Calculus II

Notes from TAU Course with Additional Information Lecturer: Daniel Tsodikovich

Gabriel Domingues

March 16, 2020

Contents

1		actional Analysis
	1.1	Sequence of Functions
	1.2	Series of Functions
	1.3	Power Series
2		Itivariable Analysis 10 Multivariable Geometry 10
		ork is licensed under a Creative Commons
"A	ttrib	ution-NonCommercial-ShareAlike 4.0 In-
ter	natic	onal" license.

1 Functional Analysis

1.1 Sequence of Functions

Definition 1.1.1 (Supremum). For a set $A \subset \mathbb{R}$, if A is bounded from above, the supremum of A is the lowest upper bound (denoted $\sup A$). Otherwise $\sup A = \infty$. That is, $M = \sup(A)$ iff $\forall a \in A$, $a \leq M$.

Definition 1.1.2 (Sequence of Functions). A sequence of function is a family $\{f_n\}_{n\in\mathbb{N}}$ where $\forall n\in\mathbb{N}$, $f_n:\mathcal{I}\subseteq\mathbb{R}\to\mathbb{R}$. Observe, the interval \mathcal{I} is the same domain for all f_n in the sequence.

Definition 1.1.3 (Pointwise Convergence). For a sequence $\{f_n\}_{n\in\mathbb{N}}$, we say f_n converges pointwise to f (denoted $f_n \to f$) if, $\forall x_0 \in \mathcal{I}$, $f_n(x_0) \to f(x_0)$. That is, if f is defined explicitly $\forall x_0 \in \mathcal{I}$, $f(x_0) := \lim_{n \to \infty} f_n(x_0)$.

Remark 1.1.4. The pointwise limit is unique, since $\lim_{n\to\infty} f_n(x_0)$ is unique.

Remark 1.1.5. That pointwise limit of continuous functions can be discontinuous. For illustration, take $f_n: [0,1] \to \mathbb{R}$ where $f_n(x) = x^n$. Then, $f_n(x) \to f(x)$ where:

$$f(x) = \begin{cases} 0 & \text{if } x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

which is then discontinuous.

Definition 1.1.6 (Uniform Convergence). For a sequence $\{f_n\}_{n\in\mathbb{N}}$, we say f_n converges pointwise to f (denoted $f_n \xrightarrow{u} f$) if,

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, \forall x \in \mathcal{I}, |f(x) - f_n(x)| < \epsilon$$

Lemma 1.1.7. $(UC \Rightarrow PC)$ If $f_n \xrightarrow{u} f$, then $f_n \to f$.

Proof. If
$$f_n \xrightarrow{u} f$$
, then $\forall x \in \mathcal{I}$, $f(x) = \lim_{n \to \infty} f_n(x)$, by definition. \square

Definition 1.1.8 (Vector Space of Functions). $\{f \mid f : \mathcal{I} \to \mathbb{R}\}$ is a vector space over \mathbb{R} with pointwise addition and scalar multiplication: (f+g)(x) = f(x) + g(x) and $(\alpha \cdot f) = \alpha \cdot f(x)$

Definition 1.1.9 (Uniform Norm). We define the following norm for functions $f: \mathcal{I} \to \mathbb{R}$:

$$||f||_{\infty} = \sup_{x \in \mathcal{I}} |f(x)|$$

which we can check is a norm. Also, f is bounded iff $||f||_{\infty} < \infty$.

Remark 1.1.10. The idea of using $\|\cdot\|_{\infty}$ is to bound independent of x, since $\|f-g\|_{\infty}$ only depends on f and g. We can substitute: $\|f-g\|_{\infty} \leq \epsilon \Leftrightarrow \forall x \in \mathcal{I}, |f(x)-g(x)| \leq \epsilon$ (cf. 1.1.1).

Remark 1.1.11 (Banach Algebra). $\forall f, g : \mathcal{I} \to \mathbb{R}$, $||f \cdot g||_{\infty} \le ||f||_{\infty} \cdot ||g||_{\infty}$, where \cdot is pointwise multiplication.

