Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Моделирование

Домашнее задание №2

Вариант 22/5

Выполнили: Калугина Марина

Саржевский Иван

Группа: Р3302

г. Санкт-Петербург

2019 г.

Цель работы:

Изучение метода Марковских случайных процессов и его применение для исследования приоритетных моделей – систем массового обслуживания (СМО) с неоднородным потоком заявок.

Задание:

Разработка Марковских моделей одно- и двухканальных СМО с неоднородным потоком заявок и приоритетным обслуживанием и исследование характеристик их функционирования. Выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности.

- 1. Построение и описание исследуемой системы массового обслуживания.
- 2. Разработка Марковской модели исследуемой системы.
- 3. Проведение расчетов разработанной модели и получение результатов.
- 4. Анализ полученных результатов.
- 5. Детальный анализ зависимостей характеристик системы при изменении нагрузки.

Описание исследуемой системы:

На рисунке изображена схема системы:

Согласно варианту в системе имеется один прибор и 3 накопителя с емкостью = 1 3 класса заявок с абсолютным приоритетом (и приоритетами 2-3-1)

Порядок назначения приоритетов:

поступающая заявка любого класса при отсутствии свободного места в накопителе данного класса теряется;

Дисциплина прерывания: прерванная заявка теряется

Значение параметров:

 $\lambda 1 = 0.2$; $\lambda 2 = 0.1$; $\lambda 3 = 0.1$

B1 = 2; B2 = 2; B3 = 5

Отсюда можно рассчитать интенсивности обработки заявок: μ 1 = 1/B1 = 0.5; μ 2 = 0.5; μ 3 = 0.2

Граф переходов:

Каждое состояние кодируется в виде 01/02/03/П, где

01 - первый накопитель, имеет значение C,3 -- свободно и занято соответственно 02 и 03 - второй и третий накопитель

П - прибор, имеет значение 0, 1, 2, 3 -- свободен, занят заявкой первого второго или третьего класса соответственно.

Матрица интенсивностей переходов:

1112	0	0	0	0	0	0	0	p7*λ0	0	0	0	р11*λ1	0	p13*\2	-p14*µ1
								Д.				ď			ф.
1102	0	0	0	0	0	0	р6*λ0	0	0	р9*λ1	0	0	0	-p13*λ2 - p13*µ1	0
1013	0	0	0	0	0	p5*λ0	0	0	0	0	p10*λ2	0	-p12*λ1 - p12*µ2	0	0
1012	0	0	0	0	p4*λ0	0	0	0	0	p9*λ2	0	-p11*\1 - p11*\p1	p12*X1	0	p14*µ1
1003	0	0	0	p3*λ0	0	0	0	0	p8*λ2	0	-p10*λ1 - p10*λ2 - p10*µ2	р11*µ1	p12*µ2	0	0
1002	0	0	р2*λ0	0	0	0	0	0	p8*λ1	-p9*λ1 - p9*λ2 - p9*μ1	p10*\1	0	0	p13*µ1	0
1001	0	p1*\0	0	0	0	0	0	0	-p8*\1 - p8*\2 - p8*\u00e40	0	0	0	0	0	0
0112	0	0	0	0	p4*\1	0	p6*λ2	-p7*λ0 - p7*μ1	0	0	0	0	0	0	0
0102	0	0	p2*λ1	0	0	0	-p6*λ0 - p6*λ2 - p6*μ1	0	0	0	0	0	0	0	0
0013	0	0	p2*λ2	0	0	-p5*λ0 - p5*λ1 - p5*μ2	0	0	0	0	0	0	0	0	0
0012	0	0	p2*λ2	0	-p4*\lambda - p4*\lambda 1 - p4*\mu1	р5*λ1	0	р7*µ1	0	0	0	0	0	0	0
8000	p0*λ2	p1*λ2	0	-p3*λ0 - p3*λ1 - p3*μ2	p4*µ1	p5*µ2	0	0	0	0	0	0	0	0	0
0002	p0*λ1	p1*\1	-p2*X0 - p2*X1 - 2*p2*X2 - p2*µ1	р3*λ1	0	0	p6*µ1	0	0	0	0	0	0	0	0
1000	р0*λ0	-p1*λ0 - p1*λ1 - p1*λ2 - p1*µ0	0	0	0	0	0	0	04*8d	р9*µ1	р10*µ2	0	0	0	0
0000	-p0*λ0 - p0*λ1 - p0*λ2	р1*µ0	p2*µ1	р3*µ2	0	0	0	0	0	0	0	0	0	0	0
20 83	0000	0001	0002	8000	0012	0013	0102	0112	1001	1002	1003	1012	1013	1102	1112

