What Is Phylogenetic/Phylogenomic Analysis?

Phylogeny = Evolutionary history

Reconstruction of evolutionary history using shared traits among organisms.

- Tree of life http://www.tolweb.org/tree/
- Time Tree http://www.timetree.org

DNA Sequencing of Pathogens

- Genome organization, structure and function
- Estimation of pattern and rate of mutation within each pathogen gene
- Estimation of genetic diversity within the pathogen
- Identification of emergent strain
- Geographic and evolutionary origin of emergent strain(s)
- Patterns of global transmission
- Co-evolution and adaptation
- Selection
- Fitness traits-replication rate, transmissibility, immune recognition
- Intra-host diversification and horizontal gene transfer among strains
- Vaccine and drug therapy development

DNA Sequencing of Host Species

- Genome structure, content, function, evolution
- Evolutionary history of species
- Population structure and phylogeography
- Historic and ongoing patterns of migration
- Genetic diversity
- Inbreeding
- Domestication
- Hybridization
- Endangered or relic species, subspecies and populations
- Identification of genes involved in disease resistance and progression
- Predictive effects of pathogen emergence in naïve host populations

Phylogenetic Tree: Visualizations

- Phylogram
 - Tree branch length proportional to genetic divergence
- Cladogram
 - Topology only, branching order important
 - Branch lengths ignored
 - Character data
- Rooted
 - Outgroup
 - Midpoint rooting
- Unrooted

Rectangular Phylogram Old World Monkeys Branch lengths Proportional All nodes 100% BS Great Apes, Human, Gibbon **New World** Monkeys TBA1

MCO5

MMR1 **Tarsiers** Malagazy Lemurs Galagos Lorises, DMA1 TMI1

0.01

Primate Order

Scandentia

Pottos

Unrooted Phylogram

Circular Cladogram:

Branching order only
Branch lengths ignored

New World Monkeys

Elements for Setting Up the Analyses

Step 1: Determination of informative marker(s) for Hypothesis

Step 2: Determination of sample size and design

Taxa or OTUs

Outgroup-root

Step 3: Alignment (sequence data)

Step 4: Model of substitution

Nucleotide data

Among site rate heterogeneity

Bias frequency nucleotides

Transition: Transversion

Codon analyses

Protein Data

Probability matrix [DAYHOFF, DCMUT, JTT, MTREV, WAG, RTREV, CPREV, VT, BLOSUM62, MTMAM, LG] or empirical frequencies of amino acid within data set.

Building and Assessing the Phylogeny

Step 5. Select optimality criteria and create phylogeny

- Maximum Likelihood (probability scores for observed variation)
- Minimum Evolution (distance-based)
- Maximum Parsimony (character states)
- Bayesian Inference (MCMC)
- Computer Programs
 - IQTree, PAUP, MEGA, RAxML, PhyML, MrBayes

Step 6. A posteriori evaluation

- Bootstrap
 - Assessment of tree reliability
 - Re-sampling with replacement
 - Node support
- Jackknife
 - Random sampling without replacement
 - Sites or taxa
- Bayesian Posterior Probability of Model Parameters

Phylogenetic Data Input

Whole Genome Comparisons

Comparison of syntenic regions (Conserved Sequence Blocks)

Protein Coding Data (Genes and Exomes)

Homologs versus Paralogs

Gene duplication and Gene Loss

Amino Acid versus Nucleotide

Synonymous substitutions

Nonsynonymous substitutions (missense mutations)

MtDNA

Pattern of Inheritance Bias (Matrillineal)

Single Evolutionary Unit despite different genes evolving at different rates

Autosomes, X & Y Chromosomes

Y/X > 1 Male-driven evolution linked with spermatogenesis

Retro-elements

SINEs, LINEs, Endogenous retroviruses

Microsatellites, SNPs, SNVs

Data Selection: Hypothesis Driven

Informative: "Garbage In, Garbage Out"

Neutral Evolution: Does it exist?

First proposed by Kimura (1968): amino acid changes are selectively neutral driven by mutation rate and genetic drift.

Short answer: unlikely

Genomes and genes under strong selection

Maintain function (purifying selection)

Diversification to adapt or to gain function (positive selection)

Is this really a problem?

Quality of Data:

Robustness: Additional data strengthens overall topology

Accuracy: Data capture 'true' evolutionary and natural history

Precision: Data track similarly throughout phylogeny

Empirical Consensus: Combined Data and/or Multi-Gene Coalescence Methods

Heuristic Searches To Find the Optimal Solution

Optimum:

Tree with the highest score possible under the different optimality criteria (ML, MP, ME, BAYESIAN)

Problem- Cannot test all possible combinations of taxa.

'Exhaustive search' -not recommended for more than 10 sequences in an alignment e.g. an alignment of 20 sequences will require testing differences between 2×10^{20} potential trees

Solution: Heuristic searches designed as short cuts through all possible tree space:

Nearest neighbor interchange (NNI)

Subtree-Pruning-regrafting (SBR)

Tree bisection reconnection (TBR)

If suspect getting stuck local optimum:

rearrange input order, star decomposition, iterative step-wise addition.

Phylogenetic Pitfalls

- Recombination
- Gene conversion
- Gene duplication
- Gene loss
- Selection
- Insufficient elapsed time since last shared common ancestor
- Ancestral polymorphisms
- Incomplete lineage sorting (discordant gene trees)
- Saturation of sites (multiple hits)
- Long branch attraction (inadequate taxon sampling)
- Inadequate models of amino acid or nucleotide substitution

Lab: Phylogenomics with IQ-Tree: Ver 2.2.0

- Accuracy: Proposing novel computational methods that perform better than existing approaches.
- Speed: Allowing fast analysis on big data sets and utilizing high performance computing platforms.
- Flexibility: Facilitating the inclusion of new (phylogenomic) models and sequence data types.
- Versatility: Implementing a broad range of commonly-used maximum likelihood analyses.

IQ-TREE has been developed since 2011 and freely available at http://www.iqtree.org/as open-source software

Bui Quang Minh, Rob Lanfear, Nhan Ly-Trong Jana Trifinopoulos, Dominik Schrempf, Heiko A. Schmidt March 25, 2022

Tree-Based Inferences About Gene Function: An Real-World Example

- Hypothesis: What genes are evolving the fastest across the primate order?
 - All the same?
 - All the same among lineages?
- We came up with the top five list for nucleotides and amino acid data
 - Any guesses to what we saw?

The aye-aye

Daubentonia madagascarensis

Nucleotide Substitution Models

- Range from simple to complex
- Models are tested hierarchically, adding more complex elements
- Performs a likelihood test between successive models
- Selects a model based on AIC or BIC criteria
- Lab: Download IQRuns from GDW2023 Github to Desktop
- We'll test for a Model
- We'll find a Maximum Likelihood Tree
- We'll do a bootstrap

