第8、10、11、13章

第8章 群

(4)

Question

设 $G \in \mathbb{R}$ 阶有限群. 证明: 对任意元 $a \in G$, 有 $a^n = e$.

Answer

证明:

 $G \in \mathbb{R}$ 阶有限群,设 $H \to G$ 的m 阶交换群.

由拉格朗日定理得 $m \mid n$,只需证 $a^m = e$.

设 a_1, a_2, \dots, a_k 为 H 内不同元素,则 aa_1, aa_2, \dots, aa_k 也为 H 内不同元素.

而 $e \cdot a_1 a_2 \cdots a_k = a_1 \cdot a_2 \cdots a_k = a a_1 \cdot a a_2 \cdots a a_k = a^k a_1 a_2 \cdots a_k$

即 $a^k=e=a^m$, 得证.

(5)

Question

证明: 群 G 中的元素 a 与其逆元 a^{-1} 有相同的阶.

Answer

证明:

设
$$\operatorname{ord}(a) = n \neq m = \operatorname{ord}(a^{-1})$$

$$\therefore a^n = e$$

$$(a^{-1})^n = (a^{-1})^n a^n = e^{-1}$$

$$\therefore m \mid n$$

同理
$$(a^{-1})^m = e, \ a^m = a^m \cdot (a^{-1})^m = e$$

 $\therefore n \mid m$

从而 n=m,得证.

(10)

Question

给出 F_7 中的加法表和乘法表.

Answer

解:

$$\boldsymbol{F}_7 = \boldsymbol{Z}/7\boldsymbol{Z} = \{0, 1, 2, 3, 4, 5, 6\}.$$

加法表

\oplus	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

乘法表 ($oldsymbol{F}_7^*$)

\otimes	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2

\otimes	1	2	3	4	5	6
6	6	5	4	3	2	1

(11)

Question

求出 F_{23} 的生成元.

Answer

解:

23 是素数,则 ${m F}_{23}$ 是循环群, $\varphi(23) = 22 = 2 \times 11$.

$$\operatorname{ord}_{23}(-1) = 2, \qquad 2^{11} \equiv 1 \pmod{23} \Rightarrow \operatorname{ord}_{23}(2) = 11, \qquad (2, 11) = 1$$

 \therefore ord₂₃ $(-2) = 2 \times 11 = 22$, $\therefore -2(21)$ 为一个生成元. (或查原根表得 5 是 23 的一个原根,即为一个生成元).

找 p-1=22 的完全剩余系,枚举得 1,3,5,7,9,13,15,17,19,21 符合条件(检验共 $\varphi(22)=\varphi(2)\times \varphi(11)=1\times 10=10$ 个,正确)

$$(-2)^1 = -2 \equiv 21 \pmod{23}$$
 $(-2)^3 = -8 \equiv 15 \pmod{23}$

$$(-2)^5 = -32 \equiv 14 \pmod{23} \quad (-2)^7 = -128 \equiv 10 \pmod{23}$$

$$(-2)^9 = -512 \equiv 17 \pmod{23} \quad (-2)^{13} = -8192 \equiv 19 \pmod{23}$$

$$(-2)^{15} = -32768 \equiv 7 \pmod{23} \quad (-2)^{17} = -131072 \equiv 5 \pmod{23}$$

$$(-2)^{19} \equiv 20 \pmod{23} \quad (-2)^{21} \equiv 11 \pmod{23}$$

 \therefore F_{23} 的所有生成元为 5, 7, 10, 11, 14, 15, 17, 19, 20, 21.

(12)

Question

证明: $\mathbf{Z}/n\mathbf{Z}$ 中的可逆元对乘法构成一个群,记作 $\mathbf{Z}/n\mathbf{Z}^*$.

Answer

证明:

对 $\mathbf{Z}/n\mathbf{Z}$ 中任意元素均有结合律,且存在单位元.

