熱力學(Thermodynamics)

18~21章探究的主要問題架構

什麼是熱?

如何表達、描述或估測?

熱具有哪些動力特性與現象?

熱與質點動力學有何關聯嗎? (宏觀↔微觀)

熱力學(Thermodynamics)

Dyamical action of heat $\longrightarrow System \leftarrow \xrightarrow{Heat} Surrounding$

→ Change of macroscopic variables (宏觀變數:壓力、體積、溫度)

- 熱力學第零定律 ⇒ 熱平衡(CH 18)
- 熱力學第一定律 ⇒ 能量守恆(CH 19)
- 熱力學第二定律 ⇒ 自然界不可逆過程(CH21)
- 氣體動力論 ⇒ 以統計概念探討宏觀現象(CH20)

♦ 溫標(Temperature Scales) ⇒ $T_F = \frac{9}{5}T_C + 32^0 F$

	攝氏溫標 T_C	華氏溫標 T _F	凱氏溫標
	(Celsius scale)	(Fahrenheit scale)	(Kelvin scale)
凝固點	0^0 C	32^{0} F	273K
沸點	100°C	212 ⁰ F	373K

◆熱力學第零定律(The Zeroth Law of Thermodynamics)

一熱平衡(Thermal equilibrium)現象之描述,即當兩物體達至熱平衡時, 溫度必相等(確認溫度狀態變數)。換言之,若兩物體分別與第三物體 (如溫度計)達至相同的熱平衡,則該兩物體也必互為熱平衡。

※補充說明:

- 1. 兩系統只要溫度相同(不一定接觸),則該兩系統必互為熱平衡。
- 2.熱平衡不代表其它狀態變數(如壓力、體積)一定相同。
- 3.當一系統的狀態變數不隨時間改變時,則該系統處於熱平衡。

◆理想氣體狀態方程式-描述宏觀變數之關係

- ●定溫下,氣體的壓力與體積成反比:PV=常數。(Robert Boyle)
- ●定壓下,氣體的體積與溫度成正比: V∝T。(Charles and Gay-Lussac)
- ●定容下,氣體的壓力與溫度成正比:P∝T。(Gay-Lussac)

$V \propto T \& P \propto T \Rightarrow PV \propto T$

- •PV值由存在氣體分子數N決定
 - \Rightarrow V \propto N (P&T is given) , P \propto N (V&T is given) \Rightarrow PV \propto N

Fig.18.3

●理想氣體狀態方程式(The equation of state for an ideal gas):

$$\Rightarrow$$
 PV=NkT ($k = 1.38 \times 10^{-23}$ J/K)

$$\Rightarrow PV = nRT$$
 (N= nN_A , $N_A = 6.02 \times 10^{23} mol^{-1}$, R= $kN_A = 8.314 \text{ J/mol·K}$)

●當真實氣體(約為大氣壓力)相當稀薄且溫度(約為室溫)遠大 於其液化溫度,其仍可趨近理想氣體。

熱膨脹(Thermal Expansion) - 隨溫度上升而膨脹

Fig.18.8

$$\alpha = \frac{\Delta L / L_0}{\Delta T}$$
 (The coefficient of linear expansion)

$$\beta = \frac{\Delta V / V_0}{\Delta T}$$
 (The coefficient of volume expansion)

•Application:

>複合金屬熱膨脹

⇒利用熱膨脹係數不同來設計溫度感應 開關,如恆溫器、電路阻斷器及化油 器塞子控制器等。

Fig.18.9

▶湖面結冰原因

⇒因水在0°C~4°C隨溫度減小而 體積反增大,即密度變小, 故湖面水冷卻至4°C,便不再 下沉直至結冰。

Fig.18.10

>原子位能井函數與熱膨脹關係

⇒對稱(虛線)→非對稱(實線) ⇒原子 振動能量隨溫度增加($E_2 > E_1$) ⇒ 平均位置增大($\overline{r_2} > \overline{r_1}$)⇒ 原子間距 增大

