Хершел-Максвелл и нормальное распределение

Винни-Пух

2017-12-01

Содержание

Молекулы газа .								 												1
Первый поворот								 											 	1

Молекулы газа

В замкнутом загончике на плоскости хаотично движутся молекулы газа. Мы ловим одну из них случайно и измеряем вектор скоростей

$$V = \begin{pmatrix} V_x \\ V_y \end{pmatrix}.$$

Максвелл предположил, что

M1. Если мы повернём нашу картинку на произвольный угол и повторим измерения, то закон распределения нового вектора V' будет совпадать с законом распределения вектора V.

М2. Если мы знаем горизонтальную составляющую скорости, то это не даёт нам никакой информации о вертикальной составляющей, то есть случайные величины V_x и V_y независимы.

Заметим, что единицы измерения скорости мы можем выбираться произвольно, поэтому давайте дополним предположения Максвелла предположением

М3. Единицы измерения скорости выбраны так, что $\mathbb{V}ar(V_x)=1.$

Первый поворот

Помимо горизонтальной и вертикальной составлящих вектора скорости, V_x и V_y , рассмотрим ещё две величины, U — угол с горизонтальной осью и $R=\sqrt{V_x^2+V_y^2}$ — скалярную скорость, длину вектора скорости.

Естественно, $V_x = R \cos U$, $V_y = R \sin U$.

• Какой вектор получится, если вектор V повернуть на 90° против часовой стрелки?

Получится вектор

$$V' = \begin{pmatrix} -V_y \\ V_x \end{pmatrix}$$

По предпосылке M1 вектор V' должен иметь такое же распределение, как вектор V.

• Чему равны $\mathbb{E}(V_x)$, $\mathbb{E}(V_y)$, $\mathbb{V}ar(V_y)$?

Раз уж $V'\sim V$, то $-V_y\sim V_x$ и $V_x\sim V_y$. Значит $\mathbb{E}(-V_y)=\mathbb{E}(V_x)$, и одновременно $\mathbb{E}(V_x)=\mathbb{E}(V_y)$. Это возможно только в случае $\mathbb{E}(V_x)=\mathbb{E}(V_y)=0$.

Строго говоря, осталась ещё возможность, что математическое ожидание не существует.

Аналогично, $\mathbb{V}ar(V_x)=\mathbb{V}ar(V_y)$ и по предпосылке М3 $\mathbb{V}ar(V_x)=\mathbb{V}ar(V_y)=1.$

• Как распределена величина U?

Заметим, что при повороте на произвольный угол α , этот угол прибавляется к величине U. Если при этом сумма выйдет за 2π , то нужно ещё и вычесть 2π . По предпосылке М1 функция плотности U может быть только постоянной, $f(u+\alpha)=f(u)$ при $0\leq u+\alpha<2\pi$.

Значит U распределена равномерно на $[0;2\pi)$ и её функция плотности равна

$$f(u) = egin{cases} rac{1}{2\pi}, \ ext{если} \ u \in [0; 2\pi) \ 0, \ ext{иначе} \end{cases}$$