Divisbility

- 1. Let $m \ge 4$ be an integer that is not prime. Prove that there exists an integer n with $2 \le n \le m-1$, so that m divides n^n-n .
- 2. Prove that there exist infinitely many integers n which satisfy $2017^2|1^n+2^n+...+2017^n$.
- 3. Find all triples (a, b, c) of positive integers such that if n is not divisible by any prime less than 2014, then n + c divides $a^n + b^n + n$.
- 4. Let k be a positive integer. Define n_k to be the number with decimal representation 70...01 where there are exactly k zeroes. Prove the following assertions:
 - a) None of the numbers n_k is divisible by 13.
 - b) Infinitely many of the numbers n_k are divisible by 17.
- 5. Let α be a positive real number that is not an integer and let $n = \left\lfloor \frac{1}{\alpha \lfloor \alpha \rfloor} \right\rfloor$ Prove that $\lfloor (n+1)\alpha \rfloor 1$ is divisible by n+1
- 6. Determine all pairs of positive integers (a,b) such that $\frac{a^2}{2ab^2-b^3+1}$ is a positive integer.
- 7. Let p- a prime number. Prove: $p^2 | \binom{2p}{p} 2$. and $p^2 | \binom{np}{p} n$, where n is a natural number, n > 1.