VAN course Lesson 4

Dr. Refael Vivanti refael.vivanti@mail.huji.ac.il

Today's topics

- Epipolar geometry
- Epipolar lines, Epipole
- Fundamental Matrix Calculation
- Rectification
- RANSAC

• The relations between views as appeared in the image

- The relations between views as appeared in the image
- In 3D: Ray r₁ intersects P

• The relations between views as appeared in the image

• In 3D: Ray r₁ intersects P In image: P is projected to p

• The relations between views as appeared in the image

• In 3D: Ray r₁ intersects P In image: P is projected to p

• In 3D: Ray r₂ intersect P

• The relations between views as appeared in the image

• In 3D: Ray r₁ intersects P In image: P is projected to p

• In 3D: Ray r_2 intersect P In Image: r_2 is projected to line ℓ

• The relations between views as appeared in the image

• In 3D: Ray r₁ intersects P In image: P is projected to p

• In 3D: Ray r_2 intersect P In Image: r_2 is projected to line ℓ

 $ullet \ell$ is the **epipolar line**

- The relations between views as appeared in the image
- In 3D: Ray r₁ intersects P
- In 3D: Ray r₂ intersect P
- $ullet \ell$ is the **epipolar line**
- $^{ullet}\ell$ intersects p in image 1

In image: P is projected to p

In Image: r_2 is projected to line ℓ

- What epipolar line is good for?
- If we search for a match for p₁
 - It will be on the epipolar line ℓ
- If we suspect the match is wrong
 - We can decide it is an outlier if it's not on ℓ

• In 3D: All 3D rays coming from C₂ create a pencil

- In 3D: All 3D rays coming from C₂ create a pencil
- In image: all epipolar lines intersect at point e

- In 3D: All 3D rays coming from C₂ create a pencil
- In image: all epipolar lines intersect at point e
- e is the **epipole**

- In 3D: All 3D rays coming from C₂ create a pencil
- In image: all epipolar lines intersect at point e
- e is the **epipole**
- e is the projection of c₂ 3D location

- How can we calculate the epipolar line?
 - Project pixel to ray, rotate ray, project ray to line.
- Using the Fundamental Matrix F:
 - Algebraic representation of the epipolar geometry
 - Mapping from points in Im1 to lines in Im2:

$$I_{1x3}^T = F_{3x3} X_{3x1} \Leftrightarrow X_2^T F X_1 = 0$$

- Properties:
 - The null space is the Epipole:

$$\forall x : x^T F e = 0$$
$$F e = 0$$

- F has 7 Degrees Of Freedom
 - It has rank 2
 - It is determined up to scale

$$Y = RX + t$$

$$[t]_{\times}Y = [t]_{\times}(RX + t)$$

$$[t]_{\times}Y = [t]_{\times}RX$$

$$Y^{T}[t]_{\times}Y = Y^{T}[t]_{\times}RX$$

$$Y^{T}[t]_{\times}RX = 0$$

$$q = K_{1}X, p = K_{2}Y$$

$$X = K_{1}^{-1}q, Y = K_{2}^{-1}p$$

$$p^{T}K_{2}^{-T}[t]_{\times}RK_{1}^{-1}q = 0$$

$$p^{T}Fq = 0$$

- If we don't know K_1 , K_2 , R, or t, can we still estimate F?
- Yes, given enough correspondences.
- Many algorithms:
 - Linear (the normalized 8-point algorithm)
 - Minimal (7-point)
 - Robust (RANSAC)
 - Non-linear refinement (MLE, Algebraic minimization)
- We use 8-point algorithm
 - Although it's inaccurate
 - Because it's fast

Estimating F: 8-point algorithm

The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$$

for any pair of matches x and x' in two images.

• Let $x=(u,v,1)^T$ and $x'=(u',v',1)^T$, each match gives a linear equation

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$$

$$uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

8-point algorithm
$$\begin{bmatrix}
u_{1}u_{1}' & v_{1}u_{1}' & u_{1}' & u_{1}v_{1}' & v_{1}v_{1}' & v_{1}' & u_{1} & v_{1} & 1 \\
u_{2}u_{2}' & v_{2}u_{2}' & u_{2}' & u_{2}v_{2}' & v_{2}v_{2}' & v_{2}' & u_{2} & v_{2} & 1 \\
\vdots & \vdots \\
u_{n}u_{n}' & v_{n}u_{n}' & u_{n}' & u_{n}v_{n}' & v_{n}v_{n}' & v_{n}' & u_{n} & v_{n} & 1
\end{bmatrix}
\begin{bmatrix}
f_{11} \\
f_{12} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{bmatrix} = 0$$

We solve it as before, using SDV:

Af = 0 s.t.
$$||f|| = 1$$

A = $U\Sigma V^T$
 $f = V^T_N$

- $f_{9x1} => F_{3x3}$
- Same method if N>8
 - We minimize ||Af|| s.t. ||f|| = 1

- \mathbf{F}_{3x3} should have rank 2. It doesn't.
- To enforce that **F** is of rank 2, F is replaced by $\mathbf{F'}_{3x3}$ that minimizes $\|\mathbf{F} \mathbf{F'}\|$.

