Homework of Machine Learning Techniques: Quiz 4

Neural Network and Deep Learning

1. A fully connected Neural Network has L=2; $d^{(0)}=5$, $d^{(1)}=3$, $d^{(2)}=1$. If only products of the form $w_{ij}^{(\ell)}x_i^{(\ell-1)}$, $w_{ij}^{(\ell+1)}\delta_j^{(\ell+1)}$, and $x_i^{(\ell-1)}\delta_j^{(\ell)}$ count as operations (even for $x_0^{(\ell-1)}=1$), without counting anything else, which of the following is the total number of operations required in a single iteration of backpropagation (using SGD on one data point)?

 $\sqrt{47}$

 \bigcirc 43

 \bigcirc 53

 \bigcirc 59

O none of the other choices

2. Consider a Neural Network without any bias terms $x_0^{(\ell)}$. Assume that the network contains $d^{(0)} = 10$ input units, 1 output unit, and 36 hidden units. The hidden units can be arranged in any number of layers $\ell = 1, \dots, L-1$, and each layer is fully connected to the layer above it. What is the minimum possible number of weights that such a network can have?

 $\sqrt{46}$

 \bigcirc 44

one of the other choices

 \bigcirc 43

 \bigcirc 45

3. Following Question 2, what is the maximum possible number of weights that such a network can have?

O 510

 \bigcirc 520

 $\sqrt{}$ none of the other choices

 \bigcirc 500

 \bigcirc 490

Autoencoder

4. Assume an autoencoder with $\tilde{d}=1$. That is, the $d\times\tilde{d}$ weight matrix W becomes a $d\times 1$ weight vector \mathbf{w} , and the linear autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2.$$

We can solve this problem with stochastic gradient descent by defining

$$\operatorname{err}_n(\mathbf{w}) = \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2$$

and calculate $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$. What is $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$?

- $\bigcirc (4\mathbf{x}_n 4)(\mathbf{w}^T\mathbf{w})$
- O none of the other choices
- $\bigcirc (4\mathbf{w} 4)(\mathbf{x}_n^T \mathbf{x}_n)$
- $\sqrt{2(\mathbf{x}_n^T\mathbf{w})^2\mathbf{w} + 2(\mathbf{x}_n^T\mathbf{w})(\mathbf{w}^T\mathbf{w})}$
- $\bigcirc 2(\mathbf{x}_n^T \mathbf{w})^2 \mathbf{x}_n + 2(\mathbf{x}_n^T \mathbf{w})(\mathbf{w}^T \mathbf{w}) \mathbf{w} 4(\mathbf{x}_n^T \mathbf{w}) \mathbf{w}$
- 5. Following Question 4, assume that noise vectors $\boldsymbol{\epsilon}_n$ are generated i.i.d. from a zero-mean, unit variance Gaussian distribution and added to \mathbf{x}_n to make $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \boldsymbol{\epsilon}_n$, a noisy version of \mathbf{x}_n . Then, the linear denoising autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T(\mathbf{x}_n + \boldsymbol{\epsilon}_n)\|^2$$

For any fixed \mathbf{w} , what is $\mathcal{E}(E_{in}(\mathbf{w}))$, where the expectation \mathcal{E} is taken over the noise generation process?

$$\bigcirc \ \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^{T^2}\mathbf{x}_n\|^2$$

$$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n^2 + d(\mathbf{w}^T \mathbf{w})^2$$

none of the other choices

$$\sqrt{\frac{1}{N}\sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2 + (\mathbf{w}^T\mathbf{w})^2}$$

$$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + \frac{1}{d} (\mathbf{w}^T \mathbf{w})^2$$

Nearest Neighbor and RBF Network

- 6. Consider getting the 1 Nearest Neighbor hypothesis from a data set of two examples $(\mathbf{x}_+, +1)$ and $(\mathbf{x}_-, -1)$. Which of the following linear hypothesis $g_{LIN}(\mathbf{x}) = \text{sign}(\mathbf{w}^T\mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to the hypothesis?
 - none of the other choices

$$\bigcirc$$
 $\mathbf{w} = 2(\mathbf{x}_{+} - \mathbf{x}_{-}), b = +\mathbf{x}_{+}^{T}\mathbf{x}_{-}$

$$\bigcirc$$
 w = 2(**x**₋ - **x**₊), b = +||**x**₊||² - ||**x**₋||²

$$\bigcirc$$
 w = 2(**x**₋ - **x**₊), b = -**x**₊^T**x**₋

$$\sqrt{\mathbf{w}} = 2(\mathbf{x}_{+} - \mathbf{x}_{-}), b = -\|\mathbf{x}_{+}\|^{2} + \|\mathbf{x}_{-}\|^{2}$$

