

The Orbital Debris Problem and the Challenges for Environment Remediation

J.-C. Liou, PhD
NASA Orbital Debris Program Office

Growth of the Cataloged Populations

Monthly Effective Number of Objects in Earth Orbit by Object Type

Mass in Space

How Much Junk Is Currently Up There?

Softball size or larger (≥10 cm): ~20,000 to 22,000 (tracked by the U.S. Space Surveillance Network, SSN)

Marble size or larger (≥1 cm): ~500,000

Dot or larger (≥1 mm): >100,000,000
(a grain of salt)

- Due to high impact speed in space (~10 km/s in LEO), even sub-millimeter debris pose a realistic threat to human spaceflight and robotic missions
 - > 1-cm Al sphere @ 10 km/s = 400 lb safe @ 60 mph
 - > 5-mm Al sphere @ 7 km/sec could penetrate a 2.54 cm thick Al wall
- Total mass: ~6300 tons LEO-to-GEO (~2700 tons in LEO)

Assessments of Future OD Environment

- Future orbital debris population growth in LEO has been investigated by the Inter-Agency Space Debris Coordination Committee (IADC) since 2008
- An official comparison study was completed in 2012
 - Study participants: ASI, ESA, ISRO, JAXA, NASA (lead), UKSA
 - Results from the six different models are consistent with one another
 - Even with no future explosion and a global 90% compliance of the 25-year rule, the LEO debris population is expected to increase in the next 200 years
 - Catastrophic collisions involving intact objects (rocket bodies or spacecraft) are likely to occur every 5 to 9 years
 - The study summary was presented to the United Nations COPUOS in 2013 and was widely cited, including a U.S. Congressional Research Report in 2014

Inter-Agency Space Debris Coordination Committee

Problems and Solutions

- LEO debris population will continue to increase even with a good implementation of the commonly-adopted mitigation measures
 - The root-cause of the increase is catastrophic collisions involving large/massive intact objects (rocket bodies or spacecraft)
 - The major mission-ending risks for most operational spacecraft, however, come from impacts with debris just above the threshold of the protection shields (~5-mm to 1-cm)
- A <u>solution-driven</u> approach is to seek
 - Concepts for removal of massive intacts with high P_{collision}
 - Concepts capable of preventing collisions involving intacts
 - Concepts for removal of 5-mm to 1-cm debris
 - Enhanced impact protection shields for valuable space assets

Threat Regimes

Intacts with High [Mass × P_{collision}]

JCL

Mass Distribution in LEO

- Highest mass concentrations are in 800-1000 km altitude
- Contributions from spacecraft and rocket bodies are similar

Concluding Remarks

- Key questions for remediation consideration
 - What is the acceptable threat level?
 - What are the mission objectives?
 - What is the appropriate roadmap/timeframe for remediation?
- Support advanced technology development when an economically viable approach is identified
- Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels