On the Convergence Properties of Infeasible Inexact Proximal Alternating Linearized Minimization

Yukuan Hu

State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences, China

Joint work with Xin Liu (AMSS)

Group Seminar Aug. 11, 2023

Outline

- Introduction
- PALM-I
- Global Convergence of PALM-I
- Asymptotic Convergence Rates of PALM-I
- Numerical Experiments
- Conclusions and Future Work

Outline

- Introduction
- 2 PALM-
- Global Convergence of PALM-I
- Asymptotic Convergence Rates of PALM-
- Numerical Experiments
- 6 Conclusions and Future Work

Block-Structured Optimization Problems

$$\min_{\mathbf{x}} f(\mathbf{x}_1, \dots, \mathbf{x}_n),
s. t. \mathbf{x}_i \in \mathcal{S}_i := \{ \mathbf{w}_i \in \mathbb{R}^{m_i} : \mathbf{h}_i(\mathbf{w}_i) \le 0 \}, i \in [n].$$
(P)

- $\mathbf{x} = (\mathbf{x}_i)_{i=1}^n := (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \bigotimes_{i=1}^n \mathbb{R}^{m_i}, [n] := \{1, \dots, n\}.$
- $f: \bigotimes_{i=1}^n \mathbb{R}^{m_i} \to \mathbb{R}$: differentiable, possibly nonconvex.
- $\mathbf{h}_i := (h_{i,1}, \dots, h_{i,p_i})^\top : \mathbb{R}^{m_i} \to \mathbb{R}^{p_i}$: convex differentiable, $i \in [n]$.
- Applications:
 - 3D anisotropic frictional contact; [Kučera 2008]
 - image processing; [Bonettini et al. 2018]
 - topology optimization; [Liu et al. 2020]
 - electronic structure calculation; [H. et al. 2023]

- ...

Proximal Alternating Linearized Minimization (PALM)

Framework 1: PALM for solving the problem (P). [Bolte et al. 2014]

8 end

Output:
$$\mathbf{x}^{(k)} = (\mathbf{x}_i^{(k)})_{i=1}^n \in \bigotimes_{i=1}^n \mathbb{R}^{m_i}$$
.

- $\nabla_i := \nabla_{\mathbf{x}_i}, \mathbf{x}_{< i} := (\mathbf{x}_1, \dots, \mathbf{x}_{i-1}), \mathbf{x}_{> i} := (\mathbf{x}_i, \dots, \mathbf{x}_n), i \in [n].$
- Solving the subproblem (1) ⇔ Projecting

$$\tilde{\mathbf{x}}_{i}^{(k)} := \mathbf{x}_{i}^{(k)} - \frac{1}{\sigma_{i}^{(k)}} \nabla_{i} f(\mathbf{x}_{< i}^{(k+1)}, \mathbf{x}_{\ge i}^{(k)})$$
 (2)

onto S_i .

Related Works

PALM-E [Razaviyayn et al. 2013; Xu-Yin 2013; Bolte et al. 2014; Wang et al. 2018; ...]

- Subproblem (1) is **exactly** solved.
- Sufficient reduction:

$$a_1 \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|^2 \le f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)}).$$

Subgradient norm lower bound:

$$\operatorname{dist}(0, \partial F(\mathbf{x}^{(k+1)})) \le a_2 \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|,$$

where $F := f + \sum_{i=1}^{n} \delta_{\mathcal{S}_i}$, $\delta_{\mathcal{S}_i}$ is the indicator function for \mathcal{S}_i .

PALM-F [Hua-Yamashita 2016; Bonettini et al. 2018; Ochs 2019; Gur et al. 2022; ...]

- Subproblem (1) is **inexactly** solved but $\mathbf{x}_i^{(k)} \in \mathcal{S}_i$ throughout iterations.
- (Approx.) sufficient reduction + (Approx.) subgradient norm lower bound.
- Objective monotonicity is enforced via, e.g., line search.

Related Works

PALM-E [Razaviyayn et al. 2013; Xu-Yin 2013; Bolte et al. 2014; Wang et al. 2018; ...]

- Subproblem (1) is exactly solved.
- Sufficient reduction:

$$a_1 \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|^2 \le f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)}).$$

Subgradient norm lower bound:

$$\operatorname{dist}(0, \partial F(\mathbf{x}^{(k+1)})) \le a_2 \|\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}\|,$$

where $F := f + \sum_{i=1}^{n} \delta_{\mathcal{S}_i}$, $\delta_{\mathcal{S}_i}$ is the indicator function for \mathcal{S}_i .

PALM-F [Hua-Yamashita 2016; Bonettini et al. 2018; Ochs 2019; Gur et al. 2022; ...]

- Subproblem (1) is **inexactly** solved but $\mathbf{x}_i^{(k)} \in \mathcal{S}_i$ throughout iterations.
- (Approx.) sufficient reduction + (Approx.) subgradient norm lower bound.
- Objective monotonicity is enforced via, e.g., line search.

What if infeasible inexactness emerges?

Two Illustrative Examples

Example 1 (Linear constraints)

The feasible region S_i is the **Birkhoff polytope**

$$S_i := \left\{ W \in \mathbb{R}^{m_i \times m_i} : W\mathbf{1} = \mathbf{1}, \ W^\top \mathbf{1} = \mathbf{1}, \ W \ge 0 \right\},$$

where "1" is the all-one vector in \mathbb{R}^{m_i} .

- Applications: optimal transport problems, electronic structure calculation, ...
 [Chen et al. 2014; Peyré-Cuturi 2019; H. et al. 2023; ...]
- # variables = m_i^2 vs # equality constraints = $2m_i \Rightarrow$ Dual perspective.
- Semismooth Newton method for dual problem ⇒ Infeasibility.
 [Li et al. 2020; H. et al. 2023]

Palm-I 4/34

Two Illustrative Examples (Cont.)

