Integrated task and motion planning in belief space

A PNM/HPN approach

Aijun Bai

November 18, 2013

Introduction

- Integrated task and motion planning in belief space
 - Represent belief sub-space as predicates by using PNM
 - Define operators over predicates with deterministic action/observation models
 - Perform goal-regression based HPN planning
 - Execute resulted plan and do replanning if necessary
- Perspective from a view of traditional task and motion planning
 - Inference on belief states in task planning
 - Deterministic planning in motion planning

HPN

- Hierarchical Task and Motion Planning in the Now
 - World States: a completely detailed description of both the geometric and non-geometric aspects of a situation
 - ► Fluents: symbolic predicates applied to a set of states
 - Goals: a set of world states, described using a conjunction of ground fluents
 - Operators: hierarchical "actions" defined over fluents
- Algorithm; c.f. Section V in [Kaelbling and Lozano-Pérez(2011)]
- Example; c.f. Figure 2 in [Kaelbling and Lozano-Pérez(2011)]

HPN to MDPs

- Determinizing the MDP model into a weighted graph
 - $W(s, a, s') = \alpha C(s, a) \log T(s, a, s')$
- Regression with costs
 - A weighted graph in which the nodes are sets of states (pre-images) and arcs are labeled by actions and costs
 - Use logical expressions to compactly denote subsets of the state space
 - Perform regression search, chaining pre-images backward from the goal to eventually reach a set of states that contains the initial state

HPN to MDPs (cont.)

- HPN plan in MDPs with uncertainty
 - Crude open-loop control policy
 - Only ensure positive probability of achieving the goal
 - ► Exist a coverage area (a.k.a. envelope)
- Execution and replanning
 - To continue executing: transition to a forward or backward state in the envelope
 - ➤ To return to high-level HPN: execution failed or exit the envelope
 - To replan: all levels of HPN returned
- Markov HPN; c.f. Section 3.1.3 in [Kaelbling and Lozano-Pérez(2013)]

PNM

- Probability near mode of a distribution
 - Specify a property shared by a set of underlying distributions
 - ► PNM fluents; c.f. Section 4.2 in [Kaelbling and Lozano-Pérez(2013)]
 - $\blacktriangleright BV(X, \epsilon, \delta)$
 - $\blacktriangleright ModeNear(X, v, \delta)$
 - \triangleright $B(X, v, \epsilon, \delta)$

PNM with beliefs

- Use PNM fluents to specify properties of belief states
- A PNM fluent corresponds to a set of belief states
- Example:
 - \triangleright B(RobotPositionX, 2.0, 0.05, 0.5)
 - $Pr[1.5 \le RobotPositionX \le 2.5] >= 0.95$
 - $\mu \in [1.5, 2.0], \ \sigma \in [g(\mu), f(\mu)]$
 - Sub-space in μ - σ space; c.f. Figure 12 (b) in [Kaelbling and Lozano-Pérez(2013)]

PNM/HPN to POMDPs

- HPN in belief space
 - Fluents: PNM fluents applied to a set of belief states
 - Goals: a set of belief states, described using a conjunction of PNM fluents
 - Operators: actions (including observing actions) as operators defined over PNM fluents (with deterministic action/observation models)
- ► Algorithm; c.f. Section 3.2.1 in [Kaelbling and Lozano-Pérez(2013)]

References

- L. P. Kaelbling and T. Lozano-Pérez.
 Hierarchical task and motion planning in the now.
 In Robotics and Automation (ICRA), 2011 IEEE
 International Conference on, pages 1470–1477. IEEE, 2011.
- L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space. 2013.