CONTRACT REPORT ARBRL-CR-00372

SPECTRAL RADIOMETRIC MEASUREMENTS OF SUB-ARCTIC STRATOSPHERIC CONSTITUENTS

Prepared by

University of Denver Department of Physics Denver, Colorado 80208

April 1978

131

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER 2.	GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
CONTRACT REPORT ARBRL-CR-00372	•	
4. TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERED
SPECTRAL RADIOMETRIC MEASU		Scientific Report
SUB-ARCTIC STRATOSPHERIC COI	NSTITUENTS	4. PERFORMING ORG. REPORT HUMBER
	•	4. PENTUNNING GNOT NEPONT NUMBER
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(s)
David G. Murcray Frank H. Murc	•	DAAD05-76-C-0740
Aaron Goldman Walter J. Will	iame	
John J. Kosters Performing organization name and address		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
University of Denver (Colorado Sem	inary)	AREA & WORK UNIT NUMBERS
Department of Physics		
Denver, Colorado 80208		12. REPORT DATE
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Developme	nt Command	APRIL 1978
US Army Ballistic Research Laboratory (ATTN: DRDAR-BL)		13. NUMBER OF PAGES
Aberdeen Proving Ground, MD 21005 14. MONITORING AGENCY NAME & ADDRESS(If different fro		174
14. MONITORING AGENCY HAME & ADDRESS(It different fro	m Controlling Office)	18. SECURITY CLASS. (of this report)
		UNCLASSIFIED
i '		15a, DECLASSIFICATION/DOWNGRADING
18. DISTRIBUTION STATEMENT (of this Report)		
17. DISTRIBUTION STATEMENT (of the obstract entered in B	look 20, if different free	a Report)
19. KEY WORDS (Continue on reverse side if necessary and ide Spectral Radiometry Fluorocar		
l	ric Constituen	t Profiles
	ric Emission S	
Ozone		
Constituent height profiles are derived and two unidentified constituents from balloon flight to 37.56 km on 29 April ments in the band model techniques using the shown. Spectral radiance data of angles are shown covering the spectral angles are shown	ed for HNO ₃ , on spectral rad I 1976 from Fa sed are discus bserved at sel al ranges of 8	iance data observed on a airbanks, Alaska. Improvessed and comparative results ected altitudes and zenith to 13.6 mm and 18.8 to
27.6 mm. Tables of spectral radiance function of altitude are included.	for selected	spectral regions as a

UNCLASSIFIED

READ INSTRUCTIONS BEFORE COMPLETING FORM

				•		
				1		
•						
						•
	-					
·	,					
						Đ
	•				•.	v
		÷				

TABLE OF CONTENTS

			Pag
I.	INT	1	
II.	INST	RUMENTATION AND CALIBRATION	3
	A.	Instrumentation	3
	В.	Calibration Procedure	6
III.	FLIC	GHT DETAILS (29 April 1976)	11
IV.	DA T	A REDUCTION	25
	A.	Conversion to Radiance	25
	B.	Window Corrections	26
	c.	Data Testing	28
v.	RAD	IANCE DATA	30
VI.	A NA	LYSIS OF DATA	107
	A.	General Procedures	107
	В.	Band Model Temperature Correction	111
		l. Introduction	111
		2. Temperature Correction Model	112
		3. O ₃ Temperature Correction	114
		4. HNO, Temperature Correction	118
	C.	HNO Profiles	123
	D.	H ₂ O Profiles	141
	E.	O2 Profiles	143
	F.	Other Constituents	150
		l. CF ₂ Cl ₂ and CFCl ₂	150
		2. Unknown Constituents	156
	G.	Additional Features of the Float Data	160
VII.	CON	CLUSIONS	163
	REF	ERENCES	165

	,		
			,

LIST OF TABLES

		Page
I.	Flight and Instrument Parameters, 29 April 1976 Flight	5
II.	Atmospheric and Instrument Parameters, 29 April 1976	15
III.	Spectral Regions of Interest	34
IVA.	Average Spectral Radiances in Spectral Regions $l-12$ (μ w cm sr μ m). Spectral Regions are in Table III and pressures, temperatures and zenith angles are in Table II.	36
		30
IVB.	Average Spectral Radiances in Spectral Regions 13 - 23 (μ w cm sr μ m). Spectral Regions are in Table III and pressures, temperatures and zenith angles are in Table II.	37
v.	Average Spectral Radiances in Spectral Regions 24 - 34 (µw cm sr µm). Spectral Regions are in Table III and pressures, temperatures and zenith angles are in Table II.	46
VI.	Absorption Coefficients and Temperature Corrections for Specified Spectral Regions	121
VII.	Comparison of Integrated Column of HNO_3 for Two or More Wavelength Regions	125
VIII.	Comparison of Various Equivalent Pressures Used for One Layer Calculations of the O ₂ Column	147

<u></u>				
		•		
				õ
				•
1				
1				
				-
				·
				-
				-
				-

LIST OF FIGURES

		PAGE
1.	Spectral calibration coefficient for the second order spectral region.	8
2.	Spectral calibration coefficient for the first order spectral region.	9
3.	Wavelength equations for 12 March 1976 calibration and 29 April 1976 balloon flight.	10
4.	Balloon height profile and atmospheric temperature profile for 29 April 1976.	23
5.	Trajectory for balloon flight of 29 April 1976.	24
6-20.	Linear spectral radiance in the 8-13.6 μ m region at various altitudes and zenith angles.	51-65
21-22.	Change in log spectral radiance in the 8-13.6 μ m region with altitude.	66-67
23-35.	Log spectral radiance in the 8-13.6 μm region at various altitudes and zenith angles.	68-80
36.	Change in log spectral radiance in the 8-13.6 μm region near 36 km as a function of zenith angle.	81
37-47.	Linear spectral radiance in the $10.3-13\mu\mathrm{m}$ region at various altitudes and zenith angles.	82-92
48-60.	Linear spectral radiance in the 18.8-27 μ m region at various altitudes and zenith angles.	93-105
61.	Change in linear spectral radiance in the $18.8-27\mu m$ region near 36 km as a function of zenith angle.	106
62.	Temperature correction coefficients for the ozone band model absorption coefficients.	117
63.	Temperature correction coefficients for the HNO ₃ band model absorption coefficients.	122
64.	Mixing ratio height profile of HNO ₃ using three spectral regions for comparison.	126
65.	Average mixing ratio height profile of HNO ₃ with data from one layer calculations from limb scans added.	127

FIGUR	E	PAGE
66.	Number density height profile of HNO ₃ for band center and total band calculations for comparison of the two models.	128
67.	Average number density profile of HNO3.	129
68.	Integrated column density of HNO ₃ as a function of heigh	t. 130
69-72.	Mixing ratio height profiles of HNO ₃ for former flights from Fairbanks, Alaska using a LN ₂ cooled spectrometer.	131-134
73.	Number density height profile of ${\rm HNO_3}$ for 12 September 1971.	135
74-76.	Average number density height profiles of HNO ₃ for former flights from Fairbanks, Alaska.	136-138
77.	Number density height profile of HNO ₃ for two spectral regions for 5 May 1975 from Fairbanks, Alaska using the LHe cooled spectrometer.	139
78.	Comparison of selected number density height profiles of HNO ₃ for Fairbanks, Alaska.	140
7 9.	Comparison of mixing ratio height profiles of H ₂ O for 5 May 1975 and 29 April 1976 from Fairbanks, Alaska.	142
80.	Number density height profile of O_3 derived from the 8.9 μ m spectral radiance compared with that measured with a balloon ozonesonde.	148
81.	Comparison of mixing ratio height profiles of HNO ₃ , H ₂ O and O ₃ for 29 April 1976.	149
82.	Calculated spectral radiance of F-11, F-12 and HNO ₃ showing separate bands and combined spectral radiance.	1 52
83.	Mixing ratio height profiles of CF_2Cl_2 and $CFCl_3$ derived from the spectral radiance data of 29 April 1976 by matching spectral features in the manner shown in Figure 82.	153
84.	Mixing ratio height profiles of CF ₂ Cl ₂ derived from the spectral radiance data of 29 April 1976.	154
85.	Mixing ratio height profiles of CFCl ₃ derived from the spectral radiance data of 29 April 1976.	155

FIGURE		PAGE
86.	Relative mixing ratio height profile of CFCl ₃ using the technique of Equation 18.	157
87.	Relative mixing ratio height profile of an unidentified constituent emitting at 12.04 μ m.	158
88.	Relative mixing ratio height profile of an unidentified constituent emitting at 12.20 μ m.	159
89.	Dependence of the spectral radiance of water vapor emission at 25 µm and 26 µm on secant.	162

			
	-		
			•
			•
			:
-			•
		· ·	
1			

I. INTRODUCTION

This report contains the scientific results of a balloon flight on 29 April 1976. The emphasis in this report is on changes in the experimental approach from those reported to BRL in the flight report of 27 June 1974 and 19 February 1975 and on several additional data analysis techniques. The flight reported here was the first in a series of four made from Eielson AFB, Alaska, in the spring of 1976. Three of the flights measured atmospheric thermal emission and one measured atmospheric transmission. This will be the only data report on the emission flights except for a report by Snider et al. 2. The second emission flight obtained data similar to that on this flight except that much of it contained interference from one of the piggyback instruments. The third emission flight had no usable data due to a bad launch. These flights are summarized in the Final Reports on two Contracts.

¹D.G. Murcray, J. N. Brooks, A. Goldman, J. J. Kosters and W. J. Williams, "Water Vapor, Nitric Acid and Ozone Mixing Ratio Height Profiles Derived from Spectral Radiometric Measurements" Report No. BRL CR332 on Contract DAAD05-74-C-0795 by Department of Physics, University of Denver, Feb. 1977. (AD #A037375)

²D. E. Snider, D. G. Murcray, W. J. Williams and F. H. Murcray, "Investigation of High Altitude Enhanced Infrared Background Emissions - Results from COSMEP III and IV" Electronics Command Report No. 5824, OSD-1366, June 1977.

³D.G. Murcray, R.C. Amme and J.R. Olson, Final Reports on Contracts DAAD05-74-C-0795 and DAAD05-76-C-0740 by Department of Physics, University of Denver, in preparation, 1978.

The purpose of this flight was to obtain data on the height distributions of a number of neutral minor atmospheric constituents and to measure any time-varying emissions present in the spectral bandpass of the instruments. These measurements were to be made near the auroral zone in the spring. This report contains the constituent data and a separate report by Snider et al. 2 contains the time-varying results.

A large volume of spectral radiometric data was obtained on this flight. An extensive analysis of some aspects of the data has not only provided numerous constituent height profiles (some of unknown constituents), but has generated better reduction and analysis techniques, has raised interesting questions on how to deal with gray emitting matter and has led to a better understanding of the significant radiometric instrument parameters. The data are presented here in various comparative forms to provide the viewer with a diversity of perspective. Constituent height profiles are derived from the data and are compared with similar data from other flights.

II. INSTRUMENTATION AND CALIBRATION

A. Instrumentation

The payload for the flight included a number of complementary instruments. The liquid helium cooled spectral radiometer described in detail in a previous report was intended to measure constituent height profiles during ascent and to measure time variations in the window radiance at float. Toward this end a scan-stop mode was incorporated which allowed one window wavelength to be monitored for several minutes at a time before returning to the normal scan mode. This was accomplished by stopping the scan reference ramp at a pre-selected point. Table I includes a list of the instruments and their parameters for this flight.

A liquid nitrogen cooled filter radiometer was also flown with four detectors mounted in a vertically linear array. Each detector has a 1° F.O.V. and is offset from the next by 3° center to center. This radiometer had a spectral bandpass that covered the HNO₃ band at 11.3 \mum. The elevation angles associated with each detector correspond to some of the programmed angles for the spectral radiometer. This instrument has been described in detail elsewhere. For this flight the principal function of the filter radiometer was to measure the temporal and spatial character of the 11 to 12 \mum window radiance at float.

⁴D. G. Murcray, "Optical Properties of the Atmosphere" Six Month Technical Report on Contract F19628-68-C-0233 for AFCRL by Department of Physics, University of Denver, Sept. 1969.

In addition, a four-channel x-ray counter was flown to provide a monitor of possible temporal variations in other portions of the energy spectrum. This experiment has been described in more detail by Snider et al. A number of independent experiments were also performed during the course of this flight. Rawinsonde and ozonesonde balloon flights were flown from Poker Flats in addition to a rocket sonde for a temperature profile. Special runs were performed with the Chatanika radar and data was collected from a number of monitors operated by the Geophysical Institute of the University of Alaska.

Table I. Flight and Instrument Parameters

29 April 1976 Flight

Flight Date: 29 April 1976

Location: Eielson A.F.B., Alaska

Primary Instruments: 1. Liquid helium cooled spectrometer

with cold window.

2. 4-Detector LN, radiometers.

Auxiliary Instruments: 1. X-ray (Barcus)

Purpose of Flight: To measure constituent height profiles and to

measure temporal and spatial radiance fluctuations at float altitude in atmospheric windows.

tuations at most stittude in stinospheric window

Time Log: Launch 0430 ADT

Float 0740 ADT (37.6 km)

Cut Down 0905 ADT

LHe Spectrometer Parameters:

Window material KRS 5 Scan Time 43 sec

λ Equation See Figure 3

Grating Order 1 8. 0-13. 6µm 18.8-27.7µm λ Range Resolution .03µm .06µm Sample Interval . 005µm .01µm Detector Bias +15 v +15 v Amplifier Gain 4.0/160 4.0/160 Band Pass 12.5Hz 12.5Hz

NER (Realized during

flight) $4 \times 10^{-8} \text{ wcm}^{-2} \text{ sr}^{-1} \mu \text{m}^{-1} \qquad 2 \times 10^{-8} \text{ wcm}^{-2} \text{ sr}^{-1} \mu \text{m}^{-1}$

B. Calibration Procedure

The calibration procedure used prior to this flight is the same as described previously. Briefly, a double-walled cavity is placed in the field of view directly in front of the vacuum window. The window is maintained at LN₂ temperature while the black body is allowed to slowly vary in temperature over the range from LN₂ to 170° K, above which the preamp is saturated. The differential calibration technique, which eliminates the window emission and scatter effects, was used to derive the spectral calibration coefficient from pairs of black body scans at different temperatures. The spectral calibration coefficients are shown in Figures 1 and 2 and reflect the product of the blocking filters and the grating efficiency functions.

The wavelength function is derived from the grating equation and the constants are determined by fitting the equation to water vapor emission or absorption line positions. Figure 3 shows this function for the calibration data as well as for the flight data.

The spectrometer was calibrated in Denver prior to the Alaskan series and then in Alaska prior to each flight. Also, the flight data are checked for specific radiance values under selected conditions which serves as an in-flight check of the calibration. This procedure is discussed later (section IV.C., Data Testing).

The experience gained during this calibration established four points worth noting. 1) The black body must be thermally stabilized at each temperature used to obtain a good radiometric calibration. Both the temperature sensor of the black body and the radiometric measurement of the spectrometer should be monitored to confirm stability. This should eliminate temperature errors, the effect of which was discussed in the previous report. 2) At high detector

bias levels a random short-term breakdown occurs at the detector causing high frequency spikes. The number of these spikes per unit time depends both on the bias level and the total photon level. time duration of these spikes is short compared to a resolution element and can be differentiated against if the electrical bandpass is wide compared to a resolution element. Bias values of 15v were picked as a compromise between this effect and optimum signal to noise. It should also be noted that the signal is linearly proportional to the bias voltage within the normal range of photon levels. noted in the previous report the cross talk between the short and long wavelength channels is < 0.1%. If it is present at all, it may be slightly noticeable at the high altitudes and in the long wavelength data where the strong signal from the 9.6 μ m O₂ band may be reducing the signal level slightly around 19µm. 4) The effects of scattered radiation from the vacuum window have been greatly reduced for this flight series but have not been eliminated (see IV.B., Window Correction, Eq. (1)). A further improvement has since been made on the balloon spectrometer window baffle assembly. In addition, a modified optical design has been successfully tried on the U-2 aircraft spectrometer in which the window was placed as near as possible to the internal cold baffles.

Figure 1. Spectral calibration coefficient for the second order spectral region.

Figure 2. Spectral calibration coefficient for the first order spectral region.

Figure 3. Wavelength equations for 12 March 1976 calibration and 29 April 1976 balloon flight.

III. FLIGHT DETAILS (29 April 1976)

Project personnel arrived at Eielson AFB on 19 April 1976 to prepare for a series of four balloon flights. Assembly and testing was begun on 20 April of the LHe grating spectrometer, the LN2 interferometer, the LN, filter radiometer with a four-detector vertically linear array, and the auxilliary instrumentation such as the x-ray sensors, gyrocompass servo control, tape recorders, etc. Delays in shipment of liquid helium prevented early testing of any of the infrared experiments. Tests of the laser and white light outputs of the interferometer indicated that that instrument had sustained considerable shock during shipment and required total re-alignment. The radiometer and the grating spectrometer fared better and with the arrival of the LHe were calibrated against cold black bodies on 24 April and 25 April, respectively. By 26 April these instruments were assembled in a gondola and ready for flight. Marginal weather prevented flights on the mornings of the 27th and 28th, but forecasts for the 29th were favorable.

On 29 April 1976 at 0115 ADT, the balloon instrumentation, including the liquid helium cooled spectrometer, the liquid nitrogen cooled four-field radiometer, the four-level x-ray counter, and support instruments, was moved out to the launch area on the taxi stripat Eielson AFB after weighing the payload at 863 kg plus parachute. A complete pre-flight check was made prior to moving the gondola to the launch area, and it was repeated at the site. Preparations continued and the balloon was launched at 0430 ADT.

Since the LHe grating spectrometer was aboard, one of the flight objectives was to measure constituent height distribution. For this purpose the 3.28 x 10⁵ m³ Winzen balloon weighing 549 kg was used to obtain a higher float altitude. The balloon ascended at a uniform rate of about 4.0 meters/second and reached a float altitude of 37.6 km at 0740 ADT. The ascent to 18 km was to the NNE, from there to near float it was to the SW and float winds were to the west. The balloon height profile and atmospheric temperature profile are shown in Fig. 4. The trajectory (see Fig. 5) carried the balloon over Nenanna and the flight was terminated at 0905 ADT, 85 nautical miles west of Eielson AFB. The payload impacted 3 miles south of Bear Lake in a tall stand of trees. The equipment was returned at 2100 ADT the same day using the H-3 rescue helicopter from Eielson AFB. The gondola and instruments were in excellent condition.

During the flight the trajectory tracking was excellent from both x-band and s-band at Poker Flats, and the GMD tracks from the Air Force proved reliable after an azimuth correction was determined by comparison with theodolite observations. The O-2 chase aircraft also provided a fix some time prior to cut-down.

Real time readouts of the gyrocompass and the magnetometers provided direction of look data during the flight by using the Nova 1220 computer to decommutate and digitize the multiplexed data containing this information and then calculate the angles with appropriate, precalibrated equations.

The LHe spectrometer and the x-ray monitor worked well during the flight. The radiometer was working at launch but soon lost sensitivity. It was determined after the flight that this was

due to a bad bias battery and possibly due to difficulties with the tuning fork chopper which were more pronounced on later flights.

A series of command controls were executed during the flight which varied both the azimuth and zenith angle of observation of the spectral radiometer. The zenith angles were pre-programmed for 47, 50, 53, 56, 70, 85, 90.5, and 93.5°, sequentially. There is some evidence from the float altitude data that the effective angles were about 0.2° less than those stated. The instrument was set at 50° at launch and, as the constituent radiances fell off with altitude, the angle was increased to provide a greater optical path (see Table II). Once at float the remaining angles were stepped through and the instrument was set at 47° to look for temporal data. At the end of the flight the instrument was parked at 70°. Thus, there are two points in the flight where several angles are sampled over a short time-span, allowing secant air mass extrapolations to be made.

The azimuth control system was turned on during ascent at about 0540 ADT. The recorder containing the azimuth direction data cannot be well correlated to real-time due to failure of the end-of-record switch. However, a number of things can be said about the pointing, even if it cannot be correlated with the radiance data on a fine time base. The azimuth control was pre-set at 25° true. The gondola did not stabilize immediately following turn-on due to the driving torques associated with the ascending balloon. The platform had stabilized by 0650 ADT (30 km altitude) and was pointing at $25.5^{\circ} \pm 5^{\circ}$ true. The period of the 10° oscillation was 15.5 sec which was relatively constant until the angle was changed. At 0715 ADT the gondola was rotated slightly to 118° true and the

oscillation continued. At about 1730 ADT the gondola was again rotated to 152° true, and at 0755 ADT a full rotation was instituted (200 seconds of command) which ended at an azimuth of 159° true with an oscillation of \pm 15° over a period of 36.2 seconds. A final change in the azimuth was made at about 0830 ADT with a resulting angle of $182^{\circ} + 15^{\circ}$.

A list of the parameters associated with each of the spectral scans can be found in Table II. The skin and window temperatures are used in radiometric corrections discussed later. The air and dew point temperatures are from rawinsonde data (Figure 4). The air mass along the optical path was calculated for each scan $(m = p/p_0 \sec \theta)$ for angles less than 80° and derived from air mass tables for greater angles. Temperatures are listed to 60 km for each kilometer above the balloon float altitude at the end of the table. These were derived from a rocketsonde launched near the time of the balloon flight from Poker Flats. The pressure data were measured on-board the balloon payload. This data was converted to altitude with a model atmosphere derived from the local meteorological data for the preceding several days.

⁵D. E. Snider and A. Goldman, "Refractive Effects in Remote Sensing of the Atmosphere with Infrared Transmission Spectroscopy" BRL Report No. 1790, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, June 1975. (AD #A011253)

Table II. Atmospheric and Instrument Parameters for 29 April 1976.

