Semestrálka – řádný – 2013/2014

- 1. Buď L jazyk s jedním binární predikátovým symbolem p a funkčním symbolem f (ternárním) a g (unárním). Uvažujeme realizaci M jazyka L na univerzu N množiny přirozených čísel, kde $p_M(k,l)$ $\Leftrightarrow 2+k \leq l, f_M(k,l,m)=k+l+m \ a \ g_M(k)=3k.$ Rozhodněte, zda platí $M\mid = \ \forall z \ (\left(p(x,y) \ and \ p(y,z)\right) \rightarrow \left(p(g(x),f(x,y,z)and \ p(x,z)\right)$ Najděte formuli (jazyka L) o proměnných x,y,z ,která bude v realizaci M při ohodnocení proměnných $x \rightarrow k$, $y \rightarrow l$, $z \rightarrow m$ ekvivaletní podmínce $2(m+1) \leq k+l$
- 2. Převeďte formuli $\forall x \; \exists y \; p(x,z) \to \; \exists y \exists z (q(x) \to \; \forall z \; p(y,z))$ do prenexního tvaru a najděte realizaci příslušného jazyka, v niž bude tato formule splněna.
- 3. Nakreslete obyčejný graf o 5 uzlech, který obsahuje uzly stupňů 1,2,3 a 4 kolik takových grafů existuje (až na izomorfimus)
- 4. Uvažujme univerzální algebru $A = (R^2, +, k, (0,1))$, kde + je binární operátor sčítání po složkách , k je unární operáre k(a,b) = (-a,b) a (0,1) je nulární operace. Popište podalgebru $< \{(1,0)\} >$ algebry A (tj podalgebru generovanou jednoprvkovou množinou $\{(1,0)\}$.
- 5. Mějme grupu T(3,R) všech inverzibilních (tj horní trojúhelníková matice regulární) trojúhelníkových matic řádu 3 s operací násoben a grupu R^* všech nenulových reálných čísel s oprací násovení. Definujeme zobrazení $f\colon T(3,R)\to R^*$, předpisem f(A)=|A| pro všechna $A\in T(3,R)$ kde |A| značí determinant matice A . Zjistěte zda f je homomorfismus a naleznete netriviální vlastní normální podgrupy grupy T(3,R)
- 6. Na množině $M := R^2x$ Z mějme metriku $p((x_1, y_1, z_1), (x_2, y_2, z_2)) = \max(|x_1 x_2|, |y_1 y_2|, |z_1 z_2|)$ Znázorněte graficky v M jednotokovou kouli se středem v bodě (0,0,0) vzhledem k metrice p, tj množinu $S = \{(x, y, z) \in M : p((x, y, z), (0,0,0)) = 1\}$

1 opravny – 2013/2014

- 1. Převeďte formuli do prenexního tvaru bez použití spojek A a Nebo
- 2. dokažte, že platí výraz
- 3. dokažte zda je $|A|_a + |A|_b = |B|_a + |B|_b$ (kde $|B|_b = počet znaků "b" v řetězci B) kongruence na abecedě <math>\{a, b, c\}^*$, najděte neutrální prvek a napište homomorfismus
- 4. NSD dvou polynomů
- 5. Dokažte, že je to skalární součin v polynomu max 1. stupně. Spočítejte jaký úhel svírají polynomy x-1 a x+1
- 6. Jaký je nejmenší počet uzlů n grafu, takového aby platilo H=3*n + 4 (H=počet hran). Nakreslete takový graf.

2 opravny – 2013/2014

- 1) Jsou zadány dvě formule A a B, převodem na prenexní tvar určete zda platí: A<=>B
- 2) máme jeden binární funkční symbol F a jeden binární predikátový symbol P. Napište nějakou realizaci ve které je splněno

$$\forall zp \left(x, f(y,z)\right) and \exists znot \left(p(x,z)\right)$$
 kde e(x)=1 a e(y)=2

Já napsal: p(x,y) <=>x < y a f(x,y)=x+y

3) Mějme matici 2x2 nad všemi čísli z R a matici C:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
 $kde \ a , b \in R$

operace + (soucet matic) a * (nasobeni matic)

vyber z moznosti, ktere jsou pravdive (Matice C je k původní matici:):

