ตารางที่ 6–17 อัลกอริทึมกฎการเรียนรู้เพอร์เซปตรอน

Algorithm: Perceptron-Learning-Rule

1. Initialize weights woof the perceptron. ชางาง ประจาก * เกาง (รแท)

2. UNTIL the termination condition is met DO

2.1 FOR EACH training example DO

- Input the example and compute the output. f(4wx)

 Change the weights if the output from the perceptron is not equal to the target output using the following rule.

 $w_i \leftarrow w_i + w_i$ $\Delta w_i \leftarrow \alpha(t-o)x_i$ $\Delta w_i \leftarrow \alpha(t-o)x_i$ $\Delta w_i \leftarrow \alpha(t-o)x_i$

where t, o and α are the target output, the output from the perceptron and the learning rate, respectively.

การปรับน้ำหนักตามกฎการเรียนรู้เพอร์เซปตรอนโดยใช้อัตราการเรียนรู้ที่มีค่าน้อย เพียงพอ จะได้ระนาบหลายมิติที่จะลู่เข้าสู่ระนาบหนึ่งที่สามารถแบ่งข้อมูลออกเป็นสองส่วน (ในกรณีที่ข้อมูลสามารถแบ่งได้) เพื่ออธิบายผลที่เกิดจากการปรับค่าน้ำหนัก เราจะลอง พิจารณาพฤติกรรมของกฎการเรียนรู้นี้ดูว่าทำไมการปรับน้ำหนักเช่นนี้จึงสู่เข้าสู่ระนาบที่ แบ่งข้อมูลได้อย่างถูกต้อง

- พิจารณากรณีแรกที่เพอร์เซปตรอนแยกตัวอย่างสอนตัวหนึ่งที่รับเข้ามาได้ถูกต้อง กรณีนี้จะพบว่า (t-o) จะมีค่าเป็น 0 ดังนั้น Δw_i ไม่เปลี่ยนแปลงเพราะ $\Delta w_i = \alpha(\text{t-o})x_i$

Josephino CBORN

- \circ ถ้า $x_i > 0$ จะได้ว่า Δw_i มากกว่า 0 เพราะว่า $\Delta w_i \leftarrow \alpha(t-o)x_i$ และ α มากกว่า 0, (t-o) = 2 และ $x_i > 0$ จากสมการการปรับน้ำหนัก $w_i \leftarrow w_i + \Delta w_i$ เมื่อ Δw_i มากกว่า 0 จะทำให้ w_i มีค่าเพิ่มขึ้นและ $\sum w_i x_i$ ก็จะมีค่าเพิ่มขึ้น เมื่อผลรวมมีค่ามากขึ้นแสดงว่าการปรับไปในทิศทางที่ ถูกต้องคือเมื่อปรับไปจนกระทั่งได้ผลรวมมากกว่า 0 จะทำให้ เพอร์เซปตรอนเอาต์พูตได้ถูกต้องยิ่งขึ้น
- \circ ถ้า $x_i < 0$ เราจะได้ว่า $\alpha(t-o)x_i$ จะมีค่าน้อยกว่า 0 แสดงว่า w_i ตัวที่คูณ กับ x_i ที่น้อยกว่า 0 จะลดลงทำให้ $\sum w_i x_i$ เพิ่มขึ้นเหมือนเดิม เพราะ x_i เป็นค่าลบและ w_i มีค่าลดลง ในที่สุดก็จะทำให้เพอร์เซปตรอนให้ เอาต์พุตได้ถูกต้องยิ่งขึ้น
- ในกรณีที่เพอร์เซปตรอนให้เอาต์พุตเป็น 1 แต่เอาต์พุตเป้าหมายหรือค่าที่แท้จริง เท่ากับ -1 จะได้ว่า w_i ของ x_i ที่เป็นค่าบวกจะลดลง ส่วน w_i ของ x_i ที่เป็นค่าลบ จะเพิ่มขึ้นและทำให้การปรับเป็นไปในทิศทางที่ถูกต้องเช่นเดียวกับในกรณีแรก

6.7.2 ตัวอย่างการเรียนฟังก์ชัน AND และ XOR ด้วยกฎเรียนรู้เพอร์เซปตรอน

พิจารณาตัวอย่างการเรียนรู้ของเพอร์เซปตรอนโดยจะให้เรียนรู้ฟังก์ชัน 2 ฟังก์ชัน ฟังก์ชัน แรกคือฟังก์ชัน AND แสดงในตารางที่ 6–18 ในกรณีนี้เราใช้ฟังก์ชันใบนารีเป็นฟังก์ชัน กระตุ้น

x_1	x_2	เอาต์พุต			
		เป้าหมาย			
0	0	0			
0	1	0			
1	0	0			
1	1	1			

ฟังก์ชัน AND ตามตารางด้านบนนี้จะให้ค่าที่เป็นจริงก็ต่อเมื่อ x1 และ x2 เป็นจริงทั้งคู่ (ดูที่ สดมภ์เอาต์พุตเป้าหมาย) ผลการใช้กฎการเรียนรู้เพอร์เซปตรอนกับฟังก์ชัน AND แสดงใน ตารางที่ 6–19

