

Akademickie Centrum Komputerowe CYFRONET AGH

Metody i narzędzia wspierające złożone symulacje na infrastrukturach HPC

LMIM - nasz zespół

- Zespół naukowców, inżynierów oprogramowania, administratorów
- Cel: rozwój metod i narzędzi dla medycyny obliczeniowej
- Wypracowujemy metody oraz narzędzia umożliwiające uruchamianie złożonych symulacji medycznych w środowisku HPC
- Bierzemy udział w krajowych oraz międzynarodowych projektach badawczych od 2002 roku.

Ostatnich 7 projektów:

- **EDITH** (2022-2024) foster an inclusive ecosystem for Digital Twins in healthcare in Europe
- **EuroHPC** (2021-2023) budowa specjalistycznej infrastruktury ogólnego przeznaczenia na potrzeby obliczeń wielkoskalowych
- PRIMAGE (2018-2023) creation of a Clinical Decision Support System (CDSS) for the treatment of cancer (nauroblastoma, glioma) in children.
- Sano (2019-2026) Poland Europe's first Centre for simulation-driven healthcare Decision Support.
- ☐ Gliomed (2017-2020) Undertaking a series of bioinformatics and biostatistics analyses on tumor data.
- Process (2017-2020) Design and create prototypes for exascale data storage and processing.
- **EurValve** (2016-2019) Creating an easy-to-use environment for the development, deployment and execution of large scale simulations, required for simulating human heart.

Spersonalizowana medycyna - aktualne problemy

- Zaawansowane modele oraz symulacje wymagają dużej mocy obliczeniowej
- Rozwiązania HPC nie są proste do użycia, szczególnie dla osób spoza dziedziny IT; potrzebna jest wiedza o: SSH, SCP, systemu kolejkowego slurm, etc.
- Rozwój modeli oraz symulacji zazwyczaj odbywa się w ramach grupy badawczej, więc potrzebne jest współdzielenie modeli, plików wejściowych oraz rezultatów
- Powinniśmy być w stanie powtórzyć obliczenia stworzone przez inną osobę, zespół badawczy
- ☐ To samo obliczenie chcielibyśmy uruchomić dla innego przypadku (np. dla innej osoby)

Jak to aktualnie zazwyczaj wygląda:

- Naukowcy zazwyczaj chcą osiągnąć wyniki jak najszybciej, skupiają się na rezultatach, często zapominając o wersjonowaniu uruchamianych modeli, rezultatów
- ☐ Kod modelu, pliki wejściowe zazwyczaj transferowane są na klaster do lokalnego katalogu użytkownika, niedostępnego dla pozostałych członków zespołu
- ☐ Kiedy obliczenia dla konkretnego przypadku zostaną zakończone, to uruchamiane są następne obliczenia, które bardzo często nadpisują rezultaty wyprodukowane przez poprzednie obliczenia i dlatego bardzo trudnym lub też często niemożliwym jest odtworzenie poprzednich rezultatów

Aby pozbyć się powyższych problemów potrzebujemy:

- Wersjonowania modeli, symulacji
- Ustrukturalizowanego sposobu przechowywania danych wejściowych dla konkretnego przypadku oraz rezultatów uruchomienia modelu, symulacji
- Możliwości odtworzenia obliczeń nie tylko przez osobę, która oryginalnie uruchamiała symulację, ale również przez innych członków zespołu badawczego

Uruchamianie obliczeń na HPC - standardowe postępowanie

- Skopiuj wszystkie niezbędne pliki wejściowe oraz kod aplikacji na węzeł dostępowy (najczęściej poprzez SCP)
- Stwórz skrypt startowy dla systemu kolejkowego (np. slurm), skopiuj go na węzeł dostępowy (SCP)
- ☐ Użyj **sbatch** aby uruchomić zadanie
- Monitoruj status zadania (hpc-jobs)
- Jeśli są potrzebne statystyki zadania można użyć sacct
- ☐ Jeśli potrzebujemy monitorować standardowe wyjście aplikacji możemy użyć tail -f *std
- Po zakończeniu zadania możemy pobrać pliki wyjściowe symulacji (najczęściej przez SCP)

Występujące problemy:

- Wymagane jest bardzo dużo manualnej interwencji, bardzo łatwo popełnić w którymś miejscu błąd, co może powodować błędy w uruchamianej symulacji, nadpisanie poprzednich rezultatów, etc.
- □ Bardzo trudno jest zintegrować taki proces z zewnętrznymi aplikacjami, np. systemami workflow
- Odtworzenie wyprodukowanych rezultatów często jest niemożliwe ze względu na brak referencji do wersji symulacji, pochodzenia plików wejściowych, etc.

