- 5 Integrated Circuit Technology
- 5.1 CMOS Manufacturing Process / CMOS Process Modules
- 5.2 Specific Aspects of sub 100 nm CMOS Technology
- 5.3 Future Transistor Concepts

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.3 - 1

Possible Future Transistor Options

- Advanced Channel Materials
 - III-V and Ge channel materials
- Multi-Gate Fin Transistors
 - Non planar architecture
- Tunnel Transistors
 - New transport mechanism

Each transistor structure has many significant challenges which will have to be successfully addressed if it is to become a serious contender to silicon MOSFET

III-V Materials for NMOS Channel?

- high ε → poor short channel effect (SCE)
- Low $E_q \rightarrow large I_{off}$ (Junction)
- Low effective mass (+ high injection; - low Q_{INV})

Projecting III-V NMOS performance based on simplistic models could lead to erroneous performance assessment.

Properties of some NMOS candidates Material/P GaAs InAs InSb roperty 0.19 0.08 0.067 0.023 0.014 m_{eff}* 9200 1600 3900 40,000 77,000 (cm²/Vs) 0.66 1.42 1.12 0.36 0.17 E_G (eV) 11.8 16 12.4 14.8 17.7

K. Saraswat et.al., IEDM 2006

SCE: short channel effect

Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.3 - 3

The Grand Challenges for III-V CMOS

Ge Transistor- Back to the Future?

Advantages:

- + Best hole mobility (unlike III-V)
- + Si(Ge) already used in logic tech
- + Col-IV: Non-Polar

Material ⇒ Property ↓	Si	Ge	GaAs	InAs	InSb
Electron mobility	1600	3900	9200	40000	77000
Hole mobility	430	1900	400	500	850
Bandgap (eV)	1.12	0.66	1.424	0.36	0.17
Dielectric constant	11.8	16	12.4	14.8	17.7

K. Saraswat et.al., IEDM 2006.

Challenges:

- Reference device is highly strained silicon
- Poor HiK interface:
 - * Need better understanding
 - * Buried strained QW Ge
- Higher dielectric constant
 - * Poorer SCF
- Worse parasitic resistance
 - * Worse dopant activation

Buried Strained Ge Quantum Well

(U. Tokyo, APL 2002)

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited

Chapter 5.3 - 5

Possible Future Transistor Options

- Advanced Channel Materials
 - III-V and Ge channel materials

- **Multi-Gate Fin Transistors**
 - Non planar architecture
- Tunnel Transistors
 - New transport mechanism

Each transistor structure has many significant challenges which will have to be successfully addressed if it is to become a serious contender to silicon MOSFET

Multi-Gate Transistor Architecture

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = \frac{qN_A}{\varepsilon_{Si}}$$

Multi-Gate Transistors have better SCE:

- Gates reduce spread of V_{drain}
 Enables lower threshold voltage (↑I_D)
- Enable lower channel doping (†μ)

Multi-Gate Transistors have lower E_{EFF}:

 Optimum gate work function is away from band-edge leading to lower Eeff (†μ)

SCE: short channel effect(s)

Fraunhofer

E_{eff}: transverse (channel) electric field)

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.3 - 7

Souce: Intel

Drain

Multi-Gate Transistors Implementation

Multi-Gate Fin Transistor:

- ++ Self Aligned structure for S/D
- -- Non-Planar structure

Multi-Gate Fin Transistor

Top Challenges for Multi-Gate Fin Transistors

- Implement High Strain in Fins? Planar Ref= Highly strained 4-5x p-mobility enhancement High level of fin strain NOT published to date
- High Parasitics in Fin Transistors Narrow fins lead to high Rext Fin architecture may also lead to higher fringe capacitance
- Manufacturing worthy Patterning Fin, Gate and Spacer patterning will be extremely challenging in a manufacturing environment
- Design

Device Z increments quantized

- Best published drive currents for Multi-Gate Fin Transistors are significantly lower than best published planar transistors to date
- Many significant challenges remain to be resolved for Fin Transistors

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Souce: Intel

Chapter 5.3 - 9

Possible Future Transistor Options

- Advanced Channel Materials
 - III-V and Ge channel materials
- Multi-Gate Fin Transistors
 - Non planar architecture

- **Tunnel Transistors**
 - New transport mechanism

Each transistor structure has many significant challenges which will have to be successfully addressed if it is to become a serious contender to silicon MOSFET

Advance.

Why we Need to Beat Sub-Threshold Slope of 60mV/decade?

$$I_D \sim (V_{CC} - V_{TH})$$

At very low Vcc we need small V_{TH} for reasonable drive

BUT

Sub-threshold slope is limited by thermal kT/q limit

→ loff increases exponentially with V_{TH} scaling.

HOW TO BEAT kT/q limit?

Leakage current increases exponentially as device is scaled

Souce: Intel

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.3 - 11

Ultimate Frontier: Overcoming Thermal kT/q Limit

C. Hu, STEEP Program

Electrons go over a potential barrier. Leakage current is determined by the Boltzmann distribution or 60 mV/decade, limiting MOSFET, bipolar, graphene MOSFET...

How to overcome the limit:

Let electrons go through the energy barrier, not over it → Tunneling

Advanced Integrated Circuit Technology

Souce: Intel

Tunnel Transistor Concept and Challenges

Structure:

- Device behaves like reverse bias pin diode
- Positive Vgs induces electron electron channel
- Band bending allows tunneling at source channel interface -> Gate controlled band tunneling
- BTBT Transistor suffer from extremely poor drive current

BTBT: band-to-band tunneling

→ Need materials with more efficient tunneling

TEOS

Gate

P⁺

W. Y. Choi et al. IEEE-EDL vol. 28, pp. 743-745, 2007

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 5.3 - 13