

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA - CAMPUS SÃO JOSÉ

CURSO ENGENHARIA DE TELECOMUNICAÇÕES

DISCIPLINA: Dispositivos lógicos programáveis 1 - DIp1 29006

Projeto semáforo regressivo

Aluno: Jefferson Botitano Calderon R

Professor(s): Marcos Moecke

INTRODUÇÃO.

O projeto é baseado em dois semáforos que realizam contagem regressivos para transições de vermelho para verde e vice-versa. Analisando os dois semáforos surgiu a seguinte ideia para implementar o projeto a partir deste esboço pela *Figura 1*:

É possível identificar que o funcionamento entre ambos semáforos está sempre em sintonia, com isso é possível identificar o comportamento em ambos para etapas dos casos possíveis e realizar a construção do diagrama de casos para o projeto.

Diagrama 1.

A representação pelo diagrama realizada por meio do esboço representa o funcionamento que ocorre em quesito de algoritmo para implementação em hardware, variáveis que serão inicializadas e ao longo do funcionamento do projeto sofrerão alterações em seus estados para representar cada estado combinados com os tempos de transições que cada estado possui e sendo configuráveis em quesito de algoritmo.

IMPLEMENTAÇÃO DO HARDWARE.

O algoritmo utilizado resultou no seguinte circuito representado pela Figura 2:

Na parte esquerda do circuito é possível identificar a implementação de um contador utilizado no algoritmo, seguido ao meio da máquina de estado representada pela "caixa" amarela e por final as saídas que foram implementadas na codificação one-hot pelo software Quartus II por não ter sido especificada no algoritmo, outros tipos de codificações poderia ter sido utilizada como: gray, sequencial ou até mesmo do tipo string.

Figura 2:43 elementos lógicos.

Figura 2.

CASOS DA MÁQUINA DE ESTADOS.

O software Quartus II quando identifica a implementação de uma máquina de estado gera um diagrama de casos juntamente com uma tabela que identifica estado presente com estado próximo e sua condição para pular para o próximo estado,o algoritmo implementado para o projeto resultou nos seguintes resultados:

State Table			
	Source State	Destination State	Condition
1	AV1AM1	AV1AM1	(!LessThan0)
2	AV1AM1	AV1AM2	(LessThan0)
3	AV1AM2	AV2VD1	(LessThan0)
4	AV1AM2	AV1AM2	(!LessThan0)
5	AV1AMP	AV1VD1	(ativar).(LessThan0)
6	AV1AMP	AV1AMP	(!LessThan0)
7	AV1AMP	AV2AMP	(!ativar).(LessThan0)
8	AV1VD1	AV1VD2	(ativar).(LessThan0)
9	AV1VD1	AV1VD1	(!LessThan0)
10	AV1VD1	AV1AMP	(!ativar).(LessThan0)
11	AV1VD2	AV1VD2	(!LessThan0)
12	AV1VD2	AV1VD3	(LessThan0)
13	AV1VD3	AV1VD3	(!LessThan0)
14	AV1VD3	AV1VD4	(LessThan0)
15	AV1VD4	AV1VD5	(LessThan0)
16	AV1VD4	AV1VD4	(!LessThan0)
17	AV1VD5	AV1VD5	(!LessThan0)
18	AV1VD5	AV1AM1	(LessThan0)
19	AV2AM1	AV2AM2	(LessThan0)
20	AV2AM1	AV2AM1	(!LessThan0)
21	AV2AM2	AV2AM2	(!LessThan0)
22	AV2AM2	AV1VD1	(LessThan0)
23	AV2AMP	AV1AMP	(LessThan0)
24	AV2AMP	AV2AMP	(!LessThan0)
25	AV2VD1	AV2VD1	(!LessThan0)
26	AV2VD1	AV2VD2	(ativar).(LessThan0)
27	AV2VD1	AV2AMP	(!ativar).(LessThan0)
28	AV2VD2	AV2VD2	(!LessThan0)
29	AV2VD2	AV2VD3	(LessThan0)
30	AV2VD3	AV2VD4	(LessThan0)
31	AV2VD3	AV2VD3	(!LessThan0)
32	AV2VD4	AV2VD5	(LessThan0)
33	AV2VD4	AV2VD4	(!LessThan0)
34	AV2VD5	AV2VD5	(!LessThan0)
35	AV2VD5	AV2AM1	(LessThan0)

Tabela 1.

