Machine Learning Report

Siddharth Bahekar College of Engineering Northeastern University Toronto,ON

bahekar.si@northeastern.edu

Abstract

In this report, I have applied and explored the performance of supervised learning algorithm on two datasets. This report outlines the exploratory data analysis (EDA) and modeling process undertaken to train the Artificial Neural Network (ANN) algorithm. The two datasets included are **Heart Attack Analysis & Prediction** dataset and **Wine Quality** dataset. The learning curve, model complexity and model training has been performed and analyzed on both the datasets.

1. Dataset

The **heart attack analysis** dataset provides a comprehensive set of attributes for heart disease prediction, allowing for in-depth analysis of various factors contributing to heart health. The heart disease dataset contains 303 rows and 14 columns. The problem at hand is to classify whether a patient has heart disease or not based on various medical attributes. This is a binary classification problem using a dataset containing features and other relevant medical information.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
                         Non-Null Count
 #
        Column
                                                     Dtype
 0
1
2
3
4
5
        age
                         303 non-null
                                                     int64
                               non-null
non-null
        sex
cp
trtbps
                                                     int64
        chol
                               non-null
                                                     int64
        fbs
                         303 non-null
                                                     int64
        restecg
thalachh
                                non-null
non-null
                                                     int64
int64
int64
int64
float64
                          303
                         303
303
303
        exng
oldpeak
                                non-null
 10
        slp
                          303
                                non-null
                                                     int64
 11
        caa
                         303
                                non-null
                                                     int64
        thall
                          303
                                non-null
dtypes: float
memory usage:
```

The **wine quality** dataset contains observations related to the physicochemical properties of red wine, including features and the target variable: wine quality. The dataset used in this analysis comprises 1,599 rows and 12 columns. Each row represents a unique wine sample with its respective measurements. The target variable, "quality," is an ordinal feature ranging from 3 to 8, indicating the wine's quality rating. This dataset provides a comprehensive view of various chemical attributes that potentially influence wine quality, allowing for in-depth exploratory data analysis and predictive modeling.

