

Technical Report 1669 August 1994

A Three-Dimensional Geoacoustic Model for the Catalina Basin

Version 1.0

R. T. Bachman

DTIC QUALITY DEFECTED 2

Approved for public release; distribution is unlimited.

Technical Report 1669 August 1994

A Three-Dimensional Geoacoustic Model for the Catalina Basin

Version 1.0

R. T. Bachman

Accesion For					
NTIS CRA&I DTIC TAB Unannounced Justification					
By					
Availability Codes					
Dist	Avail a Spec				
A-I					

NAVAL COMMAND, CONTROL AND OCEAN SURVEILLANCE CENTER RDT&E DIVISION

San Diego, California 92152-5001

K. E. EVANS, CAPT, USN Commanding Officer R. T. SHEARER
Executive Director

ADMINISTRATIVE INFORMATION

This work was performed under project SUB6 by R. T. Bachman of the Acoustic Branch, Code 541, of the Naval Command, Control and Ocean Surveillance Center, RDT&E Division, San Diego, CA.

Released by C. D. Rees, Head Acoustic Branch Under authority of J. H. Richter, Head Ocean and Atmospheric Sciences Division

SUMMARY

OBJECTIVE

Develop a three-dimensional geoacoustic model for the Catalina Basin.

RESULTS

A three-dimensional database containing water depth, sediment thickness, surface and basement rock type, and surface sediment mean grain size is provided, which, when combined with generic sediment and rock geoacoustic properties (also provided) produces a geoacoustic description of the Catalina Basin. Mean grain size is used as an index to acoustic properties. The database is gridded at 15 seconds of latitude and longitude.

RECOMMENDATIONS

- 1. Incorporate refinements to existing information as they become available.
- 2. Incorporate thinly sedimented areas into the database. For instance, Emery Knoll and the flanks of San Clemente and Catalina Islands are known to be sediment-covered. While probably acoustically significant, this cover is too thin to appear on standard sediment thickness maps.
- 3. Investigate a way to accommodate fluctuations in mean values. Geoacoustic properties are modeled as smooth functions of depth below the sea floor. This is a reasonably good approximation. However, fluctuations about the mean values exist in nature and are probably significant acoustically.
- 4. Resolve anomalies indicated in the database. Relatively thick deposits of coarse sediment are indicated in the database (e.g., up to 0.4-s two-way travel time or about 350 m). It is doubtful that sand has accumulated to such a thickness. These areas occur as small patches along the flanks of Catalina and San Clemente Ridges.

CONTENTS

INTRODUCTION	1
GEOACOUSTIC MODELS	1
CATALINA BASIN	1
SEDIMENT GEOACOUSTIC PROPERTIES	5
FINE-GRAINED SEDIMENT	5
Sound Speed	5
Density	5
Shear Wave Speed	5
Sound Attenuation	6
Shear Wave Attenuation	6
COARSE-GRAINED SEDIMENT	6
Sound Speed	6
Density	6
Shear Wave Speed	7
Sound Attenuation	7
Shear Wave Attenuation	7
BASEMENT GEOACOUSTIC PROPERTIES	9
MIOCENE/PLIOCENE SEDIMENTARY ROCKS	9
IGNEOUS AND METAMORPHIC ROCKS	9
CONSTRUCTING A GEOACOUSTIC MODEL	11
REFERENCES	13
APPENDICES	
A: GEOACOUSTIC MODELING DETAILS	A-1
B: GRIDDED DATABASE	B-1
C: SEDIMENT THICKNESS	C-1
D: WATER DEPTH	D-1
E: MEAN GRAIN SIZE	E-1
F: SEDIMENT AND ROCK SAMPLES	F-1
G: SEAWATER SOUND SPEED AND DENSITY	G-1

FIGURES

1.	Catalina basin and environs	2
2.	Seismic reflection profile	3
3.	Geologic map of Catalina Basin	4
A-1.	In situ and seismic measurements of sound speed	A- 2
A-2.	In situ measurements of sound speed and density compared with predictions	A -3
A-3.	Compilation of sound attenuation versus frequency measurements	A-5
B-1.	Organization of the gridded database	B-2
C-1.	Sediment thickness in the Catalina Basin	C-1
D-1.	Gridded National Ocean Service depth data	D-2
D-2.	Gridded National Ocean Service depth data and interpolations	D-3
D-3.	Bathymetry of Catalina Basin constructed from final gridded bathymetry	D-4
D-4.	SeaBeam survey of Emery Knoll	D-5
D-5.	Bathymetry of Emery Knoll based on gridded depths	D-6
E-1.	Mean grain size contours in phi units	E-2
F-1.	Sediment sample locations, Catalina Basin	F-10
F-2.	Rock sample locations	F-11
G-1.	Seasonal sound speed profiles	G-5
TAB	LES	
1.	Example geoacoustic model	12
B-1.	Geographic database file format	B-3
F-1.	Surface sediment samples	F-2
F-2.	Rock samples	F-9
G-1.	Winter seawater data	G-1
G-2.	Spring seawater data	G-2
G-3.	Summer seawater data	G-3
G-4.	Autumn seawater data	G-4

INTRODUCTION

GEOACOUSTIC MODELS

A geoacoustic model is a description of the sea floor detailing sediment and rock properties of importance in sound propagation, including the variations of those properties with depth in the seabed. The properties considered here are speed and attenuation of compressional and shear waves, and density. Also required are true water depth and profiles of seawater sound speed and density.

The first step in constructing a geoacoustic model is to assemble information on the physical and elastic properties and thickness of the sediments and rocks in the study area. Rarely is enough information available, so recourse is made to predictive methods, generally those of Hamilton (e.g., 1980). These techniques are discussed in appendix A.

CATALINA BASIN

Catalina Basin is an elongated, faulted trough, bordered by the abrupt escarpments of Catalina Island and ridge to the north and northeast, and San Clemente Island and ridge to the southwest. The basin floor itself is quite flat (see figure 1).

There are no drill holes in Catalina Basin, so what is known and believed about the geology is based on samples of surface materials (sediment cores and rock dredge hauls), studies of Catalina and San Clemente Islands, and seismic reflection profiles. Seismic reflection profiling uses a high-energy, low-frequency sound source to image the sea floor and buried reflecting horizons. Figure 2 shows a seismic reflection record from Catalina Basin. Depth to the sea floor and buried reflectors is measured in terms of two-way sound travel (reflection) time.

Basin-fill consists of soft and semiconsolidated turbidite sediment over sedimentary rock (mudstone and shale). The contact between the turbidites and sedimentary rock is an unconformity (a surface representing a period of nondeposition or erosion). The island ridges are sedimentary, volcanic, and intrusive igneous rock (e.g., granite). The ridges and their flanks are either barren of sediment or have a thin veneer of unconsolidated, relatively coarse material. Figure 3 is a surface geologic map of the Catalina Basin area.

A gridding approach was adopted for organizing the data. The area bounded by 32°50′N, 33°35′N, 118°W, and 119°W was divided into rectangular grid cells, each cell being 15 arcseconds on a side. The cells are centered on 7.5, 22.5, 37.5, and 52.5 seconds of latitude and longitude. This results in a grid of 240 cells in the east-west direction by 180 cells in the north-south direction. This became the framework for a geographic database containing cell indices, true water depth, sediment thickness, basement rock type, sea floor rock type (if present), sea floor sediment name (when used to estimate sediment properties), and surface sediment mean grain size. The resulting database of water depth, sediment thickness, and surface geology is used along with generic geoacoustic models discussed below to construct a model specific to each grid cell.

The organization of the geographic database is discussed in appendix B. Sediment thickness is discussed in appendix C, water depth in appendix D, and mean grain size in appendix E. Appendix F gives literature data on sediment and rock samples. Appendix G gives temperature, salinity, and sound speed data useful for constructing a geoacoustic model.

Figure 1. Catalina Basin and environs. Depth contours in meters from U.S. Coast and Geodetic Survey chart 1206N-15. Latitude limits of the database and figure are 32°50′N and 33°35′N; longitude limits are 118°W and 119°W.

Figure 2. Seismic reflection profile running northwest (to the left) through Catalina Basin. From Moore, 1969, plate 5. The interpretation is Moore's. "A" points to older, folded sedimentary rocks. "B" points to slightly folded sediments. "C" points to recent sediment. "C" also marks a buried submarine channel, as does (probably) "D." The vertical scales are seconds of two-way sound travel time and fathoms (assuming a seawater sound speed of 4800 feet per second).

- QTs Sediments and sedimentary rocks of Quaternary and Tertiary (Pliocene and Miocene) age
- QTt Terrace deposits of Quaternary and late Tertiary (?) age
- Tpr Sedimentary rocks of early Pliocene and late Miocene age
- Tm Sedimentary rocks of Miocene age
- Tmv Volcanic rocks of Miocene age
- Tmu Undifferentiated volcanic and sedimentary rocks of Miocene age
- Tmp Plutonic rocks of Miocene age
- Mz Metamorphic rocks of pre-Late Cretaceous age

Figure 3. Geologic map of the Catalina Basin, generalized from Greene and Kennedy (1986). In the explanation above, rock units are arranged from youngest at the top to oldest at the bottom.

SEDIMENT GEOACOUSTIC PROPERTIES

Generic geoacoustic models for coarse and fine sediment follow. The division between "coarse" (sand and coarse silt) and "fine" (fine silt and clay) sediment is a mean grain size of 4.5 phi units (grain size in phi units = -log₂ [grain size in millimeters]; this is roughly the midway point between silty sand and sandy silt in table I of Hamilton and Bachman, 1982). The models are modified according to the water depth and sediment thickness in a grid cell. The model consists of sound speed, density, shear wave speed, sound attenuation, and shear wave attenuation presented as functions of depth below the sea floor. As shown in appendix A, smooth depth functions are only approximations to reality.

The functions for fine-grained sediment are valid to 950 m below the sea floor. This is equivalent to a two-way sound travel time of 1 s, the greatest thickness of unlithified sediment encountered in the basin. Coarse-grained sediment functions are valid to about 50 m at least; for the present they must be extrapolated to accommodate anomalous areas of thick sand.

