

Tema 0:

Introducción al Cálculo Vectorial

- 1.- Magnitudes escalares y vectoriales
- 2.- Vector. Operaciones con Vectores
- 3.- Producto escalar
- 4.- Producto vectorial
- 5.- Derivación Vectorial
- 6.- Integración Vectorial
- 7.- Momento de un Vector
- 8.- Problemas

Departamento de Física y Química I.E.E.S. Juan Ramón Jiménez

Tema O: Introducción al Cálculo Vectorial

1.- Magnitudes escalares y vectoriales:

Las magnitudes físicas pueden ser:

- <u>Magnitudes escalares.</u> Son aquellas que quedan definidas con su unidad correspondiente y una determinada cantidad.
- <u>Magnitudes vectoriales.</u> Son aquellas que para quedar definidas se debe conocer la cantidad, la unidad, la dirección y el sentido.

1.1.- Magnitudes fundamentales

Las magnitudes fundamentales son aquellas a partir de las cuales se obtienen todas las demás. En la siguiente tabla se recogen estas magnitudes con su unidad correspondiente según el S.I. (Sistema Internacional de medidas).

Magnitud	Símbolo Magnitud	Unidad (S.I.)	Símbolo Unidad
Longitud	r,x,y	Metro	m
Masa	m	Kilogramo	Kg
Tiempo	t	Segundo	S
Intensidad Corriente eléctrica	1	Amperio	А
Cantidad de sustancia	n	Mol	mol
Temperatura	T	Kelvin	K
Intensidad Luminosa		Candela	Cd

1.2.- Magnitudes Derivadas

Son las magnitudes obtenidas a partir de las fundamentales, en esta tabla se recogen las mas usadas a lo largo de este curso intensivo.

Magnitud	Símbolo Magnitud	Unidad (S.I.)	Símbolo Unidad	Escalar / Vectorial
Aceleración	\vec{a}	Metro/segundo ²	m⋅s ⁻²	Vectorial
Ángulo	α	Radian	Rad	Escalar
Campo eléctrico	$ec{E}$	Newton/Coulombio	N/C	Vectorial
Campo gravitatorio	\vec{g}	Neuton/kilogramo	N/Kg	Vectorial
Campo Magnético	$ec{B}$	Tesla	T	Vectorial
Carga eléctrica	Q	Coulombio	С	Escalar
Energía & Trabajo	W	Julio	J	Escalar
Flujo mecánico	ϕ	Weber	Wb	Escalar
Frecuencia	f	Hertzio	Hz ó s ⁻¹	Escalar
Fuerza	F	Newton	N	Vectorial
Longitud de onda	λ	Metro	m	Escalar
Periodo	T	Segundo	S	Escalar
Potencia	Р	Watio	W	Escalar
Potencial eléctrico	ΔV	Voltio	V	Escalar
Presión	Р	Pascal	Pa	Escalar
Resistencia eléctrica	R	Ohmio	Ω	Escalar
Velocidad	\vec{v}	Metro/segundo	m/s	Vectorial

1.3.- Múltiplos de 10.

En física vamos a trabajar con unidades muy grandes y muy pequeñas a la vez, por ello utilizaremos los prefijos que se muestran a continuación.

Prefijo	Símbolo	Valor numérico	Prefijo	Símbolo	Valor numérico
Tera-	T-	10 ¹²	Deci-	d-	10 ⁻¹
Giga-	G-	10 ⁹	Centi-	C-	10-2
Mega-	M-	106	Mili-	m-	10 ⁻³
Kilo-	k-	10 ³	Micro-	μ –	10 ⁻⁶
Hecto-	h-	10 ²	Nano-	n-	10 ⁻⁹
Deca-	Da-	10	Pico-	p-	10-12

2.- Cálculo Vectorial

2.1 Definición de Vector.

Un vector es un segmento orientado en el espacio que se caracteriza por:

Dirección o línea de acción, que es la recta que contiene al vector, o cualquier paralela a ella.

- Sentido, que indica mediante una flecha situada en su extremo (B) hacia que lado de la línea de acción se dirige el vector.
- Módulo, que indica su longitud y representa la intensidad de las magnitudes vectoriales

2.2.- Operaciones con Vectores:

2.2.1.- Suma de Vectores:

Sean $\vec{a} = (a_x, a_y, a_z)$ y $\vec{b} = (b_x, b_y, b_z)$ dos vectores, se define la suma o resultante como:

$$\vec{R} = \vec{a} + \vec{b} = (a_x + b_x, a_y + b_y, a_z + b_z)$$
.

Gráficamente, la resultante se puede obtener de dos formas:

- a) Uniendo el origen de \vec{b} con el extremo de \vec{a} .
- b) Utilizando la regla del paralelogramo.

2.2.2.- Producto de números por Vectores:

El producto de un número real **k** por un vector \vec{v} , es otro vector: $k\vec{v} = k(v_x, v_y, v_z) = (kv_x, kv_y, kv_z) = \vec{k}\vec{v}$

Según esta definición, todo vector se puede expresar como el producto de un módulo por un vector unitario que tenga la misma dirección y el mismo sentido que él.

$$\vec{v} = ||v|| \cdot \hat{u}$$

Donde \hat{u} es un vector unitario de igual dirección y sentido que \vec{v} .

2.2.3.- Vectores Unitarios:

Vector unitario, \hat{u} , es todo vector cuyo módulo es la unidad, $|\hat{u}| = u = 1$, sea cual sea su dirección y sentido. Lleva un subíndice que indica su dirección. Por ejemplo, \hat{u}_r es un vector unitario en la dirección radial o del vector \vec{r} .

Todo vector puede expresarse como el producto de su valor o módulo por un vector unitario de iguales dirección y sentido:

$$\vec{p} = p \cdot \hat{u}_p \qquad \rightarrow \qquad \hat{u}_p = \frac{1}{p} \cdot \vec{p}$$

Los vectores unitarios que desde el origen de coordenadas se dirigen hacia los valores crecientes de los ejes X, Y, Z, se denominan \hat{u}_x o \hat{i} , \hat{u}_y o \hat{j} y \hat{u}_z o \hat{k} .

¿Cómo podemos calcular el vector unitario o versor asociado a un vector cualquiera?

A este proceso se le llama normalización de un vector, y se calcula simplemente dividiendo dicho vector por su módulo.

2.2.3.- Descomposición de Vectores:

Cualquier vector \vec{A} puede siempre considerarse como la suma de dos o más vectores. A cualquier conjunto de vectores que al sumarse den como resultante \vec{A} se les llama componentes de \vec{A} .

En el espacio tridimensional, las componentes más usadas son las cartesianas rectangulares, es decir, el vector se expresa como la suma de 3 vectores mutuamente perpendiculares.

Estos vectores son los $\hat{i} = (1,0,0), \hat{j} = (0,1,0), \hat{k} = (0,0,1)$.

Por tanto el vector $\vec{A} = (A_x, A_y, A_z)$ lo podemos escribir como:

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

En el plano, representaremos el vector en función de (\vec{i}, \vec{j})

$$\vec{A} = A_{\rm v}\vec{i} + A_{\rm v}\vec{j}$$

donde $A_{y} = A \cdot Cos \alpha$ y $A_{y} = A \cdot Sen \alpha$

3.- Producto escalar de vectores.

Se denomina producto escalar de dos vectores \vec{A} y \vec{B} al **número** que resulta de multiplicar el módulo de \vec{A} por el módulo de \vec{B} y por el coseno de ángulo que forman sus líneas de acción. Matemáticamente:

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| \cdot ||\vec{B}|| \cdot Cos(\vec{A}, B)$$

Como el producto $B \cdot \cos(A, B)$ representa la proyección del vector \vec{B} sobre la dirección del vector \vec{A} , el producto escalar también puede definirse como el producto del módulo de uno cualquiera de los vectores por la proyección del otro sobre él.

3.1.- Expresión analítica del producto escalar:

Sean los vectores $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ y $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$, el producto escalar de ambos viene dado por la expresión:

.E.S. Juan Ramon Jimenez

$$\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \cdot (B_x \hat{i} + B_y \hat{j} + B_z \hat{k}) = A_x \cdot B_x + A_y \cdot B_y + A_z \cdot B_z$$

3.2.- Aplicaciones del producto escalar:

• Módulo de un vector: Sea $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$, el módulo del vector \vec{A} se define como:

$$\|\vec{A}\| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

• <u>Ángulo entre dos vectores:</u> El ángulo que forman entre sí dos vectores cualesquiera viene dado por la expresión:

$$\varphi = \arccos \frac{A_x \cdot B_x + A_y \cdot B_y + A_z \cdot B_z}{\sqrt{A_x^2 + A_y^2 + A_z^2} \cdot \sqrt{B_x^2 + B_y^2 + B_z^2}}$$

4.- Producto vectorial de dos vectores.

El producto vectorial de dos vectores \vec{u} y \vec{v} es otro vector \vec{w} cuyo módulo es el producto de los módulos de \vec{u} y \vec{v} multiplicado por el seno del ángulo que forman sus líneas de acción, cuya dirección es la perpendicular al plano que definen, y cuyo sentido viene dado por la regla de Maxwell en el supuesto de que el primer vector vaya hacia el segundo por el camino más corto. Matemáticamente:

 $\vec{w} = \vec{u} \wedge \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = \begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix} \hat{i} - \begin{vmatrix} u_x & u_z \\ v_x & v_z \end{vmatrix} \hat{j} + \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} \hat{k}$ $|\vec{w}| = |\vec{u}| \cdot |\vec{v}| \cdot Sen\alpha$

4.1.- Producto vectorial de vectores unitarios

$$\hat{i} \wedge \hat{i} = \hat{j} \wedge \hat{j} = \hat{k} \wedge \hat{k} = \vec{0}$$

$$i \wedge \hat{j} = \hat{k} \qquad \hat{j} \wedge \hat{i} = -\hat{k}$$

$$\hat{j} \wedge \hat{k} = \hat{i} \qquad \hat{k} \wedge \hat{j} = -\hat{i}$$

$$\hat{k} \wedge \hat{i} = \hat{j} \qquad \hat{i} \wedge \hat{k} = -\hat{j}$$

5.- Derivada de un vector.

Sea r(t) una función vectorial que depende del argumento escalar t, teniendo en cuenta sus proyecciones sobre los ejes, $r(t) = r_x(t)\hat{i} + r_y(t)\hat{j} + r_z(t)\hat{k}$ Se define la derivada de r con respecto a t como:

$$\frac{d}{dt}\vec{r} = \frac{d\vec{r}}{dt} = \frac{dr_x}{dt}\hat{i} + \frac{dr_y}{dt}\hat{j} + \frac{dr_z}{dt}\hat{k}$$

5.1.- Reglas de la derivación:

$$\frac{d}{dt}(\vec{u} + \vec{v}) = \frac{d\vec{u}}{dt} + \frac{d\vec{v}}{dt}$$

$$\frac{d}{dt}(\vec{u} \cdot \vec{v}) = \frac{d\vec{u}}{dt} \cdot \vec{v} + \vec{u} \cdot \frac{d\vec{v}}{dt}$$

$$\frac{d}{dt}(a \cdot \vec{v}) = a\frac{d\vec{v}}{dt}$$

$$\frac{d}{dt}(\vec{u} \wedge \vec{v}) = \frac{d\vec{u}}{dt} \wedge \vec{v} + \vec{u} \wedge \frac{d\vec{v}}{dt}$$

Si \vec{r} es el vector de posición de una partícula, $\frac{d\vec{r}}{dt} = \vec{v}$, la derivada del vector de posición con respecto al tiempo es la **velocidad**. Y $\frac{d^2\vec{r}}{dt^2} = \frac{d\vec{v}}{dt} = \vec{a}$, la segunda derivada de r con respecto al tiempo es la **aceleración**.

6.- Integración vectorial.

Si la derivada de **w** con respecto a t es **v**. $\frac{dw}{dt} = v$, entonces:

$$\int v(t)\cdot dt = w(t) + K$$

Del mismo modo:

$$\int_{a}^{b} v(t) \cdot dt = \left[w(t) \right]_{a}^{b} = w(b) - w(a)$$

Si $v(t) = v_x(t)\hat{i} + v_y(t)\hat{j} + v_z(t)\hat{k}$ y $w(t) = w_x(t)\hat{i} + w_y(t)\hat{j} + w_z(t)\hat{k}$, entonces:

$$\int_{a}^{b} v(t) \cdot dt = \hat{i} \int_{a}^{b} v_{x}(t) dt + \hat{j} \int_{a}^{b} v_{y}(t) dt + \hat{k} \int_{a}^{b} v_{z}(t) dt = \left[w_{x}(t) \hat{i} + w_{y}(t) \hat{j} + w_{z}(t) \hat{k} \right]_{a}^{b} = \left[w(t) \right]_{a}^{b}$$

7.- Momento de un vector respecto de un punto:

Si consideramos un vector cualquiera \vec{v} cuyo origen respecto a un sist<mark>ema de ref</mark>erencia (punto O) viene determinado por el vector de posición \vec{r} , se define como momento del vector \vec{v} respecto al punto O

Al producto vectorial del vector de posición \vec{r} por el vector \vec{v}

Departamento $\vec{M}_o = \vec{r} \wedge \vec{v}$ isica y Química

Así pues, el momento \vec{M}_o es un vector perpendicular al plano formado por los vectores \vec{r} y \vec{v} . Matematicamente :

$$\vec{M}_o = \vec{r} \wedge \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r_x & r_y & r_z \\ v_x & v_y & v_z \end{vmatrix}$$

El módulo del vector momento $M_o = r \cdot v \cdot Sen\alpha$ puede expresarse también como M=v·d, donde d representa la distancia mínima que separa el punto de referencia O de la dirección del vector \vec{v} .

En la figura de la derecha, se observa que:

$$sen\alpha = \frac{d}{r}$$
, de donde $d = r \cdot Sen\alpha$

se representa por un vector aplicado en el punto O, ó *centro de momentos.*

Ejemplo 1: El vector \vec{v} (1,-2,3) está aplicado en el punto P(2,1,2). Calcula su momento respecto al origen de coordenadas y el valor del módulo del momento.

Como nos piden el momento respecto del origen de coordenadas, $\vec{r} = (2,1,2)$

Entonces
$$\vec{M} = \vec{r} \wedge \vec{v}$$
, $\vec{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 2 \\ 1 & -2 & 3 \end{vmatrix} = 7\hat{i} - 4\hat{j} - 5\hat{k}$

Y su módulo es $\|\vec{M}\| = \sqrt{7^2 + 4^2 + 5^2} = 9.5$

8.- Problemas.

1.- Indicar cuales de las siguientes magnitudes son escalares y cuales vectoriales:

- Presión - Cantidad de movimiento

DensidadMasaTrabajo

- Temperatura - Intensidad eléctrica

- Fuerza

AceleraciónPeso

- Tensión eléctrica

- 2.- Calcular el vector resultante de dos fuerzas de 9 y 12 Newton aplicados en el punto O, formando un ángulo de: A)30°, B)45°, C)90°.
- 3.- El vector resultante de dos fuerzas de direcciones perpendiculares vale 10N. Si una de las fuerzas es de 8N, ¿Cuál es el valor de la otra?.
- 4.- Descomponer un vector fuerza de 100N en dos componentes rectangulares tales que sus módulos sean iguales.
- 5.- Dos vectores $\vec{A} = 3\hat{i} + 4\hat{j} + \hat{k}$; $\vec{B} = 4\hat{i} 5\hat{j} + 8\hat{k}$. Deducir si son perpendiculares.
- 6.- Dados los vectores $\vec{A}(3,-2,0)$ y $\vec{B}(5,1,-2)$ calcular:
 - a) Sus módulos
 - b) Su producto escalar
 - c) El ángulo que forman.
- 7.- Hallar un vector que sea perpendicular al vector $\vec{A} = \hat{i} + \hat{j} + \hat{k}$, que cumpla la condición de que su componente sobre el eje z sea nula y que sumado con el vector (-3,0,1) se obtenga de primera componente el valor cero.
- 8.- Dado el vector u(-2,2,-4), hallar las coordenadas de los siguientes vectores:
 - a) Unitarios y de la misma dirección que u.
 - b) Paralelos a u y de módulo 6
- 9.- Hallar un vector que sea perpendicular, a la vez, a los vectores $\vec{u} = (1,0,-1)$ y $\vec{v} = (2,3,1)$
- 10.- Hallar un vector perpendicular a $\vec{v} = (2,3,4)$ y $\vec{w} = (-1,3,-5)$ y que sea unitario.

- 11.- Determina los valores de a y b, con a>0, para que los vectores $v_1(a,b,b)$; $v_2(b,a,b)$ y $v_3(b,b,a)$ sean unitarios y ortogonales dos a dos.
- 12.- Hallar la tangente del ángulo que forman los vectores $\vec{A} = 3\hat{i} \hat{j} + 2\hat{k}$ y $\vec{B} = \hat{i} + \hat{k}$
- 13.- Comprobar que los vectores $\vec{A}=3\hat{i}+2\hat{j}-\hat{k}$; $\vec{B}=\hat{i}+3\hat{j}-5\hat{k}$ y $\vec{C}=2\hat{i}-\hat{j}+4\hat{k}$ forman un triangulo rectángulo.
- 14.- ¿Qué fuerza paralela a un plano inclinado, de pendiente 27,8 % se debe ejercer para conseguir que un cuerpo de 90 kg colocado en él no deslice?
- 15.- Los Vectores $\vec{A}(3,2,-5)$, $\vec{B}(6,-4,0)$, $\vec{C}(0,7,4)$ están sometidos a esta operación: $\vec{V}=2\vec{A}+\vec{B}+\vec{C}$. Calcular:
 - a) El módulo de $ec{V}$. b) El producto escalar $ec{A} \cdot ec{V}$ c) El producto vectorial $ec{V} \wedge ec{A}$
- 16.- Hallar un vector que sea perpendicular a los vectores $\vec{A}=4\hat{i}+3\hat{j}+2\hat{k}$ y $\vec{B}=3\hat{i}+2\hat{j}+2\hat{k}$, y tal que su módulo sea igual a 6.
- 17.- Dos vectores tienen como origen común e<mark>l punto P(1,1</mark>,1) y sus extremos están en A(2,3,4) y B(0,2,6). Calcular el área del triángulo PAB.
- 18.- Sean los vectores $\vec{u} = 3\hat{i} + 5\hat{j}, \vec{v} = -\hat{i} + 2\hat{j}, \vec{t} = 2\vec{i} + \hat{j} 2\hat{k}$ calcular:
 - a) $2\vec{u} + \vec{v} \vec{t}$ b) $\vec{u} \cdot \vec{v}$ c)Producto vectorial $\vec{w} = \vec{u} \wedge \vec{v}$
 - d) Verifique que \vec{w} es perpendicular a $\vec{u} \wedge \vec{v}$
 - e) Calcule el momento de \vec{u} respecto al punto P(2,1,0)
- 19.- ¿Es cierta la frase: "La resultante de dos vectores paralelos es un vector paralelo a ambos"?.
- 20.- El vector aceleración de una partícula referido al punto O, viene dado por: $\vec{a}=2(18t^2+1)\hat{i}+9\hat{j}$. En el origen de tiempos (t=0) la velocidad es nula y el vector de posición es $\vec{r}_o=4\hat{j}+\hat{k}$. Determinar el vector velocidad y el vector posición de la partícula en cualquier instante.
- 21.- Una partícula se mueve con una aceleración constante $\vec{a}=4\hat{i}+6\hat{j}$ m/s². Si en el instante inicial la velocidad es nula y su posición $\vec{r}_a=10\hat{i}$ m, calcula:
 - a) El vector de posición en función del tiempo.
 - b) El vector velocidad en cualquier instante.
- 22.- Dado un sistema de vectores $\vec{a} = (3,1,2), \vec{b} = (0,3,-5), \vec{c} = (0,1,0)$, aplicados respectivamente en los puntos A(0,0,0), B(0,1,1), C(0,-1,2), calcula: a) la resultante general del sistema. b) el momento resultante del sistema respecto del punto P(3,2,-1)

Departamento de Física y Química I.E.E.S. Juan Ramón Jiménez