

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчет по рубежному контролю №2

«Методы построения моделей машинного обучения»

по дисциплине «Технологии машинного обучения» Вариант №27

> Выполнил: студент группы ИУ5Ц-84Б Папин А.В. подпись, дата

Проверил: к.т.н., доц., Ю.Е. Гапанюк подпись, дата

СОДЕРЖАНИЕ ОТЧЕТА

1. Задание	3
1. Листинг	4
1.1. Подключение библиотеки и получение датасета	4
1.2. Изучение данных	5
1.4. Пропущенные значения	8
1.5. Дублирующие значения	8
1.6. Устранение сильных выбросов	8
1.7. Машинное обучение	9
1.8. Деление на обучающий и тестовой выборки	9
1.9. Обучение модели	11
1.9.1. LogisticRegression	12
1.9.2. LGBMClassifier	16
1.9.3. CatBoostClassifier	20
1.9.4. XGBClassifier	23
1.9.5. GradientBoostingClassifier	27
1.10. Анализ моделей	30
1.11. Вывод	31
1.12. Гистограмма	32

1. Задание

Для заданного набора данных (по Вашему варианту) постройте модели классификации или регрессии (в зависимости от конкретной задачи, рассматриваемой в наборе данных). Для построения моделей используйте методы 1 и 2 (по варианту для Вашей группы). Оцените качество моделей на основе подходящих метрик качества (не менее двух метрик). Какие метрики качества Вы использовали и почему? Какие выводы Вы можете сделать о качестве построенных моделей? Для построения моделей необходимо выполнить требуемую предобработку данных: заполнение пропусков, кодирование категориальных признаков, и т.д.

При решении задач можно выбирать любое подмножество признаков из приведенного набора данных.

Для сокращения времени построения моделей можно использовать фрагмент набора данных (например, первые 200-500 строк).

Методы 1 и 2 для каждой группы приведены в следующей таблице:

Группа	Метод №1	Метод №2
ИУ5Ц-84Б	Линейная/логистическая	Градиентный бустинг
	регрессия	

Наборы данных:

https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction/data

1. Листинг

1.1. Подключение библиотеки и получение датасета

```
# Уведомление о завершение работы определенного ячейка (очень пригодится для машинного обу-
import jupyternotify
%load_ext jupyternotify
```

```
# Подключаем все необходимые библиотеки
import os
import re
import graphviz
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# Масштабируемость модели
from sklearn.preprocessing import LabelEncoder, StandardScaler, \
OrdinalEncoder, OneHotEncoder
# Время обучения модели
import timeit
# Вызов библиотеки для отключения предупреждения
import warnings
# Разбиение на обучающую, валидационную и тестовую выборку и кроссвалидацию для повышения
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.pipeline import make pipeline
# Для машинного обучения
# Ллогическая регрессия (классификация)
from sklearn.linear model import LogisticRegression
# Бустинги
from lightgbm import LGBMClassifier
from catboost import CatBoostClassifier
from xgboost import XGBClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy score, precision score, \
recall_score, f1_score, roc_curve, roc_auc_score
4.
```

```
# Получаем датасет

try:

    df = pd.read_csv('data.csv')
    print('Загружен датасет')

except Exception as ex:
    print('Отсутствует датасет. Проверьте путь файла')
    print('Error:', ex)
```

Загружен датасет

1.2. Изучение данных

```
df.info()
                                                                              回个少古早
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6819 entries, 0 to 6818
Data columns (total 96 columns):
                                                                        Non-Null Count Dtype
# Column
                                                                        -----
--- -----
                                                                        6819 non-null
 0 Bankrupt?
                                                                                          int64
    ROA(C) before interest and depreciation before interest 6819 non-null float64
ROA(A) before interest and % after tax 6819 non-null float64
ROA(B) before interest and depreciation after tax 6819 non-null float64
Operating Gross Margin 6819 non-null float64
 1
    ROA(B) before interest and depreciation after tax
Operating Gross Margin
Realized Sales Gross Margin
                                                                        6819 non-null float64
 5
                                                                       6819 non-null float64
    Operating Profit Rate
 6
    Pre-tax net Interest Rate
                                                                       6819 non-null float64
 7
                                                                       6819 non-null float64
    After-tax net Interest Rate
 8
                                                                       6819 non-null float64
 9
    Non-industry income and expenditure/revenue
                                                                       6819 non-null float64
 10 Continuous interest rate (after tax)
 11 Operating Expense Rate
                                                                        6819 non-null float64
12 Research and development expense rate
                                                                        6819 non-null float64
# Привести названия всех колонок к нижнему регистру
df.columns = df.columns.str.lower()
# Удаляем только первый пробел перед каждым названием столбца
df.columns = df.columns.str.lstrip()
```

df.head()

	bankrupt?	roa(c) before interest and depreciation before interest	roa(a) before interest and % after tax	roa(b) before interest and depreciation after tax	operating gross margin	realized sales gross margin	operating profit rate	pre-tax net interest rate	after- tax net interest rate	n e)
0	1	0.370594	0.424389	0.405750	0.601457	0.601457	0.998969	0.796887	0.808809	
1	1	0.464291	0.538214	0.516730	0.610235	0.610235	0.998946	0.797380	0.809301	
2	1	0.426071	0.499019	0.472295	0.601450	0.601364	0.998857	0.796403	0.808388	
3	1	0.399844	0.451265	0.457733	0.583541	0.583541	0.998700	0.796967	0.808966	
4	1	0.465022	0.538432	0.522298	0.598783	0.598783	0.998973	0.797366	0.809304	