Fig.18.11

本章重要觀念發展脈絡彙整

習題

- •基本觀念習題:
 - 1.請說明熱力學第零定律。
 - 2.請寫出理想氣體狀態方程式,並說明此方程式如何推得?
 - 3.請利用原子觀點解釋熱膨脹現象。

熱(heat)的觀念發展

熱⇒溫度(表冷熱程度)⇒熱質(the caloric theory) { 熱質看不見且無質量

⇒摩擦(或作功)生熱(證實熱質非守恆)⇒內能 魚質守恆

熱係由高溫流向低溫的物質 熱質看不見且無質量 熱質守恆

比熱

- 熱容量(Heat capacity) = $\frac{\Delta Q}{\Delta T}$
- $\Delta Q = mc\Delta T$, c 無比熱(specific heat)

熱容量 =
$$\frac{\Delta Q}{\Delta T}$$
 = $\frac{mc\Delta T}{\Delta T}$ = mc \Rightarrow $c = \frac{1}{m} \frac{\Delta Q}{\Delta T}$ (單位質量的熱容量)

• $\Delta Q = nC\Delta T$, C 無 莫耳比熱 (molar specific heat)

熱容量 =
$$\frac{\Delta Q}{\Delta T}$$
 = nC $(n = m/M)$, M 為分子量)
 $\Rightarrow C = \frac{1}{n} \frac{\Delta Q}{\Delta T}$ (每莫耳的熱容量)

• c與C之關係 $\Rightarrow nC = mc \Rightarrow C = (m/n)c = Mc$

物質的比熱會隨溫度而改變。

比熱與加熱條件有關。(定容比熱、定壓比熱)

將待測物與一已知比熱物體 放在絕熱裝置內熱接觸。

$$\Delta Q_1 + \Delta Q_2 = 0$$
 (conservation of caloric)

♦ 潛熱(Latent Heat)-溫度未改變,但發生相改變。($\Delta Q = mL$)

Fig.19.2

Fig.19.3

	c (J/kg·K)	C (J/mol·K)
Aluminum	900	24.3
Соррег	385	24.4
Gold	130	25.6
Steel/Iron	450	25.0
Lead	130	26.8
Mercury	140	28.0
Water	4190	75.4
Ice (-10 °C)	2100	38

From 1 Cal=4.186 J, it can be obtained

Aluminum= $900(J/kg \cdot K)=0.9(J/g \cdot K)=0.21(cal/g \cdot K)$

Copper= $385(J/kg \cdot K) = 0.385(J/g \cdot K) = 0.092(cal/g \cdot K)$

	Melting Temperature	Latent Heat of Fusion (J/kg)		Boiling Temperature	Latent Heat of Vaporization (J/kg)	
	°C			"C		
Aluminum	660	24.5	< 103	2450	11,390	× 10)
Copper	1083	134	103	1187	5065	× 103
Gold	1063	64.5	< 103	2660	1580	× 101
Lead	327	24.5	< 103	1750	870	× 10)
Water	0	334	< 103	100	2260	× 10 ³
	K			K		
Helium	3.5	5.23 >	103	4.2	20.9	× 10 ³
Hydrogen	13.8	58.6	(10)	20.3	452	× 10)
Nitrogen	63.2	25.5 5	103	77.3	201	× 10)
Mercury	234	11.8 >	(10)	630	272	$\times 10^3$

water
$$\Rightarrow$$

 Fusion: $334 \times 10^3 (J/kg) \approx 80000 (cal/kg) = 80(kcal/kg)$
Vaporization: $2260 \times 10^3 (J/kg) \approx 540(kcal/kg)$

♦熱功當量(The Mechanical Equivalent of Heat)—Mayer & Joule

- Heat is energy,由溫度差造成能量轉移。(Work is energy,由位移所造成。)
- 1 Cal=4.186 J (or 1Btu=778 ft·lb)

Fig.19.4

♦Work (功) in Thermodynamics

➤ Quasi-static process (準靜過程) — 近似平衡的過程。

$$ightharpoonup dW = Fdx = PAdx = PdV \Rightarrow W = \int_{V_i}^{V_f} PdV$$
 (考慮氣體作功)

Fig.19.5

Fig.19.6

- Isobaric Work (定壓作功)—(P=const.)
 - 1.熱力路徑不同,作功大小不同。
- 2.自由膨脹(Free expansion)不會作功。(see Fig.19.8)

Fig.19.7

Fig.19.9

Fig.19.8

● Isothermal Work (定温作功) —(T=const.)

