Definiciones genéticos

miércoles, 15 de junio de 2022

16:17

Individuo:

Dado un conjunto de genes A, se define

Un individuo de k genes como un \mathcal{A}^k

Crossover:

Sean:

$$P,Q\in\mathcal{A}^k$$

R, R' los hijos de P y Q que se van a definir

Multiple Point Crossover:

Dado $m = \{0,1\}^k$

$$R_{i} = \begin{cases} m_{i} = 0 & \rightarrow & P_{i} \\ \sin no & \rightarrow & Q_{i} \end{cases}$$

$$R'_{i} = \begin{cases} m_{i} = 0 & \rightarrow & Q_{i} \\ \sin no & \rightarrow & P_{i} \end{cases}$$

Métodos de selección:

Sea:

$$W = (w_1, ..., w_n)$$
 una población

 $F: \{1, ..., n\} \rightarrow \mathbb{R}$ la función de fitnnes (Se evalúa en subíndices)

$$\bar{F} = \frac{\sum_{i=1}^{n} F_i}{n}$$

$$E_i = \frac{F_i}{\bar{F}}$$

$$S_j = \sum_{i=1}^j E_i$$

Selección por ruleta:

Sea $r \in [0, n]^n$ números al azar entre 0 y n

$$W'_k = \min\{j \in \{1, ..., n\} : S_j \ge r_k\}$$

Stochastic Universal Sampling (SUS): (asegura que i aparezca almenos $\lfloor E_i \rfloor$ veces) Sea:

 $t \in [0,1]$ número al azar σ una parmutación al azar de $\{0,\dots,n-1\}$

$$r_k = \sigma(k) + t$$

$$W'_k = \min\{j \in \{1, ..., n\} : S_j \ge r_k\}$$

Métodos con resto: (aseguran que i aparezca almenos $\lfloor E_i \rfloor$ veces) A i se le asigna $\lfloor E_i \rfloor$ veces

$$m = n - \sum_{i=1}^{n} [E_i]$$

Se asignan m con algún metodo

- III): Para los siguientes progenitores en una codificación basada en el orden, hacer crossover usando:
- a) El primer método dado en clase, con corte de dos puntos.
- b) PMX (usar el mismo corte de a), para comparar)
- c) cyclic crossover
- i. $P_1 = (B, F, E, H, C, I, G, D, A)$, $P_2 = (I, E, A, D, F, G, H, B, C)$
- ii. $P_1 = (A, B, C, D, E, F, G, H, I), P_2 = (I, H, G, F, E, D, C, B, A).$

i) $P_1 = BFEHCIGDA$ $P_2 = IEADFGHBC$

a) Corte en 3 y en 6 BFE | HCI | GDA IEA | DFG | HBC

BFEDFGGDA IEAHCIHBC

b) Corte en 3 y en 6 b) Corte en 2 y 7

BFE | HCI | GDA BF | EHCIG | DA IEA DFG HBC IE | ADFGH | BC BFE DFG GDA BF | ADFGH | DA IEA | HCI | HBC IE | EHCIG | BC BFE | DFG | GHA BF | ADFGH | DE IEA | HCI | DBC IE | EHCIG | BC BCE | DFG | GHA BF | ADFGH | IE IEA | HCI | DBF DE | EHCIG | BC BCE | DFG | IHA BC | ADFGH | IE

DE | EHCIG | BF

c) BFEHCIGDA IEADFGHBC

GEA | HCI | DBF

IFEHCIGDA BEADFGHBC

IFEHCGGDA BEADFIHBC

IFEHCGHDA BEADFIGBC

IFEDCGHDA BEAHFIGBC

IFED(
	CCHBA									
CEAR	FIGDC									
J ,	· Idbe									
ii)										
P ₁ =	ABCDEFGH	I								
P ₂ =	IHGFEDCB	A								
a) Co	rte en 3 y ei DEF GHI	n 6								
ABCI	DEFIGHI									
THG	FED CBA									
ADC L	FEDICUT									
THEI	FED GHI DEF CBA									
111011	DEFICEA									
h) Co	rto on 3 v o	n 6 h) Con	corto on 2	v 6						
ARC I	rte en 3 y e DEF GHI	ARICO	FF GHT	уО						
IHG	FED CBA	THIGE	ED CBA							
ABCI	FED GHI	ABIGF	ED GHI							
IHG	DEF CBA	IHICD	EF CBA							
		AB GF	ED CHI							
		IH CD	EF GBA							
c)	FFCUT									
	EFGHI EDCBA									
TUGE	EDCDA									
IBCD	EFGHI									
	EDCBA									
	EFGHA									
AHGF	EDCBI									

