TEORÍA DE ALGORITMOS

RELACIÓN DE PROBLEMAS 1

1. Demostrar

- (a) $f \in \Theta(g) \Leftrightarrow \exists c, d \in \mathbb{R}^+, n_0 \in \mathbb{N}/n \ge n_0, d * g(n) \le f(n) \le c * g(n)$
- (b) $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$

2. Demostrar

- (a) $Lim_{n\to\infty} \frac{f(n)}{g(n)} \in \mathbb{R}^+ \Rightarrow f(n) \in \Theta(g(n))$
- (b) $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) \in O(g(n))$ pero $f(n) \notin \Theta(g(n))$
- (c) $\lim_{n\to\infty} \frac{f(n)}{g(n)} = +\infty \Rightarrow f(n) \in \Omega(g(n))$ pero $f(n) \notin \Theta(g(n))$
- (d) $\Theta(f^2(n)) = \Theta(f(n))^2$

3. Demostrar

- (a) $\forall k > 0, \ k * f \in O(f)$
- (b) Si $f \in O(g)$ y $h \in O(g)$ entonces $(f + h) \in O(g)$, Si $f \in O(g)$ entonces $(f + g) \in O(g)$
- (c) Si $f \in O(g)$ y $g \in O(h)$ entonces $f \in O(h)$
- (d) $n^r \in O(n^5)$ si $0 \le r \le 5$
- (e) $n^k \in O(b^n) \ \forall b > 1 \ y \ k \ge 0$
- (f) $log_b n \in O(n^k) \ \forall b > 1 \ y \ k > 0$
- (g) $Max(n^3, 10n^2) \in O(n^3)$
- (h) $\sum_{i=1}^{n} i^k \in \Theta(n^{k+1}), \forall k \in \aleph$
- (i) $log_a n \in \Theta(log_b n) \ \forall a, b > 1$
- (j) $\sum_{i=1}^{n} i^{-1} \in \Theta(\log n)$

(k)
$$f \in O(g) \Leftrightarrow \frac{1}{f} \in \Omega(\frac{1}{g})$$

(1)
$$f(n) = c * g(n) \ c > 0 \Rightarrow \Theta(f) = \Theta(g)$$

4. Demostrar

(a)
$$f(n) \in O(n^a)$$
 y $g(n) \in O(n^b) \Rightarrow f(n)g(n) \in O(n^{a+b})$

(b)
$$f(n) \in O(n^a)$$
 y $g(n) \in O(n^b) \Rightarrow f(n) + g(n) \in O(n^{\max(a,b)})$

5. Encontrar el menor entero k tal que $f(n) \in O(n^k)$:

(a)
$$f(n) = 13n^2 + 4n - 73$$

(b)
$$f(n) = \frac{1}{(n+1)}$$

(c)
$$f(n) = \frac{1}{(n-1)}$$

(d)
$$f(n) = (n-1)^3$$

(e)
$$f(n) = \frac{(n^3 + 2n - 1)}{(n+1)}$$

(f)
$$f(n) = \sqrt{n^2 - 1}$$

6. Demostrar por inducción que existe c > 0 tal que

$$\sum_{k=1}^{n} k^2 \ge c * n^3$$

7. Sean f(n) y g(n) as intóticamente no negativas. Demostrar la veracidad o false dad de :

(a)
$$Max(f(n), g(n)) \in O(f(n) + g(n))$$

(b)
$$Max(f(n), g(n)) \in \Omega(f(n) + g(n))$$

8. Expresar en notación $O(\cdot)$ el orden de un algoritmo cuyo T(n) fuese f(n) si:

(a)
$$f(n) = log(n!)$$

(b)
$$f(n) = n!$$

9. Dadas las siguientes funciones de n:

(a)
$$f_1(n) = n^2$$

(b)
$$f_2(n) = n^2 + 1000n$$

(c)
$$f_3(n) = \begin{cases} n & n \text{ impar} \\ n^3 & n \text{ par} \end{cases}$$

(d)
$$f_4(n) = \begin{cases} n & n \le 100 \\ n^3 & n > 100 \end{cases}$$

Indicar para cada par (i, j) si se da o no: $f_i(n) \in O(f_j(n))$ o si $f_i(n) \in \Omega(f_j(n))$ (o ambos)

