

Digital Logic Design

Memory

Lecture # 13-14

Design of ALU

Today's Agenda

- Class Quiz
- Components of a Computer System
- Design of ALU
- The Hack ALU
- The Hack ALU Operations
- Design of Hack ALU
- HDL of Hack ALU
- Verifying the ALU chip on H/W Simulator

Arithmetic Logic Unit

а	b	sel	out
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	1

```
When sel==0
Operation = AND

When sel==1
Operation = OR
```

BitLU.hdl

```
CHIP BitLU {
    IN a, b, sel;
    OUT out;
    PARTS:
    And(a=a, b=b, out=andOut);
    Or(a=a, b=b, out=orOut);
    Mux (a=andOut, b=orOut, sel=sel, out=out);
}
```


Single Bit Logic Unit Demo

Class Quiz: 1-Bit ALU

BitALU.hdl

```
CHIP BitALU {
   IN a, b, cin, sel[2];
   OUT out, cout;
   PARTS:
    //write your code here
}
```


Single Bit ALU Demo

The Computer System

Computer System

Design of Arithmetic Logic Unit

The Arithmetic Logical Unit

The Hack ALU

The Hack ALU (cont...)

ZX	nx	zy	ny	f	no	out
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0 1 0 1 0	0	1	1	0	0 0	X
1	1	0	0	0	0	у
0	0	1	1	0		!x
1	1	0	0	0	1	! y
0	0	1	1	1	1	- X
1	1	0	0	1	1	- y
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0 1 0	0	1	1	1	0	x-1
	1	0	0	1	0	y-1
0	0	0	0	1	0	х+у
0	1	0	0	1	1	х-у
0	0	0	1	1	1	y-x
1 0 0 0 0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

The Hack ALU Operation

Pre-settir	ng the x input	Pre-setti	l. 6		Post-setting o/p	ALU output
zx	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	<pre>if f then out=x+y else out=x&y</pre>	if no then out=!out	out(x,y) = out

The Hack ALU Operation

pre-setting the x input		pre-se the y i	_	selecting between computing + or &	post-setting the output	Resulting ALU output
ZX	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	X
1	1	0	0	0	0	У
0	0	1	1	0	1	!x
1	1	0	0	0	1	! y
0	0	1	1	1	1	- X
1	1	0	0	1	1	- y
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

How the ALU Perform

The Hack ALU Operation: (!x)

pre-setting the x input		pre-se the y i	_	selecting between computing + or &	post-setting the output	Resulting ALU output
ZX	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out 0	out(x,y)=
1	1	1	1	1	1	1
1	1	1			0	-1
0	0	1	1 0 0		0	Х
1	1	0	0 0 0		0	У
0	0	1	1	0	1	(!x)
0	0	1	Example	: compute !x		-x
0	1	0	x:	1 1 0 0		- y x+1
1	1	0	у:	1 0 1 1		y+1
0	0	1		ng Pre Setting 1 1 0 0		x-1
1	1	0	x:	1 1 0 0		y-1
0	0	0	y: 1 1 1 1 Computation and post setting x&y: 1 1 0 0 !(x&y): 0 0 1 1			х+у
0	1	0				x-y
0	0	0				y-x
0	0	0	. (===2/			x&y
0	1	0				x y

How the ALU Perform

The Hack ALU Operation: (y-x)

pre-setting the x input		pre-se the y i	_	selecting between computing + or &	post-setting the output	Resulting ALU output
ZX	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1 1	0	1	0	1	0	0
Example:	compute	y – x)	1	0	<u> </u>
ж:	0 0	1 0 (2)	0	0	X
у:	0 1	1 1 (7)	0	0	V
Followi	.ng pre-se	tting:	1	0	1	!x
	-	_	O	0	1	! y
x :	0 0	1 0	1	1	1	- X
х:	1 0	0 0	D	1	1	- y
Computat	ion and p	ost-setti	.ng:	1	1	x+1
(x+y:	1	0 1 0	1	1	1	y+1
! (x+y) :	. 0	1 0 1	(5)	1	0	x-1
)	1	0	y-1
0	1	0	0	1	0	x+y
0	0	0	1	1	1	X-Y
0	0	0	0	0	0	X&Y
0	1	0	1	0	1	x y

How the ALU Perform

$$\mathbf{X} - \mathbf{y}$$

The Hack ALU Operation: (x-y)

pre-setting the x input		pre-se the y i	_	selecting between computing + or &	post-setting the output	Resulting ALU output
ZX	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out=x&y	if no then out=!out	out(x,y)=
1	0	1	0	1	0	0
Example:	compute	x - y)	1	0	-1
x :	0 1	0 1 (5)	0	0	X
y :	0 0	1 1 (3)	0	0	У
Followi	.ng pre-se	tting:	1	0	1	!x
x :	1 0	1 0	<u>)</u> 1	0 1	1	! y -x
y :	0 0	1 1	D	1	1	- y
Computat	ion and p	ost-setti	.ng:	1	1	x+1
(x+y) :		1	1	1	1	y+1
! (x+y) :		_	1	1	0	x-1
(== 2)		(_,)	1	0	y-1
0	1	0	0	1	0	X+y X-y
0	Ü	0	1			V-X
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

