$oxed{1}$ C_1 , C_2 をそれぞれ次式で与えられる放物線の一部分とする。

$$C_1: y = -x^2 + 2x, \quad 0 \le x \le 2$$

$$C_2: y = -x^2 - 2x, \quad -2 \le x \le 0$$

また,aを実数とし,直線y = a(x+4)をlとする。

(1) 直線 l と C_1 が異なる 2 つの共有点をもつための a の値の範囲を求めよ。

以下,a が (1) の条件を満たすとする。このとき,l と C_1 で囲まれた領域の面積を S_1 ,x 軸と C_2 で囲まれた領域で l の下側にある部分の面積を S_2 とする。

- (2) S_1 を a を用いて表せ。
- (3) $S_1 = S_2$ を満たす実数 a が $0 < a < rac{1}{5}$ の範囲に存在することを示せ。