MODULAR CURVES AS RIEMANN SURFACES

JINGXIANG MA

Contents

1. I	Modular Curves As Riemann Surfaces	2
1.1.	Introduction	2
1.2.	Congruence Subgroups	2
1.3.	Fundamental Domain	3
1.4.	$Y(\Gamma)$ is Hausdorff	4
1.5.	Elliptic Points	5
1.6.	$Y(\Gamma)$ as Riemann Surface	5
1.7.	Adding Cusps	7
1.8.	Adding Open Sets	8
1.9.	$X(\Gamma)$ as Compact Riemann Surface	9
References		10

Keywords: Modular Curves.

1. Modular Curves As Riemann Surfaces

1.1. Introduction.

For a congruence subgroup Γ of $SL(2,\mathbb{Z})$, we consider the quotient space $Y(\Gamma) = \Gamma \setminus \mathbb{H}$, this space is not a Riemann Surface in nature, neither it is compact, but there is a standard way to give a Riemann Surface structure to it and also to compactify it into a compact Riemann surface $X(\Gamma)$. This article is about the details about how to give $Y(\Gamma)$ a holomorphic chart, and how to add points and open sets. There are at least two reasons to study this problem:

When $\Gamma = SL(2,\mathbb{Z})$, the quotient space $Y(SL(2,\mathbb{Z}))$ is the moduli space \mathcal{M}_1 of genus 1 Riemann surfaces. Using the method in this article we compactify it into the Riemann sphere, but when it comes to higher genus, compactification of \mathcal{M}_g becomes very difficult, so genus 1 case is the start point.

When Γ is a general congruence subgroup, it turns to consider the moduli space of **enhanced elliptic curves**, there are more information we can get. In fact, the topology of the compactified spaces $X(\Gamma)$ will be used to determine the dimension of certain corresponding spaces of modular forms, which is also an interesting topic.

The reference is the first two chapters of [1].

1.2. Congruence Subgroups.

Definition 1.1. Let N a positive integer.

The principal congruence subgroup of level N is

$$\Gamma(N) = \{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL(2, \mathbb{Z}), \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \equiv \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), modN \}$$

that is, the kernel of the canonical map $SL(2,\mathbb{Z}) \to SL(2,\mathbb{Z}_N)$.

A subgroup Γ of $SL(2,\mathbb{Z})$ is a **congruence subgroup** if $\Gamma(N) \subset \Gamma$ for some positive integer N, and in this case Γ is a congruence subgroup of level N.

Proposition 1.2.

$$[SL(2,\mathbb{Z}):\Gamma(N)]<\infty$$

Proof. Consider the group homomorphism:

$$\pi: SL(2,\mathbb{Z}) \to SL(2,\mathbb{Z}/N\mathbb{Z}), A \mapsto [A]$$

then it's easy to see $\Gamma(N) = Ker\pi$, so

$$[SL(2,\mathbb{Z}):\Gamma(N)] = |SL(2,\mathbb{Z}/N\mathbb{Z})| < \infty$$

Remark. In fact $|SL(2,\mathbb{Z}/N\mathbb{Z})| = N^3 \Pi_{p|N} (1 - \frac{1}{p^2})$, but we don't need this number in this topic.

Corollary 1.3. All congruence subgroup are of finite index.

Definition 1.4. For a congruence group Γ , we denote the quotient space $\Gamma \setminus SL(2,\mathbb{Z})$ by $Y(\Gamma)$.

1.3. Fundamental Domain.

Theorem 1.5. $SL(2,\mathbb{Z})$ is generated by

$$S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

 $S(\tau) = -1/\tau, T(\tau) = \tau + 1,$

and the fundamental domain of $SL(2,\mathbb{Z})$ on \mathbb{H} is

$$D=\{z\in\mathbb{H}, |Re(z)|\leqslant \frac{1}{2}, |z|\geqslant 1\}$$

Proof. We denote the subgroup of $SL(2,\mathbb{Z})$ by Γ First, to show: $\Gamma(D) = \mathbb{H}$: $z \in \mathbb{H}$ Suppose $A \in SL(2,\mathbb{Z})$, then:

$$ImA(z) = \frac{1}{|cz+d|^2} Imz$$

Note that, when $\max\{|c|, |d|\} \to \infty$, $ImA(z) \to 0$, so $\{ImA(z)|A \in SL(2, \mathbb{Z})\}$ has maximum, and for $\gamma \in \Gamma$ we also get a maximum, Suppose $Im\Gamma(w)$ is maximal, we may assume $|Rew| \le 1/2$ by translation, so $|w| \ge 1$ i.e $w \in D$, if |w| < 1, set $w = re^{i\theta}$, then $S(w) = \frac{1}{r}e^{i\pi-\theta}$, note that:

$$Im(S(w)) = \frac{1}{r}sin(\pi - \theta) = \frac{1}{r}sin\theta > rsin\theta = Imw$$

which contradicts to choice of w, so $\Gamma(D) = \mathbb{H}$

Then we can show, if $z, w \in D, A \in SL(2, \mathbb{Z}), Az = w$, then $A \in \Gamma$ and what's more we claim that $z, w \in \partial D$ or $z = w \in D \setminus \partial D$

Firstly, we may assume $Imw \ge Imz$, c > 0, and since $ImA(z) = \frac{1}{|cz+d|^2}Imz$, we get $|cz+d| \le 1$ note also that $z \in D$ impiles $Imz \ge \sqrt{3}/2$, hence:

$$1 \geqslant |cz+d| \geqslant Im(cz+d) = cImz \geqslant \sqrt{3}/2$$

Since $c \in \mathbb{Z}_{\geq 0}$, c = 0 or 1;

If c=0, then det A=ad=1 and $a=d=\pm 1$, so we may assume a=d=1 in this case A is a translation and z,w are at two sides of D; If c=1, then:

$$1 \geqslant |cz+d| = |z+d| = \sqrt{(Rez+d)^2 + Imz^2} \geqslant \sqrt{(Rez+d)^2 + 3/4}$$

note that $|Rez| \le 1/2, d = 0, -1, 1$

Suppose d=0then $b=-1, c=1, A=T^aS$, note that $|z|=|cz+d| \leq 1$, so |z|=1, in this case z is in the blew boundary of D, check that $S(z) \in \partial Da=0,\pm 1$

Suppose $d=\pm 1$, then $|cz+d|=|z\pm 1|\leqslant 1$, note that $z\in D$, only two possible cases left:

(1),
$$d = 1$$
, $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i = \rho$, (2) $d = -1$, $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i = \rho + 1$, (1): $b = a - 1$, and $A\rho = a - 1/(\rho + 1) = \rho + a$ so $a = 0$, $A(z) = z$, $A = ST$

or $a = 1, A(z) = \rho + 1, A = TST$;

(2):b = -a - 1, and $A(z) = a - 1/\rho = a + z$, in this case $a = 0, A(z) = z = \rho + 1, A = ST^{-1}$ or $a = -1, A(z) = \rho, A = T^{-1}ST^{-1}$

So we have shown that D is a fundamental domain, it leaves to show $\Gamma = SL(2,\mathbb{Z})$: take $z_0 \in inner(D)$, then $\forall B \in SL(2,\mathbb{Z}), \exists A \in \Gamma$ such that $A(B(z_0)) \in D$ and now that $z_0 \in inner(D)$, AB must be ± 1 note that $S^2 = -1 \in \Gamma$, so $B \in \Gamma$.

Remark.

$$\Gamma_{\tau} = \begin{cases} \{\pm I\} < S > & \tau = i \\ \{\pm I\} < ST > & \tau = \rho \\ \{\pm I\} & otherwise \end{cases}$$

 $S^4 = (ST)^6 = I_2.$

1.4. $Y(\Gamma)$ is Hausdorff.

