# **Algorithim Analysis**

- A way to say how efficient a computer algorithm is
- The speed of an algorithm can change significantly with the size of it's input
- for small datasets, a particular algorithm might be faster than than another, but as the dataset increases, the relative performance can shift.
- Comparing algorithms effectifely needs measures that are independent of machine specific charactersitcts, programing language

**Execution Times** are highly variable and depend on several factors unrelated to the algorithm's inherent efficiency such as: **Hardware**, Background processes so not a good measure.

**Number of Statements executed** is not a good measure since it varies with the programing language as well as the styple of the individual programmer

# Ideal Solution: Function of Input Size (f(n))

The solution for comparing algorithms is to express their **running times** as functions of the input size. This offers several advantages:

Machine Independent, Language Independent, programing style, etc

# The growth rate of an Algorithm

Refers to how the running time of an algorithm increases with the size of the input.

# **Higher Order Terms in the Context of Rate of Growth**

In the context of the rate of growth, we are often interested in the term with the highest power.

For instance Let us assume that you go to a shop to buy a car and a bicycle. If your friend sees you there and asks what you are buying, then in general you say buying a car. This is because the cost of the car is high compared to the cost of the bicycle (approximating the cost of the bicycle to the cost of the car).

```
Total Cost = cost_of_car + cost_of_bicycle

Total Cost = cost_of_car(approximation)
```

- We can represent the cost of the car and bicycle in terms of function
- and for a given function ignore the lower oder terms that are relatively insignificant
- for example in the case  $n^4$ ,  $2n^2$ , 100m and 500 are the individual costs of some function and approximate to  $n^4$  since is the highest growth rate

$$n^4 + 2n^2 + 100n + 500 \approx n^4 \tag{1}$$

# **Commonly Used Rates of Growth**

Below is the list of growth rates you will come across in the following chapters.

| Time Complexity | Name               | Example                                           |
|-----------------|--------------------|---------------------------------------------------|
| 1               | Constant           | Adding an element to the front of a linked list   |
| logn            | Logarithmic        | Finding an element in a sorted array              |
| n               | Linear             | Finding an element in an unsorted array           |
| nlogn           | Linear Logarithmic | Sorting n items by 'divide-and-conquer'-Mergesort |
| $n^2$           | Quadratic          | Shortest path between two nodes in a graph        |
| $n^3$           | Cubic              | Matrix Multiplication                             |
| $2^n$           | Exponential        | The Towers of Hanoi problem                       |

The diagram below represents different functions ordered by rate of growth



- 2<sup>2<sup>n</sup></sup>(Double exponential growth extremely fast-growing function)
- *n*!(Factorial growth very fast-growing for large *n*)
- $4^n$  (Exponential growth with base 4)
- 2<sup>n</sup> (Exponential growth with base 2)
- $n^2$  (Polynomial growth specifically, quadratic growth)
- nlogn(Linearithmic growth faster than linear but slower than quadratic)
- log(n!)(Logarithmic factorial growth)
- *n* (Linear growth)
- $2^{logn}$  (This simplifies to n due to properties of logarithms, so it's linear growth)
- *log*<sup>2</sup>*n*(Iterated logarithmic growth)
- $\sqrt{log}n$  (Logarithmic growth under a square root)
- loglogn (Double logarithmic growth very slow-growing)
- 1 (Constant time does not grow with *n*)

#### **Types of Analysis**

- This involves understanding with which input the algorithm takes less time and with which inputs it takes long time
- Measured in terms of time complexity (how long it takes to run) and space complexity (how much memory it requires)
- Helps to predict how an algorithm performs in various senarios
- Relevant for the selection of the most efficent algorithm for a given problem

The three types of analysis are:

#### Worst Case Analysis (Big 0 Notation )

- Defines the input for which the algorithm takes a long time(slowest time to complete)
- It is a measure of the **maximum amount of time** an algorithm is allowed to run

**Importance:** it gives an **upper bound** on the running time, ensuring the algoritm will not perform worse than this under any circumstance

**Example:** In the case of linear search algorithm, the **worst case occurs** when the element being search is the **last element** of the array or **is not present at all**.

• if the array has n elements, the worst case time complexity is O(n)

# **Best Case Analysis(Big Omega Notation)**

- identifies the input for which the algorithm takes the least amount of time to complete
- Is a measure of the minimum time an algorithm is required to run

Importance: It provides a lower bound on the running time of an algorithm, representing the most optimistic scenario

Example: In the case of linear search, the best case occurs when the element being search is the first element of the array.

 $\ \ \, \ \ \,$  The best case time complexity is 0(1)

# **Average Case Analysis (Big Theta Notation)**

- This tries to provide a prediction about the running time of an algorithm under **average** case
- It involves running the algorithm multiple times with various inputs and calculating the average running time
- Importance: It offers a more realistic measure of an algorithm's performance, assuming all inputs are equally likely to occur
- Example : For linear search search, if we assume that the search element is equally likely to be at any position in the array, the average case becomes O(n/2)
- For simplification in Big O notation this is considered O(n)

### **Asymptotic Notation**

- Asymptotic notation is a language we use to define the upper and lower bounds of an algorithm's running time
- It simplifies how we express the rate of growth of an algorithms runtime represented by n

