Лекція 8

Відношення еквівалентності. Відношення часткового порядку

План лекції

- 1. Відношення еквівалентності
- 2. Класи еквівалентності
- 3. Відношення часткового порядку
- 4. Лексикографічний порядок

Відношення еквівалентності

Розглянемо відношення, які водночає мають декілька зазначених вище властивостей у певній комбінації.

Відношення на множині A називають відношенням еквівалентності, якщо воно рефлексивне, симетричне й транзитивне.

Приклад 1. Нехай R – таке відношення на множині цілих чисел: aRb тоді й тільки тоді, коли $(a = b) \lor (a = -b)$. Воно рефлексивне, симетричне й транзитивне, тому, являє собою відношенням еквівалентності.

Приклад 2. Нехай R — таке відношення на множині дійсних чисел: aRb тоді й лише тоді, коли (a-b) — ціле число. Оскільки a-a=0 ціле для всіх дійсних чисел a, то aRa для всіх дійсних чисел a. Отже, відношення R рефлексивне. Нехай тепер aRb. Звідси випливає, a-b — ціле число. Але тоді b-a також ціле, звідси bRa, тобто відношення R симетричне. Якщо aRb і bRc, то числа a-b та b-c цілі. Але тоді число a-c=(a-b)+(b-c) також ціле, звідси aRc, тобто відношення R транзитивне. Отже, R — відношення еквівалентності на множині дійсних чисел.

Приклад 3. Конгруентність за модулем *m***.** Нехай m>1 — ціле число. Доведемо, що $R = \{(a,b) \mid a \equiv b \pmod{m}\}$ — відношення еквівалентності на множині Z цілих чисел.

За означенням $a \equiv b \pmod{m}$ означає, що m ділить (a-b). Зазначимо, що a-a=0 ділиться на m, бо $0 = 0 \cdot m$. Отже, $a \equiv a \pmod{m}$, відношення рефлексивне. Далі, $a \equiv b \pmod{m}$, якщо a-b=km, де k- ціле число. Отже, b-a=(-k)m, тобто $b \equiv a \pmod{m}$, і відношення симетричне. Нарешті, нехай $a \equiv b \pmod{m}$, $b \equiv a \pmod{m}$. Це означає, що a-b=km, b-c=lm, де k, l- цілі числа.

Додамо останні дві рівності: a-b+b-c=(k+l)m, тобто a-c=(k+l)m. Звідси випливає, що $a \equiv c \pmod{m}$, відношення транзитивне. Отже, конгруентність за модулем m- відношення еквівалентності на множині цілих чисел.

Приклад 4. Нехай R — відношення на множині **рядків українських букв** таке, що aRb тоді й тільки тоді, коли l(a) = l(b), де l(x) — довжина рядка x. Чи є R відношенням еквівалентності?

Для будь-якого рядка a очевидно l(a) = l(a), отже, відношення R рефлексивне. Тепер припустімо, що aRb, тому l(a) = l(b). Але тоді l(b) = l(a), тому bRa, отже, відношення R симетричне. Нарешті припустімо, що aRb і bRc. Тоді l(a) = l(b) і l(b) = l(c). Звідси слідує, що l(a) = l(c) і aRc, тобто відношення R транзитивне. Тому що відношення R рефлексивне, симетричне й транзитивне, воно є відношенням еквівалентності.

Приклад 5. Нехай n — додатне ціле і S — множина двійкових рядків. Припустімо, що R_n — відношення на S таке, що sR_nt тоді й лише тоді, коли s=t або обидва рядки s і t складаються щонайменше з n символів і перші n символів у рядках s і t однакові. Отже, кожен рядок довжиною менше ніж n є у відношенні тільки до самого себе; рядок s із щонайменше n символів є у відношенні до рядка t якщо і тільки якщо перші n символів у ньому ті самі, що і в рядку s. Наприклад, нехай n=3. Тоді $01R_301$ і $00111R_300101$, але $(01,010) \notin R_3$ і $(01011,01110) \notin R_3$.

Покажемо, що для будь-якої множини рядків S і для будь-якого додатного цілого n, R_n є відношенням еквівалентності на S.

Відношення R_n рефлексивне, бо s = s, отже sR_ns для будь-якого рядка з S. Якщо sR_nt , то тоді або s = t, або s і t мають щонайменше n символів і перші n символів однакові. Це означає, що tR_ns . Ми довели, що відношення R_n симетричне.

