# ARPITA BAYEN TIME SERIES FORECASTING

- 1. Read the data as an appropriate Time Series data and plot the data.
- 2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.
- 3. Split the data into training and test. The test data should start in 1991.
- 4. Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data.

Other models such as regression, naïve forecast models, simple average models etc. should also be built on the training data and check the performance on the test data using RMSE.

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha = 0.05.

- 6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.
- 7. Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.
- 8. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.
- 9. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

# **SHOE SALES DATASET**

Table 1:First Few rows of the Dataset:

Table 2:Last few rows of the dataset

Table 3:First few rows of the dataset after adding 2 new column – Month and year

Table 4:Statistical description of the Dataset

Table 5:First few rows of training Shoe-Sales dataset

Table 6:First few rows of the test Shoe-Sales dataset

Table 7: First few forecast after simple exponential smoothing

Table 8:First few rows of the dataset after prediction

Table 9: First few rows of the TES Additive

Table 10:First few prediction-TES Multiplicative

Table 11:First few predictions-Linear Regression

Table 12:Naïve forecast first few rows

Table 13:First few rows of Simple Average

Table 14:MA model Result

Table 15:ARMA Result

Table 16:automated ARIMA result

Table 17:Predicted result first few dataset(automated ARIMA)

Table 18:automated SARIMA result

Table 19:Simple Average Prediction of the next 12months

# **SHOE SALES DATASET**

Fig 1:Graph of Shoe-Sales Dataset

Fig 2:Boxplot of the dataset

Fig 3:Yearwise boxplot of shoe sales

Fig 4:Month wise boxplot

Fig 5: Graph of monthly sales across year(Pivot Graph)

Fig 6 :Additive decomposition of shoe sales dataset

Fig 7:Multiplicative decomposition of shoe sales dataset

Fig 8:Training data and Test Data Graph

Fig 9:Simple Exponential Smoothing Prediction with Alpha= 0.605

Fig 10: Alpha=0.594,Beta=0.00027:Double Exponential Smoothing predictions on Test Set

Fig 11: Alpha=0.5707,Beta=0.0001,Gamma=0.2937:Triple Exponential Smoothing predictions on Test Set

Fig 12: Alpha=0.5711,Beta=0.00014,Gamma=0.2029:Triple Exponential Smoothing predictions on Test

Set

Fig 13:Linear Regression

Fig 14:Naïve Forecast

Fig 15:Simple Average Forecast

Fig 16:Logarithmic transformed

Fig 17: Moving Average Forecast

Fig 18:ARMA forecast

Fig 19:Automated ARIMA forecast

Fig 20:Automated SARIMA result graph

Problem 1:You are an analyst in the IJK shoe company and you are expected to forecast the sales of the pairs

of shoes for the upcoming 12 months from where the data ends. The data for the pair of shoe sales

have been given to you from January 1980 to July 1995.

## 1.READ THE DATA AS AN APPROPRIATE TIME SERIES DATA AND PLOT THE DATA.

- The dataset contains 2 variables and 187 data(rows).
- ❖ 1 Variable is year month and 1 variable is Sales report of the shoes .
- ❖ Year month is object type variable and Shoe-Sales is integer type.
- ❖ The year month column is divided to year and month column-now the dataset contains 3 columns.
- There is no null values in the dataset.
- There are no Duplicate values.

Table 1:First Few rows of the Dataset:

|            | Shoe_Sales |
|------------|------------|
| YearMonth  |            |
| 1980-01-01 | 85         |
| 1980-02-01 | 89         |
| 1980-03-01 | 109        |
| 1980-04-01 | 95         |
| 1980-05-01 | 91         |
| 1980-06-01 | 95         |
| 1980-07-01 | 96         |
| 1980-08-01 | 128        |
| 1980-09-01 | 124        |
| 1980-10-01 | 111        |

