29.15 Visualizing train, validation and test datasets

For now we shall split the dataset ' D_n ' into 3 parts. They are ' D_{Train} '(60%), ' D_{cv} '(20%) and ' D_{Test} (20%)'. Every data point (irrespective of whether it is present in ' D_{Train} ', ' D_{cv} ' and ' D_{Test} ') is represented as (x_i , y_i).

Observations:

- 1) 'D_{Train}' and 'D_{cv}' do not overlap perfectly.
- 2) If there are many +ve/-ve points from ' D_{Train} ' in a region, then it is highly likely to find many +ve/-ve points from ' D_{cv} ' in that region.
- 3) If there are a few +ve/-ve points in a region from ' D_{Train} ', then it is very unlikely to find +ve/-ve points from ' D_{cv} ' in that region. Such points are noise/outliers.

All the above 3 observations are True, as long as ' D_{Train} ' and ' D_{cv} ' are randomly sampled. We also could see the above observations between ' D_{Train} ' and ' D_{Test} ', if they both are randomly sampled.