

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: PHYSICS (P1) FISIESE WETENSKAPPE: FISIKA (V1)

NOVEMBER 2015

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 28 pages. Hierdie memorandum bestaan uit 28 bladsye.

QUESTION 1/VRAAG 1

1.1	B√√	(2)

1.3
$$C\checkmark\checkmark$$
 (2)

$$1.5 \qquad \mathsf{A}\checkmark\checkmark \tag{2}$$

$$1.6 \qquad \mathsf{A}\checkmark\checkmark \tag{2}$$

$$1.7 \qquad \mathsf{A}\checkmark\checkmark \tag{2}$$

$$1.9 \qquad C \checkmark \checkmark \tag{2}$$

QUESTION 2/VRAAG 2

2.1.1 When body A exerts a force on body B, body B exerts a force of equal magnitude in the opposite direction on body A. ✓✓

Wanneer liggaam A 'n krag uitoefen op liggaam B, oefen liggaam B 'n krag van gelyke grootte in die teenoorgestelde rigting op liggaam A uit.

OR/OF

If body A exerts a force on body B, then body B exerts an equal \checkmark and opposite \checkmark force on body A

Indien liggaam A 'n krag uitoefen op liggaam B, dan sal liggaam B 'n gelyke maar teenoorgestelde krag op liggaam A uitoefen

(2)

2.1.2 For 2,5 kg block/*Vir* 2,5 kg blok
$$T = mg\checkmark$$

$$:T = (2,5)(9,8)\checkmark$$

$$= 24,5 N\checkmark$$
OR/OF
$$F_{net} = ma$$

$$T - mg = (2,5)(0) \}\checkmark$$

$$T - (2,5)(9,8)\checkmark = 0$$

$$T = 24,5 N\checkmark$$
OR/OF
$$F_{net} = ma$$

$$mg - T = (2,5)(0) \}\checkmark$$
(2,5)(9,8) - T\sqrt = 0
$$T = 24,5 N\checkmark$$
(3)

2.1.3 **POSITIVE MARKING FROM 2.1.2 POSITIEWE NASIEN VANAF 2.1.2**

For mass M/Vir mass M $f_s = \mu_s N \checkmark$ $\therefore N = \frac{24,5}{0,2} \checkmark = 122,5 \text{ N}$ N = Mg = 122,5 N $M(9,8) = 122,5 \text{ N} \checkmark$ $M = 12,5 \text{ kg} \checkmark$

OR/OF

 $\mu_s N \checkmark = \mu_s Mg$ 24,5 $\checkmark = (0,2) \checkmark \underline{M(9,8)} \checkmark$ M = 12,5 kg \checkmark

(5)

2.1.4 For the 5 kg block/*Vir die 5 kg blok*:

$$\begin{array}{l} f_k = \mu_k N \\ f_k = (0,15)(5)(9,8) \checkmark \\ = 7,35 \ N \\ F_{net} = ma \\ T - f_k = ma \\ \hline T - 7,35 = 5a \end{array} \checkmark$$

For the 2,5 kg block/Vir die 2,5 kg blok

$$w - T = ma$$

(2,5)(9,8) - T = 2,5 a \checkmark

$$17,15 = 7,5 \text{ a}$$

a = 2,29 m·s⁻² ✓

(5)

$$F = G \frac{m_1 m_2}{r^2} \checkmark$$

$$F = \frac{(6.67 \times 10^{-11})(6.5 \times 10^{20})(90)}{(550 \times 10^3)^2} \checkmark$$

$$= 12.90 \text{ N} \checkmark (12.899 \text{ N})$$

OR/OF

$$g = \frac{Gm}{r^2} \checkmark$$

$$g = \frac{(6.67 \times 10^{-11})(6.5 \times 10^{20})}{(550 \times 10^3)^2} \checkmark$$

$$= 0.143...m \cdot s^{-2}$$

$$w = mg$$

$$= (90)(0.143..)\checkmark$$

$$= 12.89 N \checkmark (downwards/afwaarts)$$

(4) [**19**]

QUESTION 3/VRAAG 3

3.1. **OPTION 1/OPSIE 1**

Upwards positive/Opwaarts positief:

$$v_f = v_i + a\Delta t \checkmark$$

 $-16\checkmark = \underline{16 - 9.8(\Delta t)} \checkmark$
 $\Delta t = 3.27s\checkmark$

Downwards positive/Afwaarts positief:

$$v_f = v_i + a\Delta t \checkmark$$

 $16\checkmark = -16 + 9.8(\Delta t) \checkmark$
 $\Delta t = 3.27s\checkmark$

(4)

OPTION 2/OPSIE 2

Upwards positive/Opwaarts positief:

$$v_f = v_i + a\Delta t \checkmark$$
To the top/By bopunt:
$$0 \checkmark = \frac{16 - 9.8(\Delta t)}{\Delta t} \checkmark$$

$$\Delta t = 1,63s$$
Total time/Totale tyd = 1,63 x 2
$$= 3,26(7) s \checkmark$$

Downwards positive/Afwaarts positief:

$$v_f = v_i + a\Delta t \checkmark$$
To the top/By bopunt:
 $0 \checkmark = -16 + 9.8(\Delta t) \checkmark$
 $\Delta t = 1.63s$
Total time/Totale tyd = 1.63 x 2
$$= 3.26(7) s \checkmark$$

(4)

3.1 **OPTION 3/OPSIE 3**

Upwards positive/Opwaarts positief:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$
 $0 \checkmark = \frac{16 \Delta t + \frac{1}{2} (-9,8) \Delta t^2}{\Delta t (16 - 4,9 \Delta t)} = 0$
 $\Delta t = 0 \text{ or/of } 3,27 \text{ s}$
Time taken/Tyd geneem = 3,27 s (accept/aanvaar 3,26 s) \checkmark

Downwards positive/Afwaarts positief:

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$
 $0 \checkmark = -\frac{16 \Delta t}{16} + \frac{1}{2} (9,8) \Delta t^2 \checkmark$
 $\Delta t(-16 + 4,9 \Delta t) = 0$
 $\Delta t = 0 \text{ or/of } 3,27 \text{ s}$
Time taken/*Tyd geneem* = 3,27 s
(accept/aanvaar 3,26 s) \checkmark

(4)

OPTION 4/OPSIE 4

Upwards positive/Opwaarts positief:

$$v_f^2 = v_i^2 + 2a\Delta y$$
At highest point/By hoogste punt
 $0 = 16^2 + 2(-9.8)\Delta y$
 $\Delta y = 13.06 \text{ m}$
 $\Delta y = v_i\Delta t + \frac{1}{2}a\Delta t^2 \checkmark$
 $\frac{13.06 = 16\Delta t - 4.9\Delta t^2}{\Delta t = 1.62 \text{ or } 1.65}$
Total time/Totale tyd = $(1.62/1.65)x2$
 $= 3.24 \text{ s} \checkmark \text{ or/of } 3.3 \text{ s}$

