视频 WiFi 芯片供电说明

Zhuhai Jieli Technology Co.,LTD

Version: 1.0

Date: 2023.11.06

版本历史

本文档用于指导杰理视频 WiFi 系列(包括 AC791N、AC531N、AC532N、AC521N、AC522N、AC540N、AC560N、AC570N、AC571N 系列)芯片供电方式设计。

版本	日期	描述
V1.0	2023.11.06	初始版本

目录

版本	本历史	1
-,	. AC791N 系列芯片供电说明	3
	1. 常电方案	3
	2. 锂电方案	3
	3. 低压方案	4
	4. 省成本方案	4
二、	、AC531N/AC532N 系列芯片供电说明	5
	1. 宽压方案	5
	2. 低压方案	5
三、	AC521N/AC522N 系列芯片供电说明	6
	1. 常电方案	
	2. 锂电方案	
	3. 低压方案	7
四、		8
	1. 锂电方案	8
	2. 低压方案	
五、		10
	1. 锂电方案	10
	2. 低压方案	11
	3. 常电方案	
六、	、工具使用注意事项	12

一、AC791N系列芯片供电说明

芯片各电源脚输入/输出电压说明

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
VBAT	Voltage Input	2.2	3.7	5.5	V	_
IOVDD	Voltage output	2.1	3.3	3.5	V	LDO5V = 5V, 200mA loading
DCVDD14	Valtage autout	1.2	1.4	1.55	V	LDO mode: 70mA loading
DC V DD 14	Voltage output	1.2	1.4	1.33	v	DC-DC mode: 120mA loading
RTCVDD33	Voltage input	2.2	3.0	3.5	V	_
DVDD	Voltage output	0.87	1.2	1.32	V	LDO5V=5V, 100mA loading
WFVDD33A	Voltage Input	2.1	3.3	3.5	V	_
AHVDD	Voltage Input	2.1	3.3	3.5	V	. 24 -
WFVDD14	Voltage Input	1.2	1.4	1.55	V	

1. 常电方案

- ●外部的常供电方案(如 WiFi 音箱),建议使用输出电压为 5V 左右的通用适配器
- ●考虑到长期供电的散热问题,建议使用 3.3V 的 DCDC 稳压输出

2. 锂电方案

- ●在 3.5V~4.5V 工作电压范围的应用方案(如绘本故事机)
- ●若不要求<mark>充满电时</mark>间,电源切换电路可省掉(切换电路设计可查阅方案参考原理图)

3. 低压方案

●低于 3.3V 供电的应用方案(如飞控航拍)

4. 省成本方案

- ●WiFi 性能受限(对 RF 指标/无线距离有要求的,不建议省成本)
- ●若不要求充满电时间,电源切换电路可省掉(切换电路设计可查阅方案参考原理图)

二、AC531N/AC532N 系列芯片供电说明

芯片电源脚输入电压说明

Symbol	Item	Min	Тур	Max	Unit
VPWR	Analog Voltage	3.3	5.0	5.5	V

内部 LDO 输出电压范围及驱动力说明

Internal LDO	Output Voltage Range	Drive Stength	Test Conditions
IOVDD	3.1V-3.4V	~250 mA	VPWR=5.0V
V18	1.5V-2.2V	~60 mA	IOVDD=3.3V
V28	2.5V-3.2V	~60 mA	IOVDD=3.3V

1. 宽压方案

●工作电压范围: 3.3V~5.5V,适用于锂电或 5V 电源的供电方案(如 PC 摄像头)

2. 低压方案

●适用于 3.3V 电源的供电方案(如 3.3V 供电的后拉方案)

三、AC521N/AC522N系列芯片供电说明

芯片各电源脚输入电压说明

Symbol	Item	Min	Тур	Max	Unit
AVDD33/MIPI_AVDD33 /USB_AVDD/VDDIO	Digital Voltage	2.8	3.3	3.6	V
AVDD_HP	Analog Voltage	2.8	3.3	3.6	V
RTCVDD50	RTC Voltage	2.8	4.2	5.5	V

