TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH KHOA KHOA HỌC ỨNG DỤNG BỘ MÔN TOÁN

ĐÁP ÁN MÔN TOÁN 1 NĂM HỌC 2019 – 2020 Ngày thi: 23/12/2019 Đề 01

Câu		Đáp án	Điểm
1		Ta có $f(x) = -2\sin^2 x + 3\sin x + 5$. Suy ra	0.5
		$(f \circ g)(x) = f(\sin^{-1} x) = -2x^2 + 3x + 5, -1 \le x \le 1$	
		do $\sin(\sin^{-1} x) = x \text{ v\'oi } -1 \le x \le 1.$	
		Do đó	0.25
		$(f \circ g)(x) = 0 \Leftrightarrow -2x^2 + 3x + 5 = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = \frac{5}{2} \end{bmatrix}$	
		So với điều kiện $-1 \le x \le 1$. ta được nghiệm của phương trình $x = -1$.	0.25
2	a	Với $x \neq 0$, ta có $f(x) = \frac{1 - \cos 2x}{x^2}$ liên tục trên $\mathbb{R} \setminus \{0\}$. Vì vậy f liên tục trên \mathbb{R} khi và chỉ khi f liên tục tại $x = 0$.	0.25
		Ta có $f(0) = m$ và	0.5
		$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 x}{x^2} = 2$	
		Vì vậy f liên tục $x = 0$ khi và chỉ khi $\lim_{x \to 0} f(x) = f(0) \Leftrightarrow m = 2$.	0.25
	b	Với $m=2$, ta xét giới hạn	0.5
		$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{1 - \cos 2x}{x^2} - 2}{x - 0} = \lim_{x \to 0} \frac{1 - \cos 2x - 2x^2}{x^3}$	

	$= \lim_{x \to 0} \frac{2\sin 2x - 4x}{3x^2} = \lim_{x \to 0} \frac{4\cos 2x - 4}{6x} = \lim_{x \to 0} \frac{-8\sin 2x}{6} = 0.$	0.5
	Vì vậy với $m=2$ thì hàm số f khả vi tại $x=0$ và $f'(0)=0$.	0.5
3	Đạo hàm hai vế phương trình $\sin(x+y) = 2x-2y$ theo biến x ta được	0.25
	$(1+y')\cos(x+y) = 2-2y'$	
	$y' = \frac{2 - \cos(x + y)}{2 + \cos(x + y)}$	0.25
	Tại $P(\pi,\pi)$ ta có $x = y = \pi$ và $\frac{dy}{dx}\Big _{x=\pi} = \frac{1}{3}$.	0.25
	Vậy phương trình tiếp tuyến cần tìm $y - \pi = \frac{1}{3}(x - \pi)$ hay $y = \frac{1}{3}x + \frac{2\pi}{3}$.	0.25
4	Ta có $f'(x) = \frac{1}{3}x^{-2/3}(8-x) - x^{1/3} = \frac{8-4x}{3x^{2/3}}.$	0.5
	Suy ra f có hai số tới hạn là $x = 0$ và $x = 2$.	0.25
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5
	Vậy f đạt cực đại tương đối tại $x = 2$.	0.25
5	Diện tích cần tìm	0.5
	$A = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1 + \sin x}} dx = \int_{0}^{\frac{\pi}{2}} \frac{d(1 + \sin x)}{\sqrt{1 + \sin x}}$	

	$=2\sqrt{1+\sin x}\Big _0^{\frac{\pi}{2}}=2(\sqrt{2}-1)$	0.5
6	Nhiệt độ trung bình tại sân bay trong khoảng thời gian 9:00 A.M. đến 12:00 A.M. là	0.5
	$f_{tb} = \frac{1}{12 - 9} \int_{9}^{12} f(t) dt = \frac{1}{3} \int_{9}^{12} (-0.1t^2 + t + 50) dt$	
	$= \frac{1}{3} \left(-0.1 \frac{t^3}{3} + \frac{t^2}{2} + 50t \right) \Big _{9}^{12} = 49.4$	0.5
7	Theo đề bài, ta có $\frac{dx}{dt} = -35 \text{ km/h và } \frac{dy}{dt} = 25 \text{ km/h.}$ $\text{Tìm } \frac{dz}{dt}\Big _{t=4}$ $\text{Ta có } x^2 + y^2 = z^2. \text{ Đạo hàm hai vế của phương trình theo biến thời gian } t \text{ ta được}$ $2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2z\frac{dz}{dt}$	0.25
	$\frac{dz}{dt} = \frac{x}{z}\frac{dx}{dt} + \frac{y}{z}\frac{dy}{dt}.$	0.25
	Lúc $t = 4$ ta có $x = 10$, $y = 100$ và $z = \sqrt{10^2 + 100^2} = 10\sqrt{101}.$	0.25
	$\frac{dz}{dt} = \frac{10}{10\sqrt{101}} \left(-35\right) + \frac{100}{10\sqrt{101}} 25 = \frac{215\sqrt{101}}{101} \text{ km/h}.$	0.25
8	Trong trường hợp tốc độ của dòng chảy có tính đến ma sát thì theo định luật Torricelli, ta có	0.25

$\frac{dV}{dt} = -4.8A_0\sqrt{h}$	
trong đó V là thể tích nước trong bể tại thời điểm $t,\ h$ là mực nước trong bể tại	
thời điểm t , và A_0 là diện tích của cái lỗ cho bởi $A_0 = \left(\frac{1}{12}\right)^2 = \frac{1}{144}$.	
Mặt khác ta có $V = 16h$. Vì vậy ta có phương trình vi phân	0.25
$\frac{dV}{dt} = -\frac{\sqrt{V}}{120}.$	
Giải phương trình vi phân tách biến ta được nghiệm tổng quát	0.25
$2\sqrt{V} = -\frac{t}{120} + C$	
Do $V(0) = 4^2.6$ nên ta được $C = 8\sqrt{6}$.	
Vì vậy $2\sqrt{V} = -\frac{t}{120} + 8\sqrt{6}$. Nước chảy hết ra ngoài khi $V = 0 \Leftrightarrow t = 960\sqrt{6}$	0.25
(giây).	