

Regionalización de precipitaciones máximas y sequías en el Perú

Waldo Lavado et al.

wlavado@senamhi.gob.pe

FORO DÍA MUNDIAL DEL AGUA "INGENIERÍA Y GESTIÓN DEL AGUA DULCE Y AGUA RESIDUAL" UNALM, 20 de Marzo del 2017

Definición de métodos de regionalización hidrológica (MRH)

Hydrology a science for engineers (Hingray et al.)

- □Los MRH son utilizados para extender la información disponible de un limitado número de puntos a una región entera.
- □En hidrología, algunos métodos son utilizados para estimar variables hidrológicas y sus características en un determinado lugar (el punto o zona objetivo), combinando información local con regional que vienen de los lugares con información instrumentada similar al punto objetivo.
- □ La regionalización requiere el desarrollo de un modelo regional capaz de explicar la variable de interés. Este modelo es luego aplicado en la región no instrumentada

REGIONALIZACION HIDROLOGICA

Datos dispersos

Regionalización

GRH, diseño de IH, eventos extremos, etc.

EJEMPLOS DE REGIONALIZACION EN EL PERU (1)

EJEMPLOS DE REGIONALIZACION EN EL PERU (2)

Rau et al. 2016. Regionalization of rainfall over the Peruvian Pacific slope and coast. IJC

EJEMPLOS DE REGIONALIZACION EN EL PERU (3)

756 estaciones

25 regiones

Espinoza et al. (2011). IJC

EJEMPLOS DE REGIONALIZACION EN EL PERU (4)

"Hidrología del Perú" IILA – UNI - SENAMHI 1983

PERU: REGION VULNERABLE A LAS SEQUIAS

Tabla 4.6. Población expuesta a sequías			
País	Población total	Población expuesta	%
Bolivia	9 427 218	1 819 000	19
Colombia	42 888 592	8 235 000	19
Ecuador	13 215 089	4 547 000	34
Perú	27 254 111	2 616 000	10
Comunidad Andina	92 785 010	17 217 000	19

tabla 4.7. Superficie agropecuaria expuesta a sequias			
Kilómetros cuadrados			
País	Área total	Área expuesta	%
Bolivia	268 954	88 000	33
Colombia	533 431	59 000	11
Ecuador	115 342	24 000	21
Perú	256 118	120 000	47
Comunidad Andina	1 173 845	291 000	25

Zonas susceptibles a las sequias CAN (2009)

REGIONALIZACION DE SEQUIAS EN EL PERU

¿Cómo es la variabilidad espacio-temporal de las sequías en el Perú?

-72

-68

-76

-80

Vega et al. (en preparación)

METODOLOGÍA

Precipitación

Índice de precipitación estandarizado SPI (1,3,6 y 12)

Formación de Regiones

Homogéneas

Análisis de Cluster

Análisis de Componentes Principales (ACP)

Características de las regiones Homogeneas

Componentes Principales

Regiones Homogéneas

Series de SPI-3 para las 8 regiones homogéneas

RESULTADOS 다 장 80 Tiempo NAN HAM Legenda zona Arida Zona sin estaciones Lago Titicaca Regiones NPA NAN TIT CAN SAN SAN SAN TIT NAM HAM SAM

CDL

SPI-3

Región	#	Duración	Severidad	Intensidad
NPA	33	2.3	2.7	-1.3
CAN	44	2.4	3.7	-1.5
SAN	44	2.1	3.1	-1.6
NAN	46	2.2	3.1	-1.4
SAM	43	2.4	3.6	-1.5
TIT	47	2.1	3	-1.5
HAM	51	2.1	3.2	-1.6
NAM	44	2.5	3.3	-1.5
		CD		

SPI-12

Región	#	Duración	Severidad	Intensidad
NPA	13	6.3	6.8	-1.1
CAN	14	7.5	12.1	-1.5
SAN	18	5.5	8.7	-1.5
NAN	14	7.8	10.8	-1.4
SAM	19	4.8	7.3	-1.4
TIT	22	4.4	6.1	-1.4
HAM	22	5.1	6.7	-1.5
NAM	19	5.6	7.9	-1.5

REGIONALIZACION DE PRECIPITACIONES MÁXIMAS EN EL PERU ¿Cómo es la variabilidad espacio-temporal de las pMAX en el Perú?

1965 -2014 ~ 15 años de información Total 383 estaciones a nivel nacional

Tupac & Lavado, en preparación

METODOLOGÍA

Series de P Max 24 h

Formación de Regiones Homogéneas Validación estadística
Discordancia y
Heteregeonidad
L-moments

Cluster SKATER

Ajuste de fdp a cada región

L-moments

Periodos de retorno de cada región

SKATER
16 REGIONES COMUNES
4 EN LA COSTA
9 ANDINAS
3 EN LA SELVA

R1 afectada por **ENSO** R2 a R4b desierto costero R5a hasta R11 están todas ubicadas en la Codillera de los Andes y parte de la Amazonia R12 a R15 son pertenecientes a cuenca Amazónica R16 Altiplano peruano R17"hotspot" de pr.

GLO	10
GNO	10
GEV	4
PE3	4

Adquisición de datos hidrometeorológicos

Datos interpolados de las estaciones climatológicas e hidrológicas del SENAMHI

PISCO Peruvian Interpolate data of the SENAMHI's Climatological and Hydrological Observations

Precipitation interpolada PISCO-prec á paso de tiempo DIARIO

Lavado et al. (in prep.)

"LA INFORMACIÓN HIDROMETEOROLÓGICA PARA LA PREVENCIÓN DE RIESGOS DE DESASTRES"

"Ya no tenemos información perfecta - como Noé-, sino que debemos adaptarnos a un rango de condiciones plausibles. Y tenemos que empezar a adaptarnos a las condiciones de hoy".

Walter Baethgen

