BUNDESREPUBLIK
DEUTSCHLAND

# ① Offenl gungsschrift② DE 195 01 618 A 1





DEUTSCHES

(1) Aktenz ichen: 195 01 618.1 (2) Anmeldetag: 20. 1.95

Offenlegungstag: 21. 9.95

Mit Einverständnis des Anmelders offengelegte Anmeldung gemäß § 31 Abs. 2 Ziffer 1 PatG

(7) Anmelder:

Thüringisches Institut für Textil- und Kunststoff-Forschung eV, 07407 Rudolstadt, DE ② Erfinder:

Mieck, Klaus-Peter, Dr., 07407 Rudolstadt, DE; Bürger, Horst, Dr., 07407 Rudolstadt, DE; Reußmann, Thomas, 08280 Aue, DE

(54) Verfahren zur Aufbereitung von Flachs

Die Erfindung beschreibt ein Verfahren zur Aufbereitung von Flachs. Das angeröstete, gebrochene, grobentholzte Fasermaterial wird mit Hilfe eines geeigneten Reinigungsaggregates in nur einem Verfahrensschritt ausschließlich mechanisch feinentholzt und aufgeschlossen. Es resultiert ein Fasermaterial, welches für technische Anwendungsgebiete gut geeignet ist.

### Beschreibung

Die Erfindung betrifft ein Verfahren zur Gewinnung von groben technischen Flachsfasern für nichttextile Anwendungsgebiete.

Flachsfasern werden schon seit den Anfängen der Textilindustrie zu feinen Garnen und Geweben verarbeitet. Dabei finden vorzugsweise lange, sehr gut aufgeschlossene, zu Bändern parallelisierte Fasern Verwendung. Zur Gewinnung derartiger Flachsfasern sind auf- 10 wendige Ernte- und Aufbereitungsverfahren erforderlich. Konventionell wird der Flachsaufschluß über die sogenannte Schwinge realisiert. Der Flachs wird dazu nach der Ernte zunächst geröstet, um die Faserbündel von den sie umgebenden Pflanzenteilen zu lösen. Die 15 Röste kann auf verschiedene Weise durchgeführt werden. Die einfachste und am häufigsten angewandte Röste ist die Tauröste. Dabei liegt das Flachsstroh nach dem Raufen mehrere Wochen auf dem Feld und ist der Witterung ausgesetzt. Einwirkende Feuchtigkeit (Nie- 20 Herstellung von groben technischen Flachsfasernaderschläge, Tau) fördert die Entwicklung von Pilzen und Bakterien. Diese produzieren Enzyme, die einen Abbau der die Faserbündel verklebenden Pektine und Hemizellulosen bewirken. Von großer Bedeutung bei der Röste ist der richtige Zeitpunkt der Reife, d. h. wenn der 25 Röstvorgang abgebrochen wird. Die Tauröste ist stark witterungsabhängig und birgt ein großes Ernterisiko. Neben der Tauröste sind noch weitere Röstverfahren bekannt wie z. B. die Wasserröste, mikrobielle und enzymatische Aufschlußverfahren, Dampfdruckverfahren, 30 chemischer Aufschluß, Tensidaufschluß. Nach der Röste wird der getrocknete Flachs entsamt. Der weitere Aufschluß erfolgt durch Knicken bzw. Brechen der Holzschicht des Stengels und nachfolgendes Schwingen. Beim Schwingen wird das Flachsstroh von anhaftenden 35 Holzteilen gereinigt. Dabei werden von umlaufenden Schlagmessern die Schäben und das kurze Fasermaterial herausgeschlagen. Die so gewonnenen langen Flachsfasern sind relativ fein (Feinheit 0,2-3 tex) und vorzugsweise für den Einsatz in der Textilindustrie geeig- 40 net. Mit dem Einsatz von Flachs in technischen Anwendungsgebieten werden andere Anforderungen an das Fasermaterial gestellt. Es sind nicht vorrangig lange, fein aufgeschlossene Fasern erforderlich, sondern eher grobe Flachsfasern (Feinheit 5-10 tex) mit hoher Fa-45 serfestigkeit. Derartige Flachsfasern lassen sich nicht nach der konventionellen Technologie gewinnen. Vor allem die Röste, durch welche die Faserbündel teilweise bis zur Einzelfaser aufgelöst werden, muß stark verkürzt werden. Nur so können kostengünstig grobe 50 Flachsfasern mit hoher Faserfestigkeit gewonnen wer-

