Measuring the effect of rest and tiredness in soccer and tennis outcomes

Chloé Lepert
Masters Paper Presentation
1 November 2017

Agenda

- Soccer
 - Question asked
 - Literature review
 - Data
 - Models and their outcomes
 - Soccer conclusions
- Time permitting: Tennis

How does the number of days since a previous match impact a soccer team's performance?

Table 3: Distribution of rest time (in days) for home and away teams

					Visitor			
		2	3	4	5	6	7	8
	2	128	9	1	0	3	0	1
	3	12	343	155	22	38	121	7
	4	0	165	238	43	38	91	61
Home	5	1	26	50	63	31	90	31
	6	3	22	34	42	110	278	41
	7	0	118	74	93	302	798	110
	8	1	3	47	42	32	106	272

Existing research on tiredness in soccer focuses on ability to complete physical tasks

- Carlos Lago Penas looked at distance run at certain speed by players over a succession of matches with low rest between matches and found no differences
- Dupond et. al. found that soccer players playing 2 times a week had a higher rate of injury but did not have worse physical performance

Data

- R package "engsoccerdata" provides dates, and results for all matches involving English team in the past century
 - We look at matches between 1995 and 2015 to ensure data completeness
 - Variables we look at include: the date, home team, visitor team, number of home goals, number of visitor goals

Data - Rest days - 1

- The first division of English soccer team plays in the Premier League along with other English championship (FA Cup,...) and European championships (Europa League Champions League)
 - In the Premier league each team plays each other twice in a round robin fashion
 - All other games are part of tournaments in which the best team moves forward
- We use all matches to compute the rest days of teams
- Calculate the effect of number of rest days on Premier league matches

Data - Rest days

	Sun	М	Tue.	W	Thu.	F	Sat.	Sun.	М	Tue.	W	Thu.	F	Sat.	Sun.
Man	PL -						PL							PL -	
City	11						-12							13	
Arsenal	PL -			CL -			PL -								PL -
Alseliai	11			1/4			12								13
Man	PL -							PL -							PL -
United	11							12							13

- 2 variables for rest:
 - Number of days of rest
 - Whether or not the number of days of rest exceeds 5 (high rest) or not (low rest)
- On day 12, Man City plays Arsenal at home. Man City has 6 days of rest (high rest) and Arsenal has 3 (low rest)
- On day 13, Arsenal plays Man Unites at home. Man United has 7 days of rest (high rest) and Arsenal as 8 days (high rest)

Data - Control variables

- Total number of matches played in a season
- Attacking strength and defensive weakness
 - Attacking strength = average number of goals scored by a team / average number of goals scored in the premier league
 - Defensive weakness = average number of goals conceded by a team / average number of goals conceded in the premier league
 - Calculate attacking strength and defensive weakness using the previous year's performance

Data - Response

Distribution of goals overlayed with expected number of goals assuming a poisson distribution Home goals

Visitor goals

Table 2: Distribution of game outcomes

Outcome	Number of games	Share of games
Home win	1,966	0.458
${ m Tie}$	1,143	0.266
Visitor win	1,187	0.276

Models

- GLM with Poisson Link
- Linear model for goal difference
- Proportional odds cumulative logit model
- Bivariate Poisson

GLM with Poisson link

- Let j = h, a be an indicator for whether we are modeling home or away games.
- Let $G_{j,i}$ be the number of home or away goals in game i.
- Let x_i be the predictors for game i.
- Assume that $G_j \sim Poisson(\lambda_j)$. $P_P(G_{j,i} = g_{j,i}) = \frac{\lambda_j^{g_{j,i}} e^{\lambda_{j,i}}}{g_{j,i}!}$
- The parameter λ_j is a linear combination of the predictors X_j : $\lambda_j = X_j \beta_j$

Table 5: Generalized Linear Models with Poisson link

	$Dependent \ variable:$					
	Home	goals	Visitor goals			
	(1)	(2)	(3)	(4)		
Team rest (days)	-0.004 (0.009)		-0.007 (0.011)			
Opponent rest (days)	$-0.001\ (0.009)$		$0.005 \ (0.011)$			
Team rest > 5 days	, ,	0.047 (0.031)	, ,	-0.044~(0.036)		
Opponent rest > 5 days		-0.052^* (0.031)		$0.043 \ (0.037)$		
Team attacking strength	$0.371^{***} (0.050)$	$0.377^{***} (0.050)$	$0.427^{***} (0.053)$	0.425***(0.053)		
Opp. defensive weakness	0.274***(0.061)	0.280***(0.061)	0.238***(0.061)	0.239***(0.061)		
Team load	0.015***(0.003)	0.017*** (0.003)	0.011***(0.003)	0.010*** (0.003)		
Opponent load	-0.020***(0.003)	-0.021***(0.003)	-0.024***(0.004)	-0.023***(0.004)		
Constant	$-0.036 \; (0.205)$	$-0.077 \ (0.199)$	$-0.025 \ (0.231)$	$-0.041 \ (0.223)$		
Observations	$4,\!296$	$4,\!296$	$4,\!296$	$4,\!296$		
Log Likelihood	-6,597.132	-6,595.641	$-5,\!804.871$	$-5,\!804.193$		
Akaike Inf. Crit.	13,208.260	13,205.280	11,623.740	11,622.390		

Note:

*p<0.1; **p<0.05; ***p<0.01

Bivariate Poisson

- Assume that $G_j \sim Poisson(\lambda_j + \lambda_g)$.
- The parameter λ_g is a linear combination of the predictors X: $\lambda_g = X_g \beta_j$

The probability distributions for the number of goals by the home and away team is given by:

$$P_{BP}(G_h = g_h, G_a = g_a | \lambda_h, \lambda_a, \lambda_g) = e^{-(\lambda_h + \lambda_a + \lambda_g)} \frac{\lambda_h^{g_h}}{g_h!} \frac{\lambda_a^{g_a}}{g_a!} \sum_{i=0}^{\min(g_h, g_a)} \binom{g_h}{i} i! \left(\frac{\lambda_g}{\lambda_g \lambda_a}\right)$$
(1)

Table 8: Bivariate model for number of goals scored by each team

		(1)	(2)
Home	Intercept	-0.254***(0.017)	-0.252***(0.018)
	Visitor defensive weakness	0.427***(0.005)	0.418***(0.005)
	Visitor load	-0.021***(0)	-0.019***(0)
	Visitor rest (days)		-0.004***(0.001)
	Visitor rest >5 days	-0.081***(0.003)	
	Home attacking strength	0.451***(0.004)	0.45***(0.004)
	Home load	0.014***(0)	0.013***(0)
	Home rest (days)		$0.001 \ (0.001)$
	Home rest >5 days	0.06***(0.002)	
Visitor	Intercept	0.1***(0.02)	0.046**(0.022)
	Visitor Attacking strength	0.5***(0.004)	0.506***(0.004)
	Visitor load	0.008 ***(0)	0.008***(0)
	Visitor rest (days)	` '	-0.01***(0.001)
	Visitor rest >5 days	-0.075***(0.003)	, ,
	Home defensive weakness	0.275***(0.005)	0.278***(0.005)
	Home load	-0.028***(0)	-0.028***(0)
	home rest (days)		0.01***(0.001)
	Home rest >5 days	0.055***(0.003)	
Game	Intercept	0.156 (0.179)	0.872***(0.164)
	Visitor attacking strength	-0.891***(0.054)	-0.891***(0.059)
	Visitor defensive strength	-2.785***(0.073)	-2.641***(0.083)
	Visitor load	-0.008**(0.003)	-0.012***(0.004)
	Visitor rest		0.054***(0.011)
	Visitor rest >5 days	0.456***(0.086)	
	Home attacking strength	-1.241***(0.08)	-1.289***(0.077)
	Home defensive weakness	-0.478***(0.054)	-0.505***(0.058)
	Home load	0.057***(0.003)	0.051***(0.003)
	Home rest (days)	, , ,	-0.07***(0.01)
	Home rest >5 days	-0.129***(0.035)	,

Linear Model for goal difference

Table 6: Linear model for the difference in goals scored

- Square root of a poisson random variable can be approximated as a normal r.v.
- Difference of square root goals can be modeled by linear model