其中任意可逆元 a 满足 $a^{-1} \cdot a = a \cdot a^{-1} = e$.

则构成群.

第10章 环与理想

(6)

Question

证明集合 $\mathbf{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbf{Z}\}$ 对于通常的加法和乘法构成一个整环.

Answer

证明:

1. $\mathbf{Z}[\sqrt{2}]$ 对于加法有

$$(a + b\sqrt{2}) \oplus (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2}$$

构成交换加群,零元为 0. 对任意 $(a+b\sqrt{2})$ 的负(逆)元为 $-(a+b\sqrt{2})$.

2. $\mathbf{Z}[\sqrt{2}]$ 对于乘法有

$$(a+b\sqrt{2})\otimes(c+d\sqrt{2})=(ac)+2\cdot(bd)+(ad+bc)\sqrt{2}$$

满足结合律和分配律,且满足交换律,有单位元1.

- 3. 可以找到 $3, 2 + \sqrt{2}$ 为不可约元, $2 = (2 + \sqrt{2})(2 \sqrt{2})$ 为可约元.
- 4. 若 $a+b\sqrt{2} \neq 0$ 是零因子,则存在非零元 $c+d\sqrt{2}$ 使

$$(a+b\sqrt{2})\otimes(c+d\sqrt{2})=(ac+2\cdot bd)+(ad+bc)\sqrt{2}=0$$

則 $ac + 2bd = 0, \ ad + bc = 0 \Rightarrow ac^2 = (-2bd)c = 2ad^2 \Rightarrow a(c^2 - 2d^2) = 0.$

 $\therefore c^2 = 2d^2.$

 $\therefore c = \sqrt{2}d.$

而 c, d 是整数, $\therefore \sqrt{2}d$ 不为整数, 矛盾. \therefore 无零因子.

因此 $\mathbf{Z}[\sqrt{2}]$ 对于通常的加法和乘法构成一个整环.

(15)

Question

设 D 是无平方因数的整数. 证明集合 $\mathbf{Q}[\sqrt{D}]=\{a+b\sqrt{D}\mid a,b\in\mathbf{Q}\}$ 对于通常的加法和乘法构成一个域.

Answer

证明:

1. $\mathbf{Q}[\sqrt{D}]$ 对于加法有

$$(a+b\sqrt{D})\oplus (c+d\sqrt{D})=(a+c)+(b+d)\sqrt{D}$$

构成交换加群,零元为 0. 对任意 $(a+b\sqrt{D})$ 的负(逆)元为 $-(a+b\sqrt{D})$.

2. $\mathbf{Q}[\sqrt{D}]$ 对于乘法有

$$(a+b\sqrt{D})\otimes(c+d\sqrt{D})=(ac)+2\cdot(bd)+(ad+bc)\sqrt{D}$$

$$\mathbf{Q}^*[\sqrt{D}] = \mathbf{Q}[\sqrt{D}]/\{0\}$$
,有单位元 1 . 对任意 $(a+b\sqrt{D})$ 的逆元为

$$(a+b\sqrt{D})^{-1} = \frac{a}{a^2-b^2D} + \left(-\frac{b}{a^2-b^2D}\right)\sqrt{D} \quad (a \neq 0, b \neq 0)$$

因此集合 $\mathbf{Q}[\sqrt{D}] = \{a + b\sqrt{D} \mid a, b \in \mathbf{Q}\}$ 对于通常的加法和乘法构成一个域.

第11章 多项式环

(3)

Question

设 a(x), b(x) 是数域 \mathbf{F}_2 上的多项式,试计算 s(x), t(x) 使得

$$s(x) \cdot a(x) + t(x) \cdot b(x) = (a(x), b(x)).$$

①
$$a(x) = x^2 + x + 1$$
, $b(x) = x^8 + x^4 + x^3 + x + 1$.

