Information geometry of divergences and means

on the space of all probability measures having positive density function

Hiroyasu Satoh (Nippon Institute of Technology, hiroyasu@nit.ac.jp)

Abstract The space of all probability measures having positive density function on a measure space (M, λ) carries a Riemannian metric G, called the Fisher metric. By using divergences which are distance-like functions, we can define a family of torsion-free affine connections $\{\nabla^{(\alpha)}\}_{\alpha\in\mathbb{R}}$ which satisfies that $\nabla^{(-\alpha)}$ is the dual connection of $\nabla^{(\alpha)}$ with respect to G and $\nabla^{(0)}$ is the Levi-Civita connection of G. We define the normalized power mean of two probability measures and give characterizations of geodesic segments of $\nabla^{(\alpha)}$, $\alpha = -1, 0, 1$ in terms of means of its endpoints. Moreover, we show that integrations of kinetic energy of (±1)-geodesic segments are equal to the symmetrized Kullback-Leibler divergence of its endpoints. This is based on joint work [5] with Mitsuhiro Itoh.

Fisher metric

Let (M, λ) be a measure space with fixed probability measure λ and $\mathcal{P}^+(M)$ be the space of all probability measures on M;

$$\mathcal{P}^{+}(M) := \left\{ \mu \mid \int_{M} d\mu = 1, \ \mu \ll \lambda, \ \frac{d\mu}{d\lambda} > 0 \right\}.$$

We can regard $\mathcal{P}^+(M)$ as an infinite dimensional manifold whose tangent space at μ is

$$T_{\mu}\mathcal{P}^{+}(M) = \left\{\tau \; \left| \; \int_{M} d\tau = 0, \; \int_{M} \left(\frac{d\tau}{d\mu}\right)^{2} d\mu < \infty \right. \right\}.$$

Definition 1. The Fisher metric G on $\mathcal{P}^+(M)$ is defined by

$$G_{\mu}(\tau_1, \tau_2) = \int_M \frac{d\tau_1}{d\mu} \cdot \frac{d\tau_2}{d\mu} d\mu, \qquad \tau_1, \tau_2 \in T_{\mu} \mathcal{P}^+(M).$$

(i) The Levi-Civita connection ∇^G of G is given by

$$\nabla^G_{\tau_1} \tau_2 = \frac{1}{2} \left(\frac{d\tau_1}{d\mu} \cdot \frac{d\tau_2}{d\mu} - G_{\mu}(\tau_1, \tau_2) \right) \mu,$$

where $\tau_1 \in T_n \mathcal{P}^+(M)$ and τ_2 is regarded as a constant vector field.

- (ii) $(\mathcal{P}^+(M), G)$ is of constant sectional curvature 1/4.
- (iii) the geodesic $\gamma(t)$ satisfying $\gamma(0) = \mu$ and $\dot{\gamma}(0) = \tau$ is given by

$$\gamma(t) = \left(\cos\frac{t}{2} + \sin\frac{t}{2} \cdot \frac{d\tau}{d\mu}\right)^2 \mu.$$

Geodesics and normalized geometric means

Definition 3. We define the normalized k-power mean $\varphi^{(k)}(\mu_1, \mu_2)$ of $\mu_1, \mu_2 \in \mathcal{P}^+(M)$ by

$$\varphi^{(k)}(\mu_1, \mu_2) = \frac{1}{C} \left\{ 1 + \left(\frac{d\mu_2}{d\mu_1} \right)^k \right\}^{1/k} \mu_1 \in \mathcal{P}^+(M),$$

where C is a normalization constant. In particular, we call $\varphi^{(1)}$ and $\varphi^{(0)}$ the arithmetic mean and the normalized geometric mean, respectively.

Theorem 4 ([4, 5]). If M is connected, then for any $\mu_1, \mu_2 \in T_\mu \mathcal{P}^+(M)$ there exists a unique geodesic segment $\gamma:[0,\ell]\to\mathcal{P}^+(M)$ joining these two points. Here

- (i) $\ell = \ell(\mu_1, \mu_2) := 2 \arccos\left(\int_M \sqrt{\frac{d\mu_2}{d\mu_1}} \, d\mu_1\right) \in [0, \pi)$ and ℓ is the distance function of $(\mathcal{P}^+(M), G)$
- (ii) γ is given by $\gamma(t) = a_1(t) \mu_1 + a_2(t) \mu_2 + a_3(t) \varphi^{(0)}(\mu_1, \mu_2)$, where $\{a_i\}_{i=1,2,3}$ are functions on $[0,\ell]$ satisfying $\sum_i a_i(t) = 1, \ a_i(t) \ge 0$.
- (iii) $\dot{\gamma}(0) = \cot(\ell/2) \left(\varphi^{(0)}(\mu_1, \mu_2) \mu_1 \right)$ (see Figure, left).

