Stability Analysis of the Structural Agnostic Modeling Method

Ramon Daniel REGUEIRO ESPIÑO

ENS Paris-Saclay

TAU, Inria-Saclay, LISN

Tutor: BARDENET Rémi Supervisor: LEITE Alessandro

Supervisor 2: POINSOT Audrey

Overview

- Introduction
- 2 Foundation of causality
- Causal discovery
- Acyclicity constraint $a_{i,j} = 0$ initialization
 Structural gates initialization
- **Structural gates** initialization
- Conclusion

Stability

Stability: a small perturbation on the inputs of an algorithm does not change too much its output.

Unstable algorithms limitations:

- How can we rely on their results?
- Lack of replicability

Why causality?

• Spurious correlations might lead to wrong interventions.

Figure 1: Smoking may lead to yellow fingers (image generated by DALL-E mini).

Main idea:

Causality gives more information than correlations

Randomized Controlled Trial (RCT)

RCT:

- Experiment controlled by the researcher.
- The gold standard.

Figure 2: Example of RCT schema.

Not always feasible: e.g. economical or ethical limitations.

Observational data: data without any manipulation.

Internship aim

Structural Agnostic Model (SAM) Kalainathan et al. 2022 model: Generative Adversarial Network (GAN) Goodfellow et al. 2014 model

aiming to discover causal relationships.

Main problem:

• Even with the same initialization, SAM is not stable.

Our goal:

Explore SAM instability.

Main question:

Under which conditions SAM is stable?

Overview

- Introduction
- 2 Foundation of causality
- Causal discovery
- Acyclicity constraint $a_{i,j} = 0$ initialization
 Structural gates initialization
- **S** Experimental results
 Acyclicity constraint
 Structural gates $a_{i,j} = 0$ Structural gates initialization
- Conclusion

Functional Causal Model (FCM) Pearl 2003

Functional Causal Model (FCM) Pearl 2003

Considering a set of random variables X_1, \dots, X_n , a FCM is a set of equations

$$x_i = f_i(x_{\mathsf{pa}_i}, u_i) \quad i = 1, \cdots, n. \tag{1}$$

- X_{pa_i} : set of observed variables that directly determine the value of X_i .
- U_i : random variable modelling the noise.
- f_i : causal mechanism.

Figure 3: Example of FCM (Figure from Goudet et al. 2018)

Causal graphical models

Causal graph:

- Variables as nodes.
- Each direct edge (\rightarrow) is a cause-effect oriented relation.

Figure 4: Causal graph relating smoking, yellow fingers and lung cancer.

Remark:

• A causal graph and a Bayesian Network are not equivalent!

Causal Markov Condition (CMC)

Acyclicity: the graph does not have any (direct) cycle.

Directed Acyclic Graph (DAG)

A direct graph without any direct cycle is called a DAG.

Causal Markov Assumption (CMA): For a given causal graph, all the considered variables are independent of their non-descendants minus their parents by conditioning on their parents.

Causal Markov Condition (CMC) Pearl and Verma 1991

A probability distribution is compatible with a DAG G if, and only if, CMA is verified.

Consequences of CMC

Consequences:

- The joint density p verifies $p(x) = \prod_{i=1}^{d} p(x_i | x_{pa_i})$.
- FCM ⇔ causal graph.

Markov Blanket (MB)

For a given variable X_i , any minimal subset of the other variables such that any disjoint set of variables is independent of X_i conditioned on the subset is known as MB of X_i .

Moral graph

A moral graph of a DAG G is the undirected graph where each node is connected where the original node is connected with its MB in G.

Faithfulness

Causal Faithfulness

A graph G and a joint density p(x) verify the Causal Faithfulness Assumption (CFA) if every Conditional Independence (CI) relation verified by p is entailed by G.

Causal Sufficiency

The Causal Sufficiency Assumption (CSA) states that the observed variables X_1, \dots, X_n are causally sufficient, *ie* each par of variables $\{X_i, X_j\} \subseteq \{X_1, \dots, X_n\}$ do not has a common cause external to $\{X_1, \dots, X_n\} \setminus \{X_i, X_i\}$.

Some basic three node structures

Figure 5: Example of a chain structure.