Rec.	Time	Altitude	Pressure	Zenith Angle	Air Temp.	Skin Temp.	Window Temp.	Air Mass	Dew Point
	(ADT)	(km)	(mb)	(°)	(K)	(K)	(K)	(atm)	(K)
Launch	0438.0	0.00	1002.0	50	280.3	242,7	106.2	1.539	
32	0438.2	0.06	994.9	50	280.3	242.7	106.2	1.528	
33	0438.9	0.30	969.8	50	280.2	242.7	106.2	1.489	271.8
34	0439.6	0.50	944.8	50	280.1	242.7	106.2	1.451	270.6
35	0440.3	0.72	919.8	50	279.9	242.4	106.2	1.413	269.2
36	0441.0	0.95	894.8	50	279.3	242.0	106.2	1.374	267.9
37	0441.7	1.06	873.3	50	279.0	242.2	106.2	1.341	267.4
38	0442.4	1.33	852.0	50	277.3	242.5	106.2	1.308	266.7
39	0443.1	1.41	843.6	50	276.8	242.5	106.2	1.296	266.5
40	0443.8	1.50	833.8	50	276.2	243.0	106.2	1.281	266.2
` 41	0444.5	1.60	824.0	50	275.7	242.0	106.2	1.265	265.8
42	0445.3	1.71	812.8	50	275.1	242.0	106.2	1.248	265.2
43	0446.0	1.80	803.0	50	274.5	243.0	106,2	1.233	264.8
44	0446.7	2.10	784.5	50	274.1	243.5	106.2	1.205	259.5
45	0447.4	2.30	765.9	50	273.4	243.5	106.1	1, 176	256.3
46	0448.1	2,40	747.4	50	272.8	243,0	106.1	1.148	254.7
47	0448.8	2,60	728.8	50	271.3	242.0	106.0	1.119	254,8
48	0449.5	2.80	710.3	50	269.6	242.0	106.0	1.091	256, 3
49	0450.2	3.00	692.2	50	268.1	242.3	105.9	1.063	258.8
50	0450.9	3.15	677.8	50	266.9	242.8	105.7	1.041	261.6
51	0451.7	3. 42	656.2	50	265.0	242.9	105.5	1.008	256.9
52	0452.4	3.75	638.2	50	262.8	242. 1	105.3	0.980	251.4
53	0453.0	3, 85	622.0	50	262.2	241.8	105.2	0.955	249.8
54	0453.8	4.00	600.4	50	261.2	241.6	105.0	0.922	247.3
55	0454.5	4, 23	584.5	50	259.6	241.5	104.8	0.898	243.6
56	0455.2	4.50	569.8	50	258,2	241.4	104.5	0.875	241.2
57	0455.9	4.70	555.1	50	257.1	240.8	104.2	0.852	239.7
58	0456.6	4.90	541.9	50	256.1	240.8	103.8	0.832	238, 1
59	0457, 3	5, 07	529.0	50	255.1	241.0	103.5	0.812	236.9
60	0458.0	5.25	516.0	50	254.0	241.0	103.0	0.792	235.8
61	0458.7	5,35	508.3	50	253.2	240.7	102.4	0.781	235.5
62	0459.5	5.50	499.5	50	252.1	240.2	101.8	0.767	235.0
63	0500, 2	5.82	477.5	50	249.4	240.2	101.1	0.733	233.4
64	0500.9	6,02	465.3	50	247.8	240.2	100.3	0.715	232.0
65	0501.6	6.20	453.0	50	246.2	239.9	99.2	0.696	230,9
66	0502.3	6.45	438.8	50	244.2	239.1	98.4	0.674	229.2
67	0503.0	6.60	429.8	- 50	243.0	238.8	97.8	0.660	228.3
68	0503.7	6.82	415.4	50	241.2	238.5	97.3	0,638	226.9
69	0504.4	7.10	403.2	50	239.1	238.3	96.7	0.619	225.1
70	0505.1	7. 30	391.3	50	237.6	238.1	96.0	0.601	224.0
71	0505.8	7.50	379.4	50	235.7	237.8	95. i	0.583	
72	0506.5	7.70	368.4	50	234.2	237.6	94.3	0.566	
73	0507.2	7.95	356.2	50	232.0	237.4	93.5	0.547	
74	0507.9	8.10	347.0	50	230.7	237.1	92.9	0.533	
75	0508.7	8.35	334.8	50	228.7	236.9	92.4	0.514	

Table II. Atmospheric and Instrument Parameters for 29 April 1976. (Continued)

Rec. No.	Time	Altitude	Pressure	Zenith Angle	Air Temp.	Skin Temp.	Window Temp.	Air Mass	Dew Point
	(ADT)	(km)	(mb)	(°)	(K)	(K)	(K)	(atm)	(K)
76	0509.4	8, 60	324, 2	50	226.8	236.6	91.8	0,498	
77	0510.1	8.80	313.6	50	225.4	236.3	91.4	0.482	
78	0510.8	9.05	303.5	50	223.4	236.0	91.0	0.466	
79	0511.6	9.32	290.6	50	221.5	235.8	90.7	0.446	
80	0512.3	9.55	280.6	50	220.1	235.6	90.4	0.431	
81	0513.0	9.78	270,8	50	218.5	235.3	90.2	0,416	
82	0513.7	9.92	264.8	50	217.6	234.8	89.9	0.407	
83	0514.4	10.13	256.4	50	216.2	234.4	89.6	0,3938	
84	0515.1	10.30	248.0	50	215.3	234.1	89.4	o. 38 0 9	Trop
85	0515.8	10,53	241.3	50	214.6	233.6	89.1	0,3706	•
86	0516.5	10.65	235.5	50	214.4	233.4	88.7	0.3617	
87	0517.2	10.80	229.7	50	214.2	233.0	88.4	0.3528	
88	0517.9	11.00	223.8	50	213.9	232.5	88.1	0.3437	
89	0518.6	11.10	219.8	50	213.8	232.1	87.9	0.3376	
90	0519.3	11.15	216.0	50	213.7	231.8	87.6	0.3317	
91	0520,0	11.30	212.2	50	213.5	231.4	87.3	0.3259	
92	0520.7	11.42	208,4	50	213.4	231.2	87.0	0.3201	
93	0521.5	11.55	204.1	50	213.3	230.9	86.7	0.3134	
94	0522.2	11.70	200,3	50	213.2	230.6	86.5	0.3076	Min. Temp.
95	0522.9	11.80	196.5	50	213.3	230.3	36.2	0.3018	•
96	0523.6	11.90	192.8	50	213.4	230.1	85.9	0.2961	
97	0524.3	12.00	189.0	50	213,5	229.8	85.6	0.2903	
98	0525.0	12.15	185.2	50	213.9	229.5	85.4	0.2844	
99	0525.7	12.30	181.4	50	214.5	229.4	85.2	0.2786	
100	0526.4	12.45	177.6	50	215.6	229.1	84.9	0,2728	
101	0527.1	12,60	173.3	50	216.1	228.8	84.7	0.2661	
102	052 7, 8	12.70	170.2	5 0	216.2	228.5	84.4	0.2614	
103	0528.5	12.90	1 6 6.6	50	216.2	228.3	84.2	0, 2559	
104	0529.3	13.00	162.8	50	216.1	228.1	83.9	0,2500	
105	0530.0	13, 15	159.4	50	216.0	227.8	83.7	0.2448	
106	0530.7	13,25	156.2	50	215.9	227.6	83,5	0.2399	
107	0531,4	13.42	152.7	50	215.8	227.4	83.4	0.2345	
108	0532.1	13.55	149.3	50	215.7	227.2	83.2	0,2293	
109 110	0532.8 053 3. 5	13,70 13,85	146.0 142.8	50 50	215.6 215.6	227.0 226.8	83.0 82.9	0.2242 0.2193	
111	0534.2	14.00	139.7	50	215.7	226.6	82.7	0.2145	
112	0534.9	14.10	136.6	50	215.8	226.5	82.6	0.2098	
113	0535.7	14, 27	133.1	50	215.9	226. 2	82.4	0.2044	
114	0536.4	14.40	130.0	50	216.1	226.1	82.3	0.1996	
115	0537.1	14.60	127.0	50	216.5	225.9	82.2	0.1950	
116	0537.8	14.80	123.9	50	217.1	225.7	82,3	0.1903	
117	0538.5	14.90	121.4	50	217.5	225, 5	82.4	0,1864	
118	0539.2	15,00	119.2	50	217.8	225, 3	82.7	0.1831	
119	0539.9	15.10	117.0	50	218.1	225.1	83, 1	0.1797	
120	0540.6	15.20	114.8	50	218.5	224.9	83,5	0,1763	

Table II. Atmospheric and Instrument Parameters for 29 April 1976. (Continued)

Rec. No.	Time	Altitude	Pressure	Zenith Angle	Air Temp.	Skin Temp.	Window Temp.	Air Mass	Dew Point
	(ADT)	(km)	(mb)	(°)	(K)	(K)	(K)	(atm)	(K)
121	0541.3	15.35	112.6	50	218.8	224.8	83.9	0.1729	
122	0542.0	15.45	110.4	50	219.1	224.5	84.2	0.1695	
123	0542.8	15.60	107.9	50	219.5	224.4	84.6	0.1657	
124	0543.5	15.70	105.7	50	219.8	224.2	85.1	0.1623	
125	0544.2	15,87	103, 5	50	220.1	224.0	85.4	0.1590	
126	0544.9	16.00	101.3	50	220, 3	223.9	85.7	0.1556	
127	0545.6	16.10	99.4	50	220.5	223.7	86.2	0.1527	
128	0546.3	16.25	97.5	50	220.6	223.5	86.6	0.1497	
129	0547.0	16.40	95.7	50	220.7	223.4	87.0	0.1470	
130	0547.7	16.50	93.8	50	220.7	223.3	87.4	0.1441	
131	0548.4	16.70	91.8	50	2 20.7	223, 1	87.7	0.1410	•
132	0549.1	16.80	89.7	50	220.8	222.9	88.1	0.1378	
133	0549.9	17.00	87.3	50	220.8	222.7	88.5	0.1341	
134	0550.6	17.15	85.2	50	220.8	222.6	88.9	0.1308	
135	0551.3	17.30	83.1	50	220.9	222.5	89.2	0.1276	
136	0552.0	17,45	81.0	50	221.0	222.2	89.6	0.1244	
137	0552.7	17.62	78.9	50	221.0	222. I	90.0	0.1212	
138	0553.4	17.80	77.1	50	221.1	221.9	90.4	0.1184	
139	0554.1	17.92	75.6	50	221.1	221.8	90.7	0.1161	
140	0554.8	18.05	74.0	50	221.2	221.7	91.0	0.1136	
141	0555.5	18.20	72.5	50	221.2	221.4	91.4	0.1113	
142	0556.2	18.30	71.0	50	221.2	221.3	91.8	0.1090	
143	0557.0	18,45	69.2	50	221.3	221.2	92.2	0.1063	
144	0557, 7	18.68	67.7	50	221.2	221.0	92.6	0.1040	
145	0558.4	18.80	66.3	50	221.2	220.9	93.0	0.1018	•
146	0559.1	18.90	65.0	50	221.1	220.7	93.4	0.0998	
147	0559.8	19.00	63.8	50	221.0	220.5	93.8	0.0980	
148	0600.5	19.18	62.5	50	220.9	220.4	94.2	0.0960	
151	0602.7	19.60	58.5	50	220.4	220,0	95.1	0.0898	
152	0603.4	19.75	57.1	50	220.2	219.8	95.4	0.0877	
153	0604.1	19.95	55.6	50	220.0	219.7	95.7	0.0854	
154	0604.8	20.10	54.1	50	219.8	219.7	95.9	0.0831	
155	0605.5	20,30	52.6	50	219.6	219.4	96.1	0,0808	
156	0606.2	20.50	51, 1	50	219.5	219.3	96.3	0,0785	
157	0606.9	20.68	49.6	50	219.4	219.2	96.5	0.0762	
158	0607.6	20.85	48.1	50	219.3	219.1	96.8	0.0739	
159	0608.3	21.05	46.6	50	219.2	219.0	97.0	0.0716	
160	0609.1	21.28	44.9	50	219.1	218.8	97.2	0.0690	
161	0609.8	21.48	43.4	50	219.0	218.7	97.5	0.0666	
162	0610, 5	21.65	42.4	50	219.0	218.6	97.8	0.0651	
163	0611.2	21.76	41.8	53	218.9	218.4	98. t	0.0686	
164	0611.9	21.91	40.8	5 3	218.9	218.3	98.3	0.0669	
168	0614.8	22,58	36.8	53	218.9	217.9	99.4	0.0604	
169	0615,5	22.74	35.9	53	218.9	217.7	99.7	0.0589	
170	0616.2	22.91	34.9	56	218.9	217.6	99.9	0.0616	

Table II. Atmospheric and Instrument Parameters for 29 April 1976. (Continued)

Rec. No.	Time	Altitude	Pressure	Zenith Angle	Air Temp.	Skin T <i>em</i> p.	Window Temp.	Air Mass	Dew Point
	(ADT)	(km)	(mb)	(°)	(K)	(K)	(K)	(atm)	(K)
171	0616.9	23.07	34,1	56	218.9	217,6	100,2	0.0602	
172	0617.6	23.23	33, 2	56/70	219.0	217.5	100,5		
173	0618.3	23.39	32.4	70	219.0	217.4	100.8	0.0935	
174	0619.0	23.56	31.6	70	219.0	217.3	101.0	0.0912	
175	0619.8	23.74	30.7	70	219.0	217.2	101.2	0.0886	
176	0620.5	23.90	29.94	70	219.0	217.1	101.4	0,0864	
177	0621.2	24.07	29.16	7 0	219.1	217.0	101.6	0.0842	
178	0621.9	24.23	28, 44	70	219.1	216.9	101.9	0.0821	
179	0622.6	24.39	27.75	70	219.2	216.8	102.1	0.0801	
180	0623.3	24.55	27, 06	70	219.2	216.7	102.3	0.0781	
181	0624.0	24.72	26.36	70	219.3	216.6	102.5	0.0761	
182	0624.7	24.88	25.71	70	219.4	216.5	102.7	0.0742	
183	0625.4	25.04	25.08	70	219.5	216.5	102.9	0.0724	
184	0626.1	25.20	24.46	70	219.7	216.4	103.1	0.0706	
185	0626.9	25.39	23.75	70	219.8	216.3	103.3	0.0686	
186	0627.6	25.55	23, 17	70	220.0	216.2	103,4	0.0669	
187	0628.3	25.71	22.60	70	220.1	216.1	103.6	0.0652	
188	0629.0	25.85	22.11	70	220.2	216.0	103.8	0.0638	
189	0629.7	26.04	21.47	70	220, 4	215.9	104,0	0.0620	
190	0630.4	26.20	20.94	70	220.5	215.9	104.2	0.0604	
191	0631.1	26.36	20.43	70	220.7	215.8	104.4	0.0590	
192	0631.8	26.53	19.90	70	220.9	215.8	104.6	0.0574	
193	0632.5	26.69	19.41	70	221.1	215,7	104.8	0.0560	
194	0633.2	26.8 5	18.93	70	221.3	215.6	104.9	0.0546	
195	0634.0	27. 04	18.38	7 0	221.5	215.5	105.1	0.0530	
196	0634.7	27.20	17,93	70	221.8	215.5	105.3	0.0518	
197	0635.4	27.36	17.49	70	222.1	215.4	105.4	0.0505	
198	0636,1	27.52	17.06	70	222.5	215.3	105.5	0.0492	
199	0636.8	27.69	16.61	70	222.9	215.2	105.7	0.0479	
200	0637.5	27.85	16.21	70	223.3	215.2	105.9	0.0468	
201	0638.2	28.01	15.82	70	223.6	215.1	106.1	0.0457	
202	0638.9	28.17	15.44	70	224.0	215.1	106.3	0.0446	
203	0639.6	28.34	15,05	70	224.5	215.0	106.5	0,0434	
204	0640.3	28,50	14,69	70	225.0	215.0	106,6	0.0424	
205	0641.1	28, 68	14, 29	70	225.5	214.9	106, 8	0.0412	
206	0641.8	28.85	13,93	70 70	226.0	214.8	106.9	0.0402	
207	0642.5	29.01	13,60	70	226.4	214.8	107.1	0.0392	
208	0643.2	29.17	13, 28	70	226.8	214.7	107.3	0.0383	
209	0643.9	29.33	12.96	70 70	227.3	214.7	107.4	0.0374	
210	0644.6	29.50	12,64	70	227.8	214.6	107.5	0.0365	
211	0645.3	29.67	12.32	70 70	228.3	214.6	107.6	0.0356	
212	0646.0	29.85	11.99	70	228.8	214.5	107.8	0.0346	
213	0646.7	30.04	11.66	70	229.3	214.4	107.9	0, 0336	
214	0647,4	30.22	11.35	70	229.8	214.4	108.0	0,0328	
215	0648,2	30,40	11.05	70	230, 3	214.4	108.1	0.0319	

Table II. Atmospheric and Instrument Parameters for 29 April 1976. (Continued)

Rec. No.	Time	Altitude	Pressure	Zenith Angle	Air Temp.	Skin Temp.	Window Temp.	Air Mass	Dew Point
	(ADT)	(km)	(mb)	(°)	(K)	(K)	(K)	(atm)	(K)
216	0648.9	30.50	10.88	70	230.6	214.4	108.2	0,0314	
217	0649.6	30,60	10.72	70	230.9	214.3	108.3	0,0309	
218	0650.3	30.72	10.53	70	231.2	214.3	108.3	0.0304	
219	0651.0	30.88	10.29	70	231.7	214.3	108.4	0.0297	
220	0651.7	31.03	10.06	70	232.1	214.2	108.4	0,0290	
221	0652.4	31, 16	9.87	70	232.4	214.2	108.4	0, 0285	
222	0653.1	31.29	9, 68	70	232.8	214.2	108.3	0,0279	
223	0653.8	31.38	9.55	70	233.1	214.1	108.2	0,0276	
224	0654.6	31.51	9.37	70	233.4	214.0	108.0	0,0270	
225	0655.3	31.65	9.18	70	233.8	214, 1	107.8	0,0265	
226	0656.0	31.83	8.94	70	234.3	214.0	107.6	0,0258	
227	0656.7	31.99	8.73	70	234.8	214.0	107.4	0,0252	
228	0657.4	32, 13	8.55	70	235.2	213.9	107.1	0.0247	
229	0658.1	32,22	8,44	70	235,4	213.9	106.9	0,0244	
230	0658.8	32.30	8.34	70	235.6	213.8	106.6	0.0241	
231	0659.5	32.37	8.26	70	235.8	213.8	106.3	0,0238	
232	0700.2	32, 45	8.16	70	236.1	213.7	105.9	0.0236	
233	0700.9	32,53	8.07	70	236.3	213.7	105,5	0.0233	
234	0701.7	32.68	7.89	70	236.7	213.7	105.2	0.0228	
235	0702.4	32,88	7.66	70	237.3	213.7	104.8	0.0221	
236	0703.1	33.03	7.50	70	237.7	213.6	104.4	0.0216	
237	0703.8	33.17	7.35	70	238.1	213, 6	103.9	0.0212	
238	0704.5	33. 26	7.25	70	238.3	213.6	103.3	0.0209	
239	0705.2	33.36	7.15	70	238.6	213.6	102.7	0.0206	
240	0705.9	33,50	7.00	70	239.0	213.6	102.1	0.0202	
241	0706.6	33,70	6.80	70	239.6	213.5	101.5	0.0196	
242	0707.3	33.86	6.65	70	240.0	213.5	101.1	0.0192	
243	0708.0	33.99	6.52	70	240.4	213.5	100.7	0.0188	
244	0708.8	34.09	6.43	70	240.7	213.5	100.3	0.0186	
245	0709.5	34.16	6 . 36	70	240.8	213.4	99.7	0.0184	
246	0710.2	34.26	6.27	70/85	241.1	213.4	99.2		
247	0710.9	34.39	6.15	85	241.5	213.3	98.5	0.070	
248	0711.6	34,52	6,04	85	241.9	213.3	97. 9	0.069	
249	0712.3	34.63	5.95	85	242.2	213.3	97.3	0.068	
250	0713.0	34.70	5.89	85	242.4	213.2	96.7	0.067	
251	0713.7	34.78	5.82	85	242.6	213, 2	95.9	0.066	
252	0714.4	34.86	5.75	85	242.8	213,2	95.2	0.065	
253	0715. l	34.95	5.68	85	243,1	213.2	94.5	0.064	
254	0715.9	35.07	5 . 5 8	85	243, 4	213.2	94.0	0.063	
255	0716.6	35. 16	5.51	85	243.6	213.1	93.2	0.063	
256	0717, 3	35. 24	5.45	85	243.9	213.1	92.4	0.062	
257	0718.0	35.29	5.41	85	244.0	213.1	91.7	0.062	
258	0718.7	35.32	5.38	85	244.1	213.1	91.0	0.061	
259	0719.4	35, 36	5.35	85	244.2	213.2	90.1	0.061	
260	0720.1	35, 45	5.28	85/90.5	244.5	213.3	89.6		

Table II. Atmospheric and Instrument Parameters for 29 April 1976. (Continued)

Rec. No.	Time	Altitude	Pressure	Zenith Angle	Air Temp.	Skin Temp,	Window Temp.	Air Mass	Dew Point
	(ADT)	(km)	(mb)	(°)	(K)	. (K)	(K)	(atm)	(K)
261	0720.8	35.59	5, 18	90.5	244.9	213.4	89.2	0.272	
262	0721.5	35.74	5.07	90.5	245.3	213.6	88.9	0.266	
263	0722, 2	35.88	4.97	90.5	245.7	213.7	88.6	0.260	
264	0723.0	35.98	4.90	90.5	245.9	213.9	88.4	0, 256	
265	0723.7	36.02	4.87	90.5	246.1		88.2	0.254	
26 6	0724,4	36.05	4.85	90.5	246.1	214.3	88.1	0.253	
267	0725.1	36,11	4.81	90.5/93.5	246.3	214.5	88.0		
268	0725.8	36.21	4.74	93,5	246.6	214.8	87.9	2.394	
269	0726.5	36.31	4.67	93.5	246.9	215.0	87.9	2, 358	
270	0727.2	36.38	4,63	93.5	247.1	215.2	87.9	2.333	
271	0727.9	36.43	4.59	93.5	247.2	215.4	88.0	2, 315	
272	0728.6	36.48	4.56	93.5	247.3	215.8	88.0	2.298	
273	0729.3	36.54	4.52	93.5	247.5	216,0	88.0	2.276	
274	0730, 1	36,62	4, 47	93.5/47	247.7	216, 2	88.1		Long Scan
275	0733.1	36.82	4, 35	47	248.3	216.9	88.2	0.0063	Long Scan
2 7 6	0735.9	37.07	4.20	47	249.0	217.4	88.2	0.0061	Long Scan
277	0738.7	37.32	4.05	47	249.7	218.0	88.3	0.0059	Long Scan
278	0741.5	37.56	3.92	47	250.4	218.6	88.4	0.0057	House Beam
279	0742.2	37.56	3.92	47	250.4	218.9	88.5	0.0057	
280	0742.9	37.56	3,92	47	250.4	219.0	88.6	0.0057	
281	0743.7	37.56	3.92	47	250.4	219.2	88.6	0.0057	
282	0744.4	37.56	3, 92	47	250.4	219.4	88.7	0.0057	
283	0745.1	37.56	3.92	47	250.4	219.6	88.8	0,0057	
284	0745.8	37.56		47	250.4	219.8	88.9	0.0057	
285	0746.5	37.56	3.92	47	250.4	220.0	89.0	0.0057	
286	0747.2	37.56	3.92	47	250.4	220.2	89.0	0.0057	
287	0747.9	37,56	3,92	47	250.4	220.4	89.1	0.0057	
288	0748.6	37.56	3.92	47	250.4	220.6	89.2	0.0057	
289	0749.3	37.56	3.92	47	250.4	220.8	89.2	0.0057	
290	0750.0	37.56	3,92	47	250.4	221.1	89.3	0.0057	
291	0750.7	37.56	3.92	47	250.4	221.2	89.4	0.0057	
292	0751.5	37.56	3.92	47	250.4	221.5	89.5	0.0057	
293		37.56	3.92	47	250.4	221.7	89.6	0.0057	
294	0752.9	37.56	3.92	47	250.4	221.9	89.7	0.0057	
295	0753.6	37.56	3.92	47	250.4	221.1	89.8	0.0057	
296	0754.3	37.56	3, 92	47	250.4	222, 4	89.8	0.0057	
297	0755.0	37.56	3.92	47	250.4	222,6	89.9	0.0057	
298	0755.7	37.56	3,92	47	250,4	222.8	90.0	0.0057	
209	0756.4	37.56	3,92	47	250.4	223.1	90.1	0.0057	
300	0757.1	37.56	3, 92	47	250.4	223.3	90.2	0.0057	
301	0757.8	37.56	3.92	47	250.4	223.6	90.3	0.0057	
302	0758.6	37.56	3.92	47	250.4	223.9	90.4	0.0057	
303	0759.3	37.56	3.92	47	250.4	224.1	90.5	0.0057	
304	0800.0	37.56	3, 92	47	250, 4	224.3	90.6	0.0057	
305	0800.7	37.56	3.92	47	250.4	224.5	90.7	0.0057	

Table II. Atmospheric and Instrument Parameters for 29 April 1976. (Continued)

Rec. No.	Time	Altitude	Pressure	Zenith Angle	Air Temp.	Skin Temp.	Window Temp.	Air Mass	Dew Point
	(ADT)	(km)	(mb)	(°)	(K)	(K)	(K)	(atm)	(K)
306	0801.4	37.56	3,92	47	250.4	224.7	90.8	0.0057	
307	0802.1	37,56	3.92	47	250.4	224.9	90.9	0.0057	
308	0802.8	37.56	3.92	47	250,4	225.1	90.9	0.0057	
309	0803.5	37.56	3. 92	47	250.4	225,3	91.0	0.0057	
310	0804.2	37.56	3, 92	47	250.4	225.5	91.1	0.0057	
311	0804.9	37. 56	3.92	47	250.4	225.7	91.1	0.0057	
312	0805.7	37.56	3. 92	47	250,4	226.0	91.2	0.0057	
313	0806.4	37.56	3.92	47	250.4	226.2	91.2	0,0057	
314	0807.1	37.56	3.92	47	250.4	226.5	91.3	0.0057	
315	0807.8	37.56	3.92	47	250.4	226.7	91.4	0.0057	
316	0808.5	37.56	3.92	47	250.4	227.0	91.5	0.0057	
317	0809.2	37.56	3.92	47	250.4	227.3	91.5	0.0057	
318	0809.9	37,56	3.92	47	250.4	227.5	91.6	0.0057	
319	0810.6	37.56	3.92	47	250.4	227.8	91.6	0.0057	
320	0811.3	37.56	3.92	47	250.4	228.0	91.7	0.0057	
321	0812.0	37.56	3. 92	47	250.4	228.3	91.8	0.0057	
322	0812.8	3 7.5 6	3.92	47	250.4	228.5	91.8	0.0057	
323	0813.5	37.56	3.92	47	250.4	228,8	91.9	0.0057	
324	0814.2	37.56	3.92	47	250.4	229.0	92.0	0.0057	
325	0814.9	37.56	3. 92	47	250.4	229. 3	92.1	0.0057	
326	0815.6	37,56	3, 92	47	250.4	229.6	92.2	0.0057	
327	0816.3	37, 56	3.92	47	250.4	229.8	92.2	0.0057	
328	0817.0	37.56	3.92	47	250.4	230.1	92.3	0.0057	
329	0817.7	37.56	3.92	47	250.4	230.3	92.4	0.0057	
330	0818.4	37.56	3.92	47	250, 4	230.6	92.5	0.0057	
331	0819.1	37, 56	3, 92	47	250.4	230.8	92.5	0,0057	
332	0819.9	37, 56	3, 92	47	250.4	231.1	92.6	0.0057	
333	0820.6	37.56	3.92	47	250.4	231.4	92.6	0.0057	
334	0821.3	37.56	3.92	47	250.4	231.6	92.7	0.0057	
335	0822.0	37.56	3, 92	47	250.4	231.8	92.7	0.0057	
336	0822.7	37,56	3,92	47	250.4	232, 1	92.8	0.0057	
337		37.56	3.92	47	250.4	232.3	92 . 9	0.0057	
338	0824. 1	37.56	3.92	47	250.4	232.6	92.9	0.0057	
339	0824.8	37.56	3.92	47	250.4	232.8	93.0	0.0057	
340	0825.5	37.56	3.92	47	250.4	233.1	93.0	0,0057	
341	0826.2	37.56	3. 92	47	250.4	233.4	93.1	0.0057	
342	0827.0	37, 56	3. 92	47	250.4	233.6	93.2	0.0057	•
343	0827.7	37.56	3.92	47	250,4	233.9	93.2	0.0057	
344	0828.5	37. 56	3. 92	47	250.4	234.1	93.3	0,0057	
345	0829.1	37,56	3.92	47	250.4	234.4	93.3	0.0057	
346	0829.8	37.56	3, 92	47	250.4	234.6	93.4	0.0057	
347	0830,5	37.56	3. 92	47	250.4	234,8	93,4	0.0057	
348	0831.2	37. 56	3.92	47	250.4	235, 1	93,5	0.0057	
349	0831.9	37.56	3.92	47	250.4	235.3	93,5	0.0057	
350	0832.6	37.56	3.92	47	250.4	235.6	93,6	0.0057	