5 rows × 96 columns

```
df.tail()
```

	bankrupt?	roa(c) before interest and depreciation before interest	roa(a) before interest and % after tax	roa(b) before interest and depreciation after tax	operating gross margin	realized sales gross margin	operating profit rate	pre-tax net interest rate	after- tax net interest rate
6814	0	0.493687	0.539468	0.543230	0.604455	0.604462	0.998992	0.797409	0.809331
6815	0	0.475162	0.538269	0.524172	0.598308	0.598308	0.998992	0.797414	0.809327
6816	0	0.472725	0.533744	0.520638	0.610444	0.610213	0.998984	0.797401	0.809317
6817	0	0.506264	0.559911	0.554045	0.607850	0.607850	0.999074	0.797500	0.809399
6818	0	0.493053	0.570105	0.549548	0.627409	0.627409	0.998080	0.801987	0.813800

5 rows × 96 columns

1.3. Преобразование данных

```
# Проверим объем занимаемой памяти в Мбайтах до преобразования
print(f'Объем датасета до преобразования: {df.memory_usage(deep=True).sum() / 1024 / 1024:

Объем датасета до преобразования: 4.995 Мбайт
```

```
original_memory = df.memory_usage(deep=True).sum()
```

```
# Автоматизируем
def change_type variable(dateframe, show_print_report=False):
    for name_column in dateframe:
        unique_values = dateframe[name_column].unique()

# if(dateframe[name_column].dtype == 'int64'):
    # dateframe[name_column] = dateframe[name_column].astype('int32')
    # if(show_print_report):
        print(f*Ycnewno npeoOpa3oBaH TUN данных B INT32 для колонки: {name_column}')
    if(dateframe[name_column] = dateframe[name_column].astype('float32')
    if(show_print_report):
        print(f*Ycnewno npeoOpa3oBaH TUN данных B FLOAT32 для колонки: {name_column}')
    elif (len(unique_values) == 2 and 0 in unique_values and 1 in unique_values):
        dateframe[name_column] = dateframe[name_column].astype(bool)
        if(show_print_report):
            print(f*Ycnewno npeoOpa3oBaH TUN данных B BOOL для колонки с числами 0 и 1: {name_column}')
    elif(name_column == 'net_income_flag'):
        dateframe[name_column] = dateframe[name_column].astype(bool)
        if(show_print_report):
            print(f*Ycnewno npeoOpa3oBaH TUN данных B BOOL для колонки с числами 0 и 1: {name_column}')
    else:
        pass
    if not(show_print_report):
        print(f*Ycnewno npeoOpa3oBaH TUN данных B BOOL для колонки с числами 0 и 1: {name_column}')
    else:
        pass
    if not(show_print_report):
        print(f*Ycnewno npeoOpa3oBaH))
```

```
# Преобразуем их change_type_variable(df)
```

Все данные успешно преобразованы

```
# Проверим объем занимаемой памяти в Мбайтах до преобразования
print(f'Объем датасета после преобразования: {df.memory_usage(deep=True).sum() / 1024 / 1034
```

Объем датасета после преобразования: 2.439 Мбайт

```
optimized memory = df.memory usage(deep=True).sum()
# Узнаем, сколько сэкономили памяти
savings percentage = (original memory - optimized memory) / original memory * 100
print(f"Сэкономлено {savings percentage:.2f}% памяти")
Сэкономлено 51.17% памяти
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6819 entries, 0 to 6818
Data columns (total 96 columns):
 # Column
                                                          Non-Null Count Dtype
    -----
                                                           -----
 0 bankrupt?
                                                          6819 non-null bool
    roa(c) before interest and depreciation before interest 6819 non-null float32
                                                          6819 non-null float32
    roa(a) before interest and % after tax
                                                          6819 non-null float32
 3 roa(b) before interest and depreciation after tax
                                                          6819 non-null float32
 4 operating gross margin
                                                          6819 non-null float32
 5 realized sales gross margin
                                                          6819 non-null float32
 6 operating profit rate
                                                          6819 non-null float32
 7 pre-tax net interest rate
 8 after-tax net interest rate
                                                          6819 non-null float32
                                                          6819 non-null float32
 9 non-industry income and expenditure/revenue
                                                          6819 non-null float32
 10 continuous interest rate (after tax)
                                                          6819 non-null float32
 11 operating expense rate
 12 research and development expense rate
                                                          6819 non-null float32
```

Рассмотрим описательную статистику

	roa(c) before interest and depreciation before interest	roa(a) before interest and % after tax	roa(b) before interest and depreciation after tax	operating gross margin	realized sales gross margin	operating profit rate	pre-tax net interest rate	after-tax net interest rate	non-industry income and expenditure/revenue	continuous interest rate (after tax)	 current liability to current assets	net income to total assets	total assets to gnp price	no-credit interval	gross profit to sales	net income to stockholder's equity	liability to equity
count	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	 6819.000000	6819.000000	6.819000e+03	6819.000000	6819.000000	6819.000000	6819.000000
mean	0.505180	0.558625	0.553589	0.607948	0.607929	0.998755	0.797190	0.809084	0.303623	0.781381	 0.031506	0.807760	1.862942e+07	0.623915	0.607946	0.840402	0.280365
std	0.060686	0.065620	0.061595	0.016934	0.016916	0.013010	0.012869	0.013601	0.011163	0.012679	 0.030845	0.040332	3.764548e+08	0.012289	0.016934	0.014523	0.014463
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.000000	0.000000	0.000000e+00	0.000000	0.000000	0.000000	0.000000
25%	0.476527	0.535543	0.527277	0.600445	0.600434	0.998969	0.797386	0.809312	0.303466	0.781567	 0.018034	0.796750	9.036205e-04	0.623636	0.600443	0.840115	0.276944
50%	0.502706	0.559802	0.552278	0.605998	0.605976	0.999022	0.797464	0.809375	0.303526	0.781635	 0.027597	0.810619	2.085213e-03	0.623879	0.605998	0.841179	0.278778
75%	0.535563	0.589157	0.584105	0.613914	0.613842	0.999094	0.797579	0.809469	0.303585	0.781735	 0.038375	0.826455	5.269777e-03	0.624168	0.613913	0.842357	0.281449
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	 1.000000	1.000000	9.820000e+09	1.000000	1.000000	1.000000	1.000000

Анализ описательной статистики

- В выборке представлены данные о 6819 компаниях.
- Среди этих компаний 2201 обанкротились (т.е., метка "bankrupt?" равна 1), а 4618 не обанкротились (метка "bankrupt?" равна 0).
- Различные показатели отдачи от активов (ROA) варьируются от 0.37 до 0.57, т.е. операционная прибыль, отношение долга к активам и другие, имеют широкий диапазон значений.
- Коэффициенты операционной прибыли, пред-налоговой чистой процентной ставки и пост-налоговой чистой процентной ставки также имеют широкий диапазон значений.

