In this ML model we would predict the popularity of music tracks based on their audio featuresFor this prediction we would be using regression techniques to forecast/predict the popularity score of song/track based on various music features and metadata Expected results would include accurate predictions of a song's future performance in terms of streams,downloads and chart positions Dataset should include songs with their musical features and historical data on song's popularity Problem Statement: develop a predictive model that can accurately estimate the popularity of music tracks based on their audio features

In [1]: import pandas as pd
import numpy as np
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

In [2]: df=pd.read_csv('Spotify_data.csv')

In [3]: df

Out[3]:

:		Unnamed: 0	Track Name	Artists	Album Name	Album ID	Track ID	Popularity	Relea Da
	0	0	Not Like Us	Kendrick Lamar	Not Like Us	5JjnoGJyOxfSZUZtk2rRwZ	6Al3ezQ4o3HUoP6Dhudph3	96	202 05-
	1	1	Houdini	Eminem	Houdini	6Xuu2z00jxRPZei4IJ9neK	2HYFX63wP3otVIvopRS99Z	94	202 05-
	2	2	BAND4BAND (feat. Lil Baby)	Central Cee, Lil Baby	BAND4BAND (feat. Lil Baby)	4AzPr5SUpNF553eC1d3aRy	7iabz12vAuVQYyekFIWJxD	91	202 05-
	3	3	l Don't Wanna Wait	David Guetta, OneRepublic	l Don't Wanna Wait	0wCLHkBRKcndhMQQpeo8Ji	331l3xABO0HMr1Kkyh2LZq	90	202 04-
	4	4	Pedro	Jaxomy, Agatino Romero, Raffaella Carrà	Pedro	5y6RXjI5VPR0RyInghTbf1	48lxT5qJF0yYyf2z4wB4xW	89	202 03-
	222	222	Tu Chahiye	Pritam, Atif Aslam	Bajrangi Bhaijaan	4nZOPP0atfJbBlkedLYi7t	3aaiAWCet6sbfOfLSn3g7i	66	201 07-
	223	223	Aabaad Barbaad (From "Ludo")	Pritam, Arijit Singh	Aabaad Barbaad (From "Ludo")	1PzsfgcbPbiW7uflc9Zi5Z	0hFUtSsV2itYEUTZGj6w5H	58	202 10-
	224	224	Jag Ghoomeya	Vishal- Shekhar, Rahat Fateh Ali Khan, Irshad K	Sultan	0tAi6H8acUKefYMIEuxcMA	4KCbZcshgibfJSCAkg87Lv	62	201 05-
2:	225	225	Tumhe Kitna Pyaar Karte (From "Bawaal")	Mithoon, Arijit Singh, Manoj Muntashir	Tumhe Kitna Pyaar Karte (From "Bawaal")	20zQZcEhMLsDUn1LhPCEFY	03hJuEQpEQERrHpjcXKWzJ	65	202 07-
	226	226	Bekhayali	Sachet Tandon	Kabir Singh	3uuu6u13U0KeVQsZ3CZKK4	4yMbbysldl7E3WgiaugnwM	61	201 06-

227 rows × 22 columns

4

In [4]: df.info()

RangeIndex: 227 entries, 0 to 226 Data columns (total 22 columns): # Column Non-Null Count Dtype -----0 Unnamed: 0 227 non-null int64 227 non-null 227 non-null Track Name 1 object Artists object 3 Album Name 227 non-null object 4 Album ID 227 non-null object 5 Track ID 227 non-null object 6 Popularity 227 non-null int64 227 non-null Release Date object 8 Duration (ms) 227 non-null int64 9 Explicit 227 non-null bool 10 External URLs 227 non-null object 11 Danceability 227 non-null float64 float64 12 Energy 227 non-null 13 Key 227 non-null int64 227 non-null 14 Loudness float64 15 Mode 227 non-null int64 16 Speechiness 227 non-null float64 17 227 non-null float64 Acousticness 18 Instrumentalness 227 non-null float64 19 Liveness 227 non-null float64 20 Valence float64 227 non-null

227 non-null

float64

<class 'pandas.core.frame.DataFrame'>

dtypes: bool(1), float64(9), int64(5), object(7) memory usage: $37.6+\ KB$

21 Tempo

In [5]: df.drop('Unnamed: 0',axis=1,inplace=True)

In [6]: df

Out[6]:

:	Track Name	Artists	Album Name	Album ID	Track ID	Popularity	Release Date	Duratior (ms
C	Not Like Us	Kendrick Lamar	Not Like Us	5JjnoGJyOxfSZUZtk2rRwZ	6Al3ezQ4o3HUoP6Dhudph3	96	2024- 05-04	274192
1	Houdini	Eminem	Houdini	6Xuu2z00jxRPZei4IJ9neK	2HYFX63wP3otVIvopRS99Z	94	2024- 05-31	227239
2	BAND4BAND (feat. Lil Baby)	Central Cee, Lil Baby	BAND4BAND (feat. Lil Baby)	4AzPr5SUpNF553eC1d3aRy	7iabz12vAuVQYyekFIWJxD	91	2024- 05-23	140733
3	l Don't Wanna Wait	David Guetta, OneRepublic	l Don't Wanna Wait	0wCLHkBRKcndhMQQpeo8Ji	331l3xABO0HMr1Kkyh2LZq	90	2024- 04-05	149668
4	Pedro	Jaxomy, Agatino Romero, Raffaella Carrà	Pedro	5y6RXjl5VPR0RyInghTbf1	48lxT5qJF0yYyf2z4wB4xW	89	2024- 03-29	14484€
222	Tu Chahiye	Pritam, Atif Aslam	Bajrangi Bhaijaan	4nZOPP0atfJbBlkedLYi7t	3aaiAWCet6sbfOfLSn3g7i	66	2015- 07-07	272680
223	Aabaad Barbaad (From "Ludo")	Pritam, Arijit Singh	Aabaad Barbaad (From "Ludo")	1PzsfgcbPbiW7uflc9Zi5Z	0hFUtSsV2itYEUTZGj6w5H	58	2020- 10-21	309100
224	Jag Ghoomeya	Vishal- Shekhar, Rahat Fateh Ali Khan, Irshad K	Sultan	0tAi6H8acUKefYMIEuxcMA	4KCbZcshgibfJSCAkg87Lv	62	2016- 05-31	281992
	Tumhe Kitna Pyaar Karte (From "Bawaal")	Mithoon, Arijit Singh, Manoj Muntashir	Tumhe Kitna Pyaar Karte (From "Bawaal")	20zQZcEhMLsDUn1LhPCEFY	03hJuEQpEQERrHpjcXKWzJ	65	2023- 07-07	305232
226	i Bekhayali	Sachet Tandon	Kabir Singh	3uuu6u13U0KeVQsZ3CZKK4	4yMbbysldl7E3WgiaugnwM	61	2019- 06-14	37179 ⁻

