CS458/CS558 Introduction to Computer Security

Double - DES?

Could use 2 DES encrypts on each block

C = E(K2, E(K1, P))

Issue of reduction to single stage

Would it be possible to find a key K3 such that

E(K2, E(K1, P)) = E(K3, P)

Answer: NO - proved in 1992

Meet-in-the-middle attack

♦ Works whenever use a cipher twice

♦ Based on the observation:

If C = E(K2, E(K1, P)),
then X = E(K1,P) = D(K2,C)

♦ Encrypt P for all 256 keys. Store the result in a table and then sort the table.

♦ Decrypt C with 256 keys and check the result against the table for a match.

♦ If a match occurs, then test the two resulting keys against some more known plaintext-ciphertext pairs.

Triple-DES with Two-Keys

An obvious counter to the meet-in-the-middle attack is to use three stages of encryption with 3 different keys → requiring key length 168-bits

Can use 2 keys with E-D-E sequence

C= E(K1, D(K2, E(K1,P)))

The only advantage of the use of decryption for the second stage is: if K1=K2 then can work with single DES

The only advantage of the use of decryption for the second stage is: if K1=K2 then can work with single DES

The only advantage of the use of decryption for the second stage is: if K1=K2 then can work with single DES

Triple-DES with Three-Keys

No current known practical attacks

*Brute-force: 2¹¹²

*Differential cryptanalysis: > 10⁵² plaintext-ciphertex pairs

Can use Triple-DES with 3 Keys to avoid these

*C = E(K3, D(K2, E(K1, P)))

Has been adopted by some Internet applications, eg PGP, S/MIME

Advantages and Limitations of ECB

- Each block is encrypted independently of the other blocks
- Ideal for a short amount of data, e.g. transmit a DES key securely.
- For lengthy mesg, the ECB mode may not be secure.
 - The same n-bit block of plaintext, if it appears more than once in the mesg., always produces the same ciphertext - does not hide data patterns well.

Example: Disadvantage of ECB A pixel-map version of the image on the left was encrypted with ECB mode and with other modes. Encrypted using ECB mode

Example: Disadvantage of ECB

 A pixel-map version of the image on the left was encrypted with ECB mode and with other modes.

Original

Encrypted using ECB mode

Encrypted using other modes

Advantages and Limitations of ECB

- Weakness is due to the encrypted message blocks being independent
 - Would like a technique in which the same plaintext block, if repeated, produces different ciphertext block.

Cipher Block Chaining (CBC)

- The input to the encryption algorithm is the XOR 📵 of the current plaintext block and the preceding ciphertext block. (A \oplus A = 0, 0 \oplus A = A)
- Each ciphertext block is dependent on all plaintext blocks processed up to that point.

Cipher Block Chaining (CBC) For decryption, each cipher block is passed through the decryption alg.. The result is XORed with the preceding ciphertext block to produce the plaintext. $P_j = C_{j-1} \oplus D(K,C_j), C_0 = IV$ Decrypt Cn' (b) Decryption

Cipher Block Chaining (CBC)

How to prove that the decryption process is correct?

Decryption: $P_i = C_{i-1} \oplus D(K,C_i), C_0 = IV$

Encryption: $C_i = E(K, [C_{i-1} \oplus P_i]), C_0 = IV$

Cipher Block Chaining (CBC)

♣ How to prove that the decryption process is correct?

Encryption: $C_i = E(K, [C_{i-1} \oplus P_i]), C_0 = IV$ **Decryption:** $P_i = C_{i-1} \oplus D(K,C_i), C_0 = IV$

Proof:

 $= P_j$

 $\mathbf{A} \oplus \mathbf{A} = \mathbf{0}$ $\mathbf{0} \oplus \mathbf{A} = \mathbf{A}$

 $P_i = C_{i-1} \oplus D(K,C_i)$ $= C_{j-1} \oplus D(K, E(K, [C_{j-1} \oplus P_j]))$ $= C_{j-1} \oplus C_{j-1} \oplus P_j$ $= 0 \oplus P_i$

Message Padding

At end of message must handle a possible last block, which is not as large as block size of cipher

Message Padding

At end of message must handle a possible last block, which is not as large as block size of cipher

- *Pad either with known non-data value (eg nulls)
- Or pad last block along with count of pad size ≻eg. [b1 b2 b3 0 0 0 0 5] - 3 data bytes, 5 bytes pad+count

Cipher FeedBack Mode (CFB)

- When the data unit is smaller than the block size (e.g. data is only available a bit/byte at a time).
- Convert DES into a stream cipher and can be used to encrypt any number of bits
 - Property of stream cipher: the ciphertext is of the same length as the plaintext.
 - Eliminates the need to pad a mesg.

Cipher FeedBack Mode (CFB): Encryption Ig. The unit of transmission is s bits. *64-bit shift register is initially set to some initialization vector (IV). *The leftmost s bits of the output of the encryption function is XORed with the first unit of plaintext P1 to produce C1. IV | Solid | Discord |

Cipher FeedBack Mode (CFB): Encryption Ig. the unit of transmission is s bits. The contents of the shift register are shifted left by s bits and C1 is placed in the rightmost s bits of the shift register. Continue this process until all plaintext units have been encrypted. CM-1 Solid register vision CM-1 Solid register vision

