Arboles

Definición puede ser recursiva o no recursiva.

• **No recursiva**: Un árbol está compuesto por un conjunto de nodos y un conjunto de aristas dirigidas que conectan parejas de nodos.

Un árbol con raíz tiene las siguientes propiedades:

- 1. Uno de los nodos se distingue de los demás por estar designado como raíz.
- 2. Todo nodo *c*, excepto la raíz, está conectado mediante una arista a exactamente un único otro nodo *p*. El nodo *p* es el padre de *c* y *c* es uno de los hijos de *p*.
- 3. Existe un camino único que recorre el árbol desde la raíz hasta cada nodo. El número de aristas que hay que recorrer se denomina longitud de camino.

Conceptos Clave

1. Nodos y Relaciones:

- Raíz: Nodo superior (sin padre).
- Hojas: Nodos sin hijos.
- Hermanos: Nodos con el mismo padre (ej: B, C, D, E en la Figura 18.1).
- Camino: Secuencia de aristas entre dos nodos (ej: camino A → B → F tiene longitud 2).

2. Métricas:

- Profundidad de un nodo: Longitud del camino desde la raíz hasta él.
 - Ejemplo: Profundidad de $\overline{A} = 0$, de $\overline{B} = 1$, de $\overline{K} = 3$.
- Altura de un nodo: Longitud del camino más largo desde él hasta una hoja.
 - Ejemplo: Altura de $\mathbf{E} = 2$ (camino $\mathbf{E} \rightarrow \mathbf{H} \rightarrow \mathbf{K}$).
- Tamaño de un nodo: Número de descendientes + 1 (incluyéndolo).
 - Ejemplo: Tamaño de B = 3 (B, F, G), de A = 11 (todo el árbol).

3. Propiedades:

- Un árbol con N nodos tiene N-1 aristas (cada nodo, excepto la raíz, tiene exactamente un padre).
- **Definición recursiva**: Un árbol es:
 - Vacío, o
 - Una raíz + subárboles (cada uno es un árbol general).

Implementación de Árboles Generales

- Método "Primer Hijo/Siguiente Hermano":
 - Cada nodo almacena:
 - 1. Un enlace a su primer hijo (más a la izquierda).
 - 2. Un enlace a su **siguiente hermano** (derecha).
 - Ventaja:
 - Ahorra espacio (solo 2 punteros por nodo, sin importar el número de hijos).
 - Permite representar árboles con nodos de grado variable.
- Ejemplo visual:

- B es primer hijo de A.
- c y son hermanos de B.
- E es primer hijo de B; F es su hermano.

Árboles en Sistemas de Archivos

• Estructura jerárquica:

- Raíz: Directorio principal (ej: mark/ en Unix).
- **Hijos**: Subdirectorios o archivos (ej: books/, courses/, login).
- Rutas: Nombres como mark/books/dsaa/ch1 representan caminos en el árbol.

• Recorridos:

- Preorden: Procesar el directorio actual antes que sus hijos (útil para listar rutas).
- Postorden: Procesar hijos antes que el directorio actual (útil para cálculos como el tamaño total de bloques).
 - Ejemplo: Calcular el tamaño de mark/ suma bloques de hijos (41 + 8 + 2) + raíz (1) = 52.

• Aplicación en Java:

```
// Ejemplo: Recorrido postorden para calcular tamaño
int size(File file) {
   if (!file.isDirectory()) return file.getBlockSize();
   int total = 0;
   for (File child : file.listFiles()) {
      total += size(child); // Recursión en hijos
   }
   return total + file.getBlockSize(); // Suma raíz
}
```

Arboles Binarios

Un árbol binario es un árbol en el que ningún nodo puede tener más de dos hijos.

- Hijo izquierdo (left).
- Hijo derecho (right).

Definición y Estructura

- Nodos:
 - Raíz: Nodo superior sin padre.
 - Hojas: Nodos sin hijos.
 - Recursividad: Un árbol binario es:
 - Vacío, o
 - Una raíz + un subárbol izquierdo + un subárbol derecho.
- Implementación:

```
class BinaryNode<AnyType> {
   AnyType element;  // Datos del nodo
   BinaryNode<AnyType> left; // Hijo izquierdo
   BinaryNode<AnyType> right; // Hijo derecho
}
```

Operaciones Básicas

• Inserción y Eliminación: Dependen del tipo de árbol (ej: árbol de búsqueda binaria).

