

Vector Quantization (Using LBG Algorithm with Splitting)

Original Image

Divide Image into Blocks (Vectors)

4

Generate Best "K" Vectors that can be used to Re-Construct Original Image

For Each Block in the Image, Select the Nearest Vector (Using Euclidean Distance)

6

Label each Block in the image with INDEX of Nearest Vector (in the Codebook)

Label each Block in the image with INDEX of Nearest Vector (in the Codebook)

In order to Re-Construct the Image, it is required to have:

- All Labels (one label for each BLOCK in the Image)
- The Codebook itself which consists of K Vectors, each vector is a small Image with size equal to BLOCK size

Example:

The original **GRAY** image is **600*600 pixels** (each pixel is saved in one byte)

The image is divided into **Blocks each of size 4*4 pixels**

The Codebook (which will be used to Reconsturct the image) consists of 32 Vectors (32 blocks each of size 4*4)

Example:

Number Blocks in the image= (600*600)/ (4*4)=22500 Blocks

Number of labels = Number of Blocks = 22500 Labels

(Remember: Each label is Index in the Codebook)

As **Number of Vectors in the codebook = 32**, Indexes will range from 0 to 31 (from 00000 to 11111 Binary)

In other words, each index can be saved in <u>5 Bits</u>

(this means each label is 5 bits)

Exact Compression Ratio:

Labels Size = Number of Labels * bits/Label = 22500 * 5 bits = 112500 bits (14063 Bytes)

Codebook Storage Size =

Number of Vectors * Vector Size (in pixels) * number of bits to save a pixel = 32 * (4*4) * 8 bits = 4096 bits (512 bytes)

Total Compressed Image Size = Label Size + Code book storage size = 112500+ 4096 = 116596 bits (14575 bytes)

Original Image Size = 600 * 600 (pixels) * 8 bits/pixel = 2880000 bits (360000 Bytes)

Compression Ratio = Original / Compressed = 360000/14575 = 24.7:1

Approximate Compression Ratio:

When Label Size is much greater than Codebook storage size, Codebook Storage size can be neglected during Compression ratio Calculations.

(Remember: Codebook Storage size is independent of Image size, number of Labels depends on Image Size.)

Labels Size = Number of Labels * bits/Label = 22500 * 5 bits =112500 bits (14063 Bytes)

Codebook Storage Size = 32 * (4*4) * 8 bits = 4096 bits (512 bytes) [can be neglected w.r.t 14063 bytes)

Total Compressed Image Size ~= Label Size =112500 bits (14063 bytes)

Original Image Size = 600 * 600 (pixels) * 8 bits/pixel = 2880000 bits (360000 Bytes)

Compression Ratio = Original / Compressed = 360000/14063 = 25.6:1

Approximate Compression Ratio:

Also, Compression ratio can be calculated approximately on Block bases (not on image bases)

Each block in image is originally stored in (4*4) pixels * 8 bits/pixel

= 4*4*8=128 bits

After compression, Each block is substituted with Label of size 5 bits (as 2⁵ = 32 vectors in the Codebook)

The compression ratio = 128: 5 = 25.6:1 (same as before)

What if image is 6000 x 6000, Exact Compression Ratio:

```
Labels Size = Number of Labels * bits/Label = (6000*6000)/(4*4) * 5 bits
           =11,250,000 bits (1,406,300 Bytes)
```

Codebook Storage Size =

Number of Vectors * Vector Size (in pixels) * number of bits to save a pixel = 32 * (4*4) * 8 bits = 4096 bits (512 bytes) [No change, Independent of Image Size]

Total Compressed Image Size = Label Size + Code book storage size

= 11250000 + 4096 = 11,254,096 bits (1,406,762 bytes $\sim = 1,406,300$)

Original Image Size = 6000 * 6000 (pixels) * 8 bits/pixel = 288000000 bits (36,000,000 Bytes)

Compression Ratio = Original / Compressed = 36,000,000/1,406,762 = 25.6:1

(Almost as Approximate Compression ratio)

Image Reconsturction

			4			J.	3		
		000		000	000			1	
7	A				000				V
		011			1			1	15
		011						1	
000		011	1	110	Í				
10		011		110					000
		011			110		110		
		011			110				
								20_	- 9

000	
001	
010	
011	
100	
101	
110	
111	

16

Substitute Each LABEL with Corresponding Vector in the Codebook

Obtained Constructed Image

		4		SK.			
L	1						
	A	4					
			1			7	15
				B	1	L	
		1	2.	32			
16							
						R	

Vector Quantization Samples

Original

Blocking Effect
Vector Size is Large
Number of Vectors in codebook is small

Vector Quantization using Splitting (Example)

Compress the following Image Using Vector Quantization (initialize LBG Algorithm using Splitting) (Each pixel is saved in 8 bits)

Vector size = 2*2

Number of Vectors in Codebook = 4

1	2	7	9	4	11
3	4	6	6	12	12
4	9	15	14	9	9
10	10	20	18	8	8
4	3	17	16	1	4
4	5	18	18	5	6

Reconstruct the Compressed Image,

Calculate Mean Square error between Original and Reconstructed Image Calculate Compression Ratio

Re-Calculate Compression Ratio if the image is 600*600 pixels

20

Vector Quantization using Splitting (Apply Splitting)

1 3	2 4	7 6	9 6	4 12	11 12
4 10	9 10	15 20	14 18	9 8	9 8
4	3 5	17 18	16 18	1 5	4 6

Average

62/9 77/9 86/9 87/9 **e** 6.9 8.5 9.7

Vector Quantization using Splitting (Apply Splitting)

3

Nearest Vector

Equal Distance

9

2

9 6 6

20

Prof. Khaled Mostafa

26/5 29/5 khaledms@fci-cu.edu.eg

22/5 27/5

12 10 15 14.5

Vector Quantization using Splitting (Apply Splitting)

Nearest Vector

1 5	4 6
--------	-----

17 16 18 18

15

18

15

khaledms afci-cu.edu.eg

Vector Quantization using Splitting (LBG Algorithm)

 1
 2
 7
 9
 4
 11

 3
 4
 6
 6
 12
 12

 4
 9
 15
 14
 9
 9

 10
 10
 20
 18
 8
 8

4 3 17 16 1 4 4 5 18 18 5 6

Nearest Vector

2 3

4 5

1 2 3 4

1 4 5 6

4 3

6.7 9

8 8

9 9

7 9

4 11

12 12

4 11 12 12

4 9 10 10 16 15

19 18

15 14 20 18

17 16 18 18

Average

2 34 5Changed

16151918

Vector Quantization using Splitting (LBG Algorithm)

 1
 2
 7
 9
 4
 11

 3
 4
 6
 6
 12
 12

 4
 9
 15
 14
 9
 9

 10
 10
 20
 18
 8
 8

4 3 | 17 16 | 1 4 4 5 | 18 18 | 5 6

Nearest Vector

2 3

4 5

1 2 3 4

1456

4 3

8 9

7 7

9 9

7 9 6 6 4 10

11 11

4 11 12 12

4 9 10 10 16 15

19 18

15 14 20 18

17 16 18 18

Prof. Khaled Mostafa

khaledms@fci-cu.edu.eg

Average

2 3

4 5

8 9

7 7

4 10

11 11

16 15

19 18

No Change (Stop Iteration)

Image Encoding

khaledms@fci-cu.edu.eg

Image Decoding

khaledms@fci-cu.edu.eg

Mean Squared Error

Original Image

Reconstructed Image

Squared Error

1 1 1 1	1 0 1 1	0 1 1 1
0 1 1 1	1 1 1 1 0	1 0 1 1
4 0 0 0	1 1 1 1 0	1 1 1 1 1

Mean Squared Error = 30/36 = 0.833

Prof. Khaled Mostafa khaledms@fci-cu.edu.eg

• Original Image Size=

• Number of Blocks (vectors) in Image =

$$(6*6)/(2*2)=36/4=9$$
 blocks

- Each Block is substituted by 2 Bits Label
- Labels size = 9 blocks * 2 bits = 18 bits
- Codebook size =

4 Vectors * (2*2) pixels/vector * 8 bits/pixel = 4*2*2*8=128 bits

- Total Compressed size = Codebook +Labels = 128 + 18 = 146 bits
- Compression Ratio = 288/146 = 1.97:1

- Original Image Size=
 - 600*600 (pixels) * 8 bits/pixel = 6x6x8=2,880,000 bits
- Number of Blocks (vectors) in Image = (600*600)/(2*2)=360000/4 = 90,000 blocks
- Each Block is substituted by 2 Bit Label
- Labels size = 90,000 blocks * 2 bits = 180,000 bits
- Codebook size = 128 bits (as before)
- Total Compressed size = 128 + 180,000 = 180,000 bits
- Compression Ratio = 2,880,000/180,000 = 16:1
- (each **4 pixels** = 32 bits are substituted with **2 bits label**)