

COHOMOLOGY OF UNBRANCHED RIEMANN DOMAINS OVER q -COMPLETE SPACES

YOUSSEF ALAOUI

ABSTRACT. In this article, we show that if $\Pi : X \rightarrow Y$ is an unbranched Riemann domain over an r -complete complex space Y , then for any coherent analytic sheaf \mathcal{F} on X the cohomology group $H^p(X, \mathcal{F})$ vanishes for all $p \geq q + r - 1$. In particular, one gets a positive answer to a generalization of the local Stein problem and new vanishing theorems for the cohomology of locally q -complete open sets in r -complete spaces.

1. INTRODUCTION

A holomorphic map $\Pi : X \rightarrow Y$ of complex spaces is said to be a locally q -complete morphism if for every $x \in Y$, there exists an open neighborhood U of x such that $\Pi^{-1}(U)$ is q -complete. When $q = 1$, then Π is called a locally 1-complete or locally Stein morphism.

The map Π is said to be r -complete if there exists a smooth function $\phi : X \rightarrow \mathbb{R}$ such that:

- (a) ϕ is r -convex on X
- (b) For every $\lambda \in \mathbb{R}$, the restriction map $\Pi : \{x \in X : \phi(x) \leq \lambda\} \rightarrow Y$ is proper.

In [3], Andreotti and Narasimhan proved that if Y is a Stein space with isolated singularities and $X \subset Y$ is locally Stein in Y , then X is Stein.

In [5], Coltoiu and Diederich have shown that if $\Pi : X \rightarrow Y$ is an unbranched Riemann domain with Y a Stein space and Π a locally Stein morphism, then X is Stein if Y has isolated singularities. This result clearly generalizes the theorem of Andreotti and Narasimhan proved when $X \subset Y$ and Π is the inclusion map.

In [1], we have proved that the above mentioned result of Coltoiu and Diederich follows if we assume only that Y is an arbitrary Stein space.

It is also known from [8] that if X and Y are complex spaces such that there exists a locally q -complete morphism $\Pi : X \rightarrow Y$, then Y r -complete implies X cohomologically $(q+r)$ -complete. The aim of this article is to prove that if moreover

1991 *Mathematics Subject Classification.* 32E10, 32E40.

Key words and phrases. Stein spaces; q -convex functions; q -complete spaces; cohomologically q -complete spaces; q -Runge domains.

$\Pi : X \rightarrow Y$ is an unbranched Riemann domain, then X is cohomologically $(q+r-1)$ -complete.

This result has been shown in [1] in the special case $q = r = 1$ and extends in particular a theorem in [2] which is proved in the regular case for $r = 1$ and $\mathcal{F} = \mathcal{O}_X$, namely; if $X \subset Y$ is locally q -complete in a Stein manifold Y of dimension n and $1 \leq q \leq n - 2$, then X is cohomologically q -complete with respect to the structure sheaf \mathcal{O}_X .

As an immediate consequence of our result is that if X is a locally q -complete open subset of a r -complete complex space Y , then $H^p(X, \mathcal{F})$ vanishes for every coherent analytic sheaf \mathcal{F} on X and all $p \geq q + r - 1$.

2. PRELIMINARIES

Recall that a smooth real valued function ϕ on a complex space X is called q -convex if every point $x \in X$ has an open neighborhood U isomorphic to a closed analytic set in a domain $D \subset \mathbb{C}^n$ such that the restriction $\phi|_U$ has an extension $\tilde{\phi} \in C^\infty(D)$ whose Levi form

$$L_z(\phi, \xi) = \sum_{i,j} \frac{\partial^2 \tilde{\phi}(z)}{\partial z_i \partial \bar{z}_j} \xi_i \bar{\xi}_j, \quad \xi \in \mathbb{C}^n,$$

has at most $(q - 1)$ -negative or zero eigenvalues at every point $z \in D$.

The complex space X is called q -complete if X has an exhaustion function $\phi \in C^\infty(X)$ which is q -convex on X .

We say that X is cohomologically q -complete if for every coherent analytic sheaf \mathcal{F} on X the cohomology groups $H^p(X, \mathcal{F})$ vanish for all $p \geq q$.

It is well known from the theory of Andreotti and Grauert [3] that every q -complete space is cohomologically q -complete.

