Matemática Discreta

Vaira, Stella - Fedonczuk, Miguel Colliard, David - Cottonaro, Mariana

Lic en Sistemas de Información - FCyT - UADER

2022

Anillos.

Homomorfirmo de Anillos. Isomorfirmo de Anillos. Teorema Chino del Resto.

Ejemplo introductorio

Consideremos los anillos (\mathbb{Z} , +, ·) y (\mathbb{Z} ₆, +, ·), donde la suma y el producto de \mathbb{Z} ₆ se definen como en la sección 14.3.

Definimos $f: \mathbb{Z} \to \mathbb{Z}_6$ como f(x) = [x]. Por ejemplo, f(1) = [1] = [7] = f(7) y f(2) = f(8) = f(2 + 6k) = [2], para cualquier $k \in \mathbb{Z}$. (Así, f es sobre pero no inyectiva.)

Para 2, $3 \in \mathbb{Z}$, f(2) = [2], f(3) = [3] y tenemos que f(2+3) = f(5) = [5] = [2] + [3] = f(2) + f(3) y $f(2 \cdot 3) = f(6) = [0] = [2][3] = f(2) \cdot f(3)$.

De hecho, para cualesquiera $x, y \in \mathbb{Z}$,

$$f(x+y) = [x+y] = [x] + [y] = f(x) + f(y),$$
Suma en Z
$$f(x \cdot y) = [xy] = [x][y] = f(x) \cdot f(y).$$
Producto en Z
Producto en Z

Este ejemplo nos lleva a la siguiente definición.

Definición

Sea $(R, +, \cdot)$ y (S, \oplus, \odot) anillos. Una función $f: R \to S$ es un **homomorfirmos de anillos** si para todos a, b de R:

Si además, la función f es biyectiva, entonces tendremos un **isomorfismo de anillos**.

Ejemplo:

Para el anillo R del ejemplo 14.5 y el anillo \mathbb{Z}_5 , la función $f: R \to \mathbb{Z}_5$ dada por

$$f(a) = [0],$$
 $f(b) = [1],$ $f(c) = [2],$ $f(d) = [3],$ $f(e) = [4]$

es un isomorfismo de anillos.

Por ejemplo, f(c+d) = f(a) = [0] = [2] + [3] + f(c) + f(d), mientras que f(be) = f(e) = [4] = [1][4] = f(b) f(e). (Como no disponemos de otros métodos y teoremas, hay que verificar 25 igualdades de este tipo para que se preserven las operaciones binarias.)

+	a	b	c	d	e
а	a	b	с	d	e
Ь	b	c	d	d e	а
c	c	d	e	a	\boldsymbol{b}
d	d	e	a	b	c
e	e	a	b	c	d

	а	b	с	d	е
a	а	а	а	а	а
b	a	\boldsymbol{b}	с	d	e
c	a	c	e	b	d
d	a	d	\boldsymbol{b}	e	С
e	a	e	d	c	\boldsymbol{b}

Teorema

Sea $f:(R,+,\cdot)\to (S,\oplus,\odot)$ es un homomorfismo de anillos, entonces para todo $a\in R$:

- $f(z_R) = z_S \text{ con } z_R \text{ y } z_S \text{ neutros de } R \text{ y } S \text{ respectivamente.}$
- (-a) = -f(a)
- f(na) = nf(a) con n entero.
- \bullet si A es un subanillo de R, entonces f(A) es un subanillo de S.

Además, si |S| > 1:

- si R tiene elemento unidad u_R , entonces $f(u_r)$ es el elemento unidad de S.
 - \bullet si a es una unidad de R, entonces f(a) es una unidad en S, y $f(a^{-1}) = [f(a)]^{-1}$.
 - \odot si R es conmutativo, entonces S es conmutativo.
 - \bullet si I es un ideal de R, entonces f(I) es un ideal de S.

Ejemplo:

Sean C el cuerpo de los números complejos y S el anillo de las matrices reales 2×2 de la forma $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$; definimos $f: \mathbb{C} \to S$ como $f(a+bi) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, para $a+bi \in \mathbb{C}$. Entonces

$$a+bi=c+di \Leftrightarrow a=c, b=d \Leftrightarrow \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} c & d \\ -d & c \end{bmatrix},$$

por lo que f es una función inyectiva. También es sobre. (¿Por qué?)

