

# A Network Coding Equivalent Content Distribution Scheme for P2P-VoD Streaming

### **Project Members:**

L. Karthik ChandranM. KarthikKarthika Sindhu

#### **Guide:**

Mrs. N. Senthamarai, M.E., (Ph.D)

A.P. Sr. Gr.

# Objectives

- To solve the problems with content distribution in P2P networks
  - To reduce delays caused by random access (assuming that the network quality is ideal).
  - To facilitate video access by new peers even if initial parent node is unable to respond.

### Motivation

- Video streaming services are on the rise
  - P2P technology, especially, is being used more often to share larger files such as videos.
  - The algorithm proposed in this paper can reduce delays and improve seek performance in videos.

# Literature Survey (1)

# Distributed Storage to Support User Interactivity in Peer-to-Peer Video Streaming

Ken Yiu, W.-P., Xing Jin; Gary Chan, S.-H. [IEEE 2006]

### Techniques/algorithms/Approaches used:

Distributed Video Storage using DHT and VMesh

#### Performance Achieved:

- Pointers to peers which are storing video segments far away from the current playback position can help a user seek a far away position more efficiently.
- The seeking latency is very low.

#### Drawbacks:

- If a node loses some segments because of background traffic, it needs to request for retransmission from its parent.
- In the case of a large group of users, the number of clusters is very large and the search cost is high.

# Literature Survey (2)

# A Dynamic Skip List-based Overlay for On-Demand Media Streaming with VCR Interactions

Dan Wang, Jiangchuan Liu [IEEE 2008]

#### Techniques/algorithms/Approaches used:

MULTI-SUPPLIER DATA SCHEDULING :

Network Coding based Data Scheduling.

#### Performance Achieved:

• Dynamic Skip List (DSL), for on-demand overlay media streaming.

#### Drawbacks:

- Layers are not well-balanced, which leads to inaccurate jumps and hence more segment losses.
- Under high speeds, the quality of the system is much worse.

# Literature Survey (3)

## P2VoD: Providing Fault Tolerant Video-on-Demand Streaming in Peer-to-Peer Environment

Do, T.T., Hua, K.A.; Tantaoui, M.A. [IEEE 2004]

### Techniques/algorithms/Approaches used:

- Join Algorithm
- Parent selection using:
  - Round Robin Selection
  - Smallest Delay Selection
  - Smallest Distance Selection

#### Performance Achieved:

 Allows clients to join the system faster and also requires less time for an affected client to recover from a failure

#### Drawbacks:

- High Seek Latency
- High Segment miss rate

# Issues in the Existing Systems

- Search cost is High
- Jump performance is poor
- Startup time is long
- Needs to maintain index for locating parent peers

# **Proposed System**

 Child peer need not search for new parent peers to view next segment.

 With sufficient encoded blocks, the original segment can be decoded.

Seek and jump performance is vastly improved.

# System Architecture



## **Functional Architecture**



## List of Modules

- 1. Segmentation & Encoding
- 2. Retrieval & Playback

### Module 1

### Segmentation & Encoding

- Input: Video
- Divide video into X segments
- Further, divide each segment into blocks b using Interleaving scheme
- Encode the blocks using a random co-efficient vector using NCECD scheme
- Output: Encoded blocks

## **FLOWCHART**

### Segmentation & Encoding

Basic interleaving scheme

NCECD scheme



Segments

(X1, X2...Xn)

**Blocks** 

(bx,1; bx,2...bx,m)

Encoded blocks
Using random coding
coefficient vectors

$$\textstyle E_{bX,i} = \sum_{j=1}^m c\left(i,j\right).b\left(X,j\right)$$

$$f_i = [C_{i,1}, C_{i,2},...]$$

$$F = M \times M$$
  
 $E = [EbX, 1 ; EbX, 2 .....]$   
Recovered using  $X = F^{-1} E^{T}$ 

### Module 2

### Retrieval and Playback

- Input: Encoded blocks
- Retrieve the desired segments
- Store other blocks in local cache and relay when required
- When sufficient blocks are available, start playback
- Decode the video as its buffered
- Output : Video playback

## **FLOWCHART**

#### Retrieval and Playback



# **Activity Diagram**







#### Before hosting video

```
compile-single:
run-single:
Binding to port 24242, please wait ...
Server started: ServerSocket[addr=0.0.0.0/0.0.0.port=0,localport=24242]
Waiting for a Peer ...

Video (run-single)

running...

© (2 more...)
```

#### After hosting video

#### Peer receiving video

```
- create processor for: rtp://127.0.0.1:24242/video
- create DataSink for: file:\C:\Users\karthik\Desktop\video.mov
start receiving ...
  ......
...done
transition event
 realising
transition event
 realised
Binding to port 2146, please wait ...
Server started: ServerSocket[addr=0.0.0.0/0.0.0.port=0,localport=2146]
realize complete event
Waiting for Peer...
bransition event
                                                             Video (run-single) #2
                                                                                                                 (1 more...)
                                                                                           running...
```

#### Final video playback



# System Requirements

- OS Platform : Windows 7/8
- Development tools required : NetBeans 7
  - Language Platform : Java (JDK 1.7)
  - Additional software: JRE, JMF package
- Additional H/W Req.: LAN connection
- System: Intel Core processor, 1 GB RAM

### References

- 1. Yung-Cheng Kao, Chung-Nan Lee, Peng-Jung Wu, and Hui-Hsiang Kao, (2012), "A Network Coding Equivalent Content Distribution Scheme for Efficient Peer-to-Peer Interactive VoD Streaming", IEEE Transactions On Parallel And Distributed Systems, IEEE, Vol. 23, Issue: 6, pp: 985-994
- Dan Wang, Jiangchuan Liu, (2008), "A Dynamic Skip List-based Overlay for On-Demand Media Streaming with VCR Interactions", IEEE Transactions on Parallel and Distributed Systems, IEEE, Vol. 19, Issue: 4, pp: 503 - 514
- 3. Do, T.T., Hua, K.A., Tantaoui, M.A., (2004), "P2VoD: Providing Fault Tolerant Video-on-Demand Streaming in Peer-to-Peer Environment", In the proceeding of "IEEE International Conference on Communications, 2004", pp: 1467 1472 Vol.3
- 4. Ken Yiu, W.-P., Xing Jin, (2006), "Distributed Storage to Support User Interactivity in Peer-to-Peer Video Streaming", In the proceeding of "IEEE International Conference on Communications, 2006 (ICC '06)", pp: 55-60

# Thank You

### **FLOWCHART**

### Segmentation & Encoding

Input

Basic interleaving scheme

NCECD scheme



Segments

(X1,X2...Xn)

**Blocks** 

(bx,1;bx,2...bx,m)

Encoded blocks Using random coding coefficient vectors

$$E_{bX,i} = \sum_{j=1}^{m} c(i,j) \cdot b(X,j)$$

$$f_i = [C_{i,1}, C_{i,2}, ...]$$

$$F = M \times M$$
  
 $E = [EbX, 1 ; EbX, 2 ....]$   
Recovered using  $X = F^{-1} E^{T}$ 

## **FLOWCHART**

