Proof. If $j+k=\ell$, then $J(\chi^j,\chi^k)=-\chi(-1)^j$ by (iv) of Lemma 2.2. It follows that

$$\sum_{\substack{1 \leq j, k \leq \ell-1, \\ j+k=\ell}} \chi(-1)^{j+k} \chi(g^{-1})^{(2j+k)t} J(\chi^j, \chi^k) = -\sum_{j=1}^{\ell-1} \chi(-g^{-t})^j.$$

Note that the kernel of χ is L. If $-g^{-t} \in L$, then $g^{-t}L = -L$. This gives $\ell = |\mathbb{F}_q^{\times}/L| \le 2$ since $g^{-t}L$ also generates \mathbb{F}_q^{\times}/L as $1 \le t \le \ell$ and $(t,\ell) = 1$. This is not our case and thus $\chi(-g^{-t}) \ne 1$. Hence, $\sum_{i=1}^{\ell-1} \chi(-g^{-t})^j = -1$ and the result follows.

Now, we are ready to prove our main theorem.

Theorem 4.3. Let q be a power of a prime and let ℓ be a proper divisor of q-1. If

$$q \ge (2^{\omega(\ell)}(\ell - 3 - \delta) + 2)^2 - 2$$

where $\omega(\ell)$ is the number of distinct prime divisors of ℓ and

$$\delta = \begin{cases} 1 & if \ 4 \mid \ell, \\ 0 & otherwise, \end{cases}$$

then there is a generator g of \mathbb{F}_q^{\times} such that $N_g > 0$.

Proof. By Proposition 4.1, it is enough to consider the subsum

$$N = \sum_{\substack{1 \le t \le \ell, \\ (t,\ell) = 1}} N_{g^t}$$

where g is a fixed generator of \mathbb{F}_q^{\times} . Lemma 4.2 gives that

$$N = \varphi(\ell)(q+1) + \sum_{\substack{1 \leq j,k \leq \ell-1, \ j+k \neq \ell}} \chi(-1)^{j+k} J(\chi^j,\chi^k) z(j,k)$$
 where

$$z(j,k) = \sum_{\substack{1 \le t \le \ell, \\ (t,\ell) = 1}} \chi(g^{-1})^{(2j+k)t}.$$

Note that $\chi(g^{-1}) = \zeta_{\ell}$ is a primitive ℓ -th root of 1. Therefore,

$$z(j,k) = \sum_{\substack{1 \le t \le \ell, \\ (t,\ell) = 1}} \zeta_{\ell}^{(2j+k)t} = c_{\ell}(2j+k),$$

is a Ramanujan's sum and

$$N = \varphi(\ell)(q+1) + \sum_{\substack{1 \le j, k \le \ell-1, \\ j+k \ne \ell}} \chi(-1)^{j+k} J(\chi^j, \chi^k) c_{\ell}(2j+k).$$

Let $I = \{1, 2, ..., \ell - 1\}$ and for positive integer $d \mid \ell$ and integer t with $1 \le t \le \ell/d$ such that $(t, d/\ell) = 1$, we set

$$S'(d,t) = \{(j,k) \in I \times I \mid 2j+k \equiv td \pmod{\ell} \text{ and } j+k \neq \ell\}.$$