```
RangeIndex: 1599 entries. 0 to 1598
Data columns (total 12 columns)
    Column
                            Non-Null Count
                                             Dtype
 0
                                             float64
     fixed acidity
                            1599 non-null
     volatile acidity
                            1599 non-null
     citric acid
                            1599 non-null
                                             float64
     residual sugar
                            1599 non-null
                                             float64
     chlorides
                            1599 non-null
                                             float64
     free sulfur dioxide
                            1599 non-null
                                             float64
                            1599 non-null
 6
     total sulfur dioxide
                                             float64
     density
                            1599 non-null
                                             float64
                            1599 non-null
                                             float64
 8
    рΗ
     sulphates
                            1599 non-null
                                             float64
 10 alcohol
                            1599 non-null
                                             float64
    quality
                            1599 non-null
 11
                                             int64
dtypes: float64(11), int64(1)
memory usage: 150.0 KB
```

Siddharth Bahekar 1 of 7

2. Dataset Description

Heart Attack dataset

Wine Quality dataset

	lay summary s	statistics								★	↓ ± ∓
df.des	cribe()										
	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
count	1599.000000	1599.000000 1	1599.000000 1	599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000 1
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000
xed acidi	ty volat acidi		id residua suga	chloride	es free sul		dene	sity	pH sulphate	es alco	hol qualit
99.0000	00 1599.0000	00 1599.00000	00 1599.00000	0 1599.0000	00 1599.0000	00 1599.000	000 1599.000	000 1599.0000	000 1599.00000	00 1599.0000	000 1599.00000
8.3196	37 0.5278	21 0.27097	76 2.53880	6 0.08746	67 15.8749	46.467	792 0.996	747 3.311	113 0.65814	10.4229	983 5.63602
1.7410	96 0.1790	60 0.19480	01 1.40992	8 0.04706	65 10.4601	32.895	324 0.0018	387 0.1543	86 0.1695	07 1.0656	668 0.80756
4.6000	0.1200	0.00000	0.90000	0 0.01200	00 1.0000	6.0000	0.990	2.7400	0.33000	00 8.4000	3.00000
7.1000	0.3900	0.09000	1.90000	0.07000	7.0000	00 22.0000	0.9956	3.2100	0.55000	9.5000	5.0000
7.9000	0.5200	0.26000	2.20000	0.07900	00 14.0000	00 38.0000	0.996	750 3.3100	0.62000	00 10.2000	6.00000
9.2000	0.6400	0.42000	2.60000	0.09000	00 21.0000	00 62.0000	0.9978	3.4000	0.73000	00 11.1000	6.00000
15.9000	00 1.58000	00 1.00000	00 15.50000	0 0.61100	72.0000	00 289.000	000 1.0036	90 4.0100	2.0000	00 14.9000	8.00000

3. Dataset Imbalance

In this analysis of the heart disease dataset, I encountered a significant class imbalance issue. Upon examination of the target variable distribution, I found that the number of patients without heart disease (class 0) was considerably higher than those with heart disease (class 1). To address this issue, I implemented the **Synthetic Minority Over-sampling Technique (SMOTE)**. SMOTE is an oversampling method that creates synthetic examples of the minority class to balance the dataset. It effectively addressed the class imbalance, I was cautious to avoid potential overfitting and ensured a more equitable treatment of both classes, which is particularly important in medical diagnostics where false negatives can have serious consequences.

Siddharth Bahekar 2 of 7

The wine quality dataset exhibited a significant class imbalance, as illustrated in the distribution chart of wine quality. Most samples were concentrated around quality scores of 5 and 6, with fewer instances of other ratings like 3, 4, 7, and 8. This imbalance can skew model training, causing it to favor the majority classes and potentially overlook the minority ones. To address this issue, I employed **Random Oversampling**. This technique duplicates samples from the minority classes to create a more balanced dataset. By doing so, I ensured that each class was represented more equally during model training, which helps improve the model's ability to generalize across all quality ratings.

4. Correlation Matrices

I generated a correlation heatmap to visualize the relationships between different features in our heart disease dataset. A strong positive correlation was observed between 'chest pain' and the target variable, indicating that certain types of chest pain are closely associated with the presence of heart disease. 'Max heart rate' showed a moderate negative correlation with the target variable, suggesting that lower maximum heart rates might be indicative of heart disease. 'ST depression' exhibited a positive correlation with the target, implying that higher ST depression values are associated with an increased likelihood of heart disease. These correlations provided valuable insights into which features might be most predictive of heart disease, guiding our feature selection process and helping us understand the underlying patterns in the data.

Siddharth Bahekar 3 of 7

The correlation heatmap provides a visual representation of the relationships between different features in the dataset. It highlights how each feature correlates with wine quality and with each other. Notably, alcohol content shows a strong positive correlation with quality, suggesting its importance in predicting higher quality wines. Volatile acidity has a negative correlation, indicating that higher acidity might detract from perceived quality. Features like residual sugar and chlorides exhibit low correlation with quality, suggesting they may have less impact on the model's predictive power.

