```
In [459]: # Importing Libraries
          import numpy as np
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          import matplotlib.gridspec as gridspec
          # Model Evaluation Metrics
          from sklearn.metrics import r2 score
          from sklearn.metrics import mean squared error
          from sklearn.preprocessing import StandardScaler
          from scipy import stats
          np.warnings.filterwarnings('ignore')
          # Importing Models
          from sklearn.decomposition import PCA
          from sklearn.model selection import train test split
          from sklearn.linear model import LinearRegression
          from sklearn.preprocessing import PolynomialFeatures
          import xqboost as xqb
```

BUILDING LINEAR REGRESSION MODEL

TRAINING AND TESTING

```
In [460]: # Loading Dataset

df=pd.read_csv('G1.csv')

df_test=pd.read_csv('G2.csv')
```

In [461]: df.head()

Out[461]:

	TimeStamp	AssetGroup	Identifier	F2	F3	F4	F5	q	F7	F8	 F24	F25	F26	F27	F28	F29	F30	F31
0	1998-12-31	G1	86a1f1ee	bc068363	Capital Goods	Diversified Capital Goods	1	1	B1	14.0	 0	1	7.0	0.0	1	4.0	0.0	1
1	1998-12-31	G1	de5b9bca	e5fb34b9	Telecommunications	Telecom - Wireline Integrated & Services	6	1	BB2	12.0	 -4	-4	NaN	NaN	-4	NaN	NaN	-4
2	1998-12-31	G1	2a0a4ee3	62835655	Basic Industry	Chemicals	1	1	B1	14.0	 -4	-4	NaN	NaN	-4	NaN	NaN	-4
3	1998-12-31	G1	a67fb965	81f811c5	Transportation	Rail	2	0	B2	15.0	 -4	-4	NaN	NaN	-4	NaN	NaN	-4
4	1998-12-31	G1	52f697cc	2becce58	Basic Industry	Building Materials	4	0	BB2	12.0	 1	1	7.0	0.0	1	4.0	0.0	1

5 rows × 35 columns

In [462]: df_test.head()

Out[462]:

	TimeStamp	AssetGroup	Identifier	F2	F3	F4	F5	q	F7	F8	 F24	F25	F26	F27	F28	F29	F30
0	1997-12-31	G2	2050c8b3	134e3828	Telecommunications	Telecom - Integrated/Services	2	0	B2	15.0	 -3	0	3.0	7.0	0	0.0	6.0
1	1997-12-31	G2	69bd765f	134e3828	Telecommunications	Telecom - Integrated/Services	2	1	B2	15.0	 -3	0	3.0	7.0	0	0.0	6.0
2	1997-12-31	G2	87093289	5b42c631	Services	Building & Construction	2	0	B1	14.0	 -3	0	3.0	7.0	0	0.0	6.0
3	1997-12-31	G2	4ce55a61	45ef6ce3	Media	Media - Broadcast	1	1	B2	15.0	 -1	1	4.0	0.0	0	0.0	0.0
4	1997-12-31	G2	0aa1ccf8	5b42c631	Services	Building & Construction	2	1	B1	14.0	 -3	0	3.0	7.0	0	0.0	6.0

2/23

5 rows × 35 columns

Correlation Heatmap

```
In [463]: # # Correlation Heatmap

plt.subplots(figsize=(20,13 ))
    correlation_matrix = df.corr()
    sns.heatmap(correlation_matrix, annot=False)
```

Out[463]: <matplotlib.axes._subplots.AxesSubplot at 0x1a3add3470>

Finding Correlation of features with Target Variable (TRR)

```
In [464]: # Correlation of features with target feature (Return)
          correlation matrix['TRR'].sort values(ascending = False)
Out[464]: TRR
                  1.000000
          F21
                  0.976311
          S
                  0.060496
                  0.059398
          F11
          F14
                  0.050005
          F15
                  0.027253
          F26
                  0.023759
                  0.020033
          F22
                  0.017913
          F8
                  0.017284
          wΙ
                  0.015083
          F32
                  0.008805
          F24
                  0.006245
          F17
                  0.003687
                  0.003516
          F29
          F28
                  0.003441
          F31
                  0.002817
          F25
                  0.002541
          F30
                 0.000393
          F33
                -0.000862
                 -0.006628
          F16
                -0.011144
          F23
                -0.011933
                -0.015971
          F5
          F27
                -0.019085
          F19
                -0.058083
          Name: TRR, dtype: float64
```