10. Decir cuales de las siguientes afirmaciones son verdaderas y demostrarlo:

(a)
$$2^{n+1} \in O(2^n)$$

(b)
$$(n+1)! \in O(n!)$$

(c)
$$\forall f: \aleph \to \Re^+, f(n) \in O(n) \Rightarrow f^2(n) \in O(n^2)$$

(d)
$$\forall f: \aleph \to \Re^+, f(n) \in O(n) \Rightarrow 2^{f(n)} \in O(2^n)$$

11. Sea x un número real, 0 < x < 1. Ordenar las tasas de crecimiento de las siguientes funciones:

$$nlog(n), n^8, n^{1+x}, (1+x)^n, (n^2+8n+log^3(n))^4, \frac{n^2}{log(n)}$$

Demostrar las respuestas.

12. Demostrar que:

•
$$log(n) \in O(\sqrt{n})$$
 pero $\sqrt{n} \notin O(log(n))$

TEORIA DE ALGORITMOS

1.- El tiempo de ejecucion de un algoritmo A esta descrito por la recurrencia

$$T(n) = 7T(n/2) + n^2$$

otro algoritmo B tiene un tiempo de ejecucion dado por,

$$T'(n) = aT'(n/4) + n^2$$

¿cual es el mayor valor de la constante a que hace a B asintoticamente mas rapido que A?

2.- Resolver las siguientes recurrencias

a)
$$T(n) = 3T(n-1) + 4T(n-2)$$

$$n\geq 2$$
, $T(0) = 0$, $T(1) = 1$

b)
$$T(n) = T(n-1) + T(n-2)$$

$$n\geq 2$$
, $T(0) = 0$, $T(1) = 1$

c)
$$T(n) = 5T(n-1) + 8T(n-2) + 4T(n-3)$$
 $n \ge 3$, $T(0) = 0$, $T(1) = 1$

$$n\geq 3$$
, $T(0) = 0$, $T(1) = 1$

d)
$$T(n) = 2T(n-1) + 1$$

$$n\geq 1, T(0) = 0$$

e)
$$T(n) = 2T(n-1) + n$$

$$n\geq 1, T(0) = 0$$

f)
$$T(n) = 2T(n-1) + n + 2^n$$

$$n\geq 1, T(0) = 0$$

g)
$$T(n) = 4T(n/2) + n$$

$$n>2$$
, $T(1) = 1$, $T(2) = 6$

h)
$$T(n) = 4T(n/2) + n^2$$

$$n>1$$
, considerar $c_i > 0 \ \forall i$.

i)
$$T(n) = 2T(n/2) + n \cdot \log(n)$$

$$n>1$$
, considerar $c_i > 0 \ \forall i$

$$j) T(n) = 3T(n/2) + cn$$

$$k) T(n) = 2T(n/2) + log(n)$$

$$n\geq 2, T(1) = 1$$

i)
$$T(n) = 2T(\sqrt{n}) + \log(n)$$

$$n\geq 4$$
, $T(2) = 1$

m)
$$T(n) = 5T(n/2) + (n\log(n))^2$$
 $n \ge 2$, $T(1) = 1$

$$n\geq 2, T(1) = 1$$

$$n) T(n) = T(n/2) \cdot T^2(n/4)$$

$$n \ge 4$$
, $T(1) = 1$, $T(2) = 4$

o)
$$T(n) = n \cdot T^2(n/2)$$

$$n > 2, T(1) = 6, T(2) = 72$$

p)
$$T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$$
 $n \ge 4$, considerar $c_i > 0 \ \forall i$

$$n\geq 4$$
, considerar $c_i > 0 \ \forall i$

q)
$$T(n) = 2T(n-1) + 3^n$$

$$n \ge 1$$
, considerar $c_i > 0 \ \forall i$

2.h) Demostrar: $\sum_{i=1}^{n} i^{t} \in \Theta(n^{t+i})$, $\forall k \in \mathbb{N}$

 $\sum_{i=1}^{n} i^{n} = 1^{n} + 2^{n} + \dots + n^{n} \le n \cdot n^{n} = n^{n+1}$

