

Perceptron Algorithm

Bruno Marra (3029)

Sumário

- Introdução
- Detalhes de implementação
- Exemplo
- Sklearn e Parâmetros
- Algoritmos Relacionados

Introdução

- Perceptron simula a capacidade humana de tomar decisões
- Base para algoritmos de rede neural
- Não é classificado como uma neural network por ser muito simples
- Regra de propagação:

$$net_{j} = \sum_{i} x_{i} w_{ij} + \theta_{i}$$

Introdução

Detalhes de implementação

- Uma única camada de processadores (neurônio)
- Algoritmo supervisionado
- Valor de entrada e saída binários
- Algoritmo base de aprendizado:

$$\Delta w_{ij} = \eta x_i (t_j - s_j)$$

Modelo do neurônio

• O modelo do neurônio em sua forma mais básica:

$$s_{j} = F(net_{j}) = F\left(\sum_{i} x_{i} w_{ij} + \theta_{i}\right) = \begin{cases} 1 & net_{j} > 0 \\ 0 & net_{j} \le 0 \end{cases}$$

Passo a passo

- 1. Inicia os pesos sinápticos com valores randômicos e pequenos ou iguais a zero
- 2. Aplica um padrão com seu respectivo valor desejado de saída (t_j) e verificar a saída da rede (s_i)
- 3. Calcula o erro na saída $E_j = t_j s_j$
- 4. Condição:
 - a. se $E_i = 0$, volta ao passo 2
 - b. se $E_j \neq 0$, atualiza os pesos: $\Delta w_{ij} = \eta x_i E_j$
- 5. Volta ao passo 2.

Passo a passo

- 1. Inicia os pesos sinápticos com valores randômicos e pequenos ou iguais a zero
- 2. Aplica um padrão com seu respectivo valor desejado de saída (t_j) e verificar a saída da rede (s_i)
- 3. Calcula o erro na saída $E_j = t_j s_j$
- 4. Condição:
 - a. se $E_i = 0$, volta ao passo 2
 - b. se $E_j \neq 0$, atualiza os pesos: $\Delta w_{ij} = \eta x_i E_j$
- 5. Volta ao passo 2.

Simulação para o operador lógico AND:

AND	<i>x</i> ₀	x_1	<i>x</i> ₂	t
Entrada 1:	1	0	0	0
Entrada 2:	1	0	1	0
Entrada 3:	1	1	0	0
Entrada 4:	1	1	1	1

Peso inicial: $w_0 = 0$, $w_1 = 0$, $w_2 = 0$

Taxa de aprendizado: $\eta = 0.5$

Primeiro ciclo:

Entrada 1:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

 $= f(0 \times 1 + 0 \times 0 + 0 \times 0) = f(0) = 0 \implies s_{out} = t$
Entrada 2: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
 $= f(0 \times 1 + 0 \times 1 + 0 \times 0) = f(0) = 0 \implies s_{out} = t$
Entrada 3: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
 $= f(0 \times 1 + 0 \times 0 + 0 \times 1) = f(0) = 0 \implies s_{out} = t$
Entrada 4: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
 $= f(0 \times 1 + 0 \times 1 + 0 \times 1) = f(0) = 0 \implies s_{out} \neq t$
 $w_0 = w_0 + (t - s_{out})x_0 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$
 $w_1 = w_1 + (t - s_{out})x_1 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$
 $w_2 = w_2 + (t - s_{out})x_2 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$

Segundo ciclo:

Entrada 1:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

 $= f(0.5 \times 1 + 0.5 \times 0 + 0.5 \times 0) = f(0.5) = 1 \longrightarrow s_{out} \neq t$
 $w_0 = w_0 + (t - s_{out})x_0 = 0.5 + 0.5 \times (0 - 1) \times 1 = 0$
 $w_1 = w_1 + (t - s_{out})x_1 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5$
 $w_2 = w_2 + (t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5$
Entrada 2: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
 $= f(0 \times 1 + 0.5 \times 0 + 0.5 \times 1) = f(0.5) = 1 \longrightarrow s_{out} \neq t$
 $w_0 = w_0 + (t - s_{out})x_0 = 0 + 0.5 \times (0 - 1) \times 1 = -0.5$
 $w_1 = w_1 + (t - s_{out})x_1 = 0.5 + 0.5 \times (0 - 1) \times 0 = 0.5$
 $w_2 = w_2 + (t - s_{out})x_2 = 0.5 + 0.5 \times (0 - 1) \times 1 = 0$

Segundo ciclo:

Entrada 3:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

 $= f(-0.5 \times 1 + 0.5 \times 1 + 0 \times 0) = f(0) = 0 \implies s_{out} = t$
Entrada 4: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
 $= f(-0.5 \times 1 + 0.5 \times 1 + 0 \times 1) = f(0) = 0 \implies s_{out} \neq t$
 $w_0 = w_0 + (t - s_{out})x_0 = -0.5 + 0.5 \times (1 - 0) \times 1 = 0$
 $w_1 = w_1 + (t - s_{out})x_1 = 0.5 + 0.5 \times (1 - 0) \times 1 = 1$
 $w_2 = w_2 + (t - s_{out})x_2 = 0 + 0.5 \times (1 - 0) \times 1 = 0.5$

Continua executando até todos os S_{out} = t. Ciclo 5:

Entrada 1:
$$s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$$

 $= f(-1 \times 1 + 1 \times 0 + 0.5 \times 0) = f(-1) = 0$ \longrightarrow $s_{out} = t$
Entrada 2: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
 $= f(-1 \times 1 + 1 \times 0 + 0.5 \times 1) = f(-0.5) = 0$ \longrightarrow $s_{out} = t$
Entrada 3: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
 $= f(-1 \times 1 + 1 \times 1 + 0.5 \times 0) = f(0) = 0$ \longrightarrow $s_{out} = t$
Entrada 4: $s_{out} = f(w_0x_0 + w_1x_1 + w_2x_2)$
 $= f(-1 \times 1 + 1 \times 1 + 0.5 \times 1) = f(0.5) = 1$ \longrightarrow $s_{out} = t$

$$w_0 = -1$$
, $w_1 = 1$, $w_2 = 0.5$

Visão e interpretação geométrica do problema

Sklearn e Parâmetros

- O perceptron é importado diretamente pelo sklearn, da lib linear_model
- Os parâmetros mais relevantes que podem ser alterados são:
 - o alpha: Constante que multiplica o termo de regularização.
 - tol: Critério de parada
 - random_state: Usado para embaralhar os dados de treinamento
 - eta0: Constante pela qual as atualizações são multiplicadas
 - n_iter_no_change: Número de iterações sem melhorias para esperar antes de parar antecipadamente

Algoritmos Relacionados

• Como o perceptron é a base para algoritmos de redes neurais, todos algoritmos de neural networks se relacionam com ele como base. Exemplos:

Algoritmos Relacionados

Referências

http://wiki.icmc.usp.br/images/7/7b/Perceptron.pdf
 PERCEPTRON

• https://dafriedman97.github.io/mlbook/content/c3/s2/perceptron.html?highlight
=perceptron
The Perceptron Algorithm

<u>https://www.deeplearningbook.com.br/o-perceptron-parte-1/</u> Capítulo 6 – O
 Perceptron – Parte 1

Obrigado