Table II. Atmospheric and Instrument Parameters for 29 April 1976. (Continued)

		(00.202	,						
Rec. No,	Time	Altitude	Pressure	Zenith Angle	Air Temp.	Skin Temp.	Window Temp,	Air Mass	Dew Point
	(ADT)	(km)	(mb)	(°)	(K)	(K)	(K)	(atm)	(K)
351	0833.3	37.56	3.92	47	250.4	235.8	93.6	0,0057	
352	0834.0	37, 56	3, 92	47	250.4	236.1	93.6	0.0057	
353	0834.8	37.56	3, 92	47	250.4	236.4	93.7	0.0057	
354	0835.5	37.56	3.92	47	250, 4	236.7	93.7	0.0057	
355	0836.Z	37.56	3. 92	47	250, 4	237.1	93.7	0.0057	
356	0836.9	37.56	3. 92	47	250.4	237.4	93.7	0.0057	
357	0837.6	37.56	3.92	47	250.4	237.8	93.8	0.0057	
358	0838.3	37.56	3.92	47	250.4	238.1	93.8	0.0057	
359	0839.0	37.56	3.92	47	250.4	238.4	93.8	0.0057	
360	0839.7	37.56	3.92	47	250.4	238.8	93.8	0.0057	
361	0840.4	37.56	3,92	47	250.4	239.1	93.8	0.0057	
362	0841.2	37.56	3.92	47	250.4	239.4	93.9	0.0057	
364	0842.6	37.56	3.92	47	250.4	240.0	93.9	0.0057	
365	0843.3	37.56	3.92	47	250.4	240.3	93.9	0.0057	
36 6	0844.0	37.56	3,92	47	250.4	240.7	93.9	0.0057	
367	0844.7	37.56	3.92	47	250.4	240.8	93.9	0.0057	
368	0845.4	37.56	3.92	47/50	250.4	241.2	94.0		
369	0846.1	37.56	3.92	50	250.4	241.6	94.0	0.0060	
370	0846.8	37.56	3, 92	5 0	250.4	241.8	94.0	0.0060	
371	0847.5	3 7. 56	3, 92	50	250.4	242.1	94.0	0.0060	
372	0848.3	37, 56	3.92	50/53	250.4	242.4	94.0		
373	0849.0	37, 56	3.92	53	250.4	242.7	94.0	0.0064	
374	0849.7	37.56	3, 92	53/56	250.4	243.0	94.0	•	
375	0850.4	37.56	3.92	56	250.4	243.2	94.0	0.0069	
376	0851.1	37. 56	3.92	56/70	250.4	243.6	94.0		
377	0851.8	37.56	3, 92	70	250.4	243.8	94.0	0.0113	
378	0852.5	37.56	3.92	70	250.4	244. 1	94.0	0.0113	
		38.00			251.6				
		39.00			254.4				
		40.00			257.2				
		41,00			260.0				
		42.00			262.8				
		43.00			265.5				
		44.00 45.00			268. 2 270. 9				
		46.00			272 4				
		46.00 47.00			273.4				
		48.00			276,0 275,2				
		49.00			274.4				
		50,00			273.6				
		51,00			273, 2				
		52.00			274.7				
		53,00			273.4				
		54.00			272.0				
		55.00			270.6				
		56.00			269.2				
		57,00			267.8				
		58,00			266.4				
		59.00			265.0				
		60.00			263,6				

Figure 4. Balloon height profile and atmospheric temperature profile for 29 April 1976.

Figure 5. Trajectory for balloon flight of 29 April 1976.

IV. DATA REDUCTION

A. Conversion to Radiance

The purpose of the data reduction process is to numerically reproduce, as faithfully as possible, the incident radiance at the spectrometer window at the time of observation. This requires an accurate instrument calibration and suitable corrections for various instrumentally-induced signals. It also requires some testing of the reduced data to confirm the radiometric accuracy.

The data reduction procedure is similar to that described in the previous report. A wavelength equation is determined from the low altitude flight data based on selected H₂O lines (see Figure 3). Minor linear corrections (<+1.5%) to this equation are determined for each spectral scan based on reference features such as the CO₂ Q-branch at 12.6µm in the 2nd order and numerous H₂O rotational lines in the 1st order. The wavelength equation is, of course, the same for both orders except for a factor of 2. Electrical and optical zeroes are obtained for each spectrum from a region at the beginning of each scan where an optical filter blocks all radiation from the detectors. This point is both an electrical and optical zero since the measured signal is derived only from optically chopped radiation which is referenced to a radiometric zero (4K).

A few voltage spikes induced by the high bias voltage are present in the recorded data. These spikes are removed by a computer program that distinguishes the rapid rise time of the spike from the slower rise time of a spectral resolution element. These spikes normally consist of one or two data points. Substitute

values based on linear smoothing of the edge points are provided. The spectral radiance is then calculated using the calibration factors shown in Figures 1 and 2. This is the total spectral radiance incident at the detector and includes emission and scattering from the KRS5 vacuum window, the only optical element not at LHe temperature.

B. Window Corrections

The corrections for radiant sources associated with the KRS5 window based on the following four assumptions are derived from the flight data. 1) Both the scattering and emissions are gray in nature (i.e., they do not have a spectral dependence for their functional emission or scattering). Thus, if this gray constant is determined at one wavelength, it can be used at all wavelengths and for the entire flight. 2) The temperature associated with the window emission is the measured window temperature. 3) The temperature associated with the scattering varies in a manner similar to the measured skin temperature (which is measured at a point not far from where the scattering probably occurs). The scattered radiation probably comes from surfaces which are at a finite range of temperatures; however, one temperature will be associated with the window scattering for each spectral scan, 4) The atmospheric "window" radiance does not vary at float altitude with either time or azimuth angle. Thus, both time (instrument temperature) and secant caused variations of the window radiance can be used to derive the three necessary constants of emissivity, scattering coefficient, and temperature offset from the measured skin temperature. By using two wavelengths relatively far apart (12 and 24µm), a fairly accurate

determination can be made for the three constants. The 12µm corrections are very sensitive to the scattering term while the 24µm corrections are more sensitive to window temperature.

The data reduction equation takes the following form after the above considerations are empirically met:

$$N = K V - [.0042 B(T_g - 55) + .0476 B (T_w)]$$
 (1)

where

N is spectral radiance in w cm⁻² sr⁻¹ μ m⁻¹,

K is the spectral calibration coefficient,

V is the recorded detector signal,

B(T_s - 55) is the Planck radiance for a temperature 55°K below the measured skin temperature, and

 $B(T_{\underline{\mathbf{w}}})$ is the Plank radiance for the window temperature. An earlier correction for this flight of

-[.0035 B (
$$T_g$$
 - 50) + .056 B(T_w)]

was close to satisfactory, but over-corrected slightly on some scans.

The difference in value of these two corrections may represent the absolute uncertainty in the radiance data.

As will be pointed out later, some parts of the ascent data are not quite adequately corrected. The temperature used for the scattering correction implies gradients with possible time lags and these are different during ascent than at float since the skin is primarily cooling during ascent and warming at float. Most of the residual radiance errors are not important for determining constituent

profiles and are only of interest in evaluating atmospheric window radiance for dust layers, etc. The reduced data, radiance vs. wavelength, are stored on magnetic tape and selected portions of this data are presented in the next section.

C. Data Testing

The only possible in-flight test of the data is to compare some of the measured data with known radiance sources. This can be in the form of an in-flight black body, but none were present on this flight. There are some molecular bands in the wavelength range covered on this flight that are optically black under certain viewing conditions. At the lower altitudes where the concentrations are high, the water vapor bands are usually black, and at high altitudes at large zenith angles ($>90^\circ$) a number of bands become opaque, such as O_3 and O_2 .

On this flight the 9.6 μ m O_3 band observed from float altitude at a zenith angle of 93.5° is about 95% black. The optical path is tangent to the limb at 24 km but the peak radiance in the center of the band exceeds the Planck function for the temperature at 24 km. It is equivalent to the Planck radiation from about 30 km. The O_3 band is not as good a test from this altitude as from a lower altitude where the temperature is more nearly constant with altitude and the optical path penetrates more O_3 . Nevertheless, this data provides a roughly + 10% test of the short wavelength calibration.

A similar test of the long wavelength data was made using a low altitude scan where the center of the H₂O lines were still black. This data was observed at a small zenith angle and because of the low altitude there is a significant temperature gradient above the

height of observation. However, by looking at several black lines and fitting the peak values with a Planck curve, it is apparent that the best fit is for a temperature a few km above the point of observation, indicating an absolute calibration error of $<\pm 10\%$.

V. RADIANCE DATA

The radiance data contained in this report are presented in several formats. In all cases the intention is to provide convenient intercomparison of the observed data at different parametric values. For this report, since the principle result of this flight is constituent height profiles, as much data as possible relating to constituents is included in both tabular and graphical form.

Thirty-four regions were selected within the spectral bandpass of the instrument, each of which has a dominant emitting species or is an atmospheric reference window. These regions are listed in Table III along with the constituent identification. Most of the spectral regions included here are the same as used in the previous report. A few new regions have been added around 11µm and 12µm to better define some of the minor constituents measurable near the tropopause. The spectral radiance from each scan is integrated over these regions and normalized by the spectral band width. These values for all spectral scans are presented in tabular form in Tables IVA, IVB, and V. All of the constituent height profiles in this report were derived using data from these tables.

Selected spectral radiance data are plotted in Figures 6 through 61. The selection is based on showing significant change in the spectral features as a function of either height or zenith angle. The 8 to 13.6µm data are presented in several ways. First, Figures 6 through 20 contain linear radiance plots of representative scans at approximately 0.5 km intervals in observation height. Each figure contains five scans offset from one another for clarity. Because of

the dynamic range of the radiance values in this spectral region, the higher altitude plots do not show much detail in the window areas. A second set of plots with a logarithmic radiance scale are shown in Figures 21 and 22. Again, several scans are shown in each figure with a 1/2 decade offset between successive spectra. Scans were selected at about 2 km intervals and each scan shown is a composite of three co-added spectra. Since the radiance scale is difficult to read in these figures, the individual spectral scans are replotted in Figures 23 through 35. As the balloon neared float altitude the spectrometer was rotated through several zenith angles. Figure 36 shows a composite of representative spectra for five zenith angles at altitudes between 34 and 37.5 km. These spectra have not been offset from one another; the difference in radiance levels is the result of the change in optical path. Each spectrum is a composite average of from 5 to 10 scans.

A number of interesting spectral features were observable in the 10 to 13µm region in the upper troposphere and lower stratosphere. Some of these are analyzed in a later section. To help the reader understand the detail of information available in this region, every spectral scan from 3 to 15 km is shown in Figures 37 through 47. Only the spectral range from 10.3 to 13µm is included to permit an expanded linear radiance scale. Again there are five scans per figure and they are offset for clarity.

The long wavelength region from 18.8 to 27.6µm is shown in Figures 48 through 60, representing approximately 0.5 km height steps. These figures also contain five scans each, which are offset for clarity. A slight residual instrument window emission can be observed in the higher altitude data. This can easily be subtracted

from the constituent data when calculating profiles. A plot similar to Figure 36, showing the zenith angle dependence of the long wavelength radiance, is shown in Figure 61. Here the radiance scale is linear and each scan is offset from the next.

There are a few points relative to the above data that should be noted since they affect the analysis of constituent profiles. The radiance values for each spectral region of Tables IV and V are usually plotted as a function of record number (time) to check the data for consistency, noise and observable errors which would affect the analysis process. Such plots are best made with a specific purpose of analysis in mind and are therefore not included here. There are three features found in these plots which will be discussed here.

At about record 77 (9 km) there is a sharp radiance fall-off in all the data (short and long wavelength) of ~0.5 \(\mu \) cm^{-2} sr^{-1} \(\mu \) m^{-1}. This occurs just below the tropopause (10.3 km) and is probably associated with Cirrus clouds. This feature has made the analysis of the F-11 (CFCl₃) and F-12 (CF₂Cl₂) data more difficult, as will be discussed later. The second sudden radiance decline of a similar magnitude occurs only in the long wavelength data near record 118 (15 km). There is no apparent atmospheric reason for this change; although this is very near the point where the minimum instrument window temperature occurs. The measured radiance change represents a 25% change in the window radiance contribution, which is not indicated by the calculated radiance change due to the window (or skin) temperature change over the few records involved. When this effect is removed from the constituent radiance data (i.e. H₂O) at those wavelengths, by subtracting the atmospheric window radiance,

the constituent radiance curves are smooth and no longer show a rapid change near 15 km. It would appear that the change near 9 km is atmospheric and the change near 15 km is instrumental; however, it is possible to postulate other mechanisms for these changes which leaves the question open.

The third feature of interest is the change in radiance of several species as a function of time at float. This should not be the case for uniformly mixed species without diurnal variation. In the time (0736 to 0845 ADT) that the instrument was set at a constant elevation angle at float altitude the following changes were observed: O₃ region 2, slight decrease <3%; O₃ region 3, slight increase ~1.6%; CO₂ region 21, slight decrease <2%; CO₂ region 23, slight increase ~5%; H₂O region 28, slight increase ~5%. The interpretation of the changes could be many and varied; it can be stated, however, that any change in radiance related to these constituents is small over this period of time. Additional analyses of the radiance data are found in the following section.

Table III. Spectral Regions of Interest

Wavelength Range Constituent of Interest

	Short Wavelength Region	on (see Table IVA)
1.	8.245- 8.310µm	Window
2.	8.810- 9.020	Ozone
3.	9.740- 9.780	Ozone
4.	10.420-10.425	Minimum
5.	10.480-10.540	CO ₂ P-Branch
6.	10.660-10.680	Window
7.	10.740-10.770	F-12 R-Branch
8.	10.820-10.865	F-12Q-Branch
9.	10.870-11.765	HNO Band
10.	11.035-11.065	HNO 3
11.	11, 215-11, 315	HNO ₃
12.	11, 315-11, 415	HNO ₃ Q-Branch
	Short Wavelength Re	egion (see Table IVB)
13.	11 415 11 465	
13.	11.415-11.465	HNO
	11.630-11.655	HNO 3 Minimum
14.		
14.	11.630-11.655	Minimum
14. 15.	11.630-11.655 11.725-11.815	Minimum F-11
14. 15. 16.	11.630-11.655 11.725-11.815 11.960-11.985	Minimum F-11 Window
14. 15. 16.	11.630-11.655 11.725-11.815 11.960-11.985 12.005-12.070	Minimum F-11 Window Unknown
14. 15. 16. 17.	11.630-11.655 11.725-11.815 11.960-11.985 12.005-12.070 12.175-12.215	Minimum F-11 Window Unknown Unknown
14. 15. 16. 17. 18.	11.630-11.655 11.725-11.815 11.960-11.985 12.005-12.070 12.175-12.215 12.415-12.480	Minimum F-11 Window Unknown Unknown CO ₂
14. 15. 16. 17. 18. 19.	11.630-11.655 11.725-11.815 11.960-11.985 12.005-12.070 12.175-12.215 12.415-12.480 12.485-12.585	Minimum F-11 Window Unknown Unknown CO 2 CCl 4

Table III. Spectral Regions of Interest (Continued)

	Long Wavelength	Region (see Table V)
24.	20.05-20.11	Window
25.	20.75-21.02	HNO ₃
26.	24. 42-24. 46	Window
27.	24, 67-24, 78	Window
28.	24.78-25.56	H ₂ O
29.	25, 56	Window
30.	25.72-25.76	Window
31.	25, 76-26, 20	H ₂ O
32.	26.20	Window
33.	26, 37	Window
34,	27, 33-27, 56	Window

Table IVA. Average Spectral Radiances in Spectral Regions 1-12 (μ w cm 2 sr 1 μ m 1). Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II.

Rec.	No.																				
No.	1		2		3		4	5		6		7	,	8		9		10	11	1	2
35	71.	29	55.	191	78.2	28 3	9.10	58.	32	43.	05	44.	48	69.5	- 68	5.53	50	49	69. D	5 6J.	43
36	63.	17	<u> </u>	121	72.5	7 3	6.16	54,	81	30.	93	46.	92	ن 65	5 62	. 34	46	. 53	62.8	3 56.	23
37 38	56.	47 84	40.	131	69.6	94 5	2.54	49.	23	35.	16	37.	99	57.3	5 59	.65	43	. 9	6û • 8	6 53.	37
39	51.	96	39	1 51	57.6	8 3	1.59	44.	97 77	34.	<u>23</u>	34.	34 37	50.3	2 51 5 51	- 31	7.0	13	51.7	5 45.	36 47
40	46.	88	34.	391	50.6	€ 2	1.40	36.	30	27.	94	28.	71	45.50	5 46	.32	37	. 7 B	46.8	6 40.	61
41	42.	33	30.9	5 01	50.1	5 1	8.81	<u> 30.</u>	76	18.	05	19.	41	23.96	30	.78	17	.72	31.6	3 25.	61
42 43	40.	85 85	27.	1 6 1 7 4 4	49.0	16 1	9.96	30,	90	20.	65	21.	88	28.90	33	.27	20	98	34.9	1 28.	67
44	37.	18	26.	11	39.7	9 1	7.89	27.	25	18.	0 C	18.	01	25.84	<u> </u>	.61	10	23	28.1	5 24. 5 25.	<u> 25</u>
45	34.5	702	2. 87	791	36.9	513	. 665	22.1	21	14.2	83:	16.ù	34	21.7 à	323.	669	15.	9637	23.13	119.3	37
46	32.3	<u>792</u>	1 . 8	321	33.0	112	. 554	20.3	76	14.3	<u> 26</u>	14.6	76	19.619	21.	125	13.	592	21.52	617.3	3 <i>c</i>
47	26.7	/21 451	9. 61	1/1	29.3	718	981	17.6	92	12.4	53:	12.7	26	17.128 14.93	316.	556	11.	5311	17.69	716.3	01
49	24.1	071	6. 5	571	23.4	2 8	509	13.6	09	9.3	76	9.7	76	12.688	12.	925	8-1	2 8	2.12	511.1	13 75
50	21.0	041	6. 29	511	18.4	3 8	.377	12.1	03	9.7	96	9.4	47	11.969	12.	264	9.	707	2.45	51 C . 7	99
51	<u> 19.2</u>	201	4 . 44	81	16.4	3 7	995	<u> 11.2</u>	44	8.2	31	9.2	53	11.046	11.	024	9.0	60:	11.16	3 9.1	1 (·
53	14.7	741 241	. 3 + 12 2 - 91	311 101	14.3	6 6	. 302	9.3	36 06	6.6	71 70	7.1	22	8.464 7.806		940	6.3	92	9.27	3 7.9	19
54	1.2.5	351	1.99	951	14.5	1 5	335	7.2	77	6.0	24	5.9	31	€.197	6.	802	6.1	10 A	6.65	2 5.4	77
55	11.6	241	1 - 41	41	11.7	0 4	. 965	6.8	62	5.7	47	5.7	23	6.093	6.	250	5.7	86	6.43	6.1	41
	<u>-3•2</u>	201	تعوي	21	<u> 10-3</u>	9 4	693	6.3	35	5.1	33	5.1	48	5,561	<u>5.</u>	495	4.	76	5.72	5.3	55
57 <u>58</u>	7.1	711 901	(4 a U. 10 a 10	L U 1 1 7 4	10.4 14.6	9 4 2 5	634	6.4	55 14	4.9	98	5.3	40 EC	5.736 E.297	5.	716	5.8	48	5.53	5.2	98
59	5.3	85	9.62	01	01.9	4 4	874	6.1	02	5.0	8 5	5.4	84 84	5.922	5.	<u>55 (</u>	5	111	5.75	9 0 1	16
60	4.4	52	8.92	9	98.8	0 4	. 454	5.4	28	4.7	8	5.1	23	5.561	5.	599	5.1	51	5.69	5.3	46
<u>61</u>	2 5	<u> </u>	<u> </u>	9	<u>99.7</u>	4 2	973	3.9	75	3.2	<u> 52</u>	3,6	<u>24</u>	4,091	4.	322	3.6	ر 7	4.65	4.3	14
63	2.9	85	7.62	9	70 • 3 96 • 1	4 3	• 927 • 250	3.A	73	3.3)) 9	3.6	Ul Ka	4. J96 4. 219) 44 e	566 566	4.1	. 30	4.08	4.5	71 56
64	3.0	53	7.02	? 7	94.9	0 2	. 586	3.1	33	2.6	06	2.9	03	3.268	3.	66 C	3.4	96	4.26	4.2	57
65 66	2.3	82 20	2 95	4	93.1	52	514	2.9	76	2.4	53	2.7	76	3.223	3.	751	3.4	17	4.22	5 3.9	36
67	2 . 3	<u>5.7</u> _	7.02	7	<u> </u>	7 6	. 00A	3,4	<u>17</u>	2.0	5 D	3 . 4	00	3.792	4.	456	4.1	41	4.679	4.5	54
68	1.7	56	6, 59	9	88.5	3 5	413	2.7	04	2.3	17	2.6	76 14	3.027	3.	740	3.5	24	4.27	4.4	11 25
69	1.6	12	6.10	4	87.6	2 2	. 150	2.4	44	2.0	31	2.3	45	2.655	3.	50 4	3.2	31	4.06	3.1	55
70	4 61	. E	E 41		06 0		26.3		-	4 6			4						···		
71	1.6	07 01	5.62	R	86. A	2 1	. 976	2.1	74 37	1.7) 4) A	1.0	84 91	2.577 2.305	J.	478 260	3.2	35	4.090	3.6	96 9
72	1.4	12	5.22	4	85.3	6 1	691	1.9	25	1.59	36	1.7	96	2. 462	3.	446	2.7	7.0	3.71/	3.5	76
73	<u> </u>	<u> 93</u>	<u>5.03</u>	4	<u>84.7</u>	21	685	1.8	6 J	1.5	ĹÜ	1.7	21	1.909	2.	997	2.7	36	3.659	3.4	60
74	1.2	36	4.99	8	84.1	3 1	- 581	1.7	71	1.3	3 7	1.6	17	1.860	2.	868	2.6	0.3	3.549	3.3.	35
75	1 2	F (1	4	2	A 7 C		700		a c	4 2											
	1-0	53	→	7	ロン・フ	0 1. 7 1	. 399	1.0	57 72	1.21	, 7	1.74	65 17	1.663 1.5.9	2.	151	2 • 4	59	3.41	3.2	27
77	¥.¥. 9:	16	4 • 53	5	82.7	3 1	238	1.4	33	1.07	70	1.2	45	1.464	2 -	666 680	2.1	10 Q1	3.100	. Je 11	12
78	6	23_	<u>3.99</u>	19_	81 <u>.7</u>	4	624	. 71	5.8	4 6	Ž	5	59	690	1.	729	1.3	63	2.411	2.2	77
79	• 39	3	3. 74	2	81.9	3	364	• 5	55	• 26		. 3		. 491	1.	512	1.1	26	2.196	2.01	76
80	. 7/	A A	3. 60	0	81.1	<u> </u>	358	1.	9 6		, E	7	0.4	301				<u> </u>			
81					80.4		353	. 41		.17		.31		.396 368						2.11	
82	. 45	99	3.67	3	81.0	4	335	. 4		.19		. 2		. 397	1.	427	1.1	77	2.13	2.5	15
83	• 3	16	3.54	4	00.3	3 ,	369	. 4	+ 6	.16	5	. 21	36	. 365	1.4	+13	1.0	66	2.122	2.30	11
84	• 2	LO	3.53	2	80.8	5	337	. 4	9	. 20	3	. 2								1.99	

Table IVB. Average Spectral Radiances in Spectral Regions 13-23 $(\mu w \text{ cm}^{-2} \text{ sr}^{-1} \mu \text{m}^{-1})$. Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II.

