7.4 Integration of Rational Functions by Partial Fractions

Partial Fractions

$$\int \frac{1}{x^2 - 4} dx \qquad \int \frac{X - 4}{x^2 + 2X - 15} dx$$

$$\int \frac{(\chi_{s}-1)(\chi_{s}+4)}{\chi_{s}+4} dx \int \frac{(\chi-1)(\chi-2)}{\chi} dx$$

$$\int \frac{x+5}{x^2+x-2} \, dx = \int \left(\frac{2}{x-1} - \frac{1}{x+2} \right) dx$$

$$\frac{2}{x-1} - \frac{1}{x+2} = \frac{2(x+2) - (x-1)}{(x-1)(x+2)} = \frac{x+5}{x^2 + x - 2}$$

$$= 2 \ln |x - 1| - \ln |x + 2| + C$$

EXAMPLE 1 Find $\int \frac{x^3 + x}{x - 1} dx$.

$$\int \frac{x^3 + x}{x - 1} dx = \int \left(x^2 + x + 2 + \frac{2}{x - 1} \right) dx$$
$$= \frac{x^3}{3} + \frac{x^2}{2} + 2x + 2 \ln|x - 1| + C$$

$$\begin{array}{r}
x^{2} + x + 2 \\
x - 1 \overline{\smash)x^{3}} + x \\
\underline{x^{3} - x^{2}} \\
x^{2} + x \\
\underline{x^{2} - x} \\
2x \\
\underline{2x - 2} \\
2
\end{array}$$

$$\frac{A}{(ax+b)^i}$$
 or $\frac{Ax+B}{(ax^2+bx+c)^j}$

CASE I The denominator Q(x) is a product of distinct linear factors.

This means that we can write

$$Q(x) = (a_1x + b_1)(a_2x + b_2) \cdot \cdot \cdot (a_kx + b_k)$$

where no factor is repeated (and no factor is a constant multiple of another). In this case the partial fraction theorem states that there exist constants A_1, A_2, \ldots, A_k such that

$$\frac{R(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \frac{A_2}{a_2 x + b_2} + \dots + \frac{A_k}{a_k x + b_k}$$

EXAMPLE 2 Evaluate
$$\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} dx$$
.

$$2x^3 + 3x^2 - 2x = x(2x^2 + 3x - 2) = x(2x - 1)(x + 2)$$

$$\frac{x^2 + 2x - 1}{x(2x - 1)(x + 2)} = \frac{A}{x} + \frac{B}{2x - 1} + \frac{C}{x + 2}$$

$$x^{2} + 2x - 1 = A(2x - 1)(x + 2) + Bx(x + 2) + Cx(2x - 1)$$

$$x^{2} + 2x - 1 = (2A + B + 2C)x^{2} + (3A + 2B - C)x - 2A$$

$$2A + B + 2C = 1$$
$$3A + 2B - C = 2$$
$$-2A = -1$$

EXAMPLE 3 Find $\int \frac{dx}{x^2 - a^2}$, where $a \neq 0$.

$$\frac{1}{x^2 - a^2} = \frac{1}{(x - a)(x + a)} = \frac{A}{x - a} + \frac{B}{x + a}$$

$$A(x + a) + B(x - a) = 1$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \int \left(\frac{1}{x - a} - \frac{1}{x + a} \right) dx$$
$$= \frac{1}{2a} \left(\ln|x - a| - \ln|x + a| \right) + C$$

Since $\ln x - \ln y = \ln(x/y)$, we can write the integral as

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

CASE II Q(x) is a product of linear factors, some of which are repeated.

Suppose the first linear factor $(a_1x + b_1)$ is repeated r times; that is, $(a_1x + b_1)^r$ occurs in the factorization of Q(x). Then instead of the single term $A_1/(a_1x + b_1)$ in Equation 2, we

would use

$$\frac{A_1}{a_1x+b_1}+\frac{A_2}{(a_1x+b_1)^2}+\cdots+\frac{A_r}{(a_1x+b_1)^r}$$

By way of illustration, we could write

$$\frac{x^3 - x + 1}{x^2(x - 1)^3} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x - 1} + \frac{D}{(x - 1)^2} + \frac{E}{(x - 1)^3}$$

but we prefer to work out in detail a simpler example.

CASE III Q(x) contains irreducible quadratic factors, none of which is repeated.

