This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

世界知的所有権機関 国 際 事 務 局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 235/60, 279/08, C07D 211/34, 241/04, 295/08, 295/10, 263/58, 271/06, A61K 31/215, 31/445, 31/495

(11) 国際公開番号 A1 WO97/08133

(43) 国際公開日

1997年3月6日(06.03.97)

(21) 国際出願番号

PCT/JP96/02305

(22) 国際出願日

1996年8月15日(15.08.96)

(30) 優先権データ

特願平7/213855

1995年8月22日(22.08.95)

(71) 出願人 (米国を除くすべての指定国について) 日本たばこ産業株式会社(JAPAN TOBACCO INC.)[JP/JP] 〒105 東京都港区虎ノ門二丁目2番1号 Tokyo,(JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

春田純一(HARUTA, Junichi)[JP/JP]

佐久間和彦(SAKUMA, Kazuhiko)[JP/JP]

渡部良広(WATANABE, Yoshihiro)[JP/JP]

〒569 大阪府髙槻市紫町1番1号

日本たばこ産業株式会社 医薬総合研究所内 Osaka, (JP)

(74) 代理人

(54) Title:

弁理士 髙島 一(TAKASHIMA, Hajime)

〒541 大阪府大阪市中央区平野町三丁目3番9号 (湯木ビル) Osaka, (JP) (81) 指定国 AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, KE, KG, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書 補正書

AMIDE COMPOUNDS AND USE OF THE SAME

(54)発明の名称 アミド化合物及びその用途

$$R - A - X - N - R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{4}$$

$$R^{8}$$

$$R^{4}$$

$$R^{8}$$

$$R^{4}$$

$$R^{5}$$

$$R^{$$

(57) Abstract

Amide compounds represented by general formula (I), pharmaceutically acceptable acid-addition salts thereof and a drug comprising the same as the active ingredient, wherein R represents amino, etc.; A represents alkylene, etc.; X represents O, S, etc.; M represents arylene, etc.; R¹, R², R³ and R⁴ represent each H, hydroxy, etc.; R⁵ represents H, alkyl, etc.; m is an integer of from 0 to 6; R⁶ represents optionally substituted aryl, etc.; and R⁷ represents H, optionally substituted alkyl, etc. The amide compounds exhibit excellent inhibitory effects on cytokines (IL-8, IL-1, IL-6, TNF-§g(a), GM-CSF, etc.) relating directly or indirectly to inflammation and are useful in the prevention or treatment of arthritis caused by rheumatic diseases, gout, etc.

......

(57) 要約

一般式(I):

$$R = A = X + N + R^{2} + R^{3} + R^{4} + R^{5}$$
(1)

「Rはアミノ基等;Aはアルキレン基等;XはO、S等;Mはアリーレン基等;R¹、R²、R³、R⁴はH、水酸基等;R⁵はH、アルキル基等;mは $0\sim6$ の整数;R⁶は置換されていてもよいアリール基等;R⁷はH、置換されていてもよいアルキル基等〕で表されるアミド化合物又はその薬学的に許容される酸付加塩及びこれを有効成分とする医薬。該アミド化合物は、IL-8、IL-1、IL-6、TNF $-\alpha$ 、GM-CSF等の炎症に直接的又は間接的に関与するサイトカインに対して優れた抑制作用を示し、リウマチ性疾患、痛風による関節炎等の予防又は治療に有用である。

情報としての用途のみ PCTに基づいて公開される国際出題をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

明細書

アミド化合物及びその用途

「技術分野」

本発明は、インターロイキン-8(IL-8)、インターロイキン-1(IL-1)、インターロイキン-6(IL-6)、腫瘍壊死因子($TNF-\alpha$)、GM-CSF等の炎症に直接的又は間接的に関与するサイトカインに対して優れた抑制作用を示す新規化合物、及び該化合物を含んでなる医薬、例えば抗炎症剤に関する。

「背景技術」

炎症とは異物、病原菌等の排除や、損傷を受けた組織の修復を目的として起こる生体の防御反応の一つである。炎症刺激を受けると、まず微小循環系の反応、特に血管の透過性の亢進が起こる。この血管の透過性の亢進には、ケミカルメディエーターやサイトカインが重要な役割を担っている。それに引き続いて、好中球の遊走、浸潤、活性化が起こり、炎症局所で異物、病原菌の貪食やケミカルメディエーターの放出により炎症反応が惹起される。好中球に引き続き、マクロファージは、好中球と同様に異物、病原菌、組織の崩壊産物などを貪食し、種々のサイトカインを産生する。その後、病原菌や異物、損傷を受けた組織が除去され、組織が再構築されると炎症は終息を迎える。以上は正常な反応としての炎症であるが、アレルギーや自己免疫疾患(慢性関節リウマチや全身性エリテマトーデス等)では、異常な免疫反応の結果、炎症が遷延したり、強い全身症状の出現を伴う。

多くのサイトカインが炎症反応の各局所で重要な役割を担っているが、例えば炎症局所への白血球の浸潤には、白血球の遊走、血管内皮細胞との接着、血管壁の通過が必要であるが、この現象にはIL-1、 $TNF-\alpha$ 、IL-8等が関与しており、IL-1、 $TNF-\alpha$ やIL-8で好中球が活性化され、リソゾーム酵素の放出や活性酸素、プロスタグランジンの産生等が起こり、炎症が惹起される。IL-1、 $TNF-\alpha$ 、IL-6等は循環中に移行すると、肝臓に働いて急

性期炎症蛋白(CRP、SAA等)の産生を誘導したり、骨髄に作用して、好中球や血小板の増加を引き起こす。慢性関節リウマチ(RA)等結合組織の炎症では、IL-1、 $TNF-\alpha$ が線維芽細胞や破骨細胞を活性化し、プロスタグランジンやコラゲナーゼの産生を誘導するといわれている(Mebio, 11 (2), 18-23, 1994)。

このように、IL-1や $TNF-\alpha$ は炎症反応の各局面で中心的役割を担っている。

ところでIL-8は、末梢血単球、組織マクロファージのみならず、ナチュラルキラー細胞として知られる大顆粒リンパ球(large granular lymphocytes. LGL)、Tリンパ球や種々の組織・細胞(線維芽細胞、血管内皮細胞、皮膚角化細胞等)によっても産生される。その際、産生刺激物質としては、LPS、PHA、PSK(Coriolus versicolor 由来蛋白結合性多糖体、クレスチン)等のマイトーゲン・レクチンや、IL-1、TNF-α等のサイトカインが挙げられる。これらの細胞の多くは、恒常的にはほとんどIL-8を産生しないが、上記のごときIL-8産生刺激物質によって刺激されると24時間以内に、未刺激時に比べ100倍を越えるIL-8を産生する。例えば、ヒト末梢血単核球をPSKで刺激すると、1時間以内にIL-8 mRNAが誘導され、3時間後にIL-8 mRNA量はピークに達し、その後、漸時減少する。IL-8 mRNA誘導に伴い、培地中に好中球遊走能を有するIL-8蛋白が刺激3時間後に検出され、漸時増加する。IL-1、TNF-α刺激によるIL-8 mRNA誘導の時間経過も同様である。IL-8は、活性化マクロファージ等が産生する蛋白分解酵素に対して著しく安定である。

更に、IL-8の生物活性について述べるなら、IL-8はin vitroにおいて、好中球に対して走化性亢進作用、脱顆粒誘導作用、レスピラトリーバースト(respiratory burst)誘導作用、リソゾーム酵素放出誘導作用、未刺激若しくは刺激血管内皮細胞への接着誘導作用、血管外遊走の亢進作用、接着因子発現の増強作用、ロイコトリエンB4-HETH放出誘導作用等の作用を有し、T細胞に対し

ては走化性亢進作用、B細胞に対しては I L - 4 による I g E 産生抑制作用、好塩基球に対しては走化性亢進作用、ヒスタミン・ロイコトリエン放出誘導作用等を有している。また、in vivo においては、好中球・リンパ球の浸潤誘導作用の他、好中球増多症誘導作用、血管透過性の増強作用、好中球依存性関節滑膜破壊作用を有している(臨床免疫、25(8)、1013-1020、1993)。

上記のとおり、IL-8は好中球に対して様々な作用を有しているが、好中球 以外にもTリンパ球、好塩基球、単球、角化細胞、メラノーマ細胞等にも作用す ることがわかってきており、その生物活性、標的細胞は他のサイトカインと同様、 実に多様であることがわかってきている。

一方、in vivo において I L - 8 は、皮内注射により好中球、リンパ球の注射 部位への浸潤をもたらし、また局所リンパ節へのTリンパ球のホーミング(Homing)を増加させることが知られている。静脈若しくは腹腔注射により、末梢血中の好中球数を著しく増加させ、大量投与により肺胞等の破壊を起こすことも知られている。また、 I L - 8 のラビット関節腔内投与により、大量の好中球浸潤を伴う関節滑膜の破壊がみられることも知られている。以上のことは、 I L - 8 が強い炎症誘発作用をin vivo でも有することを示唆するものである。

上記のとおり、IL-8は好中球走化性亢進作用の他にも様々な作用を有し、更には痛風やリウマチ性の関節炎においてその関節液中にIL-8が検出されていること、乾癬等の皮膚炎の場合においてもその皮膚片からIL-8が検出されていること、或いは喘息の場合においてその末梢血単核球がIL-8様走化性因子を産生していること、また成人呼吸窮迫症候群(adult respiratory distress syndrome, ARDS)の原因の一つと考えられる敗血症においてもその末梢血中にIL-8が検出されている事実からして、IL-8は炎症をはじめとした様々な疾患に関与していることは明らかである。

それ故、このような I L - 1、 I L - 6、 I L - 8、 TNF - α等の炎症に関与するサイトカインを抑制する物質が得られるなら、それら物質は慢性関節リウマチ等のリウマチ性疾患、痛風による関節炎、全身性エリトマトーデス、乾癬・

膿疱症・アトピー性皮膚炎等の皮膚疾患、気管支喘息・気管支炎・ARDS・びまん性間質性肺炎等の呼吸器疾患、炎症性腸疾患(潰瘍性大腸炎、クローン病)、激症肝炎を含む急性・慢性肝炎、急性・慢性糸球体腎炎、腎孟腎炎、ベーチェット病・vogtー小柳・原田病等に伴うぶどう膜炎、地中海熱(多発性漿膜炎)、心筋梗塞等の虚血疾患、敗血症に伴う全身循環不全や多臓器不全等に代表される好中球の浸潤を伴う非感染性、感染性疾患等に対する新しいタイプの治療薬としても極めて有益である。とりわけ新しい作用機序の抗炎症剤としての有効性が期待される。

このような技術背景のもとに、最近、IL-8等の炎症性サイトカイン阻害活性を有する化合物の報告がなされている。例えば、特表平7-503017号公報にはサイトカイン阻害剤として4-(4-フルオロフェニル)-2-(4-メチルチオフェニル)-5-(4-ピリジル)イミダゾール等のイミダゾール誘導体が、特表平7-503018号公報にはサイトカイン阻害剤として1-(4-ピリジル)-2-(4-フルオロフェニル)-4-フェニルイミダゾール等のピリジルの1000ではインルがのではサイトカイン阻害活性を有するナフタレンメタンアミノ誘導体が開示されている。しかしながら、これら刊行物には本発明化合物を示唆する記載はない。

更に、炎症性疾患等に関与する蛋白分解酵素阻害活性を有する化合物の報告もなされている。例えば、特開平 4-330094号公報にはIL-1等の前炎症性変化を誘発するトロンビン等のセリンプロテアーゼ阻害剤として $t-プチルオキシカルボニルートリメチルシリルーA1a-Pro-NH-CH[(CH2)<math>_3N_3$]-B-ピナンジオールが開示されている。また、特公平7-53705号公報にはN-(トランス-4-P)メチルシクロヘキシルカルボニル)-L-Dェニルアラニン4-アセチルアニリド等のフェニルアラニン誘導体が開示されている。しかしながら、同公報にはフェニルアラニンの一方にアミノ基を、他方には4-Pアミノメチル-6 員環ーカルボニル基を有することを特徴とするものであり、しかも蛋白分解酵素阻害剤に関するものであって、本発明のごとき炎症性サイトカ

イン産生抑制剤に関するものではない。

本発明の目的は、IL-8、IL-1、 $TNF-\alpha$ 、IL-6等の炎症性サイトカインの産生及び遊離を抑制する新規な選択的抗炎症剤になり得る化合物を提供することにある。

また本発明の目的は、該化合物を含む医薬を提供することにある。

「発明の開示」

本発明者らは、上記目的を達成するために鋭意研究を行った結果、本発明を完成するに至った。

即ち、本発明は次に示す通りである。

(1) 一般式(I):

$$R - A - X - M$$
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 R^{7}
 R^{7}

【式中、RはR.; R.で置換されたアルコキシ基; R.で置換されたアルキルチオ基; R.で置換されたアルキルアミノ基; 置換されていてもよい窒素含有非芳香族復素環基; 又は水酸基〔ここで、R. はアミノ基、グアニジノ基、アミジノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジノ基、ヒドラジノルボニル基又はイミノ基(これらの基は、低級アルキル基、ハロゲン化低級アルキル基、シクロアルキル基、アラルキル基、アリール基又はアミノ保護基から選ばれる置換基で置換されていてもよい)である〕を表し、

Aは置換されていてもよく、かつ鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状のアルキレン基;又は単結合を表し、

Xは酸素原子;硫黄原子;-NR®-;-SO-;-SO₂-;-CR®R¹º-;

- $-C=C-; -C\equiv C-; -CO-; -COO-; -OOC-; -NR*CO-;$
- -CONR*-;-NR* SO2-;-SO2 NR*-;-CS-;-COS-;
- -O-CO-O-; -NR* -COO-; -OOC-NR* -;
- -NH-CO-NH-; -NH-CS-NH-; -NH-C (=NH) -NH-;

窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2 価の芳香族複素環基;又はシクロアルキレン基〔ここで、R®は水素原子;アル キル基;シクロアルキル基;アリール基;アラルキル基;又はアミノ保護基を、 R®、R¹®は同一又は異なって、水素原子;アルキル基;シクロアルキル基;ア リール基;又はアラルキル基を示す〕を表し、

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を表し、

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子;水酸基;ハロゲン原子; 水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されてい てもよいアルキル基:アルコキシ基:メルカプト基:アルキルチオ基:アルキル 基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換され ていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;アルコキシカル ボニル基;アリールオキシカルボニル基;アシル基:又は-O-CO-Rㄲ〔こ こで、R11はアミノ基、アルコキシカルボニル基、アシルオキシ基、アリール基、 アリールオキシ基、アリールオキシカルボニル基、アラルキルオキシ基、アラル キルオキシカルボニル基、アルキルチオ基、アリールチオ基、アシル基、低級ア ルコキシ基、カルボキシル基又はハロゲン原子から選ばれる置換基で置換されて いてもよいアルキル基(ここで、アミノ基は低級アルキル基又はアシル基で置換 されていてもよい);置換されていてもよいアルコキシ基:置換されていてもよ いアリール基:置換されていてもよいシクロアルキル基:置換されていてもよい アリールオキシ基;置換されていてもよいアラルキルオキシ基;置換されていて もよいアルキルチオ基:又は置換されていてもよいアリールチオ基を示す)を表 し、

R⁵ は水素原子;ハロゲン原子で置換されていてもよいアルキル基;置換されていてもよいアラルキル基:又はアミノ保護基を表し、

mは0又は1~6から選ばれる整数を表し、

R⁶ は置換されていてもよいアリール基;置換されていてもよいシクロアルキル基;置換されていてもよい低級アルキル基;置換されていてもよい低級アルコキシ基;置換されていてもよい低級アルキルチオ基;低級アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;又は置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基を表し、

 R^{7} は水素原子;置換されていてもよいアルキル基;置換されていてもよいアリール基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる 1 個以上のヘテロ原子を有する芳香族複素環基;又は-CO(Y), R^{12} 〔ここで、Yは酸素原子;硫黄原子; $-NR^{13}-;$ 又は $-NR^{13}-SO_{2}-(R^{13}$ は水素原子;アルキル基;アラルキル基;水酸基;アルコキシ基;アリール基;又はアミノ保護基を示す)を、

pは0又は1を、

R12は水素原子;水酸基、アルコキシ基、アルコキシアルコキシ基、アルコキシカルボニル基、アシルオキシ基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基はアルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアルケニル基;置換されていてもよいアルキニル基;置換されていてもよいアルキニル基;置換されていてもよいアリール基;置換されていてもよいアリール基;置換されていてもよいアラルキル基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ基を示す)を表す)で表されるアミド化合物又はその薬学的に許容される酸付加塩。

(2) 一般式 (I) においてR、A、X、M、R¹、R²、R³、R⁴、R⁵、m、R⁶ 又はR⁷ から選ばれる少なくとも 1 つの記号が、下記定義を満足するものであることを特徴とする (1)記載のアミド化合物又は薬学的に許容される酸付加塩。

RはR・1; R・1で置換されたアルコキシ基; R・1で置換されたアルキルチオ基; R・1で置換されたアルキルアミノ基; 又は低級アルキル基又はアミノ保護基で置換されていてもよい窒素含有非芳香族複素環基 (ここで、R・1はアミノ基、グアニジノ基、アミジノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジノカルボニル基又はイミノ基 (これらの基は、低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよい)である)を示す。

Aは鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状のアルキレン基;又は単結合を示す。

Xは酸素原子;硫黄原子;-NR*'-;-SO-;-SO2-;

- $-CR^{9'}R^{10'}$ -; -C=C-; $-C\equiv C-$; -CO-; -COO-;
- $-OOC-; -NR^{*'}CO-; -CONR^{*'}-; -NR^{*'}SO_{2}-;$
- $-SO_2 NR^{8'} ; -CS ; -COS ; -O CO O ;$
- $-NR^{*'}-COO-; -OOC-NR^{*'}-; -NH-CO-NH-;$
- -NH-CS-NH-;-NH-C(=NH)-NH-; 窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2価の芳香族複素環基; 又はシクロアルキレン基〔ここで、 $R^{8'}$ は水素原子; 低級アルキル基; アラルキル基; 又はアミノ保護基を、 $R^{8'}$ 、 $R^{10'}$ は同一又は異なって、水素原子; 低級アルキル基; 又はアラルキル基を示す〕を示す。

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を示す。

R¹、R²、R³、R⁴は同一又は異なって、水素原子;水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよい低級アルキル基;低級アルコキシ基;メルカプト基;低級アルキルチオ基;低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;低級ア

ルコキシカルボニル基;アリールオキシカルボニル基;アシル基;又は
-O-CO-R¹¹ 〔ここで、R¹¹ はアミノ基、低級アルコキシカルボニル基、アシルオキシ基、アラルキルオキシ基、アラルキルオキシカルボニル基、アシル基、低級アルコキシ基又はカルボキシル基から選ばれる置換基で置換されていてもよい低級アルキル基(ここで、アミノ基は低級アルキル基で置換されていてもよい);低級アルコキシ基;低級アルキル基、カルボキシル基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよいアリール基;又は置換されていてもよいシクロアルキル基を示す〕を示す。

R⁵ は水素原子;ハロゲン原子で置換されていてもよいアルキル基;置換されていてもよいアラルキル基;又はアミノ保護基を示す。

mは0又は1~6から選ばれる整数を示す。

R⁶ はアリール基;シクロアルキル基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基〔ここで、アリール基、シクロアルキル基及び窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基は、低級アルキル基、ハロゲン原子、水酸基、低級アルコキシ基、アミノ基、カルボキシル基又は低級アルコキシカルボニル基から選ばれる置換基で置換されていてもよい〕を示す。

R⁷ は水素原子;水酸基、低級アルコキシ基、メルカプト基、低級アルキルチオ基、カルボキシル基、低級アルコキシカルボニル基又はアミノ基から選ばれる置換基で置換されていてもよい低級アルキル基;低級アルキル基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する芳香族複素環基;又は一CO(Y')。R^{12'} (ここで、Y')は酸素原子;硫黄原子;一NR^{13'} ー;又は一NR^{13'} ーSO₂ ー(R^{13'} は水素原子;低級アルキル基;アラルキル基;水酸基;低級アルコキシ基;又はアミノ保護基を示す)を、pは0又は1を、R^{12'} は水素原子;水酸基、低級アルコキシ基、低級アルコキシ基、低級アルコキシ基、低級アルコキシオルボニル基、アシルオキシ基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以

上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基は低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよい);低級アルキル基で置換されていてもよいシクロアルキル基;低級アルキル基、ハロゲン原子、アミノ基、カルボキシル基、水酸基又は低級アルコキシ基から選ばれる置換基で置換されていてもよいアリール基;アラルキル基;低級アルキル基、ハロゲン原子、アミノ基、カルボキシル基、水酸基又は低級アルコキシ基から選ばれる置換基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ基を示す〕を示す。

(3) 一般式(I) においてR、A、X、M、R¹、R²、R³、R⁴、R⁵、m、R⁶ 又はR⁷ から選ばれる少なくとも1つの記号が、下記定義を満足するものであることを特徴とする(1)記載のアミド化合物又は薬学的に許容される酸付加塩。

RはR_{•2}; R_{•2}で置換されたアルコキシ基; 又は低級アルキル基又はアミノ保護基で置換されていてもよい窒素含有非芳香族複素環基 (ここで、R_{•2}はアミノ基、グアニジノ基、アミジノ基又はカルバモイル基 (これらの基は、低級アルキル基又はアミノ保護基で置換されていてもよい)である) を示す。

Aは直鎖のアルキレン基;又は単結合を示す。

Xは酸素原子:硫黄原子:-NR⁸''-;-CR⁹''R¹⁰''-;-COO-; -OOC-;-NR⁸''CO-;-CONR⁸''-;-NR⁸''SO₂-; -SO₂NR⁸''-;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2価の芳香族複素環基〔ここで、R⁸''は水素原子;低級アルキル基;又はアミノ保護基を、R⁹''、R¹⁰''は同一又は異なって、水素原子;又は低級アルキル基を示す〕を示す。

Mはアリーレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を示す。

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子;水酸基;ハロゲン原

子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよい低級アルキル基;低級アルコキシ基;又は一〇一〇〇一尺¹¹ (ここで、R¹¹ はアミノ基、アシルオキシ基又はアラルキルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基(ここで、アミノ基は低級アルキル基で置換されていてもよい);低級アルコキシ基;低級アルキル基で置換されていてもよい);低級アルコキシ基;低級アルキル基で置換されていてもよいアリール基;又はシクロアルキル基を示す)を示す。

 R^5 は水素原子;低級アルキル基;又はアミノ保護基を示す。 mは 1 を示す。

R⁶ はアリール基;又はシクロアルキル基〔ここで、アリール基及びシクロアルキル基は、ハロゲン原子又は水酸基で置換されていてもよい〕を示す。

R⁷ は水素原子;水酸基又は低級アルコキシ基で置換されていてもよい低級アルキル基;低級アルキル基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する芳香族複素環基;又は一CO(Y'')。R^{12''} (ここで、Y''は酸素原子;硫黄原子;又は一NR^{13''}ー(R^{13''}は水素原子;低級アルキル基;水酸基;又はアミノ保護基を示す)を、pは0又は1を、R^{12''}は水素原子;水酸基、低級アルコキシ基、低級アルコキシ基、低級アルコキシ基、低級アルコキシ基、低級アルコキシ基、低級アルコキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基は低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよい);低級アルキル基で置換されていてもよいシクロアルキル基;ハロゲン原子で置換されていてもよいアリール基;アラルキル基;低級アルキル基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ基を示す)を示す。

(4) 一般式(I) においてR、A、X、M、R¹、R²、R³、R⁴、R⁵、m、R⁶ 又はR⁷ から選ばれる少なくとも 1 つの記号が、下記定義を満足するもので

あることを特徴とする (1)記載のアミド化合物又は薬学的に許容される酸付加塩。 Rはアミノ基;アミノ基で置換された低級アルコキシ基;低級アルキル基で置 換されていてもよいピペラジニル基;又は低級アルキル基で置換されていてもよ いピペリジル基 [ここで、アミノ基は低級アルキル基で置換されていてもよい] を示す。

Aは直鎖のアルキレン基を示す。

Xは酸素原子; 硫黄原子; -NH-: 又は-CH2 -を示す。

Mはアリーレン基を示す。

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子;水酸基;ハロゲン原子;又は $-O-CO-R^{11'''}$ 〔ここで、 $R^{11'''}$ はアミノ基、アシルオキシ基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基;又は低級アルキル基で置換されていてもよいフェニル基を示す〕を示す。

R⁵ は水素原子を示す。

mは1を示す。

R⁶ はフェニル基を示す。

R⁷ は-COO-R¹² (ここで、R¹² は水素原子;水酸基、低級アルコキシ基、低級アルコキシ低級アルコキシ基、低級アルコキシカルボニル基、アシルオキシ基、ピペラジニル基、又は低級アルキル基で置換されていてもよいア ミノ基から選ばれる置換基で置換されていてもよいアルキル基;低級アルキル基で置換されていてもよいシクロヘキシル基;アラルキル基;低級アルキル基で置換されていてもよいピペリジル基;アダマンチル基;又はシクロヘキシリデンアミノ基を示す)を示す。

- (5) Mがフェニレン基である (4)記載のアミド化合物又は薬学的に許容される酸付加塩。
- (6) R^7 が $-COO-R^{12}$ (ここで、 R^{12}) は低級アルキル基;又は低級アルキル基で置換されていてもよいシクロヘキシル基を示す) である (4)記載の

アミド化合物又は薬学的に許容される酸付加塩。

(7) Xが酸素原子又は-CH2-である(4)記載のアミド化合物又は薬学的に許容される酸付加塩。

- (8) R⁶ がフェニル基であり、かつmが1である(4)記載のアミド化合物又は薬学的に許容される酸付加塩。
- (9) Rが低級アルキル基で置換されていてもよいアミノ基、低級アルキル基で置換されていてもよいピペラジニル基、又は低級アルキル基で置換されていてもよいピペリジル基である (4)記載のアミド化合物又は薬学的に許容される酸付加塩。 (10) R^1 、 R^2 、 R^3 、 R^4 が同一又は異なって、水素原子;水酸基;ハロゲン原子;又は $-O-CO-R^{11''''}$ 〔ここで、 $R^{11''''}$ は低級アルキル基又はフェニル基を示す〕である (4)記載のアミド化合物又は薬学的に許容される酸付加塩。 (11) 一般式(I-a)

$$R - A - X - M - COOH$$
 (I - a)

{式中、RはR。; R。で置換されたアルコキシ基; R。で置換されたアルキルチオ基: R。で置換されたアルキルアミノ基; 置換されていてもよい窒素含有非芳香族複素環基; 又は水酸基〔ここで、R。はアミノ基、グアニジノ基、アミジノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジノ カルボニル基又はイミノ基(これらの基は、低級アルキル基、ハロゲン化低級アルキル基、シクロアルキル基、アラルキル基、アリール基又はアミノ保護基から選ばれる置換基で置換されていてもよい)である〕を表し、

Aは置換されていてもよく、かつ鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状のアルキレン基;又は単結合を表し、

Xは酸素原子;硫黄原子;-NR*-;-SO-;-SO₂-;-CR*R¹°-; -C=C-;-C=C-;-CO-;-COO-;-OOC-;-NR*CO-; -CONR*-;-NR*SO₂-;-SO₂NR*-;-CS-;-COS-;

-O-CO-O-;-NR*-COO-;-OOC-NR*-;

-NH-CO-NH-;-NH-CS-NH-;-NH-C(=NH)-NH-; 室素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2 価の芳香族複素環基;又はシクロアルキレン基(ここで、R®は水素原子;アルキル基;シクロアルキル基;アリール基;アラルキル基;又はアミノ保護基を、R®、R¹®は同一又は異なって、水素原子;アルキル基;シクロアルキル基;アリール基;又はアラルキル基を示す)を表し、

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を表し、

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子;水酸基;ハロゲン原子; 水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されてい てもよいアルキル基;アルコキシ基;メルカプト基;アルキルチオ基;アルキル 基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換され ていてもよいアミノ基:ニトロ基:シアノ基:カルボキシル基:アルコキシカル ボニル基:アリールオキシカルボニル基;アシル基;又は-〇-C〇-R11 (こ こで、R¹¹はアミノ基、アルコキシカルボニル基、アシルオキシ基、アリール基、 アリールオキシ基、アリールオキシカルボニル基、アラルキルオキシ基、アラル キルオキシカルボニル基、アルキルチオ基、アリールチオ基、アシル基、低級ア ルコキシ基、カルボキシル基又はハロゲン原子から選ばれる置換基で置換されて いてもよいアルキル基(ここで、アミノ基は低級アルキル基又はアシル基で置換 されていてもよい);置換されていてもよいアルコキシ基;置換されていてもよ いアリール基:置換されていてもよいシクロアルキル基:置換されていてもよい アリールオキシ基: 置換されていてもよいアラルキルオキシ基; 置換されていて もよいアルキルチオ基;又は置換されていてもよいアリールチオ基を示す]を表 す〉で表されるカルボン酸化合物。

(12)一般式 (I-a) においてR、A、X、M、R¹、R²、R³ 又はR⁴ から

選ばれる少なくとも1つの記号が、下記定義を満足するものであることを特徴とする(11)記載のカルボン酸化合物。

Rはアミノ基;アミノ基で置換された低級アルコキシ基;低級アルキル基で置換されていてもよいピペラジニル基;又は低級アルキル基で置換されていてもよいピペリジル基 (ここで、アミノ基は低級アルキル基で置換されていてもよい)を示す。

Aは直鎖のアルキレン基を示す。

Xは酸素原子;硫黄原子;-NH-;又は-CH2-を示す。

Mはアリーレン基を示す。

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子;水酸基;ハロゲン原子;又は $-O-CO-R^{11'''}$ 〔ここで、 $R^{11'''}$ はアミノ基、アシルオキシ基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基;又は低級アルキル基で置換されていてもよいフェニル基を示す〕を示す。

(13)一般式 (I-b)

{式中、Xは酸素原子:硫黄原子:-NR®-;-SO-;-SO2-;

 $-CR^{9}R^{10}-:-C=C-:-C\equiv C-:-CO-:-COO-:-OOC-:$

 $-NR^{\circ}CO-:-CONR^{\circ}-:-NR^{\circ}SO_{2}-:-SO_{2}NR^{\circ}-:$

-CS-;-COS-;-O-CO-O-;-NR*-COO-;

 $-OOC-NR^* - ; -NH-CO-NH- ; -NH-CS-NH- ;$

-NH-C (=NH)-NH-;窒素原子、硫黄原子又は酸素原子から選ばれる 1個以上のヘテロ原子を有する2価の芳香族複素環基;又はシクロアルキレン基 (ここで、R[®] は水素原子;アルキル基;シクロアルキル基;アリール基;アラ ルキル基;又はアミノ保護基を、

R[®]、R^{1®}は同一又は異なって、水素原子;アルキル基;シクロアルキル基;アリール基;又はアラルキル基を示す〕を表し、

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を表し、

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子;水酸基;ハロゲン原子; 水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されてい てもよいアルキル基;アルコキシ基;メルカプト基:アルキルチオ基:アルキル 基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換され ていてもよいアミノ基;ニトロ基;シアノ基:カルボキシル基:アルコキシカル ボニル基;アリールオキシカルボニル基;アシル基;又は-〇-C〇-R11 [こ こで、R11はアミノ基、アルコキシカルボニル基、アシルオキシ基、アリール基、 アリールオキシ基、アリールオキシカルボニル基、アラルキルオキシ基、アラル キルオキシカルボニル基、アルキルチオ基、アリールチオ基、アシル基、低級ア ルコキシ基、カルボキシル基又はハロゲン原子から選ばれる置換基で置換されて いてもよいアルキル基(ここで、アミノ基は低級アルキル基又はアシル基で置換 されていてもよい);置換されていてもよいアルコキシ基:置換されていてもよ いアリール基:置換されていてもよいシクロアルキル基;置換されていてもよい アリールオキシ基:置換されていてもよいアラルキルオキシ基:置換されていて もよいアルキルチオ基:又は置換されていてもよいアリールチオ基を示す)を表 し、

R⁵ は水素原子: ハロゲン原子で置換されていてもよいアルキル基: 置換されていてもよいアラルキル基: 又はアミノ保護基を表し、

mは0又は1~6から選ばれる整数を表し、

R⁶ は置換されていてもよいアリール基;置換されていてもよいシクロアルキル基;置換されていてもよい低級アルキル基;置換されていてもよい低級アルコキシ基;置換されていてもよい低級アルキルチオ基;低級アルキル基、アリール基、

アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;又は置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基を表し、

 R^7 は水素原子;置換されていてもよいアルキル基;置換されていてもよいアリール基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する芳香族複素環基;又は-CO(Y), R^{12} 〔ここで、Yは酸素原子;硫黄原子; $-NR^{13}-;$ 又は $-NR^{12}-SO_2-(R^{13}$ は水素原子;アルキル基;アラルキル基;水酸基;アルコキシ基;アリール基;又はアミノ保護基を示す)を、

pは0又は1を、

R¹²は水素原子;水酸基、アルコキシ基、アルコキシアルコキシ基、アルコキシカルボニル基、アシルオキシ基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基はアルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよい);置換されていてもよいアルケニル基;置換されていてもよいアルキニル基;置換されていてもよいアリール基;置換されていてもよいアリール基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ基を示す)を表す)で表されるアミド化合物。

(14)一般式 (I-b) においてX、M、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、m、 R^6 又は R^7 から選ばれる少なくとも1つの記号が、下記定義を満足するものであることを特徴とする(13)記載のTミド化合物。

Xは酸素原子;硫黄原子;又は-NH-を示す。

Mはアリーレン基を示す。

R¹、R²、R³、R⁴ は同一又は異なって、水素原子;水酸基;ハロゲン原

子;又は-O-CO-R¹¹… 〔ここで、R¹¹… はアミノ基、アシルオキシ基 又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよい低 級アルキル基;又は低級アルキル基で置換されていてもよいフェニル基を示す〕 を示す。

R⁵ は水素原子を示す。

mは1を示す。

R⁶ はフェニル基を示す。

R⁷ は一COO-R¹² (ここで、R¹² は水素原子;水酸基、低級アルコキシ基、低級アルコキシ低級アルコキシ基、低級アルコキシカルボニル基、アシルオキシ基、ピペラジニル基、又は低級アルキル基で置換されていてもよいアミノ基から選ばれる置換基で置換されていてもよいアルキル基;低級アルキル基で置換されていてもよいシクロヘキシル基;アラルキル基;低級アルキル基で置換されていてもよいピペリジル基;アダマンチル基;又はシクロヘキシリデンアミノ基を示す)を示す。

- (15)薬学的に許容される担体及び (1)~(10)のいずれかに記載のアミド化合物又はその薬学的に許容される酸付加塩を含んでなる医薬組成物。
- (16)(1)~(10)のいずれかに記載のアミド化合物又はその薬学的に許容される酸付加塩を有効成分とする炎症性サイトカイン産生抑制剤。
- (17) (1)~(10)のいずれかに記載のアミド化合物又はその薬学的に許容される酸付加塩を有効成分とする炎症性疾患の為の治療又はその予防薬。

本明細書において、各置換基の定義は次の通りである。

「アルコキシ基」とは、炭素数1~6個の直鎖又は分岐状のアルコキシ基を意味し、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、プトキシ基、イソプトキシ基、sec-プトキシ基、tert-プトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert-ペンチルオキシ基、ヘキシルオキシ基、イソヘキシルオキシ基、ネオヘキシルオキシ基等が挙げられる。好ましくは炭素数1~4個の直鎖又は分岐状のアルコキシ

基であり、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソプトキシ基、sec-ブトキシ基、tert-ブトキシ基である。

「低級アルコキシ基」とは、炭素数 1 ~ 4 個の直鎖又は分岐状のアルコキシ基を意味し、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソプトキシ基、sec-ブトキシ基、tert-ブトキシ基等が挙げられる。好ましくはメトキシ基、エトキシ基である。

「アルキルチオ基」とは、炭素数1~6個の直鎖又は分岐状のアルキルチオ基を意味し、具体的にはメチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソプチルチオ基、sec-ブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、イソペンチルチオ基、ネオペンチルチオ基、tertーペンチルチオ基、ヘキシルチオ基、イソヘキシルチオ基、ネオヘキシルチオ基等が挙げられる。

「低級アルキルチオ基」とは、炭素数1~4個の直鎖又は分岐状のアルキルチオ基を意味し、具体的にはメチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソプチルチオ基、secープチルチオ基、tertープチルチオ基等が挙げられる。

「アルキルアミノ基」とは、炭素数1~6個の直鎖又は分岐状のモノアルキルアミノ基又はジアルキルアミノを意味し、具体的にはメチルアミノ基、ジメチルアミノ基、メチルエチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソプチルアミノ基、secープチルアミノ基、tertーブチルアミノ基、ペンチルアミノ基、イソペンチルアミノ基、ネオペンチルアミノ基、tertーペンチルアミノ基、ヘキシルアミノ基、イソペキシルアミノ基、ネオペキシルアミノ基等が挙げられる。好ましくは直鎖のアルキルアミノ基であり、具体的にはメチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ブチルアミノ基、ベンチルアミノ基、ヘキシルアミノ基である。特に好ましくは炭素数1~

4個の直鎖のアルキルアミノ基であり、具体的にはメチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ブチルアミノ基等である。

「窒素含有非芳香族複素環基」とは、少なくとも1個の窒素原子を含有し、かつ他に硫黄原子又は酸素原子を有していてもよい3~7員の非芳香族複素環基を意味し、さらにこれらはベンゼン環と縮合していてもよい。具体的にはアジリジニル基、チアゼチジニル基、アゼチジニル基、ピロリジニル基、ピロリニル基、イミダブリジニル基、イミダブリニル基、イミダブリニル基、イミダブリニル基、サアジニル基、ピラブリニル基、ピーリンル基、ピーリンル基、ピーリンル基、ピーリンル基、ピーリンル基、ピーリンル基、ピーリンル基、ジアゼピニル基、パーヒドロジアゼピニル基、アゼピニル基、パーヒドロアゼピニル基、インドリニル基、インインドリニル基等が挙げられる。好ましくはアジリジニル基、アゼチジニル基、ピーリジニル基、ピラブリジニル基、モルホリニル基、モルホリノ基、ピーリジニル基、ピーリンノ基、パーヒドロアゼピニル基、アゼチジニル基、ピーリジニル基、ピーリンノ基、パーヒドロアゼピニル基である。特に好ましくはピロリジニル基、モルホリノ基、ピーリジル基、ピーリンリンカール

「アルキル基」とは、炭素数1~6個の直鎖又は分岐状のアルキル基を意味し、 具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソ プチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル 基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、ネ オヘキシル基等が挙げられる。

