PhD Studies

Abraham Rojas Vega

 $\mathrm{June}\ 21,\ 2024$

Contents

Ι	Topics of Algebraic Topology	5						
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
	1.1 (Abstract) simplical complexes							
	1.2 Simplical sets							
	1.3 CW-complexes	10						
2	Homotopy theory	13						
II	I K-theory	15						
3	K-theory constructions	17						
	3.1 Volodin's K-theory	17						
	3.2 Milnor's K-theory	18						
	3.3 Whitehead's K-theory							
	3.4 Quillen's K-theory							
4	Homological stability	19						
	4.1 Motivation	19						

4 CONTENTS

Part I Topics of Algebraic Topology

Simplical sets and complexes

Simplicial complexes are more intuitive, and are the foundation of algebraic topology. Simplicial complexes were also called *simplicial schemes* and simplicial sets, *semi-simplicial* complexes.

1.1 (Abstract) simplical complexes

A set (of **vertices**) together with a family of finite subsets (**simplexes**) such that every subset of every simplex is a simplex and every subset consisting of a single vertex is a simplex.

- **Example 1.** 1. The standard n-simplex Δ^n is the set of all (n+1)-tuples (t_0, \ldots, t_n) of non-negative real numbers such that $t_0 + \cdots + t_n = 1$. The standard 0-simplex is a point, the standard 1-simplex is a line segment, the standard 2-simplex is a triangle, and so on.
 - 2. The **boundary** of the standard n-simplex Δ^n is the set of all (n+1)-tuples (t_0,\ldots,t_n) of non-negative real numbers such that $t_0+\cdots+t_n=1$ and at least one of the t_i is zero. The boundary of the standard 0-simplex is empty, the boundary of the standard 1-simplex is the set of its two endpoints, the boundary of the standard 2-simplex is the set of its three edges, and so on.
 - 3. (Concrete simplicial complexes) It is subset of \mathbb{R}^n that is a union of standard simplices, that satisfies the previous conditions.
 - 4. If Y is a subset of the vertex set of a simplicial scheme S, then we can introduce on it the induced simplicial scheme structure $Y \cap S$, by defining the simplexes as the subsets of Y that are simplexes of S.
 - 5. Let X be a set and let $\{p(y) : y \in Y\}$ be a covering of X. Then we can consider two simplicial complexes.

- (a) The nerve Nerv(p) of the covering is the simplicial scheme with the vertex set Y, and a subset Z of Y is counted as a simplex if the intersection $\bigcap p(y)$ is non-empty.
- (b) The simplicial complex V(p) is the simplicial scheme with the vertex set X, and a subset Z of X is counted as a simplex if Z is contained in some p(y).

Geometric realization

The construction goes as follows. First, define |K| as a subset of $[0,1]^S$ consisting of functions $t: S \to [0,1]$ satisfying the two conditions: \square

$$\{s \in S : t_s > 0\} \in K$$
$$\sum_{s \in S} t_s = 1$$

Now think of the set of elements of $[0,1]^S$ with finite support as the direct limit of $[0,1]^A$ where A ranges over finite subsets of S, and give that direct limit the induced topology. Now give |K| the subspace topology. It is always Hausdorff. We will identify an abstract simplicial complex with its geometric realization.

1.2 Simplical sets

Let Δ be the category of finite ordinal numbers, with order-preserving maps between them. More precisely, the objects for Δ consist of elements $\mathbf{n}, n \geq 0$, where \mathbf{n} is a string of relations

$$0 \to 1 \to 2 \to \cdots \to n$$

(in other words \mathbf{n} is a totally ordered set with n+1 elements). A morphism $\theta : \mathbf{m} \to \mathbf{n}$ is an order-preserving set function, or alternatively a functor. We usually commit the abuse of saying that Δ is the ordinal number category.

A simplicial set is a contravariant functor $X:\Delta^{op}\to\operatorname{Sets}$, where Sets is the category of sets.

Remark 1. The standard covariant functor: $\mathbf{n} \mapsto |\Delta^n|$ from Δ to **Top**. The singular set S(T) is the simplicial set given by

$$\mathbf{n} \mapsto \text{hom}(|\Delta^n|, T)$$
.

