

IMPLEMENTACIÓN DE LA RUTA CRÍTICA UTILIZANDO PERT/CPM EN LA EMPRESA SMART CODE CONSULTING SERVICES

THE CRITICAL PATH IMPLEMENTATION USING PERT / CPM IN THE COMPANY SMART CODE CONSULTING SERVICES

Pure Serrano Carlos

1: RESUMEN:

Objetivo: Implementar la técnica de la ruta crítica utilizando el PERT/CPM en la empresa Smart Code Consulting Services. Materiales: Técnica PERT/CPM, software Microsoft Office Excel, Win qsb. Métodos: Se aplicó la técnica PERT/CPM para manejar proyectos que contienen tareas interrelacionadas y un control de costos del proyecto. Resultado: Se aplicó la técnica para mejorar el monitoreo del progreso del proyecto en la empresa y está mejoró su efectividad notablemente. Conclusiones: Usando esta técnica administrativa el resultado que obtuvimos fue muy favorable, se recomienda usar esta técnica para la mejor efectividad de realizar el proyecto.

PALABRAS CLAVE: PERT/CPM, Método Ruta Crítica, Disminución de las actividades.

KEYWORDS: PERT/CPM, Critical Path Method, Decrease in activities.

ABSTRACT:

Objective: Implement the critical path technique using the PERT / CPM in the company Smart Code Consulting Services. Materials: PERT / CPM technique, Microsoft Office Excel software, Win gsb. Methods: The PERT / CPM technique was applied to manage projects that contain interrelated tasks and the project's cost control. Result: The technique was applied to improve the monitoring the project's progress in the company and its effectiveness has improved remarkably. Conclusions: Using this administrative technique the result we obtained was very favorable, it is recommended to use this technique for the best effectiveness of carrying out the project.

INTRODUCCIÓN

Actualmente el mundo empresarial se está desarrollando entorno a las necesidades del medio que lo rodea, por ende, las empresas son cada vez más competitivas, para obtener mayor participación dentro del mercado cada una lucha por desarrollar estrategias que le permita diferenciarse de la competencia.

En este sentido, podemos decir que el tiempo de respuesta a nuestros clientes juega un papel preponderante en el medio, para ello es necesario que la organización establezca una adecuada planificación de los objetivos y metas a alcanzar y una programación detallada de los proyectos que ofertan a sus consumidores.

Según indica (Schroeder, 2011) "la planificación y programación de proyectos consta de cuatro fases: La planeación, la programación, el control y el cierre, los mismos que aportan una secuencia general de las decisiones administrativas que se demandan en todos los proyectos".

El PERT/CPM fue diseñado para proporcionar diversos elementos útiles de información para los administradores del proyecto. Primero, el PERT/CPM expone la "ruta crítica" de un proyecto. Estas son las actividades que limitan la duración del proyecto. En otras palabras, para lograr que el proyecto se realice pronto, las actividades de la ruta crítica deben realizarse pronto. Por otra parte, si una actividad de la ruta crítica se retarda, el proyecto como un todo se retarda en la misma cantidad. Las actividades que no están en la ruta crítica tienen una cierta cantidad de holgura; esto es, pueden empezarse más tarde, y permitir que el proyecto como un todo se mantenga en programa. El PERT/CPM identifica estas actividades y la cantidad de tiempo disponible para retardos.

El PERT/CPM también considera los recursos necesarios para completar las actividades. En muchos proyectos, las limitaciones en mano de obra y equipos hacen que la programación sea difícil. El PERT/CPM identifica los instantes del proyecto en que estas restricciones causarán problemas y de acuerdo a la flexibilidad permitida por los tiempos de holgura de las actividades no críticas, permite que el gerente manipule ciertas actividades para aliviar estos problemas.

Finalmente, el PERT/CPM proporciona una herramienta para controlar y monitorear el progreso del proyecto. Cada actividad tiene su propio papel en éste y su importancia en la terminación del proyecto se manifiesta inmediatamente para el director del mismo. Las actividades de la ruta crítica, permiten, por consiguiente, recibir la mayor parte de la atención, debido a que la terminación del proyecto, depende fuertemente de ellas. Las actividades no críticas se manipularán y remplazarán en respuesta a la disponibilidad de recursos.

MATERIALES y MÉTODOS:

En la empresa Smart Code Consulting Services se maneja muchos procesos que están interrelacionados; estando la mayoría de estos no optimizados. Con la ayuda de la técnica PERT/CPM se rastrearon todas estas actividades y se obtuvieron la ruta más rápida y efectiva para la realización de un proyecto.

