Business Problem

* Given a dataset filled with demographic, meta and financial data regarding a customer, come up with a data solution that will aid the company to maximize its profits and minimize its losses.

Outline for How to Proceed

- * Given I were the manager of this Data Science project at **Company** tasked with this problem:
 - * Communicate with the data engineers who are in charge of the ETL to figure out the schema of the data.
 - * Communicate with business experts and analysts on the team to figure out the meaning behind each individual field. Work together to figure out best **features that we are looking to optimize** (or minimize) before building a model.
 - * Communicate with business experts to figure out the **best metrics in determining success** / evaluating our model.
 - Perform Data preprocessing and feature engineering.
 - * Train and test data with a chosen algorithm, repeat the above steps again to iterate on the process until it is fine tuned.

Exploratory Data Analysis

<pre>df.head()</pre>															
	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade		total_bal_il	il_util	open_rv_12m	open_
0	1077501	1296599	5000	5000	4975.0	36 months	10.65	162.87	В	B2		NaN	NaN	NaN	
1	1077430	1314167	2500	2500	2500.0	60 months	15.27	59.83	С	C4		NaN	NaN	NaN	
2	1077175	1313524	2400	2400	2400.0	36 months	15.96	84.33	С	C5		NaN	NaN	NaN	
3	1076863	1277178	10000	10000	10000.0	36 months	13.49	339.31	С	C1		NaN	NaN	NaN	

- Check for null values and fill or delete them.
 - * Fill null values with statistical data such as mean, median, mode, max, min, or 0, depending on the business meaning of the data.
- * Deal with **categorical fields**. Only numerical values can be entered into an algorithm, so we must transform categories to numbers in a statistically meaningful way.
- Correlation / Variance Inflation Analysis

Feature Extraction

- * Features have been extracted from our dataset in several ways:
 - * First, we removed features that would be unknown at the start of a customer's loan (such as number of late payments or total interest paid)
 - * Second, we removed features with high multicollinearity.
 - * Third, if we are looking at **CART** models, they do feature extraction naturally.

Visualization

* Examining graphs of relevant features categorized by their loan status, we can see that there are clear feature distinctions between the label classes.

Important Visualizations:

- * Loan Absolute Variables Distribution: Amt Requested, Funded by lender, committed by investor
- * Total Applications Volume vs Defaulted Volume
- Loan Purpose
- Average Interest Rates
- * Delinquencies

Model Building

- * Back to the business problem at hand: given our current knowledge of the data we have, how can we figure out a model that will ultimately maximize profitability and minimize loss potential.
 - * Option 1: No intrinsic labels to our data, can treat it as an Unsupervised Learning Problem cluster customers into 3 categories of "Safe", "Risky", and "Unsure".
 - * Option 2: Pick some feature / combination of features to predict.
 - * loan_status:
 - * 'Fully Paid'
 - * 'Charged Off'
 - * 'Current', 'Default'
 - * 'Late (31-120 days)'
 - * 'In Grace Period'
 - * 'Late (16-30 days)',
 - Does not meet the credit policy. Status: Fully Paid',
 - * 'Does not meet the credit policy. Status: Charged Off'

Model Building

- * More Sophisticated Method: working together with business experts, come up with a selection of features to predict on and build a regression or classification model around this engineered feature.
 - Could be categorical (grouping members into categories to define which loans to accept) or regression (deciding the amount of money to loan a particular person)

Defining Accuracy Metrics

- Unsupervised Learning: Silhouette method
- * Supervised Learning:
 - * Classification: Decide between F1, accuracy, ROC-AUC depending how important false positives/negatives are.
 - * Regression: Decide between R^2, RMSE, MAE, depending on how much we care to predict/ take into account outliers.