Homework 01 (11Sep22)

Name: your name

Rubric for each assignment:

Context	Points
Precision of the answer Answer Markdown readability Code readability	80% 10% 10%

Guidance:

• Upload your answers in the Blackboard submission portal as:

lastname-firstname-homework-xx.pdf or lastname-firstname-homework-xx.ipynb

Table of Problems

- Problem 1 (20 pts) Atom density in enriched uranium.
- Problem 2 (20 pts) Co-60 decay.
- Problem 3 (20 pts) Sr-90 decay.
- Problem 4 (20 pts) Po-210 decay.
 - -4.1)(6 pts) Curies.
 - -4.2)(6 pts) Watts.
 - -4.3)(8 pts) 1 MW.
- Problem 5 (20 pts) Fission products.
 - -5.1)(6 pts) Time-dependent.
 - -5.2)(6 pts) Long-time limit.
 - -5.3)(8 pts) Maximum.

Problem 1 (20 pts)

Calculate the atom density of U-235 in uranium enriched to 15% (a/o) in this isotope if the physical density of uranium is 19 g/cm^3 ?

Answer:

Problem 2 (20 pts)

What mass of Co-60, $t_{1/2} = 5.26$ y, will have the same number of curies as 10 g of Sr-90, $t_{1/2} = 28.8$ y?

Answer:

Problem 3 (20 pts)

Suppose the Co-60 and Sr-90 in Problem 2 (with the same activity) are allowed to decay for 10 years. It is found that after 10 years 1.0 Ci of Co-60 remains. How many curies of Sr-90 remain?

Answer:

Problem 4 (20 pts)

Po-210 decays to Pb-206 by emitting an alpha particle, $t_{1/2} = 138$ d, E = 5.305 MeV.

4.1)(6 pts) How many curies are there in 1 g of pure Po-210?

Answer:

4.2)(6 pts) How many watts of heat are produced by 1 g of Po-210?

Answer:

4.3)(8 pts) What mass of Pb-210 is required to produce 1 MW of thermal energy from its radioactive decay?

Answer:

Problem 5 (20 pts)

Consider the fission product chain $A \stackrel{\beta}{\to} B \stackrel{\beta}{\to} C$ with decay constants λ_A and λ_B for A and B respectively. A reactor is started up at t=0 and produces fission product A at a rate A_0 thereafter. Assuming that B and C are not produced directly from fission:

5.1)(6 pts) Find $n_A(t)$ and $n_B(t)$.

Answer:

5.2)(6 pts) What are $n_A(\infty)$ and $n_B(\infty)$?

Answer:

5.3)(8 pts) Find the maximum of $n_B(t)$.

Answer: