第四章 向量空间

- 4.1 向量的定义及运算
- 4.2 向量组的线性相关性
- 4.3 向量组的极大线性无关组和秩
- 4.4 子空间
- 4.5 基和维数
- 4.6 矩阵的秩
- 4.7 线性方程组有解的条件及解的结构

第四章 向量空间

第二节 向量组的线性相关性

- 一、线性相关和线性无关的定义
- 二、线性相关和线性无关的性质
- 三、向量组线性相关性的判定

一、线性相关和线性无关的定义

若向量 β 是向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 的线性组合,则向量 $\alpha_1, \alpha_2, \dots, \alpha_n, \beta$ 之间有线性关系。

例如 (1) $\alpha_4 = \alpha_1 - 2\alpha_2 + 3\alpha_3$ 向量 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 之间有线性关系;

(2) $\xi_1 = (1,0,0)^T$, $\xi_2 = (0,1,0)^T$, $\xi_3 = (0,0,1)^T$ 因 ξ_1, ξ_2, ξ_3 中任一向量都不能表为其余向量的线性组合,故 ξ_1, ξ_2, ξ_3 之间没有线性关系.

显然,这两个向量组有着本质的区别,为此,本节将讨论这两种不同类型的向量组.

<u>问题</u> 如何判定向量组有否线性关系呢? 对给定向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$,考虑关系式

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = 0$$

当 $k_1 = k_2 = \cdots = k_n = 0$ 时,上式对任意向量组必定成立!

此时,不能判定向量组有否线性关系!

观察发现 对向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$,还可取不全为零

的
$$k_1 = 1, k_2 = -2, k_3 = 3, k_4 = -1$$
 使得 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 + k_4\alpha_4 = 0$

成立! 而对 ξ_1, ξ_2, ξ_3 , 找不到不全为零的 k_1, k_2, k_3 使得

$$k_1\xi_1 + k_2\xi_2 + k_3\xi_3 = 0$$

成立!

直发 判定向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是否有线性关系,应考虑: 是否存在不全为零的 k_1, k_2, \cdots, k_n 使得 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$ 成立?

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0,$$

则称向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关; 否则,称该向量组线性无关。

<u></u>定理 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关(线性无关)

的充要条件是: 齐次线性方程组

$$x_1\alpha_1 + x_2\alpha_2 + \dots + x_s\alpha_s = 0$$

有非零解(仅有零解).

沙题
$$\boldsymbol{\diamondsuit}\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$$

- (1) 判断 $\alpha_1, \alpha_2, \alpha_3$ 的线性相关性;
- (2) 若向量组线性相关,求 α₁, α₂, α₃ 之间的 一个非平凡线性关系.

解答 考虑如下方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = 0$

$$\Leftrightarrow x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = 0$$

对其增广矩阵进行初等行变换,有

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

因系数矩阵的主元列数少于未知量个数,故以上齐次线性方程组必有非零解,所以 $\alpha_1, \alpha_2, \alpha_3$ 线性相关;

为确定 $\alpha_1,\alpha_2,\alpha_3$ 的线性关系,化为行最简形矩阵

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

原方程组同解于
$$\begin{cases} x_1 - 2x_3 = 0, \\ x_2 + x_3 = 0. \end{cases}$$

令自由变量 $x_3 = k$, 得原方程组的解为

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2k \\ -k \\ k \end{bmatrix}, k 为任意常数;$$

从而 $\alpha_1, \alpha_2, \alpha_3$ 的线性关系为 $2k\alpha_1 - k\alpha_2 + k\alpha_3 = 0$ k为任意常数;

于是 $\alpha_1,\alpha_2,\alpha_3$ 的非平凡线性关系为

 $2k\alpha_1 - k\alpha_2 + k\alpha_3 = 0$, $k \neq 0$ 为任意常数;

令 k=2,得 $\alpha_1,\alpha_2,\alpha_3$ 的一个非平凡线性关系为

$$4\alpha_1 - 2\alpha_2 + 2\alpha_3 = 0.$$

提醒 给定矩阵 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 则

$$AX = 0 \Leftrightarrow x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = 0.$$