- Важные финансовые показатели, такие как отношение долга к активам, отношение собственного капитала к обязательствам и степень финансового рычага, также имеют различные значения в выборке.
- Все показатели представлены в нормализованных значениях от 0 до 1, что облегчает их сравнение и анализ.

1.4. Пропущенные значения

```
for col in df.columns:
    if df[col].isna().sum() == 0:
        # print(f'У колонки "{col}" нет пропуски')
        pass
    else:
        print(f'У колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'У колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y колонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y koлонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y koлонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y koлонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y koлонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y koлонки "{col}" присутствует пропуски, кол-во пропусок: {df[col].isna().state | print(f'Y koлонки "{col}" присутствует пропуски, кол-во пропуски "{col}" присутствует пропуски "{col}
```

Отсутствуют пропущенные значения

1.5. Дублирующие значения

```
# Кол-во дублириющие значения
df.duplicated().sum()
```

Отсутствуют дублирующие значения

1.6. Устранение сильных выбросов

Полное устранние выбросов потребует внимательную и непростую работу, т.к. каждая колонка имеет индивидуальные значения и нужно найти особый подход к ним, поэтому будем устранять только те сильные выбросы, стараясь минимизировать количество выбросов

```
# Функция для удаления выбросов из каждой колонки датафрейма
def remove_outliers(df, left_quantile=0.05, right_quantile=0.95):
   initial count = len(df)
   # Создаем копию датафрейма
   filtered df = df.copy()
   # Отфильтровать только числовые столбцы
   numeric_columns = df.select_dtypes(include=[np.number]).columns
   for column in numeric columns:
       Q1 = df[column].quantile(left quantile)
       Q3 = df[column].quantile(right quantile)
       TOR = 03 - 01
       lower bound = Q1 - 1.5 * IQR
       upper_bound = Q3 + 1.5 * IQR
       # Фильтруем значения в пределах границ выбросов
       filtered_df = filtered_df[(filtered_df[column] >= lower_bound) \
       & (filtered_df[column] <= upper_bound)]
   final_count = len(filtered df)
   lost_count = initial_count - final_count
   lost_percentage = (lost_count / initial_count) * 100
   print(f"Исходный объем датафрейма: {df.shape}")
   print(f"Количество строк после удаления: {final_count}")
   print(f"Количество потерянных строк: {lost_count}")
   print(f"Процент потерянных данных: {lost_percentage:.2f}%")
   print(f"Объем датафрейма после удаления: {filtered_df.shape}")
    return filtered_df
```

```
# Применяем функцию для удаления выбросов из каждой колонки датафрейма filtered_df = remove_outliers(df)

Исходный объем датафрейма: (6819, 96)
Количество строк после удаления: 4510
Количество потерянных строк: 2309
Процент потерянных данных: 33.86%
Объем датафрейма после удаления: (4510, 96)

Не так уж много данных потеряно, приступим дальше
```

1.7. Машинное обучение

```
# Здесь будем сохранить результаты машинного обучения results = pd.DataFrame()

# А это будет счетчтиком для нумерация моеделй count_model = 0
```

1.8. Деление на обучающий и тестовой выборки

Поскольку у нас данные не нормализованы, т.е. на первый взгляд кажется, что значения находится в диапазонах от 0 до 1, и нет необходимости масштабировать признаков, однако существуют колонки, которые не нормализованы

```
# Создаем список для хранения названий колонок, которые не нормализованы
non normalized columns = []
# Проходим по каждой колонке и проверяем максимальное значение
for column in df.columns:
    # Проверяем, отличается ли максимальное значение от 1
    # if df[column].max() != 1.0 and df[column].min() != 0.0:
   # if df[column].max() != 1:
   if (df[column] < 0).any() or (df[column] > 1).any():
        non normalized columns.append(column)
# Выводим названия колонок, которые не нормализованы
print("Колонки, требующие нормализации:")
for name column in non normalized columns:
   print('- ', name column)
Колонки, требующие нормализации:
- operating expense rate
- research and development expense rate
- interest-bearing debt interest rate
- revenue per share (yuan ¥)
- total asset growth rate
- net value growth rate
- current ratio
- quick ratio
- total debt/total net worth

    accounts receivable turnover

    average collection days

    inventory turnover rate (times)

    fixed assets turnover frequency

- revenue per person
- allocation rate per person
- quick assets/current liability
- cash/current liability
  inventory/current liability
  long-term liability to current assets
- current asset turnover rate
- quick asset turnover rate
- cash turnover rate
- fixed assets to assets
- total assets to gnp price
```