Downwards positive/Afwaarts positief:

$$v_f^2 = v_i^2 + 2a\Delta y$$
At highest point/By hoogste punt
 $0 = (-16)^2 + 2(9.8)\Delta y$
 $\Delta y = 13.06 \text{ m}$
 $\Delta y = v_i \Delta t + \frac{1}{2}a\Delta t^2 \checkmark$
 $\frac{13.06 = -16\Delta t + 4.9\Delta t^2}{\Delta t} = 1,62 \text{ or } 1,65$
Total time/Totale tyd = (1,62/1,65) x 2
 $= 3.24 \text{ s} \checkmark \text{ or/of } 3.3 \text{ s}$

OPTION 5/OPSIE 5

Upwards positive/Opwaarts positief:

$$v_f^2 = v_i^2 + 2a\Delta y$$

At highest point/By hoogste punt
 $0 = 16^{\frac{2}{3}} + 2(-9.8)\Delta y$

$$\Delta y = 13,06 \text{ m}$$

$$\Delta y = \left(\frac{v_f + v_i}{2}\right) \Delta t \checkmark$$

$$13,06 = \left(\frac{0+16}{2}\right) \Delta t \checkmark$$

$$\Delta t = 1,63 \text{ s}$$

Total time/totale tyd = 3,26 s✓

Downwards positive/Afwaarts positief:

$$v_f^2 = v_i^2 + 2a\Delta y$$

At highest point/By hoogste punt

$$0 = (-16)^2 + 2(9,8)\Delta y \checkmark$$

$$\Delta y = -13,06 \text{ m}$$

$$\Delta y = \left(\frac{V_f + V_i}{2}\right) \Delta t \checkmark$$

$$-13,06 = \left(\frac{0-16}{2}\right) \Delta t \checkmark$$

$$\Delta t = 1.63 \text{ s}$$

Total time/totale tyd = 3,26 s✓

(4)

3.1 **OPTION 6 /OPSIE 6**

Upwards positive/Opwaarts positief:

$$F_{net} \Delta t = \Delta p \checkmark$$

$$mg \Delta t = m (v_f - v_i)$$

$$\Delta t = 1,63 s$$

Total time/ $Totale\ tyd = (1,63)(2)$

Downwards positive/Afwaarts positief:

$$F_{\text{net}} \Delta t = \Delta p \checkmark$$

$$mg \Delta t = m (v_f - v_i)$$

$$9.8\Delta t \checkmark = {0 - (-16)}$$

$$\Delta t = 1,63 \text{ s}$$

Total time/ $Totale\ tyd = (1,63)(2)$

OPTION 7 /OPSIE 7

Upwards positive/Opwaarts positief:

$F_{\text{net}} \Delta t = \Delta p \checkmark$

$$mg \Delta t = m (v_f - v_i)$$

$$-9.8\Delta t \checkmark = [-16 - (+16)] \checkmark$$

$$\Delta t = 3.26 \text{ s}$$

Total time/*Totale tyd* = 3,26 s✓

Downwards positive/Afwaarts positief:

$$F_{net} \Delta t = \Delta p \checkmark$$

$$mg \Delta t = m (v_f - v_i)$$

$$9.8\Delta t \checkmark = [16 - (-16)] \checkmark$$

$$\Delta t = 3.26 \text{ s}$$

Total time/*Totale tyd* = 3,26 s ✓

(4)

3.2 POSITIVE MARKING FROM 3.1./POSITIEWE NASIEN VANAF 3.1 Upwards positive/Opwaarts positief:

(3)

POSITIVE MARKING FROM 3.2./POSITIEWE NASIEN VANAF 3.2 Downwards positive/Afwaarts positief:

Criteria for graph/Kriteria vir grafiek	Marks/Punte
Correct shape for line extending beyond t = 1,63 s.	./
Korrekte vorm vir lyn verleng verby t = 1,63 s	•
Initial velocity correctly indicated as shown.	./
Beginsnelheid korrek aangedui soos getoon.	v
Time to reach maximum height and time to return to the ground	
correctly shown.	
Tyd om maksimum hoogte te bereik en om na die grond terug te	•
keer.	

(3)

3.3 **OPTION 1 / OPSIE 1**

Upwards positive/Opwaarts positief:

Take y_A as height of ball A from the ground. (no penalising)/Neem y_A as hoogte van bal A vanaf die grond. (geen penalisering)

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

 $y_A - 0 = 16 \Delta t + \frac{1}{2} (-9.8) \Delta t^2$
 $= 16 \Delta t - 4.9 \Delta t^2 \checkmark$

Take y_B as height of ball B from the ground./Neem y_B as hoogte van bal B vanaf die grond.

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$y_B - 30 = (v_i \Delta t + \frac{1}{2} a \Delta t^2)$$

$$y_B = 30 - [-9(\Delta t - 1) + \frac{1}{2}(-9, 8)(\Delta t - 1)^2 \checkmark$$

$$= 34,1 + 0,8 \Delta t - 4,9 \Delta t^2 \checkmark$$

$$y_A = y_B$$

$$\therefore 16 \Delta t - 4,9 \Delta t^2 = 34,1 + 0,8 \Delta t - 4,9 \Delta t^2$$

$$15,2 \Delta t = 34,1$$

$$\Delta t = 2,24 \text{ s} \checkmark$$

$$y_A = 16 (2,24) - 4,9(2,24)^2$$

$$= 11,25 \text{ m}\checkmark$$

(6)

Downwards positive/Afwaarts positief:

Take y_A as height of ball A from the ground.(no penalising)/Neem y_A as hoogte van bal A vanaf die grond. (geen penalisering)

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

 $y_A - 0 = -16 \Delta t + \frac{1}{2} (9.8) \Delta t^2$
 $= -16 \Delta t + 4.9 \Delta t^2 \checkmark$

Take y_B as height of ball B from the ground/Neem as hoogte van bal B vanaf die grond..

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$y_B - 30 = -(v_i \Delta t + \frac{1}{2} a \Delta t^2)$$

$$y_B = 30 - [9(\Delta t - 1) + \frac{1}{2}(9,8)(\Delta t - 1)^2 \checkmark$$

$$= 34,1 + 0,8 \Delta t - 4,9 \Delta t^2 \checkmark$$

$$y_A = y_B$$

$$16\Delta t - 4,9 \Delta t^2 = 34,1 + 0,8 \Delta t - 4,9 \Delta t^2$$

$$15,2 \Delta t = 34,1$$

$$\Delta t = 2,24 \text{ s}\checkmark$$

$$\Delta y_A = (-16(2,24) + 4,9(2,24)^2)$$

$$= 11,25 \text{ m}\checkmark$$

(6)

3.3 **OPTION 2/OPSIE 2**

Upwards positive/Opwaarts positief:

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$= 16 \Delta t + \frac{1}{2} (-9,8) \Delta t^2$$

$$= 16 \Delta t - 4,9 \Delta t^2 \checkmark$$
Distance travelled by ball A = y_A = 16.

