Problems In Mathematics for Computer Science

Son To <son.trung.to@gmail.com>

 $\begin{tabular}{ll} Leadoo & Marketing & Technologies \\ & 22^{nd} & {\rm May}, & 2021 \end{tabular}$

Preface

This is a research project in which I try to read the notes and solve all the problems from [1]

Contents

Pı	refac	e	i			
Co	ontei	nts	ii			
Ι	No	tes	1			
1	Wh	aat is a Proof?	3			
	1.1	Propositions	3			
	1.2	Predicates	3			
	1.3	The Axiomatic Method	4			
	1.4	Our axioms	4			
		1.4.1 Logical deductions	4			
		1.4.2 Patterns of Proof	4			
	1.5	Proving an Implication	4			
		1.5.1 Method #1: $P \Rightarrow Q$	4			
		1.5.2 Method #2: Contrapositive: $\neg Q \Rightarrow \neg P$	4			
	1.6					
		1.6.1 Method #1: Prove each statement implies the other	4			
		1.6.2 Method #2: Construct a chain of iffs	4			
	1.7	Proof by Cases	4			
	1.8	Proof by Contradiction	5			
II	Pro	oblems and Exercises	7			
1	Wh	at is a Proof?	9			
Bi	blios	graphy	11			

Part I

Notes

Chapter 1

What is a Proof?

1.1 Propositions

Definition 1.1. A proposition is a statement (communication) that is either true or false.

Claim 1.1.1. $\forall n \in \mathbb{N}, p ::= n^2 + n + 41 \text{ is prime}$

Question: Is this claim true or false?

Claim 1.1.2. No polynomial with integer coefficients can map all nonnegative numbers into primes, unless it's a constant.

Question: Is this true or false?

Claim 1.1.3 (Euler's Conjecture). $\forall a, b, c, d \in \mathbb{Z}^+$. $a^4 + b^4 + c^4 \neq d^4$

Claim 1.1.4. $313(x^3+y^3)=z^3$ has no solution when $x,y,z\in\mathbb{Z}^+$

Claim 1.1.5 (Four Color Theorem). Every map can be colored with 4 colors so that adjacent regions have different colors.

Claim 1.1.6 (Fermat's Last Theorem). $\forall a, b, c \in \mathbb{Z}^+ \ \forall n > 2, n \in \mathbb{Z}. \ a^n + b^n \neq a^n$

Claim 1.1.7 (Goldbach). Every even integer greater than 2 is the sum of two primes.

1.2 Predicates

Definition 1.2. A *predicate* is a proposition whose truth depends on the value of one or more variables.

If P is a predicate, then P(n) is either true or false, depending on the value of n.

1.3 The Axiomatic Method

Definition 1.3. A *proof* is a sequence of logical deductions from a set of axioms and previous proved propositions that concludes with the proposition in question.

- Theorems
- Lemma
- Corollary
- \Rightarrow Axiomatic Method

1.4 Our axioms

1.4.1 Logical deductions

Keywords: Logical deductions (inference rules), antecedents, conclusion, modus ponens

1.4.2 Patterns of Proof

Many proofs follow specific templates... Many special techniques later on.

1.5 Proving an Implication

Definition 1.4. Implications means $P \Rightarrow Q$

- 1.5.1 Method #1: $P \Rightarrow Q$
- 1.5.2 Method #2: Contrapositive: $\neg Q \Rightarrow \neg P$
- 1.6 Proving an "if and only if"
- 1.6.1 Method #1: Prove each statement implies the other
- 1.6.2 Method #2: Construct a chain of iffs

1.7 Proof by Cases

Amusing theorem

Theorem 1.7.1. Every collection of 6 people includes a club of 3 people or a group of 3 strangers.

Proof. The proof is by case analysis. Let x be one of those 6 people. Among 5 other people, there are two scenarios:

- 1. At least 3 people have met x
- 2. At least 3 people have not met x

We argue that these two cases are exhaustive since we are dividing the 5 people into two groups: those who have met x and those who have not.

Case 1: Suppose that at least 3 people have met x

This is divided further more into two subcases:

Case 1.1: No pairs among those people have met each other. In this case, they form a group of at least 3 strangers. Thus, the theorem holds in this subcase.

Case 1.2: At least one pair in those people have met. Adding x to such pair forms a club of at least 3 people. The theorem is proved in this subcase.

This implies that the theorem holds for Case 1.

Case 2: Suppose that at least 3 people have not met x

This again splits the case into two subcases:

Case 2.1: All pairs among those people have met each other. In this case, they form a club of at least 3 people. Thus the theorem holds in this subcase.

Case 2.2: At least one pair in those people have not met. Adding x to such pair forms a group of at least 3 strangers. The theorem holds in this subcase.

This implies that the theorem holds for Case 2.

We have proved the theorem.

1.8 Proof by Contradiction

Theorem 1.8.1. $\sqrt{2}$ is irrational

Proof. We use proof by contradiction. Suppose $\sqrt{2}$ is rational, then $\sqrt{2} = \frac{p}{q}$, where p and q are integers that have no common factors. Then $2 = \frac{p^2}{q^2}$, which means $p^2 = 2q^2$. Since p^2 is even, p must be even (easily proved by contradiction again). W.l.o.g, assume p = 2k for some integer k. Then $4k^2 = 2q^2 \Rightarrow q^2 = 2k^2$, which implies that q is also even. However, this contradicts the fact that p and q have no common factors. Therefore $\sqrt{2}$ is irrational.

Part II Problems and Exercises

Chapter 1

What is a Proof?

Problem 1.1.

(a) Colors of the triangles are arbitrary since I do not remember the exact ones in the text.

The middle square is a square of $(b-a)\times(b-a)$

(b) Possible Errata:

Bibliography

[1] Eric Lehman, Tom Leighton, and Albert Meyer. Mathematics for Computer Science. MIT OCW, 2018.