .4146 .300 .130 .130 .1319 .1319 .135 .155 .155 .155 .155 .155 .155 .155
6 ARE 11 ARE 16 ARE	THICKNESS = 0.013 THERMAL CONDUCTIVITY MAXIMUM OPERATING TE	18 822E+02 938E+02 117E+03 173E+03 4938E+02 493E+03 4448E+03 448E+03 538E+03 538E+03 559E+03
1 THROUGH £ THROUGH 11 THROUGH	THICKNESS = THERMAL CONS	775E+03 .775E+03 .775E+03 .775E+03 .775E+03 .635E+03 .635E+03 .631E+03 .630E+03 .630E+03 .630E+03
STATIONS STATIONS STATIONS	GAS WALL GAS WALL GAS WALL	STATION 110 120 120 1121 1131 1141 1151

- COOLANT CHANNEL WIDTH (IN)
- COOLANT CHANNEL HEIGHT (IN)
- COOLANT VELOCITY (IN/SEC)
- HEAT FLUX (BTU/IN**2 SEC)
- TEMPERATURE OF COOLANT WALL (DEGR)
- TEMPERATURE OF GAS WALL (DEGR)
- GAS SIDE HEAT TRANSFER COEFF (BTU/IN**2 SEC DEGR)
- COOLANT SIDE HEAT TRANSFER COEFF (BTU/IN**2 SEC DEGR)
- LOCAL AREA RATIO (**)

- COOLANT PRESSURE (PSIA) - COOLANT BULK TEMPERATURE (DEGR)

σ = π = ⊃

503.1

DELTA T= DELTA P= - COMBUSTION GAS TEMPERATURE (DEGR)

ELES Regenerative Cooling Summary

Figure 3.9.

#	
F GE	
(	Ì

RE(UEG R) Oxidizer	170.2 (SATURATION TEMP OF PROPELLANT)	166.9 160.3 160.3 164.7 164.7
TEMPERATURE (DEG R) FUEL OXID121	PRESSURANT 41.6	PROPELLANT 40.0 40.5 40.5 63.6 63.6 556.7 521.2 5801.2
.URÉ (PSIA) GXICIZEP	22.9 20.8	200.6 54.5 604.6 454.8 454.8 400.0 476.8
PPESSURE FUEL	3.1.5.9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	29 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	VENT ULL4GE	TANK PROPELLANT  59.0  20.6  BOOST PUMP OUTLET  44.4  MAIN PUMP INLET  36.3  MAIN VALVE INLET  75.2  REGEN JACKET OUTLET  775.2  1NJECTOR FACE  COMBUSTION CHAMBER  TURBINE INLET  476.8  476.8

•	€ • 0	0.0	4.4	0.0		0 0	)
CHANGES					٠		45.5
••• COMPONENT PRESSURE/TEMPERATURE CHANGES •••	0 • n	0.0	23.1	0.0	503	0	
COMPONENT	33.7	8.2	550.1	149.8	1 1 1	46.5	145.2
ິບ •	15.4	8.2	909.2	178.4	147.0	68•6	
ACGUISITION DEVICE	BOOST PUMP	FEEU LINE	MAIN PUMP	MAIN VALVE	REGEN JACKET	INJECTOR	TURBINE

FLOWRATE SCHEDULE (LB/SEC) FOR STAGE #1 EXPANDER CYCLE (FLEL SIDE)

OXIDIZER	56.686	28.343	28,113		!!!	!!!	3.941	000.0	0.230	28.113
FUEL	11.401	5.701	5.701	3.941	1.760	000.0		3.863	0.078	5.623
	TANK OUTFLOW	MAIN PUPP	MAIN VALVE	REGEN JACKET INFLOW	REGEN JACKET BYPASS	REGEN OUTLET TO INJECTOR	TURBINE	TURBINE TO INJECTOR	AUTOGENOUS PRESSURANT	INJECTOR

ELES Pressure/Temperature/Flowrate Summary Figure 3.10.

4		
. *		
•		
22	w	
	$\Box$	
نبا	-	
	(J)	
⋖		
<b></b>	-4	c,
in	ū	ň
٠,	5	
~	Ξ	-
	$\overline{}$	2
4		
	w	
>		L.
$\alpha$	U	>
⋖	<u>_</u>	-
	Ι.	

... OXIDIZER PUMP ...

... FUEL PUMP ...

