

Team Contest Reference

Team: Marcel Ultras

Lennart Meyling Maximilian Saal Devin Zielke

Contents

1	dp		
	1.1	LCS	
	1.2	LIS	
	1.3	TSP	
	1.4	hungarian	
2	ds		
-	2.1	Fenwick-Tree	
	2.2	Range count query	
	2.3	Sorted Set	
3	grap		
	3.1	Maximum Bipartite Matching	
	3.2	maxflow	
4	math	h	
-	4.1	 FFT	
	4.2	MOD	
	4.3	Fast prime check	
		-	
5	misc		
	5.1	Bootstrap	
6	more	re math	
	6.1	Tree	
	6.2	Divisability Explanation	
	6.3	Combinatorics	
	6.4	Polynomial Interpolation	
		6.4.1 Theory	
	6.5	Fibonacci Sequence	
		6.5.1 Binet's formula	
		6.5.2 Generalization	
		6.5.3 Pisano Period	
	6.6	Series	
	6.7	Binomial coefficients	
	6.8	Binomial coefficients	
	6.8 6.9	Binomial coefficients	
	6.8 6.9 6.10	Binomial coefficients	
	6.8 6.9 6.10 6.11	Binomial coefficients Catalan numbers Geometry Number Theory Convolution	
	6.8 6.9 6.10 6.11	Binomial coefficients	
1	6.8 6.9 6.10 6.11	Binomial coefficients Catalan numbers Geometry Number Theory Convolution DP Optimization	

1.1 LCS

```
def LCS(S1, S2, m, n):
    L = [[0 for x in range(n + 1)] for x in range(m + 1)]
```

```
for i in range(m + 1):
    for j in range(n + 1):
        if i == 0 or j == 0:
            L[i][j] = 0
        elif S1[i - 1] == S2[j - 1]:
            L[i][j] = L[i - 1][j - 1] + 1
        else:
```

```
L[i][j] = max(L[i - 1][j], L[i][j -
                       1])
      index = L[m][n]
11
      lcs_algo = [""] * (index + 1)
12
      lcs_algo[index] = ""
13
      i = m
      j = n
15
      while i > 0 and j > 0:
          if S1[i - 1] == S2[j - 1]:
               lcs_algo[index - 1] = S1[i - 1]
               i -= 1
               j -= 1
               index -= 1
           elif L[i - 1][j] > L[i][j - 1]:
               i -= 1
           else:
25
               j -= 1
      return lcs_algo
```

MD5: d4c2c050089e656220b23f7d1fd6963f $\mid \mathcal{O}(n^2)$

1.2 LIS

```
def LIS(A, strict=True):
      from bisect import bisect_left
      T = []
      position = []
      for a in A:
          if len(T) == 0 or (strict and T[-1] < a) or (
               not strict and T[-1] <= a):
                                                           15
              position.append(len(T))
                                                           16
              T.append(a)
          else:
              if strict:
                   k = bisect_left(T, a)
                   k = bisect_left(T, a + 1)
              position.append(k)
              T[k] = a
      res = []
      t = len(T) - 1
      for i, p in enumerate(reversed(position)):
          if t == p:
                                                           27
              res.append(len(A) - 1 - i)
              t -= 1
      res.reverse()
23
      return res
```

MD5: 2ac7f6b4312cecab73e02153e1a764e8 | $\mathcal{O}(nlogn)$

1.3 TSP

```
M[(ni,N)] = nmin
Z[(ni,N)] = min_cost
min_dist = dist(0,N)
ni = 0
solution = [0]

while N:
ni = M[(ni, N)]
solution.append(ni)
N = N.difference({ni})
print(solution)
```

MD5: f546f5dabd450187bd027ac8a9b393c2 | $\mathcal{O}(2n*2^n)$

1.4 hungarian

```
def hungarian(A):
    inf = 1 << 40
    n = len(A) + 1
    m = len(A[0]) + 1
    P = [0] * m
    way = [0] * m
    U = [0] * n
    V = [0] * n
    for i in range(1, n):
        P[0] = i
        minV = [inf] * m
        used = [False] * m
        j0 = 0
        while P[j0] != 0:
            i0 = P[j0]
            j1 = 0
            used[j0] = True
            delta = inf
            for j in range(1, m):
                if used[j]:
                     continue
                if i0 == 0 or j == 0:
                     cur = -U[i0] - V[j]
                else:
                     cur = A[i0 - 1][j - 1] - U[i0] - V
                         ſίl
                if cur < minV[j]:</pre>
                     minV[j] = cur
                    way[j] = j0
                if minV[j] < delta:</pre>
                     delta = minV[j]
                     j1 = j
            for j in range(m):
                if used[j]:
                     U[P[j]] += delta
                     V[j] -= delta
                else:
                     minV[j] -= delta
            j0 = j1
        P[j0] = P[way[j0]]
        j0 = way[j0]
        while j0 != 0:
            P[j0] = P[way[j0]]
            j0 = way[j0]
    ret = [-1] * (n - 1)
    for i in range(1, m):
        if P[i] != 0:
            ret[P[i] - 1] = i - 1
    return -V[0], ret
```

MD5: 482834ccbe5fe1dab437f8562dadd046 | $\mathcal{O}(n^3)$

2 ds

2.1 Fenwick-Tree

```
class FenwickTree():
       def __init__(self, n):
           self.n = n
           self.data = [0] * n
       def build(self, arr):
           for i, a in enumerate(arr):
               self.data[i] = a
           for i in range(1, self.n + 1):
               if i + (i & -i) <= self.n:
                    self.data[i + (i & -i) - 1] += self.
10
                                                             27
                        data[i - 1]
       def add(self, p, x):
                                                             28
11
                                                             29
           p += 1
12
           while p <= self.n:</pre>
13
                                                             31
               self.data[p - 1] += x
14
               p += p & -p
                                                             32
15
       def sum(self, r):
16
           s = 0
17
           while r:
18
               s += self.data[r - 1]
19
               r -= r & -r
20
           return s
21
       def range_sum(self, l, r):
22
           #assert 0 <= l <= r <= self.n
23
                                                             41
           return self.sum(r) - self.sum(l)
24
```

MD5: d291e9d6c6b1f3c72f795e0889401184 | $\mathcal{O}(logn)$

43

45

46

48

while k > 1:

2.2 Range count query

```
from bisect import bisect_left
                                                            56
2 from collections import defaultdict
                                                            51
3 class RangeCountQuery:
                                                            52
      def __init__(self, arr):
                                                            53
          self.depth = defaultdict(list)
           for i, e in enumerate(arr):
               self.depth[e].append(i)
      def count(self, l, r, x):
          """l <= k < r """
10
          a = self.depth[x]
11
          s = bisect_left(a, l)
12
                                                            61
           t = bisect_left(a, r, s)
13
                                                            62
           return t - s
```

