Noise Robust Speech Recognition Using Feature Compensation Based on Polynomial Regression of Utterance SNR Xiaodong Cui, Abeer Alwan

Reporter:邱聖權

Professor:陳嘉平

Introduction

- A feature compensation algorithm based on polynomial regression of utterance SNR is introduced.
- The bias between clean and noisy features is approximated by a set of polynomials with respect to utterance SNR.

Feature extraction of noisy speech

The power of noisy speech is the sum of power of clean speech and noise in mel spectrum domain:

$$Y_k^{\rm lin} = X_k^{\rm lin} + N_k^{\rm lin},$$

where k is filter number, Y_k^{lin} is noisy feature,

 X_k^{lin} is clean feature, N_k^{lin} is noise feature.

The log mel spectrum domain:

$$Y_k^{\log} = X_k^{\log} + \log\left(1 + \frac{N_k^{\sin}}{X_k^{\sin}}\right) = X_k^{\log} + \log\left(1 + \frac{1}{SNR_k}\right) = X_k^{\log} + g_k$$

$$g_k = \log \left(1 + \frac{1}{SNR_k} \right)$$
 is a function of utterance SNR.

Feature extraction of noisy speech

DCT:

$$Y_{n}^{\text{cep}} = \sum_{k} d_{nk} Y_{k}^{\log} = \sum_{k} d_{nk} (X_{k}^{\log} + g_{k})$$

$$= \sum_{k} d_{nk} X_{k}^{\log} + \sum_{k} d_{nk} g_{k} = X_{n}^{\text{cep}} + f_{n}(SNR),$$

where d_{nk} is DCT coefficient.

Bias approximation by SNR polynomials

- The bias between clean and noisy feature is a nonlinear function of SNR.
- This nonlinear function is approximated by a polynomial of order P regression on SNR.

$$Y_n^{\text{cep}} \approx X_n^{\text{cep}} + \sum_{j=0}^P \widetilde{c}_{jn} (SNR)^j$$

where \tilde{c}_{jn} 's are the coefficients for the *j*th order items of the *n*th cepstrum.

The clean speech feature can be approximated by:

$$X_n^{\text{cep}} \approx Y_n^{\text{cep}} - \sum_{j=0}^P \tilde{c}_{jn} (SNR)^j$$

Estimation of polynomial coefficients

The probability density function of observation o_t from state i is computed as:

$$p(\boldsymbol{o}_t \mid s_t = i) = \sum_k \alpha_{ik} b_{ik}(\boldsymbol{o}_t),$$
 where $b_{ik}(\boldsymbol{o}_t) \approx N(\boldsymbol{o}_t; \mu_{ik}, \Sigma_{ik})$ is the k th multivariate Gaussian mixture in state i with weight α_{ik} , μ_{ik} and Σ_{ik} are mean vector and covariance matrix.

Probability density function of compensated feature:

$$p(\boldsymbol{o}_t \mid s_t = i) = \sum_k \alpha_{ik} N \left(\boldsymbol{o}_t - \sum_{j=0}^P \boldsymbol{c}_{ikj} \boldsymbol{\eta}^j; \boldsymbol{\mu}_{ik}, \boldsymbol{\Sigma}_{ik} \right),$$

 o_t is the noisy feature, η is the utterance SNR,

 c_{ikj} is a vector with the same dimension as the feature vector which means each component in the feature vector has its own regression polynomial with coefficients \tilde{c}_{ikin} .

Estimation of polynomial coefficients

- Maximum likelihood estimation by EM
- Auxiliary function

$$Q_b(\lambda; \overline{\lambda}) = \sum_{r=1}^R \sum_{i \in \Omega_s} \sum_{k \in \Omega_m} \sum_{t=1}^{T^r} \gamma_t^r(i, k) \cdot \log b_{ik}(\boldsymbol{o}_t^r),$$

where R is utterance number of adaptation data,

 T^r is the frame number of utterance r,

$$\Omega_{\rm s} = \{1, 2, ..., N\}$$
 is state set, $\Omega_{\rm m} = \{1, 2, ..., m\}$ is Gaussian mixture set,

$$\gamma_t^r(i,k) = p(s_t^r = i, \xi_t^r = k \mid O^r, \overline{\lambda})$$
 is the posterior probability of

state *i* mixture *k* time *t* given the *r*th observation $O^r = \{o_1^r, \dots o_{r}^r\}$.

