### CornellEngineering

Electrical and Computer Engineering



### Motor Controlling Module for Robotic Mobility Assistive Device

Author: Zhihao Xu, Yiqi Sun Advisor: Hunter Adams, Aleksandr Malashchenko

# Mobility-impaired people have difficulty getting up independently

- Prevalence of Disability: Three out of ten U.S. families have at least one member with a disability, amounting to millions of individuals with self-care challenges.
- Caregiver Dependence: Caregivers dedicate over a day each week to assist with mobility and daily activities, significantly reducing the independence and self-esteem of those they help due to challenges with traditional devices, privacy issues, and personal care management.
- Aleksandr's solution: Using differential drive with four powered mecanum wheels, include mechanisms to open/close and lift the seat with linear actuators, and close the backrest with rotary actuators.
- Our Project goal: We aim to build a robust motor control subsystem for the assistive device.



Figure 1

## Joystick-Controlled Motor System Using PICO and Motor Driver

Our design project leverages the SVD48V motor driver and Raspberry Pi Pico to establish the framework for a motor control system operated via a joystick, aimed at providing intuitive and responsive control. This project will lay the foundation for motion control of robotic mobility assistive device for the disabled.

# CAN bus communication for control system



Figure 2

- Integrated the microcontroller as the central control unit.
- Connected a joystick to the microcontroller for real-time directional input.
- While the CAN communication link between the RP2040 and the motor driver is yet to be fully established, the motor operates effectively via a PC-based software tool using RS485 communication.
- Enabled configuration and precise control of the motor driver through a PC-based software tool.
- The Raspberry Pi Pico's libraries are being utilized to handle communication protocols by sending commands to the motor driver and receiving responses.
- Implemented basic data integrity checks and efficient data handling techniques to support stable and effective communication.



Figure 3 [1]



Figure 4 [2]. Automatic wheelchair

#### Reference:

[1] https://www.uumotor.com/multi-function-rs485-can-encoder-hall-sensors-brushless-dc-dual-control-driver.html [2] https://www.revithaca.com/introducing-the-2023-prototyping-hardware-accelerator-cohorts/

### Why CAN?

- Reliability in Communication: CAN bus provides robust error detection and error-handling capabilities, ensuring reliable data transmission even in challenging environments.
- Reduced Wiring Complexity: By allowing multiple microcontrollers to communicate over a single or dual wire interface, CAN bus significantly reduces the complexity and weight of wiring networks.
- Real-Time Capability: Offers real-time capabilities ideal for control systems, facilitating timely and synchronized data exchange critical for operational efficiency.

|      |               | Remark                       |                                                                                        |
|------|---------------|------------------------------|----------------------------------------------------------------------------------------|
| .No. | mark          | name                         |                                                                                        |
| 1    | RS485B        | RS485 communication B signal | RS485 commun ication interface                                                         |
| 2    | RS232_TX<br>D | RS232 send                   | RS232 communication interface, support RS232<br>DB9 male head plugs straight in. Note: |
| 3    | RS232_RX<br>D | RS232 receive                | RS485 will not work if an RS232 connector with flow control is used                    |
| 4    | NC            | NC                           | NC                                                                                     |
| 5    | DGND          | output power ground          | Note: The total current limit of all external 5V power supplies is 1A                  |
| 6    | 5V            | Output power +5V             |                                                                                        |
| 7    | RS485A        | RS485 communication A signal | RS485 communication interface                                                          |
| 8    | CANH          | CANH signal                  | CAN communication interface                                                            |
| 9    | CANL          | CANL signal                  |                                                                                        |



Figure 5 [1]

#### Future work

- CAN communication: Establish CAN communication between microcontroller and motor driver
- Enhanced Remote Control: Implement advanced joystick operation to enable independent use of the mobility device, reducing caregiver dependency and increasing user privacy.
- Automated Seating Mechanism: Introduce motorized seat adjustments to help users move between sitting and lying positions with ease, benefiting those with limited strength or dexterity.