Summary | Hydraulic Machinary

Introduction |

| Positive Displacement | Piston pump, Rotary pump | Motors | Hydraulic Ram, Jack Press | | Rotodynamic | Pumps, Compressors | Turbines | Hydraulic coupling, Torque converter |

In s1, only rotodynamic <u>pumps</u> and rotodynamic turbines are studied.

Pumps

Energy flow direction is machine to fluid.

Vane

A curved blade used in a pump.

Impeller

Set of vanes attached to a disc or a cyllinder. Main rotating element in a pump.

In a pump, impeller is mounted on a shaft. The shaft is driven by an electric motor or IC engine.

Direction of the fluid flow

Axial flow

Fluid enters and exits the impeller axially.

Radial flow

Fluid enters the impeller axially. Leaves radially. Aka. centrifugal pumps.

Mixed flow

Fluid enters the impeller axially. Leaves in both axial and radial directions.

(i) Note

For s1, only centrifugal pumps are studied.

Parameters

Head provided

The head provided by a pump depends on the flow rate.

$$H = f(Q)$$

Here:

- ullet H provided head
- ullet Q flow rate

For a given pump running at a given speed, there is a unique variation of \boldsymbol{H} and \boldsymbol{Q} .

Power input

Denoted by $P_i.$ Varies with Q.

Efficiency

Denoted by μ . Varies with Q.

$$\mu = rac{P_o}{P_i}$$

(i) Note

$$ext{Energy per unit volume} = rac{P_{i_A}}{Q}$$

All these parameters, plotted vs Q, is known as **performance characteristic** of the pump. Will be given by the manufacturer. Can be found by laboratory testing.

In a pipeline system

$$H = H_0 + KQ^2$$

 $m{H}$ is the head required (or received) to create the flow rate $m{Q}$ in the pipeline system. The above equation is known as **system characteristic** or **system load curve**.

Here K is the loss coefficient and is given by:

$$K=rac{8}{\pi^2qD^4}igg(K_L+rac{\lambda L}{D}igg)$$

(i) Note

Working state of a pipeline system is given by the intersection of system characteristic and performance characteristic (of the pump) curves.

Resultant pumps

In serial

When 2 pumps are operating in a series, their head inputs are added.

In parallel

When 2 pumps are operating in a parallel, their flow rates are added.

Centrifugal Pumps

Most used pumps in engineering because they support wide range of heights and flow rates. Mixed flow, rotodynamic pump.

There can be a diffuser as well, which is optional.

Volute

Casing of the impeller. A passage with increasing area, to reduce velocity (to reduce losses).

(i) Note

Energy losses in a fluid flow is directly proportional to v^2 .

Diffuser

A fixed set of vanes added to the impeller. To direct the flow into the volute, to minimize impact losses.

Operation

- Volute must be filled with fluid to start pumping
- Fluid enters through the eye of the impeller
- ullet v and P are increased when the fluid flows through the impeller

Performance characteristic

Turbines

Used to generate electricity. Direction of energy transfer is fluid to machine.

Rotating element is called as the runner.

Types of turbines

Reaction turbines

Aka. pressure turbines. Similar to pumps. Operating in reverse direction (direction of fluid flow and energy transfer). Guide vanes are placed to guide fluid flow onto the runner.

3 types of reaction turbines based on the direction of fluid flow.

Radial flow

Aka. Francis turbine. Commonly used to get a head output of 30 to 500m.

Axial flow

Aka. Kaplan turbine. Commonly used to get a head output of 3 to 70m.

Mixed flow

A combination of radial flow and axial flow.

Impulse turbines

Aka. velocity turbines. Used for high heads. Highly efficient. Includes a runner (a wheel with buckets attached) mounted on a shaft. High velocity jet is focused on the buckets.

Efficiency of an impulse turbine is given by:

$$\mu = rac{1}{v_1^2} (2u)(v_1 - u)(1 + k\coseta)$$

Here:

- ullet v_1 velocity of the jet of fluid
- ullet u velocity of the bucket
- **k** loss coefficient (a little less than 1)
- $oldsymbol{ heta}$ angle of deflection of fluid inside the bucket

 μ can be considered as a function of u. And from that, the turbine works at maximum efficiency when $2u=v_1$.

This PDF is saved from https://s1.sahithyan.dev