Support Vector Machines

Packages

```
import necessary libraries
import numpy as np
import pandas as pd
from ucimlrepo import fetch_ucirepo
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
```

Dataset

```
In [32]: # Load the dataset
         spambase = fetch_ucirepo(id=94)
         # Separate the features and targets
         X = spambase.data.features
         y = spambase.data.targets
         # Print metadata
         print(spambase.metadata)
         # Print variable information
         print(spambase.variables)
         # Convert to numpy arrays
         X = X.values
         y = y.values
         # Convert target to 1-D array
         y = np.ravel(y)
         # Normalize features using mean-variance normalization
         scaler = StandardScaler()
         X = scaler.fit_transform(X)
         # Split the dataset into training and testing sets (80% for training, 20% for testi
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
```

{'uci_id': 94, 'name': 'Spambase', 'repository_url': 'https://archive.ics.uci.edu/da taset/94/spambase', 'data_url': 'https://archive.ics.uci.edu/static/public/94/data.c sv', 'abstract': 'Classifying Email as Spam or Non-Spam', 'area': 'Computer Scienc e', 'tasks': ['Classification'], 'characteristics': ['Multivariate'], 'num_instance s': 4601, 'num_features': 57, 'feature_types': ['Integer', 'Real'], 'demographics': [], 'target_col': ['Class'], 'index_col': None, 'has_missing_values': 'no', 'missing _values_symbol': None, 'year_of_dataset_creation': 1999, 'last_updated': 'Mon Aug 28 2023', 'dataset_doi': '10.24432/C53G6X', 'creators': ['Mark Hopkins', 'Erik Reeber', 'George Forman', 'Jaap Suermondt'], 'intro paper': None, 'additional info': {'summar y': 'The "spam" concept is diverse: advertisements for products/web sites, make mone y fast schemes, chain letters, pornography...\n\nThe classification task for this da taset is to determine whether a given email is spam or not.\n\t\nOur collection of s pam e-mails came from our postmaster and individuals who had filed spam. Our collec tion of non-spam e-mails came from filed work and personal e-mails, and hence the wo rd \'george\' and the area code \'650\' are indicators of non-spam. These are usefu 1 when constructing a personalized spam filter. One would either have to blind such non-spam indicators or get a very wide collection of non-spam to generate a general purpose spam filter.\n\nFor background on spam: Cranor, Lorrie F., LaMacchia, Brian A. Spam!, Communications of the ACM, 41(8):74-83, 1998.\n\nTypical performance is a round ~7% misclassification error. False positives (marking good mail as spam) are v ery undesirable. If we insist on zero false positives in the training/testing set, 20 -25% of the spam passed through the filter. See also Hewlett-Packard Internal-only T echnical Report. External version forthcoming. ', 'purpose': None, 'funded_by': Non e, 'instances_represent': 'Emails', 'recommended_data_splits': None, 'sensitive_dat a': None, 'preprocessing_description': None, 'variable_info': 'The last column of \'spambase.data\' denotes whether the e-mail was considered spam (1) or not (0), i. e. unsolicited commercial e-mail. Most of the attributes indicate whether a particu lar word or character was frequently occuring in the e-mail. The run-length attribu tes (55-57) measure the length of sequences of consecutive capital letters. For the statistical measures of each attribute, see the end of this file. Here are the defi nitions of the attributes:\r\n\r\n48 continuous real [0,100] attributes of type word _freq_WORD \r\n= percentage of words in the e-mail that match WORD, i.e. 100 * (numb er of times the WORD appears in the e-mail) / total number of words in e-mail. A "w ord" in this case is any string of alphanumeric characters bounded by non-alphanumer ic characters or end-of-string.\r\n\r\n6 continuous real [0,100] attributes of type char_freq_CHAR] \r\n= percentage of characters in the e-mail that match CHAR, i.e. 1 00 * (number of CHAR occurences) / total characters in e-mail\r\n\r\n1 continuous re al [1,...] attribute of type capital run length average \r\n= average length of unin terrupted sequences of capital letters\r\n\r\n1 continuous integer [1,...] attribute of type capital_run_length_longest \r\n= length of longest uninterrupted sequence of capital letters\r\n\r\n1 continuous integer [1,...] attribute of type capital_run_le ngth_total \r\n= sum of length of uninterrupted sequences of capital letters \r\n= t otal number of capital letters in the e-mail\r\n\r\n1 nominal {0,1} class attribute of type spam\r\n= denotes whether the e-mail was considered spam (1) or not (0), i. e. unsolicited commercial e-mail. \r\n', 'citation': None}}

			•		
	name	role	type	demographic	\
0	word_freq_make	Feature	Continuous	None	
1	word_freq_address	Feature	Continuous	None	
2	word_freq_all	Feature	Continuous	None	
3	word_freq_3d	Feature	Continuous	None	
4	word_freq_our	Feature	Continuous	None	
5	word_freq_over	Feature	Continuous	None	
6	word_freq_remove	Feature	Continuous	None	
7	word_freq_internet	Feature	Continuous	None	
8	word_freq_order	Feature	Continuous	None	
9	word frea mail	Feature	Continuous	None	

10	word_freq_receive	Feature	Continuous	None
11	word_freq_will	Feature	Continuous	None
12	word_freq_people	Feature	Continuous	None
13	word_freq_report	Feature	Continuous	None
14	word_freq_addresses	Feature	Continuous	None
15	word_freq_free	Feature	Continuous	None
16	word_freq_business	Feature	Continuous	None
17	word_freq_email	Feature	Continuous	None
18	word_freq_you	Feature	Continuous	None
19	word_freq_credit	Feature	Continuous	None
20	word_freq_your	Feature	Continuous	None
21	word_freq_font	Feature	Continuous	None
22	word_freq_000	Feature	Continuous	None
23	word_freq_money	Feature	Continuous	None
24	word_freq_hp	Feature	Continuous	None
25	word freq hpl	Feature	Continuous	None
26	word_freq_george	Feature	Continuous	None
27	word freq 650	Feature	Continuous	None
28	word freq lab	Feature	Continuous	None
29	word_freq_labs	Feature	Continuous	None
30	word_freq_telnet	Feature	Continuous	None
31	 word_freq_857	Feature	Continuous	None
32	word_freq_data	Feature	Continuous	None
33	word_freq_415	Feature	Continuous	None
34	word_freq_85	Feature	Continuous	None
35	word_freq_technology	Feature	Continuous	None
36	word_freq_1999	Feature	Continuous	None
37	word_freq_parts	Feature	Continuous	None
38	word_freq_pm	Feature	Continuous	None
39	word_freq_direct	Feature	Continuous	None
40	word_freq_cs	Feature	Continuous	None
41	word_freq_meeting	Feature	Continuous	None
42	word_freq_original	Feature	Continuous	None
43	word_freq_project	Feature	Continuous	None
44	word_freq_re	Feature	Continuous	None
45	word_freq_edu	Feature	Continuous	None
46	word_freq_table	Feature	Continuous	None
47	word_freq_conference	Feature	Continuous	None
48	char_freq_;	Feature	Continuous	None
49	char_freq_(Feature	Continuous	None
50	char_freq_[Feature	Continuous	None
51	char_freq_!	Feature	Continuous	None
52	char_freq_\$	Feature	Continuous	None
53	char_freq_#	Feature	Continuous	None
54	capital_run_length_average	Feature	Continuous	None
55	capital_run_length_longest	Feature	Continuous	None
56	capital_run_length_total	Feature	Continuous	None
57	Class	Target	Binary	None
			,	
	description un	its missi	ng_values	

description units missing_values

0	None	None	no
1	None	None	no
2	None	None	no
3	None	None	no
4	None	None	no
5	None	None	no

6					N	lone	None	no
7					N	lone	None	no
8					N	lone	None	no
9					N	lone	None	no
10					N	lone	None	no
11					N	lone	None	no
12					N	lone	None	no
13					N	lone	None	no
14					N	lone	None	no
15					N	lone	None	no
16					N	lone	None	no
17					N	lone	None	no
18					N	lone	None	no
19					N	lone	None	no
20					N	lone	None	no
21					N	lone	None	no
22					N	lone	None	no
23					N	lone	None	no
24					N	lone	None	no
25					N	lone	None	no
26					N	lone	None	no
27					N	lone	None	no
28					N	lone	None	no
29					N	lone	None	no
30					N	lone	None	no
31					N	lone	None	no
32					N	lone	None	no
33					N	lone	None	no
34					N	lone	None	no
35					N	lone	None	no
36					N	lone	None	no
37					N	lone	None	no
38					N	lone	None	no
39					N	lone	None	no
40					N	lone	None	no
41					N	lone	None	no
42					N	lone	None	no
43					N	lone	None	no
44					N	lone	None	no
45					N	lone	None	no
46					N	lone	None	no
47					N	lone	None	no
48					N	lone	None	no
49					N	lone	None	no
50						lone	None	no
51						lone	None	no
52					N	lone	None	no
53						lone	None	no
54						lone	None	no
55						lone	None	no
56						lone	None	no
57	spam	(1)	or	not	spam		None	no
		•						

