Lecture course on environmental DNA metabarcoding using Claident and R: From nucleotide sequence data processing 田辺晶史 to ecological analyses

Akifumi S. Tanabe

### ClaidentとRによる

環境DNAメタバーコーディング分析講座:

塩基配列データ処理から生態学的分析まで



soil
saltwater
freshwater
gut content
fecal pellet
dead body
living body
etc.

soil
saltwater
freshwater
gut content
fecal pellet
dead body
living body
etc.



































# Claident

https://www.claident.org/

Quality-trimming
Quality-filtering
Denoising
Chimera removal
Decontamination
Clustering
Taxonomic assignment

#### Single-end sequence data analysis in Claident

- 1. Demultiplexing by clsplitseq
- 2. Evaluate sequence quality by VSEARCH via clcalcfastqstatv
- 3. Quality-trimming&filtering by VSEARCH via clfilterseqv
- 4. Denoising by DADA2 via cldenoiseseqd
- 5. Removing chimeras by UCHIME3 via clremovechimev
- 6. Removing contaminants by clremovecontam
- 7. Additional clustering by VSEARCH via clclassseqv (Optional)
- 8. Assigning taxonomy by clmakecachedb, clidentseq, classigntax
- 9. Additional taxonomy processing by clmergeassign, clfillassign
- 10.Summarizing results by clsumclass, clsumtaxa

#### Non-overlapped paired-end sequence data analysis in Claident

- 1. Demultiplexing by clsplitseq
- 2. Evaluate sequence quality by VSEARCH via clcalcfastqstatv x2
- 3. Quality-trimming by VSEARCH via clfilterseqv x2
- 4. Joining pairs by VSEARCH via clconcatpairv
- 5. Quality-filtering by VSEARCH via clfilterseqv
- 6. Denoising by DADA2 via cldenoiseseqd
- 7. Removing chimeras by UCHIME3 via clremovechimev
- 8. Removing contaminants by clremovecontam
- 9. Additional clustering by VSEARCH via clclassseqv (Optional)
- 10.Dividing pairs by cldivseq
- 11.Assigning taxonomy by clmakecachedb, clidentseq, classigntax x2
- 12.Additional taxonomy processing by clmergeassign, clfillassign
- 13.Summarizing results by clsumclass, clsumtaxa

#### Overlapped paired-end sequence data analysis in Claident

- 1. Demultiplexing by clsplitseq
- 2. Concatenating pairs by VSEARCH via clconcatpairv
- 3. Quality-filtering by VSEARCH via clfilterseqv
- 4. Denoising by DADA2 via cldenoiseseqd
- 5. Removing chimeras by UCHIME3 via clremovechimev
- 6. Removing contaminants by clremovecontam
- 7. Additional clustering by VSEARCH via clclassseqv (Optional)
- 8. Assigning taxonomy by clmakecachedb, clidentseq, classigntax
- 9. Additional taxonomy processing by clmergeassign, clfillassign
- 10.Summarizing results by clsumclass, clsumtaxa

## Quantitative overlapped paired-end sequence data analysis with internal standard sequences in Claident

- 1. Demultiplexing by clsplitseq
- 2. Concatenating pairs by VSEARCH via clconcatpairv
- 3. Quality-filtering by VSEARCH via clfilterseqv
- 4. Denoising by DADA2 via cldenoiseseqd
- 5. Removing chimeras by UCHIME3 via clremovechimev
- 6. Clustering internal standard segs via clclusterstdv
- 7. Removing contaminants by clremovecontam
- 8. Additional clustering by VSEARCH via clclassseqv (Optional)
- 9. Assigning taxonomy by clmakecachedb, clidentseq, classigntax
- 10.Additional taxonomy processing by clmergeassign, clfillassign
- 11.Summarizing results by clsumclass, clsumtaxa





Prerequisites to run Claident

- Prerequisites to run Claident
  - Debian/Ubuntu/Linux Mint, RedHat/CentOS

- Prerequisites to run Claident
  - Debian/Ubuntu/Linux Mint, RedHat/CentOS
  - Claident+BLASTDB+TaxonomyDB+UCHIMEDB

- Prerequisites to run Claident
  - Debian/Ubuntu/Linux Mint, RedHat/CentOS
  - Claident+BLASTDB+TaxonomyDB+UCHIMEDB
  - Code from https://github.com/astanabe/ClaidentTutorial

- Prerequisites to run Claident
  - Debian/Ubuntu/Linux Mint, RedHat/CentOS
  - Claident+BLASTDB+TaxonomyDB+UCHIMEDB
  - Code from https://github.com/astanabe/ClaidentTutorial
- Prerequisites to learn about analyses using Claident and R

- Prerequisites to run Claident
  - Debian/Ubuntu/Linux Mint, RedHat/CentOS
  - Claident+BLASTDB+TaxonomyDB+UCHIMEDB
  - Code from https://github.com/astanabe/ClaidentTutorial
- Prerequisites to learn about analyses using Claident and R
  - Code from https://github.com/astanabe/ClaidentTutorial

- Prerequisites to run Claident
  - Debian/Ubuntu/Linux Mint, RedHat/CentOS
  - Claident+BLASTDB+TaxonomyDB+UCHIMEDB
  - Code from https://github.com/astanabe/ClaidentTutorial
- Prerequisites to learn about analyses using Claident and R
  - Code from https://github.com/astanabe/ClaidentTutorial
    - This includes simulated data and all results



#### **Chapter 0: Simulated data creation**

1. Download complete mitogenome sequences of bony fishes

#### **Chapter 0: Simulated data creation**

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region
- 3. Run in silico PCR using MiFish-U primers by ecoPCR and obtain amplicons

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region
- 3. Run in silico PCR using MiFish-U primers by ecoPCR and obtain amplicons
- 4. Cluster amplicon seqs and pick representative seqs

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region
- 3. Run in silico PCR using MiFish-U primers by ecoPCR and obtain amplicons
- 4. Cluster amplicon seqs and pick representative seqs
- 5. Randomly pick 50 seqs from all representative seqs (1st sample)

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region
- 3. Run in silico PCR using MiFish-U primers by ecoPCR and obtain amplicons
- 4. Cluster amplicon seqs and pick representative seqs
- 5. Randomly pick 50 seqs from all representative seqs (1st sample)
- 6. Randomly pick 40 seqs from previous sample and randomly pick 10 seqs from all repseqs except for previous sample seqs (2nd-20th sample)

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region
- 3. Run in silico PCR using MiFish-U primers by ecoPCR and obtain amplicons
- 4. Cluster amplicon seqs and pick representative seqs
- 5. Randomly pick 50 seqs from all representative seqs (1st sample)
- 6. Randomly pick 40 seqs from previous sample and randomly pick 10 seqs from all repseqs except for previous sample seqs (2nd-20th sample)
- 7. Pick all sequences from all 1st-20th samples for blank (1st-4th blank)

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region
- 3. Run *in silico* PCR using MiFish-U primers by ecoPCR and obtain amplicons
- 4. Cluster amplicon seqs and pick representative seqs
- 5. Randomly pick 50 seqs from all representative seqs (1st sample)
- 6. Randomly pick 40 seqs from previous sample and randomly pick 10 seqs from all repseqs except for previous sample seqs (2nd-20th sample)
- 7. Pick all sequences from all 1st-20th samples for blank (1st-4th blank)
- 8. Generate 250 paired-end seqs for each picked seqs by ART for samples

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region
- 3. Run in silico PCR using MiFish-U primers by ecoPCR and obtain amplicons
- 4. Cluster amplicon seqs and pick representative seqs
- 5. Randomly pick 50 seqs from all representative seqs (1st sample)
- 6. Randomly pick 40 seqs from previous sample and randomly pick 10 seqs from all repseqs except for previous sample seqs (2nd-20th sample)
- 7. Pick all sequences from all 1st-20th samples for blank (1st-4th blank)
- 8. Generate 250 paired-end seqs for each picked seqs by ART for samples
- 9. Generate 25 paired-end seqs for each picked seqs by ART for blanks

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region
- 3. Run in silico PCR using MiFish-U primers by ecoPCR and obtain amplicons
- 4. Cluster amplicon seqs and pick representative seqs
- 5. Randomly pick 50 seqs from all representative seqs (1st sample)
- 6. Randomly pick 40 seqs from previous sample and randomly pick 10 seqs from all repseqs except for previous sample seqs (2nd-20th sample)
- 7. Pick all sequences from all 1st-20th samples for blank (1st-4th blank)
- 8. Generate 250 paired-end seqs for each picked seqs by ART for samples
- 9. Generate 25 paired-end seqs for each picked seqs by ART for blanks
- 10.Generate 100-800 seqs for standards by ART and add to samples and blanks

- 1. Download complete mitogenome sequences of bony fishes
- 2. Extract 12S rRNA region
- 3. Run *in silico* PCR using MiFish-U primers by ecoPCR and obtain amplicons
- 4. Cluster amplicon seqs and pick representative seqs
- 5. Randomly pick 50 seqs from all representative seqs (1st sample)
- 6. Randomly pick 40 seqs from previous sample and randomly pick 10 seqs from all repseqs except for previous sample seqs (2nd-20th sample)
- 7. Pick all sequences from all 1st-20th samples for blank (1st-4th blank)
- 8. Generate 250 paired-end seqs for each picked seqs by ART for samples
- 9. Generate 25 paired-end seqs for each picked seqs by ART for blanks
- 10.Generate 100-800 seqs for standards by ART and add to samples and blanks
- 11.Generate dual index seqs based on given fasta files



insert seq



















| template |  |
|----------|--|
| genome   |  |











By 8 forward index primers and 12 reverse index primers, 96 samples can be distinguished (combinatorial dual-indexing).



## Interlude: Dual-index design of simulated data

| reverse index (index1) | TTGCAGGT | Sample01 | Sample07 | not used | not used |
|------------------------|----------|----------|----------|----------|----------|
|                        | CAAGGAAC | Sample02 | Sample08 | not used | not used |
|                        | AGATCTGG | Sample03 | Sample09 | not used | not used |
|                        | TCACACTT | Sample04 | Sample10 | not used | not used |
|                        | GATCATGG | Sample05 | Sample11 | not used | not used |
|                        | AGACATGA | Sample06 | Sample12 | not used | not used |
|                        | GTGAGTTG | not used | not used | Sample13 | Sample19 |
|                        | AGTCTGTT | not used | not used | Sample14 | Sample20 |
|                        | AACCAACC | not used | not used | Sample15 | Blank01  |
|                        | AGTGTGCA | not used | not used | Sample16 | Blank02  |
|                        | CATGTCGA | not used | not used | Sample17 | Blank03  |
|                        | CGAGACTT | not used | not used | Sample18 | Blank04  |
|                        |          | AACCTCTC | GTGACTCT | GATCACCA | CTTCACAT |

forward index (index2)

