

August 30th, 2021

Dynamic Programming & Optimal Control (151-0563-01) Prof. R. D'Andrea

Exam

Exam Duration: 150 minutes

Number of Problems: 4

Permitted aids: One A4 sheet of paper.

No calculators allowed.

Problem 1 [25 points]

Consider the system dynamics

$$x_{k+1} = 2x_k + u_k + w_k, \quad k = 0, ..., N-1, \quad N = 2,$$

with the initial state $x_0 \in \mathcal{R}$. At each stage k, u_k is the control input, x_k is the state of the system and the disturbance w_k can assume the values -2, 0, 2 with probabilities $P(w_k = -2) = 1/4$, $P(w_k = 0) = 1/2$, $P(w_k = 2) = 1/4$, respectively. We want to minimize the following cost function

$$E_{w_0,w_1}\{x_2^2 + x_1^2 + u_1^2 + u_0^2\}$$

using the Dynamic Programming Algorithm.

- a) What is the terminal cost? [1 point]
- **b)** What are $g_2(x_2)$, $g_1(x_1, u_1, w_1)$ and $g_0(x_0, u_0, w_0)$? [1 point]
- c) Find the optimal policy $u_1^* = \mu_1(x_1)$ and the corresponding optimal cost-to-go $J_1(x_1)$.
- d) Let's now assume that at stage 0 the input u_0 is constrained between -1 and 0, i.e. $-1 \le u_0 \le 0$. Find the optimal policy $u_0^* = \mu_0(x_0)$ and the corresponding optimal cost $J_0(x_0)$.
- e) Now assume $w_k = 0$ for each k. In this case, what are the optimal policies and the corresponding costs of the questions c) and d)? [5 points]

SOLUTIONS

Solution 1

- The terminal cost is $J_2(x_2) = x_2^2$ a)
- The optimal control problem is considered over a time horizon N=2 and the cost to be b) minimized at each stage are $g_2(x_2) = x_2^2$, $g_1(x_1, u_1, w_1) = x_1^2 + u_1^2$, $g_0(x_0, u_0, w_0) = u_0^2$.
- The dynamic programming algorithm is applied as follows: **c**) STAGE 2:

$$J_2(x_2) = g_2(x_2) = x_2^2$$

STAGE 1:

$$J_1(x_1) = \min_{u_1} \left[E_{w_1} \{ g_1(x_1, u_1, w_1) + J_2(x_2) \} \right] = \tag{1}$$

$$\min_{u_1} \left[E_{w_1} \left\{ x_1^2 + u_1^2 + (2x_1 + u_1 + w_1)^2 \right\} \right] = \tag{2}$$

$$\min_{u_1} \left[E_{w_1} \{ x_1^2 + u_1^2 + (2x_1 + u_1)^2 + w_1^2 + 2(2x_1 + u_1)w_1 \} \right] =$$
 (3)

$$\min_{u_1} \left[x_1^2 + u_1^2 + (2x_1 + u_1)^2 + E_{w_1} \{ w_1^2 \} + 2(2x_1 + u_1) E_{w_1} \{ w_1 \} \right] \tag{4}$$

Here, using $E_{w_1}\{w_1\} = -2 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 0$ and $E_{w_1}\{w_1^2\} = (-2)^2 \frac{1}{4} + (0)^2 \frac{1}{2} + (2)^2 \frac{1}{4} = 2$, we obtain:

$$J_1(x_1) = \min_{u_1} [x_1^2 + u_1^2 + (2x_1 + u_1)^2 + 2] = \min_{u_1} C(u_1, x_1)$$

We now need to compute the value u_1 for which the gradient with respect to u_1 is zero:

$$\frac{\partial C}{\partial u_1} = 4u_1 + 4x_1 = 0,$$

and then $u_1^* = -x_1$. The optimal cost to go is $J_1(x_1) = 3x_1^2 + 2$

d) STAGE 0:

$$J_0(x_0) = \min_{w_0} \left[E_{w_0} \{ g_0(x_0, u_0, w_0) + J_1(x_1) \} \right] =$$
 (5)

$$\min_{u_0} \left[E_{w_0} \{ u_0^2 + 3(2x_0 + u_0 + w_0)^2 + 2 \} \right] = \tag{6}$$

