Análisis de predicción sobre pedidos recibidos a repartidores de app delivery

El objetivo es predecir si el repartidor acepto o no la solicitud de pedido.

Variables:

- -order_id= Descripción: Id de la orden, Tipo de variable: cuantitativa discreta
- -store_id= Descripción: Id de establecimiento, Tipo de variable: cuantitativa discreta
- -to_user_distance= Descripción: Distancia recorrerá el repartidor para completar el pedido, Tipo de variable: cuantitativa continua
- -to_user_elevation= Descripción: Elevación positiva o negativa del repartidor a la ubicación del pedido, Tipo de variable: cuantitativa continua
- -total_earning= Descripción: Ganancia neta del repartidor, Tipo de variable: cuantitativa continua
- -created_at= Descripción: Fecha del pedido, Tipo de variable: cualitativa ordinal
- -taken= Descripción: Si se acepto o no el pedido(binario 1 acepto, 0 rechazo), Tipo de variable: cuantitativa discreta

```
#Librerias necesarias
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from math import e,log
from scipy import stats
from scipy.stats import skew
from scipy.stats import kurtosis
%matplotlib inline
```

df = pd.read_csv('/content/drive/MyDrive/AaTecM/semestre_7mo/septimo/reto1/input/Libro1.c
df

	order_id	store_id	to_user_distance	to_user_elevation	total_earning	
0	14364873	30000009	2.478101	-72.719360	4200	2017-(
1	14370123	30000058	0.451711	37.754761	4200	2017-(
2	14368534	900003684	2.026072	207.191162	4000	2017-(
3	14370258	900014452	2.671432	1.722656	4400	2017-(

		✓ 0s	completed at 8:28 PM		• ×
4995	15255745	900007718	2.880413	-11.715576	6650 2017-(
4996	15255736	900002516	1.438965	171.192993	4200 2017-(
4997	15255747	900014085	2.047149	71.333130	4750 2017-(
4998	15255849	900008201	0.402239	-3.296021	3200 2017-(
4999	15255914	900006490	0.606693	18.728394	3200 2017-(
5000 rd	ows × 7 colu	mns			

Exploración y prepocesamiento de los datos

```
#Validar tipo de dato y si hay valores nulos
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):
    Column
                     Non-Null Count Dtype
    ----
                      -----
                    5000 non-null int64
5000 non-null int64
0 order id
1 store_id
2 to_user_distance 5000 non-null float64
3 to_user_elevation 5000 non-null float64
4 total_earning
                   5000 non-null int64
5
                      5000 non-null
    created at
                                     object
    taken
                      5000 non-null
                                     int64
dtypes: float64(2), int64(4), object(1)
memory usage: 273.6+ KB
```

Se valida que efectivamente no hay valores nulos en el dataframe

```
#Creación de atributo para saber hora del día en que realizó el pedido y en que
#día de la semana
df['created_at'] = df['created_at'].astype('datetime64[ns]')
df['hour_order']= df.created_at.dt.hour
df['weekday_order']= df.created_at.dt.day_name()
df
```

	order_id	store_id	to_user_distance	to_user_elevation	total_earning	creat
0	14364873	30000009	2.478101	-72.719360	4200	2017-

1	14370123	30000058	0.451711	37.754761	4200	2017- 20
2	14368534	900003684	2.026072	207.191162	4000	2017- 20
3	14370258	900014452	2.671432	1.722656	4400	2017- 20
4	14369923	900014085	0.965496	117.429199	3450	2017- 20
4995	15255745	900007718	2.880413	-11.715576	6650	2017- 16
4996	15255736	900002516	1.438965	171.192993	4200	2017- 16

#Inspeccionar quantiles, mediana y desviación estandar.
df.describe()

	order_id	store_id	to_user_distance	to_user_elevation	total_earning
count	5.000000e+03	5.000000e+03	5000.000000	5000.000000	5000.000000
mean	1.507434e+07	7.604182e+08	1.500403	24.962399	5332.181200
std	4.450853e+05	3.192913e+08	0.849172	86.172319	1776.446375
min	1.425905e+07	3.000000e+07	0.046133	-569.226196	3000.000000
25%	1.470556e+07	9.000046e+08	0.831520	-19.857056	4200.000000
50%	1.504261e+07	9.000077e+08	1.397507	9.560669	5200.000000
75%	1.546334e+07	9.000128e+08	2.022482	58.364868	6300.000000
max	1.588164e+07	9.000172e+08	9.078181	1009.380005	18500.000000

En las gráficas podemos observar que hay datos atípicos, los cuales deben ser retirados para crear un modelo más preciso.

```
# Se eliminan los datos atipicos de las columnas 'to_user_distance', 'to_user_elevation',
df = df[(np.abs(stats.zscore(df[['to_user_distance', 'to_user_elevation', 'total_earning']
sns.set()
sns.pairplot(df, hue='taken',height = 2, palette = 'flare')

<seaborn.axisgrid.PairGrid at 0x7fab319996d0>
```


Ahora se puede observar que los datos están distribuidos de una manera más uniforme. A primera vista no se observa ningun patron relacionado a alguna de las variables, que sea util para categorizar si el repartidor aceptará o no el pedido. Por lo que se procederá a tomar una de las variables para probar su efectividad en un modelo de regresión logística.