Estimation of polynomial coefficients

$$\frac{\partial Q_b(\lambda; \overline{\lambda})}{\partial \boldsymbol{c}_{ikl}} = \frac{\partial}{\partial \boldsymbol{c}_{ikl}} \sum_{r=1}^R \sum_{i=1}^N \sum_{k=1}^M \sum_{r=1}^{T^r} \gamma_t^r(i, k) \cdot \log N \left(\boldsymbol{o}_t^r - \sum_{j=0}^P \boldsymbol{c}_{ikj}(\boldsymbol{\eta}^r)^j; \boldsymbol{\mu}_{ik}, \boldsymbol{\Sigma}_{ik} \right) \\
= \frac{\partial}{\partial \boldsymbol{c}_{ikl}} \sum_{r=1}^R \sum_{t=1}^{T^r} \gamma_t^r(i, k) \times \left[-\frac{1}{2} \left(\boldsymbol{o}_t^r - \sum_{j=0}^P \boldsymbol{c}_{ikj}(\boldsymbol{\eta}^r)^j - \boldsymbol{\mu}_{ik} \right)^T \times \boldsymbol{\Sigma}_{ik}^{-1} \times \left(\boldsymbol{o}_t^r - \sum_{j=0}^P \boldsymbol{c}_{ikj}(\boldsymbol{\eta}^r)^j - \boldsymbol{\mu}_{ik} \right) \right] \\
= \sum_{r=1}^R \sum_{t=1}^{T^r} \gamma_t^r(i, k) \cdot \boldsymbol{\Sigma}_{ik}^{-1} \cdot \left(\boldsymbol{o}_t^r - \sum_{j=0}^P \boldsymbol{c}_{ikj}(\boldsymbol{\eta}^r)^j - \boldsymbol{\mu}_{ik} \right) \cdot (\boldsymbol{\eta}^r)^l = 0, \quad l = 0, 1, \dots, P$$

$$\sum_{j=0}^{P} \left[\sum_{r=1}^{R} \sum_{t=1}^{T^{r}} \gamma_{t}^{r}(i,k) \cdot \Sigma_{ik}^{-1} \cdot (\eta^{r})^{j+l} \right] c_{ikj} = \sum_{r=1}^{R} \sum_{t=1}^{T^{r}} \gamma_{t}^{r}(i,k) \cdot \Sigma_{ik}^{-1} \cdot (o_{t}^{r} - \mu_{ik}) \cdot (\eta^{r})^{j},$$

$$l = 0,1,\ldots, P$$

Polynomial order

TABLE I
AVERAGE WORD RECOGNITION ACCURACY (%) FOR SETS A AND B AN
AURORA 2 WITH RESPECT TO POLYNOMIAL ORDER. THE POLYNOMIALS
ARE STATE TIED AND ESTIMATED FROM 300 UTTERANCES

Data Sets	Polynomial Order									
	0	1	2	3						
Set A	83.0	83.5	83.8	83.7						
Set B	83.1	83.5	83.9	83.4						

Estimated bias and EM iteration number

Fig. 9. Left panel shows estimated global polynomials as a function of SNR and iteration number. The right panel shows average likelihood of 50 utterances as a function of the number of EM iterations. Both panels use the energy feature component (E) for the airport noise data.

In clean condition, the accuracy is decreased.

TABLE II

Word Recognition Accuracy (%) Averaged Over All Clean Conditions in the Aurora 2 Database. Feature Compensation Is Performed With Ten, 100, and 200 Utterances. Clearly, Using FC With Clean Data Degrades Performance

Number of utterances	0	10	100	200
Accuracy(%)	99.0	98.8	97.4	97.6

 Therefore, in the decoding stage of the following experiments on the Aurora 2 database, no compensation is performed for SNRs higher than 20 dB.

