Covid-19 Data Analysis

1

Download the data from the given link

2

Create a DataFrame from the CSV file.

```
In [104]:

1   import pandas as pd
2   data = pd.read_csv("time-series-19-covid-combined.csv")
3   df=pd.DataFrame(data)

In [105]:

1   df
```

Out[105]:

	Date	Country/Region	Province/State	Confirmed	Recovered	Deaths
0	2020-01-22	Afghanistan	NaN	0	0.0	0
1	2020-01-23	Afghanistan	NaN	0	0.0	0
2	2020-01-24	Afghanistan	NaN	0	0.0	0
3	2020-01-25	Afghanistan	NaN	0	0.0	0
4	2020-01-26	Afghanistan	NaN	0	0.0	0
154561	2021-07-24	Zimbabwe	NaN	97277	64628.0	3050
154562	2021-07-25	Zimbabwe	NaN	97894	65913.0	3094
154563	2021-07-26	Zimbabwe	NaN	99944	67827.0	3173
154564	2021-07-27	Zimbabwe	NaN	101711	70496.0	3280
154565	2021-07-28	Zimbabwe	NaN	103567	71383.0	3340

154566 rows × 6 columns

3

```
In [89]:

1  df_new = df.groupby(['Date', 'Country/Region'])["Confirmed", "Recovered", 'Deaths'].app]
In [90]:

1  df_new
```

Confirmed Recovered Deaths

Out[90]:

		Commined	Necovered	Deatilis
Date	Country/Region			
2020-01-22	Afghanistan	0.0	0.0	0.0
	Albania	0.0	0.0	0.0
	Algeria	0.0	0.0	0.0
	Andorra	0.0	0.0	0.0
	Angola	0.0	0.0	0.0
2021-07-28	Vietnam	123640.0	27457.0	630.0
	West Bank and Gaza	316328.0	311622.0	3601.0
	Yemen	7027.0	4168.0	1374.0
	Zambia	193432.0	183957.0	3338.0
	Zimbabwe	103567.0	71383.0	3340.0

108030 rows × 3 columns

4

Print the total number of confirmed cases and number of deaths in each country in the last reported day. What are the 10 countries with the highest number of confirmed COVID-19 cases? What are the 10 countries with the highest number of deaths?

```
In [37]:

1   df_new.reset_index(level=0, inplace=True)
2   latest=df_new['Date'].max()
3   df_1 = df_new[df_new['Date'] == latest]
```

In [38]: ▶

1 df_1

Out[38]:

	Date	Confirmed	Recovered	Deaths
Country/Region				
Afghanistan	2021-07-28	145552.0	82586.0	6577.0
Albania	2021-07-28	132952.0	130174.0	2457.0
Algeria	2021-07-28	167131.0	112900.0	4161.0
Andorra	2021-07-28	14586.0	14113.0	127.0
Angola	2021-07-28	42288.0	35964.0	1000.0
•••				
Vietnam	2021-07-28	123640.0	27457.0	630.0
West Bank and Gaza	2021-07-28	316328.0	311622.0	3601.0
Yemen	2021-07-28	7027.0	4168.0	1374.0
Zambia	2021-07-28	193432.0	183957.0	3338.0
Zimbabwe	2021-07-28	103567.0	71383.0	3340.0

195 rows × 4 columns

In [21]:

1 df_1['Confirmed'].nlargest(10)

Out[21]:

Country/Region

US 34672690.0 India 31484605.0 Brazil 19797086.0 France 6116853.0 Russia 6116249.0 United Kingdom 5797445.0 Turkey 5660469.0 Argentina 4891810.0 Colombia 4757139.0 Spain 4395602.0 Name: Confirmed, dtype: float64

```
In [22]:
                                                                                              H
   df_1['Deaths'].nlargest(10)
Out[22]:
Country/Region
US
                   611801.0
                   553179.0
Brazil
India
                   422022.0
Mexico
                   239616.0
                   196138.0
Peru
                   153620.0
Russia
United Kingdom
                   129718.0
Italy
                   128010.0
Colombia
                   119801.0
France
                   111923.0
Name: Deaths, dtype: float64
```

