$20241008~{\rm MATH}3301~{\rm NOTE}~5[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Introduction	3
2	Preliminaries	3
3	Set-generated Subgroup	6
4	Centralizer Subgroup	8
5	Normalizer Subgroup	8
6	Commutator Subgroup	10

1 Introduction

This note introduces some constructions of subgroups, including but limited to set-generated subgroup, centralizer subgroup, normalizer subgroup and commutator subgroup.

2 Preliminaries

Definition 2.1. (Group)

Let G be a set, and $\circ: (g_1, g_2) \mapsto g_1g_2$ be a binary operation on G. If:

- $(1) \ \forall g_1, g_2, g_3 \in G, (g_1g_2)g_3 = g_1(g_2g_3) \in G;$
- $(2) \ \exists e \in G, \forall g \in G, eg = ge = g;$
- (3) $\forall g \in G, \exists h \in G, hg = gh = e,$

then G is a group under \circ .

Remark: It is easy to show that:

- (1) e is unique in G;
- (2) $\forall g \in G$, h is unique in G.

Hence, we may apply the notation g^{-1} for the inverse of g.

Definition 2.2. (Subgroup)

Let G be a group under \circ , and H be a subset of G. If:

- $(1) e \in H$:
- (2) $\forall h_1, h_2 \in G, h_1 \in H \text{ and } h_2 \in H \implies h_1 h_2 \in H;$
- (3) $\forall h \in G, h \in H \implies h^{-1} \in H$,

then $H \leq G$, i.e., H is a subgroup of G.

Definition 2.3. (Coset)

Let G be a group under \circ , H be a subgroup of G, and g be an element of G.

Define $gH = \{gh\}_{h \in H}$ as the left H-coset of g;

Define $Hg = \{hg\}_{h \in H}$ as the right H-coset of g.

Remark: One may expand a "word" as follows:

$$uH^2vIJ = \{uh_1h_2vij \in G : h_1, h_2 \in H \text{ and } i \in I \text{ and } j \in J\}$$

Theorem 2.4. (Lagrange's Theorem)

Let G be a group under \circ , and H be a subgroup of G.

 $G/H = \{gH\}_{g \in G}$ partitions G.

Proof. We may divide our proof into three parts.

Part 1: For all $gH \in G/H$, there exists $g = ge \in gH$, so $gH \neq \emptyset$.

Part 2: For all $g_1H, g_2H \in G/H$:

$$g_1 H \cap g_2 H \neq \emptyset \implies \exists h_1, h_2 \in H, g_1 h_1 = g_2 h_2$$
$$\implies \exists h_2 h_1^{-1} \in H, g_1 = g_2 h_2 h_1^{-1} \implies g_1 H = g_2 H$$

Part 3: For all $g \in G$, there exists $gH \in G/H$, such that $g = ge \in gH$. Hence, G/H partitions G. Quod. Erat. Demonstrandum.

Remark: It is easy to show that $H \to gH, h \mapsto gh$ is a bijection, so each coset gH have the same cardinality, which implies the order of H divides the order of G.

Definition 2.5. (Normal Subgroup)

Let G be a group under \circ , and H be a subgroup of G. If $\forall g \in G, gH = Hg$, then $H \leq G$, i.e., H is normal in G.

Remark: As a corollary, for all subgroups H, K of $G, H \leq G \implies KH = HK$.

Proposition 2.6. $\{e\} \leqslant G \text{ and } G \leqslant G$

Proof. We may divide our proof into four parts.

Part 1: $e \in \{e\}$ and $e \in G$.

Part 2: $ee \in \{e\}$ and $\forall g_1, g_2 \in G, g_1g_2 \in G$.

Part 3: $e^{-1} = e \in \{e\}$ and $\forall g \in G, g^{-1} \in G$

Part 4: $\forall g \in G, g\{e\} = \{e\}g = \{g\} \text{ and } \forall g \in G, gG = Gg = G.$

Hence, $\{e\} \leq G$ and $G \leq G$. Quod. Erat. Demonstrandum.

Proposition 2.7. $H_1 \leq G$ and $H_2 \leq G \implies H_1 \cap H_2 \leq G$

Proof. We may divide our proof into four parts.

Part 1: $e \in H_1$ and $e \in H_2 \implies e \in H_1 \cap H_2$.