MD5: 8f057ba70089cb686d1ba3e3cf770068 | $\mathcal{O}(?)$

2.3 Sorted Set

```
from typing import Union

class SortedSet:

def __init__(self, u: int):

self.log = (u - 1).bit_length()
self.size = 1 << self.log</pre>
```

```
self.u = u
    self.data = bytearray(self.size << 1)</pre>
def add(self, k: int) -> bool:
    k += self.size
    if self.data[k]: return False
    self.data[k] = 1
    while k > 1:
        k >>= 1
        if self.data[k]: break
        self.data[k] = 1
    return True
def discard(self, k: int) -> bool:
    k += self.size
    if self.data[k] == 0: return False
    self.data[k] = 0
    while k > 1:
        if k & 1:
            if self.data[k - 1]: break
        else:
            if self.data[k + 1]: break
        k >>= 1
        self.data[k] = 0
    return True
def __contains__(self, k: int):
    return self.data[k + self.size] == 1
def get_min(self) -> Union[int, None]:
    if self.data[1] == 0: return None
    k = 1
    while k < self.size:</pre>
        k <<= 1
        if self.data[k] == 0: k |= 1
    return k - self.size
def get_max(self) -> Union[int, None]:
    if self.data[1] == 0: return None
    k = 1
    while k < self.size:</pre>
        k <<= 1
        if self.data[k | 1]: k |= 1
    return k - self.size
def lt(self, k: int) -> Union[int, None]:
    if self.data[1] == 0: return -1
    x = k
    k += self.size
    while k > 1:
        if k & 1 and self.data[k - 1]:
            k >>= 1
            break
        k >>= 1
    k <<= 1
    if self.data[k] == 0: return -1
    while k < self.size:</pre>
        k <<= 1
        if self.data[k | 1]: k |= 1
    k -= self.size
    return k if k < x else -1
def le(self, k: int) -> Union[int, None]:
    if self.data[k + self.size]: return k
    return self.lt(k)
def gt(self, k: int) -> Union[int, None]:
    if self.data[1] == 0: return -1
    x = k
    k += self.size
```

```
if k & 1 == 0 and self.data[k + 1]:
                   k >>= 1
                   break
               k \gg 1
81
          k = k << 1 | 1
82
          while k < self.size:</pre>
83
               k <<= 1
               if self.data[k] == 0: k |= 1
           k -= self.size
           return k if k > x and k < self.u else -1
87
      def ge(self, k: int) -> Union[int, None]:
          if self.data[k + self.size]: return k
91
          return self.gt(k)
```

MD5: cc50d52e7105d808eee80adf1f66bd0c | $\mathcal{O}(?)$

3 graph

3.1 Maximum Bipartite Matching

```
class BipartiteMatching:
                                                              12
       def __init__(self, n, m):
           self._n = n
           self. m = m
           self._to = [[] for _ in range(n)]
       def add_edge(self, a, b):
           self._to[a].append(b)
       def solve(self):
10
11
           n, m, to = self._n, self._m, self._to
                                                              21
12
           prev = [-1] * n
                                                              22
           root = [-1] * n
                                                              23
           p = [-1] * n
           q = [-1] * m
           updated = True
           while updated:
               updated = False
               s = []
               s_front = 0
               for i in range(n):
21
                    if p[i] == -1:
22
                        root[i] = i
23
                        s.append(i)
24
               while s_front < len(s):</pre>
25
                    v = s[s\_front]
26
                    s front += 1
27
                    if p[root[v]] != -1:
                                                              37
28
                        continue
29
                    for u in to[v]:
                        if q[u] == -1:
31
                             while u != -1:
32
                                 q[u] = v
33
                                 p[v], u = u, p[v]
                                 v = prev[v]
35
                             updated = True
                                                              42
                             break
37
                        u = q[u]
38
                        if prev[u] != -1:
39
                             continue
40
                        prev[u] = v
                                                              46
41
                        root[u] = root[v]
42
                        s.append(u)
43
                if updated:
44
                    for i in range(n):
45
```

MD5: 6c08e3f2668368058df74bc9b41fc041 | $\mathcal{O}(Fast)$

3.2 maxflow

Finds the greatest flow in a graph. Capacities must be positive.

```
from collections import deque
class MaxFlow():
    def __init__(self, n):
        self.n = n
        self.graph = [[] for _ in range(n)]
        self.pos = []
    def add_edge(self, fr, to, cap):
        m = len(self.pos)
        self.pos.append((fr, len(self.graph[fr])))
        fr_id = len(self.graph[fr])
        to_id = len(self.graph[to])
        if fr == to: to_id += 1
        self.graph[fr].append([to, to_id, cap])
        self.graph[to].append([fr, fr_id, 0])
        return m
    def get_edge(self, idx):
        to, rev, cap = self.graph[self.pos[idx][0]][
            self.pos[idx][1]]
        rev_to, rev_rev, rev_cap = self.graph[to][rev]
        return rev_to, to, cap + rev_cap, rev_cap
    def edges(self):
        m = len(self.pos)
        for i in range(m):
            yield self.get_edge(i)
    def dfs(self, s, t, up):
        stack = [t]
        while stack:
            v = stack.pop()
            if v == s:
                flow = up
                for v in stack:
                    to, rev, cap = self.graph[v][self.
                        iter[v]]
                    flow = min(flow, self.graph[to][
                        rev][2])
                for v in stack:
                    self.graph[v][self.iter[v]][2] +=
                        flow
                    to, rev, cap = self.graph[v][self.
                        iter[v]]
                    self.graph[to][rev][2] -= flow
                return flow
            lv = self.level[v]
            for i in range(self.iter[v], len(self.
                graph[v])):
                to, rev, cap = self.graph[v][i]
                if lv > self.level[to] and self.graph[
                    to][rev][2]:
                    self.iter[v] = i
                    stack.append(v)
```

stack.append(to)

```
51
               else:
                    self.iter[v] = len(self.graph[v])
52
                    self.level[v] = self.n
53
           return 0
55
       def max_flow(self, s, t):
56
           return self.max_flow_with_limit(s, t, 2**63 -
      def max_flow_with_limit(self, s, t, limit):
           flow = 0
           while flow < limit:</pre>
61
               self.level = [-1] * self.n
62
               self.level[s] = 0
               queue = deque()
               queue.append(s)
66
               while queue:
67
                    v = queue.popleft()
                                                              47
                    for to, rev, cap in self.graph[v]:
68
                        if cap == 0 or self.level[to] >=
69
                             0: continue
                        self.level[to] = self.level[v] + 151
70
71
                        if to == t: break
                                                              52
72
                        queue.append(to)
                                                              53
               if self.level[t] == -1: break
                                                              54
73
               self.iter = [0] * self.n
74
                                                              55
               while flow < limit:</pre>
75
                                                              56
                    f = self.dfs(s, t, limit - flow)
76
                    if not f: break
77
                                                              57
                    flow += f
78
                                                              58
           return flow
                                                              59
79
```

MD5: 6f622fc0f20b6d5813a979b581580661 | $\mathcal{O}(fast)$

60

61

62

63

64

4 math

4.1 FFT

```
65
  import math
                                                              66
                                                              67
  class FFT():
       def primitive_root_constexpr(self, m):
           if m == 2: return 1
           if m == 167772161: return 3
           if m == 469762049: return 3
           if m == 754974721: return 11
10
           if m == 998244353: return 3
11
           divs = [0] * 20
12
           divs[0] = 2
13
           cnt = 1
14
           x = (m - 1) // 2
15
           while (x \% 2 == 0): x //= 2
16
           i = 3
17
           while (i * i <= x):
18
               if (x % i == 0):
19
                    divs[cnt] = i
20
                    cnt += 1
21
                    while (x % i == 0):
22
                        x //= i
23
               i += 2
24
           if x > 1:
25
               divs[cnt] = x
26
               cnt += 1
27
           g = 2
```

```
while (1):
        ok = True
        for i in range(cnt):
            if pow(g, (m - 1) // divs[i], m) == 1:
                ok = False
                break
        if ok:
            return g
        g += 1
def bsf(self, x):
    res = 0
    while (x % 2 == 0):
        res += 1
        x //= 2
    return res
rank2 = 0
root = []
iroot = []
rate2 = []
irate2 = []
rate3 = []
irate3 = []
def __init__(self, MOD):
    self.mod = MOD
    self.g = self.primitive_root_constexpr(self.
        mod)
    self.rank2 = self.bsf(self.mod - 1)
    self.root = [0 for i in range(self.rank2 + 1)]
    self.iroot = [0 for i in range(self.rank2 + 1)
    self.rate2 = [0 for i in range(self.rank2)]
    self.irate2 = [0 for i in range(self.rank2)]
    self.rate3 = [0 for i in range(self.rank2 - 1)
    self.irate3 = [0 for i in range(self.rank2 -
        1)]
    self.root[self.rank2] = pow(self.g, (self.mod
        - 1) >> self.rank2, self.mod)
    self.iroot[self.rank2] = pow(self.root[self.
        rank2], self.mod - 2, self.mod)
    for i in range(self.rank2 - 1, -1, -1):
        self.root[i] = (self.root[i + 1] ** 2) %
            self.mod
        self.iroot[i] = (self.iroot[i + 1] ** 2) %
             self.mod
    prod = 1:
    iprod = 1
    for i in range(self.rank2 - 1):
        self.rate2[i] = (self.root[i + 2] * prod)
            % self.mod
        self.irate2[i] = (self.iroot[i + 2] *
            iprod) % self.mod
        prod = (prod * self.iroot[i + 2]) % self.
        iprod = (iprod * self.root[i + 2]) % self.
    prod = 1;
    iprod = 1
    for i in range(self.rank2 - 2):
        self.rate3[i] = (self.root[i + 3] * prod)
            % self.mod
        self.irate3[i] = (self.iroot[i + 3] *
            iprod) % self.mod
        prod = (prod * self.iroot[i + 3]) % self.
            mod
```

```
iprod = (iprod * self.root[i + 3]) % self.138
                                                                                            a[i + offset] = (l + r) % self
82
                                                                                                 .mod
                                                                                            a[i + offset + p] = (l - r) *
83
       def butterfly(self, a):
                                                                                                irot % self.mod
84
           n = len(a)
                                                                                        irot *= self.irate2[(~s & -~s).
85
           h = (n - 1).bit_length()
                                                                                            bit_length() - 1]
86
                                                                                        irot %= self.mod
87
           IFN = 0
                                                                                   IFN -= 1
88
           while (LEN < h):</pre>
                                                                               else:
                if (h - LEN == 1):
                                                                                   p = 1 << (h - LEN)
                    p = 1 << (h - LEN - 1)
                                                                                   irot = 1
                                                              145
                    rot = 1
                                                                                   iimag = self.iroot[2]
                                                              146
                     for s in range(1 << LEN):</pre>
                                                                                   for s in range(1 << (LEN - 2)):
93
                                                              147
                         offset = s \ll (h - LEN)
                                                                                       irot2 = (irot * irot) % self.mod
94
                                                              148
                         for i in range(p):
                                                                                       irot3 = (irot * irot2) % self.mod
                                                              149
                             l = a[i + offset]
                                                                                       offset = s \ll (h - LEN + 2)
                                                              150
97
                             r = a[i + offset + p] * rot
                                                              151
                                                                                        for i in range(p):
                             a[i + offset] = (l + r) % self_{152}
                                                                                            a0 = a[i + offset]
98
                                                                                            a1 = a[i + offset + p]
                                  .mod
                                                              153
                             a[i + offset + p] = (l - r) \% 154
                                                                                            a2 = a[i + offset + 2 * p]
                                  self.mod
                                                              155
                                                                                            a3 = a[i + offset + 3 * p]
                         rot *= self.rate2[(~s & -~s).
                                                              156
                                                                                            a2na3iimag = (a2 - a3) * iimag
100
                             bit_length() - 1]
                                                                                                  % self.mod
                         rot %= self.mod
101
                                                              157
                                                                                            a[i + offset] = (a0 + a1 + a2)
102
                    LEN += 1
                                                                                                 + a3) % self.mod
103
                else:
                                                              158
                                                                                            a[i + offset + p] = (a0 - a1 +
                    p = 1 << (h - LEN - 2)
                                                                                                  a2na3iimag) * irot % self
104
                    rot = 1
105
                                                                                                 .mod
                    imag = self.root[2]
                                                                                            a[i + offset + 2 * p] = (a0 +
106
                                                              159
                                                                                                a1 - a2 - a3) * irot2 %
                    for s in range(1 << LEN):</pre>
107
                         rot2 = (rot * rot) % self.mod
108
                                                                                                 self.mod
                         rot3 = (rot2 * rot) % self.mod
                                                                                            a[i + offset + 3 * p] = (a0 -
109
                                                              160
                         offset = s << (h - LEN)
                                                                                                a1 - a2na3iimag) * irot3 %
110
                         for i in range(p):
                                                                                                  self.mod
111
                                                                                        irot *= self.irate3[(~s & -~s).
                             a0 = a[i + offset]
112
                                                              161
                                                                                            bit_length() - 1]
                             a1 = a[i + offset + p] * rot
113
                             a2 = a[i + offset + 2 * p] *
                                                                                        irot %= self.mod
114
                                                              162
                                  rot2
                                                                                   LEN -= 2
                                                              163
                             a3 = a[i + offset + 3 * p] *
115
                                                              164
                                  rot3
                                                                      def convolution(self, a, b):
                                                              165
                             alna3imag = (a1 - a3) % self. 166
                                                                          n = len(a);
116
                                  mod * imag
                                                                          m = len(b)
                                                              167
                             a[i + offset] = (a0 + a2 + a1)_{168}
                                                                          if not (a) or not (b):
117
                                  + a3) % self.mod
                                                                               return []
                                                              169
                             a[i + offset + p] = (a0 + a2 -170)
                                                                          if min(n, m) <= 40:
118
                                   a1 - a3) % self.mod
                                                                               res = [0] * (n + m - 1)
                                                              171
                                                                               for i in range(n):
                             a[i + offset + 2 * p] = (a0 - 172)
                                  a2 + alna3imag) % self.mod<sub>73</sub>
                                                                                   for j in range(m):
                                                                                        res[i + j] += a[i] * b[j]
                             a[i + offset + 3 * p] = (a0 - 174)
120
                                  a2 - a1na3imag) % self.mod<sub>75</sub>
                                                                                        res[i + j] %= self.mod
                         rot *= self.rate3[(~s & -~s).
                                                              176
121
                              bit_length() - 1]
                                                                          z = 1 << ((n + m - 2).bit_length())
                                                              177
                         rot %= self.mod
                                                                          a = a + [0] * (z - n)
                                                              178
122
                     LEN += 2
                                                                          b = b + [0] * (z -
                                                              179
123
                                                                          self.butterfly(a)
                                                              186
124
       def butterfly_inv(self, a):
                                                                          self.butterfly(b)
                                                              181
125
           n = len(a)
                                                                          c = [(a[i] * b[i]) % self.mod for i in range(z
                                                              182
           h = (n - 1).bit_length()
           LEN = h
                                                                          self.butterfly_inv(c)
                                                                          iz = pow(z, self.mod - 2, self.mod)
           while (LEN):
                                                              18
                                                                          for i in range(n + m - 1):
                if (LEN == 1):
                                                              185
                    p = 1 << (h - LEN)
                                                                               c[i] = (c[i] * iz) % self.mod
                                                              186
                    irot = 1
                                                              187
                                                                          return c[:n + m - 1]
132
133
                     for s in range(1 << (LEN - 1)):</pre>
                                                              189
                         offset = s \ll (h - LEN + 1)
                                                                 def inv_gcd(a, b):
                                                              190
                         for i in range(p):
                                                                      a = a \% b
135
                                                              191
                             l = a[i + offset]
                                                              192
                                                                      if a == 0:
136
137
                              r = a[i + offset + p]
                                                              193
                                                                          return (b, 0)
```

```
s = b;
        t = a
195
        m\Theta = \Theta;
196
        m1 = 1
197
        while (t):
198
            u = s // t
199
            s -= t * u
200
            m0 -= m1 * u
            s, t = t, s
202
            m0, m1 = m1, m0
        if m0 < 0:
            m0 += b // s
        return (s, m0)
206
208
   def crt(r, m):
209
        assert len(r) == len(m)
210
211
        n = len(r)
212
        r0 = 0;
213
        m\Theta = 1
        for i in range(n):
214
                                                                   12
            assert 1 <= m[i]</pre>
215
                                                                   13
            r1 = r[i] % m[i]
216
                                                                   14
217
            m1 = m[i]
                                                                   15
218
            if m0 < m1:
                                                                   16
219
                 r0, r1 = r1, r0
                                                                   17
220
                 m0, m1 = m1, m0
                                                                   18
            if (m0 % m1 == 0):
221
                                                                   19
                 if (r0 % m1 != r1):
222
                                                                   26
223
                      return (0, 0)
                                                                   21
                 continue
224
                                                                   22
            g, im = inv_gcd(m0, m1)
225
                                                                   23
            u1 = m1 // g
226
            if ((r1 - r0) % g):
227
                 return (0, 0)
228
            x = (r1 - r0) // g % u1 * im % u1
229
            r0 += x * m0
230
            m0 *= u1
231
             if r0 < 0:
232
                 r0 += m0
233
        return (r0, m0)
234
236
   mod0 = 1012924417
237
   mod1 = 167772161
238
   mod2 = 469762049
239
   mod3 = 1224736769
241 \mod 4 = 998244353
_{242} ntt0 = FFT(mod0)
_{243} ntt1 = FFT(mod1)
_{244} ntt2 = FFT(mod2)
_{245} ntt3 = FFT(mod3)
   ntt4 = FFT(mod4)
246
                                                                   11
                                                                   12
   def convolution_2pow64(a, b):
249
                                                                   13
        mod = 1 << 64
250
                                                                   14
        n = len(a)
251
                                                                   15
        m = len(b)
252
                                                                   16
        for i in range(n): a[i]
                                                                   17
        for i in range(m): b[i]
        x0 = ntt0.convolution(a, b)
        x1 = ntt1.convolution(a, b)
        x2 = ntt2.convolution(a, b)
257
        x3 = ntt3.convolution(a, b)
        x4 = ntt4.convolution(a, b)
259
        ret = [0 \text{ for } i \text{ in range}(n + m - 1)]
        for i in range(n + m - 1):
             tmp = crt((x0[i], x1[i], x2[i], x3[i], x4[i]),
262
                   (mod0, mod1, mod2, mod3, mod4))
```

