BIBLIOGRAFIA GENERAL

- Arnaz, J. (2010). Iniciación a la Lógica Simbólica. (Tercera edición). México. Editorial Trillas.
- Copi, I. (1973). Introducción a la Lógica. Buenos Aires. EUDEBA.
- Gallo, C. (1988). Matemáticas para estudiantes de administración y Economía. Tomo I. Caracas. Ediciones de la Biblioteca UCV.
- Hilbert, D., Ackermann, W. (1975). Elementos de Lógica. Madrid. Editorial Tecno. S. A.
- Jhonsonbaugh, R. (1988). Matemáticas Discretas. México. Grupo Editorial Iberoamericana.
- Lipschutz, S. (1970). Teoría de conjuntos y temas afines. Colombia. McGraw-Hill.
- Napolitano, A. (2005). Lógica Matemática. Caracas. Editorial biosfera.
- Rojo, A. (1976). Álgebra I. (Quinta edición). Buenos Aires. Librería El Ateneo Editorial.
- Saenz, J., Gil, F., Romero, N. (1986). Fundamentos de la Matemática. Barquisimeto. Editorial Hipotenusa.
- Suppes, P., Hill S. (1982). Introducción a la Lógica Matemática. Barcelona.
 Editorial Reverté, S. A.

RESPUESTAS DE LOS EJERCICIOS DE AUTOEVALUACIÓN

UNIDAD I

1) a. F b. F c. No es una proposición d. V e. F

a. F b. F c. No es una proposición d. V e. F

e. No es una proposición

2) El valor de verdad de la proposición $(r \land (\sim t)) \rightarrow (\sim (\sim t))$ es F.

3) a) Contingencia b) Contingencia c) Tautología d) Tautología.

4) Las proposiciones $[p \leftrightarrow q]$ y $[(p \land q) \lor (\sim p \land \sim q)]$ si son lógicamente equivalentes, pues:

p	q	p∧q	~p	~q	~p^~q	p↔ q	[(p^q)\(~p^~q)]	
V	V	V	F	F	F	V	V	
V	F	F	F	V	F	F	F	
F	V	F	V	F	F	F	F	
F	F	F	V	V	V	V	V	

5) Sean las proposiciones q y r:

q: 8 es múltiplo de 4

r: 16 es múltiplo de 2

Respuesta a:

a) $q \rightarrow r$: Si 8 es múltiplo de 4 entonces 16 es múltiplo de 2

(V)

Respuesta b:

Recíproco:

 $r \rightarrow q$: Si 16 es múltiplo de 2 entonces 8 es múltiplo de 4 (V)

Contrario

 \sim q \rightarrow \sim r: Si 8 no es múltiplo de 4 entonces 16 no es múltiplo de 2 **(V)**

Contrarrecíproco

 \sim r \rightarrow \sim q : Si 16 no es múltiplo de 2 entonces 8 no es múltiplo de 4 **(V)**

UNIDAD II

1)

Ejercicio	Conclusión	Método		
a	No llovió	MTT		
b	Jesús se enfermó	MPP		
С	~(p∨q)	MTT		
d	p→ q	MTP		

2) Los razonamientos válidos son a, b, d, e, f.

3)

Demostración a:

n es un número natural impar entonces $\,n=2p+1,\,\,p\in\!N$:

$$n^2 = (2p + 1)^2 \rightarrow n^2 = (2p)^2 + 2 \cdot 2p + 1 \rightarrow n^2 = 4p^2 + 4p + 1 \rightarrow n^2 = 4 \cdot (p^2 + p) + 1$$

como $p \in N$ entonces $(p^2 + p)$ es un número par, por lo que $p^2 + p = 2k$ con $k \in N$ Sustituyendo $p^2 + p = 2k$ en $n^2 = 4 \cdot (p^2 + p) + 1$ se tiene : $n^2 = 4 \cdot 2k + 1$, de donde $n^2 = 8k + 1$ con $k \in N$.

Demostración b:

Suponemos que: $n \in \mathbb{N}$, 3n + 2 es impar y n es par.