Distance travelled by ball A = y_A = $16\Delta t - 4.9\Delta t^2$ $\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$ = $-9(\Delta t - 1) + \frac{1}{2}(-9.8)(\Delta t - 1)^2 \checkmark$

=
$$-9(\Delta t - 1) + \frac{1}{2}(-9.8)(\Delta t - 1)^2 \checkmark$$

= $0.8\Delta t - 4.9\Delta t^2 + 4.1\checkmark$

Distance travelled by ball B = y_B = $0.8\Delta t - 4.9\Delta t^2 + 4.1$

$$y_A + (-y_B) = 30$$

 $16\Delta t - 4.9\Delta t^2 - (0.8\Delta t - 4.9\Delta t^2 + 4.1) = 30$
 $15.2\Delta t = 34.1$
 $\Delta t = 2.24 \text{ s} \checkmark$

$$\therefore \Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$y_A = 16 (2.24) - 4.9(2.24)^2$$

$$= 11.25 \text{ m} \checkmark$$

3.3 Downwards positive/Afwaarts positief:

$$y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

= -16\Delta t + \frac{1}{2}(9,8)\Delta t^2
= -16\Delta t + 4,9\Delta t^2 \lambda

$$y_{B} = v_{i}\Delta t + \frac{1}{2} a\Delta t^{2}$$

$$= 9(\Delta t - 1) + \frac{1}{2}(9,8)(\Delta t - 1)^{2} \checkmark$$

$$= -0.8\Delta t + 4.9\Delta t^{2} - 4.1 \checkmark$$

$$(-y_A) + y_B = 30$$

- $(-16\Delta t + 4,9\Delta t^2) - 0,8\Delta t + 4,9\Delta t^2 - 4,1 = 30$

$$15,2\Delta t = 34,1$$

 $\Delta t = 2,24 \text{ s} \checkmark$

$$\therefore \Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$\Delta y_A = -16 (2,24) + 4,9(2,24)^2$$

= -11,25 m

(6)

(6)

OPTION 3/OPSIE 3

Upwards positive/Opwaarts positief:

 $v_f = v_i + a\Delta t$

After 1 s, speed of ball A/Spoed van bal A na 1 s

$$v_f = 16 + (-9.8)(1)$$

= 6.2 m·s⁻¹

Distance travelled by ball A in 1 s/Afstand deur bal A afgelê in 1 s

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

= (16)(1) + $\frac{1}{2}$ (-9,8)1²
= 11,1 m

For ball A, after 1 s/Vir bal A na 1 s

$$\Delta y_A = 6.2\Delta t - 4.9\Delta t^2 \checkmark$$

For ball/Vir bal B,

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

= -9\Delta t + \frac{1}{2}(-9.8)\Delta t^2

$$y_A + (-y_B) = (30 - 11,1) = 18,9$$

 $6,2\Delta t - 4,9\Delta t^2 - [-9\Delta t + \frac{1}{2}(-9,8)\Delta t^2] = 18,9$
 $15,2\Delta t = 18,9$
 $\Delta t = 1,24 \text{ s} \checkmark$

The balls meet after/Die balle ontmoet na (1,24 +1) = 2,24 s√

$$\Delta y_A = [6,2 (1,24) - 4,9 (1,24)^2]$$

= 0,154 m

Meeting point/Ontmoetingspunt = (11,1 + 0,154) = 11,25 m√

OR/OF

$$\Delta y = (-9)(1,24) + \frac{1}{2}(-9,8)(1,24)^2 \checkmark$$

= -18,69 m

Meeting point/Ontmoetingspunt = (30 -18,69) = 11,31 m✓

(6)

Downwards positive/Afwaarts positief:

 $v_f = v_i + a\Delta t$

After 1 s, speed of ball A/Spoed van bal A na 1 s

$$v_f = -16 + (9,8)(1)$$

$$= -6.2 \text{ ms}^{-1}$$

Distance travelled by ball A in 1 s/Afstand deur bal A afgelê in 1 s

$$\Delta y_A = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$= (-16)(1) + \frac{1}{2}(9.8)(1)^{2}$$

For ball A, after 1 s/Vir bal A na 1 s

$$\Delta y_A = -6.2\Delta t + 4.9\Delta t^2 \checkmark$$

For ball/Vir bal B

$$\Delta y_B = v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$= 9\Delta t + \frac{1}{2}(9.8)\Delta t^2 \checkmark$$

$$-\Delta y_A + \Delta y_B = 18,9$$

6,2 $\Delta t - 4,9\Delta t^2 + [9\Delta t + \frac{1}{2}(9,8)\Delta t^2] = 18,9$

$$15,2\Delta t = 18,9$$

The balls meet after/Die balle ontmoet na (1,24 +1) = 2,24 s√

$$\Delta y_A = -6.2 (1.24) + 4.9 (1.24)^2$$

$$= -0.154 \text{ m}$$

Meeting point/Ontmoetingspunt = (-11,1 - 0,154) = 11,25 m√

OR/OF

$$\Delta y = (9)(1,24) + \frac{1}{2}(9,8)(1,24)^2 \checkmark$$

$$= 18,69 \text{ m}$$

Meeting point/*Ontmoetingspunt* = (30 -18,69) = 11,31 m√

(6) **[13]**

(4)

(4)

QUESTION 4/VRAAG 4

4.1 **OPTION 1/OPSIE 1**

Take motion to the right as positive/Neem beweging na regs as positief.

$$\begin{array}{l} \Sigma p_i = \Sigma p_f \\ (m_1 + m_2) v_i = m_1 v_{f1} + m_2 v_{f2} \\ (m_1 + m_2) v_i = m_1 v_{f1} + m_2 v_{f2} \\ (3 + 0.02) \underline{(0)} \checkmark = \underline{(3)(-1.4) + (0.02)} v_{f2} \checkmark \\ v_{f2} = 210 \text{ m} \cdot \text{s}^{-1} \checkmark \\ \end{array}$$

OR/OF

Take motion to the left as positive/Neem beweging na links as positief.

$$\begin{array}{c} \Sigma p_i = \Sigma \ p_f \\ (m_1 + m_2) v_i = m_1 v_{f1} + m_2 v_{f2} \\ (m_1 + m_2) v_i = m_1 v_{f1} + m_2 v_{f2} \\ (3 + 0.02)(0) \checkmark = (3)(1.4) + (0.02) v_{f2} \checkmark \\ v_{f2} = -210 \ m \cdot s^{-1} \\ \end{array}$$

Speed/Spoed = 210 m·s⁻¹ \checkmark

OPTION 2/OPSIE 2

Take motion to the right as positive/Neem beweging na regs as positief.

$$\Delta p_{\text{bullet}} = -\Delta p_{\text{block}} \checkmark$$
 $m(v_f - v_i) = -m(v_f - v_i)$
 $(0.02)(v_f - 0) \checkmark = -(3)(-1.4 - 0) \checkmark$
 $\therefore v_i = 210 \text{ m} \cdot \text{s}^{-1} \checkmark$