 $S_{con} \frac{n_0 = 1}{c = 1} \Big| \forall n \ge n_0, \sum_{i=1}^n I^n \le c \cdot n^{k+1}$

Linearities of memore currency had que f(n) a Q(n)

 $\delta(b)\cdot tan(f(a),g(a)) = O(f(a)+g(a))$ $\delta(a)\cdot f(a)+g(a) = \int_{a}^{a} (f(a)+g(a)) \cdot \forall a = \delta(a) = O(f(a)+g(a)).$ Sear (10) r.g(n) asintoheamente no negativas. Demostrar la veracidad o falsedad de $\lambda(u, \zeta'(n), g(n)) \le f(n) + g(n)$, $\forall n \supset Max(J(n), g(n)) \in O(f(n) + g(n))$ $Gat\ Martfield\ g(n))\in O(f(n)+g(n))$ $(b) \operatorname{Max}(f(a),g(b)) \in \Omega(f(a)+g(a))$

6 Sear (n) y g(n) assitoricamente no negativis. Demostrar la veracidad o falsectat de

 $f(u) \text{ Man}(f(u),g(u)) \in O(f(u) + g(u))$

 $\operatorname{Mat}(G)$ g(n) $\leq f(n) + g(n) \cdot V_n \longrightarrow \operatorname{Mat}(G), g(n)) \in O(f(n) + g(n))$

(2.1) $\int \frac{Lm}{n-n} \frac{n^2}{n^2 + 1000n} = 1 \Rightarrow \Theta(n^2) = \Theta(n^2 + 1000n)$

 $f_i(n) = n \le n' = f_i(n) \Rightarrow f_i(n) \in O(f_i(n))$ $f_j(n) = n' = f_i(n) \Rightarrow f_i(n) \in O(f_i(n))$ $S_{00}(f(n) \in \mathcal{C}(f_{\varepsilon}(n)) \Rightarrow S_{n_{\varepsilon}} \in \mathbb{N}, \varepsilon > 0 \mid \forall n \geq n_{\varepsilon}, f_{\varepsilon}(n) \geq \varepsilon \cdot f_{\varepsilon}(n)$ $Pom n > \frac{1}{r} - ni > \frac{1}{r} - c \cdot n^{1} > \frac{n^{2}}{r_{1}} - n \cdot (abs)$ $\begin{cases} n>n_0\\ \text{Set } n_1 \text{ impar} \end{cases} \to f_1(n_1) \ge e \cdot f_1(n_1) \Rightarrow n_1 \ge e \cdot n_1^2$ $n>\sqrt{4}(e)$ $\forall n \ge n > \binom{n \cdot ln pror}{n \cdot p \cdot cr}$ $Logo f_1(n) \in \Omega(f_1(n))$ (3.4) | Seen = 101, c=1 \$ 12 (m) \$ 200 (m) ?

 $\max_{S_{\text{total}}} \max_{|M| \in \mathcal{M}_{S}} \left| \Rightarrow f_{s}(\alpha_{s}) \le c \cdot f_{s}(\alpha_{s}) \ge n_{s}^{s} \le c \cdot n_{s}, \quad n_{s} > c \Longrightarrow n_{s}^{s} > c \cdot n_{s}, \text{ (other)} \right|$

 $Sup_{\mathcal{A}}(u) \in \mathfrak{SC}(\mathcal{C}(u)) \cong Su_{\mathfrak{a}} \subset S_{\mathfrak{a}} \in > 0 \ \forall u \geq n_{\mathfrak{a}} \ f_{\mathfrak{a}}(u) \geq c_{\mathfrak{a}} f_{\mathfrak{a}}(u)$

 $Lin_{\mathbb{R}^{2}}(G) = Lin_{\mathbb{R}^{2}}(G) + Lin_{\mathbb{R}^{2}}(G)$

The second of th

SAME TO SAME TO SAME THE SAME OF THE SAME

11 11 Sep ((11) - O(f,(11)) - 374 - 87 e - O(-71 - 74-7)(0) - E - 5(0)

Subsmos $f_1(n) \in \Omega(f_2(n))$ | $f_1(n) \in \Omega(f_1(n))$ (falso) -> f.(m) ~ O(f.(m)) (Jalso) $((u)^{\frac{1}{2}})(x) = ((u)^{\frac{1}{2}})(x) = ((u)^{\frac$ Subsmas $f_i(n) \in O(f_i(n))$ $Sup_{\mathcal{F}}(f_{i}(n) \in O(f_{i}(n))$ 100 (m) & O(J, (m)) ((u)) / (v) » (u) / commy

 $((\omega)^{1/2}O*(\omega)^{1/2} \sim ((\omega)^{1/2}R**(\omega)^{1/2})$

 $|G(u)| = \int_{\mathcal{C}} G(u) \otimes G(f_{\varepsilon}(u)) > f_{\varepsilon}(u) \otimes G(f_{\varepsilon}(u))$

 $\lim_{n \to \infty} \frac{n^2}{n^2} = 0 \Rightarrow n^2 \in O(n^2) \Rightarrow f_1(n) \in O(f_1(n))$ $\lim_{n \to \infty} \frac{n^2}{n^2} \in O(n^2) \Rightarrow f_1(n) \in O(f_1(n))$ $(4,1) \mid f_1(n) \in O(f_1(n)) \Rightarrow f_1(n) \in \Omega(f_1(n))$ $\widetilde{L}(m) \in \Omega(f_1(m)) \Rightarrow f_1(m) \in O(f_1(m))$ $Sea | n_0 = 101 \} \longrightarrow f_1(n) = n^2$

 $\Psi_{\mathbf{k}}(\mathbf{v}) = \mathbf{v}(\mathbf{v}) \cdot \mathbf{v}(\mathbf{v}) \cdot \mathbf{v}(\mathbf{v}) = \mathbf{v}(\mathbf{v}) \cdot \mathbf{v}(\mathbf{v}) \cdot \mathbf{v}(\mathbf{v})$

 $f(n)\in O(n) \Rightarrow \exists n_0 \in \mathbb{N}, \alpha \geqslant 0 \neq \forall n \geqslant n_\infty \ f(n) \leqslant \alpha \cdot n \Rightarrow$

 $S_{f}^{(m)} = C_{f}^{(m)} \Rightarrow f^{(m)} \in O(m)$

 $Lim \frac{n!}{(n+1)!} = Lim \frac{n!}{n-n} = Lim \frac{1}{(n+1)} = 0 \Rightarrow$ 9 Decir cuites de las signicides afrinaciones son verdaderas y demontación $ne\Omega(n+D!) \Rightarrow (n+D!eO(d)$ 1 2 1 1 1 1 022) abin * tile Om)

o Deen cuales de las sigmentes afirmaciones son verdadoras y demostratios

2" = 2 2" Vn = 2" ' c O(2")

04) 2" (- 042")

A CAN CAN DE LA CANCE OF THE CANCER OF THE CANCER OF THE CANCEL OF THE C $((u)_{X}) \cdot ((u)_{x} \otimes (u)_{x} \otimes ($ Falso

Company of the Compan

fin) es un contraejemplo

od $\sqrt{\kappa \rightarrow 9\Gamma}$, $f(\eta) \in O(\eta) \Rightarrow 2^{1/2} \in O(2^{-1})$ $Luego 2" \in \Omega(4") \supset 4" \in O(2") \supset 2'''' \in O(2")$ $Lim \frac{2^n}{4^n} = Lim \left(\frac{2}{4}\right)^n = 0$ Sac(0) = 2n

•		le de la company		
-				
7				
W.				
. 1				
.				
- ₩				
2				
			1	
编 记	\$			
			•	
Am decel logic & Low Control C			Ξ	
- -			Ξ	
<u> </u>	3 7		_	
٠, :	٠,	9	=	
	• 📦	0	2	and the same of
. 8	* +		7	
'n	7	**		
	(ab) a (b + b < c o + b o a / c	es contractions	(a + 8a + lag (a)) + 40(+ 4))	
Ξ.	***	22	*	
		3	2	
		_ <	3	
			- reality (California	4.5

El hampo de secución de las algoritmo A está descrito por la recierencia. $T(n) = TT(n/2) + n^2$ Otro algoritmo B hene un nampo de ejecución dado por T(n) = $aT(n/4) + n^2$ CLudi es el mayor valor de la constrarte a que hace a B asintóficamente mas rápido que A?

