БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Лопатин Павел Юрьевич

Методы численного анализа

Отчёт по лабораторной работе №3

студента 2 курса 3 группы

Преподаватель: Полещук Максим Александрович

1. Исходное уравнение

$$x^2 \arctan\left(\frac{7x}{13}\right), [-3;3]$$

n=16

2. Теория

Пусть на некотором отрезке в точках x_0 , x_1 , x_2 , ... x_N нам известны значения некоторой функции f(x), а именно y_0 , y_1 , y_2 , ... y_N .

Требуется построить интерполирующую функцию F(x), такую, что она принимает в указаных точках те же значения, т.е. $F(x_0) = y_0$, $F(x_1) = y_1$, ... $F(x_N) = y_N$.

Геометрически это значит, что нужно найти кривую y = F(x) определенного типа, проходящую через систему заданных точек. В такой общей постановке задача может иметь бесчисленное множество решений или совсем не иметь решений. В случае интерполяции сплайном кривая F(x) состоит из кусочков, а именно, на каждом из отрезков $[x_{k-1}; x_k]$ функция F(x) является кубическим полиномом $F_k(x) = a_k + b_k(x-x_k) + c_k(x-x_k)^2 + d_k(x-x_k)^3$

 $F = F_1$ на интервале $[x_0, x_1]$

 $F = F_2$ на интервале $[x_1, x_2]$

. . .

 $F = F_N$ на интервале $[x_{N-1}, x_N]$

При этом, на каждом из отрезков $[x_{k-1}; x_k]$ коэффициенты полинома a_k , b_k , c_k , d_k разные.

Чтобы узнать эти коэффициенты, кроме условия непрерывности функции на полиномы налагают дополнительные условия, а именно непрерывности первой и второй производной функции F(x), а также равенства вторых производных функции на концах отрезка $[x_0; x_N]$, т.е.

$$F_{k-1}(x_{k-1}) = F_k(x_{k-1}),$$

$$F'_{k-1}(x_{k-1}) = F'_{k}(x_{k-1}),$$

$$F''_{k-1}(x_{k-1}) = F''_{k}(x_{k-1}),$$

при k=2,3,..N

$$F''(x_0)=0$$
, $F''(x_N)=0$.

Найдем выражения для производных функций F_k

$$F'_k(x) = b_k + 2c_k(x - x_k) + 3d_k(x-x_k)^2$$

$$F''_k(x) = 2c_k + 6 d_k(x-x_k)$$

Подставив их в условия непрерывности получим систему:

$$a_1 - b_1h_1 + c_1h_1^2 - d_1h_1^3 = y_0$$

$$a_k = y_k, k=1,2,...N$$

$$a_{k-1} = a_k - b_k h_k + c_k h_k^2 - d_k h_k^3, k=2,3...N$$

$$b_{k-1} = b_k - 2c_k h_k + 3d_k h_k^2, k=2,3...N$$

$$c_{k-1} = c_k - 3d_k h_k, k=2,3...N$$

$$c_1 - 3d_1h_1 = 0$$

$$c_N = 0$$

Здесь введено обозначение $h_k = x_k - x_{k-1}, k=1,2,...N$

Введем еще $I_k = (y_k - y_{k-1})/h_k$, k=1,2,...N, а также $c_0 = 0$.

При этом используется так называемый метод прогонки.

Вводятся прогоночные коэффициенты,

$$\delta_1 = - h_2/(2(h_1+h_2))$$

$$\lambda_1 = 3(I_2 - I_1)/(2(h_1 + h_2))$$

$$\delta_{k-1} = - h_k/(2h_{k-1}+2h_k+h_{k-1}\delta_{k-2}), k=3,4, ... N$$

$$\lambda_{k\text{-}1} = (3l_k - 3l_{k\text{-}1} - h_{k\text{-}1}\lambda_{k\text{-}2})/(2h_{k\text{-}1} + 2h_k + h_{k\text{-}1}\delta_{k\text{-}2})$$

Далее следует найти коэффициенты с_к по формулам обратной прогонки

$$c_{k-1} = \delta_{k-1}c_k + \lambda_{k-1}, k = N, N-1, N-2, ... 2$$

После нахождения c_k нужно найти b_k и d_k по формулам

$$b_k = I_k + (2c_kh_k + h_kc_{k-1})/3, k=1,2,...N$$

$$d_k = (c_k - c_{k-1})/(3h_k), k=1,2,...N$$

3. Выполнение

$$|\epsilon| < \left(\frac{a-b}{n}\right)^4 \max_{[a,b]} |f^{(4)}(x)| = 0.05$$

i	a _i	bi	Ci	di	εί
1	-12.2	8.63	-3.18	0.0025	5.*10^(-6)
2	-15.6	9.82	-3.17	-0.00791	5.*10^(-7)
3	-19.5	11.	-3.17	-0.00965	4.*10^(-7)
4	-23.9	12.2	-3.17	-0.00994	2.*10^(-7)
5	-28.7	13.4	-3.16	-0.00906	2.*10^(-7)
6	-33.9	14.6	-3.16	-0.00801	9.*10^(-8)
7	-39.6	15.8	-3.16	-0.00668	4.*10^(-7)
8	-45.7	16.9	-3.16	-0.00638	9.*10^(-7)
9	-52.3	18.1	-3.15	-0.0028	4.*10^(-6)
10	-59.3	19.3	-3.15	-0.0121	0.00001
11	-66.8	20.5	-3.16	0.026.	0.00006
12	-74.7	21.7	-3.12	-0.113.	0.0002
13	-83.1	22.9	-3.27	0.409.	0.0008
14	-91.8	24.	-2.69	-1.54	0.003.
15	-101.	25.4	-4.84	5.73	0.01
16	-111.	25.7	3.18	-21.4	0.04