

Busan science high school

2023 Ocean ICT Festival **2023 BOIF**

Youtube 영상 QR

해상 교량의 안정적 구조와 건설방법에 대한 탐구

오션스패너스(Ocean Spanners) 1307 권해정 1313 백창훈

1. 작품 개요

해상 교량은 설계 과정에서 건설 지역의 지반 조건, 해풍, 해류, 경제성, 심미성, 안정성 양한 조건을 고려하여야 한다.

해상 교량 건설에는 천문학적인 비용과 오랜 시간이 필요한 만큼

검증하는 프로그램을 제작하고자 한다.

2. 융합분야

Ocean

정보과학 Computer Science

물리학&수학

Physics&Math

안정성 분석 해양 자원의 이용

해양 교량의

- 기반 구축에 기여
- Python을 통한 교량구조 드로잉
- 질량 중심 계산 프로그램 구현
- 자재 하중을 활용한 질량 중심
- 교량 구조와 자재별 위치의 좌표화

3. 알고리즘 소개 시작 교량의 종류 선택 (트러스교, 현수교, 사장교 중 택 1) 교량의 자재 수 교량 구조 드로잉 질량, 위치 입력 질량 중심 계산 안정성 판단 (안정한 상태인가?) 아니오 예

bridgemass x=float(input('왼쪽으로부터 차례대로 다리의 질량 입력 :')

list1.append(trimass_x)

list2.append(bridgemass x)

sum x+=list1[k-1]*k*c/2

무게중심x좌표=sum_x/(sum(list1)+sum(list2))

sum_y+=(a+math.sqrt(3)*c/6)*list1[1-1]

 $sum_x+=list2[1]*c*(b//2+1)$

for l in range(1,b+1):

sum_x+=list2[0]*0

무게중심**y**좌표=0

하중에 따라 계산하여 설계안 사함으로써 교량 설계에 있어

사건 등 교량을 제대로 건설

t.penup()

t.penup()

t.goto(c,a)

t.penup()

t.pendown()

t.goto(c-f*i,a)

t.goto(0,a)

t.penup()

t.goto(f*i,a)

t.pendown()

for i in range(1,main_edge_num+1):

t.forward((2*e/(c-b*d))*f*i)

for i in range(1,main edge num+1)

t.forward((2*e)/(c-b*d)*f*i)

Input a: 100, b: 3, c: 500,

d: 100, e: 100, f: 10

Input a: 80, b: 6, c: 700,

d: 90, e: 100, f: 18