Diabetic Retinopathy – Automated Detection

Diabetic Retinopathy (DR) is a complication resulting from diabetes that affects the eyes. It is caused by the damage of the blood vessels in the tissue at the back of the eye called retina.

Problem Statement:

- To build a model to detect the condition successfully with as high recall as possible
- To build a model that can detect the severity of condition

Diabetic Retinopathy – Automated Detection

https://www.kaggle.com/competitions/diabetic-retinopathy-detection/overview

Data:

- Kaggle dataset
- Left and Right fundus colored images
- Labels:
 - 0: No DR
 - 1: Mild
 - 2: Moderate
 - 3: Severe
 - 4: Proliferative
- Images under variety of conditions:
 - Overexposed
 - Underexposed
 - Flipped
 - noisy

Diabetic Retinopathy – Automated Detection

Data

Binary classification

Binary Classification

Approach

Binary classification on whole dataset

Metrics- Recall

1 CNN

CNN models with increasing depth and complexity (with **initial bias**, with and without **Class weights** and **HSV conversion**)

Binary Classification

Model Evaluation

12 models

Data and Approach

Model Evaluation

22 models

Multiclass classification Model - Recall for each class

Model Evaluation

Winner:

Model 6 – VGG16 wt trained on the whole dataset

Model 6- VGG16 wt

Conclusions and Recommendations

- **DR detection:** it is recommended to move forward with model 9 (transfer learning-InceptionResNet V2) as production model candidate.
 - the model has high recall for class 1 but needs to be tuned to improve classification and reduce false positives.
- **DR, detection of severity:** it is recommended to move forward with (VGG16 wt) as production model candidate.
 - It gives good recall (0.7) for class 1 and detects other classes, but needs to be more fine tuned to improve recall for other classes.

Next Steps

DR detection:

- Fine tune transfer learning
- Image pre-processing, data augmentation or training on more balanced data set

• DR, detection of severity:

- Fine tune transfer learning
- Training with more balanced data with or without augmentation, and with more preprocessing of data
- Training just on the positive classes for detection of severity.

Thank you!!

Acknowledgements:

- Hank
- Alanna
- Eric
- Devin
- TAs
- Classmates!!