Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 \cdot \left(2 - \frac{3}{4} : \frac{1}{2}\right) = 2 \cdot \left(2 - \frac{3}{2}\right) =$	3 p
	$=2\cdot\frac{1}{2}=1$	2 p
2.		2p
	$g(1) = -3 \Rightarrow f(1) + g(1) = 3 + (-3) = 0$	3 p
3.	$2^{4-x} = 2^2 \Leftrightarrow 4-x = 2$	3 p
	x=2	2p
4.	$\frac{30}{100} \cdot 70 = 21$ de lei	3р
	100	
	Prețul după scumpire este 70+21=91 de lei	2p
5.	AB=4, $AC=3$	2p
	$BC = 5$, de unde obţinem $P_{\Delta ABC} = AB + BC + AC = 12$	3p
6.	AC BC 2 4	
	$\frac{1}{\sin B} = \frac{1}{\sin A} \Leftrightarrow \frac{1}{\sin B} = \frac{1}{1}$	3р
	$\frac{AC}{\sin B} = \frac{BC}{\sin A} \Leftrightarrow \frac{2}{\sin B} = \frac{4}{\frac{1}{2}}$	
	$\sin B = \frac{1}{4}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & -2 \\ 2 & 1 \end{vmatrix} = 3 \cdot 1 - (-2) \cdot 2 =$ $= 3 + 4 = 7$	3p 2p
b)		2p
	$2B + I_2 = 2 \begin{pmatrix} 4 & -3 \\ 3 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -6 \\ 6 & 3 \end{pmatrix} =$	3 p
	$=3\begin{pmatrix} 3 & -2 \\ 2 & 1 \end{pmatrix} = 3A$	2p
c)	$A \cdot X - B \cdot X = I_2 - X \Leftrightarrow (A - B + I_2) \cdot X = I_2$	2p
	Cum $\det(A-B+I_2) = \begin{vmatrix} 0 & 1 \\ -1 & 1 \end{vmatrix} = 1$, obținem $X = (A-B+I_2)^{-1}$, deci $X = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$	3p
2.a)	1*3=3-(1-3)(3-3)=	3 p
	=3-0=3	2p

b)	x*2=3-(x-3)(2-3)=3+x-3=x, pentru orice număr real x	2 p
	2 * x = 3 - (2 - 3)(x - 3) = 3 + x - 3 = x, pentru orice număr real x, deci $e = 2$ este elementul	3p
	neutru al legii de compoziție "*"	Эр
c)	x*(x+6) = 3-(x-3)(x+3), pentru orice număr real x	2 p
	$3-(x-3)(x+3) \ge 3 \Leftrightarrow (x-3)(x+3) \le 0$, de unde obţinem $x \in [-3,3]$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = -\frac{4}{x^2} + \frac{1}{x} - 0 =$	3p
	$= \frac{-4+x}{x^2} = \frac{x-4}{x^2}, \ x \in (0, +\infty)$	2 p
b)	$f'(x) = 0 \Leftrightarrow x = 4$	2 p
	$f'(x) \le 0$, pentru orice $x \in (0,4] \Rightarrow f$ este descrescătoare pe $(0,4]$ și $f'(x) \ge 0$, pentru	2
	orice $x \in [4, +\infty) \Rightarrow f$ este crescătoare pe $[4, +\infty)$	3 p
c)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{4}{x^2} + \frac{\ln x}{x} - \frac{5}{x} \right) = 0$	3 p
	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{4}{x} + \ln x - 5\right) = +\infty, \text{ deci nu există asimptotă spre } +\infty \text{ la graficul funcției } f$	2 p
2.a)	$\int_{1}^{2} (f(x) - e^{x} - 3) dx = \int_{1}^{2} 3x^{2} dx = x^{3} \Big _{1}^{2} =$	3 p
	=8-1=7	2 p
b)	$\int_{0}^{1} x (f(x) - 3x^{2}) dx = \int_{0}^{1} (xe^{x} + 3x) dx = (xe^{x} - e^{x}) \Big _{0}^{1} + \frac{3x^{2}}{2} \Big _{0}^{1} =$	3 p
	$=1+\frac{3}{2}=\frac{5}{2}$	2p
c)	$f'(x) = e^x + 6x \Rightarrow f(x) - f'(x) = 3(x-1)^2$, deci $\int_0^a \frac{1}{f(x) - f'(x)} dx = \frac{1}{3} \int_0^a \frac{1}{(x-1)^2} dx =$	3p
	$= -\frac{1}{3} \cdot \frac{1}{x-1} \Big _0^a = -\frac{1}{3} \cdot \left(\frac{1}{a-1} + 1\right), \text{ pentru orice } a \in (0,1)$	- F
	$-\frac{1}{3} \cdot \left(\frac{1}{a-1} + 1\right) = \frac{1}{6}$, de unde obţinem $a = \frac{1}{3}$, care convine	2 p