midterm-316-spring-2016-8fc0b

#130 1 of 12

SFU Macm 316 Midterm Test: Feb 24, 2016

Last Name:		
First Name:		
Email:		
ID:		

Instructions: 50 minutes. Answer all 5 questions. Closed book. One-sided cheat sheet and non-graphing calculator permitted.

Mark very clearly on the question if you use the back of any page.

EXPLAIN ALL ANSWERS.

Do not expect ANY marks for answers that do not provide intermediate work. Marks may be deducted for poor presentation.

midterm 316 spring 2016 #130 3 of 12

1. (3 marks) Find the rate of convergence of the following sequence as $h \to 0$:

$$\lim_{h\to 0}\cos(h)+\frac{1}{2}h^2=1$$

Show your steps.

$$\begin{aligned}
&cos(h) + \frac{1}{2}h^{2} - 1 \\
&= 1 - \frac{h^{2}}{2} + \frac{h^{4}}{4!} + \frac{h^{2}}{2} - 1 + O(h^{6}) \\
&= \frac{h^{4}}{4!} + O(h^{6}) \\
&= O(h^{4})
\end{aligned}$$

midterm 316 spring 2016

#130

5 of 12

2. (3 marks) Suppose A is an $n \times n$ matrix. Use the definition of matrix norm to show that $||\cdot||_*$, defined by

$$||A||_* = \sum_{i=1}^n \sum_{j=1}^n |a_{ij}|$$

W :/ 11A1, 20: 11Ax1 = 5/21 aij 20 (ii) | | × A| = | × | | A| + = = = = | × aij = = = = | × aij | = = = | × aij | = = | × aij | = | × aij | = = | × aij | = = | × aij | = | × aij | = =

$$||A+B||_{*} \leq ||A||_{*} + ||B*||_{*}$$

$$||A+B||_{*} = 22|a_{ij}+b_{ij}| \leq 22|a_{ij}|+|b_{ij}| = ||A||_{*} + ||B||_{*}$$

$$||AB||_{*} = \mathbb{Z}\mathbb{Z}^{2}(a_{i_{1}} a_{i_{2}} - a_{i_{n}}) \cdot (b_{i_{1}} b_{2} - b_{n_{1}})$$

$$\leq \mathbb{Z}\mathbb{Z}^{2}||(a_{i_{1}} a_{i_{2}} - a_{i_{n}})||_{2}||(b_{i_{1}} b_{2} - b_{n_{1}})||_{2}(a_{i_{1}} a_{i_{2}} - a_{i_{n}})||_{2}||(b_{i_{1}} b_{2} - b_{n_{1}})||_{2}(a_{i_{1}} a_{i_{2}} - a_{i_{n}})||_{2}$$

$$= \mathbb{Z}||(a_{i_{1}} a_{i_{2}} - a_{i_{n}})||_{2}\mathbb{Z}||(b_{i_{1}} b_{2} - b_{n_{1}})||_{2}$$

$$= ||A||_{2}||B||_{2}$$

3. (3 marks) Use Gaussian Elimination with scaled partial pivoting to solve the following system:

$$4x + 40y = 60$$
$$2x + y = 2$$

Proof Choice:
$$\frac{4}{40} < \frac{2}{2}$$

So $E_1 \iff E_2$

$$2x+y = 2$$

 $4x+40y = 60$

$$2 \times ry = 2$$

$$38y = 56$$

$$y = \frac{56}{38} = 1.4737$$

$$x = 2 - \frac{56}{38} = .2632$$

- 4. (3 marks) Recall that iterative methods for solving the linear system Ax = b take the form $x^{(n)} = Tx^{(n-1)} + c$ for some initial guess $x^{(0)}$.
 - (a) What are T and c for Jacobi's method when

$$A = \begin{bmatrix} 5 & -2 & 0 \\ 0 & 6 & -3 \\ -4 & 0 & 8 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$$

(b) Suppose you were to solve Mx = b using Jacobi's method for

$$M = \left[\begin{array}{rrr} 0 & 6 & -3 \\ -4 & 0 & 8 \\ 5 & -2 & 0 \end{array} \right]$$

What would you use for your iteration matrix?

$$a/7 = \begin{bmatrix} 5 & 6 & 6 \\ 8 & 6 & 8 \end{bmatrix} - \begin{bmatrix} 0 & 2 & 0 \\ 0 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 5 & 6 \\ 4 \end{bmatrix} - \begin{bmatrix} 1/5 \\ 0/2 \end{bmatrix}$$

b/ Intercharge rows

A=[0]

MANANA

A=[0]

M

We can use T from part a/.

midterm 316 spring 2016

#130 11 of 12

- 5. (3 marks) Let A be a given positive constant and $g(x) = 2x Ax^2$
 - a. Show that if fixed-point iteration converges to a nonzero limit, then the limit is t=1/A.
 - b. Find an interval about 1/A for which fixed-point iteration converges, provided p_0 is in the interval.

$$G/X = 2x - A X$$

$$- | = -A X$$

$$X = 1/A.$$

$$b/UR THM 2.40 g is cts (g is a polynomial)$$

$$g'(x) = 2 - 2Ax$$

$$|g'| < | = 2 - 2Ax - 1, z - 2Ax < 1$$

$$x < \frac{3}{2}A, x > \frac{1}{2}A.$$

$$Does g(x) \in [\frac{1}{2}A, \frac{3}{2}A] \text{ for all } x \in [\frac{1}{2}A, \frac{3}{2}A]$$

$$g(\overline{z_A}) = \frac{3}{4}A \in [\frac{1}{2}A, \frac{3}{2}A], g(\overline{z_A}) = \frac{3}{4} - \frac{9}{4}A = \frac{3}{4}A \in [\frac{1}{2}A, \frac{3}{2}A]$$

$$extrema at x = 0 /A. g(x) = \frac{1}{4} \in [\frac{1}{2}A, \frac{3}{2}A]$$

$$Thus g(x) \in [\frac{1}{2}A, \frac{3}{2}A] \text{ for all } x \in [\frac{1}{2}A, \frac{3}{2}A]$$

$$Thus g(x) \in [\frac{1}{2}A, \frac{3}{2}A] \text{ for all } x \in [\frac{1}{2}A, \frac{3}{2}A].$$

$$Thus g(x) \in [\frac{1}{2}A + E, \frac{3}{2}A - E] \text{ for some } converges$$

$$The for Poly (-2A + E, \frac{3}{2}A - E) \text{ for some } converges$$