第六章 关系数据理论

本章学习目标

- 1、熟悉因数据库设计不当而引发的问题,冗余、插入异常、删除异常、潜在的不一致性
- ●2、掌握函数依赖
- ●3、掌握第一范式、第二范式、第三范式、

BCNF范式的转化以及识别

第六章 关系数据理论

- 6.1 问题的提出
- 6.2 规范化
- 6.3 数据依赖的公理系统
- *6.4 模式的分解
- 6.5 小结

6.1 问题的提出

关系数据库逻辑设计

- ◆ (1) 针对具体问题,如何构造一个适合于它的数据 模式
- ◆ (2) 数据库逻辑设计的工具——关系数据库的规范 化理论

知识回顾----关系模式的表示

关系模式由五部分组成,即它是一个五元组:

R(U, D, DOM, F)

R: 关系名

U: 组成该关系的属性名集合

D: 属性组U中属性所来自的域

DOM: 属性向域的映象集合

F: 属性间数据的依赖关系集合

关系模式的简化表示

● 关系模式R(U, D, DOM, F)

简化为一个三元组:

R (U, F)

● 当且仅当U上的一个关系r 满足F时, r称为关系模式 R(U, F)的一个关系

知识回顾----属性间数据依赖

□ 定义属性值间的相互关连(主要体现于值的相等与否),这就是数据依赖,它是数据库模式设计的关键

数据依赖对关系模式的影响

例:描述学生的数据库:

学生的学号(Sno)、所在系(Sdept)系主任姓名(Mname)、课程号(Cno)成绩(Grade)

单一的关系模式: Student <U、F>

U = { Sno, Sdept, Mname, Cno, Grade }

数据依赖对关系模式的影响(续)

学生数据库的语义:

- 1. 一个系有若干学生, 一个学生只属于一个系;
- 2. 一个系只有一名主任;
- 3. 一个学生可以选修多门课程,每门课程有若干学生选修;
- 4. 每个学生所学的每门课程都有一个成绩。

数据依赖对关系模式的影响(续)

属性组U上的一组函数依赖F:

F = { Sno → Sdept, Sdept → Mname,(Sno, Cno) → Grade }

表6-1 关系SCD

SNO	Sdept	Mname	Cno	Grade
S1	计算机	刘伟	C1	90
S1	计算机	刘伟	C2	85
S2	信息	王平	C5	57
S2	信息	王平	C6	80
S2	信息	王平	C7	70
S2	信息	王平	C2	70
S3	信息	王平	C1	0
S3	信息	王平	C2	70
S3	信息	王平	C4	85
S4	自动化	张郁	<u>C1</u>	93

主码: (SNO,Cno)

存在问题:

数据冗余

(更新维护代价大)

插入异常

删除异常

不是所有的关系都一样好 关系模式设计的好坏直接 影响到数据库使用效率

S5 自动化 张郁

数据依赖对关系模式的影响(续)

结论:

· Student关系模式不是一个好的模式。

原因: 由存在于模式中的某些数据依赖引起的

解决方法: 通过分解关系模式来消除其中不合适 的数

据依赖。

学生数据库分解为三个关系模式:

S(SNO,SDEPT); SG(SNO,Cno,Grade);

DEPT(SDEPT,MNAME);

表6-2 分解后的关系模式

S:

SNO	Sdept
S1	计算机
S2	信息
S3	信息
S4	自动化

D:

Sdept	Mname
计算机	刘伟
信息	王平
自动化	张郁

SC:

SNO	CNO	Grade
S1	C 1	90
S1	C2	85
S2	C5	57
S2	C6	80
S2	C7	70
S2	C2	70
S 3	C 1	0
S 3	C2	70
S3	C4	85
S4	C1	93

数据冗余度明显降低、

避免了插入 异常、

避免了删除异常、

避免了更新 异常。

"好"的模式:

不会发生插入异常、删除异常、 更新异常, 数据冗余应尽可能少。 规范化理论正是用来改造关系模式,通过分解关系模式来消除其中不合适的数据依赖,以解决插入异常、删除异常、更新异常和数据冗余问题。

6.2.1 函数依赖

- 一、函数依赖
- 二、平凡函数依赖与非平凡函数依赖
- 三、完全函数依赖与部分函数依赖
- 四、传递函数依赖

一、函数依赖

定义6.1 设R(U)是一个属性集U上的关系模式,X和Y 是U的子集。

若对于R(U)的任意一个可能的关系r, r中不可能存在两个元组在X上的属性值相等, 而在Y上的属性值不等,则称 "X函数确定Y"或 "Y函数依赖于X",记作 $X \rightarrow Y$ 。

X称为这个函数依赖的决定属性集(Determinant)

Y=f(x)

说明:

- 1. 函数依赖不是指关系模式R的某个或某些关系实例满足的 约束条件,而是指R的所有关系实例均要满足的约束条件。
- 2. 函数依赖是语义范畴的概念。只能根据数据的语义来确定 函数依赖。
 - 例如"姓名→年龄"这个函数依赖只有在不允许有同名人的条件下成立
- 3. 数据库设计者可以对现实世界作强制的规定。

例如规定不允许同名人出现,函数依赖"姓名→年龄"成立。所插入的元组必须满足规定的函数依赖,若发现有同名人存在,则拒绝装入该元组。

函数依赖(续)

例: Student(Sno, Sname, Ssex, Sage, Sdept)

假设不允许重名,则有:

Sno \rightarrow Ssex, Sno \rightarrow Sname, Sno \rightarrow Sage , Sno \rightarrow Sdept,

Sname \rightarrow Sno ,Sname \rightarrow Ssex, Sname \rightarrow Sage

Sname → Sdept

若 $X \rightarrow Y$,并且 $Y \rightarrow X$,则记为 $X \leftarrow \rightarrow Y$ 。 Sno $\leftarrow \rightarrow$ Sname

若Y不函数依赖于X,则记为X—→Y。 Ssex →Sage

ALL OF THE STATE O

二、平凡函数依赖与非平凡函数依赖

在关系模式R(U)中,对于U的子集X和Y,

如果 $X \rightarrow Y$,但 $Y \subseteq X$,则称 $X \rightarrow Y$ 是非平凡的函数依赖

若 $X \rightarrow Y$, $UY \subseteq X$, 则称 $X \rightarrow Y$ 是平凡的函数依赖

例: 在关系SC(Sno, Cno, Grade)中,

非平凡函数依赖: (Sno, Cno) → Grade

平凡函数依赖: (Sno, Cno) → Sno

(Sno, Cno) → Cno

平凡函数依赖与非平凡函数依赖(续)

◆对于任一关系模式,平凡函数依赖都是必然成立的, 它不反映新的语义,因此若不特别声明, 我们总是 讨论非平凡函数依赖。

三、完全函数依赖与部分函数依赖

定义6.2 在关系模式R(U)中,如果 $X \rightarrow Y$,并且对于X的任何一个真子集X',都有

 $X' \setminus Y$,则称Y完全函数依赖于X,记作 $X \xrightarrow{f} Y$ 。

若X→Y,但Y不完全函数依赖于X,则称Y部分函数 依赖于X,记作X $\stackrel{\Gamma}{\longrightarrow}$ Y。

完全函数依赖与部分函数依赖(续)

例: 在关系SC(Sno, Cno, Grade)中,

由于: Sno → Grade, Cno → Grade,

因此: (Sno, Cno) f Grade

四、传递函数依赖

注: 如果 $Y \rightarrow X$, 即 $X \leftarrow \rightarrow Y$,则Z直接依赖于X。

例: 在关系Std(Sno, Sdept, Mname)中,有: Sno → Sdept, Sdept → Sno, Sdept → Mname Mname传递函数依赖于Sno, Sno → Mname 定义6.4 设K为关系模式R<U,F>中的属性或属性组合。若K → U,则K称为R的一个侯选码。若关系模式R有多个候选码,则选定其中的一个做为主码(Primary key)。

- □主属性与非主属性
- □全码

6.2.3 范式

- □范式是符合某一种级别的关系模式的集合。
- □ 关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。
- □ 范式的种类:

第一范式(1NF)

第二范式(2NF)

第三范式(3NF)

BC范式(BCNF)

第四范式(4NF)

第五范式(5NF)

6.2.3 范式

□ 各种范式之间存在联系:

$$1NF \supset 2NF \supset 3NF \supset BCNF \supset 4NF \supset 5NF$$

□某一关系模式R为第n范式,可简记为R∈nNF。

6.2.4 1NF

■ **1NF**的定义

如果一个关系模式R的所有属性都是不可分的基本数据项,则R∈1NF。

不能是值的集合,也不能是复合的值

不满足1NF的关系模式,不属于关系数据库。

例 如果一个关系模式G(NAME,SEX)的一个可能关系如下:

NAME	SEX
{John, Jean, Ivan}	M
{Mary, Susan}	F

不满足1NF

NAME	SEX
John	M
Jean	M
Ivan	M
Mary	M
Susan	F

是不是满足了1NF就是很好 的一个关系数据库呢?