SIMULAÇÃO DO HARDWARE.

Para simulação do projeto foi utilizado o modelsim que é disponibilizado pelo software Quartus II e com isso foi possível identificar o comportamento do algoritmo implementado.

Figura 3.

A *figura* 3 representa o comportamento de emergência, onde ambos faróis estão com suas lâmpadas amarelas piscando que é acionado pela entrada "ativar".

Figura 4.

A *figura 4* representa o funcionamento normal de ambos faróis,pois o "ativar" está em estado 0, com isso o funcionamento do farol está para avenida 1 em verde e para avenida 2 está em vermelho. Este funcionamento ocorre durante o período de tempo setado para variável "Tvd1".

Figura 5.

A *Figura 5* representa a etapa de funcionamento onde a avenida 1 está iniciando a decrementar as lâmpadas verdes para poder liberar passagem na avenida 2.

Figura 6.

A *Figura 6* representa o estado de funcionamento onde os faróis da avenida 2 estão iniciando a descida das lâmpadas vermelhas para poder mudar seu estado para liberar o trânsito. Para o caso da avenida 1 ela está decrementando as lâmpadas verdes que possui.

Figura 7

A *Figura 7* representa o estado onde a avenida 1 está em estado amarelo e na avenida 2 está próximo ao seu estado para liberar passagem na via.

Figura 8.

A *Figura 8* representa o estado onde a avenida 2 está iniciando o decremento das lâmpadas verdes e o mesmo ocorre na avenida 1 para lâmpadas vermelhas.

Figura 9.

A *Figura* 9 representa o estado de funcionamento onde a avenida 2 está com sua lâmpada amarela acesa e na avenida 1 está próximo de liberar passagem,

Figura 10.

A Figura 10 representa a volta ao ciclo de funcionamento que se inicia na Figura 4.

MODIFICAÇÃO DO PROJETO.

A modificação no projeto foi ter adicionado uma entrada denominada "ambulance", que quando ativada liga todas as lâmpadas verdes da avenida 1 e todas as vermelhas da avenida 2.

Diagrama 4.

O *Diagrama 4* foi modificado baseado no *Diagrama 1* onde foi acrescentado um novo estado para o caso da ambulância estar na avenida 1, que para chegar a esse estado basta a entrada "ambulance" estar no estado 1. Para o caso onde a ambulância está na avenida 1 e esteja vermelha foi realizado o seguinte mecanismo no diagrama que é saltar o estado de verde da avenida 2 e iniciar a decrementar as luzes vermelhas da avenida 1 com as verdes da avenida 2.

Figura 11.

Figura 11: 54 elementos lógicos

A Figura 11 representa o novo circuito implementado pelo software Quartus II pelo novo algoritmo que possui características muito parecidas aos da Figura 2. A diferença é que agora foi adicionado ao circuito uma entrada ambulance e mais componentes adicionados para a lógica de um novo caso.

O Diagrama 5 representa o novo diagrama de estados gerado pelo software Quartus II.

Figura 12.

A *Figura 12* representa o acionamento da entrada "ambulance" para o estado 1,que liga todas lâmpadas verdes da avenida 1 e vermelhas da avenida 2 até que ela seja desativada.

Figura 13.

A *Figura 13* representa o acionamento da entrada "ambulance" para o estado 0,que volta para o estado de funcionamento padrão do semáforo que vimos a partir da *Figura 5* até a *Figura 10*.