Diszkrét matematika II. 3. előadás

Fancsali Szabolcs Levente nudniq@inf.elte.hu

ELTE IK Komputeralgebra Tanszék

Mérai László diái alapján

Kínai maradék tétel (múlt heti anyag!)

Tétel

Legyenek $1 < m_1, m_2 \dots, m_n$ relatív prím számok, c_1, c_2, \dots, c_n egészek. Ekkor a

$$x \equiv c_1 \mod m_1$$
 $x \equiv c_2 \mod m_2$
 \vdots
 $x \equiv c_n \mod m_n$

kongruencia rendszer megoldható, és bármely két megoldás kongruens egymással modulo $m_1 \cdot m_2 \cdots m_n$.

Kínai maradék tétel (múlt heti anyag!)

 $x \equiv c_1 \mod m_1, x \equiv c_2 \mod m_2, \ldots, x \equiv c_n \mod m_n. x = ?$

Bizonyítás

A bizonyítás konstruktív!

Legyen $m=m_1m_2$. A bővített euklideszi algoritmussal oldjuk meg az $m_1x_1+m_2x_2=1$ egyenletet. Legyen $c_{1,2}=m_1x_1c_2+m_2x_2c_1$. Ekkor $c_{1,2}\equiv c_j\mod m_j$ (j=1,2). Ha $x\equiv c_{1,2}\mod m$, akkor x megoldása az első két kongruenciának. Megfordítva: ha x megoldása az első két kongruenciának, akkor $x-c_{1,2}$ osztható m_1 -gyel, m_2 -vel, így a szorzatukkal is: $x\equiv c_{1,2}\mod m$. Az eredeti kongruencia rendszer ekvivalens a

$$x \equiv c_{1,2} \mod m_1 m_2$$

 $x \equiv c_3 \mod m_3$
 \vdots
 $x \equiv c_n \mod m_n$

n szerinti indukcióval adódik az állítás.

Szimultán kongruenciák (múlt heti anyag!)

Példa

$$x \equiv 2 \mod 3$$
$$x \equiv 3 \mod 5$$

Oldjuk meg az $3x_1 + 5x_2 = 1$ egyenletet.

Megoldások:
$$x_1 = -3$$
, $x_2 = 2$. \Rightarrow $c_{1,2} = 3 \cdot (-3) \cdot 3 + 5 \cdot 2 \cdot 2 = -27 + 20 = -7$.

Összes megoldás:
$$\{-7+15\ell:\ \ell\in\mathbb{Z}\}=\{8+15\ell:\ \ell\in\mathbb{Z}\}.$$

Példa

$$\begin{array}{c} x \equiv 2 \mod 3 \\ x \equiv 3 \mod 5 \\ x \equiv 4 \mod 7 \end{array} \right\} \quad \stackrel{c_{1,2}=8}{\Longrightarrow} \quad \begin{array}{c} x \equiv 8 \mod 15 \\ x \equiv 4 \mod 7 \end{array} \right\}$$

Oldjuk meg a $15x_{1,2} + 7x_3 = 1$ egyenletet.

Megoldások:
$$x_{1,2} = 1, x_3 = -2. \Rightarrow$$

$$c_{1,2,3} = 15 \cdot 1 \cdot 4 + 7 \cdot (-2) \cdot 8 = 60 - 112 = -52.$$

Összes megoldás:
$$\{-52+105\ell:\ \ell\in\mathbb{Z}\}=\{53+105\ell:\ \ell\in\mathbb{Z}\}.$$

Sokszor egy adott probléma megoldása nem egy konkrét szám (számok családja), hanem egy egész halmaz (halmazok családja):

```
• 2x \equiv 5 \mod 7, megoldások: \{6 + 7\ell : \ell \in \mathbb{Z}\}
• 10x \equiv 8 \mod 22, megoldások: \{14 + 22\ell : \ell \in \mathbb{Z}\},
```

$$\{3+22\ell:\ \ell\in\mathbb{Z}\}.$$

Definíció

Egy rögzített m modulus és a egész esetén, az a-val kongruens elemek halmazát az a által reprezentált maradékosztálynak nevezzük:

$$\overline{a} = \{x \in \mathbb{Z} : x \equiv a \mod m\} = \{a + \ell m : \ell \in \mathbb{Z}\}.$$

Példa

Az $2x \equiv 5 \mod 7$ megoldása : $\overline{6}$ A $10x \equiv 8 \mod 22$, megoldásai: $\overline{14}$, $\overline{3}$. m = 7 modulussal $\overline{2} = \overline{23} = \{\dots, -5, 2, 9, 16, 23, 30, \dots\}$

Általában: $\overline{a} = \overline{b} \Leftrightarrow a \equiv b \mod m$.

