HolOMa: Holistic Ontology Matching

Agata Barcik, Maximilian Möller

Big Data Praktikum Universität Leipzig, Abteilung Datenbanken

Betreuer: Victor Christen

04. März 2016

Ontologie:

- konzeptionalisiert Wissen einer bestimmten Domäne → Anatomie
- modellierbar als Graph
 - ► Knoten sind Konzepte ~> Herz
 - ► Kanten sind Beziehungen zwischen Konzepten \rightsquigarrow is-a

[WL08]

Matching:

- Finden von korrespondierenden Konzepten in zwei Ontologien
 - → same-as Beziehung zwischen diesen Konzepten
- eine Ontologie wird als Quelle, die andere als Ziel definiert
- Beispiel:

Sei $c_1 := Leukozyt$ ein Konzept in Quelle O_1 .

Sei $c_2 := Weiße Blutzellen$ ein Konzept in Ziel O_2 .

Dann gilt: $\langle c_1, same-as, c_2 \rangle$

Aufgabenstellung:

gegeben:

- Menge \mathcal{O} von Ontologie O_1, \ldots, O_n
- ullet Menge ${\mathcal K}$ von Korrespondenzen zwischen den Ontologien

Aufgabenstellung:

gegeben:

- Menge \mathcal{O} von Ontologie O_1, \ldots, O_n
- ullet Menge ${\mathcal K}$ von Korrespondenzen zwischen den Ontologien

gesucht:

- Menge $\mathcal{K}_{\mathsf{new}}$ von Korrespondenzen, die nicht in \mathcal{K} enthalten sind
- ullet Menge $\mathcal{K}_{\mathsf{false}}$ von Korrespondenzen, die fälschlicherweise in \mathcal{K} sind

Aufgabenstellung:

gegeben:

- Menge \mathcal{O} von Ontologie O_1, \ldots, O_n
- ullet Menge ${\mathcal K}$ von Korrespondenzen zwischen den Ontologien

gesucht:

- Menge $\mathcal{K}_{\mathsf{new}}$ von Korrespondenzen, die nicht in \mathcal{K} enthalten sind
- ullet Menge $\mathcal{K}_{\mathsf{false}}$ von Korrespondenzen, die fälschlicherweise in \mathcal{K} sind

Vorgehen:

- Personalized PageRank [BCX11, PBMW99]
 - Surfen in einem Netzwerk mit einer Teleportationswahrscheinlichkeit zum Startknoten

Technologie:

- HolOMa Prozess in Java 7 implementiert
- Gelly (Graph Processing API, Apache Flink), Release 0.10.2
 - ► Transformationen: *map*, *filter*, . . .
 - ► Mutationen: addVertex, removeEdge, . . .
 - ▶ Aggregation: reduceOnEdges, reduceOnNeighbors, . . .
 - ▶ Iterationen: *vertex centric iteration*, . . .

[Gel]

Überblick

Vertex-Centrix Iteration

- Superstep S_i aus Messaging und Updating
- Messaging

PPR-Wert multipliziert mit normiertem Kantengewicht

Updating

summiere Message-Inhalt, Teleportationswahrscheinlichkeit, wenn Knoten gleich Startknoten

- Iteration terminiert gdw.
 - maximale Anzahl von Iterationen erreicht, oder
 - ▶ jeder Knoten bei Updating seinen Wert nicht ändert

Vertex-Centrix Iteration

Initialisierung

S1: Updating

S1: Updating

S1: Updating

S2: Updating

S2: Updating

S2: Updating

Datenbasis

- 9 Ontologien aus der Bio-Medizin-Domäne
 - $\triangleright \approx 360\,000$ Konzepten,
 - $ightharpoonup pprox 596\,000$ Kanten
- RxNorm (Arzneimittel), PDQ (Krebs), NATPRO (Naturprodukte), Galen (Medizin), MeSH (Medizin), OMIM (Genetik), RadLex (Radiologie), ChEBI (Moleküle), FMA (Anatomie)

Zusammenhangskomponenten

- 74 000 Komponenten mit mind. zwei Konzepten
 - ► AVG(|comp|): 2,36
 - ► MAX(|comp|): 40

Strukturelle Anreicherung

Strukturelle Anreicherung

Zusammenfassung

- Gelly ist ein komfortables Framework
- Anreicherung wirkt sich exponentiell auf Graphgröße aus
- PPR wurde mittels vertex centric iteration implementiert
- noch offen:
 - ► Evaluation verschiedener Settings, z.B. Kantengewichte
 - Heuristiken zur Interpretation von PPR-Ergebnissen

Literatur

- [BCX11] Bahman Bahmani, Kaushik Chakrabarti, and Dong Xin. Fast personalized pagerank on mapreduce. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pages 973–984. ACM, 2011.
 - [Gel] Gelly. Gellyschool. http://gellyschool.com/index.html. abgerufen am 26.02.16, 15:00 Uhr.
- [PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: bringing order to the web. 1999.
 - [WL08] Nicole Washington and Suzanna Lewis. Ontologies: Scientific Data Sharing Made Easy. Nature Education, 1(3), 2008.