Rec.											
No.	13	14	15	16	17	18	19	20	21	22	23
35	63.83	63,121	08.41	92.03	13.63	96.661	52.652	30.7817	9.17	64.8037	4.48
36	53.63	54.72	99.93	79.411	100.28	81.141	38.102	18.6616	6.17	77.2934	9.24
37										63.4731	
38	50.75	50.76	75,36	66.31	94.66	<u> 20.831</u>	12.491	85.1612	e 43	67.0523	10.23
39										54.6927	
40										49.7325	
41	30.65	29,44	49.95	38,37	63.82	51.17	79.471	39.9. 9	14.29	43.8223	5. 85
42 43	33,65	32,47	49.35	42.19	67.76	52.17	75.581	29.57 8	7.13	43.4721 36.5921	.9.[1
44	27.85	28.1C	44.67	35.83	54.54	41.81	59.691	10.14 7	7 13	34.2319	3. 20
				*****			,,,,,,,,			441017	
45	24.9572	4.6293	8.595	29.3064	7.652	7.6205	3.2629	5. 9936f	. 25 33	2.24617	6.05
.46	21.1672	0.6973	3,139	26.9544	2.848	3.6364	8.6968	6.74:60	. 2052	7.74216	2.49
47	18.8841	8.3853	0.516	25.2993	6.889	9.8044	1.4177	6.16553	6 j 52	4.67614	5.39
	16.7611										
73	12.073	12.4382	1.0.01	19.0734		1.94/3	1.7/35	7.46244	1.3172	3.24312	U - 36
50	11.5301	1. J212	0.5231	6.6282	3.007	8.1602	4.3934	7.03737	. 87 41	5.50613	8.91
51	10.5391	0.1341	6,7651	3.4732	20.744	16.9352	1.3984	0.33733	,3921	5.292 9	16.30
52	8.345	8 . 1521	4.087	11.627	7,532	3.0461	7.2133	3.0763u	. 2351	4.543 8	8.45
-53 <u>-</u>	7.066	6. 8471	1.8072	10.096	4.385	1.7581	4.1682	5.49925	. 6841	1.221 7	9.75
34	0.471	0.3321	U.177	0.4001	.2.460	10.0351	1.1132	1.64221	. • 92 31	n.635 6	b • 73
55	6.117	5.788	8.565	7,713	1.147	9.5501	1.6931	7.43820	.257	9.396 6	2.89
56.	5.142	4.910	7.125	7.328	9.225	9.0941	0.4541	5. 30519	.044	5.438 5	5.22
57										C.567 5	
. <u>58</u> _	6.017	5.958	R. 364	7.9271	0.304	9.2121	<u>C.4371</u>	5.40010	.105	9.241 5	4.32
	7.201	3.070	7.300	7.314	9.086	8.686	9.5481	4. 3541/	•553	9.047 4	8.36
60										8.924 4	
. <u>61</u> .	4.105.	4.762	5.732	4.989	6,67C	6.069	6.8171	1.27214	<u>, 397</u>	6.882 3	9.79
63										7.230 3 6.660 3	
64	3.757	3.183	4.757	3.943	5.246	4.744	5.535	0.93511	.946	6.200 3	3.72
				_	•						
65	3.723	3. 150	4.526	3.805	4.907	4.551	5.219	8.26610	.953	5.802 3	1.74
<u>67</u>	4-368	3.881	5.192	4.550	5.635	5.366	6.029	8.62211	.357	6.605 3 6.106 2	C • 91
	3,689	3.133	4.793	3.627	4.909	4.346	5 • 1 CU 4 • 8 7 6	6.11314 6.446 C	- 457	5.431 2	7.68
69	3.514	2.856	3.830	3.247	3.980	3.852	4.401	6.359 0	.868	5.070 2	5.7ê
		2 21		- 444	3 2/2	=					
70 71	3.500	2 624	3.722	3.161	3.850	3.741	4.314	5.987 B	.434	4.672 2	5.13
. <u>7.1.</u> 72	3.154	2.389	3.066	2.543	3,425 1,080	3.108	3-119	9 <u>0615 (</u>	120	4.402 2 4.095 2	2 27
73	3,109	2.398	2,966	2,537	2.993	2.873	3.357	4.526 6	. :33	4.006 2	1.40
74	3.005	2.242	2.783	2.361	2.788	2.672	3.130	4.210 6	.476	3.790 2	3.57
7.5		7 4 7 7	0 (0 0	2 4 4 2							
75	2.878	1 608	2.622	2.160	2.555	2.475	2.865	3.739 5	. 939	3.476 1	9.61
77	2.659	1. P63	2.227	1.796	2.094	1.960	2.174	3.336 3	. 420	2 734 1	7 71
78	1,951	1.146	1.462	1.069	1.263	1.052	1.136	1.714 3	559	1.742 1	6.53
79	1.731	. 964	1.253	.841	1.070	.900	1.016	1.509 3	.239	1.587 1	5.49
80	1.646	924	1,117	747	04.2	.812	. 694	1.324 2	- 67.0	1.377 4	5 15
81	1.658	866	1.073	685	909	.720	875	1.259 2	374	1.468 1	6.91
82	1.651	• 848	1.047	. 677	.876	. 744	-869	1.228 2	.851	1.452 1	4.45
83	_1.639	. 894	1.011	. 664	.861	+690	. 617	1.196 2	. 777	1.326 1	3.84
84	1.603	. 823	.942	. 685	.804	.667	818	1.147 2	688	1.346 1	4.03

Table IVA. Average Spectral Radiances in Spectral Regions I-12 $(\mu \text{w cm}^{-2} \text{ sr}^{-1} \mu \text{m}^{-1})$. Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.	No.												
No.	1	2.	3	4	5	6	7	8	9	10	11	12	
			 -						1.330	1 117	2.005	1.205	
85		3.448 3.485		.344	.44U	.154 .150	.207 .224	.279			1.953		
86		3.542		309	406	185	.223	. 274.			1.982		
88		3.441		. 378	408	.160	.211	. 265	1.289		1.970		
89	.380	3.430	79.07	. 314	.403	. 150	.211	.207	1.268	355	1,.952	1.899	
						- 1 5 0	476	35.0	1 36 6	0.25	1.675	1 954	
90		3.458		.256 .269	.386 .385	.159 .105	.174		1.244		1.905		
91		3.432		.281	364	.149	.151		1.215		1.874		
93		3.312		.267	365	.127	.175	. 204	1.200	.879	1.652	1.936	
94		3.402		.280	.364	.094	.113	. 231	1.227	. 946	1.908	1.365	
				260	31.5	167	4.74	206	1 161	वगर	1.793	1.771	
95 96		3.328 3.320		.260 .242	.345	.167	.131		1.161		1.78ú		
97	.247		76.78	.302	.357	.163	.101		1.141	.882	1.772	1.730	
98		3.255		257	.353	.087	153	.207	1.126		1.745		
99	.259	3.297	76.74	.248	. 352	.113	.138	.189	1.139	.629	1.772	1.719	
			76 44	246	71.4	420	.128	152	1.132	_ HA1	1.743	1.731	
100		3.215		.286 .221	•341 •331	.130 .140	.134_		1.112		1.732		
102		3.190 3.196		.298	.307	.141	115		1.116		1.741		
103		3.181		.357	.324	145	.095		1.139		1.725		
104	.325	3.240	74.83	. 316	.308	.073	.100	. 114	1.074	.794	1.685	1.690	
105	707	7 240	74.91	. 226	.316	.053	.103	. 153	1.074	.801	1.676	1.681	
105 106			74.66	.219	.301	.098	.096		1.074		1.676		
107			74.88	.261	.290	.152	.104		1.059	.019	1.651	1.635	
108		3.141		. 305	.312	.127	.107		1.058		1.651		
109	. 158	3.099	74.07	.290	.283	.092	.091	.092	1.041	. 804	1.638	1.521	
110	.290	3.151	74.45	.239	.300	.104	.085		1.054	.813	1.674	1.532	
111			74.26	.240	.298	.113	.062		1.020		1.583		
112		3.171		. 209	.290	.062	.066		1.036		1.631 1.590		
113			74.08	. 240	.286	.085	.049	106	1.005		1.585		
114	. 248	3.141	74.13	.265	.213	.100	• 6 5 7		1.01				
115	.214	3.089	73.88	. 231	.286	.071	.064	.116	• 96 9		1.553		
116			74.55	.282	,288	.079	.063	. 110	. 96 0		1.523		
117			73.67	.167	.287 .278	.043	.066	.086 .096	.939		1.459		
118 119	-279	2.976	73.06	.199	.272	.084	.031	.084	.901	.716	1.446	1.401	
	•••												
120			71.88	. 269	.266	.083	.066	.077			1.387		
121	.132	2,936	71.75	. 214							1.372	1.300	
122 123			71.61 71.57	•267 •215	•259 •262		.020	.064	.832 .819		1.309 1.322		
124	.217	2.902	70.98	. 227				.089	.814	.622	1.291	1.274	
125			71.28	.169	.266	.130	.420	.077			1.271 1.227		
126			69.57	• <u>125</u> •279	.359	.090	053	.066	.783	569	1.170	1.185	
127 128	.288	2.759	68.46	221	.242	.023	058	.065	.738	.591	1.164	1.145	
129			67.93	.206	.226	.043	.059	.079	.718	.508	1.115	1.156	
				735	21.5	000	.032	055	.712	. E7 6	1.086	1.11	
130			67.02	.175	.246 .258	.096	.032	.065	.712		1.110		
131 132			65.38	. 232	.235	.057	.065	.080	. 684			1.095	
133	219	2.581	63.98				.038	.067	.651	.509	1.633	1,707	
134			62.52		.239	.060	.020	. 094	.633	.511	.992	. 384	

Table IVB. Average Spectral Radiances in Spectral Regions 13-23 $(\mu w \text{ cm}^{-2} \text{ sr}^{-1} \mu \text{m}^{-1})$. Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.					Spect	ral Reg	ion				
No.	13	14	15	16	17	18	19	20	21	22	23
85	1.521	. 741	.895	. 642	.783	. 653	.738	1.071	2.662	1.366	13.75
. 86 87	1.531	,823 ,786	•901	-619	.785	.675	.796	1.097	2.599	1.265	13.55
88_	1.494	.772	• 864 • 868	.539 .607	•759 •768	•584 •623	./U5	1.012	2.439	1.196	12.72
89	1.464	.804	.828	.549	.756	.619	.698	1.075	2.410	1.160	13.25
90	1.477	.796	.841	• 555	.721	.639	.758	1.043	2.517	1.168	17 17
91	1.457	.769	-837	• 551	.709	.626	.726	1. J21	2.394	1.225	12.45
92	1.429	.778	.793	• 568	.691	. 60 4	.560	.947	2.3.9	1.196	12, 31
93	1.386	. 733	.758	484	696	. 582	.694	. 937	2.276	1.115	12.91
94	1.423	. 782	.748	• 552	•645	. 627	•667	• 905	2.272	1.081	12.66
95	1.362	. 735	.731	• 503	.690	,561	668	•969	2.235	1.02.	12.87
96	1.345	.727	.701	.512	•653	• 556	+627	• 680	2.139	1.102	12.49
97 98	1.341	.716 .711	.716	. 450	654	.522	-641	9.1	2.136	1.020	11.93
99	1.353	•711	.692 .679	.489	•660 •599	•528 •522	•640 •631	. 551	2.133	1.118	11.72
		·									
100 101	1.380	.703	.670 .654	. 493 . 455	606	•533	.645		2.073		11.57
102	1.304	.676	.634	416	•614 •605	•508 •505	.637 .613		2.000 2.016		11.82
103	1.318	692	.615	403	610	494	.601		1.979		11.86 12.08
104	1.249	.711	.595	•411	.550	.477	.552		1.933	.977	11.72
105	1.265	.702	. 565	.406	.543	.455	.600	. 610	1.975	. 304	11.38
	1.247		.579	. 437	•556	.463	581		1.974	1.165	11.11
107	1.263	•691	.579	. 388	.557	.419	. 582	• 619	1.926	• 333	16.91
109	1.254 1.246	• 696 • 636	• 553	.400	.548	.458	597		1.903		11.06
	·		.506	. 377	•532	.442	.601	.771	1.857	. 546	10.69
110	1.258	• 64 1	• 522	. 374	.515	453	• 556		1.833		10.48
111 112	1.231	.673 .651	.510 .473	380 363	•518 •495	.429	578		1.547		11.73
113	1.225	615	477	364	•467	.403	.553 .550		1.733	.937	10.52
114	1.221	. 649	.473	. 354	.472	•412	.544		1.770		9.39
115	1.167	• £15	.429	.311	.428	.368	•535	• 56 û	1.691	.842	9.83
116	1,199	. 568	.446	.308	.438	.374	•563	744	1.741	. 379	
117	1.149	- 585	. 443	354	.435	.346	• 554	.721	1.697	.792	9.49
119	1.137	• £11 • 546	.435	.336 .310	• <u>412</u> •427	.356 .351	527	.717		•9C1	9.5
						·	.497	• 695		.917	9.16
120 121_	1.059	. 494	• 405	. 313	.409	. 342	• 4 9 9	• 653		.320	9.42
	1.044	• 549 • 476	.399 .369	312	412			.685		.774	9.19
		479	.373	·299 ·282	.368 .428	• 315 • 324	•51] • <u>465</u>	.716	_	966	0.82
124	1.006	. 472	.384	.200	.372	. 318	.501	.643		.367	9.02
125	1.002	. 490	. 375	. 215	.392	.364	6.7.2		4 5 7	77.5	
		448	391	293	356	324	.473 .491	• 665 • 647		•779 •746	9.34
127	.949	. 545	369	.276	.367	.323	.517	.631	1.537	-316	9.05 8.81
		<u> 527 </u>	356	• 360	, 354	.317	.499	.626		.775	8.54
129	.873	. 449	.355	• 268	.345	.290	.437	. 617		.767	8.39
130	.898	. 439	.320	.226	. 135	. 303	.455	• 63é	1.470	.764	8.21
737	_ <u> </u>	463	365	.275	.335	,287	.466	<u> 635</u>		683	8.22
132 133	•847 •745	. 423 . 435	321	.239	344	.265	.447	.591		.723	H. G1
134	816	• 435	- 312 - 242	.274 .303	.302	•266 •323	•497 •495	.592		.653	7.53
		-				7020	* 445	. 0 2 4	* * 4 T #	.707	7.65

Table IVA. Average Spectral Radiances in Spectral Regions 1-12 $(\mu w \text{ cm}^{-2} \text{ sr}^{-1} \mu m^{-1})$. Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.												
No.	1	2	3	4	5	6	7	8	9	10	11	12
135	.194	2.494	£2.24	.228	.224	.101	•539	. 661	.627	.5.0	. 966	- 386
136		2.479		. 233	.234	<u>. 687</u>	.620	•57i	.633	.479	.946	- 337
137		2,456		. 227	.213	.054	.044	. 4 54	.535	.431	. 6 91	· 325
138		2,443		184	-213	.163	.054	.068 .069	•561 •545	.447	.071	154
139	.140	2.376	58. 32	.135	.193	. 045	.020	• 600	• 24 2		1.47	
140		2.375		.207	.219	. 59	.039	. 637	.531	.392	. 653	• 527
141	.262	2.366	57.50	236	.218	.053	.524	• 0 66	.534	.415	.951 .791	.934
142		2.304		.184	.181	. 138	.113	. i 32	.513 .503	.353	.775	.786
143		2.283		.202	.166 .180	.033	.023	1	494	.387	749	745
	• 1 40	2 6 30 7	30,630	****	••••	•••			• . • .	-		
145	.265	2.325	55.54	. 246	.212	.643	.031	• u 4 7	.493	.383	.757	.765
146	.460	2.207	54.91	.2R1	.216	.023	.252	.041	. 475	.493	. 726	• 7 35 - 7 35
147	.128			. 181	.219	.124	. C48	. 637	. 449	356	695	.7,4
148			53.46	311	. 234	.166	<u>, û 2 J</u>	. 161	.439	.311 .285	.674	•578 •533
151	.255	2.090	51.22	. 266	.187	.049	.045	• Ů62	.415	• 2 6 7	.037	• 5 5 5
152	.157	2.059	50.89	. 220	.189	.055	.639	. 041	.453	.304	،615	.631
153		2.041		.165	.175	.094	.030	.975	.3d3	.274	.593	•59€
154		2.039		.230	.217	.083	.020	.063	. 368	. 124	.565	• 5 31
155	.305	1.995	47.99	173	162	• <u>196</u>	.039	.031	.357	.302	•555 •500	•526 •514
156	•195	1.899	47.30	. 147	.181	. (54	.,041	• 031	• 90)		.,,,,	
157	.209	1.900	45.67	.149	.159	480.	.033	• u5.3	.311	.261	. 464	• 4 - 2
158_	.122	1.791	44.82	.115	.169	.074	.042	• u 3 3	.300	• 369	.455	. 457
159			44.39	•129	.176	.087	.020	•115	. 294	. 22ù	. 462	.465 .403
160	<u>•119</u>	1.786	43,56	• 171	.174	.096 .072	.032	.039	· 265	.226	.411 .385	398
161	. 090	1.000	42.30	.133	.147	.012	•020					
162	.127	1.686	42.43	.098	.171	.027	.621	. 533	. 251	.197	404	. 312
163			43.07	•558	.20u	.048	.047	• 63 L	. 27 2	.234	-401	. 4 27
164			43.22	• 226	.182	.123	.083	. 426	.245 .206	.160	.371 .297	.388 .296
168			40.55	.235	.156 .155	.047	.049	• 061 • 023	.137	.1eu	275	2 9 H
169	•100	1 1 6 6 4 1	39.93	1160	• 1 7 7							
170	.071	1.749	40.93	.342	.144	.068	.029	• u30	.221	.17L	.336	.362
171			40,45	273	. 226	.077	. 034	<u>0 36</u>	-213	.151	.302	331
172	_		39.69	• 184	.216	.674	.942	• G 4 d	.276 .326	.159	.296	• 317 • • 82
173 174			50.43	• 320 • 296	.298	111 148	.026	.JE1	307	.263	457	456
114	• 1 1				• • • • • • • • • • • • • • • • • • • •						·	
175			50.14	. 315	.319	.133	.07ú	.) 44	230	.239	.429	. 4.74
176_		2.392	50.37	. 367	313	694	040	. 042	.264	.193	.387	.401
177	.132	2.365	49.25	.301	.313	.130	.026	. (5.	.254	.135	.jo6	399
178 179	175	2 301	49.45	342	.282 .297	,105	.662	638	234	185	.33=	364
180	.113	3 2.329	49.17	.390	.303	.089						344
	, 11.	2.266	47.61	. 314	- 294_	.144	.036	<u> </u>	<u>• 228</u>	.171	.327	335
182	.096	2.196	47.14	• 322			.066	.341 .346	.22 2 .22 3			· 12b
184		2.241	47.60	.343		.171	.06J	040		.167	319	315
185			46.52	. 286		.139	.562	. 152			_	1302
186			46.17			.169			•197 •198			• <u>296</u> • 307
187 188			46.36	324	.300			.061 .u56	_			
189			46.93			.127	.068	. 047		.170		, 2 37
			-									

Table IVB. Average Spectral Radiances in Spectral Regions 13-23 $(\mu w \text{ cm}^{-2} \text{ sr}^{-1} \mu \text{m}^{-1})$. Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.					Spect	ral Reg	ion				
No.	13	14	15	16	17	18	19	20	21	22	23
135	.783	. 402	. 291	.271	.266	. 325	.439	. 600	1.410	.660	7.45
136	.752	. 445	.296	. 271	.305	. 251	472		1.364	577	7.35
137	.721	. 418	. 299	•194	.256	.267	413		1.377	.686	7.33
138	•69 <i>8</i>	. 31 7	.262	.175	.296	.180	424		1.357	621	5.69
139	.690	. 305	.246	. 145	.271	.28€	•416		1.310	.697	5.85
140	•684 •659	. 331	. 233	.177	•262	. 230	-412		1.328	•556	6.89
142	.645	. 364	.248	178	.251	202	407		1.239	.555	6,6í
143	.624	.312	.236	•179 •159	.226	.220	.43û		1.137	.569	6.43
144	.612	. 327	. 224	. 215	.256	.237	373		1.232	•659 •684	6.37
145	.586	. 327	.219	.122	.239	.249	.399	. 484	1.259	.556	6.45
146	•561	. 288	•186	.150	•195	. 220	.396		1.175	548	6.49
147	•572	. 30 1	.206	.209	.249	•185	.356	. 497	1.135	54.	6.28
148	- 529	. 322	-204	.180	.217	.227	.385		1.215	.59A	6.02
151	.517	.233	•177	•163	•199	•226	.400	•5ûh	1.061	.542	5.49
152 153	•533 •476	• 262	175	.147	-184	.217	.392		1.096	.497	5,61
154	• 438	• 292 •	.174 .162	•133	.237	.209	.409	<u> 429</u>	1.374	475	5.57
155	-423	.249	196	.092 .144	.210	.233	.377		1.004	.493	5.61
156	.397	. 255	.127	.125	.203	•170 •191	•358 •328		1.054	.609	5,6º 5,42
157	.401	.256	.131	.101	.181	.199	. 312	.417	• 933	.434	5.11
158	392	233	.172	.103	.197	.098	-3ü1		1,003	.521	4.82
159	.363	• 22 6	• 127	. 128	•164	.153	.308	.426	.993	.5(j	4.96
.160_	<u> </u>	197	137	065	181	126	.229	.39*	.973	.411	4.85
161	.310	• 202	•102	.147	•161	•136	•261	. 413	•9J1	.441	4.67
162	.317	.217	.101	.073	.137	.154	.310	· 39.	996	.493	4.75
	317	203	127	-115	•189	161	.307	. 417	1.074	.507	5.3u
164	.318	. 161	.166	.142	.143	.136	.315	. 415	1.014	.466	5.94
169	•215	•123 •139	0.50	• 068 004	-114	.116	. 283	. 363	918	.472	4,39
			.086	• 091	•132	.143	.239	. 354	. 67 d	.489	4.43
170	.248	. 185	.118	•139	•179	. 201	.350	.420	.993	.405	4.94
171		, 132	121	101	-205	-182	.335	. 42 J	.939	406	4.81
172 173_	.231	.168	•155	.031	•131	. 232	. 495		1.518	.667	7,51
174	.389 .384	. 240	•209 •178	144	•29 <u>9</u>	.291	. 483	.683		.784	7.2
				.239	• 265	.269	-503	. 68¢	1.522	.777	6.63
175	•320	. 255	.172	. 242	.231	.253	•513		1.497	.797	6.67
176		179	155	. 189	.248	.297	528	.631		.751	6.25
177	.311 .302_	•224	155	• 156	. 257	. 253	484	. 646		.689	6.15
179	<u>94</u> -	• 175	•160 •139	.202 .183				.624		.776	6.24
					.238	.283	. 496	. 642	1.466	.726	6.35
160	.297	• 227	.160	.170	.214	. 259	• 526	.598	1.442	•6u2	6.25
181	-255		154	141	255		466	, 636		.534	6,14
182	.262 2 <u>76</u>	.189	.162	. 214	. 242	262	485	.607		.750	6.65
184	.245	.20€	•158 •145	•196 •699	.245	.301	<u>.457</u> .470	.616 .621		.647 .733	6.11
185	.240	.170	.165	.200	.262	.277	.457	.602		. 344	
	Z4Q	157	152	.171	234	318	478	593			5 • 8 d
187	.221	- 181	.144	-183	.262	.252	.467	.666	1.372	•351 •712	6.12 5.91
	230	-145	133	.188	.243	.248	466			640	6.13
189	.232	.178	.146	.173	.242	.262	.578	.570	1.376	.765	5.97

Table IVA. Average Spectral Radiances in Spectral Regions 1-12 $(\mu w \text{ cm}^{-2} \text{ sr}^{-1} \mu \text{m}^{-1})$. Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.					Spect	ral Reg	ion					·
No.	1	2	3	4	5	6	7	8	9	10	11	12
190	.143	2.151	45.33	. 370	.269	.107	.049	· ú54	.167	.133	.212	.225
191	.197	2.093	45.34	. 254	.281	.106	.072	. (50	.134	•16 9	.249	. 265
192		2.067		. 30 3	.317	.145	.093	. 60	.166	.152	.216	. 234
193	002	2.027	45.03	- 311	.273	.111	.032	<u>. (j.4.)</u>	.175	154	.247	• ? 5 5
194	. 383	2.007	45.35	.329	.281	.098	.064	.041	.153	ABC.	. 234	. 258
195	.127	2.052	45.19	.253	.288	.160	.101	. 636	.167	.147	.212	.263
196	.126	1,591	44.79	.300	.305	,150	.059	.071	.174	.119	, 233	, 245
197		2.049		.285	.289	.121	.075	• 048	.162	.133	207	. 224
198		1.995		308	.315	.170	.871 .576	•073 •063	.165	134	213	.242
199	. 1199	2.012	44.55	. 276	•292	.150	.576	• n o o	•143	- 113.		
200		2.027		. 325	.301	.117	.C68	. 068	•166	.145	.199	-263
201		1.984		. 315	.312	.117	.083	.649	.147	•122	• 2 G2	.215
202		1.927		.421	.308	.143	.053	. U 6 3	.154	.139	.193 .149	.217
203		2.067		.328	.318	.128	.083	. 067	.132	.122	195	•216
204	4075	1.970	43.02	• 309	•310	4150	• 0 / -			• • • • •		
205	-289	1.925	42.D7	.341	.281	.148	.068	• 966	.153	.186	. 190	198
206			41,6]	. 304	. 295	.161	• 056	.059	.136	<u>,130</u>	183	. 1 7 t.
207		1 . 8 . 8		. 275	-299	.151	.076	.074	.123	.129	.167 .192	.175
208			40.34	.340	.324	.154	.125	.051	.134	,115 ,156	.161	156
209		1. 093		.340								
210		1.800		.316	.317	.135	.093	097	.121	.132	. 157	.165
211			38.67	.296	.336	138	.994	648	120	,112	.158	142
212			39.73 39.56	.311	.319	.177	.067 .062	.379	.123	.123 .121	.146 .149	.165
213 214			36.08	.399	.304	.096	.072	. 670	.113	,106	.135	153
215	105	1.694	37.93	.341	.306	.166	.087	. 564	.164	,146	.192	.177
216		1.685		. 321	•353	. 281	102	. 075	.115	,135	.147	.155
217	.281			.325	.306	.033	.135	.068	.102	• j86	.13L	.137
218	.107	1,629	37.49	. 378	.288	.105	.090	• 6 6 0	.102	.370	.121	131
219	.363	1.632	37.77	312	.305	.191	.105	. 947	.101	ំបិចិត្ត	.133	•129
220	.231	1.635	37.24	. 391	.299	.106	.035	. u 7?	.100	.114	.124	•145
221			37.29	. 312	.268	.110	.085	• 664	.115	• 199	.12.	.136
222		1.552		. 333	•306	.120	.083	• ú49	.115	.104	.133	.173
223			35.93	.439	.297 .283	.161	.072	•346 •854	.099	•116 •114	.135	1 3t
224	•117	1.349	35.65	. 439	• 2 6 3		.009					
225			35.59	. 305	.307	.153	.065	. 372	91	. 193	. 11L	.125
226			35.57	. 288	.291	.131	.105		•£30	.119	.102	.128
227			34,93	. 295	.307	.125	.075	+ 63	000	.374	•101	130
228_			34,34	317		. <u>154</u>	.074	. U44 . J57	.095	.110	.113	101
229			33.97	.321	286	.110	.091	• 0 57	• 632	• 110	• • • • •	
230			33,76	. 359	•293	.126	.076	. 047	. 934	.145	•1 06	.120
231			33.75	.282	.284	.116	<u>.66J</u>	+ 964 067	. j8ú	. JA5	•1 J9	.139
232			33.74	. 323	.288 .293	.149 .155	.047 .084	.057 .065	. 193 . úd3_	.110	•12u	.1 J6 .1 ⁿ 2
233 234		1.381	32.75	.266	.305	.162	•067	.061	.033	.166	97	1 79
235	.180	1.376	31.94	.305	.289	.139	.C68	.053	.278	.192	.094	1 70
236			11.47	• 255	265	•156_	.111	• u 5 1	676	.J74	095	96
237			31.41	• 303	.261	165	.068	105	. 334	.193	.282	.132
238			30.95	. 273	294	.161	.98G	48	574	100	.072	136
239			30.48	.367	.236	.143	.366	. 656	.071		. 171	.136

