Assignment AE2-002P

Numerical calculation of the balance field length

Introduction

The takeoff for aircraft, as illustrated in Figure 1, can be defined as the maneuver by which the aircraft in accelerated from rest, up to screen height, which is usually at an altitude of 10.7 meters.

Figure 1: Overview of speeds relevant to a take off

At one point during the take-off procedure of a multi-engine aircraft V_1 , the decision speed, will be called. After this point the aircraft must continue the take off in case of, most notably, an engine failure. The basic value of V_1 is given by the balanced field length, as illustrated in Figure 2. If a single engine failure occurs at this speed, the stopping and the take off distance are equal. The total traveled distance, plus a margin, specifies the minimum amount of runway which needs to be available 1 .

The aim of this assignment is to calculate the balance field length, and the accompanying V_1 , of a specified aircraft with a numerical simulation using the Euler integration method.

Figure 2: Graphical representation of the balanced field length

¹ When the available amount of runway is longer than this distance, the decision speed may be chosen more freely.

Assumptions:

- The aircraft has a parabolic drag coefficient.
- For jet powered aircraft the thrust is independent of speed.
- For propeller powered aircraft the available power is independent of speed.
- The ground resistance and brake resistance coefficient are independent of speed.

Equations

Aircraft parameters

Here the formulas to be used are given. Please note that equations (8) and (10) are only calculated under specified conditions. Please use a new routine for each formula.

Climb angle acceleration $\frac{d\gamma}{dt} = \frac{g_0}{WV} [L - W + N], V > 1$ (10)

For propeller aircraft the available thrust can be gained by dividing the available power by the airspeed. If the airspeed is lower than 1 [m/s], divide the available power by one.

Integration

The following formulas can be used to calculate the values for the next step:

Climb angle $\gamma_{i+1} = \gamma_i + \frac{d\gamma}{dt} dt$ True air speed $V_{i+1} = V_i + \frac{dV}{dt} dt$ Traveled distance $S_{i+1} = S_i + V_{i+1} dt$ Altitude $H_{i+1} = H_i + V_{i+1} \sin(\gamma_{i+1}) dt$

Controls

Rotation

During the start procedure, at V_{rot} , the aircraft has to rotate. One of the ways to simulate this is to do as follows:

If the speed is higher than the rotation speed, the pitch angle is increase with a fixed amount per second up to a set maximum. When the failure speed is exceeded and the aircraft is set to abort, the pitch angle is set to zero.

After failure speed

For the thrust and the braking and wheel resistance the following scheme is one of the possible ways of accomplishing this:

If the failure speed is exceeded and the aircraft is set to abort, the wheel resistance is set to the brake value. In all other cases the resistance is set to the rolling value. If the aircraft is off the ground, the ground force will be zero, so the value of the wheel resistance will not have any influence anyway. In a similar way, the thrust will be set to zero when the aircraft aborts, and will be set to $T = T_{\text{max}} \left[1 - \frac{1}{N_{\text{engines}}} \right]$ when the aircraft continues after the failure speed has been reached.

Results of each simulation

As the aircraft has reached the screen height or, in case of an abort, slowed to a speed below zero meters per second, the simulation is stopped. The failure speed and the traveled distance are then returned.

Calculating the balanced field length

For calculating the balance field length, it is best to run the simulation for a series of failure speeds both with and without abort. For this, it saves a lot of work if you can run the actual simulation by calling it with just two parameters; Failure speed and Abort (True/False). It is then possible to create a loop to calculate all the results automatically and return all the values of the failure speed and the traveled distance required for creating a graph and calculating the balanced field length.

Assignment

The assignment has to be done in subgroups of two to three students, with each subgroup using a different aircraft. Each subgroup has to hand in its own report before the deadline.

Report requirements

For your report the following items are required, separate from the requirements stated by written reporting:

- A flow diagram showing the program structure.
- A graph with the required distance against the engine failure speed, with and without abort, for a relevant range of failure speeds.
- The calculated balanced field length and the accompanying value of the decision speed, the stall speed and the rotation speed.
- Graphs with the time vs. speed, traveled distance and altitude with an engine failure at the decision speed, with and without abort.
- Explanation of the results

References

- Elements of Airplane performance, G.J.J. Ruijgrok, Delft University Press
- **AE2-201: Flight Path Simulations**, Prof.dr.ir. Th. Van Holten, ir. J.A.Krijnen

Two engine powered jet aircraft

Parameter	Description	Value	Dimension
$N_{\it engines}$	Number of engines	2	-
A	Aspect ratio	15	-
S	Wing area	100	m^2
W	Take off weight	500	kN
$lpha_{\scriptscriptstyle 0}$	Zero lift angle of attack	-3	Deg
$C_{L_{lpha}}$	Lift coefficient gradient	4.85	Rad ⁻¹
$C_{L_{ m max}}$	Maximum lift coefficient	1.60	-
$T_{ m max}$	Maximum available thrust (total)	150	kN
$\frac{d\theta}{dt}$	Pitch angle gradient during rotation	6	Deg/sec
$ heta_{ ext{max}}$	Maximum pitch angle during rotation	16	Deg
μ_{roll}	Rolling resistance coefficient	0.02	-
μ_{brake}	Braking resistance coefficient	0.2	-
$C_{\scriptscriptstyle D_0}$	Rest drag coefficient, without engine failure	0.021	-
$C_{D_{0,\mathit{fail}}}$	Rest drag coefficient, with single engine failure	0.026	-
e	Oswald Factor	0.85	_
h_{s}	Screen height	10.7	m

After the engine failure, available thrust will be reduced to 50% of the total amount. Also the rest drag coefficient (C_{D_0}) will increase, to the 'fail' value in the table above.

