位、字节和二进制 数的进制 有(无)符号数 原码和补码 ASCII码

第2章 计算机中的数

2016/9/20 C语言程序设计 1

关于课程网站选课

Ø截至2016/09/19 23:00 pm

希望所有同学在下次上课(9月23日)前完成选课!

复习回顾

Ø上次课的内容

u课程简介

u程序和语言概览

uC语言的发展和特点

u简单的C程序

uC语言的结构特点

u编程流程

uC语言编程工具

I Code::Blocks, 你完成安装并开始使用了吗?

引言:一个计数游戏

我们来玩一个计 数游戏吧,谁说 出的数字大谁赢

几分钟以后...

三!

好,你先说吧!

冥思苦想 一刻钟...

你赢了.....

2016/9/20

第二章 计算机中的数

4

今天需要弄明白的三个问题

问题1

• "数"对于计算机到底有多重要?

问题2

• 计算机是如何计数的?

问题3

• 我们应该如何理解计算机的计数?

信息在计算机内的表示

位和字节

- Ø位,即bit(Binary-digit),又称比特
 - u位的取值可以是 1
 - u也可以是 O
- Ø字节,即byte,8个bit为1个byte
 - u例如: 0000010 10101101
 - u为什么是8位的?据说和Intel 8008的数据总线带宽有关,详见《The C Programming Language》

比特是计算机存储信息的基本单位

Ø{0,1}是区分信息所需的最少的状态

u单一状态能表示什么?

I 试想当下图的曲线变成一条直线意味着什么

比特/二进制似乎是计算机存储信息的天然选择

(a) 穿孔卡片

(b) 磁盘磁带

(c) 超大规模集成电路

字节是存储器寻址的基本单位

Ø 经常用来计算磁盘的大小

u 1KB = 1024 Byte

u 1MB = 1024 KB

u 1GB = 1024 MB

u 1TB = 1024 GB

u 之后还有PB、EB、ZB、YB......

Ø 需**牢记**: $1K = 2^{10} = 1024$ 。

并多取早日达到以下境界

【程序猿轶事】某程序猿在肉店买了1公斤肉,回家一 称,他不高兴的跑回肉店说:老板不厚适,少了24克!

程序猿

对程序来说,内存是这样滴

Ø虚拟存储空间

- u展示给计算机语言的一个 概念性映像
- u实际上是软硬件的复杂组合,为程序提供一个统一的字节序列。
- 以后的《操作系统原理》 课程中会进行详细介绍

虚拟地址

0 1 2

i

n-1

内容

01001001 11011011

01011101

01101011 11001000

00001011

01101000

01011001

01001111

Btw, 初学编程时的两大误区

- Ø 其一:编程很简单,上一门课、学几个月就号称精通某语言。
 - u 最乐观的评价叫"入门"
- Ø 其二:看书好多地方看不懂,有些概念想不明白,我好方。
 - u 编程的各部分知识是相互联系,刚开始 学不明白没关系,有些概念需要对编程 有更多接触后才会变得更易理解。

数的进制

- Ø计算机选择了二进制
- Ø人经常使用的是十进制
- Ø当然还有其他进制的存在
- Ø 要编程,最好还是能熟悉 二进制的表示方式

u自检一下,试读这句话

世界上只有10种人: 懂二进制的和不懂二进制的。

N进制数的特征

二进制	0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001
八进制	0,1,2,3,4,5,6,7,10,11,12,13,14,15
十进制	0,1,2,3,4,5,6,7,8,9,10,11,12,13,14
十六进制	0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,10

- Ø N是基数,每个数位可以是N个数字的一个:0、1、...、N-1
- Ø 每个数字在不同的数位上,由低向高按N的次幂递增。
- Ø 运算时满N进1,借1当N。
- Ø 数字不够,字母来凑

N进制数的区分表示

Ø任何数制的数都可以写成数字序列,为了便于区分,我们可以将数字序列括起来加上基数的下标,比如:

u512是十进制数(十进制数可以省略下标)

u(1001)。是二进制数

u (715)。是八进制数

u (57af) 16是十六进制数

位、字节和二讲制

数字的解析式表示

Ø设某个m位N进制的整数是 $A_{m-1}A_{m-2}L A_1A_0$ 则它的解析式是:

$$A_{m-1}A_{m-2}LA_1A_0 = A_{m-1} \times N^{m-1} + A_{m-2} \times N^{m-2} + L + A_1 \times N^1 + A_0 \times N^0$$

