Exercícios de aplicação (págs. 53 a 58)

1.

1.1.

1.2. Esta representação sugere a existência de correlação linear positiva.

1.3.
$$\bar{x} \approx 1,729 \text{ e } \bar{y} \approx 67,533$$

1.4.

1.5.
$$y = 101,524x - 108,035$$

2.
$$(x, y) = [(3, 8); (4, 7); (5, 11); (6, 13); (7, 11)]$$

$$\bar{x} = \frac{3+4+5+6+7}{5} = \frac{25}{5} = 5$$

$$\bar{y} = \frac{8+7+11+13+11}{5} = \frac{50}{5} = 10$$

$$\sum_{i=1}^{5} x_i y_i = 3 \times 8 + 4 \times 7 + 5 \times 11 + 6 \times 13 + 7 \times 11 =$$

$$= 24 + 28 + 55 + 78 + 77 =$$

$$= 262$$

$$\sum_{i=1}^{5} x_i^2 = 9 + 16 + 25 + 36 + 49 = 135$$

$$SS_x = \sum_{i=1}^{5} (x_i - \bar{x})^2 = (3-5)^2 + (4-5)^2 + (5-5)^2 + (6-5)^2 + (7-5)^2 =$$

$$= 4+1+0+1+4 =$$

$$= 10$$

$$a = \frac{\sum_{i=1}^{5} x_i y_i - 5\bar{x}\bar{y}}{SS_x} = \frac{262 - 5 \times 5 \times 10}{10} = \frac{262 - 250}{10} = \frac{12}{10} = \frac{12}{10} = \frac{6}{5}$$
$$b = \bar{y} - a\bar{x} = 10 - \frac{6}{5} \times 5 = 10 - 6 = 4$$

 $y = \frac{6}{5}x + 4$

= 146.5

$$r = \frac{\sum_{i=1}^{10} (x_i - \bar{x})^2 (y_i - \bar{y})^2}{\sqrt{SS_x SS_y}} = \frac{\sum_{i=1}^{10} x_i y_i - 10\bar{x}\bar{y}}{\sqrt{SS_x SS_y}} = \frac{\sqrt{SS_x SS_y}}{\sqrt{262,1 \times 146,5}} = \frac{45 641 - 10 \times 27,3 \times 166,5}{\sqrt{262,1 \times 146,5}} = \frac{45 641 - 45 454,5}{\sqrt{38 397,65}} = \frac{186,5}{\sqrt{262,1 \times 146,5}} \approx 0.95$$

Como o valor de r é positivo e muito próximo de 1, estamos perante uma associação linear positiva forte.

3.2.

$$a = \frac{\sum_{i=1}^{10} x_i y_i - 10\bar{x}\bar{y}}{SS_x} = \frac{45\ 641 - 10 \times 27,3 \times 166,5}{262,1} = \frac{186,5}{262,5} = 0,71$$

$$b = \bar{y} - a\bar{x} = 166,5 - 0,71 \times 27,3 = 147,12$$

$$y = 0,71x + 147,12$$

Exercícios propostos (págs. 60 a 64)

Itens de seleção (págs. 60 e 61)

A moda é 3.

A mediana é 3.

$$\bar{x} = \frac{3+6+12+8+5}{13} = \frac{34}{13}$$

Opção (C)

2.
$$d_1 = x_1 - \bar{x}$$
 $d_1 = 12 - 13,5 = -1,5$ $d_2 = 1,1$ $d_3 = x_3 - \bar{x}$ Como $\sum d_i = 0$, temos: $d_1 + d_2 + d_3 = 0 \Leftrightarrow -1,5 + 1,1 + d_3 = 0 \Leftrightarrow d_3 = 0,4$ Opcão (B)

3. Por observação das nuvens de pontos, podemos referir que no gráfico (I) há fracos indícios de associação linear positiva. No gráfico (II) há associação linear negativa forte e no gráfico (III) existe associação linear negativa.

