

Gözde Gökyokuş Supervised by Asst. Prof. İlknur Karadeniz

Introduction

As the world is facing a dangerous pandemic nowadays, we clearly realize the importance of medical services and the importance of benefitting computational methods in order to get to know different life forms and their interactions. Thanks to recent technological developments in bioinformatics, analyzing and interpreting the biological data is now faster and more accurate. Identifying the different characteristics and structures of the human proteins and pathogen proteins that infect us, become essential to be more proactive in humans fight with pathogens. Protein sequence analyzing makes it possible to predict various potential interactions between virus and human proteins by identifying the significant features and classifying them with respect to their similarities and differences.

In this project, Virex, the objective is to develop a model in order to predict possible infections between human and virus proteins through gathering protein sequences by web scraping, determining the main features of those proteins and classifying the various interactions by using machine learning algorithms.

The developed model consists of three subsystems: Data Gathering, Feature Engineering, and Prediction. While Data Gathering subsystem is responsible from extracting the protein sequence data from the web, Feature Engineering subsystem converts that data into required form and identifies the significant features in predicting the interactions between human and virus proteins which is accomplished by Prediction subsystem.

The model is tested with different data sizes and using different prediction algorithms. The results obtained with the proposed model, Virex, are really promising as 0.97 accuracy rate is obtained, outperforming the accuracy values provided in the literature.

Implementation Details

Virex is implemented in **Python language** on **Google Colab environment**.

Initial Pathogen-Host Interaction data was downloaded from Phisto DB web page then imported into the project with the help of **Pandas** library. Data visualizations are made with **Matplotlib** module.

Custom URLs are created with the path of unique virus and human proteins ids. With the help of Urllib library, the sequence data on **Uniprot.org** is extracted. In order to decrease the execution time in web scraping, multiprocessing library is used and 5 different processes work at the same time. Hardware –software mapping is visualized as it can be seen on Figure A. The resulting performance upgrade can be seen on Table 1 which was calculated with time library. Then human and virus sequences are cleaned from the unnecessary characters and saved into a CSV file. Some of the sequence data which are not available on the web is written on a txt file with pickle library to be excluded on all records later on. Track of the infection between the virus and human proteins are kept with the IDs on the initial data so the gathered sequences are joined according to those IDs. Cartesian product between the unique human and virus proteins are created with Itertools library just for creating the infection negative records. By comparing with the positive infection records negative infections are labeled as Infection False. Infection column is stated as the target column, Virus Sequence and Human Sequence columns are stated as the features.

Amino acid sequences are split into their amino acids and counts of the characters are listed as a matrix by using Count Vectorizer. Then by using Tf-idf Transformer, their term frequencies and inverse document frequencies are calculated and their product is written on the related columns. The frequencies of matching virus and human amino acids are added together and divided into 2 in order to have their vectoral frequency representation as a match. Infection column is binarized by using Label Binarizer.

Features and labels are split into training and test sets with **Sklearn** library (0.2 rate) For experimental purposes, Virex applies different portions of virus-host match data into several ML algorithms to predict the infection between the virus and host proteins.

Those algorithms are as follows:

-Random Forest Classifier

-Naïve Bayes Classifier

-Support Vector Classifier

The classification algorithms, confusion matrices, classification reports are implemented with Sklearn library.

Execution Time	Technique	н
0.20561695098876953 seconds	Saving and reading from files	
788.8343715667725 seconds	Web scraping with urllib (Multiprocessing)	\$
4148 seconds	Web scraping with urllib	

Table 1. Execution times according to the data collecting method Figure A. HW-SW Relations

Results

	HumanProtein Vi	lrusProtein	\		
0	P15311	Q9WIP8			
1	P28799	Q6JN72			
2	P62937	P88761			
3	P62937	P88585			
4	P23284	Q77YG1			
44220000					
11238988	K7PPA8	Q08089			
11238989	K7PPA8	P0D0J6			
11238990	K7PPA8	Q88019			
11238991	К7РРА8	040955			
11238992	К7РРА8	Q3ZK63			
				VirusSequence	· \
0	MGGKWSKSSIIGSF	TVRERMKRAEF	PAADGVGAVS	RDLDKYGAITSS	
1	MEPVDPSLEPWKHF	GSQPKTACTNO	YCKKCCLHC	QVCFMKKGLGIF	
2		•		EVIPMFSALSEG	
3				ELRSLFITVAVL	
4				VWASRELERFAV	
11238988	MVPQALLFVPLLVF	PI CEGKEPTYT	TPDKI GPWS	PTDTHHI SCPNN	
11238989	-				
11238990					
11238991				WEVRDVVSAAQK	
11238992				IQYDYNEVYTRV	
11230332	, iem ies i gg, ii sss	. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	***************************************	20.5.112.1.11.1.1	•
				HumanSequence	
0				KTIGLREVWYFG	
1	MWTLVSWVALTAGL	.VAGTRCPDGQF	CPVACCLDP	GGASYSCCRPLL	. True
2	MVNPTVFFDIAVDG	SEPLGRVSFELF	ADKVPKTAE	NFRALSTGEKGF	True
3	MVNPTVFFDIAVDO	SEPLGRVSFELF	ADKVPKTAE	NFRALSTGEKGF	True
4	MLRLSERNMKVLLA	AAALIAGSVFFL	LLPGPSAAD	EKKKGPKVTVKV	
11238988	MEEDOSDDSVEDDI	SUETESDI MINI	I DENINIVI CD	 LPSQAMDDLMLS	False
11238989	•	•		LPSQAMDDLMLS	
	-	-		-	
11238990	•	•		LPSQAMDDLMLS	
11238991				LPSQAMDDLMLS	
11238992	MEERQSDPSVEPPL	.SQETFSDLWKL	LPENNVLSP	LPSQAMDDLMLS	. False

Figure 1. 11 Million records of virus-host sequence matches

[[11105 [2019	870 6006	_				
		precision	recall	f1-score	support	
	0	0.85	0.93	0.88	11975	
	1	0.87	0.75	0.81	8025	
accu	racy			0.86	20000	
macro	avg	0.86	0.84	0.85	20000	
weighted	avg	0.86	0.86	0.85	20000	
0.85555						

Figure 3. Prediction of 100.000 rows of data on Support Vector

		Classifier	•		
[[1798 282] [58 7862]]					
	precision	recall	f1-score	support	
0	0.97	0.86	0.91	2080	
1	0.97	0.99	0.98	7920	
accuracy			0.97	10000	
macro avg	0.97	0.93	0.95	10000	
weighted avg	0.97	0.97	0.97	10000	
0.966					

Figure 5. Prediction of 50.000 rows of data on RF Classifier

[[191929 [5277	214 2580 pi	•	recall	f1-score	support
	0	0.97	1.00	0.99	192143
	1	0.92	0.33	0.48	7857
accura	асу			0.97	200000
macro a	avg	0.95	0.66	0.74	200000
weighted a	avg	0.97	0.97	0.97	200000
0.972545					

0.309299 0.047461 0.136971 0.307771 0.213429 0.377830 0.123963 0.237064 0.082497 0.130874 0.322872 0.209259 0.365640 0.064423 0.271197 0.051762 0.186108 0.267286 0.185050 0.370100 0.068266 499995 0.289536 0.068415 0.139966 0.281287 0.139598 0.377536 0.104060 499996 0.235568 0.130765 0.187395 0.203510 0.091736 0.372346 0.050204 499997 0.307043 0.079457 0.203418 0.287085 0.157791 0.397131 0.059176 499998 0.284705 0.101579 0.164418 0.319286 0.180887 0.402547 0.099710 499999 0.224623 0.089759 0.223220 0.316030 0.216241 0.389128 0.078611 0.168187 0.319880 0.366639 0.118421 0.125670 0.209022 0.209223 0.043279 0.324645 0.177707 0.061014 0.064684 0.357196 0.235056 0.210684 0.218755 0.229999 0.132727 0.199319 0.239631 0.184982 0.217235 0.297382 0.247043 0.091158 0.189038 0.137350 0.269165 0.202286 0.373062 0.275522 0.108491 0.151190 0.205374 0.156774 499995 0.106573 0.301023 0.284526 0.061737 0.133725 0.302345 0.164608 499996 0.084837 0.335617 0.390599 0.081941 0.097470 0.213040 0.244480 499997 0.111761 0.217896 0.318436 0.090220 0.134985 0.275261 0.175791 499998 0.157836 0.224997 0.269142 0.072733 0.146191 0.282163 0.183165 499999 0.140604 0.313632 0.395111 0.081296 0.144821 0.173445 0.148230 0.229113 0.280551 0.196320 0.159718 0.053920 0.0 0.055639 0.0 0.163014 0.185542 0.220939 0.271621 0.052927 0.0 0.023423 0.0 0.136126 0.241863 0.244229 0.236800 0.012834 0.0 0.057393 0.0 0.204282 0.195375 0.230316 0.282183 0.058514 0.0 0.076483 0.0 499995 0.247287 0.270572 0.212088 0.205534 0.034561 0.0 0.105679 0.0 499996 0.199087 0.224902 0.176906 0.213378 0.076560 0.0 0.101891 0.0 499997 0.280130 0.193710 0.192485 0.219102 0.055086 0.0 0.110304 0.0 499998 0.224303 0.207255 0.241061 0.219702 0.030844 0.0 0.121948 0.0 499999 0.178723 0.176062 0.165571 0.201813 0.075524 0.0 0.101235 0.0

[500000 rows x 22 columns] Figure 2. Tf-idf value averages of Human and Virus Sequence Vectors

