

MECH366: Modeling of Mechatronic Systems

L6: Linear graph

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

- Up to now, we have studied
 - Constitutive relations of basic elements (See next slide)
 - State-space model, linearization
- Today, we will study the linear graph
- Various models and their relations (Lecture number)

__ : State variable

Constitutive relation for

	Energy storage element		Energy dissipating element
System type	A-Type	T-Type	D-Type
Mechanical	Mass	Spring	Viscous Damper
(translational)			
v: velocity acros	ss var. $m\underline{\dot{v}} = f$	$\underline{\dot{f}} = kv$	f = bv
f: force through	var. m: mass	k: stiffness	b: damping const.
Electrical	Capacitor	Inductor	Resistor
v: voltage	$C\dot{v}=i$	$L\dot{i}=v$	v = Ri
i: current	C: capacitance	L: inductance	R: resistance
Thermal	Thermal capacitor	None	Thermal resistor
T: temperature	$C_t \dot{T} = Q$		$T = R_t Q$
Q: heat transfer rate	C: thermal capacitance		R_t : thermal resistance
Fluid	Fluid capacitor	Fluid inertor	Fluid resistor
P: pressure difference	$C_f \dot{P} = Q$	$I_f \dot{Q} = P$	$P = R_f Q$
Q: volume flow rate	C_f : fluid capacitance	I_f : fluid inertance	R_f : fluid resistance

power

$$\mathcal{P} = fv$$

Across variable is measured "across" the element.

Mechanical spring

Electrical resistor

• Through variable passes "through" the element.

Mechanical spring

f

f

Electrical resistor

Linear graph

- Topological relations of lumped element interconnections within a system
- The term linear denotes a graphical line segment, and is not related to the mathematical linearity.
- Linear graphs are a unified method of representing systems that involve more than one energy medium.
- They can be used to derive state-space models systematically and in a computer-automated way.
- They are similar in form to electrical circuit diagrams. Let's first focus on linear graphs for mechanical systems.

Linear graph representation of each passive element

- A branch with an arrow (an oriented line segment) and two nodes
- One through variable and one across variable

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Energy source
- Two-port elements (Energy transfer elements)
 - Transformer
 - Gyrator

Linear graph representation Mechanical single-port elements

Energy storage element

Energy storage element

 $\oint f, v \quad \dot{f} = kv$

Energy dissipation element

$$f \xrightarrow{\text{Point of Action}} b \xrightarrow{\text{Reference}} f$$

$$v_2 \qquad v_2 \qquad v_1 \qquad v_1 \qquad v_2 \qquad v_1 \qquad v_2 \qquad v_2 \qquad v_1 \qquad v_2 \qquad v_2 \qquad v_3 \qquad v_3 \qquad v_4 \qquad v_4 \qquad v_4 \qquad v_5 \qquad v_5 \qquad v_5 \qquad v_6 \qquad v_6 \qquad v_6 \qquad v_6 \qquad v_6 \qquad v_7 \qquad v_8 \qquad$$

$$\begin{cases}
b
\end{cases} f, v \qquad f = bv$$

Linear graph: Remarks

- Note the dashed line for mass. It means
 - the force does not physically travel from one end to the other end.
 - the velocity is measured with respect to reference 0.
- Arrow in the linear graph denotes the direction of positive power flow
 - Start of arrow: Point of action (Power into element).
 - End of arrow: Point of reference (Power out of element)
- Rotational mechanical elements are represented analogously. (f: torque, v: angular velocity)

Mass-spring-damper example

Lumped model

External mforce source

Linear graph

Take a node for each different velocity point.

Direct all arrows on passive elements away from sources and toward the reference node.

10

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Energy source
- Two-port elements (Energy transfer elements)
 - Transformer
 - Gyrator

Linear graph representation Mechanical energy sources

Force source

Linear graph

Velocity source ("+": point of action, "-": reference)

- Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Energy source
- Two-port elements (Energy transfer elements)

• Transformer
$$\left\{ \begin{array}{ll} v_o = rv_i \\ f_o = -\frac{1}{r}f_i \end{array} \right. \quad \left[\begin{array}{ll} v_o \\ f_o \end{array} \right] = \left[\begin{array}{ll} r & 0 \\ 0 & -1/r \end{array} \right] \left[\begin{array}{ll} v_i \\ f_i \end{array} \right]$$

Gyrator

$$\begin{cases} v_o = Mf_i \\ f_o = -\frac{1}{M}v_i \end{cases} \begin{bmatrix} v_o \\ f_o \end{bmatrix} = \begin{bmatrix} 0 & M \\ -1/M & 0 \end{bmatrix} \begin{bmatrix} v_i \\ f_i \end{bmatrix}$$

MECH 366

Linear graph representation Two-port elements: Transformer

• Example: Lever with length ratio *r*

Velocity ratio

$$v_o = rv_i$$

Conservation of power

$$f_i v_i + f_o v_o = 0$$

$$\longrightarrow f_0 = -\frac{v_i}{v_o} f_i = -\frac{1}{r} f_i$$

Linear graph

Linear graph representation Two-port elements: Transformer

• Example: Gear with the number of teeth ratio 1/r

• Angular velocity ratio $\omega_o = r\omega_i$

Conservation of power

$$T_i\omega_i + T_o\omega_o = 0$$

$$T_0 = -\frac{\omega_i}{\omega_o} T_i = -\frac{1}{r} T_i$$

Linear graph

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Energy source
- Two-port elements (Energy transfer elements)

$$\begin{cases} v_o = rv_i \\ f_o = -\frac{1}{r}f_i \end{cases}$$

• Transformer
$$\left\{ \begin{array}{ll} v_o = rv_i \\ f_o = -\frac{1}{r}f_i \end{array} \right. \quad \left[\begin{array}{ll} v_o \\ f_o \end{array} \right] = \left[\begin{array}{ll} r & 0 \\ 0 & -1/r \end{array} \right] \left[\begin{array}{ll} v_i \\ f_i \end{array} \right]$$

Gyrator

$$v_o = Mf_i$$

$$f_o = -\frac{1}{M}v_i$$

$$\begin{cases} v_o = Mf_i \\ f_o = -\frac{1}{M}v_i \end{cases} \begin{bmatrix} v_o \\ f_o \end{bmatrix} = \begin{bmatrix} 0 & M \\ -1/M & 0 \end{bmatrix} \begin{bmatrix} v_i \\ f_i \end{bmatrix}$$

MECH 366

Linear graph representation Two-port elements: Gyrator

Example: Gyroscope (spinning top)

Linear graph

Derivations for gyrator equations (Not covered in the course)

1. Angular momentum about positive *x*-axis is

$$h := J\omega$$

2. Angular momentum vector is given rotation about positive *z*-axis

$$\delta h := h \tan \delta \theta \approx J \omega \delta \theta$$

3. Rate of change of angular momentum

$$\frac{\delta h}{\delta t} = J\omega \frac{\delta \theta}{\delta t} \implies \frac{dh}{dt} = J\omega \frac{d\theta}{dt} = J\omega \frac{v_i}{L}$$

4. Newton's 2nd law

$$-f_0 L = J\omega \frac{v_i}{L} \implies f_0 = -\frac{J\omega}{L^2} v_i = -\frac{1}{M} v_i$$

5. Conservation of power

$$f_i v_i + f_o v_o = 0 \quad \Longrightarrow \quad v_0 = M f_i$$

Summary

- Linear graph
 - Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Energy source
 - Two-port elements (Energy transfer elements)
 - Transformer
 - Gyrator
- Next, the derivation of state-spaces model from linear graphs