FINE-GRAINED SEDIMENT (MEAN SIZE = 4.5 PHI OR FINER)

Sound Speed

The equations for sound speed are

$$R = 1.296 - 6.01e - 2 Mz + 2.83e - 3 Mz^{2}$$
 (1)

$$Vp(Z) = Vp(0) + 1.227 Z - 4.73e-4 Z^2$$
 (2)

where Vp is in m/s and Z is depth below the sea floor in m (Hamilton, 1985, table II). Vp(0) is the product of the sound speed ratio R and sound speed in the bottom water. R is computed using mean grain size from the database. The utility of, and rational for, the ratio R is discussed in appendix A.

Density

The equations for density are

$$rho(0) = 2.38 - 1.725e - 1 Mz + 6.89e - 3 Mz^{2}$$
 (3)

$$rho(Z) = rho(0) + 1.395e-3 Z - 6.17e-7 Z^2$$
 (4)

where rho is in g/cm³, Z is depth below the sea floor in m, and Mz is mean grain size in phi units. Equation 3 is from Bachman (1985, table I), and equation 4 is from Hamilton (1976a, table 5).

Shear Wave Speed

The equations for shear wave speed are

$$Vs(Z) = Vp(Z) / K(Z)$$
, where (5)

$$K(Z) = 12.41 - 0.2316 Z$$
 (0 <= Z <= 29.6) (6)

$$K(Z) = 6.02-0.0155 Z$$
 (29.7 <= Z <= 131.2) (7)

$$K(Z) = 4.21-0.0017 Z$$
 (131.3 <= Z <= 1000) (8)

In these equations (derived from Hamilton, 1979, figures 1 and 2), Z is depth below the sea floor in m, Vp is sound speed at Z, and Vs is shear speed in m/s.

Sound Attenuation

The equation for sound attenuation is

$$Z < 775 \text{ m}$$
:
 $kp(Z) = 1.46e-2 + 9.088e-5 Z - 2.285e-7 Z^2$ (9)
 $+ 1.336e-10 Z^3$

$$Z \ge 775 \text{ m}:$$

 $kp(Z) = 0.01$ (10)

where kp is in dB/m/kHz, and Z is in m. This is the mean of the curves in Mitchell and Focke (1980, figure 11). To obtain attenuation in dB per meter of travel, multiply kp by frequency in kHz.

Shear Wave Attenuation

The equations for determining shear attenuation are

$$K = (17.3 \text{ dB/m/kHz}) / \text{kp}(0)$$
, and (11)

$$ks(z) = K kp(Z)$$
 (12)

where ks is in dB/kHz/m, kp is compressional attenuation, and 17.3 dB/m/kHz is a shear attenuation value for mud published by Warrick (1974). The method follows Hamilton (1980, p. 1331-1332). To obtain attenuation in dB per meter of travel, multiply ks by frequency in kHz.

COARSE-GRAINED SEDIMENT (MEAN SIZE COARSER THAN 4.5 PHI)

Sound Speed

The equations for sound speed (after Hamilton, 1976b) are

$$Vp(Z) = K Z^{0.015}$$
, where
 $K = Vp(0) / 0.05^{0.015}$. (14)

$$X = V_p(0) / 0.05^{0.015}. (14)$$

Z is depth in the sediment in meters. Vp(0) is computed as above (equation 1 and text). The constant K is evaluated (equation 14) by assuming that a surface sediment sound speed is measured at a depth of 0.05 m (see Hamilton, 1975, p. 24).

Density

The density of sand is relatively insensitive to the burial depths considered here. Therefore, sand density will be taken as constant with depth:

$$rho = 2.38 - 1.725e - 1 Mz + 6.89e - 3 Mz^{2}$$
 (15)

(see the remarks for equation 2 above).

Shear Wave Speed

The equation for shear speed (after Hamilton, 1976b) is

$$V_S(Z) = K Z^{0.25}$$
, where (16)

$$K = Vs(0) / 0.05^{0.25}$$
, and (17)

$$Vs(0) = Vp(0) / 31.4$$
. (18)

Z is depth in the sediment in meters. The constant K is evaluated (equation 17) by again assuming that surface sediment shear speed is at a depth of 0.05 m. Shear speed at the sea floor (equation 18) follows Hamilton (1979, table II).

Sound Attenuation

Surface sediment sound attenuation as functions of mean grain size (Mz) are

$$0 < Mz <= 2.5 : kp(0) = 0.230 + 0.026 Mz$$
 (19)

$$2.5 < Mz <= 4.1 : kp(0) = -0.158 + 0.181 Mz$$
 (20)

$$4.1 < Mz <= 4.5 : kp(0) = 2.703 - 0.517 Mz$$
 (21)

The variation of sound attenuation with depth is

$$kp(Z) = kp(0) Z^{-1/6}$$
 (22)

Equations 19 through 22 are from Hamilton (1980, figure 19, p. 1330).

Shear Attenuation

A value of 13.2 dB/m/kHz is assigned to surface shear attenuation (ks(0), dB/m/kHz: Kudo and Shima, 1970; see also Hamilton, 1980, p. 1331). At depth, a simple proportionality between kp and ks is proposed (following Hamilton, 1980, p. 1332):

$$ks(Z) = 13.2 kp(Z) / kp(0)$$
 (23)

BASEMENT GEOACOUSTIC PROPERTIES

The rock types present in the Catalina Basin are

Tpr Undifferentiated sedimentary rocks of early

Pliocene and late Miocene age

Tm Undifferentiated sedimentary rocks of Miocene

age

Tmv Volcanic rocks of Miocene age

Tmu Undifferentiated volcanic and sedimentary rocks of

Miocene age

Tmp Plutonic and hypabyssal rocks of Miocene age

Mz Metamorphic rocks of pre-Late Cretaceous age

(see figure 3).

MIOCENE/PLIOCENE SEDIMENTARY ROCKS

Tpr, Tm, and Tmu, taken together, probably correlate with "Unit C" of Ridlon (1968). Where sampled, Ridlon's Unit C is finely crystalline limestone. On San Clemente Island, Miocene sedimentary rocks are predominantly siltstone, shale, diatomite, and limestone (Olmsted, 1958). Following Ridlon (1968, p. 33), an average sound speed of 2300 m/s is assigned to the Mio-Pliocene sedimentary rocks of the Catalina Basin area. The complete geoacoustic model for Tpr, Tm, and Tmu is

Vp = 2300 m/s

Vs = 885 m/s

 $rho = 2.21 \text{ g/cm}^3$

kp = 0.009 dB/m/kHz

ks = 3.4 dB/m/kHz

Vs is from Hamilton (1979, table I), density is from Hamilton (1978, figure 1), kp is the average of Mitchell and Focke (1980, figure 11, deep sediment), and ks is from McDonal et al., (1958).

IGNEOUS AND METAMORPHIC ROCKS

The igneous and metamorphic rock units present are Tmp, Tmv, and Mz. A single, generic model is included for these (from an unpublished study of basalt acoustic basement in the western Atlantic Ocean).

Vp = 4500 m/s

Vs = 2400 m/s

kp = 0.03 dB/m/kHz

ks = 0.07 dB/m/kHz

 $rho = 2.58 \text{ g/cm}^3$

CONSTRUCTING A GEOACOUSTIC MODEL

The construction of a geoacoustic model for a specific location proceeds as follows.

- 1. Obtain the water depth, surface sediment grain size, and sediment thickness for the desired location from the database. If the sea floor is rock, then select the appropriate model above and skip the remainder of this section.
- 2. Using water depth, interpolate the appropriate table in appendix G to find the bottom water sound speed and density.
- 3. Compute sound speed ratio (R) from mean grain size using equation 1.
- 4. Determine Vp(0) as the product of bottom water sound speed and the sound speed ratio R.
- 5. Knowing the velocity-depth function (equation 2 or 13) and sediment thickness in seconds of two-way travel time, integrate to find sediment thickness in meters.
- 6. Compute acoustic properties below the sea floor.

For example, assume that a winter-season model is required for 33°12'37.5"N and 118°35' 07.5"W. From the database, the depth at this location is 1303 m, sediment thickness is 0.20 s, and mean grain size is 6.39 phi.

Linearly interpolating the winter profile of appendix G, we obtain 1485.0 m/s and 1.0335 g/cm³ for seawater sound speed and density at this depth.

The sound speed ratio (R) computed using equation 1 is 1.028. Multiplying R by 1485.0 m/s yields 1526 m/s as sediment sound speed at the sea floor. The sound speed depth function (equation 2) is

$$Vp = 1526 + 1.227 Z - 4.73e-4 Z^2$$

Integrating until two-way travel time is 0.20 s yields a thickness of 162 m. Equations 3 through 12 yield density, shear speed, and attenuations. Table 1 is an example geoacoustic model for the situation described above.

Table 1. Example geoacoustic model.