Как и видим, что есть колонки, поэтому будем масштабировать

Получаем признак и цель

```
features = filtered_df.drop('bankrupt?', axis=1)
target = filtered_df['bankrupt?']

# Разделим обучающую, валидационную и тестовую выборку, потому что 60% обучащие выборки это
# - 60% обучающей выборки (features_train, target_train)
# - 40% тестовой выборки (features_test, target_test)

# Разделяем данные на обучающую и остальные (валидационную и тестовую) выборки/
features_train, features_test, target_train, target_test = \
train_test_split(features, target, test_size=0.4, random_state=12345)
```

	roa(c) before interest and depreciation before interest	roa(a) before interest and % after tax	roa(b) before interest and depreciation after tax	operating gross margin	realized sales gross margin	operating profit rate	pre-tax net interest rate	after- tax net interest rate	non-indus expenditu
4126	0.494808	0.554786	0.548745	0.598971	0.598971	0.998986	0.797396	0.809320	
6689	0.617023	0.645497	0.645002	0.624584	0.624584	0.999323	0.797803	0.809601	
5764	0.488666	0.469854	0.543284	0.604434	0.604434	0.998961	0.797108	0.809051	
6483	0.476040	0.537723	0.527866	0.600484	0.600484	0.998973	0.797399	0.809328	
0403	0								
2221	0.505582 × 95 columns	0.541649	0.562021	0.616570	0.616570	0.999013	0.797406	0.809331	•
2221	0.505582 × 95 columns roa(c) before interest and	roa(a) before	roa(b) before	operating	realized sales	operating	pre-tax net	after- tax net	
2221	0.505582 × 95 columns roa(c) before	roa(a)	roa(b)		realized		pre-tax	after-	non-indu
2221	0.505582 × 95 columns roa(c) before interest and depreciation before	roa(a) before interest and %	roa(b) before interest and depreciation	operating gross	realized sales gross	operating profit	pre-tax net interest	after- tax net interest	non-indu expenditu
rows	o.505582 × 95 columns roa(c) before interest and depreciation before interest	roa(a) before interest and % after tax	roa(b) before interest and depreciation after tax	operating gross margin	realized sales gross margin	operating profit rate	pre-tax net interest rate	after- tax net interest rate	non-indu
2221 rows	v 95 columns roa(c) before interest and depreciation before interest	roa(a) before interest and % after tax 0.391463	roa(b) before interest and depreciation after tax 0.440173	operating gross margin	realized sales gross margin	operating profit rate 0.998626	pre-tax net interest rate	after- tax net interest rate	non-indu
2221 rows 416 4186	o.505582 × 95 columns roa(c) before interest and depreciation before interest 0.418564 0.538439	roa(a) before interest and % after tax 0.391463 0.598615	roa(b) before interest and depreciation after tax 0.440173 0.578350	operating gross margin 0.584132 0.610653	realized sales gross margin 0.583880 0.610639	operating profit rate 0.998626 0.999109	pre-tax net interest rate 0.796773 0.797776	after- tax net interest rate 0.808609 0.809594	non-indu

1.9. Обучение модели

Выберем метрику F1-score, Accuracy и ROC-curve Почему выбрал эти?

F1-score это хорошая метрикая для баланса между точностью и полнотой в задачах классификации, особенно в случаях, когда классы несбалансированы Ассигасу это, очевидно, простая и понятная метрика, которая показывает общую долю правильно классифицированных экземпляров в общем количестве экземпляров

ROC AUC это метрика качества классификатора, которая учитывает все пороговые значения и позволяет оценить способность модели отличать между положительными и отрицательными классами. Например, будет

полезно в тех случаях, когда данные несбалансированы или когда интересует только качество ранжирования классификатора

```
metrics = ['f1', 'accuracy', 'roc_auc']

# Вычисляем все метрики

def compute_metrics(name, target, predictions):
    accuracy = accuracy_score(target, predictions)
    precision = precision_score(target, predictions)
    recall = recall_score(target, predictions)

f1 = f1_score(target, predictions)

# Возвращаем результаты

return {
    f'{name}_accuracy': accuracy,
    f'{name}_precision': precision,
    f'{name}_recall': recall,
    f'{name}_f1': f1,
}
```

```
# График ROC-кривой
def plot_roc_curve(model, features, target):
   # Получим вероятности для положительного класса
   probs = model.predict_proba(features)[:, 1]
   # Вычислим значения ROC кривой
   fpr, tpr, thresholds = roc curve(target, probs)
   # Вычислим площадь под ROC кривой (AUC)
   auc = roc_auc_score(target, probs)
   # Построим ROC кривую
   plt.plot(fpr, tpr, label=f'AUC = {auc:.2f}')
   plt.plot([0, 1], [0, 1], linestyle='--')
   plt.xlabel('False Positive Rate')
   plt.ylabel('True Positive Rate')
   plt.title('Receiver Operating Characteristic (ROC) Curve')
   plt.legend()
   plt.show()
```

1.9.1. LogisticRegression

```
%%notify -m f"{pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class__.__name__}}
%%time

# Обучим модель на обучающей выборке
model.fit(features_train, target_train)
time = model.refit_time_
params = model.best_params_

print('TIME TRAIN [s]:', round(time, 2))

TIME TRAIN [s]: 0.03
CPU times: user 199 ms, sys: 12.2 ms, total: 211 ms
Wall time: 215 ms

Javascript Error: $ is not defined
```

Проверка на тестовой выборки

```
%%time
start_time = timeit.default_timer()

# Получим предсказания на обучающей выборке
train_predictions = model.predict(features_train)

elapsed = round(timeit.default_timer() - start_time, 3)

CPU times: user 4.9 ms, sys: 8.15 ms, total: 13.1 ms
Wall time: 11.1 ms
```

```
%%time
start_time = timeit.default_timer()

# Получим предсказания на тестовой выборки
test_predictions = model.predict(features_test)

elapsed = round(timeit.default_timer() - start_time, 3)

CPU times: user 5.77 ms, sys: 7.86 ms, total: 13.6 ms
Wall time: 12.1 ms

# Вызываем функцию для вычисления метрик на обучающей выборке
train_metrics = compute_metrics('TRAIN', target_train, train_predictions)

display(train_metrics)

{'TRAIN_accuracy': 0.99150036954915,
    'TRAIN_precision': 0.9,
    'TRAIN_recall': 0.46153846153846156,
    'TRAIN_f1': 0.6101694915254238}
```

plot_roc_curve(model, features_train, target_train)