Figure 6: Example of a fork structure (left) and v-structure (right).

d-separation

A set of nodes W blocks a path t if

- 1 t contains at least one arrow-emiting node w (i → w → j) or (i ← w → j) verifying w ∈ W.
 2 t contains at least one collider node w (i → w ← i) verifying w ← least one collider node w (i → w ← i) verifying w ← least one collider node w (i → w ← i) verifying w ← least one collider node w (i → w ← i) verifying w ← least one collider node w (i → w ← i) verifying w ← least one collider node w (i → w → j) verifying w ← least one collider node w (i → w → j) verifying w ← least one collider node w (i → w → j) verifying w ← least one collider node w (i → w → j) verifying w ← least one collider node w (i → w → j) verifying w ← least one collider node w (i → w → j) verifying w ← least one collider node w (i → w → j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w ← least one collider node w (i → w ← j) verifying w (i → w ← j) verifying
- 2 t contains at least one collider node w $(i \rightarrow w \leftarrow j)$ verifying $w \notin W$ and not having any descendant on W.

The set W d-separate A and B in the graph G when W blocks all the paths between A and B.

Under CFA: d-separation ⇔ CI.

Markov Equivalence Class and CPDAG

Markov Equivalent DAG Pearl and Verma 1990

Two DAGs with same skeleton and same v-structures are said to be Markov equivalent.

Completed Partially Directed Acyclic Graph (CPDAG)

Graph with both directed and undirected edges representing a Markov Equivalence class.

Overview

- Introduction
- Poundation of causality
- 3 Causal discovery
- ② Source of instability
 Acyclicity constraint $a_{i,j} = 0$ initialization
 Structural gates initialization
- **5** Experimental results
 Acyclicity constraint
 Structural gates $a_{i,j} = 0$ Structural gates initialization
- Conclusion

Algorithms classification

Finding the causal graph only from observational data is a NP-hard problem Chickering, Heckerman, and Meek 2004.

Different basis algorithms:

- 1 Combinatorial: constrained and score-based: only able to find a CPDAG.
 - PC Spirtes, Glymour, and Scheines 2000.
 - GES Chickering 2002.
- 2 Continuous Optimization-based Approaches: find a DAG from distributional assymetries (usually based on additional assumptions).
 - NOTEARS Zheng et al. 2018: the first algorithm.
 - CGNN Goudet et al. 2018.
 - SAM.

SAM architecture

- GAN
 - A generator for each variable
 - 2 An unique discriminator

Figure 7: Architecture used in SAM (Figure from Kalainathan et al. 2022).

Optimization function

Aim: to minimize a loss combining both CI and distribution asymmetries. Loss: based on the Markov Kernel of each variable.

$$\sum_{j=1}^{d} \left[\hat{I}^{n}(X_{j}, X_{\overline{P_{d}(j;\hat{G})}} | X_{P_{d}(j;\hat{G})}) \right] + \lambda_{S} |\hat{G}| + \sum_{j=1}^{d} \left[\frac{1}{n} \sum_{l=1}^{n} \log \frac{p(x_{j}^{(l)} | x_{P_{d}(j;\hat{G})}^{(l)})}{q(x_{j}^{(l)} | x_{P_{d}(j;\hat{G})}^{(l)}, \theta_{j})} + \lambda_{F} ||\theta_{j}||_{F} \right] + \lambda_{D} \sum_{k=1}^{d} \frac{\operatorname{tr} A^{k}}{k!}$$

- Structural gate matrix A.
- Structural loss: Identify the Markov Blanket of each variable.
- Parametric loss: Data fitting.
- Constraints: sparsity, causal mechanism power and acyclicity.

SAM key points

Theoretically:

- Structural gates as probabilities to make them differentiable Maddison, Mnih, and Teh 2017.
- Acyclicty constraint optimized through Augmented Lagrangian (AL) technique.
- It exists at least one positive value for the structural loss regularizer allowing the CPDAG identification by the minimization of the structural loss.

Experimentally

- Main benefit: versatility.
- Generally able to recover the true MB.
- Sensitive to the random initialization weights in the NN.

Overview

- 1 Introduction
- 2 Foundation of causality
- Causal discovery
- Acyclicity constraint $a_{i,j} = 0$ initialization
 Structural gates initialization
- **S** Experimental results
 Acyclicity constraint
 Structural gates $a_{i,j} = 0$ Structural gates initialization
- 6 Conclusion

ction Foundation of causality Causal discovery 00000000 Source of instability Causal discovery 00000 Experimental results Conclusion References 0000000 Conclusion References

Acyclicity constraint

Why looking to the acyclicity constraint?

