

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Electrónica de Potência

Conversor CA/CC Monofásico Comandado de Onda Completa

Rectificador de onda completa totalmente comandado e semi-comandado

João Bernardo Sequeira de Sá	$\rm n.^o~68254$
Maria Margarida Dias dos Reis	$\rm n.^o~73099$
Rafael Augusto Maleno Charrama Gonçalves	$\rm n.^o~73786$
Nuno Miguel Rodrigues Machado	n.º 74236

Turno de Segunda-feira das 17h00 - 20h00

${\rm \acute{I}ndice}$

1	Intr	roduçã	0	2		
2	Cor	ıdução	do Trabalho	3		
	2.1	Retific	cador de onda completa totalmente comandado	3		
		2.1.1	Carga resistiva pura (R)	3		
		2.1.2	Carga indutiva RL	4		
	2.2 Retificador de onda completa semi-comandado		cador de onda completa semi-comandado	5		
		2.2.1	Carga indutiva RL	5		
3	Sim	ıulação	ulação			
3.1 Circuitos de Potência usados				7		
		3.1.1	Retificador de onda completa com comando total e carga resistica, R	8		
		3.1.2	Retificador de onda completa com comando total e carga RL	9		
		3.1.3	Retificador de onda completa com comando parcial e carga RL	10		

1 Introdução

Este trabalho laboratorial é uma continuação do trabalho 2A em que se estudou o conversor CA/CC (retificador) de meia onda comandado e semi-comandado monofásico. Desta vez o objetivo é compreender o funcionamento do retificador monofásico comandado de onda completa.

Este trabalho está separado em duas partes; na primeira estuda-se o funcionamento do conversor totalmente comandado e na segunda o semi-comandado.

Aquilo que distingue o retificador de onda completa do de meia onda é a presença de 4 tiristores, tal como pode ser observado na Figura 1, em oposição a apenas 1 tiristor como se tinha no retificador de meia onda.

Figura 1: Esquema do retificador de onda completa monofásico comandado.

O funcionamento desta topologia depende de qual o par de tiristores que está a conduzir a uma dada altura. Fazendo uso da nomenclatura da Figura 1 observa-se que T1 e T2 podem ser disparados durante a alternância positiva da tensão de entrada, sendo que T4 e T3 podem ser disparados durante a alternância negativa [1]. Para o primeiro caso tem-se que o ângulo de disparo, α , pode variar entre 0 e π onde para o segundo caso se faz uso de $\alpha + \pi$. Tal como já foi visto no trabalho anterior a altura em que um tiristor entra ao corte depende do momento em que a corrente aos terminais deste passa por zero, pelo que o funcionamento para uma carga puramente resistiva difere do de uma carga indutiva.

Espera-se assim que as formas de onda para a tensão e corrente numa carga indutiva seja tal como se vê na Figura 2.

Figura 2: Formas de onda para carga indutiva.

O resultado é que, ao contrário do retificador de meia onda, tanto para a alternância positiva da tensão de entrada, como para a negativa, se irá ter corrente na carga; obtém-se um

comportamento desta corrente muito mais próximo do continuo e um conteúdo harmónico substancialmente inferior. Observa-se também que devido a isto, o valor médio da corrente na entrada será zero.

Para a segunda parte do trabalho tem-se um retificador semi-comandado, onde se substitui dois do retificadores por dois díodos. Isto pode ser feito caso a carga não exija inversão da tensão aos seus terminais, sendo neste caso imposição da topologia que a tensão de saída tenha sempre o mesmo sinal, devido à presença dos díodos.

2 Condução do Trabalho

2.1 Retificador de onda completa totalmente comandado

2.1.1 Carga resistiva pura (R)

2.1.1.1 Formas de onda da tensão e corrente na entrada

Figura 3: Tensão (a amarelo) e corrente (a rosa) na entrada.

2.1.1.2 Formas de onda da tensão e corrente na carga

Figura 4: Tensão (a azul) e corrente (a rosa) na carga.

