HCDR Team 1

Phase 3

Zack Seliger

Keegan Moore

Jagan Lakku

Raja Simha Reddy

HCDR

The Kaggle HCDR problem has participants create machine learning models that can predict whether loan applicants will have trouble repaying a loan, based on some large datasets.

In Earlier Phases...

In phase 1 we grabbed data, did EDA, and made a baseline linear regression model that got a Kaggle score of .729.

In phase 2 we did more rigorous feature engineering and EDA, as well as made tuned and untuned LGBM and XGBoost models. Our tuned LGBM model got a Kaggle score of .752.

NameSubmittedWait timeExecution timeScoresubmission.csv6 minutes ago1 seconds1 seconds0.75278

Most Positive Correlations: FLAG EMP PHONE 0.045982 REG CITY NOT WORK CITY 0.050994 DAYS ID PUBLISH 0.051457 DAYS LAST_PHONE_CHANGE 0.055218 REGION_RATING_CLIENT 0.058899 REGION RATING CLIENT W CITY 0.060893 (DAYS CREDIT, min) 0.075248 DAYS BIRTH 0.078239 (AMT BALANCE, mean) 0.087177 TARGET 1.000000 Name: TARGET, dtype: float64 Most Negative Correlations: EXT_SOURCE_3 EXT SOURCE 2 EXT SOURCE 1

-0.178919 -0.160472 -0.155317 (AMT_CREDIT_LIMIT_ACTUAL, count) -0.060481 DAYS EMPLOYED -0.044932 FLOORSMAX AVG -0.044003 FLOORSMAX MEDI -0.043768 FLOORSMAX MODE -0.043226 AMT GOODS PRICE -0.039645 REGION POPULATION RELATIVE -0.037227 Name: TARGET, dtype: float64

Phase 3 Models

In Phase 3, we tried many types of architectures, as well as changing optimizers and loss function.

ROC AUC Scores varied widely, as did training times.

	ExpID	ROC AUC Score	Cross fold train accuracy	Test Accuracy	Train Time(s)	Test Time(s)	Experiment description
0	Deep Learning	0.739418			1075.331878	0.037791	Deep Learning w/ Application Data
1	Deep Learning	0.758407			1400.716561	0.048049	Deep Learning w/ all other data
2	Deep Learning	0.758383		0.917359	254.027061	0.046805	Adam optimizer
3	Deep Learning	0.671086		0.906519	995.408674	0.873410	More layers
4	Deep Learning	0.732227		0.918854	510.319242	1.011763	K-Fold training
5	Deep Learning	0.750459		0.917424	264.229233	0.056706	Modifying Layer Sizes

Best Model

Our best model used BCELoss and Adam optimizer. It had 173 input neurons, 1 layer of 20 neurons, and 2 output neurons,

Its Kaggle score was .750, making it better than our baseline of .729, but worse than our LGBM model of .752.

Name submission.csv Submitted 2 minutes ago Wait time 1 seconds Execution time 0 seconds Score 0.75030

Conclusion

After implementing both single-layer and multi-layer neural networks, we found the following.

Challenges

Many of our models were prone to overfitting, especially those with more neurons and hidden layers.

Takeaways

We learned that sometimes simple is better. The more complicated we made our models, the worse it performed.

ROC AUC train vs test graph for large model without dropouts