Motivation:

Figure 8: Evolution of the different loss elements, with a huge variability increment after the acyclicity constraint initialization.

Acyclicity constraint

Main question:

Is the stability affected by the AL optimization method?

In SAM:

AL optimization penalization weight with additive increment.

My proposal:

• Consider a multiplicative increment on the AL.

 $a_{i,j} = 0$ initialization

Motivation

Main question:

• If $a_{i,j} = 0$, then it remains equal to zero?

My hypothesis:

• If $a_{i,j} = 0$ then it is probability of being selected is zero, then the NN is restricted to look for the space where it has another value.

Possible benefits:

- A way to encode prior knowledge of the non-existence of an edge.
- With the acyclicity assumption, a way to partially incorporate knowledge from the existence of an edge (through its reverse edge).

Foundation of causality Causal discovery Source of instability Experimental results References

Initialization with a DAG

Main question:

 How does affect a DAG initialization to the random weights sensitivity?

Auxiliary questions:

- From the true graph?
- From the CPDAG?
- From adding an edge to the true graph?
- From removing an edge to the true graph?
- From reversing an edge to the true graph?

Possible benefits

- Analyze the interest of incorporating prior knowledge.
- Use SAM to test a solution through its stability.

Overview

- Introduction
- 2 Foundation of causality
- Causal discovery
- ② Source of instability
 Acyclicity constraint $a_{i,j} = 0$ initialization
 Structural gates initialization
- **6** Experimental results
 Acyclicity constraint
 Structural gates $a_{i,j} = 0$ Structural gates initialization
- Conclusion

Inction Foundation of causality Causal discovery 00000 Source of instability 00000 So

Acyclicity constraint

Simulation setup

Datasets: 20 synthetic datasets based on Kalainathan, Goudet, and Dutta 2020.

- Number of observations: 1000.
- Number of nodes: 5.
- Number maximum of parents: 2
- Mechanisms: linear and neural network.
- Noise: *U*(0, 0.4), additive.

Evaluation measure: Standard deviation of the last epoch probabilities (without considering self-loops).

Methodology:

5 independent trials.

Acyclicity constraint

Numerical results

Figure 9: Impact of the increment for linear mechanism (left) and NN mechanism (right).

Foundation of causality Causal discovery Source of instability Experimental results

Simulation setup

Datasets: 10 synthetic datasets based on Kalainathan, Goudet, and Dutta 2020.

- Number of observations: 1000.
- Number of nodes: 2.
- Mechanism: linear.
- Noise : *U*(0, 0.2), additive.

Evaluation measure:

Maximum value of any structural gate during the training.

Methodology:

- 5 independent trials.
- SAM parameters:
 - 750 epochs
 - $\Lambda_S = 0$
 - $\lambda_F = 2 \cdot 10^{-6}$.
 - $\lambda_D = 0.0$

Structural gates $a_{i,j} = 0$

Results

The structural gates value is always constant and equal to zero in all the graphs and independent trials.

Foundation of causality Causal discovery Source of instability Experimental results

Simulation setup

Datasets: 10 synthetic datasets based on Kalainathan, Goudet, and Dutta 2020.

- Number of observations: 1000.
- Number of nodes: 5.
- Mechanisms: linear.
- Noise: *U*(0, 0.4), additive.

Evaluation measure: Standard deviation of the last epoch probabilities (without considering self-loops).

Methodology:

- 5 independent trials.
- SAM parameters:
 - 1500 epochs
 - $\lambda_{5} = 0.02$
 - $\lambda_F = 2 \cdot 10^{-6}$.
 - $\lambda_D = 0.01$

Experimental results Foundation of causality Causal discovery Source of instability

Structural gates initialization

Numerical results

Figure 10: Violin plot for the standard deviation of the returned structural gates (without considering self-loops) for the different initializations.

Overview

- Introduction
- 2 Foundation of causality
- Causal discovery
- Acyclicity constraint $a_{i,j} = 0$ initialization
 Structural gates initialization
- **S** Experimental results
 Acyclicity constraint
 Structural gates $a_{i,j} = 0$ Structural gates initialization
- 6 Conclusion

Conclussion and discussion

AL penalized weight increment:

The acyclicity constraint optimization method affects the stability.

Structural gates $a_{i,j} = 0$

• The structural gate seems constant if initialized to zero.

Initialize SAM with additional information

- One of the major sources of instability.
- The stability of SAM seems improved by all the initialization except when reversing an edge.

Further work

- Is SAM stability related to the causal mechanisms?
- Analyze the stability by pruning edges during the optimization procedure.
- Is the performance increased by considering an initialization obtained as a result from another causal discovery algorithm?

Thanks, any question?

References I

- Chickering, David Maxwell (2002). "Optimal structure identification with greedy search". In: Journal of machine learning research 3. Nov, pp. 507-554.
 - Chickering, Max, David Heckerman, and Chris Meek (2004). "Large-sample learning of Bayesian networks is NP-hard". In: Journal of Machine Learning Research 5, pp. 1287–1330.
- Goodfellow, Ian et al. (2014). "Generative adversarial nets". In: Advances in neural information processing systems 27.
- Goudet, Olivier et al. (2018). "Learning functional causal models with generative neural networks". In: Explainable and interpretable models in computer vision and machine learning, pp. 39–80.
- Kalainathan, Diviyan, Olivier Goudet, and Ritik Dutta (2020). "Causal discovery toolbox: uncovering causal relationships in python". In: The Journal of Machine Learning Research 21.1, pp. 1406–1410.

References II

- Kalainathan, Diviyan et al. (2022). "Structural agnostic modeling: Adversarial learning of causal graphs". In: The Journal of Machine Learning Research 23.1, pp. 9831–9892.
- Maddison, Chris J., Andriy Mnih, and Yee Whye Teh (2017). "The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables". In: International Conference on Learning Representations.
- Pearl, Judea (2003). "Causality: models, reasoning, and inference". In: Econometric Theory 19.4, pp. 675–685.
- Pearl, Judea and T Verma (1991). A theory of inferred causation. Principles of Knowledge Representation and Reasoning: Proceedings of the Second International Conference.
- Pearl, Judea and Thomas Verma (1990). A Formal Theory of Inductive Causation. Tech. rep. R-1555 (I). UCLA Cognitive Systems Laboratory.

troduction Foundation of causality Causal discovery Source of instability Experimental results Conclusion References

References III

Spirtes, Peter, Clark N Glymour, and Richard Scheines (2000). *Causation, prediction, and search.* MIT press.

Zheng, Xun et al. (2018). "Dags with no tears: Continuous optimization for structure learning". In: *Advances in neural information processing systems* 31.

Greedy Equivalence Search (GES)

Pseudo-code:

- Select Bayesian Information Criterion (BIC) as scoring function
- Initialize an empty graph.
- Forward Equivalence Search:
 Find the best directed edge to add to the candidate CPDAG amongst all the missing edges. Repeat until score no longer improves.
- Backward Equivalence Search:
 Find the best directed edge to remove to the candidate CPDAG amongst all the present edges. Repeat until score no longer improves.
- Return directed graph.

Peter-Clark (PC) base algorithm

- Identify the skeleton:
 - Start with a complete graph
 - If $X \perp Y | Z$, remove edges X Y for some (initially empty) conditioning set Z and store Z as Sepset(X, Y).
 - Repeat until possible by increasing the size of Z for each pair (X, Y).
- Identify v-structures and orient them.
 - For any undirected paths X-Z-Y, if $Z \notin Sepset(X,Y)$, then orient the undirected path as $X \to Z \leftarrow Y$.
- Orient qualifying edges that are incident on colliders.
 - For all $A \rightarrow B C$, if A and C not adjacent then $B \rightarrow C$.
 - If it exists an undirected edge A-B and a direct path from A to B, orient the edge as $A \rightarrow B$.

NOTEARS

Pseudo-code:

- Input: Initial guess (W_0, α_0), progress rate $c \in (0, 1)$, tolerance $\varepsilon > 0$, threeshold $\omega > 0$.
- Do:
 - Solve primal: $W_{t+1} \leftarrow \arg \min_{W} L^{\rho}(W, \alpha_t)$ with ρ such that $h(t_{W_{t+1}}) < ch(W_t)$.
 - Dual ascent: $\alpha_{t+1} \leftarrow \alpha_t + \rho h(W_{t+1})$.
 - If $h(W_{t+1}) < \varepsilon$, set $\tilde{W}_{\mathsf{ECP}} = W_{t+1}$ and break.
- Threshold and return the matrix.