# A Neighborhood-Based Clustering by Means of the Triangle Inequality

Dokumentacja końcowa

Artur G. 09.06.2021

## Spis treści

| 1. | Wprowadzanie i definicja problemu                                        | 3  |
|----|--------------------------------------------------------------------------|----|
| 2. | Charakterystyka algorytmu                                                | 3  |
|    | 2.1. TI-k-Neighborhood-Index                                             | 3  |
|    | 2.2. NBC                                                                 | 4  |
| 3. | Opis implementacji                                                       | 5  |
|    | 3.1. Wyznaczanie k-sąsiedztwa                                            | 5  |
|    | 3.1.1. Wyznaczanie k-sąsiedztwa na podstawie nierówności trójkąta        | 5  |
|    | 3.1.2. Wyznaczanie k-sąsiedztwa metodą standardową                       | 6  |
|    | 3.2. Algorytm NBC                                                        | 7  |
| 4. | Instrukcja obsługi                                                       | 9  |
| 5. | Zbiory danych                                                            | 9  |
|    | 5.1. Charakterystyka zbioru Absenteeism at work                          | 9  |
|    | 5.2. Charakterystyka zbioru Human Activity Recognition Using Smartphones | 9  |
| 6. | Wyniki                                                                   | 10 |
|    | 6.1. Wyniki dla Absenteeism at work                                      | 10 |
|    | 6.2. Wyniki dla Human Activity Recognition Using Smartphones             | 10 |
|    | 6.3. Obserwacje                                                          | 10 |
| 7. | Wnioski                                                                  | 11 |
| Bi | bliografia                                                               | 12 |
|    | nis rysunków                                                             | 13 |

## 1. Wprowadzanie i definicja problemu

Grupowanie danych jest jednym z ważniejszych zadań zarówno sztucznej inteligencji jak i eksploracji danych (ang. data mining). Jedną z istotniejszych grup algorytmów grupowania danych są algorytmy oparte na grupowaniu gęstościowym. Z omawianych na wykładzie można wyróżnić takie algorytmy jak DBSCAN (oparty na stałym otoczeniu espilonowym) lub NBC (oparty na k najbliższych sąsiadach). Jednakże, algorytmy te, w swych podstawowych formach (np. NBC oparte na R-drzewie), są niewydajne w przypadku danych wielowymiarowych.

W takich przypadkach z pomocą przychodzi własność nierówności trójkąta i metody z niej wynikające. Jedną z takich metod jest algorytm *TI-k-Neighborhood-Index*[1], który wspiera standardową metodę NBC w celu zwiększenia wydajności na danych wielowymiarowych.

## 2. Charakterystyka algorytmu

Implementowane rozwiązanie będzie odnosiło się do algorytmu NBC wspieranego o *TI-k-Neighborhood-Index*. Dlatego też, rozwiązanie to można podzielić na dwa etapy:

- 1. wyznaczenie k-sąsiedztwa (zbudowanie indeksu) dla każdego punktu przy pomocy algorytmu *TI-k-Neighborhood-Index*,
- 2. implementacja NBC, które będzie wykorzystywać indeks wyznaczony w poprzednim kroku.

## 2.1. TI-k-Neighborhood-Index

Algorytm ten wykorzystuję nierówność trójkąta w celu ograniczeń nakładu obliczeń wynikającego z potrzeby wynaczynienia odległości wszystkich punktów względem wszystkich punktów. Przybliżony przebieg algorytmu prezentuję się następująco:

- 1. wyznacz dystans wszystkich punktów do punktu referencyjnego o wszystkich współrzędnych 0,
- 2. posortuj punkty względem wyznaczonych odległości,
- 3. dla każdego punktu p:
  - a) wyznacz k punktów będących początkowymi kandydatami na najbliższych sąsiadów punktu p,
  - b) wyznacz *Eps* na podstawie początkowych kandydatów (max z odległości kandydatów do punktu *p*). Wyznaczone *Eps* jest promieniem wewnątrz, którego na pewno znajduje się *k* najbliższych sąsiadów punktu *p*, wynika to nierówności trójkąta,
  - c) sprawdzaj pozostałe punkty (poprzedzające i następujące względem wyznaczonych kandydatów) dopóki różnica odległości sprawdzanego punktu i punktu *p* do punktu referencyjnego nie będzie większa od *Eps* (lub *-Eps*, zależnie od tego czy punkt jest następujący czy poprzedzający),

d) zwróć *k* najbliższych sąsiadów.

Jest to pobieżny opis tego algorytmu, bardziej szczegółowe wyjaśnienie wraz z pseudokodem znajduję się w artykule [1].

