Compte-rendu de travaux pratiques de chimie

Argentométrie

Benjamin LOISON et Alice MILFORD ASSEO (MPSI 1)

13 avril 2019

1 Dosage de la solution AgNO₃

1.1 Prépaer par pesée une solution KCI

La masse molaire de KCl est M(KCl) = 74.56 g/mol. La masse KCl a prélevé vaut: $m(KCl) = \frac{74.56}{20} = 3.728 \approx 3.73$ g. On prépare la solution de la dissolution de KCl dans 50 mL.

1.2 Dosage de Mohr

On prélève 10 mL de la solution préparée, on la dilue en remplissant la fiole jaugée de 100 mL avec de l'eau distillée. On obtient une solution de concentration à 0.1 mol/L.

On prélève de nouveau 10 mL de cette dernière solution et on la redilue pour obtenir à la fin une solution de concentration 10^{-2} mol/L de KCl.

On verse 10 mL de la solution dans un bécher, on ajoute quelques gouttes de Ag_2CrO_4 (3 gouttes) à la solution à doser (la concentration en KCl est de 10^{-2} mol/L) et environ 20 à 25 mL d'eau distillée.

On dose avec une solution titrante de $AqNO_3$.

On remplit la rallonge de KNO_3 pour empêcher le contact entre Cl^- et Ag^+ , pour éviter la précipitation d'AgCl. La réaction qui a lieu lors du dosage est la suivante:

$$\begin{array}{l} \operatorname{Ag^{+}} + \operatorname{Cl^{-}} \cong \operatorname{AgCl}_{(s)} \\ \operatorname{On \ a \ alors} \ K_{s} = [\operatorname{Cl^{-}}][\operatorname{Ag^{+}}]. \\ \operatorname{A \ l'\acute{e}quivalence, \ on \ a:} \ xv_{0} = c_{1}v_{eq} \\ \operatorname{D'où:} \ x = \frac{c_{1}v_{eq}}{v_{0}}. \\ \\ \operatorname{- Tant \ que} \ v \leqslant v_{eq} : \\ \operatorname{On \ a \ alors} \ [\operatorname{Ag^{+}}] = \frac{K_{s}}{|Cl^{-}|} \\ \operatorname{et} \ [\operatorname{Cl^{-}}] = \frac{c_{1}v - v_{0}x}{v + v_{0}}. \\ \operatorname{On \ a:} \ u_{total} = u_{Ag} + u_{ref} = 197 + 0.8 + 0.06 * log\left(\frac{K_{s}}{|Cl^{-}|}\right) = 197.8 + 0.06 * log\left(\frac{K_{s}(v + v_{0})}{c_{1}v - v_{0}x}\right) \\ \operatorname{- Si \ v} \geqslant v_{eq} : \\ \operatorname{On \ a \ alors} \ [\operatorname{Ag^{+}}] = \frac{c_{1}v - xv_{0}}{v + v_{0}} \\ u_{total} = 197.8 + 0.06 * log\left(\frac{c_{1}v - xv_{0}}{v + v_{0}}\right) \\ \operatorname{On \ a \ d'après \ la \ courbe}, \ v_{eq} = 11.5 \ \text{mL}. \\ \operatorname{On \ a \ } x = \frac{c_{1}v_{eq}}{v_{0}} = \frac{10^{-2}*11.5*10^{-3}}{30*10^{-3}} = 3.8 * 10^{-3} \ \text{mol/L}. \end{array}$$

L'électrode de référence permet de mesurer une différence de potentiel, en gardant un potentiel invariant pour l'électrode de référence. Cependant celui-ci peut-être un peu modifié s'il y a variation de température.

2 Autres dosages par précipitation

2.1 Dosage d'une solution KSCN

Dans un bécher, on verse 10 mL d'AgNO₃, acidifié par environ 1 à 2 mL de HNO₃ concentré, on ajoute au

mélange quelques gouttes de $\mathrm{Fe^{3+}}$ (4 gouttes) et 13 mL d'eau distillée.

On verse la solution de KSCN dans la burette et on commence le dosage.

A l'équivalence, on a: $v_{eq} = 10.5 \text{ mL}.$

donc
$$c_0 = \frac{c_1 v_{eq}}{v_0} = \frac{10^{-2} \cdot 10.5 \times 10^{-3}}{24 \times 10^{-3}} = 5 \times 10^{-3} \text{ mol/L}.$$

On a alors $v_0c_0 = c_1v_{eq}$ donc $c_0 = \frac{c_1v_{eq}}{v_0} = \frac{10^{-2}*10.5*10^{-3}}{24*10^{-3}} = 5*10^{-3} \text{ mol/L}.$ Donc la concentration de la solution de KSCN est $c_0 = 4.4*10^{-3} \text{ mol/L}.$

Il est nécessaire de se placer en milieu acide pour ne pas avoir la précipitation de $Fe(OH)_3$

2.2 Dosage d'une solution KSCN et KI par AgNO₃

0 -199 1 -200 2 -215 3 -211 4 -206 5 -201 6 -195 7 -188 8 -177 9 -158 10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379 25 385	v (en mL)	ddp (en mV)
2 -215 3 -211 4 -206 5 -201 6 -195 7 -188 8 -177 9 -158 10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	0	-199
3 -211 4 -206 5 -201 6 -195 7 -188 8 -177 9 -158 10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	1	-200
4 -206 5 -201 6 -195 7 -188 8 -177 9 -158 10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	2	-215
5 -201 6 -195 7 -188 8 -177 9 -158 10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	3	-211
6 -195 7 -188 8 -177 9 -158 10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	4	-206
7 -188 8 -177 9 -158 10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	5	-201
8 -177 9 -158 10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	6	-195
9 -158 10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	7	-188
10 -87 11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	8	-177
11 52 12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	9	-158
12 56 13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	10	-87
13 59 14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	11	52
14 63 15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	12	56
15 68 16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	13	59
16 73 17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	14	63
17 81 18 92 19 113 20 228 21 329 22 357 23 371 24 379	15	68
18 92 19 113 20 228 21 329 22 357 23 371 24 379	16	73
19 113 20 228 21 329 22 357 23 371 24 379	17	81
20 228 21 329 22 357 23 371 24 379	18	92
21 329 22 357 23 371 24 379	19	113
22 357 23 371 24 379	20	228
23 371 24 379	21	329
24 379	22	357
	23	371
25 385	24	379
	25	385

