

Beam Tests Investigating Diamond as Detector Material

Michael Reichmann

Table of contents I

Motivation

- Diamond as Detector Material
 - Detector designs
 - Detector material

21st November 2016

Section 1

Motivation

4 / 7

Motivation

- diamond as possible future material for the tracking detectors of the LHC
- ullet innermost layers o highest radiation damage
- current detector designed to withstand 250 fb⁻¹ of integrated luminosity
 - ▶ High-Luminosity LHC: replace detector every 12 month
- ullet ightarrow look for more radiation hard detector designs and/or materials

Figure: CMS Barrel Pixel Detector upgrade with end caps

Section 2

Diamond as Detector Material

6 / 7

Detector designs

- Investigation of two different detector designs
 - planar diamonds
 - exchange of material
 - ▶ 3D diamonds
 - new type of detector

(a) prototype

(b) on CMS-Pixel chip

Figure: 3D diamond detectors

Detector material

- \bullet 7 10 times smaller charge loss due to radiation damage then in silicon
- signals (electrons created by a charged particle) two times smaller than in silicon
- ullet ightarrow diamond becoming superior than silicon at a certain irradiation
- other advantageous properties:
 - ▶ isolating material → negligible leakage current → power saving
 - lacktriangle high thermal conductivity ightarrow heat spreader for electronics
 - ▶ large band gap → no cooling required
 - ightharpoonup high charge carrier mobility \rightarrow fast signals
 - lacktriangleright working principle like a solid state ionisation chamber ightarrow no pn-junction required
- disadvantages:
 - high price
 - some not fully understood behaviours