# Process Mining and Intelligence Project Emotion Based Music Selection

Ettore Ricci — Francesco Boldrini — Paolo Palumbo — Zahra Omrani — January 22, 2025

# Contents

| 1 | BP] | IN modeling                           |
|---|-----|---------------------------------------|
|   | 1.1 | Process landscape                     |
|   | 1.2 | Process model                         |
|   |     | 1.2.1 Prepare session                 |
|   |     | 1.2.2 Generate learning sets          |
|   |     | 1.2.3 Develop classifier              |
|   |     | 1.2.4 Classify session                |
|   |     | 1.2.5 Evaluate classifier performance |
|   |     | 1.2.6 Configure systems               |
| 2 | 2.1 | tevel modeling Segregation system     |
|   | 2.1 | Segregation system                    |
|   |     | 2.1.1 Check data balancing            |
|   |     | 2.1.2 Check input coverage            |
|   | 2.2 | Development system                    |
|   |     | 2.2.1 Set iteration number            |
|   |     | 2.2.2 Check learning report           |
|   |     | 2.2.3 Check validation report         |
|   |     | 2.2.4 Check test results              |
|   | 2.3 | Evaluation system                     |
|   |     | 2.3.1 Evaluate classifier performance |

# 1 BPMN modeling

## 1.1 Process landscape

- 1.2 Process model
- 1.2.1 Prepare session
- 1.2.2 Generate learning sets
- 1.2.3 Develop classifier
- 1.2.4 Classify session
- 1.2.5 Evaluate classifier performance
- 1.2.6 Configure systems

# 2 Task level modeling

| Position       | Description                                     | Salary       | Normalized<br>Salary |
|----------------|-------------------------------------------------|--------------|----------------------|
| Clerk          | Handles administrative tasks, organizes docu-   | \$52,000.00  | 1.00                 |
|                | mentation, and assists with data entry and la-  |              |                      |
|                | beling. Ensures smooth operations by coordi-    |              |                      |
|                | nating communication and managing resources.    |              |                      |
| Data analyst   | Prepares, analyzes, and visualizes data to      | \$60,000.00  | 1.15                 |
|                | extract insights. Collaborates on cleaning      |              |                      |
|                | datasets, identifying trends, and supporting    |              |                      |
|                | model validation.                               |              |                      |
| ML engineer    | Builds, tests, and deploys machine learning     | \$130,000.00 | 2.50                 |
|                | models, optimizing performance and scalability. |              |                      |
|                | Integrates AI solutions into production systems |              |                      |
|                | with a focus on efficiency.                     |              |                      |
| Data scientist | Designs and experiments with AI models, ap-     | \$123,000.00 | 2.37                 |
|                | plying advanced techniques to solve project     |              |                      |
|                | challenges. Collaborates with experts to inte-  |              |                      |
|                | grate domain knowledge and refine outputs.      |              |                      |
| Domain expert  | Provides medical expertise to guide AI devel-   | \$267,000.00 | 5.13                 |
| (Neurologist)  | opment and validate results. Ensures solutions  |              |                      |
|                | align with clinical standards and address neu-  |              |                      |
|                | rological challenges.                           |              |                      |
| Minimum        |                                                 | \$52,000.00  | 1.00                 |

Table 1: Salary and normalized salary for each position

## 2.1 Segregation system

## 2.1.1 Check data balancing

The task is performed by a Data Analyst.



Figure 1: "Check data balancing" mock-up form

| Step                                                              | О    | $\mathbf{CL}$ | $\mathbf{S}$ | $\mathbf{SC}$ |
|-------------------------------------------------------------------|------|---------------|--------------|---------------|
| 1 ACTOR opens "Check data balancing" form.                        | 1    | 1             | 1.15         | 1.15          |
| 2 SYSTEM shows the report.                                        |      |               |              |               |
| <b>3 SYSTEM</b> shows a hint whether the data is balanced or not. |      |               |              |               |
| 4 ACTOR checks threshold in the UI.                               | 1    | 2             | 1.15         | 2.30          |
| 5 FOR EACH column in the report:                                  | 5    |               |              |               |
| <b>5.1 IF</b> the column is not within the displayed threshold.   | 4    |               |              |               |
| <b>5.1.1 THEN</b> the data is not balanced.                       | 4    |               |              |               |
| 6.1 IF the data is balanced.                                      | 0.2  |               |              |               |
| 6.1.1 ACTOR clicks "Balanced" button.                             | 0.2  | 1             | 1.15         | 0.23          |
| 6.2 ELSE                                                          | 0.8  |               |              |               |
| 6.2.1 ACTOR clicks "Unbalanced" button.                           | 0.8  | 1             | 1.15         | 0.92          |
| 7 SYSTEM shows a confirmation dialog.                             |      |               |              |               |
| 8 ACTOR closes the form.                                          | 1    | 1             | 1.15         | 1.15          |
|                                                                   | Huma | an tasl       | k cost       | 5.75          |

Table 2: Detailed use case for "Check data balancing" task O - Occurrence, CL - Cognitive Level, S - Normalized Salary, SC - Step Cost

## 2.1.2 Check input coverage

The task is performed by a Data Analyst.



