Law of Total Probability

If A_1, A_2, \ldots form a partition of Ω and $B \in \Omega$, then $P(B) = \sum_{n=1}^{\infty} P(B \cup A_n) = \sum_{n=1}^{\infty} P(B \mid A_n) P(A_n)$.

Bayes' Rule

- For $A, B \in \mathcal{F}$, $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A^c)P(A^c)}.$
- For a partition $\{A_1, A_2, \dots\}$ and $B \in \mathcal{F}$, $P(A_i \mid B) = \frac{\Pr(B \mid A_i) P(A_i)}{\sum_{i=1}^{\infty} \Pr(B \mid A_i) \Pr(A_i)}.$
- For a pdf or pmf $p(\cdot)$, $f(\theta \mid y) = \frac{f(y \mid \theta)f(\theta)}{f(y)} = \frac{f(y \mid \theta)f(\theta)}{\int f(y \mid \theta)f(\theta)d\theta}$.

Bayesian Learning

If
$$Y_i \mid \theta \stackrel{\text{iid}}{\sim} p(y \mid \theta)$$
, $p(\theta \mid y_1, \dots, y_i) \propto p(y_i \mid \theta) p(\theta \mid y_1, \dots, y_{i-1})$.

Prediction

$$p(y^* \mid y) = \int p(y^*, \theta \mid y) d\theta = \int p(y^* \mid y, \theta) p(\theta \mid y) d\theta$$
$$= \int \underbrace{p(y^* \mid \theta)}_{\text{model posterior}} \underbrace{p(\theta \mid y)}_{\text{posterior}} d\theta \quad (y^* \perp y).$$

Point Estimation

Loss $L(\theta, \hat{\theta})$	$\hat{\theta}_{\text{Bayes}} = \operatorname{argmin}_{\hat{\theta}} \operatorname{E} \left[L(\theta, \hat{\theta}) \mid y \right]$
$\begin{vmatrix} (\theta - \hat{\theta})^2 \\ \theta - \hat{\theta} \end{vmatrix}$	$\frac{\mathrm{E}(\theta \mid y)}{\int_{\hat{\theta}_{PANS}}^{\infty} p(\theta \mid y) d\theta} = 1/2$
$\left \lim_{\varepsilon \to 0} I \left(\left \theta - \hat{\theta} \right < \varepsilon \right) \right $	$ \int_{\theta_{\text{Bayes}}} p(\theta \mid y) d\theta = 1/2 $ $ \operatorname{argmax}_{\theta} p(\theta \mid y) $

Interval Estimation

A $100(1-\alpha)\%$ credible interval is any (L,U) such that $1-\alpha=\int_L^U p(\theta\mid y)d\theta.$

- Equal-tailed: $\alpha/2 = \int_{-\infty}^{L} p(\theta \mid y) d\theta = \int_{U}^{\infty} p(\theta \mid y) d\theta$,
- One-sided: $L = -\infty$ or $U = \infty$,
- HPD: $p(L \mid y) = p(U \mid y)$ for a unimodal posterior (shortest).

Conjugate Priors

A prior $p(\theta)$ is conjugate if for $p(\theta) \in \mathcal{P}$ and $p(y \mid \theta) \in \mathcal{F}$, then $p(\theta \mid y) \in \mathcal{P}$. A prior is natural conjugate if the prior and likelihood have the same functional form.

- E.g., discrete prior $P(\theta = \theta_i) = p_i$ where $\sum_{i=1}^{I} p_i = 1$, then $P(\theta = \theta_i \mid y) = \frac{p_i p(y \mid \theta_i)}{\sum_{i'=1}^{I} p_{i'} p(y \mid \theta_{i'})}$, which is also discrete.
- E.g., mixture of conjugate priors $\theta \sim \sum_{i=1}^{I} p_i p_i(\theta)$ where $\sum_{i=1}^{I} p_i = 1$, then $\theta \mid y \sim \sum_{i=1}^{I} p_i p_i(\theta \mid y)$ where $p_i' \propto p_i \int p(y \mid \theta) p_i(\theta) d\theta$ and $p_i(\theta \mid y) \propto p(y \mid \theta) p_i(\theta)$.