不是

1NF

例: 关系模式 SLC(Sno, Sdept, Sloc, Cno, Grade)
Sloc为学生住处,假设每个系的学生住在同一个地方。

□ 函数依赖包括:

(Sno, Cno) f Grade
Sno → Sdept
(Sno, Cno) P Sdept
Sdept → Sloc, Sno → Sloc
(Sno, Cno) P Sloc

- □ SLC的码为(Sno, Cno)
- □ SLC满足第一范式。
- □ 非主属性Sdept和Sloc部分函数依赖于码(Sno, Cno)

SLC不是一个好的关系模式

(1) 插入异常

假设Sno=95102, Sdept=IS, Sloc=N的学生还未选课, 因课程号是主属性, 因此该学生的信息无法插入SLC。

(2) 删除异常

假定某个学生本来只选修了3号课程这一门课。现在因身体不适,他连3号课程也不选修了。因课程号是主属性,此操作将导致该学生信息的整个元组都要删除。

SLC不是一个好的关系模式

(3) 数据冗余度大

如果一个学生选修了10门课程,那么他的Sdept和Sloc值就要重复存储了10次。

(4) 修改复杂

例如学生转系,在修改此学生元组的Sdept值的同时,还可能需要修改住处(Sloc)。如果这个学生选修了K门课,则必须无遗漏地修改K个元组中全部Sdept、Sloc信息。

1NF

□原因

Sdept、Sloc部分函数依赖于码。

□ 解决方法

SLC分解为两个关系模式,以消除这些部分函数依赖

SC (Sno, Cno, Grade)

SL (Sno, Sdept, Sloc)

函数依赖图:

2NF

□ 2NF的定义

定义5.6 若关系模式R∈1NF,并且每一个非 主属性都完全函数依赖于R的码,则R∈2NF。

例: SLC(Sno, Sdept, Sloc, Cno, Grade) ∈1NF SLC(Sno, Sdept, Sloc, Cno, Grade) ≥2NF SC (Sno, Cno, Grade) ∈ 2NF SL (Sno, Sdept, Sloc) ∈ 2NF

思考? 什么情况下1NF必然自然处于2NF?

是不是满足了2NF就消除 了一切问题呢?

② 2NF (续)

- □ 采用投影分解法将一个1NF的关系分解为多个 2NF的关系,可以在一定程度上减轻原1NF关系中存在的插入异常、删除异常、数据冗余度 大、修改复杂等问题。
- □ 将一个1NF关系分解为多个2NF的关系,并不 能完全消除关系模式中的各种异常情况和数据 冗余。

2NF

例: 2NF关系模式SL(Sno, Sdept, Sloc)中

□ 函数依赖:

Sno→**Sdept**

Sdept→**Sloc**

Sno→**Sloc**

Sloc传递函数依赖于Sno,即SL中存在非主属性对码的传递函数依赖。

函数依赖图:

□ 解决方法

采用投影分解法,把SL分解为两个关系模式,以消除传递函数依赖:

SD (Sno, Sdept)

DL (Sdept, Sloc)

SD的码为Sno, DL的码为Sdept。

如果一个关系满足第二范式,且不存在非主 属性对码传递函数依赖,则该关系属于第三 范式。

3NF

□ 3NF的定义

定义5.8 关系模式R < U, F > 中若不存在这样的码X < 属性组Y及非主属性Z ($Z \subseteq Y$), 使得 $X \rightarrow Y$, $Y \hookrightarrow X$, $Y \rightarrow Z$, 成立,则称R < U, $F > \in 3NF$ 。

例: SL(Sno, Sdept, Sloc) ∈ 2NF

SL(Sno, Sdept, Sloc) ≤ 3NF

SD (Sno, Sdept) $\in 3NF$

DL (Sdept, Sloc) \in 3NF

□ 若R∈3NF,则R的每一个非主属性既不部分函数依赖于 候选码也不传递函数依赖于候选码。

满足3NF的关系模式R一定满足2NF

- □ 采用投影分解法将一个2NF的关系分解为多个3NF的关系,可以在一定程度上解决原2NF关系中存在的插入异常、删除异常、数据冗余度大、修改复杂等问题。
- □ 将一个2NF关系分解为多个3NF的关系后,并不能完全消除关系模式中的各种异常情况和数据冗余。

BC范式 (BCNF)

□ 定义5.9 设关系模式R<U, F>∈1NF, 如果对于R的每个函数依赖X→Y, 若Y不属于X, 则X必含有候选码,那么R∈BCNF。

由定义可得:

- □ 所有非主属性都完全函数依赖于每一个码
- □ 所有主属性都完全函数依赖于不包含它的每一个码
- □ 没有任何属性完全依赖于非码的任何一组属性
- □ 若R∈BCNF 一定 ∈ 3NF, 但 R∈ 3NF不一定 ∈BCNF

例:在关系模式STJ(S, T, J)中,S表示学生,T表示教师,J表示课程。

- □ 每一教师只教一门课。每门课由若干教师教,某一学生选定某门课,就确定了一个固定的教师。某个学生选修某个教师的课就确定了所选课的名称:
- \square (S, J) \rightarrow T, (S, T) \rightarrow J, T \rightarrow J

 \square (S, J) \rightarrow T, (S, T) \rightarrow J, T \rightarrow J

问题1: 1NF满足吗?

问题2: 2NF满足吗?

问题3:3NF满足吗?

问题4: BCNF满足吗?

BCNF

STJ∈3NF

- □(S, J)和(S, T)都可以作为候选码
- □S、T、J都是主属性

STJ **†** BCNF

□ T→J, T是决定属性集, T不是候选码

解决方法:将STJ分解为二个关系模式:

 $SJ(\underline{S}, \underline{T}) \in BCNF, TJ(\underline{T}, \underline{J}) \in BCNF$

没有任何属性对码的部分函数依赖和传递函数依赖

如果关系模式R∈BCNF,必定有R∈3NF.

如果R∈3NF,且R只有一个候选码,则R必属于BCNF

BCNF的关系模式是否都很完美了?

多值依赖与第四范式(4NF)

例: 学校中某一门课程由多个教师讲授,他们使用相同的一套参考书。

关系模式Teaching(C, T, B)

课程C、教师T和参考书B

表6.1	课程C	教 员 T	参考书B
	物理	李勇王军	普通物理学 光学原理 物理习题集
	数学	子 勇 } 张 平	数学分析 微分方程 高等代数
	计算数学 :	张平 { : 居峰	数学分析

用二维表表示Teaching

课程C	教员T	参考书B
物理	李勇	普通物理学
物理	李 勇	光学原理
物理	李 勇	物理习题集
物理	王军	普通物理学
物理	王军	光学原理
物 理	王军	物理习题集
数学	李 勇	数学分析
数学	李 勇	微分方程
数学	李 勇	高等代数
数学	张平	数学分析
数学	张平	微分方程
数学	张平	高等代数
•••	•••	•••

多值依赖与第四范式(续)

- 1) 关键字是: (C, T, B)
- 2)属于第几范式? BCNF
- 3) 存在的问题。当某一课程增加一名教师时? 当某
- 一门要去掉一本参考书时?

多值依赖与第四范式(续)

□产生原因

存在多值依赖

一、多值依赖

□ 定义6.10

设R(U)是一个属性集U上的一个关系模式, $X \times Y$ 和Z是U的子集,并且Z=U-X-Y,多值依赖 $X \to Y$ 成立当且仅当对R的任一关系r,r在(X,Z)上的每个值对应一组Y的值,这组值仅仅决定于X值而与Z值无关例 Teaching (C, T, B)

对于C的每一个值,T有一组值与之对应,而不论B取 何值

多值依赖 (续)

□平凡多值依赖和非平凡的多值依赖

- \star 若X $\rightarrow \rightarrow$ Y, 而Z= ϕ , 则称 X $\rightarrow \rightarrow$ Y为平凡的多值依赖
- ◆ 否则称X→→Y为非平凡的多值依赖

第四范式(4NF)

定义6.10 关系模式R<U, F>∈1NF, 如果对于R的每个非平凡多值依赖X→→Y(Y X), X都含有候选码,则R∈4NF。
 (X→Y)

□如果R ∈ 4NF,则R ∈ BCNF 不允许有非平凡且非函数依赖的多值依赖 允许的是函数依赖(平凡多值依赖)

第四范式(续)

