

Embedded System Design:

Embedded Systems Foundations of Cyber-Physical Systems

Peter Marwedel TU Dortmund, Informatik 12

© Springer, 2010

2012年 10 月 17 日

These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Characteristics lead to corresponding challenges

Dependability

- Efficiency
 - In particular: Energy efficiency

Hardware properties, physical environment

. . . .

Challenges for implementation in hardware

- Early embedded systems frequently implemented in hardware (boards)
- Mask cost for specialized application specific integrated circuits (ASICs) becomes very expensive (M\$ range, technology-dependent)
- Lack of flexibility (changing standards).
- Trend towards implementation in software (or possibly FPGAs, see chapter 3)

Challenges for implementation in software

If CPS/ES will be implemented mostly in software, then why don't we just use what software engineers have come up with?

It is not sufficient to consider CPS/ES as a special case of SW engineering

Knowledge from many areas must be available, Walls between disciplines must be torn down

Challenges for CPS/ES Software

Dynamic environments

- Capture the required behaviour!
- Validate specifications

- How can we check that we meet realtime constraints?
- How do we validate embedded realtime software? (large volumes of data, testing may be safety-critical)

Software complexity is a challenge

Software in a TV set

Source 1*:

Year	Size
1965	0
1979	1 kB
1990	64 kB
2000	2 MB

Source 2°: 10x per 6-7 years

Year	Size
1986	10 KB
1992	100 kB
1998	1 MB
2008	15 MB

- Exponential increase in software complexity
- ... > 70% of the development cost for complex systems such as automotive electronics and communication systems are due to software development [A. Sangiovanni-Vincentelli, 1999]

^{*} Rob van Ommering, COPA Tutorial, as cited by: Gerrit Müller: Opportunities and challenges in embedded systems, *Eindhoven Embedded Systems Institute*, 2004

[°] R. Kommeren, P. Parviainen: Philips experiences in global distributed software development, *Empir Software Eng.* (2007) 12:647-660

Design flows

Hypothetical design flow

Generic loop: tool chains differ in the number and type of iterations

Iterative design (1): - After unrolling loop -

Example: SpecC tools

Iterative design (2): - After unrolling loop -

Example: V-model

Iterative design (3): - Gajski's Y-chart -

Summary

- Challenges (resulting from common characteristics)
- Design Flows

