SYNERGY OF WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) AND THE SLOAN DIGITAL SKY SURVEY IN STRIPE 82

A Thesis presented to the Faculty of the Graduate School at the University of Missouri

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

by

MARAT MUSIN

Dr.Haojing Yan, Thesis Supervisor

MAY 2018

The undersigned, appointed by the Dean of the Graduate School, have examined the Dissertion entitled:

SYNERGY OF WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) AND THE SLOAN DIGITAL SKY SURVEY IN STRIPE 82

presented by M	Marat Musin,		
a candidate for	the degree of Doctor of Philosophy and hereby certify	that, i	n their
opinion, it is w	orthy of acceptance.		
	Dr. Haojing Yan		
	Dr. Adam Helfer		
	Dr. Maan Hener		
	Dr. Angela Speck		

Dr. Sergei Kopeikin

TABLE OF CONTENTS

LI	ST ()F TA	BLES	vi
LI	ST C)F FIG	GURES	vii
\mathbf{A}	BSTI	RACT		xi
Cl	HAP	TER.		
1	Intr	oducti	on	1
2	Dat	a		4
	2.1	SDSS		5
		2.1.1	Stripe 82	5
		2.1.2	Structure of SDSS Stripe 82 files	7
	2.2	WISE		7
		2.2.1	unWISE	8
		2.2.2	Structure of unWISE files	8
3	Con	structi	ion of the multiband catalog over Stripe 82	10
	3.1	Prepar	catory work with SDSS images and optical catalog	11
		3.1.1	Region of overlapping unWISE images	12
		3.1.2	SDSS PSF construction	12
		3.1.3	Construction of the optical part of the catalog	18
		3.1.4	Magnitude error correction	19
	3.2	Prepar	catory work with unWISE files	21
		3.2.1	unWISE PSF construction	21
		3.2.2	Naming convention for the processed files	22
	3.3	Templ	ate fitting with TPHOT	22

		3.3.1	TPHOT output files	25
	3.4	Match	ing optical and IR catalogs	26
4	Mas	s and	redshift estimation	27
	4.1	SED fi	tting	29
		4.1.1	Choice of SED fitting codes	29
		4.1.2	EAZY and FAST	30
		4.1.3	Reliability of IR data	33
	4.2	Catalo	g post-procession	34
		4.2.1	Star-galaxy separation	35
		4.2.2	Sources treatment in overlapping regions and around bright stars	38
5	Res	ults .		42
	5.1	Binnin	g in redshift	42
	5.2	GSMD	and comparison to the results of other groups	43
6	Sum	nmary	and concluding remarks	46
	6.1	Conclu	nsions	46
	6.2	Future	work	46
		6.2.1	Optical dropouts in WISE	47
Α(CKN	OWLE	EDGMENTS	ii
ΑI	PPE	NDIX		iii
\mathbf{A}	Para	ameter	es for applied codes	iii
	A.1	SExtra	actor parameters for x_matched_u catalogs	iii
	A.2	ТРНО	T parameters	V
	A.3	EAZY	parameters	vii
	A.4	FAST	parameters	viii
ΒI	BLI	OGRA	PHY	x

T 7T (T) A																					
VITA																			. X	\mathbf{v}_{I}	\mathbf{u}

LIST OF TABLES

Γable	F	Page
3.1	Table of parameters for PSF construction (need to check scripts for	
	exact values)	14
3.2	Table of parameters for IRAF/psf task	15
5.1	Redshift binning of stellar mass	42
5.2	Stellar mass density	43

LIST OF FIGURES

Figure	I	Page
2.1	The camera used for imaging. It consists of 30 photometric CCDs,	
	that are arranged in 6 columns of 5 each. Camera is drifted in the way	
	that each column has permanent Declination during the run and all 5	
	filters in a column consequently go over the same field	6
3.1	A set of PSFs for five bands for odd columns centered at RA=21:56:46.	
	All PSFs are scaled to the unit flux	16
3.2	An example of IRAF/psfmatch for griz bands (top to bottom). Origi-	
	nal images are to the left, PSF-matched - to the right. The difference is	
	mostly observable for r- and i-bands, because their PSF is much better	
	than that in u-band	17
3.3	An example of the change in magnitude error for r-band photometry.	
	Original errors are plotted against AB mag in red, magnitude errors	
	for the same source after IRAF/psfmatch is performed are in blue	19
3.4	Correction coefficients for all 5 bands for two columns - col04 (top) and	
	col12 (bottom). Note that coefficients for the u-band are less than one	20
3.5	unWISE PSFs for w1 (top row) and w2 bands (bottom row), as con-	
	structed in IRAF/psf (left) and scaled by factor x7 to mimic pixel scale	
	ration between SDSS and unWISE pixel scales (right)	23

3.6	From left to right: SDSS image in r-band, unWSIE w1 image, residual	
	image from TPHOT. SDSS sources that are fitted to the unWISE image	
	for the flux estimation are denoted with red circles. These objects are	
	cleaned out from the residual image	25
4.1	Comparison of photo_z as calculated in EAZY to the spec_z from the	
	SDSS BOSS spectroscopic survey. In spite of several observable trends	
	the overall fit is satisfying with the standard deviation as low as $\sigma=0.07$.	32
4.2	Difference of photo_z and spec_z is plotted against spec_z. Data ob-	
	tained with all 7 or just 5 optical filters are plotted in red and green	
	respectively	34
4.3	Color-color diagram for star-galaxy separation using " $w1 - i \ vs \ i - z$ "	
	colors. Galaxies are plotted in blue, stars - in red and QSO in green.	
	It is impossible to create a clean data sample using only colors as a	
	selection criteria	36
4.4	A histogram of the CLASS_STAR values for r-band alone already	
	shows efficiency of this method for star-galaxy separation. Galaxies	
	and stars are selected from BOSS spectroscopic survey using parame-	
	ter "CLASS". Galaxies are plotted in blue and tend to have smaller	
	values of CLASS_STAR, stars are plotted in green and on opposite -	
	mostly have CLASS_STAR value close to 1	37
4.5	A histogram of the CLASS_STAR values for galaxies from the control	
	data sample that are rejected from our data sample due to very large	
	CLASS_STAR values (green). In red we plotted stars and QSO that	
	are not excluded from our data sample - their CLASS_STAR values	
	are too small in all three optical bands that we used for star-galaxy	
	separation	38

4.6	Duplicate sources (blue) are over-plotted with unique sources (red) in	
	one unWISE frame that hosts 72 SDSS images (top image) and sev-	
	eral adjacent unWISE frames (bottom image). Two white horizontal	
	stripes between $col07$ and $col02$ (bottom) and $coll11$ and $col06$ (top)	
	were also excluded from our project.	40
4.7	Residual image in w1 band with various regions plotted. All sources	
	that were detected in r-band and supplied to TPHOT, but fall within	
	the masked region (red) are excluded from the SED fitting. Blue cir-	
	cles 3 asec in radius show the position of objects, whose flux was sub-	
	tracted from the unWISE image. Poorly subtracted objects (mostly	
	stars) without blue circles around them were included into TPHOT in-	
	put catalog, but later were excluded from ED fitting after star-galaxy	
	separation	41
5.1	Stellar mass density over photometric redshift. four reddshift bins are	
	plotted in different colors: z1 - blue, z2 - green, z3 - grey, z4 - magenta.	
	Red sources at $z>0.759$ are not included into the sample due to their	
	low number density	44
5.2	Figure 11 from Madau&Dickinson. 2014 with our SMD data points	
	plotted as low-limit with green dots with arrows. Data points inside	
	the red rectangular demonstrate an odd "wiggle" upwards as if the	
	SMD was higher in the earlier Universe	45
6.1	An example of WoDrop. Shown from left to right are the $ugriz$ and	
	unWISE w1 and w2 images. The images are 33"33" in size, and the	
	green circles indicate the location of the WoDrop. For this particular	
	example is $SNR = 8$ and 5.4 for bands w1 and w2 respectively	48

6.2	Illustration of the probable explanation to the nature of WoDrops.	
	The photometry of this object in w1 and w2 are indicated by the two	
	magenta points, and its non-detection in the Stripe 82 $ugriz$ images is	
	indicated by the 2σ upper limits shown in grey	49
6.3	An example of two WoDrops that have been observed by near-IR im-	
	ager WHIRC instrument at WIYN telescope. All images are 33"33"	
	in size, and the red circles indicate the location of the WoDrop. The	
	nominal on-source exposures are 31 min, 43 min and 1.1 hrs in Ks, but	
	as can be seen, one WoDrop is only detected in H and Ks band, while	
	the second one is not detected (as well as other three WoDrops that	
	were observed in this run)	50

ABSTRACT

In this dissertation we aim to study evolution of galaxies over last 6 Gyr by measuring the growth of the stellar mass density of the Universe. We perform extensive study over Stripe 82 region, a $\sim 300~deg^2$ field, with deep data from SDSS and WISE to compute photometric redshifts and stellar masses for the largest multi-wavelength sample that we know - 23 million objects in total, of which 9 million are galaxies. WISE data are essential in order to break the age-color-metallicity degeneracy and determine masses of galaxies in a more reliable way. The key feature of the project is the use of "template fitting" technique in which prior knowledge of morphology and position of a high resolution optical image are used to perform robust flux measurement of a low resolution IR image even in case of blending. Consistent photometric data from seven bands are supplied to SED-fitting codes and photometric redshifts and stellar masses are derived. We do not correct the sample of galaxies for incompleteness and present our results, that are generally consistent with data of other groups, as a low-limit on the stellar mass density in four redshift bins of equal volume up to $z \sim 0.8$.

In the era of advancing new generation IR facilities like JWST, WFIRST and surveys like DES, our estimates shall be used as a constraint on any model of the evolution of the stellar mass density at higher redshifts. We also present a discovery of several thousands of unusual sources that we call "WoDrops". Such sources yet very bright in near-IR are completely undetectable in much deeper optical. In the last part of the dissertation we hypothesize about the nature of such objects and describe our future work.