TAM 445 Continuum Mechanics - Spring 2024 Homework 1 - Indicial Notatoin

Due: Jan 26, 2022

- **1.** Expand the following indicial expressions (all indicess range from 1 to 3). Indicate the rank (number of free indices) and the number of resulting expressions.
 - (a) $a_i b_i$
 - (b) $a_i b_i$
 - (c) $\sigma_{ik}n_k$
 - (d) $A_{ij}x_ix_j$ (**A** is symmetric, i.e. $\mathbf{A} = \mathbf{A}^T$)
 - (e) $\frac{\partial u_i}{\partial z_k} \frac{\partial z_k}{\partial x_i}$
 - (f) $\sigma_{ij,j} + \rho b_i = \rho a_i$, where $\sigma_{ij,j} := \frac{\partial \sigma_{ij}}{\partial x_j}$
- 2. Simplify the following indicial expressions as much as possible (all indices range from 1 to 3).
 - (a) $\delta_{mm}\delta_{nn}$
 - (b) $X_I \delta_{IK} \delta_{JK}$
 - (c) $B_{ij}\delta_{ij}$ (${m B}$ is anti-symmetric, i.e. ${m B}=-{m B}^{
 m T}$)
 - (d) $[A_{ij}B_{jk}-2A_{im}B_{mk}]\delta_{ik}$
 - (e) Substitute $A_{ij} = B_{ik}C_{kj}$ into $\phi = A_{mk}C_{mk}$
 - (f) $\epsilon_{ijk}a_ia_ja_k$
 - (g) $(x_m x_m x_i A_{ij})_{,k}$ where $\Box_{,k}$ denotes derivative with respect to x_k .
- 3. Write out the following expressions in indicial notation whenever possible
 - (a) $A_{11} + A_{22} + A_{33}$
 - (b) ${\boldsymbol{A}}^{\rm T}{\boldsymbol{A}}$ where ${\boldsymbol{A}}$ is a 3×3 matrix
 - (c) $A_{11}^2 + A_{22}^2 + A_{33}^2$
 - (d) $B_{i1} \frac{\partial c_1}{\partial x_i} + B_{i2} \frac{\partial c_2}{\partial x_i} + B_{i3} \frac{\partial c_3}{\partial x_i}$
 - (e) $(u_1^2 + u_2^2 + u_3^2)(v_1^2 + v_2^2 + v_3^2)$
 - (f) $A_{11} = B_{11}C_{11} + B_{12}C_{21}$ $A_{12} = B_{11}C_{12} + B_{12}C_{22}$ $A_{21} = B_{21}C_{11} + B_{22}C_{21}$ $A_{22} = B_{21}C_{12} + B_{22}C_{22}$
- **4.** Show that $\partial A_{ip}^{-1}/\partial A_{mn}=-A_{im}^{-1}A_{np}^{-1}$, where \boldsymbol{A} is a square matrix. Hint: Start with the identity $A_{ik}^{-1}A_{kj}=\delta_{ij}$. Use indicial notation in your derivation.