OR/OF

Take motion to the left as positive/Neem beweging na links as positief

$$\Delta p_{bullet} = -\Delta p_{block} \checkmark$$
 $m(v_f - v_i) = -m(v_f - v_i)$
 $(0.02)(v_f - 0) \checkmark = -(3)(1.4 - 0) \checkmark$
 $\therefore v_i = -210 \text{ m} \cdot \text{s}^{-1}$

Speed/Spoed = 210 m·s⁻¹ ✓

Copyright reserved/Kopiereg voorbehou

4.2 **OPTION 1/OPSIE 1**

 $v_f^2 = v_i^2 + 2a\Delta x \checkmark$ $0 = 210^2 + 2a(0,4) \checkmark$ $a = -55 \ 125 \ \text{m·s}^{-2}$

 $F_{net} = ma\checkmark$ = (0,02)(-55 125) \checkmark = -1 102,5 N

Magnitude of force = 1 102,5 N \checkmark Grootte van krag = 1 102,5 N

OPTION 2/OPSIE 2

$$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$$

$$0.4 = \left(\frac{210 + 0}{2}\right) \Delta t \checkmark$$

 $\Delta t = 0,004 \text{ s } (0,00381 \text{s})$

 $F_{\text{net}}\Delta t = \Delta p = m\Delta v \checkmark$ $F_{\text{net}} = \frac{(0,02)(0-210)}{(0,004)} \checkmark$ = -1 050 N

Magnitude of force = 1 050 N√ Grootte van krag = 1 050 N (Accept/Aanvaar: 1102,5 N)

(5)

OPTION 3/OPSIE 3

 $v_f^2 = v_i^2 + 2a\Delta x \checkmark$ $0 = 210^2 + 2a(0,4) \checkmark$ $a = -55 \ 125 \ \text{m·s}^{-2}$

 $v_f = v_i + a\Delta t$ $0 = 210 - (55\ 125)\Delta t$ $\Delta t = 0.004\ s\ (0.00381\ s)$

 $F_{\text{net}} \Delta t = \Delta p = m \Delta v \checkmark$ $F_{\text{net}} = \frac{(0,02)(0-210)}{(0,004)} \checkmark$ = -1 050 N

Magnitude of force = 1 050 N ✓ (Accept/Aanvaar: 1 102,5 N) Grootte van krag = 1 050 N

(5)

OPTION 4/OPSIE 4

 $W_{\text{net}} = \Delta K$ $F_{\text{net}} \Delta x \cos \theta = \Delta K = \frac{1}{2} m(v_i^2 - v_f^2)$

Any one/Enige een

 $F_{\text{net}}(0,4) \checkmark \cos 180^{\circ} \checkmark = \frac{1}{2} (0,02)(0^2 - 210^2) \checkmark$ $F_{\text{net}} = 1 \ 102,5 \ \text{N} \checkmark$

OR/OF

4.3

 $W_{nc} = \Delta E_{p} + \Delta E_{k}$ $F_{net}\Delta x \cos\theta = 0 + \frac{1}{2} m(v_{i}^{2} - v_{f}^{2})$ $F_{net}(0,4) \checkmark \cos 180^{\circ} \checkmark = \frac{1}{2} (0,02)(0^{2} - 210^{2}) \checkmark$ $F_{net} = 1 \ 102,5 \ N \checkmark$ Any one/Enige een

The same as/equal√

Dieselfde as/gelyk

(1)

[ÌÓ]

(5)

QUESTION 5/VRAAG 5

5.1 **OPTION 1/OPSIE 1**

$$v_{ave} = \frac{800}{75} \checkmark = 10,67 \text{m} \cdot \text{s}^{-1}$$

$$P_{ave} = Fv_{ave} \checkmark$$

$$P_{ave} = (240)(10,67)$$

$$= 2560,8 \text{ W } (2,56 \text{ kW}) \checkmark$$

OPTION 2/OPSIE 2

$$v_{ave} = \frac{800}{75}$$
 ✓ = 10,67m·s⁻¹
∴ Distance covered in 1s = 10,67m·
∴ W(Work done in 1 s) = F∆xcosθ ✓
= (240)(10,67)(1)
= 2 560,8 J s⁻¹

∴ $P_{ave} = 2560,8 \text{ W } (2,56 \text{ kW})$ ✓

OPTION 3/OPSIE 3

$$P = \frac{W}{\Delta t} \checkmark$$

$$= \frac{F\Delta x \cos \theta}{\Delta t}$$

$$= \frac{(240)(800)\cos 0^{\circ}}{75} \checkmark$$

$$= 2560 \text{ W}\checkmark$$

OPTION 4/OPSIE 4

$$P = \frac{W}{\Delta t} \checkmark$$

$$= \frac{F\Delta x \cos \theta}{\Delta t}$$

$$= \frac{(240)(10,67)\cos 0^{\circ}}{1} \checkmark$$

$$= 2560 \text{ W} \checkmark$$

5.2

Accepted labels/Aanvaarde benoemings			
w	F _g / F _w / weight / mg / gravitational force/2 940 N		
VV	$F_q / F_w / gewig / mg / gravitasiekrag$		
£	F _{friction} / F _f / friction /294 N /f _k		
1	$F_{wrywing} / F_w / wrywing/294 N / f_k$		
N	F _N / F _{normal} / normal force		
IN	F _N / F _{normaal} / <i>normaalkrag</i>		
Е	F _{Applied/toegepas} /350 N/Average driving force		
F_D	F _{driving/dryfkrag} /350/ <i>Gemiddelde aandrywingskrag</i>		

(4)

(3)

5.3 The <u>net/total work done on an object is equal</u> ✓ to the <u>change in the</u> object's kinetic energy ✓

Die <u>netto/totale arbeid verrig op 'n voorwerp is geyk</u> aan die <u>verandering in</u> <u>die voorwerp se kinetiese energie</u>.

OR/OF

The work done on an object by a resultant/net force is equal \(\square \) to the change in the object's kinetic energy. \(\square \)

Die <u>arbeid verrig op 'n voorwerp deur 'n resulterende krag is gelyk</u> aan die <u>verandering in die voorwerp se kinetiese energie</u>.

