ENS Cachan, DPT Maths

Optimisation numérique M1 – TD4 – Gradient projeté et pénalisation

Florian De Vuyst, Adrien Le Coënt - CMLA UMR 8536, ENS Cachan 13 octobre 2016

1 Condition d'Euler Lagrange

Soit une fonctionnelle f de classe C^1 et $\vec{h}(x) = (h_1(x), \dots, h_m(x))^T$ les contraintes égalités de classe C^1 . Soit x^* un minimum local de

$$\min_{\vec{h}(x)=0} f(x)$$

Soit un nombre $\alpha > 0$. Pour $k \in \mathbb{N}$, on définit

$$F^k(x) := f(x) + \frac{k}{2} \|\vec{h}(x)\|^2 + \frac{\alpha}{2} \|x - x^*\|^2$$

Etant donné que x^* est un minimum local, il existe $\epsilon > 0$ tel que $f(x^*) \le f(x)$ pour $x \in S := \{x \in \mathbb{R}^n, \|x - x^*\| \le \epsilon\}$. On note

$$x^k = \arg\min_{x \in S} F^k(x).$$

- 1. Montrer que $x^k \to x^*$
- 2. Ecrire explicitement les conditions de 1er ordre pour \mathbb{F}^k :

$$\nabla F^k(x^k) = 0.$$

3. On suppose que $\nabla \vec{h}(x^*)$ est de rang maximal m. Montrer que

$$(k\vec{h}(x^k))_k \to \lambda^* = -(\nabla \vec{h}(x^*)^T \nabla \vec{h}(x^*))^{-1} \nabla \vec{h}(x^*)^T \nabla f(x^*).$$

En déduire que

$$\nabla f(x^*) + \nabla \vec{h}(x^*) \lambda^* = 0.$$

2 Méthode de gradient projeté

Soit la fonctionnelle quadratique $J: \mathbb{R}^n \to \mathbb{R}$

$$J(u) = \frac{1}{2} \langle Au, u \rangle - \langle b, u \rangle$$

avec A symétrique définie positive. Soit u^* la solution de

$$(\mathcal{P}) \min_{\|u\|_2 \le R} \frac{1}{2} \langle Au, u \rangle - \langle b, u \rangle$$

avec R > 0.

1. Caractériser le projecteur non linéaire P tel que

$$P: x \in \mathbb{R}^n \to P(x) \in B(O, R)$$

- 2. Résoudre le problème (\mathcal{P})
 - (a) Considérer le cas où $\|\bar{u}\|_2 < R$ avec

$$\bar{u} = \arg\min_{v \in \mathbb{R}^n} \frac{1}{2} \langle Av, v \rangle - \langle b, v \rangle$$

(b) Dans le cas contraire ($\|\bar{u}\|_2 \ge R$) utiliser la méthode de gradient projeté pour conclure que u^* est solution de

$$(A + \lambda I)u^* = b$$

avec $\lambda = \lambda(R) > 0$.