Experimental results of Aurora2 (clean training)

TABLE III

Word Recognition Accuracy (%) for FC and MLLR for 4 Types of Noise in Set A of the Aurora 2 Database. MLLR1 Refers to the Case Where the MLLR Transformation Matrices Are Estimated Across All SNR Levels, While MLLR2 Refers to MLLR Transformation Matrices Being SNR-Cluster Specific. Baseline MFCC Results Are Presented as Adaptation With Zero Utterances

		Number of Utterances										
Noise Type	Algorithm	0	5	10	20	50	100	150	200	250	300	
subway	MLLR1	74.5	73.2	76.0	75.5	75.8	81.2	82.8	83.6	83.5	84.0	
	MLLR2	74.5	70.4	77.5	77.5	78.3	81.8	81.9	82.7	83.5	82.4	
	FC	74.5	79.0	78.9	79.7	81.5	84.0	84.8	85.4	87.2	87.4	
	MLLR1	58.1	67.0	68.9	73.0	75.5	74.1	76.6	76.0	76.5	78.3	
babble	MLLR2	58.1	70.7	64.5	69.4	74.1	73.6	74.8	75.4	76.9	75.8	
	FC	58.1	71.4	71.8	74.9	81.6	83.7	84.7	85.2	85.9	86.5	
	MLLR1	70.0	70.9	70.0	73.5	75.9	77.8	78.9	80.4	79.8	80.5	
car	MLLR2	70.0	69.5	70.6	75.3	81.7	79.9	80.6	79.7	79.3	81.3	
	FC	70.0	71.7	74.5	74.4	77.8	79.6	80.2	81.0	82.9	83.2	
	MLLR1	71.0	73.3	73.9	72.2	72.9	76.9	78.5	79.3	79.5	81.0	
exhibition	MLLR2	71.0	69.5	75.2	74.7	79.7	76.5	77.1	76.0	74.8	75.4	
	FC	71.0	73.7	76.6	75.6	76.8	80.2	81.5	82.1	84.5	85.4	

TABLE IV
WORD RECOGNITION ACCURACY (%) FOR FC AND MLLR ON 4 TYPES OF
NOISE IN SET B OF THE AURORA 2 DATABASE. SEE Table III CAPTION FOR THE
DEFINITION OF MLLR1 AND MLLR2. BASELINE MFCC RESULTS ARE
PRESENTED AS ADAPTATION WITH ZERO UTTERANCES

		Number of Utterances										
Noise Type	Algorithm	0	5	10	20	50	100	150	200	250	300	
	MLLR1	60.3	70.6	70.3	70.5	76.9	78.8	79.1	79.9	80.6	81.1	
restaurant	MLLR2	60.3	66.3	78.2	75.2	78.7	80.1	80.6	79.9	77.3	79.6	
	FC	60.3	72.0	74.1	75.6	82.9	83.5	86.6	87.1	88.2	88.4	
	MLLR1	67.8	68.7	77.1	74.4	78.8	78.3	80.1	80.2	80.7	82.3	
street	MLLR2	67.8	70.4	69.2	75.7	81.3	82.7	83.4	83.8	78.6	84.2	
	FC	67.8	74.8	75.3	74.6	80.4	82.5	83.2	83.9	84.2	85.1	
	MLLR1	60.9	73.8	75.3	74.2	76.1	78.7	80.5	81.1	81.9	83.1	
airport	MLLR2	60.9	68.5	75.3	75.7	79.5	83.4	84.0	83.8	80.1	84.0	
	FC	60.9	76.1	77.1	78.3	83.4	85.0	86.0	86.9	87.4	88.1	
	MLLR1	62.9	68.3	67.5	71.6	74.6	76.9	77.3	77.3	77.5	79.1	
station	MLLR2	62.9	71.7	75.2	74.7	69.4	80.4	81.1	80.9	75.3	80.7	
	FC	62.9	71.7	76.0	76.0	79.0	81.2	82.0	82.8	83.5	84.4	

