SC223 - Linear Algebra

Aditya Tatu

Lecture 13

August 25, 2023

Example of Structure in Math

• The examples with (a) Symmetries of a rectangle, (b) set of all two-bits with bitwise addition modulo-2, and others can be abstracted as $S = \{e, a, b, a \cdot b\}$ and operation \cdot as

b е а h а a=e >> е $a \cdot \overline{b}$ е а b $a \cdot b$ е $a \cdot b$ b а

1. Existence of identity

b

closure

3. Inverse

• The examples (a) $\{1,3,5,7\}$ with multiplication modulo-8, (b) $\{1, i, -1, -i\}$ with omplex number multiplication can be abstracted as $S = \{e, a, b, a \cdot b\}$ with the operation \cdot and

$$a^2 = b$$

	e	а	b	a · b
e	e	а	Ь	a · b
а	a	b	a · b	e
Ь	Ь	a · b	e	а
a · b	a · b	е	а	Ь

• All the above examples are examples of an *algebraic* structure called **Group**.

- All the above examples are examples of an algebraic structure called Group.
- ullet A **Group** is a non-empty set *G* with a *binary operation*, denoted by \cdot , that satisfy the following axioms:
 - Closure: $\forall a, b \in G, a \cdot b \in G$.

- All the above examples are examples of an algebraic structure called Group.
- $lackbox{ A Group}$ is a non-empty set G with a binary operation, denoted by \cdot , that satisfy the following axioms:
 - Closure: $\forall a, b \in G, a \cdot b \in G$.
 - **Identity:** There exists an element $e \in G$ such that $\forall a \in G$, $a \cdot e = e \cdot a = e$.

 All the above examples are examples of an algebraic structure called Group.

lacktriangle A **Group** is a non-empty set G with a *binary operation*, denoted by \cdot , that satisfy the following axioms:

- Closure: $\forall a, b \in G, a \cdot b \in G$.

- **Identity:** There exists an element $e \in G$ such that $\forall a \in G$, $a \cdot e = e \cdot a = \emptyset$

- **Inverse:** For each $a \in G$, there exists an element $a \cdot a^{-1} = a^{-1} \cdot a = e$. The element a^{-1} is called the *inverse* of a.

- All the above examples are examples of an algebraic structure called Group.
- lacktriangle A **Group** is a non-empty set G with a *binary operation*, denoted by \cdot , that satisfy the following axioms:
 - Closure: $\forall a, b \in G, a \cdot b \in G$.
 - **Identity:** There exists an element $e \in G$ such that $\forall a \in G$, $a \cdot e = e \cdot a = e$.
 - **Inverse:** For each $a \in G$, there exists an element $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$. The element a^{-1} is called the *inverse* of a.
 - Associativity: $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$

- All the above examples are examples of an *algebraic* structure called **Group**.
- $lackbox{ A Group}$ is a non-empty set G with a *binary operation*, denoted by \cdot , that satisfy the following axioms:
 - Closure: $\forall a, b \in G, a \cdot b \in G$.
 - **Identity:** There exists an element $e \in G$ such that $\forall a \in G$, $a \cdot e = e \cdot a = e$.
 - **Inverse:** For each $a \in G$, there exists an element $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$. The element a^{-1} is called the *inverse* of a.
 - Associativity: $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- We denote the group by the tuple (G, \cdot) .
- of is commutative on G, then we call (G, o) a commutative Group
 or Abelian Group

• We have seen linear combinations of elements from

- We have seen linear combinations of elements from

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^{m \times n}$$

We have seen linear combinations of elements from

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

•

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

$$\forall x, y \in \mathbb{R}^{\infty},$$

We have seen linear combinations of elements from

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

$$\blacktriangleright$$

 $\forall x, y \in \mathbb{R}^{\infty}, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := (\ldots, ax_{-1} + by_{-1}, ax_0 + by_0, ax_1 + by_1, \ldots)$

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

▶

$$\forall x,y \in \mathbb{R}^{\infty}, \forall a,b \in \mathbb{R}, a \cdot x + b \cdot y := (\ldots, ax_{-1} + by_{-1}, ax_0 + by_0, ax_1 + by_1, \ldots)$$

 $\blacktriangleright \ \forall f,g \in \{h : \mathbb{R} \to \mathbb{R}\},\$

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

•

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

▶

$$\forall x,y \in \mathbb{R}^{\infty}, \forall a,b \in \mathbb{R}, a \cdot x + b \cdot y := (\ldots, ax_{-1} + by_{-1}, ax_0 + by_0, ax_1 + by_1, \ldots)$$

