

CS215 DISCRETE MATH

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

• Algorithm Design, is mainly about designing algorithms that have small Big-O running time.

• Algorithm Design, is mainly about designing algorithms that have small Big-O running time.

Being able to do good algorithm design lets you identify the hard parts of your problem and deal with them effectively.

- Algorithm Design, is mainly about designing algorithms that have small Big-O running time.
- Being able to do good algorithm design lets you identify the hard parts of your problem and deal with them effectively.
- Too often, programmers try to slove problems using brute force techniques and end up with slow complicated code!

- Algorithm Design, is mainly about designing algorithms that have small Big-O running time.
- Being able to do good algorithm design lets you identify the hard parts of your problem and deal with them effectively.
- Too often, programmers try to slove problems using brute force techniques and end up with slow complicated code!
- A few hours of abstract thought devoted to algorithm design could have speeded up the solution substantially and simplified it!

What happens if you can't find an efficient algorithm for a given problem?

What happens if you can't find an efficient algorithm for a given problem?

Blame yourself.

I couldn't find a polynomial-time algorithm. I guess I am too dumb.

What happens if you can't find an efficient algorithm for a given problem?

Show that no-efficient algorithm exists.

I couldn't find a polynomial-time algorithm, because no such algorithm exists.

Showing that a problem has an efficient algorithm is, relatively easy:

Showing that a problem has an efficient algorithm is, relatively easy:

"All" that is needed is to demonstrate an algorithm.

Showing that a problem has an efficient algorithm is, relatively easy:

"All" that is needed is to demonstrate an algorithm.

Proving that no efficient algorithm exists for a particular problem is difficult:

Showing that a problem has an efficient algorithm is, relatively easy:

"All" that is needed is to demonstrate an algorithm.

Proving that no efficient algorithm exists for a particular problem is difficult:

How can we prove the non-existence of something?

Showing that a problem has an efficient algorithm is, relatively easy:

"All" that is needed is to demonstrate an algorithm.

Proving that no efficient algorithm exists for a particular problem is difficult:

How can we prove the non-existence of something?

We will now learn about NP-Complete problems, which provide us with a way to approach this question.

Introduction

- A very large class of thousands of practical problems for which it is not known if the problems have "efficient" solutions.
- It is known that if any one of the NP-Complete problems has an efficient solution then all of the NP-Complete problems have efficient solutions.
- Researchers have spent innumberable man-years trying to find efficient solutions to these problems but failed.
- So, NP-Complete problems are very likely to be hard.
- What do you do: prove that your problem is NP-Complete.

Introduction

What do you actually do:

I couldn't find a polynomial-time algorithm, but neither could all these other smart people!

Encoding the Inputs of Problems

Complexity of a problem is measure w.r.t the size of input.

Encoding the Inputs of Problems

Complexity of a problem is measure w.r.t the size of input.

In order to formally discuss how hard a problem is, we need to be much more formal than before about the input size of a problem.

■ The input size of a problem might be defined in a number of ways.

The input size of a problem might be defined in a number of ways.

Definition The *input size* of a problem is the minimum number of bits $(\{0,1\})$ needed to encode the input of the problem.

The input size of a problem might be defined in a number of ways.

Definition The *input size* of a problem is the minimum number of bits $(\{0,1\})$ needed to encode the input of the problem.

■ The exact input size s, determined by an optimal encoding method, is hard to compute in most cases.

The input size of a problem might be defined in a number of ways.

Definition The *input size* of a problem is the minimum number of bits $(\{0,1\})$ needed to encode the input of the problem.

■ The exact input size s, determined by an optimal encoding method, is hard to compute in most cases.

However, we do not need to determine s exactly.

For most problems, it is sufficient to choose some natural, and (usually) simple, encoding and use the size *s* of this encoding.

Input Size Example: Composite

Example:

Given a positive integer n, are there integers j, k > 1 such that n = jk? (i.e., is n a composite number?)

Input Size Example: Composite

Example:

Given a positive integer n, are there integers j, k > 1 such that n = jk? (i.e., is n a composite number?)

Question:

What is the input size of this problem?

Input Size Example: Composite

Example:

Given a positive integer n, are there integers j, k > 1 such that n = jk? (i.e., is n a composite number?)

Question:

What is the input size of this problem?

Any integer n > 0 can be represented in the binary number system as a string $a_0 a_1 \cdots a_k$ of length $\lceil \log_2(n+1) \rceil$.

Thus, a natural measure of input size is $\lceil \log_2(n+1) \rceil$ (or just $\log_2 n$)

Input Size Example: Sorting

Example:

Sort n integers a_1, \ldots, a_n

Input Size Example: Sorting

Example:

Sort n integers a_1, \ldots, a_n

Question:

What is the input size of this problem?

Input Size Example: Sorting

Example:

Sort n integers a_1, \ldots, a_n

Question:

What is the input size of this problem?

Using fixed length encoding, we write a_i as a binary string of length $m = \lceil \log_2 \max(|a_i| + 1) \rceil$.

This coding gives an input size *nm*.

Complexity in terms of Input Size

Example: (Composite)

The naive algorithm for determining whether n is composite compares n with the first n-1 numbers to see if any of them divides n

Complexity in terms of Input Size

Example: (Composite)

The naive algorithm for determining whether n is composite compares n with the first n-1 numbers to see if any of them divides n

This makes $\Theta(n)$ comparisons, so it might seem linear and very efficient.

Complexity in terms of Input Size

Example: (Composite)

The naive algorithm for determining whether n is composite compares n with the first n-1 numbers to see if any of them divides n

This makes $\Theta(n)$ comparisons, so it might seem linear and very efficient.

But, note that the input size of this problem is $size(n) = \log_2 n$, so the number of comparisons performed is actually $\Theta(n) = \Theta(2^{size(n)})$, which is exponential.

■ **Definition** Two positive functions f(n) and g(n) are of the same type if

$$c_1g(n^{a_1})^{b_1} \leq f(n) \leq c_2g(n^{a_2})^{b_2}$$

for all large n, where $a_1, b_1, c_1, a_2, b_2, c_2$ are some positive constants.

■ **Definition** Two positive functions f(n) and g(n) are of the same type if

$$c_1g(n^{a_1})^{b_1} \leq f(n) \leq c_2g(n^{a_2})^{b_2}$$

for all large n, where $a_1, b_1, c_1, a_2, b_2, c_2$ are some positive constants.

Example:

All polynomials are of the same type, but *polynomials* and *exponentials* are of different types.

Input Size Example: Integer Multiplication

Example: (Integer Multiplication problem) Compute $a \times b$.

Input Size Example: Integer Multiplication

Example: (Integer Multiplication problem) Compute $a \times b$.

Question:

What is the input size of this problem?

Input Size Example: Integer Multiplication

Example: (Integer Multiplication problem) Compute $a \times b$.

Question:

What is the input size of this problem?

The minimum inpute size is

$$s = \lceil \log_2(a+1) \rceil + \lceil \log_2(b+1) \rceil.$$

A natural choice is to use $t = \log_2 \max(a, b)$ since $\frac{s}{2} \le t \le s$.

Decision Problems

■ **Definition** A *decision problem* is a question that has two possible answers: yes and no.

Decision Problems

■ **Definition** A *decision problem* is a question that has two possible answers: yes and no.

If L is the problem, and x is the input, we will often write $x \in L$ to denote a yes answer and $x \notin L$ to denote a no answer.

Optimization Problems

■ **Definition** An *optimization problem* requires an answer that is an optimal configuration.

Optimization Problems

■ **Definition** An *optimization problem* requires an answer that is an optimal configuration.

An optimization problem usually has a corresponding decision problem.

Optimization Problems

■ **Definition** An *optimization problem* requires an answer that is an optimal configuration.

An optimization problem usually has a corresponding decision problem.

Examples:

Knapsack vs. Decision Knapsack (DKnapsack)

Knapsack vs. DKnapsack

• We have a knapsack of capacity W (a positive integer) and n objects with weights w_1, \ldots, w_n and values v_1, \ldots, v_n , where v_i and w_i are positive integers.

Knapsack vs. DKnapsack

• We have a knapsack of capacity W (a positive integer) and n objects with weights w_1, \ldots, w_n and values v_1, \ldots, v_n , where v_i and w_i are positive integers.

Optimization problem: (Knapsack)

Find the largest value $\sum_{i \in T} v_i$ of any subset T that fits in the knapsack, i.e., $\sum_{i \in T} w_i \leq W$.

Decision problem: (DKnapsack)

Given k, is there a subset of the objects that fits in the knapsack and has total value at least k?