矩阵A的列向量组线性相关(无关)

$$\Leftrightarrow AX = 0$$
 有非零解 (只有零解)

<u>提醒</u> 矩阵 A 的行向量组线性相关(无关)

 $\Leftrightarrow A^T$ 的列向量组线性相关(无关)

 $\Leftrightarrow A^T X = 0$ 有非零解(只有零解)

提醒 矩阵A的列向量组之间的每个非平凡线性 关系对应于AX = O 的一个非零解。 矩阵A的行向量组之间的每个非平凡线性 关系对应于 $A^TX = O$ 的一个非零解。

提醒 矩阵 A 的列或行向量组的线性相关性简称 为矩阵 A的列线性相关性或行线性相关性。

沙题 判断
$$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
的列线性相关性。

解答 对 A 进行初等行变换化为阶梯形矩阵,

$$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 12 \end{bmatrix}$$

显然可见,AX = O仅有零解,因此 矩阵 A 列线性无关。

沙题 判断
$$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 1 & 0 & -9 \end{bmatrix}$$
 的行线性相关性。

解答 对AT进行初等行变换化为阶梯形矩阵,

$$A^{T} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 4 & -1 & -9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

显然可见, $A^TX = O$ 有非零解,因此矩阵 A 行线性相关。

- ① 含有零向量的向量组必线性相关.
- ② 若向量组中仅含有一个向量 $\Sigma:\alpha$, 则 向量组 Σ 线性相关 $\Leftrightarrow \alpha = 0$. 向量组 Σ 线性无关 $\Leftrightarrow \alpha \neq 0$.
- ③ 若向量组中仅含有两个向量 $\Sigma:\alpha,\beta$,则 向量组 Σ 线性相关 $\Leftrightarrow \alpha = s\beta$ or $\beta = t\alpha$, 即:两向量对应分量成比例。

- ① 两向量线性相关: 两向量共线。 ② 三向量线性相关: 三向量共面。

证明 只证明第三个结论.

<u>必要性</u> 因 α, β 线性相关,则存在不全为零的

数
$$k, l$$
,使得 $k\alpha + l\beta = 0$.

若
$$k \neq 0$$
,则 $\alpha = -\frac{l}{k}\beta = s\beta;$

若
$$l \neq 0$$
, 则 $\beta = -\frac{k}{l}\alpha = t\alpha$.

充分性 不妨设 $\alpha = s\beta$, 则

$$(-1)\alpha + s\beta = 0.$$

因-1, s 不全为零,故 α , β 线性相关.

常用结论 若向量组 ξ_1,ξ_2,\cdots,ξ_n 线性无关,且

$$k_1\xi_1 + k_2\xi_2 + \dots + k_n\xi_n = 0,$$

则必有 $k_1 = 0, k_2 = 0, \dots, k_n = 0.$

定理 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,向量组 $\alpha_1, \alpha_2, \dots, \alpha_s, \beta$ (\Diamond) 线性相关,则 β 可由向 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示,且表示法唯一.

证明 因向量组(\Diamond)线性相关,故存在不全为零的数 k_1, k_2, \dots, k_s, k , 使得

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s + k\beta = 0 \qquad (1)$$

又 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则可断定 $k \neq 0$.

反证 若 k = 0, 则 k_1, k_2, \dots, k_s 不全为零使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$.

从而 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关,矛盾,故 $k\neq 0$.

由 $k \neq 0$ 及(1)式,可得

$$\beta = -\frac{k_1}{k}\alpha_1 - \frac{k_2}{k}\alpha_2 - \dots - \frac{k_s}{k}\alpha_s,$$

这表明, β 可由向量 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示.

