Cooperative Game Theory with MATLAB and Mathematica

From Fundamentals to Advanced Computational Techniques

Holger I. MEINHARDT *

3rd February 2025

Preface

The book describes how the reader can use our software tools for MATLAB[©] and Mathematica[©] for her/his research or teaching. It is divided into three parts. The first part deals with the prerequisites of Cooperative Game Theory, Mathematica[©], and MATLAB[©]. To this end, the first chapter is thought as a quick refresher of the essentials of cooperative game theory, the chapters devoted to Mathematica[©] and MATLAB[©] are designed to familiarize even readers with little or no background in these languages with their semantics and syntax for mastering the underlying programming concepts and techniques. These concepts and techniques are illustrated on code snippets to cope with some basic game theoretical problems. In contrast, the second part develops how our MATLAB[©] toolbox can be applied to study solution concepts and properties for TU games with and without a trivial coalition structure. Before its usage on selected examples is explained, the game theoretical background is extensively introduced and discussed. Important fundamental aspects and techniques of a computer-based analysis with our MATLAB® toolbox are described and are further panned out as a basis for the reader's explorations. Particular subjects like the plotting of solutions as well as the investigation of the axiomatization (principles of distributive justice) of selected solution concepts by our software tool are comprehensively discussed and developed. Leading then into the discussion of solving game theoretical hard problems by parallel as well as GPU computation as the backbone of High-Performance Computing. To end up in object-oriented programming for retrieving and modifying game data to ensure a consistent computation environment for doing game theory by a unified computer-based approach. The last part retrieves the study of solution concepts and properties for TU games with a trivial coalition structure with $Mathematica^{\odot}$. These are the building blocks to direct the reader to the theory of industrial cooperation while focusing on the partition function approach that enables us to study the stability of cartel agreements.

Analogously to the previous part, we revive for our $Mathematica^{\odot}$ package the essentials of High-Performance Computing while establishing its parallel computational features. The remaining two chapters deal with the transfer of game data between these two worlds of programming languages. Finally, additional background information is provided in various appendices.

Karlsruhe, Germany February 2025

Holger Ingmar Meinhardt

About this Book

Nowadays, numerical computation and computer algebra systems are common standards for scientists in various fields. Although algorithmic game theory is a very dynamic field of research, computer-based approaches to analyzing cooperative games are still uncommon. This book fills this gap while describing our software tools for MATLAB® and Mathematica® for doing interactively cooperative game theory on a computer in a uniform environment. Before a wide variety of examples are introduced, the computational and game theoretical aspects are extensively discussed and explained. Finally, moving to parallel- as well as GPU computation, which are at the cutting edge of High-Performance Computing for studying game theoretical hard problems. The book is suitable for readers with little or no background in MATLAB® or Mathematica® due to its emphasis on carefully introducing their programming concepts and techniques for self-study. In this respect, it essentially neither requires a special previous background in Game Theory, apart from mathematical maturity, nor programming knowledge. However, the book covers thoroughly a course in cooperative game theory with side payments on an advanced level, whether MATLAB® or Mathematica® is used or not. Due to this general approach to discussing the introduced algorithms, the software tools described can also be transferred to other programming languages without much additional effort, such as Python or R, to name just two other software systems that are widely used in the academic world.

The book is addressed to scientists, graduate students, advanced undergraduates, and programmers who want to study several aspects of cooperative games with side payments (TU games) by means of a computer-aided approach with the software systems MATLAB[©] and $Mathematica^{\odot}$. The novelty of the book lies in the fact that it supports the theoretical presentation of concepts from cooperative game theory through well-selected game examples with a complexity level that could not be examined without software support. Enhancing our theoretical understanding through faster access to new ideas that would otherwise not be accessible to us. To illuminate this itinerary of knowledge further, not only sophisticated numerical examples are discussed, but also a selection of algorithms for addressing large-scale issues and their implementations into both software systems. Providing the reader with the necessary skills to follow his own fluctuating but nevertheless promising journey of knowledge.

To prepare the reader for this journey, the present book provides, after having discussed through a first step the underlying theory, computer-aided means to model and impose solution analysis on transferable utility games (TU games) using MATLAB and *Mathematica*. The book is divided into three main parts and an appendix. We start off with a part-wise general overview of the book and then move over to a more detailed chapter-wise summary structured by parts. The software tools accompanying the book are available online. At the end of this book's itinerary, one will find a brief overview of the software companions.

- The preparatory Part I is composed of three chapters to formalize the reader with the essential principles of cooperative game theory with side payments (TU games), MATLAB, and Mathematica. To prepare readers, not all game classes treated by the book were covered in Chapter 1. We would like to point out that the first chapter only deals with those concepts/classes that are relevant to both Parts II and III that can be quickly grasped by a reader without possessing any good prior knowledge of Game Theory. Otherwise, we would have to immediately introduce quite extensive technical machinery without being able to explain the concepts in more detail with the help of our software tools, which will only be introduced in Parts II and III. The book aims to clarify the concepts of cooperative game theory, after their theoretical discussion, with the help of our programmed software tools, instead of bothering the reader with small tasks without making them aware of the entire complexity of the problem. Standard textbooks use small exercises for that, but with our software tools, much more complex problems can be discussed, and it expands rapidly the understanding, which we consider a real advantage of a computer-aided approach. For example, the intrinsic combinatorics in game theory concepts means that certain structures and properties of games cannot be illustrated in 3- or 4-person games. Very often, only games with at least five persons reveal enough structure to make the point clear. Nowadays, in the computer age, no one should be faced with having to create these structures and properties manually. This becomes particularly problematic if one wants to clarify the axiomatization of solution concepts. For this reason, we only outline the axiomatization for some solution concepts in Chapter 1. This topic is deepened in Chapter 7 with a whole set of MATLAB routines to examine the underlying axiomatization of a calculated solution.
- In contrast, Part II is composed of eight chapters to investigate TU games using our conceived software toolbox

for MATLAB. There, we mainly present the mathematical proofs, which will be discussed in detail in a further step using our designed MATLAB routines to deepen their understanding. Among others, it develops, after having imparted the theoretical background, how the software means designed for MATLAB can be applied to studying solution concepts and properties for TU games with and without a trivial coalition structure. Besides this, graphical extensions, real-word applications, axiomatization of selected solution concepts, object-oriented programming (OOP) techniques, multithreading as a tool of implicit parallelization, certain forms of explicit parallelization on multiple processors or for graphics processing units (GPUs), are discussed within a game theoretical context.

- However, Part III includes a total of five chapters to examine cooperative games with side payments using the Wolfram Language. It retrieves the study of solution concepts and properties for TU games with a trivial coalition structure under *Mathematica*, thereby presenting an alternative set of routines for scrutinizing TU games through multithreading and explicit parallelization. Note in this context that the theoretical foundation is treated in Chapter 4. There is no need to resume these fundamentals in Part III with *Mathematica*. It is only necessary to discuss the conceived *Mathematica* counterparts that allow us to study these topics with the Wolfram Language while referring to the mathematical results of the MATLAB section. In addition, this part focuses on cooperative games arising from industrial cooperation while discussing in the initial step the theoretical foundation, in order to move then along to the next step to establish how one can profit from parallel acceleration under *Mathematica* while investigating game issues. The remaining two chapters are devoted to the grand theme of cross-checking, thereby focusing in more detail on some fundamental methods for exchanging data, delegating, and running computer tasks into a different software environment without leaving the initial software platform.
- The book closes with the appendix, which provides some further background related to propositional logic, group theory, representation theory, numerical round-off errors, and our software tools.

As mentioned above, the book is divided into a preparatory, a MATLAB, and a *Mathematica* part. Readers who want to study the book through self-study and are familiar with these topics can skip the first part, thereby reading the remaining parts in isolation, simply following their preferences. However, readers not acquainted with these topics ought to read Chapter 1 first, and only then should they progress in accordance with their interests in reading either Chapter 2 or Chapter 3. To continue at all events with Chapter 4 of Part II, even if one is only interested in Part III. This is because the theoretical foundations necessary for understanding Part III are situated in this chapter. Though we have tried to cross-reference as much as possible in the text, not everything is referenceable in Part III.

In what follows, we provide a short synopsis of the upcoming chapters, structured by parts. We start with the chapter overview for the first part and end with a survey of the applied software platforms.

About Part |

The chapters of Part I have a preparatory nature; and can be skipped by informed readers. Each chapter can be read in isolation. However, novices in game theory ought to start with the first chapter.

Chapter 1: This preparatory chapter is devoted to resuming the relevant background of cooperative game theory with side payments (TU games). In particular, it is conceived as a starter to refresh some fundamental principles of TU games. We formalize first treatments related to certain game classes, such as convexity, super-additivity, monotonicity, or zero-monotonicity. Most importantly, some solution concepts, such as the (pre-)kernel, (pre-)nucleolus, or the Shapely value, are resumed in formal but not rigorous technical treatments. Albeit these concepts are introduced formally, the emphasis is, however, more on providing the reader with the underlying intuition and motivation behind them. Technical aspects of game properties and solutions are more thoroughly examined in Part II or Part III.

Besides this, we present in the introduction to this chapter our interpretation of a TU game to efface with some common misunderstandings of cooperative game theory, notably, the prevalent opinion, that only binding agreements can be studied for cooperative games, caused probably by the fact that the conceptual aspects of cooperative game theory are neither well explained nor motivated in the literature while focusing merely on the technical aspect of results. The annoying and at the same time amazing consequence of this postulate is that it is unclear why one should care about solution concepts from cooperative game theory when they are enforceable by an unbiased arbitrator or a legal system. Why should one formalize proposals or counter-proposals, dominance, or stability issues when everything is binding? We shall learn that the wreaked conceptual damage of this postulate is dissolvable while considering the axiomatic foundation of solution concepts as a description of principles of distributive justice. Then, agreements can be non-binding and thereby stable simply because actors submit themselves by self-interest under the immanent rules of justice.

About this Book vii

- Chapter 2: In this chapter, we are going to present some basic operations that will give us some understanding of how we can use the high-level programming language of MATLAB to investigate transferable utility games. Having introduced and discussed some basic operations of MATLAB, we apply our knowledge gained by writing in the first step some small routines to solve linear problems and drawing their solution sets in two- and three-dimensional graphics. In the next step, we deepen and enhance these skills while implementing routines to convert the binary-encoding of double-precision floating-point numbers to their equivalent decimal representations. Then, our attention is turned to the top-down design process. That is a formal approach to designing a computer program. Its design process is illustrated for an airport cost allocation problem borrowed from the literature. Having understood and mastered the program design of MATLAB through these examples, we introduce the toolbox approach to represent a coalitional game with transferable utility under MATLAB by the unique integer representations of coalitions. While understanding this, we shall discuss some alternative representation methods for a TU game from the literature. Specifically, we focus on a concise representation through the marginal contribution networks (MC-nets). Finally, we test our skills on some basic solution schemes from game theory, such as the standard solution, Shapley value, and the computation of the nucleolus for three-person games.
- Chapter 3: Similar to the foregoing chapter on MATLAB, we are going to present some basic operations that shall allow us to understand how we can use the versatile programming language of *Mathematica* to investigate transferable utility games. Having introduced and discussed some basic operations of *Mathematica*, we apply our knowledge gained from writing some small routines to get the game representation of weighted majority or bankruptcy games. Then, we turn our attention to some basic solution schemes like the Talmudic Rule (generalized contested garment principle), the computation of the nucleolus for three-person games while applying a unique formula, and the Shapley value. We close this chapter while resuming crucial aspects of optimization theory and the Nash equilibrium, which are of particular importance for studying cooperative games in partition function form.

About Part II

Part II deals with studying TU games by means of MATLAB. Readers not acquainted with this topic should have read Chapter 2 before continuing. Then, they should move on to Chapter 4 to study chiefly the modeling and solution sections. Readers familiar with this topic should also concentrate on this part in the first reading but may wish to skip the theoretical part while focusing primarily on handling the software means to study TU games. The remaining topics of Part II can then be studied in isolation.

- Chapter 4: Having mastered the preparatory part, we are in a position to clarify and extend game theoretical concepts by means of mathematical proofs. In addition, we shall observe how the knowledge of these concepts can be deepened using software-based means conceived in MATLAB. To this end, we start with the modeling part while establishing how game models can be described by means of our software tool. Then, the solution part is considered by representing several algorithms to compute the Shapley value, (pre-)nucleolus, elements of the (pre-)kernel, and much more. Not without first examining the theoretical background by providing numerous selected mathematical results that characterize game solutions and game properties. However, to elucidate their intrinsic complexity, programmed software is used to accentuate the underlying layers. Particularly, some selected and crucial game classes with a trivial coalition structure are presented. Then, the most common solution concepts and their corresponding algorithms are discussed, including how to determine them using user-defined MATLAB tools. Besides, the associated algorithms are introduced, discussed, and finally implemented into MATLAB code in conjunction with some command and code annotations. Instead of using only built-in solvers to get game solutions, we illustrate how one can achieve the same objective using MATLABs application programming interface (API) by calling external third-party solvers. Finally, we discuss how crucial game properties and convex solution sets can be analyzed using our software
- Chapter 5: After we have carried out detailed studies related to transferable utility games (TU games) with a trivial coalition structure, we move forward to investigate in more detail TU games with non-trivial coalition structures. Notably, we shall see how the core, super-additive cover, (pre-)kernel, and (pre-)nucleolus must be generalized to cope with distributive arbitration (fairness standards) when non-trivial coalition structures are likely to prevail. In the same vein, we also study fairness and related values for coalition structures. Moreover, to advance our understanding of compliance with agreements, we shall investigate the stability of an agreement within a game setting, referring to the nucleolus,

pre-kernel, and Shapley value. As in the foregoing Chapter 4, the rather technical analysis will be underpinned by software-aided means designed for our MATLAB toolbox to elucidate the arising combinatorial complexity issues.

Chapter 6: Having treated transferable utility games (TU games) with trivial and non-trivial coalition structures, we shall address the question of how one can depict three-dimensional convex solutions for four-person games, such as the core, strong ϵ -cores, the Weber set, or visualize the geometric properties of the nucleolus or kernel by means of our software tool. In a further step, we move on to study simple games and then the political decision-making process through some real-world examples through weighted majority games. Especially, we are investigating the political decision-making process of the UN Security Council, the minimum homogeneous representation of weighted majority games, and their implication on the shape of the (pre-)kernel solution.

However, all these approaches have measured the power of individuals in a political decision-making process without taking into account the formation, control, and domination of a network of relationships to influence a voting outcome and institutions to serve one's interests. For incorporating such an underlying mesh of relations into the measurement of power, a network is specified by an undirected graph in order to obtain a game representation in characteristic function form from which such an analysis is feasible. This kind of power analysis is exemplified by Florentine marriage and business relationships during the early Renaissance. The chapter closes by discussing some procedures to handle numerical errors when seeking a pre-kernel point.

- Chapter 7: The axiomatic foundation of cooperative solution concepts is studied more deeply by relying on their theoretical results and exemplifying crucial aspects by means of computer-aided software tools. The purpose of such an analysis is twofold: On the oneăhand, to verify a set of solution characteristics for a better understanding of a solution itself and gain more intuitions, and on the other hand, to check on the correctness of a solution obtained by floating-point arithmetic. Notably, we can check if a solution vector satisfies several consistency properties. For instance, the pre-nucleolus should fulfill the Davis-Maschler reduced game property, and the Shapley value should meet the Hart and Mas-Colell reduced game property. In this respect, a number of software-aided tools were presented that support an axiomatic analysis of solutions.
- Chapter 8: As a particular application of axiomatizing solution theory, we focus within this chapter on the modiclus, also known under the name modified nucleolus. The modiclus simultaneously considers, besides the primal power, also the preventive power (dual power) of the game to permit actors in a bargaining situation to enforce their claims. This allows us to present and discuss numerous alternative axiomatizations of the modiclus that refer to the primal and preventive power of coalitions. The immanent charm of our proposed alternative characterizations of the modiclus or the anti-pre-nucleolus can be attributed to the fact that we can now refer to the preventive power of a coalition without leaving the original game context and introducing the dual game. To show the pertinence of the derived results, we demonstrate that the modiclus is equal to the anti-pre-nucleolus for the class of PS, weighted graph, and modest bankruptcy games.
- Chapter 9: This chapter focuses on the axiomatization of related solution concepts of the modiclus. Alike those, both the modified and proper modified pre-kernel take the primal as well as the preventive power (dual power) of coalitions during a stylized bargaining scenario into account. Even though it was developed as an auxiliary solution concept to investigate the modiclus, no effective computation methods were designed to support this analysis. We are closing this gap and presenting some algorithms for their computation. Before, we shall resume their theoretical foundation while providing some alternative axiomatization for both solution concepts.
- Chapter 10: In the course so far, we have focused on sequential computing only. This form of computing can process one instruction at a time. Consequently, the next instruction is solely executable at the moment when the previous one has been completed. No set of instructions can run concurrently. By contrast, parallelization is a particular form of computation in which the initial problem is decomposable into separate and independent sub-problems for processing these subtasks at the same time on the computer system. We provide procedures for how one can conduct a computer-based analysis for transferable utility games with MATLAB using parallel and GPU computing. During this chapter, we provide a set of procedures allowing us to benefit from parallel acceleration while investigating game issues with our toolbox.
- Chapter 11: The MATLAB programming language also offers the opportunity to create object-oriented programs. Relying on object-oriented programming (OOP) techniques allows us to encapsulate data and oper-

About this Book

ix

ations within a set of objects designed to ensure that a user operates within a clearly defined and consistent environment. This avoids unintentionally changing data and performing a relatively sophisticated list of tasks properly. Data types that permit both encapsulated manipulation of data and user-defined operations on them are called classes. In OOP terminology, a class comprises similar objects. Each TU game has identical attributes, like a characteristic function and a player set. These attributes constitute the objects that form the class of TU games. Though TU games have identical essential characteristics, they have different external manifestations, inducing distinct game properties, and are consequently different objects from the same game class. Now, OOP allows us to create this kind of abstract data type by defining a class with the mentioned attributes to compose a class object for a TU game. This allows for carrying out only some pre-defined and segregated data manipulations on a class object. To familiarize ourselves with OOP, we provide a short synopsis of the essential features of OOP with MATLAB. Then, we discuss how the resulting OOP-class objects are applicable to investigate TU games in a clearly defined and consistent computing environment.

About Part III

Part III deals with investigating a TU game by means of *Mathematica*. Readers not acquainted with this topic should have read Chapter 3 before continuing. Then, they should proceed to Chapter 4 to study mainly the theoretical foundations discussed in detail there. Readers familiar with this topic can safely skip this part and go straight to Chapter 12, thereby focusing primarily on handling software means to study TU games. The remaining chapters of Part III are treatable in isolation.

- Chapter 12: This chapter discusses an alternative set of software routines to study TU games with Mathematica instead of MATLAB. For both software tools, there is a basic set of functions that overlap in their functionality, i.e., they provide the same features. However, they are based on different programming paradigms and are therefore based on diverse operating principles. Though one might have implemented in both programming languages the same algorithm, the coding in both programming environments had to differ while adjusting to the particularities of the language. Therefore, it is relatively unlikely to produce the same programming failure in both environments. Thus, getting in both environments an identical answer increases the reliability of the returned result. We continue to cover the core features by letting the reader see the differences between game analyses performed under MATLAB and those under Mathematica. It will be shown how the (pre-)kernel elements, the (pre-)nucleolus, the modiclus, the modified and proper modified pre-kernel, the Shapley value, Lorenz solution, Dutta-Ray solution, excess payoffs, the τ-value, χ-value, Gately point, the vertices of a core, and much more is computable. Moreover, we shall demonstrate the verification of some interesting game properties, such as convexity, average-convexity, or super-additivity with Mathematica.
- Chapter 13: In this chapter, we are focusing on the study of industrial cooperation using software tools conceived for Mathematica. Similar to the foregoing procedures, in the initial step, the underlying theory is extensively discussed before the reader is introduced to the procedure to analyze problems arising from industrial cooperation using computer-aided tools conceived with Mathematica. That is to say, we focus on the computation of Cournot, Bertrand, and Stackelberg equilibria, as well as on the computation of the associated TU-oligopoly games arising from post-merger equilibria like those of γ -, δ -, as well as s-type characteristic function forms.
- Chapter 14: Having understood the essentials of sequential computing under *Mathematica*, we head over in this chapter to the parallel implementation of computer-aided analysis of transferable utility games with conceived tools for the Wolfram Language. Typically, users perform sequential symbolic processing with *Mathematica* most of their time. Besides this, there are also very computationally and data-intensive calculations in game theory that request, instead of sequentially processing, a parallelization of the tasks in which the initial problem is decomposable into separate and independent sub-problems. We show how the user can profit under *Mathematica* from a performance gain by processing separate and independent sub-tasks simultaneously.
- **Chapter 15**: Cross-checking results should be part of a scientist's normal toolbox. In this chapter, we are introducing tools for achieving this by calling *Mathematica* functions designed for studying TU games from a running MATLAB session. For this purpose, we discuss some fundamental methods whose functionality we are already acquainted with MATLAB but whose handling of the results differs due to some *Mathematica* specifics.
- Chapter 16: Here, we study the reverse procedure of how MATLAB functions are accessible from a running *Mathematica* session to study TU games. We shall demonstrate how selected toolbox functions are easily

usable from within *Mathematica* to offset numerical disadvantages that cannot be compensated for by parallel processing. In addition, it extends the functionality of our *Mathematica* software tool by granting access to functional primitives that are not implemented yet with the Wolfram Language. It allows the application of the rich prototyping capabilities of the Wolfram Language to conceive algorithms for studying game properties or axiomatizations without leaving the original modeling framework by accessing extra functionality for easy verification of new ideas without taking unnecessary detours by laboriously creating identical game models from scratch in a different modeling environment.

Appendix

This part deals with some additional material related to cooperative game theory. For instance, we provide chapters to discuss some concepts of mathematical logic and group theory. Both fields are extensively applied in the founding work of game theory by von Neumann and Morgenstern (1944), but they are often treated superficially and even incorrectly in the literature. Each chapter of the appendix is addressable in isolation.

- Chapter A: This first chapter of the appendix focuses on the computational study of benchmarking in order to present the computational behavior of a method in getting an element of the pre-kernel. For this purpose, we resume the reported executing time of Meinhardt (2013) for different profiles for serial and parallel computation of an element of the pre-kernel, based on Algorithm A.0.1. Though the data generated with MATLAB Release 2013a are somewhat outdated, they nevertheless provide some comparison in terms of the fast development in computer science. To set the point related to the reported timings in Chapter 10, where we have deployed up to 40 logical cores compared to the conducted test at that epoch in parallel on compute nodes with eight logical cores only.
- Chapter B: We present a detailed treatment of propositional logic that should allow the reader to grasp crucial logical arguments applied in several proof techniques given in the literature. Propositional logic can be subsumed as a method of formalizing inferences for analyzing reasoning; it is, therefore, at the heart of conducting mathematical proofs. For that purpose, we resume some proof methods and then move along on the basis of the Deduction Theorem (Herbrand Theorem, 1930) to the question under which circumstances a statement is classifiable as non-provable. To answer this question, we need to leave the framework of propositional logic while making some borrowings from predicate logic (first-order logic).
- Chapter C: The first section of this appendix reviews crucial aspects of floating-point representation, allowing us to grasp rounding-errors and other kinds of numerical errors caused by machine arithmetic which are captured in greater detail in the second section. These are indispensable concepts for estimating the quality of a computed result.
- Chapter D: This appendix reviews specific definitions, concepts, and aspects of group theory. An abstract group allows us to capture the properties of mathematical objects through classification. In this sense, group theory and group algebra are the building blocks for identifying similarities and invariances to classify mathematical objects. Classifications can also be useful in studying games, characterizing solutions and game properties, or performing a stability analysis of solutions. Notably, the study of the pre-kernel in Subsection 4.4.3 pursued this approach by conducting an economic stability analysis by means of the positive general linear groups. We present a concise remainder of group theory that should allow the reader to grasp crucial but abbreviated arguments applied within some proofs of the book.
- Chapter E: In this chapter, we will expose the essential ingredients of representation theory and apply them to the analysis of cooperative games with externalities (games in partition function form). Representation theory is the study of the nature and extent to which a given group acts on a vector space. The action of group elements endows, by means of a homomorphism, a structure on the vector space, a representation of the group, from which a classification of the underlying mathematical objects is obtainable. Applying representation techniques to the theory of cooperative games with externalities allows us to decompose the vector space of games in partition function under the group action of the symmetric group into a direct sum of irreducible subspaces from which symmetric linear solutions can be analyzed concisely and elegantly. To make the point, we review some essential results of the work of Sánchez-Pérez (2014, 2017) to discuss a direct sum decomposition of the game space into invariant subspaces. Exemplarily, we present for n=4 and n=5 by means of character theory even a decomposition into the irreducible submodules.
- Chapter F: In the course of this appendix, we shall provide some instructions to install the MATLAB toolbox MatTuGames. In the initial step, we have to discuss the requirements for running the toolbox properly. Moreover, we also present some add-ons for the toolbox and provide their installation instructions.

The software listed within the requirements section is considered a recommendation. Nothing of the mentioned software tools is really needed to run the toolbox in a basic operating mode. However, to get full functionality out of the toolbox and for accuracy reasons, we strongly recommend its installation. For the impatient user, we provide a quick guide on how to get started and some fundamental operations.

- Chapter G: This appendix provides some instructions to install the *Mathematica* package TuGames. In particular, we shall focus on a custom installation. Furthermore, we additionally deal with some information on how one can run the package in parallel or run the parallel version of our package and how one can use the Cddmathlink library to profit from the graphical features of our package. For the users who are even interested in generating some movies to illustrate, for instance, the geometric properties of the (pre-)nucleolus and (pre-)kernel, we also make sure of running the Cddmathlink library, even in parallel. Furthermore, we also give some pieces of information w.r.t. MATLink, which is needed to call our MATLAB toolbox MatTuGames within a running *Mathematica* session. For the impatient user, we provide a brief guide to getting started and some basic operations.
- Chapter H: In Subsections 2.8.4 and 3.5.8, we shall discuss a MATLAB, respectively, a *Mathematica* program for computing the nucleolus for three-person zero-normalized super-additive games using the formula invented by Leng and Parlar (2010). For comparison reasons, we will present their Maple code for its computation in this appendix.

About the Software

We have selected MATLAB® and Mathematica® to conduct computer-based approaches to analyzing cooperative games. We will now give the user some insights into our motives for focusing on these tools. Both software platforms are carefully designed, implemented, maintained, powerful, and reliable. In addition, they have a high-level programming language, powerful graphical capabilities, and relatively fast routines for numerical and symbolic computations. They support parallel computation on multicore processors or general-purpose computation on the graphics processing unit(s) (GPGPU). Furthermore, their functionality is expandable by easily integrating external libraries from C/C++, FORTRAN, Python, or even third-party solvers from different vendors, for example. Besides, they are easy to learn, so one can make quick progress in studying one's own problems. For that reason, they have attracted a great community of users, providing lots of resources, and consequently, it is relatively easy to find advice for arising troubles. All that makes them the prevalent remedy in the academic world and an ideal tool for prototyping to test the preliminaries of ideas. This must be seen in the context that the featuring of creating through their high-level programming language concise codes, enabling, therefore, the users to primarily focus on the concepts of cooperative games, putting the implementation aspects of mathematical tools aside.

MATLAB[©] Toolbox for Cooperative Game Theory

For the reader who is mainly interested in the computational aspects of TU games using MATLAB[©], we offer the software tool MatTuGames, which provides the ability to apply enhanced numerical problem-solving for cooperative games with transferable utility. This MATLAB[©] toolbox is downloadable under the following URL:

http://www.mathworks.com/matlabcentral/fileexchange/35933-mattugames or alternatively at the URL:

https://github.com/himeinhardt/MatTuGames

As an auxiliary software means to study combinatorial and group theoretical aspects of cooperative games, we have conceived the toolbox MatRep under $\texttt{MATLAB}^{\circledcirc}$ to provide a set of functions for studying representation in symmetric groups.

https://mathworks.com/matlabcentral/file $exchange/62142-matrep-a-matlab-representation-theory-toolbox-symmetric-groups \\ The designed MATLAB^{\circledcirc} toolboxes are compatible with MATLAB^{\circledcirc} R2024a or prior releases.$

Mathematica[©] packages for Cooperative Game Theory

The reader who is more familiar with $Mathematica^{\odot}$ can use the software package TuGames. The latest version is TuG-3.1.4, compatible with $Mathematica^{\odot}$ version 12.0 or higher, and is downloadable from the following URL: https://github.com/himeinhardt/TuGames

As an additional software means for doing industrial cooperation, we also offer the $Mathematica^{\odot}$ package TuOlig, which needs at least TUG-3.1.2.

https://github.com/himeinhardt/TuOlig

The developed *Mathematica*[©] packages are compatible with *Mathematica*[©] 14.1, or prior versions, but not before

version 12.0.

We have used our MATLAB $^{\odot}$ and $Mathematica^{\odot}$ software tools to create the graphics for the book.

Contents

Fo	orewo	ord	i
P	reface	e e	iii
A	bout	this Book	\mathbf{v}
A	cknov	wledgments	xiii
Li	st of	Figures	xxiii
Li	st of	Tables	xxv
Li	st of	Results	xxvii
Li	st of	Algorithms	xxxv
Li	st of	Definitions and Examples	xxxv
ı	A	First Course in Cooperative Game Theory, MATLAB, and MATHEMATICA	1
1	A R	Refresher to Cooperative Game Theory	3
	1.1	Cooperative Games in Characteristic Function Form	5
		1.1.1 The Pre-Imputation Set	5
		1.1.2 A first Glance on Game Classes	6
	1.2	Some Solution Concepts	6
		1.2.1 The Kernel and Pre-Kernel	7
		1.2.2 The Nucleolus and Pre-Nucleolus	7
		1.2.3 The Shapley Value	9
		1.2.4 The Core and the Strong ϵ -Cores	10
		1.2.5 The Anti-Core	14
		1.2.6 Consistency of the Core and the Pre-Kernel	15
		1.2.7 Stable Sets	17
		1.2.8 The Bargaining Set $\mathcal{M}(N,v)$	20
		1.2.9 Computing the Nucleolus for Three-Person Games	20
	1.3	Crucial Game Classes and Concepts	24
		1.3.1 Classes of Bankruptcy Games	25
		1.3.2 Simple Games	26
		1.3.3 The Potential of a Game	27
	1.4	Bibliographical Notes	28
2	Bas	sic Operations of MATLAB	29
	2.1	Some Fundamentals of MATLAB	29
		2.1.1 Variable Assignment, Names and Types	30
		2.1.2 Operators and Expressions	35
	2.2	Vectors, Matrices and Multidimensional Arrays	64
		2.2.1 Initializing Arrays	66
		2.2.2 Vector and Matrix Operations	68
		2.2.3 Linear Indexing and by Position	69
		2.2.4 Basic Linear Algebra	71

xvi Contents

	2.2.5	Multidimensional Arrays
	2.2.6	Subarrays
2.3	Data T	ypes: Cell and Structure Arrays
	2.3.1	Cell Arrays
	2.3.2	Structures
2.4		als of MATLAB Graphics
	2.4.1	Two-Dimensional Graphics
	2.4.2	Three-Dimensional Graphics
	2.4.3	Saving and Printing Figures
2.5		nentals of Program Design
	2.5.1	Top-Down Design Process
	2.5.2	Modular Program
0.0		Error Types
2.6		efined Functions
	2.6.1	Structure of an M-Function
	2.6.2 $2.6.3$	Variable Scope 131 Variable Passing 132
	$\frac{2.6.3}{2.6.4}$	
	$\frac{2.0.4}{2.6.5}$	Option Passing 132 Local Functions 133
	$\frac{2.6.5}{2.6.6}$	Function Handles and Anonymous Functions
	$\frac{2.6.0}{2.6.7}$	Function Functions
	$\frac{2.6.7}{2.6.8}$	Command-Function Duality
2.7		f Control
2.1	2.7.1	Branching Statement: if-Construct
	2.7.2	Branching Statement: switch-Construct
	2.7.3	Exception Handling: try/catch-Construct
	2.7.4	Counted Loop: for-Construct
	2.7.5	Vectorization of Code
	2.7.6	Conditional Loop: while-Construct
	2.7.7	Recursion
2.8	Studyii	ng TU Games with MATLAB: Some Essential Insights
	2.8.1	Defining a TU Game: Fundamentals
	2.8.2	Standard Solution
	2.8.3	Shapley Value
	2.8.4	Nucleolus for Three-Person Games
	•	ations of Mathematica
3.1		Survival Rules
	$3.1.1 \\ 3.1.2$	Be Careful with Products
		Be Careful with Compound Symbols
		How to use the Operators Set, SetDelayed, and Equal correctly
		How to use the operators Rule and ReplaceAll correctly
		Be Careful in Defining Equations
		Distinguish Functions and Value Variables
3.2		ature of Expressions
0.2	3.2.1	Internal Form of Expressions
	3.2.2	Every Input is an Expression
	3.2.3	Changing the Head of an Expression
	3.2.4	A First Look at the Evaluation of Expressions
	3.2.5	Non-Atomic Expressions
	3.2.6	Atomic Expression
	3.2.7	Compound Expression
	3.2.8	The Global Rule Base
	3.2.9	How Expressions are evaluated
		Controlling the Evaluation
	3.2.11	Pattern and Matching

Contents	xvii

	3.3	Rewri	te Rules	234
		3.3.1	Built-in and User-Defined Functions	234
		3.3.2	Creating Rewrite Rules	234
		3.3.3	Transformation Rules	247
	3.4	Flow o	of Control	251
		3.4.1	Branching Functions: The If command	252
		3.4.2	Branching Functions: The Which command	254
		3.4.3	Branching Functions: The Switch command	254
		3.4.4	Iteration by Do and While Loop	255
		3.4.5	Recursion	260
		3.4.6	Comparison of Computation Time: While Loop versus Recursion	261
		3.4.7	Pure Functions	262
	3.5		ing TU Games with Mathematica: Some Essential Insights	263
	0.0	3.5.1	Weighted Majority Games	263
		3.5.1	Bankruptcy Problems	$\frac{203}{271}$
		$\frac{3.5.2}{3.5.3}$	The Greedy Bankruptcy Game: Some Code	278
		3.5.4	Contested Garment Principle	279
		3.5.4 $3.5.5$		281
			Generalized Contested Garment Principle	$\frac{281}{284}$
		$3.5.6 \\ 3.5.7$	Defining a TU Game	$\frac{284}{287}$
			Nucleolus for Three-Person Games	288
		3.5.8		
	2.0	3.5.9	Shapley Value	293
	3.6	_		294
		3.6.1	Reconsidering Optimization Theory	294
		3.6.2	Classical Optimization Problems	299
	0.7	3.6.3	Mathematical Programming	309
	3.7		uting a Nash Equilibrium	318
		3.7.1	Nash Equilibrium	318
		3.7.2	Existence of a Nash Equilibrium: The Theoretical Background	319
		3.7.3	Uniqueness of the Nash Equilibrium	322
		3.7.4	Coding Example for Getting a Nash Equilibrium	323
		3.7.5	Bertrand-Nash Equilibrium	323
		3.7.6	Cournot-Nash Equilibrium	330
п	C	opora	tive Game Theory with MATLAB	339
"	C	opera	title Game Theory with MATEAD	333
4	TU	Games	with a trivial Coalition Structure	341
	4.1		ort Overview of the Software Tool	341
	4.2		Preliminaries	342
	4.3		ng a TU Game	348
		4.3.1	Two basic Examples	348
		4.3.2	A more comprehensive Example	354
		4.3.3	Market and totally balanced Games	356
		4.3.4	Convex Games	367
		4.3.5	Almost-Convex Games	379
		4.3.6	Average-Convex Games	381
		4.3.7	Assignment Games	389
		4.3.8	Permutation Games	391
		4.3.9	Flow Games	395
			Weighted Graph Games	403
			Minimum Cost Spanning Tree Games	403
	4.4		Solution Concepts	411 429
	4.4	4.4.1	The Shapley Value	$\frac{429}{429}$
		4.4.1 $4.4.2$	The Tau-Value	$\frac{429}{434}$
		4.4.2 $4.4.3$	The Pre-Kernel and Kernel	$434 \\ 437$
		4.4.5 $4.4.4$		457 463
		4.4.4	The Pre-Nucleolus and Nucleolus	403

xviii Contents

		4.4.5 The weighted (Pre-)Kernel and (Pre-)Nucleolus
		4.4.6 The Anti-Pre-Kernel and Anti-Pre-Nucleolus
		4.4.7 The Least Square (Pre-)Nucleolus
	4.5	Third-Party Solvers
	4.6	Some Game Properties and Convex Solution Sets
		4.6.1 The Core of a TU Game and related Subjects
		4.6.2 Investigation of Game Properties
		4.6.3 The Core of a TU Game Reconsidered
		4.6.4 The Anti-Core
5		Games with non-trivial Coalition Structures 521
	5.1	Solutions for a Coalition Structure
		5.1.1 The Core and Super-Additive Cover
		5.1.2 The Kernel and Pre-Kernel
		5.1.3 The Nucleolus and Pre-Nucleolus
	5.2	Fairness and Related Values for a Coalition Structure
		5.2.1 The Solidarity and related Values
		5.2.2 The Owen and related Values
		5.2.3 The Myerson and related Values
	- 0	5.2.4 The Position Value
	5.3	Replication of some Game Solutions
		5.3.1 Replication of the Nucleolus by Characterization Sets
		5.3.2 Replication of a Pre-Kernel Element
		5.3.3 Replication of the Shapley Value
6	Gra	phical Extensions, and Real-World Applications 599
	6.1	External Libraries and Graphical Features
		6.1.1 Plotting the Core
		6.1.2 Plotting the Core-Cover
		6.1.3 Plotting the Weber Set
		6.1.4 Plotting a strong ϵ -Core
		6.1.5 The Geometric Property of the (Pre-)Kernel
	6.2	Simple Game
	6.3	Simple Weighted Majority Game
		6.3.1 The UN Security Council
		6.3.2 Minimum Homogeneous Representation and Center Solution 622
		6.3.3 Star-Shapedness of the (Pre-)Kernel
		6.3.4 Florentine Marriage and Business Relations
	6.4	Handling Numerical Errors When Seeking a Pre-Kernel Point
_	_	
7		omatization of Selected Solutions 689
	7.1	General Discussion of Some Solution Properties
	7.2	Checking Some Basic Properties
	7.3	Reduced Game Properties
	7.4	Converse Reduced Game Properties
	7.5	Reconfirmation Property
	7.6	ISRG Property
8	Axio	omatization and Computation of the Modiclus 713
Ŭ	8.1	Definition and Computation of the Modiclus
	8.2	Wedge Games via the Modiclus
	8.3	Discussion of its Axiomatization
	8.4	Alternative Axiomatization of the Modiclus: A First Approach
	8.5	The Derived Game Property
	8.6	Market Side, Power Index, and Corners
	8.7	The Anti-Derived Game Property
	8.8	Coincidence of Modiclus and Anti-Pre-Nucleolus: Some Game Examples
	8.9	Checking an Extended Kohlberg Criterion

Contents	xix
----------	-----

	8.10	Computing the Anti-Modiclus	809
9	The	Axiomatization of the Proper Modified and Modified Pre-Kernel	813
		Definition of the Modified and Proper Modified Pre-Kernel	814
		Axiomatization of the Modified Pre-Kernel	823
		Alternative Axiomatization of the Modified Pre-Kernel	827
		Indirect Method to compute the Modiclus	833
	0.1	indirect incolor to compute the nizaretas	000
10	Para	Illel and GPU Computing	837
		Parallelization	837
		10.1.1 CPU Acceleration	838
		10.1.2 GPU Acceleration	851
	10.2	Accelerating Performance	859
		10.2.1 Amdahl's Law	859
		10.2.2 Testing Parallel Scalability	860
	10.3	Using the Parallel Computing Toolbox	862
		(Average-) Convexity and Consistency Reconsidered	868
		Replication of a Pre-Kernel Element Reconsidered	872
		Replication of the Shapley Value Reconsidered	874
		Weighted Majority Games: Game Solutions Reconsidered	875
		For-Loop versus Parfor-Loop	879
	10.6	roi-Loop versus i arioi-Loop	019
11	OOP	P-Class TuGame	883
		OOP Classes and Objects	883
	11.1	11.1.1 Object-Oriented Programming Terminology	883
		11.1.2 M-Class Definitions	884
		11.1.3 M-Class Inheritance	885
	11 9	Features of the OOP-Class TuGame	886
		OOP-Class TuProp	894
		OOP-Class TuSol and p_TuSol	895
		OOP-Class TuMCnets	902
		OOP-Class TuVal and p_TuVal	907
		OOP Class TuCore	918
		OOP-Class TuVert	923
		OOP-Class TuRep	925
		OOOP-Class TuShRep	931
	11.11	100P-Class p_TuCons and p_TuKcons	936
ш	Co	operative Game Theory with Mathematica	945
•••		operative dame Theory with Mathematica	343
12	The	Mathematica Package TuGames	947
		Package TuGames: An Overview	947
		Getting Started with TuGames	948
		How to define Games?	948
		Checking Game Properties	950
		Computing Game Solutions	953
		Graphical Features	956
	12.0	12.6.1 The Core for Three-Person Games	956
		12.6.2 The Core for Four-Person Games	960
		12.6.3 Animate Geometric Property of the Kernel/Nucleolus	963
	19 7	Defining more complex Games	966
	14.1	12.7.1 Getting Started	967
		12.7.2 Weighted Majority	967
			969
		12.7.3 Modest Bankruptcy	909 971
	19 0	12.7.4 Probability Game	971
	14.0	-	
		12.8.1 Some Definitions and Results	974

xx Contents

	12.8.2 Extending the Results to the Pre-Nucleolus	977
	12.8.3 Calculating the (Pre-)Nucleolus	978
12	Analysis of Industrial Compution with Trollinguals	005
13	Analysis of Industrial Cooperation with TuOligopoly 13.1 Cournot Cooperative Oligopoly Games	985 987
	13.1.1 Quantity Competition under a Homogeneous Good	987 988
	13.1.1 Quantity Competition under a Homogeneous Good	988 988
	13.1.3 Monopoly in Cournot Models	990
	13.1.4 Pre-Merger Equilibrium in Cournot Models	992
	13.1.5 Characteristic Function Forms	993
	13.1.6 Super-modularity of linear Cooperative Oligopoly Games	995
	13.1.7 Partition Function Approach	1004
	13.1.8 Post-Merger Equilibrium in Cournot Models	1006
	13.1.9 Cournot Model: Two Firms	1006
	13.1.10 Cournot Model: Four Firms	1011
	13.1.11 Aggregation Across Firms: A Fallacy	1019
	13.2 Bertrand Cooperative Oligopoly Games	1033
	13.2.1 Price Competition under Product Differentiation	1033
	13.2.2 Monopoly in Bertrand Models	1035
	13.2.3 Pre-Merger Equilibrium in Bertrand Models	1036
	13.2.4 Post-Merger Equilibrium in Bertrand Models	1038
	13.2.5 Bertrand Model: Two Firms	1038
	13.2.6 Bertrand-Dixit Model: Four Firms	1042
1 /	Devalled Commuting with the Mathematica Declare TuComes	1047
14	Parallel Computing with the Mathematica Package TuGames	1047 1047
	14.1 Parallel Computing with Mathematica	1047
	14.1.1 Launching Local Kernels	
	14.1.2 Testing Parallel Scalability	1049
	14.1.3 Parallel Evaluation	1051
	14.2 Parallel Computing with the Package: An Overview	$1055 \\ 1059$
	14.3 Parallel Computing: A more Advanced Approach	1059
15	Calling TuGames from MATLAB	1065
	15.1 Starting the MathKernel from Matlab	1065
	15.2 Generating TU Games with Mathematica	1066
	15.3 Studying Game Properties	1069
	15.4 Computing Game Solutions and Analyzing its Properties	1070
	10.1 Computing Comic Conditions and Thangaing 160 Froperates	1010
16	Calling the MATLAB Toolbox MatTuGames from Mathematica	1077
	16.1 Getting Started	1077
	16.2 Defining a Game under MATLAB	1078
	16.3 Computing Game Solutions under Matlab	1079
IV	/ Appendix	1085
A	Pre-Kernel Computation Timing Tables	1087
_		
В	Propositional Logic	1091
	B.1 Conditional Statements and Truth Tables	1091
	B.2 Various Proof Techniques	1092
	B.2.1 The direct Proof	1092
	B.2.2 The contrapositive Proof	1092
	B.2.3 The Indirect Proof	1093
	B.3 The Deduction Theorem	1094
	B.3.1 Incorrect Application of the Deduction Theorem	1094
	B.3.2 Incorrect Application of the Indirect Proof	1095

Contents xxi

C	Computational Errors	1101
	C.1 Floating-Point Representation	1101
	C.2 Kinds of Numerical Errors	1103
	C.2.1 Absolute/Relative Error	1103
	C.2.2 Rounding Error	1106
	C.2.3 Loss of Significance	1107
	C.2.4 Truncation Error	1109
	C.2.5 Propagation Error	1109 1110
	C.2.6 Overflow/Underflow	1110
	C.2.8 Error Magnification	1111
	C.2.6 Error magnification	1111
D	A Quick Overview to Group Theory	1113
	D.1 Some Fundamentals of Group Theory	1113
	D.2 A Sketched Application of Group Theory	1119
E	A Quick Overview to Representation Theory	1123
	E.1 Some Fundamentals of Representation Theory	1123
	E.2 Games in Partition Function Form	1130
	E.3 A Decomposition Example of the Space of Games with Externalities	1130
F	Installing the MATLAB Toolbox MatTuGames	1135
•	F.1 Installation	1135
	F.1.1 Requirements	1135
	F.1.2 General Instruction	1136
	F.1.3 Quick Start with MatTuGames	1136
	F.1.4 More Sophisticated Instruction	1138
G	Installing the MATHEMATICA Package TuGames	1141
	G.1 Installation	1141
	G.1.1 Custom Installation	1141
	G.1.2 Requirements	$1142 \\ 1142$
	G.1.3 First Steps with TuGames	1144
	G.1.4 Rulling the Fackage in Faranei	1144
	G.1.6 The Cddmathlink-Library	1145 1145
	G.1.7 Running the cddmathlink libraries in Parallel	1148
	G.1.8 Trouble Shooting	1149
	G.1.9 Documentation of the Package	1149
	Gillo Documentation of the Luchage	1110
Н	Maple Program of Leng and Parlar	1151
	H.1 Maple Code to Compute the Nucleolus for Three Person Games	1151
ь.	LPL.	1150
RI	bliography	1153
Αι	uthor Index	1167
Sι	ubject Index	1171

List of Figures

1.1	The core of a three-person zero-normalized game
1.2	The strong 10-core of a three-person zero-normalized game
1.3	The least core of a three-person zero-normalized game
2.1	Two-Dimensional plots of Game Data (left) and Payoff Data using a Marker (right)
2.2	Two-Dimensional plots of Data Points using Point (left) and Diamond Symbol (right) as Markers 10
2.3	Two-Dimensional plots of Data Points without (left) and with Legend (right)
2.4	Subplot (left) and Three-Dimensional Plot of Data Points (right)
2.5	Perpendicular Projection to the Solution Plane
2.6	Structure of a Two-Part Tariff Scheme for Operating an Airport
2.7	Comparison of Pricing Policies
2.8	Comparison of Cost Coverage Policies
2.9	Modular Programming Structure of an Airport Problem
2.10	Comparison of Price and Cost Coverage Policies with 65 Types
2.11	Parameterized Pricing Policies for 35 Types
2.12	Comparison of Price and Cost Coverage Policies with 52 Types
2.13	Solow Capital Growth Model
3.1	Talmudic Rule Payoffs to the Claimants
3.2	Best reply curves of firms: Intersection point is the Bertrand-Nash Equilibrium
3.3	Best reply curves of firms: Intersection point (black dot) is the Cournot-Nash Equilibrium 33
4.1	Airport Game: Imputation Set, Core, Nucleolus, and Shapley value
4.2	Airport Cost Game: Anti-Imputation Set, Anti-Core, Anti-Nucleolus, and Shapley value 38
4.3	Airport Game: Imputation Set, Weber Set, Nucleolus, and Shapley value
4.4	Airport Cost Game: Anti-Imputation Set, Weber Set, Anti-Nucleolus, and Shapley value 38
4.5	Average-Convex: Imputation Set, Core, Nucleolus, and Shapley value
4.6	Almost Average-Convex: Imputation Set, Core, Nucleolus, and Shapley value
4.7	Flow Problem of 3 persons and 7 nodes
4.8	Flow Problem of 13 persons and 7 nodes
4.9	Weighted Graph Problem with 6 persons and 14 edges
4.10	Cost Spanning Graph
4.11	MATLAB Plot
4.12	Minimal Tree
4.13	MATLAB Plot
4.14	Anti-Core of the M.C.S.T. Game
4.15	Minimal Tree
4.16	Cost Spanning Graph
4.17	MATLAB Plot
4.18	M.C.S.T. Prob. $\langle N_0, \mathbf{C}_{N_0} \rangle$
4.19	M.C.S.T. Prob. $\langle S_0^1, \mathbf{C}_{S_0}^1 \rangle$
4.20	M.C.S.T. Prob. $\langle S_0^1, \mathbf{C}_{S_0}^1 \rangle$
5.1	The core, imputation set, and pre-nucleolus of game v_{sa} with c.s. $gP\{10\}$
6.1	The core, Shapley value, and pre-nucleolus of game bv using $CorePlot()$ 60
6.2	The core, Shapley value, and pre-nucleolus of game bv using $CddCorePlot()$ 60
6.3	The core cover, Shapley value, and pre-nucleolus of game bv using $CddCoreCoverPlot()$ 60
6.4	The Weber set, the core, Shapley value, and pre-nucleolus of bv using $CddWeberSetPlot()$ 60
6.5	The Strong 114-core, core, Shapley value, and pre-nucleolus of bv using $CddStrongCorePlot()$ 60

xxiv List of Figures

6.6	The Strong 130-core, the core, Shapley value, and pre-nucleolus of bv
6.7	The Least-core, the core, Shapley value, and pre-nucleolus of bv
6.8	Florentine Elite Marriages 1395-1434 ¹⁴
6.9	Florentine Elite Marriages 1395-1434: Priori Union Between Albizzi and Guadagni ¹⁷
6.10	Florentine Elite Business Relations 1395-1434 ¹⁸
8.1	Flow Problem Representation that arises from a Set of Assignments
10.1	Parallel Scalability Test
11.1	Class Hierarchy TuGame
11.2	Class Hierarchy TuProp
11.3	Class Hierarchy TuSol
11.4	Class Hierarchy p_TuSol
11.5	Class Hierarchy TuMCnets
11.6	Class Hierarchy TuVal and p_TuVal
11.7	Class Hierarchy TuCore
11.8	Class Hierarchy TuVert
11.9	Class Hierarchy TuRep
11.10	Class Hierarchy p_TuRep
11.11	Class Hierarchy TuShRep
11.12	Class Hierarchy p_TuShRep
11.13	Class Hierarchy p_TuCons and p_TuKcons
13.1	Best reply curves of firms: Intersection point is the Cournot-Nash Equilibrium
13.2	Shapley value, Nucleolus, Imputation Set, and Core of the Cournot γ -TU-oligopoly Game 1
13.3	Shapley value, Nucleolus, Imputation Set, and Core of the Cournot δ -TU-oligopoly Game \ldots 1
13.4	Individual Best Reply Functions of Trust $\{1,2,3\}$ and Firm $4 \ldots 1$
13.5	Individual Best Reply Functions of Trust $\{1,2,3\}$ and Firm 5
13.6	Best Reply Functions of Trust $\{1, 2, 3\}$ and Outsider $4 \dots $
13.7	Best Reply Functions of Trust $\{1,2,3\}$ and Outsider 5
13.8	Shapley value, Nucleolus, Imputation Set, and Core of the Bertrand-Dixit γ -TU-oligopoly Game . 1
14.1	Mathematica Parallel Scalability Test
14.2	Parallel Scalability Test of Function ParaPreKernelElement for 12-Person Game
14.3	Comparing Parallel Scalability Test with Amdahls Law for $p=0.67$
G.1	Starting Page of the Documentation
G.2	Getting Started Page

List of Tables

2.5.1	Airport Cost Allocation Problem	12
2.5.2	Airport Cost Allocation Problem	18
2.8.1	Short Sided Market Game	82
2.8.2		86
2.8.3		89
4.3.1	Seven-Person Game	54
4.3.2	Optimal Trading Decisions	59
4.3.3	Market Game	59
4.3.4	Lucas' 10-Game with no Stable Set	62
4.3.5		72
4.3.6	Game where Pre-Kernel imposes the same Partition	78
4.3.7		79
4.3.8		81
4.3.9		81
4.3.10		82
4.3.11		82
4.3.12		83
4.3.13		92
4.3.14		92
4.3.15		15
4.4.1		43
4.4.2		67
4.4.3		75
4.5.1		03
6.3.1	Minimal Representations of all Partition Games for $n \in [4, 8]$	42
6.3.2		51
6.3.3	Florentine Business Relations	51
6.3.4		67
6.3.5		67
6.3.6	Solution Matrix of Game SV1t	68
6.3.7	Solution Matrix of Game SV2	68
6.3.8		73
6.3.9	Solution Matrix of Game SV2t	74
6.3.10		80
6.3.11		80
6.3.12		81
6.3.13		81
6.3.14	Variances of Power Distribution	81
7.1.1	Four-Person Super-Additive Game	91
7.1.2	Three-Person Reduced Game $v_{R,\mathbf{x}}$	92
7.1.3	<i>'</i>	92
7.3.1		04
7.3.2		04
7.4.1		07
7.4.2		07
9.1.1	Bertrand-Shubik Oligopoly TU Game	19

xxvi List of Tables

10.2.1	Amdahl's Law	860
11.5.1	Wedge Production Game	904
12.8.1 12.8.2	5-person TU game v	979 982
14.3.1	Amdahl's Law vs. Parallel Test	1063
A.0.1 A.0.2 A.0.3 A.0.4	Tests conducted on HP XC3000 with $PreKernel()$ Version 0.3	1088 1088 1089 1089
C.2.1	Relative Error Norms of the Iterations	1105

