アイレンベルグムーア圏とクライスリ圏

ゐぶ

概要

任意の随伴からモナドを得ることができる. では、任意のモナドから随伴を得ることができるだろうか? この問の答えは肯定的であり、アイレンベルグムーア圏を用いたものとクライスり圏を用いたものの2つの 方法がある. 本稿では、随伴からモナドを得る方法とモナドから随伴を得る2つの方法をまとめ、最後にア イレンベルグムーア圏とクライスリ圏を用いた随伴と代数の比較定理を証明する.

1 モナド

Definition 1.1 (モナド)

 \mathscr{A} を圏, $T: \mathscr{A} \to \mathscr{A}$ を関手, $\eta: \mathrm{id}_{\mathscr{A}} \to T$, $\mu: TT \to T$ を自然変換とする. \mathscr{A} 上のモナドとは, 組 (T, η, μ) であり,以下の図式を可換にするものである.

Proposition 1.2

任意の随伴

$$\mathscr{A} \xrightarrow{F} \mathscr{B} \qquad \eta \colon \mathrm{id}_{\mathscr{A}} \to UF, \ \varepsilon \colon FU \to \mathrm{id}_{\mathscr{B}}$$

から 🖋 上のモナドを得る.

proof

組 $(UF\colon\mathscr{A} o\mathscr{A},\ \eta\colon\mathrm{id}_\mathscr{A} o UF,\ Uarepsilon F\colon UFUF o UF)$ を考える. 随伴の三角等式より, 図式

は可換であるため,図式

は可換であり、自然変換 $U\varepsilon$: $UFU\to U$ の自然性より、 $\varepsilon F_B\in \mathrm{Hom}_{\mathscr{A}}(FUF(B),F(B))$ に対し、図式

$$UFU(FUF(B)) \xrightarrow{UFU(\varepsilon F_B)} UFU(F(B))$$

$$U\varepsilon_{FUF(B)} \downarrow \qquad \qquad \downarrow U\varepsilon_{F(B)}$$

$$U(FUF(B)) \xrightarrow{U(\varepsilon F_B)} U(F(B))$$

は可換であるため,図式

$$\begin{array}{c|c} UFUFUF & \xrightarrow{UFU\varepsilon F} & UFUF \\ U\varepsilon FUF & & & \downarrow U\varepsilon F \\ \hline & & & & \downarrow U\varepsilon F \\ \hline & & & & & \downarrow U\varepsilon F \\ \hline & & & & & \downarrow U\varepsilon F \\ \hline \end{array}$$

は可換である.

したがって, $(UF, \eta, U\varepsilon F)$ は \mathscr{A} 上のモナドである.

2 アイレンベルグムーア圏

Definition 2.1 (アイレンベルグムーア圏)

 $\mathbf{T}=(T,\eta,\mu)$ を圏 $\mathscr A$ 上のモナド, $A\in ob(\mathscr A),\ a\in \operatorname{Hom}_{\mathscr A}(T(A),A)$ とする. 対象を組 (A,a) であり, 図式

が可換となるものとし、射 $f:(A,a)\to(B,b)$ は $f\in \operatorname{Hom}_{\mathscr{A}}(A,B)$ で図式

$$T(A) \xrightarrow{T(f)} T(B)$$

$$\downarrow b$$

$$A \xrightarrow{f} B$$

 $(A,a) \in ob(\mathscr{A}^{\mathbf{T}})$ に対し、 $A \in ob(\mathscr{A})$ を対応させ、 $f \in \operatorname{Hom}_{\mathscr{A}^{\mathbf{T}}}((A,a),(B,b))$ に対し、 $f \in \operatorname{Hom}_{\mathscr{A}}(A,B)$ を対応させることで関手 $U^{\mathbf{T}} : \mathscr{A}^{\mathbf{T}} \to \mathscr{A}$ が定まる.

 $\mathbf{T}=(T,\eta,\mu)$ を圏 🛭 上のモナドとし、 $A\in ob(\mathscr{A})$ とする. このとき、 $(T(A),\ \mu_A\colon TT(A)\to T(A))$ を考える. モナドの定義と自然変換 $\mu\colon TT\to T$ の自然性より、図式

は可換であるため, $(T(A), \mu_A)$ は **T** 代数である.