②
$$a(x) = x^3 + x + 1$$
, $b(x) = x^8 + x^4 + x^3 + x + 1$.

$$a(x) = x^4 + x + 1, \ b(x) = x^8 + x^4 + x^3 + x + 1.$$

Answer

解:

①
$$a(x) = x^2 + x + 1$$
, $b(x) = x^8 + x^4 + x^3 + x + 1$.

1.
$$b(x) = q_0(x) \cdot a(x) + r_0(x), \quad q_0(x) = x^6, \quad r_0(x) = x^7 + x^6 + x^4 + x^3 + x + 1$$

2.
$$a(x) = q_1(x) \cdot r_0(x) + r_1(x), \quad q_1(x) = 0, \quad r_1(x) = x^2 + x + 1$$

$$3. \quad r_0(x) = q_2(x) \cdot r_1(x) + r_2(x), \quad q_2(x) = x^5, \quad r_2(x) = x^5 + x^4 + x^3 + x + 1$$

4.
$$r_1(x) = q_3(x) \cdot r_2(x) + r_3(x), \quad q_3(x) = 0, \quad r_3(x) = x^2 + x + 1$$

5.
$$r_2(x) = q_4(x) \cdot r_3(x) + r_4(x), \quad q_4(x) = x^3, \quad r_4(x) = x+1$$

6.
$$r_3(x) = q_5(x) \cdot r_4(x) + r_5(x), \quad q_5(x) = x, \quad r_5(x) = 1$$

$$egin{aligned} 1 &= r_5(x) = q_5(x)(q_4(x) \cdot r_3(x) + r_2(x)) + r_3(x) \ &= (x^4+1)(q_3(x) \cdot r_2(x) + r_1(x)) + (x) \cdot r_2(x) \ &= (x)(q_2(x) \cdot r_1(x) + r_0(x)) + (x^4+1) \cdot r_1(x) \ &= (x^6+x^4+1)(q_1(x) \cdot r_0(x) + a(x)) + (x) \cdot r_0(x) \ &= (x)(q_0(x) \cdot a(x) + b(x)) + (x^6+x^4+1) \cdot a(x) \ &= (x^7+x^6+x^4+1)(a(x)) + (x) \cdot b(x) \end{aligned}$$

$$\therefore s(x) = x^7 + x^6 + x^4 + 1, \quad t(x) = x.$$

②
$$a(x) = x^3 + x + 1$$
, $b(x) = x^8 + x^4 + x^3 + x + 1$.

1.
$$b(x) = q_0(x) \cdot a(x) + r_0(x), \quad q_0(x) = x^5, \quad r_0(x) = x^6 + x^5 + x^4 + x^3 + x + 1$$

$$a(x) = q_1(x) \cdot r_0(x) + r_1(x), \quad q_1(x) = 0, \quad r_1(x) = x^3 + x + 1$$

3.
$$r_0(x) = q_2(x) \cdot r_1(x) + r_2(x), \quad q_2(x) = x^3, \quad r_2(x) = x^5 + x + 1$$

4.
$$r_1(x) = q_3(x) \cdot r_2(x) + r_3(x), \quad q_3(x) = 0, \quad r_3(x) = x^3 + x + 1$$

5.
$$r_2(x) = q_4(x) \cdot r_3(x) + r_4(x), \quad q_4(x) = x^2, \quad r_4(x) = x^3 + x^2 + x + 1$$

$$6. \quad r_3(x) = q_5(x) \cdot r_4(x) + r_5(x), \quad q_5(x) = 1, \quad \ r_5(x) = x^2.$$

7.
$$r_4(x) = q_6(x) \cdot r_5(x) + r_6(x)$$
, $q_6(x) = x$, $r_6(x) = x^2 + x + 1$

8.
$$r_5(x) = q_7(x) \cdot r_6(x) + r_7(x), \quad q_7(x) = 1, \quad r_7(x) = x + 1$$