	Z	Vp	Vs	kp	ks	rho
Seawater	0	1485.0		-		1.0335
	0	1526	123	0.0146	17.30	1.559
	1	1527	125	0.0147	17.41	1.560
	2	1528	128	0.0148	17.51	1.562
	3	1530	131	0.0149	17.63	1.563
	4	1531	134	0.0150	17.73	1.565
				•		
				•		
	100	1644	368	0.0215	25.43	1.693
	101	1645	369	0.0215	25.49	1.694
Sediment	102	1646	371	0.0216	25.54	1.695
	103	1647	373	0.0216	25.60	1.696
				•		
				•		
	159	1709	434	0.0237	28.06	1.765
	160	1710	434	0.0237	28.10	1.766
	161	1711	435	0.0237	28.13	1.768
	162	1712	435	0.0238	28.16	1.769
Mudstone	162	2300	885	0.009	3.4	2.21

NOTES:

Z = depth below sea floor, m

Vp = sound speed, m/s

Vs = shear wave speed, m/s

kp = compressional wave attenuation factor, dB/m/kHz

ks = shear wave attenuation factor, dB/m/kHz

rho = density, g/cm^3

REFERENCES

- Bachman, R.T., 1985, Acoustic and Physical Property Relationships in Marine Sediment; J. Acoust. Soc. Am., 78:616-621.
- Greene, H.G., and M.P. Kennedy (eds.), 1986, Geology of the Mid-Southern California Continental Margin: Area 2 of 7; California Division of Mines and Geology.
- Hamilton, E.L., 1975, Acoustic and Related Properties of the Sea Floor: Shear Wave Velocity Profiles and Gradients; Naval Undersea Center Technical Note NUC TP 472, July.
- Hamilton, E.L., 1976a, Variation of Density and Porosity with Depth in Deep-Sea Sediments; J. Sediment. Petrology, 46:280-300.
- Hamilton, E.L., 1976b, Shear-Wave Velocity Versus Depth in Marine Sediments: A new; Geophysics, 41:985-996.
- Hamilton, E.L., 1978, Sound Velocity-Density Relations in Sea-Floor Sediments and Rocks; J. Acoust. Soc. Am., 63:366-377.
- Hamilton, E.L., 1979, Vp/Vs and Poisson's Ratios in Marine Sediments and Rocks; J. Acou Soc. Am., 66:1093-1101.
- Hamilton, E.L., 1980, Geoacoustic Modeling of the Sea Floor; J. Acoust. Soc. Am., 68:1313-1340.
- Hamilton, E.L., 1985, Sound Velocity as a Function of Depth in Marine Sediments; J. Acoust. Soc. Am., 78:1348-1355.
- Hamilton, E.L., and R.T. Bachman, 1982, Sound Velocity and Related Properties of Marine Sediments; J. Acoust. Soc. Am., 72:1891-1904.
- Kudo, K., and E. Shima, 1970, Attenuation of Shear Waves in Soil; Bull. Earthquake Res. Inst., Univ. Tokyo, 48:145-158.
- McDonal, F.J., F.A. Angona, R.L. Mills, R.L. Sengbush, R.G. Van Nostrand, and J.E. White, 1958, Attenuation of Shear and Compressional Waves in Pierre Shale; *Geophysics*, 23:421-439.
- Mitchell, S.K., and K.C. Focke, 1980, New Measurements of Compressional Wave Attenuation in Deep Ocean Sediments; J. Acoust. Soc. Am., 67:1582-1589.
- Moore, D.G., 1969, Reflection Profiling Studies of the California Continental Borderland: Structure and Quaternary Turbidite Basins; Geol. Soc. Am. Special Paper 107.
- Olmsted, F.H., 1958, Geologic Reconnaissance of San Clemente Island California; U.S. Geol. Survey Bull. 1071-B.
- Ridlon, J.B., 1968, San Clemente Island Rocksite Project: Offshore Geology Part 1. Detailed Survey off Eel and Lost Points Area; Naval Weapons Center Technical Paper NWC TP 4442 Part 1.
- Warrick, R.E., 1974, Seismic Investigation of a San Francisco Bay Mud Site; Bull. Seismol. Soc. Am., 64:375-385.

APPENDIX A: GEOACOUSTIC MODELING DETAILS

COMPRESSIONAL WAVE SPEED

Sea floor sediment sound speed is conveniently expressed as the ratio between surface sediment sound speed and seawater sound speed at the sea floor (Hamilton, 1971; Rajan and Frisk, 1992). For a given sediment type, this ratio is constant. Knowing sound speed ratio and the seawater sound speed profile enables a determination of surficial sediment sound speed at any water depth. Sound speed ratio may be estimated from sediment type (Hamilton and Bachman, 1982) or from empirical relationships with other sediment properties (Bachman, 1989; Richardson and Briggs, 1993).

Average profiles of sound speed with depth below the sea floor have been determined for various sediment types by Hamilton (1985). These velocity-depth functions are based mostly on wide-angle seismic reflection methods (Le Pichon et al., 1968; Houtz et al., 1968; Bachman et al., 1983). Seismic velocity-depth measurements from surface ships could not be independently verified until subsurface logging methods were adapted to Deep Sea Drilling Project (DSDP) and Ocean Drilling Project (ODP) drill holes.

Figure A-1 compares the seismic measurements of Bachman and Hamilton from the Ontong Java Plateau (Johnson et al., 1978) with down-hole logging in the same area (Fulthorpe et al., 1989). These results validate seismic sound speed determinations. Figure A-2 compares logging results from the Labrador Sea (Jarrard et al., 1989) with Hamilton's (1979a) prediction for the same sediment type (deep-sea terrigenous turbidites; similar to the fill in Catalina Basin). Figure A-2 shows that Hamilton's methods (based on seismic measurements) reliably predict the average trend of in situ sound speed profiles. Figures A-1 and A-2 also show variations about the trend, which are probably acoustically significant. These might be best modeled statistically as in Gilbert (1980) or Holthusen and Vidmar (1982).

DENSITY

Lacking measurements, sediment density at the sea floor can be estimated from other measured parameters (e.g., Bachman, 1985; Richardson and Briggs, 1993), or from tables of averages for the various sediment types (Hamilton and Bachman, 1982).

Density-depth functions were discussed by Hamilton (1976). This work was based on laboratory measurements, which were then corrected to in situ conditions using theory and consolidation test results from the geotechnical literature. As with sound speed profiles, confirmation of Hamilton's approach had to await down-hole logging. Figure A-2 shows a sediment density log from ODP hole 646 in the Labrador Sea (Jarrard et al., 1989, figure 1), along with Hamilton's prediction for that sediment type. The average trend is accurately predicted. Again, high-frequency variations are seen.

SHEAR WAVE SPEED

Hamilton's (1979b) methods of relating shear to compressional wave speeds are used. To my knowledge, no down-hole data are available to test the results.

Figure A-1. In situ and seismic measurements of sound speed. Down-hole logging results from the Ontong Java Plateau compared with the seismic measurements of Bachman and Hamilton (Johnson et al., 1978). From Fulthorpe et al., 1989, figure 6.

Figure A-2. In situ measurements of sound speed and density compared with predictions. Down-hole logging results from the Labrador Sea compared with Hamilton's average relationships for sound speed (1979a) and density (1976) in the same sediment type. From Jarrard et al., 1989, figures 1 and 12. Logging began at 206 m sub-bottom. Note different depth scales.

COMPRESSIONAL WAVE ATTENUATION

Attenuation is expressed in terms of dB/m/kHz which, when multiplied by the frequency of sound in kHz, gives attenuation in dB/m of path length. This assumes that attenuation varies roughly linearly with frequency. More precisely, the assumption is that log attenuation (dB/m),

when plotted against log frequency, results in a line with a slope of approximately 1 (i.e., attenuation in dB/m = kfⁿ, where k has units of dB/m/kHz, f is frequency in kHz, and n is approximately 1). This relationship has been used to extrapolate attenuation measurements made at high frequencies to the lower frequencies of interest in oceanic sound propagation. The assumption that n is close enough to unity to ignore the difference has been misconstrued as a claim that n is identically 1 (e.g., Kibblewhite, 1989) and has thus been criticized on theoretical grounds (e.g., Stoll, 1980, 1985). Recently, Kibblewhite (1989) tried to reconcile measurements with theory.

Figure A-3 is a compilation from Kibblewhite (1989, figure 8) for silts and clays. On the basis of this figure and other considerations discussed in the text, Kibblewhite makes a case for an f¹ attenuation-frequency relationship above about 10 kHz and below about 1 kHz (p. 729); between these frequency regimes a nonlinear region is postulated. However, a line through the middle of the "silts and clays" region with a slope of 1 passes through the mid-frequency data cluster. An eye-fitted line has a slope of 1.2 over the range 1 to 10,000 Hz. Therefore, the details of the variation of attenuation with frequency is ignored, and an approximate f¹ relationship is used in this report.

The attenuation-depth curves of Mitchell and Focke (1980, figure 11) were used to establish a mean attenuation profile. Kibblewhite (1989, p. 720-721) criticizes these measurements because an f¹ dependence was assumed in the data reduction. However, Kibblewhite includes them in his figure 8, and they fall within his mid-frequency cluster of data. Because the values are reasonable when compared with other data, because they are based on in situ seismic measurements, and because they include depth dependence, the results of Mitchell and Focke are used in this report. In situ seismic measurements are especially useful because they include all energy loss mechanisms: intrinsic attenuation, scattering, multiple reflection, shear-conversion, etc.

Figure A-3. Compilation of sound attenuation versus frequency measurements. Compressional wave attenuation measurements in silt-clay sediment and sedimentary rock compiled by Kibblewhite (1989, figure 8). The few mid-frequency measurements available suggest to Kibblewhite that the relationship between frequency and attenuation is nonlinear, as required by theory. To a first approximation, however, a line with a slope of 1 provides a reasonable fit to the existing data.

REFERENCES (APPENDIX A)

- Bachman, R.T., 1985, Acoustic and Physical Property Relationships in Marine Sediment; J. Acoust. Soc. Am., 78:616-621.
- Bachman, R.T., 1989, Estimating Velocity Ratio in Marine Sediment; J. Acoust. Soc. Am., 86:2029-2032.
- Bachman, R.T., E.L. Hamilton, and J.R. Curray, 1983, Sediment Sound Velocities from Sonobuoys: Sunda Trench and Forearc Basins, Nicobar and Central Bengal Fans, and Andaman Sea Basins; J. Geophys. Res., 88:9341-9346.
- Fulthorpe, C.S., S.O. Schlanger, and R.D. Jarrard, 1989, In Situ Acoustic Properties of Pelagic Carbonate Sediments on the Ontong Java Plateau; J. Geophys. Res., 95:4025-4032.
- Gilbert, K.E., 1980, Reflection of Sound from a Randomly Layered Ocean Bottom; J. Acoust. Soc. Am., 68:1454-1458.
- Hamilton, E.L., 1971, Prediction of In-Situ Acoustic and Elastic Properties of Marine Sediments; *Geophysics*, 36:266-284.
- Hamilton, E.L., 1976, Variation of Density and Porosity with Depth in Deep-Sea Sediments; J. Sediment. Petrology, 46:280-300.
- Hamilton, E.L., 1979a, Sound Velocity Gradients in Marine Sediments; J. Acoust. Soc. Am., 65:909-922.
- Hamilton, E.L., 1979b, Vp/Vs and Poisson's Ratios in Marine Sediments and Rocks; J. Acoust. Soc. Am., 66:1093-1101.
- Hamilton, E.L., 1985, Sound Velocity as a Function of Depth in Marine Sediments; J. Acoust. Soc. Am., 78:1348-1355.
- Hamilton, E.L. and R.T. Bachman, 1982, Sound Velocity and Related Properties of Marine Sediments; J. Acoust. Soc. Am., 72:1891-1904.
- Holthusen, H., and P.J. Vidmar, 1982, The Effect of Near-Surface Layering on the Reflectivity of the Ocean Bottom; J. Acoust. Soc. Am., 72:226-234.
- Houtz, R., J. Ewing, and X. Le Pichon, 1968, Velocity of Deep-Sea Sediments from Sonobuoy Data; J. Geophys. Res., 73:2615-2641.
- Jarrard, R.D., K.A. Dadey, and W.H. Busch, 1989, Velocity and Density of Sediments of Erik Ridge, Labrador Sea: Control by Porosity and Mineralogy; in Srivastava, S.P., M.A. Arthur, B. Clement, et al., Proc. ODP, Sci. Results, 105, College Station, TX (Ocean Drilling Program), 811-835.
- Johnson, T.C., E.L. Hamilton, R.T. Bachman, and W.H. Berger, 1978, Sound Velocities in Calcareous Oozes and Chalks from Sonobuoy Data: Ontong Java Plateau, Western Equatorial Pacific; *J. Geophys. Res.*, 83:283-288.
- Kibblewhite, A.C., 1989, Attenuation of Sound in Marine Sediments: A Review with Emphasis on New Low-Frequency Data; J. Acoust. Soc. Am., 86:716-738.
- Le Pichon, X., J. Ewing, and R.E. Houtz, 1968, Deep-Sea Sediment Velocity Determination Made While Reflection Profiling; J. Geophys. Res., 73:2597-2614.

- Mitchell, S.K., and K.C. Focke, 1980, New Measurements of Compressional Wave Attenuation in Deep Ocean Sediments; *J. Acoust. Soc. Am.*, 67:1582-1589.
- Rajan, S.D., and G.V. Frisk, 1992, Seasonal Variations of the Sediment Compressional Wave-Speed Profile in the Gulf of Mexico; *J. Acoust. Soc. Am.*, 91:127-135.
- Richardson, M.D., and K.B. Briggs, 1993, On the Use of Acoustic Impedance Values to Determine Sediment Properties; *Proc. Inst. Acoustics*, v. 15, pt. 2, p. 15-24.
- Stoll, R.D., 1980, Theoretical Aspects of Sound Transmission in Sediments; J. Acoust. Soc. Am., 68:1341-1350.
- Stoll, R.D., 1985, Marine Sediment Acoustics; J. Acoust. Soc. Am., 77:1789-1799.

APPENDIX B: GRIDDED DATABASE

The geographic database is contained on the accompanying disk in the file CATLNADB.010. Each 32-character record pertains to a grid cell, which is a rectangular area of s.de-length equal to 15 seconds of latitude and longitude. Except along the periphery of the database area, each grid cell includes its eastern and southern borders and excludes its northern and western borders. Cells along the northern periphery include their northern border, and cells along the western periphery include their western border. This is illustrated in figure B-1. The first record of the file is for the northwest corner of the area, and the last record is for the southeast corner. In between, the records progress from west to east while latitude is held constant, then latitude is decremented, and the records progress from west to east again. The data format is shown in table B-1.

Given the row and column indices of a grid cell, latitude (center of grid cell, degrees) = 33.58541667 - row_index * 4.16667e-3, and longitude (center of grid cell, degrees) = 119.00208333 - col_index * 4.16667e-3. Given latitude and longitude in decimal degrees (positive north and west), row_index = 180 - INT ((latitude - 32.833333) * 240), and col_index = 240 - INT ((longitude - 118.) * 240).

The data file does not contain records for grid cells for which depth is not available.

Figure B-1. Organization of the gridded database.

Table B-1. Geographic database file format.

Columns	Format	Permissable Values	Comments	
1 – 3	13	1 – 180	Row index of grid cell	
4-6	13	1 – 240	Column index of grid cells	
7 – 10	14	-999 0 - 9999	True water depth, m999 indicates land.	
11 – 13	F3.2	0.00 - 1.00	Layer P2 thickness, 2-way s	(1)
14 – 16	F3.2	0.00 - 1.00	Layer P1 thickness, 2-way s	(1)
17 – 19	F3.2	0.00 - 1.00	P2 + P1 thickness, 2-way s	(1)
20 - 22	A3		Basement rock	
		Tmp	Miocene plutonic & hypabyssal	
		Tmu	Miocene volcanic & sedimentary (undifferentiated)	
		Tm	Miocene sedimentary	
		Tmv	Miocene volcanic	
		Tpr	Late Miocene – Early Pliocene sedimentary (undifferentiated)	
		Mz	Pre-Late Cretaceous metamorphic	
23 – 25	A3	see basement rock above	Sea floor rock	
26 – 29	A 4		Sea floor sediment name	
		csnd	coarse sand	
		sand	sand	
		fsnd	fine sand	
		mud	mud (assumed to be silt)	
30 – 32	F3.2		Mean grain size, phi units	

NOTE: (1) Teng, 1985 (see appendix C).

APPENDIX C: SEDIMENT THICKNESS

Sediment thickness was obtained from Teng (1985, figures 31 and 32). Teng subdivides the soft sediment column into two units, which he refers to as "P2" (the upper unit) and "P1." He postulates an unconformity (a period of nondeposition) between the two units, and if that is the case, there should be a discontinuity (probably slight) in the sediment property profiles at that point. No information is available with which to quantify such a discontinuity, and the possibility was ignored. Figure C-1 is a composite, summing the thicknesses of P1 and P2. The thickness data were gridded by assigning a uniform thickness to the region between contours equal to the average of those contours. For instance, the region between 0.2 and 0.3 s was assigned a uniform thickness of 0.25 s. Greene and Kennedy (1986) point out that ridges and ridge flanks, rather than being barren, are apt to have up to several meters of sediment cover.

Figure C-1. Sediment thickness in the Catalina Basin (from Teng, 1985, figures 31 and 32). Contours are in tenths of seconds of two-way sound travel time. Areas mapped as devoid of sediment may have thicknesses up to 3 m according to Greene and Kennedy, 1986).

REFERENCES (APPENDIX C)

- Greene, H.G., and M.P. Kennedy, 1986, Geology of the Mid-Southern California Continental Margin; California Continental Margin Map Series, California Department of Mines and Geology.
- Teng, L.S-Y., 1985, Seismic Stratigraphic Study of the California Continental Borderland Basins: Structure, Stratigraphy, and Sedimentation; Unpubl. Ph.D. thesis, Univ. Southern California.

APPENDIX D: WATER DEPTH

Gridded bathymetric data for the area were obtained from the National Geophysical Data Center (NGDC; NGDC data announcement 87-MGG-12). These data were collected by the National Ocean Service (NOS) and predecessor organizations and are the basic data NOS uses to chart U.S. coastal waters. The data are gridded at a spacing of 15 seconds of latitude and longitude. Depths are referred to mean lower low water.

The gridding process used by NOS consisted of averaging all soundings occurring within a grid square and assigning the mean as the depth at the center of the square. If no soundings for a square were available, no depth was assigned (i.e., interpolation was not used). Figure D-1 illustrates the depth grid for the area as obtained from NGDC; whitespace indicates land or grid points lacking a depth.

As a quality-check, east-west profiles were plotted and compared with NOS bathymetric charts NI 11-7 and NI 11-10. On the basis of these comparisons, eight data points were identified as suspect and were not incorporated into the database.

Planar interpolation was then used to fill those empty grid squares of figure D-1 that are within Catalina Basin or on the San Clemente and Catalina Island ridges. For isolated empty squares and isolated clusters of a few empty squares, roughly equilateral triangles with data points as vertices and centered on the empty square were used. When a relatively large area lacked depth values, Delauney triangles were constructed and used for interpolations. These triangularize the data points in such a way that any measurement shares vertices with each of its immediate neighbors, any two adjacent measurements are linked by an edge, and all triangles are as equilateral as possible (see Watson, 1983, 1985, 1988; Watson and Philip, 1987). Interpolation was applied recursively, so that a given interpolation may be based on prior interpolations.

The resulting data set (illustrated in figures D-2 and D-3), was checked by again plotting east-west profiles to compare the interpolations with the original NOS data. No anomalies were noted. And finally, the data were computer-contoured and compared with a SeaBeam survey of Emery Knoll. The results are shown in figures D-4 and D-5. The SeaBeam survey was conducted by J.M. Stevenson (NRaD, Code 541, 30 September 1992), who also performed the contouring. In figure D-4 (SeaBeam data), peripheral contours should be ignored because the survey did not obtain sufficient data in these areas for reliable contouring. The interpolated NOS data agree quite well with the SeaBeam data for Emery Knoll proper.

Figure D-1. Gridded National Ocean Service depth data. Whitespace indicates land or grid locations that lack depths.

Figure D-2. Gordded National Ocean Service depth data and interpolations. Whitespace indicates land or grid locations that lack depths.

Figure D-3. Bathymetry of Catalina Basin constructed from final gridded bathymetry.

Figure D-4. SeaBeam survey of Emery Knoll. The soundings were gridded at a spacing of 100 m and computer-contoured. The survey concentrated on Emery Knoll, and contours away from the knoll are unreliable. The soundings assume a seawater sound speed of 1500 m/s.

Figure D-5. Bathymetry of Emery Knoll based on gridded depths. Contoured from NOS data and interpolations. Compare with figure D-4, but keep in mind that NOS depth data are corrected for sound speed in seawater.

REFERENCES (APPENDIX D)

- Watson, D.F., 1983, Two Images for Three Dimensions; *Practical Computing*; August, 104-107.
- Watson, D.F., 1985, Natural Neighbour Sorting; Australian Computer Journal; 17:189-193.
- Watson, D.F., 1988, Natural Neighbor Sorting on the n-Dimensional Sphere; *Pattern Recognition*, 21:63-67.
- Watson, D.F., and G.M. Philip, 1987, Neighborhood-Based Interpolation; Geobyte, 2:12-16.