(2)

(6)

(6)

(6)

5.4 **OPTION 1/OPSIE 1**

 $W_{nc} = \Delta U + \Delta K \checkmark$ $W_f + W_D = \Delta U + \Delta K$ $f\Delta x\cos\theta + W_D = mg(h_f - h_i) + \frac{1}{2}(m)(v_f^2 - v_i^2)$ $(f\Delta x\cos\theta + F_D\Delta x\cos\theta = mg(h_f - h_i) + \frac{1}{2}m(v_f^2 - v_i^2)$ $(294)(450)(\cos 180^{\circ})\checkmark + (350)(450)\cos 0^{\circ}\checkmark = (300)(9.8)(5-0)\checkmark + \frac{1}{2}(300)(v_f^2-0)\checkmark$ $v_f = 8.37 \text{ m} \cdot \text{s}^{-1} \checkmark$

OPTION 2/OPSIE 2

$$W_{net} = \Delta K \checkmark$$

$$W_{net} = W_D + W_g + W_f + W_N$$

= $(F_D \Delta x \cos \theta) + (mg \sin \alpha) \Delta x \cos \theta) + (f \Delta x \cos \theta) + 0$

$$W_{\text{net}} = [350(450)](\cos 0)\checkmark + (300)(9.8) \frac{5}{450}(450)(\cos 180)\checkmark +$$

294(450)(cos180°)√

= 10500 J

$$W_{net} = \Delta K$$

 $10\ 500 = \frac{1}{2} (300) (v_f^2 - 0)$

 $v_f = 8.37 \text{ m} \cdot \text{s}^{-1} \checkmark$

$$\alpha = \sin^{-1} \frac{5}{450}$$
$$= 0.64^{\circ}$$

OPTION 3/OPSIE 3

 $W_{net} = W_D + W_a + W_f + W_N$

= $(F_D \triangle x \cos \theta) + mg \triangle x \cos \theta + f \triangle x \cos \theta + 0$

 $W_{\text{net}} = (350)(450)(\cos 0^{\circ}) \checkmark + (300)(9.8)(450)\cos(90 + 0.64) \checkmark + 294(450)(\cos 180^{\circ}) \checkmark$

= 157 500 - 14 777,74 - 13 2300

= 10430.51 J

10 430,51 = $\frac{1}{2}$ (300)($v_f^2 - 0$) \checkmark

OR/OF

$$\alpha = \sin^{-1}\frac{5}{450}$$

$$= 0.64^{\circ}$$

OPTION 4/OPSIE 4

 $v_f = 8.34 \text{ m} \cdot \text{s}^{-1} \checkmark$

 $W_{net} = \Delta K \checkmark$

 $F_{net} = F_D + (-mgsin\alpha) + (-f)$

 $= 350 \checkmark + [-(300)(9.8)\sin 0.64^{\circ}] \checkmark + (-294) \checkmark$

= 23.16 N

 $W_{net} = F_{net} \Delta x \cos \theta$

= 10422 J

OR/OF

 $F_{\text{net}} = 350 \checkmark - (300)(9.8)\sin 0.64^{\circ} \checkmark - 294 \checkmark$

= 350 - 32.84 - 294

= 23,16 N

 $W_{net} = \Delta K \checkmark$

 $10\ 422 = \frac{1}{2} (300) (v_f^2 - 0) \checkmark$

 $= (23,16)(450) \cos 0^{\circ}$

 $v_f = 8.34 \text{ m} \cdot \text{s}^{-1} \checkmark$

(6)

[15]

(2)

(5)

QUESTION 6/VRAAG 6

- 6.1.1 Frequency (of sound detected by the listener (observer))✓
 Frekwensie van klank deur luisteraar (waarnemer) waargeneem (1)
- 6.1.2 The apparent change in frequency or pitch of sound (detected (by a listener) because the sound source and the listener have different velocities relative to the medium of sound propagation. ✓ ✓ Die verandering in frekwensie (of toonhoogte) van die klank deur 'n luisteraar waargeneem omdat die klankbron en die luisteraar verskillende snelhede relatief tot die medium van klankvoortplanting het.
- 6.1.3 Away/Weg van✓
 Detected frequency of source decreases✓
 Waargenome frekwensie van bron neem af (2)
- 6.1.4 **OPTION 1/OPSIE 1**

EXPERIMENT/EKSPERIMENT 2

$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \text{ OR/OF } f_{L} = \frac{v}{v + v_{s}} f_{s} \checkmark$$

$$874 = \frac{v}{v + 10} (900) \checkmark$$

$$v = 336,15 \text{ m·s}^{-1} \checkmark \qquad (Accept/Aanvaar : 336,15 \text{ m·s}^{-1} - 323,33 \text{ m·s}^{-1})$$

EXPERIMENT/EKSPERIMENT 3

$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} \text{ OR/OF } f_{L} = \frac{v}{v + v_{s}} f_{s} \checkmark$$

$$850 = \frac{v}{v + 20} (900) \checkmark$$

$$v = 340 \text{ m·s}^{-1} \checkmark \qquad (Accept/Aanvaar : 313,33 \text{ m·s}^{-1} - 340 \text{ m·s}^{-1}) \qquad (5)$$

EXPERIMENT 4/EKSPERIMENT 4

$$f_{L} = \frac{V \pm V_{L}}{V \pm V_{s}} f_{s} \text{ OR/OF } f_{L} = \frac{V}{V + V_{s}} f_{s} \checkmark$$

$$827 = \frac{V}{V + 30} (900) \checkmark$$

$$V = 339,86 \text{ m·s}^{-1} \checkmark \qquad (Accept/Aanvaar : 339,86 \text{ m·s}^{-1} - 345 \text{ m·s}^{-1})$$
(5)

OPTION 2/OPSIE 2

$$f_L = \frac{V \pm V_L}{V \pm V_s} f_s OR/OF f_L = \frac{V}{V + V_s} f_s \checkmark$$

Experiment/Eksperiment 2 and/en 3

$$\frac{874(v+10)\checkmark}{v} = \frac{850(v+20)}{v}$$
874v + 8740 = 850v + 1700
$$\therefore v = 344.17 \text{ m·s}^{-1} \checkmark$$
both frequencies / beide frekwensies

Experiment/Eksperiment 2 and/en 4

$$\frac{874(v+10)\checkmark}{v} = \frac{827(v+30)}{v}$$
874v + 8740 = 827v + 24810 ✓ both frequencies / beide frekwensies
∴v = 341,91 m·s⁻¹ ✓

Experiment/Eksperiment 3 and/en 4

$$\frac{850(v+20)\checkmark}{v} = \frac{827(v+30)}{v}$$
850v + 1700 = 827v + 24810 ✓ both frequencies / beide frekwensies
∴v = 339,57 m·s⁻¹ ✓

6.2 Away from the Earth/Weg vanaf die aarde√

(1) **[11]**

(5)

QUESTION 7/VRAAG 7

7.1
$$n = \frac{Q}{e} \checkmark$$

$$n = \frac{0.5 \times 10^{-6}}{1.6 \times 10^{-19}} \checkmark$$

$$n = 3.13 \times 10^{12} \checkmark \text{electrons/elektrone}$$

7.2

Accepted labels/Aanvaarde benoemings			
w	F_g / F_w / weight / mg / gravitational force F_g / F_w / gewig / mg / gravitasiekrag		
Т	F _T / tension F _T / spanning		
FE	Electrostatic force/ F_C / Coulombic force/ F_Q / $F_{RP/PR}$ Elektrostiesekrag / Coulombkrag / F_Q / $F_{RP/PR}$		

(3)

(3)

7.3 The magnitude of the electrostatic force exerted by one point charge (Q_1) on another point charge (Q_2) is directly proportional to the product of the (magnitudes of the) charges and inversely proportional to the square of the distance (r) between them. $\checkmark \checkmark$

Die grootte van die elektrostatiese krag wat deur een puntlading (Q_1) op 'n ander puntlading (Q_2) uitgeoefen word, is direk eweredig aan die produk van die (groottes van die) ladings en omgekeerd eweredig aam die kwadraat van die afstand (r) tussen hulle.