9.
$$r_6(x) = q_8(x) \cdot r_7(x) + r_8(x), \quad q_8(x) = x, \quad r_8(x) = 1$$

$$1 = r_8(x) = q_8(x)(q_7(x) \cdot r_6(x) + r_5(x)) + r_6(x) \ = (x+1)(q_6(x) \cdot r_5(x) + r_4(x)) + (x) \cdot r_5(x) \ = (x^2)(q_5(x) \cdot r_4(x) + r_3(x)) + (x+1) \cdot r_4(x) \ = (x^2+x+1)(q_4(x) \cdot r_3(x) + r_2(x)) + (x^2) \cdot r_3(x) \ = (x^4+x^3)(q_3(x) \cdot r_2(x) + r_1(x)) + (x^2+x+1) \cdot r_2(x) \ = (x^2+x+1)(q_2(x) \cdot r_1(x) + r_0(x)) + (x^4+x^3) \cdot r_1(x) \ = (x^5)(q_1(x) \cdot r_0(x) + a(x)) + (x^2+x+1) \cdot r_0(x) \ = (x^2+x+1)(q_0(x) \cdot a(x) + b(x)) + (x^5) \cdot a(x) \ = (x^7+x^6)(a(x)) + (x^2+x+1) \cdot b(x)$$

$$\therefore s(x) = x^7 + x^6, \quad t(x) = x^2 + x + 1.$$

$$1. \quad b(x) = q_0(x) \cdot a(x) + r_0(x), \quad q_0(x) = x^4, \quad r_0(x) = x^5 + x^3 + x + 1$$

2.
$$a(x) = q_1(x) \cdot r_0(x) + r_1(x), \quad q_1(x) = 0, \quad r_1(x) = x^4 + x + 1$$

3.
$$r_0(x) = q_2(x) \cdot r_1(x) + r_2(x), \quad q_2(x) = x, \quad r_2(x) = x^4 + x + 1$$

4.
$$r_1(x) = q_3(x) \cdot r_2(x) + r_3(x), \quad q_3(x) = x, \quad r_3(x) = x^3 + 1$$

5.
$$r_2(x) = q_4(x) \cdot r_3(x) + r_4(x), \quad q_4(x) = 1, \quad r_4(x) = x^2$$

6.
$$r_3(x) = q_5(x) \cdot r_4(x) + r_5(x), \quad q_5(x) = x, \quad r_5(x) = 1$$

$$egin{aligned} 1 &= r_5(x) = q_5(x)(q_4(x) \cdot r_3(x) + r_2(x)) + r_3(x) \ &= (x+1)(q_3(x) \cdot r_2(x) + r_1(x)) + (x) \cdot r_2(x) \ &= (x^2)(q_2(x) \cdot r_1(x) + r_0(x)) + (x+1) \cdot r_1(x) \ &= (x^3+x+1)(q_1(x) \cdot r_0(x) + a(x)) + (x^2) \cdot r_0(x) \ &= (x^2)(q_0(x) \cdot a(x) + b(x)) + (x^3+x+1) \cdot a(x) \ &= (x^6+x^3+x+1)(a(x)) + (x^2) \cdot b(x) \end{aligned}$$

$$\therefore s(x) = x^6 + x^3 + x + 1, \quad t(x) = x^2.$$

(5)

Question

设 a(x), b(x) 是数域 \mathbf{F}_2 上的多项式,试计算它们的最大公因式 (a(x), b(x)).

①
$$a(x) = x^{15} + 1$$
, $b(x) = x^8 + x^4 + x^3 + x + 1$.

②
$$a(x) = x^7 + 1$$
, $b(x) = x^8 + x^4 + x^3 + x + 1$.

Answer

解:

①
$$a(x) = x^{15} + 1$$
, $b(x) = x^8 + x^4 + x^3 + x + 1$.

