עיבוד שפה טבעית ש8: תיוג רצפים נוירוני (SLP 9)

- AND נדמיין פרספטרון שצריך לחשב
 - OR וכעת פרספטרון שצריך לחשב

- AND נדמיין פרספטרון שצריך לחשב
 - OR וכעת פרספטרון שצריך לחשב

• נרכיב שלושה פרספטרונים אחד על-גבי השני

• סתם חיבור לא יעזור (למה?) ולכן נוסיף אקטיבציה בשכבה האמצעית (השכבה הנחבאת, hidden layer)

(Feedforward NNs, FFN, MLP) רשתות נוירונים בהיזן קדמי

מגבלות ה-FFN

- התייחסות לכל הקלט בבת אחת
- (bag-of-words) חישובים שאינם תלויים ב**סדר** הקלט
 - מוגבל לחיזוי תג אחד (מה נעשה עם תיוג רצפים?)

(Recurrent Neural Net - RNN) רשת נוירונים נשנית

• נתחיל בדוגמה מקלט בעל נוירון אחד: המצב בתא הכחול **נשמר**

(Recurrent Neural Net - RNN) רשת נוירונים נשנית

נתחיל בדוגמה מקלט בעל נוירון אחד: המצב בתאהכחול נשמר

ומועבר למצב הבא •

(Recurrent Neural Net - RNN) רשת נוירונים נשנית

- נתחיל בדוגמה מקלט בעל נוירון אחד: המצב בתא הכחול **נשמר**
 - ומועבר למצב הבא●
 - וכך הלאה •
 - חשוב: הפרמטרים הם אותם פרמטרים
 - unrolled צורת ההצגה הזאת נקראת פרישה, גלילה

רשת נשנית - פורמלית

- T,...,1 על-פני זמן x קלטים על-פני
 - h מצב חבוי
- recurrence relation קשר ההישנות
 - במקרה שראינו:

• $\theta = \{\theta_x, \theta_h, b\}$; $f(x,h) = \theta_x x + \theta_h h + b$

• $h_t = f(x_t, h_{t-1}; \boldsymbol{\theta})$

- מקרים יותר סבוכים:
- (כמעט תמיד) קלט שהוא בעצמו וקטור
- ואז שכבת הפרמטרים היא.... ■
- רשת עם f שדואג לא "לשכוח" מצבים רחוקים \circ

מקרי שימוש ברשת נשנית

אימון רשת נשנית

- אלגוריתם העדכון של רשת רגילה backpropagation: מריצים את הרשת, מחשבים
 הפסד, מפעפעים לכל הפרמטרים ע"י כלל השרשרת
- ברשת נשנית, נריץ את כל הרשת ונפעפע את כל ההפסדים עבור רצף קלט בבת אחת:

 backpropagation through time

אימון רשת נשנית

הרבה פעמים נחתוך את ההרצה באמצע ונפעפע בשלבים truncated backpropagation through time

גרסאות לפונקציית ההישנות

מה שראינו עד עכשיו, הכי פשוט (ולכן נקרא גם "ונילי" Vanilla RNN) (נקרא גם על-שם ההוגה Elman RNN)

מכיל מרכיבים שנועדו לשמור על מצבים (Long Short-Term Memory) רחוקים הכי נפוץ בשימוש כיום

פשרה בין שני הקיצוניים - Gated פשרה בין שני הקיצוניים Recurrent Unit LSTM-אחורה אבל מהיר בהרבה מ

קלט וקטורי

- שיכוני מילים (Word embeddings) נלמד באריכות עוד שבועיים •
- בינתיים נתייחס לזה כאל ״קופסה שחורה״ בהינתן מילה, מישהו חישב עבורה וקטור
 - הווקטורים "מאוחסנים" בטבלאות
 - ויכולים בעצמם להיחשב לפרמטרים של המערכת 🔾

	e ₁	e_2	e_3	e_4	e ₅	e ₆
יום	0.07	-0.33	-0.73	0.95	1.10	0.64
מ	0.11	-0.63	0.23	-0.12	-0.75	1.33
וונים	0.27	-0.12	0.11	0.43	-0.31	-0.21
45	4.03	-1.13	0.92	1.34	0.09	-1.50
״ב	0.55	0.01	0.48	7.01	0.44	0.02

רשת נשנית דו-כיוונית (Bidirectional RNN)

- עבור משימות תיוג, הקשר ״עתידי״ חשוב כמו הקשר ״מהעבר״ ●
- עברית: אם המילה הבאה היא בבירור מילת יחס, הנוכחית כמעט בוודאותאינה מילת יחס)

המבנה מבדיל בין הכיוונים - לכל כיוון יש את הפרמטרים שלו
 וה"חיבור" נעשה רק ברמה הבאה

שכבות ברשת נשנית

- פלט משכבה אחת עולה כקלט לשכבה הבאה •
- ברשת חד-כיוונית, אפשר למקבל את העיבוד
- ברשת דו-כיוונית חייבים לחכות לסוף המקטעעבור כל שכבה

מימוש עבור תיוג

טיזר לנושא הנוירוני הבא-הבא

בשני המקרים האלה הפרמטר החבוי ברשת הנשנית צריך "לזכור" המון

טיזר לנושא הנוירוני הבא-הבא

● נלמד ״לתת תשומת לב״ לכל הקלט בשלבי החיזוי או היצירה

Attention models רשתות צומי

למימושים - PyTorch

https://pytorch.org/

- תמיכה בהרבה מאוד סוגי רשתות נוירונים (במודול torch.nn)●
- בניה מודולרית של רשתות, הרצת הסקה (קדימה) ולמידה (אחורה) מובנית
 - <u>הדרכת פייטורץ'</u> עם דוגמת סיווג מסמכים