Тепер припустімо, sR_nt і tR_nu . Тоді або s=t, або s і t мають щонайменше n символів і перші n символів однакові. Аналогічно, або t=u, або t і u мають щонайменше n символів і перші n символів однакові. Тому в цьому випадку, як ми розуміємо, s, t і u складаються щонайменше з n символів кожний, та s і u мають першими n символами ті самі, що й t. Отже, sR_nu і відношення R_n транзитивне.

Отже, відношення R_n є відношенням еквівалентності.

У наступному прикладі ми розглянемо відношення, яке не ϵ відношеннями еквівалентності.

Приклад 6. Нехай R — відношення на множині дійсних чисел таке, що xRy тоді й тільки тоді, коли |x-y| < 1. Легко побачити, що це відношення рефлексивне, бо |x-x| = 0 < 1 для будь-якого дійсного числа x. Відношення R симетричне, бо коли |x-y| < 1, то і |y-x| = |x-y| < 1 для будь-яких дійсних чисел x та y. Проте відношення R не ε відношенням еквівалентності, бо воно не транзитивне.

Візьмемо x=2.8, y=1.9 і z=1.1. Тоді |x-y|=|2.8-1.9|=0.9<1, |y-z|=|1.9-1.1|=0.8<1, але |x-z|=|2.8-1.1|=1.7>1.

Класи еквівалентності

Почнемо з розгляду такого простого прикладу. Нехай A — множина учасників наукової конференції. Як R позначимо відношення на множині A яке містить усі пари (x,y), де x та y приїхали на конференцію з одного міста. Маючи на увазі якогось учасника x, ми можемо задати множину всіх учасників цієї конференції, еквівалентних до x за відношенням R. Ця множина містить усіх учасників, які приїхали на конференцію із того самого міста, що й учасник x. Цю підмножину множини A називають класом еквівалентності за відношенням R. Цей приклад приводить до такого означення.

Нехай R — відношення еквівалентності на множині A. Множину всіх елементів, які еквівалентні до елемента $a \in A$, називають *класом еквівалентності* (елемента a) *за відношенням* R, його позначають як $[a]_R$. Маючи на увазі якесь певне відношення еквівалентності, використовують позначення [a] для цього класу еквівалентності.

Отже: $[a]_R = \{x \in A \mid (a, x) \in R\}$. Елемент $b \in [a]_R$ називають *представником* цього класу еквівалентності. Будь-який елемент із класу еквівалентності може бути використаний як представник цього класу.

Приклад 7. Знайдемо класи еквівалентності відношення з прикладу 1. Оскільки ціле число еквівалентне до самого до себе та до протилежного числа, то класи еквівалентності за цим відношенням такі: $[a] = \{-a, a\}, a \neq 0$ та $[0] = \{0\}$. Зокрема, $[7] = \{-7, 7\}, [-5] = \{-5, 5\}$

Приклад 8. Знайдемо класи еквівалентності елементів 0 і 1 для відношення конгруентності за mod 4 (див. приклад 3). Клас еквівалентності елемента 0 містить усі цілі числа b такі, що $0 \equiv b \pmod 4$, тобто такі, що діляться на 4. Отже, $[0] = \{..., -8, -4, 0, 4, 8, ...\}$. Клас еквівалентності елемента 1 містить усі цілі числа b такі, що $1 \equiv b \pmod 4$. Звідси випливає, що $[1] = \{..., -7, -3, 1, 5, 9, ...\}$. Класи еквівалентності, подібні до розглянутих у цьому прикладі, називають *класами конгруентності за модулем т* і позначають як $[a]_m$.

Отже, $[0]_4 = \{..., -8, -4, 0, 4, 8, ...\}, [1]_4 = \{..., -7, -3, 1, 5, 9, ...\}.$

Нехай R — відношення еквівалентності на множині A. Важливо зазначити, що класи еквівалентності, породжені двома елементами множини A, або збігаються, або не перетинаються. Про це твердить наступна лема.

Лема. Нехай R — відношення еквівалентності на множині A. Тоді такі твердження еквівалентні:

(I) aRb,

(II) [a] = [b],

(III) $[a] \cap [b] \neq \emptyset$.

Доведення.

