GPT Understand, Too

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, Jie Tang (2021)

단국대학교 모바일시스템공학과 양윤성

Contents

- 1. Introduction
- 2. The Model
- 3. Experiments
- 4. Conclusion

1-(1). Background

- Pre-trained Language Model can be categorized into 3
- Unidirectional Language Models (GPT)
- Bidirectional Language Models (BERT)
- Hybrid Language Models (XLNet, UniLM)

1-(1). Background

- Originally, GPT has been perceived as unsuitable for NLU tasks
 - Because GPT is a left-to-right unidirectional model
- Some people think GPT's NLU task ability is underestimated
- How about in-context learning method using prompt for GPT?

DKU C&LLAB

1-(2). in-Context Learning

- 1. Enter a description or some examples of task in the input of LM
- 2. Then LM generates output that fits the task
- For in-context learning, prompting is required
 - User fits some template into the input of LM
 - To accurately understand and generate natural language
 - > Original method : Hand-crafted prompt

1-(3). Limitations

Prompt	P@1
[X] is located in [Y]. (original)	31.29
[X] is located in which country or state? [Y].	19.78
[X] is located in which country? [Y].	31.40
[X] is located in which country? In [Y].	51.08

Table 1. Case study on LAMA-TREx P17 with bert-base-cased. A single-word change in prompts could yield a drastic difference.

- Large validation set required
- Instability of Hand-crafted prompts
- ✓ Find automatic prompt searching method!

1-(3). Limitations

How about AUTOPROMPT?

- First suggestion about way to find prompt automatically (2020)
- Hand-crafted prompt → Discrete prompt
- But neural networks are inherently continuous
 - → Discrete prompt must be sub-optimal

1-(4). Main Idea

- Fine-tuning: Update weights by supervised learning using dataset
 specialized in tasks → Inefficient method in LLM
- P-tuning: Automatically search prompts in the continuous space
 - Only continuous prompts are updated weights
 - No need to adjust the model parameters

DKU C&LLAB

1-(5). Overview

Figure 1. Average scores on 7 dev datasets of SuperGlue. GPTs can be better than similar-sized BERTs on NLU with P-tuning.

- P-tuning performance is better
- Authors want to break stereotype that GPT can only generate but do not understand

Contents

1. Introduction

2. The Model

3. Experiments

4. Conclusion

2-(1). Notation

• *T* : template

• *X* : context

• *Y* : target

 \bullet P: prompt

• P_i : i'th prompt token

• *E* : pretrained embedding

The capital of Britain is [MASK]

Britain

[MASK]

The capital of ··· is ···

 P_1 : The, P_2 : capital, ...

2-(2). Discrete Prompt Search

• Input tokens of pre-trained LM T = $\{[P_{0:i}], X, [P_{i+1:m}], Y\}$ are mapped to input embeddings $\{e([P_{0:i}]), e(X), e([P_{i+1:m}]), e(Y)\}$.

The capital of Britain is [MASK]

$$[P_i] \in \mathcal{V}$$

 \mathcal{M} : pretrained model

u: vocabulary of \mathcal{M}

$$\{e(The), e(capital), e(of), e(Britain), e(is), e([Mask])\}$$

2-(2). Discrete Prompt Search

2-(3). P-tuning

Prompt is replaced by pseudo token

$$\{\mathbf{h}([PROMPT]), \mathbf{h}([PROMPT]), ..., \mathbf{e}(Britain), \mathbf{h}([PROMPT]), ..., \mathbf{h}([PROMPT]), \mathbf{e}([Mask])\}$$

- h : Pseudo token embedding model (prompt encoder)
 - 2 MLP layers are used by bidirectional LSTM

$$h_i = \text{MLP}([\text{LSTM}(h_{0:i}); \text{LSTM}(h_{i:m})])$$
 $\hat{h}_{0:m} = \operatorname*{arg\,min}_h \mathcal{L}(\mathcal{M}(\mathbf{x}, \mathbf{y}))$

