Universidade de Évora

Departamento de Matemática

$1.^a$ FREQUÊNCIA - 21/10/2017

RESOLUÇÃO

Grupo I

1. Considere o seguinte conjunto

$$A = \left\{ x \in \mathbb{R} : x^2 - 5x + 4 \le 0 \ \land \ x^3 - 64 \ge 0 \right\} \ \cup \ [0, 1].$$

a) Como

$$x^{2} - 5x + 4 = 0 \iff x = \frac{5 \pm \sqrt{(-5)^{2} - 4 \times 1 \times 4}}{2} \Leftrightarrow x = 1 \lor x = 4$$

e $x^2 - 5x + 4$ é a equação de uma parábola, com a concavidade voltada para cima, que cruza o eixo dos xx em x=1 e x=4, então a condição $x^2 - 5x + 4 \le 0$ verifica-se se e só se $1 \le x \le 4$. Por outro lado, tem-se que

$$x^3 - 64 \ge 0 \Leftrightarrow x^3 \ge 64 \Leftrightarrow x \ge \sqrt[3]{64} = 4.$$

Portanto,

$$x^{2} - 5x + 4 \le 0 \land x^{3} - 64 \ge 0 \Leftrightarrow 1 \le x \le 4 \land x \ge 4 \Leftrightarrow x = 4$$

logo o conjunto em questão é

$$A = [0, 1] \cup \{4\}$$
.

Donde, atendendo às definições, tem-se que

$$int(A) = (0,1), \quad ext(A) =]-\infty, 0[\cup (]1, +\infty[\setminus \{4\}) \quad e \quad \overline{A} = [0,1] \cup \{4\}.$$

b) Pela alínea anterior, sabe-se que $int(A) \neq A$, então pode concluir-se que A não é um conjunto aberto. Por outro lado, como $\overline{A} \neq A$, então A também não é fechado.

c) Dado que $0,4 \in A$ e $0 \le x \le 4$, para todo o $x \in A$, então $\sup(A) = \max(A) = 4$ e $\inf(A) = \min(A) = 0$.

Grupo II

2. Considere-se a sucessão definida por recorrência

$$\begin{cases} u_1 = 0, \\ u_{n+1} = \sqrt{6 + x_n}. \end{cases}$$

a) Provemos, através do Princípio de Indução Matemática, que a sucessão $(u_n)_n$ é majorada por 3, ou seja, que

$$u_n \le 3, \ \forall n \in \mathbb{N}.$$

Seja $P(n): u_n \leq 3$.

- I) Mostremos que P(1) é verdadeira. Como $u_1=0<3$, então P(1) é verdadeira.
- II) Vejamos agora que P(n) é hereditária, ou seja, que $u_n \leq 3 \Rightarrow u_{n+1} \leq 3$. Dado que, por hipótese de indução,

$$u_n \le 3 \Leftrightarrow 6 + u_n \le 9$$
,

então, uma vez que a função $f(x) = \sqrt{x}$ é monótona crescente, tem-se

$$u_{n+1} = \sqrt{6 + u_n} \le \sqrt{9} = 3,$$

pelo que P(n) é hereditária. Logo, aplicando-se o Princípio de Indução Matemática, por I) e II) conclui-se que P(n) é universal, ou seja, a sucessão $(u_n)_n$ é majorada por 3.

b) Provemos agora que a sucessão $(u_n)_n$ é crescente, ou seja, que $u_{n+1} - u_n \ge 0$, para todo o $n \in \mathbb{N}$.

Como

$$u_{n+1} - u_n = \sqrt{6 + u_n} - u_n \ge 0 \Leftrightarrow \sqrt{6 + u_n} \ge u_n \Leftrightarrow 6 + u_n \ge u_n^2 \Leftrightarrow u_n^2 - u_n - 6 \le 0,$$

e, uma vez que x=-2 e x=3 são raízes do polinómio x^2-x-6 , então tem-se

$$u_n^2 - u_n - 6 = (u_n - 3)(u_n + 2) \le 0.$$

Dado que todos os termos desta sucessão são não negativos, então vem

$$u_n + 2 > 0$$
,

portanto,

$$(u_n-3)(u_n+2) \le 0 \Leftrightarrow u_n-3 \le 0 \Leftrightarrow u_n \le 3$$

o que, pela alínea anterior, sabemos ser verdadeiro. Logo, podemos afirmar que

$$u_{n+1} - u_n \ge 0, \quad \forall n \in \mathbb{N}.$$

c) Pela alínea anterior, sabemos que a sucessão $(u_n)_n$ é crescente, isto é,

$$0 = u_1 < u_2 < u_3 < \cdots$$

pelo que a sucessão $(u_n)_n$ é minorada. Por outro lado, na alínea a), provamos que a sucessão $(u_n)_n$ é majorada por 3, portanto a sucessão $(u_n)_n$ é limitada. Além disso, $(u_n)_n$ é monótona, porque é crescente. Como toda a sucessão monótona e limitada é convergente, vem que a sucessão $(u_n)_n$ é convergente.

Seja
$$L = \lim_{n \to \infty} u_n$$
.

Dado que $u_{n+1} = \sqrt{6 + u_n}$, pelas propriedades dos limites e pela continuidade da função \sqrt{x} , tem-se

$$\lim_{n} u_{n+1} = \lim_{n} \sqrt{6 + u_n} = \sqrt{6 + \lim_{n} u_n} \Leftrightarrow$$

$$L = \sqrt{6 + L} \Leftrightarrow L^2 = 6 + L \Leftrightarrow L^2 - L - 6 = 0 \Leftrightarrow L = -2 \lor L = 3.$$

Como $(u_n)_n$ é uma sucessão de termos não negativos, então $\lim_n u_n \ge 0$, portanto, tem-se L=3.

Grupo III

3. a)
$$\lim_{n} \left(n - \sqrt{n^2 + \cos^2 n} \right) = \lim_{n} \frac{\left(n - \sqrt{n^2 + \cos^2 n} \right) \left(n + \sqrt{n^2 + \cos^2 n} \right)}{\left(n + \sqrt{n^2 + \cos^2 n} \right)} =$$

$$= \lim_{n} \frac{n^2 - (n^2 + \cos^2 n)}{n + \sqrt{n^2 + \cos^2 n}} = \lim_{n} \frac{-\cos^2 n}{n + \sqrt{n^2 + \cos^2 n}}.$$

Como a sucessão de termo geral $x_n = \cos^2 n$ é uma sucessão limitada, pois

$$0 \le \cos^2 n \le 1, \quad \forall n \in \mathbb{N},$$

 \mathbf{e}

$$\lim_{n} \frac{1}{n + \sqrt{n^2 + \cos^2 n}} = \frac{1}{\lim_{n} \left(n + \sqrt{n^2 + \cos^2 n} \right)} = \frac{1}{+\infty} = 0,$$

soma de uma sucessão limitada por um infinita/ grande +

então tem-se

$$\lim_{n} \frac{-\cos^2 n}{n + \sqrt{n^2 + \cos^2 n}} = 0;$$

b)
$$\lim_{n} \left[\left(\frac{n+1}{n-1} \right)^{2n} + \left(\frac{7}{4} \right)^{n} \right] = \lim_{n} \left(\frac{1+1/n}{1-1/n} \right)^{2n} + \lim_{n} \left(\frac{7}{4} \right)^{n} = \left[\frac{\lim_{n} (1+1/n)^{n}}{\lim_{n} (1-1/n)^{n}} \right]^{2} + (+\infty) =$$

$$= e^{4} + (+\infty) = +\infty;$$

c)
$$\lim_{n} \left(\frac{3}{\sqrt{n^2 + 2}} + \frac{3}{\sqrt{n^2 + 3}} + \dots + \frac{3}{\sqrt{n^2 + n + 1}} \right) = ?$$

Seja $x_n = \frac{3}{\sqrt{n^2 + 2}} + \frac{3}{\sqrt{n^2 + 3}} + \dots + \frac{3}{\sqrt{n^2 + n + 1}}.$

Dado que o número de parcelas da sucessão $(x_n)_n$ varia quando n varia, então é necessário aplicar o teorema das sucessões enquadradas para calcular o limite.

Assim, como

$$\frac{3}{\sqrt{n^2+n+1}} + \frac{3}{\sqrt{n^2+n+1}} + \dots + \frac{3}{\sqrt{n^2+n+1}} \le x_n \le \frac{3}{\sqrt{n^2+2}} + \frac{3}{\sqrt{n^2+2}} + \dots + \frac{3}{\sqrt{n^2+2}} \Leftrightarrow \frac{3}{\sqrt{n^2+2}} + \dots + \frac{3}{\sqrt{n^2+$$

$$y_n = \frac{3n}{\sqrt{n^2 + n + 1}} = \frac{3}{\sqrt{n^2 + n + 1}} \times n \le x_n \le \frac{3}{\sqrt{n^2 + 2}} \times n = \frac{3n}{\sqrt{n^2 + 2}} = z_n$$

е

$$\lim_{n} y_{n} = \lim_{n} \frac{3n}{\sqrt{n^{2} + n + 1}} = \lim_{n} \frac{3}{\sqrt{1 + 1/n + 1/n^{2}}} = 3,$$

$$\lim_{n} z_{n} = \lim_{n} \frac{3n}{\sqrt{n^{2} + 2}} = \lim_{n} \frac{3}{\sqrt{1 + 2/n^{2}}} = 3,$$

então, pelo teorema das sucessões enquadradas, vem que

$$\lim_{n} x_{n} = \lim_{n} \left(\frac{3}{\sqrt{n^{2} + 2}} + \frac{3}{\sqrt{n^{2} + 3}} + \dots + \frac{3}{\sqrt{n^{2} + n + 1}} \right) = 3$$

4. A afirmação: "Se $(x_n)_n$ e $(y_n)_n$ são duas sucessões tais que $x_n < y_n$, para todo o n > p, com $p \in \mathbb{N}$, $\lim_n x_n = a$ e $\lim_n y_n = b$, então a < b." é **falsa.**

Contra-exemplo: Por exemplo, se considerarmos as sucessões $x_n = \frac{1}{n^2}$ e $y_n = \frac{1}{n}$, temos que $x_n < y_n$, para todo o $n \ge 2$, e $\lim_n x_n = 0 = \lim_n y_n$, mas $0 \ne 0$.

Grupo IV

5. Pretende-se estudar a convergência da série numérica

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+3)}.$$

Como

$$\frac{1}{n\left(n+3\right)} = \frac{A}{n} - \frac{A}{n+3} = \frac{3A}{n\left(n+3\right)} \Rightarrow 1 = 3A \Leftrightarrow A = 1/3,$$

então a série pode escrever-se na forma

$$\sum_{n=1}^{+\infty} \left[\frac{1}{3n} - \frac{1}{3(n+3)} \right],$$

pelo que se tem uma série de Mengoli, com $x_n = a_n - a_{n+3}$, em que $a_n = \frac{1}{3n}$.