- Спочатку доведемо, що з (I) випливає (II). Припустимо, що aRb. Щоб довести рівність [a]=[b], покажемо, що $[a]\subset[b]$ та $[b]\subset[a]$. Нехай $c\in[a]$, тоді aRc. Оскільки aRb, а R симетричне відношення, то bRa. Позаяк відношення R транзитивне, то з bRa й aRc випливає bRc, тому $c\in[b]$. Отже, $[a]\subset[b]$. Аналогічно можна довести, що $[b]\subset[a]$.
- Доведемо тепер, що з (II) випливає (III). Справді $[a] \neq \emptyset$, бо $a \in [a]$ внаслідок рефлексивності. Отже, з [a] = [b] випливає $[a] \cap [b] \neq \emptyset$.
- Нарешті, доведемо, що з (ІІІ) випливає (І). Припустимо, що $[a] \cap [b] \neq \emptyset$. Тоді існує такий елемент c, що $c \in [a]$ та $c \in [b]$, тобто aRc та bRc. Із симетричності відношення R випливає cRb. Оскільки відношення R транзитивне, то з aRc та cRb випливає aRb.

Позаяк з (I) випливає (II), з (II) випливає (III) та з (III) випливає (I), то твердження (I), (II), (III) еквівалентні.

Відношення еквівалентності R, задане на множині A, тісно пов'язане з розбиттям цієї множини. Цей зв'язок виражено у двох наступних теоремах. Нагадаємо, що систему S підмножин множини A називають розбиттям цієї множини, якщо всі множини системи S непорожні, попарно не перетинаються, і об'єднання їх усіх дорівнює множині A. Більш докладно, розбиття множини A — це система S її підмножин A_i , $i \in I$ (де I — множина індексів), така, що виконуються умови:

- 1) $A_i \neq \emptyset$ для всіх $i \in I$;
- 2) $A_i \cap A_j = \emptyset$ коли $i \neq j$;
- $3) \bigcup_{i \in I} A_i = A.$

(Тут $\bigcup_{i \in I} A_i$ репрезентує об'єднання множин A_i для всіх $i \in I$.) Наступний рисунок ілюструє концепцію розбиття множини.

Приклад 9. Нехай $A = \{1, 2, 3, 4, 5, 6\}$. Система множин $S = \{\{1, 2, 3\}, \{4, 6\}, \{5\}\}$ – розбиття цієї множини.

Теорема 1. Кожне відношення еквівалентності R на множині A породжує розбиття множини A на класи еквівалентності.

Доведення. Об'єднання класів еквівалентності за відношенням R — це всі елементи множини A, бо будь-який елемент a з множини A міститься у своєму класі еквівалентності $[a]_R$. Інакше кажучи,

$$\bigcup_{a \in A} [a]_R = A.$$

Із леми випливає, ці класи еквівалентності або співпадають, або не перетинаються, отже, $[a]_R \cap [b]_R = \emptyset$, коли $[a]_R \neq [b]_R$.

Ці два спостереження показують, що класи еквівалентності за відношенням еквівалентності R, заданим на множині A, формують розбиття цієї множини. Терему доведено.

Приклад 10. Відношення конгруентності за mod 4 (див приклад 8) породжує розбиття множини Z цілих чисел на 4 класи еквівалентності: $[0]_4$, $[1]_4$, $[2]_4$ та $[3]_4$. Вони попарно не перетинаються, а їх об'єднання дорівнює множині Z.

Ось ці класи:

$$[0]_4 = \{\dots, -8, -4, 0, 4, 8, \dots\},$$

$$[1]_4 = \{\dots, -7, -3, 1, 5, 9, \dots\},$$

$$[2]_4 = \{\dots, -6, -2, 2, 6, 10, \dots\},$$

$$[3]_4 = \{\dots, -5, -1, 3, 7, 11, \dots\}.$$

Загалом ϵ m різних класів конгруентності за модулем m; вони відповідають m різним остачам, можливим при діленні цілого числа на m. Ці m класів позначають як $[0]_m$, $[1]_m$, ..., $[m-1]_m$. Вони й формують розбиття множини цілих чисел за цим відношенням еквівалентності (тобто за відношенням конгруентності за модулем m).

Приклад 11. Нехай R_3 — відношення еквівалентності з прикладу 5. Якими є класи еквівалентності, які формують розбиття множини всіх бітових рядків за відношенням R_3 ?

