الأعداد المركبة

العدد التخيلي 👛 هو العدد الذي مربعه يساوي -١

أمثلة

القوي الصحيحة للعدد ت

ت² = ت'×ت' = -١×-١

الجزء التخيلي	الجزء الحقيقي	العدد المركب
۳ت	۲	۲+۳ت
-٤ت	صفر	-٤ت
صفر	0	0
-٥ت	صفر	۰+٥ت
-٧ت	1	-٧-

حل المعادلة ٣ س^٢+٢٧ = صفر

$$q = \frac{-V}{\pi} = \frac{V}{\pi}$$

جبر - فصل الدراسي الأول - صف الدراسي الثانوي الأول علمي

حل المعادلاة ٣س٢ + ١٢ = صفر

$$\frac{1}{7}$$
 $-\frac{1}{7}$ = -3
 $\frac{1}{7}$ $-\frac{1}{7}$ = -3
 $\frac{1}{7}$ $-\frac{1}{7}$ = -4
 $\frac{1}{7}$ $-\frac{1}{7}$ = ± 7
م. ح = {٢ت، -٢ت}

تساوي عددين مركبين

أوجد قيمة س، ص التي تحقق

(۲س + ۱) + ٤ص ت = ٥ - ١٢ ت

$$P - = \frac{1r}{\epsilon} - = \frac{1r}{\epsilon}$$

$$0 = 1 + \omega r$$

$$1 - 0 = \omega r$$

$$r = \frac{\epsilon}{r} = \omega$$

العمليات على الأعداد المركبة

حاصل الضرب	مرافقه	العدد المركب
٤-9ت = ٤+٩ = ١٣	۲-۳ت	۲+۳ت
۱-ت = ۱-(۱۰) = ۲	-۱+ت	-۱-ت
-ت'+1 = ۱+(۱-)- = ۱+ ^۲	ت+۱	-ت+۱
٢٥	0	0
-٤ × ت' = -٤ × -١ = ٤	۲ت	-۲ت

ملحوضة

العدد المركب × مرافقه = عدد حقيقي

$$\frac{\circ}{\text{ضع في أبسط صورة}}$$

نضرب في مرافقه المقام ٢-٣ﺕ بسطا ومقاما

$$\frac{(-7-7)}{7} = \frac{0}{3-8} \times \frac{7-7}{7-7} \times \frac{0}{3-8} \times \frac{0}{7-7} \times$$

تحديد نوع جزري للمعادلة التربيعية

> يكون حلها باستخدام:- 1) التحليل 2) القانون العام

> > القانون العام

المميز = -2^2 أ ج \longrightarrow موجب \longrightarrow الجزران حقيقيان مختلفان (أكبر من صفر)

← سالب ← الجزران مركبان مترافقان (أصغر من صفر)

← صفر ← جزران حقیقیان متساویان (جزر مکرر)

أوجد قيمة ك إذا كان جزر المعادلة
$$u^7+3w+2=0$$
 حقيقيان مختلفين أ= 1، $u=3$, $u=3$, $u=3$ المميز = $u=3$ - 3 أ ج > $u=3$ المميز = $u=3$ - 3 $u=3$

$$m^{7}$$
-ك m^{+} $= \cdot \cdot \cdot \cdot$ متساویان $= \cdot \cdot \cdot \cdot$ $= \cdot \cdot \cdot$ $= \cdot \cdot$ $= \cdot \cdot \cdot$ $= \cdot \cdot$ $= \cdot \cdot$ $=$

العلاقة بين جزري المعادلة الدرجة الثانية ومعاملات حدودها

إذا كان ل، م جزري المعادلة

فإن

إذا كان حاصل ضرب جزري المعادلة س'' +۱۰س-ج = صفر هو - $\frac{1}{n}$ فأوجد قيمة ج

$$= \frac{5}{\sqrt{1 - 4}} = -\frac{5}{\sqrt{1 - 4}}$$

$$= -5 = -5$$

$$= 5 = 0$$

$$= 5 = 0$$

إذا كان مجموع جزري المعادلة ٢س^٢ +ب س-٥ = صفر هو $-\frac{7}{1}$ فأوجد قيمة ب

$$\frac{\frac{\pi}{r}}{r} = \frac{\text{aslad } m}{\text{aslad } m^{7}} = -\frac{\frac{\pi}{r}}{r} = -\frac{\frac{\pi}{r}}{r} = -\frac{\pi}{r} = -$$