• This too is achieved by SVD. Let $\mathbf{F} = \mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix} \qquad \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F'} = \mathbf{U} \mathbf{\Sigma'} \mathbf{V}^{\mathrm{T}}$ is the solution.

$$\begin{bmatrix} u_{1}u_{1}' & v_{1}u_{1}' & u_{1}' & u_{1}v_{1}' & v_{1}v_{1}' & v_{1}' & u_{1} & v_{1} & 1 \\ u_{2}u_{2}' & v_{2}u_{2}' & u_{2}' & u_{2}v_{2}' & v_{2}v_{2}' & v_{2}' & u_{2} & v_{2} & 1 \\ \vdots & \vdots \\ u_{n}u_{n}' & v_{n}u_{n}' & u_{n}' & u_{n}v_{n}' & v_{n}v_{n}' & v_{n}' & u_{n} & v_{n} & 1 \\ \end{bmatrix} \begin{bmatrix} f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{32} \\ f_{32} \\ f_{23} \end{bmatrix} = 0$$
s of magnitude difference

Orders of magnitude difference between column of data matrix → least-squares yields poor results

- normalized least squares yields good results
- Transform image to \sim [-1,1]x[-1,1]

Results (ground truth)

Results (8-point algorithm)

Results (normalized 8-point algorithm)

Example: forward motion

Example: motion parallel with image plane

Example: converging cameras

• After stereo rectification:

$$F\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = [0,1,-y]$$

So F is from the shape:

$$F = \begin{bmatrix} & & \\ & -1 & \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}_{\times} = [t]_{\times}$$

- RANdom SAmple Consensus
- Problem:
 - All inliers obey some model
 - But there are some unknown outliers.
- Example: inliers are on a curve
- Chicken and egg situation:
 - If we had the curve, we could spot the outliers
 - If we knew the inliers, we could estimate the curve
- Key to solution:
 - The model can be estimated using a small set

- Algorithm:
 - 1. Repeat:
 - 1. Sample a minimal set
 - 2. Estimate a model
 - 3. Check how many points obey the model
 - 2. Choose model with maximal #points
 - 3. Repeat:
 - 1. Estimate model from all inliers
 - 2. Calc inliers of new model
- Output: inliers, outliers, and model

- Example:
- #inliers = 3. max #inliers = 3
- #inliers = 5. max #inliers = 5
- #inliers = 3. max #inliers = 5

•

•

• Output: #inliers = 5

- When to stop the first loop of RANSAC?
- Goal: one sample that will have only inliers, with high prob p.
- ullet Prob of being an outlier:
- P(being an inlier) = 1ϵ
- P(all inliers-sample) = $(1 \epsilon)^{s}$
- P(bad sample)= $1 (1 \epsilon)^s$
- P(All samples are bad) = $(1 (1 \epsilon)^s)^l$
- We wish it to be small: $(1-(1-\varepsilon)^s)^I < 1-p$

$$\log(1-(1-\varepsilon)^s)^I < \log(1-p)$$

$$I\log(1-(1-\varepsilon)^s) < \log(1-p)$$

$$I > \log(1-p)/\log(1-(1-\varepsilon)^s)$$

This can get high:

s\ε	25%	50%	60%	70%	80%	85%
2	6	16	26	49	113	202
3	8	34	70	168	573	1362
7	33	588	2808	21055	2.5E05	2.6E06

- What if we don't know ε ?
- We can estimate it online:
 - We calc #inliers at each sample
 - ullet This gives an ever-decreasing upper-bound on ϵ
 - Hence the needed iteration number I is also decreasing

- Which models are used with RANSAC?
- 2D points matching:
 - Fundamental matrix
 - Homography transformation
 - Essential Matrix
 - Trifocal Tensor
- 3D points:
 - Point cloud registration
 - Perspective-n-Point (PNP)
 - Plane fitting
 - Curve fitting

- Limitations of RANSAC with FM:
 - Efficiency: unknown
 - because outlier ratio ε in unknown
 - Accuracy
 - Even good sample may give a bad model
 - Sensitive to inlier threshold
 - Degeneracy
 - The plain+paralax problem
 - Many tricks and extensions:
 - PROSAC
 - USAC