Definíció

Egy rögzített m modulus esetén, ha minden maradékosztályból pontosan egy elemet kiveszünk, akkor az így kapott számok teljes maradékrendszert alkotnak modulo m.

Példa

 $\{33, -5, 11, -11, -8\}$ teljes maradékrendszer modulo 5.

Gyakori választás teljes maradékrendszerekre

- Legkisebb nemnegatív maradékok: $\{0, 1, \dots, m-1\}$;
- Legkisebb abszolútértékű maradékok:

$$\begin{array}{l} \left\{0,\pm 1,\ldots,\pm \frac{m-1}{2}\right\}, \text{ ha } 2 \nmid m; \\ \left\{0,\pm 1,\ldots,\pm \frac{m-2}{2},\frac{m}{2}\right\}, \text{ ha } 2 \mid m. \end{array}$$

Megjegyzés: ha egy maradékosztály valamely eleme relatív prím a modulushoz, akkor az összes eleme az: $(a + \ell m, m) = (a, m) = 1$.

Definíció

Egy rögzített m modulus esetén, ha mindazon maradékosztályból, melyek elemei relatív prímek a modulushoz kiveszünk pontosan egy elemet, akkor az így kapott számok redukált maradékrendszert alkotnak modulo m.

Példa

 $\{1, 2, 3, 4\}$ redukált maradékrendszer modulo 5.

 $\{1, -1\}$ redukált maradékrendszer modulo 3.

{1, 19, 29, 7} redukált maradékrendszer modulo 8.

{0, 1, 2, 3, 4} nem redukált maradékrendszer modulo 5.

Definíció (kiegészítés)

Egy rögzített m modulus esetén, ha (a, m) = 1, akkor az a által reprezentált maradékosztály a redukált maradékosztály. A redukált maradékosztályok halmazát \mathbb{Z}_m^* -al jelöljuk:

$$\mathbb{Z}_m^* = \{ \overline{a} : 1 \le 0 < m, (a, m) = 1 \}.$$

A maradékosztályok között természetes módon műveleteket definiálhatunk:

Definíció

Rögzített m modulus, és a, b egészek esetén legyen:

$$\overline{a} + \overline{b} \stackrel{\text{def}}{=} \overline{a + b}; \qquad \overline{a} \cdot \overline{b} \stackrel{\text{def}}{=} \overline{a \cdot b}$$

Állítás

Ez értelme definíció, azaz ,ha $\overline{a}=\overline{a^*}, \ \overline{b}=\overline{b^*},$ akkor $\overline{a}+\overline{b}=\overline{a^*}+\overline{b^*},$ illetve $\overline{a}\cdot\overline{b}=\overline{a^*}\cdot\overline{b^*}$

Bizonyítás

Mivel $\overline{a} = \overline{a^*}$, $\overline{b} = \overline{b^*} \Rightarrow a \equiv \underline{a^*} \mod \underline{m}$, $b \equiv b^* \mod \underline{m} \Rightarrow a + b \equiv a^* + b^* \mod \underline{m} \Rightarrow \overline{a + b} = \overline{a^* + b^*} \Rightarrow \overline{a} + \overline{b} = \overline{a^*} + \overline{b^*}$. Szorzás hasonlóan.

A maradékosztályok között természetes módon műveleteket definiálhatunk: $\overline{a} + \overline{b} = \overline{a+b}$; $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$.

Definíció

Rögzített m modulus, legyen \mathbb{Z}_m a maradékosztályok halmaza. Ekkor a halmaz elemei között definiálhatunk összeadást, illetve szorzást.

Példa

$$\mathbb{Z}_3=\{\overline{0},\overline{1},\overline{2}\}.$$

+	0	1	2
0	Ō	ī	2
1	1	2	ō
2	2	ō	1

$$\begin{array}{c|c|c|c} \cdot & \overline{0} & \overline{1} & \overline{2} \\ \hline \overline{0} & \overline{0} & \overline{0} & \overline{0} \\ \hline \overline{1} & \overline{0} & \overline{1} & \overline{2} \\ \hline \overline{2} & \overline{0} & \overline{2} & \overline{1} \\ \hline \end{array}$$

$$\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}.$$

+	ō	1	2	3
0	Ō	1	2	3
1	1	2	3	Ō
2	2	3	ō	1
3	3	ō	1	2

	0	1	2	3
0	Ō	Ō	Ō	Ō
1	Ō	1	2	3
2	Ō	2	Ō	1
3	ō	3	2	1

Tétel

Legyen m>1 egész. Ha 1<(a,m)< m, akkor \overline{a} nullosztó \mathbb{Z}_m -ben: \overline{a} -hoz van olyan \overline{b} , hogy $\overline{a}\cdot\overline{b}=\overline{0}$

Ha (a, m) = 1, akkor \overline{a} -nak van reciproka (multiplikatív inverze) \mathbb{Z}_m -ben: \overline{a} -hoz van olyan \overline{x} , hogy $\overline{a} \cdot \overline{x} = \overline{1}$.