Jeffreys Prior

Noninformative priors may not be so for transformations! Note that $\log\left(\frac{\theta}{1-\theta}\right) \sim \mathrm{Beta}(1,1) \stackrel{\mathrm{d}}{=} \mathrm{Unif}(0,1)$ implies $\theta \sim \mathrm{Beta}(0,0)$. This motivates Jeffreys prior, which is invariant to parameter transformation, defined as $p(\theta) \propto \sqrt{\det\left(\mathcal{I}(\theta)\right)}$, where $\mathcal{I}(\theta) = -\mathrm{E}_{y\mid\theta}\left[\frac{\partial^2}{\partial\theta^2}\log p(y\mid\theta)\right]$.

Normal Model (known variance)

For $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, s^2)$,

- Jefferys prior (improper) $\mu \sim \text{Unif}(-\infty, \infty)$ gives $\mu \mid y \sim \mathcal{N}(\bar{y}, s^2/n)$.
- Natural conjugate prior $\mu \sim \mathcal{N}(m,C)$ gives $\mu \mid y \sim \mathcal{N}(m',C')$ where $C' = \left\lceil \frac{1}{C} + \frac{n}{s^2} \right\rceil^{-1}$ and $m' = C' \left\lceil \frac{1}{C} m + \frac{n}{s^2} \bar{y} \right\rceil$.
- Note $\mathcal{N}(m,C) \to \mathrm{Unif}(-\infty,\infty)$ as $C \to \infty$.

Normal Model (known mean)

For $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(m, \sigma^2)$,

- Jefferys prior (improper) $p(\sigma^2) \propto 1/\sigma^2 \stackrel{\text{d}}{=} \text{InvGam}(0,0)$ gives $\sigma^2 \mid y \sim \text{InvGam}\left(\frac{n}{2}, \frac{1}{2} \sum_{i=1}^{n} (y_i m)^2\right)$.
- Natural conjugate prior $\sigma^2 \sim \text{InvGam}(a, b)$ gives $\sigma^2 \mid y \sim \text{InvGam}\left(a + \frac{n}{2}, b + \frac{1}{2}\sum_{i=1}^n (y_i m)^2\right)$.

Scaled Inv- χ^2

- $\sigma^2 \sim \text{InvGam}(a, b) \stackrel{\text{d}}{=} \text{Inv-}\chi^2(v, s^2)$ where a = v/2 and $b = vs^2/2$ (equivalently, v = 2a and $s^2 = b/a$).
- Mean: $\frac{vs^2}{v-2}$ for v>2; Mode: $\frac{vs^2}{v+2}$; Variance: $\frac{2v^2(s^2)^2}{(v-2)^2(v-4)}$ for v>4.

Location-scale t

- If $T \sim t_v$, then $X = m + sT \sim t_v(m, s^2)$.
- $\bullet \ f(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)\sqrt{v\pi s}} \left(1 + \frac{1}{v} \left[\frac{x-m}{s}\right]^2\right)^{-\frac{v+1}{2}}, \quad x \in \mathbb{R}.$
- $t_v(m, s^2) \to \mathcal{N}(m, s^2)$ as $v \to \infty$.

Normal Inv- χ^2

- If $\mu \mid \sigma^2 \sim \mathcal{N}(m, \sigma^2/k)$ and $\sigma^2 \sim \text{Inv-}\chi^2(v, s^2)$, then $p(\mu, \sigma^2) \propto (\sigma^2)^{-\frac{v+3}{2}} \exp \left[-\frac{1}{2\sigma^2} \left(k(\mu m)^2 + v s^2 \right) \right]$.
- Marginally, $\mu \sim t_v(m, s^2/k)$.

