Ex. 15 da Ficha 15 — Operações elementares sobre as linhas de uma matriz

Ex. 15 Seja $A = [a_{ij}] \in \mathcal{M}_{3\times 4}(\mathbb{R})$ uma matriz de ordem 3×4 . Em cada alínea mostre que as matrizes E e F dadas são inversas uma da outra e efectue o produto EA.

(a)
$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 e $F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\lambda} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ onde λ é um número real não nulo.

(b)
$$E = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 e $F = E$.

(c)
$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \lambda & 0 & 1 \end{bmatrix}$$
 e $F = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\lambda & 0 & 1 \end{bmatrix}$ onde λ é um número real.

Para verificar que as matrizes E e F são inversas uma da outra basta verificar que $EF = I_3$. Deixam-se as contas ao cuidado do leitor.

Escrevendo
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$
 temos

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ \lambda a_{21} & \lambda a_{22} & \lambda a_{23} & \lambda a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

Observe que

- multiplicar a matriz A à esquerda pela matriz $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix}$ é equivalente a multiplicar a 2^{a} linha de A por λ (isto é efetuar a operação $L_{2} \leftarrow \lambda L_{2}$).
- a matriz $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix}$ foi por si própria obtida efetuando a operação $L_2 \leftarrow \lambda L_2$ sobre a matriz identidade I_3 .

(b)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A = \begin{bmatrix} a_{21} & a_{22} & a_{23} & a_{24} \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

Observe que

• multiplicar a matriz A à esquerda pela matriz $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ é equivalente a trocar a 1^a e a 2^a linha de A (isto é efetuar a operação $L_1 \leftrightarrow L_2$).

• a matriz
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 foi por si própria obtida efetuando a operação $L_1 \leftrightarrow L_2$ sobre a matriz identidade I_3 .

(c)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \lambda & 0 & 1 \end{bmatrix} \cdot A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} + \lambda a_{11} & a_{32} + \lambda a_{12} & a_{33} + \lambda a_{13} & a_{34} + \lambda a_{14} \end{bmatrix}$$

Observe que

- multiplicar a matriz A à esquerda pela matriz $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \lambda & 0 & 1 \end{bmatrix}$ é equivalente a substituir a 3ª linha de A pela sua soma com a 1ª linha de A multiplicada por λ (isto é efetuar a operação $L_3 \leftarrow L_3 + \lambda L_1$).
- a matriz $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \lambda & 0 & 1 \end{bmatrix}$ foi por si própria obtida efetuando a operação $L_3 \leftarrow L_3 + \lambda L_1$

De maneira geral consideram-se as seguintes matrizes quadradas de ordem $p \times p$:

• A matriz $D_i(\lambda)$, onde $\lambda \neq 0$, obtida efetuando a operação $L_i \leftarrow \lambda L_i$ sobre a matriz identidade I_p .

$$D_i(\lambda) = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & 0 & \\ & & 1 & & & \\ & & & \lambda & & & \\ & & & 1 & & \\ & & 0 & & \ddots & \\ & & & & 1 \end{bmatrix} \leftarrow i$$

A matriz $D_i(\lambda)$ é invertível sendo a sua inversa $D_i(\frac{1}{\lambda})$.

• A matriz P_{ij} obtida efetuando a operação $L_i \leftrightarrow L_j$ sobre a matriz identidade I_p .

A matriz P_{ij} é invertível sendo a sua inversa P_{ij} própria.

• A matriz $E_{ij}(\lambda)$, onde $i \neq j$, obtida efetuando a operação $L_i \leftarrow L_i + \lambda L_j$ sobre a matriz identidade I_p .

$$E_{ij}(\lambda) = \left[egin{array}{cccccc} 1 & & & & & & & & \\ & \ddots & & & & & & & \\ & & 1 & \cdots & \lambda & & & \\ & & & \ddots & \vdots & & & \\ & & & & 1 & & & \\ & & & 0 & & \ddots & \\ & & & 0 & & \ddots & \\ & & & & \uparrow & & \\ & & & i & j & & \end{array}
ight] \leftarrow i$$

A matriz $E_{ij}(\lambda)$ é invertível sendo a sua inversa $E_{ij}(-\lambda)$.

Com estas matrizes, sendo A uma matriz de ordem $p \times n$, temos as seguintes correspondências entre as operações elementares sobre as linhas de A e produtos de matrizes:

- Efectuar a operação $L_i \leftarrow \lambda L_i$ sobre as linhas de A é equivalente a efetuar o produto $D_i(\lambda) \cdot A$.
- Efectuar a operação $L_i \leftrightarrow L_j$ sobre as linhas de A é equivalente a efetuar o produto $P_{ij} \cdot A$.
- Efectuar a operação $L_i \leftarrow L_i + \lambda L_j$ sobre as linhas de A é equivalente a efetuar o produto $E_{ij}(\lambda) \cdot A$.

Em consequência efetuar uma sequência finita de operações elementares sobre as linhas de uma matriz A é equivalente a multiplicar a matriz A à esquerda por uma sequência finita de matrizes invertíveis. O produto de matrizes invertíveis sendo uma matriz invertível, efetuar uma sequência finita de operações elementares sobre as linhas de uma matriz A corresponde a efetuar um produto UA onde U é uma matriz invertível.