Heat of Reaction Lab Report

Edouard Des Parois Perrault

Marguerite Comley

Chemistry

Contents

1	Is the Reaction Endothermic or Exothermic?	2
2	Data Table	2
3	Total Heat Released	3
4	Moles of MgO	3
5	Calculating ΔH_{rxm}	4
6	Table of Results	4

1 Is the Reaction Endothermic or Exothermic?

The reaction is exothermic. ΔH is therefore negative.

2 Data Table

Data	Value
Mass MgO	2.8054 g
Initial Temperature (°C)	25.01
Final Temperature (°C)	46.33

3 Total Heat Released

$$Q_{env} = mc\Delta t$$
 (1)
= 100 · 4.18 · 21.29 (2)
= 8899.22 J (3)

4 Moles of MgO

$$n = \frac{m}{mm}$$
 (4)
= $\frac{2.0845}{40.304}$ (5)
= 0.0517 mol (6)

5 Calculating ΔH_{rxm}

$$\Delta H = -\frac{Q_{env}}{0.0517}$$

$$= -\frac{8899.22}{0.0517} \cdot \frac{1}{1000}$$

$$= 172.13 \text{kJ}$$
(7)
(8)

6 Table of Results

Mass of the Rxn Mixture	ΔT	Total Heat Re- leased	mol MgO	$rac{\Delta H_{rxn}}{mol}$
100 g	21.3 °C	$8.90 \cdot 10^3$ J	0.0517 mol	-172 kJ

