COMS4995W32 Applied Machine Learning

Dr. Spencer W. Luo

Columbia University | Fall 2025

Tree Models & Ensembles

Agenda

N. HARON TO A SUMMATER OF

- Motivation
- Decision Trees
- Ensembles
- Summary

Motivation

Why do we need Tree Models? 🌲

In previous:

- Linear Regression → assume linear decision boundary
- Naive Bayes → assume feature independence

But... real-world data is often non-linear, complex, and mixed

Why do we need Tree Models? 🌲

Decision Trees:

- Flexible → no strict distribution or linearity assumptions
- Versatile → handle both numeric & categorical features
- Non-linear power → capture curved/complex decision boundaries
- Interpretability → rules easy to visualize & explain to non-experts
- Foundation of Ensembles → Random Forests, Boosting, XGBoost

Why do we need Tree Models? 🌲

Decision Trees

What is a Decision Tree?

[Inference] A decision tree is like a 20 Questions game 🎲

- At each step → ask a yes/no question about the data
- Each answer leads you further down the tree
- Finally, you reach the final decision / prediction

Example:

Shall we have the mid-term test next week?

- \rightarrow Yes \rightarrow take mid-term
- \rightarrow No \rightarrow take mid-term :)

Decision Tree in Action

Iris Dataset: 150 flowers → 3 classes

Features:

- Sepal length
- Sepal width
- Petal length
- Petal width

Target labels:

- [0] Iris Setosa ❤
- [1] Iris Versicolor 🌷
- [2] Iris Virginica 🌼

Visualizing a Simple Decision Tree ••

Iris Decision Tree (max_depth=2)

Components of a Decision Tree *

Root Node → initial state

Internal Nodes → decision points (questions based on features)

Branches \rightarrow outcomes of questions (Yes / No, > / = / <)

Leaves → final prediction (class label / value)

Decision Path → sequence of rules from root to leaf

one classification rule

Tree Depth → longest path from root to leaf (tree complexity)

Two Flavors of Trees 🌲

Classification Tree:

- Output = discrete label
- Leaf prediction = majority class

Regression Tree:

- Output = continuous value
- Leaf prediction = average of samples

Two Flavors of Trees 🌲

Regression Tree Leaf = Average Value

How do we train (aka split)?

Idea: Make children nodes "purer" than the parent

Pure node → samples mostly belong to one class

Example intuition:

- Before split:
 - 50% red , 50% blue (100)
- After split:
 - left node 90% red (40)
 - o right node 80% blue (60)
- Better separation → better classification capability

Mathematical Support &

Pure definition:

Gini Impurity
$$Gini(S) = 1 - \sum_{i=1}^{C} p_i^2$$

Entropy
$$H(S) = -\sum_{i=1}^{C} p_i \log p_i$$

p_i : proportion of samples in node S that belong to class i Smaller \rightarrow Better

Entropy vs Gini

Gini Impurity: How mixed the classes are in a node

Entropy: What the uncertainty degree is in a node

0 = pure, higher = more mixed

Both are similar in shape

Used interchangeably in practice

Entropy vs Gini

Decision Tree Algorithm


```
func build tree(data) \rightarrow current node:
  if stopping condition(data):
     return Leaf(prediction=data.label majority)
  best feature, threshold = choose best split(data)
  left data, right data = split(data, best feature, threshold)
  node = Node(feature=best_feature, threshold=threshold)
  node.left = build tree(left data)
  node.right = build tree(right data)
  return node
```

How to Split?


```
func choose best split(data) → (feature, threshold):
  best split = None; best gain = -inf
  for feature in features:
     for threshold in possible thresholds(feature):
        left, right = split(data, feature, threshold)
        if left or right is empty: continue
        gain = impurity(parent) - weighted impurity(left, right)
        if gain > best gain:
          best gain = gain; best split = (feature, threshold)
  return best split
```

When to Stop?


```
func stopping condition(data, depth):
  if all_same_label(data):
     return True
  if depth >= MAX DEPTH:
     return True
  if split_gain(data) < MIN_GAIN:</pre>
     return True
  # Otherwise, continue splitting
  return False
```

Deep Trees = Overfitting 1

Deep tree memorizes training data → high variance Small perturbation in data → different splits

Example: depth=1 vs depth=5

Need control: max_depth, min_samples_split

Deep Trees = Overfitting 1

Why Pruning? • **

Without limits, trees grow very deep → low training error, overfitting

Pruning = controlling tree growth to improve generalization

2 perspectives:

- When to prune (Pre vs Post)
- How much to prune (Moderate vs Strong)

Pre-pruning (Early Stopping) III When

Put pruning rules **inside** stopping_condition():

Max depth, min samples, min gain...

