Lemma 1 Proof Take 2

Canyon Foot

October 27, 2019

For binary random variables X, Y, S, we wish to show that for the two causal graphs, $G_1, G_2 = G_1 \setminus \{Y \to S\}$ we can construct corresponding probability functions P_1, P_2 such that $P_1(Y = y, X = x | S = 1) = P_2(Y = y, X = x | S = 1)$ for all $x, y \in \{0, 1\}$ but $P(Y = y | X = x) \neq P(Y = y | X = x)$ for some $x, y \in \{0, 1\}$. This is exactly the condition that s-recoverability requires, so this example proves that G_1 is not s-recoverable.

The graph structure gives us access to the following conditionals, which we have filled in with particular values.

For P_1 , we have:

And for P_2 , we have:

For concision, we will abbreviate $P_1(X = x, Y = 1|S = 1)$ as $P_1(x, y|S = 1)$ (and similar for other quantities). Then, by Bayes rule and the law of total probability we have that:

$$P_{1}(x,y|S=1) = \frac{P_{1}(S=1|x,y)P_{1}(x,y)}{P_{1}(S=1)}$$

$$= \frac{P_{1}(S=1|x,y)P_{1}(x,y)}{\sum_{x',y'\in\{0,1\}} P_{1}(S=1|x',y')P_{1}(x',y')}$$

$$= \frac{P_{1}(S=1|x,y)P_{1}(x,y)}{\sum_{x',y'\in\{0,1\}} P_{1}(S=1|x',y')P_{1}(x',y')}$$

So, d-separation (and therefore conditional independence) we get:

$$P_1(x, y|S = 1) = \frac{P_1(S = 1|x, y)P(x, y)}{\sum_{x', y' \in \{0,1\}} P_1(S = 1|x', y')P_1(x', y')}$$
$$= \frac{P_2(S = 1|y)P_2(y|x)P_2(x)}{\sum_{x', y' \in \{0,1\}} P_2(S = 1|y')P_1(y'|x')P_1(x')}$$

Then, since we have defined $P_1(y|x)$ and $P_1(x)$ to be always be $\frac{1}{2}$ we get these terms to cancel, leaving $\sum_{x',y'\in\{0,1\}} P_1(S=1|y')=2$ in the denominator. So,

$$P_1(x,y|S=1) = \frac{P_1(S=1|y)}{2}.$$

The table for $P_1(x, y|S=1)$ is then:

$$\begin{array}{c|cccc} x & y & P_1(y, x | S = 1) = \frac{P_1(S = 1 | y)}{2} \\ \hline 0 & 0 & 1/8 \\ 0 & 1 & 3/8 \\ 1 & 0 & 1/8 \\ 1 & 1 & 3/8 \\ \end{array}$$

Now we move on to P_2 . Since there is no path between S and X or Y in G_2 , we have that:

$$P_2(y, x|S = 1) = P_2(y, x) = P_2(y|x)P_2(x) = \frac{P_2(y|x)}{2}$$

This gives the table:

So, $P_1(Y=y|X=x|S=1)=P_2(Y=y|X=x|S=1)$ for all $x,y \in \{0,1\}$. But by consulting the original tables, we can see that $P_1(y|x) \neq P_2(y|x)$. Then G_1 is not s-recoverable.