2425-MA140 Engineering Calculus

Week 04, Lecture 3 The Chain Rule and Inverse Functions

Dr Niall Madden

University of Galway

Thursday, 09 October, 2025

Assignments, etc

Assignments

- Assignment 2 is open. See https://universityofgalway.instructure.com/ courses/35693/assignments/96620. Due by 17:00, Monday 13 October.
- ► The associated tutorial sheet is at https://universityofgalway.instructure.com/ courses/35693/files/2065926
- ➤ Assignment 3 is also open. Access through Canvas, or at https://universityofgalway.instructure.com/courses/46734/assignments/130491 Due by 17:00. Monday 20 October.

Warm-up

"Olive" is thinking of buying this desk unit in IKEA. Her (wheel)chain is 55cm. Is the sitting region of the desk indicated by the yellow line, wide enough?

What we'll do today:

- 1 Warm-up
- 2 What we'll do today:
- 3 Chain Rule (again)
- 4 Composites of 3 or more functions
- 5 Inverse functions

- Inverse Rule
- 6 Implicit differentiation
- 7 Exponential functions
 - Properties
 - The number e
 - The derivative of e^x
- 8 Exercises

See also: Sections 3.6 (The Chain Rule) and 3.8 (Implicit Differentiation) of Calculus by Strang & Herman: https://math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)

Chain Rule (again)

Yesterday, we first learned about the *most important* differentiation rule: **chain rule**. It applies to a "function of a function"

The Chain Rule

If u(x) and v(x) are differentiable, and f is the composite function f(x) = u(v(x)), then

$$\frac{df}{dx} = \frac{du}{dv}\frac{dv}{dx}.$$

Chain Rule (again)

Example (Ex 3.6.1 in text-book)

Find the derivative of $f(x) = \frac{1}{(3x^2 + 1)^2}$.

Composites of 3 or more functions

One can apply the **Chain Rule** to "functions of functions of functions": if y(x) = t(u(v(x))), then

$$\frac{dy}{dx} = \frac{dt}{du} \frac{du}{dv} \frac{dv}{dx}$$

Example

Find $\frac{dy}{dx}$ when $y = \sin^4(x^5 + 7)$.

Composites of 3 or more functions

Example

Show that the derivative of $y = \cos^2(1/x)$ is

$$\frac{dy}{dx} = 2 \frac{\sin(1/x)\cos(1/x)}{x^2}$$

Inverse functions

Suppose that y = f(x). That is, f maps x to y.

Then the **inverse** of f is the function, f^{-1} , that maps y back to x.

Example

- The inverse of $f(x) = \frac{1}{2}x$ is $f^{-1}(x) = 2x$.
- ► The inverse of $f(x) = \sqrt{x}$ is $f^{-1}(x) = x^2$.

Warning: $f^{-1}(x)$ is not the same as $\frac{1}{f(x)}$.

It is often useful to be able to express the derivative (assuming there is one) of an inverse function $f^{-1}(x)$ in terms of the derivative of f(x).

To do this, we use the following rule:

Inverse-Function Rule

If $y = f^{-1}(x)$, then x = f(y) and also

$$(f^{-1})'(x) = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{f'(y)} = \frac{1}{f'(f^{-1}(x))}.$$

Example

If $y = x^{1/3}$, use the **Inverse Rule** to find $\frac{dy}{dx}$.

Note: we can solve this just using the **Power Rule:** $\frac{dy}{dx} = \frac{1}{3}x^{-\frac{2}{3}}$. But we'll also do this with the **Inverse Rule** for purposes of exposition.

