Matemática

Malhas

Prof. Edson Alves

Faculdade UnB Gama

Malhas

Definição de sequência e de subsequência

Definição

Uma **malha**, em geral, se refere a dois ou mais conjuntos de retas paralelas no plano, igualmente espaçadas, em ângulos específicos, ou às interseções de tais retas.

As malhas mais comuns são as quadradas, triangulares e hexagonais.

Malha quadrada

Malha triangular

Malha hexagonal

Malhas e sistemas de coordenadas

- As malhas podem induzir um sistema de coordenadas e uma ordenação entre seus elementos básicos
- O sistema de coordenadas e a ordenação também podem ser arbitrários
- Conhecida a ordenação utilizada, duas questões se tornam relevantes:
 - (a) qual é a coordenada do n-ésimo ponto?
 - (b) as coordenadas dadas correspondem a qual ponto da ordenação?
- Responder estas perguntas dependem ou de uma observação atenta dos padrões gerados pelo sistema de coordenadas ou pela ordenação
- Em alguns casos é possível utilizar uma simulação para responder tais questões

(1,5)	(2,5)	(3,5)	(4,5)	(5,5)
(1,4)	(2,4)	(3,4)	(4,4)	(5,4)
(1,3)	(2,3)	(3, 3)	(4, 3)	(5,3)
(1,2)	(2,2)	(3, 2)	(4, 2)	(5,2)
(1,1)	(2,1)	(3,1)	(4, 1)	(5,1)

21	22	23	24	25
20	19	18	17	16
11	12	13	14	15
10	9	8	7	6
1	2	3	4	5

Coordenadas

Ordenação

- Neste exemplo, o sistema de coordenadas é idêntico ao sistema cartesiano, onde as colunas são representadas pelas primeiras coordenadas do par e as linhas pelas segundas coordenadas
- A ordenação inicia no canto inferior esquerdo e avança até o fim da linha
- Ao subir para a próxima linha, a ordenação segue em sentido oposto, do final para o início da próxima linha, e assim por diante
- ullet É possível simular esta ordenação por meio de um vetor de direção $ec{u}$
- Inicialmente, $\vec{u} = (0,1)$

- ullet Sempre que os limites da malha forem atingidos, o vetor dever ser rotacionado em 180°
- \bullet É possível, porém, determinar a posição n referente à coordenada (x,y) por meio da expressão

$$n = x + (y - 1)W,$$

se y é ímpar, e

$$n = (W - x + 1) + (y - 1)W,$$

se y é par, onde W é o número de colunas

- ullet Também é possível determinar as coordenadas do n-ésimo ponto
- Este ponto estará na linha

$$y = \left\lfloor \frac{n-1}{W} \right\rfloor + 1$$

 \bullet Se y é ímpar, a coluna será

$$x = [(n-1) \bmod W] + 1,$$

ullet Se y é par, então

$$x = W - [(n-1) \bmod W]$$

Implementação do zigue-zague em malhas quadradas

```
5 int position(int x, int y, int W)
6 {
      int pos = (y - 1)*W + (y \% 2 ? x : W - x + 1):
      return pos;
9
10 }
12 pair<int, int> coordinates(int n, int W)
13 {
      auto v = ((n - 1) / W) + 1:
14
      auto x = y \% 2 ? ((n - 1) \% W) + 1 : W - ((n - 1) \% W);
15
16
      return { x, y };
18 }
```

Referências

- 1. Wolfram MathWorld. Grid. Acesso em 04/02/2021.
- 2. Wolfram MathWorld. Hexagonal Grid. Acesso em 04/02/2021.
- 3. Wolfram MathWorld. Triangular Grid. Acesso em 04/02/2021.