Example 2 (Nonlinear constraints)

The feasible region S_i is an **ellipsoid** in \mathbb{R}^{m_i}

$$S_i := \left\{ \mathbf{w} \in \mathbb{R}^{m_i} : \frac{1}{2} \mathbf{w}^\top A_i \mathbf{w} + \mathbf{b}_i^\top \mathbf{w} \le \alpha_i \right\},\,$$

where $I \neq A_i \in \mathbb{S}_{++}^{m_i}$, $\mathbf{b}_i \in \mathbb{R}^{m_i}$, and $\alpha_i > 0$.

- Applications: topology optimization, 3D anisotrpic friction contact, polynomial optimization, sensor network localization, ...
- Hybrid projection algorithm ⇒ Feasibility. [Dai 2006]
- Alternating direction method of multipliers ⇒ Infeasibility. [Jia et al. 2017]

[Kučera 2008; He et al. 2010; Luo-Zhang 2010; Li et al. 2012; Liu et al. 2020; ...]

Palm-I 5/34

Related Works (Cont.)

PALM-I

- Subproblem (1) is **inexactly** solved and $\mathbf{x}_{i}^{(k)} \notin \mathcal{S}_{i}$ can happen.
- The only existing work: [Frankel et al. 2015]
 - hypothesis on iterates: there exist β_1 , $\beta_2 > 0$ such that, for any $i \in [n]$, $k \ge 0$,

$$\begin{cases} & \sum_{j=1}^{i-1} \|\mathbf{x}_{j}^{(k+1)} - \bar{\mathbf{x}}_{j}^{(k+1)}\| + \sum_{j=i}^{n} \|\mathbf{x}_{j}^{(k)} - \bar{\mathbf{x}}_{j}^{(k)}\| \leq \beta_{1} \|\bar{\mathbf{x}}_{i}^{(k+1)} - \bar{\mathbf{x}}_{i}^{(k)}\|, \\ & \left\langle \mathbf{x}_{i}^{(k)} - \bar{\mathbf{x}}_{i}^{(k)}, \bar{\mathbf{x}}_{i}^{(k+1)} - \bar{\mathbf{x}}_{i}^{(k)} \right\rangle \leq \beta_{2} \|\bar{\mathbf{x}}_{i}^{(k+1)} - \bar{\mathbf{x}}_{i}^{(k)}\|^{2}, \end{cases}$$

where $\bar{\mathbf{x}}_i^{(k+1)}$ is the solution of the subproblem (1);

- sufficient reduction over $\{f(\bar{\mathbf{x}}^{(k)})\}$, where $\bar{\mathbf{x}}^{(k)} := (\bar{\mathbf{x}}_i^{(k)})_{i=1}^n \in \bigotimes_{i=1}^n \mathbb{R}^{m_i};$
- only theoretical values.

Our goal: convergence properties of PALM-I with implementable inexact criteria.

Outline

- Introduction
- PALM-I
- Global Convergence of PALM-I
- Asymptotic Convergence Rates of PALM-
- Numerical Experiments
- 6 Conclusions and Future Work

Complete Description of PALM-I

Algorithm 2: PALM-I for solving the problem (P).

Input:
$$\mathbf{x}^{(0)} \in \bigotimes_{i=1}^n \mathbb{R}^{m_i}, \bar{\varepsilon} > 0, \{ \varepsilon^{(k)} \in [0, \bar{\varepsilon}] \}, M_u, M_l > 0, \{ \sigma_i^{(0)} \in [M_l, M_u] \}_{i=1}^n.$$

1. Set $k := 0$.

- 2 while certain conditions not satisfied do
- $\mathfrak{s} \mid \mathsf{for} \ i \in [n] \ \mathsf{do}$
- Solve the *i*-th proximal linearized subproblem (1) to obtain $\mathbf{x}_i^{(k+1)} \in \mathbb{R}^{m_i}$ such that

$$\exists \, \boldsymbol{\lambda}_i^{(k+1)} \in \mathbb{R}_+^{p_i}, \text{ s. t. } \sqrt{r_i(\mathbf{x}_i^{(k+1)}, \boldsymbol{\lambda}_i^{(k+1)}, \tilde{\mathbf{x}}_i^{(k)})} \le \varepsilon^{(k)},$$

where $\tilde{\mathbf{x}}_i^{(k)}$ is computed via the equation (2).

- Update the *i*-th proximal parameter $\sigma_i^{(k)}$ to $\sigma_i^{(k+1)} \in [M_l, M_u]$ if necessary.
- 6 end
- 7 Set k := k + 1.
- 8 end

5

Output:
$$\mathbf{x}^{(k)} = (\mathbf{x}_i^{(k)})_{i=1}^n \in \bigotimes_{i=1}^n \mathbb{R}^{m_i}$$
.

For any $i\in[n]$, residual function $r_i:\mathbb{R}^{m_i}\times\mathbb{R}^{p_i}\times\mathbb{R}^{m_i}\to\mathbb{R}_+$ is defined as

$$r_{i}(\mathbf{x}_{i}, \boldsymbol{\lambda}_{i}, \tilde{\mathbf{x}}_{i}) := \underbrace{\max\left\{\left\langle \mathbf{x}_{i}, \mathbf{x}_{i} - \tilde{\mathbf{x}}_{i} + \nabla \mathbf{h}_{i}(\mathbf{x}_{i}) \boldsymbol{\lambda}_{i}\right\rangle, 0\right\} + \left\|\mathbf{x}_{i} - \tilde{\mathbf{x}}_{i} + \nabla \mathbf{h}_{i}(\mathbf{x}_{i}) \boldsymbol{\lambda}_{i}\right\|_{\infty}}_{\text{substationarity}}$$

$$+\underbrace{\left\|\max\left\{\mathbf{h}_{i}(\mathbf{x}_{i}),0\right\}\right\|_{\infty}}_{\text{feasibility}}+\underbrace{\max\left\{-\left\langle\boldsymbol{\lambda}_{i},\mathbf{h}_{i}(\mathbf{x}_{i})\right\rangle,0\right\}}_{\text{complementary slackness}}.$$

Complete Description of PALM-I (Cont.)

How to obtain $\lambda_i^{(k+1)}$?