Lemma 1.1.12. $f_n \stackrel{u}{\longrightarrow} f \ iff \|f - f_n\|_{\infty} \to 0$

Proof. We prove each direction:

- (\Rightarrow) $\forall \epsilon > 0$, $\exists N \in \mathbb{N} : \forall n \geq N$, $\forall x \in \mathcal{I}$, $|f(x) f_n(x)| < \epsilon/2$ (cf. 1.1.3). Taking the supremum on $x \in \mathcal{I}$, $\forall n \geq N$, $||f f_n||_{\infty} \leq \epsilon/2 < \epsilon$. That is, $||f f_n||_{\infty} \to 0$ by definition.
- $(\Leftarrow) \|f f_n\|_{\infty} \to 0 \Leftrightarrow \forall \epsilon > 0, \exists n \in \mathbb{N} : \forall n \geq N, \|f f_n\|_{\infty} < \epsilon. \text{ Then,} \\ \forall n \geq N, \forall x \in \mathcal{I}, |f(x) f_n(x)| < \epsilon \text{ (cf. 1.1.1, 1.1.10)}.$

Hence, $\|\cdot\|_{\infty}$ is the norm that defines uniform continuity.

Lemma 1.1.13. If $f_n \to f$, then $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly iff $f_n \xrightarrow{u} f$.

Proof. We prove each direction:

- (\Rightarrow) If $f_n \xrightarrow{u} g$, by 1.1.7 $f_n \to g$ and by 1.1.4, g = f.
- (\Leftarrow) If $f_n \xrightarrow{u} f$, then $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly.

Hence, if $f_n \to f$, $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly iff $\lim_{n \to \infty} ||f - f_n||_{\infty} = 0$.

Remark 1.1.14. If we change our domain, we way have UC. Going back to the example of $f_n(x) = x^n$, we get $\{f_n\}_{n \in \mathbb{N}} \stackrel{u}{\longrightarrow} f \equiv 0 \text{ in } \mathcal{I} = [0,t] \text{ for } t < 1 \text{ since } ||f - f_n||_{\infty} = \sup_{x \in \mathcal{I}} |x|^n = t^n \to 0.$

Lemma 1.1.15 (Bounded Limit). If $f_n \xrightarrow{u} f$ and $\forall n \in \mathbb{N}$, f_n is bounded, then f is bounded.

Proof. By definiton of uniform limit (cf. 1.1.6) $\exists N \in \mathbb{N} : ||f - f_N||_{\infty} < 1$. By the triangle inequality: $||f||_{\infty} \le ||f - f_N||_{\infty} + ||f_N||_{\infty} < 1 + ||f_N||_{\infty} < \infty$

Theorem 1.1.16 (Uniform Limit). Every uniformly convergent sequence of continuous, the limit is continuous.

Proof. Let $f_n \xrightarrow{u} f$. For any $\epsilon > 0$, let $N \in \mathbb{N}$ s.t. $||f - f_N||_{\infty} < \epsilon/3$, that is, $\forall x \in \mathcal{I}$, $|f(x) - f_N(x)| < \epsilon/3$. Since f_N is continuous, $\forall a \in \mathcal{I}$, $\exists \delta > 0$: $\forall x \in (a - \delta, a + \delta) \subseteq \mathcal{I}$, $|f_N(x) - f_N(a)| < \epsilon/3$. Putting all the terms together, and using triangle inequality:

$$|f(x) - f(a)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(a)| + |f_N(a) - f(a)| < \epsilon$$

Hence, $\forall a \in \mathcal{I}$, f is continuous at a. Therefore, f is a continuous on \mathcal{I} . \square

Remark 1.1.17. Defining the set of:

- Bounded Functions on \mathcal{I} , $B(\mathcal{I})$
- Continuous Functions on \mathcal{I} , $C(\mathcal{I})$

Then, 1.1.16 and 1.1.15 imply $B(\mathcal{I})$ and $C(\mathcal{I})$ are closed under limits.