Normal model

For $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$

- Jefferys prior $p(\mu, \sigma^2) \propto (1/\sigma^2)^{3/2}$ (not often used).
- Reference prior (improper) $p(\mu, \sigma^2) \propto 1/\sigma^2 \stackrel{d}{=} \text{InvGam}(0, 0)$ gives $\mu \mid \sigma^2, y \sim \mathcal{N}(\bar{y}, \sigma^2/n)$ and $\sigma^2 \mid y \sim \text{Inv-}\chi^2 (n-1, s^2)$. Marginally, $\mu \mid y \sim t_{n-1}(\bar{y}, s^2/n)$.
- Predictive $\int \int p(y^* \mid \mu, \sigma^2 p(\mu \mid \sigma^2 y) p(\sigma^2 \mid y) d\mu d\sigma^2$. Trick is to write $y^* = \mu + \varepsilon$ where $\mu \mid \sigma^2, y \sim \mathcal{N}(\bar{y}, \sigma^2/n)$ independent of $\varepsilon \mid \sigma^2, y \sim \mathcal{N}(0, \sigma^2)$. Then $y^* \mid \sigma^2, y \sim \mathcal{N}(\bar{y}, \sigma^2(1+1/n))$ with $\sigma^2 \mid y \sim \text{Inv-}\chi^2(n-1, s^2)$ so that $y^* \mid y \sim t_{n-1}(\bar{y}, s^2(1+1/n))$.
- Natural conjugate prior $\mu \mid \sigma^2 \sim \mathcal{N}(m, \sigma^2/k)$ and $\sigma^2 \sim \text{Inv-}\chi^2(v, s^2)$ gives $\mu \mid \sigma^2, y \sim \mathcal{N}(m', \sigma^2/k')$ and $\sigma^2 \mid y \sim \text{Inv-}\chi^2(v', (s')^2)$ where k' = k + n, v' = v + n, $m' = \frac{km + n\bar{y}}{k'}$, and $v'(s')^2 = vs^2 + (n-1)s^2 + \frac{kn}{k'}(\bar{y} m)^2$. Marginally, $\mu \mid y \sim t_{v'}(m', (s')^2/k')$.

Multinomial

- $Y = (Y_1, \dots, Y_n) \sim \text{Multi}(n, \pi) \text{ where } \sum_{i=1}^n \pi_i = 1.$
- Multivariate pmf $f(y_1, \ldots, y_n) = n! \prod_{i=1}^n \frac{\pi_{i}^{y_i}}{y_i!}$.
- $E(Y_i) = n\pi_i$; $Var(Y_i) = n\pi_i(1 \pi_i)$; $Cov(Y_i, Y_{i'}) = -\pi_i\pi_{i'}$.
- Marginally, $Y_i \sim \text{Bin}(n, \pi_i)$.

Dirichlet

- $\pi = (\pi_1, \dots, \pi_K) \sim \text{Dir}(a)$ where $a_k > 0 \ \forall k = 1, \dots, K$.
- Multivariate pdf $f(\pi_1, ..., \pi_K) = \frac{1}{\text{Beta}(a)} \prod_{k=1}^K \pi_k^{a_k-1}$ where $\sum_{k=1}^J \pi_k = 1$ and $\text{Beta}(a) = \frac{\prod_{k=1}^K \Gamma(a_k)}{\Gamma(a_0)}$ for $a_0 = \sum_{k=1}^K a_k$.
- $E(\pi_k) = a_k/a_0$; $Var(\pi_k) = \frac{a_k(a_0 a_k)}{a_0^2(a_0 + 1)}$; $Cov(\pi_k, \pi_{k'}) = \frac{-a_k a_{k'}}{a_0^2(a_0 + 1)}$
- Marginally, $\pi_k \sim \text{Beta}(a_k, a_0 a_k)$.

Multinomial model

- Conjugate prior $\pi \sim \text{Dir}(a)$ gives $p(\pi \mid y) \sim \text{Dir}(a+y)$.
- Jeffreys prior uses a_k = 1/2 ∀k, possibly putting too much mass on rare categories.