Stops growth before overfitting appears

- Fast, simple
- X Risk of underfitting if too strict

Post-pruning (Cost-Complexity) When

Steps:

- First grow a big tree 🜳
- Then cut back unnecessary branches
- Use cross-validation to decide how much to prune

CART (Classification and Regression Trees)

- balance accuracy vs simplicity
- Improves generalization
- X Extra computation

Moderate vs Strong Pruning M How much

Moderate pruning:

- Keep useful sub-branches
- Balance accuracy & simplicity :

Strong pruning:

- Aggressively cut → very shallow tree
- Easier to interpret, but higher bias

Works for both Pre & Post:

- Pre: adjust thresholds (strict vs loose)
- Post: choose small vs large

How to Implement Pruning

- In any decision tree libraries, there is a built-in parameter called ccp_alpha
- It controls how much the tree is pruned
- Think of it like regularization in linear models:
- Best value is usually chosen by empirical study or cross-validation

Original Tree 🌳

- Large tree grown fully
- Perfect fit to training data
- Risk: overfitting

Moderate Pruning

- Remove weak branches
- Tree becomes smaller
- Slight accuracy loss on train, better test generalization

Moderate Pruning (ccp_alpha=0.01306) Leaves = 4

Strong Pruning (ccp_alpha=0.2598) Leaves = 2

- Aggressive reduction of branches
- Tree is much simpler
- Easier to interpret

Decision Trees: Pros & Cons

- Pros:
- Easy to understand & explain
- Works with tabular data
- Captures nonlinear interactions

X Cons:

- Prone to overfitting (high variance)
- Small changes in data → very different tree
- Weak standalone performance (needs ensembles)

Ensembles

Why Combine Models?

Single decision tree = unstable, high variance Small changes in data → very different trees

Idea: aggregate multiple trees to get more robust predictions

Analogy: $\clubsuit \rightarrow \spadesuit \spadesuit \spadesuit$

Bagging = Bootstrap Aggregation

Train multiple models on bootstrap samples (resampling with replacement)

Average predictions (regression) or majority vote (classification)

Reduces variance without increasing bias much

Mathematical View \

For regression: average across K models

$$f^{\text{bag}}(x) = \frac{1}{K} \sum_{k=1}^{K} f_k(x)$$

For classification: majority vote

Works best with unstable models (like decision trees)

Random Forest = Bagging + Random Features 🌲 🌲 🌋

At each split, we don't look at all features, only a random few This makes each tree different → expert on some small domains When we average many such trees → predictions are more stable

That's why Random Forest is a strong baseline in practice

Simple Decision Tree Split Revisit


```
func choose best split(data) \rightarrow (feature, threshold):
  best split = None; best gain = -inf
  for feature in features:
     for threshold in possible thresholds(feature):
        left, right = split(data, feature, threshold)
        if left or right is empty: continue
        gain = impurity(parent) - weighted impurity(left, right)
        if gain > best gain:
          best_gain = gain; best split = (feature, threshold)
  return best split
```

Random Forest Pros & Cons

Pros:

- Great out-of-the-box performance
- Handles tabular data well
- Robust to overfitting

X Cons:

- Slower than single trees
- Less interpretable
- Still limited for very high-dimensional sparse data

Boosting = Sequential Learning

Train models sequentially

Each new model focuses on errors of previous ones

Combines many weak learners → strong learner

Analogy: Coach correcting mistakes step by step

Idea of Gradient Boosting ♥ → •

Build trees sequentially, each new tree fixes errors of the previous ones.

Start with a simple model (seed prediction).

Each step: predict residuals/errors, fit a new weak learner.

Final model = weighted sum of all trees.

Start with Simple Residuals

In squared error regression:

- Initial prediction \hat{y}_i
- Compute residuals / errors:

$$r_i = y_i - \hat{y}_i$$

Next tree is trained to predict these residuals

Generalize to Any Loss Function

For classification or other tasks, plain residuals are not enough

We use gradient descent instead:

- Loss function L(y, F(x)) measures how far prediction F(x) is away from y
- Gradient tells us which direction reduces the loss fastest
- Thus we define pseudo-residuals

$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]$$

What Happens in Each Iteration?

Compute residuals (negative gradients).

Fit a weak learner (usually a small tree) to these residuals.

Update the model:

$$F_m(x) = F_{m-1}(x) + \nu \cdot \alpha_m h_m(x)$$

- h_m(x): new weak learner
- \alpha_m: weight for this learner
- \nu: learning rate (step size)

XGBoost / LightGBM \neq

Engineering optimizations for speed and scalability Key ideas:

- Regularization (to prevent overfitting)
- Handling missing values
- Parallel training

Popular in Kaggle competitions \(\frac{\partial}{2} \)

Think of a student learning over time:

- Day 1 → learns basics, makes many mistakes.
- Day 2 → focuses on yesterday's mistakes.
- Day 3 → focuses again on remaining mistakes.

Step by step, performance improves.

Gradient Boosting = Residual Learning + Gradient Descent

Key Features & Benefits 🚀

- Learning rate: controls step size, prevents overfitting.
- Number of trees: more trees = lower bias, risk of overfit.
- Depth of trees: shallow = weak learners (better generalization).
- Regularization: subsampling, shrinkage, pruning.

Boosting vs Bagging:

- Boosting = sequential, reduce bias.
- Bagging = parallel, reduce variance.

model complexity

Decision Trees vs Ensembles

Method	Strengths <a>	Weaknesses X
Decision Tree 🌳	Simple, interpretable, fast	Overfits, unstable
Bagging 🎲	Reduces variance, robust	Less interpretable
Random Forest 🌲 🌲	Strong baseline, feature importance	Slower, less transparent
Boosting 🊀	High accuracy, flexible losses	Sensitive to parameters, less interpretable

Trees vs Deep Learning

Tree excels at tabular data (structured, mixed features)

Deep learning shines at unstructured data (images, text, audio)

In practice \rightarrow ensembles wins on Kaggle tabular competitions Ψ

Rule of thumb 4

- Tabular → Random Forest / XGBoost
- Image/Text → Neural Networks

Summary

Decision Trees → splitting, pruning

Ensembles → Bagging, Random Forests, Boosting

Takeaway: ensembles make weak learners strong 💪