ret[i] = tmp[0] % mod

263

```
return ret
```

MD5: 81010ba542ca59077527a18c77f90d2f | $\mathcal{O}(NlogN)$

4.2 **MOD**

```
MOD = 998244353
fac_arr = [1]
finv_arr = [1]
def enlarge_fac():
    old_size = len(fac_arr)
    new_size = old_size * 2
    for i in range(old_size, new_size + 1):
        fac_arr.append((fac_arr[-1] * i) % MOD)
        finv_arr.append(pow(fac_arr[-1], -1, MOD))
def fac(n):
    while n >= len(fac_arr): enlarge_fac()
    return fac_arr[n]
def finv(n):
    while n >= len(finv_arr): enlarge_fac()
    return finv_arr[n]
def binom(n, k):
    if k < 0 or k > n: return 0
    return ((fac(n) * finv(k)) % MOD * finv(n - k)) %
        MOD
```

MD5: 563f35f15f93d1fa344f70ccb432d791 | $\mathcal{O}(N)$

4.3 Fast prime check

```
def is_prime(n):
    if n == 2: return 1
    if n == 1 or not n&1: return 0
    #miller_rabin
    if n < 1<<30: test_numbers = [2, 7, 61]</pre>
    else: test_numbers = [2, 325, 9375, 28178, 450775,
         9780504, 1795265022]
    d = n - 1
    while ~d&1: d>>=1
    for a in test_numbers:
        if n <= a: break</pre>
        t = d
        y = pow(a, t, n)
        while t != n-1 and y != 1 and y != n-1:
            y = y * y % n
            t <<= 1
        if y != n-1 and not t&1: return 0
    return 1
```

MD5: dd31122281a49a705d1930e030221355 | $\mathcal{O}(logN)$

5 misc

5.1 Bootstrap

Use when desperate

```
def bootstrap(f, stack=[]):
      from types import GeneratorType
      def wrappedfunc(*args, **kwargs):
           if stack:
               return f(*args, **kwargs)
           else:
               to = f(*args, **kwargs)
               while True:
                    if type(to) is GeneratorType:
                        stack.append(to)
                        to = next(to)
11
12
                        stack.pop()
13
                        if not stack:
14
                            break
15
                        to = stack[-1].send(to)
16
               return to
17
18
       return wrappedfunc
19
```

MD5: 026c45e94790fbc1d108dfccc34abb77 | O(faster)

6 more math

6.1 Tree

Diameter: BFS from any node, then BFS from last visited node. Max dist is then the diameter. Center: Middle vertex in second step from above.