227 rows × 21 columns

In [7]: df[df.duplicated()]

-		-	70	
-11		7	1	

	Track Name	Artists	Album Name	Album ID	Track ID	Popularity	Release Date	Dur	
152	Tum Se (From "Teri Baaton Mein Aisa Uljha Jiya")	Sachin-Jigar, Raghav Chaitanya, Varun Jain, In	Tum Se (From "Teri Baaton Mein Aisa Uljha Jiya")	3vVIhgkDoC0vRBba5drHPe	2ceeTJAzKy295Fm0VsaXtE	78	2024- 02-02	26	
154	Sajni (From "Laapataa Ladies")	Ram Sampath, Arijit Singh, Prashant Pandey	Sajni (From "Laapataa Ladies")	3I3kZyHUtEA9Y59rJkxtk6	5zCnGtCl5Ac5zlFHXaZmhy	83	2024- 02-12	17	
155	Dekhha Tenu (From "Mr. And Mrs. Mahi")	Mohammad Faiz, Jaani	Dekhha Tenu (From "Mr. And Mrs. Mahi")	1C3FmwSQAbjnZR6GRgnWQc	34Fh4HXZmnuBdtgejWUZg2	81	2024- 05-14	28	
158	Agar Ho Tum (From "Mr. And Mrs. Mahi")	Tanishk Bagchi, Kausar Munir	Agar Ho Tum (From "Mr. And Mrs. Mahi")	08PRzEfce7mwprUTvMmfh2	0a17mlL7XTvYqe9mxuPd3y	71	2024- 05-20	25	
163	Soni Soni (From "Ishq Vishk Rebound")	Darshan Raval, Jonita Gandhi, Rochak Kohli, Gu	Soni Soni (From "Ishq Vishk Rebound")	3vBso6gFPmEwstdMXn3Ahi	36N5awamOX6XX5pQn3aFXZ	77	2024- 05-24	17	
164	Maiyya Mainu	Sachet Tandon	Jersey (Original Motion Picture Soundtrack)	1FrTddcjO9PzPaJX7SkQEC	3ygfdwvBJ2Y5XhJiiHFFZE	70	2022- 04-26	23	
166	Pehle Bhi Main	Vishal Mishra, Raj Shekhar	ANIMAL	0a183xiCHiC1GQd8ou7WXO	7yDHHVKLbvDmVw1XXhDDIO	80	2023- 11-24	25	
167	Apna Bana Le	Sachin-Jigar, Arijit Singh, Amitabh Bhattacharya	Bhediya (Original Motion Picture Soundtrack)	12sC6UjMWz6EaxnzyfCNMe	5bQ6oDLqvw8tywmnSmwEyL	74	2022- 11-22	26	
170	Satranga (From "ANIMAL")	Arijit Singh, Shreyas Puranik, Siddharth - Garima	Satranga (From "ANIMAL")	5mZX4EMwEyohNmVfLTDtXn	3yHyiUDJdz02FZ6jfUbsmY	80	2023- 10-27	27	
172	Kesariya (From "Brahmastra")	Pritam, Arijit Singh, Amitabh Bhattacharya	Kesariya (From "Brahmastra")	1HeX4SmCFW4EPHQDvHgrVS	6VBhH7CyP56BXjp8VsDFPZ	71	2022- 07-17	26	
173	Tera Ban Jaunga	Akhil Sachdeva, Tulsi Kumar	Kabir Singh	3uuu6u13U0KeVQsZ3CZKK4	3oWxFNsXstcancCR1wODR4	67	2019- 06-14	23	
175	Tum Kya Mile (From "Rocky Aur Rani Kii Prem Ka	Pritam, Arijit Singh, Shreya Ghoshal, Amitabh	Tum Kya Mile (From "Rocky Aur Rani Kii Prem Ka	5FtQVEQsWzRcpqh820ZoII	06LCamFUOtImIKi9mFRKiD	73	2023- 06-28	27	
188	Phir Aur Kya Chahiye (From "Zara Hatke Zara Ba	Sachin-Jigar, Arijit Singh, Amitabh Bhattacharya	Phir Aur Kya Chahiye (From "Zara Hatke Zara Ba	6j4QpObdnZpxNU52o2egBZ	5QW9K4A1gMnli94YUxtsfM	70	2023- 05-16	26	
190	Raabta	Pritam, Arijit Singh	Agent Vinod	2DqQ34i4uuuZWTScsGlgHr	6FjbAnaPRPwiP3sciEYctO	70	2012- 02-24	24	
208	Agar Tum Saath Ho	Alka Yagnik, Arijit Singh	Tamasha	2CUXo26JAWIbQx0EVMnjpA	3hkC9EHFZNQPXrtl8WPHnX	71	2015- 10-16	34	
15 rows × 21 columns									

```
Out[8]: Track Name
                              0
          Artists
                              0
         Album Name
                              0
          Album ID
          Track ID
                              0
          Popularity
                              0
         Release Date
                              0
         Duration (ms)
         Explicit
                              0
         External URLs
                              0
         Danceability
                              0
          Energy
         Key
                              0
          Loudness
                              0
         Mode
                              0
          Speechiness
                              0
          Acousticness
                              0
          Instrumentalness
                              0
         Liveness
                              0
         Valence
                              0
          Tempo
                              0
          dtype: int64
In [10]: df['Release Date']
Out[10]: 0
                2024-05-04
                2024-05-31
          1
                2024-05-23
          2
          3
                2024-04-05
                2024-03-29
          4
          222
                2015-07-07
          223
                2020-10-21
          224
                2016-05-31
          225
                2023-07-07
          226
                2019-06-14
          Name: Release Date, Length: 227, dtype: object
In [11]: df['release_yr']=df['Release Date'].str.split('-').str[0]
In [12]: df['release_month']=df['Release Date'].str.split('-').str[1]
         df['release_date']=df['Release Date'].str.split('-').str[2]
In [13]: df.columns.tolist()
Out[13]: ['Track Name',
           'Artists',
           'Album Name',
           'Album ID',
           'Track ID',
           'Popularity'
           'Release Date'
           'Duration (ms)',
           'Explicit',
           'External URLs',
           'Danceability',
           'Energy',
           'Key',
           'Loudness',
           'Mode',
           'Speechiness',
           'Acousticness',
           'Instrumentalness',
           'Liveness',
           'Valence',
           'Tempo',
           'release_yr',
