

Christian-Albrechts-Universität zu Kiel

Performance Comparisons between MGA software

Corinn Small Biol 607 Dec - Feb. 2018

Previous studies point to high error rates in MGA software

- Multiple genome alignments produce many false positives (variants)
- Incorrect conclusions can significantly influence:
 - Evolutionary pattern or candidate gene inference
 - Direction of future studies

Markova-Raina, 2011

Alignment comparisons necessary to reduce false positives

False positives can arise from

- Duplications
- Indels
- Transposable elements
- Repeat rich regions

```
score=700
Sp CBS432.CP020258.1
                               7566 86 + 71482 ATATAATATTTTTTC-ATTATAATATTTTAAATAA
Sp W7.scaffold1420 size3763
                                          3763 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp Y6 5.scaffold344 size800
                                465 86 +
                                           800 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp_Q95_3.scaffold307_size775
                                440 86 -
                                           775 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp T21 4.scaffold419 size555
                                223 86 +
                                           555 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp Y9 6.scaffold505 size729
                                  0 62 +
                                           729 -TATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp_Q59_1.scaffold245_size843
                                511 86 -
                                           843 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp_N44.scaffold368_size5437
                               3828 74 +
                                          5437 ATATAAT-TA----CC-ATAATAA-ATT---AATTTT
Sp Y8 5.scaffold386 size1105
                                  0 69 +
                                          1105 -TATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp_S36_7.scaffold413_size1167
                                414 86 -
                                          1167 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp Z1.scaffold647 size1173
                                168 86 +
                                          1173 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp YPS138.scaffold420 size4720
                                252 83 -
                                          4720 -TATTATATATTTTTTTTTTATTATAATATTTTAAATAAA
Sp_Y7.scaffold254_size1697
                                434 86 -
                                          1697 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA
Sp Z1 1.scaffold212 size475
                                143 86 -
                                           475 ATATAATATTTTTTC-ATTATAATATTTTAAATAAA
```

A whole-genome duplication (WGD) event occurred leading to *Saccharomyces* genus

We analyzed 2 different datasets

We focused on the 14 S. paradoxus strain dataset

Bergström et al. 2014

Pipeline for analysing the data

Generate pairwise alignments to generate MGAs

Basic procedure for all 3 programs:

Generate pairwise genome alignments

Generate MGA using the pairwise alignments

```
2 a score=1882
3 s N44.scaffold558_size1883 0 1883 + 1883
agtcttcgcatcgacggattgctatcgttcccattatttttctcagaacc1
agttccttggattgtataaggttctcaacaatatgagaaggggaaaatacc
ctagatcgggctcgttctgtagtattgtttgaactgtgtattttacttca;
4 s Q59 1 scaffold100_size13350 1510 1885 + 13350
agtctccgcatcgacggattgctatcgttcccattatttttctcagaacc1
```

^{*} Mugsy P runs multiple pairwise alignments simultaneously compared to Mugsy S

Filtering was accomplished with MafFilter

MafFilter options used to filter out unwanted alignment blocks:

- 1. MinBlockSize only keeps blocks with all 14 individuals
- 2. XFull Gap removes gap-only columns from blocks
- 3. AlnFilter2 masks columns within a window that contain more than 5 gaps
- 4. MinBlockLength only keeps blocks with more than 50 nt
- 5. MaskFilter splits blocks by removing regions that contain too many masked columns (2)
- 6. AlnFilter splits blocks by removing ambiguous regions