5

Plot a graph of the number of confirmed cases over time for each country. Which countries present exponential growth in the number of cases and which countries are already leaving exponential growth?

```
In []:

1 # dividing the column into 16 equal arrays for subplotting purposes

In [91]:

1 df_new.reset_index(level=0, inplace=True)

In [93]:

1 import numpy as np
2 df1, df2, df3, df4, df5, df6, df7, df8 = np.array_split(df_new[['Date','Confirmed']], {}
```

In [94]: ▶

```
# plotting the graphs together by using subplot method
   df_list = [df1 ,df2, df3, df4, df5, df6, df7, df8]
 3
   fig, axes = plt.subplots(4, 2)
 4
 5
   #counter
 6
   count=0
 7
   for i in range(4):
 8
       for j in range(2):
 9
            df_list[count].plot(ax=axes[i,j], figsize=(20,20))
10
            count+=1
```



```
In [106]:
```

```
# to make plots look comprehensible, i tried plotting them one at a time for one countr

import matplotlib.pyplot as plt

df_US=df[df['Country/Region'] == 'US']

df_US.plot( 'Date' ,'Confirmed', color='cyan' )

plt.show()
```



```
In [108]:
```

```
df_Brazil=df[df['Country/Region'] == 'Brazil']
df_Brazil.plot( 'Date' ,'Confirmed', color='cyan' )
plt.show()
```


In [109]:

```
1  df_India=df[df['Country/Region'] == 'India']
2  df_India.plot( 'Date' ,'Confirmed', color='cyan' )
3  plt.show()
```



```
In [110]:
```

```
df_France=df[df['Country/Region'] == 'France']
df_France.plot( 'Date' ,'Confirmed', color='cyan' )
plt.show()
```



```
In [111]:

1  df_Russia=df[df['Country/Region'] == 'Russia']
2  df_Russia.plot( 'Date' , 'Confirmed', color='cyan' )
3  plt.show()
```


Through these plots we found out that, while countries like US, Brazil, India, Russia had a similar increase in the covid confirmed cases throughout the duration, there were countries like France which encountered a sudden upheaval in the cases around April,2021.

6

Create a bar plot that shows the number of deaths per 100 confirmed cases (observed case-fatality ratio) for the 20 most affected countries. See Figure 1 for an example.

```
In [39]:

1  df_6=df_1
2  df_6.fillna(0)
3  df_6['Death_percent_confirmed']=df_6['Deaths']*100/df_6['Confirmed']
4  del df_6['Date']

...
```

In [46]:

```
# plotting a horizontal bar graph
import matplotlib.pyplot as plt

plt.title('Number of deaths per 100 confirmed cases')
plt.xlabel('Deaths per hundred confirmed cases')
plt.ylabel('Country/Region')
df_6['Death_percent_confirmed'].nlargest(20).plot.barh(figsize=(19,9), color='red')
```

Out[46]:

<matplotlib.axes._subplots.AxesSubplot at 0x14764aa1248>

7

Compute the ratio between the total number of confirmed cases and the population size of each country. The file worldpopulation.json contains data on the population size of each country.

Data Cleaning

```
In [49]:

1  population=pd.read_json('worldpopulation.json')
2  df_6.reset_index(level=0, inplace=True)
3  df_7=df_6
```

In [50]:

```
# Finding out the non-matching countries in the two datasets
x=pd.DataFrame()
x=population['country'].sort_values()
x=x.reset_index(drop=True)
data=[df_7['Country/Region'], x]
names = ["country_1", "country_2"]
df_check= pd.concat(data, axis=1, keys=names)
print(list(set(df_check.country_1)-set(df_check.country_2)))
```

['West Bank and Gaza', 'Taiwan*', 'US', 'Burma', 'Summer Olympics 2020', 'Sa int Vincent and the Grenadines', 'Vietnam', 'Kosovo', 'United Kingdom', "Cot e d'Ivoire", 'Congo (Brazzaville)', 'Eswatini', 'Korea, South', 'North Maced onia', 'Diamond Princess', 'Congo (Kinshasa)', 'MS Zaandam', 'Czechia']