存在非平凡的多值依赖 $C \rightarrow \rightarrow T$,且C不是候选码

□ 用投影分解法把Teach分解为如下两个关系模式:

 $CT(C, T) \in 4NF$

 $CB(C, B) \in 4NF$

 $C \rightarrow \rightarrow T$, $C \rightarrow \rightarrow B$ 是平凡多值依赖

规范化小结

- □ 关系数据库的规范化理论是数据库逻辑设计的 工具。
- □ 一个关系只要其分量都是不可分的数据项,它 就是规范化的关系,但这只是最基本的规范化。
- □ 规范化程度可以有多个不同的级别

规范化(续)

- □ 规范化程度过低的关系不一定能够很好地描述 现实世界,可能会存在插入异常、删除异常、 修改复杂、数据冗余等问题
- 一个低一级范式的关系模式,通过模式分解可以转换为若干个高一级范式的关系模式集合, 这种过程就叫关系模式的规范化

规范化(续)

□ 关系模式规范化的基本步骤

消除决定属性 集非码的非平 凡函数依赖

1NE

- ↓消除非主属性对码的部分函数依赖
- 2NF
- ↓消除非主属性对码的传递函数依赖
- 3NF
- ↓消除主属性对码的部分和传递函数依赖

BCNF

↓ 消除非平凡且非函数依赖的多值依赖

4NF

规范化的基本思想

◆ 消除不合适的数据依赖

实质上是概念的单一化

- ◆各关系模式达到某种程度的"分离"
- ◆采用"一事一地"的模式设计原则 让一个关系描述一个概念、一个实体或者实体间的 一种联系。若多于一个概念就把它"分离"出去。

规范化(续)

- □注意:
- □不能说规范化程度越高的关系模式就越好
- □ 在设计数据库模式结构时,必须对现实世界的 实际情况和用户应用需求作进一步分析,确定
 - 一个合适的、能够反映现实世界的模式
- □上面的规范化步骤可以在其中任何一步终止

- □ 3. 在一个关系R中,若存在X→Y,和Y→Z,且X不函数依赖于Y,则存在
- □ 4.在一个关系R中,若存在"学号→系号,系号 →系主任",则隐含存在着_____决定

_____0

□ 5.关系数据库中的每个关系必须最低达到______ 范式,该范式中的每个属性都是 的。

□ 6. 设一个关系为R(A,B,C,D,E), 它的最小函数依赖集为F={A→B,A→C,(A,D)→E}, 则该关系的候选码为_____, 该关系存在着_____
 函数依赖,该关系只满足 范式。

- □ 7.若一个关系的任何非主属性都不部分依赖于任 何候选码,则称该关系达到 范式。

练习:

设有关系模式R(课程号,教师姓名,学号,学生姓名,成绩),规定:每一门课由一名教师讲授,每个学生每门课只有一个成绩,学生的学号决定学生的姓名。请回答下列问题:

- 1) 请列出该关系模式中包含的所有函数依赖;
- 2) 指出该关系模式的候选码;
- 3) 关系模式R符合第几范式?说明理由
- 4) 将R分解符合第三范式,并说明理由
- 5)R分解后是否满足BCNF

1)函数依赖

学号→学生姓名, (学号, 课程号)→成绩, 课程号→教师姓名

- 2) 候选码:(学号,课程号)
- 3) 确定范式:
- ∵课程号→教师姓名
 - ∴ (学号,课程号)与教师姓名 部分函数依赖
- : R不属于2NF,R属于1NF

同理:'学号→学生姓名

- : (学号,课程号)与 学生姓名部分函数依赖
- : R不属于2NF,R属于1NF

把R分解为如下三个关系模式:

R1 (学号,课程号,成绩)

R2 (课程号, 教师姓名)

R3 (学号,学生姓名)

∵R1的侯选码为: (学号,课程号),非主属性:成绩 又∵(学号,课程号) 成绩 ∴ R1属于2NF

: R1不存在非主属性对码的传递函数依赖, : R1属于3NF

"R2的侯选码为:课程号,非主属性:教师姓名

又: 课程号 → 教师姓名 : R2属于2NF

: R2不存在非主属性对码的传递函数依赖, : R2属于3NF

"R3的侯选码为:学号,非主属性:学生姓名

又: 学号 → 学生姓名 : R3属于2NF

: R3不存在非主属性对码的传递函数依赖, : R3属于3NF

5)全都属于BCNF。