9.6 Distance formula, perpendicular and parallel slopes

- 1. Do Now: Graph and label the line segment \overline{AB} , A(1,3) and B(5,9).
 - (a) Mark the midpoint M of \overline{AB} . Label it as an ordered pair.

(b) Find the slope of \overline{AB}

$$M_{AB} = \frac{9-3}{5-1} = \frac{6}{4}$$

2. Write down the slope perpendicular to the given slope.

(a)
$$m = \frac{1}{2}$$
 $m_{\perp} = -2$

(c)
$$m = -2$$
 $m_{\perp} = \frac{1}{2}$

(b)
$$m = -\frac{3}{5}$$
 $m_{\perp} = +\frac{5}{3}$ (d) $m = 0.75 = \frac{3}{4}$ $m_{\perp} = -\frac{4}{3}$

(d)
$$m = 0.75 = \frac{3}{4} m_{\perp} = -\frac{4}{3}$$

- 3. The line l has the equation $y = -\frac{1}{2}x + 3$.
 - (a) What is the slope of the line k, given $k \parallel l$?

(b) What is the slope of the line j, given $j \perp l$?

4. Find the slope m of the line x - 2y = 1. Write down m_{\perp} .

$$y = \frac{1}{2}x - \frac{1}{2}$$
 $M = \frac{1}{2}$
 $M_1 = -2$

5. Plot and label the line segment \overline{PQ} , P(-1,8) and Q(7,2).

(a) Graph the perpendicular bisector of \overline{PQ} and label it with its equation in the form y = mx + b.

 $y = \frac{4}{3} \times +1$

(b) Plot and label R(6,9). Compare the distances PR and PQ.

6. Solve each system of equations. Check your answer.

(a)
$$4x + 8y = 20$$

 $-4x + 2y = -30$
 $|0y| = -10$
 $y = -1$
 $4x + 8(-1) = 20$
 $x = 7$
Check: $-4(7) + 2(-1) = -30$?
 $-28 - 2 = -30$

(b)
$$8x + y = -16$$

 $-3x + y = -5$ Sobtract

11 $x = -1$
 $x = -1$
 $x = -1$
 $x = -1$
 $y = -8$
Cheek:
$$-3(-1) + -8 = -5$$

$$-5 = -5$$

6. Spicy: On the set of axes below, graph the quadrilateral ABCD having coordinates A(-3,-3), B(5,1), C(6,8), and D(-2,4).

Show that the midpoints of the two diagonals, \overline{AC} and \overline{BD} , are the same point.

$$M_{AC} = \begin{pmatrix} -3+6\\ 2 \end{pmatrix} = \begin{pmatrix} -3+6\\ 2 \end{pmatrix} = \begin{pmatrix} +\frac{3}{2}, \frac{5}{2} \end{pmatrix}$$
 $M_{Bb} = \begin{pmatrix} 5+-2\\ 2 \end{pmatrix}, \frac{1+4}{2} = \begin{pmatrix} \frac{3}{2}, \frac{5}{2} \end{pmatrix}$
 $M_{AC} = M_{Bb}$

Prove ABCD is a parallelogram. Use the following theorem: A quadrilateral is a parallelogram if and only if its diagonals bisect each other.

Be sure to state the conclusion in your proof.

Intersection M bisects AC and Bo because M 75 their mil points

-> ARCB is a pavallelogram because its liagonals bised each other