Tarea Numérica MA2601 Ecuaciones Diferenciales Ordinarias

Escuela de Ingeniería, FCFM, U. de Chile. Semestre 2020-1 Profs. Alexander Frank, Alexis Fuentes, Roberto Morales, Axel Osses, Ariel Pérez, Javier Ramírez

Modelos climáticos simples del fenómeno del Niño

Fecha de publicación: lunes 8 de junio del 2020

Entrega: lunes 6 de julio del 2020, 20:00 por UCursos

Recursos computacionales: python 3.0 o superior

Planteamiento: Revisaremos dos modelos simples para explicar la oscilación térmica del Océano Pacífico Ecuatorial, fenómeno más conocido como oscilación del Niño (ENSO: *El Niño Southern Oscillation*) y que tiene importantes repercusiones en el clima de nuestra región.

En estos modelos se utilizan como variables principales $T_E(t)$ la anomalía de la temperatura de la superficie del océano (SST: sea surface temperature) en la parte Este (E) del Océano Pacífico Ecuatorial y $H_W(t)$ la anomalía de la temperatura en los últimos 300 metros cerca de la superficie del Océano Pacífico Ecuatorial en su parte Oeste (W). Con anomalías se refiere a diferencias por arriba (+) o por abajo (-) del promedio de las mismas variables en un periodo largo de tiempo de unos 50 años por ejemplo.

Los máximos y mínimos de T_E se denominan respectivamente periodos maduros del Niño o la Niña. Nos interesará estimar el periodo P de las oscilaciones del Niño en dos modelos distintos:

Figura 1: ENSO. Fuente Wikipedia.

Modelo 1 como EDO con retardo:

$$\frac{dT_E(t)}{dt} = RT_E(t) - \alpha \gamma_1 \frac{C_E}{C_W} T_E(t - \delta)$$

Modelo 2 como sistema de EDOs:

$$\frac{dT_E(t)}{dt} = RT_E(t) + \gamma_2 \frac{C_E}{C_W} H_W(t)$$

$$\frac{dH_W(t)}{dt} = -rH_W(t) - \alpha T_E(t)$$

El tiempo t y el retardo δ se miden en meses. La fracción $\frac{C_E}{C_W}$ da cuenta de las diferencias de la densidad de los estratos del océano al este y al oeste. Las demás constantes se miden en 1/mes y tienen la siguiente interpretación:

- \blacksquare R, r son las tasas de crecimiento de la anomalía de temperatura del océano en la superficie este o parte superior oeste respectivamente.
- α es un factor de proporcionalidad de la anomalía de temperatura superficial con la anomalía del estrés del viento zonal sobre el océano.
- γ_1, γ_2 son factores de proporcionalidad que consideran la influencia de la anomalía de temperatura de la parte superior con la parte superficial del océano.

Tomaremos los siguientes valores para estas variables: r = 0.1, R = 0.1, $C_E/C_W = 0.27$, $\gamma_1 = 1$, $\gamma_2 = 0.164$, $\alpha = 0.612$. Consideraremos además un tiempo de simulación de 20 años con un pasos de tiempo cada vez más pequeños $\Delta t = 1$, $\Delta t = 0.1$, $\Delta t = 0.01$ y $\Delta t = 0.005$ meses.

- (a) (1 pto) Programe los métodos de Euler progresivo y de Heun para resolver el Modelo 1. Considere que inicialmente $T_E = 1$. Resuelva primero para $\delta = 0$ y compare las aproximaciones numéricas con la solución exacta analítica para distintos valores de Δt .
- (b) (1 pto) Resuelva ahora el modelo 1 para $\delta = 5$ meses. Considere que inicialmente $T_E = 1$ en $[0, \delta]$. Se deberían observar oscilaciones. Compare las aproximaciones numéricas entre sí para distintos valores de Δt . (Aquí no hay solución exacta analítica).
- (c) (2 ptos) Programe los métodos de Euler progresivo y de Runge Kutta de orden 4 para resolver el modelo 2. Considere que inicialmente $T_E = 1$ y $R_W = -1$. Compare ambas simulaciones para distintos valores de Δt . Grafique para $\Delta t = 0,005$ los valores de T_E obtenidos con el modelo 1 y 2 y compare ambos resultados.
- (d) (1 pto) Derivando la primera ecuación del modelo 2 obtenga una EDO de segundo orden para T_E . A partir de esta ecuación explique por qué cree que se está resolviendo el modelo 2 en un régimen oscilatorio. Determine la frecuencia ω de oscilación y establezca que el periodo $P = 2\pi/\omega$ está dado por:

$$P = 2\pi \left(\frac{C_E}{C_W}\alpha\gamma - \frac{(R+r)^2}{4}\right)^{-1/2}.$$

Compare este valor teórico de P con el valor del periodo medio \overline{P} en 20 años estimado de los modelos 1 y 2 para los distintos métodos que implementó y para distintos valores de Δt .