Esta técnica también ayudó a manejar los costos de cada proyecto realizado en la empresa.

Materiales:

Microsoft Office Excel, Win Qsb.

Métodos:

Se utilizó la técnica de PERT/ CPM y se obtuvo la mejor ruta para optimizar los procesos interrelacionados de los proyectos empresa.

MARCO TEÓRICO

DEFINICIONES BÁSICAS:

- 1. Tiempo de Actividad: Puede ser de dos maneras: Determinista o Incierto (probabilístico). Cuando el tiempo de actividad es determinista, la actividad se completa en un tiempo constante. Cuando el tiempo de actividad es probabilístico, la actividad se completa en un valor de tiempo aleatorio que puede tener una cierta distribución de probabilidad.
- 2. Camino Crítico: Un camino que tiene el total más largo tiempo de actividad.
- 3. Actividad Crítica: Cualquier actividad en el camino crítico.
- 4. Proyecto Determinista: Un proyecto que todas las actividades terminan en tiempos constantes.
- 5. Actividad final: Se denomina actividad final del proyecto a la actividad que no es un predecesor de cualquier otra actividad.
- 6. Primer acabado (EF): Es el tiempo más temprano posible que una actividad puede ser terminada (= tiempo de inicio más temprano + tiempo de finalización de la actividad).
- 7. Inicio más temprano (ES): Este es el tiempo más temprano posible que una actividad puede comenzar. Todo inmediato predecesor deben ser terminados antes de una actividad puede empezar.
- 8. Último acabado (LF): Es la última vez que puede terminar la actividad y no retrasar el tiempo completo del proyecto en su conjunto (= última Tiempo + tiempo de realización de la actividad). Como los tiempos de inicio, la actividad es crítica si el primer acabado y el último los tiempos de llegada son los mismos.
- 9. Último inicio (LS): Es la última vez que una actividad puede comenzar y no retrasar la finalización Tiempo del proyecto en su conjunto. Si el comienzo y los últimos tiempos de inicio son los mismos que la actividad, es crítica.
- 10. Ruta: Una secuencia de actividades en un proyecto que conduzca desde la actividad de principio hasta la actividad de finalización del proyecto.
- 11. Relación de Precedencia: Indica qué actividad debe ser completado antes de que se pueda iniciar otro.
- 12. Proyecto Probabilístico: Un proyecto que tiene actividades terminar en tiempos de incertidumbre.
- 13. Tiempo de holgura: Es la diferencia entre la hora de inicio más temprana y la hora de inicio más turno es igual a la diferencia entre la última Hora de inicio y el último tiempo de finalización), es decir, Slack = LS-ES = LF-EF
- 14. Actividad de Inicio: Cuando no tiene actividad inmediata predecesor se llama actividad de inicio del proyecto.

- 15. Tiempo optimista: Este es el tiempo más corto posible en que la actividad puede ser terminada, y asume que todo tiene que ir perfecto.
- 16. Tiempo más probable: Este es el tiempo más probable en que la actividad puede realizarse en condiciones normales circunstancias.
- 17. Tiempo pesimista: Este es el tiempo más largo posible que la actividad podría necesitar, y asume un peor de los casos guion.

PERT (Técnica de Revisión y Evaluación de Programas):

Establece la ruta crítica a través del análisis probabilístico en el que fijan el tiempo optimista, probable y pesimista.

German Díaz Portugal (1966) afirma: "El PERT es básicamente una mejor técnica para intentar dirigir más ordenadamente un trabajo. Da una amplia base para planear, programa y el procesamiento continuo, dirigido por los diferentes niveles de directores responsables" (p.8).

VENTAJAS DEL PERT según Díaz (1996).

- ✓ Impone una disciplina más rígida para considerar los elementos requeridos para conseguir los objetivos de interrelación entre los elementos.
- Es método rápido y efectivo de comunicar planes y su contenido.
- ✓ Proporciona un plan estructural que tiende por sí mismo a una determinación sistemática del tiempo estimado total necesario, el cual puede ser comparado con una fecha de terminación fijada.
- ✓ Da una prueba palpable de que si lo planeado se está realizando.
- ✓ Sirve para evaluar el progreso contra los planes aprobados y predecir problemas en relación al programa. (p.8)

CPM

Según Arias & Pupo (2015) indica que:

"CPM (Método de la Ruta Crítica): Identifica la ruta crítica y analiza la relación tiempo - costo, en la que propone comprimir el tiempo de entrega del proyecto, lo que requiere un incremento en los costos planificados, siempre y cuando no superen los beneficios."

