Lecture 2:

Image Classification with Linear Classifiers

Administrative: Assignment 1

Out tomorrow, Due 4/15 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features

Administrative: Course Project

Project proposal due 4/18 (Monday) 11:59pm

Find your teammates on Ed (the pinned "Search for Teammates" post)

"Is X a valid project for 231n?" --- Ed private post / TA Office Hours

More info on the website

Administrative: Discussion Sections

This Friday 1:30pm-2:30 pm (recording will be made available)

Python / Numpy, Google Colab

Presenter: Manasi Sharma (TA)

Syllabus

Deep Learning Basics Convolutional Neural Networks Computer Vision Applications Data-driven approaches Convolutions RNNs / Attention / Transformers Linear classification & kNN PyTorch / TensorFlow Image captioning Activation functions Object detection and segmentation Loss functions Optimization Batch normalization Style transfer Backpropagation Video understanding Transfer learning Multi-layer perceptrons Data augmentation Generative models **Neural Networks** Momentum / RMSProp / Adam Self-supervised learning Architecture design 3D vision Human-centered Al Fairness & ethics

Image Classification

A Core Task in Computer Vision

Today:

- The image classification task
- Two basic data-driven approaches to image classification
 - K-nearest neighbor and linear classifier

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

→ cat

The Problem: Semantic Gap

This image by Nikita is licensed under CC-BY 2.0

What the computer sees

An image is a tensor of integers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

Challenges: Viewpoint variation

All pixels change when the camera moves!

This image by Nikita is licensed under CC-BY 2.0

Challenges: Illumination

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under CC-BY 2.0

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Challenges: Context

Image source:

https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-lq ?utm_source=linkedin_share&utm_medium=member_desktop_web

Modern computer vision algorithms

This image is CC0 1.0 public domain

An image classifier

```
def classify_image(image):
  # Some magic here?
  return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set

Nearest Neighbor Classifier

First classifier: Nearest Neighbor

```
def train(images, labels):
                                            Memorize all
 # Machine learning!
                                            data and labels
  return model
                                            Predict the label
def predict(model, test images):
 # Use model to predict labels
                                           of the most similar
  return test labels
                                            training image
```

First classifier: **Nearest Neighbor**

Training data with labels

query data

Distance Metric

 $ightarrow \mathbb{R}$

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

	test i	mage	
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17			
8	10	89	100			
12	16	178	170			
4	32	233	112			

pixel-wise absolute value differences

	46	12	14	1	
	82	13	39	33	a
	12	10	0	30	-
	2	32	22	108	5

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

Memorize training data

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example, Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
```

min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)

```
Nearest Neighbor classifier
```

```
For each test image:
Find closest train image
Predict label of nearest image
```

return Ypred

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

Many methods exist for fast / approximate nearest neighbor (beyond the scope of 231N!)

A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

What does this look like?

1-nearest neighbor

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take majority vote from K closest points

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p \left(I_1^p-I_2^p
ight)^2}$$

$$K = 1$$

K-Nearest Neighbors: try it yourself!

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithms themselves.

Very problem/dataset-dependent. Must try them all out and see what works best.

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

train

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on **test** data

train

test

Idea #1: Choose hyperparameters that work best on the training data	BAD : K = 1 always works perfectly on training data	
train		
Idea #2: choose hyperparameters that work best on test data	BAD : No idea how algorithm will perform on new data	
train	test	

Never do this!

BAD: K = 1 always works **Idea #1**: Choose hyperparameters perfectly on training data that work best on the training data train **Idea #2**: choose hyperparameters **BAD**: No idea how algorithm that work best on test data will perform on new data train test Idea #3: Split data into train, val; choose **Better!** hyperparameters on val and evaluate on test validation train test

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

What does this look like?

What does this look like?

k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative

(All three images on the right have the same pixel distances to the one on the left)

k-Nearest Neighbor with pixel distance never used.

Curse of dimensionality

Dimensions =
$$3$$

Points = 4^3

K-Nearest Neighbors: Summary

In **image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on the K nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the **validation set**;

Only run on the test set once at the very end!

Linear Classifier

Parametric Approach

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Neural Network

This image is CC0 1.0 public domain

Recall CIFAR10

50,000 training images each image is **32x32x3**

10,000 test images.

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint

Interpreting a Linear Classifier

Interpreting a Linear Classifier: Visual Viewpoint

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Plot created using Wolfram Cloud

Cat image by Nikita is licensed under CC-BY 2.0

Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2

Everything else

Class 1:

Three modes

Class 2

Everything else

Linear Classifier – Choose a good W

3.42	-0.51	-3.45	airplane
4.64	6.04	-8.87	automobile
2.65	5.31	0.09	bird
5.1	-4.22	2.9	cat
2.64	-4.19	4.48	deer
5.55	3.58	8.02	dog
-4.34	4.49	3.78	frog
-1.5	-4.37	1.06	horse
-4.79	-2.09	-0.36	ship
6.14	-2.93	-0.72	truck
	-2.09	-0.36	ship

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

-				
-		197		
=	-0			
1		Y #		
			1	1

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

A **loss function** tells how good our current classifier is

3.2 cat

2.2 1.3 4.9 2.5

car

frog

5.1 -1.7

2.0

-3.1

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 2 -65

March 31, 2022

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

3.2 cat

5.1

1.3 4.9

2.5

2.2

car -1.7 frog

2.0

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

3.2

5.1

-1.7

cat

car

frog

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

1.3

2.2

2.5

4.9

-3.1 2.0

Given a dataset of examples

our current classifier is

 $\{(x_i, y_i)\}_{i=1}^N$

A loss function tells how good

Where x_i is image and y_i is (integer) label

Loss over the dataset is a average of loss over examples:

 $L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form: 2.2 3.2 1.3 cat

 $L_i = \sum_{i \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$ 2.5 4.9 5.1 car

 $= \sum \max(0, s_j - s_{y_i} + 1)$ -3.1 -1.7 2.0 frog

Suppose: 3 training examples, 3 classes.

With some W the scores f(x,W) = Wx are:

cat **3.2**

1.3

2.22.5

car **5.1**

4.9

2.0

frog -1.7

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

2.2

2.5

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{i \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

1.3

cat

frog

5.1

3.2

1 **4.9**

-1.7 2.0

2.2 2.5

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat 3.2 1.3 2.2 car 5.1 4.9 2.5 frog -1.7 2.0 -3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

cat **3.2**

car

frog

Losses:

5.1

-1.7

2.9

1.3

4.9

2.0

2.2

2.5

-3.1

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 5.1 3.2 + 1)$
- +max(0, -1.7 3.2 + 1)= max(0, 2.9) + max(0, -3.9)
- = 2.9 + 0
- = 2.9

2.2

2.5

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

cat **3.2**

car

frog

Losses:

5.1

-1.7 2.0

2.9

1.3

4.9

-3.1

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3 - 4.9 + 1)$

 $+\max(0, 2.0 - 4.9 + 1)$

 $= \max(0, -2.6) + \max(0, -1.9)$

= 0 + 0

= 0

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 2.2 (-3.1) + 1)$
 - $+\max(0, 2.5 (-3.1) + 1)$
- $= \max(0, 6.3) + \max(0, 6.6)$
- = 6.3 + 6.6
- = 12.9

cat	3.2
-----	-----

car

frog

Losses:

5.1

-1.7

With some W the scores f(x, W) = Wx are:

Suppose: 3 training examples, 3 classes.

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

-1.7

1.3

2.0

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

3.2 cat

car

frog

Losses:

4.9 5.1

2.2 2.5

-3.1

12.9

Loss over full dataset is average:

$$u=rac{1}{N}\sum_{i=1}^{N}L_{i}$$

 $L = rac{1}{N} \sum_{i=1}^{N} L_i$

L = (2.9 + 0 + 12.9)/3

= 5.27

2.9

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ Q1: What happens to loss if car scores decrease by 0.5 for this

Q2: what is the min/max possible

Multiclass SVM loss:

cat car

frog

1.3 4.9

2.0

SVM loss L_i? Q3: At initialization W is small so all s \approx 0. What is the loss L_i,

training example?

Losses:

assuming N examples and C classes?

Lecture 2 -77 March 31, 2022

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What if the sum was over all classes? (including j = y_i)

cat **3.2**

car

frog

Losses:

1.3

2.2

4.9 2.5 2.0 **-3.1**

12.9

5.1

-1.7

2.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

3.2

1.3

2.2

5.1 **4.9**

4.9 2.5 2.0 **-3.1**

frog -1.7 Losses: 2.9

cat

car

 \bigcap

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

3.2

5.1

1.3

2.2

4.9

2.5 -3.1 2.0

-1.7

12.9

2.9 Losses:

cat

car

frog

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

cat **3.2**

2 1.3

2.2

car 5.1

4.9

2.0

2.5 **-3.1**

frog -1.7 Losses: 2.9

9 (

12.9

Multiclass SVM loss:

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax classifier

Want to interpret raw classifier scores as probabilities

cat **3.2** car **5.1**

frog -1.7

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

3.2 cat

5.1 car

-1.7 frog

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

 $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Probabilities must be >= 0

cat 3.2 \xrightarrow{exp} 164.0 frog -1.7 0.18 unnormalized

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$s=f(x_i;W)$$
 $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

5.1 car

-1.7 frog

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 5.1 car

cat

Q1: What is the min/max possible softmax loss L_i?

-1.7 frog

Q2: At initialization all s_j will be approximately equal; what is the softmax loss L_i , assuming C classes?

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Q2: At initialization all s will be approximately equal; what is the loss?

A:
$$-\log(1/C) = \log(C)$$
,

If C = 10, then
$$L_i = log(10) \approx 2.3$$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$

Softmax vs. SVM

Q: What is the **softmax loss** and

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

assume scores:
$$[10, -2, 3]$$
 $[10, 9, 9]$ $[10, -100, -100]$ and $y_i = 0$

Softmax vs. SVM

 $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$

20?

[20, -2, 3]
[20, 9, 9]
[20, -100, -100]
and
$$y_i = 0$$

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

the SVM loss if I double the

Q: What is the **softmax loss** and

correct class score from 10 ->

Coming up:

- Regularization
- Optimization