An open subset D of X is called q -Runge if for every compact set $K \subset D$, there is a q -convex exhaustion function $\phi \in C^\infty(\Omega)$ such that

$$K \subset \{x \in \Omega : \phi(x) < 0\} \subset\subset D$$

In [3], Andreotti-Grauert proved that if D is q -Runge in X , then for every $\mathcal{F} \in coh(X)$ the cohomology groups $H^p(D, \mathcal{F})$ vanish for $p \geq q$ and, the restriction map

$$H^p(X, \mathcal{F}) \longrightarrow H^p(D, \mathcal{F})$$

has dense image for all $p \geq q - 1$.

3. MAIN RESULT

Lemma 1. *Let X and Y be complex spaces and $\Pi : X \rightarrow Y$ an unbranched Riemann domain. Assume that there exists a smooth r -convex function ϕ on Y . Then, for any real number c and every coherent analytic sheaf \mathcal{F} on X if $\text{prof}(\mathcal{F}) > r$ and $X'_c = \{x \in X : \phi \circ \Pi(x) > c\}$, the restriction map $H^p(X, \mathcal{F}) \rightarrow H^p(X'_c, \mathcal{F})$ is an isomorphism for $p \leq \text{prof}(\mathcal{F}) - r - 1$.*

For the proof of lemma 1 see [1].

Let now $\Pi : X \rightarrow Y$ be a locally q -complete morphism with Y r -complete, and let $\phi : Y \rightarrow \mathbb{R}$ be a smooth exhaustion function which is r -convex on Y . We fix a real number $\lambda_0 \in \mathbb{R}$. Then there exist a Stein open covering $U_1, \dots, U_k \subset\subset Y$ of $\{\phi = \lambda_0\}$ such that $\Pi^{-1}(U_i)$ are q -complete. We choose compactly supported functions $\theta_j \in C^\infty(U_j, \mathbb{R}^+)$ such that $\sum_{j=1}^k \theta_j(x) > 0$ at any point $x \in \{\phi = \lambda_0\}$. There exist sufficiently small constants $c_1 > 0, \dots, c_k > 0$ such that the functions $\phi_j = \phi - \sum_{i=1}^j c_i \theta_i$ are still r -convex for $1 \leq j \leq k$. We define for every integer $j = 0, \dots, k$, the sets

$$Y_j = \{z \in Y : \phi_j(z) < \lambda_0\}, \quad \text{and} \quad X_j = \Pi^{-1}(Y_j),$$

where $\phi_0 = \phi$ and, for every real number $\lambda \in \mathbb{R}$ we put

$$Y(\lambda) = \{y \in Y : \phi(y) < \lambda\} \quad \text{and} \quad X(\lambda) = \Pi^{-1}(Y(\lambda)).$$

Let now \mathcal{F} be a coherent analytic sheaf on X and A the set of all real numbers μ such that $H^i(X(\lambda), \mathcal{F}) = 0$ for every real number $\lambda \leq \mu$ and all $i \geq q + r - 1$.

Lemma 2. *The set $A \subset \mathbb{R}$ is not empty and open.*

Proof. First we prove that the lemma holds when $r \geq 3$. Since ϕ is proper, then obviously A is not empty. To prove that A is open, it is sufficient to show that if $\lambda_0 \in A$, then there exists $\varepsilon_0 > 0$ such that $\lambda_0 + \varepsilon_0 \in A$. In fact, since $Y_0 = Y(\lambda_0) \subset\subset Y_k$ and ϕ is exhaustive on Y , there exists $\varepsilon_0 > 0$ such that $Y(\lambda_0 + \varepsilon_0) \subset Y_k$. Next, we put $p = q + r - 1$ and consider the sets $X_j(\lambda)$ defined for every real number λ with $\lambda_0 \leq \lambda \leq \lambda_0 + \varepsilon_0$ by

$$X_j(\lambda) = X(\lambda) \cap X_j \quad \text{for } j = 0, \dots, k$$

We first show by induction on j that

$$H^i(X_j(\lambda), \mathcal{F}) = 0 \quad \text{for all } i \geq p \quad \text{and } j = 0, \dots, k$$

