

# DISEÑO DE VOLADURAS A CIELO ABIERTO

Ing. César Ayabaca P.

#### **VOLADURAS A CIELO ABIERTO**

- ✓ Muy utilizadas en explotación minera de canteras de caliza para la industria del cemento, algunas minas de materiales de construcción y en minas de otros minerales.
- ✓ En Obras civiles muchos tipos de trabajos involucran el uso de explosivos como carreteras, presas, poliductos, y canales de riego.

#### **EXPLOTACION MINERA A CIELO ABIERTO**



## CARRETERA BAÑOS PUYO



# **EXPLOSION**



1 kiloton = energia liberada por 1.000 tn de TNT 1 tn de TNT libera 4000 veces mas energía que la necesaria para levantar un auto de 1 tn a 100m.

Detonación nuclear libera de 1000 1'000.000 veces mayor energia que una detonación química.

## DEFLAGRACION

 Es una reacción química que se mueve rápidamente a través del material explosivo y libera calor o flama vigorosamente la reacción se mueve demasiado lenta para producir ondas de choque significativas y fracturación de la roca. Ejemplo encendido de una mecha de seguridad. Una VOD de 1000 m/s es límite entre detonación y deflagración.

#### DETONACION

• En una detonación la reacción química se mueve a través del material explosivo a una velocidad mayor que aquella del sonido a través del mismo material. Se forma una onda de choque supersónica a través del explosivo. Los gases tienen temperaturas de 3000 a 7000 F y presiones altas de rango de 20 a 100 Kbars 100.000 atmósferas o 1.5 millones de libras/pul<sup>2</sup>. Estos gases se expanden rápidamente, producen onda de choque en el medio circundante.

 Zona de reacción primaria es el área en la cual empieza la descomposición química y es limitada por el plano de Chapman-Jouquet.







#### FASES DE LA MECÁNICA DE ROTURA DE UN TALADRO CON CARA LIBRE

#### 1. COLUMNA EXPLOSIVA

#### 2. PROPAGACIÓN DE LA ONDA DE CHOQUE



- b) Burden adecuado
- c) Cara libre
- d) Taco inerte
- e) Iniciador suficiente



Condiciones: Las ondas o fuerzas de compresión generadas en el taladro viajan hacia la cara libre, las que escapan producen concusión y ondas sismicas



#### 3. AGRIETAMIENTO POR TENSIÓN

Las ondas se reflejan en la cara libre y regresan en forma de fuerzas de tensión que agrietan a la roca. Se nota ya la expansión de los gases



#### 5. EXPANSIÓN MÁXIMA (Rotura flexural) Los gases presionan al cuerpo de roca entre el taladro y la cara libre, doblándola y creando planos de rotura horizontales adicionales



#### 4. ROTURA DE EXPANSIÓN

Los gases a alta presión se expanden rápidamente penetrando en las grietas de tensión iniciando la rotura radial y el desplazamiento de la roca



#### 6. FASE FINAL: FORMACIÓN DE LA PILA DE ESCOMBROS

Los gases en contact con el medio ambiente pierden fuerza y el material triturado cae al pie de la nueva cara libre

## DISEÑO DE VOLADURAS

- Tipo de roca y condiciones geológicas.
- Propiedades físico-mecánicas de la roca.
- · Volumen de roca a ser volada.
- Trabajos de perforación.
- Tipo de explosivo y propiedades.
- Sistema de iniciación.
- Parámetros dimensionales de la voladura.

#### TIPO DE ROCA Y CONDICIONES GEOLÓGICAS

- Estratificación y bandeamiento
- Esquistocidad
- Fracturamiento
- Fallas
- Contactos
- Azimut de buzamiento

## • Condiciones Geológicos :

#### -Estructuras:



## • Condiciones Geológicos:

#### -Estructuras:

Estratos o Fracturas hacia el tajo:

- Paredes Inestables
- •Sobrequiebre (Backbreak) excesivo



Estratos inclinados hacia masa rocosa:

- •Pata sin romper
- •Potencial para sobresaliente



# Efectos de la Geología

- La Fragmentación será controlada por las fracturas existentes.
- Los patrones de perforación más pequeños minimizan los efectos adversos de las grietas y fracturas.
- Tener presente que patrones de perforación mejoran o empeoran la distribución de la energía.





