Daily Inspiration

Today

- Recap yesterday
- Logistic regression: using regression tools for classification
- Neural network basics

Yesterday

- Cost function: (differentiable) function that shows how wrong an estimate is for given parameters.
- Gradient descent: one common way to minimise the cost function automatically, i.e. to get optimal parameters
- Linear regression: very simple model that assumes that value to predict is linear combination of input features.
- Overfitting and underfitting, bias and variance: want our model to work well for unseen data. Need just enough model freedom given the complexity of our problem. How:
 - Cross-validation to measure ability to generalise + get best hyperparameters
 - Use learning curves to diagnose bias vs. variance

 Goal gradient descent: take a small step in every parameter such that you get closer to the minimum of the cost. Return new theta's.

$$\theta_{0new} = \theta_{0} - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot 1)$$

$$\theta_{1new} = \theta_{1} - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{1}^{(i)})$$

$$\theta_{2new} = \theta_{2} - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{2}^{(i)})$$

We have data, known values, and initial theta's:

$$X = \begin{bmatrix} 1 & feat_1val_1 & feat_2val_1 \\ 1 & feat_1val_2 & feat_2val_2 \end{bmatrix}; y = \begin{bmatrix} 10.23 \\ -4 \end{bmatrix}; params = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

Get predicted values:

$$\begin{bmatrix} 1 & feat_1val_1 & feat_2val_1 \\ 1 & feat_1val_2 & feat_2val_2 \end{bmatrix} @ \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 9.23 \\ -2.5 \end{bmatrix}$$

2 by 3 times 3 by 1 gives 2 by 1 (rows by columns)

Get errors:

$$errs = \begin{bmatrix} 9.23 \\ -2.5 \end{bmatrix} - y = \begin{bmatrix} 9.23 \\ -2.5 \end{bmatrix} - \begin{bmatrix} 10.23 \\ -4 \end{bmatrix} = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$$

$$\theta_{0new} = \theta_{0} - \frac{a}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot 1)$$

$$\theta_{1new} = \theta_{1} - \frac{a}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{1}^{(i)})$$

$$\theta_{2new} = \theta_{2} - \frac{a}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{2}^{(i)})$$

$$errs = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$$

Calculate, for each feature, sum of each error times that feature:

$$\begin{bmatrix} -1 \\ 1.5 \end{bmatrix}^T = \begin{bmatrix} -1 & 1.5 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1.5 \end{bmatrix} @ \begin{bmatrix} 1 & feat_1val_1 & feat_2val_1 \\ 1 & feat_1val_2 & feat_2val_2 \end{bmatrix} =$$

$$errs = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$$

$$\begin{bmatrix} -1 \cdot 1 + 1.5 \cdot 1 & -1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2 & -1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2 \end{bmatrix}$$

Calculate, for each feature, sum of each error times that feature:

$$\begin{bmatrix} -1 \\ 1.5 \end{bmatrix}' = \begin{bmatrix} -1 & 1.5 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1.5 \end{bmatrix} @ \begin{bmatrix} 1 & feat_1val_1 & feat_2val_1 \\ 1 & feat_1val_2 & feat_2val_2 \end{bmatrix} =$$

$$-1 \cdot 1 + 1.5 \cdot 1$$
 $-1 \cdot$

$$-1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2$$

$$-1 \cdot 1 + 1.5 \cdot 1 \quad \begin{bmatrix} -1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2 \\ -1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2 \end{bmatrix}$$

$$\theta_{0new} = \theta_0 - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot 1)$$

$$\theta_{1new} = \theta_1 - \frac{q}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)})$$

$$\theta_{1new} = \theta_1 - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}) \quad \theta_{2new} = \theta_2 - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_2^{(i)})$$

 $errs = \begin{bmatrix} -1 \\ 1.5 \end{bmatrix}$

Now all that we need to do is multiply with α/m and subtract from our old theta's:

$$\alpha/m \cdot \begin{bmatrix} -1 \cdot 1 + 1.5 \cdot 1 & -1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2 & -1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\alpha}{m}(-1 \cdot 1 + 1.5 \cdot 1) & \frac{\alpha}{m}(-1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2) & \frac{\alpha}{m}(-1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2) \end{bmatrix}$$