שמטים ס מסח ו אפאטים ט פסם כ

1.10

0.00

ตารางที่ 6–19 ผลการเรียนรู้ฟังก์ชัน AND โดยกฎการเรียนรู้เพอร์เซปตรอน													
	Perceptron Learning Example - Function AND												
						Cix	m) _	\.f	E LRI	ויא	7(00	0	
<i>N</i> .			Bias Inpu	ut x0=+1		3,0	L'Y	Alpha =	0.5	1		1	ant of Co.Al o
⁰ J _Q C, ,	Input	Input	<u> </u>		<u> </u>	Net Sum	Target	Actual	Alpha*	W	eight Valı	ies	01+03
1 650gr	x1	x2	1.0*w0	x1*w1	x2*w2	= Input	Output	Output	Error	w0	w	W2	, sake
										0.1	0.1	0.1	(d) / (la)
1800	<u></u>	0		,				<u> </u>		-0.40 -0.40	0.10		W. 1877 + 0.5 [0
Non }	0	0	-0.40	_			•			-0.40 -0.40	0.10	0.10 0.10	ر ا ا
	1	1	-0.40		•	_		. 0		0.10	0.10	0.10	Taxet - Actual
	0	0		_		_			(-0.50	-0.40	0.60	0.60	0.1 +0.5(1-0)1
1 600 }	0	1	-0.40						-0.50	-0.90	0.60		-10-074
	1	0	-0.90	0.60	0.00	-0.30	0	0	0.00	-0.90	0.60	0.10	7 2 2 2 3 7
	1	1	-0.90	0.60	0.10	-0.20	1	0	0.50	-0.40	1.10	0.60	
	0	0	-0.40	0.00	0.00	-0.40	0	0	0.00	-0.40	1.10	0.60	-0.4 0.5(4-0)1
	0	1	-0.40	0.00	0.60	0.20	0	1	-0.50	-0.90	1.10	0.10	-0.070.9(
	1	0							-0.50	-1.40			
	1	1	-1.40					0		-0.90	1.10		
	0	0								-0.90	1.10		
	1	0	-0.90 -0.90		0.60		0		-0.50	-0.90 -1.40	0.60	0.60	
	1	1	-1.40				1	0			1.10		
	0	0					0			-0.90	1.10		
	0	1	-0.90						-0.50	-1.40	1.10		
	1	0	-1.40	1.10	0.00	-0.30	0	0	0.00	-1.40	1.10	0.60	
	1	1	-1.40	1.10	0.60	0.30	1	1	0.00	-1.40	1.10	0.60	

0.00

0.00

0.60

-0.80

-1.40

1. W D=0 output

X 1 2 2 2 3 0 output

ขั้นตอนแรกเริ่มจากการสุ่มค่า w_0 จนถึง w_2 ในที่นี้กำหนดให้เป็น 0.1 ทั้งสามตัว จากนั้น ก็เริ่มป้อนตัวอย่างเข้าไป (ทีละแถว) ตัวอย่างแรกได้ผลรวมเชิงเส้น (Net Sum) เป็น 0.10 ซึ่งมากกว่า 0 ดังนั้นเปอร์เซปตรอนจะให้เอาต์พุตจริง (Actual Output) ออกมาเป็น 1 ซึ่งผิด เพราะเอาต์พุตเป้าหมาย (Target Output) จะต้องได้เป็น 0 ทำให้อัตราการเรียนรู้คูณค่า ผิดพลาด (Alpha x Error) ได้ -0.50 หลังจากนี้ก็นำไปปรับน้ำหนักตาม $w_i \leftarrow w_i + \Delta w_i$ และ $\Delta w_i \leftarrow \alpha(t-o)x_i$ ดังนั้นจะได้เป็น $w_0 \leftarrow w_0 + \alpha(t-o)x_0 = w_0 + 0.50(-1)$ x 1 = 0.10 + (-0.5) = -0.4 ต่อไปก็ปรับค่า w_1 ในทำนองเดียวกัน $w_1 \leftarrow w_1 + \alpha(t-o)x_1 = w_1 + 0.50(-1)$ x 1 = 0.10 ดังนั้น 1 = 0.10 คือไม่เปลี่ยนแปลง เช่นเดียวกับ 1 = 0.10 ที่ไม่เปลี่ยนแปลง จะเห็นได้ ว่าแม้มีค่าผิดพลาดแต่ไม่มีการปรับค่า 1 = 0.10 หา และ 1 = 0.10 เนื่องจากอินพุตที่ใส่เข้าไปเป็น 1 = 0.10