           'release_month',
           'release_date']
In [14]: df[['release_date','release_yr','release_month']]
```

```
0
                              2024
                                             05
                      04
                      31
                              2024
                                             05
           2
                      23
                              2024
                                             05
           3
                      05
                              2024
                                             04
           4
                      29
                              2024
                                             03
         222
                      07
                              2015
                                             07
                                             10
                      21
                              2020
         223
         224
                              2016
                      31
                                             05
         225
                      07
                              2023
                                             07
         226
                      14
                              2019
                                             06
         227 rows × 3 columns
In [15]: df=df.drop(columns=['Release Date'],axis=1)
In [17]: for i in ['release date', 'release yr', 'release month']:
            df[i]=df[i].astype(int)
In [18]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 227 entries, 0 to 226
        Data columns (total 23 columns):
         # Column
                              Non-Null Count Dtype
         0
            Track Name
                               227 non-null
                                               object
             Artists
                               227 non-null
                                               object
                               227 non-null
         2
            Album Name
                                               object
            Album ID
                               227 non-null
                                               object
            Track ID
                                               object
         4
                               227 non-null
         5
             Popularity
                               227 non-null
                                               int64
                               227 non-null
         6
             Duration (ms)
                                               int64
         7
             Explicit
                               227 non-null
                                               bool
             External URLs
         8
                               227 non-null
                                               object
         9
             Danceability
                               227 non-null
                                               float64
                               227 non-null
         10 Energy
                                               float64
         11
             Key
                               227 non-null
                                               int64
             Loudness
                                               float64
                               227 non-null
         12
         13
             Mode
                               227 non-null
                                               int64
                               227 non-null
                                               float64
             Speechiness
         14
         15
             Acousticness
                               227 non-null
                                               float64
         16 Instrumentalness 227 non-null
                                               float64
         17 Liveness
                               227 non-null
                                               float64
         18 Valence
                               227 non-null
                                               float64
         19 Tempo
                               227 non-null
                                               float64
         20 release_yr
                               227 non-null
                                               int32
         21 release_month
                               227 non-null
                                               int32
         22 release_date
                               227 non-null
                                               int32
        dtypes: bool(1), float64(9), int32(3), int64(4), object(6)
        memory usage: 36.7+ KB
In [19]: [i for i in df.columns if df[i].dtype =='object' ]
Out[19]: ['Track Name',
           'Artists',
           'Album Name',
```

Out[14]:

'Album ID', 'Track ID', 'External URLs']

In [20]: [i for i in df.columns if df[i].dtype != 'object']

