

# Sigenergy Modbus Protocol

Version: V1.7

Release date: 2024-04-09





## **Copyright Notice**

Copyright© 2023 Sigenergy Technology Co., Ltd. All Rights Reserved.

Description in this document may contain predictive statements regarding financial and operating results, product portfolio, new technology, configurations and features of product. Several factors could cause difference between actual results and those expressed or implied in the predictive statements. Therefore, description in this document is provided for reference purpose only and constitutes neither an offer nor an acceptance. Sigenergy Technology Co., Ltd. may change the information at any time without notice.

SIJENERUY and other Sigenergy trademarks are owned by Sigenergy Technology Co., Ltd.

All trademarks and registered trademarks in this document belong to their owners.

## **Contents**

| 1. Introduction                                                        |
|------------------------------------------------------------------------|
| 2. Applicable Model                                                    |
| 3. Communication Interface                                             |
| 3.1 RS485                                                              |
| 3.2 Fast Ethernet/WLAN/Optical fiber/4G                                |
| 3.3 Fast Ethernet/WLAN/Optical fiber/4G*                               |
| 4. Technical Terms                                                     |
| 4.1 Technical item name specification:                                 |
| 4.2 Interaction timeout                                                |
| 4.3 Alarm severity level definition                                    |
| 5. Register Address Definition                                         |
| 5.1 Plant running information address definition (read-only register)6 |
| 5.2 Plant parameter setting address definition (holding register)      |
| 5.3 Hybrid inverter running information address definition (read-only  |
| register)13                                                            |
| 5.4 Hybrid inverter Parameter setting address definition (holding      |
| register)17                                                            |
| 6. Modbus Protocol Command Overview18                                  |
| 6.1 Function code19                                                    |
| 6.2 Exception code22                                                   |
| Appendix 1                                                             |





| Appendix 2 | . 23 |
|------------|------|
|            |      |
| Appendix 3 | . 24 |
| Appendix 4 | 25   |
| Appendix 5 | 25   |
| Appendix 6 | . 26 |



| Version | Date       | Change Description                                                                                               |
|---------|------------|------------------------------------------------------------------------------------------------------------------|
| V1.0    | 2023-08-15 | Initial release.                                                                                                 |
| V1.1    | 2023-09-06 | Added description for interaction timeout. Changed a few register setting address.                               |
| V1.2    | 2023-09-22 | Added models of three phase products.                                                                            |
| V1.3    | 2023-11-22 | Supporting grid-wide power control                                                                               |
| V1.4    | 2023-11-30 | Added a few power related registers, added definition for alarm severity.                                        |
| V1.5    | 2024-01-30 | Added a few phase power related registers and mode controlling registers, modified a few registers' value range. |
| V1.6    | 2024-03-08 | Added a few DC Charger related registers                                                                         |
| V1.7    | 2024-04-09 | Modified and added a few remote EMS and ESS control related registers.                                           |



## 1. Introduction

The Modbus protocol of Sigenergy complies the standard Modbus Application protocol specification. The physical media is multiple, such as RS485, Fast Ethernet, WLAN, Optical fiber and 4G. The figure below shows a simple host-slave mode in Modbus protocol.



## 2. Applicable Model

Table 1-1 Applicable models and firmware versions

| Model               | Firmware versions | Note |
|---------------------|-------------------|------|
| SigenStor EC 3.0 SP | /                 | 1    |
| SigenStor EC 3.6 SP | /                 | 1    |
| SigenStor EC 4.0 SP | /                 | 1    |
| SigenStor EC 4.6 SP | /                 | 1    |
| SigenStor EC 5.0 SP | /                 | 1    |
| SigenStor EC 6.0 SP | /                 | 1    |
| Sigen Hybrid 3.0 SP | /                 | 1    |
| Sigen Hybrid 3.6 SP | /                 | 1    |
| Sigen Hybrid 4.0 SP | /                 | 1    |
| Sigen Hybrid 4.6 SP | /                 | 1    |
| Sigen Hybrid 5.0 SP | /                 | 1    |
| Sigen Hybrid 6.0 SP | 1                 | 1    |
| Sigen PV Max 3.0 SP | 1                 | 1    |
| Sigen PV Max 3.6 SP | 1                 | 1    |



| Sigen PV Max 4.0 SP  | 1 | 1 |
|----------------------|---|---|
| Sigen PV Max 4.6 SP  | 1 | / |
| Sigen PV Max 5.0 SP  | 1 | / |
| Sigen PV Max 6.0 SP  | 1 | / |
| Sigen Hybrid 5.0 TP  | 1 | / |
| Sigen Hybrid 6.0 TP  | 1 | / |
| Sigen Hybrid 8.0 TP  | 1 | / |
| Sigen Hybrid 10.0 TP | 1 | / |
| Sigen Hybrid 12.0 TP | 1 | / |
| Sigen Hybrid 15.0 TP | 1 | / |
| Sigen Hybrid 17.0 TP | 1 | / |
| Sigen Hybrid 20.0 TP | 1 | / |
| Sigen Hybrid 25.0 TP | 1 | / |
| Sigen PV Max 5.0 TP  | 1 | / |
| Sigen PV Max 6.0 TP  | 1 | / |
| Sigen PV Max 8.0 TP  | 1 | / |
| Sigen PV Max 10.0 TP | 1 | / |
| Sigen PV Max 12.0 TP | 1 | / |
| Sigen PV Max 15.0 TP | 1 | / |
| Sigen PV Max 17.0 TP | 1 | / |
| Sigen PV Max 20.0 TP | 1 | / |
| Sigen PV Max 25.0 TP | 1 | / |
| SigenStor EC 5.0 TP  | 1 | / |
| SigenStor EC 6.0 TP  | 1 | / |
| SigenStor EC 8.0 TP  | 1 | / |
| SigenStor EC 10.0 TP | 1 | 1 |
| SigenStor EC 12.0 TP | 1 | 1 |
| SigenStor EC 15.0 TP | 1 | 1 |
| SigenStor EC 17.0 TP | 1 | 1 |
| SigenStor EC 20.0 TP | 1 | 1 |
| SigenStor EC 25.0 TP | 1 | 1 |
|                      |   |   |



## 3. Communication Interface

#### 3.1 RS485

| Parameter          | Description      |  |  |
|--------------------|------------------|--|--|
| Transfer mode      | RTU mode         |  |  |
| Communication mode | Half duplex      |  |  |
| Baud rate          | 9600bps(default) |  |  |
| Start bit          | 1                |  |  |
| Data bit           | 8                |  |  |
| Check bit          | None             |  |  |
| Stop bit           | 1                |  |  |

## 3.2 Fast Ethernet/WLAN/Optical fiber/4G

| Parameter              | Description |
|------------------------|-------------|
| Transfer mode          | TCP mode    |
| Communication mode     | Full duplex |
| Link layer Mode        | TCP Server  |
| Application layer Mode | Slave       |
| Port                   | 502         |



## 3.3 Fast Ethernet/WLAN/Optical fiber/4G·

| Parameter              | Description |
|------------------------|-------------|
| Transfer mode          | TCP mode    |
| Communication mode     | Full duplex |
| Link layer Mode        | TCP Client  |
| Application layer Mode | Slave       |
| Port                   | custom      |

<sup>\*</sup>Note :To be specific, if 4G is the only physical communication media, the protocol then only supports one SigenStor to connect the third party cloud as a client.

## 4. Technical Terms

### 4.1 Technical item name specification:

| Description                                               |  |  |  |  |
|-----------------------------------------------------------|--|--|--|--|
| The one that initiates an application request is referred |  |  |  |  |
| to the host                                               |  |  |  |  |
| The one that responds to an application request is        |  |  |  |  |
| referred to the slave                                     |  |  |  |  |
| 247                                                       |  |  |  |  |
|                                                           |  |  |  |  |
| 1-246                                                     |  |  |  |  |
|                                                           |  |  |  |  |
| Unsigned integer of 16-bit                                |  |  |  |  |
| Unsigned integer of 32-bit                                |  |  |  |  |
| orisigned integer or oz bit                               |  |  |  |  |
| Unsigned integer of 64-bit                                |  |  |  |  |
| 0 0                                                       |  |  |  |  |
| Signed integer of 16-bit                                  |  |  |  |  |
|                                                           |  |  |  |  |
| Signed integer of 32-bit                                  |  |  |  |  |
|                                                           |  |  |  |  |
| Character string in ASCII                                 |  |  |  |  |
|                                                           |  |  |  |  |



| RO | Read only, only support 0x04 command           |  |  |  |
|----|------------------------------------------------|--|--|--|
| WO | Write only, only support 0x06 command          |  |  |  |
| RW | Read and write, support 0x04、0x06、0x10 command |  |  |  |

#### 4.2 Interaction timeout

A communication process following the Modbus protocol should always be stared by a host. In Modbus RTU Mode :

#### Minimum Request period (RS485 Time out): 1000 ms

After sending an unicast request, before receiving a respond from the salve device, the host should wait for up to 1000ms to send a new unicast request to slave device. If no respond is received from the slave device after waiting for 1000 ms, the host should regard this request as a timeout.

#### 4.3 Alarm severity level definition

There are only two levels of alarms, and their definitions are as follows:

Critical Alarm: The external environment does not meet the operating conditions for the device, or a serious device fault has occurred. The device will enter fault mode and stop operating. The alarm can be automatically cleared once the external conditions or the device fault is resolved.

**General Alarm:** Due to minor faults either in the external environment or within the device, the device can still operate normally or

at a reduced capacity. The alarm can be automatically cleared once the



external conditions or the device fault is resolved.

## 5. Register Address Definition

# 5.1 Plant running information address definition (read-only register)

The registers below can only be accessed by slave address 247. To obtain power plant data, inquiries should be send to address 247.

| No. | Name                          | Add.  | QTY | Perm. | Data<br>Type | Gain | Unit | Comment                                                                                                     |
|-----|-------------------------------|-------|-----|-------|--------------|------|------|-------------------------------------------------------------------------------------------------------------|
| 1   | System time                   | 30000 | 2   | RO    | U32          | 1    | s    | Epoch seconds                                                                                               |
| 2   | System time zone              | 30002 | 1   | RO    | U16          | 1    | min  |                                                                                                             |
| 3   | EMS work<br>mode              | 30003 | 1   | RO    | U16          | N/A  | N/A  | 0: Max self consumption; 1: Sigen Al Mode; 2: TOU 7: Remote EMS mode                                        |
| 4   | Grid Sensor<br>Status         | 30004 | 1   | RO    | U16          | N/A  | N/A  | (gateway or meter connection status) 0: not connected 1: connected                                          |
| 5   | [Grid sensor]<br>Active power | 30005 | 2   | RO    | S32          | 1000 | kW   | Data collected from<br>grid sensor at grid to<br>system checkpoint;<br>>0 buy from grid; <0<br>sell to grid |
| 6   | [Grid sensor] reactive power  | 30007 | 2   | RO    | S32          | 1000 | kVar | Data collected from grid sensor at grid to system checkpoint;                                               |
| 7   | On/Off Grid<br>status         | 30009 | 1   | RO    | U16          | N/A  | N/A  | 0: on grid<br>1: off grid (auto)<br>2: off grid (manual)                                                    |
| 8   | Max active power              | 30010 | 2   | RO    | U32          | 1000 | kW   | This is should be the base value of all active power                                                        |



|    |                                    |       |   |    |     |      |      | adjustment actions                                                                               |
|----|------------------------------------|-------|---|----|-----|------|------|--------------------------------------------------------------------------------------------------|
| 9  | Max<br>apparent<br>power           | 30012 | 2 | RO | U32 | 1000 | kVar | This is should be the base value of all reactive power adjustment actions                        |
| 10 | Energy<br>storage<br>system SOC    | 30014 | 1 | RO | U16 | 10   | %    |                                                                                                  |
| 11 | Plant phase A active power         | 30015 | 2 | RO | S32 | 1000 | kW   |                                                                                                  |
| 12 | Plant phase B active power         | 30017 | 2 | RO | S32 | 1000 | kW   |                                                                                                  |
| 13 | Plant phase<br>C active<br>power   | 30019 | 2 | RO | S32 | 1000 | kW   |                                                                                                  |
| 14 | Plant phase A reactive power       | 30021 | 2 | RO | S32 | 1000 | kVar |                                                                                                  |
| 15 | Plant phase B reactive power       | 30023 | 2 | RO | S32 | 1000 | kVar |                                                                                                  |
| 16 | Plant phase<br>C reactive<br>power | 30025 | 2 | RO | S32 | 1000 | kVar |                                                                                                  |
| 17 | General<br>Alarm1                  | 30027 | 1 | RO | U16 | N/A  | N/A  | If any hybrid inverter has alarm , then this alarm will be set accordingly. Refer to Appendix 2  |
| 18 | General<br>Alarm2                  | 30028 | 1 | RO | U16 | N/A  | N/A  | If any hybrid inverter has alarm , then this alarm will be set accordingly.  Refer to Appendix 3 |
| 19 | General<br>Alarm3                  | 30029 | 1 | RO | U16 | N/A  | N/A  | If any hybrid inverter has alarm , then this alarm will be set accordingly. Refer to Appendix 4  |
| 20 | General<br>Alarm4                  | 30030 | 1 | RO | U16 | N/A  | N/A  | If any hybrid inverter has alarm , then this alarm will be set accordingly.  Refer to Appendix 5 |