Proposition 1.6. $\forall \tau_1, \tau_2, \exists U_1 \supset \tau_1, U_2 \supset \tau_2 \text{ with compact closure, such that:}$

$$\forall \gamma \in SL(2,\mathbb{Z}), \text{ if } \gamma(U_1) \cap U_2 \neq \emptyset, \text{ then } \gamma(\tau_1) = \tau_2.$$

Proof. We first choose any open nbhd U_1', U_2' with bounded closure. Step 1, We can show for only finite many $\gamma \in SL(2, \mathbb{Z}), \gamma(U_1') \cap U_2' \neq \emptyset$. choose $\mathbb{H} \supset \overline{U_i'} \supset U_i' \ni \tau_i$, then by

$$Im(\gamma(z)) = \frac{1}{|cz+d|^2} Imz$$

since $\{Imz, Rez, z \in U_1'\}$ is bounded, for all but finite many (c,d) s.t gcd(c,d) = 1

$$sup\{Im(\gamma(z)), z \in U_1'\} < inf\{Im(z), \tau \in U_2'\}$$

for any of these (c,d), those $\gamma \in SL(2,\mathbb{Z})$ of the form

$$\begin{pmatrix} * & * \\ c & d \end{pmatrix}$$

is in an orbit

$$\gamma_k = \left(\begin{array}{cc} 1 & k \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

so $\gamma_k(U_1') = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + k$, so for fixed (c,d), there are also finite $\gamma SL(2,\mathbb{Z})$ of the form $\begin{pmatrix} * & * \\ c & d \end{pmatrix}$ s.t $\gamma(U_1') \cap U_2 \neq \emptyset$.

Step 2, construction of U_i .

Set

$$F = \{ \gamma \in SL(2, \mathbb{Z}), \gamma(U_1') \cap U_2' \neq \emptyset, \gamma(\tau_1) = \tau_2 \}$$

for any $\gamma \in F$, choose $\gamma(\tau_1) \in U_{1,\gamma}, \tau_2 \in U_{2,\gamma}, U_{1,\gamma} \cap U_{2,\gamma} = \emptyset$, now, let:

$$U_1 = U_1' \cap \{ \cap_{\gamma \in F} \gamma^{-1}(U_{1,\gamma}) \}$$

$$U_2 = U_2' \cap \{ \cap_{\gamma \in F} U_{2,\gamma} \}$$

we show U_i satisfies the property.

if $\gamma(U_1) \cap U_2 \neq \emptyset$ then $\gamma(U_1') \cap U_2' \neq \emptyset$, if also $\gamma(\tau_1) \neq \tau_2$, then $\gamma \in F$, and $\gamma^{-1}(U_{1,\gamma}) \supset U_1, U_{2,\gamma} \supset U_2$.

Consequently, $U_{1,\gamma} \cap U_{2,\gamma} \supset \gamma(U_1) \cap U_2 \neq \emptyset$, which is a contradiction. \square

Corollary 1.7. $Y(\Gamma)$ is hausdorff

Proof. note that $\pi: \mathbb{H} \to Y(\Gamma) = \Gamma \setminus \mathbb{H}$ is an open mapping.

1.5. Elliptic Points.

Definition 1.8. For Γ , a cong subgroup of $SL(2,\mathbb{Z})$, for $\tau \in \mathbb{H}$, we denote the isotropy group by Γ_{τ} , then τ is called elliptic, iff $\pm I$ is a proper subgroup of $\{\pm I\}\Gamma_{\tau}$. The image of elliptic points are also called elliptic.

Proposition 1.9. τ elliptic implies Γ_{τ} finite cyclic, and there are finite many elliptic points.

Proof.

$$SL(2,\mathbb{Z}) = \bigcup_{i=1}^{d} \Gamma \gamma_j$$

SO

$$\mathbb{H} = SL(2, \mathbb{Z})D = \bigcup_{i=1}^{d} \Gamma \gamma_i D = \Gamma(\bigcup_{i=1}^{d} \gamma_i D)$$

since $\Gamma_{\tau} \leqslant SL(2,\mathbb{Z})_{\tau}$, subset of finite cyclic group is also finite cyclic, then all elliptic points are a subset of

$$E_{\tau} = \{ \Gamma \gamma_i(i), \Gamma \gamma_i(\mu_3), 1 \leq j \leq d \}$$

which is finite.

1.6. $Y(\Gamma)$ as Riemann Surface. We have shown that $Y(\Gamma)$ is C2 and Hausdorff, now we give it holomorphic charts.

Definition 1.10. (period)

For $\tau \in \mathbb{H}$

$$h_{\tau} = |\{\pm I\}\Gamma_{\tau} : \{\pm I\}|$$

Remark. h_{τ} only depends on $\Gamma \tau$, so is well defined on pts on $Y(\Gamma)$.

Now, given $\tau \in \mathbb{H}$, we choose the chart near $\pi(\tau)$ as following steps: Step1.

Let

$$\delta_{\tau} = \left(\begin{array}{cc} 1 & -\tau \\ 1 & -\overline{\tau} \end{array} \right)$$

check that $\delta_{\tau}(\tau) = 0, \delta_{\tau}(\overline{\tau}) = \infty.$

The group

$$\delta_\tau(\{\pm I\}\Gamma_\tau/\{\pm I\})\delta_\tau^{-1} = (\delta_\tau\{\pm I\}\Gamma\delta_\tau^{-1})_0/\{\pm I\}$$

is cyclic of order h_{τ} , we choose a generator γ_{τ} of $(\delta_{\tau}\{\pm I\}\Gamma\delta_{\tau}^{-1})_0 \leqslant GL(2,\mathbb{C})$, since γ_{τ} is a fractional linear trans and also γ_{τ} fix 0 and ∞ , γ_{τ} is must of

the form $\pm \begin{pmatrix} \mu_h & 0 \\ 0 & 1 \end{pmatrix}$ whose underlying action is $\gamma_{\tau}(z) = \mu_h z$, and μ_h is a primary h_{τ} -th unit root.

Step 2. Now, $\forall \tau$, take the open nbhd U as in 1.6, and define:

$$\psi: U \to \mathbb{C}, p \mapsto (\delta_{\tau}(p))^{h_{\tau}}$$

note that by choice of U, for any $\tau_1, \tau_2 \in U$, if $\tau_1 \in \Gamma \tau_2$, which means $U \cap \gamma U \neq \emptyset$, then $\gamma \in \Gamma_{\tau}$, so

$$\pi(\tau_1) = \pi(\tau_2) \Leftrightarrow$$

$$\tau_1 \in \Gamma \tau_2 \Leftrightarrow \tau_1 \in \Gamma_\tau \tau_2$$

$$\Leftrightarrow \delta \tau_1 \in (\delta \Gamma_\tau \delta^{-1})(\delta \tau_2) \Leftrightarrow \delta \tau_1 = \mu_h^d(\delta(\tau_2)), \exists d$$

$$\Leftrightarrow \psi(\tau_1) = \psi(\tau_2)$$

so we have shown that:

Proposition 1.11. ψ induce a homeomorphism $\varphi : \pi(U) \to V = \psi(U) \subset V$ such that the following diagram commutes:

Proof. Note that ψ is open mapping and φ is onto.

Remark. From

$$\delta(\tau_1) \in (\delta\Gamma_{\tau}\delta^{-1})(\delta(\tau_2)) \Leftrightarrow \delta(\tau_1) = \mu_h^d(\delta(\tau_2)), \exists d$$

we see that expect for $\pi(\tau)$, there are exactly h_{τ} points on U over a given point in $\pi(U)$, so the definition of period is more natural.

It leaves to show all charts are compatible:

Theorem 1.12. The charts given by 1.11 makes $Y(\Gamma)$ a Riemann surface.

Proof. Suppose $\pi(U_1) \cap \pi(U_2) \neq \emptyset$, U_1, U_2 are two charts, we have the following maps and sets:

we want show that $\varphi_{2,1}$ is holomorphic:

For $x \in \pi(U_1) \cap \pi(U_2)$, suppose $x = \pi(\tau_i), \tau_i \in U_i, \tau_2 = \gamma \tau_1$, let $U_{1,2} = U_1 \cap \gamma^{-1}(U_2)$, we consider the restriction of $\varphi_{2,1}$ to $\pi(U_{1,2})$.

We denote the resp. coordinates by $\delta_i^{h_i}$, firstly, note that holomorphic is local property, and $\varphi_{2,1} = \varphi_{2,3}\varphi_{3,1}$ in smaller nbhd when $x \in \pi(U_3)$.