再证明表示法的唯一性. 若

$$\beta = t_1 \alpha_1 + t_2 \alpha_2 + \dots + t_s \alpha_s = l_1 \alpha_1 + l_2 \alpha_2 + \dots + l_s \alpha_s$$
$$\Rightarrow (t_1 - l_1)\alpha_1 + (t_2 - l_2)\alpha_2 + \dots + (t_s - l_s)\alpha_s = 0.$$

又 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,故 $t_i - l_i = 0 \Rightarrow t_i = li, i = 1, 2, \cdots, s,$

这表明 β 由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的两种线性表示法是相同的,故表示法唯一.

课堂练习 判定以下命题是否正确?

- 1. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关,则存在不为零的数 k_1, k_2, \dots, k_s , 使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$.
- 2. 因 k_1, k_2, \dots, k_s 都为零时, $k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$, 故向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关.
- 3. 只有当 k_1, k_2, \dots, k_s 都为零时,才有 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$, 则向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关.

二、线性相关和线性无关的性质

性质1 设 Σ : $\alpha_1, \alpha_2, \cdots, \alpha_s$ (s > 1) 为一向量组,则 Σ 线性相关 $\Leftrightarrow \Sigma$ 中至少有一个向量可由 其余 s-1个向量线性表示 Σ 线性无关 $\Leftrightarrow \Sigma$ 中任一个向量都不能由 其余 s-1个向量线性表示

证明 只证明第一个结论.

<u>火要性</u> 因向量组 Σ 线性相关,故存在不全为零的数 k_1, k_2, \dots, k_s , 使得

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0.$$

不妨设 $k_1 \neq 0$, 则有

$$\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - \dots - \frac{k_n}{k_1}\alpha_n,$$

即 α_1 可由其余 s-1个向量线性表出。

充分性 不妨设 $\alpha_s = k_1\alpha_1 + \cdots + k_{s-1}\alpha_{s-1}$, 则存在 不全为零的数 $k_1, \cdots, k_{s-1}, k_s (=-1)$ 使得

$$k_1\alpha_1 + \dots + k_{s-1}\alpha_{s-1} + k_s\alpha_s = 0.$$

从而向量组 Σ 线性相关.

性质2 若向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s (s > 1)$ (*) 的任何一个部分组线性相关,则向量组(*)线性相关。若向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s (s > 1)$ (*) 线性无关,则(*) 的任何一个部分组线性无关。

部分相关,整体相关 整体无关,部分无关

证明 证明很简单,请同学们自己完成证明.

性质3 设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ (*)为n维向量组,则

$$(*)$$
 线性相关 $\Leftrightarrow |A| = 0$

(*) **线性无关** ⇔ |A| ≠ 0

其中当(*)为列向量组时,

$$A=(\alpha_1,\alpha_2,\cdots,\alpha_n);$$

当
$$(*)$$
为行向量组时, $A=$ $\begin{bmatrix} lpha_1 \\ lpha_2 \\ \vdots \\ lpha_n \end{bmatrix}$.

提醒 性质3中的向量组要求向量个数与维数相同.

<u>性质4</u> 设 $\alpha_1, \alpha_2, \cdots, \alpha_s(*)$ 为一向量组,则

增维性质

① 若(*)线性无关,则在(*)中的每个向量的相同位置添加 t 个分量之后所得的向量组也线性无关;

减维性质

② 若(*)线性相关,则在(*)中的每个向量去掉相同位置的 k 个分量之后所得的向量组也线性相关.

本身相关,减维相关;本身无关,增维无关

<u>例题</u> 行阶梯形矩阵的非零行构成一个线性无关的行向量组。例如

$$A = \begin{bmatrix} 1 & -2 & 3 & 4 & -6 \\ 0 & 2 & 0 & 6 & 1 \\ 0 & 0 & 5 & -1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

提醒 行阶梯形矩阵的非零行构成一个线性无关的行向量组。

行阶梯形矩阵的主元列构成一个线性无关的列向量组.