- distance(p,q) + distance(q,r) ≥ distance(p,r).
- distance(p,q) ≥ distance(p,r) distance(q,r).



Rysunek 2.1. Nieróność trójkąta dla dowolnych punktów. (źródło: wykład)



**Rysunek 2.2.** Przykład działania *TI-k-Neighborhood-Index.* (źródło: wykład)

#### 2.2. NBC

Algorytm NBC jest algorytmem grupowania opartym na gęstości. NBC korzysta z współczynnika NDF do wyznaczania gęstości podprzestrzeni. Wyznacznik ten jest rozumiany jako stosunek liczności odwrotnego k-sąsiedztwa do liczności k-sąsiedztwa. Odwrotne k-sąsiedztwo jest definiowane jako zbiór punktów w zbiorze wejściowym, dla których punkt, dla którego wyznaczany jest współczynnik, jest k-sąsiadem. Jeśli wartość tego współczynnika jest większa lub równa 1 to punk pełni rolę punktu rdzeniowego. Punkt rdzeniowy jest interpretowany jako ziarno, które wraz ze swoim k-sąsiedztwem reprezentuje gęstą przestrzeń, którą można uznać za grupę lub część grupy. Kiedykolwiek punkt rdzeniowy jest dołączany do grupy, wszystkie punkty w jego k-sąsiedztwie także są włączane do tej grupy, chyba, że wcześniej zostały przypisane do innej grupy.



## Uporządkowany zbiór punktów D;

| $_{\text{Lps}'} = 1.55$ |   |     |     |               |               |  |
|-------------------------|---|-----|-----|---------------|---------------|--|
|                         | q | Χ   | Υ   | distance(q,r) | distance(C,q) |  |
|                         | K | 0,9 | 0,0 | 0,9           |               |  |
|                         | L | 1,0 | 1,5 | 1,8           |               |  |
|                         | G | 0,0 | 2,4 | 2,4           |               |  |
|                         | Н | 2,4 | 2,0 | 3,1           | 1.55          |  |
|                         | F | 1,1 | 3,0 | 3,2           | 1.77          |  |
|                         | С | 2,8 | 3,5 | 4,5           |               |  |
|                         | Α | 4,2 | 4,0 | 5,8           | 1.49          |  |
| X                       | В | 5,9 | 3,9 | 7,1           |               |  |

**Rysunek 2.3.** Grupowanie oparte na k-sąsiedztwie. (źródło: wykład)

## 3. Opis implementacji

Wybrane zadanie zostało zaimplementowane w języku Python. Rozwiązanie to można podzielić na dwie główne sekcji. mianowicie:

- Wyznaczanie k-sąsiedztwa dla każdego punktu tj. budowanie indeksu,
- Grupowanie punktów na podstawie sąsiedztwa.

Kod źródłowy projektu dostępny jest w serwisie Github na publicznym repozytorium *agrud-kow / nbc-knn-ti*[2]

### 3.1. Wyznaczanie k-sąsiedztwa

Jest to główny temat tergo projektu, ponieważ to ten element całego procesu grupowania widnieje tu jako ulepszenie. Warto nadmienić, iż zaimplementowano dwie wersie wyznaczanie k-sąsiedztwa:

- opartą o wyznaczanie k-sąsiedztwa przy wykorzystaniu nierówności trójkąta,
- standardowa, opartą na wyznaczeniu wszystkich odległości między punktami.

#### 3.1.1. Wyznaczanie k-sąsiedztwa na podstawie nierówności trójkąta

Metoda ta została zaimplementowana bazując na algorytmie przedstawiony w publikacji [1] i opisanym w poprzednich rozdziałach. Wszystkie opisane tam metody zostały zenkapsulowane do postaci metod klasy o nazwie *TIkNeighborhoodIndex*. Skróconą implementacje ów klasy przedstawiono poniżej.

```
def ti_k_neighborhood(self, p_idx: int) -> np.array:
def preceding_point(self, idx) -> Tuple[int, bool]:
def following_point(self, idx) -> Tuple[int, bool]:
def find_first_kcn_fb(
def find_first_kcn_b(
def find_first_kcn_f(
def verify_k_condidate_neighbours_backward(self, knn: KNN, p_idx: int,

→ b_idx: int, backwardSearch: bool,
  . . .
def verify_k_condidate_neighbours_forward(self, knn: KNN, p_idx: int,

→ f_idx: int, forwardSearch: bool,
  . . .
def get_idx_from_dist(self, idx) -> int:
def calc_real_distance(self, idx_1, idx_2) -> float:
def create_est_dist_list(self) -> KNN:
```