- a) není to podokruh
- b) je to komutativni podokruh
- c) je to podokruh, ale neni komutativni
- d) je to okruh a pole
- e) je to okruh a neni teleso
- 4) konečná množina neprázdných řetězců, operace konkatenace, operace * jako K*L = K.p(l) , operace p(x) = M, kde M je množina všech řetězců nejkratší délky z X.
 Určete zda se jedná o pologrupu, monoid nebo grupu. Pokud je to pologrupa tak určete všechny levé i pravé neutrální prvky.
- 5) v Z_{5}^{6} (šesti rozměrné vektory ve zbytkové třídě 5) dokažte že f(u,v)=u1v1+u2v2+u3v3+u4v4+u5v5+u6v6 není skalární součin

 Napsal jsem: u(x,x)=0 <=>x=0 a protipříklad x=(1,1,1,1,1,0) => f(x,x)=[5] 5 což je v Z5 = 0

určete koeficient A, pro který platí f(u,u)=1 a u=(a, 2a+1, 1, 0, 2a-1, 1) nebo tak nějak... Vyšlo mi to 1 a -1 (v Z5 tedy $\{1, 4\}$

6) Napište upravený Kruskalův algoritmus, tak aby našel kostru s nejvyšším ohodnocením. Uvedte všechny kroky výpočtu této kostry na grafu zadaném tabulkou

Semestrálka – řádný – 2012/2013

e.
$$\overline{B} \rightarrow \overline{A}$$
, $A \rightarrow (B \rightarrow C) | -A \rightarrow C$ a nápověda byla, že máme použít A2,

1. Důkaz ve výrokové logice. A3 a MP.

2. Převeďte do prenexního tvaru:

$$\forall y \exists x p \left(z, x\right) \rightarrow \forall z \left(\exists x q \left(x, y\right) \rightarrow \exists z \forall x r \left(y, z\right)\right)$$

3. Symetrická grupa něco s operací skládání zobrazení. Je dana mnozina M={1,2,3,4,5} a na nej symetricka grupa $^{\mathbf{S}}_{\mathbf{5}}$. dalej mame: A= (1453), B= (2542), C= (14325).

 $_{\mathsf{vypocitaj}}\, A \! \circ \! B^{\text{-}1} \! \circ \! C$

- 4. Dokázat/vyvrátit ekvivalenci a případně i kongruenci.
- 5. Metrika pro kterou se mělo zakreslit graficky výsledek.
- 6. Nakreslete rovinný euklidovský graf, který obsahuje hamiltonovu kružnici a pak graf bez kružnice. Grafy mají mít 6 uzlů a z toho jeden stupně 4.

1. Opravný – 2012/2013

1. príklad (15 bodov)

Teória jazyka:

- p(a,b,c) → existuje trojuholník, ktorého strany majú dĺžku a,b,c
- f(a,b) = a+b

$$T = \forall x \exists y p(x, x, y), p(x, y, f(x, y)), p(x, y, z) \to p(y, z, x)$$

- 1. a) dokazat, že relizace M je modelom teorie T
- 2. b) dokazat, že nějaka formule je dokazatelna pomoci axiom z teorie T
- 3. c) dokazat, že nějaka formule je dokazatelna.

len nemám napísane presne tie formule :(

2. príklad (10 bodov)

$$\exists x p(x,y) \vee \forall y (\exists u q(y,u) \wedge r(y,x))_{\text{previest to na formulu s minimalnym poctom } \neg a \longrightarrow \neg a \rightarrow \neg a \rightarrow \neg a \rightarrow \neg b \rightarrow \neg$$

3. príklad (10 bodov)

Ortogonálna báza, teda použiť Gram-Schmidtov algoritmus, presne zadanie nemám :(

4. príklad (15 bodov)

Najmenší spoločný deliteľ polynómov v Z5 $x^3 + 3x^2 + x + 3$ a $x^3 + 2x + 2$

5. príklad (15 bodov)

$$A = (R^2, op1, op2) (2,1)$$

op1(
$$(x1,y1),(x2,y2)$$
) = $(2x1+x2,2y1+y2)$

$$op2(x,y) = (2x+y,2y)$$

zobrazenie f(x,y,) = (ax+by,0) -> najst hodnoty parametrov aby to bol endomorfizmus a graficky znazornit triedy jadra

6. príklad (10 bodov)

Nakresliť minimálny graf do počtu uzlov tak, aby počet hrán = 2x počet buniek grafu a graf obsahuje aspoň jeden uzol lichého stupňa a jeho stupeň je väčší ako 1 (!!! pozor, aj okolie grafu sa ráta ako bunka, nie len bunky vo vnútri grafu... ak sa to nebralo v zreteľ, tak ste dostali 5 z 10)

2 opravny – 2012/2013

1) Přesné zadání nevím, ale šlo o to určit TRUE, FALSE v tabulce níže:

$$q(a) \Leftrightarrow a > 0$$

$$p(a,b) \Leftrightarrow a > b$$

$$f(a,b) \Leftrightarrow ab$$

 α_{-}

$$q\left(x\right) \rightarrow \left(p\left(y,x\right) \rightarrow q\left(f\left(x,y\right)\right)\right)$$

dokázat:

M |=
$$^{\alpha}$$

$$M = \alpha$$

 α_{-}

$$p\left(x,f\left(x,x\right)\right)\wedge\overline{g\left(x\right)}$$

dokázat:

2) Dokažte:

$$\varphi \! \to \! \psi \,, \forall \, x \, \varphi \! \to \! \chi_1 \, \forall \, x \, \varphi \! \to \! \chi$$

zadání postupu už nepamatuju

$$A = \left(2^{M}, op_{1}, op_{2}\right), M = \{1,2,3,4,5,6\}$$
3) Přesně opět nevím.... Uvažujme algebru

$$op1 = (X \cup Y)_{\setminus \{2\}}$$

$$op2 = (X \cap Y)_{\setminus \{2\}}$$

Rozklady množin: {1,2,3}{3,4}

4) už nevím

5) už nevím

- **6)** Nakreslit Hamiltonovský graf s 6 uzly a 9 hrany, kde je:
- 5 hran má hodnotu 1
- 3 hrany hodnotu 2
- a 1 hrana hodnotu 4

K tomuto grafu vyznačit minimální kostru s hodnotou 7.

Řádny 2011/2012 – sk A

1. příklad (15 bodů)

Sestrojením důkazu dokažte $\vdash \forall x \varphi(x,x) \rightarrow (\forall x \forall y \varphi(x,y) \rightarrow \forall y \varphi(y,y))$

Návod: Vezměte $\forall x \varphi(x,x)$ jako předpoklad.

- 1. Axiom substituce
- 2. Pravidlo odloučení
- 3. Pravidlo zobecnění
- 4. Věta o dedukci
- 5. Výrokový axion A1
- 6. Složení implikací

2. příklad (10 bodů)

Převeďte formuli do prenexního tvaru. Poté napište jeho negaci ve tvaru, kde se symbol ¬bude vyskytovat pouze u atomických formulí. $\forall x \exists y \varphi(x,y) \to (\varphi(x,x) \to \exists y \forall x \varphi(y,y))$

3. příklad (15 bodů)

Najděte největší společný dělitel polynomů $x^4 + x^3 + 3x + 3$ a $x^3 + 2x^2 + 4x + 3$ nad okruhem (\mathbb{Z}_5 , ·, +). Během výpočtu používejte jen reprezentanty prvků \mathbb{Z}_{5z} množiny $\{0, 1, 2, 3, 4\}$.

4. příklad (15 bodů)

Uvažujme algebru $A=(\Sigma^*,\mu,\delta_a,b)$ typu (3,1,0), kde Σ^* je množina všech konečných řetězců (slov) vytvořených z prvků (písmen) konečné množiny (abecedy) Σ . Symbol μ označuje ternární operaci zřetězení 3 slov v daném pořadí, nulární operace b je dána vybraným prvkem $b\in\Sigma, a\in\Sigma_{\rm je}$ pevně daný prvek $a\neq b$ a δ_a je unární operace, která nahrazuje všechny výskyty prvku a v daném řetězci řetězcem aa. Definujme binární relaci \sim na Σ^* takto: $u\sim v\Leftrightarrow |u|=|v|$, kde |u| je počet prvků řetězce u. Rozhodněte, zda \sim je kongruencí na algebře A, a pokud ano, popište třídy příslušného rozkladu. Pokud ne, pak najděte takovou podalgebru algebry A, pro kterou příslušné zúžení relace \sim kongruencí je.

