Exercice 1 - (Tirage aléatoire)

On tire au hasard un nombre entier strictement positif. On suppose que la probabilité d'obtenir n vaut $\frac{1}{2^n}$. Pour $k \in \mathbb{N}^*$, on note A_k l'évenement "n est un multiple de k".

- 1. Vérifier qu'on définit bien une probabilité.
- 2. Déterminer la probabilité de l'évenenent A_k , pour $k \in \mathbb{N}^*$
- 3. Déterminer la probabilité de l'évenenent $A_2 \cup A_3$.
- 4. Montrer que pour $p, q \geq 2$, A_p et A_q ne sont pas indépendants.

Exercice 2 - (Tricheur?)

Vous vivez dans un monde où l'on note x la proportion de tricheurs. Vous jouez à pile ou face avec un autre joueur. Il parie sur pile, lance la pièce, et obtient pile. Quelle est la probabilité pour qu'il soit un tricheur?

Exercice 3 – (Une variante de l'inégalité de Bienaymé-Tchebychev)

Soit X une variable aléatoire réelle. On suppose que X admet une espérance et une variance, et on pose $m = \mathbb{E}(X)$ et $\sigma^2 = \mathbb{V}(X)$. On fixe $\alpha > 0$.

- 1. Soit $\lambda \geq 0$. Démontrer que $\mathbb{P}(X m \geq \alpha) = \mathbb{P}(X m + \lambda \geq \alpha + \lambda)$.
- 2. Montrer que $\forall \lambda \geq 0, \mathbb{P}(X m \geq \alpha) \leq \frac{\sigma^2 + \lambda^2}{\alpha^2 + \lambda^2 + 2\lambda\alpha}$
- 3. En déduire que $\mathbb{P}(X m \ge \alpha) \le \frac{\sigma^2}{\alpha^2 + \sigma^2}$.
- 4. Démontrer que $\mathbb{P}(|X-m| \geq \alpha) \leq \frac{2\sigma^2}{\alpha^2+\sigma^2}$. A quelle condition a-t-on une "meilleure" inégalité que celle de Bienaymé-Tchebychev.

Exercice 4 - (Suite exacte)

Soit (E_1, \ldots, E_k) des \mathbb{K} -espaces vectoriels de dimension finie. On dit qu'une suite d'applications linéaires

$$\{0\} \xrightarrow{f_0} E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} E_n \xrightarrow{f_n} \{0\}$$
 (1)

est exacte si on a $\forall k \in [0, n-1], \operatorname{Im}(f_k) = \operatorname{Ker}(f_{k+1})$

1. Dans ce cas, montrer qu'on a la formule suivante (Euler-Poincar'e):

$$\sum_{k=1}^{n} (-1)^k \dim E_k = 0$$

Exercice 5 - (Dimension paire)

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$. Montrer qu'il existe un endomorphisme f tel que $\mathrm{Im}(f) = \mathrm{Ker}(f)$ si et seulement si n est pair.

Exercice 6 - (Commutant d'un endomorphisme nilpotent)

Soit E un \mathbb{K} -espace vectoriel de dimension n > 1. Soit f un endomorphisme nilpotent d'ordre n (i.e. $\forall k < n, f^k \neq 0$ et $f^n = 0$). On appelle commutant de f l'ensemble :

$$\mathcal{C}(f) = \{ g \in \mathcal{L}(E) \mid f \circ g = g \circ f \}$$

- 1. Montrer que C(f) est un sev de L(E).
- 2. Soit $a \in E$ tel que $f^{n-1}(a) \neq 0$. Montrer que la famille $(a, f(a), \ldots, f^{n-1}(a))$ est une base de E.
- 3. Soit $\phi_a : \mathcal{C}(f) \mapsto E$ définie par $\phi_a(g) = g(a)$. Montrer que ϕ_a est un isomorphisme.
- 4. En déduire que $C(f) = \text{Vect}(Id, f, \dots, f^{n-1})$.

Questions de cours

- Formule de sous additivité.
- Théorème de continuité croissance.
- Formule des probabilités totales.