第2章 相关图	1	采样与量化,像素间关系,连通悖论,距离测度
像基础	2	图像增强和图像恢复的区别
	3	图像变换: DFT/DCT 及其性质, KL 变换
	4	图像增强: 直方图修正、锐化、平滑、伪彩色、同态滤波,
	4	
	_	离散空域滤波模板与线性算子对应关系
	5	图像恢复:空域滤波、时域滤波、几何校正,运动模糊降
<i>₩</i> - +		质函数推导
第3章 数字化	1	图像采集模式,方盒量化和网格相交量化,2D 距离变换
第4章 边缘检	1	边缘模型;边缘检测算子(Sobel 算子、Laplacian 算子,
测		Marr 算子, Canny 算子,SUSAN 算子)
第5章 图像分	1	阈值分割,区域生长法,分裂合并法
割	2	分水岭分割算法,聚类分割算法
	3	水平集分割的基本思想和优势,从曲线演化到水平集演
		化推导,利用变分法和梯度下降法推导演化方程;如何
		基于演化实现图像分割
	4	Graph Cut 分割基本思想
第6章 模板匹	1	Hough 变换原理,基于 Hough 变换检测直线、圆、椭圆
配		等
第7章 目标表	1	基于边界的表达:链码,多边形近似(分裂/合并算法)
达	2	基于区域的表达:四叉树,骨架定义和性质
	3	基于变换的表达: 傅里叶描述子(如何实现平移、旋转、
		缩放不变性)
第8章 目标描	1	基于边界的描述:形状数
述	2	基于区域的描述: 拓扑描述符, 欧拉数, 不变矩
	3	目标关系描述: 区域标记和计数
第9章 局部视	1	基于局部特征的图像表达基本框架
觉特征	2	局部特征点检测方法: 角点检测和块检测
	3	局部区域描述方法: SIFT 特征描述子生成方法;
	4	Harris 角点检测子推导过程
	5	SIFT (亮度、平移、旋转、缩放变换) 不变性原理; 图像
		发生线性变换(如反色)后,图像 SIFT 特征变化规律
	6	局部图像块的主方向的物理意义及三种计算方法。
	7	VLAD 原理,乘积量化原理
第 10 章 形状	1	形状紧凑型/复杂性描述
分析	2	距离变换算法
24 VI	3	Chamfer Distance 和 Shape Context 的计算原理及应用
第 11 章 纹理	1	纹理描述统计方法, 灰度共生矩阵定量计算、定性分析
分析	2	分形计算方法
第 12 章二值数	1	二值形态学基本运算:腐蚀、膨胀、开启、闭合;
学形态学	2	二值形态学运算的几何解释;对偶性证明
4 /// ,	3	基于击中-击不中运算的目标检测
	4	基于基本形态学组合预算的图像处理
第 13 章 运动	1	光流方程推导以及二义性问题
分析	2	EBMA/ HBMA 的原理及复杂度分析,
<i>JJ '</i> V		LDIVIA ITM社区及外区月刊;