This is clearly satisfied for $j = 0$, since $X_0(\lambda) = X(\lambda_0)$ and $\lambda_0 \in A$. Suppose now that $1 \leq j \leq k$ and that $H^i(X_{j-1}(\lambda), \mathcal{F}) = 0$ for all $i \geq p$. Since $Y_j = Y_{j-1} \cup (Y_j \cap U_j)$, then $X_j(\lambda) = X_{j-1}(\lambda) \cup V_j(\lambda)$, where $V_j(\lambda) = X_j(\lambda) \cap \Pi^{-1}(U_j)$. Note also that

$$X_{j-1}(\lambda) \cap V_j(\lambda) = \{x \in \Pi^{-1}(U_j) : \phi o \Pi(x) < \lambda, \phi_{j-1} o \Pi(x) < \lambda_0\}$$

is clearly p -Runge in $\Pi^{-1}(U_j)$. (See for instance [8]). Then the image of $H^{p-1}(\Pi^{-1}(U_j), \mathcal{F})$ is dense in $H^{p-1}(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F})$. Moreover, the restriction map

$$\Pi|_{X_{j-1}(\lambda) \cap V_j(\lambda)} : X_{j-1}(\lambda) \cap V_j(\lambda) \rightarrow Y_{j-1} \cap Y(\lambda) \cap U_j$$

is clearly a q -complete morphism. In fact, if ψ is a smooth q -convex exhaustion function on $\Pi^{-1}(U_j)$, then for every $c \in \mathbb{R}$, the restriction of $\Pi|_{X_{j-1}(\lambda) \cap V_j(\lambda)}$ from $\{x \in X_{j-1}(\lambda) \cap V_j(\lambda) : \psi(x) \leq c\}$ to $Y_{j-1} \cap Y(\lambda) \cap U_j$ is proper. It then follows from ([6], p. 995) that $H^{p-1}(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F})$ is separated, which implies that $H^i(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F}) = 0$ for all $i \geq p-1$, since $\Pi^{-1}(U_j)$ is q -complete, $H^i(\Pi^{-1}(U_j), \mathcal{F}) \rightarrow H^i(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F})$ has a dense image for $i \geq p-1$ and $p-1 \geq q+1$.

We now consider the Mayer-Vietoris sequence for cohomology

$$\cdots \rightarrow H^{p-1}(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F}) \rightarrow H^p(X_j(\lambda), \mathcal{F}) \rightarrow \\ H^p(X_{j-1}(\lambda), \mathcal{F}) \oplus H^p(V_j(\lambda), \mathcal{F}) \rightarrow H^p(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F}) \rightarrow \cdots$$

Since $V_j(\lambda) = \{x \in \Pi^{-1}(U_j) : \phi o \Pi(x) < \lambda, \phi_j o \Pi(x) < \lambda_0\}$ is clearly p -complete and $H^i(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F}) = 0$ for $i \geq p-1$, then

$$H^p(X_j(\lambda), \mathcal{F}) \cong H^p(X_{j-1}(\lambda), \mathcal{F}) = 0$$

If we take $j = k$, we find that $X_k(\lambda) = X(\lambda)$. Therefore $H^p(X(\lambda), \mathcal{F}) = 0$ for all $\lambda \leq \lambda_0 + \varepsilon_0$ and $\lambda_0 + \varepsilon_0 \in A$.

Now suppose that $r = 2$. Then in view of the previous demonstration we have to prove only that if $\lambda_0 \in A$ and $\varepsilon_0 > 0$ with $X(\lambda_0 + \varepsilon_0) \subset X_k$, then $H^{q+1}(X_j(\lambda), \mathcal{F}) = 0$ for every $\lambda \in \mathbb{R}$ with $\lambda_0 \leq \lambda \leq \lambda_0 + \varepsilon_0$ and all integer $j = 0, \dots, k$. Since for every $\lambda \leq \lambda_0$, $X_0(\lambda) = X(\lambda)$ and $H^i(X_0(\lambda), \mathcal{F}) = 0$ for $i \geq p$, so we assume that $1 \leq j \leq k$ and $H^i(X_{j-1}(\lambda), \mathcal{F}) = 0$ for all $i \geq p$ and $\lambda_0 \leq \lambda \leq \lambda_0 + \varepsilon_0$.