Значения стационарных вероятностей:

CCC0	0.3233
CCC1	0.1517
CCC2	0.0625
CCC3	0.1111
3CC1	0.0111
3CC2	0.0125
CC32	0.0078
C3C2	0.0027
3CC3	0.0433
CC33	0.0499
33C2	0.1263
3C32	0.0277
C332	0.0504
3C33	0.0109
3332	0.0088

Расчет характеристик системы:

Хар-ка	Класс заявки	Формула	Значение
Нагрузка	1	$y_1 = \lambda_1/\mu_1$	0,4
	2	$y_2 = \lambda_2/\mu_2$	0,2
	3	$y_3 = \lambda_3/\mu_3$	0,5
	\sum	$Y = y_1 + y_2 + y_3$	1,1
Загрузка	1	$\rho_1 = P_1 + P_4$	0,1950313587
	2	$\rho_2 = P_2 + P_5 + P_6 + P_7 + P_{10} + P_{11} + P_{12} + P_{14}$	0,1814497762
	3	$\rho_3 = P_3 + P_8 + P_9 + P_{13}$	0,3002399401
	\sum	$\rho = \sum_{i=1}^{n} P_i$	0,676721075
Длина	1	$l_1 = P_4 + P_5 + P_8 + P_{10} + P_{11} + P_{13} + P_{14}$	0,3173902444

OHODO EL	2	$I_0 - P_0 \perp P_{10} \perp P_{10} \perp P_{14}$	0.0000115555
очереди		$l_2 = P_7 + P_{10} + P_{12} + P_{14}$	0,03024162937
	3	$l_3 = P_6 + P_9 + P_{11} + P_{12} + P_{13} + P_{14}$	0,1132426753
	\sum	$l = (P_4 + P_5 + P_6 + P_7 + P_8 + P_9) + 2(P_{10} + P_{11} + P_{12} + P_{13}) + 3 * P_{14}$	0,4608745491
Число заявок	1	$m_1 = (P_1 + P_5 + P_8 + P_{10} + P_{11} + P_{13} + P_{14}) + 2 * P_4$	0,5124216032
	2	$m_2 = (P_2 + P_5 + P_6 + P_{11}) + 2(P_7 + P_{10} + P_{12} + P_{14})$	0,2116914056
	3	$m_3 = (P_3 + P_6 + P_8 + P_{11} + P_{12} + P_{14}) + 2(P_9 + P_{13})$	0,4134826153
	\sum	$m = (P_1 + P_2 + P_3) + 2(P_4 + P_5 + P_6 + P_7 + P_8 + P_9) + 3(P_{10} + P_{11} + P_{12} + P_{13}) + 4P_{14}$	1,137595624
Ср. время ожидания	1	$w_1 = l_1/\lambda_1'$	2,13360348
	2	$w_2 = l_2/\lambda_2'$	0,3047201017
	3	$w_3 = l_3/\lambda_3'$	1,262982031
	Σ	$w = l/\lambda'$	1,364888018
Ср. время преб-ния	1	$u_1 = m_1/\lambda'$	4,324829391
	2	$u_2 = m_2/\lambda'$	2,311847057
	3	$u_3 = m_3/\lambda'$	6,277042457
	\sum	$u = m/\lambda'$	4,256242987
Вер-ть потери	1	$\pi_1 = (P_4 + P_5 + P_8 + P + 10 + P_{11} + P_{13} + P_{14}) * (\lambda_1)/(\lambda_1 + \lambda_2 + \lambda_3) + (P_1 + P_4) * (\lambda_1 + \lambda_2)/(\lambda_1 + \lambda_2 + \lambda_3)$	0,2562108016
	2	$\pi_2 = (P_7 + P_{10} + P_{12} + P_{14}) * (\lambda_2) / (\lambda_1 + \lambda_2 + \lambda_3)$	0,007560407341
	3	$\pi_3 = (P_6 + P_9 + P_{11} + P_{12} + P_{13} + P_{14}) * (\lambda_3) / (\lambda_1 + \lambda_2 + \lambda_3) + (P_2 + P_6 + P_6 + P_7 + P_{10} + P_{11} + P_{12} + P_{14}) * (\lambda_2) / (\lambda_1 + \lambda_2 + \lambda_3)$	0,1033706538
	\sum	$\pi = \sum_{i=1}^{n} P_i$	0,3514640447
Пропускна я спос-ть	1	$\lambda_1' = B_1(1 - \pi_1)$	0,1487578397
7 01100 15	2	$\lambda_2' = B_2(1 - \pi_2)$	0,09924395927
	3	$\lambda_3' = B_3(1 - \pi_3)$	0,08966293462
	\sum	$\lambda' = \lambda_1' + \lambda_2' + \lambda_3'$	0,3376647336

Результаты варьирования параметров заявок:

Были проведены 2 группы опытов по 5 экспериментов.

В первом случае производилось равномерное изменение интенсивностей, во втором средней длительности обслуживания.

1. Значение интенсивносетй:

a.
$$\lambda_1 = 0.2; \lambda_2 = 0.1; \lambda_3 = 0.1$$

b.
$$\lambda_1 = 0.4; \lambda_2 = 0.2; \lambda_3 = 0.2$$

c.
$$\lambda_1 = 0.6; \lambda_2 = 0.4; \lambda_3 = 0.4$$

d.
$$\lambda_1 = 0.8; \lambda_2 = 0.6; \lambda_3 = 0.6$$

e.
$$\lambda_1 = 0.9; \lambda_2 = 0.7; \lambda_3 = 0.7$$

2. Значения средней длительности обслуживания

			Инт	енсивно	сти		Ср. длительность обслуживания					
		1	2	3	4	5	1	2	3	4	5	
		0,05	0,1	0,2	0,3	0,4	1	2	3	4	5	
Хар-ка		0,01 0,01	0,05 0,05	0,1 0,1	0,15 0,15	0,2 0,2	1 4	2 5	3 6	4 7	5 8	
, tap ita	1	0,1	0,2	0,4	0,6	0,8	0,2	0,4	1,2	1,6	2	
	2	0,02	0,1	0,2	0,3	0,4	0,1	0,2	0,6	0,8	1	
	3	0,05	0,25	0,5	0,75	1	0,4	0,5	1,2	1,4	1,6	
Нагрузка		0,17	0,55	1,1	1,65	2,2	0,7	1,1	3	3,8	4,6	
	1	0,0941 81362 26	0,1465 27548 3	0,1950 31358 7	0,1927 18918 1	0,1720 17000 7	0,1371 90117 5	0,1950 31358 7	0,2068 38315	0,1964 94260 8	0,1772 65075 2	
	2	0,0196 55602	0,0935 01432 15	0,1814 49776 2	0,2654 00332 3	0,3432 78183 2	0,0938 72390 58	0,1814 49776 2	0,2642 54329 4	0,3409 83357 9	0,4106 03389 9	
	3	0,0473 95659 67	0,1932 51401 8	0,3002 39940 1	0,3499 54719 8	0,3655 03091 5	0,2634 35106 3	0,3002 39940 1	0,3168 75986	0,3196 71170 9	0,3133 94748 3	
Загрузка		0,1612 32623 9	0,4332 80382 3	0,6767 21075	0,8080 73970 2	0,8807 98275 5	0,4944 97614 4	0,6767 21075	0,7879 68630 4	0,8571 48789 5	0,9012 63213 5	
Длина очереди	1	0,0205 13832 52	0,1208 34709 9	0,3173 90244 4	0,4860 82885 1	0,6129 61748 3	0,1768 59295 1	0,3173 90244 4	0,4484 3116	0,5578 87913 3	0,6454 69849 5	

		1	1	1	1	1	<u> </u>	<u> </u>	<u> </u>	l	
		0,0003		0,0302	0,0612	0,0980	0,0085	0,0302	0,0609	0,0974	0,1368
	2	85403 9609	00130 196	41629 37	46230 54	79480 91	33853 689	41629 37	81768 32	23816 53	67796 6
	_										
		0,0016 77394	0,0351 95944	0,1132 42675	0,2014 45908	0,2866 71425	0,0559 92870	0,1132 42675	0,1796 59682	0,2496	0,3189 18371
	3	723	03	3	2	9	82	3	8	74401	1
	Ě		0,1645								•
		0,0225 76631	30784	0,4608 74549	0,7487 75023	0,9977 12655	0,2413 86019	0,4608 74549	0,6890 72611	0,9049 86130	1,1012
		2	2	1	8	1	6	1	1	8	56017
		0,1146	0,2673	0,5124	0,6788	0,7849	0,3140	0,5124			0,8227
		95194	62258	21603	01803	78749	49412	21603	0,6552	0,7543	34924
	1	8	3	2	2	1	6	2	69475	82174	8
		0,0200	0,1020	0,2116	0,3266	0,4413	0,1024	0,2116	0,3252	0,4384	0,5474
		41005	01562	91405	46562	57664	06244	91405	36097	07174	71186
	2	96	3	6	9	1	3	6	7	4	5
		0,0490	0,2284	0,4134		0,6521	0,3194	0,4134	0,4965	0,5693	0,6323
		73054	47345	82615	0,5514	74517	27977	82615	35668	45571	13119
	3	39	9	3	00628	4	1	3	8	9	5
		0,1838	0,5978								
Число		09255	11166	1,1375	1,5568	1,8785	0,7358	1,1375	1,4770	1,7621	2,0025
заявок		1	5	95624	48994	10931	83634	95624	41242	3492	19231
		0,4188									
		69264	1,3744	2,1336	2,4527	2,5224	1,0490	2,3248		2,2394	-
	1	3	25393	0348	37656	32212	1826	29391	64396	02414	95558
		0,0385	0,1714	0,3047		0,5027	0,0855	0,3118	0,3096	0,4992	0,7085
	_	55255	60036	20101	0,4146	24135	20992	47056	29276	79511	84585
	2	43	5	7	57252	1	8	8	8	5	9
		-	0,7295				0,6085				
	_	21310	97762			1,7125			1,0256	· ·	-
	3	4	6	82031	02216	82853	6	42457	116	49699	90638
_		0,3274	0,8858				0,6697				
Ср. время		17348	51805	1,3648	1,5756	1,6477	79939	1,4305	1,0748	1,4696	1,8446
ожидания		5	4	88018	86871	73044	2	16537	78501	46045	6858
		2,4188	3,3744	4,3248	4,4527	4,5224	2,0490	4,3248	4,6673	6,2394	7,7413
	1	69264	25393	29391	37656	32212	1826	29391	64396	02414	95558
	_	2,0385	2,1714	2,3118	2,4146	2,5027	1,0855	2,3118	3,3096	4,4992	5,7085
	2	55255	60037	47057	57252	24135	20993	47057	29277	79512	84586
		5,1680	5,7295	6,2770	6,5577	6,7125	4,6085	6,2770	7,0256	8,4555	9,8939
Ср. время	3	2131	97763	42457	02216	82853	23572	42457	116	49699	90638
пребыва-		2,7617	3,6650	4,2562	4,3921	4,4771	2,4357	4,2562	4,8946	6,3053	7,6908
ния		6223	43449	42987	07245	38577	23212	42987	32129	24219	2961
		0,0415	0,1441	0,2562	0,3394	0,3924	0,1570	0,3173	0,3276		0,4113
Вер-ть		61698	91835	10801	00901	89374	24706	90244	34737	0,3771	67462
потери	1	16	8	6	6	5	3	4	5	91087	4

	_										
		0,0000	0,0038	0,0075	0,0153	0,0245	0,0021	0,0302	0,0152	0,0243	0,0342
		55057	63695	60407	11557	19870	33463	41629	45442	55954	16949
	2	70869	543	341	63	23	422	37	80	13	16
		0,0070	0,1038	0,1033		0,1630	0,0798	0,1132	0,1241		0,1580
		10436	39702	70653	0,1378	43629	56994	42675	33917	0,1423	78279
	3	342	7	8	50157	4	28	3	2	36393	9
		0,0217	0,1396	0,3514		0,6482	0,1966	0,3514	0,4876	0,5967	0,6813
		95544	81649	64044	0,5236	12008	95106	64044	91675	79608	66780
		96	2	7	63693	3	6	7	9	1	8
		0,0489	0,0879	0,1487	0,1981	0,2430	0,1685	0,1365		0,2491	
		74308	16529	57839	79729	04250	95058	21951	0,2689	23565	0,2354
	1	37	01	7	5	2	7	1	46105	2	53015
		0,0099	0,0495	0,0992	0,1477		0,0997	0,0969	0,1969	0,1951	0,1931
		96145	74993	43959	03266	0,1950	86653	75837	50911	28809	56610
	2	96	49	27	4	96026	66	06	6	2	2
		0,0099	0,0482	0,0896	0,1293	0,1673	0,0920	0,0886	0,1751	0,1715	
		83226	40202	62934	22476	91274	14300	75732	73216	32721	0,1683
	3	053	8	62	5	1	57	47	6	4	84344
		0,0689	0,1857	0,3376	0,4752	0,6054		0,3221	0,6410	0,6157	0,5969
Пропускна		53680	31725	64733	05472	91550	0,3603	73520	70233	85095	93969
я спос-ть		39	3	6	3	3	96013	6	1	8	2

Графики результатов:

В каждом графике на оси ОХ обозначается номер опыта.

