R16

Code No: 133BC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, April/May - 2023 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

1.a) State De-Morgan's law. [2]

b) Prove that $\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$. [3] c) Draw the Venn diagrams for $(A \cap B) \cup (C \cap D)$ of the sets A, B, C, and D. [2]

c) Draw the Venn diagrams for (A∩B) ∪ (C∩D) of the sets A, B, C, and D.
d) Draw the Hasse diagram for the Poset <{2,4,5,10,12,20,25}, /(divides by)>.
[3]

e) Define conditional probability. [2]

f) What are the applications of the principle of inclusion and exclusion? [3]

g) Define the term generating functions. [2] h) Find the generating function for the sequence 1,3,5,7,9,.... [3]

i) What is a planar graph? [2]

j) Write down the properties of binary trees. [3]

PART – B

(50 Marks)

- 2.a) Show that $P \rightarrow S$ can be derived from the premises $\gamma P \lor Q$, $\gamma Q \lor R$, $R \rightarrow S$, using rules of inference.
 - b) Determine whether or not the following arguments are valid:

If a baby is hungry, then the baby cries.

If the baby is not mad, then he does not cry.

If a baby is mad, then he has a red face.

Therefore, if a baby is hungry, then he has a red face.

)R

3.a) Find the PDNF and PCNF by constructing the truth table: $(P \land Q) \lor (\neg P \land R) \lor (Q \land R)$

b) Write a brief note on universal quantifiers.

[6+4]

- 4.a) Let Z be the set of integers and Let R be the relation called "congruence modulo 3" defined by $R = \{ \langle x, y \rangle \mid x \in Z \ \Lambda \ y \in Z \ \Lambda \ (x-y) \text{ is divisible by 3} \}$. Determine the equivalence classes generated by the elements of Z.
 - b) Let $f_1(x) = x + 4$, $f_2(x) = x 4$, and $f_3(x) = 4x$ for $x \in R$, where R is the set of real numbers. Find f o g and g o f. [6+4]

OR

- 5.a) Let <S1, *1> and <S2, *2> be semi groups on the Cartesian product S1 x S2. Let the operation *3 be defined by (a, b) *3 (c, d) = (a*1 c, b*2 d) for all (a, b), (c, d) S1 x S2. Prove that < S1 x S2, *3> is a semi group.
 - Let $R = \{ (b,c), (b,e), (c,e), (d,a), (c,b), (e,c) \}$ be a relation on the set $A = \{ a,b,c,d,e \}$. Find the transitive closure of the relation R. [5+5]
- How many permutations can be made with letters of the word ENGINEERING? 6.a)
 - There are 7 men and 3 women. Find the number of ways in which a committee of 6 b) persons can be formed if the committee is to have (i) exactly 4 men, and (ii) at least 2 women. [4+6]

OR

- What is the probability that a positive integer selected at random from the set of 7.apositive integers not exceeding 100 is divisible by either 2 or 5?
 - State and explain Baye's theorem with an example. b) [5+5]
- Solve the recurrence relation $a_n + 7a_{n-1} + 10a_{n-2} = 0$ where $a_0=10$ and $a_1=41$. 8.a)
 - Find a generating function for the recurrence relation $c_n = 3c_{n-1} 2c_{n-2}$ for $n \ge 2$ given b) $c_1 = 5, c_2 = 3.$ [5+5]

OR

- Use generating functions to find the number of k-combinations of a set with n elements. 9.a) Assume that the binomial theorem has already been established.
 - Find a generating function for the recurrence relation a_{n+1} —an = n^2 for $n \ge 0$ where b) $a_0 = 1$. [5+5]
- Explain Prim's and Krushkal's algorithm with an illustrative example. 10. [10]

- What is a graph? Write about various ways of representing graphs. 11.a)
 - How to determine whether two graphs are isomorphic or not? Explain briefly. [5+5]

---00O00---