List of Theorems

Chapter 1	
1.2.1	Theorem (Single-Valuedness of the (Pre-)Nucleolus)
1.2.2	Theorem (Axiomatization of the Pre-Nucleolus (Sobolev (1975)))
1.2.3	Theorem (Standard Solution)
1.2.4	Theorem (Axiomatization Shapley Value)
1.2.5	Theorem ((Pre-)Nucleolus Core Element)
1.2.6	Theorem (The Core of Balanced TU Games is Non-Empty (Bondareva (1963); Shapley (1967)))
1.2.7	Theorem (The Core satisfies RGP (Peleg (1986)))
1.2.8	Theorem (The Pre-Kernel satisfies RGP (Peleg (1986)))
1.2.9	Theorem (The Core satisfies RCP (Hwang and Sudhölter (2001)))
1.2.10	Theorem (The Core satisfies CRGP (Peleg (1986)))
1.2.11	Theorem (The Pre-Kernel satisfies CRGP (Peleg (1986)))
1.2.12	Theorem (Coincidence of The Core and the Set of Undominated Allocations (Driessen (1988)))
1.2.1	Corollary (Relation between the Core and Stable Set (Driessen (1988)))
1.2.13	Theorem (Stable Set for Convex Games)
1.2.14	Theorem (Stable Set of a Composite Game)
1.2.15	Theorem (Coincidence between Core and Bargaining Set (Maschler et al. (1972)))
1.2.16	Theorem (Leng and Parlar (2010) Thm. 1)
1.2.17	Theorem (Leng and Parlar (2010) Thm. 2)
1.3.1	Theorem (Convexity of Bankruptcy Games)
1.3.2	Theorem (Core of an Essential Constant-Sum Game)
Chapter 2	
2.2.1	Theorem (Characterization of a Non-Homogeneous System of Linear Equations)
2.2.1	Proposition (Characterization of a Square Matrix)
2.2.2	Proposition (Properties of the Determinant)
2.2.2	Theorem (Orthogonal Factorization of a Symmetric Matrix)
2.2.3	Proposition (QR Factorization)
$2.2.4 \\ 2.2.5$	Proposition (LU Factorization)
	Proposition (Cholesky Factorization)
2.5.1	Proposition (Shapley Value of an Airport Cost Game)
$2.5.2 \\ 2.5.1$	Proposition (Nucleolus of an Airport Cost Game)
2.5.1	Remark (Concave Airport Cost Game)
Chapter 3	
3.5.1	Theorem (Consistent Solution of a Bankruptcy Problem (Aumann and Maschler (1985))) 282
3.5.2	Theorem (Consistent Garment Principle Coincides with the Nucleolus (Aumann and Maschler (1985)))
3.6.1	Theorem (Necessary Condition for Relative Extrema)
3.6.1	Proposition (Characterization of Definiteness)
3.6.2	Theorem (Sufficient Condition for Relative Extremum)
3.6.3	Theorem (KKT necessary conditions)
3.6.4	Theorem (KKT sufficient conditions)
3.6.5	Theorem (Alternative Characterization of Definiteness)
3.6.6	Theorem (Quasi-Convex Function)
3.6.1	Remark (Necessary and Sufficient Condition for Relative Extremum)
3.6.7	Theorem (Sufficient Condition for Relative Extremum)
3.7.1	Lemma (Strategy Profile Constituting a Nash Equilibrium)
3.7.1	Remark (Interpretation Uhc)
271	Theorem (Closed Uhe Correspondence)

xxviii List of Results

3.7.2	Remark (Characterization of Euclidean Space)
3.7.2	Lemma (Uhc image of a compact set)
3.7.3	Lemma (Product Set)
3.7.2	Theorem (Uhc of the multivalued function)
3.7.3	Theorem (Maximum Value Theorem (Weierstrass))
3.7.4	Theorem (Berge's Maximum Theorem)
3.7.3	Remark (Applicability of Berge's Maximum Theorem)
3.7.5	Theorem (Kakutani's Fixed Point Theorem)
3.7.4	Lemma (Characterization of the Reaction Correspondence)
3.7.6	Theorem (Existence of Nash Equilibrium)
3.7.4	Remark (Properties of Reaction Correspondence)
3.7.7	Theorem (Contraction Mapping Theorem)
3.7.8	Theorem (Uniqueness of Nash Equilibrium)
0.1.0	Theorem (emqueness of trash Equinorium)
Chapter 4	
4.3.1	Theorem (Non-Empty Core for Market Games (Shapley and Shubik (1969)))
4.3.1	Corollary (The Associated Subgame is a Market Game (Shapley and Shubik (1969))) 358
4.3.2	Theorem (Market Game is Totally Balanced (Shapley and Shubik (1969)))
4.3.2	Corollary (Market Game is Super-Additive)
4.3.1	Proposition (Composed Market Game)
4.3.3	Theorem (Characterizing Non-Empty Core by Balanced Cover (Shapley and Shubik (1969))) 363
4.3.4	Theorem (Characterizing Totally Balancedness (Shapley and Shubik (1969)))
4.3.3	Corollary (Coincidence of Totally Balanced game with Totally Balanced Cover (Shapley and
4.0.0	Shubik (1969)))
4.3.2	Proposition (Domination-Equivalent of a Balanced TU game (Shapley and Shubik (1969))) . 362
4.3.2 $4.3.1$	Remark (Closed-End Fund (CEF))
4.3.4	Corollary (Characterization of Utility Function (Shapley and Shubik (1969)))
4.3.1	Lemma (Characterization of a Market Game through a Direct Market)
4.3.1 $4.3.2$	Lemma (Totally Balanced Cover is a Market Game (Shapley and Shubik (1969)))
4.3.2 $4.3.5$	Theorem (Totally Balanced Game is a Market Game (Shapley and Shubik (1969)))
4.3.6	Theorem (Equivalence of Market Game and Totally Balanced Game (Shapley and Shubik
4.3.0	· · · · · · · · · · · · · · · · · · ·
4.3.7	
	Theorem (Convexity)
4.3.8 $4.3.9$	
4.3.10	
4.3.11 $4.3.3$	Theorem (Convexity of the Davis-Maschler Reduced Game (Maschler et al. (1972))) 378 Lemma (Characterization of Davis-Maschler Reduced Games for Convex Games (Maschler
4.3.3	
4.3.4	et al. (1972)))
4.3.4	Lemma (implication for a Confection of Coantions when it contains a Partition (Arm and Iñarra (1998)))
4.3.12	Theorem (Collection of Coalitions contains Partition (Arin and Katsev (2013)))
4.3.12 $4.3.5$	
4.3.13	
4.3.5	Corollary (Coincidence of Pre-Kernel with Pre-Nucleolus)
4.3.14	Theorem (Single-valuedness of the Pre-Kernel for Almost-Convex Games)
4.3.6	Corollary (Single-valuedness of the Kernel for Almost-Convex Games (Getán et al. (2012))) . 380
4.3.15	Theorem (Extension of Single-valuedness of the Pre-Kernel)
4.3.16	Theorem (Kernel of Veto-Rich Games coincides with the Nucleolus (Arin and Feltkamp (1997))) 383
4.3.17	Theorem (Assignment Game is a Permutation Game (Curiel (1997)))
4.3.18	Theorem (Permutation Games are Totally Balanced (Curiel (1997)))
4.3.19	Theorem (Equivalence of Game Classes)
4.3.20	Theorem (Max-Flow, Min-Cut)
4.3.21	Theorem (Convexity of Weighted Graph Games)
4.3.22	Theorem (Shapley value of Weighted Graph Games (Deng and Papadimitriou (1994))) 404
4.3.2	Remark (PS Property)
4.3.23	Theorem (Inclusion Result of PS Games)

T	c	T 1,	
Last	ot	Results	XXIX

4.3.24	Theorem (Coincidence of Shapley value and Pre-Nucleolus (Kar et al. (2009)))	404
4.3.7	Corollary (Coincidence of Shapley value and Nucleolus (Deng and Papadimitriou (1994)))	405
4.3.3	Remark (Minimum Cost Tree Solution)	414
4.3.25	Theorem (Minimum Cost Tree Solution in the Anti-Core of M.C.S.T. Game (Granot and	
	Huberman (1981)))	417
4.3.4	Remark (Core vs. Anti-Core of M.C.S.T. Games)	417
4.3.8	Corollary (Empty Core of M.C.S.T. Game)	417
4.3.5	Remark (Blocking Mutual Cooperation for Cost Games)	417
4.3.9	Corollary (Anti-Nucleolus Unique Intersection Point (Granot and Huberman (1984)))	418
4.3.6	Remark (Nucleolus vs. Anti-Nucleolus)	418
4.3.3	Proposition (Unique Irreducible Form of the M.C.S.T. Problem)	420
4.3.7	Remark (Concavity vs. Convexity)	421
4.3.26	Theorem (Irreducible Form Induces Concave Game (Aarts and Driessen (1993)))	421
4.3.8	Remark	422
4.4.1	Theorem (Indirect Function (Martinez-Legaz (1996)))	439
4.4.1	Lemma (Lower Bound on Transfers (Meseguer-Artola (1997)))	439
4.4.1	Proposition (The Indirect Function Characterizes the Pre-Kernel (Meseguer-Artola (1997))) .	439
4.4.1	Corollary (The Set of Global Minima Characterizes the Pre-Kernel (Meinhardt (2013)))	440
4.4.2	Proposition (The Indirect Function Characterizes the Kernel (Meseguer-Artola (1997)))	453
4.4.2	Theorem (Characterization of the Pre-Nucleolus with Balanced Collections)	469
4.4.3	Theorem (Characterization of the Pre-Nucleolus by Property I)	469
4.4.4	Theorem (Characterization of the Pre-Nucleolus by Property II)	469
4.4.1	Remark (Possible Flaws with a Proof by Contradiction)	471
4.4.5	Theorem (Characterization of the Nucleolus by Weak Property I (Kohlberg (1971))) $$	473
4.4.6	Theorem (Characterization of the Nucleolus by Weak Property II (Kohlberg (1971)))	473
4.4.7	Theorem (Characterization of the Weighted Pre-Nucleolus with Balanced Collections)	478
4.4.8	Theorem (Characterization of the Dual Pre-Kernel (Funaki and Meinhardt (2006)))	487
4.4.2	Remark (Anti-Pre-Kernel)	487
4.4.9	Theorem (Characterization of the Dual Pre-Nucleolus (Funaki and Meinhardt (2006)))	491
4.4.10	Theorem (Characterization of the Anti-Pre-Nucleolus by a Balanced Collection)	492
4.4.11	Theorem (Characterization of the Anti-Pre-Nucleolus by Anti-Property I)	493
4.4.12	Theorem (Characterization of the Anti-Pre-Nucleolus by Anti-Property II)	495
4.4.13	Theorem (Characterization of the Anti-Nucleolus by Weak Anti-Property I)	495
4.4.14	Theorem (Characterization of the Anti-Nucleolus by Weak Anti-Property II)	495
4.6.1	Theorem (Anti-(Pre-)Nucleolus Anti-Core Element)	512
4.6.2	Theorem (Cartesian Product of Anti-Cores (Granot and Huberman (1981)))	518
4.6.1	Remark (Anti-Monotonic Cover of M.C.S.T. Games)	518
4.6.3	Theorem (Cartesian Product of Anti-Nucleoli (Granot and Huberman (1981))	520
4.6.2	Remark (Anti-Nucleolus of an M.C.S.T. Game)	520
Chanton		
Chapter 5	Theorem (Characterization of Curey Additive Comes)	E26
$5.1.1 \\ 5.1.2$	Theorem (Characterization of Super-Additive Games)	526 526
5.1.2 $5.1.3$	Theorem (Properties of a Core with Coalition Structure)	520 529
5.1.1	Proposition (The Indirect Function Characterizes the Pre-Kernel with C.S. (Meseguer-Artola	049
5.1.1	(1997)))	531
5.1.1	Corollary (Pre-Kernel Set for a C.S. and the Set of Global Minima)	531
5.1.1	Proposition (Partition of the Set $dom h$)	533
5.1.2	Remark (Note to the Proof (Meinhardt (2013)))	534
5.1.1 $5.1.3$	Proposition (Finite Cardinality of the Collection of Equivalence Classes)	534
5.1.3 $5.1.4$	Proposition (Quadratic Function)	534
5.1.4 $5.1.5$	Proposition (Quadratic Function)	536
5.1.5 $5.1.1$	Lemma (Coincidence of the Functions h and h_{γ_k})	538
5.1.1 $5.1.2$	Corollary (Restriction of Function h on Equivalence Class)	538
5.1.2 $5.1.2$	Lemma (Equality of Function Values on Equivalence Classes)	538
5.1.2 $5.1.6$	Proposition (Objective Function Composed)	538
5.1.0 $5.1.3$	Lemma (Characterization of Solution Vector (Meinhardt (2013)))	538
O.T.O	ECHING COMMERCICIZATION OF DOTATION VECTOR (METHIGIAN (2013)).	990

xxx List of Results

5.1.4	Lemma (Induced Relationships of a Solution Vector (Meinhardt (2013)))	538
5.1.7	Proposition (Matrix P is Positive Semi-Definite (Meinhardt (2013)))	539
5.1.8	Proposition (P is an Orthogonal Projection Operator (Meinhardt (2013)))	539
5.1.4	Theorem (Orthogonal Projection Method)	540
5.1.5	Theorem (Iteration Steps to Determine a Pre-Kernel Element with C.S.)	543
5.1.6	Theorem (Characterization of the Pre-Nucleolus for a C.S.)	546
5.1.7	Theorem (Characterization of the Pre-Nucleolus by Property I w.r.t. a C.S.)	546
5.1.8	Theorem (Characterization of the Pre-Nucleolus by Property II w.r.t. a C.S.)	546
5.2.1	Proposition (Union Stable System \mathscr{F} (Algaba et al. (2001)))	558
5.3.1	Theorem (Characterization of Pre-Nucleolus of Game with C.F. by Property I (Maschler (1992)))	564
5.3.2	Theorem (Characterization of Nucleolus of Game with C.F. by Property I (Maschler (1992)))	565
5.3.3	Theorem (Characterization Set for the Nucleolus (Granot et al. (1998)))	565
5.3.1	Lemma (Balanced Collection of Coalitions Formation Restrictions (Granot et al. (1998)))	565
5.3.1	Corollary (C-Set Characterization of Coalition Formation Restrictions (Granot et al. (1998)))	567
5.3.4	Theorem (C-Set for the Nucleolus (Huberman (1980)))	571
5.3.5	Theorem (C-Set for the Nucleolus (Solymosi and Sziklai (2016)))	572
5.3.6	Theorem (C -Set for the Nucleolus for Monotonic Games (Solymosi and Sziklai (2016)))	573
5.3.7	Theorem (Induced Relationships of (Dual-)Essential Sets for Bankruptcy Game)	575
5.3.1	Remark (Note to the Proof)	576
5.3.2	Lemma (Irreducible Saturated Coalition has no Partition (Granot et al. (1998)))	586
5.3.8	Theorem (C-Set for the Nucleolus (Granot et al. (1998)))	586
5.3.9	Theorem (Calculation of the Nucleolus in Strongly Polynomial Time (Granot et al. (1998))) .	587
5.3.10	Theorem (Replication of the Pre-Kernel (Meinhardt (2013)))	588
5.3.11	Theorem (Non-Empty Interior of Payoff Equivalence Class Replicates a Singleton Pre-Kernel	
	(Meinhardt (2024)))	588
Chapter 6		
6.2.1	Theorem (Non-Emptiness of the Core with a Veto Player)	613
6.3.1	Lemma (Reduction Lemma (Peleg et al. (1994)))	625
6.3.1	Theorem (Pre-Kernel without Equivalent Steps and Null-Players (Peleg and Rosenmüller (1992)))	625
6.3.2	Theorem (Center Solution is an Element of the Pre-Kernel (Sudhölter (1996)))	625
6.3.3	Theorem (Compatible Simple Game Representation is Homogeneous Representation (Rosen-	
6.0.1	müller (1987)))	626
6.3.1	Corollary (Pre-Kernel of Truncated Game)	632
6.3.1	Remark	633
6.3.2	Corollary (Single-valuedness of the Pre-Kernel of a Simple Game with a Homogeneous Representation)	635
6.3.2	Lemma (Pre-Kernel determined on the Basis of the Minimal Winning Coalitions (Sudhölter (1996)))	637
6.3.1	Proposition (Star-Shaped Pre-Kernel for a Homogeneous Standard Game (Sudhölter (1996)))	637
6.3.4	Theorem (Center Solution of a Homogeneous Standard Game (Sudhölter (1996)))	637
6.3.3	Corollary (Maximum Surplus attained by a Minimal Winning Coalition (Peleg (1966)))	642
6.3.5	Theorem (Degenerate Star-Shaped Pre-Kernel (Sudhölter (1996)))	642
6.3.2	Remark (Alternative Argument to Conclude on Single-Valuedness of the Pre-Kernel)	643
6.3.6	Theorem (Single-valued Pre-Kernel for Simple Games)	644
Chapter 7		
7.3.1	Lemma (Lorenz Maximality w.r.t. the Core (Hougaard et al. (2001)))	700
7.3.1	Theorem (The Lorenz set satisfies RGP (Hougaard et al. (2001)))	702
7.3.2	Theorem (The Core satisfies HMS-WRGP (Dietzenbacher and Sudhölter (2021)))	703
7.4.1	Theorem (The Core satisfies HMS-CRGP (Dietzenbacher and Sudhölter (2021))) Theorem (Arrigment institute of the Pro Nucleable (Orchen and Sudhölter (2002)))	706
7.5.1	Theorem (Axiomatization of the Pre-Nucleolus (Orshan and Sudhölter (2003)))	708
Chapter 8		
8.2.1	Theorem (Characterization of a Flow Game)	717
8.3.1	Proposition (Pre-Nucleolus of the Dual Cover of a Game (Sudhölter (1997a)))	724

List of Results xxxi

8.3.1	Theorem (Coincidence of the Modiclus and Restriction of the Pre-Nucleolus of the Dual Cover	- 0.4
		724
8.3.1	1 /	725
8.3.1		725
8.3.2		726
8.3.3	V \ 1	727
8.3.2		727
8.3.3	Remark (LED-Stability)	729
8.3.4	Corollary (LED and Core Existence)	729
8.3.1	Lemma (Large Excess Difference of Shift Game (Sudhölter (1997a)))	729
8.3.2	Lemma (Pre-Nucleolus of Shift Game (Sudhölter (1997a)))	730
8.3.4	Remark (Reasonableness of Core Solutions)	731
8.3.5	Remark (Excess Comparability Cover Game (Sudhölter (1997a)))	732
8.3.2		734
8.3.3		734
8.3.4		735
8.3.5		737
8.3.6	- · · · · · · · · · · · · · · · · · · ·	737
8.3.6		737
8.3.5	· · · · · · · · · · · · · · · · · · ·	737
8.3.7		738
8.3.6		738
8.3.7		739
8.3.2		739
8.3.8		739
8.3.7		740
8.3.8		740
8.3.3	Proposition (No Transversal Vector Space of Balanced Excesses to Map a Pre-Kernel Element	140
0.0.0		740
8.3.4		740
8.3.5	Proposition (No Non-Transversal Vector Space of Balanced Excesses to Map a Pre-Kernel	740
0.3.3		740
8.3.3		740
8.3.4	· · · · · · · · · · · · · · · · · · ·	740
	-	741
8.3.8		
8.3.9		742
8.3.9		742
8.3.10	Lemma (SIVA and DCP Imply AN (Sudhölter (1997a)))	742
8.3.11	Lemma (Strong Self-Duality)	743
8.3.12	Lemma (Reasonableness by Primal Power)	743
8.3.13	Lemma	743
8.3.14	Lemma (Substitution of DCP by DRP)	744
8.3.5	Theorem (Axiomatization of the Modiclus (Sudhölter (1997a)))	744
8.3.9	Corollary (Modified Axiomatization of the Modiclus)	745
8.3.10	Remark (LEDCONS and the Pre-Nucleolus)	749
8.3.15	Lemma (Axioms to Imply LEDCONS)	751
8.4.1	Theorem (ARGP of the Anti-Pre-Nucleolus)	752
8.4.1	Remark (Relation between LED and SED)	753
8.4.1	Lemma (Equivalent SED Representation)	753
8.4.2	Lemma (SED and Core Solutions)	754
8.4.3		755
8.4.1	Proposition (Anti-Pre-Nucleolus of the Dual Floor of a Game)	755
8.4.2	Theorem (Coincidence of the Modiclus and Restriction of the Anti-Pre-Nucleolus of the Dual	
	Floor)	755
8.4.1	Corollary (Symmetric Anti-Pre-Nucleolus of the Primal Extension)	757
8.4.2	Remark (Note to the Proof of Corollary 8.4.1)	757
8.4.3	Remark (SED and the Modiclus)	758

xxxii List of Results

8.4.3	Theorem (Constant-Sum Games: Modiclus and Anti-Pre-Nucleolus)
8.4.4	Lemma (Anti-Reduced Game of Dual Floor)
8.4.5	Lemma (Induced Properties of SED)
8.4.2	Corollary (SED, ECF and AR game)
8.4.4	Remark (Relationship between the Modiclus and Anti-Pre-nucleolus)
8.4.3	Corollary (Pre-Imputation is Reasonable on Both Sides)
8.4.6	Lemma (ECF Game and PO)
8.4.4	Corollary (Anti-Reduced Game and SED)
8.4.5	Corollary
8.4.7	Lemma (ECF Game and t -Shift Dual Floor)
8.4.2	Proposition (Shifted Games by SED and the Modiclus)
8.4.6	Corollary (Shifted Games by SED and the Modiclus)
8.4.5	
8.4.4	Theorem (The Modiclus of Convex Games)
8.4.6	Remark (The Modiclus of Super-Additive Games)
8.4.7	Remark (Inapplicable Deduction Theorem)
8.4.7	Corollary (Core Inclusion Result of ECF Game)
8.4.5	Theorem (Orthogonal Projection Method)
8.4.8	Lemma (Replication of a Solution Vector)
8.4.9	Lemma (Critical Bound to Remain in an Ellipsoid by an <i>ij</i> -Transfer)
8.4.8	Corollary (No Transversal Vector Space of Balanced Excesses to Map an Anti-Pre-Kernel
	Element)
8.4.9	Corollary (Extension of Corollary (8.4.8))
8.4.10	Corollary (No Non-Transversal Vector Space of Balanced Excesses to Map an Anti-Pre-Kernel
	$ \text{Element}) $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $ $ \cdot $
8.4.11	Corollary (Replication of a Singleton Anti-Pre-Kernel)
8.4.12	Corollary (ECF Game and Replication of the Modiclus (Meinhardt (2024)))
8.4.10	Lemma (Substitution of PO by SEDCONS)
8.4.11	Lemma (Substitution of AN by DFP)
8.4.13	Corollary (Substitution of AN by PRP)
8.4.12	
8.4.13	Lemma
8.4.14	Lemma (Substitution of DFP by PRP)
8.4.14	Corollary (Substitution of DCP by DFP)
8.4.15	Corollary (Substitution of DRP by PRP)
8.4.15	Lemma (Substitution of LEDCONS by SEDCONS)
8.4.16	Corollary
8.4.16	Lemma (Substitution of EC by REC)
8.4.6	Theorem (Modiclus: First Alternative Axiomatization)
8.4.17	Corollary (Modiclus: Modified Alternative Axiomatization)
8.4.8	Remark (SEDCONS and the Anti-Pre-Nucleolus)
8.4.9	Remark (Modiclus and SED/SEDCONS)
8.4.17	Lemma (Substitution of PO by ARGP)
8.4.18	Lemma (Axioms to imply SEDCONS)
8.5.1	Lemma (Derived Game and t-Shifted Reduced Game)
8.5.2	Lemma (Properties of Derived Game)
8.5.1	Corollary (Derived Game and LED)
8.5.3	
8.5.4	Lemma (Substitution of PO by DGP)
8.5.5	Lemma (Substitution of LEDCONS and EC by DGP)
8.5.2	Corollary
8.5.1	Theorem (Modiclus: Second Alternative Axiomatization)
8.7.1	Lemma (Anti-Derived Game and t-Shifted Anti-Reduced Game)
8.7.2	Lemma (Properties of an Anti-Derived Game)
8.7.1	Corollary (Anti-Derived Game and SED)
8.7.3	Lemma (Modiclus and Anti-Pre-Nucleolus of the Anti-Derived Game)
874	Lemma (Substitution of PO by ADGP)

T. CD 1	•••
List of Results	XXXIII

8.7.5	Lemma (Substitution of REC and SEDCONS by ADGP)	788
8.7.2	Corollary	788
8.7.1	Theorem (Modiclus: Third Alternative Axiomatization)	788
8.8.1	Corollary (Modiclus of PS Game)	789
8.8.2	Corollary (Modiclus of Weighted Graph Game)	789
8.8.1	Lemma (Properties of Greedy Bankruptcy Game (Driessen (1998)))	790
8.8.1	Theorem (Driessen (1998))	790
8.8.1	Proposition (Anti-Pre-Nucleolus of Bankruptcy Games)	791
8.8.1	Remark (Composed Constant-Sum Games)	791
8.8.2	Language (Madialus and Anti Dra Nuclealus)	791
	Lemma (Modiclus and Anti-Pre-Nucleolus)	792 793
8.8.3	Corollary (Anti-Pre-Nucleolus and Core)	
8.8.2	Remark (Alternative Proof to Corollary 8.8.3)	793
8.8.2	Proposition (Replication of an Anti-Pre-Kernel Element (Meinhardt (2024)))	794
8.8.3	Remark (Preserving Properties of the Anti-Pre-Nucleolus)	794
8.8.4	Remark (Anti-Pre-Nucleolus for Convex Games)	794
8.8.2	Theorem (Modiclus of Bankruptcy Games)	794
8.8.4	Corollary (Modiclus of Bankruptcy Games)	794
8.9.1	Lemma (Bi-Balancedness of the Modiclus)	809
8.10.1	Theorem (Coincidence of Modiclus and Anti-Modiclus)	810
Chapter 9		
9.1.1	Lemma (Relationship among the Pre-Kernel and the Proper Modified Pre-Kernel (Sudhölter	
	(1997b)))	816
9.1.1	Remark (Sudhölter (1997b))	817
9.1.2	Lemma (LED Implications on the (Modified) Pre-Kernel (Sudhölter (1997b)))	817
9.1.2	Remark (LED Implications on the (Modified) Pre-Kernel)	818
9.1.3	Remark (Note to the Proof of Lemma 9.1.2)	818
9.1.1	Corollary (LED Implication on Different Kinds of Maximum Surpluses)	822
9.1.4	Remark (LED on TU Games)	822
9.1.2	Corollary (Modified Pre-Kernel meets LEDCONS and EC (Sudhölter (1997b)))	822
9.1.3	Corollary	823
9.2.1	Theorem (Axiomatization Modified Pre-Kernel (Sudhölter (1997b)))	823
9.2.1	Remark (Note to the Proof Found in the Literature)	824
9.3.1	Lemma (Pre-Kernel of a Shift Game)	828
9.3.2	Lemma (Relationship between the Pre-Kernel of the Derived Game and Proper Modified Pre-	
	Kernel)	828
9.3.1	Corollary (NE, COV, PO, ETP, and DGP imply EC and LEDCONS)	828
9.3.2	Corollary	829
9.3.3	Lemma (NE, COV, PO, ETP, CDGP imply LEDCOCONS)	829
9.3.3	Corollary (Proper Modified Pre-Kernel Meets DGP)	829
9.3.1	Theorem (Alternative Axiomatization of the Modified Pre-Kernel)	829
Chapter 12	2	
12.4.1	Proposition (Super-Additivity of a TU Game)	951
12.4.2	Proposition (Monotonicity of a TU Game)	951
12.5.1	Theorem (Bisection Property of the Kernel)	954
12.5.2	Theorem (Bisection Property of the Pre-Kernel)	954
12.5.1	Corollary (Directional Improvement Method of Pre-Kernel Iteration (Meinhardt (2013)))	954
12.8.1	Theorem $((p, k)$ -Converging Method to the Nucleolus (Kido $(2004))$)	975
12.8.2	Theorem (Equivalence of the Property II modified (Kido (2008)))	976
12.8.3	Theorem (p,k) -Converging Method to the Pre-Nucleolus (Kido $(2004))$)	977
Chapter 13	3	
13.1.1	Lemma (Price Monotonicity Relationship (Driessen and Meinhardt (2010)))	997
13.1.1	Lemma (Induced Price Monotonicity Relationship (Driessen and Meinhardt (2010)))	997
13.1.2 $13.1.1$	Proposition (Monotonicity Property (Driessen and Meinhardt (2010)))	997
13.1.3	Lemma (Revenue Regularity (Driessen and Meinhardt (2010)))	998

xxxiv List of Results

13.1.2	Proposition (Monotonicity of a TU Oligopoly Game (Driessen and Meinhardt (2010))) 1	000
13.1.1		001
13.1.2		001
Chapter A		00 =
A.0.1	Proposition (Quadratic Function)	087
Chapter B		
B.2.1		092
B.2.2		093
B.2.3		093
B.2.4		093
B.3.1	· · · · · · · · · · · · · · · · · · ·	098
~		
Chapter C		100
C.2.1		108
C.2.2	Theorem (Relative error with guard digit (Goldberg (1991)))	108
Chapter D		
D.1.1	Proposition (Uniqueness of the Identity)	114
D.1.2	Proposition (Uniqueness of Inverse)	114
D.1.1		115
D.1.1		115
D.1.3		115
D.1.4		116
D.1.5		116
D.1.6		117
D.1.7		118
D.1.1		118
D.1.1		118
D.1.0 D.1.1		118
D.1.1 D.1.9		119
D.1.9 D.2.1		120
D.2.1 D.2.1		$\frac{120}{121}$
D.2.1	Coronary (Group Action induced (Menniardi (2013)))	141
Chapter E		
E.1.1		125
E.1.1		125
E.1.1	Corollary (Schur's Lemma for Matrices)	126
E.1.2	Proposition (Orthogonal Complement is G -Submodule)	126
E.1.3	Proposition (Decomposition in Irreducible Subspaces)	126
E.1.2	Theorem (Maschke)	126
E.1.3		127
E.1.4		127
E.1.4		128
E.1.2		128
E.1.5		128
E.1.5		129
E.3.1		131
E.3.1		132
E.3.1		134
E.3.2	± (////	134
E.3.1		134
2.0.1		