Se seleccionó la variable to_user_distance para la cual se evaluará sesgo y curtosis.

```
#Validar sesgo y curtosis
sns.histplot(df['to_user_distance'], kde=True, stat="density")
print('Sesgo: ' + str(skew(df['to_user_distance'])))
```

```
print('Curstosis: ' + str(kurtosis(df['to_user_distance'])))
```

Sesgo: 0.589827923578228

Curstosis: -0.13951830813533794

Graficamente se puede observar que hay sesgo positivo a la derecha. Sin embargo la curtosis se encuentra en un rango aceptable ya que está alejado del 0 menos de 0.5. Para disminuir el sesgo de los datos se realizará una transfomación de Box-Cox.

```
#Transformación Box-Cox
fitted_data, fitted_lambda = stats.boxcox(df['to_user_distance'])
sns.histplot(fitted_data, kde=True, stat="density")
```


Etapa de modelación

```
# Regresión lógistica de 1 orden
```

```
def orden1 (x_train,y_train,theta,alpha,h,j_i):
 n=len(y_train)
 for idx in range (1000):
    zDelta =[]
    zDeltaX=[]
    for x_i, y_i in zip (x_train,y_train):
      zDelta.append(h(x_i,theta)-y_i)
      zDeltaX.append ((h(x_i,theta)-y_i)*x_i)
    sJt0=sum(zDelta)
    sJt1=sum(zDeltaX)
   theta[0]= theta[0]-alpha/n*sJt0
    theta[1]=theta[1]-alpha/n*sJt1
 print(theta)
 return theta
def validate(X_train,y_train,X_test,y_test,theta):
 n_train = len(y_test)
 n_val = len(y_train)
 zDelta = []
 for x_i, y_i in zip(X_train,y_train):
    zDelta.append(j_i(x_i,y_i,theta))
 sDelta = sum(zDelta)
 J_validate = 1/(2*n_val)*sDelta
 # Entrenamiento
 zDelta = []
 for x_i, y_i in zip(X_test,y_test):
    zDelta.append(j_i(x_i,y_i,theta))
 sDelta = sum(zDelta)
 J_train = 1/(2*n_train)*sDelta
 X= df[["to_user_distance"]].to_numpy() #Variable independiente
 y= df[["taken"]].to_numpy() #Variable dependiente
 #Se dividen los datos para tener una sección que sirva para validar y otra que se usará
 X, X_validacion, y, y_validacion = train_test_split(X,y,random_state=0, train_size= 0.9)
 #Se dividen los datos para tener datos de entrenamiento y de pruebas
 X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0, train_size= 0.8)
h = lambda \times, theta: 1/(1+e**(-(theta[0]+theta[1]*x))) #Función de hipótesis (orden 1)
j_i = lambda x, y, theta: y*log(h(x, theta), e) + (1-y)*log(1-h(x, theta), e) #Función de costa
print("Theta taken")
theta11=orden1(X_train,y_train,[1,1],0.1,h,j_i)
print("\n")
print("Validación taken")
validate(X train.v train.X test.v test.theta11)
```

Pruebas de validación y conclusiones

```
#Prueba aleatoria de que el pedido será aceptado para un dato en espécifico
print("Predicción pedido aceptado")
x0=float(X_validacion[4])
y0=int(y_validacion[4])
prob= float(h(x0,theta11))
pred = round(prob)
print("Valores de el dato de prueba: ",x0)
print("Probabilidad de que se acepte el pedido",prob)
print("taken predicción:",pred)
print('----')
print("Taken real: ",y0,"\n")
     Predicción pedido aceptado
     Valores de el dato de prueba: 0.623147063
     Probabilidad por clase 0.9074897638268326
     Clase predicción: 1
     Clase real: 1
```

#Segunda prueba aleatoria de que el pedido será aceptado para un dato en espécifico

```
print("Predicción pedido aceptado")
x0=float(X validacion[57])
y0=int(y_validacion[57])
prob= float(h(x0,theta11))
pred = round(prob)
print("Valores de el dato de prueba: ", x0)
print("Probabilidad de que se acepte el pedido",prob)
print("Taken predicción:",pred)
print('----')
print("Taken real: ",y0,"\n")
     Predicción pedido aceptado
     Valores de el dato de prueba: 2.57529167
     Probabilidad de que se acepte el pedido 0.8892882457619042
     Taken predicción: 1
     ------
     Taken real: 1
#Tercera prueba aleatoria de que el pedido será aceptado para un dato en espécifico
print("Predicción pedido aceptado")
x0=float(X_validacion[355])
y0=int(y_validacion[355])
prob= float(h(x0,theta11))
pred = round(prob)
print("Valores de el dato de prueba: ",x0)
print("Probabilidad de que se acepte el pedido",prob)
print("Taken predicción:",pred)
print('----')
print("Taken real: ",y0,"\n")
     Predicción pedido aceptado
     Valores de el dato de prueba: 1.731365327
     Probabilidad de que se acepte el pedido 0.8975135245220024
     Taken predicción: 1
     ______
     Taken real: 0
```

En conclusión pese a que el porcentaje de precisión del modelo es superior al 90% el modelo no es tan confiable, ya que en las primeras dos pruebas fue correcto, pero en la tercerá falló la predicción. Esto puede deberse a que en la base de datos utilizada no cuenta con tantos registros donde se haya rechazado el pedido.

Por otro lado una segunda posibilidad que afecto al modelo es el de que los datos se encontraban mezclados por lo que hay un alto nivel de "ruido" en los datos. En análisis futuros se utilizará otras variables u otros modelos de machine learning supervisados para

clasificación. De esta forma se podría encontrar uno que mejore la confiabilidad de la predicción.

Colab paid products - Cancel contracts here