data used : from census_income.csv Lets dig deeper in our data to find, to examine significant [Or not] interactions among different features [variables].

Note: In the solution , discussion on whether tests results conform to visual evidence has been left for forum discussions

One

```
Are capital.gain and capital.loss really different ?
```

From a data perspective this question can be taken as , is the average difference between capital.gain and capital.loss significantly different from zero? Since in this we can calculate individual differences between capital.gain and capital.loss , we will be using paired t-test.

```
setwd("/Users/lalitsachan/Desktop/March onwards/CBAP with R/Data/")
# You'll have to chose path accroding to location of file in your machine

d=read.csv("census_income.csv",stringsAsFactors = F)
t.test(d$capital.loss,d$capital.gain,paired = T)
```

```
##
## Paired t-test
##
## data: d$capital.loss and d$capital.gain
## t = -24.12, df = 32560, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1070.8225 -909.8676
## sample estimates:
## mean of the differences
## -990.345</pre>
```

very small p-value indicates that NULL hypothesis is not true. Also if you look at mean of the difference it is much far from 0.

```
library(ggplot2)
ggplot(d,aes(capital.gain,capital.loss))+geom_point()
```


Two

Find out if hours.per.week are significantly different across genders , income levels.

Again the underlying questions are , is there a significant difference on an average in hours.per.week when genders are different [Female, Male] or when income levels are different? Since we can not calculate individual differences in this case , we will be using unpaired t-test. Also , we first need to test whether variances are equal across two groups in order to provide appropriate input to t.test function.

```
var.test(d$hours.per.week[d$sex==" Female"],d$hours.per.week[d$sex==" Male"])

##
## F test to compare two variances
##
## data: d$hours.per.week[d$sex == " Female"] and d$hours.per.week[d$sex == " Male"]
## F = 0.94975, num df = 10770, denom df = 21789, p-value = 0.002041
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.9193215 0.9813577
## sample estimates:
## ratio of variances
## 0.9497464

var.test(d$hours.per.week[d$Y==" <=50K"],d$hours.per.week[d$Y!=" <=50K"])</pre>
```

##

```
## F test to compare two variances
##
## data: d$hours.per.week[d$Y == " <=50K"] and d$hours.per.week[d$Y != " <=50K"]
## F = 1.2512, num df = 24719, denom df = 7840, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 1.206880 1.296796
## sample estimates:
## ratio of variances
## 1.251243</pre>
```

This result indicates that variances are unequal in both the cases.

```
t.test(d$hours.per.week~d$sex,paired=F,var.equal=F)
```

```
##
## Welch Two Sample t-test
##
## data: d$hours.per.week by d$sex
## t = -42.882, df = 21958, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.292787 -5.742664
## sample estimates:
## mean in group Female mean in group Male
## 36.41036 42.42809</pre>
```

```
t.test(d$hours.per.week~d$Y,paired=F,var.equal=F)
```

```
##
## Welch Two Sample t-test
##
## data: d$hours.per.week by d$Y
## t = -45.123, df = 14570, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.920943 -6.344690
## sample estimates:
## mean in group <=50K mean in group >50K
## 38.84021 45.47303
```

Again in both the cases , p-values indicate that Hourse-Per-Week differ based on sex or income level.

```
ggplot(d,aes(x=sex,y=hours.per.week))+geom_boxplot()
```


ggplot(d,aes(x=Y,y=hours.per.week))+geom_boxplot()

Three

Intuitively it seems that education levels should be different across workclasses, examine whether this is true using your data. Also report which classes have education levels significantly higher/lower in comparison to others; using an additional test. [variables involved: education.num and workclass].

Underlying questions here is whether average education.num is significantly different across various levels of workclass. Since workclass has more than two levels we can not use simple unpaired t-test, we will be using ANOVA. To further assess which of the classes are different each other, we will be doing bon-ferroni test.

```
summary(aov(education.num~workclass,data=d))
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## workclass 8 8393 1049.1 164.9 <2e-16 ***
## Residuals 32552 207118 6.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

p-value for this indicates that there exist at least one workclass for which education num is different than others. Now to find out which one it is, we'll do bon-ferroni test, you get a cross table of p-values for pair wise comparison of differences.:

```
pairwise.t.test(d$education.num, d$workclass, p.adj = "bonf")
```

```
##
##
    Pairwise comparisons using t tests with pooled SD
##
  data: d$education.num and d$workclass
##
##
##
                               Federal-gov Local-gov Never-worked Private
##
    Federal-gov
                      < 2e-16 -
                      < 2e-16 1.0000
##
    Local-gov
##
    Never-worked
                      1.0000 0.0076
                                           0.0056
##
   Private
                      < 2e-16 < 2e-16
                                           < 2e-16
                                                       0.3657
                      < 2e-16 1.0000
                                           1.0000
                                                       0.0038
                                                                      < 2e-16
##
    Self-emp-inc
##
    Self-emp-not-inc < 2e-16 1.9e-13
                                           < 2e-16
                                                       0.1219
                                                                      1.9e-09
##
    State-gov
                      < 2e-16 0.0065
                                           0.0065
                                                                      < 2e-16
                                                       0.0013
##
                      1.0000 0.1831
                                           0.1288
                                                       1.0000
                                                                      1.0000
    Without-pay
##
                      Self-emp-inc
                                     Self-emp-not-inc
                                                       State-gov
    Federal-gov
##
##
   Local-gov
##
   Never-worked
##
   Private
##
    Self-emp-inc
##
    Self-emp-not-inc < 2e-16
##
    State-gov
                      0.7330
                                    < 2e-16
##
    Without-pay
                      0.0838
                                    1.0000
                                                       0.0243
## P value adjustment method: bonferroni
```

You can see p-value associated with Federal-gov and State-gov is fairly low which indicates the difference in education num in those two classes. Where as p-value corresponding to Federal-gov and Local-gov is 1, which means there is practically no difference in education num in those two groups. You can similarly check for other groups too.

Four

Find if income levels are affected by race.

Since both of them are categorical variables , we will be doing a chi-sq test.

chisq.test(d\$race,d\$Y)

```
##
## Pearson's Chi-squared test
##
## data: d$race and d$Y
## X-squared = 330.92, df = 4, p-value < 2.2e-16</pre>
```

p-value indicates that race does affect income levels significantly. You can look at this proportion cross table also which will give an idea which race fare similarly in the data.

```
round(prop.table(table(d$race,d$Y),1),2)
```

```
##
## <=50K >50K
```

```
##
      Amer-Indian-Eskimo
                            0.88 0.12
##
      Asian-Pac-Islander
                                 0.27
                            0.73
##
      Black
                            0.88
                                  0.12
##
      Other
                            0.91
                                  0.09
      White
                            0.74 0.26
##
```

```
ggplot(d,aes(x=race,fill=Y))+
  geom_bar(position = "fill")+
  ylab("Percentage")+
  theme(axis.text.x = element_text(face="bold", color="#993333",size=9, angle=45))
```


race

Note: Discussion on visual evidence is left for forum discussions