Part 2: For all $g, g' \in G$:

$$g \in H_1 \cap H_2$$
 and $g' \in H_1 \cap H_2 \implies g \in H_1$ and $g \in H_2$ and $g' \in H_1$ and $g' \in H_2$

$$\implies gg' \in H_1 \text{ and } gg' \in H_2$$

$$\implies gg' \in H_1 \cap H_2$$

Part 3: For all $g \in G$:

$$g \in H_1 \cap H_2 \implies g \in H_1 \text{ and } g \in H_2$$

 $\implies g^{-1} \in H_1 \text{ and } g^{-1} \in H_2$
 $\implies g^{-1} \in H_1 \cap H_2$

Part 4: For all $g \in G$:

$$g(H_1 \cap H_2) = (gH_1) \cap (gH_2) = (H_1g) \cap (H_2g) = (H_1 \cap H_2)g$$

Hence, $H_1 \cap H_2 \leqslant G$. Quod. Erat. Demonstrandum.

Remark: This can be generalized to:

Each
$$H_{\lambda} \triangleleft G \implies \bigcap_{\lambda \in I} H_{\lambda} \triangleleft G$$

Proposition 2.8. $H_1 \leqslant G$ and $H_2 \leqslant G \implies H_1H_2 \leqslant G$

Proof. We may divide our proof into four parts.

Part 1: $e \in H_1$ and $e \in H_2 \implies e = ee \in H_1H_2$.

Part 2: For all $g, g' \in G$:

$$g \in H_1H_2$$
 and $g' \in H_1H_2 \implies \exists h_1, h'_1 \in H_1$ and $h_2, h'_2 \in H_2, g = h_1h_2$ and $g' = h'_1h'_2$
 $\implies \exists h''_1 \in H_1 \text{ and } h''_2 \in H_2, h_2h'_1 = h''_1h''_2$
 $\implies \exists h_1h''_1 \in H_1 \text{ and } h''_2h'_2 \in H_2, gg' = h_1h''_1h''_2h'_2$
 $\implies gg' \in H_1H_2$

Part 3: For all $g \in G$:

$$g \in H_1 H_2 \implies \exists h_1 \in H_1 \text{ and } h_2 \in H_2, g = h_1 h_2$$

$$\implies \exists h_1' \in H_1 \text{ and } h_2' \in H_2, h_1 h_2 = h_2' h_1'$$

$$\implies \exists h_1'^{-1} \in H_1 \text{ and } h_2' \in H_2, g^{-1} = h_1'^{-1} h_2'^{-1}$$

$$\implies g^{-1} \in H_1 H_2$$

Part 4: For all $g \in G$:

$$gH_1H_2 = H_1gH_2 = H_1H_2g$$

Hence, $H_1, H_2 \leq G$. Quod. Erat. Demonstrandum.

Remark: This can be generalized to:

Each
$$H_k \leqslant G \implies \prod_{k=1}^m H_k \leqslant G$$

Definition 2.9. (Quotient Group)

Let G be a group under \circ , and H be a normal subgroup of G.

Define $\circ: (g_1H, g_2H) \mapsto g_1g_2H$. Observe that:

- (1) \circ is a well-defined binary operation on G/H;
- (2) G/H is a group under \circ .

Hence, define this group as the quotient group of G by H.

Proof. Let's prove the two observations above.

(1) For all $(g_1H, g_2H), (g'_1H, g'_2H) \in G/H \times G/H$:

$$(g_1H, g_2H) = (g_1'H, g_2'H) \implies g_1H = g_1'H \text{ and } g_2H = g_2'H$$

$$\implies \exists h_1, h_2 \in H, g_1 = g_1'h_1 \text{ and } g_2 = g_2'h_2$$

$$\implies \exists h_1'' \in H, h_1g_2' = g_2'h_1''$$

$$\implies \exists h_3h_2 \in H, g_1g_2 = g_1'g_2'h_1''h_2$$

$$\implies g_1g_2H = g_1'g_2'H$$

Hence, \circ is a well-defined operation on G/H.

(2) We may divide our proof into three parts.

Part 1: For all $g_1H, g_2H, g_3H \in G/H$:

$$(g_1Hg_2H)g_3H = g_1g_2Hg_3H = (g_1g_2)g_3H$$

= $g_1(g_2g_3)H = g_1Hg_2g_3H = g_1H(g_2Hg_3H)$

Part 2: There exists $eH \in G/H$, such that for all $gH \in G/H$:

$$eHqH = eqH = qH$$
 and $qHeH = qeH = qH$

Part 3: For all $gH \in G/H$, there exists $g^{-1}H \in G/H$, such that:

$$g^{-1}HgH = g^{-1}gH = eH$$
 and $gHg^{-1}H = gg^{-1}H = eH$

Hence, G/H is a group under \circ . Quod. Erat. Demonstrandum.

3 Set-generated Subgroup

Definition 3.1. (Word)

Let G be a group, and A be a subset of G.

If g = e or $g = g_1 g_2 \cdots g_m$ is a finite product of elements in A, then g is a word in A.

Definition 3.2. (Set-generated Subgroup)

Let G be a group, and A be a subset of G.

Define the subgroup of G generated by A as:

$$\langle A \rangle = \{ g \in G : g \text{ is a word in } A \cup A^{-1} \}$$

Proposition 3.3. Let G be a group, and A be a subset of G.

$$\langle A \rangle \leq G$$

Proof. We may divide our proof into three parts.

Part 1: $e \in \langle A \rangle$.

Part 2: $\forall g = g_1 g_2 \cdots g_m, h = h_1 h_2 \cdots h_n \in \langle A \rangle, gh = g_1 g_2 \cdots g_m h_1 h_2 \cdots h_n \in \langle A \rangle.$

Part 3: $\forall g = g_1 g_2 \cdots g_m \in \langle A \rangle, g^{-1} = g_m^{-1} \cdots g_2^{-1} g_1^{-1} \in \langle A \rangle.$

Hence, $\langle A \rangle \leq G$. Quod. Erat. Demonstrandum.

Proposition 3.4. Let $E_n(\mathbb{F})$ be the set of all elementary matrices in $GL_n(\mathbb{F})$.

$$GL_n(\mathbb{F}) = \langle E_n(\mathbb{F}) \rangle$$

Definition 3.5. (Cyclic Subgroup)

Let G be a group, and g be an element of G.

Define the cyclic subgroup of G generated by q as:

$$\langle q \rangle = \langle \{q\} \rangle$$

Proposition 3.6. Let G be a group, and g be an element of G.

- (1) If $|\langle g \rangle| = m$, then $\sigma : \langle g \rangle \to \mathbb{Z}_m$, $\sigma(g^k) = [k]_m$ is an isomorphism.
- (2) If $|\langle g \rangle| = +\infty$, then $\sigma : \langle g \rangle \to \mathbb{Z}, \sigma(g^k) = k$ is an isomorphism.

Proof. We may divide our proof into three parts.

Part 1: We prove that the two functions are well-defined.

- $(1) \ \forall g^k, g^{k'} \in \langle g \rangle, g^k = g^{k'} \implies k \equiv k' \pmod{m} \implies [k]_m = [k']_m.$
- $(2) \ \forall g^k, g^{k'} \in \langle g \rangle, g^k = g^{k'} \implies k = k'.$

Part 2: We prove that the two functions are bijective.

- (1) Every $[k]_m \in \mathbb{Z}_m$ has a unique preimage $g^k \in \langle g \rangle$.
- (2) Every $k \in \mathbb{Z}$ has a unique preimage $g^k \in \langle g \rangle$.

Part 3: We prove that the two functions preserve commpositions.

- $(1) \ \forall g^k, g^{k'} \in \langle g \rangle, \sigma(g^k g^{k'}) = \sigma(g^{k+k'}) = [k+k']_m = [k]_m + [k']_m = \sigma(g^k) + \sigma(g^{k'}).$
- (2) $\forall g^k, g_{k'} \in \langle g \rangle, \sigma(g^k g^{k'}) = \sigma(g^{k+k'}) = k + k' = \sigma(g^k) + \sigma(g^{k'}).$

Hence, both maps are isomorphisms. Quod. Erat. Demonstrandum.

4 Centralizer Subgroup

Definition 4.1. (Centralizer Subgroup)

Let G be a group, and H be a subgroup of G.

Define the centralizer subgroup of H in G as:

$$C(H) = \{ g \in G : \forall h \in H, gh = hg \}$$

Proposition 4.2. Let G be a group, and H be a subgroup of G.

$$C(H) \leq G$$

Proof. We may divide our proof into three parts.

