#### Estruturas de mercado

Já sabemos como se comporta um mercado em concorrência perfeita e em monopólio...



...mas existem outras estruturas mistas de mercado que combinam características de concorrência perfeita e monopólio.

#### Estruturas de mercado

Pode-se dizer que concorrência perfeita e monopólio são casos extremos e pouco comuns, sendo mais frequente encontrar essas outras estruturas mistas. Entretanto, exatamente por serem mistas, elas são mais difíceis de modelar matematicamente. Essas outras estruturas são:



Barreiras à entrada no mercado e poder sobre o preço

Faremos agora uma breve análise da concorrência monopolística e do oligopólio.

Concorrência monopolística é a estrutura de mercado mais comum. A firma se encontra em um mercado competitivo com fracas barreiras à entrada de novos concorrentes, mas pode conseguir se <u>distinguir</u> das demais frente ao público através de <u>diferenciações de produto ou serviço</u>. Por ser a primeira a lançar algo "novo ou único" no mercado, por um tempo ela pode agir como um monopolista, mas isso acaba quando os concorrentes a copiam. Após aquele algo novo ou único se espalhar, o mercado volta a ser basicamente concorrencial. Algum exemplo?



Concorrência monopolística: Apple Ipad e o mercado de tablets.



Oligopólio é uma estrutura de mercado relativamente frágil. A firma se encontra em um mercado cujas barreiras à entrada permitem poucos mas grandes concorrentes. Ela pode <u>entrar em acordo</u> (conluiu) com esses concorrentes e dividir o mercado pacificamente, ou ela pode tentar dominar o mercado e <u>entrar em guerra</u> de preço ou quantidade com esses concorrentes. Um oligopólio em conluio é praticamente o monopólio de um grupo de firmas (mas será que o conluio se sustenta?). Um oligopólio em guerra de preço pode ficar semelhante à concorrência perfeita.



### Breve introdução à teoria dos jogos

O que estuda a teoria dos jogos? O comportamento de agentes em situações estratégicas nas quais o sucesso da escolha de um depende da(s) escolha(s) do(s) outro(s). Há diversos tipos de jogos:

Jogos cooperativos: acordos entre os agentes são possíveis.

Jogos não-cooperativos: acordos entre os agentes não são possíveis.

Jogos repetitivos: situações que se repetem com os mesmos agentes.

Jogos não-repetitivos: situações que não se repetem com os mesmos agentes.

Jogos simultâneos: os agentes escolhem simultaneamente.

Jogos sequênciais: os agentes escolhem em sequência.

Jogos de estratégias puras: ações dos agentes são determinísticas.

Jogos de estratégias mistas: ações dos agentes são probabilísticas.

Jogos simétricos: não importa a identidade dos agentes.

Jogos de soma-zero: o ganho de um agente é a perda de outro(s).

Jogos de informação completa: os agentes conhecem regras e possíveis estratégias.

Jogos de informação perfeita: inf. completa e os agentes também podem prever ações.

### Equilíbrio de um jogo

Equilíbrio de Pareto: resultado que o jogo deveria atingir a fim de maximizar o ganho dos agentes e de onde um não consegue melhorar sem piorar outro(s).

Equilíbrio de Nash: resultado que a dinâmica do jogo permite atingir.

| O dilema do prisioneiro: |           | Suspeito B     |                |
|--------------------------|-----------|----------------|----------------|
|                          |           | Não acusa      | Acusa          |
| Suspeito A               | Não acusa | 10;10          | 20 ; <b>05</b> |
|                          | Acusa     | <b>05</b> ; 20 | 15 ; 15        |

A importância do dilema do prisioneiro é mostrar que agentes isolados agindo de forma egoísta nem sempre produzem o melhor resultado possível. Há situações cujos melhores resultados só podem ser atingidos com mais comunicação e cooperação (faz lembrar a discussão da produção via mercado ou firma).

### O modelo de Bertrand para oligopólio.

Firma 1 e firma 2 dominam certo mercado com demanda linear por bem Q. O custo de produção delas é idêntico:  $C_1 = C_2 = \alpha Q$ . As firmas podem entrar em conluio para dividir a produção e ofertá-la ao mesmo preço. Alternativamente, as firmas podem entrar numa guerra de preços.



