PREDICTIVE MODELLING PROJECT BUSINESS REPORT

DSBA

Written by **Priyamvada Singh**

Dated: **05-03-2023**

(Format: dd-mm-yyyy)

Contents

DSBA	0
roblem 1: Linear Regression	2
1.1 Read the data and do exploratory data analysis. Describe the data briefly. (Check the Data types, shape, I 5-point summary). Perform Univariate, Bivariate Analysis, Multivariate Analysis	
1.2 Impute null values if present, also check for the values which are equal to zero. Do they have any meaning do we need to change them or drop them? Check for the possibility of creating new features if required. Also check for outliers and duplicates if there.	0
1.3 Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Line regression using scikit learn. Perform checks for significant variables using appropriate method from statsmother create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMS Adj Rsquare. Compare these models and select the best one with appropriate reasoning.	odel. SE &
1.4 Inference: Basis on these predictions, what are the business insights and recommendations. Please expla and summarise the various steps performed in this project. There should be proper business interpretation a actionable insights present.	and
roblem 2: Logistic Regression, LDA and CART	26
2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, check for duplicates and outliers and write an inference on it. Perform Univariate and Bivariate Analysis and Multivarian	ate
2.2 Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis) and CART.	
2.4 Inference: Basis on these predictions, what are the insights and recommendations.	44
Please explain and summarise the various steps performed in this project. There should be proper business interpretation and actionable insights present.	44

Problem 1: Linear Regression

The comp-activ databases is a collection of a computer systems activity measures .

The data was collected from a Sun Sparcstation 20/712 with 128 Mbytes of memory running in a multi-user university department. Users would typically be doing a large variety of tasks ranging from accessing the internet, editing files or running very cpu-bound programs.

As you are a budding data scientist you thought to find out a linear equation to build a model to predict 'usr' (Portion of time (%) that cpus run in user mode) and to find out how each attribute affects the system to be in 'usr' mode using a list of system attributes.

1.1 Read the data and do exploratory data analysis. Describe the data briefly. (Check the Data types, shape, EDA, 5-point summary). Perform Univariate, Bivariate Analysis, Multivariate Analysis.

i. Head of the data (the first five rows):

	Iread	Iwrite	scall	sread	swrite	fork	exec	rchar	wchar	pgout	 pgscan	atch	pgin	ppgin	pflt	vflt	runqsz	freemem	freesv
0	1	0	2147	79	68	0.2	0.2	40671.0	53995.0	0.0	 0.0	0.0	1.6	2.6	16.00	26.40	CPU_Bound	4670	1730
1	0	0	170	18	21	0.2	0.2	448.0	8385.0	0.0	 0.0	0.0	0.0	0.0	15.63	16.83	Not_CPU_Bound	7278	1869
2	15	3	2162	159	119	2.0	2.4	NaN	31950.0	0.0	 0.0	1.2	6.0	9.4	150.20	220.20	Not_CPU_Bound	702	1021
3	0	0	160	12	16	0.2	0.2	NaN	8670.0	0.0	 0.0	0.0	0.2	0.2	15.60	16.80	Not_CPU_Bound	7248	1863
4	5	1	330	39	38	0.4	0.4	NaN	12185.0	0.0	 0.0	0.0	1.0	1.2	37.80	47.60	Not_CPU_Bound	633	1760

5 rows × 22 columns

- ii. The compactiv dataset has 8192 rows and 22 columns.
- iii. Null values: 'rchar' has 104 null values while 'wchar' has 15 null values.
- iv. No duplicates found in the dataset.
- v. The info on the dataset is as follows: 13 *float64* datatype, 8 *int64* datatype, 1 *object* datatype variables.
- vi. The 5-point-summary (min, 25%, 50%, 75%, max) of each variable is given below through data description:

	count	mean	std	min	25%	50%	75%	max
Iread	8192.0	1.955969e+01	53.353799	0.0	2.0	7.0	20.000	1845.00
Iwrite	8192.0	1.310620e+01	29.891726	0.0	0.0	1.0	10.000	575.00
scall	8192.0	2.306318e+03	1633.617322	109.0	1012.0	2051.5	3317.250	12493.00
sread	8192.0	2.104800e+02	198.980146	6.0	86.0	166.0	279.000	5318.00
swrite	8192.0	1.500582e+02	160.478980	7.0	63.0	117.0	185.000	5456.00
fork	8192.0	1.884554e+00	2.479493	0.0	0.4	0.8	2.200	20.12
exec	8192.0	2.791998e+00	5.212456	0.0	0.2	1.2	2.800	59.56
rchar	8088.0	1.973857e+05	239837.493526	278.0	34091.5	125473.5	267828.750	2526649.00
wchar	8177.0	9.590299e+04	140841.707911	1498.0	22916.0	46619.0	106101.000	1801623.00
pgout	8192.0	2.285317e+00	5.307038	0.0	0.0	0.0	2.400	81.44
ppgout	8192.0	5.977229e+00	15.214590	0.0	0.0	0.0	4.200	184.20
pgfree	8192.0	1.191971e+01	32.363520	0.0	0.0	0.0	5.000	523.00
pgscan	8192.0	2.152685e+01	71.141340	0.0	0.0	0.0	0.000	1237.00
atch	8192.0	1.127505e+00	5.708347	0.0	0.0	0.0	0.600	211.58
pgin	8192.0	8.277960e+00	13.874978	0.0	0.6	2.8	9.765	141.20
ppgin	8192.0	1.238859e+01	22.281318	0.0	0.6	3.8	13.800	292.61
pflt	8192.0	1.097938e+02	114.419221	0.0	25.0	63.8	159.600	899.80
vflt	8192.0	1.853158e+02	191.000603	0.2	45.4	120.4	251.800	1365.00
freemem	8192.0	1.763456e+03	2482.104511	55.0	231.0	579.0	2002.250	12027.00
freeswap	8192.0	1.328126e+06	422019.426957	2.0	1042623.5	1289289.5	1730379.500	2243187.00
usr	8192.0	8.396887e+01	18.401905	0.0	81.0	89.0	94.000	99.00

- vii. The null values in 'rchar' and 'wchar' have been replaced with median of the respective features.
- viii. Value counts of the target variable 'runqsz' is given below:

Not_CPU_Bound 4331 CPU_Bound 3861 Name: runqsz, dtype: int64

These values have been replaced as 0 and 1 to give them numeric values. Not_CPU_Bound has been assigned 0 and CPU_Bound has been assigned 1.

ix. Univariate analysis:

- Before analysing the dataset, I have checked for outliers and treated them with the help of the IQR method. I have replaced outliers with lower and upper range values that the formulae <u>upper range=Q3+(1.5*IQR)</u> and <u>lower range=Q1-(1.5*IQR)</u> give as output.

