Data Wrangling II

Create an "Academic performance" dataset of students and perform the following operations using Python.

- 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- 3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution. Reason and document your approach properly.

Import all Python Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read csv("datasets/ass2/student.csv")
df
                               readingScore
                                               placementScore clubJoining
    mathScore
                writingScore
0
         68.0
                         85.0
                                        72.0
                                                            85
                                                                        20.0
                         94.0
                                        75.0
                                                            79
1
         63.0
                                                                        18.0
2
         75.0
                         75.0
                                        73.0
                                                            87
                                                                        19.0
3
                         83.0
                                        60.0
                                                            87
                                                                        19.0
          NaN
         77.0
                         91.0
                                        60.0
                                                            80
                                                                        20.0
5
         74.0
                         86.0
                                         NaN
                                                            75
                                                                        18.0
6
         64.0
                         93.0
                                        68.0
                                                            99
                                                                        20.0
                         75.0
                                        73.0
                                                                        18.0
         68.0
                                                            98
         40.0
                         85.0
                                        66.0
                                                            94
8
                                                                         NaN
9
          2.0
                         82.0
                                        74.0
                                                            92
                                                                        19.0
```

10	62.0	79.0	70.0	10	18.0
11	64.0	84.0	67.0	91	19.0
12	68.0	87.0	75.0	92	20.0
13	67.0	94.0	76.0	95	19.0
14	73.0	85.0	62.0	76	20.0
15	60.0	85.0	64.0	84	NaN
16	71.0	95.0	78.0	88	19.0
17	73.0	89.0	80.0	85	19.0
18	68.0	80.0	71.0	92	18.0
19	63.0	150.0	71.0	77	18.0
20	67.0	89.0	65.0	95	19.0
21	69.0	93.0	71.0	82	NaN
22	67.0	75.0	60.0	80	19.0
23	63.0	92.0	68.0	76	19.0
24	70.0	NaN	63.0	96	50.0
25	69.0	76.0	74.0	93	18.0
26	67.0	83.0	68.0	96	19.0
27	74.0	80.0	76.0	100	18.0
28	77.0	91.0	66.0	79	18.0
0 1 2 3 4 5 6 7 8 9	placementOffer	rCount 3.0 2.0 3.0 NaN 2.0 2.0 3.0 3.0 3.0 3.0 1.0			

```
11
                       3.0
12
                       3.0
13
                       3.0
14
                       2.0
15
                       2.0
16
                       3.0
17
                       3.0
18
                       3.0
19
                       2.0
20
                       3.0
21
                       2.0
22
                       2.0
23
                       2.0
24
                       3.0
25
                       3.0
26
                       3.0
27
                       3.0
                       2.0
28
df.isna().sum()
mathScore
                          1
writingScore
                          1
readingScore
                          1
placementScore
                          0
                          3
clubJoining
placementOfferrCount
dtype: int64
```

Handling missing values

```
df.ffill(inplace=True)
df.isna().sum()
mathScore
                         0
                         0
writingScore
readingScore
                         0
placementScore
                         0
clubJoining
                         0
placementOfferrCount
dtype: int64
df
    mathScore writingScore readingScore placementScore clubJoining
/
0
         68.0
                                      72.0
                                                         85
                                                                    20.0
                        85.0
1
                                      75.0
                                                         79
         63.0
                        94.0
                                                                    18.0
```

2	75.0	75.0	73.0	87	19.0
3	75.0	83.0	60.0	87	19.0
4	77.0	91.0	60.0	80	20.0
5	74.0	86.0	60.0	75	18.0
6	64.0	93.0	68.0	99	20.0
7	68.0	75.0	73.0	98	18.0
8	40.0	85.0	66.0	94	18.0
9	2.0	82.0	74.0	92	19.0
10	62.0	79.0	70.0	10	18.0
11	64.0	84.0	67.0	91	19.0
12	68.0	87.0	75.0	92	20.0
13	67.0	94.0	76.0	95	19.0
14	73.0	85.0	62.0	76	20.0
15	60.0	85.0	64.0	84	20.0
16	71.0	95.0	78.0	88	19.0
17	73.0	89.0	80.0	85	19.0
18	68.0	80.0	71.0	92	18.0
19	63.0	150.0	71.0	77	18.0
20	67.0	89.0	65.0	95	19.0
21	69.0	93.0	71.0	82	19.0
22	67.0	75.0	60.0	80	19.0
23	63.0	92.0	68.0	76	19.0
24	70.0	92.0	63.0	96	50.0
25	69.0	76.0	74.0	93	18.0
26	67.0	83.0	68.0	96	19.0
27	74.0	80.0	76.0	100	18.0

28	77.0	91.0	66.0	79	18.0
	placementOfferr				
0 1		3.0 2.0			
2		3.0			
3		3.0			
5		2.0			
6		3.0			
0 1 2 3 4 5 6 7 8 9		3.0 3.0			
9		3.0			
10		1.0			
11 12		3.0 3.0			
13		3.0			
14 15		2.0			
16		3.0			
17		3.0			
18 19		3.0 2.0			
20		3.0			
21 22		2.0 2.0			
23		2.0			
24		3.0			
25 26		3.0 3.0			
27		3.0			
28		2.0			

2. Outliers

sns.boxplot(df)

<Axes: >


