HW 8 Multilinear Maps

Liu Mingdao 2020011156

Exercise 1.8.1

1. We first express α, β, γ in the standard dual basis. Let

$$\alpha = \alpha_1 e_1^T + \alpha_2 e_2^T$$
$$\beta = \beta_1 e_1^T + \beta_2 e_2^T$$
$$\gamma = \gamma_1 e_1^T + \gamma_2 e_2^T$$

Then the (i, j, k) entry of $\alpha \otimes \beta \otimes \gamma$ is

$$\alpha_1\beta_1\gamma_1\boldsymbol{e}_1^T\otimes\boldsymbol{e}_1^T\otimes\boldsymbol{e}_1^T\otimes\boldsymbol{e}_1^T+\alpha_2\beta_1\gamma_1\boldsymbol{e}_2^T\otimes\boldsymbol{e}_1^T\otimes\boldsymbol{e}_1^T+\alpha_1\beta_2\gamma_1\boldsymbol{e}_1^T\otimes\boldsymbol{e}_2^T\otimes\boldsymbol{e}_1^T+\alpha_2\beta_2\gamma_1\boldsymbol{e}_2^T\otimes\boldsymbol{e}_2^T\otimes\boldsymbol{e}_1^T+\alpha_1\beta_1\gamma_2\boldsymbol{e}_1^T\otimes\boldsymbol{e}_1^T\otimes\boldsymbol{e}_2^T\otimes\boldsymbol{e}_2^T\otimes\boldsymbol{e}_2^T\otimes\boldsymbol{e}_1^T\otimes\boldsymbol{e}_2^T\otimes\boldsymbol$$

- **2.** We construct M_E . For $\forall M \in (\mathbb{R}^2)^* \otimes (\mathbb{R}^2)^* \otimes (\mathbb{R}^2)$, decompose it into rank one tensors $M = \sum_{i=1}^r \alpha_i \otimes \beta_i \otimes \gamma_i$. Then define $M_E : M \to \sum_{i=1}^r \alpha_i E \otimes \beta_i \otimes \gamma_i$. Then M_E is well-defined transformation on $(\mathbb{R}^2)^* \otimes (\mathbb{R}^2)^* \otimes (\mathbb{R}^2)$.
- **3.** Note that for arbitrary rank-one tensor in $(\mathbb{R}^l)^* \otimes (\mathbb{R}^m)^* \otimes (\mathbb{R}^n)^*$ like $\alpha_i \otimes \beta_i \otimes \gamma_i$, its image under M_E is still rank-one.

For $\forall M \in (\mathbb{R}^l)^* \otimes (\mathbb{R}^m)^* \otimes (\mathbb{R}^n)^*$ with rank r. Let $M' = M_E(M)$. Suppose the rank of M' is r'. From the definition of rank, we decompose $M = \sum_{i=1}^r \alpha_i \otimes \beta_i \otimes \gamma_i$, where $\{\alpha_i \otimes \beta_i \otimes \gamma_i\}$ are distinct rank one tensors. Then $M' = M_E(M) = \sum_{i=1}^r \alpha_i E \otimes \beta_i \otimes \gamma_i$. Since we have expressed M' in r rank one tensors, we know $r' \leq r$.

We decompose $M' = \sum_{i=1}^{r'} \delta_i \otimes \epsilon_i \otimes \zeta_i$, where $\{\delta_i \otimes \epsilon_i \otimes \zeta_i\}$ are distinct rank one tensors. Then $M_{E^{-1}}(M') = \sum_{i=1}^{r'} \delta_i E^{-1} \otimes \epsilon_i \otimes \zeta_i$. Note that $M_{E^{-1}}(M') = M$, we have $M = \sum_{i=1}^{r'} \delta_i E^{-1} \otimes \epsilon_i \otimes \zeta_i$. Since we have expressed M in r' rank one tensors, we know $r \leq r'$.

Combine the two conclusions above, we know r = r', i.e. $rank(M) = rank(M_E(M))$.

- **4.** Suppose the *i*-th "2D" layer of $M \in (\mathbb{R}^l)^* \otimes (\mathbb{R}^m)^* \otimes (\mathbb{R}^n)^*$ has rank r. For $M(-,-,e_i) \in (\mathbb{R}^l)^* \otimes (\mathbb{R}^m)^*$, we have $rank(M(-,-,e_i)) = r$. Suppose $rank(M) = r_M$, i.e. $M = \sum_{i=1}^{r_M} \alpha_i \otimes \beta_i \otimes \gamma_i$. Then feed e_i , we know $M(-,-,e_i) = \sum_{i=1}^{r_M} \gamma_i(e_i)\alpha_i \otimes \beta_i$. We have expressed $M(-,-,e_i)$ in r_M rank one tensors, we get $r \leq r_M$, i.e. rank(M) is at least r.
- 5. rank(M) = 2. Note that the first layer of M has rank 2. From the previous subproblem we know that $rank(M) \ge 2$. Now we conduct a series of elementry "layer" action. To make it clearer, I express it in the following diagram. Let $M_0 = M$.