APPENDIX E: MEAN GRAIN SIZE

Mean grain size is a commonly available index property from which acoustic and other sediment parameters may be computed. In this study, it is used to compute sound speed ratio and density and as the criterion separating "fine" from "coarse" sediment for geoacoustic modeling. Mean grain size as used herein includes both mean and median (see Folk and Ward, 1957).

Literature values of surface sediment mean grain size (appendix F) were assembled and used to generate Delauney triangles. This triangulation (see appendix D) was in turn used to interpolate for mean grain size in grid cells lacking measurements. Interpolations in the vicinity of Catalina Island were considered tenuous, so the surface geology of Welday and Williams (1975) was used as a guide to mean size as follows.

SEDIMENT NAME	MEAN SIZE, PHI UNITS
Coarse sand	0.5
Sand	1.5
Fine sand	3.0
Mud	5.4

Figure E-1 is the resulting contour map of mean grain size.

Figure E-1. Mean grain size contours in phi units. Black areas are rock outcrops.

REFERENCES (APPENDIX E)

- Folk, R.L., and W.C. Ward, 1957, Brazos River Bar: A Study of the Significance of Grain-Size Parameters; J. Sediment. *Petrology*, 27:3-26.
- Welday, E.E., and J.W. Williams, 1975, Offshore Surficial Geology of California; California Div. Mines and Geology Map Sheet 26.

APPENDIX F: SEDIMENT AND ROCK SAMPLES

Literature data on sediment and rock samples are assembled in tables F-1 (surface sediment samples) and F-2 (rock samples). Figures F-1 and F-2 show the sample locations.

The references below are keyed to the tables. Several of the references were obtained from the National Geophysical Data Center (NGDC). These are noted, along with the NGDC reference file number.

- Vedder, J.G., L.A. Beyer, A. Junger, G.W. Moore, A.E. Roberts, J.C. Taylor, and H.C. Wagner, 1974, Preliminary Report on the Geology of the Continental Borderland of Southern California; U.S. Geological Survey Miscellaneous Field Studies Map MF-624 and accompanying report.
- 002 NGDC MGG file number 06055001.
- OO3 Gaal, R A.P., 1966, Marine Geology of the Santa Catalina Basin Area, California; unpubl. Ph.D. thesis, Univ. of Southern California.
- Bockman, P., D.S. Hill, and E. Achstetter, 1966, A Summary of Sediment Size, Composition, and Engineering Properties for PMR Project 121/02; September October 1965;
 Naval Oceanographic Office, Geological Laboratory Branch Laboratory Item 277.
 NGDC MGG file number 09005011.
- Ridlon, J.B., 1969, San Clemente Island Rocksite Project: Offshore Geology Part 2.
 Reconnaissance Survey Around the Island; Naval Undersea Research and Development Center Technical Paper NUC TP 156.
- Emery, (K.O., ?), (date not provided), Submarine Canyons of Southern California; Alan Hancock Pacific Expeditions, v. 27, pt. 1. NGDC MGG file number 27025001.
- Oser, R., J. Coleman, E. Achstetter, D. Hill, W. Johnson, C. Ross, J. Knoop, and V. Williams, 1967, A Summary of Engineering Properties, Sediment Size, and Composition Analyses of Cores from the Continental Borderland near San Clemente Island; October 1966 December 1966. Deep Submergence System Project. U.S. Naval Oceanographic Office, Laboratory Branch Laboratory Item 303. NGDC MGG file number 09595003.

Table F-1. Surface sediment samples.

SAMPLE NO.	LAT	LATITUDE dd mm.m	ppp TONG	LONGITUDE ddd mm.m	REF	SAMPLE ID	DEРТН m	INTERVAL	NAME	MEAN MEDIAN SIZE SIZE	DENSITY g/cm	POROSITY %
							CATALIN	CATALINA BASIN				
2.0	33	22.5	118	47.5	003	AHF 8315	1331	0-3	CISi	7.89		
3.0	33	17.7	118	53.8	003	AHF 8316	1333	0 - 3	SiCI	80.8		
4.0	33	14.2	118	37.5	003	AHF 8317	1298	0 - 3	SiCI	7.96		
0.9	32	55.5	118	20.3	003	AHF 8320	1260	0 - 3	CISi	7.81		
7.0	33	7.5	118	0.6	003	AHF 8321	1027	0 - 3	CISi	6.30		
12.0	33	10.9	118	31.9	903	AHF 8422	910	0 - 3	SiSa	4.04		
13.0	33	10.9	118	22.8	003	AHF 8423	1184	0 - 3	CISi	7.49		
14.0	33	19.3	118	43.0	003	AHF 8424	1314	0 - 3	SiCI	7.72		
15.0	33	26.7	118	51.8	003	AHF 8425	1243	0 - 3	CISi	7.82		
18.0	33	13.3	118	12.3	003	AHF 8686	1088	0 - 3	SSC	6.02		
19.0	33	9.5	118	14.6	(003	AHF 8687	1092	0 - 3	CISi	7.00		
20.0	33	3.0	118	16.6	003	AHF 8688	1109	0 - 3	SiCl	7.39		
23.0	32	58.7	118	26.4	003	AHF 8691	1151	0 - 3	Sa	1.82		
24.0	33	5.9	118	24.5	003	AHF 8692	1116	0 - 3	CISi	7.71		
26.0	33	12.7	118	30.5	003	NOTS-G-2	1371	0 - 3	SSC	6.32		
27.0	33	10.2	118	36.0	003	NOTS-G-3	1463	0 - 3	SiCI	8.32		
28.0	33	14.2	118	19.2	003	NOTS 4B	1088	0 - 3	SiSa	5.09		
29.0	33	11.5	118	21.3	003	NOTS 5	1153	0 - 3	CISi	69.9		
30.0	33	5.5	118	27.5	903	NOTS 6	1157	0 - 3	CISi	7.14		
38.0	33	19.2	118	42.3	003	NCEL 1	1317	0-3	CISi	7.80		
39.0	33	15.2	118	39.0	903	NCEL 2	1311	0 - 3	SiCI	8.13		
40.0	33	10.7	118	36.3	903	NCEL 3	1297	0 - 3	CISi	7.48		
41.0	32	56.2	118	20.0	003	NCEL 4	1243	0-3	CISi	7.83		
55.0	32	58.6	118	28.5	007	DSSP 1	1134	0 - 15	SSC	88.9		
55.1	32	58.6	118	28.5	007	DSSP 1	1134	15 - 30	SiCl	7.81	1.31	79.8
56.0	32	26.7	118	20.1	004	DSSP 2	1235	0 - 15	CISi	7.72		
56.1	32	26.7	118	20.1	002	DSSP 2	1235	15 - 22	SiCI	99.8	1.26	83.0
56.2	32	26.7	118	20.1	001	DSSP 2	1235	40 - 47	SiCi	8.35	1.34	78.8
56.3	32	26.7	118	20.1	004	DSSP 2	1235	- 1	SiCl	8.72	1.33	79.4
56.4	32	26.7	118	20.1	007	DSSP 2	1235	72 – 83	SiCI	8.34		
0.09	33	3.8	118	27.2	007	DSSP 6	1097	0 - 15	CISi	7.47		
60.1	33	3.8	118	27.2	000	DSSP 6	1097	15 – 22	Ü	9.92	1.30	80.7

Table F-1. Surface sediment samples (Continued).

POROSITY %		77.0	600	78.1		78.0	76.2	71.9		81.7	79.2			81.8	7.77	63.5		80.7			80.9	72.2			80.7	78.9	75.3			0
DENSITY g/cm		1.37	1,71	1.35		1 34	1.38	1.46		1.29	1.34			1.29	1.36	1.62		1.29			1.31	1.46			1.32	1.33	1.40			
MEAN MEDIAN SIZE SIZE																														
	<u>:</u>	9.52	7.73	8.74	7.90	7.08	8.06	7.65	8.33	9.18	8.73	8.43	8.29	8.68	8.90	7.87	7.87	8.18	8.12	7.49	8.99	8.22	7.16	7.90	8.75	8.83	8.59	7.16	7.08	27.0
NAME	ned)	ב ב	CISi	SiCi	SiCl	CIS	SiCI	CISi	SiCl	SiCl	SiCi	SiCl	SiCl	SiCi	SiCi	CISi	CISi	SiCl	SiCi	CISi	SiCi	SiCl	SSC	SiCI	SiCl	SiCi	SiCl	CISi	CISi	:010
INTERVAL cm	CATALINA BASIN (continued)	40 - 47 $65 - 77$	0 - 15	13 – 22 40 – 47	92 – 29	0 - 15	80 – 87	100 - 112	0 - 15	15 – 22	40 – 47	<i>22 – 21</i>	0 - 15	15 - 22	40 - 47	80 - 90	0 - 15	15 - 22	22 - 48	0 - 15	15 - 22	40 - 47	47 – 65	0 - 15	15 - 22	40 - 47	80 - 87	87 - 104	0 - 15	75 27
DEPTH	ALINA BA	1097	1244	1244	1244	1198	1198	1198	1244	1244	1244	1244	1240	1240	1240	1240	1185	1185	1185	1158	1158	1158	1158	1130	1130	1130	1130	1130	1134	70
SAMPLE ID	CAI	DSSP 6 DSSP 6	DSSP 7	DSSP 7	DSSP 7	DSSP 10	DSSP 10	DSSP 10	DSSP 14	DSSP 14	DSSP 14	DSSP 14	DSSP 15	DSSP 15	DSSP 15	DSSP 15	DSSP 19	DSSP 19	DSSP 19	DSSP 20	DSSP 20	DSSP 20	DSSP 20	DSSP 21	DSSP 24	10 4004				
REF		007	007	90	002	007	00	000	007	007	007	002	002	002	007	004	002	002	002	007	002	002	002	007	002	002	002	000	002	700
ITUDE mm.m		27.2	33.6	33.6	33.6	28.3	28.3	28.3	30.7	30.7	30.7	30.7	33.1	33.1	33.1	33.1	26.6	26.6	26.6	22.2	22.2	22.2	22.2	25.1	25.1	25.1	25.1	25.1	18.7	19.7
LONGITU ddd mm		118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118	118
LATITUDE dd mm.m		3.8	7.7)./ 7.7	7.7	3.2	3.2	3.2	6.7	6.7	6.7	6.7	8.2	8.2	8.2	8.2	6.5	6.5	6.5	7.1	7.1	7.1	7.1	5.5	5.5	5.5	5.5	5.5	4.0	0.7
LATI dd 1		33	33	3 8	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	11
SAMPLE NO.		60.2	61.0	61.2	61.3	62.0	62.2	62.3	0.99	66.1	66.2	66.3	67.0	67.1	67.2	67.3	70.0	70.1	70.2	71.0	71.1	71.2	71.3	72.0	72.1	72.2	72.3	72.4	75.0	15.1

Table F-1. Surface sediment samples (Continued).

