多変量分布(7.1-7.2) 第 11 回

村澤 康友

2025年11月4日

今日	のポイ	ン	1
----	-----	---	---

1.	(X,Y) の同時 cdf は $F_{X,Y}(x,y)$:=
	$\Pr[X \leq x, Y \leq y]$. X または Y のみの
	cdf を周辺 cdf という. (X,Y) の同時 pmf
	$\label{eq:posterior} \mbox{l\sharp$} \; p_{X,Y}(x,y) := \Pr[X = x,Y = y]. \; X$
	または Y のみの pmf を周辺 pmf という.
	多重積分すると同時 cdf が得られる関数
	(同時 cdf の交差偏導関数)を同時 pdf と
	いう.

- 2. g(X,Y) の期待値は, (X,Y) が離散な ら $\sum_{x}\sum_{y}g(x,y)p_{X,Y}(x,y)$, 連続なら $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y. \quad X \quad \succeq$ Y の共分散は cov(X,Y) := E((X -E(X))(Y - E(Y))). 標準化した確率変数 の共分散を相関係数という.
- 3. Y = y が与えられたときの Xの条件付き pmf は $p_{X|Y}(x|Y) =$ $y) := p_{X,Y}(x,y)/p_Y(y)$, 条件付き pdf $\text{lt } f_{X|Y}(x|Y=y) := f_{X,Y}(x,y)/f_Y(y).$ Y = y が与えられたときの X の条件 付き期待値 E(X|Y = y) は, X が離 散なら $\sum_{x} xp_{X|Y}(x|Y=y)$, 連続なら $\int_{-\infty}^{\infty} x f_{X|Y}(x|Y = y) dx. \quad p_{X|Y}(x|Y = y) dx$ $y) = p_X(x)$ または $f_{X|Y}(x|Y=y) =$ $f_X(x)$ なら X と Y は独立という.

目次

1	多変数関数の微分	1
1.1	偏微分	1

1.2	2 階偏微分	2				
2	多変数関数の積分	2				
2.1	累次積分	2				
2.2	重積分	2				
3	同時分布と周辺分布	2				
3.1	累積分布関数	2				
3.2	確率質量関数(p. 134)	2				
3.3	確率密度関数(p. 135)	3				
4	積率	5				
4.1	期待値	5				
4.2	共分散(p. 136)	5				
4.3	相関係数(p. 137)	5				
5	条件付き分布と確率変数の独立性	6				
5.1	条件付き分布(p. 141)	6				
5.2	- 確率変数の独立性(p. 143)					
6	今日のキーワード	7				
7	次回までの準備	7				

1 多変数関数の微分

1.1 偏微分

2変数関数 z = f(x,y) において、1 つの独立変 数のみに注目し,他の独立変数を定数とみなした微 分を考える.

定義 1. (x,y) における f(.,.) の x に関する偏微分 係数は

$$f_x(x,y) := \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

定義 2. $f_x(.,.)$ を f(.,.) の x に関する偏導関数という.

注 1. $D_x f(.,.)$, $\partial f/\partial x(.,.)$ などとも表記する.

定義 3. 偏導関数を求めることを関数の**偏微分**という.

1.2 2 階偏微分

定義 4. 偏導関数の偏導関数を 2階偏導関数という.

注 2. $f_{xx}(.,.)$, $D_{xx}^2 f(.,.)$, $\partial^2 f/\partial x^2(.,.)$ などと表記する.

定義 5. x に関する偏導関数 $f_x(.,.)$ の y に関する偏導関数を x と y に関する交差偏導関数という.

注 3. $f_{xy}(.,.)$, $D_{xy}^2 f(.,.)$, $\partial^2 f/\partial x \partial y(.,.)$ などと表記する.

定理 1 (ヤングの定理). $f_{xy}(.,.)$, $f_{yx}(.,.)$ が連続なら

$$f_{xy}(.,.) = f_{yx}(.,.)$$

2 多変数関数の積分

2.1 累次積分

2変数関数 z=f(x,y) の矩形 $[a,b] \times [c,d]$ 上の定積分を考える.このとき積分の順番は 2 通りある.

1. y を所与として f(.,y) の区間 [a,b] 上の定積 分は

$$F(y) := \int_a^b f(x, y) \, \mathrm{d}x$$

F(.) の区間 [c,d] 上の定積分は

$$\int_{c}^{d} F(y) \, \mathrm{d}y = \int_{c}^{d} \int_{a}^{b} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

 $2. \ x$ を所与として f(x,.) の区間 [c,d] 上の定積 分は

$$G(x) := \int_{c}^{d} f(x, y) \, \mathrm{d}y$$

G(.) の区間 [a,b] 上の定積分は

$$\int_a^b G(x) \, \mathrm{d}x = \int_a^b \int_c^d f(x, y) \, \mathrm{d}y \, \mathrm{d}x$$

矩形 $[a,b] \times [c,d]$ 上で f(.,.) が連続なら両者は等しい. すなわち

$$\int_c^d \int_a^b f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_a^b \int_c^d f(x, y) \, \mathrm{d}y \, \mathrm{d}x$$

2.2 重積分

2つの累次積分が等しければ定積分は一意に定まる. すなわち

$$\iint_{[a,b]\times[c,d]} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_c^d \int_a^b f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$
$$= \int_a^b \int_c^d f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

注 4. 矩形 $[a,b] \times [c,d]$ 上で z=0 と z=f(x,y) に挟まれた領域の体積を表す.

3 同時分布と周辺分布

3.1 累積分布関数

(X,Y) を確率ベクトルとする.

定義 6. (X,Y) の同時 (結合) cdf は、任意の (x,y) について

$$F_{X,Y}(x,y) := \Pr[X < x, Y < y]$$

例 1. $F_{X,Y}(.,.)$ のグラフの例 (図 1).

定義 7. X の周辺 cdf は、任意の x について

$$F_X(x) := \Pr[X < x]$$

注 5. 同時 cdf と周辺 cdf の関係は

$$F_X(x) := \Pr[X \le x]$$

$$= \Pr[X \le x, Y < \infty]$$

$$= F_{X,Y}(x, \infty)$$

3.2 確率質量関数 (p. 134)

(X,Y) を離散確率ベクトルとする.

定義 8. (X,Y) の同時 (結合) pmf は、任意の (x,y) について

$$p_{X,Y}(x,y) := \Pr[X = x, Y = y]$$

定義 9. X の周辺 pmf は、任意の x について

$$p_X(x) := \Pr[X = x]$$

図1 2変量同時 cdf のグラフ

注 6. 同時 pmf と周辺 pmf の関係は

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$

例 2. 2つのサイコロを投げたときの大きい目 (X) と小さい目 (Y) の同時分布 (表 1).

3.3 確率密度関数 (p. 135)

(X,Y) を連続確率ベクトルとする.

定義 10. 任意の (x,y) について

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t) \,\mathrm{d}s \,\mathrm{d}t$$

となる $f_{X,Y}(.,.)$ を (X,Y) の同時(結合) pdf という.

注 7. 任意の a, b, c, d について

$$\Pr[a < X \le b, c < Y \le d]$$

$$= \int_{c}^{d} \int_{a}^{b} f_{X,Y}(x, y) dx dy$$

注 8. F_{X,Y}(.,.) が微分可能なら

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}(x,y)$$

例 3. $f_{X,Y}(.,.)$ のグラフの例(図 2)

表 1 2つのサイコロの大きい目 (X) と小さい目 (Y) の同時分布

$X \setminus Y$	1	2	3	4	5	6	計
1	1/36	0	0	0	0	0	1/36
2	2/36	1/36	0	0	0	0	3/36
3	2/36	2/36	1/36	0	0	0	5/36
4	2/36	2/36	2/36	1/36	0	0	7/36
5	2/36	2/36	2/36	2/36	1/36	0	9/36
6	2/36	2/36	2/36	2/36	2/36	1/36	11/36
計	11/36	9/36	7/36	5/36	3/36	1/36	1

図 2 2 変量同時 pdf のグラフ

定義 11. X の周辺 pdf は、任意の x について

$$f_X(x) := \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$$

4 積率

4.1 期待値

定義 12. g(X,Y) の期待値は

$$E(g(X,Y)) := \begin{cases} \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y) & (離散) \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y & (連続) \end{cases}$$

定理 2 (期待値の線形性).

$$E(aX + bY) = a E(X) + b E(Y)$$

証明.復習テスト.

4.2 共分散 (p. 136)

定義 13. X と Y の共分散は

$$cov(X,Y) := E((X - E(X))(Y - E(Y)))$$

注 9. σ_{XY} と表す.

注 10. X が大きいと Y も大きいなら共分散は正, X が大きいと Y は小さいなら共分散は負.

定理 3.

$$cov(X, Y) = E(XY) - E(X) E(Y)$$

証明.復習テスト.

補題 1.

$$cov(X, Y + Z) = cov(X, Y) + cov(X, Z)$$

証明.

$$\begin{aligned} & \operatorname{cov}(X, Y + Z) \\ & := \operatorname{E}((X - \operatorname{E}(X))(Y + Z - \operatorname{E}(Y + Z))) \\ & = \operatorname{E}((X - \operatorname{E}(X))(Y - \operatorname{E}(Y) + Z - \operatorname{E}(Z))) \\ & = \operatorname{E}((X - \operatorname{E}(X))(Y - \operatorname{E}(Y))) \\ & + \operatorname{E}((X - \operatorname{E}(X))(Z - \operatorname{E}(Z))) \\ & = \operatorname{cov}(X, Y) + \operatorname{cov}(X, Z) \end{aligned}$$

補題 2.

$$cov(aX, bY) = ab cov(X, Y)$$

証明.

$$\begin{aligned} \text{cov}(aX, bY) &:= \text{E}((aX - \text{E}(aX))(bY - \text{E}(bY))) \\ &= \text{E}((aX - a \, \text{E}(X))(bY - b \, \text{E}(Y))) \\ &= \text{E}(a(X - \text{E}(X))b(Y - \text{E}(Y))) \\ &= ab \, \text{E}((X - \text{E}(X))(Y - \text{E}(Y))) \\ &= ab \, \text{cov}(X, Y) \end{aligned}$$

定理 4.

$$var(aX + bY) = a^{2} var(X) + 2ab cov(X, Y)$$
$$+ b^{2} var(Y)$$

証明.前2補題より

$$var(aX + bY)$$

$$= cov(aX + bY, aX + bY)$$

$$= cov(aX + bY, aX) + cov(aX + bY, bY)$$

$$= cov(aX, aX) + cov(bY, aX)$$

$$+ cov(aX, bY) + cov(bY, bY)$$

$$= a^{2} cov(X, X) + ab cov(Y, X)$$

$$+ ab cov(X, Y) + b^{2} cov(Y, Y)$$

$$= a^{2} var(X) + 2ab cov(X, Y) + b^{2} var(Y)$$

4.3 相関係数 (p. 137)

定義 14. 標準化した確率変数の共分散を相関係 数という.

注 11. すなわち X と Y の相関係数は

$$\operatorname{corr}(X, Y) := \operatorname{cov}\left(\frac{X - \mu_X}{\sigma_X}, \frac{Y - \mu_Y}{\sigma_Y}\right)$$

注 12. ρ_{XY} と表す.

注 13. XとYの関係の強さを表す.

定理 5.

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

証明.

$$\rho_{XY} := \operatorname{cov}\left(\frac{X - \mu_X}{\sigma_X}, \frac{Y - \mu_Y}{\sigma_Y}\right)$$

$$= \operatorname{E}\left(\frac{X - \mu_X}{\sigma_X} \frac{Y - \mu_Y}{\sigma_Y}\right)$$

$$= \frac{\operatorname{E}((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y}$$

$$= \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

定義 15. $\rho_{XY} = 0$ なら X と Y は無相関という.

定理 6 (コーシー=シュワルツの不等式).

$$|\operatorname{cov}(X,Y)| \le \operatorname{var}(X)^{1/2} \operatorname{var}(Y)^{1/2}$$

証明. 教科書 p. 138 参照.

系 1.

$$|\rho_{XY}| \leq 1$$

5 条件付き分布と確率変数の独立性

5.1 条件付き分布 (p. 141)

定義 16. $Y \le y$ が与えられたときの X の条件付き cdf は、任意の x について

$$F_{X|Y}(x|Y \le y) := \frac{F_{X,Y}(x,y)}{F_Y(y)}$$

注 14. 条件付き確率で定義する.

定義 17. Y = y が与えられたときの X の条件付き pmf は、任意の x について

$$p_{X|Y}(x|Y=y) := \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

定義 18. Y = y が与えられたときの X の条件付き pdf は、任意の x について

$$f_{X|Y}(x|Y=y) := \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

注 15. 条件付き確率と同様に定義する.

定義 19. Y = y が与えられたときの X の条件付き期待値は

定義 20. Y = y が与えられたときの X の条件付き分散は

$$var(X|Y = y) := E((X - E(X|Y = y))^{2}|Y = y)$$

5.2 確率変数の独立性 (p. 143)

定義 21. 任意の (x,y) について

$$f_{X|Y}(x|Y=y) = f_X(x)$$

ならXとYは**独立**という.

П

注 16. 条件付き pdf の定義より

$$f_{X|Y}(x|Y=y) = f_X(x)$$

$$\iff f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

定義 22. 任意の (x_1,\ldots,x_n) について

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

なら X_1, \ldots, X_n は**独立**という.

注 17. cdf で定義してもよい.

定理 7. X と Y が独立なら,任意の f(.) と g(.) に ついて

$$E(f(X)g(Y)) = E(f(X)) E(g(Y))$$

証明.(X,Y)が連続なら

$$\begin{split} & \mathrm{E}(f(X)g(Y)) \\ & := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y)f_{X,Y}(x,y) \,\mathrm{d}x \,\mathrm{d}y \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(y)f_{X}(x)f_{Y}(y) \,\mathrm{d}x \,\mathrm{d}y \\ & = \int_{-\infty}^{\infty} f(x)f_{X}(x) \,\mathrm{d}x \int_{-\infty}^{\infty} g(y)f_{Y}(y) \,\mathrm{d}y \\ & = \mathrm{E}(f(X)) \,\mathrm{E}(g(Y)) \end{split}$$

離散の場合も同様.

系 2. XとYが独立なら

$$cov(X, Y) = 0$$

注 18. すなわち独立なら無相関. 逆は必ずしも成立しない.

6 今日のキーワード

同時 cdf, 周辺 cdf, 同時 pmf, 周辺 pmf, 同時 pdf, 周辺 pdf, 期待値の線形性, 共分散, 確率変数の線形結合の分散, 相関係数, 条件付き cdf, 条件付き pmf, 条件付き pdf, 条件付き期待値, 条件付き分散, 確率変数の独立性, 独立と無相関

7 次回までの準備

復習 教科書第7章1-2節,復習テスト11

予習 教科書第7章3-4節