Mouvement T - ★

Soit le mécanisme de la figure 4.1. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à **1** par rapport à **0**.

Mouvement T – \star

Soit le mécanisme de la figure 4.2. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

Question 2 Déterminer $\overrightarrow{\Gamma(B, 1/0)}$.

Mouvement R ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec R = 20 mm.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Quelle est la trajectoire du point *B* appartenant à 1 par rapport à 0.

Question 3 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à **1** par rapport à **0**.

Mouvement R ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec R = 20 mm.

C2-05

B2-13

FIGURE 4.1 – 1 translation

Éléments de correction

1. . 2.
$$x_B(t) = \lambda(t)$$
.

Corrigé voir .

B2-13

FIGURE 4.2 – 1 translation

Éléments de correction

1.
$$\{\mathcal{V}(1/0)\} = \begin{cases} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} \end{cases} \bigg\}_{\forall P}$$

2. $\overrightarrow{\Gamma(B, 1/0)} = \ddot{\lambda}(t)\overrightarrow{i_0}$.

Corrigé voir 2.

C2-05

B2-13

Éléments de correction

1. .

2. .

3. $x_B(t) = R \cos \theta(t)$ et $y_B(t) = R \sin \theta(t)$.

Corrigé voir 3.

Éléments de correction

1.
$$\overrightarrow{V(B,1/0)} = R \dot{\theta} \overrightarrow{j_1}.$$
2.
$$\overrightarrow{V(B,1/0)} = R \dot{\theta} \overrightarrow{j_1}.$$
3.
$$\{ \mathscr{V}(1/0) \} = \begin{cases} \dot{\theta} \overrightarrow{k_0} \\ R \dot{\theta} \overrightarrow{j_1} \end{cases}_{B}.$$

4. $\overrightarrow{\Gamma(B,1/0)} = R \ddot{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1}$

Corrigé voir 3.

C2-05

B2-13

Question 1 Déterminer $\overrightarrow{V(B,1/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overrightarrow{V(B, 1/0)}$ par une autre méthode.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point B.

Question 4 Déterminer $\Gamma(B, 1/0)$.

Mouvement TT - ★

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Éléments de correction

1. .
2.
$$x_C(t) = \lambda(t)$$
 et $y_C(t) = \mu(t)$.
3. $\theta(t) = \frac{v}{R}t$.
4. $\lambda(t) = R\cos\left(\frac{v}{R}t\right)$, $\mu(t) = R\sin\left(\frac{v}{R}t\right)$.

Corrigé voir 4

Question 1 Quel est le mouvement de 2 par rapport à 0.

Question 2 Donner l'équation du mouvement du point *C* dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon $R=10\,\mathrm{cm}$ à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 3 Donner la relation liant $\theta(t)$, v et R.

Par ailleurs la vitesse du point C est donnée par $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC} \right]_{\Re_0} = R \dot{\theta} \overrightarrow{e_{\theta}}$.

Question 4 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire en fonction de v, R et du temps.

Question 5 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Mouvement TT - ★

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 3 Déterminer $\overrightarrow{\Gamma(C,2/0)}$.

Mouvement RR ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$ avec $L = 15 \,\mathrm{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point *C*.

Question 2 Donner l'équation du mouvement du point C dans son mouvement de $\mathbf 2$ par rapport à $\mathbf 0$.

On souhaite que le point C réalise un segment entre les points [-20,25] et [20,25] à la vitesse linéaire v.

Question 3 Donner la durée du mouvement si *C* se déplace à vitesse quelconque.

Question 4 Donner l'équation paramétrique que doit suivre le point *C*.

Question 5 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 6 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Corrigé voir 3.

B2-13

Éléments de correction

1.
$$\overrightarrow{V(C,2/0)} = \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0}$$

2. $\{\mathcal{V}(2/0)\} = \begin{cases} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0} \end{cases}_{\forall P}$
3. $\overrightarrow{\Gamma(C,2/0)} = \ddot{\lambda}(t)\overrightarrow{i_0} + \ddot{\mu}(t)\overrightarrow{j_0}$.

Corrigé voir 5.

C2-05

B2-13

Pas de corrigé pour cet exercice.

La Martinière

B2-13

Mouvement RR ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ avec $R = 20\,\mathrm{mm}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$ avec $L = 15\,\mathrm{mm}$.

Éléments de correction

1.
$$\overrightarrow{V(C,2/0)} = R\dot{\theta}\overrightarrow{j_1} + L(\dot{\theta} + \dot{\phi})\overrightarrow{j_2}.$$

2. $\overrightarrow{V(C,2/0)} = L\dot{\phi}\overrightarrow{j_2} + \dot{\theta}(L\overrightarrow{j_2} + R\overrightarrow{j_1})$ (c'est la même:)).
3. $\{\mathcal{V}(2/0)\} = \{(\dot{\theta} + \dot{\phi})\overrightarrow{k_0}\}_{C}$
 $\{(\dot{\theta} + \dot{\phi})\overrightarrow{k_0}\}_{C}$
4. $\overrightarrow{\Gamma(C,2/0)} = R\ddot{\theta}\overrightarrow{j_1} - R\dot{\theta}^2\overrightarrow{i_1} + L(\ddot{\theta} + \ddot{\phi})\overrightarrow{j_2} - L(\dot{\theta} + \dot{\phi})^2\overrightarrow{i_2}.$

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overrightarrow{V(C,2/0)}$ par composition.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 4 Déterminer $\overrightarrow{\Gamma(C,2/0)}$.

Corrigé voir 6.

Mouvement RT ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

C2-05

B2-13

Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point *B*.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point *B* dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 4.

Mouvement RT ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer $\overrightarrow{V(B,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overline{V(B,2/0)}$ par composition.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

Question 4 Déterminer $\overrightarrow{\Gamma(B,2/0)}$.

Mouvement RT ★

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm.

 ${\bf Question~1~~Donner~l'ensemble~des~positions~accessibles~par~le~point~B}.$

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 4.

Éléments de correction

1.
$$\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1}$$

2.
$$\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$$

3.
$$\left\{ \begin{array}{l} \mathcal{V}(2/0) \\ \dot{\theta}(t) \overrightarrow{k_0} \\ \dot{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \end{array} \right\}_B$$

4.
$$\frac{\Gamma(B,2/\vec{0})}{(\ddot{\lambda}(t) - \lambda(t)\dot{\theta}(t)^2)} \xrightarrow{i_1} (\dot{\lambda}(t)\dot{\theta}(t) + \dot{\lambda}(t)\dot{\theta}(t)) \xrightarrow{j_1}.$$

Corrigé voir 4.

C2-05

B2-13

Mouvement RT ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm.

Éléments de correction

1.
$$\overrightarrow{V(C,2/0)} = \overrightarrow{\lambda}(t)\overrightarrow{i_0} + R\overrightarrow{\theta}\overrightarrow{j_2}$$
.
2. $\{\mathcal{V}(2/0)\} = \overrightarrow{\theta}\overrightarrow{k_0} \}_{C}$

$$\{\overrightarrow{V(C,2/0)} = \overrightarrow{\theta}\overrightarrow{k_0} \}_{C}$$
3. $\overrightarrow{\Gamma(C,2/0)} = \overrightarrow{\lambda}(t)\overrightarrow{i_0} + R(\overrightarrow{\theta}\overrightarrow{j_2} - \overrightarrow{\theta}^2\overrightarrow{i_2})$.

Corrigé voir 4.

C2-05

B2-13

Question 1 Déterminer $\overline{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 3 Déterminer $\Gamma(C, 2/0)$.

Mouvement RR 3D ★★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm.

Éléments de correction

1. . 2. $x_C(t) = (R + \ell)\cos\theta - r\cos\varphi\sin\theta$, $y_C(t) = (R + \ell)\sin\theta + r\cos\varphi\cos\theta$, $z_C(t) = r\sin\varphi$.

Corrigé voir 3.

B2-13

Question 1 Donner l'ensemble des positions accessibles par le point *C*.

Question 2 Donner l'équation du mouvement du point *C* dans le mouvement de **2** par rapport à **0**.

Mouvement RR 3D ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm.

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overrightarrow{V(C,2/0)}$ par composition.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 4 Déterminer $\overrightarrow{\Gamma(C, 2/0)}$.

Mouvement RR 3D ★★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, R = 20 mm, L = 10 mm.

C2-05

Question 1 Donner l'ensemble des positions accessibles par le point *C*.

Question 2 Donner l'équation de mouvement du point *C* dans le mouvement de **2** par rapport à **0**.

Éléments de correction

- 1. Tore.
- 2. $x_C(t) = R \cos \theta$ $L \cos \varphi \cos \theta$, $y_C(t) =$ $H + L \sin \varphi$, $z_C(t) =$ $-R \sin \theta - L \cos \varphi \sin \theta$.

Mouvement RR 3D ★

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Corrigé voir 2.

B2-13

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overline{V(C,2/0)}$ par composition du vecteur vitesse.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

Question 4 Déterminer $\Gamma(C, 2/0)$.

Éléments de correction

1.
$$\overrightarrow{V(C,2/0)} = -R\dot{\theta}\overrightarrow{k_1} + L\left(-\dot{\theta}\cos\varphi\overrightarrow{k_1} + \dot{\varphi}\overrightarrow{j_2}\right)$$
.

2.
$$\overrightarrow{V(C,2/0)} = L \dot{\varphi} \overrightarrow{j_2} - \dot{\theta} \left(R \overrightarrow{k_1} + L \cos \varphi \overrightarrow{k_1} \right).$$

3.
$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\varphi} \overrightarrow{k_2} + \dot{\theta} \overrightarrow{j_0} \\ L \dot{\varphi} \overrightarrow{j_2} - \dot{\theta} \left(R \overrightarrow{k_1} + L \cos \varphi \overrightarrow{k_1} \right) \end{array} \right\}_{C}$$

2.
$$\overrightarrow{V(C,2/0)} = L\dot{\varphi}\overrightarrow{j_2} - \dot{\theta}\left(\overrightarrow{R}\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right).$$

3. $\{\mathscr{V}(2/0)\} = \begin{cases} \dot{\varphi}\overrightarrow{k_2} + \dot{\theta}\overrightarrow{j_0} \\ L\dot{\varphi}\overrightarrow{j_2} - \dot{\theta}\left(\overrightarrow{R}\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right) \end{cases}$
4. $\overrightarrow{\Gamma(C,2/0)} = L\ddot{\varphi}\overrightarrow{j_2} + L\dot{\varphi}\left(\dot{\theta}\sin\varphi\overrightarrow{k_1} - \dot{\theta}\overrightarrow{i_2}\right) - \ddot{\theta}\left(\overrightarrow{R}\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right) - \dot{\theta}\left(\overrightarrow{R}\dot{\theta}\overrightarrow{i_1} + L\cos\varphi\dot{\theta}\overrightarrow{i_1} - L\dot{\varphi}\sin\varphi\overrightarrow{k_1}\right).$

Corrigé voir 2.

B2-13

Mouvement RT - RSG ★★

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R\overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $\overline{V(B,2/0)}$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

Question 3 Déterminer $\Gamma(B, 2/0)$.

Éléments de correction

1.
$$\overrightarrow{V(B,2/0)} = \overrightarrow{\lambda} \overrightarrow{i_1} + \overrightarrow{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right)$$
.

2.
$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta} \overrightarrow{k_0} \\ \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0}\right) \end{array} \right\}_{\mathcal{B}}$$

3.
$$\overrightarrow{\Gamma(B,2/0)} = \ddot{\lambda}(t)\overrightarrow{i_1} + \dot{\lambda}(t)\dot{\theta}\overrightarrow{j_1} + \ddot{\theta}(t)\left(\lambda(t)\overrightarrow{j_1} - R\overrightarrow{i_0}\right) + \dot{\theta}(t)\left(\dot{\lambda}(t)\overrightarrow{j_1} - \lambda(t)\dot{\theta}\overrightarrow{i_1}\right).$$

Corrigé voir 4.

B2-13

Mouvement RR - RSG ★★

Soit le mécanisme suivant. On a $\overrightarrow{IA}=R\overrightarrow{j_0}$ et $\overrightarrow{AB}=L\overrightarrow{i_2}$. De plus $R=15\,\mathrm{mm}$. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $\overrightarrow{V(B,2/0)}$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point B.

Question 3 Déterminer $\overrightarrow{\Gamma(B,2/0)}$.

Éléments de correction A Vérifier...

1.
$$\overrightarrow{V(B,2/0)} = L\dot{\varphi}(t)\overrightarrow{j_2} + \dot{\theta}(t)\left(L\overrightarrow{j_2} - R\overrightarrow{i_0}\right).$$
2.
$$\left\{ \mathscr{V}(2/0) \right\} = \left\{ \begin{array}{l}
\overrightarrow{\Omega(2/0)} = \left(\dot{\varphi}(t) + \dot{\theta}(t)\right)\overrightarrow{k_0} \\
L\dot{\varphi}(t)\overrightarrow{j_2} + \dot{\theta}(t)\left(L\overrightarrow{j} - R\overrightarrow{i_0}\right) \\
\end{array} \right\}_{B}.$$
3.
$$\overrightarrow{\Gamma(B,2/0)} = L\ddot{\varphi}(t)\overrightarrow{j_2} - L\dot{\varphi}(t)\left(\dot{\varphi}(t) + \dot{\theta}(t)\right)\overrightarrow{i_2} + \ddot{\theta}(t)\left(L\overrightarrow{j_2} - R\overrightarrow{i_0}\right) - L\dot{\theta}(t)\left(\dot{\varphi}(t) + \dot{\theta}(t)\right)\overrightarrow{i_2}.$$

Corrigé voir 3.