Speciálisan, ha *m* prím, minden nem-nulla maradékosztállyal lehet osztani.

Példa

Legyen
$$m=9$$
. $\overline{6}\cdot\overline{3}=\overline{18}=\overline{0}$.
$$(2,9)=1 \text{, fgy } \overline{2}\cdot\overline{5}=\overline{10}=\overline{1}.$$

Bizonyítás

Legyen d=(a,m). Ekkor $a\cdot \frac{m}{d}=\frac{a}{d}\cdot 0\equiv 0\mod m$, ahonnan b=m/d jelöléssel $\overline{a}\cdot \overline{b}=\overline{0}$.

Ha (a, m) = 1, akkor a bővített euklideszi algoritmussal megadhatóak x, y egészek, hogy ax + my = 1. Ekkor $ax \equiv 1 \mod m$ azaz $\overline{a} \cdot \overline{x} = \overline{1}$.

Euler-féle φ függvény (múlt heti anyag!)

Definíció

Egy m>0 egész szám esetén legyen $\varphi(m)$ az m-nél kisebb, hozzá relatív prím egészek száma $\varphi(m)=|\{i:\ 0< i< m, (m,i)=1\}|.$

Példa

```
\varphi(5) = 4: 5-höz relatív prím pozitív egészek 1, 2, 3, 4;
```

$$\varphi(6) = 2$$
: 6-hoz relatív prím pozitív egészek 1, 5;

$$\varphi(12) = 4$$
: 12-höz relatív prím pozitív egészek 1, 5, 7, 11.

$$\varphi(15) = 8$$
: 15-höz relatív prím pozitív egészek 1, 2, 4, 7, 8, 11, 13, 14.

Megjegyzés: $\varphi(m)$ a redukált maradékosztályok száma modulo m.

11.

Euler-féle φ függvény (múlt heti anyag!)

$$\varphi(m) = |\{i : 0 < i < m, (m, i) = 1\}|$$

Tétel (NB)

Legyen m prímtényezős felbontása $m=\rho_1^{e_1}\rho_2^{e_2}\cdots\rho_\ell^{e_\ell}$. Ekkor $\varphi(m)=\prod_{i=1}^\ell\left(\rho_i^{e_i}-\rho_i^{e_i-1}\right)=m\cdot\prod_{i=1}^\ell\left(1-\frac{1}{\rho_i}\right)$

Ha a_1, \ldots, a_r páronként relatív prímek, akkor $\varphi(a_1 \cdots a_r) = \varphi(a_1) \cdots \varphi(a_r)$. Ha p prím, akkor $\varphi(p^m) = p^m - p^{m-1}$.

Példa

$$\begin{array}{l} \varphi(5)=5\left(1-\frac{1}{5}\right)=4;\\ \varphi(6)=6\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=2;\\ \varphi(12)=12\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4;\\ \varphi(15)=15\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=8. \end{array}$$

Euler-Fermat tétel (múlt heti anyag!)

Tétel

Legyen m>1 egész szám, a olyan egész, melyre (a,m)=1. Ekkor $a^{\varphi(m)}\equiv 1\mod m.$

Következmény (Fermat tétel)

Legyen p prímszám, $p \nmid a$. Ekkor $a^{p-1} \equiv 1 \mod p$, illetve tetszőleges a esetén $a^p \equiv a \mod p$.

Példa

$$\varphi(6) = 2 \Rightarrow 5^2 = 36 \equiv 1 \mod 6;$$
 $\varphi(12) = 4 \Rightarrow 5^4 = 625 \equiv 1 \mod 12; 7^4 = 2401 \equiv 1 \mod 12.$

Figyelem! $2^4 = 16 \equiv 2 \not\equiv 1 \mod 12$, mert $(2, 12) = 2 \not\equiv 1$.

Euler-Fermat tétel bizonyítása (múlt heti anyag!)