This is the object that gives the singular homology of the space T.

The standard n-simplex, simplicial Δ^n in the simplicial set category S is defined by

$$\Delta^n = \hom_{\Delta}(\mathbf{n}).$$

In other words, Δ^n is the contravariant functor on Δ which is represented by n.

A map $f: X \to Y$ of simplicial sets (or, more simply, a simplicial map) is a natural transformation of contravariant set-valued functors defined on Δ . We shall use **S** to denote the resulting category of simplicial sets and simplicial maps.

From a simplicial set Y, one may construct a simplicial abelian group $\mathbb{Z}Y$ (ie. a contravariant functor $\mathbf{\Delta}^{op} \to \mathbf{Ab}$), with $\mathbb{Z}Y_n$ set equal to the free abelian group on Y_n . The simplicial abelian group $\mathbb{Z}Y$ has associated to it a chain complex, called its Moore complex and also written $\mathbb{Z}Y$, with

$$\mathbb{Z}Y_0 \stackrel{\partial}{\leftarrow} \mathbb{Z}Y_1 \stackrel{\partial}{\leftarrow} \mathbb{Z}Y_2 \leftarrow \dots$$
 and
$$\partial = \sum_{i=0}^n (-1)^i d_i$$

in degree n. Recall that the integral singular homology groups $H_*(X;\mathbb{Z})$ of the space X are defined to be the homology groups of the chain complex $\mathbb{Z}SX$. The homology groups $H_n(Y,A)$ of a simplicial set Y with coefficients in an abelian group A are defined to be the homology groups $H_n(\mathbb{Z}Y\otimes A)$ of the chain complex $\mathbb{Z}Y\otimes A$.

Classifying space

Suppose that C is a (small) category. The classifying space (or nerve) BC of C is the simplicial set with

$$BC_n = \text{hom}_{\text{cat}} (\mathbf{n}, C),$$

n-simplex is a string

$$a_0 \xrightarrow{\alpha_1} a_1 \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_n} a_n$$

of composeable arrows of length n in C.

If G is a group, then G can be identified with a category (or groupoid) with one object * and one morphism $g:*\to *$ for each element g of G, and so the classifying space BG of G is defined. Moreover |BG| is an Eilenberg-Mac Lane space of the form K(G,1), as the notation suggests; this is now the standard construction.

Geometric realization

The simplex category: $\Delta \downarrow X$ of a simplicial set X. The objects of $\Delta \downarrow X$ are the maps $\sigma : \Delta^n \to X$, or simplices of X. An arrow of $\Delta \downarrow X$ is a commutative diagram of simplicial maps

Observe that θ is induced by a unique ordinal number map $\theta: \mathbf{m} \to \mathbf{n}$.

Lemma 1. There is an isomorphism

$$X \cong \lim_{\substack{\longrightarrow \\ \Delta^n \longrightarrow X}} \Delta^n.$$

$$in \ \Delta \downarrow X$$

The realization |X| of a simplicial set X is defined by the colimit

$$|X| = \xrightarrow{\lim} |\Delta^n| \,.$$
$$\Delta^n \to X$$
$$\text{in } \Delta \downarrow X$$

in the category of topological spaces. The construction $X \mapsto |X|$ is seen to be functorial in simplicial sets X, by using the fact that any simplicial map $f: X \to Y$ induces a functor $f_*: \Delta \downarrow X \to \Delta \downarrow Y$ by composition with f.

Proposition 1. The realization functor is left adjoint to the singular functor in the sense that there is an isomorphism

$$hom_{Top}(|X|, Y) \cong hom_{\mathbf{S}}(X, SY)$$

which is natural in simplicial sets X and topological spaces Y. In particular, since \mathbf{S} has all colimits and the realization functor, || preserves them.

Proposition 2. |X| is a CW-complex for each simplicial set X. In particular it is a compactly generated Hausdorff space.