6.2 Divisability Explanation

 $D \mid M \Leftrightarrow D \mid \texttt{digit_sum}(\texttt{M}, \texttt{k}, \texttt{alt}), \text{ refer to table for values of } D, k, alt.$

6.3 Combinatorics

- Variations (ordered): k out of n objects (permutations for k = n)
 - without repetition: $M = \{(x_1, \dots, x_k) : 1 \le x_i \le n, \ x_i \ne x_j \text{ if } i \ne j\},$ $|M| = \frac{n!}{(n-k)!}$
 - with repetition: $M = \{(x_1, \dots, x_k) : 1 \le x_i \le n\}, |M| = n^k$
- ullet Combinations (unordered): k out of n objects
 - without repetition: $M=\{(x_1,\ldots,x_n):x_i\in\{0,1\},\ x_1+\ldots+x_n=k\},\ |M|=\binom{n}{k}$
 - with repetition: $M = \{(x_1, \dots, x_n) : x_i \in \{0, 1, \dots, k\}, x_1 + \dots + x_n = k\}, |M| = \binom{n+k-1}{l}$
- Ordered partition of numbers: $x_1 + \ldots + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 2 solutions)
 - #Solutions for $x_i \in \mathbb{N}_0$: $\binom{n+k-1}{k-1}$
 - #Solutions for $x_i \in \mathbb{N}$: $\binom{n-1}{k-1}$
- Unordered partition of numbers: $x_1 + \ldots + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 1 solution)

- #Solutions for $x_i \in \mathbb{N}$: $P_{n,k} = P_{n-k,k} + P_{n-1,k-1}$ where $P_{n,1} = P_{n,n} = 1$
- Derangements (permutations without fixed points): $!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = \lfloor \frac{n!}{e} + \frac{1}{2} \rfloor$

6.4 Polynomial Interpolation

6.4.1 Theory

Problem: for $\{(x_0, y_0), \dots, (x_n, y_n)\}$ find $p \in \Pi_n$ with $p(x_i) = y_i$ for all $i = 0, \dots, n$.

Solution: $p(x) = \sum_{i=0}^{n} \gamma_{0,i} \prod_{j=0}^{i-1} (x - x_i)$ where $\gamma_{j,k} = y_j$ for k = 0 and $\gamma_{j,k} = \frac{\gamma_{j+1,k-1} - \gamma_{j,k-1}}{x_{j+k} - x_j}$ otherwise.

Efficient evaluation of p(x): $b_n = \gamma_{0,n}$, $b_i = b_{i+1}(x - x_i) + \gamma_{0,i}$ for $i = n - 1, \ldots, 0$ with $b_0 = p(x)$.

6.5 Fibonacci Sequence

6.5.1 Binet's formula

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow f_n = \frac{1}{\sqrt{5}} (\phi^n - \tilde{\phi}^n) \text{ where }$$

$$\phi = \frac{1+\sqrt{5}}{2} \text{ and } \tilde{\phi} = \frac{1-\sqrt{5}}{2}.$$

6.5.2 Generalization

$$g_n = \frac{1}{\sqrt{5}}(g_0(\phi^{n-1} - \tilde{\phi}^{n-1}) + g_1(\phi^n - \tilde{\phi}^n)) = g_0 f_{n-1} + g_1 f_n$$
 for all $g_0, g_1 \in \mathbb{N}_0$

6.5.3 Pisano Period

Both $(f_n \mod k)_{n \in \mathbb{N}_0}$ and $(g_n \mod k)_{n \in \mathbb{N}_0}$ are periodic.

6.6 Series

$$\begin{split} \sum_{i=1}^n i &= \frac{n(n+1)}{2}, \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^n c^i &= \frac{c^{n+1}-1}{c-1}, c \neq 1, \sum_{i=0}^\infty c^i = \frac{1}{1-c}, \sum_{i=1}^n c^i = \frac{c}{1-c}, |c| < 1 \\ \sum_{i=0}^n ic^i &= \frac{nc^{n+2}-(n+1)c^{n+1}+c}{(c-1)^2}, c \neq 1, \sum_{i=0}^\infty ic^i = \frac{c}{(1-c)^2}, |c| < 1 \end{split}$$

6.7 Binomial coefficients

$$\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n-1 \\ k \end{pmatrix} + \begin{pmatrix} n-1 \\ k-1 \end{pmatrix}, \quad \begin{pmatrix} n \\ m \end{pmatrix} \begin{pmatrix} m \\ k \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix} \begin{pmatrix} n-k \\ m-k \end{pmatrix}, \\ \begin{pmatrix} m+n \\ r \end{pmatrix} = \sum_{k=0}^r \binom{m}{k} \binom{n}{r-k} \text{ and in general, } n_1 + \dots + n_p = \\ \sum_{k_1 + \dots + k_p = m} \binom{n_1}{k_1} \dots \binom{n_p}{k_p}$$

6.8 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, C_{n+1} = \frac{4n+2}{n+2} C_n$$

6.9 Geometry

Area of a polygon:
$$A = \frac{1}{2}(x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + \cdots + x_{n-1}y_n - x_ny_{n-1} + x_ny_1 - x_1y_n)$$

6.10 Number Theory

Chinese Remainder Theorem: There exists a number C, such that:

 $C\equiv a_1\mod n_1,\cdots,C\equiv a_k\mod n_k, \operatorname{ggt}(n_i,n_j)=1, i\neq j$ Case $k=2\colon m_1n_1+m_2n_2=1$ with EEA.

Solution is $x = a_1 m_2 n_2 + a_2 m_1 n_1$.

General case: iterative application of k=2

Euler's φ -Funktion: $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}), p$ prime

 $\varphi(p)=p-1, \varphi(pq)=\varphi(p)\varphi(q), p,q$ prime

 $\varphi(p^k)=p^k-p^{k-1}, p,q \text{ prime, } k\geq 1$

Eulers Theorem: $a^{\varphi(n)} \equiv 1 \mod n$

Fermats Theorem: $a^p \equiv a \mod p$, p prime

6.11 Convolution

$$(f * g)(n) = \sum_{m = -\infty}^{\infty} f(m)g(n - m) = \sum_{m = -\infty}^{\infty} f(n - m)g(m)$$

6.12 DP Optimization

• Convex Hull Optimization:

$$T[i] = \min_{j < i} (T[j] + b[j] \cdot a[i])$$

with the constraints $b[j] \ge b[j+1]$ and $a[j] \le a[j+1]$. Solution is convex and thus the optimal j for i will always

be smaller than the one for i+1. So we can use a pointer which we increment as long as the solution gets better. Running time is $\mathcal{O}(n)$ as the pointer visits each element no more than once.

• Divide and Conquer Optimization:

$$T[i][j] = \min_{k < j} (T[i-1][k] + C[k][j])$$

with the constraint $A[i][j] \leq A[i][j+1]$ with A[i][j] giving the smallest optimal k. Is dealt with (including code) in misc chapter above.

• Knuth Optimization:

$$T[i][j] = \min_{i < k < j} (T[i][k] + T[k][j]) + C[i][j]$$

with the constraint $A[i][j-1] \le A[i][j] \le A[i+1][j]$ which is apparently equal to the following two constraints:

$$C[a][c] + C[b][d] \le C[a][d] + C[b][c], \ a \le b \le c \le d$$

 $C[b][c] \le C[a][d], \ a \le b \le c \le d$

With above constraint we get good bounds on k by going calculating T with increasing j-i. Also see the code in misc.

