1. Least Squares

	Model	MPG	Cyl	Disp	HP	DRat	WT	QSec	V
1	"Mazda RX4"	21.0	6	160.0	110	3.9	2.62	16.46	0
2	"Mazda RX4 Wag"	21.0	6	160.0	110	3.9	2.875	17.02	0
3	"Datsun 710"	22.8	4	108.0	93	3.85	2.32	18.61	1
4	"Hornet 4 Drive"	21.4	6	258.0	110	3.08	3.215	19.44	1
5	"Hornet Sportabout"	18.7	8	360.0	175	3.15	3.44	17.02	0
6	"Valiant"	18.1	6	225.0	105	2.76	3.46	20.22	1
7	"Duster 360"	14.3	8	360.0	245	3.21	3.57	15.84	0
8	"Merc 240D"	24.4	4	146.7	62	3.69	3.19	20.0	1
9	"Merc 230"	22.8	4	140.8	95	3.92	3.15	22.9	1
10	"Merc 280"	19.2	6	167.6	123	3.92	3.44	18.3	1
: 1	more								
32	"Volvo 142E"	21.4	4	121.0	109	4.11	2.78	18.6	1

x,... Xu are the coefficients

intercept term

Observation

MPG: ~ x, + x2. Disp: + x3 HP: + X4. WT;

i=1...32

min & (MPG; - (x,+ x, Disp; + x, HP; + x, WT;))2

Points of View

Lo choose X; such that & riz

r; = b; - model; (x)

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} MPG_1 \\ \vdots \\ MPG_m \end{bmatrix}$$
 observations

Merrix Formulation

$$b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \qquad A = \begin{bmatrix} \vdots \\ \vdots \\ \nabla_i SP_m \end{bmatrix} \qquad Pisp HP_m \qquad WI_m \end{bmatrix} \qquad \chi = \begin{bmatrix} \chi_1 \\ \vdots \\ \chi_4 \end{bmatrix}$$

min
$$||r||^2$$
 such that $Ax + r = b \rightarrow abs$

linear residual model

range
$$(A)$$
 = mull (A)
 $\Rightarrow a_1$
 $\Rightarrow a_2$

range (A) = spoin $\{a_1, \dots, a_n\}$

range (A) = $\{y \mid Ax = y \mid for some y \}$

$$0 = Z^{T}y$$
 $\forall y \in Range (A)$
 $= Z^{T}Ax$
 $= \chi^{T}A^{T}Z$ $\forall x \Rightarrow A^{T}Z = 0$

$$A = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}$$

$$A^T Z = \begin{bmatrix} a_1^T Z \\ \vdots \\ a_n^T \end{bmatrix} \cdot Z = \begin{bmatrix} a_1^T Z \\ \vdots \\ a_n^T Z \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$r \in Null(A^{T}) \iff A^{T}r = 0, \quad r = b - A^{T}x$$

$$A^{T}(b - A^{T}x) = 0$$

$$A^{T}b - A^{T}A^{T}x = 0$$

$$A^{T}A^{T}x = A^{T}b$$

$$Eqr's$$

Le show is unique iff A has full rank