Réponses du projet

2. Problème.

(a) Le problème associé à (3) admet la formulation variationnelle suivante

$$u \in \mathcal{H}_0^1(\Omega)$$
 tel que $a(u, v) = \ell(v), \quad \forall v \in \mathcal{H}_0^1(\Omega)$
avec $a(u, v) := \int_{\Omega} \mu \nabla u^\top \nabla \bar{v} + u \bar{v} dx$
 $\ell(v) := \int_{\Omega} f \bar{v} dx.$

3. Second membre.

(b)
$$f$$
 admet l'expression $f = u - \left(\mu \left(\frac{\partial^2 u_{ex}}{\partial x^2} + \frac{\partial^2 u_{ex}}{\partial y^2}\right) + \frac{\partial u_{ex}}{\partial x} \frac{\partial \mu}{\partial x} + \frac{\partial u_{ex}}{\partial y} \frac{\partial \mu}{\partial y}\right)$.

4. Résolution.

(b) Solution numérique u_h et erreur associé $u_h-\Pi_h u_{ex}$ pour un maillage uniforme, avec $L_x=10,\,L_y=5,\,N_x=150$ et $N_y=75.$

FIGURE 1 – Pour $\alpha = 1$

FIGURE 2 – Pour $\alpha = 2/3$

(c) Pour un domaine identique à la question précédente et en faisant varier h, on obtient pour $\alpha=1$ une convergence en $O(n^{1.5})$ en norme $L^2(\Omega)$ et $O(n^2)$ en norme $H^1(\Omega)$. En revanche, pour $\alpha=2/3$ on obtient respectivement des convergences en $O(n^{0.6})$ et $O(n^{0.2})$.

FIGURE 3 – Convergence de l'erreur $||u_h - \Pi_h u_{ex}||_V / ||\Pi_h u_{ex}||_V$, $V = L^2(\Omega)$, $H^1(\Omega)$