|    | 1              | 1     | 1 |    |     | Т    | 1    |                        |
|----|----------------|-------|---|----|-----|------|------|------------------------|
| 21 | Plant active   | 30031 | 2 | RO | S32 | 1000 | kW   |                        |
|    | power          |       |   |    |     |      |      |                        |
| 22 | Plant reactive | 30033 | 2 | RO | S32 | 1000 | kVar |                        |
|    | power          |       |   |    |     |      |      |                        |
| 23 | Photovoltaic   | 30035 | 2 | RO | S32 | 1000 | kW   |                        |
|    | power          |       |   |    |     |      |      |                        |
| 24 | ESS power      | 30037 | 2 | RO | S32 | 1000 | kW   | <0: discharging        |
|    |                |       |   |    |     |      |      | >0: charging           |
| 25 | Available      | 30039 | 2 | RO | U32 | 1000 | kW   | Feed to the ac         |
|    | max active     |       |   |    |     |      |      | terminal.              |
|    | power          |       |   |    |     |      |      | Count only the         |
|    |                |       |   |    |     |      |      | running inverters      |
| 26 | Available min  | 30041 | 2 | RO | U32 | 1000 | kW   | Absorb from the ac     |
|    | active power   |       |   |    |     |      |      | terminal.              |
|    |                |       |   |    |     |      |      | Count only the         |
|    |                |       |   |    |     |      |      | running inverters      |
| 27 | Available      | 30043 | 2 | RO | U32 | 1000 | kVar | Feed to the ac         |
|    | max reactive   |       |   |    |     |      |      | terminal.              |
|    | power          |       |   |    |     |      |      | Count only the         |
|    |                |       |   |    |     |      |      | running inverters      |
| 28 | Available min  | 30045 | 2 | RO | U32 | 1000 | kVar | Absorb from the ac     |
|    | reactive       |       |   |    |     |      |      | terminal.              |
|    | power          |       |   |    |     |      |      | Count only the         |
|    |                |       |   |    |     |      |      | running inverters      |
| 29 | Available      | 30047 | 2 | RO | U32 | 1000 | kW   | Count only the         |
|    | max            |       |   |    |     |      |      | running inverters      |
|    | charging       |       |   |    |     |      |      |                        |
|    | power          |       |   |    |     |      |      |                        |
| 30 | Available      | 30049 | 2 | RO | U32 | 1000 | kW   | Count only the         |
|    | max            |       |   |    |     |      |      | running inverters      |
|    | discharging    |       |   |    |     |      |      |                        |
|    | power          |       |   |    |     |      |      |                        |
| 31 | Plant running  | 30051 | 1 | RO | U16 | N/A  | N/A  | Refer to Appendix 1    |
|    | state          |       |   |    |     |      |      |                        |
| 32 | [Grid sensor]  | 30052 | 2 | RO | S32 | 1000 | kW   | Data collected from    |
|    | Phase A        |       |   |    |     |      |      | grid sensor at grid to |
|    | active power   |       |   |    |     |      |      | system checkpoint;     |
|    |                |       |   |    |     |      |      | >0 buy from grid; <0   |
|    |                |       |   |    |     |      |      | sell to grid           |
| 33 | [Grid sensor]  | 30054 | 2 | RO | S32 | 1000 | kW   | Data collected from    |
|    | Phase B        |       |   |    |     |      |      | grid sensor at grid to |
|    | active power   |       |   |    |     |      |      | system checkpoint;     |
|    |                |       |   |    |     |      |      | >0 buy from grid; <0   |
|    |                |       |   |    |     |      |      | sell to grid           |



| 34 | [Grid sensor]           | 30056 | 2 | RO   | S32 | 1000 | kW       | Data collected from    |
|----|-------------------------|-------|---|------|-----|------|----------|------------------------|
| 34 | Phase C                 | 30000 | ~ | , KO | 332 | 1000 | KVV      |                        |
|    |                         |       |   |      |     |      |          | grid sensor at grid to |
|    | active power            |       |   |      |     |      |          | system checkpoint;     |
|    |                         |       |   |      |     |      |          | >0 buy from grid; <0   |
| 25 | [Out al a a a a a a a ] | 20050 |   | DO.  | 600 | 1000 | IA ( aux | sell to grid           |
| 35 | [Grid sensor]           | 30058 | 2 | RO   | S32 | 1000 | kVar     | Data collected from    |
|    | Phase A                 |       |   |      |     |      |          | grid sensor at grid to |
|    | reactive                |       |   |      |     |      |          | system checkpoint;     |
|    | power                   |       | _ |      | _   |      |          |                        |
| 36 | [Grid sensor]           | 30060 | 2 | RO   | S32 | 1000 | kVar     | Data collected from    |
|    | Phase B                 |       |   |      |     |      |          | grid sensor at grid to |
|    | reactive                |       |   |      |     |      |          | system checkpoint;     |
|    | power                   |       |   |      |     |      |          |                        |
| 37 | [Grid sensor]           | 30062 | 2 | RO   | S32 | 1000 | kVar     | Data collected from    |
|    | Phase C                 |       |   |      |     |      |          | grid sensor at grid to |
|    | reactive                |       |   |      |     |      |          | system checkpoint;     |
|    | power                   |       |   |      |     |      |          |                        |
| 38 | Available               | 30064 | 2 | RO   | U32 | 100  | kWh      | Count only the         |
|    | max                     |       |   |      |     |      |          | running inverters      |
|    | charging                |       |   |      |     |      |          |                        |
|    | capacity                |       |   |      |     |      |          |                        |
| 39 | Available               | 30066 | 2 | RO   | U32 | 100  | kWh      | Count only the         |
|    | max                     |       |   |      |     |      |          | running inverters      |
|    | discharging             |       |   |      |     |      |          |                        |
|    | capacity                |       |   |      |     |      |          |                        |
| 40 | Rated ESS               | 30068 | 2 | RO   | U32 | 1000 | kW       |                        |
|    | charging                |       |   |      |     |      |          |                        |
|    | power                   |       |   |      |     |      |          |                        |
| 41 | Rated ESS               | 30070 | 2 | RO   | U32 | 1000 | kW       |                        |
|    | discharging             |       |   |      |     |      |          |                        |
|    | power                   |       |   |      |     |      |          |                        |
|    | 1                       | L     | L | I    |     | L    | L        | L                      |

