Limite d'une fonction numérique.

Limite infinie d'une fonction en $+\infty$ ou en $-\infty$.

1.1 **Définition**

Définition

- Soit f une fonction numérique définie sur un intervalle de la forme $[a; +\infty[$ ou $]a; +\infty[$ avec $(a \in \mathbb{R})$. Si f(x)tend vers $+\infty$ quand x tend vers $+\infty$, alors on note $\lim_{x\to +\infty} f(x) = +\infty$. De même on définit $\lim_{x\to +\infty} f(x) = -\infty$.
- Soit f une fonction numérique définie sur un intervalle de la forme $]-\infty;b]$ ou $]-\infty;b[$ avec $(b\in\mathbb{R})$.Si f(x)tend vers $+\infty$ quand x tend vers $-\infty$, alors on note $\lim_{x\to -\infty} f(x) = +\infty$. De même on définit $\lim_{x\to -\infty} f(x) = -\infty$.

Limites usuelles 1.2

On admet les limites suivantes :

$$\forall a \in \mathbb{R} : \lim_{|x| \to +\infty} a = a$$

$$\lim_{x\to +\infty} \sqrt{x} = +\infty$$

 $\forall n \in \mathbb{N}^* : \lim_{x \to -\infty} x^n = \left\{ \begin{array}{ll} +\infty & n \text{ est pair} \\ -\infty & n \text{ est impair} \end{array} \right.$

$$\forall n \in \mathbb{N}^* : \lim_{x \to +\infty} x^n = +\infty$$

Exemples

$$\lim_{x \to -\infty} 5 = \dots \qquad \lim_{x \to +\infty} -\frac{1}{2} = \dots \qquad \lim_{x \to -\infty} x = \dots \qquad \lim_{x \to +\infty} x = \dots$$

$$\lim_{x \to -\infty} x^2 = \dots \qquad \lim_{x \to +\infty} x^4 = \dots \qquad \lim_{x \to -\infty} x^3 = \dots \qquad \lim_{x \to +\infty} x^7 = \dots$$

$$\lim_{x \to +\infty} -\frac{1}{2} = \dots$$

$$\lim_{x \to -\infty} x = \dots$$

$$\lim_{x \to +\infty} x = \dots$$

$$\lim_{x \to -\infty} x^2 = \dots$$

$$\lim_{x \to +\infty} x^4 = \dots$$

$$\lim_{x \to -\infty} x^3 = \dots$$

$$\lim_{x \to +\infty} x^7 = \dots$$

$$\lim_{x \to +\infty} \frac{1}{x^{-5}} = \dots \qquad \qquad \lim_{x \to -\infty} \frac{1}{x^{-6}} = \dots$$

Limite finie d'une fonction en $+\infty$ ou en $-\infty$.

Définition

Définition

- Soit f une fonction numérique définie sur un intervalle de la forme $[a; +\infty[$ ou $]a; +\infty[$ avec $(a \in \mathbb{R})$ et soit $l \in \mathbb{R}.$ Si f(x) tend vers l quand x tend vers $+\infty$, alors on note $\lim_{x \to +\infty} f(x) = l$.
- Soit f une fonction numérique définie sur un intervalle de la forme $]-\infty;b]$ ou $]-\infty;b[$ avec $(b\in\mathbb{R})$ et soit $l \in \mathbb{R}.$ Si f(x) tend vers l quand x tend vers $-\infty$, alors on note $\lim_{x \to -\infty} f(x) = l$.

2.2 limites usuelles

On admet les limites suivantes :

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x\to -\infty} \tfrac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$\forall n \in \mathbb{N}^*: \lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$\forall n \in \mathbb{N}^* : \lim_{x \to -\infty} \frac{1}{x^n} = 0$$

Exemples

- 1. $\lim_{x \to +\infty} \frac{1}{x^5} = \dots$
- 2. La figure suivante représente la courbe d'une fonction est définie sur \mathbb{R} . Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$

Propriété

Soit f une fonction numérique , et l un nombre réel.

$$-\lim_{x \to +\infty} f(x) = l \Leftrightarrow \lim_{x \to +\infty} (f(x) - l) = 0$$

$$-\lim_{x \to +\infty} f(x) = l \Leftrightarrow \lim_{x \to +\infty} (f(x) - l) = 0$$
$$-\lim_{x \to -\infty} f(x) = l \Leftrightarrow \lim_{x \to +\infty} (f(x) - l) = 0$$

Montrer que $\lim_{x \to -\infty} \frac{-x^2 + x}{x^2} = -1$

Limite finie et infinie d'une fonction en un point.

3.1**Définition**

Définition

Soit a et l deux nombres réels. Soit f une fonction numérique définie sur un intervalle de la forme $]a - \alpha; a + \alpha[]$ où $\alpha \in \mathbb{R}^{*+}$,ou sur un ensemble de la forme $]a - \alpha; a[\cup]a; a + \alpha[$.

- Si f(x) tend vers l quand x tend vers a, alors on note: $\lim_{x \to a} f(x) = l$.
- Si f(x) tend vers $+\infty$ quand x tend vers a, alors on note : $\lim_{x\to a} f(x) = +\infty$. (On définit de la même façon $\lim_{x \to \infty} f(x) = -\infty$

Propriété

Si f admet une limite l en a, alors cette limite est unique.

3.2 Limites usuelles

On admet les limites suivantes :

$$\lim_{x \to 0} a = a \ (a \in \mathbb{R})$$

$$\lim_{x \to 0} x = 0$$

$$\lim_{x\to 0} x^2 = 0$$

$$\lim_{x \to 0} x^3 = 0$$

$$\forall n \in \mathbb{N}^* : \lim_{x \to 0} x^n = 0$$

Limite à droite et limite à gauche d'une fonction numérique.

Définition

Soit f une fonction numérique. Soit a et l deux nombres réels.

- Si f(x) tend vers l quand x tend vers a à droite (C'est-à-dire x > a), alors on note : $\lim_{\substack{x \to a \\ x > a}} f(x) = l$ ou $\lim_{\substack{x \to a^+ \\ x > a}} f(x) = l$.
- Si f(x) tend vers $+\infty$ (respectivement $-\infty$) quand x tend vers a à droite (C'est-à-dire x>a), alors on Si f(x) tend vers $+\infty$ (respectivement $-\infty$) quand x tend vers x and x tend ver
- Si f(x) tend vers $+\infty$ (respectivement $-\infty$) quand x tend vers a à gauche (C'est-à-dire x < a), alors on note $\lim_{\substack{x \to a \\ x \neq a}} f(x) = +\infty$ ou $\lim_{\substack{x \to a^- \\ x \neq a}} f(x) = +\infty (\lim_{\substack{x \to a \\ x \neq a}} f(x) = -\infty$ ou $\lim_{\substack{x \to a^- \\ x \neq a}} f(x) = -\infty$). x < a

4.1 Limites usuelles

$$\forall n \in \mathbb{N}^*: \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x^n} = +\infty \qquad \qquad \forall n \in \mathbb{N}^*: \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x^n} = \left\{ \begin{array}{l} +\infty & n \text{ est pair} \\ -\infty & n \text{ est impair} \end{array} \right.$$

$$\lim_{\substack{x \to 0 \\ x > 0}} \sqrt{x} = 0 \qquad \qquad \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{\sqrt{x}} = +\infty$$

Théorème

Soit f une fonction numérique. $\lim_{x\to a} f(x) = l \iff (\lim_{\substack{x\to a\\x>a}} f(x) = l = \lim_{\substack{x\to a\\x< a}} f(x))$

Exemple

On considère f une fonction numérique définie par : $\begin{cases} f(x) = \sqrt{x} & x \ge 0 \\ f(x) = x^2 & x < 0 \end{cases}$

- 1. Calculer $\lim_{\substack{x\to 0\\x>0}} f(x)$ et $\lim_{\substack{x\to 0\\x<0}} f(x)$.
- 2. En déduire $\lim_{x\to 0} f(x)$.

5 Opération sur les limites.

Dans tout ce qui suit, a est un nombre réel ou $+\infty$ ou $-\infty$. l et l' sont deux nombres réels. Ces opérations restent valables pour les limites à droite et à gauche en a. Soit f et g deux fonctions numériques.

Limite d'une somme. 5.1

$\lim_{x \to a} f(x)$	l	l	l	$+\infty$	$-\infty$	$-\infty$	$+\infty$	
$\lim_{x \to a} g(x)$	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	
$\lim_{x \to a} (f+g)(x)$	l + l'	$+\infty$	$-\infty$	$+\infty$	$+\infty$	Forme indéterminée		

5.2Limite d'un produit.

$\lim_{x \to a} f(x)$	l	l > 0	l < 0	l > 0	l < 0	$+\infty$	$+\infty$	$-\infty$	0	0	$+\infty$	$-\infty$	
$\lim_{x \to a} g(x)$	l'	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$-\infty$	0	0	
$\lim_{x \to a} (fg)(x)$	ll'	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	Forme indéterminée				

5.3 Limite d'un quotient.

$\lim_{x \to a} f(x)$	l	l	+∞	$-\infty$	+∞	$-\infty$	$-\infty$ ou $l < 0$	$+\infty$ ou $l > 0$	$+\infty$ ou $l > 0$	$-\infty$ ou $l < 0$	0	$\pm\infty$
$\lim_{x \to a} g(x)$	$l' \neq 0$	$\pm \infty$	l > 0	l > 0	l < 0	l < 0	0+	0+	0-	0-	0	$\pm \infty$
$\lim_{x \to a} \left(\frac{f}{g} \right) (x)$	$\frac{l}{l'}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	F.I	

F.I : Forme indéterminée

Exemples

Calculer les limites suivantes :

$$\lim_{x \to 0} 2x = \cdots$$

$$\lim_{x \to -\infty} -5x^3 = \dots$$

$$\lim_{x \to +\infty} -x + \frac{1}{4\sqrt{x}} = \dots$$

$$\lim_{x \to 0} \frac{-3}{x^2} = \dots$$

$$\lim_{x \to 0^+} \sqrt{x} + \frac{-9}{x^9} = \dots$$

Limite d'une fonction polynôme-Limite d'une fonction rationnelle.

Propriété

Soit P et Q deux fonctions polynômes et a un réel.

$$\lim_{x \to a} P(x) = P(a).$$

$$\lim_{x \to a} \frac{P(x)}{Q(x)} = \frac{P(a)}{Q(a)} \text{ si } Q(a) \neq 0.$$

— Si ax^n et bx^m sont respectivement les termes du plus haut degré des polynômes P et Q.

$$\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} ax^n.$$

$$\lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} ax^n.$$

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \lim_{x \to +\infty} \frac{ax^n}{bx^m}.$$

$$\lim_{x \to -\infty} \frac{P(x)}{Q(x)} = \lim_{x \to -\infty} \frac{ax^n}{bx^m}.$$

Exemples

— Calculer les limites suivantes :

$$\lim_{x \to 2} x^2 - 5x + 3 = \cdots$$

$$\lim_{x \to 1} \frac{6x^2 - 7x + 1}{x - 2} = \dots$$

$$\lim_{x \to -1} 2x^3 + 5x = \dots$$

$$\lim_{x \to -1} 2x^3 + 5x = \dots$$

$$\lim_{x \to -1} -3x^2 + 5x + 1 = \dots$$

$$\lim_{x \to -\infty} -\frac{x^2 + x - 1}{-x^3 + 3x^2 - 2x + 5} = \dots$$

$$\lim_{x \to 1} \frac{1}{|3x - 5|} = \dots$$

$$\lim_{x \to +\infty} (-x - 4)(x^2 - 3x - 1)^3 = \dots$$

- Calculer les limites suivantes

$$\lim_{x \to 3^+} \frac{1}{-x+3} = \dots$$

$$\lim_{x \to 0^+} \frac{x^3 - 1}{x^2 - x} = \dots$$

$$\lim_{x \to 1^{-}} \frac{2x+3}{1-x^2} = \dots$$

Limites de fonctions irrationnelles.

Propriété

Soit f une fonction numérique définie sur un intervalle de la forme $[a; +\infty[$ où a est un réel et $\forall x \in [a; +\infty[; f(x) \ge 0.$

$$\mathrm{Si} \lim_{x \to +\infty} f(x) = l \text{ et } l \geq 0, \ \mathrm{alors} \lim_{x \to +\infty} \sqrt{f(x)} = \sqrt{l}. \qquad \qquad \mathrm{Si} \lim_{x \to +\infty} f(x) = +\infty \ , \\ \mathrm{alors} \lim_{x \to +\infty} \sqrt{f(x)} = +\infty.$$

Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
, alors $\lim_{x \to +\infty} \sqrt{f(x)} = +\infty$

Remarque

Cette propriété reste valable si on calcule la limite quand x tend vers $-\infty$ ou vers un réel a.