Зазначимо, що кожний бітовий рядок довжиною меншою ніж три еквівалентний тільки до самого себе. Отже, $[\lambda]_{R_3} = \{\lambda\}$, $[0]_{R_3} = \{0\}$, $[1]_{R_3} = \{1\}$, $[00]_{R_3} = \{00\}$, $[01]_{R_3} = \{01\}$, $[10]_{R_3} = \{10\}$, $[11]_{R_3} = \{11\}$. Кожний рядок довжиною три або більше еквівалентний одному з восьми бітових рядків 000, 001, 010, 011, 100, 101, 110, 111. Ось ці класи еквівалентності:

```
 [000]_{R_3} = \{000, 0000, 0001, 00000, 00001, 00010, 00011, \dots\},   [001]_{R_3} = \{001, 0010, 0011, 00100, 00101, 00110, 00111, \dots\},   [010]_{R_3} = \{010, 0100, 0101, 01000, 01001, 01010, 01011, \dots\},   [011]_{R_3} = \{011, 0110, 0111, 01100, 01101, 01110, 01111, \dots\},   [100]_{R_3} = \{100, 1000, 1001, 10000, 10001, 10010, 10011, \dots\},   [101]_{R_3} = \{101, 1010, 1011, 10100, 10101, 10110, 10111, \dots\},   [110]_{R_3} = \{111, 1110, 1111, 11100, 11101, 11110, 11111, \dots\},
```

Теорема 2. Будь-яке розбиття множини A визначає на множині A відношення еквівалентності.

Доведення. Нехай $a, b \in A$, будемо вважати, що aRb тоді й лише тоді, коли a та b належать одній множині розбиття. Залишилося довести, що одержане відношення на множині A являє собою відношенням еквівалентності. Для цього потрібно переконатись, що воно рефлексивне, симетричне й транзитивне. Справді, оскільки a належить якійсь множині розбиття, то aRa, тобто відношення рефлексивне. Нехай A_i — якась множина розбиття та $a, b \in A_i$. Тоді й $b, a \in A_i$, тобто з aRb випливає bRa. Симетричність доведено. Нарешті, із aRb і bRc випливає $a, b, c \in A_i$. Звідси aRc, тобто відношення R транзитивне. Теорему доведено.

Приклад 12. Записати упорядковані пари, які формують відношення еквівалентності, яке породжено розбиттям множини $A = \{1, 2, 3, 4, 5, 6\}$ із прикладу 9:

$$S = \{\{1, 2, 3\}, \{4, 6\}, \{5\}\}.$$

Тут $A_1 = \{1, 2, 3\}$, $A_2 = \{4, 6\}$, $A_3 = \{5\}$. Пара $(a,b) \in R$ якщо і тільки якщо a та b в одній і тій самій множині розбиття. Пари (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2) і (3,3) належать відношенню, бо $A_1 = \{1, 2, 3\}$ — клас еквівалентності. Пари (4,4), (4,6), (6,4) і (6,6) належать відношенню R, бо множина $A_2 = \{4, 6\}$ є класом еквівалентності. Нарешті, пара (5,5) належить відношенню R, бо $A_3 = \{5\}$ є класом еквівалентності. Ніякі інші пари відношенню еквівалентності R не належать.

Відношення часткового порядку

Ми дуже часто використовуємо відношення для упорядкування якихось чи всіх елементів множини. Наприклад, ми упорядковуємо слова, використовуючи відношення, яке складається з пар слів (x, y), де x є перед y у словнику. Ми плануємо проекти використовуючи відношення, що містить пари (x, y), де x та y – це завдання проекту такі, що x має бути завершеним до початку y. Ми впорядковуємо множину цілих чисел, використовуючи відношення, яке містить пари (x, y), де x менше y. Коли ми в будь-яке з цих відношень додамо всі пари виду (x, x), то отримаємо відношення яке є рефлексивним, антисиметричним і транзитивним. <u>Ці властивості як раз і характеризують відношення, які використовують для упорядкування елементів множини.</u>

Відношення R на множині A називають відношенням часткового порядку (або частковим порядком), якщо воно рефлексивне, антисиметричне й транзитивне. Множину A з частковим порядком R називають частково впорядкованою множиною й позначають (A,R).

