Multiple Choice 1 point

Which of the following is an example of linear regression where y is the scalar output, x is the input vector, and w is a weight vector?

- $y = (w^Tx+1)^2 + (w^Tx)^2$
- $v = (\mathbf{w}^{\mathsf{T}} \mathbf{x})^2$
- $y = (w^Tx+1)^2 (w^Tx)^2$
- $v = (\mathbf{w}^T \mathbf{x})^2 + \mathbf{w}^T \mathbf{x}$

(w7xf+2w1x+1-cw7x)2

= 2WTX +1 linear 其他都是含(wx)~~linea~

Multiple Choice 1 point

Suppose in a linear regression setting with squared loss, the design matrix is such that X^TX is invertible. Suppose \mathbf{w}^* is the minimizer of $||\mathbf{y} - \mathbf{X} \mathbf{w}||^2$. What will be the minimizer of $||\mathbf{2} \mathbf{y} - \mathbf{X} \mathbf{w}||^2$? 抽analytic

- 2 w*
- $w^*/2$
 - Cannot be written just in terms of w

 $W^* = (x^7x)^7 \times^T y$

3 Multiple Choice 1 point

> Suppose in a linear regression setting with squared loss, the design matrix is such that $\mathbf{X}^T\mathbf{X}$ is invertible. Suppose \mathbf{w}^* is the minimizer of $||\mathbf{y} - \mathbf{X} \mathbf{w}||^2$. What will be the minimizer of $||\mathbf{y} - 2\mathbf{X} \mathbf{w}||^2$?

- w*
- 2 w*
- \circ w*/2
- Cannot be written just in terms of w

$$w^* = (x^T x)^{-1} x^T y$$

w* = (2x2x) - 2x7y

 $= \frac{1}{4(x^{T}x)^{-1}2x^{T}y} = \frac{1}{2(x^{T}x)^{T}x^{T}}$ $= \frac{1}{2}w^{*}$

Rec to w	all that the norm $ \mathbf{w} $ of a vector \mathbf{w} is defined as $(\mathbf{w}^T\mathbf{w})^{1/2}$. What is the gradient of $ \mathbf{w} ^4$ with respect ?					
	2 w					
	$4 \mathbf{w} ^3$					
0	$4ww^{T}w$ $\sqrt{ \chi ^{T}} = \sqrt{ \psi ^{T}}$					
	$2w^{T}w$ $-(2w)(6u^{T}w)$					
	$4\ \mathbf{w}\ ^3$ $4\mathbf{w}\mathbf{w}^{T}\mathbf{w}$ $2\mathbf{w}^{T}\mathbf{w}$ $= (2\mathbf{w})(2\mathbf{w}^{T}\mathbf{w})$ $= (注意: chain mle)$ $= (**w*)(**w*)(**w*)$ $= (**w*)$					
	里尼秋在南)的					
5 M	ultiple Choice 1 point					
Wha	What does "minibatch" in "minibatch stochastic gradient descent" refer to? The fact that only a small number of entries of the weight vector are updated at each step The fact that a randomly drawn small subsample of the entire training set is used at each step					
	The fact that it uses a very small learning rate					
	The fact that it attempts to make the loss function very small at each step					
	ultiple Choice 1 point at does "stochastic" <u>in "mi</u> nibatch stochasti c gradient descen t" refer to?					
0						
	The fact that the learning rate is randomly selected					
	The fact that the training set is a random draw from some underlying probability distribution					
	The fact that the loss function is randomly selected					

Suppose that we draw a single observation Y from a Gaussian distribution with mean mand variance 1. What is the maximum likelihood estimate of the parameter m in terms of the observation Y?

- m
- 1
- 0

多次:一个

Multiple Choice 1 point

When is it a good idea to use minibatch stochastic gradient descent?

- When the training set size is too large
- When the loss of the model weights is too large
- When the number of weights in your model is too large
- When the learning rate is too large

 $= -\frac{n}{2} / (2\pi \sigma^2)$

Multiple Choice 1 point

Suppose weight vector \mathbf{w} is of size d x 1. What is the gradient of $\mathbf{F}(\mathbf{w}) = \mathbf{w}$ with respect to \mathbf{w} ?

- W
- 1
- Identity matrix of size d x d
- d x 1 vector consisting of all 1s

$$\nabla_{w} w = I_{d}$$

$$D = \sum_{i=1}^{n} (y_i - m)$$

$$E = \sum_{i=1}^{n} (y_i - m)$$

Which of the following is NOT a reasonable way to select model parameters given data?

- Choose a loss function and minimize the total loss over the dataset
- Setup a statistical model using the parameters and maximize the likelihood of the data given parameters
- Setup a statistical model using the parameters and minimize the negative log likelihood of the data given parameters
- Choose a loss function and make sure that the losses for every training example are roughly equal

11 Multiple Choice 1 point

Why is deep learning called by that name?

- Because it uses very deep mathematics
- Because it has deep connections with neuroscience
- O Because it uses neural networks that have many layers
- Because the loss function landscape in the space of model parameters has deep valleys

12 Multiple Choice 1 point

Suppose a Gaussian distribution has the density p(x) proportional to $exp(-x^2/8)$. What are the mean and standard deviation of this distribution?

