

Roadmap

- 1. NP-Hard problems on trees
- 2. Treewidth and Tree Decomposition
- 3. Cops and robbers
- 4. Computing a Tree Decomposition

■NP-Hard problems on trees

- ► NP-Hard problems on graphs, generally, cannot be solved exactly because of their prohibitive computational cost
 - Greedy Approximation
 - ► Heuristics: Simulated Annealing, Genetic Algorithm, ACO, ...
 - ► Polynomial Time Approximation Scheme (PTAS)
- On trees, many NP-Hard problems can be solved exactly in polynomial time
 - ► Trees have a computationally convenient structure
 - Sub-trees are independent

Let G = (V, E) be a graph, an independent set is a subset of nodes such that there is no edge between them: $S = \{C \subset V, (u, v) \notin E \ \forall u, v \in C\}$

Let G = (V, E) be a graph, an independent set is a subset of nodes such that there is no edge between them: $S = \{C \subset V, (u, v) \notin E \ \forall u, v \in C\}$

 $S = \{f, g, a\}$ is an independent set

Let G = (V, E) be a graph, an independent set is a subset of nodes such that there is no edge between them: $S = \{C \subset V, (u, v) \notin E \ \forall u, v \in C\}$

 $S = \{f, g, d\}$ is not an independent set

Let G = (V, E) be a graph, an independent set is a subset of nodes such that there is no edge between them: $S = \{C \subset V, (u, v) \notin E \ \forall u, v \in C\}$

$$MIS = \underset{S}{\operatorname{argmax}} |S|, \quad \forall S \in IS(G)$$

Let G = (V, E) be a graph, an independent set is a subset of nodes such that there is no edge between them: $S = \{C \subset V, (u, v) \notin E \ \forall u, v \in C\}$

$$MIS = \underset{S}{\operatorname{argmax}} |S|, \quad \forall S \in IS(G)$$

- ► MIS is NP-Complete
- ▶ Naive implementation requires $O(n^2 2^n)$ computational time
 - ▶ "Fast" implementation in $\mathcal{O}(1.1996^n)$

On trees, we can solve MIS in linear time!

 $T_{v,2}$

- Optimal substructure
 - optimal solution implies optimal solutions of subproblems

$$MIS(v) = MIS(T_{v,1}) + MIS(T_{v,2}) + MIS(T_{v,3}) \pm v$$

 $T_{v.2}$

- Optimal substructure
 - optimal solution implies optimal solutions of subproblems
- Overlapping subproblems
 - subproblems are computed (reused) several times

$$MIS(v) = MIS(T_{v,1}) + MIS(T_{v,2}) + MIS(T_{v,3}) \pm v$$

 $T_{v,2}$

- Optimal substructure
 - optimal solution implies optimal solutions of subproblems
- Overlapping subproblems
 - subproblems are computed (reused) several times
- **Dynamic Programming**

$$MIS(v) = MIS(T_{v,1}) + MIS(T_{v,2}) + MIS(T_{v,3}) \pm v$$

For each vertex v we compute:

$$M^+[v] = |MIS(T_v) \cup \{v\}|$$

$$M^{-}[v] = |MIS(T_v) \setminus \{v\}|$$

For a vertex v with children w_1, \dots, w_d

$$ightharpoonup M^+[v] = 1 + \sum_{i=1}^d M^-[w_i]$$

$$ightharpoonup M^{-}[v] = \sum_{i=1}^{d} \max\{M^{+}[w_i], M^{-}[w_i]\}$$

$$MIS(T) = \max\{M^+[R], M^-[R]\}$$

$$M^{+}[4] = 1$$

 $M^{-}[4] = 0$

What is the MIS on this graph?

What is the MIS on this graph?

What is the MIS on this graph?

- Representing a graph as a tree T
 - Nodes of T are small modules, called bags
 - ► Bags form subproblems
- We can apply dynamic programming on a tree decomposition

=--

Tree decomposition: intuition

width = size of the largest bag -1

A tree decomposition of G = (V, E) is a tree T of bags X such that:

- ▶ if $(u, v) \in E$ then u and v are together in some bag
- $\blacktriangleright \forall v \in V$ the bags containing v are connected in T

A graph can admit many tree decompositions

Treewidth

The treewidth is the smallest possible width among all the tree decompositions admitted by a graph

- \blacktriangleright tw(G) = 1 iff. G is a forest
- ► tw(G) = 2 iff. G is a series-parallel graph
- Deleting edges from G does not increase the treewidth
- ► Contracting edges does not increse treewidth
- ► Any clique in G must be in a bag

- ► One robber: very fast, can move on the graph
- ▶ k cops: assumed to be in helicopters (can jump through nodes)
- ▶ In order to win, cops need to corner the robber (blocking all the escape routes) and land on the same node in which the robber is
- ▶ Theorem: $tw(g) \le k \iff k+1$ cops can win the game
- ► Strategy given by the tree decomposition

Cops and robbers

Cops and robbers

Cops and robbers

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

 $removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4$

 $removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4$

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

3,5,6

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

3,5,6

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

3,5,6

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

3,5,6

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

3,5,6

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

0,2,7

3,5,6

ALGORITHMIO GAME THEORY

Computing a tree decomposition

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

0,2,7

4,5,9

3,5,6

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

4,5,9

3,5,6

ALGORITHINIC GAINE THEOR

Computing a tree decomposition

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

0,2,7

4,5,9

3,5,6

ALGORITHINIC GAINE THEORY

Computing a tree decomposition

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

0,2,7

4,5,9

3,5,6

ALGORITHMIC GAME MEGR

Computing a tree decomposition

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

0,2,8

0,2,7

4,5,9

3,5,6

0,1,8

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

0,2,8

0,1,8

0,2,7

4,5,9

3,5,6

ALGORITHINIC GAINE THEORY

Computing a tree decomposition

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

0,2,3

0,2,7

4,5,9

0,2,8

3,5,6

0,1,8

ALGORITIMIC GAME THEORY

Computing a tree decomposition

removal_order = 6, 7, 9, 1, 8, 2, 0, 3, 5, 4

0,2,3

0,2,8

0,2,7

4,5,9

3,5,6

0,1,8

ALGORITHMIC GAME THEORY

Computing a tree decomposition

ALGORITHMIC GAME THEORY

Computing a tree decomposition

Connect each bag with the one for which the intersection is maximal

Connect each bag with the one for which the intersection is maximal

We have a tree decomposition!

Which node removal order?

- ▶ We assumed a node removal order
 - ► Results vary with the removal order

- Computing the treewidth (and the relative decomposition) is NP-Hard
 - ► *N*! possible orderings
 - \triangleright $O(2^n)$ with dynamic programming
- ► We use a heuristic which gives a good solution

Minimum degree heuristic

- ► When we remove a node to compute the tree decomposition, we remove the node with the minimum degree
- ➤ Since removing a node changes the degree of its neighbours, we compute the minimum degree every iteration