Dado que

$$S_n = a_1 + a_2 + a_3 - a_{n+1} - a_{n+2} - a_{n+3}$$

então

$$S = \lim_{n} S_n = \lim_{n} (a_1 + a_2 + a_3 - a_{n+1} - a_{n+2} - a_{n+3}) = a_1 + a_2 + a_3 - 3 \times \lim_{n} a_n.$$

Como

$$\lim_{n} a_n = \lim_{n} \frac{1}{3n} = 0,$$

vem que a série de Mengoli é convergente.e tem soma

$$S = \frac{1}{3} + \frac{1}{6} + \frac{1}{9} = \frac{11}{18}.$$

6. Uma vez que o percurso que a pulga percorre dando pulos ao longo da circunferência é descrito por

$$\alpha + \frac{\alpha}{2} + \frac{\alpha}{3} + \frac{\alpha}{4} + \dots + \frac{\alpha}{n} + \dots = \sum_{n=1}^{+\infty} \frac{\alpha}{n}$$
, com $\alpha > 0$ fixo.

Pelas propriedades algébricas das séries, tem-se

$$\sum_{n=1}^{+\infty} \frac{\alpha}{n} = \alpha \times \sum_{n=1}^{+\infty} \frac{1}{n}.$$

Como a série $\sum_{n=1}^{+\infty} \frac{1}{n}$ é a série harmónica, que sabemos ser divergente, portanto, com soma infinita e dado que $\alpha > 0$ é fixo, então vem que a série $\sum_{n=1}^{+\infty} \frac{\alpha}{n}$ também é divergente e tem soma infinita. Logo, conclui-se que a pulga dá infinitas voltas à circunferência.

Grupo V

7. a)
$$\sum_{n=1}^{+\infty} \frac{2^{n+1}}{e^n} = \sum_{n=1}^{+\infty} \frac{2 \times 2^n}{e^n} = 2 \times \sum_{n=1}^{+\infty} \left(\frac{2}{e}\right)^n$$

Como $\sum_{n=1}^{+\infty} \left(\frac{2}{e}\right)^n$ é uma série geométrica de razão $r=\frac{2}{e}<1$, portanto convergente.

Então, pelas propriedades algébricas das séries, pode concluir-se que a série $\sum_{n=1}^{+\infty} \frac{2^{n+1}}{e^n}$ também é convergente,

b) Estudemos a natureza da série $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{5n}+1}$, em que

$$x_n = \frac{1}{\sqrt{5n+1}} > 0, \quad \forall n \in \mathbb{N}.$$

Para tal vamos compará-la com a série de Dirichlet $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$, com $\alpha = 1/2 < 1$, que é divergente.

Como

$$L = \lim_{n} \frac{\frac{1}{\sqrt{5n} + 1}}{\frac{1}{\sqrt{n}}} = \lim_{n} \frac{\sqrt{n}}{\sqrt{5n} + 1} = \lim_{n} \frac{1}{\sqrt{5} + \frac{1}{\sqrt{n}}} = \frac{1}{\sqrt{5}}$$

é finito e diferente de zero, então, pelo Corolério do Critério Geral de Comparação, conclui-se que as séries são da mesma natureza, ou seja, a série inicial é divergente.

c) Estudemos agora a natureza da série $\sum_{n=1}^{+\infty} \left(\frac{3n+1}{n^2}\right)^n$.

Como $x_n = \left(\frac{3n+1}{n^2}\right)^n \geq 0$, para todo o $n \in \mathbb{N}$, então temos uma série de termos não negativos. Portanto, por aplicação do Critério da Raiz de Cauchy, uma vez que

$$L = \lim_{n} \sqrt[n]{x_n} = \lim_{n} \sqrt[n]{\left(\frac{3n+1}{n^2}\right)^n} = \lim_{n} \frac{3n+1}{n^2} = \lim_{n} \left(\frac{3}{n} + \frac{1}{n^2}\right) = 0 < 1,$$

conclui-se que a série é convergente.

8. A afirmação: "Se $(a_n)_n$ é uma sucessão convergente para zero, então a série $\sum_{n=1}^{+\infty} a_n$ é convergente." é falsa.

Contra-exemplo: Basta considerarmos, por exemplo, a série harmónica $\sum_{n=1}^{+\infty} \frac{1}{n}$ que sabemos ser divergente, mas em que o seu termo geral $x_n = \frac{1}{n}$ converge para zero.