「低級アルキル基」とは、炭素数 1~4個の直鎖又は分岐状のアルキル基を意味し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、プチル基、イソプチル基、sec-プチル基、tert-ブチル基等が挙げられる。

「ハロゲン原子」とは、具体的にはフッ素原子、塩素原子、臭素原子、ヨウ素原子である。

「ハロゲン化低級アルキル基」とは、前述の低級アルキル基にハロゲン原子が

置換したものであって、具体的にはフルオロメチル基、クロロメチル基、プロモメチル基、ジフルオロメチル基、ジクロロメチル基、トリフルオロメチル基、トリクロロメチル基、ジフルオロエチル基、ジクロロエチル基、ペンタトリフルオロエチル基、トリクロロエチル基、フルオロプロピル基等が挙げられる。好ましくは、フルオロメチル基、クロロメチル基、ジフルオロメチル基、ジクロロメチル基、トリフルオロメチル基である。

「シクロアルキル基」とは、炭素数 3~7個のシクロアルキル基を意味し、具体的にはシクロプロピル基、シクロプチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。好ましくは炭素数 5 又は 6 個のシクロアルキル基であり、具体的にはシクロペンチル基、シクロヘキシル基である。

「アラルキル基」とは、アルキル基にアリール基が置換したものであって、具体的にはベンジル基、ベンズヒドリル基、トリチル基、フェネチル基、3-フェニルプロピル基、2-フェニルプロピル基、4-フェニルブチル基、ナフチルメチル基等が挙げられる。好ましくはベンジル基、フェネチル基である。

「アラルキルオキシ基」とは、前記のごときアラルキル基を有するアラルキルオキシ基であり、具体的にはベンジルオキシ基、ベンズヒドリルオキシ基、トリチルオキシ基、フェネチルオキシ基、3-フェニルプロピルオキシ基、2-フェニルプロピルオキシ基、4-フェニルブチルオキシ基、ナフチルメトキシ基等が挙げられる。好ましくはベンジルオキシ基、フェネチルオキシ基である。

「アラルキルオキシカルボニル基」とは、前記のごときアラルキル基を有するアラルキルオキシカルボニル基であり、具体的にはベンジルオキシカルボニル基、ベンズヒドリルオキシカルボニル基、トリチルオキシカルボニル基、フェネチルオキシカルボニル基、3-フェニルプロピルオキシカルボニル基、2-フェニルプロピルオキシカルボニル基、ナフチルメトキシカルボニル基等が挙げられる。好ましくはベンジルオキシカルボニル基、フェネチルオキシカルボニル基である。

「アリール基」とは、フェニル基、ナフチル基、アントリル基、フェナントリ

ル基、ビフェニル基等を意味し、好ましくはフェニル基、ナフチル基である。

「アリールオキシ基」とは、前記のごときアリール基を有するアリールオキシ 基であり、具体的にはフェノキシ基、ナフチルオキシ基等が挙げられる。

「アリールオキシカルボニル基」とは、前記のごときアリール基を有するアリールオキシカルボニル基であり、具体的にはフェノキシカルボニル基、ナフチルオキシカルボニル基等が挙げられる。

「アリールチオ基」とは、前記のごときアリール基を有するアリールチオ基であり、具体的にはフェニルチオ基、ナフチルチオ基等が挙げられる。

「アミノ保護基」とは、通常用いられる保護基であり、アミノ基を諸反応から 保護するものであれば特に限定されない。具体的にはホルミル基、アセチル基、 プロピオニル基、プチリル基、オキサリル基、スクシニル基、ピバロイル基、2 ークロロアセチル基、2-プロモアセチル基、2-ヨードアセチル基、2,2-ジクロロアセチル基、2,2,2-トリクロロアセチル基、2,2,2-トリフ ルオロアセチル基、フェニルアセチル基、フェノキシアセチル基、ベンゾイル基、 4-クロロベンゾイル基、4-メトキシベンゾイル基、4-ニトロベンゾイル基、 ナフチルカルボニル基、アダマンチルカルボニル基、フタロイル基等のアシル基; メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソ プロポキシカルボニル基、tert-プトキシカルボニル基、ペンチルオキシカ ルボニル基、イソペンチルオキシカルボニル基、シクロヘキシルオキシカルボニ ル基、2-クロロエトキシカルボニル基、2-ヨードエトキシカルボニル基、2, 2, 2-トリクロロエトキシカルボニル基、2, 2, 2-トリクロローtert ープトキシカルボニル基、ベンズヒドリルオキシカルボニル基、ビスー(4-メ トキシフェニル)メトキシカルボニル基、フェナシルオキシカルボニル基、2-トリメチルシリルエトキシカルボニル基、2-トリフェニルシリルエトキシカル ボニル基、フルオレニルー9ーメトキシカルボニル基等のアルコキシカルボニル 基;ビニルオキシカルボニル基、2-プロペニルオキシカルボニル基、2-クロ ロー2ープロペニルオキシカルボニル基、3ーメトキシカルボニルー2ープロペ

ニルオキシカルボニル基、2-メチル-2-プロペニルオキシカルボニル基、2 ープテニルオキシカルボニル基、シンナミルオキシカルボニル基等のアルケニル オキシカルボニル基;ベンジルオキシカルボニル基、4-プロモベンジルオキシ カルボニル基、2-クロロベンジルオキシカルボニル基、3-クロロベンジルオ キシカルボニル基、3,5-ジメトキシベンジルオキシカルボニル基、4-メト キシベンジルオキシカルボニル基、2-ニトロベンジルオキシカルボニル基、4 --トロベンジルオキシカルボニル基、2-ニトロ-4, 5-ジメトキシベンジ ルオキシカルボニル基、3,4,5-トリメトキシベンジルオキシカルボニル基、 フェネチルオキシカルボニル基等のアラルキルオキシカルボニル基:トリメチル シリル基、 tertープチルジメチルシリル基等の低級アルキルシリル基:エチ レンビス(ジメチルシリル)基、プロピレンビス(ジメチルシリル)基、エチレ ンビス(ジエチルシリル)基等のアルキレンビス(ジアルキルシリル)基:メチ ルチオカルボニル基、エチルチオカルボニル基、プチルチオカルボニル基、te r t - ブチルチオカルボニル基等のアルキルチオカルボニル基:ベンジルチオカ ルボニル基等のアラルキルチオカルボニル基:ジシクロヘキシルホスホリル基、 ジフェニルホスホリル基、ジベンジルホスホリル基、ジー (4-ニトロベンジル) ホスホリル基、フェノキシフェニルホスホリル基等のホスホリル基:ジエチルホ スフィニル基、ジフェニルホスフィニル基等のホスフィニル基等が挙げられる。

「鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状のアルキレン基」とは、炭素数1~10個の直鎖又は分岐状の鎖中に1以上の二重結合又は三重結合を有していてもよいアルキレン基を意味し、具体的にはメチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ジメチルメチレン基、ジェチルメチレン基、プロピレン基、メチルエチレン基、エチルエチレン基、プロピルエチレン基、メチルペンタエチレン基、エチルヘキサメチレン基、ジメチルエチレン基、メチルトリエチレン基、ジメチルトリメチレン基、ビニレン基、プロペニレン基、ブ

テニレン基、プタジエニレン基、ペンテニレン基、ペンタジエニレン基、ヘキセ ニレン基、ヘキサジエニレン基、ヘキサトリエニレン基、ヘプテニレン基、ヘプ タジエニレン基、ヘプタトリエニレン基、オクテニレン基、オクタジエニレン基、 オクタトリエニレン基、オクタテトラエニレン基、プロピニレン基、ブチニレン 基、ペンチニレン基、メチルプロピニレン基等が挙げられる。好ましくは直鎖の アルキレン基であり、具体的にはメチレン基、エチレン基、トリメチレン基、テ トラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オ クタメチレン基、ノナメチレン基、デカメチレン基、ビニレン基、プロペニレン 基、ブテニレン基、ブタジエニレン基、ペンテニレン基、ペンタジエニレン基、 ヘキセニレン基、ヘキサジエニレン基、ヘキサトリエニレン基、ヘプテニレン基、 ヘプタジエニレン基、ヘプタトリエニレン基、オクテニレン基、オクタジエニレ ン基、オクタトリエニレン基、オクタテトラエニレン基、プロピニレン基、ブチ ニレン基、ペンチニレン基である。特に好ましくは、メチレン基、エチレン基、 トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘ プタメチレン基、オクタメチレン基等の炭素数1~8個の直鎖のアルキレン基で ある。

「窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2価の芳香族複素環基」とは、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する5又は6員の2価の芳香族複素環基を意味し、具体的にはテトラゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、インチアゾール環、インチアゾール環、インチアゾール環、チアゾール環、インチアゾール環、テトラジン環、トリアジン環、ピラジン環、ピリダジン環、ピリミジン環、ピリジン環等の2価の芳香族複素環基が挙げられる。好ましくは5員の2価の芳香族複素環基であり、具体的にはテトラゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、ピロール環、フラン環、チオフェ

ン環の2価の芳香族複素環基である。特に好ましくはオキサジアゾール環、チアジアゾール環、トリアゾール環の2価の芳香族複素環基である。

「シクロアルキレン基」とは、炭素数3~7個のシクロアルキレン基、即ち2 価のシクロアルキル基を意味し、具体的にはシクロプロピレン基、シクロプチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基等が挙げられる。好ましくは炭素数5又は6個のシクロアルキレン基であり、具体的にはシクロペンチレン基、シクロヘキシレン基である。

「アリーレン基」とは、具体的にはフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基、ビフェニレン基等が挙げられれる。好ましくはフェニレン基、ナフチレン基、ビフェニレン基である。

「窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、 かつ縮合環を形成してもよい2価の複素環基」とは、具体的にはジオキソラン環、 ジチオール環、ピロリジン環、モルホリン環、オキサジン環、ピペラジン環、ピ ペリジン環、ピロリン環、イミダゾリジン環、イミダゾリン環、ピラゾリジン環、 ピラゾリン環、チアトリアゾール環、テトラゾール環、オキサジアゾール環、チ アジアゾール環、トリアゾール環、イソオキサゾール環、オキサゾール環、チア ゾール環、イミダゾール環、ピラゾール環、ピロール環、フラン環、チオフェン 環、テトラジン環、トリアジン環、ピラジン環、ピリダジン環、ピリミジン環、 ピリジン環、フロイソオキサゾール環、イミダゾチアゾール環、チエノイソチア ゾール環、チエノチアゾール環、イミダゾピラゾール環、シクロペンタピラゾー ル環、ピロロピロール環、チエノチオフェン環、チアジアゾロピリミジン環、チ アゾロチアジン環、チアゾロピリミジン環、チアゾロピリジン環、オキサゾロピ リミジン環、オキサゾロピリジン環、ベンゾオキサゾール環、ベンゾイソチアゾ ール環、ベンゾチアゾール環、イミダゾピラジン環、プリン環、ピラゾロピリミ ジン環、イミダブピリジン環、ベンゾイミダゾール環、インダゾール環、ベンゾ オキサチオール環、ベンブジオキソール環、ベンブジチオール環、インドリジン 環、インドリン環、イソインドリン環、フロピリミジン環、フロピリジン環、ベ

ンゾフラン環、イソベンゾフラン環、チエノピリミジン環、チエノピリジン環、ベンゾチオフェン環、シクロペンタオキサジン環、シクロペンタフラン環、ベンゾオキサジン環、ベンゾチアジン環、キナゾリン環、ナフチリジン環、キノリン環、イソキノリン環、ベンゾピラン環、ピリドピリダジン環、ピリドピリミジン環等の2価の複素環基が挙げられる。好ましくはピペラジン環、ピペリジン環、ピリジン環、ベンゾオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環の2価の複素環基である。

「アルコキシカルボニル基」とは、炭素数2~7個の直鎖又は分岐状のアルコキシカルボニル基を意味し、具体的にはメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、プトキシカルボニル基、イソプトキシカルボニル基、secープトキシカルボニル基、tertープトキシカルボニル基、ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、ネオペンチルオキシカルボニル基、イソペキシルオキシカルボニル基、ネオペキシルオキシカルボニル基、イソペキシルオキシカルボニル基、ネオペキシルオキシカルボニル基であり、具体的にはメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、エトキシカルボニル基、イソプトキシカルボニル基、secープトキシカルボニル基、tertープトキシカルボニル基である。

「低級アルコキシカルボニル基」とは、炭素数2~5個の直鎖又は分岐状のアルコキシカルボニル基を意味し、具体的にはメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソプトキシカルボニル基、secーブトキシカルボニル基、tertープトキシカルボニル基等が挙げられる。好ましくはメトキシカルボニル基、エトキシカルボニル基である。

「アシル基」とは、具体的にはホルミル基、アセチル基、プロピオニル基、プ チリル基、イソプチリル基、バレリル基、イソバレリル基、ピバロイル基、カプ

ロイル基、イソカプロイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、ベンゾイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、グリセロイル基、トロポイル基、ベンジロイル基、サリチロイル基、アニソイル基、バニロイル基、ベラトロイル基、ピペロニロイル基、プロトカテクオイル基、ガロイル基等が挙げられる。好ましくはホルミル基、アセチル基、プロピオニル基、プチリル基、イソプチリル基、バレリル基、イソバレリル基、ピバロイル基、ベンゾイル基、ナフトイル基である。

「アシルオキシ基」とは、前記のごときアシル基を有するアシルオキシ基であり、具体的にはホルミルオキシ基、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソカプロイルオキシ基、カプロイルオキシ基、イソカプロイルオキシ基、アクリロイルオキシ基、プロピオロイルオキシ基、メタクリロイルオキシ基、クロトノイルオキシ基、イソクロトノイルオキシ基、ベンゾイルオキシ基、ナフトイルオキシ基、トルオイルオキシ基、ヒドロアトロポイルオキシ基、アトロポイルオキシ基、シンナモイルオキシ基、フロイルオキシ基、グリセロイルオキシ基、トロポイルオキシ基、ベンジロイルオキシ基、サリチロイルオキシ基、アニソイルオキシ基、バニロイルオキシ基、ベラトロイルオキシ基、ピペロニロイルオキシ基、プロトカテクオイルオキシ基、ガロイルオキシ基等が挙げられる。好ましくはホルミルオキシ基、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、ナフトイルオキシ基である。

R°における「窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基」とは、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する3~7員の複素環基を意味し、具体的にはアジリジニル基、オキシラニル基、アゼチル基、アゼチジニル基、オキセタニル基、チアトリアゾリル基、テトラブリル基、ジチアゾリル基、オキサジアブリル基、チ

アジアゾリル基、トリアゾリル基、オキサゾリル基、イソオキサゾリル基、チア ブリル基、イソチアブリル基、イミダブリル基、ピラブリル基、ジオキソラニル 基、ピロリル基、ピロリジニル基、フラニル基、チエニル基、テトラジニル基、 ジチアジアジニル基、チアジアジニル基、トリアジニル基、モルホリニル基、モ ルホリノ基、オキサジニル基、チアジニル基、ピペラジニル基、ピラジニル基、 ピリダジニル基、ピリミジニル基、ピペリジル基、ピペリジノ基、ピリジル基、 ピラニル基、チオピラニル基、ジオキサゼピニル基、ジアゼピニル基、アゼピニ ル基等が挙げられる。好ましくは5又は6員の複素環基であり、具体的にはチア トリアゾリル基、テトラゾリル基、ジチアゾリル基、オキサジアゾリル基、チア ジアゾリル基、トリアゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾ リル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基、ジオキソラニル基、 ピロリル基、ピロリジニル基、フラニル基、チエニル基、テトラジニル基、ジチ アジアジニル基、チアジアジニル基、トリアジニル基、モルホリニル基、モルホ リノ基、オキサジニル基、チアジニル基、ピペラジニル基、ピラジニル基、ピリ ダジニル基、ピリミジニル基、ピペリジル基、ピペリジノ基、ピリジル基、ピラ ニル基、チオピラニル基であり、特に好ましくはピロリル基、フラニル基、チエ ニル基、ピペラジニル基、ピペリジル基、ピペリジノ基、ピリジル基である。

「窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する芳香族複素環基」とは、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する5又は6員の芳香族複素環基を意味し、具体的にはテトラゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、イミダゾリル基、ピラゾリル基、ピロリル基、フラニル基、チエニル基、テトラジニル基、トリアジニル基、ピリジニル基、ピリジニル基、ピリジニル基、ピリジニル基、ピリジニル基、ピリジニル基、ピリジル基等が挙げられる。好ましくは5員の芳香族複素環基であり、具体的にはテトラゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアブリル基、イミダブリル基、

ピラゾリル基、ピロリル基、フラニル基、チエニル基である。特に好ましくはオ キサジアゾリル基、チアジアゾリル基、トリアゾリル基である。

「アルコキシアルコキシ基」とは、炭素数1~6個の直鎖又は分岐状のアルコ キシ基に、炭素数1~6個の直鎖又は分岐状のアルコキシ基が置換したものを意 味し、具体的にはメトキシメトキシ基、エトキシメトキシ基、プロポキシメトキ シ基、イソプロポキシメトキシ基、プトキシメトキシ基、イソプトキシメトキシ 基、sec-プトキシメトキシ基、tert-プトキシメトキシ基、ペンチルオ キシメトキシ基、イソペンチルオキシメトキシ基、ネオペンチルオキシメトキシ 基、tert-ペンチルオキシメトキシ基、ヘキシルオキシメトキシ基、イソヘ キシルオキシメトキシ基、ネオヘキシルオキシメトキシ基、tert-ヘキシル オキシメトキシ基、メトキシエトキシ基、エトキシエトキシ基、プロポキシエト キシ基、イソプロポキシエトキシ基、プトキシエトキシ基、イソプトキシエトキ シ基、sec-プトキシエトキシ基、tert-プトキシエトキシ基、ペンチル オキシエトキシ基、イソペンチルオキシエトキシ基、ネオペンチルオキシエトキ シ基、tert-ペンチルオキシエトキシ基、ヘキシルオキシエトキシ基、イソ ヘキシルオキシエトキシ基、ネオヘキシルオキシエトキシ基、tert-ヘキシ ルオキシエトキシ基、メトキシプロポキシ基、エトキシプロポキシ基、プロポキ シプロポキシ基、イソプロポキシプロポキシ基、ブトキシプロポキシ基、イソブ トキシプロポキシ基、sec-プトキシプロポキシ基、tert-プトキシプロ ポキシ基、ペンチルオキシプロポキシ基、イソペンチルオキシプロポキシ基、ネ オペンチルオキシプロポキシ基、tert-ペンチルオキシプロポキシ基、ヘキ シルオキシプロボキシ基、イソヘキシルオキシプロボキシ基、ネオヘキシルオキ シプロポキシ基、tert-ヘキシルオキシプロポキシ基、メトキシブトキシ基、 エトキシブトキシ基、プロポキシブトキシ基、イソプロポキシブトキシ基、ブト キシブトキシ基、イソブトキシブトキシ基、sec-ブトキシブトキシ基、te r t - ブトキシブトキシ基、ペンチルオキシブトキシ基、イソペンチルオキシブ トキシ基、ネオペンチルオキシプトキシ基、tert-ペンチルオキシプトキシ

基、ヘキシルオキシブトキシ基、イソヘキシルオキシブトキシ基、ネオヘキシル オキシプトキシ基、tert-ヘキシルオキシプトキシ基、メトキシペンチルオ キシ基、エトキシペンチルオキシ基、プロポキシペンチルオキシ基、イソプロポ キシペンチルオキシ基、プトキシペンチルオキシ基、イソプトキシペンチルオキ シ基、Sec-プトキシペンチルオキシ基、tert-プトキシペンチルオキシ 基、ペンチルオキシペンチルオキシ基、イソペンチルオキシペンチルオキシ基、 ネオペンチルオキシペンチルオキシ基、tert-ペンチルオキシペンチルオキ シ基、ヘキシルオキシペンチルオキシ基、イソヘキシルオキシペンチルオキシ基、 ネオヘキシルオキシペンチルオキシ基、tert-ヘキシルオキシペンチルオキ シ基、メトキシヘキシルオキシ基、エトキシヘキシルオキシ基、プロポキシヘキ シルオキシ基、イソプロポキシヘキシルオキシ基、プトキシヘキシルオキシ基、 イソプトキシヘキシルオキシ基、sec-プトキシヘキシルオキシ基、tert ープトキシヘキシルオキシ基、ペンチルオキシヘキシルオキシ基、イソペンチル オキシヘキシルオキシ基、ネオペンチルオキシヘキシルオキシ基、tert-ペ ンチルオキシヘキシルオキシ基、ヘキシルオキシヘキシルオキシ基、イソヘキシ ルオキシヘキシルオキシ基、ネオヘキシルオキシヘキシルオキシ基、tert-ヘキシルオキシヘキシルオキシ基等が挙げられる。好ましくは炭素数1~4個の 直鎖又は分岐状のアルコキシ基に、炭素数1~4個の直鎖又は分岐状のアルコキ シ基が置換したものであり、具体的にはメトキシメトキシ基、エトキシメトキシ 基、プロポキシメトキシ基、イソプロポキシメトキシ基、プトキシメトキシ基、 イソプトキシメトキシ基、sec-プトキシメトキシ基、tert-プトキシメ トキシ基、メトキシエトキシ基、エトキシエトキシ基、プロポキシエトキシ基、 イソプロポキシエトキシ基、ブトキシエトキシ基、イソプトキシエトキシ基、s ec-プトキシエトキシ基、tert-プトキシエトキシ基、メトキシプロポキ シ基、エトキシプロポキシ基、プロポキシプロポキシ基、イソプロポキシプロポ キシ基、プトキシプロポキシ基、イソプトキシプロポキシ基、secープトキシ プロポキシ基、tert-プトキシプロポキシ基、メトキシプトキシ基、エトキ

シブトキシ基、プロポキシブトキシ基、イソプロポキシブトキシ基、ブトキシブトキシ基、イソブトキシブトキシ基、sec-ブトキシブトキシ基、tert-ブトキシブトキシ基である。

R¹²における「窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基」とは、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する3~7員の複素環基を意味し、具体的にはアジリジニル基、オキシラニル基、アゼチル基、アゼチジニル基、オキセタニル基、チアトリアゾリル基、テトラゾリル基、ジチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、オキサゾリル基、インオキサゾリル基、チアジアゾリル基、インチアゾリル基、インチアゾリル基、インチアゾリル基、インチアゾリル基、インチアゾリル基、インチアゾリル基、チアジアジニル基、チェニル基、テトラジニル基、ジチアジアジニル基、チアジアジニル基、トリアジニル基、モルホリニル基、モ

「アルケニル基」とは、炭素数 2~6 個の直鎖又は分岐状のアルケニル基を意味し、具体的にはアリル基、ビニル基、プロペニル基、イソプロペニル基、1ーメチルー2ープロペニル基、2ーメチルー2ープロペニル基、1ーメチルー1ープテニル基、クロチル基、1ーメチルー3ープテニル基、3ーメチルー2ープテニル基、1ーペンテニル基、1ーペンテニル基、4ーペンテニル基、1ーヘキセニル基、3ーヘキセニル基、4ーヘキセニル基等が挙げられる。

「アルキニル基」とは、炭素数 $2 \sim 6$ 個の直鎖又は分岐状のアルキニル基を意味し、具体的にはプロバルギル基、2 - プチニル基、1 - メチル- 2 - プチニル基、2 - ペンチニル基、1 - メチル- 4 - ペンチニル基、1 - 、1 -

「シクロアルキリデンアミノ基」とは、具体的にはシクロプロピリデンアミノ基、シクロプチリデンアミノ基、シクロペンチリデンアミノ基、シクロヘキシリデンアミノ基、シクロヘプチリデンアミノ基等が挙げられる。好ましくはシクロペンチリデンアミノ基、シクロヘキシリデンアミノ基である。

Rにおける置換されたアルコキシ基の「アルコキシ基」とは、炭素数1~6個の直鎖又は分岐状のアルコキシ基を意味し、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、プトキシ基、イソプトキシ基、secープトキシ基、tertープトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tertーペンチルオキシ基、ヘキシルオキシ基、イソペキシルオキシ基、ネオヘキシルオキシ基等が挙げられる。好ましくは直鎖のアルコキシ基であり、具体的にはメトキシ基、プロポキシ基、プロポキシ基、プトキシ基、ペンチルオキシ基、ヘキシルオキシ基である。特に好ましくは炭素数1~4個の直鎖のアルコキシ基であり、具体的にはメトキシ基、エトキシ基、プロポキシ基、プトキシ基である。

Rにおける置換されたアルキルチオ基の「アルキルチオ基」とは、炭素数1~6個の直鎖又は分岐状のアルキルチオ基を意味し、具体的にはメチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソプチルチオ基、secーブチルチオ基、tertーブチルチオ基、ペンチルチオ基、イソペンチルチオ基、ネオペンチルチオ基、tertーペンチルチオ基、ヘキシルチオ基、イソヘキシルチオ基、ネオヘキシルチオ基等が挙げられる。好ましくは直鎖のアルキルチオ基であり、具体的にはメチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基である。特に好ましくは炭素数1~4個の直鎖のアルキルチオ基であり、具体的にはメチルチオ基、エチルチオ基、プロピルチオ基、プロピルチオ基、プロピルチオ基、プロピルチオ基、プロピルチオ基、プロピルチオ基、プロピルチオ基、プロピルチオ基、ブチルチオ基である。

「置換されていてもよい窒素含有非芳香族複素環基」の「置換されていてもよい」とは、1~3個の置換基により置換されていてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には前述の低級アルキル基;前述のハロゲン化低級アルキル基;前述のシクロアルキル基;前述のアラルキル基;前述のアリール基;前述のアミノ保護基等が挙げられる。好ましくは低級アルキル基、アミノ保護基である。

「置換されていてもよく、かつ鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状のアルキレン基」の「置換されていてもよい」とは、1個以上の置換基で置換されていてもよいことを意味し、具体的には前述のハロゲン原子;水酸基;前述の低級アルキル基、前述のハロゲン化低級アルキル基、前述のシクロアルキル基、前述のアラルキル基、前述のアリール基又は前述のアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;前述の低級アルコキシ基;前述のアラルキル基;前述のシクロアルキル基等である。

R¹¹における「置換されていてもよいアルコキシ基」及び「置換されていてもよいアルキルチオ基」の「置換されていてもよい」とは、1個以上の置換基により置換されていてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には前述のハロゲン原子;前述の低級アルコキシ基;前述のアルキルチオ基;前述の低級アルキル基又は前述のアシル基で置換されていてもよいアミノ基;カルボキシル基;前述のアルコキシカルボニル基;前述のアシルオキシ基;前述のアリールチオ基;前述のアリールオキシ基;前述のアリールチオ基;前述のアリールオキシカルボニル基:前述のアラルキルオキシカルボニル基;前述のアラルキルオキシカルボニル基等である。好ましくはアミノ基;低級アルコキシ基;ハロゲン原子;カルボキシル基;アルコキシカルボニル基である。

R¹¹における「置換されていてもよいアリール基」、「置換されていてもよいシクロアルキル基」、「置換されていてもよいアリールオキシ基」、「置換されていてもよいアリールチオ基」の「置換されていてもよい」とは、環上に1~3個の置換基を有していてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には前述の低級アルキル基;前述のハロゲン原子;前述の低級アルコキシ基;前述のアルキルチオ基;前述の低級アルキル基又は前述のアシル基で置換されていてもよいアミノ基;カルボキシ

ル基;前述のアルコキシカルボニル基;前述のアシル基;前述のアシルオキシ基; 前述のアリール基;前述のアリールオキシ基;前述のアリールチオ基;前述のア リールオキシカルボニル基;前述のアラルキルオキシ基;前述のアラルキルオキ シカルボニル基等である。好ましくは低級アルキル基;アミノ基;低級アルコキ シ基;ハロゲン原子;カルボキシル基;アルコキシカルボニル基;アラルキルオ キシカルボニル基であり、特に好ましくは低級アルキル基である。

R⁵ における「置換されていてもよいアラルキル基」の「置換されていてもよい」とは、アリール基上に1~3個の置換基を有していてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には前述の低級アルキル基;前述の低級アルコキシ基;前述のアシル基;前述の低級アルキル基又は前述のアシル基で置換されていてもよいアミノ基;前述のアルコキシカルボニル基;前述のアリールオキシカルボニル基;前述のアリールオキシ基;前述のアルキルチオ基;前述のアリールチオ基;前述のアリールチオ基;前述のアリールチオ基;前述のアリールチオ基;前述のアリールチオ基;前述のアリールチオ基;前述のアリール基;前述のアリールチオ基;前述のアリールチオ基;前述のアリール基;前述のアリール基;前述のアリール基;前述のアリールチオ基;前述のアリール基;前述のアリール基;前述のアリール基;

R⁶ における「置換されていてもよい低級アルキル基」、「置換されていてもよい低級アルコキシ基」及び「置換されていてもよい低級アルキルチオ基」の「置換されていてもよい」とは、1個以上の置換基により置換されていてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には前述のハロゲン原子;水酸基;前述のアルコキシ基;前述のアリールオキシ基;前述の低級アルキル又は前述のアシル基で置換されていてもよいアミノ基;メルカプト基;前述のアルキルチオ基;前述のアリールチオ基;カルボキシル基;前述のアルコキシカルボニル基;前述のアリールオキシカルボニル基;カルバモイル基;メチルスルホニル基、エチルスルホニル基、イソプロピルスルホニル基、メチルスルフィニル基、イソプロピルスルフィニル基等のアルスルフィニル基等のアルスルフィニル基等のア

ルキルスルフィニル基;フェニルスルホニル基等のアリールスルホニル基;前述 のハロゲン化低級アルキル基;スルファモイル基;シアノ基;ニトロ基等である。 好ましくはハロゲン原子;水酸基;アルコキシ基;アミノ基;カルボキシル基; アルコキシカルボニル基である。

R⁶における「置換されていてもよいアリール基」、「置換されていてもよい シクロアルキル基」及び「置換されていてもよく、かつ窒素原子、硫黄原子又は 酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基」の「置換されて いてもよい」とは、1個以上の置換基により置換されていてもよいことを意味し、 該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に 限定されるものではない。 具体的には前述の低級アルキル基; 前述のハロゲン原 子;水酸基;前述のアルコキシ基;前述のアリールオキシ基;前述の低級アルキ ル基又は前述のアシル基で置換されていてもよいアミノ基;メルカプト基;前述 のアルキルチオ基;前述のアリールチオ基;カルボキシル基;前述のアルコキシ カルボニル基;前述のアリールオキシカルボニル基;カルバモイル基;メチルス ルホニル基、エチルスルホニル基、イソプロピルスルホニル基等のアルキルスル ホニル基:メチルスルフィニル基、エチルスルフィニル基、イソプロピルスルフ ィニル基等のアルキルスルフィニル基;フェニルスルホニル基等のアリールスル ホニル基;前述のハロゲン化低級アルキル基;スルファモイル基;シアノ基;ニ トロ基等である。好ましくは低級アルキル基;ハロゲン原子;水酸基;アルコキ シ基;アミノ基;カルボキシル基;アルコキシカルボニル基である。

R⁷における「置換されていてもよいアルキル基」の「置換されていてもよい」とは、1個以上の置換基により置換されていてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には水酸基;前述の低級アルコキシ基;メルカプト基;前述の低級アルキルチオ基;カルボキシル基;前述の低級アルコキシカルボニル基;前述の低級アルキル基又は前述のアシル基で置換されていてもよいアミノ基;ハロゲン原子等である。好ましくは水酸基;ハロゲン原子;低級アルコキシ基であ

る。

R⁷ における「置換されていてもよいアリール基」及び「置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する芳香族複素環基」の「置換されていてもよい」とは、環上に1~3個の置換基を有していてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には前述の低級アルキル基;水酸基;前述の低級アルコキシ基;メルカプト基;前述の低級アルキルチオ基;カルボキシル基;前述の低級アルコキシカルボニル基;前述の低級アルキル基又は前述のアシル基で置換されていてもよいアミノ基;ハロゲン原子等である。好ましくは水酸基;低級アルキル基;ハロゲン原子;低級アルコキシ基である。

R¹²における「置換されていてもよいアルケニル基」及び「置換されていてもよいアルキニル基」の「置換されていてもよい」とは、1個以上の置換基により置換されていてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には水酸基;前述のアルコキシ基;カルボキシル基;前述のアルコキシカルボニル基;前述のアシルオキシ基;前述のアルキル基、前述のアリール基、前述のアラルキル基又は前述のアミノ保護基で置換されていてもよいアミノ基等である。好ましくは水酸基;アルコキシ基;カルボキシル基;アルコキシカルボニル基;アシルオキシ基である。

R¹²における「置換されていてもよいシクロアルキル基」、「置換されていてもよいアリール基」及び「置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基」の「置換されていてもよい」とは、環上に1~3個の置換基を有していてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には水酸基;前述の低級アルコキシ基;メルカプト基:前述の低級アルキルチオ基;カルボキシル基;前述の低級アルコキシカ

ルボニル基;前述の低級アルキル基;前述の低級アルキル基で置換されていてもよいアミノ基;前述のハロゲン原子;カルバモイル基;シアノ基;前述のアシル基;ニトロ基;メチルスルホニル基、エチルスルホニル基等のアルキルスルフィニル基;スルファモイル基;前述の低級アルキル基、前述のアリール基又は前述のアラルキル基で置換されていてもよいアゾメチン基;メトキシアミノ基、イソプロポキシアミノ基等のアルコキシアミノ基;前述の低級アルキル基、前述のアリール基又は前述のアラルキル基で置換されていてもよいヒドラジノ基;アルコキシチオカルボニル基;前述の低級アルキル基、前述のアリール基又は前述のアラルキル基で置換されていてもよいヒドラジノ基;アルコキシチオカルボニル基;前述の低級アルキル基、前述のアリール基又は前述のアラルキル基で置換されていてもよいアミノオキシ基;チオアルカノイル基等である。好ましくは水酸基;低級アルキル基;ハロゲン原子;低級アルコキシ基;アミノ基;カルボキシル基である。

R¹²における「置換されていてもよいアラルキル基」の「置換されていてもよい」とは、アリール基上に1~3個の置換基を有していてもよいことを意味し、該置換基は同一又は異なっていてもよく、また置換基の位置は任意であって特に限定されるものではない。具体的には前述の低級アルキル基:前述の低級アルコキシ基:前述のアシル基:前述の低級アルキル基又は前述のアシル基で置換されていてもよいアミノ基:前述のアルコキシカルボニル基;前述のアリールオキシカルボニル基;前述のアリールオキシカルボニル基;前述のアリールオキシ基;前述のアリールオキシオルボニル基;前述のアリールオキシ基;前述のアリールオキシ基;前述のアルキルチオ基;前述のアリールオキシ基;前述のアルキルチオ基;前述のアリールオキシ基;前述のアルキルチオ基;前述のアリール基;前述のアリール基;前述のアリール基;前述のアリール基;前述のアリール基;前述のアリール表;前述のアリール基;前述のアリール表

一般式(I)で示される本発明化合物は、例えば下記の方法により合成することができるが、本発明化合物の合成方法はこれらに限定されるものではない。

3 9

{式中、R'は水酸基保護基又はアミノ保護基で保護されたR基、より具体的にはR。; R。で置換されたアルコキシ基; R。で置換されたアルキルチオ基; R。で置換されたアルキルアミノ基; 置換されていてもよい窒素含有非芳香族複素環基; 又は水酸基〔ここで、R。はアミノ基、グアニジノ基、アミジノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジノカルボニル基又はイミノ基(これらの基は、低級アルキル基、ハロゲン化低級アルキル基、シクロアルキル基、アリール基又はアミノ保護基から選ばれる置換基で置換されていてもよい)である〕であって、さらに水酸基保護基又はアミノ保護基で置換された基(但し、Rがジメチルアミノ基、Nーメチルピペラジニル基又はNーメチルピペリジル基等の場合においては、Rを保護しておく必要がないのでR'はRそのものを意味する)を表し、

R¹⁴は、メチル基、エチル基、 t e r t - プチル基、アリル基、フェニル基、ベンジル基、トリクロロエチル基、 p - ニトロベンジル基、トリメチルシリル基、 t e r t - プチルジメチルシリル基、メトキシメチル基、 2 - トリメチルシリルエチル基等のカルボキシ保護基を表し、

Wはハロゲン原子を表し、

A'はA基の端のメチレンが1つ欠如した基を表し、

Zは水素原子又はXを活性化する置換基(例えば、トリフェニルホスホニウム基、 トリフェニルホスホネート基、アリールスルホニル基等)を表し、

A、X、M、m、R、R¹ 、R² 、R³ 、R⁴ 、R⁵ 、R⁶ 及びR⁷ は前記と同義である}

(工程1)

化合物(VI)は、化合物(II)と化合物(III)とを、トリフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、亜リン酸トリフェニル、亜リン酸トリメチル、亜リン酸トリエチル等とアゾジカルボン酸ジイソプロピル、アゾジカルボン酸ジエチル、アゾジカルボン酸ジシクロヘキシル等とを組み合わせた縮合剤の存在下、エーテル、テトラヒドロフラン、ジオキサン、ジク

ロロメタン、クロロホルム、ベンゼン、トルエン、ジメチルホルムアミド等の有 機溶媒又はこれらの混合溶媒中、氷冷下乃至加温下で反応させることにより合成 することができる。

この方法は、特にXが酸素原子、硫黄原子である場合に好適である。

また、化合物(VI)は下記の方法により合成することもできる。

(工程2)

化合物(VI)は、化合物(IV)と化合物(III)とを、水素化ナトリウム、水素化カリウム、水素化リチウム、炭酸カリウム、炭酸ナトリウム、カリウム tertープトキシド、リチウムジイソプロピルアミド、メチルリチウム、nーブチルリチウム、secープチルリチウム、tertープチルリチウム等の塩基存在下、ジメチルホルムアミド、塩化メチレン、テトラヒドロフラン、エーテル、ベンゼン、トルエン等の有機溶媒又はこれらの混合溶媒中、-78℃乃至加温下で反応させることにより合成することができる。

この方法は、特にXが硫黄原子、酸素原子である場合に好適である。

また、Xが-SO-、-SO2-の場合、上記工程1又は工程2で得られた対応するスルフィドを過酸化水素、過酢酸、メタ過ヨウ素酸塩、メタクロロ過安息香酸、硝酸アシル、四酸化二窒素等の酸化剤で酸化することにより合成することができる。

更に、化合物(VI)、特にXが-NR®-、-CR®R10-である場合には 下記の方法によっても合成することができる。

(工程3)

化合物(VI)は、化合物(V)と化合物(III)とを、必要に応じて適当な塩基(例えば、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、カリウムヘキサメチルジシラザン、ローブチルリチウム、カリウムtertーブトキシド、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、水素化カリウム等)の存在下、メタノール、エタノール、ジメチルホルムアミド、エーテル、ジオキサン、テトラヒドロフラン、酢酸エチル、ジイソプロピルエーテ

