2/2

2/2

2/2

-1/2

0/2

-1/2

De Larminat Noe Note: 5/20 (score total : 5/20)

+51/1/10+

QCM THLR 2		
Nom et prénom, lisibles :	Identifiant (de haut en bas) :	
de Larminat		
Née		
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. [iii] J'ai lu les instructions et mon sujet est complet: les 1 entêtes sont +51/1/xx+···+51/1/xx+.		
Q.2 Pour toutes expressions rationnelles e , f , g , h , on a $(e+f)(g+h) \equiv eg+fh$.	* · · · · · · · · · · · · · · · · · · ·	
🗆 vrai 📋 faux	$ \Box L(e) = L(f) \qquad \square L(e) \supseteq L(f) $ $ \Box L(e) \not\subseteq L(f) \qquad \Box L(e) \subseteq L(f) $	2/2
Q.3 Pour toute expression rationnelle e , on a $\emptyset e = e\emptyset \equiv \emptyset$.	Q.8 Si <i>e</i> et <i>f</i> sont deux expressions rationnelles, quelle identité n'est pas nécessairement vérifiée?	
🗌 faux 🎆 vrai	—	
Q.4 Pour toutes expressions rationnelles e, f , on a $(e+f)^* \equiv (e^*f)^*e^*$.		0/2
faux < vrai		
Q.5 Il est possible de tester si une expression rationnelle engendre un langage vide.	Q.9 L'expression Perl '[-+]?[0-9]+(,[0-9]+)?(e[-+]?[0-9]+)' n'engendre pas :	
☐ Souvent vrai ☐ Souvent faux ☐ Toujours faux ☐ Toujours vrai	(42,42e42' (42,4e42' (42,e42' (42,e42')	0/2
Q.6 Un langage quelconque ☐ peut avoir une intersection non vide avec son complémentaire	Q.10 \triangle Soit A, L, M trois langages. Parmi les propositions suivantes, lesquelles sont suffisantes pour garantir $L = M$?	
 peut être indénombrable peut n'inclure aucun langage dénoté par une expression rationnelle 	$\{a\} \cdot L = \{a\} \cdot M$	-1/2

Fin de l'épreuve.