

Introduction to the Clinico-Genomic Database

Sarah McGough, PhD Senior Data Scientist, Real-World Data | Roche The Clinico-Genomic Database links Flatiron **electronic health records** with Foundation Medicine (FMI) **comprehensive genomic profiling** for tens of thousands of cancer patients in the U.S.

How might the CGDB used for health research?

Cancer biology is enormously **complex** and tied to the **human genome**. With the CGDB, we can:

- Understand **prevalence of key cancer biomarkers** in the real-world patient population
- Inform biomarker-targeted therapy options & outcomes for patients
- Identify genomic drivers of outcomes (e.g. prognositic biomarkers)
- Contribute to tumor-agnostic "pan-tumor" research

Industry Interest in Pan-Cancer Indications Growing With FDA Support Despite Challenges FDA NEWS RELEASE

FDA approves third oncology drug that targets a key genetic driver of cancer, rather than a specific type of tumor

The linkage of information from multiple diverse sources in the CGDB gives rise to missing data challenges.

Generally missing data

Observations are missing without a clear structure or group dependency

(not to be confused with MCAR- missing completely at random!)

Structured or "block" missing data

Observations are missing across "blocks" of disparate information sets

Represents a special type of heterogeneity in the data

Data might be purely unmeasured by block,

or

not possible to measure by block

The CGDB contains comprehensive genomic profiling from multiple genomic tests, each of which targets a different set of genes.

Each patient usually receives 1 test.

Of **596 unique genes** measured in the CGDB, only **30** are measured commonly across all tests.

- Tests are ordered to *target* specific treatment, prognosis, and disease progression goals
- Tests evolve over time
- Solid tissue vs. liquid biopsy

Here, genes are **"block missing"** by test type.

Baitset

The CGDB combines information across dozens of cancer types, but some information is cancer-specific.

Each cancer type collects cancer-specific information, such as the **Gleason Score** for Prostate Cancer patients or **Stem Cell Transplant** for DLBCL patients

Here, variables are **"block missing"** by cancer type.

But, imputation is not appropriate.

Amassing data in large volumes from multiple sources presents an amazing <u>precision medicine opportunity</u>- but also a structured missing data problem.

We must address structured missing data anytime that we hope to use the CGDB in its totality, including:

- Making insights across **cancer types** → tumor-agnostic "pan-tumor" research
- Studying **genomic features** across patients → oncology biomarker research

More generally: this challenge will rise with the increasing development of multi-modal data sources.

What sorts of solutions are available to us? Can we influence how researchers and industry work with these kinds of data?

Doing now what patients need next