山例如 $5237=5\times10^3+2\times10^2+3\times10^1+7\times10^0$

u又如 $(101)_2 = 1x2^2 + 0x2^1 + 1x2^0$

山再如 $(a4)_{16} = 10x16^1 + 4x16^0$

N进制整数往十进制的转换

Ø方法:写出N进制数的解析式表示,然后 计算结果。例如:

$$u(101)_2 = 1x2^2 + 0x2^1 + 1x2^0 = 5$$

 $u(a4)_{16} = 10x16^1 + 4x16^0 = 164$

十进制整数往二进制的转换

Ø方法:将十进制数不断除以2并取其余数, 直到商为0,就可以得到从低到高的二进制 数的数字序列。比如20=(10100)₂

除以二	商	余数	数字序列Bi				
第一次	20	0	B ₀ =0 ♠				
第二次	10	0	B ₁ =0				
第三次	5	1	B ₂ =1				
第四次	2	0	B ₃ =0				
第五次	1	1	B ₄ =1				
	0						

反序获得最终结果

二进制整数往8或16进制转换

Ø要想把一个二进制数转换为十六进制数,

只需要:

u将一个二进制数从低向高每4位划为一组(位数不足时补O),

u再将每组4位二进制数转换为1位十六进制数即可。

山如(101011)₂ → (0010 1011)₂ → (2b)₁₆

Ø转换为八进制数就是3位一组,其余类似

十进制整数往8或16进制的转换

Ø方法1:除留余数法,类似于十进制转换为

二进制的方法,只是除数换成8或者16

Ø方法2:先将十进制数转换为二进制数,再将二进制数转换为八进制数或者十六进制数。

十进制小数如何转换为二进制?

Ø可以像整数一样转换吗?不行!请思考原因。

Ø方法:把小数部分不断乘以基数,取整数部分,直到积的小数部分为零。比如0.25=(0.01)。

乘以二	积	整数部分	小数部分
第一次	0.5	0	0.5
第二次	1.0	1	0.0

顺序收集获得二进制结果的小数部分

u精度问题:十进制有限小数并不总能精确存放在计算机

I 试把O.3转换为二进制?

万圣节/圣诞节, 傻傻分不清楚

Ø为什么"走火入魔的程序猿"会分不清万 圣节和圣诞节?

u【友情提示1】:万圣节是每年10月31日,

圣诞节是每年12月25日。

u【友情提示2】:八进制与十进制之惑

u【答案】: $(10)_{10}=(12)_8$, $(31)_8=(25)_{10}$

数的两种不同编码方式

Ø无符号数:只能表示非负数

u通常表示不具有数字意义的值, 比如身份证号,内存地址等等

姓名 韦小宝性别 男 民族汉出生 1654年12月20日 住址 北京市东城区景山前街4号 紫禁城敬事房

Ø有符号数:能表示负数、零和

正数

u有数字意义的值,各种计算必备

计算机能表示的整数是有限的

Ø有限的位数只能表示有限范围内的整数!

u比如,2个比特能表示的无符号整数:

$$I(00)_2 = 0$$

$$I(01)_2 = 1$$

$$I(10)_2 = 2$$

$$I(11)_2 = 3$$

№ 脑容量: 2比特!

②注意:只有意识到这一点,才能正确理解以后编程中遇到的"数值精度"、"溢出"等问题

有符号数如何表示?

Ø最直观的方案:原码,把最高位当成符号位 (O代表正,1代表负),其余位表示数值

u如3个比特能表示的有符号数:

$$(000)_2 = +0, (100)_2 = -0$$

$$(001)_2 = +1, (101)_2 = -1$$

$$(010)_2 = +2, (110)_2 = -2$$

$$(011)_2 = +3, (1111)_2 = -3$$

曾经出现过的数的编码方案

Ø原码

u优点:人类直观易懂,喜闻乐见

u缺点:运算时需要更多电路处理符号位

- Ø移码(淘汰,不提)
- Ø反码(淘汰,不提)
- Ø补码

u一统天下,几乎所有的现代计算机都采用补码!

