ESERCIZI DI CINEMATICA DEI SISTEMI

Esercizio 1

Un'asta AB di lunghezza 2ℓ , mobile nel piano Oxy ha il punto medio M vincolato a scorrere sull'asse x.

Determinare in funzione dei parametri θ e ξ (come in figura) e delle loro derivate prime la velocità degli estremi A e B.

SOLUZIONE

$$\vec{\omega} = \dot{\theta}\hat{\imath} \wedge \hat{\jmath}, \mathbf{v}_A = (\dot{\xi} - \ell \sin \theta \, \dot{\theta})\hat{\imath} + \ell \cos \theta \, \dot{\theta}\hat{\jmath}, \mathbf{v}_B = (\dot{\xi} + \ell \sin \theta \, \dot{\theta})\hat{\imath} - \ell \cos \theta \, \dot{\theta}\hat{\jmath}.$$

Esercizio 2

Il sistema, costituito dai dischi \mathcal{D}_1 e \mathcal{D}_2 di raggio r e dall'asta AB di lunghezza 6r, mobile nel piano Oxy, è soggetto ai seguenti vincoli:

- * il disco \mathcal{D}_1 rotola senza strisciare sull'asse y,
- * il disco \mathcal{D}_2 rotola senza strisciare sull'asse x,
- * l'asta ha gli estremi incernierati nei centri dei dischi \mathcal{D}_1 e \mathcal{D}_2 .

Determinare in funzione del parametro θ (come in figura) e della sua derivata prima le velocità angolari dei dischi \mathcal{D}_1 , \mathcal{D}_2 e dell'asta AB.

SOLUZIONE

$$\vec{\omega}_1 = -6\sin\theta \,\dot{\theta}\hat{\imath} \,\wedge \hat{\jmath} \,,\, \vec{\omega}_1 = -6\cos\theta \,\dot{\theta}\hat{\imath} \,\wedge \hat{\jmath} \,,\, \vec{\omega}_{AB} = \dot{\theta}\hat{\imath} \,\wedge \hat{\jmath} \,.$$

Esercizio 3

Nel piano Oxy un disco $\mathcal D$ di raggio r rotola senza strisciare all'esterno di una guida circolare $\mathcal C$ di raggio R che ruota attorno al suo asse.

Determinare in funzione dei parametri θ e ϕ (come in figura) e delle loro derivate prime la velocità angolare del disco \mathcal{D} .

$$\vec{\omega} = \frac{(R+r)\dot{\theta} - R\dot{\phi}}{r}\hat{\imath} \wedge \hat{\jmath}$$

Esercizio 4

Nel piano Oxy un disco $\mathcal D$ di raggio r e centro C rotola senza strisciare all'interno di una guida semicircolare $\mathcal C$ di raggio R (R>r) che trasla parallelamente all'asse x.

Determinare in funzione dei parametri θ e ξ (come in figura) e delle loro derivate prime la velocità angolare del disco \mathcal{D} e la velocità del suo centro C.

SOLUZIONE

$$\mathbf{v}_C = \dot{\boldsymbol{\xi}} \hat{\boldsymbol{\imath}} + (R - r)(\cos\theta \,\dot{\boldsymbol{\theta}} \hat{\boldsymbol{\imath}} + \sin\theta \,\dot{\boldsymbol{\theta}} \hat{\boldsymbol{\jmath}}), \, \vec{\omega} = -\frac{(R - r)}{r} \dot{\boldsymbol{\theta}} \hat{\boldsymbol{\imath}} \wedge \hat{\boldsymbol{\jmath}}.$$

Esercizio 5

Due dischi \mathcal{D}_1 e \mathcal{D}_2 di raggio r e di centri rispettivamente O_1 e O_2 , mobili nel piano Oxy, sono soggetti ai seguenti vincoli:

- * il disco \mathcal{D}_2 rimane tangente all'asse x,
- * il disco \mathcal{D}_1 ha il punto A del bordo vincolato a scorrere sull'asse y e rotola senza strisciare su \mathcal{D}_2 .

Indicato con θ l'angolo che il raggio OA forma con l'asse y e con ϕ l'angolo che la retta O_1O_2 forma con l'asse y, determinare in funzione di θ , ϕ e delle loro derivate prime la velocità angolare del disco \mathcal{D}_2 e la sua velocità di strisciamento sull'asse x.

SOLUZIONE

$$\vec{\omega} = (2\dot{\phi} - \dot{\theta})\hat{\imath} \wedge \hat{\jmath}, \mathbf{v}_s = r(\cos\theta \,\dot{\theta} + 2\cos\phi \,\dot{\phi} + 2\dot{\phi} - \dot{\theta})\hat{\imath}.$$

Esercizio 6

Il sistema, costituito dal disco \mathcal{D} di raggio r e dall'asta OA, mobile nel piano Oxy, è soggetto ai seguenti vincoli:

- * l'asta OA ruota attorno al suo estremo O,
- * il disco $\mathcal D$ rotola senza strisciare sull'asta OAe rimane tangente l'asse x

Determinare in funzione del parametro θ (vedi figura) e della sua derivata prima la velocità angolare del disco \mathcal{D} e la sua velocità di strisciamento sull'asse x.

