Assignment 2

Jinming Ge

September 23, 2024

1 Problem 1

1.1 (a)

 $\mathbf{x} = [x_1, x_2, ..., x_n]^T, \mathbf{y} = [y_1, y_2, ..., y_n]^T, \mathbf{i} = [1, ..., 1]^T$

• $\phi_1(r) = r^2$, we can rewrite this problem to :

$$\min_{a,b} \|\mathbf{y} - a\mathbf{i} * \mathbf{x} - b\mathbf{i}\|_2^2 \tag{1}$$

$$s.t.a \in R, b \in R \tag{2}$$

 \mathbf{y} - $\mathbf{ai^*x}$ -bi can be viewed as an affine of a, b and $\|\cdot\|_2^2$ is convex, so this is a convex question.

• $\phi_1(r) = |r|$, we can rewrite this problem to :

$$\min_{a,b} \|\mathbf{y} - a\mathbf{i} * \mathbf{x} - b\mathbf{i}\| \tag{3}$$

$$s.t.a \in R, b \in R \tag{4}$$

 $y - ai^*x$ -bi can be viewed as an affine of a, b and $\| \|$ is convex, so this is a convex question.

• $\phi_1(r) = log(1+r^2)$, we can rewrite this problem to :

$$\min_{a,b} log(\mathbf{y} - a\mathbf{i} * \mathbf{x} - b\mathbf{i})^2 \tag{5}$$

$$s.t.a \in R, b \in R \tag{6}$$

 \mathbf{y} - $\mathbf{ai}^*\mathbf{x}$ -bi can be viewed as an affine of a, b and $log(1+x^2)$ is not convex, so this is not a convex question.

1.2 (b)

Based on problem (a), we have $\phi_1(r)$ and $\phi_2(r)$ are convex problems and here are the answers.

• $\phi_1(r) = r^2$, $\phi_2(r) = ||r||$ with dataset1. So based on the estimation error, $\phi_1(r) = r^2$ can minimize the error better.

Figure 1: Comparison for square penalty and norm1 penalty for dataset1

• $\phi_1(r) = r^2$, $\phi_2(r) = ||r||$ with dataset2. So based on the estimation error, $\phi_1(r) = ||\cdot||$ can minimize the error better.

Figure 2: Comparison for square penalty and norm1 penalty for dataset2

2 Problem 2

2.1 (a)

- $J_{track} = \|\mathbf{y} \mathbf{y}_{des}\|_1$: for any given t, y_{des} can actually be viewed as an affine of \mathbf{u} and $\|\mathbf{u}\|_1$ can be viewed as linear problem, so it's LP;
- $J_{track} = \|\mathbf{y} \mathbf{y}_{des}\|_2$: same as above, and $\|\|_2$ can be viewed as quadratic, so it's QP;
- $J_{track} = \|\mathbf{y} \mathbf{y}_{des}\|_{\infty}$: can be viewed as $\max \|\mathbf{y} \mathbf{y}_{des}\|$, which is a linear function, so it's LP;

By comparing their output sequences with the desired output sequence, we find that they are very similar, indicating that all three methods perform exceptionally well in solving this problem.

Smoothing Regularization with Different Norm Comparision

Figure 3: Comparison of Different Norm Penalty with Desired Output

And by doing so, we can actually rewrite this problem as

$$cm@u = y_{des} \tag{7}$$

which is a LP problem indicates u should be the same for different objective function.

2.2 (b)

- Since each part of the J is convex, the linear combination should also be convex.
- I tried for different settings $[\delta=0.1, \eta=0.1], [\delta=0.1, \eta=0.5], [\delta=0.5, \eta=0.1], [\delta=0.5, \eta=0.5]$

- There are two conclusions we can get from Fig.4
 - Comparing Fig.3 and Fig.4a the adding two penalties can decrease the performance and larger the two coefficients are, larger the loss will be.
 - Comparing Fig.4a, Fig.4b and Fig.4c, we can find that the change of η can affect the performance more compared to δ , which indicates $\|\mathbf{u}\|_2^2$ gives hard penalty compared to $\sum_{t=0}^{N-1} (u(t+1) u(t))^2$

Figure 4: Tradeoff Penalty