CORRECTION SÉANCE 6 (4 MARS)

Exercice 1.

1. La forme f se décompose sur la base duale : $f = ae_1^* + be_2^* + ce_3^*$, on a donc

$$\begin{cases} f(4,2,0) = 4a + 2b = 2\\ f(1,2,-3) = a + 2b - 3c = -7\\ f(0,2,5) = 2b - 5c = 1 \end{cases}$$

un système linéaire qu'il s'agit maintenant de résoudre, on inverse pour cela la matrice

$$M = \begin{pmatrix} 4 & 2 & 0 \\ 1 & 2 & -3 \\ 0 & 2 & 5 \end{pmatrix}$$

on trouve

$$M^{-1} = \frac{1}{54} \begin{pmatrix} 16 & -10 & -6 \\ -5 & 20 & 12 \\ 2 & -8 & 6 \end{pmatrix}$$

Donc

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \frac{1}{54} \begin{pmatrix} 16 & -10 & -6 \\ -5 & 20 & 12 \\ 2 & -8 & 6 \end{pmatrix} \begin{pmatrix} 2 \\ -7 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$

et $f = 2e_1^* - 3e_2^* + e_3^*$, autrement dit f(x, y, z) = 2x - 3y + z.

2. Par définition, on a $f_1 = 2e_1^* + 4e_2^* + 3e_3^*$, $f_2 = e_2^* + e_3^*$, $f_3 = 2e_1^* + 2e_2^* - e_3^*$, la matrice de passage de la famille f_i à la base canonique duale e_i^* est donc

$$\begin{pmatrix} 2 & 0 & 2 \\ 4 & 1 & 2 \\ 3 & 1 & -1 \end{pmatrix}$$

qui est inversible (son déterminant est -4), donc les f_i forment bien une base de E^* . Soit $e \in E$, on sait que $(f_1(e), f_2(e), f_3(e))$ est donné par Me, où

$$M = \begin{pmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{pmatrix}$$

trouver la base antéduale revient à trouver a, b, c tels que Ma = (1, 0, 0), Mb = (0, 1, 0), Mc = (0, 0, 1), autrement dit, a, b, c sont les colonnes de M^{-1} on calcule donc

$$M^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -10 & -1 \\ -2 & 8 & 2 \\ 2 & -4 & -2 \end{pmatrix}$$

la base antéduale de f_i est donc $a = \frac{1}{4}(3, -2, 2), b = \frac{1}{4}(-10, 8, -4)$ et $c = \frac{1}{4}(-1, 2, -2)$.

Exercice 10.

1. Premièrement, b_k^* est bien défini (car la décomposition sur la base $\{b_i\}$ est unique), ensuite, on a

$$b_k^* \left(\nu \sum_{i \in I} \lambda_i b_i + \sum_{i \in I} \mu_i b_i \right) = \nu \lambda_k + \mu_k$$

donc b_k^* est bien linéaire.

2. Soit

$$0 = \sum_{i \in I} \mu_i b_i^* =: \varphi$$

une combinaison linéaire <u>finie</u> nulle des b_i , on a par définition $0 = \varphi(b_k) = \mu_k$ pour tout $k \in I$, donc tous les μ_k sont nuls, la famille $\{b_i^*\}$ est donc libre.

- 3. En dimension finie, dim $E^* = \dim E$, et $\{b_i^*\}$ est une famille libre de même taille qu'une base de E, il s'agit donc d'une base de E^* .
- 4. Comme $\{b_i\}$ est une base de E, une forme linéaire sur E est exactement définie par sa valeur sur la base, φ est alors définie comme la forme linéaire valant 1 sur chacun des b_i (l'astuce étant que, même si φ est à priori définie par une somme infinie, la valeur de $\varphi(x)$ sera toujours une somme finie, car x est toujours une combinaison linéaire finie des b_i).

Enfin, $\varphi \notin \text{Vect}(\{b_i\}_{i \in I})$, en effet $\psi \in \text{Vect}(\{b_i\}_{i \in I})$ est une combinaison linéaire finie des b_i , il existe donc un b_k n'apparaissant pas dans cette combinaison (car I est infini), donc $\varphi(b_k) = 1 \neq 0 = \psi(b_k)$, donc $\varphi \neq \psi$.

Exercice 11.

1. On a

$$ev_x(\lambda \varphi + \psi) = \langle \lambda \varphi + \psi, x \rangle = \lambda \langle \varphi, x \rangle + \langle psi, x \rangle = \lambda ev_x(\varphi) + ev_x(\psi)$$

par définition de l'addition (et de la multiplication scalaire) sur les formes linéaires, donc $ev_x \in E^{**}$.

2. On a

$$ev_{\lambda x+y}(\varphi) = \langle \varphi, \lambda x + y \rangle = \lambda \langle \varphi, x \rangle + \langle \varphi, y \rangle = (\lambda ev_x + ev_y)(\varphi)$$

 $\operatorname{car} \varphi$ est linéaire

3. Soit $x \in E$, on a

$$ev_x = 0 \Leftrightarrow \forall \varphi \in E^*, \langle \varphi, x \rangle = 0 \Leftrightarrow x \in (E^*)^o = \{0\}$$

donc ev est injective.

Si E est de dimension finie, on a dim $E = \dim E^* = \dim E^{**}$, donc ev est un isomorphisme.

Si E est de dimension infinie, on a dim $E^{**} > \dim E^* > \dim E$, donc E et E^** ne peuvent pas être isomorphes.