	Theoretical	Computer Science Cheat Sheet				
	Definitions	Series				
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$				
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$.	i=1 $i=1$ $i=1$ In general:				
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$				
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$				
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \geq n_0$.	Geometric series:				
$\sup S$	least $b \in$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$				
$\inf S$	greatest $b \in \text{ such that } b \leq s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$				
$ \lim_{n\to\infty}\inf a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \}.$	Harmonic series: $n = n + 1 =$				
$\limsup_{n\to\infty} a_n$	$\lim_{n\to\infty}\sup\{a_i\mid i\geq n, i\in\}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$				
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} \binom{i}{m} H_i = \binom{n+1}{m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$				
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \ \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \ \sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \qquad 3. \ \binom{n}{k} = \binom{n}{n-k},$				
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $				
$\left\langle {n\atop k}\right\rangle$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$8. \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad 9. \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$				
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	$10. \ \binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \qquad \qquad 11. \ \binom{n}{1} = \binom{n}{n} = 1,$				
C_n	Catalan Numbers: Binary trees with $n + 1$ vertices.	$12. \begin{Bmatrix} n \\ 2 \end{Bmatrix} = 2^{n-1} - 1, \qquad 13. \begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix},$				
$14. \begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!, \qquad 15. \begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1}, \qquad 16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$						
	'	$\left\{ egin{aligned} n \\ -1 \end{array} \right\} = \left[egin{aligned} n \\ n-1 \end{array} \right] = \left(egin{aligned} n \\ 2 \end{array} \right), 20. \ \sum_{k=0}^n \left[egin{aligned} n \\ k \end{array} \right] = n!, 21. \ C_n = rac{1}{n+1} \left(egin{aligned} 2n \\ n \end{array} \right), 20. \ 2$				
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n} \right\rangle$	22. $\binom{n}{0} = \binom{n}{n-1} = 1$, 23. $\binom{n}{k} = \binom{n}{n-1-k}$, 24. $\binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,					
$25. \left\langle {0 \atop k} \right\rangle = \left\{ {1 \atop 0} \right\}$	if $k = 0$, otherwise 26. $\begin{cases} r \\ 1 \end{cases}$	$\binom{n}{1} = 2^n - n - 1,$ $\binom{n}{2} = 3^n - (n+1)2^n + \binom{n+1}{2},$				
	$28. \ \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, \qquad 29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m},$					
$\begin{array}{ c c } \hline & 31. & \left\langle {n\atop m} \right\rangle = \sum_{k=0}^n \end{array}$	31. $\binom{n}{m} = \sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{m} (-1)^{n-k-m} k!,$ 32. $\binom{n}{0} = 1,$ 33. $\binom{n}{n} = 0$ for $n \neq 0$,					
$34. \; \left\langle $						
$36. \left\{ \begin{array}{c} x \\ x - n \end{array} \right\} = \left\{ \begin{array}{c} x \\ x - n \end{array} \right\}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \atop k \right\rangle \!\! \right\rangle \left(\begin{matrix} x+n-1-k \\ 2n \end{matrix} \right),$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$				

Identities Cont.

$$\mathbf{38.} \ \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{2}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \mathbf{39.} \ \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\!\! \right\rangle \binom{x+k}{2n},$$

40.
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

$$\{m\} = \sum_{k} \binom{k}{k} \binom{m+1}{m+1}^{(-1)}$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

44.
$$\binom{m}{m} = \sum_{k} \binom{k+1}{k+1} \binom{m}{m} \binom{m-k}{m}$$

40.
$${n-m} \equiv \sum_{k} {m+k} {n+k} {k}$$
, ${n-k} {n}$

48.
$$\binom{n}{\ell+m} \binom{\ell+m}{\ell} = \sum_{k} \binom{k}{\ell} \binom{n-k}{m} \binom{n}{k},$$

$$\frac{1}{k!} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \quad \mathbf{39.} \quad \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\! \left\langle n \atop k \right\rangle \!\! \right\rangle \left\langle \!\! \left\langle x+k \atop 2n \right\rangle \!\! \right\rangle,$$

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{i} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} \begin{pmatrix} k \\ m \end{pmatrix} (-1)^{m-k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k}, \quad \textbf{45.} \quad (n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

46.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k} {m+k \choose k},$$
 47.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$

48.
$${n \brace \ell + m} {\ell + m \choose \ell} = \sum_{k} {k \brace \ell} {n - k \brack m} {n \brack k},$$
 49.
$${n \brack \ell + m} {\ell + m \brack \ell} {k \choose \ell} {n - k \brack m} {n \brack \ell + m} {\ell + m \brack \ell} {n \choose \ell}.$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are d_1, \ldots, d_n :

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$
$$\vdots \qquad \vdots \qquad \vdots$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

$$\sum_{i \geq 0} g_{i+1} x^i = \sum_{i \geq 0} 2g_i x^i + \sum_{i \geq 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i>0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$

$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$

$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

	Theoretical Computer Science Cheat Sheet				
	$\pi \approx 3.14159, \qquad e \approx 2.73$		1828, $\gamma \approx 0.57721, \qquad \phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$	
i	2^i	p_i	$\operatorname{General}$	Probability	
1	2	2	Bernoulli Numbers $(B_i = 0, \text{ odd } i \neq 1)$:	Continuous distributions: If	
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{-\infty}^{\infty} p(x) dx,$	
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	J_a then p is the probability density function of	
4	16	7	Change of base, quadratic formula:	X. If	
5	32	11	$\log_b x = \frac{\log_a x}{\log_b b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$	
6	64	13	$\log_a b$ 2 a Euler's number e :	then P is the distribution function of X . If	
7	128	17	Euler's number e : $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then	
8	256	19	2 0 21 120	$P(a) = \int_{a}^{a} p(x) dx.$	
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J_{-\infty}$ Expectation: If X is discrete	
10	1,024	29	$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$.	-	
11	2,048	31	$(1,1)^n$ e $11e$ 0 1	$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$	
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then	
13	8,192	41	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$	
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$	
15	32,768	47		Variance, standard deviation:	
$\begin{array}{ c c } \hline 16\\ 17\\ \end{array}$	$65,536 \\ 131,072$	53 59	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$	
18	262,144	61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{\text{VAR}[X]}.$	
19	524,288	67	Factorial, Stirling's approximation:	For events A and B: $Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$	
20	1,048,576	71	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$	
21	2,097,152	73		iff A and B are independent.	
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$		
23	8,388,608	83		$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$	
24	16,777,216	89	Ackermann's function and inverse:	For random variables X and Y :	
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$	
26	67,108,864	101	$\left(a(i-1,a(i,j-1)) i,j \geq 2\right.$	if X and Y are independent.	
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X+Y] = E[X] + E[Y],	
28	268,435,456	107	Binomial distribution:	$\operatorname{E}[cX] = c \operatorname{E}[X].$	
29	536,870,912	109	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	Bayes' theorem:	
30	1,073,741,824	113	· /	$\Pr[A_i B] = \frac{\Pr[B A_i] \Pr[A_i]}{\sum_{i=1}^{n} \Pr[A_i] \Pr[B A_i]}.$	
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	$\sum_{j=1}^{j=1} \sum_{i=1}^{j} \sum_{j=1}^{j} \sum_$	
32	4,294,967,296	131	$\frac{1}{k=1} $ Poisson distribution:	$\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$	
	Pascal's Triangl	e	$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \operatorname{E}[X] = \lambda.$	i=1 $i=1$	
1 1 1			70.	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j}\right].$	
	1 2 1		Normal (Gaussian) distribution:	$ \sum_{k=2}^{2} {1 \choose j} \sum_{i_1 < \dots < i_k} {1 $	
1 3 3 1			$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	Moment inequalities:	
1 4 6 4 1			The "coupon collector": We are given a	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$	
	1 5 10 10 5 1		random coupon each day, and there are n	^ ,	
	1 6 15 20 15 6 1	L	different types of coupons. The distribution of coupons is uniform. The expected	$\Pr\left[\left X - \mathrm{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$	
1 7 21 35 35 21 7 1			number of days to pass before we to col-	Geometric distribution: $k=1$	
	1 8 28 56 70 56 28	8 1	lect all n types is	$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$	
1 9	9 36 84 126 126 84	36 9 1	nH_n .	$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$	
1 10 45 120 210 252 210 120 45 10 1				$\sum_{k=1}^{\infty}$ p	