2-(3). P-tuning

2-(4). Anchor Token

- Use certain word as anchor token
- Anchor token : capital
 - → Predicting a country's capital
- It helps some NLU tasks in the

SuperGLUE benchmark

Contents

- 1. Introduction
- 2. The Model
- 3. Experiments
- 4. Conclusion

3-(1). LAMA Dataset

- LAMA Dataset: Estimate knowledge probing task ability
- LAMA-34k : Cover all BERT vocab
- LAMA-29k: Intersection of BERT and GPT vocab
- Baseline
 - MP(Manual Prompt): Original handcraft prompts from LAMA
 - FT(fine-tuning)

DKU C&LLAB

3-(2). Knowledge Probing Precision@1

Prompt type	Model	P@1
Original (MP)	BERT-base	31.1
	BERT-large	32.3
	E-BERT	36.2
	LPAQA (BERT-base)	34.1
Discrete	LPAQA (BERT-large)	39.4
	AutoPrompt (BERT-base)	43.3
Danin	BERT-base	48.3
P-tuning	BERT-large	50.6

■ Test dataset : LAMA-34

P-tuning outperforms all the discrete prompt searching baselines

3-(2). Knowledge Probing Precision@1

Model	MP	FT	MP+FT	P-tuning
BERT-base (109M)	31.7	51.6	52.1	52.3 (+20.6)
-AutoPrompt (Shin et al., 2020)	-	-	-	45.2
BERT-large (335M)	33.5	54.0	55.0	54.6 (+21.1)
RoBERTa-base (125M)	18.4	49.2	50.0	49.3 (+30.9)
-AutoPrompt (Shin et al., 2020)	-	-	-	40.0
RoBERTa-large (355M)	22.1	52.3	52.4	53.5 (+31.4)
GPT2-medium (345M)	20.3	41.9	38.2	46.5 (+26.2)
GPT2-x1 (1.5B)	22.8	44.9	46.5	54.4 (+31.6)
MegatronLM (11B)	23.1	OOM^*	OOM*	64.2 (+41.1)

● Test dataset: LAMA-29

P-tuning overwhelms the fine-tuning GPT

3-(3). SuperGLUE Dataset

- Using 7 NLU task datasets for SuperGLUE benchmark
- Setting: Fully-supervised and few-shot (train/dev set size: 32)
- BoolQ, MultiRC : Question and Answering
- CB, RTE : Textual entailment
- WiC : Co-Reference resolution
- COPA : Causal Reasoning
- WSC: Word Sense Disambiguation

DKU C&I LAB

3-(4). Fully-Supervised Setting (base)

Method	BoolQ (Acc.)	(Acc.)	B (F1)	WiC (Acc.)	RTE (Acc.)	Mul (EM)	tiRC (F1a)	WSC (Acc.)	COPA (Acc.)	Avg.	
BERT-base-cased (109M)											
Fine-tuning	72.9	85.1	73.9	71.1	68.4	16.2	66.3	63.5	67.0	66.2	
MP zero-shot	59.1	41.1	19.4	49.8	54.5	0.4	0.9	62.5	65.0	46.0	
MP fine-tuning	73.7	87.5	90.8	67.9	70.4	13.7	62.5	60.6	70.0	67.1	
P-tuning	73.9	89.2	92.1	68.8	71.1	14.8	63.3	63.5	72.0	68.4	
	GPT2-base (117M)										
Fine-tune	71.2	78.6	55.8	65.5	67.8	17.4	65.8	63.0	64.4	63.0	
MP zero-shot	61.3	44.6	33.3	54.1	49.5	2.2	23.8	62.5	58.0	48.2	
MP fine-tuning	74.8	87.5	88.1	68.0	70.0	23.5	69.7	66.3	78.0	70.2	
P-tuning	75.0 (+1.1)	91.1 (+1.9)	93.2	68.3	70.8	23.5 (+7.3)	69.8 (+3.5)	63.5	76.0 (+4.0)	70.4 (+2.0)	

