### 电子科技大学

## 2015年攻读硕士学位研究生入学考试试题

考试科目: 820 计算机专业基础

注: 所有答案必须写在答题纸上,写在试卷或草稿纸上均无效。

## 《计算机操作系统》

| <b>—,</b> | 填空题(5分,每空1分)                                        |                             |
|-----------|-----------------------------------------------------|-----------------------------|
| 1.        | 在生产者——消费者问题中, 若 10 个生产者                             | 台、5个消费者共享容量为8的缓冲区,则互        |
|           | 斥使用缓冲区的信号量的初值为。                                     |                             |
| 2.        | 某简单段式存储管理系统中,地址长度为32                                | 位,若允许的最大段长为 64KB,则段号占       |
|           |                                                     |                             |
| 3.        | 设文件 F1 的当前引用计数值为 1, 先建立文                            | 件 F1 的符号链接(软链接)文件 F2, 再建    |
|           | 立文件 F1 的硬链接文件 F3, 然后删除文件                            | F1。此时,文件 F2 和文件 F3 的引用计数值   |
|           | 分别为、。                                               |                             |
| 4.        | 某文件占 10 个磁盘块, 现要把该文件磁盘:                             | <b>快逐个读入主存缓冲区,并送用户区进行分</b>  |
|           | 析。假设一个缓冲区与一个磁盘块大小相同。                                | ,把一个磁盘块读入缓冲区的时间为 200µs,     |
|           | 将缓冲区的数据传送到用户区的时间为 1000                              | us, CPU 分析一块数据的时间为 100 us,则 |
|           | 在双缓冲区结构下, 读入并分析完该文件的                                | 时间为μs。                      |
| 二、        | 选择题(10分,每题1分)                                       |                             |
| 1.        | 提高单机资源利用率的关键技术是( )。                                 |                             |
|           | A. 脱机技术                                             | B. 多道程序设计技术                 |
|           | C. 虚拟技术                                             | D. 缓冲技术                     |
| 2.        | 进程的基本状态( )可以由其它两种基本                                 | 大状态转变而来。                    |
|           | A. 就绪状态                                             | B. 执行状态                     |
|           | C. 阻塞状态                                             | D. 新建状态                     |
| 3.        | 在高响应比进程调度算法中, 其主要影响因                                | 素是( )。                      |
|           | A. 等待时间                                             | B. 剩余运行时间                   |
|           | C. 已运行时间                                            | D. 静态优先级                    |
| 4.        | 系统中资源 R 的数量为 12, 进程 P1、P2、P3 对资源 R 的最大需求分别为 10、4、9。 |                             |
|           | 若当前已分配给 P1、P2、P3 的资源 R 的数                           | 量分别为 5、2、2,则系统(  )。         |
|           | A. 处于不安全状态                                          |                             |
|           | B. 处于安全状态,且安全序列为 P1->P2->I                          | 23                          |
|           | C. 处于安全状态,且安全序列为 P2->P3->I                          | 21                          |
|           | D. 处于安全状态,且安全序列为 P2->P1->l                          | P3                          |
| 5.        | 分页系统中的页面为( )。                                       |                             |

B. 操作系统所感知

A. 用户所感知

C. 编译程序所感知

- D. 链接、装载程序所感知
- 6. 虚拟存储管理系统的基础是程序的()理论。
  - A. 动态性

B. 虚拟性

C. 局部性

- D. 共享性
- 7. DMA 是在( )建立一条直接数据通路。
  - A. I/O 设备和主存之间

B. I/O 设备之间

C. I/O 设备和 CPU 之间

- D. CPU 和主存之间
- 8. 程序员利用系统调用打开 I/O 设备时,通常使用的设备标识是()。
  - A. 主设备号

B. 次设备号

C. 物理设备名

D. 逻辑设备名

- 9. 虚拟设备是指()
  - A. 允许用户以统一的接口使用物理设备
  - B. 允许用户使用比系统具有的物理设备更多的设备
  - C. 把一个物理设备变换为多个对应的逻辑设备
  - D. 允许用户程序部分装入内存即可使用系统中的设备
- 10. 对目录和文件的描述正确的是()。
  - A. 文件大小只受磁盘容量的限制
  - B. 多级目录结构形成一颗严格的多叉树
  - C. 目录也是文件
  - D. 目录中可容纳的文件数量只受磁盘容量的限制

#### 三简答题(20分,每题10分)

1. 什么是临界资源、死锁? 若采用以下算法解决哲学家就餐问题,是否会导致死锁? 为什么?

```
semaphore fork[5] = \{1, 1, 1, 1, 1\};
void main()
     cobegin {
          philosopher(0);
          philosopher(1);
          philosopher(2);
          philosopher(3);
          philosopher(4);
     } coend
}
void philosopher(int i)
{
      while(1) {
           thinking;
           if (i == 0) {
                P(fork[i]);
                P(fork[(i+1)\%5]);
           } else {
```

```
P(fork[(i+1)%5]);
P(fork[i]);
}
eating;
V(fork[i]);
V(fork[(i+1)%5]);
}
```

**2.** 文件物理结构是指一个文件在外存上的存储组织形式,主要有连续结构、链接结构和索引结构三种,请分别简述它们的优缺点。

#### 四、分析计算题(40分,每题20分)

- 1. 某 32 位计算机采用二级页表的分页存储管理方式,按字节编址,页大小为 4KB,页表项大小为 4B。某进程的页表内容如下图所示(图中数字为十进制),请回答以下问题:
  - (1) 给出逻辑地址结构示意图,请说明理由;
  - (2) 计算逻辑地址 4206501 (十进制) 对应的物理地址。