List of Algorithms

2.5.1	Method for Computing the Nucleolus of an Airport Cost Allocation Game
4.3.1	Prim's Algorithm for finding a minimal tree
4.3.2	Kruskal's Algorithm for finding a minimal tree
4.4.1	Method for Computing the Potential of a TU Game
4.4.2	Method for Computing the Shapley Value by the P-Potential
4.4.3	Procedure to seek a Pre-Kernel Element
4.4.4	Procedure to seek a Kernel Element
4.4.5	Method for Computing the Pre-Nucleolus
4.4.6	Algorithm for verifying if a pre-imputation is the pre-nucleolus
4.4.7	Algorithm for verifying if an imputation is the nucleolus
4.4.8	Algorithm for verifying if an imputation is the nucleolus (\mathscr{B}_0 -Property)
4.4.9	Method for Computing the weighted Pre-Nucleolus for Weight System P^N
4.4.10	Procedure to seek a weighted Pre-Kernel Element for Weight System P^N
4.4.11	Procedure to seek an Anti-Pre-Kernel Element
4.4.12	Method for Computing the Anti-Pre-Nucleolus
4.4.13	Method for Computing the Least Square Nucleolus
4.5.1	Seeking for a Pre-Kernel Element (Quadratic Programming)
4.5.2	Seeking for a Pre-Kernel Element (The Least Squares/Conic Optimization)
5.1.1	Procedure to seek a Pre-Kernel Element for a Coalition Structure
5.1.2	Method for Computing the Pre-Nucleolus for a Coalition Structure
5.1.3	Algorithm for verifying if a pre-imputation is the pre-nucleolus for a coalition structure 547
5.3.1	Method for Computing the Pre-Nucleolus of Game with Coalition Formation Restrictions 568
6.3.1	Algorithm for finding the minimum homogeneous representation
8.1.1	Method for Computing the Modiclus
8.9.1	Algorithm for verifying if a pre-imputation is the modiclus
8.10.1	Method for Computing the Anti-Modiclus
12.5.1	Procedure to seek a Pre-Kernel Element (Directional Improvement)
12.8.1	Non-linear Method to Compute the Nucleolus
12.8.2	Non-linear Method to Compute the Pre-Nucleolus
A.0.1	Procedure to seek a Pre-Kernel Element (Quadratic Programming)
C.2.1	Quadratic Iterative Method of Getting the Pseudo-Inverse
C.2.2	Method for Approximating the Exponential Function at x

List of Definitions and Examples

Chapter 1	
1.2.1	Example (Shapley Value not a Core Element)
1.2.2	Example (Strong ϵ -Core)
1.2.1	Definition (A Domination Concept across Payoffs)
1.2.2	Definition (Stable Sets)
1.2.3	Definition (Composite Game)
1.2.3	Example (Non-Empty Core (Thm. 1.2.17 Case 3))
1.2.4	Example (Non-Empty Core (Thm. 1.2.17 Case 4))
1.2.5	Example (Non-Empty Core (Thm. 1.2.17 Case 5))
1.3.1	Example (Manual Computation of the Shapley Value)
Chapter 2	
2.2.1	Example (Solving Non-Singular System of Linear Equations)
2.2.2	Example (Solving Underdetermined System of Linear Equations)
2.2.3	Example (Solving Overdetermined System of Linear Equations)
2.2.4	Example (Computing Moore-Penrose (3×4) -Matrix)
2.2.5	Example (Computing Moore-Penrose (4×3) -Matrix)
2.2.6	Example (QR Factorization of an Overdetermined System)
2.2.7	Example (Singular Value Factorization of an Underdetermined System)
2.2.8	Example (LU Factorization of a Non-Singular System)
2.2.9	Example (Cholesky Factorization of a Symmetric System)
2.4.1	Example (Projection of 4-Dimensional Data onto a 3-Dimensional Simplex)
2.5.1	Definition (Airport Capital Cost Game)
2.8.1	Definition (Canonical Order onto the Power Set)
2.8.1	Example (Unique Integer Representations vs. Canonical Order)
2.8.2	Example (MC-Nets representation)
Chapter 3	
3.7.1	Definition (Nash Equilibrium)
3.7.2	Definition (Uhc Correspondence)
3.7.3	Definition (Lhc Correspondence)
3.7.4	Definition (Continuous Correspondence)
3.7.5	Definition (Closed Graph)
3.7.6	Definition (Contraction Mapping)
Chapter 4	
4.3.1	Definition (Market Situation)
4.3.2	Definition (Market Game)
4.3.1	Example (4-Person Market Game)
4.3.3	Definition (Balanced Cover of a TU Game)
4.3.4	Definition (Totally Balanced Cover of a TU Game)
4.3.2	Example (10-Person Game with No Stable Set, but with a Core)
4.3.5	Definition (Direct Market)
4.3.6	Definition (Partially Ordered Set)
4.3.7	Definition (Lattice)
4.3.3	Example (Lattices)
4.3.4	Example (Airport Problem)
4.3.5	Example (Anti-Partition)
4.3.6	Example (Separating Collection)
4.3.7	Example (Not a Separating Collection)

4.3.8	Example (Imposing the same Partition)	8
4.3.9	Example (4-Person Average-Convex Game)	32
4.3.8	Definition (Flow Game)	15
4.3.9	Definition (Generalized Permutation)	7
4.3.10	Definition (Minimum Cut of a Flow Problem)	0(
4.3.11	Definition (PS Property))4
4.3.12	Definition (COV))4
4.4.1	Definition (Collection of Coalitions Attaining a Level of Excess)	8
4.4.2	Definition (Property I)	59
4.4.3	Definition (Property II)	j 9
4.4.4	Definition (Weak Property I)	2
4.4.5	Definition (Weak Property II)	'3
4.4.6	Definition (Collection of Coalitions Attaining a Level of Weighted Excess)	7
4.4.7	Definition (Collection of Coalitions Attaining a Level of Dissatisfaction)	12
4.4.8	Definition (Anti-Property I))3
4.4.9	Definition (Anti-Property II)	15
4.4.10	Definition (Weak Anti-Property I)	15
4.4.11	Definition (Weak Anti-Property II)	15
Chapter 5		
5.1.1	Definition (Super-Additive Cover)	
5.1.2	Definition (Collection of Coalitions w.r.t. a C.S. Attaining a Level of Excess)	
5.1.3	Definition (Property I w.r.t. a C.S.)	
5.1.4	Definition (Property II w.r.t. a C.S.)	
5.3.1	Definition (Permissible Collection of Coalitions Achieving a Level of Excess)	
5.3.2	Definition (Property I with Coalition Formation Restrictions)	
5.3.3	Definition (Property I and C.F.)	
5.3.4	Definition (C-Set)	
5.3.5	Definition (Essential Sets)	
5.3.6	Definition (Dually Essential Sets)	
5.3.7	Definition (Saturated Coalition (Granot et al. (1998)))	
5.3.8	Definition (Irreducible Saturated Coalition (Granot et al. (1998)))	ю
Chapter 6		
6.2.1	Definition (Simple Game)	19
6.2.2	Definition (Simple TU Game)	
6.2.3	Definition (Shapley-Shubik Power Index (Shapley and Shubik (1954)))	
6.3.1	Definition (Compatible Simple Game Representation)	
6.3.2	Definition (Natural Representation of a Simple Game)	
6.3.1	Example (Not Homogeneous Standard Simple Game)	
6.3.2	Example (Star-Shaped Pre-Kernel)	
6.3.3	Definition (Partition Game)	
6.3.3	Example (Six-Person Simple Game with a Minimum Homogeneous Representation) 64	
6.3.4	Example (Seven-Person Projective Game)	
6.3.5	Example (Single-valued Pre-Kernel)	4
Chapter 7		
7.1.1	Example (DM-RGP)	
7.1.2	Example (HMS-RGP)	12
7.3.1	Example (HMS-Weak RGP)	
7.4.1	Example (HMS-CRGP)	16
CI		
Chapter 8	D.C. W. (DM DCD)	_
8.2.1	Definition (DM-RGP)	
8.3.1	Definition (Dual Cover)	
8.3.2	Definition (LED and Diverse Game Properties)	
8.3.3	Definition (Diverse Solution Properties)	
8 3 4	Definition (SDCP) 74	LΔ

	List of Definitions and Examples	xxxix
8.3.5	Definition (Modified LEDCONS)	750
8.4.1	Definition (Anti-RGP)	750 752
8.4.2	Definition (SED and Diverse Game Properties)	753
8.4.3	Definition (SEDCONS and REC)	753 754
8.4.4	Definition (Dual Floor)	755
8.4.5	Definition (PRP and DFP)	755 755
8.4.6	Definition (SDFP)	755 770
8.4.7	Definition (Modified SEDCONS)	773
8.5.1		778
8.7.1	Definition (DM-DGP)	786
8.9.1	Definition (Collection of Coalitions Attaining a Level of Bi-Excess)	809
	Definition (Concession of Coantions Attaining a Level of Bi-Excess)	009
Chapter 9		
9.1.1	Definition (Maximum (Proper) Modified Surplus)	814
9.1.2	Definition (Self-Dual Modifications of the Pre-Kernel)	814
9.2.1	Definition (COCONS)	823
9.2.2	Definition (LEDCOCONS)	823
9.3.1	Definition (Converse DGP)	827
9.3.2	Definition (Strong Converse DGP)	831
Chapter 11		
11.5.1	Example (MC-Nets Representation)	903
~		
Chapter 12		075
12.8.1	Definition (Modified Coalition Array (Kido (2008)))	975
12.8.2	Definition (Generating of a Modified Coalition Array (Kido (2008)))	975
12.8.3	Definition $((v, \mathbf{x})$ -Balancedness (Kido (2008)))	975
12.8.4	Definition $((v, \mathbf{x})$ -Maximal Balancedness (Kido (2008)))	975
12.8.5	Definition (Property II Modified (Kido (2008)))	976
Chapter B		
B.3.1	Example (Wrong Indirect Proof Method)	1097
B.3.2	Example (Wrong Indirect Proof Method Reconsidered)	1097
CI 4 C		
Chapter C		1103
C.2.1	Definition (Absolute/Relative Error)	
C.2.2	Definition (Significance of Digits)	1103
C.2.3	Definition (Significance of Decimal Places)	1103
C.2.4	Definition (Number of Significant Digits)	1103
C.2.5	Definition (Least Significant Digit)	1104
Chapter D		
D.1.1	Definition (Group)	1113
D.1.1	Example (Groups under Addition)	1114
D.1.2	Example (Groups under Multiplication)	1114
D.1.3	Example (Permutation Group)	1115
D.1.2	Definition (Abelian)	1115
D.1.3	Definition (Relation on a Set)	1117
D.1.4	Definition (Equivalence Relation)	1117
D.1.4 D.1.5	Definition (Equivalence Class)	1117
D.1.5 D.1.6	Definition (Cosets)	1117
D.1.0 D.1.7		1117
D.1.7 D.2.1	Definition (Group Action)	1118
17.4.1	Definition (Connected Group)	1120
Chapter E		
E.1.1	Definition (Ring)	1123
E.1.2	Definition (R -Module)	1123
E.1.3	Definition (G -Module)	1124

E.1.4	Definition (In	nvariant (Subspac	ce)													1125
E.1.5	Definition (Ir	reducible	e Space) .													1125
	Definition (C																
	Definition (C																
E.1.8	Definition (G	roup Alg	gebra)														1127
	Definition (P.																

Bibliography

- H. Aarts and T. Driessen. The Irreducible Core of a Minimum Cost Spanning Tree Game. ZOR Methods and Models of Operations Research, 38:163174, 1993. doi: 10.1007/BF01414212. URL https://doi.org/10.1007/BF01414212.
- E. Algaba, J. M. Bilbao, P. Borm, and J. J. López. The Position Value for Union Stable Systems. Mathematical Methods of Operations Research, 52:221–236, 2000.
- E. Algaba, J. M. Bilbao, P. Borm, and J. J. López. The Myerson Value for Union Stable Structures. *Mathematical Methods of Operations Research*, 54:359–371, 2001.
- E. Algaba, J. M. Bilbao, and J. J. López. The Position Value in Communication Structures. Mathematical Methods of Operations Research, 59:465–477, 2004.
- E. Algaba, V. Fragnelli, and J. Sánchez-Soriano, editors. *Handbook of the Shapley Value*. Series in Operations Research. Chapman and Hall/CRC, New York, 1 edition, 2020. doi: 10.1201/9781351241410. URL https://doi.org/10.1201/9781351241410.
- Ch. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis: A Hitchhiker's Guide. Springer-Verlag, Berlin, 1994.
- J. M. Alonso-Meijide, F. Ferreira, M. Álvarez Mozos, and A. A. Pinto. Two New Power Indices based on Winning Coalitions. *Journal of Difference Equations and Applications*, 17(7):1095–1100, 2011. doi: 10.1080/10236190903200677. URL https://doi.org/10.1080/10236190903200677.
- J.M. Alonso-Meijide, F. Carreras, M.G. Fiestras-Janeiro, and G. Owen. A Comparative Axiomatic Characterization of the BanzhafOwen Coalitional Value. *Decision Support Systems*, 43(3):701–712, 2007. ISSN 0167-9236. doi: https://doi.org/10.1016/j.dss.2006.11.008. URL https://www.sciencedirect.com/science/article/pii/S0167923606002028. Integrated Decision Support.
- Y. Altman. Accelerating MATLAB Performance. CRC Press, Boca Raton, FL. (USA), 1 edition, 2015.
- E.D. Andersen, C. Roos, and T. Terlaky. On Implementing a Primal-Dual Interior-Point Method for Conic Quadratic Optimization.

 Mathematical Programming, 95(2):249 277, 2002. doi: 10.1007/s10107-002-0349-3. URL https://doi.org/10.1007/s10107-002-0349-3.
- J. Arin and V. Feltkamp. The Nucleolus and Kernel of Veto-Rich Transferable Utility Games. *International Journal of Game Theory*, 26:61–73, 1997. URL https://doi.org/10.1007/BF01262513.
- J. Arin and E. Iñarra. A Characterization of the Nucleolus for Convex Games. Games and Economic Behaviour, 23:12–24, 1998.
- J. Arin and I. Katsev. The Coincidence of the Kernel and Nucleolus of a Convex Game: An Alternative Proof. Technical report, University of Basque Country, 2013.
- S. Arora and B. Barak, editors. Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge, 2009. doi: https://doi.org/10.1017/CBO9780511804090. URL https://www.cambridge.org/core/books/computational-complexity/3453CAFD EB0B4820B186FE69A64E1086.
- St. Attaway. MATLAB: A Practical Introduction to Programming and Problem Solving. Butterworth-Heinemann/Elsevier, Oxford, UK., 5 edition, 2019.
- R. J. Aumann. Acceptable Points in General Cooperative n-Person Games. In Tucker and Luce, editors, Contributions to the theory of games IV, Annals of Mathematics Studies Vol. 40, pages 287–324, 1959.
- R. J. Aumann. A Survey on Cooperative Games without Side Payments. In M. Shubik, editor, Essays in Mathematical Economics in Honor of Oskar Morgenstern, pages 3–27, Princeton, 1961. Princeton University Press.
- R. J. Aumann. Agreeing to Disagree. The Annals of Statistics, 4(6):1236-1239, 1976. ISSN 00905364. URL http://www.jstor.org/stable/2958591.
- R. J. Aumann and J. H. Drèze. Cooperative Games with Coalition Structures. International Journal of Game Theory, 3:217-237, 1974.
- R. J. Aumann and M. Maschler. Game Theoretic Analysis of a Bankruptcy Problem from the Talmud. *Journal of Economic Theory*, 36: 195–213, 1985.
- J. F. Banzhaf. Weighted Voting Doesn't Work. Rutgers Law Review, 19:221-236, 1965.
- R.J. Barro and X. Sala-I-Martin. "Economic Growth". McGraw-Hill, New York, 1 edition, 1995.
- E.N. Barron. "Game Theory: An Introduction". John Wiley & Sons, Hoboken, 2 edition, 2013.
- B. Barry. Is it Better to Be Powerful or Lucky?: Part I. *Political Studies*, 28(2):183–194, 1980a. doi: 10.1111/j.1467-9248.1980.tb01244.x. URL https://doi.org/10.1111/j.1467-9248.1980.tb01244.x.

- B. Barry. Is it Better to Be Powerful or Lucky? Part II. *Political Studies*, 28(3):338–352, 1980b. doi: 10.1111/j.1467-9248.1980.tb00473.x. URL https://doi.org/10.1111/j.1467-9248.1980.tb00473.x.
- G. Bergantiños and J. Vidal-Puga. A Review of Cooperative Rules and their Associated Algorithms for Minimum-Cost Spanning Tree Problems. SERIEs, 12:73–100, 2021.
- C. G. Bird. On Cost Allocation for a Spanning Tree: A Game Theoretic Approach. Networks, 6(4):335-350, 1976. doi: https://doi.org/10.1002/net.3230060404. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230060404.
- O.J. Blanchard and S. Fischer. "Lectures on Macroeconomics". MIT-Press, Cambridge, Massachusetts, 1 edition, 1989.
- O. N. Bondareva. Some Applications of Linear Programming Methods to the Theory of Cooperative Games. *Problemy Kibernet*, 10: 119–139, 1963. in Russian.
- K. C. Border. Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge, UK, 1985
- P. Borm, G. Owen, and SH. Tijs. On the Position Value for Communication Situations. SIAM Journal of Discrete Mathematics, 5: 305–320, 1992.
- St. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, eight reprint edition, 2010.
- E. Bozzo, M. Franceschet, and F. Rinaldi. Vulnerability and Power on Networks. Network Science, 3(2):196226, 2015. doi: 10.1017/nws.2015.8.
- R.L. Breiger and Ph. E. Pattison. Cumulated Social Roles: The Duality of Persons and their Algebras. Social Networks, 8(3):215 256, 1986. ISSN 0378-8733. doi: https://doi.org/10.1016/0378-8733(86)90006-7. URL http://www.sciencedirect.com/science/article/pii/0378873386900067.
- S. Béal, M. Manea, E. Rémila, and Ph. Solal. Games with Identical Shapley Values, page 93:110. In Algaba et al. (2020), 1 edition, 2020. doi: 10.1201/9781351241410. URL https://doi.org/10.1201/9781351241410.
- Sylvain Béal, Eric Rémila, and Philippe Solal. A Decomposition of the Space of TU-games Using Addition and Transfer Invariance. Discrete Applied Mathematics, 184:1-13, 2015. ISSN 0166-218X. doi: https://doi.org/10.1016/j.dam.2014.12.019. URL https://www.sciencedirect.com/science/article/pii/S0166218X14005496.
- E. Calvo and E. Gutiérrez. A Value for Cooperative Games with a Coalition Structure. Technical report, University of Valencia, Spain, 2012.
- E. Calvo and E. Gutiérrez. The Shapley-Solidarity Value for Games with a Coalition Structure. *International Game Theory Review*, 15 (1):1350002–1–1350002–24, 2013.
- L. Carpente, B. Casas-Méndez, I. García-Jurado, and A. van den Nouveland. The Shapley Valuation Function for Strategic Games in which Players Cooperate. *Mathematical Methods of Operations Research*, 63:435–442, 2006.
- M. Carter. Cooperative Games, pages 167-191. In Varian (1993), 1993.
- G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of Cooperative Game Theory, volume 16 of Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publisher, Heidelberg/Berlin, 2012.
- Ch. Chang and T. S. H. Driessen. (Pre)Kernel Catchers for Cooperative Games. OR Spectrum, 17(1):pp 23-26, 1995.
- Ch. Chang and Ch. Hu. A Non-Cooperative Interpretation of the Kernel. International Journal of Game Theory, 46(1):185–204, 2017. doi: 10.1007/s00182-016-0529-7. URL https://doi.org/10.1007/s00182-016-0529-7.
- Ch. Chang and Ch. Y. Kan. The Bound of the Kernel. Mathematical Social Sciences, 25:87-93, 1992.
- Ch. Chang and Ch.-H. Lian. Some Results on (Pre)Kernel Catchers and the Coincidence of the Kernel with Prekernel. *International Game Theory Review*, 4(3):201–211, 2002.
- Chih Chang and Ying-Chih Tseng. On the Coincidence Property. Games and Economic Behavior, 71(2):304 314, 2011. ISSN 0899-8256. doi: https://doi.org/10.1016/j.geb.2010.04.010. URL http://www.sciencedirect.com/science/article/pii/S0899825610000710.
- St. J. Chapman. MATLAB Programming for Engineers. Brooks/Cole, Pacific Grove, CA. (USA), 2 edition, 2002.
- W. Cheney and D. Kincaid. Numerical Mathematics and Computing. Thomson Higher Education, Belmont, 6th edition, 2008.
- A. C. Chiang. Fundamental Methods of Mathematical Economics. McGraw-Hill, Singapore, third. edition, 1984.
- A. Claus and D. J. Kleitman. Cost Allocation for a Spanning Tree. Networks, 3(4):289-304, 1973. doi: https://doi.org/10.1002/net.32 30030402. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230030402.
- R. H. Coase. The Marginal Cost Controversy. *Economica*, 13(51):169-182, 1946. ISSN 00130427, 14680335. URL http://www.jstor.org/stable/2549764.
- J. S. Coleman. Control of Collectivities and the Power of a Collectivity to Act. Gordon and Breach, New York, 1 edition, 1971.

- I. Curiel. Cooperative Game Theory and Applications, volume 16 of Theory and Decision Library: Series C. Kluwer Acad. Publ., Boston, 1997.
- M. Davis and M. Maschler. The Kernel of a Cooperative Game. Naval Research Logistic Quarterly, 12:223-259, 1965.
- R. de Roover. The Rise and Decline of the Medici Bank 1397-1494. The Norton Library, New York, USA, 1966.
- J. Deegan and E.W. Packel. A New Index of Power for Simple n-Person Games. International Journal of Game Theory, 7:113–123, 1978. doi: 10.1007/BF01753239. URL https://doi.org/10.1007/BF01753239.
- P. Dehez. On Harsanyi Dividends and Asymmetric Values. *International Game Theory Review*, 19(03):1750012–1–36, 2017. doi: 10.1142/S0219198917500128. URL https://doi.org/10.1142/S0219198917500128.
- P. Dehez. Sharing a Collective Probability of Success. *Mathematical Social Sciences*, 123:122–127, 2023. ISSN 0165-4896. doi: https://doi.org/10.1016/j.mathsocsci.2023.03.006. URL https://www.sciencedirect.com/science/article/pii/S0165489623000343.
- P. Dehez. Cooperative Product Games. International Game Theory Review, 26(01):2350016, 2024. doi: 10.1142/S0219198923500160. URL https://doi.org/10.1142/S0219198923500160.
- P. Dehez and P. M. Pacini. Comparing the Nucleolus and the Shapley Value of 3-player Transferable Utility Games. Center for Operations Research and Econometrics (CORE-LIDAM), UCLouvain, Louvain-la-Neuve, Belgium, January 2025.
- X. Deng and C. H. Papadimitriou. On the Complexity of Cooperative Solution Concepts. Mathematics of Operations Research, 19: 257–266, 1994.
- J. Derks and J. Kuipers. On the Core and the Nucleolus of Routing Games. Discussion Paper Report M92-07, Department of Mathematics, University of Maastricht, 1992.
- J. J. M. Derks and H. Haller. Weighted Nucleoli. International Journal of Game Theory, 28:173-187, 1999.
- B. Dietzenbacher and P. Sudhölter. HartMas-Colell Consistency and the Core in Convex Games. *International Journal of Game Theory*, pages 1–17, 2021. ISSN 0254-5330. doi: 10.1007/s00182-021-00798-6. URL https://doi.org/10.1007/s00182-021-00798-6.
- A. Dixit. A Model of Duopoly suggesting a Theory of Entry Barriers. Bell Journal of Economics, 10:20-32, 1979.
- A. K. Dixit. Optimization in Economic Theory. Oxford University Press, Oxford, 2 edition, 1990.
- T. Driessen. Contributions to the Theory of Cooperative Games: The τ -Value and k-Convex Games. Ph.d thesis, University of Nijmegen, Nijmegen, 1985.
- T. Driessen. Cooperative Games, Solutions and Applications. Kluwer Academic Publishers, Dordrecht, 1988.
- T. Driessen. The Greedy Bankruptcy Game: An Alternative Game Theoretic Analysis of a Bankruptcy Problem. In L.A. Petrosjan and V.V. Mazalov, editors, *Game Theory and Applications*, volume IV, pages 45–61, Commack, New York, 1998. Nova Science Publishers Inc.
- T. Driessen and H. Meinhardt. (Average-) Convexity of Common Pool and Oligopoly TU-games. *International Game Theory Review*, 3: 141–158, 2001.
- T. Driessen and H. Meinhardt. Convexity of Oligopoly Games without Transferable Technologies. *Mathematical Social Sciences*, 50(1): 102–126, 2005.
- T. S. H. Driessen and H. I. Meinhardt. On the Supermodularity of Homogeneous Oligopoly Games. *International Game Theory Review* (IGTR), 12(04):309–337, 2010. doi: 10.1142/S0219198910002702. URL https://doi.org/10.1142/S0219198910002702.
- T. A. Driscoll and R. J. Braun. Fundamentals of Numerical Computation. SIAM, Philadelphia PA, USA, 1th edition, 2018.
- P. Dubey and L. S. Shapley. Mathematical properties of the banzhaf power index. *Mathematics of Operations Research*, 4(2):99–131, 1979. ISSN 0364765X, 15265471. URL http://www.jstor.org/stable/3689345.
- H. Dym. Linear Algebra in Action, volume 78. American Mathematical Society, Providence, Rhode Island, Graduate Studies in Mathematics edition, 2007.
- H.-D. Ebbinghaus, J. Flum, and W. Thomas. *Einführung in die mathematische Logik*. Spektrum Akademischer Verlag, Berlin/Heidelberg, 5 edition, 2007.
- L. Elden, L. Wittmeyer-Koch, and H. B. Nielsen. Introduction to Numerical Computation. Studentlitteratur AB, Lund, Sweden, 2004.
- E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. A Tractable and Expressive Class of Marginal Contribution Nets and Its Applications. *Mathematical Logic Quarterly*, 55(4):362–376, 2009. doi: 10.1002/malq.200810021. URL https://onlinelibrary.wiley.com/doi/10.1002/malq.200810021.
- A. Estévez-Fernández, M.G. Fiestras-Janeiro, M.A. Mosquera, and E. Sánchez-Rodríguez. A Bankruptcy Approach to the Core Cover. Technical Report TI 2012-012/1, VU University Amsterdam, 2012.
- U. Faigle and M. Grabisch. Linear Transforms, Values and Least Square Approximation for Cooperation Systems. Technical report, Panthéon-Sorbonne, Université Paris 1, 2014.

