

Juhusliku suuruse jaotusfunktsioon

Juhusliku suuruse **jaotusfunktsioon** F(x) määrab tõenäosuse selleks, et juhuslik suurus on väiksem tõkkest x, s. t.

$$F(x) = P(X < x), \quad kus \ x \in (-\infty, \infty)$$

Jaotusfunktsioon on juhusliku suuruse universaalne iseloomustaja, mis kirjeldab võimalike väärtuste tõenäosuste jaotust.

Jaotusfunktsioon on olemas nii pidevatel kui ka diskreetsetel juhuslikel suurustel. Sagedamini kasutatakse seda pideva juhusliku suuruse korral.

Jaotusfunktsiooni omadusi

- 1. $\lim_{x \to -\infty} F(x) = 0 \quad ehk \quad F(-\infty) = 0$
- 2. $\lim_{x \to +\infty} F(x) = 1$ ehk $F(+\infty) = 1$
- 3. Jaotusfunktsioon on mittekahanev (monotoonselt kasvav), s.t. kui $x_2 \ge x_1$, siis $F(x_2) \ge F(x_1)$.
- 4. Pideva juhusliku suuruse jaotusfunktsioon on pidev.
- 5. Tõenäosus selleks, et juhuslik suurus omandaks väärtusi poollõigust [a; b) on võrdne jaotusfunktsiooni juurekasvuga selles poollõigus: $P(a \le x < b) = F(b) F(a)$

Pideva juhusliku suuruse jaotusfunktsioon

Pideva juhusliku suuruse korral on suuruse mistahes üksikväärtuse esinemise tõenäosus null, seetõttu

$$P(a \le X < b) = P(a \le X \le b) = P(a < X < b) = F(b) - F(a)$$

Jaotusfunktsioon

K	F(x)		p(x)		
	0		0		
	0,1	0,0	95163	0,9	04837
	0,2	0,1	81269	0,8	318731
	0,3	0,2	59182	0,7	'40818
	0,4	0,	32968	0	,67032
	0,5	0,3	93469	0,6	06531
	0,6	0,4	51188	0,5	48812
	0,7	0,5	03415	0,4	196585
	0,8	0,5	50671	0,4	149329
	0,9	0,	59343	0	,40657
	1	0,6	32121	0,3	867879
	1,1	0,6	67129	0,3	32871
	1,2	0,6	98806	0,3	301194
	1,3	0,7	27468	0,2	72532
	1,4	0,7	53403	0,2	246597
	1,5	0,	77687	0	,22313
	1,6	0,7	98103	0,2	201897
	1,7	0,8	17316	0,1	82684
	1,8	0,8	34701	0,1	65299
	1,9	0,8	50431	0,1	49569
	2	0,8	64665	0,1	35335
	2,1	0,8	77544	0,1	22456
	2,2	0,8	89197	0,1	10803
	2,3	0,8	99741	0,1	00259
	2,4	0,9	09282	0,0	90718
	2,5	0,9	17915	0,0	82085

Tõenäosuse tihedus e. tihedusfunktsioon

Tõenäosus, et juhuslik suurus X satub vahemikku $(x; x+\Delta x)$ avaldub

$$\Delta F(x) = F(x + \Delta x) - F(x)$$

Pikkusühiku kohta tuleb keskmiseks tõenäosuseks $p_k(x) = \frac{\Delta F}{\Delta x}$

Juhusliku suuruse tõenäosuse tiheduseks p(x) e.

tihedusfunktsiooniks e. jaotustiheduseks nimetatakse keskmise tõenäosuse tiheduse piirväärtust vahemiku pikkuse Δx tõkestamatul kahanemisel:

$$p(x) = \lim_{\Delta x \to 0} \frac{\Delta F(x)}{\Delta x} = F'(x)$$

Tihedusfunktsioon on võrdne jaotusfunktsiooni tuletisega.

Tihedusfunktsioon on olemas ainult pidevatel juhuslikel suurustel.

Juhusliku suuruse antud poollõiku sattumise tõenäosus

Juhusliku suuruse antud poollõiku sattumise tõenäosus on võrdne tihedusfunktsiooni graafiku aluse kõverjoonelise trapetsi pindalaga vahemikus (x_1, x_2)

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} p(x) dx.$$

Tihedusfunktsiooni omadused

1)
$$p(x) \ge 0$$

$$2) \int_{0}^{+\infty} p(x) dx = 1$$

Tüüpiline tihedusfunktsiooni graafik

Tihedusfunktsioon

X	F(x	()	p	(x)	
	0		0		1
	0,1	0,09	5163	0,9	04837
	0,2	0,18	1269	0,8	318731
	0,3	0,25	9182	0,7	40818
	0,4	0,3	2968	0	,67032
	0,5	0,39	3469	0,6	606531
	0,6	0,45	1188	0,5	48812
	0,7	0,50	3415	0,4	196585
	8,0	0,55	0671	0,4	149329
	0,9	0,5	9343	0	,40657
	1	0,63	2121	0,3	367879
	1,1	0,66	7129	0,3	32871
	1,2	0,69	8806	0,3	301194
	1,3	0,72	7468	0,2	72532
	1,4	0,75	3403	0,2	246597
	1,5	0,7	7687	0	,22313
	1,6	0,79	8103	0,2	201897
	1,7	0,81	7316	0,1	82684
	1,8	0,83	4701	0,1	65299
	1,9	0,85	0431	0,1	49569
	2	0,86	4665	0,1	35335
	2,1	0,87	7544	0,1	22456
	2,2	0,88	9197	0,1	10803
	2,3	0,89	9741	0,1	00259
	2,4	0,90	9282	0,0	90718
	2,5	0,91	7915	0,0	82085

Jaotusfunktsiooni leidmine tihedusfunktsiooni kaudu

Jaotusfunktsiooni väärtus punktis *x* on arvuliselt võrdne tihedusfunktsiooni graafiku aluse pindalaga abstsissist *x* vasakul.

$$F(x) = \int_{-\infty}^{x} p(x) dx.$$

Keskväärtus, dispersioon ja standardhälve

Pideva juhusliku suuruse X keskväärtus:

$$EX = \int_{-\infty}^{\infty} x p(x) dx$$

Juhusliku suuruse dispersiooniks DX nimetatakse tema tsentreeritud hälbe ruudu keskväärtust: $DX = E(X - EX)^2$.

Pideva juhusliku suuruse dispersiooni arvutamise eeskiri:

$$DX = \int_{-\infty}^{\infty} (x - EX)^2 p(x) dx$$

Dispersiooni arvutamise teine eeskiri:

$$DX = EX^2 - (EX)^2$$

Dispersioon ruutjuurt nimetatakse standardhälbeks:

$$\sigma(X) = \sqrt{DX}$$

Binoomjaotus

Binomiaalne juhuslik suurus tekib sõltumatute katsete korral. Juhuslikuks suuruseks on meid huvitava sündmuse toimumiste arv.

Juhuslikku suurust X, mille võimalike väärtuste hulgaks on naturaalarvud 0, 1, ..., n ja millele vastavad tõenäosused arvutatakse Bernoulli valemiga

$$P(X = m) = P_{m,n} = C_n^m p^m q^{n-m}$$

nimetatakse binoomjaotusega juhuslikuks suuruseks.

Asjaolu, et juhuslik suurus X on binoomjaotusega parameetritega n ja p märgitakse lühidalt:

$$X \sim B(n, p)$$
.

Binoomjaotuse parameetrid

Binoomjaotuse keskväärtus:

$$EX = np$$

Binoomjaotuse dispersioon:

$$DX = npq$$

Binoomjaotuse standardhälve:

$$\sigma(X) = \sqrt{DX} = \sqrt{npq}$$

Poissoni jaotus

Poissoni jaotus on binoomjaotuse piirjaotuseks sel juhul, kui katseseeria pikkus $n \to \infty$, tõenäosus $p \to 0$ selliselt, et korrutis $\lambda = np$ püsib konstantsena (läheneb konstandile).

Näiteks ööpäeva jooksul Eestis liikluses surma saanute arv on Poisson'i juhuslik suurus.

Osutub, et selliste tingimuste korral

$$\lim_{n\to\infty} P(X=m) = \lim_{n\to\infty} C_n^m p^m q^{n-m} = \frac{\lambda^m}{m!} e^{-\lambda}.$$

Poissoni jaotus

Juhuslikku suurust, mille võimalike väärtuste hulgaks on täisarvud 0, 1, 2, ... ja mille jaotus on määratud valemiga

$$P(X=m)=\frac{\lambda^m}{m!}e^{-\lambda}$$

nimetatakse Poissoni jaotusega juhuslikuks suuruseks.

Sümboolselt tähistatakse asjaolu, et juhuslik suurus on Poissoni jaotusega,

$$X \sim P(\lambda)$$
.

Jämeda hinnanguna on Poissoni jaotuse kasutamine õigustatud, kui $np \le 5$ ja $n \ge 30$.

Poissoni jaotuse parameetrid

Poissoni jaotuse keskväärtus:

$$EX = \lambda = np$$

Poissoni jaotuse dispersioon:

$$DX = \lambda = np$$

Poissoni jaotuse standardhälve:

$$\sigma(X) = \sqrt{\lambda}$$

Teine kriteerium Poissoni jaotuse kasutamiseks:

Poissoni jaotust võib kasutada ligikaudse jaotusena juhul, kui juhusliku suuruse täpseks jaotuseks on binoomjaotus, mille keskväärtus erineb vähe dispersioonist, s.o. kui

$$np \approx npq$$
.

Eksponentjaotus

Eksponentjaotust kasutatakse enamasti massiteeninduse teooria reaalsete teenindussüsteemide teenindusaja modelleerimisel.

Teenindusaja pikkus - juhuslik suurus X.

Jaotusfunktsioon F(x) = P(X < x) näitab, millise tõenäosusega kestab teenindamine vähem kui x ajaühikut.

Keskväärtus *EX* on ühe tellimuse keskmine teenindusaeg.

Parameeter λ näitab, palju "kliente" teenindatakse keskmiselt ühe ajaühiku kohta (s.t. teenindamise kiirus).

Eksponentjaotus

Öeldakse, et juhuslik suurus *X* on **eksponentjaotusega**, kui tema tihedusfunktsiooniks on

$$p(x) = \begin{cases} \lambda e^{-\lambda x} &, \text{ kui } x \ge 0, \\ 0 &, \text{ kui } x < 0. \end{cases}$$

Asjaolu, et juhuslik suurus *X* on eksponentjaotusega, tähistatakse sümboolselt

$$X \sim Exp(\lambda)$$
.

Kasutatakse:

- reaalsete teenindussüsteemide teenindusaja modelleerimisel;
- > süsteemi tõrketa tööaja kirjeldamiseks, eeldusel, et tõrgete intensiivsus ajas on muutumatu.

Eksponentjaotuse arvkarakteristikud

Keskväärtus

$$EX = \frac{1}{\lambda}$$

Dispersioon

$$DX = \frac{1}{\lambda^2}$$

Standardhälve

$$\sigma(X) = \sqrt{DX} = \frac{1}{\lambda}$$

Eksponentjaotuse jaotus- ja tihedusfunktsioon

$$p(x) = \begin{cases} \lambda e^{-\lambda x} &, \text{ kui } x \ge 0, \\ 0 &, \text{ kui } x < 0. \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{, kui } x \ge 0, \\ 0 & \text{, kui } x < 0. \end{cases}$$

Normaaljaotus

Normaaljaotus tekib järgmiste tingimuste korral:

- > tunnuse väärtustel on olemas mingi fikseeritud keskmine tase;
- tunnuse väärtus kujuneb paljude üksteisest sõltumatute nõrgalt mõjuvate faktorite toimel;
- tunnuse väärtuste suurenemine üle keskmise taseme ja vähenemine alla keskmist taset on võrdvõimalikud.