Table 2:Last few rows of the dataset

|            | Shoe_Sales |
|------------|------------|
| YearMonth  |            |
| 1995-03-01 | 188        |
| 1995-04-01 | 195        |
| 1995-05-01 | 189        |
| 1995-06-01 | 220        |
| 1995-07-01 | 274        |

|            | Shoe_Sales | Year | Month |
|------------|------------|------|-------|
| YearMonth  |            |      |       |
| 1980-01-01 | 85         | 1980 | 1     |
| 1980-02-01 | 89         | 1980 | 2     |
| 1980-03-01 | 109        | 1980 | 3     |
| 1980-04-01 | 95         | 1980 | 4     |
| 1980-05-01 | 91         | 1980 | 5     |

Table 4:Statistical description of the Dataset

|                   | count | mean   | std   | min    | 25%    | 50%    | <b>75%</b> | max    |
|-------------------|-------|--------|-------|--------|--------|--------|------------|--------|
| <b>Shoe-Sales</b> | 187.0 | 246.0  | 121.0 | 85.0   | 144.0  | 220.0  | 316.0      | 662.0  |
| Year              | 187.0 | 1987.0 | 5.0   | 1980.0 | 1983.0 | 1987.0 | 1991.0     | 1995.0 |
| Month             | 187.0 | 6.0    | 3.0   | 1.0    | 3.0    | 6.0    | 9.0        | 12.0   |
|                   |       |        |       |        |        |        |            |        |

**EDA**Fig 1:Graph of Shoe-Sales Dataset



This is showing how the shoe sales is varying through out the year and months.

Fig 2:Boxplot of the dataset



Fig 3:Yearwise boxplot of shoe sales



The sales increased in the year 1985,1986,1987.

Fig 4:Month wise boxplot



The sales increased during the last few months of the year. Highest sales is in December month.



Fig 5: Graph of monthly sales across year(Pivot Graph)

# **DECOMPOSITION:**

The dataset is decomposed in to additively and multiplicatively

Fig 6 : Additive decomposition of shoe sales dataset



Fig 7:Multiplicative decomposition of shoe sales dataset



Some of the key observations from this analysis:

- a) Trend: 12-months MA is not linear which doesnot shows any trend.
- b) Seasonality: seasonality of 12 months is clearly visible
- c) Irregular Remainder (random): The multiplicative model works as there are no patterns in the residuals

# 3. SPLIT THE DATA INTO TRAINING AND TEST. THE TEST DATA SHOULD START IN 1991.

The Dataset is splitted into test and train set. The test dataset starts from 1991.

Table 5:First few rows of training dataset

|            | <b>Shoe-Sales</b> | Year | Month |
|------------|-------------------|------|-------|
| YearMonth  |                   |      |       |
| 1980-01-01 | 85                | 1980 | 1     |
| 1980-02-01 | 89                | 1980 | 2     |
| 1980-03-01 | 109               | 1980 | 3     |
| 1980-04-01 | 95                | 1980 | 4     |
| 1980-05-01 | 91                | 1980 | 5     |

Table 6:First few rows of the test dataset

|            | <b>Shoe-Sales</b> | Year | Month |
|------------|-------------------|------|-------|
| YearMonth  |                   |      |       |
| 1991-01-01 | 198               | 1991 | 1     |
| 1991-02-01 | 253               | 1991 | 2     |
| 1991-03-01 | 173               | 1991 | 3     |
| 1991-04-01 | 186               | 1991 | 4     |
| 1991-05-01 | 185               | 1991 | 5     |

The Train dataset contains 132 rows and 3 columns

The test dataset contains 55 rows and 3 columns

Fig 8:Training data and Test Data Graph



4. BUILD VARIOUS EXPONENTIAL SMOOTHING MODELS ON THE TRAINING DATA AND EVALUATE, THE MODEL USING RMSE ON THE TEST DATA. OTHER MODELS SUCH AS REGRESSION, NAÏVE FORECAST MODELS, SIMPLE AVERAGE MODELS ETC. SHOULD ALSO BE BUILT ON THE TRAINING DATA AND CHECK THE PERFORMANCE ON THE TEST DATA USING RMSE. (PLEASE DO TRY TO BUILD AS MANY MODELS AS POSSIBLE AND AS MANY ITERATIONS OF MODELS AS POSSIBLE WITH DIFFERENT PARAMETERS.)

