A Combination Approach of Pseudotime Analysis and Mathematical Modeling for Understanding Drug-Resistant Mechanisms

Roberto Pagliarini

Aim

 Elucidating the molecular mechanisms underlying the process of drug resistance acquisition

- Sequential analysis of gene expression patterns in Tamoxifen (TAM)-treated breast cancer cells
 - Bulk RNA-sequencing (RNA-seq)
 - Single-cell RNA-sequencing
 - Matemathical modeling

Aim → Main results

Sequential analysis of gene expression patterns in Tamoxifen (TAM)treated breast cancer cells

- TAM-resistant cells can be divided in two groups
 - One showing altered gene-expression related to metabolic regulation
 - One showing high expression levels of adhension-related molecules and histone-modiyfing enzimes
- Cell transition trajectory to the two resistant groups that derived from a shared pre-resistant state
- Mathematical modeling predicts that inhibition of transition to both resistant subtypes would prevent the TAM resistance

Estrogen Receptor (ER)

- 1) It is a hormone-dependent TF that plays an important role in many physiological process
- 2) ER is closely associated with breast cancer development
- 3) 75% of all breast cancer cases are ER-positive luminal subtypes and initially treated with Tamoxifen, an ER antagonist
- 4) 40% of TAM-responsive tumors progress to resistant and metastatic tumors after long-treatment

Bulk RNA-sequencing of a human ER-positive breast cancer cell line

Time-series transcriptome profiles of MCF-7 cells during continuous TAM treatment

Overview of experimental procedure

1) Human breast adenocarcinoma MCF-7 cells

2) Cultured medium supplemented with or without TAM

3) Every week, cells were detached and collected with trypsinization for the analysis

TAM treatment initially inhibited cell growth by decreasing the number of cells in S phase and increasing that in G1 phase

week

- 1) The growth of cells were completely inhibited until W5
- 2) The cell-cycle of TAM-treated cells was dysregulated until W5
- 3) This result showed the process by which the cells survive and restored their growth potential in the absence of ER signaling

Bulk RNA-seq data of TAM-treated MCF-7 cells

W8

This result indicates that DEG expression patterns became stable at the later stage

Cluster A: rapidly decreasing expression

Cluster B: initially down-regulated, and recovered at W5

Cluster C: rapidly increasing before cell growth rate recovery

Cluster D: a gradual increase in expression concomitant with growt rate recovery

Cluster E: initially up-regulated, and then down-regulated

Cluster F: gradually decreasing

Clusters Enrichment Analysis

Reactome pathways database

KEGG pathways database

h

Clusters Enrichment Analysis: main points

Reactome pathways database

Clusters Enrichment Analysis: main points

Cell-cycle regulation **DNA** replication **DNA** demage RNA metabolism **Kinesis** Beta-catenin degradation Generic TF pathways

Reactome pathways database

-Log₁₀(q-value)

Clusters Enrichment Analysis: main points

Reactome pathways database

Clusters Enrichment Analysis: main points

Reactome pathways database

-Log₁₀(q-value)

Clusters Enrichment Analysis: main points

Reactome pathways database

-Log₁₀(q-value)

Clusters Enrichment Analysis: main points

Reactome pathways database

Single-cell RNA-seq analysis of MCF7-cells under continuous TAM treatment

Overview of experimental procedure

1) Four time points:

- W0: before starting TAM treatment
- W3: beginning of cell growth inhibition period
- W6: end of cell growth inhibition period
- W9: acquisition of TAM resistance
- 2) RNA-seq analysis of 1108 single cells
- 3) 577 high-quality single-cell gene expression

Cell-to-cell diversity: uniform manifold approximation and projection (UMAP)

Cell-to-cell diversity: marker genes

Cell-to-cell diversity: marker genes

Marker Genes

1.5

1

0.5

-0.5

-1

-1.5

subgroups

- Sub 1 and 6: transcriptional activity of ER
- Expression level of markers in other subgroups does not clearly distinguish the cells into the subgroups
- All markers of sub 4 and 5 are also high expressed in sub 3
 - The pre-resistant sub 3 could mature into distinct resistant groups by rewiring the genetic network

Co-regulated gene modules and enriched functions

- TAM-resistant ER-positive breast cancer cells obtained from the same parental cell line could be divided into two types
 - 1) Sub 4: high expression level of adhesion molecules with changing epigenetic status
 - 1)Sub 5: rewiring of metabolic network

Trajectory analysis of TAM resistance

PSEUDOTIME ANALYSIS: CONFIRMING CELL TRANSITION TRAJECTORY INTO TWO DIFFERENT TYPE OF RESISTANT SUBGROUPS

Identifying important players in the emergence of subgroups 4 and

-17.3

T-47D

3.9

BRD4

SRX1131571

ERG

MCF-7

-21.7

1.6

SRX063918

Identifying important players in the emergence of subgroups 4 and 5

- Tfs BRD4 and BRD2 control the up-regulated genes in subgroup 4
 - These recognize acetylated histones and act as super enanchers
- Oncogenic Tfs SMAD3 and ERG
- Cells in subgroups 4 have different status due to
- epigentic alterations
- Tfs MYC, TAF1, PML, and BRD4 control the
- up-regulated genes in subgroup 5

Identifying important players in the emergence of subgroup 5

- Tfs WDR5 might regulate genes in subgroup 5
- Oncogenic Tfs SMAD3 and ERG
- Cells in subgroups 4 have different status due to
- epigentic alterations

Mathematical modeling of TAM resistance acquisition process

ODE model of TAM resistance acquisition process

ODE model of TAM resistance acquisition process

ODE model of TAM resistance acquisition process

- 1.1

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

mean growth rate of TAM-treated cells (W3~W10)

Inhibition of molecules mediating the generation of two resistant subpopulations induces regression in the preresistant stage

Regression before complete acquisition of TAM resistance

KDM5B

Regression before complete acquisition of TAM resistance: valiation

