浙江大学 2007-2008 学年 秋冬 季学期

研究生《计算理论》课程期末考试试卷

	开课学院: _ 计算机学院 考试形式: 闭卷, 允许带								入场	
考试时间: 2007 年 1 月 15 日,所需时间: 120 分钟,任课教师:										
考:	生姓名: _	学号:				专业:				
	题序	1	2	3	4	5	6	7	总分	
	得分									
	评卷人									

Zhejiang University Theory of Computation, Fall-Winter 2007 Final Exam

- 1. (16%) Suppose there are four languages A, B, C and D. Each of these languages may or may not be recursively enumerable. However, we know the following about them:
 - i. There is a reduction from A to B
 - ii. There is a reduction from B to C
 - iii. There is a reduction from D to C

Below are eight statements indicate whether each is:

- CERTAIN to be true: regardless of what problems A, B, C and D are
- MAYBE true: depending on what A, B, C and D are
- NEVER true: regardless of what A, B, C and D are
- (a) () A is recursively enumerable but not recursive, and C is recursive.
- (b) () A is not recursive and D is not recursively enumerable.
- (c) () The complement of A is not recursively enumerable, but the complement of B is recursively enumerable.
- (d) () The complement of B is not recursive, but the complement of C is recursive.
- (e) () If A is recursive, then the complement of B is recursive.
- (f) () If C is recursive, then the complement of D is recursive.
- (g) () If C is recursively enumerable, then the union of B and D is recursively enumerable.
- (h) () If C is recursively enumerable, then the intersection of B and D is recursively enumerable.

- 2. (14%) Suppose there are four languages A, B, C and D. Each of these languages may or may not be in the class \mathcal{NP} . However, we know the following about them:
 - i. There is a polynomial-time reduction from A to B
 - ii. There is a polynomial-time reduction from B to C
 - iii. There is a polynomial-time reduction from D to C

Below are seven statements Indicate whether each is:

- CERTAIN to be true, regardless of what problems A, B, C and D are and regardless of the resolution of unknown relationships among complexity classes of "which is $\mathcal{P} = \mathcal{NP}$ " is one example.
- MAYBE true, depending on what A, B, C and D are and/or depending on the resolution of unknown relationships such as $\mathcal{P} = \mathcal{NP}$?
- NEVER true, regardless of what A, B, C and D are and regardless of the resolution of unknown relationships such as $\mathcal{P} = \mathcal{NP}$?
- (a) () If A is \mathcal{NP} -complete then C is \mathcal{NP} -complete.
- (b) () $A ext{ is } \mathcal{NP}$ -complete and $C ext{ is in } \mathcal{P}$.
- (c) () B is \mathcal{NP} -complete and D is in \mathcal{P} .
- (d) () If A is \mathcal{NP} -complete and B is in \mathcal{NP} then B is \mathcal{NP} -complete.
- (e) () If C is \mathcal{NP} -complete then D is in \mathcal{NP} .
- (f) () C is in \mathcal{P} and the complement of D is not in \mathcal{P} .
- (g) () B is not in \mathcal{P} and A is not in \mathcal{NP} .
- 3. (12%) Consider the binary operator \circ on languages as follows: given two languages L_1 and L_2 over Σ , $L_1 \circ L_2$ consists of words of the form uv such that $u \in L_1$, $v \in L_2$ and |u| = |v|.
 - (a) Prove that if L_1 and L_2 are regular languages, then $L_1 \circ L_2$ is context-free.
 - (b) Give a counter-example to disprove that if L_1 is a regular language and L_2 is a context-free language, then $L_1 \circ L_2$ is context-free.

4. (20%)

(a) Give a context-free grammar for the language

$$L_3 = \{a^m b^m c a^{2n} b^{2n} \mid m, n \in \mathbb{N}\}.$$

(b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_3 .

5. (10%) Show that the following language

 $\{ M_1 M_2 M_2 \mid M_1, M_2 \text{ are Turing machines and both } M_1 \text{ and } M_2 \text{ halt on blank tape} \}$ is recursively enumerable. An informal description suffices.

6. (16%)Let the following Turing machine M compute function f(x, y), where x and y are represented by binary strings respectively and separated with the symbol ";", i.e. the initial configuration in form of $\triangleright \underline{\sqcup} x; y$.

- (a) Describe the key configurations when M started from the configuration $\trianglerighteq \underline{\sqcup} 10111; 10.$
- (b) Try to give the function f(x,y) computed by Turing Machine M.

- 7. (12%) The non-tautology, NT problem is defined as follows: given a Boolean expression E, does there exist a truth-assignment for the variables of E that makes E false.
 - (a) Prove NT is in \mathcal{NP} .
 - (b) Describe a polynomial-time reduction from SAT to NT and show that NT problem is \mathcal{NP} -complete.