Feature Learning

Alex(ander) Jung Assistant Professor for Machine Learning Department of Computer Science Aalto University

Reading.

Ch. 9 of AJ, "Machine Learning: The Basics," Springer, Singapore, 2022.

preprint: https://mlbook.cs.aalto.fi

https://scikit-learn.org/stable/modules/feature_selection.html

Learning Goals

- understand challenges with long raw feature vectors
- basic idea of feature learning
- feature learning for visualization and privacy-protection
- principal component analysis
- random projections

Data Point = "Some Movie"

several Gigabytes of raw feature bits!

Dataset = "Bunch of Movies"

8/16/22

A. Jung HCML Summer School 22

Scatterplot of Movies?

Curse of Big Data

Overwhelmed by Tons of Features!

- consider data point representing a person
- digital footprint can be used for constructing features
- health-records (including genetic fingerprint)
- credit-card transactions
- social media posts
- media collections
- travelling profile over last 20 years
-

Statistical Challenge

- effective dimension d of hypothesis space
- d typically increases with larger nr. of features
- overfitting is likely when d > sample size m

Linear Regression

- consider data points with n features
- have m labeled data points
- •for m < n, plain linear regression will overfit
- •n might be billions (e.g., HD-movies)
- would need billions of labeled data points

Data and Model Size

overfitting as soon as d/m > 1!

Computational Challenge

linear regression on data points with d features amounts to inverting a matrix size d x d

GDPR-Compliant Feature Selection

Data minimisation: The use of personal data has to be limited to what is necessary to fulfil the purpose it was collected for ...

Proportionality...The amount and nature of the data used has to be proportionate to the purpose and the least invasive for the data subject...

source: https://www.auditingalgorithms.net/

Feature Selection for Trustworthy Al

"Privacy and data governance: besides ensuring full respect for privacy and data protection, ...into account the quality, integrity ...and ensuring legitimised access to data...

Diversity, non-discrimination and fairness: Unfair bias must be avoided, as it could could have multiple negative implications, from the marginalization of vulnerable groups, to the exacerbation of prejudice and discrimination...."

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

The Basic Idea of Feature Learning.

Basic Idea of Feature Learning

8/16/22

Linear Feature Learning

use linear maps for compression and reconstruction

$$\mathbf{x} = \mathbf{W}\mathbf{z}$$
 $\mathbf{\hat{z}} = \mathbf{R}\mathbf{x}$

choose matrices W and R to minimize $\mathbf{z} - \widehat{\mathbf{z}} = (\mathbf{I} - \mathbf{RW})\mathbf{z}$

Non-Linear Feature Learning ("Autoencoder")

use artificial neural networks for compression and reconstruction

much like linear maps, ANNs are just parametrized maps!

Feature Learning for Labeled Data

choose W such that we can predict (using some map R) the label y from z with maximum accuracy

Feature Learning for Labeled Data

raw feature vector

choice for W needs to balance between

- compressing raw feature vector as much as possible
- keep parts of raw features that are relevant for predicting y

Privacy-Preserving Feature Learning

- compressing raw feature vector as much as possible
- keep parts of raw features that are relevant for predicting y
- predicting private variable "s" is not predictable from x

Privacy-Preserving Feature Learning

Principal Component Analysis (PCA)

Linear Feature Learning

use linear maps for compression and reconstruction

$$\mathbf{x} = \mathbf{W}\mathbf{z}$$
 $\widehat{\mathbf{z}} = \mathbf{R}\mathbf{x}$ n (nr. of raw features) n' (<\mathbf{w}

choose matrices W and R to minimize $\mathbf{z} - \widehat{\mathbf{z}} = (\mathbf{I} - \mathbf{RW})\mathbf{z}$

PCA as Risk Minimization

• m datapoints with raw feature vecs $\mathbf{z}^{(1)}, \cdots, \mathbf{z}^{(m)}$

choose matrices **W**, **R** to minimize reconstruction error

$$L(\mathbf{W}, \mathbf{R}) = \frac{1}{m} \sum_{i=1}^{m} ||\mathbf{z}^{(i)} - \mathbf{R} \mathbf{W} \mathbf{z}^{(i)}||^{2}$$

Principal Component Analysis (PCA)

- optimal compression matrix $\mathbf{W} = \left(\mathbf{u}^{(1)}, \cdots, \mathbf{u}^{(n')}\right)$
- ullet using "top" eigenvectors $oldsymbol{u}^{(i)}$ of sample covariance matrix

$$\widehat{\mathbf{C}} = (1/m) \sum_{i=1}^{m} \mathbf{z}^{(i)} (\mathbf{z}^{(i)})^{T}$$

• eigenvalue decomposition of psd sample cov. matrix:

$$\widehat{\mathbf{C}} = (\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(n)}) \operatorname{diag}(\lambda_1, \dots, \lambda_n) (\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(n)})^T$$
 non-negative eigenvalues

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq 0.$$

Geometry of PCA

Computational Complexity

choose (learn) W and R to minimize reconstruction error $\mathbf{z} - \widehat{\mathbf{z}}$

PCA requires eigenvalue decomposition of "n x n" matrix!

How to choose n'?

- PCA requires number n' of learned features as input
- n'=2 for visualization (scatter plot)
- chose n' to balance compression with optimal reconstruction error

$$L(n') = \min_{\mathbf{W} \in \mathbb{R}^{n' \times n}} L(\mathbf{W}, \mathbf{R})$$

$$\mathbf{R} \in \mathbb{R}^{n \times n'}$$

Elbow Method

optimal reconstruction error when using PCA to learn single feature (n'=1) ... PCA to learn two features (n'=2)

Variations of PCA

robust PCA: uses a different measure of reconstruction error

probabilistic PCA: uses a statistical model for data points

sparse PCA: new features depend on few raw features

Probabilistic PCA

PCA as Pre-Processing

- PCA delivers a compression matrix W
- replace (long) raw features z with shorter features x =Wz
- apply regression/classification methods to new features x
- CAUTION: PCA ignores label information!

PCA Ignores Labels!

Fisher's Linear Discriminant

Random Projections

- consider random projection x= W z
- entries of matrix W are randomly chosen
- no learning/tuning of W required!
- in many settings, works surprisingly well
- known as compressed sensing

So What?

- feature learning methods determine relevant features
- learning two features allows to scatter plot!
- optimal linear feature learning = PCA
- PCA ignores label information!
- random projections as computationally light alternative

Thank You!