(2)

7.4 **OPTION 1/OPSIE 1**

$$F_{E} = k \frac{Q_{1}Q_{2}}{r^{2}} \checkmark$$

 $Tsin\theta/(Tcos\theta) = F_E$

$$T \sin^{7}(T\cos 83^{\circ}) \checkmark = \frac{(9 \times 10^{9})(0.5 \times 10^{-6})(0.9 \times 10^{-6})}{(0.2)^{2}} \checkmark$$

$$\therefore$$
T = 0,83 N \checkmark (Accept/Aanvaar 0,82 N)

OPTION 2/OPSIE 2

$$F_{E} = \frac{kQ_{1}Q_{2}}{r^{2}} \checkmark$$

$$F_{E} = \frac{(9 \times 10^{9})(0.5 \times 10^{-6})(0.9 \times 10^{-6})}{(0.2)^{2}} \checkmark$$

$$\tan 7^{\circ} = \frac{T_{x}}{T_{Y}} = \frac{0.101}{T_{Y}} \checkmark$$

$$T_Y = 0.823 \text{ N}$$

$$T = \sqrt{T_X^2 + T_Y^2} = \sqrt{(0.101)^2 + (0.823)^2} = 0.83 \,\text{N}$$

OPTION 3/OPSIE 3

$$F = \frac{kQ_1Q_2}{r^2} \checkmark = \frac{(9 \times 10^9)(0.5 \times 10^{-6})(0.9 \times 10^{-6})}{(0.2)^2} \checkmark = 0.101 \text{ N}$$

$$\frac{F_E}{\sin 7^\circ} = \frac{T}{\sin 90^\circ}$$
$$\frac{0,101}{\sin 7^\circ} = \frac{T}{\sin 90^\circ}$$

(5)[13]

(5)

(5)

QUESTION 8/VRAAG 8

8.1
$$E_{X} = E_{2} + E_{(-8)} \checkmark$$

$$= \frac{kQ_{2}}{r^{2}} + \frac{kQ_{-8}}{r^{2}}$$
 \checkmark correct equation /korrekte vergelyking
$$= \frac{(9 \times 10^{9})(2 \times 10^{-5})}{(0,25)^{2}} \checkmark + \frac{(9 \times 10^{9})(8 \times 10^{-6})}{(0,15)^{2}} \checkmark$$

$$= 2,88 \times 10^{6} + 3,2 \times 10^{6}$$

$$= 6,08 \times 10^{6} \text{ N·C}^{-1} \checkmark \text{ to the east/na oos } \checkmark$$

OR/OF

E =
$$k \frac{Q}{r^2} \checkmark$$

E₂ = $\frac{(9 \times 10^9)(2 \times 10^{-5})}{(0,25)^2}$
= 2,88x 10⁶ NC⁻¹ to the east/na oos
E₋₈ = $\frac{(9 \times 10^9)(8 \times 10^{-6})}{(0,15)^2} \checkmark$
= 3,2 x 10⁶ N·C⁻¹ to the east/na oos

$$E_{X} = E_{2} + E_{(-8)}$$

$$= (2.88 \times 10^{6} + 3.2 \times 10^{6}) \checkmark$$

$$= 6.08 \times 10^{6} \text{ N} \cdot \text{C}^{-1} \checkmark \text{ to the east/na oos}\checkmark$$
(6)

8.2

OPTION 1/OPSIE 1

$$F_E = QE\checkmark$$

= (-2 x 10⁻⁹) (6,08 x 10⁶)√
= -12,16 x 10⁻³ N
= 1,22 x 10⁻² N✓ to the west/na wes✓

OPTION 2/OPSIE 2

$$F_{(-2)Q1} = qE_{(2)} \checkmark$$

= $(2 \times 10^{-9}) (2,88 \times 10^{6})$
= $5,76 \times 10^{-3} \text{ N to the west/} na \text{ wes}$

$$F_{(-2)Q2} = qE_{(8)}$$

= $(2 \times 10^{-9})(3.2 \times 10^{6})$
= 6.4×10^{-3} N to the west/na wes

$$F_{\text{net}} = \frac{5.76 \times 10^{-3} + 6.4 \times 10^{-3}}{1.22 \times 10^{-2}}$$
 ✓ = 1,22 x 10⁻² N ✓ to the west/na wes✓

(4)

(4)

(4)

OPTION 3/OPSIE 3

$$F = k \frac{Q_1Q_2}{r^2} \checkmark$$

$$F_{(-2)2} = \frac{(9 \times 10^9)(2 \times 10^{-9})(2 \times 10^{-5})}{(0,25)^2}$$

$$= 5,76 \times 10^{-3} \text{ N to the west/na wes}$$

$$F_{(-2)(-8)} = \frac{(9 \times 10^9)(2 \times 10^{-9})(8 \times 10^{-6})}{(0,15)^2}$$

$$= 6,4 \times 10^{-3} \text{ N to the west/na wes}$$

$$F_{\text{net}} = (5,76 \times 10^{-3} + 6,4 \times 10^{-3}) \checkmark$$

$$= 1,22 \times 10^{-2} \text{ N} \checkmark \text{to the west/na wes} \checkmark$$

8.3
$$2{,}44 \times 10^{-2} \,\text{N}\checkmark$$
 (1) [11]

QUESTION 9/VRAAG 9

9.1 The potential difference across a conductor is directly proportional to the current in the conductor at constant temperature. (provided temperature and all other physical conditions are constant) $\checkmark \checkmark$

Die potensiaalverskil oor 'n geleier is direk eweredig aan die stroom in die geleier by konstante temperatuur (mits temperatuur en alle fisiese toestande konstant bly)

OR/OF

.

The current in a conductor is directly proportional to the potential difference across the conductor, provided temperature and all other physical conditions are constant $\checkmark\checkmark$

Die stroom in 'n geleier is direk eweredig aan die potensiaalverskil oor 'n geleier by konstante temperatuur mits temperatuur en alle fisiese toestande konstant bly

konstant bly

OPTION 1/OPSIE 1

OPTION 2/OPSIE 2

9.2
$$\frac{\text{OPTION 1/OPSIE 1}}{V = IR \checkmark}
V_8 = (0,5)(8) \checkmark = 4 V
V_8 = V_{16}
\therefore V_{16} = 4 V
I_{16} = \frac{V}{R} = \frac{4}{16} = 0,25 \text{ A}
I_{tot//} = A_1 = (0,5 + 0,25) \checkmark = 0,75 \text{ A}\checkmark$$

$$\frac{\text{OPTION 2/OPSIE 2}}{V = IR \checkmark}
V_8 = (0,5)(8) \checkmark = 4 V$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$= \frac{1}{8} + \frac{1}{16} \checkmark$$

$$R = 5,33 \Omega$$

$$I_{tot//} = \frac{4}{5,33}$$

$$A_1 = 0,75 \text{ A}\checkmark$$

OPTION 3/OPSIE 3

$$I_1R_1 = I_2R_2\checkmark$$

(0,5)(8) = $I_{16}(16)$ \checkmark

$$I_{16} = \frac{(8)(0,5)}{16} = 0,25 \text{ A}$$

$$I_{\text{tot//}} = A_1 = (0.5 + 0.25) \checkmark = 0.75 \text{ A}\checkmark$$

OPTION 4/OPSIE 4

$$2R_{8\Omega} = R_{16\Omega} \checkmark$$

OR/OF

$$\therefore I_{R16} = \frac{1}{2}(0,5) = 0.25 A$$

 $R = \frac{R_1 R_2}{R_1 + R_2} = \frac{8 \times 16}{8 + 16} \checkmark = 5,33 \Omega$

$$A_1 = (0.5 + 0.25) \checkmark = 0.75 \text{ A}\checkmark$$

(4)