# 1)Simple Exponential Smoothing

Table 7: First few forecast after simple exponential smoothing

| 1991-01-01 | 420.229857 |
|------------|------------|
| 1991-02-01 | 420.229857 |
| 1991-03-01 | 420.229857 |
| 1991-04-01 | 420.229857 |
| 1991-05-01 | 420.229857 |





### **RMSE**

SES RMSE: 196.404836419672 SES RMSE (calculated using statsmodels): 196.404836419672

# 2) Double Exponential Smoothing

# Table 8:First few rows of the dataset after prediction

| 1991-01-01 | 422.870987 |
|------------|------------|
| 1991-02-01 | 425.397576 |
| 1991-03-01 | 427.924166 |
| 1991-04-01 | 430.450755 |
| 1991-05-01 | 432.977344 |

Fig 10: Alpha=0.594,Beta=0.00027:Double Exponential Smoothing predictions on Test Set



DES RMSE: 266.16120808183047

# 3)Triple Exponential Smoothing- Holt-Winters - ETS(A, M, M) - Holt Winter's linear method with additive error and seasonal

## Table 9:First few rows of the TES Prediction

1991-01-01 219.083658 1991-02-01 213.816321 1991-03-01 246.658224 1991-04-01 267.260236 1991-05-01 287.719744

Fig 11: Alpha=0.5707, Beta=0.0001, Gamma=0.2937: Triple Exponential Smoothing predictions on Test Set



# **RMSE**

TES RMSE: 128.99252592312354

# 4) Triple Exponential Smoothing- Holt-Winters - ETS(A, M, M) - Holt Winter's linear method with multiplicative error and seasonal

# **Table 10:First few prediction**

| 1991-01-01 | 261.342543 |
|------------|------------|
| 1991-02-01 | 243.085370 |
| 1991-03-01 | 256.996702 |
| 1991-04-01 | 270.198135 |
| 1991-05-01 | 267.375606 |

Fig 12: Alpha=0.5711,Beta=0.00014,Gamma=0.2029:Triple Exponential Smoothing predictions on Test Set

Simple,Double and Triple Exponential Smoothing Predictions

Train



TES am RMSE: 83.734048494837

# 5)Linear Regression

For this particular linear regression, we are going to regress the 'Shoe Sales' variable against the order of the occurrence. For this we need to modify our training data before fitting it into a linear regression.

Table 11:First few predictions

|            | <b>Shoe-Sales</b> | Year | Month | time |
|------------|-------------------|------|-------|------|
| YearMonth  |                   |      |       |      |
| 1991-01-01 | 198               | 1991 | 1     | 133  |
| 1991-02-01 | 253               | 1991 | 2     | 134  |
| 1991-03-01 | 173               | 1991 | 3     | 135  |
| 1991-04-01 | 186               | 1991 | 4     | 136  |
| 1991-05-01 | 185               | 1991 | 5     | 137  |

Fig 13:Linear Regression



For RegressionOnTime forecast on the Test Data, RMSE is 266.276

# 6) Naïve Forecasting

For this particular naive model, we say that the prediction for tomorrow is the same as today and the prediction for day after tomorrow is tomorrow and since the prediction of tomorrow is same as today, therefore the prediction for day after tomorrow is also today.

Table 12:Naïve forecast first few rows

| 71 |
|----|
| 71 |
| 71 |
| 71 |
| 71 |
|    |

Fig 14:Naïve forecast



For RegressionOnTime forecast on the Test Data, RMSE is 245.121

# 7)Simple Average

For this particular simple average method, we will forecast by using the average of the training values.

Table 13:First few rows of Simple Average

|            | <b>Shoe-Sales</b> | Year | Month | mean_forecast |
|------------|-------------------|------|-------|---------------|
| YearMonth  |                   |      |       |               |
| 1991-01-01 | 198               | 1991 | 1     | 250.575758    |
| 1991-02-01 | 253               | 1991 | 2     | 250.575758    |
| 1991-03-01 | 173               | 1991 | 3     | 250.575758    |
| 1991-04-01 | 186               | 1991 | 4     | 250.575758    |
| 1991-05-01 | 185               | 1991 | 5     | 250.575758    |

Fig 15:Simple Average Prediction



For Simple Average forecast on the Test Data, RMSE is 63.985

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

# **CHECKING FOR STATIONARITY**

Checking for Stationarity using Augmented Dickey-Fuller.

