V_{ss} and V_{cc}

Pin 20 (Input) and Pin 40 (Input)

• +5V power supply is connected to V_{CC} .

 Ground signal is connected to V_{SS}.

RESET IN and RESET OUT

Pin 36 (Input) and Pin 3 (Output)

RESET IN:

- It is used to reset the microprocessor.
- It is active low signal.
- When the signal on this pin is low for at least 3 clocking cycles, it forces the microprocessor to reset itself.

RESET IN and RESET OUT

Pin 36 (Input) and Pin 3 (Output)

 Resetting the microprocessor means:

Clearing the PC and IR.

- Disabling all interrupts (except TRAP).
- Disabling the SOD pin.
- All the buses (data, address, control) are tristated.
- Gives HIGH output to RESET OUT pin.

SID and SOD

Pin 4 (Input) and Pin 5 (Output)

- SID (Serial Input Data):
 - It takes I bit input from serial port of 8085.
 - Stores the bit at the 8th position (MSB) of the Accumulator.
 - RIM (Read Interrupt Mask) instruction is used to transfer the bit.

$A_8 - A_{15}$

Pin 21-28 (Unidirectional)

 These pins carry the higher order of address bus.

 The address is sent from microprocessor to memory.

 These 8 pins are switched to high impedance state during HOLD and RESET mode.

ALE

Pin 30 (Output)

 It is used to enable Address Latch.

 It indicates whether bus functions as address bus or data bus.

- If ALE = I then
 - Bus functions as address bus.
- If ALE = 0 then
 - Bus functions as data bus.

So and Si

Pin 29 (Output) and Pin 33 (Output)

S₀ and S₁ are called Status
 Pins.

 They tell the current operation which is in progress in 8085.

S ₀	Sı	Operation
0	0	Halt
0	1	Write
1	0	Read
	l	Opcode Fetch

 This pin tells whether I/O or memory operation is being performed.

- If $IO/\overline{M} = I$ then
 - I/O operation is being performed.
- If $IO/\overline{M} = 0$ then
 - Memory operation is being performed.

PIN Diagram of 8051 μ C

FA - Enable External Access
8051 has internal 4KB ROM.
\Box If \overline{EA} = 0, 8051 will discards internal 4KB ROM and
external ROM memory location will starts fron
0000Н.
\Box If \overline{EA} = 1, 8051 will consider internal 4KB ROM with
starting address 0000H to ending address 0FFFH and
External ROM memory location will starts fron
1000H.
→ PSEN - Program Status Enable
☐ 8051 has 16 bits Address A0-A15. by that we can
interface 64KB of external ROM and 64KB of externa
RAM, making it total 128KB memory space.
Both have same address range 0000H to FFFFH.
\square \overline{PSEN} reads data from external ROM.
$lacktriangledown \overline{RD}$ and \overline{WR} are used for read and write of external
RAM.
\square \overline{PSEN} is referred as program status enable, as i
allows program to be read from external POM

PIN Diagram of 8051 μ C

PIN Diagram of 8051 μ C

PSW / Flag Register in 8051 μ C

AC F₀ P RS₀ RS1 **OVR** PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 ❖ P - Parity Flag 11 1 1 Example: ☐ P = 1, Odd Parity {Odd Number of 1's in result} A = CCH 1100 1100 □ P = 0, Even Parity {Even Number of 1's in result} ADD A,R1 R1 = E6H 1110 0110 OVR – Overflow Flag A = B2H 1011 0010 □ OVR = 1, Signed overflow ■ OVR = 0, No Signed overflow F0 – User Defined Flag

□ OVR = 0, No Signed overflow
 □ It happens when result goes beyond 127 to -128.
 □ After overflow, sign of result {MSB} becomes wrong.
 ❖ RS – Register Bank Select
 □ RS = 00, Register Bank 0, {Default}
 □ RS = 01, Register Bank 1
 □ RS = 10, Register Bank 2
 □ RS = 11, Register Bank 3
 □ By CLR and SETB instructions we can select register bank.

SETB PSW.3 ;Here RS = 01 means bank 1 is selected

☐ Example

CLR PSW.4

- □ Set by user using SETB PSW.5
 □ Clear by user using CLR PSW.5
 ❖ AC Axillary Carry Flag
 □ AC = 1, Nibble to Nibble Carry
 □ AC = 0, No Nibble to Nibble Carry
 ❖ CY Carry Flag
 □ CY = 1, Result has Carry.
 - CY = 1, Result has carry.

 CY = 0, Result has no Carry.