We found that F21 is the only feature having Correlation > 0.9 with TRR

We Choose top 4 highest correlated features

```
In [465]: # # Retaining numerical features only (1st Attempt)
# numerical_df = df.drop(['TimeStamp', 'Identifier','F7', 'F13', 'AssetGroup', 'F2', 'F3', 'F4', 'F12', 'F1
5', 'F22', 'F23', 'F26', 'F27', 'F29', 'F30'], axis=1)
# numerical_df_test = df_test.drop(['TimeStamp', 'Identifier','F7', 'F13', 'AssetGroup', 'F2', 'F3', 'F4', 'F
12', 'F15', 'F22', 'F23', 'F26', 'F27', 'F29', 'F30'], axis=1)
# Retaining Top 4 features
numerical_df = df[['F21','S','F11','F14', 'TRR']]
numerical_df_test = df_test[['F21','S','F11','F14', 'TRR']]
```

In [466]: numerical_df.describe()

Out[466]:

	F21	S	F11	F14	TRR
count	100483.000000	100483.000000	100483.000000	100483.000000	100483.000000
mean	0.258733	472.465064	1714.639863	436.339858	0.496910
std	5.371406	528.222779	1401.960279	401.651737	5.342896
min	-98.008000	-1980.000000	-6514.200000	-47.000000	-98.000000
25%	-0.517000	178.000000	632.940000	187.000000	-0.357000
50%	0.281000	325.000000	1390.146000	318.000000	0.542000
75%	1.328000	576.000000	2439.505000	569.500000	1.606000
max	166.665000	9180.000000	32101.083000	8511.000000	166.667000

Pair Plots between features

We can clearly see that, Plot b/w F21 vs TRR depicts high positive Correlation

```
In [424]: # PairPlot between F21 and TRR (highly correlated)
# NOTE: Running this snippet takes around 2-3 Minutes.

sns.set(style="ticks")
sns.pairplot(numerical_df)
plt.savefig('pairplots_coloured')
```


Removing outliers using Z-Score Technique

FEATURE ENGINEERING

Scaling Features

Applying Linear Regression Model

```
In [474]: model = LinearRegression().fit(X, y)
    print("Multi Linear Regression using PCA :")

    yPred = model.predict(X_new)
    print("mean squared error is : " + str(mean_squared_error(y_new, yPred)))
    print("R^2 value is : " + str(r2_score(y_new, yPred)))

    plt.scatter(y_new, yPred, color='red')
    plt.xlabel('y_new')
    plt.ylabel('y_new')
    plt.ylabel('yPred')

Multi Linear Regression using PCA :
    mean squared error is : 0.7763567455867468
    R^2 value is : 0.9206360252866739

Out[474]: Text(0, 0.5, 'yPred')
```


Gradient Boosting using XG-Boost

12/23

```
In [475]: print("Gradient Boosting :")

xgdmat = xgb.DMatrix(X,y)
our_params = { 'eta':0.1, 'seed':0, 'subsample':0.8, 'colsample_bytree':0.8, 'objective': 'reg:squarederror', 'max_d epth':3, 'min_child_weight':1}
final_gb = xgb.train(our_params,xgdmat)
tesdmat = xgb.DMatrix(X_new)
y_pred = final_gb.predict(tesdmat)

print("Mean sqaured error:" + str(mean_squared_error(y_new,y_pred)))
print("R^2 score :" + str(r2_score(y_new,y_pred)))

plt.scatter(y_new, yPred, color='green')
plt.xlabel('y_new')
plt.ylabel('yPred')
```

Gradient Boosting :
Mean sqaured error:3.317360241681815
R^2 score :0.6608789762793252

Out[475]: Text(0, 0.5, 'yPred')

13/23

We can Clearly see that Linear Regression Model Works far better than XG-Boost.

PEDICTING RETURNS USING TRAINED MODEL

```
In [445]: # PREDIT RETURNS
                              months = \lceil 2016 - 01 - 31', 2016 - 02 - 29', 2016 - 03 - 31', 2016 - 04 - 30', 2016 - 05 - 31', 2016 - 06 - 30', 2016 - 07 - 31', 2016 - 08 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 
                              -31',
                                                                 '2016-09-30','2016-10-31','2016-11-30','2016-12-31','2017-01-31','2017-02-28','2017-03-31','2017-
                              04-30','2017-05-31','2017-06-30','2017-07-31','2017-08-31',
                                                                 '2017-09-30','2017-10-31','2017-11-30','2017-12-31','2018-01-31','2018-02-28','2018-03-31','2018-
                              04-30','2018-05-31','2018-06-30','2018-07-31','2018-08-31',
                                                                 '2018-09-30','2018-10-31','2018-11-30']
                              stocks = []
                              for i in range(0, len(months)):
                                          stocksDF = df test[df test['TimeStamp'] == months[i]][['F21','S','F11','F14']]
                                          stocksDF = stocksDF.dropna()
                                          stocksDF = stocksDF((np.abs(stats.zscore(stocksDF)) < 3).all(axis=1)]</pre>
                                         x = stocksDF.values
                                         x = StandardScaler().fit transform(x)
                                         X = np.array(x)
                                          returns = model.predict(X)
                                          returns = returns.transpose()
                                          stocks.append(returns[0])
In [446]: stocks = pd.DataFrame(data=stocks).iloc[:, 0:400]
                              stocks['Months'] = months
                              stocks.set index('Months', inplace=True)
In [447]: stocks.to csv('predicted stocks.csv')
```

