Probability 2

Exercise sheet nb. 4

Raul Penaguiao - Mailbox in J floor

Due until: 15th October at 5 p.m.

Exercises marked with * should be easier after attending the lecture on Thursday.

Exercise 1 (3 points). Let $(X_n)_{n\geq 1}$ be a martingale, and suppose that each X_n is in L^2 . We say that $(X_n)_{n\geq 0}$ is bounded in L^2 if $\sup_{n\geq 1}\mathbb{E}[X_n^2]<\infty$.

- 1. Show that if $(X_n)_{n\geq 1}$ is bounded in L^2 , then $\mathbb{E}[X_n^2]$ converges.
- 2. Show that if $p \geq q$, then

$$\mathbb{E}[X_p X_q] = \mathbb{E}[X_q^2].$$

3. Conclude that if $(X_n)_{n\geq 1}$ is bounded in L^2 , then the sequence $(X_n)_{n\geq 1}$ converges in L^2 (Hint: show that it is a Cauchy sequence, what do you know about Cauchy sequences in L^2 ?).

Exercise 2 (4 points). Let $p \in (0,0.5)$ and $\{Y_n\}_{n\geq 1}$ be a sequence of i.i.d. random variables with

$$\mathbb{P}[Y_1 = 1] = p, \ \mathbb{P}[Y_1 = -1] = 1 - p.$$

Let $\{X_n\}_{n\geq 0}$ be the random process defined by $X_n = \sum_{k=1}^n Y_k$, and consider the associated random process $Z_n = \left(\frac{1-p}{p}\right)^{X_n}$. Recall that in exercise 3 of sheet 3, we showed that $\{Z_n\}_{n\geq 0}$ is a martingale w.r.t. the filtration $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$.

1. Show that

$$\mathbb{P}\Big(\sup_{n\geq 0} X_n \geq k\Big) \leq \left(\frac{p}{1-p}\right)^k.$$

Deduce that $\sup_{n>0} X_n < \infty$ almost surely, and that

$$\mathbb{E}\Big(\sup_{n\geq 0} X_n\Big) \leq \frac{p}{1-2p}.$$

2. Recall that the strong law of large numbers asserts that $\frac{X_n}{n}$ tends almost surely to $\mathbb{E}(X_1)$. Use this to give another proof that $\sup_{n\geq 1} X_n < \infty$ almost surely.

Exercise 3 (3 points). Let $(M_n)_{n\geq 1}$ be a bounded martingale with $M_0=0$ a.s. that it, it exists some constant A (independent of n) such that $M_n\leq A$ a.s. Consider $X_n=\exp(M_n)$.

- 1. Show that X_n is a submartingale.
- 2. Use Doob's decomposition of X_n to show that $\{\mathbb{E}(\exp(M_n))\}_{n\geq 1}$ is non-decreasing.
- 3. * Show that X_n converges a.s.