${\bf Calculus}$

Learn Calculus By Example

Armen Hayrapetian

Master of Mathematics

Department of Mathematical Science Sharif University of Technology June 2023

Contents

1	Seq	uences	
	1.1	Limit of a Sequence	
	1.2	Monotonic Sequences	11
	1.3	Cauchy Sequences	13
	1.4	Recurrent Sequences	15
	1.5	Sequential Characterization of Limits of Functions	17

4 CONTENTS

Chapter 1

Sequences

1.1 Limit of a Sequence

- We say that $\{a_n\}$ converges to a limit l, and we write $\lim_{n\to\infty} a_n = l$ or $a_n \to l$ if, for every $\epsilon > 0$, there is a number M such that $|a_n l| < \epsilon$ for all n > M.
- We write $\lim_{n\to\infty} a_n = +\infty$ if for each N>0 we can find M>0 (depends on N) such that $a_n>N$ for all n>M. We say a_n diverges to $+\infty$
- We write $\lim_{n\to\infty} a_n = -\infty$ if for each N > 0 we can find M > 0 (depends on N) such that $a_n < -N$ for all n > M. We say a_n diverges to $-\infty$.
- Oscillated sequences such $\{(-1)^n\}$ are divergent.

Theorem 1 (Limit is Unique) If a sequence $\{a_n\}$ has a limit, then this limit is unique.

Example 1.1.1

Using definition of the limit of sequence (ϵ and $M(\epsilon)$ language) prove that:

1.
$$\lim_{n\to\infty} \frac{2n^2-1}{n^2+2} = 2$$

3.
$$\lim_{n \to \infty} \frac{-n^2 + 6\sqrt{n} + 3}{n+2} = -\infty$$

2.
$$\lim_{n \to \infty} \frac{n+4\sqrt{n}+3}{\sqrt{n}+2} = +\infty$$

4.
$$\lim_{n\to\infty} 3 + \cos(n\pi) = \text{does not exist.}$$

Solution

1. We should prove, for all $\epsilon > 0$ there is $M \in \mathbb{N}$ such that $n > M \Rightarrow \left| \frac{2n^2 - 1}{n^2 + 2} - 2 \right| < \epsilon$

$$\left|\frac{-5}{n^2+2}\right|<\epsilon\Rightarrow\frac{5}{n^2+2}<\epsilon\Rightarrow n^2>\frac{5}{\epsilon}-2\Rightarrow n>\sqrt{\frac{5}{\epsilon}-2}$$

Always ϵ presents a very small positive number, so, $M > \left[\sqrt{\frac{5}{\epsilon} - 2}\right] + 1$, is enough big to satisfy the definition.

2. We should prove, for all N > 0 there is $M \in \mathbb{N}$ such that $n > M \Rightarrow |a_n| > N$

$$\left|\frac{(\sqrt{n}+2)^2-1}{\sqrt{n}+2}\right|>N\Rightarrow \left|(\sqrt{n}+2)-\frac{1}{\sqrt{n+2}}\right|>N\Rightarrow \sqrt{n}>N\Rightarrow n>N^2$$

Now, select $M > [N^2] + 1$. This means the given sequence increase without bound and is divergent.

3. We should prove, for all N > 0 there is $M \in \mathbb{N}$ such that $n > M \Rightarrow a_n < -N$

$$\frac{-n^2 + 6\sqrt{n} + 3}{n+2} < -N \Rightarrow \frac{n^2 - 6\sqrt{n} - 3}{n+2} > N$$

$$\frac{n^2 - 6\sqrt{n} - 3}{n+2} > \frac{n^2 - 6\sqrt{n} - 3}{n+n} > \frac{n^2 - 6\sqrt{n} - \sqrt{n}}{2n} = \frac{n}{2} - \frac{7}{2\sqrt{n}} > \frac{n}{2} - \frac{7}{2} > N \Rightarrow n > 2N + 7$$

Now, select M > [2N + 7] + 1.

4. Suppose $\lim_{n\to\infty} 3 + \cos(n\pi) = l$ and select $\epsilon = 0.1$, by definition, there is $M \in \mathbb{N}$ such that $n > M \Rightarrow |a_n - l| < \epsilon$. Since $\cos(n\pi) = (-1)^n$, $a_{2n} = 4$ and $a_{2n+1} = 2$. So, $|4 - l| < \epsilon$ and $|2 - l| < \epsilon$

$$2 = |(4-l) - (2-l)| \le |(4-l)| + |(2-l)| < 2\epsilon \Rightarrow 2 < 2(0.1)$$

that is contradiction. This proves that, the sequence is divergent and there is no limit.

Example 1.1.2

Is the sequence $a_n = \frac{2n^2 + 3n - 1}{n^2 + 6n + 12}$ convergent or divergent?

Solution

$$\lim_{n \to \infty} \frac{2n^2 + 3n - 1}{n^2 + 6n + 12} = \lim_{n \to \infty} \frac{n^2 \left(2 + \frac{3}{n} - \frac{1}{n^2}\right)}{n^2 \left(1 + \frac{6}{n} + \frac{1}{n^2}\right)} = 2$$

So, $\{a_n\}$ is converge to 2.

Example 1.1.3

Is the sequence $a_n = \frac{n}{\sqrt{n+2}}$ convergent or divergent?

Solution

$$\lim_{n\to\infty}\frac{n}{\sqrt{n+2}}=\lim_{n\to\infty}\frac{n}{\sqrt{n(1+\frac{2}{n})}}=\lim_{n\to\infty}\frac{\sqrt{n}}{\sqrt{1+\frac{2}{n}}}=\frac{\infty}{\sqrt{1+0}}=\infty$$

So, $\{a_n\}$ is divergent.

Theorem 2 (Bounded Sequence) Every convergent sequence is a bounded sequence. There are two numbers $m(lower\ bound)$ and $M(upper\ bound)$ such that $m \leq \{a_n\} \leq M$.

Rate of Grow

A sequence $\{b_n\}$ grows faster than $\{a_n\}$ if

$$\lim_{n \to \infty} \frac{b_n}{a_n} = \infty \text{ or } \lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

In this case we write $\{a_n\} \ll \{b_n\}$. We can write

$$\frac{slow}{fast} \rightarrow 0 \ and \ \frac{fast}{slow} \rightarrow \infty.$$

Sequence $\{a_n\}$ and $\{b_n\}$ grow at the same rate if for some $L, 0 < L < \infty$,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L.$$

We call $\{a_n\}$ and $\{b_n\}$ Equivalent Sequences if L=1.

Theorem 3 (Orders of Growth)

$$lnlnn \ll lnn \ll \cdots \ll \sqrt[3]{n} \ll \sqrt{n} \ll n \ll n^2 \ll \cdots \ll 2^n \ll e^n \ll n! \ll n^n \ll e^{n^2}$$

Example 1.1.4

By using Rate of Grow, evaluate limit of sequences.

1.
$$\lim_{n\to\infty} \frac{3+4lnn}{3n+5}$$

3.
$$\lim_{n\to\infty} \frac{2^n+3^n}{3^{n+1}+2^{n+5}}$$

$$2. \lim_{n \to \infty} \frac{\sqrt{n+2}+1}{\ln n+5}$$

4.
$$\lim_{n\to\infty} \frac{3\cdot 4^n}{(n+3)!}$$

Solution

1.
$$\lim_{n\to\infty} \frac{3+4lnn}{3n+5} = \lim_{n\to\infty} \frac{4lnn}{3n} = \frac{4}{3}\lim_{n\to\infty} \frac{lnn}{n} = 0$$

2.
$$\lim_{n\to\infty}\frac{\sqrt{n+2}+1}{lnn+5}=\lim_{n\to\infty}\frac{\sqrt{n}}{lnn}=+\infty$$

3.
$$\lim_{n\to\infty} \frac{2^n+3^n}{3^{n+1}+2^{n+5}} = \lim_{n\to\infty} \frac{3^n}{3^{n+1}} = \frac{1}{3}$$

4.
$$\lim_{n\to\infty} \frac{3\cdot 4^n}{(n+3)!} = 3\lim_{n\to\infty} \frac{4^n}{(n+3)!} = 0$$

Theorem 4 (Squeeze Theorem) If $a_n \leq b_n \leq c_n$ for $n \geq m$ and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = l,$$

then $\lim_{n\to\infty} b_n = l$.

Example 1.1.5

By using Squeeze Theorem, evaluate limit of sequences.

1.
$$\lim_{n\to\infty} \frac{n!}{n^n}$$

3.
$$\lim_{n\to\infty} \frac{3}{n} \cos^3(n!)$$

2.
$$\lim_{n\to\infty} \sqrt[n]{2^n + 3^n + 4^n}$$

4.
$$\lim_{n\to\infty} \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}$$

Solution

1.
$$a_n = \frac{n!}{n^n} = \frac{1}{n} \left(\frac{2 \cdot 3 \cdots n}{n \cdot n \cdots n} \right)$$

$$0 < a_n \le \frac{1}{n}$$

We know that $\frac{1}{n} \to 0$. Therefore $a_n \to 0$ by the Squeeze Theorem.

2.
$$a_n = \sqrt[n]{2^n + 3^n + 4^n}$$

$$4^n \le 2^n + 3^n + 4^n \le 4^n + 4^n + 4^n = 3 \cdot 4^n$$

$$\lim_{n \to \infty} \sqrt[n]{4^n} = 4, \lim_{n \to \infty} \sqrt[n]{3 \cdot 4^n} = 4 \lim_{n \to \infty} \sqrt[n]{3} = 4 \cdot 1 = 4$$

Therefore $a_n \to 4$ by the Squeeze Theorem.

3.
$$a_n = \frac{3}{n} \cos^3(n!)$$

$$-\frac{3}{n} \le \frac{3}{n} \cos^3(n!) \le \frac{3}{n}$$

Since $-\frac{3}{n} \to 0$ and $\frac{3}{n} \to 0$, $a_n \to 0$, by the Squeeze Theorem.

4.
$$a_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

$$\frac{1}{\sqrt{n^2 + n}} + \dots + \frac{1}{\sqrt{n^2 + n}} \le \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \le \frac{1}{\sqrt{n^2 + 1}} + \dots + \frac{1}{\sqrt{n^2 + 1}}$$

$$n \frac{1}{\sqrt{n^2 + n}} \le \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \le n \frac{1}{\sqrt{n^2 + 1}}$$

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} = 1, \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = 1$$

Therefore $a_n \to 1$ by the Squeeze Theorem.