Exemples

Calculer les limites suivants :

$$\lim_{x \to +\infty} \sqrt{x^2 - 3x + 1}$$

$$\lim_{x \to -\infty} \sqrt{\frac{x^4 + 8x}{-x + 5}}$$

$$\lim_{x \to -2} \sqrt{-x^3 + x + \frac{1}{2}}$$

$$\lim_{x \to -\infty} x + 1 - \sqrt{1 - 2x}$$

Limite de fonctions trigonométriques. 8

Propriété

$$\lim_{x \to a} \sin(x) = \sin(a)$$

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin(ax)}{bx} = \frac{a}{b}$$

$$\lim_{x \to a} \cos(x) = \cos(a)$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{1 - \cos(ax)}{bx^2} = \frac{a}{2b}$$

$$\lim_{x\to a}\tan(x)=\tan(a)\;(a\neq\frac{\pi}{2}+k\pi)$$
 où $k\in\mathbb{Z}.$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\tan(ax)}{bx} = \frac{a}{b}$$

Exemples

Calculer les limites suivantes :

$$\lim_{x \to \frac{\pi}{4}} 2\cos(x) - \sin(2x) \quad \lim_{x \to -1} \cos(3x) \tan(\pi x) \quad \lim_{x \to \frac{\pi}{2}+} \tan(x) \quad \lim_{x \to 0} \frac{x \sin(x)}{1 - \cos(x)} \quad \lim_{x \to 0} \frac{\tan(3x)}{\sin(5x)} \quad \lim_{x \to 0} \frac{1 - \cos(4x)}{\tan(2x)}$$

$$\lim_{x \to 0} \frac{x - \sin(2x)}{x + \sin(x)} \quad \lim_{x \to -\frac{\pi}{2}} \frac{1 + \sin(x)}{\cos(x)} \quad \lim_{x \to \frac{\pi}{4}} \frac{\cos(x) - \sin(x)}{x - \frac{\pi}{4}} \quad \lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} \tan(x) - 3}{3x - \pi}$$

Exemples de calcul de limite-forme indéterminée 9

Exemples

Calculer les limites suivantes :

$$\lim_{x \to -\infty} \frac{1}{x^2} (x^3 + x) \qquad \lim_{x \to +\infty} \sqrt{x - 1} - \sqrt{x + 1} \qquad \lim_{x \to -\infty} 2x + \sqrt{x + x^2} \qquad \lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 1}$$

10 Limites et ordre.

Propriété

Soit a un nombre réel ou $+\infty$ ou $-\infty$ et I est un intervalle au voisinage de a. Soit f, u et v des fonctions numériques définies sur I.

$$\begin{cases} \forall x \in I: \ u(x) \leqslant f(x) \\ \lim_{x \to a} u(x) = +\infty \end{cases} \implies \lim_{x \to a} f(x) = +\infty \qquad \begin{cases} \forall x \in I: \ |f(x) - b| \leqslant u(x) \\ \lim_{x \to a} u(x) = 0 \end{cases} \implies \lim_{x \to a} f(x) = b \\ \begin{cases} \forall x \in I: \ u(x) \geqslant f(x) \\ \lim_{x \to a} u(x) = -\infty \end{cases} \implies \lim_{x \to a} f(x) = -\infty \end{cases} \qquad \begin{cases} \forall x \in I: \ |f(x) - b| \leqslant u(x) \\ \lim_{x \to a} u(x) = 0 \end{cases} \implies \lim_{x \to a} f(x) = b \\ \lim_{x \to a} u(x) = \lim_{x \to a} v(x) = b \end{cases}$$

Exemples

- 1. Soit f une fonction numérique définie sur $\mathbb R$ telle que : $\forall x \in \mathbb R^+$: $x^2 x \leqslant f(x) \leqslant x^2 + x$ Calculer les limites suivantes :
 - a) $\lim_{x \to 0^+} f(x)$
 - b) $\lim_{x \to +\infty} f(x)$
 - c) $\lim_{x \to +\infty} (f(x) x)$
 - d) $\lim_{x \to +\infty} \frac{f(x)}{x}$
 - e) $\lim_{x \to +\infty} \frac{f(x)}{x^2}$
- 2. Soit f une fonction numérique définie par $:f(x)=2+\pi x^2\cos(\frac{\pi}{x^2})$
 - (a) Montrer que : $(\forall x \in \mathbb{R}^*)$; $|f(x) 2| \le \pi x^2$.
 - (b) Déduire : $\lim_{x\to 0} f(x)$.
- 3. En utilisant un encadrement convenable, calculer les limites suivantes : $\lim_{x \to +\infty} \frac{\sin(x)}{x} = \lim_{x \to +\infty} x \cos(x)$