Table IVB. Average Spectral Radiances in Spectral Regions 13-23 (μ w cm⁻² sr⁻¹ μ m⁻¹). Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.					Spectr	al Regi	on				
No	13	14	15	16	17	18	19	20	21	22	23
190	.212	.168	.135	.143	.212	.252	419	. 569	1.272	.687	5.78
<u> 191</u>	.219	. 152	•156	• 351	.273	.267	.43C		1.334	631	5.86
192	.201	. 156	.149	165	• 259	. 283	.410		1.306	• 624	5.66
193	. 209	176	.183	.168	.258		.392		1.338	.636	5.18
194	.208	•134	•125	. 184	•197	.280	.419	.587	1.336	.591	5.33
195 <u>1</u> 96	.188	-129	.135	.156	.246		-418		1.273	.607	5.12
197	•189	.165 .175	.152 .143	•153 •159	.247 .277		.393 .460		1.231	.627	5, 33
198	182	163	.148	188	239	.232	388		1.276	•596 •603	5.39
199	.177	.178	.149	.182	.249		472		1.259	500.	5.37
200	404	77.7	474	405		25.5	7.34				
201	•191	. 147	.164	.125	.249		.396		1.339	.645	5.33
202	•163 •163	• 130 • 178	.153 .154	•151 •164	.234	.216	.398		1.254	.533 .641	5,22
203	177	.125	124	193	.239	.198	.381		1,213	.572	5.01
204	.153	.148	.148	160	.246	.248	414		1.255	.572	4.93
205	.167	. 207	.185	.166	.235	.237	. 412	. 536	1.234	.561	4.89
206	.153	.131	159	.195	. 243	310	.387		1.188	-586	4.75
207	.141	.116	.156	. 174	.242	.177	.362		1.159	624	4,45
208	-146	.145	.150	.181	.221	. 241	. 393	.500	1.908	586	4.68
209	.156	. 154	.165	. 205	.239	.249	415	.520	1.194	.604	4.63
210	.140	. 125	.144	.090	•23€	.222	.394	.500	1.160	•572	4.53
211	.139	137	.153	. 156	.221	.220	374		1.152	533	4.70
212	.105	.125	.145	. 158	.253	.237	.390		1.150	.580	4.57
213	•113	<u>138</u>	.157	•137	.231	.244	.349	. 498	1.161	.570	4.46
214	.107	. 120	.143	•196	.200	.236	• 407	• 466	1.125	. 484	4.41
215	.203	:134	.189	. 194	.223	•247	.374		1.146	.535	4.74
216	.125	.135	168	199	. 213	.236	. 352		1.638	.442	4.37
217	-100	. 089	-141	.219	.208	.218	.322		1.093	.51¢	4.20
<u> 218</u> 219	•119 •102	• 132 • 104	.140	.180 .168	•190 •203	•257 •2 2 9	.353		1.035	•551 •485	4.15
220	.126	. 111	.146								
221	260.			•162 •185	.234	.214 .192	.418		1.057	.523	4.12
555	.154	.154	120	.152	.200	195	366		1.348	•465	3.84
223	110	.116	.139	. 162	207	214	350		1.022	,506	3,95
224	.081	.110	•130	.153	.207	.216	. 324		1.053	.491	4.03
225	.107	.095	.119	.160	.210	.226	.365	. 455	1.016	.420	3.9i
226_	.068	127	.129	.145	.216	174	.323		1.38	424	3.99
227	.086	.139	.125	-144	•199	.214	.315		1.026	.428	3.91
228	.085	106	.134	.165	.183	195	.323	.410	,976	,451	3,95
229	.088	.097	.117	. 155	•202	.147	. 295	• 399	.981	.504	3.92
230 231	.090	.063	•172	.220	.232	.183	.302	. 388	.950	.491	3.60
535	,079 •110	.075	,112 ,118	•152 •135	•180 •187	•185 •186	.301	• 455	.963	.469	3.56
233	.098	098	,130	•135 •159	.194	.212	.303		.938	.511 .487	3.64 3.71
234	.087	.115	•129	.178	.197	174	.290	.363	.976	.435	3.47
235	.078	-091	•115	.119	.184	.225	. 291	.376	1.139	.412	3.50
236	079	117	.171	.114	.193		.263	. 351		367	3.46
237	.074	.105	.123	.136	.187	.183	.259	. 393	.914	-4C8	3.71
238	.095	. 104	•115	.122	.181	.149	•305	. 359	.934	• 35 ú	3.73
239	.077	.088	.127	.115	.188	.171	.283	. 342	.838	. 352	3.56

Table IVA. Average Spectral Radiances in Spectral Regions 1-12 (μw cm⁻² sr⁻¹ μm⁻¹). Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.			•		Spect	ral Reg	ion					
No.	1	2	3	4	5	6.	7	8	9	10	11	12
240	.083 1			. 226	•255	.111	•C69	. 055	.072	.081	.079	.173 .175
241	.088 1			. 253	.262	.123	-036	649	.061	.074	.174	. 182
242	.069 1			. 252	.261	.119	.066	.064	.069	.389	. 673	567
243	052 1			134	. 324	.118	.069	.053	.374	.083	8 .	280
244	.141 1			. 338	.271							
245	.113 1	. 226	29.00	. 293	.267	.159	.050	.070	.075	.086	. 661	.069
246	,087 1	. 207	28.50	. 204	.268	.133	.101	. 036	.072	056	.087	.172
247		. 191	62.31	. 808	.739	. 361	.212	.162	.155	.130	.162	.177
246	.131 3			.813	.711	.397	.216	.145	.130	188	.169	194
249	.284 3	. 31 6	62.63	.714	.762	.347	. 251	191	.169	.130	.154	• 2 3 2
250	.302 3	. 20€	60.74	.724	.819	.494	.388	.313	. 434	.304	.407	. 456
251	.232 3	.159	59.93	. 827	.828	.537	.322	.286	.511	.329	.5úG	.556
252	.300 3	. 063	58.67	.708	•692	.366	•197	.115	.163	.133	.141	.123
253	.227 2	. 876	56.00	695	.660	. 354	.185	.115	.139	.088	-C88	.146
254	.159 2	. 884	57.39	.690	.653	. 335	•179	. 093	•13)	.198	. 122	.113
255	.253 2	994	58.18	.787	.692	.323	.227	.113	.130	.979	.589	.118
256			58.47	704	.671	. 314	.208	,125	.152	.103	.108	.111
257			58.63	.720	. 692	.328	•292	. 154	.142	•12u	.105	. 1 26
258			58.52	. 684	.686	.337	•162	,1G8	.141	.118	.122	. 125
259	.216 2	2.981	57.95	.708	.695	.336	.210	.135	.132	.094	.125	.123
260	.234 2	-887	56.80	.719	.668	.343	•199	,113	.133	.192	.133	• 12C
261			118.46			.803	.590	. 354	.375	. 314	.383	.378
262			117.06			.840	.574	. 356	. 362	.329	.358	.349
263			1 17 . 39			.738	.475	. 327	. 356	. 293	, 36 <u>5</u>	. 757
264			117.37			.894	.541	. 315	. 38 4	.327	.357	. 390
265	.536	7.811	118.28	1.969	1.447	.766	. 425	. 338	. 37 4	.324	.445	.383
266	.726 7	7.683	117.33	1.976	1.525	.717	. 472	.320	.339	,277	.330	. 341
267	-586	7.418	115.00	3.757	2.710	1.521	1.151	1.160	3.75 u	3.221		
266	2.59320	1.595	192.13	4.112	2.932	1.591	1.276	1.314	4.174	3.615	5.92u	5.733
269	2.3051	9.928	192.12	4.116	2.866	1.524	1.162	1.117	3.439	2.923	4.825	4.634
270	2.40221	1 - 42 3	192.03	4.295	3.012	1.708	1.233	1.228	3.750	3,239	5.251	5.192
271	2.3512	0.105	193.57	4.265	3.031	1.727	1.349	1.379	3.976	3.416	5.341	5.294
272	2.08021	0.388	193.53	4.250	3.080	1.817	1.480	1.35 á	4.046	3.496	5.503	5.424
273	2.27721	266	193.04	4.349	2.979	1.590	1,179	1.174	3.356	3.419	5.593	5.547
278	.076		15.24	.153		• 684	.056	. 439	. 345	. 152	. 042	.940
279	.031	. 411	15.25	.158	.095	.050	.043	.041	.038	.236	.143	.336
280_	.097		15.23	. 156	.125	.285	.031	<u> 3)</u>	. C45	. 156	. 68	. 143
281	.037	.37B		-095	.145	018	.046	. 042	. 643	.045	32	• 3 34
282	253		15.11	.099	144	.041	.030	• 059	. (42	.051	. i. 47	.131
283	.260	. 452	14.90	.109	.163	•099	.157	.059	.076	* 02 T	• 120	• 121

Table IVB. Average Spectral Radiances in Spectral Regions 13-23 (μ w cm⁻² sr⁻¹ μ m⁻¹). Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.		·			Spect	ral Reg	ion -				
No.	13	14	15	16	17	18	19	20	21	22	23
240	.077	. 099	.084	.118	.163	.187	. 252	. 334	. 846	.424	3.28
241	061	.091	.091	128	.186	.164	.266	. 321	. 626	•339	3.C7
242	.039	. 064	.097	. 131	.170	.161	. 263	.329	.876	. 344	3.02
243	.078	.068	.125	.136	.176	166	.287	. 343	. 856	.341	3.01
244	.072	.082	•119	. 132	.188	.164	.281	. 343	• â7 à	.332	2.97
245	.058	.085	.134	. 121	.145	.156	.327	.338	. 634	.371	2.97
246	.061	.082	.099	. 056	.186	.175	. 255	. 342	. 840	.242	3.59
247	.168	• 217	.248	.383	.52€	•568	.803	1.059	2.464	1.194	8.67
248	,152	, 221	.295	. 387	.555	•565		1.087		1.027	8.87
249	.211	.196	. 252	. 296	.510	.511	.935	1.052	2.414	1.197	8.38
250	.490	. 547	.516	. 581	.756	.716			2.448		8.51
.251_	750	- 571	<u>. 671.</u>	- 582	.704	.712			2,446		8.23
252	.184	• 536	• 299	. 301	. 445	467	.750		2.158		7.26
253	145	193_	253	- 267	<u> </u>	. 438	.739		2.153	304	7.12
254	.105	.157	.209	. 275	.451	.389	.742		2.226		7.35
255	.139	•153	.216	•416	.455	.472	.690		2.201		7.37
256_	<u>.111</u>	•10 <u>9</u>	.272	. 462	.543	.566	.728		2.222	. 475	7 . 82
257	•119	•277	.267	.489	•554	.541	.737		2.262		7.60
258	<u>•164</u>	• 167	. 234	. 331	. 465	.476	.672		2.223		7,47
259	.128	. 163	.212	.276	.467	.472	.708		2.165	.991	7.49
260	.123	. 170	.250						5.734		
.261	355.	368	479	.770	1.179	1.425	2.137	2,776	5,585	3,221	19.66
262	.336	. 339	. 472	.716	1.140	1.392	2.038	2.644	5.361	3.337	16.58
263	339	365	.463	782	1.186	1.381	2.044	2.672	5.480	3.182	19.05
264	.452	. 365	. 462						5.553		
265	. 356	• 35 1	.489						5.616		
3 66	.314	. 327	. 443	.737	1.095	1.342	1.967	2,554	5.326		
267		2.467	1.771	2.321	3.412	4.125	7.209	9.196	14.551		47.29
268		2.817	1.903	2.440	3.569	4.269	7.168	9.059	14.643	9.885	49.24
269									14.549		49.57
270		2.704							14.847		52.41
271	4.412	3,000									53,26
272		3.084	2.230	2.565	3.566	4.543	7.345	9. 341	14.797	3.306	54.26
273	4.519	2.676						8.855	14.433		55,39
278	.045	.090	.060	.043	.077	.059	.086	. 183	.331	.117	
279	.033	.018	.046	. 093	.098	.071	.087	.167	. 295	.105	1.47
200_	.047	034	.052	, 030	.053	, 08 Ú	.099	. 096	.311	. 657	1.46
281	.037	.059	.095	.044	.066	.063	. 691	.121	.312	.593	1.44
282	.026	.076	.104	, 947	.086	.198	.093	.1.0	. 291	. 137	1.31
283	.084	. 04 0	.102	.060	•056	.055	.133	.177	. 41 J	.273	1.40

Table V. Average Spectral Radiances in Spectral Regions 24-34 $(\mu w \text{ cm}^{-2} \text{ sr}^{-1} \mu m^{-1})$. Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II.

Rec.					Spectra	al Regi	o n	*			
No.	24	25	26	27	28	29	30	· 31	32	33	34
, 5 6								53.579			
57								52.906			
38								49.771			
59 88-								46.573			
60	•							43.177		2	
61								41.225			
62 53								36.841			
64								34.674			
65								32.147			
-66	3.301	6. 936	2.491	4.6673	35.361	5.476	5.682	29.553	6.535	9.695	8.765
67	3.129	6.451	3.030	4.3733	12.821	4.934	5.131	27.83C	5.981	7.955	7.971
68	2.733	5.575	3.093	3.9053	37.37C	4,931	5.013	25,941	5.936	6.812	7.191
. 69								2+.283			
70	2.234	4.535	2,537	3 . 3477	25.742	3.923	4.061	22.185	4,717	5.630	5.728
71	1.936	4.000	2.216	2.961	23.004	3.428	3.510	23.251	4.122	4.502	5.1.14
72	1.914	3.543	1.970	2.5232	20.603	2.976	3.377	16.439	3.642	4.771	4,493
73	1.747	3.218	1.801	2.2261	18.716	2.686	2.771	16.935	3.233	4.814	4.174
74								15.654			
,			1					14.313			
76								12.571			
7,7								11.175			
76	.458	1.683						9.595			
	- 384			• 750				8.223 -6.973			
 -							, ,		,		
81		1.196	.578		6.190	.696		5.139			
82		1.153	.538	. 501	5.438	.625		5.453			
84		1.090	.504	• 552	4.863	.778		4.831			1.191
85		1.025	.466	6729	4.228	.753 .729		4.504		1.401	
			<u> </u>		·				• .		
86	.280	. 990	. 465		4.066	.714		4.684			1.,62
87	.271	• 971 • 537	.451 .439		3.780	.664		3.803		1.363	1.027
89	.256	926	. 439		3.373	•669 •671	-	3.540		1.322	
90	250	895	.431		3.229	.661		3.229	.634		
.91	.239	. 869	.422	. 453	3.047	.637	.607	3.014	.707	.956	924
92	.241	. 863	. 414	.453	2,906	.636	6 3 u	2. : 94	. 761	. 35 5	.210
93	.236	. 254	.407	.446	2.950	.624		2.841	.760	.359	901
94	.233		. 404		2.753			2.762			. 890
95	.226	. 627	.400	. 446	2.732	.6u9	.571	2.696	7.7	.684	. : 75
96	. 226	-			2.675	. 604		2.633			
97		- 207	.343		2.59ù	.601		2,577		361	
	.223			406				2.500		¥ .93;	- 657
99. 100:		. 809	• 3R1		2.492	- 580		2.455	.726	.073	£51 ·
<u> </u>			. 381		2.469	.560	. 545	2.445	7,75		. 6 44
101	.219		.380	. 412	2.423	.58C	.546	2.423	.714	.777	P 41
102	.219		.377		2.395	.570		2.387	.756	.693	. f 37
103	.201		. 371		2.351	•569		2.354	.639	• 65 ú	.825
104	-214		.373		2.309	•579		2.306	• 59 6	•651	.616
105	. 21 4	.761	. 369	. 407	2.271	•565	.541	2.245	.693	.735	.615

Table V. Average Spectral Radiances in Spectral Regions 24-34 (μ w cm⁻² sr⁻¹ μ m⁻¹). Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.					Specti	ral Regi	ion				
No.	24	25	26	27	28	29	30	- 31	22		
		25		<u> </u>		67	- JU	. 21	32	33	34
106	.213	.761	• 370		2.246	559		2.235	-552	.798	.812
107	.209	.750	.363		2.213	.542		2.144	-669	.75L	. 211
108	-208	754	.365		2.166	•561 •542		2.191	•679	.616	• 05
109	.203 .209	. 743	.359 .359		2.143	.545		2.117	•667 •670	•739 •754	.799 .796
110	1407		1073	.035	21104	• > 4 >	.,,,,	21140	• 071 0	1104	
777	.205	. 725	.359		2.103	.537		2.099	.674	.731	799
112	.208	. 733	.358		2,054	.545		2.102	.646	•699	.791
113	-205	.718	357		2.048	-53C		2.020	• 656	607	.78.
114	.205	.711	.357		1.971	-54 f		2.013	•661 •663	.683 -719	.787
119	• = 0 =	. , 20	.07		*******	• , , ,			• 000	• • • •	••••
116	.172	. 674	• 203	•319	1.900	.462	. 434	1.915	•562	•622	• 555
117	.136	• 61 6	. 245		1.808	.378		1.779	.432	.576	.539
118	.100	- 560	196		1.715	.301		1.655	255	.435	.419
119	.067	. 525	.143		1.611	.231		1.551	+257	-345	- 314
120	.032	. 463	.092	. 104	1.556	150	.104	1.403	.158	.191	.185
121	.036	. 471	.095	. 110	1.553	.147	.134	1.436	.17ú	.173	.167
122	.037	461	. 689		1.493	.161	.100	1.403	.185	.292	•169
123	.037	.448	.094		1.511	. 321		1.394	.132	.234	•185
124	.039	. 453	.10J		1.498	.163		1.346	.190	.215	.18
125	.046	. 457	.107	•112	1.514	.167	• 1 1 0	1.335	.135	.184	.165
126	.042	. 447	.104	.127	1.481	.179	.111	1.340	.139	.105	•131
127	.043	. 438	.107		1.465	.167		1.271	.183	.172	-181
159	.045	416	100		1.393	181		1.274	.131	• 202	.173
129 130	- C47	- 410 - ADO	.100		1.357	.166		1.276	•181 •191	•165 •2c7	.177
130	.049	. 409	.130	4119	14.540	•103	• 1 1 0	10170	• 4 9 4	• 2 6 7	•110
131	.051	. 403	.104	. 115	1. 110	.175	.123	1.165	115.	.193	.181
132	• 05 3	. 403	.103		1.302	.201		1.177	.2)2	•235	-183
133	. 855	-387	.104		1.248	.256		1.121	.235	.244	-177
134	.057	.377	.108		1.230	.195 .206		1.124	·219	•199 •174	•183 •182
137	***	•	• • • • •	• • • •	*****	••••	•		•	••••	
136	.061	. 365	.107	.131	1.191	.206	.115	1.077	.211	.165	.156
137	.064	• 362	.109		1.157	.213		1.656	.229	•193	.183
138	.066	353	.187		1.118	.207		1.011	.213	.203	.18C
139 140	.058	.356 .337	.107 .111		1.113	.214	.117	.993	.218	.199 .155	•181
	••••			• • • •				• • • • •	• • • •	V L P ·	
141	.072	. 331	.109		1.073				.248	.21	•179
142	.075				1.053				.236	.236	•153
143	.078	.332	.116		1.031	.235	.126	.917	. 242	.212	-184
144 145	.081	.325	•119 •123		1.014	.249	.131	.910	.249	•168 •134	•185 •183
						•					
146	.086	• 313	.125	.139		.25€	-135	. 893	. 263	.159	.185
147 148	-009	• 30 7	.130	• 146	.958	.264	140	• 865	•27 ŭ	173	187
151	.092	. 30 9	.133	• 1 44 • 144	.954	.271	.141	.866 .821	• 27 8 • 29 5	.259	.193
152	.102	.286	.145	.155	. 492	.294	•153	.821	-300	•194	.197
153	.105	. 291	.148	.155	.889	.299	•156	. 8 16	336	.163	- 200
154 155	.106	. 276	•150 •152	• 15°) • 163	.885	.303	.159	.792 .798	.310	.161	.194
156	.110	.272	154	.162	.859	• 31 2	.162	.758	.314	.165	.199
157	:115	. 259	.156	.164	.844	•316	.164	•732	322	.167	. 201

Table V. Average Spectral Radiances in Spectral Regions 24-34 $(\mu w \text{ cm}^{-2} \text{ sr}^{-1} \mu \text{m}^{-1})$. Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.					Spect	ral Reg	ion				
No.	24	25	26	27	28	. 29	30	· 31	32	33	34
											
158	.114	.258	.159	.155	814	.322	.167	.735	. 328	.17U	205
159 160	•116 •118	258	.161	•169 •170	.921	.326	.169	.726	.332	.185	.204
161	.121	. 246	.166	.172	.784	.336	174	762	343	.163	.206
162	.123	. 252	.169	.175	.773	.343	.177	.762	•349	.192	.211
163	.126	. 256	.172	.182	.798 .791	.349	.181	.727 .701	.357 .360	.184 .186	.219
158	•120	.239	.157	•192	.749	378	195	. 565	. 38 4	.239	-219
169	.142	.237	.190	.195	.737	.385	•198	.660	. 391	.201	.236
176	.144	. 247	.193	. 202	.759	.389	• 201	• 666	• 395	.211	. 230
177	41.6	776	402	.201	71.4	704	707	•672	. 432	.207	• 2 3 2
171 172	.148	. 238	.196	. 214	.741	.396 .403	.207	.016	.409	.210	. 261
173	•154	. 30 5	.203	• 222	908	.41C	.211	•777	.416	.216	.252
174	.156	. 292	.206	.217	.882	+415	.213	.757	.421	.245	• 252
175	.159	. 293	.208	.216	.867	.420	.216	.771	.426	. 283	. 253
176	.161	. 282	.211	.214	.847	. 425	.218	.717	. 430	.313	.252
177	.163	. 277	.213	.217	. 854	.430	. 221	.752	435	.265	. 255
178	.167	. 283	.217	. 224	. 8 05	.437	.224	.747	.442	.267	.260
179	.169	. 274	-219	•226	.844	.442	.227	.768	.447	.254	.259
180	.171	. 212	• 5 5 5	• 232	.826	.447	. 531	- / 41	. 492	. 404	• 203
181	.174	. 260	.224	. 233	.907	. 452	•232	.708	.457	.234	. 263
182	.176	-264	•227	.238	.316	.457	.234	.670	. 462	.237	.268
183	.178	. 263	.230 .232	.239	.809 .796	.462	.237	.694 .692	.467 .472	.239	.266
185	.183	. 254	235	. 243	.780	472	.242	• 689	.477	.246	.268
186	185	252	.236	. 242	.768	. 475	243	.658	430	.246	. 273
187	.187	.248	.239	.243	.765	.480	.246	•653 •654	.435	.248	.272
189	.192	. 25 6	.244	. 250	766	.491	.251	. 654	496	.253	. 629
190	•195	. 251	.247	• 252	.745	.496	.254	. 650	.501	.256	.274
787			- AFA				- AF7			750	.281
191	.197	. 242	.250 .252	• 252 • 255	.747 .725	.501	•256 •259	. 645 . 634	.516 .511	.25e	.275
193	.203	. 246	.255	. 257	,722	.512	.262	.629	.517	.264	.276
194	.204	. 247	. 257	.258	.725	.515	.263	. 631	.519	.275	.279
195	. 207	. 249	. 259	. 261	.727	•520	•266	.620	. 525	.268	.276
196	.209	. 249	. 262	. 264	.719	.526	.269	.611	.530	.27u	. 281
197	.211	. 250	. 264	.266	.731	.529	.270	. 634	.533	.272	. 283
198	.212	. 241	. 265	.267	.716	532	.271	.623	• 536	. 273	. 288
199 200	.215	.244	.268	. 270	.714 .719	.537	.274	.610	.541	.276	.287
200	• 6 2 0	. 540		• • • •	• • • •	• > 4 3	• • • •	•011	• > • •	•••	• • • • •
201	.221	. 249	.274	.276	.710	.548	.280	.643	.552	.281	.291
202	.223	. 251	•277	. 279	.713	. 554	.283	.653	.553	.264	.292
203	.226	• 251 • 255	.279	.281	.702	•560 •563	.285	•596 •592	• 563 • 566	.285	.294
205	.231	255	.234	.28€	.689	.568	• 293	. 594	.572	.291	.298
											· · · · ·
206	.232	. 258	- 205	. 287	.692	.571	.291	582	.575	.293	.298
207	.235	.258	.288	.293	.682	•577 •583	•294 •297	.605 .577	.580 .586	.295	•300 •303
209	.239	. 262	293	. 294	.667	586	.298	.577	.589	.300	.304
210	.241	. 262	. 294	. 296	.667	.589	.300	. 565	.532	.301	.307