▶ $\forall f, g \in \{h : \mathbb{R} \to \mathbb{R}\}, \forall a, b \in \mathbb{R}, a \cdot f + b \cdot g, (a \cdot f + b \cdot g)(t) = a \cdot f(t) + b \cdot g(t), \forall t \in \mathbb{R}.$

ector Spaces

• Definition: A Vector space is a set V with a field $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V, +) is an **Abelian group**:
 - $\blacktriangleright \ \forall x,y \in V, x+y \in V$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x,y \in V, x+y \in V$
 - $\blacktriangleright \ \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta.$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V, +) is an **Abelian group**:
 - $\blacktriangleright \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - $\forall x, y, z \in V, (x+y) + z = x + (y+z).$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V, +) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
 - $\forall x, y \in V, x + y = y + x.$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V, +) is an **Abelian group**:
 - $\blacktriangleright \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
 - $\blacktriangleright \forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot : \mathbb{F} \times V \to V$.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - ▶ $\forall x, y, z \in V, (x + y) + z = x + (y + z).$
 - $\blacktriangleright \ \forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot : \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that $1 \cdot v = v, \forall v \in V$.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - ▶ $\forall x, y, z \in V, (x + y) + z = x + (y + z).$
 - $\blacktriangleright \ \forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot : \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that $1 \cdot v = v, \forall v \in V$.
- ▶ **Distributivity:** $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v$, and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u$.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
 - $\forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot : \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that $1 \cdot v = v, \forall v \in V$.
- **▶ Distributivity:** $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v$, and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u$.
- ► Compatibility of field and scalar multiplication:

 $\forall a, b \in \mathbb{F}, \forall u \in V, (a \times b) \cdot u = a \cdot (b \cdot u).$

Definition:(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ightharpoonup ($\mathbb{F}, +_F$) is an **Abelian group**. The additive identity will be denoted by 0.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ▶ $(\mathbb{F}, +_F)$ is an **Abelian group**. The additive identity will be denoted by 0.
- ▶ $(\mathbb{F} \{0\}, \times)$ is an **Abelian group**. The mutiplicative identity will be denoted by 1.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ▶ $(\mathbb{F}, +_F)$ is an **Abelian group**. The additive identity will be denoted by 0.
- ▶ $(\mathbb{F} \{0\}, \times)$ is an **Abelian group**. The mutiplicative identity will be denoted by 1.
- **▶** Distributivity:

$$\forall a, b, c \in \mathbb{F}, (a+_{F}b) \times c = a \times c +_{F}b \times c, a \times (b+_{F}c) = a \times b +_{F}a \times c$$

 \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- ightharpoonup ($\mathbb{C},+,\times$)

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- ightharpoonup ($\mathbb{C}, +, \times$)
- ightharpoonup ($\mathbb{Q}, +, \times$)

- \blacktriangleright ($\mathbb{Z}_2, +_2, \times$)
- $ightharpoonup (\mathbb{R},+,\times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.

- \blacktriangleright ($\mathbb{Z}_2, +_2, \times$)
- $ightharpoonup (\mathbb{R}, +, \times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_F, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .

- \blacktriangleright ($\mathbb{Z}_2, +_2, \times$)
- $ightharpoonup (\mathbb{R}, +, \times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- ightharpoonup ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_F, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .
- Any element of the vector space $(V, +, \cdot)$ will be referred to as a **vector**, and any element $a \in \mathbb{F}$ will be referred to as a **scalar**.

 \bullet $(\mathbb{R},+,\cdot)$ over \mathbb{R} .

- \bullet $(\mathbb{R},+,\cdot)$ over $\mathbb{R}.$
- ullet $(\mathbb{R}^n,+,\cdot)$ over \mathbb{R} .

- \bullet $(\mathbb{R},+,\cdot)$ over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- $(\mathbb{C}^n, +, \cdot)$ over \mathbb{C} .

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- \bullet $(\mathbb{R}^\infty,+,\cdot)$ over $\mathbb{R},$ where \mathbb{R}^∞ is the set of all doubly-infinite sequences.

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- \bullet $(\mathbb{R}^\infty,+,\cdot)$ over $\mathbb{R},$ where \mathbb{R}^∞ is the set of all doubly-infinite sequences.
- \bullet $(\mathcal{P}(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.

- $(\mathbb{R}, +, \cdot)$ over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- $(\mathbb{C}^n, +, \cdot)$ over \mathbb{C} .
- \bullet $(\mathbb{R}^\infty,+,\cdot)$ over $\mathbb{R},$ where \mathbb{R}^∞ is the set of all doubly-infinite sequences.
- ullet $(\mathcal{P}(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.
- $(\mathbb{L}_2(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathbb{L}_2(\mathbb{R})$ denotes the set of all square-integrable functions $f : \mathbb{R} \to \mathbb{R}$.