

Motivación

Resolución numérica de PVI

Definición

Dada una función $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$ continua, un problema de valores iniciales de primer orden consiste en encontrar aquellas funciones $y: [a,b] \to \mathbb{R}$ de clase 1 que verifiquen $G(y) \subset \Omega$, $y'(t) = f(t,y(t)) \ \forall t \in [a,b]$ y la condición inicial $y(t_0) = y_0$, donde $t_0 \in [a,b]$.

Motivación

Resolución numérica de PVI

Definición

Considérese un problema de valores iniciales y supongamos que la función f está definida en $[a,b] \times \mathbb{R}$. Un método de discretización para resolverlo el PVI es un método numérico que trata de obtener valores aproximados y_n de la solución de y(t) en los distintos nodos t_n con n=0,1,...,N obtenidos mediante la partición del intervalo [a,b].

Motivación

Resolución numérica de PVI

- Ecuaciones diferenciales ordinarias.
- ¿Existe solución y es única?
- Métodos de discretización.
- Método de Euler.

Figura: Representación del campo vectorial asociado a la ecuación logística y'(t) = cy(t)(1 - y(t)).

Motivación: Método de Euler

$$\begin{cases} w_0 = y_0 \\ h_i = t_{i+1} - t_i \\ w_{i+1} = w_i + h_i f(t_i, w_i) \end{cases}$$
 (1)

Método de Euler

- Mejores resultados para puntos equidistantes.
- Es estable, consistente y convergente.
- El error global de aproximación es O(h).
- Puede parecer válido en cualquier aplicación.

Motivación: Ejemplo

Considérese el siguiente problema de valores iniciales:

$$\begin{cases} y'(t) = -4t^3y^2 \\ y(-10) = 1/10001 \\ t \in [-10, 0] \end{cases}$$

- La solución exacta es $y(t) = \frac{1}{1+t^4}$.
- Queremos calcular la aproximación de y en 0 con y(0) = 1.
- Se va a aproximar hasta llegar a los 10000 puntos.

Motivación: Ejemplo

N	h	Wn	
100	0.1	0.00390138	
1000	0.01	0.03085162	
5000	0.002	0.13282140	
7500	0.0013	0.18614311	
10000	0.001	0.23325153	

Tabla: Ejemplo de un mal comportamiento del método de Euler.

Motivación: Ejemplo

Figura: Aproximaciones obtenidas con diferentes valores de n.

Índice

Motivación

- Motivación
- Definiciones y resultados previos
- Método del trapecio Introducción Método del trapecio explícito Método del trapecio implícito
- Ejemplos y ejerciciosEjemplosEjercicios
- 6 Conclusión

Lipschitz

Definición

Sea $\Omega \subset \mathbb{R}^2$ y sea $f: \Omega \to \mathbb{R}$. Se dice que f es lipschitziana respecto de la segunda variable, y, si existe una constante $L \in \mathbb{R}^+$, llamada constante de Lipschitz, de forma que $|f(t,y_1)-f(t,y_2)| \leq L|y_1-y_2|$ para cualquier par de puntos $(t,y_1),(t,y_2) \in \Omega$.

Existencia y unicidad

Teorema

(Existencia y unicidad de soluciones) Sea $f : [a, b] \times I \to \mathbb{R}$, donde I es un intervalo de \mathbb{R} , y sea $y_0 \in I$. Entonces:

1 Si $I = [\alpha, \beta]$ y f es lipschitziana respecto de la segunda variable en $[a, b] \times [\alpha, \beta]$, entonces existe $c \in [a, b]$ tal que el problema de valores iniciales:

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(a) = y_0 \\ t \in [a, c] \end{cases}$$

tiene exactamente una solución.

2 Si $I =]-\infty, \infty[$ y f es lipschitziana respecto de la segunda variable en $[a,b]\times]-\infty,\infty[$, entonces existe exactamente una solución en [a,b]

Sean dos soluciones y(t), z(t) de la ecuación diferencial y'(t) = f(t, y(t)) para las condiciones iniciales y(a) y z(a) respectivamente. Supóngase que f es lipschitziana respecto de la segunda variable. Entonces $|y(t) - z(t)| \le e^{L(t-a)}|y(a) - z(a)|$ donde L es la constante de Lipschitz de f.

Errores locales y globales

Definición

Sean w_i los valores estimados en los puntos t_i por cierto método de discretización. Sea también z_i el valor de la solución exacta en t_i para el problema de valores iniciales

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_{i-1}) = w_{i-1} \\ t \in [t_{i-1}, t_i] \end{cases}$$
 (2)

Se definen los siguientes errores:

- Error global de truncatura o error acumulado en el nodo i-ésimo: $g_i = |y_i w_i|$
- Error local de truncatura o error en un paso: $e_i = |z_i w_i|$

Figura: Representación gráfica de los errores locales y globales.