1.
$$a(x) = q_0(x) \cdot b(x) + r_0(x),$$
 $q_0(x) = x^7,$ $r_0(x) = x^{11} + x^{10} + x^8 + x^7 + 1$
2. $b(x) = q_1(x) \cdot r_0(x) + r_1(x),$ $q_1(x) = 0,$ $r_1(x) = x^8 + x^4 + x^3 + x + 1$
3. $r_0(x) = q_2(x) \cdot r_1(x) + r_2(x),$ $q_2(x) = x^3,$ $r_2(x) = x^{10} + x^8 + x^6 + x^4 + x^3 + 1$
4. $r_1(x) = q_3(x) \cdot r_2(x) + r_3(x),$ $q_3(x) = 0,$ $r_3(x) = x^8 + x^4 + x^3 + x + 1$
5. $r_2(x) = q_4(x) \cdot r_3(x) + r_4(x),$ $q_4(x) = x^2,$ $r_4(x) = x^8 + x^5 + x^4 + x^2 + 1$
6. $r_3(x) = q_5(x) \cdot r_4(x) + r_5(x),$ $q_5(x) = 1,$ $r_5(x) = x^5 + x^3 + x^2 + x$
7. $r_4(x) = q_6(x) \cdot r_5(x) + r_6(x),$ $q_6(x) = x^3,$ $r_6(x) = x^6 + x^2 + 1$
8. $r_5(x) = q_7(x) \cdot r_6(x) + r_7(x),$ $q_7(x) = 0,$ $r_7(x) = x^5 + x^3 + x^2 + x + 1$
9. $r_6(x) = q_8(x) \cdot r_7(x) + r_8(x),$ $q_8(x) = x,$ $r_8(x) = x^4 + x^3 + x^2 + x + 1$
10. $r_7(x) = q_9(x) \cdot r_8(x) + r_9(x),$ $q_9(x) = x,$ $r_9(x) = x^4 + x + 1$
11. $r_8(x) = q_{10}(x) \cdot r_{10}(x) + r_{11}(x),$ $q_{10}(x) = 1,$ $r_{10}(x) = x^3 + x^2$
12. $r_9(x) = q_{11}(x) \cdot r_{10}(x) + r_{11}(x),$ $q_{11}(x) = x,$ $r_{11}(x) = x^3 + x + 1$
13. $r_{10}(x) = q_{12}(x) \cdot r_{11}(x) + r_{12}(x),$ $q_{12}(x) = 1,$ $r_{12}(x) = x^2 + x + 1$
14. $r_{11}(x) = q_{13}(x) \cdot r_{12}(x) + r_{13}(x),$ $q_{13}(x) = x,$ $r_{13}(x) = x^2 + 1$
15. $r_{12}(x) = q_{14}(x) \cdot r_{13}(x) + r_{14}(x),$ $q_{14}(x) = 1,$ $r_{15}(x) = 1$

$$\therefore (a(x), b(x)) = 1.$$

②
$$a(x) = x^7 + 1$$
, $b(x) = x^8 + x^4 + x^3 + x + 1$.

1.
$$a(x) = q_0(x) \cdot b(x) + r_0(x), \quad q_0(x) = x, \quad r_0(x) = x^4 + x^3 + 1$$

2.
$$b(x) = q_1(x) \cdot r_0(x) + r_1(x), \quad q_1(x) = x^3, \quad r_1(x) = x^6 + x^3 + 1$$

$$3. \quad r_0(x) = q_2(x) \cdot r_1(x) + r_2(x), \quad q_2(x) = 0, \quad r_2(x) = x^4 + x^3 + 1$$

$$4. \quad r_1(x) = q_3(x) \cdot r_2(x) + r_3(x), \quad q_3(x) = x^2, \quad r_3(x) = x^5 + x^3 + x^2 + 1$$

5.
$$r_2(x) = q_4(x) \cdot r_3(x) + r_4(x), \quad q_4(x) = 0, \quad r_4(x) = x^4 + x^3 + 1$$

