

Республиканская физическая олимпиада 2024 года

(Заключительный этап)

Теоретический тур

9 класс.

Внимание! Прочтите в первую очередь.

- 1. Полный комплект состоит из 3 заданий. Для вашего удобства вопросы, на которые Вам необходимо ответить, помещены в рамки.
- 2. На отдельном листе приведены формулы приближенных вычислений, используйте их при решении задач, там, где это необходимо.
- 3. Решения задач выполняйте на отдельных чистых рабочих листах. Самостоятельно разделите их на черновики и чистовые листы. Рекомендуем сначала решать в черновике, а затем красиво оформить решение на чистовых листах. Решение каждого задания начинайте с нового чистового листа. В решении приведите рисунки (в некоторых задания рисунки необходимы, даже в том случае, когда это не оговорено в условии), исходные

уравнения с кратким обоснованием, решения уравнений (комментарии к математическим выкладкам не требуются), окончательные результаты. Окончательные решения обязательно занесите в листы ответов. Чистовые листы пронумеруйте. Черновые листы после окончания работы перечеркните. **Черновики проверяться не будут!**

- 4. Листы ответов содержат отдельные разделы в соответствии с пунктами полученных Вами заданий. Конечные формулы и требуемые численные значения занесите в соответствующие выделенные поля. Если по условию заданий от Вас требуется построение графика, используйте подготовленные бланки в Листах ответов, не забудьте подписать и оцифровать оси координат.
- 5. Все ваши работы сканируются, поэтому пишите только на одной стороне листа. Подписывать рабочие листы и листы ответов запрещается.
- 6. В ходе работы можете использовать ручки, карандаши, чертежные принадлежности, калькулятор.
- 7. После окончания работы сложите листы в следующем порядке: листы ответов; пронумерованные чистовые листы; перечеркнутые черновики.
- 8. Со всеми вопросами, связанными с условиями задач, обращайтесь к организаторам олимпиады.

Пакет содержит:

- титульный лист (1 стр.);
- лист математических подсказок (1 стр.);
- условия 3 теоретических заданий (8 стр.);
- листы ответов (8 стр.);

Формулы приближенных вычислений.

При решении задач Вам могут понадобиться следующие приближенные формулы

1.
$$(1+x)^{\gamma} \approx 1+\gamma x$$

формула справедлива при любых (целых. дробных, положительных, отрицательных) значениях степени γ .

$$\sin x \approx x$$

2.
$$\cos x \approx 1 - \frac{x^2}{2}$$

аргументы тригонометрических функций должны быть заданы в радианах.

$$3. e^x \approx 1 + x$$

Комментарии.

- 1. Во всех формулах величина x безразмерная и значительно меньше 1: x << 1
- 2. Для использования этих формул, прежде всего необходимо привести вашу формулу к стандартному виду, которые даны здесь.
- 3. В ходе приближенных преобразований соблюдайте правило соблюдения порядка малости: если вы отбрасываете малые величины порядка x^2 и выше отбрасывайте их сразу в промежуточных выкладках; если вы сохраняете величины определенного порядка, то сохраняйте их во всех преобразованиях

Задание 1. Как Уильям Томсон стал лордом Кельвином

Задание состоит из 4 логично связанных между собой задач.

Уильям Томсон (1824 — 1907) — британский физик и инженер, известен своими работами в области механики, термодинамики, электродинамики. За необыкновенные заслуги Томсона в науке 1866 году Томсон был посвящён в рыцарское достоинство. В 1892 году королева Виктория пожаловала Томсону наследственное пэрство. Вследствие этого известный уже как «лорд Кельвин» стал первым британским учёным, получившим право заседать в палате лордов. Одной из самых существенных заслуг Уильяма Томсона являлось разработка теории и усовершенствование трансатлантического кабеля.

Данное задание касается изучению некоторых теоретических проблем, связанных с распространением электрического тока по длинному проводящему кабелю с неидеальной изоляцией.

Может и вам удастся получить дворянский титул?

Задача 1.