- Following are the 0 values present in each feature:

1read: 675 lwrite: 2684 scall: 0 sread: 0 swrite: 0 fork: 21 exec: 21 rchar: 0 wchar: 0 pgout: 4878 ppgout: 4878 pgfree: 4869 pgscan: 8192 atch: 4575 pgin: 1220 ppgin: 1220 pflt: 3 vflt: 0 runqsz: 4331 freemem: 0 freeswap: 0

- After treating outliers, there are 8192 zero values in 'pgscan', hence I dropped this column.
- Following is the boxplot distribution of each variable via boxplot:

All the variable distributions in the above figures are right-skewed, except the last two, i.e., 'freeswap' and 'usr', which are left-skewed.

x. Bivariate Analysis:

- 'Iread' versus 'Iwrite'

- 'sread' versus 'swrite'

- 'sread' versus 'rchar'

- 'swrite' versus 'wchar'

- 'fork' versus 'exec'

- The above scatterplots indicate some correlation between variables but to be sure, we need to look at the pairplot as well as the correlation heatmap of the dataset. Sample screenshot given below:

- Following pairs show a strong correlation from the above graphs:
 - a. pgin, ppgin 0.96
 - b. pflt, vflt 0.93
 - c. fork, pflt 0.94
 - d. fork, vflt 0.93
 - e. sread, swrite 0.88
 - f. Iread, Iwrite 0.83
 - g. fork, exec 0.77
 - h. ppgout, pgfree 0.97
 - i. ppgout, pgout 0.95
 - j. scall, sread 0.76
 - k. scall, swrite 0.74
- Since 'usr' is our target variable, we can spot many strong inverse correlations between 'usr' and other variables like 'vflt', 'pflt', 'fork', and 'sread'.
- To reduce 'usr', we need to investigate the cause of increase in pflt.
- To investigate this further, I plotted a boxplot by keeping 'runqsz' in the x-axis and 'pflt'.
- The below boxplot shows that the average 'pflt' is higher in CPU_Bound (1) records than in Not_CPU_Bound (0) records.

runqsz

0.0 93.738677 1.0 118.981735

Name: pflt, dtype: float64

xi. Multivariate Analysis:

- Building on the bivariate analysis, I went one step further to analyse 'usr' against 'pflt'/'vflt', with 'runqsz' as hue:

Both, 'pflt' and 'vflt' against 'usr' show an inversely correlated pattern for both, 0 and 1 classes of 'runqsz' with little difference in pattern.

- Scatterplot with 'fork' and 'exec' on the axis and 'runqsz' as hue:

Even for 'usr' versus 'fork', no pattern relating to 'runqsz' classes found.

1.2 Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Check for the possibility of creating new features if required. Also check for outliers and duplicates if there.

- i. Null values already imputed with median for columns 'rchar' and 'wchar'.
- ii. No duplicates were found.
- iii. 'pgscan' variable has been dropped because all the values in this columns came to a 0 after treating outliers. Even pre-outlier treatment, about 78% of the 'pgscan' values were 0. Due to this reason, I made the decision to drop it.
- iv. No new features created/required yet.
- v. Outliers have been checked and treated. Snapshot given below:

vi. After the treatment of outliers, the boxplots look like this:

- vii. 'runqsz' has been converted to numeric with values 0 and 1 already where 'CPU_Bound' is assigned the value of 1 and 'Not_CPU_Bound' is assigned 0.
- 1.3 Encode the data (having string values) for Modelling. Split the data into train and test (70:30). Apply Linear regression using scikit learn. Perform checks for significant variables using appropriate method from statsmodel. Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare. Compare these models and select the best one with appropriate reasoning.
 - i. Initial model without any adjustments:

OLS Regression Results

	ULS Regression Results								
Don Vania	 hla:			D			0.703		
Dep. Varia Model:	pie:				uared: R-squared:		0.793 0.792		
Method:		1 + C - · ·		_	atistic:		1093.		
		Least Squ un, 05 Mar			(F-statistic	. \ .	0.00		
Date: Time:	3	,			•	.):	-16686.		
No. Observ				AIC:	Likelihood:		-16686. 3.341e+04		
Df Residua				BIC:			3.355e+04		
Df Model:	15:		20	DIC:			3.3336+04		
	T	nonro							
Covariance	Type:	nonro	bust						
========			======	====	 - -	[0.025	0.0751		
	coef	std err		t	P> t	[0.025	0.975]		
const	85.0494	0.298	285.	844	0.000	84.466	85.633		
lread	-0.0633	0.009		147	0.000	-0.081	-0.046		
lwrite	0.0456	0.013		517	0.000	0.020	0.071		
scall	-0.0007	6.35e-05	-11.		0.000	-0.001	-0.001		
sread	0.0026	0.001		513	0.012	0.001	0.005		
swrite	-0.0064	0.001		423	0.000	-0.009	-0.004		
fork	-0.0896	0.133		672	0.502	-0.351	0.172		
exec	-0.2494	0.051		861	0.000	-0.350	-0.149		
rchar	-4.983e-06	4.87e-07	-10.		0.000	-5.94e-06	-4.03e-06		
wchar	-5.196e-06	1.04e-06		992	0.000	-7.24e-06	-3.16e-06		
pgout	-0.4979	0.089		575	0.000	-0.673	-0.323		
ppgout	-0.0675	0.081		837	0.403	-0.226	0.091		
pgfree	0.1456	0.049		966	0.003	0.049	0.242		
atch	0.5881	0.143		107	0.000	0.307	0.869		
pgin	0.0518	0.029		778	0.076	-0.005	0.109		
ppgin	-0.0846	0.020	-4.	178	0.000	-0.124	-0.045		
pflt	-0.0324	0.002	-16.	409	0.000	-0.036	-0.029		
vflt	-0.0062	0.001	-4.	399	0.000	-0.009	-0.003		
rungsz	-1.7242	0.126	-13.	649	0.000	-1.972	-1.477		
freemem	-0.0005	5.12e-05	-9.	155	0.000	-0.001	-0.000		
freeswap	9.223e-06	1.91e-07		401	0.000	8.85e-06	9.6e-06		
Omnibus:	=======				======== in-Watson:				
Omnibus: Prob(Omnib							2.022 1932.140		
*	us):				ue-Bera (JB): /JB).				
Skew:					(JB):		0.00		
Kurtosis:		4 	.940	cona	. No.		7.16e+06		

- In the initial model, we notice that the p-value for 'fork' and 'ppgout' is very high, followed by 'pgin' and 'sread'. The R-squared value is 0.793. Now we will go ahead and check the VIF (variance inflation factor) values for each variable to see how much multicollinearity has been brought by each feature.

```
VIF values:
         25.629887
const
           5.222496
lwrite
           4.230336
scall
           2.987824
           6.555928
sread
swrite
           5.666273
fork
           13.195160
exec
           3.216047
            2.088006
wchar
           1.583353
           11.215199
pgout
ppgout
           30.947431
pgfree
           17.468614
atch
           1.848297
pgin
           14.475734
ppgin
           14.673035
pflt
           11.703237
vflt
           15.370510
           1.151214
runqsz
           1.974160
freemem
freeswap
           1.847552
dtype: float64
```

