Topic 12 – The Periodic Table

Subject content:

Content

- Periodic trends
- Group properties
- Transition elements

Learning outcomes

Periodic trends

- (a) describe the Periodic Table as an arrangement of the elements in the order of increasing proton (atomic) number
- (b) describe how the position of an element in the Periodic Table is related to proton number and electronic structure
- (c) describe the relationship between group number and the ionic charge of an ion of an element
- (d) explain the similarities between the elements in the same group of the Periodic Table in terms of their electronic structure
- (e) describe the change from metallic to non-metallic character from left to right across a period of the Periodic Table
- (f) describe the relationship between group number, number of valency electrons and metallic / non-metallic character
- (g) predict the properties of elements in Group I and Group VII using the Periodic Table.

Group properties

- (a) describe lithium, sodium and potassium in Group I (the alkali metals) as a collection of relatively soft, low-density metals showing a trend in melting point and in their reaction with water
- (b) describe chlorine, bromine and iodine in Group VII (the halogens) as a collection of diatomic, nonmetals showing a trend in colour, state and their displacement reactions with solutions of other halide ions
- (c) describe the elements in Group 0 (the noble gases) as a collection of monatomic elements that are chemically unreactive and hence important in providing an inert atmosphere, e.g. argon and neon in light bulbs; helium in balloons; argon in the manufacture of steel
- (d) describe the lack of reactivity of the noble gases in terms of their electronic structures.

Transition elements

- (a) describe typical transition elements as metals having high melting point, high density, variable oxidation state and forming coloured compounds
- (b) state that the elements and/or their compounds are often able to act as catalysts (see also 6.1(d)).

12.1 Features of the Periodic Table

Periodic Table: list of elements arranged in order of increasing proton number

								Gro	oup								
1	II								***			III	IV	V	VI	VII	0
				Key			1 H hydrogen 1										2 He helium 4
3	4		proton	(atomic) r	number							5	6	7	8	9	10
Li	Be		ato	mic sym	bol							В	С	N	0	F	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	9		relati	ve atomic	mass							11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	C1	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57 – 71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	w w	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	-	_	-
87	88	89 - 103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F/		Lv		
francium	radium		rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	darmstadtium		copernicium		flerovium		livermorium		
_	-		-	_	-	-	_	-	-	-	-		-		-		
la	anthanoid	S	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium —	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175
	actinoids		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
				232	231	238	-	-	-	-		-	-	-	-	-	-

Divides elements into

Division	Description	Numbering	Properties of atoms of elements
1. Periods	Vertical column	8 groups (I to VIII)	Same number of electron shells
2. Groups	Horizontal row	7 periods (1 to 7)	Same number of valence electrons

12.2 Periodic Trends

Metallic and non-metallic properties

Metallic properties: determined by how easily / readily atom of element loses electrons

Trend	Atom	Attractive forces between valence electrons & nucleus	Lose valence electrons
Going down group	size increases	weaker	more easily / readily
Across period	no. of proton increases	stronger	harder

Electronic structure

Period number = no. of electron shells Group number = no. of valence electrons

Charge of ion

Group number and ion formed

Group	Type of ion	Charge	Example	Explanation
I		+1	Na ⁺	
II	positive	+2	Mg^{2+}	 Metals: lose electrons → positive ion Group number = charge
III		+3	Al^{3+}	Group number – emarge
IV	aavalant		CH ₄	• Share electrons → covalent bond
V	covalent		PCl ₅	• Group number = maximum oxidation state
VI		-2	O^{2-}	Non-metals
VII	negative	-1	Cl ⁻	• Gain electrons → positive
0	-			Stable electronic structureDo not form compounds

12.3 Group I Elements - Alkali Metals

Physical properties	Chemical properties		
 Soft (can be cut easily) Low mp & bp Low density (Li, Na, K float on water) 	 React with cold water to form alkali + hydrogen Powerful reducing agents (give away electrons readily) Form ionic compounds 		

Trend: going down group I,

Physical properties	Chemical properties
 mp & bp ↓ Density ↑ 	Reactivity increases (Li < Na < K)

Metal atom lose valence electrons more readily → more reactive

- Size of atom increases
- Valence electrons become further from nucleus
- Force of attraction between valence electrons & nucleus becomes weaker
- Easier to lose valence electrons

React with cold water (single displacement reaction)

Alk	ali metal	Reactivity with cold water	Storage
1.	Lithium (Li)	 2 Li(s) + 2 H₂O(l) → 2 LiOH(aq) + H₂(g) React vigorously Float on water Effervescence of H₂ 	
2.	Sodium (Na)	 2 Na(s) + 2 H₂O(l) → 2 NaOH(aq) + H₂(g) Reacts violently Melt → silvery ball Dart about on surface of water quickly Burn with yellow flame H₂ catch fire & explode (enough heat produced) 	Stored in oil (highly reactive metals) — prevent from reacting with air and water
3.	Potassium (K)	 2 K(s) + 2 H₂O(l) → 2 KOH(aq) + H₂(g) React very violently Dart about on surface of water very quickly Burns with lilac flame H₂ catch fire & explode (enough heat produced) 	

12.4 Group VII Elements - Halogens

Physical properties	Chemical properties
1. Diatomic covalent molecules	Undergo displacement reactions with halide
2. Low melting and boiling points	solutions
3. Coloured	2. Halogens are powerful oxidising agents

Trend: going down group VII,

Physical properties	Chemical properties
Melting and boiling points increase Colours become darker	Reactivity decreases (F > Cl > Br > I > At)

Physical states:

Element	State (r.t.p.)	Melting point (°C)	Boiling point (°C)
fluorine (F)	pale yellow gas	-220	-188
chlorine (Cl)	greenish-yellow gas	-101	-34
bromine (Br)	reddish-brown liquid	-7	59
iodine (I)	purplish-black solid	114	184
astatine (At)	black solid	302	337

Displacement reaction: more reactive halogen displaces less reactive halogen from its halide solution

	Potassium chloride	Potassium bromide	Potassium iodide
	(KCl)	(KBr)	(KI)
		$Cl_2(aq) + 2 \text{ KBr } (aq)$	$Cl_2(aq) + 2 KI(aq)$
Chlorine (Cl_2)		$\rightarrow 2 \text{ KC} l (aq) + \mathbf{Br}_2 (aq)$	$\rightarrow 2 \text{ KC} l (aq) + \mathbf{I}_2 (aq)$
		Reddish-brown mixture	Brown mixture
			$BR_2(aq) + 2 KI(aq)$
Bromine (Br ₂)	No reaction		$\rightarrow 2 \text{ KBr } (aq) + \mathbf{I}_2 (aq)$
			Brown mixture
Iodine (I ₂)	No reaction	No reaction	

React with most metals \rightarrow **metal halides** (exothermic) $2 \text{ Na}_2(s) + Cl_2(g) \rightarrow 2 \text{ NaC} l(s)$

React with hydrogen \rightarrow hydrogen halides (exothermic) $H_2(g) + Cl_2(g) \rightarrow 2 \ HCl(g)$

Different s	states of iodine (I ₂):			
Iodine	Colour			
$I_2(s)$	Purple solid			
$I_{2}\left(l\right)$	(sublimes)			
$I_2(g)$	Purple gas			
I ₂ (aq)	 Brown solution Low solubility in water High solubility in alcohol → purple solution 			

12.5 Group 0 Elements - Noble Gases

Physical properties	Chemical properties
 Colourless gases (r.t.p.) Low <i>mp</i> & <i>bp</i> Insoluble in water 	 Monoatomic Unreactive

Noble gases are unreactive:

- Full valence electron shell → full electronic structure
- Do not lose, gain or share electrons
- Stable & rarely react to form compounds