На рисунке показана электрическая цепь, состоящая из источника постоянного напряжения U_0 и семи резисторов, сопротивления которых указаны на рисунке. Сопротивление амперметра пренебрежимо мало.

1.1 Рассчитайте значения сил токов через все резисторы, считая силу тока I_3 через амперметр известной.

Используйте обозначения сил токов, приведенные на рисунке.

<u>Подсказка</u>. Расчет таких цепей удобно начинать с крайних элементов. Чтобы облегчить Ваши расчеты, в Листе ответов приведена Таблица 1. Заполнять эту таблицу следует слева направо и сверху вниз. Пунктиром выделены участки цепи, сопротивления которых обозначены R_{x3} , R_{x2} , R_{x1} , R_{x0} (R_{x0} - конечно, сопротивление всей цепи). Удобно каждое следующее из этих сопротивлений выражать через предыдущее.

Приведите в Таблице 1 формулы для расчета этих сопротивлений, рассчитайте их значения, выраженные через величину R. Все коэффициенты должны быть записаны в виде обыкновенных дробей. Запишите в соответствующих ячейках Таблицы 1 расчетные формулы для сил токов и их значения, выраженных через I_3 .

1.2 Выразите значения сил токов I_0 и I_3 через напряжение источника U_0 и сопротивление R .

1.3 Рассчитайте численные отношений сил токов
$$\frac{I_1}{I_0}$$
 и $\frac{I_2}{I_1}$

Задача 2.

В цепи, показанной на рисунке сопротивления R_1 = 1,0 $O\!M$, а сопротивления R_2 = 1,0 $\kappa O\!M$. Напряжение источника U_0 = 7,0 B . Амперметры идеальные.

- **2.1** Рассчитайте значения сил токов I_0 и I_1 .
- **2.2** Рассчитайте разность сил токов $\Delta I = \left(I_0 I_1\right)$

<u>Подсказка.</u> Нет необходимости решать эту задачу абсолютно точно. Посмотрите внимательно на заданные значения сопротивлений и проведите расчет с необходимым числом значащих цифр.

Задача 3.

Бесконечная цепочка, состоящая из одинаковых звеньев, подключена к источнику постоянного напряжения $U_{\scriptscriptstyle 0}$.

Пусть в бесконечной цепочке сопротивления резисторов равны $R_1 = R_0$, $R_2 = 2R_0$.

- 3.1 Найдите полное сопротивление цепи.
- **3.2** Покажите, что силы токов I_0, I_1, I_2, \dots образуют геометрическую прогрессию. Найдите отношение сил токов $\frac{I_1}{I_0}$.
- **3.3** Получите формулу, позволяющую рассчитать значения всех сил токов I_k $(k=0,1,2,\ldots)$ через заданные значения U_0 и R_0 .

<u>Подсказка.</u> Если от бесконечности отнять единицу, то получится та же бесконечность.

Пусть в бесконечной цепочке, показанной на рисунке, сопротивления R_2 в несколько тысяч раз больше сопротивлений R_1 , что позволяет делать разумные приближения при расчетах.

- **3.4** Получите формулу для общего сопротивления всей цепочки, при условие $R_2 >> R_1$.
- **3.5** Получите формулу для расчета силы тока в произвольном звене I_k (k=0,1,2,...) через заданные значения $U_0, \quad R_1, \quad R_2$

Задача 4

Телеграфный кабель, который изучал У. Томсон, имел достаточно сложную структуру (см. рисунок): медная жила, резиновая изоляция, броневая защита.

THE DEEP SEA CABLE

Для расчетов существенно:

- диаметр медной жилы $d_0 = 20$ мм (удельное сопротивление меди $\rho_1 = 1,7 \cdot 10^{-8}$ $O_{M} \cdot M$);
- толщина слоя резиновой изоляции h=10мм (удельное сопротивление резины считайте равным $\rho_2=1,7\cdot 10^{10}$ Oм·м).
- длина кабеля $L = 5000 \kappa M$.