Assim, ao gráfico (I) corresponde r = 0,25, ao gráfico (II) corresponde r = -0.9 e ao gráfico (III) corresponde r = -1.

Opção (B)

4. Se todos os valores da distribuição forem multiplicados por 2, a média e o desvio-padrão duplicam. Assim, temos $\bar{x}=3$ e s=0,4.

Opção (B)

5. A opção (A) não é a correta, uma vez que $s_A < s_B$.

A opção (B) não é a correta, uma vez que $s_B = s_C$.

A opção (C) é a correta, uma vez que $s_C > s_A$.

A opção (D) não é a correta, uma vez que aumentar um valor a todos os alunos não altera o desvio-padrão.

Opção (C)

6. O valor pedido corresponde ao 1º quartil.

$$Logo, 0.25 \times 1500 = 375.$$

Opção (A)

7.
$$\bar{y} = 5 \times \bar{x} - 2 = 5 \times 3 - 2 = 13$$

 $s_y = 5 \times s_x = 5 \times 1,5 = 7,5$

Opção (B)

8. A afirmação (I) é falsa, uma vez que o diagrama (I) apresenta indícios de associação linear positiva e o diagrama (II) apresenta indícios de associação linear negativa.

As afirmações (II) e (III) são verdadeiras.

Opção (D)

9.

$$a = \frac{\sum_{i=1}^{10} x_i y_i - 10\bar{x}\bar{y}}{SS_x}$$

$$SS_x = \sum_{i=1}^{10} (x_i - \bar{x})^2 \iff 75 = \sum_{i=1}^{10} (x_i - \bar{x})^2$$

$$\iff \sum_{i=1}^{10} (x_i - \bar{x})^2 - 10\bar{x}\bar{y}$$

$$r = \frac{\sum_{i=1}^{10} (x_i - \bar{x})^2 - 10\bar{x}\bar{y}}{\sqrt{SS_x \cdot SS_y}} \Leftrightarrow -0.78 = \frac{\sqrt{75} - 10\bar{x}\bar{y}}{\sqrt{75 \times 144}}$$

$$\Leftrightarrow -81,06 = \sqrt{75} - 10\bar{x}\bar{y}$$
$$\Leftrightarrow 10\bar{x}\bar{y} = 89,72$$

$$a = \frac{\sum_{i=1}^{10} x_i y_i - 10\bar{x}\bar{y}}{SS_x} = \frac{\sqrt{75 - 89,72}}{75} = -\frac{81,0597}{75} = -1,1$$

Opção (A)

10.

$$\sum_{i=1}^{4} x_i = 4 \times 15,25 = 61$$

$$\frac{61+2x}{6} = 15,5 \Leftrightarrow 61 + 2x = 93$$

$$\Leftrightarrow 2x = 93 - 61$$

$$\Leftrightarrow 2x = 32$$

$$\Leftrightarrow x = 16$$

Opção (C)

11. Como $4 = \bar{x} + 3s_x$, a proporção de elementos da amostra inferiores a 4 é $\frac{1}{3^2} \approx 11,11\%$. Assim, existem no máximo aproximadamente 11,11% dos dados inferiores a 4.

Opção (C)

$$s_y = \sqrt{\frac{SS_y}{n-1}} \iff 4 = \sqrt{\frac{SS_y}{9}}$$
$$\iff 16 = \frac{SS_y}{9}$$
$$\iff SS_y = 144$$

12. Sendo r: y = ax + b a reta dos mínimos quadrados, o ponto de coordenadas (\bar{x}, \bar{y}) pertence à reta. Assim, 4 = 6a + b. Por outro lado, como o desvio vertical do ponto P(3; 6,5) é 0,5, temos: $e_i = y_i - ax_i - b \Leftrightarrow 0,5 = 6,5 - 3a - b \Leftrightarrow 3a + b = 6$

$$\begin{cases} 6a+b=4\\ 3a+b=6 \end{cases} \Leftrightarrow \begin{cases} b=4-6a\\ 3a+4-6a=6 \end{cases} \Leftrightarrow \begin{cases} -3a=2 \end{cases} \Leftrightarrow \begin{cases} a=-\frac{2}{3}\\ a=-\frac{2}{3} \end{cases}$$
$$\Leftrightarrow \begin{cases} b=4-6\times\left(-\frac{2}{3}\right)\\ a=-\frac{2}{3} \end{cases} \Leftrightarrow \begin{cases} b=8\\ a=-\frac{2}{3} \end{cases}$$
Logo, $y=-\frac{2}{3}x+8$.

Opção (A)

13. Como o desvio vertical do ponto $P_1(2,7)$ é 0,2 e o desvio vertical do ponto $P_2(5,9)$ é 0, temos:

$$\begin{cases} 0.2 = 7 - 2a - b \\ 0 = 9 - 5a - b \end{cases} \Leftrightarrow \begin{cases} b = -2a + 6.8 \\ b = 9 - 5a \end{cases} \Leftrightarrow \begin{cases} 9 - 5a = -2a + 6.8 \\ ----- \end{cases}$$

$$\Leftrightarrow \begin{cases} 3a = 2.2 \\ ---- \end{cases} \Leftrightarrow \begin{cases} a = \frac{2.2}{3} \\ ----- \end{cases} \Leftrightarrow \begin{cases} a = \frac{11}{15} \\ b = 9 - 5 \\ ---- \end{cases} \times \frac{11}{15}$$

$$\Leftrightarrow \begin{cases} b = 9 - \frac{55}{15} \\ ----- \end{cases} \Leftrightarrow \begin{cases} b = 9 - \frac{11}{3} \\ ----- \end{cases} \Leftrightarrow \begin{cases} b = 9 - \frac{11}{3} \\ ------ \end{cases}$$

Assim, a equação reduzida da reta dos mínimos quadrados é $y = \frac{11}{15}x + \frac{16}{3}$.

Logo, o desvio vertical do ponto $P_{11}(8; 10,5)$ é:

$$\begin{split} e_{11} &= 10, 5 - 8 \times \frac{11}{15} - \frac{16}{3} \Longleftrightarrow e_{11} = 10, 5 - \frac{88}{15} - \frac{80}{15} \\ &\iff e_{11} = 10, 5 - \frac{168}{15} \\ &\iff e_{11} = \frac{105}{10} - \frac{56}{5} \\ &\iff e_{11} = \frac{105 - 112}{10} \\ &\iff e_{11} = \frac{-7}{10} \\ &\iff e_{11} = -0, 7 \end{split}$$

Opção (C)

Itens de construção (págs. 62 a 64)

1.

1.1. Introduzindo os valores nas listas da calculadora, obtém-se r=0.9. Como o valor de r é positivo e muito próximo de 1, estamos perante uma associação linear positiva forte.

1.2.

- a) A partir dos dados inseridos nas listas da calculadora, obtém-se $a \approx 0,1656$ e $b \approx 185,1833$.
- b) Utilizando a reta de regressão obtida com os valores da alínea anterior, temos:

Consultando a tabela correspondente, verificamos que, para x=1750, temos y=474,96.

X	Y1	
1751 1752 1753 1754 1755 1756	474.96 475.13 475.29 475.462 475.79 475.95	
X=1750		

Assim, podemos estimar que o valor das despesas mensais com a alimentação de um agregado familiar cujo rendimento mensal é 1750 €, é 475 €.

2.

2.1.
$$\bar{x} = \frac{40 \times 12 + 42 \times 13 + 46 \times 14 + 22 \times 15 + 20 \times 16 + 23 \times 17 + 15 \times 18}{208} =$$

$$= \frac{2981}{208} \approx 14,33$$

$$SS_x = (12 - 14,33)^2 \times 40 + (13 - 14,33)^2 \times 42 + (14 - 14,33)^2 \times 46 + (15 - 14,33)^2 \times 22 + (16 - 14,33)^2 \times 20 + (17 - 14,33)^2 \times 23 + (18 - 14,33)^2 \times 15 =$$

$$= 728,1112$$

$$S_x^2 = \frac{SS_x}{207} = \frac{728,1112}{207}$$

$$S_x = \sqrt{\frac{728,1112}{207}} \approx 1,88$$

7

2.2.
$$]\bar{x} - s, \bar{x} + s[=]14,33 - 1,5;14,33 + 1,5[=]12,83;15,83[$$

Assim:

$$\frac{42+46+22+20}{208} = \frac{130}{208} = 62,5\%$$

2.3.
$$P_{25} = \frac{x_{(52)} + x_{(53)}}{2} = 13$$

$$P_{50} = \frac{x_{(104)} + x_{(105)}}{2} = 14$$

$$P_{75} = \frac{x_{(156)} + x_{(157)}}{2} = 16$$

3.

3.1.

Peso (em kg)	Número de crianças	Frequência relativa	Frequência relativa acumulada (%)	
[5, 10[40	$\frac{40}{140}$	$\frac{40}{140} \approx 29\%$	
[10, 15[22	$\frac{22}{140}$	$\frac{62}{140} \approx 44\%$	
[15, 20[36	$\frac{36}{140}$	$\frac{98}{140} = 70\%$	
[10, 25[30	$\frac{30}{140}$	$\frac{128}{140} \approx 91\%$	
[25, 30[12	$\frac{12}{140}$	$\frac{140}{140} = 100\%$	

3.2. Classe modal: [5, 10[

Classe mediana (classe a que pertence o Q_2): [15, 20[

Classe a que pertence o Q_1 : [5, 10]

Classe a que pertence o Q_3 : [20, 25]

3.3. Introduzindo os valores nas listas da calculadora, obtém-se:

Assim, $\bar{x} = 15.8 \text{ e } s = 6.6.$

4.

4.1.

5	6	7	7	8	9	11	12
12	13	15	16	17	18	18	19
20	21	22	23	29	32	35	36
37	41	44	44	45	49	62	65

$$P_{25} = \frac{12 + 12}{2} = 12$$

$$P_{50} = \frac{19 + 20}{2} = 19,5$$

$$P_{75} = \frac{36 + 37}{2} = 36,5$$

4.2. Como 30% dos percursos corresponde a P_{70} e $\frac{70 \times 32}{100}$ = 22,4, temos P_{70} = x_{23} . Logo, o percurso com menor duração dos 30% de maior duração é x_{24} = 36.

5.

5.1. Agrupando os dados em classes de amplitude 2, obtemos:

Classes	n_i
[8, 10[9
[10, 12[9
[12, 14[6
[14, 16[10
[16, 18[1
	35

5.2. Tem-se n = 35, h = 2.

•
$$P_{10} = 8.8$$

$$\frac{10\times35}{100}$$
 = 3,5 e 9 > 3,5

$$9(y-8) = \frac{10 \times 2 \times 35}{100} \Leftrightarrow y = \frac{79}{9}$$

$$y \approx 8.8$$

•
$$P_{15} = 9.2$$

$$\frac{15 \times 35}{100} = 5,25$$
 e $9 > 5,25$

$$9(y-8) = \frac{15 \times 2 \times 35}{100} \Leftrightarrow y = \frac{55}{6}$$

$$y \approx 9.2$$

•
$$P_{50} = 11,9$$

$$\frac{50 \times 35}{100} = 17.5$$
 e $9 < 17.5$ e $18 > 17.5$

$$9 \times 2 + 9(y - 10) = \frac{50 \times 2 \times 35}{100} \Leftrightarrow y = \frac{107}{9}$$

$$y \approx 11.9$$

•
$$P_{75} = 14,5$$

$$\frac{75\times35}{100}$$
 = 26,25 e 9+9+6<26,25 e 9+9+6+6>26,25

$$9 \times 2 + 9 \times 2 + 6 \times 2 + 10(y - 14) = \frac{75 \times 2 \times 35}{100} \Leftrightarrow y = \frac{289}{20}$$
$$y \approx 14.5$$

