

Quad channel high side driver

Features

Туре	R _{DS(on)}	I _{OUT}	V _{CC}
VNQ810	160m $\Omega^{(1)}$	3.5A ⁽¹⁾	36V

- 1. Per each channel.
- CMOS compatible inputs
- Open Drain status outputs
- On state open load detection
- Off state open load detection
- Shorted load protection
- Undervoltage and overvoltage shutdown
- Loss of ground protection
- Very low standby current
- Reverse battery protection^(a)

Description

The VNQ810 is a quad HSD formed by assembling two VND810 chips in the same SO-28 package. The VND810 is a monolithic device made using STMicroelectronics VIPower M0-3 Technology. The VNQ830 is intended for driving any type of multiple load with one side connected to ground.

The Active V_{CC} pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects the open load condition in both the on and off state.

In the off state the device detects if the output is shorted to V_{CC} . The device automatically turns off in the case where the ground pin becomes disconnected.

a. See Application schematic on page 18

Table 1. Device summary

Package	Order codes			
Fackage	Tube	Tape and reel		
SO-28 (double island)	VNQ810	VNQ81013TR		

Contents VNQ810

Contents

1	Bloc	ck diagram and pin description 5
2	Elec	trical specifications 7
	2.1	Absolute maximum ratings
	2.2	Thermal data 8
	2.3	Electrical characteristics
	2.4	Electrical characteristics curves
3	Арр	lication information
	3.1	GND protection network against reverse battery
		3.1.1 Solution 1: a resistor in the ground line (RGND only)
		3.1.2 Solution 2: a diode (D _{GND}) in the ground line
	3.2	Load dump protection
	3.3	MCU I/O protection
	3.4	Open load detection in off state
	3.5	Maximum demagnetization energy (V _{CC} = 13.5V)
4	Pacl	kage and PCB thermal data22
	4.1	SO-28 thermal data
5	Pacl	kage and packing information25
	5.1	ECOPACK® packages 25
	5.2	SO-28 packing information
6	Revi	sion history27

VNQ810 List of tables

List of tables

Table 1.	Device summary	. 1
Table 2.	Suggested connections for unused and not connected pins	. 6
Table 3.	Absolute maximum ratings	. 7
Table 4.	Thermal data (per island)	. 8
Table 5.	Power output	. 9
Table 6.	Protections	. 9
Table 7.	V _{CC} - output diode	10
Table 8.	Switching (V _{CC} = 13V; Tj = 25°C)	10
Table 9.	Logic inputs	10
Table 10.	Status pin	10
Table 11.	Openload detection	
Table 12.	Truth table	
Table 13.	Electrical transient requirements	13
Table 14.	Thermal calculation according to the PCB heatsink area	22
Table 15.	Thermal parameters	24
Table 16.	SO-28 mechanical data	25
Table 17.	Document revision history	27

List of figures VNQ810

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	6
Figure 3.	Current and voltage conventions	8
Figure 4.	Status timings	. 11
Figure 5.	Switching characteristics	. 11
Figure 6.	Waveforms	. 14
Figure 7.	Off state output current	. 15
Figure 8.	High level input current	. 15
Figure 9.	Input clamp voltage	. 15
Figure 10.	Turn-on voltage slope	. 15
Figure 11.	Overvoltage shutdown	. 15
Figure 12.	Turn-off voltage slope	. 15
Figure 13.	ILIM vs Tcase	
Figure 14.	On state resistance vs VCC	. 16
Figure 15.	Input high level	. 16
Figure 16.	Input hysteresis voltage	
Figure 17.	On state resistance vs Tcase	. 16
Figure 18.	Input low level	
Figure 19.	Status leakage current	. 17
Figure 20.	Status low output voltage	
Figure 21.	Status clamp voltage	
Figure 22.	Openload On state detection threshold	
Figure 23.	Openload Off state voltage detection threshold	. 17
Figure 24.	Application schematic	
Figure 25.	Openload detection in Off state	
Figure 26.	Maximum turn-off current versus load inductance	
Figure 27.	SO-28 PC board	
Figure 28.	Rthj-amb Vs PCB copper area in open box free air condition	
Figure 29.	Thermal impedance junction ambient single pulse	
Figure 30.	Thermal fitting model of a quad channel HSD in SO-28	
Figure 31.	SO-28 package dimensions	
Figure 32.	SO-28 tube shipment (no suffix)	. 26
Figure 33	SO-28 tane and reel shipment (suffix "TR")	26

