Problem Description

The problem is to find the Longest Common Subsequence (LCS) of two given strings. A subsequence is a sequence that appears in the same relative order but not necessarily contiguous. The Longest Common Subsequence is the longest subsequence that is common to both strings.

Recursive Solution:

The given code uses a recursive approach to find the LCS. The function `recursionLCS` takes two strings ('str1' and 'str2') and their sizes ('size1' and 'size2') as input. It returns the length of the LCS and updates the 'ans' string with the LCS.

Dynamic Programming Solution:

The algorithm uses a two-dimensional array (dp) to store intermediate results. The cell dp[i][j] represents the length of the LCS of the substrings s1[0...i-1] and s2[0...j-1].

Filling the DP Table:

The algorithm iterates over the lengths of substrings s1 and s2 and fills in the DP table based on character matches. If s1[i-1] == s2[j-1], it increments the LCS length by 1. Otherwise, it takes the maximum LCS length from the adjacent cells in the DP table.

Backtracking:

After constructing the DP table, the algorithm performs backtracking to reconstruct the actual LCS string. It starts from the bottom-right corner of the DP table and moves towards the top-left, choosing characters that contribute to the LCS.

Asymptotic Upper Bound

Recursive Solution:

The recursive solution has an exponential time complexity. Let n be the maximum of `size1` and `size2` (the length of the longer string). The recurrence relation for the time complexity is T(n) = 2T(n-1) + O(1). This results from the fact that for each character in the strings, the recursive function makes two calls (one excluding the character from `str1`, the other excluding it from `str2`). The base case takes constant time. The overall time complexity is $O(2^n)$, which is exponential.

The space complexity is also significant due to the recursive calls, and it is O(n) due to the recursion stack depth.

Dynamic Programming Solution:

The dynamic programming approach to solving the Longest Common Subsequence problem is more

efficient. It has a time complexity of **O(size1 times size2)** and a space complexity of **O(size1 times size2)**. This improvement is achieved by avoiding recomputation of overlapping subproblems, storing the solutions in a matrix and building up the solution iteratively.

Conclusion:

In conclusion, while the recursive solution provides a simple and intuitive approach to solving the problem, it suffers from an exponential time complexity. The dynamic programming solution is more efficient and practical for larger inputs, providing a polynomial time complexity.