Exploratory Data Analysis on Data Science Salaries

Preprocessing and Data Cleaning

```
In [1]: import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
```

```
In [2]: df = pd.read_csv("/Users/shruthi/Downloads/ds_salaries.csv")
df
```

Out[2]:

k_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remo
2023	SE	FT	Principal Data Scientist	80000	EUR	85847	ES	
2023	МІ	СТ	ML Engineer	30000	USD	30000	US	
2023	MI	СТ	ML Engineer	25500	USD	25500	US	
2023	SE	FT	Data Scientist	175000	USD	175000	CA	
2023	SE	FT	Data Scientist	120000	USD	120000	CA	
2020	SE	FT	Data Scientist	412000	USD	412000	US	
2021	MI	FT	Principal Data Scientist	151000	USD	151000	US	
2020	EN	FT	Data Scientist	105000	USD	105000	US	
2020	EN	СТ	Business Data Analyst	100000	USD	100000	US	
2021	SE	FT	Data Science Manager	7000000	INR	94665	IN	

× 11 columns

```
In [3]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3755 entries, 0 to 3754
        Data columns (total 11 columns):
                                Non-Null Count Dtype
           Column
         0
            work year
                                3755 non-null int64
         1
            experience_level
                                3755 non-null object
         2
            employment_type 3755 non-null object
         3
            job title
                                3755 non-null object
            salary
                                3755 non-null int64
         5
            salary_currency
                               3755 non-null object
                             3755 non-null int64
            salary_in_usd
            employee_residence 3755 non-null object
         7
         8
            remote ratio
                                3755 non-null
                                                int64
            company_location
                                3755 non-null object
         10 company_size
                                3755 non-null object
        dtypes: int64(4), object(7)
        memory usage: 322.8+ KB
In [4]: df.shape
Out[4]: (3755, 11)
In [5]: #No. of null values in each column
        df.isnull().sum()
Out[5]: work_year
                              0
        experience level
                             0
        employment_type
        job title
        salary
                             0
        salary_currency
                             0
        salary_in_usd
        employee residence
        remote ratio
                             0
        company_location
                             0
        company_size
        dtype: int64
In [6]: #No. of uniques values in each colum;
        df.nunique()
Out[6]: work year
                                4
        experience level
                                4
        employment_type
                                4
        job title
                               93
        salary
                              815
        salary currency
                               20
        salary in usd
                              1035
        employee residence
                               78
        remote_ratio
                                3
        company_location
                               72
        company size
        dtype: int64
In [7]: #Experience Level
        df.experience level.unique()
Out[7]: array(['SE', 'MI', 'EN', 'EX'], dtype=object)
```

```
In [11]: #Employment Type
         df.employment_type.unique()
Out[11]: array(['FT', 'CT', 'FL', 'PT'], dtype=object)
In [14]: #Company Size
         df.company size.unique()
Out[14]: array(['L', 'S', 'M'], dtype=object)
In [17]: # Replacing some names for better understanding
         df['experience_level']= df['experience_level'].replace('EN','Entry Level')
         df['experience_level'] = df['experience_level'].replace('MI','Mid Level')
         df['experience_level'] = df['experience_level'].replace('SE','Senior Level')
         df['experience level']= df['experience level'].replace('EX','Executive Level')
         df['employment_type'] = df['employment_type'].replace('FT', 'Full Time')
         df['employment_type'] = df['employment_type'].replace('CT', 'Contractor')
         df['employment_type'] = df['employment_type'].replace('PT', 'Part Time')
         df['employment type'] = df['employment type'].replace('FL', 'Freelancer')
         df['company_size'] = df['company_size'].replace('L', 'Large')
         df['company_size'] = df['company_size'].replace('M', 'Medium')
         df['company size'] = df['company size'].replace('S', 'Small')
```

```
In [19]: #Rename columns
df.rename(columns={'salary_in_usd':'Salary(USD)'},inplace = True)
df.rename(columns={'work_year':'Year'},inplace=True)
```

In [20]: df

Out[20]:

·	Year	experience_level	employment_type	job_title	salary	salary_currency	Salary(USD)	employee_residence	remot
0	2023	Senior Level	Full Time	Principal Data Scientist	80000	EUR	85847	ES	
1	2023	Mid Level	Contractor	ML Engineer	30000	USD	30000	US	
2	2023	Mid Level	Contractor	ML Engineer	25500	USD	25500	US	
3	2023	Senior Level	Full Time	Data Scientist	175000	USD	175000	CA	
4	2023	Senior Level	Full Time	Data Scientist	120000	USD	120000	CA	
0	2020	Senior Level	Full Time	Data Scientist	412000	USD	412000	US	
1	2021	Mid Level	Full Time	Principal Data Scientist	151000	USD	151000	US	
2	2020	Entry Level	Full Time	Data Scientist	105000	USD	105000	US	
3	2020	Entry Level	Contractor	Business Data Analyst	100000	USD	100000	US	
4	2021	Senior Level	Full Time	Data Science Manager	7000000	INR	94665	IN	