IV): En los siguientes items, se tiene una poblacion cuyas fitness son las dadas. Cuando deba usar numeros al azar, tome los siguientes números entre 0 y 1 como fuente de aleatoriedad, elija n de ellos y multipliquelos por el n apropiado en cada caso. Le damos dos series de números aleatorios para que haga cada ejercicio dos veces si quiere.

- i) aletorios entre 0 y 1: 0,72 | 0,15 | 0,38 | 0,57 | 0,88 | 0,32 | 0,22 | 0,98
- ii) aletorios entre 0 y 1: 0, 22 | 0, 54 | 0, 81 | 0, 12 | 0, 75 | 0, 64 | 0, 47 | 0, 33

Con esos numeros al azar y las fitness, decir quienes serán los individuos seleccionados para reproducirse con los metodos de:

- a. Ruleta
- b. SUS
- c. Remainder con Ruleta para los restos.

Todos ellos usando la Esperanza usual. $(E_i = \frac{F_i}{\overline{F}})$. Como ejercicio adicional para interesados, luego repetir usando la esperanza dada con sigma scaling. $(E_i^* = 1 + \frac{F_i - \overline{F}}{2\sigma})$. (para lo cual se les da la desviacion estandard en cada ejercicio) pero en los finales solo usaremos la Esperanza usual.

$$1): F_1 = 0, 3 \quad F_2 = 90, 8 \quad F_3 = 45, 2 \quad F_4 = 71, 7 \quad F_5 = 30, 2 \quad F_6 = 9, 3 \ \sigma = 35, 2642$$

2):
$$F_1 = 7,7$$
 $F_2 = 0,3$ $F_3 = 0,5$ $F_4 = 0,9$ $F_5 = 4,1$ $F_6 = 2,5$ $\sigma = 2,8577$

3):
$$F_1 = 8,09$$
 $F_2 = 0,16$ $F_3 = 7,07$ $F_4 = 3,59$ $F_5 = 9,98$ $F_6 = 4,07$ $F_7 = 6,52$ $F_8 = 9,1$ $\sigma = 3,2696$

1)

$$F_1 = 0.3$$

 $F_2 = 90.8$
 $F_3 = 45.2$
 $F_4 = 71.7$
 $F_5 = 30.2$
 $F_6 = 9.3$

$$\bar{F} = \frac{0.3 + 90.8 + 45.2 + 71.7 + 30.2 + 9.3}{6} = 41.25$$

$$E_1 = \frac{F_1}{\bar{F}} = \frac{0.3}{41.25} \approx 0.00727$$

$$E_2 = \frac{90.8}{41.25} \approx 2.20121$$

$$E_3 = \frac{45.2}{41.25} \approx 1.09575$$

$$E_4 = \frac{71.7}{41.25} \approx 1.73818$$

$$E_5 = \frac{30.2}{41.25} \approx 0.73212$$

$$E_6 = \frac{9.3}{41.25} \approx 0.022545$$

$$S_1 \approx 0.00727$$

$$S_2 \approx 0.00727 + 2.20121 = 2.20848$$

$$S_3 \approx 2.20848 + 1.09575 = 3.30423$$

$$S_4 \approx 3.30423 + 1.73818 = 5.04241$$

$$S_5 \approx 5.04241 + 0.73212 = 5.77453$$

$$S_6 \approx 5.77453 + 0.22545 = 5.99998$$

$$= 6$$

$$S = (0.00727, 2.20848, 3.30423, 5.04241, 5.77453, 6)$$
Ruleta:
$$r = (6^*0.72, 6^*0.15, 6^*0.38, 6^*0.57, 6^*0.88, 6^*0.32, 6^*0.22, 6^*0.98)$$

