10 Marca 2025

# Projekt przesłony elektromagnetycznej o zadanych parametrach

#### Paulina Miętkiewska

Kod albumu: 264408

Przedmiot: Elektromagnetyczne bezpieczeństwo systemów i sieci.

# Spis treści

| Założenia projektowe                            | 3 |
|-------------------------------------------------|---|
| Obliczenia wstępne                              |   |
| Wybór średnicy otworu                           |   |
| Obliczenia skuteczności ekranowania (tłumienia) |   |
| Obliczenia sumy pól otworów                     |   |
| Projekt zasłony                                 |   |
| Wnioski                                         |   |

## Założenia projektowe

W ramach tego projektu powstał ekran chroniący przed falami elektromagnetycznymi. Ekran ten zaprojektowany został według następujących wymagań i celów:

- Częstotliwość fali (f):  $4,08 \times 10^9 \text{ Hz}$
- Kształt otworów: Kołowy
- Wymiary płyty:  $50 \times 50$  cm;
- Minimalna teoretyczna skuteczność ekranowania ( $S_c$ ): Nie gorsza niż 9 dB
- Cel optymalizacyjny: Maksymalizacja łącznego pola powierzchni otworów (P) przy jednoczesnym spełnieniu wymagania minimalnej skuteczności ekranowania.

## Obliczenia wstępne

Podstawowym parametrem fali, którego znajomość jest konieczna do stworzenia odpowiedniego dla niej ekranu jest jej długość (λ). Korzystając z podanej częstotliwości, można ją obliczyć korzystając ze wzoru:

$$\lambda = \frac{v}{f}$$

gdzie f to częstotliwość zadana, a v — przybliżona prędkość fali

Częstotliwość ekranowanej fali (f) wynosi w tym przypadku  $4,08 \times 10^9$  Hz. Prędkość fali (v) została przybliżona do prędkości światła, dokładniej jej przyjęta wartość to  $4,08 \cdot 10^9$ .

$$\lambda = \frac{3 \cdot 10^8}{4,08 \cdot 10^9}$$

Ostatecznie:

$$\lambda \approx 0.0735m = 7.35$$
 [cm]

Kolejnym krokiem jest określenie minimalnej odległości między otworami (L). Kiedy otwory znajdują się w odległości  $L=\lambda$  są one niezależne od siebie w kwestii ekranowania fal. Zatem nie ma potrzeby robienia odległości od otworów większej niż długość fali. Wybrana odległość w przypadku tego projektu będzie wynosić  $L=\frac{\lambda}{4}$ , ponieważ przy mniejszych odległościach pojawią się inne czynniki wpływające na tłumienność ekranu, które nie są brane pod uwagę we wzorach używanych w tym projekcie. Zatem odległość między otworami wynosić będzie:

$$L = \frac{\lambda}{4}$$

$$L \approx 1.8$$

#### Wybór średnicy otworu

#### Obliczenia skuteczności ekranowania (tłumienia)

Najważniejszym wymaganiem, który musi spełniać stworzona przesłona, to tłumienność wynosząca co najmniej 9 dB. Według wzorów podanych do projektu, dla otworu o maksymalnym liniowym wymiarze równym lub mniejszym niż połowa długości fali, skuteczność ekranowania w dB jest można obliczyć przy pomocy wzoru:

$$S_1 = 20 \log \frac{\lambda}{2d}$$

gdzie  $\lambda$  – długość fali, a d to maksymalny wymiar liniowy otworu.

