Analysis Notes

Quin Darcy

February 8, 2021

$1 \quad 02/03/2021$

Theorem 1.1 (4.26). Let $f:[a,b] \to \mathbb{R}$ be a monotone increasing function. Then f is differentiable almost everywhere.

Note: A monotone function can have at most countably many discontinuities "almost everywhere" = except a set of measure zero.

A monotone function is continuous almost everywhere. A monotone function can fail to be differentiable at uncountable many points.

2 2021-02-08

Note: Ex. 4.12 needs Grönwrall inequality.

2.1 The Riemann Integral

Let $f:[a,b]\to\mathbb{R}$ be a bounded function, and let $P=\{x_0,x_1,\ldots,x_n\}$ be a partition of [a,b]. Then

$$\overline{S}(f,p) = ? shit$$

graph goes here.

Example 2.1 (5.3). $f : [a, b] \to \mathbb{R}, f(x) = c, \forall x \in [a, b].$

$$\overline{S}(f,p) = \sum_{i=1}^{n} c \cdot \Delta x_i = x \sum_{i=1}^{n} \Delta x_i = c(b-a)$$

Lemma 2.1. Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Then

- 1. If P_1, P_2 are two partitions such that $P_1 \subseteq P_2$ then $\underline{S}(f, P_1) \leq \underline{S}(f, P_2)$ and $\overline{S}(f, P_1) \geq \overline{S}(f, P_2)$.
- 2. If P and Q are any partitions, then

$$\underline{S}(f,P) \le \overline{S}(f,Q).$$

- 3. $\underline{(f)} \leq \overline{S}(f)$
- 4. $\underline{S}(f) = \overline{S}(f)$ iff $\forall \varepsilon > 0$, there exists P_{ε} partition such that

$$\overline{S}(f, P_{\varepsilon}) - \underline{S}(f, P_{\varepsilon}) < \varepsilon.$$

Theorem 2.2. Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then f is riemann integrable on [a,b].

Proof. f is continuous on a compact set, so f is uniformly continuous on [a,b]. Let $\varepsilon > 0$, then there exists $\delta > 0$ such that $\forall x,y \in [a,b]$ with $|x-y| < \delta$, we have $f(x) - f(y) < \frac{\varepsilon}{2(b-a)}$. Then choose a partition $P_{\varepsilon} = \{x_0,\ldots,x_n\}$ such that $\|P_{\varepsilon}\| < \delta$, then $\forall x,y \in [x_{i-1},x_i]$ we have

$$|f(x) - f(y)| < \frac{\varepsilon}{2(b-a)}$$

so $M_i - m_i \le \frac{\varepsilon}{2(b-a)}, \forall 1 \le i \le m$

$$\overline{S}(f, P_{\varepsilon}) - \underline{S}(f, P_{\varepsilon})$$

Definition 2.1. Let $f:[a,b] \to \mathbb{R}$ and $x \in [a,b]$ and h > 0. Then

$$\operatorname{osc}(f)(x - h, x + h) = \sup\{|f(x_1) - f(x_2)| \mid x_1, x_2 \in (x - h, x + h) \cap [a, b]\}$$

If $0 < h_1 < h_2$ then $osc(f)(x - h_1, x + h_1) \le osc(x - h_2, x + h_2)$

Theorem 2.3. Let $fL[a,b] \to \mathbb{R}$ and $x \in [a,b]$. Then f is continuous at x if and only if osc(f)(x) = 0.

Proof. Suppose that f is continuous at x. Let $\varepsilon > 0$. Then there exists $\delta > 0$ such that $\forall y \in (x-\delta, x+\delta) \cap [a,b]$ we have $|f(x)-f(y)| < \varepsilon/2$. then $\forall x_1, x_2 \in (x-\delta, x+\delta) \cap [a,b]$ we have $|f(x_1)-f(x_2)| < \varepsilon$. Hence, $\operatorname{osc}(f)(x-\delta, x+\delta) \le \varepsilon$. Then $0 < h < \delta$, $\operatorname{osc}(f)(x-h, x+h) \le \varepsilon$. So $\operatorname{osc}(f)(x) \le \varepsilon$, $\forall \varepsilon > 0$. Therefore, $\operatorname{osc}(f)(x) = 0$.

Suppose $\operatorname{osc}(f)(x) = 0$. Let $\varepsilon > 0$. Then, $\exists H > 0$ such that

$$\operatorname{osc}(f)(x - h, x + h) < \varepsilon, \quad \forall 0 < h < H$$

Let D be the set of discontinuities of f on [a,b]. Then define

$$D_k = \{x \in [a, b] \mid \operatorname{osc}(f)(x) \ge \frac{1}{k}\}$$

Then $D = \bigcup_{k \in \mathbb{N}} D_k$. And Riemann integrability $\iff \mu(D_k) = 0$ for all $k \in \mathbb{N}$.