1.3 CW-complexes

They can be defined in an inductive way:

- 1. Start with a discrete set X^0 , whose points are regarded as 0 -cells.
- 2. Inductively, form the n-skeleton X^n from X^{n-1} by attaching n-cells e^n_α via maps $\varphi_\alpha: S^{n-1} \to X^{n-1}$. This means that X^n is the quotient space of the disjoint union $X^{n-1} \coprod_\alpha D^n_\alpha$ of X^{n-1} with a collection of n-disks D^n_α under the identifications $x \sim \varphi_\alpha(x)$ for $x \in \partial D^n_\alpha$. Thus as a set, $X^n = X^{n-1} \coprod_\alpha e^n_\alpha$ where each e^n_α is an open n-disk.
- 3. One can either stop this inductive process at a finite stage, setting $X = X^n$ for some $n < \infty$, or one can continue indefinitely, setting $X = \cup_n X^n$. In the latter case X is given the weak topology: A set $A \subset X$ is open (or closed) iff $A \cap X^n$ is open (or closed) in X^n for each n.
- **Example 2.** 1. A 1-dimensional cell complex $X = X^1$ is what is called a graph in algebraic topology. It consists of vertices (the 0 -cells) to which edges (the 1-cells) are attached. The two ends of an edge can be attached to the same vertex.

- 2. The sphere S^n has the structure of a cell complex with just two cells, e^0 and e^n , the n-cell being attached by the constant map $S^{n-1} \to e^0$. This is equivalent to regarding S^n as the quotient space $D^n/\partial D^n$.
- 3. Real projective n-space $\mathbb{R}P^n$. It is equivalent to the quotient space of a hemisphere D^n with antipodal points of ∂D^n identified. Since ∂D^n with antipodal points identified is just $\mathbb{R}PP^{n-1}$, we see that $\mathbb{R}P^n$ is obtained from $\mathbb{R}P^{n-1}$ by attaching an n-cell, with the quotient projection $S^{n-1} \to \mathbb{R}P^{n-1}$ as the attaching map. It follows by induction on n that $\mathbb{R}P^n$ has a cell complex structure $e^0 \cup e^1 \cup \cdots \cup e^n$ with one cell e^i in each dimension i < n.

The infinite union $\mathbb{R}P^{\infty} = U_n \mathbb{R}P^n$ becomes a cell complex with one cell in each dimension. We can view $\mathbb{R}P^{\infty}$ as the space of lines through the origin in $\mathbb{R}^{\infty} = \bigcup_n \mathbb{R}^n$.

4. Complex projective space $\mathbb{C}P^n$. It is equivalent to the quotient of the unit sphere $S^{2n+1} \subset \mathbb{C}^{n+1}$ with $v \sim \lambda v$ for $|\lambda| = 1$. It is also possible to obtain $\mathbb{C}\mathbb{P}^n$ as a quotient space of the disk D^{2n} under the identifications $v \sim \lambda v$ for $v \in \partial D^{2n}$, in the following way. The vectors in $S^{2n+1} \subset \mathbb{C}^{n+1}$ with last coordinate real and nonnegative are precisely the vectors of the form $\left(w, \sqrt{1-|w|^2}\right) \in \mathbb{C}^n \times \mathbb{C}$ with $|w| \leq 1$. Such vectors form the graph of the function $w \mapsto \sqrt{1-|w|^2}$. This is a disk D^{2n}_+ bounded by the sphere $S^{2n-1} \subset S^{2n+1}$ consisting of vectors $(w,0) \in \mathbb{C}^n \times \mathbb{C}$ with |w| = 1. Each vector in S^{2n+1} is equivalent under the identifications $v \sim \lambda v$ to a vector in D^{2n}_+ , and the latter vector is unique if its last coordinate is nonzero. If the last coordinate is zero, we have just the identifications $v \sim \lambda v$ for $v \in S^{2n-1}$. It follows that \mathbb{P}^n is obtained from $\mathbb{C}P^{n-1}$ by attaching a cell e^{2n} via the quotient map $S^{2n-1} \to \mathbb{C}P^{n-1}$. So by induction on n we obtain a cell structure $\mathbb{C}P^n = e^0 \cup e^2 \cup \cdots \cup e^{2n}$ with cells only in even dimensions.

Each cell e_{α}^{n} in a cell complex X has a **characteristic map** $\Phi_{\alpha}: D_{\alpha}^{n} \to X$ which extends the attaching map φ_{α} and is a homeomorphism from the interior of D_{α}^{n} onto e_{α}^{n} . Namely, we can take Φ_{α} to be the composition $D_{\alpha}^{n} \hookrightarrow X^{n-1} \coprod_{\alpha} D_{\alpha}^{n} \to X^{n} \hookrightarrow X$ where the middle map is the quotient map defining X^{n}

Similarly, \mathbb{CP}^{∞} has a cell structure with one cell in each even dimension.

Homotopy theory

Let I^n be the n-dimensional unit cube, the product of n copies of the interval [0,1]. The boundary ∂I^n of I^n is the subspace consisting of points with at least one coordinate equal to 0 or 1 . For a space X with basepoint $x_0 \in X$, define $\pi_n(X,x_0)$ to be the set of homotopy classes of maps $f:(I^n,\partial I^n)\to (X,x_0)$, where homotopies f_t are required to satisfy $f_t(\partial I^n)=x_0$ for all t. The definition extends to the case n=0 by taking I^0 to be a point and ∂I^0 to be empty, so $\pi_0(X,x_0)$ is just the set of path-components of X.

When $n \geq 2$, a sum operation in $\pi_n(X, x_0)$, generalizing the composition operation in π_1 , is defined by

$$(f+g)(s_1, s_2, \cdots, s_n) = \begin{cases} f(2s_1, s_2, \cdots, s_n), & s_1 \in [0, 1/2] \\ g(2s_1 - 1, s_2, \cdots, s_n), & s_1 \in [1/2, 1] \end{cases}$$

It is evident that this sum is well-defined on homotopy classes. Since only the first coordinate is involved in the sum operation, the same arguments as for π_1 show that $\pi_n(X, x_0)$ is a group, with identity element the constant map sending I^n to x_0 and with inverses given by $-f(s_1, s_2, \dots, s_n) = f(1 - s_1, s_2, \dots, s_n)$.

Proposition 3. If $n \geq 2$, then $\pi_n(X, x_0)$ is abelian.

Part II K-theory

K-theory constructions

3.1 Volodin's K-theory

Let G be a group and $\{G_i\}_{i\in I}$ a family of subgroups. Define $V(G,\{G_i\})$, or just V(G) to be the simplicial complex, whose vertices are the elements of G, where g_0,\ldots,g_p $(g_i\neq g_j)$ form a p-simplex if for some G_i all the elements $g_jg_k^{-1}$ lie in G_i . If H is another group with a family of subgroups $\{H_j\}$ and $\phi:G\to H$ is a homomorphism sending each G_i into some H_j , then ϕ induces a simplicial map $V(\phi):V(G)\to V(H)$.

In many situations it is more convenient to use simplicial sets instead of simplicial complexes: Denote by $W(G,\{G_i\})$ the geometric realization of the simplicial set whose p-simplices are the sequences (g_0,\ldots,g_p) of elements of G (not necessarily distinct) such that for some G_i all $g_jg_k^{-1}$ lie in G_i , the r-th face (resp. degeneracy) of this simplex being obtained by omitting g_r (resp., repeating g_r). Associating with any p-simplex (g_0,\ldots,g_p) the linear singular simplex of the space V(G) which sends the i-th vertex of the standard simplex to g_j , we obtain a map of simplicial sets from W(G) to the simplicial set of singular simplices of V(G) and hence a cellular map (linear on any simplex) from W(G) to V(G). This map is a homotopy equivalence

Suppose that R is a ring, n a natural number and σ a partial ordering of $\{1,\ldots,n\}$. Define $T_n^{\sigma}(R)$ to be the subgroup of $GL_n(R)$ consisting of the α with $\alpha_{ij}=1$ and $\alpha_{ij}=0$ if i& j. Subgroups of this form will be called triangular subgroups of $GL_n(R)$. The space $V\left(GL_n(R), \{T_n^{\sigma}(R)\}\right)$ will be denoted by $V_n(R)$. Since any partial ordering may be extended to a linear ordering, it suffices to consider linear orderings when defining $V_n(R)$. The natural embedding $GL_n \hookrightarrow GL_{n+1}(R)$ defines an embedding $V_n(R) \longleftrightarrow V_{n+1}(R)$ and we'll define $V_{\infty}(R)$ as $\lim_n V_n(R)$.