[[11975 [8022	0] 3]] pre	ecision	recall	f1-score	support
	0 1	0.60 1.00	1.00	0.75 0.00	11975 8025
accura macro a weighted a	vg	0.80 0.76	0.50 0.60	0.60 0.37 0.45	20000 20000 20000
0.5989					

Figure 4. Prediction of 100.000 rows of data on Naïve Bayes Classifier

[[11677 [911	298 7114]]				
		precision	recall	f1-score	support	
	0	0.93	0.98	0.95	11975	
	1	0.96	0.89	0.92	8025	
accu	racy			0.94	20000	
macro	avg	0.94	0.93	0.94	20000	
weighted	avg	0.94	0.94	0.94	20000	
0.93955						

Figure 6. Prediction result of 100.000 rows of data on RF Classifier

Figure 8. Experimental methods used for interaction observation in

Conclusion

This project aims at predicting human and virus protein interactions proposing machine learning based models. The developed system composed of three subsystems being Data Gathering, Feature Engineering, and Prediction is implemented with various data sets and the results show that Virex is capable of successfully finding and extracting data from the internet, processing the data through feature engineering and predicting the possible infections.

-RF Classifier: Best results are performed with RF algorithm among all the other performed algorithms. If we evaluate different data portions, the accuracy of the classification was the highest with 1M row of data (0.97). 50K rows of data resulted as the next best accuracy (0.96). Then as the third experiment 100K rows of data resulted with an accuracy of 0.939

For the 1M rows: 191929 of the infection negative values are guessed correctly, only 214 of them are wrong labeled as infection positive values. 2580 of the infection positive values are labeled correctly, 5277 of the positive infection values are mislabeled as negative infection.

For the 100K rows: 7114 of the infection positive values and 11677 of the infection negative values are classified correctly. 298 of the infection negative values are misclassified as infection positive, 911 of the infection positive values are misclassified as infection negative.

For the 50K rows: 7862 of the infection positive values, 1798 of the infection negative values are correctly labeled. 282 of the infection negative values are misclassified as infection positive, 58 of the infection positive values are misclassified as infection negative.

-SVM Classifier: Even though SVM was slightly underperforming than the RF classifier, despite that it gave a high accuracy which was 0.855. It guessed 11105 infection negative values and 6006 infection positive values correctly. Only it misunderstood the 870 of the infection negatives and 2019 of the infection positives.

-Naïve Bayes Classifier: NB algorithm was the worst in accuracy among all the other algorithms. From the confusion matrix and classification report it can be seen that the algorithm labeled 8022 of the infection positive values as infection negative values. That's why this accuracy is smaller than the others. But it guessed all of the infection negative values(11975), and 3 of the infection positive values correctly so the accuracy slightly increases. There are 0 mislabeled infection negative values.

Ribliography

	Dibliography
1.	Gozde Gokyokus, Thesis Report Virex, Işık University, Jan 2021
2.	Sklearn. Count Vectorizer. tarih yok. https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html .
3.	Label Binarizer. https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html .
4.	MultinomialNaiveBayes. https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html .
5.	Train test split. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
6.	Tf-idf Transformer. https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html .
7.	Google. Colaboratory. https://research.google.com/colaboratory/faq.html .
8.	Pandas. tarih yok. https://pandas.pydata.org/ >.
9.	Python Internet Access using Urllib.Request and urlopen. https://www.guru99.com/accessing-internet-data-with-python.html .
10.	Python. Itertools. https://docs.python.org/3/library/itertools.html .
11.	Multiprocessing. https://docs.python.org/3/library/multiprocessing.html .
12.	Pickle. https://docs.python.org/3/library/pickle.html .
13.	Time. https://docs.python.org/3/library/time.html .
14.	Yiu, Tony. Random Forest. 12 06 2019. https://towardsdatascience.com/understanding-random-forest-58381e0602d2 .
15.	Matplotlib. https://matplotlib.org/ .
16.	UniProt. 24 05 2020. https://en.wikipedia.org/w/index.php?title=UniProt&oldid=958490101 .
17.	Support vector machine. 20 10 2020. https://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=984421646 .
18.	Train test split. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
19.	İlknur Karadeniz, Saliha Durmuş Tekir, Tunahan Çakır, Emre Ardıç, Ali Semih Sayılırbaş, Gökhan Konuk, Mithat Konuk, Hasret Sarıyer, Azat Uğurlu, Arzucan Özgür, Fatih Erdoğan Sevilgen, Kutlu Ö. Ülgen. «PHISTO: pathogen–host interaction
	search tool.» Bioinformatics 29 (2013): 1357-1358. https://doi.org/10.1093/bioinformatics/btt137 .
20.	UniProt. 24 05 2020. https://en.wikipedia.org/w/index.php?title=UniProt&oldid=958490101 .
21.	Kohli, Shivam. Understanding a Classification Report For Your Machine Learning Model. 18 11 2019. https://medium.com/@kohlishivam5522/understanding-a-classification-report-for-your-machine-learning-model-88815e2ce397 .