また、 $f \in \operatorname{Hom}_{\mathscr{A}}(A,B)$ に対し、 $T(f) \colon (T(A),\mu_A) \to (T(B),\mu_B)$ を考える。自然変換 $\mu \colon TT \to T$ の自然性より、図式

$$TT(A) \xrightarrow{T(f)} TT(B)$$

$$\downarrow^{\mu_A} \qquad \qquad \downarrow^{\mu_B}$$

$$T(A) \xrightarrow{f} T(B)$$

は可換である.

したがって、 $A \in ob(\mathscr{A})$ に対し、 $(T(A), \mu_A) \in ob(\mathscr{A}^{\mathbf{T}})$ を対応させ、 $f \in \operatorname{Hom}_{\mathscr{A}}(A, B)$ に対し、 $T(f) \in \operatorname{Hom}_{\mathscr{A}^{\mathbf{T}}}((T(A), \mu_A), (T(B), \mu_B))$ を対応させることで関手 $F^{\mathbf{T}} : \mathscr{A} \to \mathscr{A}^{\mathbf{T}}$ が定まる.

Proposition 2.2

 $\mathbf{T} = (T, \eta, \mu)$ を圏 \mathscr{A} 上のモナドとする. このとき, $F^{\mathbf{T}} \dashv U^{\mathbf{T}}$ が成立する.

$$\mathscr{A} \xrightarrow{F^{\mathbf{T}}} \mathscr{A}^{\mathbf{T}}$$

Proof

 $A \in ob(\mathcal{A}), f \in \operatorname{Hom}_{\mathcal{A}}(A, B)$ とすると, $F^{\mathbf{T}} \geq U^{\mathbf{T}}$ の定義より,

$$U^{\mathbf{T}}F^{\mathbf{T}}(A) = U^{\mathbf{T}}((T(A), \mu_A)) = T(A),$$

$$U^{\mathbf{T}}F^{\mathbf{T}}(f) = U^{\mathbf{T}}(T(f)) = T(f)$$

が成立する. よって単位を $\eta\colon \mathrm{id}_{\mathscr{A}} \to F^{\mathbf{T}}U^{\mathbf{T}}$ で定める.

 $(A, a) \in ob(\mathscr{A}^{\mathbf{T}})$ とすると, $F^{\mathbf{T}}$ と $U^{\mathbf{T}}$ の定義より,

$$F^{\mathbf{T}}U^{\mathbf{T}}((A,a)) = F^{\mathbf{T}}(A) = (T(A), \mu_A)$$

が成立する.

また、 \mathbf{T} 代数の定義より、 $a \in \operatorname{Hom}_{\mathscr{A}}(T(A), A)$ は図式

$$TT(A) \xrightarrow{T(a)} T(A)$$

$$\downarrow^{\mu_A} \qquad \qquad \downarrow^{a}$$

$$T(A) \xrightarrow{a} A$$

を可換にする. よって、 $a: (T(A), \mu_A) \to (A, a)$ は $\mathscr{A}^{\mathbf{T}}$ の射とみなせる. したがって、余単位 $\varepsilon: F^{\mathbf{T}}U^{\mathbf{T}} \to \mathrm{id}_{\mathscr{A}^{\mathbf{T}}}$ を $\varepsilon_{(A,a)} := F^{\mathbf{T}}U^{\mathbf{T}}(A,a) \xrightarrow{a} (A,a)$ で定める. モナドの定義より、図式

は可換であるため, 三角等式

は可換である.また T代数の定義より,図式

は可換であるため, 三角等式

は可換である. したがって, $F^{\mathbf{T}} \dashv U^{\mathbf{T}}$ である.

$$\mathscr{A} \xleftarrow{F^{\mathbf{T}}} \mathscr{A}^{\mathbf{T}}$$

は **Proposition 2.2** の方法でモナド (T, η, μ) を与える.

3 クライスリ圏

Definition 3.1 (クライスリ圏)

 $\mathbf{T} = (T, \eta, \mu)$ を圏 \mathscr{A} 上のモナドとする.

対象を 🗹 の対象とし、射 $f\colon A\to B$ を 🗹 の射 $A\to T(B)$ とする圏をクライスリ圏といい、 🕰 と表す.

クライスリ圏 $\mathscr{A}_{\mathbf{T}}$ の恒等射は $\eta_A \colon A \to T(A)$ であり, $f \in \operatorname{Hom}_{\mathscr{A}_{\mathbf{T}}}(A,B)$ と $g \in \operatorname{Hom}_{\mathscr{A}_{\mathbf{T}}}(B,C)$ の合成射 $g \circ f \in \operatorname{Hom}_{\mathscr{A}_{\mathbf{T}}}(A,C)$ は $\mu_C \circ T(g) \circ f \colon A \to T(C)$, つまり

$$A \xrightarrow{\quad f \quad} T(B) \xrightarrow{\quad T(g) \quad} TT(C) \xrightarrow{\quad \mu_C \quad} T(C)$$

である.

 $A \in ob(\mathscr{A})$ に対し、 $A \in ob(\mathscr{A}_{\mathbf{T}})$ を対応させ、 $f \in \operatorname{Hom}_{\mathscr{A}}(A,B)$ に対し、 $\eta_B \circ f \in \operatorname{Hom}_{\mathscr{A}}(A,T(B)) = \operatorname{Hom}_{\mathscr{A}_{\mathbf{T}}}(A,B)$ 、つまり

$$A \xrightarrow{f} B \xrightarrow{\eta_B} T(B)$$

を対応させることで関手 $F_{\mathbf{T}}: \mathcal{A} \to \mathcal{A}_{\mathbf{T}}$ が定まる.

 $A\in ob(\mathscr{A}_{\mathbf{T}})$ に対し、 $T(A)\in ob(\mathscr{A})$ を対応させ、 $f\in \operatorname{Hom}_{\mathscr{A}_{\mathbf{T}}}(A,B)=\operatorname{Hom}_{\mathscr{A}}(A,T(B))$ に対し、 $\mu_{B}\circ T(f)\in \operatorname{Hom}_{\mathscr{A}}(T(A),T(B))$

$$T(A) \xrightarrow{T(f)} TT(B) \xrightarrow{\mu_B} T(B)$$

を対応させることで関手 $U_{\mathbf{T}}: \mathscr{A}_{\mathbf{T}} \to \mathscr{A}$ が定まる.

Proposition 3.2

 $\mathbf{T} = (T, \eta, \mu)$ を圏 \mathscr{A} 上のモナドとする. このとき, $F_{\mathbf{T}} \dashv U_{\mathbf{T}}$ が成立する.

$$\mathscr{A} \xleftarrow{F_{\mathbf{T}}} \mathscr{A}_{\mathbf{T}}$$

Proof

 $\mathscr{A}_{\mathbf{T}}$ の射の定義より, $A \in ob(\mathscr{A})$, $B \in ob(\mathscr{A}_{\mathbf{T}})$ に対し, 自然同型

$$\operatorname{Hom}_{\mathscr{A}_{\mathbf{T}}}(F_{\mathbf{T}}(A), B) \cong \operatorname{Hom}_{\mathscr{A}}(A, T(B)) \cong \operatorname{Hom}_{\mathscr{A}}(A, U_{\mathbf{T}}(B))$$

が成立するため, $F_{\mathbf{T}} \dashv U_{\mathbf{T}}$ が成立する.

$$\mathscr{A} \xrightarrow{F_{\mathbf{T}}} \xrightarrow{L} \mathscr{A}_{\mathbf{T}}$$

は **Proposition 2.2** の方法でモナド (T, η, μ) を与える.

4 随伴と代数の比較定理

圏 \mathscr{A} 上のモナド (T, η, μ) に対し、対象を **Proposition 2.2** の方法で (T, η, μ) が得られる随伴

$$\mathscr{A} \xrightarrow{\dfrac{F}{\bot}} \mathscr{B} \qquad \quad \eta \colon \mathrm{id}_{\mathscr{A}} \to UF, \ \varepsilon \colon FU \to \mathrm{id}_{\mathscr{B}}$$

とし,射

$$K: (\mathscr{A} \xrightarrow{F} \xrightarrow{L} \mathscr{B}) \longrightarrow (\mathscr{A} \xrightarrow{F'} \xrightarrow{L'} \mathscr{B}')$$

を $K\circ F=F',\ U'\circ K=U$ を満たす関手 $\mathcal{B}\to\mathcal{B}'$ とする圏を $\mathbf{Adj_T}$ と表す.