Theorem 1.1.18 $(B(\mathcal{I}) \text{ and } C(\mathcal{I}) \text{ are complete})$. If $\{f_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathcal{I} , that is,

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall m, n > N, \|f_m - f_n\|_{\infty} < \epsilon$$

then, $\exists f: \mathcal{I} \to \mathbb{R}: f_n \xrightarrow{u} f$.

Proof. Let $\{f_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence. As in 1.1.10,

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall m, n > N, \forall x \in \mathcal{I}, |f_m(x) - f_n(x)| < \epsilon$$

Therefore, for each $x \in \mathcal{I}$, the sequence $\{f_n(x)\}_{n \in \mathbb{N}}$ is Cauchy in \mathbb{R} . Hence, since \mathbb{R} is complete, each sequence converges to some f(x). We define the pointwise limit $f(x) := \lim_{n \to \infty} f_n(x)$, so it converges pointwise, which is neces-

sary. Lastly, we need to prove $f_n \xrightarrow{u} f$. By the continuity of absolute value, we have $|f(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)|$. Since $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$: $\forall m, n > N$, $\forall x \in \mathcal{I}$, $|f_m(x) - f_n(x)| < \epsilon/2$, we may take $m \to \infty$:

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n > N, \forall x \in \mathcal{I}, |f(x) - f_n(x)| \le \epsilon/2$$

So that, $||f - f_n||_{\infty} \le \epsilon/2 < \epsilon$ (cf. 1.1.1, 1.1.10), hence, it converges uniformly.

Theorem 1.1.19 (Convergence of Integral). Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of continuous functions in [a,b]. Suppose $f_n \xrightarrow{u} f$ in [a,b]. then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$$

which is defined, cf. 1.1.16.

Proof. Calculating:
$$\left| \int_{a}^{b} f(x) dx - \int_{a}^{b} f_{n}(x) dx \right| = \left| \int_{a}^{b} \left[f(x) - f_{n}(x) \right] dx \right| \le \int_{a}^{b} \left| f(x) - f_{n}(x) \right| dx \le \|f - f_{n}\|_{\infty} \cdot (b - a) \to 0$$

Remark 1.1.20. Uniform limit in 1.1.19 is necessary. For example, take $f_n: [0,1] \to \mathbb{R}$ where: $f_n(x) = \begin{cases} n & \text{if } 0 < x < \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$. We get: $f_n \to f \equiv 0$, but $\int_0^1 f_n(x) dx = 1 \not\to 0$.

Theorem 1.1.21 (UC of Derivative). Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of differentiable functions in \mathcal{I} . Suppose $f_n \to f$ (pointwise) and $f'_n \xrightarrow{u} g$ in \mathcal{I} . then f is differentiable and f' = g.

Proof. By FTC II (Newton-Leibnitz), $f_n(x) = f_n(a) + \int_a^x f'_n(t) dt$ for some $a \in \mathcal{I}$, taking limit of both sides, for a fixed $x \in \mathcal{I}$, we get:

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n(a) + \lim_{n \to \infty} \int_a^x f_n(t) dt = f(a) + \int_a^x g(t) dt$$

the last equality by 1.1.19. Hence, by FTC I, f' = g.

1.2 Series of Functions

Definition 1.2.1. Let $f_n : \mathcal{I} \to \mathbb{R}$, we define:

- 1. $\sum_{n=1}^{\infty} f_n$ converges pointwise iff $\{\sum_{k=1}^n f_k\}_{n\in\mathbb{N}}$ converges pointwise, i.e. $\forall x_0 \in \mathcal{I}, \sum_{n=1}^{\infty} f_n(x_0)$ converges (cf. 1.1.3).
- 2. $\sum_{n=1}^{\infty} f_n$ converges uniformly iff $\{\sum_{k=1}^n f_k\}_{n\in\mathbb{N}}$ converges uniformly (cf. 1.1.6).

