NAME: Final version 010

# **MAT-181 FINAL TAKE-HOME EXAM**

This exam is to be taken without discussion or correspondance with any human. Please show work!

| question | available points | earned points |
|----------|------------------|---------------|
| 1        | 10               |               |
| 2        | 15               |               |
| 3        | 10               |               |
| 4        | 10               |               |
| 5        | 10               |               |
| 6        | 10               |               |
| 7        | 15               |               |
| 8        | 20               |               |
| EC       | 5                |               |
| EC       | 5                |               |
| Total    | 100              |               |

#### 1. (10 Points)



For each description below, choose which histogram best fits (I, II, III, or IV). Each histogram should be used once.

- (a) The distribution of test scores on a very difficult exam, in which most students have poor to average scores, but a few did quite well.
- (b) The distribution of lengths of newborn babies
- (c) The distribution of quiz scores on an easy quiz. Most students did very well, but a few did poorly.
- (d) The distribution of hours that students studied for an exam when about half of students studied a lot and a similar number of students studied very little.

#### 2. (15 Points)

In a deck of strange cards, there are 514 cards. Each card has an image and a color. The amounts are shown in the table below.

|       | blue | orange | pink | violet | yellow | Total |
|-------|------|--------|------|--------|--------|-------|
| bike  | 10   | 49     | 25   | 29     | 11     | 124   |
| gem   | 45   | 28     | 18   | 34     | 16     | 141   |
| lamp  | 23   | 33     | 17   | 13     | 12     | 98    |
| pig   | 14   | 46     | 26   | 24     | 41     | 151   |
| Total | 92   | 156    | 86   | 100    | 80     | 514   |

- (a) What is the probability a random card is a pig given it is blue?
- (b) What is the probability a random card is a lamp?
- (c) What is the probability a random card is orange?
- (d) What is the probability a random card is blue given it is a gem?
- (e) What is the probability a random card is either a bike or blue (or both)?
- (f) What is the probability a random card is both a gem and orange?
- (g) Is a bike or a gem more likely to be blue?

# 3. (10 points)

A farm produces 4 types of fruit: *A*, *B*, *C*, and *D*. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

| Type of fruit | Mean mass (g) | Standard deviation of mass (g) |
|---------------|---------------|--------------------------------|
| Α             | 101           | 8                              |
| В             | 111           | 11                             |
| C             | 123           | 12                             |
| D             | 69            | 14                             |

One specimen of each type is weighed. The results are shown below.

| Type of fruit | Mass of specimen (g) |
|---------------|----------------------|
| Α             | 89.08                |
| В             | 112.1                |
| С             | 106.4                |
| D             | 60.88                |

Which specimen is the most unusually small (relative to others of its type)?

## 4. (10 points)

A tree's leaves were found to be normally distributed with a mean of 141.4 millimeters and a standard deviation of 2.7 millimeters. If you pick a random leaf from that tree, what is the probability the length is between 144 and 147.2 millimeters?

## 5. (10 points)

A species of duck is known to have a mean weight of 111.5 grams and a standard deviation of 67.5 grams. A researcher plans to measure the weights of 81 of these ducks sampled randomly. What is the probability the **sample mean** will be between 96.5 and 128 grams?

# 6. (10 points)

An ornithologist wishes to characterize the average body mass of *Hylocichla mustelina*. She randomly samples 20 adults of *Hylocichla mustelina*, resulting in a sample mean of 57.29 grams and a sample standard deviation of 7.67 grams. Determine a 95% confidence interval of the true population mean.

| 7. (1 | 5 | ווסמ | nts) |
|-------|---|------|------|

A student is taking a multiple choice test with 200 questions. Each question has 2 choices. You want to detect whether the student does significantly better than random guessing, so you decide to run a hypothesis test with a significance level of 0.05.

Then, the student takes the test and gets 110 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses.
- (c) Determine the test statistic (z or t), draw a sketch, and determine the p-value.

- (d) Decide whether we reject or retain the null hypothesis.
- (e) Did the student do significantly better than random guessing?

8. (20 points) [Note: this question uses 2 pages.] You have collected the following data:

| X           | У           | xy          |
|-------------|-------------|-------------|
| 58          | 760         |             |
| 54          | 620         |             |
| 93          | 470         |             |
| 41          | 650         |             |
| 90          | 480         |             |
| 41          | 570         |             |
| 34          | 740         |             |
| 64          | 680         |             |
| 25          | 800         |             |
| $\sum X =$  | $\sum y =$  | $\sum xy =$ |
| $\bar{X} =$ | $\bar{y} =$ |             |
| $S_X =$     | $s_y =$     |             |

- (a) Complete the table.
- (b) Calculate the correlation coefficient (r) using the formula below.

$$r = \frac{\sum xy - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

(c) The least-squares regression line will be represented as y = a + bx. Determine the parameters (*b* and *a*) using the formulas below.

$$b=r\frac{s_y}{s_x}$$

$$a = \bar{y} - b\bar{x}$$

(d) Write the equation of the regression line (using the calculated values of a and b.)

(e) Please plot the data and a corresponding regression line.



## 9. (Extra credit: 5 points)

Let each trial have a chance of success p = 0.46. If 174 trials occur, what is the probability of getting more than 64 but less than 87 successes?

In other words, let  $X \sim \text{Bin}(n = 174, p = 0.46)$  and find P(64 < X < 87).

Use a normal approximation along with the continuity correction.

## 10. (Extra credit: 5 points)

A null hypothesis claims a population has a mean  $\mu$  = 60. You decide to run two-tail test on a sample of size n = 9 using a significance level  $\alpha$  = 0.01.

You then collect the sample:

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?