Theorem 4.1

 ${f T}=(T,\eta,\mu)$ を圏 🖋 上のモナドとする. このとき, ${f Adj_T}$ の始対象はクライスリ圏 🗳 であり, 終対象はアイレンベルグムーア圏 🗳 である.

Proof

 $\mathbf{Adj_T}$ の対象

$$\mathscr{A} \xrightarrow{\dfrac{F}{\bigsqcup_{U}}} \mathscr{B} \qquad \eta \colon \mathrm{id}_{\mathscr{A}} \to UF, \ \varepsilon \colon FU \to \mathrm{id}_{\mathscr{B}}$$

を任意にとる.

 $A\in ob(\mathscr{A}_{\mathbf{T}})$ に対し、 $F(A)\in ob(\mathscr{B})$ を対応させ、 $f\in \operatorname{Hom}_{\mathscr{A}_{\mathbf{T}}}(A,A')=\operatorname{Hom}_{\mathscr{A}}(A,T(A'))$ に対し、 $\varepsilon F_{A'}\circ F(f)\in \operatorname{Hom}_{\mathscr{B}}(F(A),F(A'))$

$$F(A) \xrightarrow{F(f)} FUF(A') \xrightarrow{\varepsilon F_{A'}} F(A')$$

を対応させることで関手 $J: \mathscr{A}_{\mathbf{T}} \to \mathscr{B}$ が定まる.

 $A \in ob(\mathscr{A}), f \in \operatorname{Hom}_{\mathscr{A}}(A, A')$ に対し, $J \succeq F_{\mathbf{T}}$ の定義より,

$$J \circ F_{\mathbf{T}}(A) = J(A) = F(A),$$

$$J \circ F_{\mathbf{T}}(f) = J(\eta_{A'} \circ f) = \varepsilon F_{A'} \circ F(\eta_{A'} \circ f) = \varepsilon F_{A'} \circ F(\eta_{A'} \circ F(f)) = F(f)$$

が成立するため, $J \circ F_{\mathbf{T}} = F$ である.

また, $A \in ob(\mathscr{A}_{\mathbf{T}})$, $f \in \operatorname{Hom}_{\mathscr{A}_{\mathbf{T}}}(A, A')$ に対し, $U \geq J$ の定義より,

$$U \circ J(A) = U(F(A)) = T(A) = U_{\mathbf{T}}(A),$$

$$U \circ J(f) = U(\varepsilon F_{A'} \circ F(f)) = U\varepsilon F_{A'} \circ UF(f) = \mu_{A'} \circ T(f) = U_{\mathbf{T}}(f)$$

が成立するため, $U \circ J = U_{\mathbf{T}}$ である.

 $J\circ F_{\mathbf{T}}=F,\ U\circ J=U_{\mathbf{T}}$ となることと, $F\dashv U,\ F_{\mathbf{T}}\dashv U_{\mathbf{T}}$ の単位と余単位が等しいことより, J は一意である.

 $B\in ob(\mathcal{B})$ に対し、 $(U(B),U\varepsilon_B\colon UFU(B)\to U(B))$ を考える。 $F\dashv U$ より、図式

は可換であり、自然変換 $U\varepsilon$: $UFU \to U$ の自然性より、図式

$$UFU(FU(B)) \xrightarrow{\mu_{U(B)} = U\varepsilon_{FU(B)}} U(FU(B))$$

$$UF(U\varepsilon_B) \downarrow \qquad \qquad \downarrow U(\varepsilon_B)$$

$$UFU(B) \xrightarrow{U\varepsilon_B} U(B)$$

は可換である. よって, $(U(B), U\varepsilon_B : UFU(B) \to U(B))$ は **T** 代数である.

また, $f \in \operatorname{Hom}_{\mathscr{B}}(B,B')$ に対し, 自然変換 $U\varepsilon: UFU \to U$ の自然性より, 図式

$$\begin{array}{c|c} UFU(B) & \xrightarrow{UFU(f)} & UFU(B') \\ \\ U\varepsilon_B & & & \downarrow \\ U(B) & \xrightarrow{U(f)} & U(B') \end{array}$$

は可換であるため, U(f) は $\mathscr{A}^{\mathbf{T}}$ の射である.

