WHAT IS CLAIMED IS:

2	1. A lighting device composed of a thin LED module, the lighting
3	device comprising:
4	a LED module (10) having a top face and a bottom face, wherein the
5	bottom face is adapted to electrically connect to conductive wires and the top
6	face emits light; the LED module (10) comprising:
7	a conductive layer (13) with multiple sections;
8	multiple LED chips (14) mounted respectively between
9	adjacent sections of the conductive layer (13); and
10	an encapsulant (15) formed on the conductive layer (13) to
11	cover and protect the multiple LED chips (14);
12	a thermally conductive layer (20) having a flat top side attached to
13	the bottom face of the LED module and a flat bottom side; and
14	a heat sink (30) having an outer surface area and attached to the
15	bottom side of the thermally conductive layer (20);
16	when the lighting device operates, heat generated by the LED
17	module (10) is transferred through the thermally conductive layer (20) to the $$
18	heat sink (30) and efficiently radiated to a low lighting device temperature.
19	2. The lighting device as claimed in claim 1, wherein the LED chips
20	(14) are densely arranged on the conductive layer (13).
21	3. The lighting device as claimed in claim 1, wherein the heat sink
22	comprises:
23	a sealed chamber (31) having an inner face attached to the bottom
24	side of the thermally conductive layer (20), an outer face and an inside

ı surface;

10

18

19

20

21

22

23

- a vaporable liquid (33) held inside the sealed chamber (31) near the 2
- inner face to absorb heat from the LED module (10); and 3
- multiple fins (32) attached to the outer face of the sealed chamber
- (31) to increase outer surface areas of the heat sink (31). 5
- 4. The lighting device as claimed in claim 2, wherein the heat sink 6 comprises: 7
- a sealed chamber (31) having an inner face attached to the bottom 8 9 side of the thermally conductive layer (20), an outer face and an inside surface:
- 11 a vaporable liquid (33) held inside the sealed chamber (31) near the inner face to absorb heat from the LED module (10); and 12
- multiple fins (32) attached to the outer face of the sealed chamber 13 (31) to increase outer surface areas of the heat sink (31). 14
- 5. The lighting device as claimed in claim 3, wherein the thermally 15 conductive layer (20) is nonconductive in electricity and is made of room 16 temperature vulcanization (RTV) silicon. 17
 - 6. The lighting device as claimed in claim 4, wherein the thermally conductive layer (20) is nonconductive in electricity and is selectively made of room temperature vulcanization (RTV) silicon.
 - 7. The lighting device as claimed in claim 3, wherein the thermally conductive layer (20) is nonconductive in electricity and is made of room temperature vulcanization silicon further containing ceramic powder.
- 8. The lighting device as claimed in claim 4, wherein the thermally 24

- conductive layer (20) is nonconductive in electricity and is made of room
- 2 temperature vulcanization silicon further containing ceramic powder.