Кабель проложен по дну Атлантического океана, поэтому можно считать, что внешний слой изоляции контактирует с хорошо проводящей электрический ток морской водой. Не смотря, на высокое удельное сопротивление изоляции электрический ток частично проходит через изоляционный слой и уходит в океанскую воду.

- **4.1** Рассчитайте электрическое сопротивление R_1 десяти километров ($\Delta l = 10 \, \kappa M$) медной жилы кабеля. Рассчитайте полное сопротивление медной жилы кабеля.
- **4.2** Рассчитайте (приближенно, но с хорошей точностью) электрическое сопротивление R_2 десяти километров изоляции кабеля. Рассчитайте полное сопротивление изоляции. Учтите направление тока в изоляции.
- **4.3** Предложите приближенную эквивалентную электрическую схему подводного телеграфного кабеля, описывающую протекание электрических токов в кабеле.
- **4.4** Рассчитайте отношение силы тока на выходе из кабеля I_1 к силе тока на его входе I_0 .

Задание 2. Вытекание

Часть 1. Бросок

В данной части вам необходимо описать движение тела, брошенного вертикально вверх, в не совсем обычной системе координат. Сопротивлением воздуха можно пренебречь.

Небольшой шарик брошен вертикально вверх с начальной скоростью v_0 . Обозначим максимальную высоту подъема шарика h_0 . Введем ось координат z, направленную вертикально вниз, начало отсчета которой совпадает с максимальной высотой подъема. Далее под скоростью v_z и ускорением a_z подразумеваются проекции скорости и ускорения шарика на ось z.

- **1.1** Выразите максимальную высоту подъема шарика h_0 через начальную скорость v_0 и ускорение свободного падения g .
- **1.2** Чему равны проекции ускорения и начальной скорости шарика на ось z a_z , v_{0z} ?
- **1.3** Найдите зависимость скорости шарика v_z от координаты $z v_z(z)$.
- **1.4** Найдите зависимость координаты шарика z от времени z(t). В качестве параметров этой функции используйте только начальную скорость v_0 и ускорение свободного падения g.
- **1.5** Постройте схематический график зависимости z(t). Укажите характерные точки этого графика.

Обозначим $au_{0,5}$ («время полуподъема») - время, за которое шарик поднимается на высоту $\frac{h_0}{2}$, равную половине максимальной высоты. Это время $au_{0,5}$ может быть выражено через максимальную высоту подъема h_0 и ускорение свободного падения следующим образом:

$$\tau_{0.5} = Ch_0^{\alpha} g^{\beta}, \tag{1}$$

где C - некоторый безразмерный численный коэффициент, α, β - постоянные показатель степеней.

- **1.6** Найдите значения показателей степеней α , β в формуле (1).
- **1.7** Рассчитайте численное значение коэффициента C в формуле (1).

Часть 2. Дырявый сосуд

В данной части задачи вам необходимо описать процесс вытекания жидкости из сосуда, в стенке которого имеется небольшое отверстие.

В боковой стенке вертикального цилиндрического сосуда с диаметром поперечного сечения D проделали малое круглое отверстие диаметра d вблизи дна сосуда. Обозначим отношение этих диаметров $\eta = \frac{d}{D} << 1$

В сосуд наливают воду. Уровень воды z в сосуде отсчитывается от середины отверстия. Ось z направлена вертикально вверх. Считайте, что диаметр отверстия значительно меньше высоты уровня воды в сосуде d << z. Обозначим скорость вытекания воды из отверстия \vec{v}_1 , скорость опускания уровня воды в сосуде \vec{V} . Вязкостью

скорость опускания уровня воды в сосуде *v* . Вязкостью воды следует пренебречь, в этом приближении сохраняется механическая энергия воды, т.е. тепловых потерь нет.

