## 1.4 启发式图搜索

- 利用知识来引导搜索,达到减少搜索范围,降低问题复杂度的目的。
- 启发信息的强度
  - 强:降低搜索工作量,但可能导致找不到最 优解
  - 弱: 一般导致工作量加大,极限情况下变为 盲目搜索,但有可能找到最优解

# 希望:

引入启发知识,在保证找到最佳解的情况下,尽可能减少搜索范围,提高搜索效率。

# 基本思想

• 定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。



## 启发式搜索算法A(A算法)

• 评价函数的格式:

$$f(n) = g(n) + h(n)$$

f(n): 评价函数

h(n): 启发函数

# 符号的意义

- g\*(n): 从s到n的最小耗散值
- h\*(n): 从n到g的最小耗散值
- f\*(n)=g\*(n)+h\*(n): 从s经过n到g的最小耗 散值

• g(n)、h(n)、f(n)分别是g\*(n)、h\*(n)、f\*(n) 的估计值

# A算法

- 1, OPEN:=(s), f(s):=g(s)+h(s);
- 2, LOOP: IF OPEN=() THEN EXIT(FAIL);
- 3, n:=FIRST(OPEN);
- 4, IF GOAL(n) THEN EXIT(SUCCESS);
- 5, REMOVE(n, OPEN), ADD(n, CLOSED);
- 6, EXPAND(n) →{m<sub>i</sub>}, 计算f(n, m<sub>i</sub>):=g(n, m<sub>i</sub>)+h(m<sub>i</sub>);

## A算法 (续)

```
ADD(m<sub>i</sub>, OPEN), 标记m<sub>i</sub>到n的指针;
  IF f(n, m_k) < f(m_k) THEN f(m_k) := f(n, m_k),
  标记mk到n的指针;
  IF f(n, m_1) < f(m_1) THEN f(m_1) := f(n, m_1),
  标记m<sub>1</sub>到n的指针, ADD(m<sub>1</sub>, OPEN);
7, OPEN中的节点按f值从小到大排序;
8, GO LOOP;
```

# 一个A算法的例子



定义评价函数:

$$f(n) = g(n) + h(n)$$

g(n)为从初始节点到当前节点的耗散值 h(n)为当前节点"不在位"的将牌数

# h计算举例

$$h(n) = 4$$



## 最佳图搜索算法A\*(A\*算法)

• 在A算法中,如果满足条件:

$$h(n) \le h^*(n)$$

则A算法称为A\*算法。

# A\*条件举例

- 8数码问题
  - h1(n) = "不在位"的将牌数
  - h2(n) = 将牌"不在位"的距离和

```
      1
      2
      3

      2
      8
      3

      1
      6
      4

      7
      5
      5
```

将牌1: 1 将牌2: 1 将牌6: 1 将牌8: 2

# A\*算法的性质

- 当问题有解时, A\*算法一定能找到最佳 路径。
- 极端情况下,若h(n)≡0,一定能找到最佳路径,此时,若g≡d,则A\*算法等同于宽度优先算法。
- 几个等式:

$$f^*(s) = f^*(t) = h^*(s) = g^*(t) = f^*(n)$$
  
其中s是初始节点,t是目标节点,n是s到  
t的最佳路径上的节点。

### A\*算法的性质(续1)

#### 定理1.1:

对有限图,如果从初始节点s到目标节点t 有路径存在,则算法A一定成功结束。

### A\*算法的性质(续2)

#### 引理1.1:

对无限图,若有从初始节点s到目标节点t的路径,则A\*不结束时,在OPEN表中即使最小的一个f值也将增到任意大,或有f(n)>f\*(s)。

## A\*算法的性质(续3)

### 引理1.2:

A\*结束前,OPEN表中必存在f(n)≤f\*(s)的结点(n是在最佳路径上的结点)。

存在一个节点n,n在最佳路径上。

$$f(n) = g(n) + h(n)$$
  
=  $g*(n)+h(n)$   
 $\leq g*(n)+h*(n)$   
=  $f*(n)$   
=  $f*(s)$ 

### A\*算法的性质(续3)

定理1.2:

对无限图,若从初始节点s到目标节点t有路径存在,则A\*一定成功结束。

引理1.1: A\*如果不结束,则OPEN中所有的n有 f(n) > f\*(s)

引理1.2: 在A\*结束前,必存在节点n,使得 f(n)≤f\*(s)

所以,如果A\*不结束,将导致矛盾。

## A\*算法的性质(续4)

推论1.1:

OPEN表上任一具有f(n)<f\*(s)的节点n,最终都将被A\*选作扩展的节点。

由定理1.2,知A\*一定结束,由A\*的结束条件,OPEN表中f(t)最小时才结束。而

$$f(t) \ge f^*(t) = f^*(s)$$

所以 $f(n) < f^*(s)$ 的n,均被扩展。得证。

### A\*算法的性质(续5)

定理1.3 (可采纳性定理):

