National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Theory of Automata	Course Code:	CS-3005
Degree Program:	BS (CS)	Semester:	Fall 2022
Exam Duration:	60 Minutes	Total Marks:	25
Paper Date:	28-9-2022	Weight	15%
Section:	ALL	Page(s):	6
Exam Type:	Midterm-I		

Instruction/Notes: Answer in the space provided, showing complete working.

ROUGH SHEETS ARE NOT ALLOWED.

In case of confusion or ambiguity make a reasonable assumption.

Good luck!

Question 1: (10 points):

Design deterministic finite automata of the following language:

$$\Sigma = \{a,b\}$$

L= $\{x \mid x \in \Sigma^* \text{ and } |x| \text{ is divisible by 2 but not divisible by 4 and x has at least one occurrence of } \mathbf{aba} \}$

Using the extended transition function for NFA-NULL, tell whether the string $ab \in L$ or not. Show full working.

$$S^{4}(1, \Lambda) = \Lambda \quad \{13 = \{14\} \}$$

$$S(1, \Lambda) = \Lambda \quad \{S(1, \Lambda)\}$$

$$= \Lambda \quad \{23\}$$

$$= \{2, 3\}$$

$$= \{2, 3\}$$

$$= \{3, 3\}$$

$$= \Lambda \quad \{S(2, b) \cup \{S(3, b)\}\}$$

$$= \Lambda \quad \{3, 4\}$$

$$= \Lambda \quad \{3, 4\}$$

$$= \{3, 4, 5\}$$

Roll Number:	Section:

Question 3 (10 points): Extract the regular expression from the following DFA using the state elimination method. Delete states in increasing order [delete $q_0, q_1, q_2,$ So on]

Roll Number:______ Section: _____

Now 1 - '93

-> (3) b+ab. (ab+b) = (2)

RE: 6+ ab (ab +b)*

Roll Number:	Section:
//for rough work	