Block diagram and pin description

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection / pin	Status	N.C.	Output	Input
Floating	Х	X	Х	Х
To ground		Х		Through 10KΩ resistor

2 Electrical specifications

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
- V _{CC}	Reverse DC supply voltage	- 0.3	V
- I _{GND}	DC reverse ground pin current	- 200	mA
I _{OUT}	DC output current	Internally limited	Α
- I _{OUT}	Reverse DC output current	- 6	Α
I _{IN}	DC input current	+/- 10	mA
I _{STAT}	DC Status current	+/- 10	mA
	Electrostatic discharge (human body model: R=1.5K Ω ; C = 100pF) - INPUT	4000	V
V _{ESD}	- STATUS - OUTPUT - V _{CC}	4000 5000 5000	V V V
E _{MAX}	Maximum switching energy (L = 2.5mH; $R_L = 0\Omega$; $V_{bat} = 13.5V$; $T_{jstart} = 150^{\circ}C$; $I_L = 9A$)	23	mJ
P _{tot}	Power dissipation (per island) at T _{lead} = 25°C	6.25	W
Tj	Junction operating temperature	Internally limited	°C
T _{stg}	Storage temperature	- 55 to 150	°C

2.2 Thermal data

Table 4. Thermal data (per island)

Symbol	Parameter	Va	Value	
R _{thj-lead}	Thermal resistance junction-lead	20		°C/W
R _{thj-amb}	Thermal resistance junction-ambient (one chip ON)	60 ⁽¹⁾	44 ⁽²⁾	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (two chips ON)	46 ⁽¹⁾	31 ⁽²⁾	°C/W

When mounted on a standard single-sided FR-4 board with 0.5cm² of Cu (at least 35 μm thick) connected to all V_{CC} pins. Horizontal mounting and no artificial air flow.

2.3 Electrical characteristics

Values specified in this section are for 8V < V_{CC} < 36V; -40°C < T_j < 150°C, unless otherwise stated.

Figure 3. Current and voltage conventions

Note:

 $V_{Fn} = V_{CCn} - V_{OUTn}$ during reverse battery condition.

^{2.} When mounted on a standard single-sided FR-4 board with 6cm^2 of Cu (at least 35 μ m thick) connected to all V_{CC} pins. Horizontal mounting and no artificial air flow.

Table 5. Power output

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{CC}	Operating supply voltage		5.5	13	36	٧
V _{USD}	Undervoltage shutdown		3	4	5.5	V
V _{OV}	Overvoltage shutdown		36			V
R _{ON}	On state resistance	$I_{OUT} = 1A; T_j = 25^{\circ}C$ $I_{OUT} = 1A; V_{CC} > 8V$			160 320	mΩ
		Off State; $V_{CC} = 13V$; $V_{IN} = V_{OUT} = 0V$		12	40	μΑ
I _S	Supply current	Off State; $V_{CC} = 13V$; $V_{IN} = V_{OUT} = 0V$; $T_j = 25^{\circ}C$		12	25	μΑ
		On State; $V_{CC} = 13V$; $V_{IN} = 5V$; $I_{OUT} = 0A$		5	7	mA
I _{L(off1)}	Off state output current	$V_{IN} = V_{OUT} = 0V$	0		50	μΑ
I _{L(off2)}	Off state output current	$V_{IN} = 0V; V_{OUT} = 3.5V$	-75		0	μΑ
I _{L(off3)}	Off state output current	$V_{IN} = V_{OUT} = 0V; V_{CC} = 13V;$ $T_j = 125^{\circ}C$			5	μΑ
I _{L(off4)}	Off state output current	$V_{IN} = V_{OUT} = 0V; V_{CC} = 13V;$ $T_j = 25$ °C			3	μΑ