MVN

- $p(y) = (2\pi)^{-k/2} |\Sigma|^{-1/2} \exp\left[-\frac{1}{2}(y-\mu)'\Sigma^{-1}(y-\mu)\right].$
- $E(Y_k) = \mu_k$; $Var(Y_k) = \Sigma_{kk}$; $Cov(Y_k, Y_{k'}) = \Sigma_{kk'}$.
- Marginally, $Y_k \sim \mathcal{N}(\mu_k, \Sigma_{kk})$.
- If $\binom{Y_1}{Y_2} \sim \mathcal{N}\left(\binom{\mu_1}{\mu_2}, \binom{\sum_{11}}{\sum_{21}}, \frac{\sum_{12}}{\sum_{22}}\right)$, then $Y_1 \mid Y_2 = y_2 \sim \mathcal{N}(\mu_1 + \sum_{12}\sum_{22}^{-1}(y_2 \mu_2), \sum_{11} \sum_{12}\sum_{22}^{-1}\sum_{21})$.
- $\begin{array}{ll} \bullet \ \Sigma_{kk'} = 0 \Longrightarrow Y_k \perp Y_{k'} \ \text{and} \\ \left[\Sigma^{-1}\right]_{kk'} = 0 \Longrightarrow Y_k \perp Y_{k'} \mid Y_i \ \forall i \neq k, k'. \end{array}$

MVN model (unknown mean)

If $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, S)$, then

- Default prior $\mu \sim \text{Unif}(-\infty, \infty)$ gives (when $n \geq K$) $\mu \mid y \sim \mathcal{N}(\bar{y}, S/n)$ where \bar{y} has elements $\bar{y}_k = \frac{1}{n} \sum_{i=1}^n y_{ik}$.
- Conjugate prior $\mu \sim \mathcal{N}(m,C)$ gives $\mu \mid y \sim \mathcal{N}(m',C')$ where $C' = [C^{-1} + nS^{-1}]^{-1}$ and $m' = C' [C^{-1}m + nS^{-1}\bar{y}]$.

Inverse Wishart

- $\Sigma_{K \times K} \sim \text{InvWish}(v, W^{-1})$ for v > K 1 and positive definite W if $p(W) \propto \frac{1}{2} |W|^{v K 1} \exp\left[-\frac{1}{2} \operatorname{tr}(W\Sigma^{-1})\right]$.
- $E(\Sigma) = (v K 1)^{-1}W$
- Marginally, $\sigma_k^2 = \Sigma_{kk} \sim \chi^2(v, W_{kk})$.
- $W \sim \text{Wish}(v, S) \implies W^{-1} \sim \text{InvWish}(v, S^{-1}).$
- Problematic as a prior: biases small variances upward.

Normal Inverse Wishart

- $\mu \mid \Sigma \sim \mathcal{N}(m, \frac{1}{2}\Sigma)$ and $\Sigma \sim \text{InvWish}(v, W^{-1})$.
- Marginally, $\mu \sim t_{v-K+1}(m, \frac{1}{c(v-K+1)}W)$.

MVN model

If $Y_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \Sigma)$,

• Conjugate prior $\mu \mid \Sigma \sim \mathcal{N}(m, \frac{1}{c}\Sigma)$ and $\Sigma \sim \text{InvWish}(v, W^{-1})$, that is, $p(\mu, \Sigma) \propto$

 $|\Sigma|^{-(\frac{v+K}{2}+1)} \exp\left[-\frac{1}{2}\operatorname{tr}(W\Sigma^{-1}) - \frac{c}{2}(\mu - m)'\Sigma^{-1}(\mu - m)\right],$ gives a Normal Inverse Wishart posterior with parameters $c' = c_n, v' = v + n, m' = \frac{k}{k+n}m + \frac{n}{k+n}\bar{y},$ and $W' = W + S + \frac{kn}{k+n}(\bar{y} - m)(\bar{y} - m)' \text{ where}$ $S = \sum_{i=1}^{n} (y_i - \bar{y})(y_i - \bar{y})'.$

• Default priors: $\Sigma \sim \operatorname{InvWish}(k+1,I)$ marginally puts $\operatorname{Unif}(-1,1)$ on each correlation; $p(\mu,\Sigma) \propto |\Sigma|^{-(K+1)/2}$ is a Normal Inverse Wishart where $c \to 0, v \to -1, |W| \to 0$ gives $\mu \mid \Sigma, y \sim \mathcal{N}(\bar{y}, \Sigma/n)$ and $\Sigma \mid y \sim \operatorname{InvWish}(n-1, S^{-1})$.

Normal Approximation to Posterior

For unimodal and roughly symmetric $p(\theta \mid y)$, a Taylors expansion about the posterior mode $\hat{\theta}$ gives

$$\log p(\theta \mid y) \approx \log p(\hat{\theta} \mid y) - \frac{1}{2}(\theta - \hat{\theta})' \left[-\frac{d^2}{d\theta^2} \log p(\theta \mid y) \right]_{\theta = \hat{\theta}} (\theta - \hat{\theta}),$$

that is $p(\theta \mid y) \stackrel{d}{\approx} \mathcal{N}(\hat{\theta}, I(\hat{\theta})^{-1})$ where $I(\hat{\theta}) = -\frac{d^2}{d\theta^2} \log p(\theta) \bigg|_{\theta = \hat{\theta}} - \frac{d^2}{d\theta^2} \log p(\theta \mid y) \bigg|_{\theta = \hat{\theta}}.$

Convergence of Posterior

For $Y_i \stackrel{\text{iid}}{\sim} p(y \mid \theta_0)$,

- if Θ is discrete and $P(\theta = \theta_0) > 0$, then $P(\theta = \theta_0 \mid y) \to 1$ as $n \to \infty$.
- if Θ is continuous and A is a neighborhood around θ_0 such that $P(\theta \in A) > 0$, then $P(\theta = A \mid y) \to 1$ as $n \to \infty$.

Consistency of Posterior Estimates

Use fact that $\hat{\theta}_{MLE} \stackrel{p}{\to} \theta_0$, meaning $\forall \varepsilon > 0$, $\lim_{n \to \infty} P\left(\left|\hat{\theta} - \theta_0\right| < \varepsilon\right) = 1$.

What can go wrong?

- Unidentified parameters, parameters grows with n, aliasing, unbounded or heavy-tailed likelihoods.
- Improper posterior.
- Prior excludes point of convergence.
- Convergence to edge of parameter space (prior).
- Wrong sampling distribution: posterior $p(\theta \mid y)$ will to converge to the point that minimizes Kullback-Leibler divergence from true f(y) where $KL\left[f(y):p(y\mid\theta)\right]=\mathrm{E}_{Y}\left[\log\left(\frac{f(y)}{p(y\mid\theta)}\right)\right]=\int \log\left(\frac{f(y)}{p(y\mid\theta)}\right)f(y)dy$.

Hierarchical Models

$$\begin{split} y_i &\overset{\text{ind}}{\sim} p(y \mid \theta_i), \quad \theta_i \overset{\text{iid}}{\sim} p(\theta \mid \phi), \quad \phi \sim p(\phi) \\ \Longrightarrow p(\theta, \phi \mid y) &\propto p(y \mid \theta, \phi) p(\theta, \phi) \propto p(y \mid \theta, \phi) p(\theta \mid \phi) p(\phi). \end{split}$$

Can decompose joint posterior as $p(\theta, \phi \mid y) = p(\theta \mid \phi, y)p(\phi \mid y)$, where $p(\theta \mid \phi, y) \propto \prod_{i=1}^n p(\theta_i \mid \phi, y_i)$; $p(\theta \mid y) \propto p(y \mid \phi)p(\theta)$; $p(y \mid \phi) = \prod_{i=1}^n p(y_i \mid \phi)$.

Conditional independencies: $y_i \perp y_j \mid \theta$; $y_i \perp y_j \mid \phi$; $\theta_i \perp \theta_j \mid \phi$; $\theta_i \perp \theta_j \mid \phi$; $y \perp \phi \mid \theta$.

Exchangeability

 Y_1, \ldots, Y_n are exchangeable if $p(y_1, \ldots, y_n)$ is invariant to permutation of indices (infinitely exchangeable if it holds for any given n).

de Finetti's Theorem

A sequence of r.v.s are infinitely exchangeable iff $\forall n$, $p(y_1, \ldots, y_n) = \int \prod_{i=1}^n p(y_i \mid \theta) P(d\theta)$, for some measure P on θ . If the dsn on θ has a density, can replace $P(d\theta)$ with $p(\theta)d\theta$.

Beta-Binomial Hierarchical Model

- $y_i \stackrel{\text{ind}}{\sim} \text{Bin}(n_i, \theta_i), \ \theta_i \stackrel{\text{iid}}{\sim} \text{Beta}(\alpha, \beta), \ \alpha, \beta \sim p(\alpha, \beta).$
- Conditional posterior: $p(\theta \mid \alpha, \beta, y) = \prod_{i=1}^{n} \text{Beta}(\alpha + y_i, \beta + n_i y_i).$
- Marginal posterior: $p(\alpha, \beta \mid y) \propto p(y \mid \alpha, \beta)p(\alpha, \beta)$ where $y_i \mid \alpha\beta \stackrel{\text{ind}}{\sim} \text{Beta-Binomial}(n_i, \alpha, \beta)$, that is $p(y \mid \alpha, \beta) = \prod_{i=1}^{n} \frac{B(\alpha+y_i, \beta+n_i-y_i)}{B(\alpha, \beta)}$.
- Interpretation: α prior successes, β prior failures. Can parameterize as $\mu = \frac{\alpha}{\alpha + \beta}$ prior expectation, $\eta = \alpha + \beta$ prior sample size. Transform to real line $\log(\mu/[1-\mu]) = \log(\alpha/\beta)$ and $\log \eta$ so we can use Beta(20, 30) and $\log \mathcal{N}(0, 3^2)$ priors for example (assume they are independent).
- Priors for α and β : warning! $p(\log(\alpha/\beta), \log(\alpha+\beta)) \propto 1$ gives an improper posterior! And $\sim \text{Unif}([-10^{10}, 10^{10}] \times [-10^{10}, 10^{10}])$ is very informative. Can use $\propto \alpha\beta(\alpha+\beta)^{-5/2}$ which leads to a proper posterior and is equivalent to $p(\alpha, \beta) \propto (\alpha+\beta)^{-5/2}$.

Normal Hierarchical Model

- $y_{ij} \stackrel{\text{ind}}{\sim} \mathcal{N}(\theta_i, \sigma^2), \ \theta_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \tau^2), \quad \mu, \tau^2 \sim p(\mu, \tau).$
- For known $\sigma^2=s^2$, assume $p(\mu,\tau)\propto p(\mu\mid\tau)p(\tau)\propto p(\tau)$, that is, assume improper uniform on μ . Then the posterior is

$$p(\tau \mid y) \propto p(\tau) V_{\mu}^{1/2} \prod_{i=1}^{I} (s_i^2 + \tau^2)^{-1/2} \exp \left[-\frac{(\bar{y}_{i\cdot} - \hat{\mu})^2}{2(s_i^2 - \tau^2)} \right],$$

$$\mu \mid \tau, y \sim \mathcal{N}(\hat{\mu}, V_{\mu}), \qquad \theta_i \mid \mu, \tau, y \sim \mathcal{N}(\hat{\theta}_i, V_i),$$

where
$$V_{\mu}^{-1} = \sum_{i=1}^{I} \frac{1}{s_i^2 + \tau^2}, V_i^{-1} = 1/s_i^2 + 1/\tau^2,$$

 $\hat{\mu} = V_{\mu} \left(\sum_{i=1}^{I} \frac{\bar{y}_{i,i}}{s_i^2 + \tau^2} \right), \text{ and } \hat{\theta}_i = V_i \left(\frac{\bar{y}_i}{s_i^2} + \frac{\mu}{\tau^2} \right)$

• Other priors: $\theta_i \sim t_v(\mu, \tau^2 \text{ for heavy tails, } \theta_i \sim \text{Laplace}(\mu, \tau^2)$ gives peak at zero, $\pi \delta_0 + (1 - \pi) \mathcal{N}(\mu, \tau^2)$ for a point mass at zero.