Errores locales y globales

Teorema

Supóngase que la función f es lipschitziana en la segunda variable con constante de Lipschitz L. Además, supóngase que existen C > 0 y $k \in \mathbb{N}$ tales que los errores locales verifican $e_i < Ch^{k+1}$ para todo $i = 0 \dots n$. Entonces, se verifica la siguiente desigualdad para los errores globales

$$g_i \le \frac{Ch^k}{L} (e^{L(t_i - a)} - 1) \tag{3}$$

Método de discretización

Definición

Considérese un método de discretización para problemas de valores iniciales. Entonces:

- El método es localmente de orden k si existe una constante C > 0 tal que $e_i < Ch^k$ para todo $i = 0 \dots n$ cuando h tiende a 0.
- **2** El método es de orden k si existe una constante $C \geq 0$ tal que $g_i < Ch^k$ para todo $i = 0 \dots n$ cuando h tiende a 0.

Teorema

Supóngase que $f: [a,b] \times [\alpha,\beta] \to \mathbb{R}$ es derivable y lipschitziana en la segunda variable. Entonces, el método de Euler es localmente de orden 2. Consecuentemente, el método de Euler es de orden 1.

Métodos de un paso: $y_{i+1} = y_i + h\phi(t_i, y_i, h)$ donde ϕ es una función de t, y y h que, además, está definida en función de f.

Definición

Un método de un paso se dice convergente respecto a la ecuación diferencial que aproxima (con función f lipschitziana con respecto a la segunda variable) si:

$$\lim_{n\to+\infty}\max_{i=0...n}g_i=0$$

Definición

Un método de un paso se dice consistente con respecto a la ecuación diferencial que aproxima (con función f lipschitziana con respecto a la segunda variable) si:

$$\lim_{n\to+\infty}\max_{i=0...n}e_i=0$$

Esto es, los errores locales convergen uniformemente a 0 cuando $n \to +\infty$.

Definición

Un método de discretización se dice estable si para cualquier PVI verificando que f es lipschitziana respecto de la segunda variable y para cualquier perturbación de este PVI existen constantes positivas h_0 y K tales que la diferencia entre las aproximaciones obtenidas para ambos PVI están acotadas por $K|y_0-y_0'|$ para todo $h \in [0,h_0]$. Esto es, si w_i son las aproximaciones obtenidas para el problema sin perturbar y w_i' son las aproximaciones obtenidas para el problema perturbado, utilizando en ambos casos el mismo $h < h_0$, entonces $|w_i - w_i'| \le K|y_0 - y_0'|$ para todo i.

Estabilidad, convergencia y consistencia

Teorema

Si un método de un paso anterior verifica que ϕ es continua en cada una de sus variables y, además, es lipschitziana respecto de la segunda variable en el correspondiente dominio para $h \in [0, h_0]$, entonces:

- 1 el método es estable.
- **2** el método es convergente o, equivalentemente, $\phi(b, y, 0) = f(b, y)$.

Introducción al método del trapecio

Proposición

Sea un PVI con y'(t) = f(t, y(t)) y $y(t_0) = y_0$. Son equivalentes:

- 1 y es una solución del PVI.
- 2 $y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds \ \forall t \in [a, b]$

Nuestra solución verifica:

$$y(t_1) = y_0 + \int_{t_0}^{t_1} f(s, y(s)) ds$$

Introducción al método del trapecio

Idea: Método del trapecio para integración numérica

$$y(t_1) = y_0 + \frac{h}{2} \left[f(t_0, y_0) + f(t_1, y(t_1)) \right] - \frac{h^3}{12} y^{3)}(\xi)$$
 (4)

Aproximación implicita

$$y(t_1) \approx w_1 = w_0 + \frac{h}{2} [f(t_0, w_0) + f(t_1, y(t_1))]$$
 (5)

¿Cómo cálcular la aproximación?

