МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (Национальный исследовательский университет)

ПРОЕКТ ПО КУРСУ «СЛОЖНОСТИ ВЫЧИСЛЕНИЙ»

Задача об оптимальном расписании

Студент: Хорунжий И. Б. Преподаватель: Букреев Φ . С.

Содержание

1	Аннотация		2	
2	Введение			
	2.1	Постановка задачи	3	
	2.2	Историческая справка	3	
3	NP-полнота			
	3.1	Принадлежность к NP	4	
	3.2	Язык SUBSETSUM		
	3.3	Сводимость к SUBSETSUM		
4	Алгоритм			
	4.1	Описание алгоритма	5	
	4.2	Доказательство $\frac{4}{3}$ приближения алгоритма	5	
	4.3	Описание наборов тестов	5	
	4.4	Анализ запусков		
	4.5	Выводы по алгоритму		

1 Аннотация

В данной работе исследована задача об оптимальном расписании. Суть ее заключается в построении распределения работ по машинам так, чтобы все работы были выполнены и чтобы конечное время выполнения всех работ было минимально с учетом того, что дано множество работ, машин, и производительность всех машин одинакова. В теоретической части доказана \mathbf{NP} -полнота языка $\{(J, m, k) \mid \text{на } m \text{ машинах можно выполнить все работы из } J \text{ за время не более } k \}$ при помощи сводимости к \mathbf{NP} -полному языку $\mathbf{SUBSETSUM}$. Был написан алгоритм, который дает $\frac{4}{3}$ - приближение для случая машин одинаковой производительности, проверен результат работы на различных тестах, сделаны выводы по полученным данным.

- 2 Введение
- 2.1 Постановка задачи
- 2.2 Историческая справка

- 3 **NP**-полнота
- 3.1 Принадлежность к NP
- 3.2 Язык SUBSETSUM
- 3.3 Сводимость к SUBSETSUM

4 Алгоритм

- 4.1 Описание алгоритма
- 4.2 Доказательство $\frac{4}{3}$ приближения алгоритма
- 4.3 Описание наборов тестов
- 4.4 Анализ запусков
- 4.5 Выводы по алгоритму