# Interlude: Dual-index design of simulated data

| reverse index (index1) | TTGCAGGT | Sample01 | Sample07 | not used | not used |
|------------------------|----------|----------|----------|----------|----------|
|                        | CAAGGAAC | Sample02 | Sample08 | not used | not used |
|                        | AGATCTGG | Sample03 | Sample09 | not used | not used |
|                        | TCACACTT | Sample04 | Sample10 | not used | not used |
|                        | GATCATGG | Sample05 | Sample11 | not used | not used |
|                        | AGACATGA | Sample06 | Sample12 | not used | not used |
|                        | GTGAGTTG | not used | not used | Sample13 | Sample19 |
|                        | AGTCTGTT | not used | not used | Sample14 | Sample20 |
|                        | AACCAACC | not used | not used | Sample15 | Blank01  |
|                        | AGTGTGCA | not used | not used | Sample16 | Blank02  |
|                        | CATGTCGA | not used | not used | Sample17 | Blank03  |
|                        | CGAGACTT | not used | not used | Sample18 | Blank04  |
|                        |          | AACCTCTC | GTGACTCT | GATCACCA | CTTCACAT |

forward index (index2)



### **Chapter 1: Overview of raw sequence files**

- Undemultiplexed files
- Undemultiplexed\_R1\*
- Undemultiplexed\_R2\*
- Undemultiplexed\_I1\*
- Undemultiplexed\_I2\*
- Undemultiplexed\_wSTD\_R1\*
- Undemultiplexed\_wSTD\_R2\*
- Undemultiplexed\_wSTD\_I1\*
- Undemultiplexed\_wSTD\_I2\*

in 01\_RawSequences

## **Chapter 1: Overview of raw sequence files**

- Undemultiplexed files
- Undemultiplexed\_R1\*
- Undemultiplexed\_R2\*
- Undemultiplexed\_I1\*
- Undemultiplexed\_I2\*
- Undemultiplexed\_wSTD\_R1\*
- Undemultiplexed\_wSTD\_R2\*
- Undemultiplexed\_wSTD\_I1\*
- Undemultiplexed\_wSTD\_I2\*

in 01\_RawSequences

- Already demultiplexed files
- Sample\*
- Blank\*
- Sample\_wSTD\*
- Blank wSTD\*

in 01 RawSequences



### **Chapter 2: Demultiplexing**

- Inputs
- Undemultiplexed\_wSTD\_R1\*
- Undemultiplexed\_wSTD\_I1\*
- Undemultiplexed\_wSTD\_I2\*
- Undemultiplexed\_wSTD\_R2\*

in 01\_RawSequences

## **Chapter 2: Demultiplexing**

- Inputs
- Undemultiplexed\_wSTD\_R1\*
- Undemultiplexed\_wSTD\_I1\*
- Undemultiplexed\_wSTD\_I2\*
- Undemultiplexed\_wSTD\_R2\*

in 01\_RawSequences

- index1.fasta
- index2.fasta
- forwardprimer.fasta
- reverseprimer.fasta

in top directory

### **Chapter 2: Demultiplexing**

- Inputs
- Undemultiplexed\_wSTD\_R1\*
- Undemultiplexed\_wSTD\_I1\*
- Undemultiplexed\_wSTD\_I2\*
- Undemultiplexed\_wSTD\_R2\*

in 01\_RawSequences

- index1.fasta
- index2.fasta
- forwardprimer.fasta
- reverseprimer.fasta

- Outputs
- ClaidentTutorial\_\_\*\_MiFish.forw ard.fastq.xz
- ClaidentTutorial\_\_\*\_MiFish.rever se.fastq.xz
  - Sample\*
  - Blank\*
  - NNNNNNN+NNNNNNN

 $in\ Paired End\_wSTD\_02a\_Demultiplexed Sequences$ 

in top directory

**Chapter 2: Demultiplexing** 

Launch Terminal



#### **Chapter 3: Concatenating pairs**

- Inputs
- ClaidentTutorial\_\_\*\_MiFish.forwa rd.fastq.xz
- ClaidentTutorial\_\_\*\_MiFish.revers e.fastq.xz
  - Sample\*
  - Blank\*
  - NNNNNNNN+NNNNNNN

in PairedEnd\_wSTD\_02a\_DemultiplexedSequences

#### **Chapter 3: Concatenating pairs**

- Inputs
- ClaidentTutorial\_\_\*\_MiFish.forwa rd.fastq.xz
- ClaidentTutorial\_\_\*\_MiFish.revers e.fastq.xz
  - Sample\*
  - Blank\*
  - NNNNNNN+NNNNNNN

in PairedEnd\_wSTD\_02a\_DemultiplexedSequences

- Outputs
- ClaidentTutorial\_\_\*\_MiFish.fastq.
   xz
  - Sample\*
  - Blank\*

 $in\ Overlapped Paired End\_wSTD\_03\_Concatenated Sequences$ 

Chapter 3: Concatenating pairs



## **Chapter 4: Quality-filtering**

- Inputs
- ClaidentTutorial\_\_\*\_MiFish.fastq.

XZ

- Sample\*
- Blank\*
- NNNNNNN+NNNNNNN

 $in\ Overlapped Paired End\_wSTD\_03\_Concatenated Sequences$ 

#### **Chapter 4: Quality-filtering**

- Inputs
- ClaidentTutorial\_\_\*\_MiFish.fastq.
   xz
  - Sample\*
  - Blank\*
  - NNNNNNN+NNNNNNN

in OverlappedPairedEnd\_wSTD\_03\_ConcatenatedSequences

- Outputs
- ClaidentTutorial\_\_\*\_MiFish.fastq.
   xz
  - Sample\*
  - Blank\*
  - NNNNNNN+NNNNNNN

in OverlappedPairedEnd\_wSTD\_04\_FilteredSequences

Chapter 4: Quality-filtering



# **Chapter 5: Denoising**

- Inputs
- ClaidentTutorial\_\_\*\_MiFish.fastq.

