3.1 Parametriserle kurver (og flater fra 3.9)

Definision 3.1.3 (og litt til)

En parametrisert kurve i Rⁿ er en konfinuerlig funksjon r: I → R der I ⊆ R er et intervall. Vi skriver offe

$$\vec{r}(t) = (x_1(t), ..., x_n(t))$$

Hastighetsvektor:

Hastighetsvektor

$$\vec{N}(t) = \vec{r}'(t)$$

Fart:

 $\vec{N}(t) = |\vec{r}'(t)|$

Akselerasjousuektor: $\vec{r}''(t) = \vec{a}(t)$

Baneakselerasjon: $a(t) = \kappa'(t)$

eks. 1
$$\vec{r}: [0, 2\pi] \rightarrow \mathbb{R}^2$$
 ved
 $\vec{r}(t) = (\cos t, \sin t)$

 $\vec{r}(t) = \vec{r}'(t) = (-\sin t, \cos t)$

$$N(t) = |\vec{r}'(t)| = \sqrt{(-\sin t)^2 + \cos^2 t} = 1$$

$$\vec{\alpha}(t) = \vec{r}''(t) = (-\cos t, -\sin t)$$

eks. 2 r: [0, w) -> R3 ved $\vec{r}(t) = (\cos t, \sin t, t)$

gir
$$\vec{r}'(t) = (-\sin t, \cos t, 1)$$

П

Merk derivasjonsregler i setning 3.1.10 (s. 166)

Parametriserle flater (fra 3.9)

En parametrisert flate i \mathbb{R}^n er en konfinuenlig funksjon $\overrightarrow{r}: A \rightarrow \mathbb{R}^n$ der $A \subseteq \mathbb{R}^2$. Vi skriver ofte $\overrightarrow{r}(u, x) = (x(u, x), y(u, x), z(u, x))$

eks. Finne parametrisering au sylinderen $x^2 + y^2 = 1$ i \mathbb{R}^3 .

3.3 Linjeintegraler for skalarfelt

En kontinuerlig kurveparametrisering $\vec{r}:[a,b] \to \mathbb{R}^n$ kalles stykkevis glatt hvis $\vec{r}'(t)$ er kontinuerlig på [a,b] bortsett fra eut. i et endelig antall punkter.

eks.
$$x(t) = t^3$$
 $y(t) = t^2$
 $t \in [-1, 1]$

Tagne kurven i Matlab:

>> $t = linspace(-1, 1, loo);$

>> $x = t.^3;$
>> $y = t.^2;$
>> plot(x,y)

>> axis equal

05022018.notebook February 05, 2018

Definisjon 3.3.1 (og lift til)

La \vec{r} : $[a,b] \rightarrow \mathbb{R}^n$ være en stykkevis glatt kurveparametrisering av en kurve C, og la f være et skabufelt av n væriable som er kontinuerlig i alle punkter $\vec{r}(t)$ for $t \in [a,b]$. Linjeintegralet av f langs C er da

$$\int_{C} f \, ds = \int_{C} f(x_{1},...,x_{n}) \, ds = \int_{a}^{b} f(\vec{r}(t)) \, |\vec{r}'(t)| \, dt$$

Spesialtilfelle: Sclds kalles buelengden til C.

eks. La $C \subseteq \mathbb{R}^3$ være skjæringskurven mellom flaten $x = 2\sqrt{y^2 + z^2}$

og planet x=4, for $2 \ge 0$. Finn linje integralet av $f(x,y,2) = xy^2 \ge langs C$, og buelengden fil C.

Losn. Tegner figurer:

Z = 0 gir $x = 2\sqrt{y^{2}}$

 $2 \xrightarrow{y} \times = 2\sqrt{1 + 2}$ $-2 \xrightarrow{y} \times = 2\sqrt{1 + 2}$

Parametrisering av C:

$$\begin{cases} x = 4 \\ y = 2\cos t & \text{for } t \in [0, \pi] \\ \frac{1}{2} = 2\sin t \end{cases}$$

$$\vec{r}'(t) = \begin{pmatrix} x'(t) \\ y'(t) \\ \frac{1}{2}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ -2\sin t \\ 2\cos t \end{pmatrix}$$

$$|\vec{r}'(t)| = \sqrt{0^2 + 4\sin^2 t + 4\cos^2 t} = \sqrt{4(\sin^2 t + \cos^2 t)} = 2$$

Altsa:

$$\int_{C} f ds = \int_{0}^{\pi} f(\vec{r}(t)) \cdot |\vec{r}'(t)| dt$$

$$f(x,y,z) = \int_{0}^{\pi} f(Y, 2\cos t, 2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$= \int_{0}^{\pi} Y \cdot (2\cos t)^{2} \cdot (2\sin t) \cdot 2 dt$$

$$=$$

Bueleng den fil C:

$$\int_{C} 1 \, ds = \int_{0}^{\pi} 1 \cdot |\vec{r}'(t)| dt = \int_{0}^{\pi} 1 \cdot 2 \, dt = 2\pi$$
(ikke overraskende)