Non-Cartesian Coordinate

by Tony Shing

Overview:

- 2D: Polar coordinate
- 3D: Cylindrical coordinate & Spherical coordinate

1 Polar Coordinate

You should have already learnt what polar coordinate is from high school, and its conversion with rectangular coordinate.

From (x, y) to (r, θ)

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1} \left(\frac{y}{x}\right) \end{cases}$$

From (r, θ) to (x, y)

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

(add figure here: polar conv)

What about double integral over an area that is represented by polar coordinate?

$$\int \int f(x,y) \, dx \, dy \quad \Leftrightarrow \quad \iint f(r,\theta) \, \underline{r} \, dr \, d\theta$$
Caution: An extra r

The reason for this extra r comes from the dimension of the area element.

- In x/y coordinate, area of each grid is fixed.

$$I = \sum_{i} \underline{f(x_i, y_i)} \cdot \underline{\Delta x \Delta y} \sim \iint f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$
"Weight" assigned Each grid are to the point (x_i, y_i) of area $\Delta x \Delta y$

(add figure here: rect element)

- In polar coordinate, area of the grids depends on its r coordinate. When $\Delta\theta$ is very small, the grid's area \approx (height)×(width) $\approx \Delta r \times r_i \Delta \theta$. So

$$I = \sum_{i} \underline{f(r_i, \theta_i)} \cdot \underline{r_i \cdot \Delta r \Delta \theta} \sim \iint f(r, \theta) r \, \mathrm{d}r \, \mathrm{d}\theta$$
"Weight" assigned The grid's area to the point (r_i, θ_i) depends on r coordinate
$$= \Delta r \times r_i \Delta \theta$$
(add figure here: polar element)

2 Cylindrical Coordinate

Cylindrical coordinate is essentially polar coordinate + z-axis.

From (x, y, z) to (r, θ, z)

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1} \left(\frac{y}{x}\right) \\ z = z \end{cases}$$

From (r, θ) to (x, y)

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

(add figure here: cyl conv)

Therefore the triple integral expression is very similar to the double integral in polar coordinate, with an extra r present in the volume element.

$$\boxed{ \iiint f(x,y,z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \quad \Leftrightarrow \quad \iiint f(r,\theta,z) \, \underline{r} \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}z }$$

(add figure here: cyl vol element)

Example 2.1. Given a solid cylinder with mass density distribution $\rho(r, \theta, z) = r^2$, and dimension: radius = R, height = H. Making use of cylindrical coordinate,

- Mass of each volume element = (density)×(volume) = $\rho(r, \theta, z)r dr d\theta dz$
- Total mass = $\iiint \rho(r, \theta, z) r \, dr \, d\theta \, dz$
- Upper/Lower bound for each dimension are:
 - Range of r: From r = 0 to r = R

- Range of
$$\theta$$
: From $\theta = 0$ to $\theta = 2\pi$ (whole circle)

- Range of z: From z = 0 to z = H

(add figure here: dim of cyl)

The calculation of the total mass is then

mass is then
$$\int_{z=0}^{z=H} \int_{r=0}^{r=R} \int_{\theta=0}^{\theta=2\pi} \frac{r^2 \cdot r \, d\theta \, dr \, dz}{r^2 \cdot r \, d\theta \, dr \, dz}$$

$$= \int_{z=0}^{z=H} \int_{r=0}^{r=R} \left(\int_{\theta=0}^{\theta=2\pi} r^3 \, d\theta \right) \, dr \, dz$$

$$= \int_{z=0}^{z=H} \int_{r=0}^{r=R} \left[r^3 \theta \right] \Big|_{\theta=0}^{\theta=2\pi} \, dr \, dz$$

$$= \int_{z=0}^{z=H} \left(\int_{r=0}^{r=R} 2\pi r^3 \, dr \right) \, dz$$
Then integrate r

$$= \int_{z=0}^{z=H} \left[\frac{2\pi r^4}{4} \right] \Big|_{r=0}^{r=R} \, dz$$

$$= \int_{z=0}^{z=H} \frac{\pi R^4}{2} \, dz$$
Finally integrate z

$$= \frac{\pi R^4 H}{2}$$

3 Spherical Coordinate

Spherical coordinate is a description of position on a sphere by 3 parameters:

$$-r = \text{Radius}, \sim \text{Altitute}$$

$$-\phi = Azimuthal angle, \sim Longitude$$

$$-\theta = Polar angle, \sim Latitude$$

The conversion to rectangular coordinate is as follow:

From (x, y, z) to (r, θ, ϕ)

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z} \right) \\ \phi = \tan^{-1} \left(\frac{y}{x} \right) \end{cases}$$

From (r, θ, ϕ) to (x, y, z)

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}$$

(add figure here: sph conv)

Caution 1: The notations here are adopting the **physics convention**, where ϕ is the angle on the x-y plane and θ is the inclination to the z-axis. This is the convention found in modern Physics textbooks. However in many mathematics textbook and older physics books, you may find the **mathematics convention** where the meaning of ϕ and θ are swapped.

<u>Caution 2:</u> The choice of the angles are not the same as we use geography. Note that

- Range of $\phi = [0, 2\pi)$. But in geography, longitutude is ranged between $(-180^{\circ}, 180^{\circ}]$.
- Range of $\theta = [0, \pi]$. But in geography, latitude angle is $90^{\circ} \theta$, which ranged between $[-90^{\circ}, 90^{\circ}]$.

When dealing with triple integral, the unit volume in spherical coordinate is $\sim (\Delta r) \times (r\Delta\theta) \times (r\sin\theta\Delta\phi)$. We may analyze its dimension with the following pictures.

(add figure here: sph unit vol dim)

As a result, the triple integral has to be written as

$$\iiint f(x, y, z) \, dx \, dy \, dz \quad \Leftrightarrow \quad \iiint f(r, \theta, \phi) \, \underline{r^2 \sin \theta} \, dr \, d\theta \, d\phi$$
Caution: An extra $r^2 \sin \theta$

Example 3.1. Given a hollow but thick sphere with radius range from r = a to r = b, and with mass density distribution $\rho(r, \theta, \phi) = r^4$. Making use of spherical coordinate,

- Mass of each volume element = (density)×(volume) = $\rho(r, \theta, \phi)r^2 \sin \theta \, dr \, d\theta \, d\phi$
- Total mass = $\iiint \rho(r,\theta,\phi)r^2\sin\theta\,\mathrm{d}r\,\mathrm{d}\theta\,\mathrm{d}\phi$
- Upper/Lower bound for each dimension are:

- Range of r: From r = a to r = b
- Range of θ : From $\theta = 0$ to $\theta = \pi$
- Range of ϕ : From $\phi = 0$ to $\phi = 2\pi$

(add figure here: dim of sph)

The calculaton of the total mass is then

mass is then
$$\int_{r=a}^{r=b} \int_{\phi=0}^{\phi=2\pi} \int_{\theta=0}^{\theta=\pi} \frac{r^4}{r^4} \cdot r^2 \sin \theta \, d\theta \, d\phi \, dr$$

$$= \int_{r=a}^{r=b} \int_{\phi=0}^{\phi=2\pi} \left[\int_{\theta=0}^{\theta=\pi} r^6 \sin \theta \, d\theta \right] d\phi \, dr$$

$$= \int_{r=a}^{r=b} \int_{\phi=0}^{\phi=2\pi} \left[-r^6 \cos \theta \right]_{\theta=0}^{\theta=\pi} d\phi \, dr$$

$$= \int_{r=a}^{r=b} \left[\int_{\phi=0}^{\phi=2\pi} 2r^6 \, d\phi \right] dr$$
Then integrate ϕ

$$= \int_{r=a}^{r=b} \left[2r^6 \phi \right]_{\phi=0}^{\phi=2\pi} dr$$

$$= \int_{r=a}^{r=b} 4\pi r^6 \, dr$$
Finally integrate r

$$= \frac{4\pi}{7} (b^7 - a^7)$$

— The End —