XZ

- Sample\*
- Blank\*
- NNNNNNN+NNNNNNN

in OverlappedPairedEnd\_wSTD\_04\_FilteredSequences

## **Chapter 5: Denoising**

- Inputs
- ClaidentTutorial\_\_\*\_MiFish.fastq.
   xz
  - Sample\*
  - Blank\*
  - NNNNNNNN+NNNNNNN

 $in\ Overlapped Paired End\_wSTD\_04\_Filtered Sequences$ 

- Outputs
- denoised.fasta
- denoised.otu.gz
- denoised.tsv
- plotErrors.pdf
- runDADA2.R

in OverlappedPairedEnd\_wSTD\_05\_DenoisedSequences





**Interlude: Methods in DADA2** 

observed number

ACCTCTCGATATCGAGATGAGGCT 10000

ACCTCTTGATATCGAGATGAGGCT 10

ACCTCTCGAAATCGAGATGAGGCT 7

ACCTCTGGATATCGAGATGAGGCT 200

**Interlude: Methods in DADA2** 

observed number

ACCTCTCGATATCGAGATGAGGCT 10000

ACCTCTTGATATCGAGATGAGGCT 10

ACCTCTCGAAATCGAGATGAGGCT 7

ACCTCTGGATATCGAGATGAGGCT 200

**Interlude: Methods in DADA2** observed number true ACCTCTCGATATCGAGATGAGGCT 10000 **ACCTCTTGATATCGAGATGAGGCT** 10

**ACCTCTCGAAATCGAGATGAGGCT ACCTCTGGATATCGAGATGAGGCT** 

200













# **Chapter 6: Chimera removal**

- Inputs
- denoised.fasta
- denoised.otu.gz

in OverlappedPairedEnd\_wSTD\_05\_DenoisedSequences

## **Chapter 6: Chimera removal**

- Inputs
- denoised.fasta
- denoised.otu.gz

in OverlappedPairedEnd\_wSTD\_05\_DenoisedSequences

- Outputs
- nonchimeras.fasta
- nonchimeras.otu.gz
- nonchimeras.tsv
- \* borderline.fasta
- \*\_chimeras.fasta
- \*\_nonchimeras.fasta
- \*\_uchimealns.txt
- \*\_uchimeout.txt

in OverlappedPairedEnd\_wSTD\_06\_NonchimericSequences

Chapter 6: Chimera removal



#### **Chapter 7: Clustering internal standard sequences**

- Inputs
- nonchimeras.fasta
- nonchimeras.otu.gz

in OverlappedPairedEnd\_wSTD\_06\_NonchimericSequences

# **Chapter 7: Clustering internal standard sequences**

- Inputs
- nonchimeras.fasta
- nonchimeras.otu.gz

in OverlappedPairedEnd\_wSTD\_06\_NonchimericSequences

- Outputs
- stdclustered.fasta
- stdclustered.otu.gz
- stdclustered.tsv

 $in\ Overlapped Paired End\_wSTD\_07\_STD Clustered Sequences$ 

Chapter 7: Clustering internal standard sequences



- Inputs
- stdclustered.fasta
- stdclustered.otu.gz

in OverlappedPairedEnd\_wSTD\_07\_STDClusteredSequences

- Inputs
- stdclustered.fasta
- stdclustered.otu.gz in OverlappedPairedEnd\_wSTD\_07\_STDClusteredSequences
- index1.fasta
- index2.fasta

in top directory

- Inputs
- stdclustered.fasta
- stdclustered.otu.gz in OverlappedPairedEnd\_wSTD\_07\_STDClusteredSequences
- index1.fasta
- index2.fasta

in top directory

- Outputs
- decontaminated.fasta
- decontaminated.otu.gz
- decontaminated.tsv

in OverlappedPairedEnd\_wSTD\_08\_NonhoppedSequences



| teriude: Inde | ex can nop | into another am | npiicon within a | TIOWCEII |
|---------------|------------|-----------------|------------------|----------|
|               |            |                 |                  |          |
|               |            |                 |                  |          |
|               |            |                 |                  |          |
|               |            |                 |                  |          |
|               |            |                 |                  |          |

Interlude: Index can hop into another amplicon within a flowcell!



Interlude: Index can hop into another amplicon within a flowcell!

Index-hopping potentially causes sequence misassignments! Especially in newer models! OMG!



|               | TTGCAGGT | Sample01 | Sample07 | not used | not used |
|---------------|----------|----------|----------|----------|----------|
|               | CAAGGAAC | Sample02 | Sample08 | not used | not used |
|               | AGATCTGG | Sample03 | Sample09 | not used | not used |
| lex1          | TCACACTT | Sample04 | Sample10 | not used | not used |
| (ind          | GATCATGG | Sample05 | Sample11 | not used | not used |
| index (index1 | AGACATGA | Sample06 | Sample12 | not used | not used |
| ind           | GTGAGTTG | not used | not used | Sample13 | Sample19 |
| rse           | AGTCTGTT | not used | not used | Sample14 | Sample20 |
| reverse       | AACCAACC | not used | not used | Sample15 | Blank01  |
| 2             | AGTGTGCA | not used | not used | Sample16 | Blank02  |
|               | CATGTCGA | not used | not used | Sample17 | Blank03  |
|               | CGAGACTT | not used | not used | Sample18 | Blank04  |
|               |          | AACCTCTC | GTGACTCT | GATCACCA | CTTCACAT |