Lemma

Legyen m>1 egész, $a_1, a_2 \ldots, a_m$ teljes maradékrendszer modulo m. Ekkor minden a,b egészre, melyre $(a,m)=1, a\cdot a_1+b, a\cdot a_2+b\ldots, a\cdot a_m+b$ szintén teljes maradékrendszer. Továbbá, ha $a_1, a_2, \ldots, a_{\varphi(m)}$ redukált maradékrendszer modulo m, akkor $a\cdot a_1, a\cdot a_2 \ldots, a\cdot a_{\varphi(m)}$ szintén redukált maradékrendszer.

Bizonyítás

Ha $i \neq j$ esetén $aa_i + b \equiv aa_j + b \mod m \Leftrightarrow aa_i \equiv aa_j \mod m$. Mivel (a,m)=1, egyszerűsíthetünk a-val: $a_i \equiv a_j \mod m$. Tehát $a \cdot a_1 + b$, $a \cdot a_2 + b \ldots$, $a \cdot a_m + b$ páronként inkongruensek. Mivel számuk m, így teljes maradékrendszert alkotnak.

Ha $(a_i,m)=1$, $(a,m)=1 \Rightarrow (a\cdot a_i,m)=1$. Továbbá $a\cdot a_1$, $a\cdot a_2\ldots$, $a\cdot a_{\varphi(m)}$ páronként inkongruensek, számuk $\varphi(m)\Leftrightarrow$ redukált maradékrendszert alkotnak.

Euler-Fermat tétel bizonyítása (múlt heti anyag!)

Tétel (Euler-Fermat) $(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \mod m$.

Bizonyítás

Legyen a_1 , a_2 , ..., $a_{\varphi(m)}$ egy redukált maradékrendszer modulo m. Mivel $(a,m)=1\Rightarrow a\cdot a_1$, $a\cdot a_2$..., $a\cdot a_{\varphi(m)}$ szintén redukált maradékrendszer.

Innen

$$a^{arphi(m)}\prod_{j=1}^{arphi(m)}a_j=\prod_{j=1}^{arphi(m)}a\cdot a_j\equiv\prod_{j=1}^{arphi(m)}a_j\mod m$$

 $\varphi(m)$

Mivel $\prod_{i=1}^{n} a_{j}$ relatív prím m-hez, így egyszerűsíthetünk vele:

$$a^{\varphi(m)} \equiv 1 \mod m$$

Euler-Fermat tétel (múlt heti anyag!)

Tétel (Euler-Fermat)
$$(a, m) = 1 \Rightarrow a^{\varphi(m)} \equiv 1 \mod m$$

Példa

Mi lesz a 3¹¹¹ utólos számjegye tizes számrendszerben?

Mi lesz 3¹¹¹ mod 10?

$$\varphi(10) = 4 \Rightarrow$$

$$3^{111} = 3^{4 \cdot 27 + 3} = \left(3^4\right)^{27} \cdot 3^3 \equiv 1^{27} \cdot 3^3 = 3^3 = 27 \equiv 7 \mod 10$$

Oldjuk meg a $2x \equiv 5 \mod 7$ kongruencát!

 $\varphi(7) = 6$. Szorozzuk be mindkét oldalt 2^5 -el. Ekkor

$$5 \cdot 2^5 \equiv 2^6 x \equiv x \mod 7$$
. És itt $5 \cdot 2^5 = 5 \cdot 32 \equiv 5 \cdot 4 = 20 \equiv 6 \mod 7$.

Oldjuk meg a $23x \equiv 4 \mod 211$ kongruencát!

 $\varphi(211)=210$. Szorozzuk be mindkét oldalt 2^{209} -el. Ekkor

 $4 \cdot 23^{209} \equiv 23^{210} x \equiv x \mod 211$. És itt $4 \cdot 23^{209} \equiv \dots \mod 211$.

Gyors hatványozás (ezzel kezdődik az új anyag)

Legyenek m, a, n pozitív egészek, m > 1. Szeretnénk kiszámolni $a^n \mod m$ maradékot hatékonyan.

