





1, 3, 3, **6**, 7, 8, 9

Median = 
$$\underline{6}$$

1, 2, 3, **4**, **5**, 6, 8, 9

Median =  $(4 + 5) \div 2$ 

=  $\underline{4.5}$ 

| object |             | a                  | LƯU Ý:                                                  |
|--------|-------------|--------------------|---------------------------------------------------------|
| object | ect table_a |                    | Muốn kiểm tra lại kết quả                               |
| No.    |             | Value              | copy dữ liệu này vào R nh<br>nhớ là copy đủ hết các chữ |
|        | 1           | 11.198390805906300 | sau dấu phẩy nhé!                                       |
|        |             |                    |                                                         |

| object<br>object |          | a<br>table_a                             |
|------------------|----------|------------------------------------------|
| No.              |          | Value                                    |
|                  | 1<br>2   | 11.198390805906300<br>11.053263022578600 |
|                  | 3        | 10.382705473424200                       |
|                  | 4        | 9.345206992010660                        |
|                  | 5        | 8.555006222382860                        |
|                  | 6        | 9.484966278938550                        |
|                  | 7        | 8.909901662984320                        |
|                  | 8        | 9.568169663346200                        |
|                  | 9<br>10  | 9.780520600260730<br>10.162300023414300  |
|                  | 11       | 9.114191705124020                        |
|                  | 12       | 11.148396732135000                       |
|                  | 13       | 10.876914178707100                       |
|                  | 14       | 8.734608046701930                        |
|                  | 15       | 7.666503610462450                        |
|                  | 16       | 10.440860682753600                       |
|                  | 17       | 10.219574160326100                       |
|                  | 18       | 11.936864710027000                       |
|                  | 19<br>20 | 9.054128980162910<br>9.911834153929750   |
|                  | 21       | 10.131061187099700                       |
|                  | 22       | 8.111884514089440                        |
|                  | 23       | 10.546298568504000                       |
|                  | 24       | 11.004267393572100                       |
|                  | 25       | 10.702056739105900                       |
|                  | 26       | 10.830809121142900                       |
|                  | 27       | 7.619064391273120                        |
|                  | 28       | 8.713936955810440                        |
|                  | 29<br>30 | 8.613955400248210<br>10.577363603353500  |
|                  | 31       | 11.456215881253500                       |
|                  | 32       | 9.544904647442960                        |
|                  | 33       | 10.800376406015400                       |
|                  | 34       | 8.911564832929680                        |
|                  | 35       | 8.905465400351500                        |
|                  | 36       | 10.454934717780400<br>10.330119741927400 |
|                  | 37<br>38 | 10.330119741927400                       |
|                  | 39       | 9.375425213272920                        |
|                  | 40       | 8.607389635423660                        |
|                  | 41       | 11.666664648959500                       |
|                  | 42       | 10.485056111293600                       |
|                  | 43       | 10.615103712927800                       |
|                  | 44       | 10.614566092864200                       |
|                  | 45<br>46 | 9.860151050519850<br>9.030035815765350   |
|                  | 47       | 11.625027191807500                       |
|                  | 48       | 9.082426981534370                        |
|                  | 49       | 9.014947651309000                        |
|                  | 50       | 10.156433318001200                       |
|                  | 51       | 10.401904110253400                       |
|                  | 52<br>53 | 10.128284111801900<br>9.688521027985390  |
|                  | 54       | 11.647319235869300                       |
|                  | 55       | 10.559115196678200                       |
|                  | 56       | 10.453469999576100                       |
|                  | 57       | 11.053631369693900                       |
|                  | 58       | 9.910021038846760                        |
|                  | 59       | 8.868427934496110                        |
|                  | 60<br>61 | 9.757769838295860<br>10.242963058168200  |
|                  | 62       | 10.242903038108200                       |
|                  | 63       | 8.624560307513080                        |
|                  | 64       | 10.448723886918600                       |
|                  | 65       | 9.719696121766920                        |
|                  | 66       | 10.011084658112500                       |
|                  | 67       | 8.498110057007280                        |
|                  | 68<br>69 | 11.527431339949400<br>10.160726103482000 |
|                  | 70       | 9.785764464876790                        |
|                  | 71       | 11.352136308791000                       |
|                  | 72       | 9.781107600060460                        |
|                  | 73       | 10.482257645132300                       |
|                  | 74       | 11.827449528390100                       |
|                  | 75       | 10.894586443580600                       |
|                  | 76<br>77 | 10.771098026904400                       |
|                  | 77       | 10.544594119565900<br>10.484488858570300 |
|                  | 78<br>79 | 10.453292650134900                       |
|                  | 80       | 9.999333663835750                        |
|                  | 81       | 9.429949815418860                        |
|                  | 82       | 10.564398345884500                       |
|                  | 83       |                                          |
|                  | 84<br>85 | 7.840269251378430<br>8.387553012797840   |
|                  | 85       | 9.848167032900210                        |
|                  | 87       | 9.496114935897990                        |
|                  | 88       | 11.406217075685700                       |
|                  | 89       | 9.196013618457260                        |
|                  | 90       | 12.378941573522200                       |
|                  | 91       | 9.077365278045710                        |
|                  | 92       | 10.167681080102600                       |
|                  | 93       | 9.800497822596300<br>11.043914238978700  |
|                  | 94       | 8.907868481264600                        |
|                  | 96       | 9.093803415684730                        |
|                  | 97       | 10.299991520067600                       |
|                  | 98       | 9.780735497672850                        |
|                  | 99       | 11.183526791607700                       |

Trong R gõ code sau: a = rnorm(n = 100, mean = 10, sd = 1) #Có nghĩa là tạo ra một dãy gồm 100 số, có trung bình tổng thể là 10 và độ lệch chuẩn tổng thể là 1. Thường chỗ này hay có ví dụ là giả sử đây là số đo bất kỳ của 100 cây con, có chiều cao trung bình (tổng thể) và độ lệch chuẩn (tổng thể) TỰ CHO TRƯỚC là mean=10 và sd=1). Và dãy số này sẽ được tạo ra ngẫu nhiên làm sao để tuân theo quy luật phân phối chuẩn (vì dùng hàm rnorm). table a = data.frame(a) #Tạo ra một object tên là table\_a để nhét dãy dữ liệu vào thành dataset, ở dạng table có dòng và cột để thuận tiện phân tích. Kiểm tra coi hình dáng table\_a dùng hàm fix(table\_a) hoặc View(table\_a) #chú ý chữ V trong view viết hoa #Để copy data.frame từ R qua Excel thì dùng code này. write.table(table\_a, file="D:/abc.csv", row.names=F, sep=",") Trong đó, table\_a là tên đối tượng chứa dữ liệu bảng file = "D:/abc.csv" là đường dẫn lưu ở dạng file .csv row.names=F là lệnh nói khi export qua .csv thì xóa đi cột số thứ tự (do mặc định khi tạo data.frame là R sẽ tạo ra cột này để thuận tiện kiểm tra, tương ứng từng dòng row gọi là observation). sep="," là thông số để chọn cách export file .csv theo nhiều kiểu khác nhau. dim(table\_a) #Kiểm tra có bao nhiêu hàng và cột trong object table\_a names(table\_a) #Kiểm tra liệt kê tên biến (variable) hay là cột trong object table\_a Để kiểm tra phân bố tần số histogram, ta cần dùng lệnh attach(table\_a) #Có nghĩa là đưa object table\_a vào phân tích, lúc này chỉ cần gọi trực tiếp tên cột để xử lý. Nếu đã xử lý xong bảng ở object table\_a này rồi thì nên detach(table\_a) để trở về bình thường. Lúc này sẽ gọi trực tiếp hist(a) hist(table\_a\$a) #Nếu không dùng lệch attach thì để gọi biến a trong object table a thì phải có dấu dollar sign.

Giải thích ý nghĩa population mean và sample mean

Tiếp tục, ta lại tạo ra một bộ dữ liệu khác

b = rnorm(n = 20, mean = 10, sd = 1)

#Có nghĩa là tạo ra một dãy gồm 20 số, có trung bình tổng thể là 10 và độ lệch chuẩn tổng thể là 1. Ý tưởng ở đây là để kiểm tra coi cùng với thông số mặc định TỰ CHO TRƯỚC mean=10 và sd=1 như đã nói ở trên, nhưng giờ nếu chỉ lấy có 20 giá trị bất kỳ từ tổng thể (n giá trị vẫn chưa biết lớn bao nhiêu!) thì mean và sd của mẫu giá trị sẽ thay đổi bao nhiêu, có gần với mean và sd của tổng thể hay không?

