Requête dans un RB

- L'usage principal d'un RB est de calculer les probabilités a posteriori, étant donné un événement observé
 - un événement est une assignation de valeurs à certaines variables d'observation
 - ex. : sachant le résultat d'une batterie de tests, quelle est maintenant la probabilité qu'un patient ait une maladie X?
- On va noter
 - ◆ X l'ensemble de variables pour lesquelles on fait une requête
 - » ex. : la patient a la maladie X
 - E l'ensemble des variables d'observation et e les valeurs observées
 - » ex. : $E_i = e_i$ est le résultat d'un test
 - Y l'ensemble des variables cachées (qui ne sont pas observées)
 - » ex. : Y_i est le résultat de tests qui n'ont pas été faits
- Une requête est l'inférence de P(X|e), où e est une assignation de valeurs aux variables dans E

Requête dans un RB

- Exemple:
 P(Cambriolage | JeanAppelle = vrai,
 MarieAppelle = vrai)
 = [0.284, 0.716]
- Comment fait-on un tel calcul?
 - inférence exacte (prohibitif)
 - » par énumération
 - inférence approximative par échantillonnage avec les méthodes Monte-Carlo (plus efficace)
 - » méthode de rejet

Inférence par énumération

 On veut calculer la distribution sur les variables de requêtes sachant les observations

$$P(X|e) = P(X,E=e)/\alpha = \sum_{y} P(X,e,y) / \alpha$$

- Les termes P(X, e, y) peuvent s'écrire comme le produit des probabilités conditionnelles du réseau
- On peut donc calculer la réponse à une requête P(X|e) dans un RB, simplement en
 - 1. calculant les sommes des produits des probabilités conditionnelles du RB
 - 2. normalisant ces sommes de façon à obtenir une distribution qui somme à 1
- Les ensembles des variables X, E et Y couvrent ensemble tous les noeuds
 - \diamond complexité en temps : $O(n d^{|X|+|Y|})$, avec d la taille du plus grand domaine
 - \diamond complexité en espace : $O(d^{|X|})$, pour stocker la distribution

Exemple

- P(Cambriolage | JeanAppelle = vrai, MarieAppelle = vrai)
 - ◆ noté **P**(*C* | *J*=V, *M*=V)
- Les variables cachées sont Séisme et Alarme

$$\mathbf{P}(C \mid J=V, M=V) = \sum_{s,a} \mathbf{P}(C, s, a, J=V, M=V) / \alpha$$
$$= \sum_{s} \sum_{a} \mathbf{P}(C, s, a, J=V, M=V) / \alpha$$

- Note :
 - s et a prennent toutes les valeurs possibles pour S=s et A=a

Exemple

- $P(C \mid J=V, M=V) = \sum_{s,a} P(C, s, a, j, m) / \alpha$
- On calcule pour *C* = *vrai*

P(C=V | J=V, M=V)
=
$$\Sigma_{s,a} P(C=V) P(s) P(a|C=V,s) P(J=V|a) P(M=V|a) / \alpha$$

= (0.001*0.002*0.95*0.90*0.70+
0.001*0.998*0.94*0.90*0.70+
0.001*0.002*0.05*0.05*0.01+
0.001*0.998*0.06*0.05*0.01) / α
= 0.00059224 / α

- Et C = faux $P(C=F \mid J=V, M=V)$ $= \sum_{s,a} P(C=F) P(s) P(a \mid C=F,s) P(J=V \mid a) P(M=V \mid a) / \alpha$ $= 0.0014919 / \alpha$ $\alpha = 0.00059224 + 0.0014919$
- Donc, $P(C \mid J=V, M=V) = [0.284, 0.716]$

Inférence par élimination des variables

 Même principe que l'inférence par énumération, mais on évite les répétions de calculs déjà faits (comme en programmation dynamique)

Voir section 14.4.2 du livre

Inférence approximative

- Les méthodes d'inférence exactes sont inefficaces
 - ◆ le problème d'inférence est NP-Complet
- Les méthodes d'inférence approximatives sont plus pratiques
 - en général, on n'a pas besoin d'un calcul exact des probabilités pour qu'une conclusion tirée d'un RB soit correcte
 - une méthode approximative pourrait assigner des valeurs aux variables aléatoires en fonction des TPC associées à ces variables
 - ces assignations sont basées sur des simulations stochastiques, plutôt que des observations réelles

Méthode de rejet (rejection sampling)

