# Sistemas Lineares (SLs)

Álgebra Linear Computacional - Fabricio Murai

#### Aula anterior

- Fundamentos teóricos do PCA
  - Matriz de covariância
  - Mudança de base
  - Maximização da variância (minimização do ruído)
  - Relação entre SVD e PCA

#### Aula de hoje

- Existência e unicidade de soluções
- Perspectiva geométrica de SLs
- Perspectiva vetorial de SLs
- Exemplos de matrizes escalonadas
  - Matriz quadrada: posto, autovalores e determinante
- Solução de sistemas triangulares
- Eliminação de Gauss

#### Este sistema linear possui solução?

**Resposta**: Sim, pois <u>é possível</u> obter um <u>sistema equivalente</u> do tipo Ux=d, onde U é triangular superior, cuja <u>solução é única</u>.

#### Teorema fundamental

Para qualquer SL de equações Ax=b, vale uma de 3 possibilidades:

- É inconsistente (não possui solução)
- É consistente:
  - Possui uma única solução
  - Possui infinitas soluções

Objetivo de aprendizagem: entender a intuição geométrica de por que não existem sistemas com número finito (maior que 1) de soluções.

#### Perspectiva: interseção de hiperplanos

Sistema com 3 equações 3 variáveis:



$$x=[5,1,10]^{ op}$$

Fonte: CAMPOS, filho. Algoritmos Numéricos. 3a. edição.

#### Perspectiva: SL como combinação linear

Encontrar a solução x para  $A_{mxn}x_{nx1} = b_{mx1}$  equivale a encontrar a combinação linear das colunas de A que satisfazem:

$$x_1\mathbf{a}_1+x_2\mathbf{a}_2+\ldots+x_n\mathbf{a}_n=\mathbf{b}_n$$

Pergunta: Quando existe solução?

Resposta: Quando b está no espaço S de colunas de A

$$S = \{x_1\mathbf{a}_1 + \ldots + x_n\mathbf{a}_n | x_1, \ldots, x_n \in \mathbb{R}\}$$

Objetivo de aprendizagem: entender a relação entre o espaço de colunas de A e a solução de Ax=b.

Quiz: posto e

## Exemplos de matrizes escalonadas existência

$$M = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad N = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$N = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

- $\bullet$  Mx = b gorda; posto de linha completo; infinitas soluções p/ qualquer b (2 vars livres)
- $\bullet$  Nx = b magra; posto de coluna completo; inconsistente p/ alguns b e solução única p/ outros
- $\bullet$  Px = b quadrada; posto incompleto; inconsistente p/ alguns b e infinitas p/ outros

Objetivo de aprendizagem: entender a relação entre o posto de linha e a existência de solução e a relação entre posto de coluna e unicidade da solução.

#### Caso particular: matriz quadrada

Fatos importantes sobre matriz quadrada  $A_{n\times n}$ :

- Posto é igual ao número de autovalores não-nulos
- Produto dos autovalores é igual ao determinante

$$\det(\mathbf{A}) = \prod_i \lambda_i$$

Soma dos autovalores é igual ao traço(A)

$$\operatorname{traço}(\mathbf{A}) = \sum_i \lambda_i$$

Objetivo de aprendizagem: conhecer as relações entre determinante, traço, posto e autovalores de uma matriz quadrada.

#### Perguntas sobre matrizes quadradas

Qual a relação entre posto e determinante?

$$posto(A) = n \iff det(\mathbf{A}) \neq 0$$

Para todo b, Ax=b tem solução única. Qual posto(A)?
 Qual a solução x?

$$\mathbf{posto}(\mathbf{A}) = n$$
 $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ 

#### Determinante pela expansão de Laplace

Cofator i,j da matriz B:  $C_{ij} = (-1)^{i+j} M_{ij}$ , onde Mij é o menor i,j de B (determinante da matriz (n-1)x(n-1) que resulta ao deletar a linha i e coluna j)

#### **Teorema**. O determinante |B| da matriz $B_{nxn}$ é dado por

$$|B| = b_{i1}C_{i1} + b_{i2}C_{i2} + \dots + b_{in}C_{in}$$
  
 $= b_{1j}C_{1j} + b_{2j}C_{2j} + \dots + b_{nj}C_{nj}$   
 $= \sum_{i'=1}^{n} b_{ij'}C_{ij'} = \sum_{i'=1}^{n} b_{i'j}C_{i'j}$ 

Objetivo de aprendizagem: conhecer a expansão de Laplace e a complexidade computacional do cálculo do determinante através dela.

#### Determinante pela expansão de Laplace

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

Usando a Linha 1:

$$|B| = 1 \cdot egin{bmatrix} 5 & 6 \ 8 & 9 \end{bmatrix} - 2 \cdot egin{bmatrix} 4 & 6 \ 7 & 9 \end{bmatrix} + 3 \cdot egin{bmatrix} 4 & 5 \ 7 & 8 \end{bmatrix}$$

Usando a Coluna 2:

$$|B| = -2 \cdot egin{vmatrix} 4 & 6 \ 7 & 9 \end{bmatrix} + 5 \cdot egin{vmatrix} 1 & 3 \ 7 & 9 \end{bmatrix} - 8 \cdot egin{vmatrix} 1 & 3 \ 4 & 6 \end{bmatrix}$$

COLA

$$|B| = b_{i1}C_{i1} + b_{i2}C_{i2} + \dots + b_{in}C_{in}$$
  
 $= b_{1j}C_{1j} + b_{2j}C_{2j} + \dots + b_{nj}C_{nj}$   
 $= \sum_{j'=1}^{n} b_{ij'}C_{ij'} = \sum_{i'=1}^{n} b_{i'j}C_{i'j}$ 

O que podemos dizer sobre o posto de B?

#### Sistemas triangulares

Lx=c é dito sistema triangular inferior quando L é triangular inferior.

Pode ser resolvido pelo método das substituições sucessivas.

$$x_1 = \frac{c_1}{l_{11}}$$
 $x_2 = \frac{c_2 - l_{21}x_1}{l_{22}}$ 
 $\dots = \dots$ 
 $x_i = \frac{c_i - l_{i1}x_1 - l_{i2}x_2 - \dots l_{i,i-1}x_{i-1}}{l_{ii}}$ 

Objetivo de aprendizagem: aprender a identificar e resolver sistemas triangulares.

#### Método das substituições sucessivas

**Entrada**: matriz triangular inferior  $L_{nxn}$ , vetor  $c_{nx1}$ 

**Saída**: vetor solução  $x_{nx1}$ 

```
Para i=1 até n:
    Soma = 0
    Para j=1 até i-1:
        Soma += L[i,j]*x[j]
    x[i] = (c[i] - soma)/L[i,i]
Retorna x
```

Objetivo de aprendizagem: aprender a implementar o método das substituições sucessivas e sua complexidade.

#### Método das substituições sucessivas

**Entrada**: matriz triangular inferior  $L_{nxn}$ , vetor  $c_{nx1}$ 

**Saída**: vetor solução  $x_{nx1}$ 

```
Para i=1 até n:

soma = 0

Para j=1 até i-1:

soma += L[i,j]*x[j]

x[i] = (c[i]-Soma)/L[j,j]

Retorna x
```

Quantas adições, multiplicações e divisões?

#### Sistemas triangulares

Ux=d é dito sistema triangular superior quando U é triangular superior.

Pode ser resolvido pelo método das substituições retroativas.

$$x_{n} = \frac{d_{n}}{u_{nn}}$$

$$x_{n-1} = \frac{d_{n-1} - u_{n-1,n}x_{n}}{u_{nn}}$$

$$\dots = \dots$$

$$x_i = \frac{d_i - u_{i,i+1} x_{i+1} - u_{i,i+2} x_{i+2} - \dots u_{i,n} x_{i,n}}{u_{ii}}$$

## Quando Ax=b possui solução?

Relação entre posto de  $A_{mxn}$  e posto da matriz aumentada A|b

- posto(A) = posto(A|b): consistente (possui solução)
  - posto(A) = n: solução única
  - posto(A) < n: infinitas soluções</li>
- posto (A) < posto(A|b): inconsistente (não possui solução)</li>

### Como transformar Ax=b em Ux=d?

#### Operações L-triangulares

Usadas para transformar Ax=b em um sistema equivalente Bx=c (mesma solução):

Quanto vale det(B) após Eliminação de Gauss?

