

Radiocommunications

Transposition de fréquence

Principe et applications

Joël Redoutey - 2009

Transposition de fréquence

Le changement de fréquence est une opération fondamentale en radiocommunications. Elle consiste à translater le spectre d'un signal, sans en altérer le contenu, soit vers une fréquence plus basse afin de le traiter plus facilement (down conversion), soit vers un fréquence plus élevée afin de le transmettre par voie hertzienne (up conversion).

Conversion de fréquence

L'opération de changement de fréquence fait appel à un oscillateur local (OL) qui fixe la valeur de la translation en fréquence, à un dispositif mélangeur (mixer) qui effectue la translation et à des filtres pour éliminer les produits indésirables.

Principes de fonctionnement des mélangeurs

- Mélangeur multiplicatif
- Mélangeur non linéaire
- Mélangeur à commutation

Mélangeur multiplicatif

$$X(t) = A\cos \omega t$$

$$Y(t) = B\cos \omega_{OL} t$$
 $S(t) = X(t)Y(t)$

 $S(t) = AB.\cos\omega t.\cos\omega_{OL}t$

$$S(t) = (AB/2) \cos(\omega - \omega_{OL})t + (AB/2) \cos(\omega + \omega_{OL})t$$

Formes d'ondes

Signaux d'entrée

$$X(t) = \cos(2\pi t)$$

$$Y(t) = \cos(10\pi t)$$

Signal de sortie

Propriétés de la conversion de fréquence

En sortie du mélangeur nous obtenons deux signaux dont les fréquences sont la somme et la différence des signaux d'entrée.

La sélection du battement inférieur (infradyne) ou supérieur (supradyne) s'effectue par filtrage.

On notera que la translation de fréquence conserve le spectre du signal incident, la modulation est donc conservée.

Exemple:Récepteur radio FM

Fréquence de l'OL pour recevoir RTL sur 101,4 MHz?

Réception de RTL sur 101,4 MHz

On utilise le battement infradyne Fréquence intermédiaire fi = 10,7 MHz (valeur normalisée) Fréquence à recevoir $f_0 = 101,4$ MHz Fréquence de l'oscillateur local fol=101,4-10,7 = 90,7 MHz

Le battement supradyne (112,1 MHz) est éliminé par le

Sélection des fréquences

Exemple: F=107,7MHz

Fréquence intermédiaire fi = 10,7 MHz (valeur normalisée) Fréquence à recevoir frf = 107,7 MHz (radio trafic autoroutes) Fréquence de l'oscillateur local fol=107,7-10,7 = 97 MHz Fréquence image fim=97 – 10,7 = 86,3 MHz

La fréquence image est très proche du début de la bande à recevoir (bande FM : 88 à 108 MHz) → difficulté de filtrage

Réjection de la fréquence image

Une réjection correcte de la fréquence image nécessite un filtrage avant mélange pour ne laisser parvenir au mélangeur que la bande de fréquences désirée.

Dans certains cas on peut utiliser une fréquence intermédiaire élevée (voire supérieure à la fréquence à recevoir).

L'utilisation d'un mélangeur à réjection de la fréquence image est une solution élégante à ce problème.

Le signal est appliqué à deux voies en quadrature qui sont ensuite sommées

Cas du signal incident utile

Signal RF incident: $V_{i} = V \cos \omega_{i} t$ Oscillateur local : $V_{LO} = \cos(\omega_{LO} t)$.

Battement infradyne : $\omega_i > \omega_{LO}$, soit $(\omega_i - \omega_{LO}) > 0$.

Voie I (en phase) $I(t) = V\cos\omega_i t \cdot \cos\omega_{LO} t = (V/2)[\cos(\omega_i - \omega_{LO})t + \cos(\omega_i + \omega_{LO})t]$

Voie Q (en quadrature) $Q(t) = V\cos\omega_i t \cdot \cos(\omega_{LO} t - 90^\circ)$

 $Q(t) = (V/2)[\cos \{(\omega_i - \omega_{LO})t + 90^\circ\} + \cos \{(\omega_i + \omega_{LO})t - 90^\circ\}]$

Voie Qd (Q déphasée de -90°): Qd(t) = $(V/2)[\cos \{(\omega_i - \omega_{LO})t + 90^{\circ} - 90^{\circ}\} + \cos \{(\omega_i + \omega_{LO})t - 180^{\circ}\}]$ Qd(t) = $(V/2)[\cos (\omega_i - \omega_{LO})t - \cos (\omega_i + \omega_{LO})t]$

Sortie S(t) = I(t) + Qd(t)

 $S(t) = (V/2)[\cos(\omega_i - \omega_{LO})t + \cos(\omega_i + \omega_{LO})t] + (V/2)[\cos(\omega_i - \omega_{LO})t - \cos(\omega_i + \omega_{LO})t]$

 $S(t) = V \cos(\omega_i - \omega_{LO})t$.