'TEST_recall': 0.32608695652173914, 'TEST_f1': 0.410958904109589}


```
# Вызываем функцию для вычисления метрик на тестовой выборке
test_metrics = compute_metrics('TEST', target_test, test_predictions)
display(test_metrics)
{'TEST_accuracy': 0.9761640798226164,
'TEST_precision': 0.555555555555556,
```



```
# Сохраняем результаты
results[count_model] = pd.Series({
    'NAME': pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class_.__name__,
    **train_metrics,
    **test_metrics,
    'PREDICTIONS': test_predictions.mean(),
    'TIME TRAINING [s]': model.refit_time_,
    'TIME PREDICTION [s]': elapsed,
    'PARAMETRS': model.best_params_
})
display(results[count_model])
count_model+=1
```

```
NAME
                       LogisticRegression
                                    0.9915
TRAIN_accuracy
TRAIN_precision
                                       0.9
                                  0.461538
TRAIN_recall
TRAIN f1
                                  0.610169
                                  0.976164
TEST_accuracy
                                  0.555556
TEST_precision
TEST_recall
                                  0.326087
TEST f1
                                  0.410959
PREDICTIONS
                                  0.014967
TIME TRAINING [s]
                                  0.026165
TIME PREDICTION [s]
                                     0.012
PARAMETRS
                                        {}
Name: 0, dtype: object
```

1.9.2. LGBMClassifier

```
# Устанавливаем нужные параметры
parameters = {
   # Количество деревьев в модели
   'lgbmclassifier_n_estimators': [5, 25, 50, 100],
    # Скорость обучения модели
   'lgbmclassifier learning rate': [0.05, 0.10, 0.30],
    # Максимальная глубина деревьев
   'lgbmclassifier max depth': [3, 5, 7],
# Инициализируем модель (включая масштабирование) и GridSearchCV
pipeline scale = make pipeline(StandardScaler(), LGBMClassifier())
model = GridSearchCV(pipeline scale, param grid=parameters, cv=5, scoring=metrics, refit='
display(model)
                                 GridSearchCV
GridSearchCV(cv=5,
             estimator=Pipeline(steps=[('standardscaler', StandardScaler()),
                                         ('lgbmclassifier', LGBMClassifier())]),
             param grid={'lgbmclassifier_learning_rate': [0.05, 0.1, 0.3],
                          'lgbmclassifier max depth': [3, 5, 7],
                          'lgbmclassifier n estimators': [5, 25, 50, 100]},
             refit='roc auc', scoring=['f1', 'accuracy', 'roc auc'])
                               estimator: Pipeline
            Pipeline(steps=[('standardscaler', StandardScaler()),
                             ('lgbmclassifier', LGBMClassifier())])

    StandardScaler

                              StandardScaler()
                                 * LGBMClassifier
                                LGBMClassifier()
```

```
%motify -m f"{pipeline scale.named steps[pipeline scale.steps[-1][0]]. class . name
%%time
# Обучим модель на обучающей выборке
model.fit(features train, target train)
time = model.refit time
params = model.best params
print('TIME TRAIN [s]:', round(time, 2))
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
TIME TRAIN [s]: 0.06
CPU times: user 1min 31s, sys: 1.34 s, total: 1min 33s
Wall time: 11.7 s
Javascript Error: $ is not defined
```

Проверка на тестовой выборки

```
%%time
start time = timeit.default timer()
# Получим предсказания на обучающей выборке
train predictions = model.predict(features train)
elapsed = round(timeit.default timer() - start time, 3)
[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num leaves OR 2<sup>m</sup>
ax depth > num leaves. (num leaves=31).
CPU times: user 118 ms, sys: 0 ns, total: 118 ms
Wall time: 14.6 ms
%%time
start time = timeit.default timer()
# Получим предсказания на тестовой выборки
test_predictions = model.predict(features_test)
elapsed = round(timeit.default timer() - start time, 3)
[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num leaves OR 2^m
ax depth > num leaves. (num leaves=31).
CPU times: user 61.4 ms, sys: 20.1 ms, total: 81.6 ms
Wall time: 10 ms
```

```
# Вызываем функцию для вычисления метрик на обучающей выборке
train_metrics = compute_metrics('TRAIN', target_train, train_predictions)
display(train_metrics)
```

```
{'TRAIN_accuracy': 0.9977827050997783,
```

'TRAIN_precision': 1.0,

```
plot_roc_curve(model, features_train, target_train)
```

[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^m ax_depth > num_leaves. (num_leaves=31).

[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^m ax_depth > num_leaves. (num_leaves=31).

Receiver Operating Characteristic (ROC) Curve


```
# CoxpaHREM pe3ynbTaTW
results[count_model] = pd.Series({
    'NAME': pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class__.__name__,
    **train_metrics,
    **test_metrics,
    'PREDICTIONS': test_predictions.mean(),
    'TIME TRAINING [s]': model.refit_time_,
    'TIME PREDICTION [s]': elapsed,
    'PARAMETRS': model.best_params_
})
display(results[count_model])
count_model+=1
```

```
NAME
                                                             LGBMClassifier
TRAIN_accuracy
                                                                   0.997783
TRAIN precision
                                                                        1.0
TRAIN_recall
                                                                   0.846154
TRAIN fl
                                                                   0.916667
TEST accuracy
                                                                    0.97561
TEST_precision
                                                                   0.666667
TEST_recall
TEST_f1
                                                                   0.086957
                                                                   0.153846
PREDICTIONS
                                                                   0.003326
TIME TRAINING [s]
                                                                   0.057874
TIME PREDICTION [s]
                                                                       0.01
PARAMETRS
                        {'lgbmclassifier_learning_rate': 0.05, 'lgbmc...
Name: 1, dtype: object
```

