CE233(CAD), Lecture 14:

IP-cores and design reuse

Mehdi Modarressi

Department of Electrical and Computer Engineering,

University of Tehran

Introduction

- Introduction to SoCs
- Design reuse and IP-cores

Introduction

- Advances in semiconductor technology
 - Today's chip can contains 7 billion transistors
- The consequences
 - Components connected on a printed circuit board can now be integrated onto single chip
 - Emergence of systems-on-chip

From PCB to SoC

SoC

- An SoC may contain
 - Custom hardware blocks
 - A.K.A. Hardware accelerator
 - DSP blocks
 - Embedded CPU
 - Embedded Memory
 - Real World Interfaces (USB, PCI, Ethernet)
 - Software (both OS and Applications)
 - Mixed-signal Blocks
 - DAC, ADC
 - FPGAs

SoC benefits

- Reduce size
- Low cost
- Reuse
- Low power
- High performance
- High reliability

SoPC

- System-on-Programmable Chip (SoPC): FPGA vendors provide an SoC on an FPGA chip
- In addition to configurable part there are also:
 - Processor cores
 - Peripherals
 - On-chip buses
 - DSP blocks
 - A rich range of soft IP cores as a library can be implemented on the configurable part
 - Operating systems and software drivers
 - •

SoPC

- Xilinx SoPCs:
 - 2 or 4 PowerPC 405 and 440 cores and many peripherals
 - Xilinx EDK for development
- Altera SoPCs:
 - NIOS II or ARM Cortex cores and many peripherals
 - ARM Cortex is a dual core processor
 - Altera SoPC Builder for development

Altera Startix

32-bit embedded NIOS-II processor

Altera Cyclone V

• Integrate an ARM-based hard processor system (HPS) consisting of processor, peripherals, and memory interfaces with the FPGA fabric

^{*}Optional Configuration

Xilinx SoPCs

- Some Xilinx FPGA families have a processor core and a large selection of components
- Example: Virtex-II family of Xilinx FPGAs has one PPC-405 core
 - A large variety of peripherals
 - Uses IBM CoreConnect bus
 - Fast PLB : Processor Local Bus
 - Slower OPB : On-chip Peripheral Bus
- Xilinx EDK tool to program these SoPCs

PowerPC-based Virtex-II

Xilinx Zynq

• A modern SoPC with many hardcore logic

Xilinx Zynq

- FPGA fabric with embedded ARM processor on single die
 - Programmable logic (PL)
 - Processing system (PS)
- PS based on dual-core ARM Cortex-A9
 - A rich set of peripherals: USB, CAN, SPI, Flash memory interface, DAM controller, memory controller,

SoC Challenges

- Productivity gap
- Time-to-market pressure
- Difficult verification due to increasing complexity
- Difficult timing closure due to deep submicron
- Difficult integration due to various levels and areas of expertise

Solution:

Block-based design with reusable IPs

Design reuse

- Using IP-cores
- "IP" means "intellectual property"
- Circuit designs cleaned up and made available to other engineers
- IP examples:
 - Microprocessor cores
 - DSP cores
 - Ethernet, USB, FireWire, 802.11 cores
 - DMA, timer, UART, and other generics
 - Special-purpose cores
 - MPEG-2 compression, decompression, encryption cores, filters, etc...

Hard IP-cores

- Delivered in physical form
- Fully designed, placed and routed, and characterized for timing, power, etc.
- Tied to a manufacturing process
- Actual physical layout
 - Fixed shape
- Technology specific layout
 - Size and speed determined

Soft IP-cores

- Circuit design delivered in "source code" format instead of physical film or physical-layout information
 - In forms of RTL code or netlist
 - technology dependent gate-level netlists are called firm-core
- Functions are fixed, may be parameterizable
 - Size and shape are determined when synthesizing
- Equivalent to delivering C source code
 - The program doesn't change at all, only the details of the executable binary you create

Tutorial- reusing IP-cores

- Keyboard and LCD driver IP cores
- Some existing free IP-cores can be selected to be used to design and implement an embedded system
 - The cores can be either selected from the free cores included in Xilinx tools or be picked up from some free IP-core websites, such as www.design-reuse.com or opencores.org