

Architecture Search and Reinforcement Learning

VSLab

National Tsing-Hua University

Intuition: Use ML to design ML model?

- Using Machine Learning to Explore Neural Network Architecture.
 - NAS (1611.01578, ICLR'17) Google Research Blog May, 17th, 2017.
- AutoML for large scale image classification and object detection (fig).
 - NASNet (1707.07012) Google Research Blog Nov, 2nd, 2017.

Methods

- Reinforcement Learning:
 - Policy gradient (NAS ICLR'17 / NASNet).
 - Q-learning (Block-QNN AAAI'18).

the controller

(Additionally)

- Evolutionary Algorithm:
 - Hierarchical Representations for Efficient Architecture Search (1711.00436).
- Others:
 - Progressive Neural Architecture Search (SMBO) (1712.00559).

Policy Gradient: NASNet Controller

• Select 2 hidden layers, 2 operations and combining method.

- Product of 2 (N/R cell) * 5 * B softmax predictions -> compute gradient.
- The gradient is scaled by the reward (accuracy).
- Employ PPO for faster and more stable training.

Softmax

Reduction Cell

Reduction Cell

Reduction Cell

3x3 conv. stride 2

ImageNet

Policy Gradient: NASNet Search Space

- Convolutions, Pooling, etc.
- Fixed cell order:

NASNet-A:

• B = 5

n*Normal + 1*Reduction

- identity
- 1x7 then 7x1 convolution
- 3x3 average pooling
- 5x5 max pooling
- 1x1 convolution
- 3x3 depthwise-separable conv
- 7x7 depthwise-separable conv

- 1x3 then 3x1 convolution
- 3x3 dilated convolution
- 3x3 max pooling
- 7x7 max pooling
- 3x3 convolution
- 5x5 depthwise-seperable conv

Q-Learning: Block-QNN Controller

The search space is very similar to NASNet -> only search for a block.

Table 1: Neural Block's structure Code Space. K is the number that less than the number of current layer.

Layer Type	Convolution	Max Pooling	Average Pooling	Identity	Elemental Add	Concat	Terminal
Kernel Size	1, 3, 5	1, 3	1, 3	0	0	0	0
Connection 1	K	K	K	K	K	K	K
Connection 2	0	0	0	0	K	K	0

- State: the current layer in block.
- Action: the next layer the agent choose.
- Agent: generates block by selecting the action with highest value.
- Reward: accuracy log(FLOPS) / 2 log(density) / 2

$$Q_{t+1}(s_i, u) = (1-\alpha)Q_t(s_i, u) + \alpha[accuracy + max_{u' \in U(s_j)}Q_t(s_j, u')]$$

Q-Learning: Block-QNN Search Space

• The search space and the best architectures found.

Figure 5: Topology of the Top-2 block structures searching on CIFAR-10 dataset. We call them Block-QNN-A and Block-QNN-B.

Comparison

• The numbers are best reported results (few variations for ImageNet)

Model	CIFAR-10 Error rate	ImageNet Top-1 Error rate	ImageNet Top- 5 Error rate	GPUs	days
NAS ICLR'17	3.65	-	-	800	24
NASNet	2.4	17.3	3.8	500	4
Block-QNN AAAI'18	3.6	24.3	7.4	32	3

• *Google releases official NASNet CNN architecture (not the controller) in the tensorflow models repository on github.