Transpose it:

$$\left[\frac{\alpha}{m}(-1\cdot 1+1.5\cdot 1) \quad \frac{\alpha}{m}(-1\cdot feat_1val_1+1.5\cdot feat_1val_2) \quad \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2)\right]^T = \begin{bmatrix} \frac{\alpha}{m}(-1\cdot 1+1.5\cdot 1) \\ \frac{\alpha}{m}(-1\cdot feat_1val_1+1.5\cdot feat_1val_2) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \end{bmatrix}^T = \begin{bmatrix} \frac{\alpha}{m}(-1\cdot 1+1.5\cdot 1) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \end{bmatrix}^T = \begin{bmatrix} \frac{\alpha}{m}(-1\cdot 1+1.5\cdot 1) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \end{bmatrix}^T = \begin{bmatrix} \frac{\alpha}{m}(-1\cdot 1+1.5\cdot 1) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \end{bmatrix}^T = \begin{bmatrix} \frac{\alpha}{m}(-1\cdot 1+1.5\cdot 1) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \end{bmatrix}^T = \begin{bmatrix} \frac{\alpha}{m}(-1\cdot 1+1.5\cdot 1) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \end{bmatrix}^T = \begin{bmatrix} \frac{\alpha}{m}(-1\cdot 1+1.5\cdot 1) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \end{bmatrix}^T = \begin{bmatrix} \frac{\alpha}{m}(-1\cdot 1+1.5\cdot 1) \\ \frac{\alpha}{m}(-1\cdot feat_2val_1+1.5\cdot feat_2val_2) \\ \frac{\alpha}{m}(-1\cdot feat_2va$$

So finally:

$$\begin{bmatrix} \theta_{0old} \\ \theta_{1old} \\ \theta_{2old} \end{bmatrix} - \begin{bmatrix} \frac{\alpha}{m}(-1 \cdot 1 + 1.5 \cdot 1) \\ \frac{\alpha}{m}(-1 \cdot feat_1val_1 + 1.5 \cdot feat_1val_2) \\ \frac{\alpha}{m}(-1 \cdot feat_2val_1 + 1.5 \cdot feat_2val_2) \end{bmatrix} = \begin{bmatrix} \theta_{0new} \\ \theta_{1new} \\ \theta_{2new} \end{bmatrix}$$

$$\theta_{1new} = \theta_1 - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)})$$

Use regression-like framework for classification

Naïve idea:

 Train a linear regression. If
 Class >= 0.5, predict class 1.
 Otherwise, class 0.

Naïve idea:

 Train a linear regression. If
 Class >= 0.5, predict class 1.
 Otherwise, class 0.

- Naïve idea:

 Train a linear regression. If
 Class >= 0.5, predict class 1.
 Otherwise, class 0.
- Problems:
 - -You can predict class > 1 and < 0, while that is not possible in reality.

- Naïve idea:

 Train a linear regression. If
 Class >= 0.5, predict class 1.
 Otherwise, class 0.
- Problems:
 - -You can predict class > 1 and < 0, while that is not possible in reality.
 -This example seemed to work, but quickly breaks down →

- Naïve idea:

 Train a linear regression. If
 Class >= 0.5, predict class 1.
 Otherwise, class 0.
- Problems:
 - -You can predict class > 1 and < 0, while that is not possible in reality.
 -This example seemed to work, but quickly breaks down → get what is basically confirmation of hypothesis, but perform worse!

- What we want:
 - Use the information that we only have two classes, 0 or 1.
 - Hypothesis function should output only numbers between 0 or 1.

$$h_{\theta}(x) = \theta^T \cdot x$$

$$h_{\theta}(x) = \theta^T \cdot x \qquad \longrightarrow \qquad [0.5 \ 3 \ -1.5] \cdot \begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix}$$

$$h_{\theta}(x) = \theta^T \cdot x$$
 \longrightarrow $\begin{bmatrix} 0.5 & 3 & -1.5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix} = 0.5 \cdot 1 + 3 \cdot 3 - 1.5 \cdot 8 = -2.5$

- Before, our hypothesis function was of the form:

$$h_{\theta}(x) = \theta^T \cdot x$$

Change that to the following:

$$h_{\theta}(x) = g(\theta^T \cdot x)$$

Before, our hypothesis function was of the form:

$$h_{\theta}(x) = \theta^T \cdot x$$

Change that to the following:

$$h_{\theta}(x) = g(\theta^T \cdot x) \longrightarrow g(z) = \frac{1}{1 + e^{-z}}$$

Before, our hypothesis function was of the form:

$$h_{\theta}(x) = \theta^T \cdot x$$

Change that to the following:

$$h_{\theta}(x)=g(\theta^T\cdot x) \longrightarrow g(z)=\frac{1}{1+e^{-z}}$$

What does that look like?

Before, our hypothesis function was of the form:

$$h_{\theta}(x) = \theta^T \cdot x$$

Change that to the following:

$$h_{\theta}(x)=g(\theta^T \cdot x) \longrightarrow g(z)=\frac{1}{1+e^{-z}}$$

• What does that look like? $z \to \infty, e^{-z} \to 0$

$$z \rightarrow -\infty$$
, $e^{-z} \rightarrow \infty$

What does the sigmoid function look like?

What does the sigmoid function look like?

- How do we work with this?
$$h_{\theta}(x) = \frac{1}{1 + e^{-(\theta^T \cdot x)}}$$

- How do we work with this? $h_{\theta}(x) = \frac{1}{1 + e^{-(\theta^T \cdot x)}}$

Interpret outcome of $h_{\theta}(x)$ as probability that class = 1 given the features.

- How do we work with this?
$$h_{\theta}(x) = \frac{1}{1 + e^{-(\theta^T \cdot x)}}$$

Interpret outcome of $h_{\theta}(x)$ as probability that class = 1 given the features. Example:

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{Tumor size} \\ \text{Neovascularisation level} \end{bmatrix}$$

$$h_{\theta}(x)=0.8$$
 \longrightarrow 80% chance of tumor being malignant

- How do we work with this?
$$h_{\theta}(x) = \frac{1}{1 + e^{-(\theta^T \cdot x)}}$$

Interpret outcome of $h_{\theta}(x)$ as probability that class = 1 given the features. Example:

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{Tumor size} \\ \text{Neovascularisation level} \end{bmatrix}$$

 $h_{\theta}(x)=0.8$ \longrightarrow 80% chance of tumor being malignant (class 1) 100% - 80% → 20 % chance of being benign (class 0)

- How do we work with this?
$$h_{\theta}(x) = \frac{1}{1 + e^{-(\theta^T \cdot x)}}$$

- Interpret outcome of $h_{\theta}(x)$ as probability that class = 1 given the features.
- Formally:

$$h_{\theta}(x) = \frac{1}{1 + e^{-(\theta^{T} \cdot x)}} = p(y = 1 | x ; \theta)$$

$$p(y = 0 | x ; \theta) = 1 - h_{\theta}(x)$$

Threshold:

Threshold:

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_0 \cdot x_0, \theta_1 \cdot x_1, \theta_2 \cdot x_2)$

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_{0} \cdot x_{0}, \theta_{1} \cdot x_{1}, \theta_{2} \cdot x_{2})$ $\theta = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_0 \cdot x_0, \theta_1 \cdot x_1, \theta_2 \cdot x_2)$ $\theta = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ $y = 1 \text{ if } -3.1 + 1.x_1 + 1.x_2 \ge 0$

How does it look? $-\operatorname{sig}(t) = \frac{1}{1+e^{-t}}$ $h_{\theta}(x) \ge 0.5 < 8$ -2 $\theta^T \cdot x \ge 0$

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_0 \cdot x_0, \theta_1 \cdot x_1, \theta_2 \cdot x_2)$ $\theta = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ $y = 1 \text{ if } -3.1 + 1.x_1 + 1.x_2 \ge 0$ $-3.1 + 1.x_1 + 1.x_2 \ge 0$ $x_1 + x_2 = 3$

 $g(z) = \frac{1}{1 + e^{-z}}$ How does it look? $h_{\theta}(x) = g(\theta_0 \cdot x_0, \theta_1 \cdot x_1, \theta_2 \cdot x_2)$ $\theta = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ $y = 1 \text{ if } -3.1 + 1.x_1 + 1.x_2 \ge 0$ $-3.1 + 1.x_1 + 1.x_2 \ge 0$ $x_1 + x_2 = 3$

 $g(z) = \frac{1}{1 + e^{-z}}$ How does it look? $h_{\theta}(x) = g(\theta_0 \cdot x_0, \theta_1 \cdot x_1, \theta_2 \cdot x_2)$ $\theta = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ $y=1 \text{ if } -3.1 + 1.x_1 + 1.x_2 \ge 0$

 $y = 1 \text{ if } -3.1 + 1.x_1 + 1.x_2 \ge 0$

How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_{0} \cdot x_{0}, \theta_{1} \cdot x_{1}, \theta_{2} \cdot x_{2})$ $\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_0 \cdot x_0, \theta_1 \cdot x_1, \theta_2 \cdot x_2)$

$$\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

$$y = 1 \text{ if } -3 \cdot 1 + 1 \cdot x_1 + 1 \cdot x_2 \ge 0$$

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_0 x_0, \theta_1 x_1, \theta_2 x_2, \theta_3 x_1^2, \theta_4 x_2^2)$

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_0 x_0, \theta_1 x_1, \theta_2 x_2, \theta_3 x_1^2, \theta_4 x_2^2)$

$$\theta = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_0 x_0, \theta_1 x_1, \theta_2 x_2, \theta_3 x_1^2, \theta_4 x_2^2)$

$$\theta = \begin{bmatrix} -1\\0\\0\\1\\1 \end{bmatrix} \longrightarrow -1 + x_1^2 + x_2^2 \ge 0$$

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_0 x_0, \theta_1 x_1, \theta_2 x_2, \theta_3 x_1^2, \theta_4 x_2^2)$

$$\theta = \begin{bmatrix} -1\\0\\0\\1\\1 \end{bmatrix} \longrightarrow \begin{array}{c} -1 + x^2 + x^2 \ge 0\\ x_1^2 + x_2^2 \ge 1 \end{array}$$

- How does it look? $g(z) = \frac{1}{1 + e^{-z}}$ $h_{\theta}(x) = g(\theta_0 x_0, \theta_1 x_1, \theta_2 x_2, \theta_3 x_1^2, \theta_4 x_2^2)$
- Add two polynomial features

$$\theta = \begin{bmatrix} -1\\0\\0\\1\\1 \end{bmatrix} \longrightarrow \begin{bmatrix} -1+x^2+x^2 \ge 0\\1\\x_1^2+x_2^2 \ge 1 \end{bmatrix}$$

- How does it look?
- If you add more and higher-order polynomial features, you can get complex boundaries:

• Before:
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Before:
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

• Before:
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \right)$$

$$Cost(x) = \frac{1}{2} (h_{\theta}(x) - y)^2$$

• Before:
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \right)$$

$$Cost(x) = \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(x^{i})$$

- Need a cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(x^{i})$ $\text{Cost}(x) = \frac{1}{2} (h_{\theta}(x) y)^{2}$ Why not MSE? \rightarrow not convex

- Need a cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(x^{i})$ $\text{Cost}(x) = \frac{1}{2} (h_{\theta}(x) y)^{2}$ Why not MSE? \rightarrow not convex

- Need a cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(x^{i})$ $\text{Cost}(x) = \frac{1}{2} (h_{\theta}(x) y)^{2}$ Why not MSE? \rightarrow not convex

- Need a cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(x^{i})$ $\text{Cost}(x) = \frac{1}{2} (h_{\theta}(x) y)^{2}$ Why not MSE? \rightarrow not convex

- Need a cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(x^{i})$ $\text{Cost}(x) = \frac{1}{2} (h_{\theta}(x) y)^{2}$ Why not MSE? \rightarrow not convex

- Need a cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(x^{i})$ $\text{Cost}(x) = \frac{1}{2} (h_{\theta}(x) y)^{2}$ Why not MSE? \rightarrow not convex

- Need a cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(x^{i})$ $\text{Cost}(x) = \frac{1}{2} (h_{\theta}(x) y)^{2}$ Why not MSE? \rightarrow not convex

- Need a cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(x^{i})$ $\operatorname{Cost}(x) = \frac{1}{2} (h_{\theta}(x) y)^{2}$
- What then?