In [52]:

```
# preprocessing the data
   # changing the names of countries so that they match
 2
   update_df=pd.DataFrame()
   update_df['Country/Region']=df_7['Country/Region'].replace("Czechia", "Czech Republic"
   update_df['Country/Region']=df_7['Country/Region'].replace("North Macedonia", "North Ko
   update_df['Country/Region']=df_7['Country/Region'].replace("Taiwan*", "TFYR Macedonia"]
   update_df['Country/Region']=df_7['Country/Region'].replace("US", "U.S.",inplace=True)
 7
   update_df['Country/Region']=df_7['Country/Region'].replace("United Kingdom", "U.K.",ing
 9
   update_df['Country/Region']=df_7['Country/Region'].replace("Vietnam", "Viet Nam",inplace
10
   # removing the rows with countries that are only present in one dataset
11
   update_df = df_7.drop(df_7.index[[40, 42, 48, 58, 92, 93, 106, 148, 167]])
12
   update_pop= population.drop(population.index[[54, 45, 15, 24, 118, 25, 150, 178, 180, 1
13
14
15
   update_df = update_df.reset_index(drop=True)
   update_pop = update_pop.reset_index(drop=True)
16
   update_df = update_df.set_index('Country/Region')
17
   update_df = update_df.reindex(index=population['country'])
18
   update df = update df.reset index()
19
20
   update_df= update_df.dropna()
   update df = update df.reset index(drop=True)
   update pop= update pop.dropna()
22
23
   update pop = update pop.reset index(drop=True)
24
25 # creating a new dataframe to check whether all the country names are same or not
26
   data2=[update_df['country'], update_pop['country']]
   names2= ["country_1", "country_2"]
27
28
   df check2= pd.concat(data2, axis=1, keys=names2)
```

In [55]:

	country_1	country_2
0	China	China
1	India	India
2	U.S.	U.S.
3	Indonesia	Indonesia
4	Brazil	Brazil
5	Pakistan	Pakistan
6	Nigeria	Nigeria
7	Bangladesh	Bangladesh
8	Russia	Russia
9	Mexico	Mexico
10	Japan	Japan
11	Ethiopia	Ethiopia
12	Philippines	Philippines
13	Viet Nam	Viet Nam
14	Egypt	Egypt
15	Iran	Iran
16	Germany	Germany
17	Turkey	Turkey
18	Thailand	Thailand
19	U.K.	U.K.
20	France	France
21	Italy	Italy
22	Tanzania	Tanzania
23	South Africa	South Korea
24	Colombia	Colombia
25	Kenya	Kenya
26	Spain	Spain
27	Ukraine	Ukraine
28	Argentina	Argentina
29	Sudan	Sudan
30	Uganda	Uganda
31	Algeria	Algeria
32	Iraq	Iraq
33	Poland	Poland
34	Canada	Canada
35	Morocco	Morocco
36	Afghanistan	Afghanistan
37	Saudi Arabia	Saudi Arabia
38	Peru	Peru
39	Venezuela	Venezuela
40	Malaysia	Malaysia
41	Uzbekistan	Uzbekistan
42	Mozambique	Nepal
43	Nepal	Ghana
44	Ghana	Yemen
45	Yemen	Angola
46	Angola	Madagascar
47	North Korea	North Korea
48	Australia	Australia
40	Camanaan	Camanaan

Cameroon

Cameroon

49

Finai Project - Jupyter i		8///2021
Niger	Niger	50
Sri Lanka	Sri Lanka	51
Romania	Romania	52
Burkina Fasc	Burkina Faso	53
Syria	Syria	54
Mali	Mali	55
Chile Malawi	Chile Malawi	56 57
Malawi Kazakhstar	Maiawi Kazakhstan	57 58
Kazakiistai Zambia	Zambia	59
Netherlands	Netherlands	60
Guatemala	Guatemala	61
Ecuador	Ecuador	62
Zimbabwe	Zimbabwe	63
Cambodia	Cambodia	64
Senegal	Senegal	65
Chac	Chad	66
Guinea	Guinea	67
South Sudar	South Sudan	68
Rwanda	Rwanda	69
Burundi	Burundi	70
Tunisia	Tunisia	71
Benir	Benin	72
Belgium	Belgium	73
Somalia	Somalia	74
Cuba	Cuba	75
Bolivia	Bolivia	76
Haiti	Haiti	77
Greece	Greece	78
Dominican Republic	Dominican Republic	79
Czech Republic	Czech Republic	80
Portugal	Portugal	81
Azerbaijar	Azerbaijan	82
Sweder	Sweden	83
Hungary	Hungary	84
Belarus	Belarus	85
United Arab Emirates	United Arab Emirates	86
Tajikistar	Tajikistan Serbia	87
Serbia Austria	Austria	88 89
Switzerland	Switzerland	90
Israel	Israel	91
Honduras	Honduras	92
Papua New Guinea	Papua New Guinea	93
Jordar	Jordan	94
Togo	Togo	95
Bulgaria	Bulgaria	96
Laos	Laos	97
Paraguay	Paraguay	98
Sierra Leone	Sierra Leone	99
Libya	Libya	100
Nicaragua	Nicaragua	101
El Salvador	El Salvador	102
Lebanor	Kyrgyzstan	103
Singapore	Lebanon	104
Denmark	Singapore	105
Finland	Denmark	106
Turkmenistar	Finland	107
Eritrea	Eritrea	108
Slovakia	Slovakia	109
Norway	Norway	110