Xác định đặc trưng thống kê về giá trị mean và sơ của mẫu (từ 100 giá trị

mean(table\_a\$a) #Tìm giá trị trung bình của mẫu trên 100 giá trị trong

sd(table\_a\$a) #Tìm giá trị độ lệch chuẩn của mẫu trên 100 giá trị trong

Tương tự, tạo table\_b và histogram trên 20 giá trị này.

So sánh mean và sd của mẫu (với 20 giá trị từ tổng thể) bạn sẽ thấy là nếu lấy ít giá trị thì kết quả mean và sd của mẫu sẽ khó gần với mean và sd của tổng thể (TỰ CHO TRƯỚC), đây gọi là định lý số lớn Law of Large Numbers (LLN).

hist(table\_b\$b)
mean(table\_b\$b)
sd(table\_b\$b)

của tổng thể)

object table\_a

object table\_a

mean(a) hoặc

sd(a)

## Histogram vẽ từ 100 giá trị table\_a, xoay quanh giá trị trung bình của tổng thể mean = 10 và sd tổng thể = 1





Tỷ lệ sai số so với mean tổng thể (%) Tỷ lệ sai số so với sd tổng thể (%)







0.09

2.14





0.89

6.05

Ta thấy rõ là tỷ lệ sai số so với tổng thể khi TĂNG số lượng lấy mẫu sẽ giảm gần về 0 hơn so với khi GIẢM số lượng lấy mẫu.

Đây là ý nghĩa của định lý số lớn. According to the law, the average of

According to the law, the average of the results obtained from a large number of trials should be close to the expected value and will tend to become closer to the expected value as more trials are performed.

Tìm hiểu về định lý số nhỏ Law of Small Numbers và phân biệt với Law of Truly Large Numbers.

Note: Độ lệch chuẩn là căn bậc hai của phương sai.

| object |    | b       |                   |
|--------|----|---------|-------------------|
| object |    | table_b |                   |
| No.    |    | Value   |                   |
|        | 1  |         | 9.13960056946848  |
|        | 2  |         | 9.65973784175354  |
|        | 3  |         | 9.98595595020777  |
|        | 4  |         | 10.42247109209350 |
|        | 5  |         | 10.53987022732060 |
|        | 6  |         | 8.15409583241674  |
|        | 7  |         | 9.27258194868776  |
|        | 8  |         | 11.50545663120860 |
|        | 9  |         | 8.60530875232518  |
|        | 10 |         | 9.08847227717940  |
|        | 11 |         | 11.72817604813180 |
|        | 12 |         | 8.00822922346062  |
|        | 13 |         | 10.19412958588010 |
|        | 14 |         | 10.73298675720800 |
|        | 15 |         | 8.89668363372470  |
|        | 16 |         | 10.23493641433600 |
|        | 17 |         | 9.84988132259362  |
|        | 18 |         | 10.44333673963200 |
|        | 19 |         | 11.45154228854860 |
|        | 20 |         | 10.30519599654560 |

Đây là bộ dữ liệu được tạo ra theo số liệu cho trước Chọn ngẫu nhiên <mark>100 giá trị</mark> từ trong n giá trị của tổng thể, mean tổng thể = 10, sd tổng thể = 1

11.183526791607700 9.136437475445020

100

mean của mẫu (trên 100 giá trị này)

 Kết quả từ R
 9.991189
 hàm excel =AVERAGE

 sd của mẫu (trên 100 giá trị này, ở ý nghĩa là 100 giá trị này là một phần của tổng thể)

 Kết quả từ R
 1.021439
 hàm excel =STDEV.S

 1.021439
 hàm excel =STDEV (cũ)

sd tổng thể (trên 100 giá trị này, NHƯNG ở ý nghĩa là 100 giá trị này là toàn bộ tổng thể)

1.016319 hàm excel =STDEV.P

1.016319 hàm excel =STDEVP (cũ)

Đây là bộ dữ liệu được tạo ra theo số liệu cho trước Chọn ngẫu nhiên 20 giá trị từ trong n giá trị của tổng thể, mean tổng thể = 10, sd tổng thể = 1

mean của mẫu (trên 20 giá trị này)

 Kết quả từ R
 9.910932
 hàm excel =AVERAGE

 sd của mẫu (trên 20 giá trị này, ở ý nghĩa là 20 giá trị này là một phần của tổng thể)

 Kết quả từ R
 1.060459
 hàm excel =STDEV.S