15 - Query Planning & Optimization 2

- 1. Plan Cost Estimation
 - A. Selection cardinality: avg number of records for an some attribute
 - B. Selectivity: fraction of records that satisfy predicate.
 - i. Use selectivity to estimate # of records that satisfy predicate (negation, disjunction, conjunction, range search…)
 - ii. There are three assumption
 - 1. Uniform data if data is non-uniform, use quantiles
 - 2. Independent predicate correlated predicate can be a problem
 - 3. Inclusion principle
 - iii. Sampling
 - 1. Collect samples to estimate selectivity
 - 2. Sample update occur when table changes significantly

2. Plan Enumeration

- A. OLTP Query Planning
 - i. Easy, because it is search argument able
- B. Multi-relation Query Planning
 - i. Only consider left deep trees fully pipelined plan
- C. Process (do dynamic programming)
 - i. Orderings
 - ii. Plans for each operator
 - iii. Access method for each table
- D. Postgres optimizer
 - i. Traditional dynamic programming approach: explained above
 - ii. Genetic query optimizer
 - 1. Generate random plan, throw away worst plan
 - 2. Mix plans remaining, then throw worst plan again
 - 3. Repeat 2, until newly generated plans are not new ones
 - 4. Pick plan which cost is minimum that appeared at process above
- 3. Nested Sub-queries
 - A. Re-write to flatten query
 - B. Decompose sub-query and store result at temporary table