Taming the complexity of biochemical networks through model reduction and tropical geometry

Ovidiu Radulescu

Université de Montpellier, DIMNP UMR 5235

Polynomial kinetics (e.g. mass action law)

$$\frac{dx_i}{dt} = P_i(\boldsymbol{x}) = \sum_{j=1}^{M_i} k_{ij} \boldsymbol{x}^{\alpha_{ij}}, \ \boldsymbol{x}^{\alpha_{ij}} = x_1^{\alpha_{ij}^1} \dots x_n^{\alpha_{ij}^n}.$$

 $lpha_{ij} \in \mathbb{N}^n$ are multi-indices, $k_{ij} \in \mathbb{R}$ are kinetic parameters.

Polynomial kinetics (e.g. mass action law)

$$\frac{dx_i}{dt} = P_i(\boldsymbol{x}) = \sum_{j=1}^{M_i} k_{ij} \boldsymbol{x}^{\alpha_{ij}}, \ \boldsymbol{x}^{\alpha_{ij}} = x_1^{\alpha_{ij}^1} \dots x_n^{\alpha_{ij}^n}.$$

 $\alpha_{ij} \in \mathbb{N}^n$ are multi-indices, $k_{ij} \in \mathbb{R}$ are kinetic parameters.

How to identify fast/slow variables? Problem : timescales are not just inverses of k_{ij} .

Polynomial kinetics (e.g. mass action law)

$$\frac{dx_i}{dt} = P_i(\boldsymbol{x}) = \sum_{j=1}^{M_i} k_{ij} \boldsymbol{x}^{\alpha_{ij}}, \ \boldsymbol{x}^{\alpha_{ij}} = x_1^{\alpha_{ij}^1} \dots x_n^{\alpha_{ij}^n}.$$

 $\alpha_{ij} \in \mathbb{N}^n$ are multi-indices, $k_{ij} \in \mathbb{R}$ are kinetic parameters.

- How to identify fast/slow variables? Problem : timescales are not just inverses of k_{ij} .
- Which details of the model can be neglected? Problem: small terms can not always be neglected.

Polynomial kinetics (e.g. mass action law)

$$\frac{dx_i}{dt} = P_i(\boldsymbol{x}) = \sum_{j=1}^{M_i} k_{ij} \boldsymbol{x}^{\alpha_{ij}}, \ \boldsymbol{x}^{\alpha_{ij}} = x_1^{\alpha_{ij}^1} \dots x_n^{\alpha_{ij}^n}.$$

 $\alpha_{ij} \in \mathbb{N}^n$ are multi-indices, $k_{ij} \in \mathbb{R}$ are kinetic parameters.

- How to identify fast/slow variables? Problem : timescales are not just inverses of k_{ij} .
- Which details of the model can be neglected? Problem: small terms can not always be neglected.
- Can one provide symbolic descriptions of the reduced model dynamics?

Chemical reaction networks Slow/fast systems

from Chiavazzo et al Comm.Comp.Phys. 2007 from Hung and Sheperd 12th Ann. Int. Detonation Symp. 2002 In fast/slow systems, fast variables relax quickly, then they are slaved: the system moves on a low dimensional invariant manifold describing the reduced model. The reduced model can change with time.

Chemical reaction networks > Tikhonov theorem

$$\frac{dx}{dt} = \frac{1}{\varepsilon} f(x, y)$$
(1: fast)

$$\frac{dy}{dt} = g(x, y)(2: slow)$$

Tikhonov: If for any y the dynamics (1) has a hyperbolic point attractor, then after a fast transition the system evolves according to:

$$\frac{dy}{dt} = g(x, y)$$

and

f(x,y)=0 the fast variables are slaved by slow ones

Several steps:

 Determine the fast/slow decomposition : partially solved by CSP (Lam and Goussis 1994), implemented in COPASI.

- Determine the fast/slow decomposition : partially solved by CSP (Lam and Goussis 1994), implemented in COPASI.
- Solve f(x,y) = 0 for x: hard, few symbolic methods(Grobner bases, sparse polynomial systems (Grigoriev, Weber 2012)), no implementation.

