ISA

	Microarchi tecture	n Memory and Data	Number	Instructio nFormat
caché	Harvard architecture		32 Registers	Instruction Set 2

Byte Addressing , PC +4

We have 14 instruction.

We have 4 types (R, I, J,S)

	1 bit 16 bits		5 bits	5 bits	5 bits
R TYPE FLAG		Opcode	rs1	rs2	rd
	1 bit	16 bits	5 bits	5 bits	5 bits
I TYPE	E FLAG Immediate		rs1	rs2	FUNCT
		2			
	1 bit	26	5 bit		5 bits
J type	FLAG address				FUNCT
	1 bit	16 bits	5 bits	5 bits	5 bits
S type	FLAG	CLAG Opcode rs1 rs2		rs2	SHIFT AMOUNT

Inst	OP	FUNCT	TYPE	FLAG
ADD	0		R	0
SUB	1		R	0
MULT	10		R	0
OR	11		R	0
SLTU	100		R	0
LW		0	I	1
SW		1	I	1
ADDI		10	I	1
ANDI		11	I	1
BEQ		100	I	1
BLT		101	I	1
J		110	J	1
SRL		111	S	1
SLL		1000	S	1

R TYPE

```
add rs1,rs2,rd -> rs1=rs2+rd
sub rs1,rs2,rd -> rs1=rs2-rd
mult rs1,rs2,rd -> rs1=rs2*rd
or rs1,rs2,rd -> rs1=rs2 | rd
sltu rs1,rs2,rd -> if(rs2 < rd) rs1 =1 else 0</pre>
```

I TYPE

lw rs1,(imm)rs2 -> rs1 = MEM[imm+rs2]
sw rs1,(imm)rs2 -> MEM[imm+rs2]=rs1
addi rs1,rs2,imm -> rs1 = rs2+imm
andi rs1,rs2,imm = rs1=rs2 & imm
beq rs1,rs2,L -> IF (Rs1==rs2) -> L ELSE PC+4 TARGET
ADDRESS = (PC+4)+4*A
blt rs1,rs2,L -> IF(Rs1 < rs2) -> L Else PC++4

J type

J L => Jump To Label L TARGET ADDRESS = {pc [31:28],4*A}

S Type Srl rs1,rs2,a -> rs1 = rs2>>a Sll rs1,rs2,a -> rs1 = rs2 << a

Inst	Flag	OP	Funct	ALUOP	Reg write	Jump	Branch	Alusrc	Mem toReg	Mem write	Mem read
ADD	0	0		000	1	0	0	0	0	0	0
SUB	0	1		001	1	0	0	0	0	0	0
MULT	0	10		010	1	0	0	0	0	0	0
OR	0	11		011	1	0	0	0	0	0	0
SLTU	0	100		100	1	0	0	0	0	0	0
Lw	1		0	000	1	0	0	1	1	0	1
Sw	1		1	000	0	0	0	1	X	0	0
ADDI	1		10	000	1	0	0	1	0	0	0
Andi	1		11	101	1	0	0	1	0	0	0
J	1		110	XXX	0	1	0	Х	X	Х	Х
Beq	1		100	001	0	0	1	0	Х	0	0
blt	1		101	100	0	0	1	0	Х	0	0
Srl	1		111	110	1	0	0	0	0	0	0
sll	1		1000	111	1	0	0	0	0	0	0

Reg Number	Reg name	USE
0	\$0	ZERO
1	\$r1	GENER AL
2	\$r2	GENER AL
3	\$r3	GENER AL
4	\$r4	GENER AL
5	\$r5	GENER AL
6	\$r6	GENER AL
7	\$r7	GENER AL
8	\$r8	GENER AL
9	\$r9	GENER AL
10	\$r10	GENER AL
11	\$r11	GENER AL
12	\$r12	GENER AL
13	\$r13	GENER AL
14	\$r14	GENER AL
15	\$r15	GENER AL
16	\$r16	GENER AL
17	\$r17	GENER AL
18	\$r18	GENER AL
19	\$r19	GENER AL
20	\$r20	GENER AL
21	\$r21	GENER AL
22		GENER AL
23	\$r23	GENER AL
24	\$r24	GENER AL
25	\$r25	GENER AL
26	\$r26	GENER AL
27	\$r27	GENER AL
28	\$r28	GENER AL
29	\$r29	GENER AL
30	\$r30	GENER AL
31	\$r31	GENER AL