UNK CSIT 150 Lab 1: Two-Dimensional Arrays

Objectives

- Practice implementing two-dimensional arrays
- Practice implementing files & other CSIS 130 concepts

General Requirements

In this lab, your code must adhere to the following programming style:

- Use indention to show the logical structure of your code
- Use blank lines to separate code blocks and use methods to make your code modular.
- Give each code block a comment and use JavaDoc documentation for each method.
- Give your variables intuitive names and start with a lower case letter.
- Give constants intuitive names that are in all capital letters.
- Opening and closing braces should be aligned vertically to each other.

Programming Practice

Your program will read temperature data from a file (structured as shown below) into a two-dimensional array (of doubles). You will also want a one-dimensional array of strings for the month names. The program should have the following methods. Additional methods should be used as needed to solve this problem.

- **getRowAverage**. This method should accept a single-dimensional array as its first argument. The method should return the average of the values in the array. Use this method to calculate the monthly average for each month.
- **getColumnAverage**. This method should accept a two-dimensional array as its first argument and an integer as its second argument. The second argument should be the subscript of a column in the array. The method should return the average of the values in the specified column. Use this method to calculate the average for each year.
- **getMonthValues**. This method should accept a two-dimensional array as its first argument and an integer as its second argument. The second argument should be the subscript of a month (row) in the array. The method should return the values in the specified row as a String. Use this method to output the values for each month.
- **readFile**. This method returns a two-dimensional array, and has a File as its argument. It will return the data contained in the file newTempData.csv as an array.

The **Temperature data** is stored in a file named newTempData.csv and sample data is shown below. Each line contains the name of the month and 6 values for the temperature on the first of the month for 6 years. The sample output is shown on the next page.

```
January, 17.54, -9.72, 27.44, 1.13, 5.99, -14.14
February, 20.8, -14.67, 20.53, -0.97, -4.21, -17.07
March, 38.35, 19.44, 36.34, 3.45, 20.39, 12.42
April, 48.3, 26.29, 59.56, 53.53, 58.09, 19.37
May, 48.45, 78.59, 77.64, 56.37, 75.27, 51.75
June, 53.21, 76.25, 63.54, 80.5, 80.06, 80.71
July, 94.06, 83.61, 77.78, 75.73, 94.01, 64.22
August, 93.31, 92.29, 80.34, 100.82, 100.27, 94.89
September, 77.32, 58.59, 77.51, 69.51, 60.96, 55.9
October, 50.18, 62.81, 46.5, 46.58, 45.67, 67.15
November, 47.09, 32.45, 47.21, 26.35, 46.91, 20.07
December, 27.48, 28.42, 5.02, 8.67, 31, 25.71
```

Hint: Using a scanner, read each line in the file. Then split the line based on the comma data. Scanner inputScanner = **new** Scanner(inputFile);

...
while (inputScanner.hasNext){
 String monthData = inputScanner.nextLine();
 String[] splitData = monthData.split(",");
// now put the split data into the correct array spots.

Report to the Instructor

Before you leave, show the instructor the source code and demonstrate how the code runs.

Sample output for the data shown above:

Sample output for ti	ic data silo	wii abovc.					
Month	Tempera	tures					Average
January:	17.54	-9.72	27.44	1.13	5.99	-14.14	4.71
February:	20.80	-14.67	20.53	-0.97	-4.21	-17.07	0.74
March:	38.35	19.44	36.34	3.45	20.39	12.42	21.73
April:	48.30	26.29	59.56	53.53	58.09	19.37	44.19
May:	48.45	78.59	77.64	56.37	75.27	51.75	64.68
June:	53.21	76.25	63.54	80.50	80.06	80.71	72.38
July:	94.06	83.61	77.78	75.73	94.01	64.22	81.57
August:	93.31	92.29	80.34	100.82	100.27	94.89	93.65
September:	77.32	58.59	77.51	69.51	60.96	55.90	66.63
October:	50.18	62.81	46.50	46.58	45.67	67.15	53.15
November:	47.09	32.45	47.21	26.35	46.91	20.07	36.68
December:	27.48	28.42	5.02	8.67	31.00	25.71	21.05
Average column	(Yearly)	tempera	tures				
	51.34	44.53	51.62	43.47	51.20	38.41	
Thank way							

Thank you.

Lab 1: Multidimensional Arrays

· ·	
Name(s): _	
Namerci	
rame s.	

Evaluation

Requirement	Possible	Points	Comments
	Points	Received	
getRowAverage Method	2		
getColumnAverage	2		
Method			
getMonthValues Method	2		
readFile Method	2		
Output formatted properly	2		

Programming style	Possible	Points	
	Points	deducted	
Inconsistent indentation	-1		Indent at least 3 spaces inside each brace
Poor use of white space	-1		Too many or too few lines between
			statements
Heading documentation,	-2		
includes programmer names,			
date, algorithm, basic			
purpose			
All sources not cited	-1		
(Remember to cite all code			
used, even class demo code.)			
JavaDocs not used on each	-1		
method			
Poor variable names	-1		Should not start with uppercase. No single
			letter variables.
Poor structure/logic issues	-2		
Program specifications			
Too many arrays defined in	-1		Only two arrays should be created in the
main method for data			main method, one for the data and one for
			the name of the months.