- Método del trapecio explícito
- Método del trapecio implícito

Método del trapecio explícito

Idea: Utilizar el método de Euler

$$y(t_{i+1}) pprox w'_{i+1} = w'_i + hf(t_i, w'_i))$$
 +

$$y(t_{i+1}) \approx w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_{i+1}, y(t_{i+1}))]$$

Definición (Método del trapecio explícito)

$$y(t_{i+1}) \approx w_{i+1} = w_i + \frac{h}{2} [f(t_i, w_i) + f(t_i + h, w_i + hf(t_i, w_i))]$$
 (6)

Comparación con el método de Euler

Denotamos
$$\begin{cases} S_L = hf(t_i, w_i) \\ S_R = hf(t_{i+1}, w_i + S_L) \end{cases}$$

- Método de euler: $w'_{i+1} = w_i + S_L$
- Método del trapecio explícito: $w_{i+1} = w_i + \frac{S_L + S_R}{2}$

Trapecio Wi+1

Error local y global

Teorema

El método del trapecio es localmente de orden tres. En consecuencia, el método del trapecio es de orden dos.

Demostración.

Se basa en el teorema de Taylor.

Corolario

El método del trapecio explícito es convergente.

Error de redondeo

Stepsize (logarithmic scale)

Estabilidad y convergencia

Función de incremento:

$$\phi(t, y, h) = \frac{1}{2}f(t, y) + \frac{1}{2}f(t + h, y + hf(t, y))$$

Proposición

Si $f: \Omega \to \mathbb{R}$ es lipschitziana respecto de la segunda variable, entonces ϕ es lipschitziana respecto de la segunda variable en $\Omega \times [0, h_0]$ para cualquier h_0 .

Corolario

El método del trapecio explícito es estable y consistente.

Demostración.

Teorema de consistencia, convergencia y estabilidad.

Método del trapecio implícito: Ecuación implícita

Recordatorio

$$y(t_i) = y_{i-1} + \frac{h}{2} \left[f(t_{i-1}, y_{i-1}) + f(t_i, y(t_i)) \right] - \frac{h^3}{12} y^{3}(\xi)$$

Ignoramos el último sumando:

Partiendo del valor exacto:

$$w_i = y_{i-1} + \frac{h}{2} \left[f(t_{i-1}, y_{i-1}) + f(t_i, w_i) \right]$$
 (7)

Partiendo de una aproximación:

$$w_i = w_{i-1} + \frac{h}{2} [f(t_{i-1}, w_{i-1}) + f(t_i, w_i)]$$
 (8)

Idea: Resolver la ecuación implícita

Ecuación implícita

$$w_i = w_{i-1} + \frac{h}{2} [f(t_{i-1}, w_{i-1}) + f(t_i, w_i)]$$

Definimos
$$g_i(w) = w_{i-1} + \frac{h}{2} [f(t_{i-1}, w_{i-1}) + f(t_i, w)].$$

Observación

 w_i es solución de la ecuación implícita \iff $g_i(w_i) = w_i$.

Cálculo de un punto fijo mediante métodos numéricos.

Error local y global

Proposición

$$egin{dcases} g_i(w_i) = w_i \ f \ es \ lipschitziana \ en \ la \ segunda \ variable \ (L \ constante \ de \ Lipschitz) \ h \in [0,h_0] \ con \ h_0L < 2 \end{cases}$$

Entonces el error local cometido es $O(h^3)$.

Demostración.

Utilizar
$$z(t_i) = w_{i-1} + \frac{h}{2} [f(t_{i-1}, w_{i-1}) + f(t_i, z(t_i))] - \frac{h^3}{12} z^{3)}(\xi)$$
.

Corolario

El método del trapecio implícito es localmente de orden 3. Por tanto, es de orden 2.

Resolución de la ecuación implícita

- Método de Newton.
 - Se necesita la derivada de g_i .
 - Convergencia local.
 - o Orden de convergencia cuadrático.
- Método de iteración funcional asociado a g_i.

Definición (Método del trapecio iterativo)

Se toma una aproximación inicial $w_i^{(0)}$.

$$w_i^{(j+1)} = g_i(w_i^{(j)}) = w_{i-1} + \frac{h}{2} \left[f(t_{i-1}, w_{i-1}) + f(t_i, w_i^{(j)}) \right]$$
 (9)

Convergencia del método de iteración funcional

Supóngase que $f:[a,b]\to\mathbb{R}$ es lipschitziana respecto de la segunda variable con constante de Lipschitz L.

Observación

 g_i es lispchitziana con constante $L' = \frac{Lh}{2}$.

Proposición

Si $I =]-\infty, +\infty[$ $y = \frac{Lh}{2} < 1$, entonces existe w_i tal que $\{w_i^{(j)}\}$ converge a w_i para cualquier aproximación inicial.