#### Condiciones Geológicas :

#### -Estructuras Cont.

Juntas paralelas a cara libre:

- •Buen control de talud
- •Puede ser mejor orientación para control de talud.



Juntas anguladas a cara libre:

- •Cara libre blocosa
- •Quebrado al final excesivo



## • Factores Geológicos:

#### -Estructuras:



# PROPIEDADES FÍSICO-MECÁNICAS DE LA ROCA

- Resistencia a la compresión
- Resistencia a la tensión
- Frecuencia sísmica

#### FRECUENCIA SISMICA

| CLASE DE FORMACION | VELOCIDAD DE PROPAGACIÓN<br>DE LA ONDA SISMICA<br>LONGITUDINAL |
|--------------------|----------------------------------------------------------------|
|                    | ( m/s)                                                         |
| CAPA METEORIZADA   | 300 – 900                                                      |
| ALUVINES MODERNOS  | 350 – 1500                                                     |
| ARCILLAS           | 1000 – 2000                                                    |
| MARGAS             | 1400 – 4500                                                    |
| CONGLOMERADOS      | 2500 – 5000                                                    |
| CALIZAS            | 4000 — 6000                                                    |
| DOLOMITAS          | 5000 — 6000                                                    |
| SAL                | 4500 — 6500                                                    |
| YESO               | 3000 – 44000                                                   |
| ANHIDRITA          | 3000 – 6000                                                    |
| GNEIS              | 3100 – 5400                                                    |
| CUSRCITAS          | 5100 – 6100                                                    |
| GRANITOS           | 4000 — 6000                                                    |
| GABROS             | 6700 – 7300                                                    |
| DUNITAS            | 7900 – 8400                                                    |
| DIABASAS           | 5800 – 7100                                                    |

#### FRECUANCIA SISMICA

| CLASE DE FORMACION | VELOCIDAD SISMICA<br>( m/s) |
|--------------------|-----------------------------|
| DURA               | > 4000                      |
| MEDIA              | 2000 – 4000                 |
| BLANDA             | < 2000                      |
|                    |                             |

# VELOCIDAD SISMICA Y CONSUMO ESPECIFICO DE EXPLOSIVOS

| POTENCIA DEL<br>TRACTOR kw | VELOCIDAD SISMICA<br>(m/s) | CONSUMO<br>ESPECIFICO kg<br>ANFO/m³ |
|----------------------------|----------------------------|-------------------------------------|
| 575                        | 3.000                      | 0,230                               |
| 343                        | 2.500                      | 0,130                               |
| 250                        | 2.000                      | 0,130                               |
| 160                        | 1.200                      | 0, 080                              |

#### VOLUMEN DE ROCA PARA LA VOLADURA

- Comprende al área superficial delimitada por el largo de frente, el ancho, y multiplicado por la altura del banco, se obtiene el volumen de roca a ser volado.
- El volumen de roca a producirse por voladura estará en dependencia del régimen de trabajos de explotación que requiere la cantera para cumplir la producción establecida. Considerando en todo momento la maquinaria a ser utilizada.

#### TRABAJOS DE PERFORACION

La perforación es la primera operación en la preparación de la voladura.

Para lo cual se deben tomar en cuenta las condiciones de perforación:

- Diámetro de perforación
- Longitud de perforación
- Rectitud
- Estabilidad

#### PERFORACION ESPECIFICA



Es el número de metros que se tiene que perforar por cada metro cúbico de roca volada.

### **EXPLOSIVOS**

#### **DINAMITAS**

- Eplogel I
- Explogel III
- Explogel Amon





#### **PENTOLITAS**

- Booster de iniciación
- Pentolita Sísmica
- Cargas diédricas





#### AGENTES DE VOLADURA

#### **EMULSIONES**

- Emelgrel 3000
- Emulsen 910
- Emulsen 720





#### **ANFOS**

- Anfo normal
- Anfo Alumizado



NITRATO DE AMONID + DIESEL

#### ACCESORIOS DE VOLADURA

#### **CORDON DETONANTE**

• Cordón detonante de 5 gr.

• Cordón detonante de 10 gr.





