Review Sossien

Tuesday, November 17 3:30pm-5pm, 805 Furnas

HWI Grade Corrections

HW5 updates

Matrix Diagonalization

Eigensystem Solutions

Tuesday, October 22, 2019 5:19 PM

Now, let A be Normal (i.e. AAT=ATA)

=> All eigenvectors are orthonormal

=> S = unitary matrix, such that

SZ=ZZ=I > Z=Z

and this S is denoted as P

If A is normal, then

A = Q 1 Q unitary

decomposition

Any unitary de compasition is the summation

of rank 1 matrices

outer product

Rank 1 matrix has the form uv

$$A = Q \Delta Q^{T} = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{n} \end{bmatrix}$$

$$= \lambda_{1} x_{1} x_{1}^{T} + \lambda_{2} x_{2} x_{2}^{T} + \dots + \lambda_{n} x_{n}^{T} x_{n}^{T}$$

or, from another perspective,

x:x: is the projection onto the

cisenspace with a basis siven by {xi}

What if A is non-diagonalizable? (e.g., A is defective)

Use Schur's Theorem, which states that every square matrix A can be written as

Lecture 18 - 191030 Page 2

A = QTQ, where T is an

upper-triangular matrix and P is unitary

Summary

All square matrices: A = QTQT

If A is complete: A = SAS

If A is normal: $A = Q \Lambda Q^T$

Now consider real, symmetric A with only positive eigenvalues -> positive definite

One way to establish positive definiteness is to compute all of the eigenvalues

However, this is very expensive $O(n^3)$

Another approach:

Az=>×

x A x = 2 x x

with x x = |x|1 + |x2 + 1.1. + |x2 > 0

Therefore, with $x^T A x > 0$, we must have x > 0

Beyond this, it can be shown that if $x^T A x > 0$ For any x, then all the λ 's will be positive

Here, x Ax is the "energy" definition of positive definite

Sunday, October 27, 2019 5:49 PM

 $Ax = \lambda x$ = Eigenvector x is scaled by λ When premultiplied by A

A must be square (column & row space must be equal)

To solve analytically, find all λ , such that $|A - \lambda I| = 0$

Issue; No closed form solutions for polynomials of size > 5

One could do numerical root finding, but that is typically not stable, and one would still need the cigenvectors \times \Rightarrow Need iterative solvers for the eigenproblem

Two classes of solvers:

- 1) Finding largest (or smallest))
- 2) Finding the entire spectrum (or a portion of it)

Largest Eigenvalue

Restrict to real, symmetric A

- Rayleigh Quotient

Let x be an eigenvector of A, then

$$Ax = 2x$$

and
$$\frac{1}{x}Ax = \lambda x x$$

$$\therefore \lambda = \frac{x^{T}Ax}{x^{T}x} \iff Given x + A, find \lambda$$

- Power Iteration

Let vo be any vector such that

11 voll = 1 and vo is not an eigenvector

Let 9,, 9e, ..., 9n be the orthonormal set of eigenvectors,

then

Consider Av.

$$\underline{A}_{V_{o}} = \underline{A} \left(q_{1}q_{1} + q_{2}q_{2} + ... + q_{n}q_{n} \right)$$

$$= q_{1} \underline{A}q_{1} + q_{2} \underline{A}q_{2} + ... + q_{n} \underline{A}q_{n}$$

$$= q_{1} \lambda_{1}q_{1} + q_{2} \lambda_{2}q_{2} + ... + q_{n} \lambda_{n}q_{n}$$

$$= \lambda_{1} \left(q_{1}q_{1} + q_{2} \frac{\lambda_{2}}{\lambda_{1}}q_{2} + ... + q_{n} \frac{\lambda_{n}}{\lambda_{1}}q_{n} \right)$$

$$\underline{A}^{2} \underline{V}_{o} = \underline{A} \left(\underline{A}\underline{V}_{o} \right) = \underline{A} \lambda_{1} \left(q_{1}q_{1} + ... + q_{n} \frac{\lambda_{n}}{\lambda_{1}}q_{n} \right)$$

$$H V_{o} = H (D_{o}) = H (A_{1} + A_{2} + A_{3} + A_{4} + A_{5} + A_{$$

Then

$$\lim_{p\to\infty}\left(\frac{\lambda_j}{\lambda_j}\right)^p=0\quad\text{for }j\neq 1$$

$$\Rightarrow \lim_{p \to \infty} A^p v_o = q_1 \lambda^p q_1 \text{ with } q_1 = q_1 v_o$$

Combine this result with the Rayleigh Protient

Algorithm: Power Algorithm

for
$$K=1, 2, ...$$

$$W = A \vee_{k-1}$$

$$V_k = W/\|W\|$$

$$V_k = W/\|W\|$$

$$A_{(k)} = V_k^T \underline{A} \underline{V}_k$$
 \rightarrow Rayleigh quotient end

This converges at a rate of

$$\| \overline{\Lambda}^{k} - (\overline{+} \overline{d}^{i}) \| = Q \left(\left| \frac{\lambda^{i}}{\lambda^{s}} \right|_{k} \right)$$

$$|y^{(k)}-y^{\prime}| = O\left(\left|\frac{y^{\prime}}{y^{s}}\right|_{sk}\right)$$

This causes an issue if $\lambda_1 - \lambda_2$

In this case, try an inverse iteration wishift

Let MER, such that M is not an eigenvalue

of A. Then, A-MI has the same eigenvectors as A with eigenvalues 2; -M Extension: Eigenvectors of (A-MI) are the same as those for A, and the eigenvalues for (A-MI) are (2;-M) Let M be close to 2,, then 12,-M | will be much larger than []-Mi for j>1 Algorithm: Inverse iteration with shift Let v. be some vector with 1/2011=1, choose M>0 for K=1, Z, ... Solve (A-MI) w = Vk-1 for w Vx = W/ 11 W/1 Normalize Vk 7 (K) = V+ AVK

Rayleigh Quotient

Lecture 18 - 191030 Page 6

Rayleigh Quotient

Convergence order of

$$\|\underline{\vee}_{\kappa} - (\pm \underline{q}_{1})\| = O\left(\left|\frac{M-\lambda_{1}}{M-\lambda_{2}}\right|^{k}\right)$$

$$\left| \lambda^{(k)} - \lambda' \right| = O\left(\left| \frac{M - \lambda'}{M - \lambda'} \right|_{sk} \right)$$

Now combine to get the

Rayleigh quotient Iteration:

Vo is some vector w/ 11 Voll=1

for k=1, ?, ...

Solve
$$(A - \lambda_{(k-1)} I) \underline{w} = \underline{v}_{k-1}$$
 for \underline{w}

$$\lambda_{(k)} = v_{k}^{T} A v_{k}$$

Lecture 18 - 191030 Page 7

$$\lambda_{(k)} = V_k^T \underbrace{A}_{k} V_k$$
end

This method has a convergence of

$$\|\bar{\Lambda}^{k+1} - (\bar{+}\bar{d}^2)\| = O(\|\bar{\Lambda}^k - (\bar{+}\bar{d}^2)\|_3)$$

$$|\mathcal{Y}^{(k+1)} - \mathcal{Y}^2| = \mathcal{Q}(|\mathcal{Y}^{(k)} - \mathcal{Y}^2|_3)$$

Cubic order convergence of the eigenvector 95 closest to Vo

See Lecture 27 of Trefethan & Ban

Spectrum Calculations

Try to find all or a subset of the eigenvalue spectrum

Recall that any square matrix has the

Schur Decomposition

A = Q T QT, where T is upper triangular

Eigenvalue computations can try the find this decomposition

Note: If A is symmetric and real, then

A = QTQT = SASi diagonal

The above looks similar to QR decomposition, where A = QR upper triangular

Recall Householder reflections

$$\begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix} \xrightarrow{Q_1^T} \begin{bmatrix} \times & \times & \times \\ \circ & \times & \times \\ & & & & & \\ & & & & & \\ \end{bmatrix}$$

1

QT A

For the eigenproblem, we need 9,A9,

Then

$$Q_{n} Q_{n-1} \cdots Q_{n}^{T} A Q_{n} Q_{n} = T$$

$$Q_{n} Q_{n} Q_{n}$$

and then A = Q T Q'

Consider Q'AP,

$$\begin{bmatrix} \times & \times & \times \\ & \times & \times \\ & &$$

QAQ,

- .. The original Householder approach Lill not work
- => Not possible to get a Schur Decomposition directly

Instead, two steps are needed:

- 1) Reduce to upper Hessenberg form, which is nearly upper triangular
- 2) Iterate until upper triangular is obtained

Details of these two steps:

1) Upper Hessenberg Matrix: A matrix with zeros below the first sub-diagonal

Let Q, be a unitary matrix (Q,Q=I)

that zeros out values below the first subdiagonal
of the first column, but does not touch the
first row values

Use a Householder reflector to assure orthonormality

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & F \end{bmatrix}$$

Algorithm: Householder Reduction to Upper Hessenberg Form

for
$$k = 1$$
 to $m-2$

$$\underline{x} = \underline{A}(k+1:m, k)$$

$$\underline{V}_{k} = sign(x_{1})||\underline{x}||_{2} \underline{e}_{1} + \underline{x}$$

$$\underline{A}(k+1:m, k:m) = \underline{A}(k+1:m, k:m)$$

$$- \underline{z}_{k}(\underline{V}_{k}^{T}\underline{A}(k+1:m, k:m))$$

$$\underline{A}(1:m, k+1:m) = \underline{A}(1:m, k+1:m)$$

$$- \underline{z}(\underline{A}(1:m, k+1:m)\underline{V}_{k})\underline{V}_{k}$$
end
$$\underline{C}^{T}\underline{A}\underline{Q}$$

Then converts to upper Messenberg

Note: Q is never formed

Cost:
$$O\left(\frac{10}{3}\text{ m}^3\right)$$

If A is symmetric, then the cost reduces to $O(\frac{4}{3}m^3)$

and the result is tri-diagonal

2) Iterate to Upper Triangular Form

Focus on real, symmetric matrices

Turn to
$$A = QTQ^T$$
 (Schur decomposition)

A could be any matrix or the result of part (i.e., upper Hessenberg)

$$\underline{T} = \underline{Q}^T \underline{A} \underline{Q}$$

Make this an iteration

Given Ak, let Ak+1 = 9x Ak 9k

Now, let $A_k = Q_k R_k$ be the QR decomposition of A_k

Then,

=> This is the QR Algorithm for

eigenproblems

end

Recombination in reverse

Converge to some tolerance,
result will be upper triangular matrix I
To show why this converges consider the power
method applied to matrices