

$$K_m = 10$$
 $T_m = 0.3$ $K_r = 1/9$ $K_s = 10$ $K_g = 0.105$ $K_1 = 2.4$ $K_2 = 0.76$ $K_3 = 2$

1 Du Schéma-Bloc au schéma Matlab-Simulink

- 1. Écrire dans Matlab un fichier .m donnant les bonnes valeurs numériques aux constantes du problème.
- √2. Saisir dans Matlab-Simulink un fichier .slx qui réalise le cablage ci-dessus.
- $\sqrt{3}$. Encapsuler dans deux sous-systèmes la partie A et la partie B du schéma.
- $\sqrt{4}$. Simuler pour obtenir en résultat la comparaison des signaux Z^* et Z lorsque Z est un échelon unitaire non retardé, une rampe unitaire non retardée ou un signal sinusoïdal de période au choix.

2 Du Schéma-Bloc aux instructions Matlab

- $\sqrt{1}$. Saisir dans le fichier m chacun des blocs du schéma-bloc.
- $\sqrt{2}$. Composer ces blocs pour obtenir un unique modèle d'entrée Z^* et de sortie Z.
- √ 3. Tracer les réponses temporelles de ce modèle pour des entrées échelon et impulsion unitaires, ainsi qu'une réponse fréquentielle.

3 Analyse des réponses

- 1. Imprimer depuis Matlab-Simulink la réponse à un échelon unitaire du modèle saisi lors de la partie 1 et mesurer, avec le tracé correspondant :
 - $\sqrt{-T_{r5\%}}$, le temps de réponse à 5%.
 - $T_{m10-90\%}$, le temps de montée entre 10% et 90%.
 - La valeur en régime permanent.
 - D_1 , la valeur en % du premier dépassement ainsi que l'instant T_{1D} de celui-ci.
 - ω_n , la pseudo-pulsation.
- 2. Sur la réponse indicielle obtenue lors de la partie 2, utiliser l'interface pour réaliser les mêmes tracés
- 3. Imprimer le diagramme de Bode du système complet saisi lors de la partie 2 et indiquer, avec le tracé éventuel :
 - Le gain en régime permanent.
 - $-\omega_r$, la pulsation de résonance.
 - Le gain à la résonance.
 - Le diagramme asymptotique.
 - ω₀, la pulsation de coupure.
 - Le type de filtre représenté et son ordre.

4 Identification paramétrique

La fonction de transfert $\frac{K_m K_g}{1+T_m p}$ modélise le comportement d'un moteur à courant continu, entre sa tension d'alimentation V_m et la tension image de sa vitesse de rotation V_g . Un système de banc moteur est cablé en prototypage avec Matlab-Simulink et fonctionne en parallèle d'une simulation de ce modèle.

- 1. Comparer les résultats de simulation pour le choix de K_m et T_m de l'énoncé.
- 2. Identifier les valeurs de K_m et de T_m pour que les comportements soient plus proches et pour améliorer la validité du modèle.

5 Communications entre Matlab et Matlab-Simulink

1. Monter le répertoire partagé I1/Agamemnon/Commun/1ASRI.

sist on etchs.

- 2. Récupérer les fichiers FromToWorkspace.m et From_To_Workspace.slx.
- 3. Analyser les commentaires afin de modifier le schéma Simulink de la partie 2 pour pouvoir envoyer une entrée quelconque et récupérer la sortie correspondante.
- 4. Écrire les signaux représentés ci-dessus grâce à la fonction de Heaviside.
- 5. Traduire ces signaux dans Matlab et créer les structures correspondantes.
- 6. Tracer sur des figures les réponses temporelles associées à ces signaux d'entrée.
- 7. Utiliser la commande 1sim pour faire de même sans passer par le schéma Simulink.