forward index (index2)

| TTGCAGGT | Sample01 | Sample07 | not used | not used |
|----------|----------|----------|----------|----------|
| CAAGGAAC | Sample02 | Sample08 | not used | not used |
| AGATCTGG | Sample03 | Sample09 | not used | not used |
| TCACACTT | Sample04 | Sample10 | not used | not used |
| GATCATGG | Sample05 | Sample11 | not used | not used |
| AGACATGA | Sample06 | Sample12 | not used | not used |
| GTGAGTTG | not used | not used | Sample13 | Sample19 |
| AGTCTGTT | not used | not used | Sample14 | Sample20 |
| AACCAACC | not used | not used | Sample15 | Blank01  |
| AGTGTGCA | not used | not used | Sample16 | Blank02  |
| CATGTCGA | not used | not used | Sample17 | Blank03  |
| CGAGACTT | not used | not used | Sample18 | Blank04  |
|          | AACCTCTC | GTGACTCT | GATCACCA | CTTCACAT |

reverse index (index1)

1. Count abundances

forward index (index2)

| TTGCAGGT | Sample01 | Sample07 | not used | not used |
|----------|----------|----------|----------|----------|
| CAAGGAAC | Sample02 | Sample08 | not used | not used |
| AGATCTGG | Sample03 | Sample09 | not used | not used |
| TCACACTT | Sample04 | Sample10 | not used | not used |
| GATCATGG | Sample05 | Sample11 | not used | not used |
| AGACATGA | Sample06 | Sample12 | not used | not used |
| GTGAGTTG | not used | not used | Sample13 | Sample19 |
| AGTCTGTT | not used | not used | Sample14 | Sample20 |
| AACCAACC | not used | not used | Sample15 | Blank01  |
| AGTGTGCA | not used | not used | Sample16 | Blank02  |
| CATGTCGA | not used | not used | Sample17 | Blank03  |
| CGAGACTT | not used | not used | Sample18 | Blank04  |
|          | AACCTCTC | GTGACTCT | GATCACCA | CTTCACAT |

reverse index (index1)

- 1. Count abundances
- 2. Collect abundances of a sample + "not used"

forward index (index2)

|          | AACCTCTC | GTGACTCT | GATCACCA | CTTCACAT |
|----------|----------|----------|----------|----------|
| CGAGACTT | not used | not used | Sample18 | Blank04  |
| CATGTCGA | not used | not used | Sample17 | Blank03  |
| AGTGTGCA | not used | not used | Sample16 | Blank02  |
| AACCAACC | not used | not used | Sample15 | Blank01  |
| AGTCTGTT | not used | not used | Sample14 | Sample20 |
| GTGAGTTG | not used | not used | Sample13 | Sample19 |
| AGACATGA | Sample06 | Sample12 | not used | not used |
| GATCATGG | Sample05 | Sample11 | not used | not used |
| TCACACTT | Sample04 | Sample10 | not used | not used |
| AGATCTGG | Sample03 | Sample09 | not used | not used |
| CAAGGAAC | Sample02 | Sample08 | not used | not used |
| TTGCAGGT | Sample01 | Sample07 | not used | not used |

reverse index (index1)

- 1. Count abundances
- 2. Collect abundances of a sample + "not used"
- 3. Test whether sample abundance is outlier or not

forward index (index2)

|          | AACCTCTC | GTGACTCT | GATCACCA | CTTCACAT |
|----------|----------|----------|----------|----------|
| CGAGACTT | not used | not used | Sample18 | Blank04  |
| CATGTCGA | not used | not used | Sample17 | Blank03  |
| AGTGTGCA | not used | not used | Sample16 | Blank02  |
| AACCAACC | not used | not used | Sample15 | Blank01  |
| AGTCTGTT | not used | not used | Sample14 | Sample20 |
| GTGAGTTG | not used | not used | Sample13 | Sample19 |
| AGACATGA | Sample06 | Sample12 | not used | not used |
| GATCATGG | Sample05 | Sample11 | not used | not used |
| TCACACTT | Sample04 | Sample10 | not used | not used |
| AGATCTGG | Sample03 | Sample09 | not used | not used |
| CAAGGAAC | Sample02 | Sample08 | not used | not used |
| TTGCAGGT | Sample01 | Sample07 | not used | not used |

reverse index (index1)

- 1. Count abundances
- 2. Collect abundances of a sample + "not used"
- 3. Test whether sample abundance is outlier or not
- 4. If it's not outlier, it's determined as hopped

forward index (index2)



- Inputs
- decontaminated.fasta
- decontaminated.otu.gz

in OverlappedPairedEnd\_wSTD\_08\_NonhoppedSequences

- Inputs
- decontaminated.fasta
- decontaminated.otu.gz
   in OverlappedPairedEnd\_wSTD\_08\_NonhoppedSequences
- blanklist.txt

in top directory

- Inputs
- decontaminated.fasta
- decontaminated.otu.gz
   in OverlappedPairedEnd\_wSTD\_08\_NonhoppedSequences
- blanklist.txt

in top directory

- Outputs
- decontaminated.fasta
- decontaminated.otu.gz
- decontaminated.tsv

in OverlappedPairedEnd\_wSTD\_09\_DecontaminatedSequences

Switch to Terminal



1. Count abundances

- 1. Count abundances
- 2. Collect abundances of a sample + associated blanks

- 1. Count abundances
- 2. Collect abundances of a sample + associated blanks
- 3. Test whether sample abundance is outlier or not

- 1. Count abundances
- 2. Collect abundances of a sample + associated blanks
- 3. Test whether sample abundance is outlier or not
- 4. If it's not outlier, it's determined as contaminant

























My recommendation is index-hopping removal + the other contaminant removal.