Синий график обозначает значение заявок первого класса,

Красный -- второго

Желтый -- третьего

Зеленый обозначает значения параметры для всей системы в целом

Зависимость нагрузки от интенсивностей

Рисунок 1. График зависимости нагрузки от интенсивностей

Зависимость загрузки от интенсивностей

Рисунок 2. График зависимости загрузки от интенсивностей

Зависимость длины очереди от интенсивностей

Рисунок 3. График зависимости длины очереди от интенсивностей

Зависимость числа заявок от интенсивностей

Рисунок 4. Зависимость числа заявок от интенсивностей.

Зависимость среднего времени ожидания от интенсивностей

Рисунок 5. Зависимость среднего времени ожидания от интенсивностей.

Зависимость среднего времени пребываения от интенсивностей

Рисунок 6. Зависимость среднего времени пребывания от интенсивностей.

Зависимость вероятности потерь от интенсивностей

Рисунок 7. Зависимость вероятности потерь от интенсивностей.

Зависимость пропускной способности от интенсивностей

Рисунок 8. Зависимость пропускной способности от интенсивностей.

Зависимость нагрузки от ср. длительности обслуживания

Рисунок 9. Зависимость нагрузки от ср. длительности обслуживания.

Зависимость загрузки от ср. длительности обслуживания

Рисунок 10. Зависимость загрузки от ср. длительности обслуживания.

Зависимость длины очереди от ср. длины обслуживания

Рисунок 11. Зависимость длины очереди от ср. длительности обслуживания.

Зависимость числа заявок от ср. длины обслуживания

Рисунок 12. Зависимость числа заявок от ср. длительности обслуживания.

Зависимость среднего времени ожидания от ср. длины обслуживания

Рисунок 13. Зависимость ср. времени ожидания от ср. длительности обслуживания.

Зависимость среднего времени пребываения от ср. длины обслуживания

Рисунок 13. Зависимость ср. времени пребывания от ср. длительности обслуживания.

Зависимость вероятности потерь от интенсивностей

Рисунок 14. Зависимость вероятности потерь от ср. длительности обслуживания.

Зависимость пропускной способности от ср. времени ожидания

Рисунок 15. Зависимость пропускной способности от ср. длительности обслуживания.

Вывод:

В ходе выполнения лабораторной работы были рассчитаны характеристики заданной СМО и выполнено варьирование водных параметров для определения паттернов изменений характеристик. В частности, можно выделить следующие особенности:

- То, что используется абсолютный приоритет заявок хорошо видно из рисунка номер 5 зависимость среднего времени ожидания от изменения интенсивностей. Красная линия, соответствующая заявке второго класса, растет линейно, это означает, что приходя, такая заявка может ожидать только завершения обработки заявки такого же класса интенсивности поступления растут линейно, с тем же характером, что и среднее время ожидания
- То, что заявки теряются, если в очереди, ассоциированной с их классом нет места, можно увидеть на Рисунке 7 Зависимость вероятности потерь от интенсивностей. При увеличении интенсивности вероятность потери растет, так как вероятность указанных выше ситуаций растет
- Из рисунка 8 можно сделать вывод, что при увеличении интенсивности увеличивается пропускная способность. Это объясняется тем, что при низких интенсивностях выше вероятность простоя системы, в котором система ничего не делает. Например, при интенсивностях, равных 0.2, 0.1, 0.1 (среднее значение из опытов), вероятность простоя системы равна 32%
- На Рисунке 10 Зависимость загрузки от средней длительности обслуживания видно, что загрузка по низкоприоритетным заявкам при увеличении среднего времени обслуживания, падает. Только загрузка по высокоприоритетной заявке растет - это говорит о том, что система больше тратит времени на обслуживание заявок второго класса, в это время заявки остальных классов не обрабатываются.