

AKO $9^{7} = \vec{p}$, TO 626/167 CE HAPUZA USINPABEH 6261 -> M HYNEB TIEN, aro 9 = p Насочен БІБЛ 4pq, $9, 9, 4p^2$, p^2 е БІБЛ, в кайто рамото p^2 е избрано за първо, а 9^2 - за второ (аналог на насочена от-Всяка наредена база (е, е) выв всяка фиксирана тоска 3adalba Hacozett 6261. Hera $d = (\vec{a_1}, \vec{a_2})$ u $\beta = (\vec{b_1}, \vec{b_2})$ ca Hapedenu $\delta \alpha 3 u$ $0 \angle$ и $C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$ е матрицата на прехода от 2 кън β - $\lambda = \beta$ => det C + 0. Aro det C>0 казване, ге 2 и в са еднакво ориентирание. Ако det C <0 - противополошно ориентирание Hera L, p n p ca napeden dasn, C n D marpugure na mpexod 2 mp, p D p.

Имаме: 1. $\chi \stackrel{E}{=} \chi$, където $E=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\det E=1 \Rightarrow \chi$ е ориентирана сана със себе си 2. Ако $\chi \stackrel{C}{=} \beta$, то $\beta \stackrel{C}{=} \chi \stackrel{D}{=} \chi$ и β са еднакво ориентирани ($\zeta \stackrel{C}{=} E=\gamma$ det ζ det $\zeta \stackrel{D}{=} 1 \chi \stackrel{D}{=} 0$) 3. Нека $\chi \stackrel{C}{=} \beta$, $\det \zeta > 0$, i.e. χ и β са еднакво ориентирани Нека също така $\beta \stackrel{D}{=} \gamma$, $\det D > 0$ - β и γ еднакво ориентирани. Тогава матрицита на прехода от χ към γ е произведението на матриците χ (χ can χ са еднакво ориентирани. От χ det χ са еднакво ориентирани. За наредените χ бази (χ can χ can χ са еднакво ориентирани. χ са еднакво ориентирани. χ са еднакво ориентирани. χ са еднакво ориентирани. χ от χ

От 1., 2. и 3. получаваме, че ваяка наредена база е еднакво ориентирана с $(\vec{a_1}, \vec{a_2})$ ими с $(\vec{a_2}, \vec{a_1})$.

По този начин мнонеството от насочените ъгми се разделя на два класа (на еквивалентноет) наречени посоки на въргене в равнината. Едната избираме за полонителна, а другата за отринателна.

Всеки клас съдарна само еднакво ориен тирани бази.

От единия към другия клас се прешнава с отринава с отринава с отринава с отринава с отринателна детерминанта.

Нека K = 0 е е дриксирана кодранатна систена $N = \frac{1}{2}$ определената от нея посока е лизбрана зо полоннителна $\frac{1}{2}$ наритаме мярка на насотения $\frac{1}{2}$ е дорожно $\frac{1}{2}$ наритаме мярката на $\frac{1}{2}$ рад взета $\frac{1}{2}$ или $\frac{1}{2}$ в зависиност от ориентацията на $\frac{1}{2}$ гала спрямо $\frac{1}{2}$ (мярката на $\frac{1}{2}$ рад $\frac{1}{2}$ е полонително тисло). Ознатаваме $\frac{1}{2}$ ($\frac{1}{2}$ рад). Ясно е $\frac{1}{2}$ е $\frac{1}{2}$ ($\frac{1}{2}$ рад). Ясно е $\frac{1}{2}$ е $\frac{1}{2}$ межисирона полонителна посока на въртене можем да дефинираме оргиентирон $\frac{1}{2}$ тел $\frac{1}{2}$ ($\frac{1}{2}$ рад) се дефинира като $\frac{1}{2}$ ($\frac{1}{2}$ рад) по следния натин. Мярката $\frac{1}{2}$ рад) се дефинира като $\frac{1}{2}$ $\frac{$

Пример Нека $K = 0\vec{e}\cdot\vec{e}_2$ е ортонормирана координатна систена и определената от нея посока е полонителна. \vec{e}_2 Спрямо K са дадени векторите \vec{a} (\vec{b} , \vec{b}) и \vec{b} ($-\frac{\sqrt{3}}{2}$, $\frac{1}{2}$). \vec{b} ($-\frac{\sqrt{3}}{2}$) = \vec{b} ($-\frac{\sqrt{3}}{2}$) = \vec{b} ($-\frac{\sqrt{3}}{2}$) = $-\frac{\sqrt{3}}{2}$ ($-\frac{\sqrt{3}}{2}$) $-\frac{\sqrt{3}}{2}$ ($-\frac{\sqrt{3}}{2}$) -