# 1. Projekt

# Ableitungsfreie Methoden

im Fach

Numerische Optimierung

Mai 2020

Maximilian Gaul

### Aufgabe 1

Teilintervalle des Bisektionsverfahrens für das Minimum von  $h(x)=e^{-x}+0.5x^2$  mit dem Startintervall [0,1]:

#### Aufgabe 3

Abbruchkriterien und Strategie für Wahl von  $\alpha...$ 

## Aufgabe 4

Vergleich Rechenaufwand...

## Aufgabe 5

Beispiel angeben bei dem Abbruchkriterium ungeeignet ist...

#### Aufgabe 6

Berechnet werden die ersten vier Iterationen des Nelder-Mead-Algorithmus von

$$g(x_1, x_2) = 100 \cdot (x_2 - 2)^4 + (x_1 - 2x_2)^2$$

mit den Parametern n=2,  $\alpha=\frac{1}{2}$ ,  $\beta=2$  und  $\gamma=1$ .

$$x^{(0,0)} = \begin{bmatrix} 4\\2 \end{bmatrix}, e_1 = \begin{bmatrix} 1\\0 \end{bmatrix}, e_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$$

Damit erhält man die Punkte  $x^{(0,1)}=\begin{bmatrix}5\\2\end{bmatrix}, x^{(0,2)}=\begin{bmatrix}4\\3\end{bmatrix}$  und den Startsimplex

$$S_0 = (\begin{bmatrix} 4\\2 \end{bmatrix}, \begin{bmatrix} 5\\2 \end{bmatrix}, \begin{bmatrix} 4\\3 \end{bmatrix})$$

k = 0

$$\max\{f(x^{(0,0)}) = 1600, f(x^{(0,1)}) = 8101, f(x^{(0,2)}) = 1604\} = f(x^{(0,1)})$$

$$s_0 = \frac{1}{2} \cdot (\begin{bmatrix} 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 4 \\ 3 \end{bmatrix}) = \begin{bmatrix} 4 \\ \frac{5}{2} \end{bmatrix} \text{ und } x_0 = x^{(0,1)} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

• Reflexion: 
$$\hat{x}_0 = \begin{bmatrix} 4 \\ \frac{5}{2} \end{bmatrix} + 1 \cdot (\begin{bmatrix} 4 \\ \frac{5}{2} \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \end{bmatrix}) = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
 mit  $f(\hat{x}_0) = 25$ 

$$\bullet \ \text{Expansion:} \ \hat{x}_0^* = \begin{bmatrix} 4 \\ \frac{5}{2} \end{bmatrix} + 2 \cdot (\begin{bmatrix} 3 \\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\ \frac{5}{2} \end{bmatrix}) = \begin{bmatrix} 2 \\ \frac{7}{2} \end{bmatrix} \, \text{mit} \ f(\hat{x}_0^*) = 25$$

Nach dem 1. Schritt erhält man den Simplex

$$S_1 = \left( \begin{bmatrix} 4\\2 \end{bmatrix}, \begin{bmatrix} 2\\\frac{7}{2} \end{bmatrix}, \begin{bmatrix} 4\\3 \end{bmatrix} \right)$$

k = 1

$$\max\{f(x^{(1,0)}) = 1600, f(x^{(1,1)}) = 25, f(x^{(1,2)}) = 1604\} = f(x^{(1,2)})$$
$$s_1 = \frac{1}{2} \cdot \left( \begin{bmatrix} 4\\2 \end{bmatrix} + \begin{bmatrix} 2\\\frac{7}{2} \end{bmatrix} \right) = \begin{bmatrix} 3\\\frac{11}{4} \end{bmatrix} \text{ und } x_1 = x^{(1,2)} = \begin{bmatrix} 4\\3 \end{bmatrix}$$

