PROBLEMA DE LA MOCHILA REAL

ALBERTO VERDEJO

Problema de la mochila real

- Cuando Alí-Babá consiguió entrar en la Cueva de los Cuarenta Ladrones, encontró allí objetos muy valiosos, de los que conocía muy bien el peso y valor.
- Solo podía llevar consigo aquellas riquezas que cupieran en su pequeña mochila, que soportaba un peso máximo conocido.
- Suponiendo que los objetos fueran fraccionables, ¿qué objetos debería elegir Alí-Babá para maximizar el valor total de su mochila?

Problema de la mochila real

- ► Hay *n* objetos, cada uno con un peso $p_i > 0$ y un valor $v_i > 0$.
- La mochila soporta un peso total máximo M > 0.
- Y el problema consiste en maximizar

$$\sum_{i=1}^{n} x_i v_i$$

con la restricción

$$\sum_{i=1}^n x_i p_i \le M,$$

donde x_i es la *fracción* de objeto i tomada, $0 \le x_i \le 1$.

$$M = 100, n = 5$$

	1	2	3	4	5
p_i	10	20	30	40	50
V_{i}	20	30	66	40	60

seleccionar	$\boldsymbol{X_i}$					valor
máx. v _i	0	0	1	0,5	1	146

$$M = 100, n = 5$$

	1	2	3	4	5
p_i	10	20	30	40	50
V _i	20	30	66	40	60

seleccionar		valor				
máx. v _i	0	0	1	0,5	1	146
mín. p _i	1	1	1	1	0	156

$$M = 100, n = 5$$

	1	2	3	4	5
p _i	10	20	30	40	50
V _i	20	30	66	40	60
$\frac{v_i}{p_i}$	2	1,5	2,2	1	1,2

seleccionar		valor				
máx. v _i	0	0	1	0,5	1	146
mín. p _i	1	1	1	1	0	156

$$M = 100, n = 5$$

	1	2	3	4	5
p _i	10	20	30	40	50
V _i	20	30	66	40	60
$\frac{v_i}{p_i}$	2	1,5	2,2	1	1,2

seleccionar		valor				
máx. v _i	0	0	1	0,5	1	146
mín. p _i	1	1	1	1	0	156
máx. $\frac{v_i}{p_i}$	1	1	1	0	0,8	164

► Objetos ordenados de mayor a menor valor por unidad de peso:

$$\frac{v_1}{p_1} \ge \frac{v_2}{p_2} \ge \dots \ge \frac{v_n}{p_n}$$

► Solución *X* construida por el algoritmo voraz:

▶ Podemos asumir que $\sum_{i=1}^{n} y_i p_i = M$.

► Se debe cumplir que $k \le j$ y por tanto $Y_k < X_k$

► Z sigue siendo óptima:

$$\sum_{i=1}^{n} v_{i}z_{i} = \sum_{i=1}^{n} v_{i}y_{i} + v_{k}(z_{k} - y_{k}) - \sum_{i=k+1}^{n} v_{i}(y_{i} - z_{i})$$

$$= \sum_{i=1}^{n} v_{i}y_{i} + \frac{v_{k}}{p_{k}}p_{k}(z_{k} - y_{k}) - \sum_{i=k+1}^{n} \frac{v_{i}}{p_{i}}p_{i}(y_{i} - z_{i})$$

$$\geq \sum_{i=1}^{n} v_{i}y_{i} + \left(p_{k}(z_{k} - y_{k}) - \sum_{i=k+1}^{n} p_{i}(y_{i} - z_{i})\right)\frac{v_{k}}{p_{k}}$$

$$= \sum_{i=1}^{n} v_{i}y_{i}$$

Implementación

```
struct Objeto {
   double peso;
   double valor;
};
struct Densidad {
  double densidad; // valor / peso
   int id; // identificador del objeto
bool operator>(Densidad const& a, Densidad const& b) {
  return a.densidad > b.densidad;
```

Implementación

Implementación

```
double peso = 0, valor = 0;
int i;
for (i = 0; i < N && peso + objetos[D[i].id].peso <= M; ++i) {</pre>
   sol[D[i].id] = 1; // el objeto D[i].id cabe completo
   peso += objetos[D[i].id].peso;
  valor += objetos[D[i].id].valor;
if (i < N) { // partir el objeto D[i].id</pre>
   sol[D[i].id] = (M - peso) / objetos[D[i].id].peso;
   valor += sol[D[i].id] * objetos[D[i].id].valor;
return valor;
                               peso + x_i \cdot p_i = M \implies x_i = \frac{M - peso}{m - peso}
```

Versión 0/1

- Los objetos no se pueden partir.
- La estrategia voraz anterior no siempre calcula una solución óptima.

Contraejemplo:

