

Introducción

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodología

Dato

Posultado

Conclusió

Developing an Optimal Model for Predicting the Severity of Wheat Stem Rust

(Case study of Arsi and Bale Zone)

Alhely González Luna

2024-09-26

https://arxiv.org/pdf/2402.10492

Tabla de contenidos

Introducción

Motivación: Wheat Stem Rust (roya neg del tallo del trigo)

Metodolog

Date

DDEN

GRNN

Resultado

Conclusión

Introducción

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodología

Datos

MLP

RBFNN

GRNN

Resultados

Conclusión

Introducción

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodolog

Date

IVILE

RBFN

GRNN

Resultado

Conclusió

Wheat Stem Rust (roya negra del tallo del trigo)

Etiopía es el segundo mayor productor de trigo en el Subsahara o África no mediterranea, se considera la principal fuente de alimentación de la población etiope, particularmente en las montañas, donde el 95% de la producción a gran escala se debe a pequeños granjeros. Las montañas Arsi y Bale son los mayores productores de trigo en Etiopía.

Aunque la producción de trigo en Etiopía ha aumentado, la media nacional es de aproximadamente 21.25 toneladas/hectárea, sin embargo, se encuentra muy por debajo de la media mundial de 33.3 toneladas/hectárea. Lo que se atribuye principalmente a pocas y pobres variedades del grano, distribución desproporcionada de lluvias, pobres prácticas agronómicas, y a plagas como la roya negra. Las montañas Arsi y Bale son zonas conductoras de esta última plaga.

Introducción

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodologi

Date

MLF

RBFN

GRNI

Resultado

C 1 1/

Introducción

Un país en desarrollo como Etiopía utiliza métodos tradicionales para prevenir este tipo de enfermedades como la aplicación de pesticidas en fechas fijas del año. Este método incrementa el riesgo al medio ambiente e impacta el costo del grano. Esta plaga en particular es capaz de destuir el 100% de los cultivos en semanas. Un sistema de alerta temprana es el mejor método para controlar la prevalencia de la roya negra.

Constant de Clandon de la Carrentenia.

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodología

Date

MILP

RBFN

GRNI

Resultado

.....

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

La roya negra del tallo del trigo es un tipo de hongo que ataca las partes de la planta que se encuentran por encima del suelo, es considerada la principal amenaza en la producción mundial de trigo, debido a que el 80 a 90% de las variedades cultivadas actualmente son susceptibles a esta enfermedad. Su propagación y aparición está infuencliada por varios factores como la resistencia del hongo, la variedad y condiciones meteorológicas, la relación entre estos factores es no lineal.

Las redes neuronales tienen ventajas cuando se trabaja con problemas no lineales. En este trabajo se desarrollan tres opciones de RN para predecir la severidad del hongo: Multilayer Perceptron (MLP), Radial Basis Forward Neural Network (RBFNN) y d General Regression Neural Network (GRNN)

mint it districts a Constitution

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodología

Date

_ . .

resurtado

Áreas de estudio

El presente estudio se condujo en los distritos de Arsi y Bale en las montañas del sudeste de Etiopía, ambas áreas localizadas en Oromia y son estados representativos en la producción de trigo.

Bale se encuentra 2300 msnm, con dos temporadas de lluvia llamadas Boona (Julio a Diciembre) y Ganna (Marzo a Junoio), con un rango anual de 875 mm de precitación las temperaturas varian entre 13° C y 30° C

resultant also Characters dis la Conventino

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodologi

Datos

IVILI

RBFN

011111

Resultados

Conclusió

Datos recolectados

Los patrones de entrada representan los factores que impactan el desarrollo del hongo, tales como los temporales de lluvia, temperatura, humedad, variedad de grano y los valores de salida representan la severidad de la plaga.

Introducción

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodolog

Datos

IVILP

KREN

Dogultada

Datos meteorológicos

Se recolectaron datos meteorológicos del 2000 al 2018 de estaciones de clima cercanas a las dos zonas de interés, en particular de los meses de Julio, Agosto, Septiembre, Octubre, Noviembre y Diciembre, que son las principales temporadas de cosecha. Las variables seleccionadas son:

Variable	Unidad
Promedio mensual de precipitación	mm
Promedio, mínimo y máximo de temperatura mensual	(°C)
Promedio, mínimo y máximo de humedad relativa mensual	g/m^3

Se utilizaron los datos entre el 2000 y 2016 para entrenamiento y de 2017 a 2018 para prueba.

traited strict and as it is Generalize

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodolog

Datos

.....

RBFN

GRIVIN

Resultado

Conclusió

Datos de la plaga

Los datos sobre la severidad de la plaga se obtuvieron de 43 cultivos comerciales durante el 2000-2018 mediante Ethiopia, Sinana y Kulumsa Agricultural Research Centers.

