

CSE211-Formal Languages and Automata Theory

U2L11 – Chomsky Normal Form

Dr. P. Saravanan
School of Computing
SASTRA Deemed University

Agenda

- Recap of previous class
 - DPDA, Simplification of rule, Normal forms
- Eliminating unit productions
- Chomsky Normal Forms
- Converting to CNF

Eliminating Useless Symbols

- Eliminate useless symbols in a grammar with the following productions:
 - \blacksquare $S \rightarrow AB \mid a$
 - $\blacksquare A \rightarrow b.$
- *B* is *not generating*, and is so eliminated at first, resulting in $S \rightarrow a$, $A \rightarrow b$, in which A is *not reachable*
- and so eliminated too, with $S \rightarrow a$ as the only production left.
- The order of eliminations is essential: eliminate nongenerating symbols at first.

Given a grammar with productions as follows:

$$S \rightarrow AB$$

 $A \rightarrow aAA \mid \varepsilon$
 $B \rightarrow bBB \mid \varepsilon$

- then, we can see the following facts:
 - A and B are nullable because they derive empty strings;
 - S is also nullable because A and B are nullable.

$$S \rightarrow AB / A / B$$

 $A \rightarrow aAA / aA / a$
 $B \rightarrow bBB / bB / b$

Eliminating unit productions

- **Definition** --- a unit production is of the form $A \rightarrow B$.
- Unit productions sometimes are useful.
- For example, use of unit productions $E \rightarrow T$ and $T \rightarrow F$ removes ambiguity in the 'expression grammar,' resulting in the following unambiguous grammar

```
E \rightarrow T / E + T

T \rightarrow F / T * F

F \rightarrow I / (E)

I \rightarrow a / b / Ia / Ib / I0 | I1
```


- But unit productions complicate certain proofs.
- A two-step technique to eliminate unit productions without changing the generated language:
 - find all "unit pairs"
 - expand productions using unit pairs until all unit productions disappear.
- Definition of unit pair ---
 - Basis: (A, A) is a unit pair for any nonterminal.
 - *Induction*: If (A, B) is a unit pair and $B \rightarrow C$ is a production, then (A, C) is a unit pair.

Finding unit productions

SASTRA ENGINEERING - MANAGEMENT - LAW - SCIENCES - MUMANTES - EDUCATION DEEMED TO BE UNIVERSITY (U/S 3 OF THE UGC ACT, 1956

Example

- The unit pairs for the *unambiguous* $E \rightarrow T/E + T$ arithmetic expression grammar $T \rightarrow F/T * F$ arithmetic expression grammar $F \rightarrow I/(E)$ $F \rightarrow I/(E)$ $I \rightarrow a/b/Ia/Ib/I0 | I1$
- Basis: (*E*, *E*), (*T*, *T*), (*F*, *F*), (*I*, *I*) are unit pairs
 - unit pair $(E, E) \& E \rightarrow T \Rightarrow$ unit pair (E, T)
 - unit pair $(E, T) \& T \rightarrow F \Rightarrow$ unit pair (E, F)
 - unit pair $(E, F) \& F \rightarrow I \Rightarrow$ unit pair (E, I)
 - unit pair $(T, T) \& T \rightarrow F \Rightarrow$ unit pair (T, F)
 - unit pair $(T, F) \& F \rightarrow I \Rightarrow$ unit pair (T, I)
 - unit pair $(F, F) \& F \rightarrow I \implies$ unit pair (F, I)
- Totally, there are 10 unit pairs

Eliminating unit productions

$$E \rightarrow T / E + T$$

$$T \rightarrow F / T * F$$

$$F \rightarrow I / (E)$$

$$I \rightarrow a / b / Ia / Ib / I0 | I1$$

Unit pair	Productions
(E, E)	$E \rightarrow E + T \text{ (from } E \rightarrow E + T)$
(E, T)	$E \to T * F \text{ (from } T \to T * F)$
(E,F)	$E \to (E)$
(E,I)	$E \rightarrow a / b / Ia / Ib / I0 I1$
(T,T)	$T \rightarrow T * F$
(T,F)	$T \rightarrow (E)$
(T, I)	$T \rightarrow a / b / Ia / Ib / I0 I1$
(F,F)	$F \rightarrow (E)$
(F,I)	$F \rightarrow a / b / Ia / Ib / I0 I1$
(I, I)	$I \rightarrow a / b / Ia / Ib / I0 I1$

- Theorem 7.14 ---
 - If G is a CFG generating a language that contains at least one string other than e, then there is another CFG G_1 such that $L(G_1) = L(G) \{e\}$, and G_1 has no eproductions, unit productions, or useless symbols.
- Perform eliminations of the following order to a grammar G:
 - Elimination of e-productions;
 - Elimination of unit productions;
 - Elimination of useless symbols,

Definition:

A grammar *G* is said to be in *Chomsky Normal form* (*CNF*), if the following two conditions hold:

- all its productions are in one of the following two simple forms:
 - $\blacksquare A \rightarrow BC$
 - $A \rightarrow a$

where A, B and C are nonterminals and a is a terminal; and

G has no useless symbol.

- Convert the expression grammar into CNF.
- Simplify the grammar.
- (1) create new nonterminals for the terminals to produce the following productions:

■
$$A \rightarrow a$$
 $B \rightarrow b$
 $Z \rightarrow 0$ $O \rightarrow 1$
 $P \rightarrow +$ $M \rightarrow *$
 $L \rightarrow ($ $R \rightarrow)$

$E \rightarrow T / E + T$	
$T \rightarrow F / T * F$	
$F \rightarrow I/(E)$	
$I \rightarrow a / b / Ia / Ib / I0 I1$	

TT .	D 1
Unit pair	Productions
(E, E)	$E \rightarrow E + T \text{ (from } E \rightarrow E + T)$
(E, T)	$E \to T * F \text{ (from } T \to T * F)$
(E,F)	$E \to (E)$
(E,I)	$E \rightarrow a / b / Ia / Ib / I0 I1$
(T,T)	$T \to T * F$
(T,F)	$T \rightarrow (E)$
(T,I)	$T \rightarrow a / b / Ia / Ib / I0 I1$
(F,F)	$F \to (E)$
(F,I)	$F \rightarrow a / b / Ia / Ib / I0 I1$
(I,I)	$I \rightarrow a / b / Ia / Ib / I0 I1$

- (2) transformation of $E \rightarrow E$ + $T \mid T * F \mid (E) \mid a \mid b \mid$ $Ia \mid Ib \mid I0 \mid I1$
 - $\Rightarrow E \rightarrow EPT \mid TMF \mid LER$ $\mid a \mid b \mid IA \mid IB \mid IZ \mid IO$
 - T → TMF | LER | a | b |
 IA | IB | IZ | IO
 - $F \rightarrow LER \mid a \mid b \mid IA \mid IB$ $\mid IZ \mid IO$
 - $I \rightarrow a \mid b \mid IA \mid IB \mid IZ \mid$ IO

Unit pair	Productions
(E, E)	$E \rightarrow E + T \text{ (from } E \rightarrow E + T)$
(E, T)	$E \to T * F \text{ (from } T \to T * F)$
(E,F)	$E \to (E)$
(E,I)	$E \rightarrow a / b / Ia / Ib / I0 I1$
(T,T)	$T \to T * F$
(T,F)	$T \rightarrow (E)$
(T, I)	$T \rightarrow a / b / Ia / Ib / I0 I1$
(F,F)	$F \to (E)$
(F,I)	$F \rightarrow a / b / Ia / Ib / I0 I1$
(I,I)	$I \rightarrow a / b / Ia / Ib / I0 I1$

Ex 1: Converting to CNF

- (2) transformation of $E \rightarrow E + T \mid T * F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 - $\Rightarrow E \rightarrow EPT \mid TMF \mid LER \mid a \mid b$ $\mid IA \mid IB \mid IZ \mid IO$
 - $T \rightarrow TMF \mid LER \mid a \mid b \mid IA \mid IB \mid$ $IZ \mid IO$
 - $F \rightarrow LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$
 - \blacksquare $I \rightarrow a \mid b \mid IA \mid IB \mid IZ \mid IO$
- $\Rightarrow E \to EC_1, C_1 \to PT,$ $E \to TC_2, C_2 \to MF,$ $E \to LC_3, C_3 \to ER,$
- $\Rightarrow T \to TC_2, C_2 \to MF,$ $T \to LC_3, C_3 \to ER,$
- \Rightarrow F \rightarrow LC₃, C₃ \rightarrow ER,

The grammar in CNF

- $\Rightarrow E \rightarrow EC_1 \mid TC_2 \mid LC_3 \mid a \mid b \mid$ $IA \mid IB \mid IZ \mid IO$
- $T \rightarrow TC_2 \mid LC_3 \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$
- $F \rightarrow LC_3 \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$
- \blacksquare $I \rightarrow a \mid b \mid IA \mid IB \mid IZ \mid IO$
- \bullet $C_1 \rightarrow PT$,
- $C_2 \rightarrow MF$,
- $C_3 \rightarrow ER$,

$$\begin{array}{cccc}
\bullet & A \rightarrow a & B \rightarrow b \\
Z \rightarrow 0 & O \rightarrow 1 \\
P \rightarrow + & M \rightarrow * \\
L \rightarrow (& R \rightarrow)
\end{array}$$

Ex 2: Converting to CNF

Find the CNF for the following grammar

```
S \rightarrow bA / aB

A \rightarrow bAA / aS / a

B \rightarrow aBB / bS / b
```


Ex 3: Converting to CNF

Find the CNF for the following grammar

```
S \rightarrow AB

A \rightarrow aAA / \varepsilon

B \rightarrow bBB / \varepsilon
```


Summary

- Simplification of CFG
- Chomsky Normal Form (CNF)
 - All the productions of the forms
 - $\blacksquare A \rightarrow BC$
 - $\blacksquare A \rightarrow a$
 - No useless symbol
- Converting the given grammar to CNF
 - Eliminate ε-productions, unit productions and useless symbols
 - Introduce new set of nonterminals

- John E. Hopcroft, Rajeev Motwani and Jeffrey D.
 Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class

Greibach Normal Form Thank you.