Lemma 1.2.2. A series $\sum_{n=1}^{\infty} f_n$ converges uniformly in \mathcal{I} iff it converges pointwise and $\lim_{n\to\infty} \sup_{x\in\mathcal{I}} |\sum_{k=n}^{\infty} f_k(x)| = 0$

Proof. Let $S_n = \sum_{k=1}^n f_k$, the partial sums. By definition (cf. 1.2.1), $\sum_{n=1}^\infty f_n$ converges uniformly iff $\{S_n\}_{n\in\mathbb{N}}$ converges uniformly. It converges uniformly to S, if it converges pointwise to S and $\|S - S_n\|_{\infty} \to 0$ (cf. 1.1.12,1.1.7). Then, $S_n \to S: x \mapsto \sum_{k=1}^\infty f_k(x)$. It is N&S $\|S - S_n\|_{\infty} \to 0$, that is, $\lim_{n\to\infty} \|S - S_n\|_{\infty} = \lim_{n\to\infty} \sup_{x\in\mathcal{I}} \left|\sum_{k=n+1}^\infty f_k(x)\right| = 0$.

Theorem 1.2.3 (AbsC \Rightarrow UC of Series). If $\sum_{n=1}^{\infty} \|f_n\|_{\infty}$ converges (absolutely), then $\sum_{n=1}^{\infty} f_n$ converges uniformly.

Proof. Let $S_n = \sum_{k=1}^n f_k$. Let $\epsilon > 0$. Since $\sum_{n=1}^\infty \|f_n\|_\infty$ converges, $\exists N \in \mathbb{N}$: $\forall m > n \geq N$, $\sum_{k=n+1}^m \|f_k\|_\infty < \epsilon$. Then, we get directly by triangle inequality: $\forall m > n \geq N$, $\forall x \in \mathcal{I}$,

$$|S_m(x) - S_n(x)| = \left| \sum_{k=n+1}^m f_k(x) \right| \le \sum_{k=n+1}^m |f_k(x)| \le \sum_{k=n+1}^m ||f_k||_{\infty} < \epsilon$$

Hence, $\sum_{n=1}^{\infty} f_n$ converges uniformly by Cauchy (cf. 1.1.18).

Corollary 1.2.4 (Weierstrass M-test). Let $f_n : \mathcal{I} \to \mathbb{R}$ be a sequence of functions. Suppose there is a (non-negative) sequence $\{M_n\}_{n\in\mathbb{N}}$ such that:

- 1. $\forall n \in \mathbb{N}, \forall x \in \mathcal{I}, |f_n(x)| \leq M_n, \text{ that is, } \forall n \in \mathbb{N}, ||f_n||_{\infty} \leq M_n$
- 2. $\sum_{n=1}^{\infty} M_n$ converges (absolutely).

Then $\sum_{n=1}^{\infty} f_n$ converges uniformly.

Proof. By comparision test of $\{M_n\}_{n\in\mathbb{N}}$ with $\{\|f_n\|_{\infty}\}_{n\in\mathbb{N}}$, if $\sum_{n=1}^{\infty}M_n$ converges, $\sum_{n=1}^{\infty}\|f_n\|_{\infty}$ converges. By 1.2.3, $\sum_{n=1}^{\infty}f_n$ converges uniformly. \square

Lemma 1.2.5. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of continuous functions in [a,b]. If $\sum_{n=1}^{\infty} f_n$ converges uniformly, then

$$\int_a^b \sum_{n=1}^\infty f_n(x) dx = \sum_{n=1}^\infty \int_a^b f_n(x) dx$$

Proof. By linearity of the integral, $\int_a^b \sum_{k=1}^n f_k(x) dx = \sum_{k=1}^n \int_a^b f_k(x) dx$. Taking the limit of both sides, it follows from 1.1.19 and the definition (cf. 1.2.1).

Lemma 1.2.6. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of differentiable functions in [a,b]. If $\sum_{n=1}^{\infty} f_n$ converges pointwise and $\sum_{n=1}^{\infty} f'_n$ converges uniformly, then

$$\left(\sum_{n=1}^{\infty} f_n\right)' = \sum_{n=1}^{\infty} f_n'$$

Proof. By linearity of the derivative, $(\sum_{k=1}^n f_k)' = \sum_{k=1}^n f_k'$. Taking the limit of both sides, it follows from 1.1.21 and the definition (cf. 1.2.1).

