

COHEN CHAP 19 & 20. CATEGORICAL

For EDUC/PSY 6600

MOTIVATING EXAMPLES

Dr. Fisel wishes to know whether a random sample of adolescents will prefer a new of formulation of 'JUMP' softdrink over the old formulation. The <u>proportion</u> choosing the new formulation is tested against a hypothesized value of 50%.

Dr. Sheary hypothesizes that 1/3 of women experience increased depressive symptoms following childbirth, 1/3 experience increases in elevated mood after childbirth, and 1/3 experience no change. To evaluate this hypothesis Dr. Sheary randomly samples 100 women visiting a prenatal clinic and asks them to complete the Beck Depression Inventory. She then re-administers the BDI to each mother one week following the birth of her child. Each mother is classified into one of the 3 previously mentioned categories and observed proportions are compared to the hypothesized proportions.

Dr. Evanson asks a random sample of individuals whether they see both a physician and a dentist regularly (at least once per year). He compares the <u>distributions of these binary variables</u> to determine whether there is a relationship.

CATEGORICAL METHODS

Instead of means, comparing **counts** and **proportions** within and across groups

E.g., # ill across different treatment groups

Associations / dependencies among categorical variables

Data are **nominal** or **ordinal**

Discrete probability distribution

• Number of finite values as opposed to <u>infinite</u>

Each subject/event assumes 1 of 2 mutually exclusive values (binary or dichotomous)

Yes/No

Male/Female

Well/III

THE BINOMIAL DISTRIBUTION: EQ & COIN EXAMPLE

$$p(X) = \frac{N!}{X!(N-X)!} P^{X} Q^{(N-X)}$$

- N = # events
- *X* = # "successes"
- P = p("success")
 - Hypothesized proportion / probability of success
- Q = p("failure")
 - Hypothesized proportion / probability of failure
- P + Q = 1
- Remember: 0! = 1; $x^0 = 1$

- (Arbitrarily) assign 1 outcome as 'success' and other as 'failure'
- Example: Probability of correctly guessing side of coin 4 out of 5 flips?
 - 5 events, 4 successes, 1 failure
 - -P = p(correct guess on each flip) = .50
 - Q = p(incorrect guess on each flip) = .50

Use equation to obtain: 5 out of 5 successes = .03 4 out of 5 successes = .16 3 out of 5 successes = .31 2 out of 5 successes = .31 1 out of 5 successes = .16 0 out of 5 successes = .03

Sum of probabilities = 1.0

SAMPLING DISTRIBUTION FOR THE BINOMIAL DIST

- Binomial probability distribution for N=5 events, and P=.5
- Binomial Distribution Table (exact values)
- Sampling distribution as it was derived mathematically
 - We can only reject H_0 with 0 or 5 out of 5 successes (1-tailed)

Sampling Distribution mean = NP variance = NPQ $SD = \sqrt{NPQ}$ $SE_{MEAN} = \sqrt{\frac{PQ}{N}}$

Example

$$M = 5*.5 = 2.5$$
 (See Histogram)
 $VAR = 5*.5*.5 = 1.25$
 $SD = \text{sqrt}(1.25) = 1.12$

Different binomial distribution for each N

Normal when P=.50, skewed when $P\neq.50$ Critical value depends on: N events, X successes, P

AS N INCREASES, BINOMIAL DISTRIBUTION \rightarrow NORMAL

n	X	P	n	X	p	n	X	р
1	0	.5000		1	.0176	13	0	.0001
	1	.5000		2	.0703		1	.0016
2	0	.2500		3	.1641		2	.0095
	1	.5000		4	.2461		3	.0349
	2	.2500		5	.2461		4	.0873
3	0	.1250		6	.1641		5	.1571
	1	.3750		7	.0703		6	.2095
	2	.3750		8	.0176		7	.2095
	3	.1250		9	.0020		8	.1571
4	0	.0625	10	0	.0010		9	.0873
	1	.2500		1	.0098		10	.0349
	2	.3750		2	.0439		11	.0095
	3	.2500		3	.1172		12	.0016
	4	.0625		4	.2051		13	.0001
5	0	.0312		5	.2461	14	0	.0001
	1	.1562		6	.2051		1	.0009
	2	.3125		7	.1172		2	.0056
	3	.3125		8	.0439		3	.0222
	4	.1562		9	.0098		4	.0611
	5	.0312		10	.0010		5	.1222
•	•	0.1.0	tal a	-	2225		-	

Probabilities of the Binomial Distribution for P = .5

"Equally Likely" Means p = 0.5

Binomial Distribution: Trials = 200, Probability of success = 0.5

BINOMIAL SIGN TEST

Single sample test with binary/dichotomous data

Proportion or % of 'successes' differ from chance?