Proposición

Sea r > 0. Si $[w_i^{(0)} - r, w_i^{(0)} + r] \subset I$, $\frac{Lh}{2} < 1$ y $\left| w_i^{(1)} - w_i^{(0)} \right| < (1 - \frac{Lh}{2})r$, entonces $\{w_i^{(j)}\}$ está bien definida y es convergente.

Error de aproximación del método de iteración funcional

- Necesitamos que sea como mucho $O(h^3)$.
- Algunos autores recomiendan $O(h^4)$.

En caso de convergencia:

$$\left|w_i-w_i^{(j)}\right| \leq \left(\frac{hL}{2}\right)^J \left|w_i-w_i^{(0)}\right|$$

Podemos calcular el número de iteraciones necesarias.

- $w_i^{(0)}$ se calcula habitualmente mediante el método de Euler.
- En tal caso, $w_i^{(1)}$ es el método del trapecio explícito.
- Métodos predictor corrector.

Considérese el ejemplo de problema de valores iniciales dado en la motivación.

$$\begin{cases} y'(t) = -4t^3y^2 \\ y(-10) = 1/10001 \\ t \in [-10, 0] \end{cases}$$

cuando se resuelve mediante el método de Euler y con el método del Trapecio Explícito e Iterativo, con paso 10^{-3} . se obtienen la siguiente gráfica. El método del Trapecio Iterativo usa una tolerancia de 10^{-4} .

Considérese el problema de valores iniciales

$$\begin{cases} y'(t) = -1 + \frac{y}{t} \\ y(1) = 0 \end{cases}$$

calcular el valor de y(2) para h = 0.25 y h = 0.1.

j	t_{j-1}	<i>Уј</i> —1	tj	Уј
1	1.00	0.000000	1.25	-0.275000
2	1.05	-0.275000	1.50	-0.600833
3	1.10	-0.600833	1.75	-0.968829
4	1.15	-0.968829	2.00	-1.372859

Tabla: Trapecio con h = 0.25

Ejemplo 2

j	t_{j-1}	<i>У</i> ј_1	t_j	Уј
1	0.00	0.000000	0.10	-0.104545
2	0.10	-0.104545	0.20	-0.218216
3	0.20	-0.218216	0.20	-0.340247
4	0.30	-0.340247	0.40	-0.469991
5	0.40	-0.469991	0.50	-0.606896
6	0.50	-0.606896	0.60	-0.750480
7	0.60	-0.750480	0.70	-0.900326
8	0.70	-0.900326	0.80	-1.056065
9	0.80	-1.056065	0.90	-1.217366
10	0.90	-1.217366	1.00	-1.383938

Tabla: Trapecio con h=0,1

Ejemplo 2

- Como y(2) = -1,386294, los errores relativos son $9,6910^{-3}$ para el caso h = 0,25 y $1,7010^{-3}$ para el caso h = 0,10.
- Dado que el método del trapecio es de orden 2 el error relativo es $O(h^2)$ y por tanto el cociente de los errores debería ser $\frac{C(0,25)^2}{C(0,10)^2}=6,25$ mientras que el valor real es 5.7.
- La razón de esta diferencia es que el orden es $O(h^2)$ asintóticamente, esto es, cuando $h \to 0$ y los valores de considerados para h no son suficientemente pequeños.

Considérese el problema de valores iniciales

$$\begin{cases} y'(t) = y - t^2 \\ y(0) = 3 \end{cases}$$

calcular una aproximación a la solución del problema de valores iniciales mediante el método de Euler y el método del Trapecio Explícito e Iterativo.

j	t_j	Уj	
0	0.0	3	
1	0.2	3.6	
2	0.4	4.312	
3	0.6	5.1424	
4	0.8	6.09888	
5	1.0	7.190656	
6	1.2	8.428787	
7	1.4	9.826544	
8	1.6	11.399853	
9	1.8	13.167824	
10	2.0	15.153389	

Tabla: Euler con h = 0.2

A. Herrera, J. Poyatos, R. Raya

j	t_j	y _j Explicito	y _j Implicito	y _j Euler
0	0.0	3	3	3
1	0.2	3.656	3.66216	3.6
2	0.4	4.3952	4.453683	4.312
3	0.6	5.361014	5.385540	5.1424
4	0.8	6.433237	6.471135	6.09888
5	1.0	7.671749	7.726853	7.190656
6	1.2	9.095534	9.172720	8.428787
7	1.4	10.727752	10.833211	9.826544
8	1.6	12.596657	12.738239	11.399853
9	1.8	14.736722	14.924363	13.167824
10	2.0	17.190000	17.436269	15.153389

Tabla: Tabla comparativa con h = 0.2

Figura: Aproximación a la solución con los métodos.

