Algorithm Analysis - Math CheatSheet

Logarithm properties

- Definition: $base^{log_{base}x} = x$
- Base change: $log_a(x) = \frac{log_b(x)}{log_b(a)}$
- Product rule: $log_b(x * y) = log_b(x) + log_b(y)$
- Quotient rule: $log_b(x/y) = log_b(x) log_b(y)$
- $a^{log_B(b)} = b^{log_B(a)}$

Common derivatives

F(x)	F(x)
x^n	$n * x^{(n-1)}s$
b^x	$b^x * ln(b)$
$log_b(x)$	$\frac{1}{x*ln(b)}$
f(x) * g(y)	f(x)' * g(y) + f(x) * g(y)'
$\frac{f(x)}{g(y)}$	$\frac{f(x)'*g(y)-f(x)*g(y)'}{g(x)^2}$
f(g(x))	f'(g(x)) * g'(x)

L'Hospital's Rule

Assuming:

- $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ are either 0 or ∞
- $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists

Then: $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$

$Useful\ sums$

- $\sum_{i=0}^{n} i = \frac{n*(n+1)}{2}$
- $\bullet \ \sum_{i=0}^{n} i^2 = \frac{n*(n+1)(2n+1)}{6}$
- $\sum_{i=0}^{n} i^{p} \in \theta(n^{p+1})$
- $\sum_{i=1}^{n} a * r^{i-1} = \frac{a * (1-r^n)}{1-r}$
- $\sum_{i=0}^{n} i * x^i = \frac{x (n+1) * x^{n+1} + n * x^{n+2}}{(x-1)^2}$
- $\sum_{i=1}^{n} \frac{1}{x} \in \theta(\log(n))$
- $\sum_{i=1}^{n} ln(i) = ln(i) = n * ln(i) n + O(ln(i))$

Asymptotic Complexities

Assuming: $\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right) = L$

- $0 \le L < \infty \Rightarrow f(n) \in O(g(n))$
- $0 < L < \infty \Rightarrow f(n) \in \Theta(g(n))$
- $0 < L \le \infty \Rightarrow f(n) \in \Omega(g(n))$
- $L = 0 \Rightarrow f(n) \in o(g(n))$
- $L = \infty \Rightarrow f(n) \in \omega(g(n))$

Master Theorem

Suppose: $T(n) = a * T(n/b) + f(n), T(1) = \theta(1).$ **Subject to:** $a \ge 1, b > 1$, f is an asymptotically positive function.

Then: $T(n) = \sum_{i=0}^{\log_b(n)-1} a^i * f(n/b^i) + \theta(n^{\log_b(a)})$ Proof using recursion trees:

- $log_b(n)$ height of the recursion tree
- $a^i * f(n/b^i)$ cost of all internal nodes at depth i
- $\theta(n^{\log_b(a)})$ cost associated with the leaves

Master Theorem

- 1. $f(n) = O(n^{\log_b(a) \epsilon})$, for some constant $\epsilon > 0$ then $T(n) = \theta(n^{\log_b(a)})$
- 2. $f(n) = \theta(n^{\log_b(a)})$, then $T(n) = \theta(n^{\log_b(a)}\log(n))$
- 3. $f(n) = \omega(n^{\log_b(a+\epsilon)})$, for some constant $\epsilon > 0$ and if $a * f(n/b) \le c * f(n)$, for some constant c < 1 and all sufficiently large n, then $T(n) = \theta(f(n))$

Extension of Master Theorem

Assuming: $f(n) = O(n^{\log_b(a)} * \log_b(n)^{\alpha})$. Then:

- 1. $\alpha < -1 \rightarrow T(n) = \theta(n^{\log_b(a)})$
- 2. $\alpha = -1 \rightarrow T(n) = \theta(n^{\log_b(a)} \log_b(\log_b(n)))$
- 3. $\alpha > -1 \rightarrow T(n) = \theta(n^{\log_b(a)}\log_b(n)^{\alpha+1})$

• Sometimes we may obtain a simpler expression by changing variables:

Example: $T(n) = 2 * T(\sqrt{n}) + log(n)$

- 1. Let $n = 2^m \to m = \log(n) \to \sqrt{n} = 2^{m/2}$
- 2. Let $S(m) = T(2^m)$

Then: $T(2^m) = 2 * T(2^{m/2}) + m$

- $\rightarrow S(m) = 2 * S(m/2) + m$
- $\rightarrow S(m) = \theta(m * log(m))$ Master Th.
- $\to T(n) = T(2^m) = S(m) = \theta(m * log(m))$
- $\rightarrow T(n) = \theta(\log(n) * \log(\log(n)))$
- It may be useful to search for a lower and an upper bound that is easier to compute.

Example: $T(n) = T(n/2 - \log_2(n)) + 1$

Consider:

$$T_1(n) = T_1(n/4) + 1 \rightarrow T_1(n) = \theta(\log(n))$$

$$T_2(n) = T_2(n/2) + 1 \rightarrow T_2(n) = \theta(\log(n))$$

Since: $n/4 < n/2 - \log_2(n) < n/2$

- $\rightarrow T_1(n) < T(n) < T_2(n)$
- $\rightarrow T(n) \in \theta(log(n))$

Big-O Complexity Chart

ements (source)