例题 判断下列向量组是否线性相关?

$$(1) \ \alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 4 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 5 \end{bmatrix}, \ \alpha_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 4 \end{bmatrix}.$$

解答 取所给向量组的前三个分量,得向量组为

$$\alpha_1' = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \alpha_2' = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \alpha_3' = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

因行列式 $|(\alpha'_1, \alpha'_2, \alpha'_3)| \neq 0$, 故 $\alpha'_1, \alpha'_2, \alpha'_3$ 线性无关,从而 $\alpha_1, \alpha_2, \alpha_3$ 也线性无关;

(2)
$$\beta_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$$
, $\beta_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 4 \end{bmatrix}$, $\beta_3 = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 6 \end{bmatrix}$, $\beta_4 = \begin{bmatrix} -1 \\ 2 \\ 1 \\ -5 \end{bmatrix}$.

解答 法一: 因行列式 $|(\beta_2, \beta_2, \beta_3, \beta_4)| = 0$, 故向量组 $\beta_1, \beta_2, \beta_3, \beta_4$ 线性相关.

法二: 经观察,有 $\beta_1 + \beta_2 = \beta_3$, 则 $\beta_1, \beta_2, \beta_3$ 线性相关,故 $\beta_1, \beta_2, \beta_3, \beta_4$ 也线性相关.

部分相关,整体相关

课堂练习 不定项选择

设n维向量 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关。

A
$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = 0$$

 $\Leftrightarrow k_1 = k_2 = \dots = k_n = 0.$

- $x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n = 0$ 只有零解。
- \mathbf{E} 矩阵 $(\alpha_1, \alpha_2, \cdots, \alpha_n)$ 可逆.
- 行列式 $|(\alpha_1,\alpha_2,\cdots,\alpha_n)|\neq 0.$

三、向量组线性相关性的判断

抽象向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关的判断 先假设

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = 0, \quad (*)$$

再由已知条件判断方程组(*)有否非零解? 此处的 k_1, k_2, \dots, k_n 是未知量。

- ① 若 (*) 无非零解,即 k_1, k_2, \dots, k_n 必须全为零,则 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关;
- ② 若(*) 有非零解,即 k_1, k_2, \dots, k_n 可以不 全为零,则 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关。

沙 题 向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,判断向量组

$$\beta_1 = \alpha_1 + \alpha_2, \beta_2 = \alpha_2 + \alpha_3, \beta_3 = \alpha_3 + \alpha_1$$

的线性相关性。

解答 考虑齐次线性方程组

$$k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = 0$$

$$\Leftrightarrow k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + k_3(\alpha_3 + \alpha_1) = 0$$

$$\Leftrightarrow (k_1 + k_3)\alpha_1 + (k_1 + k_2)\alpha_2 + (k_2 + k_3)\alpha_3 = 0$$

因
$$\alpha_1, \alpha_2, \alpha_3$$
 线性无关,故
$$\begin{cases} k_1 + k_3 = 0 \\ k_1 + k_2 = 0 \\ k_2 + k_3 = 0 \end{cases}$$

该方程组只有零解,即 $k_1 = k_2 = k_3 = 0$, 所以向量组 $\beta_1, \beta_2, \beta_3$ 线性无关.

沙 应 已知 $\alpha_1, \alpha_2, \alpha_3$ 线性相关, $\alpha_2, \alpha_3, \alpha_4$ 线性无关。 判断 α_1 能否由 α_2, α_3 线性表示? 并证明你的结论。

解答 因 α_2 , α_3 , α_4 线性无关,故 α_2 , α_3 线性无关; 又 α_1 , α_2 , α_3 线性相关,故 α_1 能由 α_2 , α_3 线性表示。

问题 α_1 能否由向量组 $\alpha_2, \alpha_3, \alpha_4$ 线性表示?

- ②题 已知 $\alpha_1, \alpha_2, \alpha_3$ 是n维向量,A为n阶方阵。若 $A\alpha_1 = \alpha_1 \neq 0, A\alpha_2 = \alpha_1 + \alpha_2, A\alpha_3 = \alpha_2 + \alpha_3$ 则 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。
- 包题 已知 α 是一个 n 维向量, A 为 n 阶方阵。 若 $A^{k-1}\alpha \neq 0$, $A^k\alpha = 0$, 则 $\alpha, A\alpha, \dots, A^{k-1}\alpha$ 线性无关。