Dada la ecuación $y' = t + y^2$ con y(1) = 1 aproximar mediante el método del trapecio: a) y(1,2) con 2 pasos (h=0,1) y b) y(1,2) con 4 pasos (h=0,05). Si el error global es de la forma Ch^2 , estimar el valor de C a partir de los resultados anteriores. Determinar h para que el error sea del orden de 10^{-4} .

Ejercicio 2

j	t_{j-1}	<i>Уj</i> —1	tj	Уј
1	1.00	2.000000	1.10	2.617500
2	1.10	2.617500	1.20	3.657368

Tabla: Trapecio con h=0,1

j	t_{j-1}	<i>Уј</i> —1	tj	Уј
1	1.00	2.000000	1.05	2.277813
2	1.05	2.277813	1.10	2.628941
3	1.10	2.628941	1.15	3.087423
4	1.15	3.087423	1.20	3.712364

Tabla: Trapecio con h = 0.05

- $y(1,2) 3,657368 = C(0,1)^2$.
- $y(1,2) 3,712364 = C(0,05)^2$.
- Restando obtenemos que C = 7,33.
- Para que sea de orden 10^{-4} , el error debe ser $h = 3.7 \ 10^{-3}$

El movimiento de caída de un cuerpo de masa m en un medio que opone una resistencia proporcional al cuadrado de la velocidad está gobernado por la ecuación diferencial:

$$\frac{d^2s}{dt^2} = g - \frac{K}{m} (\frac{ds}{dt})^2 \tag{10}$$

siendo $g=10\frac{m}{s^2}$ y $K\frac{kg}{s}$ una constante de proporcionalidad cuyo valor depende del problema concreto. Si el cuerpo se abandona sin velocidad inicial y las condiciones iniciales son

$$s(0) = s'(0) = 0 (11)$$

Calcular una tabla de valores de las funciones s(t) y s'(t) para dibujar sus gráficas en el intervalo [0,1]. Tomar $\frac{K}{m}=5$.

j	t_{j-1}	(u_{j-1},v_{j-1})	t_j	(u_j,v_j)
1	0.00	0.000000,0.000000	0.10	0.050000,0.750000
2	0.10	0.050000,0.750000	0.20	0.160938,1.070068
3	0.20	0.160938,1.070068	0.20	0.289318,1.223146
4	0.30	0.289318,1.223146	0.40	0.424231,1.305143
5	0.40	0.424231,1.305143	0.50	0.562160,1.351168
6	0.50	0.562160,1.351168	0.60	0.701635,1.377549
7	0.60	0.701635,1.377549	0.70	0.841949,1.392822
8	0.70	0.841949,1.392822	0.80	0.982733,1.401712
9	0.80	0.982733,1.401712	0.90	1.123784,1.406900
10	0.90	1.123784,1.406900	1.00	1.264990,1.409933

Tabla: Trapecio para sistemas con h=0,1

Ejercicio 3

Ejercicio 4: Algoritmo de Kahan para errores de redondeo

```
Algoritmo 1 Algoritmo de Kahan
  function SUMA-COMPENSADA (vector-entrada)
     suma=0.0
     c = 0.0
     for i=1 to longitud(vector-entrada) do
        (1) y = vector-entrada[i]-c
        (2) t = suma + v
        (3) c = (t - suma) - v
        (4) suma = t
     end for
      return suma
  end function
```

Ejercicio 4: Algoritmo de Kahan para errores de redondeo

Ejercicio

Supóngase que se utiliza aritmética decimal de seis dígitos, la suma actual es 10000.0 y los siguientes dos valores son 2.14159 y 2.71828. Comapre la suma usual con el algoritmo de Kahan.

Método usual

- Primera suma con redondeo: 10003.1
- Segunda suma con redondeo: 10005.8

Método de Kahan

Primera suma

$$\begin{array}{l} c = 0.0 \\ y = 3.14159 \\ t = 10000.0 + 3.14159 = \\ 10003.14159 = 10003.1 \\ c = \left(10003.1 - 10000.0\right) - 3.14159 = \\ -.0415900 \\ \text{suma} = 10003.1 \end{array}$$

```
• Segunda suma
y = 2.71828 - -.0.415900 = 2.75987
t = 10003.1 + 2.75987 =
10005.85987 = 10005.9
c = (10005.9 - 10003.1) - 2.75987 =
.040130
suma = 10005.9
```

Conclusión

Desventaja: existen métodos de mayor orden.

Ilustración de Lola Moral y Sergio García

A. Herrera, J. Poyatos, R. Raya Método del Trapecio