GLYCOLYSIS

-Ms. Rupal Mishra

Metabolism

- Metabolism, the sum of all the chemical transformations taking place in a cell or organism, occurs through a series of enzyme-catalyzed reactions that constitute metabolic pathways.
- Each of the consecutive steps in a metabolic pathway brings about a specific, small chemical change, usually the removal, transfer, or addition of a particular atom or functional group.
- The precursor is converted into a product through a series of metabolic intermediates called metabolites.
- There are 2 categories of metabolism-
 - 1. Catabolism
 - 2. Anabolism

Catabolism

- Catabolism is the degradative phase of metabolism in which organic nutrient molecules (carbohydrates, fats, and proteins) are converted into smaller, simpler end products (such as lactic acid, CO2, NH3).
- Pathway followed by such molecules are known as Catabolic pathways
- Catabolic pathways release energy, some of which is conserved in the formation of ATP and reduced electron carriers (NADH, NADPH, and FADH2); the rest is lost as heat.
- Catabolic pathways are convergent in nature.

Anabolism

- Anabolism is also called biosynthesis
- In **anabolism** small, simple precursors are built up into larger and more complex molecules, including lipids, polysaccharides, proteins, and nucleic acids.
- Pathway followed by such molecules are known as Anabolic pathways
- Anabolic pathways require an input of energy, generally in the form of the phosphoryl group transfer potential of ATP and the reducing power of .NADH, NADPH, and FADH2.
- Anabolic pathways divergent in nature

Catabolism & Anabolism

Regulation

- Metabolic regulation enables the balance between substrate and product of enzyme-catalyzed reactions to be maintained so that ordered metabolic flow can occur in response to developmental requirements and environment.
- In order to maintain chemical equilibrium and meet the needs of the cell, some metabolic products inhibit the enzymes in the chemical pathway while some reactants activate them.

Metabolic Pathways

Glycolysis

Glycolysis comes from a merger of two Greek words:

Glykys (Greek word) = sweet

Lysis = breakdown/ splitting

- It is also known as Embden-Meyerhof-Parnas pathway or EMP pathway.
- Glycolysis is the sequence of 10 enzyme-catalyzed reactions that converts glucose into pyruvate with simultaneous production on of ATP.
- In this oxidative process, 1mol of glucose is partially oxidised to 2 moles of pyruvate.

Glycolysis

- This major pathway of glucose metabolism occurs in the cytosol of all cell.
- This unique pathway occurs aerobically as well as anaerobically & doesn't involve molecular oxygen.
- In aerobic organisms, glycolysis is the prelude to Citric acid cycle and ETC.
- Glycolysis is the central pathway for Glucose catabolism.

Glycolysis Pathway

Two Phases Of Glycolysis

- Glycolysis leads to breakdown of 6-C glucose into two molecules of 3-C pyruvate with the enzyme catalyzed reactions being bifurcated or categorized into 2 phases:
 - Phase 1: Preparatory phase
 - Phase 2: Payoff phase.

Preparatory Phase

- It consists of the first 5 steps of glycolysis
 - **Step 1**: Glucose is first phosphorylated at the hydroxyl group on C-6.
 - Step 2: Glucose 6-phosphate formed is converted to fructose-6-phosphate.
 - **Step 3**: Fructose-6-phosphate which is again phosphorylated, this time at C-1, to yield fructose-1,6- bisphosphate.
- For both phosphorylations, ATP is the phosphoryl group donor.
 - **Step 4**: Fructose-1,6-bisphosphate is split to yield two three-carbon molecules, dihydroxyacetone phosphate and glyceraldehyde 3-phosphate [this is the "lysis" step that gives the pathway its name].
 - **Step 5**: The dihydroxyacetone phosphate is isomerized to a second molecule of glyceraldehyde 3-phosphate, ending the first phase of glycolysis.
- This cleavage requires 2 ATP molecules to activate the glucose mole and prepare it for its cleavage into 3-carbon compound.

Payoff Phase

- This phase constitutes the last 5 steps of Glycolysis.
 - **Step 6:** Each molecule of glyceraldehyde 3-phosphate is oxidized and phosphorylated by inorganic phosphate (not by ATP) to form 1,3-bisphosphoglycerate.
 - **Step 7-10:** Energy is then released as the two molecules of 1,3 bisphosphoglycerate are converted to two molecules of pyruvate.
- This phase marks the release of ATP molecules during conversion of Glyceraldehyde-3-phosphtae to 2 moles of Pyruvate.
- Here 4 moles of ADP are phosphorylated to ATP.
- Although 4 moles of ATP are formed, the net result is only 2 moles of ATP per mole of Glucose oxidized, since 2 moles of ATP are utilized in Phase 1.

Step 1: Phosphorylation

- Glucose is phosphorylated by ATP to form sugar phosphate.
- This is an irreversible reaction & is catalyzed by hexokinase.

