To find following the machine learning regression method using r2 value

1.MULITIPLE LINEAR REGRESSION

SL.NO	LINEAR	(r
	value)	
1	0.93	

the Multiple Linear REGRESSION use R2 value=0.93

2. SUPPORT VECTOR MACHINE:

SL.NO	HYPER PARAMETER	LINEAR (r value)	RBF(NON LINEAR) (r value)	POLY (r value)	SIGMOID (r value)
1		0.89	-0.057	-0.057	0.005
2	C10	-0.039	-0.056	-0.053	-0.054
3	C100	0.106	-0.05	-0.019	-0.03
4	C500	0.59	-0.024	0.114	0.07
5	C1000	0.78	0.006	0.26	0.185
6	C2000	0.87	0.067	0.48	0.39
7	C3000	0.89	0.123	0.63	0.59

the SVM REGRESSION use R2 value(liner and hyper parameter=0.89,c3000=0.89

3. DECISION TREE:

SL.NO	CRITERION		SPLITTER	R VALUE
1	friedman_mse		Random	0.71
2	friedman_mse		best	0.9
3	mse		Random	0.93
4	mse		best	0.93
5	mae		Random	0.87
6	mae		best	0.95
SL.NO	CRITERION	MAX FEATURES	SPLITTER	R VALUE
7	mse	auto	Random	0.9
8	mse	auto	best	0.91
9	mse	sqrt	Random	0.17
10	mse	sqrt	best	-0.29
11	mse	log2	Random	0.4
12	mse	log2	best	0.74
13	1		Random	0.88

14	mae	auto	best	0.95
15	mae	sqrt	Random	0.64
16	mae	sqrt	best	0.94
17	mae	log2	Random	0.77
18	mae	log2	best	0.96
19	friedman_mse	auto	Random	0.79
20	friedman_mse	auto	best	0.89
21	friedman_mse	sqrt	Random	0.7
22	friedman_mse	sqrt	best	0.15
23	friedman_mse	log2	Random	-0.04
24	friedman_mse	log2	best	0.75

the Decision Tree REGRESSION use R2 value(0.96),criterion=mae,splitter=best,max_features=log2