10664.	74501	* * * * O * * * * * * * * * * * * * * *	1.251	0000	2	4 . K						2777	31.00	ω • • • • • • • • • • • • • • • • • • •		11714.	****	• • • • •	20000	60	n 0 4 0 0 1	0 0 0 0 0	, C	7 7 7 7	7.4
FUMP SPEED (RPM)	ROOT STRESS SPERE HATTERESS			COCION SPECIFIC SPEED	NUMBER OF PUMP STAGES	NET POS SECTION PRESSURFICESTAL	FUMP OUTLET PRESCUBE (DOTA)	ACCOUNT OF CHARTICA	CEAST LEARCH OF COLOR	MASS FLOWRATE (LBM/SEC)	PURP HORSEPORER (HP)	PUMP EFFICIENCY			OXIDIZER BOOST PUMP	PUMP SPEED (RPM)	SPECIFIC SPEE		SUCTION SPECIFIC SPEED	NET POS SUCTION PRESSURE (PSIA)	OUTLET PRESSURE(PSIA)	PUMP HORSEDAMES (AD)	ACMETITE ONLY		
25103.	74021.	740.	π α α	,	• 4	11+3	953.6	591.13	0	D • C	481.53	0.656		;		35816.	13001.		• 0000	4•0	4.44	5.11	0.545	1.9	•
PUMP SPEEL (RPM)	RCOT STRESS SPEED LIMIT(RPM)	SPECIFIC SPEEC	CHECKET SET OF STATE		NUMBER OF FUEL NIAGEN	NET POS SUCTION PRESSURE(FSIA)	PUMP OUTLET PRESSURE (PSIA)	VOLUMETRIC FLOWRATE (GPM)		ころく ここりをおす ここうかん	PUMP HORSEPOWER (HP)	PUMP EFFICIENCY	DIMP DIAMPTER(IN)		FUEL BOOST PUMP	PUMP SPEED(RPM)	SPECIFIC SPEED	CHARA CERTARA SOLITOR	SOCIECT STECTS	NET POS SUCTION PRESSURE(PSIA)	OUTLET PRESSURE (PSIA)	PUMP HORSEPOWER(HP)	PUMP EFFICIENCY	PUMP DIAMETER(IN)	

	¥ 7 .			
	.4			
T SYSTEM WT.	GENERATOR/PREBURNER	SYSTEM WT.	MANIFOLD WT.	
~	الميا	Z	S	
STAR	ū	Ξ	ä	ř
S	9	-	9	3
TPA	GAS	IGNITION	101	TFA

0.790 0.687 1.299 3.94 7.0 2. 49215.

ADMISSION FRACTION
EFFICIENCY
PRESSURE RATIO
MASS FLOWRATE(LB/SEC)
DIAMETER(IN)
NUMBER OF TURBINE STAGES
BLADE ROOT STRESS(PSI)
SPECIFIC SPEED
TURBINE SPEED(RPM)

6.7	12.4	0.0
TPA START SYSTEM WIS	VITION SYSTEM WIT.	MANIFOLD W

Figure 3.11. ELES Turbopump Assembly Summary

... TURBINE ...

STAGE #1 WEIGHTS (POUNDS)	
*** 21MOF #1 MEIGHIZ (MOUNDS) ***	
AFT TANK	42.6
FORWARD TANK	554.2
PRESSURE TANK	0 + 0
TANK CONSTRUCTION WEIGHT	417.8
TANK LINES	9 • 1
AFT SKIRT	470 0
FORWARD SKIRT	139•8 12•9
TANK MOUNT	0.0
STRUCTURAL WALL	4.3
PRESSURE TANK INSULATION	0 • 0
FUEL TANK INSULATION	184.0
OXIDIZER TANK INSULATION	87•6
FUEL ACQUISITION SYSTEM OXIDIZER ACQUISITION SYSTEM PRESSURANT CONTROL MARRIAGE	10.7
OXIDIZER ACQUISITION SYSTEM	8.6
THE SOUNT CONTROL MARDWARE	8 • 2
2 THRUST CHAMBER ASSY(S) 2 THRUST MOUNT(S) 2 GIMBAL SYSTEM(S)	250.0
2 THRUST MOUNT(S)	66.8
	63.0
2 ENGINE BAY LINE(S)	15.8
2 IGNITION SYSTEM(S) 2 HOT GAS MANIFOLD(S) 2 TPA ASSY(S)	24.8
2 HOT GAS MANIFOLD(S)	0 • 0
2 TPA ASSY(S) 2 TPA START SYSTEM(S)	161.2
2 GAS GENERATOR/PREBURNER(S)	151-2 13-3
2 AUTOGENOUS HEAT EXCHANGER(S	
FLIGHT FUEL BOILOFF	
FLIGHT OXIDIZER BOLLOFF	11.5 21.0
FLIGHT OXIDIZER BOILOFF Expendable weight	0.0
MISCELLANEOUS WEIGHT	1692.0
************************	
TOTAL INERT WEIGHT	3951.9
INTERSTAGE WEIGHT	0 • 0
INTERSTAGE WEIGHT BURNED FUEL BURNED OXIDIZER	4958.3
BURNED OXIDIZER	24791.7
LOFF KESIDAM	5 • 0
OXIDIZER RESIDUAL	36 • 3
FUEL AUTOGENOUS PRESSURANT OXIDIZER AUTOGENOUS PRESSURANT	69.0
MISC ON-BOARD FUEL	203.2 131.0
MISC ON-BOARD OXIDIZER	0.0
/	
GROSS TANTTION DETCHT	74946 7
GRUSS IGNITION WEIGHT Gross Burnout Weight	34146.3 4363.9
THE STREET	7J0J#7

