Problem Set 4

[Revised 18 Sept 3:15pm]

Deliverable: Submit your responses as a single PDF file on the collab site before **6:29pm** on **Friday, 23 September**. Follow the directions on Generating PDFs posted on the course site.

Collaboration Policy - Read Carefully

For this assignment, you should work in groups of *one* to *four* students of your choice with no restrictions. The rest of the collaboration policy is identical to what it was on PS3, and is not repeated here.

Preparation

This problem set focuses on Chapter 4 (up to Section 4.4) of the MCS book, and Class 7 and Class 8.

Directions

Solve as many of the 9 problems as you can. For maximum credit, your answers should be correct, clear, well-written, and convincing. The problems marked with (\star) are believed to be challenging enough that it is not necessary to solve them well to get a "green-star level" grade on this assignment (although we certainly hope you will try and some will succeed!)

Sets

- 1. For each set *S* defined below, indicate whether or not it is equivalent to *A*, where *A* and *B* are any sets. Support your answer with a brief explanation.
 - a. $S = A \cup \emptyset$.
 - b. $S := \{x | x \in A \land x \in \overline{B}\}$
 - c. $S := \{x | x \in A \land x \notin \overline{A}\}$
 - **d.** *S* ::= *A* ∩ (*B* ∪ *A*).
 - e. $S := A (B \cap \overline{B})$.
- 2. Use the definitions of the set operations to prove that for all sets *A* and *B*,

$$A = (A \cap B) \cup (A - B)$$
.

cs2102: Problem Set 4

3. In Class 7, we defined set difference as:

$$\forall x.x \in A - B \iff x \in A \land x \notin B.$$

Provide an alternate (but equivalent in meaning) definition of set different using only the other defined set operations (you may use any of the union (\cup), intersection (\cap), and complement (\overline{S}) operations in your definition, but no other operations or qualifiers). A good answer will include a proof that shows your definition is equivalent to the original set difference definition.

Functions and Relations

- 4. For each function described below, identify a *domain* and *codomain* that make the function *total*. For example, for f(x) := 1/x you could correctly answer that the domain is $\mathbb{R} \{0\}$ and codomain is \mathbb{R} .
 - a. f(x) := x + 1
 - **b.** $f(x) := \frac{x}{(x-1)}$
 - c. $f(S) := \min_{s \in S} \min_{s \in S} (S \cap \mathbb{N})$ where $\min_{s \in S} \text{ is defined for all sets } A$ that are well-ordered by $s \in S$ as:

$$\operatorname{minimum}_{<}(A) = x \in A \text{ such that } \forall a \in A - \{x\}. x < a.$$

and < is a binary relation on the real numbers.

- 5. Consider the relation, <, with the domain set, $\{1,2,3\}$ and codomain set, $\{0,1,2\}$.
 - a. Describe the graph of the relation. Your description can be a picture showing the graph, or some other clear way of defining that graph.
 - b. Which of these properties does the relation have: *function, total, injective, surjective, bijective.* (You do not need to provide a detailed proof, but should support your answer with a very brief explanation.)
- 6. Consider the relation, \leq , with the domain set, \mathbb{N} and codomain set \mathbb{N} .
 - a. Describe the graph of the relation. (For this one, you won't be able to draw a complete picture since the domain set is infinite. Instead, your description can be a picture illustrating the graph in a clear way, or some other clear way of defining that graph.)
 - b. Which of these properties does the relation have: *function, total, injective, surjective, bijective.* (You do not need to provide a detailed proof, but should support your answer with a very brief explanation.)
- 7. Give an example of a relation $R: A \to \overline{A}$ that is bijective, for any set A. (You should specify carefully the domain of discourse, needed for \overline{A} to be meaningfully defined.)

cs2102: Problem Set 4

- 8. (Extracted from MCS Problem 4.23) Five basic properties of binary relations $R:A\to B$ are:
 - (1) R is a surjection [≥ 1 in]
 - (2) R is an injection [≤ 1 in]
 - (3) R is a function [≤ 1 out]
 - (4) R is total [> 1 out]
 - (5) R is empty [= 0 out]

Below are some assertions about a relation *R*. For each assertion, write the numbers (1, 2, 3, 4, 5 from above) of all properties above that the relation *R must* have (that is, the properties that are implied by the stated assertion); write "none" if *R* might not have any of these properties.

Variables a, a_1, a_2, \cdots are elements of A, and b, b_1, b_2, \cdots are elements of B.

The first answer is provided as an example.

- a. $\forall a. \forall b. aRb$. Answer: (1), (4)
- **b.** $\neg(\forall a. \forall b. aRb)$.
- c. $\forall a. \exists b. aRb$.
- d. $\forall b$. $\exists a$. aRb.
- e. *R* is a bijection.
- f. $\forall a_1, a_2, b. (a_1Rb \land a_2Rb) \implies a_1 = a_2.$
- g. $\forall a_1, a_2, b_1, b_2. (a_1Rb_1 \land a_2Rb_2 \land b_1 \neq b_2) \implies a_1 \neq a_2.$
- 9. (*) Consider the sets *A* and *B* where |A| = n and |B| = m.
 - a. Assuming n = m (just for this sub-part), how many *bijective* relations are there $R : A \to B$.
 - b. How many *total* functions are there $f: A \rightarrow B$.
 - c. How many *partial* functions are there $f: A \to B$. (Note that the set of *partial* functions includes all *total* functions; partial means there *may* be domain elements with no associated codomain element.)
 - d. How many *injective* relations are there $R: A \rightarrow B$.