2.1.1.3 Formas de onda da tensão e corrente no tiristor

Figura 5: Tensão (a amarelo) e corrente (a rosa) no tiristor.

2.1.1.4 Característica de comando do conversor

2.1.2 Carga indutiva RL

2.1.2.1 Formas de onda da tensão e corrente na carga para funcionamento lacunar

Figura 6: Tensão (a azul) e corrente (a rosa) na carga.

2.1.2.2 Formas de onda da tensão e corrente no tiristor que razão a tensão na carga é negativa por algum tempo tensão medida na carga

Figura 7: Tensão (a amarelo) e corrente (a rosa) no tiristor.

2.1.2.3 Formas de onda da tensão e corrente para funcionamento não lacunar

2.1.2.4 Característica de comando do conversor

2.2 Retificador de onda completa semi-comandado

2.2.1 Carga indutiva RL

2.2.1.1 Formas de onda da tensão e corrente na entrada

Figura 8: Tensão (a amarelo) e corrente (a rosa) na entrada.

2.2.1.2 Formas de onda da tensão e corrente na carga

Figura 9: Tensão (a azul) e corrente (a rosa) na carga.

2.2.1.3 Formas de onda da tensão e corrente no tiristor

Figura 10: Tensão (a amarelo) e corrente (a rosa) no tiristor.

2.2.1.4 Característica de comando do conversor

3 Simulação

3.1 Circuitos de Potência usados

Neste projeto foi utilizado três circuitos de potência, retificador de onda completa total comandado com carga resistiva e com carga RL. E um retificador de onda completa semicomandado com carga RL.

Figura 11: Retificador de onda completa com comando total e carga resistica, ${\cal R}.$

Figura 12: Retificador de onda completa com comando total e carga ${\it RL}$.

Figura 13: Retificador onda completa com comando parcial e carga RL.

É importante referir que para simulação do circuito de disparos definiu-se que iria ser utilizado um drive que impulsos com uma frequência de 50Hz, pode-se controlar o ângulo de disparo com uma fonte DC interativa. Na figura 14 esta representado o sinal do gerador de impulsos com a tensão de entrada.

Figura 14: Tensão de entrada (sinal vermelho)e sinal do drive do tiristor (sinal azul) como também o seu complementar (sinal a verde).

3.1.1 Retificador de onda completa com comando total e carga resistica, R

A figura 15 está representado as formas de onda para a tensão e corrente de entrada.

Figura 15: Tensão (sinal vermelho)e corrente (sinalazul) de entrada.

As formas de onda referente a saída/carga do dispositivo podem ser visualizadas na figura seguinte.

Figura 16: Tensão (sinal vermelho)e corrente (sinalazul) de saida.

Já as formas de onda da tensão e da corrente podem ser visualizadas na figura 17

Figura 17: Tensão (sinal vermelho)e corrente (sinalazul) do tirístor.

3.1.2 Retificador de onda completa com comando total e carga RL

De igual forma é importante visualizar o comportamento da tensão e da corrente no dispositivo com uma carga RL. É de referir que os sinais à saída estão representados na figura 18 e para o tirístor está representado na figura 19.

Figura 18: Tensão (sinal vermelho)e corrente (sinalazul) de saida.

Figura 19: Tensão (sinal vermelho)e corrente (sinalazul) de tirístor.

3.1.3 Retificador de onda completa com comando parcial e carga RL

De igual forma é importante visualizar o comportamento da tensão e da corrente no dispositivo com uma carga RL e díodo roda livre. É de referir que os sinais à saída estão representados na figura 20 e para o tirístor está representado na figura 21.

Figura 20: Tensão (sinal vermelho)e corrente (sinalazul) de saida.

Figura 21: Tensão (sinal vermelho)
e corrente (sinalazul) de tirístor.

Referências

 $\left[1\right]$ Silva, Fernando (1998), Eletrónica Industrial, Fundação Calouste Gulbenkian