ル、ジメトキシエタン、トルエン、ヘキサン、ジメチルスルホキシド等の有機溶媒、水又はこれらの混合溶媒中で縮合させ、次いで白金黒、酸化白金、パラジウム黒、酸化パラジウム、水酸化パラジウム、パラジウム炭素、ラネーニッケル等の金属触媒存在下、水素ガスにて接触還元させるか、又は水素化ホウ素ナトリウム、シアン化水素化ホウ素ナトリウム、トリメチルシラン、トリエチルシラン、アルカリ金属-アンモニア、アルカリ金属-エチルアミン、ナトリウムアマルガム、カリウムアマルガム等の還元剤で処理することにより合成することができる。化合物(I)は、上記工程1、2又は3で得られた化合物(VI)を下記工程4~6に付すことにより合成することができる。

(工程4)

化合物(VII)は、化合物(VI)をナトリウム、カリウム、リチウム等のアルカリ金属の水酸化物若しくは炭酸塩、1,5-ジアザビシクロ(4.3.0) ノン-5-エン、1,8-ジアザビシクロ(5.4.0)ウンデカー7-エン等の塩基、又は塩酸、臭化水素酸、硫酸、塩化水素、臭化水素、フッ化水素、酢酸、トリフルオロ酢酸等の酸存在下、メタノール、エタノール、ジクロロメタン、クロロホルム、テトラヒドロフラン、トルエン、キシレン等の有機溶媒、水又はこれらの混合溶媒中、氷冷下乃至加温下で反応させるか、メタノール、エタノール、ジメチルホルムアミド、エーテル、ジオキサン、テトラヒドロフラン、酢酸等の有機溶媒又はこれらの混合溶媒中、白金黒、酸化白金、パラジウム黒、酸化パラジウム、パラジウム炭素、ラネーニッケル等の金属触媒存在下、水素ガスにて接触還元させるか、又はテトラエチルアンモニウムフロライド、テトラーカーブチルアンモニウムフロライド等の4級アンモニウムフロライドの存在下、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド等の有機溶媒又はこれらの混合溶媒中、氷冷下乃至加温下で反応させることにより合成することができる。

(工程5)

化合物 (I') は、化合物 (VII) と化合物 (VIII) とを、1-エチル

-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩(WSC・HCl)、ジシクロヘキシルカルボジイミド(DCC)、ジフェニルホスホリルアジド(DPPA)、カルボニルジイミダゾール(CDI)等の縮合剤にて、必要に応じて1-ヒドロキシベンゾトリアゾール(HOBT)、ヒドロキシスクシンイミド(HOSu)、N-ヒドロキシ-5-ノルボルネン-2、3-ジカルボン酸イミド(HONB)等の活性化剤存在下、ジメチルホルムアミド、ジクロロメタン、クロロホルム、アセトニトリル、テトラヒドロフラン、ジメチルスルホキシド、四塩化炭素、トルエン等の有機溶媒又はこれらの混合溶媒中、氷冷下乃至加温下で反応させることにより合成することができる。但し、化合物(VIII)が例えば塩酸塩等の場合は、この反応はトリエチルアミン、N-メチルモルホリン、4-ジメチルアミノピリジン等の塩基の存在下で行ってもよい。また、R⁷が-CONHOH、-CH2OH等の水酸基を有する基の場合は、化合物(VIII)として、予めその水酸基が保護されたものを用いる。

(工程6)

R'における水酸基保護基又はアミノ保護基の脱離工程であって、適宜公知の方法を採用すればよい。例えば、R'におけるアミノ保護基がBoc(tertープトキシカルボニル基)である場合は、化合物(I')を塩酸、臭化水素酸、トリフルオロ酢酸、pートルエンスルホン酸、メタンスルホン酸、塩化水素ージオキサン、塩化水素ーエーテル、塩化水素ー酢酸エチル等の酸存在下、ジオキサン、エーテル、ジクロロメタン、テトラヒドロフラン、メタノール、エタノール、クロロホルム、ベンゼン、トルエン、酢酸エチル等の有機溶媒、水若しくはこれらの混合溶媒又は無溶媒中で反応させることにより、化合物(I)を得ることができる。また、例えばアミノ保護基がベンジルオキシカルボニル基の場合には、メタノール、エタノール、ジメチルホルムアミド、エーテル、ジオキサン、テトラヒドロフラン、酢酸等の有機溶媒、水又はこれらの混合溶媒中、パラジウム炭素、酸化白金、ラネーニッケル等の金属触媒存在下、水素ガスにて接触還元することにより合成することができる。さらにR'が水酸基保護基で保護された水酸

基の場合には、接触還元等の常法により合成することがきる。なお、R⁷が水酸基を保護した基である場合には、接触還元等の常法により水酸基保護基を脱離後、若しくは同時に上記工程を行ってもよい。

また、化合物(I)において R^{7} がカルボキシル基である場合は、例えば R^{7} が t e r t - プトキシカルボニル基又はベンジルオキシカルボニル基である化合物(I^{7})を合成後、上記反応に付すことにより合成することができる。

〔式中、 W^1 は、 $-COW^3$; $-SO_2W^3$; 又は $-O-COW^3$ (ここで、 W^3 は水酸基又はハロゲン原子を示す)を、

 W^2 は水酸基;メルカプト基;又は $-NR^8$ H(ここで、 R^8 は前記と同義である)を表し、

A、X、M、R'、R'、R'、R'、R'、R'及びR''は前記と同義である〕 また、化合物(VI)において、Xが-COO-;-CONR'-; -SO2NR'-;-COS-;-OOC-NR'-;-O-CO-O-の場合 には、下記の方法によっても合成することができる。

(工程7)

化合物(VI)は、化合物(IX)と化合物(X)とを、WSC・HC1、DCC、DPPA、CDI等の縮合剤にて、必要に応じてHOBT、HOSu、HONB等の活性化剤存在下、ジメチルホルムアミド、ジクロロメタン、クロロホ

ルム、アセトニトリル、テトラヒドロフラン、ジメチルスルホキシド、四塩化炭素、トルエン等の有機溶媒又はこれらの混合溶媒中、氷冷下乃至加温下で反応させる(この反応はトリエチルアミン、Nーメチルモルホリン、ピリジン、4ージメチルアミノピリジン、Nーメチルピペリジン等の塩基の存在下で行ってもよい)か、ナトリウム、カリウム、リチウム等のアルカリ金属の水酸化物若しくは炭酸塩、トリエチルアミン、ピリジン、Nーメチルモルホリン、Nーメチルピペリジン、4ージメチルアミノピリジン等の塩基存在下、ジメチルホルムアミド、ジクロロメタン、クロロホルム、テトラヒドロフラン、ジメチルスルホキシド、ベンゼン、トルエン等の有機溶媒、水又はこれらの混合溶媒中、氷冷下乃至加温下で反応させることにより合成することができる。

化合物 (VI) において、Xが-OOC-;-NR® CO-;
-NR® SO₂-;-NR® -COO-の場合には、下記の方法によっても合成することができる。

(工程8)

化合物 (VI) は、化合物 (XI) と化合物 (XII) とを用いて、前記工程7と同様の方法により合成することができる。

更に、Xが窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2価の芳香族複素環基、例えばオキサジアゾール環の2価基である場合には、下記の方法によっても合成することができる。

$$R' - A - COOH + H_2N R^3 R^4$$
(XIV)

$$(\overline{\Xi } \overline$$

(式中、A、M、R'、R'、R'、R'、R'及びR'は前記と同義である) (工程 9)

化合物(XV)は、化合物(XIII)と化合物(XIV)とを、WSC・HCI、DCC、DPPA、CDI等の縮合剤にて、必要に応じてHOBT、HOSu、HONB等の活性化剤存在下、ジメチルホルムアミド、ジクロロメタン、クロロホルム、アセトニトリル、テトラヒドロフラン、ジメチルスルホキシド、四塩化炭素、トルエン等の有機溶媒又はこれらの混合溶媒中、氷冷下乃至加温下で反応させることにより合成することができる。なお、この反応はトリメチルアミン、Nーメチルモルホリン、ピリジン、4ージメチルアミノピリジン、Nーメチルピペリジン等の塩基の存在下で行ってもよい。

(工程10)

化合物(VI')は、化合物(XV)をトルエン、ジオキサン、テトラヒドロフラン、ベンゼン、キシレン等の有機溶媒又はこれらの混合溶媒中、加熱することにより合成することができる。

なお、上記の工程 7、 8 及び 1 0 で得られた化合物 (V I) 及び化合物 (V I') を、上記工程 $4 \sim 6$ と同様の方法で処理することにより化合物 (I) を合成することができる。

化合物(I)の R^1 、 R^2 、 R^3 、 R^4 の少なくとも1つがハロゲン原子である場合には、下記の方法によっても合成することができる。

$$R^{1}$$
 R^{2} (CH_{2}) m R^{6} R^{1} R^{2} (CH_{2}) m R^{1} R^{2} (CH_{2}) m R^{1} R^{2} (CH_{2}) m R^{2} R^{4} R^{5} R^{4} R^{5} R^{5} R^{4} R^{5} R^{5}

〔式中、R¹'、R²'、R³'、R⁴'は、同一又は異なって水素原子;水酸基;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基;アルコキシ基;メルカプト基;アルキルチオ基;アル

キル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;アルコキシカルボニル基;アリールオキシカルボニル基;アシル基;又は-O-CO-R¹¹ (ここで、R¹¹は前記と同義である)から選ばれる基であって、かつ少なくとも1つが水素原子を表し、

A、X、M、m、R′、R1、R2、R3、R4、R5、R6 及びR7 は前記と同義である)

(工程11)

化合物(I')は、化合物(I'')を、次亜塩素酸 t e r t ープチル、次亜臭素酸 t e r t ープチル、次亜ヨウ素酸 t e r t ープチル、塩化スルフリル、臭化スルフリル、塩化チオニル、臭化チオニル、フッ素、塩素、臭素、ヨウ素、フッ化水素、二フッ化銀、二フッ化キセノン等のハロゲン化剤の存在下、ジクロロメタン、クロロホルム、アセトニトリル、トルエン、ベンゼン、エーテル、テトラヒドロフラン、ジオキサン、メタノール、エタノール、四塩化炭素、酢酸エチル等の有機溶媒若しくはこれらの混合溶媒中又は無溶媒で、氷冷下乃至加温下で反応させることにより合成することができる。この工程で保護基がはずれた場合には、再保護を行う。例えばBoc基の場合には、適当な塩基存在下(トリエチルアミン、ピリジン等)、ジ炭酸ージー t e r t ープチル等で保護を行う。

なお、得られた化合物(I')を上記工程 6と同様の方法で処理することにより化合物(I)を合成することができる。

また、上記工程 1 1 は、化合物(I I)に対応する化合物(V I)を合成した後に行ってもよく、次いで前記工程 $4\sim 6$ と同様の方法で処理することにより化合物(I)を合成することができる。

化合物(I)の R^1 、 R^2 、 R^3 、 R^4 の少なくとも1つが $-O-CO-R^{11}$ である場合には、下記の方法によっても合成することができる。

$$R' - A - X$$
 M CON R^7 R^6 $R^{11} - CO - W$ R^3 R^4 R^5 R^5 $R^{11} - CO - W$ R^7 R^6 $R^1 - A - X$ R^1 R^2 R^2 R^4 R^5 R^5 R^7 R^8 R^8

〔式中、R¹''、R²''、R³''、R⁴''は同一又は異なって、水素原子;水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基;アルコキシ基;メルカプト基;アルキルチオ基;アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;アルコキシカルボニル基;アリールオキシカルボニル基;又はアシル基であり、かつ少なくとも1つが水酸基を表し、

A、X、M、m、W、R'、R¹、R²、R³、R⁴、R⁵、R⁶、R҆及びR¹¹は前記と同義である)

(工程12)

化合物(I'')は、化合物(I''')を、ジクロロメタン、クロロホルム、エーテル、テトラヒドロフラン、ジオキサン、ベンゼン、トルエン、ジメチルホルムアミド、酢酸エチル、アセトニトリル等の有機溶媒又はこれらの混合溶媒中、ピリジン、トリエチルアミン、N-メチルモルホリン、N-メチルピペリジン、4-ジメチルアミノピリジン等の塩基存在下、化合物(XVI)と反応させることにより合成することができる。

なお、得られた化合物(I')を上記工程 6 と同様の方法で処理することにより化合物(I)を合成することができる。

また、一般式(I)で示される本発明化合物は、下記の合成方法でも合成することができる。

4 9

(式中、A、A'、X、M、m、W、Z、R'、R¹、R²、R³、R¹、R⁵、R⁵及びR³は前記と同義である)

(工程13)

化合物 (XVII) は、化合物 (III') と化合物 (VIII) とを上記工程 5 と同様の反応に付すことにより合成することができる。

(工程14)

化合物 (I) は、化合物 (II) と化合物 (XVII) とを上記工程 1 と同様の反応に付すことにより合成することができる。

また、化合物(I')は下記の方法により合成することもできる。

(工程15)

化合物 (I') は、化合物 (IV) と化合物 (XVII) とを上記工程 2 と同様の反応に付すことにより合成することができる。

更に、化合物(I')、特にXが-NR®-、-CR®R¹®-の場合には下記の方法によっても合成することができる。

(工程16)

化合物 (I') は、化合物 (V) と、化合物 (XVII) とを上記工程 3 と同様の反応に付すことにより合成することができる。

なお、化合物(I)は、上記工程14~16で得られた化合物(I')を上記工程6と同様の反応に付すことにより合成することができる。

また、化合物(I')において、Xが-COO-;-CONR®-;
-SO₂ NR®-;-COS-;-OOC-NR®-;-O-CO-O-の場合には、下記の方法によっても合成することができる。

$$(王程17) \quad W^2 \xrightarrow{R^1} \quad R^2 \quad (CH_2) \stackrel{R^6}{\text{m}} \quad R^7 \xrightarrow{(IX)} \quad R^1 \quad R^2 \quad (CH_2) \stackrel{R^6}{\text{m}} \quad R^7 \xrightarrow{(IX)} \quad R^7 \xrightarrow{(XVIII)} \quad (I')$$

(式中、A、X、M、m、W¹、W²、R′、R¹、R²、R³、R⁴、R⁵、R°及びR³は前記と同義である)

(工程17)

化合物 (X V I I I) は、化合物 (X') と化合物 (V I I I) とを上記工程 5 と同様の反応に付すことにより合成することができる。

(工程18)

化合物 (I') は、化合物 (IX) と化合物 (XVIII) とを上記工程 7 と 同様の反応に付すことにより合成することができる。

また、化合物(I')において、Xが-OOC-;-NR $^{\$}CO-;$ -NR $^{\$}SO_2-;-NR$ $^{\$}-COO-$ の場合には、下記の方法によっても合成することができる。

$$(工程19) \qquad \begin{array}{c} R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad (CH_2) \stackrel{R}{\text{m}} \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad R^6 \quad R^7 \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad R^6 \quad R^7 \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad R^6 \quad R^7 \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad R^6 \quad R^7 \quad R^7 \quad R^6 \\ \hline (XIX) \qquad \qquad & R^1 \quad R^2 \quad R^6 \quad R^7 \quad$$

(式中、A、X、M、m、W¹、W²、R′、R¹、R²、R³、R⁴、R⁵、R⁵及びR³は前記と同義である)

(工程19)

化合物(XIX)は、化合物(XII')と化合物(VIII)とを上記工程5と同様の反応に付すことにより合成することができる。

(工程20)

化合物 (I') は、化合物 (XIX) を上記工程 8 と同様の 反応に付すことにより合成することができる。

なお、化合物 (I) は、上記工程 1 8 及び工程 2 0 で得られた化合物 (I^*) を上記工程 6 と同様の反応に付すことにより合成することができる。

Xが-CR $^{\circ}$ $R^{10}-;-CO-;-C=C-;-CS-$ の場合には、下記の方法によって合成することができる。

(式中、A、A'、M、X、m、W¹、W²、R'、R¹、R²、R³、R⁴、R⁵、R⁵、R°及びR¹⁴は前記と同義である)

(工程21)

化合物(XXI)は、化合物(IV)より常法で調製された対応するグリニャ

ール試薬 (IV') と化合物 (XX) とを、エーテル、テトラヒドロフラン、ジオキサン等の有機溶媒又はこれらの混合溶媒中、-78℃乃至加温下で反応させることにより合成することができる。

(工程22)

化合物(VI'')は、化合物(XXI)を無水クロム酸、クロロクロム酸ピリジニウム、二酸化マンガン、次亜塩素酸ナトリウム、四酸化ルテニウム等の酸化剤存在下、エーテル、テトラヒドロフラン、ジオキサン等の有機溶媒又はこれらの混合溶媒中、氷冷下乃至加温下で反応させることにより合成することができる。

(工程23)

化合物 (VI'') は、化合物 (XXI) を、トリエチルシラン、水素化リチウムアルミニウムー塩化アルミニウム、水素化ホウ素ナトリウムートリフルオロボラン、シアノ水素化ホウ素ナトリウムーヨウ化メチル、トリフェニルホスホニウム等の還元剤存在下、エーテル、テトラヒドロフラン、ジオキサン等の有機溶媒又はこれらの混合溶媒中、-78℃乃至加温下で反応させることにより合成することができる。

(工程24)

化合物(VI''')は、化合物(XXI)を硫酸、リン酸、硫酸水素カリウム、シュウ酸、pートルエンスルホン酸、三フッ化ホウ素-エーテル錯体、塩化チオニルーピリジン、オキシ塩化リンーピリジン、メタンスルホニルクロライドーピリジン、pートルエンスルホニルクロライドーピリジン等の存在下、エーテル、テトラヒドロフラン、ジオキサン等の有機溶媒又はこれらの混合溶媒中、氷冷下乃至加温下で反応させることにより合成することができる。

なお、これら上記工程 $22\sim24$ で得られた化合物(VI'')、(VI''')、(VI''')、(VI''')を上記工程 $4\sim6$ と同様の方法で処理することにより化合物(I)を合成することができる。

また、一般式(I)の化合物は常法に従って、無機酸(例えば、塩酸、硫酸、リン酸、臭化水素酸、硝酸)又は有機酸(例えば、シュウ酸、マレイン酸、フマール酸、リンゴ酸、酒石酸、コハク酸、クエン酸、酢酸、乳酸、メタンスルホン酸、パラトルエンスルホン酸、安息香酸、吉草酸、マロン酸、ニコチン酸、プロピオン酸)と処理することにより、薬学的に許容される酸付加塩とすることができる。

このようにして得られる化合物は公知の分離精製法、例えば濃縮、減圧濃縮、 溶媒抽出、晶析、再結晶、クロマトグラフィー等により、単離精製することがで きる。

本発明の化合物には、不斉炭素に基づく立体異性体1個以上が含まれ、そのような異性体及びそれらの混合物はすべてこの発明の範囲内に包含される。また、水和物、薬学的に許容される有機溶媒との溶媒和物も本発明に含まれる。さらに、本発明化合物のプロドラッグも本発明に範囲内に包含される。

本発明化合物は、哺乳動物(例えば、ヒト、ウサギ、イヌ、ネコ等)において、優れた炎症性サイトカイン産生抑制作用を有し、慢性関節リウマチ等のリウマチ性疾患、痛風による関節炎、全身性エリトマトーデス、乾癬・膿疱症・アトピー性皮膚炎等の皮膚疾患、気管支喘息・気管支炎・ARDS・びまん性間質性肺炎等の呼吸器疾患、炎症性腸疾患(潰瘍性大腸炎、クローン病)、激症肝炎を含む急性・慢性肝炎、急性・慢性糸球体腎炎、腎盂腎炎、ベーチェット病・vogtー小柳・原田病等に伴うぶどう膜炎、地中海熱(多発性漿膜炎)、心筋梗塞等の虚血疾患、敗血症に伴う全身循環不全や多臓器不全等に代表される好中球の浸潤を伴う非感染性、感染性疾患等の予防又は治療に有用である。

また、IL-6、GM-CSF等の炎症性サイトカインに対しても抑制作用を有することが認められている。

一般式(I)で示される本発明化合物又はその薬学的に許容される塩類を有効成分としてなる医薬製剤として用いる場合には、通常、それ自体公知の薬理学的に許容される担体、賦形剤、希釈剤、増量剤、崩壊剤、安定剤、保存剤、緩衝剤、乳化剤、芳香剤、着色剤、甘味剤、粘稠剤、矯味剤、溶解補助剤、その他の添加剤、具体的には水、植物油、エタノール又はベンジルアルコールのようなアルコール、ポリエチレングリコール、グリセロールトリアセテート、ゼラチン、ラクトース、でんぷん等のような炭水化物、ステアリン酸マグネシウム、タルク、ラノリン、ワセリン等と混合して、錠剤、丸剤、散剤、顆粒剤、坐剤、注射剤、点眼剤、液剤、カプセル剤、トローチ剤、エアゾール剤、エリキシル剤、懸濁剤、乳剤、シロップ剤等の態様で医薬組成物とし、経口又は非経口的に投与することができる。

投与量は、疾患の種類及び程度、投与化合物並びに投与経路、患者の年齢、性別、体重等によって異なるが、例えば成人患者に経口投与する場合、通常1日当たり0.01~100mg程度の範囲から選ばれ、また成人患者にi.v.投与する場合、通常1日当たり0.01~1000mg、好ましくは0.05~50mg程度の範囲から選ばれ、これを1回又は数回に分けて投与することができる。

以下、製造例及び実施例を挙げて、本発明を更に具体的に説明する。 まず、表1に示す中間体化合物の製造例について示す。

表 1

製造例	
1	Ме ОН СООН С1
2	HO OH COOMe
3	Boc-NCC00H
4	Ph H ₂ N CONH-Ph •HC1
5	Ph H₂N CONHO Ph •HC1
6	H₂N Ph N Me 0 N •HC1
7	H ₂ N ← O ← Ph

製造例1

5-クロロ-2, 4-ジヒドロキシ-3-メチル安息香酸

2, 4-ジヒドロキシー3-メチル安息香酸メチル(9.9g)の酢酸エチル

(100ml)溶液に氷冷下、次亜塩素酸 tertープチル(12.3ml)を加えた。2時間攪拌後、ヘキサン(200ml)を加え、氷冷することにより結晶を析出させた。この結晶を濾取し、メタノール(20ml)及びテトラヒドロフラン(THF)(20ml)の混合溶媒に溶かし、1M水酸化リチウム水溶液(40ml)を加え、18時間加熱還流した。反応液を濃縮し、残渣に10%クエン酸水溶液を加え、酢酸エチルで抽出した。有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、有機層を減圧濃縮することにより表題化合物(4.14g、収率37%)を得た。

製造例 2

製造例3

メチル 2-ヒドロキシベンゾエート-4-カルボキサミドオキシム

2-ヒドロキシー4-シアノ安息香酸メチル(2.00g)のメタノール(30m1)溶液に、水(6m1)、ヒドロキシアミン・塩酸塩(1.57g)及び重炭酸ナトリウム(1.9g)を加え、70で3時間加熱攪拌した。反応液を濃縮し、10%クエン酸水溶液を加え、濾過した。濾液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: ヘキサン/酢酸エチル=3/2v/v)で精製することにより表題化合物(823mg、収率35%)を得た。

1-tert-プトキシカルボニルー4-エチルイソニペコチン酸

(1) 1-tert-プトキシカルボニルー4-エチルイソニペコチン酸エチル 1-tert-プトキシカルボニルイソニペコチン酸エチル(576mg)の THF(15ml)溶液に、リチウムジイソプロピルアミド(290mg)のTHF(10ml)溶液を、アルゴンガス気流下、-78℃で加え、そのまま1時間攪拌した。ヨウ化エチル(0.36ml)を上記溶液に-78℃で加え、18時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を1N塩酸、水及び飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥し、有機層を減圧濃縮することにより表題化合物(585mg、収率92%)を得た。

(2) 1 - t e r t - プトキシカルボニル - 4 - エチルイソニペコチン酸

1-tertープトキシカルボニル-4-エチルイソニペコチン酸エチル(5 70mg)のエタノール(10m1)溶液に、1M水酸化リチウム水溶液(8m1) を加え、20時間加熱還流した。その後、反応液を濃縮して、残渣に水を加えた。 水層をエーテルで洗浄し、1N塩酸で酸性にし、エーテルで抽出した。有機層を 無水硫酸マグネシウムで乾燥し、減圧濃縮することにより表題化合物(233mg、 収率45%)を得た。

製造例 4

L-フェニルアラニルアミノベンゼン・塩酸塩

N-tert-プトキシカルボニル-L-フェニルアラニン・塩酸塩(2.6 5g) 及びアニリン (1.02g) のジメチルホルムアミド(DMF)(50m1) 溶液に、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩 酸塩 (WSC・HC1) 及びヒドロキシベンゾトリアゾール (HOBT) (1. 5g)を室温下に加え、6時間攪拌した。反応液に水を加え、酢酸エチルで抽出 した。有機層を10%クエン酸水溶液、水、飽和重曹水、水及び飽和食塩水で順 次洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去することにより、N -tert-プトキシカルボニル-L-フェニルアラニルアミノベンゼンを得た。 得られた化合物をジクロロメタン(20m1)に溶解させ、トリフルオロ酢酸(10ml)を室温下に加え、1時間攪拌した。反応液にトルエン(10ml)を 加え、減圧濃縮した。残渣に1M塩化水素-エーテル溶液(10ml)を加え、 結晶化させることにより、表題化合物(1.45g、収率52%)を得た。 製造例 5

L-フェニルアラニル-〇-ベンジルヒドロキシアミド・塩酸塩

N-tert-プトキシカルボニル-L-フェニルアラニン(2.65g)及び〇-ベンジルヒドロキシアミン・塩酸塩(1.60g)を用いて、上記製造例 4 と同様の反応を行い、表題化合物(2.48g、収率92%)を得た。

製造例 6

1-(3-メチル-1, 2, 4-オキサジアゾール-5-イル)-2-フェニ

ルエチルアミン・塩酸塩

アセトアミドオキシム(J. Saunders et al., J. Med. Chem., 33, 1128 (1990)) (2.67g)のTHF (125ml)溶液に、60%油性水素化ナトリウム(1.44g)を加え、1時間加熱還流した。その後、放冷し、反応液にN-tert-ブトキシカルボニルーL-フェニルアラニンメチルエステル(8.38g)のTHF (40ml)溶液を室温下に加え、20分間加熱還流した。その後、放冷し、水(10ml)を加え、減圧濃縮した。残渣に10%クエン酸水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1 v/v)で精製することにより、N-tertープトキシカルボニルー1-(3-メチルー1,2,4-オキサジアゾールー5ーイル)-2-フェニルエチルアミン(4.43g)を得た。この化合物を4N塩化水素-ジオキサン溶液(50ml)に加え、室温下、2時間攪拌した。反応液にトルエンを加え、減圧濃縮し、残渣にエーテルを加え、結晶化させることにより、表題化合物(3.25g、収率47%)を得た。

製造例7

O-ベンジル-L-フェニルアラニノール

L-フェニルアラニノール(11.78g)のTHF(200m1)溶液に60%油性水素化ナトリウム(3.43g)を室温下、徐々に加えた。20分経過後、反応液を1時間加熱還流した。その後、放冷し、氷冷下で臭化ベンジル(9.27m1)を徐々に加え、室温下で16時間攪拌した。反応液を飽和食塩水に加え、エーテルで抽出した。有機層を10%塩酸で抽出した。水層を水酸化ナトリウム水溶液でアルカリ性にし、エーテルで抽出した。これら有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮することにより、表題化合物(14.5g、収率77%)を得た。

実施例1

ベンゾイル〕-L-フェニルアラニンメチルエステル・塩酸塩

工程1) 3, 5-ジクロロ-2-ヒドロキシ-4-(4-tert-プトキシカルボニルメチルアミノプトキシ) 安息香酸メチル (<math>VI)

工程 4) 3 , 5-ジクロロー 2-ヒドロキシー 4- (4-tertープトキシカルボニルメチルアミノプトキシ)安息香酸 (VII)

上記工程1)で得られた化合物(3.46g)をメタノール(12m1)-THF(12m1)混合溶媒に溶解させ、1M水酸化リチウム水溶液(24m1)を加えて、60℃で2時間加熱攪拌した。氷冷した後、減圧濃縮し、残渣に10%クエン酸水溶液(50m1)を加えて酸性にし、エーテル(50m1)で抽出した。有機層を無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去することにより、表題化合物(3.22g、収率96%)を得た。

工程 5) N- (3, 5-ジクロロ-2-ヒドロキシ-4-(4-tert-プトキシカルボニルメチルアミノプトキシ)ベンゾイル<math>]-L-フェニルアラニンメチルエステル(I')

上記工程 4) で得られた化合物 (3g)、L-フェニルアラニンメチルエステル・塩酸塩 (1.59g)、WSC・HCl (1.41g)及びHOBT (1g)のDMF (10ml)溶液に、室温下、トリエチルアミン (1ml)を滴下し、14時間攪拌した。反応液に水 (60ml)を加え、酢酸エチルで抽出した。有機層を10%クエン酸水溶液、水、飽和重曹水、水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。残渣をシリカゲルカラムク

工程 6) N- (3, 5-ジクロロ-2-ヒドロキシ-4-(4-メチルアミノブトキシ) ベンゾイル<math>)-L-フェニルアラニンメチルエステル・塩酸塩(<math>I)

上記工程 5) で得られた化合物 (5g) のジオキサン (10m1) 溶液に、4 N塩化水素-ジオキサン溶液 (40m1) を加え、室温下、1.5時間攪拌した。 反応液にトルエンを加え、減圧濃縮し、残渣にエーテル (50m1) を加え、結 晶化させることにより、表題化合物 (4.2g、収率 95%) を得た (表2参照)。 実施例 1'

N-〔3, 5-ジクロロー2-ヒドロキシー4-(4-メチルアミノブトキシ)ベンゾイル〕-L-フェニルアラニンメチルエステル・塩酸塩

3, 5-ジクロロ-2, 4-ジヒドロキシ安息香酸(17g)、L-フェニルアラニンメチルエステル・塩酸塩(19.8g)、WSC・HC1(17.6g)及びHOBT(12.4g)のDMF(70m1)溶液に、室温下、トリエチルアミン(12.8m1)を滴下し、16時間攪拌した。さらに、上記実施例1の工程5)と同様の後処理を行うことにより表題化合物(18.32g、収率57%)を得た。

工程14) N-(3,5-ジクロロ-2-ヒドロキシ-4-(4-tert-プトキシカルボニルメチルアミノプトキシ) ベンゾイル) -L-フェニルアラニンメチルエステル(<math>I')

上記工程13)で得られた化合物(11.0g)及び4-tert-ブトキシカルボニルメチルアミノ-1-ブタノール(5.29g)のTHF(100m1)溶液に、トリフェニルホスフィン(7.51g)及びアゾジカルボン酸ジイソプロピル(5.6m1)を、氷冷下に加え、16時間攪拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン/酢酸エ

チル=3/1 v/v) で精製することにより、表題化合物(3.10g、収率21%)を得た。

工程 6) N- (3, 5-ジクロロー 2-ヒドロキシー 4- (4-メチルアミノプトキシ) ベンゾイル) - L-フェニルアラニンメチルエステル・塩酸塩(I)

上記工程14)で得られた化合物(10g)のジオキサン(25m1)溶液に、室温下、4N塩化水素-ジオキサン溶液(88m1)を滴下した。1.5時間後、トルエンを加えて、溶媒を減圧留去した。残渣にエーテル(120m1)を加え、結晶化させることにより表題化合物(8.4g、収率95%)を得た。

実施例2

 $N-\{3,5-ジクロロ-2-ヒドロキシ-4-[2-(4-メチルピペラジン-1-イル) エトキシ] ベンゾイル<math>\}-L-フェニルアラニンエチルエステル・2 塩酸塩$

工程 1) 3 , 5-ジクロロー 2-ヒドロキシー 4- 〔2- (4-メチルピペラジン- 1-イル)エトキシ〕安息香酸メチル (VI)

2-(4-x+)ピペラジン-1-イル)エタノール(14.42g)及び3.5-ジクロロ-2.4-ジヒドロキシ安息香酸x+ル(52.15g)のクロロホルム(400m1)溶液に、トリフェニルホスフィン(28.85g)及びアゾジカルボン酸ジイソプロピル(21.7m1)を室温下に加え、16時間攪拌した。反応液に1N塩酸(300m1)を加えて抽出することにより、表題化合物の租生成物を得た。

工程 4) 3 , 5-ジクロロー 2-ヒドロキシー <math>4-(2-(4-メチルピペラジ ンー1-イル) エトキシ)安息香酸 (VII)

上記工程1)で得られた粗生成物の抽出液に4M水酸化ナトリウム水溶液(125m1)を加えて、80℃で2時間加熱攪拌した。さらに酢酸(12.3g)を加えて、氷冷下攪拌し、結晶化させることにより、表題化合物(27.880g、収率79%)を得た。

工程5) $N-{3,5-ジクロロ-2-ヒドロキシ-4-[2-(4-メチルピ$

ペラジン-1-イル) エトキシ) ベンゾイル $\}$ -L-フェニルアラニンエチルエステル・2塩酸塩(I'=I)

上記工程4)で得られた化合物(958mg)、L-フェニルアラニンエチル エステル・塩酸塩(923mg)及びHOBT(445mg)のアセトニトリル(15m1)溶液に、室温下、 $WSC\cdot HC1$ (632mg)を加え、25時間 攪拌した。反応混合液を減圧濃縮し、クロロホルムを加え、飽和重曹水、水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム/メタノール= $10/1 \ v/v$)で精製することにより、化合物(1.386g)を得た。さらに、この化合物(1.003g)のアセトン(10m1)溶液に、4N塩化水素-酢酸エチル溶液を加え、結晶化させることにより、表題化合物(<math>1.073g、収率 93%)を得た(表2参照)。

実施例3~87

実施例3~87の化合物を対応する化合物から実施例1、実施例1、又は実施例2と同様にして製造した(表3~45参照)。

実施例88

N-〔2-ヒドロキシー4-(4-メチルアミノブチル) ベンソイル〕-L-フェニルアラニンメチルエステル・塩酸塩

工程 3) 4-(4-(tert-プトキシカルボニルメチルアミノ) プチル) - 2-ヒドロキシ安息香酸メチルエステル (<math>VI)

(1) 4-(4-(tert-プトキシカルボニルメチルアミノ) -1-プテニル] -2-ヒドロキシ安息香酸メチルエステル

常法により得られた〔(3-ヒドロキシー4-メトキシカルボニル)ベンジル〕 トリフェニルホスホニウムブロマイド(2.537g)のTHF(25m1)溶 液に、アルゴン気流下、0 C でリチウムジイソプロピルアミドの2MTHF 溶液 (5.5m1)を滴下し、30分間攪拌した。次いで、この溶液に、常法により 得られた4-(tert-プトキシカルボニルメチルアミノ)プチルアルデヒド

(1. 123g)のTHF(10m1)溶液を0℃でゆっくり滴下し、室温下、4時間攪拌した。飽和塩化アンモニウム水溶液(1m1)をゆっくり加え、減圧濃縮し、トルエンにて抽出した。この抽出液を10%クエン酸水溶液及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=4/1 v/v)で精製することにより、表題化合物(0.850g、収率51%)を得た。

(2) 4-(4-(tert-プトキシカルボニルメチルアミノ) プチル) <math>-2 ーヒドロキシ安息香酸メチルエステル

上記(1)で得られた化合物(0.845g)のメタノール(20m1)溶液を10%パラジウム炭素(0.106g)存在下、水素気流下で激しく攪拌した。セライト濾過後、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: ヘキサン/酢酸エチル=4/1 v/v)で精製することにより、表題化合物(0.810g、収率95%)を得た。

工程 4) 4 - (5 - (tert-プトキシカルボニルメチルアミノ) プチル) - 2 - ヒドロキシ安息香酸 (<math>VII)

上記工程 3) で得られた化合物 (0.806g) を上記実施例 1 の工程 4)と同様の反応に付すことにより、表題化合物 (0.760g) 収率 98%)を得た。工程 5) N-[2-ヒドロキシ-4-(4-tert-プトキシカルボニルメチルアミノプチル) ベンゾイル <math>]-L-フェニルアラニンメチルエステル (I')

上記工程 4) で得られた化合物 (0. 753g) 及びL-フェニルアラニンメ チルエステル・塩酸塩 (0. 552g) を上記実施例 1 の工程 5) と同様の反応 に付すことにより、表題化合物 (0. 714g、収率 63%) を得た。

工程 6) N-(2-ヒドロキシ-4-(4-メチルアミノブチル) ベンゾイル) -L-フェニルアラニンメチルエステル・塩酸塩(<math>I)

上記工程5)で得られた化合物(0.128g)を上記実施例1の工程6)と同様の反応に付すことにより、表題化合物(0.087g、収率78%)を得た(表46参照)。

実施例89~90

実施例89~90の化合物を対応する化合物から実施例88と同様にして製造した(表46~47参照)。

実施例 9 1

N- (3, 5-ジクロロ-2-ヒドロキシ-4-(5-メチルアミノペンチル) ベンゾイル)-L-フェニルアラニンメチルエステル・塩酸塩

上記実施例 8 8 の工程 3)と同様にして得られた 4 - 〔5 - (tert-プトキシカルボニルメチルアミノ)ペンチル) - 2 - ヒドロキシ安息香酸メチルエステル(3.95g)のアセトニトリル(35 m 1)溶液に、室温下、塩化スルフリル(9 m 1)を加え、60℃で1時間加熱攪拌した。反応液にトルエンを加え、減圧濃縮し、残渣にジクロロメタン(85 m 1)を加えた。次いで、この溶液に、トリエチルアミン(7.85 m 1)及びジ炭酸ージーtertープチル(4.9g)を加え、室温下、1時間攪拌した。反応液に水(50 m 1)を加え、洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=4/1 v/v)で精製することにより、表題化合物(2.319g、収率50%)を得た。

工程 4) 4 - (5 - (t e r t - プトキシカルボニルメチルアミノ) ペンチル <math>-3, 5 - ジクロロ - 2 - ヒドロキシ安息香酸 (VII)

上記工程11)で得られた化合物(2.319g)を上記実施例1の工程4) と同様の反応に付すことにより、表題化合物(1.994g、収率89%)を得た。

工程 5) N- 〔4-(5-tert-プトキシカルボニルメチルアミノペンチル) - 3 , 5-ジクロロー2-ヒドロキシベンゾイル〕 -L-フェニルアラニンメチルエステル(I')

上記工程4)で得られた化合物(2.874g)及びレーフェニルアラニンメ

チルエステル・塩酸塩(1.522g)を上記実施例1の工程5)と同様の反応に付すことにより、表題化合物(3.441g、収率86%)を得た。

工程 6) N-(3,5-ジクロロ-2-ヒドロキシ-4-(5-メチルアミノペンチル) ベンゾイル<math>)-L-フェニルアラニンメチルエステル・塩酸塩(<math>I)

上記工程 5) で得られた化合物 (3. 426g) を上記実施例 1 の工程 6) と同様の反応に付すことにより、表題化合物 (2. 525g、収率 83%) を得た (表 48参照)。

実施例92~104

実施例 9~2~1~0~4 の化合物を対応する化合物から実施例 9~1 と同様にして製造した(表 4~8~5~4 参照)。

実施例105

N-(2-ベンゾイルオキシー3,5-ジクロロー4-(4-メチルアミノプトキシ)ベンゾイル<math>)-L-フェニルアラニンメチルエステル・塩酸塩 工程12)N-(2-ベンゾイルオキシー3,5-ジクロロー4-(4-tert-プトキシカルボニルメチルアミノプトキシ)ベンゾイル<math>)-L-フェニルアラニンメチルエステル(I')

上記実施例1の工程5)で得られた化合物(212mg)のジクロロメタン(3m1)溶液に、ピリジン(60 μ 1)及び塩化ベンゾイル(80 μ 1)を室温下に加え、30分間攪拌した。反応液に水(5m1)加え、酢酸エチルで抽出した。有機層を10%クエン酸水溶液、飽和重曹水、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1 ν/ν)で精製することにより、表題化合物(224mg、収率95%)を得た。

工程 6) N - (2-ベンゾイルオキシー <math>3 , 5-ジクロロー 4-(4-メチルアミノブトキシ) ベンゾイル <math>) - L-フェニルアラニンメチルエステル・塩酸塩(<math>I)

上記工程12)で得られた化合物(224mg)を用いて、上記実施例1の

工程 6) と同様の反応を行い、表題化合物(159mg、収率 83%)を得た(表55参照)。

実施例106~125

実施例106~125の化合物を対応する化合物から実施例105と同様にして製造した(表55~65参照)。

実施例126

N-〔3, 5-ジクロロー2-ヒドロキシー4-(4-メチルアミノプトキシ) ベンゾイル〕-L-フェニルアラニン・塩酸塩

工程 6) N- (3, 5-ジクロロー 2-ヒドロキシー 4- (4-メチルアミノブトキシ) ベンゾイル) - L-フェニルアラニン・塩酸塩 (I)

上記実施例1の工程5)と同様にして得られたN-(3,5-ジクロロ-2-ヒドロキシー4-(4-tert-プトキシカルボニルメチルアミノプトキシ)ベンゾイルN-(4-tert-プトキシカルボニルメチルアミノプトキシ)のジクロロメタンN-(4-tert-プトリフルオロ酢酸(4-m1)を室温下に加えて、<math>N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)でで、N-(4-tert-N)で、N-(

実施例127~135

実施例127~135の化合物を対応する化合物から実施例126と同様にして製造した(表66~70参照)。

実施例136

N-(3,5-ジクロロ-2-ヒドロキシ-4-(4-メチルアミノプチルアミノ) ベンゾイル<math>)-L-フェニルアラニンメチルエステル・二塩酸塩

工程16)N-(2-ヒドロキシ-4-(4-tert-プトキシカルボニルメチルアミノプチルアミノ) ベンゾイル<math>]-L-フェニルアラニンメチルエステル (<math>I')

上記実施例1'の工程13)と同様にして得られたN- ((4-アミノ-2-

ヒドロキシ)ベンゾイル〕-L-フェニルアラニンメチルエステル(1.11g)及び4-(tert-ブトキシカルボニルメチルアミノ)-1-プチルアルデヒド(711mg)のメタノール(20m1)溶液を室温下、アルゴン気流下、4時間攪拌した。この反応液に10%パラジウム炭素(200mg)を加え、常圧下、水素ガスにて接触還元を行った。4時間後、反応液を濾過し、濾液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/2 v/v)で精製することにより、表題化合物(900mg、収率51%)を得た。

工程1 1)N-(3,5-ジクロロ-2-ヒドロキシ-4-(4-tert-プトキシカルボニルメチルアミノプチルアミノ) ベンゾイル)-L-フェニルアラニンメチルエステル(I')

工程 6) N- (3, 5-ジクロロ-2-ヒドロキシ-4-(4-メチルアミノブチルアミノ) ベンゾイル<math>) - L - フェニルアラニンメチルエステル・二塩酸塩 (1)

上記工程11)で得られた化合物(280mg)のクロロホルム(5m1)溶液に、トリフルオロ酢酸(2.5m1)を室温下に加え、20分間攪拌した。反応液にトルエンを加え、減圧濃縮した。残渣に1M塩化水素-エーテル溶液を加え、結晶化させることにより、表題化合物(218mg、収率82%)を得た(表71参照)。

実施例137

実施例137の化合物を対応する化合物から実施例136と同様にして製造し

た(表71参照)。

実施例138

N- (3,5-ジクロロー2-ヒドロキシー4-(4-アミノプトキシ)ベン <math>(3,5-3) (3

上記実施例1の工程4) と同様にして得られた3,5-ジクロロ-2-ヒドロキシ-4-(4-tert-プトキシカルボニルアミノプトキシ) 安息香酸(347mg) 及びL-フェニルアラニルアミノベンゼン・塩酸塩(268mg) を用いて、上記実施例1の工程5) 及び工程6) と同様にして表題化合物(284mg、収率58%)を得た(表72参照)。

実施例139~142

実施例139~142の化合物を対応する化合物から実施例138と同様にして製造した(表72~74参照)。

実施例 1 4 3

N-(3,5-ジクロロ-2-ヒドロキシ-4-(4-メチルアミノプトキシ) ベンゾイル)-L-フェニルアラニルヒドロキシアミド

工程 5) N- 〔3, 5-ジクロロー 2-ヒドロキシー 4- (4-ベンジルオキシカルボニルメチルアミノプトキシ)ベンゾイル〕 - L-フェニルアラニル-O- ベンジルヒドロキシアミド (I')

上記実施例1の工程4) と同様にして得られた3,5-ジクロロ-2-ヒドロキシ-4-(4-ベンジルオキシカルボニルアミノブトキシ) 安息香酸(237mg) 及びL-フェニルアラニル-O-ベンジルヒドロキシアミド・塩酸塩(203mg) を用いて、上記実施例1の工程5) と同様にして表題化合物(325mg、収率59%)を得た。

工程 6) N-[3, 5-ジクロロ-2-ヒドロキシ-4-(4-メチルアミノブトキシ) ベンゾイル] <math>-L-フェニルアラニルヒドロキシアミド(I)

上記工程 5) で得られた化合物(210mg)のメタノール(5m1)溶液に、水酸化パラジウム(42mg)を加え、常圧下、水素ガスにて接触還元を行った。

12時間後、反応液を濾過し、濾液を減圧濃縮した。残渣にメタノールーエーテルを加え、結晶化させることにより表題化合物(188mg、収率62%)を得た(表74参照)。

実施例 1 4 4

N-(4-(4-r))-3, 5-ジクロロ-2-ヒドロキシベン ゾイル)-1-(3-メチル-1, 2, 4-オキサジアゾール-5-イル)-2-フェニルエチルアミン・塩酸塩

上記実施例1の工程4) と同様にして得られた3,5-ジクロロ-2-ヒドロキシ-4-(4-tert-プトキシカルボニルアミノプトキシ) 安息香酸(394mg)及び1-(3-メチル-1,2,4-オキサジアゾール-5-イル)-2-フェニルエチルアミン・塩酸塩(240mg)を用いて、上記実施例1の工程5)及び工程6)と同様にして表題化合物(299mg、収率58%)を得た(表75参照)。

実施例145

N- (4-(4-アミノプトキシ)-3, 5-ジクロロ-2-ヒドロキシベン プイル)-L-フェニルアラニノール・塩酸塩

上記実施例1の工程4)と同様にして得られた3,5-ジクロロー2ーヒドロキシー4ー(4ーtertープトキシカルボニルアミノプトキシ)安息香酸(394mg)及びO-ベンジルーL-フェニルアラニノール(242mg)を用いて、上記実施例1の工程5)、実施例99の工程6)及び実施例1の工程6)と同様にして表題化合物(190mg、収率42%)を得た(表75参照)。

実施例146

(2S) - 3 - フェニル - 2 - [5 - (4 - アミノプトキシ) - 3 - ヒドロキシ - 2 - ナフトイルアミノ] プロピオン酸メチルエステル・塩酸塩

工程13) (2S) -3-フェニル-2-(3, 5-ジヒドロキシ-2-ナフト イルアミノ) プロピオン酸メチルエステル (XVII)

3, 5-ジヒドロキシー2-ナフト工酸(4.08g)、L-フェニルアラニ

ンメチルエステル・塩酸塩(4.74g)、WSC・HC1(4.22g)、HOBT(2.97g)及びN-メチルモルホリン(2.41m1)のDMF(20m1)溶液を、室温下、16時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を10%クエン酸水溶液、水、飽和重曹水、水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=1/1v/v)で精製することにより表題化合物(4.42g、収率61%)を得た。

工程14) (2S) - 3 - 7ェニル-2 - (5 - (4 - t e r t - プトキシカル ボニルアミノプトキシ) - 3 - ヒドロキシ-2 - ナフトイルアミノ) プロピオン酸メチルエステル (<math>I')

上記工程13)で得られた化合物(1.83g)、トリフェニルホスフィン(1.31g)及び4-tert-プトキシカルボニルアミノプチルアルコール(473mg)のTHF(25m1)溶液に、室温下、アゾジカルボン酸ジイソプロピル(0.98m1)を滴下した。室温下、16時間後、反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=2/1 v/v)で精製することにより表題化合物(375mg、収率30%)を得た。

工程 6) (2S) -3-フェニル-2-(5-(4-アミノブトキシ) -3-ヒドロキシ-2-ナフトイルアミノ) プロピオン酸メチルエステル・塩酸塩(I) 上記工程 14) で得られた化合物(375mg)のTHF(5m1)溶液に、4N塩化水素-ジオキサン溶液(5m1)を加え、室温下、3時間攪拌し、減圧濃縮した。残渣にエーテルを加え、結晶化させることにより表題化合物(187mg、収率57%)を得た(表76参照)。

実施例147

N-〔4-〔4-(4-メチルアミノプトキシ)フェニル)ベンゾイル)-L-フェニルアラニンエチルエステル・塩酸塩

工程13)4-(4-ヒドロキシフェニル)ベンプイルーL-フェニルアラニン

エチルエステル (XVII)

4-(4-ヒドロキシフェニル)安息香酸(3.0g)、L-フェニルアラニンエチルエステル・塩酸塩(3.38g)のDMF(30m1)溶液に、WSC・HC1(2.7g)、HOBT(1.89g)及びトリエチルアミン(2m1)を加え、室温下、14時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を10%クエン酸水溶液、水、飽和重曹水、水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮することにより表題化合物の粗生成物を得た。

工程15) N-[4-[4-(4-tert-プトキシカルボニルメチルアミノプトキシ) フェニル] ベンゾイル]-L-フェニルアラニンエチルエステル(<math>I')

上記工程13)で得られた租生成物のDMF(30m1)溶液に、4-(tert-プトキシカルボニルメチルアミノ)プチルプロマイド(4.46g)及び炭酸カリウム(4.65g)を加え、室温下、14時間攪拌した。反応液に酢酸エチルを加え、水、10%クエン酸水溶液及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。有機層を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=3/1 v/v)で精製することにより表題化合物(967mg、収率10%)を得た。

上記工程14)で得られた化合物(140mg)のTHF(2m1)溶液に、4N塩化水素-ジオキサン溶液(2m1)を加え、室温下、4時間攪拌し、減圧濃縮した。残渣にエーテルを加え、結晶化させることにより表題化合物(71mg、収率58%)を得た(表76参照)。

実施例148

(2S) -3-フェニル-2-〔4-〔5-(4-メチルアミノブチル)-1, 2, 4-オキサジアゾール-3-イル〕-2-ヒドロキシベンゾイルアミノ〕プロピオン酸エチルエステル・塩酸塩

4-tert-プトキシカルボニルメチルアミノ吉草酸(255mg)、メチル 2-ヒドロキシベンゾエート-4-カルボキサミドオキシム(210mg)、WSC・HC1(211mg)及び4-ジメチルアミノピリジン(DMAP)(135mg)のジクロロメタン(5m1)溶液を、室温下、16時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を10%クエン酸水溶液、水、飽和重曹水、水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=1/1 v/v)で精製することにより表題化合物(229mg、収率54%)を得た。

工程 $1\ 0$)2-ヒドロキシー4-[5-(4-tert-プトキシカルボニルメチルアミノプチル)-1, 2, 4-オキサジアゾール-3-4-4ル) 安息香酸メチル ($V\ I'$)

上記工程 9)で得られた化合物(2 2 4 m g)のトルエン(2 0 m 1)溶液を、 1 6 時間加熱還流した。放冷後、反応液を減圧濃縮し、残渣をシリカゲルカラム クロマトグラフィー (展開溶媒: ヘキサン/酢酸エチル= 3 / 1 v/v) で精製することにより表題化合物(1 4 8 m g、収率 6 9 %)を得た。

工程 4) 2 ーヒドロキシー 4 ー 〔5 ー (4 ー t e r t ープトキシカルボニルメチルアミノプチル) -1 , 2 , 4 ーオキサジアゾール -3 ーイル〕安息香酸(V I I)

上記工程10)で得られた化合物(146mg)のエタノール(10m1)溶液に、1M水酸化リチウム水溶液(5m1)を加え、2時間加熱還流した。反応液を減圧濃縮し、残渣に10%クエン酸水溶液を加え、酢酸エチルで抽出した。有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機層を減圧濃縮することにより表題化合物(140mg、収率99%)を得た。

工程5)(2S)-3-フェニル-2-〔4-〔5-(4-tert-プトキシ

カルボニルメチルアミノプチル) -1, 2, 4-オキサジアゾール-3-イル] -2-ヒドロキシベンゾイルアミノ] プロピオン酸エチルエステル(I')

上記工程 4)で得られた化合物(140mg)、L-フェニルアラニンエチル エステル・塩酸塩(92mg)、WSC・HC1(77mg)、HOBT(54mg) 及びトリエチルアミン(0.056m1)のDMF(1.5m1)溶液を、室温下、15時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を<math>10%02エン酸水溶液、水、飽和重曹水、水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: (174mg)0米85%)を得た。

工程 6) (2S) - 3 - 7ェニル $- 2 - (4 - (5 - (4 - \cancel{4} + \cancel{4} +$

上記工程5)で得られた化合物(172mg)のTHF(2m1)溶液に、4 N塩化水素-ジオキサン(2m1)溶液を加え、室温下、3時間攪拌した。反応液を減圧濃縮し、残渣にエーテルを加え、結晶化させることにより表題化合物(133mg、収率87%)を得た(表77参照)。

実施例149~151

実施例149~151の化合物を対応する化合物から実施例148と同様にして製造した(表77~78参照)。

実施例152

(2S)-2-[2-(3-メチルアミノプロピルスルファニル)ベンゾオキ サゾール-5-カルボニルアミノ)-3-フェニルプロピオン酸エチルエステル・ 塩酸塩

工程2) 2-(3-tert-プトキシカルボニルメチルアミノプロピルスルファニル) <math>-5-エトキシカルボニルベンゾオキサゾール(VI)

5-エトキシカルボニル-2-メルカプトベンゾオキサゾール(670mg)

のDMF溶液に、氷冷下、60%油状水素化ナトリウム(126mg)を加え、30分間攪拌した。反応液に3-tert-プトキシカルボニルメチルアミノプロピルクロライド(623mg)のDMF溶液を加え、60℃で18時間加熱攪拌した。反応液に酢酸エチルを加え、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機層を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:-キサン/酢酸エチル=4/1 v/v) で精製することにより表題化合物(594mg、収率50%)を得た。

工程 4) 2-(3-tert-プトキシカルボニルメチルアミノプロピルスルファニル) <math>-5-カルボキシベンプオキサゾール (VII)

上記工程2)で得られた化合物(562mg)のエタノール(2m1)-THF(2m1)混合溶液に、1M水酸化リチウム水溶液を加え、60℃で1時間加熱攪拌した。反応液を減圧濃縮し、残渣に酢酸エチル及び10%クエン酸水溶液を加えた。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮することで表題化合物(465mg、収率98%)を得た。

上記工程 4)で得られた化合物(4 6 5 m g)、L-フェニルアラニンエチルエステル・塩酸塩(3 0 2 m g)、WSC・HC1(2 5 0 m g)、HOBT(176 m g)及びトリエチルアミン(0. 18 m 1)のDMF溶液を、室温下、14時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を1 0 %クエン酸水溶液、水、飽和重曹水、水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=4/1 v/v)で精製することにより表題化合物(2 4 0 m g、収率 4 0 %)を得た。

工程 6) (2S) -2- [2-(3-メチルアミノプロピルスルファニル) ベン ゾオキサゾール-5-カルボニルアミノ] -3-フェニルプロピオン酸エチルエ

ステル・塩酸塩(I)

上記工程5)で得られた化合物(231mg)のTHF(5m1)溶液に、4 N塩化水素-ジオキサン(5m1)溶液を加え、室温下、4時間攪拌した。反応液を減圧濃縮し、エーテルを加え、結晶化させることにより表題化合物(136mg、収率67%)を得た(表79参照)。

実施例 1 5 3 ~ 1 5 4

実施例153~154の化合物を対応する化合物から実施例152と同様にして製造した(表79~80参照)。

実施例 1 5 5

N-(3,5-ジクロロ-2-ヒドロキシ-4-(3-ピペラジニルプロピオニルオキシ)ベンゾイル<math>)-L-フェニルアラニンエチルエステル・二塩酸塩 工程 <math>18)N-(3,5-ジクロロ-2-ヒドロキシ-4-(3-(4-tert-1)) オープトキシカルボニルピペラジニル)プロピオニルオキシ) ベンゾイル)-L-フェニルアラニンエチルエステル(I')

上記実施例 1'の工程 1 3)と同様にして得られたN-(3,5-ジクロロー2,4-ジヒドロキシベンゾイル)-L-フェニルアラニンエチルエステル(3 9 8 m g)、3-(4-tert-ブトキシカルボニルピペラジニル)プロピオン酸(2 5 8 m g)及び 4-ジメチルアミノピリジン(1 4 7 m g)のDMF(4 m 1)溶液に、WSC・HC1(2 3 0 m g)を氷冷下に加え、室温で 2 時間攪拌した。反応液に酢酸エチル(4 0 m 1)を加え、水、飽和重曹水、水、飽和食塩水で順次洗浄した。反応液を無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン=1/1 v/v)で精製することにより表題化合物(2 5 8 m g、収率 4 0 %)を得た。

工程 6) N- (3, 5-ジクロロ-2-ヒドロキシ-4-(3-ピペラジニルプロピオニルオキシ) ベンゾイル) -L-フェニルアラニンエチルエステル・二塩酸塩(<math>I)

上記工程18)で得られた化合物(258mg)のジクロロメタン(2m1)溶液に、トリフルオロ酢酸(2m1)を加え、室温で10分間攪拌した。溶媒を減圧留去した後、1M塩化水素-エーテル(3m1)を加え、結晶化させることにより表題化合物(173mg、収率70%)を得た(表81参照)。

実施例156~158

実施例156~158の化合物を対応する化合物から実施例155と同様にして製造した(表81~82参照)。

上記実施例の化合物の構造式及び物理的性状を表2~表82に示す。

表中、Me はメチル基、Et はエチル基、Ph はフェニル基、Bn はベンジル基、Ac はアセチル基を示す。

	元素分析(%)	C ₂₂ H ₂₆ Cl ₂ N ₂ O ₅ ·HCl 1, 52. 24 H, 5. 38 N, 5. 53 逆位值 C, 52. 05 H, 5. 37 N, 5. 51	C2 6H3 1Cl 2N3 06 • 2HCl 計算値 C, 50. 27 H, 5. 57 N, 7. 03 測定値 C, 50. 19 H, 5. 74 N, 6. 93
	FAB-MS	469 (free base, MH ⁺)	524 (free base, MH*)
	(cm ⁻¹)	XBr 3422 2953 1742 1637 1219	KBr 3406 2957 2372 1736 1642 1458
表2	'H-NAIR & (ppm), 300AUfz	DMSO-d ₈ 1. 82(4H, b ₅) 2. 56(3H, t, J=5. 4Hz) 2. 96(2H, b ₅) 3. 04-3. 28(2H, m) 3. 66(3H, s) 4. 05(2H, b ₅) 4. 72-4. 82(1H, m) 7. 18-7. 30(5H, m) 8. 17(1H, s) 8. 48(2H, b ₅) 9. 44(1H, b ₅) 13. 35(1H, s)	DMSO-de 1. 14(3H, t, J=6. 0Hz) 2. 81(3H, s) 3. 0-3. 60(10H, m) 4. 11(2H, q, J=6. 0Hz) 4. 34(2H, brs) 4. 68-4. 78(1H, m) 7. 19-7. 29(5H, m) 8. 22(1H, s) 9. 46(1H, d, J=7. 0Hz) 13. 40(1H, drs)
	化合物	Men-(CH ₂), 4-0 — COMH — COOME H CI -HCI	Me-N N-(CH ₂) ₂ -0-O - CONH - C00Et
	実施例	_	87

7 9

•		·	
•	元素分析(%)		
	FAB-MS	372 (free base, MH*)	386 (free base, MH*)
	(GM ⁻¹)	3383 1739 1632 1634 1634 1498	3378 3378 1634 1534 1498
表3	'H-NAR & (ppm), 300MHz	DMSO-de 1. 86-2. 04(2H, m) 2. 82-2. 92(2H, m) 3. 02-3. 18(2H, m) 3. 64(3H, s) 4. 06-4. 17(2H, m) 4. 72-4. 84(1H, m) 6. 42-6. 52(2H, m) 7. 16-7. 34(5H, m) 7. 65(1H, d. J=8. 5Hz) 7. 96(3H, brs) 8. 21(1H, d. J=7. 4Hz) 10. 24(1H, s)	DMSO-de 1. 46-1. 73(4H, m) 2. 63-2. 86(2H, m) 3. 00-3. 18(2H, m) 3. 64(3H, s) 3. 92-4. 11(2H, m) 4. 78-4. 89(1H, m) 6. 43-6. 53(2H, m) 7. 10-7. 34(5H, m) 7. 75(1H, d. J=8. 5Hz) 7. 82-8. 04(3H, brs) 8. 22(1H, d. J=7. 0Hz) 10. 24(1H, s)
	化合物	H2N-(CH2)3-0-(ONH - COOMe	H2N-(CH2)4-0-OM-CONH -COOMe
	実施例	က	4

. 8 0

FAB-AIS KBr 1630 1534 1201 1H-NMR & (ppm), 300MHz 1. 43-1. 54 (4H, m)
2. 62-2. 78 (2H, m)
3. 02-3. 21 (2H, m)
3. 91-4. 08 (2H, m)
4. 82-4. 94 (1H, m)
6. 42-6. 52 (2H, m)
7. 08-7. 18 (2H, m)
7. 20-7. 36 (3H, m)
7. 78 (1H, d. J=8. 4H
7. 80-7. 94 (3H, brs
8. 24 (1H, d. J=7. 3H
10. 25 (1H, s) 表4 数 **₫**□ श्र 옾 വ 9 実施例

8 1

	元素分析(%)		
	FAB-MS	435 (free base, MH+)	449 (free base, MH ⁺)
	IR (cm ⁻¹)	Neat 2954 1728 1642 1548 1548 1497	Neat 2958 1773 1641 1588 1547 1497
表5	'H-NNR & (ppm), 300MHz	DMSO-d ₆ 1. 72-1. 88(4H, m) 2. 48-2. 57(3H, m) 2. 90-3. 01(2H, m) 3. 10-3. 25(2H, m) 3. 66(3H, s) 4. 16(2H, t. J=6flz) 4. 69-4. 76(1H, m) 6. 78(1H, d. J=9flz) 7. 16-7. 32(5H, m) 7. 94(1H, d. J=9flz) 8. 70(2H, brs) 9. 26(1H, d. J=9Hz) 13. 35(1H, s)	DMS0-d ₆ 1. 14(3H, t, J=6Hz) 1. 72-1. 88(4H, m) 2. 49-2. 55(3H, m) 2. 90-3. 02(2H, m) 3. 10-3. 24(2H, m) 4. 11(2H, q, J=6Hz) 4. 65-4. 73(1H, m) 6. 79(1H, d, J=9Hz) 7. 17-7. 32(5H, m) 7. 95(1H, d, J=9Hz) 8. 09(2H, brs) 9. 23(1H, d, J=6Hz) 13. 37(1H, s)
	化合物	Men-(CH ₂), -0 - CONH - COOMe HC1	MeN-(CH ₂), -0 — CONH — COOBt
	実施例	7	∞

8 2

PCT/JP96/02305

FAB-MS (<u>)</u> ≅ KBr 2950 2783 2783 11745 11745 11869 11869 1264 1H-NAIR & (ppm), 300AIHz 表6 Ø **₫**□ श्र 01 6 実施例

8 3

WO 97/08133

C2.0Hz2C12N2Os·HC1 計算值 C, 50.28 H, 4.85 N, 5.86 浏定值 C, 50.19 H, 4.69 N, 5.74 C₂1H₂,Cl₂N₂O₅·HCl 計算值 C, 51. 29 H, 5. 12 N, 5. 70 测定值 C, 50. 78 H, 5. 17 N, 5. 58 441 (free base, MH*) 455 | (free base, , FAB-NS ≅<u>_</u> (⊑-1) H-NAIR & (ppm), 300AIHz J=14. 0, 9. 0Hz) 3. 24(1H, dd, I=14. 0, 6. 0Hz) 表7 3. 66(3H, 4. 00-1, 4. 00-1, 15-7, 15-7, 15-1, 15-1, 15-1, 15-1, 15-1, 13, 35(1H, 13, 35(Ę 敿 **₫**□ क \Box ÷ 実施例 2

8 4

٠.			
	元素分析(%)		
	FAB-MS	469 (MH+)	(free base, MH⁺)
	IR (cm ⁻¹)	KBr 3423 2951 1743 1571 1571 1534 1205 1065	
表8	'H-NNR & (ppm), 300MHz	DMSO-de 1. 63-1. 95(4H, m) 2. 55(3H, s) 2. 92-3. 07(4H, m) 3. 57(3H, s) 3. 88(2H, t. J=6. 0Hz) 4. 65-4. 71(1H, m) 7. 18-7. 30(6H, m) 7. 50(1H, s) 8. 41(1H, brds) 12. 25-12. 27(1H, m)	DMSO-d ₆ 1. 84(4H. s) 2. 54(3H. s) 2. 90-3. 25(4H. m) 3. 58(3H. s) 4. 02(2H. m) 4. 76(1H. m) 7. 20-7. 32(5H. m) 7. 41(1H. m) 8. 75(1H. d, J=9Hz)
	化合物	C1 OH C00Me H C1 C00Me	$\begin{array}{c} \text{CI} & \text{OMe} \\ \text{MeN-(CH_2), 4-0} & \text{COMH} \\ \text{H} \\ \text{CI} \\ \text{-HCI} \end{array}$
·	実施例	13	14

8 5

	元素分析(%)	C ₂ 2H ₂ eCl ₂ N ₂ O ₆ ·HCl 計算値 C, 50. 64 H, 5. 22 N, 5. 37 測定値 C, 49. 62 N, 5. 46
	FAB-MS	485 (free base, MI+)
	[R (cm ⁻¹)	1640 1640 1640 1640 1640 1640 1640 1640
表9	'H-NAR & (ppm), 300AHz	DMSO-de 1. 79-1. 89(4H, m) 2. 55(2H, t. J=6. 0Hz) 2. 85-3. 00(2H, m) 3. 06(1H, dd, J=15. 6, 8. 4Hz) 3. 57(3H, s) 4. 01-4. 11(1H, m) 4. 50-4. 53(2H, m) 4. 59-4. 71(1H, m) 6. 66(2H, d, J=9. 0Hz) 7. 06(2H, d, J=6. 0Hz) 8. 20(1H, brs) 8. 20(1H, brs) 9. 26(1H, s) 9. 26(1H, s) 9. 26(1H, s) 9. 40(1H, d, J=4. 0Hz) 13. 37(1H, s)
•	化合物	MeN-(CH ₂) ₄ -0-CONH COOMe H CI -HCI
	実施例	15

8 6

_			
	元素分析(%)	C ₂₃ H ₂₈ Cl ₂ N ₂ O ₅ ·HCl 計算値 C, 53.14 H, 5.62 N, 5.39 逆定値 C, 52.54 H, 5.50 N, 5.40	
	FAB-MS	483 (free base, MH*)	483 (NH+)
	[R (cm ⁻¹)	KBr 2954 1747 1584 1584 1354 1354	Neat 2952 2360 1743 1633 1437
表10	1H-NAIR & (ppm), 300AHz	DMSO-ds 1. 20(3H, t, J=6. 0Hz) 1. 82-2. 88(4H, m) 2. 92-2. 95(4H, m) 3. 09-3. 33(2H, m) 3. 66(3H, s) 4. 03-4. 07(2H, m) 4. 71-4. 79(1H, m) 7. 19-7. 29(5H, m) 8. 20(1H, s) 8. 58-8. 76(2H, m) 9. 48(1H, d, J=6. 0Hz) 13. 35(1H, s)	CDC13 1. 80-1. 91 (2H, m) 1. 95-2. 07 (2H, m) 2. 59 (6H, s) 2. 96-3. 13 (2H, m) 3. 18-3. 32 (2H, m) 3. 73 (3H, s) 3. 96-4. 07 (2H, m) 5. 15 (1H, q, J=6Hz) 7. 10-7. 30 (5H, m) 7. 85 (1H, s) 9. 97 (1H, brs)
	化合物	CI OH CH2),4-0-O-CONH COOME H CI -HCI	$Me_2N-(CH_2)$, $4-0$ OH $COOMe$
	実施例	16	11

8 7

	元素分析(%)	C23H28C12N2Os·HC1 計算値 C, 53.14 H, 5.62 N, 5.39 測定値 C, 53.24 H, 5.63 N, 5.34	C ₂₂ H _{2e} Cl ₂ N ₂ O ₅ ·HCl 計算値 C, 52.34 H, 5.19 N, 5.55 関定値 C, 51.62 H, 5.41 N, 5.48
表1.1	FAB-MS	483 (free base, MH*)	469 (free base, MH ⁺)
	. IR (cm ⁻¹)	Nea t 3241 2241 2671 1743 1640 1584 1461	KBr 2961 1722 1706 1643 1544 1459 1354 1216
	'H-NAR & (ppm), 300MHz	CDC13 1. 90-2. 01(2H, m) 2. 13-2. 25(2H, m) 2. 83(6H, s) 3. 13-3. 30(4H, m) 3. 81(3H, s) 4. 09(2H, t, J=6Hz) 5. 02(1H, q, J=7Hz) 7. 14-7. 43(7H, m) 7. 48(1H, s)	DMSO-d ₆ 1. 14(3H, t, J=6. 0Hz) 1. 70-1. 95(4H, m) 2. 80-2. 95(2H, m) 3. 05-3. 28(2H, m) 3. 95-4. 15(4H, m) 4. 60-4. 75(1H, m) 7. 18-7. 40(5H, m) 7. 91(3H, brs) 8. 21(1H, s) 9. 47(1H, d, J=6. 0Hz) 13. 36(1H, s)
	化合物	$Me_2N-(CH_2)_4-0 \longrightarrow CONH \longrightarrow COOMe$ $-HCI$	C1 OH Ph H ₂ N-(CH ₂) ₄ -0 — CONH — C00Et C1
	実施例	18	13

8 8

•	元素分析(%)	C23H2gCl2N2Og·HCl C,53.14 H, 5.62 N, 5.39 例定值 C,52.85 H, 5.24	
	FAB-MS	483 (free base, MH+)	483 (MI+)
	IR (cm ⁻¹)	KBr 3422 2959 1736 1447 1406 11333	
表12	'H-NAR & (ppm), 300MHz	DMSO-d ₆ 1. 20(3H, t, J=7Hz) 1. 81(4H, brs) 2. 55-3. 39(7H, m) 3. 96(2H, brs) 4. 01-4. 28(2. 3H, m) 5. 15(0. 7H, m) 6. 08(0. 3H, brs) 6. 63(0. 7H, brs) 6. 94-7. 39(5H, m) 7. 91(3H, brs) 10. 14(1H, brs)	CDC13 1. 16(3H, t, J=8Hz) 1. 50-1, 75(4H, m) 2. 38(3H, s) 2. 90-3, 05(2H, m) 3. 26(2H, dq, J=3, 12Hz) 3. 30-3, 45(2H, m) 4. 00-4, 10(2H, m) 5. 02-5, 10(1H, m) 7. 10-7, 15(2H, m) 7. 20-7, 30(3H, m) 8. 00(1H, s) 10, 76(1H, brs)
	化合物	CI OH Ph H ₂ N-(CH ₂) ₄ -0—CON — COOEt OI OH OH OI OH OH OH OI OH	C1 OH Ph MeN-(CH ₂) ₄ -0-C0NH C00Et H
	実施例	8	21

8 9

	元素分析(%)	C ₂₃ H ₂ sC ₁₂ N ₂ O ₆ ·HC ₁ C, 53.14 H, 5.62 N, 5.39 阅定值 C, 53.36 H, 5.71 N, 5.53	
	FAB-NS	483 (free base, MH*)	497 (MH+)
	IR (cm ⁻¹)	KBr 1740 1584 1352 1216	Neat 2956 1738 1634 1574 1538 1410
表13	'H-NNR & (ppm), 300MHz	DMSO-de 1. 14(3H, t, J=6. 0Hz) 1. 77-1. 91(4H, m) 2. 54(3H, t, J=6. 0Hz) 2. 89-3. 00(2H, m) 3. 13(1H, dd. J=9. 0, 15. 0Hz) 3. 22(1H, dd. J=6. 6, 15. 0Hz) 4. 00-4. 11(2H, m) 7. 00-4. 17(2H, m) 7. 18-7. 32(5H, m) 8. 21(1H, s) 8. 21(1H, s) 9. 48(1H, d, J=6. 9Hz) 13. 36(1H, s)	CDC13 1. 27(3H, t, J=7, 5Hz) 1. 82-2, 04(4H, m) 2. 55(6H, s) 2. 95-3, 11(2H, m) 3. 25(2H, d, J=4Hz) 3. 93-4, 04(2H, m) 4. 12-4, 22(2H, m) 5. 11-5, 18(1H, m) 7. 13-7, 30(5H, m) 7. 90(1H, s) 10. 31(1H, brs)
	化合物	MeN- $(CH_2)_4-0$ \longrightarrow $COOEt$ $HC1$	Me_2N - CH_2) ₄ -0 \longrightarrow $CONH$ $COOEt$
	実施例	প্র	R

9 0

4	
装门	

	化合物	'H-NMR & (ppm), 300MHz	IR (cm ⁻¹)	FAB-MS	元素分析(%)
CI	OH COOH	DMSO-de 1. 13(3H. t. J=7. 5Hz) 1. 76-1. 95(4H. m) 2. 74(6H. s) 3. 06-3. 24(4H. m) 4. 04-4. 14(4H. m) 4. 68-4. 75(1H. m) 7. 18-7. 29(5H. m) 8. 21(1H. s) 9. 54(1H. brs)	Neat 2956 1738 1639 1583 1461	497 (free base, MH*)	C12H2sC12N2Os·HC1 計算値 C, 53.99 H, 5.85 N, 5.25 砂定値 C, 54.11 H, 5.86 N, 5.27
CI -H2N-(CH2),6-0- -HCI	OH COOR	DMSO-de 1. 13(3H, t, J=6. 0Hz) 1. 30-1. 62(6H, m) 1. 65-1. 80(2H, m) 2. 80-2. 88(2H, m) 3. 03-3. 27(2H, m) 3. 98-4. 15(4H, m) 4. 60-4. 78(1H, m) 7. 10-7. 40(5H, m) 7. 78(3H, brs) 8. 19(1H, s) 9. 44(1H, d, J=6. 0Hz) 13. 35(1H, s)	KBr 1641 1585 1458 1219	497 (free base, MH+)	C24H30C12N2Os·HC1 計算値 C, 53.99 H, 5.85 N, 5.25 関定値 C, 52.75 H, 5.59 N, 4.72

	元素分析(%)	C2 s H 2 C L 2 N 2 O 6 · HC I a f t f f f f f f f f f f f f f f f f f	C ₂₃ H ₂₈ Cl ₂ N ₂ O ₅ -HCl 計算値 C, 53. 14 H, 5. 62 N, 5. 39 阅定値 C, 51. 51 H, 5. 41 N, 4. 99
	FAB-MS	(free base, MH+)	483 (free base, MH*)
	[R (cm ⁻¹)	KBr 3420 2936 1719 1543 1552 1219	73720 23820 23820 1717 1585 1585 1458
表15	'H-NNR & (ppm), 300MHz	DMSO-de 1. 13(3H, t. J=7. 1Hz) 1. 33-1. 36(4H, m) 1. 47-1. 58(4H, m) 1. 73-1. 83(2H, m) 2. 72-2. 82(2H, m) 3. 08-3. 26(2H, m) 4. 03(2H, t. J=6. 4Hz) 4. 11(2H, q. J=7. 1Hz) 4. 66-4. 73(1H, m) 7. 18-7. 29(5H, m) 7. 73-7. 84(3H, m) 8. 19(1H, s) 9. 45(1H, d. J=7. 1Hz) 13. 36(1H, s)	DMS0-de 1. 08-1. 10(3H, d, J=6. 0Hz) 1. 17-1. 19(3H, d, J=6. 0Hz) 1. 82(4H, brs) 2. 88(2H, brs) 3. 10-3. 30(2H, m) 4. 04(2H, brs) 4. 60-4. 90(2H, m) 7. 21-7. 30(5H, m) 7. 21-7. 30(5H, m) 8. 19(1H, s) 8. 19(1H, s) 9. 50(1H, brs) 13. 38(1H, brs)
	化合物	$H_2N-(CH_2)_7-0$ CI OH $COORH$ $COORH$ $COORH$	CI OH Ph
	実施例	56	12

9 2

တ	
_	
变	

元素分析(%)	C24H3。C12N2Os·HC1 計算值 C, 55. 99 H, 5. 25 测定值 C, 53. 22 H, 5. 21	C2.8H3.2C12N208·HC1 計算值 C, 54.80 H, 6.07 N, 5.11 测定值 C, 54.59 H, 6.06 N, 4.98
FAB-MS	497 (free base, NH*)	511 (free base, MH*)
IR (cm ⁻¹)	KBr 3385 2962 1721 1642 1542 1542 1355 1218	KBr 3360 2961 1740 1640 1584 1460
'H-NNR & (ppm), 300MHz	DMSO-d ₆ 0. 82(6H, d. J=6. 0Hz) 1. 74-1. 90(4H, m) 2. 80-2. 95(2H, m) 3. 10-3. 28(3H, m) 3. 86(2H, d. J=6. 0Hz) 4. 06-4. 10(2H, m) 4. 70-4. 78(1H, m) 7. 16-7. 32(5H, m) 7. 85(3H, brs) 8. 19(1H, s) 9. 45(1H, d. J=7. 0Hz) 13. 37(1H, s)	DMSO-d ₆ 0. 82(6H, d. J=6. 7Hz) 1. 75-1. 90(5H, m) 2. 54(3H, s) 2. 90-3. 30(4H, m) 3. 85(2H, d. J=7. 0Hz) 4. 00-4. 10(2H, m) 4. 60-4. 70(1H, m) 7. 15-7. 32(5H, m) 8. 19(1H, s) 8. 19(1H, s) 8. 67(2H, brs) 9. 50(1H, brs) 13. 38(1H, s)
化合物	$H_2N-(CH_2)_4-0$ — CONH — COO — +HC1	CI OH Ph Men-(CH2)4-0-0-00NH C00
実施例	82	53

	元素分析(%)	C24H30C12N2O6·HC1 計算値 C. 53.99 H. 5.85 N. 5.25 適定値 C, 53.83 H. 6.14 N, 5.07	C ₂ sH ₃ sCl ₂ N ₂ O ₅ ·HCl 計算値 C, 57.00 H, 6.66 N, 4.75 阅定値 C, 56.96 H, 6.83 N, 4.53
	FAB-MS	497 (free base, MH+)	553 (free base, MH*)
	IR (cm ⁻¹)	KBr 1640 1536 1153	787 2857 2857 2856 1741 1638 1541 1461 1461 1759 1259
表17	'H-NNR & (ppm), 300MHz	DMSO-d ₆ 1. 35(9H, s) 1. 70-1. 94(4H, m) 2. 77-3. 01(2H, m) 3. 05-3. 18(2H, m) 4. 52-4. 68(1H, m) 7. 15-7. 34(5H, m) 7. 80-8. 03(3H, brs) 8. 21(1H, s) 9. 40(1H, brs) 13. 44(1H, s)	DMSO-d ₆ 0.81(3H, t. J=6.0Hz) 1.12-1.24(8H, m) 1.44-1.54(2H, m) 1.78-1.89(4H, m) 2.53-2.57(3H, m) 2.91-2.98(2H, m) 3.10-3.25(2H, m) 3.10-3.25(2H, m) 4.05(4H, t. J=6.0Hz) 4.68-4.75(1H, m) 7.16-7.35(5H, m) 8.20(1H, s) 9.48(1H, d, J=9.0Hz) 13.40(1H, s)
	化合物	C1 OH Ph H2N-(CH2), -0 — C1 — C0NH — C000 X	MeN-(CH ₂) ₄ -0—CONH — COO(CH ₂) ₆ Me H -HCI
	実施例	30	31

	元素分析(%)		
	FAB-MS	497 (free base, MH ⁺)	511 (free base, MH*)
	IR (cm ⁻¹)	Neat 3348 1726 1644 1584 1456	Neat 3345 1721 1644 1584 1457
表18	'H-NAIR & (ppm), 300MHz	DMSO-de 1. 64-1. 87(4H, m) 3. 07-3. 27(4H, m) 3. 67(3H, s) 4. 05(2H, t, J=6Hz) 4. 71-4. 81(1H, m) 6. 90-7. 60(10H, m) 7. 73(1H, t, J=6Hz) 8. 20(1H, s) 9. 50(1H, d, J=9Hz) 13. 35(1H, s)	DMSO-ds 1. 14(3H, t, J=7, 5Hz) 1. 65-1. 86(4H, m) 3. 10-3. 25(4H, m) 4. 05(2H, t, J=6Hz) 4. 11(2H, q, J=6Hz) 4. 68-4. 77(1H, m) 6. 88-7. 60(10H, m) 7. 76(1H, t, J=6Hz) 8. 22(1H, s) 9. 49(1H, d, J=9Hz) 13. 36(1H, s)
	化合物	H ₂ N-C-N-(CH ₂) ₄ -0 - CONH - COOMe	CI OH Ph H ₂ N-C-N-(CH ₂), -0 — CONH — COOEt NH CI
	実施例	83	ಜ

0° -HC1	
元素分析 (%)	
FAB-MS 475 (free base, MH+) 485 (MH+)	
(国_1) (G_1) (G_1)	1209
表 1 9	7. 20-7. 28(7H, m) 7. 53-7. 69(1H, m)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

9 6

	张福 定	MeN(CH2)2 H 36 •HC1	Me2N(CH2)
	化合物	C1 OH Ph MeN(CH ₂) ₂ 0(CH ₂) ₂ -0 — C0NH — C00Me HC1	CI OH CH_2) $_2O(CH_2)$ $_2O$ CI $CONH$ $COONH$
表20	'H-NAR & (ppm), 300AHz	DMSO-d ₆ 2. 54-2. 58(3H, m) 3. 09-3. 22(4H, m) 3. 66(3H, s) 3. 78(2H, t, J=5. 2Hz) 3. 83(2H, t, J=4. 5Hz) 4. 22(2H, t, J=4. 5Hz) 4. 72-4. 80(1H, m) 7. 18-7. 29(5H, m) 8. 20(1H, s) 8. 20(1H, s) 9. 50(1H, d, J=6. 5Hz) 13. 36(1H, brds)	CDC13 2. 65(6H, s) 2. 96-3. 15(2H, m) 3. 19-3. 32(2H, m) 3. 74(3H, s) 3. 79-3. 86(4H, m) 4. 18(2H, t, J=6. 0Hz) 5. 09-5. 13(1H, m) 7. 12-7. 14(2H, m) 7. 21-7. 28(4H, m) 7. 76(1H, s) 9. 18(1H, brds)
	IR (cm ⁻¹)	KBr 2953 2749 1745 1639 1541 1349 1220	
	FAB-MS	485 (free base. MH*)	499 (NH+)
	元素分析(%)	Cr2H26Cl2N206·HCl 計算值 C, 50.64 H, 5.22 N, 5.37 阅定值 C, 50.64 H, 5.13 N, 5.27	·

9 7

			SHORE SICES
	FAB-MS	499 (NH+)	499 (free base, MH*)
	IR (cm ⁻¹)		KBr 1743 1743 1538 1540 1540 1260 1214
表2.1	'H-NAR & (ppm), 300AHz	CDC1 ₃ 1. 25(3H, t, J=7. 1Hz) 2. 53(3H, s) 2. 91-2. 95(2H, m) 3. 21-3. 25(2H, m) 3. 62-3. 66(2H, m) 3. 78-3. 82(2H, m) 4. 10-4. 18(4H, m) 5. 11-5. 17(1H, m) 7. 13-7. 26(6H, m) 8. 00(1H, s) 11. 18(1H, brds)	DMS0-de 1. 13(3H, t. J=7. 0Hz) 2. 56(3H, brds) 3. 10-3. 26(4H, m) 3. 76(2H, t. J=5. 0Hz) 3. 81-3. 85(2H, m) 4. 11(2H, q. J=7. 0Hz) 4. 21-4. 25(2H, m) 7. 19-7. 30(5H, m) 8. 22(1H, s) 8. 71(2H, m) 9. 55-9. 57(1H, m) 13. 38(1H, brds)
	化合物	C1 OH C00Et	C1 OH CH2) 20(CH2) 2-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -

9 8

88

実施例

æ

	元素分析(
	FAB-MS	499 (free base, MH*)	527 (free base, MH*)
	IR (cm ⁻¹)		
表2.2	¹H-NNR & (ppm), 300MHz	DMSO-de 1. 84(4H, brs) 2. 54(3H, s) 2. 95(2H, brs) 3. 09-3. 40(4H, m) 3. 33(3H, s) 3. 50-3. 60(2H, m) 4. 05(2H, brs) 4. 11(2H, t, J=6Hz) 4. 74-4. 84(1H, m) 7. 20-7. 30(5H, m) 8. 22(1H, s) 8. 22(1H, s) 9. 50(1H, s)	DMSO-ds 1.03(3H, t, J=6. ZHz) 1.83(4H, brs) 2.53(3H, t, J=5. 3Hz) 2.80-3.60(6H, m) 4.05(2H, m) 4.05(2H, m) 4.20(2H, m) 4.20(2H, m) 7.20-7.40(5H, m) 8.19(1H, s) 8.55-8.85(2H, m) 9.48(1H, br) 9.48(1H, br)
	化合物	CI OH COO(CH2), 4-0 — CONH — COO(CH2), 20H	C1 OH Ph MeN(CH ₂), 4-0—C0NH —C00(CH ₂), 20Et HC1
	実施例	40	41

9 9

	元素分析 (%)		·
	FAB-NS	555 (free base, NH+)	(free base, MH*)
	IR (cm ⁻¹)		KBr 3426 2360 1751 1640 1585 1178
2.3	1H-NAIR & (ppm), 300AIHz	DMSO-de 1. 72-1. 94(4H, m) 2. 55(3H, t. J=5. 5Hz) 2. 85-3. 02(2H, m) 3. 20(3H, s) 3. 04-3. 28(2H, m) 3. 30-3. 42(2H, m) 3. 30-4. 08(2H, m) 4. 77-4. 84(1H, m) 7. 18-7. 35(5H, m) 8. 20(1H, s) 8. 20(1H, s) 8. 67(2H, brs) 9. 47(1H, d. J=5. 0Hz) 13. 37(1H, s)	DMSO-d ₆ 1. 20(3H, t, J=7. 4Hz) 1. 80-1. 84(4H, m) 2. 82-2. 92(2H, m) 3. 14-3. 32(2H, m) 4. 00-4. 04(2H, m) 4. 12(2H, q, J=7. 4Hz) 4. 72(2H, s) 4. 72(2H, s) 4. 72(2H, s) 7. 16-7. 34(5H, m) 7. 16-7. 34(5H, m) 7. 91(2H, bs) 8. 21(1H, s) 9. 54(1H, d, J=8. 8Hz) 13. 33(1H, s)
表23	化合物	MeN(CH ₂) $_{40}$ — CONH — COO(CH ₂) $_{2}$ O(CH ₂) $_{2}$ OMe HC1	H ₂ N-(CH ₂), -0 — CONH — COO-CH ₂ -COOEt
	製産	54	43

1 0 0

	元素分析 (%)	C27H3.4C12N2O7·HC1 計算値 C, 53.52 H, 5.82 N, 4.62 高速値 C, 53.34 N, 4.39	C2.6H3.2C1.2N2O6.+HC1 計算補 C, 55.77 H, 5.94 N, 5.00 測定補 C, 55.37 H, 6.02 N, 4.86
	FAB-MS	569 (free base, MH+)	523 (free base, MH ⁺)
	IR (cm ⁻¹)	Neat 2971 1754 1640 1584 1460	MBr 3422 2939 1718 1641 1585 1458
表24	'H-NMR & (ppm), 300MHz	DMSO-de 1. 11 (9H, s) 1. 77-1. 91 (4H, m) 2. 54 (3H, s) 2. 75-3. 25 (4H, m) 4. 40-4. 80 (1H, m) 5. 76 (2H, s) 7. 20-7. 40 (5H, m) 8. 17 (1H, s) 8. 74 (2H, brs) 9. 55 (1H, brs) 13. 29 (1H, s)	DMSO-d ₆ 1. 15-1. 90(14H, m) 2. 82-2. 93(2H, m) 3. 10-3. 24(2H, m) 4. 01-4. 08(2H, m) 4. 65-4. 75(2H, m) 7. 18-7. 32(5H, m) 7. 92(3H, brs) 8. 21(1H, s) 9. 47(1H, d) 13. 39(1H, brs)
	化合物	MeN-(CH ₂), 4-0—CONH — COOCH ₂ OCO — HCI	H ₂ N-(CH ₂) ₄ -0 C ₁ OH COO C ₁ C ₁ CONH COO C ₁ C ₁ C ₁ CONH COO C ₁
	実施例	44	45

1 0 1

	采施例	CI, MeN-(CH ₂) ₄ -0— H CI 46 •HCI	CI H ₂ N-(CH ₂) ₄ -0 CI •HCI
	化合物	OH CONH COO	OH COON Me
表25	'H-NAR & (ppm), 300AHz	DMSO-d ₆ 1. 13-1. 92(10H, m) 2. 55(3H, t. J=6. 0Hz) 2. 85-3. 02(2H, m) 3. 08-3. 26(2H, m) 4. 00-4. 11(2H, m) 4. 60-4. 71(2H, m) 7. 25-7. 34(5H, m) 8. 20(1H, s) 8. 64(2H, brs) 9. 43(1H, d, J=6. 0Hz) 13. 39(1H, s)	DMSO-de 0. 66-0. 88(4H, m) 0. 92-1. 92(8H, m) 2. 50(6H, d. J=3. 0Hz) 2. 72-2. 92(2H, m) 3. 22-3. 78(4H, m) 4. 04-4. 12(2H, m) 4. 62-4. 96(1H, m) 7. 22-7. 42(6H, m) 8. 20(1H, s) 9. 44(1H, br) 13. 43(1H, s)
	IR (cm ⁻¹)	KBr 2938 1641 1584 1357 1219	KBr 2929 1718 1642 1584 1458
•	FAB-MS	537 (free base, MH*)	551 (free base, NH*)
	元素分析(%)	C27H34Cl2N2O5·HCl 計算値 C, 56.50 H, 6.15 N, 4.88 測定値 C, 54.51 H, 5.63 N, 4.64	
			

1 0 2

	元素分析(%)	·	
	FAB-MS	538 (free base, MH*)	575 (free base, MH*)
	IR (cm ⁻¹)	Neat 2964 1740 1584 1584	KBr 3386 2309 1718 1642 1541 1456
表26	1H-NMR & (ppm), 300MHz	DMSO-d ₄ 1. 60-2. 15(8H, m) 2. 72(3H, s) 2. 80-3. 60(6H, m) 4. 05-4. 10(2H, m) 4. 60-4. 91(2H, m) 7. 20-7. 39(6H, m) 7. 82(3H, brs) 8. 19-8. 26(1H, m)	DMS0-de 1. 40-1. 53(2H, m) 1. 65-1. 96(16H, m) 2. 82-2. 93(2H, m) 3. 13-3. 40(2H, m) 4. 05(2H, t. J=6Hz) 4. 74-4. 88(2H, m) 7. 08-7. 16(5H, m) 7. 91(3H, brs) 8. 21(1H, s) 9. 48(1H, d. J=9Hz) 13. 39(1H, s)
	化合物	C1 OH Ph H2N-(CH2), -0 — CONH — C00 — N-Me C1 C1	H ₂ N-(CH ₂) ₄ -0 - CONH - COO CONH - COO COO COO COO COO COO COO COO COO C
	実施例	48	49

1 0 3

	実施	20	21
	化合物	Men- $(CH_2)_4-0$ — $CONH$ — $CONHCH_2COOH$ + HCI	Men-(CH ₂), -0 — CONH — CONHCH ₂ COOMe H C1 -HC1
表2.7	'H-MAIR & (ppm), 300MHz	DMSO-d ₆ 1. 75-1. 91 (41, m) 2. 54(31, t, J=4. 512) 2. 90-3. 08(31, m) 3. 22(11, dd, J=12. 312) 3. 82(21, d, J=642) 3. 98-4. 08(21, m) 4. 78-4. 88(11, m) 7. 12-7. 37(51, m) 8. 27(11, s) 8. 64(111, t, J=642) 8. 64(111, t, J=642) 9. 30(111, d, J=642) 13. 20(111, brs) 13. 52(111, s)	DMSO-de 1. 77-1. 91 (4H, m) 2. 54(3H, t. J=6Hz) 2. 95(2H, brs) 3. 03(1H, dd, J=15, 12Hz) 3. 22(1H, dd, J=15, 6Hz) 3. 91(2H, d, J=6Hz) 4. 00-4. 09(2H, m) 4. 77-4. 87(1H, m) 7. 13-7. 38 (5H, m) 8. 27(1H, s) 8. 27(1H, s) 9. 34(1H, d, J=9Hz) 13. 52(1H, s)
	(GM ⁻¹)	785 3388 1738 1541 1542 1542	Neat 2951 1747 1661 1584 1556
	FAB-MS	512 (free base, MH*)	526 (free base, MH+)
	元素分析(%)		

1 0 4

	元素分析(%)	C ₂ 2N ₂ sCl ₂ N ₂ O ₄ S·HCl 計算値 C, 50. 63 H, 5. 21 N, 5. 37 測定値 C, 50. 40 H, 5. 29 N, 5. 28	C27H28C12N2O5·HC1 高子等値 C, 57. 11 H, 5. 15 N, 4. 93 (以定値 C, 56. 97 H, 5. 22 N, 5. 15
	FAB-MS		531 (free base, MH*)
	IR (cm ⁻¹)	KBr 2930 1641 1584 1535 126	KBr 3397 2958 1719 1542 1543
表28	'H-NNR S (ppm), 300NHz	DMSO-de 1. 17(3H, t, J=6. 0Hz) 1. 62-1, 92(4H, m) 2. 77-2, 97(4H, m) 3. 09(1H, dd, J=15. 0, 12. 0Hz) 3. 11-3. 35(1H, m) 3. 99-4. 12(2H, m) 4. 82-4. 96(1H, m) 7. 13-7. 36(5H, m) 7. 92(2H, brs) 8. 25(1H, s) 9. 61-9. 73(1H, m) 13. 23(1H, s)	DMSO-de 1. 82(4H. m) 2. 80(2H. m) 3. 16(1H. dd, J=9, 12Hz) 3. 24(1H. dd, J=6, 12Hz) 4. 05(2H, brs) 4. 81(1H. dd, J=6, 7, 9Hz) 5. 14(1H. d, J=12Hz) 5. 17(1H. d, J=12Hz) 7. 16-7. 39(10H. m) 7. 91(3H. brs) 8. 19(1H. s) 9. 50(1H. d. J=7Hz) 13. 32(1H. s)
	化合物	$H_2N-(CH_2)_4-0$ CI CI CI CI CI	C1 OH Ph H2N-(CH2), -0 — CONH — C00CH2Ph -HC1
	実施例	25	23

1 0 5

	元素分析(%)	C28H30C12N2O5-HC1 計算値 C, 57. 79 H, 5. 37 N, 4. 81 測定値 C, 57. 34 H, 5. 44 N, 4. 78	C _{2.9} H _{3.2} Cl ₂ N ₂ O _{5.} HCl 計算値 C, 58.45 H, 5.58 N, 4.70 測定値 C, 58.18 H, 5.49 N, 4.72
	FAB-MS	545 (free base, MH*)	558 (free base, MH*)
	IR (cm ⁻¹)	KBr 3412 3300 2789 2789 1745 1639 1584 1541	KBr 2957 2690 1740 1638 1584 1456
表29	'H-NNR & (ppm), 300MHz	DMSO-d ₈ 1.81(4H, br ₈) 2.54(3H, t, J=6Hz) 2.95(2H, br ₈) 3.16(1H, d, J=10, 12Hz) 3.25(1H, d, J=6, 12Hz) 4.05(2H, br ₈) 4.81(1H, ddd, J=6, 7, 9Hz) 5.14(1H, d, J=12Hz) 7.28-7.87(10H, m) 8.19(1H, s) 8.75(2H, br ₈) 9.50(1H, d, J=7Hz) 13.32(1H, s)	DMSO-d ₆ 1. 76-1. 95(4H, m) 2. 75(6H, s) 3. 05-3. 30(4H, m) 4. 06(2H, t, J=7Hz) 4. 75-4. 87(1H, m) 5. 10-5. 20(2H, m) 7. 18-7. 40(10H, m) 8. 18(1H, s) 9. 52(1H, brs) 10. 20(1H, brs) 13. 40(1H, brs)
	化合物	Men-(CH ₂) ₄ -0 \longrightarrow CONH \longrightarrow COOCH ₂ Ph \longrightarrow HCI	Me ₂ N-(CH ₂), -0 — CONH — COOCH ₂ Ph -HCI
	実施例	55	83

1 0 6

	元素分析(%)	C28H34Cl2N4O5・3HCl 計算値 C, 47. 11 H, 5. 63 N, 8. 45 側定値 C, 45. 84 H, 5. 72 N, 7. 76	
	FAB-MS	553 (free base, MH ⁺)	536 (free base, MH*)
	IR (cm ⁻¹)	KBr 2423 2957 1751 1585 1585 1585 1458	第252 253 253 254 254 254 254 254 254 254 254 254 254
表30	'H-NMR & (ppm), 300Mfz	DMS0-d ₈ 1. 82(4H, m) 2. 95(2H, m) 3. 08-3. 55(12H, m) 4. 04(2H, brs) 4. 41(2H, m) 7. 88(1H, m) 7. 12-7. 36(5H, m) 7. 97(3H, brs) 8. 31(1H, s) 9. 63(3H, m)	DMSO-de 1. 42-1. 86(10H, m) 2. 22-2. 40(4H, m) 2. 72-2. 84(2H, m) 3. 18-3. 28(2H, m) 4. 66-4. 72(1H, m) 7. 16-7. 34(5H, m) 7. 84(2H, br) 8. 20, 8. 22(1H, s) 9. 34, 9. 53 (1H, d, J=5. 8Hz) 13. 32, 13. 48 (1H, d, J=5. 8Hz)
M	化合物	H2N-(CH2)4-0-0-CONH - C00(CH2)2-N NH -3HC1	H2N-(CH2) 4-0 - CONH - C00-N - C01 + HC1
	実施例	56	57

1 0 7

	実施例	28 28	Ne Ne
	化合物	Me-N N-(CH ₂) ₂ -0 -CONH -COOMe	C1 OH Ph
表3.1	'H-MR & (ppm), 300MHz	DMSO-de 2. 81 (3H, s) 3. 13-3. 80 (10H, m) 4. 27-4. 47 (2H, m) 4. 66-4. 83 (1H, m) 7. 13-7. 32 (5H, m) 8. 22 (1H, s) 9. 49 (1H, d, J=8. 5Hz) 13. 71 (1H, brs)	DMSO-d ₆ 1. 15(3H. d. J=6. 2Hz) 2. 78-3. 95(13H. m) 3. 67(3H. s) 4. 54-4. 72(1H. m) 7. 17-7. 34(5H. m) 7. 45(1H. s) 8. 69-8. 82(1H. m) 12. 27-12. 36(1H. m)
	IR (cm ⁻¹)	KBr 1740 1641 1584 1457 1355 1220	
	FAB-NS	510 (free base, MH*)	510(MH+)
	元素分析(%)	C24H29C12N3O5·2HC1 計算値 C, 49. 42 H, 5. 36 N, 7. 20 測定値 C, 47. 94 H, 5. 52 N, 6. 77	

1 0 8

PCT/JP96/02305

	実施例	99	1 0 9
	化合物	HN C(H ₂) ₂ -0 CONH COOMe CI CI	HN CH2) 2-0 -00NH - C00Me *2HC1
表3.2	1H-NNR & (ppm), 300MHz	DMSO-d ₆ 1. 30(3H, d. J=6Hz) 3. 00-3. 70(11H, m) 3. 67(3H, s) 4. 42(2H, s) 4. 76(1H, m) 7. 18-7. 30(5H, m) 8. 23(1H, s) 9. 52(1H, d. J=9Hz) 9. 80(1H, br) 13. 39(1H, br)	DMSO-d ₆ 1. 29(3H, d. J=6. 3Hz) 3. 00-3. 20(9H, m) 3. 66(3H, s) 4. 41(2H, brs) 4. 77(1H, m) 7. 15-7. 30(5H, m) 8. 22(1H, s) 9. 49(1H, d. J=7. 6Hz) 9. 70(2H, br) 13. 35(1H, brs)
	IR (cm ⁻¹)		KBr 3427 1736 1641 1458 1222
	FAB-MS	(free hase.	510 (free base,
	元素分析(%)		施治集: [α] ²⁵ b = -53.0° (c=0.37, MeOH)

BNSDOCID: <WO___9708133A1_I_>

	実施例	& &	& .
	化合物	HN $-CH_2$) ₂ -0 $-CONH$ $-COOMe$ $-CO$	Me N-(CH ₂) ₂ -0 -CONH -COOMe Ne COOMe
表33	14-NAR & (ppm), 300MHz	DMSO-de 1. 30(3H, d. J=6. OHz) 3. 09-3. 83(11H, m) 3. 67(3H, s) 4. 34-4. 47(2H, m) 4. 73-6. 81(1H, m) 7. 17-7. 29(5H, m) 8. 23(1H, s) 9. 51(1H, d. J=6. OHz) 9. 63-9. 92(1H, m) 13. 35-13. 47(1H, m)	DMSO-d ₆ 1. 34(3H, d, J=8Hz) 2. 80(3H, s) 3. 00-3. 70(11H, m) 3. 67(3H, s) 4. 37(2H, brs) 4. 37(2H, m) 7. 15-7. 32(5H, m) 8. 22(1H, s) 9. 50(1H, d, J=6Hz) 13. 39(1H, s)
	(cm ⁻¹)	KBr 3425 2450 1747 1664 1252 1213	
	FAB-MS	510 (free base, MH*)	524 (free base, MH*)
	元素分析 (%)	C24H23C12N3O5-2HC1 計算値 C, 54. 16 H, 5. 13 N, 6. 11 測定値 C, 53. 21 H, 5. 25 N, 5. 96	·

1 1 0

1	<u></u>		
	元素分析(%)		
	FAB-NS	510 (free base, MH ⁺)	524 (MH*)
	IR (cm ⁻¹)	KBr 2950 2784 1745 1589 1589 1369 1097	3422 3422 2340 1736 1456
表34	'H-NNIR & (ppm), 300MHz	DMSO-ds 1. 14(3H, t. J=7. 6Hz) 2. 48-2. 52(8H, m) 3. 14-3. 38(4H, m) 4. 11(2H, q. J=7. 6Hz) 4. 39(2H, bs) 4. 68-4. 80(1H, m) 7. 18-7. 32(5H, m) 8. 23(1H, s) 9. 47(1H, d. J=8. 8Hz)	DNSO-de 1. 11(3H, t. J=6. 0Hz) 2. 60-3. 20(13H, m) 4. 00-4. 10(4H, m) 4. 62-4. 66(1H, m) 7. 20-7. 30(5H, m) 7. 75(1H, s)
	化合物	$\begin{array}{c} \text{CI} & \text{OH} \\ \text{IN} & \text{N-}(\text{CH}_2)_2 - 0 \\ \text{CI} & \text{CONH} \end{array}$	$\begin{array}{c} \text{Cl} & \text{OH} & \text{Ph} \\ \text{Me-N} & \text{N-(CH_2)}_2 \text{-0-} \\ \text{Cl} & \text{Cl} \end{array}$
	実施例	29	88

1 1 1

	実施例	99	29
	化合物	Me-N N-(CH ₂) ₃ -0 \longrightarrow CONH COOMe COOMe	-2HC1
表35	1H-NAR & (ppm), 300MHz	DMSO-de 2. 10-2. 35(2H. m) 2. 80(3H. s) 3. 10-3. 94(12H. m) 3. 66(3H. s) 4. 10-4. 22(2H. m) 4. 62-4. 72(1H. m) 7. 20-7. 41(5H. m) 8. 20(1H. s) 9. 47(1H. d. J=6. 0Hz) 13. 3(1H. brs)	DMSQ-de 1. 14(3H, t, J=6. 0Hz) 2. 23(2H, m) 3. 00-3. 85(10H, m) 4. 65-4. 16(4H, m) 7. 12-7. 35(5H, m) 7. 50-7. 66(1H, m) 8. 21(1H, brs) 9. 40-9. 60(1H, brs) 9. 45(1H, d, J=6. 0Hz) 13. 40(1H, brs)
	IR (cm ⁻¹)	740 3423 3423 1584 1584 1219 1219	KBr 2343 1584 1458 1216 1216
	FAB-MS	524 (free base, MH*)	524 (free base, MH*)
	元素分析(%)	C25H31C12N3O5·2HC1 計算値 C, 50. 27 H, 5. 57 N, 7. 03 測定値 C, 49. 88 H, 5. 56 N, 6. 93	C2.5H3.C1.2N3.0s.2HC1 計算/值 C, 50.27 H, 5.57 N, 7.03 测定值 C, 49.68 H, 5.68 N, 6.66

1 1 2

	元素分析 (%)		
	FAB-MS	(free base, MH ⁺) 509	M [†])
	IR (cm ⁻¹)	KBr 3377	2805 2805 2726 2726 2489 1739 1642 1585 1584 1412 1360 1352
表36	¹ H-NMR & (ppm), 300MHz	Ph DMSO-d ₆ 1.21(3H, 1, J=8Hz) C00Bt 2.25(2H, brs) 2.82(3H, s) 3.08-3.90(12H, m) 4.06-4.13(4H, m) 4.70(1H, m) 7.16-7.28(5H, m) 8.21(1H, s) 9.45(1H, d, J=8Hz) 13.36(1H, brs) Ph DMSO-d ₆	COORt (1.2514, 1, J=0.9Hz) 1.12(3H, 1, J=0.9Hz) 1.73(2H, dd, J=5.7, 12.0Hz) 1.80-1.95(4H, m) 2.85(2H, m) 3.07-3.28(4H, m) 4.67-4.75(1H, m) 7.16-7.28(5H, m) 8.20(1H, s) 8.65(1H, brs) 9.50(1H, brs) 13.35(1H, brs)
	化合物	C1 OH Ph	-HCI CH2)2-0—CONH —C00Bt
	実施例	. 80	66

1 1 3

	元素分析 (%)		C ₂₃ H ₃₀ Cl ₂ N ₂ O ₅ ·HCl 計算值 C, 56.91 H, 6.23 N, 5.77 测定值 C, 56.90 H, 6.29 N, 5.73
	FAB-MS	523 (free base, MH ⁺)	449.1 (free base, MH ⁺)
	IR (cm ⁻¹)	KBr 3406 2938 1736 1638 1584 1460 1412 1352 1215 1075 957	
表37	¹ H-NMR & (ppm), 300MHz	Ph DMSO-d ₆ 1.23(3H, t, J=7.1Hz) COOEt 1.42-1.57(2H, m) 1.68-1.98(5H, m) 2.69(3H, s) 2.88-2.96(2H, m) 3.10-3.24(2H, m) 3.31-3.39(2H, m) 4.05-4.14(4H, m) 4.72(1H, ddd, J=6.3, 7.5, 9.1Hz) 7.15-7.29(5H, m) 8.21(1H, s) 9.48(1H, dr) 10.34(1H, brs) 13.35(1H, brs)	CDC ₁₃ 1.13(3H, t, J=7.0Hz) 1.70-1.88(4H, m) 2.49-2.53(5H, m) 3.07-3.21(2H, m) 4.66-4.13(4H, m) 4.69(1H, dd, J=8.4, 15.6Hz) 6.67(1H, s) 7.18-7.32(5H, m) 8.04(1H, s) 8.73(1H, brs) 8.99(1H, d, J=7.2Hz) 12.51(1H, brs)
	化合物	Me-N $-(CH_2)_2-0$ $-CONH$ $-COOEt$	MeN-(CH ₂) ₄ -0-(ONH COOBt H CI
į	英施例	70	. 7

1 1 4

WO 97/08133 PCT/JP96/02305

表3.8	化合物 1H-NMR δ (ppm), 300MHz IR (cm ⁻¹) FAB-MS 元素分析 (%)	C1	OH COOMe
	実施例	Me ₂ N-(CH ₂),4-0.	MeN-(CH ₂),-0- H Br

1 1 5

元素分析 (%)

	FAB-MS	(free base, MH ⁺) 493 (free base, MH ⁺)
	IR (cm ⁻¹)	KBr 1736 1601 1489 1373 1263 1736 1736 1599 1199
表39	¹ H-NMR & (ppm), 300MHz	DMSO-d ₆ 1.13(3H, t, J=7.0Hz) 1.70-1.89(4H, m) 2.87(2H, m) 3.2(2H, m) 4.0-4.1(4H, m) 6.65(1H, m) 6.65(1H, m) 6.65(1H, m) 7.92(3H, brs) 8.17(1H, s) 8.17(1H, s) 8.2(3H, d, J=5.6Hz) 12.51(1H, s) CDC ₁₃ 1.27(3H, t, J=7.2Hz) 1.27(3H, t, J=7.2Hz) 1.27(3H, t, J=7.2Hz) 1.37(3H, t, J=7.2Hz) 4.23(2H, m) 2.07-2.17(2H, m) 2.07-2.17(2H, m) 2.07-2.17(2H, m) 3.2-3.3(2H, m) 4.23(2H, q, J=7Hz) 4.23(2H, q, J=7Hz) 6.39(1H, s) 7.22-7.32(3H, m) 7.22-7.32(3H, m) 7.22-7.32(3H, m) 7.22-7.32(3H, ps) 9.51(2H, brs)
	化合物	H ₂ N-(CH ₂) ₄ -0 CONH COOBt -HCI -HCI -HCI -HCI -HCI

1 1 6

73

74

実施例

	元素分析(%)		
	PAB-MS	449 (free base, M-1)	442 (free base, MH ⁺)
	IR (cm ⁻¹)		
表40	¹ H-NMR & (ppm), 300MHz	DMSO-d ₆ 1.91(4H, m) 2.12(3H, s) 2.57(3H, s) 2.98(2H, m) 3.10-3.30(2H, m) 3.70(3H, s) 3.99(2H, m) 4.78(1H, m) 6.35(1H, s) 7.15-7.30(5H, m) 7.65(1H, s) 8.62(1H, brs) 9.24(2H, brs) 12.09(1H, s)	CDCl ₃ 1.13(3H, t, J=7Hz) 1.85-1.95(4H, m) 2.04(3H, s) 2.04(3H, s) 2.18(3H, s) 2.51(3H, m) 2.93(2H, m) 3.16-3.20(2H, m) 3.76(2H, m) 4.10(2H, q, J=7Hz) 4.69(1H, m) 7.17-7.32(5H, m) 7.17-7.32(5H, m) 7.17-7.32(5H, m) 7.11(1H, s) 9.01(2H, brs) 9.07(1H, d, J=8Hz) 12.66(1H, s)
	化合物	MeN-(CH ₂),-0-O-O-CONH - COOMe H	MeN-(CH ₂), -0 — CONH — COOEt H -HCI
	実施例	92	77

1 1 7

1 1 8

WO 97/08133

	元素分析 (%)	
	FAB-MS	493 (free base, MH ⁺) S71 (free base, MH ⁺)
	IR (cm ⁻¹)	
表 4 2	¹ H-NMR & (ppm), 300MHz	DMSO-d ₆ 1.71-1.83(4H, m) 2.02(3H, s) 2.55(3H, s) 2.58-3.11(4H, m) 3.63(3H, s) 3.92-4.03(1H, m) 6.45(1H, s) 7.08-7.37(5H, m) 8.59(1H, d, ½=7.8Hz) 9.80(1H, brs) DMSO-d ₆ 1.79-1.93(4H, m) 2.00(3H, s) 2.56(3H, s) 2.56(3H, s) 3.83-3.95(2H, m) 3.63(3H, m)
	化合物	Men-(CH ₂), $_4$ -0 — CONH — COOMe -HCI Br OH Br OH -CONH — Ph -COOMe -HCI
	英植例	80

1 1 9

	FAB-MS 元素分析 (%)	541 C ₂₅ H ₃₀ Cl ₂ N ₂ O ₇ ·HCl (free base, 計算值 C, 51.96 H, 5.41 N, 4.85 阅定值 C, 51.88 H, 5.40 N, 4.82 N, 4.82	603 C ₃₀ H ₃₃ O ₇ N ₂ O ₃ ·HCl (free base, 計算値 C, 56.31 H, 5.20 N, 4.38 測定値 C, 54.81 H, 5.30 N, 4.34 N, 4.34
	IR (cm ⁻¹)	KBr 2961 1750 1461 1178	KBr 3426 2960 1717 1641 1604 1457 1278 1162
表43	¹ H-NMR & (ppm), 300MHz	DMSO-d ₆ 1.19(3H, t, J=7.1Hz) C00CH ₂ C00Bt 1.83(4H, brs) 2.48-2.53(5H, m) 2.94(2H, brs) 3.16-3.34(5H, m) 4.02-4.18(4H, m) 4.02-4.18(4H, m) 7.16-7.36(5H, m) 8.22(1H, s) 8.87(2H, brs) 9.56(1H, d, J=7.2Hz) 9.56(1H, d, J=7.2Hz)	DMSO-d ₆ 1.32(3H, t, 1=7.0Hz) -0008t 1.82(4H, brs) 2.57(3H, brs) 2.97(2H, brs) 4.06(2H, brs) 4.32(2H, q, 1=7.0Hz) 4.99(1H, dd, 1=5.7, 14.1Hz) 7.16-7.36(7H, m) 8.01(2H, d, 1=8.7Hz) 8.23(1H, brs) 8.33(2H, brs) 9.66(1H, brs) 11.3(1H, brs)
	化合物	Men-(CH2),-0—CONH — COOCH2COOEt H CI -HCI	MeN-(CHs), 4-0—CONH — COO—COOBEL HC1
	吳 雄例	83	83

1 2 0

-	元素分析(%)		
	FAB-MS	568 (free base, MH [†])	582 (free base, MH ⁺)
	IR (cm ⁻¹)		
表44	¹ H-NMR & (ppm), 300MHz	-ph 1.15(6H, t, J=7Hz) -C00(CH ₂) sNEt ₂ 1.75-2.00(6H, m) 2.49(3H, s) 2.90-3.05(8H, m) 3.10-3.25(2H, m) 4.00-4.21(4H, m) 7.17-7.30(5H, m) 8.28(1H, s) 8.88(2H, brs) 9.64(1H, brs) 10.43(1H, brs)	DMSO-46 1.28(12H, m) 1.84(4H, m) 2.53(3H, t, J=5.7Hz) 2.94(2H, m) 3.13-3.93(4H, m) 3.63(2H, m) 4.01(2H, m) 4.37-4.48(1H, m) 7.18-7.29(5H, m) 8.31(1H, s) 8.86(2H, brs) 9.70(1H, brs) 10.03(1H, brs) 13.37(1H, brs)
	化合物	CI OH Ph WEN-(CH2), -0 — CONH — COO(CH2), NEt 2 H CI CI	Men-(CH2), 4-0 — CONH — COO(CH2), 2N — CHC1
	英施例	884	88