LATITUDE dd mm.m	TTUDE mm.m	LONGITUI ddd mm.	ITUDE mm.m	REF	SAMPLE ID	DEPTH m	INTERVAL cm	NAME		MEAN MEDIAN SIZE SIZE	DENSITY g/cm	POROSITY %
					CATA	LINA BA	CATALINA BASIN (continued)	ued)				
7.8		118	18.3	007	DSSP 26	1203	0 – 15	SiCl	8.04			
7.8		118	18.3	002	DSSP 26	1203	15 - 22		5.15		1.31	79.7
7.8		118	18.3	000	DSSP 26	1203	40 - 47	SiCl	8.88		1.37	77.0
4.9		118	22.2	000	DSSP 35	1134	15 - 22	CISi	7.61		1.40	76.1
6.	_	118	22.2	000	DSSP 35	1134	40 - 47	SiCl	7.99		1.41	74.6
54.9		118	22.2	007	DSSP 35	1134	80 – 87	SiCi	7.21		1.49	70.0
}		2		3	CATALIN	VA RIDG	CATALINA RIDGE/ISLAND SLOPE	SLOPE	}			
~	~	118	38.5	003	AHF 8314	105	0-3	CISi	5.90			
1	₹ ₹	118	40.0	003	AHF 8426	728	0-3	SSC	5.91			
10	ĸ	118	24.6	003	NOTS-G-1	1689	0 - 3	SSC	6.74			
	e	118	1.1	003	NOTS 18	919	0 - 3	CISi		7.38		
\sim	6:	118	31.0	900	6818	362		Si		5.16		
\sim	6	118	31.1	900	6819	379		Si		5.01		
•	7.	118	32.2	900	6820	529		SaSi		4.64		
	23.2	118	30.0	900	6822	216		Si		5.11		
	7.	118	29.6	900	6823	8 8		CISi		5.80		
•	2	118	30.0	900	6824	506		CISi		9.99		
~	7	118	31.3	900	6825	363		CISi		5.01		
	ę.	118	38.8	900	6827	1245		CISi		90.9		
	5.	118	39.1	900	6828	1272		CISi		7.15		
↽	0.	118	34.4	900	6831	549		CISi		5.72		
					SAN CLEMENTE RIDGE/ISLAND SLOPE	ENTE RI	DGE/ISLAN	ID SLOI	JE			
-	9.6	118	34.2	003	AHF 8319	1228	0 - 3	CISi	7.61			
\sim	5	118	31.7	003	AHF 8421	530	0 - 3	SiSa	2.33			
	_	118	22.0	003	AHF 8690	782	0 - 3	SSC	6.26			
رن ان	4	118	32.9	003	NOTS 7	505	0 - 3	CISi	7.02			
_	۲.	118	28.4	003	NOTS 8	1101	0 - 3	CISi	6.16			
	0	118	20.3	003	NOTS 9	758	0 - 3	SiSa	4.47			
	κi	118	56.1	904	PMR122 BS-5	604	6-0	SSC	7.23			

Table F-1. Surface sediment samples (Continued).

SAMPLE NO.	LATT dd n	LATITUDE dd mm.m	Ppp	LONGITUDE ddd mm.m REF	REF	SAMPLE ID	DEРТН m	INTERVAL	NAME	MEAN MEDIAN SIZE SIZE	AEDIAN SIZE	DENSITY g/cm	POROSITY %
					Š	SAN CLEMENTE RIDGE/ISLAND SLOPE (continued)	RIDGE/I	SLAND SL	OPE (co	ntinued)	: -		
44.0	33	6.6	118	47.1	904	PMR122 BS-6	732	0 – 10	Sa	2.95			
0.89	33	6.4	118	35.6	002	DSSP 16	1244	0 - 15	CISi	7.05			
68.1	33	6.4	118	35.6	007	DSSP 16	1244	15 - 22	SiCI	9.00		1.30	9.62
68.2	33	6.4	118	35.6	007	DSSP 16	1244	40 - 47	SiC	8.45		1.37	7.77
68.3	33	6.4	118	35.6	007	DSSP 16	1244	96 08	SiCl	8.52			
0.69	33	5.5	118	33.5	007	DSSP 18	1218	0 - 15	CISi	7.66			
69.1	33	5.5	118	33.5	007	DSSP 18	1218	15 - 22	SiCl	8.94		1.28	81.8
69.2	33	5.5	118	33.5	007	DSSP 18	1218	40 - 47	SiC	8.70		1.35	77.3
69.3	33	5.5	118	33.5	007	DSSP 18	1218	65 – 86	SiCi	69.7			
59.2	33	0.7	118	25.7	007	DSSP 5	096	40 - 47	SSC	5.16		1.58	65.7
59.3		0.7	118	25.7	002	DSSP 5	096	65 - 82	SiSa	3.39			
63.0		0.4	118	25.8	001	DSSP 11	696	8-0	SSC	4.73			
64.0		59.7	118	25.4	002	DSSP 12	1077	0 - 15	SiCl	7.83			
64.1		59.7	118	25.4	007	DSSP 12	1077	40 – 47	SiCl	8.57		1.40	74.7
64.2		59.7	118	25.4	001	DSSP 12	1077	75 – 85	SiCl	8.15			
73.0		. .	118	22.7	002	DSSP 22	186	0 - 7	SiSa	3.41			
74.0		2.8	118	21.4	002	DSSP 23	298	0 - 22	SiSa	4.08		1.74	58.7
74.1		2.8	118	21.4	002	DSSP 23	298	22 - 36	SiSa	4.63			
0.92		1.7	118	18.0	002	DSSP 25	1097	0 - 15	SiCi	8.95			
76.1		1.7	118	18.0	001	DSSP 25	1097	15 - 22	SiCl	8.32		1.36	78.3
76.2		1.7	118	18.0	004	DSSP 25	1097	22 - 37	SiCl	8.49			
84.0		58.5	118	23.0	007	DSSP 42	995	2-0	SSC	5.96		1.41	75.4
							EMERY	EMERY KNOLL					
8.0		4.0	118	21.2	003	AHF 8418	1134	0-3	SiCI	8.06			
0.6	33	2.0	118	23.5	003	AHF 8419	728	0 - 3	Sa	1.92			
10.0		2.2	118	23.8	003	AHF 8420	785	0 - 3	Sa	2.19			
58.0		58.8	118	22.8	002	DSSP 4	1015	0 - 15	SSC	7.13			
58.1		58.8	118	22.8	002	DSSP 4	1015	15 - 22	SiCl	60.6		1.36	78.3
58.2		58.8	118	22.8	002	DSSP 4	1015	40 – 47	SiCl	9.17		1.39	76.3
58.3		58.8	118	22.8	002	DSSP 4	1015	47 – 65	SiC	8.29			
59.0		0.7	118	25.7	002	DSSP 5	096	0 - 15	SSC	6.63		ļ	
59.1		0.7	118	25.7	002	DSSP 5	096	15 – 22	CISi	7.26		1.39	9.92

Table F-1. Surface sediment samples (Continued).

SAMPLE NO.	LATI	LATITUDE dd mm.m	LONC	LONGITUDE ddd mm.m	REF	SAMPLE ID	DEРТН m	INTERVAL	NAME	MEAN MEDIAN SIZE SIZE	J DENSITY g/cm	POROSITY %
						EN	IERY KNO	EMERY KNOLL (continued)	(þ;			
84.1	32	58.5	118	23.0	007	DSSP 42	995	20 - 26	SiCl	7.60	1.33	79.0
84.2	32	58.5	118	23.0	200	DSSP 42	995	40 - 47	SSC	6.43	1.49	70.5
84.3	32	58.5	118	23.0	200	DSSP 42	995	99 – 09	SSC	60.9	1.56	67.5
84.4	32	58.5	118	23.0	002	DSSP 42	995	80 - 87	SSC	5.68	1.61	63.9
84.5	32	58.5	118	23.0	200	DSSP 42	995	95 – 101	SSC	5.19	1.58	65.6
85.0	32	58.5	118	21.9	007	DSSP 43	696	7-0	SSC	7.31	1.43	74.5
85.1	32	58.5	118	21.9	002	DSSP 43	696	8 - 20	SiCl	8.36		
85.2	32	58.5	118	21.9	007	DSSP 43	696	20 - 25	כ כ	9.47	1.38	6.9
85.3	32	58.5	118	21.9	007	DSSP 43	696	25 – 40	SiCl	8.64		
85.4	32	58.5	118	21.9	200	DSSP 43	696	40 - 57	SiCI	8.31	1.39	75.9
86.0	32	59.2	118	20.5	001	DSSP 44	951	0 - 7	SiCl	7.77	1.33	0.62
86.1	32	59.2	118	20.5	002	DSSP 44	951	8 - 20	SiCl	8.78		
86.2	32	59.2	118	20.5	200	DSSP 44	951	20 - 27	SiCl	8.99	1.32	80.8
86.3	32	59.2	118	20.5	002	DSSP 44	951	27 - 40	SiCI	7.56		
86.4	32	59.2	118	20.5	002	DSSP 44	951	40 – 45	SaCi	7.34	1.46	71.5
86.5	32	59.2	118	20.5	007	DSSP 44	951	45 – 55	SSC	6.02		
9.98	32	59.2	118	20.5	002	DSSP 44	951	55 – 69	CISa	5.97	1.58	65.6
87.0	32	8.65	118	21.4	200	DSSP 45	845	0-7	Sa	3.69	1.61	64.5
87.1	32	59.8	118	21.4	002	DSSP 45	845	8 - 20	CISa	4.21		
87.2	32	8.65	118	21.4	007	DSSP 45	845	20 - 25	CISa	4.49	1.63	64.1
87.3	32	8.65	118	21.4	001	DSSP 45	845	30 - 40	Sa	3.61		
87.4	32	8.65	118	21.4	002	DSSP 45	845	40 - 50	Sa	3.69	1.62	64.1
87.5	32	59.8	118	21.4	001	DSSP 45	845	55 – 67	Sa	3.31	1.68	54.8
88.0	33	1.8	118	23.3	007	DSSP 47	969	0 - 3	Sa	3.64		
89.0	33	1.7	118	26.0	007	DSSP 48	878	7-0	CISa	5.23	1.49	71.6
0.06	33	4.1	118	25.8	007	DSSP 49	886	8 - 0	SaCl	7.72	1.38	8.92
90.1	33	4.1	118	25.8	007	DSSP 49	886	8 - 20	SiCl	99:8		
90.2	33	4.1	118	25.8	007	DSSP 49	886	20 - 26	SiCi	8.71	1.42	74.9
90.3	33	4.1	118	25.8	007	DSSP 49	886	27 - 40	SaCi	6.57		
90.4	33	4.1	118	25.8	002	DSSP 49	886	40 - 51	CISa	5.22	1.65	61.3
91.0	33	3.8	118	22.9	002	DSSP 50	825	7-0	CISa	4.48	1.59	65.3

Table F-1. Surface sediment samples (Continued).