- **2.1** Найдите зависимость скорости вытекания воды из отверстия v_1 от высоты уровня воды в сосуде $v_1(z)$.
- **2.2** Найдите зависимость проекции на ось z скорости опускания V_z от высоты уровня z. В качестве параметров этой функции используйте только ускорение свободного падения g и отношение диаметров η .
- **2.3** Чему равно ускорение, с которым опускается уровень воды в сосуде a_z ?
- **2.4** Найдите зависимость высоты уровня воды в сосуде от времени z(t). При t=0 высота уровня воды в сосуде равна h_0 . В качестве параметров функции используйте величины g,h_0,η .
- **2.5** Найдите через, какое время $au_{0.5}$ уровень воды в сосуде уменьшится в два раза.
- **2.6** Рассчитайте численное значение времени «полувытекания» $au_{0,5}$, если $h_0=20~c$ м, $\eta=\frac{1}{20}$, $g=10\frac{M}{c^2}$.

Задание 3. Теплокровный сферический кот.

Живые организмы могут существовать в достаточно узком температурном диапазоне. Так, например, нормальная температура человека примерно равна 36,5°. повышение температуры всего на 5° свидетельствует о серьезном заболевании. В каждом организме действуют сложные механизмы терморегуляции, позволяющие поддерживать температуру тела постоянной. В данном задании Вам предстоит проанализировать некоторые проблемы, связанные с терморегуляцией живых теплокровных организмов, используя простые модели.

Будем считать, что исследуемое существо имеет форму однородного шара (далее буем называть его сферическим котом). Внутри тела этого кота в результате постоянно происходит выделение теплоты. Теплопроводность тела высока, поэтому можно считать. что температура во всех его точках одинакова, но может изменяться с течением времени.

Во всех задачах этого задания под температурой тела подразумевается установившаяся температура, которую имеет тело кота после установления теплового равновесия.

Теоретическое введение.

1. Мощность теплоты, выделяющейся внутри сферического кота постоянна (т.е. не зависит от температуры тела) и пропорциональна его объему:

$$W = wV. (1)$$

где w - некоторая постоянная величина (<u>тепловыделение</u>), одинаковая для всех котов, независимо от их размеров, $V = \frac{4}{3}\pi R^3$ - объем шара, R - радиус шара. Тепловыделение w живых существ может зависеть от температуры.

2. Мощность теплоты, уходящей в окружающую среду с любой поверхности пропорциональна разности температур поверхности t_x и окружающей среды t_0 , кроме того. она пропорциональна площади поверхности S:

$$q = \beta S(t_x - t_0) \tag{2}$$

где β - известная постоянная величина (называется коэффициент теплоотдачи, зависящей от свойств окружающей среды, т.е. воздуха). Площадь поверхности шара $S=4\pi R^2$.

3. Согласно закону Фурье плотность потока теплоты q (количество теплоты протекающей в единицу времени через площадку площади S) через пластинку пропорциональна разности температур на сторонах пластинки и определяется формулой

$$q = \gamma \, \frac{t_1 - t_2}{h} \, S \,, \tag{3}$$

здесь γ - постоянный коэффициент теплопроводности материала пластинки, h - толщина пластинки

4. Как вам предстоит показать в дальнейшем, что мощность потока теплоты, уходящей в окружающую среду (даже при наличии одежды) пропорциональна разности температур тела и окружающей среды

$$q = \alpha (t - t_0). \tag{4}$$

коэффициент пропорциональности α в данной формуле называется коэффициентом теплопередачи. Для голого кота этот коэффициент равен $\alpha = \beta S$.

9 класс. Теоретический тур. Вариант 1.

Часть 1. Спяшие коты

В этой части будем считать. что мощность тепловыделения w постоянна, т.е. не зависит от температуры и одинакова для котов любых размеров.

Температура окружающей среды равна $t_0 = 20^{\circ}C$, при этом установившаяся температура тела голого кота радиуса R_0 равна $t_1 = 36^{\circ}C$.

1.1 Почему маленькие дети больше мерзнут?

1.1 Рассчитайте, чему будет равна установившаяся температура голого котенка t_2 , радиус которого в два раза меньше, чем R_0 .

1.2 Почему «греет» шуба?

Благодаря одежде, надетой на котенка, коэффициент теплопередачи уменьшился в 2 раза.

1.2.1 Рассчитайте, чему будет равна установившаяся температура t_3 одетого котенка.

Покажите, что одежда действительно может изменить коэффициент теплопередачи.

