TD 5 : Théorème d'inversion locale et théorème des fonctions implicites

Exercice 1. Un difféomorphisme global

On pose:

$$f: \left\{ \begin{array}{cc} \mathbf{R}^2 & \to \mathbf{R}^2 \\ (x,y) & \mapsto (x + \frac{1}{2}\sin(y), y + \sin(x)). \end{array} \right.$$

- 1. Soit $v \in \mathbf{R}$. Montrer que $\phi : x \in \mathbf{R} \mapsto x + \frac{1}{2}\sin(v \sin(x)) \in \mathbf{R}$ réalise un \mathcal{C}^1 -difféomorphisme global de \mathbf{R} sur lui-même.
- 2. Montrer que f réalise un \mathcal{C}^1 -difféomorphisme global de \mathbf{R}^2 sur lui-même.

Exercice 2. Inversion globale et fonctions dilatantes

Soient k > 0 et $f: \mathbf{R}^n \to \mathbf{R}^n$ une application de classe \mathcal{C}^1 supposée k-dilatante, i.e.:

$$\forall x, y \in \mathbf{R}^n, \quad ||f(x) - f(y)|| \ge k||x - y||.$$

On veut montrer que f est un difféomorphisme global de \mathbb{R}^n sur lui-même.

- 1. Montrer que f est injective et d'image fermée.
- 2. Montrer que df(x) est inversible pour tout $x \in \mathbf{R}^n$.
- 3. Conclure.

Indication : on utilisera la connexité de \mathbb{R}^n qui assure qu'un ouvert-fermé non vide de \mathbb{R}^n est nécessairement \mathbb{R}^n (cf cours de Topologie générale)

Exercice 3. Perturbation de l'identité

Soit $f \in \mathcal{C}^1(\mathbf{R}, \mathbf{R})$ telle qu'il existe 0 < k < 1 tel que :

$$\forall x \in \mathbf{R}, |f'(x)| \le k.$$

On définit :

$$g: \left\{ \begin{array}{cc} \mathbf{R}^2 & \rightarrow \mathbf{R}^2 \\ (x,y) & \mapsto (x+f(y),y+f(x)) \end{array} \right. .$$

Montrer que g est un \mathcal{C}^1 -difféomorphisme de \mathbf{R}^2 dans \mathbf{R}^2 .

Exercice 4. Fonctions strictement monotones

Soit E un espace euclidien. Une application $f: E \to E$ est dite strictement monotone s'il existe k > 0 tel que

$$\forall x, y \in E, \quad \langle f(x) - f(y), x - y \rangle \ge k ||x - y||^2.$$

1. Soit $f: E \to E$ de classe \mathcal{C}^1 . Montrer que f est strictement monotone si et seulement si

$$\exists k > 0, \forall x \in E, \forall h \in E, \quad \langle df(x) \cdot h, h \rangle \ge k ||h||^2.$$

2. Montrer que si $f: E \to E$ est \mathcal{C}^1 et strictement monotone, alors c'est un \mathcal{C}^1 -difféomorphisme global sur E.

Exercice 5. Racine carrée d'une matrice

Montrer qu'il existe $\alpha > 0$ tel que pour toute matrice $A \in \mathcal{M}_n(\mathbf{R})$ telle que $||A - I|| < \alpha$, il existe une unique matrice $\psi(A) \in \mathcal{M}_n(\mathbf{R})$ telle que $\psi(A)^2 = A$, avec ψ de classe \mathcal{C}^{∞} .

Exercice 6. Réduction des formes quadratiques

Soit $A_0 \in \mathcal{S}_n(\mathbf{R})$ une matrice symétrique inversible. On considère :

$$\varphi: \left\{ \begin{array}{cc} \mathcal{M}_n(\mathbf{R}) & \to \mathcal{S}_n(\mathbf{R}) \\ M & \mapsto M^T A_0 M. \end{array} \right.$$

- 1. Montrer que $d\varphi(I)$ est surjective et préciser son noyau et sa dimension.
- 2. Montrer qu'il existe un voisinage V de A_0 dans $S_n(\mathbf{R})$ et une application $\psi \in \mathcal{C}^1(V, \mathrm{GL}_n(\mathbf{R}))$ telle que :

$$\forall A \in V, \quad A = \psi(A)^T A_0 \psi(A).$$

Exercice 7. Une équation différentielle non linéaire

On note $E = \{ f \in \mathcal{C}^1([0,1], \mathbf{R}), f(0) = 0 \}$ et $F = \mathcal{C}^0([0,1], \mathbf{R})$, qu'on munit des normes :

$$\forall f \in E, \|f\|_E = \|f'\|_{\infty}$$
 et $\forall g \in F, \|g\|_F = \|f\|_{\infty}$.

On définit alors $T:E\mapsto F$ par :

$$\forall f \in E, Tf = f' + f^2.$$

On a vu dans le TD 4 que $(E, \|\cdot\|_E)$ est un espace de Banach et que T est \mathcal{C}^1 . Montrer qu'il existe $r_1, r_2 > 0$ tels que pour toute fonction $g \in F$ avec $\|g\|_{\infty} \leq r_2$, il existe une unique fonction $y \in E$ telle que $\|y\|_E \leq r_1$ et

$$y' + y^2 = g.$$

Exercice 8. Il n'y a pas de sous-groupes arbitrairement "petits" dans $GL_n(\mathbf{R})$

- 1. Montrer que $\exp: \mathcal{M}_n(\mathbf{R}) \to \mathrm{GL}_n(\mathbf{R})$ est un difféomorphisme local au voisinage de 0.
- 2. En déduire qu'il existe un voisinage W de I_n dans $GL_n(\mathbf{R})$ tel que si G est un sous-groupe de $GL_n(\mathbf{R})$ contenu dans W, alors G est trivial.

Exercice 9. Pour se faire la main sur les fonctions implicites

Démontrer que la relation :

$$x + y + z + \sin(xyz) = 0,$$

définit z comme une fonction \mathcal{C}^{∞} de x et y autour du point (0,0,0). Calculer les dérivées partielles $\frac{\partial z}{\partial x}(0,0)$ et $\frac{\partial z}{\partial y}(0,0)$.

Exercice 10. Polynômes scindés à racines simples

Soit $P_0 \in \mathbf{R}_n[X]$ un polynôme admettant n racines réelles distinctes.

- 1. Montrer qu'il existe un voisinage $V \subset \mathbf{R}_n[X]$ de P_0 et des applications $\lambda_1, \ldots, \lambda_n : V \to \mathbf{R}$ de classe C^{∞} telles que tout polynôme $P \in V$ admet n racines réelles distinctes $\lambda_1(P) < \ldots < \lambda_n(P)$.
- 2. Soit $i \in \{1, ..., n\}$. Pour tout $P \in V$, calculer $d\lambda_i(P)$.

Exercice 11. Asymptotique des racines d'une équation du troisième degré Soient a < b deux réels. On pose :

$$f: \left\{ \begin{array}{cc} \mathbf{R} \times \mathbf{R}_*^+ & \to \mathbf{R} \\ (x, \varepsilon) & \mapsto (x - a)(b - x) + \varepsilon x^3. \end{array} \right.$$

Montrer que pour $\varepsilon > 0$ assez petit, l'équation $f(x,\varepsilon) = 0$ admet trois racines réelles distinctes $x_1(\varepsilon) < x_2(\varepsilon) < x_3(\varepsilon)$. Donner un développement asymptotique à l'ordre $O(\varepsilon^2)$ de ces racines lorsque ε tend vers 0.