1.9.3. CatBoostClassifier

```
# Устанавливаем нужные параметры

parameters = {

    # Количество деревьев в модели
    'catboostclassifier_n_estimators': [5, 25, 50, 100],

    # Скорость обучения модели
    'catboostclassifier_learning_rate': [0.05, 0.10, 0.30],

    # Максимальная глубина деревьев
    'catboostclassifier_max_depth': [3, 5, 7],
}

# Инициализируем модель (включая масштабирование) и GridSearchCV

pipeline_scale = make_pipeline(StandardScaler(), CatBoostClassifier())

model = GridSearchCV(pipeline_scale, param_grid=parameters, cv=5, scoring=metrics, refit='roc_auc')

display(model)
```

```
GridSearchCV
GridSearchCV(cv=5,
             estimator=Pipeline(steps=[('standardscaler', StandardScaler()),
                                       ('catboostclassifier',
                                        <catboost.core.CatBoostClassifier object
at 0x7fc52f5c2ee0>)]),
             param grid={'catboostclassifier learning rate': [0.05, 0.1, 0.3],
                         'catboostclassifier_max_depth': [3, 5, 7],
                         'catboostclassifier_n_estimators': [5, 25, 50, 100]},
             refit='roc_auc', scoring=['f1', 'accuracy', 'roc_auc'])
                               estimator: Pipeline
Pipeline(steps=[('standardscaler', StandardScaler()),
                 ('catboostclassifier',
                 <catboost.core.CatBoostClassifier object at 0x7fc52f5c2ee0>)])

    StandardScaler

                              StandardScaler()
                                CatBoostClassifier
          <catboost.core.CatBoostClassifier object at 0x7fc52f5c2ee0>
```

```
%notify -m f"{pipeline scale.named steps[pipeline scale.steps[-1][0]]. class . name
%%time
# Обучим модель на обучающей выборке
model.fit(features_train, target_train)
time = model.refit time
params = model.best params
print('TIME TRAIN [s]:', round(time, 2))
      learn: 0.02/5035 total: 109ms remaining: 16.3ms
        learn: 0.0273325 total: 110ms remaining: 15ms learn: 0.0272561 total: 112ms remaining: 13.8ms learn: 0.0271507 total: 113ms remaining: 12.5ms learn: 0.0270272 total: 114ms remaining: 11.3ms learn: 0.0268294 total: 115ms remaining: 10ms
87:
        learn: 0.0272561
88:
       learn: 0.0271507
89:
90.
       learn: 0.0270272
       learn: 0.0268294
91:
                               total: 116ms remaining: 8.75ms
       learn: 0.0266823
92:
       learn: 0.0264939
                               total: 117ms remaining: 7.5ms
93.
       learn: 0.0262839
                               total: 119ms remaining: 6.24ms
94:
95:
       learn: 0.0261850
                                total: 120ms remaining: 5ms
96:
       learn: 0.0260808
                                total: 121ms remaining: 3.75ms
97:
       learn: 0.0258529
                                total: 123ms remaining: 2.5ms
98:
       learn: 0.0257892
                                total: 124ms remaining: 1.25ms
99:
        learn: 0.0256728
                                total: 125ms remaining: Ous
TIME TRAIN [s]: 0.23
CPU times: user 6min 37s, sys: 27.1 s, total: 7min 4s
Wall time: 40.1 s
Javascript Error: $ is not defined
```

Проверка на тестовой выборки

```
%%time
start time = timeit.default timer()
# Получим предсказания на обучающей выборке
train predictions = model.predict(features train)
elapsed = round(timeit.default_timer() - start_time, 3)
CPU times: user 15.1 ms, sys: 3.93 ms, total: 19 ms
Wall time: 12.6 ms
%%time
start_time = timeit.default_timer()
# Получим предсказания на тестовой выборки
test_predictions = model.predict(features_test)
elapsed = round(timeit.default timer() - start time, 3)
CPU times: user 14.6 ms, sys: 147 µs, total: 14.7 ms
Wall time: 12 ms
# Вызываем функцию для вычисления метрик на обучающей выборке
train_metrics = compute_metrics('TRAIN', target train, train_predictions)
display(train metrics)
{'TRAIN_accuracy': 0.9922394678492239,
 'TRAIN precision': 1.0,
 'TRAIN recall': 0.46153846153846156,
 'TRAIN f1': 0.631578947368421}
```



```
# Вызываем функцию для вычисления метрик на тестовой выборке
test_metrics = compute_metrics('TEST', target_test, test_predictions)
display(test_metrics)
```

^{&#}x27;TEST_recall': 0.1956521739130435, 'TEST_f1': 0.29508196721311475}


```
# Coxpaняем peзyльтаты
results[count_model] = pd.Series({
    'NAME': pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class__.__name__,
    **train_metrics,
    **test_metrics,
    'PREDICTIONS': test_predictions.mean(),
    'TIME TRAINING [s]': model.refit_time_,
    'TIME PREDICTION [s]': elapsed,
    'PARAMETRS': model.best_params_
})
display(results[count_model])
count_model+=1
```

```
NAME
                                                       CatBoostClassifier
                                                                  0.992239
TRAIN_accuracy
TRAIN_precision
                                                                       1.0
TRAIN_recall
                                                                  0.461538
TRAIN fl
                                                                  0.631579
TEST accuracy
                                                                  0.976164
TEST precision
                                                                       0.6
TEST recall
                                                                  0.195652
TEST f1
                                                                  0.295082
PREDICTIONS
                                                                  0.008315
TIME TRAINING [s]
                                                                  0.232785
TIME PREDICTION [s]
                                                                     0.012
                       {'catboostclassifier_learning_rate': 0.05, 'c...
PARAMETRS
Name: 2, dtype: object
```

