Define $a_0 := \infty$, $a_n := \sum_{k > n} \mu_+^{-1}(\delta^k)/k$ for $n \in \mathbb{N}$, and the function ψ by

$$\psi(t) := \sum_{n \in \mathbb{N}_0} \delta^n \mathbb{1}_{(a_{n+1}, a_n]}(t), \quad t \ge 0.$$

Then

$$F(t) \le \psi(4t)$$
 for all $t \le t_0 := \frac{\delta}{4(2+\delta)} \mu_+^{-1}(1)$.

Proof. The assumptions imply that μ_+ is continuous and strictly increasing and hence is the cumulative mass function of a continuous measure on $[0, \infty)$. Moreover, μ_+ is a bijection of $[0, \infty)$, and its generalized inverse μ_+^{-1} is simply the inverse function. Let $\psi_0 = \psi$, and for $n \in \mathbb{N}$, define ψ_n recursively by

$$\psi_{n+1}(t) := 1 - \exp\left(-\psi_n(t) - \int_0^{t/4} \psi_n(t-4x) \,\mu_+(\mathrm{d}x)\right), \quad t \ge 0.$$

Denote by **T** denoting the smoothing transform associated with the Poisson point process with intensity measure $\mu = \delta_0 + \mu_+$ as given by (3.2) and its representation (5.1). By induction, we observe that

$$1 - \psi_n(4t) = \mathbf{T}^n [1 - \psi(4(\cdot))](t), \quad t \ge 0.$$

Thus, by Theorem 3.4(b), we infer that $\psi_n(4t) \to F(t)$ as $n \to \infty$ for all t > 0.

To complete the proof, it remains to show that $\psi_n(t) \leq \psi(t)$ holds for all $t \leq 4t_0$ and $n \in \mathbb{N}_0$. We will prove the slightly stronger statement $\psi_n(t) \leq \psi(t)$ for all $t \leq a_{k_0}$ via induction on n, where $k_0 \in \mathbb{N}_0$ is chosen such that

$$a_{k_0+1} < 4t_0 \le a_{k_0}. (5.3)$$

For n=0, the claim is trivially true (base case). For the inductive step, assume $\psi_n(t) \leq \psi(t)$ for all $t \leq a_{k_0}$ and some $n \in \mathbb{N}_0$. We will show that $\psi_{n+1}(t) \leq \psi(t)$ for all $t \in (a_{k+1}, a_k]$ and $k \geq k_0$. If $k_0 = 0$, for $t > a_1$ we clearly have $\psi(t) = 1 \geq \psi_{n+1}(t)$. Thus we can assume $k \geq k_0 \vee 1$. Let $t \in (a_{k+1}, a_k]$ for $k \geq k_0 \vee 1$. Then we have

$$\psi_{n+1}(t) \leq \psi_{n+1}(a_k) = 1 - \exp\left(-\psi_n(a_k) - \int_0^{a_k/4} \psi_n(a_k - 4x) \,\mu_+(\mathrm{d}x)\right)$$

$$\leq 1 - \exp\left(-\psi(a_k) - \int_0^{a_k/4} \psi(a_k - 4x) \,\mu_+(\mathrm{d}x)\right)$$

$$= 1 - \exp\left(-(\psi(t) + I_k)\right)$$

where I_k represents the integral in the exponent. To estimate I_k , we first note that

$$I_{k} = \int_{0}^{a_{k}/4} \psi(a_{k} - 4x) \, \mu_{+}(\mathrm{d}x) = \sum_{j \geq k} \int_{[a_{k} - a_{j}, a_{k} - a_{j+1})/4} \psi(a_{k} - 4x) \, \mu_{+}(\mathrm{d}x)$$

$$= \sum_{j \geq k} \delta^{j} \left[\mu_{+} \left(\frac{a_{k} - a_{j+1}}{4} \right) - \mu_{+} \left(\frac{a_{k} - a_{j}}{4} \right) \right]$$

$$= \delta^{k} \sum_{j=0}^{\infty} \delta^{j} \left[\mu_{+} \left(\frac{a_{k} - a_{k+j+1}}{4} \right) - \mu_{+} \left(\frac{a_{k} - a_{k+j}}{4} \right) \right]$$

$$= \psi(t) \sum_{j=0}^{\infty} \delta^{j} (1 - \delta) \mu_{+} \left(\frac{a_{k} - a_{k+j+1}}{4} \right),$$