If
$$y = x^{\frac{1}{3}}$$
, then $y^3 = x$, or $x = y^3$, so

$$\frac{dx}{dy} = 3y^2.$$

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{3y^2}.$$

As $y = x^{\frac{1}{3}}$ we have

$$\frac{dy}{dx} = \frac{1}{3(x^{\frac{1}{3}})^2} = \frac{1}{3}x^{-\frac{2}{3}}.$$

Example

Find the derivative of $\sin^{-1}(x)$

Let
$$y = \sin^{-1}(x)$$
, then $x = \sin(y)$ (*), so

$$\frac{dx}{dy} = \cos(y) \,. \qquad (\star\star)$$

From $\sin^2(y) + \cos^2(y) = 1$, we find $\cos(y) = \sqrt{1 - \sin^2(y)}$ (choosing the positive square root as $\cos(y)$ is positive for y here). Using (\star) :

$$\cos y = \sqrt{1 - x^2} \,.$$

Now using the inverse rule and (**), we have

$$\frac{dy}{dx} = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1-x^2}}.$$

To date, most functions we have studied have been **explicitly** defined. Such functions and be written as y = f(x): given a value of x we can substitute it into f(x) to get the corresponding value of y

Example: $y = \sqrt{1 - x^2}$.

However, sometimes we are given an equation involving x and y where these two terms are not "separated" entirely; e.g, $x^2 + y^2 = 1$. Here y is **implicitly** defined: for any pair (x, y) we can check if it is on the curve described by the equation.

Since **implicit equations** define curves, we can use **implicit differentiation**, for example, finding tangents to these curves. Method:

- 1. Differentiate both size of the equation, with respect to x, keeping in mind that y is a function of x, using the Chain Rule where needed.
- 2. Solve for dy/dx.

If y is defined by $x^2 + y^2 = 1$, find $\frac{dy}{dx}$.

Now we know that if $x^2 + y^2 = 1$, then $\frac{dy}{dx} = -\frac{x}{y}$. We can check that this relates to the slope of the tangents to this curve at various places:

Find the tangent to the curve $x^2+y^2=25$, at the point (3,-4).

Find the tangent to the curve $y^3 + x^3 - 3xy = 0$, at the point (3/2, 3/2).

Exponential functions

Earlier in this course we met functions such as $y = x^2$; this is a **power** function.

Now we consider **exponential functions**, such as $y = 2^x$. Such functions occur in many applications. For example: if I invest $\in 100$ with an annual interest rate of 20%, then after x years, I will have $\in 100 \times (1.2)^x$. Why?

Exponential functions

Exponential functions grow quite fast: if my investment is indeed worth $f(x) = 100 \times (1.2)^x$ euros after x years, then...

- After 1 year, I have €120
- ► After 10 years, I have €619.17
- After 20 years, I have €3,833.80
- After 25 years, I have €9,539.60
- After 50 years, and 190 days, I'll be a millionaire!

Here I remind you of some properties of exponents that you should already know: for any positive numbers a and b,

1.
$$b^{x}b^{y} = b^{x+y}$$

$$2. \ \frac{b^x}{b^y} = b^{x-y}$$

3.
$$(b^x)^y = b^{xy}$$

4.
$$(ab)^{x} = a^{x}a^{y}$$

$$5. \ \left(\frac{a}{b}\right)^x = \frac{a^x}{a^y}$$

The number $e \approx 2.7182818284$. It is often called **Euler's Number** after Leonard Euler, who did not discover it: that was (probably) Jacob Bernoulli in 1683 while studying compound interest. Or maybe 100 years earlier by John Napier.

The Natural Exponential Function

The Natural Exponential Function is $f(x) = e^x$. It is special for many reasons, including the its tangent at x = 0 has slope 1.

Let's assume that e is the number for which, if $f(x) = e^x$, then f'(0) = 1. Using the limit definition of the derivative, this means

$$1 = \lim_{h \to 0} \frac{e^{0+h} - e^0}{h} = \lim_{h \to 0} \frac{e^h - 1}{h}.$$

From this can deduce that...

So now we know that

$$\frac{d}{dx}e^{x}=e^{x}.$$

That is e^x is the function that is its own derivative!!!

Example

Compute the derivative of $f(x) = e^{\sin(x)}$

Exercises

Exercise 4.3.1

Find the derivative of

- 1. $f(x) = x^3 \cos(x^2)$
- 2. $f(x) = \tan^3 (\sin^2(x^4))$

Exercise 4.3.2

Show that $\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$.

Exercise 4.3.3

Find the equation of the tangent to the curve defined by $x^2 - y^2 = 16$ at the point (5,3).