$$\min_{u_0} \left[E_{w_0} \{ u_0^2 + 3((2x_0 + u_0)^2 + w_0^2 + 2(2x_0 + u_0)w_0 + 2) \} \right] =$$
 (7)

$$\min_{u_0} \left[u_0^2 + 3(2x_0 + u_0)^2 + 3E_{w_0} \{ w_0^2 \} + 6(2x_0 + u_0)E_{w_0} \{ w_0 \} + 2 \right] =$$
 (8)

$$\min_{u_0} \left[u_0^2 + 3(2x_0 + u_0)^2 + 8 \right] = \tag{9}$$

$$\min_{u_0} C(u_0, x_0) \tag{10}$$

(11)

We now compute the value u_0 for which the gradient with respect to u_0 is zero:

$$\frac{\partial C}{\partial u_0} = 2u_0 + 6(2x_0 + u_0) = 0,$$

and then $8u_0 = -12x_0$, bringing us to $u_0 = -\frac{3}{2}x_0$.

Considering the constrained input, we obtain:

- 1. if $x_0 \le 0$: $u_0^* = 0$ and $J_0(x_0) = 8 + 12x_0^2$
- 2. if $x_0 > 2/3 : u_0^* = -1$ and $J_0(x_0) = 9 + 3(2x_0 1)^2$
- 3. if $0 < x_0 \le 2/3 : u_0^* = -\frac{3}{2}x_0$ and $J_0(x_0) = \frac{9}{4}x_0^2 + \frac{3}{4}x_0^2 + 8 = 3x_0^2 + 8$
- e) The optimal policies are the same as in the previous 2 cases, while the optimal costs-to-go are $J_1(x_1) = 3x_1^2$, and
 - 1. if $x_0 \le 0$: $u_0^* = 0$ and $J_0(x_0) = 12x_0^2$
 - 2. if $x_0 > 2/3 : u_0^* = -1$ and $J_0(x_0) = 1 + 3(2x_0 1)^2$
 - 3. if $0 < x_0 \le 2/3 : u_0^* = -\frac{3}{2}x_0$ and $J_0(x_0) = \frac{9}{4}x_0^2 + \frac{3}{4}x_0^2 = 3x_0^2$

Problem 2 [25 points]

Consider the following dynamic system:

$$x_{k+1} = w_k,$$

 $x_k \in \{0, 1, 2\}$
 $u_k \in \{A, B\}$ (12)

The transition probabilities $p_{i,j}(u_k) := P(w_k = j | x_k = i, u_k)$ between the states are given by:

$$\begin{array}{llll} p_{00}(A) = 0.2 & p_{01}(A) = 0.6 & p_{02}(A) = 0.2, \\ p_{10}(A) = 0.1(1-\gamma) & p_{11}(A) = \gamma & p_{12}(A) = 0.9(1-\gamma), \\ p_{20}(A) = 0.1 & p_{21}(A) = 0.5 & p_{22}(A) = 0.4, \\ p_{00}(B) = 0.5 & p_{01}(B) = 0 & p_{02}(B) = 0.5, \\ p_{10}(B) = 0.6(1-\gamma) & p_{11}(B) = \gamma & p_{12}(B) = 0.4(1-\gamma), \\ p_{20}(B) = 0.7 & p_{21}(B) = 0 & p_{22}(B) = 0.3, \end{array}$$

with $0 < \gamma \le 1$. The cost function that has to be minimized is the following:

$$\lim_{N \to \infty} \mathbf{E} \left[\sum_{k=0}^{N-1} \alpha^k g(x_k, u_k) \right],$$

with:

$$g(0,A) = 1 + \beta$$
 $g(1,A) = 3\beta$ $g(2,A) = 3 - \beta$,
 $g(0,B) = 2$ $g(1,B) = \beta^2$ $g(2,B) = 2$.

where α and $\beta \in \mathcal{R}$ are parameters.