DKU C&I LAB

3-(4). Fully-Supervised Setting (large)

Method	BoolQ (Acc.)	(F1)	B (Acc.)	WiC (Acc.)	RTE (Acc.)	Mul (EM)	tiRC (F1a)	WSC (Acc.)	COPA (Acc.)	Avg.	
BERT-large-cased (335M)											
Fine-tune*	77.7	94.6	93.7	74.9	75.8	24.7	70.5	68.3	69.0	72.5	
MP zero-shot	49.7	50.0	34.2	50.0	49.9	0.6	6.5	61.5	58.0	45.0	
MP fine-tuning	77.2	91.1	93.5	70.5	73.6	17.7	67.0	80.8	75.0	73.1	
P-tuning	77.8	96.4	97.4	72.7	75.5	17.1	65.6	81.7	76.0	74.6	
	GPT2-medium (345M)										
Fine-tune	71.0	73.2	51.2	65.2	72.2	19.2	65.8	62.5	66.0	63.1	
MP zero-shot	56.3	44.6	26.6	54.1	51.3	2.2	32.5	63.5	53.0	47.3	
MP fine-tuning	78.3	96.4	97.4	70.4	72.6	32.1	74.4	73.0	80.0	74.9	
P-tuning	78.9 (+1.1)	98.2 (+1.8)	98.7 (+1.3)	69.4 (-5.5)	75.5 (-0.3)	29.3 (+4.6)	74.2 (+3.7)	74.0 (-7.7)	81.0 (+5.0)	75.6 (+1.0)	

^{*} We report the same results taken from SuperGLUE (Wang et al., 2019b).

3-(5). Few-Shot Setting

Dev size	Method BoolQ		СВ		WiC	RTE	NAME OF TAXABLE PARTY OF TAXABLE PARTY.		WSC	COPA
	The second second	(Acc.)	(Acc.)	(F1)	(Acc.)	(Acc.)	(EM)	(F1a)	(Acc.)	(Acc.)
	PET*	73.2±3.1	82.9±4.3	74.8 ± 9.2	51.8 ± 2.7	62.1 ± 5.3	33.6±3.2	74.5 ± 1.2	79.8±3.5	85.3 ± 5.1
32	PET best [†]	75.1	86.9	83.5	52.6	65.7	35.2	75.0	80.4	83.3
	P-tuning	77.8	92.9	92.3	56.3	76.5	36.1	75.0	84.6	87.0
		(+4.6)	(+10.0)	(+17.5)	(+4.5)	(+14.4)	(+2.5)	(+0.5)	(+4.8)	(+1.7)
	GPT-3	77.5	82.1	57.2	55.3	72.9	32.5	74.8	75.0	92.0
Full	PET [‡]	79.4	85.1	59.4	52.4	69.8	37.9	77.3	80.1	95.0
	iPET [§]	80.6	92.9	92.4	52.2	74.0	33.0	74.0	-	-

^{*} We report the average and standard deviation of each candidate prompt's average performance.

- P-tuning outperforms PET(Dev32) and PET best(Dev32) on all tasks
- Even outperforms SOTA (GPT, PET, iPET) on 4 out of 7 tasks

[†] We report the best performed prompt selected on *full* dev dataset among all candidate prompts.

[‡] With additional ensemble and distillation.

[§] With additional data augmentation, ensemble, distillation and self-training.

Contents

- 1. Introduction
- 2. The Model
- 3. Experiments
- 4. Conclusion

4. Conclusion

P-tuning solves the problems of manual prompts

(large validation set, adversarial prompts, overfitting)

- Also demonstrates that GPT-style performs NLU tasks as well as BERT-style
- General method to increase not only GPT but also BERT performance

DKU C&I LAB 26

Thank You!

GPT Understand, Too