

University of Applied Sciences

FACHBEREICH INGENIEUR- UND NATURWISSEN-SCHAFTEN

MECHANISCHE VERFAHRENSTECHNIK

Skriptaufzeichnungen

im WiSe 2019

vorgelegt von

Roman-Luca Zank

3. Semester

Chemie- und Umwelttechnik

E-Mail: romanzank@mail.de

Matrikelnummer: 25240

Adresse: Platz der Bausoldaten 2, Zimmer 224

Ort: 06217 Merseburg

Prüfer: Dr. Frank Baumann

Merseburg, 9. November 2019

Inhaltsverzeichnis

1	Zerl	kleinern	2
	1.1	Was ist "Zerkleinern"?	2
	1.2	Feststoff zerkleinern	3
	1.3	Energieaufwand von Mühlen (Zerkleinerungsmaschinen)	4
	1.4	Bauarten von Mühlen	6
2	Trei	nnen	8
	2.1	Stoffgemische	8
	2.2	Trennverfahren	8
		2.2.1 Sedimentation	9
	2.3	Grundlagen der Modellierung	10
Lit	teratı	urverzeichnis	11
Ar	nhang		11

1 Zerkleinern

- Älteste Verfahrenstechnik (prätechnologisch)
 - Kauen von Nahrung
 - Zerkleinern von Getreide im Mörser

1.1 Was ist "Zerkleinern"?

Prozessziel:

Feststoff (aber auch Flüssigkeiten oder Gase) mit vertretbaren Energieaufwand (Betriebskosten) und erträglichen Verschleiß (Wartungskosten) auf eine gewünschte Feinheit (Dispersitätszustand) nach Produktspezifikationen zu bringen.

+ Anschaffungskosten

Was kann zerkleinert werden?

- 1. Getreide → Mehl, Gries, Flocken, Schrot, Spreu,...
- 2. Gestein \rightarrow Sand, Kies, Splitt, Zement,...
- 3. Holz \rightarrow Mulch, Spähne, Pallets, Spanplatten, OSB-Platten, Papier, Furnier,...

Wozu wird zerkleinert?

- Erzeugen einer geünschten, bestimmten Korngrößenverteilung (evtl. mit x_{min} und x_{max})
- ullet vergrößern der spezifischen Oberfläche $\left\lceil rac{m^2}{m^3}
 ight
 ceil \Rightarrow$ Reaktivität \uparrow
- Freilegen und Aufschließen einer Wertstoffphase (z.B. Erz)
- Struktur- und Formänderung (z.B. Haferflocken)
- mechanische Aktivierung
- Veränderung von Stoffeigenschaften nach Produktspezifikation:
 - Fließverhalten, Transportfähigkeit, Dosierfähigkeit, Lagerfähigkeit
 - Lösegeschwindigkeit, Reaktionsgeschwindigkeit, Extrahierfähigkeit
 - Farbe, Oberfläche, Form, Raumfüllung

– ..

1.2 Feststoff zerkleinern

Einteilung erfolgt nach Größe des Produkts:

Brechen:	5-50mm: fein
	>50mm: grob
Mahlen:	0,5-50mm: grob
	50μm -500 μm: fein
	5μm -50 μm: feinst
	< 5μm: kolloid

Ziel: Überwinden der inneren Bindungskräfte \rightarrow Bruch

mechanische Beanspruchung:

- Druck
- Reibung
- Schlag
- Prall
- gegenseitiger Partikelstoß
- Schneiden (spalten)
- Scheren
- Scherströmung (für Tropfen, Mikroorganismen,..)
- Druckwelle (z.B. Sprengung)
- Kavitation (implodierende Dampfblase, bei der Teilchen herausgerissen wird)

nicht-mechanische Beanspruchung:

- d.h. Energiezufuhr
 - chemisch
 - elektrisch
 - thermisch

1.3 Energieaufwand von Mühlen (Zerkleinerungsmaschinen)

Ziele:

- Berechnung der Antriebsleistung einer Mühle ist abhängig von:
 - Durchsatz
 - Art des Stoffes
 - Teilchenspezifikation (Korngröße)
- Bauarten und Auswahl von Mühlen

spezifische Zerkleinerungsarbeit e:

$$e = \frac{W}{m} \left[\frac{J}{kg} \right] \tag{1.1}$$

erweitern mit $\frac{1}{t}$

$$e = \frac{W/t}{m/t} = \frac{P}{\dot{m}} \left[\frac{W}{kg \cdot s^{-1}} \right]$$
 (1.2)

Abhängigkeit von der Stoffeigenschaft:

charakterisiert durch eine Materialkonstante

 c_B (Bondkonstante: experimentell bestimmt)

Abhängigkeit von der Partikelgröße:

charakteristische Teilchengröße

$$X_{80}$$
 d.h. $H(x_{80}) = 80\%$ Durchgang

HIER STEHT IHR BILD

→ restliche 20% werden meist ausgesiebt und wieder zurückgeführt "80-20-Regel"

Die Modellierung von Zerkleinerungsprozessen ist äußerst komplex. Deshalb werden empirische Abschätzungsgleichungen verwendet ($\pm 50\%$ Genauigkeit). Nur bei idealen Einzelkörnern kann man eine Bruchfunktion analytisch annähern.

