APPLIED DATA SCIENCE CAPSTONE

- Presentación Final del Proyecto
- Alumno: Mario Bustamante
- Año:2025

Executive Summary

 Este proyecto busca predecir si la primera etapa del Falcon 9 aterrizará exitosamente usando datos reales de SpaceX, técnicas de scraping, EDA, visualización y modelos de clasificación. Logramos una precisión superior al 90%.

Introduction

 SpaceX busca reutilizar cohetes para reducir costos. Este proyecto predice el éxito de aterrizajes usando datos históricos de lanzamientos.

Data Collection & Wrangling

- API de SpaceX
- Web scraping en Wikipedia
- Limpieza de datos y codificación con One-Hot Encoding

EDA & Visual Analytics

- Análisis entre variables clave (vuelo, órbita, éxito)
- Visualizaciones con seaborn y matplotlib
- Identificación de patrones por sitio

Predictive Analysis Methodology

- Modelos: Regresión Logística, KNN, SVM, Árbol
- Validación cruzada y GridSearchCV
- Mejor modelo: Árbol (94.44% precisión)

EDA Visualization Results

- Gráfico de barras: Éxitos por sitio
- Dispersión: vuelo vs masa
- Evolución temporal del éxito

- Ejemplo:
- SELECT Launch_Site, COUNT(*) as Total FROM SPACEXTBL GROUP BY Launch_Site;
- Sitio más usado: CCAFS SLC 40
- Mayor éxito: KSC LC 39A


```
In [5]: %sql select * from SPACEXDATASET where launch_site like 'CCA%' limit 5;
```

* ibm_db_sa://wzf08322:***@0c77d6f2-5da9-48a9-81f8-86b520b87518.bs2io90108kqblod8lcg.databases.appdomain.cloud:31198/bludb Done.

Out[5]:

D	ATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
	010- 6-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
- 1	010- 2-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	012- 5-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525		NASA (COTS)	Success	No attempt
- 1	012- 0-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	013- 3-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

```
n [13]: %%sql select landing_outcome, count(*) as count_outcomes from SPACEXDATASET

where date between '2010-06-04' and '2017-03-20'

group by landing_outcome

order by count_outcomes desc;
```

* ibm_db_sa://wzf08322:***@0c77d6f2-5da9-48a9-81f8-86b520b87518.bs2io90108kqblod8lcg.databases.appdomain.cloud:31198/blDone.

ut[13]:

landing_outcome	count_outcomes
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

CCAFS LC-40 | Failure (drone ship)

April

2015-04-14 F9 v1.1 B1015

Interactive Map with Folium

- Mapeo con Folium
- Colores para éxitos/fracasos
- Exploración geoespacial

Plotly Dash Dashboard

- Dashboard con filtros dinámicos
- Visualización en tiempo real
- Insights interactivos

Predictive Analysis Results

- Mejor modelo: Árbol (94.44%)
- - F1-score: 0.93
- Baja tasa de falsos negativos

Conclusion

- Modelo efectivo para predecir aterrizajes exitosos.
- Visualizaciones y dashboards útiles para ingenieros.

Creatividad e Innovación

- Integración de Folium, Dash y SQL
- Estética espacial
- Cruce de análisis temporales y espaciales