## 3.1.2. Wyznaczanie k-sąsiedztwa metodą standardową

W tym przypadku kod takiej funkcjonalności jest znacznie mniej skomplikowany, ponieważ sprowadza się on do podwójnie zagnieżdżonej pętli iterującej po zbiorze danych. W pierwszej iteracji wyznaczamy dla danego punktu odległości wszystkich innych punktów

do niego po czym wybieramy tylko k-najbliższych sąsiadów (lub więcej, jeśli jakieś skrajne punkty są równoodległe). Implementacje tego algorytmu przedstawiono poniżej.

```
def k_neighbourhood(data: np.ndarray, k: int) -> Tuple[KNNS, R_KNNS]:
 knns: List[List[Tuple[float, int]]] = [list() for _ in

¬ range(len(data))]
 r_knns: List[List[int]] = [list() for _ in range(len(data))]
 for idx1, v1 in enumerate(data):
   neighbour_candidates = []
   for idx2, v2 in enumerate(data):
      if idx1 != idx2:
        dist = distance(v1, v2)
        neighbour_candidates.append((dist, idx2))
   neighbour_candidates.sort(key=lambda t: t[0])
    eps = neighbour_candidates[:k][-1][0]
   neighbours = []
   for nc in neighbour_candidates:
      if nc[0] > eps:
        break
     neighbours.append(nc)
   knns[idx1] = neighbours
    for nc in knns[idx1]:
      r_knns[nc[1]].append(idx1)
 return knns, r_knns
```

### 3.2. Algorytm NBC

Algorytm NBC został zaimplementowany w postaci pętli, która iterując po danych sprawdza czy nie są one punktami gęstymi (dokładny opis znajduje się w rozdziale 2.2) wykorzystując przy tym k-sąsiedztwa i odwrotne k-sąsiedztwa wyznaczone przy pomocy jednej z dwóch opisanych wyżej metod. Fragment implementacji znajduje się poniżej.

```
def nbc(data: np.array, dimensions: int, k: int, index_type: str = '')
    --> CLUSTER:
    clusters: CLUSTER = [EMPTY_CLUSTER] * len(data)

if index_type == 'ti-kn':
    tikni = TIkNeighborhoodIndex(data, dimensions, k)
```

```
knns, r_knns = tikni.run()
elif index_type == 'kn':
 knns, r_knns = k_neighbourhood(data, k)
 raise AttributeError('Index type `{}` does not exist. Use `ti-kn` or
  ~ `kn`.'.format(index_type))
ndf = calc_ndf(knns, r_knns)
current_cluster_id = 0
for idx, _ in enumerate(data):
  if has_cluster(idx, clusters) or not is_dense_point(idx, ndf):
    continue
  clusters[idx] = current_cluster_id
 dense_points = set()
 for n in knns[idx]:
   n_idx = n[1]
    clusters[n_idx] = current_cluster_id
    if is_dense_point(n_idx, ndf):
      dense_points.add(n_idx)
 while dense_points:
    dp = dense_points.pop()
   for n in knns[dp]:
      n_idx = n[1]
      if has_cluster(n_idx, clusters):
        continue
      clusters[n_idx] = current_cluster_id
      if is_dense_point(n_idx, ndf):
        dense_points.add(n_idx)
  current_cluster_id += 1
return clusters
```

## 4. Instrukcja obsługi

Główny plik wykonywalny przeznaczony do ugotowania w postaci metody do wyznaczania grupowania znajduje się w katalogu *src* i nosi nazwę *main.py*. Wywołanie ów skryptu potrzebuje do poprawnego działania następujących flag:

- input ścieżka do pliku wejściowego w postaci pliku csv(z separatorem w postaci ',') bez nagłówków,
- output ścieżka do pliku, w którym zostaną zapisane grupy, do których przydzielono poszczególne punkty (również jest to plik csv),
- k liczba nalbliższych sąsiadów,
- index\_type typ indeksu, z którego algorytm będzie korzystał. Dostępne indeksy to:
  - ti-kn metoda wyznaczania indeksów k-sąsiedztwa oparta o nierówność trójkąta,
  - kn standardowy metoda wyznaczania indeksów k-sąsiedztwa.

Przykładowe wydołanie programu przedstawia się następująco:

```
python3 src/main.py --input=data/test_data_2.csv
    --output=results/out1.csv --k=3 --index_type=kn
```

## 5. Zbiory danych

Do przeprowadzenia testów wydajnościowych wykorzystano następujące zbiory danych:

- Absenteeism at work Data Set[3]
- Human Activity Recognition Using Smartphones Data Set[4]

Zbiory te różnią się znacznie liczbą wymiarów przez powinny dobrze uwidaczniać różnice między algorytmami.