Además,

$$f((a+bi)+(x+yi)) = f((a+x)+(b+y)i)$$

$$= \begin{bmatrix} a+x & b+y \\ -(b+y) & a+x \end{bmatrix} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} x & y \\ -y & x \end{bmatrix}$$

$$= f(a+bi) + f(x+yi),$$

$$f((a+bi)(x+yi)) = f((ax-by) + (bx+ay)i)$$

$$= \begin{bmatrix} ax-by & bx+ay \\ -(bx+ay) & ax-by \end{bmatrix} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} x & y \\ -y & x \end{bmatrix}$$

$$= f(a+bi)f(x+yi),$$

Matemática Discreta

Lic. en Sistemas de Información

De esta manera f es un isomorfirsmo entre los anillos dados.

¿Cómo podríamos utilizar este isomorfismo?

Podríamos calcular esta operación entre números complejos operando matricialmente como sigue:

$$(-8.3 + 9.9i) + \frac{(5.2 - 7.1i)^7}{(1.3 + 3.7i)^4}$$

$$\begin{bmatrix} -8.3 & 9.9 \\ -9.9 & -8.3 \end{bmatrix} + \begin{bmatrix} 5.2 & -7.1 \\ 7.1 & 5.2 \end{bmatrix}^{7} \begin{pmatrix} \begin{bmatrix} 1.3 & 3.7 \\ -3.7 & 1.3 \end{bmatrix}^{4} \end{pmatrix}^{-1} = \begin{bmatrix} 8379.98 & 15122.7 \\ -15122.7 & 8379.98 \end{bmatrix}$$

FCyT - UADER

Ma

Matemática Discreta

Lic. en Sistemas de Información

Observemos el siguiente conjunto:

$$R = \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$$

Sus elementos son ternas, y cada componente pertenece a \mathbb{Z}_2 , \mathbb{Z}_3 y \mathbb{Z}_5 , respectivamente. De esta manera la cantidad de elementos de R es $|R| = |\mathbb{Z}_2| \cdot |\mathbb{Z}_3| \cdot |\mathbb{Z}_5| = 30$.

Se definen las operaciones adición y multiplicación en ${\cal R}$ como sigue:

Se puede demostrar que la estructura (R, \oplus, \odot) es un anillo. Sus elementos treinta son:

Resolver las siguientes operaciones:

$$(1,2,2)\odot(1,1,3)$$

$$(1,2,2)\odot(1,2,3)$$

Teorema Chino del Resto

Sea la descomposición factorial de $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, los anillos \mathbb{Z}_n y $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_k}$ son isomorfos, con $m_1 = p_1^{e_1}$, $m_2 = p_2^{e_2}, \ldots, m_k = p_k^{e_k}$

Ejemplo:

 \mathbb{Z}_{30} y $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$ lo son. Las operaciones involucradas en cada estructura son adición y multiplicación, cada una en su respectivo módulo. A continuación se puede ver que la siguiente función $f: \mathbb{Z}_{30} \to \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$ determina un homomorfirmo entre los anillos. $f(x + y) = ((x + y) \mod 2, (x + y) \mod 3, (x + y) \mod 5)$ = $(x \mod 2, x \mod 3, x \mod 5) \oplus (y \mod 2, y \mod 3, y \mod 5)$

$$= f(x) \oplus f(y),$$

$$f(xy) = (xy \bmod 2, xy \bmod 3, xy \bmod 5)$$

$$= (x \bmod 2, x \bmod 3, x \bmod 5) \odot (y \bmod 2, y \bmod 3, y \bmod 5)$$

$$= f(x) \odot f(y)$$

Además, la tabla muestra que la función es biyectiva (uno a uno); y de esta manera los anillos involucrados resultan **isomorfos**.

x (in \mathbf{Z}_{30})	f(x) (in R)	x (in \mathbf{Z}_{30})	f(x) (in R)	x (in \mathbf{Z}_{30})	f(x) (in R)
0	(0, 0, 0)	10	(0, 1, 0)	20	(0, 2, 0)
1	(1, 1, 1)	11	(1, 2, 1)	21	(1, 0, 1)
2	(0, 2, 2)	12	(0, 0, 2)	22	(0, 1, 2)
3	(1, 0, 3)	13	(1, 1, 3)	23	(1, 2, 3)
4	(0, 1, 4)	14	(0, 2, 4)	24	(0, 0, 4)
5	(1, 2, 0)	15	(1, 0, 0)	25	(1, 1, 0)
6	(0, 0, 1)	16	(0, 1, 1)	26	(0, 2, 1)
7	(1, 1, 2)	17	(1, 2, 2)	27	(1, 0, 2)
8	(0, 2, 3)	18	(0, 0, 3)	28	(0, 1, 3)
9	(1, 0, 4)	19	(1, 1, 4)	29	(1, 2, 4)

De esta manera, utilizando la tabla, podríamos hallar fácilmente:

- $(1,2,2)^{-1}$
- $(1,2,2) \odot X = (1,2,3) \oplus (1,0,3) \odot (1,1,0)$