基于三支决策的两阶段实体关系抽取研究

朱艳辉^{1,2}, 李 飞^{1,2}, 胡骏飞^{1,2}, 钱继胜³, 王天吉^{1,2} ZHU Yanhui^{1,2}, LI Fei^{1,2}, HU Junfei^{1,2}, QIAN Jisheng³, WANG Tianji^{1,2}

- 1.湖南工业大学 计算机学院,湖南 株洲 412008
- 2.湖南工业大学 湖南省智能信息感知及处理技术重点实验室,湖南 株洲 412008
- 3.中国人民银行 铜陵市中心支行,安徽 铜陵 244000
- 1. School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan 412008, China
- 2. Hunan Key Laboratory of Intelligent Information Perception and Processing Technology, Hunan University of Technology, Zhuzhou, Hunan 412008, China
- 3. The People's Bank of China Tongling Central Sub-branch, Tongling, Anhui 244000, China

ZHU Yanhui, LI Fei, HU Junfei, et al. Research on two-stage entity relation extraction based on three-way decisions. Computer Engineering and Applications, 2018, 54(9):145-150.

Abstract: As one of the important research topics in information extraction, entity relationship extraction is of great significance to the construction of knowledge graph data layer. This paper proposes a two-stage classification technique based on three-way decisions to extract the entity relationship. Firstly, the SVM three-decisions classifier is constructed to implement the first phase entity relation extraction. The softmax multi-class function is used as a probability function of three-way decisions, Then, the KNN classifier is used to classify the three-way decisions middle domain sample into two-stage classification. According to the corpus of ACE2005 as the experimental data, the results of the three-way decisions two-stage classification are compared with the traditional SVM method. The experimental results show that the two-stage entity relation extraction method based on three-way decisions has achieved good classification effect.

Key words: entity relation extraction; three-way decisions; Support Vector Machine (SVM); *K*-Nearest Neighbor (KNN); softmax function

摘 要:实体关系抽取作为信息抽取研究的重要研究课题之一,对知识图谱数据层的构建有着重要的意义。提出一种基于三支决策的两阶段分类技术实现实体关系抽取,首先构建SVM三支决策分类器实现第一阶段实体关系抽取,采用 softmax 多分类函数作为三支决策概率函数,然后采用 KNN 分类器对三支决策分类后的中间域样本进行二阶段分类。以 ACE2005 的语料作为实验数据,将三支决策两阶段分类结果与传统 SVM 方法分类结果进行比较,实验结果表明,基于三支决策的两阶段实体关系抽取方法取得了很好的分类效果。

关键词:实体关系抽取;三支决策;支持向量机(SVM);K最近邻(KNN);softmax函数

文献标志码:A 中图分类号:TP391 doi:10.3778/j.issn.1002-8331.1710-0153

1 引言

随着计算机的普及和知识工程的蓬勃发展,信息量 正以指数级的规模爆炸式增长。人们迫切地需要一些 自动化的工具帮助人们在海量数据源中快速检索到需 要的知识。信息抽取(Information Extraction)研究以此 为背景应运而生。其主要目的是将互联网中海量的非 结构化数据转化为结构化或半结构化信息形成"知识", 供用户查询以及进一步分析挖掘。信息抽取在信息检

基金项目:国家自然科学基金(No.61402165);模式识别国家重点实验室开放课题(No.201700009);湖南省教育厅重点项目 (No.15A049);湖南工业大学重点项目(No.17ZBLWT001KT006);湖南省研究生创新基金(No.CX2017B688)。

作者简介:朱艳辉(1968—),女,教授,计算机学会高级会员,研究领域为文本处理和知识工程;李飞(1992—),男,硕士研究生,研究领域为自然语言处理,E-mail:flytoskye@163.com;胡骏飞(1990—),男,硕士研究生,研究领域为智能信息处理;钱继胜(1982—),男,工程师,研究领域为金融信息化和知识工程;王天吉(1985—),男,硕士研究生,研究领域为文本处理。

