UDACITY - P1 - STROOP TASK

- 1. What is our independent variable? What is our dependent variable?
 - a. <u>Independent Variable</u> type of word / color pairing condition
 - i. congruent (same name / color) or
 - ii. incongruent (different name / color)
 - b. <u>Dependent Variable</u> response time, measured in time it takes to name the ink colors in equally-sized lists of words with name / color pairing
- 2. What is an appropriate set of hypotheses for this task? What kind of statistical test do you expect to perform? Justify your choices. http://www.biostathandbook.com/testchoice.html
 - a. Hypothesis test
 - i. $H_0: X_C X_1 = 0$
 - ii. H_A : $X_C X_I \neq 0$
 - iii. Reason: We want to determine whether or not response times are significantly different
 - b. A paired samples t-test tests the hypothesis that the means of the measurement variable are the same in paired data. In the Stroop task we have two nominal variables: Congruent, Incongruent and one measurable variable: response time. This is similar to a one-sample t-test except we are testing paired observations.
- 3. Report some descriptive statistics regarding this dataset. Include at least one measure of central tendency and at least one measure of variability.

Congruent	Incongruent			
24	24	n	17.840	Sp2
14.051	22.016	mean	1.219	SEM
14.357	21.018	median	-7.965	mean diff
			-6.532	t-stat
23	23	df	0.0001	p-value
291.388	529.270	SS	0.001	alpha
12.141	22.053	variance	3.289	t-critical
			reject	Null??
3.559	4.797	stev - samp	-11.975	lower CI
0.711	0.959	std error	-3.955	upper CI

- 4. Provide one or two visualizations that show the distribution of the sample data. Write one or two sentences noting what you observe about the plot or plots.
 - a. Below is a candlestick chart that compares Mean, Max & Min for the Congruent vs Incongruent samples. You'll observe that congruent test results in faster response times vs the incongruent test. In addition the the congruent test has a tighter distribution than the incongruent test.

b. Below are sextile histograms for the two tests. We observe the congruent test is more evenly distributed than the incongruent test which has a higher concentration of response times in the second and third sextiles.

5. Now, perform the statistical test and report your results.

- a. What is your confidence level and your critical statistic value?
 - i. confidence level 99.90% or α = 0.001, t-critical = ± 3.289, df = 46, p < 0.001
 - ii. t-statistic = -6.532
- b. Do you reject the null hypothesis or fail to reject it?
 - i. reject the null
- c. Come to a conclusion in terms of the experiment task.
 - i. The difference in response time for a congruent task vs. an incongruent task is extremely statistically significant. People take a significantly longer time to process the mix match of name / color in the incongruent task vs. the congruent task.
- d. Did the results match up with your expectations?
 - Yes. The candlestick chart set the expectation that the means would be significantly different.

6. Optional:

- a. What do you think is responsible for the effects observed?
 - i. People recognize words as symbols first. Layering on a different color on a named color word and asking a person to respond to the color instead of the name slows them down.
- b. Can you think of an alternative or similar task that would result in a similar effect?
 - i. Number in place of color. Dog dog would be Two -> One one one would be Three https://faculty.washington.edu/chudler/java/readyn.html

Resources (some included above):

http://www.graphpad.com/quickcalcs/pValue1/ http://www.kon.org/urc/v11/rusch.html