	$Dependent\ variable:$
	Goal difference
Team rest (days)	-0.005 (0.010)
Opponent rest (days)	$-0.003\ (0.010)$
Team attacking strength	0.399***(0.057)
Team defensive weakness	-0.277***(0.057)
Opp. attacking strength	-0.380***(0.050)
Opp. defensive weakness	0.364*** (0.066)
Team load	$0.019^{***} (0.003)$
Opponent load	$-0.015^{***}(0.003)$
Constant	$-0.037 \ (0.246)$
Observations	$4,\!296$
\mathbb{R}^2	0.138
$Adjusted R^2$	0.136
Residual Std. Error	0.878 (df = 4287)
F Statistic	85.434^{***} (df = 8; 428
Note:	*n<0.1. **n<0.05: ***n<

Note: *p<0.1; **p<0.05; ***p<0.01

Proportional Odds Logit Cumulative model

We have three possible outcomes: a home win, tie, or visitor win. Each outcome has a probability π_i of happening. The probabilities of the three outcomes sum to 1 as no other outcome is possible. $\pi_h + \pi_t + \pi_v = 1$

The probability that home loses is $1 - \pi_h - \pi_t = \pi_v$ and its log odds are $L_v = \log\left(\frac{\pi_v}{\pi_h + \pi_t}\right)$

The probability that home loses or ties is $1-\pi_h = \pi_v + \pi_t$ and its log odds are $L_t = \log\left(\frac{\pi_v + \pi_t}{\pi_h}\right)$

The log odds of these two events are assumed to be a linear combination of the predictors; $L_v = \alpha_v + X\beta_v$ and $L_t = \alpha_t + X\beta_t$.

In the proportional odds model we require the coefficients β_v and β_t to be the same; $L_v = \alpha_v + X\beta$ and $L_t = \alpha_t + X\beta$.

Proportional Odds Logit Cumulative model

Distribution of ability to win a match depending on whether or not a feature is matched

Table 7: Ordered logistic model

	Dependent variable: Probability of winning			
	(1)	(2)		
Team rest (days)	$-0.016 \; (0.022)$			
Opponent rest (days)	$0.006 \; (0.022)$			
Team rest > 5 days	, ,	-0.002 (0.074)		
Opponent rest > 5 days		-0.039(0.074)		
Team attacking strength	0.864^{***} (0.130)	$0.870^{***}(0.130)$		
Opp. defensive weakness	0.700***(0.145)	0.707***(0.145)		
Opp. attacking strength	-0.717***(0.111)	-0.722***(0.111)		
Team defensive weakness	-0.490***(0.125)	-0.490***(0.125)		
Team load	$0.042^{***} (0.008)$	$0.043^{***} (0.008)$		
Opponent load	-0.034***(0.008)	-0.035***(0.008)		
Observations	4,296	4,296		
Note:	*n/0.1. *	**n/0.05· ***n/0.01		

Note:

*p<0.1; **p<0.05; ***p<0.01

Discussion

- Tried 4 types of model
 - Only one resulted in a significant effect for rest
 - Proportional odd logit and GLM with poisson link have advantage of easy explainability
- We do not find an effect of rest on match outcomes. Possible reasons why:
 - Soccer is a low scoring game, rest may have an impact on performance but not a big enough one to be measured in scores
 - Teams have 23+ players but at most 14 play in a single match.
 Managers may be controlling for rest in the teams they field.

Tennis

Table 10: Effect of previous match length on winning probability by match type

	Dependent variable:			
	Win pro	bability		
	(1)	(2)		
Diff. in ranking points	0.351*** (0.007)	0.352*** (0.007)		
Player is seeded	0.444***(0.017)	0.446***(0.017)		
Opponent is seeded	-0.444***(0.017)	-0.446***(0.017)		
Surface: carpet - PMLD (hours)	, ,	$-0.029 \ (0.047)$		
Surface: clay - PMLD (hours)		0.033**(0.015)		
Surface: grass - PMLD (hours)		-0.050**(0.023)		
Surface: hard - PMLD (hours)		$-0.011 \ (0.012)$		
Best of 3 - PMLD (hours)	0.024** (0.009)	, ,		
Best of 5 - PMLD (hours)	-0.096***(0.018)			
Constant	0.000 (0.010)	$-0.000 \ (0.010)$		
Observations	90,620	90,620		
Log Likelihood	$-56,\!641.040$	-56,653.550		
Akaike Inf. Crit.	113,294.100	113,323.100		
Note:	*n<0.1·*	*p<0.05: ***p<0.01		

Note:

p<0.1; **p<0.05;

Thanks

Professor Stigler for advising me