- Since there are multiple features with higher than 10 VIF value, I have dropped one variable at a time and checked the R-squared for the model.
- R-squared and Adj. R-squared remained the same when 'ppgout', 'pgin' and 'fork' were dropped. This indicates that we can start by dropping these variables to check if the VIF values become suitable to build a better model.
- The value of R-squared and Adj. R-squared dropped by 0.009 when 'pflt' was dropped. This decline is relatively steep when compared to other variables. Hence, 'pflt' is concluded to be an important variable for the model.
- After dropping 'ppgout', this is the model as output:

OLS	Regressi	on l	Resul	ts

=======									
Dep. Varia	able:		usr		uared:		0.793		
Model:				_	R-squared:		0.792		
Method:		Least Squ			atistic:		1150.		
Date:	S	un, 05 Mar	2023	Prob	(F-statistio	:):	0.00		
Time:		11:2	8:41	Log-	Likelihood:		-16687.		
No. Observ	vations:		5734	AIC:			3.341e+04		
Df Residua	als:		5714	BIC:			3.355e+04		
Df Model:			19						
Covariance	e Type:	nonro	bust						
=======	coef	std err	======	t	P> t	[0.025	0.975]		
const	85.0682	0.297	286.	732	0.000	84.487	85.650		
lread	-0.0634	0.009		167	0.000	-0.081	-0.046		
lwrite	0.0457	0.013		530	0.000	0.020	0.071		
scall	-0.0007	6.35e-05	-11.		0.000	-0.001	-0.001		
sread	0.0026	0.001		505	0.012	0.001	0.005		
swrite	-0.0065	0.001		425	0.000	-0.009	-0.004		
fork	-0.0870	0.133		653	0.514	-0.348	0.174		
exec	-0.2502	0.051		877	0.000	-0.351	-0.150		
rchar	-4.983e-06	4.87e-07	-10.	237	0.000	-5.94e-06	-4.03e-06		
wchar	-5.234e-06	1.04e-06	-5.	033	0.000	-7.27e-06	-3.2e-06		
pgout	-0.5473	0.067	-8.	159	0.000	-0.679	-0.416		
pgfree	0.1124	0.029	3.	878	0.000	0.056	0.169		
atch	0.5903	0.143	4.	123	0.000	0.310	0.871		
pgin	0.0531	0.029	1.	823	0.068	-0.004	0.110		
ppgin	-0.0856	0.020	-4.	237	0.000	-0.125	-0.046		
pflt	-0.0324	0.002	-16.	409	0.000	-0.036	-0.029		
vflt	-0.0062	0.001	-4.	419	0.000	-0.009	-0.003		
runqsz	-1.7235	0.126	-13.	644	0.000	-1.971	-1.476		
freemem	-0.0005	5.11e-05	-9.	186	0.000	-0.001	-0.000		
freeswap	9.218e-06	1.9e-07	48.	401	0.000	8.84e-06	9.59e-06		
=======			======	====	========		========		
Omnibus:		980	.533	Durb	in-Watson:		2.023		
Prob(Omni	ous):	0	.000	Jarq	ue-Bera (JB):	:	1932.446		
Skew:		-1	.039	Prob	(JB):		0.00		
Kurtosis:		4	.941	Cond	. No.		7.14e+06		
=======			======	====	========		========		

```
VIF values after dropping 'ppgout':
          25.484056
const
lread
          5.220098
         4.229441
2.987783
lwrite
scall
          6.555363
sread
           5.666264
swrite
fork
           13.188017
exec
           3.214984
rchar
          2.088006
           1.580437
wchar
pgout
           6.324897
          6.097389
pgfree
atch
           1.847637
pgin
           14.437958
          14.617568
ppgin
pflt
          11.703237
vflt
          15.362860
           1.151159
runqsz
freemem
          1.972182
freeswap
           1.845464
dtype: float64
```

VIF values still seem to be high. Hence, dropping other variables one after another as shown below:

After dropping 'fork':

=======					=========	
Dep. Varia	able:		usr R-	squared:		0.793
Model:			OLS Ad	lj. R-square	d:	0.792
Method:		Least Squ	ares F-	statistic:		1214.
Date:	Si	un, 05 Mar	2023 Pr	ob (F-stati	stic):	0.00
Time:		11:2	8:42 Lo	g-Likelihoo	d:	-16687.
No. Observ	/ations:		5734 AI	C:		3.341e+04
Df Residua	als:		5715 BI	C:		3.354e+04
Df Model:			18			
Covariance	Type:	nonro	bust			
=======	=========	=======	=======	========	========	
	coef	std err		t P> t	[0.025	0.975]
const	85.0919	0.294	289.00	2 0.00	0 84.515	85.669
lread	-0.0636	0.009	-7.18	8 0.00	0 -0.081	-0.046
lwrite	0.0462	0.013	3.57	5 0.00	0 0.021	0.072
scall	-0.0007	6.28e-05	-11.36	8 0.00	0 -0.001	-0.001
sread	0.0026	0.001	2.54	0.01	1 0.001	0.005
swrite	-0.0066	0.001	-4.62	9 0.00	0 -0.009	-0.004
exec	-0.2599	0.049	-5.28	9 0.00	0 -0.356	-0.164
rchar	-4.982e-06	4.87e-07	-10.23	5 0.00	0 -5.94e-06	-4.03e-06
wchar	-5.221e-06	1.04e-06	-5.02	2 0.00	0 -7.26e-06	-3.18e-06
pgout	-0.5468	0.067	-8.15	4 0.00	0 -0.678	-0.415
pgfree	0.1126	0.029	3.88	4 0.00	0.056	0.169
atch	0.5937	0.143	4.15	0.00	0.313	0.874
pgin	0.0533	0.029	1.83	0.06	7 -0.004	0.110
ppgin	-0.0850	0.020	-4.20	9 0.00	0 -0.125	-0.045
pflt	-0.0329	0.002	-18.09	2 0.00	0 -0.036	-0.029
vflt	-0.0067	0.001	-5.38	5 0.00	0 -0.009	-0.004
runqsz	-1.7225	0.126	-13.63	7 0.00	0 -1.970	-1.475
freemem	-0.0005	5.11e-05	-9.19	6 0.00	0 -0.001	-0.000
freeswap	9.205e-06	1.89e-07	48.62	4 0.00	0 8.83e-06	9.58e-06
=======			======		=========	
Omnibus:		981	.667 Du	rbin-Watson	:	2.023
Prob(Omnib	ous):	0	.000 Ja	rque-Bera (JB):	1940.233
Skew:		-1	.039 Pr	ob(JB):		0.00
Kurtosis:		4	.949 Co	nd. No.		7.07e+06
========			=======		=========	