5 rows × 11 columns

```
In [22]: #Dropping features that is unnecessary for my analysis
    df.drop(['salary'], axis = 1, inplace=True)
    df.drop(['salary_currency'],axis=1,inplace=True)
    df.drop(['employee_residence'], axis=1, inplace=True)
```

In [35]: #Final dataframe
df1=df
df1

Out[35]:

	Year	experience_level	employment_type	job_title	Salary(USD)	remote_ratio	company_location	company_size
0	2023	Senior Level	Full Time	Principal Data Scientist	85847	100	ES	Large
1	2023	Mid Level	Contractor	ML Engineer	30000	100	US	Small
2	2023	Mid Level	Contractor	ML Engineer	25500	100	US	Small
3	2023	Senior Level	Full Time	Data Scientist	175000	100	CA	Medium
4	2023	Senior Level	Full Time	Data Scientist	120000	100	CA	Medium
3750	2020	Senior Level	Full Time	Data Scientist	412000	100	US	Large
3751	2021	Mid Level	Full Time	Principal Data Scientist	151000	100	US	Large
3752	2020	Entry Level	Full Time	Data Scientist	105000	100	US	Small
3753	2020	Entry Level	Contractor	Business Data Analyst	100000	100	US	Large
3754	2021	Senior Level	Full Time	Data Science Manager	94665	50	IN	Large

3755 rows × 8 columns

Data Analysis using Seaborn and Matplotlib

Agenda

- Top 10 jobs in the US
- · Salaries Based on Features
 - Experience Level and Salary
 - Company size and Salary
 - Employment Type and Salary
 - Remote ratio and Salary
 - Top 5 Companies Located and Salaries
- · Average Data Science Salaries based on Year
- · Combining two or more features
 - Salary in terms of experience level, Employment Type
 - Salaries with respect to experience level, year (of work), job title
- · Confusion Matrix

Top 10 Jobs

In [26]: top_10=df['job_title'].value_counts()[:10].rename_axis('job_title').reset_index(name='contop_10.style.background_gradient(cmap='Blues')

Out[26]:

	job_title	count
0	Data Engineer	1040
1	Data Scientist	840
2	Data Analyst	612
3	Machine Learning Engineer	289
4	Analytics Engineer	103
5	Data Architect	101
6	Research Scientist	82
7	Data Science Manager	58
8	Applied Scientist	58
9	Research Engineer	37

iah 4:41a aa.....4

```
In [30]: plt.figure(figsize=(22,4)) #Set the width and height of the figure
plt.title("Top 10 jobs in 2023") #Add title
sns.barplot(x=top_10['job_title'], y=top_10['count'])
```

Out[30]: <Axes: title={'center': 'Top 10 jobs in 2023'}, xlabel='job_title', ylabel='count'>

Out[36]:

	Year	experience_level	employment_type	job_title	Salary(USD)	remote_ratio	company_location	company_size
0	2023	Senior Level	Full Time	Al Scientist	423834	0	IL	Large
1	2023	Senior Level	Full Time	Data Analyst	385000	0	US	Medium
2	2023	Senior Level	Full Time	Data Architect	376080	100	US	Medium
3	2023	Senior Level	Full Time	Data Scientist	370000	0	US	Medium
4	2023	Senior Level	Full Time	Research Scientist	370000	0	US	Medium

Salaries based on Features

```
In [58]: # Experience Level and Salary
    plt.figure(figsize=(15,10))
    plt.title("Salaries based on Experience Level")
    sns.boxplot(x=df1['experience_level'],y = df1['Salary(USD)'], hue= df1['experience_level
    plt.legend(loc='upper right')
```

Out[58]: <matplotlib.legend.Legend at 0x7fb1867de050>


```
In [60]: # Company size and Salary
plt.figure(figsize=(15,8))
plt.title("Salaries based on Company Size")
sns.swarmplot(x=df1['company_size'],y = df1['Salary(USD)'], hue= df1['company_size'])
plt.legend(loc='upper right')
```

/Users/shruthi/anaconda3/lib/python3.10/site-packages/seaborn/categorical.py:3544: Use rWarning: 32.7% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)

Out[60]: <matplotlib.legend.Legend at 0x7fb1a26a1420>

/Users/shruthi/anaconda3/lib/python3.10/site-packages/seaborn/categorical.py:3544: Use rWarning: 46.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.

warnings.warn(msg, UserWarning)


```
In [54]: # Employment type and Salary
    plt.title("Salaries based on Employment Type")
    sns.barplot(x=df1['employment_type'],y = df1['Salary(USD)'], hue= df1['employment_type']
```



```
In [62]: # Salaries based on Remote Ratio
sal_by_rem=df1["Salary(USD)"].groupby(df.remote_ratio).mean()
sal_by_rem
```

Out[62]: remote_ratio 0 144316.202288 50 78400.687831 100 136481.452830

Name: Salary(USD), dtype: float64

```
In [65]: plt.title("Salaries based on Remote Ratio")
sns.barplot(x=sal_by_rem.index,y = sal_by_rem)
```



```
In [99]: # Top 5 Companies Located and Salaries
    sal_by_loc = df["Salary(USD)"].groupby(df.company_location).mean()
    sal_by_loc.sort_values(ascending=False,inplace=True)
    sal_by_loc.head()
Out[99]: company location
```

```
Out[99]: Company_location
IL 271446.500000
PR 167500.000000
US 151822.009539
RU 140333.333333
CA 131917.689655
Name: Salary(USD), dtype: float64
```

Top 5 places where their salaries are most

Average Data Science Salaries based on Year

```
In [124]:
    average_salary_on_year= df1["Salary(USD)"].groupby(df.Year).mean()
    average_salary_on_year

Out[124]: Year
    2020    92302.631579
    2021    94087.208696
    2022    133338.620793
    2023    149045.541176
    Name: Salary(USD), dtype: float64
```

```
In [123]: plt.title('Average Data Science Salaries based on Year')
    plt.xlabel('Year')
    plt.ylabel('Salary(USD)')

sns.lineplot(x=['2020', '2021', '2022','2023'],y=average_salary_on_year)
```


Combining two or more features

```
In [110]: # Salary in terms of experience level, Employment Type
sal_exp_emp_loc = df1.groupby(['experience_level','employment_type']).mean()
sal_df= sal_exp_emp_loc.drop(['Year','remote_ratio'],axis=1)
sal_df
```

/var/folders/72/z8ryl7mx5yjdpxvp9q9pyp380000gn/T/ipykernel_51136/3705546557.py:2: Futu reWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. I n a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

sal exp emp loc = df1.groupby(['experience level','employment type']).mean()

Out[110]:

Salary(USD)

experience_level	employment_type	
Entry Level	Contractor	65234.500000
	Freelancer	75000.000000
	Full Time	80496.529801
	Part Time	38885.000000
Executive Level	Contractor	416000.000000
	Full Time	192974.566372
Mid Level	Contractor	78600.000000
	Freelancer	41615.600000
	Full Time	105321.489899
	Part Time	42561.000000
Senior Level	Contractor	97500.000000
	Freelancer	53333.333333
	Full Time	153214.454799

```
In [113]: # Salaries with respect to experience level, year and job title

# To find the total count of unique elements in the experience level column
df['experience_level'].value_counts()
```

```
Out[113]: Senior Level 2516
Mid Level 805
Entry Level 320
Executive Level 114
```

Name: experience_level, dtype: int64

BI Analyst 132500.000000

```
In [130]: # to create a table with selected features - experience level, year, and job title
    comb_features=df.groupby(['Year','experience_level','job_title']).mean()
    comb_features_sal=comb_features.drop(['remote_ratio'], axis=1)
    comb_features_sal
    comb_features_sal.style.background_gradient(cmap='Greens')
```

BI Data Analyst 71897.000000

BI Developer 129750.000000

Big Data Architect 151902.000000

Business Intelligence Engineer 174150.000000

Cloud Database Engineer 141666.666667

Computer Vision Engineer 224711.111111

Computer Vision Software Engineer 53654.000000

Data Analyst 125788.944724

Data Analytics Manager 155850.000000

Data Architect 158910.434783

From above table we can easly understand the relationship between the features - experience level, Year, job title with salary. Dark green indicates the hightest salary rates in each job title under year 2020, 2021, 2022, 2023, while the lightest green indicates the least salary.

Confusion Matrix

```
In [128]: #Heatmap of confusion matrix
plt.title('Confusion Matrix')
df2=df1.drop(['remote_ratio'],axis =1)
sns.heatmap(df2.corr(),annot=True,cmap='Blues')
```

/var/folders/72/z8ryl7mx5yjdpxvp9q9pyp380000gn/T/ipykernel_51136/3237722803.py:4: Futu reWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a fut ure version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df2.corr(),annot=True,cmap='Blues')

Out[128]: <Axes: title={'center': 'Confusion Matrix'}>


```
In [129]: # Average of the Salaries in USD
sal=df['Salary(USD)'].mean()
print('Average Salary: ',round(sal,0),"(USD)")
```

Average Salary: 137570.0 (USD)

Through my Analysis, I have noticed a positive rise in Salary difference over the past 3 years. Data Science Jobs have an average of USD 137,570. However, the salary depends on various factors such as experience level, employment type, company location & size, remote ratio. Advancement of Technology in recent years have increased the importance of Data Science across different fields of work hence why the salaries have significantly shown an increase.