SAMPLE NO.	LAT	LATITUDE dd mm.m	LONGITU]	GITUDE mm.m	REF	SAMPLE ID	DEРТН m	INTERVAL	NAME	MEAN P	MEAN MEDIAN SIZE SIZE	DENSITY g/cm	POROSITY %
						EM	ERY KNO	EMERY KNOLL (continued)	(pg				
91.3	33	3.8	118	22.9	007	DSSP 50	825	27 – 40	Sa	3.38			
91.4	33	3.8	118	22.9	000	DSSP 50	825	40 - 52	SiSa	2.19		1.82	54.1
93.0	32	59.5	118	18.9	004	DSSP 52	1064	0 - 15	Sici	9.05			
93.1	32	59.5	118	18.9	004	DSSP 52	1064	15 - 22	SiCI	00.6		1.32	8.62
93.2	32	59.5	118	18.9	004	DSSP 52	1064	40 - 47	Sici	8.37		1.37	9.92
93.3	32	59.5	118	18.9	000	DSSP 52	1064	65 - 72	SiCI	8.31		1.40	74.9
93.4	32	59.5	118	18.9	007	DSSP 52	1064	80 - 93	SiCl	8.47			
91.1	33	3.8	118	22.9	000	DSSP 50	825	8 - 20	Sa	3.61			
91.2	33	3.8	118	22.9	004	DSSP 50	825	20 - 26	Sa	3.24		1.68	62.0
							MISCELLANEOUS	ANEOUS					
17.0	33	6.9	118	3.3	003	AHF 8685	284	0 - 3	SiSa	4.24			
21.0	32	50.8	118	17.9	003	AHF 8689	666	0 - 3	SiSa	3.97			
34.0	32	55.6	118	16.1	003	NOTS 15	1046	0-3	SSC	4.26			
35.0	33	1.0	118	10.6	003	NOTS 16	822	0-3	SiSa	4.79			
37.0	33	15.0	118	2.4	003	NOTS 18A	880	0 - 3	CISi	7.53			
42.0	32	28.6	118	17.4	003	NCEL 5	1259	0 - 3	SiCI	8.23			
57.0	32	58.5	118	17.0	004	DSSP 3	1143	0 - 15	CISi	7.60			
57.1	32	58.5	118	17.0	004	DSSP 3	1143	15 - 22	SiCl	8.50		1.30	79.7
57.2	32	58.5	118	17.0	007	DSSP 3	1143	40 - 47	SiCI	8.41		1.35	77.8
57.3	32	58.5	118	17.0	002	DSSP 3	1143	65 - 75	SiCI	8.53			
65.0	32	53.8	118	15.5	007	DSSP 13	820	0 - 15	SiSa	2.94			
78.0	32	56.3	118	14.2	002	DSSP 27	841	0 - 15	SSC	6.57			
78.1	32	56.3	118	14.2	001	DSSP 27	841	15 – 22	SSC	6.85		1.42	73.7
78.2	32	56.3	118	14.2	002	DSSP 27	841	40 - 47	SSC	5.59		1.57	1.99
78.3	32	56.3	118	14.2	007	DSSP 27	841	75 - 83	SSC	5.24			
79.0	32	55.5	118	15.4	000	DSSP 28	905	0 - 10	SSC	5.30			
80.0	32	53.0	118	13.6	002	DSSP 29	962	0 - 15	CISi	16.9			
80.1	32	53.0	118	13.6	002	DSSP 29	962	15 - 22	SSC	6.92		1.40	75.6
81.0	32	51.5	118	16.2	001	DSSP 30	1181	0 – 15	SSC	6.29			

Table F-1. Surface sediment samples (Continued).

POROSITY %		72.2	64.5				79.0	76.7	
DENSITY F		1.46	1.61				1.33	1.37	
MEAN MEDIAN SIZE SIZE									
MEAN SIZE		6.32	5.03	5.50	3.10	6.80	9.10	9.71	99.6
NAME	led)	SSC	CISa	SSC	SiSa	SSC	SiCl	ت ت	SiCI
INTERVAL cm	MISCELLANEOUS (continued)	15 – 22	40 – 47	47 – 59	7 - 0	6 - 15	15 – 22	40 - 47	20 - 60
DEPTH m	CELLANEC	1181	1181	1811	915	1174	1174	1174	1174
SAMPLE ID	MIS	DSSP 30	DSSP 30	DSSP 30	DSSP 34	DSSP 51	DSSP 51	DSSP 51	DSSP 51
REF		007	007	000	007	007	004	002	000
LONGITUDE ddd mm.m		16.2	16.2	16.2	19.2	17.0	17.0	17.0	17.0
LONC		118	118	118	118	118	118	118	118
E LATITUDE LO		51.5	51.5	51.5	52.6	57.5	57.5	57.5	57.5
LAT		32	32	32	32	32	32	32	32
SAMPLE NO.		81.1	81.2	81.3	82.0	92.0	92.1	92.2	92.3

"REF" is reference (see text). "INTERVAL" is depth below seafloor in cm. "CISi" is clayey silt, "SiCl" is silty clay, "SiSa" is silty sand; "SSC" is sand-silt-clay; "Sa" is sand; "Cl" is clay, "Si" is silt; "SaSi" is sandy silt; "SaCl" is sandy clay; and "CISa" is clayey silt (these names follow Shepard, 1954). "MEAN" and "MEDIAN" are the mean and median sample grain sizes in phi units. "POROSITY" is the volume percent of pore space in the sample.

NOTE:

Table F-2. Rock samples.

DESCRIPTION	CRYSTALLINE AND VOLCANIC ROCKS	Andesite	Basalt	Andesite	Volcanic agglomerate, andesite & basalt clasts	Actinolite epidotite, possibly altered anorthosite	Gabbro	Diabase	Volcanics (rotten)	Barite (?), volcanics, mudstone, quartzite	Gabbro pebbles	ROCKS	Breccia, clasts of mudstone & volcanic rocks	Siltstone, moderately indurated	Claystone	Siltstone, moderately to poorly indurated	Volcanic sandstone, calcite cement	Siltstone
DEРТН m	IE AND VO	267	1000	1000	1000	850 - 1350	850 - 1350	490 - 750				SEDIMENTARY ROCKS	1000	829	410	450	68	465
SAMPLE ID	CRYSTALLIN	LCB 310-1	KSB 21A	KSB 21B	KSB 21F	KSB 23A	KSB 23B	KSB 33A	D154	CD148	G143	SEDI	KSB 21E	LCB 146-1	LCB 146-3	KZ 73-14-3	KZ 73-14-6	KZ 73-14-14
REF		001	001	001	001	001	001	001	005	000	005		001	001	001	001	001	790
LONGITUDE ddd mm.m		48.0	54.5	54.4	54.4	55.4	55.4	52.5	50.8	54.7	55.8		54.4	8.7	8.6	35.4	37.1	41.4
ppp Gqq		118	118	118	118	118	118	118	118	118	118		118	118	118	118	118	118
TUDE mm.m		30.4	29.6	29.6	29.6	16.7	16.7	14.6	13.4	11.0	17.6		29.6	15.1	14.6	4.6	3.9	2.0
LATITUDE dd mm.m		33	33	33	33	33	33	33	33	33	33		33	33	33	33	33	33
SAMPLE NO.		1	2	ю	4	5	9	7	∞	6	10		11	12	13	14	15	16

Sample numbers correspond to those plotted in Figure F-2. "REF" is reference (see text for references). NOTE:

Figure F-1. Sediment sample locations, Catalina Basin.

Figure F-2. Rock sample locations. Crystalline and volcanic (1 - 10) and sedimentary rock samples (11 - 16).

REFERENCES (APPENDIX F) (OTHER THAN SAMPLE REFERENCES)

Shepard, F.P., 1954, Nomenclature Based on Sand-Silt-Clay Ratios; J. Sediment. Petrol., 24:151-158.

APPENDIX G: SEAWATER SOUND SPEED AND DENSITY

The temperature, salinity, and sound speed data in tables G-1 through G-4 were provided by A. Fisher, NRaD Code 742 (5 November 1992). I computed density from temperature, salinity, and depth. Sound speed profiles are illustrated in figure G-1. Tables G-1 through G-4 are reproduced as ASCII files on the accompanying disk (SSP.WIN, SSP.SPR, SSP.SMR, and SSP.FAL).

Table G-1. Winter seawater data: sound speed, temperature, salinity, and density.