2. 某双车道公路中一小段因发生塌方事故,变成了单车道(对向行驶的车辆无法同时通行),如下图所示。为保证车辆顺利通行,必须对经过塌方路段的车辆予以控制。请用信号量描述此控制过程,并说明信号量含义。



# 《数据结构》

### 一、填空题(共10分,每空1分)

|          | 数据的逻辑结构是对数据之间关系的描述,主要有                                                        |
|----------|-------------------------------------------------------------------------------|
|          | 程序 for(int i=0;i <n;i+=5); td="" 的时间复杂度为。<=""></n;i+=5);>                     |
| 3.       | 在单链表 L 中的 p 结点之后插入 q 结点的操作是                                                   |
| 4.       | 循环队列的容量为 MAXSIZE,采用牺牲一个存储空间进行构造,队头指针是 front,队 层形针是 moor。则以 穷的条件是              |
| 5.       | 尾指针是 rear,则队空的条件是。<br>具有 512 个结点的完全二叉树的深度为                                    |
| 5.<br>6. | 若以{5,6,7,8,9}作为叶结点的权值构造哈夫曼树,则其带权路径长度是。                                        |
| 7.       | G是一个非连通无向图,共有 15 条边,则该图至少有 个顶点。                                               |
| ,.<br>8. | 设有一组初始关键字序列(46,79,56,38,40,84),执行第一趟快速排序后所得序列                                 |
| •        | 是。                                                                            |
| 二、       | 单选题(共 20 分, 每题 2 分)                                                           |
| 1        | 具有 n 个元素的线性表采用顺序存储结构,在其第 i 个位置插入一个新元素的算法时间                                    |
| 1.       | 复杂度为 ( ) $(1 \le i \le n+1)$ 。                                                |
|          | A. $O(1)$ B. $O(i)$ C. $O(n)$ D. $O(n^2)$                                     |
|          | 一个栈的输入序列为 1,2,3,, $n$ , 若输出序列的第一个元素是 $n$ , 输出第 $i$ (1 $\leq$ $i$ $\leq$ $n$ ) |
|          | 个元素是(  )。                                                                     |
|          | A. n-i B. n-i-1 C. n-i D. i                                                   |
| 3.       | 广义表((a, (b,c)),d,e)的表头是( )。                                                   |
|          | A. a B. (a, (b, c)) C. (a) D. (b, c)                                          |
| 4.       |                                                                               |
|          | A. 先序遍历序列和后序遍历序列 B. 后序遍历序列和中序遍历序列                                             |
|          | C. 先序遍历序列和层序遍历序列 D. 中序遍历序列和层序遍历序列                                             |
| 5.       | 与克鲁斯卡尔(Kruskal)相比,普里姆(Prim)算法更适于求哪种网的最小生成树( )。                                |
|          | A. 边稠密的网 B. 边稀疏的网 C. 顶点稠密的网 D. 以上都不是                                          |
| 6.       | 关键路径是事件结点网络中( )。                                                              |
|          | A. 从源点到汇点的最短路径 B. 从源点到汇点边数最多的路径                                               |
|          | C. 从源点到汇点结点数最多的路径 D. 从源点到汇点的最长路径                                              |
| 7.       | 若用邻接矩阵存储有向图,矩阵中主对角线以下元素均为零,则关于该图拓扑序列的结                                        |
|          | <ul><li>论是( )。</li><li>たま、日本</li></ul>                                        |
|          | A. 存在,且唯一       B. 存在,但不唯一         C. 存在,可能不唯一       D. 无法确定是否存在              |
|          | 在下列排序算法中,占用辅助空间最多的是( )                                                        |
|          | A. 归并排序 B. 快速排序 C. 希尔排序 D. 堆排序                                                |
|          | 设哈希表长 m=9, 哈希函数 H (key) = key%7。表中已填关键字: 13, 25, 68, 其余地址为                    |
| /.       | 空,如用二次探测再散列处理冲突,关键字为 75 的地址是 ( )。                                             |
|          | A. 1 B. 3 C. 7 D. 9                                                           |
| 10.      | 已知关键字序列 5, 8, 12, 19, 28, 20, 15, 22 是小根堆(堆顶元素为最小值), 插入关键字                    |
|          | 3, 调整后得到的小根堆是( )。                                                             |
|          | A. 3,5,12,8,28,20,15,22,19  B. 3,5,12,19,20,15,22,8,28                        |

#### 三、简答题(共20分,每题5分)

- 1. 对任何一颗二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,推导 n0 与 n2 的关系。
- 2. 图 1 所示的平衡二叉树中,插入节点 48,请画出插入位置及插入后每个节点的平衡因子,并调整为新的平衡二叉树。



图 1 平衡二叉树

3. 给定下图 AOV 网,如图 2 所示,写出 5 个拓扑排序序列。



图 2 AOV 网

4. 设 G= (V, E) 以邻接表存储,如图 3 所示,以顶点 v1 为根画出图的深度优先和广度 优先生成树。



图 3 G 的邻接表

#### 四、算法题(共25分)

- 1. (10 分)给定两个升序线性表 L1 和 L2,设计一个函数,将两个升序线性表合并为一个升序线性表 L,新线性表 L 中无重复数据。
- 2. (15 分)采用二叉链表的存储结构,用非递归算法(pop(s,t), push(s,t))交换二叉树的左右子树,要求:
  - (1) 给出算法的基本设计思想。
  - (2) 根据设计思想,设计一个算法。
  - (3) 说明你所设计算法的时间复杂度。