Figure 3.12. ELES Overall Stage Weight Summary

11.5 21.0

HOLD TIME FUEL BOILOFF HOLD TIME OX BOILOFF

# 3.0, Centaur D1-T Sample Case (cont.)

The final page of output is the vehicle summary (Figure 3.13) which gives an overview of all vehicle stages. The stage mass, mass fraction, dimensions and performance are overviewed.

Table 3.2 is a weight breakdown of the actual components in Centaur D1-T. Table 3.3 is used to compare ELES output results with actual Centaur data. The agreement between actual and predicted is shown.

# CENTAUR D VERIFICATION 2/14/84 **** VEHICLE SUMMARY ****

	STAGE #1
WEIGHT.LB	
FAYLOAD	0 • 0
STAGE WEIGHT	34146.3
USABLE PROPELLANT	29750.0
FIXED INERT	
PROPULSION SYSTEM	3951.9
INTERSTAGE	0.0
EXPENDED INERT	
EXPELLED	32.4
JETTISONED	0.0
GROSS IGNITION WEIGHT	34146.3
GROSS BURNOUT WEIGHT	4363.9
PROFELLANT MASS FRACTION	0.871
••DIMENSIONS•IN••	
STAGE DIAMETER	
	120.00
NOZZLE EXIT DIAMETER NUMBER OF NOZZLES	38.09
STAGE LENGTH	2
STACE (LE 106 FR	357.32
· · PERFORMANCE · ·	
PROPELLANT	1.00.44 -
THRUST, VACUUM DELIVERED, LBF	L02/LH2
PC+FSIA	
USABLE PROPELLANT MR	400.0
NOZZIE AREA RATIO	5.00

Figure 3.13. ELES Vehicle Summary

57.60

0.968

67.47

445.54

NOZZLE AFEA RATIO

ISF. VACUUM DELIVERED. SEC

PROPELLANT FLOW RATE, LB/SEC

BURN TIME . SEC

ISF EFFICIENCY

TABLE 3.2

# CENTAUR D1-T WEIGHT SUMMARY

Modeled		Unmodeled	
Subcomponents	WT	Components	WT
Basic Structure	818	Stub Adaptor	252
Secondary Structure	274	Equipment Module	247
Main Engine System	605	ACS	6
Fuel System	181	Ullage Motors	39
Ox System	115	Propellant Utilization	47
Propellant Load System	17	Auxiliary Propellant System	147
Hydraulic System	99	Guidance System	170
Pressurization System	247	Autopilot System	146
Total	2356	Electrical System	143
WMISC	1692	Range Safety System	53
		Tracking System	11
Centaur Dry Weight	4048	TLM System	283
		Adapter Payload	74
		Separation System	54
		Helium	8
		Ice	12
Residual Propellant	169	WMISC	1692
Gaseous Propellant	254		
Auxiliary Propellant	<u>131</u>		
Centaur Weight/Residuals	4602		

TABLE 3.3
CENTAUR D1-T VERIFICATION SUMMARY

	Actual	Calc	Actual/Calc
Turbine Pressure Ratio	1.337	1.299	1.029
Regen Jacket AT	418	503	0.83
Ox Pump Outlet Pressure	597	604	0.99
Fuel Pump Outlet Pressure	990	954	1.04
Engine System	605	634.9	1.05
TPA Weight	76.1	80.6	0.94
Stage Dry Weight	4048	3952	1.02
Stage Burnout Weight	4602	4364	1.05
Stage Length	360	357.3	1.01
Engine Performance	444	444.6	1.00