Atividades Extras OpenMP - IPPD (2024)

DEMAC – Universidade Estadual Paulista

- Para mudar o número de threads utilize a variável de ambiente OMP_NUM_THREADS. Por exemplo, se sua aplicação se chamar prog.x, então use "OMP_NUM_THREADS=8 ./prog.x" para usar 8 threads;
- Todos os problemas geram na saída padrão o tempo gasto (em milesegundos);

Problema A – Números primos

Este problema computa a quantidade de número primos em uma faixa dada de números.

Entrada

A entrada é composta por dois valores inteiros:

- 1. número inicial: primeiro número da faixa de valores;
- 2. número final: último número da faixa de valores.

Os dois números inteiros determinam a faixa contínua de números que será usada para a investigação dos números primos. O exemplo a seguir computa o número de primos compreendidos entre 10 e 1000:

./primos.x 10 1000

Saída

Número de primos encontrado.

Problema B – Jogo da vida

O jogo da vida é um autômato celular desenvolvido pelo matemático britânico John Horton Conway em 1970. O jogo consiste de uma coleção de células as quais, baseadas em algumas regras matemáticas, podem viver, morrer, ou multiplicar.

A depender das condições iniciais, as células formam vários padrões ao longo do jogo. A versão do jogo neste problema usa um tabuleiro quadrado (array 2D), no qual as células são atualizadas a cada passo de acordo com as seguintes regras:

- Para uma posição populada:
 - cada célula com apenas 1 ou nenhum vizinho, morre;
 - cada célula com 4 ou mais vizinhos, morre;
 - cada célula com 2 ou 3 vizinhos, sobrevive.
- Para uma posição vazia:
 - cada célula com 3 vizinhos, revive.

A ilustração abaixo mostra os 3 primeiros passos para a configuração inicial dada (mais à esquerda) com um tabuleiro de 11x11.

х	хх	x	xxx		
ххх	X	xxx			
X	$\mathbf{x} \mathbf{x} \mathbf{x}$	$x \times x$	x x		
XXX XXX	XX XX	xxx xxx	x x		
Х	$\mathbf{x} \mathbf{x} \mathbf{x}$	$x \times x$	x x		
ххх	X	xxx			
X	x x	x	xxx		
Estado inicial	Passo 1	Passo 2	Passo 3		

Entrada

A entrada está contida em um arquivo que informa, em sua primeira linha, o tamanho do tabuleiro (valor inteiro). As linhas seguintes do arquivo contém a configuração inicial do tabuleiro. O arquivo fornecido, 'exemplo.in', contém um exemplo. Depois de 2000 iterações, a saída esperada está no arquivo 'exemplo.out-2000'. Você pode usá-lo para verificar se sua paralelização gera resultados corretos.

Saída

Ao final, o programa imprime (na saída de erro) a posição final depois dos passos de simulação informados.

Problema C - N Damas

O problema das N damas consiste em dispor num tabuleiro de xadrez, com dimensão NxN, N damas, de forma que nenhuma delas seja atacada por outra. Ou seja, para quaisquer duas damas, estas não podem estar numa mesma fileira, coluna, ou então diagonal. O exemplo abaixo mostra uma solução para um tabuleiro de 4x4.

O algoritmo implementado neste problema usa a técnica de backtracking com chamadas recursivas para encontrar o número total de soluções. Um vetor de tamanho N é usado para representar a fileira que a dama se encontra em cada uma das colunas. O algoritmo de força bruta recursivamente testa as posições até que uma solução seja encontrada. O número total de soluções para alguns tamanhos é mostrado na tabela abaixo.

Tamanho	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Soluções	1	0	0	2	10	4	40	92	352	724	2680	14200	73712	365596	2279184

Entrada

A entrada é um inteiro, representando o tamanho do tabuleiro.

Saída

Na saída é apresentado o número total de soluções encontrado.