Die Erfindung zielt auf eine Verbesserung und Vereinfachung des Faseraufschlusses zur Gewinnung von technischen Flachsfasern. Umfangreiche Untersuchun- 55 gen haben gezeigt, daß aus angeröstetem, gebrochenem, grobentholztem Grünflachs ohne aufwendige Aufbereitungsschritte grobe technische Flachsfasern mit einer Feinheit im Bereich zwischen 5 und 10 tex und einer mittleren Faserlänge ≥ 50 mm gewonnen werden kön- 60 nen. Erfindungsgemäß wird dazu ein Reinigungsaggregat verwendet wie es beispielsweise im Patent CSP 242 702 beschrieben ist. Der überraschende und nicht zu erwartende Effekt besteht darin, daß grobentholzter stark verunreinigter Grünflachs durch nur einen 65 Verfahrensschritt vollständig aufbereitet und für technische Anwendungen bestens geeignete Flachsfasern gewonnen werden können. Der Vorteil des Verfahrens

liegt in der Einsparung aufwendiger Aufbereitungsschritte wie sie z. B. in den Patenten DE 38 31 089 und DE 37 30 687 beschrieben sind. Diese Aufbereitungsverfahren sind zu zeit- und kostenintensiv und die so gewinnbaren Flachsfasern für technische Anwendungen ungeeignet, da durch die intensive Röste das Fasermaterial zu stark verfeinert und auch die Faserfestigkeit abgebaut wird.

# Ausführungsbeispiel 1

Ein angerösteter, gebrochener und auf dem Feld grobentholzter Grünflachs mit einem Restholzanteil von 50 Gew.-% wird einer im Patent CSP 242 702 beschriebenen Reinigungsmaschine in Wirrlage zugeführt. Nach einer Passage des Reinigungsaggregates resultiert ein Fasermaterial mit einer Faserfeinheit im Bereich von 5-10 tex, einer Faserlänge ≥ 50 mm und einem Restholzanteil ≤ 5 Gew.-%. Dieses Fasermaterial ist für die delvliesen geeignet.

# Ausführungsbeispiel 2

Angerösteter geraufter Grünflachs wird über eine geeignete Vollerntemaschine auf dem Feld entsamt, grobentholzt und durch ein in die Maschine integriertes Reinigungsaggregat feinentholzt und aufgeschlossen. Das resultierende Fasermaterial hat eine Faserfeinheit im Bereich von 5-10 tex, eine mittlere Faserlänge ≥ 50 mm und einen Restholzanteil ≤ 5 Gew.-%. Es eignet sich zur Herstellung von Nadelvliesen für Kunststoffverstärkung.

### Patentansprüche

- 1. Verfahren zur Gewinnung von technischen Flachsfasern aus angeröstetem, gebrochenem, vorentholztem Flachs, dadurch gekennzeichnet, daß zur verarbeitungsfähigen Aufbereitung des Fasermaterials solch ein Aufbereitungs- bzw. Reinigungsaggregat verwendet wird, welches die Durchführung des Faseraufschlusses in einem Schritt und ausschließlich auf mechanischem Weg gewährlei-
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Rohfasern schwach angeröstet
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Rohfasern stärker geröstet sind.
- 4. Verfahren nach Anspruch 1-3, dadurch gekennzeichnet, daß Grob- und Feinentholzung örtlich getrennt voneinander über verschiedene Aufbereitungsmaschinen durchgeführt werden (Fig. 1).
- 5. Verfahren nach Anspruch 1-3, dadurch gekennzeichnet, daß Grob- und Feinentholzung gekoppelt in einer Maschine bereits auf dem Feld durchgeführt werden (Fig. 2).
- 6. Verfahren nach Anspruch 1 5, dadurch gekennzeichnet, daß die Rohfasern in Wirrlage der Aufbereitungsmaschine zugeführt werden.
- 7. Verfahren nach Anspruch 1-5, dadurch gekennzeichnet, daß die Rohfasern in Parallellage der Aufbereitungsmaschine zugeführt werden.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.<sup>6</sup>: DE 195 01 618 A1 D 01 B 1/10

Offenlegungstag:

21. September 1995

Fig. 1



Fig. 2