Se registró el porcentage estimado de áreas de la hoja afectadas utilizando la Escala modificada de Cobb que mide la intensidad de la infección. Se registraron los tipos de infección en distintas etapas de crecimiento de la planta y se convirtieron a un coeficiente de infección usando el método de Loegering. En este trabajo se utilizaron los datos recolectados anualmente en la etapa temprana del desarrollo de la planta, se evaluó la severidad de la plaga por parcelas completas de cultiv y su tratamiento. Las esporas del hongo afectando las parcelas son de origen natural.

Se utilizaron los datos entre el 2000 y 2016 para entrenamiento y de 2017 a 2018 para prueba.

material destruction Computer

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodolog

Datos

Resultado

Preprocesamiento

- Los datos de entrada se normalizaron utilizando el método de minimos y máximos mapeando los datos entre -1 y 1.
- La variedad de trigo que es categórica se codifico a un valor numérico.
- Por último se definio un vector de 3 entradas para representar la severidad de la infección:

Alto: (1,0,0)Medio: (0,1,0)

Niedio: (0,1,0)Bajo: (0,0,1)

Inputs/Outputs

Motivación: Wheat Stem Rust (roya negra

Metodologi

Dato

MLP

RBFN

GRNN

Resultado

Conclusión

Design Parameter	Input variables	Numerical code
X1	Rainfall	Numerical value
X2	Maximum Temperatures	Numerical value
X3	Minimum Temperatures	Numerical value
X4	Average Temperatures	Numerical Value
X5	Relative Humidity	Numerical value
X6	Wheat Variety	Categorical Value

Table 2. Summary of Output Variable

Output Variables	Categorical value	Numerical code	Normalized output
			value
	High	3	(1,0,0)
The severity level of stem	Medium	2	(0.1,0)
rust	Low	1	(0.0.1)

realisal de Climates de la Cerces La franco el como el franco de

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodologí

Date

MLP

RBFN

Resultad

Conclusió

Número de neuronas

Se diseño una red solo con una capa oculta y una de salida, se llevaron a cabo experimentos para decidir el número óptimo de neuronas

N	Numbe r of Hidden Neuron	Training function	Transfer	function	Divine function	Learning Function	Best validation performance (MSE)	Epoch
	Neuron		Hidden layer	Output layer				
1	3	TRAINLM	TANSIG	TANSIG	DIVIDERAND	LERANGDM	0.061806	11
2	4	TRAINLM	TANSIG	TANSIG	DIVIDERAND	LERANGDM	0.059907	9
3	5	TRAINLM	TANSIG	TANSIG	DIVIDERAND	LERANGDM	0.061895	8

Provident sits Olympias de la Computaci

Motivación: Wheat Stem Rust (roya negra del tallo del

Metodolog

Dato

MLP

RBFN

GICIVII

Resultado

Conclusió

Número de neuronas

Table 4. Best validation performance results with Divide function

No	Numbe r of Hidden	Training function	Transfer	function	Divine function	Learning Function	Best validation performance (MSE)	Epoch
	Neuron		Hidden layer	Output layer				
1	6	TRAINLM	TANSIG	TANSIG	DIVIDEIND	LERANGDM	0.053712	9
2	7	TRAINLM	TANSIG	TANSIG	DIVIDEIND	LERANGDM	0.064297	4
3	8	TRAINLM	TANSIG	TANSIG	DIVIDEIND	LERANGDM	0.064087	11
4	10	TRAINLM	TANSIG	TANSIG	DIVIDEIND	LERANGDM	0.061059	8
5	12	TRAINLM	TANSIG	TANSIG	DIVIDEIND	LERANGDM	0.061676	6

resultant die Chamateo die la Carrepolite

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodologi

Dato

MLP

RBFN

_

Funciones transfer

No	Numbe r of	Training function	Transfer	function	Divine function	Learning Function	Best validation	Epoch
	Hidden Neuron		Hidden layer	Output layer			performance (MSE)	
1	8	TRAINLM	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.049962	7
2	8	TRAINLM	TANSIG	TANSIG	DIVIDERAND	LERANGDM	0.050125	5
3	7	TRAINLM	LOGSIG	TANSIG	DIVIDERAND	LERANGDM	0.050277	11

Funciones de aprendizaje

Motivación: Wheat Stem Rust (roya negra

Rust (roya ne del tallo del trigo)