Para confirmar lo mencionado por el autor anterior; Hinojosa (2003) nos define lo siguiente:

El camino crítico en un proyecto es la sucesión de actividades que dan lugar al máximo tiempo acumulativo. Determina el tiempo más corto que podemos tardar en hacer el proyecto si se dispone de todos los recursos necesarios. Es necesario conocer la duración de las actividades. (p.11)

RESULTADO

Se realizó un escaneo total de las actividades de la empresa Smart Code Consulting Services y se identificaron las que están interrelacionadas entre sí.

Activity	Activity	Immediate Predecessor (list	Normal
Number	Name	number/name, separated by ',')	Time
1	INI		
2	A1	INI	5
3	A2	A1	1.3333
4	A3	A1	5.1667
5	A4	A1	2.1667
6	A5	A1	4.1667
7	A6	A3,A4,A5	3.3333
8	A7	A6	3.1667
9	A8	A7	3.1667
10	A9	A8	7
11	A10	A9	5.3333
12	A11	A10	2.1667
13	A12	A10	3.3333
14	A13	A10	5.3333
15	A14	A10,A11,A13	6.3333
16	A15	A14	20
17	A16	A14	14.6667
18	A17	A14	10.3333
19	A18	A14	10.3333
20	A19	A18	5.3333
21	A20	A19	10.5
22	A21	A20	4.5
23	A22	A14	1.5
24	A23	A21	2.1667
25	A24	A23	10.3333
26	A25	A23	4.3333
27	A26	A23	5.3333
28	A27	A26	1.3333
29	FIN	:A15,A16,A17,A22,A24,A25,A27	

Se muestra el tiempo de cada actividad, el comienzo temprano, el final temprano, el comienzo tardío, el final tardío, el tiempo de duración del proyecto y la cantidad de rutas críticas.

05-17-2017 09:39:46	Activity Name	On Critical Path	Activity Time	Earliest Start	Earliest Finish	Latest Start	Latest Finish	Slack (LS-ES)
1	INI	Yes	0	0	0	0	0	0
2	A1	Yes	5	0	5	0	5	0
3	A2	no	1,3333	5	6,3333	85,6666	86,9999	80,6666
4	A3	Yes	5,1667	5	10,1667	5	10,1667	0
5	A4	no	2,1667	5	7,1667	8	10,1667	3
6	A5	no	4,1667	5	9,1667	6	10,1667	1
7	A6	Yes	3,3333	10,1667	13,5	10,1667	13,5	0
8	A7	Yes	3,1667	13,5	16,6667	13,5	16,6667	0
9	A8	Yes	3,1667	16,6667	19,8334	16,6667	19,8334	0
10	A9	Yes	7	19,8334	26,8334	19,8334	26,8334	0
11	A10	Yes	5,3333	26,8334	32,1667	26,8334	32,1667	0
12	A11	no	2,1667	32,1667	34,3334	35,3333	37,5	3,1666
13	A12	no	3,3333	32,1667	35,5	83,6666	86,9999	51,4999
14	A13	Yes	5,3333	32,1667	37,5	32,1667	37,5	0
15	A14	Yes	6,3333	37,5	43,8333	37,5	43,8333	0
16	A15	no	20	43,8333	63,8333	66,9999	86,9999	23,1666
17	A16	no	14,6667	43,8333	58,5	72,3332	86,9999	28,4999
18	A17	no	10,3333	43,8333	54,1666	76,6666	86,9999	32,8333
19	A18	Yes	10,3333	43,8333	54,1666	43,8333	54,1666	0
20	A19	Yes	5,3333	54,1666	59,4999	54,1666	59,4999	0
21	A20	Yes	10,5	59,4999	69,9999	59,4999	69,9999	0
22	A21	Yes	4,5	69,9999	74,4999	69,9999	74,4999	0
23	A22	no	1,5	43,8333	45,3333	85,4999	86,9999	41,6666
24	A23	Yes	2,1667	74,4999	76,6666	74,4999	76,6666	0
25	A24	Yes	10,3333	76,6666	86,9999	76,6666	86,9999	0
26	A25	no	4,3333	76,6666	80,9999	82,6666	86,9999	6
27	A26	no	5,3333	76,6666	81,9999	80,3333	85,6666	3,6667
28	A27	no	1,3333	81,9999	83,3332	85,6666	86,9999	3,6667
29	FIN	Yes	0	86,9999	86,9999	86,9999	86,9999	0
	Project	Completion	Time	-	87,00	days		
	Number of	Critical	Path(s)	-	2			

Ingreso los datos obtenidos previamente al programa llamado "Win qsb", mostrando cada información de manera ordenada y nos dio como resultado en consola dos rutas críticas, cada una de ellas con su respectivo valor de la desviación estándar y probabilidad, como se muestra en la imagen adjunta.