Theorem 5 (Sub-Sequences) If a sequence converges then all sub-sequences converge and all convergent sub-sequences converge to the same limit.

If $\{a_n\}$ is a sequence that either has a sub-sequence that diverges or two convergent sub-sequences with different limits then $\{a_n\}$ is divergent.

Example 1.1.6

Use Theorem 4, to proof divergence of sequences.

1.
$$a_n = tan(4n+1)\frac{\pi}{3}$$

3.
$$a_n = \frac{n}{2n+3} + \cos \frac{2n\pi}{3}$$

2.
$$a_n = \frac{n\cos(n\pi) + 2}{2n + 3}$$

$$4. \ a_n = \left[2 + \frac{sinn}{n}\right]$$

Solution

1. Select two sub-sequences with different limits. Select a_{3n} and a_{3n+1} ,

$$a_{3n} = \tan(4(3n) + 1)\frac{\pi}{3} = \tan(4n\pi + \frac{\pi}{3}) = \tan(\frac{\pi}{3}) = \sqrt{3} \to \sqrt{3}$$
$$a_{3n+1} = \tan(4(3n+1) + 1)\frac{\pi}{3} = \tan(4n\pi + \frac{5\pi}{3}) = -\sqrt{3} \to -\sqrt{3}$$

Therefore, $\{a_n\}$ is a sequence that has two convergent sub-sequences with different limits, so $\{a_n\}$ is divergent.

2. Select two sub-sequences with different limits. Select a_{2n} and a_{2n+1} . We know that $cos(n\pi) = (-1)^n$.

$$a_{2n} = \frac{2n\cos(2n\pi) + 2}{4n + 3} = \frac{2n + 2}{4n + 3} = \frac{1}{2} \to \frac{1}{2}$$

$$a_{2n+1} = \frac{(2n+1)\cos((2n+1)\pi) + 2}{4n + 5} = \frac{-2n+1}{4n + 5} = -\frac{1}{2} \to -\frac{1}{2}$$

Therefore, $\{a_n\}$ is a sequence that has two convergent sub-sequences with different limits, so $\{a_n\}$ is divergent.

3. Select two sub-sequences with different limits. Select a_{3n} and a_{3n+1} .

$$a_{3n} = \frac{3n}{6n+3} + \cos\frac{2(3n)\pi}{3} = \frac{3n}{6n+3} + \cos2n\pi \to \frac{1}{2} + 1 = \frac{3}{2}$$

$$a_{3n+1} = \frac{3n+1}{6n+5} + \cos\frac{2(3n+1)\pi}{3} = \frac{3n+1}{6n+5} + \cos(2n\pi + \frac{2\pi}{3}) \to \frac{1}{2} - \frac{1}{2} = 0$$

Therefore, $\{a_n\}$ is a sequence that has two convergent sub-sequences with different limits, so $\{a_n\}$ is divergent.

4. By Squeeze Theorem we know:

$$-1 \leq sinn \leq 1 \Rightarrow \frac{sinn}{n} \to 0 \Rightarrow 2 + \frac{sinn}{n} \to 2$$

Select two types of a_n terms, where sinn > 0 and where sinn < 0

If sinn > 0 we have $2 + \frac{sinn}{n} > 2$, so $a_n \to 2$ and if sinn < 0 we have $2 + \frac{sinn}{n} < 2$, so $a_n \to 1$. Therefore, $\{a_n\}$ is divergent.

Example 1.1.7

Prove the divergence of the sequence. $1, \frac{1}{2}, 3, 1, \frac{1}{4}, 6, 1, \frac{1}{8}, 9, 1, \frac{1}{16}, 27, \cdots$.

Solution Here we can see 3 sub-sequences $a_{3n+1} \to 1$, $a_{3n+2} \to 0$ and $a_{3n} \to +\infty$, so the sequence is unbounded and therefore divergence.

Asymptotic Sequences

We say $\{a_n\}$ is asymptotic to $\{b_n\}$ and write $a_n \sim b_n$ if $\frac{a_n}{b_n} \to 1$. Consider k, m, r are constants and r > 0. We can write:

$$a_n = \sqrt{n+k} - \sqrt{n+m} \sim \frac{k-m}{2\sqrt{n}} \to 0 \tag{1.1}$$

$$a_n = \sqrt[r]{n+k} - \sqrt[r]{n+m} \sim \frac{k-m}{r\sqrt[r]{n^{r-1}}} \to 0$$
 (1.2)

Example 1.1.8

Find limit of the sequence.

1.
$$\lim_{n\to\infty} n(\sqrt{n^2+1}-n)$$

3.
$$\lim_{n\to\infty} \sqrt{n}(\sqrt[3]{n+12} - \sqrt[3]{n+4})$$

2.
$$\lim_{n\to\infty} n^2(\sqrt[3]{n^3+1}-n)$$

4.
$$\lim_{n\to\infty} 2\sqrt{n+1} - \sqrt{n+3} - \sqrt{n}$$

Solution

1. Use (1.1) equivalency, substitute n^2 to n

$$\lim_{n \to \infty} n(\sqrt{n^2 + 1} - n) = \lim_{n \to \infty} n(\sqrt{n^2 + 1} - \sqrt{n^2}) = \lim_{n \to \infty} n(\frac{1}{2\sqrt{n^2}}) = \frac{1}{2}$$

2. Use (1.2) equivalency, substitute n^3 to n

$$\lim_{n \to \infty} n^2 (\sqrt[3]{n^3 + 1} - n) = \lim_{n \to \infty} n^2 (\sqrt[3]{n^3 + 1} - \sqrt[3]{n^3}) = \lim_{n \to \infty} n^2 (\frac{1}{3\sqrt[3]{n^6}}) = \frac{1}{3}$$

3. Use (1.2) equivalency,

$$\lim_{n \to \infty} \sqrt{n} (\sqrt[3]{n+12} - \sqrt[3]{n+4}) = \lim_{n \to \infty} \sqrt{n} (\frac{12-4}{3\sqrt[3]{n^2}}) = 0$$

4. By dividing into subtraction, we will use (1.1) equivalency, two times.

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n+3} + \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \frac{1-3}{2\sqrt{n}} + \frac{1}{2\sqrt{n}} = 0$$

Example 1.1.9

Find limit of the sequence

$$\lim_{n \to \infty} \sqrt{n^2 + 6n + 1} - n$$

Solution

$$\lim_{n \to \infty} \sqrt{n^2 + 6n + 1} - n = \lim_{n \to \infty} \sqrt{n^2 + 6n + 9 - 8} - n = \lim_{n \to \infty} \sqrt{(n+3)^2 - 8} - n = \lim_{n \to \infty} (n+3) - n = 3$$

Asymptotic Sequences

Consider a, b, c, k are constants and a > 0, k > 0. We can write:

$$\sqrt{an^2 + bn + c} \sim \sqrt{a}(n + \frac{b}{2a}) \tag{1.3}$$

$$\sqrt[k]{an^k + bn^{k-1} + c + \dots} \sim \sqrt[k]{a(n + \frac{b}{ka})}$$
(1.4)

Example 1.1.10

Find the limit of the sequence or show that it diverges.

1.
$$\lim_{n\to\infty} \sqrt{4n^2+6n+1} - \sqrt{4n^2+2}$$

2.
$$\lim_{n\to\infty} \sqrt[3]{2n^3+18n^2+n+1} - \sqrt[3]{2n^3+24n^2-5}$$

3. $\lim_{n\to\infty} \sqrt{2n^2+12n-1}-\sqrt{2n^2-8n+11}$

Solution Use (1.3) and (1.4) equations.

1.
$$\lim_{n\to\infty} \sqrt{4n^2+6n+1} - \sqrt{4n^2+2} = \lim_{n\to\infty} 2(n+\frac{6}{8}) - 2n = \frac{3}{2}$$

2.
$$\lim_{n\to\infty} \sqrt[3]{2n^3+18n^2+n+1} - \sqrt[3]{2n^3+24n^2-5} = \lim_{n\to\infty} \sqrt[3]{2}((n+\frac{18}{6})-(n+\frac{24}{6})) = -\sqrt[3]{2}$$

3.
$$\lim_{n\to\infty} \sqrt{2n^2 + 12n - 1} - \sqrt{2n^2 - 8n + 11} = \lim_{n\to\infty} \sqrt{2}((n + \frac{12}{4}) - (n - \frac{8}{4})) = 5\sqrt{2}$$

1.2 Monotonic Sequences

We say that $\{x_n\}$ is **increasing** if $x_n \leq x_{n+1}$ for all n and strictly increasing if $x_n < x_{n+1}$ for all n. Similarly, We say that $\{x_n\}$ is **decreasing** if $x_{n+1} \leq x_n$ for all n and strictly decreasing if $x_{n+1} < x_n$ for all n. Sequences which are either increasing or decreasing are called **monotone**.

Theorem 6 (Monotonic Sequence Theorem) Every bounded, monotonic sequence is convergent.

- 1. Suppose $\{x_n\}$ is a bounded and increasing sequence. Then the $\sup(x_n)$ is the limit of $\{x_n\}$.
- 2. Suppose $\{x_n\}$ is a bounded and decreasing sequence. Then the $\inf(x_n)$ is the limit of $\{x_n\}$.

Example 1.2.11

Prove that $a_n = \sqrt{n+1} - \sqrt{n}$ is decreasing and bounded. Find $\inf(a_n)$ and $\sup(a_n)$.

Solution

$$\lim_{n \to \infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) \cdot \frac{(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} =$$

$$\lim_{n\to\infty}\frac{1}{\sqrt{n+1}+\sqrt{n}}=0$$

So,
$$a_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
,

$$a_{n+1} < a_n$$

$$inf = 0 < a_n \le sup = \sqrt{2} - 1$$

Example 1.2.12

Prove that $a_n = \frac{2n+1}{n+5}cos(\frac{\pi}{2n+2})$ is monotone and find limit.

Solution

$$\lim_{n\to\infty} \frac{2n+1}{n+5} cos(\frac{\pi}{2n+2}) = 2 \cdot cos(0) = 2$$

We know that $(\frac{ax+b}{cx+d})' = \frac{ad-bc}{(cx+d)^2}$, therefore if $f(x) = \frac{2x+1}{x+5}$ then f'(x) > 0. It shows that $x_n = \frac{2n+1}{n+5}$ is increasing. Also by growing n, the $arc = \frac{\pi}{2n+2}$ is variate from $\frac{\pi}{4}$ to zero, therefore $y_n = \cos(\frac{\pi}{2n+2}) > 0$ and increasing between $\frac{\sqrt{2}}{2}$ to 1. So, $a_n = x_n \cdot y_n$ is multiply of two positive and increasing sequences, therefore a_n is increasing and converges to 2 and bounded $a_1 = \frac{\sqrt{2}}{4} \le a_n < 2$.

Example 1.2.13

Prove that $a_n = (1 + \frac{1}{n})^n$ is increasing and bounded.

SolutionWe can use binomial theorem to expand the expression

$$a_n = (1 + \frac{1}{n})^n = 1 + n(\frac{1}{n}) + \frac{n(n-1)}{2!}(\frac{1}{n})^2 + \dots + \frac{n(n-1)(n-2)\cdots 1}{n!}(\frac{1}{n})^n$$

$$a_n = 1 + 1 + \frac{1}{2!} \frac{n(n-1)}{n \cdot n} + \frac{1}{3!} \frac{n(n-1)(n-2)}{n \cdot n \cdot n} + \dots + \frac{1}{n!} \frac{n(n-1)(n-2) \cdots 1}{n \cdot n \cdot n \cdots n}$$

$$a_n = 2 + \frac{1}{2!}(1 - \frac{1}{n}) + \frac{1}{3!}(1 - \frac{1}{n})(1 - \frac{2}{n}) + \dots + \frac{1}{n!}(1 - \frac{1}{n})(1 - \frac{2}{n})\dots(1 - \frac{n-1}{n})$$

Similarly for a_{n+1} we have

$$a_{n+1} = 2 + \frac{1}{2!}(1 - \frac{1}{n+1}) + \frac{1}{3!}(1 - \frac{1}{n+1})(1 - \frac{2}{n+1}) + \dots + \frac{1}{(n+1)!}(1 - \frac{1}{n+1})(1 - \frac{2}{n+1}) \dots + (1 - \frac{n}{n+1})(1 - \frac{n}{n+1})(1 - \frac{n}{n+1}) \dots + \frac{1}{(n+1)!}(1 - \frac{n}{n+1}) \dots + \frac$$

Because $(1 - \frac{k}{n+1}) - (1 - \frac{k}{n}) = \frac{k}{n(n+1)} \ge 0$ we have $a_{n+1} - a_n \ge 0$, therefore it is increasing sequence.

Next, we need to show it is bounded

$$a_n = 2 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right)$$

$$a_n \le 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} < 3$$

So, a_n is increasing and bounded.

Theorem 7 (Leonhard Euler "e" number) The sequence $a_n = (1 + \frac{1}{n})^n$ is increasing and bounded, and so has a limit which denote by e. The value of $e = 2.718281828459045 \cdots$.

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$$

Remark Suppose $a_n \to 0$ and $b_n \to +\infty$, then $\lim_{n\to\infty} (1+a_n)^{b_n} = exp(\lim_{n\to\infty} a_n \cdot b_n)$

Example 1.2.14

Evaluate following limits.

- 1. $\lim_{n\to\infty} \left(1 + \frac{5n+3}{n^3+n+2}\right)^{n^2}$
- 2. $\lim_{n\to\infty} (\frac{4n+3}{4n+1})^{3n+2}$
- 3. $\lim_{n\to\infty} (\cos\frac{1}{3n})^{n^2}$

Solution

1.
$$\lim_{n\to\infty} \left(1 + \frac{n+3}{5n^3 + n + 2}\right)^{n^2} = exp(\lim_{n\to\infty} \left(\frac{5n+3}{n^3 + n + 2}\right) \cdot n^2) = exp(\lim_{n\to\infty} \frac{5n^3 + 3n^2}{n^3 + n + 2}) = e^5$$

2.
$$\lim_{n\to\infty} (\frac{4n+3}{4n+1})^{3n+2} = \lim_{n\to\infty} (1 + (\frac{4n+3}{4n+1} - 1))^{3n+2} = \lim_{n\to\infty} (1 + \frac{2}{4n+1})^{3n+2} = \exp(\lim_{n\to\infty} (\frac{2}{4n+1}) \cdot 3n + 2) = \exp(\lim_{n\to\infty} \frac{6n+4}{4n+1}) = e^{\frac{6}{4}}$$

3.
$$\lim_{n\to\infty} (\cos\frac{1}{3n})^{n^2} = \lim_{n\to\infty} (1 + (\cos\frac{1}{3n} - 1))^{n^2} =$$

$$exp(\lim_{n\to\infty} (\cos\frac{1}{3n} - 1) \cdot n^2) = exp(\lim_{n\to\infty} (-\frac{1}{2} \cdot \frac{1}{9n^2}) \cdot n^2) = e^{-\frac{1}{18}}$$

1.3 Cauchy Sequences

A sequence a_n called Cauchy sequence if

$$\forall \epsilon > 0 \exists n_0 \in N(\forall n, m > n_0 : |a_n - a_m| < \epsilon)$$

Theorem 8 (Cauchy's general principle of convergence) Every convergent sequence is a Cauchy sequence. Every Cauchy sequence of real numbers converges.

In fact, often we use Cauchy's general principle of convergence theorem to show divergence of a sequence, as shown in below example.

Example 1.3.15

Show that $\{a_n\}$ is divergent.

$$a_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Solution We will show that $\{a_n\}$ is not a Cauchy sequence.

$$a_{2n} = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$$

$$a_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$|a_{2n} - a_n| = \frac{1}{n+1} + \dots + \frac{1}{2n} > \frac{1}{2n} + \dots + \frac{1}{2n} = n\frac{1}{2n} = \frac{1}{2}$$

This implies that $\{a_n\}$ is not a Cauchy sequence. So $\{a_n\}$ is divergent.

Example 1.3.16

Show that $\{a_n\}$ is divergent.

$$a_n = \frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}.$$

Solution We will show that $\{a_n\}$ is not a Cauchy sequence.

$$a_{2n} = \frac{1}{1} + \frac{1}{3} + \dots + \frac{1}{2n-1} + \frac{1}{2n+1} + \dots + \frac{1}{4n-1}$$
$$a_n = \frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$$

$$|a_{2n} - a_n| = \frac{1}{2n+1} + \dots + \frac{1}{4n-1} > \frac{1}{4n-1} + \dots + \frac{1}{4n-1} = n\frac{1}{4n-1} = \frac{1}{4n-1}$$

This implies that $\{a_n\}$ is not a Cauchy sequence. So $\{a_n\}$ is divergent.

Theorem 9 (Cauchy's first theorem on limits) If $\lim_{n\to\infty} a_n = l$ then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} \left(\frac{a_1 + a_2 + a_3 + \dots + a_n}{n} \right) = l.$$

Example 1.3.17

Evaluate

1.
$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{k=n} \frac{1}{k}$$

2.
$$\lim_{n\to\infty} \sum_{k=1}^{k=n} \frac{1}{\sqrt{n^2+k}}$$

Solution

1. $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{k=n} \frac{1}{k} = \lim_{n\to\infty} \frac{1}{n} (\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n})$, let $a_n = \frac{1}{n}$, then by Cauchy's first theorem on limits, we have $\lim_{n\to\infty} \frac{1}{n} (\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}) = \lim_{n\to\infty} a_n = 0$

2.
$$\lim_{n\to\infty} \sum_{k=1}^{k=n} \frac{1}{\sqrt{n^2+k}} = \lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}\right) =$$

$$\lim_{n \to \infty} (\frac{1}{n}) (\frac{n}{\sqrt{n^2 + 1}} + \frac{n}{\sqrt{n^2 + 2}} + \dots + \frac{n}{\sqrt{n^2 + n}}) = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} = 1.$$

Example 1.3.18

Cauchy Formula on Limits

If $a_n > 0$ for all value of n, then

$$\lim_{n \to \infty} (a_{n+1})^{\frac{1}{n+1}} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

Proof

$$(a_{n+1})^{\frac{1}{n+1}} = \left(\frac{a_1}{1} \frac{a_2}{a_1} \frac{a_3}{a_2} \cdots \frac{a_n}{a_{n-1}} \frac{a_{n+1}}{a_n}\right)^{\frac{1}{n+1}}$$

Take logarithm of either side to obtain

$$log(a_{n+1})^{\frac{1}{n+1}} = (\frac{1}{n+1})(log(\frac{a_1}{1}) + log(\frac{a_2}{a_1}) + log(\frac{a_3}{a_2}) + \dots + log(\frac{a_{n+1}}{a_n}))$$

Let $A_n = log(\frac{a_n}{a_{n-1}}), a_0 = 1$, we have

$$log(a_{n+1})^{\frac{1}{n+1}} = \frac{1}{n+1}(A_0 + A_1 + \dots + A_{n+1})$$

Using Cauchy's first theorem on limits we get

$$\lim_{n \to \infty} \log(a_{n+1})^{\frac{1}{n+1}} = \lim_{n \to \infty} A_{n+1} = \lim_{n \to \infty} (\log(\frac{a_{n+1}}{a_n}))$$

$$\log \lim_{n \to \infty} (a_{n+1})^{\frac{1}{n+1}} = \log \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$
$$\lim_{n \to \infty} (a_{n+1})^{\frac{1}{n+1}} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

Example 1.3.19

Evaluate

1. $\lim_{n\to\infty} (n)^{\frac{1}{n}}$.

2. $\lim_{n\to\infty} \left(\frac{n^n}{n!}\right)^{\frac{1}{n}}$.

Solution

1. Let $a_n = n$, then

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

Using Cauchy formula on limits, we have,

$$\lim_{n \to \infty} (n)^{\frac{1}{n}} = \lim_{n \to \infty} (a_n)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{a_n}{a_{n-1}} = 1.$$

2. Let $a_n = \frac{n^n}{n!}$, then

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \frac{n!(n+1)^n(n+1)}{n!(n+1)n^n = (\frac{n+1}{n})^n}$$
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} (\frac{n+1}{n})^n = e$$

Using Cauchy formula on limits, we have,

$$\lim_{n \to \infty} \left(\frac{n^n}{n!}\right)^{\frac{1}{n}} = \lim_{n \to \infty} (a_n)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{a_n}{a_{n-1}} = e.$$

1.4 Recurrent Sequences

Example 1.4.20

Consider $\{x_n\}$ defined by recurrent formula:

$$x_1 = 10, x_{n+1} = \sqrt{21 + 4x_n}$$

Prove $\{x_n\}$ is convergent and find its limit.

Solution By induction we will show that x_n is bounded and $7 \le x_n \le 10$ and is a decreasing sequence, then by Monotonic Sequence Theorem x_n is convergent. This is true for initial steps $x_1 = 10 \ge 7$, $x_2 = \sqrt{61} \ge 7$, assume $x_n \ge 7$, then

$$x_n \ge 7 \Rightarrow 21 + 4x_n \ge 49 \Rightarrow x_{n+1} \ge 7.$$

Now, we will prove that x_n is decreasing

$$\frac{x_{n+1}}{x_n} = \sqrt{\frac{21+4x_n}{x_n^2}} = \sqrt{\frac{21}{x_n^2} + \frac{4}{x_n}} \le \sqrt{\frac{21}{49} + \frac{4}{7}} = 1 \Rightarrow \frac{x_{n+1}}{x_n} \le 1 \Rightarrow x_{n+1} \le x_n$$

So, x_n is decreasing and has lower bound, assume the limit is equal to l

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n = l \Rightarrow \lim_{n \to \infty} \sqrt{21 + 4x_n} = \lim_{n \to \infty} x_n$$

$$\sqrt{21 + 4l} = l \Rightarrow l = 7$$

Example 1.4.21

Consider $\{x_n\}$ defined by recurrent formula:

$$x_1 = 1, x_{n+1} = \sqrt{10 + 3x_n}$$

Prove $\{x_n\}$ is convergent and find its limit.

Solution By induction we will show that x_n is bounded and $1 \le x_n \le 5$ and is a increasing sequence, then by Monotonic Sequence Theorem x_n is convergent. This is true for initial steps $x_1 = 1 \le 5, x_2 = \sqrt{13} \le 5$, assume $x_n \le 5$, then

$$x_n \le 5 \Rightarrow 10 + 3x_n \le 25 \Rightarrow x_{n+1} \le 5.$$

Now, we will prove that x_n is increasing

$$\frac{x_{n+1}}{x_n} = \sqrt{\frac{10 + 3x_n}{x_n^2}} = \sqrt{\frac{10}{x_n^2} + \frac{3}{x_n}} \ge \sqrt{\frac{10}{25} + \frac{3}{5}} = 1 \Rightarrow \frac{x_{n+1}}{x_n} \ge 1 \Rightarrow x_{n+1} \ge x_n$$

So, x_n is increasing and has upper bound, assume the limit is equal to l

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n = l \Rightarrow \lim_{n \to \infty} \sqrt{10 + 3x_n} = \lim_{n \to \infty} x_n$$

$$\sqrt{10 + 3l} = l \Rightarrow l = 5$$

Example 1.4.22

Newton Sequence to Approximate \sqrt{a}

Let $x_1 = 2$ and $x_{n+1} = \frac{1}{2}(x_n + \frac{5}{x_n})$ for $n \ge 2$.

1. Find x_2, x_3 .

2. Prove that x_n is convergent.

3. Find the limit of sequence.

Solution
$$x_1 = 2, x_2 = \frac{161}{72} = 2.2361 \cdots, x_3 = \frac{51841}{23184} = 2.236067977$$

By induction we will show that x_n is bounded and $1 \le x_n \le \sqrt{5}$ and is a increasing sequence, then by Monotonic Sequence Theorem x_n is convergent. This is true for initial steps $x_1 = 1 \le \sqrt{5}, x_2 \le \sqrt{5}$. Now, we will prove that x_n is increasing

$$x_{n+1} - x_n = \frac{5 - x_n^2}{2x_n} \ge 0 \Rightarrow x_{n+1} \ge x_n$$

So, x_n is increasing and has upper bound, assume the limit is equal to l

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n = l \Rightarrow \lim_{n \to \infty} \frac{1}{2}(l + \frac{5}{l}) = l \Rightarrow \frac{1}{2}(l + \frac{5}{l}) = l \Rightarrow l = \sqrt{5}$$

Example 1.4.23

Let $a_n \geq 0$ such that

$$a_0 = 0, a_1 = 1, a_n = \frac{1}{2}(a_{n-1} + a_{n-2}), n \ge 2$$

Show that $\{a_n\}$ is convergent and find its limit.

Solution Rewrite the recursive relation:

$$a_n = \frac{1}{2}(a_{n-1} + a_{n-2}) \Rightarrow 2a_n = a_{n-1} + a_{n-2}$$

$$2a_n - 2a_{n-1} = a_{n-1} + a_{n-2} - 2a_{n-1} = a_{n-2} - a_{n-1}$$

$$a_n - a_{n-1} = -\frac{1}{2}(a_{n-1} - a_{n-2})$$

$$a_n - a_{n-1} = -\frac{1}{2}(a_{n-1} - a_{n-2}) = -\frac{1}{2}(-\frac{1}{2}(a_{n-2} - a_{n-3})) = (-\frac{1}{2})^3(a_{n-3} - a_{n-4}) = \cdots$$

$$a_n - a_{n-1} = (-\frac{1}{2})^{n-1}(a_1 - a_0) = (-\frac{1}{2})^{n-1}(1 - 0) = (-\frac{1}{2})^{n-1}$$

