LP 40 Confinement d'une particule et quantification de l'énergie

Naïmo Davier

Université Paul sabatier

March 31, 2019

Potentiel effectif : potentiel central et moment cinétique

Niveaux d'énergie

Solutions et géométries

niveau $1s$	$\varphi_{n=1, l=0, m=0} = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$
niveau $2s$	$\varphi_{n=2, l=0, m=0} = \frac{1}{\sqrt{8\pi a_0^3}} \left(1 - \frac{r}{2a_0}\right) e^{-r/2a_0}$
parego - sa	$\varphi_{n=2, l=1, m=1} = -\frac{1}{8\sqrt{\pi a_0^3}} \frac{r}{a_0} e^{-r/2a_0} \sin\theta e^{i\varphi}$
niveau $2p$	$\varphi_{n=2, l=1, m=0} = \frac{1}{4\sqrt{2\pi a_0^3}} \frac{r}{a_0} e^{-r/2a_0} \cos \theta$
any a mi	$\varphi_{n=2, l=1, m=-1} = \frac{1}{8\sqrt{\pi a_0^3}} \frac{r}{a_0} e^{-r/2a_0} \sin\theta e^{-i\varphi}$