In [448]: stocks

Out[448]:

	0	1	2	3	4	5	6	7	8	9	 390	391	
Months													
2016- 01-31	-1.064075	-1.980852	0.643682	0.975394	1.523719	0.676484	-2.240913	4.643552	-1.681585	2.099946	 -0.118219	0.631477	0.
2016- 02-29	1.236957	1.403737	2.519866	-3.650119	-1.895302	-1.702685	4.879950	-1.758377	0.532961	-0.293455	 -1.017750	-1.550674	-1.
2016- 03-31	-1.708303	-1.599713	-1.296885	-1.709868	-1.584342	-0.600672	-0.721768	-1.051162	-1.296362	-0.246934	 5.665293	6.471781	1.
2016- 04-30	4.426131	-5.227894	1.581452	3.734957	0.310967	0.565480	1.006582	3.209713	0.893781	1.205560	 1.109316	2.201871	-0.
2016- 05-31	0.482746	0.124049	3.374706	0.968938	1.087234	-3.293495	1.466974	10.347726	7.644094	-6.315749	 2.047965	-0.342362	1.
2016- 06-30	3.751863	0.203278	1.678704	-7.313451	1.293308	-1.540526	0.367314	-4.372270	-1.630925	-1.027476	 -0.679458	10.151568	-1.
2016- 07-31	1.173334	-1.419655	1.752400	3.938241	-0.718527	-0.542570	-1.114226	-1.103356	-1.832726	2.115933	 2.226617	2.131549	-1.
2016- 08-31	1.203405	0.107329	3.130945	-2.162963	0.398774	2.525931	-1.039352	-0.846990	-1.864126	0.438213	 0.032450	1.791382	1.
2016- 09-30	-1.533112	7.443263	1.438134	0.872181	-0.805087	1.797281	-1.022359	-0.863389	1.464756	0.642637	 -2.118449	1.834585	-2.
2016- 10-31	-0.873246	-0.950045	-0.541938	3.060396	0.948985	-4.273043	-1.580536	-0.180231	-0.550394	0.761423	 0.726583	-2.095292	1.
2016- 11-30	1.166947	-0.914919	-2.107762	1.026485	1.189798	4.215140	0.803487	5.092062	-1.375378	2.286877	 -1.634392	-1.682967	-1.
2016- 12-31	-0.337516	-0.359161	0.678695	-0.349821	3.057935	0.576095	1.937550	1.157069	-1.508958	-1.087182	 -0.867544	0.659811	1.
2017- 01-31	1.654599	-0.132457	0.864241	0.765883	0.529671	0.401642	-0.925294	1.340229	0.313116	-0.906073	 -0.009329	-0.286296	-1.
2017- 02-28	1.980106	1.391754	1.304432	0.193348	2.292781	2.132909	-2.700351	2.798651	0.871421	1.793262	 8.095858	1.618285	8.
2017- 03-31	-1.427682	-1.334107	-1.704285	-0.904351	-2.034351	-0.947038	1.604677	3.351632	1.893913	8.498827	 1.727614	-0.198172	-1.