Metodolog

Dato

MLP

RBFN

GICIVII

Resultado

Conclusió

No	Numbe r of Hidden Neuron	Training function	Transfe Hidden	er function Output	Divine function	Learning Function	Best validation performance (MSE)	Epoch
	reuron		layer	layer			(MSE)	
3	8	TRAINLM	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.049962	7
6	6	TRAINLM	LOGSIG	PURELIN	DIVIDERAND	LERANGD	0.053118	10

Algoritmo de aprendizaje

Introducción

Wheat Stem Rust (roya nego del tallo del trigo)

Metodologi

Dato

MLP

RBFN

GRIVIN

Resultado

Conclusió

No	Numbe r of Hidden	Training function	Transfer function Di		Divine function	Learning Function	Best validation performance (MSE)
	Neuron		Hidden layer	Output layer			
1	8	Trainlm	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.049962
2	7	Trainbfg	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.058244
3	8	Trainrp	LOGSIG	PURELIN	DIVIDERAND	DIVIDERAND	0.054246
4	12	Traingdx	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.053174
5	8	Trainscg	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.052486
6	8	Traincgb	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.054275
7	7	Trainoss	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.053312
8	8	Traincgf	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.050915
9	10	Traingdm	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.083611
10	7	Traingd	LOGSIG	PURELIN	DIVIDERAND	LERANGDM	0.077421

realist de Clandina de la Carveratro

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodolog

Dato

MLP

GICIVII

Resultados

Conclusió

MLP Final

- Una capa oculta con 8 neuronas
- logsig and purelin as transfer function
- learngdm as learning function
- trainlim as training function
- 70/15/15 data split
- MSE = 0.049962.

realist de Climbro de la Cercentra La terra el consciolo de la company

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodologí

Dato

RBFNN

Danulkada

C---!

Número de neuronas ocultas (base radial), centros y radio

Se utilizó el método de mínimos cuadrados ortogonales para elegir los centros uno a uno hasta que se construye la red final con el objetivo de minimizar el MSE

Model No	Spread	Ng of hidden neurons	Mean Square Error (MSE)	Epech
- 1	0.1	510	0.0101568	500
2	0.2	656	0.0100134	650
3	0.3	746	0.0114062	700
4	0.4	919	0.0104852	900
5	0.5	1064	0.0101949	1050
6	0.6	1118	0.0103292	1100
7	0.7	1157	0.0101277	1150
8	0.8	1190	0.0109623	1150
9	0.9	1218	0.0104709	1200
10	1.0	1230	0.0106513	1200
- 11	1.1	1277	0.01048	1250
12	1.2	1361	0.0102354	1350

13	1.3	1604	0.0101233	1600
14	1.4	2000	0.0115874	2000
15	1.5	2000	0.0130079	2000
16	1.6	2000	0.0148889	2000
17	1.7	2000	0.0169153	2000
18	1.8	2000	0.0187552	2000
19	1.9	2000	0.0196425	2000
20	2.0	2000	0.0209732	2000

Estructura Final

Motivación: Wheat Stem Rust (roya negra del tallo del

Metodologí

Datos

MLF

RBFNN

Resultados

Canalusián

Motivación: Wheat Stem Rust (roya negra del tallo del

Metodolog

Date

MLF

GRNN

Danilbad

Smoothing Factor σ

El factor σ cambia el grado de generalización de la red

Model No	Smoothing factor	Mean Square Error (MSE)
1	0.1	0.0170
2	0.2	0.0443
3	0.3	0.0556
4	0.4	0.0612
5	0.5	0.0655
6	0.6	0.0696
7	0.7	0.0735
8	0.8	0.0771
9	0.9	0.0803
10	2.0	0.0832

Estructura final

Motivación: Wheat Stem Rust (rova negra

trigo)

Metodología

Dato

MLI

RRENI

GRNN

Resultados

Conclusión

Comparación de modelos

Motivación: Wheat Stem

Wheat Stem Rust (roya negra del tallo del trigo)

Metodologí

Dato

MLF

RBFN

Resultados

Conclusió

		Testing						
Model	(RMSE)	(R)	Determination coefficient (R ²⁾	Mean Absolute error (MAE)	RMSE	R	R ²	MAE
MLP	0.224	0.86489	0.7450	0.0520	0.07	0.835	0.70	0.036
RBFNN	0.10	0.97726	0.955	0.0408	0.03	0.98	0.81	0.028
GRNN	0.13	0.96158	0.925	0.0488	0.010	0.99	0.98	0.018

Conclusión y trabajos futuros

Introducción

Motivación: Wheat Stem Rust (roya negra del tallo del trigo)

Metodolog

Dato

DDEN

RBFN

D 1: 1

Conclusión

La tabla anterior indica que el modelo GRNN tiene una buena capacidad de predicción con el menos tiempo de entrenamiento. Se planea incluir otras áreas de estudio además de las dos presentadas aquí.