Part 1: $\forall h \in H, eh = he = h, \text{ so } e \in C(H).$

Part 2: For all $g, g' \in G$:

$$g, g' \in C(H) \implies \forall h \in H, gh = hg \text{ and } g'h = hg'$$

 $\implies \forall h \in H, gg'h = ghg' = hgg'$
 $\implies gg' \in C(H)$

Part 3: For all $g \in G$:

$$g \in C(H) \implies \forall h \in H, gh = hg$$

$$\implies \forall h \in H, g^{-1}h = (h^{-1}g)^{-1} = (gh^{-1})^{-1} = hg^{-1}$$

$$\implies g^{-1} \in C(H)$$

Hence, $C(H) \leq G$. Quod. Erat. Demonstrandum.

Remark: Note that $H \not\leq C(H)$ and $C(H) \not\leq H$ in general.

Proposition 4.3. Let \tilde{I} be the set of all scalar matrices in $GL_n(\mathbb{F})$.

$$C(GL_n(\mathbb{F})) = \tilde{I}$$

5 Normalizer Subgroup

Definition 5.1. (Normalizer Subgroup)

Let G be a group, and H be a subgroup of G.

Define the normalizer subgroup of H in G as:

$$N(H) = \{g \in G : gH = Hg\}$$

Proposition 5.2. Let G be a group, and H be a subgroup of G.

$$N(H) \le G$$

Proof. We may divide our proof into three parts.

Part 1: eH = H = He, so $e \in N(H)$.

Part 2: For all $g, g' \in G$:

$$g, g' \in N(H) \implies gH = Hg \text{ and } g'H = Hg'$$

 $\implies gg'H = gHg' = Hgg'$
 $\implies gg' \in N(H)$

Part 3: For all $g \in G$:

$$g \in N(H) \implies gH = Hg$$

$$\implies g^{-1}H = (Hg)^{-1} = (gH)^{-1} = Hg^{-1}$$

$$\implies g^{-1} \in N(H)$$

Hence, $N(H) \leq G$. Quod. Erat. Demonstrandum.

Remark: Note that $H \leq N(H)$.

Proposition 5.3. Let G be a group, and H be a subgroup of G.

$$C(H) \leqslant N(H)$$

Proof. We may divide our proof into two parts.

Part 1: For all $g \in G$:

$$g \in C(H) \implies \forall h \in H, gh = hg$$

 $\implies gH = Hg$
 $\implies g \in N(H)$

Part 2: For all $c \in C(H)$ and $n \in N(H)$:

$$\forall h \in H, hncn^{-1} = nh'cn^{-1} = nch'n^{-1} = ncn^{-1}h \implies ncn^{-1} \in C(H)$$

Hence, $C(H) \leq N(H)$. Quod. Erat. Demonstrandum.

Remark: ChatGPT helped me in formulating the proof.

6 Commutator Subgroup

Definition 6.1. (Commutator)

Let G be a group, and g, g' be two elements of G.

Define the commutator of g, g' in G as:

$$[g, g'] = gg'g^{-1}g'^{-1}$$

Definition 6.2. (Commutator Subgroup)

Let G be a group, and H, H' be two subgroups of G. Define the commutator subgroup [H, H'] of H, H' in G as the subgroup of G generated by:

$$\{[h, h'] \in G : h \in H \text{ and } h' \in H'\}$$

Proposition 6.3. Let G be a group.

$$[G,G] \leqslant G$$

Proof. For all $a, b, c \in G$:

$$(cac^{-1})^{-1} = (c^{-1})^{-1}a^{-1}c^{-1} = ca^{-1}c^{-1}$$
$$(cbc^{-1})^{-1} = (c^{-1})^{-1}b^{-1}c^{-1} = cb^{-1}c^{-1}$$
$$[cac^{-1}, cbc^{-1}] = cac^{-1}cbc^{-1}ca^{-1}c^{-1}cb^{-1}c^{-1}$$
$$= caba^{-1}b^{-1}c^{-1} = c[a, b]c^{-1}$$

Hence, [G,G] is closed under conjugation, which implies $[G,G] \leq G$. Quod. Erat. Demonstrandum.

References

 $[1]\,$ H. Ren, "Template for math notes," 2021.