• H_0 : % of observations in one of two categories equals a **specified** % in population • H_0 : Proportion of 'yes' votes = 50% in population

Assumptions

- Random selection of events or participants
- Mutually exclusive categories
- Probability of each outcome is same for all trials/observations of experiment
- Experiment: Coin flipped 10x, heads 8x
 - Is coin **biased** (Heads > .50)?
- Experiment: 10 women surveyed, 8 select perfume A
 - Is one perfume preferred <u>over another</u>?
- For both:
 - H_0 : Proportion (X) = .50 in population
 - H_1 : Proportion (X) \neq .50 in population (2-tailed)

BINOMIAL SIGN TEST: EXAMPLE

- Is occurrence of 8 or more observations in either of the 2 categories unusual?
 - Probability of occurrence given H_0 true in pop.?

n	Х	р	
	1	.0176	
	2	.0703	
	3	.1641	
	4	.2461	
	5	.2461	
	6	.1641	
	7	.0703	
	8	.0176	
	9	.0020	
10	0	.0010	
	1	.0098	
	2	.0439	
	3	.1172	
	4	.2051	
	5	.2461	
	6	.2051	
	7	.1172	
	8	.0439	
	9	.0098	
	10	.0010	

NORMAL APPROXIMATION TO THE BINOMIAL I.E. "Z-TEST" FOR A SINGLE PROPORTION

What if N were larger, say 15?

- Same proportions: 80% (12/15) Heads & Perfume A
- Sum p(12, 13, 14, 15/15) = .0178 (1-tailed p-value)

Reject H_0 under both 1- and 2-tailed tests

- 2-tailed $p = .0178 \times 2 = .0356$
- Earlier: Binomial distribution \rightarrow normal distribution, as $N \rightarrow$ infinity
- Recommendation: Use z-test for single proportion when N is large (>25-30)
 - When NP and NQ are both ≥ 10 , close to normal
- H_0 and H_1 are same as Binomial Test
- Test statistic:

$$z = \frac{X - PN}{\sqrt{NPQ}} = \frac{p_1 - P}{\sqrt{\frac{PQ}{N}}}$$

Experiment:

Senator supports bill favoring stem cell research. However, she realizes her vote could influence whether or not her constituents endorse her bid for re-election. She decides to vote for the bill only if 50% of her constituents support this type of research. In a random survey of 200 constituents, 96 are in favor of stem cell research.

Will the senator support the bill?

$$\frac{Standardize:}{z = \frac{X - NP}{\sqrt{NPQ}}}$$

CHI-SQUARE (X^2) DISTRIBUTION

- Family of distributions
 - As df (or k categories) \uparrow
 - Distribution becomes more normal, bell-shaped
 - Mean & variance ↑
 - Mean = df
 - Variance = 2* df
- $z^2 = \chi^2$
 - Always positive, 0 to infinity
 - 1-tailed distribution
- χ^2 distribution used in many statistical tests

"GOODNESS OF FIT" Testing:

Are observed frequencies similar to frequencies expected by chance?

Expected frequencies

Frequencies you'd <u>expect</u> if H_0 were true Usually equal across categories of variable (N/k) Can be unequal if theory dictates

CHI-SQUARED: GOODNESS OF FIT TESTS "GOF"

Hypotheses

- H_0 : Observed = Expected frequencies in population
- H₁: Observed ≠ Expected frequencies in populatioN

General form:

- O =observed frequency
- E =expected frequency

If H_0 were true, numerator would be small

Denominator standardizes difference in terms of expected frequencies

Aka: Pearson or '1-way' χ² test

- 1 nominal variable
- 2 or more categories

$\chi^2 = \Sigma \frac{(O_i - E_i)^2}{E_i}$

If nominal variable ONLY has 2 categories, χ^2 GoF test:

- Is another large sample approximation to Binomial Sign Test
- Gives same results as z-test for single proportion as $z^2 = \chi^2$
- Has same H_0 and H_1 as binomial or z-tests

Assumptions

Independent random sample

Mutually exclusive categories

Expected frequencies: ≥ 5 per each cell

ALPHA (AREA IN THE UPPER TAIL)

df	.10	.05	.025	.01	.005	
1	2.71	3.84	5.02	6.63	7.88	
2	4.61	5.99	7.38	9.21	10.60	
3	6.25	7.81	9.35	11.35	12.84	
4	7.78	9.49	11.14	13.28	14.86	
5	9.24	11.07	12.83	15.09	16.75	
6	10.64	12.59	14.45	16.81	18.55	
7	12.02	14.07	16.01	18.48	20.28	
8	13.36	15.51	17.54	20.09	21.96	
9	14.68	16.92	19.02	21.67	23.59	
10	15.99	18.31	20.48	23.21	25.19	
11	17.28	19.68	21.92	24.72	26.75	
12	18.55	21.03	23.34	26.22	28.30	
13	19.81	22.36	24.74	27.69	29.82	
14	21.06	23.69	26.12	29.14	31.32	
15	22.31	25.00	27.49	30.58	32.80	
16	23.54	26.30	28.85	32.00	34.27	
17	24.77	27.59	30.19	33.41	35.72	