Resolvemos primero ambas recurrencias: $T(n) = TT(n/2) + n^2$ Realizamos el cambio $n = 2^4$ y nos queda: $T(2^4) = TT(2^{4/3}) + 4^4$ $T_{1/2} = T_{1/2} + 4^4$ For lo tanto la ecuación característica es: (x-T)(x+4) $T_{1/2} = 4^4$ For lo tanto la ecuación característica es: (x-T)(x+4) Tinalmente $T_1 = C_1 T^{16} + C_2 T^{16}$

Paramos ahora a la resolución de la segunda recurrencia $T(n) = aT(n/4) + n^2$ Realizamos el cambio $n = 4^k$ y nos queda: $T(4^k) = aT(4^k) + 16^k$ $T(4^k) = aT(4^k) + 16^k$ $T_k = aT_{k+1} + 16^k$ Por lo ranto la ecuación característica es: $(x \cdot a)(x \cdot 16)$ $T_k = C_1 a^k c_1 + C_2 b^k$ $T_k = C_1 a^k c_2 + C_2 b^k$ $T_k = C_1 a^k c_2 + C_2 b^k$ $T_k = C_1 a^k c_2 + C_2 b^k$ Si comparamos ambas ecuaciones podemos observar que su extrencia sóla varia en el lagaritmo al que está elevado n. Si los igualamos obtendremos el valor de a donde ambas eficiencias son igualemos el valor de a donde ambas eficiencias son iguale. $Si = \frac{1}{16} \frac{1}{1$

T(n) = 2T(n-1)+1 $n \ge 1$, T(0) = 0 $t_n = 2t_{n+1} + 1$ $t_n - 2t_{n+1} = 1$ Calculamos la ecuación característica (x-2)(x-1) $t_n = C_1 2^n + C_2 1^n$ A continuación calculamos las constantes: $t_0 = C_1 + C_2 = 0$ Sabemos que: $t_0 = C_1 + C_2 = 0$ Sabemos que: T(1) = 2T(0) + 1, como T(0) = 0, T(1) = 1 $t_1 = C_1 2^{1} + C_2 1^{1} = 2C_1 + C_2 = 1$ Resolvemos el sistema de ecuaciones: $C_1 = 1$ $C_2 = -1$

• T(n) = 3T(n-1) + 4T(n-2), $n \ge 1$, T(0) = 0, T(0) = 1 $t_n = 3t_{n-1} + 4t_{n-2}$ $t_n = 3t_{n-1} + 4t_{n-2} = 0$ Calculamos la ecuación canacterística $x^2 - 3x - 4 = 0$ (x - 4)(x + 1) $t_n = C_1 + C_2(-1)$ 4 Continuación calculamos las constantes: $t_0 = C_1 + C_2(-1)$ $t_1 = C_2 + C_2(-1)$ $t_2 = C_1 + C_2 = 0$ $t_3 = C_4 + C_2(-1)$ Resolvemos el sistema de ecuaciones: $C_1 = 1/5$ $C_2 = -1/5$ $C_3 = 1/5$

 $T(n) = 2T(n+1) + n + 2^n \qquad n \ge 1, \quad T(0) = 0$ $t_n - 2t_{n,1} + n + 2^n$ $t_n - 2t_{n,1} + n + 2^n$ Catculaintos ia ecuación caracteristica $(x - 2)(x - 1)^2(x - 2) = (x - 1)^2(x - 2)^2$ $t_n = C_1 2^n + C_2 n^2 + C_1 1^n + C_2 n^{1n}$ A continuación calculaintos las constantes. $t_0 = C_1 + C_2 n^2 + C_1 n^2 + C_2 n^{1n}$ $T(1) = T(0) + 4 + 2^1, \text{ como } T(0) = 0, \quad T(1) = 1$ $T(2) = T(1) + 2 + 2^n, \text{ como } T(0) = 0, \quad T(1) = 1$ $T(2) = T(1) + 2 + 2^n, \text{ como } T(1) = 1, \quad T(2) = 12$ $T(3) = T(2) + 2^n + 2^n, \text{ como } T(1) = 1, \quad T(3) = 35$ $t_1 = C_1 + C_2 + C_2 + C_3 + C_3 = 1$ $t_2 = C_1 + C_2 + C_2 + C_3 + C_3 = 1$ $t_3 = C_1 + C_2 + C_3 + C_3 + C_3 = 1$ $t_4 = C_1 + C_2 + C_3 + C_$