My recommendation is index-hopping removal + the other contaminant removal. However, the best practice has been still unknown.





## **Interlude: Study purpose and decontamination**

Non-decontaminated metabarcoding results contain contaminants

## Interlude: Study purpose and decontamination

- Non-decontaminated metabarcoding results contain contaminants
- Decontamination should be applied?

## Interlude: Study purpose and decontamination

- Non-decontaminated metabarcoding results contain contaminants
- Decontamination should be applied?
  - If you want to maximize detection power, NO. Decontamination potentially misidentify true sequence as contaminant

#### Interlude: Study purpose and decontamination

- Non-decontaminated metabarcoding results contain contaminants
- Decontamination should be applied?
  - If you want to maximize detection power, NO. Decontamination potentially misidentify true sequence as contaminant
  - If you want to minimize misdetection, YES. Lack of decontamination may cause many misdetection

#### Interlude: Study purpose and decontamination

- Non-decontaminated metabarcoding results contain contaminants
- Decontamination should be applied?
  - If you want to maximize detection power, NO. Decontamination potentially misidentify true sequence as contaminant
  - If you want to minimize misdetection, YES. Lack of decontamination may cause many misdetection
  - If you want to analyse community composition, UNKNOWN. Because abundances of contaminants may be low in many cases, their effects to analysis may be low. However, whether abundances of contaminants are really low or not IN YOUR DATA is unknown.



## **Chapter 10: Additional clustering**

- Inputs
- decontaminated.fasta
- decontaminated.otu.gz

 $in\ Overlapped Paired End\_wSTD\_09\_Decontaminated Sequences$ 

## **Chapter 10: Additional clustering**

- Inputs
- decontaminated.fasta
- decontaminated.otu.gz

 $in\ Overlapped Paired End\_wSTD\_09\_Decontaminated Sequences$ 

- Outputs
- clustered.fasta
- clustered.otu.gz
- clustered.tsv

in OverlappedPairedEnd\_wSTD\_10\_ClusteredSequences

Chapter 10: Additional clustering

Switch to Terminal



## **Chapter 11: Taxonomic assignment**

- Inputs
- clustered.fasta

in OverlappedPairedEnd\_wSTD\_10\_ClusteredSequences

## **Chapter 11: Taxonomic assignment**

- Inputs
- clustered.fasta

 $in\ Overlapped Paired End\_wSTD\_10\_Clustered Sequences$ 

- Outputs
- neighborhoods\_1nn\_\*.txt
- neighborhoods\_qc\_\*.txt
- taxonomy\_1nn\_\*.tsv
- taxonomy\_qc\_\*.tsv
- taxonomy\_merged.tsv
- taxonomy\_merged\_filled.tsv

 $in\ Overlapped Paired End\_wSTD\_11\_Claident Results$ 

**Chapter 11: Taxonomic assignment** 

Switch to Terminal















| Interlude: Which method should be used for taxonomic assignment?       |  |
|------------------------------------------------------------------------|--|
|                                                                        |  |
|                                                                        |  |
| If reference database is imperfect (most cases), QCauto shows the best |  |

balance between less misidentification and less successful identification

## Interlude: Which method should be used for taxonomic assignment?

- If reference database is imperfect (most cases), QCauto shows the best balance between less misidentification and less successful identification
- If reference database is perfect or nearly perfect, 1-NN is the best.
   However, whether the reference database is really perfect or not should not be known by anyone



Installed to INSTALLPATH/share/claident/blastdb

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family
  - Subset of NCBI nt including class, order or family level identified seqs

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family
  - Subset of NCBI nt including class, order or family level identified seqs
- \*\_genus

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family
  - Subset of NCBI nt including class, order or family level identified seqs
- \*\_genus
  - Subset of overall\_\* including genus level identified seqs

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family
  - Subset of NCBI nt including class, order or family level identified seqs
- \*\_genus
  - Subset of overall\_\* including genus level identified seqs
- \*\_species\_wsp

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family
  - Subset of NCBI nt including class, order or family level identified seqs
- \*\_genus
  - Subset of overall\_\* including genus level identified seqs
- \*\_species\_wsp
  - Subset of overall\_\* including species level identified seqs

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family
  - Subset of NCBI nt including class, order or family level identified seqs
- \*\_genus
  - Subset of overall\_\* including genus level identified seqs
- \*\_species\_wsp
  - Subset of overall\_\* including species level identified seqs
- \*\_species

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family
  - Subset of NCBI nt including class, order or family level identified seqs
- \*\_genus
  - Subset of overall\_\* including genus level identified seqs
- \*\_species\_wsp
  - Subset of overall\_\* including species level identified seqs
- \*\_species
  - Subset of overall\_\* including species level identified seqs except for the seqs which have "sp." at the tail in species name

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family
  - Subset of NCBI nt including class, order or family level identified seqs
- \*\_genus
  - Subset of overall\_\* including genus level identified seqs
- \*\_species\_wsp
  - Subset of overall\_\* including species level identified seqs
- \*\_species
  - Subset of overall\_\* including species level identified seqs except for the seqs which have "sp." at the tail in species name
- \*\_species\_wosp