W przypadku wielu otworów umieszczonych blisko siebie, całkowita skuteczność ekranowania zmniejsza się. Dla liniowego rzędu otworów położonych w odległości mniejszej niż połowa długości fali  $(\frac{\lambda}{2})$ , redukcja skuteczności ekranowania jest proporcjonalna do pierwiastka z liczby tych otworów (n). Zatem można określić skuteczność ekranowania dla wielu otworów za pomocą równania:

$$S_2 = -20\log\sqrt{n}~[\mathrm{dB}]$$

Jako, że za tłumienie całkowite ekranu uznaje się najmniejsze miejscowe tłumienie, można je obliczyć za pomocą poniższej zależności:

$$S_c = S_1 + S_2$$

Otwory, które spełniały początkowy wymóg tłumienności 9dB z przyjętą odległością 1,8 cm między otworami miały średnice od 0,1 do 0,5 cm. Dla większych średnic obliczona tłumienność Sc spadała poniżej wymaganego progu 9 dB.

## Obliczenia sumy pól otworów

Warunkiem skutecznego ekranowania przez otwory jest utrzymanie ich maksymalnego wymiaru liniowego, tym przypadku średnicy (d), poniżej połowy długości fali. W przeciwnym razie ekran straci swoje właściwości tłumiące. Dodatkowo, dla ułatwienia obliczeń, różnica między kolejnymi sprawdzanymi średnicami wynosiła 0,1 cm. Zatem średnica otworów w ekranie szukana będzie w zbiorze prezentującym się następująco:

$$\left\{d=0, 1k: k \in \mathbb{N}, d < \frac{\lambda}{2}\right\}$$

Aby umożliwić umiejscowienie otworów jak najbliżej siebie, zostały one rozłożone na płycie we wzór sześciokąta, co przedstawione jest na obrazku poniżej.



Rysunek 1: Rozkład otworów w przesłonie

Sześciokąt można podzielić na 6 trójkątów równobocznych, które spełniają przedstawione poniżej relacje.



Rysunek 2: Odległości między środkami otworów w przesłonie

W przypadku projektowanej przesłony, a będzie odpowiadało dwóm promieniom otworów i odległości między nimi, wyznaczonej wcześniej. Zatem

$$a = L + 2 \cdot \frac{d}{2}$$

Lub prościej:

$$a = L + d$$

Jako, że otwory są rozłożone w płycie w postaci sześciokątów, ich rozłożenie na płycie można podzielić na dwa rodzaje kolumn i wierszy. Pierwsze z nich rozmieszczają otwory w minimalnej odległości od boków płyty, a drugie są dodatkowo odsunięte o wartość  $\frac{a}{2}\sqrt{3}$ . Odległość między środkami kolejnych otworów w wierszu wynosi a=L+d, a w kolumnie jest to  $a\sqrt{3}$ . Ilość otworów w poszczególnych wierszach i kolumnach obliczyłam z a pomocą poniższych wzorów:

$$\begin{split} n_k^1 &= \left\lfloor \frac{50-2\cdot\left(L+\frac{d}{2}\right)}{a} \right\rfloor + 1 \\ n_k^2 &= \left\lfloor \frac{50-2\cdot\left(L+\frac{d}{2}\right)-\frac{1}{2}a}{a} \right\rfloor + 1 \\ n_w^1 &= \left\lfloor \frac{50-2\cdot\left(L+\frac{d}{2}\right)}{a\sqrt{3}} \right\rfloor + 1 \\ n_w^2 &= \left\lfloor \frac{50-2\cdot\left(L+\frac{d}{2}\right)-a\frac{\sqrt{3}}{2}}{a\sqrt{3}} \right\rfloor + 1 \end{split}$$

Aby uzyskać liczbę otworów mieszczących się na płycie należy pomnożyć odpowiadające sobie numerem kolumny i wiersze:

$$N = n_k^1 \cdot n_w^1 + n_k^2 \cdot n_w^2$$

Zatem pole wszystkich otworów można wyliczyć korzystając z poniższej zależności:

$$P = N\pi \left(\frac{d}{2}\right)^2$$

Otwory z największym polem całkowitym, który spełniały wcześniejszy wymóg minimalnej tłumienności były te o średnicy 0,5 cm.

#### Projekt zasłony

Tłumienność zaprojektowanej zasłony i łączne pole jej otworów dla  $\lambda=1.8cm$  i średnicy otworów d=0,5cm zostały obliczone korzystając z podanych wcześniej wzorów:

$$S_{c(d=0,5)} = 17,32 + (-6,99)$$
 
$$S_{c(d=0,5)} = 10,33 \text{ dB}$$
 
$$P_{d=0,5} = 480 \cdot 3,14 \cdot (0,5)^2$$
 
$$P_{d=0,5} = 94,2\text{cm}^2$$

Grafikę prezentującą szkic zaprojektowanej przesłony wygenerowałam korzystając z biblioteki matplotlib w języku Python.



Rysunek 3: Ostateczny projekt przesłony o zadanych parametrach

Poniżej przedstawiony jest kod użyty do wygenerowania obrazu:

```
from math import floor, sqrt
import matplotlib.pyplot as plt
import matplotlib.patches as patches

# Wymiary płyty
plate_width = 50.0
plate_height = 50.0

# Wymiary otworów
hole_diameter = 0.5
hole radius = hole diameter / 2.0
```

```
# Odległość między otworami i od krawędzi
spacing = 1.8
margin = spacing # zachowana minimalna odległość od krawędzi
a = spacing + hole diameter
d = plate_width - 2 * (spacing + hole_radius)
# Obliczanie liczby otworów w poziomie i pionie
col1 = floor(d / a) + 1
col2 = floor(d / a - 0.5) + 1
row1 = floor(d / (a * sqrt(3))) + 1
row2 = floor(d / (a * sqrt(3)) - 0.5) + 1
# Tworzenie rysunku
fig, ax = plt.subplots(figsize=(10, 10))
ax.set aspect('equal')
# Rysowanie płyty
plate = patches.Rectangle((0, 0), plate_width, plate_height, linewidth=1,
edgecolor='black', facecolor='lightgray')
ax.add patch(plate)
# Rysowanie otworów
for i in range(row1):
    for j in range(col1):
        x = (spacing + hole_radius) + j * a
        y = (spacing + hole radius) + i * (a * sqrt(3))
        hole = patches.Circle((x, y), hole_radius, edgecolor='blue',
facecolor='white')
        ax.add patch(hole)
for i in range(row2):
    for j in range(col2):
        x = (spacing + hole radius + 0.5 * a) + j * a
        y = (spacing + hole radius + 0.5 * a * sqrt(3)) + i * (a * sqrt(3))
        hole = patches.Circle((x, y), hole_radius, edgecolor='blue',
facecolor='white')
        ax.add patch(hole)
# Ustawienia osi
ax.set xlim(0, plate width)
ax.set_ylim(0, plate_height)
ax.set_title("Projekt przesłony")
plt.ylabel("cm")
plt.grid(True)
plt.show()
```

#### Wnioski

Według przyjętych założeń projektowych, najbardziej optymalna średnica otworów kołowych w ekranie wynosi  $d=0\{,\}5$  cm. Została ona wybrana na podstawie spełnienia warunku minimalnej skuteczności ekranowania ( $S_c>9$  dB) oraz maksymalizacji sumarycznego pola otworów.

Przy tej średnicy tłumienie całkowite wynosi 10,33 dB, co oznacza, że jest ono nieznacznie wyższe niż wymagane minimum, natomiast łączna powierzchnia otworów jest o ok. 1/3 większa niż w przypadku otworów o średnicy 0,4 cm.

Zastosowany układ sześciokątny umożliwił gęstsze rozmieszczenie otworów na płycie przy zachowaniu wymaganych odległości wynikających z długości fali, co pozwoliło na zwiększenie ich liczby bez obniżenia skuteczności ekranowania.

Bardziej optymalną konfigurację można by uzyskać poprzez badanie większej liczby średnic (np. co 0,05 cm), a także przez bardziej szczegółowe porównywanie wpływu średnicy na zysk w tłumienności względem straty powierzchni (i odwrotnie).