## 5.2 Plant parameter setting address definition (holding register)

The registers below can only be accessed by slave address 247. To modify plant-level registers, send commands to address 247.

Note: Power control related registers not explicitly mentioned in the "Comment" will take effect only when the remote EMS control mode value is 0.

| No. | Name       | Add.  | QTY | Perm. | Data | Gain | Unit | Comment |
|-----|------------|-------|-----|-------|------|------|------|---------|
|     |            |       |     |       | Туре |      |      |         |
| 1   | Start/Stop | 40000 | 1   | WO    | U16  | N/A  | N/A  | 0: Stop |



|    |                                                      |       |   |    |     |      |      | 1: Start                                  |
|----|------------------------------------------------------|-------|---|----|-----|------|------|-------------------------------------------|
| 2  | Active power fixed adjustment target value           | 40001 | 2 | RW | S32 | 1000 | kW   |                                           |
| 3  | Reactive power fixed adjustment target value         | 40003 | 2 | RW | S32 | 1000 | kVar |                                           |
| 4  | Active power percentage adjustment target value      | 40005 | 1 | RW | S16 | 100  | %    | Range:<br>[-100.00,100.00]                |
| 5  | Q/S<br>adjustment<br>target value                    | 40006 | 1 | RW | S16 | 100  | %    | Range:<br>[-60.00,60.00]                  |
| 6  | Power factor<br>adjustment<br>target value           | 40007 | 1 | RW | S16 | 1000 | N/A  | Range:<br>(-1, -0.8] U [0.8, 1]           |
| 7  | Phase A active power fixed adjustment target value   | 40008 | 2 | RW | S32 | 1000 | kW   | Valid only when output type is L1/L2/L3/N |
| 8  | Phase B active power fixed adjustment target value   | 40010 | 2 | RW | S32 | 1000 | kW   | Valid only when output type is L1/L2/L3/N |
| 9  | Phase C active power fixed adjustment target value   | 40012 | 2 | RW | S32 | 1000 | kW   | Valid only when output type is L1/L2/L3/N |
| 10 | Phase A reactive power fixed adjustment target value | 40014 | 2 | RW | S32 | 1000 | kVar | Valid only when output type is L1/L2/L3/N |
| 11 | Phase B reactive power fixed adjustment target value | 40016 | 2 | RW | S32 | 1000 | kVar | Valid only when output type is L1/L2/L3/N |



| 12 | Phase C      | 40018 | 2 | RW | S32 | 1000 | kVar | Valid only when       |
|----|--------------|-------|---|----|-----|------|------|-----------------------|
|    | reactive     |       |   |    |     |      |      | output type is        |
|    | power fixed  |       |   |    |     |      |      | L1/L2/L3/N            |
|    | adjustment   |       |   |    |     |      |      |                       |
|    | target value |       |   |    |     |      |      |                       |
| 13 | Phase A      | 40020 | 1 | RW | S16 | 100  | %    | Valid only when       |
|    | Active power |       |   |    |     |      |      | output type is        |
|    | percentage   |       |   |    |     |      |      | L1/L2/L3/N.           |
|    | adjustment   |       |   |    |     |      |      | Range:                |
|    | target value |       |   |    |     |      |      | [-100.00,100.00]      |
| 14 | Phase B      | 40021 | 1 | RW | S16 | 100  | %    | Valid only when       |
|    | Active power |       |   |    |     |      |      | output type is        |
|    | percentage   |       |   |    |     |      |      | L1/L2/L3/N.           |
|    | adjustment   |       |   |    |     |      |      | Range:                |
|    | target value |       |   |    |     |      |      | [-100.00,100.00]      |
| 15 | Phase C      | 40022 | 1 | RW | S16 | 100  | %    | Valid only when       |
|    | Active power |       |   |    |     |      |      | output type is        |
|    | percentage   |       |   |    |     |      |      | L1/L2/L3/N.           |
|    | adjustment   |       |   |    |     |      |      | Range:                |
|    | target value |       |   |    |     |      |      | [-100.00,100.00]      |
| 16 | Phase A Q/S  | 40023 | 1 | RW | S16 | 100  | %    | Valid only when       |
|    | fixed        |       |   |    |     |      |      | output type is        |
|    | adjustment   |       |   |    |     |      |      | L1/L2/L3/N.           |
|    | target value |       |   |    |     |      |      | Range:                |
|    |              |       |   |    |     |      |      | [-60.00,60.00]        |
| 17 | Phase B Q/S  | 40024 | 1 | RW | S16 | 100  | %    | Valid only when       |
|    | fixed        |       |   |    |     |      |      | output type is        |
|    | adjustment   |       |   |    |     |      |      | L1/L2/L3/N.           |
|    | target value |       |   |    |     |      |      | Range:                |
|    |              |       |   |    |     |      |      | [-60.00,60.00]        |
| 18 | Phase C Q/S  | 40025 | 1 | RW | S16 | 100  | %    | Valid only when       |
|    | fixed        |       |   |    |     |      |      | output type is        |
|    | adjustment   |       |   |    |     |      |      | L1/L2/L3/N.           |
|    | target value |       |   |    |     |      |      | Range:                |
|    |              |       |   |    |     |      |      | [-60.00,60.00]        |
| 19 | Active power | 40026 | 2 | RW | S32 | 1000 | kW   | The actual power      |
|    | fixed        |       |   |    |     |      |      | adjustment value      |
|    | adjustment   |       |   |    |     |      |      | will be the lesser of |
|    | upper limit  |       |   |    |     |      |      | this register and     |
| L  |              |       |   |    |     |      |      | register 40001.       |
| 20 | Active power | 40028 | 1 | RW | S16 | 100  | %    | The actual power      |
|    | percentage   |       |   |    |     |      |      | adjustment value      |
|    | adjustment   |       |   |    |     |      |      | will be the lesser of |
|    | upper limit  |       |   |    |     |      |      | this register and     |