Table V. Average Spectral Radiances in Spectral Regions 24-34 (μw cm⁻² sr⁻¹ μm⁻¹). Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

Rec.					Spects	ral Reg	ion				
No.	24	25	26	27	28	29	30	31	22	33	34
		25							32		
211	.242	. 261	.296	-298	.667	•592	.301	-572	•595	• 36 3	•305
212	.245	. 264	.299	.301	.664	•598	.304	• 565 • 560	•601	•306 •307	-319 -311
214	248	. 266	.302	.304	658	.604	.307	.562	.607	309	.312
215	. 25 0	. 267	.304	. 305	.651	.607	.309	• 566	.610	•310	•313
						·					
216 217	.252 .253	.270	.305	.307	.655 .642	.610 .613	.310 .312	. 555	.612 .615	.311	.313
218	.253	.272	.307	.308	•643	.613	.312	.545	•615	.313	•315
219	.255	. 272	.305	. 310	.632	.616	.313	541	.618	.314	. 316
220	. 255	. 272	.309	. 310	.62 E	.616	.313	• 539	.618	. 314	•315
			474			· , , , , , .					
555	.255	. 272	.308	.313	.653 .628	.615 .613	.313	•540 •527	.618 .616	.314	.315
223	.252	. 268	.305	.307	.622	.610	.310	• 533	•613	•312	•312
224	249	. 267	.302	. 304	.621	. 604	.308	.521	.607	.369	.311
225	. 246	. 266	.299	.301	•629	• 598	.305	. 525	. 6J1	-306	.307
226	.243	. 260	•296	. 298	.601	•592	• 302	• 523	•595	• 30 3	• 303
227	.240	.257	.293	.295	.605	.586	.299	.512	.590	.30C	.302
228	.235	•255	289	. 291	.610	•578	.294	•509	.581	•296	298
553	.232	• 25 2	.295	• 287	•581	• 57 2	.292	.508	.575	.293	. 295
230	.228	. 249	.281	. 283	.597	• 564	.287	.501	.567	.289	291
231	.224	.246	.277	.279	.582	• 555	. 283	. 493	•559	.285	•287
232	.218	. 241	.271	. 273	.593	. 544	.278	494	548	.273	.284
533	.213	. 231	.266	. 267	.584	•533	.272	. 494	.537	.274	.279
234	.209	. 231	-262	. 263	.557	•525	.268	. 477	•529	.273	.275
235	.204	. 227	.256	. 258	.552	. 51 4	.263	. 463	.518	.254	.272
236	.199	. 221	.251	. 253	.562	.503	.257	. 468	.518	.259	. 266
237	.192	• 220	. 244	. 246	.558	.490	.251	. 463	.495	.253	.264
238	.185 .177	.211	.236	. 240	-551	474	.245	451	479	.245 .238	256
239 240	.170	.205	.228	. 237	.542	.459	.228	. 442	.464	.230	.243
		,	•	• • • •	•,,-,	• • • •	,,,,		• • • •		
241	.164	. 204	.213	.216	.515	. 430	.221	. 423	.435	.226	. 236
242	.161	. 20 5	.209	• 212	.510	.422	.216	.419	.426	.224	. 232
243	.158 .160	•199 •195	.204	.207	.507	.411 .402	.212	.417 .397	417	.242	.228
245	.156	•196	192	.197	.503	. 38 8	.208	.401	. 394	.228	218
							•				
246	.152	.193	.188	-194	.502	•379	209	397	. 38 3	.225	.249
247	.163	. 240	.192	.215	.744	.384	.215	.576	.397	.277	.247
249	.153	. 233	176	.202	.711	. 347	.201	.557	.350	.286	.235
250	. 158	. 234	.181	.207	.715	.317	.200	• 532	.319	•255	.230
377-	712	24.5		488	484	7/3	7.75			- TET -	
251	,145 ,143	. 223	.162 .162	.188	.791 .684	.299 .286	.192 .180	.533 .507	.316	.254 .263	.229
253	129	.203	.157	.168	.665	.267	.181	.506	.279	•271	.204
254	.141	.212	.158	.177	.663	.248	.177	.510	. 260	.287	.210
255	.128	.202	.146	. 164	.653	. 222	.173	• 5 Ú Ú	.233	• 26 3	• 200
256	.125	.199	.152	.170	.660	.213	.172	. 459	.201	.233	.196
257	.120	191	. 152	•159	.650	.213	.170	496	.199	.25i	197
258	.119	-189	,139	.162	.656	.190	.157	.487	.233	.244	.195
250	•114 •114	-191	.133	155	1.148	.200	,155	.468	.215	.232	•172
60 U	****	181	.172	. 21/	7.742	.244	.202	• 225	. 248	.287	-297

Table V. Average Spectral Radiances in Spectral Regions 24-34 $(\mu \text{w cm}^{-2} \text{ sr}^{-1} \mu \text{m}^{-1})$. Spectral Regions are in Table III and Pressures, Temperatures and Zenith Angles are in Table II. (Continued)

	Spectral Region											
24	25	26	27	28	29	30	· 31	32	33	34		
.146	. 292	.174	.201	1.1/6	.230	.204	. 000	. ८३४	.201	. 283		
.138	. 289	• 164	• 192	1.145	.228	.191	.852	. 242		.283		
.140	. 292	.164	. 202	1.158	. 224	.196	.813			.285		
.138	.284	.168	. 207	1.155	. 223	.189	. 835			. 284		
•135	.288	.153	.175	1.148	.220	.185	.817	. 285	. 394	. 287		
.133	. 281	.129	.186	1.130	.226	.199	.786	. 236	.383	. 295		
.129	2.082	.729	.732	3.503	.821	.767	3.106	.908	1.126	1.319		
.769	2.594	.768	. 783	3.497	815			.851		1.257		
.616	2.125	.691	.736	3.381	.773	.729	3.036	.865		1.190		
.697	2.331	. 745	.793	3.550	.809	.776	3.041	•902	.716	1.143		
.675	2.345	.695	.757	3.482	.827	.759	3.119	.950	.832	1.197		
.697	2.315	. 770	. 845	3.626	. 888	813	3.186	• 95 3	-565	1.196		
.680	2.429	.717	.829	3.465	.641	.815		• 97 9		1.144		
.093	. 111	. 122	. 128	.314	.234	. 142				.140		
.094	.117	.122	. 130	.320	.233	-148	. 262	. 24 0	•130	-144		
.092	.112	.125	.129	.323	.226	.148	.268	.245	.138	.138		
.092	. 115	• 122	.127	.316	.234	.161	. 266		.142	.138		
.104	.119	.127	.131	-318	. 241	.147	.267			-140		
.099	•111	.128	. 131	.325	.249	.151	. 292	.263	.129	.144		
	.146 .138 .140 .138 .135 .135 .129 .769 .616 .697 .680 .093 .094	.146 .292 .138 .289 .140 .292 .138 .284 .135 .288 .135 .288 .137 .281 .129 2.082 .769 2.594 .616 2.125 .697 2.331 .675 2.345 .697 2.315 .680 2.429 .093 .111 .094 .117	.146 .292 .174 .138 .289 .164 .140 .292 .164 .138 .284 .168 .135 .288 .153 .133 .281 .129 .129 2.082 .729 .769 2.594 .768 .616 2.125 .691 .697 2.331 .745 .675 2.345 .696 .697 2.315 .770 .680 2.429 .717 .093 .111 .122 .094 .117 .122	.146 .292 .174 .201 .138 .289 .164 .192 .140 .292 .164 .202 .138 .284 .168 .207 .135 .288 .153 .176 .135 .281 .129 .186 .129 2.082 .729 .732 .769 2.594 .768 .783 .616 2.125 .691 .736 .697 2.331 .745 .793 .675 2.345 .696 .757 .697 2.315 .770 .845 .680 2.429 .717 .829 .093 .111 .122 .128 .094 .117 .122 .130 .092 .112 .125 .129 .092 .115 .122 .127 .104 .119 .127 .131	24 25 26 27 28 .146 .292 .174 .201 1.176 .138 .289 .164 .192 1.145 .140 .292 .164 .202 1.158 .138 .284 .168 .207 1.155 .135 .288 .153 .176 1.148 .133 .281 .129 .186 1.130 .129 2.082 .729 .732 3.503 .769 2.594 .768 .783 3.497 .616 2.125 .691 .736 3.381 .697 2.331 .745 .793 3.550 .675 2.345 .696 .757 3.482 .697 2.315 .770 .845 3.626 .680 2.429 .717 .829 3.465 .093 .111 .122 .128 .314 .094 .117 .122 .130	24 25 26 27 28 29 .136 .289 .164 .192 1.145 .228 .140 .292 .164 .202 1.145 .228 .138 .284 .168 .207 1.155 .223 .135 .288 .153 .176 1.148 .220 .133 .281 .129 .186 1.130 .226 .129 .082 .729 .732 3.503 .821 .769 2.594 .766 .783 3.497 .815 .616 2.125 .691 .736 3.381 .773 .697 2.331 .745 .793 3.550 .809 .675 2.345 .696 .757 3.482 .627 .697 2.315 .770 .845 3.626 .888 .680 2.429 .717 .829 3.465 .641 .093 .111 .122	24 25 26 27 28 29 30 .146 .292 .174 .201 1.176 .233 .299 .138 .289 .164 .192 1.145 .228 .191 .140 .292 .164 .202 1.158 .224 .196 .138 .284 .168 .207 1.155 .223 .189 .135 .288 .153 .176 1.148 .220 .186 .133 .281 .129 .186 1.130 .226 .193 .129 2.082 .729 .732 3.503 .821 .767 .769 2.594 .768 .783 3.497 .815 .753 .616 2.125 .691 .736 3.381 .773 .729 .697 2.345 .696 .757 3.482 .827 .759 .697 2.315 .770 .845 3.626 .888 .813 .680 2.429 .717 .829 3.465 .64	24 25 26 27 28 29 30 31 .146 .292 .174 .201 1.176 .233 .294 .086 .138 .289 .164 .192 1.145 .228 .191 .852 .140 .292 .164 .202 1.158 .224 .196 .813 .138 .284 .168 .207 1.155 .223 .189 .835 .135 .288 .153 .176 1.148 .220 .186 .817 .133 .281 .129 .186 1.130 .226 .193 .786 .129 .002 .729 .732 3.503 .821 .767 3.106 .129 .002 .729 .732 3.503 .821 .767 3.106 .129 .2082 .729 .732 3.503 .821 .767 3.106 .129 .2082 .768 .783 3.497 .815 .753 3.101 .616 .2125 .691<	24 25 26 27 28 29 30 31 32 .146 .292 .174 .201 1.176 .233 .209 .006 .236 .138 .289 .164 .192 1.145 .228 .191 .852 .242 .140 .292 .164 .202 1.158 .224 .196 .813 .224 .138 .284 .168 .207 1.155 .223 .189 .835 .232 .135 .288 .153 .176 1.148 .220 .185 .817 .285 .133 .281 .129 .186 1.130 .226 .199 .786 .236 .129 .002 .729 .732 3.503 .821 .767 3.106 .908 .769 2.594 .768 .783 3.497 .815 .753 3.101 .851 .616 2.125 .691 .736 3.381 .773 .729 3.036 .865 .697 2.315 <td>24 25 26 27 28 29 30 31 32 33 .146 .292 .174 .201 1.176 .230 .204 .000 .238 .261 .138 .289 .164 .192 1.145 .228 .191 .852 .242 .338 .140 .292 .164 .202 1.158 .224 .196 .813 .224 .309 .138 .284 .168 .207 1.155 .223 .189 .835 .232 .515 .135 .288 .153 .176 1.148 .220 .185 .817 .285 .394 .133 .281 .129 .186 1.130 .226 .199 .786 .235 .383 .129 .0082 .729 .732 3.503 .821 .767 3.106 .908 1.126 .769 2.594 .768 .783 3.497 .815 .753 3.101 .851 .968 .616 2.125 .691</td>	24 25 26 27 28 29 30 31 32 33 .146 .292 .174 .201 1.176 .230 .204 .000 .238 .261 .138 .289 .164 .192 1.145 .228 .191 .852 .242 .338 .140 .292 .164 .202 1.158 .224 .196 .813 .224 .309 .138 .284 .168 .207 1.155 .223 .189 .835 .232 .515 .135 .288 .153 .176 1.148 .220 .185 .817 .285 .394 .133 .281 .129 .186 1.130 .226 .199 .786 .235 .383 .129 .0082 .729 .732 3.503 .821 .767 3.106 .908 1.126 .769 2.594 .768 .783 3.497 .815 .753 3.101 .851 .968 .616 2.125 .691		

Figure 6. Linear spectral radiance in the 8-13.6 µm region at 0.72, 1.06, 1.50, 2.10 and 2.60 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 7. Linear spectral radiance in the 8-13.6μm region at 3.00, 3.42, 4.00, 4.50 and 5.07 km and a zenith angle of 50°. Spectra are offset for clarity.

52

Figure 8. Linear spectral radiance in the 8-13.6 µm region at 5.50, 6.02, 6.45, 7.10 and 7.50 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 9. Linear spectral radiance in the 8-13.6 µm region at 7.95, 8.60, 9.05, 9.55 and 9.92 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 10. Linear spectral radiance in the 8-13.6 µm region at 10.53, 11.00, 11.42, 12.00 and 12.45 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 11. Linear spectral radiance in the 8-13.6 µm region at 13.00, 13.55, 14.00, 14.60 and 15.00 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 12. Linear spectral radiance in the 8-13.6 µm region at 15.45, 16.00, 16.50, 17.00 and 17.45 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 13. Linear spectral radiance in the 8-13.6 µm region at 18.05, 18.45, 19.00, 19.60 and 20.50 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 14. Linear spectral radiance in the 8-13.6 μ m region at 21.05, 21.48, 21.91, 22.58 and 23.07 km and zenith angles of 50°, 50°, 53° and 56°. Spectra are offset for clarity.

Figure 15. Linear spectral radiance in the 8-13. 6μ m region at 23. 56, 24. 07, 24. 55, 25. 04 and 25. 55 km and a zenith angle of 70° . Spectra are offset for clarity.

Figure 16. Linear spectral radiance in the 8-13.6 µm region at 26.04, 26.53, 27.04, 27.52 and 28.01 km and a zenith angle of 70°. Spectra are offset for clarity.

Figure 17. Linear spectral radiance in the 8-13.6 μ m region at 28.50, 29.01, 29.50, 30.04 and 30.50 km and a zenith angle of 70°. Spectra are offset for clarity.

Figure 18. Linear spectral radiance in the 8-13.6 µm region at 31.03, 31.51, 31.99, 32.53 and 33.03 km and a zenith angle of 70°. Spectra are offset for clarity.

Figure 19. Linear spectral radiance in the 8-13.6 μ m region at 33.50 and 33.99 km and a zenith angle of 70°. Spectra are offset for clarity.

Figure 20. Linear spectral radiance in the 8-13.6 µm region at 34.52, 34.95 and 35.36 km and a zenith angle of 85°. Spectra are offset for clarity.

Figure 21. Log spectral radiance in the 8-13.6 µm region at 9.55, 12.00, 14.00, 16.00, 18.05, 19.95 and 21.48 km and a zenith angle of 50°. Spectra are offset by 1/2 decade for clarity.

Figure 22. Log spectral radiance in the 8-13.6 μ m region at 24.07, 26.04, 28.01, 30.04, 31.99 and 33.99 and a zenith angle of 70°. Spectra are offset 1/2 decade for clarity.

Figure 23. Log spectral radiance in the 8-13.6 µm region at 9.55 km and a zenith angle of 50°. Spectrum is a composite of three scans.

Figure 24. Log spectral radiance in the 8-13. 6μm region at 12.00 km and a zenith angle of 50°. Spectrum is a composite of three scans.

Figure 25. Log spectral radiance in the 8-13. 6μ m region at 14.00 km and a zenith angle of 50°. Spectrum is a composite of three scans.

Figure 26. Log spectral radiance in the 8-13.6 μ m region at 16.00 km and a zenith angle of 50°. Spectrum is a composite of three scans.

Figure 27. Log spectral radiance in the 8-13.6 µm region at 18.05 km and a zenith angle of 50°. Spectrum is a composite of three scans.

Figure 28. Log spectral radiance in the 8-13.6 μ m region at 19.95 km and a zenith angle of 50°. Spectrum is a composite of three scans.

Figure 29. Log spectral radiance in the 8-13.6 μ m region at 21.48 km and a zenith angle of 50°. Spectrum is a composite of three scans.

Figure 30. Log spectral radiance in the 8-13.6 μ m region at 24.07 km and a zenith angle of 70°. Spectrum is a composite of three scans.

Figure 31. Log spectral radiance in the 8-13.6 µm region at 26.04 km and a zenith angle of 70°. Spectrum is a composite of three scans.

Figure 32. Log spectral radiance in the 8-13.6 μ m region at 28.01 km and a zenith angle of 70°. Spectrum is a composite of three scans.

Figure 33. Log spectral radiance in the 8-13.6 µm region at 30.04 km and a zenith angle of 70°. Spectrum is a composite of three scans.

Figure 34. Log spectral radiance in the 8-13.6 μ m region at 31.99 km and a zenith angle of 70°. Spectrum is a composite of three scans.

Figure 35. Log spectral radiance in the 8-13.6 µm region at 33.99 km and a zenith angle of 70°. Spectrum is a composite of three scans.

Figure 36. Log spectral radiance in the 8-13.6 µm region near 36 km as a function of zenith angle. Scans are not offset. Each spectrum is a composite of four or more scans.

Figure 37. Linear spectral radiance in the 10.3-13 μ m region at 3.15, 3.42, 3.75, 3.85 and 4.00 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 38. Linear spectral radiance in the 10.3-13 μ m region at 4.23, 4.50, 4.70, 4.90 and 5.07 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 39. Linear spectral radiance in the 10.3-13 μ m region at 5.25, 5.35, 5.50, 5.82 and 6.02 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 40. Linear spectral radiance in the 10.3-13 μ m region at 6.20, 6.45, 6.60, 6.82 and 7.10 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 41. Linear spectral radiance in the 10.3-13 µm region at 7.30, 7.50, 7.70, 7.95 and 8.10 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 42. Linear spectral radiance in the 10.3-13 µm region at 8.35, 8.60, 8.80, 9.05 and 9.32 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 43. Linear spectral radiance in the 10.3-13µm region at 9.55, 9.78, 9.92, 10.13 and 10.30 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 44. Linear spectral radiance in the 10.3-13 μ m region at 10.53, 10.65, 10.80, 11.00 and 11.10 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 45. Linear spectral radiance in the 10.3-13 µm region at 11.15, 11.42, 11.70, 11.90 and 12.15 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 46. Linear spectral radiance in the 10.3-13 μ m region at 12.45, 12.70, 13.00, 13.25 and 13.55 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 47. Linear spectral radiance in the 10.3-13 µm region at 13.85, 14.10, 14.40, 14.80 and 15.00 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 48. Linear spectral radiance in the 18.8-27 μ m region at 6.02, 6.45, 7. 10 and 7. 50 km and a zenith angle of 50°. Spectra are offset for clarity. 93

Figure 49. Linear spectral radiance in the 18.8-27µm region at 7.95, 8.60, 9.05, 9.55 and 9.92 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 50. Linear spectral radiance in the 18.8-27µm region at 10.53, 11.00, 11.42, 12.00 and 12.45 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 51. Linear spectral radiance in the 18.8-27 μ m region at 13.00, 13.55, 14.00, 14.60 and 15.00 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 52. Linear spectral radiance in the 18.8-27 μ m region at 15.45, 16.00, 16.50, 17.00 and 17.45 km and a zenith angle of 50° . Spectra are offset for clarity.

Figure 53. Linear spectral radiance in the 18.8-27µm region at 18.05, 18.45, 19.00, 19.95 and 20.50 km and a zenith angle of 50°. Spectra are offset for clarity.

Figure 54. Linear spectral radiance in the 18.8-27 μ m region at 21.05, 21.48, 21.91, 22.58 and 23.07 km and zenith angles of 50°, 50°, 53°, 53° and 56°. Spectra are offset for clarity.

Figure 55. Linear spectral radiance in the 18.8-27 μ m region at 23.56, 24.07, 24.55, 25.04 and 25.55 km and a zenith angle of 70° . Spectra are offset for clarity.

Figure 56. Linear spectral radiance in the 18.8-27 μ m region at 26.04, 26.53, 27.04, 27.52 and 28.01 km and a zenith angle of 70° . Spectra are offset for clarity.

Figure 57. Linear spectral radiance in the 18.8-27 μ m region at 28.50, 29.01, 29.50, 30.04 and 30.50 km and a zenith angle of 70°. Spectra are offset for clarity.

Figure 58. Linear spectral radiance in the 18.8-27 μ m region at 31.03, 31.51, 31.99, 32.53 and 33.03 km and a zenith angle of 70°. Spectra are offset for clarity.

Figure 59. Linear spectral radiance in the 18.8-27 μ m region at 33.50 and 33.99 km and a zenith angle of 70°. Spectra are offset for clarity.

Figure 60. Linear spectral radiance in the 18.8-27 µm region at 34.52, 34.95 and 35.36 km and a zenith angle of 85°. Spectra are offset for clarity.

Figure 61. Linear spectral radiance in the 18.8-27 µm region near 36 km as a function of zenith angle. Scans are offset for clarity. Each spectrum is a composite of 5 or more scans.

VL ANALYSIS OF DATA

A. General Procedures

The spectral radiance is used to derive constituent height profiles by fitting either line-by-line or band molecular emission models to the radiance data at various altitudes. These models are discussed at length in the previous data report and elsewhere. 1,6,7 A short expansion of the discussion of the band model technique is included here because it is used so extensively in this report. The usual parameters of the line-by-line method, line intensity, width and energy levels, are replaced with averaged parameters over finite spectral intervals for the band model technique. Such average parameters are only meaningful if the spectral interval contains a sufficient number of lines for good statistical averaging. Instead of calculating monochromatic transmission and averaging over a resolution element (as with line-by-line), the transmission (7) is calculated using these average parameters for a finite spectral interval.

⁶W. J. Williams, D. B. Barker, J. N. Brooks, A. Goldman, J. J. Kosters, F. H. Murcray, D. G. Murcray and D. E. Snider, "Spectral Radiometric Measurement of Atmospheric Constituents" Proceedings of Society of Photo-Optical Instrumentation Engineers, 91, 15-25, 1976.

⁷A. Goldman, D. G. Murcray, F. H. Murcray, W. J. Williams and J. N. Brooks, "Distribution of Water Vapor in the Stratosphere as Determined from Balloon Measurements of Atmospheric Emission Spectra in the 24-29µm Region" Appl. Opt., 12, 1045-1053, 1973.

Thus:

$$\tau = \exp -\left\{\frac{\left[S^{\circ}(\nu) / d(\nu)\right] \cdot u}{\left[1 + 2 \left(\frac{x(\nu)}{L}\right) \frac{u}{p}\right]^{1/2}}\right\}$$
(2)

where u = optical path in atm-cm. The equivalent absorption coefficient in this expression is not only dependent on the average line intensity, but upon the pressure environment as well. The absorption coefficient is equal to the average line intensity over the average line spacing (linear fit) when the line centers are not black and pressure broadening does not dominate, and can be expressed as

$$2 \left(\frac{x}{L}\right) \frac{u}{p} < < 1.$$

The gas amount, u, in a homogenous optical path can be calculated from Eq. (2) by using the measured radiance, N, to calculate a spectral emissivity, $\epsilon = \frac{N}{B}$, where B is the black body radiance. Neglecting scattering, $\tau = 1 - \epsilon$ and Eq. (2) can be solved for u. For weak emitters (or absorbers) two approximations simplify the above calculation. First, if

$$2 \left(\frac{x}{L} \right) \frac{u}{p} < < 1$$

(linear region), no reiteration is required in calculating au. Thus,

$$\tau = \exp - [S^{\circ} / d] u . \tag{3}$$

Second, an exponential expansion of Eq. (3) results in

$$\epsilon = [S^{\circ} / d] u . \tag{4}$$

When Eq. (4) is valid, a simple differential technique can be used to calculate the amount of constituent material within a layer bounded by two measurements. Thus:

$$\Delta \in = [S^0/d] \Delta u$$
, or

$$\frac{\Delta N}{R} = K \Delta u . ag{5}$$

The amounts u or Δu in the two preceding equations can be used to calculate mixing ratios and number densities and integrated over height to yield total column densities. These relationships are summarized below:

$$\Delta u' = \Delta u / \sec \theta$$
 (atm-cm at T) (6)

$$\Delta n = \Delta u' \frac{273}{T} 2.69 \times 10^{23}$$
 (molecules/m²) (7)

$$n_{O} = \Delta n / \Delta z \qquad (molecules/m^{3}) \qquad (8)$$

$$\beta_{v} = \frac{\Delta u'}{\Delta pH}$$
, $H = \frac{kT}{M_{air}g}$ (vol. gas/vol. air) (9)

or
$$\beta_{\rm v} = \frac{n_{\rm o}}{p / kT}$$
 (10)

$$\beta_{\rm m} = \beta_{\rm v} \, \frac{M_{\rm gas}}{M_{\rm air}} \tag{11}$$

$$n = \sum \Delta n$$
 or $\sum n \Delta z$ (molecules/m²) (12)

$$u = \sum \Delta u' \frac{273}{T} \qquad (atm-cm STP) . \qquad (13)$$

Where θ is the zenith angle of observation, T is the local atmospheric temperature (K), p is the local pressure (atm), Δ p is the pressure change through the layer being considered, Δ z (meters) is the corresponding altitude increment, $\beta_{\rm v}$ and $\beta_{\rm m}$ are the mixing ratios by volume and mass respectively, n and n are number density and column density, M is molecular weight, and H is a scale height. Equations (9) and (10) are equivalent.

When the above linear approximations cannot be made, the problem is significantly more difficult, because some equivalent temperature and pressure must be assumed. The appropriate assumption depends on the constituent profile and probably should be a weighted mean depending on the profile, the degree of nonlinearity and the radiance-temperature (Planckian) relationship (wavelength dependent). Usually a simplified approximation is used such as p' = p/2 and T' = T(p/2) or p' = p (at known layer mean height) etc.

One further consideration must be noted. The linear spectral absorption coefficients, $K(\nu)$, are temperature dependent, primarily due to the relative population of the vibrational-rotational states. Line-by-line calculations take this into account with the rotational partition function (vibration partition function is approximately I for atmospheric temperature), but band model parameters do not

explicitly contain this temperature parameter. The following discussion is an effort to evaluate the band model temperature dependence.

B. Band Model Temperature Correction

1. Introduction

Constituent height profiles are derived from the change in radiance with altitude associated with the spectral features of a specific molecule. It should be possible to derive the same height profile from radiance data measured over different spectral intervals within a band or from radiance values integrated over the entire band. This has been done with previous spectral emission balloon data of the 11.3 mm HNO, band by using the linear approximation of the statistical band model. The comparative results have never been as satisfactory as would be expected. There has remained a quantitative difference between the total band profile and the narrow spectral interval profiles. In addition, the laboratory spectral. band model parameters of HNO2 do not fit the long path atmospheric absorption data when the same temperature correction is used at all wavelengths. If a linear temperature correction is used for the band model absorption coefficients, concentrations derived at the center of the band are different from those at the wings of the band. addition, a third value for the concentration was derived from the total band when a temperature power correction of 1.5 was used.

Recently, a need to quantitatively measure the 11.8µm F-11 (CFCl₃) band and the 10.8µm F-12 (CF₂Cl₂) band, which are super-imposed on the wings of the 11.3µm HNO₃ band, has caused a re-evaluation of the discrepancies of the altitude profiles. A proper calculation of F-11 and F-12 amounts can only be done after

removing the wing effects of HNO₃ from the absorption or emission spectrum. This can best be accomplished by fitting a concentration to the center of the HNO₃ band and, using that concentration, calculating the residual absorption or emission in the F-11 and F-12 bands due to the wings of the HNO₃ band. This assumes a proper temperature correction to adjust the room temperature band model data of HNO₃ to a model at atmospheric temperature. This correction can be either theoretical or empirical, but must be accurate over the temperature range in question. Such an empirical model, partially justified by theory, is developed below.

2. Temperature Correction Model

The spectral absorption coefficient is equivalent to the average band model intensity for weak absorptions where linear approximations apply $(K_{\nu} = s^{0} / d)$. Since the average band model line intensity is temperature dependent while the average line spacing is not significantly so, the temperature dependence of the absorption coefficient is principly defined by the temperature dependence of the average band model line intensity.

The integrated intensity of a vibrational band system has been shown⁸ to be independent of temperature for fundamental bands, but functionally dependent on temperature for overtone and combination bands. When only a portion of a fundamental vibration-rotation band is considered, 9 the intensity of that spectral interval may exhibit a

⁸J. C. Breeze, C. C. Ferriso, C. B. Ludwig and M. Malkmus, "Temperature Dependence of the Total Integrated Intensity of Vibrational-Rotational Band Systems" J. Chem. Phys., <u>42</u>, 402-406, 1965.

O.C. Ferriso and C.B. Ludwig, "An Infrared Band Ratio Technique for Temperature Determinations of Hot Gases" Appl. Opt., 4, 47-51, 1965.

temperature dependence either positive or negative. In Ferrisso's application in which the R-branch of the ν_3 H₂O fundamental band data was fit with a linear negative function, the effect was less than 2% over a range of temperatures normally associated with atmospheric measurements. Thus, any empirical model should reflect an integrated intensity nearly independent of temperature, but might also assume that, as the spectral interval becomes smaller and includes only a few vibration-rotation lines, the temperature dependence would increase.

The intensity of a single vibrational-rotational line of a band system is dependent on the rotational population levels within the band. An expression can be derived for the temperature dependence of such a line of the form

$$\frac{S(T_2)}{S(T_1)} = \left[\frac{T_1}{T_2}\right]^n \exp\left[\frac{T_2 - T_1}{T_2 T_1} + 1.439 E^{11}\right] , \qquad (14)$$

in which induced emission and the vibrational partition function, which have a weak temperature dependence, have been neglected (1-3% correction). E" is the lower state energy (in cm $^{-1}$) and n = 1.0 for linear molecules and 1.5 for nonlinear molecules. For small changes in the temperature, a series expansion of the two parts of the right hand term gives

$$\frac{S(T_2)}{S(T_1)} \simeq \left[\frac{T_1}{T_2}\right]^{\left[1.5 - \frac{1.439E''}{T_1}\right]}$$
(15)

for HNO_3 or O_3 . Note that this derivation defines a temperature for each E'' near which the absorption coefficient is independent of temperature (1.5 $T_1 = 1.439 E''$).

Previously used band model temperature corrections have been of the form $(T_1/T_2)^{\gamma}$, and it is convenient to consider continuing this form when physically reasonable. It is, therefore, natural to consider γ of the form $\gamma \cong 1.5-1.439\,\mathrm{E^{11}/T_1}$. However, γ as used here applies to band model absorption coefficients which have been averaged over a number of individual S values, each of which is dependent on different E'' levels. There may be significant variations in values for E'' within one spectral interval, particularly for the random band model. In addition, the levels for HNO₃ are not well-known. It is, therefore, difficult to calculate the frequency dependence of γ within an absorption band. Roughly, γ should not exceed 1.5 (2.5 if density charges are included) near the band center (small E'') and may go negative toward the band wings (large E'').

Experimentally, it is suitable to derive band model values of γ from data at two or more temperatures. This empirical approach is a substitute for more complex modeling, particularly when some of the parameters are not well-known.

3. O₃ Temperature Correction

Before calculating the values for γ for the HNO $_3$ bands at 11.3 μ m, it is desirable to apply this approach to a band with well-known temperature dependence. Goldman et al. ¹⁰ calculated band model parameters for ozone for three different temperatures from individual

¹⁰ A. Goldman, "Statistical Band Model Parameters for Long Path Atmospheric Ozone in the 9-10 µm Region" Appl. Opt., 9, 2600-2604, 1970.

line parameters with known temperature dependencies. Based on the empirical approach of

$$\left(\begin{array}{c} \frac{T_1}{T_2} \end{array}\right)^{\gamma}$$

as the form of the temperature correction, values for y were determined from the O₂ band model data from 960 to 1176 cm⁻¹. Note that $\gamma = 1$ is a density correction to the absorption coefficient and $\gamma = 1.5$ is the suggested total band correction. Since band model coefficients had been calculated for 195, 235 and 275°K, values of y were determined for two pairs of temperatures at each frequency. The average of these two values for I is plotted in Figure 62, with bars showing the spread in values of the separate calculations. Some things are clear from this data. 1) A linear temperature correction (for density only) is not valid over the entire frequency interval, particularly toward the wings and when there are multiple bands contributing to the absorption. 2) At any narrow frequency interval an empirical value for y can be determined which will correct the band model parameters for temperature, probably within the general uncertainties of the band model calculation. In addition, the temperature correction for the integrated intensity is $\gamma = .991 + .012$ which is nearly unity and represents a density correction.

¹¹ S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1959.

The purpose of the above exercise is to validate an approach which is now applied to the 11.3 m HNO₃ bands. Band model data are available for this band at 313 K, and some additional data are available at 283 and 263 K. The random band model used is similar to that used for the O₃ bands, but individual line parameters are not available for HNO₃.

 $^{^{12}}$ A. Goldman, T. G. Kyle and F. S. Bonomo, "Statistical Band Model Parameters and Integrated Intensities for the 5.9 μ , 7.5 μ and 11.3 μ Bands of HNO₃ Vapor" Appl. Opt., 10, 65-73, 1971.

¹³D. G. Murcray, A. Goldman and F. S. Bonomo, "Laboratory Studies of Infrared Absorption by NO₂ and HNO₃" Final Report on NASA Grant 06-004-128, Department of Physics, University of Denver, 1974.

Figure 62. Temperature correction coefficients for the ozone band model absorption coefficients, $K_2 = K_1 (T_1/T_2)^{\gamma}$. $\gamma = 1$ is a density correction.

4. HNO₃ Temperature Correction

Values for γ were calculated for the HNO, band over the frequency range of 850 to 920 cm⁻¹ for two pairs of temperatures. This data contained somewhat more scatter in the final results than the O3 data since it was derived from experimental data and measured over a relatively small temperature interval. However, it also showed a probable deviation from y = 1 at some frequencies, particularly toward the wings of the band. The total band intensity correction factor of y is 0.874 + .021. In an attempt to better define the functional relationship between y and frequency, a second set of values for y were calculated under the following assumptions. First, that the absorption coefficients calculated from the laboratory at 313 K are reasonably accurate. (This data is much more reliable than the lower temperature data.) Second, that absorption spectra measured at sunset from 30 km altitude in 1968 can be used as a low temperature measurement of HNO2. Assuming a constant temperature (213°K) over most of the absorbing path and simple linear modeling ($\tau = e^{-Ku}$; where τ is transmittance, K is the absorption coefficient and u is the HNO $_2$ amount), values for γ can be calculated as a function of frequency. An estimate of the non-linear correction is < 1%. Since the amount of HNO, is not known, some point of normalization is required. An initial amount was calculated using y = 1 at 872.5 and 875 cm⁻¹ and was later adjusted slightly. (Changes in the amount of HNO, have the effect of shifting the curve

¹⁴D. G. Murcray, F.S. Bonomo, J. N. Brooks, A. Goldman, F. H. Murcray and W. J. Williams, "Detection of Fluorocarbons in the Stratosphere" Geophys. Res. Lett., 2, 109-112, 1975.

up or down on the γ scale.) Figure 63 shows two curves for the band model temperature coefficient for HNO3. The solid curve is a hand-smoothed curve through all the data, both laboratory and atmospheric described above, and reflects a smoothing due to effects of different resolution. The dashed curve is from the laboratory absorption data only. The difference in these two curves points up the need to match the resolution of the model to that of the data, particularly in spectral regions containing sharp features such as Q-branches. Such regions are apparent at 879 and 896 cm⁻¹.

There are a number of weaknesses in this data that need to be resolved with additional measurements. However, the solid curve is presented here because it has been used at wavelengths (spectral regions 11 and 12) near the center of the band for spectral emission data from several past balloon flights and compared with results obtained by using the entire band. In all cases there was excellent agreement (within 5%) between the pairs of profiles generated, as can be seen in Figures 64, 66, 70, 71, and 72 and Table VII. This agreement was not present in some earlier attempts at comparing total band to band center profiles. The major change between the earlier calculations and those here is in using y=1 for the total band instead of $\gamma = 1.5$. The actual values used are listed in Table VI, along with the average values of γ over spectral regions 9, 10, 11, 12, and 13, for both curves in Figure 63. is difficult at this time to state the accuracy of these values. There are large uncertainties in their derivation, but their success

D. G. Murcray, A. Goldman, A. Csoeke-Poeckh, F. H. Murcray, W. J. Williams and R. N. Stocker, "Nitric Acid Distribution in the Stratosphere" J. Geophys. Res., 78, 7033-7038, 1973.

with field data provides some empirical justification for their use.

Additional laboratory data at several temperatures is needed to better define the γ profile.

Table VI.

Absorption Coefficients and Temperature Corrections
for Specified Spectral Regions

Spectral Region	K(atm-cm) ⁻¹	y used	γ Lab Data	
9	8.022 (850-920 cm ⁻¹)		.874 <u>+</u> .021	
	$8.217^{*}(850-940 \text{ cm}^{-1})$			
10	7. 51	. 87	.650 <u>+</u> .047	
11	11.17	1. 13	1.049 <u>+</u> .131	
12	11.13	.91	.892 <u>+</u> .086	
13	9.42	.74	.686 <u>+</u> .160	

^{*}This value was derived as an average $(\Sigma \frac{kv}{n})$, the value used by Goldman et al. 16 for total band is 8.32 (atm-cm) $^{-1}$.

Figure 63. Temperature correction coefficient for the HNO_3 band model absorption coefficients, $\mathrm{K}_2 = \mathrm{K}_1(\mathrm{T}_1/\mathrm{T}_2)\mathcal{R}$. $\gamma = 1$ is a density correction. The two curves represent differences in resolution in the data used and slight wavelength errors. While a strongly smoothed curve (solid) was used in this report, a curve similar to the dashed curve is more representative of the real band, but requires additional measurements for an accurate determination.

C. HNO Profiles

The temperature dependence of the absorption coefficient was first tested by deriving the mixing ratio height profile of HNO3 from the 29 April 1976 radiance data for several wavelengths. Figure 64 shows three superimposed curves which were derived using spectral regions 11, 12 and 9 (total band). The variation at any one height is random and due to variations in the measured radiance. Above the tropopause these integrated profiles agree to The two profiles from regions 11 and 12 are indistinguishable from one another above 17 km. These profiles were derived from the change in radiance with height of the ascent data. Additional comparative data were obtained by observing the change in radiance as a function of zenith angle at float. Figure 65 shows this information as a series of one-layer calculations compared with the average ascent mixing ratio profile. Here, average refers to the mean of the total band profile and the band center profile at each height level.

This same data is presented in several ways in the form of number density and integrated density in Figures 66 through 68. The one-layer calculations from float are also shown in Figure 68, in which it is easier to see the apparent fit between the ascent and float data. In fact, it was from these data that the adjustment to the "effective" zenith angle of -0.2° was determined. This curve can also be used to determine quickly the fractional distribution of HNO₃ with height since scaling factors are easily read off a logarithmic scale (i.e., the center of mass of HNO₃ above the tropopause occurs at a factor of 2 down in the integrated column density scale, ~ 17 km and < 1% of the HNO₃ lies above 32 km.).

The absorption coefficient temperature corrections were then applied to the earlier spectral radiance data and, whenever possible, the band center profile was compared with the total band profile. Figures 69 through 77 show these comparisons and Table VII lists the integrated column for each case. The differences between them are only a few percent. The temperature corrections for the total band and band center are in good agreement. Corrections for the band wings probably need more laboratory data to insure their accuracy. Some of the profiles in Figures 70 through 76 are smoothed by a technique described by Goldman et al. in which the measured data are fitted to functions with continuous derivatives.

The total band correction was then applied to the filter radiometer data and data that coincides with spectral measurements is included in Table VII. Here the agreement is not as good and is being studied further. Figure 78 also shows a comparison of three of these Alaskan HNO₃ profiles. Additional comparison of these data are being made and will be presented as a separate publication.

A. Goldman, R. N. Stocker, D. Rolens, W. J. Williams and D. G. Murcray, "Stratospheric HNO₃ Distributions from Balloon-Borne Infrared Atmospheric Emission Measurements from 1970-75" Scientific Report, Department of Physics and Astronomy, University of Denver, 1976.

Table VII.

Comparison of Integrated Column of HNO 3

For Two or More Wavelength Regions

Date	Total Band (Region 9) (10 ²⁰ mol/m ²)	Band Center (Region 11) (10 ²⁰ mol/m ²)	Q-Branch (Region 12) (10 ²⁰ mol/m ²)	Mean (10 ²⁰ mol/m ²)	Filter (Total Band) (10 ²⁰ mol/m ²)
	·				
29 Apr. 1976					
Above 12 km	1.030	1.060	1.035	1.046 + 1.5%	
Above Trop.	1.213	1.198	1.216	1. $206 + 0.6\%$	
Above 8 km	1.534	1.343	1,452	1. 439 $\frac{+}{+}$ 6. 7%	•
12 Sept. 1971					
Above 12.0 km		2.26		2. 26	1.804
15 Sept. 1971					
Above 12.0 km	2.30	2.32		$2.31 \pm 0.4\%$	1,91
6 Sept. 1972	,				
Above 12.3 km	3. 27	3.30		3. 285 <u>+</u> 0. 5%	1.86
12 Sept. 1972					
Above 12.1 km	2. 17	2.06		2.115 + 2.6%	1. 25
5 May 1975		•	•		
Above 12.0 km	1.71	1.97		1.84 <u>+</u> 7.1%	1, 31

Figure 64. Mixing ratio height profile of HNO using three spectral regions for comparison.

•

Figure 65. Average mixing ratio height profile of HNO₃ with data from one layer calculations from limb scans added. Angles associated with one layer calculations are shown at top of figure, altitude of observation is shown by (—) and minimum height of path by lower extent of dashed line.

Figure 66. Number density height profile of HNO₃ for band center and total band calculations for comparison of the two models.

Figure 67. Average number density profile of HNO₃.

Figure 68. Integrated column density of HNO₃ as a function of height. Data from zenith angle scans near float have been added(H) with length of bar representing range of radiance values over the five or more scans averaged for this calculation.

Figure 69. Mixing ratio height profile of HNO₃ for 12 September 1971 from Fairbanks, Alaska and using a LN₂ cooled spectrometer.

Figure 70. Mixing ratio height profile of HNO₃ for two spectral regions for 15 September 1971 from Fairbanks, Alaska and using a LN₂ cooled spectrometer.

Figure 71. Mixing ratio height profile of HNO₃ for two spectral regions for 6 September 1972 from Fairbanks, Alaska and using a LN₂ cooled spectrometer.

Figure 72. Mixing ratio height profile of HNO₃ for two spectral regions for 12 September 1972 from Fairbanks, Alaska and using a LN₂ cooled spectrometer.

Figure 73. Number density height profile of HNO₃ for 12 September 1971.

Figure 74. Average number density height profile of HNO₃ for 15 September 1971.

Figure 75. Average number density height profile of HNO₃ for 6 September 1972.

Figure 76. Average number density height profile of HNO₃ for 12 September 1972.

Figure 77. Number density height profile of HNO₃ for two spectral regions for 5 May 1975 from Fairbanks, Alaska and using the LHe cooled spectrometer.

Figure 78. Comparison of selected number density height profiles of HNO₃ for Fairbanks, Alaska.

D. H₂O Profiles

The water vapor mixing ratio height profiles are derived using the line-by-line model and the long wavelength rotational water vapor emission data. This method was used because the rotational lines are very strong and are not suitable to linear modeling. Also the individual line parameters are well-known. The reiterative process of matching the measured integrated radiance over a group of lines with the calculated integrated radiance from

$$N(\nu, h_2) = \tau(\nu, 2) N(\nu, h_1) + \epsilon(\nu, 2) B(\nu, 2)$$
 (16)

is described in the preceding report. The results of this calculation for spectral region 28 are shown in Figure 79 along with results from a similar calculation for the 5 May 1975 data, also from Fairbanks. These represent significantly different profiles for the stratosphere which overlap in the upper troposphere. The differences are larger than can be explained by reasonable error analysis and represent a difference in the stratospheric model for these two dates. A profile using the water lines of region 31 will be calculated and used for additional comparison.

Figure 79. Comparison of the mixing ratio height profiles of H₂O for 5 May 1975 and 29 April 1976 for Fairbanks, Alaska.

E. O, Profiles

Ozone has a number of strong emission features in the spectral region scanned. It should be possible to calculate O, height profiles from this data, possibly using more than one wavelength. Goldman et al. have calculated band model parameters for the O3 bands between 960 and 1176 cm⁻¹ which were used in a preceding section of this report. Within this spectral range, two regions were selected (2 and 3) which are dominated by O₂ emission. The emission at 9.7µm (region 3) is much stronger than that at 8.9µm (region 2). Yet, the calculated column density of O, should be the same for both regions for an observed spectrum at the tropopause (selected to be below the O₂ and above any interfering H₂O). The band model parameter $2(\frac{x}{L})\frac{u}{p}$ described above which defines the emission range for linear modeling can be evaluated for each of these spectral regions. For the 8.9µm region it has a value ~0.1 depending on what "effective pressure" is used, while in the 9.7µm region it has a value >2. Thus, linear modeling can possibly be used in region 2, but definitely not in region 3.

One-layer calculations of atmospheric absorption or emission must, of necessity, include assumptions concerning effective temperature and pressure. This is true for both line-by-line and band model calculations. The effective temperature is not too difficult to choose for absorption, particularly in the lower stratosphere where the temperature does not change greatly. But for the emission process, the temperature also strongly influences the value of B, the Planck radiation term, and can be a major source of error. The effective pressure is important when the line centers become black. For a uniformly mixed gas the Curtis-Godson approximation

of p/2 is usually used, but many of the constituents of interest are not uniformly mixed. An alternate assumption is to use a pressure associated with the height of the center of mass of the column being measured. This method gives approximately p/2 for uniform mixing and is also appropriate for a highly-layered constituent.

A series of calculations was performed for both spectral regions 2 and 3 using the data and parameters associated with record 84 (10.3 km altitude) to show the magnitude of error associated with four different assumptions. These four assumptions are:

- 1) linear modeling (no pressure dependence); 2) $p_e = p/2$;
- 3) $p_e = p$ at the center of mass of the O_3 profile as determined from the auxiliary O_3 measurement; 4) $\beta = const$ and $p = p_0 e^{-z/H}$. With the fourth assumption the band model calculation takes the slightly different form of 17

$$T = \exp \left[\frac{\alpha_o}{d} p 2\sqrt{\pi} \frac{\Gamma(x_o + 1/2)}{\Gamma(x_o)} \right] , \qquad (17)$$

where $x_0 = \frac{S^0 u}{2\pi\alpha_0 p}$, and α_0 is the half-width and Γ is a gamma function.

Table VIII shows the values of u and the total O_3 in the slant path above the point of observation for each of the cases described. Several points can be briefly noted. For the near linear case at 8.9 μ m, all the techniques agree to better than 5%. For the non-linear case at 9.7 μ m, the use of p/2 and β = const contain similar assumptions and produce close results. However, the best agreement

R. M. Goody, Atmospheric Radiation I. Theoretical Basis, Oxford University Press, London, 1964.

between the linear and non-linear calculations occurs when using the pressure at the center of mass. Since O₃ is somewhat layered, this is probably not surprising. Unfortunately, it is not always possible to know the height of the center of mass when making one-layer calculations.

It is apparent from these considerations that the 8.9 mm region can be used with a linear model to derive O2 height profiles from the differential radiance data in a manner similar to that for HNO, Such a profile of number density vs height is shown in Figure 80. Included in this plot is an O, profile measured with an ozonesonde from Poker Flats on the same day. The profiles have similar features and the infrared technique provides a detailed profile at the higher altitudes generally lacking in the sonde data. However, there is a discrepancy in the absolute magnitude of the two curves. A comparison between the two curves can be accomplished by integrating each curve over a height range where both instruments seem to be working well, say 10.5 to 24.5 km. The ratio of the two column values over this range (5.99 x 10^{22} / 2.58 x 10^{22}) (m⁻²) is 2.3: 1. The O, profiles derived from the radiance data of 27 June 1974 and 19 February 1975 also show low absolute values compared with other measurements. In contrast, data of the 5 May 1975 flight show a total column of O_3 above 10.5 km of $> 10^{23}$ m⁻², while the total O_3 above the tropopause is 3.16 x 10^{22} m⁻². This discrepancy is under study both by this group and Dr. Snider at ASL.