1.2 1

张:		表45				Γ
	化合物	¹ H-NMR & (ppm), 300MHz	IR (cm ⁻¹)	FAB-MS	元素分析(%)	
	CI OH	9p-oswa		610		Τ
	MeN-(CM ₂),-0-(O)-COMCOM(CM ₂),N(CM ₂),M(M ₂),M(M ₂)	0.72-0.97(6H, m)		(free base,		•
_	i i	1.18-1.42(4H, m)		MH+)		
_	(CH2) NA	1.51-1.73(4H, m)				
	-2401	1.75-1.83(4H, m)				
		2.83-3.15(6H, m)				
_		3.16-3.39(5H, m)				
		4.02-4.10(2H, m)				
_		4.37-4.55(2H, m)				_
_		4.75-4.91(1H, m)				
		7 20.7 30(SH .m)				-
		0.20-7.30(314, 111) 0.36(111 c)				
_	-	0.50(In, s)			•	
	-	0.00-0.90(ZH, III)				
_		9./4-9.88(IH, m)		-		
_		10.56-10.73(1H, m)		-		_
		13.32-13.47(1H, m)				
	- Ta-\ -	cpct ₃		455		T
	Į.	1.80-1.89(2H, m)		(free base,		_
	19-(CH2)1-0-(())-CONE / COOKe	1.91-2.01(2H, m)		MH+)		
	一 〕	3.21(1H, dd, J=14, 6Hz)				
_	<u></u>	3.28(1H, dd, J=14, 6Hz)				
		3.76(2H, t, J=7Hz)				
	<u> </u>	3.80(3H, s)				
		4.12(2H, t, J=6Hz)				
	-	5.03(1H, ddd, J=8, 6, 6Hz)				
		6.77(1H, d, J=8Hz)				
	1-	7.09-7.13(2H, m)				
		7.28-7.35(3H, m)				
		12.64(1H, 8)				

1 2 2

	IR (cm-1) FAB-MS 元素分析 (%)	384 (free base, MH ⁺) 399 (free base,	MH ⁺)
表46	¹ H-NMR & (ppm), 300MHz	DMSO-d6 1.70(2H, m) 1.85(2H, m) 2.04(2H, m) 2.62(3H, s) 2.93(2H, bis) 3.18-3.30(2H, m) 3.76(3H, s) 5.01(1H, m) 6.65(1H, d, J=7Hz) 6.78(1H, s) 7.09-7.32(5H, m) 9.35(2H, bis) 11.87(1H, s) DMSO-d6	1.30(2H, m) 1.58(4H, m) 2.49(3H, s) 2.82(2H, t, J=8Hz) 3.11(1H, dd, J=14, 9Hz) 3.65(3H, s) 4.74(1H, m) 6.75(2H, m) 7.18-7.31(5H, m) 7.81(1H, d, J=9Hz) 8.75(2H, brs) 9.00(1H, d, J=8Hz)
	46台办	-HC1	Men-(CH2), —(O)—-CONH ——COOMe H.
	実施例	88	

1 2 3

	(9	·
	元素分析(%)	·
	FAB-MS	413 (free base, MH ⁺)
	IR (cm ⁻¹)	·
表47	¹ H-NMR & (ppm), 300MHz	CDCl ₃ 1.25-1.45(4H, m) 1.55-1.64(2H, m) 1.77-1.87(2H, m) 2.54(2H, t, J=7.5Hz) 2.64(3H, s) 2.90(2H, t, J=7.8Hz) 3.23(2H, m) 6.63(2H, dd, J=8.1, 1.8Hz) 6.77(1H, d, J=1.5Hz) 6.88(2H, d, J=7.8Hz) 7.10-7.32(6H, m) 9.38(2H, brs) 11.90(1H, brs)
	化合物	Men-(CH ₂), OH COOMe H -HC1
	実施例	06

1 2 4

PCT/JP96/02305

	東福宮	CI. MeN-(CH ₂) ₆ — H CI.	MeN-(CH ₂), - Cl · HCl
	化合物	CI ONI Ph	CI CONH COONE
表48	¹ H-NMR & (ppm), 300MHz	CDCl ₃ 1.45-1.65(4H, m) 1.90-2.00(2H, m) 2.67(3H, s) 2.86-2.90(2H, t, J=7.5Hz) 2.80-3.05(2H, m) 3.80(3H, s) 5.00-5.05(1H, m) 7.15-7.32(6H, m) 9.48(2H, brs) 12.44(1H, s)	DMSO-d ₆ 1.36(2H, m) 1.45-1.65(4H, m) 2.49(3H, s) 2.62(2H, t, J=7Hz) 2.83(2H, m) 3.15(2H, m) 3.64(3H, s) 4.74(1H, m) 6.92(1H, s) 7.16-7.31(5H, m) 7.93(1H, s) 8.76(2H, brs) 9.05(1H, d, J=8Hz) 12.01(1H, s)
	IR (cm ⁻¹)	KBr 3429 2949 1743 1641 1587	
٠	FAB-MS	467.0 (free base, MH ⁺)	433 (free base, MH ⁺)
	元素分析 (%)	C ₂₃ H ₂₈ Cl ₂ N ₂ O ₄ ·HCI 計算值 C, 54,83 H, 5.80 N, 5.56 测定值 C, 54,63 H, 6.07 N, 5.48	

1 2 5

	集 施 例	93 -HCI CI COORT COORT 1.2873 93 -HCI CI COORT COORT 1.3873 1.6374 2.883	Me ₂ N-(CH ₂) ₈ OH CDC ₁ 1.27(3) 1.27(3) 1.34-1 1.33-1 1.83-1 2.69(2) 2.78(3) 2.78(
表49	¹ H-NMR & (ppm), 300MHz	CDC3 1.28(3H, t, J=7.2Hz) 1.40-1.51(2H, m) 1.57-1.67(2H, m) 1.84-1.95(2H, m) 2.62-2.68(5H, m) 2.88-3.01(2H, m) 3.16-3.29(2H, m) 4.24(2H, q, J=7.2Hz) 4.99(1H, ddd, J=6.2, 6.2, 7.5Hz) 6.77(1H, m) 7.17-7.33(6H, m) 7.35(1H, s) 9.41(2H, brs) 11.67(1H, brs)	CDC3 1.27(3H, t, J=7.1Hz) 1.34-1.46(2H, m) 1.34-1.46(2H, m) 1.61-1.71(2H, m) 1.83-1.94(2H, m) 2.69(2H, t, J=7.5Hz) 2.79(3H, s) 2.79(3H, s) 2.92-3.00(2H, m) 3.18-3.30(2H, m) 4.22(2H, q, J=7.1Hz) 4.99(1H, ddd, J=6.0, 6.0, 7.2Hz) 6.88(1H, s) 7.12-7.18(3H, m) 7.23-7.34(3H, m) 7.23-7.34(3H, m) 7.23-7.34(3H, m) 7.23-7.34(3H, m) 7.23-7.34(3H, m) 7.22-7.34(3H, m) 7.22-7.34(3H, m) 7.22-7.34(3H, m) 7.22-7.34(3H, m) 7.22-7.34(3H, m) 7.22-7.34(3H, m)
	IR (cm ⁻¹)	KBr 3422 2940 1738 1644 1538 1407 1373 1207 1096 1027	KBr 3423 2941 2693 1739 1644 1539 1405 1372 1212 1005 1029 957 862 749
	FAB-MS	(free base, MH ⁺)	461 (free base, MH ⁺)
	元素分析 (9		

1 2 6

	元素分析(%)		
	FAB-MS	477 (free base, MH [†])	557 (free base, MH ⁺)
	IR (cm ⁻¹)	KBr 3375 1744 1641 1604 1540	
表50	^j H-NMR & (ppm), 300MHz	CDC! ₃ 1.4-1.6(4H, m) 1.90(2H, m) 2.50-2.66(5H, m) 2.94(2H, t, J=7.5Hz) 3.20(2H, m) 5.02(1H, s) 6.77(1H, s) 7.16-7.36(6H, m) 7.54(1H, s) 9.38(2H, brs) 11.57(1H, brs)	CDCl ₃ 1.47-1.60(4H, m) 1.96(2H, m) 2.68(3H, s) 2.94(4H, m) 3.24(2H, dt, J=7.8, 6.3Hz) 3.80(3H, s) 5.05(1H, q, J=6.9Hz) 7.14-7.34(6H, m) 7.50(1H, s)
	化合物	Men-(CH ₂), OH Ph H Br	Br OH COME H Br Br COME
!	実施例	8.	96

1 2 7

	元素分析(%)		
	FAB-MS	(free base, MH ⁺)	539 (free base, MH ⁺)
	IR (cm ⁻¹)		·
表5.1	¹ H-NMR 8 (ppm), 300MHz	CDCl ₃ 1.45(2H, m) 1.55(2H, m) 1.87(2H, m) 2.46(3H, s) 2.67(3H, s) 2.80(2H, m) 2.94(2H, m) 2.94(2H, m) 2.94(2H, m) 3.19(1H, dd, J=14, 7Hz) 3.30(1H, dd, J=14, 5Hz) 3.00(1H, ddd, J=8, 7, 5Hz) 6.74(1H, s) 7.16-7.34(5H, m) 7.83(1H, d, J=8Hz) 7.93(1H, s) 9.31(2H, brs) 11.84(1H, brs)	DMSO-d ₆ 1.19(3H, t, J=7Hz) 1.30-1.63(6H, m) 1.30-1.63(6H, m) 1.30-1.63(6H, m) 3.17(1H, dd, J=14, 11Hz) 3.21(1H, dd, J=14, 5Hz) 4.14(2H, q, J=16Hz) 4.77(2H, q, J=16Hz) 4.88(1H, m) 7.17-7.34(5H, m) 8.13(1H, s) 8.60(2H, brs) 9.55(1H, d, J=8Hz) 13.14(1H, s)
·	化合物	Men-(CH ₂) 5 OH Ph H 0	MeN-(CH ₂), C1 CONH C00CH ₂ C00Et
	実施例	97	86

1 2 8

	元素分析(%)		
	FAB-MS	601 (free base, MH ⁺)	521 (free base, MH ⁺)
	IR (cm ⁻¹)		
表52	¹ H-NMR & (ppm), 300MHz	CDCl ₃ -C00 -(O) - C00Et 1.40-2.0(6H, m) 2.65(3H, s) 2.65(3H, s) 2.80-3.00(4H, m) 3.38(2H, d, J=6.3Hz) 4.37(2H, q, J=7.0Hz) 5.22(2H, q, J=7.2Hz) 7.08(2H, d, J=8.7Hz) 7.23-7.38(7H, m) 8.07(2H, d, J=8.9Hz) 9.44(2H, brs)	-ph 1.13(3H, t, J=9Hz) 1.13(3H, t, J=9Hz) 1.13(3H, t, J=9Hz) 1.20-1.60(7H, m) 1.80-1.87(2H, m) 2.80-2.95(4H, m) 3.10-3.40(4H, m) 4.11(2H, q, J=9Hz) 4.70(1H, m) 7.18-7.30(5H, m) 8.11(1H, s) 9.47(1H, d, J=8Hz) 9.75(1H, brs) 13.15(1H, brs)
	化合物	MeN-(CH2). CONH COO COORT	Me-N — (CH ₂), — CONH — COOBt $\frac{1}{2}$
1	実施例	66	001

1 2 9

	元素分析 (%)		
	FAB-MS	S07 (free base, MH ⁺) 508.0 (free base, MH ⁺)	
	IR (cm ⁻¹)	KBr 3396 2933 2656 1734 1644 1589 1543	1405 1372 1254 1214 1099 1014
表53	¹ H-NMR & (ppm), 300MHz	DMSO-d ₆ 1.15(3H, t, J=7.0Hz) 1.20-1.40(4H, m) 1.45-1.65(3H, m) 2.51(2H, s) 2.70-2.90(2H, m) 3.10-3.30(4H, m) 4.11(2H, q, J=7.0Hz) 4.72(1H, dd, J=6.0, 14.0Hz) 7.15-7.30(5H, m) 8.13(1H, brs) 9.49(1H, brd, J=6.0Hz) 1.12(3H, t, J=7.1Hz) 1.12(3H, t, J=7.1Hz) 1.22(2H, t, J=7.3Hz) 3.09-3.78(12H, m) 4.10(2H, q, J=7.1Hz) 4.71(1H, ddd, J=6.0, 7.2, 9.3Hz) 7.17-7.28(5H, m) 8.16(1H, s) 9.51(1H, dd, J=7.2Hz)	9.64(2H, brs) 11.79(1H, brs) 13.20(1H, brs)
	化合物	HO - (CH ₂), - CONH - COOBE -HCI CI OH Ph HN N-(CH ₂), - CONH - COOBE -2HCI CI	
[実施例	101	

1 3 0

4
r
麦

			<u> </u>
	元素分析(%)		
	FAB-MS	522.1 (free base, MH ⁺)	439 (free base, MH ⁺)
	IR (cm ⁻¹)		
F > X	¹ H-NMR & (ppm), 300MHz	Ph DMSO-d ₆ 1.13(3H, t, J=7.2Hz) (200Et 1.77-2.12(6H, m) 2.85-3.27(7H, m) 3.48(1H, brd, J=8.6Hz) 4.10(2H, q, J=7.2Hz) 4.67-4.78(1H, m) 7.19-7.28(5H, m) 8.15(1H, s) 8.22(3H, brs) 10.27(1H, brs) 13.22(1H, brs)	CDCl ₃ 0.90-2.05(20H, m) 2.50-2.70(5H, m) 2.96(2H, m) 3.82(1H, s) 4.82(1H, m) 6.68(1H, s) 7.45(1H, d, J=8.1Hz)
	化合物	$H_2N - CH_4$), CI CI CI CI CI CI CI CI	104 MeN-(CH2) 6 — CONH — COOBt H
	実施例	. 103	104

	元素分析(%)		
	FAB-MS	568 (free base, MH*)	511 (free base, MH*)
	IR (cm ⁻¹)	·	
表55	'H-NAR & (ppm), 300ANZ	DMSO-de 1. 87(4H, bs) 2. 52(3H, d. J=8. 5Hz) 2. 86-3. 02(4H, m) 3. 04-3. 14(1H, m) 3. 48(3H, s) 4. 09(2H, bs) 4. 42-4. 62(1H, m) 7. 14-7. 32(5H, m) 7. 54(1H, s) 7. 56-7. 68(2H, m) 7. 56-7. 68(2H, m) 7. 56-7. 68(2H, m) 8. 02(2H, d. J=7. 6Hz) 9. 04(1H, d. J=7. 6Hz)	DMSO-d ₆ 1. 84(44, s) 2. 17(34, s) 2. 55(24, s) 2. 95-3. 10(44, m) 3. 40(34, s) 4. 65(24, s) 4. 65(24, s) 7. 20-7. 35(54, m) 7. 50(14, s) 8. 66(14, brs) 8. 91(14, d, J=9. 0Hz)
	化合物	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{C1} & 0 \\ \text{MeN-(CH_2)_4-0} & \text{C0MH} \\ \text{H} & \text{C1} \\ \text{-HC1} \end{array}$
	実施例	2 5	106

1 3 2

	元素分析(%)	C, sH3.2Cl 2N2Os·HCl 計算値 C, 54. 22 H, 5. 78 N, 4. 66 測定値 C, 54. 24 H, 5. 75 N, 4. 83	·
	FAB-MS	539 (free base, MH ⁺)	553 (free base, MH*)
	IR (cm ⁻¹)	XBr 3285 2250 2723 1768 1745 1648	Neat 2957 1749 1666 1456
表56	'H-MR & (ppm), 300MHz	DMSO-d ₆ 1. 15(3H, d, J=6. 0Hz) 1. 17(3H, d, J=6. 0Hz) 1. 40-1. 90(4H, m) 2. 50-2. 58(3H, m) 2. 90-3. 17(3H, m) 2. 90-3. 17(3H, m) 3. 63(3H, s) 4. 00-4. 05(2H, m) 7. 20-7. 33(5H, m) 7. 20-7. 33(5H, m) 7. 44(1H, s) 8. 70-8. 85(2H, m) 8. 95(1H, d, J=7. 0Hz)	DMSO-de (400MFz) 1. 22(9H, s) 1. 78-1, 90(4H, m) 2. 53(3H, m) 2. 90-3, 03(3H, m) 3. 13(1H, dd, J=13, 82, 5, 53Hz) 3. 62(3H, s) 4. 00-4, 08(2H, m) 4. 53-4, 60(1H, m) 7. 20-7, 32(5H, m) 7. 38(1H, s) 8. 97(1H, d, J=7, 80Hz) 8. 97(1H, d, J=7, 80Hz)
	化合物	$\begin{array}{c} CI \\ CI \\ MeN^{-}(CH_2), -0 \\ H \\ -HCI \end{array}$	$MeN-(CH_2)_4-0 \longrightarrow CONH \longrightarrow COOMe$ -HC1
	実施例	107	108

1 3 3

	元素分析(%)		
	FAB-MS	540 (free base, MH*)	571 (free base, M ⁺ H)
	[R . (cm ⁻¹)	KBr 3422 2954 1741 1646 1456	
表5.7	'H-NMR & (ppm), 300MHz	DMSO-de 1. 90-1. 97(4H, m) 2. 53(3H, t. J=6Hz) 2. 99-3. 12(7H, m) 3. 16(1H, dd, J=12, 6Hz) 3. 66(3H, s) 4. 00-4. 10(2H, m) 4. 56-4. 65(1H, m) 7. 20-7. 34(5H, m) 7. 57(1H, s) 8. 12(3H, brs) 8. 88(2H, brs) 9. 08(1H, d. J=6Hz)	DMSO-d ₆ 1. 84(4H. bs) 2. 11(3H. s) 2. 49(2H. bs) 2. 88-3. 22(4H. m) 3. 63(3H. s) 4. 05(2H. bs) 4. 52-4. 68(1H. m) 4. 82(2H. bs) 7. 12-7. 34(5H. m) 7. 54(1H. s) 8. 85(2H. br) 8. 99(1H. d. J=7. 6Hz)
	化合物	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{CI} & 0 \\ \text{CI} & 0 \\ \text{MeN-(CH_2)_4-0} \\ \text{CI} \\ \text{-HCI} \end{array}$
	実施例	109	110

1 3 4

	元素分析(%)	·	C _{2.9} H _{3.6} Cl ₂ N ₂ O ₆ ·HCl 計算值 C, 56. 55 H, 6. 05 N, 4. 55 过足值 C, 56. 17 H, 6. 16 N, 4. 48
		(free base, MH*)	(free base, 元, H,
	[R (cm ⁻¹)	Neat 2954 2728 1778 1739 1667	ABT 23422 2935 1745 1654 1452
なり 8	1H-NMR & (ppm), 300MHz	DMSO-d ₆ 1. 89-1. 96(4H, m) 2. 54(3H, brs) 2. 65-2. 82(4H, m) 2. 90-3. 05(3H, m) 3. 14(1H, dd, J=15, 3Hz) 3. 62(3H, s) 4. 00-4. 08(2H, m) 4. 57-4. 65(1H, m) 5. 12(2H, s) 7. 18-7. 40(10H, m) 7. 50(1H, s) 8. 94(1H, d. J=9Hz)	DMSO-d ₆ 1. 1-1. 9(14H, m) 2. 49-2. 51(1H, m) 2. 54(3H, s) 2. 93-3. 17(4H, m) 3. 63(3H, s) 4. 0-4. 10(2H, m) 4. 55-4. 15(1H, m) 7. 23-7. 32(5H, m) 7. 44(1H, s) 8. 72(1H, brs) 8. 95(1H, d, J=7. 0Hz)
	化合物	CI O CCH2) 2 COORH H CI O COORH H CI O COORH H CI O COORH C	MeN-(CH ₂), -0 -0 - CONH - COOMe H C1 C1 O -CONH H C1 C1 O -CONH H C1 -Ph
	実施例	Ξ	112

1 3 5

	元素分析(%)		C3.0H3.2C1.2N2O6·HC1 計算值 C, 57.75 H, 5.33 N, 4.49 阅定值 C, 57.71 H, 5.31 N, 4.47
	FAB-MS	587 (free base, MH+)	587 (free base, MH*)
	IR (cm ⁻¹)	Neat 2953 1747 1663 1453	KBr 23433 2719 2719 1645 1457
表59	'H-NAR & (ppm), 300ABIZ	DNSO-de 1. 78-1. 96(4H, m) 2. 75(6H, brs) 2. 95(1H, dd, J=15, 9Hz) 3. 05-3. 16(3H, m) 3. 48(3H, s) 4. 10(2H, t, J=6Hz) 4. 48-4. 56(1H, m) 7. 17-7. 28(5H, m) 7. 73-7. 81(1H, m) 8. 00-8. 05(2H, m) 9. 04(1H, d, J=6Hz) 10. 05(1H, brs)	DMSO-de 1.8-1.9(4H, m) 2.53(3H, s) 2.80-3.15(4H, m) 3.32(3H, s) 3.51(3H, s) 4.05-4.10(2H, m) 4.51-4.60(1H, m) 7.19-7.61(9H, m)
	化合物	$Me_{2}N^{-}(CH_{2})_{4}-0 \longrightarrow C_{1} \longrightarrow CONH \longrightarrow COOMe$ •#C1	$\begin{array}{c} CI \\ CI \\ MeN^-(CH_2), -0 - O \\ H \\ CI \\ -HCI \end{array}$
	実施例	113	114

1 3 6

PCT/JP96/02305

	元素分析(%)	C ₁₂ H ₃ cCl ₂ N ₂ O ₆ ·HCl 計算値 C, 58. 95 H, 5. 72 N, 4. 30 関定値 C, 58. 95 N, 4. 21	
	FAB-MS	615 (free base, MH*)	541 (free base, MH*)
	IR (cm ⁻¹)	KBr 1748 1455 1211 1057	KBr 3423 2955 1774 1746 1669 1247 1215 1029
表60	11-NAR & (ppm), 300AHz	DMSO-d ₆ 1. 76-1. 94(4H, m) 2. 23(3H, s) 2. 30(6H, s) 2. 50-2. 58(3H, m) 2. 86-3. 03(3H, m) 3. 11(1H, dd, J=13. 5, 6. 0Hz) 3. 56(3H, s) 4. 02-4. 12(2H, m) 4. 52-4. 63(1H, m) 6. 98(2H, s) 7. 13-7. 31(5H, m) 7. 41(1H, s) 8. 69(1H, brs) 9. 08(1H, dr, J=6. 0Hz)	DMSO-de 1. 26(3H, t, J=7. 6Hz) 1. 85(4H, bs) 2. 56(3H, t, J=5. 6Hz) 2. 84-3. 22(4H, m) 3. 64(3H, s) 4. 05(2H, bs) 4. 22(2H, q, J=7. 6Hz) 4. 58-4. 66(1H, m) 7. 20-7. 38(5H, m) 7. 54(1H, s) 8. 76(2H, brs) 9. 01(1H, d, J=8. 2Hz)
	化合物	$\begin{array}{c} CI \\ CI \\ MeN^-(CH_2)_4 - 0 \\ -CONH \\ CI \\ -HCI \end{array}$	MeN-(CH ₂), -0 C1 C0NH C00Me H C1 C1
	実施例	115	116

1 3 7

	元素分析(%)	C2 6 H 3 o C1 2 N 2 O 6 · H C1 2 H 2 O 6 · H C1 2 N 2 O 6 · H C1 2 O	C2eH32CI2N2O6·HCI 計算信 C, 54. 22 H, 5. 78 N, 4. 86 阅定值 C, 54. 04 H, 5. 68 N, 5. 01
	FAB-MS	525 (free base, MH*)	539 (free base, MH+)
	1R (cm ⁻¹)	KBr 1646 1528 1456 1190	KBr 1734 1655 1456 1373 1201
表6.1	'H-MAR & (ppm), 300MHz	DMSO-d ₆ 1. 15(3H, t, J=6. 0Hz) 1. 76-1. 91(4H, m) 2. 17(3H, s) 2. 50-2. 59(3H, m) 2. 90-3. 07(3H, m) 3. 14(1H, dd, J=6. 0, 15. 0Hz) 4. 00-4. 15(4H, m) 7. 20-7. 33(5H, m) 7. 51(1H, s) 8. 69(2H, brs) 8. 69(2H, brs) 8. 89(1H, d, J=9. 0Hz)	DMSO-de 0. 95-1. 02(3H, d, J=6. 0Hz) 1. 03-1. 12(3H, d, J=6. 0Hz) 1. 78-1. 92(4H, m) 2. 18(3H, s) 2. 51-2. 59(3H, brs) 2. 39-3. 17(3H, m) 3. 11(1H, dd, J=13. 5, 6. 0Hz) 4. 48-4. 60(1H, m) 4. 48-4. 60(1H, m) 4. 48-4. 60(1H, m) 7. 52(1H, s) 8. 74(1H, brs) 8. 77(1H, d, J=9. 0Hz)
	化合物	$\begin{array}{c} \text{CI} & 0 \\ \text{MeN-(CH_2)_4-0} & -0 \\ \text{HCI} & \text{CI} \end{array}$	$\begin{array}{c} CI \\ MeN^{-}(CH_2)_4-0 \\ \hline \\ + \\ CI \\ \hline \\ -HCI \\ \end{array}$
	実施例	117	118

1 3 8

	元素分析(%)	C3.4H3.CL2N2O6.+HC1 計算値 C, 57. 75 H, 5. 33 N, 4. 49 砂定値 C, 56. 70 H, 5. 21 N, 4. 36	
	FAB-NS	539 (free base, MH ⁺)	601 (free base, MH ⁺)
	(cm ⁻¹)	KBr 3420 2980 1749 1669 1452	Neat 2980 1746 1668 1453
表62	1H-NNIR & (ppm), 300MHz	DMSO-ds 1. 00(3H, d, J=6Hz) 1. 04(3H, d, J=6Hz) 1. 75-1. 90(4H, m) 2. 82-3. 09(4H, m) 4. 05-4. 12(2H, m) 4. 40-4. 50(1H, m) 7. 05-8. 05(14H, m) 9. 02(1H, d, J=7. 0Hz)	DMSO-d ₄ 1. 00(3H, d. J=6Hz) 1. 04(3H, d. J=6Hz) 1. 80-1. 93(4H, m) 2. 54(3H, t. J=6Hz) 2. 90-3. 00(3H, m) 3. 05(1H, dd, J=15, 6Hz) 4. 05-4. 13(2H, m) 4. 40-4. 50(1H, m) 4. 74-4. 81(1H, m) 7. 17-7. 29(5H, m) 7. 17-7. 29(5H, m) 7. 73-7. 80(1H, m) 8. 00-8. 05(2H, m) 8. 74(2H, brs) 9. 02(1H, d, J=9Hz)
	化合物	C1 0 Ph H2N-(CH2)4-0-C1 - CONH - C00-<	MeN-(CH ₂), -0 \longrightarrow CONH \longrightarrow COO \longrightarrow HCI
	実施例	119	120

1 3 9

表63	集 施 (L 合 物 'H-MMR & (ppm), 300MHz 例	C1 0 1.28(3H, d, J=6. 40Hz) 2. 17(3H, s) 2. 90-3. 90(11H, m) 4. 45-4. 61(1H, m) 7. 15-7. 30(5H, m) 7. 52(1H, s) 7. 52(1H, s) 9. 50-9. 80(2H, m) 9. 50-9. 80(2H, m)	IZZ HN CH ₂) ₂ -0 CONH COOM S. 16(1H, S) 3.02(1H, d. J=15. 0, 8.5Hz) 3.02(1H, d. J=15. 0, 8.5Hz) 3.02(1H, d. J=15. 0, 6.0Hz) 3.02(1H, d. J=15. 0, 6.0Hz) 3.02(1H, m) 3.02(1H, m) 3.02(1H, m) 3.02(1H, m) 4.55-4.68(1H, m) 7.18-7.37(5H, m) 7.52(1H, S) 8.92(1H, d. J=14.0Hz) 9.58(2H, brs)
	IR (cm ⁻¹)		(z) 3422 (z) 1742 (z) 1742 1188 1188 1151
		537 (free base, MH+)	free base, MH+)
	元素分析 (%)		C16H3.C12N3O6·2HC1 計算情 C, 49. 94 H, 5. 32 N, 6. 72 M定值 C, 48. 39 H, 5. 16 N, 6. 46

1 4 0

	新 多 名	HN CH2) 2-0 C1 Me (123) Me (12) 2-10 C1	124 Me CH2)2-0
	合 物	0 -CONH -COOME	Ph Ph Cooke
表64	1H-NAIR & (ppm), 300AIHz	DNSO-d ₆ 1. 29(3H, d, J=6. 3Hz) 2. 95(1H, dd, J=9. 9, 13. 8Hz) 3. 09(1H, dd, J=9. 9, 13. 8Hz) 3. 20-3. 80(8H, m) 3. 48(3H, s) 4. 44(1H, brs) 4. 49-4. 55(2H, m) 7. 18-7. 28(5H, m) 7. 56(1H, s) 7. 62(2H, t, J=7, 8Hz) 7. 78(1H, t, J=7, 5Hz) 7. 53(2H, d, J=8. 4Hz) 9. 06(1H, d, J=7, 8Hz)	DMSO-d ₆ 1. 29(3H, d, J=6. 2Hz) 2. 95(1H, dd, J=13. 8, 9. 8Hz) 3. 09(1H, dd, J=13. 8, 5. 4Hz) 3. 12-3. 93(9H, m) 3. 48(3H, s) 4. 42-4. 57(3H, m) 7. 18-7. 29(5H, m) 7. 56-7. 64(3H, m) 7. 56-7. 64(3H, m) 8. 01-8. 04(2H, m) 9. 05(1H, d, J=7. 8Hz) 9. 55-9. 87(2H, m)
	[R (cm ⁻¹)	KBr 3430 1747 1664	KBr 3422 1741 1642 1585 1458 1357 1221
	FAB-MS	614 (free base, MH ⁺)	614 (free base, MH ⁺)
	元素分析(%)	施光度: [a] ²⁵ b = -26.8° (c=1.01, MeOH)	C3.H3.3C1.2N3Os.2HC1 計算値 C, 49. 42 H, 5. 36 N, 7. 20 測定値 C, 48. 47 H, 5. 58 N, 6. 91
		,	Y

1 4 1

	元素分析(%)	
	FAB-MS	(free base, MH+)
	(cm ⁻¹)	KBr 3433 2984 2418 1769 1735 1666 1529 1378 1195
表65	'H-NAR & (ppm), 300MHz	DMSO-d ₈ 1. 15(3H, t, J=7. 3Hz) 2. 18(3H, s) 2. 80(3H, s) 3. 02(1H, dd, J=9. 5, 13. 8Hz) 3. 14(1H, dd, J=5. 7, 13. 8Hz) 3. 15-3. 68(10H, m) 4. 09(2H, q, J=7. 3Hz) 4. 38(2H, bs) 4. 59(1H, dd, J=5. 7, 9.5, 7. 6Hz) 7. 23-7. 33(5H, m) 7. 53(1H, s) 8. 91(1H, d, J=7. 6Hz)
	化合物	$\begin{array}{c} CI \\ CI \\ CI \\ \end{array}$
	実施例	. K3

1 4 2

	元素分析(%)		C2.0H2.C1.2N2O5.HC1 計算値 C, 50. 27 H, 4. 85 N, 5. 86 例定値 C, 50. 22 H, 5. 16 N, 5. 47
	FAB-MS	455 (free base, MH*)	411 (free base, MH*)
	IR (cm ⁻¹)		KBr 2971 1638 1541 1271 1271
表66	'H-NMR & (ppm), 300MHz	DMSO-de 1. 83(4H, bs) 2. 54(3H, t. J=5. GHz) 2. 95(2H, bs) 3. 08-3. 78(2H, m) 4. 05(2H, bs) 4. 62-4. 72(1H, m) 7. 20-7. 38(5H, m) 8. 21(1H, s) 8. 70(2H, bs) 9. 36(1H, d, J=7. 7Hz) 13. 47(1H, s)	Ph 1. 69–1. 92(4H, m) 1. 69–2. 96(2H, m) 2. 79–2. 96(2H, m) 3. 09(1H, dd. J=15. 0, 10. 5Hz) 3. 26(1H, dd. J=15. 0, 6. 6Hz) 3. 96–4. 11(2H, m) 4. 63–4. 77(1H, m) 7. 13–7. 35(5H, m) 7. 86(3H, brs) 8. 20(1H, s) 9. 35(1H, d. J=9. 0Hz) 12. 10(1H, brs) 13. 46(1H, s)
	化合物	C1 OH C012) 4-0-C1 OH C00H H C11	C1 OH Ph H ₂ N-(CH ₂), -0 — C0NH — C00H C1 C1
	実施例	126	127

1 4 3

~	
ဗ	
麦	

実施例	化合物	'H-NAR & (ppm), 300MHz	IR (cm ⁻¹)	FAB-MS	元素分析(%)
83	Me ₂ N-(CH ₂) ₄ -0-CONH COOH C1	DMSO-d ₆ 1. 70-1. 90(4H, m) 2. 76(6H, s) 3. 10-3. 40(4H, m) 4. 64-4. 08(2H, t, J=7Hz) 4. 60-4. 75(1H, m) 7. 19-7. 30(5H, m) 8. 18(1H, s) 9. 41(1H, brs)	458 1584 1584 1584	469 (free base, MH*)	
83	$\begin{array}{c} \text{C1} & \text{OH} \\ \text{I-N} & \text{N}(\text{CH}_2)_2 - 0 \\ \text{Me} & \text{C1} \\ \text{-2HC1} \end{array}$	CD ₃ CO ₂ D 1. 51(3H, s) 3. 10-3. 40(2H, m) 3. 70-4. 30(9H, m) 4. 51-4. 60(2H, m) 5. 09-5. 06(2H, m) 7. 29-7. 21(5H, m) 7. 94(1H, s)	2341 2341 1734 1641 1457	495 (free base, MH*)	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₆ ·2HCl 計算.值 C, 48. 52 H, 5. 13 N, 7. 38 測定值 C, 47. 55 H, 5. 02 N, 6. 72

1 4

	元素分析(%)		
	FAB-MS	419 (free base, MH ⁺)	433 (free base MH ⁺)
	IR (cm ⁻¹)	KBr 3368 2940 1733 1639 1543 1485 1408 1357 1258 1203	
表68	¹ H-NMR & (ppm), 300MHz	DMSO-4 ₆ 1.28-1.38(2H, m) 1.50-1.64(4H, m) 2.50(3H, s) 2.62(2H, t, J=7.5Hz) 2.80-2.89(2H, m) 3.07(1H, dd, J=8.9, 13.9Hz) 3.20(1H, dd, J=4.8, 13.9Hz) 4.69(1H, dd, J=4.8, 7.8, 8.9Hz) 6.89(1H, s) 7.12-7.30(5H, m) 7.94(1H, s) 8.59(2H, brs) 8.59(2H, brs) 12.05(1H, brs) 12.05(1H, brs)	DMSO-4 ₆ 1.25-1.40(2H, m) 1.50-1.70(4H, m) 2.80-2.70(8H, m) 2.94-3.40(4H, m) 4.68(1H, m) 6.90(1H, s) 7.09-7.20(5H, m) 7.95(1H, s)
	化合物	MeN-(CH ₂) ₅ — CONH — COOH H C1 -HC1	Me ₂ N-(CH ₂), CONH COOH
	実施例	130	131

1 4 5

	元素分析 (%)		
	FAB-MS	(free base, MH ⁺)	467 (free base, MH ⁺)
	IR (cm ⁻¹)		·
表69	¹ H-NMR & (ppm), 300MHz	DMSO-d ₆ 1.32-1.64(6H, m) 2.85(4H, m) 3.12-3.34(2H, m) 3.57(3H, s) 4.68-4.72(1H, m) 7.16-7.30(5H, m) 8.13(1H, s) 8.65(2H, brs) 9.38(1H, d, J=7.4Hz)	DMSO-d ₆ 1.35(2H, m) 1.45-1.6(4H, m) 2.59(6H, s) 2.75(2H, m) 2.83(2H, m) 2.96(1H, dd, J=5, 14Hz) 3.13(1H, dd, J=5, 14Hz) 7.15-7.2(2H, m) 7.2-7.3(4H, m) 7.60(1H, s)
	化合物	MeN-(CH ₂), Cl CONH COOH	Me ₂ N-(CH ₂) _s CONH COOH
	実施例	132	133

1 4 6

	元素分析(%)	
-	FAB-MS	496 (free base, MH ⁺) 495 (free base, MH ⁺)
	IR (cm ⁻¹)	
表70	¹ H-NMR & (ppm), 300MHz	Ph DMSO-d ₆ 2.79(3H, s) 4.33(2H, m) 4.33(2H, m) 7.17-7.30(5H, m) 8.21(1H, s) 9.36(1H, d, J=8Hz) 13.47(1H, brs) DMSO-d ₆ 1.36(2H, m) 7.000H 1.69(2H, dd, J=6.3, 12.6Hz) 1.75-2.0(3H, m) 2.67(3H, s) 2.87(2H, m) 2.87(2H, m) 2.87(2H, m) 2.87(2H, m) 2.87(2H, m) 2.87(2H, dd, J=8.4, 14.5Hz) 3.31(1H, dd, J=8.4, 14.1Hz) 3.33(2H, t, J=6.3Hz) 4.64(1H, dd, J=5.7, 7.5Hz) 7.17-7.29(5H, m) 7.59(1H, s) 11.72(1H, brs)
	化合物	$\begin{array}{c} \text{Me-N} & \text{N-(CH}_2)_2 - 0 & \text{CONH} \\ \text{-2HCI} & \text{CI} & \text{CI} \\ \text{-2HCI} & \text{CI} & \text{CONH} \\ \text{-HCI} & \text{-1CI} & \text{-1CI} & \text{-1CI} \\ \text{-HCI} & \text{-1CI} & \text{-1CI} & \text{-1CI} \\ \end{array}$
	実施例	134

1 4 7

	元素分析(%)		
	FAB-MS	468 (free base, MH ⁺)	428 (free base, M*H)
	[R (cm ⁻¹)		KBr 3422 2939 1741 1638 1542
表7.1	1H-VMIR & (ppm), 300MIHz	DMSO-de 1. 44-1. 69(4H, m) 2. 50-2. 57(3H, m) 2. 63-2. 92(2H, m) 3. 11 (1H, dd, J=13. 5, 9. 0Hz) 3. 21 (1H, dd, J=13. 5, 6. 6Hz) 3. 48-3. 59(2H, m) 3. 05(3H, s) 4. 67-4. 79(1H, m) 5. 63(1H, brs) 7. 17-7. 34(5H, m) 8. 92(1H, s) 8. 57(2H, brs) 9. 18(1H, d, J=9. 0Hz) 13. 43(1H, s)	DMSO-d ₆ 1. 29-1. 84(8H, m) 2. 69(3H, s) 2. 88-3. 36(6H, m) 3. 73(3H, s) 4. 82-4. 96(1H, m) 6. 93(1H, d. J=8. 5Hz) 7. 18-7. 34(6H, m) 7. 93(1H, t. J=4. 2Hz)
	化合物	Men-(CH ₂),-N-COMH COMMe H C1 -ZHC1	MeN-(CH ₂) 6-N OH CONH COOME H
	実施例	136	137