|    |                                                 |       |   |    |     |      |     | register 40005.                                                                                                                                                           |
|----|-------------------------------------------------|-------|---|----|-----|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21 | Remote EMS<br>enable                            | 40029 | 1 | RW | U16 | N/A  | N/A | 0: disabled 1: enabled When needed to control EMS remotely, this register needs to be enabled. When enabled, the plant's EMS work mode (30003) will switch to remote EMS. |
| 22 | Independent<br>phase power<br>control<br>enable | 40030 | 1 | RW | U16 | N/A  | N/A | Valid only when output type is L1/L2/L3/N. To enable independent phase control, this parameter must be enabled.  0: disabled 1: enabled                                   |
| 23 | Remote EMS<br>control<br>mode                   | 40031 | 1 | RW | U16 | N/A  | N/A | Mode values' definition refer to Appendix 6                                                                                                                               |
| 24 | ESS max<br>charging<br>limit                    | 40032 | 2 | RW | U32 | 1000 | kW  | [0, Rated ESS charging power]. This register will take effect when Remote EMS control mode (40031) is 3 or 4.                                                             |
| 25 | ESS max<br>discharging<br>limit                 | 40034 | 2 | RW | U32 | 1000 | kW  | [0, Rated ESS discharging power]. This register will take effect when Remote EMS control mode (40031) is 5 or 6.                                                          |
| 26 | PV max<br>power limit                           | 40036 | 2 | RW | U32 | 1000 | kW  | This register will take effect when Remote EMS control mode (40031) is 3, 4, 5 or 6.                                                                                      |



## 5.3 Hybrid inverter running information address definition

## (read-only register)

| No. | Name                              | Add.  | QTY | Perm. | Data<br>Type | Gain | Unit | Comment |
|-----|-----------------------------------|-------|-----|-------|--------------|------|------|---------|
| 1   | Model type                        | 30500 | 15  | RO    | STRING       | N/A  | N/A  |         |
| 2   | Serial<br>number                  | 30515 | 10  | RO    | STRING       | N/A  | N/A  |         |
| 3   | Machine<br>firmware<br>version    | 30525 | 15  | RO    | STRING       | N/A  | N/A  |         |
| 4   | Rated active power                | 30540 | 2   | RO    | U32          | 1000 | kW   |         |
| 5   | Max.<br>apparent<br>power         | 30542 | 2   | RO    | U32          | 1000 | kVA  |         |
| 6   | Max. active power                 | 30544 | 2   | RO    | U32          | 1000 | kW   |         |
| 7   | Max.<br>absorption<br>power       | 30546 | 2   | RO    | U32          | 1000 | kW   |         |
| 8   | Rated battery capacity            | 30548 | 2   | RO    | U32          | 100  | kWh  |         |
| 9   | [ESS]Rated<br>charge<br>power     | 30550 | 2   | RO    | U32          | 1000 | kW   |         |
| 10  | [ESS]Rated<br>discharge<br>power  | 30552 | 2   | RO    | U32          | 1000 | kW   |         |
| 11  | Daily export energy               | 30554 | 2   | RO    | U32          | 100  | kWh  |         |
| 12  | Accumulated export energy         | 30556 | 4   | RO    | U64          | 100  | kWh  |         |
| 13  | Daily import energy               | 30560 | 2   | RO    | U32          | 100  | kWh  |         |
| 14  | Accumulated import energy         | 30562 | 4   | RO    | U64          | 100  | kWh  |         |
| 15  | Battery daily<br>charge<br>energy | 30566 | 2   | RO    | U32          | 100  | kWh  |         |



| 16 | Battery accumulated charge energy                                  | 30568 | 4 | RO | U64 | 100  | kWh  |                     |
|----|--------------------------------------------------------------------|-------|---|----|-----|------|------|---------------------|
| 17 | Battery daily<br>discharge<br>energy                               | 30572 | 2 | RO | U32 | 100  | kWh  |                     |
| 18 | Battery<br>accumulated<br>discharge<br>energy                      | 30574 | 4 | RO | U64 | 100  | kWh  |                     |
| 19 | Running state                                                      | 30578 | 1 | RO | U16 | N/A  | N/A  | Refer to Appendix 1 |
| 20 | Max.active<br>power<br>adjustment<br>value                         | 30579 | 2 | RO | S32 | 1000 | kW   |                     |
| 21 | Min. active power adjustment value                                 | 30581 | 2 | RO | S32 | 1000 | kW   |                     |
| 22 | Max. reactive power adjustment value fed to the ac terminal        | 30583 | 2 | RO | U32 | 1000 | kVar |                     |
| 23 | Max. reactive power adjustment value absorbed from the ac terminal | 30585 | 2 | RO | U32 | 1000 | kVar |                     |
| 24 | Active power                                                       | 30587 | 2 | RO | S32 | 1000 | kW   |                     |
| 25 | Reactive power                                                     | 30589 | 2 | RO | S32 | 1000 | kVar |                     |
| 26 | [ESS]Max. battery charge power                                     | 30591 | 2 | RO | U32 | 1000 | kW   |                     |
| 27 | [ESS]Max.<br>battery                                               | 30593 | 2 | RO | U32 | 1000 | kW   |                     |