The Hack ALU Output Control Bits

• These two control bits will come into play when we build the complete computer's architecture

Perspective

The Hack ALU is:

- Simple
- Elegant
- To implement this ALU, you only need to know how to:
 - Set a 16-bit value to 0000000000000000
 - Set a 16-bit value to 111111111111111
 - Negate a 16-bit value (bit-wise)
 - Compute plus or And on two 16-bit values

That's it!

"Simplicity is the ultimate sophistication."

— Leonardo da Vinci

Writing HDL for Hack ALU - I

ALU.hdl

```
/**The ALU computes one of the following 18 functions:

* x+y, x-y, y-x, 0, 1, -1, x, y, -x, -y, !x, !y,

* x+1, y+1, x-1, y-1, x&y, x|y on two 16-bit inputs,

* according to 6 input bits denoted zx,nx,zy,ny,f,no;

* In addition, the ALU computes two 1-bit outputs:

* if ALU output == 0, zr is set to 1; otherwise zr is set to 0;

* if ALU output<0, ng is set to 1; otherwise ng is set to 0;

*/</pre>
```


Writing HDL for Hack ALU - II

ALU.hdl

```
// Implementation:
// if (zx == 1) set x = 0 // zero the x input
// if (nx == 1) set x = !x // negate the x input
// \text{ if } (zy == 1) \text{ set } y = 0
                         // zero the y input
     (ny == 1) set y = !y // negate the y input
// if (f == 1) set out = x + y //2's complement addition
     (f == 0) set out = x & y // bitwise and
// if
     (no == 1) set out = !out // negate the out output
// if (out == 0) set zr = 1 // set zr output bit to 1
// if (out < 0) set ng = 1 // set ng output bit to 1
```


Writing HDL for Hack ALU - III

```
zx nx zy ny f no
CHIP ALU {
 IN x[16], y[16], zx, nx, zy, ny, f, no; x - \frac{1}{16}
 OUT out[16], zr, ng;
 PARTS:
//if (zx == 1) set x = 0
 Mux16(a=x, b=false, sel=zx, out=x1);
//if (zy == 1) set y = 0
  Mux16(a=y, b=false, sel=zy, out=y1);
//if (nx == 1) set x = !x
  Not16(in=x1, out=notx1);
 Mux16(a=x1, b=notx1, sel=nx, out=x2);
//if (ny == 1) set y = !y
  Not16(in=y1, out=noty1);
 Mux16(a=y1, b=noty1, sel=ny, out=y2);
// if (f == 1) set out = x + y else set out = x & y
Add16(a=x2, b=y2, out=x2Plusy2);
And16 (a=x2, b=y2, out=x2Andy2);
Mux16(a=x2Andy2, b=x2Plusy2, sel=f, out=xFuncy);
```


Writing HDL for Hack ALU - IV

```
// if (no == 1) set out = !out
 Not16(in=xFuncy, out=notxFuncy);
 Mux16(a=xFuncy, b=notxFuncy, sel=no, out=output);
// if (out < 0) set ng = 1
 And16 (a=output, b=true, out[15]=ng);
// if (out == 0) set zr = 1
 And16(a=true, b=output, out[0..7]=outlast8);
 And16(a=true, b=output, out[8..15]=outfirst8);
 Or8Way(in=outlast8, out=Or8Wayoutlast8);
 Or8Way(in=outfirst8, out=Or8Wayoutfirst8);
 Or (a=Or8Wayoutlast8, b=Or8Wayoutfirst8, out=outputIsNotZero);
 Not(in=outputIsNotZero, out=zr);
// out == output
 And16(a=true, b=output, out=out); // out = output
```


ALU Demo

The Hack ALU In Action: Compute y-x

The Hack ALU In Action: Compute x and y

Things To Do

- Do lot of practice of different ALU operations using paper and pencil
- Carry out verification of your paper working and ensure that the ALU chip that we have designed today is working correctly. Use the built-in ALU chip as well as download the HDL of ALU chip from the course bitbucket repository:

O.k., and nowyou'll do exactly what I'm telling you!

https://github.com/arifpucit/COAL_VLecs

• Whenever there is a confusion, please refer to HDL survival guide available on

http://www.arifbutt.me

Coming to office hours does NOT mean you are academically week!