- Determine the fast/slow decomposition : partially solved by CSP (Lam and Goussis 1994), implemented in COPASI.
- > Solve f(x,y) = 0 for x: hard, few symbolic methods(Grobner bases, sparse polynomial systems (Grigoriev, Weber 2012)), no implementation.
- Pool reactions, find effective rate laws in y: use elementary modes (Radulescu et al 2008).

- Determine the fast/slow decomposition : partially solved by CSP (Lam and Goussis 1994), implemented in COPASI.
- > Solve f(x,y) = 0 for x: hard, few symbolic methods(Grobner bases, sparse polynomial systems (Grigoriev, Weber 2012)), no implementation.
- Pool reactions, find effective rate laws in y: use elementary modes (Radulescu et al 2008).
- Pool species : use conservation laws (Gorban, Radulescu, Zinovyev 2010).

Chemical reaction networks Quasi-steady state approximation

Fast, low concentration radicals

$$\frac{dx}{dt} = 1 - x$$

$$\frac{dy}{dt} = x - \frac{1}{\varepsilon}y$$

$$\frac{dz}{dt} = \frac{1}{\varepsilon}y - z$$

$$y = \varepsilon x$$

$$y=\varepsilon x$$

y is fast, x, z are slow.

Chemical reaction networks Ouasi-steady state approximation

$$\frac{dx}{dt} = 1 - x$$

$$\frac{dz}{dt} = x - z$$

Reduced model: prune fast species, replace fast sub-system by elementary modes (reaction pooling)

Chemical reaction networks • Quasi-equilibrium approximation

Fast cycles (all the species in the cycle are fast)

Conservation laws of the fast subsystem that are not conserved by the full system are slow.

Chemical reaction networks • Quasi-equilibrium approximation

$$(x+y+z)$$
 1/3 \rightarrow

$$\frac{d(x+y+z)}{dt} = -1/3(x+y+z)$$

Reduced model : prune fast reactions, pool species.

Chemical reaction networks > Slowness index : detecting fast and slow variables

Let x^* be the solution of f(x, y(t)) = 0 where y(t) are simulated trajectories. The slowness index for x is $I(t) = |\log(x(t)/x^*(t))|$.

Slowness index calculated for the species in the NFκB model BIOMD000000226.

Chemical reaction networks > An example

Reduction of NF- κ B signaling (BIOMD000000227 in Biomodels database)

Tropical methods → Tropical curves and varieties

Consider a polynomial in two variables, say $ay + cx + bx^2y$.

 $\text{Max-plus algebra} + \rightarrow \textit{Max}, \times \rightarrow +.$

A tropical curve is the set of points where the corresponding max-plus polynomial Max(log(a) + y, log(c) + x, log(b) + 2log(x) + log(y)) is not smooth.

A tropical curve is an algebraic curve defined over the max-plus semifield.

Tropical methods Newton-Puiseux series

Solve $\varepsilon y - x + \varepsilon^2 x^2 y = 0$, ε small positive parameter

Tropical methods Newton-Puiseux series

- Solve $\varepsilon y x + \varepsilon^2 x^2 y = 0$, ε small positive parameter
- Kapranov theorem: there are solutions $x = x_1 \varepsilon^{a_1} + x_2 \varepsilon^{a_2} + \ldots$, $y = y_1 \varepsilon^{b_1} + y_2 \varepsilon^{b_2} + \ldots$, where $a_1, a_2, \ldots, b_1, b_2, \ldots$ are increasing rational numbers with a common denominator.

Tropical methods → Newton-Puiseux series

- Solve $\varepsilon y x + \varepsilon^2 x^2 y = 0$, ε small positive parameter
- Kapranov theorem: there are solutions $x = x_1 \varepsilon^{a_1} + x_2 \varepsilon^{a_2} + ...$, $y = y_1 \varepsilon^{b_1} + y_2 \varepsilon^{b_2} + ...$, where $a_1, a_2, ..., b_1, b_2, ...$ are increasing rational numbers with a common denominator.
- » must have, at lowest order $y_1 \varepsilon^{1+b_1} x_1 \varepsilon^{a_1} + x_1^2 y_1 \varepsilon^{2a_1+b_1} = 0$