MECHA DE SEGURIDAD





#### **FULMINANTES**

- Fulminantes N° 8
- Fulminantes eléctricos
- Fulminantes no eléctricos



**AZIDA DE PLOMO** 





#### METODOS DE INICIACION

Iniciación con mecha de seguridad

Iniciación con cordón detonante

Iniciación no eléctrica

Iniciación eléctrica

#### INICIACION CON FULMINANTE Y MECHA



#### **INICIACION CON CORDON DETONANTE**



#### **CONEXION DE HUESO DE PERRO**



# TABLA DE TIEMPOS PARA CONECTOR PARA CORDON DETONANTE

(Conector Bisagra paralelo)

| RETARDO (MS) | COLOR DEL CONECTOR |
|--------------|--------------------|
| 5            | VIOLETA            |
| 9            | VIOLETA            |
| 17           | ROJO               |
| 25           | ROJO               |
| 35           | AMARILLO           |
| 42           | NEGRO              |
| 65           | NARANJA            |
| 75           | NARANJA            |
| 100          | AZUL               |
| 130          | AZUL               |
| 150          | AZUL               |
| 200          | VERDE              |
| 250          | VERDE              |
| 300          | VERDE              |

## SISTEMA DE INICIACION NO ELECTRICA



## SERIE DE MILISEGUNDO (MS)

| N° DE<br>RETARDO | SERIE MS<br>(Milisegundos) | N° DE<br>RETARDO | SERIE MS<br>(Milisegundos) | N° DE<br>RETARDO | SERIE MS<br>(Milisegundos) |
|------------------|----------------------------|------------------|----------------------------|------------------|----------------------------|
| 0                | 4                          | 10               | 300                        | 20               | 1100                       |
| 1                | 25                         | 11               | 350                        | 21               | 1200                       |
| 2                | 50                         | 12               | 400                        | 22               | 1300                       |
| 3                | 75                         | 13               | 450                        | 23               | 1400                       |
| 4                | 100                        | 14               | 500                        | 24               | 1500                       |
| 5                | 125                        | 15               | 600                        | 25               | 1600                       |
| 6                | 150                        | 16               | 700                        | 26               | 1700                       |
| 7                | 175                        | 17               | 800                        | 27               | 1800                       |
| 8                | 200                        | 18               | 900                        | 28               | 1925                       |
| 9                | 250                        | 19               | 1000                       | 29               | 2050                       |

# SERIE DE RETARDOS LP

| N° DE<br>RETARDO | SERIE LP (Milisegundos) | N° DE<br>RETARDO | SERIE LP (Milisegundos) |
|------------------|-------------------------|------------------|-------------------------|
| 0                | 5                       | 10               | 4.600                   |
| 1                | 200                     | 11               | 5.500                   |
| 2                | 400                     | 12               | 6.400                   |
| 3                | 600                     | 13               | 7.450                   |
| 4                | 1.000                   | 14               | 8.500                   |
| 5                | 1.400                   | 15               | 9.600                   |
| 6                | 1.800                   | 16               | 10.700                  |
| 7                | 2.400                   |                  |                         |
| 8                | 3.000                   |                  |                         |
| 9                | 3.800                   |                  |                         |

#### SISTEMA NO-ELECTRICO



#### USOS DEL TECNEL







# INICIACION ELECTRICA

# DETONADORES ELECTRICOS

Inflamador electro pirotécnico va alojado en un dispositivo antiestátivo y soldado a dos alambres conductores.

Carga Primaria: Nitruro de plomo.

Carga Base: Pentrita.

#### PARAMETROS DE VOLADURA

Tipo de roca

Caliza

Densidad de la roca

2,3 g / cm<sup>3</sup>

Volumen de roca

10000,0 m<sup>3</sup>

#### **PERFORACION**

Diámetro de perforación

3 pulgadas = 7,62 cm = 76,2 mm

#### **EXPLOSIVOS**

Booster pentolita de 450 g

1,6 g / cm<sup>3</sup>

Anfo normal

0,88 g / cm<sup>3</sup>

#### **ACCESORIOS**

Cordón detonante 5 g

Fulminantes no eléctricos ms

Fulminantes N° 8



#### **BORDO Y ESPACIAMIENTO**



✓ B = BURDEN, BORDO O PIEDRA.

B = m

dex = Densidad explosivo g/cm<sup>3</sup>

dro = Densidad de la roca g/cm<sup>3</sup>

De = Diámetro del explosivo (mm)

√ S = ESPACIAMIENTO

 $S = 1,4 \times B$ 

Se aplica para bancos altos y con retardos.