收稿日期:2017-10-18 修回日期:2017-12-01 文章编号:1002-8331(2018)09-0145-06

索、知识表示、篇章理解、智能问答等领域具有重要的应用价值。信息抽取从文本中抽取出特定的事实称之为"实体",然而大多数应用中不仅需要"实体",还要确定这些实体的关系,称其为实体关系抽取。美国国家标准技术研究院(NIST)组织了自动内容抽取(Automatic Content Extraction, ACE),其评测任务之一就是实体关系识别。实体关系抽取通过识别命名实体,进而抽象出实体间关系类型,如NIST定义了制造使用关系(ART)、组织机构从属关系(ORG-AFF)、局部整体关系(PART-WHOLE)等关系类型。因此可将关系抽取问题转化为多分类问题。首先识别出句子中所有的实体对,然后使用分类器决定实体关系类型属于预定义的哪一类。

许多学者采用SVM分类器进行实体关系抽取,车万翔¹¹等人使用SVM构造不同窗口大小的特征向量,在ACE2004语料上取得了较好的分类效果。刘绍毓¹²等对SVM模糊边界样本进行双投票,对模糊样本采用KNN分类器进行二次分类,大大提高了实体关系抽取的准确率。但是,虽然SVM具有较强的抗噪声能力和较高的分类准确率等优点,但该分类器对于分布在超平面附近区域的样本分类效果不理想。当处理多分类任务时,样本在超平面附近的类交叠区域的分类效果更差。故随着分类类别数的增多,由于各个类别样本交叠愈加严重,从而影响分类准确率。

三支决策理论[3-6]是传统二支决策理论的拓展,二支 决策只考虑接受或者拒绝(或者是或否)两种选择。但 是实际应用中,由于信息的不确定性和不全面性,无法 明确对一个事物明确的判断接受或是拒绝。因此,Yao (姚一豫)[7-8]提出了三支决策理论,当判决信息不足以判 断接受或者拒绝时,采用不承诺选择,然后再加入细粒 度信息进行下一步判断吗。李金海呵论述了三支决策与 概念格相结合的研究进展,针对两个结合点:三支概念 分析和三支概念学习进行对比分析,提出了两种思维的 互补性。并且提出一种建立不完整的上下文近似概念 格的新方法[11],通过从不完全决策环境中提取非冗余近 似决策规则,进一步提高了三支决策在信息不完备情况 下的决策效率。二支决策和三支决策就应用场景而言 各有优劣,在信息充足、消息准确时,采用二支决策,可 使得决策迅速简洁。在信息不足或者获取信息代价过 大时,适合使用三支决策,可以权衡利弊,等待细粒度的 信息,再做出进一步判断。三支决策策略提供了一个很 好的权衡资源和效益的决策框架。

本文将三支决策应用到实体关系抽取领域,对信息不足以判断实体关系属于哪一类型的样本,引入中间类别(中间域)。针对SVM分类器交叠区域样本难以界定的问题,提出一种基于三支决策的两阶段实体关系抽取方法。首先构建SVM三支决策分类器实现第一阶段实

体关系抽取,采用softmax函数作为三支决策概率函数,然后采用 KNN 分类器对三支决策分类后的中间域样本进行二阶段分类。并将结果与 SVM 分类方法和一阶段 SVM 三支决策分类方法进行比较实验,实验结果表明,基于三支决策两阶段分类实体关系抽取方法取得了很好的抽取效果。

2 三支决策理论

三支决策理论是在粗糙集和决策粗糙集理论之上 提出的,Yao 通过对粗糙集理论中的正、负、边界区域语 义方面研究,提出了从三支决策角度解释粗糙集中规则 提取问题。其规则分别对应对象所属的正、负、边界三 个区域,根据对象所属区域不同,分别判决该对象属于 目标类、不属于目标类、不承诺是否属于目标类的三支 决策策略,对于决策粗糙集模型所需的阈值参数可由决 策损失函数决定。

2.1 决策粗糙集理论

定义一个四元组 $W=(U,At=B\cup C,\{V_a|a\in At\},\{I_a|a\in At\})$,其中 U 是一个有限且非空的数据对象集合 $(I_a|a\in At\})$,其中 U 是一个有限且非空的数据对象集合 $(I_a|a\in At\})$,在 是一个非空且有限属性集合, (I_a) 是条件属性, (I_a) 是决策属性, (I_a) 是一个映射,称为信息函数,即将集合 (I_a) 映射到属性值域 (I_a) 是。 (U,E_A) 是属性集合 (I_a) 上的近似集合, (I_a) 是基于关系集合 (I_a) 是不为对象集合的划分, (I_a) 是《之义如下:

 $E_A = \{(x, y) \in U \times U | \forall a \in A \subseteq C \subset At, I(a) = I_a(y) \}$ (1) 则包含对象 x 的等价类可表示为:

$$[x]_A = [x] = \{y \in U(x, y \in E_A)\}$$
 (2)

判断一个对象是否属于决策类可用状态集合 $\Omega = \{X, \neg X\}$ 表示,则等价类[x]属于决策类 X 的概率函数为:

$$p(X[x]) = \frac{|X \cap [x]|}{|[x]|} \tag{3}$$

不属于决策类 X 的概率函数为:

$$p(\neg X[x]) = \frac{|\neg X \cap [x]|}{|[x]|} = 1 - p(X | [x])$$
 (4)

2.2 三支决策阈值

Yao 等人提出了决策粗糙集模型,并定义了如下三个域(设阈值 $0 \le \beta < \alpha \le 1$):

$$\begin{cases} POS_{(\alpha,\beta)}(X) = \{x \in U | P(X[x]) \geqslant \alpha\} \\ BND_{(\alpha,\beta)}(X) = \{x \in U | \alpha < P(X[x]) < \beta\} \\ NEG_{(\alpha,\beta)}(X) = \{x \in U | P(X[x]) \le \beta\} \end{cases}$$
 (5)

其中 $POS_{(\alpha,\beta)}(X)$ 、 $BND_{(\alpha,\beta)}(X)$ 、 $NEG_{(\alpha,\beta)}(X)$ 分别称为 X 的正域、边界域、负域。

当对象 x 属于决策类 X 时,令 $\lambda_{\rm pp}$ 、 $\lambda_{\rm np}$ 、 $\lambda_{\rm bp}$ 为分别划分到 $POS_{(\alpha,\beta)}(X)$ 、 $BND_{(\alpha,\beta)}(X)$ 、 $NEG_{(\alpha,\beta)}(X)$ 的损

失函数。当对象 x 不属于决策类时,则令 λ_{pn} 、 λ_{bn} 、 λ_{nn} 为划分到相同三个域的损失函数。则损失函数表如表 1 所示。

表1 损失函数表

类型	$POS_{(\alpha,\beta)}(X)$	$BND_{(\alpha,\beta)}(X)$	$NEG_{(a,\beta)}(X)$
属于决策类	$\lambda_{ m pp}$	$\lambda_{ m np}$	$\lambda_{ m bp}$
不属于决策类	$\lambda_{ m pn}$	$\lambda_{ m bn}$	$\lambda_{ m nn}$

对于三个域的风险决策,结合贝叶斯决策理论给出的最小风险决策规则。可知:

$$\begin{cases} \alpha = \frac{(\lambda_{pn} - \lambda_{bn})}{(\lambda_{pn} - \lambda_{bn}) + (\lambda_{bp} - \lambda_{pp})} \\ \gamma = \frac{(\lambda_{pn} - \lambda_{nn})}{(\lambda_{np} - \lambda_{pp}) + (\lambda_{pn} - \lambda_{nn})} \\ \beta = \frac{(\lambda_{bn} - \lambda_{nn})}{(\lambda_{bn} - \lambda_{nn}) + (\lambda_{np} - \lambda_{bp})} \end{cases}$$

则以上决策规则简化如下:

[正规则:
$$P(X[x]_A) \geqslant \alpha, [x]_A \subseteq POS_{(\alpha,\beta)}(X)$$

负规则: $P(X[x]_A) \leqslant \beta, [x]_A \subseteq NEG_{(\alpha,\beta)}(X)$
边界规则: $\beta < P(X[x]_A) < \alpha, [x]_A \subseteq BND_{(\alpha,\beta)}(X)$

在 $[x]_A$ 的情况下,如果 X 发生的概率大于等于 α ,则将 $[x]_A$ 划分为 X 的正域,如果 X 发生概率大于 β 小于 α ,则将 $[x]_A$ 划分为 X 的边界域,如果 X 发生的概率小于等于 β ,则将 $[x]_A$ 划分为 X 的负域 $[x]_B$

3 特征抽取

本文采用词汇、实体类型、位置等作为文本特征。 (1)词汇

实体本身所包含的所有词汇,以及实体左右的词汇对确定实体之间的关系有很好的作用。例如,"微软公司创始人比尔盖茨从哈佛大学退学后创办微软公司"。实体"微软"和实体"比尔盖茨"属于雇佣关系,其中在实体"微软"附近的词(公司、创办)对实体"比尔盖茨"很有指示作用。所以实体窗口词对于分类也十分关键,但是窗口太大,会引入太多无关信息。窗口太小,又会导致重要信息的遗漏。车万翔等人经过重复实验验证了在窗口取2时,分类能取得最好的效果,故本文取实体上下文窗口为2的词,如表2所示。E1、E1pos表示实体1词汇及词性,E2、E2pos表示实体2词汇及词性。E1L1、E1L1pos表示实体左侧第一个词及其词性,E1L2、E1L2pos表示实体左侧第二个词及其词性,E1R1、E1R1pos、E1R2、E1R2pos表示实体右侧第一、二个词及其词性。E2同理。

(2)位置特征

实体的位置特征以及实体的先后顺序对于关系类型有很大影响。董静^[14]等人对 ACE 语料样本特征进行

表2 实体词和上下文特征

词	词性	实体特征
微软	NI	E1
公司	N	E1R1(E2L2)
创始人	N	E1R2(E2L1)
比尔盖茨	NH	E2
从	P	E2R1
哈佛	NS	E2R2
大学	N	
退学	NV	
后	ND	E1L2
创办	V	E1L1
微软	NI	E1
公司	N	E1R1

分析,提取实体包含和非包含关系特征对实体关系抽取,证明了实体包含和非包含特征对实体关系抽取有一定影响。本文采取的实体位置特征如表3所示。

表3 实体位置特征

特征	描述
0	实体E1位于E2左侧
1	实体E1位于E2右侧
2	实体E1包含实体E2

(3)实体类型

实体关系分类中实体类型及其组合特征^[15]是一个非常重要的特征,对分类准确与否至关重要,实体类型特征标记如表4所示。

表4 实体类型特征

特征	描述
E1TYPE	实体E1的类型
E1SUBTYPE	实体E1的子类型
E2TYPE	实体E2的类型
E2SUBTYPE	实体E2的子类型
ETYPEC1	实体E1类型和子类型的组合特征
ETYPEC2	实体E2类型和子类型的组合特征

4 基于三支决策的两阶段实体关系抽取

本文通过构造 SVM 三支决策分类器,进行一阶段 实体关系抽取,然后采用 KNN 分类器对三支决策中间 域样本进行二阶段实体关系抽取,从而实现基于三支决 策的两阶段实体关系抽取。实体关系抽取流程图如图 1 所示。

4.1 SVM三支决策分类器构建

鉴于实体关系抽取是一个多分类问题,SVM 提供了多分类方法:一种是one-against-rest方法,基本思想是对于 $M(M \geqslant 3)$ 类样本,将其中一类和其余类分别作为正、负例来训练分类器,M 个类别需构建 M 个分类器。另一种是one-against-one 方法,基本思想是对于 $M(M \geqslant 3)$ 类样本,每两类训练一个分类器,M 个类别

图1 实体关系抽取流程图

需构建 M(M-1)/2 个分类器。鉴于 one-against-rest 方法分类速度较快,训练分类器数目较少,本文采用 one-against-rest 方法。在三支决策分类器的构建中,针对多分类问题,采用 softmax 函数作为概率函数,计算每个样本属于某类的概率值,计算公式如式(8)所示:

$$\sigma(z(x_i)) = \frac{e^{z(x_i)}}{\sum_{k=1}^{k} e^{z(x_k)}}, i = 1, 2, \dots, k$$
(8)

其中 $z(x_i) = \sum_{i \in SV} \alpha_i y_i k(x, x_i) + b$, x_i 和 $\alpha_i y_i$ 是由 SVM 所

确定的支持向量及其参数, b 是SVM分类器定义的超平面参数^[16]。其中SVM核函数采用径向基核函数(RBF-Kernel):

$$k(x, x_i) = e^{-r < x_i - x, x_i - x > 2}$$
 (9)

SVM三支决策分类器构造算法如下:

输入:训练集U,测试集C,类别集合k。

输出:实体类别集 Set(T),边界域(中间域)样本集 Set(MID),No-Relation样本集 Set(F)。

训练阶段:

步骤1输入训练集样本集合U。

步骤2 使用SVM分类器对训练集U进行训练,得到SVM分类模型。

测试阶段:

步骤1输入测试集样本集合C。

步骤2 for $c_i \in C$,使用训练好的SVM分类器进行分类。

步骤 3 由式 (8) 计算 C 中所有样本对象分别属于类别集合 k 中某类的概率,并构成概率矩阵集合 P 。

步骤 4 if $\sigma(z(c_i)) \ge \alpha$,样本 $c_i \to POS_{(\alpha,\beta)}(X)$,将 c_i 加入 Set(T) 。

步骤 5 else if $\beta < \sigma(z(c_i)) < \alpha$,样本 $c_i \rightarrow BND_{(\alpha,\beta)}(X)$,

将 c, 加入 Set(MID)。

步骤 6 else if $\sigma(z(c_i)) \leq \beta$,样本 $c_i \to NEG_{(\alpha,\beta)}(X)$,将 c_i 加入 Set(F)。

步骤7 end。

由算法可以看出,首先对n个样本进行分类,并且要计算n个样本分别属于类别集合k中某类的概率,故算法需执行 $n \times k$ 次,由于k为常数,所以时间复杂度与n成线性关系,T(n) = O(n),算法从时间复杂度的角度分析是有效的。

4.2 SVM 三支决策分类器阈值计算

对于阈值 α 与 β , 作如下假设:

$$\begin{cases} \lambda_{pp} = \lambda_{nn} = 0; \lambda_{np} = \eta \lambda_{bp} \\ \lambda_{pn} = \eta \lambda_{bn}; \lambda_{bn} = \lambda_{bp} \end{cases}$$
 (10)

则由式(6)和(10)可得:

$$\begin{cases} \alpha = \frac{(\lambda_{\text{pn}} - \lambda_{\text{bn}})}{(\lambda_{\text{pn}} - \lambda_{\text{bn}}) + (\lambda_{\text{bp}} - \lambda_{\text{pp}})} = \frac{\eta - 1}{\eta} \\ \beta = \frac{(\lambda_{\text{bn}} - \lambda_{\text{nn}})}{(\lambda_{\text{bn}} - \lambda_{\text{nn}}) + (\lambda_{\text{np}} - \lambda_{\text{bp}})} = \frac{1}{\eta} \end{cases}$$
(11)

由于 $\alpha > \gamma > \beta$,所以 $\eta > 2$, η 的最后取值由实验结果确定^[17]。

4.3 基于KNN的三支决策中间域样本二阶段分类

KNN算法是一种简单易行的无参数分类方法,该算法对非正态分布的数据具有较高的分类准确率,具有鲁棒性强、易于实现等优点,在人工智能领域、模式识别等领域已经取得广泛的应用^[18]。但该算法时间及空间复杂度随着样本集合增大而增高,由于中间域样本数较少,故本文选用 KNN 算法在第二阶段对中间域样本进行二次分类。该算法基本思路是:如果某样本在特征空间的 K个最相似的样本中的大多数属于某类别,则该样本也属于该类别。本文采用 KNN 分类器作为二阶段分类器,对三支决策中间域样本集 Set(MID) 进行二次分类,使用欧式距离计算样本间距离:

$$d(X,Y) = \sum_{i=1}^{n} (x_i - y_i)^2$$
 (12)

其中 X 与 Y 分别表示样本集中某两样本构成的特征向量 $X=(x_1,x_2,\cdots,x_n)$ 和 $Y=(y_1,y_2,\cdots,y_n)$,d(X,Y) 表示两样本之间距离。

5 实验设计与结果分析

5.1 实验数据选取及预处理

本文实验语料采用ACE2005中文评测语料,数据来源为广播新闻(Broadcast News),新华社新闻(XinHua News)^[19]。并选取前8000篇作为训练语料,后1317篇作为测试语料。ACE的训练数据,不仅标注实体以及实

体的属性,还详细标注了实体关系以及关系的属性,数据以及标注结果以XML格式存储,句子中任意两个实体之间即形成一个实例,表5列出了本文所选取语料所有实例的统计情况。

表5 实例统计信息

类别	个数	类别	个数
ART	520	PART-WHOLE	1 938
GEN-AFF	1 694	PER-SOC	498
METONYMY	39	PHYS	1 408
ORG-AFF	1 927	TOTLE	8 024

由表5可知,转喻关系(METONYMY)类型仅占39个,且转喻关系类型不包含任何子类型,故本实验剔除转喻关系(METONYMY)类型,只考虑除METONYMY(转喻关系)外的6类关系类型。

语料预处理包括分词、词性标注等。分词采用 Python 自带的 jieba 分词,抽取样本集中所有实体词汇,构成实体词典,作为 jieba 分词的自定义词典,大大避免了实体词汇被错分的情况。词性标注采用 jieba 自带的词性标注工具[15]。

5.2 评价标准

本文采用信息检索的通用评价方法,准确率 (P)、召回率 (R)和 F 值定义如下:

$$P = \frac{\text{某类被正确分类的个数}}{\text{分类器预测的某类总数}}$$

$$R = \frac{\text{某类被正确分类的个数}}{\text{测试数据中某类总数}}$$

$$F = \frac{2 \times P \times R}{P + R}$$
(13)

对两阶段分类结果进行加权处理作为最终分类结果。公式如下:

$$\begin{cases} P_{\text{Final}} = \frac{A1}{ALL} P_1 + \frac{M1}{ALL} P_2 \\ R_{\text{Final}} = \frac{A1}{ALL} R_1 + \frac{M1}{ALL} R_2 \end{cases}$$

$$F_{\text{Final}} = \frac{A1}{ALL} F_1 + \frac{M1}{ALL} F_2$$

$$(14)$$

其中, ALL 为所有样本数, A1 为一阶段中分到各实体类别的的样本总数, M1 为一阶段中间域样本数。 P_1 、 R_1 、 F_1 分别为一阶段准确率、召回率和 F 值。 P_2 、 R_2 、 F_2 分别为二阶段准确率、召回率和 F 值。

5.3 实验结果分析

5.3.1 参数 η 取值实验

对参数 η 进行取值实验,实验区间为[2.0,4.0],实验结果如图2所示。

从图 2~7 可得出如下结论:随着 η 值的增大,准确率逐渐上升, F 值在[1.7,2.9]之间逐渐增大,而召回率在[1.7,2.9]区间缓慢下降,在2.9以后呈直线下降, η 取均值2.85时准确率、召回率、F 值达到最高。取 η =2.85时,实验结果如表6所示。

表6 一阶段SVM三支决策分类结果(η=2.85)

关系类型	P	R	F
ART	1.00	0.38	0.55
GEN-AFF	0.77	0.75	0.76
ORG-AFF	0.83	0.93	0.88
PART-WHOLE	0.81	0.85	0.83
PER-SOC	0.72	0.98	0.83
PHYS	0.85	0.78	0.81
Average	0.82	0.80	0.81

5.3.2 二阶段中间域样本KNN实验

由上节可知, η 取2.85时效果最好,故下面实验取 η =2.85,将其代入式(11),可得:

$$\begin{cases} \alpha = \frac{(\lambda_{pn} - \lambda_{bn})}{(\lambda_{pn} - \lambda_{bn}) + (\lambda_{bp} - \lambda_{pp})} = \frac{\eta - 1}{\eta} = \frac{2.85 - 1}{2.85} = 0.65 \\ \beta = \frac{(\lambda_{bn} - \lambda_{nn})}{(\lambda_{bn} - \lambda_{nn}) + (\lambda_{np} - \lambda_{bp})} = \frac{1}{\eta} = \frac{1}{2.85} = 0.35 \end{cases}$$
(15)

将中间域样本 Set(MID) 输入训练好的 KNN 分类器中进行实体关系抽取。实验结果如表7所示。

表7 二阶段KNN实体关系抽取实验结果

				_
	关系类型	P	R	F
	ART	1.00	0.75	0.86
	GEN-AFF	0.79	0.74	0.76
	ORG-AFF	0.89	0.90	0.89
	PART-WHOLE	0.81	0.95	0.87
Y	PER-SOC	0.89	1.00	0.94
	PHYS	0.94	0.84	0.89
	Average	0.87	0.86	0.86

5.3.3 实验结果对比

选择效果最好的 η =2.85的两阶段分类加权平均实验结果与一阶段 SVM 三支决策分类结果、文献[1]中结果进行比较。结果如表8所示。

表8 本文方法与各方法结果比较

分类结果	P	R	F
文献[1]结果(传统SVM结果)	0.76	0.70	0.73
一阶段SVM三支决策分类结果	0.82	0.80	0.81
三支决策两阶段加权分类结果	0.85	0.81	0.82