- Reflexion:  $\hat{x}_1 = \begin{bmatrix} 3 \\ \frac{11}{4} \end{bmatrix} + 1 \cdot (\begin{bmatrix} 3 \\ \frac{11}{4} \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}) = \begin{bmatrix} 2 \\ \frac{5}{2} \end{bmatrix} \, \mathrm{mit} \, f(\hat{x}_1) = 9$
- $\bullet \ \ \text{Expansion:} \ \hat{x}_1^* = \begin{bmatrix} 3 \\ \frac{11}{4} \end{bmatrix} + 2 \cdot (\begin{bmatrix} 2 \\ \frac{5}{2} \end{bmatrix} \begin{bmatrix} 3 \\ \frac{11}{4} \end{bmatrix}) = \begin{bmatrix} 1 \\ \frac{9}{4} \end{bmatrix} \ \text{mit} \ f(\hat{x}_1^*) = 112.25$

Nach dem 2. Schritt erhält man den Simplex

$$S_2 = \left( \begin{bmatrix} 4\\2 \end{bmatrix}, \begin{bmatrix} 2\\\frac{7}{2} \end{bmatrix}, \begin{bmatrix} 2\\\frac{5}{2} \end{bmatrix} \right)$$

k = 2

$$\max\{f(x^{(2,0)}) = 1600, f(x^{(2,1)}) = 25, f(x^{(2,2)}) = 9\} = f(x^{(2,0)})$$

$$s_2 = \frac{1}{2} \cdot \left( \begin{bmatrix} 2 \\ \frac{7}{2} \end{bmatrix} + \begin{bmatrix} 2 \\ \frac{5}{2} \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \text{ und } x_2 = x^{(2,0)} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

- Reflexion:  $\hat{x}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} + 1 \cdot (\begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}) = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$  mit  $f(\hat{x}_2) = 1664$
- Innere Kontraktion:  $\hat{x}_2^* = \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \frac{1}{2} \cdot (\begin{bmatrix} 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}) = \begin{bmatrix} 3 \\ \frac{5}{2} \end{bmatrix}$  mit  $f(\hat{x}_2^*) = 104$

Nach dem 3. Schritt erhält man den Simplex

$$S_3 = \left( \begin{bmatrix} 3 \\ \frac{5}{2} \end{bmatrix}, \begin{bmatrix} 2 \\ \frac{7}{2} \end{bmatrix}, \begin{bmatrix} 2 \\ \frac{5}{2} \end{bmatrix} \right)$$

k = 3

$$\max\{f(x^{(3,0)}) = 104, f(x^{(3,1)}) = 25, f(x^{(3,2)}) = 9\} = f(x^{(3,0)})$$
$$s_3 = \frac{1}{2} \left( \begin{bmatrix} 2 \\ \frac{7}{2} \end{bmatrix} + \begin{bmatrix} 2 \\ \frac{5}{2} \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \text{ und } x_3 = x^{(3,0)} = \begin{bmatrix} 3 \\ \frac{5}{2} \end{bmatrix}$$

- Reflexion:  $\hat{x}_3 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} + 1 \cdot (\begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 3 \\ \frac{5}{2} \end{bmatrix}) = \begin{bmatrix} 1 \\ \frac{7}{2} \end{bmatrix} \operatorname{mit} f(\hat{x}_3) = 136$
- Innere Kontraktion:  $\hat{x}_3^* = \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \frac{1}{2} \cdot (\begin{bmatrix} 3 \\ \frac{5}{2} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}) = \begin{bmatrix} \frac{5}{2} \\ \frac{11}{4} \end{bmatrix}$  mit  $f(\hat{x}_3^*) = 15.25$

Nach dem 4. Schritt erhält man den Simplex

$$S_4 = \left( \begin{bmatrix} \frac{5}{2} \\ \frac{11}{4} \end{bmatrix}, \begin{bmatrix} 2 \\ \frac{7}{2} \end{bmatrix}, \begin{bmatrix} 2 \\ \frac{5}{2} \end{bmatrix} \right)$$

# Aufgabe 7

Diskussion: Zuverlässigkeit und Rechenaufwand von *Mutation-Selektion* und *Nelder-Mead*