We will write Cauchy sequence condition

$$|a_n - a_m| = |(a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_{m+1} - a_m)|$$

$$|a_n - a_m| \le |a_n - a_{n-1}| + |a_{n-1} - a_{n-2}| + \dots + |a_{m+1} - a_m|$$

$$|a_n - a_m| \le \left(\frac{1}{2}\right)^{n-1} + \left(\frac{1}{2}\right)^{n-2} + \dots + \left(\frac{1}{2}\right)^m = \left(\frac{1}{2}\right)^m \left(\left(\frac{1}{2}\right)^{n-m-1} + \dots + 1\right)$$

$$|a_n - a_m| \le \left(\frac{1}{2}\right)^{m-1} \to 0$$

Hence a_n is a Cauchy sequence and is convergent to l.

$$2a_n + a_{n-1} = 2a_{n-1} + a_{n-2} = 2a_{n-2} + a_{n-3} = \dots = 2a_1 + a_0$$

$$\lim_{n \to \infty} 2a_n + a_{n-1} = \lim_{n \to \infty} 2a_1 + a_0 = 2$$

$$2l + l = 2 \Rightarrow l = \frac{2}{3}.$$

1.5 Sequential Characterization of Limits of Functions

Theorem 10 $\lim_{x\to a} f(x) = l$ if and only if $\lim_{n\to\infty} f(x_n) = l$ for every sequence $x_n \neq a$, and $x_n \to a$.

Conclusion If there are two sequences $\{a_n\}$ and $\{b_n\}$, such that $a_n \neq a$ and $b_n \neq a$ and $\lim_{n\to\infty} f(a_n) \neq \lim_{n\to\infty} f(b_n)$ then $\lim_{n\to a} f(x) = does$ not exist.

Example 1.5.24

By using sequences, show that $\lim_{x\to 0} \sin(\frac{1}{x}) = does$ not exist. Solution Let $a_n = \frac{1}{2n\pi}$ and $b_n = \frac{1}{2n\pi + \frac{\pi}{2}}$

$$f(a_n) = \sin(\frac{1}{a_n}) = \sin(2n\pi) = 0 \to 0$$

$$f(b_n) = sin(\frac{1}{b_n}) = sin(2n\pi + \frac{\pi}{2}) = 1 \to 1$$

So, $\lim_{x\to 0} \sin(\frac{1}{x})$ =does not exist.

Example 1.5.25

Show that $\lim_{x\to 0} \left[x\left[\frac{1}{x}\right]\right] = does \ not \ exist.$ Solution Let $a_n = \frac{1}{n}$ and $b_n = \frac{1}{n+0.5}$, $a_n \to 0$ and $b_n \to 0$.

$$f(a_n) = \left[\frac{1}{n}\left[n\right]\right] = \left[\frac{n}{n}\right] = 1 \to 1$$

$$f(b_n) = \left[\frac{1}{n+0.5} [n+0.5]\right] = \left[\frac{n}{n+0.5}\right] = 0 \to 0$$

So, $\lim_{x\to 0} \left[x\left[\frac{1}{x}\right]\right] = \text{does not exist.}$

Example 1.5.26

For given function f and $\{a_n\}$ sequence. Find limit of $\{f(a_n)\}$ sequence.

1.
$$f(x) = \frac{3}{x^2-1} \left| \cos(\frac{\pi}{2}x) \right|$$
 and $a_n = \sqrt{n^2 + 6n + 10} - n - 2$.

2.
$$f(x) = \frac{3x^2 - 4[x^2]}{x - 2}$$
 and $a_n = \frac{2n + 1}{n + 3}$.

Solution

1. Use asymptotic sequences to evaluate limit of a_n ,

$$a_n = \sqrt{n^2 + 6n + 10} - n - 2 \sim (n+3) - n - 2 \rightarrow 1 \text{ and}$$

$$a_n = \sqrt{(n+3)^2 + 1} - n - 2 > (n+3) - n - 2 \rightarrow 1$$

$$\lim_{n \to \infty} f(a_n) = \lim_{x \to 1^+} f(x) = -\lim_{x \to 1^+} \frac{3}{x^2 - 1} \cos(\frac{\pi}{2}x) = -\frac{3}{2} \lim_{x \to 1^+} \frac{\cos(\frac{\pi}{2}x)}{x - 1} = \frac{3}{2} \lim_{x \to 1^+} \frac{\sin(\frac{\pi}{2}x - \frac{\pi}{2})}{x - 1} = \frac{3}{2} \lim_{x \to 1^+} \frac{\sin(\frac{\pi}{2}x - \frac{\pi}{2})}{x - 1} = \frac{3}{2} \lim_{x \to 1^+} \frac{\pi}{2} \frac{(x - 1)}{x - 1} = \frac{3\pi}{4}$$

2. $a_n \to 2$ and $a_n < 2$.

$$\lim_{n \to \infty} f(a_n) = \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{3x^2 - 4\left[x^2\right]}{x - 2} =$$
$$\lim_{x \to 2^-} \frac{3x^2 - 12}{x - 2} = \lim_{x \to 2^-} \frac{3(x - 2)(x + 2)}{x - 2} = 12$$