- D.S. Felsenthal. A Well-Behaved Index of a Priori P-Power for Simple N-Person Games. *Homo Oeconomicus*, 33:367–381, 2016. doi: 10.1007/s41412-016-0031-2. URL https://doi.org/10.1007/s41412-016-0031-2.
- V. Feltkamp. Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values. *International Journal of Game Theory*, 24: 179–186, 1995. doi: 10.1007/BF01240041. URL https://doi.org/10.1007/BF01240041.
- L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, 1962.
- A. Fronzetti Colladon and M. Naldi. Distinctiveness Centrality in Social Networks. *PLoS ONE*, 15(5), 2020. URL https://doi.org/10.1371/journal.pone.0233276.
- W. Fulton and J. Harris. "Representation Theory: A First Course", volume 129 of Graduate Texts in Mathematics. Springer Publisher, Heidelberg, 2 edition, 2004.
- Y. Funaki. Upper and Lower Bounds of the Kernel and Nucleolus. International Journal of Game Theory, 15:121-129, 1986.
- Y. Funaki and H. I. Meinhardt. A Note on the Pre-Kernel and Pre-Nucleolus for Bankruptcy Games. The Waseda Journal of Political Science and Economics, 363:126–136, 2006.
- Y. Funaki and K. Yokote. Several Bases of a Game Space and an Application to the Shapley Value, pages 111-130. In Algaba et al. (2020), 1 edition, 2020. doi: 10.1201/9781351241410. URL https://doi.org/10.1201/9781351241410.
- D. Gale and H. Nikaido. The Jacobian Matrix and Global Univalence of Mappings. *Mathematische Annalen*, 159(2):1432–1807, 1965. doi: 10.1007/BF01360282. URL https://doi.org/10.1007/BF01360282.
- D. Gately. Sharing the Gains from Regional Cooperation: A Game Theoretic Application to Planning Investment in Electric Power. International Economic Review, 15(1):195–208, 1974. ISSN 00206598, 14682354. URL http://www.jstor.org/stable/2526099.
- G. Gaudet and St. W. Salant. Uniqueness of Cournot Equilibrium: New Results from Old Methods. *The Review of Economic Studies*, 58(2):399–404, 1991. ISSN 00346527, 1467937X. URL http://www.jstor.org/stable/2297975.
- R. J. Gaylord, S. N. Kamin, and P. R. Wellin. An Introduction to Programming with Mathematica. Telos/Springer, Santa Clara, CA, sec. edition, 1996.
- J. Getán, J. Izquierdo, J. Montes, and C. Rafels. The Bargaining Set and the Kernel of Almost-Convex Games. Technical report, University of Barcelona, Spain, 2012.
- D. Goldberg. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Computing Surveys, 23:5–48, 1991.
- J. González-Díaz and E. Sánchez-Rodríguez. A Natural Selection From the Core of a TU Game: The Core-Center. International Journal of Game Theory, 36:2746, 2007. doi: 10.1007/s00182-007-0074-5. URL https://doi.org/10.1007/s00182-007-0074-5.
- H.-G. Gräbe and M. Kofler. Mathematica 6: Einführung, Grundlagen und Beispiele. Scientific Tools. Pearson Studium, München, 5 edition, 2007.
- D. Granot and G. Huberman. Minimum Cost Spanning Tree Games. *Mathematical Programming*, 21:1–18, 1981. URL https://doi.org/10.1007/BF01584227.
- D. Granot and G. Huberman. The Relationship Between Convex Games and Minimum Cost Spanning Tree Games: A Case for Permutationally Convex Games. SIAM Journal on Algebraic Discrete Methods, 3(3):288–292, 1982. doi: 10.1137/0603029. URL https://doi.org/10.1137/0603029.
- D. Granot and G. Huberman. On the Core and Nucleolus of Minimum Cost Spanning Tree Games. *Mathematical Programming*, 29: 323347, 1984. URL https://doi.org/10.1007/BF02592000.
- D. Granot, F. Granot, and W. R. Zhu. Circular Network Games. Discussion paper, Faculty of Economics and Business Admistration, UBC Vancouver, 1994.
- D. Granot, F. Granot, and W. R. Zhu. Characterization Sets for the Nucleolus. *International Journal of Game Theory*, 27:359–374, 1998.
- Z. Gu, E. Rothberg, and R. Bixby. Gurobi Software documentation. Technical report, Gurobi Optimization, Inc., Houston, Texas, 2024a. Gurobi Optimizer Reference Manual Version 12.0.
- Z. Gu, E. Rothberg, and R. Bixby. Gurobi Software program. Technical report, Gurobi Optimization, Inc., Houston, Texas, 2024b. Gurobi Optimizer Version 12.0.
- B. D. Hahn and D. T. Valentine. Essential MATLAB for Engineers and Scientists. Academic Press, Cambridge, MA. (USA), 7 edition, 2019
- B. C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, volume 222 of Graduate Texts in Mathematics. Springer-Verlag, 2003.
- S. Hart and M. Kurz. Endogenous Formation of Coalitions. Econometrica, 51(4):1047-1064, 1983.
- S. Hart and A. Mas-Colell. Potential, Value and Consistency. Econometrica, 57:589-614, 1989.

- D.A. Harville. Matrix Algebra From a Statistician's Perspective. Springer Publisher, New York, Heidelberg, 1997.
- M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. Multi-Parametric Toolbox 3.0. In *Proc. of the European Control Conference*, pages 502–510, Zurich, Switzerland, July 17–19 2013. European Control Conference. http://control.ee.ethz.ch/~mpt.
- L. Hernández-Lamoneda, R. Juárez, and F. Sánchez-Sánchez. Dissection of Solutions in Cooperative Game Theory Using Representation Techniques. *International Journal of Game Theory*, 35(3):395–426, Feb 2007. ISSN 1432-1270. doi: 10.1007/s00182-006-0036-3. URL https://doi.org/10.1007/s00182-006-0036-3.
- L. Hernández-Lamoneda, J. Sánchez-Pérez, and F. Sánchez-Sánchez. The Class of Efficient Linear Symmetric Values For Games in Partition Function Form. *International Game Theory Review*, 11(03):369–382, 2009. doi: 10.1142/S0219198909002364. URL http://www.worldscientific.com/doi/abs/10.1142/S0219198909002364.
- Ch. Hibbert. The Rise and Fall of the House of Medici. Harper Perennial, New York, USA, reprint 2003 edition, 1974.
- D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia, PA. (USA), 1 edition, 2000.
- R. E. Hodel. Introduction to Mathematical Logic. Dover Publications, Mineola, New York, USA, republished first edition from 1995 edition, 2013.
- M. J. Holler. Forming Coalitions and Measuring Voting Power. Political Studies, 30:262-271, 1982.
- M. J. Holler. The Public Good Index: A Brief Introduction. Finnish-German Yearbook of Political Economy, 1:31–39, 2018.
- M. J. Holler and E. W. Packel. Power, Luck and the Right Index. Journal of Economics, 43:21–29, 1983.
- M. J. Holler and F. Rupp. Power in Networks: The Medici. *Homo Oeconomicus*, 38:5975, 2021. doi: 10.1007/s41412-021-00108-1. URL https://doi.org/10.1007/s41412-021-00108-1.
- H. Hotelling. The General Welfare in Relation to Problems of Taxation and of Railway and Utility Rates. *Econometrica*, 6(3):242–269, 1938. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1907054.
- D. Hou, G. Xu, P. Sun, and T. Driessen. The Shapley Value for the Probability Game. Operations Research Letters, 46(4):457-461, 2018. ISSN 0167-6377. doi: https://doi.org/10.1016/j.orl.2018.06.004. URL https://www.sciencedirect.com/science/article/pii/S0167637718301500.
- J. Hougaard, B. Peleg, and L. Thorlund-Petersen. On the Set of Lorenz-Maximal Imputations in the Core of a Balanced Game. IJGT, 30:147165, 2001. ISSN 0167-6687. doi: https://doi.org/10.1007/s001820100070. URL https://link.springer.com/article/10.100 7%2Fs001820100070.
- J. L. Hougaard and A. Smilgins. Risk Capital Allocation with Autonomous Subunits: The Lorenz Set. *Insurance: Mathematics and Economics*, 67:151-157, 2016. ISSN 0167-6687. doi: https://doi.org/10.1016/j.insmatheco.2015.12.002. URL https://www.sciencedirect.com/science/article/pii/S0167668715301712.
- Cl. J. Huang and Ph. S. Crooke. Mathematics and Mathematica for Economists. Blackwell, Malden, Massachusetts, 1 edition, 1997.
- G. Huberman. The Nucleolus and Essential Coalitions, volume 28 of Lecture Notes in Control and Information Sciences. Elsevier, Amsterdam, 1980.
- J. F. Humphreys. A Course in Group Theory. Oxford University Press, 1996.
- Y.-A. Hwang and P. Sudhölter. Axiomatizations of the Core on the Universal Domain and Other Natural Domains. *International Journal of Game Theory*, 29:597–623, 2001.
- T. Ichiishi. Super-modularity: Applications to Convex Games and to the Greedy Algorithm for LP. Journal of Economic Theory, 25(2): 283-286, 1981. ISSN 0022-0531. doi: https://doi.org/10.1016/0022-0531(81)90007-7. URL https://www.sciencedirect.com/science/article/pii/0022053181900077.
- T. Ichiishi. Microeconomic Theory. Cambridge, MA., 1997.
- Publisher IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008), pages 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.
- S. Ieong and Y. Shoham. Marginal Contribution Nets: A Compact Representation Scheme for Coalitional Games. In *Proceedings of the 6th ACM Conference on Electronic Commerce*, EC '05, page 193202, New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595930493. doi: 10.1145/1064009.1064030. URL https://doi.org/10.1145/1064009.1064030.
- E. Iñarra and J.M. Usategui. The Shapley Value and Average Convex Games. International Journal of Game Theory, 22:13–29, 1993.
- A. Isbell. A Class of Majority Games. Quarterly Journal of Mathematics, 7:183–187, 1956.
- A. Isbell. On the Enumeration of Majority Games. Mathematical Tables and other Aids to Computation, 13:21–28, 1959.
- Vocabulary ISO/IEC/IEEE. ISO/IEC/IEEE International Standard Systems and software engineering-Vocabulary. ISO/IEC/IEEE 24765:2017(E), pages 1-541, Aug 2017. doi: 10.1109/IEEESTD.2017.8016712.

- G. Jentzsch. Some Thoughts on the Theory of Cooperative Games. In M. Dreshler, L.S. Shapley, and A.W. Tucker, editors, Advances in Game Theory, Annals of Mathematical Studies, number 52, pages 407–442. Princeton University Press, Princeton, 1964.
- M. Jerison. Russell on Gorman's Engel Curves: A Correction. Economics Letters, 43(2):171 175, 1993. ISSN 0165-1765. doi: https://doi.org/10.1016/0165-1765(93)90032-8. URL http://www.sciencedirect.com/science/article/pii/0165176593900328.
- M. Justman. Iterative Processes with 'Nucleolar' Restrictions. International Journal of Game Theory,, 6:189-212, 1977.
- E. Kalai and E. Zemel. Generalized Network Problems Yielding Totally Balanced Games. Operations Research, 30(5):998–1008, 1982a. doi: 10.1287/opre.30.5.998. URL https://doi.org/10.1287/opre.30.5.998.
- E. Kalai and E. Zemel. Totally Balanced Games and Games of Flow. *Mathematics of Operations Research*, 7(3):476–478, 1982b. doi: 10.1287/moor.7.3.476. URL https://doi.org/10.1287/moor.7.3.476.
- M. Kaneko. Note on Transferable Utility. International Journal of Game Theory, 100(1):183-185, 1976. ISSN 1432-1270. doi: https://doi.org/10.1007/BF01761600. URL https://link.springer.com/article/10.1007/BF01761600.
- M. Kaneko and M. H. Wooders. *Utility Theories in Cooperative Games*, pages 1065–1098. Springer US, Boston, MA, 2004. ISBN 978-1-4020-7964-1. doi: 10.1007/978-1-4020-7964-1_6. URL https://doi.org/10.1007/978-1-4020-7964-1_6.
- A. Kar, M. Mitra, and S. Mutuswami. On the Coincidence of the Prenucleolus and the Shapley Value. *Mathematical Social Sciences*, 57 (1):16 25, 2009. ISSN 0165-4896. doi: https://doi.org/10.1016/j.mathsocsci.2008.08.004. URL http://www.sciencedirect.com/science/article/pii/S0165489608000851.
- K. Kido. A nonlinear Approximation of the Nucleolus. In W. Takahashi and T. Tanaka, editors, *Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis*, pages 307–317, Tokyo, 2004. Yokohama Publishers, Yokohama, Japan.
- K. Kido. Convergence Theorems for l_p -Norm Minimizers with respect to p. Journal of Optimization Theory and Applications, 125: 577–589, 2005.
- K. Kido. A Modified Kohlberg Criterion and a Nonlinear Method to compute the Nucleolus of a Cooperative Game. *Taiwanese Journal of Mathematics*, 12:1581–1590, 2008.
- N. L. Kleinberg and J. W. Weiss. Equivalent N-Person Games and the Null Space of the Shapley Value. *Mathematics of Operations Research*, 10(2):233–243, May 1985.
- J. Kleppe, H. Reijnierse, and P. Sudhölter. Axiomatizations of Symmetrically Weighted Solutions. Ann. Oper. Res., 243:3753, 2016. URL https://doi.org/10.1007/s10479-013-1494-1.
- E. Kohlberg. On the Nucleolus of a Characteristic Function Game. SIAM Journal of Applied Mathematics, 20:62–66, 1971.
- E. Kohlberg. The Nucleolus as a Solution of a Minimization Problem. SIAM, Journal of Applied Mathematics, 23:34–39, 1972.
- A Kopelowitz. Computation of the Kernels of Simple Games and the Nucleolus of N-Person Games. Technical report, RM 31, Research Program in Game Theory and Mathematical Economics, The Hebrew University of Jerusalem, 1967. mimeo.
- R. W. Krause and A. Caimo. Missing Data Augmentation for Bayesian Exponential Random Multi-Graph Models. volume 221, pages 63–72. International Workshop on Complex Networks, 2019. URL doi:10.21427/PME8-MT48.
- J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. *Proceedings of the American Mathematical Society*, 7(1):48-50, 1956. ISSN 00029939, 10886826. URL http://www.jstor.org/stable/2033241.
- J-J. Laffont and J. Tirole, editors. A Theory of Incentives in Procurement and Regulation. The MIT Press, Cambridge, MA, 1993.
- V. Lakshmikantham and S. K. Sen. Computational Error and Complexity in Science and Engineering, volume 201 of Mathematics in Science and Engineering. Elsevier, Amsterdam, 2005.
- A. Lardon. The γ -Core in Cournot Oligopoly TU-Games with Capacity Constraints. Theory and Decision, 72(3):387–411, 2012. ISSN 0040-5833. doi: 10.1007/s11238-011-9256-5. URL http://dx.doi.org/10.1007/s11238-011-9256-5.
- P. Legros. A Note on the Nucleolus of Three Person Games. University of Paris, University of Paris, France, April 1981.
- P. V. Lekeas. Coalitional Beliefs in Cournot Oligopoly Tu Games. *International Game Theory Review*, pages 1–21, 2013. doi: 10.1142/S0219198913500047. URL http://dx.doi.org/10.1142/S0219198913500047.
- M. Leng and M. Parlar. Analytic Solution for the Nucleolus of a Three-Player Cooperative Game. Naval Research Logistics (NRL), 57 (7):667-672, 2010. doi: 10.1002/nav.20429. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.20429.
- N. Lindfield and J. Penny. Numerical Methods Using MATLAB. Prentice Hall, Upper Saddle River, NJ. (USA), 2 edition, 2000.
- S. Littlechild. A Simple Expression for the Nucleolus in a Simple Case. International Journal of Game Theory, 3:21–29, 1974a.
- S. Littlechild and K. G Vaidya. The Propensity to disrupt and the Disruption Nucleolus of a Characteristic Function game. *International Journal of Game Theory*, 5:151–161, 1976. doi: https://doi.org/10.1007/BF01753316. URL https://doi.org/10.1007/BF01753316.
- S. C. Littlechild. A Simple Expression for the Nucleolus in a Special Case. *International Journal of Game Theory*, 3:21–29, 1974b. URL https://doi.org/10.1007/BF01766216.

- S. C. Littlechild and G. Owen. A Simple Expression for the Shapely Value in a Special Case. *Management Science*, 20(3):370–372, 1973. ISSN 00251909, 15265501. URL http://www.jstor.org/stable/2629727.
- S. C. Littlechild and G. Owen. A Further Note on the Nucleolus of the Airport Game. *International Journal of Game Theory*, 5(2): 91–95, 1976. URL https://doi.org/10.1007/BF01753311.
- S. C. Littlechild and G. F. Thompson. Aircraft Landing Fees: A Game Theory Approach. The Bell Journal of Economics, 8(1):186–204, 1977. ISSN 0361915X. URL http://www.jstor.org/stable/3003493.
- F. Lorenz. "Lineare Algebra I". BI-Wissenschaftsverlag, Mannheim, 2 edition, 1988.
- S. Lorenzo-Freire. New characterizations of the Owen and BanzhafOwen Values Using the Intracoalitional Balanced Contributions Property. TOP, 25(3):579–600, 2017. doi: 10.1007/s11750-017-0446-3. URL https://doi.org/10.1007/s11750-017-0446-3.
- S. Lorenzo-Freire, J.M. Alonso-Meijide, B. Casas-Méndez, and M.G. Fiestras-Janeiro. Characterizations of the DeeganPackel and Johnston Power Indices. European Journal of Operational Research, 177(1):431 444, 2007. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ej or.2005.08.025. URL http://www.sciencedirect.com/science/article/pii/S0377221705009057.
- W. F. Lucas. A Game with No Solution. Bull. Amer. Math. Soc., 74:237-239, 1968.
- W. F. Lucas. A Proof that a Game may have not a Solution. Bull. Amer. Math. Soc., 137:219-229, 1969.
- W. F. Lucas and M. Rabie. Games with No Solutions and Empty Cores. *Mathematics of Operations Research*, 7(4):491-500, 1982. ISSN 0364765X, 15265471. URL http://www.jstor.org/stable/3689474.
- D. Léonard and N. Van Long. Optimal Control Theory and Static Optimization in Economics. Cambridge University Press, Cambridge, second reprint edition, 1994.
- R. Maeder. Programming in Mathematica. Addison Wesley, Reading Massachusetts, 3 edition, 1996.
- R. Maeder. Computer Science with Mathematica. Cambridge University Press, Cambridge, UK, 1 edition, 2000.
- S. Mangano. Mathematica Cookbook. O'Reilly, Heidelberg, 2010.
- N. G. Mankiw. "Macroeconomics". Worth, New York, 1 edition, 1992.
- J-E. Martinez-Legaz. Dual Representation of Cooperative Games based on Fenchel-Moreau Conjugation. Optimization, 36:291–319, 1996.
- A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Analysis. Oxford University Press, Oxford, 1 edition, 1995.
- M. Maschler. An advantage of the Bargaining Set over the Core. Journal of Economic Theory, 13(2):184-192, 1976. ISSN 0022-0531. doi: https://doi.org/10.1016/0022-0531(76)90013-2. URL https://www.sciencedirect.com/science/article/pii/0022053176900132.
- M. Maschler. The Bargaining Set, Kernel and Nucleolus. In R. J. Aumann and S. Hart, editors, *Handbook of Game Theory*, volume 1, chapter 18, pages 591–668. Elsevier Science Publishers, Amsterdam, 1992.
- M. Maschler and B. Peleg. A Characterization, Existence Proof and Dimension Bounds for the Kernel of a Game . *Pacific Journal of Mathematics*, 18(2):289–328, 1966.
- M. Maschler, B. Peleg, and L.S. Shapley. The Kernel and Bargaining Set for Convex Games. *International Journal of Game Theory*, 1: 73–93, 1972.
- M. Maschler, B. Peleg, and L. S. Shapley. Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts. *Mathematics of Operations Research*, 4:303–338, 1979.
- M. Maschler, E. Solan, and Zamir Sh. Game Theory. Cambridge University Press, Cambridge, 1 edition, 2013.
- MathWorks. Second-Order Cone Programming Algorithm MATLAB & Simulink. MathWorks Inc., Natick, Massachusetts, 2024.
- MATLAB. version 24.2 (R2024b). The MathWorks Inc., Natick, Massachusetts, 2024.
- R. Meessen. Communication Games. Master's thesis, University of Nijmegen, the Netherlands, 1988. in Dutch.
- H. I. Meinhardt. Common Pool Games are Convex Games. Journal of Public Economic Theory, 2:247-270, 1999a.
- H. I. Meinhardt. Convexity and k-Convexity in Cooperative Common Pool Games. Discussion Paper 11, Institute for Statistics and Economic Theory, University Karlsruhe, Karlsruhe, 1999b.
- H. I. Meinhardt. Cooperative Decision Making in Common Pool Situations, volume 517 of Lecture Notes in Economics and Mathematical Systems. Springer, Heidelberg, 2002.
- H. I. Meinhardt. An LP Approach to Compute the Pre-Kernel for Cooperative Games. Computers and Operations Research, 33/2:pp 535–557, 2006.
- H. I. Meinhardt. The Pre-Kernel as a Tractable Solution for Cooperative Games: An Exercise in Algorithmic Game Theory, volume 45 of Theory and Decision Library: Series C. Springer Publisher, Heidelberg/Berlin, 2013. ISBN 978-3-642-39548-2. doi: 10.1007/978-3-642-39549-9. URL https://doi.org/10.1007/978-3-642-39549-9.

- H. I. Meinhardt. A Note on the Computation of the Pre-Kernel for Permutation Games. Technical Report MPRA-59365, Karlsruhe Institute of Technology (KIT), May 2014. URL http://mpra.ub.uni-muenchen.de/59365/.
- H. I. Meinhardt. The Incorrect Usage of Propositional Logic in Game Theory: The Case of Disproving Oneself. *ArXiv e-prints*, abs/1509.05883, 2015. URL http://arxiv.org/abs/1509.05883.
- H. I. Meinhardt. Finding the Nucleoli of Large Cooperative Games: A Disproof with Counter-Example. CoRR, abs/1603.00226, 2016a. URL http://arxiv.org/abs/1603.00226.
- H. I. Meinhardt. The Incorrect Usage of Propositional Logic in Game Theory: The Case of Disproving Oneself. MPRA, 75876, 2016b. URL https://mpra.ub.uni-muenchen.de/75876/. Revised Version.
- H. I. Meinhardt. Simplifying the Kohlberg Criterion on the Nucleolus: A Disproof by Oneself. Technical Report MPRA-77143, Karlsruhe Institute of Technology (KIT), March 2017a. URL http://mpra.ub.uni-muenchen.de/77143/.
- H. I. Meinhardt. Simplifying the Kohlberg Criterion on the Nucleolus: A Correct Approach. ArXiv e-prints, 2017b. URL http://arxiv.org/abs/1706.08076.
- H. I. Meinhardt. MatRep: A Matlab Toolbox for Representation Theory (Symmetric Groups), 2017c. URL https://de.mathworks.com/matlabcentral/fileexchange/62142-matrep-a-matlab-representation-theory-toolbox--symmetric-groups-?s_tid=prof_contriblnk.
- H. I. Meinhardt. A Manual of the Matlab Representation Theory Toolbox MatRep Version 0.1: A Quick Reference. Technical report, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2017d. URL https://www.researchgate.net/publication/315661547 _A_Manual_of_the_Matlab_Representation_Theory_Toolbox_MatRep_Version_01_A_Quick_Reference. Version 0.1.
- H. I. Meinhardt. The Pre-Kernel as a Fair Division Rule for Some Cooperative Game Models, pages 235–266. Springer International Publishing, Cham, 2018a. ISBN 978-3-319-61603-2. doi: 10.1007/978-3-319-61603-2_11. URL https://doi.org/10.1007/978-3-319-61603-2_11.
- H. I. Meinhardt. The Modiclus Reconsidered. Technical report, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2018b. URL http://dx.doi.org/10.13140/RG.2.2.32651.75043.
- H. I. Meinhardt. Reconsidering Related Solutions of the Modiclus. Technical report, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2018c. URL http://dx.doi.org/10.13140/RG.2.2.27739.82729.
- H. I. Meinhardt. Deduction Theorem: The Problematic Nature of Common Practice in Game Theory. arXiv e-prints, art. arXiv:1908.00409, Aug 2021a. URL https://arxiv.org/abs/1908.00409v2.
- H. I. Meinhardt. Disentangle the Florentine Families Network by the Pre-Kernel. Technical report, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2021b. URL http://dx.doi.org/10.13140/RG.2.2.10014.05447.
- H. I. Meinhardt. MatTuGames: A Matlab Toolbox for Cooperative Game Theory, 2022. URL http://www.mathworks.com/matlabcentral/fileexchange/74092-mattugames.
- H. I. Meinhardt. TuGames: A Mathematica Package for Cooperative Game Theory, 2023. URL https://github.com/himeinhardt/TuGames
- H. I. Meinhardt. On the Replication of the Pre-Kernel and Related Solutions. Computational Economics, 64:871946, 2024. URL http://dx.doi.org/10.1007/s10614-023-10428-w. Online available 2023.
- A. Meseguer-Artola. Using the Indirect Function to characterize the Kernel of a TU-Game. Technical report, Departament d'Economia i d'Història Econòmica, Universitat Autònoma de Barcelona, Nov. 1997. mimeo.
- P. Milgrom. An Axiomatic Characterization of Common Knowledge. *Econometrica*, 49(1):219–222, 1981. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1911137.
- MOSEK. The MOSEK Optimization Toolbox for MATLAB Manual. Version 10.2. Technical report, MOSEK ApS, Fruebjergvej 3, Boks 16, 2100 Copenhagen O, 2024. URL http://docs.mosek.com/10.2/toolbox/index.html.
- H. Moulin. Deterrence and Cooperation: A Classification of Two Person Games. European Economic Review, 15:179-193, 1981.
- H. Moulin. Game Theory for the Social Sciences. New York University Press, New York, 2 edition, 1986.
- H. Moulin. Axioms of Cooperative Decision Making. Econometric Society Monographs No. 15. Cambridge University Press, Cambridge, 1988.
- H. Moulin. Fair Division and Collective Welfare. MIT Press, Cambridge, Massachusetts, 2003.
- D. Mueller. A Cost Calculation Model for the Optimal Design of Size Ranges. *Journal of Engineering Design*, 22(7):467–485, 2011. doi: 10.1080/09544820903449218. URL https://doi.org/10.1080/09544820903449218.
- D. Mueller. Investitionsrechnung und Investitionscontrolling. Springer-Lehrbuch. Springer Publisher, Heidelberg, 2 edition, 2018.
- D. Mueller. Betriebswirtschaftslehre für Ingenieure. Springer-Lehrbuch. Springer Publisher, Heidelberg, 1 edition, 2020.

