

Rice Data Science Bootcamp

Instructor: Natalie Berestovsky, PhD
Occidental Petroleum/
Anadarko Petroleum

Your instructor

- Education
 - BS in Computer Science from UT-Austin
 - MS and PhD in Computer Science from Rice
- Professional Experience:
 - Worked in Chevron for 6 years in Chevron
 - Data Scientist in Anadarko for 2.5 years
 - Next: Oxy?
- Al experience:
 - ML techniques, deep learning
 - Google Cloud Platform

Data Science

Supervised vs unsupervised

- Supervised / Unsupervised / Both
 - Recognizing digits in the images (S)
 - Gene clustering (U)
 - Identifying alerts in your streaming data (B)
 - Predicting stock prices (B)
 - Anomaly / fraud detection (B)
 - Ranking public speech impact from recordings (U)
 - Face recognition (S)
 - Automated text completion (Gmail) (S)
 - Voice recognition (S)

Supervised vs unsupervised

Unsupervised vs. Supervised Learning

Data Matrix:

$$\mathbf{X}_{\mathrm{n} imes \mathrm{p}} = \left(egin{array}{cccc} \mathrm{x}_{11} & \mathrm{x}_{12} & \dots & \mathrm{x}_{1\mathrm{p}} \\ \vdots & & \ddots & \\ \mathrm{x}_{\mathrm{n}1} & \mathrm{x}_{\mathrm{n}2} & \dots & \mathrm{x}_{\mathrm{n}\mathrm{p}} \end{array}
ight)$$

- Rows: n observations / samples / subjects.
- Columns: p features / variables.

Supervised Learning:

$$\mathbf{Y} = (\mathbf{y}_1, \mathbf{y}_2, \dots \mathbf{y}_n)^{\mathrm{T}}$$

- Classification: Y n labels.
- Regression: Y n continuous outcomes.

Unsupervised Learning: No outcomes / labels!

Data Dimensions

- n >> p
- More samples than features
- Examples?

- n << p
- Fewer samples than features
- Examples?

Modeling methodology

- Train / test split
 - Hold out validation
 - Selects x% of data randomly

- K-fold cross validation
 - Shuffles that data (or not)
 - Split the data into k equal sets
 - For each split, use *k-1* set for training and test on the *k*th

Assessing your model

- Training error
 - Error of how well the model generates the data that it has seen
- Testing error
 - Error on unseen data (prediction)
- Generally E_{train} <= E_{test}
- What if E_{train} << E_{test}?
- What if E_{train} > E_{test}?

Overfitting and underfitting

$$Err(x) = E\left[(Y - \hat{f}(x))^2\right]$$

$$Err(x) = \left(E[\hat{f}\left(x
ight)] - f(x)
ight)^2 + E\left[\left(\hat{f}\left(x
ight) - E[\hat{f}\left(x
ight)]
ight)^2
ight] + \sigma_e^2$$

$$Err(x) = Bias^2 + Variance + Irreducible Error$$

- Bias difference between predicted and true value
 - High bias generalized model, high error
 - Low bias fits well to the training set, low training error
- Variance variability of prediction for a given data point
 - High variance sensitive to training data set
 - Low variance not sensitive to changes in training set
- Irreducible error noise in the data

Overfitting and underfitting

- Bias-variance tradeoff
 - Complex, many parameters
 - overfitting
 - Simple, few parameters
 - underfitting

overfitting

underfitting

Good balance

Supervised vs unsupervised

	Supervised	Unsupervised
	Classification	Clustering
iscrete	KNN	K-Means Hierarchical clustering (Biclustering)
	Datasets: Wine dataset	Datasets: Synthetic data NCI60
Continuous	Regression	Dimensionality reduction
	Multilinear regression Ridge regression Lasso regression	Principle Component Analysis (PCA)
Cor	Datasets: Boston housing dataset Synthetic data	Datasets: Art data NCI60

K Nearest Neighbors

sklearn.neighbors.KNeighborsClassifier

class sklearn.neighbors. KNeighborsClassifier (n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs) [source]

Classifier implementing the k-nearest neighbors vote.

Read more in the User Guide.

Parameters: n_neighbors : int, optional (default = 5)

Number of neighbors to use by default for **kneighbors** queries.

weights: str or callable, optional (default = 'uniform')

weight function used in prediction. Possible values:

- 'uniform': uniform weights. All points in each neighborhood are weighted equally.
- 'distance': weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.
- [callable]: a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights.

algorithm: {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional

Algorithm used to compute the nearest neighbors:

- 'ball tree' will use BallTree
- 'kd tree' will use KDTree

K Nearest Neighbors

KNN: K=1 KNN: K=100

K Nearest Neighbors

Linear regression

Linear Model:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \epsilon.$$

- ullet Y responses associated with n observations.
- ullet X_i j^{th} predictor measured for each of the n observations
- \bullet measurement noise for the n observations.
- β_0 Intercept.
- \bullet β_j Coefficient of j^{th} predictor.
- Goal: Estimate β_0 and β_j 's to fit linear model.

Remember overfitting?

Solution:

- Feature selection
 - Best subset regression, Forward and backward step-wise
- Regularized linear regression
 - Ridge regression, Lasso regression

Ridge and Lasso regressions

Ridge

$$\underset{\beta}{\text{minimize}} ||\mathbf{Y} - \mathbf{X}\beta||_2^2 + \lambda ||\beta||_2^2$$

- It shrinks the parameters, therefore it is mostly used to prevent multicollinearity.
- L2 makes weights small

Lasso

$$\underset{\beta}{\text{minimize}} ||\mathbf{Y} - \mathbf{X}\beta||_2^2 + \lambda ||\beta||_1$$

- Used when we have more number of features, because it automatically does feature selection.
- -L1 removes weights

```
Regression = [Prediction]

Regression + Ridge = [Prediction] + [Bias Variance Trade-off]

Regression + Lasso = [Prediction] + [Bias Variance Trade-off] + [Feature Selection]
```


Ridge and Lasso regressions

- Force 1: Bias term pulling β1 and β2 to lie somewhere on the black circle only.
- Force 2: Gradient Descent trying to travel to the global minimum indicated by the dots.
- Each gradient descent contour corresponds to different LR
- The RED circle in each contour intersects the Ridge or L2 Norm.
- The BLACK circle in each contour intersects the Lasso or L1 Norm.