Pre Midterm										
$Z = \frac{X - \mu}{\sigma} \qquad \qquad \Phi(z) = P(Z \le z)$					$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $s^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2 \right)$					
Central Limit Theorem (σ known)					Student t (σ not known)					
$Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ \overline{X} is sample mean, from a population with mean μ and variance σ^2 .				$t = \frac{\overline{x} - \mu}{s/\sqrt{n}}$ μ is population mean, \overline{x} is sample mean, s is sample st. deviation, and n is sample size.						
Exception: if σ unknown but $n > 30$, then we assume $\sigma \approx s$. $t_{a,k}$: α is probability in range $(t_{a,k} + \infty)$, k is deg of freedom.										
Hypothesis Testing, C.I.										
Procedure : 1) Param. of interest μ . 2) H_0 and H_1 . 3) Test Stats. model: CLT. 4) Find critical region. 5) Find p value (min α that rejects H_0).										
2-Sided								Critical Region LHS		
H_1 , δ H_1 : $\mu \neq \mu_0$, $\delta \neq 0$, μ_0 = false mean; $\mu = \mu_0 + \delta = \text{tru}$					_			H_1 : $\mu < \mu_0$, $\delta < 0$		
β $P\left(-z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma} < Z < z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right) \approx \Phi\left(z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}\right)$						$P\left(Z < z_{\alpha} - \right.$	$\frac{\delta\sqrt{n}}{\sigma}$	$P\left(Z > -z_{\alpha} - \frac{\delta\sqrt{n}}{\sigma}\right)$		
Power of Test	-	· -	-	0,	Find Sample Size: Let $\beta = \Phi(-z_{\beta}), \ -z_{\beta} \approx z_{\alpha/2} - \delta \sqrt{n}/\sigma$					
Reduce α increases β . Increase $n \to \alpha$, β both decrease.					Two Sided Test			One Sided Test		
For one-sided hypothesis , H_0 : $\mu = \mu_0$, assuming the irrelevant side is included, and we wish to reject H_0 .				n ≈	$n \approx (z_{\alpha/2} + z_{\beta})^2 \sigma^2 / \delta^2$		$n \approx (z_{\alpha} + z_{\beta})^2 \sigma^2 / \delta^2$			
Confidence Interval (CI): CI contains true param. Confidence Level: probability that μ is within CI σ unknown: $P\left(\overline{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}\right) = 1 - \alpha$										
σ known		$2\text{-sided }P(L \le \mu \le U)$			L-Cor	if. Bound $P(\mu \geq$	L) U	-Conf. Bound $P(\mu \leq U)$		
Formula	$P\left(\overline{x}-z_{\alpha}\right)$	$(\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$			$P(\mu >$	$\overline{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}) = 1 - \frac{1}{2}$	$-\alpha$ P	$(\mu < \overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$		
			Dec	cisions fo	r Two Sa	imples: $H_0: \mu_1$	$-\mu_2=0,$	$H_1: \mu_1 - \mu_2 \neq 0$		
		σ_1 , σ_2 known		C	$\sigma_1 = \sigma_2$ unknown $\sigma_1 \neq \sigma_2$ unknown					
Test Statistics	Z =	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \qquad T = S_p = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$		$\frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{C \sqrt{1/\mu_1 + 1/\mu_2}}$		$T^* =$	$T^* = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{2(\mu_1 + \mu_2)}}$			
				$S_p = \sqrt{-\frac{1}{2}}$	$\frac{s_p \sqrt{1/n_1 + 1/n_2}}{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}$ $\frac{n_1 + n_2 - 2}{k = n_1 + n_2 - 2}$		$T^* = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$ $k = \text{round} \left[\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \right]$			
C.I. (replace $\alpha/2$ with for 1 sided bound	place $\alpha/2$ with α 1 sided bound) $(\overline{X}_1 - \overline{X}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$		$(\overline{X}_1 - \overline{X})$	$(\overline{X_2}) \pm t_{\alpha/2,k} \cdot S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \qquad (\overline{X}_1 - \overline{X}_2) \pm t_{\alpha}$		$(\frac{1}{2}) \pm t_{\alpha/2, k_{nasty}} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$				
			Fa	actorial E	xperime	ent				
- 2	Formula					Explanation				
						•				
Refer to the contrast table for signs of <i>a</i> , <i>b</i> , <i>c</i> , <i>ab</i> , <i>ac</i> , <i>bc</i> , <i>abc</i> , (1) when finding main and interaction effects.										
Main Effect $A = (A_{\text{high}})_{\text{avg}} - (A_{\text{low}})_{\text{avg}}$ Label in contrast table (e.g. a, b, ab) indicates a <i>high</i> treatment combination.										
Interaction Effect AB = Average Response(A , B same level) — Average response(A , B different levels).										
tratio values are significant or not. $ H_1: \text{Effect} \neq 0 $ $t_{\text{ratio}} = \frac{Effect}{s_e(\text{Effects})} \leftarrow \text{normalize} $ $ k = 2^{\kappa}(n-1) $										
Hypo. test is used to decide whether \mathbf{t} ratio values are significant or not. $\begin{cases} H_0 \colon \text{Effect} = 0 \\ H_1 \colon \text{Effect} \neq 0 \end{cases} \mathbf{t}_{\text{ratio}} = \frac{\text{Effect}}{s_e(\text{Effects})} \leftarrow \text{normalize} \text{Use } t \text{ dist., deg. of freedom is } k = 2^{\kappa}(n-1)$ $\mathbf{s}_e(\text{Effects}) = \sqrt{\frac{\hat{\sigma}^2}{n \cdot 2^{\kappa-2}}} \hat{\sigma}^2 = \frac{1}{2^{\kappa}} \sum_{i=1}^{2^{\kappa}} \hat{\sigma}_i^2 \hat{\sigma}^2 = \frac{\sum_{j=1}^{n} (y_{ij} - \overline{y}_i)^2}{(n-1)} \text{where } \kappa \text{ is #factors, } n \text{ is #trials; } \hat{\sigma}^2 \text{ is avg. of var. at each treatment.}$										
Effect $\pm 2 \times s_e$ (Effects) $\approx 95\%$ C. I. on Effect If 95% CI Contains zero, effect is <i>not</i> significant.										
Method of Steepest Accent : 1st-order method to move to <i>vicinity</i> of optimum. 1st-Order Response Surface: 1st-order, lin. reg. model of response surface $Y = \overline{y} + \left(\frac{A}{2}\right)x_1 + \left(\frac{B}{2}\right)x_2 + \left(\frac{AB}{2}\right)x_1x_2$ From the center of the surface, on the x_1x_2 plane, notice that the ratio B/A is the slope of the line describing the path to a more optimal response.										
2/ \2/ paul to a more optimal response.										

Linear Regression									
Λ Λ	Best Fit Line:	$b = S_{xy}/S_{xx}$	$a = \overline{y} - b\overline{x}$						
$\hat{\mathbf{y}}_i = a + b x_i$ $\hat{\mathbf{y}}_i = \text{Predicted Value}$ $\mathbf{y}_i = 0 \text{bserved Value}$		<u>, , , , , , , , , , , , , , , , , , , </u>							
$e_i = y_i - \hat{y}_i$ $y_i = \text{Observed Value}$ y = Average of observed	_	True Regression Line is defined as $y = \alpha + \beta x$							
	Judging Fit of Data: H	Judging Fit of Data : H_0 : $\beta = 0$, H_1 : $\beta \neq 0$ Goal : reject H_0							
$SS_E = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \qquad \begin{aligned} e_i &= \text{Error} \\ SS_E &= \text{Err. Sum of Sqrs} \\ SS_R &= \text{Regression Sum of Sqrs} \end{aligned}$	Std Err Estimator Approach: $T = \frac{b - \beta}{S_e / \sqrt{S_{rr}}}$ model as t distribution								
$SS_R = \text{Regression Sum of Squares}$	model as t distribution $I = \frac{1}{S_e/\sqrt{S_{xx}}}$								
$SS_R = \sum_{i=1}^n (\hat{y}_i - \overline{y})^2$ $SS_R = \text{Regression Sum of Squares}$ $SS_T = \text{Total Sum of Squares}$ $S_e = \text{Standard Err.}$	Reject H_0 if p value < given α (evidence of lin. relationship)								
$SS_T = \sum_{i=1}^n (y_i - \overline{y})^2 \approx \sum_{i=1}^n (y_i^2) - \frac{(\sum y_i)^2}{n} = SS_R + SS_E$	C.I.: population mean of y at x_0 , denoted $\mu(y _{x_0}) = \alpha + \beta x_0$ $P(L < \mu(y _{x_0}) < U) = 1 - \alpha$								
$S_e \approx \sqrt{\hat{\sigma}^2}$ where $\hat{\sigma}^2 = \frac{SS_E}{n-2}$	$L, U = a + bx_0 \pm t_{\alpha/2, n-2} \cdot S_e \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}$								
$\sum_{n=1}^{\infty} \sum_{x \in \mathbb{Z}(x) \succeq (y)} \sum_{x \in \mathbb{Z}(x)} \sum_{x$	Prediction Interval : predicts Y_0 at x_0 observation.								
$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) \approx \sum (xy) - \frac{\sum (x)\sum (y)}{n}$	$ Y_0 _{x_0} = a + bx_0 \pm t_{\alpha/2, n-2} \cdot S_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}}}$								
$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 \approx \sum (x^2) - \frac{\sum (x) \sum (x)}{n}$	Formula diff. from C.I. due to err. From new measurement.								
SS_T explained by use of regression model.	R ² 1								
Un	certainty Analysis								
Uncertainty w_R of result $R = f(x_1, x_2,, x_n)$, with $x_1 \pm w_1,, x_n \pm w_n$ Special case: $R = Cx_1^a x_2^b x_n^N$									
$(w_R)_{max} = \left w_1 \frac{\partial R}{\partial x_1} \right + \dots + \left w_n \frac{\partial R}{\partial x_n} \right $ $w_R =$	$\left(\sum_{i=1}^{n} \left[w_i \cdot \frac{\partial R}{\partial x_i} \right]^2 \right)^{1/2}$	$\frac{w_R}{R} = \sqrt{\left(\frac{w_1 a}{x_1}\right)^2 + \left(\frac{w_2 b}{x_2}\right)^2 + \dots + \left(\frac{w_n N}{x_n}\right)^2}$							
$w_{\overline{x}} = \left(B_x^2 + P_{\overline{x}}^2\right)^{1/2}$ Systematic Err. B_x	Usually given as	accuracy full sca	ale.						
$\mathbf{Random Err.} \mathbf{P}_{x} = \pm t \cdot s_{x} \text{ [single pt.]} \qquad \mathbf{P}_{\overline{x}} = \pm t \cdot \frac{s_{x}}{\sqrt{n}} \qquad t \text{ is the Student } t \text{ value for 95\% conf. level } (\alpha = 0.025), \\ s_{x} \text{ is S.D. (known)}, n \text{ is the sample size (# prev trials)}$									
Cali. Curve: true vs measured. Best fit line is cali. eq.	Deviation = Tru								
Deviation Plot : deviation vs true val. Max Uncertainties: lowest and highest deviation									
Joint Probability									
r denotes system success probability, r_1, \dots, r_k are	Series System		Parallel System						
success probability of independent sub components	k	$\frac{k}{\prod}$							
$P(A \lor B) = P(A) + P(B) - P(A) \cdot P(B)$	$r = \prod_{i=1}^{n} r_i$		$r = 1 - \prod_{i=1}^{n} (1 - r_i)$						
X_1, X_2, \dots, X_n Function Y $E(Y)$		<i>V(Y)</i>	2 2 2						
Independent $c_0 + c_1 X_1 + c_2 X_2 + \dots + c_n X_n$ $c_0 + c_0 + c_1 X_1 + c_2 X_2 + \dots + c_n X_n$ $c_0 + c_0 + c_1 X_1 + c_2 X_2$ $c_0 + c_0 + $	$c_1\mu_1 + c_2\mu_2 + \dots + c_n\mu_n$	$\frac{1 + c_2\mu_2 + \dots + c_n\mu_n}{1 + c_2\mu_2 + \dots + c_n\mu_n} \qquad \begin{array}{ccc} c_1^2\sigma_1^2 + c_2^2\sigma_2^2 + \dots \\ & & \end{array}$							
Dependent $Y = c_0 + c_1 X_1 + c_2 X_2$ $c_0 + c_0 + c_0 X_1 + c_0 X_2$	$\frac{c_1\mu_1+c_2\mu_2}{c_1\mu_2}$		$\frac{1}{2} + 2c_1c_2\mathbf{Cov}(X_1, X_2)$						
Covariance Cov $(X_1, X_2) = [E(X_1X_2) - \mu_1\mu_2]$, when X_1, X_2 are independent, $Cov(X_1, X_2) = 0$.									
$\mathbf{correlation} \ \rho_{X_1,X_2} = \frac{E(X_1X_2) - \mu_1\mu_2}{\sqrt{\sigma_2^2\sigma_2^2}} = \frac{\mathrm{Cov}(X_1,X_2)}{\sqrt{\sigma_1^2\sigma_2^2}} \in [-1,+1]$									