# Методы машинного обучения

Лекция 6

Линейная классификация

Эльвира Зиннурова

elvirazinnurova@gmail.com

НИУ ВШЭ, 2019

# Модель линейной классификации

#### Классификация

- $\mathbb{Y} = \{-1, +1\}$  бинарная классификация
- -1 отрицательный класс
- +1 положительный класс
- a(x) должен возвращать одно из двух чисел

# Линейная регрессия

$$a(x) = w_0 + \sum_{j=1}^d w_j x^j$$

Вещественное число!

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x^j\right)$$

$$a(x) = \operatorname{sign}\left(w_0 + \sum_{j=1}^d w_j x^j\right)$$

Свободный коэффициент

Признаки

Beca

• Добавим единичный признак

$$a(x) = \operatorname{sign} \sum_{j=1}^{a+1} w_j x^j = \operatorname{sign} \langle w, x \rangle$$

Уравнение гиперплоскости:  $\langle w, x \rangle = 0$ 



- Линейный классификатор проводит гиперплоскость
- $\langle w, x \rangle < 0$  объект «слева» от неё
- $\langle w, x \rangle > 0$  объект «справа» от неё



• Расстояние от точки до гиперплоскости  $\langle w, x \rangle = 0$ :

$$\frac{|\langle w, x \rangle|}{\|w\|}$$

• Чем больше  $\langle w, x \rangle$ , тем дальше объект от разделяющей гиперплоскости





#### Отступ

- $M_i = y_i \langle w, x_i \rangle$
- $M_i > 0$  классификатор дает верный ответ
- $M_i < 0$  классификатор ошибается
- Чем дальше отступ от нуля, тем больше уверенности



- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания

# Функционал ошибки для классификации

# Линейная регрессия

• Квадратичное отклонение:

$$L(a, y) = (a - y)^2$$

• Абсолютное отклонение:

$$L(a, y) = |a - y|$$

• Доля неправильных ответов:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

| a(x) | у  |
|------|----|
| -1   | -1 |
| +1   | +1 |
| -1   | -1 |
| +1   | -1 |
| +1   | +1 |

• Доля неправильных ответов:

$$\frac{1}{5} = 0.2$$

• Доля правильных ответов:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

- На английском: accuracy (не «точность»!)
- Непонятно, как оптимизировать (долю неправильных ответов тоже)

• Доля неправильных ответов (через отступ):

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0]$$

$$M_i$$

# Пороговая функция потерь



• Доля неправильных ответов:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0]$$

$$M_i$$

- Разрывная функция
- Все еще непонятно, как оптимизировать

#### Оценка функции потерь

• Возьмем любую гладкую оценку пороговой функции:

$$[M < 0] \le \tilde{L}(M) = \tilde{L}(y\langle w, x \rangle)$$

#### Примеры оценок



#### Примеры оценок

- $\tilde{L}(M) = \log_2(1 + \exp(-M))$  логистическая
- $\tilde{L}(M) = \exp(-M)$  экспоненциальная
- $\tilde{L}(M) = \max(0, 1-M)$  кусочно-линейная

#### Оценка функции потерь

• Возьмем любую гладкую оценку пороговой функции:

$$[M < 0] \le \tilde{L}(M)$$

• Оценим через нее функционал ошибки:

$$Q(a,X) \le \tilde{Q}(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(M_i)$$

#### Оценка функции потерь

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [M_i < 0] \le \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(M_i) \to \min_{a}$$

Минимизируем верхнюю оценку

Надеемся, что доля ошибок тоже уменьшится

#### Примеры оценок

•  $\tilde{L}(a,y) = \ln(1 + \exp(-ya))$  — логистическая



#### Логистическая функция потерь

$$\tilde{Q}(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle))$$

- 1. Выписали индикатор ошибки через отступ
- 2. Заменили пороговую функцию потерь на гладкую функцию

#### Обучение

- Обучение с помощью любых методов оптимизации
- Например, градиентный спуск:

$$w^{(t)} = w^{(t-1)} + \eta \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{y_i x_i}{1 + \exp(y_i \langle w, x_i \rangle)}$$

• Борьба с переобучением — регуляризация (так же, как в линейной регрессии), например:

$$\tilde{Q}(w, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle)) + \lambda ||w||^2$$

# Логистическая регрессия

#### Логистическая регрессия

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• 
$$P(y = +1 \mid x) = \pi(x)$$

- Кредитный скоринг
- Стратегия: выдавать кредит только клиентам с  $\pi(x) > 0.9$
- 10% невозвращённых кредитов нормально

- Баннерная реклама
- $\pi(x)$  вероятность, что пользователь кликнет по рекламе
- c(x) прибыль в случае клика
- $\pi(x)c(x)$  хотим оптимизировать

- Прогнозирование оттока клиентов
- Медицинская диагностика
- Поисковое ранжирование (насколько веб-страница соответствует запросу?)

### Оценивание вероятностей

- $P(y = +1 \mid x) = \pi(x)$
- $\pi(x)$  вещественное число
- Классификатор не подходит

## Регрессия?

•  $\pi(x) \approx \langle w, x \rangle = w_1 x + w_0$ 



#### Регрессия?

•  $\pi(x) \approx \langle w, x \rangle = w_1 x + w_0$ 



Отрицательная вероятность о\_О

### Регрессия?

$$\pi(x) pprox \sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$
Сигмоида

# Сигмоида



•  $\pi(x) \approx \sigma(\langle w, x \rangle)$ 



- Как оптимизировать?
- Если  $y_i = +1$ , то  $\langle w, x_i \rangle \to +\infty$
- Если  $y_i = -1$ , то  $\langle w, x_i \rangle \to -\infty$

- Как оптимизировать?
- Если  $y_i = +1$ , то  $\sigma(\langle w, x_i \rangle) \to 1$
- Если  $y_i = -1$ , то  $\sigma(\langle w, x_i \rangle) \to 0$

- Как оптимизировать?
- Если  $y_i = +1$ , то  $\sigma(\langle w, x_i \rangle) \to 1$
- Если  $y_i = -1$ , то  $\sigma(\langle w, x_i \rangle) \to 0$

$$\sum_{i=1}^{\ell} \left\{ [y_i = +1] \sigma(\langle w, x_i \rangle) + [y_i = -1] \left( 1 - \sigma(\langle w, x_i \rangle) \right) \right\} \to \max_{w}$$

- Как оптимизировать?
- Если  $y_i = +1$ , то  $\sigma(\langle w, x_i \rangle) \to 1$
- Если  $y_i = -1$ , то  $\sigma(\langle w, x_i \rangle) \to 0$

$$\sum_{i=1}^{\ell} \left\{ [y_i = +1] \sigma(\langle w, x_i \rangle) + [y_i = -1] \left( 1 - \sigma(\langle w, x_i \rangle) \right) \right\} \to \max_{w}$$

- Слишком слабый штраф
- Если  $y_i = +1$  и  $\sigma(\langle w, x_i \rangle) = 0$ , то штраф = 1

- Как оптимизировать?
- Если  $y_i = +1$ , то  $\sigma(\langle w, x_i \rangle) \to 1$
- Если  $y_i = -1$ , то  $\sigma(\langle w, x_i \rangle) \to 0$

$$\sum_{i=1}^{\ell} \left\{ \left[ y_i = +1 \right] \log_2 \sigma(\langle w, x_i \rangle) + \left[ y_i = -1 \right] \log_2 \left( 1 - \sigma(\langle w, x_i \rangle) \right) \right\} \to \max_{w}$$

• Если  $y_i = +1$  и  $\sigma(\langle w, x_i \rangle) = 0$ , то штраф  $= -\infty$ 





• Если вспомнить арифметику, то получим эквивалентную задачу:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log_2(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Линейная модель классификации:  $a(x) = \mathrm{sign} \langle w, x \rangle$
- Оптимизируем логистическую верхнюю оценку для пороговой функции потерь
- Обучение: градиентный спуск
- Позволяет оценивать вероятности:  $\pi(x) = \sigma(\langle w, x \rangle)$

# SVM



# SVM



#### Резюме

- Линейные классификаторы разделяют классы гиперплоскостью
- Логистическая регрессия классификация и оценка вероятности