#### 5.1. Charakterystyka zbioru Absenteeism at work

Liczba punktów: 740 Liczba atrybutów: 21

### 5.2. Charakterystyka zbioru Human Activity Recognition Using Smartphones

Liczba punktów: 10299 Liczba atrybutów: 561

## 6. Wyniki

W celu weryfikacji wyników zostały przeprowadzone testy wydajnościowe, które polegały na zmierzeniu czasu wykonania metod wyznaczających k-sąsiedztwo. Ograniczone się tylko do tych metod a nie do całego algorytmu, ponieważ implementacja NBC jest niezależna od sposoby wyznaczania k-sąsiedztwa a co za tym idzie nie dostarczyłoby to żadnych wyników poza czasem wykonania zwiększonym o czas wykonania NBC.

### 6.1. Wyniki dla Absenteeism at work

| k   | Czas wykonania(s) - metoda stan-<br>dardowa | Czas wykonania(s) - metoda<br>TI-k-Neighborhood |
|-----|---------------------------------------------|-------------------------------------------------|
| 5   | 2.665634                                    | 8.429350                                        |
| 10  | 2.655447                                    | 11.318147                                       |
| 25  | 2.678044                                    | 14.951043                                       |
| 50  | 2.732866                                    | 16.659003                                       |
| 100 | 2.79761                                     | 18.413207                                       |

**Tabela 6.1.** Wyniki indeksowania k-sąsiedztwa na zbiorze Absenteeism at work

### 6.2. Wyniki dla Human Activity Recognition Using Smartphones

| k   | Czas wykonania(s) - metoda stan-<br>dardowa | Czas wykonania(s) - metoda<br>TI-k-Neighborhood |
|-----|---------------------------------------------|-------------------------------------------------|
| 5   | 353.631777                                  | 3376.365453                                     |
| 10  | 355.683249                                  | 4133.273895                                     |
| 25  | 366.311537                                  | NA <sup>a</sup>                                 |
| 50  | 362.894788                                  | NA                                              |
| 100 | 364.800372                                  | NA                                              |

**Tabela 6.2.** Wyniki indeksowania k-sąsiedztwa na zbiorze Human Activity Recognition Using Smartphones

### 6.3. Obserwacje

Jak widać w tabelach 6.1 oraz 6.2 wyniki są absolutnie niespodziewane. Metoda, która z pozoru miała osiągać znacznie lepsze wyniki jest znacząco gorsza od metody standardowej

<sup>&</sup>lt;sup>a</sup> Brak otrzymanych wyników ze względu na wysoki czas oczekiwania.

liczącej wszystkie odległości. W przypadku większego zbioru danych można zaobserwować co najmniej 10 krotny wzrost czasu potrzebnego na wyznaczenie k-sąsiedztwa.

### 7. Wnioski

Analizując wyniki można dojść do wniosku, że coś poszło nie tak, w końcu algorytm oparty o nierówność trójkąta powinien sobie radzić o wiele lepiej, zwłaszcza w większych zbiorach danych. Przy czym pisząc rosnących mam na myśli większą liczbę przykładów niż wymiarów, ponieważ nie jestem do końca przekonany co do zysków z ów metody w przypadkach zwiększającej się liczby wymiarów, jest to raczej kwestia implementacji wyznaczania wydajnego wyliczania odległości między punkami niż cecha tego algorytmu. Jednym z podejrzeń (zakładając poprawność implementacji) jest fakt implementacji tego rozwiązania w Python-ie co nie daje najlepszych rezultatów w połączeniu ze znacznie większą liczbą metod, które muszą być wywołane wewnątrz algorytmu w porównaniu do standardowego podejścia.

## **Bibliografia**

- [1] M. Kryszkiewicz i P. Lasek, "A Neighborhood-Based Clustering by Means of the Triangle Inequality", eng, w *Intelligent Data Engineering and Automated Learning IDEAL 2010*, ser. Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, s. 284–291, ISBN: 9783642153808.
- [2] A Neighborhood-Based Clustering (kNN) by Means of the Triangle Inequality, 2021. adr.: https://github.com/agrudkow/nbc-knn-ti.
- [3] Absenteeism at work Data Set, 2018. adr.: https://archive.ics.uci.edu/ml/datasets/Absenteeism+at+work#.
- [4] Human Activity Recognition Using Smartphones Data Set, 2012. adr.: https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones.

## Spis rysunków

| 2.1 | Nieróność trójkąta dla dowolnych punktów. (źródło: wykład)           | 4 |
|-----|----------------------------------------------------------------------|---|
| 2.2 | Przykład działania <i>TI-k-Neighborhood-Index</i> . (źródło: wykład) | 4 |
| 2.3 | Grupowanie oparte na <i>k</i> -sąsiedztwie. (źródło: wykład)         | 5 |