1.1.5.15

EE24BTECH11045 - N.Tapasvi

Question:

The midpoint of the line segment joining $\mathbf{A} \begin{pmatrix} 2a \\ 4 \end{pmatrix}$ and $\mathbf{B} \begin{pmatrix} -2 \\ 3b \end{pmatrix}$ is $\mathbf{M} \begin{pmatrix} 1 \\ 2a+1 \end{pmatrix}$. Find the values of a and b. (10,2019)

Solution:

Variable	Description
A	$\begin{pmatrix} 2a \\ 4 \end{pmatrix}$
В	$\begin{pmatrix} -2\\3b \end{pmatrix}$
M(Midpoint)	$\begin{pmatrix} 1\\2a+1 \end{pmatrix}$
a, b	Values to be found

TABLE I: Variables Used

Let M divide AB in the ratio k:1 then,M=

$$\frac{kB+A}{k+1}$$

As M is the midpoint k=1

Let the midpoint M be given by the formula:

$$\mathbf{M} = \frac{\mathbf{A} + \mathbf{B}}{2}$$

Substituting the coordinates of A and B:

$$\mathbf{M} = \frac{1}{2} \begin{pmatrix} 2a - 2 \\ 4 + 3b \end{pmatrix}$$

Since $\mathbf{M} = \begin{pmatrix} 1 \\ 2a+1 \end{pmatrix}$, we equate the corresponding components:

$$\frac{2a-2}{2} = 1$$
 and $\frac{4+3b}{2} = 2a+1$

From the first equation:

$$2a - 2 = 2$$
 \Rightarrow $2a = 4$ \Rightarrow $a = 2$

Substitute a = 2 into the second equation:

$$\frac{4+3b}{2} = 2(2)+1=5 \quad \Rightarrow \quad 4+3b=10 \quad \Rightarrow \quad 3b=6 \quad \Rightarrow \quad b=2$$

Thus, a = 2 and b = 2.

Fig. 1: Plot of the points A,B,M