Optimization and Decision Problems

Given a subroutine for solving the optimization problem, solving the corresponding decision problem is usually trivial.

Optimization and Decision Problems

Given a subroutine for solving the optimization problem, solving the corresponding decision problem is usually trivial.

First solve the optimization problem, then check the decision problem. If it does, answer yes, otherwise no.

Optimization and Decision Problems

Given a subroutine for solving the optimization problem, solving the corresponding decision problem is usually trivial.

First solve the optimization problem, then check the decision problem. If it does, answer yes, otherwise no.

Thus, if we prove that a given decision problem is hard to solve efficiently, then it is obvious that the optimization problem must be (at least as) hard.

- The Theory of Complexity deals with
 - the classification of certain "decision problems" into several classes:
 - ♦ the class of "easy" problems
 - the class of "hard" problems
 - the class of "hardest" problems

- The Theory of Complexity deals with
 - the classification of certain "decision problems" into several classes:
 - ♦ the class of "easy" problems
 - the class of "hard" problems
 - the class of "hardest" problems
 - relations among the three classes

- The Theory of Complexity deals with
 - the classification of certain "decision problems" into several classes:
 - ♦ the class of "easy" problems
 - the class of "hard" problems
 - the class of "hardest" problems
 - relations among the three classes
 - properties of problems in the three classes

- The Theory of Complexity deals with
 - the classification of certain "decision problems" into several classes:
 - ♦ the class of "easy" problems
 - ♦ the class of "hard" problems
 - the class of "hardest" problems
 - relations among the three classes
 - properties of problems in the three classes

Question:

How to classify decision problems?

- The Theory of Complexity deals with
 - the classification of certain "decision problems" into several classes:
 - ♦ the class of "easy" problems
 - ♦ the class of "hard" problems
 - the class of "hardest" problems
 - relations among the three classes
 - properties of problems in the three classes

Question:

How to classify decision problems?

A. Use polynomial-time algorithms.

■ **Definition** An algorithm is *polynomial-time* if its running time is $O(n^k)$, where k is a constant independent of n, and n is the input size of the problem that the algorithm solves.

Definition An algorithm is *polynomial-time* if its running time is $O(n^k)$, where k is a constant independent of n, and n is the input size of the problem that the algorithm solves.

Whether we use n or n^a (for a fixed a > 0) as the input size, it will not affect the conclusion of whether an algorithm is polynomial-time.

Definition An algorithm is *polynomial-time* if its running time is $O(n^k)$, where k is a constant independent of n, and n is the input size of the problem that the algorithm solves.

Whether we use n or n^a (for a fixed a > 0) as the input size, it will not affect the conclusion of whether an algorithm is polynomial-time.

Example:

The standard multiplication algorithm has time $O(m_1m_2)$, where m_1, m_2 denote the number of digits in the two integers, respectively.

■ **Definition** An algorithm is *nonpolynomial-time* if the running time is not $O(n^k)$ for any fixed $k \ge 0$.

■ **Definition** An algorithm is *nonpolynomial-time* if the running time is not $O(n^k)$ for any fixed $k \ge 0$.

Let's return to the Composite problem.

- \diamond it checks, in time $\Theta((\log n)^2)$, whether k divides n for each k with $2 \le k \le n-1$.
- \diamond The complete algorithm therefore uses $\Theta(n(\log n)^2)$ time.

■ **Definition** An algorithm is *nonpolynomial-time* if the running time is not $O(n^k)$ for any fixed $k \ge 0$.

Let's return to the Composite problem.

- \diamond it checks, in time $\Theta((\log n)^2)$, whether k divides n for each k with $2 \le k \le n-1$.
- \diamond The complete algorithm therefore uses $\Theta(n(\log n)^2)$ time.

Conclusion: The algorithm is nonpolynomial!

■ **Definition** An algorithm is *nonpolynomial-time* if the running time is not $O(n^k)$ for any fixed $k \ge 0$.

Let's return to the Composite problem.

- \diamond it checks, in time $\Theta((\log n)^2)$, whether k divides n for each k with 2 < k < n-1.
- \diamond The complete algorithm therefore uses $\Theta(n(\log n)^2)$ time.

Conclusion: The algorithm is nonpolynomial!

Question:

Why?

