STATISTICS

(SESSION-8)

OUTLIERS:

- Outliers are the observations having very Huge value or very Small value.
- Mean will affect by Outliers.
- For Example:

Assume that Indian Income: 1L, 2L, 3L, 4L

• Mean =
$$\frac{1+2+3+4}{4}$$
 = 2.5

Suppose we added an unusual Observation 100Crs.

• Mean =
$$\frac{1+2+3+4+100cr}{5}$$
 = 20cr

Here, Outlier is 100crs.

Because of Outliers data will skew

- Positive outliers means huge value, data will skew to the positive(Right) side.
- Negative outliers means very small value, data will skew to the Nehgative (Left) side.

BOX PLOT:

In the above diagram

 $Q_1 = 25p Value$

 $Q_2 = 50p Value$

 $Q_3 = 75p Value$

Outliers will exist after Q₃ point and below Q₁ point

Upper bound = $Q_3 + ?$

Lower bound = Q_2 - ?

IQR: (Inter Quartile Range)

In order to find the outliers we need to travel from Q₃ to above Q₁ to below

The travel distance based on Middle 50% of data

That middle 50% of data is called as IQR: Inter Quartile Range

 $IQR = Q_3 - Q_1$ (Middle data)

Upper bound = $Q_3 + IQR$

Lower bound = $Q_1 - IQR$

The Upper bound and Lower bound cutoff varies based on , How many times of IQR we are using

Upper bound = $Q_3 + k * IQR$

Lower bound = $Q_1 - k * IQR$

Generally we will use k = 1.5 and k = 3

When k = 1.5: (Mild Outliers)

Upper bound = $Q_3 + 1.5 * IQR$

Lower bound = $Q_1 - 1.5 * IQR$

When k = 3: (Huge Outliers)

Upper bound = $Q_3 + 3 * IQR$

Lower bound = $Q_1 - 3 * IQR$

In Python we use by default k = 1.5 only

Middle line represents median = 50p of Data

Example: Let $Q_1=10K$ $Q_2=1Lakh$ $Q_3=5Lakhs$

Outliers: $Q_3 + 1.5 * IQR$

$$= Q_3 + 1.5 * (Q_3 - Q_1)$$

$$= 5 + 1.5 * (5L - 10K)$$

$$= 5 + 1.5 * (4.9L) = 12.35$$

If a person is earning 12.35 per month or more he is considered as a outlier

Outliers: $Q_3 - 1.5 * IQR$

$$= Q_3 - 1.5 * (Q_3 - Q_1)$$

$$= 5 - 1.5 * (5L - 10K)$$

$$= 5 - 1.5 * (4.9L) = -2.35$$

If a person is earning - 2.35 per month or more he is considered as a outli

Normal Distribution

Symmetric

Right-Skewed

DEALING OUTLIER:

Drop the outlier:

- If any outliers are present, we can drop the outlier If the outlier has 2% of data.
- Suppose a data has 100 observations in that 2 observations consider as outlier.
- So Outlier perecentage is 2%.
- If you drop 2% of data then we have 98% of data available.
- It is enough to train the ML Model.
 - Drop the Outlier is generally not recommended.
 - If we drop the outlier means we are droping the information.

Fill with Median Value:

- We know that , Outlier doesnot affect the Median.
- So , that it is good practice we can fill Outliers with median value.

Fill with Q₃ and Q₁ (Cap the Values):

Caping method.

- More than Q₃ Outliers replace with Q₃ value.
 - Positive side Outliers can replace with Upper bound value
- Less than Q₁ Outliers replace with Q₁ value.
 - Negative side Outliers can replace with Lower bound value