### Qual o equilíbrio do jogo?

| Dilama da muisianaira |         | Firma 2                                               |                                               |  |
|-----------------------|---------|-------------------------------------------------------|-----------------------------------------------|--|
| Dilema do prisioneiro |         | Conluio Guerra                                        |                                               |  |
| Firms 1               | Conluio | $(P_{M} - \alpha)Q_{M}/2$ ; $(P_{M} - \alpha)Q_{M}/2$ | $0$ ; $(P_2 - \alpha)Q_2$                     |  |
| Firma 1               | Guerra  | $(P_1 - \alpha)Q_1; 0$                                | $(P_C - \alpha)Q_C/2$ ; $(P_C - \alpha)Q_C/2$ |  |

Obs: no eq. de Nash, lucro é 0 mas capitalista ao menos ganha a remuneração do capital, melhor do que não prodzir.



| O dilema dos casados |         | Homem  |         |
|----------------------|---------|--------|---------|
| Jogo simultâneo      |         | Cinema | Futebol |
| Mulher               | Cinema  | 2;1    | 0;0     |
|                      | Futebol | 0;0    | 1;2     |



## O modelo de Stackelberg para líder-seguidor.

| Demanda de mercado         | $P = \alpha - \beta Q = \alpha - \beta (Q_L + Q_S)$ |
|----------------------------|-----------------------------------------------------|
| Custo da empresa líder     | $C_L = \theta_L Q_L$                                |
| Custo da empresa seguidora | $C_S = \theta_S Q_S$                                |

### O problema da empresa seguidora:

$$\max_{Q_S} PQ_S - \theta_S Q_S = \max_{Q_S} \left[ \alpha - \beta (Q_L + Q_S) \right] Q_S - \theta_S Q_S$$
$$\alpha - \beta (Q_L + Q_S) - \beta Q_S - \theta_S = 0$$

# A função de reação da empresa seguidora

$$Q_S = \frac{\alpha - \theta_S - \beta Q_L}{2\beta}$$

### O problema da empresa líder:

$$\max_{Q_L} PQ_L - \theta_L Q_L = \max_{Q_L} \left[\alpha - \beta(Q_L + Q_S)\right] Q_L - \theta_L Q_L$$

$$\max_{Q_L} \left[ \alpha - \beta \left( Q_L + \frac{\alpha - \theta_S - \beta Q_L}{2\beta} \right) \right] Q_L - \theta_L Q_L$$

$$\alpha - \beta \left( Q_L + \frac{\alpha - \theta_S - \beta Q_L}{2\beta} \right) - \frac{\beta Q_L}{2} - \theta_L = 0$$

A quantidade escolhida pelo líder

$$Q_L = \frac{\alpha - \theta_L}{2\beta}$$

# A quantidade escolhida pelo líder é a quantidade escolhida por um monopolista:

$$\max_{Q_L} (\alpha - \beta Q_L) Q_L - \theta_L Q_L$$

$$\alpha - \beta Q_L - \beta Q_L - \theta_L = 0$$

Igual à escolha do líder

$$Q_L = \frac{\alpha - \theta_L}{2\beta}$$

### Conclusão:

$$Q_L = \frac{\alpha - \theta_L}{2\beta}$$

$$Q_S = \frac{\alpha - \theta_S - \beta \frac{\alpha - \theta_L}{2\beta}}{2\beta} = \frac{\alpha - 2\theta_S + \theta_L}{4\beta}$$

Para que 
$$Q_S > 0$$
 é preciso que  $\theta_S < \frac{\alpha + \theta_L}{2}$ 

| O dilema dos casados  |         | Homem  |         |
|-----------------------|---------|--------|---------|
| com estratégias puras |         | Cinema | Futebol |
| Mulher                | Cinema  | 2;1    | 0;0     |
|                       | Futebol | 0;0    | 1;2     |