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$

Identities:
$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{x}{2} - \cot x,$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\cot(x \pm y) = \frac{\cot x \pm \cot y}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x},$$

$$\cos 2x = \cos^2 x - \sin^2 x, \qquad \cos 2x = 2\cos^2 x - 1,$$

$$\cos 2x = 1 - 2\sin^2 x, \qquad \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$$
 $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$

 $\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$

 $\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$

Euler's equation:

$$e^{i\bar{x}} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.01 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden Multiplication:

$$C = A \cdot B, \quad c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

Matrices

Determinants: det $A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det_n A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

$$aei + bfg + cdh$$

-ceg - fha - ibd.

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$$

$$\coth^2 x - \operatorname{csch}^2 x = 1, \qquad \sinh(-x) = -\sinh x,$$

$$\cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x,$$

$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sinh 2x = 2\sinh x \cosh x,$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

$$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$$

$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{3}$ $\frac{\pi}{2}$	$\overline{1}$	ō	∞

 \dots in mathematics you don't understand things, you just get used to them. – J. von Neumann

More Trig.

Law of cosines:

$$c^2 = a^2 + b^2 - 2ab\cos C.$$

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2\sin A\sin B}{2\sin C}$$

Heron's formula:

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2i}.$$

 $\cos x = \frac{e^{ix} + e^{-ix}}{2},$ $\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$

 $\sin x = \frac{\sinh ix}{i}$

 $\cos x = \cosh ix$

 $\tan x = \frac{\tanh ix}{i}$

Definitions:

Walk

Number Theory The Chinese remainder theorem: There exists a number C such that:

 $C \equiv r_1 \mod m_1$

: : :

 $C \equiv r_n \mod m_n$

if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then

$$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$$

Euler's theorem: If a and b are relatively prime then

 $1 \equiv a^{\phi(b)} \mod b$.

Fermat's theorem:

$$1 \equiv a^{p-1} \bmod p.$$

The Euclidean algorithm: if a > b are integers then

$$\gcd(a,b)=\gcd(a \bmod b,b).$$

If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x

$$S(x) = \sum_{d|x} d = \prod_{i=1}^n \frac{p_i^{e_i+1}-1}{p_i-1}.$$

Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.

Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$.

$$(n-1)! \equiv -1 \mod n$$

$$\mu(i) = \begin{cases} (n-1)^i \equiv -1 \mod n. \\ \text{M\"obius inversion:} \\ 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$$

Tf

$$G(a) = \sum_{d|a} F(d),$$

then

$$F(a) = \sum_{d \mid a} \mu(d) G\left(\frac{a}{d}\right).$$

Prime numbers:

$$p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$$

$$+O\left(\frac{n}{\ln n}\right),$$

$$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3} + O\left(\frac{n}{(\ln n)^4}\right).$$

Graph Theory

Loop	An edge connecting a ver-
	tex to itself.
Directed	Each edge has a direction.
Simple	Graph with no loops or

multi-edges. A sequence $v_0e_1v_1\ldots e_\ell v_\ell$.

TrailA walk with distinct edges. Pathtrail $_{
m with}$ distinct vertices.

A graph where there exists

Connecteda path between any two vertices.

Componentmaximalconnected subgraph.

TreeA connected acyclic graph. Free tree A tree with no root. DAGDirected acyclic graph. EulerianGraph with a trail visiting each edge exactly once.

Hamiltonian Graph with a cycle visiting each vertex exactly once.

CutA set of edges whose removal increases the number of components.

Cut-setA minimal cut. Cut edge A size 1 cut.

k-Connected A graph connected with the removal of any k-1vertices.

 $\forall S \subseteq V, S \neq \emptyset$ we have k-Tough $k \cdot c(G - S) \le |S|.$

k-Regular A graph where all vertices have degree k.

k-Factor k-regular spanning subgraph.

Matching A set of edges, no two of which are adjacent.

CliqueA set of vertices, all of which are adjacent.

Ind. set A set of vertices, none of which are adjacent.

Vertex cover A set of vertices which cover all edges.

Planar graph A graph which can be embeded in the plane.

Plane graph An embedding of a planar

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n-m+f=2, so

$$f < 2n - 4$$
, $m < 3n - 6$.

Any planar graph has a vertex with degree < 5.

Notation:

E(G)Edge set V(G)Vertex set

c(G)Number of components

G[S]Induced subgraph

Degree of vdeg(v) $\Delta(G)$

Maximum degree $\delta(G)$ Minimum degree

 $\chi(G)$ Chromatic number $\chi_E(G)$ Edge chromatic number

 G^c Complement graph K_n Complete graph

Complete bipartite graph K_{n_1,n_2}

Ramsey number $r(k,\ell)$

Geometry

Projective coordinates: (x, y, z), not all x, y and z zero.

$$(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$$

Cartesian Projective

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others. it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

where

$$A = \left[\frac{N(x)}{D(x)} \right]_{x=a}.$$

For a repeated factor

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
,

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}, \qquad 5. \quad \frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}, \qquad 6. \quad \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

$$6. \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$\mathbf{10.} \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

$$12. \ \frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1 - u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

20.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

29.
$$\frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

1.
$$\int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}$$
, $n \neq -1$, 4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,

4.
$$\int \frac{1}{x} dx = \ln x$$
, **5.** $\int e^x$

6.
$$\int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

$$12. \int \sec x \, dx = \ln|\sec x + \tan x|.$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad$$
27. $\int \sinh x \, dx = \cosh x, \quad$ **28.** $\int \cosh x \, dx = \sinh x,$

29.
$$\int \tanh x \, dx = \ln |\cosh x|$$
, **30.** $\int \coth x \, dx = \ln |\sinh x|$, **31.** $\int \operatorname{sech} x \, dx = \arctan \sinh x$, **32.** $\int \operatorname{csch} x \, dx = \ln |\tanh \frac{x}{2}|$,

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$$

35.
$$\int \operatorname{sech}^2 x \, dx = \tanh x,$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \left\{ \begin{aligned} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{aligned} \right.$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$ **45.** $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$

44.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

45.
$$\int \frac{1}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2 \sqrt{a^2 - x^2}}$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2-x^2}\,dx = -\frac{1}{3}(a^2-x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2},$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx$$
,