I(n) = 4T(n/2) + n n > 2, I(0) = 1 I(2) = 6esolvemos el sistema de ecuaciones =2 $C_2=-1$ n para n potencia de 2 La ecuación característica es: (x-4)(x-2) $t_{\mu} = 4t_{\mu+1} = 2t_{\mu}$ La ecuación característica es: (x-4)(x-2) $t_{\mu} = C_{\mu}A^{\mu} + C_{\mu}^{2}B^{\mu}$ $t_{\mu}^{\mu} = C_{\mu}A^{\mu} + C_{\mu}^{2}B^{\mu}$ $t_1 = C_1 + C_2 = 1$ $t_2 = 4C_1 + 2C_2 = 6$

Realizamos el cambio n = 2* $T(n) = 2T(.a) + \log(n)$

T(2k) = 2T(2k2) + k $t_k = 2t_{k2} + k$

K≡2

A continuación realizamos otro cambio:

1=24+2

a ecuación característica es:

 $\xi = C_1 2^{l} + C_2 l 2^{l}$ (x-2)²

 $\xi_{c} = C_{c}k + C_{c}klog(k)$

 $L = C_1 \log(n) + C_2 \log(n) \log^2 n$

= C₁n² + C₂n²log(n) para n potencia de 2 $T(n) = 4T(n/2) + n^2$ n > 1, considerarC, $> 0 \forall i$ $T(2^k) = 4T(2^{k-1}) + 4^k$ $t_k = C_1 4^k + C_2 k 4^k$ La ecuación característica es: Realizamos el cambio $n=2^k$ 1,-4,-4 (x-4)(x-4)

= $C_1n + C_2nlog(n) + C_3nlog^2n(n potencia de 2$

t = C,2" + C, K2" + C, K2"

 $(x-2)(x-2)^2$

n = 2T(n/2) + nlog(n) n > 1, consideranC, $\sim 0 \vee 1$

 $T(2^k) = 2T(2^{k-1}) + 2^k \log(2^k)$

Realizamos el cambio n = 2*

4-24,= 42*

La ecuación característica es:

 $T(n) = 5T(n/2) + (n\log(n))^2$ n > 2, T(1) = 1Realizamos el cambio $n=2^k$

 $T(2^k) = 5T(2^{k+1}) + (2^k \log(2^k))^2$

 $T(2^k) = 5T(2^{k-1}) + k^24^k \log^2(2)$ $t_{\rm i} - 5t_{\rm i,i} = k^2 4^{\kappa} \log^2(2)$

 $T(n) = 5T(n/2) + (n\log(n))^2$

con la condicion inicial

n ≥ 2, T(1) = 1

Resolver la recurrencia

La ecuación característica es:

t, = C, 5' + C24' + C3k4' + C2k24' (x-5)(x-4)³

 $\zeta = C_1 n^{1095} + C_2 n^2 + C_3 n^2 \log(n) + C_4 n^2 \log^2(n)$

 $T(\mathbf{n}) = \sqrt{n} T(\sqrt{n}) + \mathbf{n}$ Si dividimos por n nos queda $\frac{T(n)}{n} \frac{T(\sqrt{n})}{n} \mathbf{1}$ comamos (tx) = T(x)/x. Entonces $T(n) = T(\sqrt{n}) + 1$.

Si hacemos $n = 2^k$ nos queda $T(2^k) = T(2^{k/2}) + 1$, y

A continuación realizamos otro cambio $x = 2^k$ La ecuación característica es $(x, 1)^k$ $1 = C_1 + C_2 \mathbf{1}$ $C_2 + C_2 \log^2(n)$ $C_3 = C_1 + C_2 \mathbf{1}$ $C_4 = C_1 + C_2 \log^2(n)$ $C_4 = C_2 + C_2 \log^2(n)$

 $T(n) = 2T(n-1) + 3^n$ $n \ge 1$, contradiction $\epsilon_n \ge 0$ Ve

 Calculation in editation calabilistical