4.25 Acyl Transfer Reactions - 2

- 11/4: Lecture 24 recap.
 - 1. Mechanism of acyl transfer (Figure 4.22).
 - Proceeds via a two-step addition-elimination process and a tetrahedral intermediate.
 - 2. Acid chlorides (Figure 4.10) and acid anhydrides (Figure 4.11) are very reactive, so no catalyst is needed for their acyl transfer reactions.
 - 3. Esters have three important reactions: Hydrolysis (Figure 4.26), transesterification (Figure 4.29), and amide formation (Figure 4.33).
 - Esters are *not* great electrophiles, so we need an acid or base catalyst to promote their reactions.
 - We can make an amide from an ester by heating the amine and ester. The amine acts as both
 the nucleophile and the base in this case.
 - 4. Acid catalyzed esterification: Fischer esterification (Figure 4.34).
 - Driven by excess alcohol or removal of water.
 - Under basic conditions, we form an unreactive carboxylate (Figure 4.35).
 - 5. Amide hydrolysis (Figure 4.37).
 - Driving force under acidic conditions: The formation of a (very stable) salt.
 - Driving force under basic conditions (Figure 4.39): The formation of a (very stable) carboxylate.
 - Feedback: Prof. Buchwald has heard that there's a lot of anxiety about synthesis questions, so he'll go over one example problem today, another on Wednesday, and many on Friday!
 - Source of anxiety around synthesis: There's no one right answer.
 - Positive outlook: There is more than one thing you can write down for 100% credit!
 - Example: How can we make n-butyl amine (${}^{n}BuNH_{2}$) from n-propyl bromide (${}^{n}PrBr$) and any 1-carbon compound?

$$\begin{array}{c} \underbrace{\begin{array}{c} 1. \text{ LiAlH}_4 \\ 2. \text{ H}_2\text{O} \end{array}}_{\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2} \xrightarrow{\text{CH}_3\text{CH}_2\text{CH}_2\text{CN}} \\ \text{(a) Pathway through the nitrile.} \end{array}$$

(b) Pathway through the amide.

Figure 4.42: TTQ: Synthesis of n-butyl amine from n-propyl bromide.

- This is a medium-difficulty question.
- We'll start with a retrosynthetic analysis.^[8]
 - You may want to start by identifying the number of carbons in the starting material and product.
 - This tells us that we need to attach a CH₂NH₂ to the starting material. How can we do this?
- We don't know too many reactions yet, but here are two possibilities.
 - Transform n BuNH₂ to butyronitrile (n PrCN). [9]
 - ➤ In the forward direction, we'd use LiAlH₄ and then H₂O (a water workup).
 - Transform ⁿBuNH₂ to butyramide (ⁿPrCONH₂).
 - ➤ In the forward direction, we'd use LiAlH₄ and then H₂O, as well.
 - > Next step: Transform butyramide to the acid chloride via excess (XS) ammonia.
 - ➤ Next step: Transform the acid chloride to the carboxylic acid via SOCl₂ / Py.
 - \succ Next step: The carboxylic acid could have come from the primary alcohol via Jones reagent. However, this route would require a 4-carbon primary alcohol starting material, which would be difficult to access from n-propyl bromide. More simply, transform the carboxylic acid to a Grignard reagent via carboxylation with CO_2 .
 - ➤ Final step: Transform the Grignard reagent to the original *n*-propyl bromide via magnesium metal.
- Aside (connection to real-world chemistry): In real-life synthesis problems, chemists work to make compounds as inexpensively as possible.
 - However, cost is not a consideration in 5.13.
- Prof. Buchwald's advice on 5.13-level synthesis problems: The more practice problems you do, the more you'll see how things work retrosynthetically.
- This concludes today's synthesis example; we now return to acyl transfer reactions.
- Lecture outline.
 - 4. Evidence for a tetrahedral intermediate.
 - a. Ester hydrolysis.
 - b. Amide hydrolysis (basic).
 - c. Amide hydrolysis (acidic) deferred to recitation.
 - 5. Reactions with NaBH₄, LiAlH₄, RMgBr, and RLi.
- We'll begin with Topic 4: Evidence for a tetrahedral intermediate.
- According to Prof. Buchwald, every acyl transfer reaction goes through a tetrahedral intermediate.
 - But Prof. Buchwald just told us this; why should we believe it's true?
 - Here's some evidence that this happens.
- Recall the general addition-elimination mechanism from last lecture (Figure 4.22).
 - Why couldn't we have the S_N2-like mechanism instead?

⁸Note that the double-lined arrows are called "retrosynthetic arrows." It is common nomenclature to see retrosynthetic arrows in the reverse direction, overset by forward arrows and conditions.

⁹Although it was not covered in class, we could then transform butyronitrile to n-propyl bromide with CN⁻ (see Figure 3.21). This would be a highly efficient synthesis!

- We can differentiate these two mechanisms via an isotopic labeling study.
 - Most naturally occurring oxygen is ¹⁶O.^[10] However, we can also use molecules containing heavy oxygen, which is interchangeably denoted as ¹⁸O, ¹⁸●, or just ●.^[11]
 - In particular, we could run an ester hydrolysis reaction using H●[−] as the nucleophile and H₂¹⁸● as the solvent!
 - Such a reaction would yield RCOOH as the product instead of RCOOH.
 - We can then use mass spec to measure how much ^{18}O has been incorporated, for example by looking at the ratio of the heights of the parent peak (RCOOH) and the $[M+2]^{+}$ peak (RCOOH).
 - In this particular experimental setup, we will stop the ester hydrolysis process at partial conversion for reasons that will become clear shortly.
 - We can then look for 18 in the acid and in the starting material.
- We now discuss Subtopic 4.a: Evidence for a tetrahedral intermediate in the ester hydrolysis reaction.

(a) The kinetic network for the addition-elimination mechanism.

$$\bigcap_{R \to OR} (A + e^{\Theta}) = \bigcap_{R \to OR} (A + e^$$

(b) The kinetic network for the S_N2 mechanism.

Figure 4.43: Isotopic labeling to prove a tetrahedral intermediate: Ester hydrolysis.

- Figure 4.43a displays the full kinetic network of the addition-elimination mechanism.
 - \blacksquare All of the little k's indicate kinetic rate constants.
 - This is the ugliness of reality: It's a very complicated kinetic network.
- Here's a rough explanation of the network.
 - We begin in the upper-left corner, with our ester and isotopically labeled H^{\bullet} nucleophile.
 - H● can add into the ester, yielding the tetrahedral intermediate.
 - Now we have three options: Go backwards and eliminate H•, go down and eliminate RO, go right and do proton transfer followed by eliminating HO.
 - \succ Going backwards occurs with rate constant k_1 from the tetrahedral intermediate.
 - \triangleright Going down occurs with rate constant k_2 from the tetrahedral intermediate.
 - \succ Going right occurs with rate constant k_4 from the tetrahedral intermediate.

¹⁰ "oh sixteen."

¹¹All pronounced "oh eighteen;" these notes will use these symbols interchangeably, as well, so that you get practice looking at all of the forms.

- The last option is that we could do proton transfer, and then eliminate RO $^-$. This process occurs with rate constant k_3 .
- Note that any time we eliminate RO^- (k_2 or k_3), the resultant carboxylic acid will be irreversibly deprotonated under the present basic conditions.
- HO⁻ and RO⁻ are comparable leaving groups (i.e., comparably good at leaving).
 - Thus, we should have $k_1 \approx k_2 \approx k_3 \approx k_4$.
 - So if this scheme is correct, we expect to get some 18 O in the recovered ester, via the k_4 pathway!
- Now let's consider the other possibility: Figure 4.43b displays the full kinetic network for the $\rm S_{N}2$ mechanism.
- If we do an $S_{\rm N}2$ reaction, we should get a stable carboxylate that does not participate in a back reaction.
 - Therefore, we should see no ¹⁸O in the recovered ester SM at 50% conversion.
- Experimentally, what we find is that there is ¹⁸O in the recovered ester.
 - Therefore, the tetrahedral intermediate does exist!
- If this experimental setup isn't making sense right now, go home, meditate, relax, and then look
 at this again under calmer circumstances.
- \bullet This concludes our discussion of how an isotopic labeling study provides evidence for the existence of the tetrahedral intermediate over an S_N2 pathway.
- We now move onto an isotopic labeling study of amide hydrolysis, with the goal of showing how a
 mechanism that proceeds through a tetrahedral intermediate can explain the following two experimental
 results.
 - Under basic amide hydrolysis conditions (which we stop at 50% conversion), we get lots of $^{18}{\rm O}$ in the recovered amide.
 - Under acidic amide hydrolysis conditions (which we stop at 50% conversion), we get much less $^{18}{\rm O}$ in the recovered amide.
- We now dive more deeply into the mechanism under basic conditions, which is Subtopic 4.b.

(a) The kinetic network for the addition-elimination mechanism.

Figure 4.44: Isotopic labeling to prove a tetrahedral intermediate: Amide hydrolysis.

- The overall scheme (Figure 4.44a) bears a great resemblence to Figure 4.43a. However, there is one key difference.
 - H_2O has a much lower pK_a than HNR_2 (see Table 4.1), which means that HO^- (the conjugate base of H_2O) is a *much* better leaving group than R_2N^- (the conjugate base of HNR_2).
 - This means that while $k_1 \approx k_4$ and $k_2 \approx k_3$, we have that $k_1 \gg k_2$.
- This implies that under basic conditions, the initial amide equilibrates fast with the isotopically labeled amide (Figure 4.44b).
 - It follows that we'll often observe a carboxylate product with two ¹⁸O's!
 - To reiterate, this is because the first gets incorporated fast, and the second happens more slowly. So by the time we do amide hydrolysis, some ¹⁸O will have already been incorporated!
- A deep dive into the mechanism under acidic conditions will be covered in recitation by the TFs.
- We now move onto Topic 5: Reactions with NaBH₄, LiAlH₄, RMgBr, and RLi.
- Per a conversation this morning between Prof. Buchwald and Dr. Wendlandt the chemistry professor currently teaching 5.12 this should be review.
- Let's consider how our carboxylic acid derivatives react with the above four reagents.

	R Cl	$\underset{R}{\overset{O}{\swarrow}}\underset{O}{\overset{O}{\swarrow}}_{R}$	$\underset{R}{\overset{O}{\swarrow}}_{OR}$	$\overset{O}{\underset{R}{\swarrow}}_{NR_{2}}$	$\underset{R}{\overset{O}{\longleftarrow}}_{O}\ominus$
$\mathrm{NaBH_{4}}$	R^OH	ROH	NR	NR	NR
${ m LiAlH_4}$	R^OH	ROH	ROH	$R^{\frown}NR_2$	ROH
R'MgBr	R'R' R OH	R'R' R OH	R'R' R OH	$\underset{R}{\overset{O}{\bigsqcup}}_{R'}$	NR
m R'Li	R'R' R OH	R'R' R OH	R'R' R OH	$\underset{R}{\overset{O}{\bigsqcup}}_{R'}$	$\overset{O}{\underset{R}{\longleftarrow}}_{R'}$

Table 4.2: Reactions of carboxylic acid derivatives with NaBH₄, LiAlH₄, RMgBr, RLi.

- Recall from Figure 4.20 that our carboxylic acid derivatives can be partitioned into...
 - More reactive compounds (acid chlorides and acid anhydrides);
 - Mid-range compounds (esters);
 - More stable compounds (amides);
 - By the far least reactive compounds (carboxylates).
- Our reagents also vary in strength.
 - NaBH₄ is weaker. This can be good because it's more selective!
 - LiAlH₄, in contrast, is stronger and less selective.
- It follows that NaBH₄ will reduce acid chlorides, acid anhydrides, and ketones to primary alcohols, but it will not reduce esters, amides, or carboxylates.
 - Aside: This fact is useful in **chemoselective** syntheses!
 - For example, you could put an ester and acid anhydride in the same molecule and know that only the acid anhydride will react with NaBH₄!
 - Chemoselectivity is one of the big trends in modern synthesis.
- LiAlH₄ reduces everything to alcohols.

- The Grignard reagent adds twice to carboxylic acid derivatives, yielding a tertiary alcohol.
 - This happens to acid chlorides, acid anhydrides, and esters.
 - Amides turn into the ketone (this is a special case!).
 - Carboxylates do not react.
- Organolithium reagents (more potent than Grignards) react exactly the same as Grignards, except that they will *also* turn carboxylates into ketones!
 - This is a very surprising result, since we've talked about how unreactive carboxylates are.
- Where do ketones and aldehydes fit into the picture?
 - Ketones and aldehydes are between anhyrides and esters, and aldehydes are more reactive than ketones.
 - NaBH₄ will reduce ketones and aldehydes to the primary alcohol.
 - We'll talk about this more later.
- Next time: A mechanistic explanation for Table 4.2.