- Primal-dual subsolvers ⇒ Dual variables.
- Solving an extra linear programming:

$$\min_{\boldsymbol{\lambda}_i \in \mathbb{R}_+^{p_i}} 0, \quad \text{s. t.} \left\{ \begin{array}{l} \left\langle \mathbf{x}_i^{(k+1)}, \mathbf{x}_i^{(k+1)} - \tilde{\mathbf{x}}_i^{(k)} + \nabla \mathbf{h}_i(\mathbf{x}_i^{(k+1)}) \boldsymbol{\lambda}_i \right\rangle \leq \frac{(\varepsilon^{(k)})^2}{4}, \\ -\frac{(\varepsilon^{(k)})^2}{4} \mathbf{1} \leq \mathbf{x}_i^{(k+1)} - \tilde{\mathbf{x}}_i^{(k)} + \nabla \mathbf{h}_i(\mathbf{x}_i^{(k+1)}) \boldsymbol{\lambda} \leq \frac{(\varepsilon^{(k)})^2}{4} \mathbf{1}, \\ -\left\langle \boldsymbol{\lambda}, \mathbf{h}_i(\mathbf{x}_i^{(k+1)}) \right\rangle \leq \frac{(\varepsilon^{(k)})^2}{4}, \end{array} \right.$$

at any subiteration where $\|\max\{\mathbf{h}_i(\mathbf{x}_i^{(k+1)}),0\}\|_{\infty} \leq \frac{(\varepsilon^{(k)})^2}{4}$.

Error Bound for Subproblem

Lemma 1

Suppose that f is continuously differentiable with respect to each variable block over $\bigotimes_{i=1}^n \bar{S_i}$, where $\bar{S_i} := \{\mathbf{w}_i \in \mathbb{R}^{m_i} : \operatorname{dist}(\mathbf{w}_i, \mathcal{S}_i) \leq \bar{\varepsilon}\}$ for $i \in [n]$. For any $i \in [n]$, assume that \mathcal{S}_i is convex compact and \mathbf{h}_i fulfills one of the following:

- (i) \mathbf{h}_i is a linear mapping;
- (ii) \mathbf{h}_i satisfies the Slater constraint qualification (CQ), i.e., $\mathbf{h}_i(\hat{\mathbf{x}}_i) < 0$ for some $\hat{\mathbf{x}}_i \in \mathbb{R}^{m_i}$, and the Hoffman-like bound

$$\operatorname{dist}(\mathbf{x}_{i}, \mathcal{S}_{i}) \leq \tilde{c}_{i} \| \max\{\mathbf{h}_{i}(\mathbf{x}_{i}), 0\} \|,$$

$$\forall \, \mathbf{x}_{i} \in \tilde{\mathcal{S}}_{i} := \left\{ \mathbf{w}_{i} \in \mathbb{R}^{m_{i}} : \operatorname{dist}(\mathbf{w}_{i}, \bar{\mathcal{S}}_{i}) \leq \frac{\bar{\mathcal{M}}_{i}}{M_{l}} \right\}$$
(3)

holds for some constant $\tilde{c}_i \geq 0$, where $\bar{\mathcal{M}}_i := \sup_{\mathbf{x} \in \bigotimes_{i=1}^n \bar{\mathcal{S}}_i} \|\nabla_i f(\mathbf{x})\|$.

Let $\{\mathbf{x}^{(k)}\}$ be the sequence generated by PALM-1. Then there exists a constant $\omega \geq 0$ such that $\|\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}^{(k+1)}\| \leq \omega \varepsilon^{(k)}$ holds for any $k \geq 0$.

Palm-I 9/34

Error Bound for Subproblem (Cont.)

When does the Hoffman-like bound hold?

[Mangasarian 1998; Bertsekas 1999]

- h_i is linear (Example 1).
- h_i satisfies an enhanced Slater CQ (Example 2).

$$\left\{ \begin{array}{l} \exists \ \hat{\mathbf{x}}_i \in \mathbb{R}^{m_i}, \ \mathrm{s. \ t. \ } \mathbf{h}_i(\hat{\mathbf{x}}_i) < 0; \ \mathsf{and} \\ \exists \ \zeta \geq 0, \ \mathrm{s. \ t. \ } \frac{\|\mathbf{y}_i - \hat{\mathbf{x}}_i\| - \mathrm{dist}(\mathbf{y}_i, \mathcal{S}_i)}{\min_{j=1, \dots, p_i} \left\{ -h_{i,j}(\hat{\mathbf{x}}_i) \right\}} \leq \zeta, \ \forall \ \mathbf{y}_i \in \tilde{\mathcal{S}}_i. \end{array} \right.$$

Our inexact criteria are more implementable.

Outline

- Introduction
- 2 PALM-
- Global Convergence of PALM-I
- Asymptotic Convergence Rates of PALM-
- Numerical Experiments
- 6 Conclusions and Future Work

Assumptions on Input Data

Assumption 1

The objective function f is Lipschitz continuously differentiable with respect to each variable block over $\bigotimes_{i=1}^n \bar{S}_i$, namely, for $i \in [n]$, there exists a modulus $L_i > 0$ such that $\|\nabla_i f(\mathbf{x}) - \nabla_i f(\mathbf{x}')\| \le L_i \|\mathbf{x} - \mathbf{x}'\|$ for any $\mathbf{x}, \mathbf{x}' \in \bigotimes_{i=1}^n \bar{S}_i$.

Assumption 2

For any $i \in [n]$, S_i is convex and compact, and one of the following holds for \mathbf{h}_i :

(a) \mathbf{h}_i is linear;

(b) h_i satisfies the Slater CQ and the Hoffman-like bound (3).

Palm-i 11/34

Conditions on the Tolerance Sequence

Condition 1

- (a) The sequence $\{\varepsilon^{(k)}\}$ is nonnegative square summable.
- (b) The sequence $\{\varepsilon^{(k)}\}$ is nonnegative summable and there exists a $\bar{\theta} \in (0,1)$ such that $\{(e^{(k)})^{\bar{\theta}}\}$ is summable, where $e^{(k)} := \sum_{t=k}^{\infty} (\varepsilon^{(t)})^2$ for any $k \geq 0$.