由表8可知,一阶段SVM三支决策分类结果较传统SVM分类结果提升效果较为显著,这表明三支决策方法在实体关系抽取领域的应用是有效的。基于三支决策两阶段分类(本文方法)结果相较于传统SVM分类结果在准确率、召回率、F值上分别提高了9%、11%、9%,表明本文方法大大提高了实体关系抽取的效果,而三支决策两阶段分类结果相较于一阶段SVM三支决策分类结果也有一定的提升,证明了使用KNN分类器对中间域样本的处理对提高实体关系抽取效果也是有效的。

6 总结与展望

本文以ACE2005中文评测语料进行研究,提出了一种基于三支决策的SVM-KNN两阶段实体关系抽取方法。实验结果表明,该方法有效提高了实体关系抽取的分类效果。本文研究还存在一些不足之处:(1)三支决策的损失函数、阈值仅根据专家经验进行了简单预设;(2)文本特征选择还偏于简单,应研究更细粒度的特征如语义特征、句法路径特征、包含非包含特征等。接下来的工作,将对上述不足之处进行进一步探讨,以进一步提高实体关系的抽取效果。

致谢 本文研究内容得益于作者朱艳辉在加拿大 Regina 大学访学期间来自于姚一豫教授的悉心指导,在此对姚 一豫教授表示深深的感谢。

参考文献:

- [1] 年万翔, 刘挺, 李生. 实体关系自动抽取[J]. 中文信息学报, 2005, 19(2):1-6.
- [2] 刘绍毓,周杰,李弼程,等.基于多分类SVM-KNN的实体 关系抽取方法[J].数据采集与处理,2015,30(1);202-210.
- [3] Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
- [4] Pawlak Z.Roughset: Theoretical aspects of reasonsing about data[M].Dordrecht: Kluwer Academic Publishers, 1991.
- [5] Yao Y Y, Wong S K M, Lingras P.A decision-theoretic rough set model[C]//The 5th International Symposium on Methodologies for Intelligent Systems, 1990.
- [6] Yao Y Y, Wong S K M.A decision theoretic framework for approximating concepts[J]. International Journal of Man-Machine Studies, 1992, 37:793-809.
- [7] Yao Y Y.An outline of a theory of three-way decisions[C]// Proceedings of the 8th International RSCTC Conference, 2012.
- [8] Yao Y Y.The superiority of three-way decisions in probabilistic rough set models[J].Information Sciences, 2011, 181:1080-1096.
- [9] 张燕平,邹慧锦,邢航,等.CCA三支决策模型的边界域样本处理[J],计算机科学与探索,2014,8(5):593-600.
- [10] 李金海,邓硕.概念格与三支决策及其研究展望[J].西北大学学报:自然科学版,2017,47(3):321-329.
- [11] Li J H, Mei C L, Lv Y J.Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction[J].International Journal of Approximate Reasoning, 2013, 54(1):149-165.
- [12] 苏婷,于杰.基于q近邻的不完备数据三支决策聚类方法[J].计算机科学与探索,2016,10(6):875-883.
- [13] 刘盾,梁德翠.广义三支决策与狭义三支决策[J]. 计算机 科学与探索,2017,11(3):502-510.
- [14] 董静,孙乐,冯元勇,等.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85.
- [15] 黄鑫,朱巧明,钱龙华.基于特征组合的中文实体关系抽取[J].微电子学与计算机,2010,27(4):198-200.
- [16] 朱艳辉,田海龙,刘璟,等.基于三支决策的新闻情感关键 句识别方法[J].山西大学学报:自然科学版,2015,38(4):595-600.
- [17] 田海龙,朱艳辉,梁韬,等.基于三支决策的中文微博观点 句识别研究[J].山东大学学报,2014,49(8):58-65.
- [18] 刘克彬,李芳,刘磊,等.基于核函数中文关系自动抽取系统的实现[J]. 计算机研究与发展,2007,44(8):1406-1411
- [19] ACE2005.The Automatic Content Extraction (ACE) projects[EB/OL]. (2007).http://www.ldc.upenn.edu/Projects/ACE/.