したがって, $B \in ob(\mathcal{B})$ に対し, $(U(B), U\varepsilon_B) \in ob(\mathscr{A}^{\mathbf{T}})$ を対応させ, $f \in \operatorname{Hom}_{\mathscr{B}}(B, B')$ に対し, $U(f) \in \operatorname{Hom}_{\mathscr{A}^{\mathbf{T}}}((U(B), U\varepsilon_B), (U(B'), U\varepsilon_{B'}))$ を対応させることで関手 $K \colon \mathscr{B} \to \mathscr{A}^{\mathbf{T}}$ が定まる.

 $A \in ob(\mathscr{A}), f \in \operatorname{Hom}_{\mathscr{A}}(A, A')$ に対し, $K \succeq F$ の定義より,

$$K \circ F(A) = K(F(A)) = (UF(A), U\varepsilon_{F(A)}) = (T(A), \mu_A) = F^{\mathbf{T}}(A),$$

$$K \circ F(f) = K(F(f)) = UF(f) = T(f) = F^{\mathbf{T}}(f)$$

が成立するため、 $K \circ F = F^{\mathbf{T}}$ である.

また, $B \in ob(\mathcal{B})$, $f \in \operatorname{Hom}_{\mathcal{B}}(B, B')$ に対し, $U^{\mathbf{T}} \geq K$ の定義より,

$$U^{\mathbf{T}} \circ K(B) = U^{\mathbf{T}}((U(B), U\varepsilon_B)) = U(B),$$

 $U^{\mathbf{T}} \circ K(f) = U^{\mathbf{T}}(U(f)) = U(f)$

が成立するため, $U^{\mathbf{T}} \circ K = U$ である.

 $K\circ F=F^{\mathbf{T}},\ U^{\mathbf{T}}\circ K=U$ となることと $F\dashv U,\ F^{\mathbf{T}}\dashv U^{\mathbf{T}}$ の単位と余単位が等しいことより, K は一意である.

したがって, $\mathbf{Adj_T}$ の始対象はクライスリ圏 $\mathscr{A}_{\mathbf{T}}$ であり, 終対象はアイレンベルグムーア圏 $\mathscr{A}^{\mathbf{T}}$ である. \Box

Theorem 4.2

関手 $K \circ J \colon \mathscr{A}_{\mathbf{T}} \to \mathscr{A}^{\mathbf{T}}$ は忠実充満である.

Proof

任意の $f, g \in \text{Hom}_{\mathscr{A}_{\mathbf{T}}}(A, A')$ に対し, $K \circ J(f) = K \circ J(g)$ つまり,

$$K(\varepsilon F_{A'} \circ F(f)) = K(\varepsilon F_{A'} \circ F(g))$$

$$U\varepsilon F_{A'} \circ UF(f) = U\varepsilon F_{A'} \circ UF(g)$$

$$\mu_{A'} \circ T(f) = \mu_{A'} \circ T(g)$$

とすると.

$$f = \mu_{A'} \circ \eta_{T(A')} \circ f = \mu_{A'} \circ T(f) \circ \eta_A = \mu_{A'} \circ T(g) \circ \eta_A = \mu_{A'} \circ \eta_{T(A')} \circ g = g$$

が成立するため, $K \circ J$ は忠実である.

また、任意の $h \in \operatorname{Hom}_{\mathscr{A}_{\mathbf{T}}}((T(A), \mu_A), (T(A'), \mu_{A'}))$ に対し、 $h \circ \eta_A : A \to T(A')$ を考えると、

$$K \circ J(h \circ \eta_A) = \mu_{A'} \circ T(h \circ \eta_A) = \mu_{A'} \circ T(h) \circ T(\eta_A) = h \circ \mu_A \circ T(\eta_A) = h$$

が成立するため、 $K \circ J$ は充満である.

したがって, $K \circ J$ は忠実充満である.

参考文献

- [1] Emily Riehl (著) · 「Category Theory in Context」 · Dover Publications · 2016
- [2] Francis Borceux (著)·「Handbook of Categorical Algebra: Volume 2, Categories and Structures 」· Cambridge University Press·1994
- [3] Saunders Mac Lane (著) · 「Categories for the Working Mathematician」 · Springer · 1978