- Installed to INSTALLPATH/share/claident/blastdb
- overall\_class, overall\_order, overall\_family
  - Subset of NCBI nt including class, order or family level identified seqs
- \*\_genus
  - Subset of overall\_\* including genus level identified seqs
- \*\_species\_wsp
  - Subset of overall\_\* including species level identified seqs
- \*\_species
  - Subset of overall\_\* including species level identified seqs except for the seqs which have "sp." at the tail in species name
- \*\_species\_wosp
  - Subset of overall\_\* including species level identified seqs except for the seqs which have "sp." in species name



## Interlude: Taxonomic infomation reliability in reference databases

\*\_species\_wosp>\*\_species>\*\_species\_wsp>\*\_genus>\*\_family>\*\_order>\*\_class

# Interlude: Taxonomic infomation reliability in reference databases

\*\_species\_wosp>\*\_species>\*\_species\_wsp>\*\_genus>\*\_family>\*\_order>\*\_class

 Because the seqs which only have higher level taxonomic info likely to be identified based on closest INSD seqs, such taxonomic info are less reliable

# Interlude: Taxonomic infomation reliability in reference databases

- \*\_species\_wosp>\*\_species>\*\_species\_wsp>\*\_genus>\*\_family>\*\_order>\*\_class
  - Because the seqs which only have higher level taxonomic info likely to be identified based on closest INSD seqs, such taxonomic info are less reliable
  - Because the seqs identified as "sp." is not strictly identified or such species are undescribed, such taxonomic info are less reliable



| Interlude: Which reference d | database should be used? |
|------------------------------|--------------------------|
|------------------------------|--------------------------|

 overall\_species\_wosp is recommended in most cases because the seqs lacking lower level taxonomic info likely to be less reliable

#### Interlude: Which reference database should be used?

- overall\_species\_wosp is recommended in most cases because the seqs lacking lower level taxonomic info likely to be less reliable
- The other overall\_\* are recommended if you want to minimize
   "unidentified" in \* level and can rolerate misidentification in lower level

#### **Interlude: Which reference database should be used?**

- overall\_species\_wosp is recommended in most cases because the seqs lacking lower level taxonomic info likely to be less reliable
- The other overall\_\* are recommended if you want to minimize
   "unidentified" in \* level and can rolerate misidentification in lower level
- The others are recommended for screening or PCs lacking enough amount of memory



# Interlude: Merging of taxonomy

More reliable taxonomy should be preferred but less reliable taxonomy which reached to lower taxonomic level could be tolerated

# **Interlude: Merging of taxonomy**

- More reliable taxonomy should be preferred but less reliable taxonomy which reached to lower taxonomic level could be tolerated
- The best balance between reliability and identifiability can be achieved by merging taxonomy from overall\_species\_wosp and the other overall \*



- Inputs
- clustered.tsv

in OverlappedPairedEnd\_wSTD\_10\_ClusteredSequences

- Inputs
- clustered.tsv

in OverlappedPairedEnd\_wSTD\_10\_ClusteredSequences

taxonomy\_merged\_filled.tsv

 $in\ Overlapped Paired End\_wSTD\_11\_Claident Results$ 

- Inputs
- clustered.tsv

 $in\ Overlapped Paired End\_wSTD\_10\_Clustered Sequences$ 

taxonomy\_merged\_filled.tsv

in OverlappedPairedEnd\_wSTD\_11\_ClaidentResults

- Outputs
- sample\_otu\_matrix\_fishes.tsv
- sample\_otu\_matrix\_fishes\_converted.tsv
- sample\_top50species\_nreads\_fis hes\_converted.tsv
- sample\_top50family\_nreads\_fish
   es converted.tsv
- sample\_species\_nreads\_fishes\_co nverted.tsv
- sample\_family\_nreads\_fishes\_co nverted.tsv

in OverlappedPairedEnd\_wSTD\_11\_ClaidentResults

Switch to Terminal



### **Chapter 13: Plotting community structure**

- Inputs
- sample\_top50species\_nreads\_fish es\_converted.tsv
- sample\_top50family\_nreads\_fishe s\_converted.tsv
- sample\_species\_nreads\_fishes\_co nverted.tsv
- sample\_family\_nreads\_fishes\_con verted.tsv

 $in\ Overlapped Paired End\_wSTD\_11\_Claident Results$ 

# **Chapter 13: Plotting community structure**

- Inputs
- sample\_top50species\_nreads\_fish es\_converted.tsv
- sample\_top50family\_nreads\_fishe s\_converted.tsv
- sample\_species\_nreads\_fishes\_co nverted.tsv
- sample\_family\_nreads\_fishes\_con verted.tsv

 $in\ Overlapped Paired End\_wSTD\_11\_Claident Results$ 

- Outputs
- barplottop50species.pdf
- barplottop50family.pdf
- heatmapspecies.pdf
- heatmapfamily.pdf

in OverlappedPairedEnd\_wSTD\_12\_RAnalysisResults

**Chapter 13: Plotting community structure** 

Switch to Terminal



- Inputs
- sample\_otu\_matrix\_fishes.tsv

in OverlappedPairedEnd\_wSTD\_11\_ClaidentResults

- Inputs
- sample\_otu\_matrix\_fishes.tsv

in OverlappedPairedEnd\_wSTD\_11\_ClaidentResults

- Outputs
- specaccum.pdf
- rarecurve.pdf

in OverlappedPairedEnd\_wSTD\_12\_RAnalysisResults

- Inputs
- sample\_otu\_matrix\_fishes.tsv

in OverlappedPairedEnd\_wSTD\_11\_ClaidentResults

- Outputs
- specaccum.pdf
- rarecurve.pdf

 $in\ Overlapped Paired End\_wSTD\_12\_RAnalysis Results$ 

Community (data.frame)