Remarks on Condition 1 (b)

- $\varepsilon^{(k)} = \frac{\bar{\varepsilon}}{(k+1)^{\ell}}, \ \ell > 1 \Rightarrow e^{(k)} = \mathcal{O}(k^{(2\ell-1)}) \Rightarrow \bar{\theta} \in \left(\frac{1}{2\ell-1}, 1\right).$
- A more intuitive but restrictive alternative: $\sum_{k=1}^{\infty} k(\varepsilon^{(k)})^{2\bar{\theta}} < \infty$.

Palm-i 12/34

Sufficient Reduction over Surrogate Sequence

Let $L := \max_i L_i$ and $\Delta \mathbf{x}^{(k)} := \bar{\mathbf{x}}^{(k)} - \mathbf{x}^{(k)}$ for any $k \ge 0$.

Proposition 1

Suppose that Assumption 1 holds. Let $\{\mathbf{x}^{(k)}\}$ be the sequence generated by PALM-I, where $M_u \geq M_l > L$. Then there exist positive sequences $\{C_0^{(k)}\}$ and $\{C_1^{(k)}\}$ such that, for any $k \geq 0$,

$$f(\bar{\mathbf{x}}^{(k)}) - f(\bar{\mathbf{x}}^{(k+1)}) \ge C_0^{(k)} \|\bar{\mathbf{x}}^{(k+1)} - \mathbf{x}^{(k)}\|^2 - C_1^{(k)} \|\Delta \mathbf{x}^{(k)}\|^2 - C_1^{(k+1)} \|\Delta \mathbf{x}^{(k+1)}\|^2$$

Palm-i 13/34

Sufficient Reduction over Surrogate Sequence

Let $L := \max_i L_i$ and $\Delta \mathbf{x}^{(k)} := \bar{\mathbf{x}}^{(k)} - \mathbf{x}^{(k)}$ for any $k \ge 0$.

Proposition 1

Suppose that Assumption 1 holds. Let $\{\mathbf{x}^{(k)}\}$ be the sequence generated by PALM-I, where $M_u \geq M_l > L$. Then there exist positive sequences $\{C_0^{(k)}\}$ and $\{C_1^{(k)}\}$ such that, for any $k \geq 0$,

$$f(\bar{\mathbf{x}}^{(k)}) - f(\bar{\mathbf{x}}^{(k+1)}) \geq C_0^{(k)} \|\bar{\mathbf{x}}^{(k+1)} - \mathbf{x}^{(k)}\|^2 - C_1^{(k)} \|\Delta\mathbf{x}^{(k)}\|^2 - C_1^{(k+1)} \|\Delta\mathbf{x}^{(k+1)}\|^2$$

Proposition 2

Suppose that Assumptions 1 and 2 hold. Let $\{\mathbf{x}^{(k)}\}$ be the sequence generated by PALM-I, where $M_u \geq M_l > L$ and $\{\varepsilon^{(k)}\}$ fulfills Condition 1 (a). Then

(i) the sequence $\left\{v^{(k)}:=f(\bar{\mathbf{x}}^{(k)})+u^{(k)}+u^{(k+1)}\right\}$ is well defined, where

$$u^{(k)} := \sum_{t=k}^{\infty} C_1^{(t)} \|\Delta \mathbf{x}^{(t)}\|^2;$$

Palm-i 13/34

Sufficient Reduction over Surrogate Sequence

Let $L := \max_i L_i$ and $\Delta \mathbf{x}^{(k)} := \bar{\mathbf{x}}^{(k)} - \mathbf{x}^{(k)}$ for any $k \ge 0$.

Proposition 1

Suppose that Assumption 1 holds. Let $\{\mathbf{x}^{(k)}\}$ be the sequence generated by PALM-I, where $M_u \geq M_l > L$. Then there exist positive sequences $\{C_0^{(k)}\}$ and $\{C_1^{(k)}\}$ such that, for any $k \geq 0$,

$$f(\bar{\mathbf{x}}^{(k)}) - f(\bar{\mathbf{x}}^{(k+1)}) \geq C_0^{(k)} \|\bar{\mathbf{x}}^{(k+1)} - \mathbf{x}^{(k)}\|^2 - C_1^{(k)} \|\Delta\mathbf{x}^{(k)}\|^2 - C_1^{(k+1)} \|\Delta\mathbf{x}^{(k+1)}\|^2$$

Proposition 2

Suppose that Assumptions 1 and 2 hold. Let $\{\mathbf{x}^{(k)}\}$ be the sequence generated by Palm-I, where $M_u \geq M_l > L$ and $\{\varepsilon^{(k)}\}$ fulfills Condition 1 (a). Then

(i) the sequence $\left\{v^{(k)}:=f(\bar{\mathbf{x}}^{(k)})+u^{(k)}+u^{(k+1)}\right\}$ is well defined, where

$$u^{(k)} := \sum_{t=k}^{\infty} C_1^{(t)} \|\Delta \mathbf{x}^{(t)}\|^2;$$

- (ii) for any $k \ge 0$, $v^{(k)} v^{(k+1)} \ge C_0^{(k)} \|\bar{\mathbf{x}}^{(k+1)} \mathbf{x}^{(k)}\|^2 \ge 0$;
- (iii) the sequence $\{v^{(k)}\}$ converges monotonically to some \overline{F} .

PALM-I

Approximate Relative Error Bound for Subdifferential

Proposition 3

Suppose that Assumption 1 holds. Let $\{\mathbf{x}^{(k)}\}$ be the sequence generated by PALM-I, where $M_u \geq M_l > L$. Then there exist an $\bar{M} > 0$ such that, for any $k \geq 0$,

$$\operatorname{dist}(0,\partial F(\bar{\mathbf{x}}^{(k+1)})) \leq \bar{M}\left(\|\bar{\mathbf{x}}^{(k+1)} - \mathbf{x}^{(k)}\| + \|\Delta\mathbf{x}^{(k+1)}\|\right),$$
 where $\partial F(\bar{\mathbf{x}}^{(k+1)})$ refers to the Fréchet subdifferential of F at $\bar{\mathbf{x}}^{(k+1)}$.

Pai M-1 14/34

Global Convergence of PALM-I – A Weak Form

• Stationary point of F: any \mathbf{x} satisfying $0 \in \partial F(\mathbf{x})$.

Proposition 4

Suppose that Assumptions 1 and 2 hold. Let $\{\mathbf{x}^{(k)}\}$ be the sequence generated by PALM-1, where $M_u \geq M_l > L$ and $\{\varepsilon^{(k)}\}$ fulfills Condition 1 (a). Then $\{\mathbf{x}^{(k)}\}$ has at least one limit point and each of the limit point is a stationary point of F.

$$\{ \varepsilon^{(k)} \} \in \ell^2 \Rightarrow$$
 Stationarity of any limit point

Palm-I 15/34

Łojasiewicz Property

Definition 1 ([Attouch-Bolte 2009])

Let $G:\mathbb{E}\to (-\infty,\infty]$ be proper closed, where \mathbb{E} is an Euclidean space. The function G is said to have the Łojasiewicz property at some stationary point $\bar{\mathbf{x}}$ if there exist c>0, $\theta\in[0,1)$, and $\eta>0$ such that

$$|G(\mathbf{x}) - G(\bar{\mathbf{x}})|^{\theta} \le c \cdot \operatorname{dist}(0, \partial G(\mathbf{x})), \ \forall \ \mathbf{x} \in B_{\eta}(\bar{\mathbf{x}}) := \{\mathbf{x} \in \mathbb{E} : ||\mathbf{x} - \bar{\mathbf{x}}|| \le \eta\}.$$

We call θ the Łojasiewicz exponent of G at $\bar{\mathbf{x}}$.

Fig. 1. The illustration of the Łojasiewicz property (drawing with Mathcha).

Palm-i 16/34

Łojasiewicz Property

Definition 1 ([Attouch-Bolte 2009])

Let $G:\mathbb{E} \to (-\infty,\infty]$ be proper closed, where \mathbb{E} is an Euclidean space. The function G is said to have the Łojasiewicz property at some stationary point $\bar{\mathbf{x}}$ if there exist c>0, $\theta\in[0,1)$, and $\eta>0$ such that

$$|G(\mathbf{x}) - G(\bar{\mathbf{x}})|^{\theta} \le c \cdot \operatorname{dist}(0, \partial G(\mathbf{x})), \ \forall \ \mathbf{x} \in B_{\eta}(\bar{\mathbf{x}}) := \{\mathbf{x} \in \mathbb{E} : \|\mathbf{x} - \bar{\mathbf{x}}\| \le \eta\}.$$

We call θ the Łojasiewicz exponent of G at $\bar{\mathbf{x}}$.

Examples: real-analytic functions, convex functions satisfying certain growth conditions, semialgebraic functions, etc.

Palm-I 16/34

Global Convergence of PALM-I – A Strong Form

Assumption 3

The Łojasiewicz property holds for F at each stationary point.

Theorem 1

Suppose that Assumptions 1, 2, and 3 hold. Let $\{\mathbf{x}^{(k)}\}$ be the sequence generated by PALM-I, where $M_u \geq M_l > L$ and $\{\varepsilon^{(k)}\}$ fulfills Condition 1 (b). Then $\{\mathbf{x}^{(k)}\}$ converges to a stationary point of F.

$$\textbf{Lojasiewicz property} + \{\varepsilon^{(k)}\}, \{(e^{(k)})^{\bar{\theta}}\} \in \ell^1 \Rightarrow \textbf{Iterate convergence} \\ \{\mathbf{x}^{(k)}\} \xleftarrow{\text{sufficient reduction}} \{F^{(k)}\} \xleftarrow{\text{Lojasiewicz property}} \{\partial F^{(k)}\} \xleftarrow{\text{relative error bound}} \{\mathbf{x}^{(k)}\}$$

Palm-I 17/34

Why Extra Conditions on $\{\varepsilon^{(k)}\}$ are Required?

Let $\bar{\mathbf{x}}$ be the unique limit point.

Summability of $\{\varepsilon^{(k)}\}$

$$\|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\| \le \sum_{t=k}^{\infty} \|\bar{\mathbf{x}}^{(t+1)} - \mathbf{x}^{(t)}\| + \sum_{t=k}^{\infty} \|\Delta \mathbf{x}^{(t+1)}\|.$$

Summability of $\{(e^{(k)})^{\bar{\theta}}\}$

- $v^{(k)} v^{(k+1)} \ge C_0^{(k)} \|\bar{\mathbf{x}}^{(k+1)} \mathbf{x}^{(k)}\|^2$, $v^{(k)} = f(\bar{\mathbf{x}}^{(k)}) + u^{(k)} + u^{(k+1)}$.
- $\operatorname{dist}(0, \partial F(\bar{\mathbf{x}}^{(k+1)})) \le \bar{M} (\|\bar{\mathbf{x}}^{(k+1)} \mathbf{x}^{(k)}\| + \|\Delta \mathbf{x}^{(k+1)}\|).$
- $\operatorname{dist}(0, \partial F(\bar{\mathbf{x}}^{(k+1)})) \stackrel{\text{Lojasiewicz property}}{\longleftrightarrow} \left| F(\bar{\mathbf{x}}^{(k+1)}) \overline{F} \right|^{\theta}$.

Outline

- Introduction
- 2 PALM-I
- Global Convergence of PALM-I
- Asymptotic Convergence Rates of PALM-I
- Numerical Experiments
- 6 Conclusions and Future Work

Asymptotic Convergence Rates of PALM-I

Theorem 2

Suppose that the assumptions in Theorem 1 hold. Let $\bar{\mathbf{x}}$ be the unique limit point of the sequence $\{\mathbf{x}^{(k)}\}$ generated by PALM-I, where $M_u \geq M_l > L$. Assume that there exists a $K \in \mathbb{N}$ such that $v^{(K)} = \overline{F}$.

