

Secure DNA/RNA and Oligo screening.

Real-time pathogen and toxin screening integrated with ordering system or embedded in a benchtop synthesizer.

Surveil Biological threat detection.

In-field detection and identification of engineered or emerging natural threats in complex samples from austere environments.

Safe Research and bioproduct safety.

Environmental, health, and safety screening for synthetic biology including pathogen, toxin, allergen, and antimicrobial resistance.

Biological Risk

RED

- Sequences derived from Variola major or Variola minor genomes (smallpox)
 Sequences coding functional forms of toxins or subunits
 Sequences capable of transferring or endowing pathogenicity

YELLOW

Sequences that aren't known to transfer or endow pathogenicity and are not typically regarded as housekeeping or metabolic genes

GREEN

- Sequences derived from organisms or viruses that do not pose a high safety or security concern Sequences that are typically regarded as housekeeping or metabolic genes

Regulated Sequences

- Australia Group
 - An informal global forum of countries ensuring exports do not contribute proliferation of chemical or biological weapons
- Export Controls
 - National controls on exports of materials and goods unique to every country
- US Federal Select Agent Program
 - US control on possession and transfer of highly dangerous pathogens and toxins
- US Department of Health and Human Services Screening Framework Guidance
 - US guidance to industry on secure, safe, and responsible synthesis of genes and oligos

Scientific Review

- When a sequence is regulated or risky, further investigation is warranted
 - Identify the purpose of the sequence
 - Determine whether the sequence aligns with its intended use
 - Determine whether the sequence and its intended use are scientifically sound
- Documenting can help with future assessments and provide more standardization to the process

Similarity Search, Aligners, HMMs, and Metagenomics

- No consensus on best tool or pipeline
 - Tradeoffs on computational requirements, speed, sensitivity, and specificity
- Query coverage and percent identity
 - No standard thresholds
 - A coarse configuration for detecting homologs could be 50% for each
- E-value and bitscore
 - Significance thresholds vary by sequence lengths, database, and use case
 - Generally, hits with e-values greater than 1 are considered lower quality
- An iterative approach with a good test set leads to the best results

Effects of Sensitivity & Specificity on False Positives & Negatives

- Sensitivity and specificity are inversely related
 - Higher specificity may lead to lower sensitivity and more false-negatives
 - Higher sensitivity may lead to lower specificity and more false-positives
- False-positives increase burden by requiring a follow-up screen / review
- False-negatives increase liability and risk of misuse and non-compliance

False Positives

Near-Neighbor & Remote Similarity

- Short segments (e.g., 20 bp)
- High sensitivity / low thresholds for significance or identity
- Repeats (e.g., tandem, interspersed)
- Must strike the right balance between sensitivity and specificity

Housekeeping Gene

- Structural, metabolic, expression, etc.
- Conserved across pathogenic and non-pathogenic organisms
- Functional annotation helps reduce false-positives

^{*} Occasionally mislabeled reference sequences can cause false flags (e.g., eGFP fused with Ebola virus glycoprotein)

False Negatives

Missing or Incorrect Alignment

- Many bioinformatics tools rely on heuristics for performance
 - Large reference databases can generate spurious alignments
- New research may reveal gaps
- Periodic database updates and select-agent specific reference databases can help

Sequence Obfuscation

- Artificial sequences may look different enough from their original forms to avoid detection
- Identifying select agent signatures and splitting sequences into shorter segments can increase sensitivity

Sequence Obfuscation

Sequence modification

- Codon optimization
- Modified genetic codes
- Fusion proteins
- Low similarity homologs

Sequence recombination

- Engineered plasmids
- Sequence scrambling
- Oligo pool assembly