Step 2: Isomerization

- It is a reversible rearrangement of chemical structure of carbonyl oxygen from C1 to C2, forming a Ketose from the Aldose.
- Thus, isomerization of the aldose Glucose6-phosphate gives the ketose, Fructose-6-phosphate.

Step 3: Phophorylation

- Here the Fructose-6-phosphate is phosphorylated by ATP to fructose-1,6-bisphosphate.
- This is an irreversible reaction and is catalyzed by phosphofructokinase enzyme.

Step 4: Breakdown

- This six carbon sugar is cleaved to produce two 3-C molecules: glyceradldehyde-3-phosphate (GAP) & dihydroxyacetone phosphate(DHAP).
- This reaction is catalyzed by Aldolase.

Step 5: Isomerization

- Dihydroxyacetone phosphate is oxidized to form Glyceraldehyde-3-phosphate.
- This reaction is catalyzed by triose phosphate isomerase enzyme.

Step 6: Oxidization

- 2 molecules of Glyceraldehyde-3-phosphate are oxidized.
- Glyceraldehyde-3-phosphate dehydrogenase catalyzes the conversion of Glyceraldehyde3-phosphate into 1,3-bisphosphoglycerate.

Step 7: 1st Substrate Phosphorylation

- The transfer of high-energy phosphate group that was generated earlier to ADP, form ATP.
- This phosphorylation i.e. addition of phosphate to ADP to give ATP is termed as substrate level phosphorylation as the phosphate donor is the substrate 1,3-bisphosphoglycerate.

• The product of this reaction is 2 molecules of 3-

phosphoglycerate.

Step 8: Mutation

• The remaining phosphate-ester linkage in 3-phosphoglycerate, is moved from carbon 3 to carbon 2, because of relatively low free energy of hydrolysis, to form 2-phosphoglycerate(2-PG).

Step 9: Dehydration

- This is the second reaction in glycolysis where a high-energy phosphate compound is formed.
- The 2-phosphoglycerate is dehydrated by the action of enolase to phosphoenolpyruvate(PEP). This compound is the phosphate ester of the enol tautomer of pyruvate.
- This is a reversible reaction.

Step 10: 2nd Substrate Phosphorylation

- This last step is the irreversible transfer of high energy phosphoryl group from phosphoenolpuruvate to ADP.
- This reaction is catalyzed by pyruvate kinase.
- This is the 2nd substrate level phosphorylation reaction in glycolysis which yields ATP.
- This is a non-oxidative phosphorylation reaction.

Glycolysis Pathway

Overall Balance Sheet Of Glycolysis

- Each molecule of glucose gives 2 molecules of Glyceraldehyde-3-phosphate.
- Therefore, the total input of all 10 reactions can be summarized as:

Glucose + 2ATP+ 2Pi+ 2NAD++ 2H++ 4ADP

2Pyruvate+ 2H++ 4ATP+ 2H₂O+ 2NADH+ 2ADP

Feeder Pathways for Glycolysis

- Many carbohydrates besides glucose meet their catabolic fate in glycolysis, after being transformed into one of the glycolytic intermediates.
- The most significant are the storage polysaccharides glycogen and starch; the disaccharides maltose, lactose, trehalose, and sucrose; and the monosaccharides fructose, mannose, and galactose.

Feeder Pathways for Glycolysis

Regulation

- Regulation occurs at three enzymatic points.
- Three reactions of glycolysis are so exergonic as to be essentially irreversible.
- These reactions are catalyzed by hexokinase, PFK-1, and pyruvate kinase.

 $\begin{array}{c} \text{Glucose} \rightleftharpoons G_6 P \\ \\ \text{hexokinase} \\ \\ F_6 P \rightleftharpoons F_1, 6 BP \\ \\ \text{phosphofructokinase (PFK)} \\ \\ \text{PEP} \rightleftharpoons \text{pyruvate.} \\ \\ \text{pyruvate kinase} \end{array}$

Regulation of Glycolysis

- **1. Hexokinase** is inhibited by glucose 6- phosphate. This enzyme prevents the accumulation of glucose 6-phosphate due to product inhibition.
- **2. Phosphofructo kinase (PFK)** is the most important regulatory enzyme in glycolysis. PFK is an allosteric enzyme regulated by allosteric effectors ATP, citrate & H+ ions (low pH) are the most important allosteric inhibitors. Fructose 2 ,6-bisphosphate, ADP, AMP & Pi are the allosteric activators.
- 3. Pyruvate kinase PK Inhibited by ATP & activated by F1,6-BP.
 - Pyruvate kinase is active
 - (a) in dephosphorylated state & inactive
 - (b) in phosphorylated state.
 - Inactivation of pyruvate kinase is brought about by cAMP-dependent protein kinase. The hormone glucagon inhibits hepatic glycolysis by this mechanism.

#