Table 6. Protections

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Shutdown temperature		150	175	200	°C
T _R	Reset temperature		135			°C
T _{hyst}	Thermal hysteresis		7	15		°C
t _{SDL}	Status delay in overload conditions	T _j > T _{TSD}			20	μs
I _{lim}	Current limitation	V _{CC} = 13V 5.5V < V _{CC} < 36V	3.5	5	7.5 7.5	A A
V _{demag}	Turn-off output clamp voltage	I _{OUT} = 1A; L = 6mH	V _{CC} - 41	V _{CC} - 48	V _{CC} - 55	V

Note:

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

Table 7. V_{CC} - output diode

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ī	V_{F}	Forward on voltage	- I _{OUT} = 0.5A; T _j = 150°C			0.6	V

Table 8. Switching $(V_{CC} = 13V; T_j = 25^{\circ}C)$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$R_L = 13\Omega$ from V_{IN} rising edge to $V_{OUT} = 1.3V$ (see <i>Figure 5</i>)		30		μs
t _{d(off)}	Turn-off delay time	$R_L = 13\Omega$ from V_{IN} falling edge to $V_{OUT} = 11.7V$ (see <i>Figure 5</i>)		30		μs
dV _{OUT} /dt _(on)	Turn-on voltage slope	$R_L = 13\Omega$ from $V_{OUT} = 1.3V$ to $V_{OUT} = 10.4V$ (see <i>Figure 5</i>)		See Figure 10		V/µs
dV _{OUT} /dt _(off)	Turn-off voltage slope	$R_L = 13\Omega$ from $V_{OUT} = 11.7V$ to $V_{OUT} = 1.3V$ (see <i>Figure 5</i>)		See Figure 12		V/µs

Table 9. Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level				1.25	V
I _{IL}	Low level input current	V _{IN} = 1.25V	1			μΑ
V _{IH}	Input high level		3.25			V
I _{IH}	High level input current	V _{IN} = 3.25V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.5			V
V _{ICL}	Input clamp voltage	I _{IN} = 1mA I _{IN} = -1mA	6	6.8 - 0.7	8	V V

Table 10. Status pin

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{STAT}	Status low output voltage	I _{STAT} = 1.6mA			0.5	V
I _{LSTAT}	Status leakage current	Normal operation; V _{STAT} = 5V			10	μΑ
C _{STAT}	Status pin Input capacitance	Normal operation; V _{STAT} = 5V			100	pF
V _{SCL}	Status clamp voltage	I _{STAT} = 1mA I _{STAT} = - 1mA	6	6.8 - 0.7	8	V V

10/28

Table 11. Openload detection

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{OL}	Openload On state detection threshold	V _{IN} = 5V	20	40	80	mA
t _{DOL(on)}	Openload On state detection delay	I _{OUT} = 0A			200	μs
V _{OL}	Openload Off state voltage detection threshold	V _{IN} = 0V	1.5	2.5	3.5	V
t _{DOL(off)}	Openload detection delay at turn-off				1000	μs

Figure 4. Status timings

Figure 5. Switching characteristics

Table 12. Truth table

Conditions	Input	Output	Status
Normal operation	L	L	Н
Normal operation	Н	Н	Н
	L	L	Н
Current limitation	Н	X	$(T_j < T_{TSD}) H$
	Н	X	$(T_j > T_{TSD}) L$
Ou combo more a modulum	L	L	Н
Overtemperature	Н	L	L
Lindonvoltogo	L	L	Х
Undervoltage	Н	L	X
Overveltage	L	L	Н
Overvoltage	Н	L	Н
Output voltage - V	L	Н	L
Output voltage > V _{OL}	Н	Н	Н
Output ourrant al	L	L	Н
Output current < I _{OL}	Н	Н	L

Table 13. Electrical transient requirements

ISO T/R	Test level				
7637/1 Test pulse	I	II	III	IV	Delays and impedance
1	- 25V	- 50V	- 75V	- 100V	2ms, 10Ω
2	+ 25V	+ 50V	+ 75V	+ 100V	0.2ms, 10Ω
За	- 25V	- 50V	- 100V	- 150V	0.1μs, 50Ω
3b	+ 25V	+ 50V	+ 75V	+ 100V	0.1μs, 50Ω
4	- 4V	- 5V	- 6V	- 7V	100ms, 0.01Ω
5	+ 26.5V	+ 46.5V	+ 66.5V	+ 86.5V	400ms, 2Ω

ISO T/R		Test	level	
7637/1 Test pulse	I	II	III	IV
1	С	С	С	С
2	С	С	С	С
За	С	С	С	С
3b	С	С	С	С
4	С	С	С	С
5	С	E	E	E

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.