- a) Given $\alpha = 1$, state the range of β and γ for which the above problem is a well-defined infinite horizon problem with finite cost. A short explanation is required. Then, draw the probability transition graphs, with the associated probabilities and costs denoted on each arc.
- b) Now let's assume $\beta = 1$, $\gamma = 0.1$. Is there any range of α such that the above problem is a well-defined infinite horizon problem with finite cost? If yes, explain why. [3 points]
- c) Assume $\alpha = 0.1$, $\beta = 1$ and $\gamma = 0$. Perform one iteration of the **Value Iteration Algorithm** for the resulting Discounted Cost Problem. Consider $J_0(0) = 10$, $J_0(1) = 10$, $J_0(2) = 20$ as the initial guesses.
- d) Assume $\alpha = 1$, $\beta = 0$ and $\gamma = 1$. Perform one iteration of the **Policy Iteration Algorithm** for the resulting Stochastic Shortest Path Problem, i.e. compute $\mu^1(0)$, $\mu^1(1)$, $\mu^1(2)$. List all proper policies that can be used as initialization for the **Policy Iteration Algorithm**, and pick as the initial guess one with $\mu^0(0) = B$.

Solution 2

a) γ must be equal to 1 and β equal to 0. Indeed, the probability of leaving the termination state (1) must be 0 ($\gamma = 1$) and the final cost 0 as well ($\beta = 0$).

The graphs are the following (First is u = A, second is u = B):

- **b)** $\alpha \in (-1,1)$. Without a termination stage, the stage cost must be discounted exponentially. (The lecture notes states $\alpha \in (0,1)$ which is valid as well)
- c) Let's initialize the value iteration algorithm and perform one iteration:
 - Initial guess:

$$J_0(0) = 10, J_0(1) = 10, J_0(2) = 20$$

• Iteration 1:

$$\begin{split} J_1(0) &= \min_{u \in \{A,B\}} [g(0,u) + \alpha p_{00}(u) J_0(0) + \alpha p_{01}(u) J_0(1) + \alpha p_{02}(u) J_0(2)] = \\ &= \min_{u \in \{A,B\}} [2 + 0.1 \cdot 2 + 0.1 \cdot 6 + 0.1 \cdot 4, \ 2 + 0.1 \cdot 5 + 0.1 \cdot 10] \\ &= \min_{u \in \{A,B\}} [3.2,3.5] \implies J_1(0) = 3.2 \\ J_1(1) &= \min_{u \in \{A,B\}} [g(1,u) + \alpha p_{10}(u) J_0(0) + \alpha p_{11}(u) J_0(1) + \alpha p_{12}(u) J_0(2)] = \\ &= \min_{u \in \{A,B\}} [3 + 0.1 \cdot 1 + 0.1 \cdot 18, \ 1 + 0.1 \cdot 6 + 0.1 \cdot 8] \\ &= \min_{u \in \{A,B\}} [4.9,2.4] \implies J_1(1) = 2.4 \\ J_1(2) &= \min_{u \in \{A,B\}} [g(2,u) + \alpha p_{20}(u) J_0(0) + \alpha p_{21}(u) J_0(1) + \alpha p_{22}(u) J_0(2)] = \\ &= \min_{u \in \{A,B\}} [2 + 0.1 \cdot 1 + 0.1 \cdot 5 + 0.1 \cdot 8, \ 2 + 0.1 \cdot 7 + 0.1 \cdot 6] \\ &= \min_{u \in \{A,B\}} [3.4,3.3] \implies J_1(0) = 3.3 \end{split}$$

- d) The stationary policies are:
 - $\mu^0(0) = A, \ \mu^0(1) = A, \ \mu^0(2) = A \text{ proper}$
 - $\mu^0(0) = A, \, \mu^0(1) = A, \, \mu^0(2) = B \text{ proper}$

- $\mu^0(0) = A, \, \mu^0(1) = B, \, \mu^0(2) = A \text{ proper}$
- $\mu^0(0) = A, \, \mu^0(1) = B, \, \mu^0(2) = B \text{ proper}$
- $\mu^0(0) = B, \, \mu^0(1) = A, \, \mu^0(2) = A \text{ proper}$
- $\mu^0(0) = B, \, \mu^0(1) = A, \, \mu^0(2) = B \text{ improper}$
- $\mu^0(0) = B, \, \mu^0(1) = B, \, \mu^0(2) = A \text{ proper}$
- $\mu^0(0) = B, \ \mu^0(1) = B, \ \mu^0(2) = B \text{ improper}$

Regardless of $\mu^0(1)$, if we choose $\mu^0(0) = B$ and $\mu^0(2) = B$ we remain into the loop and the cost goes to infinity. We can use as the initialization policy both $\mu^0(0) = B$, $\mu^0(1) = B$, $\mu^0(2) = A$ and $\mu^0(0) = B$, $\mu^0(1) = A$, $\mu^0(2) = A$.

