Graph Theory - Sheet 3 - November 11, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

Problem 9

Theorem 1.1. A hypercube Q_n is Hamiltonian. It has a girth of 4, a diameter of n , an order a size of ?.	of 2^n and
Proof.	
Theorem 1.2. A bipartite complete graph $K_{m,n}$ is Hamiltonian iff $m = n$. It's girth is 4 for $m, n \in \mathbb{N}$ otherwise. It's diameter is 2. The graph's order is $m + n$ and it's size is $m \cdot n$.	$n \geq 2$ and
Proof.	
Theorem 1.3. The Petersen graph is Hamiltonian, it has a girth of 5, a diameter of 2, an or and a size of 15.	rder of 10
Proof.	

Problem 10

Theorem 2.1. For a natural number $n \geq 2$ let $G = (V_G, E_G)$ be the graph of order 2n + 1 obtained from $K_{n,n}$ by subdividing an edge by a vertex. Then, $\chi'(X) = \Delta(G) + 1 = n + 1$ but $\chi'(G - e) = \Delta(G - e)$ for any edge e of G.

Proof. Let $V = \{v_1, ..., v_n\}$ and $W = \{w_1, ..., w_n\}$ denote the two partitions of $K_{n,n}$ and $\{c_k \mid k \in \mathbb{N}\}$ be a set of colors. Furthermore, let $u \in V_G$ be the vertex subdividing an edge between these two partitions.

First, we will prove that $\chi'(X) = \Delta(G) + 1 = n + 1$. We will argue, that any partial coloring of G will inevitably result in n + 1 colors.

For a partially colored G, let $v \in V_G$ be a vertex of G.

• Case 1: $v \neq u$: Since v has n adjacent vertices, we need n colors to color the edges incident to v. Of course,

Problem 11

For each even integer k > 1, the complete graph $K_{(n+1)}$ is a k-regular graph with no 1-factor. For each odd k > 1 we can construct a k-regular graph with no 1-factor in the following way.

In order to garantee that the graph has no 1-factor we can use Tutt's theorem. We construct the graph by starting of with one vertex v connected to k subgraphs S which are not inter-connected. Then we construct

Figure 1: Example with k=3

S = (V, E) in such a way that |V| is odd and that all vertices in V have degree k except of one vertex $u \in V$ with degree k-1. If we then connect u to v we get a k-regular graph. Using Tutt's theorem we know that the resulting graph has no 1-factor. Because if v is removed we get k components S with odd number of vertices and k is greater than 1.

In order to contruct S we first need the following lemma.

Lemma 3.0.1. For any odd integer k > 1 it is possible to construct (k-1)-regular graph G = (V, E) with k+1 vertices.

Proof. We can obtain G from K_{k+1} by removing by removing all the edges from K_{k+1} contained in a perfect matching. By removing the edges the degree of every vertex decreases exactly by one. K_{k+1} is by definition k-regular, hence G is k-1-regular. A perfect matching in K_{k+1} exists, because k+1 is even, and the condition from Tutte's theorem always holds in a complete graph. To find such a matching we can just randomly choose (u, v) edges and remove u and v from K_{k+1} .

Constructing a connected graph S = (V, E) with |V| = k + 2 and the degree sequence (k, k, ..., k, (k - 1)). First we construct a (k - 1)-regular graph S' = (V', E') with k + 1 vertices as described in the lemma. Then we can add one vertex to S' and connect it to all vertices in V' except of one vertex. Thus we get a new graph S. Because we only added one vertex |V| = |V'| + 1 = k + 2 and the degree of the newly added vertex is k. The degree of all the other vertices except of the last one is increased by one. Hence, S hat the degree sequence (k, k, ..., k, (k - 1)).

Figure 2: S' and S for k=3

Problem 12

In the following I will show that any graph G with 2n vertices and all degrees at least n has a 1-factor. I will show that if we divide such a G into two parts we can remove edges until we get an bipartite 1-regular graph. Then using the corollary of Hall's theorem we know we can find a perfect matching.

Theorem 4.1. Let G = (V, E) be a graph with |V| = 2n vertices with all degree at least n, then G has a 1-factor.

Proof. Because |V| = 2n we can divide the vertices V into two subsets $A, B \subset V$ with |A| = |B| = n and $A \cap B = \emptyset$.