CONVEXITÉ

I. Fonction convexe et fonction concave

Vidéo https://youtu.be/ERML85y_s6E

Définitions : Soit une fonction *f* dérivable sur un intervalle I.

La fonction f est <u>convexe</u> sur I si, sur l'intervalle I, sa courbe représentative est entièrement située au-dessus de chacune de ses tangentes.

La fonction f est <u>concave</u> sur I si, sur l'intervalle I, sa courbe représentative est entièrement située en dessous de chacune de ses tangentes.

Propriétés:

- La fonction carré $x \mapsto x^2$ est convexe sur \mathbb{R} .
- La fonction cube $x \mapsto x^3$ est concave sur $]-\infty,0]$ et convexe sur $[0;+\infty[$.
- La fonction inverse $x \mapsto \frac{1}{x}$ est concave sur $]-\infty;0[$ et convexe sur $]0;+\infty[$.
- La fonction racine carrée $x \mapsto \sqrt{x}$ est concave sur $[0; +\infty]$.

Notation:

La dérivée d'une fonction dérivée f' se note f''.

<u>Propriété</u>: Soit une fonction f définie et dérivable sur un intervalle I. La fonction f est convexe sur I si sa dérivée f' est croissante sur I, soit $f''(x) \ge 0$ pour tout x de I.

La fonction f est concave sur I si sa dérivée f' est décroissante sur I, soit $f''(x) \le 0$ pour tout x de I.

- Admis -

⁻ Admis -

Méthode : Etudier la convexité d'une fonction

Vidéo https://youtu.be/8H2aYKN8NGE

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{3}x^3 - 9x^2 + 4$.

Etudier la convexité de la fonction *f*.

Pour tout x de \mathbb{R} , on a $f'(x) = x^2 - 18x$.

Pour tout x de \mathbb{R} , on a f''(x) = 2x - 18 qui s'annule pour x = 9.

Pour tout $x \le 9$, $f''(x) \le 0$

Pour tout $x \ge 9$, $f''(x) \ge 0$

f' est donc strictement décroissante sur $]-\infty;9]$ et donc f est concave sur $]-\infty;9]$. f' est donc strictement croissante sur $[9;+\infty[$ et donc f est convexe sur $[9;+\infty[$.

II. Point d'inflexion

Vidéo https://youtu.be/r8sYr6ToeLo

<u>Définition</u>: Soit une fonction f dérivable sur un intervalle I. Un <u>point d'inflexion</u> est un point où la courbe traverse sa tangente en ce point.

Remarque importante :

Au point d'inflexion, la fonction change de convexité.

Exemple:

On considère la fonction cube $x \mapsto x^3$.

La tangente au point O(0,0) est l'axe des abscisses.

Pour $x \le 0$, la courbe est en dessous de sa tangente.

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

Pour $x \ge 0$, la courbe est au-dessus de sa tangente.

La tangente à la courbe en O traverse donc la courbe. Le point O est un point d'inflexion de la courbe de la fonction cube.

Méthode : Etudier la convexité pour résoudre un problème

Vidéo https://youtu.be/_XlgCeLcN1k

Une entreprise fabrique des clés USB avec un maximum de 10000 par mois. Le coût de fabrication C (en milliers d'euros) de x milliers de clés produites s'exprime par :

$$C(x) = 0.05x^3 - 1.05x^2 + 8x + 4$$
.

- 1) À l'aide de la calculatrice graphique, évaluer la convexité de la fonction C. En déduire si la courbe possède un point d'inflexion.
- 2) Démontrer ces résultats.
- 3) Interpréter les résultats obtenus.
- 1) La fonction semble concave sur l'intervalle [0; 7] et convexe sur l'intervalle [7; 10]. La courbe semble posséder un point d'inflexion pour x = 7.

2)
$$C(x) = 0.05x^3 - 1.05x^2 + 8x + 4$$

$$C'(x) = 0.15x^2 - 2.1x + 8$$

$$C''(x) = 0.3x - 2.1$$

Or
$$0,3x-2,1=0$$
 pour $x=7$.

On peut ainsi résumer les variations de C' et la convexité de C dans le tableau suivant :

X	0	7		10
C''(x)	-	0	+	
C'(x)		\	/	\
Convexité de C	conc	ave	conve	exe

$$C(7) = 25,7$$
.

Ainsi, le point de coordonnées (7 ; 25,7) est un point d'inflexion de la courbe.

3) Après le point d'inflexion, la fonction est convexe, la croissance du coût de fabrication *C* s'accélère. Avant le point d'inflexion, la fonction est concave, la croissance du coût de fabrication ralentie.

Ainsi, à partir de 7000 clés produites, la croissance du coût de fabrication s'accélère.