 Idée: simuler des observations complètes du RB et estimer les probabilités à partir des fréquences (relatives) des observations échantillonnées

$$P(X=x|e) = \sum_{v} P(X=x, e, y) / \alpha \approx \text{freq}(x,e) / \sum_{x'} \text{freq}(x',e) = \text{freq}(x,e) / \text{freq}(e)$$

où freq(x,e) est le nombre de fois que X=x et E=e a été échantillonné et freq $(e) = \Sigma_{x'}$ freq(x',e) est le nombre de fois que E=e

- Cette technique est appelée méthode de rejet (rejection sampling)
 - le problème avec cette méthode est que si e est très rare selon le RB, il y aura peu d'échantillons qui correspondront à cette observation
 - d'autres méthodes sont plus efficaces et nécessitent moins d'échantillons pour obtenir une bonne estimation
 - voir la section 14.5 dans le livre

Exemple

Requête:

Calculer P(T=vrai | M=vrai)

Variables connues : M = vraiVariables inconnues: H, O, F

F	M	P(H F,M)
F	F	0.5
F	V	1.0
V	F	0.01
V	V	0.02

	F	Н	0	T
#	rand()<0.2	rand() <p(h f,m)< th=""><th>rand()<0.6</th><th>rand()<p(t h,o)< th=""></p(t h,o)<></th></p(h f,m)<>	rand()<0.6	rand() <p(t h,o)< th=""></p(t h,o)<>
1	faux	vrai	vrai	vrai
2	faux	vrai	vrai	vrai
3	faux	vrai	faux	faux
4	vrai	faux	faux	faux
5	faux	vrai	vrai	vrai
6	faux	vrai	vrai	vrai
7	faux	vrai	vrai	vrai
8	faux	vrai	faux	vrai
			Moyenne de <i>T=vrai</i>	6/8 = 0.75

Plus qu'il y a d'échantillon, plus l'erreur d'estimation est faible.

H	0	P(T H,O)
F	F	0.1
F	V	0.5
V	F	0.5
V	V	1.0

0

P(O)

0.6

(vrai réponse : 0.71)

Types d'interrogations d'un RB

- Diagnostique (on connaît les effets, on cherche les causes)
 - ◆ P(Cambriolage | JeanAppelle=vrai)
 - garder à l'esprit qu'on a des arcs « causes / effets ».
- Prédiction (étant données les causes, quels sont les effets)
 - ◆ P(JeanAppelle | Cambriolage=vrai)
- Probabilité conjointe ou marginale
 - **◆ P**(*Alarme*)

Exemple 1 : Évaluation par énumérations

Requête:

Calculer *P*(*T*=*vrai*| *F*=*faux*, *M*=*vrai*)

Variables connues : F = faux, M = vrai

Variables inconnues : H, O

	F	F	0.5
F M	F	V	1.0
	V	F	0.01
	V	V	0.02
H			

Énumération des valeurs possible des variables cachées (2*2)

H	0	P(H F,M) * P(O)*P(T H,O)	=
F	F	0.0 * 0.4 * 0.1	0
F	V	0.0 * 0.6 * 0.5	0
V	F	1.0 * 0.4 * 0.5	0.20
V	V	1.0 * 0.6 * 1.0	0.60
		TOTAL	0.80

H	0	P(T H,O)
F	F	0.1
F	V	0.5
V	F	0.5
V	V	1.0

P(O)

0.6

P(H|F,M)

Exemple 2 : Évaluation par énumérations

Requête:

Calculer *P*(*T*=*vrai*| *M*=*vrai*)

Variables connues : M = vraiVariables inconnues : H, O, F

F	M	P(H F,M)
F	F	0.5
F	V	1.0
V	F	0.01
V	V	0.02

F	H	0	P(F)*P(H F,M)*P(O)*P(T H,O,)	=
F	F	F	0.8 * 0.0 * 0.4 * 0.1	0
F	F	V	0.8 * 0.0 * 0.6 * 0.5	0
F	V	F	0.8 * 1.0 * 0.4 * 0.5	0.16
F	V	V	0.8 * 1.0 * 0.6 * 1.0	0.48
V	F	F	0.2 * 0.98 * 0.4 * 0.1	0.00784
V	F	V	0.2 * 0.98 * 0.6 * 0.5	0.0588
V	V	F	0.2 * 0.02 * 0.4 * 0.5	0.0008
V	V	V	0.2 * 0.02 * 0.6 * 1.0	0.0024
			TOTAL	0.71

H	0	P(T H,O)
F	F	0.1
F	V	0.5
V	F	0.5
V	V	1.0

P(O)

0.6