#### **Big O Notation**

- Big O notation is a mathematical concept used in computer science to describe the upper bound of an algorithm's performance
- It gives us an upper limit on the time an algorithm will take to run in terms of the input data.
- f(n) = O(g(n)) means that the function f(n) grows at a rate that is at constant multiple of g(n) for large enough values of n
- ullet f(n) represents the complexity of the algorithm for an input size of n
- lacksquare O stands for oder of , indicating the growth rate in terms of the upper limit
- g(n) represents the upper bound on the growth rate of f(n). it helps to classify the complexity of the algorithm.
- To say that f(n) = O(g(n)) is to assert that there exist a positive constant C and a value  $n_0$  such that for all  $n \ge n_0$ , the inegality  $f(n) \le C$ . g(n) holds true.
- Generally lower values of n are discarded

for instance give two functions that represent the time complexity of two different algorithms for processing a an array of n elements:

- 1.f(n)=3n+2 we say that this function is O(n) because as n grows, the. dorminant term in the function is 3n
- The constant factors like 3 and + 2 don't affect the growth rate for large n
- 2.  $g(n) = n^2$  the dorminant term is  $n^2$  so the growth rate is quadratic so it is classified as  $O(n^2)$

#### **Example**

```
1. Find upper bound for f(n) = 3n + 8
```

To find the upper bound for the function using Big O . we aim to identify a function g(n) such that f(n)

does not grow faster than C.g(n) for some constant C and for all n greater than some  $n_0$ 

we show 
$$3n + 8 \le C$$
.  $n$  for all  $n \ge n_0$ 

Choosing C to be 4 we can see that:

$$3n+8 \le 4n$$
 for all  $n \ge 8$ 

Therefore, O(n) = 3n + 8 with c=4 and  $n_0$  = 8

2. Find the upper bound for  $f(n) = n^2 + 1$ 

The term that grows the fastest as n increases is  $n^2$  so we are considering a quadratic growth rate as the upper bound for f(n)

we want to show 
$$n^2 + 1 \le C$$
.  $n^2$  for all  $n \ge n_0$ 

Choosing 
$$C=2$$
 we can see that  $\,n^2+1\leq 2n^2$  for all  $\,n\geq 1$ 

Therefore 
$$O(n) = n^2$$

#### **Exercise**

- 1. Find the upper bound for  $f(n) = n^4 + 100n^2 + 50$
- 2. Find the upper bound for  $2n^3-2n^2$

There is no unique set of values for n0 and c in proving the asymptotic bounds. Let us consider,

# Omega- $\Omega$ Notation

- Similar to the O discussion, this notation gives the tighter lower bound of the given algorithm
- lacksquare it is represented as  $f(n)=\Omega(g(n))$
- There exist a positive constant C and  $n_o$  such that  $0 \le c$ .  $g(n) \le f(n)$  for all  $n \ge n_o$
- g(n) is a lower bound of f(n)

Example: Find the lower bound of  $5n^2$ 

The primary component of the functions growth rate is  $n^2$ 

Therefore we can say  $5n^2=\Omega(n^2)\,$  . for some constant  $C>0\,$  and for all  $n\geq n_o, 5n^2\geq c.\,n^2\,$ 

#### Theta $\theta$ Notation

- The Θ-Notation basically decide whether the upper and the lower bound of a given algorithmic function are the same.
- The average running time is between the lower and the upper bounds.
- When the lower and upper bounds are the same then the Θ-Notation will also have the same growth rate. Similarly,
- when the best and the worst cases are the same then the average case will also be the same.

Definition:

$$\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_1 \}$$

Example

Find heta bound for  $f(n) = rac{n^2}{2} - rac{n}{2}$ 

Bounding f(n) below:

$$\frac{n^2}{5} \le f(n)$$

Bounding f(n) above:

$$f(n) < n^2$$

Combining the Inequalities:

$$\frac{n^2}{5} \le f(n) \le n^2$$

This is stating that f(n) is squeezed between  $rac{n^2}{5}$  and  $n^2$  for all  $n\geq 2$ 

Therefore  $f(n)=\Theta(n^2)$  with constants  $c_1=rac{1}{5}\,$  ,  $c_2=1\,$  and  $n_0=2\,$  which satisfies the defination of Big Theta:

# **Guidelines for Asymptotic Analysis**

- There are some general rules to help us determine the running time of an algorithm.
  - 1. **Loops**: The running time of a loop is, at most, the running time of the statements inside the loop (including tests) multiplied by the number of iterations.

Total time =  $c \times n = cn = O(n)$ 

Total time =  $c \times n \times n = n^2 = O(n^2)$ 

Total time =  $c \times n \times n + c \times n = c_1 n^2 + c_2 n = O(n^2)$ 

# Sorting

- When you have a significant database, you might think of way to sort it
- you need to arrange names in alphabetical order, students by gradem customers by zip code, cities in order of increasing population, countries by GDP
- sorting helps in structuring data in a way that makes it more accessible and easier to understand.
- Sorting isn't just about organization for the sake of clarity; it also serves a functional purpose in the context of searching through data.
- Sorting data may also be a preliminary step to searching it. for exampe in binary search
- Because sorting is so important and potentially so timeconsuming, it has been the subject of extensive research in computer science.
- some very sophisticated methods have been developed.
- simpler sorting algorithms include selection sort, bubble sort and insertion sort
- Advance sorting algorithms include Shellsort and quicksort sort