	0	1	2	3	4	5	6	7	8	9	 390	391	
Months													
2017- 04-30	-7.216011	1.031624	3.871621	-0.053184	5.538793	0.909771	-0.118858	0.412573	0.365817	1.220704	 1.237609	4.714986	-0.
2017- 05-31	0.397094	1.220182	-0.483483	-0.459840	-1.537129	-4.604775	0.462660	-0.645662	-0.349818	5.268383	 2.495575	-0.518144	-0.
2017- 06-30	-0.470007	0.114416	3.255923	0.437616	-1.022626	0.561894	16.427445	8.944439	1.432916	1.875033	 1.088606	-0.497985	0.
2017- 07-31	0.181384	0.542860	0.421713	-1.307839	-1.897947	3.177442	-1.812016	0.989782	1.064224	1.677674	 2.742645	5.098989	0.
2017- 08-31	-0.066208	-0.285502	-0.768059	-1.315670	10.792680	-1.246141	-1.097757	-1.071718	-0.150284	-0.033383	 -7.297064	2.211845	-1.
2017- 09-30	-0.298843	-1.988551	-1.057641	-0.435691	1.333060	1.810108	0.723702	-1.018624	-0.134721	1.749160	 0.313691	1.388758	-0.
2017- 10-31	2.360076	0.949338	1.932139	4.092743	0.736166	2.247921	-1.740225	2.177945	-0.062553	2.112980	 0.507492	0.203856	1.
2017- 11-30	-0.568924	1.030452	1.509808	-1.468123	2.764231	0.138701	2.364114	-1.332872	1.925931	0.171254	 -0.724040	1.419332	-0.
2017- 12-31	2.712608	-0.972675	0.766733	-1.612262	-0.174286	-1.853094	-2.112412	-1.796098	0.340650	-2.195414	 1.930892	0.982182	-6.
2018- 01-31	-1.032606	-0.170226	1.435702	1.687953	2.241946	-2.941250	-0.542954	3.468505	3.208014	4.251696	 0.862224	1.653488	2.
2018- 02-28	1.451341	3.084981	-2.339006	1.536137	2.107943	-1.566456	2.928036	2.505583	3.574783	-1.238405	 1.685151	2.084093	-0.
2018- 03-31	-0.742891	-2.307243	0.896646	1.630425	-0.579697	0.300364	2.098274	-0.462311	-0.315294	2.690433	 0.971026	-0.846174	2.
2018- 04-30	2.398130	1.539342	2.665579	-5.837084	1.283074	2.916097	-2.020995	2.010891	-1.325661	0.710036	 2.720842	1.802095	2.
2018- 05-31	1.605734	0.918214	-2.625116	3.854188	1.075546	1.476819	1.273072	-0.062588	-3.559595	1.973795	 1.858147	1.704687	4.
2018- 06-30	-0.508055	-0.352081	1.250319	-0.335732	-2.150423	-0.598170	-1.923884	-0.066686	0.389553	-0.103138	 1.208812	2.241970	-0.

	0	1	2	3	4	5	6	7	8	9	•••	390	391	
Months														
2018- 07-31	-3.709656	-0.704590	3.784479	1.551871	1.516044	1.221064	1.575642	-1.338070	0.737259	-1.101382		1.454971	1.468334	-0.
2018- 08-31	-2.125058	1.154835	-0.165798	-1.640554	-0.213928	1.052459	2.232745	-4.281518	0.923669	2.925432		0.478082	2.315572	12.
2018- 09-30	-0.885803	0.972763	2.680431	1.498846	-0.225780	0.808457	2.753934	4.533666	2.832032	2.619015		1.547886	0.841125	1.
2018- 10-31	1.743694	2.453796	0.877272	2.240769	-0.751477	2.440556	1.593360	-0.755927	0.557834	1.678471		1.608451	1.040771	-2.
2018- 11-30	-0.407710	-8.456073	-2.538831	0.723214	1.620739	4.393334	0.789359	1.786383	1.815526	0.851766		1.503730	-0.589081	2.

35 rows × 400 columns

FINDING OPTIMAL WEIGHTS

Using Predicted Stock Returns

```
In [449]: df = pd.read_csv('predicted_stocks.csv')
# Building Portfolio using 4 stocks
df = df.iloc[:, 0:5]
df.head()
```

Out[449]:

	Months	0	1	2	3
0	2016-01-31	-1.064075	-1.980852	0.643682	0.975394
1	2016-02-29	1.236957	1.403737	2.519866	-3.650119
2	2016-03-31	-1.708303	-1.599713	-1.296885	-1.709868
3	2016-04-30	4.426131	-5.227894	1.581452	3.734957
4	2016-05-31	0.482746	0.124049	3.374706	0.968938

Statistical Properties of stocks

```
In [450]: mean_return = df.mean(axis=0) # Stocks Return
    std_dev = df.std(axis=0) # Stocks Risk (Standard Deviation)
    cov_matrix = np.matrix(df.cov()) # Stocks Covariance Matrix
    corr_matrix = df.corr() # Stocks Correlation Matrix
```

Building Portfolios

```
In [451]: import random # For generating weights
          ports = 5000 # Count of Total Portfolios
          (m, n) = df.shape
          portfolios = [] # Set of Portfolios
          all weights = [] # Set of Portfolio Weights
          for i in range(1, ports):
          # Generating Weights
              w = [np.sqrt(random.random()*random.random())*(random.random()*50)
                   for i in range(1,n)]
              s = sum(w)
              weight = [ i/s for i in w ]
              all weights.append(weight)
             Portfolio Properties
              portfolio return = np.dot(weight, mean return)
              variance = np.matmul(np.matmul(weight, cov matrix), np.transpose(weight))
              portfolio std dev = np.sqrt(variance[0,0])
              sharpe ratio = portfolio return / portfolio std dev # Assuming Rf=0
              Add Portfolio to the list
              portfolios.append((portfolio return, portfolio std dev, sharpe ratio))
          portfolios = pd.DataFrame(portfolios,
                                    columns=['Return', 'Std. Dev.', 'Sharpe Ratio'])
```

Plotting Portfolios and finding Optimal Weights

Optimal Portfolio

Thank You!