	Utech
Name:	
Roll No.:	To Sharm of Knowledge 2nd Explaint
Invigilator's Signature :	

BASIC ELECTRICAL & ELECTRONICS ENGINEERING – I

Time Allotted: 3 Hours Full Marks: 70

THIS QUESTION BOOKLET CONSISTS OF 2 PARTS — PART I & PART II.

TO ANSWER THE QUESTIONS USE SEPARATE ANSWER BOOKS FOR SEPARATE PARTS.

DO NOT ANSWER BOTH THE PARTS IN THE SAME

ANSWER-BOOK.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

PART – I

(Marks: 35)

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *five* of the following :

 $5 \times 1 = 5$

- i) Conductance is analogous to
 - a) permeance
- b) flux
- c) reluctance
- d) inductance.

1251 (N) [Turn over

- ii) Energy stored by a capacitor is given by
 - a) $\frac{1}{2}CV^2$
 - b) $\frac{1}{2}QV$
 - c) $\frac{Q^2}{2C}$
- iii) In an electrical circuit, if the current lags the voltage by 60° , the circuit nature is
 - a) *R*–*C*

b) *R-L*

c) LC

- d) none of these.
- iv) Kirchhoff's voltage law is used for
 - a) loop analysis
 - b) node analysis
 - c) finding out equivalent resistance
 - d) none of these.
- v) If $E_1 = A \sin \omega t$ and $E_2 = A \sin (\omega t \theta)$, then
 - a) E_1 lags E_2
 - b) E_2 lags E_1
 - c) E_1 and E_2 are in phase
 - d) none of these.
- vi) The bandwidth of a series resonant a.c. circuit is equal to
 - a) $\frac{R}{(2\pi L)}$

b) $\frac{1}{(RLC)}$

c) $\frac{1}{(2\pi R)}$

d) $\frac{1}{(wc)}$

1251 (N)

- 2. Derive an expression for the resonant frequency of a parallel circuit, one branch consisting of a coil of inductance L and a resistance R and the other branch of capacitance C.
- 3. Establish the equivalence between Thevenin's and Norton's theorems.
- 4. Find V_{AB} from the circuit if all the resistances are of same value of 1 ohm.

5. Find the value of load resistance (R_L) for which the power source will supply maximum power. Also find the value of the maximum power for the network as shown below:

1251 (N) 3 [Turn over

GROUP - C

(Long Answer Type Questions)

- 6. a) Define power factor of an A.C. circuit. State the disadvantages associated with having a load power factor.
 - b) The galvanometer shown in the circuit has a resistance of 5 ohms. Find the current through the galvanometer using Thevenin's theorem.

7. a) Find the current in each branch of the network using Kirchhoff's law. 5

b) Prove that the current in a purely resistive circuit is in phase with applied A.C. voltage and current in a purely capacitive circuit leads applied voltage by 90° and also draw their waveforms.

	LINNERSHY OF TROOPERSON
CS/B.Tech(N)/SEM-1/ES-1 01/20 12-13 Utech
Define self and mutual	inductance. Derive an
expression for coefficient of	coupling (k) involving self
inductances $I_1 & I_2$ and mi	itual inductance M_{\odot} 4

- expression for co inductances L_1 & L_2 and mutual inductance M.
 - What is meant by hysteresis in a magnetic circuit? b) What is the significance of B-H curve? 3
 - Find an expression for the energy stored in a magnetic c) field. 3
- 9. Explain (a) Star-delta conversion, (b) delta-star conversion with the help of a purely resistive circuit. 5 + 5

USE SEPARATE ANSWER-BOOK TO ANSWER PART-II **QUESTIONS.**

PART - II

(Marks: 35)

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any five of the following:

 $5 \times 1 = 5$

- i) A transistor having a high input impedance and a low output impedance is operating in
 - CB mode a)

8.

a)

- b) CE mode
- CC mode c)
- inverted mode. d)

1251 (N) 5 [Turn over

- a) $\alpha = (\beta + 1)/\beta$
- b) $\beta = \alpha/(1-\alpha)$
- c) $\beta = \alpha/(1+\alpha)$
- d) $\alpha = \beta/(1-\beta)$.

iii) The ripple factor of a half wave rectifier is

a) 0.482

b) 0.41

c) 1·21

d) 1·11

iv) When both junctions are reverse biased, a transistor operates in

a) active

b) saturation

c) cut-off

d) inverted region.

v) Band gap of Ge is

- a) 0.54 eV
- b) 1.1 eV
- c) 0.72 eV
- d) none of these.

vi) An *n*-type semiconductor is

- a) negatively changed
- b) positively charged
- c) neutral.

GROUP - B

(Short Answer Type Questions)

Answer any *two* of the following.

 $2 \times 5 = 10$

- 2. Explain the operation of a full wave rectifier with centre tapped transformer and draw the D.C. output waveform.
- 3. What is the role of doping of impurities in pure silicon or germanium? Draw roughly the position of Fermi level for extrinsic semiconductor and explain.

1251 (N)

6

- 4. Write a sort note on varactor diode.
- 5. At 300 K, the intrinsic carrier concentration of silicon is $1.5 \times 10^{16}~\text{m}^{-3}$. If the electron and hole mobilities are $0.13~\text{and}~0.05~\text{m}^2\text{V}^{-1}\text{s}^{-1}$, calculate the intrinsic resistivity of Si at 300 K.

GROUP - C

(Long Answer Type Questions)

Answer any *two* of the following. $2 \times 10 = 20$

- 6. a) Write the differences between Zener breakdown and avalanche breakdown.
 - b) Explain how a Zener diode can act as a voltage regulator.
 - c) Write a short note on clipper circuit. 3
- 7. a) Discuss the static characteristics of transistor in CB configuration. 5
 - b) What do you mean by intrinsic semiconductor? Explain drift and diffusion current for a semiconductor . 2 + 3

1251 (N) 7 [Turn over

- 8. a) The reverse saturation current of a NPN transistor operating in CB configuration is 10 μ A. For an emitter current of 2·4 mA, the collector current is 2·26 mA. Calculate the current gain and base current.
 - b) Calculate the current $I,\ I_R$ and I_Z for the following circuit.

- 9. Write short notes on any *two* of the following : 2×5
 - a) Clamper circuit
 - b) Fermi level
 - c) Junction capacitance.

1251 (N)