

HRI interface comparisons (VR, AR, bio-signal-based) Sebastian Hirt

- 01 Why compare?
- **02** Specific examples for VR
- **03** Specific example for AR
- **04** Specific example for bio-signal-based
- **05** Comparison
- **06** What is the best path forward?

Why compare?

- Best option for current use in industry
- Dictate direction of future research

(Boston Dynamics, 2022) (Tesla, 2022)

- **01** Why compare?
- 02 Specific examples for VR
- **03** Specific example for AR
- **04** Specific example for bio-signal-based
- **05** Comparison
- **06** What is the best path forward?

Specific Example for VR

Omnipotent Virtual Giant for Remote Human–Swarm Interaction

- Control over swarm of robots like a swarm of ants
- Oculus Rift headset with Leap Motion
- Placing virtual objects in path of robot via environmental manipulation
- Zoom in and out of the virtual environment
- Teleoperation possible
- Intuitive and feasible but might need training

(Jang et al., 2021)

Specific Example for VR

Baxter's Homunculus: Virtual Reality Spaces for Teleoperation in Manufacturing

- Control robot arms with VR controllers
- Oculus Rift headset with default controllers
- Teleoperation for work in unsafe environments
- Collocation in robot head
- Pick up and place blocks

(Lipton et al., 2017)

- **01** Why compare?
- **02** Specific examples for VR
- 03 Specific example for AR
- **04** Specific example for bio-signal-based
- 05 Comparison
- **06** What is the best path forward?

Specific Example for AR

Mobile Mixed-Reality Interfaces That Enhance Human—Robot Interaction in Shared Spaces

- Visualization of information about robot in shared space
- Mobile tablet as camera and controller
- Environmental markers on table
- Showing range of motion of robot
- Pre render potential future moves of the robot

(Frank et al., 2017)

- **01** Why compare?
- **02** Specific examples for VR
- 03 Specific example for AR
- O4 Specific example for bio-signal-based
- **05** Comparison
- **06** What is the best path forward?

Specific Example for bio-signal-based

Plug-and-play supervisory control using muscle and brain signals for real-time gesture and error detection

- Classification of left- and right-hand gestures via muscle signals (EMG)
- Error recognition through brain function (EEG)
- Combination in hybrid system
- Tested on 7 subjects (plug and play) to reduce barrier of entry for new users
- Shows potential, but more training data needed for higher reliability

(DelPreto et al., 2020)

- **01** Why compare?
- **02** Specific examples for VR
- **03** Specific example for AR
- O4 Specific example for bio-signal-based
- 05 Comparison
- **06** What is the best path forward?

Use Cases

- VR
 - Teleoperation
 - Swarm control
- AR
 - Display important robot information (range of motion/wear and tear)
- Bio-signal-based
 - Control robot with mind (EEG) or muscles (EMG)

(Frank et al., 2017)

Devices

- VR
 - Meta Quest 2/Pro
 - Valve Index
- AR
 - Tablet/Smartphone
 - Google Glasses
- Bio-signal-based
 - Wrist band
 - Electrode hat

(Lipton et al., 2017)

(Frank et al., 2017)

(DelPreto et al., 2020)

- VR
 - Expensive Headsets
 - Cheaper through consumer products
- AR
 - Low end cheapest solution
 - High end more expensive than low end VR
- Bio-signal-based
 - Difficult to evaluate, mostly custom devices

Technology	Device	Cost (\$)
VR	Meta Quest 2	450
VR	Valve Index	1079
AR	I-Pad	449
AR	Galaxy Tab S8	200
AR	Google Glasses	999
Bio-signal-based	EEG electrode hat	1500

Future potential

- VR
 - Taking over control of "almost fully" autonomous systems remotely
- AR
 - Integration into traditional glasses or even contact lenses
 - Increase trust in everyday robots
- Bio-signal-based
 - Implants/EEG: huge potential to merge with robots and full control of a robot with a human's thoughts

- **01** Why compare?
- **O2** General Comparison on different Categories
- 03 Specific examples for VR
- **04** Specific example for AR
- **05** Specific example for bio-signal-based
- 06 What is the best path forward?

Best path forward

- End goal:
 - Bio-signal-based control of robots with human thoughts
- Intermediate steps:
 - Gradual development of all three technologies
 - VR
 - Ability to wear headsets for longer
 - Training programs
 - AR
 - Better integration into glasses
 - Bio-signal-based
 - Higher reliability necessary to be save to use

Thank you!

Literature

Tesla Artificial Intelligence & Autopilot. (2022). Retrieved 7 February 2023, from https://www.tesla.com/AI

Boston Dynamics Spot Product Page. (2022). Retrieved 7 February 2023, from https://www.bostondynamics.com/products/spot

Jang, I., Hu, J., Arvin, F., Carrasco, J., & Lennox, B. (2021). Omnipotent Virtual Giant for Remote Human--Swarm Interaction. 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), 488–494. IEEE.

Lipton, J. I., Fay, A. J., & Rus, D. (2017). Baxter's homunculus: Virtual reality spaces for teleoperation in manufacturing. IEEE Robotics and Automation Letters, 3(1), 179–186.

Frank, J. A., Moorhead, M., & Kapila, V. (2017). Mobile mixed-reality interfaces that enhance human--robot interaction in shared spaces. Frontiers in Robotics and AI, 4, 20.

DelPreto, J., Salazar-Gomez, A. F., Gil, S., Hasani, R., Guenther, F. H., & Rus, D. (2020). Plug-and-play supervisory control using muscle and brain signals for real-time gesture and error detection. Autonomous Robots, 44(7), 1303–1322.

Dianatfar, M., Latokartano, J., & Lanz, M. (01 2021). Review on existing VR/AR solutions in human-robot collaboration. Procedia CIRP, 97, 407-411. doi:10.1016/j.procir.2020.05.259

Meta Shop. (2022). Retrieved 7 February 2023, from https://www.meta.com/de/en/quest/products/guest-2/

Steam Valve Index Shop. (2022). Retrieved 7 February 2023, from https://store.steampowered.com/valveindex

Apple IPad Shop. (2022). Retrieved 7 February 2023, from https://www.apple.com/shop/buy-ipad/ipad

Samsung Tablet Shop. (2022). Retrieved 7 February 2023, from https://www.samsung.com/us/tablets/galaxy-tab-s8/buy/

Open BCI Shop. (2022). Retrieved 7 February 2023, from https://shop.openbci.com/collections/frontpage

Robertson, A. (2019). Google announces a new \$999 Glass augmented reality headset. Retrieved 7 February 2023, from https://www.theverge.com/2019/5/20/18632689/google-glass-enterprise-edition-2-augmented-reality-headset-pricing

Robertson, A. (2017). Oculus Rift and Touch are now \$200 cheaper. Retrieved 7 February 2023, from https://www.theverge.com/2017/3/1/14779460/oculus-rift-touch-vr-bundle-price-drop-200