For ideal gas, PV = nRT $\Rightarrow P = nRT/V$ (see Fig.19.9)

$$W = \int_{V_i}^{V_f} P dV = nRT \int_{V_i}^{V_f} dV / V = nRT \ln(V_f / V_i)$$

• Adiabatic Work (絕熱作功) $-(Q=0 \Rightarrow \Delta U = -W)$

For ideal gas, $PV^{\gamma} = K$ $\Rightarrow P = K/V^{\gamma}$ (參考Example 19.6)

$$W = \int_{V_i}^{V_f} P dV = \int_{V_i}^{V_f} K dV / V^{\gamma} = \frac{K}{\gamma - 1} \left(\frac{1}{V_1^{\gamma - 1}} - \frac{1}{V_2^{\gamma - 1}} \right) = \frac{1}{\gamma - 1} \left(P_1 V_1 - P_2 V_2 \right)$$

◆熱力學第一定律(The first law of thermodynamics)

$$\Delta U = Q - W$$
,

 $\Delta U = Q - W$, $\begin{cases} \Delta U$ 為系統內能變化量(導入內能觀念) Q為系統與環境交換熱 W為系統對環境作功

%Note:若考慮環境對系統作功,則 $\Delta U = Q + W$

- \triangleright 若有摩擦力或熱力過程非準靜,則內能U僅與最初或最終的 系統平衡狀態有關。
- ▶內能是所有可能儲藏在系統內各種能量的總合,但不包含與 系統質量中心有關的動能與位能。
- ▶隨機運動相關的動能及位能(即所謂的熱能),可能來自於部 分內能,但內能並非就是熱能。

• Application :

▶孤立系統(Isolated System)

$$Q = 0$$
 and $W = 0 \implies \Delta U = 0$ or $U = const.$

▶循環過程(Cyclic Process)

$$\Delta U = 0$$
 (狀態未變) $\Rightarrow Q = W$

▶定容過程(Constant-volume Process)

$$W = 0 \ (\because V = const. \Rightarrow dV = 0) \Rightarrow \Delta U = Q$$

▶絕熱自由膨脹(Adiabatic free expansion)

$$Q = 0$$
 and $W = 0 \Rightarrow \Delta U = 0$ ($U = \text{const.} \Rightarrow T = \text{const.}$ for ideal gas)

$$(:: P = 0 \Longrightarrow W = \int PdV = 0)$$

Fig.19.10

Fig.19.11

→理想氣體(Ideal Gases)

●比熱(Specific Heats)—C_v 與C_p 的關係

$$Q_{v} = nC_{v}\Delta T$$

$$\Delta U = nC_{v}\Delta T \ (\because 定 V = const. \Rightarrow W = 0)$$

$$Q_{p} = nC_{p}\Delta T$$

$$nC_{p}\Delta T = \Delta U + W$$

$$nC_{p}\Delta T = nC_{v}\Delta T + P\Delta V$$

$$C_{p} - C_{v} = R \quad (\because P = const. \Rightarrow P\Delta V = nR\Delta T)$$

● 絕熱準靜過程(Adiabatic Quasi-static Process)

$$PV^{\gamma} = const.$$
 ,其中 $\gamma = \frac{C_p}{C_y}$

準靜一考慮微量變化 ⇒ 溫度dT, 體積dV, dW=pdV

由熱力學第一定律
$$\Rightarrow dU = dQ - dW \xrightarrow{dQ=0} dU = -dW$$
 $\Rightarrow nC_v dT = -PdV$ (1)