VIF values after dropping 'fork':

const	25.101797					
lread	5.215916					
lwrite	4.214692					
scall	2.929090					
sread	6.540038					
swrite	5.467054					
exec	2.948582					
rchar	2.087974					
wchar	1.579880					
pgout	6.324301					
pgfree	6.096861					
atch	1.845154					
pgin	14.435714					
ppgin	14.578592					
pflt	9.929178					
vflt	11.857791					
runqsz	1.150974					
freemem	1.971834					
freeswap	1.823381					
dtype: float64						

After dropping 'pgin':

	OLS	Kegression	Kesults		
Dep. Variable:		usr R-	squared:		0.793
Model:		OLS Ad	j. R-squared	:	0.792
Method:	Least Sq	uares F-	statistic:		1285.
Date:	Sun, 05 Mar	2023 Pr	ob (F-statist	tic):	0.00
Time:	11:	28:43 Lo	g-Likelihood	:	-16689.
No. Observations:		5734 AI	C:		3.341e+04
Df Residuals:		5716 BI	C:		3.353e+04
Df Model:		17			
Covariance Type:	nonr	obust			
============	=========	=======	========	========	
co	ef std err		t P> t	[0.025	0.975]
const 85.13	90 0.293	290.21	3 0.000	84.564	85.714
lread -0.06	41 0.009	-7.24	1 0.000	-0.081	-0.047
lwrite 0.04	66 0.013	3.60	3 0.000	0.021	0.072
scall -0.00	07 6.28e-05	-11.32	8 0.000	-0.001	-0.001
sread 0.00	0.001	2.54	9 0.011	0.001	0.005
swrite -0.00	0.001	-4.64	9 0.000	-0.009	-0.004
exec -0.25	71 0.049	-5.23	4 0.000	-0.353	-0.161
rchar -5.046e-	06 4.86e-07	-10.39	3 0.000	-6e-06	-4.09e-06
wchar -5.195e-	06 1.04e-06	-4.99	7 0.000	-7.23e-06	-3.16e-06
pgout -0.54	33 0.067	-8.10	2 0.000	-0.675	-0.412
pgfree 0.10	99 0.029	3.79	7 0.000	0.053	0.167
atch 0.60	0.143	4.19	6 0.000	0.320	0.881
ppgin -0.05	0.007	-7.27	6 0.000	-0.064	-0.037
pflt -0.03	31 0.002	-18.27	0.000	-0.037	-0.030
vflt -0.00	0.001	-5.22	9 0.000	-0.009	-0.004
runqsz -1.71	.81 0.126	-13.60	2 0.000	-1.966	-1.471
freemem -0.00	05 5.11e-05	-9.20	1 0.000	-0.001	-0.000
freeswap 9.179e-	06 1.89e-07	48.60	9 0.000	8.81e-06	9.55e-06
Omnibus:	 98	======= 6.106 Du	======= rbin-Watson:	========	2.022
Prob(Omnibus):		0.000 Ja	rque-Bera (Ji	B):	1956.098
Skew:	-		ob(JB):	-	0.00
Kurtosis:			nd. Nó.		7.05e+06
===========	========	=======	========	========	

VIF values after dropping 'pgin':

const	24.910077						
lread	5.211756						
lwrite	4.213626						
scall	2.927634						
sread	6.539854						
swrite	5.466379						
exec	2.945778						
rchar	2.076999						
wchar	1.579597						
pgout	6.319010						
pgfree	6.081600						
atch	1.844025						
ppgin	1.704801						
pflt	9.876458						
vflt	11.742820						
runqsz	1.150570						
freemem	1.971808						
freeswap	1.813811						
dtype: float64							

After dropping 'vflt':

Dep. Variable: usr R-squared: 0.792							
Model: OLS Adj. R-squared: 0.791 Method: Least Squares F-statistic: 1357. Date: Sun, 05 Mar 2023 Prob (F-statistic): 0.00 Time: 11:28:43 Log-Likelihood: -16702. No. Observations: 5734 AIC: 3.344e+04 Df Model: 16 16 16 Covariance Type: nonrobust	Den. Varia	able:		usr R-	sauared:		0.792
Method: Least Squares F-statistic: 1357. Date: Sun, 05 Mar 2023 Prob (F-statistic): 0.00 Time: 11:28:43 Log-Likelihood: -16702. No. Observations: 5734 AIC: 3.344e+04 Df Residuals: 5717 BIC: 3.355e+04 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] cost std err t P> t [0.025		JULE.				:	
Date: Sun, 05 Mar 2023 Prob (F-statistic): 0.00			Least Squa			•	
Time: 11:28:43 Log-Likelihood: -16702. No. Observations: 5734 AIC: 3.344e+04 Df Residuals: 5717 BIC: 3.355e+04 Df Model: 16 Covariance Type: nonrobust		Si				tic):	
No. Observations: 5734 AIC: 3.344e+04 Df Residuals: 5717 BIC: 3.355e+04 Df Model: 16 Covariance Type: nonrobust			-			-	
Df Residuals:		/ations:			_		
Df Model: 16 Covariance Type: nonrobust coef std err t P> t [0.025] 0.975] Const 84.9890 0.293 290.429 0.000 84.415 85.563 lread -0.0674 0.009 -7.623 0.000 -0.085 -0.050 lwrite 0.0496 0.013 3.829 0.000 0.024 0.075 scall -0.0007 6.3e-05 -11.218 0.000 -0.001 -0.001 sread 0.0023 0.001 2.261 0.024 0.000 0.004 swrite -0.0074 0.001 -5.206 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -0.405 -0.216 rchar -5.214e-06 4.86e-07 -10.739 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06					C:		
Covariance Type: nonrobust coef std err t P> t [0.025] 0.975] const 84.9890 0.293 290.429 0.000 84.415 85.563 lread -0.0674 0.009 -7.623 0.000 -0.085 -0.050 lwrite 0.0496 0.013 3.829 0.000 0.024 0.075 scall -0.0007 6.3e-05 -11.218 0.000 -0.001 -0.001 sread 0.0023 0.001 2.261 0.024 0.000 0.004 swrite -0.0074 0.001 -5.206 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06 pgout -0.5322 0.067 -7.923							
coef std err t P> t [0.025 0.975] const 84.9890 0.293 290.429 0.000 84.415 85.563 lwrite 0.0674 0.009 -7.623 0.000 -0.085 -0.050 lwrite 0.0496 0.013 3.829 0.000 0.024 0.075 scall -0.0007 6.3e-05 -11.218 0.000 -0.001 -0.001 sread 0.0023 0.001 2.261 0.0024 0.000 -0.001 swrite -0.0074 0.001 -5.206 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -0.405 -0.216 rchar -5.214e-06 4.86e-07 -10.739 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06 pgout -0.5322 0.067 -7.923 0.000 -0.644 -0.401		Tvpe:	nonrol				
const 84.9890 0.293 290.429 0.000 84.415 85.563 lread -0.0674 0.009 -7.623 0.000 -0.085 -0.050 lwrite 0.0496 0.013 3.829 0.000 0.024 0.075 scall -0.0007 6.3e-05 -11.218 0.000 -0.001 -0.001 sread 0.0023 0.001 2.261 0.024 0.000 0.004 swrite -0.0074 0.001 -5.206 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -0.405 -0.216 rchar -5.214e-06 4.86e-07 -10.739 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06 pgout -0.5322 0.067 -7.923 0.000 -6.41e-06 -2.37e-06 atch 0.5437 0.143 3.803 0.000 0.046 0.160 </td <td>========</td> <td>,,</td> <td>========</td> <td>-</td> <td>========</td> <td>========</td> <td>========</td>	========	,,	========	-	========	========	========
lread -0.0674 0.009 -7.623 0.000 -0.085 -0.050 lwrite 0.0496 0.013 3.829 0.000 0.024 0.075 scall -0.0007 6.3e-05 -11.218 0.000 -0.001 -0.001 sread 0.0023 0.001 2.261 0.024 0.000 0.004 swrite -0.0074 0.001 -5.206 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -0.405 -0.216 rchar -5.214e-06 4.86e-07 -10.739 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06 pgout -0.5322 0.067 -7.923 0.000 -0.664 -0.401 pgfree 0.1030 0.029 3.552 0.000 0.046 0.160 atch 0.5437 0.143 3.803 0.000 -0.073 -0.047		coef	std err		t P> t	[0.025	0.975]
lwrite 0.0496 0.013 3.829 0.000 0.024 0.075 scall -0.0007 6.3e-05 -11.218 0.000 -0.001 -0.001 sread 0.0023 0.001 2.261 0.024 0.000 0.004 swrite -0.0074 0.001 -5.206 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -0.405 -0.216 rchar -5.214e-06 4.86e-07 -10.739 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06 pgout -0.5322 0.067 -7.923 0.000 -0.664 -0.401 pgfree 0.1030 0.029 3.552 0.000 0.046 0.160 atch 0.5437 0.143 3.803 0.000 0.043 0.034 pgin -0.0600 0.007 -8.998 0.000 -0.073 -0.047 <td>const</td> <td>84.9890</td> <td>0.293</td> <td>290.42</td> <td>9 0.000</td> <td>84.415</td> <td>85.563</td>	const	84.9890	0.293	290.42	9 0.000	84.415	85.563
scall -0.0007 6.3e-05 -11.218 0.000 -0.001 -0.001 sread 0.0023 0.001 2.261 0.024 0.000 0.004 swrite -0.0074 0.001 -5.206 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -0.405 -0.216 rchar -5.214e-06 4.86e-07 -10.739 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06 pgout -0.5322 0.067 -7.923 0.000 -0.664 -0.401 pgfree 0.1030 0.029 3.552 0.000 0.046 0.160 atch 0.5437 0.143 3.803 0.000 0.0263 0.824 ppgin -0.0600 0.007 -8.998 0.000 -0.073 -0.047 pflt -0.0408 0.001 -38.014 0.000 -0.043 -0.039 runqsz -1.7107 0.127 -13.514 0.000 -0.001<	lread	-0.0674	0.009	-7.62	3 0.000	-0.085	-0.050
sread 0.0023 0.001 2.261 0.024 0.000 0.004 swrite -0.0074 0.001 -5.206 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -0.405 -0.216 rchar -5.214e-06 4.86e-07 -10.739 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06 pgout -0.5322 0.067 -7.923 0.000 -0.664 -0.401 pgfree 0.1030 0.029 3.552 0.000 0.046 0.160 atch 0.5437 0.143 3.803 0.000 0.263 0.824 ppgin -0.0600 0.007 -8.998 0.000 -0.073 -0.047 pflt -0.0408 0.001 -38.014 0.000 -0.043 -0.039 runqsz -1.7107 0.127 -13.514 0.000 -0.001 -0.000	lwrite	0.0496	0.013	3.82	9 0.000	0.024	0.075
swrite -0.0074 0.001 -5.206 0.000 -0.010 -0.005 exec -0.3101 0.048 -6.438 0.000 -0.405 -0.216 rchar -5.214e-06 4.86e-07 -10.739 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06 pgout -0.5322 0.067 -7.923 0.000 -0.664 -0.401 pgfree 0.1030 0.029 3.552 0.000 0.046 0.160 atch 0.5437 0.143 3.803 0.000 0.263 0.824 ppgin -0.0600 0.007 -8.998 0.000 -0.073 -0.047 pflt -0.0408 0.001 -38.014 0.000 -0.043 -0.039 runqsz -1.7107 0.127 -13.514 0.000 -0.001 -0.000 freemem -0.0005 5.12e-05 -9.356 0.000 8.96e-06 9.7e-	scall	-0.0007	6.3e-05	-11.21	8 0.000	-0.001	-0.001
exec -0.3101 0.048 -6.438 0.000 -0.405 -0.216 rchar -5.214e-06 4.86e-07 -10.739 0.000 -6.17e-06 -4.26e-06 wchar -4.386e-06 1.03e-06 -4.256 0.000 -6.41e-06 -2.37e-06 pgout -0.5322 0.067 -7.923 0.000 -0.664 -0.401 pgfree 0.1030 0.029 3.552 0.000 0.046 0.160 atch 0.5437 0.143 3.803 0.000 0.263 0.824 ppgin -0.0600 0.007 -8.998 0.000 -0.073 -0.047 pflt -0.0408 0.001 -38.014 0.000 -0.043 -0.039 runqsz -1.7107 0.127 -13.514 0.000 -1.959 -1.463 freemem -0.0005 5.12e-05 -9.356 0.000 8.96e-06 9.7e-06 Omnibus: 921.359 Durbin-Watson: 2.020							

VIF values after dropping 'vflt': 24.671813 lread 5.184407 4.205451 lwrite scall 2.926841 sread 6.520178 swrite 5.407892 2.820231 exec rchar 2.067881 1.544589 wchar 6.312670 pgout pgfree 6.068725 atch 1.833481 ppgin 1.581030 3.441366 pflt 1.150426 runqsz freemem 1.969675 1.772518 freeswap dtype: float64

Similar to these reiterations, I also dropped 'pgfree', 'sread', and 'lwrite'. Finally, the VIF values were low enough (lower than 5) for all variables to finalise the linear regression model, shown as below:

=======	:=======		======		=====	=======	========
Dep. Varia	ble:		usr F	R-squared:			0.790
Model:			OLS A	Adj. R-squ	ared:		0.790
Method:		Least Squ		-statisti	1659.		
Date:	Sı	Sun, 05 Mar 2023		Prob (F-st	atisti	c):	0.00
Time:		11:2	8:44 L	Log-Likeli	hood:		-16719.
No. Observ			5734 A	AIC:			3.347e+04
Df Residua	ıls:		5720 E	BIC:			3.356e+04
Df Model:			13				
Covariance	Type:	nonro	bust				
=======	coef	std err	======	t P	===== > t	======= [0.025	0.975]
							0.9/3]
const	85.1098	0.292	291.5	503 0	.000	84.537	85.682
lread	-0.0384	0.004	-8.6	556 0	.000	-0.047	-0.030
scall	-0.0007	6e-05	-11.3	335 0	.000	-0.001	-0.001
swrite	-0.0052	0.001	-4.8	397 0	.000	-0.007	-0.003
exec	-0.3179	0.048	-6.5	598 0	.000	-0.412	-0.223
rchar	-4.734e-06	4.37e-07	-10.8	325 0	.000	-5.59e-06	-3.88e-06
wchar	-4.411e-06	1.03e-06	-4.3	303 0	.000	-6.42e-06	-2.4e-06
pgout	-0.3363	0.038	-8.8	308 0	.000	-0.411	-0.261
atch	0.5511	0.143	3.8	348 0	.000	0.270	0.832
ppgin	-0.0599	0.007	-9.1	197 0	.000	-0.073	-0.047
pflt	-0.0414	0.001	-39.3	390 0	.000	-0.043	-0.039
runqsz	-1.7475	0.127	-13.8	309 0	.000	-1.996	-1.499
freemem	-0.0005	5.12e-05	-9.5	512 0	.000	-0.001	-0.000
freeswap	9.315e-06	1.87e-07	49.9	901 0	.000	8.95e-06	9.68e-06
========	========	=======	======		=====	=======	========
Omnibus:				Durbin-Wat			2.020
Prob(Omnib	ous):			Jarque-Ber	a (JB)	:	1839.036
Skew:				Prob(JB):			0.00
Kurtosis:		4	.923 (Cond. No.			6.98e+06
========					=====		

VIF values after dropping 'lwrite':

const	24.432718
lread	1.294422
scall	2.640944
swrite	2.939251
exec	2.806984
rchar	1.669087
wchar	1.520686
pgout	2.028511
atch	1.830347
ppgin	1.503077
pflt	3.284418
runqsz	1.143599
freemem	1.955042
freeswap	1.755178
dtypo: float	F64

dtype: float64

- After dropping the variables that were causing multi-collinearity, we have built the model. Note that it has not lost its R-squared value significantly.
- The former R-squared value was 0.793 and the final value is 0.790, which is a drop of 0.003 (insignificant).
- Therefore, model_25 is the final model.
- Following features are included in the final model: 'const', 'lread', 'scall', 'swrite', 'exec', 'rchar', 'wchar', 'pgout', 'atch', 'ppgin', 'pflt', 'runqsz', 'freemem', 'freeswap'.
- ii. The predicted values are generated giving residuals against actual values as shown below: Note: This is only the first five rows of the data for reference.

	Actual Values	Fitted Values	Residuals
0	81.0	86.873553	-5.873553
1	93.0	88.050585	4.949415
2	64.0	64.330359	-0.330359
3	86.0	86.061522	-0.061522
4	94.0	98.473539	-4.473539

iii. Residual plot:

- iv. There is some non-linearity spotted in the residual plot. In the attempt to try and correct it, I looked at the pairplot of the dataset to check where the non-linearity might be coming from. 'freemem' seemed to bring in some non-linearity. However, on attempting to adjust it through freemem-squared transformation, the model did not hold good, as the VIF values spiked for multiple variables once again.
- v. Checking the normality assumption for residuals:

The distribution looks close to normal and can be accepted.

vi. QQ plot for residuals:

- vii. Goldfeld–Quandt test is used to check for homoscedasticity, which is giving the p-value of 0.37, i.e., > 0.05. Hence, the test **fails to reject** the null hypothesis that the residuals are homoscedastic.
- viii. All assumptions of linear regression are roughly satisfied.

1.4 Inference: Basis on these predictions, what are the business insights and recommendations. Please explain and summarise the various steps performed in this project. There should be proper business interpretation and actionable insights present.

- i. Step 1: Created initial model
 - Step 2: Checked the VIF values for all variables along with the original model's R-squared and adj. R-squared values.
 - Step 3: Dropped variables with highest VIF value one by one and checked R-squared and adj. R-squared values of the model after dropping each variable.
 - Step 4: Finally, the model was left with features const', 'Iread', 'scall', 'swrite', 'exec', 'rchar', 'pgout', 'atch', 'ppgin', 'pflt', 'runqsz', 'freemem', 'freeswap', with all the VIF values under 5.
 - Step 5: The R-squared value of the final model was 0.790 as against 0.793 that we got in the beginning.
 - Step 6: Created dataframe with actual, predicted and residual values.
 - Step 7: Checked the linear regression assumptions like linearity, normality, homoscedasticity for the residjuals.
- ii. Below is the final equation of linear regression that will help us understand the relationship between 'usr' and independent variables:

```
 usr = 85.0493905502606 + (-0.038355148624787956*(Iread)) + (-0.0006796180899208*(scall)) + (-0.00516827790480312*(swrite)) + (-0.31791824161693133*(exec)) + (-4.734426806664307e-06*(rchar)) + (-4.410733409483615e-06*(wchar)) + (-0.3362796067741809*(pgout)) + (-0.551091802085945*(atch) + (-0.05990782621159879*(ppgin)) + (-0.04137305160578238*(pflt)) + (-1.7474768971194923*(runqsz)) + (-0.00048675572982739054*(freemem)) + 9.315381320207643e-06*(freeswap)
```

- iii. RMSE for train set = 4.467 RMSE for test set = 4.592
- iv. Mean absolute error for train set = 3.333 Mean absolute error for test set = 3.385
- v. The RMSE values for both, train and test data are close by, which indicates that the model is stable and not suffering from overfitting.
- vi. Business insights from the linear regression equation:
 - a. 'usr' is majorly dependent on 'runqsz', 'atch', 'pgout', 'exec' when compared to other features. According to this model, we can decrease the time that CPUs run in user mode by making machines depend less on CPU bound processes.
 - b. If we reduce the number of page attaches (satisfying a page fault by reclaiming a page in memory) per second (atch), we can lower the 'usr'.
 - c. Reducing the number of page out requests per second (pgout) and number of system exec calls per second (exec) will also have a positive impact on usr.

Problem 2: Logistic Regression, LDA and CART

You are a statistician at the Republic of Indonesia Ministry of Health and you are provided with a data of 1473 females collected from a Contraceptive Prevalence Survey. The samples are married women who were either not pregnant or do not know if they were at the time of the survey.

The problem is to predict do/don't they use a contraceptive method of choice based on their demographic and socio-economic characteristics.