$$= (4.32, 0.9, 2.28, 3.42, 5.28, 1.92, 1.32, 5.88)$$
Se eligen para cada $k \in \{1, \dots, 6\}$:
$$\min\{j \in \{1, \dots, n\} : S_j \geq r_k\}$$
Esto es:
$$4, 2, 3, 4, 5, 2, 2, 6$$
SUS:
$$\sigma = (1 \rightarrow 4, 2 \rightarrow 3, 3 \rightarrow 0, 4 \rightarrow 1, 5 \rightarrow 5, 6 \rightarrow 2) \implies r = 0.72$$

$$r_k = \sigma(k) + r$$

$$r = (4.72, 3.72, 0.72, 1.72, 5.72, 2.72)$$
Se eligen para cada $k \in \{1, \dots, 6\}$:
$$\min\{j \in \{1, \dots, n\} : S_j \geq r_k\}$$
Esto es:
$$4, 4, 2, 2, 5, 3$$
Esto es:
$$4, 4, 2, 2, 5, 3$$

Re	mainder con ruleta:
	En primer lugar:
	2 aparece 2 veces
	3 y 4 aparecen 1 vez cada uno
	m = 6 - 2 - 1 - 1 = 2
	m = 6 - 2 - 1 - 1 = 2
	Elijo 2 con ruleta
	r = (4.32, 0.9)
	Se eligen para cada $k \in \{1,2\}$:
	$\min\{j\in\{1,\ldots,n\}:S_j\geq r_k\}$
	Esto es:
	4, 2
	Queda entonces:
	2 2 2 4 4 2
	2, 2, 3, 4, 4, 2

V): Probar que en sigma scaling la suma de las fitness normalizadas sigue siendo n.

Sea:

$$F \in \mathbb{R}^n$$

$$E_i^* = 1 + \frac{F_i - \bar{F}}{2\sigma_F}$$

$$\sum_{i=1}^{n} E_i^* = n$$

Demostración:

$$\sum_{i=1}^{n} E_i^* = n$$

$$\Leftrightarrow$$

$$\sum_{i=1}^{n} E_{i}^{*} = n$$

$$\Rightarrow \sum_{i=1}^{n} \left(1 + \frac{F_{i} - \bar{F}}{2\sigma_{F}}\right) = n$$

$$\Leftrightarrow n + \sum_{i=1}^{n} \frac{F_{i} - \bar{F}}{2\sigma_{F}} = n$$

$$\Leftrightarrow \frac{1}{2\sigma_{F}} \sum_{i=1}^{n} (F_{i} - \bar{F}) = 0$$

$$\Leftrightarrow \sum_{i=1}^{n} (F_{i} - \bar{F}) = 0$$

$$\Leftrightarrow \sum_{i=1}^{n} F_{i} - \sum_{i=1}^{n} \bar{F} = 0$$

$$\Leftrightarrow \Leftrightarrow \Rightarrow \sum_{i=1}^{n} F_{i} - \sum_{i=1}^{n} \bar{F} = 0$$

$$\Leftrightarrow$$

$$n + \sum_{i=1}^{n} \frac{F_i - \bar{F}}{2\sigma_F} = n$$

$$\Leftrightarrow$$

$$\frac{1}{2\sigma_F}\sum_{i=1}^n (F_i - \bar{F}) = 0$$

$$\Leftrightarrow$$

$$\sum_{i=1}^{n} (F_i - \bar{F}) = 0$$

$$\Leftrightarrow$$

$$\sum_{i=1}^{n} F_i - \sum_{i=1}^{n} \bar{F} = 0$$

			n.												
		•	\sum_{i}^{n}	F	пĒ	= 0)								
		_	^ i=1	ι	701										
	\Leftrightarrow		n		n										
		•	$\sum_{i=1}^{n}$	G	\sum_{n}	F	- 0								
		4	∠_ ′ i=1	i –	$\underset{i=1}{\underline{\angle}}$	r _i -	- 0								
	\Leftrightarrow				v _										
	\Leftrightarrow		= 0	0											
	\Leftrightarrow		True												
			II u	_											