přednáška 10

- Volba apriorní hustoty pravděpodobnosti
- MMSE vs. MAP

Volba apriorní hustoty

Připomenutí: aposteriorní hustota pravděpodobnosti má tvar

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)} = \frac{p(x|\theta)p(\theta)}{\int p(x|\theta)p(\theta)d\theta}$$

Kde hustota $p(\theta)$ je apriorní hustota pravděpodobnosti.

Nejběžnější volby pro $p(\theta)$ jsou uniformní a normální pdf.

- 1. Pokud $p(x|\theta)$ modelujeme jako hustotu normálního rozdělení, pak díky volbě $\theta \sim U(a,b)$ nebo $\theta \sim N(\mu_{\theta}, \sigma_{\theta}^2)$ bude i aposteriorní hustota $p(\theta|x)$ normální.
- 2. Tomuto odpovídá např. model dat $x=\theta+w$, kde $w{\sim}N(\mu,\sigma^2)$. Pro odhady $\hat{\theta}$ se dá ukázat, že

a)
$$\hat{\theta}_{\mathrm{MSE}} = \frac{\frac{N}{\sigma^2} \bar{x} + \frac{\mu_{\theta}}{\sigma_{\theta}^2}}{\frac{N}{\sigma^2} + \frac{1}{\sigma_{\theta}^2}}$$
, pokud $\theta \sim N(\mu_{\theta}, \sigma_{\theta}^2)$.

- b) Aposteriorní rozptyl je dán jako $var(\theta|x) = \sigma_{\theta|x}^2 = \frac{1}{\frac{N}{\sigma^2} + \frac{1}{\sigma_{\theta}^2}}$.
- c) $BMSE(\hat{\theta}) < \frac{\sigma^2}{N}$

Metody bayesovských odhadů

Minimum Mean Square Error

$$Bmse(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^{2}\right] = \int \left[\int \left(\hat{\theta} - \theta\right)^{2} p(\theta|x) d\theta\right] p(x) dx$$

$$\hat{\theta}_{MSE} = E[\theta|x] = \int \theta p(\theta|x) d\theta$$

Maximum A posteriori Estimators

$$\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta|x)$$

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

$$\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} p(x|\theta)p(\theta)$$

Příklad: Odhad parametru θ exponenciálního rozdělení, pokud předpokládáme apriorní hustotu jako $p(\theta) = \lambda e^{-\lambda \theta}$, pro $\theta > 0$ a $p(\theta) = 0$ jinak.

cvičení 10

- Házejte mincí a odhadujte z dat pravděpodobnost, že padne orel. Použijte apriorní předpoklad, abyste se vyvarovali špatným závěrům z malého počtu pozorování (když např. dvakrát padne orel, mohlo by se usoudit, že pravděpodobnost je 100%).
- Majitel e-shopu má data o denních prodejích za prvních 290 dní v roce (data na e-learningu). Přijde mu, že za posledních 16 dní jdou prodeje nahoru a chtěl by na základě této hypotézy odhadnout, kolik bude mít prodejů do konce roku.