## Appunti Fisica I

Luca Seggiani

29 Febbraio 2024

## 1 Concetto di campo

In fisica definiamo un campo come una funzione multivariabile dallo spazio o dal piano ad un campo scalare o ad uno spazio vettoriale, rispettivamente (nello spazio):

• Campo scalare:

$$T = T(x, y, z)$$

• Campo vettoriale:

$$V = V(x, y, z) = V_x(x, y, z)\hat{i} + V_y(x, y, z)\hat{j} + V_z(x, y, z)\hat{k}$$

## 2 Introduzione alla meccanica classica

La meccanica classica è la branca della fisica che si occupa dello studio di corpi statici e in movimento, con dimensioni superiori a quelle delle particelle subatomiche e velocità non comparabili a quella della luce, (compito rispettivamente della meccanica quantistica e relativistica). Possiamo ulteriormente dividere la meccanica classica in:

- Cinematica: descrizione della traiettoria dei corpi in funzione del tempo, senza tener conto delle cause dei loro moti
- Dinamica: studio delle cause dei moti dei corpi (quindi delle forze)
- Statica: studio dell'equilibrio dei corpi in quiete.

## Il punto materiale

Il punto materiale è un'approssimazione che adottiamo nel caso in cui l'estensione dei corpi di cui parliamo sia irrilevante ala situazione che vogliamo analizzare. Un punto materiale non ha quindi estensione, ma solamente

una posizione ed una certa massa (da cui la dicitura "punto di massa, mass point").

Moto rettilineo Definisco la posizione x di un corpo su una retta in funzione del tempo come:

che prende il nome di legge oraria del moto . Una variazione di spazio (quindi uno spostamento) da  $x(t_2)$  a  $x(t_1)$  punti distinti nel tempo sarà quindi:

$$\Delta x = x(t_1) - x(t_2)$$

A questo punto la variazione di tempo fra  $t_1$  e  $t_2$ , noto  $t_2 > t_1$ , sarà:

$$\Delta t = t_2 - t_1$$

e potrò definire la velocità media:

$$v_x = \frac{\Delta x}{\Delta t} = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$

si nota che questo corrisponde di fatto a  $\tan \alpha$  con  $\alpha$  uguale all'angolo formato dalla tangente del grafico della legge oraria in un dato punto  $x_0 \in [x(t_1), x(t_2)]$ .

Si definisce poi la traiettoria di un punto materiale come il "Luogo geometrico dei punti occupati nel tempo da un punto materiale", ergo tutti i punti che la mia legge oraria x(t) restituisce in un dato intervallo di t.

Prendiamo adesso in esempio la legge oraria di un moto rettilineo uniformemente accelerato:

$$x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2$$

considerando le unità di misura di  $x_0$ ,  $v_0$  e  $a_0$ , ovvero m,  $\frac{m}{s}$  e  $\frac{m}{s^2}$ , posso studiare la coerenza dimensionale:

$$[L] + \frac{[L]}{[T]}[T] + \frac{[L]}{[T]^2}[T]^2 = [L] + [L] + [L]$$

che è dimensionalmente coerente.

Adottiamo adesso alcuni degli strumenti del calcolo per ottenere da una curva continua della legge oraria (magari ottenuta dal curve-fitting di dati sperimentali), il grafico della velocità del punto materiale. Si renderà necessario un passaggio da velocità media a velocità istantanea, definita come la derivata della legge oraria x(t) in un dato punto  $x_0$ . Formalmente, presa la precedente definizione di velocità media possiamo dire:

$$v_x = \frac{x_2 - x_1}{t_2 - t_1} \to \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{t}$$

ovvero il limite del rapporto incrementale in un punto  $x_0=x(t)$  su variazioni infinitesimali di t. Questo si può inoltre esprimere come:

$$v(t_0) = \frac{dx}{dt} \Big|_{t=t_0}$$

e si nota inoltre che in fisica è comune la notazione  $\dot{x}$  per le derivate.