1 4 8

~
<u>~</u>
麦

元素分析(%)		C2 eH2 sC1 2N s O4 · HC1 計學:他 C, 50.38 H. · 5.07 N. 8.81 测定值 C, 47.87 H. 4.6 N. 7.31
FAB-NS	516 (free base, MH*)	440 (free base, MH+)
IR (cm ⁻¹)	KBr 3412 2954 1638 1542 1645 1066	KBr 2955 1677 1413 1261 1203 1138
1H-NNR & (ppm), 300MHz	DMSO-d ₆ 1. 83(4H, b ₈) 2. 82-2. 94(2H, m) 3. 16-3. 32(2H, m) 4. 02-4. 06(2H, m) 4. 88-5. 02(1H, m) 7. 06-7. 42(8H, m) 7. 62(2H, d, J=8. 1Hz) 7. 86(2H, b ₈) 8. 32(1H, s) 10. 38(1H, s)	DMSO-d ₆ 1. 74-1. 87(4H, m) 2. 83-2. 92(2H, m) 2. 95-3. 03(1H, m) 3. 14-3. 22(1H, m) 3. 99-4. 06(2H, m) 4. 65-4. 74(1H, m) 7. 14-7. 34(6H, m) 7. 68-7. 81(4H, m) 8. 23(1H, s) 9. 19-9. 21(1H, m) 13. 56(1H, s)
化合物	C1 OH C01-C0NH-Ph	H ₂ N-(CH ₂), -0 — CONH — CONH ₂
実施例	88	139

	化合物	OH CONH-Me	OH CONH
表73	H-NAR 300	2.1. 29. 2.2. 2.3. 3.9. 3.00(-2.1. 3.00(-2.1. 3.16(-2.1	DMS0-d ₆ 1. 78-1. 86(4H, m) 2. 78-2. 94(2H, m) 3. 18-3. 78(2H, m) 4. 02-4. 10(2H, m) 4. 86-4. 96(1H, m) 7. 12-7. 42(8H, m) 7. 12-7. 42(8H, m) 7. 60-7. 66(2H, m) 7. 32(2H, bs) 8. 32(1H, s) 9. 42(1H, d, J=8. 8Hz) 10. 44(1H, s)
	'H-NAR & (ppm), 300AFtz	J-d ₆ -1. 84(4H, m) -2. 89(2H, m) -2. 89(2H, m) -2. 89(2H, m) -2. 89(2H, m) -1. 7. 10. 8Hz) -4. 16(2H, m) -4. 73(1H, m) -7. 32(5H, m) -7. 32(5H, m) -7. 97(3H, m)	6(4H, m) 4(2H, m) 4(2H, m) 8(2H, m) 0(2H, m) 6(1H, m) 6(2H, m) 6(2H, m) 6(2H, m) 6(2H, m) 6(2H, m) 6(3H, m) 6(3
	IR (cm ⁻¹)	787 2340 2340 1641 1458 1412 1228 1228	KBr 2854 1670 1542 1542 1508 1065
	FAB-MS	454 (free base, MH*)	534 (free base, MH+)
	元素分析(%)	C _{2.1} H ₂ sC ₁₂ N ₃ O ₄ ·HC ₁ C, 51.39 H, 5.34 N, 8.56 阅定值 C, 50.03 H, 5.38 N, 8.15	

1 5 0

	元素分析(%)	C25H28C12N4O4-HC1 計算値 C, 50. 87 H, 4. 78 N, 9. 49 M, 5. 14 N, 9. 27	·
	FAB-MS	(free base, 計學 C. F. Barbara	470 (MH*)
	IR (cm ⁻¹)	2857 2857 1543 1541 1280 1280 1280	KBr 3422 1624 1570 1542 1431
表74	¹ H-NAR & (ppm), 300AHz	DMSO-de 1. 73-1. 88(4H, m) 2. 79-2. 92(2H, m) 3. 08-3. 30(2H, m) 4. 01-4. 07(2H, m) 5. 02-5. 32(1H, m) 7. 17-7. 21(2H, m) 7. 26-7. 31(2H, m) 7. 45-7. 47(2H, m) 7. 84-8. 08(5H, m) 7. 84-8. 08(5H, m) 8. 30(1H, s) 8. 37(1H, d, J=6. 0Hz) 9. 40(1H, d, J=9. 0Hz) 11. 24(1H, s) 13. 42(1H, s)	DMSO-de 1. 70-1. 90(4H, m) 2. 58(3H, s) 2. 75-3. 00(4H, m) 3. 88-3. 98(2H, m) 4. 56-4. 59(1H, m) 7. 16-7. 33(5H, m) 7. 55(1H, s) 8. 78(1H, m)
	化合物	H ₂ N-(CH ₂), -0 —CONH $-$ CONH $-$ N) -2HCI	Men-(CH ₂), -0 — CONH — CONHOH
	実施例	142	143

1 5 1

	元素分析(%)		C _{2.0} H _{2.4} Cl ₂ N ₂ O _{4.7} HCl 計算値 C, 51.80 H, 5.43 N, 6.04 例定値 C, 50.96 H, 5.65 N, 5.65
	FAB-MS	479 (free base, MH*)	427 (free base, MH*)
	IR (cm ⁻¹)	KBr 3421 2935 1638 1588 1542 1457	KBr 3421 2950 1637 1583 1458
表75	'H-NNR & (ppm), 300MHz	DMSO-de 1. 80-1. 86(4H, m) 2. 35(3H, s) 2. 84-2. 90(2H, m) 3. 34-3. 47(2H, m) 4. 00-4. 06(2H, m) 5. 56-5. 64(1H, m) 7. 19-7. 34(5H, m) 7. 96(3H, brs) 8. 22(1H, s) 9. 86(1H, d, J=9Hz) 13. 19(1H, brs)	DMSO-d ₆ 1. 70-1. 92(4H, m) 2. 73-3. 01(4H, m) 3. 42-3. 58(2H, m) 3. 95-4. 11(2H, m) 4. 13-4. 32(1H, m) 4. 97(1H, brs) 7. 09-7. 33(5H, m) 7. 91(3H, brs) 8. 25(1H, s) 8. 25(1H, s) 13. 98(1H, s)
	化合物	H2N-(CH2), 4-0—(C1) H2N-(CH2), 4-0—(C1) H2N-(CH2), 4-0—(C1)	H ₂ N-(CH ₂) ₄ -0-CONH CH ₂ OH CH ₂ OH
	実施例	144	145

1 5 2

	元素分析(%)		
	FAB-MS	437 (free base, MH*)	475 (free base, MH+)
	[R(cm ⁻¹)	KBr 2336 2952 1741 1647 1527 1188	2332 2332 2332 232 232 232 232 232 232
表76	'H-NAIR & (ppm), 300AIIZ	DMSO-ds 1. 58-1. 82(4H, m) 2. 68-2. 84(2H, m) 3. 02-3. 26(2H, m) 3. 67(3H, s) 4. 12-4. 20(2H, m) 4. 82-4. 88(1H, m) 6. 92(1H, d, J=9. 0Hz) 7. 16-7. 40(8H, m) 7. 54(1H, s) 7. 81(2H, br) 8. 21(1H, s) 8. 62(1H, d, J=7. 2Hz) 10. 21(1H, s)	DMSO-d ₆ 1. 20(3H, t, J=5. 4Hz) 1. 82-1. 85(4H, m) 2. 58-2. 62(3H, m) 2. 96-3. 04(2H, m) 3. 15-3. 26(2H, m) 4. 11(2H, t, J=4. 3Hz) 4. 16(2H, q, J=5. 4Hz) 4. 69-4. 75(1H, m) 7. 10(2H, d, J=6. 6Hz) 7. 24-7. 28(1H, m) 7. 24-7. 28(1H, m) 7. 32-7. 38(4H, m) 7. 73(2H, d, J=6. 6Hz) 7. 77(2H, d, J=6. 3Hz) 8. 72-8. 83(2H, m) 8. 72-8. 83(2H, m) 8. 72-8. 83(2H, m) 8. 88(1H, d, J=5. 8Hz)
	化合物	H ₂ N-(CH ₂),4-0	MeN-(CH ₂),-0-(O)-(O)(CONHCOOEt H -HC1
	靐	146	147

1 5 3

	元素分析(%)		·
	FAB-MS	467 (free base, MH*)	451 (free base, MH+)
	IR (cm ⁻¹)	XBr 23343 2336 1741 1638 1550	KBr 3423 2938 1735 1617 1560 1211
表7.7	'H-NMR & (ppm), 300MHz	DMSO-d ₆ 1. 16(3H, t, J=7Hz) 1. 65-1. 92(4H, m) 2. 53(3H, s) 2. 93(2H, t, J=6Hz) 3. 07(2H, t, J=6Hz) 3. 12-3. 25(2H, m) 4. 12(2H, t, J=7Hz) 7. 19-7. 33(5H, m) 7. 54(1H, dd, J=3. 9Hz) 7. 59(1H, d, J=9Hz) 8. 68(2H, brs) 9. 08(1H, d, J=9Hz) 12. 08(1H, brs)	DMSO-d ₆ 1. 14(3H, t, J=6. 8Hz) 1. 66-1. 82(4H, m) 2. 42-2. 58(6H, m) 2. 84-3. 22(6H, m) 4. 09(2H, q, J=6. 8Hz) 4. 64-4. 68(1H, m) 7. 18-7. 34(5H, m) 7. 98(2H, d, J=8. 6Hz) 8. 08(2H, br) 9. 04(1H, d, J=7. 2Hz)
	化合物	Men-(CH ₂), \longrightarrow \longrightarrow OH \longrightarrow COOBt \longrightarrow HC1	MeN-(CH ₂), $\stackrel{0}{\sim}$ N $\stackrel{-}{\sim}$ CONH $\stackrel{-}{\sim}$ COOEt H
	実施例	148	149

1 5 4

			
	元素分析(%)		
	FAB-MS	439 (free base, MH+)	477 (free base, MH ⁺)
	[R (cm ⁻¹)	KBr 1623 1545 1224	KBr 1654 1542 1437 1231
表78	'H-NAIR & (ppm), 300MHz	DMSO-d ₈ 1. 70-1. 88(4H, m) 2. 53(3H, m) 2. 90-3. 70(6H, m) 4. 76(1H, m) 7. 20-7. 28(5H, m) 7. 55-7. 56(2H, m) 8. 04(1H, d, J=6. 0Hz) 8. 62(2H, m) 9. 03(1H, d, J=6. 0Hz) 12. 12(1H, s) 13. 0(1H, brs)	DMSO-d ₈ 1. 69-1. 88(4H, m) 2. 34(3H, s) 2. 53(3H, m) 2. 89-3. 80(6H, m) 5. 62(1H, m) 7. 20-7. 32(5H, m) 7. 50(1H, d. J=6Hz) 7. 55(1H, s) 7. 59(1H, d. J=6Hz) 8. 69(2H, brs) 9. 40(1H, d. J=6. 0Hz) 12. 06(1H, s)
	化合物	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	実施例	150	151

1 5 5

	元素分析(%)		
	FAB-MS	(free base, MH+)	484 (free base, MH・)
	IR (cm ⁻¹)	·	KBr 1738 1643 1469 1469
表79	'H-NAR & (ppm), 300MHz	DNSO-d ₆ 1. 15(3H, t, J=15Hz) 2. 18(2H, m) 2. 57(3H, m) 2. 90-3. 50(6H, m) 4. 12(2H, q, J=15Hz) 4. 60(1H, m) 7. 21-7. 34(5H, m) 7. 73(1H, d, J=9Hz) 7. 82(1H, d, J=9Hz) 8. 09(1H, s) 8. 80(2H, brs) 8. 91(1H, d, J=6Hz)	MSO-d ₆ 1. 11-1. 83(11H, m) 2. 52(3H, m) 2. 83-3. 57(6H, m) 4. 10(2H, q, J=18Hz) 4. 65(1H, m) 7. 20-7. 83(7H, m) 8. 94(3H, m)
	化合物	MeN-(CH ₂) ₃ -S-(N) CONH COOEt H -HCI	MeN-(CH ₂) ₈ -S-\(\bigg \overline{\chi_0} \ove
	実施例	152	153

1 5 6

	元素分析(%)	
	IR (cm ⁻¹) FAB-MS	445 (free base, MH ⁺)
	IR (cm ⁻¹)	
表80	¹ H-NMR & (ppm), 300MHz	CDCl ₃ 1.24(3H, t, J=7.3Hz) 1.70-1.83(2H, m) 1.97-2.08(2H, m) 2.65(3H, s) 2.92-3.02(4H, m) 3.21(2H, d, J=5.8Hz) 3.80(3H, s) 4.18(2H, q, J=7.3Hz) 5.03(1H, q, J=5.8Hz) 6.83(1H, d, J=5.8Hz) 7.15-7.28(5H, m) 8.08(1H, d, J=8.2Hz) 8.27(1H, d, J=8.2Hz) 9.56(2H, brs)
	化合物	MeN-(CH ₂) ₄ -S-CONH - COOBt H
	実施例	154

1 5 7

	元素分析(%)		
		538 (free base, MH ⁺)	503 (free base, MH ⁺)
	IR (cm ⁻¹)	KBr 3436 1774 1638 1459	X87 2342 2372 1738 1182 1182
表81	'H-NNR & (ppm), 300MHz	DMSO-d ₆ 1. 14(3H, t, J=7Hz) 3. 08-3. 60(14H, m) 4. 12(2H, q, J=7Hz) 7. 15-7. 32(5H, m) 8. 31(1H, s) 9. 58(1H, d, J=9Hz) 9. 59(2H, brs)	DMSO-ds 0. 93(3H, t, J=6. 0Hz) 1. 17(3H, t, J=6. 0Hz) 1. 66-1, 92(4H, m) 2. 22-2, 34(2H, m) 2. 78-3, 36(6H, m) 4. 11(2H, q, J=6. 0Hz) 4. 70-4, 78(1H, m) 6. 98(1H, s) 7. 24-7, 32(5H, m) 8. 11(1H, s) 8. 89(1H, brs) 9. 08(1H, d, J=7, 2Hz) 12. 37(1H, s)
	化合物	ON CH2)2-C00-O-CONH - C00Et	HN KEt OH COORT COORT
	実施例	155	156

1 5 8

	元素分析(%)		
	FAB-MS	415 (free base, MH ⁺)	493 (free base, MH ⁺)
	IR (cm ⁻¹)		
表82	¹ H-NMR & (ppm), 300MHz	CDCl ₃ 2.20-2.34(2H, m) 2.71(3H, s) 2.77(2H, t, 1=5Hz) 3.11(2H, brs) 3.23(2H, ddd, 1=13, 8, 5Hz) 3.77(3H, s) 5.01(1H, ddd, 1=8, 8, 5Hz) 6.60(1H, dd, 1=9, 2Hz) 6.97(1H, d, 1=8Hz) 7.13(2H, dd, 1=8, 2Hz) 7.24-7.32(3H, m) 7.37(1H, d, 1=9Hz) 9.51(2H, brs)	Ph CDCl ₃ 2.20-2.40(2H, m) 2.20-2.40(2H, m) 3.05-3.25(4H, m) 3.05-3.25(4H, m) 3.77(1H, s) 4.9(1H, q, J=7.2Hz) 6.86(1H, s) 7.14-7.30(6H, m) 7.67(1H, s) 9.43(2H, s) 11.91(1H, s)
	化合物	-HC1 -HC1 -HC1	MeN-(CH ₂) ₈ -C00 (OH Ph H H- Br +HC!
	実施例	157	158

1 5 9

次に本発明化合物を薬剤として用いる場合の製剤例を示す。 製剤例1 (錠剤の製造例)

(1)実施例18の化合物	1 0 g
(2)乳糖	5 0 g
(3)トウモロコシデンプン	1 5 g
(4)カルボキシメチルセルロースナトリウム	4 4 g
(5)ステアリン酸マグネシウム	1 g

(1), (2), (3) の全量及び(4) の30gを水で練合し、真空乾燥後製粒を行った。この製粒末に14gの(4) 及び1gの(5) を混合し、打錠機で錠剤とすることにより、1錠あたり10mgを含有する錠剤1000個を製造した。

製剤例2 (注射剤の製造例)

マンニトール5 gを注射用水1 0 0 m 1 に溶かした水溶液に実施例1 8 の化合物 1 0 0 m gを溶解し、0. 2 2 μ m のフィルターで濾過滅菌後、滅菌済のアンプルに1 m 1 づつ充塡することにより、1 アンプルあたり1 m g を含有する注射剤を得た。

次に、本発明化合物の炎症性サイトカイン産生抑制作用、LPS誘発腹膜炎に対する抑制作用及びLPS/D-ガラクトサミン誘発肝炎モデルに対する抑制作用について行った試験結果を示す。

試験例1:炎症性サイトカイン産生抑制作用

へパリン採血したヒト末梢血をFicol-Paque (15m1)に30m1のせ、400 Gで40分間室温で遠心し、得られた単球画分層を集め、E-MEM培地で 3 回洗浄した。最終的に細胞を、 0.5×10^5 個 $/800\mu1$ の濃度に、5% ウシ胎児血清(2-メルカプトエタノール)を含むRPMI-1640 培地にて 調製し、24穴プレートに $800\mu1$ ずつ巻き込んだ。検体 $100\mu1$ を加え、1 時間後リポ多糖体(LPS: Lipopolysaccharide)($100\mug/m1$)を $100\mu1$ 添加した。LPS 刺激 20 時間後の上清を採取し、各種サイトカイン量を ELISA キットにて測定した。なお各々の濃度におけるサイトカイン量をプ

ロットすることにより、50%阻害に必要な検体の濃度(IC_{50})を求めた。結果を表83~88に示す。

表 8 3

	I C 50 (μM)		
	I L – 1 β	TNF	I L - 8
実施例1	0.002	0.008	0.009
実施例2	-	-	0.01
実施例3	> 30	- 14	> 30
実施例 4	3	2	2
実施例 5	7 5	6	6
実施例 6	14	6	14
実施例7	-	_	8
実施例 9	_		< 0.3
実施例 1 0	-		0.6
実施例11	_	-	0.4
実施例14	<u>-</u>	-	1
実施例 1 5			1
実施例16		_	0.03
実施例18	_	-	< 0.01
実施例19		-	< 0.01
実施例 2 0	_	_	29
実施例 2 1	_	_	< 0.01
実施例22	_	_	< 0.01
実施例24	-	_	0. 02
実施例25		_	0. 01
実施例26	. ′ -	_	0. 009

表 8 4

	I C 50 (μM)		
	I L – 1 β	TNF	I L – 8
実施例27	_	-	< 0.01
実施例28	_		< 0.01
実施例29		-	< 0.01
実施例30	-	_	0.6
実施例31	-	-	< 0.01
実施例32		_	0.5
実施例34	-	-	2
実施例36	_	-	0.06
実施例37		. -	0.3
実施例39	-	- .	0.02
実施例 4 0	_	_	0.01
実施例 4 1		_	< 0.01
実施例 4 2	_		0. 1
実施例 4 3	_		0.03
実施例44	_		< 0.01
実施例 4 5	0. 0008	0.004	0. 004
実施例 4 6	-		< 0.01
実施例 4 7	-	-	3
実施例 4 8	_		0. 2
実施例 4 9	-	_	0. 02
実施例50	_	_	28

表 8 5

	I C 50 (μM)		
	Ι L – 1 β	TNF	I L - 8
実施例 5 1	-	_	7
実施例52	<u>-</u>	_	< 0.01
実施例53	_	_	< 0.01
実施例 5 4	_	-	< 0.01
実施例 5 5		-	< 0.01
実施例 5 6	-	-	4
実施例 5 7	-		0.05
実施例 5 8	-	-	0.02
実施例60			0.03
実施例 6 3	_	_	0. 1
実施例 6 4	_	_	0.05
実施例 6 7	-	_	0.05
実施例 6 8	-	_	0. 001
実施例 6 9	-		< 0.001
実施例70	_	_	0.006
実施例71	-		0.04
実施例72		_	0.1
実施例73	-	_	< 0.01
実施例74	-	-	0. 07
実施例75	-	_	0.04
実施例76	_	-	0.3

表 8 6

	I C 50 (μM)		
	I L – 1 β	TNF	I L - 8
実施例77			3
実施例80	·	-	3
実施例81	_	1	4
実施例82	-	-	0.02
実施例83			0.09
実施例 8 4		-	0.03
実施例 8 5	<u>-</u>		0.07
実施例 8 6		-	< 0.001
実施例 8 7		-	0.2
実施例88	_	_	3
実施例89	_	-	0.6
実施例90	_		0.6
実施例91		-	0. 001
実施例92	_	***	0.03
実施例94	_	_	1
実施例 9 5	_	_	0.09
実施例 9 6	-	_	0.003
実施例 9 8	-	-	0.001
実施例99	_	_	0. 001
実施例 100		· <u>-</u>	0.001
実施例101	-	_	0.003

表 8 7

	I C 50 (μM)		
	I L – 1 β	TNF	I L - 8
実施例102		-	0.002
実施例103	_	-	0.7
実施例104	_		0. 7
実施例105	0.001	0.004	0.005
実施例106	-	-	< 0. 01
実施例110			< 0.01
実施例111	_	_	< 0. 01
実施例117	-	_	< 0.01
実施例122	_	_	< 0. 01
実施例125	-	_	0.01
実施例126	_		0.8
実施例127	_		0.2
実施例128	_	_	0.2
実施例129	_	_	2
実施例132	-	_	0.07
実施例133		_	0.2
実施例134	-	-	0.2
実施例136	_		0.2
実施例137		-	2
実施例138	_	· -	1
実施例139	-	_	4

表 8 8

	I C 50 (μM)		
	I L – 1 β	TNF	I L - 8
実施例140		_	13
実施例141	_		3
実施例142		-	0. 4
実施例143	-	_	3
実施例144			29
実施例146	_	-	5
実施例147	-	_	2
実施例148	_	- .	4
実施例149		_	3
実施例152			7
実施例 1 5 3	_		1
実施例 1 5 5		_	0.2
実施例156	-	-	2

試験例2:LPS誘発腹膜炎に対する抑制作用

雄性 Balb/c マウスの腹腔に 0.5% CMC(カルボキシメチルセルロース)を含んだ生理食塩水で調製した LPS($30\mu g/m1$, 1m1)を注入し、腹膜炎を惹起させた。 1 時間後に炭酸ガスで屠殺、腹腔液中の TNF α 量を ELISA キットにて測定した。

検体はLPS投与60分前に50mg/kg尾静脈内投与しておき、その抑制程度を検討した。なお、検体の抑制作用は対照群に対する抑制率にて示した。抑制率(%)=100-(検体処理群のTNF量/対照群のTNF量)×100 結果を表89に示す。

表中、**は対照群との有意差p<0.01を示す。

表 8 9

	抑制率(%)
実施例1	6 4 **
実施例4	3 8 **
実施例 9	2 1
実施例19	3 2 **
実施例51	3 8 **
実施例52	3 1 **
実施例148	1 9
実施例155	2 8 ** .

試験例3:LPS/D-ガラクトサミン誘発肝炎モデルに対する抑制作用

雄性C57BL/6マウスにLPS(5μg/kg)/D-ガラクトサミン(500mg/kg)生理食塩水溶液を腹腔内投与し、肝炎を発症させた。LPS/D-ガラクトサミン生理食塩水溶液投与6時間後に、マウス眼窩静脈叢より血液を採取した。血液より血漿を分離し、生化学分析装置にて血中のALT値を測定した。検体は、LPS/D-ガラクトサミン生理食塩水溶液投与10分前に尾静脈内投与しておき、その抑制程度を検討した。なお、検体の抑制作用は対照群に対する抑制率にて示した。

抑制率(%) = 100-(検体処理群のALT量/対照群のALT量)×100 結果を表90~91に示す。

表 9 0

	用量 (mg/kg)	抑制率(%)
実施例1	5	8 8
	1 0	7 8
実施例 2	1 0	6 5
実施例 4	1 0	4 2
実施例10	1 0	7 7
実施例18	1 0	8 6
実施例22	1 0	5 1
実施例24	1 0	6 3
実施例27	1 0	6 7
実施例31	5	8 7
実施例 3 2	1 0	. 78
実施例36	1 0	4 7
実施例37	1 0	8 0

表 9 1

	用量 (mg/kg)	抑制率(%)
実施例40	1 0	4 9
実施例45	1 0	3 0
実施例 4 6	1 0	5 7
実施例50	1 0	1 5
実施例54	5	7.4
実施例60	1 0	4 2
実施例61	1 0	6
実施例105	1 0	4 0
実施例117	1 0	5 4
実施例123	1 0	4 1
実施例126	1 0	2 7
実施例127	5	8 2
実施例138	5	2 2

上記結果より、本発明化合物は、炎症性サイトカイン産生抑制作用を有し、慢性関節リウマチ等のリウマチ性疾患、痛風による関節炎、全身性エリトマトーデス、乾癬・膿疱症・アトピー性皮膚炎等の皮膚疾患、気管支喘息・気管支炎・ARDS・びまん性間質性肺炎等の呼吸器疾患、炎症性腸疾患(潰瘍性大腸炎、クローン病)、激症肝炎を含む急性・慢性肝炎、急性・慢性糸球体腎炎、腎盂腎炎、ベーチェット病・vogtー小柳・原田病等に伴うぶどう膜炎、地中海熱(多発性漿膜炎)、心筋梗塞等の虚血疾患、敗血症に伴う全身循環不全や多臓器不全等に代表される好中球の浸潤を伴う非感染性、感染性疾患等の予防又は治療に有用であることがわかる。

また、IL-6、GM-CSF等の炎症性サイトカインについても試験を行った結果、これらの炎症性サイトカインも抑制することが確認された。

請求の範囲

1. 一般式(I):

$$R - A - X - M - R^{3} - R^{4} - R^{5}$$
(CH₂)m R^{7}
(I)

{式中、RはR。; R。で置換されたアルコキシ基; R。で置換されたアルキルチオ基; R。で置換されたアルキルアミノ基; 置換されていてもよい窒素含有非芳香族複素環基; 又は水酸基〔ここで、R。はアミノ基、グアニジノ基、アミジノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジノルボニル基又はイミノ基(これらの基は、低級アルキル基、ハロゲン化低級アルキル基、シクロアルキル基、アラルキル基、アリール基又はアミノ保護基から選ばれる置換基で置換されていてもよい)である〕を表し、

Aは置換されていてもよく、かつ鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状のアルキレン基;又は単結合を表し、

Xは酸素原子; 硫黄原子; -NR®-; -SO-; -SO2-: -CR®R10-;

 $-C = C - : -C \equiv C - : -CO - : -COO - : -OOC - : -NR^{\circ}CO - :$

 $-CONR^{8} - : -NR^{8} SO_{2} - : -SO_{2} NR^{8} - : -CS - : -COS - :$

 $-0-C0-0-:-NR^*-C00-:-00C-NR^*-:$

-NH-CO-NH-;-NH-CS-NH-;-NH-C(=NH)-NH-; 窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2 価の芳香族複素環基;又はシクロアルキレン基〔ここで、R[®] は水素原子;アルキル基;シクロアルキル基;アリール基;アラルキル基;又はアミノ保護基を、R[®]、R^{1®}は同一又は異なって、水素原子;アルキル基;シクロアルキル基;アリール基;又はアラルキル基を示す〕を表し、

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子 から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の 複素環基を表し、 R¹、R²、R²、R²は同一又は異なって、水素原子;水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基;アルコキシ基;メルカプト基;アルキルチオ基;アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;アルコキシカルボニル基;アリールオキシカルボニル基;アシル基;又は一〇一〇〇一尺¹¹(ここで、R¹¹はアミノ基、アルコキシカルボニル基、アシルオキシ基、アリール基、アリールオキシ基、アリールオキシカルボニル基、アリールチオ基、アラルキルオキシ基、アリールオキシカルボニル基、アリールチオ基、アシル基、低級アルコキシ基、カルボキシル基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基は低級アルキル基又はアシル基で置換されていてもよいアルキル基;置換されていてもよいアリール基;置換されていてもよいアリール基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールチオ基を示す)を表し、

R⁵ は水素原子; ハロゲン原子で置換されていてもよいアルキル基; 置換されていてもよいアラルキル基: 又はアミノ保護基を表し、

mは0又は1~6から選ばれる整数を表し、

R⁶ は置換されていてもよいアリール基;置換されていてもよいシクロアルキル基;置換されていてもよい低級アルキル基;置換されていてもよい低級アルコキシ基;置換されていてもよい低級アルキルチオ基;低級アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;又は置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基を表し、

R⁷ は水素原子;置換されていてもよいアルキル基;置換されていてもよいアリール基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ば

れる1個以上のヘテロ原子を有する芳香族複素環基:又は-CO(Y)。 R^{12} 〔ここで、Yは酸素原子:硫黄原子: $-NR^{13}-$;又は $-NR^{13}-SO_2-$ (R^{13} は水素原子:アルキル基:アラルキル基:水酸基:アルコキシ基:アリール基:又はアミノ保護基を示す)を、

pは0又は1を、

R¹²は水素原子;水酸基、アルコキシ基、アルコキシアルコキシ基、アルコキシカルボニル基、アシルオキシ基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基はアルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアルキニル基;置換されていてもよいアルキニル基;置換されていてもよいアルキニル基;置換されていてもよいアリール基;置換されていてもよいアリール基;置換されていてもよいアラルキル基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ基を示す)を表す)で表されるアミド化合物又はその薬学的に許容される酸付加塩。

2. 一般式 (I) においてR、A、X、M、R¹、R²、R³、R⁴、R⁵、m、R⁶ 又はR⁷ から選ばれる少なくとも1つの記号が、下記定義を満足するものであることを特徴とする請求の範囲第1項記載のアミド化合物又は薬学的に許容される酸付加塩。

RはR_{•1}; R_{•1}で置換されたアルコキシ基; R_{•1}で置換されたアルキルチオ基; R_{•1}で置換されたアルキルアミノ基; 又は低級アルキル基又はアミノ保護基で置換されていてもよい窒素含有非芳香族複素環基 [ここで、R_{•1}はアミノ基、グアニジノ基、アミジノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジノカルボニル基又はイミノ基 (これらの基は、低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよい)で

ある〕を示す。

Aは鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状のアルキレン基:又は単結合を示す。

X は酸素原子: 硫黄原子: -NR*'-:-SO-:-SO2-:

- $-CR^{9'}R^{10'}$ -; -C=C-; $-C\equiv C-$; -CO-; -COO-; -OOC-;
- $-NR^{8'}CO-; -CONR^{8'}-; -NR^{8'}SO_2-; -SO_2NR^{8'}-;$
- $-CS-:-COS-:-O-CO-O-:-NR^{s'}-COO-:$
- $-00C-NR^{8'}-;-NH-CO-NH-;-NH-CS-NH-;$
- -NH-C (=NH) -NH-; 窒素原子、硫黄原子又は酸素原子から選ばれる 1 個以上のヘテロ原子を有する 2 価の芳香族複素環基; 又はシクロアルキレン基 [ここで、 $R^{s'}$ は水素原子; 低級アルキル基; アラルキル基; 又はアミノ保護基 を、 $R^{s'}$ 、 $R^{10'}$ は同一又は異なって、水素原子; 低級アルキル基; 又はアラルキル基を示す〕を示す。

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を示す。

R¹、R²、R³、R¹は同一又は異なって、水素原子:水酸基:ハロゲン原子:水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよい低級アルキル基;低級アルコキシ基;メルカプト基;低級アルキルチオ基;低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;低級アルコキシカルボニル基;アリールオキシカルボニル基;アシル基;又は「ローンの一との「にここで、R¹¹'はアミノ基、低級アルコキシカルボニル基、アシルオキシ基、アラルキルオキシ基、アラルキルオキシカルボニル基、アシル基、低級アルコキシ基又はカルボキシル基から選ばれる置換基で置換されていてもよい低級アルキル基(ここで、アミノ基は低級アルキル基で置換されていてもよい低級アルキル基(ここで、アミノ基は低級アルキル基で置換されていてもよい):低級アルコキシ基:低級アルキル基、カルボキシル基又はベンジルオキ

シカルボニル基から選ばれる置換基で置換されていてもよいアリール基:又は置換されていてもよいシクロアルキル基を示す〕を示す。

R⁵ は水素原子;ハロゲン原子で置換されていてもよいアルキル基;置換されていてもよいアラルキル基;又はアミノ保護基を示す。

mは0又は1~6から選ばれる整数を示す。

R⁶ はアリール基;シクロアルキル基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基〔ここで、アリール基、シクロアルキル基及び窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基は、低級アルキル基、ハロゲン原子、水酸基、低級アルコキシ基、アミノ基、カルボキシル基又は低級アルコキシカルボニル基から選ばれる置換基で置換されていてもよい〕を示す。

R⁷は水素原子;水酸基、低級アルコキシ基、メルカプト基、低級アルキルチ オ基、カルボキシル基、低級アルコキシカルボニル基又はアミノ基から選ばれる **置換基で置換されていてもよい低級アルキル基:低級アルキル基で置換されてい** てもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ 原子を有する芳香族複素環基;又は-CO(Y')。R^{12'}〔ここで、Y'は酸素 原子;硫黄原子;-NR^{13'}-;又は-NR^{13'}-SO₂-(R^{13'}は水素原子; 低級アルキル基;アラルキル基;水酸基;低級アルコキシ基;又はアミノ保護基 を示す)を、pは0又は1を、 R^{12} は水素原子:水酸基、低級アルコキシ基、 低級アルコキシ低級アルコキシ基、低級アルコキシカルボニル基、アシルオキシ 基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上の ヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていて もよいアルキル基(ここで、アミノ基は低級アルキル基、アラルキル基又はアミ ノ保護基から選ばれる置換基で置換されていてもよい):低級アルキル基で置換 されていてもよいシクロアルキル基:低級アルキル基、ハロゲン原子、アミノ基、 カルボキシル基、水酸基又は低級アルコキシ基から選ばれる置換基で置換されて いてもよいアリール基:アラルキル基:低級アルキル基、ハロゲン原子、アミノ

基、カルボキシル基、水酸基又は低級アルコキシ基から選ばれる置換基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上の ヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ 基を示す〕を示す。

3. 一般式(I) においてR、A、X、M、R¹、R²、R³、R⁴、R⁵、m、R⁶ 又はR⁷ から選ばれる少なくとも 1 つの記号が、下記定義を満足するものであることを特徴とする請求の範囲第 1 項記載のアミド化合物又は薬学的に許容される酸付加塩。

RはR_{•2}; R_{•2}で置換されたアルコキシ基; 又は低級アルキル基又はアミノ保護基で置換されていてもよい窒素含有非芳香族複素環基〔ここで、R_{•2}はアミノ基、グアニジノ基、アミジノ基又はカルバモイル基(これらの基は、低級アルキル基又はアミノ保護基で置換されていてもよい)である〕を示す。

Aは直鎖のアルキレン基;又は単結合を示す。

Xは酸素原子;硫黄原子;-NR⁸''-;-CR⁸''R¹⁰''-;-COO-; -OOC-;-NR⁸''CO-;-CONR⁸''-;-NR⁸''SO₂-; -SO₂NR⁸''-;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2価の芳香族複素環基〔ここで、R⁸''は水素原子;低級アルキル基;又はアミノ保護基を、R⁸''、R¹⁰''は同一又は異なって、水素原子;又は低級アルキル基を示す〕を示す。

Mはアリーレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を示す。

R¹、R²、R³、R⁴は同一又は異なって、水素原子;水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよい低級アルキル基;低級アルコキシ基;又は-O-CO-R¹¹''〔こで、R¹¹''はアミノ基、アシルオキシ基又はアラルキルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基(ここで、アミノ基は

低級アルキル基で置換されていてもよい); 低級アルコキシ基; 低級アルキル基 で置換されていてもよいアリール基; 又はシクロアルキル基を示す〕を示す。

R⁵ は水素原子;低級アルキル基;又はアミノ保護基を示す。 mは1を示す。

R⁶ はアリール基;又はシクロアルキル基 (ここで、アリール基及びシクロアルキル基は、ハロゲン原子又は水酸基で置換されていてもよい)を示す。

R⁷ は水素原子;水酸基又は低級アルコキシ基で置換されていてもよい低級アルキル基:低級アルキル基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する芳香族複素環基;又は一CO(Y'')。R^{12''} (ここで、Y''は酸素原子;硫黄原子;又は一NR^{13''}ー(R^{13''}は水素原子;低級アルキル基;水酸基;又はアミノ保護基を示す)を、pは0又は1を、R^{12''}は水素原子;水酸基、低級アルコキシ基、低級アルコキシ基、低級アルコキシ基、低級アルコキシル基、空素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基は低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアリール基;アラルキル基:低級アルキル基:アウェルキル基:アラルキル基:低級アルキル基で置換されていてもよいアリール基;アラルキル基:低級アルキル基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基;アダマンチル基:又はシクロアルキリデンアミノ基を示す〕を示す。

4. 一般式 (I) においてR、A、X、M、R¹、R²、R³、R⁴、R⁵、m、R⁶ 又はR⁷ から選ばれる少なくとも 1 つの記号が、下記定義を満足するものであることを特徴とする請求の範囲第 1 項記載のアミド化合物又は薬学的に許容される酸付加塩。

Rはアミノ基;アミノ基で置換された低級アルコキシ基:低級アルキル基で置

換されていてもよいピペラジニル基;又は低級アルキル基で置換されていてもよいピペリジル基〔ここで、アミノ基は低級アルキル基で置換されていてもよい〕 を示す。

Aは直鎖のアルキレン基を示す。

Xは酸素原子; 硫黄原子; -NH-; 又は-CH2-を示す。

Mはアリーレン基を示す。

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子;水酸基;ハロゲン原子;又は $-O-CO-R^{11'''}$ 〔ここで、 $R^{11'''}$ はアミノ基、アシルオキシ基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基;又は低級アルキル基で置換されていてもよいフェニル基を示す〕を示す。

R⁵ は水素原子を示す。

mは1を示す。

R⁶ はフェニル基を示す。

R⁷ は-COO-R¹²''' 〔ここで、R¹²''' は水素原子:水酸基、低級アルコキシ基、低級アルコキシ低級アルコキシ基、低級アルコキシカルボニル基、アシルオキシ基、ピペラジニル基、又は低級アルキル基で置換されていてもよいアミノ基から選ばれる置換基で置換されていてもよいアルキル基;低級アルキル基で置換されていてもよいシクロヘキシル基;アラルキル基;低級アルキル基で置換されていてもよいピペリジル基;アダマンチル基;又はシクロヘキシリデンアミノ基を示す〕を示す。

