

K-Means Intuition: Understanding K-Means

What K-Means does for you

167. K-Means Clustering Intuition of the Continuat ?

STEP 1: Choose the number K of clusters

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid - That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid.

If any reassignment took place, go to STEP 4, otherwise go to FIN.

Your Model is Ready

Playback Rate

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

167. K-Means Clustering Intuition a gorithm

STEP 3: Assign each data point to the closest centroid \implies That forms K clusters

STEP 3: Assign each data point to the closest centroid - That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid. If any reassignment took place, go to STEP 4, otherwise go to FIN.

STEP 4: Compute and place the new centroid of each cluster

167. K-Means Clustering Intuition Salgorithm

FIN: Your Model Is Ready

K-Means Intuition: Random Initialization Trap

If we choose K = 3 clusters...

...the following three clusters

But what would happen if we had a bad random initialisation?

STEP 3: Assign each data point to the closest centroid - That forms K clusters

STEP 5: Reassign each data point to the new closest centroid. If any reassignment took place, go to STEP 4, otherwise go to FIN.

Solution

K-Means++

K-Means Intuition: Choosing the right number of clusters

Choosing the right number of clusters

169. K-Means Selecting The Number Of Clusters right number of clusters

WCSS =

Choosing the right number of clusters

169. K-Means Selecting The Number Of Clusters right number of clusters

$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2$$

Choosing the right number of clusters

HC Intuition: Understanding HC

Hierarchical Clustering performs better than K-Means on large datasets: False

What HC does for you

Same as K-Means but different process

NOTE Agglomerative Divisive

STEP 1: Make each data point a single-point cluster - That forms N clusters

STEP 2: Take the two closest data points and make them one cluster → That forms N-1 clusters

STEP 3: Take the two closest clusters and make them one cluster
That forms N - 2 clusters

STEP 4: Repeat STEP 3 until there is only one cluster

Euclidean Distance

Euclidean Distance between P₁ and P₂ = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Distance Between Clusters

Distance Between Two Clusters:

- Option 1: Closest Points
- Option 2: Furthest Points
- Option 3: Average Distance
- Option 4: Distance Between Centroids

Consider the following dataset of N = 6 data points

STEP 1: Make each data point a single-point cluster → That forms 6 clusters

STEP 2: Take the two closest data points and make them one cluster

→ That forms 5 clusters

STEP 3: Take the two closest clusters and make them one cluster
→ That forms 4 clusters

STEP 4: Repeat STEP 3 until there is only one cluster

STEP 4: Repeat STEP 3 until there is only one cluster

HC Intuition: How Do Dendograms Work?

How Do Dendograms Work?

How Do Dendograms Work?

How Do Dendograms Work?

HC Intuition: Using Dendrograms

Dendrograms - Two Clusters

Dendrograms - Four Clusters

Dendrograms - Six Clusters

Dendrograms - Optimal # of Clusters

Dendrograms - Knowledge Test