Ábrázoljuk *n*-et 2-es számrendszerben:

$$n = \sum_{i=0}^{\kappa} \varepsilon_i 2^i = (\varepsilon_k \varepsilon_{k-1} \dots \varepsilon_1 \varepsilon_0)_{(2)}, \text{ ahol } \varepsilon_0, \varepsilon_1, \dots, \varepsilon_k \in \{0, 1\}.$$

Legyen n_j (0 $\leq j \leq k$) az első j+1 jegy által meghatározott szám:

$$n_j = \lfloor n/2^{k-j} \rfloor = (\varepsilon_k \varepsilon_{k-1} \dots \varepsilon_{k-j+1})_{(2)}$$

Ekkor meghatározzuk minden j-re az $x_j \equiv a^{n_j} \mod m$ maradékot:

$$n_0 = \varepsilon_0 = 1$$
, $x_0 = a$.

$$n_j = 2 \cdot n_{j-1} + \varepsilon_j \Rightarrow$$

$$x_j = a^{\varepsilon_j} x_{j-1}^2 \mod m = \begin{cases} 1 \cdot x_{j-1}^2 \mod m, & \text{ha } \varepsilon_j = 0 \\ a \cdot x_{j-1}^2 \mod m, & \text{ha } \varepsilon_j = 1 \end{cases} \Rightarrow$$

 $x_k = a^n \mod m$.

Az algoritmus helyessége az alábbi formulábol következik (Biz.: HF):

$$a^n = a^{\sum_{i=0}^k \varepsilon_i 2^i} = \prod_{i=0}^k \left(a^{2^i}\right)^{\varepsilon_i}$$

Gyors hatványozás

Példa

Mi lesz $3^{111} \mod 10$? (Euler-Fermat $\Rightarrow 7$)

$$111_{(10)} = 1101111_{(2)}$$
 itt $k = 6$, $a = 3$.

j	nj	$x_j = a^{\varepsilon_j} \cdot x_{j-1}^2$	$x_j \mod 10$
0	1	_	3
1	1	$x_1 = 3 \cdot 3^2$	7
2	0	$x_2 = 7^2$	9
3	1	$x_3 = 3 \cdot 9^2$	3
4	1	$x_4 = 3 \cdot 3^2$	7
5	1	$x_5 = 3 \cdot 7^2$	7
6	1	$x_6 = 3 \cdot 7^2$	7

$$3^{111} = 3^{64+32+8+4+2+1} = 3^{64} \cdot 3^{32} \cdot 3^8 \cdot 3^4 \cdot 3^2 \cdot 3 = ((((((3)^2 \cdot 3)^2 \cdot 1)^2 \cdot 3)^2 \cdot 3)^2 \cdot 3)^2 \cdot 3)$$

Példa

Oldjuk meg a $23x \equiv 4 \mod 211$ kongruencát! Euler-Fermat $\Rightarrow x \equiv 4 \cdot 23^{209} \equiv \dots \mod 211$.

Mi lesz $23^{209} \mod 211$? $209_{(10)} = 11010001_{(2)}$ itt k = 7, a = 23.

j	nj	$x_j = a^{\varepsilon_j} \cdot x_{j-1}^2$	<i>x_j</i> mod 211
0	1	_	23
1	1	$x_1 = 23 \cdot 23^2$	140
2	0	$x_2 = 140^2$	188
3	1	$x_3 = 23 \cdot 188^2$	140
4	0	$x_4 = 140^2$	188
5	0	$x_5 = 188^2$	107
6	0	$x_6 = 107^2$	55
7	1	$x_6 = 23 \cdot 55^2$	156

 $x \equiv 4 \cdot 23^{209} \equiv 4 \cdot 156 \equiv 202 \mod 211$.

Generátor

Tétel (NB)

Legyen p prímszám. Ekkor \mathbb{Z}_p^* -ban van generátor (primitív gyök), azaz van olyan 1 < g < p egész, mely hatványaiként előáll minden redukált maradékosztály: $\{\overline{g^0} = \overline{1}, \overline{g}^-, \overline{g^2}, \dots, \overline{g^{p-1}}\} = \mathbb{Z}_p^*$, azaz $\{1 = g^0, g \mod p, g^2 \mod p, \dots, g^{p-1} \mod p\} = \{1, 2, \dots, p-1\}$.

Példa

3 generátor modulo 7

$$3^{1} = 3 = 3^{0} \cdot 3 \equiv 1 \cdot 3 = 3 \equiv 3 \mod 7$$
 $3^{2} = 9 = 3^{1} \cdot 3 \equiv 3 \cdot 3 = 9 \equiv 2 \mod 7$
 $3^{3} = 27 = 3^{2} \cdot 3 \equiv 2 \cdot 3 = 6 \equiv 6 \mod 7$
 $3^{4} = 81 = 3^{3} \cdot 3 \equiv 6 \cdot 3 = 18 \equiv 4 \mod 7$
 $3^{5} = 243 = 3^{4} \cdot 3 \equiv 4 \cdot 3 = 12 \equiv 5 \mod 7$
 $3^{6} = 729 = 3^{5} \cdot 3 \equiv 5 \cdot 3 = 15 \equiv 1 \mod 7$

Generátor

Példa

2 generátor modulo 11

n	1	2	3	4	5	6	7	8	9	10
2 ⁿ mod 11	2	4	8	5	10	9	7	3	6	1

2 nem generátor modulo 7

n	1	2	3	4	5	6
2 ⁿ mod 7	2	4	1	2	4	1

21.