DF test statistic is -1.717 DF test p-value is 0.4222

Here p value is more than 0.05 which means the test series is non stationary. So logarithmic transformation is done to make the time series stationary.



# 8) Moving Average Model

Table 14:Moving Average result

| SARIMAX Results                         |        |                                         |       |               |         |         |
|-----------------------------------------|--------|-----------------------------------------|-------|---------------|---------|---------|
| ======================================= | ====== | ======================================= | ===== | -=======      | ======= | ======  |
| Dep. Variable:                          |        | Shoe-Sales                              | No.   | Observations: |         |         |
| Model: 109.609                          | AR     | IMA(1, 0, 0)                            | Log   | Likelihood    |         |         |
| Date: 213.217                           | Wed,   | 29 Nov 2023                             | AIC   |               |         | -       |
| Time: 204.569                           |        | 19:31:01                                | BIC   |               |         | -       |
| Sample: 209.703                         |        | 01-01-1980                              | HQIC  |               |         | -       |
|                                         |        | - 12-01-1990                            |       |               |         |         |
| Covariance Type:                        |        | opg                                     |       |               |         |         |
| =                                       |        |                                         | -==== |               |         | ======= |
| =                                       |        |                                         |       |               |         |         |
| 0.975]                                  | coef   | std err                                 | Z     | P> z          | [0.025  |         |
| -                                       |        |                                         |       |               |         |         |

| const           | 2.3286 | 0.086 | 27.006 | 0.000 | 2.160 |
|-----------------|--------|-------|--------|-------|-------|
| ar.L1<br>0.981  | 0.9097 | 0.037 | 24.880 | 0.000 | 0.838 |
| sigma2<br>0.013 | 0.0110 | 0.001 | 8.837  | 0.000 | 0.009 |

# RMSE: The Root Mean Squared Error of our forecasts is 92.14

Fig 17:



# 9)ARMA Forecast

# Table 15:ARMA result

### SARIMAX Results \_\_\_\_\_\_ Dep. Variable: Shoe-Sales No. Observations: 132 Model: ARIMA(1, 0, 2) Log Likelihood 114.838 Wed, 29 Nov 2023 Date: AIC 219.677 19:31:09 BIC Time: 205.263

| Sample: 213.819                                                |                                                  | 01-01-19                                  | _                                             |                                           |                                             | -      |
|----------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------------|---------------------------------------------|--------|
| Covariance Typ                                                 | oe:                                              |                                           | opg                                           |                                           |                                             |        |
| =                                                              |                                                  |                                           |                                               |                                           |                                             |        |
| 0.975]                                                         | coef                                             | std err                                   | z                                             | P> z                                      | [0.025                                      |        |
| - const 2.602 ar.L1 1.021 ma.L1 0.107 ma.L2 0.014 sigma2 0.012 | 2.3101<br>0.9783<br>-0.2786<br>-0.1992<br>0.0101 | 0.149<br>0.022<br>0.088<br>0.095<br>0.001 | 15.504<br>44.433<br>-3.173<br>-2.106<br>9.015 | 0.000<br>0.000<br>0.002<br>0.035<br>0.000 | 2.018<br>0.935<br>-0.451<br>-0.385<br>0.008 | -<br>- |

