Example 16.

a)
$$(-3ab^{4})(4ab^{-3})$$

= $-12a^{(1+1)}b^{(4+(-3))}$
= $-12a^{2}b^{2}$ => $[-12a^{2}b^{2}]$

b)
$$(2xy^{2})^{3}$$
.
= $(2xy^{2})(2xy^{2})(2xy^{2})$
= $8x^{3}y^{6}$
= $8x^{3}y^{6}$

$$\frac{1}{5x^{3}} = \frac{5^{2}(x^{3})^{2}}{5^{2}(x^{3})^{2}}$$

$$= \frac{5^{2}(x^{3})^{2}}{3x^{2}}$$

$$= \frac{25x^{6}}{3x^{2}}$$

$$\frac{1}{3x^{2}} \Rightarrow \frac{1}{3x^{2}} = \frac{x^{2}}{3}$$

$$= \frac{1}{3(\frac{1}{x^{2}})}$$

$$= \frac{3(\frac{1}{x^2})}{3}$$

$$= \frac{1}{3} + \frac{3}{x^2}$$

$$= \frac{1}{3} + \frac{3}{x^2}$$

$$= \frac{1}{3} + \frac{3}{x^2}$$

$$= \frac{x^2}{3}$$

c)
$$12a^{3}b^{-4}$$
 $4a^{-2}b$

$$= 3a^{(3\cdot(\cdot a))}b^{(-4-1)}$$

$$= 3a^{5}b^{-5}$$

$$= 3a^{5}$$

$$= y^{2}$$

$$= 3^{2}(x^{2})^{2}$$

Example 18
$$F(x) = -4^{x-2} + 1$$

Vertical reflection in x-axis

Vertical translation I unit UP

No horizontal stretch/ref.

Horizontal shift 2 units right

Natural base of e 1:m (1+x) x = e x-10

Example 19

a) $\log_2 x = 3$ b) $\log_2 100 = 2$ c) $\log_3 81 = x$ $\Rightarrow 2^3 = x$ $\Rightarrow x^2 = 100$ $\Rightarrow 3^2 = 81$ x = 8 $\Rightarrow x = 10$ $\Rightarrow 3^2 = 3^4$ (but you can:4 $\Rightarrow 7 = 4$ have a neg. base.)
(because 3^2 x = 10 $\Rightarrow 3 = 3^4$ $\Rightarrow 3^2 = 3^4$

Properties of Logar: +hms

1.
$$\ln xy = \ln x + \ln y$$

2. $\ln xy = \ln x - \ln y$
3. $\ln x^2 = 2 \ln x$

Let
$$a = \ln x$$
 and $b = \ln y$
 $e^a = x$ and $e^b = y$
 $xy = e^a \cdot e^b = e^{a+b}$
 $\ln(xy) = \ln e^{a+b}$
 $\ln xy = a+b = \ln x + \ln y$

Example 20

a) Ine
b) In I

let
$$x = lne$$
 $e^{x} = e^{lne}$
 $e^{x} = e^{lne}$

Sept. 14/16

a)
$$\ln(\frac{1}{2})$$

= $\ln 1 - \ln 2$

= $3 \ln (x^2 y)^3$

= $0 - \ln 2$

= $3 \left[\ln x^2 + \ln y \right]$

= $-\ln 2$

= $3 \left[2 \ln x + \ln y \right]$

= $6 \ln x + 3 \ln y$

c)
$$\ln x^{2} \cdot \sqrt[3]{(x^{5}-e)^{2}}$$

 $(x+1)^{4}$
= $\ln x^{2} (x^{5}-e)^{2/3}$
 $(x+1)^{4}$
= $\ln x^{3} + \ln (x^{5}-e)^{2/3} - \ln (x+1)^{4}$

4)
$$\ln (x+4) = \ln 23$$

 $e^{\ln (x+4)} = e^{\ln 23}$
 $x+4 = 23$

c)
$$8e^{2x} - 5 = 15$$

 $8e^{2x} = 20$
 $e^{2x} = 5/2$
 $\ln e^{2x} = \ln(5/2)$
 $2x = \ln(5/2)$
 $x = \ln(5/2)$

Extra Example

1)
$$e^{-x^2} = e^{-3x-4}$$
 $e^{-x^2} = 1 \cdot e^{-3x-4}$
 $e^{-x^2} = 1 \cdot e^{-3x-4}$

c)
$$2e^{x} + 5 = 57$$

 $2e^{x} = -52$
 $e^{x} = 26$
 $1e^{x} = 1e^{26}$
 $e^{x} = 1e^{26}$

$$d \int |x(x-1) + |x(x+2)| = |x| dx
|x(x-1) + (x+2)| = |x| dx
e^{|x(x-1) + (x+2)|} = e^{|x| dx}
\int (x-1) + (x+2)| = |x| dx
x^2 + x - 2| = |x|
x^2 + x - 15| = 0
x = -1 + \int |^2 - 4(1)(-15)|
2(1)$$

$$x = -1 \pm \sqrt{61}$$

b)
$$3(2^{x}) = 42$$

 3
 $2^{x} = 14$
 $\log_{2} 2^{x} = \log_{2} 14$
 $\log_{2} 14 = x$
 $\log_{2} 14 = x$

d)
$$2(3^{2t-5}) - 4 = 11$$

 $2(3^{2t-5}) = 15$
 $3^{2t-5} = \frac{15}{2}$
 $\log_3 3^{2t-5} = \log_3 (15/2)$
 $2t-5 = \log_3 (15/2) + 5$
 $t = \frac{\log_3 (15/2) + 5}{2}$