بسمه تعالى

يروژه برنامه نويسي درس استاتيک

مهلت ارسال پاسخ ها، تا ساعت ۲۴ مورخه ۳ بهمن ماه ۱۴۰۳ میباشد.

رديد

لازم است خرپای نشان داده شده در شکل زیر به گونهای طراحی شود تا ۳ بار 10-kips نشان داده شده را تحمل کند. حداکثر تنش قابل تحمل توسط اعضا خرپا برابر با 20 kips/in² میباشد (تنش از تقسیم نیرو بر سطح مقطع بدست میآید). طول خرپا ۴۰ فوت میباشد:

الف) اگر وزن مخصوص فولاد استفاده شده برابر با $0.284 \; \mathrm{Ib/in^3}$ باشد، وزن خرپا و سطح مقطع عرضی هر عضو از خرپا را برای تغییرات زاویه Θ از ۲۰ درجه تا ۸۰ درجه با افزایش ۵ درجه در هر گام محاسبه کنید.

ب) سپس، با در نظر گرفتن تغییرات کوچکتر برای زاویه Θ در هر گام، مقدار بهینه زاویه Θ را به گونهای پیدا کنید که مقدار وزن خرپا و سطح مقطع عرضی خرپا حداقل مقدار ممکن را داشته باشد. از وزن اعضای با صفر نیرو صرف نظر شود.

-٢

BD و AC و سیستم روباتیک نیازمند مکانیزم دو میله ای است که در شکل نشان داده شده است. میله های AC و طراحی یک سیستم روباتیک نیازمند مکانیزم دو میله ای است که در شکل نشان داده شده است. میله های \mathbf{AC} توسط یک بلوک لغزنده \mathbf{D} مطابق شکل به هم متصل می شوند. با نادیده گرفتن اثر اصطکاک، یک برنامه کامپیوتری بنویسید و از آن برای تعیین کوپل \mathbf{M}_{A} مورد نیاز برای حفظ تعادل میله ها برای مقادیر \mathbf{D} درجه با گامهای \mathbf{C} درجه استفاده کنید. برای همان مقادیر \mathbf{D} مقدار نیروی \mathbf{C} را که میله \mathbf{C} بر روی بلوک لغزنده اعمال می کند، تعیین کنید.

موفق باشيد-جعفري