Tropical methods

Newton-Puiseux series

- Solve $\varepsilon y x + \varepsilon^2 x^2 y = 0$, ε small positive parameter
- > Kapranov theorem : there are solutions $x=x_1\varepsilon^{a_1}+x_2\varepsilon^{a_2}+\ldots$, $y=y_1\varepsilon^{b_1}+y_2\varepsilon^{b_2}+\ldots$, where $a_1,a_2,\ldots,b_1,b_2,\ldots$ are increasing rational numbers with a common denominator.
- $y_1 \varepsilon^{1+b_1} x_1 \varepsilon^{a_1} + x_1^2 y_1 \varepsilon^{2a_1+b_1} = 0$
- > possible, if $min(1+b_1,a_1,2a_1+b_1)$ is attained at least twice, which defines the tropical curve

Tropical methods Newton-Puiseux series

- Solve $\varepsilon y x + \varepsilon^2 x^2 y = 0$, ε small positive parameter
- > Kapranov theorem : there are solutions $x=x_1\varepsilon^{a_1}+x_2\varepsilon^{a_2}+\ldots$, $y=y_1\varepsilon^{b_1}+y_2\varepsilon^{b_2}+\ldots$, where $a_1,a_2,\ldots,b_1,b_2,\ldots$ are increasing rational numbers with a common denominator.
- > must have, at lowest order $y_1 \varepsilon^{1+b_1} x_1 \varepsilon^{a_1} + x_1^2 y_1 \varepsilon^{2a_1+b_1} = 0$
- > possible, if $min(1+b_1,a_1,2a_1+b_1)$ is attained at least twice, which defines the tropical curve
- to have real solutions need $a_1 = min(1 + b_1, 2a_1 + b_1)$ Tropical equilibration: the positive and negative dominant terms have the same orders.

Tropical methods

Newton-Puiseux series

> For systems, tropical equilibration condition is necessary but not sufficient.

Tropical methods > Newton-Puiseux series

> For systems, tropical equilibration condition is necessary but not sufficient.

$$y - x - \varepsilon x^4 = 0$$
$$x - y + \varepsilon y^2 = 0$$
$$x = \varepsilon^{a_1}, y = \varepsilon^{a_2}$$

Tropical methods Newton-Puiseux series

> For systems, tropical equilibration condition is necessary but not sufficient.

$$y - x - \varepsilon x^{4} = 0$$
$$x - y + \varepsilon y^{2} = 0$$
$$x = \varepsilon^{a_{1}}, y = \varepsilon^{a_{2}}$$

> Infinite branch, $a_1=a_2\geq -1/3$ and isolated solution $a_1=-1/2,\,a_2=-1$

Tropical methods

> Newton-Puiseux series

For systems, tropical equilibration condition is necessary but not sufficient.

$$y - x - \varepsilon x^{4} = 0$$
$$x - y + \varepsilon y^{2} = 0$$
$$x = \varepsilon^{a_{1}}, y = \varepsilon^{a_{2}}$$

- Infinite branch, $a_1 = a_2 \ge -1/3$ and isolated solution $a_1 = -1/2$, $a_2 = -1$
- \rightarrow Only (0,0) and (-1/2,-1) can be lifted to Newton-Puiseux series.

Tropical methods Newton-Puiseux series

For systems, tropical equilibration condition is necessary but not sufficient.

 $v - x - \varepsilon x^4 = 0$

$$x - y + \varepsilon y^2 = 0$$
$$x = \varepsilon^{a_1}, y = \varepsilon^{a_2}$$

- Infinite branch, $a_1=a_2\geq -1/3$ and isolated solution $a_1=-1/2,\,a_2=-1$
- > Only (0,0) and (-1/2,-1) can be lifted to Newton-Puiseux series.
- By adding the equations, get $y^2 x^4 = 0$ leading to $a_1 = a_2/2$. Only two solutions left, (0,0) and (-1/2,-1).

Tropical methods

> Newton-Puiseux series

For systems, tropical equilibration condition is necessary but not sufficient.

$$y - x - \varepsilon x^{4} = 0$$
$$x - y + \varepsilon y^{2} = 0$$
$$x = \varepsilon^{a_{1}}, y = \varepsilon^{a_{2}}$$

- Infinite branch, $a_1 = a_2 \ge -1/3$ and isolated solution $a_1 = -1/2$, $a_2 = -1$
- > Only (0,0) and (-1/2,-1) can be lifted to Newton-Puiseux series.
- By adding the equations, get $y^2 x^4 = 0$ leading to $a_1 = a_2/2$. Only two solutions left, (0,0) and (-1/2,-1).
- > In general, have to compute a tropical basis : hard.