Set A of Aurora2

		Number of Utterances										
SNR	Algorithm	0	5	10	20	50	100	150	200	250	300	
	MLLR1	99.0	95.9	96.5	96.5	97.0	97.1	97.2	97.6	97.7	97.2	
clean	MLLR2	99.0	97.8	98.7	98.8	98.7	98.9	98.9	99.0	98.6	98.9	
	FC	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	
	MLLR1	95.3	92.8	94.1	93.5	94.3	95.4	95.7	95.8	95.9	96.2	
20 dB	MLLR2	95.3	92.9	94.2	95.9	94.6	95.0	95.3	95.2	94.5	94.9	
	FC	95.3	96.3	96.4	96.8	96.9	96.6	97.0	97.2	97.0	97.3	
	MLLR1	87.5	86.6	89.0	89.4	89.5	91.8	92.8	92.8	93.1	93.6	
15 dB	MLLR2	87.5	87.9	90.4	91.0	93.1	93.6	94.3	94.5	92.6	94.5	
	FC	87.5	92.4	93.2	93.3	94.4	95.1	95.5	95.8	95.6	95.9	
	MLLR1	67.7	72.5	76.4	78.7	78.9	82.7	84.9	85.1	85.6	87.0	
10 dB	MLLR2	67.7	76.7	80.4	82.4	85.8	86.2	87.4	88.1	83.9	87.8	
	FC	67.7	79.7	80.9	79.5	88.5	90.2	90.8	91.0	91.7	91.8	
	MLLR1	39.5	51.9	52.6	57.7	60.4	63.7	68.8	69.8	70.3	72.8	
5 dB	MLLR2	39.5	41.8	44.2	53.9	62.9	61.6	62.8	61.6	67.2	63.4	
	FC	39.5	51.6	55.6	58.1	66.4	72.6	74.4	75.5	80.0	80.4	
0 dB	MLLR1	17.0	26.8	24.7	25.4	30.0	34.2	36.0	37.9	36.4	39.0	
	MLLR2	17.0	23.1	24.1	27.8	35.5	32.3	32.8	32.5	34.8	33.4	
	FC	17.0	24.7	27.9	30.1	31.3	37.2	40.1	42.1	47.4	49.5	

Set B of Aurora2

SNR Algorith				Number of Utterances										
	Algorithm	0	5	10	20	50	100	150	200	250	300			
	MLLR1	99.0	95.4	96.9	94.9	97.3	97.5	97.5	97.7	97.9	97.5			
clean	MLLR2	99.0	97.6	98.6	98.8	98.7	99.0	99.0	99.1	98.2	99.0			
	FC	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0	99.0			
	MLLR1	92.8	93.7	94.5	92.9	95.3	96.2	96.4	96.4	96.6	96.8			
20 dB	MLLR2	92.8	93.0	94.9	93.8	95.3	96.0	95.8	95.9	95.9	95.9			
	FC	92.8	96.7	97.1	97.2	96.8	97.1	97.3	97.6	97.4	97.7			
	MLLR1	81.3	87.9	90.9	88.1	90.2	92.7	93.2	93.3	93.5	94.3			
15 dB	MLLR2	81.3	89.3	92.6	93.4	93.4	94.9	95.1	94.9	91.6	95.2			
	FC	81.3	93.0	93.0	93.6	95.1	96.0	96.0	96.2	95.9	96.4			
	MLLR1	59.0	74.9	81.9	76.1	78.4	84.2	85.6	85.8	86.4	88.0			
10 dB	MLLR2	59.0	78.7	85.1	86.4	86.1	89.9	90.5	90.5	82.1	90.6			
	FC	59.0	80.0	80.7	82.0	90.8	91.8	92.3	92.5	92.7	92.9			
	MLLR1	31.9	52.7	59.9	54.1	57.9	65.4	67.7	68.4	69.3	72.2			
5 dB	MLLR2	31.9	39.1	50.5	53.9	57.8	69.1	70.8	70.0	64.1	69.4			
	FC	31.9	49.2	54.5	56.7	71.8	76.7	78.0	79.2	80.9	82.0			
	MLLR1	13.7	25.8	26.7	25.2	30.1	33.0	35.1	36.1	37.2	39.6			
0 dB	MLLR2	13.7	17.5	27.1	26.7	32.1	41.2	42.4	42.1	35.2	42.5			
	FC	13.7	20.5	24.6	28.2	34.9	37.7	44.1	46.5	49.0	51.1			

Experimental results of Aurora3 (German)

TABLE VII

Word Recognition Accuracy (%) for FC and MLLR of Static-Tying Schemes Under High-Mismatched (HM), Medium-Mismatched (MM) and Well-Matched (WM) Conditions of the German Part of the Aurora 3 Database. Baseline MFCC Results Are Presented as Adaptation With Zero Utterances

G 11:1		Number of Utterances							
Conditions	Algorithm	0	10	40	70				
НМ	MLLR	74.3	81.6	83.6	85.8				
	FC	74.3	78.8	85.7	86.6				
MM	MLLR	79.1	80.2	79.7	81.1				
	FC	79.1	78.3	81.5	84.4				
WM	MLLR	90.6	90.6	88.8	90.9				
	FC	90.6	91.2	91.0	91.4				