The O_3 profile for 29 April has also been plotted as mass mixing ratio vs height in Figure 81. This figure also contains the mixing ratio profiles of HNO $_3$ and H $_2$ O for this data. The most

notable common feature is the strong fall-off in the profiles at the minimum temperature, rather than at the tropopause (here defined as a significant change in temperature lapse rate).

Table VIII.

Comparison of Various Equivalent Pressures Used for One Layer Calculations of the O_3 Column

Parameters

	8.9μm	9.7μm
N	3.532	80.85 $\mu \text{w cm}^{-2} \text{sr}^{-1} \mu \text{m}^{-1}$
€	.0257	. 4933
S ^o /d	. 1366	8.354 (atm-cm)-1
α_{o}/d	1.006	1.92 (atm ⁻¹)
x/L	.0214	.732
p	.245 (atm)	. 245 (atm)
z	10.30 km	10.30 km
p(1/2 mass)	.058 (atm)	.058 (atm)
z(1/2 mass)	19.5 km	19.5 km

Calculated Column of O₃ (atm-cm)

	8.9µm	9.7 _μ m
Linear	. 1906	.0814
p/2	. 1971	.1300
p(center of mass)	. 2045	. 2002
β = Const	.1948	1126

Figure 80. Number density height profile of O₃ derived from the 8.9 µm spectral radiance compared with that measured with a balloon ozonesonde.

Figure 81. Comparison of mixing ratio height profiles of HNO₃, H₂O and O₃ for 29 April 1976.

F. Other Constituents

1. $CF_2Cl_2 + CFCl_3$

The spectral radiance near the tropopause in the $10-13\mu$ m region shows a great deal of structure (see Figures 39 through 46). Some of this is due to F-11 (CFC13) and F-12 (CF2C12) (regions 7, 8 and 15), and some is due to unidentified constituents (regions 17 and 18). F-11 and F-12 height profiles near the tropopause can be calculated by fitting the total spectral data as Murcray et al. 18 have done with this data (Figure 82) or by selecting specific wavelength intervals (regions 7, 8 and 15). Both approaches use the band model parameters of Goldman et al. 19,20 The difficulty in this analysis is not with the spectral parameters, but rather with the changing radiance due to gray emitters, probably cirrus clouds, as was discussed earlier. The difference between the earlier F-ll and F-12 computations and those using the selected spectral regions is the manner of dealing with this gray radiation. The earlier effort attempted to estimate the gray radiance based on the relative

¹⁸D. G. Murcray, A. Goldman, F. H. Murcray and W. J. Williams, "Measurement of CF₂Cl₂ and CFCl₃ Using Infrared Emission Spectra" Final Report on MCA Contract No. 75-13, Department of Physics, University of Denver, December 1976.

A. Goldman, F.S. Bonomo and D. G. Murcray, "Statistical Band Model Analysis and Integrated Intensity for the 11.8 mm Band of CFCl₃" Appl. Opt., 15, 2305-2307, 1976.

 $^{^{20}}$ A. Goldman, F. S. Bonomo and D. G. Murcray, "Statistical Band Model Analysis and Integrated Intensity for the 10.8 μ m Band of CF₂Cl₂" Geophys. Res. Lett., 3, 309-312, 1976.

intensities of different parts of the calculated spectral features. This effort was to subtract the total radiance measured in the minimas of the nearby spectral features (i.e. spectral regions 4 or 6). Figure 83 shows the profile from the earlier calculation and Figures 84 and 85 show the latter. The first probably under-compensated and the second over-compensated for gray radiation. This is a difficult problem and requires more study. Improved spectral resolution would probably be of some help, as would elimination of the optical window scattering radiation. Data of Ridley et al. 21 obtained during the same flight series is also shown in Figures 83 and 84.

²¹B. A. Ridley, "Stratospheric Measurements of CFCl and CF₂Cl at Fairbanks, Alaska" MCA Report 76-102, August ³ 1976.

Figure 82. Calculated spectral radiance of F-11, F-12 and HNO₃ showing separate bands (dashed) and combined spectral radiance (solid curves).

Figure 83. Mixing ratio height profiles of CF₂Cl₂ and CFCl₃ derived from the spectral radiance data of 29²April 1976³¹⁸ by matching spectral features in the manner shown in Figure 82.

Figure 84. Mixing ratio height profiles of CF₂Cl₂ derived from the spectral radiance data of 29 April 1976 using spectral regions 7 and 8 and reference spectral regions 4 or 6.

Figure 85. Mixing ratio height profile of CFCl₃ derived from the spectral radiance data of 29 April 1976 using spectral region 15 and referenced to spectral region 4.

2. Unknown Constituents

Emissions at 12.04 μ m and 12.20 μ m are apparent in Figures 41 through 47. The spectral source of these emissions is not certain at this time. However, it is possible to use the linear band model technique to calculate the relative shape of the height profiles of these constituents, based on the change in emissivity with pressure $(\Delta \epsilon / \Delta p)$. This is equivalent to a mixing ratio in relative units. It can be shown from (5) and (9) that

$$\beta_{V} = \frac{\Delta \epsilon}{\Delta p} \frac{1}{K \operatorname{Sec} \theta H} \tag{18}$$

As an example of this technique, a plot of the CFCl₃ data of Figure 85 is shown in Figure 86 using this parameter. In Figure 87, the feature at 12.04 m (region 17) shows a decrease just below the tropopause of a factor of about 2, while in Figure 88 the feature at 12.20 m (region 18) shows an even stronger decrease just below the tropopause, possibly followed by a slight increase. Clearly these two are features of two different constituents. Both of these profiles suffer from the uncertainties associated with the gray radiance correction. A similar decrease of about two is also noted when this type of analysis is applied to the CO₂ Q-branch at 12.62 m, but this may be caused by a different effect. Identification of these features is part of a continuing effort under a separate contract.

Figure 86. Relative mixing ratio height profile of CFCl₃ using technique of Equation 18.

This is the same data shown in Figure 85.

Figure 87. Relative mixing ratio height profile of an unidentified constituent emitting at $12.04\mu m$.

<u>ب</u>

5

,

Figure 88. Relative mixing ratio height profile of an unidentified constituent emitting at $12.20\mu m$.

G. Additional Features of the Float Data

The variation of radiance at float of several spectral regions was discussed earlier. Several other pieces of information can be derived from the float data, particularly from the data associated with observations at several secant angles within relatively short time periods. The most interesting spectral regions to consider in this way are the 25 and $26\mu m$ H₂O (regions 28 and 31). Since these regions are composed of a series of randomly spaced strong lines, one might expect the radiance change to be proportional to the square root of the optical path. Figure 89 confirms this expectation for both regions. Further, it sets an upper limit for H2O contamination in the vicinity of the balloon at about 22% of the radiance measured at 45° and at 37.5 km. Based on the square root approximation this represents about 5% of the total H₂O in the path. This number could be further interpreted as a H2O density increase in the vicinity of the balloon, depending on the length of the assumed contaminated However, this is not attempted here because of the large number of assumptions already present in the 5% figure.

Similar analyses of other spectral regions are also of some interest. The 12.6 μ m CO₂ region plotted vs secant has a slope approximated by a power of 0.73, part way between a square root and a linear fit. This is in agreement with the results of the 5 May 1975 CO₂ data and inferred in the previous report covering two earlier flights. It makes this spectral feature somewhat difficult to work with for inferring either CO₂ amounts or atmospheric temperature profiles. The window radiances at 10.7 and 12 μ m fit a linear model, but due to their low values, there is some scatter in the data. This, of

course, is a check on the optical window corrections and does not yield any information about the atmosphere. (See IVB).

For observations at a zenith angle of 93.5° the measured emission is from very long geometric paths (hundreds of kilometers). Variation in the data from scan to scan would infer either inhomogeneities in the atmosphere or slight variations of the instrument angle. Analysis of data from several spectral regions (windows, H₂O, HNO₃, O₃, CO₂), provides some conclusions. Immediately following a change in angle and for 2-3 minutes, there is some variation in all the data which can be explained as a quickly damped oscillation of about 0.1°. For the remainder of a ten-minute period the changes in the radiance levels were less than 4% and generally less than 2%. The associated radiance variations were approximately 1 x 10⁻⁷ w cm⁻² sr⁻¹ μm⁻¹.

Figure 89. Dependence of the spectral radiance of water vapor emission at 25 µm (region 28) and 26 µm (region 31) on secant. Straight line through points represents a square root fit with zero offset.

VII. CONCLUSIONS

The liquid helium spectral radiometer has now been developed into an accurate, functional instrument capable of simultaneously measuring a large number of atmospheric constituents. A number of minor corrections suggested by the experiences of this flight and associated data reduction processes have been or are being incorporated into the spectrometer. These include reduction of the optical window scattering, changes in the antifrost gas system to allow more constant window temperatures, improvement in spectral resolution, and possibly a change in the wavelength region covered to include more species.

A number of constituent height profiles were derived from the data. The procedures which accomplish this are continuing to be refined, both to expedite the process and to provide greater accuracy. A number of questions have been raised about the best analysis techniques for dealing with gray radiation from atmospheric particulates. Also a number of spectral features continue to be unidentified.

ACKNOWLEDGMENTS

We wish to thank the National Center for Atmospheric Research, which is sponsored by the National Science Foundation, for computer time used in this research. We wish to thank C. Bauer for preparation of the figures and editing the text and K. Mutchler for preparing the text.

		*
		•
,		
		•
		₹º

REFERENCES

- D. G. Murcray, J. N. Brooks, A. Goldman, J. J. Kosters and W. J. Williams, "Water Vapor, Nitric Acid and Ozone Mixing Ratio Height Profiles Derived from Spectral Radiometric Measurements" Report No. BRL CR332 on Contract DAAD05-74-C-0795 by Department of Physics, University of Denver, Feb. 1977. (AD #A037375)
- (AD #A037375)
 2. D. E. Snider, D. G. Murcray, W. J. Williams and F. H. Murcray, "Investigation of High Altitude Enhanced Infrared Background Emissions Results from COSMEP III and IV" Electronics Command Report No. 5824, OSD-1366, June 1977.
- 3. D. G. Murcray, R. C. Amme and J. R. Olson, Final Reports on Contracts DAAD05-74-C-0795 and DAAD05-76-C-0740 by Department of Physics, University of Denver, in preparation, 1978.
- 4. D. G. Murcray, "Optical Properties of the Atmosphere" Six
 Month Technical Report on Contract F19628-68-C-0233 for AFCRL
 by Department of Physics, University of Denver, Sept. 1969.
- 5. D. E. Snider and A. Goldman, "Refractive Effects in Remote Sensing of the Atmosphere with Infrared Transmission Spectroscopy" BRL Report No. 1790, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, June 1975. (AD #A011253)
- 6. W. J. Williams, D. B. Barker, J. N. Brooks, A. Goldman, J. J. Kosters, F. H. Murcray, D. G. Murcray and D. E. Snider, "Spectral Radiometric Measurement of Atmospheric Constituents" Proceedings of Society of Photo-Optical Instrumentation Engineers, 91, 15-25, 1976.
- 7. A. Goldman, D. G. Murcray, F. H. Murcray, W. J. Williams and J. N. Brooks, "Distribution of Water Vapor in the Stratosphere as Determined from Balloon Measurements of Atmospheric Emission Spectra in the 24-29 µm Region" Appl. Opt., 12, 1045-1053, 1973.
- 8. J. C. Breeze, C. C. Ferriso, C. B. Ludwig and M. Malkmus, "Temperature Dependence of the Total Integrated Intensity of Vibrational-Rotational Band Systems" J. Chem. Phys., 42, 402-406, 1965.
- 9. C. C. Ferriso and C. B. Ludwig, "An Infrared Band Ratio Technique for Temperature Determinations of Hot Gases" Appl. Opt., 4, 47-51, 1965.

- 10. A. Goldman, "Statistical Band Model Parameters for Long Path Atmospheric Ozone in the 9-10 µm Region" Appl. Opt., 9, 2600-2604, 1970.
- 11. S.S. Penner, Quantitative Molecular Spectroscopy and Gas
 Emissivities, Addison-Wesley Publishing Company, Inc., Reading,
 Mass., 1959.
- A. Goldman, T. G. Kyle and F. S. Bonomo, "Statistical Band Model Parameters and Integrated Intensities for the 5. 9μ, 7. 5μ and 11. 3μ Bands of HNO₃ Vapor" Appl. Opt., 10, 65-73, 1971.
- 13. D. G. Murcray, A. Goldman and F. S. Bonomo, "Laboratory Studies of Infrared Absorption by NO₂ and HNO₃" Final Report on NASA Grant 06-004-128, Department of Physics, University of Denver, 1974.
- 14. D. G. Murcray, F. S. Bonomo, J. N. Brooks, A. Goldman, F. H. Murcray and W. J. Williams, "Detection of Fluorocarbons in the Stratosphere" Geophys. Res. Lett., 2, 109-112, 1975.
- D. G. Murcray, A. Goldman, A. Scoeke-Poeckh, F. H. Murcray,
 W. J. Williams and R. N. Stocker, "Nitric Acid Distribution in the Stratosphere" J. Geophys. Res., 78, 7033-7038, 1973.
- A. Goldman, R. N. Stocker, D. Rolens, W. J. Williams and D. G. Murcray, "Stratospheric HNO₃ Distributions from Balloon-Borne Infrared Atmospheric Emission Measurements from 1970-75" Scientific Report, Department of Physics and Astronomy, University of Denver, 1976.
- 17. R. M. Goody, Atmospheric Radiation I. Theoretical Basis, Oxford University Press, London, 1964.
- 18. D. G. Murcray, A. Goldman, F. H. Murcray and W. J. Williams, "Measurement of CF₂Cl₂ and CFCl₃ Using Infrared Emission Spectra" Final Report on MCA Contract No. 75-13, Department of Physics, University of Denver, Dec. 1976.
- 19. A. Goldman, F. S. Bonomo and D. G. Murcray, "Statistical Band Model Analysis and Integrated Intensity for the 11.8 \(\mu\) m Band of CFCl₃" Appl. Opt., 15, 2305-2307, 1976.
- A. Goldman, F.S. Bonomo and D.G. Murcray, "Statistical Band Model Analysis and Integrated Intensity for the 10. 8μm Band of CF₂Cl₂" Geophys. Res. Lett., 3, 309-312, 1976.

21. B. A. Ridley, "Stratospheric Measurements of CFCl₃ and CF₂Cl₂ at Fairbanks, Alaska" MCA Report 76-102, Aug. 1976.

		·	,	
				•
				4
				-
				ţ-
				,
,				
ī:				

No. of Copies		No. of Copies	
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMA-ST 5001 Eisenhower Avenue Alexandria, VA 22333
1	Director Institute for Defense Analyse ATTN: Dr. E. Bauer 400 Army-Navy Drive Arlington, VA 22202	s l	
2	Director Defense Advanced Research Projects Agency ATTN: STO, Mr. J. Justice Dr. S. Zakanyca 1400 Wilson Boulevard Arlington, VA 22209	1	St. Louis, MO 63166 Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035
1	Director of Defense Research and Engineering ATTN: Mr. D. Brockway Washington, DC 20305	1	Commander US Army Electronics Command ATTN: DRSEL-RD Fort Monmouth, NJ 07703
5	Director Defense Nuclear Agency ATTN: STAP (APTL) STRA (RAAE) Dr. C. Blank Dr. G. Soper Mr. J. Mayo DDST, Dr. M. Peek Washington, DC 20305	5	Commander/Director US Army Electronics Command Atmospheric Sciences Laboratory ATTN: Dr. D. E. Snider Dr. E. H. Holt Mr. F. Horning Mr. R. Olsen Dr. F. E. Niles White Sands Missile Range NM 88002
	DASIAC/DOD Nuclear Information and Analysis Center General Electric Company-TEMF ATTN: Mr. A. Feryok Mr. W. Knapp Dr. T. Stevens Dr. M. Stanton Mr. T. Barrett 816 State Street P. O. Drawer QQ Santa Barbara, CA 93102	3	Commander/Director US Army Electronics Command Atmospheric Sciences Laboratory ATTN: Mr. B. Kennedy Dr. J. Randhawa Mr. H. Ballard Dr. H. Rachele Dr. M. Heaps White Sands Missile Range NM 88002

No, of	f	No. of	•
Copies	<u>Organization</u>	Copies	Organization
1	Commander US Army Missile Research and Development Command ATTN: DRDMI-R Redstone Arsenal, AL 35809	1	Commander US Army Nuclear and Chemical Agency ATTN: Dr. J. Berberet 7500 Backlick Road Springfield, VA 22150
1	Commander US Army Tank Automotive Research & Development Cmd ATTN: DRDTA-RWL Warren, MI 48090	3	Commander US Army Research Office ATTN: Dr. A. Dodd Dr. R. Mace Dr. R. Lont2
1	Commander US Army Mobility Equipment Research & Development Cmd ATTN: DRDME-WC, Tech Lib		P. O. Box 12211 Research Triangle Park NC 27709
	Fort Belvoir, VA 22060	2	Director US Army BMD Advanced
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299		Technology Center ATTN: Mr. W. Davies Mr. M. Capps P. O. Box 1500 Huntsville, AL 35807
2	Commander US Army Armament Research and Development Command	1	HQDA (DAEN-RDM, Dr. F. dePercin) Washington, DC 20310
	ATTN: DRDAR-TSS (2 cys) Dover, NJ 07801	1	Commander US Army Research and Standardization Gp (Europe)
1	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road Adelphi, MD 20783		ATTN: Dr. H. Lemons P. O. Box 15 FPO New York 09510 Chief of Naval Research ATTN: Code 418, Dr. J. Dardis
1	Director US Army TRADOC Systems Analysis Activity		Department of the Navy Washington, DC 20360
	ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002	1	Commander Naval Surface Weapons Center

ATTN: Dr. L. Rutland Silver Spring, MD 20910

NM 88002

No. of Copies Organization Copies Organization

1 Commander 1 Director Transportation Systems

- Naval Electronics Laboratory ATTN: M. W. Moler San Diego, CA 92152
- 4 Commander
 Naval Research Laboratory
 ATTN: Dr. W. Ali
 Dr. D. Strobel
 Code 7700, Mr. J. Brown
 Code 2020, Tech Lib
 Washington, DC 20375
- 4 HQ USAF (AFNIN; AFRD; AFRDQ; ARTAC, COL C. Anderson) Washington, DC 20330
- 2 AFSC (DLCAW, LTC R. Linkous; SCS) Andrews AFB Washington, DC 20334
- 5 AFGL (Dr. R. McClatchey; Dr. J. Garing; Dr. H. Gardiner; Mr. D. Smith; Dr. A.T. Stair) Hanscom AFB, MA 01730
- 5 AFGL (Dr. J. Kennealy; Dr. K. Champion; Dr. W. Swider; Dr. T. Keneshea; Dr. R. Narcisi)
 Hanscom AFB, MA 01730
- 1 Director
 National Oceanic and
 Atmospheric Administration
 ATTN: Dr. L. Machta
 US Department of Commerce
 8060 13th Street
 Silver Spring, MD 20910
- Director
 National Oceanic and
 Atmospheric Administration
 US Department of Commerce
 ATTN: Dr. E. Ferguson
 Boulder, CO 80302

- Director
 Transportation System Center
 US Department of Transportation
 ATTN: Dr. T. Hard
 55 Broadway
 Cambridge, MA 02142
- 1 Director
 Air Pollution Technical
 Information Center
 US Environmental Protection
 Agency
 ATTN: P. Halpin
 Research Triangle Park
 NC 27709
- 1 National Center for
 Atmospheric Research
 ATTN: Dr. J. Gille
 P. O. Box 3000
 Boulder, CO 80303
- Director
 Lawrence Livermore Laboratory
 ATTN: Dr. H. Ellsaesser, L-71
 P. O. Box 808
 Livermore, CA 94550
- Jirector
 Los Alamos Scientific Lab.
 ATTN: Dr. W. Maier (Gp J-10)
 Dr. J. Zinn (MS 664)
 Dr. W. Myers
 P. O. Box 1663
 Los Alamos, NM 84544
- 2 Director
 Jet Propulsion Laboratory
 ATTN: Dr. C. Farmer
 Dr. R. Toth
 4800 Oak Grove Drive
 Pasadena, CA 91103

	DISTRIB	OIION D	1101
No. of Copies		No. of Copies	
4	Director National Aeronautics and Space Administration Goddard Space Flight Center ATTN: Dr. E. Hilsenrath Dr. V. Kunde Dr. A. Aikin	2	General Electric Company Valley Forge Space Technology Center ATTN: Dr. M. Bortner Dr. T. Baurer P. O. Box 8555 Philadelphia, PA 19101
	Dr. R. Goldberg Greenbelt, MD 20771		General Research Corporation ATTN: Dr. R. Zirkind •
	Director National Aeronautics and Space Administration		1501 Wilson Boulevard Arlington, VA 22209
	Langley Research Center ATTN: Dr. J. Russell Hampton, VA 23365		General Research Corporation ATTN: J. Fowler 307 Wynn Drive Huntsville, AL 35807
_	Director National Science Foundation ATTN: Dr. F. Eden Dr. G. Adams 1800 G Street, NW Washington, DC 20550		General Research Corporation ATTN: T. Zakrzewski 7655 Old Springhouse Road McLean, VA 22101
1	Boeing Aerospace Company ATTN: J. Nelson P. O. Box 3999 Seattle, WA 98124		Grumann Aerospace Corporation Research Division 35/588 ATTN: Dr. J. Selby Bethpage, NY 11714 Honeywell Radiation Center
1	Brown Engineering Company ATTN: N. Passino 300 Sparkman Drive Huntsville, AL 46807		ATTN: H. Robinson No. 2 Forbes Road Lexington, MA 02173
1	Ford Aerospace and Communications Corporation ATTN: N. Cowden		Hughes Aircraft Company ATTN: J. Steffes Centinela & Teale Streets Culver City, CA 90230
	Ford & Jamboree Roads Newport Beach, CA 92663	1	L'Garde, Inc.

172

1 General Electric Company
Missile and Space Division
ATTN: J. Burns
P. O. Box 9555

Philadelphia, PA 19101

ATTN: M. Thomas

1555 Placentia Avenue Newport Beach, CA 92663

No. of	•	No. of	•
Copies	Organization	Copies	Organization
	Lockheed Aircraft Corporation Lockheed Missiles and Space Company ATTN: R. Daniels 3251 Hanover Street Palo Alto, CA 94304		Photon Research Assoc, Inc. ATTN: D. Anding P. O. Box 1318 2223 Avenida de la Playa La Jolla, CA 92037
3	Lockheed Palo Alto Research Laboratory ATTN: Dr. B. McCormack Dr. J. Reagan Mr. R. Sears		R&D Associates ATTN: Dr. F. Gilmore P. O. Box 9695 Marina del Rey, CA 90291 Rockwell International
1	3251 Hanover Street Palo Alto, CA 94304 McDonnell Douglas Astronautics	5	ATTN: Bob Fleming P. O. Box 4182 3370 Miraloma Avenue Anaheim, CA 92803
	Company ATTN: H. Herdman 3322 S. Memorial Parkway Huntsville, AL 35804	1	Sandia Laboratories ATTN: Dr. R. O. Woods Albuquerque, NM 87115
. 1	Mission Research Corporation ATTN: Dr. R. Hendrick 735 State Street P. O. Drawer 719 Santa Barbara, CA 93101	1	The Ohio State University Department of Physics ATTN: Dr. J. Shaw Columbus, OH 43210
1	MIT Lincoln Laboratory ATTN: P. Longaker/R.Espinola P. O. Box 73 Lexington, MA 02173	1	Stanford Research Institute ATTN: Dr. J. Peterson 333 Ravenswood Avenue Menlo Park, CA 94025
1	MITRE Corporation ATTN: Tech Lib P. O. Box 208 Bedford, MA 01730	6	University of Denver Denver Research Institute ATTN: Dr. R. Amme Dr. D. Murcray Dr. A. Goldman Dr. J. Williams
1	Nichols Research Corporation ATTN: R. Nichols 7910 South Memorial Parkway Suite A Huntsville, AL 35802		Dr. F. Murcray Mr. J. Kosters P. O. Box 10127 Denver, CO 80210

No. of Copies Organization

- University of Illinois
 Dept of Electrical Engineering
 ATTN: Dr. C. Sechrist, Jr.
 Urbana-Champaign Campus
 Urbana, IL 61801
- 2 University of Michigan
 High Altitude Engineering Lab
 ATTN: Dr. F. Bartman
 Dr. S. Drayson
 Rsch Activities Building
 Ann Arbor, MI 48105
- University of Minnesota, Morris Div of Science and Mathematics ATTN: Dr. M. N. Hirsh Morris, MN 56267
- 1 University of Wyoming
 Dept of Physics and Astronomy
 ATTN: Dr. T. Pepin
 Laramie, WY 82070
- 4 Utah State University
 Center for Research in Aeronomy
 ATTN: Dr. L. Megill
 Dr. P. Williamson
 Dr. K. Baker
 Dr. D. Baker
 Logan, UT 84321

Aberdeen Proving Ground

Marine Corps Ln Ofc Dir, USAMSAA