Assignment 6

15-03-2019

- (1) For $x, y \in \mathbb{R}$, show that (i) |xy| = |x||y|(ii) (Triangle Inquality) $|x+y| \le |x| + |y|$
- (2) For $x,y \in \mathbb{R}$, show that $\max\{x,y\} = \frac{x+y+|x-y|}{2}$. Identify a similar relation for $\min\{x,y\}.$
- (3) Identify the set $\{x \in \mathbb{R} | |x-3| < 5\}$ (with proof).
- (4) Prove or disprove: For $x, y \in \mathbb{C}, |xy| = |x||y|$.
- (5) For a function $f: X \to A \subset X$, and $B \subset Y$, define $f^{-1}(B) = \{a \in X | f(a) \in B\}$ and $f(A) = \{b \in Y | \text{ there exists } a \in X \text{ such that } b = f(a) \}.$ Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$.
 - (a) Find f(A) for $A = (i) \{1, \frac{1}{2}, \frac{1}{3}, -\frac{1}{2}\}$ (ii) [0, 2] (iii) (1, 2] (iv) [-2, 1] (b) Find $f^{-1}(B)$ for $B = (i) \{4\}$ (ii) $\{1\}$ (iii) [0, 1] (iv) [-4, 1] (v) (0, 1)

What are your answers when (i) $f(x) = x^3$ (ii) $f(x) = \sin(\pi x)$?

- (6) Let X be the set of 2×2 matrices with entries in \mathbb{R} .
 - (a) Find $f^{-1}(\{0\})$, where $f: X \to X$ is given by (i) $f(M) = M^2$ (ii) $f(M) = M^2 - M$ (iii) $f(M) = M - M^T$ (iv) $f(M) = MM^T$. In (iv), what is $f^{-1}(\{I\})$?
 - (b) Let $f: X \to \mathbb{R}$ be given by $f(M) = \det(M)$. (i) If A is the set of orthogonal matrices, what if f(A)? (ii) What if $f^{-1}(\{0\})$?
- (7) For $B = \{0\}, \{1\}, [0, 1], (1, 2], \text{ find } f^{-1}(B), \text{ where } f : \mathbb{R}^2 \to \mathbb{R} \text{ is given by }$ $f(x,y) = (i) x (ii) y (iii) x^2 + y^2 (iv) xy.$
- (8) Let $f: X \to Y$ be a function, $A, A_1, A_2 \subset X; B, B_1, B_2 \subset Y$.
 - (a) If $A \subset A_1$, show that $f(A) \subset f(A_1)$. Is the same true under inverse images?
 - (b) Show that $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$. Is the same true for unions and complements?
 - (c) For $A_1, A_2 \subset X$, is one of $f(A_1 \cup A_2)$ and $f(A_1) \cup f(A_2)$ contained in the other? Is the containment proper? When does equality hold? Answer these questions for unions and complements.
 - (d) What is the relation between A and $f^{-1}(f(A))$? Is the containment proper? When does equality hold? Answer these questions for B and $f(f^{-1}(B))$.
- (9) Find the limit of the following sequences if they exist, else prove that the sequence diverges.
 - (i) $a_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$.

(ii) $b_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$. (iv) $d_n = (-1)^n$ for all $n \in \mathbb{N}$.

(iii) $c_n = n$ for all $n \in \mathbb{N}$.