So we may assume $\delta_1 = \delta_{\tau_1}$, i.e $\varphi_1(x) = 0$.

Now $\forall x' = \pi(\tau') \in \pi(U_{1,2}), \ \varphi_{2,1}(\varphi_1 x') = \varphi_2(x'), \ \text{we compute using two coordinate maps:}$

On the one side,

$$q = \varphi_1(x') = (\delta_{\tau_1}(\tau'))^{h_{\tau_1}}$$

On the other side, for U_2 , suppose $\varphi_2(\widetilde{\tau_2}) = 0$, h_2 the period, then:

$$\varphi_2(x') = (\delta_2(\gamma(\tau')))^{h_2} = [(\delta_2 \cdot \gamma \cdot \delta_{\tau_1}^{-1})(\delta_{\tau_1}(\tau'))]^{h_2}$$

$$[(\delta_2 \cdot \gamma \cdot \delta_{\tau_1}^{-1})q^{\frac{1}{h_1}}]^{h_2}$$

So to show $\varphi_{2,1}$ is holomorphic, it suffices to consider the case τ_1 is elliptic. then $\tau_2 = \gamma(\tau_1) \in U_2$ is also elliptic with the same period.

But U_2 contains at most 1 elliptic pt by choice, so $\tau_2 = \tilde{\tau}_2$ and hence $h_2 = h_1$, now that:

$$0 \xrightarrow{\delta_1^{-1}} \tau_1 \xrightarrow{\gamma} \tau_2 \xrightarrow{\delta_2} 0$$

$$\infty \xrightarrow{\delta_1^{-1}} \overline{\tau_1} \xrightarrow{\gamma} \overline{\tau_2} \xrightarrow{\delta_2} \infty$$

so $\delta_2 \gamma \delta_1^{-1}$ much be of the form $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ for some $\alpha, \beta \in \mathbb{C}^*$, so

$$\varphi_{2,1}(q) = \begin{bmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} q^{\frac{1}{h}} \end{bmatrix}^h = (\frac{\alpha}{\beta})^h q$$

is holomorphic.

1.7. Adding Cusps. The idea comes from compactification of $SL(2,\mathbb{Z})\mathbb{H}$, using the fractional linear transformation

$$f(z) = \frac{z-i}{z+i} : \mathbb{H} \to D^2$$

the fundamental domain is mapped to a triangle with one vertex $f(\infty) = 1$ missing, by adding this point, Y(1) is compactified to $X(1) = S^2$.

Definition 1.13. (cusp point)

A cusp point is a Γ -equivalent class of $\mathbb{Q} \cup \{\infty\} = SL(2,\mathbb{Z})\{\infty\}$

Remark. We set

$$SL(2,\mathbb{Z}) = \bigcup_{j=1}^{d} \Gamma \gamma_j$$

then $\mathbb{Q} \cup \{\infty\} = SL(2,\mathbb{Z})\{\infty\} = \cup_{j=1}^d \Gamma\{\gamma_j\infty\}$, so there are only finite many cusps.

Definition 1.14.

$$\mathbb{H}^* = \mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$$

$$X(\Gamma) := \Gamma \setminus \mathbb{H}^*$$

1.8. Adding Open Sets.

Definition 1.15. $\forall M > 0$, we set

$$\mathcal{N}_M = \{ \tau \in \mathbb{H}, Im(\tau) > M \}$$

We add $\alpha(\mathcal{N}_M \cup \{\infty\}), M > 0, \alpha \in SL(2, \mathbb{Z})$ as open sets of \mathbb{H}^* and take the quotient topology of $X(\Gamma)$.

Under this topology, we show:

Proposition 1.16. $X(\Gamma)$ is Hausdorff.

Proof. By

$$Im(\gamma\tau) = \frac{1}{|cz+d|^2} Im\tau$$

we get

$$Im(\gamma \tau) \leqslant max\{Im\tau, \frac{1}{Im\tau}\}$$
 (1.1)

For $x_1 = \pi(s_1) \neq x_2 = \pi(s_2)$, we show they have disjoint nbhs:

 $(1)s_1, s_2 \in \mathbb{H}$, this have been proved;

 $(2)s_1 \in Q \cup \{\infty\}, s_2 \in \mathbb{H}$, we first take a nbhd U_2 of s_2 with closure compact, then there exists M such that

$$sup\{Imz|\tau \in U\} < M, inf\{Imz|\tau \in U\} > 1/M$$

let $s_1 = \alpha \infty$, then by the inequality 1.1, $\pi(\alpha(\mathcal{N}_M \cup \infty))$ and $\pi(U)$ are disjoint nbhd.

$$(3)s_1, s_2 \in Q \cup \{\infty\}, \text{ set } s_1 = \alpha_1(\infty), s_2 = \alpha_2(\infty), \text{ consider}$$

$$\pi(\alpha_1(\mathcal{N}_2 \cup \infty)), \pi(\alpha_2(\mathcal{N}_2 \cup \infty))$$

they are in fact disjoint in $X(\Gamma)$, since if $\gamma \alpha(\tau_1) \alpha_2(\tau_2), \tau_1, \tau_2 \in \mathcal{N}_2$, then $\alpha_2^{-1} \gamma \alpha_1(\tau_1) = \tau_2$, but τ_1, τ_2 are all in nbhd of ∞ , $\alpha_2^{-1} \gamma \alpha_1$ must be of the form $\pm \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$, that is, a translation, and also we get $\alpha_2^{-1} \gamma \alpha_1(\infty) = \infty$, this implies $\gamma(s_1) = s_2$, which is impossible since s_i are in different Γ -orbits. \square

Proposition 1.17. $X(\Gamma)$ is connectness and compact.

Proof. Since \mathbb{H}^* is connect, its image is also connect. note that $D^* = \mathbb{D} \cup \infty$ is compact, then by finite union.

$$\mathbb{H}^* = SL(2, \mathbb{Z})D^* = \bigcup_{j=1}^d \Gamma_j(\gamma_j D^*)$$

is also compact, so its image is also compact.

1.9. $X(\Gamma)$ as Compact Riemann Surface.

Proposition 1.18.

$$SL(2,\mathbb{Z})_{\infty} = \{\pm \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, m \in \mathbb{Z}\}$$

Definition 1.19. (width)

For $s \in \mathbb{Q} \cup \{\infty\}$, choose $\delta_s \in SL(2,\mathbb{Z}), s.t\delta_s(s) = \infty$, we define the width of s as:

$$h_s = h_{s,\Gamma} = |SL(2,\mathbb{Z})_{\infty} : (\delta\{\pm I\}\Gamma\delta^{-1})_{\infty}|$$

Proposition 1.20. $h_s \leq \infty$ and is independent of δ , in fact,

$$h_s = |SL(2, \mathbb{Z})_s : \{\pm I\}\Gamma_s|$$

Proof. since

$$(\delta\{\pm I\}\Gamma\delta^{-1})_{\infty} = \delta\{\pm I\}\Gamma_s\delta^{-1}$$

 δ_s is independent of δ , and it leaves to show the finiteness. Suppose $SL(2,\mathbb{Z}) = \bigcup_{j=1}^d \Gamma \gamma_j$, it's easy to check that h_∞ is finite:

$$SL(2,\mathbb{Z})_{\infty} = \cup_{\gamma_j \infty = \gamma'_j \infty, \exists \gamma' \in \Gamma} \Gamma_{\infty}(\gamma'_j \gamma_j)$$

so
$$h_{\infty} \leqslant d$$
.

Now we give charts around cusps.

 s, δ, h_s as before, we set $U = \delta^{-1}(\mathcal{N}_2 \cup \{\infty\})$ and

$$\psi: U \to \mathbb{C}, \tau \mapsto e^{2\pi i \frac{\delta(\tau)}{h}}$$

Note that:

$$\pi(\tau_1) = \pi(\tau_2) \Leftrightarrow$$

$$\tau_1 = \gamma \tau_2, \exists \gamma \Leftrightarrow \delta \tau_1 = (\delta \gamma \delta^{-1})(\delta(\tau_2))$$

note that $\delta \tau_i \in \mathcal{N}_2 \cup \infty$, $\delta \gamma \delta^{-1}$ must be a translation, note also that

$$\delta \gamma \delta^{-1} \in \delta \Gamma \delta^{-1} \cap SL(2, \mathbb{Z})_{\infty} = (\delta \Gamma \delta^{-1})_{\infty} \leqslant \pm < \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} >$$

so

$$\pi(\tau_1) = \pi(\tau_2) \Leftrightarrow \delta(\tau_1) = \delta(\tau_2) + mh, h \in \mathbb{Z} \leqslant \psi(\tau_1) = \psi(\tau)$$

so we have shown that:

Proposition 1.21. ψ induce a homeomorphism $\varphi : \pi(U) \to V = \psi(U) \subset V$ such that the following diagram commutes:

It leaves to show all charts are compatible:

Theorem 1.22. The charts given by 1.11 and 1.21 makes $X(\Gamma)$ a compact Riemann surface.

Proof. To check the transition maps are holomorphic, we only need to consider when at least one patch is a cusp nbhd.

take $x \in \pi(U_1) \cap \pi(U_2) \neq \emptyset$,

(1)If $U_1 \in \mathbb{H}, \infty \in U_2$, suppose U_1 corresponds to $\tau_1, \delta_1 = \delta_{\tau_1}$, and $U_2 = \delta_2^{-1}(\mathcal{N}_2 \cup \infty)$, suppose $x = \pi(q_1) = \pi(q_2), q_i \in U_i$, then:

$$q_2 = \gamma q_1, \exists \gamma$$

we consider the nbhd $U_{1,2} = U_1 \cap \gamma^{-1}(U_2)$ of q_1 , now for any $x' = \pi(\tau'), \tau' \in U_{1,2}$, the transition is given by:

$$p = \delta_1(\tau')^{h_1} \mapsto e^{2\pi i \frac{\delta_2 \gamma(\tau')}{h_2}} = e^{2\pi i \frac{\delta_2 \gamma \delta_1^{-1}(\delta_1 \tau')}{h_2}} = e^{2\pi i \frac{\delta_2 \gamma \delta_1^{-1} p^{\frac{1}{h}}(\tau')}{h_2}}$$

if $h_1 = 1$, it is well defined, if $h_1 > 1$, since $\delta_2 \gamma(\tau_1)$ is an elliptic point, and \mathcal{N}_2 contains no elliptic point, we deduce that $\tau_1 \notin U_{1,2}$, so

$$0 \notin \varphi_1(\pi(U_{1,2})) \ni p$$

so in this case $p \mapsto p^{\frac{1}{h}}$ is also holomorphic.

(2)If

$$U_i = \delta_i^{-1}(\mathcal{N}_2 \cup \{\infty\}), \delta_i(s_i) = \infty, i = 1, 2$$

then

$$\pi(U_1) \cap \pi(U_2) \neq \emptyset$$

so there exists $\gamma \in \Gamma$, $\delta_2 \gamma \delta_1^{-1}(\mathcal{N} \cup \{\infty\}) \cap (\mathcal{N}_2 \cup \{\infty\}) \neq \emptyset$, so $\delta_2 \gamma \delta_1^{-1}$ has to be of the form:

$$\pm \left(\begin{array}{cc} 1 & m \\ 0 & 1 \end{array}\right)$$

note that:

$$\gamma(s_1) = \gamma \delta_1^{-1}(\infty) = \pm \delta_2^{-1}(\infty + m) = s_2$$

so $h_1 = h_2 = h$, now we check the transition: $\forall \tau \in U_{1,2}$, the transition is given by:

$$\begin{split} p &= e^{2\pi i \frac{\delta_1(\tau)}{h}} \mapsto e^{2\pi i \frac{\delta_2\gamma(\tau)}{h}} = e^{2\pi i \frac{\delta_2\gamma\delta_1^{-1}(\delta_1(\tau))}{h}} \\ &= e^{2\pi i \frac{\delta_1(\tau) + m}{h}} = e^{2\pi i \frac{m}{h}} p \end{split}$$

which is obviously holomorphic, so we finish the proof.

References

[1] Fred Diamond and Jerry Michael Shurman. A first course in modular forms, volume 228. Springer, 2005.