

EX1.

(ref. https://math.stackexchange.com/questions/2115139/is-lebesgue-outer-measure-continuous-from-above-for-sets-with-finite-lebesgue-ou?utm source=chatgpt.com)

From Theorem 3.38, we know that the Vitari set V, which form by selecting exactly one element from each equality class of irrational numbres in [-1,1] separately, is nonmeasurable.

Define $\{r_k\}_{k=1}^\infty$ be all rational numbres at [0,1], let $V_k=\{v+r_k:v\in V\}$, we can find that each V_k is disjoint

ullet otherwise, $V_m\cap V_n
eq\emptyset \implies v_1+r_m=v_2+r_n$ for some $v_1,v_2\in V$ $\implies v_1-v_2=r_2-r_1\in\mathbb{Q} \implies v_1=v_2 \implies r_m=r_n, m=n$, contradiction

Besides, it's from definition that $\cup_{k=1}^{\infty} V_k \subseteq [-1,2]$

define $E_k = \cup_{j=k}^\infty V_k$, then we can find that

- E_k is decreasing to $E=\emptyset$, which from the proposition that V_k is disjoint. $(a\in[0,2]\implies a$ belong to at most one V_k)
- $|E_k|_e \geq |V|_e$

Because V have nonzero measure, and V_k is just the translate of V, therefore they have the same outer measure

$$\implies |E_k|_e \ge |V_k|_e = |V|_e$$

$$\implies \lim_{k \to \infty} |E_k|_e \ge |V|_e > 0 = |E|_e$$

EX2.

If $|E|=\infty$, then no matter A is finite or $|A|_e=\infty$, both side of the equation are ∞ and therefore trivial

Following we assume $|E|<\infty$

First, suppose $B_k\subseteq A$ is closed and $|B_k|\geq |A|_i-rac{1}{k}$, $\lim_{k o\infty}|B_k|=|A|_i$

$$|E| = |B_k| + |E - B_k| \ge |A|_i - \frac{1}{k} + |E - B_k| \ge |A|_i + |E - A|_e - \frac{1}{k} \forall k$$

$$\implies |E| \ge |A|_i + |E - A|_e$$

For the converse part, assume $\lvert E \rvert > \lvert A \rvert_i + \lvert E - A \rvert_e$, i.e.

$$|E|-|A|_i-d>|E-A|_e$$
 for some d

Then there exist $G \supseteq E-A$, G is open, and $|G| \le |E-A|_e + \epsilon$ for some $0 < \epsilon < d/2$

Take
$$H=E-G$$
, we have $|H|=|E|-|E\cap G|$ $\geq |E|-|E-A|_e-\epsilon\geq |E|-(|E|-|A|_i-d)-d/2=|A|_i+d/2$

Therefore, there's an measurable set $H\subseteq A$ with $|H|>|A|_i$, this cause a contradiction from $|H|\leq \sup_{H':H'} \inf_{is\ F_\sigma,H'\subset A} |H'|=|A|_i$

 $\implies |E| \geq |A|_i + |E-A|_e$, and thus we obtain the equality.

EX3.

(motivated by https://www.facebook.com/groups/120223891488/posts/10161752568386489/)

Let f be the Cantor Lebesgue function, for each x in Cantor set, $x=\sum_{k=1}^\infty a_k 3^{-k},$ where $a_k\in\{0,2\} \forall k$, f will map x to $y=\sum_{k=1}^\infty b_k 2^{-k}$,

where
$$b_k = egin{cases} 0 & if \ a_k = 0 \ 1 & if \ a_k = 2 \end{cases}$$

Therefore, the image of the Cantor set will be $\{\sum_{k=1}^\infty b_k 2^{-k} | b_k \in \{0,1\}\} = [0,1]$

From Corollary 3.39, [0,1] contain a nonmeasurable subset U, and the preimage of U, i.e. $f^{-1}(U)$ is a subset of Cantor set and thus has measure zero.

Therefore, $f^{-1}(U)$ is a measurable set, and the function f map it onto a nonmeasurable set.

EX4.

for any collection of intervals $I=\{I_k\}_{k=1}^{\infty}$, define $I_h=\{I_k^h\}_{k=1}^{\infty}$, where $I_k^h=\{a+h\}$, we can easily to see

• I covers $E \iff I_h$ covers E_h

Therefore, there's an one-to-one relation between $\mathbb{I}=\{I:I\ cover\ E\}$ and $\mathbb{I}_h=\{I_h:I_h\ cover\ E_h\}$ and $\sum_{k=1}^\infty |I_k|=\sum_{k=1}^\infty |I_k^h|$ for each one-to-one pair.

Therefore,
$$|E|_e=\sup_{I\in\mathbb{I}}\sum_{k=1}^\infty |I_k|=|E_h|_e=\sup_{I_h\in\mathbb{I}_h}\sum_{k=1}^\infty |I_h^k|$$

samely, for any F is closed, define $F_h=\{x+h:x\in F\}$, we have $F\subseteq E\iff F_h\subseteq E_h$

Therefore,
$$\sup_{F\subseteq E, F\ closed} |F| = \sup_{F\subseteq E, F\ closed} |F|_e = \sup_{F_h\subseteq E_h, F_h\ closed} |F_h| \implies |E|_i = |E_h|_i$$

Therefore, $|E|_i=|E|_e\iff |E_h|_i=|E_h|_e$ E measurable iff E_h measurable.