Now consider the long exact sequence of cohomology

$$\cdots \rightarrow H^q(X_{j-1}(\lambda), \mathcal{F}) \oplus H^q(V_j(\lambda), \mathcal{F}) \xrightarrow{r^*} H^q(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F}) \rightarrow \\ H^{q+1}(X_j(\lambda), \mathcal{F}) \rightarrow H^{q+1}(X_{j-1}(\lambda), \mathcal{F}) \oplus H^{q+1}(V_j(\lambda), \mathcal{F})$$

Since $V_j(\lambda)$ is p -complete and $X_{j-1}(\lambda) \cap V_j(\lambda)$ is p -Runge in $\Pi^{-1}(U_j)$, then $H^{q+1}(V_j(\lambda), \mathcal{F}) = 0$ and $H^q(V_j(\lambda), \mathcal{F}) \rightarrow H^q(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F})$ has dense image. Moreover, since

$H^{q+1}(X_{j-1}(\lambda), \mathcal{F}) = 0$ by the inductive hypothesis, then one gets the exact sequence

$$\cdots \rightarrow H^q(X_{j-1}(\lambda), \mathcal{F}) \oplus H^q(V_j(\lambda), \mathcal{F}) \xrightarrow{r^*} H^q(X_{j-1}(\lambda) \cap V_j(\lambda), \mathcal{F}) \rightarrow H^{q+1}(X_j(\lambda), \mathcal{F}) \rightarrow 0$$

Because the map r^* has dense image, we conclude that $H^{q+1}(X_j(\lambda), \mathcal{F}) = 0$. \square

Lemma 3. *Let $\Pi : X \rightarrow Y$ be an unbranched Riemann domain over an r -complete space Y . Suppose that Π is a locally q -complete morphism. Then for any coherent analytic sheaf \mathcal{F} on X with $\text{prof}(\mathcal{F}) \geq 2r + q$, the cohomology groups $H^p(X, \mathcal{F})$ vanish for all $p \geq q + r - 1$.*

Proof. Let $A \subset \mathbb{R}$ be the set of all real numbers μ such that $H^i(X(\lambda), \mathcal{F}) = 0$ for every real number $\lambda \leq \mu$ and all $i \geq q + r - 1$. Then in order to prove lemma 3 we have only to verify that

- (a) A is closed
- (b) for every pair of real numbers $\lambda < \beta$, the restriction map

$$H^{p-1}(X(\beta), \mathcal{F}) \rightarrow H^{p-1}(X(\alpha), \mathcal{F})$$

has dense image.

For this, suppose first that $r \geq 3$ and fix some $\lambda_0 \in A$. Then $H^{p-1}(X(\lambda), \mathcal{F}) = 0$ for $\lambda \leq \lambda_0$. In fact, let $\varepsilon_0 > 0$ be such that $\lambda_0 + \varepsilon_0 \in A$, and define for every real number λ with $\lambda_0 \leq \lambda \leq \lambda_0 + \varepsilon_0$ and integer $j = 0, \dots, k$, the open sets $X'_j(\lambda) = \{x \in \Pi^{-1}(U_j) : \phi\circ\Pi(x) > \lambda\}$. Then, by lemma 1,

$$H^l(X'_j(\lambda), \mathcal{F}) \cong H^l(\Pi^{-1}(U_j), \mathcal{F}) \quad \text{for } l \leq \text{prof}(\mathcal{F}) - r - 1.$$

Furthermore, since $X'_j(\lambda) = \{x \in \Pi^{-1}(U_j) \cup X_j(\lambda) : \phi\circ\Pi(x) > \lambda\}$, then, if $S_j = \{x \in \Pi^{-1}(U_j) \cup X_j(\lambda) : \phi\circ\Pi(x) \leq \lambda\}$, the cohomology group $H_{S_j}^l(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F})$ vanishes for $l \leq \text{prof}(\mathcal{F}) - r$. (See [1], proof of lemma 3.1). Moreover, the exact sequence of local cohomology

$$\cdots \rightarrow H_{S_j}^l(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \rightarrow H^l(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \rightarrow H^l(X'_j(\lambda), \mathcal{F}) \rightarrow H_{S_j}^{l+1}(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \rightarrow \cdots$$

implies that $H^l(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \cong H^l(X'_j(\lambda), \mathcal{F})$ for all l with $l \leq \text{prof}(\mathcal{F}) - r - 1$ and, therefore $H^l(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \cong H^l(\Pi^{-1}(U_j), \mathcal{F})$ for $l \leq \text{prof}(\mathcal{F}) - r - 1$.