- D. Mueller. Investitionscontrolling: Entscheidungsfindung bei Investitionen II. Springer-Lehrbuch. Springer Publisher, Heidelberg, 3 edition, 2022.
- J.R. Munkres. Topology: A First Course. Prentice-Hall, Englewood Cliffs, New Jersey, 1975.
- R. B. Myerson. Graphs and Cooperation in Games. Mathematics of Operations Research, 2(3):225-229, August 1977.
- R. B. Myerson. Conference Structures and Fair Allocation Rules. International Journal of Game Theory, 9(3):169–182, 1980.
- R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, Cambridge, Massachusetts, London, England, 1991.
- D. Müller and M. F. K. Pisch. An Improper Solution to the Flood Cost Sharing Problem. *Economics Letters*, 238:111706, 2024. ISSN 0165-1765. doi: https://doi.org/10.1016/j.econlet.2024.111706. URL https://www.sciencedirect.com/science/article/pii/S0165176524001897.
- J. F. Nash. Noncooperative Games. Annals of Mathematics, 54:289–295, 1951.
- H. Norde, K. H. Pham Do, and S. Tijs. Oligopoly Games with and without Transferable Technologies. *Mathematical Social Sciences*, 43:187–207, 2002.
- A. S. Nowak and T. Radzik. A Solidarity Value for n-Person Transferable Utility Games. International Journal of Game Theory, 23: 43–48, 1994.
- B. O'Neill. A Problem of Rights Arbitration from the Talmud. Mathematical Social Sciences, 2:345-371, 1982.
- G. Orshan. The Prenucleolus and the Reduced Game Property: Equal Treatment Replaces Anonymity. International Journal of Game Theory, 22:241–248, 1993.
- G. Orshan and P. Sudhölter. Reconfirming the Prenucleolus. Mathematics of Operations Research, 28:283–293, 2003.
- A. Ostmann. Classifying Three-Person Games. Technical Report 140, University of Bielefeld, 1984.
- A. Ostmann. On the Minimal Representation of Homogeneous Games. International Journal of Game Theory, 16(1):69-81, 1987.
- A. Ostmann. Limits of Rational Behavior in Cooperatively Played Normalform Games. In R. Tietz, W. Albers, and R. Selten, editors, Bounded Rational Behavior in Experimental Games and Markets, Lecture Notes in Economics and Mathematical Systems 314, pages 317–332, Berlin, 1988. Springer-Verlag.
- A. Ostmann. A Note on Cooperation in Symmetric Common Dilemmas. mimeo, 1994.
- A. Ostmann and H. I. Meinhardt. Non-Binding Agreements and Fairness in Commons Dilemma Games. Central European Journal of Operations Research, 15(1):63–96, 2007.
- A. Ostmann and H. I. Meinhardt. Toward an Analysis of Cooperation and Fairness That Includes Concepts of Cooperative Game Theory. In A. Biel, D. Eek, T. Garling, and M. Gustafson, editors, *New Issues and Paradigms in Research on Social Dilemmas*, pages 230–251. Springer-Verlag, 2008.
- A. Ostmann and M. Saboyá. Symmetric homogeneous local interaction. Technical report, Institut für Mathematische Wirtschaftsforschung, Universität Bielefeld., Bielefeld, 1999. URL https://pub.uni-bielefeld.de/download/2909898/2909937. Working Paper 314.
- J. Antonio Rivero Ostoic. Compositional Equivalence with Actor Attributes: Positional Analysis of the the Florentine Families Network. CoRR, abs/1804.09427, 2018. URL http://arxiv.org/abs/1804.09427.
- G. Owen. A Note on the Nucleolus. International Journal of Game Theory, 3(2):101-103, 1974. URL https://doi.org/10.1007/BF01 766395.
- G. Owen. Values of Games with a priori Unions. In R. Henn and O. Moeschlin, editors, Essays in Mathematical Economics and Game Theory, pages 76–88. Springer-Verlag, New York, 1977.
- G. Owen. Game Theory. Academic Press, San Diego, 3 edition, 1995.
- J.F. Padgett. Open Elite? Social Mobility, Marriage, and Family in Florence, 12821494. Renaissance Quarterly, 63(2):357–411, 2010. ISSN 00344338, 19350236. URL http://www.jstor.org/stable/10.1086/655230.
- J.F. Padgett and C.K. Ansell. Robust Action and the Rise of the Medici, 1400-1434. American Journal of Sociology, 98:1259-1319, 1993.
- B. Peleg. On the Kernel of Constant-Sum Simple Games with Homogeneous Weights. Illinois J. Math., 10(1):39-48, 03 1966. doi: 10.1215/ijm/1256055199. URL https://doi.org/10.1215/ijm/1256055199.
- B. Peleg. On the Reduced Game Property and its Converse. International Journal of Game Theory, 15:187–200, 1986.
- B. Peleg. On the Reduced Game Property and its Converse. A Correction. International Journal of Game Theory, 16:290, 1987.
- B. Peleg and J. Rosenmüller. The Least Core, Nucleolus, and Kernel of Homogeneous Weighted Majority Games. *Games and Economic Behavior*, 4(4):588-605, 1992. ISSN 0899-8256. doi: https://doi.org/10.1016/0899-8256(92)90039-U. URL https://www.sciencedirect.com/science/article/pii/089982569290039U.

- B. Peleg and P. Sudhölter. Introduction to the Theory of Cooperative Games, volume 34 of Theory and Decision Library: Series C. Springer-Verlag, Heidelberg, 2 edition, 2007.
- B. Peleg, J. Rosenmüller, and P. Sudhölter. The Kernel of Homogeneous Games with Steps. In N. Megiddo, editor, *Essays in Game Theory in Honor of Michael Maschler*, pages 163–192, Heidelberg, 1994. Springer Publisher.
- H. Peters. Game Theory: A Multi-Leveled Approach. Springer-Verlag, Heidelberg, 1 edition, 2008.
- H. Peters. Game Theory: A Multi-Leveled Approach. Springer-Verlag, Heidelberg, 2 edition, 2015.
- K. H. Pham Do. Water Resource Management: Challenges and Opportunities with Game Theory Approaches, 02 2022. URL https://oxfordre.com/environmentalscience/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-763.
- K. H. Pham Do, A. Dinar, and D. McKinney. Transboundary Water Management: Can Issue Linkage Help Mitigate Externalities? International Game Theory Review, 14(01):1250002, 2012. doi: 10.1142/S0219198912500028. URL https://doi.org/10.1142/S0219198912500028.
- N. Ploskas and N. Samaras. GPU Programming in MATLAB. Morgan Kaufmann/Elsevier, Cambridge, MA. (USA), 1 edition, 2016.
- N. Ploskas and N. Samaras. Linear Programming Using MATLAB, volume 127 of Springer Optimization and its Applications. Springer, Heidelberg, Germany, 1 edition, 2018.
- J. A. M. Potters, H. Reijnierse, and M. Ansing. Computing the Nucleolus by Solving a Prolonged Simplex Algorithm. Mathematics of Operations Research, 21(3):757–768, 1996.
- R. C. Prim. Shortest Connection Networks and some Generalizations. The Bell System Technical Journal, 36(6):1389–1401, 1957. doi: 10.1002/j.1538-7305.1957.tb01515.x.
- T.E.S. Raghavan and P. Sudhölter. The Modiclus and Core Stability. *International Journal of Game Theory*, 33:467–478, 2005. URL https://doi.org/10.1007/s00182-005-0207-7.
- H. Reijnierse and J. Potters. The *B*-Nucleolus of TU-Games. Games and Economic Behaviour, 24:77–96, 1998.
- M. Richardson. On Finite Projective Games. Proceedings of the American Mathematical Society, 7(3):458–465, 1956. doi: 10.1090/S000 2-9939-1956-0079543-2. URL https://doi.org/10.1090/S0002-9939-1956-0079543-2.
- R. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.
- D. Rosales. Cooperative Product Games, 2014. URL www.academia.edu/40176429. unpublished mimeo.
- J. S. Rose. A Course on Group Theory. Cambridge University Press, Cambridge, UK, 1978.
- J. B. Rosen. Existence and Uniqueness of Equilibrium Points for Concave N-Person Games. *Econometrica*, 33(3):520–534, 1965. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1911749.
- J. Rosenmüller. The Theory of Games and Markets. North-Holland, Amsterdam, 1981.
- J. Rosenmüller. Weighted majority games and the matrix of homogeneity. Zeitschrift für Operations Research, 28(5):123 141, 1984. doi: 10.1007/BF01920914. URL https://doi.org/10.1007/BF01920914.
- J. Rosenmüller. Homogeneous Games: Recursive Structure and Computation. *Mathematics of Operations Research*, 12(2):309–330, 1987. URL https://www.jstor.org/stable/3689693.
- J. Rosenmüller and P. Sudhölter. Cartels via the Modiclus. Discrete Applied Mathematics, 134(1):263 302, 2004. ISSN 0166-218X. doi: https://doi.org/10.1016/S0166-218X(03)00227-0. URL http://www.sciencedirect.com/science/article/pii/S0166218X03002270.
- A.E. Roth. The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge University Press, Cambridge, 1988.
- L. M. Ruiz, F. Valenciano, and J. M. Zarzuelo. The Least Square Pre-Nucleolus and the Least Square Nucleolus. Two Values for TU Games based on the Excess Vector. *International Journal of Game Theory*, 25:113–134, 1996.
- T. Russell. On a Theorem of Gorman. *Economics Letters*, 11(3):223 224, 1983. ISSN 0165-1765. doi: https://doi.org/10.1016/0165-1765(83)90139-8. URL http://www.sciencedirect.com/science/article/pii/0165176583901398.
- T. Russell. Gorman Demand Systems and Lie Transformation Groups: A Reply. Economics Letters, 51(2):201 204, 1996. ISSN 0165-1765. doi: https://doi.org/10.1016/0165-1765(96)00806-3. URL http://www.sciencedirect.com/science/article/pii/016517 6596008063.
- T. Russell and F. Farris. The Geometric Structure of some Systems of Demand Equations. *Journal of Mathematical Economics*, 22(4): 309 325, 1993. ISSN 0304-4068. doi: https://doi.org/10.1016/0304-4068(93)90020-L. URL http://www.sciencedirect.com/science/article/pii/030440689390020L.
- T. Russell and F. Farris. Integrability, Gorman Systems, and the Lie Bracket Structure of the Real Line. *Journal of Mathematical Economics*, 29(2):183 209, 1998. ISSN 0304-4068. doi: https://doi.org/10.1016/S0304-4068(97)00806-9. URL http://www.sciencedirect.com/science/article/pii/S0304406897008069.

- B. E. Sagan. "The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions", volume 203 of Graduate Texts in Mathematics. Springer Publisher, Heidelberg, 2 edition, 2000.
- N. Schlömer. Matlab2Tikz. Technical report, GitHub, 2022. URL https://github.com/matlab2tikz/matlab2tikz. Version 2022.
- D. Schmeidler. The Nucleolus of a Characteristic Function Game. SIAM, Journal of Applied Mathematics, 17:1163–1170, 1969.
- D. Schoch. netrankr: Analyzing Partial Rankings in Networks. Technical report, Manchester, UK, 2020a. URL https://cran.r-project.org/web/packages/netrankr/index.html. Version 0.3.
- D. Schoch. networkdata: Package of Different Network Datasets. Technical report, Manchester, UK, 2020b. URL https://github.com/schochastics/networkdata. Version 0.1.
- R. W. Sebesta. Concepts of Programming Languages. Pearson, 11 edition, 2016.
- S. K. Sen and S. S. Prabhu. Optimal Iterative Schemes for Computing the Moore-Penrose Matrix Inverse. International Journal of Systems Science, 7(8):847-852, 1976. doi: 10.1080/00207727608941969. URL https://doi.org/10.1080/00207727608941969.
- R. Serrano. Reinterpretation the Kernel. Journal of Economic Theory, 77:58-80, 1997.
- L. S. Shapley. A Value of N-Person Games. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games II, volume 28, pages 307–317, Princeton, NJ., 1953. Annals of Mathematical Studies, Princeton University Press.
- L. S. Shapley. On Balanced Sets and Cores. Naval Research Logistics Quarterly, 14:453–460, 1967.
- L. S. Shapley. Cores of Convex Games,. International Journal of Game Theory, 1:11-26, 1971.
- L. S. Shapley and M. Shubik. A Method for Evaluating the Distribution of Power in a Committee System. American Political Science Review, 48:787–792, 1954.
- L. S. Shapley and M. Shubik. Quasi-Cores in a Monetary Economy with Nonconvex Preferences. *Econometrica*, 34(4):805–827, 1966. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1910101.
- L. S. Shapley and M. Shubik. On Market Games. Journal of Economic Theory, 1:9-25, 1969.
- L. S. Shapley and M. Shubik. An Assignment Game I: The Core. International Journal of Game Theory, 2:111–130, 1972.
- M. Shubik. "Market structure and behavior". Harvard University Press, Cambridge, 1980.
- A. J. Sobolev. The Characterization of Optimality Principles in Cooperative Games by Functional Equations. In N. N. Vorobjev, editor, *Matematicheskie Metody v Sotsial'nykh Naukakh, Proceedings of the Seminar*, pages 94–151, Vilnius, 1975. Institute of Physics and Mathematics, Academy of Sciences of the Lithuanian SSR. (in Russian, English summary).
- T. Solymosi. The Kernel is in the Least Core for Permutation Games. Central European Journal of Operations Research, pages 1–15, March 2014. ISSN 1435-246X. doi: 10.1007/s10100-014-0342-y. URL http://dx.doi.org/10.1007/s10100-014-0342-y.
- T. Solymosi and T.E.S Raghavan. An Algorithm for Finding the Nucleolus of Assignment Games. *International Journal of Game Theory*, 6:94–151, 1994.
- T. Solymosi and B. Sziklai. Universal Characterization Sets for the Nucleolus in Balanced Games. Technical Report MT-DP 2015/12, Corvinus University of Budapest, 2015.
- T. Solymosi and B. Sziklai. Characterization Sets for the Nucleolus in Balanced Games. Operations Research Letters, 44(4):520 524, 2016. ISSN 0167-6377. doi: http://dx.doi.org/10.1016/j.orl.2016.05.014. URL http://www.sciencedirect.com/science/article/pii/S0167637716300414.
- $R.E.\ Stearns.\ Convergent\ Transfer\ Schemes\ for\ N-Person\ Games.\ Transaction\ of\ the\ American\ Mathematical\ Society,\ 134:449-459,\ 1968.$
- U. Stein. Objektorientierte Programmierung mit MATLAB. Carl Hanser Verlag, Leipzig, 2016.
- B. Steinberg. Representation Theory of Finite Groups: An Introductory Approach. Universitext. Springer-Verlag, 2012.
- P. Sudhölter. Star-Shapedness of the Kernel of Homogeneous Games. Mathematical Social Sciences, 32:179–214, 1996.
- P. Sudhölter. The Modified Nucleolus: Properties and Axiomatizations. International Journal of Game Theory, 26(2):147–182, Jun 1997a. ISSN 1432-1270. doi: 10.1007/BF01295846. URL https://doi.org/10.1007/BF01295846.
- P. Sudhölter. Nonlinear Self Dual Solutions for TU-Games. In T. Parthasarathy, B. Dutta, J.A.M. Potters, T.E.S. Raghavan, D. Ray, and Sen A., editors, *Game Theoretical Applications to Economics and Operations Research*, volume 18 of *Theory and Decision Library: Series C*, pages 33–50, Boston, MA, 1997b. Springer.
- P. Sudhölter. The Modified Nucleolus of a Cooperative Game. Habilitation thesis, University of Bielefeld, Bielefeld, 1993.
- P. Sudhölter. The Modified Nucleolus as Canonical Representation of Weighted Majority Games. *Mathematics of Operations Research*, 21(3):734–756, 1996. ISSN 0166-218X. URL http://www.jstor.org/stable/3690307.

- F. Szidarovszky and S. Yakowitz. A New Proof of the Existence and Uniqueness of the Cournot Equilibrium. *International Economic Review*, 18(3):787–789, 1977. ISSN 00206598, 14682354. URL http://www.jstor.org/stable/2525963.
- J.G. Sánchez Léon. Mathematica beyond Mathematics: The Wolfram Language in the Real World. CRC Press, Boca Raton, US., 2017.
- J. Sánchez-Pérez. An Application of the Representations of Symmetric Groups to Characterizing Solutions of Games in Partition Function Form. Operations Research and Decisions, 2:97-122, 2014. URL https://EconPapers.repec.org/RePEc:wut:journ1:v:2:y:2014:p: 97-122:id:1088.
- J. Sánchez-Pérez. A Decomposition for the Space of Games with Externalities. International Journal of Game Theory, 46(1):205–233, Mar 2017. ISSN 1432-1270. doi: 10.1007/s00182-016-0530-1. URL https://doi.org/10.1007/s00182-016-0530-1.
- A. Takayama. Analytical Methods in Economics. Harvester Wheatsheaf, Hertfordshire, 1994.
- C. R. Taylor. The Long Side of the Market and the Short End of the Stick: Bargaining Power and Price Formation in Buyers', Sellers', and Balanced Markets. The Quarterly Journal of Economics, 110(3):837-855, 1995. ISSN 00335533, 15314650. URL http://www.jstor.org/stable/2946701.
- R. M. Thrall and W. F. Lucas. N-Person Games in Partition Function Form. Naval Research Logistics, pages 281–298, 1963. doi: 10.1002/nav.3800100126.
- S. H. Tijs. Bounds on the Core and the τ -value. In O. Moeschlin and D. Pallaschke, editors, *Game Theory and Mathematical Economics*, pages 123–132. North-Holland, Amsterdam, 1981.
- J. Tirole, editor. The Theory of Industrial Organization. The MIT Press, Cambridge, MA, 1988.
- D. M. Topkis. Supermodularity and Complementarity. Frontiers of Economic Research. Princeton University Press, Princeton, New Jersey, 1998.
- E. van Damme. Stability and Perfection of Nash Equilibria. Springer-Verlag, Heidelberg/Berlin, 2 edition, 1991.
- A. van den Nouveland, P. Borm, and SH. Tijs. Allocation Rules for Hypergraph Communication Situations. *International Journal of Game Theory*, 20:255–268, 1992.
- H. R. Varian. Microeconomic Theory. Norton, New York, 3 edition, 1992.
- H. R. Varian, editor. Economic and Financial Modeling with Mathematica. Telos/Springer, Santa Clara, CA, 1993.
- V.A. Vasil'ev. The Shapley Value for Cooperative Games of Bounded Polynomial Variation. Optimazacija Vyp, 17:5–27, 1975. in Russian.
- V.A. Vasil'ev. On a Class of Imputations in Cooperative Games. Soviet Mathematics Dokladi, 23:53–57, 1981. in Russian.
- X. Vives. Oligopoly Pricing: Old Ideas and New Tools. MIT Press, Cambridge, Massachusetts, 1999.
- J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, 1944.
- Ing. Walter. Die Strozzi: Eine Familie im Florenz der Renaissance. Verlag C.H.Beck, München, Germany, 2011.
- X. H. Wang and J. Zhao. Merger Effects in Asymmetric and Differentiated Bertrand Oligopolies. *Mathematical Social Sciences*, 120: 37-49, 2022. ISSN 0165-4896. doi: https://doi.org/10.1016/j.mathsocsci.2022.09.002. URL https://www.sciencedirect.com/science/article/pii/S0165489622000725.
- R. J. Weber. Probabilistic Values for Games, pages 101-119. In Roth (1988), 1988.
- R. Webster. Convexity. Oxford University Press, Oxford, 1994.
- P. Wellin. Programming with Mathematica: An Introduction. Cambridge University Press, Cambridge, UK., 2013.
- P. Wellin. Essentials of Programming in Mathematica. Cambridge University Press, Cambridge, UK., 2016.
- Inc. Wolfram Research. Mathematica Edition: Version 14.1. Technical report, Wolfram Research, Inc., Champaign, Illinois, 2024.
- H. Wolsey. The Nucleolus and Kernel for Simple Games or Special Valid Inequalities for 0-1 Linear Integer Programs. *International Journal of Game Theory*, 5(4):227–238, 1976.
- D. Xue and Y. Chen. Solving Applied Mathematical Problems with MATLAB. CRC Press, 2010.
- W. Y. Yang, W. Cao, T-S. Chung, and J. Morris. "Applied Numerical Methods Using Matlab". John Wiley & Sons, Inc, 2005.
- K. Yokote, Y. Funaki, and Y. Kamijo. Linear Basis Approach to the Shapley Value. Working Paper 1303, Waseda University, 2013.
- E. Zeidler, W. Hackbusch, and H. R. Schwarz. Teubner-Taschenbuch der Mathematik. Vieweg & Teubner, Stuttgart/Leipzig, 1996.
- J. Zhao. β-Core Existence Result and its Application to Oligopoly Markets. Games and Economic Behavior, 27:153–168, 1999a.

Bibliography 1165

- J. Zhao. A Necessary and Sufficient Condition for the Convexity in Oligopoly Games. Mathematical Social Sciences, 37:189–204, 1999b.
- J. Zhao. The Existence of TU α -Core in Normal Form Games. International Journal of Game Theory, 28:25–34, 1999c.
- J. Zhao. The Relative Interior of Base Polyhedron and the Core. Economic Theory, 18:635-648, 2001.
- J. Zhao. Estimating Merging Costs by Merger Preconditions. Theory and Decision, 66:373–399, 2009.
- J. Zhao. An Open Problem on Inverse Matrices from Industrial Organization, and a Partial Solution. Linear Algebra and its Applications, 437(1):294-306, 2012. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2012.02.019. URL https://www.sciencedirect.com/science/article/pii/S0024379512001632.
- J. Zhao. Merger Profitability in All Linear Oligopolies with Four Firms. Discussion paper, Department of Economics, University of Saskatchewan, Saskatoon, 2016. mimeo.
- J. Zhao. TU Oligopoly Games and Industrial Cooperation. In Corchon and Marini, editors, Handbook of Game Theory and Industrial Organization, volume I, page 392422. Edward Elgar Publisher, Cheltenham, 2018.

Author Index 1167

Author Index

*!?	D
Álvarez Mozos, M., 619, 654	Davis, M., 7, 8, 20, 438
	Deegan, J., 618
A	Dehez, P., 20, 349, 371, 373, 967, 971, 1053
п	Deng, X., 184, 403, 405
	Derks, J., 476, 584
Aarts, H., 421, 422	de Roover, R., 649, 662, 677
Algaba, E., 28, 412, 557, 560, 561, 907	Dietzenbacher, B., 703
Aliprantis, Ch. D., 320, 322	Dinar, A., 1005
Alonso-Meijide, J. M., 619, 620, 654, 659	Dixit, A. K., 294, 989, 1034
Altman, Y., 837, 838, 841, 851	Driessen, T. S. H., 5, 8, 18, 20, 28, 118, 272, 278, 281, 348, 370,
Andersen, E. D., 500	374, 421, 422, 434, 505, 641, 790, 971, 988, 990, 994,
Ansell, C. K., 648, 664, 672	996, 1001, 1099
Ansing, M., 584	the state of the s
Antonio Rivero Ostoic, J., 648	Driscoll, T. A., 1111
Arin, J., 375–377, 381, 647	Drèze, J. H., 552
Arora, S., 185	Dubey, P., 611, 612
Attaway, St., 29, 37, 67, 100, 118, 884, 898	Dym, H., 65
Aumann, R. J., 279, 318, 552, 994	
Aumann, R. J., 279, 510, 502, 334	${f E}$
В	Ebbinghaus, HD, 471, 765, 1020, 1091
	Elden, L., 57, 1102
Banzhaf, J. F., 611	
Barak, B., 185	Elkind, E., 184
	Estévez-Fernández, A., 603
Barro, R. J., 170	
Barron, E.N., 21, 28	\mathbf{F}
Barry, B., 618	
Bergantiños, G., 412, 417	Faigle, U., 429, 593, 595, 865
Bilbao, J. M., 557, 560, 561, 907	Farris, F., 1019
Bird, C. G., 412, 420, 422	Felsenthal, D. S., 620
Bixby, R., 502	Feltkamp, V., 381
Blanchard, O. J., 169, 170	Ferreira, F., 619, 654
Bondareva, O. N., 14	Fiestras-Janeiro, M. G., 603, 620, 659
Border, K. C., 320–322	Fischer, S., 169, 170
Borm, P., 557, 560, 561, 915	Flum, J., 471, 765, 1020, 1091
Boyd, St., 294, 298, 299, 309, 498, 500	Ford, L. R., 400
Bozzo, E., 648	
Braun, R. J., 1111	Fragnelli, V., 28
Breiger, R-L., 648, 653, 662, 664, 671, 674, 676	Franceschet, M., 648
Béal, S., 592, 595, 1113, 1123	Fronzetti Colladon, A., 648
2001, 51, 002, 000, 1110, 1120	Fulkerson, D. R., 400
	Fulton, W., 1123, 1127, 1129
C	Funaki, Y., 429, 486, 491, 591, 595, 641, 713, 1113, 1123
Caimo, A., 648	G
Calvo, E., 554	
Cao, W., 29, 57, 121, 443, 682, 1102, 1110	Gale, D., 1015
Carpente, L., 10	García-Jurado, I., 10
Carreras, F., 659	Gately, D., 955
Carter, M., 272, 285, 293, 947, 956, 1142	· · · · · · · · · · · · · · · · · · ·
	Gaudet, G., 1015
Casas-Méndez, B., 10, 620	Gaylord, R. J, 199
Chalkiadakis, G., 184	Getán, J., 379, 383
Chang, Ch., 4, 7, 8, 405, 641	Goldberg, D., 1102, 1107
Chapman, St. J., 29, 109, 132	Goldberg, L. A., 184
Chen, Y., 29	Goldberg, P. W., 184
Cheney, W., 1106	González-Díaz, J., 374
Chiang, A. C., 84, 299, 309	Grabisch, M., 429, 593, 595, 865
Chung, T-S., 29, 57, 121, 443, 682, 1102, 1110	Granot, D., 417, 421, 422, 514, 562, 567, 584, 587
Claus, A, 412	Granot, F., 562, 567, 584, 587
Coase, R. H., 111	Green, J., 111, 299, 309, 321, 356
Coleman, J. S., 611	Gräbe, HG., 199, 200, 262
Crooke, Ph. S., 199, 294, 299, 306, 309, 312, 316	Gu, Z., 502
Curiel, I., 389, 413	Gutiérrez, E., 554

1168 Author Index

H	Littlechild, S. C., 110–113, 118, 151, 371, 584, 955
	Lorenz, F., 1123
Hackbusch, W., 57, 1102	Lorenzo-Freire, S., 620
Hahn, B. D., 29, 36, 100, 118	Lucas, W. F., 362, 1005, 1130
Hall, B. C., 1120, 1123	López, J. J., 557, 560, 561, 907
Haller, H., 476	Léonard, D., 294
Harris, J., 1123, 1127, 1129 Hart, S., 293, 429, 554, 689, 699, 806, 867, 1005, 1019, 1123	M
Harville, D. A., 73, 82, 322	Maeder, R., 199, 262
Hernández-Lamoneda, L., 763, 1113	Manea, M., 1113, 1123
Hibbert, Ch., 650, 661, 662, 672	Mangano, S., 214, 1047
Higham, D. J., 29	Mankiw, N. G., 170
Higham, N. J., 29	Martínez-Legaz, J-E., 438
Hodel, R. E., 1091 Holler, M. J., 618, 620, 648, 654, 662, 668, 670	Mas-Colell, A., 111, 293, 299, 309, 321, 356, 429, 689, 699, 867
Hotelling, H., 110	Maschler, M., 7–9, 12, 20, 28, 181, 279, 375, 376, 378, 395, 438,
Hou, D., 971	440, 469, 508, 533, 542, 564, 623, 641, 717, 739, 950,
Hougaard, J., 700, 701	953,1019
Hu, Ch., 4, 7, 8	MathWorks, 500
Hu, G., 971	MATLAB, 29, 884
Huang, Cl. J., 199, 294, 299, 306, 309, 312, 316	McKinney, D., 1005
Huberman, G., 417, 421, 422, 514, 563, 571	Meessen, R., 560
Humphreys, J. F., 1113	Meinhardt, H. I., x, 4, 5, 28, 370, 392, 398, 427, 438, 439, 442,
Hwang, Y-A., 16, 709	444, 471, 486, 491, 502, 532, 538, 542, 562, 563, 587,
	588, 590, 639, 641, 643, 662, 670, 682, 713, 739, 740,
I	766, 789, 793, 865, 875, 926, 947, 953, 955, 987, 988,
	990, 994, 996, 1001, 1019, 1020, 1023, 1087, 1094,
Ichiishi, T., 111, 321	1113, 1120, 1136, 1141
Ieong, S., 184	Meseguer-Artola, A., 439, 453, 531
Isbell, A., 623, 641, 645	Milgrom, P., 318
Izquierdo, J., 379, 383	Mitra, M., 404
Iñarra, E., 376, 381, 505, 647, 950	Montes, J., 379, 383
	Morgenstern, O., x, 3, 615, 622, 994
J	Morris, J., 29, 57, 121, 443, 682, 1102, 1110
	MOSEK, 500
Jentzsch, G., 994	Mosquera, M. A., 603
Jerison, M., 1019	Moulin, H., 10, 20, 28, 289, 994 Mueller, D., 111, 116, 271, 356, 511
Justman, M., 477	Munkres, J. R., 319, 320
Juárez, R., 763, 1113	Mutuswami, S., 404
	Myerson, R. B., 10, 555
K	141/015011, 10. 10., 10, 000
	N
Kalai, E., 395, 717	
Kamijo, Y., 429, 591, 595	Naldi, M., 648
Kamin, S. N., 199	Nash, J. F., 319, 321, 1019
Kan, Ch. Y., 641	Nielsen, H. B., 57, 1102
Kaneko, M., 4, 8, 10, 357	Nikaido, H., 1015
Kar, A., 404	Norde. H., 370, 988, 990, 995
Katsev, I., 375, 377, 647	Nowak, A. S., 551
Kido, K., 495, 974, 975	0
Kincaid, D., 1106	0
Kleinberg, N. L., 562, 591, 1123	O'Neill, B., 272
Kleitman, D. J., 412	Orshan, G., 691, 708, 746
Kleppe, J., 479, 483, 563	Ostmann, A., 4, 5, 434, 623, 624, 662, 714, 987, 988, 995, 1113
Kofler, M., 199, 200, 262 Kohlberg, E., 464, 468, 472, 809	Owen, G., 10, 28, 110-113, 118, 362, 371, 464, 553, 560, 659,
Kopelowitz, A., 464, 649, 665	915
Krause, R. W., 648	_
Kruskal, J-B., 412	P
Kuipers, J., 584	Pacini, P. M., 20
Kurz, M., 554, 806, 1005, 1019, 1123	Packel, E. W., 618, 620
11412, 1111, 001, 000, 1000, 1010, 1120	Padgett, J. F., 648, 651, 664, 672
L	Papadimitriou, C. H., 184, 403, 405
	Parlar, M., xi, 20, 194, 289, 292, 1151
Laffont, J-J., 111	Pattison, Ph-E., 648, 653, 662, 664, 671, 674, 676
Lakshmikantham, V., 57, 1101–1104, 1107	Peleg, B., 7, 9, 10, 12, 16, 20, 28, 375, 376, 378, 405, 438, 440,
Lardon, A., 1019, 1022	464, 469, 508, 533, 546, 564, 609, 615, 623, 624, 641,
Legros, P., 20, 194, 289	643, 660, 691, 700, 713, 734, 739, 751, 765, 809, 814,
Lekeas, P. V., 1005	823, 950, 953
Leng, M., xi, 20, 194, 289, 292, 1151	Penny, J., 29
Lian, ChH., 641	Peters, H., 27, 28, 373, 430, 469, 612
Lindfield, N., 29	Pham Do, K. H., 370, 988, 990, 995, 1005