| O dilema dos casados com estratégias mistas                                                                |                     |  |  |  |
|------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| $G_h = P_h^c (P_m^c 1 + P_m^f 0) + P_h^f (P_m^c 0 + P_m^f 2)$                                              |                     |  |  |  |
| $G_h = (1 - P_h^f)(P_m^c 1 + P_m^f 0) + P_h^f(P_m^c 0 + P_m^f 2)$                                          |                     |  |  |  |
| $\frac{\partial G_h}{\partial P_h^f} = P_m^f 2 - P_m^c 1 = 0 		 P_m^f = \frac{1}{3} 	 P_m^c = \frac{2}{3}$ | $P_h^c = 1 - P_h^f$ |  |  |  |
| $G_m = P_m^c (P_h^c 2 + P_h^f 0) + P_m^f (P_h^c 0 + P_h^f 1)$                                              | $P_m^c = 1 - P_m^f$ |  |  |  |
| $G_m = (1 - P_m^f)(P_h^c 2 + P_h^f 0) + P_m^f(P_h^c 0 + P_h^f 1)$                                          |                     |  |  |  |
| $\frac{\partial G_m}{\partial P_m^f} = P_h^f 1 - P_h^c 2 = 0 		 P_h^f = \frac{2}{3} 	 P_h^c = \frac{1}{3}$ |                     |  |  |  |

Outras possíveis estratégias além da maximização do máximo ganho:

| Estratégia max-max |   | Jogador 2 |        |        |
|--------------------|---|-----------|--------|--------|
|                    |   | А         | В      | С      |
| Jogador 1          | А | 3;3       | 2;4*   | 2;2    |
|                    | В | *4;2      | *6;5*  | -2 ; 4 |
|                    | С | 2;2       | 4 ; -2 | *5;6*  |

| Estratégia max-min |   | Jogador 2 |         |         |    |
|--------------------|---|-----------|---------|---------|----|
|                    |   | А         | В       | С       |    |
| Jogador 1          | А | *2;2*     | *2;-2   | *2;2*   | 2  |
|                    | В | -2 ; 2*   | -2 ; -2 | -2 ; 2* | -2 |
|                    | С | *2;2*     | *2;-2   | *2;2*   | 2  |
|                    |   | 2         | -2      | 2       | ,  |

Estratégia max-min: maximizar o mínimo ganho. Estratégia min-max: minimizar o máximo ganho.

### Derrudando a suposição 2 sobre informação simétrica.

Para uma troca ser considerada justa tanto pelo vendedor quanto pelo comprador, ambas as partes precisam ter o mesmo nível de informação sobre o que está sendo trocado. Caso contrário, há a possibilitade de uma parte tirar vantagem da outra.

Vale notar que essa condição não implica que as partes saibam tudo sobre o objeto transacionado. A incerteza permeia a vida e os agentes econômicos conseguem lidar com ela por meio da noção de valor esperado (média) e risco (variância).

O problema é quando uma parte sabe mais do que a outra (mesmo quando ambas não saibam tudo).

O que é incerteza?

Não há incerteza quando X causa Y com 100% de probabilidade. Há incerteza quando X causa Y com menos de 100% de probabilidade.

A incerteza existe porque 1-) o ser humano tem racionalidade limitada e/ou 2-) a natureza é incerta (princípio da incerteza de Heisenberg).

<u>Incerteza absoluta</u>: não é possível sequer encontrar uma distribuição de probabilidades que explique a probabilidade de X causar Y.

<u>Incerteza relativa</u>: é possível encontrar uma distribuição de probabilidades que explique a probabilidade de X causar Y.



Se a incerteza é relativa, os agentes econômicos ainda conseguem tomar decisões com base em médias (esperanças) e variâncias (riscos)

<u>Incerteza relativa com simetria de informação</u>: os agentes decidem sem que uma parte possa tirar vantagem da outra. A única diferença é que as decisões tomadas envolverão esperanças e riscos (*e.g.*, estratégias mistas no dilema dos casados).

Obs: em um ambiente com incerteza relativa, a competição por ganhos esperados pode ter o efeito de aumentar a exposição ao risco dos agentes (fazê-los menos aversos ao risco).

<u>Incerteza relativa com assimetria de informação</u>: o agente econômico mais informado pode tirar vantagem do agente econômico menos informado.

Se um agente pode tirar vantagem de outro, o agente prejudicada pode deixar o mercado. Em outras palavras, o mercado pode deixar de existir.

