GEOMETRÍA BÁSICA Septiembre 2018

Todas las respuestas deben estar justificadas razonadamente.

Se permite calculadora no programable e instrumentos de dibujo.

Ejercicio 1. (3 puntos)

Sean a y b dos rectas paralelas distintas del plano y c una recta que corta a a en el punto A y a b en el punto B.

- 1. Dibujar un par de ángulos alternos internos con vértices A y B.
- 2. Probar que si dos ángulos forman un par de ángulos alternos internos entonces son congruentes.
- 3. Demostrar que la suma de los ángulos de un triángulo es congruente a un ángulo llano.

Ejercicio 2. (3 puntos)

Sea $\Delta\{A, B, C\}$ y $\Delta\{A, B, C'\}$ dos triángulos distintos que tienen el lado [A, B] en común y de modo que $r_{CC'}$ es paralela a r_{AB} , es decir la recta que contiene a C y C' es paralela a la recta que contiene a [A, B]. Supongamos que s es una recta paralela a $r_{CC'}$ y que corta a [A, C] en el punto M, a [B, C] en el punto N, a [A, C'] en el punto M', a [B, C'] en el punto N'.

- 1. Probar que existe una homotecia η que transforma [M, N] en [A, B] y otra η' que transforma [M', N'] en [A, B].
- 2. Sea t una recta perpendicular a s y que corta a $r_{CC'}$ en P, a s en Q y a r_{AB} en R, obtener que la razón de η es $\frac{PR}{PQ}$.
 - 3. Demostrar que MN = M'N'.

Ejercicio 3. (4 puntos)

Sean π_1 y π_2 dos planos perpendiculares del espacio euclidiano, $\pi_1 \cap \pi_2 = r$ y $s_1 \subset \pi_1$, $s_2 \subset \pi_2$ dos rectas ortogonales a r, con $s_1 \cap s_2 = \emptyset$. Sean ρ_1 y ρ_2 dos medias vueltas (es decir rotaciones de ángulo π), ρ_1 con eje s_1 y ρ_2 con eje s_2 . Clasificar las isometrías $\rho_1 \circ \rho_2, \rho_2 \circ \rho_1, \rho_1 \circ \rho_2 \circ \rho_1 \circ \rho_2$ y $\rho_1 \circ \rho_2 \circ \rho_1$, es decir determinar a qué tipo de isometría corresponde cada una (reflexión, reflexión-rotación, reflexión con deslizamiento, rotación, traslación, movimiento helicoidal o la identidad), justificando su respuesta.

SOLUCIONES

Ejercicio 1.

Páginas 76 y 77 del texto base: definición 4.39 y teoremas 4.40 y 4.41.

1. En la figura $\angle A$, $\angle B$ son un par de ángulos alternos internos.

2.

Sea M = medio[A, B].

Si la media vuelta σ_M verifica $\sigma_M(\angle A) = \angle B$, tendremos que $\angle A$ y $\angle B$ son congruentes.

En efecto $\sigma_M(c) = c$ (la recta c pasa por el centro M que es el centro de σ_M) y $\sigma_M(A) = B$ (pués d(A, M) = d(B, M) y $A, B \in c$).

Por otra parte $\sigma_M(a)$ es una recta paralela a a que pasa por B (σ_M lleva cada recta r a otra paralela a r), como b también pasa por B y es paralela a a, por el Axioma de las paralelas, $\sigma_M(a) = b$, y como σ_M permuta los dos semiplanos determinados por c se tiene que $\sigma_M(\angle A) = \angle B$.

3.

Sea $\Delta\{P,Q,R\}$ un triángulo. Tracemos por P una paralela a la recta r_{QR} que contiene al lado [Q,R]. Entonces $\angle Q'+\angle P+\angle R'$ es un ángulo llano (ver dibujo del texto base). Como $(\angle Q',\angle Q)$ y $(\angle R',\angle R)$ son pares de ángulos alternos-internos, tenemos que

$$\angle Q' + \angle P + \angle R' = \angle Q + \angle P + \angle R$$

es un ángulo llano.

Ejercicio 2.

1. Veamos que existe una homotecia η que transforma [M, N] en [A, B].

Como s es paralela a r_{AB} , podemos aplicar el teorema de Tales y tenemos $\frac{CA}{CM} = \frac{CB}{CN} = k$. Sea $\eta = \eta_{C,k}$, la homotecia de centro C y razón k. Como A está en la semirrecta con vértice C en r_{CM} que contiene también a M y CA = kCM, se verifica $\eta(M) = A$ y del mismo modo, como CB = kCN, $\eta(N) = B$.

Si $\eta' = \eta_{C',k'}$ es la homotecia de centro C' y razón $k' = \frac{C'A}{C'M'} = \frac{C'B}{C'N'}$ se verifica $\eta'(M') = A$ y $\eta'(N') = B$.

2. Sea τ la traslación paralela a s que transforma P en C. Entonces PQ=CQ', con $Q'=s\cap \tau(t)$ y PR=CR', con $R'=r_{AB}\cap \tau(t)$. Por el teorema de Tales

$$k = \frac{CA}{CM} = \frac{CR'}{CQ'} = \frac{P'R'}{P'Q'} = \frac{\tau(P)\tau(R)}{\tau(P)\tau(Q)} = \frac{PR}{PQ}.$$

3. Se aplica el apartado 2 a la homotecia η' y se tiene que $k' = \frac{C'A}{C'M'} = \frac{PR}{PQ} = k$. Por tanto

$$\frac{AB}{MN} = \frac{\eta(M)\eta(N)}{MN} = k = k' = \frac{\eta'(M')\eta'(N')}{M'N'} = \frac{AB}{M'N'},$$

con lo que MN = M'N'.

Ejercicio 3.

Sea π_1' un plano perpendicular a π_1 tal que $\pi_1 \cap \pi_1' = s_1$ y π_2' un plano perpendicular a π_2 tal que $\pi_2 \cap \pi_2' = s_2$.

Entonces, como ρ_1 es una media vuelta: $\rho_1 = \sigma_{\pi_1} \circ \sigma_{\pi'_1} = \rho_1^{-1} = \sigma_{\pi'_1} \circ \sigma_{\pi_1}$ y $\rho_2 = \sigma_{\pi_2} \circ \sigma_{\pi'_2} = \sigma_{\pi'_2} \circ \sigma_{\pi_2}$.

1. $\rho_1 \circ \rho_2 = \sigma_{\pi'_1} \circ \sigma_{\pi_1} \circ \sigma_{\pi_2} \circ \sigma_{\pi'_2}$ y como π_1 y π_2 son ortogonales $\sigma_{\pi_1} \circ \sigma_{\pi_2} = \rho_r$ es una media vuelta cuyo eje es r que es perpendicular tanto a π'_1 como a π'_2

(luego $\rho_r \circ \sigma_{\pi_1'} = \sigma_{\pi_1'} \circ \rho_r,$ ver ejemplo 12.20(iii)), por tanto:

$$\begin{array}{lcl} \rho_1 \circ \rho_2 & = & \sigma_{\pi'_1} \circ \sigma_{\pi_1} \circ \sigma_{\pi_2} \circ \sigma_{\pi'_2} = \sigma_{\pi'_1} \circ \rho_r \circ \sigma_{\pi'_2} = \\ & = & \rho_r \circ \sigma_{\pi'_1} \circ \sigma_{\pi'_2} = \rho_r \circ \tau \end{array}$$

donde τ es una traslación paralela a r, por tanto $\rho_1\circ\rho_2$ se trata de un movimiento helicoidal, de ángulo llano.

- 2. $\rho_2 \circ \rho_1$ con el mismo argumento se tiene que es también un movimiento helicoidal pero ahora $\rho_2 \circ \rho_1 = \rho_r \circ \tau^{-1}$.
- 3. $\rho_1 \circ \rho_2 \circ \rho_1 \circ \rho_2 = \rho_r \circ \tau \circ \rho_r \circ \tau = \rho_r \circ \rho_r \circ \tau \circ \tau = \tau \circ \tau = \tau^2$, por tanto se trata de una traslación (obsérvese que $\tau \circ \rho_r = \rho_r \circ \tau$, ver ejemplo 12.21).
 - $4.\ \rho_1\circ\rho_2\circ\rho_2\circ\rho_1=\rho_1\circ(\rho_2\circ\rho_2)\circ\rho_1=\rho_1\circ\mathrm{id}\circ\rho_1=\rho_1\circ\rho_1=\mathrm{id}.$