Finai Project - Jupyter i		5///2021
Central African Republic	Central African Republic	111
Costa Rica	Costa Rica	112
Congo	Ireland	113
Ireland	Oman	114
Oman	Liberia	115
Liberia	New Zealand	116
New Zealand	Mauritania	117
Mauritania	Croatia	118
Croatia	Kuwait	119
Kuwait	Moldova	120
Moldova	Panama	121
Panama	Georgia	122
Georgia	Bosnia and Herzegovina	123
Bosnia and Herzegovina	Uruguay	124
Uruguay	Mongolia	125
Mongolia	Armenia	126
Armenia	Albania	127
Albania	Lithuania	128
Lithuania	Jamaica	129
Jamaica	Namibia	130
Namibia	Botswana	131
Botswana	Qatar	132
Qatar	Lesotho	133
Lesotho	Gambia	134
Gambia	TFYR Macedonia	135
TFYR Macedonia	Slovenia	136
Slovenia	Latvia	137
Latvia	Guinea-Bissau	138
Guinea-Bissau	Gabon	139
Bahrain	Bahrain	140
Trinidad and Tobago	Trinidad and Tobago	141
Estonia	Estonia	142
Mauritius	Mauritius	143
Timor-Leste	Timor-Leste	144
Cyprus	Cyprus	145
Djibouti	Djibouti	146
Fiji	Fiji	147
Equatorial Guinea	Equatorial Guinea	148
Comoros	Comoros	149
Bhutan	Bhutan	150
Guyana	Guyana	151
Montenegro	Montenegro	152
Solomon Islands	Solomon Islands	153
Luxembourg	Luxembourg	154
Suriname	Suriname	155
Cabo Verde	Cabo Verde	156
Brunei	Brunei	157
Malta	Malta	158
Bahamas	Bahamas	159
Maldives	Maldives	160
Belize	Belize	161
Iceland	Iceland	162
Barbados	Barbados	163
Vanuatu	Vanuatu	164
Sao Tome and Principe	Sao Tome and Principe	165
Samoa	Samoa	166
Saint Lucia	Saint Lucia	167
Kiribati	Kiribati	168
Grenada	Grenada	169
Micronesia	Micronesia	170
Seychelles	Seychelles	171

8/7/2021		Final Project - Jupyter Notebook
172	Antigua and Barbuda	Antigua and Barbuda
173	Dominica	Dominica
174	Andorra	Andorra
175	Saint Kitts and Nevis	Saint Kitts and Nevis
176	Marshall Islands	Marshall Islands
177	Liechtenstein	Liechtenstein
178	Monaco	Monaco
179	San Marino	San Marino
180	Holy See	Palau
181	NaN	Holy See

Finding the Ratio

```
In [59]:

1    df_ratio=pd.DataFrame()
2    df_ratio['Cases_per_capita']=update_df['Confirmed']/update_pop['population']
3    df_ratio['Country']=update_pop['country']
```

```
In [60]:

1 df_ratio
```

Out[60]:

	Cases_per_capita	Country
0	0.000076	China
1	0.023452	India
2	0.106204	U.S.
3	0.012477	Indonesia
4	0.093717	Brazil
177	0.081085	Liechtenstein
178	0.074533	Monaco
179	0.159793	San Marino
180	0.001243	Palau
181	NaN	Holy See

