

• A hierarchical structure

- A hierarchical structure
- Each **node** corresponds to a **binary rule**

- A hierarchical structure
- Each node corresponds to a binary rule
- Only **one feature** is considered per node

- A hierarchical structure
- Each **node** corresponds to a **binary rule**
- Only **one feature** is considered per node
- The end of a decision path is called a **leaf**

How can we fit a DTC?

 Start from the first node. For each feature find the splitting point that best separates the two classes.

How can we fit a DTC?

- Start from the first node. For each feature find the splitting point that best separates the two classes.
- 2. Take the **feature** and the **splitting point** that offers the best separation

How can we fit a DTC?

- Start from the first node. For each feature find the splitting point that best separates the two classes.
- 2. Take the **feature** and the **splitting point** that offers the best separation
- 3. Move to **next** node

How can we fit a DTC?

- Start from the first node. For each feature find the splitting point that best separates the two classes.
- 2. Take the **feature** and the **splitting point** that offers the best separation
- Move to **next** node

Two remaining issues:

- How do we quantify the "best separation"?
- When do we stop creating nodes?

Quantifying the best separation of classes

Different metrics can be used to measure "separation".

Common ones are:

- GINI impurity
- Information gain

Quantifying the best separation of classes

Different metrics can be used to measure "separation".

Common ones are:

- GINI impurity
- Information gain

Broadly speaking they lead to very similar results, we will focus on GINI impurity.

GINI Impurity

- Assume there are k classes: 1, 2, ..., k
- At a given node P, there is a proportion p₁ of elements in class 1, p₂ of elements in class 2, etc...

GINI Impurity

- Assume there are **k** classes: 1, 2, ..., k
- At a given node P, there is a proportion p₁ of elements in class 1, p₂ of elements in class 2, etc...
- GINI Impurity at that node:

$$G(P)=1-\sum_{i=1}^k p_i^2$$

GINI Impurity - An example

For binary classification, k = 2. And at a given node $G(P) = 1 - (p_1^2 + p_2^2)$

GINI Impurity - An example

For binary classification, k = 2. And at a given node $G(P) = 1 - (p_1^2 + p_2^2)$

So that, If P is a **pure node** with only one class represented, say class 1:

$$p_1=1, p_2=0 \text{ so: } G(P)=0$$

GINI Impurity - An example

For binary classification, k = 2. And at a given node $G(P) = 1 - (p_1^2 + p_2^2)$

So that, If P is a **pure node** with only one class represented, say class 1:

$$p_1=1, p_2=0 \text{ so: } G(P)=0$$

If P is **impure** and has 50% of each class:

$$p_1 = \frac{1}{2}$$
, $p_2 = \frac{1}{2}$ so: **G(P) = .5**

That can be interpreted as the likelihood of misclassification of a new point at this node if we classify it at random.

CAMBRIDGE SPAI

Fitting a tree with GINI Impurity

At each node, the parent node P has a GINI Impurity of G(P)

Fitting a tree with GINI Impurity

- At each node, the parent node P has a GINI Impurity of G(P)
- We want to split it into two children nodes with GINI Impurity G(C₁) and G(C₂)

Fitting a tree with GINI Impurity

- At each node, the parent node P has a GINI Impurity of G(P)
- We want to split it into two children nodes with GINI Impurity G(C₁) and G(C₂)
- We pick the children for which the weighted average of $G(C_1)$ and $G(C_2)$ offers the largest gain compared with G(P)
 - That's referred to as GINI Gain

When to stop splitting?

If we keep splitting forever, we'd get one sample per leaf (overfitting)

one decision path for every single sample

When to stop splitting?

If we keep splitting forever, we'd get one sample per leaf (overfitting)

one decision path for every single sample

To prevent that:

- Pick a maximum depth
 - Controls the maximum complexity of our tree

When to stop splitting?

If we keep splitting forever, we'd get one sample per leaf (overfitting)

one decision path for every single sample

To prevent that:

- Pick a maximum depth
 - Controls the maximum complexity of our tree
- Pick a minimum number of samples needed in a new node/leaf
 - Controls the overfitting to a few samples

Where would we place a DTC with max_depth=None?

Where would we place a DTC with max_depth=None?

Where would we place a DTC with max_depth=2?

Where would we place a DTC with max_depth=2?

Generating predictions

Once a DTC is fitted, we can generate predictions from new data:

Just need to follow the decision path

Pros:

• Very easy to **interpret**

Pros:

- Very easy to interpret
- No need to scale data
 - No comparisons between features

Pros:

- Very easy to interpret
- No need to **scale** data
 - No comparisons between features
- It can handle categorical data
 - o but sklearn's implementation does not

Pros:

- Very easy to interpret
- No need to scale data
 - No comparisons between features
- It can handle categorical data
 - o but sklearn's implementation does not
- We can get features' importance
 - Computed from the average decrease in GINI Impurity of each feature

Pros:

- Very easy to interpret
- No need to scale data
 - No comparisons between features
- It can handle categorical data
 - o But sklearn's implementation does not
- We can get features' importance
 - Computed from the average decrease in GINI Impurity of each feature

Cons:

Can overfit easily

Hands-on session

01-decision_tree.ipynb