6.
$$r_3(x) = q_5(x) \cdot r_4(x) + r_5(x), \quad q_5(x) = x, \quad r_5(x) = x^4 + x^3 + x^2 + x + 1$$

7.
$$r_4(x) = q_6(x) \cdot r_5(x) + r_6(x), \quad q_6(x) = 1, \quad r_6(x) = x^2 + x$$

8.
$$r_5(x) = q_7(x) \cdot r_6(x) + r_7(x), \quad q_7(x) = x^2, \quad r_7(x) = x^2 + x + 1$$

9.
$$r_6(x) = q_8(x) \cdot r_7(x) + r_8(x), \quad q_8(x) = 1, \quad r_8(x) = 1$$

$$(a(x), b(x)) = 1.$$

(9)

Question

证明 $f(x)=x^8+x^4+x^3+x+1$ 是数域 ${m F}_2$ 上的不可约多项式,从而 ${m R}_{2^8}={m F}_2[x]/(f(x))$ 是一个域.

Answer

证明:

 $\deg f = 8.$

对于 $\deg p \leq \frac{1}{2}\deg f = 4$ 的不可约多项式,

$$p(x) = x, x + 1, x^2 + x + 1, x^3 + x + 1, x^3 + x^2 + 1, x^4 + x + 1, x^4 + x^3 + 1, x^4 + x^3 + x^2 + x + 1.$$

经检验,对这些 p(x) 均有 $p(x) \nmid f(x)$,则 f(x) 为不可约多项式.

(10)

Question

设
$$a(x) = x^6 + x^4 + x^2 + x + 1$$
, $b(x) = x^7 + x + 1$. 在 $\mathbf{R}_{2^8} = \mathbf{F}_2[x]/(x^8 + x^4 + x^3 + x + 1)$ 中 计算 $a(x) + b(x)$, $a(x) \cdot b(x)$, $a(x)^2$, $a(x)^{-1}$, $b(x)^{-1}$.

Answer

解:

$$a(x)+b(x)=x^7+x^6+x^4+x^2\pmod{p(x)}.$$
 $a(x)\cdot b(x)=x^{13}+x^{11}+x^9+x^8+x^6+x^5+x^4+x^3+1\equiv x^7+x^6+1\pmod{p(x)}.$ $(a(x))^2=x^{12}+x^8+x^4+x^2+1\equiv x^7+x^5+x^2+1\pmod{p(x)}.$ $a(x)^{-1}:$

$$egin{aligned} p(x) &= x^2 \cdot a(x) + (x^6+1) \ a(x) &= 1 \cdot (x^6+1) + x^4 + x^2 + x \ x^6+1 &= x^2 \cdot (x^4+x^2+x) + x^4 + x^3 + 1 \ x^4+x^2+x &= 1 \cdot (x^4+x^3+1) + x^3 + x^2 + x + 1 \ x^4+x^3+1 &= x \cdot (x^3+x^2+x+1) + x^2 + x + 1 \ x^3+x^2+x+1 &= x \cdot (x^2+x+1) + 1 \end{aligned}$$

$$\begin{split} 1 &= x \cdot (x \cdot (x^3 + x^2 + x + 1) + x^4 + x^3 + 1) + x^3 + x^2 + x + 1 \\ &= (x^2 + 1) \cdot (1 \cdot (x^4 + x^3 + 1) + x^4 + x^2 + x) + x \cdot (x^4 + x^3 + 1) \\ &= (x^2 + x + 1) \cdot (x^2 \cdot (x^4 + x^2 + x) + x^6 + 1) + (x^2 + 1) \cdot (x^4 + x^2 + x) \\ &= (x^4 + x^3 + 1) \cdot (1 \cdot (x^6 + 1) + a(x)) + (x^2 + x + 1) \cdot (x^6 + 1) \\ &= (x^4 + x^3 + x^2 + x) \cdot (x^2 \cdot a(x) + p(x)) + (x^4 + x^3 + 1) \cdot a(x) \\ &= (x^6 + x^5 + 1) \cdot a(x) + (x^4 + x^3 + x^2 + x) \cdot p(x) \end{split}$$

$$\therefore a(x)^{-1} = x^6 + x^5 + 1.$$

 $b(x)^{-1}$:

$$p(x) = x \cdot b(x) + (x^4 + x^3 + x + 1)$$
 $b(x) = x^3 \cdot (x^4 + x^3 + x + 1) + x^6 + x^4 + x^3 + x + 1$
 $x^6 + x^4 + 3 + x + 1 = x^2 \cdot (x^4 + x^3 + x + 1) + x^5 + x^4 + x^3 + x + 1$
 $x^5 + x^4 + x^2 + x + 1 = x \cdot (x^4 + x^3 + x + 1) + 1$

$$egin{aligned} 1 &= b(x) + (x^4 + x^3 + x + 1)(x^3 + x^2 + x) \ &= b(x) + (p(x) + x \cdot b(x)) \cdot (x^3 + x^2 + x) \ &= (x^3 + x^2 + x) \cdot p(x) + (x^4 + x^3 + x^2 + 1) \cdot b(x) \end{aligned}$$

$$b(x)^{-1} = x^4 + x^3 + x^2 + 1.$$

第13章 域的结构

(2)

Question

求 $\mathbf{F}_{2^4} = \mathbf{F}_2[x]/(x^4 + x^3 + 1)$ 中的生成元 g(x), 并计算 $g(x)^t$, $t = 0, 1, \dots, 14$ 和所有生成元.

Answer

解:

因为 $|\boldsymbol{F}_{2^4}^*| = 15 = 3 \cdot 5$,所以满足

$$g(x)^3 \not\equiv 1 \pmod{x^4 + x^3 + 1}, \quad g(x)^5 \not\equiv 1 \pmod{x^4 + x^3 + 1}$$

的元素 g(x) 都是生成元.

对于 g(x) = x,有

$$x^3 \equiv x^3 \not\equiv 1 \pmod{x^4 + x^3 + 1}, \quad x^5 \not\equiv 1 \pmod{x^4 + x^3 + 1}$$

所以 g(x) = x 是 $\mathbf{F}_2[x]/(x^4 + x^3 + 1)$ 的生成元.

对于 $t = 0, 1, 2, \dots, 14$, 计算 $g(x)^t \pmod{x^4 + x + 1}$.

$$g(x)^0 \equiv 1, \qquad g(x)^1 \equiv x, \qquad g(x)^2 \equiv x^2, \ g(x)^3 \equiv x^3, \qquad g(x)^4 \equiv x^3 + 1, \qquad g(x)^5 \equiv x^3 + x + 1, \ g(x)^6 \equiv x^3 + x^2 + x + 1, \qquad g(x)^7 \equiv x^2 + x + 1, \qquad g(x)^8 \equiv x^3 + x^2 + x, \ g(x)^9 \equiv x^2 + x, \qquad g(x)^{10} \equiv x^3 + x, \qquad g(x)^{11} \equiv x^3 + x^2 + 1, \ g(x)^{12} \equiv x + 1, \qquad g(x)^{13} \equiv x^2 + x, \qquad g(x)^{14} \equiv x^3 + x^2,$$

所有生成元为 $g(x)^t$, $(t, \varphi(15)) = 1$.

$$g(x)^1 = x, \qquad \qquad g(x)^2 = x^2, \qquad \qquad g(x)^4 = x^3 + 1, \qquad g(x)^7 = x^2 + x + 1, \ g(x)^8 = x^3 + x^2 + x, \qquad g(x)^{11} = x^3 + x^2 + 1, \qquad g(x)^{13} = x^2 + x, \qquad g(x)^{14} = x^3 + x^2,$$

(3)

Question

证明 $x^8+x^4+x^3+x+1$ 是 ${m F}_2$ 上的不可约多项式,从而 ${m F}_2[x]/(x^8+x^4+x^3+x+1)$ 是一个 ${m F}_{2^8}$ 域.

Answer

证明:

 $igchiral{\cdot\cdot\cdot}$ $m{F}_2[x]$ 中的所有次数 ≤ 2 的不可约多项式为 $x,x+1,x^2+x+1$,且

$$x^{8} + x^{4} + x^{3} + x + 1 = x \cdot (x^{7} + x^{3} + x^{2} + 1) + 1$$

= $(x+1) \cdot (x^{7} + x^{6} + x^{5} + x^{4} + x^{2} + x) + 1$
= $(x^{2} + x + 1)(x^{6} + x^{5} + x^{3}) + x + 1$

$$\therefore x \nmid x^{8} + x^{4} + x^{3} + x + 1,$$

$$x + 1 \nmid x^{8} + x^{4} + x^{3} + x + 1,$$

$$x^{2} + x + 1 \nmid x^{8} + x^{4} + x^{3} + x + 1.$$

 $\therefore x^8 + x^4 + x^3 + x + 1$ 是 $\mathbf{F}_2[x]$ 中的不可约多项式.

因此 $\mathbf{F}_2[x]/(x^8+x^4+x^3+x+1)$ 是一个 \mathbf{F}_{2^8} 域.

(9)

Question

求出 $F_3[x]$ 中的所有(一个)4 次 3 项和 5 项不可约多项式。

Answer

解:

对 $F_3[x]$ 的元素数域用 -1,0,1 记,先只考虑首一多项式.

1. 对 1 次有 x, x + 1, x - 1.

对 2 次及以上,常数项只能为 1 或 -1,以保证不被 x 整除.

2. 设
$$f(x)=x^2+ax+1,\ f(1)=a-1,\ f(-1)=-a-1.$$

 $\therefore \ a=\pm 1$ 时分别被 $x\mp 1$ 整除,只有 $f(x)=x^2+1$ 不可约.
 再设 $f(x)=x^2+ax-1,\ f(\pm 1)=\pm a, a=\pm 1$ 时不可约,故有 x^2+1, x^2+x-1, x^2-x-1 不可约.

3. 对 3 次,讨论
$$f(x)=x^3+ax^2+bx+1$$
,代入 $\pm 1\Rightarrow \begin{cases} a+b-1\neq 0\\ a-b\neq 0 \end{cases}$. 列举得 $x^3-x^2+1, x^3-x^2+x+1, x^3-x+1, x^3+x^2-x+1$. 常数项为 -1 对应 $x^3+x^2-1, x^3+x^2+x-1, x^3-x-1, x^3-x^2-x-1$.

4. 对 4 次, 不可约则不含 1,2 次因子.

讨论
$$f(x)=x^4+ax^3+bx^2+cx+1$$
,代入 $\pm 1\Rightarrow egin{cases} a+b+c-1
eq 0 \ -a+b-c-1
eq 0 \end{cases}$

i. 对 3 项有:

除去首一限制有:

$$\pm(x^4+1), \pm(x^4-x^2+1), \\ \pm(x^4-1), \pm(x^4+x^2-1).$$

ii. 对 5 项有:

$$\begin{cases} a=1 \\ b=1 \end{cases} \quad \vec{\boxtimes} \begin{cases} a=-1 \\ b=1 \end{cases}$$

$$c=-1$$
得
$$\begin{cases} x^4+x^3+x^2-x+1 \\ x^4-x^3+x^2-x+1 \end{cases}$$
常数项为 -1 对应
$$\begin{cases} x^4+x^3-x^2-x-1 \\ x^4-x^3-x^2-x-1 \end{cases}$$

除去首一限制有:

$$\pm(x^4+x^3+x^2-x+1), \pm(x^4-x^3+x^2-x+1), \pm(x^4+x^3-x^2-x-1), \pm(x^4-x^3-x^2-x-1).$$