Section: A, B, E

Leading University

Department of Computer Science & Engineering Final In Course Evaluation, Spring-2021

Course Title: Computer Graphics Full Marks: 30 Course Code: Course Code: Course Code: Course Time: 2 Hours				ourse Code: CSE - 4113 ime: 2 Hours
Answer any 3 questions (Including question no 1 and 2) from the following.				
1.	a)	_	g-Barsky Algorithm to clip following lines where clipping corner is at (3,4) and upper right corner is at (8,9) A(3,1) B(12,12) C(6,1) D(-7,10) E(4,6) F(8,-2)	g window's 10
2.	a)	Describe window-to-viewport mapping.		2.5
	b)	Use Cohen-Sutherland Algorithm to clip following lines where clipping window's lower left corner is at (-1,2) and upper right corner is at (7,8)		oping window's 7.5
		i) ii) iii)	A(-1,7) B(-11,-1) C(4,3) D(9,4) E(6,6) F(-8,9)	
3.	a)	Indicate which raster locations would be chosen by Breshenham's algorithm when scan converting a line from pixel coordinate (-5,1) to pixel coordinate (2,-5)		
	b)	Find the normalization transformation that maps a window whose lower left corner is at $(1,1)$ and upper right corner is at $(3,5)$ onto (a) a viewport that is the entire normalized device screen and (b) a viewport that has lower left corner at $(0,0)$ and upper right corner $(0.5, 0.5)$.		that is the entire
4.	a)	Describe Sutherland-Hodgman Algorithm for clipping a polygon.		3
	b)	i) Perform 60° negative rotation of point Q(-4,5,9) about x-axis , Find Q'.		ind Q'.
		ii) Perform 45° poisitive rotation of point R(3,-5,7) about y-axis, Find R'.		
	c)	Perform 3	80° rotation of a point P(-3, -6) about a pivot point (2,-4).	Find P'? 3