in R workspace

Switch to Terminal



### Chapter 15: Applying coverage-based rarefaction and quantification

- Inputs
- Community (data.frame)

in R workspace

### Chapter 15: Applying coverage-based rarefaction and quantification

- Inputs
- Community (data.frame)
- in R workspace
- Outputs
- RarefiedCommunity (data.frame in list)
- ConvertedRarefiedCommunity (data.frame in list)

in R workspace

### Chapter 15: Applying coverage-based rarefaction and quantification

- Inputs
- Community (data.frame)
- in R workspace
- Outputs
- RarefiedCommunity (data.frame in list)
- ConvertedRarefiedCommunity (data.frame in list)

in R workspace

- RarefiedCommunity\*.tsv
- ConvertedRarefiedCommunity\*.t
   sv

in OverlappedPairedEnd\_wSTD\_12\_RAnalysisResults

Switch to Terminal

**Chapter 15: Applying coverage-based rarefaction and quantification** 





















### **Chapter 16: Calculating distance matrices**

- Inputs
- ConvertedRarefiedCommunity (data.frame in list)

in R workspace

### **Chapter 16: Calculating distance matrices**

- Inputs
- ConvertedRarefiedCommunity (data.frame in list)

in R workspace

- Outputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

**Chapter 16: Calculating distance matrices** 



## Interlude: Community distance ( $\beta$ diversity) metrics, PERMANOVA, and NMDS

#### See

- Anderson et al. (2010) https://doi.org/10.1111/j.1461-0248.2010.01552.x
- Anderson (2001) https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
- Anderson (2017) https://doi.org/10.1002/9781118445112.stat07841
- 土居 岡村 (2010) https://doi.org/10.18960/seitai.61.1\_3



- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

in R workspace

Metadata.tsv

in top directory

- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

in R workspace

Metadata.tsv

in top directory

- Outputs
- PERMANOVA.txt

 $in\ Overlapped Paired End\_wSTD\_12\_RAnalysis Results$ 



### Chapter 17: Executing cluster analyses with multiscale bootstrapping

- Inputs
- ConvertedRarefiedCommunity (data.frame in list)

### Chapter 17: Executing cluster analyses with multiscale bootstrapping

- Inputs
- ConvertedRarefiedCommunity (data.frame in list)

in R workspace

- Outputs
- ClusterAnalysis\_sites.pdf
- ClusterAnalysis\_species.pdf

in OverlappedPairedEnd\_wSTD\_12\_RAnalysisResults

**Chapter 17: Executing cluster analyses with multiscale bootstrapping** 



- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

in R workspace

Metadata.tsv

in top directory

- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

in R workspace

Metadata.tsv

in top directory

- Outputs
- NMDS.pdf

in OverlappedPairedEnd\_wSTD\_12\_RAnalysisResults

- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

in R workspace

Metadata.tsv

in top directory

- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

in R workspace

Metadata.tsv

in top directory

- Outputs
- GeoMCA.pdf

in OverlappedPairedEnd\_wSTD\_12\_RAnalysisResults



- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

in R workspace

Metadata.tsv

in top directory

- Inputs
- BrayCurtis (dist in list)
- Jaccard (dist in list)
- BinaryJaccard (dist in list)
- BinaryRaupCrick (dist in list)

in R workspace

Metadata.tsv

in top directory

- Outputs
- DateMCA.pdf

in OverlappedPairedEnd\_wSTD\_12\_RAnalysisResults



 Claident is integrated package for translation from high-throughput amplicon sequence data into ecological communities

- Claident is integrated package for translation from high-throughput amplicon sequence data into ecological communities
- Claident can remove contaminants including index-hopped sequences using unused index combinations and blank samples (negative controls)

- Claident is integrated package for translation from high-throughput amplicon sequence data into ecological communities
- Claident can remove contaminants including index-hopped sequences using unused index combinations and blank samples (negative controls)
- Most studies lack decontamination and this might affect the conclusion of such studies

- Claident is integrated package for translation from high-throughput amplicon sequence data into ecological communities
- Claident can remove contaminants including index-hopped sequences using unused index combinations and blank samples (negative controls)
- Most studies lack decontamination and this might affect the conclusion of such studies
- Detection power of metabarcoding should re-evaluate using decontamination and our knowledge of that might need to be revised

- Claident is integrated package for translation from high-throughput amplicon sequence data into ecological communities
- Claident can remove contaminants including index-hopped sequences using unused index combinations and blank samples (negative controls)
- Most studies lack decontamination and this might affect the conclusion of such studies
- Detection power of metabarcoding should re-evaluate using decontamination and our knowledge of that might need to be revised
- Claident provides multiple taxonomic assignment methods and can merge those results

- Claident is integrated package for translation from high-throughput amplicon sequence data into ecological communities
- Claident can remove contaminants including index-hopped sequences using unused index combinations and blank samples (negative controls)
- Most studies lack decontamination and this might affect the conclusion of such studies
- Detection power of metabarcoding should re-evaluate using decontamination and our knowledge of that might need to be revised
- Claident provides multiple taxonomic assignment methods and can merge those results
- R can import tab-separated text made by Claident

- Claident is integrated package for translation from high-throughput amplicon sequence data into ecological communities
- Claident can remove contaminants including index-hopped sequences using unused index combinations and blank samples (negative controls)
- Most studies lack decontamination and this might affect the conclusion of such studies
- Detection power of metabarcoding should re-evaluate using decontamination and our knowledge of that might need to be revised
- Claident provides multiple taxonomic assignment methods and can merge those results
- R can import tab-separated text made by Claident
- vegan is strongly recommended for community ecological analyses