El programa "Win qsb" también nos brinda una vista diferente en el modo impresión, donde se pudo visualizar las rutas críticas y cada actividad en el orden necesario y correcto, además de su respectivo valor de la desviación estándar, tal como se muestra en la imagen adjunta.

05-17-2017 12:34:15	Critical Path	Completion Time Std. Dev.	Probability to Finish in 87 days
1	INICIO> A1> A3> A6> A7> A8> A9> A10> A13> A14> A18> A19> A20> A21> A24	3,0822	0,5000
2	INICIO> A1> A3> A6> A7> A8> A9 > A10> A14> A18> A19> A20> A21 > A23> A24	3,0092	0,5000
	Overall Project		0,2500

Dando como resultado la ruta más efectiva para la resolución de los procesos de un proyecto.

CONCLUSIONES

En conclusión, PERT/CPM proporciona una herramienta para monitorear y controlar el progreso del proyecto. Por consiguiente, las actividades de la ruta crítica permiten recibir la mayor parte de la atención, debido a que la terminación del proyecto, depende fuertemente de ellas. Es así que los resultados luego de aplicar estas herramientas nos serán de utilidad a la hora de sacar conclusiones del proyecto. Teniendo en cuenta todo esto se recomienda usar esta técnica para la mejor efectividad de monitorear y realizar el proyecto.

6: BIBLIOGRAFÍA

- A., B. (1968). Control de la ejecución de proyectos por el método del camino crítico (PERT).

 Naciones Unidas.
- A., O.-I., Olga-Ioana, A., Codrutaa Oana, H., & Vadim, C. (2016). Optimising the Design Process of the Injection Camshaft by Critical Path Method (CPM). Analele Universității "Eftimie Murgu", 13, 45-42.
- Arias, C., & Pupo, F. (2015). Determinación de la ruta crítica y los costos que representan los retrasos de las actividades en la empresa Infotecsa. Caso de Estudio. Observatorio de la Economía Latinoamericana, 01-11. Obtenido de http://www.eumed.net/cursecon/ecolat/ec/2016/infotecsa.html
- Carlos, A. Z. (2016). Administración de proyectos con Excel usando PERT/CPM. *Uniciencia,* 19(1), 13-22.
- Hinojosa, M. A. (2003). Diagrama de Gantt. Lima: Acerva.
- Kumar, A., & Chakraborty, B. S. (2016). Application of critical path analysis in clinical trials. Journal Of Advanced Pharmaceutical Technology & Research. 7(1), 17-21. doi:10.4103/2231-4040.173263
- Lermen, F., Morais, M., Matos, C., Roder, R., & Roder, C. (03 de Setiembre de 2016).

 OPTIMIZATION OF TIMES AND COSTS OF PROJECT OF HORIZONTAL

 LAMINATOR PRODUCTION USING PERT/CPM TECHNICAL. INDEPENDENT

 JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P), 4-6.
- N., R. G. (2017). Determinación de la ruta crítica y los costos que representan los retrasos de las actividades en la empresa XYZ.
- Portugal, G. D. (1966). *CPM y PERT Métodos de Planeación.* Lima: El peruano. Obtenido de http://repositorio.uni.edu.pe/bitstream/uni/1183/1/diaz_pg.pdf
- V., Y. P. (28 de Enero de 2015). Los orígenes del PERT y del CPM. *PoliBlogs*. Obtenido de http://victoryepes.blogs.upv.es/2015/01/28/los-origenes-del-pert-y-del-cpm/#more-2506

- Wallace, A. (2015). Project Planning And Scheduling Using PERT And CPM Techniques With Linear Programming Case Study. *International Journal Of Scientific & Technology Research*, 4, 222-227.
- Wallace, A. (2015). Project Planning And Scheduling Using PERT And CPM Techniques With Linear Programming: Case Study. 22-227. Obtenido de http://www.ijstr.org/final-print/aug2015/ProjectPlanning-And-Scheduling-Using-Pert-And-Cpm-Techniques-With-Linear-Programming-Case-Study.pdf