Let's consider the first policy $\mu^0(0) = B$, $\mu^0(1) = B$, $\mu^0(2) = A$ as initialization. State 1 is the termination state and has zero cost, independent of the policy. The termination state is not considered during policy evaluation and improvement. For states 0 and 2, we initialize the policy iteration algorithm and perform one iteration.

- Initial guess: $\mu^0(0) = B, \, \mu^0(2) = A$
- Iteration 1:
 - 1. Policy evaluation:

$$\begin{split} J_{\mu^0}(0) &= g(0,B) + \alpha p_{00}(B) J_{\mu^0}(0) + \alpha p_{02}(B) J_{\mu^0}(2) = \\ &= 2 + 0.5 J_{\mu^0}(0) + 0.5 J_{\mu^0}(2) \\ &\Longrightarrow J_{\mu^0}(0) = 4 + J_{\mu^0}(2) \\ J_{\mu^0}(2) &= g(2,A) + \alpha p_{20}(A) J_{\mu^0}(0) + \alpha p_{22}(A) J_{\mu^0}(2) = \\ &= 3 + 0.1 J_{\mu^0}(0) + 0.4 J_{\mu^0}(2) \\ &\Longrightarrow J_{\mu^0}(2) = 3 + 0.4 + 0.5 J_{\mu^0}(2) \\ J_{\mu^0}(2) &= 6.8 \\ J_{\mu^0}(0) &= 10.8 \end{split}$$

2. Policy improvement:

$$\mu^{1}(0) = \underset{u \in \{A,B\}}{\min} [g(0,u) + \alpha p_{00}(u)J_{\mu^{0}}(0) + \alpha p_{02}(u)J_{\mu^{0}}(2)] =$$

$$= \underset{u \in \{A,B\}}{\min} [1 + 0.2 \cdot 10.8 + 0.2 \cdot 6.8, 2 + 0.5 \cdot 10.8 + 0.5 \cdot 6.8]$$

$$= \underset{u \in \{A,B\}}{\min} [1 + 2.16 + 1.36, 2 + 5.4 + 3.4]$$

$$= \underset{u \in \{A,B\}}{\min} [4.52, 10.8] \implies \mu^{1}(0) = A$$

$$\mu^{1}(2) = \underset{u \in \{A,B\}}{\min} [g(2,u) + \alpha p_{20}(u)J_{\mu^{0}}(0) + \alpha p_{22}(u)J_{\mu^{0}}(2) =$$

$$= \underset{u \in \{A,B\}}{\min} [3 + 0.1 \cdot 10.8 + 0.4 \cdot 6.8, 2 + 0.7 \cdot 10.8 + 0.3 \cdot 6.8]$$

$$= \underset{u \in \{A,B\}}{\min} [3 + 1.08 + 2.72, 2 + 7.56 + 2.04]$$

$$= \underset{u \in \{A,B\}}{\min} [6.8, 11.6] \implies \mu^{1}(2) = A$$

The new policy is given by $\mu^1(0) = A$, $\mu^1(1) = B$ or A, $\mu^1(2) = A$

Problem 3 [25 points]

You just reached the main station in Venice (Venezia Santa Lucia) and your goal is to go to Saint Mark's Square as fast as possible through the *calli* (streets) or the canals of Venice, that is, you need to find the shortest path from the main station to the square. The following graph represents a map of Venice showing the travelling time between the Station (node s), Saint Mark's square (node τ), and major neighbourhoods (nodes A to G). The numbers on the edges represent the time (in minutes) to travel between the nodes. $\alpha \in [0, 10]$ and $\beta \in [0, 10]$ are constant delays that apply when Venice is overcrowded.

- a) Recall that \mathcal{V} is the vertex space of the graph and $|\mathcal{V}|$ is the number of elements in the space. How many elements are in the space? What is the time horizon N of the equivalent Deterministic Finite State System? [2 points]
- b) Consider solving the SP problem using the Label Correcting Algorithm with the best-first search method on the equivalent DFS system. Complete Table 1 with all iterations and find the optimal path, as α and β vary. [8 points]
- c) Complete Table 2 for three iterations using a depth-first search to determine at each iteration which node to remove from the OPEN bin. In this case consider α and β as equal to 0.

 [5 points]
- d) Complete Table 3 for three iterations using a breadth-first search to determine at each iteration which node to remove from the OPEN bin. In this case consider α and β as equal to 0. [5 points]
- e) Perform the initialization and one iteration step of the Dynamic Programming Algorithm on the equivalent DFS system. In this case consider α and β as equal to 0. [5 points]

P.S. When more than one node enter OPEN in one iteration, consider alphabetic order (as example: A and B enter OPEN at the same iteration, A enter first, B enter second)

Iteration	Remove	OPEN	d_s	d_A	d_B	d_C	d_D	d_E	d_F	d_G	d_t
0	-	s	0	∞	$\overline{\infty}$						
1	\mathbf{s}										

Table 1: Label Correcting Algorithm Table for question b).

Iteration	Remove	OPEN	d_s	d_A	d_B	d_C	d_D	d_E	d_F	d_G	d_t
0	-	S	0	∞							
1	\mathbf{s}	$_{A,B,C}$	0	15	5	12	∞	∞	∞	∞	∞
2											
3											
4											

Table 2: Label Correcting Algorithm Table for question c). (LAST IN FIRST OUT)

Iteration	Remove	OPEN	d_s	d_A	d_B	d_C	d_D	d_E	d_F	d_G	d_t
0	-	S	0	∞							
						•••					
$\frac{3}{4}$	В	$_{\mathrm{C,D,E,F}}$	0	15	5	12	19	35	25	∞	∞
5 6											

Table 3: Label Correcting Algorithm Table for question d). (FIRST IN FIRST OUT)

Solution 3

- a) Cardinality is 9, time horizon is 8
- **b)** Table filled in for question 2:

Iteration	Remove	OPEN	d_s	d_A	d_B	d_C	d_D	d_E	d_F	d_G	d_t
0	-	s	0	∞							
1	\mathbf{s}	$_{\mathrm{A,B,C}}$	0	15	5	12	∞	∞	∞	∞	∞
2	В	A,C,D,E,F	0	15	5	12	19	35	25	∞	∞
3	$^{\mathrm{C}}$	A,D,E,F	0	15	5	12	19	35	25	∞	64
4	A	$_{\mathrm{D,E,F}}$	0	15	5	12	19	35	25	∞	64
5	D	$_{\rm E,F,G}$	0	15	5	12	19	30	25	49	64
6	F	$_{\mathrm{E,G}}$	0	15	5	12	19	30	25	49	$40+\beta^*$
7	\mathbf{E}	G	0	15	5	12	19	30	25	42	$\min\{38 + \alpha, 40 + \beta\}$
8	G		0	15	5	12	19	30	25	42	$\min\{38 + \alpha, 40 + \beta\}^{**}$
9	-		0	15	5	12	19	30	25	42	$\min\{38 + \alpha, 40 + \beta\}$

Table 4: Label Correcting Algorithm Table for question ii).

If $\alpha - 2 < \beta$ the optimal path is S, B, D, E, T, and the optimal cost is $38 + \alpha$. If $\alpha - 2 > \beta$, then the optimal path is S, B, F, T with optimal cost $A0 + \beta$. If $A - A = \beta$ the two paths are equivalent.

c) Table 5 filled in for question c) (ALL ITERATIONS).

Iteration	Remove	OPEN	d_s	d_A	d_B	d_C	d_D	d_E	d_F	d_G	d_t
0	-	\mathbf{s}	0	∞							
1	\mathbf{S}	$_{\mathrm{A,B,C}}$	0	15	5	12	∞	∞	∞	∞	∞
2	\mathbf{C}	$_{\mathrm{A,B,F}}$	0	15	5	12	∞	∞	40	∞	64
3	F	$_{\mathrm{A,B}}$	0	15	5	12	∞	∞	40	∞	55
4	В	A,D,E,F	0	15	5	12	19	35	25	∞	55
5	F	$_{\mathrm{A,D,E}}$	0	15	5	12	19	35	25	∞	40
6	\mathbf{E}	$_{A,D,G}$	0	15	5	12	19	35	25	47	40
7	\mathbf{G}	$_{A,D}$	0	15	5	12	19	35	25	47	40
8	D	$_{\mathrm{A,E,G}}$	0	15	5	12	19	30	25	47	40
9	\mathbf{G}	$_{\mathrm{A,E}}$	0	15	5	12	19	30	25	47	40
10	\mathbf{E}	A,G	0	15	5	12	19	30	25	42	38
11	\mathbf{G}	A	0	15	5	12	19	30	25	42	38
12	A	D	0	15	5	12	19	30	25	42	38
13	D	$_{\mathrm{E,G}}$	0	15	5	12	19	30	25	42	38
14	\mathbf{G}	\mathbf{E}	0	15	5	12	19	30	25	42	38
15	\mathbf{E}		0	15	5	12	19	30	25	42	38
16	-		0	15	5	12	19	30	25	42	38

Table 5: Label Correcting Algorithm Table for question c). (LAST IN FIRST OUT)

^{*}Note that 64 is always more than $40 + \beta$

^{**} Note that 52 is always more than $40 + \beta$ and $38 + \alpha$

$\mathbf{d})$	Table 6 filled	in for question of	1) ((ALL ITERATIONS)).
---------------	----------------	--------------------	------	------------------	----

Iteration	Remove	OPEN	d_s	d_A	d_B	d_C	d_D	d_E	d_F	d_G	d_t
0	-	S	0	∞							
1	S	$_{\mathrm{A,B,C}}$	0	15	5	12	∞	∞	∞	∞	∞
2	A	$_{\mathrm{B,C,D}}$	0	15	5	12	23	∞	∞	∞	∞
3	В	$^{\mathrm{C,D,E,F}}$	0	15	5	12	19	35	25	∞	∞
4	\mathbf{C}	$_{\mathrm{D,E,F}}$	0	15	5	12	19	35	25	∞	64
5	D	$_{\mathrm{E,F,G}}$	0	15	5	12	19	30	25	49	64
6	\mathbf{E}	$_{\mathrm{F,G}}$	0	15	5	12	19	30	25	42	38
7	\mathbf{F}	G	0	15	5	12	19	30	25	42	38
8	\mathbf{G}		0	15	5	12	19	30	25	42	38
9	-		0	15	5	12	19	30	25	42	38

Table 6: Label Correcting Algorithm Table for question d). (FIRST IN FIRST OUT)

e) Start DP Algorithm by initializing with one move to the end:

i	$J_{N-1}(i)$
S	∞
A	∞
В	∞
\mathbf{C}	52
D	∞
\mathbf{E}	8
F	15
G	10

Recursion: (2 moves to the end)

$$\begin{array}{c|c} i & J_{N-2}(i) \\ \hline S & 12+52=64 \\ A & \infty \\ B & \min\{30+8,20+15\}=35 \\ C & \min\{28+15,52\}=43 \\ D & \min\{11+8,30+10\}=19 \\ E & \min\{8,12+10\}=8 \\ F & 15 \\ G & 10 \\ \hline \end{array}$$

Problem 4 [25 points]

Consider a control maneuver for a cart on a road. The cart can move in a straight line by applying a force to the wheels. The simplified dynamics are:

$$\ddot{x}(t) = u(t),$$

where $\ddot{x}(t)$ is the acceleration, $\dot{x}(t)$ the velocity, x(t) the position, and u(t) the normalized thrust of the cart with $-1 \le u(t) \le 2$.

At time 0, the cart is at rest, thus the initial position is 0 and the initial velocity is 0. At time T, the cart is required to be at position 4 with velocity equal to 0.

The goal is to compute a control trajectory that allows the cart to reach the terminal state while minimizing the time T. Pontryagin's Minimum Principle is here required.

The co-state of this problem is defined as $\mathbf{p}(t) = [p_1(t), p_2(t)]$ for all $t \in [0, T]$.