The Root Mean Squared Error of our forecasts is 100.861

Fig 18:ARMA Forecast



# 6. BUILD AN AUTOMATED VERSION OF THE ARIMA/SARIMA MODEL IN WHICH THE

PARAMETERS ARE SELECTED USING THE LOWEST AKAIKE INFORMATION CRITERIA (AIC) ON THE

# TRAINING DATA AND EVALUATE THIS MODEL ON THE TEST DATA USING RMSE.

# 10) Automated ARIMA forecast

## Table 16:Automated ARIMA result

|                             | SARIMAX Results                        |              |           |               |         |         |
|-----------------------------|----------------------------------------|--------------|-----------|---------------|---------|---------|
| =<br>Dep. Varia             | ====================================== |              |           | Observations: |         | ======= |
| 132<br>Model:<br>743.244    |                                        | ARIMA(1, 1,  | 1) Log    | Likelihood    |         | -       |
| Date:<br>1492.487           | We                                     | d, 29 Nov 20 | 023 AIC   |               |         |         |
| Time: 1501.113              |                                        | 19:31        | :12 BIC   |               |         |         |
| Sample: 1495.992            |                                        | 01-01-1      | 980 HQIC  |               |         |         |
| Covariance                  | Type.                                  | - 12-01-1    | 990<br>pg |               |         |         |
|                             | ==========                             |              |           |               |         | ======= |
| =                           | coef                                   | std err      | Z         | P> z          | [0.025  |         |
| 0.975]                      |                                        |              |           |               |         |         |
| _                           |                                        |              |           |               |         |         |
| ar.L1<br>0.687              | 0.4699                                 | 0.111        | 4.235     | 0.000         | 0.252   |         |
| ma.L1<br>0.701              | -0.8347                                | 0.068        | -12.261   | 0.000         | -0.968  | -       |
| sigma2<br>5739.015          | 4944.0868                              |              |           |               |         |         |
| ======                      |                                        | =======      | =======   | ========      | ======= | ======= |
| Ljung-Box<br>57.30          | (L1) (Q):                              |              | 0.05      | Jarque-Bera   | (JB):   |         |
| Prob(Q): 0.00               |                                        |              | 0.83      | Prob(JB):     |         |         |
| Heterosked                  | asticity (H):                          |              | 12.81     | Skew:         |         |         |
| 0.01<br>Prob(H) (tr<br>6.24 | wo-sided):                             |              | 0.00      | Kurtosis:     |         |         |
| ======                      |                                        | =======      | =======   | ========      |         | ======= |
| Warnings.                   |                                        |              |           |               |         |         |

# Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

# Table 17:Predicted result first few dataset(automated ARIMA)

1991-01-01 412.252023

| 1991-02-01 | 384.645964 |
|------------|------------|
| 1991-03-01 | 371.673697 |
| 1991-04-01 | 365.577944 |
| 1991-05-01 | 362.713509 |

RMSE for the autofit ARIMA model: 142.82073039239808 MAPE for the autofit ARIMA model: 66.27418450722845

Fig 19: Automated ARIMA forecast



# 11)Automated SARIMA

## Table 18-Automated SARIMA result

|                    |               | SARIMAX Results         |                   |
|--------------------|---------------|-------------------------|-------------------|
|                    |               |                         |                   |
| Dep. Variable:     |               | У                       | No. Observations: |
| Model:<br>-507.955 | SARIMAX(3, 1, | , 1)x(3, 0, [1, 2], 12) | Log Likelihood    |
| Date:<br>1035.910  |               | Wed, 29 Nov 2023        | AIC               |
| Time: 1061.128     |               | 19:41:08                | BIC               |