47/

2.4 Electrical characteristics curves

Figure 7. Off state output current

Figure 8. High level input current

Figure 9. Input clamp voltage

Figure 10. Turn-on voltage slope

Figure 11. Overvoltage shutdown

Figure 12. Turn-off voltage slope

Figure 13. I_{LIM} vs T_{case}

Ilim (A)

20

18

16

14

12

10

8

6

4

2

0

-50 -25 0 25 50 75 100 125 150 175

Tc (°C)

Figure 14. On state resistance vs V_{CC}

Figure 15. Input high level

Figure 16. Input hysteresis voltage

Figure 17. On state resistance vs Tcase

Figure 18. Input low level

Figure 19. Status leakage current

Figure 20. Status low output voltage

Figure 21. Status clamp voltage

Figure 22. Openload On state detection threshold

Figure 23. Openload Off state voltage detection threshold

Application information 3

+5V +5V +5V $V_{\text{CC1,2}}$ $V_{CC3,4}$ STATUS1 R_{prot} INPUT1 D_{Id} OUTPUT1 R_{prot} INPUT2 MCU OUTPUT2 R_{prot} STATUS3 OUTPUT3 R_{prot} INPUT3 R_{prot} STATUS4 OUTPUT4 INPUT4 GND3,4 GND1,2 D_GND +5V +5V V_{GND}

Figure 24. Application schematic

Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.

3.1 **GND** protection network against reverse battery

This section provides two solutions for implementing a ground protection network against reverse battery.

3.1.1 Solution 1: a resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following show how to dimension the $R_{\mbox{\footnotesize GND}}$ resistor:

- $R_{GND} \leq 600 \text{mV} / 2 (I_{S(on)max})$
- $R_{GND} \geq \left(\; \; V_{CC} \right) / \left(\; \; I_{GND} \right)$ 2.

where - I_{GND} is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power dissipation in R_{GND} (when $V_{CC} < 0$ during reverse battery situations) is:

$$P_D = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that, if the microprocessor ground is not shared by the device ground, then the R_{GND} will produce a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation requires the use of a large resistor, or several devices have to share the same resistor, then ST suggests using solution 2 below.

3.1.2 Solution 2: a diode (D_{GND}) in the ground line

A resistor ($R_{GND} = 1k\Omega$) should be inserted in parallel to D_{GND} if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

3.2 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CC} maximum DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than those shown in the ISO T/R 7637/1 table.

3.3 MCU I/O protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μC I/O pins from latching up.

The value of these resistors is a compromise between the leakage current of μC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of μC I/Os:

Example

For the following conditions:

V_{CCpeak} = - 100V

I_{latchup} ≥ 20mA

 $V_{OHuC} \ge 4.5V$

 $5k\Omega \le R_{prot} \le 65k\Omega$

Recommended values are:

 $R_{prot} = 10k\Omega$

3.4 Open load detection in off state

Off state open load detection requires an external pull-up resistor (R_{PU}) connected between OUTPUT pin and a positive supply voltage (V_{PU}) like the +5V line used to supply the microprocessor.

The external resistor has to be selected according to the following requirements:

1) no false open load indication when load is connected: in this case we have to avoid V_{OUT} to be higher than V_{Olmin} ; this results in the following condition

$$V_{OUT} = (V_{PU} / (R_L + R_{PU}))R_L < V_{Olmin.}$$

2) no misdetection when load is disconnected: in this case the V_{OUT} has to be higher than V_{OLmax} ; this results in the following condition $R_{PU} < (V_{PU} - V_{OLmax}) / I_{L(off2)}$.

Because $I_{s(OFF)}$ may significantly increase if V_{out} is pulled high (up to several mA), the pull-up resistor R_{PU} should be connected to a supply that is switched OFF when the module is in standby.