- (i) If $\varepsilon^{(k)} = \bar{\varepsilon}\tilde{\rho}^k$ for any $k \geq 0$, where $\tilde{\rho} \in (0,1)$, then $\|\mathbf{x}^{(k)} \bar{\mathbf{x}}\| \leq \mathcal{O}(\tilde{\rho}^k)$ for any $k \geq K$.
- (ii) If $\varepsilon^{(k)} = \frac{\bar{\varepsilon}}{(k+1)^\ell}$ for any $k \geq 0$, where $\ell > 1$, then $\|\mathbf{x}^{(k)} \bar{\mathbf{x}}\| \leq \mathcal{O}\left(k^{-(\ell-1)}\right)$ for any $k \geq K$.

Palm-I 19/34

Asymptotic Convergence Rates of PALM-I (Cont.)

Exponentially decreasing errors

Theorem 3

Suppose that the assumptions in Theorem 1 hold with $\varepsilon^{(k)}=\bar{\varepsilon}\tilde{\rho}^k$ for any $k\geq 0$, where $\tilde{\rho}\in(0,1)$. Let $\bar{\mathbf{x}}$ be the unique limit point of the sequence $\{\mathbf{x}^{(k)}\}$ generated by PALM-I, where $M_u\geq M_l>L$, and $\theta\in[0,1)$ be the Łojasiewicz exponent of F at $\bar{\mathbf{x}}$. Assume that $v^{(k)}>\overline{F}$ for any $k\geq 0$.

- (i) If $\theta=0$, then there exists a $\rho_1\in(0,1)$ such that $\|\mathbf{x}^{(k)}-\bar{\mathbf{x}}\|\leq\mathcal{O}(\rho_1^k)$ for all sufficiently large k.
- (ii) If $\theta \in (0, \frac{1}{2}]$, then there exists a $\rho_2 \in (0, 1)$ such that $\|\mathbf{x}^{(k)} \bar{\mathbf{x}}\| \leq \mathcal{O}(\rho_2^k)$ for all sufficiently large k.
- $\text{(iii)} \ \ \textit{If} \ \theta \in (\tfrac{1}{2},1) \text{, then} \ \|\mathbf{x}^{(k)} \bar{\mathbf{x}}\| \leq \mathcal{O}\left(k^{-\frac{1-\theta}{2\theta-1}}\right) \ \textit{for all sufficiently large} \ k.$

No finite termination for PALM-I when $\theta=0$

Palm-i 20/34

Asymptotic Convergence Rates of PALM-I (Cont.)

Sublinearly decreasing errors

Theorem 4

Suppose that the assumptions in Theorem 1 hold with $\varepsilon^{(k)}=\frac{\bar{\varepsilon}}{(k+1)^\ell}$ for any $k\geq 0$, where $\ell>1$. Let $\bar{\mathbf{x}}$ be the unique limit point of the sequence $\{\mathbf{x}^{(k)}\}$ generated by Palm-I, where $M_u\geq M_l>L$, and $\theta\in[0,1)$ be the Łojasiewicz exponent of F at $\bar{\mathbf{x}}$. Assume that $v^{(k)}>\overline{F}$ for any $k\geq 0$. Then, for all sufficiently large k,

$$\|\mathbf{x}^{(k)} - \bar{\mathbf{x}}\| \leq \left\{ \begin{array}{l} \mathcal{O}\left(k^{-\frac{1-\theta}{2\theta-1}}\right), & \textit{if } \ell \in \left[\frac{\theta}{2\theta-1}, \infty\right) \textit{ and } \theta \in (\frac{1}{2}, 1); \\ \mathcal{O}\left(k^{-(\ell-1)}\right), & \textit{otherwise}. \end{array} \right.$$

Palm-i 21/34

Asymptotic Convergence Rates of PALM-I (Cont.)

Sublinearly decreasing errors

Fig. 2. The surface of the asymptotic convergence rates of PALM-I with sublinearly decreasing errors. The dash line denotes the critical boundary $\ell=\frac{\theta}{\theta-1}$.

Continuous connection with the known rates

Palm-i 22/34

A Review of Asymptotic Rates of PALM

Table 1: Asymptotic convergence rates of PALM under different settings.

θ	$\varepsilon^{(k)}$	Extra assumptions	Rates	References
0	0	-	Finite termination	[Xu-Yin 2013] [Bolte et al. 2014]
	$\frac{\tilde{\rho}^k}{\frac{1}{(k+1)^\ell}}$	$\tilde{\rho} \in (0,1)$ $\ell \in (1,\infty)$	$ \begin{array}{l} \mathcal{O}(\rho_1^k), \text{where } \rho_1 \in (0,1) \\ \mathcal{O}\left(k^{-(\ell-1)}\right) \end{array} $	This work (Theorem 3) This work (Theorem 4)
$(0,\frac{1}{2}]$	0	-	$\mathcal{O}(ho^k)$, where $ ho \in (0,1)$	[Xu-Yin 2013] [Bolte et al. 2014]
	$\frac{\tilde{\rho}^k}{\frac{1}{(k+1)^\ell}}$	$\tilde{\rho} \in (0,1)$ $\ell \in (1,\infty)$	$\mathcal{O}(ho_2^k),$ where $ ho_2\in(0,1)$ $\mathcal{O}\left(k^{-(\ell-1)} ight)$	This work (Theorem 3) This work (Theorem 4)
$(\frac{1}{2},1)$	0	-	$\mathcal{O}\left(k^{-rac{1- heta}{2 heta-1}} ight)$	[Xu-Yin 2013] [Bolte et al. 2014]
	$ ilde{ ho}^k$	$\tilde{\rho} \in (0,1)$	$\mathcal{O}\left(k^{-rac{1- heta}{2 heta-1}} ight)$	This work (Theorem 3)
	$\frac{1}{(k+1)^\ell}$	$\ell \in (1, \infty)$	$ \mathcal{O}\left(k^{-\frac{1-\theta}{2\theta-1}}\right) \\ \mathcal{O}\left(k^{-\frac{1-\theta}{2\theta-1}}\right) \text{ if } \ell \geq \frac{\theta}{2\theta-1} \\ \mathcal{O}\left(k^{-(\ell-1)}\right) \text{ if } \ell < \frac{\theta}{2\theta-1} $	This work (Theorem 4)

