

Data organisation practices

Introduction to Data Management Practices course

NBIS DM Team

data@nbis.se

Objectives

- Data storage and processing at different stages of a research project
- 2. Naming and organising files in folders and file shares
- 3. Working with tabular data in spreadsheets
- 4. Data entry with data validation in spreadsheets
- Exporting and importing text-based file formats for tabular data

Managing Research Data

- Research data is a core component of any research project or publication.
- Good data management practices are important in all phases of research
 - Ethics and legislation
 - Information security
 - Research documentation
 - Project organisation
- Research data needs to be secured beyond the project's time frame

Digitalbevaring.dk

Planning for Data Management®

SciLifeLab

- Aim to make your project more efficient by implementing good practices for handling research data
- Establish procedures to organise, document, preserve and share your research data throughout its life cycle
- Adopt best-practice guidelines that encourage Reproducible Research,
 Open Science & FAIR data principles

Every project has a strategy for data management

Optimised for re-use?
Single-use?

Preserve

Ad hoc?

Files and storage

Storage & back-up

- How to store during the project?
 - Storage/processing locations For data collection, analysis, reporting, code, transfers etc.
 - Back-up and data recovery
 Strategies to mitigate risks of data-loss and data corruption?

 (Beware of laptops and external storage)
 - Technical requirements
 Software and systems required to access / process the data?

- ☐ How to protect data?
 - Information classification
 Suitable storage based on the characteristics of the data?
 - Access control
 Who will have access to what data and how will it be enforced?
 - Data protection procedures
 Other strategies to mitigate risks
 of unwanted data disclosure or
 sabotage.

Data storage and processing

Data has a life cycle

Raw (experiment) data – produce, collect, license, get access, ...

Processed – generate, clean, aggregate, label, transform, analyse, ...

Archived – document, select, convert, package, submit, ...

Published – FAIRify, promote reuse, ...

- Maintain data integrity and authenticity
- Plan a storage strategy
- Plan a backup and disaster recovery strategy

What do you do to maintain data integrity and authenticity in your projects and what else could you be doing?

Data integrity and authenticity VSciLifeLab

- Keep original (raw) versions of data files, or keep documentation that allows the reconstruction of original files
- Track the location of files if they are stored in a variety of locations
- Establish terms and conditions of data use within the project team and beyond

- Keep a 'master file' of the data and take measures to preserve its authenticity
- Decide how many and which versions to keep for how long
- Document changes that were made in any version
- Record relationships between items where (HEP at a first of the extension of the extensio

What storage categories do you use and what factors do you consider when selecting which category to use or not to use?

- Portable devices
- Cloud storage
- Local storage
- Networked drives

Portable devices

- Temporary, short-term storage for non-sensitive data, e.g. in the field or to transport data and files when online transmission is not possible.
- In combination with encryption and strong password protection, especially if working with sensitive information.
- Conduct regular checks to ensure your device is working and that files are accessible.
- Not for long-term storage or master copies of your data

Cloud storage

- Granting shared, remote and easy access to data and other files to all involved in the project
- Read the terms of service. Especially focus on rights to use content given to the service provider
- Opt for European, national, or institutional cloud services which store data in Europe if possible
- Not your only storage and backup solution
- Not for unencrypted (sensitive) personal data

Local storage

- When working on different (local) workstations, e.g. laptop at home and the desktop in the office:
 - always make sure that you are working on the most current version, for example with the help of versioning software or guidelines
 - make sure that the most current version is always backed up somewhere else
- Only suitable as a primary storage for projects involving very few people
- Avoid if data will be moved back and forth between personal computers frequently

Networked drives

- Use in projects involving many people who need access to data and files
- Use a suitable security strategy to protect data and files against unauthorised access
- Agree on rules for versioning files and data to ensure that everyone can locate and access what they need
- Archive data that is complete and has been analysed, archival solutions can be cost efficient and offer increased security
- Restrict access where possible using rights and permissions,
 e.g. write protect a master copy and only grant access to specific files/folders when necessary

What are examples of potential causes for data loss in a research project?

Backup and disaster recovery V SciLifeLab

A minimal strategy

- There are at least
 - Three copies of the data
 - Two copies on different types of storage media
 - Two copies at different locations
 - One copy located off-site
- All copies are checked regularly to make sure that they work
- The process is known and applied in the project (automated)

... and determine what you want to back up and find out whether your institution already has a backup strategy.

Organising files and folders

Practices

Your primary collaborator is yourself from 6 months ago, and she/he will not answer your e-mails

Good practices

- Organise files hierarchically
- Use folders to divide files into categories
- Choose a file naming strategy
- Create documentation files

Organise files hierarchically

Divide files into categories

What characteristics do you use to create folders and subfolders in your projects?

E.g., data, collection year, ...

Helpful characteristics

- Year or other date
- Type of data, document or file
- Project stages
- Analysis version or revision
- Experiments
- Instruments
- Time periods
- Geographic location
- Storage requirements
- Team member, institution or project site

Choose a file naming strategy V SciLifeLab

- A file name is a principal identifier for the file
- Consistent in time and among different people
- Practically useful when accessing files, such as sorting and filtering

Chronologically

(ISO 8601 date standard)

20171028 001.tiff 20171028 002.tiff 20171028 003.tiff 20171029 001.tiff 20171029 002.tiff

Classification or code

(standardized)

USNM 379221 01.tiff USNM 379221 02.tiff USNM 379221 03.tiff USNM 379222 01.tiff USNM 379222 02.tiff

Alphabetically

(depending on type of files)

bos 20171028 001.tiff bos 20171028 002.tiff bos_20171029_001.tiff cam_20170922_001.tiff cam 20170922 002.tiff

What are examples of potential benefits of agreeing on a File Naming Convention for a project?

Example from: Noble WS (2009) A Quick Guide to Organizing Computational Biology Projects. *PLoS Comput Biol* 5(7): e1000424. https://doi.org/10.1371/journal.pcbi.1000424

Create documentation files

- Key to making the data publishable, discoverable, citable and reusable
- Project-level and data-level documentation
- Use plain text files and save them in your file hierarchy – README-files

Machine readable

2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H01.csv
2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H02.csv
2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H03.csv
2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_platefile.csv
2014-02-26_BRAFWTNEGASSAY_FFPEDNA-CRC-1-41_A01.csv
2014-02-26_BRAFWTNEGASSAY_FFPEDNA-CRC-1-41_A02.csv
2014-02-26_BRAFWTNEGASSAY_FFPEDNA-CRC-1-41_A03.csv
2014-02-26_BRAFWTNEGASSAY_FFPEDNA-CRC-1-41_A03.csv

- 2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H01.csv
- 2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H02.csv
- 2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_H03.csv
- 2013-06-26_BRAFWTNEGASSAY_Plasmid-Cellline-100-1MutantFraction_platefile.csv

Human readable

01_marshal-data.md	01.md
01_marshal-data.r	01.r
02_pre-dea-filtering.md	02.md
02_pre-dea-filtering.r	02.r
03_dea-with-limma-voom.md	03.md
03_dea-with-limma-voom.r	03.r
04_explore-dea-results.md	04.md
04_explore-dea-results.r	04.r
90_limma-model-term-name-fiasco.md	90.md
90_limma-model-term-name-fiasco.r	90.r
Makefile	Makefile
figure	figure
helper01_load-counts.r	helper01.r
helper02_load-exp-des.r	helper02.r
helper03_load-focus-statinf.r	helper03.r
helper04_extract-and-tidy.r	helper04.r
tmp.txt	tmp.txt

Naming files and folders

Optimise for your needs

Locating files and preventing mistakes

Keeping track of milestones / versions

Exploration, e.g., with readme, license, data dictionary files, etc

Be consistent

Agree on conventions early but be prepared to revisit and revise Encode useful metadata in names of files and folders Choose names that facilitate sorting and filtering

Use folders to avoid clutter

Organise files hierarchically by project, task, and/or type: e.g., data_raw, data_output, scripts, docs (* How to organise biometical projects artikeln *)

What structural issues do you often find in spreadsheets and how do you address them?

		RDM training	RDM training					-	
Date	Length (hours)	PGR PDRA other	Delivered by	Date	Length (hours)	PGR	PDRA	other	Delivered by
4 Feb	1.5		GQ	4 Feb					GQ
/8 Feb			GQ	7/8 Feb					GQ
20 Feb			GQ & DF	20 Feb					GQ & DF
03/03/17	2	15 03 00	DF	03/03/17	2	15	5	100	DE
04/03/17	2	30 0 0	DF	04/03/17	2	30) (DE
08/04/17	2	30 0 1	DF	08/04/17	2	30) (4	DE
26/05/17	2	27 0 0	DF	26/05/17	2	27	, (DF
June?	2	24 02 00	DF	2 June?	2	24			DF
June?	1.5	12 07 04	DF	3 June?	1.5	12		1	DF

Tabular data in spreadsheets

- Raw means raw
- Tidy data tables

One cell—one value
One column—one variable
One row—one observation

Beware of Excel "features"

Misguided "auto-corrections" of dates, casing, numbers etc.

Misaligned formulas

Limited numerical precision

Limited number of rows/columns

4	Α	В	С	D	E	F	G	Н	1	J	K
1	data							analysis			
2	id	biomarker1	biomarker2	biomarker3	biomarker4			variation	ave	problem	
3	81	0.08502	0.07002	0.07735	0.07746			0.008	0.0775		
4	82	0.0658	0.06859	0.06958	0.06799			0.002	0.068	no	
5	83	0.07757	0.07497	0.0801	0.07755			0.003	0.0775		
6	84	0.07185	0.06957	0.07474	0.07205			0.003	0.0721	yes	
7	85	0.06959	0.07361	0.07113	0.07145			0.002	0.0714	maybe	
8	86	0.09291	0.10439	0.09425	0.09718			0.006	0.0972		
9	87	0.07878	0.08143	0.07203	0.07742			0.005	0.0774		
10	88	0.07907	0.077	0.08227	0.07944			0.003	0.0794		
11	89	0.07299	0.07616	0.08131	0.07682			0.004	0.0768		
12	90	0.07487	0.0664	0.0671	0.06946			0.005	0.0695		
13											
14	mean	0.076845	0.076214	0.076986	0.076682						
15								biomarker QC			
16	notes							b1	b2	b3	b4
17	* patient id86 ma	y need remo	ving due to	missing note	s			0.46336967	0.875281336	0.918250702	0.14953926

Data validation in Excel

- Data value types
- Value constraints
- Data dictionary (metadata module)
- Collaboration

À	A	В	C	D	Ē
1	Field name	Description	Data type	Units	Notes
2	Name	Full patient name including title	Text	na	From patient notes
3	Address	Full patient address	Text	na	From patient notes
4	Age	Age in years	Numeric (interger)	na	From patient notes
5	Symptoms	Summary of symptoms from last visit	Text	na	Around half of patients have missing notes
6	CRP	C-reactive protein measurement	Numeric (decimal)	mg/ml	Measured on instrument LAB-C-002. Normal range <10

What are examples for information that may be lost when converting data between file formats?