9.3 **OPTION 1/OPSIE 1**

V = IR

$$V_{20\Omega} = (0.75)(20) \checkmark = 15 \text{ V}$$

$$V_{//tot} = (15 + 4) \checkmark = 19 V$$

$$V_{R} = 19 V$$

$$I_R = A_2 = 0.63 \text{ A}\checkmark$$

(5)

OPTION 2/OPSIE 2

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{8} + \frac{1}{16} \checkmark$$

 $R_{//} = 5,33 \Omega$

$$\mathsf{R}_{//} + \mathsf{R}_{20} = (5,33 + 20) \, \checkmark = 25,33 \Omega$$

$$V_{//tot} = I(R_{//} + R_{20})$$

= (0,75)(25,33)
= 19 V

P = VI

$$12\sqrt{} = I(19)\sqrt{}$$

$$I_R = A_2 = 0.63 \text{ A}\checkmark$$

(5)

OPTION 3/OPSIE 3

V = IR

$$V_{20\Omega} = (0.75)(20) \checkmark = 15 \text{ V}$$

$$V_{//tot} = (15 + 4) \checkmark = 19 V$$

$$V_{R} = 19 V$$

$$P = \frac{V^2}{R}$$

$$12 = \frac{(19)^2}{1}$$

$$R = 30.08 \Omega$$

$$P = I^2R \checkmark$$

$$12 = I^2(30,08)$$

$$I = 0.63 \text{ A}\checkmark$$

(5)

9.4

$$\begin{array}{ll} \underline{\text{OPTION 1/OPSIE 1}} \\ (\epsilon) = I(R + r) \checkmark & V_{\text{int}} = Ir \\ = V_{\text{terminal}} + V_{\text{int}} & = (0.75 + 0.63)(1) \checkmark \\ = 19 + (0.75 + 0.63)(1) \checkmark & = 1.38 \text{ V} \\ = 20.38 \text{ V} \checkmark & \epsilon = V_{\text{terminal}} + V_{\text{int}} \checkmark \\ & = 19 + 1.38 \\ & = 20.38 \text{ V} \checkmark \end{array}$$

$$(3)$$

OPTION 3/OPSIE 3

$$\overline{R} = \frac{V}{I} = \frac{19}{0.63} = 30.16 \Omega$$

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{30.16} + \frac{1}{25.33} \therefore R_p = 13.77 \Omega$$

$$I_{tot} = 0.63 + 0.75 = 1.38 A$$

$$\varepsilon = I(R + r) \checkmark$$

$$= (1.38)(13.77 + 1)\checkmark$$

$$= 20.38 V\checkmark$$

[14]

QUESTION 10/VRAAG10

10.1.1 Move the bar magnet very quickly✓ up and down inside the coil ✓ Beweeg die staafmagneet baie vinnig op en af binne in die spoel.

- (1)
- 10.1.2 Electromagnetic induction/*Elektromagnetiese induksie* ✓

(1)

(4)

(4)

(4)

(2)

- 10.1.3 Commutator/kommutator / split rings/spleetringe ✓
- 10.2.1

$$P_{\text{average}} = \frac{V_{\text{rms}}^{2}}{R} \checkmark$$

$$= \frac{220^{2}}{40,33} \checkmark$$

$$= 1\ 200,10\ \text{W}\ (\text{J}\cdot\text{s}^{-1}) \checkmark$$
OPTION 2/*OPSIE* 2

$$W = \frac{V_{\text{rms}}^{2}}{R} \Delta t \checkmark$$

$$= \frac{220^{2}}{40,33} \checkmark (1)$$

$$= 1200,10 \text{ J} \checkmark$$

$$I_{rms} = \frac{V_{rms}}{R} \checkmark$$

$$= \frac{220}{40,33} \checkmark$$

$$= 5,45 \text{ A}$$

$$P_{average} = I_{rms}^2 R$$

= $(5,45^2)(40,33)^{\checkmark}$
= 1 197,9 W **OR/OF** 1 200,10 W \(\sqrt{} \)

$$I_{rms} = \frac{V_{rms}}{R} \checkmark$$
$$= \frac{220}{40,33} \checkmark$$
$$= 5,45 \text{ A}$$

W =
$$I_{rms}^2$$
R∆t
= $(5,45^2)(40,33)(1)$ ✓
= 1 197,9 J **OR/OF** 1 200,10 J ✓

OPTION 3/OPSIE 3

$$I_{rms} = \frac{V_{rms}}{R}$$

$$= \frac{220}{40,33} \checkmark$$

$$= 5,45 \text{ A}$$

$$P_{average} = V_{rms} I_{rms}$$

= (220)(5,45) \checkmark
= 1 199 W or/of 1 200,10 W \checkmark

$$I_{rms} = \frac{V_{rms}}{R}$$

$$= \frac{220}{40,33}$$

$$= 5,45 \text{ A}$$

W =
$$V_{rms}I_{rms}\Delta t$$

= (220)(5,45)(1) ✓
= 1 199 J or/of 1 200,10 J✓

OPTION 1/OPSIE 1 10.2.2

$$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}}$$

$$220 = \frac{V_{\text{max}}}{\sqrt{2}}$$

$$V_{max} = 311,13 V$$

$$I_{\text{max}} = \frac{V_{\text{max}}}{R} = \frac{331,13}{40,33}$$

$$P_{ave} = \frac{V_{max}I_{max}}{2}$$

$$1200,1 = \frac{(311,13)I_{\text{max}}}{2}$$

$$I_{max} = 7,71 A$$

OPTION 2/OPSIE 2

$$P_{average} = V_{rms}I_{rms} \checkmark$$

$$1200,1 = (220)I_{rms}$$

$$I_{rms} = 5,455 A$$

$$I_{\text{max}} = \sqrt{2} (5,455)$$

$$= 7,71 \text{ A} \checkmark (7,715 \text{ A})$$

OPTION 3/OPSIE 3

$$P_{\text{average}} = I_{\text{rms}}^2 R \checkmark$$

$$\frac{1200,1 = I^{2}_{rms}(40,33)}{I_{rms} = 5,455 \text{ A}}$$

$$I_{rms} = 5.455 A$$

$$I_{max} = \sqrt{2} I_{rms}$$

= $\sqrt{2} (5,455)$
= 7,71 A \checkmark

$$V_{rms} = I_{rms}R \checkmark$$

$$220 = I_{rms}(40,33)$$

$$I_{rms} = 5,455 A$$

$$I_{\text{max}} = \sqrt{2} I_{\text{rms}}$$

= $\sqrt{2} (5,455)$
= 7,71 A \checkmark

(3)