• $P_{85} = 15.2$ $\frac{85 \times 35}{100} = 29.75$ e 9 + 9 + 6 < 29.75e 9 + 9 + 6 + 10 > 29.75 $9 \times 2 + 9 \times 2 + 6 \times 2 + 10(y - 14) = \frac{85 \times 2 \times 35}{100} \Leftrightarrow y = \frac{303}{20}$ $y \approx 15.2$

5.3. Sabemos que $P_k = 11.4 = x_{15}$.

Assim, temos:

$$\frac{k \times 35}{100} = 15 \iff 35k = 1500 \iff k = \frac{1500}{35}$$
$$\iff k = 42$$

- **5.4.** Como $P_{75}=x_{27}$, concluímos que há 26 crianças com peso inferior ao percentil 75.
- **5.5.** Como 20% dos pesos mais baixos corresponde a P_{20} , temos $\frac{20 \times 35}{100} = 7$ e $P_{20} = \frac{x_7 + x_8}{2}$. Logo, o peso mais elevado dos 20% mais baixos é $x_7 = 9$,6.
- **5.6.** Se compararmos os percentis obtidos na alínea 5.2. com os estabelecidos pela OMS, podemos verificar que P_{10} e P_{15} estão abaixo dos valores estabelecidos, enquanto que P_{50} e P_{85} estão acima. Podemos, então, dizer que nesta amostra existem mais valores nos extremos do que o estabelecido pela OMS.

6.

6.1.

Utilizando a calculadora, obtemos:

Logo, y = 1,22x - 4,23 er = 0,98.

6.2. Se x = 15, temos:

$$y = 1,22 \times 15 - 4,23 \Leftrightarrow y = 18,3 - 4,23 \Leftrightarrow y \approx 14,1$$

R.: 14,1 valores.

7.
$$s_y^2 = \frac{SS_y}{n-1} =$$

$$= \frac{\sum_{i=1}^{10} (y_i - \bar{y})^2}{n-1} =$$

$$= \frac{\sum_{i=1}^{10} (kx_i - k\bar{x})^2}{n-1} =$$

$$= \frac{\sum_{i=1}^{10} k^2 (x_i - \bar{x})^2}{n-1} =$$

$$= \frac{k^2 \sum_{i=1}^{10} (x_i - \bar{x})^2}{n-1} =$$

$$= k^2 \frac{SS_x}{n-1} =$$

$$= k^2 S_x^2$$

8. Sabemos que $\bar{y} = 2,625$.

Logo, $(x_3, y_3) = (12; 2,5)$.

Assim

$$\frac{2+3+y_3+3}{4} = 2,625 \Leftrightarrow \frac{8+y_3}{4} = 2,625 \Leftrightarrow 8+y_3 = 10,5$$
$$\Leftrightarrow y_3 = 10,5-8$$
$$\Leftrightarrow y_3 = 2,5$$

Sabemos que $-0.25 = 2.625 - 0.25\overline{x}$. Assim:

$$-0.25 = 2.625 - 0.25\overline{x} \Leftrightarrow 0.25\overline{x} = 2.625 + 0.25 \Leftrightarrow \overline{x} = \frac{2.875}{0.25} \Leftrightarrow \overline{x} = 11.5$$
$$\overline{x} = 11.5 \Leftrightarrow \frac{10+11+x_3+13}{4} = 11.5 \Leftrightarrow x_3 = 12$$

9.

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i y_i - x_i \bar{y} - \bar{x} y_i + \bar{x} \bar{y}) =$$

$$= \sum_{i=1}^{n} x_i y_i - n\bar{x} \bar{y} - n\bar{x} \bar{y} + n\bar{x} \bar{y} =$$

$$= \sum_{i=1}^{n} x_i y_i - n\bar{x} \bar{y}$$