- Need a cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \operatorname{Cost}(x^i)$ $\operatorname{Cost}(x) = \frac{1}{2} (h_{\theta}(x) y)^2$
- What then?

$$\operatorname{Cost}(x) = \begin{cases} -\log(h_{\theta}(x)) \text{ if } y = 1\\ -\log(1 - h_{\theta}(x)) \text{ if } y = 0 \end{cases}$$

$$\operatorname{Cost}(x) = \begin{cases} -\log(h_{\theta}(x)) \text{ if } y = 1\\ -\log(1 - h_{\theta}(x)) \text{ if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(x^{i})$$

$$\operatorname{Cost}(x) = \begin{cases} -\log(h_{\theta}(x)) \text{ if } y = 1\\ -\log(1 - h_{\theta}(x)) \text{ if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(x^{i})$$

$$\operatorname{Cost}(x) = \begin{cases} -\log(h_{\theta}(x)) \text{ if } y = 1\\ -\log(1 - h_{\theta}(x)) \text{ if } y = 0 \end{cases}$$

$$-\log(h_{\theta}(x))^{\frac{1}{2}}$$

$$h_{\theta}(x)$$

$$Cost(x) = \begin{cases} -\log(h_{\theta}(x)) \text{ if } y = 1 \\ -\log(1 - h_{\theta}(x)) \text{ if } y = 0 \end{cases}$$

$$-\log(h_{\theta}(x))^{-1} \qquad \text{If } y = 1 \text{ And our hypothesis predicts 1}$$

$$\text{The cost is 0}$$

$$h_{\theta}(x)$$

$$\operatorname{Cost}(x) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\operatorname{Cost}(x) = -y \cdot \log(h_{\theta}(x)) - (1 - y) \cdot \log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(x^{i})$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(x^{i})$$

$$\operatorname{Cost}(x) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\operatorname{Cost}(x) = -y \cdot \log(h_{\theta}(x)) - (1 - y) \cdot \log(1 - h_{\theta}(x))$$

$$y = 0$$

$$-0 \cdot \log(h_{\theta}(x)) - (1 - 0) \cdot \log(1 - h_{\theta}(x))$$

$$-\log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(x^{i})$$

$$\operatorname{Cost}(x) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\operatorname{Cost}(x) = -y \cdot \log(h_{\theta}(x)) - (1 - y) \cdot \log(1 - h_{\theta}(x))$$

$$y = 1$$

$$-1 \cdot \log(h_{\theta}(x)) - (1 - 1) \cdot \log(1 - h_{\theta}(x))$$

$$-\log(h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(x^{i})$$

Putting it all together

$$Cost(x) = -y \cdot \log(h_{\theta}(x)) - (1-y) \cdot \log(1-h_{\theta}(x)) \qquad J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(x^{i})$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log(h_{\theta}(x^{(i)})) - (1-y^{(i)}) \cdot \log(1-h_{\theta}(x^{(i)}))$$

Putting it all together

$$Cost(x) = -y \cdot \log(h_{\theta}(x)) - (1 - y) \cdot \log(1 - h_{\theta}(x)) \qquad J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(x^{i})$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Ey^{(i)} \log(h_{\theta}(x^{(i)})) = (1 - y^{(i)}) \cdot \log(1 - h_{\theta}(x^{(i)}))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} y^{(i)} \cdot \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot \log(1 - h_{\theta}(x^{(i)}))$$

Optimising the cost function

 Same form as for linear regression (only hypothesis function differs!)

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(\left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x_j^{(i)} \right)$$

$$\theta_{j} := \theta_{j} - \frac{a}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)})$$

$$h_{\theta}(x^{(i)}) = \frac{1}{1 + e^{-\theta^{T} * x}}$$

Summary

- By using the sigmoid function as a transformation of normal regression and interpreting the output as a chance of being 0 or 1 we can do classification.
- Only the form of our hypothesis function is different
- Need a different cost function: should be smooth, and give logical values for large errors.

Break for practical