If Q(x) has the factor $ax^2 + bx + c$, where $b^2 - 4ac < 0$, then, in addition to the partial fractions in Equations 2 and 7, the expression for R(x)/Q(x) will have a term of the form

$$\frac{Ax+B}{ax^2+bx+c}$$

where *A* and *B* are constants to be determined. For instance, the function given by $f(x) = x/[(x-2)(x^2+1)(x^2+4)]$ has a partial fraction decomposition of the form

$$\frac{x}{(x-2)(x^2+1)(x^2+4)} = \frac{A}{x-2} + \frac{Bx+C}{x^2+1} + \frac{Dx+E}{x^2+4}$$

The term given in $\boxed{9}$ can be integrated by completing the square (if necessary) and using the formula

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$

EXAMPLE 5 Evaluate
$$\int \frac{2x^2 - x + 4}{x^3 + 4x} dx.$$

SOLUTION Since $x^3 + 4x = x(x^2 + 4)$ can't be factored further, we write

$$\frac{2x^2 - x + 4}{x(x^2 + 4)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 4}$$

Screen clipping taken: 29/12/2024 8:55 am

$$2x^{2} - x + 4 = A(x^{2} + 4) + (Bx + C)x$$
$$= (A + B)x^{2} + Cx + 4A$$

Screen clipping taken: 29/12/2024 8:55 am

$$A + B = 2$$
 $C = -1$ $4A = 4$

Screen clipping taken: 29/12/2024 8:55 am

Thus A = 1, B = 1, and C = -1 and so

$$\int \frac{2x^2 - x + 4}{x^3 + 4x} \, dx = \int \left(\frac{1}{x} + \frac{x - 1}{x^2 + 4} \right) \, dx$$

In order to integrate the second term we split it into two parts:

$$\int \frac{x-1}{x^2+4} dx = \int \frac{x}{x^2+4} dx - \int \frac{1}{x^2+4} dx$$

$$\int \frac{2x^2-x+4}{x(x^2+4)} dx = \int \frac{1}{x} dx + \int \frac{x}{x^2+4} dx - \int \frac{1}{x^2+4} dx$$

$$= \ln|x| + \frac{1}{2} \ln(x^2+4) - \frac{1}{2} \tan^{-1}(x/2) + K$$

CASE IV Q(x) contains a repeated irreducible quadratic factor.

If Q(x) has the factor $(ax^2 + bx + c)^r$, where $b^2 - 4ac < 0$, then instead of the single partial fraction 9, the sum

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_rx + B_r}{(ax^2 + bx + c)^r}$$

EXAMPLE 7 Write out the form of the partial fraction decomposition of the function

$$\frac{x^3 + x^2 + 1}{x(x-1)(x^2 + x + 1)(x^2 + 1)^3}$$

SOLUTION

$$\frac{x^3 + x^2 + 1}{x(x-1)(x^2 + x + 1)(x^2 + 1)^3}$$

$$= \frac{A}{x} + \frac{B}{x-1} + \frac{Cx + D}{x^2 + x + 1} + \frac{Ex + F}{x^2 + 1} + \frac{Gx + H}{(x^2 + 1)^2} + \frac{Ix + J}{(x^2 + 1)^3}$$

Partial fraction

Summary

Denominator containing	Expression	Form of Partial Fractions
a. Linear factor	$\frac{f(x)}{(x+a)(x+b)}$	$\frac{A}{x+a} + \frac{B}{x+b}$
b. Repeated linear factors	$\frac{f(x)}{(x+a)^3}$	$\frac{A}{x+a} + \frac{B}{(x+a)^2} + \frac{C}{(x+a)^3}$
o. Quadratic term (which cannot be factored)	$\frac{f(x)}{(ax^2 + bx + c)(gx + h)}$	$\frac{Ax+B}{ax^2+bx+c} + \frac{C}{gx+h}$

Rationalizing Substitutions

EXAMPLE 9 Evaluate
$$\int \frac{\sqrt{x+4}}{x} dx$$
.

SOLUTION Let $u = \sqrt{x+4}$. Then $u^2 = x+4$, so $x = u^2-4$ and $dx = 2u \ du$. Therefore

$$\int \frac{\sqrt{x+4}}{x} dx = \int \frac{u}{u^2 - 4} 2u \, du = 2 \int \frac{u^2}{u^2 - 4} \, du$$
$$= 2 \int \left(1 + \frac{4}{u^2 - 4}\right) du$$