Como n es par entonces $n=2k, k \in N$:

$$3n + 2 = 3(2k) + 2$$
 con $k \in \mathbb{N}$
= $6k + 2$
= $2(3k + 1)$ sea $3k + 1 = q$, $q \in \mathbb{N}$

Así 3n + 2 = 2q con $q \in N$ lo que significa que 3n + 2 es un número par, lo cual es una contradicción con la hipótesis. Por lo cual se concluye que n es impar.

4)

Proposición	Contraejemplo					
a)	$a = \sqrt{2}$, $b = \sqrt{8}$ son números irracionales, pero:					
	$a \cdot b = \sqrt{2} \cdot \sqrt{8} = 4$ es racional.					
b)	n=15 es múltiplo de 3 pero n=15 no es múltiplo de 6.					
c)	a=0 es un número real pero $0^0 \neq 1$					
d)	Sean $a = 4$, $b=9$:					
	$\sqrt{a+b} = \sqrt{4+9} = \sqrt{13}$					
	$\sqrt{a} + \sqrt{b} = \sqrt{4} + \sqrt{9} = 2 + 3 = 5$					
	$\sqrt{4+9} \neq \sqrt{4} + \sqrt{9}$					

5)

		Justificación		
1.	$p \rightarrow q$	P		
2.	r→s	Р		
3.	~q∨~s	P		
4.	~s→~r	Ley del Contrarrecíproco		
5.	q→~s Ley del condicional (3)			
6.	q→~r	Ley del Silogismo Hipotético (4,5)		
7.	p→~r	Ley del Silogismo Hipotético (1,6)		
8.	~p∨~r	Ley del condicional (7). Conclusión		

UNIDAD III

PARTE I

1)

Enunciado	Términos	Predicado	Referido a:
a)	У	Es un	Propiedad
		número	
		primo	
b)	2		
	números	es	Relación
	entero		
c)	х, у	es un	Relación
		múltiplo de	
d)	5+x	Es positivo	Propiedad

2)

Enunciado	En	Universo	Dominio de
	Símbolos		Verdad
a	P(x): x es	Conjunto	Conjunto de los
	ingeniero	de personas	ingenieros
b	C(y): y es un	Los	Los cuadriláteros
	cuadrilátero	polígonos	
С	$M(x)$: x^2 es		(-∞, -2)U (2, ∞)
	mayor que 4	\mathbb{R}	
d	R(x): x es un		Todos los
	número	N	números primos
	impar y		excepto el 2
	primo		

3)

a) $P(x) \rightarrow \sim Q(x)$ y $\sim Q(x) \rightarrow P(x)$ no son equivalentes pues un condicional es el recíproco del otro, y en general no son equivalentes.

b) $\sim P(x) \wedge Q(x)$ y $\sim (P(x) \vee \sim Q(x))$ son equivalentes por la Ley de Morgan.

4)

	Negación
a)	$\forall y: y^2 = y$
b)	∀ y , ∃x: x·y≠1
c)	$\exists y : y^2 + y + 1 \ge 0$
d)	$\exists x , \forall y : [\sim P(x) \land Q(y)]$

PARTE II.

1) b 2) c 3) d 4) a 5) b

UNIDAD IV

PARTE I.

1) a 2) c 3) c 4) b 5) d 6) c

PARTE II

1)

- a) w es la única variable ligada al cuantificador \forall , z es la única variable ligada al cuantificador \exists , x es una variable libre.
- b) w es la única variable ligada al cuantificador \forall , x, z son variables ligadas a un cuantificador existencial, y es una variable libre.
- c) w, x son variables ligadas al cuantificador ∀, z es la única variable ligada al cuantificador ∃, y es una variable libre.

2)

- a) $\forall m: Q(m, m)$ Falsa, no se cumple para m=0
- b) $\forall x: Q(1, x)$ Verdadera, 1 divide a cualquier entero
- c) $\forall n, \exists m: Q(n, m)$ Falsa, no se cumple para n=0
- d) $\exists n, \forall m: Q(n, m)$ **Verdadera**, con n=1 se satisface
- e) $\forall n, \forall m: [(Q(n, m) \land Q(m, n)) \rightarrow n=m]$ Falsa, $2|-2 \land -2|2$ pero $-2 \neq 2$

UNIDAD V

PARTE I.