- Trocar linhas i e j
   det(B) = -det(A)
- Multiplicar uma linha por  $c \neq 0$  det(B) = c det(A)
- Adicionar s vezes linha i à linha j det(B) = det(A)

#### Eliminação de Gauss

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 6 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 7 \\ -15 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 7 \\ -36 \end{bmatrix}.$$

Dispositivo Prático (CAMPOS, filho 2018).

| L | Multiplicador          |    | $\boldsymbol{A}$ |            | b   | Operações     |
|---|------------------------|----|------------------|------------|-----|---------------|
| 1 |                        | 1  | -3               | 2          | 11  |               |
| 2 | $m_{21} = (-2)/1 = -2$ | -2 | 8                | -1         | -15 |               |
| 3 | $m_{31} = 4/1 = 4$     | 4  | -6               | 5          | 29  |               |
| 4 |                        | 0  | 2                | 3          | 7   | $2L_1 + L_2$  |
| 5 | $m_{32} = 6/2 = 3$     | 0  | 6                | -3         | -15 | $ -4L_1+L_3 $ |
| 6 |                        | 0  | 0                | <u>-12</u> | -36 | $-3L_4 + L_5$ |

Qual o determinante?

Objetivo de aprendizagem: reconhecer os multiplicadores envolvidos na Eliminação de Gauss; calcular o determinante de uma matriz usando escalonamento.

| L | Multiplicador | pivô $oldsymbol{A}$ |      | b      | Operações |
|---|---------------|---------------------|------|--------|-----------|
| 1 |               | <u>1</u> -3         | 2    | 11     |           |
| 2 |               | -2 	 8              | -1   | -15    |           |
| 3 |               | 4 -6                | 5    | 29     |           |
| 4 | 2,6           |                     |      |        |           |
| 5 |               | 503                 | 1000 | 90.000 |           |
| 6 |               |                     |      |        |           |

| L | Multiplicador                                |        | A  |        | b    | Operações |
|---|----------------------------------------------|--------|----|--------|------|-----------|
| 1 |                                              | 1      | -3 | 2      | 11   |           |
| 2 | $m_{21} = (-2)/1 = -2$                       | -2     | 8  | -1     | -15  |           |
| 3 | $m_{21} = (-2)/1 = -2$<br>$m_{31} = 4/1 = 4$ | 4      | -6 | 5      | 29   |           |
| 4 |                                              |        |    |        |      |           |
| 5 | 3031930                                      | 72,023 |    | (6.53) | 2000 |           |
| 6 |                                              |        |    |        |      |           |

| L | Multiplicador                                |       | A  |     | b     | Operações    |
|---|----------------------------------------------|-------|----|-----|-------|--------------|
| 1 |                                              | 1     | -3 | 2   | 11    |              |
| 2 | $m_{21} = (-2)/1 = -2$                       | -2    | 8  | -1  | -15   |              |
| 3 | $m_{21} = (-2)/1 = -2$<br>$m_{31} = 4/1 = 4$ | 4     | -6 | 5   | 29    |              |
| 4 |                                              |       |    |     |       | $2L_1 + L_2$ |
| 5 | 0-01-05-0-1                                  | 12015 |    | 785 | 51000 | 34/04/       |
| 6 | 99                                           |       |    |     |       |              |

| L | Multiplicador                                |       | A  |       | b      | Operações    |
|---|----------------------------------------------|-------|----|-------|--------|--------------|
| 1 |                                              | 1     | -3 | 2     | 11     |              |
| 2 | $m_{21} = (-2)/1 = -2$                       | -2    | 8  | -1    | -15    |              |
| 3 | $m_{21} = (-2)/1 = -2$<br>$m_{31} = 4/1 = 4$ | 4     | -6 | 5     | 29     |              |
| 4 |                                              | 0     | 2  | 3     | 7      | $2L_1 + L_2$ |
| 5 | 3-23-1-3-2-2                                 | 75.03 |    | 10.50 | 51,737 |              |
| 6 |                                              |       |    |       |        | _            |

| L | Multiplicador                                |    | A     |    | b   | Operações     |
|---|----------------------------------------------|----|-------|----|-----|---------------|
| 1 |                                              | 1  | -3    | 2  | 11  |               |
| 2 | $m_{21} = (-2)/1 = -2$                       | -2 | 8     | -1 | -15 |               |
| 3 | $m_{21} = (-2)/1 = -2$<br>$m_{31} = 4/1 = 4$ | 4  | -6    | 5  | 29  |               |
| 4 |                                              | 0  | 2     | 3  | 7   | $2L_1 + L_2$  |
| 5 |                                              | 0  | 6     | -3 | -15 | $ -4L_1+L_3 $ |
| 6 |                                              |    | 30.00 |    |     |               |

| L | Multiplicador                                |    | A  |    | b   | Operações     |
|---|----------------------------------------------|----|----|----|-----|---------------|
| 1 |                                              | 1  | -3 | 2  | 11  |               |
| 2 | $m_{21} = (-2)/1 = -2$                       | -2 | 8  | -1 | -15 |               |
| 3 | $m_{21} = (-2)/1 = -2$<br>$m_{31} = 4/1 = 4$ | 4  | -6 | 5  | 29  |               |
| 4 |                                              | 0  | 2  | 3  | 7   | $2L_1 + L_2$  |
| 5 | $m_{32} = 6/2 = 3$                           | 0  | 6  | -3 | -15 | $ -4L_1+L_3 $ |
| 6 | 92<br>73                                     |    |    |    |     |               |

| L | Multiplicador                                |    | A  |            | b   | Operações     |
|---|----------------------------------------------|----|----|------------|-----|---------------|
| 1 |                                              | 1  | -3 | 2          | 11  |               |
| 2 | $m_{21} = (-2)/1 = -2$                       | -2 | 8  | -1         | -15 |               |
| 3 | $m_{21} = (-2)/1 = -2$<br>$m_{31} = 4/1 = 4$ | 4  | -6 | 5          | 29  |               |
| 4 | 310                                          | 0  | 2  | 3          | 7   | $2L_1 + L_2$  |
| 5 | $m_{32} = 6/2 = 3$                           | 0  | 6  | -3         | -15 | $ -4L_1+L_3 $ |
| 6 |                                              | 0  | 0  | <u>-12</u> | -36 | $-3L_4 + L_5$ |

### Eliminação de Gauss: Implementação v I

**Entrada**: A<sub>nxn</sub>, b<sub>nx1</sub> Escrever solução aqui

Saída:  $U_{nxn}$ ,  $d_{nx1}$ 

#### Eliminação de Gauss: Implementação v I

Entrada: A<sub>nxn</sub>, b<sub>nx1</sub>

**Saída**:  $U_{nxn}$ ,  $d_{nxl}$ 

Como reduzir o número de divisões?

Posso pular k=j?

```
U=A.copy()
d=b.copy()
Para j=l até n-l:
    Para i=j+l até n:
        m = U[i,j]/U[j,j]
       for k=j até n:
            U[i,k] = U[i,k]-m*U[j,k]
       d[i] = d[i] - m*d[i]
retorna U, d
```

Objetivo de aprendizagem: reconhecer as diferenças nos custos de diferentes operações algébricas e oportunidades para otimização.

#### Eliminação de Gauss: Implementação v2

Entrada: A<sub>nxn</sub>, b<sub>nx1</sub>

Saída: U<sub>nxn</sub>, d<sub>nx1</sub>

Como reduzir o tempo de execução?

```
U=A.copy()
d=b.copy()
Para j=l até n-l:
    r = I/U[i,i]
    Para i=j+l até n:
       m = U[i,j]*r
       for k=j+l até n:
           U[i,k] = U[i,k]-m*U[j,k]
       d[i] = d[i] - m*d[i]
retorna upper(U), d
```

#### Eliminação de Gauss: Implementação v3

```
Entrada: A<sub>nxn</sub>, b<sub>nx1</sub>
                           U=A.copy()
Saída: U_{nxn}, d_{nxl}
                            d=b.copy()
                            Para j=l até n-l:
                                r = I/U[i,i]
                                Para i=j+l até n:
                                     m = U[i,j]*r
                                     U[i,j+1:n] = U[i,j+1:n]-m*U[j,j+1:n]
                                     d[i] = d[i] - m*d[i]
                            retorna upper(U), d
```

#### Complexidade da Eliminação de Gauss

Quantas divisões, adições (+ ou -) e multiplicações no cálculo de U?

#### Divisões: n-l

#### Adições:

$$\sum_{a=1}^{n-1} a^2 = \frac{(n-1)n(2n-1)}{6}$$
$$= \frac{n^3}{2} - \frac{n^2}{2} + \frac{n}{2}$$



Objetivo de aprendizagem: calcular o custo computacional da Eliminação de Gauss.

$$j=n-1$$
  $i=n$   $i=n$   $I^2$  vezes

#### Complexidade da Eliminação de Gauss

Quantas divisões, adições (+ ou -) e multiplicações no cálculo de U?

Divisões: n-l

Adições: 
$$\frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6}$$

j=1 \_\_\_\_\_\_ i=2 ... i=n

(n-I) vezes

Multiplicações:

$$\frac{n^3}{3} - \frac{n^2}{2} + \frac{n}{6} + \frac{n(n-1)}{2} =$$

$$\frac{n^3}{3} - \frac{n}{3}$$

(n-2) vezes

l vez

#### Quando a eliminação falha ou tem erro grande?

- Quando o pivô é zero, eliminação falha.
- Quando pivô é relativamente pequeno, temos m > 1, o que pode aumentar muito o erro de arredondamento.

Teórico: res 
$$\leftarrow a_{21} - m \cdot a_{11}$$

arredondamento:  $rd(x) = x - \hat{x}$ 

Real: 
$$\widehat{\text{res}} \leftarrow \hat{a}_{21} - \hat{m} \cdot \hat{a}_{11}$$

$$rd( ext{res}) \leftarrow rd(a_{21}) - m \cdot a_{11} + \hat{m} \cdot \hat{a}_{11}$$

Erro de Como m e  $\hat{m}$  são aproximadamente iguais,

$$rd( ext{res}) \leftarrow rd(a_{21}) - \hat{m} \cdot rd(a_{11})$$

$$|rd( ext{res})| \leftarrow |rd(a_{21}) - \hat{m} \cdot rd(a_{11})|$$

Quanto maior m, maior o erro de arredondamento.

Fonte:https://ocw.mit.edu/courses/chemical-engineering/10-34-numerical-methods-applied-to-chemical-engineering-fall-2005/lecture-notes/lecturenotes123.pdf

#### Quando a eliminação falha ou tem erro grande?

#### Solução

Trocar linha de modo a tornar o pivô não-nulo.

Mas existem várias opções. Qual é a melhor?

O melhor é escolher como pivô elemento da coluna de maior valor absoluto (técnica chamada **pivotação parcial**).