(e) (1 pto) Busque información sobre el periodo estimado en años de SST en ENSO y compare con las estimaciones que obtuvo de los modelos anteriores. Encuentre explicaciones que den algún sustento a los modelos anteriores. Investigue cómo influye esta oscilación en el clima de la región.

Reglas:

- 1. La tarea es individual.
- 2. No está permitido utilizar métodos previamente programados sino que debe programar explícitamente todos los algoritmos mencionados. El único lenguaje aceptado seráá **python** versión 3.0 o superior.
- 3. Se debe enviar un **informe** con la solución de la Tarea antes de la fecha y horas límite por *UCURSOS*. El informe debe estar en **pdf** (obtenido por LaTex, word o manuscrito escaneado) en un archivo simple que incluya el **nombre y apellido** del alumno. Consiste en un resumen breve con una explicación de los métodos implementados y los resultados obtenidos. Se debe incluir el nombre del alumno y profesor en su primera página y deberíá tener en lo posible una estructura formal de: introducción/motivación, resultados, conclusiones, bibliografía. Ver rúbrica más adelante.
- 4. Los **programas se deben adjuntar** junto con el informe dentro de la fecha límite en *UCUR-SOS*, compactados en un archivo simple. Los programas deben estar debidamente **documentados y legibles**. Los nombres de las variables deben facilitar la comprensión del algoritmo, deben intercalarse comentarios explicativos y debe quedar claro con qué parámetros se evalúan las funciones programadas. Ver rúbrica más adelante.
- 5. Debe existir un ejecutable por cada parte a) b) c) de la Tarea. Los gráficos deben ser claramente legibles e interpretables.
- 6. Las dudas deben canalizar a través del Foro de Tareas que sea implementado en *UCURSOS* de cada sección.

Referencias:

- [1] C. R. Mechoso, J. D. Neelin, J.-Y. Yu, *Testing Simple Models of ENSO*, Journal of the Atmospheric Sciences vol. 60 num 2 (2003) 305–318.
- [2] El Nino What is it? https://www.youtube.com/watch?v=WPA-KpldDVc
- [3] Agradecimientos a los profesores Laura Gallardo y Roberto Rondanelli del DGF por revisar el texto.

Tópico/ámbito	Lenguaje y organización			Presentación y coherencia			Resultados		
	3	2	1	3	2	1	3	2	1
Programas	Código legible y con suficien- tes comentarios explicativos.	Pocos comen- tarios.	Insufi- cientes comen- tarios	Buena elección de las variables y sus nombres. Buena organiza- ción del código que facilita la comprensión.	Mediana com- prensión del código.	Variables y/o código confu- sos.	Ejecutables para cada ítem con parámetros claros.	Ejecuta- bles no separa- dos o sin paráme- tros claros.	Nada de lo ante- rior.
Gráficos	Lenguaje en gráficos y/o tablas rico en explicaciones y correcto.	Lenguaje pobre.	Lenguaje incorrec- to.	Líneas visibles y distinguibles. Y distinguibles. Título y nombre de las variables en los ejes. Etiquetado de curvas. Figuras y/o tablas con subtítulos (captions) explicativos.	Faltan más de 2 aspectos	Faltan más de 3 aspectos	Gráficos auto- explicativos que muestran co- rrectamente los resultados de la simulación.	Faltan curvas o resulta- dos en el gráfi- co/tabla o no se entien- de qué repre- sentan.	No existe el gráfico o tabla correspondiente.
Informe	Lenguaje adecuado en general y uso de conceptos.	Lenguaje pobre y/o falta de con- ceptos.	Lenguaje incorrec- to y falta de con- ceptos	Estructura ordenada sugerida: introducción/motivación, resultados, conclusiones, bibliografía.	Faltan a lo más 2 secciones de la estructura propuesta.	Faltan más de 2 aspec- tos.	Buena organización de los resultados e integración de los gráficos/tablas al texto. Comentarios conclusivos. Logro de los objetivos.	Organización insuficiente o falta de conclusiones. Obje- tivos media- namente logra- dos.	Faltan más aspectos y ningún objetivo logrado.

Cuadro 1: Rúbrica para guiar la corrección en cada ítem: 3 máximo pje, 2 pje medio, 1 pje mínimo.