• Recorridos:

- Preorden: Raíz → Izquierdo → Derecho (útil para copiar árboles).
- Inorden: Izquierdo → Raíz → Derecho (devuelve elementos ordenados en BST).
- Postorden: Izquierdo → Derecho → Raíz (útil para liberar memoria).
- Por niveles (BFS): Nivel por nivel (usando colas).

Métodos auxiliares:

- o size(): Número de nodos (recursivo).
- o height(): Longitud del camino más largo a una hoja.

Aplicaciones Clave

1. Árboles de Expresión:

- Hojas: Operandos (ej: variables o constantes).
- Nodos internos: Operadores (ej: +,).
- Uso: Evaluación de expresiones aritméticas.

Ejemplo: Representa (d * (b - c)) + a.

2. Árboles de Huffman:

- Hojas: Símbolos de un alfabeto.
- Códigos: o para enlace izquierdo, 1 para derecho (ej: b = 100).

• Uso: Compresión de datos sin pérdida.

3. Árboles de Búsqueda Binaria (BST):

- Propiedad: left < root < right.
- **Uso**: Búsqueda eficiente (O(log n) en casos balanceados).

4. Colas de Prioridad:

• Implementadas con montículos binarios (heap).

Operación merge:

- Objetivo: Unir dos árboles bajo una nueva raíz.
- Complicaciones:
 - Evitar que nodos estén en múltiples árboles (aliasing).
 - Manejar casos como t1.merge(x, t1, t2) (autorreferencias).
- Solución:

```
void merge(AnyType rootItem, BinaryTree<AnyType> t1, BinaryTree
<AnyType> t2) {
  if (t1.root == this.root || t2.root == this.root) {
     // Manejar aliasing para evitar ciclos
  }
  root = new BinaryNode<>(rootItem, t1.root, t2.root);
  t1.root = t2.root = null; // Evitar compartir nodos
}
```

Implementación en Java

- Clase BinaryTree:
 - Contiene una referencia a la raíz (root).
 - Métodos: isEmpty(), makeEmpty(), recorridos (printPreOrder, etc.).
- Clase BinaryNode:
 - Almacena element , left , right .
 - Métodos estáticos: size() , height() .

Los árboles binarios son versátiles y eficientes para:

- Representar expresiones y jerarquías.
- Optimizar búsquedas y compresiones.
- Implementar estructuras avanzadas (BST, heaps).

Dificultades:

- Balanceo (evitar degradación a O(n)).
- Manejo de memoria en operaciones como merge.

Recursión en árboles binarios

Los árboles binarios son estructuras recursivas por naturaleza.

- 1. size(): Calcular el Tamaño del Árbol
 - Objetivo: Contar el número total de nodos en el subárbol con raíz en t.
 - Lógica recursiva:
 - Caso base: Si el árbol es vacío (t == null), retorna .
 - Código:

```
public static <AnyType> int size(BinaryNode<AnyType> t) {
  if (t == null) return 0;
  return 1 + size(t.left) + size(t.right);
}
```

2. height(): Calcular la Altura del Árbol

- **Objetivo**: Determinar la longitud del camino más largo desde la raíz hasta una hoja.
- Lógica recursiva:
 - Caso base: Árbol vacío (t == null) retorna 1 (para que una hoja tenga altura 0).
- Código:

```
public static <AnyType> int height(BinaryNode<AnyType> t) {
  if (t == null) return -1;
```

```
return 1 + Math.max(height(t.left), height(t.right));
}
```

3. duplicate(): Copiar un Árbol

- Objetivo: Crear una copia exacta del subárbol con raíz en el nodo actual.
- Lógica recursiva:
 - 1. Crear un nuevo nodo con el mismo element.
 - 2. Copiar recursivamente los subárboles izquierdo y derecho (si existen).
- · Código:

```
public BinaryNode<AnyType> duplicate() {
    BinaryNode<AnyType> root = new BinaryNode<>(element, null, null);
    if (left != null) root.left = left.duplicate(); // Copia izquierda
    if (right != null) root.right = right.duplicate(); // Copia derecha
    return root;
}
```

Claves

- Caso base: Siempre manejar el árbol vacío (null).
- División del problema:
 - Tratar el nodo actual.
 - Delegar el resto a los subárboles izquierdo/derecho.
- Eficiencia:
 - **Tiempo**: *O(n)* (cada nodo se visita una vez).
 - **Espacio**: O(h) (altura del árbol para la pila de llamadas recursivas).