Figure 2: "Check input coverage" mock-up form

| Step                                                           | О    | $\mathbf{CL}$ | S      | $\mathbf{SC}$ |
|----------------------------------------------------------------|------|---------------|--------|---------------|
| 1 ACTOR opens "Check input coverage" form.                     | 1    | 1             | 1.15   | 1.15          |
| 2 SYSTEM shows a radar scatter plot of the input distribution. |      |               |        |               |
| 3 FOR EACH radius in the radar scatter plot:                   | 5    |               |        |               |
| <b>3.1 IF</b> the distribution is not uniform as expected.     | 3.33 | 4             | 1.15   | 15.32         |
| <b>3.1.1 THEN</b> the input coverage is not satisfied.         | 3.33 |               |        |               |
| 4.1 IF the input coverage is satisfied.                        | 0.33 |               |        |               |
| 4.1.1 ACTOR clicks "Accept" button.                            | 0.33 | 1             | 1.15   | 0.38          |
| 4.2 ELSE                                                       | 0.66 |               |        |               |
| 4.2.1 ACTOR clicks "Reject" button.                            | 0.66 | 1             | 1.15   | 0.77          |
| <b>5 SYSTEM</b> shows a confirmation dialog.                   |      |               |        |               |
| 6 ACTOR closes the form.                                       | 1    | 1             | 1.15   | 1.15          |
|                                                                | Hum  | an tas        | k cost | 18.77         |

Table 3: Detailed use case for "Check input coverage" task O - Occurrence, CL - Cognitive Level, S - Normalized Salary, SC - Step Cost

## 2.2 Development system

#### 2.2.1 Set iteration number

The task is performed by a ML engineer.



Figure 3: "Set iteration number" mock-up form

| Step                                                            | О | CL | S   | $\mathbf{SC}$ |
|-----------------------------------------------------------------|---|----|-----|---------------|
| 1 ACTOR opens "Set Iteration Number" form.                      | 1 | 1  | 2.5 | 2.5           |
| 2 SYSTEM displays the current iteration number.                 |   |    |     |               |
| <b>3 ACTOR</b> inputs the desired number of iterations.         | 1 | 3  | 2.5 | 7.5           |
| 4 ACTOR clicks "Submit" button to confirm the iteration number. | 1 | 1  | 2.5 | 2.5           |
| <b>5 SYSTEM</b> shows a confirmation dialog.                    |   |    |     |               |
| 6 ACTOR closes the form.                                        | 1 | 1  | 2.5 | 2.5           |
| Human task cost                                                 |   |    |     | 15            |

Table 4: Detailed use case for "Set iteration number" task O - Occurrence, CL - Cognitive Level, S - Normalized Salary, SC - Step Cost

## 2.2.2 Check learning report

The task is performed by a ML engineer.



Figure 4: "Check learning report" mock-up form

| Step                                                                | О   | $\mathbf{CL}$ | S      | $\mathbf{SC}$ |
|---------------------------------------------------------------------|-----|---------------|--------|---------------|
| 1 ACTOR opens "Check training report" form.                         | 1   | 1             | 2.50   | 2.50          |
| 2 SYSTEM shows the training loss curve.                             |     |               |        |               |
| <b>3.1 IF</b> the loss is flat for at least half of the iterations: | 0.4 | 3             | 2.50   | 3.00          |
| 3.1.1 THEN ACTOR clicks "Overfit" button.                           | 0.4 | 1             | 2.50   | 1.00          |
| <b>3.2 IF</b> the loss is not flat at the end of the iterations:    | 0.4 | 3             | 2.50   | 3.00          |
| 3.2.1 THEN ACTOR clicks "Underfit" button.                          | 0.4 | 1             | 2.50   | 1.00          |
| 3.3 ELSE                                                            | 0.2 | 3             | 2.50   | 1.50          |
| 3.3.1 ACTOR clicks "Approved" button.                               | 0.2 | 1             | 2.50   | 0.50          |
| 4 SYSTEM shows a confirmation dialog.                               |     |               |        |               |
| 5 ACTOR closes the form.                                            | 1   | 1             | 2.50   | 2.50          |
|                                                                     | Hum | an tasl       | k cost | 15.00         |

Table 5: Detailed use case for "Check training report" task O - Occurrence, CL - Cognitive Level, S - Normalized Salary, SC - Step Cost

## 2.2.3 Check validation report

This task is performed by a ML engineer.