### LONGITUD DE PERFORACIÓN



H = longitud de perforación (m)

K = altura del banco ( m )

Se aplica la relación de rigidez óptima en la que:

$$K / B >= 4$$

$$K = 4 \times B$$

U = Sobre perforación (m)

### RELACION DE RIGIDEZ

 Se define como la relación entre la altura del banco y la distancia del bordo.

| Relación de Rigidez   | 1                                                                              | 2                            | 3                            | 4                                                                            |  |
|-----------------------|--------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------------------------------------------------------|--|
| Fragmentación         | Pobre                                                                          | Regular                      | Buena                        | Excelente                                                                    |  |
| Sobrepresión de aire  | Severa                                                                         | Regular                      | Buena                        | Excelente                                                                    |  |
| Roca en vuelo         | Severa                                                                         | Regular                      | Buena                        | Excelente                                                                    |  |
| Vibración del terreno | Severa                                                                         | Regular                      | Buena                        | Excelente                                                                    |  |
| Comentarios           | Rompimiento trasero severo y problemas de piso. No se dispare vuelva a diseñar | Rediseñe<br>si es<br>posible | Buen control y fragmentación | No hay mayores beneficios con el incremento de la relación de rigidez arriba |  |
|                       |                                                                                |                              |                              | de cuatro                                                                    |  |

#### **SOBRE-PERFORACION**



Es la profundidad a la cual se perfora el barreno por debajo del nivel del piso. Para asegurarse que el rompimiento ocurra a nivel.

$$U = 0.3 \times B$$

U = Sobreperforación (m)

B = Burden (m)

#### **FORMULARIO**

| PARAMETRO            | KONYA                                       |                                                |                                                                                                                | КО                                                                                       | TECNICA<br>SUECA                               |            |
|----------------------|---------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|------------|
| BORDO                | 2dx<br>B = 0,012 (() + 1,5 )De<br>dro       |                                                | B = $8 \times 10^{-3} \text{ De} \left( \begin{array}{c} \text{Prv} \\  \\ \text{Dro} \end{array} \right) 1/3$ |                                                                                          |                                                | B= 45 x De |
|                      |                                             |                                                | Prv = Potencia relativa en volumen Dro = Densidad de la roca g/ cm3                                            |                                                                                          |                                                |            |
| ESPACIAMIENTO        | 1,4 x B Iniciación retardada y bancos altos | L + 2 B3 Iniciación instantánea y bancos bajos |                                                                                                                | 2B<br>Iniciación<br>instantánea<br>y bancos<br>altos                                     | L + 7 B  8 Iniciación retardada y bancos bajos | 1,25 x B   |
| SOBRE<br>BARRENACION | 0,3 x B                                     |                                                | ro<br>q<br>d                                                                                                   | os barrenos po<br>ompen la profu<br>ue es necesar<br>el nivel del pis<br>e quiere llegar | 0,3 x B                                        |            |

#### **FORMULARIO**

| PARAMETRO            | KONYA             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TECNICA<br>SUECA |  |
|----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| MODULO DE<br>RIGIDEZ | H/B               |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |
| LONG. TACO           | 0,7 x B           | El taco es un material inerte y sirve para el confinamiento de los gases de la explosión, controla la sobrepresión y la roca en vuelo. Si las distancias de los tacos son excesivas , se obtendrá una fragmentación muy pobre en la parte superior del banco y el rompimiento posterior a la última fila se incrementará.  La longitud del taco es igual a la longitud del Bordo solamente cuando se utiliza polvo muy fino como material de retacado. | В                |  |
| Material del Taco    | De (mm)<br><br>20 | El material más común utilizado para el taco son las astillas de la perforación, sin embargo este material no es recomendado puesto que el polvo de barrenación muy fino no se mantendrá en el barreno durante la detonación. En cambio el material muy grueso tiene la tendencia a dejar huecos de aire que también pueden ser expulsados fácilmente.                                                                                                 |                  |  |

#### CONCENTRACIÓN LINEAL DE CARGA

 $Qbk = 0,078539 \times d \times De^2$ 

Qbk = Concentración de carga (kg / m) d = densidad del explosivo (gr/cm³) De = diámetro del explosivo (cm)