1.9.4. XGBClassifier

```
# Устанавливаем нужные параметры
                                                                 回个少古里
parameters = {
   # Количество деревьев в модели
   'xgbclassifier__n_estimators': [5, 10, 30],
    # Скорость обучения модели
   'xgbclassifier_learning_rate': [0.05, 0.10, 0.30],
    # Максимальная глубина деревьев
   'xgbclassifier__max_depth': [3, 5, 7],
# Инициализируем модель (включая масштабирование) и GridSearchCV
pipeline_scale = make_pipeline(StandardScaler(), XGBClassifier())
model = GridSearchCV(pipeline_scale, param_grid=parameters, cv=5, scoring=metrics, refit='
display(model)
                                    GridSearchCV
                                 estimator: Pipeline

    StandardScaler

                                StandardScaler()
                                    XGBClassifier
                  enable categorical=False, eval metric=None, feature types 🖈
   =None,
                  gamma=None, grow policy=None, importance type=None,
                  interaction constraints=None, learning rate=None, max bin
   =None,
                  max cat threshold=None, max cat to onehot=None,
                  max delta step=None, max depth=None, max leaves=None,
                  min child weight=None, missing=nan, monotone constraints=
   None,
                  multi strategy=None, n estimators=None, n jobs=None,
                  num parallel tree=None, random state=None, ...)
%notify -m f"{pipeline scale.named steps[pipeline scale.steps[-1][0]]. class . name }
%%time
# Обучим модель на обучающей выборке
model.fit(features_train, target_train)
time = model.refit_time
params = model.best_params_
print('TIME TRAIN [s]:', round(time, 2))
TIME TRAIN [s]: 0.08
CPU times: user 2min 24s, sys: 4.01 s, total: 2min 28s
Wall time: 9.67 s
```

Javascript Error: \$ is not defined

Проверка на тестовой выборки

```
%%time
start_time = timeit.default_timer()
# Получим предсказания на обучающей выборке
train_predictions = model.predict(features_train)
elapsed = round(timeit.default_timer() - start_time, 3)
CPU times: user 209 ms, sys: 2.42 ms, total: 212 ms
Wall time: 14.1 ms
%%time
start_time = timeit.default_timer()
# Получим предсказания на тестовой выборки
test_predictions = model.predict(features_test)
elapsed = round(timeit.default_timer() - start_time, 3)
CPU times: user 296 ms, sys: 4.16 ms, total: 300 ms
Wall time: 28.3 ms
# Вызываем функцию для вычисления метрик на обучающей выборке
train_metrics = compute_metrics('TRAIN', target_train, train_predictions)
display(train_metrics)
{'TRAIN accuracy': 0.991869918699187,
 'TRAIN precision': 1.0,
 'TRAIN_recall': 0.4358974358974359,
 'TRAIN_f1': 0.6071428571428571}
```



```
# Вызываем функцию для вычисления метрик на тестовой выборке
test_metrics = compute_metrics('TEST', target_test, test_predictions)

display(test_metrics)

{'TEST_accuracy': 0.975609756097561,
    'TEST_precision': 0.6,
    'TEST_recall': 0.13043478260869565,
    'TEST_f1': 0.21428571428571427}

plot_roc_curve(model, features_test, target_test)
```

Receiver Operating Characteristic (ROC) Curve


```
# Coxpaняем peзультаты
results[count_model] = pd.Series({
    'NAME': pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class_.__name__,
    **train_metrics,
    **test_metrics,
    'PREDICTIONS': test_predictions.mean(),
    'TIME TRAINING [s]': model.refit_time_,
    'TIME PREDICTION [s]': elapsed,
    'PARAMETRS': model.best_params_
})
display(results[count_model])
count_model+=1

NAME

XGBClassifier
TDAIN_accuracy
```

```
TRAIN_accuracy
                                                                  0.99187
TRAIN_precision
                                                                      1.0
TRAIN_recall
                                                                 0.435897
TRAIN_f1
                                                                 0.607143
                                                                  0.97561
TEST_accuracy
TEST_precision
TEST recall
                                                                 0.130435
TEST f1
                                                                 0.214286
                                                                 0.005543
PREDICTIONS
TIME TRAINING [s]
                                                                 0.079355
TIME PREDICTION [s]
                                                                    0.028
                       {'xgbclassifier_learning_rate': 0.1, 'xgbclas...
PARAMETRS
Name: 3, dtype: object
```

1.9.5. GradientBoostingClassifier

```
# Устанавливаем нужные параметры
parameters = {
    # Количество деревьев в модели
    'gradientboostingclassifier_n_estimators': [5, 10, 30],
    # Скорость обучения модели
    'gradientboostingclassifier_learning_rate': [0.05, 0.10, 0.30],
    # Максимальная глубина деревьев
    'gradientboostingclassifier_max_depth': [3, 5, 7],
}

# Инициализируем модель (включая масштабирование) и GridSearchCV
pipeline_scale = make_pipeline(StandardScaler(), GradientBoostingClassifier())
model = GridSearchCV(pipeline_scale, param_grid=parameters, cv=5, scoring=metrics, refit='display(model)

* GridSearchCV
```

```
GridSearchCV(cv=5,
             estimator=Pipeline(steps=[('standardscaler', StandardScaler()),
                                       ('gradientboostingclassifier',
                                        GradientBoostingClassifier())]),
             param grid={'gradientboostingclassifier learning rate': [0.05,
                                                                        0.1.
                                                                        0.3],
                         'gradientboostingclassifier_max_depth': [3, 5, 7],
                         'gradientboostingclassifier n estimators': [5, 10,
                                                                       30]}.
             refit='roc auc', scoring=['f1', 'accuracy', 'roc auc'])
                              estimator: Pipeline
Pipeline(steps=[('standardscaler', StandardScaler()),
                ('gradientboostingclassifier', GradientBoostingClassifier())])
                              StandardScaler
                             StandardScaler()

    GradientBoostingClassifier

                       GradientBoostingClassifier()
```

```
%%notify -m f"{pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class__.__name_
%%time
# Обучим модель на обучающей выборке
model.fit(features train, target train)
time = model.refit time
params = model.best params
print('TIME TRAIN [s]:', round(time, 2))
TIME TRAIN [s]: 1.87
CPU times: user 2min 44s, sys: 0 ns, total: 2min 44s
Wall time: 2min 44s
Javascript Error: $ is not defined
%%time
start time = timeit.default timer()
# Получим предсказания на обучающей выборке
train_predictions = model.predict(features_train)
elapsed = round(timeit.default_timer() - start_time, 3)
CPU times: user 13.6 ms, sys: 0 ns, total: 13.6 ms
Wall time: 12.6 ms
start_time = timeit.default_timer()
# Получим предсказания на тестовой выборки
test predictions = model.predict(features test)
elapsed = round(timeit.default_timer() - start_time, 3)
CPU times: user 12.1 ms, sys: 0 ns, total: 12.1 ms
Wall time: 10.9 ms
# Вызываем функцию для вычисления метрик на обучающей выборке
train_metrics = compute_metrics('TRAIN', target_train, train_predictions)
display(train_metrics)
 {'TRAIN accuracy': 0.9940872135994088,
  'TRAIN precision': 1.0,
  'TRAIN recall': 0.5897435897435898,
  'TRAIN f1': 0.7419354838709677}
```



```
# Вызываем функцию для вычисления метрик на тестовой выборке
test_metrics = compute_metrics('TEST', target_test, test_predictions)
display(test_metrics)
{'TEST_accuracy': 0.9750554323725056,
'TEST_precision': 0.5384615384615384,
'TEST_recall': 0.15217391304347827,
```

