Теорема Чебышёва

- 1. Для простого p и натурального n докажите неравенство $v_p(C_{2n}^n) \leqslant \max\{r \colon p^r \leqslant 2n\}.$
- 2. Докажите, что простые числа p такие, что $\sqrt{2n} входят в разложение <math>C_{2n}^n$ не более одного раза, а такие, что $\frac{2}{3}n вообще не являются делителями <math>C_{2n}^n$.
- 3. Докажите, что число C_n^k не делится на простое число p тогда и только тогда, когда в каждом разряде p-ичной записи цифра числа n не меньше цифры числа k.
- 4. Для натурального числа $n\geqslant 2$ найдите наибольший делитель чисел $C^1_{2n},C^3_{2n},\ldots,C^{2n-1}_{2n}$
- 5. Докажите, что произведение простых чисел из (m+1,2m+1] не превосходит C_{2m+1}^m . 6. Докажите неравенство $C_{2m+1}^m \leqslant 2^{2m}$.
- 7. Докажите, что произведение всех простых чисел от 2 до n не превосходит 4^{n-1} .
- 8. Докажите неравенство $C_{2n}^n \geqslant \frac{4^n}{2n}$.
- 9. Докажите неравенство $C_n^k \leqslant \frac{n^k}{2^{k-1}}$.
- 10. Пусть в промежутке (n, 2n] нет простых чисел, докажите, что $4^n \leq (2n)^{1+\sqrt{2n}} \cdot 4^{\frac{2}{3}n}$.
- 11. Докажите, что при всех достаточно больших n в интервале (n, 2n) есть простое число.
- 12. Докажите теорему Чебышёва: для каждого натурального числа п существует такое простое число p, что n .
- 13. Для натурального числа $n\geqslant 3$ через $\alpha_1,\alpha_2,\ldots,\alpha_k$ обозначим последовательность степеней в разложении числа $n! = p_1^{lpha_1} p_2^{lpha_2} \dots p_k^{lpha_k}$, где $p_1 < p_2 < \dots < p_k$ — простые числа. Найдите все натуральные числа $n\geqslant 3$, для которых $\alpha_1,\alpha_2,\ldots,\alpha_k$ — геометрическая прогрессия.
- 14. Докажите, что при $n \geqslant 4000$ в промежутке между n и 2n находится не менее $\frac{1}{30} \cdot \frac{n}{\log_2 n + 1}$ простых чисел, и что это число неограниченно растёт с ростом n.
- 15. Докажите, что для любого натурального числа s при всех достаточно больших натуральных n между n и 2n содержится по крайней мере одно число, являющееся произведением s различных простых чисел.

Задачи-шутки

- 16. Найдите все функции $f \colon \mathbb{R} \to \mathbb{R}$ такие, что для любых $x,y \in \mathbb{R}$ выполняется равенство f(f(x+y)) = f(x+y) + f(x)f(y) - xy.
- 17. Функция $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ удовлетворяет равенству f(f(x)) + x = f(2x) для всякого $x \in \mathbb{R}_{>0}$. Докажите, что $f(x) \geqslant x$ при всех $x \in \mathbb{R}_{>0}$.
- 18. Функция $f: \mathbb{Q}_{\geq 1} \to \mathbb{R}$ для любых рациональных $x, y \geq 1$ удовлетворяет неравенству $|f(x+y)-f(x)-f(y)|<\varepsilon$, где $\varepsilon>0$ — некоторое действительное число. Докажите, что существует рациональное число q такое, что при всех $x \in \mathbb{Q}_{\geqslant 1}$ справедливо неравенство $\left| \frac{f(x)}{x} - q \right| < 2\varepsilon$.
- 19. Найдите все функции $f\colon \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, для которых при всех $x,y\in \mathbb{R}_{>0}$ выполнено равенство f(x + f(xy)) = xf(1 + f(y)).
- 20. Найдите все функции $q: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ такие, что для любых $x, y \in \mathbb{R}_{>0}$ верно равенство xg(x+g(y)) = g(g(xy)+1).
- 21. Существует ли функция $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, для которых при всех $x, y \in \mathbb{R}_{>0}$ выполнено неравенство f(x+y) > yf(x) + f(f(x))?
- 22. Найдите все функции $f \colon \mathbb{R} \to \mathbb{R}$, удовлетворяющие при всех $x, y \in \mathbb{R}$ равенству f(f(x) + f(y)) = (x+y)f(x+y).
- 23. Найдите все функции $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, для которых при всех $x, y \in \mathbb{R}_{>0}$ выполнено равенство $xf(x^2)f(f(y)) + f(yf(x)) = f(xy) (f(f(x^2)) + f(f(y^2))).$
- 24. Найдите все функции $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, для которых при всех $x, y \in \mathbb{R}_{>0}$ выполнено равенство f(x + f(xy)) + y = f(x) + f(y) + 1.