Name	Anwendung	Gleichung	Stoffkonstante
KICK	$x_{80_\omega} >$ 50 mm	$e_{KICK} = c_K \cdot log(\frac{x_{80\alpha}}{x_{80\omega}})$	$c_K = 1,15 \cdot \frac{c_B}{\sqrt{0,05} \text{m}} \begin{bmatrix} \text{m}^2\\ \text{s}^2 \end{bmatrix}$
BOND	$50\mathrm{\mu m} < x_{80\omega} < \\ 50\mathrm{mm}$	$e_{BOND} = c_B \cdot \left(\frac{1}{\sqrt{x_{80\omega}}} - \frac{1}{\sqrt{x_{80\alpha}}}\right)$	c_B : tabelliert $\left[rac{m^{2,5}}{s^2} ight]$
RIT- TER	$x_{80_\omega} >$ 50 $\mu \mathrm{m}$	$e_{RITT} = c_R \cdot \left(\frac{1}{x_{80\omega}} - \frac{1}{x_{80\alpha}}\right)$	$c_R = \\ 0, 5 \cdot c_B \cdot \sqrt{5 \cdot 10^{-5} \mathrm{m}}$

Hinweise:

- \bullet α : Anfangsgröße am Eingang
- \bullet ω : Endgröße am Ausgang
- Teilchengröße <u>immer</u> als [m] einsetzen!

Zerkleinerungsstrahl:

Abbildung 1.1: Zerkleinerungsstrahl

c_{B} -Beispiele:

Kohle:	$548 \frac{m^{2,5}}{s^2}$
Gips:	$394 \frac{m^{2,5}}{s^2}$
Eisenerz:	$745 \frac{m^{2,5}}{s^2}$ $69 \frac{m^{2,5}}{s^2}$
gebr. Ton:	$69 \frac{m^{2,5}}{s^2}$
Glimmer (Mineral):	$6488 \frac{m^{2,5}}{s^2}$

meist: c_B für trockenes Mahlen $> c_B$ für nasses Mahlen

Beispielaufgabe: Zerkleinern

Energieaufwand beim Zerkleinern

- Zerkleinern ist eine sehr energieintensive Grundoperation, deshalb hohe Betriebs- und Wartungskosten
- ca. 5% der Weltenergieerzeugung für Zerkleinerung
- Zementherstellung sind 25% der Kosten für Zerkleinerung

Energie ist nötig für:

- Überwinden der inneren Bindungskräfte im Kern
- Reibung der Teilchen untereinander und im Apparat (Dissipation)
- kinet. Energie des Mahlprodukts
- Maschinenteil verschleißen
- Deformation der Teilchen ohne Bruch
- nicht ideale Einbringung der Kräfte (schiefer Stoß)
- \Rightarrow Energieeffizienz der Zerkleinerung < 1%

Tabelle 1.1: Vor- und Nachteile Trocken-/Nassmahlen

	Trockenmahlen	Nassmahlen
Vorteile	• Gut ist trocken	 geringerer Energiebedarf keine Staubentwicklung Kühlung des Produkts entge-
Nachteile	• hohor Enorgishodarf	gen der Reibung • Gut ist nicht trocken
Nachtelle	hoher EnergiebedarfStaubentwicklung	• Gut ist nicht trocken
	 keine Kühlung des Produkts entgegen der Reibung 	

1.4 Bauarten von Mühlen

Backenbrecher

• Rundbrecher, Kegelbrecher

• Kugelmühle

- Kaskadenbewegung Beanspruchung: Reibung $\rightarrow n = 0, 6...0, 7 \cdot n_{Krit}$
- Kateraktbewegung Beanspruchung: Reibung und Schlag $\rightarrow n = 0, 8...0, 9 \cdot n_{Krit}$

Bestimmung der Grenzdrehzahl:

$$F_G = F_Z \tag{1.3}$$

$$m \cdot g = m \cdot r \cdot \omega^2 \text{ mit } \omega = 2 \cdot \pi \cdot n \text{ (n... Drehzahl)}$$
 (1.4)

$$g = r \cdot 4 \cdot \pi^2 \cdot n^2 \tag{1.5}$$

$$n_{Krit} = \sqrt{\frac{g}{4 \cdot \pi^2 \cdot r}} \approx \sqrt{\frac{1 \left[\frac{\mathsf{m}}{\mathsf{s}^2}\right]}{4 \cdot \pi^2 \cdot r}} = \frac{1 \left[\sqrt{m}\right]}{\sqrt{2 \cdot D}} \tag{1.6}$$

(1.7)