Обозначим коэффициент теплопередачи голого кота - α_0 . Будем считать, что одежда является тонким слоем теплоизоляционного материала с коэффициентом теплопроводности γ толщины h (которая значительно меньше радиуса кота h << R). Можно считать, что тепловой контакт между телом кота и нижней поверхностью одежды хороший, потому их температуры равны. Температура верхнего слоя одежды отличается от температуры воздуха.

1.2.2 Покажите, что коэффициент теплопередачи одетого кота тоже может быть описан формулой $q = \alpha(t-t_0)$, но с другим коэффициентом пропорциональности α_1 , отличным от α_0 . Выразите значение этого коэффициента через величины α_0 , h, γ

Часть 2. «Живая» модель

В данной части Вам необходимо проанализировать жизнь кота, в рамках более реальной модели. Размер кота остается неизменными. Примем, что мощность тепловыделения этого кота зависит от температуры: она принимает максимальное значение, при некоторой оптимальной температуре t_{opt} и монотонно уменьшается при отклонении температуры от оптимального значения (когда становится очень холодно или слишком жарко). Жизнь кота возможна, если его температура лежит в диапазоне от минимальной температуры $t_{min}=30^\circ$ до максимальной температуры $t_{max}=50^\circ$. Если температура кота выходит из этого диапазона, кот умирает.

Зависимость мощности тепловыделения от температуры t в указанном диапазоне описывается функцией

$$W(t) = A(t - t_{\min})(t_{\max} - t), \tag{5}$$

где A - постоянная величина. Вне этого температурного диапазона W=0 .

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

Известно, что при температуре воздуха $t_0^* = 20^\circ$ температура голого кота является оптимальной.

В пунктах задания 2.1-2.5~ кот остается голым, т.е. коэффициент теплоотдачи $\alpha_0~$ остается постоянным.

2.1 Найдите оптимальную температуру кота t_{opt} .

Предложите такую нормировку мощностей тепловыделения $\overline{W} = \frac{W}{C}$ и теплоотдачи $\overline{q} = \frac{q}{C}$, чтобы значения $\overline{W}(t)$, $\overline{q}(t)$ можно было рассчитать численно.

- **2.2** Укажите, что следует взять в качестве нормировочной постоянной C. Укажите физический смысл этой постоянной. Запишите формулы для зависимостей $\overline{W}(t)$, $\overline{q}(t)$. Укажите численные значения параметров этих функций.
- **2.3** На одном бланке постройте: точный график зависимости $\overline{W}(t)$ и график зависимости $\overline{q}(t)$ при температурах окружающей среды $t_0^* = 20^\circ$.

Далее в пунктах 2.4 - 2.6 приведите графическую иллюстрацию решения, то есть постройте графики зависимостей $\overline{W}(t)$, $\overline{q}(t)$ при указанных значениях параметров. В этих пунктах допускается численное решение уравнений (без получения окончательной формулы).

- **2.4** Рассчитайте установившуюся температуры голого кота, если температура окружающего воздуха равна а) $t_0 = 35^\circ$; б) $t_0 = 25^\circ$.
- **2.5** Рассчитайте, в каком диапазоне температур воздуха (от $t_{0\min}$ до $t_{0\max}$) может жить голый кот.

Чтобы не замерзнуть, кот начинает одеваться, изменяя коэффициент теплоотдачи α .

- **2.6** Предложите такую зависимость коэффициента теплоотдачи $\alpha(t_0)$ от температуры воздуха t_0 (при $t_0 < 20^\circ$). чтобы температура кота оставалась оптимальной, независимо от температуры воздуха.
- **2.7** Постройте график зависимости $\frac{\alpha(t_0)}{\alpha_0}$ при $0^\circ < t_0 < 20^\circ$.
- **2.8** Оцените, во сколько раз надо изменить коэффициент теплопередачи, чтобы кот смог выжить при температуре воздуха $t_0 = 0^\circ$