Figure: Geodesic segments and Means

A family of affine connections induced by divergences

Definition 5. A divergence on $\mathcal{P}^+(M)$ is a function $D: \mathcal{P}^+(M) \times$ $\mathcal{P}^+(M) \to \mathbb{R}$ satisfying the following properties;

- (i) $D[\mu:\mu_1] \geq 0$ for $\forall \mu, \mu_1 \in \mathcal{P}^+(M)$ and equality holds iff $\mu_1 = \mu$.
- (ii) $\tau_{\mu}D[\mu:\mu_1]|_{\mu_1=\mu} = \tau_{\mu}D[\mu_1:\mu]|_{\mu_1=\mu} = 0.$
- (iii) $-\tau_{\mu}\tau_{\mu_1}D[\mu:\mu_1]|_{\mu_1=\mu}>0$ for any tangent vector τ .

Example 6 ([1, 2]). (i) $D_{KL}[\mu_1 : \mu_2] := -\int_M \log\left(\frac{d\mu_2}{d\mu_1}\right) d\mu_1$ is called the Kullback-Leibler divergence.

- (ii) A convex function $f: \mathbb{R} \to \mathbb{R}$ satisfying f(1) = 0, f''(0) = 1 gives $D_f[\mu_1:\mu_2]:=\int_M f\left(\frac{d\mu_2}{d\mu_1}\right)\,d\mu_1$ which is called the f-divergence.
- (iii) The f-divergence given by a function

$$f^{(\alpha)}(u) = \begin{cases} u \log u & (\alpha = 1) \\ -\log u & (\alpha = -1) \\ \frac{4}{1 - \alpha^2} \left(1 - u^{\frac{1+\alpha}{2}}\right) & (\alpha \neq \pm 1) \end{cases}$$

is called the α -divergence, denoted by $D^{(\alpha)}$. $D^{(-1)} = D_{KL}$ (see (i)).

Remark 7 ([2]). A divergence induces a torsion-free dualistic structure, i.e., a metric g and two torsion-free affine connections ∇, ∇^* satisfying

$$Xg(Y,Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X^* Z).$$

In particular, a dualistic structure on $\mathcal{P}^+(M)$ induced by an f-divergence consists of the Fisher metric and the connection induced by α -divergence;

$$g = G$$
, $\nabla = \nabla^{(\alpha)}$, $\nabla^* = \nabla^{(-\alpha)}$, $\alpha = 2f'''(1) + 3$

Theorem 8 ([5]). (i) The affine connection $\nabla^{(\alpha)}$ at μ is given by

$$\nabla_{\tau_1}^{(\alpha)} \tau_2(\mu) = -\frac{1+\alpha}{2} \left(\frac{d\tau_1}{d\mu} \frac{d\tau_2}{d\mu} - G_{\mu}(\tau_1, \tau_2) \right) \mu$$

where $\tau_1 \in T_\mu \mathcal{P}^+(M)$ and τ_2 is regarded as a constant vector field.

(ii) For any $\mu_1, \mu_2 \in T_\mu \mathcal{P}^+(M)$ there exists a unique geodesic segment $\gamma^{(\pm 1)}:[0,1]\to \mathcal{P}^+(M)$ of $\nabla^{(\pm 1)}$ joining these two points, given by

$$\gamma^{(1)}(t) = \left\{ \int_M \left(\frac{d\mu_2}{d\mu_1} \right)^t d\mu_1 \right\}^{-1} \left(\frac{d\mu_2}{d\mu_1} \right)^t \mu_1, \quad \gamma^{(-1)}(t) = (1-t)\mu_1 + t\mu_2$$

and their midpoints are $\varphi^{(1)}(\mu_1, \mu_2)$ and $\varphi^{(0)}(\mu, \mu_1)$, respectively (see Figure, right).

(iii)
$$\int_{0}^{1} G(\dot{\gamma}^{(1)}(t), \dot{\gamma}^{(1)}(t)) dt = \int_{0}^{1} G(\dot{\gamma}^{(-1)}(t), \dot{\gamma}^{(-1)}(t)) dt$$
$$= \frac{1}{2} \left(D_{\mathrm{KL}}[\mu_{1} : \mu_{2}] + D_{\mathrm{KL}}[\mu_{2} : \mu_{1}] \right).$$

References

- [1] S.-I. Amari, Information geometry and Its applications, Applied Mathematical Sciences 194, Springer, 2016.
- S.-I. Amari and H. Nagaoka, Methods of information geometry, Trans. Math. Monogr. 191, AMS, 2000.
- [3] T. Friedrich, Die Fisher-Information und symplektische Strukturen, Math. Nach. 153 (1991), 273-296.
- M. Itoh and H. Satoh, Entropy 17 (2015),1814-1849.
- [5] M. Itoh and H. Satoh, in preparation.

Acknowledgment This work was supported by JSPS KAKENHI Grant No.15K17545.