$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VALORES DE LAS FUNCIONES TRIGONOMÉTRICAS PARA LOS ÁNGULOS MULTIPLOS DE 30° Y 45° (π/6 Y π/4)																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	adrante	Ángulos del 4to. cuadrant							Ángulos del 2do. cuadrante				Ángulos del 1er, cuadrante					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30° 360°	330°	315°	300°	270°	240°	225°	210°	180°	150°	135°	120°	90°	60°	45°	30°	0°	ioi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1\pi}{2\pi}$	11π	$\frac{7\pi}{}$	5π	3π	$\frac{4\pi}{}$	5π	$\frac{7\pi}{}$	π		3π	2π				$\frac{\pi}{}$	0	, an
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	4	3	2	3	4	6		6	4	3	2	3	4	6		<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-1			$-\frac{1}{2}$	0	_			1				0	sen
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				2		2	2	2			2	2		2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı				0	$-\frac{1}{2}$			-1			$-\frac{1}{2}$	0				1	cos
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sqrt{3}$ 0	$-\frac{\sqrt{3}}{2}$	4	$-\sqrt{3}$	∞	$\sqrt{3}$	1		0	$-\frac{\sqrt{3}}{}$		$-\sqrt{3}$	8	$\sqrt{3}$	1	$\sqrt{3}$	0	tg
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sqrt{3}$ ∞	$-\sqrt{3}$	-1		0		1	$\sqrt{3}$	8	$-\sqrt{3}$	-1		0		1	$\sqrt{3}$	8	ctg
$\frac{1}{1}$		$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	∞	-2	$-\sqrt{2}$		-1		$-\sqrt{2}$	-2	8	2	$\sqrt{2}$		1	sec
	·2 ∞	-2	$-\sqrt{2}$	$-\frac{2\sqrt{3}}{3}$	-1	$-\frac{2\sqrt{3}}{3}$	$-\sqrt{2}$	-2	∞	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	1	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	8	cosec

FORMULAS FUNDAMENTALES DE LA TRIGONOMETRIA

Funciones de un ángulo:

1.
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

2.
$$\sec^2 \alpha - \tan^2 \alpha = 1$$

2.
$$\sec^2 \alpha - \tan^2 \alpha = 1$$

6.
$$\operatorname{sen} \alpha \cdot \operatorname{csc} \alpha = 1$$

5. $\frac{\cos\alpha}{\sin\alpha} = \operatorname{ctg}\alpha$

3.
$$\csc^2 \alpha - \cot^2 \alpha = 1$$

7.
$$\cos \alpha \cdot \sec \alpha = 1$$

4.
$$\frac{\operatorname{sen}\alpha}{\cos\alpha} = \operatorname{tg}$$

8.
$$tg \alpha \cdot c tg \alpha = 1$$

Fórmulas de conversión:

Para cada circunferencia de ángulo central α, se mide por la razón entre del arco 1 correspondiente a este ángulo y la longitud del radio r de ésta circunferencia:

$$\alpha = \frac{1}{r}$$

$$\alpha^{\circ} = \frac{180\alpha}{\pi}$$
 (radianes); α (radianes) = $\frac{\pi\alpha^{\circ}}{180}$

Expresión de una función mediante otra (del mismo ángulo):

1.
$$\operatorname{sen} \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \pm \frac{\operatorname{tg} \alpha}{\sqrt{1 + \operatorname{tg}^2 \alpha}} = \pm \frac{1}{\sqrt{1 + \operatorname{ctg}^2 \alpha}} = \pm \frac{\sqrt{\sec^2 \alpha - 1}}{\sec \alpha} = \frac{1}{\csc \alpha}$$

2.
$$\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha} = \pm \frac{1}{\sqrt{1 + \tan^2 \alpha}} = \pm \frac{\cot \alpha}{\sqrt{1 + \cot^2 \alpha}} = \frac{1}{\sec \alpha} = \pm \frac{\sqrt{\csc^2 \alpha - 1}}{\csc \alpha}$$

3.
$$\operatorname{tg} \alpha = \pm \frac{\operatorname{sen} \alpha}{\sqrt{1 - \operatorname{sen}^2 \alpha}} = \pm \frac{\sqrt{1 - \cos^2 \alpha}}{\cos \alpha} = \frac{1}{\operatorname{ctg} \alpha} = \pm \sqrt{\operatorname{sec}^2 \alpha - 1} = \pm \frac{1}{\sqrt{\csc^2 \alpha - 1}}$$