release_date release_yr release_month

```
Out[20]: ['Popularity',
            'Duration (ms)',
            'Explicit',
            'Danceability',
            'Energy',
            'Key',
            'Loudness',
            'Mode',
            'Speechiness',
            'Acousticness',
            'Instrumentalness',
            'Liveness',
            'Valence',
            'Tempo',
            'release_yr',
            'release_month',
            'release_date']
In [22]: df.head()
Out[22]:
                                             Album
                                                                                                                    Duration
                                                                                                Track ID Popularity
                                                                     Album ID
                                                                                                                             Explicit
              Track Name
                               Artists
                                             Name
                                                                                                                       (ms)
                              Kendrick
          0
               Not Like Us
                                         Not Like Us
                                                       5JjnoGJyOxfSZUZtk2rRwZ 6Al3ezQ4o3HUoP6Dhudph3
                                                                                                                     274192
                                                                                                                96
                                                                                                                                True h
                                Lamar
          1
                  Houdini
                              Eminem
                                            Houdini
                                                       6Xuu2z00jxRPZei4IJ9neK 2HYFX63wP3otVIvopRS99Z
                                                                                                                     227239
                                                                                                                                True
                                       BAND4BAND
             BAND4BAND
                           Central Cee,
          2
                  (feat. Lil
                                            (feat. Lil
                                                     4AzPr5SUpNF553eC1d3aRy
                                                                                7iabz12vAuVQYyekFIWJxD
                                                                                                                91
                                                                                                                     140733
                                                                                                                                True
                                                                                                                                     ŀ
                              Lil Baby
                    Baby)
                                              Baby)
                                David
                   I Don't
                                             I Don't
          3
                               Guetta,
                                                    0wCLHkBRKcndhMQQpeo8Ji
                                                                               331l3xABO0HMr1Kkyh2LZq
                                                                                                                90
                                                                                                                     149668
                                                                                                                               False h
               Wanna Wait
                                        Wanna Wait
                          OneRepublic
                              Jaxomy,
                               Agatino
                   Pedro
                              Romero,
                                             Pedro
                                                       5y6RXjI5VPR0RyInghTbf1
                                                                                48lxT5qJF0yYyf2z4wB4xW
                                                                                                                89
                                                                                                                     144846
                                                                                                                               False
                              Raffaella
                                 Carrà
         5 rows × 23 columns
In [23]: df[['Explicit','Mode']]
Out[23]:
               Explicit Mode
            0
                  True
                            1
            1
                  True
                           0
            2
                  True
            3
                  False
            4
                 False
                            1
          222
                 False
          223
                 False
          224
                 False
          225
                 False
                           0
          226
                 False
         227 rows × 2 columns
In [24]: df['Explicit'].value_counts()
Out[24]: Explicit
           False
                    171
           True
                     56
          Name: count, dtype: int64
In [25]: df['Explicit'].replace({False:0,True:1})
```

#was getting NaN after using map, so used replace

```
0
        1
        1
2
       1
3
        0
4
       0
222
       0
223
       0
224
       0
225
       0
226
Name: Explicit, Length: 227, dtype: int64
```

EDA

Target Var vs Music Features

As popularity score is the col of prediction(target var.) See the relationship b/w all the music features with target var.

```
In [26]: df.columns.tolist()
Out[26]: ['Track Name',
           'Artists',
           'Album Name',
           'Album ID',
           'Track ID',
           'Popularity'
           'Duration (ms)',
           'Explicit',
           'External URLs',
           'Danceability',
           'Energy',
           'Key',
           'Loudness',
           'Mode',
           'Speechiness',
           'Acousticness',
           'Instrumentalness',
           'Liveness',
           'Valence',
           'Tempo',
           'release_yr',
           'release_month',
           'release_date']
In [27]: music_f=['Danceability','Energy','Key','Loudness','Mode','Speechiness',
           'Acousticness', 'Instrumentalness', 'Liveness', 'Valence', 'Tempo']
          for i in music_f:
              sns.scatterplot(x=i,y='Popularity', data=df)
              plt.title(f'popularity vs {i}')
              plt.show()
```


Observation: 1. higher danceability, energy corelate with higher popularity score 2. higher acousticness has lower popularity score 3. lower loudness has lower popularity score 4. valence show weeker, unclear relationship(?) 5. tempo, liveness, instrumentalness, speechiness, key(?) correlation b/w all the features

```
In [28]: num_var=[i for i in df.columns if df[i].dtype != 'object' and 'bool']
In [29]: num_data=df[num_var]
num_data
```

t[29]:		Popularity	Duration (ms)	Explicit	Danceability	Energy	Key	Loudness	Mode	Speechiness	Acousticness	Instrumentalness	Liv
	0	96	274192	True	0.898	0.472	1	-7.001	1	0.0776	0.0107	0.000000	- (
	1	94	227239	True	0.936	0.887	9	-2.760	0	0.0683	0.0292	0.000002	
	2	91	140733	True	0.882	0.764	11	-5.241	1	0.2040	0.3590	0.000000	(
	3	90	149668	False	0.681	0.714	1	-4.617	0	0.0309	0.0375	0.000000	
	4	89	144846	False	0.788	0.936	9	-6.294	1	0.3010	0.0229	0.000001	(

7

7

11

10

9

-5.817

-5.857

-7.954

-9.849

-5.180

0

0

0.0446

0.0317

0.0347

0.0328

0.0413

0.4030

0.6860

0.4790

0.9240

0.4490

0.000000

0.000000

0.000002

0.000008

0.000000

0.565

0.626

0.484

0.602

0.296

0.744

0.522

0.565

0.374

0.582

227 rows × 17 columns

272680

309103

281992

305232

371791

False

False

False

False

False

66

58

62

65

61

222

223

224

225

226

In [30]: corr_matrix=num_data.corr()
corr_matrix

Out[30]:

:		Popularity	Duration (ms)	Explicit	Danceability	Energy	Key	Loudness	Mode	Speechiness	Acoustic
	Popularity	1.000000	-0.269510	0.405406	0.251928	0.250068	-0.008550	0.308110	-0.008246	0.190621	-0.43
	Duration (ms)	-0.269510	1.000000	-0.265563	-0.484826	-0.365698	-0.012312	-0.256522	0.158170	-0.312642	0.476
	Explicit	0.405406	-0.265563	1.000000	0.482242	0.137504	-0.004511	0.163645	-0.043564	0.551908	-0.517
	Danceability	0.251928	-0.484826	0.482242	1.000000	0.242587	-0.013330	0.166232	-0.118235	0.419217	-0.498
	Energy	0.250068	-0.365698	0.137504	0.242587	1.000000	-0.017352	0.678558	-0.063101	0.103059	-0.616
	Key	-0.008550	-0.012312	-0.004511	-0.013330	-0.017352	1.000000	-0.093016	-0.061717	0.004854	0.05
	Loudness	0.308110	-0.256522	0.163645	0.166232	0.678558	-0.093016	1.000000	0.001383	0.037858	-0.500
	Mode	-0.008246	0.158170	-0.043564	-0.118235	-0.063101	-0.061717	0.001383	1.000000	-0.069425	0.147
	Speechiness	0.190621	-0.312642	0.551908	0.419217	0.103059	0.004854	0.037858	-0.069425	1.000000	-0.367
	Acousticness	-0.431117	0.476488	-0.517975	-0.498951	-0.616124	0.055651	-0.503469	0.147149	-0.367282	1.000
l	nstrumentalness	0.104846	-0.212550	0.050648	0.077016	0.250163	0.054473	-0.057236	-0.079684	0.031381	-0.126
	Liveness	0.066110	-0.104685	0.160904	0.030781	0.239486	0.013291	0.121415	-0.096436	0.055212	-0.267
	Valence	-0.045580	-0.217561	-0.006032	0.338242	0.201095	0.093400	0.107138	-0.004017	0.148823	-0.02′
	Tempo	0.131820	-0.160446	0.404604	0.232993	0.186659	0.015901	0.079587	-0.159426	0.264213	-0.404
	release_yr	0.338920	-0.476429	0.230559	0.237685	0.259509	-0.038246	0.277937	0.009872	0.201099	-0.30{
	release_month	-0.002076	0.114417	0.057039	-0.070265	-0.106993	0.099660	-0.121783	-0.007514	-0.086650	0.038
	release_date	0.025284	0.096617	-0.008382	-0.071339	-0.064620	-0.013759	-0.073216	0.051247	-0.047201	0.080

In [31]: plt.figure(figsize=(12,8))
 sns.heatmap(corr_matrix,annot=True,cmap='coolwarm',fmt='.2f')
 plt.title('correlation matrix')
 plt.show()

observation: -ve correlation-> 1.duration has moderate -ve correlation with popularity score 2.key,mode,valence,release month has low -ve correlation with popularity score 3.acousticness has high -ve correlation with popularity +ve correlation-> 4.explicit,loudness,release yr has high +ve correlation with popularity score 5.danceability,energy,speechiness has moderate +ve correlation with popularity 6. instrumentalness,liveness,tempo, release date has low +ve correlation with popularity These above correlation's show that: 1. loud,dance able and energitic,speech songs has higher & moderate popularity 2. acoustic songs has less popularity

distribution of music features

```
music_f
          ['Danceability',
           'Energy',
           'Key'
           'Loudness',
           'Mode',
           'Speechiness',
           'Acousticness',
           'Instrumentalness',
           'Liveness',
           'Valence',
           'Tempo']
         for i in music_f:
In [33]:
              plt.figure(figsize=(12,8))
              sns.histplot(df[i], kde=True)
              plt.title('distribution of {}'.format(i))
              plt.show()
```


5

0.2

0.4

0.3

0.5

0.6 Energy 0.7

0.8

0.9

1.0

distribution of Tempo

observation: 1.danceability, energy and valence has roughly bell shaped curve 2.loudness has near normal distribution centered around -6 3.acousticness is skewed towards lower values, same for liveness, speechiness this tells that: 1.bell shaped shows the balanced range of energy levels and good mix of danceability and positive emotions(valence) in tracks 2.skewness shows that most tracks are not acoustic, has liveness and speechiness

Feature Selection

With Correlation: loudness, danceability, energy, speechiness, livness

With Visualization: valence, tempo, acousticness

These features show significant realtionship with popularity, so can be used to train a music popularity model

Model Training

using these selected features train the model

```
In [34]: #train test split
    from sklearn.model_selection import train_test_split

In [35]: feature_var=['Energy','Valence','Loudness','Danceability','Speechiness','Liveness','Tempo','Acousticness']
    x=df[feature_var]
    x
```

Out[35]:		Energy	Valence	Loudness	Danceability	Speechiness	Liveness	Tempo	Acousticness
	0	0.472	0.214	-7.001	0.898	0.0776	0.1410	101.061	0.0107
	1	0.887	0.889	-2.760	0.936	0.0683	0.0582	127.003	0.0292
	2	0.764	0.886	-5.241	0.882	0.2040	0.1190	140.113	0.3590
	3	0.714	0.554	-4.617	0.681	0.0309	0.2320	129.976	0.0375
	4	0.936	0.844	-6.294	0.788	0.3010	0.3110	151.019	0.0229
	222	0.744	0.415	-5.817	0.565	0.0446	0.0853	134.068	0.4030
	223	0.522	0.628	-5.857	0.626	0.0317	0.4100	118.001	0.6860
	224	0.565	0.607	-7.954	0.484	0.0347	0.1050	82.653	0.4790
	225	0.374	0.388	-9.849	0.602	0.0328	0.0840	101.855	0.9240
	226	0.582	0.365	-5.180	0.296	0.0413	0.3190	168.400	0.4490

227 rows × 8 columns

```
In [36]: y=df['Popularity']
Out[36]:
                 96
                 94
          2
                 91
          3
                 90
          4
                 89
          222
                 66
          223
                 58
          224
                 62
          225
                 65
          226
                61
         Name: Popularity, Length: 227, dtype: int64
In [37]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
In [38]: print(x_train.shape)
         print(y train.shape)
         print(x_test.shape)
         print(y_train.shape)
        (181, 8)
        (181,)
        (46, 8)
        (181,)
```

transforming and fitting of train data & only transforming of test data on feature/independent variables(only)