## CONCENTRACION LINEAL DE CARGA (kg/m)

| Diámet   |        |       | Anfo<br>normal | Anfo Al | Emulsen<br>910 | Emulsen<br>720 | Emulgrel<br>3000 | Nuevo<br>Explogel<br>III | Explogel<br>I | Explogel<br>Amon | unidades           |
|----------|--------|-------|----------------|---------|----------------|----------------|------------------|--------------------------|---------------|------------------|--------------------|
|          |        |       |                |         |                |                |                  |                          |               |                  |                    |
| Pulgadas | mm     | cm    | 0,88           | 0,89    | 1,17           | 1,17           | 1,21             | 1,33                     | 1,37          | 1,39             | gr/cm <sup>3</sup> |
| 1        | 25,40  | 2,54  | 0,45           | 0,45    | 0,59           | 0,59           | 0,61             | 0,67                     | 0,69          | 0,70             | kg/m               |
| 2        | 50,80  | 5,08  | 1,78           | 1,80    | 2,37           | 2,37           | 2,45             | 2,70                     | 2,78          | 2,82             | kg/m               |
| 3        | 76,20  | 7,62  | 4,01           | 4,06    | 5,34           | 5,34           | 5,52             | 6,07                     | 6,25          | 6,34             | kg/m               |
| 4        | 101,60 | 10,16 | 7,13           | 7,22    | 9,49           | 9,49           | 9,81             | 10,78                    | 11,11         | 11,27            | kg/m               |
| 5        | 127,00 | 12,70 | 11,15          | 11,27   | 14,82          | 14,82          | 15,33            | 16,85                    | 17,35         | 17,61            | kg/m               |
| 6        | 152,40 | 15,24 | 16,05          | 16,23   | 21,34          | 21,34          | 22,07            | 24,26                    | 24,99         | 25,36            | kg/m               |
| 7        | 177,80 | 17,78 | 21,85          | 22,10   | 29,05          | 29,05          | 30,04            | 33,02                    | 34,02         | 34,51            | kg/m               |
| 8        | 203,20 | 20,32 | 28,54          | 28,86   | 37,94          | 37,94          | 39,24            | 43,13                    | 44,43         | 45,08            | kg/m               |
| 8 1/8    | 206,38 | 20,64 | 29,44          | 29,77   | 39,14          | 39,14          | 40,48            | 44,49                    | 45,83         | 46,50            | kg/m               |
| 8 1/4    | 209,55 | 20,96 | 30,35          | 30,69   | 40,35          | 40,35          | 41,73            | 45,87                    | 47,25         | 47,94            | kg/m               |
| 8 3/8    | 212,73 | 21,27 | 31,28          | 31,63   | 41,58          | 41,58          | 43,00            | 47,27                    | 48,69         | 49,40            | kg/m               |

#### ESQUEMA DE CARGA



- -Diseño básico de Tiempos de Retardo:
  - Selección de retardos :
    - -Retardo entre filas
    - -Retardo entre pozos

#### RETARDOS DE BARRENO A BARRENO

$$t_h = T_h \times S$$

t<sub>h</sub> = Retardo barreno a barreno (ms)

T<sub>h</sub> = Constante de retardo barreno a barreno

S = Espaciamiento ( m )

| Roca                                                                                 | Constante T <sub>H</sub> (ms/m) |
|--------------------------------------------------------------------------------------|---------------------------------|
| Arenas, margas, Carbón                                                               | 6,5                             |
| Algunas calizas y esquistos                                                          | 5,5                             |
| Calizas compactas y mármoles, algunos granitos y basaltos, cuarcita y algunas gneis. | 4,5                             |
| Feldespato porfíricos, gneis compactos y                                             | 3,5                             |
| mica, magnetitas.                                                                    |                                 |

### CALCULO DE RETARDO ENTRE FILAS

$$t_R = T_R \times B$$

t<sub>R</sub> = Retardo entre filas (ms)
 T<sub>R</sub> = Factor de tiempo entre filas (ms / m)
 B = Bordo (m)

| Constante T <sub>R</sub> (ms/m) | Resultado                                                                     |
|---------------------------------|-------------------------------------------------------------------------------|
| 6,5                             | Violencia, sobrepresión de aire excesiva, rompimiento trasero, etc.           |
| 8,0                             | Pila de material alta cercana a la cara sobrepresión y rompimiento moderados. |
| 11,5                            | Altura de pila promedio, sobrepresión y rompimiento promedio.                 |
| 16,5                            | Pila de material disperso con rompimiento trasero mínimo.                     |