Polynomial kinetics (e.g. mass action law)

$$\frac{dx_i}{dt} = \sum_{j=1}^{M_i} k_{ij} x^{\alpha_{ij}}$$

Polynomial kinetics (e.g. mass action law)

$$\frac{dx_i}{dt} = \sum_{j=1}^{M_i} k_{ij} x^{\alpha_{ij}}$$

pick $\epsilon>0$ is a small positive number.

Polynomial kinetics (e.g. mass action law)

$$\frac{dx_i}{dt} = \sum_{j=1}^{M_i} k_{ij} x^{\alpha_{ij}}$$

pick $\varepsilon > 0$ is a small positive number.

$$\gamma_{ij} = \textit{round}(\log(\textit{k}_{ij})/\log(\epsilon))$$

$$k_{ij} = \bar{k}_{ij} \epsilon^{\gamma_{ij}}$$

Polynomial kinetics (e.g. mass action law)

$$\frac{dx_i}{dt} = \sum_{j=1}^{M_i} k_{ij} x^{\alpha_{ij}}$$

pick $\varepsilon > 0$ is a small positive number.

$$\gamma_{ij} = \textit{round}(\log(\textit{k}_{ij})/\log(\epsilon))$$

$$k_{ij} = \bar{k}_{ij} \epsilon^{\gamma_{ij}}$$

Define $x_i = \varepsilon^{a_i} \bar{x}_i$ where a_i are unknown.

$$\frac{d\bar{x}_i}{dt} = \sum_{j=1}^{M_i} \varepsilon^{\mu_{ij}} \bar{k}_{ij} \bar{\mathbf{x}}^{\alpha^{ij}},$$

$$\mu_{ij} = \gamma_{ij} + \sum_{l=1}^{n} \alpha_l^{ij} a_l - a_i.$$

At least two terms, of opposite signs have the same degree in ϵ .

Find a pair (j,j'), $j \neq j'$ such that

- $\mathsf{i)}\ \mu_{\mathsf{i}\mathsf{j}} = \mu_{\mathsf{i}\mathsf{j}'},$
- ii) $\mu_{ij} \leq \mu_{il}$ for all $l \neq j, j'$,
- iii) $k_{ij}k_{ij'}<0$.

The minimum degree is attained at least twice and the minimal degree terms have opposite signs.

$$rac{dar{\mathbf{x}}_i}{dt} = \mathbf{\epsilon}^{\mu_i}(|ar{\mathbf{k}}_{ij}|ar{\mathbf{x}}^{oldsymbol{lpha}^{ij}} - |ar{\mathbf{k}}_{ij'}|ar{\mathbf{x}}^{oldsymbol{lpha}^{ij'}})$$

The tropically truncated system is generically binomial (toric system).

Nonlinear cycle example

$$\begin{array}{l} \gamma_1 = 0, \gamma_2 = 1, \gamma_3 = \gamma_4 = 2, \gamma_5 = 3 \\ \min(\gamma_1 + a_1, \gamma_4 + a_1 + a_2) = \min(\gamma_3, \gamma_5) + a_3 = \min(\gamma_2 + a_2, \gamma_4 + a_1 + a_2) = \\ \min(\gamma_1 + a_1, \gamma_5 + a_3) \end{array}$$

Nonlinear cycle example

Michaelis-Menten enzymatic reaction

$$S+E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \overset{k_2}{\Rightarrow} P+E,$$