1.3 Power Series

Definition 1.3.1 (Power Series). Given a sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ and $a\in\mathbb{R}$, its power series is the series of functions $f_n(x)=a_n(x-a)^n$ for $n\in\mathbb{N}_0$. That is, the power series is:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n$$

where the left hand side converges uniformly on some interval \mathcal{I} . Of course, it converges pointwise at x = a.

Lemma 1.3.2. If $\sum_{n=0}^{\infty} a_n(x-a)^n$ converges at $x=x_0$, then, it converges uniformly in (a-r,a+r) for any $r<|x_0-a|$.

Proof. Let $\mathcal{I} = (a-r, a+r)$. We calculate: $||f_n||_{\infty} = \sup_{x \in \mathcal{I}} |a_n(x-a)^n| = |a_n|r^n$.

Since $\sum_{n=0}^{\infty} a_n (x_0 - a)^n$ converges, $\{a_n (x_0 - a)^n\}_{n \in \mathbb{N}}$ is bounded (by M). Hence, $\|f_n\|_{\infty} \leq M \left(\frac{r}{|x_0 - a|}\right)^n$. Since $\frac{r}{|x_0 - a|} < 1$, it follows the series of f_n converges uniformly by Weierstrass M-test (cf. 1.2.4).

Corollary 1.3.3. If $\sum_{n=0}^{\infty} a_n(x-a)^n$ converges at x_0 , the pointwise limit (which exists by 1.3.2 and 1.1.7 taking $|x-a| < r < |x_0-a|$) is continuous at $(a-|x_0-a|,|x_0-a|)$.

Definition 1.3.4 (Radius of Convergence). R is a radius of convergence of $\sum_{n=0}^{\infty} a_n(x-a)^n$ iff, for any given $x \in \mathbb{R}$

$$\sum_{n=0}^{\infty} a_n (x-a)^n \text{ iff, for any given } x \in \mathbb{R}$$

$$\forall x \in (a-R, a+R), \sum_{n=0}^{\infty} a_n (x-a)^n \text{ converges}$$

$$\forall x \notin [a-R, a+R], \sum_{n=0}^{\infty} a_n (x-a)^n \text{ diverges}$$

Lemma 1.3.5 (Cauchy Hadamard Formula). Given a sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$, the radius of convergence (cf. 1.3.4) satisfies:

$$\frac{1}{B} = \limsup \sqrt[n]{|a_n|}$$

if
$$\limsup \sqrt[n]{|a_n|} = 0$$
, then $R = \infty$
if $\limsup \sqrt[n]{|a_n|} = \infty$, then $R = 0$

Proof. It is a direct result of Cauchy's Criteria (Root Test), we get the formula: $|x-a| \cdot \frac{1}{R} < 1$. The second proposition is the contrapositive of the divergence criteria.

Remark 1.3.6. The radius of convergence only shows pointwise convergence. Moreover, we have to check the endpoints $x = a \pm R$ separately.

Corollary 1.3.7. By 1.3.2, for any integral $\mathcal{I} \subsetneq (a-R, a+R)$, the power series $\sum_{n=0}^{\infty} a_n(x-a)^n$ converges uniformly in \mathcal{I} .

Remark 1.3.8. In general, nothing can be said about uniform convergence on (a - R, a + R).

Lemma 1.3.9. Differentiation and Integration term-by-term (cf. 1.1.19 and 1.1.21) is valid for power series on the radius of convergence.

 \square

Corollary 1.3.10 (Taylor Series). If $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ with a positive radius of convergence, then f is infinetly differentiable in (a-R, a+R) and $\forall n \in \mathbb{N}_0$, $a_n = \frac{f^{(n)}(a)}{n!}$

Remark 1.3.11 (Analytic Functions). Let T_n be the n-th Taylor Polynomial of f. It is not necessarily true that $T_n \stackrel{u}{\longrightarrow} f$. If it is true, we say $f \in C^{\omega}$.

2 Multivariable Analysis

2.1Multivariable Geometry

Definition 2.1.1 (\mathbb{R}^n as a vector space). Let $\mathbb{R}^n = \{(a_1, \dots, a_n) \mid a_1, \dots, a_n \in \mathbb{R}\}.$ We have the following operations:

Addition: $(a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$

Scalar multiplication: $\lambda \cdot (a_1, \dots, a_n) = (\lambda \cdot a_1, \dots, \lambda \cdot a_n)$ Norm: $\|(a_1, \dots, a_n)\| = \sqrt{\sum_{i=1}^n a_i^2}$ Scalar product: $(a_1, \dots, a_n) \cdot (b_1, \dots, b_n) = \sum_{i=1}^n a_i \cdot b_i$

With those operations, \mathbb{R}^n is an Euclidean Space (cf. Linear Algebra).

Lemma 2.1.2 (Angles). We measure the angle between two vector as $\theta :=$ $\arccos\left(\frac{a \cdot b}{\|a\| \cdot \|b\|}\right).$

Corollary 2.1.3 (Perpendicularity). $a \perp b \Leftrightarrow a \cdot b = (0,0,0)$

Definition 2.1.4 (Vector Product). In \mathbb{R}^3 , we define the following operation $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ as:

$$(a_1, a_2, a_3) \times (b_1, b_2, b_3) = (a_2 \cdot b_3 - a_3 \cdot b_2, a_3 \cdot b_1 - a_1 \cdot b_3, a_1 \cdot b_2 - a_2 \cdot b_1)$$

further, we can use the short hand using determinants, by formally expanding Laplace's formula (cf. Linear Algebra) on the first row:

$$(a_1, a_2, a_3) \times (b_1, b_2, b_3) = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

where $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ and $e_3 = (0,0,1)$, the standard basis.

Lemma 2.1.5. The cross product obeys:

Antisymmetry: $\forall a, b \in \mathbb{R}^3$, $a \times b = -b \times a$

Linearity: $\forall \alpha, \beta \in \mathbb{R}$, $\forall a, b, c \in \mathbb{R}^3$, $(\alpha \cdot a + \beta \cdot b) \times c = \alpha \cdot a \times c + \beta \cdot b \times c$

and $c \times (\alpha \cdot a + \beta \cdot b) = \alpha \cdot c \times a + \beta \cdot c \times b$

Perpendicularity: $a \times b \perp a, b$.

Proof. Antisymmetry and linearity follow directly from the definition with determinants. For perpendicularity, we only need to check $a \cdot (a \times b) = 0$ and $b \cdot (a \times b) = 0$, by explicit definition (cf. 2.1.4).

Corollary 2.1.6. $a \times b = (0,0,0) \Leftrightarrow a,b$ are linearly dependent.

Definition 2.1.7 (Right Handed). A basis (f_1, f_2, f_3) of \mathbb{R}^3 is right handed iff $f_1 \times f_2 = f_3$. The standard basis (e_1, e_2, e_3) is right handed (direct calculatation with 2.1.4).

Definition 2.1.8 (Lines and Planes). We define the following geometrical objects: For $a, b, c \in \mathbb{R}^3$

Line: $\{a + t(b - a) \mid t \in \mathbb{R}\} = a + \operatorname{Span}(b - a)$ Segment: $[A, B] = \{a + t(b - a) \mid t \in [0, 1]\}$ Ray: $\{a + t(b - a) \mid t \in [0, \infty)\}$ Hyperplane: $\{a + t(b - a) + s(c - a) \mid t, s \in \mathbb{R}\} = a + \operatorname{Span}(b - a, c - a)$

Lemma 2.1.9. For a plane equation ax + by + cz = d, we can convert into A + Span(B - A, C - A).

If $a, b, c \neq 0$, then A = (d/a, 0, 0), B = (0, d/b, 0), C = (0, 0, d/c). If any of those are zero, change the corresponding vector entry to 1.