- a) Write the system dynamics $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), u(t))$ and all boundary conditions. [3 points]
- **b)** Write the Hamiltonian $H(\mathbf{x}(t), u(t), \mathbf{p}(t))$ of the problem. [3 points]
- c) Write the co-state derivative $\dot{\mathbf{p}}(t)$ of the problem. Provide a guess for the optimal control input, too. [6 points]
- d) Compute the optimal time T and optimal control input $u^*(t)$ [13 points]

Solution 4

a) We define $\mathbf{x}(t) = [x_1(t), x_2(t)] = [x(t), \dot{x}(t)].$ The dynamics are $\dot{x}_1(t) = x_2(t), \dot{x}_2(t) = u(t)$

Boundary conditions:

- $x_1(0) = 0, x_1(T) = 4$
- $x_2(0) = 0, x_2(T) = 0$
- **b)** The Hamiltonian is

$$H(\mathbf{x}, u, \mathbf{p}) = 1 + p_1(t)\dot{x}_1(t) + p_2(t)\dot{x}_2(t)$$

= 1 + p_1(t)x_2(t) + p_2(t)u(t)

c) The co-state derivatives are defined by

$$\dot{\mathbf{p}}(t) = -\frac{\partial H(\mathbf{x}, u, \mathbf{p})}{\partial \mathbf{x}},$$

hence we have $\dot{p}_1(t) = 0$, $\dot{p}_2(t) = -p_1(t)$,

Since the Hamiltonian is linear in u, The optimal control input $u^*(t)$ is attained on the boundaries of the control space C = [-1, 2]. The solution is the following (Bang bang Solution):

- $u^*(t) = -1$, if $p_2(t) > 0$
- $u^*(t) = 2$, if $p_2(t) < 0$
- undefined if $p_2(t) = 0$
- d) The adjoint equations are integrated resulting in the following equations for the co-states:

$$p_1(t) = C_1$$
$$p_2(t) = -C_1 t + C_2$$

where C_1 , C_2 are constants.

The intuitive behaviour is the following: the cart first accelerates towards the goal, then decelerates to reach the target velocity at the goal. Combining this intuition and using point c), we have:

- 1. $0 \le t \le t_1$
- 2. $t_1 \leq t \leq T$

and $t_1 \leq T$. We have to find t_1 and T that minimize the cost function.

• First arc $t \in [0, t_1]$ We have $\dot{x}_2(t) = 2$ with the boundary conditions $x_1(0) = 0$, $x_2(0) = 0$ As a result we have

$$x_1(t) = t^2 + c_0 t + c_1$$
$$x_2(t) = 2t + c_0$$

with $c_0 = 0$ and $c_1 = 0$ (given the boundary conditions), hence:

$$x_1(t) = t^2 \tag{13}$$

$$x_2(t) = 2t \tag{14}$$

• Second arc $t \in [t_1, T]$

We have: $\dot{x}_2(t) = -1$; $\dot{x}_1(t) = x_2(t) = -t + c_2$. We obtain:

$$x_1(t) = -t^2/2 + c_2t + c_3 (15)$$

$$x_2(t) = -t + c_2 (16)$$

with c_2 and c_3 two constants. To ensure continuity of the states x (a discontinuity in position or velocity would not make physical sense), we require that the equations (15, 16) satisfy (13, 14).

We obtain:

$$x_1(t_1) = t_1^2 = -t_1^2/2 + c_2t_1 + c_3 (17)$$

$$x_2(t_1) = 2t_1 = -t_1 + c_2 (18)$$

It follows that $c_2 = 3t_1$ and $c_3 = -3t_1^2/2$. Furthermore, at time T, the terminal conditions $x_1(T) = 4$ and $x_2(T) = 0$ need to be satisfied. As a result we have

$$x_1(T) = -T^2/2 + 3t_1T - 3t_1^2/2 = 4 (19)$$

$$x_2(T) = -T + 3t_1 = 0 (20)$$

from equation (20) we obtain $t_1 = \frac{T}{3}$; inserting in (19) we obtain a quadratic equation for T:

$$T^2/3 = 4$$
 (21)

which is solved by $T=\pm 2\sqrt{3}$. Since T>0, the minimum terminal time is $T=2\sqrt{3}$. Using (20), we obtain the switching time $t_1=2\sqrt{3}/3$ and thus, the optimal input is:

$$u(t) = \begin{cases} 2 & \text{for } t \in [0, 2\sqrt{3}/3] \\ -1 & \text{for } t \in [2\sqrt{3}/3, 2\sqrt{3}] \end{cases}$$
 (22)