■ **Definition** An algorithm is *nonpolynomial-time* if the running time is not $O(n^k)$ for any fixed $k \ge 0$.

Let's return to the Composite problem.

- \diamond it checks, in time $\Theta((\log n)^2)$, whether k divides n for each k with $2 \le k \le n-1$.
- \diamond The complete algorithm therefore uses $\Theta(n(\log n)^2)$ time.

Conclusion: The algorithm is nonpolynomial!

Question:

Why?

In terms of the input size, the complexity is $\Theta(2^N N^2)$.

Polynomial- vs. Nonpolynomial-Time

Nonpolynomial-time algorithms are impractical.

```
2^n for n = 100: it takes billions of years!!!
```


Polynomial- vs. Nonpolynomial-Time

Nonpolynomial-time algorithms are impractical.

 2^n for n = 100: it takes billions of years!!!

In reality, an $O(n^{20})$ algorithm is not really practical.

Polynomial-Time Solvable Problems

■ **Definition** A problem is *solvable in polynomial time* (or more simply, the problem is *in polynomial time*) if there exists an algorithm which solves the problem in polynomial time (a.k.a. *tractable*).

Polynomial-Time Solvable Problems

■ **Definition** A problem is *solvable in polynomial time* (or more simply, the problem is *in polynomial time*) if there exists an algorithm which solves the problem in polynomial time (a.k.a. *tractable*).

Definition (The Class P) The class P consists of all decision problems that are solvable in polynomial time. That is, there exists an algorithm that will decide in polynomial time if any given input is a yes-input or a no-input.

• Question:

How to prove that a decision problem is in P?

• Question:

How to prove that a decision problem is in P?

A. Find a polynomial-time algorithm.

• Question:

How to prove that a decision problem is in P?

A. Find a polynomial-time algorithm.

Question:

How to prove that a decision problem is not in P?

Question:

How to prove that a decision problem is in P?

A. Find a polynomial-time algorithm.

Question:

How to prove that a decision problem is not in P?

A. You need to prove that there is no polynomial-time algorithm for this problem. (much much harder)

■ **Observation:** A decision problem is usually formulated as:

Is there an object satisfying some conditions?

■ **Observation:** A decision problem is usually formulated as:

Is there an object satisfying some conditions?

A certificate is a specific object corresponding to a yes-input, such that it can be used to show that the input is indeed a yes-input.

A certificate is a specific object corresponding to a yes-input, such that it can be used to show that the input is indeed a yes-input.

Verifying a certificate: Given a presumed yes-input and its corresponding certificate, by making use of the given certificate, we verify that the input is actually a yes-input.

■ **Definition** The class NP consists of all decision problems such that, for each yes-input, there exists a *certificate* which allows one to verify in polynomial time that the input is indeed a yes-input.

■ **Definition** The class NP consists of all decision problems such that, for each yes-input, there exists a *certificate* which allows one to verify in polynomial time that the input is indeed a yes-input.

NP – "nondeterministic polynomial-time"

■ For Composite, a yes-input is just the integer *n* that is composite.

■ For Composite, a yes-input is just the integer *n* that is composite.

Question: (Certificate) What is needed to show *n* is actually a yes-input?

For Composite, a yes-input is just the integer n that is composite.

Question: (Certificate)

What is needed to show n is actually a yes-input?

A. An integer a (1 < a < n) with the property that $a \mid n$.

For Composite, a yes-input is just the integer n that is composite.

Question: (Certificate) What is needed to show *n* is actually a yes-input?

- **A.** An integer a (1 < a < n) with the property that $a \mid n$.
 - \diamond Given a certificate a, check whether a divides n.
 - \diamond This can be done in $O((\log n)^2)$.
 - \diamond Composite \in NP

For Composite, a yes-input is just the integer n that is composite.

Question: (Certificate) What is needed to show *n* is actually a yes-input?

- **A.** An integer a (1 < a < n) with the property that $a \mid n$.
 - \diamond Given a certificate a, check whether a divides n.
 - \diamond This can be done in $O((\log n)^2)$.
 - \diamond Composite \in NP

DKnapsack ∈ NP

P = NP?

■ One of the most important problems in CS is whether P = NP or $P \neq NP$?

P = NP?

- One of the most important problems in CS is whether P = NP or $P \neq NP$?
- Observe that $P \subseteq NP$.