<u>Uses</u>

Mostly used to provide inert atmosphere

Gas	Usage	
1. Helium (He)	Fill weather balloons	
2. Neon (Ne)	Fill lights and advertising signs	
3. Argon (Ar)	Fill light bulbs / provide inert atmosphere during welding	
4. Krypton (Kr)	Flash bulbs for photography	
5. Xenon (Xe)	Vehicle headlamps and lasers	

12.6 Transition Elements

Properties

Physical and chemical properties

Property	Explanation			
1. High <i>mp</i> & <i>bp</i>	Compared Group I & II metals (other metals)			
2. High densities				
3. Variable oxidation states	 Metals in Group I & II: form one type of positive ion only → oxidation state: +1 / +2 Transition metals: form ions with different oxidation states 			
4. Form coloured compounds	 Different colours of compounds of transition metal at different oxidation states Colour of hydrated compound: different from anhydrous compound Compounds of transition metals → produce different colours (a) dyes (b) pigments (c) paints (d) stained glass 			
	 Important catalysts for many reactions (laboratory + industry) Some uses: 			
5. Good catalysts	Catalyst Industrial process			
	iron Haber process (ma	anufacture ammonia)		
	nickel hydrogenation of (manufacture mar			
	platinum-rhodium catalytic converted	r		
	titanium(III) chloride polymerisation of	alkanas		
	titanium (VI) chloride	airclies		
	manganese(IV) oxide MnO ₂	hydrogen peroxide I ₂ O + O ₂		

Differences in properties of Group I metals and transition metals

Group I metals	Transition metals	
Lower melting pointLower density	Higher melting pointHigher density	
 Form white compounds Form ions with oxidation state +1 	Form coloured compoundsForm ions with different oxidation states	

Typical questions

Structured questions

Suggest a reason why alkali metals are commonly stored in oil.
 Alkali metals are highly reactive metals. They are stored in oil to prevent them from reacting with air and water.

2. Describe a simple test carried out to:

- (a) test the pH of the solution formed after reaction of alkali metals with water.

 Add a few drops of Universal indicator into the solution. Universal indicator will change from green to purple.
- (b) identify the gas evolved when lithium reacts with water.
 Place a lighted splint where the gas evolved. The lighted splint is extinguished with a 'pop' sound.
 The gas is hydrogen.

3. Study the table below about some properties of elements in Period 4.

Element	Electronic configuration	Melting point (°C)	Density (g/cm ³)	Formula of oxide(s)	Colour of one of its chlorides
Potassium	2.8.8.1	63.5	0.86	K ₂ O	white*
Calcium	2.8.8.2	842	1.55	CaO	white*
Scandium	2.8.9.2	1541	2.99	Sc ₂ O ₃	white*
Titanium	2.8.10.2	1668	4.51	TiO, TiO ₂ , Ti ₂ O ₃	violet
Vanadium	2.8.11.2	1910	6.11	VO, VO ₂ , V ₂ O ₃ , V ₂ O ₅	pale green
Chromium	2.8.13.1	1907	7.14	CrO, CrO ₂ , CrO ₃ , Cr ₂ O ₃	dark green
Manganese	2.8.13.2	1246	7.47	MnO, MnO ₂ , Mn ₂ O ₃	pink
Iron	2.8.14.2	1538	7.87	FeO, Fe ₂ O ₃ , Fe ₃ O ₄	pale green
Cobalt	2.8.15.2	1495	8.90	CoO, Co ₂ O ₃ , Co ₃ O ₄	red
Nickel	2.8.16.2	1455	8.91	NiO, Ni ₂ O ₃	green
Copper	2.8.18.1	1084	8.92	Cu ₂ O, CuO	blue-green
Zinc	2.8.18.2	419	7.14	ZnO	white*

Describe the trend in the melting point of the elements from potassium to copper.

The melting point increases from potassium to vanadium, then decreases from vanadium to zinc, except for manganese.