Compare obtained χ^2 statistic to critical value based on df = k - 1, k = # categories

GOODNESS OF FIT TESTS — EXAMPLE: K = 2

Hypotheses: • H₀: P = 0.50

- Observed frequencies: 96 and 104
- Expected frequencies: N/k = 200/2 = 100 df = 2 1 = 1

$$\chi^2 = \Sigma \frac{(O_i - E_i)^2}{E_i}$$

Test Statistic:

$$\chi^2_{OBSERVED}$$
=

Critical Value:

$$\chi^2_{CRIT}$$
 (___) =

Conclusion:

Note:

ALWAYS USE	1 =	0 =
COUNTS!!!	"success"	"failure"
OBSERVED (the data)	96	
EXPECTED (based on N, P, Q)		

GOODNESS OF FIT TESTS — EXAMPLE: K > 2

(ANY NUMBER OF CATEGORIES WITHIN 1 VARIABLE)

ALWAYS USE COUNTS!!!

Hypotheses:

- $\overline{\ }^* H_0$: " equally likely" (k = 6 & N = 120)
- Expected frequencies: N/k = 120/6 = 20
- Observed frequencies: 20, 14, 18, 17, 22, 29 (Mon Sat)
- df = 6 1 = 5

	M	Т	w	Th	F	S
OBS	20	14	18	17	22	29
EXP						

Test Statistic:

$$\chi^2_{OBSERVED}$$
=

Critical Value:

$$\chi^2_{CRIT}$$
 (___) =

QUESTION:

Is there a difference in # books checked out for different days of the week?

Conclusion:

We do NOT have evidence the # of books checked out is NOT the same EVERY day

GOODNESS OF FIT TESTS: CONFIDENCE INTERVALS

Cls for proportions

- If k > 2, original table converted into table with 2 cells
 - Proportion for category of interest vs proportion in all other categories
- Use same formula for ztest for single proportion:

$$P_{obs} \pm z_{crit} \times \sqrt{\frac{P_{obs} \times Q_{obs}}{N}}$$

 Say we wanted a CI for proportion of books from Saturday (29/120=0.242)

GOODNESS OF FIT TESTS: EFFECT SIZE

$$\chi^{2}_{Effect Size} = \frac{\chi^{2}}{N(k-1)}$$

Ranges from 0 to 1

- 0: Expected = Observed frequencies exactly
- 1: Expected ≠ Observed frequencies as much as possible

GOODNESS OF FIT TESTS: POST HOC PAIRWISE TESTS

Like ANOVA, omnibus test, but where do differences lie?

- 'Pinpointing the action' in contingency tables
- Post-hoc Binomial, z-tests, or smaller 1-way χ^2 tests
 - Collapsing, ignoring levels
 - ullet Bonferonni correction, more conservative lpha per comparison
- Examining
 - Observed vs. expected frequencies per cell
 - Contributions to χ^2 per cell
- Visual analysis of differences in proportions

2-WAY PEARSON X^2 TEST OF "INDEPENDENCE" OR "ASSOCIATION"

Aka: Contingency table, cross-tabulation, or row x column ($r \times c$) analysis > 1 nominal <u>variable</u>

Is distribution of 1 variable contingent on distribution of another?
• Is there an association or dependence between 2 categorical variables

Extension of χ^2 Goodness of Fit Test

Hypotheses:

- H_0 : Variables are independent in population
- H_1 : Variables are dependent in population

Again, χ^2_{obt} is compared with $\chi^2_{crit} \rightarrow df = (r-1)(c-1)$

2-WAY PEARSON X^2 TEST OF "INDEPENDENCE" OR "ASSOCIATION"

Same equation: Standardized squared deviations summed for all cells

$$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Different method for computing ${\cal E}$

ullet For each cell: Multiply corresponding row and column totals (marginals), divide by N

$$E_{Cell_A} = \frac{(a+b)(a+c)}{N}$$

$$EXP_{cell} = \frac{Total_{row} \times Total_{column}}{Total_{grand}}$$

X^2 TEST OF "INDEPENDENCE" — EXAMPLE:

Observed frequencies

Experiment:

Random sample of 200 inmates are surveyed about abuse and violent criminal histories

Relationship between history of abuse and violent crime?

 H_0 : **No association** between abuse history and violent criminal history in population of prison inmates

 $lacksquare O_{ii}=E_{ii}$ for all cells in population

*H*₁: **Association** between abuse history and violent criminal history in population of prison inmates

• $O_{ij} \neq E_{ij}$ for <u>at least one cell</u> in population

Violent Crime						
Abuse	Yes	No	Row Sum			
Yes	70	30	100			
No	40	60	100			
Column Sum	110	90	200			

Expected frequencies:

Test Statistic:

APA format: