

Objectives Introduce standard transformations - Rotation - Translation - Scaling - Shear Derive homogeneous coordinate transformation matrices Learn to build arbitrary transformation

matrices from simple transformations

General Transformations

A transformation maps points to other points and/or vectors to other vectors v=T(u)

Affine Transformations

? Line preserving
? Characteristic of many physically important transformations

- Rigid body transformations: rotation, translation

- Scaling, shear
? Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Translation Matrix

We can also express translation using a 4 x 4 matrix **T** in homogeneous coordinates

p'=Tp where

$$\mathbf{T} = \mathbf{T}(d_{x}, d_{y}, d_{z}) = \begin{bmatrix} 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Rotation (2D)

Consider rotation about the origin by θ degrees

- radius stays the same, angle increases by θ

Rotation about the z axis

- ? Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z

$$x'=x \cos \theta - y \sin \theta$$
$$y'=x \sin \theta + y \cos \theta$$
$$z'=z$$

– or in homogeneous coordinates

$$p\text{'=}R_{\boldsymbol{Z}}(\boldsymbol{\theta})p$$

10

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

11

Rotation about x and y axes

- ?Same argument as for rotation about z axis
 - For rotation about x axis, x is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

gel and Shreiner: Interactive

Scaling

Expand or contract along each axis (fixed point of origin)

$$x'=S_x x$$

$$y'=S_y y$$

$$z'=S_z z$$

p'=Sp

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}, \mathbf{s}_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reflection

corresponds to negative scale factors

14

Inverses

- ? Although we could compute inverse matrices by general formulas, we can use simple geometric observations
 - Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
 - Rotation: $\mathbf{R}^{-1}(\theta) = \mathbf{R}(-\theta)$
 - Holds for any rotation matrix
 - Note that since $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$

$$\mathbf{R}^{-1}(\mathbf{\theta}) = \mathbf{R}^{\mathrm{T}}(\mathbf{\theta})$$

- Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Concatenation

- ? We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Plecause the same transformation is applied to many vertices, the cost of forming a matrix **M=ABCD** is not significant compared to the cost of computing **Mp** for many vertices **p**
- The difficult part is how to form a desired transformation from the specifications in the application

16

Order of Transformations

- ? Note that matrix on the right is the first applied
- Mathematically, the following are equivalent $\mathbf{p}' = \mathbf{ABCp} = \mathbf{A}(\mathbf{B}(\mathbf{Cp}))$
- ? Note many references use column matrices to represent points. In terms of column matrices

$$\mathbf{p}^{\mathsf{T}} = \mathbf{p}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$$

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015 17

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$\mathbf{R}(\theta) = \mathbf{R}_{z}(\theta_{z}) \; \mathbf{R}_{v}(\theta_{v}) \; \mathbf{R}_{x}(\theta_{x})$$

 $\theta_x \theta_y \theta_z$ are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles

Rotation About a Fixed Point other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_f) \mathbf{R}(\theta) \mathbf{T}(-\mathbf{p}_f)$$

Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
- We apply an instance transformation to its

vertices to Scale

Orient

Locate

Shear

- ? Helpful to add one more basic transformation
- ? Equivalent to pulling faces in opposite directions

21

Shear Matrix

Consider simple shear along *x* axis

$$x' = x + y \cot \theta$$
$$y' = y$$
$$z' = z$$

$$\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