2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, check for duplicates and outliers and write an inference on it. Perform Univariate and Bivariate Analysis and Multivariate Analysis.

i. Head of the data (the first five rows): (first give rows for reference)

	Wife_age	Wife_ education	Husband_education	No_of_children_born	Wife_religion	Wife_Working	Husband_Occupation	Standard_of_living_index	Media_exp
0	24.0	Primary	Secondary	3.0	Scientology	No	2	High	Ex
1	45.0	Uneducated	Secondary	10.0	Scientology	No	3	Very High	Ex
2	43.0	Primary	Secondary	7.0	Scientology	No	3	Very High	Ex
3	42.0	Secondary	Primary	9.0	Scientology	No	3	High	Ex
4	36.0	Secondary	Secondary	8.0	Scientology	No	3	Low	Ex
4									•

- ii. The contraceptive dataset has 1473 rows and 10 columns.
- iii. Null values: 'Wife_age' has 71 null values while 'No_of_children_born' has 21 null values.
- iv. 80 duplicates found and dropped from the dataset.
- **v.** The info on the original dataset is as follows: 2 *float64* datatype, 1 *int64* datatype, 7 *object* datatype variables.
- vi. The 5-point-summary (min, 25%, 50%, 75%, max) of each variable is given below through data description:

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Wife_age	1393.0	NaN	NaN	NaN	32.53051	8.088188	16.0	26.0	32.0	38.0	49.0
Wife_education	1393	4	Tertiary	515	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Husband_education	1393	4	Tertiary	827	NaN	NaN	NaN	NaN	NaN	NaN	NaN
No_of_children_born	1393.0	NaN	NaN	NaN	3.286432	2.381791	0.0	1.0	3.0	5.0	16.0
Wife_religion	1393	2	Scientology	1186	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Wife_Working	1393	2	No	1043	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Husband_Occupation	1393.0	4.0	3.0	570.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Standard_of_living_index	1393	4	Very High	618	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Media_exposure	1393	2	Exposed	1284	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Contraceptive_method_used	1393	2	Yes	779	NaN	NaN	NaN	NaN	NaN	NaN	NaN

- **vii.** The null values in 'Wife_age' and 'No_of_children_born' have been replaced with median of the respective features.
- viii. Univariate Analysis:

Value counts of categorical variables are as follows:

```
Value counts for Wife_ education:
Tertiary
              515
              398
Secondary
Primary
              330
Uneducated
              150
Name: Wife_ education, dtype: int64
Value counts for Husband_education:
Tertiary
              827
Secondary
              347
              175
Primary
Uneducated
              44
Name: Husband_education, dtype: int64
Value counts for Wife_religion:
Scientology
                  1186
Non-Scientology
                   207
Name: Wife_religion, dtype: int64
Value counts for Wife_Working:
No
       1043
Yes
        350
Name: Wife_Working, dtype: int64
Value counts for Husband_Occupation:
     570
2
     415
     381
1
Name: Husband_Occupation, dtype: int64
Value counts for Standard_of_living_index:
Very High 618
High
            419
Low
            227
Very Low
            129
Name: Standard_of_living_index, dtype: int64
Value counts for Media_exposure :
             1284
Exposed
{\tt Not-Exposed}
              109
Name: Media_exposure , dtype: int64
Value counts for Contraceptive_method_used:
      779
Yes
No
       614
Name: Contraceptive_method_used, dtype: int64
```

- Value counts for non-categorical, numeric variables:

```
Value counts for Wife_age:

[24. 45. 43. 42. 36. 19. 38. 21. 27. 44. 26. 48. 39. 37. 46. 40. 29. 31. 33. 25. 28. 47. 32. 49. 34. 20. 22. 30. 23. 35. 41. 17. 18. 16.]

Value counts for No_of_children_born:

[ 3. 10. 7. 9. 8. 0. 6. 1. 2. 4. 5. 12. 11. 13. 16.]
```

- Checking outliers for the above continuous and discrete variables, i.e., Wife_age and No_of_children_born:

Boxplot for Wife_age

Boxplot for No_of_children_born

- As shown above, Number_of_children_born has outliers.

- Treating outliers with the IQR method where the outliers beyond the upper range are replaced with the upper range values using the formula: <u>upper range=Q3+(1.5*IQR)</u>.
- Countplots for individual features are shown below:

- Insights:
 - a. Majority (estimate: 64%) wives are educated at secondary and tertiary levels.
 - b. 59% husbands are educated to tertiary level while 24% are educated till secondary level. When compared to wives in tertiary level education, more husbands are in this tier.
 - c. According to the above countplots, majority wives are not working belong to scientology religion.
 - d. Most husbands are working in tier 3 while almost equal proportion of husbands work in 1 and 2 tiers. The tier 4 of occupation only has about 1.93% of husbands, which is the lowest.
 - e. When it comes to standard of living, majority records belong to 'very high' and 'high' categories.
 - f. 55.92% of the records use contraceptive while the rest 44% don't use contraceptive.

ix. Bivariate Analysis:

 When checking the relationship between No_of_children_born with Contraceptive_method_used, we see that there is not a major gap between the two categories of Used and Not Used.

This could be an indication of ineffective contraceptives used by the records in the dataset.

- When trying to answer the question, "Do more younger women want to use contraceptives for birth control?", there could not be found any pattern as shown below:

- Moreover, there was only a 0.53 correlation between Wife_age and No_of_children_born. Scatterplot for the two variables is shown below:

x. Multivariate Analysis:

- Number of children born in Husband_Occupation 4 is the lowest.
- Below if the boxplot of No of children born for each Husband_Occupation, with Standard of living as hue:

- In Occupation 2, records with 'Low' Standard of living have the highest number of children whereas in Occupation 3, records with 'Very Low' Standards of living have the highest number of children. This could indicate the inaccessibility of contraceptives and education in these standards of living and Occupation.
- Next, I checked if Wife_Working has an impact on the number of children:

- There was no major difference found in the pattern of Working and Non-working wives with respect to the living standards. However, wives who are not working have higher number of children in all categories of living standards from 'Very High' to 'Very Low'.
- 2.2 Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis) and CART.

Logistic Regression

- i. To prepare the dataset for modelling, I have converted string values of categorical columns to int values, in an ordinal style.
- ii. Criteria used to encode string data: In ordinal categories, 0 indicates the lowest value. For Binary independent variables, 0 indicates 'No' and 1 indicates 'Yes'. For Binary dependent variable, 0 represents 'Yes' and 1 represents 'No', since 'No' class is our class of interest for dependent variable.
- iii. All variables converted to numerical values:

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1393 entries, 0 to 1472
Data columns (total 10 columns):
                                Non-Null Count Dtype
#
    Column
0
    Wife_age
                                                float64
                                1393 non-null
1
    Wife_education
                                1393 non-null
                                                int64
2
    Husband_education
                                1393 non-null
                                                int64
    No_of_children_born
3
                                1393 non-null
                                                float64
4
    Wife_religion
                                1393 non-null
                                                int64
5
    Wife_Working
                                1393 non-null
                                                int64
6
    Husband_Occupation
                                1393 non-null
                                                int64
     Standard_of_living_index
                                1393 non-null
                                                int64
8
    Media_exposure
                                1393 non-null
                                                 int64
    Contraceptive_method_used
                               1393 non-null
                                                int64
dtypes: float64(2), int64(8)
memory usage: 152.0 KB
```

iv. Pairplot with class variable 'Contraceptive_method_used' as hue:

The diagonals represent the overlap between the independent variables and the class variable. Most of the independent variables overlap between both the classes, which means that they are poor or week predictors and do not split the binary class well.

v. Following is the heatmap indicating correlations amongst variables:

The independent variables do not seem to have multicollinearity. Hence, it is safe to go ahead with building a Logit model.

vi. LOGIT TRAIN DATA SET MODEL:

		precision	recall	f1-score	support
	0	0.67	0.80	0.73	547
	1	0.66	0.50	0.57	428
aco	curacy			0.66	975
macı	ro avg	0.66	0.65	0.65	975
weight	ed avg	0.66	0.66	0.66	975

Accuracy score: 0.6646

LOGIT TEST DATA SET MODEL:

	precision	recall	f1-score	support
0	0.66	0.85	0.75	232
1	0.71	0.46	0.56	186
			0.60	410
accuracy	0.60		0.68	418
macro avg	0.69	0.66	0.65	418
weighted avg	0.69	0.68	0.66	418

Accuracy score: 0.677

LDA

- i. As mentioned in the question above, not scaling the data for LDA as pre-prcoessing.
- ii. Checked independent variables for correlation. All independent variables have low correlation so it is safe to go ahead.
- iii. LDA TRAIN DATA SET MODEL:

	precision	recall	f1-score	support
0	0.67	0.81	0.73	547
1	0.66	0.48	0.56	428
accuracy			0.66	975
macro avg	0.66	0.64	0.64	975
weighted avg	0.66	0.66	0.65	975

Accuracy score: 0.6646

LDA TEST DATA SET MODEL:

	precision	recall	f1-score	support
0	0.65	0.86	0.74	232
1	0.71	0.42	0.53	186
accuracy			0.67	418
macro avg	0.68	0.64	0.63	418
weighted avg	0.68	0.67	0.65	418

Accuracy score: 0.665

CART

i. CART TRAIN DATA SET MODEL:

	precision	recall	f1-score	support
0	0.77	0.83	0.80	547
1	0.76	0.68	0.72	428
accuracy			0.76	975
macro avg weighted avg	0.76 0.76	0.75 0.76	0.76 0.76	975 975

Accuracy score: 0.7641

CART TEST DATA SET MODEL:

	precision	recall	f1-score	support
0	0.66	0.75	0.70	232
1	0.63	0.53	0.57	186
accuracy			0.65	418
macro avg	0.65	0.64	0.64	418
weighted avg	0.65	0.65	0.65	418

Accuracy score: 0.6507

1. 2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.

Logistic Regression

i. Confusion matrix:

- The logit model has an accuracy score of 0.67 and precision score of 0.71 (for class 1), which is an acceptable score.
- vii. In the above confusion matrix:

G1 = 198 is True Positive

G1 = 101 is False Positive

G2 = 85 is True Negative

G2 = 34 is False Negative

viii. ROC curve and AUC score for train set:

ROC curve and AUC score for test set:

ix. Equation: Y = 0.04305369 + X1*0.07867066, X2*(-0.44697918), X3*(-0.14787693), X4*(-0.27758321), X5*0.39656854, X6*0.16490436, X7*(-0.13464495), X8(-0.19488841), X9*(-0.46818363)

<u>LDA</u>

iv. Confusion matrix:

TRAIN SET:

TEST SET:

- The LDA model has predicted 110 rows as 1 (target class) and 308 rows as 0.

v. Equation:

- vi. X9 and X2 have the most discriminating power towards the class variable, since its coefficient has the highest magnitude.
- vii. The least discriminating power is coming from X1 since it has the lowest magnitude.
- viii. ROC Curve and AUC score for train set:

AUC: 0.701

ROC Curve and AUC score for test set:

<u>CART</u>

ii. Gini importance of all the features:

```
Gini_Imp
Wife_age
                          0.302709
Wife_education
                          0.103852
                          0.076279
Husband_education
No_of_children_born
                          0.237810
Wife_religion
                          0.040490
Wife_Working
                          0.052719
Husband_Occupation
                          0.089974
Standard_of_living_index 0.078466
Media exposure
                          0.017701
```

- iii. Above is the Gini importance for each feature. This parameter tells us how much each feature has been used in splitting the dependent variable. The above values are normalized.
- iv. After creating the decision tree, pruning was done to regularize the model. The following parameters were used for pruning:

Max depth = 9 Min sample leaf = 10 Min sample split = 30

v. New Gini importance table:

	Gini Imp
Wife_age	0.323388
Wife_education	0.154638
Husband_education	0.029856
No_of_children_born	0.396749
Wife_religion	0.007844
Wife_Working	0.002985
Husband_Occupation	0.039359
Standard_of_living_index	0.045180
Media_exposure	0.000000

- The feature importance of No_of_children_born, Wife_age, and Wife_education are the highest.
- If the gini importance of any variable is 0, it suggests that this particular variable was not used in splitting the class variable, hence, it can be dropped.
- Above, we can see that Media_exposure feature was not used in classification.
- Wife_working and Wife_religion do not seem to have much effect on 'contraceptive_method_used' as well.
- vi. Confusion matrix:

TRAIN DATA:

TEST DATA:

vii. ROC Curve and AUC Score for train set:

AUC: 0.838

ROC Curve and AUC Score for test set:

AUC: 0.722

MODEL COMPARISON AND INSIGHTS:

- i. The model for LOGIT and LDA on training data has the same accuracy score of 0.0.6646. However, LOGIT performed better on test data with the accuracy score of 0.677 against that of CART, i.e., 0.665. One point to be noted is that there was a slight increase the accuracy score of LDA models from train to test set.
- ii. The CART train data set accuracy score was 0.764 but dropped to 0.65 for the test data set, which is the biggest drop of all three models.

- iii. The test data precision score for class 1 for both LOGIT and LDA is 0.71, while for CART it is 0.63.
- iv. The highest AUC score is given by the CART model, i.e., 0.722 (for test data).
- v. On a relative scale, the best of the three models is Logistic Regression model.
- vi. Logit was able to make 283 correct predictions, LDA made 278 correct predictions, while CART made 272 correct predictions. I would go with the Logistic Regression model to make predictions.

2.4 Inference: Basis on these predictions, what are the insights and recommendations. Please explain and summarise the various steps performed in this project. There should be proper business interpretation and actionable insights present.

- i. The Logit model gave:
 - 198 True Positives
 - 101 False Positives
 - 85 True Negatives
 - 34 is False Negatives
- ii. X9, followed by X2 and X3 have the most impact on the dependent variable and hence they have the most power to distinguish between the two classes. X9 and X2 have an inverse effect on Y, while X3 has a direct impact on Y.
- iii. Steps involved in building the above models:
 - a. Step 1: Split the data into X_train, X_test, y_train, y_test.
 - b. Step 2: Create empty model and fit it into the training set.
 - c. Step 3: Get model coefficients to check the weight of each variable on the dependent variable.
 - d. Step 4: Check the intercept of the model.
 - e. Step 5: Check the AUC score and ROC curve along with the confusion matrix to see how well the discriminating features have predicted the Y variable.