Exercise 3

Exercise

Suppose $\{p_{\alpha}(\theta) : \alpha \in H\}$ is a conjugate family for some generator family $\{p(x|\theta) : \theta \in \Theta\}$. Let $g(\theta)$ be a nonnegative function, and define

$$z(\alpha) = \int p_{\alpha}(\theta)g(\theta)d\theta.$$

Show that if $0 < z(\alpha) < \infty$ for all $\alpha \in H$, then

$$\{p_{\alpha}(\theta)g(\theta)/z(\alpha): \alpha \in H\}$$

is also a conjugate family.

Solution

For $\alpha \in H$, define the p.d.f.

$$\pi_{\alpha}(\theta) = \frac{p_{\alpha}(\theta)g(\theta)}{z(\alpha)}.$$

Consider data x_1, \ldots, x_n . Since $\{p_\alpha : \alpha \in H\}$ is a conjugate prior family, then for any $\alpha \in H$, there is an $\alpha' \in H$ such that $p(x_{1:n}|\theta)p_\alpha(\theta) \propto p_{\alpha'}(\theta)$. Thus, using $\pi_\alpha(\theta)$ as the prior results in the posterior

$$p(\theta|x_{1:n}) \propto p(x_{1:n}|\theta)\pi_{\alpha}(\theta)$$

$$= p(x_{1:n}|\theta)p_{\alpha}(\theta)\frac{g(\theta)}{z(\alpha)}$$

$$\propto p_{\alpha'}(\theta)\frac{g(\theta)}{z(\alpha)}$$

$$\propto p_{\alpha'}(\theta)\frac{g(\theta)}{z(\alpha')}$$

$$= \pi_{\alpha'}(\theta).$$

Therefore, $\{\pi_{\alpha} : \alpha \in H\}$ is a conjugate prior family.