|     | ali a a la sussas |       |   |    |     |      |            |                   |
|-----|-------------------|-------|---|----|-----|------|------------|-------------------|
|     | discharge         |       |   |    |     |      |            |                   |
|     | power             |       |   |    |     |      |            |                   |
| 28  | [ESS]Availabl     | 30595 | 2 | RO | U32 | 100  | kWh        |                   |
|     | e battery         |       |   |    |     |      |            |                   |
|     | charge            |       |   |    |     |      |            |                   |
|     | Energy            |       |   |    |     |      |            |                   |
| 29  | [ESS]Availabl     | 30597 | 2 | RO | U32 | 100  | kWh        |                   |
|     | e battery         |       |   |    |     |      |            |                   |
|     | discharge         |       |   |    |     |      |            |                   |
|     | Energy            |       |   |    |     |      |            |                   |
| 30  | [ESS] charge      | 30599 | 2 | RO | S32 | 1000 | kW         |                   |
|     | / discharge       |       |   |    |     |      |            |                   |
|     | power             |       |   |    |     |      |            |                   |
| 31  | [ESS]Battery      | 30601 | 1 | RO | U16 | 10   | %          |                   |
| .   | SOC               |       |   |    |     |      | 10         |                   |
| 32  | [ESS]Battery      | 30602 | 1 | RO | U16 | 10   | %          |                   |
| 02  | SOH               | 00002 | ' |    | 010 | 10   | 76         |                   |
| 33  | [ESS]average      | 30603 | 1 | RO | S16 | 10   | r          |                   |
| 33  | cell              | 30003 | ' | KO | 310 | 10   |            |                   |
|     |                   |       |   |    |     |      |            |                   |
| 0.4 | temperature       | 00004 |   |    |     | 1000 | .,         |                   |
| 34  | [ESS] average     | 30604 | 1 | RO | U16 | 1000 | V          |                   |
|     | cell voltage      | 22225 |   |    |     |      |            |                   |
| 35  | Alarml            | 30605 | 1 | RO | U16 | N/A  | N/A        | Refer to Appendix |
|     |                   |       |   |    |     |      | ,          | 2                 |
| 36  | Alarm2            | 30606 | 1 | RO | U16 | N/A  | N/A        | Refer to Appendix |
|     |                   |       |   |    |     |      |            | 3                 |
| 37  | Alarm3            | 30607 | 1 | RO | U16 | N/A  | N/A        | Refer to Appendix |
|     |                   |       |   |    |     |      |            | 4                 |
| 38  | Alarm4            | 30608 | 1 | RO | U16 | N/A  | N/A        | Refer to Appendix |
|     |                   |       |   |    |     |      |            | 5                 |
| 39  | Rated grid        | 31000 | 1 | RO | U16 | 10   | V          |                   |
|     | voltage           |       |   |    |     |      |            |                   |
| 40  | Rated grid        | 31001 | 1 | RO | U16 | 100  | Hz         |                   |
|     | frequency         |       |   |    |     |      |            |                   |
| 41  | Grid              | 31002 | 1 | RO | U16 | 100  | Hz         |                   |
|     | frequency         |       |   |    |     |      |            |                   |
| 42  | [PCS] Internal    | 31003 | 1 | RO | S16 | 10   | $^{\circ}$ |                   |
|     | temperature       |       |   |    |     |      |            |                   |
| 43  | Output type       | 31004 | 1 | RO | U16 | N/A  | N/A        | 0: L/N            |
|     |                   | 0.001 |   |    |     |      | '','       | 1: L1/L2/L3       |
|     |                   |       |   |    |     |      |            | 2: L1/L2/L3/N     |
|     |                   |       |   |    |     |      |            | 3: L1/L2/N        |
|     |                   |       |   |    |     |      |            | o. LI/LZ/IN       |



|    | T                   | 1     | 1 |    |     |      | 1   |                                                    |
|----|---------------------|-------|---|----|-----|------|-----|----------------------------------------------------|
| 44 | A-B line<br>voltage | 31005 | 2 | RO | U32 | 100  | V   | Invalid when                                       |
|    |                     |       |   |    |     |      |     | output type is L/N,                                |
| 45 | B-C line<br>voltage | 31007 | 2 | RO | U32 | 100  | V   | L1/L2/N, or L1/L2/N                                |
| 46 | C-A line<br>voltage | 31009 | 2 | RO | U32 | 100  | V   |                                                    |
| 47 | Phase A voltage     | 31011 | 2 | RO | U32 | 100  | V   | When output type is L/N, refers to "Phase voltage" |
| 48 | Phase B<br>voltage  | 31013 | 2 | RO | U32 | 100  | V   | Invalid when output type is L/N,                   |
| 49 | Phase C<br>voltage  | 31015 | 2 | RO | U32 | 100  | V   | L1/L2/N, or L1/L2/N                                |
| 50 | Phase A current     | 31017 | 2 | RO | S32 | 100  | A   | When output type is L/N, refers to "Phase current" |
| 51 | Phase B             | 31019 | 2 | RO | S32 | 100  | А   | Invalid when output type is L/N,                   |
| 52 | Phase C             | 31021 | 2 | RO | S32 | 100  | А   | L1/L2/N, or L1/L2/N                                |
| 53 | Power factor        | 31023 | 1 | RO | U16 | 1000 | N/A |                                                    |
| 54 | PACK count          | 31024 | 1 | RO | U16 | 1    | N/A |                                                    |
| 55 | PV string count     | 31025 | 1 | RO | U16 | 1    | N/A |                                                    |
| 56 | MPPT count          | 31026 | 1 | RO | U16 | 1    | N/A |                                                    |
| 57 | PV1 voltage         | 31027 | 1 | RO | S16 | 10   | V   |                                                    |
| 58 | PV1 current         | 31028 | 1 | RO | S16 | 100  | А   |                                                    |
| 59 | PV2 voltage         | 31029 | 1 | RO | S16 | 10   | V   |                                                    |
| 60 | PV2 current         | 31030 | 1 | RO | S16 | 100  | А   |                                                    |
| 61 | PV3 voltage         | 31031 | 1 | RO | S16 | 10   | V   |                                                    |
| 62 | PV3 current         | 31032 | 1 | RO | S16 | 100  | A   |                                                    |
| 63 | PV4 voltage         | 31033 | 1 | RO | S16 | 10   | V   |                                                    |
| 64 | PV4 current         | 31034 | 1 | RO | S16 | 100  | А   |                                                    |