For Scaling -> Standard Scaling

```
In [39]: from sklearn.preprocessing import StandardScaler

In [40]: scaler=StandardScaler()

In [41]: x_train_scaled=scaler.fit_transform(x_train)

In [42]: x_test_scaled=scaler.transform(x_test)

Trying this scaled data on different regression models and seeing model evaluation
linear regression

In [43]: from sklearn.linear_model import LinearRegression

In [44]: reg=LinearRegression()

In [45]: reg.fit(x_train_scaled,y_train)

Out[45]: v_LinearRegression()
```

```
In [46]: y_predict=reg.predict(x_test_scaled)
In [47]: print(y_predict[:5])
        [73.80512835 67.31537775 71.69191033 62.79801137 73.13496811]
In [48]: print(y_test[:5].tolist())
        [87, 71, 85, 56, 69]
         for model evaluation use evaluaiton metrics
In [49]: from sklearn.metrics import mean_squared_error,r2_score
In [50]: linear_reg_mean_sq=round(mean_squared_error(y_predict,y_test)*100,3)
In [51]: linear_reg_mean_sq
Out[51]: 6933.888
In [52]: linear_reg_r2=round(r2_score(y_predict,y_test)*100,3)
         linear_reg_r2
Out[52]: -165.636
         decision tree
In [53]: from sklearn.tree import DecisionTreeRegressor
In [54]: dec_tree=DecisionTreeRegressor(random_state=42)
In [55]: dec_tree.fit(x_train_scaled,y_train)
Out[55]: v
                   DecisionTreeRegressor
         DecisionTreeRegressor(random state=42)
In [56]: y_predict=dec_tree.predict(x_test_scaled)
In [57]: print(y_predict[:5])
        [75. 71. 75. 72. 84.]
In [58]: print(y_test[:5].tolist())
        [87, 71, 85, 56, 69]
In [59]: #from sklearn.tree import plot tree
         #plt.figure(figsize=(12, 8))
         #plot_tree(dec_tree, filled=True, feature_names=['x_train'])
         #plt.show()
         evaluating decison tree regressor
In [60]: dec_tree_mean_sq=round(mean_squared_error(y_predict,y_test)*100,3)
         dec_tree_mean_sq
Out[60]: 16282.609
In [61]: dec_tree_r2=round(r2_score(y_predict,y_test)*100,3)
         dec_tree_r2
Out[61]: 8.732
         support vector machine(regressor)
In [62]: from sklearn.svm import SVR
In [63]: machine=SVR(kernel='poly')
In [64]: machine.fit(x_train_scaled,y_train)
Out[64]: v
                  SVR
         SVR(kernel='poly')
In [65]: y_predict=machine.predict(x_test_scaled)
```

```
In [66]: print(y_predict[:5])
         [75.05426085 71.33622599 77.41365282 67.44008799 73.49151849]
In [67]: print(y_test[:5].tolist())
         [87, 71, 85, 56, 69]
         model evaluation
In [68]: svr_mean_sq=round(mean_squared_error(y_predict,y_test)*100,3)
Out[68]: 6158.647
In [69]: svr_r2=round(r2 score(y predict,y test)*100,3)
         svr r2
Out[69]: -248.281
         random forest
In [70]: from sklearn.ensemble import RandomForestRegressor
In [71]: random_forest=RandomForestRegressor(n_estimators=100)
In [72]: random forest.fit(x train scaled,y train)
Out[72]: v RandomForestRegressor
         RandomForestRegressor()
In [73]: y predict=random forest.predict(x test scaled)
In [74]: print(y_predict[:5])
         [79.76 69.51 81.67 66.195 79.83 ]
In [75]: print(y_test[:5].tolist())
         [87, 71, 85, 56, 69]
         model evaluation
In [76]: rf_mean_sq=round(mean_squared_error(y_predict,y_test)*100,3)
         rf_mean_sq
Out[76]: 5495.734
In [77]: rf_r2=round(r2_score(y_predict,y_test)*100,3)
Out[77]: 7.172
In [78]: eval_model_ss=pd.DataFrame({'linear_reg':[linear_reg_mean_sq,linear_reg_r2],
                                   'decision tree':[dec tree mean sq,dec tree r2],
                                  'svr':[svr_mean_sq,svr_r2],
                                  'random forest':[rf mean sq,rf r2]},
                                 index=['mean square','r2_score'])
In [79]: eval model ss
Out[79]:
                      linear reg decision tree
                                                svr random forest
                                                        5495.734
         mean square
                      6933.888
                                  16282.609 6158.647
             r2_score
                      -165.636
                                     8.732 -248.281
                                                           7.172
```

scaling method -> MinMax Scaler

```
In [82]: print(x_train.shape)
    print(y_train.shape)
    print(x_test.shape)
    print(y_test.shape)

(181, 8)
    (181,)
    (46, 8)
    (46,)
```

```
In [83]: #from sklearn.preprocessing import MinMaxScaler
In [84]: #scaler=MinMaxScaler(feature_range=(0,1))
In [85]: #x_train_scaled=scaler.fit_transform(x_train)
In [86]: #x_test_scaled=scaler.transform(x_test)
In [87]: #x_train_scaled
          using the same regression models and then evaluating them
          Linear Regression
In [88]: #reg.fit(x_train_scaled,y_train)
In [89]: #y_predict=reg.predict(x_test_scaled)
In [90]: #y_predict[:5]
In [91]: #linear_reg_mean=round(mean_squared_error(y_predict,y_test)*100,3)
          #linear_reg_mean
          as u can see the computed values are same even alfter doing minmaxscaler, their is no need to continue and see the evaluation of the
          remaining 3 algorithms
In [92]: eval model ss
Out[92]:
                      linear reg decision tree
                                                 svr random forest
          mean square 6933.888
                                   16282.609 6158.647
                                                          5495.734
             r2_score -165.636
                                      8.732 -248.281
                                                             7.172
In [93]: eval_model_ss.keys()
Out[93]: Index(['linear reg', 'decision tree', 'svr', 'random forest'], dtype='object')
In [94]: eval_model_ss.index
Out[94]: Index(['mean square', 'r2_score'], dtype='object')
In [95]: ax=eval_model_ss.plot(kind='bar',figsize=(10,6), legend=True)
          ax.set_xlabel('metrics')
          #ax.set xticklabels(eval model ss.index,rotation=360)
          plt.xticks(rotation=360)
          plt.show()
```


From the above graph it is clear that Random Forest has smallest mean squared error, So we can use this model for the popularity prediction of an audio

To enhance the working of Random Forest we can use hyperparameter tuning and can again fit the model for prediction

Hyperparameter tuning

Grid Search

```
In [96]: from sklearn.model_selection import GridSearchCV
In [97]:
         param grid={
             'n estimators':[100,200,300],
             'max_depth':[10,20,30,None],
             'max features':['sqrt','log2'],
             'min samples split':[2,5,10],
             'min_samples_leaf':[1,2,4]
In [98]: grid_search=GridSearchCV(RandomForestRegressor(random_state=42),param_grid,refit=True,verbose=2,cv=5)
         #cv=5->The dataset will be split into 5 folds, and the model will be trained and evaluated 5 times.
In [99]: grid_search.fit(x_train_scaled,y_train)
        Fitting 5 folds for each of 216 candidates, totalling 1080 fits
        [CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=100; total time=
        0.2s
        [CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=100; total time=
        0.2s
        [CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=100; total time=
        0.2s
        [CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=100; total time=
        0.2s
        [CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=100; total time=
        0.2s
        [CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=200; total time=
        0.5s
        [CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=200; total time=
        0.5s
        [CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=200; total time=
        0.5s
        [CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=200; total time=
        0.5s
        [CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=200; total time=
        0.6s
        [CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=300; total time=
        0.8s
        [CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=300; total time=
```

```
0.85
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=300; total time=
0.9s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=300; total time=
0.9s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=2, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=5, n estimators=100; total time=
0.25
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=5, n_estimators=100; total time=
0.2s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=5, n_estimators=100; total time=
0.25
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=5, n estimators=100; total time=
0.25
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=5, n estimators=100; total time=
0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=5, n estimators=200; total time=
0.5s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time=
0.5s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time=
0.5s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=5, n_estimators=200; total time=
0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=5, n estimators=200; total time=
0.5s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=5, n_estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=5, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=5, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=5, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=5, n estimators=300; total time=
0.8s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=10, n_estimators=100; total time
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=1, min_samples_split=10, n_estimators=100; total time
    0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=100; total time
    0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=100; total time
    0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=100; total time
    0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=200; total time
    0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=200; total time
    0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=200; total time
    0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=200; total time
    0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=200; total time
    0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=300; total time
    0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=300; total time
    0.85
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=300; total time
    0.85
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=300; total time
    0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=1, min samples split=10, n estimators=300; total time
   0.7s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=100; total time=
0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=100; total time=
0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=100; total time=
0.25
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=100; total time=
0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=100; total time=
0.25
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=200; total time=
0.65
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=200; total time=
0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=200; total time=
0.6s
```

```
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=200; total time=
0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=200; total time=
0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=2, n estimators=300; total time=
0.85
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=100; total time=
0.25
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=100; total time=
0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=100; total time=
0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=100; total time=
0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=100; total time=
0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=200; total time=
0.4s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=200; total time=
0.55
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=200; total time=
0.55
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=200; total time=
0.55
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=200; total time=
0.55
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=300; total time=
0.7s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=300; total time=
0.8s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=5, n_estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=5, n estimators=300; total time=
0.85
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=100; total time
   0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=100; total time
   0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=100; total time
   0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=100; total time
   0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=100; total time
   0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=200; total time
   0.5s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time
   0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=200; total time
   0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=200; total time
   0.45
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=200; total time
   0.45
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=300; total time
   0.7s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=300; total time
   0.7s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=300; total time
   0.8s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=300; total time
   0.7s
[CV] END max depth=10, max features=sqrt, min samples leaf=2, min samples split=10, n estimators=300; total time
   0.8s
[CV] END max depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=100; total time=
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=100; total time=
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=100; total time=
0.2s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=100; total time=
0.25
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=100; total time=
```

```
0.25
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=2, n estimators=200; total time=
0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=2, n estimators=200; total time=
0.4s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=2, n estimators=200; total time=
0.4s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=2, n estimators=200; total time=
0.5s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=200; total time=
0.4s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=300; total time=
0.85
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=2, n estimators=300; total time=
0.75
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=2, n estimators=300; total time=
0.7s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=2, n estimators=300; total time=
0.8s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=2, n_estimators=300; total time=
0.7s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=5, n_estimators=100; total time=
0.2s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=5, n_estimators=100; total time=
0.25
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=5, n estimators=100; total time=
0.2s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=5, n_estimators=100; total time=
0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=5, n estimators=100; total time=
0.2s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time=
0.4s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=5, n estimators=200; total time=
0.4s
[CV] END max depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time=
0.4s
[CV] END max depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time=
0.5s
[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=4, min_samples_split=5, n_estimators=200; total time=
0.4s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=5, n estimators=300; total time=
0.7s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=5, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=5, n estimators=300; total time=
0.7s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=5, n estimators=300; total time=
0.7s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=5, n estimators=300; total time=
0.8s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=100; total time
    0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=100; total time
    0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=100; total time
    0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=100; total time
    0.2s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=100; total time
    0.25
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=200; total time
    0.55
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=200; total time
    0.4s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=200; total time
    0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=200; total time
    0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=200; total time
    0.5s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=300; total time
    0.75
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=300; total time
   0.7s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=300; total time
    0.85
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=300; total time
    0.7s
[CV] END max depth=10, max features=sqrt, min samples leaf=4, min samples split=10, n estimators=300; total time
   0.7s
[CV] END max depth=10, max features=log2, min samples leaf=1, min samples split=2, n estimators=100; total time=
0.2s
```

```
[CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=2, n estimators=300; total tim
             0.8s
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=100; total tim
             0.2s
        6=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=100; total tim
             0.2s
        e=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=100; total tim
             0.2s
        e=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=100; total tim
             0.2s
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=100; total tim
             0.2s
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=200; total tim
             0.55
        6=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=200; total tim
        e=
             0.55
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=200; total tim
        e=
             0.55
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=200; total tim
        e=
             0.5s
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=200; total tim
             0.5s
        e=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=300; total tim
        6=
             0.8s
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=300; total tim
        e=
             0.8s
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=300; total tim
        6=
             0.85
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=300; total tim
        e=
             0.85
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=5, n estimators=300; total tim
        6=
             0.85
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=100; total ti
              0.25
        me=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=100; total ti
        me=
              0.2s
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=100; total ti
        me=
              0.25
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=100; total ti
              0.25
        me=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=100; total ti
              0.2s
        me=
        [CV]
            END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=200; total ti
              0.55
        me=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=200; total ti
              0.5s
        me=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=200; total ti
        me=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=200; total ti
        me=
              0.5s
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=200; total ti
              0.55
        me=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=300; total ti
              0.8s
        me=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=300; total ti
              0.8s
        me=
        [CV] END max_depth=None, max_features=log2, min_samples_leaf=4, min_samples_split=10, n_estimators=300; total ti
              0.8s
        me=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=300; total ti
             0.75
        me=
        [CV] END max depth=None, max features=log2, min samples leaf=4, min samples split=10, n estimators=300; total ti
        me= 0.8s
                      GridSearchCV
Out[99]:
          ▶ estimator: RandomForestRegressor
                ▶ RandomForestRegressor
            ........
In [100... best para=grid search.best params
         best para
Out[100... {'max depth': 10,
           'max features': 'sgrt',
           'min samples leaf': 1,
           'min samples split': 2,
           'n estimators': 100}
```