SOLUZIONE

$$\vec{\omega} = -\frac{\cos 2\theta}{\sin^2 \theta} \dot{\theta} \hat{\imath} \wedge \hat{\jmath} , \mathbf{v}_s = -2r \cot^2 \theta \dot{\theta} \hat{\imath} .$$

Esercizio 7

Il sistema, costituito dal disco \mathcal{D} di raggio R e dall'asta AB di lunghezza ℓ , mobile nel piano Oxy, è soggetto ai seguenti vincoli:

- * l'asta AB è vincolata a passare per O, mantenendo un'inclinazione costante α con l'asse x,
- * il disco \mathcal{D} rotola senza strisciare sull'asta AB.

Indicati con M il punto medio dell'asta AB, con H il punto di contatto tra l'asta AB e il disco \mathcal{D} , e presi come parametri ξ e η , tali che $(M-O)=\xi \, vers(A-B)$ e $(H-O)=\eta \, vers(A-B)$, determinare la velocità angolare del disco in funzione di η , ξ e delle loro derivate prime.

SOLUZIONE

$$\vec{\omega} = \frac{\dot{\xi} - \dot{\eta}}{r} \hat{\imath} \wedge \hat{\jmath}$$
.

Esercizio 8

In un piano Oxy, un disco \mathcal{D} di centro O' e raggio R si muove rimanendo tangente all'asse x. Sapendo che la velocità di O' è costantemente uguale a $v_0\hat{\imath}$ e che la velocità angolare del disco è costantemente uguale a $\omega_0\hat{\imath} \wedge \hat{\jmath}$, determinare

- * la velocità di strisciamento del disco \mathcal{D} sull'asse x,
- * il centro di istantanea rotazione del disco \mathcal{D} ,
- * la base e la rulletta del moto del disco \mathcal{D} .

SOLUZIONE

$$\begin{array}{l} \mathbf{v}_s = (v_0 + \omega_0 R) \hat{\pmb{\imath}} \,,\, x_C = x_{O'},\, y_C = \frac{v_0}{\omega_0} + R,\\ base: \text{ retta di equazione } y = \frac{v_0}{\omega_0} + R, \end{array}$$

rulletta: circonferenza di centro O' e raggio $\left| \frac{v_0}{\omega_0} \right|$.

Esercizio 9

Una circonferenza C di centro O' e raggio r, mobile nel piano Oxy, è vincolata a passare per l'origine O del sistema di riferimento, mentre un suo punto A è vincolato a scorrere sull'asse y.

Introdotto il parametro θ , angolo che il raggio AO' forma con l'asse y, determinare il centro di istantanea rotazione, la base e la rulletta per il moto della circonferenza \mathcal{C} .

SOLUZIONE

 $x_C = 2r\sin\theta, y_C = 2r\cos\theta,$

base: circonferenza di centro O e raggio 2r, rulletta: circonferenza di centro O' e raggio r.

Esercizio 10

Un'asta AB di lunghezza 2ℓ , mobile nel piano Oxy, è vincolata a passare per il punto O' di coordinate (0, -r) (con $r < \ell$), mentre il suo estremo A è vincolato a scorrere sulla guida semicircolare di equazione $x^2 + y^2 = r^2$, $y \ge 0$.

Introdotto il parametro θ , angolo che l'asta AB forma con l'asse x, determinare l'intervallo di variazione di tale parametro; il centro di istantanea rotazione; la base e la rulletta per il moto dell'asta AB.

SOLUZIONE

 $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}, x_C = -x_A = -r\sin 2\theta, y_C = -y_A = -r\cos 2\theta,$

base: semicirconferenza di centro O e raggio r,

rulletta: quarto di circonferenza di centro A e raggio 2r.

Esercizio 11

Un'asta AB di lunghezza 2ℓ , mobile nel piano Oxy, è vincolata a passare per il punto O' di coordinate (r,0) (con $r < \ell$), mentre il suo estremo A è vincolato a scorrere sull'asse y.

Introdotto il parametro θ , angolo che l'astaAB forma con l'asse y, determinare il centro di istantanea rotazione e la base per il moto dell'asta AB.

SOLUZIONE

 $x_C = -r(1 + \cot^2 \theta), y_C = r \cot \theta,$

base: arco di parabola che ha come asse l'asse x e vertice nel punto (r,0).

Esercizio 12

Un sistema costituito da due dischi \mathcal{D}_1 e \mathcal{D}_2 entrambi di raggio r, mobile nel piano Oxy, è cosìvincolato:

- * il disco \mathcal{D}_1 rotola senza strisciare sulla guida di equazione $x^2 + y^2 = r^2$,
- * il centro O_2 del disco \mathcal{D}_2 scorre sull'asse y,
- * il disco \mathcal{D}_2 senza strisciare sul disco \mathcal{D}_1 .

Indicato con θ l'angolo che la retta che congiunge il centro O_1 del disco \mathcal{D}_1 con l'origine O forma con l'asse y, determinare la velocità angolare del disco \mathcal{D}_2 in funzione del parametro θ e della sua derivata prima, il centro di istantanea rotazione e la base per il moto del disco \mathcal{D}_2 .

SOLUZIONE

 $\vec{\omega} = -4\dot{\theta}\hat{\imath} \wedge \hat{\jmath}$, $x_C = r\sin\theta$, $y_C = -4r\cos\theta$,

base: arco di ellisse con centro in O, assi coincidenti con gli assi del sistema di riferimento di lunghezza rispettivamente 2r e 8r.