- Can't be determined. Need to know the constant of proportionality.
- Mean 0, Standard Deviation 2
- Mean 0, Standard Deviation 4
- Mean 0, Standard Deviation 8

 $\mu = 0, \quad \frac{1}{20^2} = \frac{1}{8}$

	Suppose $f(x) = A x$ and $g(u) = B u$ where A is m x n and B is k x m. Which of the following correctly describes the function $g(f(x))$?					
	It's not well defined since the output dimension of f does not match the input dimension of g					
0	It's a linear function given by B A x					
	It's a linear function given by ABx					
	It's a non linear function of \mathbf{x} $\mathcal{G}(\mathbf{x})$					
	It's a linear function given by AB x It's a non linear function of x					
	ultiple Choice 1 point					
	When applying the principle of maximum likelihood, we can instead look at the negative log likelihood. In the context, which of the following statement is NOT correct?					
	Under independence, taking logs gives a sum of terms to work with instead of a product of terms					
	The negative sign allows us to express a maximization problem as a minimization problem and thus establish a link to loss minimization					
0	Taking the negative log likelihood allows us to solve the optimization problem in closed form					
	The solution of the problem of maximization of the likelihood is the same as that of minimization of the negative log likelihood					
Multiple Choice 1 point Suppose we view linear regression as a simple neural network. What happens to the number of layers of						
this	this network if we double the dimension of the input features?					
0	Number of layers gets halved Number of layers increases by 1					
	Number of layers gets doubled over 15, 15% fix 12					
	Number of layers gets halved (Num(layer)					
	Number of layers increases by 1					

Which of the following is a point of similarity between artificial and biological neurons?

- They both have inputs and generate outputs
- In both cases, their weights are trained using gradient descent
- Both can only compute linear functions
- They are both incapable of aggregating their inputs

17 Multiple Choice 1 point

Which of the following is a classification problem?

- Predicting whether or not a student will pass STATS 315
- Predicting a student's GPA at graduation
- Predicting the time a student will take to solve the midterm exam
- Predicting the salary of a student in their first job after college

18 Multiple Choice 1 point

Which is of the following is a correct statement about the cross entropy loss function?

- It is incapable of handling the situation when true labels are soft
- It is not differentiable with respect to model predictions
- lt is not bounded from above by a finite constant
- It is not bounded from below by a finite constant

 $l_j = -y_j l_{r} y_j$

Let R be the set of all real numbers and let S = { softmax(x) : $x = (x_1, x_2)$, $x_1, x_2 \in \mathbb{R}$ }. That is, S is the set obtained by applying the softmax function to all points in the two dimensional plane. Which of the following statements correctly describes S?

- $\{ (x_1, x_2) : 0 < x_1 < 1, 0 < x_2 < 1, x_1 + x_2 = 1 \}$ $\{ (x_1, x_2) : 0 <= x_1 <= 1, 0 <= x_2 <= 1, x_1 + x_2 = 1 \}$
- $\{(x_1, x_2) : -\infty < x_1 < +\infty, -\infty < x_2 < +\infty\}$
- $\{(x_1, x_2): -\infty \le x_1 \le +\infty, -\infty \le x_2 \le +\infty\}$

20 Multiple Choice 1 point

Suppose X has Gaussian distribution with mean 0 and standard deviation 1. Which of the following

- O It has a Gaussian distribution with mean 1 and standard deviation 1
- It has a Gaussian distribution with mean 0 and standard deviation 2
- Its distribution is no longer Gaussian
- It also has a Gaussian distribution with mean 0 and standard deviation 1

21 Multiple Choice 1 point

Consider softmax regression with cross-entropy loss. Suppose I am running minibatch stochastic gradient descent with a batch size of one and learning rate 0.1. I choose a random labeled example with a non-zero feature vector from the dataset. But the update does NOT change the weight vector. What can be correctly concluded from this? ____

- The label predicted by the current weight vector matches the true label of the chosen example.
- Batch size is too small. We should increase it.

The learning rate is not right. We should modify it.

Suppose you have a true label which is soft and whose entropy is H. What is the minimum value cross-entropy loss for such a true label?					
	O 0	$=-y_i \ln \hat{y}_i$	$\frac{1}{1} \leq 1 \Rightarrow \ln \frac{1}{1} \leq 0$		
	O H	<i>=-y; lny;</i>	$\frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}$		
	Insufficient information: w	• /	of classes to compute the minimum value		
	○ -∞		$\Longrightarrow \xi - y_1 n y_1 \ge H$		
23	Multiple Choice 1 point	KL	=H(P, V) -H(P)		
	Which of the following is a correprobability distributions?	ect observation about cross-e	entropy and relative-entropy between two		
		s large as relative-entropy	$\leq H(P, Q)$		
	Relative-entropy is at leas	t as large as cross-entropy			
	Relative-entropy is always	s the same as cross-entropy			
	Relative-entropy can be sr	maller than, larger than, or ec	jual to, cross-entropy		
24	Multiple Choice 1 point				
Which technology company is primarily responsible for the development of Tensorflow?					
	Facebook				
	Google				
	Microsoft				
	Amazon				

The following code creates a neural network with how many layers?

- **O** 2
- 512
- 10
- 522

26 Multiple Choice 1 point

What is the closest analogue of a numpy ndarray in tensorflow?

- tensor
- variable
- gradient tape
- layer

27 Multiple Choice 1 point

Having access to tensorflow/keras saves a programmer from which of the following activities?

- Implementing minibatch stochastic gradient descent
- Creating a neural network architecture
- Specifying a loss function
- Choosing a training dataset