

ANALIZA MATEMATYCZNA I (Lista 6, 07.11.2022)

Pochodne jednej zmiennej, różniczka. Twierdzenie, de l'Hospitala.

Zad. 1. Obliczyć z definicji pochodną funkcji w punkcie x_0 :

a)
$$f(x) = 5x - 4$$
, $x_0 = 1$, b) $f(x) = x^2$, $x_0 = 3$, c) $f(x) = \frac{1}{x+1}$, $x_0 = -3$,

f)
$$f(x) = e^{-x}$$
, $x_0 = 2$, **g**) $f(x) = x|x|$, $x_0 = 0$, **h**) $f(x) = \frac{3}{x^2}$, $x_0 = 5$.

Zad. 2. Obliczyć pochodne funkcji:

(a)
$$f(x) = 2x^5 + 3x + 5$$
, (b) $f(x) = \frac{1}{x^2}$, (c) $f(x) = (x+1)(1-x)$, (d) $f(x) = \frac{1+x}{1-x}$,

e)
$$f(x) = (x^2 + 2x + 4)^7$$
, f) $f(x) = \sqrt{x^3 + 3x - 4}$, g) $f(x) = \frac{1 + x - x^2}{1 - x + x^2}$, $f(x) = \frac{x \sin x}{x + \cos x}$

(h)
$$f(x) = \frac{1}{x^4 + 2x^3 - 4x}$$
, **(i)** $f(x) = (x^3 + 1)\sqrt{x}$, **(j)** $f(x) = \frac{\sqrt[3]{x}}{1 + \sqrt[3]{x}}$, **(9)** $f(x) = \sqrt[3]{x^2} \operatorname{tg}^3 x \ln^2 x$

(k)
$$f(x) = 2\sqrt[3]{x^2} + 2\sin x$$
, (l) $f(x) = 3\cos(x^2 + 4)$, (m) $f(x) = \frac{3\cos^2 x}{\sin^3 x}$, (2) $f(x) = (\sin x)^x$

(n)
$$f(x) = 3^x x^3$$
, (o) $f(x) = 3e^{\sin^2 x}$, (p) $f(x) = x^x$, (r) $f(x) = \arctan\left(x \arctan \frac{1}{x}\right)$,

(s)
$$f(x) = \ln \frac{3}{x+2}$$
, (t) $f(x) = \frac{\ln(\sin(x))}{\ln(\cos x)}$, (u) $f(x) = x^x$, (w) $f(x) = 10x^{3x}$.

Zad. 3. Badając pochodne jednostronne sprawdzić, czy istnieje pochodna funkcji w punkcie:
a)
$$f(x) = |x - 3|$$
, $x_0 = 3$, **b)** $f(x) = \begin{cases} x^2 + x + 1, & x \ge 1, \\ 3x^3, & x < 1, \end{cases}$ $x_0 = 1$,

c)
$$f(x) = \begin{cases} x \operatorname{arctg} \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$
 $x_0 = 0.$

Zad. 4 Dla jakich parametrów a,b, funkcja ma pochodną w punkcie $x_0 = 2$ (Uwaga. Funkcja musi być obustronnie ciągła oraz obie pochodne jednostronne muszą być sobie równe). $f(x) = \begin{cases} x^2 - 1, & x \le 2, \\ ax + b, & x > 2. \end{cases}$

$$f(x) = \begin{cases} x^2 - 1, & x \le 2, \\ ax + b, & x > 2. \end{cases}$$

Zad. 5. Sprawdzić z definicji, czy funkcja ma pochodną niewłaściwą w punkcie $x_0=0$.

(a)
$$f(x) = \sin \sqrt[3]{x}$$
, (b) $f(x) = \sqrt[3]{x^2}$.

Zad. 6. Wskazać punkty, w których funkcja nie jest różniczkowalna (jeżeli takie istnieją). W punktach nieróżniczkowalności obliczyć wartości pochodnych jednostronnych: a) f(x) = |x + 2|, b) $f(x) = |x^2 + x|$, c) $f(x) = |x^3 + x^2|$, d) f(x) = x|x|.

a)
$$f(x) = |x + 2|$$
, b) $f(x) = |x^2 + x|$, c) $f(x) = |x^3 + x^2|$, d) $f(x) = x|x|$.

Zad. 7. Styczna do krzywej f(x) w punkcie $(x_0, f(x_0))$ ma równanie $y - f(x_0) = f'(x_0)(x - x_0)$. Równanie normalnej (prostopadłej do stycznej)

Zadania pochodzą, między innymi, z podręczników:

^{1.} Gewert M., Skoczylas Z., Analiza matematyczna 1, przykłady i zadania.

^{2.} Krysicki L., Włodarski L., Analiza matematyczna w zadaniach, cz. 1.

$$y - y_0 = \frac{-1}{f'(x_0)}(x - x_0).$$

Wyznaczyć równania stycznej i normalnej do funkcji f(x) w punkcie x_0 :

a)
$$f(x) = x^2 + 3$$
, $x_0 = 7$, (b) $f(x) = \frac{2x}{1 + x^2}$, $x_0 = \sqrt{2}$, (c) $f(x) = x^x$, $x_0 = 2$,

d)
$$f(x) = \frac{1}{\sqrt{3}} \sin 3x$$
, $x_0 = \frac{\pi}{3}$.

Zad. 8. Znaleźć trzecią pochodną funkcji $f(x) = 2x - \frac{2}{x}$.

Zad. 9. Korzystając z twierdzenia de l'Hospitala obliczyć granice:

(a)
$$\lim_{x\to 0} \frac{3x + e^{-x} - e^x}{x}$$
, (b) $\lim_{x\to 0^+} \frac{\ln(\sin 2x)}{\ln(\sin 3x)}$, (c) $\lim_{x\to 0} \left(\frac{1}{e^x - 1} - \frac{1}{x}\right)$, (d) $\lim_{x\to 1^-} (1-x)\ln(1-x)$,

e)
$$\lim_{x\to 2^+} (x-2)^{x-2}$$
, f) $\lim_{x\to 2^+} \left(\frac{1}{x-2}\right)^{x-2}$, g) $\lim_{x\to \pi/4} \left(\frac{\ln(\operatorname{ctg} x)}{\operatorname{ctg} 2x}\right)$, h) $\lim_{x\to 1^-} \left(\frac{1}{x\sin x} - \frac{1}{x^2}\right)$.

Zad. 10. Korzystając z różniczki funkcji obliczyć wartość przybliżoną wyrażeń:

(a)
$$\sqrt[4]{16,04}$$
, (b) $\sqrt{8,96}$, (c) $(2,01)^2$, (d) $\operatorname{arctg}(0,98)$ (e) $\sin 29^\circ$, (f) $\ln 1,02$.

Zadania pochodzą, między innymi, z podręczników:

^{1.} Gewert M., Skoczylas Z., Analiza matematyczna 1, przykłady i zadania.

^{2.} Krysicki L., Włodarski L., Analiza matematyczna w zadaniach, cz. 1.