Model order reduction for fatigue analysis

S. Alameddin[†], A. Fau[†],
U. Nackenhorst[†], D. Néron[‡], P. Ladevèze[‡]

† IBNM, Leibniz Universität Hannover

‡ LMT, ENS Cachan, CNRS, Université Paris Saclay
29. August 2018

■ Fluctuating loads

Fluctuating loads

Material degradation

Image by alegri / 4freephotos.com

Fluctuating loads

Material degradation

Image by alegri / 4freephotos.com

Fluctuating loads

- Virtual experiments
- Continuum damage model
- Millions of cycles
- Macro crack initiation
- Computationally expensive

- Virtual experiments
- Continuum damage model
- Millions of cycles
- Macro crack initiation
- Computationally expensive

Model order reduction (MOR) techniques

Outline

- 1 State of art
- 2 Reduced order model for cyclic loading
- 3 Numerical examples
- 4 Conclusions and future research

Outline

- 1 State of art
- 2 Reduced order model for cyclic loading
- 3 Numerical examples
- 4 Conclusions and future research

ROM for non-linear problems

- Short-term damage computations
 - Proper orthogonal decomposition (POD) [Kerfriden et al, 2011-2012, Ryckelynck, 2005-2011].
 - Proper generalised decomposition (PGD)[Bhattacharyya et al, 2017].
- Long-term fatigue computations
 - Temporal homogenisation [Fish and Yu, 2002; Devulder et al, 2010]
 - Space-time finite element method [Oden, 1969; Bhamare, 2014; Fritzen and Hassani, 2018]
 - Modified jump cycle approach [Bhattacharyya et al, 2018]

Previous works with LATIN

- An approach to include damage in a LATIN-PGD framework 3
- Modified jump cycle approach to tackle large number of cycles 3
- Limited to specific models and constant amplitude loads ③
- No two-time scale, no time savings and many modes are generated ③

- Generalised formulation for different nonlinear material models
- Efficient variable amplitude simulations

Outline

- 1 State of art
- 2 Reduced order model for cyclic loading
- 3 Numerical examples
- 4 Conclusions and future research

Mechanical problem

Admissibility equations

$$abla \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \mathbf{0} \quad \text{in } \Omega$$

$$oldsymbol{\sigma}\cdotoldsymbol{n}=ar{oldsymbol{t}}\quad ext{on }\partial\Omega_{ ext{N}}$$

■ Static admissibility
■ Kinematic admissibility

$$\varepsilon = \nabla^{\mathbf{s}} u \quad \text{in } \Omega$$

$$u=ar{u}\qquad {\sf on}\ \partial\Omega_{\rm D}$$

Nonlinear material model

State equations

$$\sigma = f(\psi, \boldsymbol{\varepsilon}^{\mathrm{e}})$$

$$\boldsymbol{\beta} = g(\psi, \boldsymbol{\alpha})$$

$$Y = q(\psi, D)$$

Evolution equations

$$\dot{\boldsymbol{\varepsilon}}^{\mathrm{p}} = \hat{f}(\phi, \sigma)$$

$$\dot{\alpha} = \hat{g}(\phi, \beta)$$

$$\dot{D} = \hat{q}(\phi, D)$$

- Many LATIN algorithms for different non-linear problems
- A combination with some modifications
 - Local stage, given initial conditions

Solve the state and evolution equations to get \hat{s}

Global stage

Solve the admissibility equations to get s_{i+1}

Data flow between these stages

$$egin{aligned} (\hat{\pmb{\sigma}} - \pmb{\sigma}_i) \ + \mathbb{H}^+ \ (\hat{\pmb{arepsilon}} - \pmb{arepsilon}_i) \ = \mathbf{0} \ (\pmb{\sigma}_{i+1} - \hat{\pmb{\sigma}}) - \mathbb{H}^- (\pmb{arepsilon}_{i+1} - \hat{\pmb{arepsilon}}) = \mathbf{0} \end{aligned}$$

Iterate until convergence with an energy error indicator

$$\xi = \frac{\|s_{i+1} - \hat{s}\|}{\frac{1}{2} \|s_{i+1} + \hat{s}\|}, \qquad \|s\|^2 = \int_{[0,T] \times \Omega} (\boldsymbol{\sigma} : \mathbb{C}^{-1} \boldsymbol{\sigma} + \boldsymbol{\varepsilon} : \mathbb{C} \boldsymbol{\varepsilon}) \, d\Omega \, dt$$

The global stage

■ Weak form at iteration i + 1

$$\int_{[0,T]\times\Omega} \boldsymbol{\sigma}_{i+1} : \boldsymbol{\varepsilon}(u^*) \, d\Omega \, dt = \int_{[0,T]\times\Omega} \boldsymbol{b} \cdot u^* \, d\Omega \, dt + \int_{[0,T]\times\partial\Omega_N} \bar{\boldsymbol{t}} \cdot u^* \, dS \, dt, \quad \forall u^* \in \mathcal{U}_0$$

 \blacksquare Correction $\Delta ullet_{i+1} = ullet_{i+1} - ullet_i$

$$\Delta \boldsymbol{\sigma}_{i+1} - \mathbb{H}^{-} \Delta \boldsymbol{\varepsilon}_{i+1} - \hat{f} = \boldsymbol{0}, \quad \hat{f} = \underbrace{(\hat{\boldsymbol{\sigma}} - \boldsymbol{\sigma}_{i}) - \mathbb{H}^{-}(\hat{\boldsymbol{\varepsilon}} - \boldsymbol{\varepsilon}_{i})}_{known}$$

$$\int_{[0,T]\times\Omega} \Delta \boldsymbol{\sigma}_{i+1} : \boldsymbol{\varepsilon}(\Delta u^*) \, d\Omega \, dt = 0$$

Proper Generalised Decomposition

Low-rank approximation of the solution

$$u(\boldsymbol{x},t) = \sum_{i=1}^{N} \lambda_i(t) \ v_i(\boldsymbol{x})$$

Enriching with one mode

$$\Delta u = \lambda(t) \ v(\mathbf{x})$$
 $\Delta u^* = \lambda^* \ v + \lambda \ v^*$

lacktriangle Updating (μ) previously generated time modes

$$\Delta u = \sum_{i=1}^{\mu} \Delta \lambda_i(t) \underbrace{v_i(\mathbf{x})}_{known}$$

Static admissibility

Static admissibility and global search direction

$$\int\limits_{[0,T]\times\Omega}\mathbb{H}^-\Delta\boldsymbol{\varepsilon}_{i+1}:\boldsymbol{\varepsilon}(\Delta\boldsymbol{u}^*)\ \mathrm{d}\Omega\,\mathrm{d}t = -\int\limits_{[0,T]\times\Omega}\hat{f}:\boldsymbol{\varepsilon}(\Delta\boldsymbol{u}^*)\ \mathrm{d}\Omega\,\mathrm{d}t$$

■ Space problem: $\langle \bullet \rangle = \int\limits_{[0,T]} \bullet \ \mathrm{d}t$, given λ_j

$$\langle \lambda_j \lambda_j \rangle \int_{\Omega} \nabla v^* : \mathbb{H}^- \nabla v_{j+1} \, d\Omega = -\langle \lambda_j \rangle \int_{\Omega} \nabla v^* : \hat{f} \, d\Omega$$

■ Time problem, given v_{j+1} :

$$\int_{\Omega} \lambda^* \left[\int_{\Omega} \nabla v_{j+1} : \mathbb{H}^- \nabla v_{j+1} d\Omega \right] \lambda_{j+1} dt = -\langle \lambda^* \rangle \int_{\Omega} \nabla v_{j+1} : \hat{f} d\Omega$$

Choosing the search directions as

$$\mathbb{H}^+ = 0, \quad \mathbb{H}^- = \alpha \, \mathbb{C} \quad \alpha \in]0, 1]$$

Enrichment

$$\gamma \underline{\underline{K}} \underline{v}_{i+1} = \underline{F} \qquad \gamma \in \mathbb{R} \qquad \underline{\underline{K}} \in \mathbb{R}^{n \times n} \qquad \underline{F} \in \mathbb{R}^n$$

$$a \underline{\lambda}_{i+1} = \underline{b} \qquad a \in \mathbb{R} \qquad b \in \mathbb{R}^{n_t}$$

Update

$$\underline{\underline{A}} \{\Delta \underline{\lambda}_i\} = \underline{\underline{b}} \qquad \underline{\underline{A}} \in \mathbb{R}^{N \times N} \qquad \underline{\underline{b}} \in \mathbb{R}^{N \times n_t}$$

Multiple cycles with variable load amplitudes

The stiffness

■ The elastic solution

An initial guess

Multiple cycles with variable load amplitudes

- The stiffness Computed only once
- The elastic solution

 Only once and parametrised over the load amplitude

An initial guess From the previous cycle

The initial guess

■ Time modes are shifted and scaled to ensure continuity

Outline

- 1 State of art
- 2 Reduced order model for cyclic loading
- 3 Numerical examples
- 4 Conclusions and future research

Numerical results

■ A plate with a central groove subjected to cyclic loading (Cr-Mo steel at 20°C and 580°C)

Quasi-brittle material model

In collaboration with Bhattacharyya and Desmorat

■ Two-scale damage model

With an adaptive jump cycle algorithm

Damage evolution

Damage evolution at the weakest Gauss point

Damage behaviour

Damage distribution at the micro-scale

Visco-plastic material model

State equations

$$\boldsymbol{\sigma} = \mathbb{C} \ \boldsymbol{\varepsilon}^{\mathrm{e}} \ (1 - D)$$
$$\boldsymbol{\beta} = C \ \boldsymbol{\alpha}$$

$$Y = \frac{1}{2}\boldsymbol{\varepsilon}^{\mathrm{e}} : \mathbb{C} \ \boldsymbol{\varepsilon}^{\mathrm{e}}$$

Evolution equations

$$\dot{\varepsilon}^{\mathrm{p}} = k \langle f^{\mathrm{p}} \rangle_{+}^{n} \left[\frac{3}{2} \frac{\tau}{J_{2}(\tau)} \right] \frac{1}{1 - D}$$

$$\dot{\alpha} = k \langle f^{\rm p} \rangle_+^n \left[\frac{3}{2} \frac{\tau}{J_2(\tau)} - \frac{a}{C} \beta \right]$$

$$\dot{D} = k_{\rm d} \langle f^{\rm d} \rangle_+^{n_{\rm d}}$$

Variable amplitude

Variable amplitude

Variable amplitude

Cyclic load with the random amplitudes

Cyclic load with the random amplitudes

Cyclic load with the random amplitudes

Cyclic load with the random amplitudes

Number of modes is less than 20

Outline

- 1 State of art
- 2 Reduced order model for cyclic loading
- 3 Numerical examples
- 4 Conclusions and future research

Conclusion and future research

- Efficient cycle by cycle simulation for damage problems.
- Works for low and high cycle fatigue.

Conclusion and future research

- Efficient cycle by cycle simulation for damage problems.
- Works for low and high cycle fatigue.

Challenges

- The computation of the local stage.
- The integration of the error indicator and the time update.

Conclusion and future research

- Efficient cycle by cycle simulation for damage problems.
- Works for low and high cycle fatigue.

Challenges

- The computation of the local stage.
- The integration of the error indicator and the time update.

Future development

- Machine learning in the local stage.
- Reduced integration scheme.

Conclusion and future research

- Efficient cycle by cycle simulation for damage problems.
- Works for low and high cycle fatigue.

Challenges

- The computation of the local stage.
- The integration of the error indicator and the time update.

Future development

- Machine learning in the local stage.
- Reduced integration scheme.