$\overline{\mathsf{P}} = \mathsf{NP}?$

- One of the most important problems in CS is whether P = NP or $P \neq NP$?
- Observe that $P \subseteq NP$.
- Intuitively, NP ⊆ P is doubtful.

$\mathsf{P} = \mathsf{NP}?$

- One of the most important problems in CS is whether P = NP or $P \neq NP$?
- Observe that P ⊂ NP.
- Intuitively, NP ⊆ P is doubtful.

Just being able to verify a certificate in polynomial time does not necessarily mean we can tell whether an input is a yes-input or a no-input in polynomial time.

$\mathsf{P} = \mathsf{NP}?$

- One of the most important problems in CS is whether P = NP or $P \neq NP$?
- Observe that P ⊂ NP.
- Intuitively, NP ⊆ P is doubtful.

Just being able to verify a certificate in polynomial time does not necessarily mean we can tell whether an input is a yes-input or a no-input in polynomial time.

However, we are still no closer to solving it and do not know the answer. The search for a solution, though, has provided us with deep insights into what distinguishes an "easy" problem from a "hard" one.

■ *Reduction* is a relationship between problems.

- Reduction is a relationship between problems.
- **Problem Q** can be *reduced* to **Q'** if every instance of **Q** can be "*rephrased*" to an instance of **Q'**.

- Reduction is a relationship between problems.
- **Problem Q** can be *reduced* to **Q'** if every instance of **Q** can be "*rephrased*" to an instance of **Q'**.

Example

Q: multiplying two positive numbers

Q': adding two numbers

- Reduction is a relationship between problems.
- **Problem Q** can be *reduced* to **Q'** if every instance of **Q** can be "*rephrased*" to an instance of **Q'**.

Example

Q: multiplying two positive numbers

Q': adding two numbers

Q can be *reduced* to **Q'** via a logarithmic transformation $xy = \exp[\log x + \log y]$

- Reduction is a relationship between problems.
- **Problem Q** can be *reduced* to **Q'** if every instance of **Q** can be "*rephrased*" to an instance of **Q'**.

Example

Q: multiplying two positive numbers

Q': adding two numbers

Q can be *reduced* to **Q'** via a logarithmic transformation $xy = \exp[\log x + \log y]$

If Q can be reduced to Q', then Q is "no harder to solve" than Q'.

■ Let L_1 and L_2 be two decision problems

- Let L_1 and L_2 be two decision problems
- A polynomial-time reduction from L_1 to L_2 is a transformation f with the following two properties:
 - (1) f transforms an input x for L_1 into an input f(x) for L_2 s.t.
 - a yes-input of L_1 maps to a yes-input of L_2 , and a no-input of L_1 maps to a no-input of L_2
 - (2) f is computable in *polynomial time* in size(x)

- Let L_1 and L_2 be two decision problems
- A polynomial-time reduction from L_1 to L_2 is a transformation f with the following two properties:
 - (1) f transforms an input x for L_1 into an input f(x) for L_2 s.t.
 - a yes-input of L_1 maps to a yes-input of L_2 , and a no-input of L_1 maps to a no-input of L_2
 - (2) f is computable in *polynomial time* in size(x)

If such an f exists, we say that L_1 is polynomial-time reducible to L_2 , and write $L_1 \leq_P L_2$.

■ Intuitively, $L_1 \leq_P L_2$ means that L_1 is no harder than L_2

- Intuitively, $L_1 \leq_P L_2$ means that L_1 is no harder than L_2
- Given an algorithm A_2 for the decision problem L_2 , we can develop an algorithm A_1 to solve L_1 :

- Intuitively, $L_1 \leq_P L_2$ means that L_1 is no harder than L_2
- Given an algorithm A_2 for the decision problem L_2 , we can develop an algorithm A_1 to solve L_1 :

- Intuitively, $L_1 \leq_P L_2$ means that L_1 is no harder than L_2
- Given an algorithm A_2 for the decision problem L_2 , we can develop an algorithm A_1 to solve L_1 :

■ If A_2 is polynomial-time algorithm, so is A_1

■ **Theorem** If $L_1 \leq_P L_2$ and $L_2 \in P$, then $L_1 \in P$

■ **Theorem** If $L_1 \leq_P L_2$ and $L_2 \in P$, then $L_1 \in P$

Proof. $L_2 \in P$ means we have a polynomial-time algorithm A_2 for L_2 . Since $L_1 \leq_P L_2$, we have a polynomial-time transformation f mapping input x for L_1 to an input for L_2 .

■ **Theorem** If $L_1 \leq_P L_2$ and $L_2 \in P$, then $L_1 \in P$

Proof. $L_2 \in P$ means we have a polynomial-time algorithm A_2 for L_2 . Since $L_1 \leq_P L_2$, we have a polynomial-time transformation f mapping input x for L_1 to an input for L_2 .

Combining these, we get the following polynomial-time algorithm for solving L_1 :

- (1) take input x for L_1 and compute f(x)
- (2) run algorithm A_2 on input f(x), and return the ans. (for L_2 on f(x)) as the ans. for L_1 on x

■ **Theorem** If $L_1 \leq_P L_2$ and $L_2 \in P$, then $L_1 \in P$

Proof. $L_2 \in P$ means we have a polynomial-time algorithm A_2 for L_2 . Since $L_1 \leq_P L_2$, we have a polynomial-time transformation f mapping input x for L_1 to an input for L_2 .

Combining these, we get the following polynomial-time algorithm for solving L_1 :

- (1) take input x for L_1 and compute f(x)
- (2) run algorithm A_2 on input f(x), and return the ans. (for L_2 on f(x)) as the ans. for L_1 on x

Both steps take polynomial time. So the combined algorithm takes polynomial time. Hence, $L_1 \in P$.

■ **Theorem** If $L_1 \leq_P L_2$ and $L_2 \in P$, then $L_1 \in P$

Proof. $L_2 \in P$ means we have a polynomial-time algorithm A_2 for L_2 . Since $L_1 \leq_P L_2$, we have a polynomial-time transformation f mapping input x for L_1 to an input for L_2 .

Combining these, we get the following polynomial-time algorithm for solving L_1 :

- (1) take input x for L_1 and compute f(x)
- (2) run algorithm A_2 on input f(x), and return the ans. (for L_2 on f(x)) as the ans. for L_1 on x

Both steps take polynomial time. So the combined algorithm takes polynomial time. Hence, $L_1 \in P$.

Note: The converse (if $L_1 \leq_P L_2$ and $L_1 \in P$, then $L_2 \in P$) is not true.

33 - 5

■ **Lemma** If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then $L_1 \leq_P L_3$.

■ Lemma If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then $L_1 \leq_P L_3$.

Proof.

■ Lemma If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then $L_1 \leq_P L_3$.

Proof.

■ The class *NP-Complete (NPC)*

The class NPC of NP-Complete problems consists of all decision problems L s.t.

- (1) $L \in NP$
- (2) for every $L' \in NP$, $L' \leq_P L$

■ Lemma If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then $L_1 \leq_P L_3$. Proof.

■ The class *NP-Complete (NPC)*

The class NPC of NP-Complete problems consists of all decision problems L s.t.

- $(1) L \in NP$
- (2) for every $L' \in NP$, $L' \leq_P L$

Intuitively, NPC consists of all the hardest problems in NP.

NP-Completeness and Its Properties

- **Theorem** Let *L* be any problem in NPC.
 - (1) If there is a polynomial-time algorithm for L, then there is a polynomial-time algorithm for every $L' \in NP$
 - (2) If there is no polynomial-time algorithm for L, then there is no polynomial-time algorithm for every $L' \in NPC$

NP-Completeness and Its Properties

- **Theorem** Let *L* be any problem in NPC.
 - (1) If there is a polynomial-time algorithm for L, then there is a polynomial-time algorithm for every $L' \in NP$
 - (2) If there is no polynomial-time algorithm for L, then there is no polynomial-time algorithm for every $L' \in NPC$
- Either all NP-Complete problems are polynomial time solvable, or all NP-Complete problems are not polynomial time solvable.

NP-Completeness and Its Properties

- **Theorem** Let *L* be any problem in NPC.
 - (1) If there is a polynomial-time algorithm for L, then there is a polynomial-time algorithm for every $L' \in NP$
 - (2) If there is no polynomial-time algorithm for L, then there is no polynomial-time algorithm for every $L' \in NPC$
- Either all NP-Complete problems are polynomial time solvable, or all NP-Complete problems are not polynomial time solvable.

This is the major reason why we are interested in NP-Completeness.

The Classes P, NP, and NPC

Next Lecture

number theory ...