5. příklad (15 bodů)

Na reálném vektorovém prostoru \mathbb{R}^3 definujme skalární součin vztahem $(x_1,x_2,x_3)\cdot (y_1,y_2,y_3)=x_1y_1+x_2y_2+x_3y_3$. Pomocí Gram-Schmidtova ortogonalizačního procesu najděte ortonormální bázi podprostoru prostoru \mathbb{R}^3 generovaného vektory (1,2,-1),(1,2,-3),(4,8,-8),(3,6,-9).

6. příklad (10 bodů)

Uvažujme obyčejný graf G, který má 17 hran a součet stupňů lichých uzlů je menší nebo roven součtu stupňů sudých uzlů. Kolik má graf G lichých uzlů, víte-li, že jich je více než 2 a všechny mají stejný stupeň větší než 1?

Řádny 2011/2012 – sk C

1. příklad (15 bodů)

Sestrojením důkazu dokažte $\vdash \forall x \varphi(x,x) \rightarrow (\forall x \forall y \varphi(x,y) \rightarrow \forall y \varphi(y,y))$

Návod: Vezměte $\forall x \varphi(x,x)$ jako předpoklad.

- 1. Axiom substituce
- 2. Pravidlo odloučení
- 3. Pravidlo zobecnění
- 4. Věta o dedukci
- 5. Výrokový axion A1
- 6. Složení implikací

2. příklad (10 bodů)

Převeď te formuli do prenexního tvaru. Poté napište jeho negaci ve tvaru, kde se symbol ¬bude vyskytovat pouze u atomických formulí.

$$\forall x \exists y \varphi(x,y) \to (\varphi(x,x) \to \exists y \forall x \varphi(y,y))$$

3. příklad (15 bodů)

Najděte největší společný dělitel polynomů $x^4 + x^3 + 3x + 3$ a $x^3 + 2x^2 + 4x + 3$ nad okruhem ($\mathbb{Z}_5, \cdot, +$). Během výpočtu používejte jen reprezentanty prvků \mathbb{Z}_{5z} množiny $\{0, 1, 2, 3, 4\}$.

4. příklad (15 bodů)

Uvažujme algebru $A=(\Sigma^*,\mu,\delta_a,b)$ typu (3,1,0), kde Σ^* je množina všech konečných řetězců (slov) vytvořených z prvků (písmen) konečné množiny (abecedy) Σ . Symbol μ označuje ternární operaci zřetězení 3 slov v daném pořadí, nulární operace b je dána vybraným prvkem $b\in \Sigma, a\in \Sigma$ je pevně daný prvek $a\neq b$ a δ_a je unární operace, která nahrazuje všechny výskyty prvku b v daném řetězci řetězcem ab. Definujme binární relaci \sim na Σ^* takto: $u\sim v\Leftrightarrow |u|=|v|$, kde |u| je počet prvků řetězce u. Rozhodněte, zda \sim je kongruencí na algebře A, a pokud ano, popište třídy příslušného rozkladu. Pokud ne, pak najděte takovou podalgebru algebry A, pro kterou příslušné zúžení relace \sim kongruencí je.

5. příklad (15 bodů)

Na reálném vektorovém prostoru \mathbb{R}^3 definujme skalární součin vztahem $(x_1,x_2,x_3)\cdot (y_1,y_2,y_3)=x_1y_1+x_2y_2+x_3y_3$. Pomocí Gram-Schmidtova ortogonalizačního procesu najděte ortonormální bázi podprostoru prostoru \mathbb{R}^3 generovaného vektory (2,-1,3),(-1,2,-3),(3,0,3) a (8,2,6).

6. příklad (10 bodů)

Uvažujme obyčejný graf G, který má 19 hran a součet stupňů lichých uzlů je menší nebo roven součtu stupňů sudých uzlů. Kolik má graf G lichých uzlů, víte-li, že jich je více než 2 a všechny mají stejný stupeň větší než 1?

