吉林大学 2013~2014 学年第一学期 《高等数学 A III 》试卷

2014年1月9日

_	=	Ξ	总分

一、 填空题(每小题3分,满分15分,把答案填在题中横线上)

1.
$$\oint_L (x^2 + y^2) ds = _____,$$
 其中曲线 $L: x^2 + y^2 = a^2$.

2. 设曲面 Σ为 $x^2+y^2=9$ 介于 z=0及 z=3间的部分, $\iint_{\Sigma} (x^2 + y^2 + 1) dS = \underline{\hspace{1cm}}.$

3. 级数
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 的和为______.

4. 微分方程
$$\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$$
 的通解为______.

5. 设
$$f(x) = \begin{cases} -1, & -\pi \le x \le 0, \\ 1, & 0 < x < \pi, \end{cases}$$
 则它的 Fourier 级数展开式中的系数

 $a_n = \underline{\hspace{1cm}}$.

二、选择题(每小题3分,满分15分.每小题只有一个选项符合题

1. 设 f(x,y) 在曲线弧 L 上有定义且连续,L 的参数方程为 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$

 $(\alpha \le t \le \beta)$, 其中 $\varphi(t)$, $\psi(t)$ 在 $[\alpha, \beta]$ 上具有一阶连续导数,且 $\varphi'^2(t) + \psi'^2(t) \ne 0$, 则曲线积分 $\int_{I} f(x, y) ds = ($

(A)
$$\int_{\beta}^{\alpha} f(\varphi(t), \psi(t)) \sqrt{{\varphi'}^2(t) + {\psi'}^2(t)} dt.$$
 (B)
$$\int_{\alpha}^{\beta} f(\varphi(t), \psi(t)) dt.$$

(B)
$$\int_{\alpha}^{\beta} f(\varphi(t), \psi(t)) dt$$
.

(C)
$$\int_{\alpha}^{\beta} f(\varphi(t), \psi(t)) \sqrt{{\varphi'}^2(t) + {\psi'}^2(t)} dt.$$
 (D)
$$\int_{\beta}^{\alpha} f(\varphi(t), \psi(t)) dt.$$

(D)
$$\int_{\beta}^{\alpha} f(\varphi(t), \psi(t)) dt$$
.

(共 6 页 第1页)

- 2. 设有界闭区域 D 由分段光滑曲线 L 所围成,L 取正向,函数 P(x,y),Q(x,y)在 D 上具有一阶连续偏导数,则 $\oint_{\Gamma} P dx + Q dy = ($
 - (A) $\iint_{\Omega} (\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x}) dx dy.$ (B) $\iint_{\Omega} (\frac{\partial Q}{\partial y} \frac{\partial P}{\partial x}) dx dy.$

 - (C) $\iint_{\mathbb{R}} (\frac{\partial P}{\partial x} \frac{\partial Q}{\partial y}) dxdy.$ (D) $\iint_{\mathbb{R}} (\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}) dxdy.$
- 3. 设 Σ 是 取 外 侧 的 单 位 球 面 $x^2 + y^2 + z^2 = 1$, 则 曲 面 积 分 $\iint_{\mathbb{R}} x dy dz + y dz dx + z dx dy = ($

 - (A) 0. (B) 2π . (C) π . (D) 4π .
- 4. 下列说法中错误的是(
 - (A) 方程 $xy''' + 2y'' + x^2y = 0$ 是三阶微分方程.
 - (B) 方程 $y \frac{dy}{dx} + x \frac{dy}{dx} = y \sin x$ 是一阶微分方程.
 - (C) 方程 $(x^2 + 2xy^3)dx + (y^2 + 3x^2y^2)dy = 0$ 是全微分方程.
 - (D) 方程 $\frac{dy}{dx} + \frac{1}{2}x = \frac{2y}{x}$ 是Bernoulli 方程.
- 5. 已知级数 $\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^{\alpha}}$ 绝对收敛,级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{2-\alpha}}$ 条件收敛,则()
 - (A) $0 < \alpha \le \frac{1}{2}$.
- (B) $\frac{1}{2} < \alpha \le 1$.
- (C) $1 < \alpha \le \frac{3}{2}$. (D) $\frac{3}{2} < \alpha < 2$.

三、解答下列各题(前7小题每小题9分,第8小题7分,满分70分)

- 1. 求下列微分方程的通解
- $(1) y' + y \tan x = \sin 2x$

(2)
$$(2xye^{x^2} - 2x)dx + e^{x^2}dy = 0$$

2. 求级数 $\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^{2n+1}}{2n+1}$ 的收敛域.

3. 计算 $I = \oint_L \frac{x \mathrm{d}y - y \mathrm{d}x}{x^2 + y^2}$,其中 L 是 xoy 面上的任一条无重点且分段光滑不经过原点 O(0,0) 的正向闭曲线.

4. 求 $I = \int_{L} (e^{x} \sin y - my) dx + (e^{x} \cos y - m) dy$, 其中 L 是曲线 $y = \sqrt{ax - x^{2}}$ 上从 A(a,0) 到 O(0,0) 的弧, m 为常数.

5. 计算 $I=\iint_\Sigma x^2\mathrm{d}y\mathrm{d}z+y^2\mathrm{d}z\mathrm{d}x+z^2\mathrm{d}x\mathrm{d}y$,其中 Σ 是曲面 $x^2+y^2=z^2$ ($0\leq z\leq a$) 的外侧.

6. 计算 $I = \oint_{\Gamma} y^2 dx + z^2 dy + x^2 dz$,其中 Γ 是球面 $x^2 + y^2 + z^2 = a^2$ 位于第一卦限 部分的边界曲线,从 x 轴正向看去, Γ 为逆时针方向.

7. 设函数 $\varphi(x)$ 具有连续的二阶导数,并使曲线积分

$$\int_{L} [3\varphi'(x) - 2\varphi(x) + xe^{2x}]ydx + \varphi'(x)dy$$

与路径无关,求函数 $\varphi(x)$.

8. 将函数 $f(x) = \ln(1 + x + x^2 + x^3)$ 展开成 x 的幂级数.