対戦型パズルゲームにおける 機械学習AIと人間の知識を用いたAI の比較

電気通信大学 情報理工学部 卒業論文発表 総合情報学科 メディア情報学コース 橋山研究室 1310163 柴澤弘樹

背景:ゲームAIの現状

- AIがプロの人間プレイヤーに勝つ
 - AlphaGo······ 囲碁
 - Deep Q-Learning(DQN)……Atari 2600ゲームの29種類

機械学習(ディープラーニング)の発展

問題

- 内部処理がブラックボックス
- ・処理、挙動の解釈が難しい
- 学習結果の再利用が難しい

目的

- •機械学習AI
 - ○強い、事前知識不要
 - × 学習結果の解釈が難しい
- ルールベースAl
 - ○処理の解釈、改良が容易
 - ×知識のルール化が難しい

2つの手法を比較、検討

ぶよぶよ

- •連鎖:「ぷよ」を連続で消去
- 連鎖 → スコア → 相手の妨害
- ・大連鎖が勝利へ
- 先読み、長期的視点の必要性

連鎖数	最低スコア
1	40
2	360
3	1000
4	2280
5	4840

ポテンシャル最大化法[1][2]

- 見えている手のみ(3手分)を全探索
- 1手目での消去なし
- 2,3手目で発動する連鎖のスコアを最大化

提案1 3手目を全幅探索+消去の許可

- [1] 富沢大介, 池田心, シモンビエノ. 落下型パズルゲームの定石形配置法とぷよぷよへの適用. 情報処理学会論文誌, Vol. 53, No. 11, pp. 2560-2570, nov 2012.
- [2] 大月龍,前田新一,石井信. 不完全情報ゲームに対する階層化したモンテカルロ探索とそのぶよぶよへの適用. 電子情報通信学会技術研究報告. NC,ニューロコンピューティング, Vol. 113, No. 500, pp. 275-280, mar 2014.

人の知識を適用したAI

3-1階段(5連鎖)

- 知識
 - 3-1階段の構築ルール
 - if-thenルールを書き下し(設置法20種)

```
dodaiColor[i+1] = tsumo[0][0];
    return ret;
}

for (int i = 1; i < Field.MAX_WIDTH-1; i++) {
    //仕掛け縦
```

提案2

初手6手に適用+提案手法1

シミュレータを作成

実験1:連鎖構築シミュレーション

- 実験条件:32手+発動1手、50試行(同配石)
- ・ポテンシャル法、全幅探索、人の知識を適用したAI

平均連鎖数

ポテンシャル最大化法	5.96
ポテンシャル法の改良法(提案1)	7.78
人の知識を適用したAI (提案2)	8.10

人の知識で連鎖数が安定

実験2:間接的な対戦によるAI比較

DQN

- 実装 DQN-Chainer^[3] RLE^[4]
- 学習 ゲーム内AIと対戦 50000ステップ ×100回

人の知識を適用したAL

画像認識による入出力を実装

連鎖発動のスコア 閾値2100点

ゲーム内AI

- 「のほほ」
- まぐれによる連鎖
- ・時として5連鎖以上

- [3] https://github.com/ugo-nama-kun/DQN-chainer.git, Last Visited 2017/2/13.
- [4] https://github.com/nadavbh12/Retro-Learning-Environment.git, Last visited 2017/2/13.

実験2:対戦結果

勝利数

	実装AI -ゲーム内AI	
DQN	2 - 48	
人の知識適用AI	<mark>24</mark> - 26	

平均スコア

	実装AI	ゲーム内AI
DQN	743.30	1790.12
人の知識適用AI	4762.52	2703.74

DQN対ゲーム内AIの様子

人の知識を適用したAIが優れていた

結果のまとめ

人の知識を適用したAIの対戦模様

- 機械学習AI (DQN)
 - ○事前知識不要
 - ×弱い、ルールの解釈が困難、改善方針が不明
- 人の知識を適用したAI
 - 強い、ルールの解釈が容易、結果の再利用が可能
 - ×知識のルール化に手間

機械学習と知識の組み合わせを検討

補足: ぷよぷよのフィールド

連鎖構築の難しさ

DQN: Deep Q-Learning^[5]

- Q学習におけるQ値をディープラーニングで学習
- パラメータ θ_t の更新式

$$\theta_{t+1} = \theta_t + \alpha \left(R_{t+1} + \gamma \max_{a} Q(s_{t+1}, a; \theta_t) - Q(s_t, a_t; \theta_t) \right) \nabla_{\theta_t} Q(s_t, a_t; \theta_t)$$

t:時刻, α :学習係数, R_{t+1} : $t \to t+1$ で得た報酬, γ : 割引係数,

 s_t : tでの状態, a_t : tでの行動

- 状態 s_t :ゲーム画像4フレーム分
- 報酬 R_{t+1} : (自スコア-相手スコア)の変化

^[5] Volodymyr Mnih et al. Human-level control through deep rein-forcement learning. *Nature*, Vol. 518, No. 7540, pp. 529–533, 02 2015.

人の知識の適用範囲

8.10

8.36

- 序盤(4手目から14手目)に差
- 候補手が限られるほど連鎖大?
- 各手数でシミュレーション

6手が最も良かった