IBM Advanced Data Science Capstone Project

Harsh Vardhan Singh

Data Science Peers' Presentation

Contents

Sentiment Analysis of Amazon Customer Reviews

- 1. Architectural choices
- 2. Data preparation
 - a. Quality assessment
 - b. Pre-processing
 - c. Feature extraction
- 3. Model algorithm
- 4. Model performance
- 5. Next steps...

Architectural choices

Programming Language - Python

• Open-source, huge repository of libraries, fast development, wide community support

Data Processing - Spark

- Dealing with a relatively large dataset, we chose Spark for data storage and processing
- Seamless scaling and distributed computing

• Deep Learning - Keras

An extremely powerful platform for building and deploying deep learning models

Data Repository - IBM Cloud Storage

Easy access and secure data repository

Development Environment - Jupyter Notebooks

Easy to develop, ability to include data, code and analysis in a single document

Data preparation - Quality assessment

Non-english language reviews

- There were ~0.2% non-English language reviews
- These were removed from the dataset using the *langdetect* library in Python

• Ignoring reviews with Rating = 3

 One of the critical issues that wasn't handled was reviews with Rating 3. Since the sentiment of training data was derived from reviews having ratings less than 3 as negative and more than 3 as positive, ~20% of the data was ignored

Spelling mistakes, trivial words, etc.

Spelling mistakes and trivial (stop) words were handled using the NLTK library

Data preparation - String length distribution

Data preparation - Word count distribution

Data preparation - Top words in reviews

Data preparation - Top word visualization

Data preparation - Pre-processing

Removing NAs

All rows where rating/ reviews were NA or Empty were removed from the data

Combining Heading and Text

Since the review heading and text both contain relevant information, we combine them into a single column - we
are considering the heading as an extension of the overall review body.

Tokenization

• Reviews were tokenizes into arrays of words after removing special characters, punctuations, etc.

Removing stopwords

• Words like is, an, the were removed as they do not add any predictive value

Lemmatization

Inflected forms of each word were grouped together (such as run, running, ran)

Categorical target variable (Review Sentiment)

Negative = Rating < 3; Positive = Rating > 3

Data preparation - Feature extraction

Method 1

TF-IDF Vectorization

- Vectorized the tokens into a sparse matrix using TFIDF Vectorizer
- This is a bag-of-words model that doesn't retain the ordering of words
- The features from this method can be used for training an MLP neural network

Method 2

Padded Sequential Word Vectors

- This method involves replacing each unique word in our vocabulary with an integer value
- Since sentences can be of varying lengths, padding is added (leading zeros) to make all the vectors of the same length

Model algorithm

- We trained two different models using our sample data -
 - Multi-layer perceptron neural network using the TF-IDF sparse vectors
 - LSTM neural network using the padded sequential word vectors

Final model selected

 LSTM neural network with 2
 LSTM layers and 2 fully connected Dense layers

Final model architecture

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 147, 128)	4194304
lstm_2 (LSTM)	(None, 147, 512)	1312768
lstm_3 (LSTM)	(None, 256)	787456
dense_6 (Dense)	(None, 256)	65792
dense_7 (Dense)	(None, 128)	32896
dense 8 (Dense)	(None, 1)	129

Total params: 6,393,345 Trainable params: 6,393,345 Non-trainable params: 0

Model performance

Model performance was measured using the **binary accuracy** metric since we are dealing with a **binary classifier** with **balanced class distribution**.

•	Naive Bayes model trained on 50k sample data Baseline model	~50 thousand sample	81.16%
•	Sample Multi-layer perceptron neural network O 2 Dense hidden layers with L2 regularization	~50 thousand sample	83.57%
•	Sample LSTM neural network • Embedding layer, 2 LSTM layers, 2 Dense layers	~50 thousand sample	82.88%
•	Final LSTM neural network • Embedding layer, 2 LSTM layers, 2 Dense layers	~2.4 million dataset	91.79%

Model performance

Multi Layer Perceptron - Trained on 50k sample data

Overfitting can be seen after 2nd training epoch

Training accuracy over 3 epochs

Training vs. Validation Accuracy over 3 epochs

Model performance

Long Short Term Memory Neural Network - Trained on 50k sample data

Training

Validation

Overfitting can be seen after 2nd training epoch

Training accuracy over 3 epochs

Training vs. Validation Accuracy over 3 epochs

Model performance – Final Model

Long Short Term Memory Neural Network - Trained on 2.6m full dataset

91.79% binary accuracy achieved on test data

Training

Validation

Next steps...

Improve model performance

- Hyperparameter tuning was not done due to resource constraints
- We can improve the model performance by tuning hyperparameters such as -
 - Neural network architecture
 - L2 regularization
 - Learning rate
 - Batch size

Deploy model for live streaming data

 We can deploy the model in an enterprise environment to predict sentiments of customer reviews for making better business decisions