Using the conserved quantities $e_0 = [E] + [ES]$, $s_0 = [S] + [ES] + [P]$, we get the system

$$x' = -k_1x(e_0 - y) + k_{-1}y, \quad y' = k_1x(e_0 - y) - (k_{-1} + k_2)y.$$

where x = [S] and y = [SE], and some constraints

$$0 \leq y \leq e_0, \, 0 \leq x+y \leq s_0, \, 0 \leq x.$$

Michaelis-Menten enzymatic reaction The tropical equilibration problem

After rescalings $x = \bar{x} \varepsilon^{a_1}$, $y = \bar{y} \varepsilon^{a_2}$, $k_1 = \bar{k}_1 \varepsilon^{\gamma_1}$, $k_{-1} = \bar{k}_{-1} \varepsilon^{\gamma_{-1}}$, $e_0 = \bar{e}_0 \varepsilon^{\gamma_e}$, $s_0 = \bar{s}_0 \varepsilon^{\gamma_s}$, we get

$$\begin{split} \bar{x}' &= -\bar{k}_1 \bar{e}_0 \epsilon^{\gamma_1 + \gamma_e} \bar{x} + \bar{k}_1 \epsilon^{\gamma_1 + a_2} \bar{x} \bar{y} + \bar{k}_{-1} \epsilon^{\gamma_{-1} + a_2 - a_1} \bar{y}, \\ \bar{y}' &= \bar{k}_1 \bar{e}_0 \epsilon^{\gamma_1 + \gamma_e + a_1 - a_2} \bar{x} - \bar{k}_1 \epsilon^{\gamma_1 + a_1} \bar{x} \bar{y} - (\bar{k}_{-1} \epsilon^{\gamma_{-1}} + \bar{k}_2 \epsilon^{\gamma_2}) \bar{y}. \end{split}$$

that leads to the equilibration equations

$$\gamma_1 + \gamma_e = \min(\gamma_1 + a_2, \gamma_{-1} + a_2 - a_1),$$

 $\gamma_1 + \gamma_e + a_1 - a_2 = \min(\gamma_1 + a_1, \min(\gamma_{-1}, \gamma_2)).$

Michaelis-Menten enzymatic reaction → Newton Polygons and Tropical Manifolds

Michaelis-Menten enzymatic reaction Quasi-equilibrium approximation

No	Condition	Truncated system	Regime
1	$a_1 < \gamma_{-1} - \gamma_1$ $a_2 = \gamma_e$	$x' = \varepsilon^{\gamma_1 + \gamma_e} (-\bar{k}_1 \bar{e}_0 \bar{x} + \bar{k}_1 \bar{x} \bar{y})$ $y' = \varepsilon^{\gamma_1 + a_1} (\bar{k}_1 \bar{e}_0 \bar{x} - \bar{k}_1 \bar{x} \bar{y})$	QE saturated
2	$a_1 > \gamma_{-1} - \gamma_1$ $a_2 = a_1 + \gamma_e + \gamma_1 - \gamma_{-1}$	$x' = \varepsilon^{\gamma_1 + \gamma_e} \left(-\overline{k}_1 \overline{e}_0 \overline{x} + \overline{k}_{-1} \overline{y} \right)$ $y' = -\varepsilon^{\gamma_{-1}} \left(\overline{k}_1 \overline{e}_0 \overline{x} - \overline{k}_{-1} \overline{y} \right)$	QE linear

Michaelis-Menten enzymatic reaction → Quasi-steady state approximation

No	Condition	Truncated system	Regime
1	$a_1 < \gamma_2 - \gamma_1$ $a_2 = \gamma_e$	$x' = \varepsilon^{\gamma_1 + \gamma_e} (-\bar{k}_1 \bar{e}_0 \bar{x} + \bar{k}_1 \bar{x} \bar{y})$ $y' = \varepsilon^{\gamma_1 + a_1} (\bar{k}_1 \bar{e}_0 \bar{x} - \bar{k}_1 \bar{x} \bar{y})$	QE
2	$\begin{vmatrix} \gamma_2 - \gamma_1 < a_1 < \gamma_{-1} - \gamma_1 \\ a_2 = \gamma_e \end{vmatrix}$	$x' = \varepsilon^{\gamma_1 + \gamma_e} (-\bar{k}_1 \bar{e}_0 \bar{x} + \bar{k}_1 \bar{x} \bar{y})$ $y' = -\varepsilon^{\gamma_2} \bar{k}_2 \bar{y}$	x QSS
3	$a_1 > \gamma_{-1} - \gamma_1$ $a_2 = a_1 + \gamma_e + \gamma_1 - \gamma_{-1}$	$x' = \varepsilon^{\gamma_1 + \gamma_e} (-\bar{k}_1 \bar{e}_0 \bar{x} + \bar{k}_{-1} \bar{y})$ $y' = -\varepsilon^{\gamma_2} \bar{k}_2 \bar{y}$	x QSS
4	$a_1 > \gamma_2 - \gamma_1$ $a_2 = a_1 + \gamma_e + \gamma_1 - \gamma_2$	$x' = -\varepsilon^{\gamma_1 + \gamma_{\bar{e}}} \bar{k}_1 \bar{e}_0 \bar{x}$ $y' = \varepsilon^{\gamma_2} (\bar{k}_1 \bar{e}_0 \bar{x} - \bar{k}_2 \bar{y})$	y QSS

Michaelis-Menten enzymatic reaction Tropical equilibrations and model reduction

TTS at quasi-equilibrium: pruning

$$\bar{x}' = \varepsilon^{\gamma_1 + \gamma_e} (-\bar{k}_1 \bar{e}_0 \bar{x} + \bar{k}_{-1} \bar{y})$$

$$\bar{y}' = \varepsilon^{\gamma_{-1}} (\bar{k}_1 \bar{e}_0 \bar{x} - \bar{k}_{-1} \bar{y})$$

New slow variable z = x + y: pooling

$$\bar{z}' = -\varepsilon^{\gamma_2 + a_2 - \gamma_s} \bar{k}_2 \bar{y}$$

Eliminate x, y, obtain the reduced model

$$z' = -k_2/(1 + k_{-1}/(k_1 e_0))z.$$

Results on Biomodels.net

436 curated models, 55 have purely polynomial kinetics.

Two methods:

Reified constraints

Found	# models	Variables (avg/min/max)	Time (avg/min/max)
yes	23	17.348/3/ 86	0.486/0.004/2.803
no	32	17.812/1/194	0.099/0.000/1.934

Newton polytope

ε	Total	Timed-	Models	Models	Average
value	models	out	without	with	running
	consid-	models	tropical	tropical	time (in
	ered		solu-	solu-	secs)
			tions	tions	
1/5	53	16	0	37	405.50
1/7	53	16	0	37	734.74
1/9	53	16	0	37	716.40
1/23	50	17	1	32	889.59

Results on Biomodels.net

 $\mu_{\text{threshold}} = -\log(\theta/\tau)/\log(\epsilon), \, \tau \text{ time units.}$

Species with $\mu_i - a_i \ge \mu_{\text{threshold}}$ are slow.

At timescales of 1000s models have median numbers of 2 slow variables.

> Monomolecular case

Any monomolecular network with separated constants can be reduced to an acyclic, deterministic digraph (Gorban and Radulescu 2007). The symbolic dynamics can described by a deterministic finite state automaton. The number of states is at most the number of species.

> Nonlinear networks

> Main idea : use tropical equilibration branches (slow) as proxys for metastability.

- Main idea: use tropical equilibration branches (slow) as proxys for metastability.
- Branches are defined as all tropical equilibration leading to the same fast truncated system; computed by post-processing of algorithm output.

- Main idea: use tropical equilibration branches (slow) as proxys for metastability.
- Branches are defined as all tropical equilibration leading to the same fast truncated system; computed by post-processing of algorithm output.
- > We define minimal branches: minimal truncated system.

- > Main idea : use tropical equilibration branches (slow) as proxys for metastability.
- Branches are defined as all tropical equilibration leading to the same fast truncated system; computed by post-processing of algorithm output.
- > We define minimal branches: minimal truncated system.
- Minimal branches are algebraically connected if they have a common overset.

> Nonlinear networks

Minimal tropical branches and algebraic connections.

> Nonlinear networks

Numerically computed trajectories and distances to minimal branches.

> Nonlinear networks

Stochastic finite state automaton learned from trajectories with various initial conditions.

Conclusion

- Solving the tropical equilibration problem allows fast/slow decomposition and model reduction of biochemical reactions networks.
- We have two methods for solving the tropical equilibration problem, a first one by reformulating it as a constraint satisfaction problem and a second one based on the Newton polyhedron.
- Tropical methods can be also used to coarse grain the dynamics of a smooth biochemical reaction network to a discrete symbolic dynamics of a finite state automaton.

Acknowledgements

Francois Fages

Sylvain Soliman

Satya Swarup Samal