补码的由来:模和补数

Ø模:一个计量系统的计数范围

u比如时钟,模=12

I 计数总是不会超过12

I 12点过后,就是1点

Ø补数:两个小于模的正数,和为模则互为补数 u当模=12,1和11,2和10,...,6和6 互 为补数

补码的由来:带模的计算

Ø带模的计量系统

u运算结果超出计数范围则表示为模的余数

I 现假设模为12:

```
µ6+7=13 → (对12求余数)1
µ8+10=18 → (对12求余数)6
```

u可以化减法为加法:

I 减一个数等价于加上它的补数(设模为12)

```
µ9-4 相当于 9+8=17 → (对12求余数) 5
```

µ6-1 相当于 6+11=17 → (对12求余数) 5

u好处:做加减法不需要判断符号位!

二进制补码

Ø补码:把补数应用于计算机

u十进制数n的二进制补码表示为[n]补

um位二进制数的模为2^m,即(100...0)₂

u非负数的补码即为原码!

I 设m=4, $[6]_{\stackrel{}{h}}=[6]_{\stackrel{}{g}}=(0110)_2$

u那么负数的补码如何表示?

如何由原码求补码(一)

Ø 方法一:根据补码定义计算,负数的补码就是绝对值的补数的原码。先获得模,然后获得该负数的绝对值,最后用模的原码减去该绝对值的原码,所得结果即该负数的补码。

u假设8位二进制数,求-7的补码(模=28)

模的原码,9位

绝对值的原码,8位

如何由原码求补码(二)

Ø 方法二:取反加一。去掉符号位,其余数位按位求

反,结果加1,然后添上符号位。

u假设8位二进制数,求-7的补码

I 第一步: -7的原码去符号位 (0000111)₂

I 第二步:按位去反(1111000)₂

I 第三步:加1 (1111001)₂

I 第四步:添上符号位 (11111001)₂

如何由补码求原码

Ø方法:补码的补码,即为原码

u已知[-7]_补,求-7的原码

I 第一步: -7的补码去符号位 (1111001)₂

I 第二步:按位取反(0000110)₂

I 第三步:加1 (0000111)₂

I 第四步:添上符号位 (10000111)₂

补码原码互换的死角

Ø有一个特殊的负数,它的补码没有对应的 原码

u对于4位的二进制数,试求-8的原码?

u原码表示的数的范围是对称的,而补码不是。

u对于N位的二进制数

Ⅰ原码表示范围: -(2^{N-1}-1)~(2^{N-1}-1)

Ⅰ 补码表示范围: -2^{N-1}~(2^{N-1}-1)

I -2^{N-1}是孤独的,[-2^{N-1}]_补=(100...0)₂

诡异的加法结果,正正得负?

Ø假定用补码表示4位的二进制有符号数,计算6+3的结果,即

$$(0110)_2 + (0011)_2 = (1001)_2 = -7$$

- Ø有限计数范围内的加法运算会导致"溢出"
 - u "溢出" : 运算结果超过计数最大值(模), 只好按模的余数处理
 - u【思考1】减法、乘法和除法会不会导致溢出?
 - u【思考2】溢出是补码的错吗?

ASCII码

ASCII

abbr. (缩写)

1.=American Standard Code for Information Interchange 美国信息交换标准码

ASCII码的产生

Ø字符如何在计算机中以二进制表示?

U编码:建立起字符和二进制整数的——映射

u26个大写字符+26个小写字符+10个数字+ 常用符号+控制符号,单字节足矣

Ø相互通信的标准问题,特定符号用哪种二进制数表示?