Dentre os problemas relacionados à assimetria de informação, destacam-se os problemas de:

- 1-) Seleção adversa (adverse selection).
- 2-) Risco moral (*moral hazard*).
- 3-) Demanda induzida (*induced demand*).

Esses problemas são fundamentais para o mercado de seguro em geral, e para o mercado de seguro-saúde em particular, e, portanto, para sistemas de saúde.

Mas antes de qualquer coisa, Como as pessoas escolhem sob incerteza? Como funciona um seguro-saúde? Será que as pessoas escolhem sob incerteza apenas olhando o valor esperado?

- A-) Uma urna tem 100 bolinhas. Quanto você pagaria para participar desses jogos?
- 1-) Sortear uma bolinha entre **50** valendo **\$150** e **50** valendo **\$50**?
- 2-) Sortear uma bolinha entre **50** valendo **\$200** e **50** valendo **\$0**?
- 3-) Sortear uma bolinha entre **20** valendo **\$500** e **80** valendo **\$0**?
- 4-) Sortear uma bolinha entre 20 valendo \$700 e 80 valendo -\$50?

B-) Uma moeda será lançada repetidas vezes até sair coroa. O prêmio começa a \$2 e dobra em cada lance até sair coroa. Ao sair coroa, o jogo termina e o jogador leva o dinheiro acumulado. Por exemplo, o jogador ganhará \$2 se sair coroa já no primeiro lance, \$4 se sair coroa só no segundo lance, \$8 se sair coroa só no terceiro lance, e assim por diante. Quanto você pagaria para participar desse jogo?

Não, as pessoas não escolhem sob incerteza apenas olhando o valor esperado...

A-) Você não pagaria \$100 para participar desses jogos?

1-) 
$$E(\$) = 50\% \times 150 + 50\% \times 50 = \$100$$
  $DP(\$) = \$50$   
2-)  $E(\$) = 50\% \times 200 + 50\% \times 0 = \$100$   $DP(\$) = \$100$   
3-)  $E(\$) = 20\% \times 500 + 80\% \times 0 = \$100$   $DP(\$) = \$200$   
4-)  $E(\$) = 20\% \times 700 + 80\% \times -50 = \$100$   $DP(\$) = \$300$ 

B-) Como assim você não pagaria infinito para participar desse jogo?!?!

$$E(\$) = \frac{1}{2}2 + \frac{1}{2}\frac{1}{2}4 + \frac{1}{2}\frac{1}{2}\frac{1}{2}8 + \dots = \infty$$
O paradoxo de São Petersburgo (Daniel e Nicolas Bernoulli, 1713/38)

Na verdade, as pessoas escolhem sob incerteza comparando a utilidade esperada se não jogarem e a utilidade esperada se jogarem

Antes uma breve observação sobre a notação que aparecerá a seguir...

Já aprendemos que um consumidor racional escolhe a quantidade de bens Q = Q\* e X = X\* que maximiza a sua função utilidade U = U(Q, X) sujeito à sua restrição orçamentária W ≥ PQ + ZX.

Portanto, podemos dizer que um consumidor com renda W pode no máximo atingir o nível de utilidade  $U = U(Q^*, X^*)$  ao escolher  $Q = Q^*$  e  $X = X^*$ .

Portanto, podemos dizer que um consumidor com renda W tem potencial para atingir o nível de utilidade  $U = U(Q^*, X^*)$ 

Logo, podemos <u>POR SIMPLIFICAÇÃO</u> escrever que um consumidor com renda W tem potencial para atingir o nível de utilidade  $U = U(W) = U(Q^*, X^*)$ 

Logo, podemos <u>POR SIMPLIFICAÇÃO</u> escrever que a renda W dá ao consumidor a (potencial) utilidade U = U(W)...

# As pessoas escolhem sob incerteza comparando a utilidade esperada se não jogarem e a utilidade esperada se jogarem

A-) Que valor G você pagaria para entrar no jogo de sortear uma bolinha entre  $\alpha$  por cento de bolinhas valendo  $V_A$  alto e 1 –  $\alpha$  por cento de bolinhas valendo  $V_B$  baixo?

