Inference 2, 2023, lecture 6

Rolf Larsson

November 17, 2023

Today

Chap. 4. Estimation:

- Estimator
- Method of moments
- Maximum likelihood
- M estimators

Estimator

- Suppose $X \sim P_{\theta} \in \mathcal{P}$ where $\theta \in \Theta$.
- Our main interest is in $\gamma = g(\theta)$, $g: \theta \to \Gamma$. (Special case: $\gamma = \theta$.)
- Given data \mathbf{x} , what is a plausible value of γ ?

Definition (4.1)

A function $T: \mathcal{X} \to \Gamma$ is an **estimator**. It is used to estimate $\gamma = g(\theta)$. The value $T(\mathbf{x})$ is called the **estimate** of $g(\theta)$.

It is the realization of the random variable T(X).

Example 1:

- Suppose $X_1, ..., X_n$ are independent, distributed as $X \sim \text{Bernoulli}(p)$.
- We observe $x_1, ..., x_n$.
- Suggest an estimator of p.

Method of moments

- Let $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent and distributed as X with distribution F and parameter(s) θ .
- If X is a continuous random variable, let the jth moment be $m_j(F) = E(X^j) = \int x^j f(x) dx$ where f is the density function.
- Similarly, if X is discrete, $m_j(F) = E(X^j) = \sum x^j p(x)$, where p is the probability function.
- Suppose that (at least) r moments of X exist.
- Suppose there is a function h such that $\gamma = h\{m_1(F), ..., m_r(F)\}$

Definition (4.2)

The **moment estimate** for γ is defined by

$$\hat{\gamma}_{\mathrm{MME}} = h(\hat{m}_1, ..., \hat{m}_r),$$

where $\hat{m}_j = \frac{1}{n} \sum_{i=1}^n x_i^j$ is the empirical moment of order j.

Method of moments

Example 2:

- Let $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent and distributed as X.
- Write down the moment estimates of the parameters if X is distributed as
- **1** Exponential with intensity β
- $N(\mu, \sigma^2)$
- **3** Uniform on $[0, \theta]$

- Let $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent with distributions F_i and parameter(s) θ .
- Let $\mathbf{x} = (x_1, ..., x_n)$ be the corresponding observations.
- Define the likelihood function

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f_i(\mathbf{x}_i; \theta),$$

in the continuous case, where f_i is the density function of X_i , and similarly in the discrete case.

Definition (4.3)

An estimator T is called the **maximum likelihood estimator (MLE)** of θ if

$$L\{T(\mathbf{x});\mathbf{x}\} = \max_{\theta \in \Theta} L(\theta;\mathbf{x})$$

for all $\mathbf{x} \in \mathcal{X}$.

Theorem (4.1)

If $\gamma = g(\theta)$ and g is bijective, i.e. $\theta = g^{-1}(\gamma)$, then $\hat{\theta}$ is a MLE for θ if.f. $\hat{\gamma} = g(\hat{\theta})$ is a MLE for γ .

Definition (4.4)

The MLE of $\gamma = g(\theta)$ is defined by $\hat{\gamma}_{\mathrm{MLE}} = g(\hat{\theta}_{\mathrm{MLE}})$.

Example 3:

- Let $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent and exponential with intensity β .
- Let $\mathbf{x} = (x_1, ..., x_n)$ be the corresponding observations.
- **1** Calculate the MLE of β .
- ② Calculate the MLE of $\mu=1/\beta$
 - a. by maximizing the likelihood w.r.t. μ .
 - b. By using 1. and theorem 4.1 (definition 4.4).

Example 4:

- Let $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent and uniform on $(0, \theta)$.
- Let $\mathbf{x} = (x_1, ..., x_n)$ be the corresponding observations.
- Calculate the MLE of θ .

- Suppose we have a sample of i.i.d. random variables with expectation θ . We want to estimate θ .
- The least squares estimate (LSE) is given by minimizing $\sum_{i=1}^{n}(x_i-\theta)^2$ i.e. by solving $0 = \sum_{i=1}^{n} (x_i - \theta)$ which yields the solution $\theta = \bar{x}$.
- The least absolute value estimate is given by minimizing $\sum_{i=1}^{n} |x_i - \theta|$, i.e. by solving

$$0 = -\sum_{x_i < \theta} I\{x_i - \theta < 0\} + \sum_{x_i > \theta} I\{x_i - \theta > 0\} = \sum_{i=1}^n \operatorname{sign}(x_i - \theta),$$

which yields the median of the x_i as solution.

• The MLE is given by minimizing $-\sum_{i=1}^{n} I(\theta; x_i)$, i.e. (under regularity conditions) by solving $0 = \sum_{i=1}^{n} l'(\theta; x_i)$.

In general:

Definition (4.5)

For a sample $X_1,...,X_n$ of i.i.d. random variables **the M-estimator** $\hat{\gamma}$ w.r.t. a function $\psi: \mathcal{R} \times \Gamma \to \mathcal{R}$ is defined as the solution of

$$\sum_{i=1}^n \psi(X_i,\gamma) = 0.$$

Typically, $\hat{\gamma}$ minimizes a function $\sum_{i=1}^{n} \varrho(X_i, \gamma)$.

- the least squares estimator: $\psi(x_i, \gamma) = x_i \gamma$, $\varrho(x_i, \gamma) = (x_i \gamma)^2$.
- the least absolute value estimator:

$$\psi(x_i, \gamma) = \operatorname{sign}(x_i - \gamma), \ \varrho(x_i, \gamma) = |x_i - \gamma|.$$

• In these examples, the functions may be expressed as $\psi(x_i, \gamma) = \tilde{\psi}(x_i - \gamma), \ \varrho(x_i, \gamma) = \tilde{\varrho}(x_i - \gamma).$

For the LSE, $\tilde{\varrho}(z)=z^2$, $\tilde{\psi}(z)=z$.

The following robust modifications of the LSE are M estimators:

The trimmed mean:

$$\tilde{\varrho}(z) = \begin{cases} z^2 & \text{if } |z| \le k, \\ k^2 & \text{if } |z| > k, \end{cases} \quad \tilde{\psi}(z) = \begin{cases} z & \text{if } |z| \le k, \\ 0 & \text{if } |z| > k, \end{cases}$$

The Winzorized mean

$$\tilde{\varrho}(z) = \begin{cases} \frac{1}{2}z^2 & \text{if } |z| \le k, \\ k|z| - \frac{1}{2}k^2 & \text{if } |z| > k, \end{cases} \quad \tilde{\psi}(z) = \begin{cases} -k & \text{if } z < -k, \\ z & \text{if } |z| \le k, \\ k & \text{if } z > k. \end{cases}$$

$$\tilde{\psi}(z) = \begin{cases} -k & \text{if } z < -k \\ z & \text{if } |z| \le k, \\ k & \text{if } z > k. \end{cases}$$

If there is more than one solution to $\sum_{i=1}^{n} \psi(x_i, \gamma) = 0$, choose the one(s) with smallest value on $\sum_{i=1}^{n} \varrho(x_i, \gamma)$.

Example 5:

- Suppose we have a random sample 1, 2, 3, 10 from a distribution with expectation θ .
- ullet Estimate heta by using
- 1 the LSE.
- 2 the least absolute value.
- 3 the trimmed mean with k = 4.
- \bullet the Winzorized mean with k=4.

News of today

- Estimator
- Estimate
- Method of moments
- MLE
- M estimators
 - LSE
 - Least absolute value
 - Trimmed mean
 - Winzorized mean
 - The MLE in regular cases