#### Eliminação de Gauss com pivotação parcial

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| L | m |    | A  |      | Operações | p |
|---|---|----|----|------|-----------|---|
| 1 |   | 1  | -3 | 2    |           | 1 |
| 2 |   | -2 | 8  | -1   |           | 2 |
| 3 |   | 4  | -6 | 5    |           | 3 |
| 4 |   |    |    | 1000 |           |   |
| 5 |   |    |    |      |           |   |
| 6 |   | 20 |    |      |           |   |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| L | m                     |    | A  |       | Operações | p |
|---|-----------------------|----|----|-------|-----------|---|
| 1 | $m_{11} = 1/4 = 0,25$ | 1  | -3 | 2     |           | 1 |
| 2 |                       | -2 | 8  | -1    |           | 2 |
| 3 |                       | 4  | -6 | 5     |           | 3 |
| 4 |                       |    |    | 10000 |           |   |
| 5 |                       |    |    |       |           |   |
| 6 |                       | 9  |    |       |           |   |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| L | m                                                 |    | A  |      | Operações | p |
|---|---------------------------------------------------|----|----|------|-----------|---|
| 1 | $m_{11} = 1/4 = 0,25$                             | 1  | -3 | 2    |           | 1 |
| 2 | $m_{11} = 1/4 = 0.25$<br>$m_{21} = (-2)/4 = -0.5$ | -2 | 8  | -1   |           | 2 |
| 3 | 00000000 00000 00000000000000000000000            | 4  | -6 | 5    |           | 3 |
| 4 |                                                   |    |    | 1000 |           |   |
| 5 |                                                   |    |    |      |           |   |
| 6 |                                                   |    |    |      |           |   |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| L | m                                                 |    | A  |      | Operações | p |
|---|---------------------------------------------------|----|----|------|-----------|---|
| 1 | $m_{11} = 1/4 = 0,25$                             | 1  | -3 | 2    |           | 1 |
| 2 | $m_{11} = 1/4 = 0.25$<br>$m_{21} = (-2)/4 = -0.5$ | -2 | 8  | -1   |           | 2 |
| 3 | 00000000 00000 00000000 00000000000000            | 4  | -6 | 5    |           | 3 |
| 4 |                                                   |    |    | 1000 |           | 1 |
| 5 |                                                   |    |    | _    |           | 2 |
| 6 |                                                   | -  |    |      |           |   |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| L | m                               | 0  | A  |     | Operações        | p |
|---|---------------------------------|----|----|-----|------------------|---|
| 1 | $m_{11} = 1/4 = 0,25$           | 1  | -3 | 2   |                  | 1 |
| 2 | $m_{21} = (-2)/4 = -0.5$        | -2 | 8  | -1  |                  | 2 |
| 3 | CONTROL CONTROL CONTROL CONTROL | 4  | -6 | 5   |                  | 3 |
| 4 |                                 |    |    | 100 | $-0.25L_3 + L_1$ | 1 |
| 5 |                                 |    |    | _   |                  | 2 |
| 6 |                                 |    |    |     |                  |   |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| $\boldsymbol{L}$ | m                               | 8  | $\boldsymbol{A}$ |     | Operações                          | p |
|------------------|---------------------------------|----|------------------|-----|------------------------------------|---|
| 1                | $m_{11} = 1/4 = 0.25$           | 1  | -3               | 2   |                                    | 1 |
| 2                | $m_{21} = (-2)/4 = -0.5$        | -2 | 8                | -1  |                                    | 2 |
| 3                | CONTROL CONTROL CONTROL CONTROL | 4  | -6               | 5   |                                    | 3 |
| 4                |                                 |    |                  | 100 | $-0.25L_3 + L_1$                   | 1 |
| 5                |                                 |    |                  |     | $-0.25L_3 + L_1$<br>$0.5L_3 + L_2$ | 2 |
| 6                |                                 | -  |                  |     |                                    |   |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| L | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9  | A    |      | Operações      | p |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|------|----------------|---|
| 1 | $m_{11} = 1/4 = 0,25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  | -3   | 2    |                | 1 |
| 2 | $m_{21} = (-2)/4 = -0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2 | 8    | -1   |                | 2 |
| 3 | The North Control of the State | 4  | -6   | 5    |                | 3 |
| 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0  | -1,5 | 0,75 | $-0,25L_3+L_1$ | 1 |
| 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |      |      | $0.5L_3 + L_2$ | 2 |
| 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91 |      |      |                |   |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| $\boldsymbol{L}$ | m                                                                                                               | 9  | A        |      | Operações        | p |
|------------------|-----------------------------------------------------------------------------------------------------------------|----|----------|------|------------------|---|
| 1                | $m_{11} = 1/4 = 0,25$                                                                                           | 1  | -3       | 2    |                  | 1 |
| 2                | $m_{21} = (-2)/4 = -0.5$                                                                                        | -2 | 8        | -1   |                  | 2 |
| 3                | 100 Anni 100 | 4  | -6       | 5    |                  | 3 |
| 4                |                                                                                                                 | 0  | -1,5     | 0,75 | $-0.25L_3 + L_1$ | 1 |
| 5                |                                                                                                                 | 0  | <u>5</u> | 1,5  | $0.5L_3 + L_2$   | 2 |
| 6                |                                                                                                                 | 01 |          |      |                  |   |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| L | m                          |    | m A      |      |                |   |
|---|----------------------------|----|----------|------|----------------|---|
| 1 | $m_{11} = 1/4 = 0.25$      | 1  | -3       | 2    |                | 1 |
| 2 | $m_{21} = (-2)/4 = -0.5$   | -2 | 8        | -1   |                | 2 |
| 3 |                            | 4  | -6       | 5    |                | 3 |
| 4 | $m_{12} = (-1,5)/5 = -0,3$ | 0  | -1,5     | 0,75 | $-0,25L_3+L_1$ | 1 |
| 5 |                            | 0  | <u>5</u> | 1,5  | $0.5L_3 + L_2$ | 2 |
| 6 |                            | 34 |          |      |                |   |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| L | m                          |    | A        |      | Operações        | p |
|---|----------------------------|----|----------|------|------------------|---|
| 1 | $m_{11} = 1/4 = 0.25$      | 1  | -3       | 2    |                  | 1 |
| 2 | $m_{21} = (-2)/4 = -0.5$   | -2 | 8        | -1   |                  | 2 |
| 3 |                            | 4  | -6       | 5    |                  | 3 |
| 4 | $m_{12} = (-1,5)/5 = -0,3$ | 0  | -1,5     | 0,75 | $-0.25L_3 + L_1$ | 1 |
| 5 |                            | 0  | <u>5</u> | 1,5  | $0.5L_3 + L_2$   | 2 |
| 6 |                            | S  |          |      | $0,3L_5+L_4$     | 1 |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix}.$$