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

 $E f(x) = f(x+1).$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \operatorname{E} v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

Sums:

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum \mathop{\rm E}\nolimits v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{n+1}}, \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

 $x^{\underline{0}} = 1$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{o} = 1$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}}(x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^{n} (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$= 1/(x + 1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^{n} (-x)^{\underline{n}} = (x + n - 1)^{\underline{n}}$$

$$= 1/(x - 1)^{\underline{-n}},$$

$$x^n = \sum_{k=1}^n \left\{ n \atop k \right\} x^{\underline{k}} = \sum_{k=1}^n \left\{ n \atop k \right\} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\begin{array}{c} \frac{1}{1-x} & = 1+x+x^2+x^3+x^4+\cdots & = \sum\limits_{i=0}^{\infty} x^i, \\ \frac{1}{1-cx} & = 1+cx+c^2x^2+c^3x^3+\cdots & = \sum\limits_{i=0}^{\infty} c^ix^i, \\ \frac{1}{1-x^n} & = 1+x^n+x^{2n}+x^{3n}+\cdots & = \sum\limits_{i=0}^{\infty} c^ix^i, \\ \frac{x}{(1-x)^2} & = x+2x^2+3x^3+4x^4+\cdots & = \sum\limits_{i=0}^{\infty} ix^i, \\ x^k\frac{d^n}{dx^n}\left(\frac{1}{1-x}\right) & = x+2^nx^2+3^nx^3+4^nx^4+\cdots & = \sum\limits_{i=0}^{\infty} ix^i, \\ e^x & = 1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots & = \sum\limits_{i=0}^{\infty} \frac{x^i}{i!}, \\ \ln(1+x) & = x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^{i-1}\frac{x^i}{i}, \\ \ln\frac{1}{1-x} & = x+\frac{1}{2}x^2+\frac{1}{3}x^3+\frac{1}{4}x^4+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!}, \\ \cos x & = 1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^i\frac{x^{2i+1}}{(2i+1)!}, \\ \cos x & = 1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^i\frac{x^{2i+1}}{(2i+1)!}, \\ \tan^{-1}x & = x-\frac{1}{3}x^3+\frac{1}{5}x^3-\frac{1}{7}x^7+\cdots & = \sum\limits_{i=0}^{\infty} (-1)^i\frac{x^{2i+1}}{(2i+1)!}, \\ (1+x)^n & = 1+nx+\frac{n(n-1)}{2}x^2+\cdots & = \sum\limits_{i=0}^{\infty} \binom{n}{i}x^i, \\ \frac{1}{(1-x)^{n+1}} & = 1+(n+1)x+\binom{n+2}{2}x^2+\cdots & = \sum\limits_{i=0}^{\infty} \binom{n}{i}x^i, \\ \frac{x}{e^x-1} & = 1-\frac{1}{2}x+\frac{1}{12}x^2-\frac{1}{120}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \binom{n}{i}x^i, \\ \frac{x}{1-x} & = 1+x+2x^2+6x^3+\cdots & = \sum\limits_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-4x}} & = 1+x+2x^2+6x^3+\cdots & = \sum\limits_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-4x}} & = 1+x+2x^2+\frac{1}{6}x^3+\frac{1}{25}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \binom{2i+n}{i}x^i, \\ \frac{1}{\sqrt{1-4x}} & = 1+x+2x^2+\frac{1}{6}x^3+\frac{1}{25}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{1}{i}. \\ \frac{1}{\sqrt{1-4x}} & = \frac{1}{1-x} & = x+\frac{3}{2}x^2+\frac{1}{16}x^3+\frac{1}{25}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{H_{i-1}^{i}}{i}, \\ \frac{1}{\sqrt{1-4x}} & = \frac{1}{2}x^2+\frac{3}{4}x^3+\frac{1}{12}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{H_{i-1}^{i}}{i}, \\ \frac{1}{\sqrt{1-4x}} & = \frac{1}{1-x} & = \frac{1}{2}x^2+\frac{3}{4}x^3+\frac{1}{12}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{H_{i-1}^{i}}{i}, \\ \frac{1}{\sqrt{1-4x}} & = \frac{1}{1-x} & = \frac{1}{2}x^2+\frac{3}{4}x^3+\frac{1}{12}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{H_{i-1}^{i}}{i}, \\ \frac{1}{\sqrt{1-4x}} & = \frac{1}{1-x} & = \frac{1}{2}x^2+\frac{3}{4}x^3+\frac{1}{12}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{H_{i-1}^{i}}{i}, \\ \frac{1}{\sqrt{1-4x}} & = \frac{1}{1-x} & = \frac{1}{2}x^2+\frac{3}{4}x^3+\frac{1}{12}x^4+\cdots & = \sum\limits_{i=0}^{\infty} \frac{H_{i-1}^{i}}{i}, \\ \frac{1}{\sqrt{1-4x}} & =$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power serie

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theore:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers: all the rest is the work of man. - Leopold Kronecker

Escher's Knot

Expansions:

Expansions:
$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \left\{ {i \atop n} \right\} x^i, \\ x^{\overline{n}} = \sum_{i=0}^{\infty} \left[{n \atop i} \right] x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \left\{ {i \atop n} \right\} \frac{n!}{i!} \\ \left(\ln \frac{1}{1-x} \right)^n = \sum_{i=0}^{\infty} \left[{i \atop n} \right] \frac{n!x^i}{i!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)!} \\ \tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i} (2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \\ \zeta(x) = \prod_{p} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{1}{1-p^{-x}}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \\ \zeta(x) = \prod_{p} \frac{\phi(i)}{i^x}, \qquad \zeta(x) = \sum_$$

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_a^b G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

If the integrals involved exis

$$\begin{split} & \int_{a}^{b} \left(G(x) + H(x) \right) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x), \\ & \int_{a}^{b} G(x) d \Big(F(x) + H(x) \Big) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x), \\ & \int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d \Big(c \cdot F(x) \Big) = c \int_{a}^{b} G(x) dF(x), \\ & \int_{a}^{b} G(x) dF(x) = G(b) F(b) - G(a) F(a) - \int_{a}^{b} F(x) dG(x). \end{split}$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

Cramer's Rule

 $\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=0}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be Awith column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}$$
.

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

 $00 \ \ 47 \ \ 18 \ \ 76 \ \ 29 \ \ 93 \ \ 85 \ \ 34 \ \ 61 \ \ 52$ $86 \ 11 \ 57 \ 28 \ 70 \ 39 \ 94 \ 45 \ 02 \ 63$ $59 \ 96 \ 81 \ 33 \ 07 \ 48 \ 72 \ 60 \ 24 \ 15$ $73 \ 69 \ 90 \ 82 \ 44 \ 17 \ 58 \ 01 \ 35 \ 26$ $68 \ 74 \ 09 \ 91 \ 83 \ 55 \ 27 \ 12 \ 46 \ 30$ $37\ \ 08\ \ 75\ \ 19\ \ 92\ \ 84\ \ 66\ \ 23\ \ 50\ \ 41$ $14 \ 25 \ 36 \ 40 \ 51 \ 62 \ 03 \ 77 \ 88 \ 99$ 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i ,
 $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left(\phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$