HW 8 MULTILINEAR MAPS 2

[0 1] L1 [0 1] L2	\[\begin{align*} \be	$ \begin{bmatrix} 4 $	~ _
M.	Mı	M2 M	
[17] 4	[-1 2] 4		$\begin{bmatrix} -1 & 2 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} -\frac{1}{2} & 0 \\ -1 & 2 \end{bmatrix} \qquad L_2$
[0]/2	[00]42		
M ₃	M 4	M4 /	M5 M5
6007 L1	24 L3 50074		
[10]	[0]] 42		
M6	M 7		

- 1. Add L_1 to L_2 , get M_1 .
- 2. Add $-L_4$ to L_3 , get M_2 .
- 3. In M_2 , let L_5 be the layer "behind", and L_6 be the layer "forward".
- 4. Add $-L_5$ to L_6 , get M_3 .
- 5. In M_3 , let L_1 be the layer "upward", and L_2 be the layer "downward".
- 6. Add $-L_2$ to L_1 , get M_4 .
- 7. In M_4 , let L_5 be the layer "behind", and L_6 be the layer "forward".
- 8. Add $\frac{1}{2}L_6$ to L_5 , get M_5 .
- 9. In M_5 , let L_1 be the layer "upward", and L_2 be the layer "downward".
- 10. Add $\frac{1}{2}L_2$ to L_1 , get M_6 .
- 11. Add $\frac{1}{2}L_3$ to L_4 , get M_7 .

Note that $M_7 = \boldsymbol{e}_1^T \otimes \boldsymbol{e}_1^T \otimes \boldsymbol{e}_1^T + 2\boldsymbol{e}_2^T \otimes \boldsymbol{e}_2^T \otimes \boldsymbol{e}_2^T$. So $rank(M) = rank(M_7) \leq 2$. Conbine the two conclusions above, we have rank(M) = 2.

Exercise 1.8.2 We suppose
$$M \in (\mathbb{R}^n)^* \otimes (\mathbb{R}^n)^* \otimes (\mathbb{R}^n)^*$$
, then $M = \sum_{i,j,k \in \{1,2,3\}} (i+j+k) \boldsymbol{e}_i^T \boldsymbol{e}_j^T \boldsymbol{e}_k^T$.

1. By direct calculation, we have $M(\boldsymbol{v}, \boldsymbol{v}, \boldsymbol{v}) = 3x^3 + 6y^3 + 9z^3 + 12x^2y + 15x^2z + 15y^2x + 21y^2z + 21z^2x + 24z^2y + 36xyz$.

2. We try to find the (i, j, k) entry of M^{σ} . For $\forall i, k, j \in \{1, 2, 3\}$, construct $p : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ s.t. p(1) = i, p(2) = j, p(3) = k. Then

$$\begin{split} M^{\sigma}(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}, \boldsymbol{e}_{k}) &= M^{\sigma}(\boldsymbol{e}_{p(1)}, \boldsymbol{e}_{p(2)}, \boldsymbol{e}_{p(3)}) \\ &= M(\boldsymbol{e}_{p(\sigma(1))}, \boldsymbol{e}_{p(\sigma(2))}, \boldsymbol{e}_{p(\sigma(3))}) \\ &= p \circ \sigma(1) + p \circ \sigma(2) + p \circ \sigma(3) \\ &= p(1) + p(2) + p(3) \\ &= i + j + k \end{split}$$

Then M and M^{σ} have the same entries, i.e. $M=M^{\sigma}.$

3. Consider $M(-,-,e_1)$. For $\forall x,y \in \mathbb{R}^3$, $M(x,y,e_1)=x^TAy$, where $A=\begin{bmatrix}3&4&5\\4&5&6\\5&6&7\end{bmatrix}$. Note that the row

reduced echelon form of A is $\begin{bmatrix} 1 & 0 & -1 \\ & 1 & 2 \\ & & 0 \end{bmatrix}$, so rank(A) = 2. From **1.8.1.4**, $rank(M) \ge 2$. Let $A = \alpha_1 \beta_1^T + \alpha_2 \beta_2^T$,

$$\gamma = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \delta = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$
, then we know that

$$M = (\alpha_1^T \otimes \beta_1^T + \alpha_2^T \otimes \beta_2^T) \otimes \gamma^T + \gamma^T \otimes \gamma^T \otimes \delta^T$$
$$= \alpha_1^T \otimes \beta_1^T \otimes \gamma^T + \alpha_2^T \otimes \beta_2^T \otimes \gamma^T + \gamma^T \otimes \gamma^T \otimes \delta^T$$

M can be expressed as the sum of three "rank-one" things, so $rank(M) \leq 3$.

