Foundations of Data Science & Analytics: **Ensemble Learning**

Ezgi Siir Kibris

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Classification Techniques

Base Classifiers

- Decision Tree based Methods
- Rule-based Methods
- Instance-based Methods (Nearest-neighbor)
- Naïve Bayes
- Support Vector Machines
- Neural Networks and Deep Learning

Ensemble Classifiers

Boosting, Bagging, Random Forests

Ensemble Learning

- Construct a set of (weak) classifiers from the training data
- Predict class label of test records by combining the predictions made by multiple classifiers

Why?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\mathcal{E} = 0.35$
 - Assume errors made by classifiers are uncorrelated
 - Probability that the ensemble classifier makes a wrong prediction:

$$P(X \ge 13) = \sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1 - \varepsilon)^{25 - i} = 0.06$$

General Approach

Types

- Manipulate data distribution
 - Bagging
 - **Boosting**
- Manipulate input features
 - Random Forests

Types

- Manipulate data distribution
 - **Bagging**
 - **Boosting**
- Manipulate input features
 - Random Forests

Bagging (Bootstrap Aggregation)

Sample with replacement (n = N)

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each data instance has probability 1/n of being selected each time
- Each data instance has probability 1- $(1 1/n)^n$ of being selected as part of the bootstrap sample

Bagging

Algorithm 5.6 Bagging Algorithm

```
1: Let k be the number of bootstrap samples.
```

- 2: for i = 1 to k do
- Create a bootstrap sample of size n, D_i .
- Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for
- 6: $C^*(x) = \arg\max_y \sum_i \delta(C_i(x) = y)$, $\{\delta(\cdot) = 1 \text{ if its argument is true, and } 0$ otherwise.

Each classifier can be trained in parallel!

Original Data:

Х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	1	1	1	-1	7	-1	-1	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ vs x > k
 - Split point k is chosen based on entropy

Baggin	g Roun	d 1:								
X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
У	1	1	1	1	-1	-1	-1	-1	1	1

$$x \le 0.35 \Rightarrow y = 1$$

 $x > 0.35 \Rightarrow y = -1$

Test on Training Data (with Majority Vote)

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	1	1	1	-1	7	-1	-1	1	1	1

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

Types

- Manipulate data distribution
 - Bagging
 - **Boosting**
- Manipulate input features
 - Random Forests

Boosting

- Weights: probability of being sampled
- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated (otherwise there will be $\alpha_i < 0$)
- Classification: $C^*(x) = \underset{y}{\operatorname{argmax}} \sum_{i=1}^{\infty} \alpha_i \delta(C_i(x) = y)$

AdaBoost

Algorithm 5.7 AdaBoost Algorithm

```
1: \mathbf{w} = \{w_i = 1/n \mid j = 1, 2, \dots, n\}. {Initialize the weights for all n instances.}

    Let k be the number of boosting rounds.

 3: for i = 1 to k do
       Create training set D_i by sampling (with replacement) from D according to w.
       Train a base classifier C_i on D_i.
       Apply C_i to all instances in the original training set, D.
     \epsilon_i = \left[\sum_j w_j \, \delta(C_i(x_j) \neq y_j)\right] {Calculate the weighted error}
       if \epsilon_i > 0.5 then
          \mathbf{w} = \{w_j = 1/n \mid j = 1, 2, \cdots, n\}. {Reset the weights for all n instances.}
          Go back to Step 4.
10:
11:
       end if
     \alpha_i = \ln \frac{1-\epsilon_i}{\epsilon_i}.
       Update the weight of each instance according to equation (5.88).
14: end for
15: C^*(\mathbf{x}) = \arg \max_{y} \sum_{i=1}^{T} \alpha_i \delta(C_i(\mathbf{x}) = y).
```

AdaBoost Example

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	1	1	1	7	7	-1	7	1	1	1

- Classifier is a decision stump
 - Decision rule: $x \le k$ vs x > k
 - Split point k is chosen based on entropy

AdaBoost Example

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	1	1	1	-1	-1	-1	-1	1	1	1

Training:

Boostin	ng Rour	nd 1:								
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	1
У	1	-1	-1	-1	-1	-1	-1	-1	1	1

Weights:

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.167	0.167	0.167	0.071	0.071	0.071	0.071	0.071	0.071	0.071
3	0.117	0.117	0.117	0.125	0.125	0.125	0.125	0.050	0.050	0.050

AdaBoost Example

Model:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	0.847
2	0.05	1	1	0.924
3	0.3	1	-1	1.735

Predictions:

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	8.0=x	x=0.9	x=1.0
1	-1	-1	-1	-1	-1	-1	-1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
Sum	1.81	1.81	1.81	-1.7	-1.7	-1.7	-1.7	0.04	0.04	0.04
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Further Read on Adaboost

https://web.stanford.edu/~hastie/Papers/samme.pdf

Types

- Manipulate data distribution
 - Bagging
 - **Boosting**
- Manipulate input features
 - **Random Forests**

Random Forest

Each tree is trained on a subset of data (bagging) with a subset of features (feature bagging).

- Bagging (sample with replacement)
 - \circ n = N
- Feature bagging (sample with replacement)
 - o usually with $m = \sqrt{M}$ features.

Random Forest

Bagging

14	15
2	3
2	3
6	7