# 15. Treatments in many time periods. The problem.

lan Lundberg
Cornell Info 6751: Causal Inference in Observational Settings
Fall 2022

13 Oct 2022

# Learning goals for today

At the end of class, you will be able to:

- 1. Present treatments that unfold over time in DAGs
- 2. Recognize the difficulties of treatment-induced confounding

Suppose you teach second grade

Suppose you teach second grade

► Every month, you assess children's ability to sound out words

### Suppose you teach second grade

- ► Every month, you assess children's ability to sound out words
- ► You assign parent volunteers to read with those who struggle

### Suppose you teach second grade

- ► Every month, you assess children's ability to sound out words
- ► You assign parent volunteers to read with those who struggle
- ▶ In December, you hope every child can read a picture book

### Suppose you teach second grade

- ▶ Every month, you assess children's ability to sound out words
- ► You assign parent volunteers to read with those who struggle
- ▶ In December, you hope every child can read a picture book

Task: Draw this in a DAG

Child cannot sound out words in September

Assign parent volunteer to read with child in September

Child cannot sound out words in September







Treatments in many time periods: A general problem



Treatments in many time periods: A general problem



#### This causal structure occurs

- ▶ when a policymaker targets treatment  $A_k$  at time k given confounders  $L_k$  measured at that time
- ▶ in observational settings where treatments unfold over time

Treatments in many time periods: A general problem



#### This causal structure occurs

- $\blacktriangleright$  when a policymaker targets treatment  $A_k$  at time k given confounders  $L_k$  measured at that time
- in observational settings where treatments unfold over time

Goal: Study the outcome Y would be realized on average if  $A_0, \ldots, A_k$  are set to the values  $a_0, \ldots, a_k$ .

Treatments in many time periods: The curse of dimensionality



Each  $A_k$  is binary. How many potential outcomes are there?

# Treatments in many time periods: The curse of dimensionality



Each  $A_k$  is binary. How many potential outcomes are there?

- $ightharpoonup \bar{a} = (0,0)$ : No reading with a parent
- ightharpoonup  $\bar{a}=(1,0)$ : Read in September, not October
- ightharpoonup  $\bar{a}=(0,1)$ : Read in October, not September
- ightharpoonup  $\bar{a}=(1,1)$ : Always read with a parent

Treatments in many time periods: The curse of dimensionality

Suppose the teacher can assign (or not) a parent volunteer to read with a child in each of 9 months in the school year

$$A_0,\ldots,A_8$$

Treatments in many time periods: The curse of dimensionality

Suppose the teacher can assign (or not) a parent volunteer to read with a child in each of 9 months in the school year  $\frac{1}{2}$ 

$$A_0, \ldots, A_8$$

There are then  $2^9 = 512$  potential outcomes  $Y^{a_0,...,a_8}$  for each child

# Treatments in many time periods: The curse of dimensionality

Suppose the teacher can assign (or not) a parent volunteer to read with a child in each of 9 months in the school year

$$A_0,\ldots,A_8$$

There are then  $2^9 = 512$  potential outcomes  $Y^{a_0,...,a_8}$  for each child

This is why we focus on treatment strategies

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

#### **Example:**

Assign a parent volunteer to read with a child whenever the child struggles sounding out words

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

#### **Example:**

Assign a parent volunteer to read with a child whenever the child struggles sounding out words

$$g(L_k)=\mathbb{I}(L_k=0)$$

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

#### **Example:**

Assign a parent volunteer to read with a child whenever the child struggles sounding out words

$$g(L_k) = \mathbb{I}(L_k = 0)$$

We would then assign treatment  $A_k = g(L_k)$ 

A treatment strategy is a counterfactual policy rule g() for assigning the treatment

#### **Example:**

Assign a parent volunteer to read with a child whenever the child struggles sounding out words

$$g(L_k) = \mathbb{I}(L_k = 0)$$

We would then assign treatment  $A_k = g(L_k)$ 

This involves many treatments, but only one strategy.

Treatment strategy: Exercise

Use math to define the following strategy:

Assign a parent volunteer to read with a child  $A_k=1$  if and only if the child struggles sounding out words  $L_k=0$  and the child did not receive this support last month  $A_{k-1}=0$ 

Treatment strategy: Exercise

Use math to define the following strategy:

Assign a parent volunteer to read with a child  $A_k=1$  if and only if the child struggles sounding out words  $L_k=0$  and the child did not receive this support last month  $A_{k-1}=0$ 

$$g(L_k, A_{k-1}) = \mathbb{I}(L_k = 0, A_{k-1} = 0)$$



Treatment strategy: Static and dynamic

A static strategy assigns treatments in advance

► Example: Always treat. g() = 1

Treatment strategy: Static and dynamic

A static strategy assigns treatments in advance

▶ Example: Always treat. g() = 1

A **dynamic** strategy assigns treatments as a function of the changing values of confounding variables

► Example: Treat if has difficulty sounding out words.  $g(L_k) = \mathbb{I}(L_k = 0)$ 







1. What is the sufficient adjustment set to identify



1. What is the sufficient adjustment set to identify a) The total effect of  $A_0$  on Y



- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y



- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y
- 2. We want to identify the effect of  $\bar{A} = (A_0, A_1)$  on Y



- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y
- 2. We want to identify the effect of  $\bar{A}=(A_0,A_1)$  on Y Can we jointly block all backdoor paths between  $\bar{A}$  and Y?



- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y
- 2. We want to identify the effect of  $\bar{A}=(A_0,A_1)$  on YCan we jointly block all backdoor paths between  $\bar{A}$  and Y?



- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y
- 2. We want to identify the effect of  $\bar{A}=(A_0,A_1)$  on Y Can we jointly block all backdoor paths between  $\bar{A}$  and Y?



- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y
- 2. We want to identify the effect of  $\bar{A}=(A_0,A_1)$  on Y Can we jointly block all backdoor paths between  $\bar{A}$  and Y?



- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y
- 2. We want to identify the effect of  $\bar{A}=(A_0,A_1)$  on Y Can we jointly block all backdoor paths between  $\bar{A}$  and Y?



- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y
- 2. We want to identify the effect of  $\bar{A}=(A_0,A_1)$  on Y Can we jointly block all backdoor paths between  $\bar{A}$  and Y?



- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y
- 2. We want to identify the effect of  $\bar{A}=(A_0,A_1)$  on YCan we jointly block all backdoor paths between  $\bar{A}$  and Y?



(2) has no solution!

- 1. What is the sufficient adjustment set to identify
  - a) The total effect of  $A_0$  on Y
  - b) The total effect of  $A_1$  on Y
- 2. We want to identify the effect of  $\bar{A}=(A_0,A_1)$  on YCan we jointly block all backdoor paths between  $\bar{A}$  and Y?



A joint adjustment set for  $\bar{A}$  is doomed



A joint adjustment set for  $\bar{A}$  is doomed

▶ What happens if you adjust for  $L_1$ ?



A joint adjustment set for  $\bar{A}$  is doomed

- ▶ What happens if you adjust for  $L_1$ ?
  - ▶ You block a causal path:  $A_0 \rightarrow |L_1| \rightarrow Y$
  - ▶ You open a backdoor path:  $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$



A joint adjustment set for  $\bar{A}$  is doomed

- ▶ What happens if you adjust for  $L_1$ ?
  - ▶ You block a causal path:  $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
  - ▶ You open a backdoor path:  $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$
- ▶ What happens if you don't adjust for  $L_1$ ?



A joint adjustment set for  $\bar{A}$  is doomed

- ▶ What happens if you adjust for  $L_1$ ?
  - ▶ You block a causal path:  $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
  - ▶ You open a backdoor path:  $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$
- ▶ What happens if you don't adjust for  $L_1$ ?
  - ▶ A backdoor path remains:  $A_1 \leftarrow L_1 \rightarrow Y$



A joint adjustment set for  $\bar{A}$  is doomed

- $\blacktriangleright$  What happens if you adjust for  $L_1$ ?
  - ▶ You block a causal path:  $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
  - ▶ You open a backdoor path:  $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$
- ▶ What happens if you don't adjust for  $L_1$ ?
  - ▶ A backdoor path remains:  $A_1 \leftarrow L_1 \rightarrow Y$

Next class: How to correctly adjust for treatment-induced confounding

#### Learning goals for today

At the end of class, you will be able to:

- 1. Present treatments that unfold over time in DAGs
- 2. Recognize the difficulties of treatment-induced confounding

Let me know what you are thinking

# tinyurl.com/CausalQuestions

Office hours TTh 11am-12pm and at calendly.com/ianlundberg/office-hours Come say hi!