Diszkrét logaritmus

Definíció

Legyen p prímszám, g generátor modulo p. Ekkor az $a \in \mathbb{Z}$: $(p \nmid a)$ g alapú diszkrét logaritmusa (indexe):

$$\log_g a = n$$
: $a \equiv g^n \mod p$, $0 \le n .$

Példa

3 generátor modulo 7:

n	1	2	3	4	5	6
3 ⁿ	3	2	6	4	5	1

azaz

а	3	2	6	4	5	1
log ₃ a	1	2	3	4	5	6

Diszkrét logaritmus

Példa

2 generátor modulo 11

n	1	2	3	4	5	6	7	8	9	10
2 ⁿ mod 11	2	4	8	5	10	9	7	3	6	1

Logaritmus-táblázat:

а	1	2	3	4	5	6	7	8	9	10
log ₂ a	10	1	8	2	4	9	7	3	6	2

Tétel (HF)

Legyen p prímszám, g generátor modulo p, $1 \leq a,b < p$, $n \in \mathbb{Z}$. Ekkor

$$\log_g(a \cdot b) \equiv \log_g a + \log_g b \mod p - 1$$
$$\log_g(a^n) \equiv n \cdot \log_g a \mod p - 1$$

Alkalmazások

Számelmélet alkalmazási területei:

- Kriptográfia
 - üzenetek titkosítása;
 - digitális aláírás;
 - azonosítás, ...
- Kódelmélet
- . . .

24.

Caesar kód

Julius Caesar katonáival a következő módon kommunikált:

Feleltessük meg az (angol) ábécé betüit a $\{0,1,\ldots,25\}$ halamznak:

Példa

```
hello titkosítása az s=13 kulcscsal:
hello \rightarrow 7 4 11 11 14 \stackrel{\text{titkosítás}}{\rightarrow} 20 17 24 24 1 \rightarrow uryyb urzzc kititkosítása az s=13 kulcscsal:
uryyb \rightarrow 20 17 24 24 1 \stackrel{\text{kititkosítás}}{\rightarrow} 7 4 11 11 14 \rightarrow hello
```

Titkosítás és kititkosítás ugyan azzal a kulcscsal: $-13 \equiv 13 \mod 26$.

A titkosítás nem biztonságos: betűgyakoriság vizsgálattal törhető (al-Kindi i.sz 9 sz.)

Ha a különböző pozíciókban különböző kulcsokat választhatunk (véletlenszerűen) \Rightarrow bizonyítottan biztonságos

Gyakorlatban: One Time Pad - OTP

Üzenetek: bináris formában: m=100100101

Kulcs: bináris sorozat: s=010110110

Titkosítás: bitenkénti XOR (mod2 összeadás):

m=100100101 XOR s=010110110 c=110010011

Kritikus pont: az s titkos kulcs átadása.

Ron **Rivest**, Adi **Shamir** és Leonard **Adleman** 1977-ben a következő eljárást javasolták:

Kulcskenerálás Legyen p, q két (nagy, 1024 bites) prím, $n = p \cdot q$. Legyen $e \in \{1, \dots, \varphi(n)\}$, hogy $(e, \varphi(n)) = 1$. Legyen d az $ex \equiv 1 \mod \varphi(n)$ kongruencia megoldása.

Kulcsok: nyilvános kulcs (n, e).

titkos kulcs d

Titkosítás Adott $0 \le m < n$ üzenet titkosítása: $c = m^e \mod n$.

Kititkosítás Adott $0 \le c < n$ titkosított üzenet kititkosítása: $m = c^d \mod n$.

Algoritmus helyessége

$$c^d \equiv (m^e)^d = m^{e \cdot d} = m^{k \cdot \varphi(n) + 1} \stackrel{\text{E-F}}{\equiv} m \mod n$$

Valóságban az m üzenet egy titkos kulcs további titkosításhoz.

Az eljárás biztonsága azon múlik, hogy nem tudjuk hatékonyan faktorizálni az $n=p\cdot q$ szorzatot.

Feladat

Találjuk meg a következő szám osztóit.

