Algebra liniară Model de lucrare scrisă

- 1. a) Să se definească subspațiul vectorial și să se dea un exemplu de subspațiu al \mathbb{R} -spațiului vectorial \mathbb{R}^2 .
- b) Să se arate că intersecția a unuei familii de subspații este subspațiu vectorial.
- c) Să se arate că $S=\{(x_1,x_2,x_3)\in\mathbb{R}^3\mid x_1-x_2+2x_3=0\}$ este un subspațiu al \mathbb{R} -spațiului vectorial \mathbb{R}^3 .
- 2. a) Să se definească liniar dependența și să se dea un exemplu de trei vectori liniar dependenți în \mathbb{R}^3 .
- b) Să se arate că un vector nenul al unui spațiu vectorial este liniar independent.
- c) Să se stabilească dacă

$$\mathbf{b} = ((1,4,2), (2,3,1), (3,0,-1))^t$$

este o bază pentru \mathbb{R}^3 și dacă da, să se determine coordonatele vectorului v=(0,-7,-4) relativ la acestă bază.

- 3. a) Să se enunțe lema lui Steinitz.
- b) Fie $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + 2x_2 + x_3 = 0\}$ şi $T = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid -x_1 x_2 + 2x_3 = 0 = 2x_1 + x_2 + x_3\}$. Să se arate că $S, T \leq_{\mathbb{R}} \mathbb{R}^3$ și că $S \oplus T = \mathbb{R}^3$.
- c) Cu notațiile de la b), să se găsescă câte o bază și dimensiunea subspațiilor S și $T,\,S\cap T$ și S+T.
- 4. a) Să se definească aplicația liniară și să se dea un exemplu de aplicație \mathbb{R} -liniară de la \mathbb{R}^2 la \mathbb{R} .
- b) Dacă $f:V\to W$ și $g:W\to U$ sunt două aplicații K-liniare. să se arate că $g\circ f$ este de asemenesa K-liniară.
- c) Fie $f: \mathbb{R}^4 \to \mathbb{R}^4$ dată prin

$$f(x_1, x_2, x_3, x_4) = (x_1 + 2x_2 + x_3 + x_4, -2x_1 - x_2 + 4x_3 + x_4, 5x_1 + 7x_2 + 2x_3 + 5x_4, x_1 + 3x_2 - x_3 - 2x_4)$$

Să se arate că f este o aplicație liniară și să se determine câte o baza și dimensiunea pentru Ker(f) și Im(f).