×

Linear Regression with Multiple Variables

5 questions

1	
point	

1.

Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam	(midterm exam)^2	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)^2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(4)}$? (Hint: midterm = 69, final = 78 is training example 4.) Please round off your answer to two decimal places and enter in the text box below.

0.53			

1 point

2.

You run gradient descent for 15 iterations

with $\alpha = 0.3$ and compute $J(\theta)$ after each

iteration. You find that the value of $J(\theta)$ **increases** over

time. Based on this, which of the following conclusions seems

most plausible?

- $\alpha = 0.3$ is an effective choice of learning rate.
- Rather than use the current value of α , it'd be more promising to try a smaller value of α (say $\alpha=0.1$).
- Rather than use the current value of α , it'd be more promising to try a larger value of α (say $\alpha = 1.0$).

1 point

3.

Suppose you have m=23 training examples with n=5 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the given values of m and n, what are the dimensions of θ , X, and y in this equation?

- X is 23×6 , y is 23×6 , θ is 6×6
- O X is 23×6 , y is 23×1 , θ is 6×1
- **O** X is 23×5 , y is 23×1 , θ is 5×1
- $X \text{ is } 23 \times 5, y \text{ is } 23 \times 1, \theta \text{ is } 5 \times 5$

1 point

4.

Suppose you have a dataset with m=1000000 examples and n=200000 features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?

0	The normal equation, since gradient descent might be unable to find the optimal $\boldsymbol{\theta}.$			
0	The normal equation, since it provides an efficient way to directly find the solution.			
0	Gradient descent, since $(\boldsymbol{X}^T\boldsymbol{X})^{-1}$ will be very slow to compute in the normal equation.			
0	Gradient descent, since it will always converge to the optimal $ heta.$			
1 poin 5. Which	of the following are reasons for using feature scaling? It speeds up gradient descent by making it require fewer iterations to get to a good solution. It prevents the matrix X^TX (used in the normal equation) from being non-invertable (singular/degenerate). It speeds up solving for θ using the normal equation. It is necessary to prevent gradient descent from getting stuck in local optima.			
Submit Quiz				