Thank you for your attention

Github repository

https://github.com/dbeurle/neon

Quasi-brittle material model

Eshelby-Kröner localisation law

$$(\varepsilon^{\mu} - \varepsilon) = \gamma (\varepsilon^{\mu,p} - \varepsilon^p),$$

where γ is the Eshelby coefficient given by

$$\gamma = \frac{2}{15} \frac{4 - 5\nu}{1 - \nu}.$$

State equations

$$\begin{split} & \tilde{oldsymbol{\sigma}}^{\mu} = \mathbf{C} oldsymbol{arepsilon}^{\mu,e} \ & Y^{\mu} = R_v rac{\left(ilde{\sigma}_{eq}^{\mu}
ight)^2}{2E} \ & oldsymbol{eta}^{\mu} = \mathbf{Q} oldsymbol{lpha}^{\mu} \end{split}$$

Evolution equations

$$\dot{\varepsilon}^{\mu,p} = \frac{3}{2} \frac{\tilde{\sigma}^{\mu} - \beta^{\mu}}{(\tilde{\sigma}^{\mu} - \beta^{\mu})_{eq}} \frac{\dot{\lambda}_{p}}{1 - D^{\mu}}$$

$$\dot{\alpha}^{\mu} = \frac{3}{2} \frac{\tilde{\sigma}^{\mu} - \beta^{\mu}}{(\tilde{\sigma}^{\mu} - \beta^{\mu})_{eq}} \dot{\lambda}_{p}$$

$$\dot{D}^{\mu} = \left(\frac{Y^{\mu}}{S} \dot{p}^{\mu}\right)^{s}$$

Crack closure effect

The effective stress

$$\tilde{\boldsymbol{\sigma}} = \frac{\boldsymbol{\sigma}_D}{1 - D} + \left[\frac{\langle \sigma_H \rangle}{1 - D} + \langle -\sigma_H \rangle \right] \mathbb{I}$$

The triaxiality function

$$R_v = \frac{2}{3} (1 + \nu) + 3 (1 - 2\nu) \left\langle \frac{\sigma_H^{\mu}}{\sigma_{eq}^{\mu}} \right\rangle^2$$

$$\sigma_{eq}^{\mu} = \sqrt{\frac{3}{2} \sigma_{D_{ij}}^{\mu} \sigma_{D_{ij}}^{\mu}} \qquad \tilde{\sigma}_{eq}^{\mu} = \sqrt{\frac{3}{2} \tilde{\sigma}_{D_{ij}}^{\mu} \tilde{\sigma}_{D_{ij}}^{\mu}}$$

The micro-scale yield function f^{μ} is given as

$$f^{\mu} = \left(\tilde{m{\sigma}}_{D}^{\mu} - m{eta}^{\mu}
ight)_{eq} - \sigma_{f}^{\infty},$$

Stress-strain response

Stress-strain diagram at certain cycles at the micro-scale

■ Free energy function

$$\psi(\boldsymbol{\varepsilon}^{\mathrm{e}}, \alpha, D) = \frac{1}{2}\boldsymbol{\varepsilon}^{\mathrm{e}} : \mathbb{C}(1 - D) \boldsymbol{\varepsilon}^{\mathrm{e}} + \frac{1}{2} C \boldsymbol{\alpha} : \boldsymbol{\alpha}$$

Dissipation potential

$$\phi = \phi^{p} + \phi^{d}$$

$$\phi^{p} = \frac{k_{p}}{n_{p} + 1} \langle f^{p} \rangle_{+}^{n_{p} + 1}, \qquad f^{p} = J_{2}(\boldsymbol{\tau}) + \frac{a}{2C} \boldsymbol{\beta} : \boldsymbol{\beta} - \sigma_{y}$$

$$\phi^{d} = \frac{k_{d}}{n_{d} + 1} \langle f^{d} \rangle_{+}^{n_{d} + 1}, \qquad f^{d} = Y - Y_{0}$$

Variable amplitude

Damage distribution

Von Mises stress distribution

Numerical results

Danisa 0010 0000 0000

Newton-Raphson

LATIN-PGD

Damage contour at the last time step

Numerical results

Newton-Raphson

LATIN-PGD

Residual stress distribution after removing the load

Differences

- State equations in the local stage
- PGD for the strain instead of the plastic one
- Cycle by cycle
- Modes rescaling

https://github.com/dbeurle/neon

école
normale
supérieure
paris—saclay

t | 2 | Leibniz
Universität
Hannover

