Physical Design of My Hardware Accelerator

Tools I Used

1. OpenLane 2 (Open-Source EDA Framework) (followed instructions from:

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html)

- My own hardware accelerator RTL (Viterbi PE and Top modules)
 These were developed and tested fully in Verilog/SystemVerilog during previous challenges.
 - Vivado (FPGA Flow)
 Also explored Vivado's synthesis flow briefly to cross-check frequency estimation.

Steps Performed:

- 1. RTL Preparation (from Challenge #15)
 - a. My fully working Verilog design for the Viterbi PE and top-level modules were cleaned up, made synthesizable, and made ready for physical synthesis.
 - b. Verified that all modules had clean synthesis constraints:
 - i. No latches
 - ii. No unconnected nets
 - iii. Fully static design
- 2. Installed & Used OpenLane
 - a. Read OpenLane2 Newcomers guide carefully.
 - b. Installed OpenLane locally on my Linux environment.
 - c. Verified prerequisite packages: Docker, make, python3-veny, etc.
 - d. Successfully ran default spm (simple processor module) example as demo.

Prompt used with LLM:

"How do I install OpenLane 2 on Ubuntu and test my own Verilog design?"

2				
J.	IIIICAIC	ILC G	 VILCIDI	Design

•	,		
a.	Created OpenLane config directory:		
	designs/viterbi/		
	config.tcl		

- b. Defined clock constraints (config.tcl)
- c. Successfully ran full OpenLane flow: synthesis \rightarrow floorplanning \rightarrow placement \rightarrow CTS \rightarrow routing \rightarrow GDS export.

4. FPGA Flow

- a. Installed Vivado (WebPACK version) locally.
- b. Imported same RTL into Vivado design flow.
- c. Synthesized for Artix-7 FPGA device.
- d. Achieved timing: Max frequency: ~110 MHz

Physical Design of My Hardware Accelerator

Prompt used with LLM:

"How do I run a simple Vivado synthesis for my Verilog design and get maximum frequency?"

This challenge helped me connect my functional hardware accelerator design to actual implementation-level metrics.

I now understand how to estimate real-world chip performance, and feel more comfortable transitioning between software models, RTL design, and physical hardware prototypes.