Palm-1 23/3²

Outline

- Introduction
- 2 PALM-
- Global Convergence of PALM-I
- Asymptotic Convergence Rates of PALM-
- Numerical Experiments
- 6 Conclusions and Future Work

Optimization with Linear Constraints

$$\begin{split} & \min_{X} \quad \sum_{i=2}^{N} \left\langle X_{i}, \operatorname{Diag}(\boldsymbol{\varrho}) C \right\rangle + \sum_{i=2}^{N} \sum_{j>i} \left(\left\langle X_{i}, \operatorname{Diag}(\boldsymbol{\varrho}) X_{j} C \right\rangle + \beta \left\langle X_{i}, X_{j} \right\rangle \right), \\ & \text{s. t.} \quad X_{i} \in \mathcal{S} := \{ W \in \mathbb{R}^{K \times K} : W \mathbf{1} = \mathbf{1}, \ W^{\top} \boldsymbol{\varrho} = \boldsymbol{\varrho}, \ \operatorname{Tr}(W) = 0, \ W \geq 0 \}, \ \ \forall \ i. \end{split}$$

- Electronic structure calculation. [H. et al. 2023; H.-Liu 2023]
- $\beta \in \mathbb{R}_+$: penalty parameter, $N \in \mathbb{N}$: # electrons, $K \in \mathbb{N}$: # finite elements.
- $\mathcal{T} := \{e_k\}_{k=1}^K$: mesh discretizing a bounded domain $\Omega \subseteq \mathbb{R}^d$ $(d \in \{1, 2, 3\})$.
- $\{X_i\}_{i=2}^N \subseteq \mathbb{R}^{K \times K}$: transport plans (variables).
- $C \in \mathbb{R}^{K \times K}$: Coulomb cost matrix, defined as

$$C_{ij} := \begin{cases} \|\mathbf{d}_i - \mathbf{d}_j\|^{-1}, & \text{if } i \neq j; \\ 0, & \text{otherwise,} \end{cases}$$

where $\{\mathbf{d}_k\}_{k=1}^K \subseteq \mathbb{R}^d$ are the barycenters of elements $\{e_k\}_{k=1}^K$.

• $\boldsymbol{\varrho} := [\varrho_1, \dots, \varrho_K]^{\top} \in \mathbb{R}^K$: discretized density vector, defined as

$$\varrho_k := \frac{1}{N} \int_{e_k} \rho(\mathbf{r}) \, d\mathbf{r}, \ k \in [K],$$

where $\rho: \mathbb{R}^d \to \mathbb{R}_+$ is the single-particle density.

Experimental Settings

Problem data generation

- d = 1, $\beta = 1$, $\Omega = [-1, 1]$, N = 3, K = 36 (# variables = 2592).
- $\rho(x) \propto \exp(-x^2/\sqrt{\pi})$, for any $x \in \mathbb{R}$.
- Equi-mass discretization \Rightarrow all the entries in ϱ are identical.
- Closed-form optimal solution X^{\star} . [Colombo et al. 2015]

Running environment

CPU: Intel Xeon Gold 6242R CPU @ 3.10GHz.

RAM: 510GB.

Operating system: Ubuntu 20.04.

Software: MATLAB R2018b.

Palm-i 25/34

Experimental Settings (Cont.)

Algorithms in comparison - PALM-E, PALM-I

- Proximal parameters: $\sigma_i^{(k)} \equiv \sigma = 10^{-2}, i = 2, \dots, N, k \ge 0.$
- Subsolver: semismooth Newton-CG (SSNCG). [Li et al. 2020]
- Tolerance sequence for SSNCG:
 - PALM-E: $\{\varepsilon^{(k)}\equiv 10^{-7}\}$. - PALM-I: $\{\varepsilon^{(k)}=\max\{\frac{10^{-1}}{(k+1)\ell},10^{-7}\}\}$ with $\ell=0.75$.
- Stopping criterion: relative KKT violation¹⁾ is smaller than 10⁻⁶.

Metrics: KKT violation, CPU time in seconds (s), objective value.

¹⁾ Based upon Assumption 2, the stationarity can be characterized by the KKT conditions.

Numerical Results with Random Initialization

Fig. 3. Averaged relative KKT violation and objective difference with random initialization.

- 100 initial points randomly sampled from standard uniform distribution.
- Average CPU time:
 - PALM-E: 15.97s.PALM-I: 0.46s.
- Solutions with similar qualities.

Palm-I 27/34

Numerical Results with Good Initialization

Fig. 4. Averaged relative KKT violation and objective difference with good initialization.

- 100 initial points generated by random perturbation around X^{\star} (absolute entrywise deviation $\leq 10^{-3}$).
- Average CPU time:
 - PALM-E: 0.85s.PALM-I: 0.03s.
- $\left| f(X^{\text{PALM-I}}) f(X^{\star}) \right| \leq 10^{-5}$ on $\geq 75\%$ samples.

Palm-I 28/34

Optimization with Nonlinear Constraints

$$\min_{\mathbf{x}} \quad \frac{1}{2} \langle \mathbf{x}, A\mathbf{x} \rangle + \langle \mathbf{b}, \mathbf{x} \rangle,
s. t. \quad \frac{1}{2} \langle \mathbf{x}_i, B_i \mathbf{x}_i \rangle + \langle \mathbf{c}_i, \mathbf{x}_i \rangle \leq 1, \ \forall \ i \in [n].$$

 3D anisotropic friction contact, topology optimization, polynomial optimization, sensor network localization, ...

[Kučera 2008; He et al. 2010; Luo-Zhang 2010; Li et al. 2012; Liu et al. 2020; ...]