Vorsicht mit den Einheiten ! $n_{Krit} = \left[\frac{1}{s}\right]$

Tabelle 1.2: Vor- und Nachteile der Kugelmühle	
Vorteile	Nachteile
- sehr feines Mahlen möglich - großer Zerkleinerungsgrad $z=\zeta=\frac{x_{80,\alpha}}{x_{80,\omega}}$ - enge Korngrößenverteilung, wegen vorrangiger Zerkleinerung großer Teilchen - Mahlkörper können dem Mahlgut angepasst werden (Material, Größe)	 sehr energieaufwendig (Kugel zu heben kostet eben) trennen von Mahlgut und Mahlkörper erforderlich Lärm
 Autogenes Mahlen möglich * Mahlgut selbst ist Mahlkörper * Mahlkörper werden durch Abrieb immer kleiner (Abrieb = Produkt) * Mahlkörper müssen immer weiter zugegeben werden 	

2 Trennen

2.1 Stoffgemische

Tabelle 2.1: Stoffgemische

Kombination der Phasen	Bezeichnung
S in G	Rauch, Staub,
S in L (Aerosol)	Suspension, Schlamm, Trübe,
L in G (Aerosol)	Dampfwolken, Nebel, Regen, Sprühwolke,
G in L	Sprudelschicht, Blasenschwarm, Schaum,
L in L	Emulsion, Tropfenschwarm

2.2 Trennverfahren

Alle Stoffsysteme sind dispers und bestehen aus mindestens 2 Phasen. Nur dann kann man <u>mechanische Trennverfahren</u> anwenden. (Grenze nach unten ist dabei die Partikelgröße)

Für einphasige Stoffsysteme müssen thermische Trennverfahren angewendet werden.

Mechanische Verfahren sind meist effizienter als thermische Verfahren.

- **Sedimentation** $\approx 10 \, \mu \text{m} \, (\text{S/G, S/L, L/L, G/L, L/G})$
 - $= \mathsf{Absetzen}/\mathsf{Aufsteigen} \ \mathsf{von} \ \mathsf{Teilchen} \ \mathsf{im} \ \mathsf{Schwerkraftfeld}$
 - \rightarrow Voraussetzung: unterschiedliche Dichte der Teilchen gegenüber Fluid
- ullet Zentrifugation $< 10\,\mu m \; (S/L)$
 - = Trennen im Zentrifugalfeld
 - ightarrow geeignet für sehr geringe Dichteunterschiede und sehr kleine Teilchen
- Filtration (S/G, S/L)
 - = Teilchendurchmesser > Porendurchmesser des Filtermediums "Sterische (räumliche) Hinderung"

- Sieben (S/G)
 - = Trennen nach Größenunterschied
 - \rightarrow Klassierung
- **Sichten** (S/G)
 - = Trennen nach Luftwiderstand und Dichte
- Flotation (S/S/G)
 - = spezielle Sedimentation
- **Zyklon** (S/G, S/L)
 - = ähnlich wie Zentrifugation

2.2.1 Sedimentation

= Absetzen einer dispersen Phase unter Einwirkung der Schwerkraft

Disperse Phase kann eine höhere oder niedrigere Dichte haben, als die Kontinuierliche.

 \rightarrow wichtige Trennoperation, weil Apparate einfach und somit günstig sind

Bezeichnung des Sediments nach Zweck

- Klären:
 - Trennziel = klare Flüssigkeit mit möglichst wenig Teilchen
- Eindicken:

Trennziel = möglichst konzentrierter Schlamm mit möglichst wenig Flüssigkeit

2.3 Grundlagen der Modellierung

Bewegung eines Einzelteilchens im Schwerkraftfeld \rightarrow Annahme: Teilchen ist starr, kugelförmig und glatt

 $d_P > 10\,\mu{
m m}$ $ho_P >
ho_F$

Abbildung 2.1: Skizze eines Partikels

$$F_G = m_P \cdot g = V_P \cdot \rho_P \cdot g = \frac{\pi}{6} \cdot d_P^3 \cdot \rho_P \cdot g \tag{2.1}$$

$$F_T = m_F \cdot g = V_P \cdot \rho_F \cdot g = \frac{\pi}{6} \cdot d_P^3 \cdot \rho_F \cdot g \tag{2.2}$$

"Auftrieb ist Masse der verdrängten Flüssigkeit"

$$F_R = c_W \cdot \rho_F \cdot \frac{1}{2} \cdot v_P^2 \cdot A_\perp \tag{2.3}$$

 $c_W...$ Widerstandsbeiwert $c_W=f(v, {\sf Geometrie}, {\sf Rauigkeit},...)$ $v_P...$ Relativgeschwindigkeit zwischen Teilchen und Partikel $A_{\perp}...$ Projezierte Fläche des Partikels in Bewegungsrichtung hier: Kugel \to Kreis mit $A_{\perp}=\frac{\pi}{4}\cdot d_P^2$

Literaturverzeichnis

- 1. Praktikumsskript, Modul , Versuch , Prof. Musterprof.
- 2. DIN 12345, Jahr der Veröffentlichung
- 3. Link der Internetseite, Zugriffsdatum
- 4. Buchtitel, Autor, Verlag, Veröffentlichungsjahr