Progetto Embedded Systems and IoT

Davide Carità - 0000873616

Definizione dei requisiti	1
Progettazione del sistema	3
Implementazione del sistema	
ModeManagerTask	Ę
WaterControlTask	(
CoolingControlTask	6

Definizione dei requisiti

Lo scopo del progetto è quello di realizzare un sistema embedded integrato che possa monitorare, controllare e mantenere stabili i parametri ambientali di una serra contenente una pianta.

Il sistema avrà la necessità di essere autonomo, attraverso una modalità automatica e allo stesso tempo dovrà essere controllabile manualmente.

Il terreno in cui è la pianta non dovrà mai sforare dei cut-off prestabiliti di umidità e temperatura e per fare ciò occorreranno dei sensori di umidità del terreno e un sensore di temperatura che verranno posti rispettivamente all'interno del vaso e in prossimità della pianta.

Oltre che ai sensori, per poter effettivamente controllare l'umidità e la temperatura, sarà installata una pompa d'acqua per poter irrigare la pianta in caso di umidità del terreno troppo bassa, e una ventola, che permetterà alla serra di avere una maggiore ventilazione e ricambio d'aria per poter abbassare la temperatura.

https://github.com/DavideBlast/elab_iot

fritzing

Progettazione del sistema

Per soddisfare la necessità di una modalità automatica e una manuale, il sistema partirà e funzionerà costantemente in modalità **AUTOMATICA**, ma consentirà tramite bottoni presenti sulla breadboard di controllare manualmente la pompa d'acqua e la ventola d'aria. Inoltre tramite l'app **GreenhouseBT** si avrà un secondo modo per poter accedere al controllo di pompa e ventola.

Il sistema è suddiviso in cinque sottosistemi:

Sensor board:

Basato su ESP32 invia dati a Server via HTTP, possiede due sensori, il primo è un DHT11 posizionato in prossimità della pianta e permetterà di rilevare la temperatura e l'umidità relativa all'interno della serra; il secondo è un Resistive Soil Moisture Sensor, che, una volta inserito nel vaso in cui è la pianta, rileva la resistenza elettrica del terreno, ciò vuol dire che un valore più basso indica un quantitativo minore d'acqua, in quanto l'acqua è un ottimo conduttore elettrico.

Server:

 In esecuzione su PC, contiene il server locale a cui Sensor board invierà le richieste HTTP e la logica per poter inviare i dati a via Controller Seriale.

Dashboard:

 Anche questo su PC, basato su GUI java, fornisce una visualizzazione dello stato del sistema generale e un logger degli eventuali messaggi scambiati con Controller.

Controller:

 Basato su Arduino, consente di azionare la ventola per il controllo della temperatura e la pompa d'acqua per la gestione dell'umidità del terreno.
 Possiede due bottoni che permettono la gestione manuale e un modulo HC05 per la ricezione di messaggi via Bluetooth da Mobile App.

Mobile App:

 Su Android, permette di controllare la pompa d'acqua e la ventola d'aria di Controller.

Implementazione del sistema

Componenti fisici del sistema:

Controller:

- PIN 2: BTN_FAN: bottone tattile che ha come scopo quello di azionare manualmente la ventola d'aria.
- PIN 3: BTN_WATER: bottone tattile che ha come scopo quello di azionare manualmente la pompa d'acqua.
- PIN 6: LED_WATER_MODE: led blu che indica che il sistema è in modalità "WATERING"
- PIN 5: LED_COOL_MODE: led giallo che il sistema è in modalità "COOLING"
- PIN 4: WATER_PUMP: pompa d'acqua controllata da un relè 5V a canale singolo
- PIN 11/12/13: COOLING_FAN: ventola per il controllo della temperatura, basata su motore DC.

Sensor board:

- PIN 36: SOIL_MOISTURE_SENSOR: sensore resistivo dell'umidità del terreno
- PIN 26: TEMPERATURE_SENSOR: sensore DHT11 per la temperatura e l'umidità relativa esterna

Il sottosistema **Controller** è stato sviluppato secondo un principio basato su task e di macchina a stati finiti sincrona. I task principali che compongono il sistema sono tre:

ModeManagerTask

Task che gestisce la modalità di operazione del sistema e permette di cambiarla.

Il sistema parte in modalità IDLE, successivamente, questo sono le possibilità: IDLE:

- Se è passato il tempo IDLE_TIME, va in modalità CHECK
- Se è stato premuto il tasto BTN_WATER o si riceve un segnale bluetooth che dice di accendere la pompa d'acqua, va in modalità WATERING
- Se è stato premuto il tasto BTN_FAN o si riceve un segnale bluetooth che dice di accendere la ventola d'aria, va in modalità COOLING

CHECK:

- Se i parametri di temperatura e umidità del terreno rientrano nei threshold prestabiliti,
 va in modalità IDLE
- Se la temperatura è troppo alta, va in modalità COOLING
- Se l'umidità del terreno è troppo bassa, va in modalità WATERING

WATERING:

- Se è passato il tempo WATERING TIME, va in modalità CHECK
- Se è stato premuto il tasto BTN_WATER o si riceve un segnale bluetooth che dice di spegnere la pompa d'acqua, va in modalità IDLE

COOLING:

- Se è passato il tempo COOLING_TIME, va in modalità CHECK
- Se è stato premuto il tasto BTN_FAN o si riceve un segnale bluetooth che dice di spegnere la ventola d'aria, va in modalità IDLE

WaterControlTask

Task che controlla l'azionamento della pompa d'acqua e di LED_WATER_MODE. Presenta due semplici stati: ON e OFF.

Quando è in modalità ON, si assicura che la pompa d'acqua sia accesa e che il led blu LED_WATER_MODE lampeggi. Al contrario, quando in OFF, spegne la pompa d'acqua e spegne anche il led.

CoolingControlTask

Task che controlla l'azionamento della ventola d'aria e di LED_COOL_MODE. Presenta due semplici stati: ON e OFF.

Quando è in modalità ON, si assicura che la ventola d'aria sia accesa e che il led giallo LED_COOL_MODE lampeggi. Al contrario, quando in OFF, spegne la ventola d'aria e spegne anche il led.

Oltre ai task, il file **Greenhouse.cpp** gestisce il model della serra smart, tenendo traccia del suo stato e dei controlli dei componenti. **UserInput.cpp** gestisce i bottoni tattili sulla breadboard e **BTHandler.cpp** la comunicazione bluetooth con **Mobile App**

Il sottosistema **Sensor board** è invece un semplice programma in C++/Arduino che rileva la temperatura e l'umidità del terreno e invia richieste HTTP-POST al server locale contenuto in **Server**.

Il sottosistema **Server/Dashboard** possiede MonitoringAgent.java che permette di aggiornare la view a seconda del messaggio ricevuto via seriale.

GreenhouseView.java che crea la view riguardante lo stato generale del sistema, della pompa d'acqua e della ventola d'aria. LogView.java, che mostra i messaggi ricevuti via seriale da **Controller**.

Il sottosistema Mobile App è una semplice app Android chiamata **GreenhouseBT** che permette di inviare 4 messaggi: "won", "woff", "fon", "foff" che servono rispettivamente per accendere e spegnere la pompa d'acqua, accendere e spegnere la ventola d'aria. Questi verranno letti dal modulo HC-05 presente nel **Controller**.