Progess of the Project

Tsung-Min Pai 2023/12/01

Outline

- GNN
 - Recap
 - Experiment Change the Dataset
 - Experiment Predict More Labels
 - Experiment DAPRA Format

Future Work

Recap

- Use the original training set
- The distribution of the prediction is so sparse
 - Most of the predictions are like this:

• The # of the predicted labels

Top 5 Labels and Counts:

T1082_29451844-9b76-4e16-a9ee-d6feab4b24db: 150
T1016_921055f4-5970-4707-909e-62f594234d91: 147
T1124_fa6e8607-e0b1-425d-8924-9b894da5a002: 143
T1053.005_ee454be9197890de62705ce6255933fd: 142
T1016 e8017c46-acb8-400c-a4b5-b3362b5b5baa: 136

Remove the Popular TTPs

```
Top 5 Labels and Counts:
T1082_29451844-9b76-4e16-a9ee-d6feab4b24db: 150
T1016_921055f4-5970-4707-909e-62f594234d91: 147
T1124_fa6e8607-e0b1-425d-8924-9b894da5a002: 143
T1053.005_ee454be9197890de62705ce6255933fd: 142
T1016 e8017c46-acb8-400c-a4b5-b3362b5b5baa: 136
```

- Remove these 5 TTPs from the dataset and then train it again:
 - More prediction on the non-single triplet case is like this:

Remove the Popular TTPs

- Remove these 5 TTPs from the dataset and then train it again:
- The # of the predicted labels

Experiment – Change the Dataset

- Remove the TTPs with support > 1000 (Removed 32 TTPs)
 - The predictions on the single triplet cases are still a mess

- Only use the single triplet (support=100) cases:
 - Still messy and even have a worse performance

Dataset only has the 5 single triplet labels

Conclusion

- GraphSAGE really have a bad performance on the isolated triplet case
 - Even training dataset consists of isolated triplet case only
- Even training dataset consists of only 5 isolated triplet cases
- Possible Reason:
 - Lack of Neighborhood Information: GraphSAGE aggregates features from a node's local neighborhood to learn its representation. In the case of isolated triplets, each node has very limited neighborhood information (only one neighbor), which restricts the model's ability to learn complex or rich representations

Visual illustration of the GraphSAGE sample and aggregate approach:

Experiment – Predict More Labels

Predict the Top 3

- Thought:
 - The experts can use the DL prediction and combine with their expertise to make the final prediction
- Prediction Format:
 - Predict the **top 3** classes of the edge

```
• True: 65, Predicted: [65, 28, 46], 65, [65, 28, 46], 70, [70, 154, 149],
```

• Performance:

		precision	recall	f1-score	Previous one:				
	macro avg	0.656194	0.643040	0.634166	accuracy	0.61	0.60	0.97	310263
	micro avg	0.977822	0.977822	0.977822	macro avg weighted avg	0.61 0.97	0.60 0.97	0.60 0.97	310263 310263
	_				wergheed avg	0.57	0.57	0.07	310203

Predict the Top 5

Prediction Format:

• Predict the **top 5** classes of the edge

```
• True: 65, Predicted: [65, 28, 46, 154, 148], 65, [65, 28, 46, 154, 135], 70, [70, 154, 149, 52, 135],
```

Performance:

		precision	recall	f1-score	Previous one:				
	macro avg	0.701622	0.665422	0.656189	accuracy macro avg weighted avg	0.61	0.60	0.97	310263
	micro avg	0.979798	0.979798	0.979798		0.61 0.97	0.60 0.97	0.60 0.97	310263 310263

Version of top3:

	precision	recall	f1-score
macro avg	0.656194	0.643040	0.634166
micro avg	0.977822	0.977822	0.977822

Experiment – DAPRA Format

Change the DARPA Format

Original Format:

```
    {"subj": {"uuid": "F9F5DC58-9431-4519-82CF-2BBFF40796E9", "type": "Subject",
    "n_attrbiute": {"cmdline": "None", "type": "SUBJECT_THREAD", "pid": 8920}},
    "relation": "EVENT_WRITE", "obj": {"uuid": "F5D43721-2AD3-487C-B3DA-
    0A5D551FAE0D", "type": "FileObject", "n_attrbiute": {"filepath":
    "\\Device\\HarddiskVolume2\\ProgramData\\Microsoft\\Windows Defender\\Network
    Inspection System\\Support\\NisLog.txt"}}, "timestamp": 1523295276588000000,
    "label": "benign"}
```

Final Format:

- Encode the subj uuid, relation, obj uuid and combine them with the label
- Keep the mapping information into 2 mapping file
- a is attack; b is benign

872529 1086092 5 a 872529 61317 7 a 1059095 759218 19 b 280074 759218 19 b

Future Work

Future Work

- Figure out why the model can detect the T1518_c9b (if available?)
 - Is the label overlap or not overlap at all with other labels
- Figure out what the model really predict about
 - Observe the real data in the original form (before embedding)

- Run the training of the DAPRA dataset
- GraphSMOTE

Thanks!!