|    | T                                      |       |   | T    | I   | Ι    | I   |             |
|----|----------------------------------------|-------|---|------|-----|------|-----|-------------|
| 65 | PV power                               | 31035 | 2 | RO   | S32 | 1000 | kW  |             |
| 66 | Insulation                             | 31037 | 1 | RO   | U16 | 1000 | ΜΩ  |             |
| 07 | resistance                             | 01000 |   | D.O. |     |      |     |             |
| 67 | Startup time                           | 31038 | 2 | RO   | U32 | 1    | S   |             |
| 68 | Shutdown<br>time                       | 31040 | 2 | RO   | U32 | 1    | S   |             |
| 69 | [DC Charger] Vehicle battery voltage   | 31500 | 1 | RO   | U16 | 10   | V   |             |
| 70 | [DC Charger] Charging current          | 31501 | 1 | RO   | U16 | 10   | А   |             |
| 71 | [DC Charger] Output power              | 31502 | 2 | RO   | S32 | 1000 | kW  |             |
| 72 | [DC Charger]<br>Vehicle SOC            | 31504 | 1 | RO   | U16 | 10   | %   |             |
| 73 | [DC Charger] Current charging capacity | 31505 | 2 | RO   | U32 | 100  | kWh | Single time |
| 74 | [DC Charger] Current charging duration | 31507 | 2 | RO   | U32 | 1    | S   | Single time |

# 5.4 Hybrid inverter Parameter setting address definition (holding register)

| No. | Name         | Add.  | QTY | Perm. | Data | Gain | Unit | Comment  |
|-----|--------------|-------|-----|-------|------|------|------|----------|
|     |              |       |     |       | Туре |      |      |          |
| 1   | Start/Stop   | 40500 | 1   | wo    | U16  | N/A  | N/A  | 0: Stop  |
|     |              |       |     |       |      |      |      | 1: Start |
| 2   | Grid code    | 40501 | 1   | RW    | U16  | N/A  | N/A  |          |
| 3   | [DC Charger] | 41000 | 1   | WO    | U16  | N/A  | N/A  | 0: Start |
|     | Start/Stop   |       |     |       |      |      |      | 1: Stop  |



#### 6. Modbus Protocol Command Overview

#### (1) MODBUS-RTU frame format



#### (2) MODBUS-TCP frame format



| Filed         | Length(Bytes) | Description                           |
|---------------|---------------|---------------------------------------|
| Transmission  | 0             | Matching identifier between a request |
| identifier    | 2             | frame and a response frame            |
| Protocol type | 2             | 0 = Modbus protocol                   |
| Data length   | 2             | Follow-up data length                 |
| Slave Address | 1             | Customized by user (1~247)            |

MODBUS PDU for serial line communication = 256 - Slave address (1 byte) - CRC (2 bytes) = 253 bytes.

#### Consequently:

RS232 / RS485 ADU = 253 bytes + Slave address (1 byte) + CRC (2 bytes) = 256 bytes.

TCP MODBUS ADU = 253 bytes + MBAP (7 bytes) = 260 bytes.



#### **6.1 Function code**

| Index | Function code | Description                  |
|-------|---------------|------------------------------|
| 1     | 0x03          | Read Read-only Register(RO)  |
| 2     | 0x04          | Read Holding Register(RW/WO) |
| 3     | 0x06          | Write a single Register      |
| 4     | 0x10          | Write multiple Registers     |

#### 6.1.1 Read Read-only Register

#### Request

| Filed                 | Length(Bytes) | Description   |
|-----------------------|---------------|---------------|
| Slave address         | 1 Byte        | 1~247         |
| Function code         | 1 Byte        | 0x03          |
| Starting address      | 2 Bytes       | 0x0000~0xFFFF |
| Quantity of registers | 2 Bytes       | 1~124         |

#### Response

| Filed          | Length(Bytes) | Description             |
|----------------|---------------|-------------------------|
| Slave address  | 1 Byte        | 1~247                   |
| Function code  | 1 Byte        | 0x03                    |
| Byte count     | 1 Byte        | 2 x N                   |
| Register value | 2 x N Bytes   | N=Quantity of Registers |

#### Error

| Filed          | Length(Bytes) | Description          |
|----------------|---------------|----------------------|
| Slave address  | 1 Byte        | 1~247                |
| Error code     | 1 Byte        | 0x83                 |
| Exception code | 1 Byte        | 01 or 02 or 03 or 04 |

#### Example PDU

Host query command: 01 03 0E 30 00 01 Slave normal respond: 01 03 02 00 64 Slave abnormal respond: 01 83 02



#### 6.1.2 Read Holding Register

#### Request

| Filed                 | Length(Bytes) | Description   |
|-----------------------|---------------|---------------|
| Slave address         | 1 Byte        | 1~247         |
| Function code         | 1 Byte        | 0x04          |
| Starting address      | 2 Bytes       | 0x0000~0xFFFF |
| Quantity of registers | 2 Bytes       | 1~124         |

#### Response

| Filed          | Length(Bytes) | Description             |
|----------------|---------------|-------------------------|
| Slave address  | 1 Byte        | 1~247                   |
| Function code  | 1 Byte        | 0x04                    |
| Byte count     | 1 Byte        | 2 x N                   |
| Register value | 2 x N Bytes   | N=Quantity of Registers |

#### Error

| Filed          | Length(Bytes) | Description          |
|----------------|---------------|----------------------|
| Slave address  | 1 Byte        | 1~247                |
| Error code     | 1 Byte        | 0x84                 |
| Exception code | 1 Byte        | 01 or 02 or 03 or 04 |

#### Example PDU

Host query command: 01 04 0F A1 00 01 Slave normal respond: 01 04 02 00 02 Slave abnormal respond: 01 84 02

#### 6.1.3 Write a single Register

#### Request

| Filed            | Length(Bytes) | Description   |
|------------------|---------------|---------------|
| Slave address    | 1 Byte        | 1~247         |
| Function code    | 1 Byte        | 0x06          |
| Register address | 2 Bytes       | 0x0000~0xFFFF |
| Register value   | 2 Bytes       | 0x0000~0xFFFF |



#### Response

| Filed            | Length(Bytes) | Description   |
|------------------|---------------|---------------|
| Slave address    | 1 Byte        | 1~247         |
| Function code    | 1 Byte        | 0x06          |
| Register address | 2 Bytes       | 0x0000~0xFFFF |
| Register value   | 2 Bytes       | 0x0000~0xFFFF |