Finally for $\overrightarrow{i} \geq 1$, put

$$k_{i,n}(R) = \pi_{i-1}\left(V_n(R)\right)$$

and $k_i(R) = k_{i,\infty}(R) = \lim_{\to} k_{i,n}(R)$ (compare [26], [27]). Evidently $K_{1,n}(R) = GL_n(R)/E_n(R)$ and $K_{i,n}(R)$ is a group if $i \geq 2$, and this group is abelian if

 $i \geq 3$. Moreover the $K_i(R)$ are abelian groups for all $i \geq 1$ (see [26], [27]). The connected component of $V_n(R)$ passing through T_n equals $V(E_n(R), \{T_n^{\sigma}(R)\})$. It is easy to show that the universal covering space of $V_n(E_n(R), \{T_n^{\sigma}(R)\})$ equals $V(St(R), \{T_n^{\sigma}(R)\})$, where T_n^{σ} is identified with the subgroup of $St_n(R)$ generated by the $x_{ij}(a)$ with a $\varepsilon R, i \leq j (n \geq 3)$. Hence LEMMA 1.3.

Lemma 2.
$$K_{2,n}(R) = \ker (St_n(R) + E_n(R)), \ and \ K_{i,n}(R) = \pi_{i-1} (V(St_n(R))) = \pi_{i-1} (W(St_n(R))) \ if \ i \geq 3 \ (n \geq 3).$$

Let's define $\overline{St}_n(R)$ to be the inverse image of $GL_n(R)$ under the projection $St(R) \to E(R)$. There is a canonical homomorphism $St_n(R) \to \overline{st}_n(R)$ and stability for K_1, k_2 ([10], [20], [22]) shows that this homomorphism is surjective if $n \geq s.r.R + 1$ and bijective if $n \geq s.r.R + 2$. The spaces $W(St_n(R))$ and $W(\overline{St}_n(R))$ will play an essential role in the sequel. We'll denote them by $W_n(R), \overline{W}_n(R)$, resp. (So $W_n(R) = \overline{W}_n(R)$ if $n \geq s.r.R + 2$.)

- 3.2 Milnor's K-theory
- 3.3 Whitehead's K-theory
- 3.4 Quillen's K-theory

Homological stability

4.1 Motivation

The symmetric group Σ_n is the group of bijections of the finite set $\underline{n} = \{1, \ldots, n\}$, under composition. The classifying space BG of a discrete group G, such as Σ_n , is the connected space determined uniquely up to weak homotopy equivalence by the property

$$\pi_*(BG) = \begin{cases} G & \text{if } *=1, \\ 0 & \text{otherwise} \end{cases}$$

It can be constructed by extracting from G the groupoid *//G given by: - a single object *, - morphisms given by $*\xrightarrow{g} *$ for $g \in G$, and - composition given by multiplication.

We then take its nerve to obtain a simplicial set, and take the geometric realisation to get a topological space |N(*//G)|; this is a model for BG. Exercise 1.3.1 proves it indeed has the desired property.

Proposition 4. $H_*(B\Sigma_n; \mathbb{Z})$ is the same as computing the group homology of Σ_n with coefficients in \mathbb{Z} .

Let us compute these groups and the homology of their classifying spaces for the first few values of n.

Example 3. 1. For n = 0, 1, the group Σ_n is trivial so its classifying space is weakly contractible and hence has trivial homology.

2. Example 1.1.4. For $n=2, \Sigma_2$ is isomorphic to the cyclic abelian group $\mathbb{Z}/2$. Then $B\mathbb{Z}/2$, as constructed above, is homotopy equivalent to $\mathbb{R}P^{\infty}$. We conclude that

$$H_*(B\mathbb{Z}/2;\mathbb{Z}) = H_*\left(\mathbb{R}P^{\infty};\mathbb{Z}\right) = \begin{cases} \mathbb{Z} & \text{if } * = 0\\ \mathbb{Z}/2 & \text{if } * > 0 \text{ is odd,} \\ 0 & \text{if } * > 0 \text{ is even.} \end{cases}$$