RSA-100 =

5226050279225333605356183781326374297180681149613806886 57908494580122963258952897654000350692006139

RSA-2048=

 $25195908475657893494027183240048398571429282126204032027777137836043662020707595556\\ 26401852588078440691829064124951508218929855914917618450280848912007284499268739280\\ 72877767359714183472702618963750149718246911650776133798590957000973304597488084284\\ 01797429100642458691817195118746121515172654632282216869987549182422433637259085141\\ 86546204357679842338718477444792073993423658482382428119816381501067481045166037730\\ 60562016196762561338441436038339044149526344321901146575444541784240209246165157233\\ 50778707749817125772467962926386356373289912154831438167899885040445364023527381951\\ 378636564391212010397122822120720357$

28.

RSA-2048 faktorizálása:

Próbaosztás (Erathoszthenész szitája): n számot esetén $\sim \sqrt{n}$ osztást kell végezni:

RSA-2048 $\sim 2^{2048}$. $\sim 2^{1024}$ próbaosztás.

Ha 1 másodperc alatt $\sim 10^9 \approx 2^{30}$ osztás $\Rightarrow 2^{1024}/2^{30} = 2^{994}$ másodperc kell a faktorizáláshoz.

 2^{994} másodperc = 2^{969} év.

Ugyan ezt 2 db géppel: 2968 év.

Ugyan ezt a legjobb (ismert) algoritmussal:

Univerzum életkora: 1,38 · 10¹⁰ év.

Példa

Kulcsgenerálás

Legyen p = 61, q = 53 és $n = 61 \cdot 53 = 3233$, $\varphi(3233) = 3120$.

Legyen e=17. Bővített euklidészi algoritmussal: d=2753

Nyilvános kulcs: (n = 3233, e = 17);

Titkos kulcs: d = 2753.

Titkosítás Legyen m = 65.

 $c = 2790 \equiv 65^{17} \mod 3233$

Kititkosítás Ha c = 2790:

 $2790^{2753} \equiv 65 \mod 3233$

Digitális aláírásit is lehet generálni: *e* és *d* felcserélésével:

(Ekkor külön n', e', d' kell a titkosításhoz!)

Aláírás Legyen $s = m^d \mod n$, ekkor az aláírt üzenet: (m, s).

Ellenőrzés $m \stackrel{?}{\equiv} s^e \mod n$.

31.

Diffie-Hellman kulcscsere protokoll

Az első nyilvános kulcsú kriptográfiai rendszert Whitfield **Diffie** és Martin **Hellman** 1976-ban publikálta.

Nyilvános paraméterek p (nagy) pírm, g generátor $\operatorname{mod} p$. **Kulcsok** Alice titkos kulcsa a: $1 \leq a < p-1$, nyilvános kulcsa $g^a \operatorname{mod} p$ Bob titkos kulcsa b: $1 \leq a < p-1$, nyilvános kulcsa $g^b \operatorname{mod} p$

Diffie-Hellman kulcscsere protokoll

A protokoll biztonsága azon múlik, hogy a diszkrét logaritmus kiszámítás nehéz.

Ha $p\sim 2^{2048}$ (2048 bites), diszkrét logaritmus számolása $\sim 10^{30}$ év.

Példa

Nyilvános paraméterek Legyen p = 11, g = 2.

Kulcsok Alice titkos kulcsa a=4, nyilvános kulcsa $2^4 \mod p=5$ Bob titkos kulcsa b=8, nyilvános kulcsa $2^8 \mod p=3$

Közös kulcs $(g^b)^a = 3^4 \mod p = 4$, $(g^a)^b = 5^8 \mod = 4$.

32.

33

Műveletek

Definíció (Művelet)

Egy X halmazon értelmezett (r-változós, "r-ér") művelet alatt egy $*: X^r \to X$ függvényt értünk.

Egy X halmazon értelmezett binér (kétváltozós) művelet egy

 $*: X \times X \to X$ függvény. Gyakran *(x, y) helyett x * y-t írunk.

Egy X halmazon értelmezett unér (egyváltozós) művelet egy $*: X \to X$ függvény.

