# ML Frameworks and The Lay Of The Land

## The MLOps Process for **TinyML**



## The MLOps Personas



ML Engineer



ML Researcher



Data Scientist



Data Engineer



Software Engineer



DevOps



Business Analyst

## **ML Frameworks**















### **TensorFlow**

Google's **TensorFlow**Open source ML framework
Released in 2015



## PyTorch

Developed by **Facebook** Al Research Open source ML framework *Released in 2017* 



### Keras

Primarily supported by **Google**Open source DL framework
Released in 2015



| ML Framework | K                            |                     | C                         |
|--------------|------------------------------|---------------------|---------------------------|
| Ease of use  | User-friendly                | Incomprehensive API | Integrated with<br>Python |
| API Level    | High-level API               | Both High/Low-Level | Low-level API             |
| Architecture | Simple, readable,<br>concise | Not easy to use     | Complex                   |
| Speed        | Slow                         | Fast                | Fast                      |
| Debugging    | No need to debug             | Difficult           | Helpful capabilities      |
| Creator      | (Not sole library)           | Google              | Facebook                  |



1. Select boxes with highest objectiveness score



- Select boxes with highest objectiveness score
- Compare overlap and remove boxes with >50% overlap



- Select boxes with highest objectiveness score
- Compare overlap and remove boxes with >50% overlap
- Move to next highest objectiveness score and return to Step 2.















 $\mbox{torchvision.ops.nms} (\mbox{boxes: torch.Tensor, scores: torch.Tensor, iou\_threshold: float}) \rightarrow \mbox{torch.Tensor [SOURCE]}$ 

Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union (IoU).

NMS iteratively removes lower scoring boxes which have an IoU greater than iou\_threshold with another (higher scoring) box.

If multiple boxes have the exact same score and satisfy the IoU criterion with respect to a reference box, the selected box is not guaranteed to be the same between CPU and GPU. This is similar to the behavior of argsort in PyTorch when repeated values are present.

#### Parameters

- boxes (Tensor[N,4])) boxes to perform NMS on. They are expected to be in (x1, y1, x2, y2) format with 0 <= x1 < x2 and 0 <= y1 < y2.</li>
- scores (Tensor[N]) scores for each one of the boxes
- iou\_threshold (float) discards all overlapping boxes with IoU > iou\_threshold

#### Returns

int64 tensor with the indices of the elements that have been kept by NMS, sorted in decreasing order of scores

Return type

Tensor





#### Training Framework



#### Training Framework



#### Deployment Target



#### Training Framework



#### Deployment Target











## Export and Model Portability Issues

 Ops may (not) be supported evenly across all systems



## Export and Model Portability Issues

- Ops may (not) be supported evenly across all systems
- Frameworks implement their own library functions (e.g., NMS for detection)













- More robust toolchain for debugging and optimization
- Get to reuse the existing optimization infrastructure