¿Por qué usar recursión?

- **Simplicidad**: El código refleja la definición recursiva del árbol.
- Legibilidad: Más claro que versiones iterativas con pilas/colas.

Dificultades:

 Desbordamiento de pila: En árboles muy desbalanceados (usar iterativos si es crítico).

Recorrido del árbol: clases iteradoras

Recorridos en:

- **Preorden:** Primero se procesa el nodo y luego recursivamente sus hijos.

 duplicate() es un ejemplo porque primero crea la raíz y luego se copia recursivamente en un subárbol izquierdo, para terminar copiando el subárbol derecho.
- Postorden: Los nodos se procesan después de haber procesado recursivamente a sus hijos. La información de un nodo se obtiene luego de obtener la de sus hijos. → Ej: size() y height()
- **En orden:** El nodo actual se procesa entre ambas llamadas recursivas. Se procesa recursivamente el hijo izquierdo, luego el actual y luego el hijo derecho. Se usa, por ejemplo en árboles de expresión.
- → Todas estas rutinas de recorrido son O(n).
 (snippets de codigo con rutinas)

```
public void printPreOrder(){
  System.out.println(element); // NODO
  if (left != null)
     left.printPreOrder(); // IZQUIERDA
  if (right != null)
     right.printPreOrder(); // DERECHA
}
public void printPostOrder(){
  if (left != null)
     left.printPreOrder(); // IZQUIERDA
  if (right != null)
     right.printPreOrder(); // DERECHA
  System.out.println(element); // NODO
}
public void printlnOrder(){
  if (left != null)
```

```
left.printPreOrder(); // IZQUIERDA
System.out.println(element); // NODO
if (right != null)
    right.printPreOrder(); // DERECHA
}
```


Agregar:

*Clase abstracta iteradora en Java

Recorrido en postorden (izquierda → derecha → raíz).

Mantiene una pila que almacena los nodos que han sido visitados, pero cuyas llamadas recursivas no han sido todavía completadas

Cada nodo se apila 3 veces, marcando su estado de procesamiento:

- 1. **Primera vez**: Antes de procesar el subárbol izquierdo.
- 2. Segunda vez: Antes de procesar el subárbol derecho.
- 3. **Tercera vez**: Listo para ser "visitado" (impreso, evaluado, etc.).

IMPLEMENTACION CON PILA

• Clase StNode: Almacena un nodo y un contador (timesPopped).

```
protected static class StNode<AnyType> {
   BinaryNode<AnyType> node;
  int timesPopped; // 0, 1, 2 (para 1ª, 2ª, 3ª extracción)
}
```

- Algoritmo (advance)
 - 1. Inicialización: Apilar la raíz con timesPopped = 0.
 - 2. Bucle principal:
 - Si timesPopped == 2: El nodo se visita (tercera extracción).
 - Si timesPopped == 0: Apilar el hijo izquierdo (si existe).
 - Si timesPopped == 1: Apilar el hijo derecho (si existe).
 - 3. Fin: Cuando la pila esté vacía.

Recorrido en Preorden (Raíz → Izquierda → Derecha)

- Orden: Visita la raíz antes que los hijos.
- Uso típico: Copiar la estructura del árbol, expresiones prefijas (+ A B).

- Implementación iterativa (con pila):
 - 1. Apilar la raíz.
 - 2. Mientras la pila no esté vacía:
 - Extraer un nodo y visitarlo.
 - Apilar su hijo derecho (si existe).
 - Apilar su hijo **izquierdo** (si existe).
- Ejemplo:Salida: 1 → 2 → 3.

```
1
/\\
2 3
```

Recorrido en Inorden (Izquierda → Raíz → Derecha)

- Orden: Visita la raíz entre los hijos.
- Uso típico: Obtener elementos de un BST ordenados.
- Implementación iterativa (con pila y contador timesPopped):
 - 1. Apilar nodos con timesPopped = 0.
 - 2. Cuando un nodo se extrae por **segunda vez**, se visita.
 - 3. Antes de visitarlo, se apila su hijo derecho (si existe).
- Ejemplo:Salida: 1 → 2 → 3.

```
2
/\\
1 3
```

Recorrido por Niveles (BFS)

- Orden: Visita nodos nivel por nivel (de arriba a abajo, izquierda a derecha).
- Uso típico: Búsqueda en anchura, calcular la altura del árbol.
- Implementación iterativa (con cola):
 - 1. Encolar la raíz.

- 2. Mientras la cola no esté vacía:
 - Extraer un nodo y visitarlo.
 - Encolar su hijo izquierdo (si existe).
 - Encolar su hijo derecho (si existe).
- Ejemplo:Salida: 1 → 2 → 3 → 4 → 5.

```
1

/ \\
2  3

/ \\
4  5
```

Ejemplo de Código (Recorrido por Niveles)

```
void levelOrder(TreeNode root) {
  if (root == null) return;
  Queue<TreeNode> queue = new LinkedList<>();
  queue.add(root);
  while (!queue.isEmpty()) {
    TreeNode node = queue.poll();
    System.out.print(node.val + " ");
    if (node.left != null) queue.add(node.left);
    if (node.right != null) queue.add(node.right);
  }
}
```

Conclusión

- Preorden/Postorden/Inorden: Usan pilas y lógica recursiva simulada.
- Por niveles: Usa colas para procesar nodos en orden FIFO.
- **Elección del recorrido**: Depende de la aplicación (ej: inorden para BST ordenados, postorden para liberar memoria).

Árboles de búsqueda binaria

Un BST es un árbol binario con la siguiente propiedad para cada nodo X:

- Subárbol izquierdo: Todos los valores < X.
- Subárbol derecho: Todos los valores > X.
- No se permiten duplicados (o se manejan con estructuras auxiliares).
- Cuando el árbol está balanceado y tiene n nodos, su altura es de $O(\log N)$

Operaciones Detalladas

Búsqueda (find)

- Algoritmo:
 - 1. Comienza en la raíz.
 - 2. Compara el valor buscado con el nodo actual:
 - Si es menor: Ve al hijo izquierdo.
 - Si es mayor: Ve al hijo derecho.
 - Si es igual: Retorna el nodo.
 - 3. Si se llega a null, el valor no existe.
- Complejidad:
 - Mejor caso: O(1) (raíz).
 - Promedio: O(log N) (árbol balanceado).
 - **Peor caso**: O(N) (árbol degenerado, como una lista).

Inserción (insert)

Pasos:

- 1. Realiza una búsqueda hasta encontrar un null donde debería estar el valor.
- 2. Inserta el nuevo nodo en esa posición.

• Ejemplo:

- Insertar 6 en el árbol anterior:
 - $10 \rightarrow 5 \rightarrow 7 \rightarrow \text{(izquierdo de 7 es null)}.$
 - Se inserta 6 como hijo izquierdo de 7.

Eliminación (remove)

- Casos específicos:
 - 1. **Nodo hoja** (ej: 3):
 - Simplemente se elimina.
 - 2. Nodo con un hijo (ej: 15 si 12 no existiera):
 - El padre del nodo eliminao apunta al hijo (único) del nodo.
 - 3. Nodo con dos hijos (ej: 5):
 - Paso 1: Encuentra el sucesor inorden (mínimo del subárbol derecho) o predecesor (máximo del izquierdo).
 - Para 5, el sucesor es 6 (si existiera) o 7.
 - Paso 2: Copia el valor del sucesor en el nodo a eliminar.
 - Paso 3: Elimina el sucesor (que será un caso simple de 0 o 1 hijo).
- Ejemplo Completo:
 - Eliminar 5:
 - Sucesor: 7.
 - Copia 7 en lugar de 5.
 - Elimina el nodo 7 original (hoja).

Operaciones Adicionales

findMin y findMax

• findMin:

- Baja siempre por la izquierda hasta encontrar un null.
- Ejemplo: En el árbol anterior, findMin retorna 3.
- findMax:
 - Baja siempre por la derecha.
 - Ejemplo: findMax retorna 20.

Recorridos

- Inorden (izquierda → raíz → derecha):
 - Retorna valores ordenados: 3, 5, 7, 10, 12, 15, 20.
- Preorden y Postorden: Útiles para copiar árboles o evaluar expresiones.

Problemas y Optimizaciones

Problema del Desbalanceo

NO TENEMOS CONTROL DE LA ALTURA → Puede volverse lista enlazada. La forma del árbol y su altura depende del orden en el que se insertan los elementos. Lo mejor sería que el árbol tenga la altura mínima, es decir, que esté balanceado.

- Causa: Inserción/eliminación en orden secuencial (ej: 1, 2, 3, 4).
- **Resultado**: El árbol degenera en una lista ((O(N))) en operaciones).

Aplicaciones Prácticas

- Java: TreeSet y TreeMap usan BST (implementación Rojo-Negro).
- Bases de datos: Índices para búsquedas rápidas.
- Compiladores: Árboles de sintaxis abstracta (AST).

Ejemplo de Código (Eliminación en BST)

```
public TreeNode deleteNode(TreeNode root, int key) {
  if (root == null) return null;

if (key < root.val) {
    root.left = deleteNode(root.left, key);</pre>
```

```
} else if (key > root.val) {
     root.right = deleteNode(root.right, key);
  } else {
     // Caso 1: Nodo hoja o con un hijo
     if (root.left == null) return root.right;
     if (root.right == null) return root.left;
     // Caso 2: Dos hijos
     TreeNode successor = findMin(root.right);
     root.val = successor.val;
     root.right = deleteNode(root.right, successor.val);
  }
  return root;
}
private TreeNode findMin(TreeNode node) {
  while (node.left != null) node = node.left;
  return node;
}
```

Árboles AVL

Un árbol AVL es un árbol de búsqueda binaria (BST) con una condición de equilibrio adicional:

- Para **todo nodo**, la diferencia de alturas entre sus subárboles izquierdo y derecho (**factor de equilibrio**) debe ser (-1), (0), o (1).
- Altura de un subárbol vacío:(-1).

Importancia del Equilibrio

- Objetivo: Garantizar que la altura del árbol sea $(O(\log N))$, evitando degradación a (O(N)) (como en BST desbalanceados).
- Teorema 19.3:
 - \circ Un árbol AVL de altura \(H\) tiene al menos $(F_{H+3}-1)$ nodos (donde (F_i) es el (i)-ésimo número de Fibonacci).
 - \circ Esto implica: $(H < 1.441 \log(N+2) 1.328)$

Operaciones y Mantenimiento del Equilibrio

Inserción y Reequilibrio

- 1. **Inserción estándar**: Como en un BST, pero **verificando el equilibrio** desde el nodo insertado hasta la raíz.
- 2. Casos de desequilibrio (Figura 19.21):
 - Caso 1: Inserción en el subárbol izquierdo-izquierdo (LL).
 - Caso 2: Inserción en el subárbol izquierdo-derecho (LR).
 - Caso 3: Inserción en el subárbol derecho-izquierdo (RL).
 - Caso 4: Inserción en el subárbol derecho-derecho (RR).

Rotaciones para Reequilibrar

- Rotación Simple (Figuras 19.24, 19.26):
 - o Caso 1 (LL): Rotación a la derecha sobre el nodo desbalanceado.

```
static BinaryNode rotateWithLeftChild(BinaryNode k2) {
   BinaryNode k1 = k2.left;
   k2.left = k1.right;
   k1.right = k2;
   return k1;
}
```

- Caso 4 (RR): Rotación a la izquierda (simétrica a LL).
- Rotación Doble (Figuras 19.29, 19.31):
 - Caso 2 (LR):
 - 1. Rotación a la **izquierda** sobre el hijo izquierdo.
 - 2. Rotación a la derecha sobre el nodo desbalanceado.

```
static BinaryNode doubleRotateWithLeftChild(BinaryNode k3) {
   k3.left = rotateWithRightChild(k3.left); // Paso 1
   return rotateWithLeftChild(k3); // Paso 2
}
```

• Caso 3 (RL): Simétrico a LR (rotación derecha-izquierda).

Ejemplo de Rotación Doble (Figura 19.30):

Complejidad y Ventajas

• Operaciones:

 \circ **Búsqueda/Inserción/Eliminación**: $(O(\log N))$ en el peor caso.

• Ventajas:

- Garantiza altura logarítmica incluso en inserciones/eliminaciones arbitrarias.
- Ideal para aplicaciones donde el **peor caso** debe ser controlado (ej: bases de datos).

Desventajas:

- o **Overhead**: Cálculo constante de factores de equilibrio y rotaciones.
- Alternativas más eficientes: Árboles Rojo-Negro o AA (menos rotaciones).