

#### Сегодня



- посмотрим, как отличить статистически достоверное событие от случайного
- узнаем как устроен пайплайн проверки гипотез
- реализуем функции расчета для некоторых тестов

## Проверка статистических гипотез



- Статистическая гипотеза предположение о свойствах генеральной совокупности.
- Всю ГС мы исследовать не можем, значит, мы должны собрать **репрезентативную выборку**, изучить ее, а после проверить гипотезу.

# Задача с кофе







**Задача с кофе**• в ТЦ стоит один из наших автоматов с кофе.

#### Ранее:

из тех, кто подходил к нему, с кофе уходил каждый второй.

#### • Есть гипотеза:

 У нашего автомата сложный интерфейс, и некоторых людей это сбивает с толку и они уходят

#### • Изменения:

- Разработан новый тестовый интерфейс, и поставлен на наш автомат.
- В случае успеха, можно будет выкатывать на остальные наши автоматы

#### После :

Из 300 людей, которые подошли к нашему автомату, купили 167

## Задача



- Подтвердилась ли наша гипотеза? К какому результату интуитивно склоняетесь?
- Желательно не ошибиться с выбором, так как внедрение нового интерфейса на все наши автоматы стоит денег.

#### Задача



#### Формализуем:

- ГС все люди, которые подошли бы к нашему автомату
- у нас есть выборка  $x_1, x_2, x_3, ..., x_{300}$
- ullet  $x_i \sim Be(p)$  (купил/не купил)
- p неизвестный для нас параметр ГС доля тех, кто купил бы, подойдя к автомату
- Пример выборки [1,1,...,1,0,1,0,1,1] (167 купили, 133 не купили)

#### Статистическая гипотеза



Нулевая гипотеза  $H_0$  – это гипотеза, которой мы придерживаемся, пока наблюдения не заставят признать обратное. Ей всегда сопутствует альтернативная гипотеза  $H_1$ .

- $H_0$  почти всегда формулируется, как "значимых изменения нет"
- $H_1$  "значимые изменения есть"

#### Статистическая гипотеза



В нашем случае:

- $H_0: p=0.5$  (конверсия в покупку такая же и осталась)
- $H_1: p>0.5$  (конверсия увеличилась)

По результатам исследования мы остановимся на одной из гипотез

#### Ошибка первого и второго рода



- Ошибка первого рода(FP) это ситуация, когда  $H_0$  отвергается, хотя она, на самом деле, верна
  - $\circ$   $\alpha$  вероятность ошибки первого рода или уровень значимости
- Ошибка второго рода(FN) это ситуация, когда  $H_0$  принимается, хотя она неверна
  - $\circ$   $\beta$  вероятность ошибки второго рода

Некоторая сложность: при уменьшении ошибки первого рода, увеличивается ошибка второго рода и наоборот.

# Ошибка первого и второго рода



• Матрица ошибок (confusion matrix)

### **Hypothesis testing:**

#### Decision

|        |                      | H <sub>0</sub> true (Fail to reject)                                     | H <sub>0</sub> false (Rejecting H <sub>0</sub> )                                    |
|--------|----------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Actual | H₀ true              | TRUE NEGATIVE  Correct decision:  Confidence level  (prob $1 - \alpha$ ) | FALSE POSITIVE  Type I Error: Significance level/Size ( $\alpha$ ) (prob $\alpha$ ) |
|        | H <sub>o</sub> false | FALSE NEGATIVE  Type II Error: fail to reject (prob $\beta$ )            | TRUE POSITIVE  Correct decision: Power (prob $1-\beta$ )                            |

## Примеры



- Например, суд выдвигает гипотезу  $H_0$ : подсудимый невиновен. А он, на самом деле, виновен, но суд признает его невиновным за отсутствием улик (презумпция невиновности). То есть суд принимает гипотезу, хотя она неверна.
- "Ложноположительный результат" при при медицинских анализах это ошибка какого рода?

# Статистика критерия



**Статистика** – любая функция, получаемая по выборке. В каком-то смысле это просто посчитанная метрика

Обозначение:  $\mathrm{T}(ec{x})$ , где  $ec{x} = (x_1, x_2, x_3, ..., x_n)$  - выборка

- Статистика агрегирует информацию о выборке.
- Самые частые статистики:
  - Среднее, доля, медиана, количество, квантиль и т.д.
- Кастомные статистики
  - Показатель удовлетворенности клиентов (Customer Satisfaction Score, CSS)
  - Показатель устойчивости бизнеса(Customer Loyalty Index, CLI)
  - "Здесь бы могла быть ваша статистика ""

#### Наша задача



- Возьмем в нашем примере с кофе  $T(X) = \sum_{i=1}^{300} x_i$ , иначе говоря, сколько людей купили у нас кофе.
- Важно понимать, что T(X) тоже является **случайной величиной**, а значит имеет свое распределение, это **ключевой момент** в данной теме.
- Именно знание распределения статистики дает нам понимания, насколько экстремальное значение мы вообще получили.
- Например при проверки монетки на честность получить 90 орлов после 100 подбрасываний кажется слишком экстремальным, и скорее она не честная.

## Наша задача

Распределение статистики(количество купивших людей)  $T(X) = \sum_{i=1}^{300} x_i$ 





# Проверка гипотез: алгоритм



- 1. Сформулировать основную и альтернативную гипотезы, задать уровень значимости lpha
- 2. Найти критические значения статистики для соответствующего уровня значимости
- 3. Вычислить значение статистики и определить, попало ли оно в критическую область
- 4. Сделать вывод: если значение попало в критическую область отвергнуть нулевую гипотезу, в противном случае принять

# Наша задача



•  $\alpha$  = 0.05 - уровень значимости или ошибка первого рода



### Критическая область



**Критической** областью называется область значений статистики критерия, при которых отвергается  $H_0$ . А критические значения - это граница критической области.









• **P-value** можно интерпретировать как вероятность ошибиться, если мы выбираем гипотзу H1.



#### Итоги



- Статистические тесты позволяют ответить есть ли **статистически значимый результат**
- Ошибки 1-го рода $(\alpha)$  и 2-го рода $(\beta)$  не хороши для нас, однако в большинстве случаев их не избежать. Катастрофичность каждой из них зависит от конкретной задачи
- p-value позволяет оценить вероятность ошибки и принять решение