| Sample: 1046.088           |                |          |         | 0               | HQIC     |         |
|----------------------------|----------------|----------|---------|-----------------|----------|---------|
|                            | _              |          |         | - 132           |          |         |
| Covariance                 | : Type:<br>    |          |         | ========<br>obd |          | ======= |
| =                          |                |          |         |                 |          |         |
| 0.975]                     | coef           | std err  | Z       | P> z            | [0.025   |         |
|                            |                |          |         |                 |          |         |
| -<br>ar.L1                 | 0 2270         | 0 252    | 1 226   | 0.182           | -0.158   |         |
| 0.834                      | 0.3379         | 0.233    | 1.336   | 0.102           | -0.156   |         |
| ar.L2                      | 0.2426         | 0.172    | 1.412   | 0.158           | -0.094   |         |
| 0.580                      | 0 1175         | 0 100    | 1 005   | 0.000           | 0 000    |         |
| ar.L3<br>0.097             | -0.1175        | 0.109    | -1.075  | 0.282           | -0.332   |         |
| ma.L1                      | -0.7392        | 0.299    | -2.472  | 0.013           | -1.325   | _       |
| 0.153                      |                |          |         |                 |          |         |
| ar.S.L12<br>3.055          | 0.8705         | 1.115    | 0.781   | 0.435           | -1.314   |         |
| ar.S.L24                   | 0.2240         | 1.461    | 0.153   | 0.878           | -2.640   |         |
| 3.088                      |                |          |         |                 |          |         |
| ar.S.L36<br>0.600          | -0.0394        | 0.326    | -0.121  | 0.904           | -0.679   |         |
| ma.S.L12                   | -0.6012        | 1.062    | -0.566  | 0.571           | -2.683   |         |
| 1.481                      |                |          |         |                 |          |         |
| ma.S.L24<br>1.908          | -0.3990        | 1.177    | -0.339  | 0.735           | -2.706   |         |
|                            | 2919.7516      | 0.000    | 1.4e+07 | 0.000           | 2919.751 |         |
| 2919.752                   |                |          |         |                 |          |         |
| =======                    |                | ======== |         | ========        |          | ======= |
| Ljung-Box<br>5.74          | (L1) (Q):      |          | 0.02    | Jarque-Bera     | (JB):    |         |
| Prob(Q):                   |                |          | 0.90    | Prob(JB):       |          |         |
|                            | lasticity (H): |          | 1.09    | Skew:           |          |         |
| 0.20<br>Prob(H) (t<br>4.16 | two-sided):    |          | 0.81    | Kurtosis:       |          |         |
| ========                   |                | ======== |         | ========        |          | ======= |

# Warnings:

=====

- $\[1\]$  Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 6.18e+23. Standard errors may be unstable.

Fig 20:Automated SARIMA result graph



RMSE automated SARIMA is 90.40430459490653

# 7. BUILD A TABLE (CREATE A DATA FRAME) WITH ALL THE MODELS BUILT ALONG WITH THEIR

CORRESPONDING PARAMETERS AND THE RESPECTIVE RMSE VALUES ON THE TEST DATA.

|                                                                  | RMSE       |
|------------------------------------------------------------------|------------|
| Alpha=0.605,SES                                                  | 196.404836 |
| Alpha=0.594,Beta=0.00027,DES                                     | 266.161208 |
| Alpha=0.5707,Beta=0.0001,Gamma=0.2937,TES(additive error)        | 128.992526 |
| Alpha=0.5711,Beta=0.00014,Gamma=0.2029:TES(multiplicative error) | 83.734048  |
| RegressionOnTime                                                 | 266.276472 |
| Naive Model                                                      | 245.121306 |
| SimpleAverageModel                                               | 63.984570  |
| Best MA Model : AR(1,0,0)                                        | 92.140047  |
| (1,1,3),(3,0,3,12),Auto_SARIMA                                   | 90.404305  |

From this consolidated result We can see that Simple Average model has the lowest RMSE value. It is the best model to predict for shoe sales .

8.BASED ON THE MODEL-BUILDING EXERCISE, BUILD THE MOST OPTIMUM MODEL(S) ON THE COMPLETE

DATA AND PREDICT 12 MONTHS INTO THE FUTURE WITH APPROPRIATE CONFIDENCE INTERVALS/BANDS.

Table 19:Prediction using Simple Average Model

|            | Shoe-Sales | mean_forecast |
|------------|------------|---------------|
| 1994-08-01 | NaN        | 250.575758    |
| 1994-09-01 | NaN        | 250.575758    |
| 1994-10-01 | NaN        | 250.575758    |
| 1994-11-01 | NaN        | 250.575758    |
| 1994-12-01 | NaN        | 250.575758    |
| 1995-01-01 | NaN        | 250.575758    |
| 1995-02-01 | NaN        | 250.575758    |
| 1995-03-01 | NaN        | 250.575758    |
| 1995-04-01 | NaN        | 250.575758    |
| 1995-05-01 | NaN        | 250.575758    |
| 1995-06-01 | NaN        | 250.575758    |
| 1995-07-01 | NaN        | 250.575758    |

# RECOMMENDATIONS

When the sales is lower then it is off season and When the sales is higher then it is season

Discount should be added in the off season to increase the sales.

More and more new models should be introduced during the season of sales.