			RATURE, C		NITY, pt		SPEED,	
DEPTH,		MEAN	SIGMA	MEAN	SIGNA	NEAN	SIGNA	DENSITY,
m	n	MEAN	SIGMA	MEAN	SIGMA	MEAN	SIGMA	g/cm ³
0	2485	14.46	1.28	33.39	0.19	1503.6	4.1	1.0249
10	2485	14.36	1.28	33.39	0.18	1503.5	4.1	1.0249
20	2485	14.22	1.34	33.39	0.18	1503.2	4.3	1.0250
30	2485	14.01	1.45	33.40	0.18	1502.7	4.6	1.0251
50	2485	13.32	1.64	33.41	0.18	1500.7	5.3	1.0253
75	2484	11.98	1.65	33.46	0.20	1496.6	5.4	1.0258
100	2479	10.83	1.32	33.57	0.21	1493.2	4.3	1.0262
125	2455	10.05	0.99	33.72	0.20	1491.0	3.2	1.0265
150	2435	9.49	0.76	33.85	0.17	1489.5	2.5	1.0268
200	2361	8.71	0.58	34.02	0.11	1487.7	1.9	1.0273
250	2302	8.12	0.56	34.11	0.09	1486.4	1.9	1.0277
300	2249	7.58	0.57	34.15	0.09	1485.2	2.0	1.0281
400	2154	6.68	0.50	34.21	0.07	1483.4	1.8	1.0287
500	2026	6.00	0.42	34.27	0.06	1482.4	1.6	1.0293
600	957	5.39	0.37	34.33	0.06	1481.8	1.2	1.0299
800	524	4.53	0.27	34.42	0.04	1481.8	0.9	1.0310
1000	402	3.93	0.20	34.48	0.04	1482.6	0.9	1.0320
1200	132	3.42	0.31	34.52	0.04	1484.5	2.0	1.0330
1500	41	2.89	0.30	34.56	0.02	1486.5	1.3	1.0345

Table G-2. Spring seawater data: sound speed, temperature, salinity, and density.

			RATURE, C	SALINI	TY, ppt	l.	SPEED, /s	
DEPTH, m	n	MEAN	SIGMA	MEAN	SIGMA	MEAN	SIGMA	DENSITY, g/cm ³
0	3008	15.12	1.69	33.44	0.21	1505.8	5.3	1.0248
10	3008	14.82	1.63	33.43	0.21	1505.0	5.1	1.0249
20	3008	14.27	1.60	33.43	0.20	1503.4	5.1	1.0250
30	3008	13.68	1.74	33.44	0.21	1501.6	5.6	1.0252
50	3008	12.61	1.91	33.47	0.23	1498.3	6.2	1.0255
75	3008	11.43	1.76	33.54	0.26	1494.8	5.8	1.0259
100	3008	10.45	1.41	33.65	0.27	1491.9	4.6	1.0263
125	2965	9.74	1.01	33.77	0.24	1489.9	3.4	1.0266
150	2940	9.21	0.72	33.89	0.21	1488.5	2.4	1.0269
200	2860	8.50	0.51	34.04	0.13	1486.9	1.7	1.0274
250	2768	7.94	0.50	34.12	0.10	1485.7	1.8	1.0278
300	2711	7.43	0.51	34.16	0.09	1484.6	1.9	1.0281
400	2579	6.59	0.43	34.22	0.08	1483.0	1.6	1.0287
500	2392	5.95	0.35	34.28	0.06	1482.2	1.3	1.0293
600	907	5.36	0.31	34.33	0.05	1481.6	1.1	1.0299
800	408	4.50	0.24	34.41	0.04	1481.5	0.9	1.0310
1000	304	3.89	0.18	34.47	0.03	1482.3	0.9	1.0320
1200	120	3.39	0.28	34.52	0.03	1483.9	1.5	1.0330
1500	44	2.76	0.37	34.57	0.03	1487.1	3.0	1.0345

Table G-3. Summer seawater data: sound speed, temperature, salinity, and density.

			RATURE, C	SALINI	TY, ppt	ŀ	SPEED,	
DEPTH, m	n	MEAN	SIGMA	MEAN	SIGMA	MEAN	SIGMA	DENSITY, g/cm ³
0	1922	17.79	1.98	33.47	0.20	1513.9	5.9	1.0242
10	1922	17.26	1.95	33.46	0.20	1512.5	5.9	1.0243
20	1922	16.15	1.99	33.44	0.19	1509.2	6.2	1.0246
30	1922	15.00	2.18	33.43	0.19	1505.7	6.9	1.0249
50	1922	13.01	2.04	33.43	0.21	1499.6	6.7	1.0254
75	1922	11.52	1.74	33.51	0.24	1495.0	5.8	1.0259
100	1922	10.55	1.40	33.63	0.25	1492.2	4.7	1.0263
125	1882	9.84	1.03	33.75	0.23	1490.2	3.5	1.0266
150	1859	9.31	0.77	33.87	0.20	1488.9	2.6	1.0269
200	1816	8.62	0.61	34.04	0.13	1487.3	2.1	1.0274
250	1767	8.07	0.64	34.12	0.11	1486.2	2.2	1.0277
300	1727	7.56	0.68	34.17	0.10	1485.2	2.3	1.0281
400	1628	6.69	0.61	34.23	0.08	1483.5	2.1	1.0287
500	1507	6.03	0.47	34.28	0.06	1482.6	1.7	1.0293
600	594	5.43	0.42	34.34	0.06	1482.0	1.4	1.0299
800	327	4.54	0.30	34.42	0.05	1481.8	1.2	1.0310
1000	237	3.92	0.22	34.48	0.05	1482.5	1.0	1.0320
1200	73	3.44	0.22	34.53	0.05	1483.9	1.0	1.0330
1500	17	2.90	0.40	34.55	0.03	1486.5	1.7	1.0345

Table G-4. Autumn seawater data: sound speed, temperature, salinity, and density.

		TEMPERATURE, °C		SALINITY, ppt		SOUND SPEED, m/s		
DEPTH,								DENSITY,
m	n	MEAN	SIGMA	MEAN	SIGMA	MEAN	SIGMA	g/cm ³
0	1566	17.10	1.93	33.47	0.18	1511.9	5.6	1.0243
10	1566	16.94	1.96	33.47	0.18	1511.6	5.7	1.0244
20	1566	16.40	2.04	33.46	0.17	1510.1	6.0	1.0246
30	1566	15.64	2.25	33.44	0.17	1507.8	6.8	1.0248
50	1566	13.53	2.23	33.40	0.18	1501.4	7.0	1.0253
75	1566	11.70	1.69	33.48	0.20	1495.7	5.4	1.0258
100	1566	10.63	1.39	33.61	0.20	1492.6	4.4	1.0262
125	1543	9.90	1.11	33.75	0.18	1490.6	3.4	1.0266
150	1532	9.37	0.90	33.87	0.16	1489.2	2.7	1.0269
200	1494	8.64	0.76	34.04	0.11	1487.5	2.2	1.0274
250	1456	8.08	0.74	34.12	0.10	1486.4	2.3	1.0277
300	1417	7.58	0.68	34.16	0.09	1485.3	2.5	1.0281
400	1311	6.71	0.57	34.23	0.07	1483.6	2.1	1.0287
500	1237	6.02	0.45	34.28	0.06	1482.5	1.6	1.0293
600	481	5.40	0.45	34.34	0.06	1481.9	1.5	1.0299
800	267	4.50	0.39	34.42	0.05	1481.9	1.7	1.0310
1000	203	3.86	0.33	34.48	0.05	1482.7	2.3	1.0320
1200	72	3.37	0.39	34.53	0.04	1484.4	2.4	1.0331
1500	30	2.76	0.44	34.57	0.04	1487.6	5.3	1.0345

Figure G-1. Seasonal sound speed profiles.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

suggestions for reducing this burden, to Wash	d reviewing the collection of information. Send comm hington: Headquarters: Services, Directorate for in and Budget, Paperwork Reduction Project (0704-01	formation Operations and Reports, 1215 Jeffe	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE		YPE AND DATES COVERED
	August 1994	Final	
4. TITLE AND SUBTITLE		5. FUNDING	NUMBERS
A THREE-DIMENSIONAL G BASIN Version 1.0	HE CATALINA AN: DN	N307363 02314N	
6. AUTHOR(S)			
R. T. Bachman			
7. PERFORMING ORGANIZATION NAME(S) AND	D ADDRESS(ES)		ING ORGANIZATION
Naval Command, Control and RDT&E Division San Diego, CA 92152–5001	COSC) REPORT N		
9. SPONSORING/MONITORING AGENCY NAME	E(S) AND ADDRESS(ES)	10. SPONSOI	RING/MONITORING
Naval Command, Control and RDT&E Division San Diego, CA 92152-5001	COSC)	REPORT NUMBER	
11. SUPPLEMENTARY NOTES		<u> </u>	
ACCOUNTS TO A STATE OF THE STAT			
12a. DISTRIBUTION/AVAILABILITY STATEMENT		12b. DISTRIB	UTION CODE
Approved for public release; d	listribution is unlimited.		
13. ABSTRACT (Maximum 200 words)			
sediment mean grain size is p provided) produces a geoacou	abase containing water depth, sec provided, which, when combined istic description of the Catalina B 5 seconds of latitude and longitud	with generic sediment and rocl asin. Mean grain size is used as	k geoacoustic properties (also
14. SUBJECT TERMS			15. NUMBER OF PAGES
geoacoustic model	60		
Catalina Basin			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
INCLASSIFIED	UNCLASSIFIED	IINCLASSIFIED	SAME AS REPORT

UNCLASSIFIED

Pla. NAME OF RESPONSIBLE INDIVIDUAL	21b TELEPHONE (include Area Code)	21c. OFFICE SYMBOL
R. T. Bachman	(619) 553-9862	Code 541

INITIAL DISTRIBUTION

Code 0012	Patent Counsel	(1)
Code 0274	Library	(2)
Code 0275	Archive/Stock	(6)
Code 50	H. O. Porter	(1)
Code 54	J. H. Richter	(1)
Code 541	C. D. Rees	(1)
Code 541	R. T. Bachman	(10)

Defense Technical Information Center Alexandria, VA 22304–6145 (4)

NCCOSC Washington Liaison Office Washington, DC 20363-5100

Center for Naval Analyses Alexandria, VA 22302-0268

Navy Acquisition, Research and Development Information Center (NARDIC)

Arlington, VA 22244-5114

GIDEP Operations Center Corona, CA 91718-8000