Author Index 1169

Pinto, A. A., 619, 654	Sánchez Léon, J. G., 199, 1047
Pisch, F-K., 511	
Ploskas, N., 29, 852	T
Potters, J. A. M., 584	
Prabhu, S. S., 1104	Takayama, A., 299, 309
Prim, R. C., 412	Taylor, C. R., 181
Publisher IEEE, 29, 244, 251, 255, 1107	Terlaky, T., 500
	Thomas, W., 471, 765, 1020, 1091
R	Thompson, G. F., 110, 111, 151
Radzik, T., 551	Thorlund-Petersen, L., 700
	Thrall, R. M., 1005, 1130
Rafels, C., 379, 383	Tijs, S., 370, 434, 560, 561, 915, 988, 990, 995
Raghavan, T.E.S., 584, 713	Tirole, J., 111
Reijnierse, H., 563, 584	Topkis, D. M., 368, 375
Reijnierse, H., 479, 483	Tseng, Y-C., 405
Richardson, M., 643	
Rinaldi, F., 648	U
Rockafellar, R., 368, 438, 499	
Roos, C., 500	Usategui, J. M., 381, 505, 950
Rosales, D., 967, 1053	
Rose, J. S., 1113	V
Rosen, J. B., 1015	
Rosenmüller, J., 370	Vaidya, K. G., 955
Rosenmüller, J., 615, 623, 624, 626, 713, 716, 734, 779, 833	Valenciano, F., 495, 974, 980
Roth, A. E., 4, 28	Valentine, D. T., 29, 36, 100, 118
Rothberg, E., 502	van Damme, E., 1019
Ruiz, L. M., 495, 974, 980	Vandenberghe, L., 294, 298, 299, 309, 498, 500
Rupp, F., 648, 654, 662, 668, 670	van den Nouveland, A., 10, 561
Russel, T., 1019	Van Long, N., 294
Rémila, E., 592, 595, 1113, 1123	Varian, H. R., 111, 294, 299, 300, 309, 356, 948, 955, 1019, 1026,
	1042, 1142
S	Vasil'ev, V. A., 370
	Vidal-Puga, J., 412, 417
Saboyá, M., 1113	
Sagan, B. E., 397, 1123, 1127, 1129	Vives, X., 188, 323, 988
Sala-I-Martin, X., 170	von Neumann, J., x, 3, 615, 622, 994
Salant, St. W., 1015	***
Samaras, N., 29, 852	\mathbf{W}
Schlömer, N., 174	*** . *
Schmeidler, D., 7, 463, 713	Walter, I., 662
Schoch, D., 653, 662, 669, 674	Wang, X. H., 990–992, 1006, 1034
Schwarz, H. R., 57, 1102	Weber, R. J., 373
Sebesta, R. W., 29, 121, 131, 214, 262, 884	Webster, R., 14
Sen, S. K., 57, 1101–1104, 1107	Weiss, J. W., 562, 591, 1123
Serrano, R., 4, 7, 8	Wellin, P. R., 199
Shapley, L. S., 6, 7, 9, 11, 12, 14, 20, 293, 356–358, 364, 367,	Whinston, M., 111, 299, 309, 321, 356
374–376, 378, 389, 438, 440, 505, 508, 509, 533, 611,	Wittmeyer-Koch, L., 57, 1102
612, 641, 691, 739, 746, 950, 953, 1098	Wolfram Research, 199
Shoham, Y., 184	Wooders, M. H., 4
Shubik, M., 11, 356–358, 364, 389, 612, 990, 1034	Wooldridge, M., 184
Smilgins, A., 701	
Sobolev, A. J., 9, 472, 691, 697, 745	X
Solal, Ph., 592, 595, 1113, 1123	
Solan, E., 8, 28, 395, 469, 717, 1019	Xue, D., 29
Solymosi, T., 392, 563, 571, 572, 578, 584, 587	
Stearns, R. E., 649, 665	Y
Stein, U., 884, 898	
Steinberg, B., 1127, 1129	Yakowitz, S., 1015
Sudhölter, P., 10, 16, 28, 405, 464, 469, 479, 483, 546, 563, 564,	Yang, W. Y., 29, 57, 121, 443, 682, 1102, 1110
609, 615, 624, 637, 639, 641, 643, 660, 691, 703, 708,	Yokote, K., 429, 591, 595, 1113, 1123
709, 713, 716, 724, 734, 746, 751, 765, 779, 789, 809,	,,,,,,,,
	${f z}$
813, 818, 833 Sun D 071	<u></u>
Sun, P., 971 Sziderevezky, F., 1015	7amir Sh 8 28 305 460 717 1010
Szidarovszky, F., 1015 Sziklai B. 563, 571, 572, 578, 587	Zamir, Sh., 8, 28, 395, 469, 717, 1019
Sziklai, B., 563, 571, 572, 578, 587	Zarzuelo, J. M., 495, 974, 980
Sánchez-Rodríguez, E., 603	Zeidler, E., 57, 1102
Sánchez-Pérez, J., x, 1113, 1123, 1130	Zemel, E., 395, 717
Sánchez-Rodríguez, E., 374	Zhao, J., 370, 985, 988–992, 994, 997, 1001, 1005, 1006, 1017,
Sánchez-Soriano, J., 28	1023, 1034
Sánchez-Sánchez, F., 763, 1113	Zhu, W. R., 562, 567, 584, 587

*!?	algorithm
	exponential time, 583
\Rightarrow , 249	nucleolus, 195
#, 205, 262	polynomial time, 583
&, 205, 262	pre-kernel, 442
\rightarrow , 208, 247	pre-kernel for a c.s., 542
c-set, 565	pre-nucleolus, 464
characterization set, 565	strongly polynomial time, 583
dually essential, 571	AllMarginalContributions, 374, 422
essential, 571	AlmostAverageConvexQ, 383
d-contraction, 322	Amdahl's Law, 859, 1050
l_p -k-nucleolus, 975	analysis
l_p -k-pre-nucleolus, 977	fairness, 3
/, 300, 980	normative, 3
/., 208, 301	positive, 3
/;, 242	anti-balanced TU game, 15
:=, 206	anti-core, 14, 511
:>, 249	anti-kernel, 417, 487
=, 206	anti-nucleolus, 417, 490
==, 206, 210	anti-outweighs, 487
===, 207, 252	anti-pre-kernel, 487
([]], 217	anti-pre-nucleolus, 490
_?EvenQ, 232	Anti-Property I, 493
_?OddQ, 232	Anti-Property II, 495
<u></u>	Anti_balancedCollectionQ, 494, 807
A	Anti_Kernel, 426
A	Anti_Modiclus, 810
aghanga 175	Anti_modiclusQ, 810
achange, 175	Anti Monotonic Cover, 416
additive_game, 408, 507, 798	Anti_Nucl, 418
additivity, 10	Anti_Nucl_llp, 425
adjoint matrix, 65	Anti_PreKernel, 490, 1074
ADvalue, 552, 878, 911	Anti_PrekernelQ, 492
agreement	Anti_PreNucl, 492, 807
compliance, 5	AntiReduced_game_propertyQ, 752
obstruction, 4	ApproxNuc, 980, 981
agreements	ApproxPreNuc, 980, 981
binding, 4	apu_SolidarityValue, 555, 911
non-binding, 4	array, 29
Algame, 595	assignment_game, 390, 887
airport cost allocation problem, 112	Attributes
nucleolus, 114	Flat, 222
Shapley value, 113	HoldAllComplete, 224
airport_game, 372	Listable, 222
algebra $End(V)$, 1124	NumericFunction, 222
Hom(V, W), 1124 $Hom(V, W), 1124$	OneIdentiy, 222
	Orderless, 222
$Mat_{r,d}$, 1124 bilinear map, 1124	Protected, 222
direct sum, 1124	average_convexQ, 383, 509, 1070
eigenspace, 1125	AverageConvexQ, 979
eigenvalue, 539, 1125	axiom
eigenvector, 1125	Additivity (ADD), 690
endomorphism ring, 1124	Anonymity (AN), 9, 690
general linear group, 1120, 1124	Associativity, 1113
group algebra, 1127, 1128	Closure, 1113
Hermitian inner product space, 1127	Converse Consistency (COCONS), 823
image, 1125	Converse Derived Game Property (CDGP), 827
irreducible space, 1125	Converse Reduced Game Property (CRGP), 17, 690
kernel, 1125	Covariance under Strategic Equivalence (COV), 9, 690
module, 1123	Dual Cover Property (DCP), 731
orthogonal complement, 1126	Dual Floor Property (DFP), 755
ring, 1123	Dual Replication Property (DRP), 731
tensor product, 1124	Efficiency (EFF), 690, 1132
trace, 1127	Equal Treatment Property (ETP), 690
01000, 1121	Equal fromment froperty (Eff.), 000

Excess Comparability (EC), 731	Best response set, 995
HM-Reduced Game Property (HMS-RGP), 690	best-response
HM-Reduced Game Property set-valued (HMS-RGP, 690	reaction correspondence, 319
HMS-Converse Reduced Game Property (HMS-CRGP),	binary
690	addition, 125
HMS-Weak Reduced Game Property (HMS-WRGP), 690	arithmetic, 124
HMS-Weak Reduced Game Property set-valued (HMS-	division, 126
WRGP), 690	multiplication, 126
Identity, 1114	subtraction, 125
Imput. Saving Reduced Game Property (ISRGP), 691	bint_AssignmentGame, 390
Individual Rationality (IR), 690	bottom-up design, 109
Inverse, 1114	bs PreKernel(), 640
Large Excess Difference Consistency (LEDCONS), 731,	bs_1 refresher(), 040
750	C
Large Excess Difference Converse Consistency (LED-	C
COCONS), 823	1.1
	calculus system, 1094
Linearity (LIN), 1132	CanonicalOrder, 343
Nonemptiness (NE), 9, 690	Cartel
Null-Player Property (NP), 690	see coalition, 988
Pareto Optimal (PO), 9, 690	Cdd_CSCorePlot, 530
Primal Replication Property (PRP), 755	Cdd_CSCoreVertices, 524
Reasonable (RE), 731	Cdd_CSImputationVertices, 523
Reasonable from above (REAB), 731	Cdd_CSInterImpSupAddCover, 528
Reasonable from below (REBE), 731	Cdd_InterImpCSImpSet, 529
Reconfirmation Property (RCP), 16, 691	CddAntiCoreVertices, 418, 513
Reduced Game Property (RGP), 9, 690	CddCfrCoreVertices, 566
Reverse Excess Comparability (REC), 754	CddCfrNucl, 570
Single-Valuedness (SIVA), 9, 690	CddCoreCoverPlot, 603
Small Excess Difference Consistency (SEDCONS), 754,	CddCoreCoverVertices, 602
773	CddCoreMovie, 606, 920
Strong Converse Derived Game Property (SCDGP), 831	CddCorePlot, 601, 920
Strong Converse Reduced Game Property (SCRGP), 690	CddCoreQ, 910
Strong Dual Cover Property (SDCP), 744	CddCoreVertices, 512, 601, 617, 1074
Strong Dual Floor Property (SDFP), 770	
Symmetry (SYM), 690, 1132	CddImputationVertices, 523
Weak Reduced Game Property (WRGP), 690	CddLeastCore, 605
weak iteduced Game Property (WitGr), 090	Cddmathlink, 957
D.	CDDMEX, 503
В	CddStrongCorePlot, 605, 920
	CddWeberSetPlot, 604, 920
B0_balancedCollectionQ, 473, 476	center, 637, 660
backslash operation, 640	cfr_Kernel, 569
	$cfr_kernelQ, 569$
balanced collection, 12	
balanced contributions property, 10	cfr_nucl, 567
	cfr_nucl, 567 cfr_PreKernel, 569
balanced contributions property, 10	·
balanced contributions property, 10 balanced TU game, 12	cfr_PreKernel, 569
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979	cfr_PreKernel, 569 cfr_PrekernelQ, 569
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy_game, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy_game, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 s-type, 995
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 s -type, 995 characteristic function, 5
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004 breakup, 1004	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 s -type, 995 characteristic function, 5 characteristic vector, 469, 809
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy situation, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004 breakup, 1004 loyal, 1004	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 s -type, 995 characteristic function, 5 characteristic vector, 469, 809 characterizationSetNucleolus, 566
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy_game, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004 breakup, 1004 loyal, 1004 bell_number, 658	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 s -type, 995 characteristic function, 5 characteristic vector, 469, 809
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy game, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004 breakup, 1004 loyal, 1004 bell_number, 658 belongToAntiCoreQ, 418, 513	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 s -type, 995 characteristic function, 5 characteristic vector, 469, 809 characterizationSetNucleolus, 566
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy_game, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004 breakup, 1004 loyal, 1004 bell_number, 658	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 s -type, 995 characteristic function, 5 characteristic vector, 469, 809 characterizationSetNucleolus, 566 Characters, 218
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy game, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004 breakup, 1004 loyal, 1004 bell_number, 658 belongToAntiCoreQ, 418, 513	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 γ -, 1005 s -type, 995 characteristic function, 5 characteristic vector, 469, 809 characterizationSetNucleolus, 566 Characters, 218 class function, 1127
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy_game, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004 breakup, 1004 boyal, 1004 bell_number, 658 belongToAntiCoreQ, 418, 513 belongToCoreQ, 511, 513, 617, 796, 1075	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 γ -, 1005 s-type, 995 characteristic function, 5 characteristic function, 5 characteristic vector, 469, 809 characteristic vector, 469, 809 characters, 218 class function, 1127 closed ball, 295
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy_game, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004 breakup, 1004 boyal, 1004 bell_number, 658 belongToAntiCoreQ, 418, 513 belongToCoreQ, 511, 513, 617, 796, 1075 belongToImputationSetQ, 523	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 γ -, 1005 s-type, 995 characteristic function, 5 characteristic function, 5 characteristic vector, 469, 809 characteristic vector, 469, 809 characteristic vector, 1127 closed ball, 295 closed neighborhood, 295
balanced contributions property, 10 balanced TU game, 12 BalancedCollectionQ, 979 balancedCollectionQ, 472, 476, 685 bankruptcy game, 25 bankruptcy game, 25 bankruptcy_game, 348, 863 banzhaf, 612, 617, 877 BanzhafOwenValue, 659 bargaining range, 953 bargaining set, 20 coalition structure, 524 BaryCenter, 722 basis change, 1119 equivalence class, 1121 behavior standard, 4 Belief δ -, 1004 γ -, 1004 breakup, 1004 breakup, 1004 blel_number, 658 belongToAntiCoreQ, 418, 513 belongToCoreQ, 511, 513, 617, 796, 1075 belongToImputationSetQ, 523 belongToWeberSetQ, 375	cfr_PreKernel, 569 cfr_PrekernelQ, 569 cfr_PreNucl, 569 CG-Principle see contested garment principle, 279 character induced, 1129 irreducible, 1127 null-player, 624 relations of the first kind, 1128 step, 624 sum, 624 table, 1132 Characteristic function α -, 188, 994 β -, 994 δ -, 1005 γ -, 1005 s-type, 995 characteristic function, 5 characteristic function, 5 characteristic vector, 469, 809 characterizationSetNucleolus, 566 Characters, 218 class function, 1127 closed ball, 295 closed-valued, 319

coalition, 5	COV_propertyQ(), 696		
closure, 586	cp_kernel, 501		
irreducible saturated, 586	cp_prekernel, 501		
saturated, 586	CPLEX, 503		
structure, 514, 521 vital, 573	cplex_cfr_nucl, 570 cplex_kernel, 503		
coalition formation restrictions, 563	cplex_prenucl, 685		
Coalition Solidarity, 554, 879, 911	cplex_weightedPreNucl, 685		
Cobb-Douglas	critical point, 296		
see Function, 170, 304	critical_value1, 604		
combination	critical_value2, 604		
conic, 499	critical_value_star, 605		
common knowledge, 318	cs_balancedCollectionQ, 549		
communication, 3	cs_Banzhaf, 658		
communication structure, 555 compact-valued, 319	cs_belongToCoreQ, 528 cs_belongToImputationSetQ, 528		
ComposeMarkets, 366	cs_CoreQ, 524		
Composition, 360	cs_GetNc, 550		
compromiseAdmissibleQ, 603, 924	cs_GetPrk , 544		
compromiseStableQ, 603, 924	$cs_GetPrn, 550$		
ComputeRoot, 259, 260	cs_PreKernel, 544		
ComputeRoot2, 260	cs_PrekernelQ, 544		
concave TU game, 421	cs_PreNucl, 549		
concave_gameQ, 422	cs_Weak_balancedCollectionQ, 549 CVX, 503		
concave_gameQ(), 373 condition number, 1106	cvx_kernel, 503		
Conditional Statements, 1091	cycle in the decomposition, 573		
cone, 499	-J,		
convex, 499	D		
cone program, 500			
conic optimization, 500	d-function, 322		
consistency	data type, 29		
reduced game property, 9, 690	DCP_propertyQ, 748		
weak reduced game property, 690	decision-making		
consistent contested garment principle generalized contested garment principle, 281	Rawlsian type, 4 DecomposeGame, 592, 686, 693		
consistent solution, 72	DecomposeVN, 594		
constant elasticity of substitution	Deduction Theorem, 1091, 1094		
see Function, 304	DeeganPackel, 619, 622		
constant-sum game, 26	derivative		
ConstantSumQ, 506	directional, 76, 77, 80		
contested garment principle, 279	Derived_game_propertyQ, 779		
Contraction Mapping, 322	determinant		
Contraction Mapping Theorem, 322 contraposition, 1115	Gramian, 1120 DetMarketSide, 780		
converse consistency	digit		
converse reduced game property, 17, 690	guard, 1107		
HMS converse reduced game property, 690	DirectSumVN, 595		
converse reduced game property, 17, 690	distributive justice, 4		
Converse_DGP_Q, 830	division		
Converse_RGP_Q, 705	left, 35		
convex TU game, 6, 368	right, 35		
convex-valued, 319	DixitGammaGame, 806, 808 DM_Derived_game, 775		
convex_gameQ, 406, 508, 868, 910 convex_gameQ(), 373	DM Reduced game, 697, 720		
ConvexQ, 979	domination-equivalent, 362		
core, 10	DRP_propertyQ, 747		
coalition structure, 524	DTImatrix, 595		
least-, 12	dual game, 26		
strong ϵ -, 11	dual problem, 77, 297		
CorePlot, 600, 920	dual_game, 350		
CoreQ, 979	DualCover, 724		
coreQ, 510, 613, 617	DualEssentialSet, 572 DuallySgnzSet, 575		
CoreVertices, 510, 599 correspondence	dummy player, 10		
continuous, 320			
lhc, 320	${f E}$		
uhc, 319			
cost matrix, 412	e.f.s.q		
counter-objection, 20, 523	ex falso sequitur quodlibet, 1095		
counting_basis, 595	EC_propertyQ, 748		
COV propertyQ, 409	ECCoverGame, 729, 800		

ECFloorGame, 800	Lagrange dual function, 297
efficiency, 10	Lagrangian, 296, 309
embedding coalition, 1130	logarithmic barrier, 497
equal_treatmentQ, 695	payoff, 188, 330, 988
Equilibrium	profit, 188, 330, 988
Bertrand, 323, 1036	quadratic, 534, 1088
Cournot, 330, 992	revenue, 988
Nash, 319, 992, 1036	functional programming, 133, 214, 256, 262
existence, 319	
uniqueness, 322	G
post-merger, 1005	
pre-merger, 992, 1036	Game
Stackelberg, 995	Weighted Network Majority, 652
subgame perfect, 15	game
error	normal-form, 3
absolute computing, 1103	NTU, 3
absolute relative computing, 1103	,
backward, 1111	partition function form, 3
catastrophic cancellation, 122, 1108	see TU game, 5, 284
	side payments, 4
floating-point exception, 121	transferable utility, 4
forward, 1111	with non-transferable utility, 3
index overflow, 123	with transferable utility, 3
index underflow, 123	$game_basis, 349$
integer overflow, 124	gameToMama, 187, 348, 372, 391
logical, 124	gameToMatlab, 348, 383
magnification, 122	GCG-Principle
negligible addition, 122, 1111	see generalized contested garment principle, 281
round-off, 122, 1106	see Talmudic Rule, 281
runtime, 122, 123	generalized contested garment principle, 281
syntax, 122	generalized inverse matrix, 82
truncation, 122, 1109	generalized logarithm, 500
underflow, 122, 1110	genUnionStable, 559, 911
unit round-off, 1107	genWeightSystem, 476
EssentialQ, 506	getgame, 350, 1070
essentialSet, 571	getMinimalWinning, 647
Euclidean inner product, 64	<u>.</u>
Euclidean norm, 65, 1104	GetPartitions, 522
	getSymCostMatrix, 423
ex falso sequitur quodlibet, 1095	global extremum, 294
exact_game, 780	global maximizer, 294
exact_gameQ, 780	global maximum, 294
excess, 7, 437	global minimizer, 294
excess code, 57, 1102	global minimum, 294
extreme point, 294	GLPK, 503
	Good
F	differentiation, 324, 989
	homogeneous, 188, 330, 988
fairness	Gorman form, 1019
distributive justice, 4	gputimeit, 856
principles, 3	gradient, 77, 295
filtration, 1122	graph
FindPreNucl, 401	closed, 320
Fixed Point	greedy bankruptcy game, 25, 795
Kakutani, 321	greedy_bankruptcy, 350
flow problem, 395	gridMathematica, 1047
flow game, 396	,
	grMaxFlowGame, 399
flow_probMinCut, 400	group
forest of spanning trees, 412	Abelian, 1115
formatPowerSet, 345	action, 1118
Frobenius Reciprocity, 1129	automorphism, 1119
Function	center, 1116
α -characteristic, 188, 994	centralizer, 1116
β -characteristic, 994	conjugacy class, 1127
δ -characteristic, 1005	connected, 1120
γ -characteristic, 1005	cyclic, 1118
s-type-characteristic, 995	endomorphism, 1119
CES, 304	faithful action, 1121
characteristic, 5	free action, 1121
Cobb-Douglas, 170, 304	general linear, 1120, 1124
concave, 295	generati inicar, 1120, 1124 generator, 1118
convex, 295	group, 1113
cost, 188, 330, 988	group homomorphism, 1124
	homomorphism, 1124
distance, 322	nomomorphism, 1119

isomorphism, 1119	IrredCostMatrix, 420	
Lie, 1120	irreducible cost matrix, 420	
matrix, 1120, 1124	irreducible form, 420	
normal subgroup, 1117	ISRG_propertyQ, 710	
order of an element, 1117	J	
order of the group, 1117	J	
orthogonal, 1120 permutation, 373, 742, 769, 1115, 1130	Johnston, 622	
positive general linear, 740, 1120	V	
special linear, 1120	K	
special orthogonal, 1120	$k_convexQ, 508$	
sub, 1120	Kakutani's Fixed Point Theorem, 321	
subgroup, 1115	Kernel, 453, 502	
symmetric, 742, 769, 1115, 1130	kernel, 7	
symmetry, 1121	coalition structure, 530	
GUROBI, 503	kernelQ, 502	
gurobi_cfr_nucl, 570	KKT condition	
gurobi_kernel, 502	see Optimization, 298	
gurobi_prenucl, 685	Kruskal's algorithm, 413	
н	L	
	Lagrange dual	
hadamard_basis, 595	see Function, 77, 297	
Harsanyi dividends, 27, 349	Lagrange multiplier	
harsanyi_dividends, 349	see Shadow Price, 77, 297	
Herbrand Theorem, 1091, 1094 Hessian matrix, 295, 325, 331, 1010	Lagrangian	
diagonally dominant, 322	see Function, 296, 309	
HMS converse reduced game property, 690	lambda calculus, 262	
HMS-consistency	lambda function, 262	
see reduced game property (HMS), 690	large excess difference, 729	
HMS-consistency set-valued	least-core, 12	
see reduced game property (HMS), 690	LED, 729	
HMS-weak consistency	LED_propertyQ, 730	
see weak reduced game property (HMS), 690	LedcoconsQ, 826	
HMS_ImputSavingReducedGame(), 710	legal recoverability, 4	
HMS_Reduced_game, 697	Lexicographical	
holler, 618	minimum, 444	
Holler-Packel Index, 618	smallest coalitions, 443 smallest coalitions for a c.s., 543	
homogeneous_representationQ, 615	LexOrder, 344	
homomorphism, 1121	lin_weightedPreKernel, 685	
HSL, 503	linear system, 72	
hypergraphQ, 561, 911	local extreme point, 295	
	local extremum, 295	
I	local maximizer, 295	
Manuschant CA	local maximum, 295	
idempotent, 64	local minimizer, 295	
identity matrix, 65 ill-conditioned, 1106	local minimum, 295	
imputation	logically	
coalition structure, 522	consistent, 1094	
imputation set, 5	inconsistent, 1094	
ImputationVertices, 437, 510	independent, 1094	
ImputSavingReducedGame, 710	London Heathrow, 151, 167	
inconsistent solution, 72	Lorenz maximal, 700	
indexing	Lorenz set, 700 Lorenz solution, 700	
by position, 69	LorenzDom, 701	
linear, 69	LorenzMaxCoreQ, 701	
subscripted, 69	LorenzSol, 701	
indicator function, 13, 469, 809	Loss of Significance, 443	
individual rationality, 5	lower hemi-continuous, 320	
infix notation, 262	LS_Nucl, 496	
inner product	LS_Nucl(), 980	
G-invariant, 1126	LS_PreNucl, 496	
Hermitian, 1127	LS_PreNucl(), 980	
interior point, 295 interior-point method, 498	LSNuc, 980	
interior-point method, 498 interpreted language, 29, 199	LSPreNuc, 980	
IntersectionEssDualEssSets, 572	D.C.	
IntersectionMaxCoalCorners, 781	M	
IPOPT, 503	m.c.s.t. game, 412	
IrredAntiCore, 428	m.c.s.t. problem, 412	
	<u> </u>	