Now by using the Mayer-Vietoris sequence for cohomology

$$\cdots \rightarrow H^l(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \rightarrow H^l(X_j(\lambda), \mathcal{F}) \oplus H^l(\Pi^{-1}(U_j), \mathcal{F}) \rightarrow H^l(\Pi^{-1}(U_j) \cap X_j(\lambda), \mathcal{F}) \rightarrow H^{l+1}(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \rightarrow \cdots$$

and the fact that $\Pi^{-1}(U_j)$ is q -complete and $H^l(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \cong H^l(\Pi^{-1}(U_j), \mathcal{F})$ for $l \leq \text{prof}(\mathcal{F}) - r - 1$, we find that $H^l(X_j(\lambda), \mathcal{F}) \cong H^l(\Pi^{-1}(U_j) \cap X_j(\lambda), \mathcal{F})$ for all l with $q \leq l \leq \text{prof}(\mathcal{F}) - r - 2$. Since $q \leq p - 1 \leq \text{prof}(\mathcal{F}) - r - 2$ and $H^{p-1}(\Pi^{-1}(U_j) \cap X_j(\lambda), \mathcal{F}) = 0$, $\Pi^{-1}(U_j) \cup X_j(\lambda)$ being p -Runge in $\Pi^{-1}(U_j)$, the restriction map

$$\Pi|_{X_j(\lambda) \cap \Pi^{-1}(U_j)} : X_j(\lambda) \cap \Pi^{-1}(U_j) \rightarrow Y_j(\lambda) \cap U_j$$

is q -complete and $p - 1 \geq q + 1$, then

$$H^{p-1}(X(\lambda), \mathcal{F}) = H^{p-1}(X_k(\lambda), \mathcal{F}) = 0.$$

Therefore lemma 3 follows from lemma 2 and the approximation result in ([3], p. 250).

Now suppose that $r = 2$. We shall first prove assertion (b). For this, we consider the set T of all real numbers β such that the restriction map

$$H^q(X(\beta), \mathcal{F}) \rightarrow H^q(X(\lambda), \mathcal{F})$$

has dense image for every real number λ with $\lambda < \beta$. Then clearly T is not empty. Also T is closed according to an approximation lemma on Fréchet spaces due to Andreotti and Grauert (See [3], p. 246). To prove that T is open, it is sufficient to show that if $\lambda_0 \in T$ and $\varepsilon_0 > 0$ with $X(\lambda_0 + \varepsilon_0) \subset X_k$, then for any pair of real numbers (λ, β) with $\lambda_0 \leq \lambda < \beta \leq \lambda_0 + \varepsilon_0$, the restriction map

$$H^q(X_j(\beta), \mathcal{F}) \rightarrow H^q(X_j(\lambda), \mathcal{F})$$

has dense image for $j = 0, \dots, k$.

For this, we consider the long exact sequence of cohomology

$$\dots \rightarrow H^q(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \rightarrow H^q(X_j(\lambda), \mathcal{F}) \oplus H^q(\Pi^{-1}(U_j), \mathcal{F}) \rightarrow \\ H^q(V_j(\lambda), \mathcal{F}) \rightarrow H^{q+1}(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \rightarrow \dots$$

Since we have shown that $H^l(\Pi^{-1}(U_j) \cup X_j(\lambda), \mathcal{F}) \cong H^l(\Pi^{-1}(U_j), \mathcal{F}) = 0$ for $q \leq l \leq \text{prof}(\mathcal{F}) - 3$, we deduce from the long exact sequence of cohomology that $H^q(X_j(\lambda), \mathcal{F}) \cong H^q(V_j(\lambda), \mathcal{F})$. If we fix $\lambda, \beta \in \mathbb{R}$ with $\lambda_0 \leq \lambda < \beta \leq \lambda_0 + \varepsilon_0$, since $V_j(\lambda)$ is p -Runge in $\Pi^{-1}(U_j)$ and $V_j(\lambda) \subset V_j(\beta) \subset \Pi^{-1}(U_j)$, then it follows that $H^q(X_j(\beta), \mathcal{F}) \rightarrow H^q(X_j(\lambda), \mathcal{F})$ has dense range. This proves statement (b).

It is now easy to see that assertion (a) follows as an immediate consequence of Proposition 20 of [3] and lemma 2 of [8] \square

Lemma 4. *Let X be a complex space, Y a complex manifold of dimension n and let $\Pi : X \times Y \rightarrow X$ be the first projection. Then for any coherent analytic sheaf \mathcal{F} on X it follows that $\text{prof}(\Pi^*(\mathcal{F})) \geq n$.*

Proof. In fact, let $n_x = emb_x(X)$ denote the embedding dimension of X at an arbitrary point $x \in X$. Then there exists a neighborhood U of x and a biholomorphic map $f : U \rightarrow U_1$ onto a closed complex subspace U_1 of a domain D in \mathbb{C}^{n_x} . Let $\hat{\mathcal{F}}$ be the trivial extension of $f_*(\mathcal{F}|_U)$ to D . Then we have on a neighborhood of $f(x)$ a resolution of $\hat{\mathcal{F}}$ of minimal length

$$0 \rightarrow \mathcal{O}_D^{p_d} \rightarrow \cdots \rightarrow \mathcal{O}_D^{p_0} \rightarrow \hat{\mathcal{F}} \rightarrow 0$$

Let $y \in Y$, and choose a neighborhood V of y that can be identified to a domain in \mathbb{C}^n . Then the map $h : U \times V \rightarrow U_1 \times V$ defined by $h(x, y) = (f(x), y)$ is biholomorphic onto the closed subspace $U_1 \times V$ of $\Omega = D \times V \subset \mathbb{C}^{n(x)} \times \mathbb{C}^n$. If \mathcal{G} is the trivial extension of $h_*(\Pi^*(\mathcal{F})|_{U \times V})$ to Ω and $\tilde{\Pi} : \Omega = D \times V \rightarrow D$ the natural projection, then $\mathcal{G} \cong \tilde{\Pi}^*(\hat{\mathcal{F}})$. Therefore the sequence

$$0 \rightarrow \mathcal{O}_D^{p_d} \rightarrow \cdots \rightarrow \mathcal{O}_D^{p_0} \rightarrow \hat{\mathcal{F}} \rightarrow 0$$

is transformed by $\tilde{\Pi}^*$ into the exact Ω -sequence

$$\mathcal{O}_{\Omega}^{p_d} \rightarrow \cdots \rightarrow \mathcal{O}_{\Omega}^{p_0} \rightarrow \mathcal{G} \rightarrow 0$$

Since the minimal number of generators of $\mathfrak{m}_x = \mathfrak{m}(\mathcal{O}_{D,x})$ is equal to $n_x = emb_x(X)$, then $\mathcal{O}_D^{p_l} = 0$ for all $l > n_x$ by a theorem of Hilbert. (cf [3], p. 194). Therefore $\mathcal{O}_{\Omega}^{p_l} = \tilde{\Pi}^*(\mathcal{O}_D^{p_l}) = 0$ if $l > n_x$, which implies that $prof_{(x,y)}(\Pi^*(\mathcal{F})) \geq n$.

□

Theorem 1. *Let X and Y be complex spaces and $\Pi : X \rightarrow Y$ an unbranched Riemann domain. Assume that Y is r -complete and Π a locally q -complete morphism. Then for every $\mathcal{F} \in Coh(X)$ it follows that $H^p(X, \mathcal{F}) = 0$ for $p \geq q + r - 1$.*

Proof. If $prof(\mathcal{F}) \geq 2r + q$, then the theorem follows from lemma 3. We identify X with $X \times \{z_0\}$ for some $z_0 \in \mathbb{C}^n$ with $n \geq 2r + q$ and denote by $\Pi_1 : X \times \mathbb{C}^n \rightarrow X$ the first projection.