Figure 5: "Check validation report" mock-up form

| Step                                                                       | О    | $\mathbf{CL}$ | S        | $\mathbf{SC}$ |
|----------------------------------------------------------------------------|------|---------------|----------|---------------|
| 1 ACTOR opens "Check validation report" form.                              | 1    | 1             | 2.5      | 2.5           |
| 2 SYSTEM shows the best 5 models sorted by increasing Validation           |      |               |          |               |
| Loss.                                                                      |      |               |          |               |
| 3 FOR EACH model in the list:                                              | 5    |               |          |               |
| 3.1 IF the model Validation Loss minus the Training Loss is less than      | 1    | 2             | 2.5      | 5             |
| the Overfitting Tolerance and the Best Model is not selected.              |      |               |          |               |
| 3.1.1 THEN select the model as the Best Model.                             | 1    | 1             | 2.5      | 2.5           |
| 4 FOR EACH model in the list:                                              | 4    |               |          |               |
| 4.1 IF the model is not the Best Model and the Validation Loss minus       | 1    | 2             | 2.5      | 5             |
| the Training Loss is less than the Overfitting Tolerance and the Second    |      |               |          |               |
| Best Model is not selected.                                                |      |               |          |               |
| <b>4.1.1 THEN</b> select the model as the Second Best Model.               | 1    | 1             | 2.5      | 2.5           |
| <b>5.1 IF</b> the Best Model is not selected.                              | 0.05 | 1             | 2.5      | 0.125         |
| 5.1.1 ACTOR clicks "Reject" button.                                        | 0.05 | 1             | 2.5      | 0.125         |
| <b>5.2 ELSE IF</b> the Second Best Model is not selected or the Validation | 0.3  | 3             | 2.5      | 2.25          |
| Loss of the Second Best Model is one order of magnitude greater than       |      |               |          |               |
| the Validation Loss of the Best Model.                                     |      |               |          |               |
| 5.2.1 ACTOR clicks on the Best Model.                                      | 0.3  | 1             | 2.5      | 0.75          |
| 5.3 ELSE                                                                   | 0.65 | 3             | 2.5      | 4.875         |
| 5.3.1 ACTOR clicks on the least complex model among the Best               | 0.65 | 3             | 2.5      | 4.875         |
| Model and the Second Best Model.                                           |      |               |          |               |
| 6 SYSTEM shows a confirmation dialog.                                      |      |               |          |               |
| 7 ACTOR closes the form.                                                   | 1    | 1             | 2.5      | 2.5           |
|                                                                            | Huma | n task        | $\cos t$ | 32.91         |

Table 6: Detailed use case for "Check validation report" task O - Occurrence, CL - Cognitive Level, S - Normalized Salary, SC - Step Cost

## 2.2.4 Check test results

This task is performed by a ML engineer.



Figure 6: "Check test results" mock-up form

| Step                                                              | О    | $\mathbf{CL}$ | S    | $\mathbf{SC}$ |
|-------------------------------------------------------------------|------|---------------|------|---------------|
| 1 ACTOR opens "Check test results" form.                          | 1    | 1             | 2.5  | 2.5           |
| 2 SYSTEM shows the test results.                                  |      |               |      |               |
| 3 ACTOR checks if the difference between the test results and the | 1    | 2             | 2.5  | 5             |
| validation results is within overfitting tolerance.               |      |               |      |               |
| <b>4.1 IF</b> the test results is not satisfactory.               | 0.01 |               |      |               |
| 4.1.1 ACTOR clicks "Reject" button.                               | 0.01 | 1             | 2.5  | 0.025         |
| 4.2 ELSE                                                          | 0.99 |               |      |               |
| 4.2.1 ACTOR clicks "Approve" button.                              | 0.99 | 1             | 2.5  | 2.475         |
| 5 SYSTEM shows a confirmation dialog.                             |      |               |      |               |
| 6 ACTOR closes the form.                                          | 1    | 1             | 2.5  | 2.5           |
|                                                                   | Huma | n task        | cost | 12.5          |

Table 7: Detailed use case for "Check test results" task

O - Occurrence, CL - Cognitive Level, S - Normalized Salary, SC - Step Cost

## 2.3 Evaluation system

## 2.3.1 Evaluate classifier performance



Figure 7: "Evaluate Classifier Performance" mock-up form

| Step                                                                          | О    | $\mathbf{CL}$ | S   | $\mathbf{SC}$ |
|-------------------------------------------------------------------------------|------|---------------|-----|---------------|
| 1 ACTOR opens the "Evaluate Classifier Performance" form.                     |      |               |     |               |
| 2 SYSTEM displays a table of sessions with Expert Label (ground truth)        |      |               |     |               |
| and Classifier Label (predicted label). The difference between the labels (if |      |               |     |               |
| any) represents an error.                                                     |      |               |     |               |
| 3 ACTOR reviews the table.                                                    |      |               |     |               |
| 3.1 IF the total errors or consecutive errors exceed their respective thresh- |      |               |     |               |
| olds:                                                                         |      |               |     |               |
| 3.1.1 ACTOR clicks the "Fail" button.                                         |      |               |     |               |
| 3.2 ELSE                                                                      |      |               |     |               |
| 3.2.1 ACTOR clicks the "Pass" button.                                         |      |               |     |               |
| 4 SYSTEM shows a confirmation dialog.                                         |      |               |     |               |
| 5 ACTOR closes the form.                                                      |      |               |     |               |
| Ни                                                                            | ıman | task c        | ost |               |

Table 8: Detailed use case for "Evaluate Classifier Performance" task O - Occurrence, CL - Cognitive Level, S - Normalized Salary, SC - Step Cost