NOTE!!

NOTE

- 每次都要再複習一下問題點
 - Show 以前的數據等等
 - 為何要做現在這個實驗

- 圖表要清楚一點
 - X and Y-axis

• 給的example要是真的有解決那個問題的example

Appendix

Recap

- Noticed that T1518_c9b always got predicted in all the experiments
 - MLP, RNN, GNN
 - **Ensemble** is not useful here

- **Hidden Dimension** do have an effect on the result \rightarrow but it's all about from 0 to 0.05
- Embedding (transR_50 and tansH_150) seems to have the similar result

Observation on Different Dimension

Experiment 3

Experiment 3:

- Consider the neighbor benign nodes
- Edge classification
- Given a graph → label the triplets with the benign or the specific AP

Experiment 3 - Model

- Concept from the DGL official website:
 - 1. Let the dgl graph's edge data have the attribute: edata["label"]
 - 2. Use **GraphSAGE** model to get the new **node embedding**
 - 3. Use **MLP** model to get the **score** of the edge
 - 4. Concatenate these two models
 - 5. Train the final model

```
g.ndata['feat'] = th.tensor(data["node_feat"])
g.edata['feat'] = th.tensor(data["edge_attr"])
g.edata['label'] = th.tensor(data["labels"])
```

```
def model_fn(batched_g, model, criterion, device, count=1, which_type='train'):
    """Forward a batch through the model."""
    batched_g = batched_g.to(device)
    labels = batched_g.edata['label'].to(device)

logits = model(batched_g, batched_g.ndata['feat'].float())
    loss = criterion(logits, labels)

output = torch.softmax(logits, dim=1)
    preds = output.argmax(1)

accuracy = torch.mean((preds == labels).float())
```

Experiment 3 - Model

```
class GraphSAGE(nn.Module):
    def __init__(self, in_dim, hidden_dim, out_dim):
        super(GraphSAGE, self).__init__()
        self.layer1 = dglnn.SAGEConv(in_dim, hidden_dim, 'pool')
        self.layer2 = dglnn.SAGEConv(hidden_dim, out_dim, 'pool')

def forward(self, g, inputs):
    h = self.layer1(g, inputs)
    h = torch.relu(h)
    h = self.layer2(g, h)
    return h
```

```
class MLPPredictor(nn.Module):
    def __init__(self, out_feats, out_classes):
        super().__init__()
        self.W = nn.Linear(out_feats*2, out_classes)

def apply_edges(self, edges):
        h_u = edges.src['h']
        h_v = edges.dst['h']
        score = self.W(torch.cat([h_u, h_v], 1))
        return {'score': score}

def forward(self, graph, h):
    with graph.local_scope():
        graph.ndata['h'] = h
        graph.apply_edges(self.apply_edges)
        return graph.edata['score']
```

```
class Model(nn.Module):
    def __init__(self, in_features, hidden_features, out_features, num_classes):
        super().__init__()
        self.sage = GraphSAGE(in_features, hidden_features, out_features)
        self.pred = MLPPredictor(out_features, num_classes)

def forward(self, g, node_feat, return_logits=False):
    h = self.sage(g, node_feat)
    logits = self.pred(g, h)

return logits
```

GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks

WSDM '21, March 8–12, 2021, Virtual Event, Israel

Tianxiang Zhao, Xiang Zhang, Suhang Wang

{tkz5084,xzz89,szw494}@psu.edu

College of Information Science and Technology, Penn State University State College, The USA

https://github.com/TianxiangZhao/GraphSmote

GraphSMOTE

Task:

Synthesized Minority Oversampling Technique (SMOTE)

0.020

0.025

0.030

0.010

0.015

- Used on i.i.d. data
- Doesn't consider the structure of the graph
- No edge connection between the nodes

GraphSMOTE

Framework

- a GNN-based feature extractor
 → Use GraphSAGE
- Synthetic Node Generation
 → Use SMOTE algorithm
- Edge Generator
 → weighted inner product decoder F
- GNN Classifier (downstream task)

Figure 2: Overview of the framework