Clearly the map $X \times \mathbb{C}^n \xrightarrow{\tilde{\Pi}} Y \times \mathbb{C}^n$ defined by $\tilde{\Pi}(x, y) = (\Pi(x), y)$ is an unbranched Riemann domain and locally q -complete. Since $Y \times \mathbb{C}^n$ is r -complete and $prof(\Pi_1^*\mathcal{F}) \geq 2r + q$ by lemma 3, it follows from lemma 2 that $H^p(X \times \mathbb{C}^n, \Pi_1^*(\mathcal{F})) = 0$ for all $p \geq q + r - 1$.

Let $\mathcal{I}(X)$ be the sheaf of germs of holomorphic functions which vanish on X , $\mathcal{O}_X = \mathcal{O}_{X \times \mathbb{C}^n}/\mathcal{I}(X)$ and $\Pi_1^*(\mathcal{F})_X = \Pi_1^*(\mathcal{F}) \otimes_{\mathcal{O}_{X \times \mathbb{C}^n}} \mathcal{O}_X$. If e is the image in \mathcal{O}_X of the section 1 of $\mathcal{O}_{X \times \mathbb{C}^n}$, then any element of $\Pi_1^*(\mathcal{F})_{X,x}$ can be written in the form $\alpha \otimes e_x$ where $\alpha \in \Pi_1^*(\mathcal{F})_x$. Let $\eta : \Pi_1^*(\mathcal{F}) \rightarrow \Pi_1^*(\mathcal{F})_X$ be the homomorphism defined by $\eta(\alpha) = \alpha \otimes e$. Then η is surjective and we have the exact sequence

$$0 \rightarrow Ker(\eta) \rightarrow \Pi_1^*(\mathcal{F}) \xrightarrow{\eta} \Pi_1^*(\mathcal{F})_X \rightarrow 0$$

By theorem 1 of [8] the group $H^p(X \times \mathbb{C}^n, \ker(\eta))$ vanishes for any $p \geq q + r$. Moreover, since $H^p(X \times \mathbb{C}^n, \Pi_1^*(\mathcal{F})) = 0$ for $p \geq q + r - 1$ and, clearly $\Pi_1^*(\mathcal{F})_X \cong \mathcal{F}$, the long exact sequence of cohomology

$$\cdots \rightarrow H^p(X \times \mathbb{C}^n, \Pi_1^*(\mathcal{F})) \rightarrow H^p(X, \Pi_1^*(\mathcal{F})_X) \rightarrow H^{p+1}(X \times \mathbb{C}^n, \text{Ker}(\eta)) \rightarrow \cdots$$

implies that

$$H^p(X, \mathcal{F}) \cong H^p(X, \Pi_1^*(\mathcal{F})_X) = 0 \text{ for all } p \geq q + r - 1.$$

□

REFERENCES

- [1] Y. Alaoui, Unbranched Riemann domains over Stein spaces Global Journal of Pure and Applied Mathematics Volume 7, Number 1 (2011), pp. 77 – 81
- [2] Y. Alaoui, Cohomology of locally q -complete sets in Stein manifolds. Complex Variables and Elliptic Equations. Vol. 51, No, 2, February 2006, 137-141
- [3] A. Andreotti and R. Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces. Trans. AMS III (1964) 345 – 366
- [4] A. Andreotti and H. Grauert, Théorèmes de finitude de la cohomologie des espaces complexes. Bull. Soc. Math. France 90 (1962,) 193 – 259
- [5] M. Coltoiu and K. Diederich, The levi problem for Riemann domains over Stein spaces with isolated singularities. Math. Ann. (2007) 338 : 283 - 289
- [6] A. Grothendieck, 1957, Sur quelques points d'Algèbre homologique. Tohoku Mathematical Journal, IX, 119 – 221
- [7] J-P. Ramis, Théorèmes de séparation et de finitude pour l'homologie et la cohomologie des espaces (p, q) convexes-concaves. Ann. Scuola. Norm. Sup. Pisa 27 (1973), 933 – 997
- [8] V. Vajaitu, Cohomology groups of locally q -complete morphisms with r -complete base. Math. Scand. 79 1996, 161 – 175

Youssef ALAOUI
Département de mathématiques,
Institut Agronomique et Vétérinaire Hassan II,
B.P.6202, Rabat-Instituts, 10101. Morocco.
Email : **y.alaoui@iav.ac.ma or comp5123ster@gmail.com**