řádný termín 2011/2012, skupina D

1. příklad (15 bodů)

Sestrojením důkazu dokažte $\vdash \exists x \neg \varphi(x, x) \rightarrow (\forall x \exists y \neg \varphi(x, y) \rightarrow \exists y \neg \varphi(y, y))$

Návod: Vezměte $\forall y \varphi(y,y)$ jako předpoklad. A použíjte:

- axiom substituce
- pravidlo odloučení
- pravidlo zobecnění
- větu o dedukci
- obrácení imlikací
- výrokový axiom A1
- složení implikací

2. příklad (10 bodů)

Převeď te formuli do prenexního tvaru. Poté napište jeho negaci ve tvaru, kde se symbol ¬bude vyskytovat pouze u atomických formulí.

$$\forall x (\exists y \varphi(x,y) \to \varphi(x,x)) \to \exists y \forall x \varphi(y,y)$$
 3. příklad (15 bodů)

Najděte největší společný dělitel polynomů $x^4 + 2x^3 + 3x + 1$ a $x^3 + 3x^2 + 1$ nad okruhem ($\mathbb{Z}_5, \cdot, +$). Během výpočtu používejte jen reprezentanty prvků \mathbb{Z}_{5z} množiny $\{0, 1, 2, 3, 4\}$.

4. příklad (15 bodů)

Uvažujme algebru $A=(\Sigma^*,\mu,\delta_a,b)$ typu (3,1,0), kde Σ^* je množina všech konečných řetězců (slov) vytvořených z prvků (písmen) konečné množiny (abecedy) Σ . Symbol μ označuje ternární operaci zřetězení 3 slov v daném pořadí, nulární operace b je dána vybraným prvkem $b\in\Sigma$, $a\in\Sigma$ je pevně daný prvek $a\neq b$ a δ_a je unární operace, která nahrazuje všechny výskyty prvku b v daném řetězci řetězcem ab. Definujme binární relaci \sim na Σ^* takto: $u\sim v\Leftrightarrow |u|=|v|$, kde |u| je počet prvků řetězce u. Rozhodněte, zda \sim je kongruencí na algebře A, a pokud ano, popište třídy příslušného rozkladu. Pokud ne, pak najděte takovou podalgebru algebry A, pro kterou příslušné zúžení relace \sim kongruencí je.

5. příklad (15 bodů)

Na reálném vektorovém prostoru \mathbb{R}^3 definujme skalární součin vztahem $(x_1, x_2, x_3) \cdot (y_1, y_2, y_3) = x_1 y_1 + x_2 y_2 + x_3 y_3$. Pomocí Gram-Schmidtova ortogonalizačního procesu najděte ortonormální bázi podprostoru prostoru \mathbb{R}^3 generovaného vektory (2, -1, 3), (-1, 2, -3), (3, 0, 3) a (8, 2, 6).

6. příklad (10 bodů)

Uvažujme obyčejný graf G, který má 19 hran a součet lichých uzlů je menší nebo roven součtu stupňů sudých uzlů. Kolik má graf G lichých uzlů, víte-li, že jich je více než 2 a všechny mají stejný stupeň větší než 1?

1 opravny 2011/2012

1. příklad (15 bodů)

Uvažujme jazyk L s rovností, jedním unárním predikátovým symbolem p a jedním funkčním symbolem f. Nechť \mathcal{M} je taková realizace jazyka L na množině $\mathcal{P}(\mathbb{R}^2)$ všech podmnožin reálné roviny \mathbb{R}^2 , kde $p_{\mathcal{M}}(X)$ znamená, že X je neprázdná množina bodů ležících uvnitř nebo na hranici nějakého obdélníku v \mathbb{R}^2 , jehož strany jsou rovnoběžné se souřadnými osami, $f_{\mathcal{M}}(X,Y) = X \cup Y$. Rozhodněte a zdůvodněte, zda

1.
$$\mathcal{M} \vDash (\exists x)(p(x) \Rightarrow f(x, x) = x)$$

2. $p(f(x, y)) \vDash (p(x) \lor p(y))$
3. $\mathcal{M} \vDash p(f(x, y)) \Rightarrow (p(x) \lor p(y))$

2. příklad (15 bodů)

Rozhodněte, zda formule $(x \lor (y \land z)) \Rightarrow (y \land (x \lor z))_a ((x \lor y) \land (x \lor z)) \Rightarrow y_{jsou}$ ekvivalentní.