| L | m                          |    | A        |      | Operações        | p |
|---|----------------------------|----|----------|------|------------------|---|
| 1 | $m_{11} = 1/4 = 0.25$      | 1  | -3       | 2    |                  | 1 |
| 2 | $m_{21} = (-2)/4 = -0.5$   | -2 | 8        | -1   |                  | 2 |
| 3 |                            | 4  | -6       | 5    |                  | 3 |
| 4 | $m_{12} = (-1,5)/5 = -0,3$ | 0  | -1,5     | 0,75 | $-0.25L_3 + L_1$ | 1 |
| 5 |                            | 0  | <u>5</u> | 1,5  | $0.5L_3 + L_2$   | 2 |
| 6 |                            | 0  | 0        | 1,2  | $0.3L_5 + L_4$   | 1 |

# E se eu mudar o vetor b para b'? Qual o custo para resolver o novo sistema?

## Fatoração LU (ou Decomposição LU)

É a decomposição  $A_{nxn} = L_{nxn}U_{nxn}$  onde L é triangular inferior e U é triangular superior.



### Fatoração LU

Pode ser usada para resolver sistemas Ax=b

Como?

Qual o custo para resolver Ax=b assim?

Sistema tri. #1 Sistema tri. #2

Ly=b Ux=y

Encontra y Encontra x

Objetivo de aprendizagem: entender como resolver sistema Ax=b a partir da fatoração LU e qual o custo da solução.

### Como obter os fatores L e U?

Usando a própria eliminação de Gauss:

Zerar a coluna I equivale a pré-multiplicar A por matriz tri inf  $L_I$ . Quem é  $L_I$ ?

Zerar a coluna 2 equivale a pré-multiplicar  $L_1A$  por matriz tri inf  $L_2$ . Quem é  $L_2$ ?

• • •

### Como obter os fatores L e U?

$$U=L_{n-1}\cdots L_2L_1A$$
 $(L_{n-1}\cdots L_2L_1)^{-1}U=A$ 
 $L_1^{-1}\cdots L_{n-1}^{-1}U=A$ 

#### Dois acasos de sorte:

- L<sub>i</sub>-1 é obtida trocando-se o sinal da coluna não-nula de L<sub>i</sub> abaixo da diagonal
- O produto L<sub>i</sub>-l e L<sub>j</sub>-l é obtido preenchendo-se as colunas i e j abaixo da matriz identidade com colunas dessas matrizes

### Fatoração LU a partir da Eliminação de Gauss

| L | Multiplicador                                |    | A  |     |
|---|----------------------------------------------|----|----|-----|
| 1 |                                              | 1  | -3 | 2   |
| 2 | $m_{21} = (-2)/1 = -2$<br>$m_{31} = 4/1 = 4$ | -2 | 8  | -1  |
| 3 | $m_{31} = 4/1 = 4$                           | 4  | -6 | 5   |
| 4 |                                              | 0  | 2  | 3   |
| 5 | $m_{32} = 6/2 = 3$                           | 0  | 6  | -3  |
| 6 | 3                                            | 0  | 0  | -12 |

$$\begin{bmatrix} 1 & -3 & 2 \\ -2 & 8 & -1 \\ 4 & -6 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -12 \end{bmatrix}.$$

### Exemplo da resolução de Ax=b usando LU

#### Sistema triangular inferior Ly=b

 $\bullet$  Substituições sucessivas Ly = b

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 11 \\ -15 \\ 29 \end{bmatrix},$$

$$y_1 = 11,$$

$$-2y_1 + y_2 = -15, \ y_2 = -15 + 2(11) \rightsquigarrow y_2 = 7 \text{ e}$$

$$4y_1 + 3y_2 + y_3 = 29, \ y_3 = 29 - 4(11) - 3(7) \rightsquigarrow y_3 = -36.$$

• Vetor intermediário:  $y = \begin{bmatrix} 11 & 7 & -36 \end{bmatrix}^T$ .

### Exemplo da resolução de Ax=b usando LU

#### Sistema triangular superior Ux=y

Substituições retroativas

$$\begin{bmatrix} 1 & -3 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 7 \\ -36 \end{bmatrix},$$

$$-12x_3 = -36, \ x_3 = \frac{-36}{-12} \rightsquigarrow x_3 = 3,$$

$$2x_2 + 3x_3 = 7, \ x_2 = \frac{7 - 3(3)}{2} \rightsquigarrow x_2 = -1 \text{ e}$$

$$x_1 - 3x_2 + 2x_3 = 11, \ x_1 = \frac{11 + 3(-1) - 2(3)}{1} \rightsquigarrow x_1 = 2.$$

• Vetor solução:  $x = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix}^T$ .

### Eliminação de Gauss: Implementação v3

Entrada:  $A_{nxn}$ ,  $b_{nx1}$ 

Saída:  $U_{nxn}$ ,  $d_{nxl}$ 

Que mudanças devemos fazer?

```
U=A.copy()
d=b.copy()
Para j=l até n-l:
   r = I/U[i,i]
    Para i=j+l até n:
       m = U[i,j]*r
       U[i,j+1:n] = U[i,j+1:n]-m*U[j,j+1:n]
       d[i] = d[i] - m*d[i]
retorna upper(U), d
```

### Implementando LU

```
Entrada: A_{nxn}, b_{nx1} U=A.copy()
Saída: U_{nxn}, d_{nx1} L=np.eye(n) # matriz identidade de ordem n
                      Para j=1 até n-1:
                          r = I/U[i,i]
                          Para i=j+l até n:
                              L[i,j] = U[i,j]*r
                              U[i,j+1:n] = U[i,j+1:n]-L[i,j]*U[j,j+1:n]
                      retorna L, upper(U)
```

### LU tem mesmo problema que Eliminação