On constate qu'il y a annulation du battement supradyne

Cas de la fréquence image

Battement infradyne
$$\Rightarrow (\omega_{im} < \omega_{LO})$$
, $(\omega_{im} - \omega_{LO}) < 0$

$$\begin{split} &I(t) = V cos \omega_{im} t \cdot cos \omega_{LO} t = (V/2) [cos \ (\omega_{im} \text{-} \omega_{LO}) t + cos \ (\omega_{im} \text{+} \omega_{LO}) t \] \\ &I(t) = (V/2) [cos \ (\omega_{LO} \text{-} \ \omega_{im}) t + cos \ (\omega_{im} \text{+} \omega_{LO}) t \] \\ &Q(t) = (V/2) [cos \ \{ (\ \omega_{LO} \text{-} \ \omega_{im}) t \text{-} 90^\circ \} + cos \ \{ (\omega_{im} \text{+} \omega_{LO}) t \text{-} 90^\circ \}] \\ &Qd(t) = (V/2) [cos \ \{ (\ \omega_{LO} \text{-} \ \omega_{im}) t \text{-} 180^\circ \} + cos \ \{ (\omega_{im} \text{+} \omega_{LO}) t \text{-} 180^\circ \}] \\ &Qd(t) = (V/2) [cos \ (\omega_{LO} \text{-} \omega_{im}) t \text{-} cos \ (\omega_{im} \text{+} \omega_{LO}) t \] \\ &S(t) = (V/2) [cos \ (\omega_{LO} \ \omega_{im}) t + cos \ (\omega_{im} \text{+} \omega_{LO}) t \] \\ &+ (V/2) [-cos \ (\omega_{LO} \text{-} \omega_{im}) t \text{-} cos \ (\omega_{im} \text{+} \omega_{LO}) t \] \\ &S(t) = 0 \end{split}$$

Il y a annulation de la fréquence image en sortie.

En configuration infradyne ($f_{OL} < f_{RF}$) il y a annulation:

- du battement supérieur $(f_{OL} + f_{RF})$
- de la fréquence image

Mélange par non linéarité

On peut approximer la caractéristique de l'élément non linéaire par un polynôme du n ^{ème} degré

$$S(t) = Ae(t) + Be^{2}(t) + Ce^{3}(t) + + Ke^{n}(t)$$

Mélange par non linéarité

$$S(t) = Ae(t) + Be2(t) + Ce3(t) + \dots + Ken(t)$$

$$e(t)=x(t)+y(t) = X\cos \omega t + Y\cos \omega_{Ol}t$$

$$\begin{split} S(t) &= AXcos\ \omega t + AY\ cos\ \omega_{Ol}t \\ &+ BX^2\ cos^2\ \omega t + 2\ BXYcos\ \omega t \ .cos\ \omega_{Ol}t \ + B\ Y^2\ cos^2\omega_{Ol}t \\ &+ CX^3\ cos^3\ \omega t + 3CX^2Ycos^2\ \omega t \ .cos\ \omega_{Ol}t \\ &+ CY^3\ cos^3\ \omega_{Ol}t + 3CXY^2cos\ \omega t \ .cos^2\ \omega_{Ol}t + \end{split}$$

En développant on fait apparaître des **produits de conversion** de la forme $\mathbf{k}(\mathbf{X},\mathbf{Y})$ **cos** (\mathbf{m} $\mathbf{\omega}\mathbf{t} \pm \mathbf{n}$ $\mathbf{\omega}_{\mathbf{Ol}}\mathbf{t}$) où \mathbf{m} et \mathbf{n} sont deux entiers $[0, 1, 2, 3, \ldots]$

Exemple

 F_{RF} : 101,4MHz F_{OL} : 90,7MHz Fi:10,7 MHz

En sortie de mélangeur on retrouve les produits suivants:

Premier ordre

 F_{RF} : 101,4MHz F_{OL} : 90,7MHz

Second ordre

 $2 F_{RF} = 202.8 MHz$ $F_{RF} - F_{OL} = 10.7 MHz$

 $2 F_{OL} = 181,4MHz$ $F_{RF} + F_{OL} = 192,1MHz$

Troisième ordre

 $3 F_{RF} = 304,2MHz$ $2F_{RF} - F_{OL} = 112MHz$ $2F_{OL} - F_{RF} = 80MHz$

 $3F_{OL} = 272,1MHz$ $2F_{RF} + F_{OL} = 293,5MHz$ $2F_{OL} + F_{RF} = 282,8MHz$

Nécessité d'un filtrage efficace de la fréquence intermédiaire

Mélangeurs non linéaires

Tout élément non linéaire peut être utilisé comme mélangeur. On utilise fréquemment:

- •Diode (surtout en hyperfréquences)
- •Transistor bipolaire
- •Transistor à effet de champ

Mélangeur sous harmonique

$$Fi = F_{RF} - 2F_{OL}$$
 ou $Fi = 2F_{OL} - F_{RF}$

Très utilisé en hyperfréquences

Mélangeur à commutation

Le signal RF est alternativement connecté à la sortie en phase puis en opposition de phase, au rythme de l'oscillateur local.

$$S_{LO}(t) = (4/\pi)[\sin\omega_{LO}t - (1/3).\sin3\omega_{LO}t + (1/5)\sin5\omega_{LO}t - \dots]$$

$$S_{RF}(t) = A.\sin\omega_{RF}t \qquad S_{IF}(t) = S_{RF}(t).S_{LO}(t)$$

$$\begin{split} S_{IF}(t) &= (2A/\pi)[\text{cos}(\omega_{RF} - \omega_{LO})t - \text{cos}(\omega_{RF} + \omega_{LO})t - (1/3)(\text{cos}(\omega_{RF} - 3\omega_{LO})t - \text{cos}(\omega_{RF} + 3\omega_{LO})t) + (1/5)(\text{cos}(\omega_{RF} - 5\omega_{LO})t - \text{cos}(\omega_{RF} + 5\omega_{LO})t - \text{cos}(\omega_{RF} + 3\omega_{LO})t) + ...] \end{split}$$

Formes d'ondes

INPUTS AND OUTPUT FOR IDEAL SWITCHING MIXER FOR $f_{RF} = 11 MHz$, $f_{LO} = 10 MHz$

RF

LO

Horizontal: 200ns/div.

IF

Spectre d'un mélange à commutation

OUTPUT SPECTRUM FOR SWITCHING MIXER FOR $f_{RF} = 11MHz$ AND $f_{LO} = 10MHz$

Le spectre se compose des battements entre la fréquence d'entrée ω_{RF} et les harmoniques impairs de la fréquence de l'oscillateur local ω_{LO} .

Mélangeur équilibré à diodes

L'oscillateur local (OL) rend alternativement conductrices les diodes D1 et D2. Quand D1 conduit, D2 est bloquée et vice versa. La puissance de l'OL doit être suffisante.

Mélangeur équilibré à diodes

Alternance positive de l'OL $V_O = V_{LO} + Vi$ Alternance négative de l'OL $V_O = V_{LO}$ - Vi

La tension de l'OL est toujours présente en sortie: Nécessité d'un filtrage efficace

Formes d'ondes

Signaux d'entrée

Fol = 1500

Frf = 150

En hyperfréquences : Rat race mixer

Mélangeur en anneau

Alternance positive de l'OL

Maille du haut $V_{LO} = -Vi + V_{O}$ Maille du bas $-V_{LO} = -Vi + V_{O}$

$$V_0 = V_i$$

Alternance négative de l'OL

D1 et D2 sont Bloquées

Maille du haut

$$-V_{LO} = Vi + V_{O}$$

Maille du bas

$$V_{LO} = Vi + V_{O}$$

$$V_{O} = -V_{i}$$

Mélangeur en anneau

Signal d'entrée

$$Vi(t) = Vsin\omega_{RF}t$$

Signal de sortie

$$\begin{split} V_O &= \text{-} (2V/\pi) [\text{cos}(\omega_{RF} \text{-} \omega_{LO})t \text{-} \text{cos}(\omega_{RF} + \omega_{LO})t \text{-} (1/3)(\text{cos}(\omega_{RF} \text{-} 3\omega_{LO})t \text{-} \text{cos}(\omega_{RF} \text{+} 3\omega_{LO})t \text{-} (1/5)(\text{cos}(\omega_{RF} \text{-} 5\omega_{LO})t \text{-} \text{cos}(\omega_{RF} \text{+} 5\omega_{LO})t \text{-} \text{cos}(\omega_{RF} \text{+} 5\omega_{LO})t \text{-} \text{cos}(\omega_{RF} \text{+} 3\omega_{LO})t \text{-} \text{cos}(\omega_$$

