Sciences physiques

Du 30 mars au 3 avril

MPSI.2.2014-2015

Programme n°23

MECANIQUE

M5 Mouvement d'une particule chargée dans un champ électrique ou magnétique

Cours et exercices

M6 Moment cinétique

Cours et exercices

M7 Mouvement d'un solide en rotation autour d'un axe fixe (Cours seulement)

- Le moment cinétique d'un système de points ou d'un solide
- Le théorème du moment cinétique pour un solide
- Couple de forces
- Liaison pivot d'axe
 - Définition
 - Action de liaison et pivot idéal d'axe Oz
- Energie d'un solide en rotation autour d'un axe fixe
 - Energie cinétique d'un solide
 - → Solide en translation
 - → Solide en rotation autour d'un axe fixe Oz
 - Puissance d'une force appliquée à un solide en rotation
 - Théorème de l'énergie cinétique d'un solide indéformable
- Le pendule pesant
 - Position u problème
 - Cas de faibles amplitudes
 - Etude énergétique
 - Portrait de phase

Pendule pesant.	Établir l'équation du mouvement.
	Expliquer l'analogie avec l'équation de l'oscillateur harmonique.
	Établir une intégrale première du mouvement.
	Lire et interpréter le portrait de phase : bifurcation entre un mouvement pendulaire et un mouvement révolutif.
4.2 Approche énergétique du mouvement d'un solide en rotation autour d'un axe fixe orienté, dans un référentiel galiléen	
Énergie cinétique d'un solide en rotation.	Utiliser la relation $E_c = \frac{1}{2}J_{\perp}\omega^2$, l'expression
	$\det J_{\scriptscriptstyle \it d}$ étant fournie.
Loi de l'énergie cinétique pour un solide.	Établir l'équivalence dans ce cas entre la loi scalaire du moment cinétique et celle de l'énergie cinétique.

M8 Mouvement dans un champ de force centrale (Cours uniquement)

- Forces centrales conservatives
 - Définition
 - Energie potentielle associée
 - Exemples
 - → Interaction de gravitation
 - → Interaction électrostatique
- · Lois générales de conservation
 - Le moment cinétique
 - \rightarrow Conservation
 - → Le mouvement est plan
 - → Loi des Aires
 - L'énergie mécanique
 - Cas du champ Newtonien

5. Mouvements dans un champ de force centrale conservatif	
Point matériel soumis à un seul champ de force centrale.	Déduire de la loi du moment cinétique la conservation du moment cinétique.
	Connaître les conséquences de la conservation du moment cinétique : mouvement plan, loi des aires.
Énergie potentielle effective. État lié et état de diffusion.	Exprimer la conservation de l'énergie mécanique et construire une énergie potentielle effective.
	Décrire qualitativement le mouvement radial à l'aide de l'énergie potentielle effective. Relier le caractère borné à la valeur de l'énergie mécanique.
Champ newtonien. Lois de Kepler.	Énoncer les lois de Kepler pour les planètes et les transposer au cas des satellites terrestres.
Cas particulier du mouvement circulaire : satellite, planète.	Montrer que le mouvement est uniforme et savoir calculer sa période.
	Établir la troisième loi de Kepler dans le cas particulier de la trajectoire circulaire. Exploiter sans démonstration sa généralisation au cas d'une trajectoire elliptique.
Satellite géostationnaire.	Calculer l'altitude du satellite et justifier sa localisation dans le plan équatorial.
Énergie mécanique dans le cas du mouvement circulaire puis dans le cas du mouvement elliptique.	Exprimer l'énergie mécanique pour le mouvement circulaire.
	Exprimer l'énergie mécanique pour le mouvement elliptique en fonction du demi-grand axe.
Vitesses cosmiques : vitesse en orbite basse et vitesse de libération.	Exprimer ces vitesses et connaître leur ordre de grandeur en dynamique terrestre.

SOLUTIONS AQUEUSES

AQ2 Réactions de dissolution ou de précipitation (Cours uniquement)

- Définition : Solution saturée
- Equilibres de précipitation
 - Produit de solubilité
 - Solubilité
 - Conditions de précipitation
- Diagrammes de prédominance
 - Couple précipité ions métallique
 - Cas d'un hydroxyde amphotère
- Diagrammes de distribution
- Facteurs influençant l'équilibre de précipitation
 - Influence de la température
 - Effet d'ion commun
 - Influence du pH
 - → Exemple 1 : AgCH₃CO₂H
 - → Exemple 2 ; Solubilité du carbonate de nickel
 - Réactions de complexation
 - → Mise en évidence
 - → Influence sur la solubilité (exemple AgCN)

TP

Mesure d'un coefficient de frottement fluide