FAST School of Computing

Fall 2019

Islamabad Campus

Signature

Serial No:

EE-227: Digital Logic & Design	Serial No: Final Exam Total Time: 3 Hours Total Marks: 100
Tuesday,24 th December, 2019	
Course Instructors	Signature of Invigilator
SHAMS FAROOQ	

DO NOT OPEN THE QUESTION BOOK OR START UNTIL INSTRUCTED.

Section

Roll No

Instructions:

Student Name

- 1. Attempt on question paper. Attempt all of them. Read the question carefully, understand the question, and then attempt it.
- 2. No additional sheet will be provided for rough work. Use the back of the last page for rough work.
- 3. If you need more space write on the back side of the paper and clearly mark question and part number etc.
- 4. After asked to commence the exam, please verify that you have twenty (20) different printed pages including this title page. There are a total of 8 questions.
- 5. Calculator sharing is strictly prohibited.
- 6. Use permanent ink pens only. Any part done using soft pencil will not be marked and cannot be claimed for rechecking.

	Q-1	Q-2	Q-3	Q-4	Q-5	Q-6	Q-7	Q-8	Total
Marks Obtained									
Total Marks	10	10	10	15	15	15	10	15	100

FAST School of Computing

Fall 2019

Islamabad Campus

Question 1 [5+5 Marks]

a. Design **2x4 Decoder** using following block diagram?

TRUTH TABLE

EXPRESSIONS

FAST School of Computing

Fall 2019

Islamabad Campus

b. Design **2x4 High Priority Encoder?** Where Y3 has more priority over Y2

TRUTH TABLE

EXPRESSIONS

FAST School of Computing

Fall 2019

Islamabad Campus

Question 2 [5+3+2 Marks]

a. Design 4x1 Multiplexer?

TRUTH TABLE

EXPRESSIONS

FAST School of Computing

Fall 2019

Islamabad Campus

b. Use block diagram given above to create **8x1 Multiplexer?**

c. For the multiplexer given below, determine output Y (Timing Diagram) with **data select** inputs S_0 and S_1 to the multiplexer are sequenced as shown in waveform given below, where $D_0 = 0$, $D_1 = 1$, $D_2 = 1$, $D_3 = 0$.

Y

FAST School of Computing

Fall 2019

Islamabad Campus

Question 3 [5+5 Marks]

a. Design Invalid BCD Detector circuit? TRUTH TABLE

SIMPLIFICATION

EXPRESSION

FAST School of Computing

Fall 2019

Islamabad Campus

b. Modify Circuit given below by adding INVALID DECTECTOR Circuit designed above so circuit is able to add BCD number $(96)_{bcd}+(85)_{BCD}$

FAST School of Computing

Fall 2019

Islamabad Campus

Question 4 [6 +6+ 3 Marks]

a. Process each state given below to find values of Q_{t+1} and \overline{Q}_{t+1} ? Fill the results in a table?

FAST School of Computing

Fall 2019

Islamabad Campus

b. Process the following circuit and produce table.

FAST School of Computing

Fall 2019

Islamabad Campus

CLK	J	К	Q_{t+1}	$\overline{Q_{t+1}}$

c. Modify given circuit to introduce Asynchronous **CLEAR** and **SET** inputs fill table

SET	CLEAR	Q_{t+1}	$\overline{m{Q}}_{t+1}$
0	0		
0	1		
1	0		
1	1		

FAST School of Computing

Fall 2019

Islamabad Campus

Question 5 [5+4+ 3+3 Marks]

a. Design **3-Bit Asynchronous Down counter** using Positive edge triggered **T flip-flop**.

b. Convert the above designed 3-bit Asynchronous Down Counter to **Mod-5 Down Counter**?

c. Draw Timing Diagram for MOD-5 DOWN COUNTER.

 Q_0

0,

 Q_2

FAST School of Computing

Fall 2019

Islamabad Campus

d. Following is a **74LS93** is a 4-bit Asynchronous Counter logic diagram? Convert it to **Decade Counter**?

NOTE: You are not supposed to use any additional gates

Question 6 [4+3+4+4= 15 Marks]

	Next	State	Out	tput
Present State	x = 0	x = 1	x = 0	x = 1
а	f	b	0	0
b	d	c	0	0
c	f	e	0	O
d	g	a	1	0
e	d	C	O	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

FAST School of Computi	ng Fall 2019	Islamabad Campus
•		0 0

a. For the Following state table. Draw the corresponding state diagram

b. Tabulate the reduce table

	FAST School of Comp	puting	Fall 2019	Isla	amabad Campus	
c. Draw the	e state diagram corre	esponding to	the reduce :	state table	2	
d. Starting f	From A and the input	sequence 01	110010011,	Determin	e output sequenc	e for actual
	state diagram					

Question 7 [5+5]

a. Name the following circuit? Complete Timing Diagram fill Q_7 .

FAST School of Computing

Fall 2019

Islamabad Campus

b. Name the following circuit? Complete Timing Diagram assume $Q_0=1$, $Q_1=1$, $Q_2=0$ and $Q_3=1$ and that **serial Data input** line is **LOW**

FAST School of Computing

Fall 2019

Islamabad Campus

Question 8 [15 Marks]

Design **UP/DOWN Counter** using **JK Flip-Flop** to produce following sequence **1,4,3,5,7,6,2...** when x=0 counter Counts and for x=1 counter count down? Draw State diagram, State Transition table, K-map, Extract expression where least significant flip-flop is named A with J_A and K_A inputs Output is Q_A

National University of Computer and Emerging Sciences			
FAST School of Computing	Fall 2019	Islamabad Campus	

FAST School of Computing

Fall 2019

Islamabad Campus

ROUGH PAGE

FAST School of Computing

Fall 2019

Islamabad Campus

ROUGH PAGE