7. Consider an RBF Network hypothesis for binary classification

$$g_{RBFNET}(\mathbf{x}) = \text{sign} \left(\beta_{+} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{+}\|^{2}) + \beta_{-} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{-}\|^{2}) \right)$$

and assume that $\beta_+ > 0 > \beta_-$. Which of the following linear hypothesis $g_{LIN}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to $g_{RBFNET}(\mathbf{x})$?

$$\sqrt{\mathbf{w}} = 2(\boldsymbol{\mu}_{+} - \boldsymbol{\mu}_{-}), b = \ln \left| \frac{\beta_{+}}{\beta_{-}} \right| - \|\boldsymbol{\mu}_{+}\|^{2} + \|\boldsymbol{\mu}_{-}\|^{2}$$

$$\bigcirc \mathbf{w} = 2(\mu_{-} - \mu_{+}), b = \ln \left| \frac{\beta_{-}}{\beta_{+}} \right| + \|\mu_{+}\|^{2} - \|\mu_{-}\|^{2}$$

$$\bigcirc \mathbf{w} = 2(\beta_{+}\boldsymbol{\mu}_{+} + \beta_{-}\boldsymbol{\mu}_{-}), b = -\beta_{+}\|\boldsymbol{\mu}_{+}\|^{2} + \beta_{-}\|\boldsymbol{\mu}_{-}\|^{2}$$

- $\bigcirc \mathbf{w} = 2(\beta_{+}\mu_{+} + \beta_{-}\mu_{-}), b = +\beta_{+}\|\mu_{+}\|^{2} \beta_{-}\|\mu_{-}\|^{2}$
- O none of the other choices
- 8. Assume that a full RBF network (page 9 of class 214) using RBF($\mathbf{x}, \boldsymbol{\mu}$) = [[$\mathbf{x} = \boldsymbol{\mu}$]] is solved for squared error regression on a data set where all inputs \mathbf{x}_n are different. What are the optimal coefficients β_n for each RBF(\mathbf{x}, \mathbf{x}_n)?
 - $\sqrt{y_n}$
 - $\bigcirc \|\mathbf{x}_n\|^2 y_n^2$
 - none of the other choices
 - $\bigcirc \|\mathbf{x}_n\|y_n$
 - $\bigcirc y_n^2$

Matrix Factorization

- 9. Consider matrix factorization of $\tilde{d}=1$ with alternating least squares. Assume that the $\tilde{d}\times N$ user factor matrix V is initialized to a constant matrix of 1. After step 2.1 of alternating least squares (page 10 of lecture 215), what is the optimal w_m , the $\tilde{d}\times 1$ movie 'vector' for the m-th movie?
 - $\sqrt{\ }$ the average rating of the m-th movie
 - \bigcirc the total rating of the m-th movie
 - \bigcirc the maximum rating of the m-th movie
 - \bigcirc the minimum rating of the m-th movie
 - O none of the other choices
- 10. Assume that for a full rating matrix R, we have obtained a perfect matrix factorization $R = V^T W$. That is, $r_{nm} = \mathbf{v}_n^T \mathbf{w}_m$ for all n,m. Then, a new user (N+1) comes. Because we do not have any information for the type of the movie she likes, we initialize her feature vector \mathbf{v}_{N+1} to $\frac{1}{N} \sum_{n=1}^{N} \mathbf{v}_n$, the average user feature vector. Now, our system decides to recommend her a movie m with the maximum predicted score $\mathbf{v}_{N+1}^T \mathbf{w}_m$. What would the movie be?
 - () the movie with the largest maximum rating
 - O none of the other choices
 - the movie with the smallest rating variance
 - the movie with the largest minimum rating
 - $\sqrt{}$ the movie with the largest average rating

Experiment with Backprop neural Network

11. Implement the backpropagation algorithm (page 16 of lecture 212) for d-M-1 neural network with tanh-type neurons, **including the output neuron**. Use the squared error measure between the output $g_{NNET}(\mathbf{x}_n)$ and the desired y_n and backprop to calculate the per-example gradient. Because of the different output neuron, your $\delta_1^{(L)}$ would be different from the course slides! Run the algorithm on the following set for training (each row represents a pair of (\mathbf{x}_n, y_n) ; the first column is $(\mathbf{x}_n)_1$; the second one is $(\mathbf{x}_n)_2$; the third one is y_n):

 $hw4_nnet_train.dat$

and the following set for testing:

 $hw4_nnet_test.dat$

Fix T = 50000 and consider the combinations of the following parameters:

	Quiz 4
	• the number of hidden neurons M • the elements of $w_{ij}^{(\ell)}$ chosen independently and uniformly from the range $(-r,r)$ • the learning rate η Fix $\eta = 0.1$ and $r = 0.1$. Then, consider $M \in \{1,6,11,16,21\}$ and repeat the experiment for 500
	times. Which M results in the lowest average E_{out} over 500 experiments? \bigcirc 11 \bigcirc 16 \bigcirc 1 \bigcirc 21 \sqrt 6
12.	Following Question 11, fix $\eta=0.1$ and $M=3$. Then, consider $r\in\{0,0.001,0.1,10,1000\}$ and repeat the experiment for 500 times. Which r results in the lowest average E_{out} over 500 experiments? $\bigcirc 0$ $\checkmark 0.1$ $\bigcirc 0.001$ $\bigcirc 10$ $\bigcirc 1000$
13.	Following Question 11, fix $r=0.1$ and $M=3$. Then, consider $\eta \in \{0.001, 0.01, 0.1, 1, 10\}$ and repeat the experiment for 500 times. Which η results in the lowest average E_{out} over 500 experiments? $ \sqrt{ \ 0.01 } \\ \bigcirc \ 0.001 \\ \bigcirc \ 0.1 \\ \bigcirc \ 0.1 \\ \bigcirc \ 1$
14.	Following Question11, deepen your algorithm by making it capable of training a d -8-3-1 neural network with tanh-type neurons. Do not use any pre-training. Let $r=0.1$ and $\eta=0.01$ and repeat the experiment for 500 times. Which of the following is true about E_{out} over 500 experiments? $ \sqrt{0.02} \leq E_{out} < 0.04 $ one of the other choices $ \bigcirc 0.04 \leq E_{out} < 0.06 $ $ \bigcirc 0.06 \leq E_{out} < 0.08 $ $ \bigcirc 0.00 \leq E_{out} < 0.02 $
	Experiment with 1 Nearest Neighbor
15.	Implement any algorithm that 'returns' the 1 Nearest Neighbor hypothesis discussed in page 8 of lecture 214. $g_{\text{nbor}}(\mathbf{x}) = y_m$ such that \mathbf{x} closest to \mathbf{x}_m
	Run the algorithm on the following set for training:

 $hw4_knn_train.dat$

 $hw4_knn_test.dat$

and the following set for testing:

O.2

	$\bigcirc 0.3$
	$\sqrt{~0.0}$
	\bigcirc 0.1
	\bigcirc 0.4
16.	Following Question 15, which of the following is closest to $E_{out}(g_{nbor})$?
	\bigcirc 0.30
	$\bigcirc 0.28$
	$\sqrt{~0.34}$
	\bigcirc 0.32
	\bigcirc 0.26
17.	Now, implement any algorithm for the k Nearest Neighbor with $k = 5$ to get $g_{5\text{-nbor}}(\mathbf{x})$. Run the algorithm on the same sets in Question 15 for training/testing. Which of the following is closest to $E_{in}(g_{5\text{-nbor}})$?
	\bigcirc 0.1
	$\sqrt{~0.2}$
	\bigcirc 0.3
	\bigcirc 0.4
	\bigcirc 0.0
18.	Following Question 17, Which of the following is closest to $E_{out}(g_{5-nbor})$
	\bigcirc 0.28
	\bigcirc 0.26
	$\bigcirc 0.34$
	$\sqrt{~0.32}$
	\bigcirc 0.30
	T2
	Experiment with k-Mean
19.	Implement the k -Means algorithm (page 16 of lecture 214).Randomly select k instances from $\{\mathbf{x}_n\}$ to initialize your $\boldsymbol{\mu}_m$ Run the algorithm on the following set for training: $\frac{\mathbf{x}_n}{\mathbf{x}_n}$
	and repeat the experiment for 500 times. Calculate the clustering E_{in} by $\frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} [[\mathbf{x}_n \in S_m]] \ \mathbf{x}_n - \boldsymbol{\mu}_m\ ^2$
	as described on page 13 of lecture 214 for $M = k$.
	For $k = 2$, which of the following is closest to the average E_{in} of k-Means over 500 experiments?
	\bigcirc 0.5
	\bigcirc 1.0
	$\sqrt{2.5}$
	\bigcirc 1.5 \bigcirc 2.0

20. For k = 10, which of the following is closest to the average E_{in} of k-Means over 500 experiments?

- \bigcirc 1.0
- $\sqrt{1.5}$
- \bigcirc 2.0
- $\bigcirc 0.5$
- \bigcirc 2.5