Zastosowanie autoenkoderów wariacyjnych do rozpoznawania zmian na obrazach medycznych

Tomasz Nanowski

II UWr

15 lutego 2019

Plan prezentacji

Opis problemu

Autoenkoder wariacyjny

Eksperyment na danych syntetycznych (MNIST)

Eksperyment na danych medycznych

Wnioski

Opis problemu

Opis problemu

Lokalizowanie zmian nowotworowych na zdjęciach wykonanych metodą rezonansu magnetycznego (MRI, ang. magnetic resonance imaging).

Podejście nadzorowane

Opis

Bazowanie na danych przeanalizowanych wcześniej przez specjalistów, gdzie każdy przypadek został ręcznie obejrzany i oznaczony. Przykładowo można byłoby skorzystać z architektury *U-Net*.

Podejście nadzorowane

Opis

Bazowanie na danych przeanalizowanych wcześniej przez specjalistów, gdzie każdy przypadek został ręcznie obejrzany i oznaczony. Przykładowo można byłoby skorzystać z architektury *U-Net*.

Zalety

+ wykorzystanie rzeczywistej wiedzy eksperckiej

Podejście nadzorowane

Opis

Bazowanie na danych przeanalizowanych wcześniej przez specjalistów, gdzie każdy przypadek został ręcznie obejrzany i oznaczony. Przykładowo można byłoby skorzystać z architektury *U-Net*.

Zalety

+ wykorzystanie rzeczywistej wiedzy eksperckiej

Wady

- zbiór danych kosztowny w przygotowaniu i dalszym rozwoju
- ograniczenie do pojedynczego obszaru ciała

Podejście wykorzystane w pracy

Obserwacja

Występujące zmiany nowotworowe są ogólnie rzadkie oraz są pewnym odstępstwem od normy. Można potraktować to jako problem wykrywania obserwacji odstających (ang. outlier).

Podejście wykorzystane w pracy

Obserwacja

Występujące zmiany nowotworowe są ogólnie rzadkie oraz są pewnym odstępstwem od normy. Można potraktować to jako problem wykrywania obserwacji odstających (ang. outlier).

Pomysł

Wykorzystanie autoenkodera wariacyjnego, który uczy się modelować rozkład prawdopodobieństwa danych treningowych. Próbki mało prawdopodobne będą oznaczane jako patologiczne.

Autoenkoder wariacyjny

Funkcja kosztu

Dolne ograniczenie prawdopodobieństwa

$$\log p(x) \ge -l_i(\theta, \phi) = ELBO_i(\theta, \phi) =$$

$$\mathbb{E}q_{\theta}(z|x_i) \left[\log p_{\phi}(x_i|z)\right] - \mathbb{KL}\left(q_{\theta}(z|x_i)||p(z)\right)$$
(1)

Interpretacja:

- ▶ $\mathbb{E}q_{\theta}(z|x_i)$ [log $p_{\phi}(x_i|z)$] można utożsamiać z błędem rekonstrukcji, gdyż odpowiada temu składnik log p(x|z). Dodatkowo jest to potęgowane przez q(z|x), czyli pewność co do reprezentacji ukrytej.
- ▶ $\mathbb{KL}(q_{\theta}(z|x_i)||p(z))$ można interpretować jako ilość przesyłanych informacji, ponieważ jeżeli model będzie chciał odejść od rozkładu a priori p(z) to zapłaci za to karę, ale będzie w stanie przekazać wiadomość.

Rysunek: Rozkład konkretnych próbek w przestrzeni ukrytej z zaznaczonym odchyleniem standardowym

Eksperyment na danych syntetycznych (MNIST)

Plan eksperymentu

Skład zestawu uczącego:

- **Let be a cyfry 4, 7** \sim 99%
- lacktriangle cyfra 5 $\sim 1\%$ (próbka odstająca)

Skład zestawu **testowego**:

- **•** cyfry **4**, **7** \sim 50%
- ightharpoonup cyfra ${f 5}\sim 50\%$ (próbka odstająca)

Badałem skuteczność separacji danych na podstawie oszacowania przez model dolnego prawdopodobieństwa *ELBO* (suma kosztu rekonstrukcji i KLD)

Rysunek: Rozkład próbek wraz z przykładami ze względu na poszczególne składniki funkcji straty

Rysunek: Krzywa ROC dla modelu wyuczonego na danych syntetycznych z zachowaniem odpowiedniej dysproporcji w danych

Eksperyment na danych medycznych

Rysunek: Przedstawienie konkretnych kanałów w próbce wraz z jego maską zmian

Rysunek: Porównanie dokładności ze względu na różne rozmiary wycinków dla modeli uczonych metodą nadzorowaną

Wyniki eksperymentu

Model	Epoka					
	1	2	3	20	60	80
VAE 20-d	0.494	0.693	0.655	0.612	0.597	0.590
VAE 50-d	0.552	0.686	0.697	0.616	0.606	0.592
VAE 100-d	0.580	0.685	0.701	0.614	0.595	0.594
VAE 200-d	0.661	0.675	0.668	0.620	0.608	0.597
VAE 300-d	0.704	0.671	0.657	0.620	0.600	0.593

Tablica: AUC ze względu an rozmiar reprezentacji ukrytej i w różnych stadiach nauki

Rysunek: Poszczególne składniki kosztu dla modelu z najlepszą separowalnością

Rysunek: Rozkład sum pikseli dla obrazków ze zbioru testowego

Rysunek: Zaznaczenie obrazków o konkretnych sumach pikseli

Wnioski

Usprawnienia

- zastosowanie normalizacji w postaci wyrównywania histogramu (ang. histogram equalization), co pozwoliłoby złagodzić jasność
- usunięcie zbędnych danych z obrazu w postaci czaszki i oczu, które mogą przeszkadzać w modelowaniu
- rozszerzyć kontekst próbki, np. poprzez dodanie dodatkowych informacji o sąsiedztwie do dekodera

Dziękuję za uwagę