1996 FI2.1

已知 m, n > 0 和 $m + n = 1 \circ \stackrel{}{\text{$ \neq $}} \left(1 + \frac{1}{m}\right) (1 + \frac{1}{n})$ 之最小值為 a ,求 a 的值。

It is given that m, n > 0 and m + n = 1.

If the minimum value of $\left(1+\frac{1}{m}\right)\left(1+\frac{1}{n}\right)$ is a, find the value of a.

1998 FI1.2

若
$$\begin{cases} x+y=2\\ xy-z^2=1 \end{cases}$$
 , 求 b 的數值。If
$$\begin{cases} x+y=2\\ xy-z^2=1 \end{cases}$$
 , find the value of b .
$$b=x+y+z$$

1999 FG3.4

設 $x \ge 0$ and $y \ge 0$ 。已知 x + y = 18 。若 $\sqrt{x} + \sqrt{y}$ 之最大值是 d ,求 d 之值。 Let $x \ge 0$ and $y \ge 0$. Given that x + y = 18.

If the maximum value of $\sqrt{x} + \sqrt{y}$ is d, find the value of d.

2002 HG5

如果實數 $x \cdot y$ 滿足方程 $x^2 + y^2 + 3xy = 35$,求 xy 的最大值。 If real numbers x, y satisfy the equation $x^2 + y^2 + 3xy = 35$, find the maximum value of xy.

2003 FI1.3

設 $x \cdot y$ 為實數且 xy = 1。若 $\frac{1}{x^4} + \frac{1}{4y^4}$ 的最小值是 R,求 R 的值。

Let x, y be real numbers and xy = 1.

If the minimum value of $\frac{1}{x^4} + \frac{1}{4y^4}$ is R, find the value of R.

2006 FG4.2

已知 a 和 b 是正數且 a+b=2。

若
$$S = \left(a + \frac{1}{a}\right)^2 + \left(b + \frac{1}{b}\right)^2$$
, 求 S 的最小值。

Given that a and b are positive numbers and a + b = 2.

If
$$S = \left(a + \frac{1}{a}\right)^2 + \left(b + \frac{1}{b}\right)^2$$
, find the minimum value S .

2011 FGS.2

設 α 、 β 、 γ 為實數且滿足 α + β + γ = 2 及 α β γ = 4。
設 ν 為 $|\alpha|$ + $|\beta|$ + $|\gamma|$ 的最小值,求 ν 的值。

Let α , β , γ be real numbers satisfying $\alpha + \beta + \gamma = 2$ and $\alpha\beta\gamma = 4$.

Let v be the minimum value of $|\alpha| + |\beta| + |\gamma|$. Find the value of v.

2013 HI10

若 a 及 b 為實數,且 $a^2+b^2=a+b$ 。求 a+b 的最大值。

If a and b are real numbers, and $a^2 + b^2 = a + b$. Find the maximum value of a+b. **2014 HI9**

------已知 x、v 及 z 為正實數,且 xyz = 64。

設 S = x + y + z, 求當 $4x^2 + 2xy + y^2 + 6z$ 的值為最小時, S 的值。

Given that x, y and z are positive real numbers such that xyz = 64.

If S = x + y + z, find the value of S when $4x^2 + 2xy + y^2 + 6z$ is a minimum.

2014 FI1.4

若 $\log_2 a + \log_2 b \ge 6$, 求 a + b 的最小值 δ。

If $\log_2 a + \log_2 b \ge 6$, determine the smallest positive value δ for a + b.

2014 FG1.2

若
$$f(x) = \frac{\left(x + \frac{1}{x}\right)^6 - \left(x^6 + \frac{1}{x^6}\right) - 2}{\left(x + \frac{1}{x}\right)^3 + \left(x^3 + \frac{1}{x^3}\right)}$$
 當中 x 是一個正實數,求 $f(x)$ 的最小值。

If
$$f(x) = \frac{\left(x + \frac{1}{x}\right)^6 - \left(x^6 + \frac{1}{x^6}\right) - 2}{\left(x + \frac{1}{x}\right)^3 + \left(x^3 + \frac{1}{x^3}\right)}$$
 where x is a positive real number,

determine the minimum value of f(x).

2015 HI6

右圖中的 ABCD 是一個凸四邊形

及AB+BD+CD=16,求ABCD的最大面積。

As shown in the figure, ABCD is a convex quadrilateral and AB + BD + CD = 16.

Find the maximum area of ABCD.

2017 HG7

已知對於實數 $x_1 \cdot x_2 \cdot x_3 \cdot \cdots \cdot x_{2017}$,

$$\sqrt{x_1-1} + \sqrt{x_2-1} + \sqrt{x_3-1} + \dots + \sqrt{x_{2017}-1} = \frac{1}{2} (x_1 + x_2 + x_3 + \dots + x_{2017})$$

求 $x_1 + x_2 + x_3 + \cdots + x_{2017}$ 的值。

It is given that for real numbers $x_1, x_2, x_3, \dots, x_{2017}$,

$$\sqrt{x_1 - 1} + \sqrt{x_2 - 1} + \sqrt{x_3 - 1} + \dots + \sqrt{x_{2017} - 1} = \frac{1}{2} (x_1 + x_2 + x_3 + \dots + x_{2017})$$

Find the value of $x_1 + x_2 + x_3 + \cdots + x_{2017}$.

2017 FI1.3

若實數 x 及 y 滿足 $4x^2 + 4y^2 + 9xy = 119$,求 xy 的最大值 c。 If real numbers x and y satisfy $4x^2 + 4y^2 + 9xy = 119$,

determine c, the maximum value of xy.

2017 FG1.3

若實數
$$x$$
 及 y 满足 $xy > 0$ 及 $x + y = 3$,求 $\left(1 - \frac{1}{x}\right)\left(1 - \frac{1}{y}\right)$ 的最大值 c 。

If real numbers x and y satisfy xy > 0 and x + y = 3,

find c, the maximum value of $\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)$.

2018 HI11

求
$$3^x + 5 + \frac{36}{3^x + 4}$$
 的最小值。Find the minimum value of $3^x + 5 + \frac{36}{3^x + 4}$.

2019 FG1.1

已知
$$x+y=32$$
, 其中 $x \cdot y \ge 0$ 。若 a 為 $\sqrt{x}+\sqrt{y}$ 的最大值,求 a 的值。

Let x + y = 32 with $x, y \ge 0$. If a is the maximum value of $\sqrt{x} + \sqrt{y}$, determine the value of a.

Answers

1996 FI2.1	1998 FI1.2	1999 FG3.4	2002 HG5	2003 FI1.3
9	2	6	7	1
2006 FG4.2	2011 FGS.2	2013 HI10	2014 HI9	2014 FI1.4
8	6	2	14	16
2014 FG1.2 6	2015 HI6 32	2017 HG7 4034	2017 FI1.3 7	2017 FG1.3 $\frac{1}{9}$
2018 HI11	2019 FG1.1			
13	8			

Created by Mr. Francis Hung
Page 3