1 Supplemental Table S1. Comparison of light used by the photosystems at different incident light

2 intensities (PPFD μmol s-1 m2) for two modelling scenarios

- 3 scenario 1: objective function = minimisation of sum of fluxes, no lower bound on light used;
- 4 scenario 2: objective function = minimisation of light use. In both scenarios the model output was
- 5 export of sugars and amino acids to the phloem and this output value was constrained so that the
- 6 CO2 uptake rate into the model matched experimental data for net CO2 assimilation rate for each
- 7 incident light intensity.

PPFD	Light used (scenario 1)	Light used (scenario 2)	scenario 1 / scenario 2
100	47.13	47.13	1
200	83.87	83.86	1
300	119.94	118.34	1.01
400	153.02	149.98	1.02
500	184.12	179.37	1.03
600	211.78	205.93	1.03
700	237.29	230.23	1.03
800	259.85	251.7	1.03
900	280.03	270.92	1.03
1000	297.84	287.88	1.03
1100	312.68	302.01	1.04
1200	324.55	313.32	1.04
1300	334.64	322.93	1.04
1400	341.17	329.15	1.04
1500	345.92	333.67	1.04

9 Supplemental Table S2. Predicted relative use of linear- versus cyclic-electron transport in the chloroplast at different incident light intensities (PPFD).

- The FBA model had an objective function of minimisation of sum of fluxes for a set out output rate
- of sugars and amino acids to the phloem (constrained so that the CO2 uptake rate into the model
- matched experimental data for net CO2 assimilation rate for each incident light intensity). Fluxes
- 14 have units of μmol s-1 m2. Abbreviations: CET, cyclic electron transport; LET linear electron
- transport; PS, photosystem

Light PPFD	PSII e- flux	PSI e- flux	LET (fraction)	CET (fraction)
100	23.57	23.57	1	0
200	41.93	41.93	1	0
300	58.64	61.3	0.96	0.04
400	73.98	79.04	0.94	0.06
500	88.1	96.02	0.92	0.08
600	101.02	110.76	0.91	0.09
700	112.76	124.53	0.91	0.09
800	123.14	136.71	0.9	0.1
900	132.43	147.6	0.9	0.1
1000	140.63	157.21	0.89	0.11
1100	147.46	165.22	0.89	0.11
1200	152.92	171.63	0.89	0.11
1300	157.56	177.08	0.89	0.11
1400	160.57	180.6	0.89	0.11
1500	162.75	183.17	0.89	0.11

8

11

```
18
19
          Supplemental Information S1. List of constraints common to all simulations
20
          ####ADD CONSTRAINTS TO MODEL####
21
          #Leaves - light: prevent uptake of organic substrates, force NO3 use rather than NH4
22
          cobra_model.reactions.get_by_id("Sucrose_tx1").lower_bound=0
23
          cobra model.reactions.get by id("Sucrose tx1").upper bound=0
24
          cobra_model.reactions.get_by_id("GLC_tx1").lower_bound=0
25
          cobra_model.reactions.get_by_id("GLC_tx1").upper_bound=0
26
          cobra model.reactions.get by id("CO2 tx1").lower bound=0
27
          cobra_model.reactions.get_by_id("NH4_tx1").lower_bound=0
28
          cobra_model.reactions.get_by_id("NH4_tx1").upper_bound=0
29
          #Leaves - dark: prevent uptake of organic substrates and light
30
          cobra_model.reactions.get_by_id("Sucrose_tx2").lower_bound=0
31
          cobra model.reactions.get by id("Sucrose tx2").upper bound=0
32
          cobra_model.reactions.get_by_id("GLC_tx2").lower_bound=0
33
          cobra model.reactions.get by id("GLC tx2").upper bound=0
34
          cobra model.reactions.get by id("Photon tx2").lower bound=0
35
          cobra model.reactions.get by id("Photon tx2").upper bound=0
36
          cobra_model.reactions.get_by_id("NH4_tx2").lower_bound=0
37
          cobra model.reactions.get by id("NH4 tx2").upper bound=0
38
          cobra_model.reactions.get_by_id("CO2_tx2").upper_bound=0
39
40
          #Set chloroplast G6P transporter and Starch Phosphorylase to 0
41
          cobra model.reactions.get by id("G6P Pi pc1").lower bound=0
          cobra model.reactions.get_by_id("G6P_Pi_pc1").upper_bound=0
42
          cobra\_model.reactions.get\_by\_id("G6P\_Pi\_pc2").lower\_bound=0
43
44
          cobra_model.reactions.get_by_id("G6P_Pi_pc2").upper_bound=0
45
          cobra_model2.reactions.get_by_id("RXN0_5184_p1").lower_bound=0
46
          cobra_model2.reactions.get_by_id("RXN0_5184_p1").upper_bound=0
47
          cobra_model2.reactions.get_by_id("RXN0_5184_p2").lower_bound=0
48
          cobra model2.reactions.get by id("RXN0 5184 p2").upper bound=0
49
50
          #Turn off plastid terminal oxidase
51
          cobra model.reactions.get by id("Plastoquinol Oxidase p1").lower bound=0
52
          cobra_model.reactions.get_by_id("Plastoquinol_Oxidase_p1").upper_bound=0
53
54
          #nitrate uptake constrained to 3:2 day:night
55
          Nitrate_balance = Metabolite("Nitrate_bal_c", name = "Weights to balance nitrate uptake", compartment =
56
          "c1")
57
          cobra model.reactions.get by id("Nitrate ec1").add metabolites({Nitrate balance:-2})
58
          cobra model.reactions.get by id("Nitrate ec2").add metabolites({Nitrate balance:3})
59
60
          #Rubisco carboxylase: oxygenase constrained to 3:1
          Rubisco_balance = Metabolite("rubisco_bal_p1", name = "Weights to balance RuBP carboxygenase oxygenase
61
62
          balance", compartment = "p1")
63
          cobra model.reactions.get by id("RXN 961 p1").add metabolites({Rubisco balance:3})
64
          cobra\_model.reactions.get\_by\_id("RIBULOSE\_BISPHOSPHATE\_CARBOXYLASE\_RXN\_p1"). add\_metabolites(\{RuInterval of the context of t
65
          bisco balance:-1})
66
67
          #generic ATPase and NADPH oxidase constraints for maintenance costs
68
          Maintenance constraint = Metabolite("ATPase NADPHoxidase constraint c1",name =
69
          "ATPase NADPHoxidase constraint c1", compartment = "c1")
70
          Maintenance_constraint2 = Metabolite("ATPase_NADPHoxidase_constraint_c2",name =
```