Figure 25. Openload detection in Off state

3.5 Maximum demagnetization energy (V_{CC} = 13.5V)

Figure 26. Maximum turn-off current versus load inductance

A = single pulse at $T_{Jstart} = 150^{\circ}C$

B= repetitive pulse at T_{Jstart} = 100°C

C= repetitive pulse at T_{Jstart} = 125°C

Note:

Values are generated with $R_L = 0\Omega$

In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

4 Package and PCB thermal data

4.1 SO-28 thermal data

Figure 27. SO-28 PC board

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 58mm x 58mm, PCB thickness = 2mm, Cu thickness = 35 μ m, Copper areas: 0.5 cm², 3 cm², 6 cm²).

Table 14. Thermal calculation according to the PCB heatsink area

		9		
Chip 1	Chip 2	T _{jchip1}	T _{jchip2}	Note
ON	OFF	R _{thA} x P _{dchip1} + T _{amb}	R _{thC} x P _{dchip1} + T _{amb}	
OFF	ON	R _{thC} x P _{dchip2} + T _{amb}	R _{thA} x P _{dchip2} + T _{amb}	
ON	ON	$R_{thB} x (P_{dchip1} + P_{dchip2}) + T_{amb}$	$R_{thB} x (P_{dchip1} + P_{dchip2}) + T_{amb}$	P _{dchip1} = P _{dchip2}
ON	ON	$(R_{thA} \times P_{dchip1}) + R_{thC} \times P_{dchip2} + T_{amb}$	(R _{thA} x P _{dchip2}) + R _{thC} x P _{dchip1} + T _{amb}	P _{dchip1} ≠ P _{dchip2}

R_{thA} = thermal resistance junction to ambient with one chip ON

 R_{thB} = thermal resistance junction to ambient with both chips ON and P_{dchip1} = P_{dchip2}

 R_{thC} = mutual thermal resistance

Figure 28. R_{thi-amb} Vs PCB copper area in open box free air condition

Equation 1: pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot ~\delta + Z_{THtp} (1 - \delta) \\ \text{where} ~~\delta &= t_p / ~T \end{split}$$

Table 15. Thermal parameters

Area / island (cm ²)	Footprint	6
R1 = R7 = R13 = R15 (°C/W)	0.35	
R2 = R8 = R14 = R16 (°C/W)	1.8	
R3 = R9 (°C/W)	4.5	
R4 = R10 (°C/W)	11	
R5 = R11 (°C/W)	15	
R6 = R12 (°C/W)	30	13
C1 = C7 = C13 = C15 (W.s/°C)	0.0001	
C2 = C8 = C14 = C16 (W.s/°C)	7E-04	
C3 = C9 (W.s/°C)	6E-03	
C4 = C10 (W.s/°C)	0.2	
C5 = C11 (W.s/°C)	1.5	
C6 = C12 (W.s/°C)	5	8
R17 = R18 (°C/W)	150	

5 Package and packing information

5.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second-level interconnect. The category of Second-Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 31. SO-28 package dimensions

Table 16. SO-28 mechanical data

Symbol		Millimeters	
	Min.	Тур.	Max.
А			2.65
a1	0.10		0.30
b	0.35		0.49
b1	0.23		0.32
С		0.50	
c1		45° (typ.)	
D	17.7		18.1
E	10.00		10.65
е		1.27	
e3		16.51	
F	7.40		7.60
L	0.40		1.27
S		8° (max.)	

25/28

5.2 SO-28 packing information

Figure 32. SO-28 tube shipment (no suffix)

Figure 33. SO-28 tape and reel shipment (suffix "TR")

VNQ810 Revision history

6 Revision history

Table 17. Document revision history

Date	Revision	Changes
09-Sep-2004	1	Initial release.
03-May-2006	2	Minor changes Current and voltage convention update (page 3). Configuration diagram (top view) & suggested connections for unused and n.c. pins insertion (page 3). 6 cm2 Cu condition insertion in thermal data table (page 4). V _{CC} - output diode section update (page 4). Protections note insertion (page 5) Revision history table insertion (page 20). Disclaimers update (page 21).
01-Dec-2008	3	Document reformatted and restructured. Added contents, list of tables and figures. Added <i>ECOPACK® packages</i> information.

27/28

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com