TalkingData AdTracking Fraud Detection Challenge

Can you detect fraudulent click traffic for mobile app ads?

<u>TalkingData</u>

China's largest independent big data service platform, covers over 70% of active mobile devices nationwide.

대회 설명

- 광고를 맡긴 회사가 원하는 것 광고를 보는 사람들이 광고를 클릭하고 그 앱을 다운로드 받는 행위까지 연결되는 것.

- 그러나, 광고를 클릭만 해도 광고를 맡긴 회사를 돈을 내야 한다.

- 광고를 클릭하기만 하고 다운 받지 않는 사람들을 사기라고 간주.

- 즉, 사기치는 사람들을 골라내자!

데이터 설명

VS

1. 데이터 로드

Mac Pro 8G RAM

Windows 8G RAM

Microsoft Azure

무료 DS12_V2 표준 4 vCPU 28 GB 16 데이터 디스크 12800 최대 IOPS 56 GB 로컬 SSD 프리미엄 디스크 지원 부하 분산

310,430.39

월별 KRW(예상)

크레딧

1. 데이터 로드

Microsoft Azure (Rstudio Server)에서도 문제 발생

- Ds12 V2 (4 vcpu, 28G RAM)

데이터가 전부 읽어진다. 하지만 이후 진행이 불가.. (Cannot allocate 에러 발생)

- Ds13 V2 (8 vcpu, 56G RAM)

데이터가 전부 읽어지지 않음. 총 1억 8000만개의 데이터 중 1억 5000만개의 데이터만 로드됨.

2. 데이터 이해

- 그리고 처음 한 생각들
- · ip, app, device, os, channe은 Factor다.
- · is_attributed, attributed_time, click_time으로는 파생변수를 어떻게 만들지?
- · 그냥 모델링 싸움인건가?

2. 데이터 이해

하지만 데이터를 조금 살펴보니,

Train data의 날짜는 2017-11-06 ~ 2017-11-09. 총 4일.

Test data의 날짜는 2017-11-10이다.

결국 과거 4일(6,7,8,9)의 데이터를 가지고 미래(10일)를 예측하는 것이었다!!

그런데...

시간이 2017-11-06 14시부터 2017-11-09 15시까지만 있다. 왜지???

중국시간 기준 이기 때문이었다. 주어진 데이터의 시간은 UTC + 0이지만, 중국은 UTC + 8이다. 따라서 8시간을 더해줘야 중국시간이 되는 것이다.

2. 데이터 이해

참고할 점 >

Competition에 참가하기 전, 처음 올라왔던 Test data가 삭제되고 새로운 Test data로 변경되었는데, Old Test data에는 시간이 0시부터 23시까지 전부있다..

이 Old Test data를 어떻게 활용할 수 있을지 고민해 볼 필요가 있을것.

- 타겟 변수 : is_attributed => **Unbalanced problem**

Is_attributed DAY	0	1
7일	0.997453	0.002547
8일	0.997572	0.002427
9일	0.997558	0.002441

^{*} 전체 변수에서 Missing Value는 없었음.

FACTOR의 LEVEL수

OS의 LEVEL별 빈도

DEVICE의 LEVEL별 빈도

IP의 LEVEL별 빈도

APP의 LEVEL별 빈도

CHANNEL의 LEVEL별 빈도

일별 클릭수

시간별 다운로드수

EDA 결론

1. 시간변화를 validation으로 활용가능하다는 것을 확인

2. 주의해야할 점 확인.

3. 파생변수의 아이디어 얻음.

추후 계획

1. 삽질 EDA 기반으로 파생변수 생성

2. 다운 샘플링 시도

3. 커널 참고하면서 모델링