182 rows × 2 columns

What are the 10 countries with the highest number of confirmed COVID-19 cases per capita?

```
In [57]:

1    df_per_capita=pd.DataFrame()
2    df_per_capita['Cases_per_capita']=update_df['Confirmed']*100/update_pop['population']
3    df_per_capita['Country']=update_pop['country']
```

```
In [58]: ▶
```

```
1 df_per_capita.nlargest(10,'Cases_per_capita')
```

Out[58]:

	Cases_per_capita	Country
174	21.222791	Andorra
160	20.510979	Maldives
140	18.947561	Bahrain
171	18.517721	Seychelles
152	16.206946	Montenegro
179	15.979317	San Marino
80	15.850274	Czech Republic
154	12.625171	Luxembourg
136	12.425623	TFYR Macedonia
83	11.075866	Sweden

8

In this part we would like to test the hypothesis that the spread of the virus is slowed down by warm weather. Plot a graph of the monthly number of confirmed cases vs. the average monthly temperature for a few selected countries, and analyze the correlation between these two factors.

Data Processing

```
In [64]: ▶
```

```
import json
from pandas.io.json import json_normalize
with open('climate.json') as file:
    data=json.load(file)
climate=json_normalize(data, 'monthlyAvg', ['country'], errors='ignore')
climate.columns=['high','low',"dryDays","snowDays",'rainfall', 'Country/Region']
cl=pd.DataFrame(climate)
```

```
In [65]: ▶
```

```
# taking the average of all the temperatures of each country
average_high_temp=[]
for j in cl['Country/Region']:
    cl_new= cl[cl['Country/Region'] == j]
    cl_new=cl.groupby(['Country/Region'])['high'].mean().sort_values().reset_index(name cl_new2=cl.groupby(['Country/Region'])['low'].mean().sort_values().reset_index(name cl_merge=pd.merge(cl_new, cl_new2, on= 'Country/Region')
```

```
In [66]:
```

```
# finding the confirmed cases per month and averaging all the confirmed cases per month
monthly_confirmed=[]

for i in df_1['Country/Region']:
    df_us = df[df['Country/Region'] == i]
    df_us['Date'] = pd.to_datetime(df['Date'])
    df_us=df_us.groupby(df_us['Date'].dt.strftime('%B'))['Confirmed'].sum().sort_values
    x=df_us.mean()
    monthly_confirmed.append(x)
```

```
In [67]:
```

```
# merging all the processed data into a single DataFrame
df_climate=pd.DataFrame()
df_climate['Country/Region']=df_1['Country/Region']
df_climate['average_monthly_confirmed']=monthly_confirmed

final_data=pd.merge(df_climate, cl_merge, on='Country/Region')
final_data['avg_temp']=(final_data['high']+final_data['low'])/2
```

In [68]: ▶

1 final_data

Out[68]:

	Country/Region	average_monthly_confirmed	high	low	avg_temp
0	Argentina	6.408577e+07	22.166667	14.500000	18.333333
1	Australia	9.423037e+05	22.041667	11.104167	16.572917
2	Austria	1.141650e+07	14.916667	5.583333	10.250000
3	Belgium	2.035460e+07	14.416667	7.000000	10.708333
4	Brazil	3.127759e+08	29.055556	18.916667	23.986111
5	Bulgaria	6.818600e+06	16.416667	4.833333	10.625000
6	Canada	2.324708e+07	12.130952	1.797619	6.964286
7	Chile	2.708727e+07	23.666667	7.333333	15.500000
8	China	4.143917e+06	19.625000	10.375000	15.000000
9	Czech Republic	0.00000e+00	13.833333	5.083333	9.458333
10	Denmark	5.041026e+06	12.583333	5.750000	9.166667
11	France	1.005386e+08	18.041667	8.791667	13.416667
12	Germany	6.234787e+07	13.250000	6.000000	9.625000
13	Greece	5.864084e+06	19.666667	13.666667	16.666667
14	Hungary	1.228024e+07	16.000000	6.750000	11.375000
15	Iceland	1.776009e+05	8.000000	2.416667	5.208333
16	India	4.198417e+08	30.472222	19.333333	24.902778
17	Indonesia	3.362925e+07	31.666667	23.000000	27.333333
18	Ireland	4.956613e+06	12.416667	5.916667	9.166667
19	Israel	1.699681e+07	23.458333	14.333333	18.895833
20	Italy	7.437087e+07	20.250000	10.083333	15.166667
21	Japan	1.146843e+07	20.875000	11.583333	16.229167
22	Malaysia	8.298775e+06	32.833333	24.000000	28.416667
23	Mexico	5.108411e+07	24.083333	10.500000	17.291667
24	Morocco	1.140396e+07	26.250000	12.583333	19.416667
25	Netherlands	2.829252e+07	12.833333	7.583333	10.208333
26	New Zealand	8.345533e+04	16.888889	9.888889	13.388889
27	Norway	2.094937e+06	10.666667	3.666667	7.166667
28	Poland	4.611836e+07	13.000000	4.166667	8.583333
29	Portugal	1.627157e+07	18.166667	11.875000	15.020833
30	Russia	1.049129e+08	9.333333	1.041667	5.187500
31	Singapore	2.103296e+06	31.416667	24.666667	28.041667
32	South Africa	3.877769e+07	23.500000	10.583333	17.041667
33	Spain	7.354313e+07	21.000000	10.833333	15.916667

	Country/Region	average_monthly_confirmed	high	low	avg_temp
34	Sweden	1.728602e+07	10.583333	2.666667	6.625000
35	Switzerland	1.317681e+07	14.666667	5.000000	9.833333
36	Thailand	2.023818e+06	32.722222	22.722222	27.722222
37	Turkey	7.868205e+07	20.416667	9.083333	14.750000
38	United Arab Emirates	1.011001e+07	33.500000	22.750000	28.125000

Visualization

In [83]: ▶

import matplotlib.pyplot as plt
plt.title('Scatter plot between monthly confirmed cases and monthly average temperature
plt.xlabel('Monthly confirmed cases')
plt.ylabel('Monthly average temperature')
plt.scatter(final_data['average_monthly_confirmed'],final_data['avg_temp'], color='blace')

Out[83]:

<matplotlib.collections.PathCollection at 0x1475bd9e448>

Scatter plot between monthly confirmed cases and monthly average temperature

In [85]:

```
plt.title('Scatter plot between monthly confirmed cases and monthly high temperature')
plt.xlabel('Monthly confirmed cases')
plt.ylabel('Monthly higher temperature')
plt.scatter(final_data['average_monthly_confirmed'],final_data['high'], color='red')
```

Out[85]:

<matplotlib.collections.PathCollection at 0x1475cbfa288>

Scatter plot between monthly confirmed cases and monthly high temperature


```
In [86]:
```

```
plt.title('Scatter plot between monthly confirmed cases and monthly low temperature')
plt.xlabel('Monthly confirmed cases')
plt.ylabel('Monthly lower temperature')
plt.scatter(final_data['average_monthly_confirmed'],final_data['low'], color='blue')
```

Out[86]:

<matplotlib.collections.PathCollection at 0x1475bdd05c8>

Scatter plot between monthly confirmed cases and monthly low temperature

Through this plot we can say that the covid cases does not seems to be decreasing with the increase in temperature.

9

Articulate your own research question related to COVID-19 and try to provide an answer to it using the given data set.

The effect of population level of a country on the amount of confirmed cases

```
In [115]:

1  data3=[update_df['Confirmed'], update_pop['population']]
2  names3= ["Confirmed", "population"]
```

```
df_population= pd.concat(data3, axis=1, keys=names3)
```

In [116]:

1 df_population

Out[116]:

	Confirmed	population
0	104850.0	1388232693
1	31484605.0	1342512706
2	34672690.0	326474013
3	3287727.0	263510146
4	19797086.0	211243220
177	3083.0	38022
178	2833.0	38010
179	5130.0	32104
180	27.0	21726
181	NaN	801

182 rows × 2 columns

In [121]:

1 plt.scatter(df_population['Confirmed'],df_population['population'], color='pink')

Out[121]:

<matplotlib.collections.PathCollection at 0x1476242aa88>

We can see a slight correlation between the population and the confirmed cases. It shows that the number of confirmed cases in a country does depend on the population of the particular country.

1