Epreuve écrite

Examen de fin d'études secondaires 2007

Section: B

Branche: MATHEMATIQUE II

Numéro d'ordre du candidat

I. (10+4+3=17)

Soit la fonction $f(x) = e^{Arccos \frac{x}{2}}$.

- (1) Étudier f: Domaine, domaine de dérivabilité, dérivée, variation, demi-tangentes, dérivée seconde, concavité, représentation graphique \mathbb{G}_f .
- (2) Trouver l'équation de la tangente à \mathbb{G}_f et passant par l'origine O du repère.
- (3) Soit \mathcal{D} le domaine limité par \mathbb{G}_f et les droites d'équations y=0, x=-2, x=2. Calculer le volume du solide de révolution obtenu en faisant tourner \mathcal{D} autour de l'axe des abscisses.

II. (10+4=14)

Soit la fonction $f(x) = \ln \sqrt{\frac{1-x^2}{1+x^2}}$.

- Étudier f: Domaine, domaine de dérivabilité, limites, dérivée, variation, dérivée seconde, concavité, représentation graphique G_f.
- (2) Calculer l'aire du domaine délimité par \mathbb{G}_f , l'axe des abscisses, et les droites d'équations y = 0, $x = -\frac{1}{2}$, $x = \frac{1}{2}$.

III. (6+6+2=14)

- Calculer les intégrales suivantes sur un intervalle à déterminer:
 - $(1) \int \frac{1-\cos x}{1+\cos x} \, dx$
 - (2) $\int e^{-2x} \mathbf{A} \operatorname{rctan} e^x dx$
- Résoudre:
 - (1) $1 + \ln \sqrt{x} = \frac{1}{1 \ln x}$
 - (2) $e^{6x} > 3e^{3x} 4e^{-3x}$
- Calculer la limite $\lim_{x->+\infty} \frac{\ln(e^x+1)}{x \ln(e^x-1)}$

Epreuve écrite

Examen de fin d'études secondaires 2007

Section: B

Branche: Math II

Numéro d'ordre du candidat

Volume d'une ampoule

Dans le plan muni d'un repère orthonormal (O, \vec{i}, \vec{j}) (unité : 2 cm) on donne les

points
$$A(-r,0)$$
, $B(0,r)$, $C\left(\pi,\frac{r}{3}\right)$

- A) On veut raccorder l'arc \widehat{AB} au segment [CD] par une courbe admettant en B la même tangente que le cercle, et tangente en C à la droite CD.
 - 1) Déterminer les réels a, b, c et d sachant que la fonction $f: x \to ax + b + c \sin x + d \cos x$, avec $0 \le x \le \pi$, répond aux conditions posées.
 - 2) Calculer la coordonnée du point d'inflexion I et compléter la figure ci-dessus.
- B) Soit D le domaine limité par la courbe (ABC), l'axe x et la droite d'équation $x = \pi$.
 - 1) Calculer le volume V(r) du solide de révolution engendré par la rotation de D autour de l'axe x.
 - 2) Préciser le réel r tel que $V(r) = \frac{9\pi(2+\pi)}{9}$.
- C) On pose r = 3/2 dans la suite.
 - 1) Déterminer une fonction polynôme P de degré minimal réalisant ce raccordement en B et C sans heurts.
 - 2) Calculer le nouveau volume V du solide de révolution engendré par la rotation de D autour de l'axe x.
 - 3) Comparer les deux volumes en question.

(2+2)+(3+2)+(3+2+1)=15 points