17

```
71
            "ATPase NADPHoxidase constraint c2", compartment = "c2")
  72
            Maintenance_constraint3 = Metabolite("Light_dark_maintainence_constraint",name =
  73
            "Light dark maintainence constraint", compartment = "c1")
            cobra\_model.reactions.get\_by\_id("ATPase\_tx1").add\_metabolites(\{Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Maintenance\_constraint:1,Mainte
  74
  75
            onstraint3:1})
  76
            cobra_model.reactions.get_by_id("ATPase_tx2").add_metabolites({Maintenance_constraint2:1,Maintenance_
  77
            constraint3:-1})
  78
            cobra model.reactions.get by id("NADPHoxc tx1").add metabolites({Maintenance constraint:-3})
  79
            cobra_model.reactions.get_by_id("NADPHoxc_tx2").add_metabolites({Maintenance_constraint2:-3})
  80
            cobra_model.reactions.get_by_id("NADPHoxm_tx1").add_metabolites({Maintenance_constraint:-3})
  81
            cobra_model.reactions.get_by_id("NADPHoxm_tx2").add_metabolites({Maintenance_constraint2:-3})
  82
            cobra_model.reactions.get_by_id("NADPHoxp_tx1").add_metabolites({Maintenance_constraint:-3})
  83
            cobra_model.reactions.get_by_id("NADPHoxp_tx2").add_metabolites({Maintenance_constraint2:-3})
  84
 85
            #constrain sucrose and starch storage
  86
            Sucorse_starch_balance = Metabolite("sucrose_starch_bal_c", name = "Weights to balance sucrose-starch
  87
            uptake", compartment = "c1")
            cobra model.reactions.get by id("SUCROSE v dielTransfer").add metabolites({Sucorse starch balance:-90})
  88
  89
            cobra_model.reactions.get_by_id("STARCH_p_dielTransfer").add_metabolites({Sucorse_starch_balance:10})
  90
  91
            #Chloroplast enolase was not detected in Arabidopsis mesophyll tissue
 92
            cobra model.reactions.get by id("2PGADEHYDRAT RXN p1").lower bound=0
 93
            cobra model.reactions.get by id("2PGADEHYDRAT RXN p1").upper bound=0
  94
            cobra model.reactions.get by id("2PGADEHYDRAT RXN p2").lower bound=0
 95
            cobra_model.reactions.get_by_id("2PGADEHYDRAT_RXN_p2").upper_bound=0
 96
 97
            #Setting chloroplastic NADPH dehydrogenase to 0 ((Yamamoto et al., 2011)
 98
            cobra_model.reactions.get_by_id("NADPH_Dehydrogenase_p1").lower_bound=0
 99
            cobra_model.reactions.get_by_id("NADPH_Dehydrogenase_p1").upper_bound=0
100
            cobra_model.reactions.get_by_id("NADPH_Dehydrogenase_p2").lower_bound=0
101
            cobra_model.reactions.get_by_id("NADPH_Dehydrogenase_p2").upper_bound=0
102
103
            #ATP_ADP_Pi constrained to 0 during the day because while there is evidence for its existance (NTT), it does
104
            not carry high during the day
105
            cobra model.reactions.get by id("ATP ADP Pi pc1").lower bound = 0
            cobra_model.reactions.get_by_id("ATP_ADP_Pi_pc1").upper_bound = 0
106
107
108
            #turn off chlorophyll a/b cycling for energy dissipation
109
            cobra model.reactions.get by id("RXN 7674 p1").lower bound = 0
110
            cobra_model.reactions.get_by_id("RXN_7674_p1").upper_bound = 0
111
112
            #turn off cytosolic ethanol-ethanal cycle for NADH dissipation
113
            cobra model.reactions.get by id("RXN 10745 NAD c1").lower bound = 0
114
            cobra_model.reactions.get_by_id("RXN_10745_NAD_c1").upper_bound = 0
115
116
            #turn off cytosolic ferric chelate reductase cycle for NADH dissipation
117
            cobra_model.reactions.get_by_id("FERRIC_CHELATE_REDUCTASE_RXN_c1").lower_bound = 0
118
            cobra_model.reactions.get_by_id("FERRIC_CHELATE_REDUCTASE_RXN_c1").upper_bound = 0
119
120
            #Adding a H_mc reaction to allow protons into mitochondria
121
            for i in range(1,3):
122
                         rxn = Reaction("H_mc"+str(i))
123
                         rxn.add metabolites({cobra model.metabolites.get by id("PROTON c"+str(i)):-
124
            1,cobra_model.metabolites.get_by_id("PROTON_m"+str(i)):1})
125
                         rxn.lower_bound=0
126
                         rxn.upper bound=1000
127
            cobra model.add reactions({rxn})
```