Példa

- \mathbb{C} halmazon az + is, és · is binér műveletek.
- \mathbb{C} halmazon az \div (osztás) nem művelet, mert $\mathrm{dmn}(\div) \neq \mathbb{C} \times \mathbb{C}$.
- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ halmazon az \div binér művelet.
- C halmazon a 0 illetve 1 konstans kijelölése nullér művelet.
- \mathbb{R}^n (n > 1) vektortéren a vektorok skaláris szorzása nem művelet, mert $\operatorname{rng}(\langle,\rangle) = \mathbb{R} \neq \mathbb{R}^n$ (a szorzás eredménye nem vektor)
- ullet vektortéren egy adott $\lambda \in \mathbb{R}$ skalárral való szorzás unér művelet

Műveleti tulajdonságok

Definíció

 $A * : X \times X \rightarrow X$ művelet:

- asszociatív, ha $\forall a, b, c \in X : (a * b) * c = a * (b * c);$
- kommutatív, ha $\forall a, b \in X : a * b = b * a$.

Példa

- C-n az + ill. a · műveletek asszociatívak, kommutatívak.
- A függvények halmazán a kompozíció művelete asszociatív: $(f \circ g) \circ h = f \circ (g \circ h)$.
- A függvények halmazán a kompozíció művelete nem kommutatív: f(x) = x + 1, $g(x) = x^2$: $x^2 + 1 = (f \circ g)(x) \neq (g \circ f)(x) = (x + 1)^2$.
- A kivonás az egész számok halmazán nem asszociatív: $-1 = (1-1) 1 \neq 1 (1-1) = 1$.

Művelettartó leképezések

Definíció

Legyen X halmaz a * művelettel, Y a \circ művelettel. Az $f:X\to Y$ függvény művelettartó, ha $\forall x,y\in X$ esetén

$$f(x*y)=f(x)\circ f(y).$$

Példa

- Legyen $X = \mathbb{R}$ az + művelettel, $Y = \mathbb{R}^+$ a · művelettel. Ekkor az $x \mapsto a^x$ művelettartó: $a^{x+y} = a^x \cdot a^y$.
- Legyen $X = Y = \mathbb{C}$ az + művelettel. Ekkor a $z \mapsto \overline{z}$ művelettartó: $\overline{z+w} = \overline{z} + \overline{w}$.
- Legyen $X=\mathbb{Z}$ a + művelettel, $Y=\mathbb{Z}_m$ a $+_m$ (összeadás modulo m) művelettel.

Ekkor a $n \mapsto n \mod m$ művelettartó: $(k+n) \mod m = (k \mod m) +_m (n \mod m).$

• Legyen $X = \{I, H\}$ a XOR/ \land művelettel, \mathbb{Z}_2 a $+/\cdot$ művelettel. Ekkor a $H \mapsto 0$, $I \mapsto 1$ hozzárendelés művelettartó (XOR-nak +).

A (H; M) pár algebrai struktúra, ha H egy halmaz, M pedig H-n értelmezett műveletek halmaza.

A $(H; \{*, +, \circ\})$ jelölés helyett a $(H; *, +, \circ)$ jelölést is használhatjuk.

Definíció (Grupoid)

Ha az M művelethalmaz egyetlen műveletet tartalmaz, és az egy binér művelet, akkor a (H; M) struktúrát grupoidnak nevezzük.

- (N; +) algebrai struktúra, mert természetes számok összege természetes szám (ld. Diszkrét matematika 1.), és grupoid is.
- $(\mathbb{N}; -)$ nem algebrai struktúra, mert például $0 1 = -1 \notin \mathbb{N}$.
- $(\mathbb{Z}; +, \cdot)$ algebrai struktúra, mert egész számok összege és szorzata egész szám (ld. Diszkrét matematika 1.), de nem grupoid.
- $(\mathbb{Z}_m; +, \cdot)$ algebrai struktúra (ld. Diszkrét matematika 1.), de nem grupoid, mert két művelet van.

Algebrai struktúrák Diszkrét matematika II.3. előadás Mérai László diái alapján

37.

Félcsoportok

Definíció (Félcsoport)

A (G;*) grupoid félcsoport, ha * asszociatív G-n.

Definíció (egységelem, semleges elem)

Ha létezik olyan $s \in G$ elem, amire $\forall g \in G : s * g = g * s = g$, akkor az s elemet semleges elemnek (más néven egységelemnek) nevezzük.

Definíció (Monoid)

Ha (G;*) félcsoportban létezik s semleges elem, akkor G-t semleges elemes félcsoportnak, egységelemes félcsoportnak, más néven monoidnak nevezzük.

- \mathbb{N} az + művelettel egységelemes félcsoport n=0 egységelemmel.
- \mathbb{Q} a · művelettel egységelemes félcsoport n=1 egységelemmel.
- $\mathbb{C}^{k \times k}$ a mátrixszorzással egységelemes félcsoport az egységmátrixszal mint egységelemmel.