Bills of Material Replace Material Recommendation System

Ayush Soni (aas427), Harshit Manchanda (hm545), Mukul Shukla (ms3528), Rohith MD (rm977), Shubham Agrawal (sa2279), Shubham Khandelwal (sk3266), Vidush Vishwanath (vv259)

What is "Bills of Material"?

Agenda for Presentation

- Overview of the existing system
- 2 Requirement Analysis
- 3 Scope
- 4 Software Engineering Model
- 5 System Architecture Model, View, Controller
- 6 Progress so far

Problem

- Manufacturing Industry constantly replace materials used in their products.
- Solutions for 'Change Management' are either expensive or do not consider all the parameters that contribute for the best replacement
- Existing solutions are not scalable or system independent.

Existing Solution

- 1 Considers 3 parameters: Stock, Availability and Location
- Naive Implementation with basic selects and manual logic for best recommandation
- No Machine Learning techniques incorporated for premium recommendation
- 4 Not scalable and on premise solutions per industry

Requirement Analysis

- The system should be able to suggest recommendations that may be a suitable alternative.
- The system should help the user complement his domain expertise in choosing the best replacement.

 - Optional extras:Provide UI for demonstration purposes

Scope

- Build a recommendation system for the replace materials in BOMs using a machine learning approach
- Approach includes feature engineering and evaluating against test data
- Experiment with different machine learning algorithms such as Logistic Regression, Naive Bayes, Support Vector Machines, Bagged Decision Trees and Deep Learning.

Software Engineering Model

Agile

Iterative

Refinement

Link to meeting notes.

Overall Pipeline

Use Case Diagram

User Interface - View

Design Principles Used:

- Minimal
- 2 Familiar
- 3 Simple to use

https://wireframepro.mockflow.com/view/M093b7fbee22910a00a75fc8db4ab45ad1551833172836

Controller

Machine Learning Pipeline - Conventional Design

3 Step Pipeline

2 Most often used

BOM Recommender ML Design

Collaborative Filtering (Content Based)

Characteristics:

- Cosine Similarity
- ² Check Scores
- 3 Higher score, better recommendation

Random Forest

Steps Involved:

- Bootstrap
 Sampling
- 2 Training models
- 3 BootstrapAggregating

Technology Stack

UML Diagram

Data Modelling

- We model the data in the form of 6 proprietary tables and 1 intermediate table.
- Each of the 6 tables just contain attributes which are important to our use case only.
- We are implementing this database in the form of MySQL server version 5.7.0
- We are using some mock data (relevant to our use case) for the purpose of development.

Tables Overview

- MARA: Material table and its properties.
- MAST: Relationship between material and BOM.
- STKO: Details of headers.
- STPO: Details of items & parameters for items.
- CDPOS: Historic Information about items and replacements.
- MISC: Additional properties of materials

ER Diagram

Model Example

- Bills of Material structure
 - List of materials needed to manufacture item
 - Header: Car
 - Item 1: Wheels
 - Item 2: Engine
 - Item 3: Battery
- 7 Tables

Table 1: MARA

MATNR	Material Name	Car
MEINS	Unit of measure	EA (each)
MATKL	Material group	00000001 (9 digit #)
MTART	Material Type	FERT (finished product)
DATAB	Valid from Date	02-02-2019
Valid_To	Valid to date	20-02-2019

Table 2: MAST

MATNR	Material Name	Car
STLNR	Bill of Material	000000005 (same as BOM)
STLAL	Alternative BOM	01
STLAN	BOM Usage	01
WERKS	Plant	0001
LOSVN	From lot size	0
LOSBS	To lot size	100

Table 3: STKO

STLNR	Bill of Material	000000005 (same as BOM)
STKOZ	Unique identifier for table (primary keys)	0000001
DATUV	Date from which item is valid	02-02-2019
Valid_To	Date until item is valid	05-02-2019
BMEIN	Unit of measure (EG kg or lb)	KG
BMENG	Quantity in unit of measure given by BMein	10
AENNR	Change #, for replacement	CHANGE_10

Table 4: STPO

STLNR	Bill of Materials	00000005 (Same as BOM)
STLKN	BOM Item Node Number	00000034
STPOZ	Internal Counter	0000007
DATUV	Valid from date	05-02-2019
IDNRK	Name of Item	ENGINE
MEINS	Unit of Measure	EA
MENGE	Quantity	10

Table 4: STPO (Continued)

EKGRP	Purchasing Group	0000001
MATKL	Material Group	0000001

Table 5: CDPOS

OLD_MATNR	Old BOM Material Number	VISIBLE_V8_ENGINE
OLD_UOM	Unit of measure	KG
VALUE_OLD	Quantity of old material	20
NEW_MATNR	BOM Material Number	HAYNES_V8_ENGINE
NEW_UOM	Unit of measure	KG
VALUE_NEW	Quantity of new material	20
AENNR	Change #, for replacement	CHANGE_10

Table 6: Miscellaneous

WERKS	Plant	0001
STORAGE_LOCATION	Place where item is stored	1010(Unique Location)
MATERIAL_GROUP	A particular group to which it belongs	0000001
PURCHASING_GROUP	A particular group to which it belongs while purchasing	0001
STRATEGY	Decision of Make-to-Stock/ Make-to-Order	10/20
STOCK	Available Quantity per plant	50
MRP_GROUP	A particular group of MRP to which it belongs	0001

Table 7: Intermediate Table

- Feature weights.
- Updated as part of batch jobs.
- Feature engineering is performed daily.

Version Control & Source Code

Deployment and Continuous Integration

What is done?

- Requirement Analysis and Steps
- System Design/Architecture Design
- DB Schema Design
- UX Design
- Front-End prototype for feedback
- Unit Testing for prototype is basic evaluation of screen navigation between pages.

Timeline

		Fe	eb 1	0								Fe	b 1	.7					F	eb 2	24			Mar 3									
M	М	Т	W	Т	F	S	S	S		М	Ī		W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S		
											İ	1																					
ibili	ity	Rep	riort	_							+	+		-				H						H	H								
fing	1										t	1																					
rt																																	
												-				D	esig	n															
						Re	Re	qui	uire	eme	ent.	An	alys	is a	nd Sp	pecs																	
																Sy	sten	De	sign,	Arch	itec	ture	Des	ign									
									÷							DI	Sch	ema	Des	ign													
											×					U	De:	ign															
	1										Ė							Fror	nt En	d Pro	ototy	pe						ire/U					
																							Ur	it T	estin	g							
																							Uı	it T	estin	g							

Next Steps - Development

- Development
 - First Iteration of Database development
 - Simultaneous ML model initiation
 - Full stack basic implementation
- Front end unit testing
 - Low priority as the Client clarified that front end is not required.
 - Would be integrated with existing solution

Next Steps - Testing

- Unit Testing
 - Front End Unit Testing every commit
 - Backend Unit Testing every commit
 - ML model will take shape after the basic foundation. No unit testing for next cycle.

Scalability - Future

Next Steps - Timeline

Questions?

Thank You

Clients: Abhijnan Saha, Rajiv Kumar

Professor: William Y Arms

Teaching Assistant: Alison Cooper

Why we made what we made

Why Cloud?

1 Cloud gifts us everything we have ever desired! Computing power, storage, scaling beyond boundaries...

Has it not been done before?

It has been, but as a
Proof of Concept and
not full fledged
Industry solution...

Overall Pipeline

Context

- We want a critical foundation for the product processes by bringing the entire, complex product record mechanical, electrical, software, and firmware — together in a single system.
- Eliminate product and quality silos to improve quality management, requirements management, and issue resolution by connecting product processes directly to the product record.