Normaaljaotus

Kui pideva juhusliku suuruse tihedusfunktsiooniks on funktsioon

$$p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

siis öeldakse, et see suurus on normaaljaotusega e. Gaussi jaotusega.

Tähised: m - keskväärtus, σ - standardhälve.

Asjaolu, et juhuslik suurus on normaaljaotusega parameetritega m ja σ , tähistatakse sümboolselt

$$X \sim N(m, \sigma).$$

Normaaljaotuse tihedusfunktsioon

Kui m = 0 ja $\sigma = 1$, siis nimetatakse vastavat normaaljaotust **normeerituks**.

Normaaljaotusega juhusliku suuruse antud vahemikku sattumise tõenäosus

$$P(\alpha < X < \beta) = \int_{\alpha}^{\beta} p(x) dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{\alpha}^{\beta} e^{-\frac{(x-m)^2}{2\sigma^2}} dx$$

Teeme asenduse
$$t = \frac{x - m}{\sigma} \implies dt = \frac{1}{\sigma} dx$$

$$=\frac{1}{\sqrt{2\pi}}\int_{(\alpha-m)/\sigma}^{(\beta-m)/\sigma}e^{-\frac{t^2}{2}}dt=\Phi(\frac{\beta-m}{\sigma})-\Phi(\frac{\alpha-m}{\sigma})$$

Funktsiooni
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$$
 nimetatakse **Laplace'i**

funktsiooniks e. tõenäosuse integraaliks.

Laplace'i funktsiooni omadusi

$$> \Phi(0) = 0$$

$$\rightarrow$$
 $\Phi(\infty) = 0.5$

$$\rightarrow \Phi(-x) = -\Phi(x)$$

Laplace'i funktsioon on paaritu funktsioon

Normaaljaotuse jaotusfunktsioon

Normaaljaotuse jaotusfunktsioon avaldub Laplace'i funktsiooni kaudu järgmiselt:

$$F(x) = \int_{-\infty}^{x} p(x) dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-m)^{2}}{2\sigma^{2}}} dx = \dots = 1/2 + \Phi(\frac{x-m}{\sigma})$$

Binoomjaotuse koondumine normaaljaotuseks

Binoomjaotuse koondumine normaaljaotuseks

Binoomjaotuse koondumine normaaljaotuseks

Binoomjaotuse koondumine normaaljaotuseks

N(6; 2,05) • B(20; 0,3)

Moivre – Laplace'i integraalne piirteoreem

Tuginedes sellele, et binoomjaotus on lähedane normaaljaotusele, leitakse sageduse m antud vahemikku sattumise tõenäosus küllalt suure katsete arvu n korral järgmiselt

$$P(k_1 < m < k_2) \approx \Phi(\frac{k_2 - np}{\sqrt{npq}}) - \Phi(\frac{k_1 - np}{\sqrt{npq}}),$$

See valem võimaldab küllalt suure katsete arvu korral kasutada diskreetse binoomjaotuse asemel ligikaudse lähendina pidevat normaaljaotust parameetritega EX = np ja $\sigma(X) = \sqrt{npq}$.

Valemi kasutamine on õigustatud kui np > 5 ja nq > 5.

Moivre – Laplace'i lokaalne piirteoreem

Moivre – Laplace'i valemist tulenevalt võib küllalt suure katsete arvu korral sündmuse sageduse *m* tõenäosuse arvutamiseks kasutada Bernoulli valemi asemel ligikaudset valemit

$$P_{m,n} \approx \frac{1}{\sqrt{npq}} \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad \text{kus} \quad x = \frac{m - np}{\sqrt{npq}}.$$

Valemi kasutamine on õigustatud kui np > 5 ja nq > 5.