若存在从初始节点s到目标节点t有路径,则A\*必能找到最佳解结束。

# 可采纳性的证明

- 由定理1.1、1.2知A\*一定找到一条路径结束
- 设找到的路径s→t不是最佳的(t为目标)
  - 则:  $f(t) = g(t) > f^*(s)$
- 由引理1.2知结束前OPEN中存在f(n)≤f\*(s)的节点n,所以

$$f(n) \le f^*(s) \le f(t)$$

- 因此A\*应选择n扩展,而不是t。与假设A\*选择t 结束矛盾。得证。
- 注意: A\*的结束条件

## A\*算法的性质(续6)

推论1.2:

A\*选作扩展的任一节点n,有f(n)≤f\*(s)。

- 由引理1.2知在A\*结束前,OPEN中存在 节点n',f(n')≤f\*(s)
- 设此时A\*选择n扩展。
- 如果n=n',则f(n)≤f\*(s),得证。
- 如果n≠n',由于A\*选择n扩展,而不是n', 所以有f(n)≤f(n')≤f\*(s)。得证。

# A\*算法的性质(续7)

定理1.4:设对同一个问题定义了两个A\*算法A<sub>1</sub>和A<sub>2</sub>,若A<sub>2</sub>比A<sub>1</sub>有较多的启发信息,即对所有非目标节点有h<sub>2</sub>(n) > h<sub>1</sub>(n),则在具有一条从s到t的路径的隐含图上,搜索结束时,由A<sub>2</sub>所扩展的每一个节点,也必定由A<sub>1</sub>所扩展,即A<sub>1</sub>扩展的节点数至少和A<sub>2</sub>一样多。

简写:如果 $h_2(n) > h_1(n)$ (目标节点除外),则 $A_1$ 扩展的节点数 $\geq A_2$ 扩展的节点数

### A\*算法的性质(续7)

#### • 注意:

在定理1.4中,评价指标是"扩展的节点数",也就是说,同一个节点无论被扩展多少次,都只计算一次。

# 定理1.4的证明

- 使用数学归纳法,对节点的深度进行归纳
- (1) 当d(n)=0时,即只有一个节点,显然 定理成立。
- (2) 设d(n)≤k时定理成立。(归纳假设)
- (3) 当d(n)=k+1时,用反证法。
- 设存在一个深度为k+1的节点n,被A<sub>2</sub>扩展,但没有被A<sub>1</sub>扩展。而由假设,A<sub>1</sub>扩展了n的 父节点,即n已经被生成了。因此当A<sub>1</sub>结束时,n将被保留在OPEN中。

## 定理1.4的证明(续1)

- 所以有: f<sub>1</sub>(n) ≥ f\*(s)
- $\exists I : g_1(n) + h_1(n) \ge f^*(s)$
- 所以: h<sub>1</sub>(n) ≥ f\*(s) g<sub>1</sub>(n)
- 另一方面,由于 $A_2$ 扩展了n,有 $f_2(n) \leq f^*(s)$
- $\exists I: h_2(n) \le f^*(s) g_2(n)$  (A)
- 由于d(n)=k时, $A_2$ 扩展的节点 $A_1$ 一定扩展,有  $g_1(n) \leq g_2(n)$  (因为 $A_2$ 的路 $A_1$ 均走到了)
- 所以:  $h_1(n) \ge f^*(s) g_1(n) \ge f^*(s) g_2(n)$  (B)
- 比较A、B两式,有 $h_1(n) \ge h_2(n)$ ,与定理条件矛盾。故定理得证。

# A\*算法的改进

• 问题的提出:

因A算法第6步对m<sub>l</sub>类节点可能要重新放回到OPEN表中,因此可能会导致多次重复扩展同一个节点,导致搜索效率下降。

#### 一个例子:



| OPEN表           | CLOSED表              |
|-----------------|----------------------|
| s(10)           |                      |
| A(7) B(8) C(9)  | s(10)                |
| B(8) C(9) G(14) | A(7) s(10)           |
| A(5) C(9) G(14) | B(8) s(10)           |
| C(9) G(12)      | A(5) B(8) s(10)      |
| B(7) G(12)      | C(9) A(5) s(10)      |
| A(4) G(12)      | B(7) C(9) s(10)      |
| G(11)           | A(4) B(7) C(9) s(10) |

# 出现多次扩展节点的原因

• 在前面的扩展中,并 没有找到从初始节点 到当前节点的最短路 径,如节点A。



# 解决的途径

- · 对h加以限制
  - 能否对h增加适当的限制,使得第一次扩展 一个节点时,就找到了从s到该节点的最短 路径。
- 对算法加以改进
  - 能否对算法加以改进,避免或减少节点的多次扩展。

# 改进的条件

- 可采纳性不变
- 不多扩展节点
- 不增加算法的复杂性

# 对h加以限制

• 定义: 一个启发函数h, 如果对所有节点  $n_i$ 和 $n_j$ , 其中 $n_j$ 是 $n_i$ 的子节点,满足

$$\begin{cases} h(n_i) - h(n_j) \le c(n_i, n_j) \\ h(t) = 0 \end{cases}$$

或

$$\begin{cases} h(n_i) \le c(n_i, n_j) + h(n_j) \\ h(t) = 0 \end{cases}$$

则称h是单调的。



# h单调的性质

• 定理1.5:

若h(n)是单调的,则A\*扩展了节点n之后,就已经找到了到达节点n的最佳路径。

即: 当A\*选n扩展时,有g(n)=g\*(n)。

# 定理1.5的证明

- 设n是A\*扩展的任一节点。当n=s时,定理显然成立。下面考察n≠s的情况。
- 设 $P = (n_0 = s, n_1, n_2, ..., n_k = n)$ 是s到n的最佳 路径
- P中一定有节点在CLOSED中,设P中最后一个出现在CLOSED中的节点为n<sub>j</sub>,则n<sub>i+1</sub>在OPEN中。

# 定理1.5的证明(续1)

• 由单调限制条件,对P中任意节点n<sub>i</sub>有:

$$h(n_i) \le C(n_i, n_{i+1}) + h(n_{i+1})$$

$$g^*(n_i) + h(n_i) \le g^*(n_i) + C(n_i, n_{i+1}) + h(n_{i+1})$$

• 由于n<sub>i</sub>、n<sub>i+1</sub>在最佳路径上,所以:

$$g*(n_{i+1}) = g*(n_i)+C(n_i, n_{i+1})$$

• 带入上式有:

$$g^*(n_i)+h(n_i) \le g^*(n_{i+1})+h(n_{i+1})$$

• 从i=j到i=k-1应用上不等式,有:

$$g^*(n_{j+1})+h(n_{j+1}) \le g^*(n_k)+h(n_k)$$

•  $\mathbb{H}: f(n_{i+1}) \leq g^*(n) + h(n)$ 

注意: (n<sub>i</sub>在CLOSED中,n<sub>i+1</sub>在OPEN中)

## 定理1.5的证明(续2)

- 重写上式:  $f(n_{j+1}) \leq g^*(n) + h(n)$
- 另一方面, A\*选n扩展, 必有:

$$f(n) = g(n) + h(n) \le f(n_{j+1})$$

• 比较两式,有:

$$g(n) \le g^*(n)$$

• 但已知g\*(n)是最佳路径的耗散值,所以 只有: g(n) = g\*(n)。得证。

## h单调的性质 (续)

定理1.6:

若h(n)是单调的,则由A\*所扩展的节点序列其f值是非递减的。即 $f(n_i) \leq f(n_i)$ 。

## 定理1.6的证明

• 由单调限制条件,有:

$$h(n_i) - h(n_j) \le C(n_i, n_j)$$

$$= f(n_i)-g(n_i) = f(n_j)-g(n_j)$$

$$f(n_i)-g(n_i) - f(n_j)+g(n_j) \le C(n_i, n_j)$$

$$= g(n_i)+C(n_i, n_j)$$

$$f(n_i)$$
 -  $g(n_i)$  -  $f(n_j)$  +  $g(n_i)$  +  $C(n_i, n_j)$   $\leq C(n_i, n_j)$   $f(n_i)$  -  $f(n_j)$   $\leq 0$ ,得证。

# h单调的例子

- 8数码问题:
  - h为"不在位"的将牌数(nj是ni的子节点)

$$h(n_i) - h(n_j) = \begin{cases} 1 & (不在位->在位) \\ 0 & (不在位->不在位) \\ -1 & (在位->不在位) \end{cases}$$

$$h(t) = 0$$
$$c(n_i, n_j) = 1$$

满足单调的条件。

# 对算法加以改进

- 一些结论:
  - OPEN表上任一具有f(n)< f\*(s)的节点定会被扩展。(推论1.1)
  - A\*选作扩展的任一节点, 定有f(n)≤f\*(s)。 (推论1.2)

## 改进的出发点



f<sub>m</sub>: 到目前为止已扩展节点的最大f值,用f<sub>m</sub>代替f\*(s)

# 修正过程A

- 1, OPEN:=(s), f(s)=g(s)+h(s),  $f_m:=0$ ;
- 2, LOOP: IF OPEN=() THEN EXIT(FAIL);
- 3, NEST:= $\{n_i|f(n_i)<f_m\}$ IF NEST  $\neq$  ( ) THEN n:=NEST中g最小的节点(?)
  - ELSE  $n:=FIRST(OPEN), f_m:=f(n);$
- 4, ..., 8: 同过程A。

#### 前面的例子:



|          | OPEN表                       | CLOSED表                   | $f_{m}$ |
|----------|-----------------------------|---------------------------|---------|
|          | s(0+10)                     | s(0+10)                   | 10      |
| A        | A(6+1) B(3+5) <u>C(1+8)</u> | s(0+10) C(1+8)            | 10      |
| A        | (6+1) <u>B(2+5)</u>         | s(0+10) C(1+8) B(2+5)     | 10      |
| <u>A</u> | <u>(3+1)</u>                | s(0+10)C(1+8)B(2+5)A(3+1) | 10      |
| C        | 6(11+0)                     |                           |         |
|          |                             |                           |         |
|          |                             |                           |         |