Part A: SVM Implementation

```
# Initialize a list to store results for different 'C' values
In [34]:
         results = []
         # Vary the regularization parameter 'C'
         for C in [0.001, 0.1, 1, 10, 100]:
            # Create an SVM model with a linear kernel
            svm model = SVC(kernel='linear', C=C)
            # Train the SVM model on the training data
            svm_model.fit(X_train, y_train)
            # Predict on the test set
            y_pred = svm_model.predict(X_test)
            # Calculate accuracy
            accuracy = accuracy_score(y_test, y_pred)
            # Calculate precision, recall, and F1-score
            report = classification_report(y_test, y_pred, output_dict=True)
            precision = report['1']['precision']
            recall = report['1']['recall']
            f1_score = report['1']['f1-score']
             # Store the results
            results.append((C, accuracy, precision, recall, f1_score))
         # Tabulate and print the results for different 'C' values
         print("{:^30} |{:^12}|{:^12}|{:^12}|{:^12}|".format("Regularization Parameter (C)",
         for C, accuracy, precision, recall, f1_score in results:
             print("{:^30} |{:^12.4f}|{:^12.4f}|{:^12.4f}|{:^12.4f}|".format(C, accuracy, pre
        Regularization Parameter (C) | Accuracy | Precision |
                                                                          | F1-Score
                                                                 Recall
                                         0.8903
                                                 0.9419
                                                                 0.7897
                   0.001
                                                                              0.8591
                                         0.9218 | 0.9368 | 0.8744 |
                    0.1
                                                                              0.9045
                                        0.9251 | 0.9350 | 0.8846 |
                                                                              0.9091
                     1
                     10
                                         0.9229 | 0.9299 | 0.8846 |
                                                                              0.9067
                    100
                                         0.9207 | 0.9295 | 0.8795 |
                                                                              0.9038
```

From these results, we can infer that:

- Accuracy: As 'C' increases from 0.001 to 1, the accuracy steadily increases. However, when 'C' becomes 10 and 100, the accuracy starts to decrease slightly. This suggests that a moderate 'C' value around 1 provides the best trade-off between bias and variance in the model.
- Precision: As 'C' increases from 0.001 to 100, the precision steadily decreases. This suggests that the model is becoming less strict in classifying positive cases (i.e., spam emails) and is allowing more false positives.
- Recall: When recall steadily increases as 'C' increases from 0.001 to 1, it indicates that the model is becoming more effective at capturing true positive cases (i.e., spam emails). The stagnation of recall as 'C' changes from 1 to 10 suggests that this might be an optimal point where the model achieves a balance between precision and recall. A decrease in recall as 'C' increases to 100 indicates that the model is becoming less

- effective at capturing true positive cases, leading to more false positives or non-spam emails being incorrectly classified as spam.
- F-1 Score: The increase in the F1-score as 'C' changes from 0.001 to 0.1 indicates that the model is achieving a better balance between precision and recall, becoming more accurate in classifying both positive and negative cases. As the F1-score remains roughly constant as 'C' changes from 0.1 to 100, it suggests that the model has reached a point of stability in terms of its overall performance.

Overall, the model performs best for a moderate value of the regularisation parameter ('C' = 1), indicating that a moderate-margin hyperplane does a better job of getting all the training points classified correctly.

Part B: Kernel Tricks

```
In [36]: # Initialize a list to store results for different kernels
         kernels = ['poly', 'poly', 'sigmoid', 'rbf']
         degrees = [2, 3, None, None]
         kernel_results = []
In [37]: # Vary the regularization parameter 'C'
         for kernel, degree in zip(kernels, degrees):
             if kernel == 'poly':
                 # Polynomial kernel with specified degree
                 svm_model = SVC(kernel=kernel, degree=degree, C=1)
             else:
                 # Other kernels (Sigmoid and RBF)
                 svm_model = SVC(kernel=kernel, C=1)
             # Train the SVM model with the selected kernel on the training data
             svm_model.fit(X_train, y_train)
             # Predict on the test set
             y_pred = svm_model.predict(X_test)
             # Calculate accuracy, precision, recall, and F1-score
             accuracy = accuracy_score(y_test, y_pred)
             # Calculate precision, recall, and F1-score
             report_2 = classification_report(y_test, y_pred, output_dict=True)
             precision = report_2['1']['precision']
             recall = report 2['1']['recall']
             f1_score = report_2['1']['f1-score']
             # Store the results
             kernel_results.append((kernel, degree, accuracy, precision, recall, f1_score))
In [38]: # Tabulate and print the results for different kernels
         print("{:^12}|{:^12}|{:^12}|{:^12}|{:^12}|{:^12}|. format("Kernel", "Degree", "Accur
```

```
for kernel, degree, accuracy, precision, recall, f1_score in kernel_results:
   if degree is None:
        degree_str = "N/A"
```

```
degree_str = str(degree)
   print("{:^12}|{:^12}|{:^12.4f}|{:^12.4f}|{:^12.4f}|{:^12.4f}|{:^12.4f}| format(kernel, de
Kernel
             Degree
                        Accuracy | Precision |
                                                 Recall
                                                             F1-Score
                                     0.9515
                                                 0.6538
                                                              0.7751
 poly
              2
                         0.8393
              3
                         0.7644
                                     0.9436
                                                 0.4718
                                                             0.6291
 poly
sigmoid
             N/A
                         0.8893
                                     0.8850
                                                 0.8487
                                                             0.8665
 rbf
             N/A
                         0.9349 | 0.9508 |
                                                 0.8923
                                                              0.9206
```

These results indicate that:

- RBF: The RBF kernel performs the best among the tested configurations, providing a high level of accuracy, precision, and recall.
- Sigmoid: The sigmoid kernel achieves a good balance between precision and recall, however it performs poorly in comparision to the RBF kernel.
- Polynomial: Polynomial kernels with higher degrees (e.g., degree 3) tend to have lower recall and, as a result, lower F1-Scores. Overall, polynomial kernels have poor recall and, as a result, lower F-1 scores, indicating that they are less effective in capturing all positive cases.

Part C: Overfitting & Underfitting Analysis

```
In [40]: for (degree, C) in experiments:
    # Train SVM models with different polynomial degrees and 'C' values
    svm_model = SVC(kernel='poly', degree=degree, C=C)
    svm_model.fit(X_train, y_train)

# Predict on both training and test sets
    y_train_pred = svm_model.predict(X_train)
    y_test_pred = svm_model.predict(X_test)

# Calculate accuracy for training and test sets
    train_accuracy = accuracy_score(y_train, y_train_pred)
    test_accuracy = accuracy_score(y_test, y_test_pred)

# Store the results
    experiment_results.append((degree, C, train_accuracy, test_accuracy))
```

```
# Tabulate and plot the results for different experiments
print("{:^12}| {:^30} |{:^20}|{:^20}|".format("Degree", "Regularization Parameter (C
for degree, C, train_accuracy, test_accuracy in experiment_results:
    print("{:^12}| {:^30} |{:^20.4f}|{:^20.4f}".format(degree, C, train_accuracy, t
```

```
Degree
           Regularization Parameter (C)
                                             Train Accuracy
                                                                 Test Accuracy
  1
                       0.01
                                                 0.8117
                                                                     0.7959
  1
                        1
                                                 0.9258
                                                                     0.9175
  1
                       100
                                                 0.9318
                                                                     0.9273
  2
                       0.01
                                                 0.6364
                                                                     0.6059
  2
                        1
                                                 0.8614
                                                                     0.8393
  2
                       100
                                                 0.9696
                                                                     0.9316
  3
                       0.01
                                                 0.6418
                                                                     0.6113
  3
                        1
                                                 0.8000
                                                                     0.7644
  3
                       100
                                                 0.9622
                                                                     0.9240
```

```
In [41]: # Plot train and test accuracy for different experiments
         degrees, C_values, train_accuracies, test_accuracies = zip(*experiment_results)
         plt.figure(figsize=(10, 6))
         plt.plot(range(len(experiments)), train_accuracies, 'b', label="Train Accuracy", ma
         plt.plot(range(len(experiments)), test_accuracies, 'g', label="Test Accuracy", mark
         plt.xlabel("Experiments")
         plt.ylabel("Accuracy")
         plt.title("Train and Test Accuracy for Different Experiments")
         # Annotate data points with degree and C values
         for i, (d, C) in enumerate(experiments):
             label = f"Deg = {d} \setminus C = {C}"
             x_offset = 0
             y offset = 10
             if i % 2 == 0: # Shift every other annotation slightly
                 x_offset = 0
                 y offset = -20
             plt.annotate(label, (i, train_accuracies[i]), textcoords="offset points", xytex
         plt.legend()
         plt.show()
```


From these results, we can infer that:

• Degree 1:

- For degree 1, as 'C' increases from 0.01 to 1 to 100, both training and testing accuracy increase.
- This suggests that for degree 1, regularization parameters around 1 provide a good balance between model complexity and accuracy.
- The model is not overfitting the data, and it generalizes well to the test dataset, as indicated by similar training and testing accuracies.

• Degree 2:

- For degree 2, the behavior is more pronounced. As 'C' increases, training and test accuracy improve significantly.
- This indicates that as 'C' increases, the model chooses a smaller-margin hyperplane since that hyperplane does a better job of getting all the datapoints classified correctly.

• Degree 3:

• For degree 3, the results follow a pattern similar to degree 2, however, the model's performance is poorer in general, indicating that model becomes overly complex.

In summary, the results suggest that for this dataset, the polynomial kernel with degree 2 with a high 'C' value demonstrates the best overall performance. The polynomial kernel with degree 1 performs well for a range of regularization parameter values from 1 to 100. It's a robust choice for this classification task and offers good performance without becoming overly complex. Polynomial kernels with degrees 2 and 3 both show a similar pattern of performance improvement as the regularization parameter 'C' increases.