#### Error

| Filed          | Length(Bytes) | Description          |
|----------------|---------------|----------------------|
| Slave address  | 1 Byte        | 1~247                |
| Error code     | 1 Byte        | 0x86                 |
| Exception code | 1 Byte        | 01 or 02 or 03 or 04 |

#### Example PDU

Host query command: 01 06 0F A1 00 01 Slave normal respond: 01 06 0F A1 00 01 Slave abnormal respond: 01 86 04

#### 6.1.4 Write multiple Registers

#### Request

| Filed                 | Length(Bytes) | Description             |
|-----------------------|---------------|-------------------------|
| Slave address         | 1 Byte        | 1~247                   |
| Function code         | 1 Byte        | 0x10                    |
| Starting address      | 2 Bytes       | 0x0000~0xFFFF           |
| Quantity of registers | 2 Bytes       | 1~123                   |
| Byte count            | 1 Byte        | 2 x N                   |
| Registers value       | 2 x N Bytes   | N=Quantity of Registers |

#### Response

| Filed                 | Length(Bytes) | Description   |
|-----------------------|---------------|---------------|
| Slave address         | 1 Byte        | 1~247         |
| Function code         | 1 Byte        | 0x10          |
| Starting address      | 2 Bytes       | 0x0000~0xFFFF |
| Quantity of registers | 2 Bytes       | 1~123         |

#### Error

| Filed          | Length(Bytes) | Description          |
|----------------|---------------|----------------------|
| Slave address  | 1 Byte        | 1~247                |
| Error code     | 1 Byte        | 0x90                 |
| Exception code | 1 Byte        | 01 or 02 or 03 or 04 |



## Example PDU

Host query command: 01 10 0F A2 00 02 04 03 E8 00 64

Slave normal respond: 01 10 0F A2 00 02 Slave abnormal respond: 01 90 02

## 6.2 Exception code

| Code | Name                 | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x01 | ILLEGAL FUNCTION     | The function code received in the query is not an allowable action for the server (or slave). This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server (or slave) is in the wrong state to process a request of this type, for example because it is unconfigured and is being asked to return register values.                                                                  |
| 0x02 | ILLEGAL DATA ADDRESS | The data address received in the query is not an allowable address for the server (or slave).  More specifically, the combination of reference number and transfer length is invalid.                                                                                                                                                                                                                                                                                                   |
| 0x03 | ILLEGAL DATA VALUE   | A value contained in the query data field is not an allowable value for server (or slave). This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the MODBUS protocol is unaware of the significance of any particular value of any particular register. |
| 0x04 | SLAVE DEVICE FAILURE | An unrecoverable error occurred while the server (or slave) was attempting to perform the requested action.                                                                                                                                                                                                                                                                                                                                                                             |



| Running State | Value |
|---------------|-------|
| Standby       | 0x00  |
| Running       | 0x01  |
| Fault         | 0x02  |
| Shutdown      | 0x03  |

| Alarm Code | Alarm Description                | Bit | Severity |
|------------|----------------------------------|-----|----------|
|            |                                  |     | Level    |
| 1001       | Software version mismatch        | 0   | Critical |
| 1002       | Low insulation resistance        | 1   | Critical |
| 1003       | The temperature is too high      | 2   | Critical |
| 1004       | Equipment failure                | 3   | Critical |
| 1005       | The system grounding is abnormal | 4   | General  |
| 1006       | PV string voltage is high        | 5   | Critical |
| 1007       | PV string reverse connection     | 6   | Critical |
| 1008       | PV string back-filling           | 7   | Critical |
| 1009       | AFCI fault                       | 8   | Critical |
| 1010       | Grid outage                      | 9   | Critical |



| 1011 | Grid overvoltage                                          | 10 | Critical |
|------|-----------------------------------------------------------|----|----------|
| 1012 | Grid undervoltage                                         | 11 | Critical |
| 1013 | Grid overfrequency                                        | 12 | Critical |
| 1014 | Grid underfrequency                                       | 13 | Critical |
| 1015 | Grid voltage imbalance                                    | 14 | Critical |
| 1016 | The DC component of the output current exceeds the limits | 15 | Critical |

| Alarm Code  | Alarm Description                   | Bit     | Severity |
|-------------|-------------------------------------|---------|----------|
|             |                                     |         | Level    |
| 1017        | The leakage electricity exceeds the | 0       | Critical |
|             | limits                              |         |          |
| 1018        | Communication abnormal              | 1       | General  |
| 1019        | System internal protection          | 2       | Critical |
| 1020        | AFCI self-test circuit fault        | 3       | Critical |
| 1021        | Off-grid protection                 | 4       | Critical |
| Not defined | Not defined                         | Not     |          |
|             |                                     | defined |          |



| Alarm Code  | Alarm Description                                                 | Bit     | Severity |
|-------------|-------------------------------------------------------------------|---------|----------|
|             |                                                                   |         | Level    |
| 2001        | Software version mismatch                                         | 0       | Critical |
| 2002        | The energy storage module has low insulation resistance to ground | 1       | General  |
| 2003        | The temperature is too high                                       | 2       | Critical |
| 2004        | Equipment failure                                                 | 3       | Critical |
| 2005        | Below desired temperature                                         | 4       | Critical |
| 2008        | System internal protection                                        | 5       | Critical |
| Not defined | Not defined                                                       | Not     |          |
|             |                                                                   | defined |          |

| Alarm Code | Alarm Description            | Bit | Severity |
|------------|------------------------------|-----|----------|
|            |                              |     | Level    |
| 3001       | Software version mismatch    | 0   | Critical |
| 3002       | The temperature is too high  | 1   | Critical |
| 3003       | Equipment failure            | 2   | Critical |
| 3004       | Excessive leakage current in | 3   | Critical |
|            | off-grid output              |     |          |
| 3005       | N line grounding fault       | 4   | Critical |





| Not defined | Not defined | Not     |  |
|-------------|-------------|---------|--|
|             |             | defined |  |

| Remote EMS control mode    | Value |
|----------------------------|-------|
| PCS remote control         | 0x00  |
| Standby                    | 0x01  |
| Maximum self-consumption   | 0x02  |
| Command charging           | 0x03  |
| (consume grid power first) |       |
| Command charging           | 0x04  |
| (consume PV power first)   |       |
| Command discharging        | 0x05  |
| (output from PV first)     |       |
| Command discharging        | 0x06  |
| (output from ESS first)    |       |