

Conception d'algorithmes

Programmation dynamique

Programmation dynamique

- > Approche bottom-up
- > On calcule les solutions de sous problèmes, on les stocke et on les réutilise pour calculer la solution d'un problème plus grand
- » « programmation » : méthode de tabulation, stockage des solutions intermédiaires
 - La « table » peut être une table, une matrice, un arbre, ...

Un exemple concret: Fibonnacci

- $F_0 = 0, F_1 = 1, \forall n \ge 2, F_n = F_{n-1} + F_{n-2}$
- > 0, 1, 1, 2, 3, 5, 8, etc.
- > Calcul du prochain = somme des deux derniers
- > D'où un algo itératif = ?

Un exemple concret : Fibonnacci

```
F_0 = 0, F_1 = 1, \forall n \ge 2, F_n = F_{n-1} + F_{n-2}
> 0, 1, 1, 2, 3, 5, 8, etc.
> Calcul du prochain = somme des deux derniers
> D'où un algo itératif:
   fonction fib(n:entier):entier
      prev ←-1, res ← 1
      Pour i de 0 à n
             sum ← res+prev
             prev ← res
             res \(\sigma\) sum
      retourner res
```


Un exemple concret: Fibonnacci

> Complexité?

Un autre exemple

- > Coefficient binomial $\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$
- > Algorithme « naif »:

```
private static int bin(int n, int k) {
             return fact(n)/(fact(k)*fact(n-k));
```

> Problème?

Un autre exemple

- > Coefficient binomial $\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$
- > Algorithme « naif »:

```
private static int bin(int n, int k) {
    return fact(n)/(fact(k)*fact(n-k));
}
```

> Problème?

14! 1278945280

15! 2004310016

16! 2004189184

17! -288522240

18! -898433024

➤ Représentation des entiers → évitons d'utiliser n!

Reformulons

> Propriétés (wikipedia)

$$\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}$$

- > Nouvel algorithme
 - C(n,m) = 1 si m = 0
 - C(n,m) = 1 si n = m
 - C(n,m) = C(n-1,m)+C(n-1,m-1)

Complexité?

Reformulons

> Propriétés (wikipedia)

$$\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}$$

- > Nouvel algorithme
 - C(n,m) = 1 si m = 0
 - C(n,m) = 1 si n = m
 - C(n,m) = C(n-1,m)+C(n-1,m-1)

Complexité?

pas mieux que tout à l'heure

Reformulons encore!

- > Idée : ne pas refaire deux fois les mêmes calculs
- > Reprenons depuis le début :
- > C(0,0)=1
- \gt C(1,0)=1, C(1,1)=1
- \gt C(2,0)=1, C(2,1)=2, C(2,2) = 1
- > Etc

n\m	0	1	2	3	4	5	6	7	8	9
0	1									
1	1	1								
2	1	2	1							
3	1	3	3	1						
4	1	4	6	4	1					
5	1	5	10	10	5	1				
6	1	6	15	20	15	6	1			
7	1	7	21	35	35	21	7	1		
8	1	8	28	56	70	56	28	8	1	
9	1	9	36	84	126	126	84	36	9	1

ensem

- > Triangle de Pascal
- ➤ Valeurs correspondent à C(n,m)
- > Donc calculons depuis le début !
 - On utilise un tableau (taille n) pour stocker les valeurs intermédiaires (géré comme une liste)
 - On remplit successivement le tableau

n\m	0	1	2	3	4	5	6	7	8	9
0	1									
1	1	1								
2	1	2	1							
3	1	3	3	1						
4	1	4	6	4	1,					
5	1	5	10	10	² 5 [√]	1				
6	1	6	15	20	15	6	1			
7	1	7	21	35	35	21	7	1		
8	1	8	28	56	70	56	28	8	1	
9	1	9	36	84	126	126	84	36	9	1

Complexité?

```
private static int bino(int n, int k) {
    int bino [] = new int[n+1];
    bino[0]=1;
    for (int i = 1; i<=n; i++){
        for (int j = i-1; j>0; j--){
            bino[j] = bino[j]+ bino[j-1];
        }
    }
    return bino[k];
}
```


Programmation dynamique

- Le problème se décompose en sous-problèmes du même type
- > Avec 2 propriétés
 - Sous-structure optimale: la solution optimale du problème est composée de solutions optimales aux sous-problèmes
 - Recouvrement des sous-problèmes: des sous problèmes distincts partagent certains de leurs sous-problèmes respectifs

Principe

- Définir des sous problèmes
- > Définir la relation de récurrence qui relie les problèmes
- > Identifier et résoudre les cas de base

Plus longue sous séquence commune

> Soit deux chaines $X = \langle x_1, x_2, x_3, ..., x_m \rangle$ et $Y = \langle y_1, y_2, y_3, ..., y_k \rangle$

Trouver la longueur de la plus longue sous-séquence commune PLSC

- > Exemple
 - X = "qisuddsfhes", Y="ujjjdd »
 - Plus longue sous-séquence: udd (3)

Plus longue sous séquence commune

a. Définition du problème:

Soit $D_{i,j}$ la PLSC de $x_{1..i}$ et $y_{1..j}$

b. Récurrence

Cas trivial

Plus longue sous séquence commune

a. Définition du problème:

Soit $D_{i,j}$ la PLSC de $x_{1..i}$ et $y_{1..j}$

b. Récurrence

Si $x_i = y_j$ alors ils contribuent à la PLSC $\rightarrow D_{i,j} = D_{i-1,j-1} + 1$ Sinon l'un ou l'autre peut être ignoré $\rightarrow D_{i,j} = \max(D_{i-1,j}, D_{i,j-1})$ Cas trivial $D_{i,0} = D_{0,i} = 0$

Un autre exemple (détaillé)

> Le pb du sac à dos

Comparaison

- > Algorithme glouton
 - Problèmes d'optimisation
 - Optimum global formé d'une suite de choix localement optimal
 - Solution par itération
- Divide-and-conquer
 - Problèmes composés de sous-problèmes similaires
 - Solution optimale composée de solutions optimales à des problèmes sans recouvrements
 - Solution par récursion
- > Programmation dynamique
 - Problèmes d'optimisation composés de sous-problèmes similaires
 - Solution optimale composée de solutions optimales à des problèmes avec recouvrements
 - Solution par itération sur une table

Memoization (sans typo)

- Résoudre le problème de manière top-down en mémorisant les calculs
- > Principe:
 - On reprend l'algorithme naturel récursif inefficace
 - On reprend le principe de la programmation dynamique (ie de stocker les solutions dans une table)
 - Une entrée dans la table par sous-problème
 - Initialement on associe la valeur « pas résolu »
 - On regarde à chaque sous-problème/appel si c'est déjà résolu > solution mémorisée sinon on applique le calcul récursif

Memoization (sans typo)

> Exemple

```
    methode fibonacci (n)
        Si connu[n] alors retourner valeur [n]
        Sinon
        Si n <=1 alors retourner n
        Sinon
        valeur[n] ← fibonnacci(n-1)+fibonacci(n-2)
        connu[n] ← vrai
        retourner valeur [n]
        Fsi
        Fsi</li>
```


Algorithme général

- > Methode monCalculM(n)
 - Si connu(n) alors
 - Retourner solution(n)
 - Sinon
 - solution(n) ←monCalculR(n)
 - Retourner solution(n)
 - Fsi
- ➤ Methode monCalculR(n)
 - Si « cas trivial » alors retourner soltriviale
 - Sinon
 - Retourner appel récursif AVEC monCalculM
 - Fsi
- ➤ Mise en œuvre java ..?

FIn

Later ...

> Faire la monnaie en code ar pas mal

Problèmes

> La monnaie

http://www.montefiore.ulg.ac.be/~piater/courses/INFO0902/notes/basic-algos/foil28.xhtml

Keturning Change

A formulation and solution similar to the 0-1 knapsack problem:

$$\min_{T\subseteq S} \mid T \mid \text{ avec } \sum_{i\in T} v_i = V$$

For the sum to be always correct, we treat the one-cent coins specially:

- · There is an unlimited supply.
- The algorithm uses them only at the end to fill up any remaining difference.

Subproblem: Calculate C[k, v], the maximum size of a subset $T_k \subseteq S_k$ of total value equal to v:

$$C[k,v] \ = \ \begin{cases} C[k-1,v] & \text{if } v_k > v \\ \min \left\{ C[k-1,v], C[k-1,v-v_k] + 1 \right\} & \text{otherwise} \end{cases}$$

Example 4.

$$S = \{4, 3, 3\}$$
 cents, $V = 6$ cents

- > Voir copie site Piater
 - 01 Knapsack
 - Plis longue sous séquence
- > Site Bpreiss
 - Justifiaction de paragraphe
- > Cormen
 - Chaien de multiplication de matrice
 - Plus longue soussequence ..
 - Triangulation optiale de polygone