- $m_i = m \in \mathbb{N}$, $\mathbf{x}_i \in \mathbb{R}^m$, for any $i \in [n]$.
- $A \in \mathbb{S}^{mn}$, $\{B_i\}_{i=1}^n \subseteq \mathbb{S}_{++}^m$.
- $\mathbf{b} \in \mathbb{R}^{mn}$, $\{\mathbf{c}_i\}_{i=1}^n \subseteq \mathbb{R}^m$.

Experimental Settings

Problem data generation

- n = 5, m = 500 (# variables = 2500).
- *A*, **b**: randomly sampled from standard normal distribution.
- ullet For any $i\in[n],$ $B_i=(b_{i,jk}),$ where [Dai 2006; Jia et al. 2017]

$$b_{i,jk} = \left\{ \begin{array}{ll} 10^{\frac{j-1}{m-1}\mathrm{ncond}_i}, & \text{if } j=k; \\ 0, & \text{otherwise}, \end{array} \right.$$

and
$$\{\text{ncond}_i\}_{i=1}^n = \{3.00, 3.25, 3.50, 3.75, 4.00\}.$$

• For any $i \in [n]$, $\mathbf{c}_i = 0 \Rightarrow$ all ellipsoids are concentric.

Running environment

- CPU: Intel Xeon Gold 6242R CPU @ 3.10GHz.
- RAM: 510GB.
- Operating system: Ubuntu 20.04.
- Software: MATLAB R2018b.

Experimental Settings (Cont.)

Algorithms in comparison - PALM-E, PALM-F, PALM-I

- Proximal parameters: $\sigma_i^{(k)} \equiv \sigma = 1, i \in [n], k \geq 0.$
- Subsolvers: [Dai 2006; Jia et al. 2017]
 - PALM-F: hybrid projection algorithm (HP).
 - PALM-E/I: self-adaptive alternating direction method of multiplier (S-ADMM).
- Inexact criterion for HP: [Hua-Yamashita 2016]

$$\|\mathbf{x}_i^{(k+1)} - \tilde{\mathbf{x}}_i^{(k)} + \lambda_{i, \mathsf{HP}}^{(k+1)}(B_i\mathbf{x}_i^{(k+1)} + \mathbf{c}_i)\| \leq \frac{\eta}{2}\|\mathbf{x}_i^{(k+1)} - \mathbf{x}_i^{(k)}\|_{\infty},$$

where $\eta = 0.99\sigma$, $\lambda_{i, HP}^{(k+1)}$ can be determined by least squares.

- Tolerance sequence for S-ADMM:
 - PALM-E: $\{\varepsilon^{(k)} \equiv 10^{-6}\}.$
 - PALM-I: $\{\varepsilon^{(k)} = \max\{\frac{10^{-1}}{(k+1)^{\ell}}, 10^{-6}\}\}$ with $\ell = 0.75$.
- Stopping criterion: relative KKT violation²⁾ is smaller than 10^{-5} .

Metrics: KKT violation, CPU time in seconds (s), objective value.

²⁾Based upon Assumption 2, the stationarity can also be characterized by the KKT conditions.

Numerical Results

Fig. 5. Averaged relative KKT violation and objective difference with random initialization.

- 100 initial points randomly sampled from standard normal distribution.
- Average CPU time:

PALM-E: 30.15s.

PALM-F: 9.26s.PALM-I: 1.74s.

 $\left| f(\mathbf{x}^{\mathsf{PALM-I}}) - f(\mathbf{x}^{\mathsf{PALM-E}}) \right| \ll$ $\left| f(\mathbf{x}^{\mathsf{PALM-F}}) - f(\mathbf{x}^{\mathsf{PALM-E}}) \right|.$

• $f(\mathbf{x}^{\text{PALM-I}}) < f(\mathbf{x}^{\text{PALM-F}}) \text{ on } 95\%$ samples.

Palm-i 32/34

Outline

- Introduction
- PALM-
- Global Convergence of PALM-I
- Asymptotic Convergence Rates of PALM-
- Numerical Experiments
- 6 Conclusions and Future Work

Conclusions and Future Work

Conclusions

- Indispensability of infeasible subsolvers in PALM.
- Better performances of PALM-I compared with PALM-E and PALM-F.
- Shortage and limitations of existing works on PALM-I.
- Convergence properties of PALM-I with implementable inexact criteria.
 - Tools: surrogate sequence + computable error bound + Łojasiewicz property.
 - $-\{\varepsilon^{(k)}\}\in\ell^2\Rightarrow$ stationarity of any limit point.
 - $-\{\varepsilon^{(k)}\},\{(e^{(k)})^{\bar{\theta}}\}\in\ell^1\Rightarrow$ iterate convergence to stationary point.
 - Asymptotic rates with exponentially and sublinearly decreasing errors.

Future work

- Weaker assumptions & Adaptive inexact criteria.
- Accelerated versions (inertia, momentum, ...).
- Nonsmoothness & Nonconvexity.

Palm-i 33/34

References

- H. and X. Liu. The convergence properties of infeasible inexact proximal alternating linearized minimization. Sci. China Math., 2023, DOI: 10.1007/s11425-022-2074-7.
 (Main reference)
- H., H. Chen, and X. Liu. A global optimization approach for multimarginal optimal transport problems with Coulomb cost. SIAM J. Sci. Comput., 2023, 45(3): A1214–A1238.
- H. and X. Liu. The exactness of the ℓ₁ penalty function for a class of mathematical programs with generalized complementarity constraints. Fundam. Res., 2023, DOI: 10.1016/j.fmre.2023.04.006.
- J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. *Math. Program.*, 2014, 146(1): 459–494.
- P. Frankel, G. Garrigos, and J. Peypouquet. Splitting methods with variable metric for Kurdyka-Łojasiewicz functions and general convergence rates. *J. Optim. Theory* Appl., 2015, 165(3): 874–900.

Palm-I 34/34

Thanks for your attention!

Email: ykhu@lsec.cc.ac.cn