In [101...

best model

best model=grid search.best estimator

```
Out[101... v
                                       RandomForestRegressor
         RandomForestRegressor(max_depth=10, max_features='sqrt', random_state=42)
In [102... y_predict=best_model.predict(x_test_scaled)
In [103... mean_squared_g=round(mean_squared_error(y_predict,y_test)*100,3)
         mean squared g
Out[103... 5390.301
In [104... r2 score gs=round(r2 score(y predict,y test)*100,3)
         r2_score_gs
Out[104... -30.664
         Randomized Search
In [105... | from sklearn.model_selection import RandomizedSearchCV
In [106... param_grid
Out[106... {'n_estimators': [100, 200, 300],
           'max_depth': [10, 20, 30, None],
           'max_features': ['sqrt', 'log2'],
           'min_samples_split': [2, 5, 10],
           'min_samples_leaf': [1, 2, 4]}
In [107... random search=RandomizedSearchCV(RandomForestRegressor(n estimators=42),
                                          param_distributions=param_grid,n_iter=10,cv=5)
In [108...
         random_search.fit(x_train_scaled,y_train)
                   RandomizedSearchCV
Out[108...
          ▶ estimator: RandomForestRegressor
                ▶ RandomForestRegressor
In [109... y predict=random search.predict(x test scaled)
In [110... best para=random search.best params
         best_para
Out[110... {'n_estimators': 300,
           'min_samples_split': 2,
           'min_samples_leaf': 2,
           'max_features': 'sqrt',
           'max_depth': 20}
In [111... best model=random search.best estimator
         best model
Out[111... v
                                        RandomForestRegressor
         RandomForestRegressor(max depth=20, max features='sqrt', min samples leaf=2,
                                 n estimators=300)
In [112... mean_squared_rs=round(mean_squared_error(y_predict,y_test)*100,3)
         mean squared rs
Out[112... 4472.217
In [113... r2 score rs=round(r2 score(y predict,y test)*100,3)
         r2 score rs
Out[113... -46.119
In [114... hyperparam=pd.DataFrame({'gridSearch':[mean_squared_g,r2_score_gs],
                                   'randomSearch':[mean_squared_rs,r2_score_rs]},
                                 index=['mean square error','r2 score'])
In [115... hyperparam
```

Out[115...

	griusearch	randomoearch
mean square error	5390.301	4472.217
r2 score	-30.664	-46.119

from above it is clear that after using Randomized Search method for hyperparameter tuning the results aree much better than Grid Search. So we would be fitting the model on the basis of Randomized Search of Hyperparameter Tuning

```
In [116... plt.scatter(y_test,y_predict,alpha=0.7)
    plt.plot([min(y_test),max(y_test)],[min(y_predict),max(y_predict)],color='red')
    plt.xlabel('actual popularity score')
    plt.ylabel('predicted popularity score')
    plt.title('Actual VS Predicted Popularity(Best Random Forest)')
    plt.show()
```


The red line represents perfect predictions, where the predicted popularity would exactly match the actual popularity. Most of the points are clustered around this line, which indicates that the model is making reasonably accurate predictions. However, there are some deviations, particularly at lower popularity values, which suggest areas where the model's predictions are less precise.