```
q1 = df.quantile(0.25)
q3 = df.quantile(0.75)
iqr = q3 - q1
ub = q3 + 1.5 * iqr
lb = q1 - 1.5 * iqr
ub, lb
(mathScore
                           86.5
writingScore
                          107.0
 readingScore
                           87.5
 placementScore
                          115.0
 clubJoining
                           20.5
 placementOfferrCount
                            4.5
 dtype: float64,
 mathScore
                          50.5
 writingScore
                          67.0
 readingScore
                          51.5
 placementScore
                          59.0
 clubJoining
                          16.5
 placementOfferrCount
                           0.5
 dtype: float64)
filtered_data = df[~((df > ub) | (df < lb))]</pre>
```

filtered data.dropna(inplace = True) filtered data writingScore readingScore mathScore placementScore clubJoining 0 68.0 72.0 85.0 20.0 85.0 1 63.0 94.0 75.0 79.0 18.0 19.0 2 75.0 75.0 73.0 87.0 3 75.0 83.0 60.0 87.0 19.0 77.0 91.0 60.0 80.0 20.0 5 74.0 86.0 60.0 75.0 18.0 64.0 93.0 68.0 99.0 20.0 6 7 68.0 75.0 73.0 98.0 18.0 11 64.0 84.0 67.0 91.0 19.0 12 68.0 87.0 75.0 92.0 20.0 13 67.0 94.0 76.0 95.0 19.0 14 85.0 62.0 76.0 20.0 73.0 15 60.0 85.0 64.0 84.0 20.0 78.0 88.0 19.0 16 71.0 95.0 17 89.0 80.0 85.0 19.0 73.0 18 68.0 0.08 71.0 92.0 18.0 65.0 95.0 19.0 20 67.0 89.0 21 69.0 93.0 71.0 82.0 19.0 22 67.0 75.0 60.0 80.0 19.0 92.0 23 68.0 19.0 63.0 76.0 25 74.0 18.0 69.0 76.0 93.0 26 67.0 83.0 68.0 96.0 19.0 74.0 80.0 76.0 27 100.0 18.0 28 79.0 77.0 91.0 66.0 18.0

```
placementOfferrCount
0
1
                        2.0
2
                        3.0
3
                        3.0
4
                        2.0
5
                        2.0
6
                        3.0
7
                        3.0
11
                        3.0
12
                        3.0
13
                        3.0
14
                        2.0
15
                        2.0
16
                        3.0
17
                        3.0
18
                        3.0
20
                        3.0
21
                        2.0
22
                        2.0
23
                        2.0
25
                        3.0
26
                        3.0
27
                        3.0
28
                        2.0
```

outliers using another method z-score

```
zscore = (df - df.mean())/df.std()
newdf = df[(zscore<3) & (zscore> -3)]
newdf
    mathScore writingScore readingScore placementScore clubJoining
0
         68.0
                        85.0
                                      72.0
                                                       85.0
                                                                     20.0
         63.0
                        94.0
                                      75.0
                                                        79.0
                                                                     18.0
2
         75.0
                                      73.0
                                                                     19.0
                        75.0
                                                       87.0
3
         75.0
                        83.0
                                      60.0
                                                       87.0
                                                                     19.0
         77.0
                        91.0
                                      60.0
                                                       80.0
                                                                     20.0
         74.0
                        86.0
                                      60.0
                                                       75.0
                                                                     18.0
```

6	64.0	93.0	68.0	99.0	20.0
7	68.0	75.0	73.0	98.0	18.0
8	40.0	85.0	66.0	94.0	18.0
9	NaN	82.0	74.0	92.0	19.0
10	62.0	79.0	70.0	NaN	18.0
11	64.0	84.0	67.0	91.0	19.0
12	68.0	87.0	75.0	92.0	20.0
13	67.0	94.0	76.0	95.0	19.0
14	73.0	85.0	62.0	76.0	20.0
15	60.0	85.0	64.0	84.0	20.0
16	71.0	95.0	78.0	88.0	19.0
17	73.0	89.0	80.0	85.0	19.0
18	68.0	80.0	71.0	92.0	18.0
19	63.0	NaN	71.0	77.0	18.0
20	67.0	89.0	65.0	95.0	19.0
21	69.0	93.0	71.0	82.0	19.0
22	67.0	75.0	60.0	80.0	19.0
23	63.0	92.0	68.0	76.0	19.0
24	70.0	92.0	63.0	96.0	NaN
25	69.0	76.0	74.0	93.0	18.0
26	67.0	83.0	68.0	96.0	19.0
27	74.0	80.0	76.0	100.0	18.0
28	77.0	91.0	66.0	79.0	18.0
placementOfferrCount 0					

```
3
                         3.0
4
                         2.0
5
                         2.0
6
                         3.0
7
                         3.0
8
                         3.0
9
                         3.0
10
                         1.0
11
                         3.0
12
                         3.0
13
                         3.0
14
                         2.0
15
                         2.0
16
                         3.0
17
                         3.0
18
                         3.0
19
                         2.0
20
                         3.0
21
                         2.0
22
                         2.0
23
                         2.0
24
                         3.0
25
                         3.0
26
                         3.0
27
                         3.0
28
                         2.0
```

3. Transformation using MinMax Scaler

```
from sklearn.preprocessing import MinMaxScaler , StandardScaler
minmax = MinMaxScaler()
minmaxScaled = minmax.fit transform(filtered data)
minmaxScaledDf = pd.DataFrame(minmaxScaled)
minmaxScaledDf.head()
                                  5
           1
                2 3 4
 0.470588 0.50
                 0.60 0.40 1.0 1.0
1 0.176471 0.95
                 0.75
                      0.16 0.0
                                 0.0
 0.882353 0.00
                 0.65
                      0.48 0.5
                                1.0
3 0.882353 0.40
                 0.00
                      0.48 0.5
                                1.0
4 1.000000 0.80 0.00 0.20 1.0 0.0
```