3. příklad (15 bodů)

Uvažujme univerzální algebru $\mathcal{A}=(\mathbb{Z}^2,e,\delta,\oplus,\odot,\nabla)$, kde e je nulární operace, δ je unární operace, \oplus , \odot jsou binární operace a ∇ je ternární operace. Tyto operace jsou dány následovně: e=(0,1), $\delta(x,y)=(x,y+2)$, $(x_1,y_1)\oplus(x_2,y_2)=(x_1+x_2,y_1+y_2)$, $(x_1,y_1)\odot(x_2,y_2)=(x_1x_2,y_1+y_2)$, $\nabla((x_1,y_1),(x_2,y_2),(x_3,y_3))=(x_1+x_2+x_3,y_1+y_2+y_3)$. Zjistěte a zdůvodněte, zda zobrazení $\varphi:\mathbb{Z}^2\to\mathbb{Z}^2$ určené předpisem $\varphi(x,y)=(3x,x+y)$ je homomorfismus algebry \mathcal{A} do \mathcal{A} .

4. příklad (15 bodů)

Na množině \mathbb{Z}^2 je definována metrika δ vztahem $\delta((x_1,y_1),(x_2,y_2)) = max\{ | x_1 - x_2 |, | y_1 - y_2 | \}$. Zjistěte, pro které body $(x,y) \in \mathbb{Z}^2$ platí současně $\delta((-1,1),(x,y)) = 3$ a $\delta((3,0),(x,y)) = 2$.

5. příklad (10 bodů)

Najděte všechny generátory cyklické grupy $(\mathbb{Z}_5, +)$. *Riesenie:*

Zobereme postupne kazdy prvok a zacneme ho scitat zo sebou a prvkami, co uz vygeneroval

 $<0> = \{0\}$.. nieje generator $<1> = \{1, 2, 3, 4, 0\}$.. je generator

 $\langle 2 \rangle = \{2, 4, 1, 3, 0\}$.. je generator

 $<3> = \{3, 1, 4, 2, 0\}$.. je generator

<4> = $\{4, 3, 2, 1, 0\}$.. je generator

6. příklad (10 bodů)

Kolik hran má sedmnáctistěn s 30 vrcholy? (Nápověda: uvažujte planární graf odpovídající danému mnohostěnu.).

Řádny 2010/2011

$$\bot \forall x \varphi (x, x) \rightarrow \left(\forall x \forall y \varphi (x, y) \rightarrow \forall y \varphi (y, y) \right)$$

Použijte jako předpoklad $orall x arphi \left(x , x
ight)$

- 1) Axiom substituce
- 2) Pravidlo odloučení
- 3) Pravidlo zobecnění
- 4) Věta o dedukci
- 5) Axiom A1
- 6) Složení implikací

Mé řešení:

We resent:
$$\forall x \varphi \left(x, x \right)$$

$$\forall x \varphi \left(x, x \right) \bot \forall x \varphi \left(x, x \right) \rightarrow \varphi \left(y, y \right)$$

$$\exists \forall x \varphi \left(x, x \right) \bot \varphi \left(y, y \right)$$

$$\exists \forall x \varphi \left(x, x \right) \bot \forall y \varphi \left(y, y \right)$$

$$\bot \forall x \varphi \left(x, x \right) \rightarrow \forall y \varphi \left(y, y \right)$$

$$\bot \forall y \varphi \left(y, y \right) \rightarrow \left(\forall x \forall y \varphi \left(x, y \right) \rightarrow \forall y \varphi \left(y, y \right) \right)$$

$$\exists \forall x \varphi \left(x, x \right) \rightarrow \left(\forall x \forall y \varphi \left(x, y \right) \rightarrow \forall y \varphi \left(y, y \right) \right)$$

- 2) prevedte do prenexného tvaru a potom negáciu $VxEy fi(x,y) \rightarrow (fi(x,x) \rightarrow EyVx fi(y,y))$
- 3) NSD

$$x^4 + x^3 + 3x + 3a^3 + 2x^2 + 4x + 3$$
 nad okruhem $\left(Z_5, .., +\right)$

5) Na reálném vektorovém prostoru \mathbb{R}^3 definujeme skalární součin vztahem:

$$\left(x_{1}, x_{2}, x_{3}\right) \cdot \left(y_{1}, y_{2}, y_{3}\right) = x_{1}y_{1} + x_{2}y_{2} + x_{3}y_{3}$$

4)

Pomocí Gram-Schmidtova ortogonalizačního procesu najděte ortonormální bázi poprostoru prostoru R^3 gen. vekt. (1,2,-1), (1,2,-3), (4,8,-8) a (3,6,-9).

6) graf - 17 hrán, lichých uzlov viac ako 2, stupen viac ako 1 a zároven sucet stupnov lichých menej alebo rovné suctu stupnov sudych ..