QMS calculates alignment statistics including

Additional stats refer to the quality of the alignment

N50 & L50

QMS alignment statistics scoring: filters

First, chose best type of filtering per software

	Total Length	Blocks	↓ Gap%	1 N50	1 L50	↑ Total Block Length ≥ 1kb	Total Block Length: ≥ 5kb	Total Block Length: ≥10kb	Evaluation score
Tba UF	12229423	10061	1.28	3309	1101	11057280	7830332	4360009	NA
Tba F	8458355	40541	0.36	163	18831	236325	0	0	-7
Tba RF *	11028652	6397	0.3	1906	1940	9794899	3795678	946740	7
MugsyP UF	12023677	7036	2.59	3396	1049	10935200	7801887	4536046	NA
MugsyP F	11190803	6576	0.99	1792	2085	9818100	3536276	920109	-3
MugsyP RF	11176614	6301	0.77	1880	1982	9886060	3796347	1001818	3
MugsyS UF	12004021	6965	2.5	3424	1046	10931937	7785588	4501238	NA
MugsyS F	11187565	6529	0.98	1797	2080	9814145	3525269	920242	-3
MugsyS RF	11172450	6263	0.76	1886	1980	9883914	3773364	991599	3

^{*} important result: when using TBA-- realigning is a must!

QMS alignment statistics scoring: software

The best software-filtering combination: MugsyP - realigned & filtered

	•		1	1	1	•			Evaluation
	Total Length	Blocks	Gap%	N50	L50	Total Block Length: 1kb	Total Block Length: 5kb	Total Block Length: 10kb	
Tba RF	11028652	6397	0.3	1906	1940	9794899	3795678	946740	-2
MugsyP RF	11176614	6301	0.77	1880	1982	9886060	3796347	1001818	3
MugsyP F	11190803	6576	0.99	1792	2085	9818100	3536276	920109	-1
MugsyS RF	11172450	6263	0.76	1886	1980	9883914	3773364	991599	0

^{*} Mugsy P-RF and Mugsy S-RF are very comparable= no significant differences

Snp calling procedure

Large # of variants (~92%) are shared between all filter types

Large # of variants shared between software

We chose to analyze the **Mugsy P-filtered** alignment

Next steps include:

- Generating sequence diversity statistics (Tajima's D, Tajima's Pi, Watterson Theta) (pop gen!) (generated from maf files)
- Analyzing population structure using PCA

Consensus Tree shows hypothesized relationships

Tajima's D provides insight into evolutionary mechanisms

When Taj D > 0

Low # of <u>rare alleles</u> in population indicating:

- Population shrinkage
- Balancing selection

When Taj D < 0

High # of <u>rare alleles</u> in population indicating:

- Population expansion after a bottleneck
 - Selective sweep (adaptation)
 - Purifying selection (deleterious)

A low genome-wide Tajima's D

Chromosome 1 - 16 (including mtDNA*)

Potential reason for a low genome-wide D value

Technical

- Sampling bias: due to lack of equal population sample sizes
- → Perhaps removal of more distantly related isolates could remove excess rare alleles

Biological (how to check)

- Clonal propagation (linkage disequilibrium)
- Inbreeding (F_{ST} & F_{IS} inbreeding coefficients)
- Recent bottleneck event -> pop expansion (effective population sizes)

Removing RUS & US isolates from analysis increases D

Chromosome (including mtDNA)

The US and RUS add a large amount of rare alleles to the studied sample.

Rare alleles are more frequent among whole dataset

PCA concludes: sub-"populations" vary drastically

 Variation comes from the US and Russia isolates

Outlook: investigating temperature adaptation

- Improve dataset: sample and population size, regional distribution
- Investigate potential adaptation to temperature
 - Identify potential genes that correlate to snps and regions of interest
 - GWAS and QTL

Thank you!

Supervisors: Christoph Eschenbrenner & Prof. Dr. Eva H. Stukenbrock

References

- 1. Markova-Raina P, Petrov D. High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Res. 2011;863–74
- Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic and wild yeasts. Nature [Internet]. 2009;458(7236):337–41. Available from: http://dx.doi.org/10.1038/nature07743
- 3. Dutheil JY. MafFilter Manual 1.2.1 [Internet]. 2017. Available from: http://biopp.univ-montp2.fr/manual/html/maffilter/v1.2.1/maffilter.html#VcfOutput
- 4. Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. (3):617–24.