Приклад 13. Нехай A={1, 2, 3, 4, 6, 8, 12}. Відношення R задамо як звичайне порівняння чисел: $(a, b) \in R$ тоді й лише тоді, коли $a \le b$ $(a, b \in A)$. Неважко безпосередньо переконатись, що це частковий порядок на множині A.

Приклад 14. Нехай A – множина з прикладу 13. Відношення R_1 задамо так: $(a, b) \in R_1$ тоді й лише тоді, коли a ділить b. Отже: $R_1 = \{(1, 1), (2, 2), (3, 3), (4, 4), (6, 6), (8, 8), (12, 12), (1, 2), (1, 3), (1, 4), (1, 6), (1, 8), (1, 12), (2, 4), (2, 6), (2, 8), (2, 12), (3, 6), (3, 12), (4, 8), (4, 12), (6, 12)\}.$

Легко переконатись, що це відношення рефлексивне, антисиметричне й транзитивне, тому являє собою відношення часткового порядку на множині A.

Два елементи a та b частково впорядкованої множини (A, R) називають *порівнюваними*, якщо aRb або bRa. Якщо a та b — такі елементи, що ні aRb, ні bRa, то їх називають непорівнюваними.

Приклад 15. Елементи 3 та 4 множини (A, R_1) із прикладу 14 — непорівнювані.

Якщо (A, R) — частково впорядкована множина, у якій будь-які два елементи порівнювані, то її називають *лінійно*, або *тотально впорядкованою*, а частковий порядок R — *лінійним*, або *тотальним* порядком.

Отже, множина (A, R) із прикладу 13 лінійно впорядкована, множина (A, R_1) із прикладу 14 частково впорядкована, але не лінійно впорядкована. Лінійно впорядковану множину називають також *ланцюгом*.

Приклад 16. Нехай $A = E_2^n$ — множина всіх векторів довжиною n з булевими компонентами (тобто з компонентами 0, 1). Задамо частковий порядок на цій множині так: $(a_1, a_2, ..., a_n) \le (b_1, b_2, ..., b_n)$ тоді й лише тоді, коли $a_i \le b_i$ (i = 1, ..., n). Цей частковий порядок не лінійний. Наприклад, не можна порівняти вектори (010000) і (101000).

Наступний приклад ілюструє відношення, яке не є частковим порядком.

Приклад 17. Нехай R — відношення на множині людей таке, що xRy якщо і тільки якщо x молодший ніж y. Покажемо, що це відношення не ε частковим порядком. Зазначимо, відношення R антисиметричне, бо якщо людина x молодша ніж людина y, то людина y не ε молодшою x. Отже, коли $(x,y) \in R$, то $(y,x) \notin R$. Відношення R транзитивне, бо коли людина x молодша y, а y молодша z, то x молодша x. Отже, коли xRy і yRz, то xRz. Проте, відношення x не рефлексивне, Бо людина не може бути молодшою від самої себе. Отже, $(x,x) \notin R$ для всіх людей x. Із цього виплива ε , що x не x відношенням часткового порядку.

Лексикографічний порядок

Слова в словнику розташовують у словниковому, або лексикографічному порядку, який грунтується на впорядкованості букв алфавіту.

Лексикографічний порядок можна визначити на декартовому добутку n частково впорядкованих множин $(A_1, \leq_1), (A_2, \leq_2), ..., (A_n, \leq_n)$. Визначимо частковий порядок \leq на $A_1 \times A_2 \times \cdots \times A_n$ так:

$$(a_1, a_2, ..., a_n) < (b_1, b_2, ..., b_n),$$

якщо $a_1 <_1 b_1$, або є ціле i > 0 таке, що $a_1 = b_1, \ldots, a_i = b_i$, але $a_{i+1} <_{i+1} b_{i+1}$.

Визначимо тепер лексикографічний порядок рядків (слів). Припустімо, що маємо рядки, компонентами яких ϵ елементи лінійно впорядкованої множини S:

$$a_1a_2...a_m$$
 i $b_1b_2...b_n$.

Нехай $t = \min(m, n)$. Тоді $a_1 a_2 \dots a_m$ менше $b_1 b_2 \dots b_n$ якщо і тільки якщо

$$a_1 a_2 \dots a_t < b_1 b_2 \dots b_t$$
, або

$$a_1 a_2 \dots a_t = b_1 b_2 \dots b_t$$
 ra $m < n$.

Наприклад, $noxi\partial < noxi\partial нa$.