Le spectre se compose uniquement des battements entre la fréquence d'entrée ω_{RF} et les harmoniques impairs de la fréquence de l'oscillateur local ω_{LO} .

Formes d'ondes

Signaux d'entrée

$$F_{OL} = 1000$$

$$F_{RF} = 100$$

Signal de sortie

Mélangeur actif : la cellule de Gilbert

Le circuit se compose d'un amplificateur différentiel (Q1-Q2), recevant le signal d'entrée (RF), dont les collecteurs sont commutés au rythme de l'oscillateur local.

Quand Q3 et Q6 conduisent, Q4 et Q5 sont bloqués et vice versa.

Grandeurs caractéristiques des mélangeurs

- **Perte de conversion** $Lc(dB) = 10 log(P_{RF}/P_{fi}) = P_{RF}(dBm) P_{fi}(dBm)$
- Isolations entre les accès $I_{OL/RF} = P_{RF}(dBm) P_{OL}(dBm)$
- Réjections des signaux en sortie (OL, fréquence image,...)
- Facteur de bruit
- Linéarité et dynamique

Point de compression à -1 dB

Les mélangeurs sont sujets au phénomène de saturation de la puissance de sortie pour de fortes puissances d'entrée.

Le point de compression à 1dB caractérise la limite du fonctionnement linéaire du circuit en fonctionnement monoporteuse (un seul signal RF).

Distorsion d'intermodulation

A cause de la non linéarité du mélangeur, le spectre de sortie comprend un grand nombre de raies dont les fréquences sont:

 $\mathbf{m.F_{OL}} \pm \mathbf{n_1.f_1} \pm \mathbf{n_2.f_2}$ avec $(\mathbf{m, n_1, n_2})$ entiers positifs

Les fréquences issues du battement entre les fréquences f_1 et f_2 sont appelées produits d'intermodulation d'ordre (n_1+n_2)

Les produits d'intermodulation d'ordre impair sont les plus gênants, notamment ceux du troisième ordre.

Produits d'intermodulation du troisième ordre (IM3)

Si f1 et f2 sont proches, leurs produits d'intermodulation du troisième ordre 2f1-f2 et 2f2-f1 tombent souvent dans la bande utile, ce qui rend leur élimination difficile.

Exemple: Bande FM à Marseille (source www.csa.fr)

RTL: f1=101.4MHz Radio classique: f2=100.9MHz

2f1-f2= 101.9MHz 2f2-f1 = 100.4MHz

Point d'interception du troisième ordre

On montre que l'amplitude des raies d'intermodulation d'ordre 3 croît 3 fois plus vite que le signal utile

Le point d'interception du troisième ordre IP3 caractérise la linéarité du dispositif.

Mélangeur en anneau vs Cellule de Gilbert

Mélangeur en anneau Cellule de Gilbert

Avantages

Très grande dynamique Facilement intégrable

Bonne linéarité Faible niveau d'OL

Gain de conversion

Inconvénients

Fort niveau d'OL Facteur de bruit

Perte de conversion Faible dynamique

Non intégrable Linéarité médiocre

Télévision hertzienne analogique

Exemple: canal 29 UHF (TF1)

Porteuse image: 535,25 MHz

Porteuse son: 541,75 MHz.

Récepteur de télévision

Réception de la télévision

Récepteur FI Son 39,2 MHz

canal

Porteuse vidéo:

Porteuse son

FI vidéo 32,7 MHz

Marseille	Cassis
(TF1)	(Canal +)
29 UHF	4 VHF
535,25 MHz	63,75 MHz
541,75 MHz	57,25 MHz

Fréquence de l'OL et fréquences images vidéo et son dans les deux cas ?

Emetteur de l'Etoile

