The Exercise of Week 1

Xuening Zhu

September 14, 2019

We will heavily use vectors, matrices and quadratic functions in our course. The rest part of this question enables you to review the related knowledge.

1 Basic Operation

using the definitions, $\alpha = 8$, $x = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $y = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$ to evaluate the following expressions (show your work):

- 1. $\alpha(x+y)$
- 2. $x^T y + ||x||^2$
- 3. Ax
- A^TA
- 5. $Tr(A^TA)$

If $\{x, y, z\}$ are real-valued column-vectors of length d and $\{A, B, C\}$ are real-valued d by d matrices, state whether each of the below statements is true or false in general; if the statement is false, please give the correct form.

- 1. $x(y+z)^T = z^T + y^T x$
- $2. \ x^T x = x x^T$
- 3. $x^T A y = y^T A^T x$
- $4. \ x^T y^T z = (xy)^T z$
- 5. AB = BA
- $6. \ (AB)C = A(BC)$
- 7. $A(B+C)^T = B^T A + C^T A$
- 8. $(AB)^T = A^T B^T$

2 Gradients and Hessians of Linear and Quadratic Functions

we use the convention that all values are real and:

- 1. α is a scalar.
- 2. a and b are length-d column-vectors.
- 3. Element i of b is denoted by b_i .
- 4. A and B are d by d matrices.
- 5. Row i of A is denoted by a_i^T .
- 6. W is a symmetric d by d matrix.

Express the gradient $\nabla f(x)$ and Hessian $\nabla^2 f(x)$ of the following linear/quadratic functions in matrix notation, simplifying as much as possible.

- 1. $f(x) = a^T x + \alpha$ (linear)
- 2. $f(x) = a^T x + a^T A x + x^T A^T b$ (more linear forms)
- 3. $f(x) = x^T x + x^T W x + x^T A B x$ (quadratic forms)
- 4. $f(x) = \frac{1}{2}(Ax b)^T W(Ax b)$ (weighted least squares)
- 5. $f(x) = \frac{\lambda}{2} ||x||^2 + \frac{1}{2} \sum_{i=1}^{n} (a_i^T x b_i)^2$ (L2-regularized least squares)