FEUILLE D'EXERCICES nº 5

Travail sur machine

Exercice 1 – [KARATSUBA]

Rappelons le principe. On désire calculer le produit de deux polynômes $P, Q \in$

R[X] de degré(s) < n, où R est un anneau commutatif. L'approche naïve a une complexité algébrique en $O(n^2)$. Une façon d'améliorer ce résultat est la suivante. Considérons nos polynômes comme des polynômes de degré(s) $< 2^s$ où s est le plus petit entier tel que $n \le 2^s$, i.e. $s = \lceil \log n / \log 2 \rceil$. Supposons s > 0 et écrivons

$$P = X^{2^{s-1}}P_1 + P_2$$
 and $Q = X^{2^{s-1}}Q_1 + Q_2$,

où P_1, P_2, Q_1 et Q_2 sont des polynômes de degré(s) $< 2^{s-1}$. On a alors

$$PQ = X^{2^{s}} P_{1}Q_{1} + X^{2^{s-1}} (P_{1}Q_{2} + P_{2}Q_{1}) + P_{2}Q_{2}$$

= $X^{2^{s}} P_{1}Q_{1} + X^{2^{s-1}} ((P_{1} + P_{2})(Q_{1} + Q_{2}) - P_{1}Q_{1} - P_{2}Q_{2}) + P_{2}Q_{2},$

de telle sorte que nous avons juste à calculer trois produits

$$A = P_1Q_1$$
, $B = P_2Q_2$ et $C = (P_1 + P_2)(Q_1 + Q_2)$

de polynômes de degré(s) $< 2^{s-1}$. On utilise alors cette idée de façon récursive, ce qui conduit à un algorithme dont la complexité algébrique est en $O(n^{\log 3/\log 2})$.

Pour simplifier, soit n une puissance de 2. On considère deux polynômes P et Q de degrés < n.

- 1) Écrire une procédure récursive Karatsuba (P, Q, n) utilisant le principe rappelé ci-dessus et renvoyant une liste correspondant à PQ.
- 2) Tester cette procédure sur des polynômes symboliques de degré 3.
- 3) La tester numériquement avec de gros polynômes que l'on fabriquera à l'aide de la procédure définie dans l'exercice 3 de la séance 3.

Exercice 2 – [FFT]

Soit n une puissance de 2 différente de $1: n = 2^k$ avec k > 0. Soit ω une racine primitive n-ième de l'unité, par exemple $\omega = e^{2i\pi/n}$. On rappelle que si R est un polynôme de $\mathbb{C}[X]$ de degré < n, que l'on identifiera au n-uplet (R_0, \ldots, R_{n-1}) on a

$$DFT_{\omega}(R) = (R(1), R(\omega), \dots, R(\omega^{n-1}))$$

et que pour évaluer $DFT_{\omega}(R)$ on peut se ramener au calcul de deux DFT de degrés < m = n/2 par le biais des formules

$$\begin{cases} R(\omega^p) &= \sum_{j=0}^{m-1} R_{2j} \alpha^{jp} + \omega^p \sum_{j=0}^{m-1} R_{2j+1} \alpha^{jp} \\ R(\omega^{p+m}) &= \sum_{j=0}^{m-1} R_{2j} \alpha^{jp} - \omega^p \sum_{j=0}^{m-1} R_{2j+1} \alpha^{jp}. \end{cases}$$

où $0 \le p < m$ et où $\alpha = \omega^2$.

Rédiger l'algorithme récursif s'appuyant sur cette remarque. La procédure dite FFT recevra en entrées R, ω et n, et retournera $DFT_{\omega}(R)$. On prendra garde à ne pas calculer ω^p à chaque étape de la boucle sur p. Pour cela, on pourra par exemple les stocker en amont.

Exercice 3 – [PRODUIT RAPIDE DE POLYNÔMES PAR FFT]

Ici encore $n=2^k$ avec k>0. Soient P et Q deux polynômes de $\mathbb{C}[X]$ vérifiant $\deg(PQ)< n$. On identifiera encore P et Q aux n-uplets (P_0,\ldots,P_{n-1}) et (Q_0,\ldots,Q_{n-1}) . On rappelle que l'on a alors

$$DFT_{\omega}(PQ) = DFT_{\omega}(P) \cdot DFT_{\omega}(Q)^{1},$$

et que pour tout polynôme $R \in \mathbb{C}[X]$ de degré < n on a

$$DFT_{\omega^{-1}}(DFT_{\omega}(R)) = DFT_{\omega}(DFT_{\omega^{-1}}(R)) = nR.$$

Écrire une procédure prenant en arguments P, Q et n et retournant PQ, procédure qui prendra bien sûr appui sur la procédure FFT de l'exercice 1.

Remarque. Pour s'assurer que $\deg(PQ) < n$ on pourra imposer à P et Q d'être tous deux de degrés < m = n/2.

¹ici $(u_i)_{0 \le i < n} \cdot (v_i)_{0 \le i < n} = (u_i v_i)_{0 \le i < n}$.