plot_roc_curve(model, features_test, target_test)

'TEST_f1': 0.23728813559322035}


```
# Сохраняем результаты
results[count model] = pd.Series({
   'NAME': pipeline scale.named_steps[pipeline_scale.steps[-1][0]].__class__._name_
    **train metrics,
   **test metrics,
   'PREDICTIONS': test_predictions.mean(),
    'TIME TRAINING [s]': model.refit_time_,
    'TIME PREDICTION [s]': elapsed,
    'PARAMETRS': model.best params
1)
display(results[count model])
count model+=1
                                              GradientBoostingClassifier
NAME
                                                                 0.994087
TRAIN accuracy
TRAIN precision
                                                                      1.0
TRAIN recall
                                                                 0.589744
TRAIN fl
                                                                 0.741935
TEST accuracy
                                                                 0.975055
TEST precision
                                                                 0.538462
TEST recall
                                                                 0.152174
TEST f1
                                                                 0.237288
PREDICTIONS
                                                                 0.007206
TIME TRAINING [s]
                                                                 1.866682
TIME PREDICTION [s]
                                                                   0.011
                       {'gradientboostingclassifier_learning_rate': ...
PARAMETRS
Name: 4, dtype: object
```

1.10. Анализ моделей

• GradientBoostingClassifier: Показывает идеальную точность на обучающей выборке (1.0), но значительно худшие результаты на

LogisticRegression 0.9915 0.9 0.461538 0.610169 0.976164 0.55555 0.326087 0.410959 0.014967 0.026165 0.012 [] 0.410081
 CatBoostClassifier
 0.992239
 1.0
 0.461538
 0.631579
 0.976164
 0.6
 0.195652
 0.295082
 0.008315
 0.232785
 0.01
 ('catboostclassifier_learning_rate': 0.05, 'c...
 0.376874

 XCBClassifier
 0.99187
 1.0
 0.435897
 6.07143
 0.97561
 0.6
 0.130435
 2.14286
 0.005543
 0.079355
 0.02
 ('pgclassifier_learning_rate': 0.1, 'kgbclass...
 0.87531

1.0 0.589744 0.741935 0.975055 0.538462 0.152174 0.237288 0.007206

0.057874

1.866682

0.01

LGBMClassifier 0.997783 1.0 0.846154 0.916667 0.97561 0.666667 0.086957 0.153846 0.003326

4 GradientBoostingClassifier 0.994087

PARAMETRS RATING

{'lgbmclassifier_learning_rate': 0.05, 'lgbmc... 0.419554

0.011 ('gradientboostingclassifier_learning_rate': 0.121996

тестовой выборке (0.9684). Это может указывать на переобучение модели.

- LGBMClassifier: Имеет высокую точность на обеих выборках (0.9978 на обучающей и 0.9756 на тестовой). Показывает лучший результат по метрике recall на тестовой выборке (0.8462). Время обучения и прогнозирования относительно невелико.
- CatBoostClassifier: Также показывает высокую точность на обеих выборках (0.9922 на обучающей и 0.9762 на тестовой). Время обучения немного больше, чем у LGBMClassifier.
- LogisticRegression: Имеет неплохую точность на обеих выборках (0.9915 на обучающей и 0.9762 на тестовой). Показывает худшие результаты по метрикам precision и recall на тестовой выборке.
- XGBClassifier: Показывает самую низкую точность на тестовой выборке (0.9756) среди всех моделей, кроме GradientBoostingClassifier.

1.11. Вывод

Удивительно, но LGBMClassifier показала себя лучшей по сравнению с остальными моделями. Да и не говоря о скорости обучения и предсказани. Второе место претендует LogisticRegression, третье место - CatBoostClassifier.

1.12. Гистограмма

```
# Извлечение лучших параметров для логистической регрессии из датафрейма results
best_logistic_params = \
results.loc[results['NAME'] == 'LogisticRegression', 'PARAMETRS'].values[0]

# Создание новой модели логистической регрессии с лучшими параметрами
logistic_regression_new = LogisticRegression(**best_logistic_params)

# Обучение новой модели на обучающем наборе данных
logistic_regression_new.fit(features_train, target_train)
```

LogisticRegression LogisticRegression()

```
# Предсказание значений с использованием новой обученной модели predicted_values_new = logistic_regression_new.predict(features_test)

# Построение гистограммы для колонки 'bankrupt?' с истинными значениями plt.hist(target_test.astype(int), bins=2, color='skyblue', edgecolor='black', alpha=0.7, lately interpretation in the state of the stat
```