1) V 2) V 3) F 4) V 5) F 6) V 7) V 8) F

9) V 10) F 11) F 12) V 13) F 14) V 15) V

PARTE II

1) b 2) a 3) b 4) b 5) c 6) c

7) a 8) b 9) a 10) b 11) d 12) c

UNIDAD VI

PARTE I.

1) F 2) V 3) F 4) V 5) V 6) F

PARTE II.

1) b 2) a 3) c 4) d

PARTE III.

Columna I	1	2	3	4	5	6	7	8	9	10
Columna II	5	8	9	6	2	4	1	10	7	3

PARTE IV.

Sean

U el conjunto formado por todos los estudiantes del curso, card(U)=70 A el conjunto formado por los estudiantes que cursan Algebra, card(A)=40 L el conjunto formado por los estudiantes que cursan Lógica, card(L)=35 15 alumnos cursan ambas asignaturas por lo que card(A \cap L)=15

- a) 60 estudiantes cursan una asignatura
- b) 25 alumnos cursan Álgebra y no cursan Lógica.
- c) 20 alumnos cursan Lógica y no cursan Álgebra.
- d) 10 alumnos no cursan ni Álgebra ni Lógica

UNIDAD VII

PARTE I.

Determine si las siguientes proposiciones son verdaderas o falsas.

1) F

3) F

4) V 5) F 6) V

7) F 8) V

9) F

10) V

11) V

12) F

13) F

14) F 15) F 16) V

PARTE II.

1)

- a) R es una relación de equivalencia
 - i) R es reflexiva pues para todo elemento de A se tiene aRa, bRb, cRc, dRd, eRe, f Rf

ya que (a, a), (b, b), (c, c), (d, d), (e, e), (f, f) pertenecen a R

ii) En R se encuentran los pares:

$$(a, d), (d, a), (b, c), (c, b), (f,b), (b,f) (f,c), (f,c),$$

Esto es se cumple que $\forall x, y \in A:(xRy \rightarrow yRx)$, lluego R es simétrica.

- iii) Se puede verificar que el condicional (xRy \land yRz) \rightarrow xRz es verdadero para cualquier elección que se haga para x, y, z en A, luego R es transitiva.
- b) Clases de equivalencia: $[a] = \{a, d\}$, $[b] = \{b, c, f\}$, $[e] = \{e\}$ Conjunto cociente $A/R = \{ [a], [d], [e] \}.$

- 2)
- a) $f(-3) = \frac{-3}{4}$, $f(5) = \frac{13}{4}$, $f(1) = \frac{5}{4}$
- b) Gráfica de f.

- c) El rango de f es R
- d) f es biyectiva pues f es inyectiva y sobreyectiva.
- e) La función inversa de f es $f^{-1}(y) = \frac{4y-3}{2}$
- 3)

La relación R satisface las propiedades reflexivas, antisimétrica y transitiva.

- a) $\forall X \in P(A)$ se cumple que $X \subset X$, por lo tanto R es reflexiva.
- **b)** $\forall X,Y \in P(A)$ si $(X \subset Y \land Y \subset X)$ entonces X = Y, lo que significa que $\forall X,Y \in P(A)$: $[(XRY \land YRX) \rightarrow X = Y]$, por lo que R es antisimétrica.
- c) $\forall X, Y, N \in P(A)$ si $(X \subset Y \land Y \subset N)$ entonces $X \subset N$, es decir se cumple que $\forall X, Y, N \in P(A):[(XRY \land YRN) \to XRN]$, por lo tanto, R es transitiva. Por lo tanto, se concluye que R es una relación de orden.

Esta edición del libro *Lógica matemática y teoría de conjuntos* se terminó de imprimir en marzo de 2019, en los talleres de la unidad de reproducciones de la UAPA, Santiago, República Dominicana.