内部 LDO 输出电压范围及驱动力说明

Internal LDO	Output Voltage Range	Drive Stength	Test Conditions
AVDD18	1.5V-2.2V	~60 mA	AVDD33=3.3V
AVDD28	2.5V-3.2V	~60 mA	AVDD33=3.3V

1. 常电方案

- ●外部的常供电方案(如 PC 摄像头),建议使用输出电压为 5V 左右的通用适配器
- ●考虑到长期供电的散热问题,建议使用 3.3V 的 DCDC 稳压输出

2. 锂电方案

●在 3.5V~4.5V 工作电压范围的应用方案(如行车记录仪)

3. 低压方案

●低于 3.3V 供电的应用方案(如飞控航拍)

四、AC540N/AC560N系列芯片供电说明

芯片各电源脚输入/输出电压说明

Symbol	Item	Min	Тур	Max	Unit
SVDD1/SVDD2/SVDD3	1.8V Logic Supply Voltage	1.7	1.8	1.9	V
3 V D D 1/3 V D D 2/3 V D D 3	3.3V Logic Supply Voltage	2.8	3.3	3.6	V
USBVDD /VDDIO/MIPIAVDD33	Digital Supply Voltage	2.8	3.3	3.6	V
AVDDHP	Analog Supply Voltage	2.8	3.3	3.6	V
DVDD12/MIPIAVDD12	Core Supply Voltage	1.1	1.2	1.4	V
DRVDD	DDR1 Supply Voltage	2.3	2.5	2.7	V
עטאט	DDR2 Supply Voltage	1.7	1.8	1.9	V
RTCVDD50	RTC Supply Voltage	2.8	4.2	5.5	V

内部 LDO 输出电压范围及驱动力说明

Internal LDO	Output Voltage Range	Drive Stength	Test Conditions
AVDD18	1.5V-2.2V	~80 mA	VDDIO(AVDD33)=3.3V
AVDD28	2.5V-3.2V	~100 mA	VDDIO(AVDD33)=3.3V

1. 锂电方案

●在 3.5V~4.5V 工作电压范围的应用方案(如行车记录仪)

2. 低压方案

●低于 3.3V 供电的应用方案(如飞控航拍)

五、AC570N/AC571N系列芯片供电说明

芯片各电源脚输入/输出电压说明

Symbol	Item	Min	Тур	Max	Unit
SVDD1/SVDD2/SVDD3	1.8V Logic Voltage	1.7	1.8	1.9	V
3 (DD1/3 (DD2/3 (DD3	3.3V Logic Voltage	3.0	3.3	3.6	V
VDDIO/USBVDD /MIPIAVDD33	Digital Voltage	3.0	3.3	3.6	V
AVDDHP	Analog Voltage	3.0	3.3	3.6	V
DVDD/MIPIAVDD11	Core Voltage	1.0	1.1	1.2	V
DRVDD	DDR1 Voltage	2.3	2.5	2.7	V
DRVDD	DDR2 Voltage	1.7	1.8	1.9	V
AVDDR	Digital Voltage	1.7	1.8	2.7	V
RTCVDD50	RTC Voltage	2.8	4.2	5.5	V

内部 LDO 输出电压范围及驱动力说明

Internal LDO	Output Voltage Range	Drive Stength	Test Conditions
AVDD18	1.3V-2.0V	~50 mA	AVDDR=2.5V
AVDD28	2.5V-3.2V	~100 mA	VDDIO=3.3V

1. 锂电方案

●在 3.5V~4.5V 工作电压范围的应用方案(如行车记录仪)

2. 低压方案

●低于 3.3V 供电的应用方案(如飞控航拍)

3. 常电方案

●外部的常供电方案(如 IPC 方案),建议使用输出电压为 5V 左右的通用适配器

六、工具使用注意事项

当 IOVDD 与系统电源输入短接供电时, IOVDD 输入电压不能大于 3.6V, 开发使用强制升级工 具和 1T8 工具时需要注意。USB 端口电压需要修改为 3.3V 输出进行开发和量产。若使用旧版本工 具需在外部增加 3.3V 降压电路。

V4.1 强制升级工具支持三挡输出电压(选择 3.3V 档位)

1T8 工具 USB 端口可选择不同的输出电压(选择 3.3V 档位)