- Decomp $p(\theta, \mu, \tau \mid y) = p(\theta \mid \mu, \tau, y)p(\mu \mid \tau, y)p(\tau \mid y)$.
- For unknown σ^2 , default priors are half-Cauchy on the data-level sd, $\sigma \sim \text{Ca}^+(0, C)$ or data-level variance default $p(\sigma^2) \propto 1/\sigma^2$. Use $\tau \sim \text{Ca}^+(0, C)$ or $\tau \sim \text{Unif}(0, C)$ if > 5 reps.

Model Check

- Prior sensitivity analysis.
- Posterior predictive checks using $p(y^{\text{rep}} \mid y) = \int p(y^{\text{rep}} \mid \theta) p(\theta \mid y) d\theta. \text{ Compare replicated data to observed data or compute posterior } p\text{-value}$ $p_B = \operatorname{P}\left(T(y^{\text{rep}}, \theta) \geq T(y, \theta) \mid y\right) \approx \frac{1}{J} \sum_{j=1}^{J} I\left(T(y^{\text{rep},j}, \theta^{(j)}) \geq T(y, \theta^{(j)})\right).$

Hypothesis Testing

Suppose $y \sim p(y \mid \theta)$.

- All simple $(H_j: \theta = \theta_j \ \forall j)$: treat as discrete prior on θ_j : $P(\theta = \theta_j) = p_j. \text{ Posterior is then } P(\theta = \theta_j \mid y) = \frac{p_j p(y \mid \theta_j)}{\sum_k p_k p(y \mid \theta_k)}$
- All composite $(H_j: \theta \in (E_{j-1}, E_j] \ \forall j)$: just find area under the curve $P(H_j | y) = \int_{E_j}^{E_j} p(\theta | y) d\theta$.
- Mixed: use $p(H_j \mid y) \propto p(y \mid H_j) p(H_j)$. For simple H_j , $p(y \mid H_j) = p(y \mid \theta_j \text{ ie } \theta \mid H_j \sim \delta_{\theta_j}$. For composite H_j , $p(y \mid H_j) = \int p(y \mid \theta) p(\theta \mid H_j) d\theta$ is the marginal likelihood and $p(\theta \mid H_j)$ is the prior for θ when H_j is true.

Posterior and Posterior Predictive Propriety

- Tonell's Theorem: if \mathcal{X}, \mathcal{Y} are σ -finite measure spaces and f is nonnegative and measurable, then $\int_{\mathcal{X}} \int_{\mathcal{Y}} f(x, y) dy dx = \int_{\mathcal{Y}} \int_{\mathcal{X}} f(x, y) dx dy.$
- Proper prior + discrete data \implies proper posterior.
- Proper prior + continuous data ⇒ almost surely proper posterior.
- Improper prior \implies prior predictive $p(y) = \int p(y \mid \theta) p(\theta) d\theta$ is improper too.

Bayes Factor

- $p(H_0 \mid y) = \frac{p(y \mid H_0)}{p(y \mid H_0)p(H_0) + p(y \mid H_1)p(H_1)} = \frac{1}{1 + \frac{p(y \mid H_1)p(H_1)}{p(y \mid H_0)p(H_2)}} = \frac{1}{1 + \frac{p(y \mid H_1)p(H_1)}{p(y \mid H_0)p(H_2)}}$
- $BF(H_1: H_0) = \frac{p(y \mid H_1)}{p(y \mid H_0)} = \frac{1}{BF(H_0: H_1)}$.
- Noninformative prior $\implies BF(H_0: H_1) \to \infty$.
- For $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$, $BF(H_0: H_1) = \frac{p(y \mid \theta_0)}{\int p(y \mid \theta)p(\theta \mid H_1)d\theta}$.

LRT

$$H_0: \theta \in \Theta_0 \text{ vs } H_1: \theta \in \Theta_0^c. -2\log\left(\frac{L(\hat{\theta}_{0,MLE})}{L(\hat{\theta}_{MLE})}\right) \stackrel{d}{\to} \chi^2_{\Delta \text{ dim}}.$$

Jeffrey-Lindley Paradox

Bayesian and LRT disagree, usually when small effect size, large n, precise H_0 , diffuse H_1 .