Siddharth Bahekar 4 of 7

5. Outliers

To identify potential outliers in heart disease dataset, I employed box plots for each numerical feature. This analysis revealed the 'cholesterol' feature contained several high outliers, with some values significantly above the upper quartile. 'Age' and 'resting blood pressure' also showed a few outliers, but these were less extreme compared to cholesterol. Given the medical nature of our data, I decided to retain these outliers as they could represent genuine, rare, cases that are important for our model to learn from. I made note of these outliers to monitor their potential impact on our model's performance.

Outlier detection was performed using box plots for wine quality dataset, revealing extreme values in features such as residual sugar and sulphates. These outliers can skew analysis and model performance if not addressed. By identifying and potentially removing these outliers, I aimed to improve model robustness. I have used Inter Quartile Range to detect the outliers. I will keep the outliers within 1.5*(lower bound of IQR) - 1*5(upper bound of IQR) range test.

Siddharth Bahekar 5 of 7

6. Null Values

# Check for miss print(data.isnul	<pre># Check for missing values df.isnull().sum()</pre>			
age 0 sex 0 cp 0 trtbps 0 chol 0 fbs 0 restecg 0 thalachh 0 exng 0 oldpeak 0 slp 0 caa 0 thall 0 output 0 dtype: int64	fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality dtype: int64	0 0 0 0 0 0 0 0		

Both the datasets do not contain any null or missing values, so there is no need to clean the data.

7. Why are these datasets interesting?

The dataset I have analyzed presents a compelling case study that bridges the gap between medical science and data analytics. Its real-world implications in potentially aiding early diagnosis of a leading cause of mortality worldwide make it particularly significant. The wine quality dataset is particularly interesting due to its practical application in the wine industry and its potential to reveal insights into the factors influencing wine quality. By analyzing physicochemical properties such as acidity, sugar content, and alcohol levels, I can identify key attributes that contribute to higher quality ratings. The challenge of addressing class imbalance and outliers provides a rich opportunity for applying advanced data preprocessing and machine learning techniques. This makes the dataset a valuable resource for both academic research and industry applications.

8. Machine Learning Model (ANN)

For heart disease classification task, I implemented an Artificial Neural Network (ANN) using the Keras library with TensorFlow backend. The model architecture consisted of an input layer, two hidden layers, and an output layer. I used 64 neurons in the first hidden layer and 32 in the second, both with ReLU activation functions to introduce non-linearity. The output layer used a sigmoid activation function, appropriate for our binary classification problem. I compiled the model using binary cross-entropy as the loss function and the Adam optimizer, which adapts the learning rate during training. To prevent overfitting, I implemented early stopping, monitoring the validation loss with a patience of 10 epochs. I also used a batch size of 16 and trained the model for a maximum of 35 epochs. This ANN architecture was chosen for its ability to capture complex non-linear relationships in the data, making it well-suited for our multidimensional medical dataset. The model achieved an accuracy of approximately 85% on the test set, demonstrating its effectiveness in classifying heart disease cases

Siddharth Bahekar 6 of 7

In wine quality analysis, I implemented an Artificial Neural Network (ANN) using Keras to predict wine quality based on physicochemical properties. The ANN architecture included an input layer matching the number of features, followed by two hidden layers with 64 and 32 neurons, respectively, using ReLU activation functions. The output layer employed a softmax activation function to handle the multi-class classification problem. To address the class imbalance observed in the dataset, Random Oversampling was applied, which increased the representation of minority classes and improved model training. The model was trained over 200 epochs with a batch size of 32, achieving a training accuracy of approximately 95% and a validation accuracy of around 62%. Despite high training accuracy, the lower validation accuracy indicated potential overfitting, suggesting areas for further refinement such as additional regularization or feature engineering.

9. Conclusion

Our analysis of the heart disease dataset using an Artificial Neural Network (ANN) has yielded promising results in the field of predictive healthcare. This indicates the model's potential as a supportive tool in heart disease diagnosis. Moving forward, exploring ensemble methods or more interpretable models could further enhance both performance and explainability. Additionally, expanding the dataset and incorporating more diverse patient data could improve the model's generalizability.

The analysis of the wine quality dataset reveals several key insights into the factors influencing wine quality and the challenges associated with predictive modeling. Despite implementing an Artificial Neural Network (ANN) the model exhibited overfitting, achieving high training accuracy but lower validation accuracy. This suggests further exploration is needed in feature engineering and model tuning to enhance predictive performance.

10. References

- https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset
- https://labelyourdata.com/articles/machine-learning-for-wine-quality-prediction#
- https://archive.ics.uci.edu/

Siddharth Bahekar 7 of 7