Exercise 1.8.3

1. For $\forall \lambda, \mu \in \mathbb{R}, \forall v_1, v_2 \in V, \forall w_1, w_2 \in W$, we have

$$X \otimes Y(\lambda \boldsymbol{v}_1 + \mu \boldsymbol{v}_2, \boldsymbol{w}_1) = X(\lambda \boldsymbol{v}_1 + \mu \boldsymbol{v}_2) \otimes Y(\boldsymbol{w}_1)$$

$$= X(\lambda \boldsymbol{v}_1) \otimes Y(\boldsymbol{w}_1) + X(\mu \boldsymbol{v}_2) \otimes Y(\boldsymbol{w}_1)$$

$$= \lambda X \otimes Y(\boldsymbol{v}_1, \boldsymbol{w}_1) + \mu X \otimes Y(\boldsymbol{v}_2, \boldsymbol{w}_1)$$

$$X \otimes Y(\boldsymbol{v}_1, \lambda \boldsymbol{w}_1 + \mu \boldsymbol{w}_2) = X(\boldsymbol{v}_1) \otimes Y(\lambda \boldsymbol{w}_1 + \mu \boldsymbol{w}_2)$$

$$= X(\boldsymbol{v}_1) \otimes Y(\lambda \boldsymbol{w}_1) + X(\boldsymbol{v}_1) \otimes Y(\mu \boldsymbol{w}_2)$$

$$= \lambda X \otimes Y(\boldsymbol{v}_1, \boldsymbol{w}_1) + \mu X \otimes Y(\boldsymbol{v}_1, \boldsymbol{w}_2)$$

So $X \otimes Y$ is bilinear.

2. Note that trace is independent of basis, we try to solve this problem under a certain basis. Suppose dimV = n, dimW = m, $\{v_1, \dots, v_n\}$ forms a basis of V, $\{w_1, \dots, w_m\}$ forms a basis of W. Then

$$T: \{\underbrace{v_1 \otimes w_1, v_1 \otimes w_2, \cdots, v_1 \otimes w_n}_{n \; ext{tensors as a group}}, \cdots, \underbrace{v_m \otimes w_1, v_m \otimes w_2, \cdots, v_m \otimes w_n}_{n \; ext{tensors as a group}} \}$$

form a basis of $V \otimes W$, and in this problem we always arrange the basis in the same order as presented above. Suppose the matrix of X under $\{v_1, \dots, v_n\}$ is $A = [a_1, \dots, a_n]_{n \times n}$, and the matrix of Y under $\{w_1, \dots, w_m\}$ is $B = [b_1, \dots, b_m]_{m \times m}$.

From the previous subproblem, we treat $X \otimes Y$ as a linear transformation on $V \otimes W$. We know

$$X \otimes Y(\boldsymbol{v}_i \otimes \boldsymbol{w}_i) = \boldsymbol{T}a_i \otimes b_i$$

where $Ta_i \otimes b_j$ denotes using $a_i \otimes b_j$ as coefficients to form a linear compsition of basis T. Thus, the matrix of $X \otimes Y$ under basis T is

$$M = \underbrace{[a_1 \otimes b_1, a_1 \otimes b_2, \cdots, a_1 \otimes b_n]}_{n \text{ vectors as a group}}, \cdots, \underbrace{a_m \otimes b_1, a_m \otimes b_2, \cdots, a_m \otimes b_n}_{n \text{ vectors as a group}}]_{mn \times mn}$$

Then
$$trace(M) = \sum_{i=1}^{m} (a_{ii} \cdot \sum_{j=1}^{n} b_{jj}) = (\sum_{i=1}^{m} a_{ii})(\sum_{j=1}^{n} b_{jj}) = trace(X)trace(Y).$$

Exercise 1.8.4 Map *trace* is in the space $(\mathbb{R}^n)^* \otimes \mathbb{R}^n$.

For $\forall M \in \mathbb{R}^n \otimes (\mathbb{R}^n)^*$, decompose it into the tensors of the standard basis, we have

$$M = \sum_{i,j \in \{1,\cdots,n\}} m_{ij} oldsymbol{e}_i \otimes oldsymbol{e}_j^T$$

From the definition of trace map, we know $trace(M) = \sum_{k=1}^{n} m_{kk}$. Thus, the entries of trace in $(\mathbb{R}^n)^* \otimes \mathbb{R}^n$ under the standard basis is $trace = \sum_{k=1}^{n} e_k^T \otimes e_k$.