Morning Worning

Formal Language And Automata

- > Languages
- > Autamata
- > Computation

Language

What is a language?

This is a sentence.

This is also a sentence.

So we have

{ sentence 1, sentence 2, sentence 3,

the set of sentences \iff Language

Sentence and Alphabet

- > sentence/string = sequence of symbols chosen from the alphabet Σ example : Mouse love rice.
- > alphabet = set of symbols

example: ASCII, 中文国标, Σ = {0,1}

 $symbols \Rightarrow sentences \Rightarrow language$

Rules/Grammar

```
> rules = by which sentence is generated
  example: rules for English
      <sentence> → <noun-phrase><predicate>
      <noun-phrase> → <article><noun>
       \langle article \rangle \rightarrow a|an|the
       \langle noun \rangle \rightarrow wolf|sheep
       \langle verb \rangle \rightarrow love | eat
```

Examples of language

example 1.1

```
L={w|w consists of 0's and 1's, rule and end with 0}
```

```
L={ 0,00,10,000,010,100,110,0000,.....}
```

 $11111100 \in L$, $1 \notin L$, $0001 \notin L$, $20 \notin L$

Examples of language

example 1.2
$$L=\{ 0^n1^n \mid n \geq 0 \}$$

alphabet = $\{0,1\}$

 $L=\{\varepsilon, 01, 0011, 000111, 00001111, 0000011111,\}$

example 1.3 The empty language

$$L = \{ \} = \phi$$

L: contains no string

example 1.4

L={ w | w is a sentence in English }

Bolt won two gold medals in Daegu.

The sheep eats grass. \checkmark

The grass eats sheep.

Formal language focus on form, not meaning

String operations

$$w=a_1a_2....a_n$$

$$v=b_1b_2....b_n$$

Concatenation

$$wv=a_1a_2....a_nb_1b_2....bn$$

abbabbbaaa

Reverse

$$w^R = a_n a_{n-1} \dots a_1$$

Another operation

$$\mathbf{w}^{n} = \mathbf{w} \mathbf{w} \dots \mathbf{w}$$

- \rightarrow w = abb \Rightarrow w²=abbabb, w³=abbabbabb
- \triangleright definition: $w^0 = \varepsilon$

Operations on languages

> The usual set operations

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$$
 $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
 $L_1 - L_2 = \{ w \mid w \in L_1 \text{ and } w \notin L_2 \}$

> Reverse

$$L^{R} = \{ w^{R} \mid w \in L \}$$

Example
$$L = \{a^nb^n \mid n \ge 1\} \Rightarrow L^R = \{b^na^n \mid n \ge 1\}$$

Operations on languages

 $L^2 = ?$

Concatenation

$$L_1L_2 = \{ wv \mid w \in L_1 \text{ and } v \in L_2 \}$$

Example
$$L = \{ a^n b^n \mid n \ge 1 \} , K = \{ b^n a^n \mid n \ge 1 \}$$

$$LK = \{ a^n b^n b^n a^n \mid n \ge 1 \}$$

$$LK = \{ a^n b^n b^m a^m \mid n \ge 1 , m \ge 1 \}$$

example 1.5

L={ $w \in \{0, 1\}^*$ | all 0's precede all 1's in w } L={ ϵ , 0, 1, 00, 01, 11, 000, 001, 011, 111, }

example 1.6

```
L_1=\{w\in\{0,1\}^*\mid \text{ no prefix of } w \text{ contains } 1\}
   =\{\epsilon, 0, 00, 000, 0000, 00000, 000000, \dots \}
L_2=\{w\in\{0,1\}^*\mid \text{ no prefix of } w \text{ starts with } 1\}
  =\{\epsilon, 0,00,01,000,001,010,011,0000,0001,\ldots\}
  =\{w \in \{0,1\}^* \mid \text{ the first character of } w \text{ is } 0 \} \cup \{\varepsilon\}
 L_3 = \{w \in \{0,1\}^* \mid \text{ every prefix of } w \text{ starts } w \text{ ith } 1\}
   = \phi
```

Automata

- Alan Marthison Turing
 - On Computable Numbers
 With an Application to
 the Entscheidungs Problem

Turing Machine

Automata

- Finite Automata
 - Deterministic Finite Automata
 - Non-deterministic Finite Automata
- Push Down Automata

Computation

Computation for computer

Computation

- Computable Problems
 - write a program to solve

- ◆ Intractable Problems
 - find someway to work around

Undecidable Problem

```
main ()
   Int n, total, x, y, z;
  scanf("%d", &n);
  total=3;
  while(1){
      for(x=1;x<=total-2;x++)
         for(y=1;y<=total-x-1;y++){
            z=total-x-y;
            if(exp(x,n)+exp(y,n)==exp(z,n))
                printf("hello,world\n");
      total++;
```

Undecidable Problem

automaton

Content

Grammars Automata Languages Construction Properties Design Finite Regular Regular Expression Automaton Language Generate Recognize Push Down Context Free Context Free Automaton Language Grammar Recursively Turing (Phrase Enumerable Machine Grammar)

Text book

1. Introduction to Automata Theory, Languages, and Computation (Third Edition)

John E. HopcroftRajeev MotwaniJeffrey D. Ullman

Text book

2. An Introduction to Formal Languages and Automata (Third Edition)

—— Peter Linz

Goal

- 1. Understanding "theoretical" concepts
- ----- method of formal description
- 2. Get a sense of how to reason formally
- 3. Improving reading ability with English

Homework

- All exercises listed on qq-group
- Need not submit
- Check by free talk
- Discussions in group

Honor and Collaboration

Collaboration is strongly encouraged

Solutions must be written independently

Responsible for Understanding and explaining

Exam

Only final exam

Open exam

You are allowed to refer to text-book, class handouts, and notes during the exam

Closed exam

Nothing allowed except one pen

Grading Policy

- ➤ Homework: 40%
- > Final exam: 60%
- > Addition: 10 points
 - Paper
 - Presentation
 - Participation

Instructor

➤ Name: 孙大烈

➤ Office:综合楼 220

Mobile: 13936169569

> E-mail: sdl@hit.edu.cn

➤ 课程群: 自动机/104804608 (qq)

Good good study day day day day day who