Continuité

Exercice 1

Les fonctions suivantes ont-elles une limite en (0,0)?

1.
$$f(x,y) = (x+y)\sin\left(\frac{1}{x^2+y^2}\right)$$
. **4.** $f(x,y) = \frac{x^3+y^3}{x^2+y^2}$.

4.
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$
.

6. $f(x, y) = x^y$.

2.
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
.

5.
$$f(x,y) = \frac{x^2 + y^2 - 1}{x} \sin x$$
.

3.
$$f(x,y) = \frac{|x+y|}{x^2 + y^2}$$
.

7.
$$f(x,y) = \frac{\sin(x^2) + \sin(y^2)}{\sqrt{x^2 + y^2}}$$
.

Dérivées partielles

Exercice 2 ★★

CCINP (ou CCP) PSI 2019

Soit la fonction f: $\begin{cases}
\mathbb{R}^2 & \longrightarrow \mathbb{R} \\
(x,y) & \longmapsto \begin{cases}
\frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\
0 & \text{si } (x,y) = (0,0)
\end{cases}$

- 1. f est-elle continue sur \mathbb{R}^2 ?
- **2.** f est-elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?
- 3. Étudier l'existence de dérivées partielles secondes de f en (0,0).

Exercice 3 ★★

Soit f une application de classe \mathcal{C}^1 sur \mathbb{R}^2 . Calculer les dérivées ou dérivées partielles des fonctions suivantes en fonction des dérivées partielles de f.

1.
$$g(x, y) = f(y, x)$$

3.
$$g(x, y) = f(y, f(x, x))$$

2.
$$g(x) = f(x, x)$$

4.
$$g(x) = f(x, f(x, x))$$

Exercice 4 ★★

Etudier l'existence de dérivées partielles pour les fonctions suivantes.

- 1. $f(x, y) = \max(|x|, |y|)$.
- **2.** f(x, y) = |x| + |y|.

3.
$$\begin{cases} f(x,y) = \frac{\sin x^2 + \sin y^2}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$$

Exercice 5 ★★

On définit une fonction f sur \mathbb{R}^2 par $f(x,y) = \frac{xy(x^2-y^2)}{x^2+y^2}$ pour $(x,y) \neq (0,0)$ et f(0,0) = 0. f est-elle de classe \mathcal{C}^0 ? \mathcal{C}^1 ? \mathcal{C}^2 ?

Exercice 6 ***

Laplacien en polaires

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 . On appelle *laplacien* de f l'application $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial v^2}$. Donner une expression du laplacien en coordonnées polaires.

Exercice 7 ★

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et g l'application définie sur \mathbb{R} par :

$$\forall t \in \mathbb{R}, \ g(t) = f(e^t \cos t, \ln(1+t^2))$$

Montrer que g est de classe \mathcal{C}^1 et calculer sa dérivée en fonction des dérivées partielles de f.

Exercice 8 ★★

Une équation fonctionnelle

Le but de l'exercice est de déterminer les fonctions f de classe \mathcal{C}^2 sur \mathbb{R} solutions de l'équation :

$$\forall x, y \in \mathbb{R}, \ f(x+y) + f(x-y) = 2f(x)f(y) \tag{*}$$

- 1. Déterminer les solutions constantes de (*).
- **2.** Soit f une solution non constamment nulle de (*).
 - **a.** Montrer que f(0) = 1 et f'(0) = 0.
 - **b.** Montrer que f est une fonction paire.
- 3. Soit f une fonction de classe \mathcal{C}^2 . On considère la fonction F définie sur \mathbb{R}^2 par

$$\forall x, y \in \mathbb{R}, \ F(x, y) = f(x + y) + f(x - y)$$

- **a.** Justifier que F est de classe \mathcal{C}^2 sur \mathbb{R}^2 .
- **b.** Calculer les dérivées partielles secondes de F.
- c. On suppose que f est une solution non constamment nulle de (*). Des expressions de $\frac{\partial^2 F}{\partial x^2}$ et $\frac{\partial^2 F}{\partial y^2}$, déduire que f vérifie une équation différentielle de la forme $z'' \alpha z = 0$.
- **d.** Donner les solutions de l'équation différentielle $z'' \alpha z = 0$ suivant les valeurs de α .
- 4. Déterminer toutes les solutions de (*).

Exercice 9 ★★

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 définie par $\begin{cases} f(x,y) = (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ f(0,0) = 0 \end{cases}$.

- 1. Etudier la continuité de f.
- **2.** a. Prouver l'existence de dérivées partielles premières de f sur \mathbb{R}^2 .
 - **b.** Etudier la continuité des dérivées partielles premières de f.
 - **c.** La fonction f est-elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

Exercice 10 $\star\star\star\star$

Centrale-Supélec MP 2016

On note
$$\Delta = \{(x, y) \in \mathbb{R}^2, x = y\}.$$

Soit $f : \begin{cases} \mathbb{R}^2 \setminus \Delta \longrightarrow \mathbb{R} \\ (x, y) \longmapsto \frac{\sin x - \sin y}{x - y} \end{cases}$.

- **1.** Montrer que f est \mathcal{C}^{∞} sur $\mathbb{R}^2 \setminus \Delta$.
- **2.** Montrer que f est prolongeable en une application \tilde{f} continue sur \mathbb{R}^2 .
- **3.** Montrer que \tilde{f} admet des dérivées partielles sur \mathbb{R}^2 .
- **4.** Montrer que \tilde{f} est \mathcal{C}^1 sur \mathbb{R}^2 .
- **5.** Montrer que \tilde{f} est \mathcal{C}^{∞} sur \mathbb{R}^2 . On pourra écrire $\tilde{f}(x,y)$ comme une intégrale entre 0 et 1.
- **6.** Justifier l'existence pour \tilde{f} d'un minimum et d'un maximum sur \mathbb{R}^2 et les déterminer.

Optimisation

Exercice 11 ★★

Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & x^2(1+y)^3 + y^4 \end{array} \right.$$

- **1.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^2 .
- **2.** Montrer que la fonction f admet un unique point critique sur \mathbb{R}^2 .
- 3. Montrer que f admet un minimimum local mais pas global en ce point critique.

Exercice 12 ★★

CCP PSI 2021

On considère la fonction f définie sur \mathbb{R}^2 par

$$\forall (x, y) \in \mathbb{R}^2, \ f(x, y) = x^3 + y^3 - 3xy$$

L'objectif de cet exercice est d'étudier l'existence d'extrema de f.

- 1. Déterminer les points critiques de f.
- **2.** Expliciter des points $(x, y) \in \mathbb{R}^2$ arbitrairement proches de (0, 0) tels que f(x, y) < 0.

Expliciter de même des points $(x, y) \in \mathbb{R}^2$ arbitrairement proches de (0, 0) tels que f(x, y) > 0.

La fonction f admet-elle en (0,0) un maximum local, un minimum local, aucun des deux?

On considère la fonction g définie sur \mathbb{R}^2 par

$$\forall (u, v) \in \mathbb{R}^2, \ g(u, v) = f(1 + u, 1 + v) - f(1, 1)$$

- **3.** Calculer, pour tout $(u, v) \in \mathbb{R}^2$, g(u, v), puis, pour tout $(r, \theta) \in \mathbb{R}_+ \times \mathbb{R}$, $g(r \cos \theta, r \sin \theta)$.
- **4.** Prouver que pour tout $(r, \theta) \in \mathbb{R}_+ \times \mathbb{R}$, on a

$$g(r\cos\theta, r\sin\theta) \ge 3r^2\left(\frac{1}{2} - 2r\right)$$

Que peut-on en conclure?

5. La fonction f possède-t-elle un ou des extrema globaux?