由理想氣體狀態方程 $\Rightarrow PV = nRT \Rightarrow d(PV) = nRdT$

$$\Rightarrow PdV + VdP = nRdT \tag{2}$$

將(1)式代入(2)式,消去 $dT \Rightarrow PdV + VdP = -PRdV / C_V$

$$\Rightarrow P(C_v + R)dV + C_v V dP = 0$$

For ideal gas, $C_v + R = C_P \Rightarrow PC_P dV + C_v V dP = 0$ $\Rightarrow (\frac{C_P}{C_v}) P dV + V dP = 0$

Let
$$\gamma = \frac{C_p}{C_v} \Rightarrow \gamma \frac{dV}{V} + \frac{dP}{P} = 0 \Rightarrow \gamma \ln V + \ln P = const. \Rightarrow \ln V^{\gamma} + \ln P = const.$$

$$\Rightarrow \ln PV^{\gamma} = const. \Rightarrow PV^{\gamma} = const.$$

• Discussion:

$$d(PV^{\gamma}) = 0 \implies V^{\gamma}dP + \gamma PV^{\gamma-1}dV = 0 \implies dP/dV = -\gamma P/V$$

Fig.19.12

For an isothermal process ($\gamma = 1$)

$$\Rightarrow dP/dV = -P/V \Rightarrow PV = const.$$

For an adiabatic process $(\gamma > 1)$

$$\Rightarrow \gamma = C_P / C_v > 1 \quad (:: C_P > C_v)$$

♦ 熱傳輸(Heat Transport)

Fig.19.13

$$\frac{dQ}{dt} = -\kappa A \frac{dT}{dx} = \kappa A \frac{T_H - T_C}{L} = A \frac{\Delta T}{R} \quad (R = L/\kappa \beta) \text{ (thermal resistance)}$$

其中κ為熱傳導率(thermal conductivity), A為接觸面積, dT/dx為溫度梯度(通常為負值)

Example:

$$\Delta T = \left(\frac{R}{A}\right) \frac{dQ}{dt} \Rightarrow \Delta T_1 + \Delta T_2 = \frac{1}{A} \left(\frac{L_1}{\kappa_1} + \frac{L_2}{\kappa_2}\right) \frac{dQ}{dt}$$
$$= \frac{1}{A} (R_1 + R_2) \frac{dQ}{dt}$$

Fig.19.15

●對流(convection)⇒藉由分子或原子的集體移動(流體運動)傳輸熱

⇒ | 自然對流(free convection) - 流體密度隨溫度改變而造成冷暖空氣流動。 強迫對流(forced convection) - 利用風扇或幫浦造成流體流動。

$$\frac{dQ}{dt} = hA\Delta T \quad , \ h$$
 對流係數

Fig.19.16

- ●輻射(radiation) ⇒不需介質參與熱的傳輸,係由電磁波傳輸。
 - ⇒ 物體可同時發射與吸收輻射能,好的發射體也是好的接收體

$$\frac{dQ}{dt} = e\sigma A T^4 \quad , \quad \text{其中}e 爲 發射率 (emissivity) \quad \sigma = 5.67 \times 10^{-8} \text{W/m}^2 \cdot \text{K}^4$$

發射率(或吸收率)與物體表面性質有關。

Fig.19.17

本章重要觀念發展脈絡彙整

習題

- •基本觀念習題:
 - 1.請說明熱容量(heat capacity)、比熱(specific heat)及莫耳比熱 (molar specific heat), 並推導說明三者之關係。
 - 2.請說明熱力學第一定律。
 - 3.請推導絕熱準靜過程的理想氣體狀態方程式,即: PV^{γ} =const.,其中 γ = C_p/C_v 。
 - 4.在理想氣體條件下,請利用熱力學第一定律推導定壓莫耳比熱 (C_P) 與定容莫耳比熱 (C_V) 的關係式,即 $C_P-C_V=R$,其中R為理想 氣體常數。
 - 5.請問熱的傳輸(heat transport)有哪幾種方式?並說明其運作機制 及適用對象?