- 5. Mがフェニレン基である請求の範囲第4項記載のアミド化合物又は薬学的に 許容される酸付加塩。
- 6. R⁷ が一COO-R¹² (ここで、R¹²) は低級アルキル基;又は低級アルキル基で置換されていてもよいシクロへキシル基を示す)である請求の範囲

第4項記載のアミド化合物又は薬学的に許容される酸付加塩。

7. Xが酸素原子又は-CH2-である請求の範囲第4項記載のアミド化合物又は薬学的に許容される酸付加塩。

- 8. R⁶ がフェニル基であり、かつmが1である請求の範囲第4項記載のアミド 化合物又は薬学的に許容される酸付加塩。
- 9. Rが低級アルキル基で置換されていてもよいアミノ基、低級アルキル基で置換されていてもよいピペラジニル基、又は低級アルキル基で置換されていてもよいピペリジル基である請求の範囲第4項記載のアミド化合物又は薬学的に許容される酸付加塩。
- $10. R^1 \ R^2 \ R^3 \ R^4$ が同一又は異なって、水素原子;水酸基;ハロゲン原子;又は $-O-CO-R^{11}$ 〔ここで、 R^{11} 〕 は低級アルキル基又はフェニル基を示す〕である請求の範囲第 4 項記載のアミド化合物又は薬学的に許容される酸付加塩。

11. 一般式(I-a)

$$R - A - X - M - COOH \qquad (I - a)$$

{式中、RはR。; R。で置換されたアルコキシ基; R。で置換されたアルキルチオ基; R。で置換されたアルキルアミノ基; 置換されていてもよい窒素含有非芳香族複素環基; 又は水酸基〔ここで、R。はアミノ基、グアニジノ基、アミジノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジノカルボニル基又はイミノ基(これらの基は、低級アルキル基、ハロゲン化低級アルキル基、シクロアルキル基、アラルキル基、アリール基又はアミノ保護基か

ら選ばれる置換基で置換されていてもよい)である〕を表し、

Aは置換されていてもよく、かつ鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状のアルキレン基;又は単結合を表し、

Xは酸素原子;硫黄原子;-NR®-;-SO-;-SO2-;-CR®R¹º-;
-C=C-;-C≡C-;-CO-;-COO-;-OOC-;-NR®CO-;
-CONR®-;-NR®SO2-;-SO2NR®-;-CS-;-COS-;
-O-CO-O-;-NR®-COO-;-OOC-NR®-;
-NH-CO-NH-;-NH-CS-NH-;-NH-C(=NH)-NH-;
窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2
価の芳香族複素環基;又はシクロアルキレン基〔ここで、R®は水素原子;アルキル基;シクロアルキル基;アリール基;アラルキル基;又はアミノ保護基を、R®、R¹ºは同一又は異なって、水素原子;アルキル基;シクロアルキル基;アリール基;又はアラルキル基;アリール基;又はアラルキル基;アリール基;又はアラルキル基;アリール基;又はアラルキル基;アリール基;又はアラルキル基;アリール基;又はアラルキル基;ア

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を表し、

R¹、R²、R³、R⁴は同一又は異なって、水素原子;水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基;アルコキシ基;メルカプト基;アルキルチオ基;アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;アルコキシカルボニル基;アリールオキシカルボニル基;アシル基;又は一〇一〇〇一尺¹¹(ここで、R¹¹はアミノ基、アルコキシカルボニル基、アシルオキシ基、アリールオキシ基、アリールオキシカルボニル基、アラルキルオキシ基、アリールオキシカルボニル基、アリールチオ基、アラルキルオキシカルボニル基、アルキルチオ基、アリールチオ基、アシル基、低級アルコキシ基、カルボキシル基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基は低級アルキル基又はアシル基で置換

されていてもよい);置換されていてもよいアルコキシ基;置換されていてもよいアリール基;置換されていてもよいシクロアルキル基;置換されていてもよいアリールオキシ基;置換されていてもよいアラルキルオキシ基;置換されていてもよいアルキルチオ基;又は置換されていてもよいアリールチオ基を示す〕を表す。で表されるカルボン酸化合物。

12. 一般式 (I-a) においてR、A、X、M、 R^1 、 R^2 、 R^3 又は R^4 から選ばれる少なくとも1つの記号が、下記定義を満足するものであることを特徴とする請求の範囲第11項記載のカルボン酸化合物。

Rはアミノ基;アミノ基で置換された低級アルコキシ基;低級アルキル基で置換されていてもよいピペラジニル基;又は低級アルキル基で置換されていてもよいピペリジル基〔ここで、アミノ基は低級アルキル基で置換されていてもよい〕を示す。

Aは直鎖のアルキレン基を示す。

Xは酸素原子; 硫黄原子; - NH‐; 又は-CH₂-を示す。

Mはアリーレン基を示す。

R¹、R²、R³、R⁴は同一又は異なって、水素原子;水酸基;ハロゲン原子;又は-O-CO-R¹¹'' 〔ここで、R¹''' はアミノ基、アシルオキシ基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基;又は低級アルキル基で置換されていてもよいフェニル基を示す〕を示す。

13. 一般式 (I-b)

(式中、Xは酸素原子;硫黄原子;-NR®-;-SO-;-SO2-;

 $-CR^{9}R^{10}-;-C=C-;-C\equiv C-;-CO-;-COO-;-OOC-;$

 $-NR^{*}CO-:-CONR^{*}-:-NR^{*}SO_{2}-:-SO_{2}NR^{*}-:$

 $-CS-:-COS-:-O-CO-O-:-NR^{*}-COO-:$

 $-00C-NR^{\circ}-;-NH-CO-NH-;-NH-CS-NH-;$

-NH-C(=NH)-NH-;窒素原子、硫黄原子又は酸素原子から選ばれる 1個以上のヘテロ原子を有する2価の芳香族複素環基;又はシクロアルキレン基 (ここで、R[®] は水素原子;アルキル基;シクロアルキル基;アリール基;アラ ルキル基;又はアミノ保護基を、

R®、R¹®は同一又は異なって、水素原子;アルキル基;シクロアルキル基;アリール基;又はアラルキル基を示す〕を表し、

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を表し、

R¹、R²、R³、R⁴は同一又は異なって、水素原子;水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基;アルコキシ基;メルカプト基;アルキルチオ基;アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;アルコキシカルボニル基;アリールオキシカルボニル基;アシルオキシ基、アリール基、アリールオキシ基、アリールオキシ基、アリールオキシ基、アリールオキシ基、アラルキルオキシ基、アリールオキシ基、アラルキルオキシ基、アリールオキシ基、カルボキシル基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基は低級アルキル基又はアシル基で置換されていてもよいアリール基;置換されていてもよいアリール表;置換されていてもよいアリールオキシ基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールオキシ基;置換されていて

もよいアルキルチオ基;又は置換されていてもよいアリールチオ基を示す〕を表 し、

R⁵ は水素原子;ハロゲン原子で置換されていてもよいアルキル基;置換されていてもよいアラルキル基;又はアミノ保護基を表し、

mは0又は1~6から選ばれる整数を表し、

R⁶ は置換されていてもよいアリール基;置換されていてもよいシクロアルキル基;置換されていてもよい低級アルキル基;置換されていてもよい低級アルコキシ基;置換されていてもよい低級アルキルチオ基;低級アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;又は置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基を表し、

 R^7 は水素原子;置換されていてもよいアルキル基;置換されていてもよいアリール基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する芳香族複素環基;又は-CO(Y), R^{12} 〔ここで、Yは酸素原子;硫黄原子; $-NR^{13}-;$ 又は $-NR^{13}-SO_2-(R^{13}$ は水素原子;アルキル基;アラルキル基;水酸基;アルコキシ基;アリール基;又はアミノ保護基を示す)を、

pは0又は1を、

R¹²は水素原子:水酸基、アルコキシ基、アルコキシアルコキシ基、アルコキシカルボニル基、アシルオキシ基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基はアルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアルキニル基;置換されていてもよいアルキニル基;置換されていてもよいアリール基;置換されていてもよいアリール基;置換されていてもよいアラルキル基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基:

アダマンチル基;又はシクロアルキリデンアミノ基を示す〕を表す}で表される アミド化合物。

14. 一般式 (I-b) においてX、M、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、m、 R^6 又は R^7 から選ばれる少なくとも1つの記号が、下記定義を満足するものであることを特徴とする請求の範囲第13 項記載のアミド化合物。

Xは酸素原子:硫黄原子:又は-NH-を示す。

Mはアリーレン基を示す。

R¹、R²、R³、R¹は同一又は異なって、水素原子;水酸基;ハロゲン原子;又は-O-CO-R¹¹''' 〔ここで、R¹¹''' はアミノ基、アシルオキシ基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基;又は低級アルキル基で置換されていてもよいフェニル基を示す〕を示す。

R⁵ は水素原子を示す。

mは1を示す。

R⁶ はフェニル基を示す。

R⁷ は-COO-R¹²''' 〔ここで、R¹²''' は水素原子;水酸基、低級アルコキシ基、低級アルコキシムルボニル基、アシルオキシ基、ピペラジニル基、又は低級アルキル基で置換されていてもよいアミノ基から選ばれる置換基で置換されていてもよいアルキル基;低級アルキル基で置換されていてもよいシクロヘキシル基;アラルキル基;低級アルキル基で置換されていてもよいピペリジル基;アダマンチル基;又はシクロヘキシリデンアミノ基を示す〕を示す。

15. 薬学的に許容される担体及び請求の範囲第1~10項のいずれかに記載のアミド化合物又はその薬学的に許容される酸付加塩を含んでなる医薬組成物。

16. 請求の範囲第1~10項のいずれかに記載のアミド化合物又はその薬学的に許容される酸付加塩を有効成分とする炎症性サイトカイン産生抑制剤。

17. 請求の範囲第1~10項のいずれかに記載のアミド化合物又はその薬学的に許容される酸付加塩を有効成分とする炎症性疾患の為の治療又はその予防薬。

[1997年1月10日(10.01.97) 国際事務局受理:出願当初の請求の範囲1-4及び 10-14は補正された;他の請求の範囲は変更なし。(15頁)]

1. (補正後) 一般式(I):

$$R - A - X - M$$

$$R^{1} R^{2} 0 \qquad (CH_{2})m$$

$$R^{7}$$

$$R^{3} R^{4} \qquad R^{5}$$

$$(I)$$

【式中、RはR』; R』で置換されたアルコキシ基; R』で置換されたアルキルチオ基; R』で置換されたアルキルアミノ基; 置換されていてもよい窒素含有非芳香族複素環基; 又は水酸基〔ここで、R』はアミノ基、グアニジノ基、アミジノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジノ オルボニル基又はイミノ基(これらの基は、低級アルキル基、ハロゲン化低級アルキル基、シクロアルキル基、アラルキル基、アリール基又はアミノ保護基から選ばれる置換基で置換されていてもよい)である〕を表し、

Aは鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状の アルキレン基;又は単結合を表し、

Xは酸素原子;硫黄原子;-NR⁸ -;-SO-;-SO₂ -;-CR⁸ R¹⁰-;

 $-C = C - ; -C \equiv C - ; -COO - ; -COO - ; -NR^{8}CO - ;$

 $-CONR^{8} -; -NR^{8} SO_{2} -; -SO_{2} NR^{8} -; -CS -; -COS -;$

 $-O-CO-O-;-NR^{*}-COO-;-OOC-NR^{*}-;$

-NH-CO-NH-;-NH-CS-NH-;-NH-C(=NH)-NH-;

窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2 価の芳香族複素環基;又はシクロアルキレン基〔ここで、R®は水素原子;アル

キル基;シクロアルキル基;アリール基;アラルキル基;又はアミノ保護基を、

R°、R¹ºは同一又は異なって、水素原子;アルキル基;シクロアルキル基;ア

リール基;又はアラルキル基を示す〕を表し、

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を表し、

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子(但し、 R^1 、 R^2 、 R^3 、 R'の少なくとも一つは水素原子ではない);水酸基;ハロゲン原子;水酸基、 低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよい アルキル基;アルコキシ基;メルカプト基;アルキルチオ基;アルキル基、アリ ール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていても よいアミノ基;ニトロ基;シアノ基;カルボキシル基;アルコキシカルボニル基; アリールオキシカルボニル基;アシル基;又は-O-CO-R!! [ここで、R!! はアミノ基、アルコキシカルボニル基、アシルオキシ基、アリール基、アリール オキシ基、アリールオキシカルボニル基、アラルキルオキシ基、アラルキルオキ シカルボニル基、アルキルチオ基、アリールチオ基、アシル基、低級アルコキシ 基、カルボキシル基又はハロゲン原子から選ばれる置換基で置換されていてもよ いアルキル基(ここで、アミノ基は低級アルキル基又はアシル基で置換されてい てもよい);置換されていてもよいアルコキシ基;置換されていてもよいアリー ル基;置換されていてもよいシクロアルキル基;置換されていてもよいアリール オキシ基;置換されていてもよいアラルキルオキシ基;置換されていてもよいア ルキルチオ基;又は置換されていてもよいアリールチオ基を示す〕を表し、

R⁵ は水素原子;ハロゲン原子で置換されていてもよいアルキル基;置換されていてもよいアラルキル基;又はアミノ保護基を表し、

mは0又は1~6から選ばれる整数を表し、

R⁶ は置換されていてもよいアリール基;置換されていてもよいシクロアルキル基;置換されていてもよい低級アルキル基;置換されていてもよい低級アルコキシ基;置換されていてもよい低級アルキルチオ基;低級アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;又は置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基を表し、

R'は水素原子;置換されていてもよいアルキル基;置換されていてもよいアリール基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ば

186

補正された用紙(条約第19条)

れる1個以上のヘテロ原子を有する芳香族複素環基;又は-CO(Y)。 R^{12} 〔ここで、Yは酸素原子;硫黄原子; $-NR^{13}-$;又は $-NR^{13}-SO_2-$ (R^{13} は水素原子;アルキル基;アラルキル基;水酸基;アルコキシ基;アリール基;又はアミノ保護基を示す)を、

pは0又は1を、

R¹²は水素原子;水酸基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基はアルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアルケニル基;置換されていてもよいアルキニル基;置換されていてもよいアルキニル基;置換されていてもよいアリール基;置換されていてもよいアリール基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ基を示す〕を表す)で表されるアミド化合物又はその薬学的に許容される酸付加塩。

RはR_{a1}; R_{a1}で置換されたアルコキシ基; R_{a1}で置換されたアルキルチオ基; R_{a1}で置換されたアルキルアミノ基; 又は低級アルキル基又はアミノ保護基で置換されていてもよい窒素含有非芳香族複素環基〔ここで、R_{a1}はアミノ基、グアニジノ基、アミジノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジノカルボニル基又はイミノ基(これらの基は、低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよい)で

ある〕を示す。

Aは鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状のアルキレン基;又は単結合を示す。

Xは酸素原子; 硫黄原子; -NR*'-; -SO-; -SO2-;

- -NR *' CO-; -CONR *'-; -NR *' SO2 -; -SO2 NR *'-;
- $-CS-;-COS-;-O-CO-O-;-NR^{8},-COO-;$
- $-OOC-NR^{8'}-:-NH-CO-NH-:-NH-CS-NH-:$
- -NH-C (=NH) -NH-; 窒素原子、硫黄原子又は酸素原子から選ばれる 1 個以上のヘテロ原子を有する 2 価の芳香族複素環基;又はシクロアルキレン基 〔ここで、 R^8 は水素原子;低級アルキル基;アラルキル基;又はアミノ保護基 を、 R^9 、 R^{10} は同一又は異なって、水素原子;低級アルキル基;又はアラルキル基を示す〕を示す。

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を示す。

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子(但し、 R^1 、 R^2 、 R^3 、 R^4 の少なくとも一つは水素原子ではない);水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよい低級アルキル基;低級アルコキシ基;メルカプト基;低級アルキルチオ基;低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;低級アルコキシカルボニル基;アリールオキシカルボニル基;アシルオキシ基、アシルオキシ基、アシルオキシ基、アシルキシールオキシーの一次によい、アシルオキシーの一次でで、 R^{11} はアミノーののようのでは、アシルオキシーのでは、アシルオキシーのでは、アシルオキシーのでは、アシルオキシーのでは、アシルオキシーのでは、アシルオキシーのでは、アシルオ・カルボニルを、アシルオ・カルボキシルをででは、アシルオ・カルボールを、アシルオ・カルボールを、アシルオ・カルボールを、アシルオ・カルボールを、アシルオ・カルボールを、アシルを、低級アルカルボールをでで、アミノ本は低級アルキルをでで、アミノ本は低級アルキルをででで、アミノ本は低級アルキルをでででは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アシルをでは、アントのでは、アシルをでは、アントのでは

コキシ基;低級アルキル基、カルボキシル基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよいアリール基;又は置換されていてもよいシクロアルキル基を示す〕を示す。

R⁵ は水素原子;ハロゲン原子で置換されていてもよいアルキル基;置換されていてもよいアラルキル基;又はアミノ保護基を示す。

mは0又は1~6から選ばれる整数を示す。

R⁶ はアリール基;シクロアルキル基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基〔ここで、アリール基、シクロアルキル基及び窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基は、低級アルキル基、ハロゲン原子、水酸基、低級アルコキシ基、アミノ基、カルボキシル基又は低級アルコキシカルボニル基から選ばれる置換基で置換されていてもよい〕を示す。

R⁷ は水素原子;水酸基、低級アルコキシ基、メルカプト基、低級アルキルチオ基、カルボキシル基、低級アルコキシカルボニル基又はアミノ基から選ばれる置換基で置換されていてもよい低級アルキル基;低級アルキル基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する芳香族複素環基;又は一CO(Y')。R¹² [ここで、Y'は酸素原子;硫黄原子;一NR¹³'ー;又は一NR¹³'ーSO2ー(R¹³'は水素原子;低級アルキル基;アラルキル基;水酸基;低級アルコキシ基;又はアミノ保護基を示す)を、pは0又は1を、R¹²'は水素原子;水酸基、低級アルコキシ基、低級アルコキシ基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基は低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアルキル基で置換されていてもよいシクロアルキル基;低級アルキル基、ハロゲン原子、アミノ基、カルボキシル基、水酸基又は低級アルコキシ基から選ばれる置換基で置換されて

いてもよいアリール基;アラルキル基;低級アルキル基、ハロゲン原子、アミノ 基、カルボキシル基、水酸基又は低級アルコキシ基から選ばれる置換基で置換さ れていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上の ヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ 基を示す〕を示す。

3. (補正後)一般式(I)においてR、A、X、M、R 1 、R 2 、R 3 、R 4 、R 5 、m、R 6 又はR 7 から選ばれる少なくとも1つの記号が、下記定義を満足するものであることを特徴とする請求の範囲第1 項記載のアミド化合物又は薬学的に許容される酸付加塩。

RはR₁₂; R₁₂で置換されたアルコキシ基; 又は低級アルキル基又はアミノ保護基で置換されていてもよい窒素含有非芳香族複素環基 [ここで、R₁₂はアミノ基、グアニジノ基、アミジノ基又はカルバモイル基 (これらの基は、低級アルキル基又はアミノ保護基で置換されていてもよい)である]を示す。

Aは直鎖のアルキレン基;又は単結合を示す。

Xは酸素原子;硫黄原子; -NR⁸" -; -CR⁹" R¹⁹"-; -COO-; -OOC-; -NR⁸" CO-; -CONR⁸" -; -NR⁸" SO₂ -; -SO₂ NR⁸" -; 又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2価の芳香族複素環基〔ここで、R⁸" は水素原子; 低級アルキル基; 又はアミノ保護基を、R⁹"、R¹⁹"は同一又は異なって、水素原子; 又は低級アルキル基を示す〕を示す。

Mはアリーレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を示す。

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子(但し、 R^1 、 R^2 、 R^3 、 R^4 の少なくとも一つは水素原子ではない);水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよい低級アルキル基;低級アルコキシ基;又は $-O-CO-R^{11}$ "(ここで、

R''''はアミノ基、アシルオキシ基又はアラルキルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基(ここで、アミノ基は低級アルキル基で置換されていてもよい);低級アルコキシ基;低級アルキル基で置換されていてもよいアリール基;又はシクロアルキル基を示す〕を示す。

 R^5 は水素原子;低級アルキル基;又はアミノ保護基を示す。 mは 1 を示す。

R⁶ はアリール基;又はシクロアルキル基〔ここで、アリール基及びシクロアルキル基は、ハロゲン原子又は水酸基で置換されていてもよい〕を示す。

R'は水素原子;水酸基又は低級アルコキシ基で置換されていてもよい低級アルキル基;低級アルキル基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する芳香族複素環基;又はーCO(Y'')。R'²''〔ここで、Y''は酸素原子;硫黄原子;又はーNR'³''ー(R'³''は水素原子;低級アルキル基;水酸基;又はアミノ保護基を示す)を、pは0又は1を、R'²''は水素原子;水酸基、低級アルコキシ基、低級アルコキシ基、低級アルコキシ基、低級アルコキシ基、低級アルコキシ基、低級アルコキシルボニル基、アシルオキシ基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基は低級アルキル基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよい);低級アルキル基で置換されていてもよいシクロアルキル基;ハロゲン原子で置換されていてもよいアリール基;アラルキル基;低級アルキル基で置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ基を示す〕を示す。

4. (補正後) 一般式 (I) においてR、A、X、M、R¹、R²、R³、R¹、R³、R¹、R⁵、m、R⁵又はR¹から選ばれる少なくとも1つの記号が、下記定義を満足するものであることを特徴とする請求の範囲第1項記載のアミド化合物又は薬学

的に許容される酸付加塩。

Rはアミノ基;アミノ基で置換された低級アルコキシ基;低級アルキル基で置換されていてもよいピペラジニル基;又は低級アルキル基で置換されていてもよいピペリジル基 [ここで、アミノ基は低級アルキル基で置換されていてもよい]を示す。

Aは直鎖のアルキレン基を示す。

Xは酸素原子;硫黄原子;-NH-;又は-CH2-を示す。

Mはアリーレン基を示す。

 R^1 、 R^3 、 R^3 、 R^4 は同一又は異なって、水素原子(但し、 R^1 、 R^2 、 R^3 、 R^4 の少なくとも一つは水素原子ではない);水酸基;ハロゲン原子;又は $-O-CO-R^{11}$ "(ここで、 R^{11} "はアミノ基、アシルオキシ基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基;又は低級アルキル基で置換されていてもよいフェニル基を示す〕を示す。 R^5 は水素原子を示す。

mは1を示す。

R⁶ はフェニル基を示す。

R⁷ は一COO-R¹²''' 〔ここで、R¹²''' は水素原子;水酸基、低級アルコキシ基、低級アルコキシ性級アルコキシ基、低級アルコキシカルボニル基、アシルオキシ基、ピペラジニル基、又は低級アルキル基で置換されていてもよいアミノ基から選ばれる置換基で置換されていてもよいアルキル基;低級アルキル基で置換されていてもよいシクロヘキシル基;アラルキル基;低級アルキル基で置換されていてもよいピペリジル基;アダマンチル基;又はシクロヘキシリデンアミノ基を示す〕を示す。

5. Mがフェニレン基である請求の範囲第4項記載のアミド化合物又は薬学的に 許容される酸付加塩。

- 6. R⁷が-COO-R¹²""(ここで、R¹²""は低級アルキル基;又は低級アルキル基で置換されていてもよいシクロヘキシル基を示す)である請求の範囲第4項記載のアミド化合物又は薬学的に許容される酸付加塩。
- 7. Xが酸素原子又は-CH2-である請求の範囲第4項記載のアミド化合物又は薬学的に許容される酸付加塩。
- 8. R⁶ がフェニル基であり、かつmが1である請求の範囲第4項記載のアミド 化合物又は薬学的に許容される酸付加塩。
- 9. Rが低級アルキル基で置換されていてもよいアミノ基、低級アルキル基で置換されていてもよいピペラジニル基、又は低級アルキル基で置換されていてもよいピペリジル基である請求の範囲第4項記載のアミド化合物又は薬学的に許容される酸付加塩。
- 10. (補正後) R^1 、 R^2 、 R^3 、 R^4 が同一又は異なって、水素原子(但し、 R^1 、 R^2 、 R^3 、 R^4 の少なくとも一つは水素原子ではない);水酸基;ハロゲン原子;又は $-O-CO-R^{11}$ "(ここで、 R^{11} ")は低級アルキル基又は フェニル基を示す〕である請求の範囲第 4 項記載のアミド化合物又は薬学的に許容される酸付加塩。
- 11. (補正後) 一般式 (I-a)

$$R - A - X - M - COOH \qquad (I - a)$$

【式中、RはR』;R』で置換されたアルコキシ基;R』で置換されたアルキルチオ基;R』で置換されたアルキルアミノ基;置換されていてもよい窒素含有非芳香族複素環基;又は水酸基〔ここで、R』はアミノ基、グアニジノ基、アミジ

ノ基、カルバモイル基、ウレイド基、チオウレイド基、ヒドラジノ基、ヒドラジ ノカルボニル基又はイミノ基 (これらの基は、低級アルキル基、ハロゲン化低級 アルキル基、シクロアルキル基、アラルキル基、アリール基又はアミノ保護基か ら選ばれる置換基で置換されていてもよい)である〕を表し、

Aは鎖中に1以上の二重結合又は三重結合を有していてもよい直鎖又は分岐状の アルキレン基;又は単結合を表し、

X は酸素原子; 硫黄原子; -NR®-; -SO-; -SO2-; -CR®R¹º-;

 $-C = C - ; -C \equiv C - ; -COO - ; -COO - ; -NR^{\circ}CO - ;$

 $-CONR^{8} -; -NR^{8} SO_{2} -; -SO_{2} NR^{8} -; -CS -; -COS -;$

 $-O-CO-O-; -NR^{8}-COO-; -OOC-NR^{8}-;$

-NH-CO-NH-;-NH-CS-NH-;-NH-C(=NH)-NH-; 窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する2 価の芳香族複素環基;又はシクロアルキレン基〔ここで、R®は水素原子;アル キル基;シクロアルキル基;アリール基;アラルキル基;又はアミノ保護基を、 R®、R¹®は同一又は異なって、水素原子;アルキル基;シクロアルキル基;ア リール基;又はアラルキル基を示す〕を表し、

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を表し、

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子(但し、 R^1 、 R^2 、 R^3 、 R^4 の少なくとも一つは水素原子ではない);水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基;アルコキシ基;メルカプト基;アルキルチオ基;アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;アルコキシカルボニル基;アリールオキシカルボニル基;アシル基;又は $-0-C0-R^{11}$ [ここで、 R^{11} はアミノ基、アルコキシカルボニル基、アシルオキシ基、アリール基、アリール

オキシ基、アリールオキシカルボニル基、アラルキルオキシ基、アラルキルオキシカルボニル基、アルキルチオ基、アリールチオ基、アシル基、低級アルコキシ基、カルボキシル基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基は低級アルキル基又はアシル基で置換されていてもよいアリール基;置換されていてもよいアリール基;置換されていてもよいアリール基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールオキシ基;置換されていてもよいアリールチオ基;又は置換されていてもよいアリールチオ基を示す〕を表す〕で表されるカルボン酸化合物。

12. (補正後) 一般式 (I-a) においてR、A、X、M、R¹、R²、R³ 又はR⁴ から選ばれる少なくとも 1 つの記号が、下記定義を満足するものであることを特徴とする請求の範囲第 1 1 項記載のカルボン酸化合物。

Rはアミノ基;アミノ基で置換された低級アルコキシ基;低級アルキル基で置換されていてもよいピペラジニル基;又は低級アルキル基で置換されていてもよいピペリジル基 [ここで、アミノ基は低級アルキル基で置換されていてもよい]を示す。

Aは直鎖のアルキレン基を示す。

Xは酸素原子;硫黄原子;-NH-;又は-CH2-を示す。

Mはアリーレン基を示す。

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子(但し、 R^1 、 R^2 、 R^3 、 R^4 の少なくとも一つは水素原子ではない);水酸基;ハロゲン原子;又は $-O-CO-R^{11}$ "(ここで、 R^{11} "はアミノ基、アシルオキシ基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基;又は低級アルキル基で置換されていてもよいフェニル基を示す)を示す。

13. (補正後) 一般式 (I-b)

(式中、Xは酸素原子;硫黄原子;-NR®-;-SO-;-SO2-;

 $-CR^{9}R^{10}-;-C=C-;-C\equiv C-;-CO-;-COO-;-OOC-;$

 $-NR^{8}CO-; -CONR^{8}-; -NR^{8}SO_{2}-; -SO_{2}NR^{8}-;$

 $-CS-;-COS-;-O-CO-O-;-NR^{8}-COO-;$

 $-OOC-NR^{8}-;-NH-CO-NH-;-NH-CS-NH-;$

-NH-C(=NH)-NH-;窒素原子、硫黄原子又は酸素原子から選ばれる 1個以上のヘテロ原子を有する2価の芳香族複素環基;又はシクロアルキレン基 〔ここで、R®は水素原子;アルキル基;シクロアルキル基;アリール基;アラ ルキル基;又はアミノ保護基を、

R°、R¹ºは同一又は異なって、水素原子;アルキル基;シクロアルキル基;アリール基;又はアラルキル基を示す〕を表し、

Mはアリーレン基;シクロアルキレン基;又は窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有し、かつ縮合環を形成してもよい2価の複素環基を表し、

R¹、R²、R³、R¹は同一又は異なって、水素原子(但し、R¹、R²、R³、R³、R¹の少なくとも一つは水素原子ではない);水酸基;ハロゲン原子;水酸基、低級アルコキシ基又はハロゲン原子から選ばれる置換基で置換されていてもよいアルキル基;アルコキシ基;メルカプト基;アルキルチオ基;アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;ニトロ基;シアノ基;カルボキシル基;アルコキシカルボニル基;アリールオキシカルボニル基;アシル基;又は一〇一〇〇一尺¹¹〔ここで、R¹¹はアミノ基、アルコキシカルボニル基、アシルオキシ基、アリール基、アリールオキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アラルキルオキ

シカルボニル基、アルキルチオ基、アリールチオ基、アシル基、低級アルコキシ 基、カルボキシル基又はハロゲン原子から選ばれる置換基で置換されていてもよ いアルキル基(ここで、アミノ基は低級アルキル基又はアシル基で置換されてい てもよい);置換されていてもよいアルコキシ基;置換されていてもよいアリー ル基;置換されていてもよいシクロアルキル基;置換されていてもよいアリール オキシ基;置換されていてもよいアラルキルオキシ基;置換されていてもよいア ルキルチオ基;又は置換されていてもよいアリールチオ基を示す〕を表し、

R⁵ は水素原子;ハロゲン原子で置換されていてもよいアルキル基;置換されていてもよいアラルキル基;又はアミノ保護基を表し、

mは0又は1~6から選ばれる整数を表し、

R⁶ は置換されていてもよいアリール基;置換されていてもよいシクロアルキル基;置換されていてもよい低級アルコキシ基;置換されていてもよい低級アルキルチオ基;低級アルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されていてもよいアミノ基;又は置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基を表し、

 R^7 は置換されていてもよいアリール基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる 1 個以上のヘテロ原子を有する芳香族複素環基;又は-CO(Y), R^{12} [ここで、Yは酸素原子;硫黄原子; $-NR^{13}-$;又は $-NR^{13}-SO_2-(R^{13}$ は水素原子; $-NR^{13}$ 中ル基; $-NR^{13}$ 中ル本; $-NR^{13}$ 中の本)。

pは0又は1を、

R¹²は水素原子;水酸基、アルコキシ基、アルコキシアルコキシ基、アルコキシカルボニル基、アシルオキシ基、カルボキシル基、窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基又はアミノ基から選ばれる置換基で置換されていてもよいアルキル基(ここで、アミノ基はアルキル基、アリール基、アラルキル基又はアミノ保護基から選ばれる置換基で置換されてい

197

補正された用紙(条約第19条)

てもよい);置換されていてもよいアルケニル基;置換されていてもよいアルキニル基;置換されていてもよいシクロアルキル基;置換されていてもよいアリール基;置換されていてもよく、かつ窒素原子、硫黄原子又は酸素原子から選ばれる1個以上のヘテロ原子を有する複素環基;アダマンチル基;又はシクロアルキリデンアミノ基を示す〕を表す〕で表されるアミド化合物。

14. (補正後) 一般式 (I-b) においてX、M、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、m、 R^6 又は R^7 から選ばれる少なくとも 1 つの記号が、下記定義を満足するものであることを特徴とする請求の範囲第 13 項記載の7ミド化合物。

Xは酸素原子;硫黄原子;又は-NH-を示す。

Mはアリーレン基を示す。

 R^1 、 R^2 、 R^3 、 R^4 は同一又は異なって、水素原子(但し、 R^1 、 R^2 、 R^3 、 R^4 の少なくとも一つは水素原子ではない);水酸基;ハロゲン原子;又は $-O-CO-R^{11}$ " 〔ここで、 R^{11} " はアミノ基、アシルオキシ基又はベンジルオキシカルボニル基から選ばれる置換基で置換されていてもよい低級アルキル基;又は低級アルキル基で置換されていてもよいフェニル基を示す〕を示す。 R^5 は水素原子を示す。

mは1を示す。

R⁶ はフェニル基を示す。

R⁷ は一COO-R¹²"" 〔ここで、R¹²"" は水素原子;水酸基、低級アルコキシ基、低級アルコキシ低級アルコキシムルボニル基、アシルオキシ基、ピペラジニル基、又は低級アルキル基で置換されていてもよいアミノ基から選ばれる置換基で置換されていてもよいアルキル基;低級アルキル基で置換されていてもよいシクロヘキシル基;アラルキル基;低級アルキル基で置換されていてもよいピペリジル基;アダマンチル基;又はシクロヘキシリデンアミノ基を示す〕を示す。

- 15. 薬学的に許容される担体及び請求の範囲第1~10項のいずれかに記載の アミド化合物又はその薬学的に許容される酸付加塩を含んでなる医薬組成物。
- 16. 請求の範囲第1~10項のいずれかに記載のアミド化合物又はその薬学的に許容される酸付加塩を有効成分とする炎症性サイトカイン産生抑制剤。
- 17. 請求の範囲第1~10項のいずれかに記載のアミド化合物又はその薬学的に許容される酸付加塩を有効成分とする炎症性疾患の為の治療又はその予防薬。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP96/02305

A. CLA Int	SSIFICATION OF SUBJECT MATTER . C1° C07C235/60, 279/08, C 263/58, 271/06, A61K3	07D211/34, 241/04, 29 31/215, 31/445, 31/495							
According	According to International Patent Classification (IPC) or to both national classification and IPC								
	LDS SEARCHED								
	Minimum documentation searched (classification system followed by classification symbols) Int. Cl ⁶ C07C235/60, 279/08, C07D211/34, 241/04, 295/08, 295/10, 263/58, 271/06, A61K31/215, 31/445, 31/495								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched									
1	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE								
C. DOCT	JMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.						
х	JP, 63-238051, A (Showa Der Okamoto),	1-3, 11, 12, 15, 17							
A	October 4, 1988 (04. 10. 88 Claim; pages 5 to 11 (Famil	4-10, 16							
х	JP, 63-239256, A (Showa Der Okamoto), October 5, 1988 (05. 10. 88	1-3, 11, 12, 15, 17							
A	Claim; pages 6 to 16, 20 to 22 (Family: none) 4-10, 16								
х	JP, 48-18241, A (Imperial CLtd.), March 7, 1973 (07. 03. 73), Claim; page 2; page 5, lower	1-3, 13, 15, 17							
A	page 8, upper left column 8 & CH, 573393, A & CH, 57590	14, 16							
Further documents are listed in the continuation of Box C. See patent family annex.									
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "O" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention									
"E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other									
special "O" docum means	special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be								
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family									
į.	Date of the actual completion of the international search November 7, 1996 (07. 11. 96) Date of mailing of the international search report November 19, 1996 (19. 11. 96)								
Name and mailing address of the ISA/ Authorized officer									
Jap	anese Patent Office	Tolophone No							

- A. 発明の属する分野の分類(国際特許分類(IPC))
- Int. C1 C07C235/60, 279/08, C07D211/34, 241/04, 295/08, 295/10, 263/58, 271/06, A61K31/215, 31/445, 31/495
- B. 調査を行った分野
- 調査を行った最小限資料(国際特許分類(IPC))
- Int. C1° C07C235/60, 279/08, C07D211/34, 241/04, 295/08, 295/10, 263/58, 271/06, A61K31/215, 31/445, 31/495

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE

C. 関連すると認められる文献						
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号				
x	JP, 63-238051, A (昭和電工株式会社, 岡本彰祐)	1-3, 11, 12, 15, 17				
A	4. 10月. 1988 (04. 10. 88) 特許請求の範囲, 第5-11頁 (ファミリーなし)	4-10, 16				
x	JP, 63-239256, A (昭和電工株式会社, 岡本彰祐) 5.10月.1988 (05.10.88) 特許請求の範囲,	1-3, 11, 12, 15, 17				
A	第6-16, 20-22頁 (ファミリーなし)	4-10, 16				
x	JP, 48-18241, A (インペリヤル・ケミカル・インダストリーズ・ リミテツド) 7. 3月. 1973 (07. 03. 73) 特許請求の範囲, 第2頁,	1-3, 13, 15, 17				
A	第5頁左下欄,第8頁左上欄 &GB,1391444,A &CH,573393,A &CH,575908,A	14, 16				

□ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

様式PCT/ISA/210 (第2ページ) (1992年7月)

E CONTRACTOR	The state of the s	A STATE OF THE STA		**************************************	Twist Service	
E.	R. Carlo	•	as .	e de la companya de l		

ř	e de la companya de La companya de la co			+		
	•				A 1	
	***			4 · · · · · · · · · · · · · · · · · · ·		
P L						
**	• .					
						ly ly
ř		*				
		, w.				
						1
<i>i</i> .						
e A						
¥						
12 12						- · · · · · · · · · · · · · · · · · · ·
φ. 1						
£ .						
₽.						
				,		
<u>.</u>						
(
.						
	Mark State					
i.						
P.F.						
ž.						
k. 34						
i,						
: : #						
ž.						
				•		
} w						
•						
j.						
r ^a						
¥**						
ŧ.						
1						
F						
Ser.						•
t.						
r 						
						-
						-
k						
\$ 5 ,						
ļ m						•
		> 0 6.7				•
**************************************	-1 ·					
	1				·	
; "	**************************************	Maria de la companya	:	7. 2.4	÷ ,	Process