Lösungsstrategien für NP-schwere Probleme der Kombinatorischen Optimierung

— Übungsblatt 6 —

Walter Stieben (4stieben@inf)

Tim Reipschläger (4reipsch@inf)

Louis Kobras (4kobras@inf)

Hauke Stieler (4stieler@inf)

Abgabe am: 30. Mai 2016

Aufgabe 6.1

a)

Zu zeigen ist, dass der angegebene Algorithmus kein 2-Approximationsalgorithmus ist. Zeigen kann man das mit einem Gegenbeispiel:

Sei $A = \{1, 2, 8\}$ und B = 10. Der Algorithmus findet nun folgende Mengen:

Index i	Gefundene Menge S
1	{1}
2	$\{1,2\}$
3	$\{1, 2\}$

Der Algorithmus nimmt keine Zahlen mehr ab dem Index auf, da dann die Bedingung $\sum_{a_i \in S} a_i \leq B$ nicht mehr gelten würde, da 1+2+8=11>10 gilt.

Das Ergebnis erfüllt somit nicht die Bedingung eines ρ -Approquationsalgorithmus für Maximierungsprobleme $L^*/L_A \leq \rho$. Stattdessen gilt für das Ergebnis $L_A = 3$, die totale Summe $L^* = B = 10$ und $\rho = 2$ die Gleichung $L^*/L_A = 10/3 = \overline{3,3} \nleq \rho$.

Damit ist der angegebene Algorithmus kein 2-Approximationsalgorithmus.

b)

Algorithm 1 FindTotalSum

```
1: procedure FINDTOTALSUM(A, B, \rho)
         A \leftarrow \text{ConvertToList}(A)
 2:
         A \leftarrow \text{MergeSort}(A)
 3:
 4:
         T := 0
         S := \emptyset
 5:
         for i \in \{n, ..., 1\} do
 6:
              if T + a_i \leq B then
 7:
                   T \leftarrow T + a_i
 8:
                   S \leftarrow S \cup \{a_i\}
 9:
10:
```

Walter Stieben, Tim Reipschläger, Louis Kobras, Hauke Stieler

end for 12: end procedure

Laufzeitbeweis

Der Algorithmus soll die Laufzeitschranke von $\mathcal{O}(n \cdot \log n)$ nicht überschreiten, was zu beweisen gilt:

Eine Menge in eine Liste zu konvertieren ist bei der Erzeugung einer verketteten Liste in linearer Laufzeit möglich.

Die Liste wird nun mittels MERGESORT sortiert. Die worst-case-Laufzeit von MERGESORT liegt dabei in $\mathcal{O}(n \cdot \log n)$.

Die Schleife (Zeile 6 bis 11) wird genau n mal ausgeführt. Alle Operationen in der Schleife lassen sich in konstanter Zeit bewerkstelligen, sofern man die Menge genügend schlau implementiert (z.B. als verkettete Liste).

Somit liegt die Gesamtlaufzeit auch in $\mathcal{O}(n \cdot \log n)$.

Korrektheitsbeweis

Zunächst sei das triviale ausgesprochen: Da A aufsteigend sortiert ist gilt die Ungleichung $a_i < a_{i+1}$, es gibt zudem kein Element doppelt (deswegen auch keine ≤-Relation).

Der Algorithmus überspringt zudem alle Elemente die größer als die Schranke B sind. Da diese auch nicht in L^* auftauchen können (weil $L^* \leq B$ gilt), braucht man diese auch nicht gesondert zu betrachten. Relevant wird es ab dem Element $a_k \leq B$ mit $1 \leq k \leq n$. Gibt es kein k für das die Ungleichung gilt (sprich sind alle Elemente größer als B), so ist $S = L^* = 0$.

Für die Hauptschleife (Zeile 6 bis 11) gibt es eine Schleifeninvariante: Ist $T + a_i > B$, so wird a_i nicht aufgenommen. Findet sich kein a_j mit $0 \le j \le i$, für das $T + a_j \le B$ gilt, so ist $T \ge \frac{L^*}{2}$. Lässt sich also kein j finden ist der Algorithmus entweder zu Ende oder hat ein genügend genaues Ergebnis geliefert für das gilt $T \ge \frac{L^*}{2}$. Daraus folgt, dass der angegebene Algorithmus ein 2-Approximationsalgorithmus

Beweis der Invariante mittels Widerspruch für nicht beendeten Algorithmus

Lässt sich ein a_i finden ist nichts zu zeigen. Es wird also nur die Situation betrachtet in der sich kein a_i finden lässt und in der der Algorithmus noch nicht zu Ende ist (also wenn $j \neq 1$). Der aktuelle Laufindex der Schleife ist dabei i.

Angenommen es lässt sich kein a_j finden, dann ist $T < \frac{L^*}{2}$. Da sich kein a_j finden lässt gilt $T + a_j > B$ für jedes a_j mit $1 \le j < i$. Für diese gilt dadurch $a_j > B - T \ge L^* - T > \frac{L^*}{2}$, was direkt aus $T + a_j > B$ und $T < \frac{L^*}{2}$ folgt. Somit gilt auch, dass jedes $a_k < \frac{L^*}{2}$ mit $i \le k \le n$ ist, da sich die bisherige Summe T aus mindestens einem a_k zusammensetzt. Es muss also $a_i > a_k$ gelten.

Die Liste aller Zahlen A ist jedoch aufsteigend sortiert, wodurch $a_j > a_k$ einen Widerspruch darstellt. Daraus folgt, dass $T \ge \frac{L^*}{2}$ gelten muss wenn sich kein a_j finden lässt.

Es fehlt nun noch der Beweis für $T \geq \frac{L^*}{2}$ wenn der Algorithmus zu Ende gekommen ist.

Beweis von $T \ge \frac{L^*}{2}$ für beendeten Algorithmus

Man kann zwei Fälle unterscheiden: Entweder das letzte Element a_1 wurde aufgenommen oder nicht aufgenommen. Wurde es nicht aufgenommen, so folgt aus obigem Beweis, dass $T \geq \frac{L^*}{2}$ gilt und es ist nichts zu zeigen.

Wenn a_1 aufgenommen wurde, ...

Aufgabe 6.2