CS152B Final Project: Integer Identification

Group 3: Michael Hale, Matthew Nuesca, Shilin Patel

Project Introduction

Proposed Project: Convolutional Neural Network

- Train on MNIST dataset
- Identify integer digit from drawing

Interesting?

- Neural networks are used everywhere
- High industry demand for experts, understanding how FPGAs can be used to improve CNNs is useful

Purpose? Training performance improvements with custom hardware

Features Developed?

- Serial Communication for Image Transfer
- Multiple Neural Network Layers

Real-World Constraints

Constraints:

- High-Speed Clock Generation
- Modules for Fixed Point Computation and BRAM
- Serial Communication Hardware, Seven Segment Display

Costs: Economic: Board, SevenSeg, Serial Device (Laptop)

Manufacturability: Nothing unique to manufacture

Socio-Political Fit: Not breaking the status quo

Sustainability: General purpose CPU architecture commonly used for training neural networks is limited in performance. Custom designed hardware systems are expensive to produce at scale. Our solution is viable for cost-aware, performance heavy users

Industry Standards

Convolutional Neural Network: Convolutional, Fully-Connected, Softmax, ReLU layers

FPGA Block RAM: Storing weights on device

Serial Communication: RS232 Communication

Seven Segment Display: PMOD 12-Pin Connector

Training Data: MNIST image dataset

Test Data: Python program to draw image and convert to byte array

Costs

Development:

- Human costs in time to design and build the product
- Cost of FPGA, Serial Hardware, Data Transmission Device

Marketing:

- Strong competition from large companies such as Amazon, w/ built in cloud services
- Would not work as standalone product
 - Need to sell technology or personal skills in area
- Marketing costs would be high

Project Description

Constraint Based Implementation: We can continue as planned, no constraints apply Block Diagram:

Algorithms

Serial Communication:

- Communication between PC and FPGA
- Two directional RX/TX for streams of 784 bytes per transfer

Convolutional Neural Network Layers:

- Convolutional
- Maxpool
- ReLU
- Fully Connected
- Softmax
- Backpropagation/Error
- Fixed Point Arithmetic

Image Drawing:

- Scale drawn image to 28x28 grayscale

Hardware

Base System:

Xilinx Virtex-5 FPGA

Hardware Utilization:

- Block RAM: Weight Storage
- Seven Segment Display (PMOD): Display Test Data Result
- RS232 Module: Send ready signal and receive image byte arrays

Algorithm Implementation:

- Fixed Point Arithmetic Module
- Convolutional Layer Modules
 - Each layer is a module which interfaces with the top module

Software

Algorithm Implementation:

- Python
- PC end of serial communication
 - PySerial to receive ready signal and send byte arrays
- Downloaded MNIST data and labels loaded using mnist
- Image drawing for test data
 - Tkinter, Pillow
 - User draws image
 - Resize to 28x28 and convert to byte array for easy serial transfer

Challenges

Resource Limitations

- Utilizing large number of BRAM
- Core Generator reset pin does not work consistently
- Low number of Arithmetic modules (multipliers)
- Broken DDR2 SDRAM

Lack of Implementation and Debugging Tools

- Only able to synthesize in this lab
- Core generators only able to simulated in Xilinx (in the lab)
- ISim provides buggy waveform generation in computationally heavy test benches