Листы ответов

Задание 1. Как Уильям Томсон стал лордом Кельвином

Задача 1

1.1 Заполните Таблицу 1

Таблица 1. Расчет характеристик электрической цепи

Схема	Сопротивление	Силы	гоков
I_2 I_3 I_3 R R R R R	$R_{x3} =$	<i>I</i> ' ₃ =	$I_2 =$
$ \begin{array}{c c} I_1 & I_2 & I_3 \\ I'_2 & R & R \\ 2R & 2R & R \end{array} $ R_{x2}	$R_{x2} =$	$I_2' =$	$I_1 =$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{x1} =$	<i>I</i> ₁ ' =	$I_0 =$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{x0} =$	-	-

1.2 Силы токов	3
-----------------------	---

$$I_0 = 0$$

$$I_3 =$$

1.3 Отношения сил токов

$$\frac{I_1}{I_0} =$$

$$\frac{I_2}{I_1} =$$

20	по	ma	2
7/	ЛИ	чи	/

2.1 Силы токов

$$I_0 =$$

$$I_1 =$$

2.2 Разность сил токов

$$\Delta I =$$

Задача 3.

3.1 Сопротивление цепи

$$R_{x} =$$

3.2 Отношение сил токов

$$\frac{I_1}{I_0} =$$

3.3 Формула для расчета сил токов

$$I_k =$$

3.4 Сопротивление цепи

$$R_{x} =$$

3.5 Формула для расчета сил токов

$$I_k =$$

Задача 4

4.1 Сопротивление участка медной жилы

$$R_1 = .$$

Сопротивление всей медной жилы

$$R_{1\Sigma} =$$

4.2 Сопротивление изоляции участка кабеля

$$R_2 =$$

Полное сопротивление изоляции

$$R_{2\Sigma} =$$

4.3 Эквивалентная электрическая схема кабеля

4.4 Отношение сил токов на выходе и входе кабеля

$$\frac{I_1}{I_0} =$$

Листы ответов

Задание 2. Вытекание

1.1 Высота подъема

$$h_0 =$$

1.2 Проекции ускорения и начальной скорости

$$a_z =$$

$$v_{0z} =$$

1.3 Зависимость скорости шарика v_z от координаты

$$v_z(z) =$$

1.4 Зависимость координаты шарика от времени

$$z(t) =$$

1.5 График зависимости координаты от времени

Зависимость координаты от времени

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

1.7 Постоянная C
C =
\parallel C =
2.1 Зависимость скорости вытекания воды
(-) _
$v_1(z) =$
2.2 Зависимость скорости опускания уровня воды
$V_z(z)=$
2.3 Ускорение, с которым опускается уровень воды в сосуде

2.4 Зависимость высоты уровня воды в сосуде от времени

$$z(t) =$$

 $a_z =$

2.5 Время «полувытекания»

1.6 Показатели степеней.

 $\alpha =$

$$\tau_{0,5} =$$

2.6 Численное значение

$$\tau_{0,5} =$$

Листы ответов

Задание 3. Теплокровный сферический кот

1.1 Установившаяся температура голого котен

 $t_2 =$

1.2.1 Установившаяся температура одетого котенка

 $t_3 =$

1.2.2 Коэффициент теплопередачи

 $\alpha_0 =$

2.1 Оптимальная температура кота

 $t_{opt} =$

2.2 Нормировочная постоянная

C =

Формулы зависимостей

$$\overline{W}(t) =$$

$$\overline{q}(t) =$$

Значения параметров зависимостей

2.3 Графики зависимости $\overline{W}(t)$ и $\overline{q}(t)$

2.4 Установившиеся температуры

При температуре воздуха $t_0 = 35^\circ$

t =

при температуре воздуха $t_0 = 25^{\circ}$

t =

2.5 Диапазон температур

 $t_{\min} =$

 $t_{\rm max} =$

2.6 Зависимость коэффициента теплоотдачи от температуры воздуха

$$\alpha(t_0) =$$

2.7 График зависимости $\frac{\alpha(t_0)}{\alpha_0}$

2.8 Изменение коэффициента теплопередачи

$$\frac{\alpha}{\alpha_0} =$$