Understanding Git with Alloy

Alcino Cunha & Eunsuk Kang MIT

Git

Popular version control system (VCS)

• GitHub: Over 2.4 million repositories

Fast & powerful, but complex

• Different from traditional model (SVN, CVS, etc.,)

Goals

Build a precise model of how Git work

Analyze the model

- What properties does it (not) guarantee?
- Commutativity, idempotence, consistency, etc.,

Compare to other systems

- How is Git different?
- Mercurial, Perforce, SVN, CVS, etc.,

Build a concise user manual based on the model

Alloy

A modeling language

- Based on first-order relational logic
- Lightweight & flexible

Automated analysis

- By translation to SAT
- Scenario generation & property checking
- Used in protocol analysis, program analysis, security, configuration, test case generation, etc.,

Benefits

Demonstrate Git satisfies important properties

• Or find bugs that disprove them (big deal!)

First known precise understanding of VCS

- Helpful to millions of programmers
- e.g. "When/why should you use Git over Mercurial?"

Fun & challenging project

- Learn about formal methods & distributed systems
- Publication opportunities