Se você tem riqueza W e não jogar, a sua utilidade esperada será U = U(W). Se você jogar, a sua utilidade esperada será  $U = \alpha U(W - G + V_A) + (1 - \alpha)U(W - G + V_B)$ . Para dado G, você somente escolhe jogar se  $U(W) < \alpha U(W - G + V_A) + (1 - \alpha)U(W - G + V_B)$ .

```
Para G = \alpha V_A + (1 - \alpha) V_B = \text{valor esperado do jogo E($)}:

Se U(W) < \alpha U(W - G + V_A) + (1 - \alpha) U(W - G + V_B), então você é amante do risco.

Se U(W) > \alpha U(W - G + V_A) + (1 - \alpha) U(W - G + V_B), então você é averso ao risco.

Se U(W) = \alpha U(W - G + V_A) + (1 - \alpha) U(W - G + V_B), então você é neutro ao risco.
```

B-) O paradoxo de São Petersburgo decifrado:

```
Se você não jogar, U = U(W).
Se você jogar, U = \frac{1}{2}U(W - G + 2) + \frac{1}{2}\frac{1}{2}U(W - G + 4) + \frac{1}{2}\frac{1}{2}\frac{1}{2}U(W - G + 8) + ...
Para G = \infty = valor esperado do jogo E($), o que te dá mais utilidade?
```

### Outros exemplos práticos...

Programa Sílvio Santos! Você tem 50% de chance de ganhar um milhão e 50% de chance de ganhar zero. Que valor G faria você desistir de jogar?

Se você não jogar, U = U(W + G), mas se você jogar,  $U = \frac{1}{2}U(W + 1000000) + \frac{1}{2}U(W)$ .

Obs: competição + euforia podem elevar G que os agentes pedem...

Você tem 25% de chance de adoecer e ter gasto médico de \$400 num determinado mês.

Que valor G você pagaria no mês para cair fora desse jogo?

Se você não jogar, U = U(W - G), mas se você jogar,  $U = \frac{3}{4}U(W) + \frac{1}{4}U(W - 400)$ .

Que valor G faria  $U(W - G) > \frac{3}{4}U(W) + \frac{4}{4}U(W - 400)$ ? 100?

Obs: esse G não seria o que você pagaria pela cobertura total de um seguro-saúde?

Nota 1: uma técnica alternativa para comparar diferentes contingências é assumir para cada contingência uma função de utilidade  $U = U(\mu, \sigma)$ , em que  $\mu$  é o respectivo valor esperado e  $\sigma$  é o respectivo desvio padrão, com  $\partial U/\partial \mu > 0$  e  $\partial U/\partial \sigma < 0$ .

Nota 2: antes, o consumidor fazia  $\max_{Q,X} U(Q,X) + \lambda(W - PQ - ZX)$ , mas com incerteza:

$$\max_{\substack{Q_A,X_A\\Q_B,X_B}} \alpha U(Q_A,X_A) + (1-\alpha)U(Q_B,X_B) + \lambda \left[ \frac{\alpha(W_A - PQ_A - ZX_A) + (1-\alpha)U(Q_B,X_B)}{(1-\alpha)(W_B - PQ_B - ZX_B)} \right]$$

# Como funciona um seguro (um seguro-saúde em particular)?

Um indivíduo tem 25% de chance de adoecer e ter \$400 de gasto médico (ou seja, 75% de chance de não adoecer e não ter gasto médico). Logo, o gasto médico esperado para ele é de \$100 (pois  $\frac{3}{40}$  +  $\frac{1}{400}$  = 100).

25% de chance de adoecer significa que 1 entre 4 pessoas semelhantes àquele indivíduo (pertencentes à mesma população-alvo) adoecem.

Portanto, se um segurador vender cobertura total de seguro-saúde para 4 dessas pessoas por \$100, ele formará um fundo de \$400.

\$400 é exatamente o dinheiro necessário para cobrir o gasto médico daquele 1 indivíduo entre as 4 pessoas que irá adoecer!

Lógico que há o risco de mais de 1 indivíduo adoecer num grupo só de 4, mas o segurador pode reduzir esse risco atraindo mais indivíduos para o fundo a fim de formar um grupo cada vez mais próximo do tamanho da população: a lei dos grandes números.

Tudo funcionaria bem se houvesse simetria de informação entre os agentes, mas...