4.
$$\operatorname{ctg} \alpha = \pm \frac{\sqrt{1 - \operatorname{sen}^2 \alpha}}{\operatorname{sen} \alpha} = \pm \frac{\cos \alpha}{\sqrt{1 - \cos^2 \alpha}} = \frac{1}{\operatorname{tg} \alpha} = \pm \frac{1}{\sqrt{\operatorname{sec}^2 \alpha - 1}} = \pm \sqrt{\operatorname{csc}^2 \alpha - 1}$$

Matemática

Funciones de la suma y la diferencia de ángulos:

1.
$$sen(\alpha \pm \beta) = sen \alpha cos \beta \pm cos \alpha sen \beta$$

2.
$$\cos(\alpha \pm \beta)\cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$

3.
$$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha tg \beta}$$

4.
$$c \operatorname{tg}(\alpha \pm \beta) = \frac{c \operatorname{tg} \alpha \operatorname{c} \operatorname{tg} \beta \mp 1}{c \operatorname{tg} \beta \pm \operatorname{c} \operatorname{tg} \alpha}$$

$$\cos(\alpha + \beta + \gamma) = \cos\alpha\cos\beta\cos\gamma - \sin\alpha\sin\beta\cos\gamma - \cos\alpha\cos\beta\sin\gamma - \cos\alpha\sin\beta\sin\gamma$$

Funciones de ángulos múltiples:

1.
$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

2.
$$\sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha$$

3.
$$\sin 4\alpha = 8\cos^3 \alpha \sin \alpha - 4\cos \alpha \sin \alpha$$

4.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

5.
$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$

6.
$$\cos 4\alpha = 8\cos^4 - 8\cos^2 \alpha + 1$$

7.
$$tg 2\alpha = \frac{2 tg \alpha}{1 - tg^2 \alpha}$$

8.
$$tg 3\alpha = \frac{3tg \alpha - tg^3 \alpha}{1 - 3tg^2 \alpha}$$

9.
$$tg 4\alpha = \frac{4tg \alpha - 4tg^3 \alpha}{1 - 6tg^2 \alpha + tg^2 \alpha}$$

10.
$$c \operatorname{tg} 2\alpha = \frac{c \operatorname{tg}^2 \alpha - 1}{2c \operatorname{tg} \alpha}$$

11.
$$\cot 3\alpha = \frac{\cot 3^3 \alpha - 3\cot 3\alpha}{3\cot 3^2 \alpha - 1}$$

12.
$$\cot \alpha = \frac{\cot^4 \alpha - 6\cot^2 \alpha + 1}{4\cot^3 \alpha - 4\cot \alpha}$$

Funciones de ángulo mitad:

1.
$$\operatorname{sen}\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$2. \quad \cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

3.
$$tg\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$$

4.
$$\operatorname{ctg}\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = \frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 - \cos \alpha}$$

Suma y diferencia de funciones:

1.
$$\sin \alpha + \sin \beta = 2 \operatorname{sen} \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$
 5. $\tan \alpha \pm \tan \beta = \frac{\operatorname{sen}(\alpha \pm \beta)}{\cos \alpha \cos \beta}$

3.
$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$
 7. $\tan \alpha + \cot \beta = \frac{\cos(\alpha - \beta)}{\cos \alpha \sin \beta}$

4.
$$\cos \alpha - \cos \beta = 2 \operatorname{sen} \left(\frac{\alpha + \beta}{2} \right) \operatorname{sen} \left(\frac{\alpha - \beta}{2} \right)$$
 8. $\cot \alpha - \cot \beta = \frac{\cos(\alpha + \beta)}{\sin \alpha \cos \beta}$

5.
$$tg \alpha \pm tg \beta = \frac{sen(\alpha \pm \beta)}{cos \alpha cos \beta}$$

6.
$$\operatorname{ctg} \alpha \pm \operatorname{ctg} \beta = \pm \frac{\operatorname{sen}(\alpha \pm \beta)}{\operatorname{sen} \alpha \operatorname{sen} \beta}$$

7.
$$tg \alpha + c tg \beta = \frac{\cos(\alpha - \beta)}{\cos \alpha \sec \beta}$$

8.
$$\cot \alpha - \tan \beta = \frac{\cos(\alpha + \beta)}{\sin \alpha \cos \beta}$$

Producto de funciones:

1.
$$\operatorname{sen} \alpha \operatorname{sen} \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

2.
$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

3.
$$\operatorname{sen} \alpha \cos \beta = \frac{1}{2} \left(\operatorname{sen}(\alpha - \beta) + \operatorname{sen}(\alpha + \beta) \right)$$