Find the area shaded region. The graph depicts the standard distribution with mean 0 and standard deviation 1.

a)

b)

c)

d)

Solution

t	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852

a) P(z < 0.75) = 0.7734

	0.00	0.01				0.05				
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
,	,	,	`							

b)
$$P(z > -0.75) = 1 - P(z < -0.75)$$

= 1 - 0.2266
= 0.7734

1	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.2	0.8849 0.2743	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451

c)
$$P(-0.60 < z < 1.20) = P(z < 1.20) - P(z < -0.60)$$

= 0.8849 - 0.2743
= 0.6106

d)
$$P(-0.90 < z < 1.60) = P(z < 1.60) - P(z < -0.90)$$

= 0.9452 - 0.1841
= 0.7611

Find the indicated z-score. The graph depicts the standard distribution with mean 0 and standard deviation 1.0.

a)

b)

c)

d)

Solution

Using Normal Distribution Table

- a) For $A = 0.9798 \implies z = 2.05$
- **b**) For $A = 0.2546 \implies z = -0.66$
- c) Area to the right of z, then: A = 1 0.1075 = 0.8925

For $A = 0.8925 \implies z = 1.24$

d) Area to the right of z, then: A = 1 - 0.9418 = 0.0582

For $A = 0.0582 \implies z = -1.57$

Exercise

Assume that thermometer readings are normally distributed with a mean of 0°C and the standard deviation of the readings is 1.00°C. A thermometer is randomly selected and tested. In each case, draw a sketch, and find the probability of each reading.

- a) Less than -1.50
- b) Less than -2.75
- c) Less than 1.23
- d) Greater than 2.22
- e) Greater than 2.33
- f) Greater than -1.75

- g) Between 0.50 and 1.00
- h) Between -3.00 and -1.00
- i) Between -1.20 and 1.95
- *i*) Between -2.50 and 5.00
- k) Greater than 0
- l) Less than 0

Solution

a) P(z < -1.50) = 0.0668

b) P(z < -2.75) = 0.0030

c) P(z < 1.23) = 0.8907

d) P(z > 2.22) = 1 - 0.9868 = 0.0132

e) P(z > 2.33) = 1 - 0.9901 = 0.0099

f) P(z > -1.75) = 1 - 0.0401 = 0.9599

g) P(0.50 < z < 1.00) = P(z < 1) - P(z < 0.50)=0.8413-0.6915=0.1498

h) P(-3.00 < z < -1.00) = P(z < -1) - P(z < -3)

=0.1587-0.0013

Assume that thermometer readings are normally distributed with a mean of 0°C and the standard deviation of the readings is 1.00°C. A thermometer is randomly selected and tested. In each case, draw a sketch, and find the temperature reading corresponding to the given information.

- a) Find P_{95} , the 95th percentile. This is the temperature separating the bottom 95% from the top 5%.
- b) Find P_1 , the 1st percentile. This is the temperature separating the bottom 1% from the top 99%.
- c) If 2.5% of the thermometers are rejected because they have readings that are too high and another 2.5% are rejected because they have readings that are too low, find the 2 readings that are cutoff values separating the rejected thermometers from the others.
- d) If 0.5% of the thermometers are rejected because they have readings that are too high and another 0.5% are rejected because they have readings that are too low, find the 2 readings that are cutoff values separating the rejected thermometers from the others.

Solution

a) For P_{95} , the cumulative area is 0.95000.

1	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545

 $A = 0.9500 \implies z = 1.645$

b) For P_1 , the cumulative area is 0.0100.

1	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084

 $A = 0.0100 \implies \underline{z} = -2.33$

c) For the lowest 2.5%, the cumulative area is 0.0250.

$$A = 0.0250 \implies \underline{z = -1.96}$$

For the highest 2.5%, the cumulative area is 1 - 0.0250 = 0.9750

$$A = 0.9750 \implies \underline{z = 1.96}$$

d) For the lowest 0.5%, the cumulative area is 0.0050.

$$A = 0.0050 \implies \underline{z = -2.575}$$

For the highest 0.5%, the cumulative area is 1 - 0.0050 = 0.9950

$$A = 0.9950 \implies \underline{z = 2.575}$$

For a standard normal distribution, find the percentage of data that are

- a) Within 2 standard deviations of the mean.
- b) More than 1 standard deviation away from the mean.
- c) More than 1.96 standard deviations away from the mean.
- d) Between $\mu 3\sigma$ and $\mu + 3\sigma$.
- e) More than 3 standard deviations away from the mean.

Solution

a)
$$P(-2 < z < 2) = P(z < 2) - P(z < -2)$$

= 0.9772 - 0.0228
= 0.9544 | or 95.44%

b)
$$P(z < -1 \text{ or } z > 1) = P(z < -1) + P(z > 1)$$

= 0.1587 - (1 - .8413)
= 0.3174| or 31.74%

c)
$$P(z < -1.96 \text{ or } z > 1.96) = P(z < -1.96) + P(z > 1.96)$$

= $0.0250 - (1 - .9750)$
= 0.0500 or 0.0500

d)
$$P(-3 < z < 3) = P(z = 3) - P(z = -3)$$

= 0.9987 - 0.0013
= 0.9974 | or 99.74%