machine epsilon, 1103	Manipulate, 963, 965
Map, 980	Map, 219, 247, 256, 276, 300, 1051
map	MapThread, 204, 225, 248, 279
bijective, 1115 composite, 1115	MatchQ, 228 MatrixForm, 206, 267
injective, 1115	Max, 278
invertible, 1115	Min, 278
linear, 65	Mod, 200
surjective, 1115	Module, 243, 244, 273, 278
marginal contribution, 27	NSolve, 300
marginal contribution networks, 184 marginal worth vector, 373	Options, 307 Outer, 266
restricted, 703	ParallelEvaluate, 1056
Market	Parallelize, 1051, 1052
Bertrand, 323, 1033	ParallelMap, 1052
Cournot, 188, 330, 988	ParallelNeeds, 1056
direct, 364	ParallelTable, 965, 1051, 1052
Oligopoly, 323 price, 188, 988	ParallelTry, 1058 Part, 216
price, 188, 988 price of brand, 989	Plot, 226, 261
pure exchange economy, 356	Plus, 200, 215
market_game(), 548	Power, 200, 229
MarketGameQ, 359, 548	PowerSet, 274
Maschke's Theorem, 1126	Pure Functions, 262
Mathematica	Quotient, 200
\$ContextPath, 221 AbsoluteTiming, 275	RandomInteger, 248 RandomReal, 236, 1054
Animate, 963	Range, 275
Apply, 214, 215, 301	Rational, 200, 219
AtomQ, 217	Re, 220
Attributes, 222	Real, 200
Blank, 202, 212, 254	RealDigits, 219
Blanks, 228	Remove, 237
Block, 243, 244 Cases, 231	Replace, 204 ReplaceAll, 208, 215, 247, 269, 301, 1009
Clear, 237	ReplacePart, 216, 217
ClearAttributes, 226	ReplaceRepeated, 251
CloseKernels, 1049	Rule, 208, 215, 247, 249, 269, 301, 1009
Complement, 277	RuleDelayed, 247, 249, 1009
Complex, 200, 219	SameQ, 207, 252, 275, 279
Context, 201, 221	SeedRadom, 1054
Context'Name, 201, 221 D, 209, 226, 300	SeedRandom, 235 Set, 201, 206, 234, 1056
Depth, 268	SetDelayed, 201, 206, 238, 326, 1007, 1011, 1056
Distribute, 275	SetSharedVariable, 1057
DistributeDefinitions, 1051	Simplify, 210
Do, 252, 255, 256	Solve, 203, 257, 300
Dot, 301	Sort, 276
Equal, 206 Evaluate, 224	String, 200 Subsets, 272, 275
Exp, 256	Switch, 251, 254
Extract, 266	Symbol, 200, 220
Factorial, 200	SymbolName, 220
False, 209	Table, 248, 256, 965, 1051
First, 301	TableForm, 267
Flatten, 203	Times, 200, 215
For, 252, 255 FullForm, 199	ToString, 218 Trace, 208, 216, 223, 248
FullSimplify, 210	TracePrint, 208
Global', 201, 221	True, 207
Head, 199	Unevaluated, 224
Hold, 222, 224	Which, 251, 254, 268
HoldAll, 224, 239	While, 252, 256, 258
HoldForm 215 224	With, 243
HoldForm, 215, 224 HoldPattern, 224	mathematical programming problem see optimization problem, 296
If, 251, 252	MATLAB
In, 201, 202 Im, 220	abs, 64
Integer, 200, 211, 219	ans, 31
IntegerDigits, 219	arrayfun, 852
LaunchKernels, 1048	bin2dec, 59, 141
List, 199, 215, 301	blkdiag, 68

bsxfun, 456, 852	tic/toc, 166
cd, 160	times, 40
cell, 95	title, 102
cell2mat, 98	tril, 68
char, 49	triu, 68
class, 34	true, 71
clear, 33	try/catch, 155
colon, 38	uminus, 35
ctranspose, 39 dec2bin, 53, 142	while, 139, 168 whos, 32
det, 85	xlabel, 102
diag, 67	ylabel, 102
disp, 99	zeros, 67
double, 34	MATLink, 1077
eig, 91	matrix, 64
end, 41	adjoint, 65
eps, 31	basis, 1119
$\exp, 31$	congruent, 1119
for, 139, 140, 159	diagonally dominant, 322
format long, 34	generalized inverse, 82
format short, 34	Gram, 1120
fprintf, 118	Hessian, 325, 331, 1010
gpuArray, 852 if, 139	idempotent, 64 identity, 65
index, 160	invertible, 72
Inf, 31	isometric, 85
input, 54	Moore-Penrose, 82
intmax, 31	non-singular, 72
intmin, 31	null, 65
inv, 75, 92	orthogonal, 85
issymmetric, 91	projection, 82
ldivide, 40	pseudo-inverse, 82
linprog, 384	rectangular, 72
lt, 64	representation, 1124
lu, 89	self-adjoint, 65, 536
M-function, 128	singular, 72
M-script file, 51	square, 73
minus, 35, 64 mldivide, 35	symmetric, 536 transition, 1119
mpower, 35	transpose, 65
mrdivide, 35	matrix factorization
mtimes, 35	Cholesky, 90
namelengthmax, 33	LU, 88
NaN, 31	QR, 85
norm, 79	singular value, 87
null, 79	matrix theory, 64
numel, 164	Maximum surplus, 443
ones, 67	maximum surplus, 7
pi, 31	Maximum surplus for a c.s., 543
pinv, 83 plot, 100	maximum value, 294 Maximum Value Theorem, 320
plot3, 104	mest game, 414
plus, 35, 36	medium of exchange, 4
pre-allocation, 93	method
qr, 86	copy_p_TuRep, 931
randi, 43	copy_p_TuShRep, 935
rank, 74	copyTuSol, 929, 931, 935
rdivide, 40	p_copyTuCons, 938
realmax, 31	p_copyTuKcons, 942
realmin, 31	p_copyTuSol, 938, 940, 942
recursive M-function, 175	p_setADvalue, 918
save, 33	p_setAllSolutions, 902 p_setAllValues, 917, 918
single, 34 size, 48	p_setAnvalues, 917, 918 p_setAntiPreKernel, 902
str2func, 156	p_setApuSolidarity, 918
string, 49	p_setBanzhaf, 902
struct, 98	p_setCoalitionSolidarity, 918
subplot, 103	p_setCoalitionStructures, 915, 917, 918
surf, 106	p_setConverse_RGP, 938
svd, 87	p_setKConverse_RGP, 942
switch, 139, 150	p_setKReconfirmation_property, 942
syms, 36	p_setKReducedGameProperty, 942

p_setKStrConverse_RGP, 942	modified coalition array, 975
p_setMyerson, 918	ModPreKernel, 815, 816
p_setMyersonUS, 918	ModPrekernelQ, 816
p_setOwen, 918	modular program, 120
p_setPosition, 918	$monotone_gameQ, 508, 611$
p_setPositionHS, 918	monotonic TU game, 6
p_setPreKernel, 902	MOSEK, 503
p_setPreNuc, 902	msk_cfr_nucl, 570
p_setReconfirmation_property, 938	msk_kernel, 501, 502
p_setReduced_game_property, 938	msk_prekernel, 501
p_setShapley, 902, 918	MTRCostMatrix, 416
p_setSolidarity, 918	multivalued function
p_setSolidarityShapley, 918	see correspondence, 320
p_setTauValue, 902	myaa, 109, 601
p_TuCons, 936, 938	MyersonValue, 557, 657, 911
p_TuKcons, 942	11150111111110, 001, 011
- · · · · · · · · · · · · · · · · · · ·	N
p_TuSol, 902	11
p_TuVal, 907, 911, 918	N. I
setADvalue, 918	Nash program, 4
setAllSolutions, 899, 902, 907	negative definite, 295
setAllValues, 917, 918	negative semi-definite, 295
setAllVertices, 924, 925	NetworkDeeganPackel, 655
setAntiPreKernel, 899, 902, 907	NetworkJohnston, 655
setApuSolidarity, 918	NetworkMajorityGame, 655
setBanzhaf, 899, 902, 907	NetworkPGI, 654
setCddCoverVertices, 925	NetworkShapleyShubik, 656
setCddImpVertices, 925	Normal-form game, 188, 324, 330, 988
setCddVertices, 925	oligopoly, 188, 324, 330, 988
setCoalitionSolidarity, 918	normalized condition, 82
setCoalitionStructures, 912, 917, 918	norms
setImpVertices, 925	historical, 5
setMyerson, 918	institutional, 5
setMyersonUS, 918	social, 5
· · · · · · · · · · · · · · · · · · ·	
setOwen, 918	nucl, 464
setPosition, 918	nucl_llp, 402
setPositionHS, 918	nucleolus, 7, 292
setPreKernel, 898, 902, 907	three-person formula, 195
setPreNuc, 899, 902, 907	null matrix, 65
setReplicate_Prk, 927, 931	null space, 65
setReplicate_Shapley, 932, 934, 935	null-player, 26
setShapley, 898, 902, 907, 918	NullPlayer_propertyQ, 694
setSolidarity, 918	nullShapley, 593
setSolidarityShapley, 918	nullShapleyLB, 593
setStrongCores, 920	number
setTauValue, 899, 902, 907	denormalized floating-point, 1102
setVertices, 925	denormals, 1102
TuCore, 919	fixed-decimal, 60
TuGame, 888	fixed-point, 60
TuMCnets, 907	floating-point, 1101
TuProp, 894	normalized floating-point, 56, 1101
TuRep, 925, 931	normanzed nearing point, oo, 1101
- · · · · ·	O
TuShRep, 935	O
TuSol, 896, 902	OAGEG KOD
TuVal, 907, 910, 911, 918	OASES, 503
TuVert, 923, 925	object-oriented programming, viii, 883
min_game, 717	objection, $20, 523$
min_homogrep(), 627	oddeven $_{game}$, 581
minimal tree, 412	offset binary, 57, 1102
minimal tree solution, 412	ols_weightedPreKernel, 685
minimal_winning, 615	OOP-Class
minimization a p-norm, 975	p_TuCons, 936, 938
Minimum cost spanning tree, 442	p_TuKcons, 936, 942
minimum cost tree solution, 414	p_TuRep, 925
minimum no-blocking payoff, 383	p_TuShRep, 931
minimum norm property, 82	p_TuSol, 895, 902
v·	- · · · · · · · · · · · · · · · · · · ·
minimum representation, 623	p_TuVal, 907, 918
minimum value, 294	TuACore, 918
minNoBlockPayoff, 384	TuCons, 936
modest bankruptcy game, 795	TuCore, 918, 923
modest-bankruptcy game, 25	TuGame, 888
Modiclus, 715, 718, 806	TuKcons, 936
modiclusQ, 718, 807	TuMCnets, 902, 907

TuProp, 894	PGI, 618
TuRep, 925, 931	player, 5
TuShRep, 931, 935	PlotCostGraph, 414, 517
TuSol, 895, 902	PModPreKernel, 815
TuVal, 907, 918	PModPrekernelQ, 815
TuVert, 923, 925 open ball, 295	PositionValue, 560, 911 positive definite, 295
open neighborhood, 295	positive definite, 295 positive semi-definite, 295
Optimization	Potential, 429, 430
weak duality, 297	potential, 27
classical optimization, 299	Power Index
complementary slackness, 297	Holler and Packel, 618
constraint qualification, 298	Shapley-Shubik, 656
Karush-Kuhn-Tucker optimality conditions, 298	Power index
mathematical programming problem, 296	Banzhaf-Coleman, 612, 877
non-linear programming, 296 optimal duality gap, 297	Deegan-Packel, 619, 621, 655 Holler, 654
optimization problem, 296	Johnston, 622, 655
regularity condition, 298	Public Good, 654
strong duality, 297	Shapley-Shubik, 618
orbit, 1121	PowerSet, 345, 353
orthogonal, 65	pre-bargaining set
decomposition, 65	coalition structure, 524
projection, 65	pre-imputation
Orthogonal projection, 442, 542 outcome	coalition structure, 523
fair, 4	pre-imputation set, 5 Pre-kernel, 442, 955
rational, 4	algorithm, 442
outer product, 65	pre-kernel, 7
outweighs, 7	coalition structure, 530
OwenValue, 554, 658, 878, 911	Pre-kernel for a c.s., 542
	pre-nucleolus, 8
P	Predicate, 232
A.D. 1 070	predicate, 217
p_ADvalue, 878	PreKernel, 452, 612, 622, 863, 870, 876, 880, 1072 PreKernelEqualsKernelQ, 979
p_average_convexQ, 869 p_banzhaf, 877	PrekernelQ, 442, 455, 612, 622, 683, 864
p_CddTotallyBalancedQ, 402	PreNucl, 402, 464
p_CoalitionSolidarity, 879	PreNucl_llp, 401
p_convex_gameQ, 868	PrenuclQ, 401
p_OwenValue, 878	price-cost margin, 324
p_PreKernel, 863, 870, 876, 877, 881	Prim's algorithm, 412
p_PrekernelQ, 864	primal problem, 77, 297
p_Reduced_game_propertyQ, 871	principal minors, 295 Principle of Explosion, 1092, 1095
p_replicate_prk, 872 p_replicate_Shapley, 874	PrkEqsModPrkQ, 819
p_ShapleyValue, 865	procedural programming, 255
p_totallyBalancedQ, 402	product situation, 1053
p_union_stableQ, 910	Shapley value, 1053
p_weightedOwen, 879	product space
pairwise equilibrium procedure, 7	compact, 320
Parallel Scalability	convex, 320
Matlab, 860 Mathematica, 1049	production_game_sq, 908 profit_matrix, 389
parallelization	programming
explicit, 837	functional, 133, 214, 256, 262
implicit, 837	procedural, 255
parity_basis, 595	projection, 64
particular choice, 82	matrix, 82
Partition function game, 1005	operator, 539
partition function game, 1130	orthogonal, 65, 539
decomposes into three summands, 1131 decomposition of the space, 1131	projective game, 643 proof method
linear symmetric solution, 1132	contradiction, 1093
solution mapping, 1130	contrapositive, 1092
space, 1131	direct, 1092
symmetric, 1131	indirect, 1093
PartitionGameQ, 644	proper coalition, 11
PartitionSL, 557	Property I, 469, 546, 563
path, 412	Property II, 469, 546
payoff, 5 PermutationGame, 392, 523	Property II modified (IIM), 976 PropModPreKernel, 817
1 OTHERORIO CONTRACTOR OF THE PROPERTY OF THE	i iopiniodi icilellel, Uli

proposal, 7, 487	bounded, 319
PS property, 404	closed, 319
$ps_gameQ, 407$	compact, 319
pseudo-inverse matrix, 82	non-negatively homogeneous, 499
Pseudo-inverse of matrix, 442	of bases, 1121
psstar_game, 408	open, 319
Public Good Index	set-valued function
Holler and Packel, 618	see correspondence, 320
	sgnzSet, 574
Q	Shadow Price
	Lagrange multiplier, 77, 297
QPBB, 503	Shapley value, 9, 443
QPC, 503	ShapleyQ, 407
quotas, 434	ShapleyValue, 406, 418, 429, 612, 618, 871, 876, 911
	ShapleyValueLB, 429
R	ShapleyValueM, 429
	shiftGame, 733
reasonable set, 9	ShubikBertGammaGame, 819
REC_propertyQ, 772	side conditions, 233
RecComputeRoot, 260	side-payment, 6
Reconfirmation_propertyQ, 708	significance
rectangular matrix, 72	of decimal places, 1103
Recursion, 175, 260	of digits, 1103
reduced game property, 9, 690	significand, 56, 1102
Hart and Mas-Colell (HMS), 690	coefficient, 56
reduced game property set-valued	fraction, 56
Hart and Mas-Colell (HMS), 690	matissa, 56
Reduced_game_propertyQ, 698, 700, 721	simple committee game
reference	simple game, 609
	simple game, 003
pass by, 132	simple game, 20 simple_game, 611, 616
reflexive condition, 82	singular matrix, 72
replicate_nc, 580	Situation Situation
replicate_prk, 588	
replicate_Shapley, 592	bankruptcy, 25
representation	Cournot, 188, 330, 988
G-invariant, 1125	direct market, 364
G -module, 1124	market, 356
character, 1127	mcst, 442
relations of the first kind, 1128	minimum cost spanning tree, 442
class function, 1127	oligopoly, 188, 330, 988
group algebra, 1127, 1128	wedge technology, 186
group homomorphism, 1124	small excess difference, 753
inner product space, 1126	snigSet, 579
irreducible, 1127	social dilemma, 5
matrix, 1124	SOCP
normalized floating-point, 56	second-order cone program, 500
number of conjugacy classes, 1128	SolidarityShapleyValue, 555, 911
of finite group, 1124	SolidarityValue, 551, 911
partition of a positive integer, 1130	Solow growth model, 169
reducible, 1127	solow_capital, 170
standard, 1126	solution
submodule, 1125	consistent, 72, 444, 543
trivial, 1126	inconsistent, 72
unitary, 1126	linear symmetric, 1132
reversed normalized condition, 82	linear system of equations, 444, 543
ReverseMCNetsRep, 187	subgame perfect equilibrium, 15
Rewrite Rules, 234	solution concept, 6
root game, 384	anti-core, 14, 417, 511
	anti-imputation set, 487, 511
S	anti-kernel, 417, 487
~	anti-nucleolus, 417, 490
satisfaction, 646	anti-pre-kernel, 487
SaveFrames, 607	anti-pre-nucleolus, 490
savings game, 348	bargaining set, 20
Schur's Lemma, 1125	bargaining set w.r.t. c.s., 524
SED_propertyQ, 773	center solution, 624
select_starting_pt, 684	center solution, 624 core, 10
·	core w.r.t. c.s., 524
self-adjoint matrix, 65, 536 self-concordant, 498	
	improper, 511
semi_convexQ, 509	irreducible anti-core, 420
separating_collectionQ, 377, 647	irreducible core, 420
set	kernel, 7, 953

kernel for c.s., 530	top-down design, 109
least-core, 12	ToSimplex3d, 101, 104
Lorenz, 700	totally anti-balanced TU game, 15
Lorenz set, 700	totally balanced TU game, 12
Modiclus, 715	transfer, 6
nucleolus, 7	transformation
pre-bargaining set w.r.t. c.s., 524	linear, 64
pre-kernel, 7, 442, 955	Transformation Rule, 213, 247
pre-kernel for a c.s., 542	Local Rewrite Rule, 208, 247
pre-kernel for c.s., 530	transpose matrix, 65
pre-nucleolus, 8 quasi-core, 11	tree, 412 Trust
quasi-core, 11 quota, 952	see coalition, 988
random order value, 373	Truth Tables, 1091
self-dual, 26	TU game, 3, 5, 284
set, 6	α -, 188, 994
Shapley value, 9, 443	β -, 994
stable set, 4	δ -, 1005
stable sets, 18	γ -, 1005
standard solution, 10, 189, 287	s-type, 995
strong ϵ -core, 11	<i>t</i> -shift, 728
super-additive cover, 525	additive, 6, 504
value, 6	airport cost, 113, 371
von Neumann-Morgenstern solutions, 18	almost average-convex, 383
Weber set, 373	almost-convex, 379
solution scheme	anti-balanced, 15
see solution concept, 6	anti-derived, 786
sortsets, 343, 1068	anti-monotonic cover, 416
space	anti-reduced, 752
Hausdorff, 320	assignment, 389
inner product, 1126	average-convex, 381, 951
null, 65	balanced, 12, 358
regular, 320	bankruptcy, 25
vector, 64	concave, 371, 421
spanning tree, 412 SplitSimpleGame(), 635	constant-sum, 26, 504
square matrix, 73	convex, 6, 368, 505, 950 cost savings, 371, 443
stabilizer, 1121	derived, 775
Standard Solution, 552	dual, 26, 505
star, 637, 660	dual cover, 724
stationary point, 296	dual extension, 723
Strategic-form game	dual floor, 755
see normal form game, 330, 988	dual probability, 972
see normal-form game, 188, 324	essential, 8, 504
StrConverse_DGP_Q(), 831	excess comparability cover, 72
strict local maximum, 295	excess comparability floor, 75
strict local minimum, 295	flow, 395
strong ϵ -core, 11	greedy bankruptcy, 25, 795
strong converse consistency	homogeneous standard, 624
strong converse reduced game property, 690	improper, 511
strong converse reduced game property, 690	inessential, 8, 504
SubGame, 552	m.c.s.t., 414
subgame perfect equilibrium, 15	market, 357
Subtractive Cancellation, 443	minimum, 717
super-additive cover, 525	modest bankruptcy, 795
super-additive TU game, 6 super additiveQ, 363, 509	monotonic, 6, 504, 951
superadditive_cover, 525	partition, 642
superadditiveQ, 526	partition function, 1005, 1130
symmetricQ, 695	permutation, 391
symmetry, 10	positive, 370 primal extension, 723
symmetry, 10	probability, 971
${f T}$	product, 1053
•	PS, 404
Talmudic Rule, 281	reduced, 719
Talmudic_Rule, 348, 452, 796, 865, 870	root, 383
TauValue, 434, 613, 622	rooted, 383
term-rewriting, 222, 234, 251	satellite, 625
Rules, 222	shift, 728
rules, 222	simple, 26
TImatrix, 595	strictly essential, 8, 26
timeit, 166, 856	subgame, 6, 13
	J -, -, -

submodular, 371	Weighted Majority, 264, 270, 968
super-additive, 6 , 504 , 951	ZeroMonotoneQ, 951
super-modular, 505	tug_AntiPreKernel, 1074
totally anti-balanced, 15	tug_AvConvexQ, 1066, 1070
totally balanced, 12, 358	tug_BalancedCollectionQ, 1072, 1075
truncated, 624	tug_BelongToCoreQ, 1075
unanimity, 27, 349	tug_CollectionBalancedQ, 1069
veto-rich, 381	tug_ConvexQ, 1065
weakly super-additive, 505, 951	tug_DetUCoord, 1069
wedge production, 186	tug Mnuc, 1073
weighted graph, 403	tug Nuc, 1073
weighted majority, 26	tug_PreKernel, 1071, 1076
zero-monotonic, 11, 951	tug_PreNuc, 1073
zero-normalized, 8	tug_ShapleyValue, 1070
zero-normalized, 8	tug_SymGameSizeK, 1067
TUG	tug_SymGameType2, 1066
AnimationKernelProperty2d, 957	tug_SymGameType3, 1067
	tug_SymGameType4, 1067
AnimationKernelPropertyV6, 961, 963, 965	- · · · · · · · · · · · · · · · · · · ·
AntiPreKernelSolution, 973	tug_ZeroMonotoneQ, 1074
AvConvexQ, 951, 968, 1061	TuOlig
BalancedCollectionQ, 969	DeltaGame, 1017
ConcaveQ, 972	DixitBertDeltaGame, 1044
ConvexQ, 950, 968, 1057	DixitBertGammaGame, 1044
CoreQ, 968, 973	DixitBertrandParetoOpt, 1043
CriticalValue, 963	DixitBertrandPostMergerEq, 1044
DefineGame, 957, 961	DixitBertrandPreMergerEq, 1043
DefineTuGame, 286	DixitPreMergerEq, 1043
DualBankruptcy, 279	GammaGame, 1016
DualProbabilityGame, 972	NashEq, 323
FilledCoreV6, 957	OligDiagonallyDomQ, 328, 1010, 1015
GameMonotoneQ, 951	PlotReactionCurves, 336
GatelyValue, 956	PlotReactionCurves2D, 329
GreedyBankruptcy, 278	PlotReactionCurves3D, 335
Kernel, 953, 961	PostMergerEquilibrium, 1008, 1009
LieBracket, 223	PreMergerEquilibrium, 1007, 1009
Lower Critical Val, 963	StackelbergEquilibrium, 1008, 1009
ManipulateMode, 965	StypeGame, 1017
ModestBankruptcy, 272, 277, 969	$\operatorname{TuOptAux}$
Modiclus, 961	DecVar, 307
ModifiedNucleolus, 961, 973	Foc, 300
MonotoneQ, 951	L, 300, 301
	QuadraticForm, 307
Nucleolus, 973 NucleolusThreePerson, 290	QuadRep, 307
,	SolveOpt, 301, 302, 309
ParaAvConvexQ, 1061	501veOpt, 501, 502, 509
ParaCharacteristicValues, 1060	II
ParaConvexQ, 1061	\mathbf{U}
ParaPreKernel, 1062	,
ParaPreKernelElement, 1062	ulps
ParaProductGame, 1054	units in the last place, 1107
ParaTuGames, 1059	unanimity basis, 349
PlotCore3dV6, 961, 962	underflow
Potential, 293	gradual, 1110
PreKernelElement, 955, 973	undirected edge, 412
PreKernelEqualsKernelQ, 973	undirected graph, 185, 403
PreKernelQ, 969	union stable structure, 558
PreKernelSolution, 973, 1057, 1058	union stable system, 557
PreNucleolus, 973, 1058	union_stableQ, 559, 657, 911
ProbabilityGame, 971	UnionStableBasis, 558
ProductGame, 1054	upper hemi-continuous, 319
Quota, 952	utility
Shapley Value, 955, 961	interpersonal comparisons, 4, 7, 8, 10
ShowCore, 964	theory, 4
ShowImputationSet, 964	utility function
ShowKernelCatcherV6, 961	quasi-linear, 4
StandardSolution, 287	UtopiaPayoff, 602
StrongEpsCore2d, 957	<u>-</u> - - - -
StrongEpsCore3dV6, 961	V
SuperAdditiveQ, 951, 968	•
UpperCriticalVal, 963	****Iuo
	value
VetoRichPlayers, 968	pass by, 132
ViewNucleolusSol, 963	value of a game
WeaklySuperAdditiveQ, 951, 968	Aumann-Drèze, 552, 878

Banzhaf, 612, 617	veto_rich_players, 384
Banzhaf with communication structure, 658	
Banzhaf-Coleman, 612	\mathbf{W}
Banzhaf-Owen, 659	
Coalition Solidarity, 554, 879	walsh_basis, 595
Deegan-Packel, 619, 621, 655	weak Anti-Property I, 495
Gately, 956	weak Anti-Property II, 495
Holler, 654	weak reduced game property, 690
Johnston, 622, 655	Hart and Mas-Colell (HMS), 690
Myerson, 557, 657	Weak_balancedCollectionQ, 473
of a coalition, 5	weakly_super_additiveQ, 363, 509
Owen, 554, 658, 878	Weierstrass Theorem, 320
Position, 560	weighted graph problem, 185, 403
Public Good, 654	weighted majority game, 26
random order, 373	weighted_majority, 614, 875
Shapley, 9, 429, 443, 618, 871, 876, 955	weighted_truncated, 629
Shapley-Shubik, 612, 656	weightedBalancedCollectionQ, 478
Solidarity, 551	weightedExcess, 479
Solidarity Shapley, 555	weightedGraphGame, 406
Solidarity w.r.t. à priori unions, 555	weightedKernel, 482
Tau, 434, 622	weightedKernelQ, 483
weighted Owen, 879	weightedNucl, 482
weighted Shapley, 431	weightedOwen, 879
value_matrix, 393	weightedPreKernel, 482, 684
variable	weightedPrekernelQ, 483
broadcast, 840	weightedPreNucl, 478
global, 132	weightedShapley, 431
local, 131	well-conditioned, 1106
reduction, 840	winning player, 615, 624
scope, 131	winning_coalitions, 610, 616
sliced, 839	winning_players(), 634
vclToMatlab, 351, 354, 475	Wolfram Lightweight Grid Manager, 1047
vector	worth
average marginal contributions, 10	see value of a coalition, 5
characteristic, 13	WSysKernelQ, 483
coefficient, 65	WSysNuclQ, 480
column, 64	WSysPreKernellQ, 483
marginal contributions, 6	WSysPreNuclQ, 479
null, 65	
vector space, 64	${f Z}$
filtration, 1122	
veto player, 26, 381	zero_monotonicQ, 508, 611
veto-rich player, 381	ZeroMonotoneQ, 979
veto_players, 613, 616	ZeroMonotonicQ, 979