Three engine powered jet aircraft

Parameter	Description	Value	Dimension
$N_{\it engines}$	Number of engines	3	-
A	Aspect ratio	14	
S	Wing area	200	m^2
W	Take off weight	1200	kN
$lpha_{\scriptscriptstyle 0}$	Zero lift angle of attack	-4	Deg
$C_{L_{lpha}}$	Lift coefficient gradient	4.32	Rad ⁻¹
$C_{L_{ m max}}$	Maximum lift coefficient	1.45	-
$T_{ m max}$	Maximum available thrust (total)	360	kN
$\frac{d\theta}{dt}$	Pitch angle gradient during rotation	5	Deg/sec
$ heta_{ ext{max}}$	Maximum pitch angle during rotation	15	Deg
μ_{roll}	Rolling resistance coefficient	0.02	-
$\mu_{\it brake}$	Braking resistance coefficient	0.2	-
$C_{\scriptscriptstyle D_0}$	Rest drag coefficient, without engine failure	0.024	-
$C_{D_{0,\mathit{fail}}}$	Rest drag coefficient, with single engine failure	0.028	-
e	Oswald Factor	0.80	-
$h_{_{S}}$	Screen height	10.7	m

After the engine failure, available thrust will be reduced to 67% of the given amount. Also the rest drag coefficient (C_{D_0}) will increase, to the 'fail' value in the table above.

Four engine powered jet aircraft

Parameter	Description	Value	Dimension
$N_{\it engines}$	Number of engines	4	-
A	Aspect ratio	12	-
S	Wing area	500	m^2
W	Take off weight	3500	kN
$lpha_{\scriptscriptstyle 0}$	Zero lift angle of attack	-5	Deg
$C_{L_{\!lpha}}$	Lift coefficient gradient	3.95	Rad ⁻¹
$C_{L_{ m max}}$	Maximum lift coefficient	1.40	-
$T_{ m max}$	Maximum available thrust (total)	1200	kN
$\frac{d\theta}{dt}$	Pitch angle gradient during rotation	4	Deg/sec
$ heta_{ ext{max}}$	Maximum pitch angle during rotation	14	Deg
μ_{roll}	Rolling resistance coefficient	0.02	_
$\mu_{\it brake}$	Braking resistance coefficient	0.2	-
$C_{\scriptscriptstyle D_0}$	Rest drag coefficient, without engine failure	0.026	-
$C_{D_{0,\mathit{fail}}}$	Rest drag coefficient, with single engine failure	0.029	-
e	Oswald Factor	0.82	-
h_{s}	Screen height	10.7	m

After the engine failure, available thrust will be reduced to 75% of the given amount. Also the rest drag coefficient (C_{D_0}) will increase, to the 'fail' value in the table above.

Two engine powered propeller aircraft

Parameter	Description	Value	Dimension
$N_{\it engines}$	Number of engines	2	-
A	Aspect ratio	8	-
S	Wing area	20	m^2
W	Take off weight	60	kN
$lpha_{_0}$	Zero lift angle of attack	-2	Deg
$C_{L_{lpha}}$	Lift coefficient gradient	4.85	Rad ⁻¹
$C_{L_{ m max}}$	Maximum lift coefficient	1.30	-
$T_{ m max}$	Maximum available power (total)	1500	kW
$\frac{d\theta}{dt}$	Pitch angle gradient during rotation	6	Deg/sec
$ heta_{ ext{max}}$	Maximum pitch angle during rotation	14	Deg
μ_{roll}	Rolling resistance coefficient	0.02	-
$\mu_{\it brake}$	Braking resistance coefficient	0.2	-
$C_{\scriptscriptstyle D_0}$	Rest drag coefficient, without engine failure	0.030	-
$C_{D_{0,\mathit{fail}}}$	Rest drag coefficient, with single engine failure	0.035	-
e	Oswald Factor	0.75	-
h_{s}	Screen height	10.7	m

After the engine failure, available power will be reduced to 50% of the given amount. Also the rest drag coefficient (C_{D_0}) will increase, to the 'fail' value in the table above.

Four engine powered propeller aircraft

Parameter	Description	Value	Dimension
$N_{\it engines}$	Number of engines	4	-
A	Aspect ratio	10	-
S	Wing area	60	m^2
W	Take off weight	240	kN
$lpha_{\scriptscriptstyle 0}$	Zero lift angle of attack	-3	Deg
$C_{L_{lpha}}$	Lift coefficient gradient	4.90	Rad ⁻¹
$C_{L_{ m max}}$	Maximum lift coefficient	1.40	-
$T_{ m max}$	Maximum available power (total)	4800	kW
$\frac{d\theta}{dt}$	Pitch angle gradient during rotation	4	Deg/sec
$ heta_{ ext{max}}$	Maximum pitch angle during rotation	13	Deg
μ_{roll}	Rolling resistance coefficient	0.02	-
$\mu_{\it brake}$	Braking resistance coefficient	0.2	-
$C_{\scriptscriptstyle D_0}$	Rest drag coefficient, without engine failure	0.028	-
$C_{D_{0,\mathit{fail}}}$	Rest drag coefficient, with single engine failure	0.032	-
e	Oswald Factor	0.82	-
h_{s}	Screen height	10.7	m

After the engine failure, available power will be reduced to 75% of the given amount. Also the rest drag coefficient (C_{D_0}) will increase, to the 'fail' value in the table above.