uANSI制定, ISO定为国际标准

ASCII码表

Ē	四位		ASCII非打印控制字符										ASCII 打印字符											
(0001				0010 0011		0100		0101		0110		0111							
		0					1				2 3		4		5		6		7					
低四	位人	十進制	字符	ctrl	代码	字符解释	十進制	字符	ctrl	代码	字符解释	十進制	字符	十進制	字符	十進制	字符	十進制	字符	十進制	字符	十進制	字符	ctrl
0000	0	0	BLANK NULL	^@	NUL	空	16	•	^P	DLE	数据链路转意	32		48	0	64	@	80	Р	96	`	112	р	
0001	1	1	0	^ A	SOH	头标开始	17	•	^Q	DC1	设备控制 1	33	ļ	49	1	65	Α	81	Q	97	а	113	q	
0010	2	2	•	^в	STX	正文开始	18	1	^R	DC2	设备控制 2	34	"	50	2	66	В	82	R	98	b	114	r	
0011	3	3	>	^ C	ETX	正文结束	19	=:	^ S	DC3	设备控制 3	35	#	51	3	67	С	83	S	99	С	115	s	
0100	4	4	•	^ D	EOT	传输结束	20	¶	^ T	DC4	设备控制 4	36	\$	52	4	68	D	84	Т	100	d	116	t	
0101	5	5	*	^E	ENQ	查询	21	∮	^ U	NAK	反确认	37	%	53	5	69	Е	85	U	101	е	117	u	
0110	6	6	•	^ F	ACK	确认	22		^ V	SYN	同步空闲	38	&	54	6	70	F	86	٧	102	f	118	V	
0111	7	7	•	^ G	BEL	震铃	23	1	^ ψ	ЕТВ	传输块结束	39	•	55	7	71	G	87	W	103	g	119	W	
1000	8	8		^ H	BS	退格	24	↑	^ X	CAN	取消	40	(56	8	72	Н	88	Х	104	h	120	Х	
1001	9	9	0	^ I	TAB	水平制表符	25	\downarrow	^Υ	EM	媒体结束	41)	57	9	73	_	89	Υ	105	i	121	у	
1010	A	10	0	^J	LF	换行/新行	26	1	^ Z	SUB	替换	42	*	58	:	74	J	90	Z	106	j	122	z	
1011	В	11	ъ	^ K	VT	竖直制表符	27		1 ^	ESC	转意	43	+	59	;	75	Κ	91	[107	k	123	{	
1100	С	12	Q	^ L	FF	换页/新页	28	┙	^\	FS	文件分隔符	44	,	60	<	76	L	92	١	108	I	124		
1101	D	13	٠,	^ M	CR	回车	29	‡	^]	GS	组分隔符	45	-	61	=	77	М	93]	109	m	125	}	
1110	E	14	1	^ N	SO	移出	30		^6	RS	记录分隔符	46		62	>	78	Ν	94	^	110	n	126	~	
1111	F	15	¤	^0	SI	移入	31	▼	^-	US	单元分隔符	47	1	63	?	79	0	95	_	111	0	127	Δ	^Back space

2016/9/20

C源代码文件的ASCII码表示

```
#include <stdio.h>
int main()
{
    printf("hello, world\n");
}
```

```
<sp>
                                        32
    105
                   108
                        117
                             100
                                  101
                                             60
                                                 115
                                                       116
                                                            100
                                                                 105
         110
                                 <sp>
                                                 105
               10
                   105
                        110
                                  32 109
                                             97
                                                       110
                             116
    <sp> <sp> <sp> <sp> <sp>
10
          32
               32
                    32
                        112
                             114
                                 105
                                       110
                                                 102
                                                  n
    111
                  119
                        111
                             114 108
                                      100
                                                 110
```

'0'等于0吗?

- 1. 形式上, 'O'带一对单引号, O没有
- 2. 性质上, 'O'是字符, O是数值
- 3. ASCII 码规定, '0'对应的整数是48, '1'对应的是49, '2'对应的是50...以此类推
- 4. 所以, '0'不等于0!

作业 2016/09/20

- 1. (1)把你的学号的后四位乘以你出生的月份(请先注明自己是几月出生的),得到一个十进制数;
 - (2)把这个十进制数转换成16位的二进制数,写出转换过程和最终结果,并判断是否溢出;
 - (3)截取步骤2得到的二进制数的低8位,将其视为有符号数的补码编码,并转化为10进制数,写出转换过程和最终结果。

注意事项:

- (1)作业写在纸上;
- (2)作业纸抬头写上学号和姓名;
- (3)周五(9月23日课间)交给助教