(3)

(3)

(3)

[11]

QUESTION 11/VRAAG 11

11.1 It is the process whereby electrons are ejected from a metal surface when light (of suitable frequency) is incident on it. ✓✓

Dit is die proses waartydens elektrone vanaf 'n metaaloppervlak vrygestel word wanneer van geskikte frekwensie daarop inval✓✓

(2)

11.2

11.3.1

OPTION 1/OPSIE 1
$$\frac{1}{\lambda} = 1,6 \times 10^6 \, \text{m}^{-1} \, \checkmark$$

$$f_0 = c \frac{1}{\lambda} \checkmark$$

$$= (3 \times 10^8)(1,6 \times 10^6) \, \checkmark$$

$$= 4,8 \times 10^{14} \, \text{Hz} \checkmark \qquad \text{(Accept/Aanvaar } 4,8 \times 10^{14} \, \text{Hz to/tot } 5,1 \times 10^{14} \, \text{Hz)}$$
OPTION 2/OPSIE 2
By extrapolation: y-intercept = -W_o/Deur ekstrapolasie: y-afsnit = -W_o

$$W_0 = \text{hf}_0 \checkmark$$

$$3,2 \times 10^{-19} \checkmark = (6,63 \times 10^{-34}) \text{f}_0 \checkmark$$

$$f_0 = 4,8 \times 10^{14} \, \text{Hz} \checkmark \qquad \text{(Accept/Aanvaar } 4,8 \times 10^{14} \, \text{Hz to/tot } 4,83 \times 10^{14} \, \text{Hz)}$$
OPTION 3/OPSIE 3
(Points from the graph/ Punte vanaf grafiek)
$$E = W_0 + E_{k(max)} \checkmark$$

$$\frac{h_0}{\lambda_0} = \text{hf}_0 + E_{k(max)} \checkmark$$

$$(6,63 \times 10^{-34})(3 \times 10^8)(1,6 \times 10^6) \checkmark = (6,63 \times 10^{-34}) \text{f}_0 + 0 \checkmark$$

$$f_0 = 4,8 \times 10^{14} \, \text{Hz} \checkmark$$
OR/OF
$$(6,63 \times 10^{-34})(3 \times 10^8)(5 \times 10^6) = (6,63 \times 10^{-34}) \text{f}_0 + 6,6 \times 10^{-19}$$

$$f_0 = 4,92 \times 10^{14} \, \text{Hz}$$
OR/OF
$$(6,63 \times 10^{-34})(3 \times 10^8)(3,3 \times 10^6) = (6,63 \times 10^{-34}) \text{f}_0 + 3,3 \times 10^{-19}$$

$$f_0 = 4,8 \times 10^{14} \, \text{Hz}$$
OR/OF
$$(6,63 \times 10^{-34})(3 \times 10^8)(2,5 \times 10^6) = (6,63 \times 10^{-34}) \text{f}_0 + 1,7 \times 10^{-19}$$

$$f_0 = 4,94 \times 10^{14} \, \text{Hz}$$
OR/OF
$$(6,63 \times 10^{-34})(3 \times 10^8)(2,2 \times 10^6) = (6,63 \times 10^{-34}) \text{f}_0 + 0,7 \times 10^{-19}$$

 $f_o = 5,54 \times 10^{14} \text{ Hz}$

11.3.2 **OPTION 1/OPSIE 1**

hc = Gradient/ Helling
$$\checkmark$$

= $\frac{\Delta y}{\Delta x}$
= $\frac{6.6 \times 10^{-19}}{(5-1.6) \times 10^{6}} \checkmark$
= 1,941 x10⁻²⁵ (J·m)

$$h = \frac{gradient / helling}{c}$$

$$h = \frac{1,941 \times 10^{-25}}{3 \times 10^8} \checkmark$$

$$= 6,47 \text{ x} 10^{-34} \text{ J} \cdot \text{s} \checkmark$$

OPTION 2/OPSIE 2

$$W_0 = y \text{ intercept/afsnit}$$

= 3,2 x10⁻¹⁹ J

Accept / Aanvaar

3,2 x10⁻¹⁹ J to/tot 3,4 x10⁻¹⁹J)

$$W_0 = hf_0$$

3.2 x 10⁻¹⁹ \checkmark = h(4.8 x 10¹⁴) \checkmark
h = 6.66 x 10⁻³⁴ J·s \checkmark

Accept /Aanvaar

6,66 x10⁻³⁴ J·s to/tot 7,08 x10⁻³⁴J·s)

(4)

OPTION 3/OPSIE 3

(Points from the graph (Punte vanaf grafiek)

$$\frac{hc}{\lambda} = W_0 + K_{max} = 3.2 \times 10^{-19} \checkmark + 6.6 \times 10^{-19} \checkmark$$

$$h = \frac{9.8 \times 10^{-19}}{(3 \times 10^8)(5 \times 10^6)} \checkmark = 6.53 \times 10^{-34} \text{J} \cdot \text{s}$$

OR/OF

$$\frac{hc}{\lambda} = W_0 + K_{max} = 3.2 \times 10^{-19} \checkmark + 3.3 \times 10^{-19} \checkmark$$

$$h = \frac{6.5 \times 10^{-19}}{(3 \times 10^8)(3.3 \times 10^6)} \checkmark = 6.57 \times 10^{-34} \text{ J} \cdot \text{s}$$

OR/OF

$$\frac{hc}{\lambda} = W_0 + K_{max} = 3.2 \times 10^{-19} \text{ } 4.7 \times 10^{-19}$$

$$h = \frac{4.7 \times 10^{-19}}{(3 \times 10^8)(2.5 \times 10^6)} = 6.27 \times 10^{-34} \text{ J} \cdot \text{s}$$

OR/OF

$$\frac{hc}{\lambda} = W_0 + K_{max} = 3.2 \times 10^{-19} \text{ } \checkmark + 0.7 \times 10^{-19} \text{ } \checkmark$$

$$h = \frac{3.9 \times 10^{-19}}{(3 \times 10^8)(2 \times 10^6)} = 6.5 \times 10^{-34} \text{ J} \cdot \text{s}$$

OPTION 4/OPSIE 4

$$W_o = \frac{hc}{\lambda_o} \text{ or / of } W_o = hc \frac{1}{\lambda_o}$$

$$3.2 \times 10^{-19} \checkmark = h(3 \times 10^8)(1.6 \times 10^6) \checkmark$$

$$h = 6.66 \times 10^{-34} \text{ J·s} \checkmark$$

(4) [13]

TOTAL/TOTAAL: 150