Jak rozwiązujemy tego typu problemy

Dedykowane serwisy, specyficzne dla konkretnej grupy badawczej, które wspierają konkretny tryb pracy zespołu

Jak zintegrować taki serwis z HPC?

Scientific gateway (aplikacja webowa) **333** Superkomputery Prometheus i Ares na liście TOP500

Krok 1 - delegacja uprawnień użytkownika

Scientific gateway (aplikacja webowa) certyfikat proxy **GSI-SSH GridFTP** Superkomputery Prometheus i Ares na liście TOP500

Certyfikat proxy - krótko żyjący (zazwyczaj 12h) certyfikat podpisany długo żyjącym certyfikatem

GSI-SSH - modyfikacja standardu SSL, gdzie dodana została możliwość autentykacji poprzez certyfikat proxy

GridFTP - modyfikacja standardu FTP, gdzie dodana została możliwość autentykacji poprzez certyfikat proxy

Krok 2 - skąd wziąć certyfikat proxy (1/2)?

Skąd pobrać certyfikat proxy?

Opcja nr 1:

Zalogować się na Prometeusza oraz uruchomić **grid-proxy-init**

następnie wygenerowany certyfikat proxy możemy zaimportować do naszej aplikacji

To rozwiązanie ma jednak wady:

- Ważność certyfikatu proxy jest krótka (standardowo 12h)
- Chcieliśmy uniknąć użycia linii poleceń

Krok 2 - skąd wziąć certyfikat proxy (2/2)?

GSI SSH, GridFTP - jak z tego skorzystać

Problemy:

- Trudne w instalacji
- Implementacja oparta o C
- Implementacja w Java nie wspierana
- Brak wsparcia dla nowych języków programowania

PLGData - zarządzanie plikami przez GridFTP

- PLGData (<u>https://data.plgrid.pl</u>) interfejs webowy oraz RESTowy do zarządzania plikami przechowywanymi na Prometeuszu, Aresie, Atenie, etc.
- Zintegrowany z systemem bezpieczeństwa PLGrid
- Jeśli jesteś użytkownikiem PLGrid oraz masz wygenerowany certyfikat SimpleCA, to możesz od razu zacząć korzystać z tego serwisu

PLGData - jak korzystać

~ % curl -X POST https://data.plgrid.pl/upload/people/plguserlogin/zzzz
-F proxy="`cat grid_proxy`" -F "file=@graph.png"

Rimrock - zarządzanie zadaniami na HPC

- Rimrock (https://rimrock.plgrid.pl) zbiór interfejsów RESTowych do zarządzania zadaniami na HPC, posiada wsparcie dla Prometeusza, Aresa oraz Ateny.
- Zintegrowany z systemem bezpieczeństwa PLGrid, certyfikat proxy jest użyty do delegacji uprawnień użytkownika.

curl -k -X POST --data '{"host":"pro.cyfronet.pl", "script":"#!/bin/bash\n#SBATCH -A {grantid}\necho
hello\nexit 0"}' --header "Content-Type:application/json" --header "PROXY:\$proxy"
https://rimrock.plgrid.pl/api/jobs

Rozwiązanie!

Model Execution Environment

System dedykowany do wykonywania obliczeń, symulacji, podejmowania decyzji na temat pojedynczego przypadku oraz kohort.

Jak to działa?

- W momencie inicjowania danego przypadku tworzona jest dla niego dedykowana przestrzeń na HPC
- Każde obliczenie wykonywane jest w kontekście konkretnego przypadku
- Aby uruchomić obliczenie należy:
 - wybrać przypadek (lub kohortę)
 - kliknąć przycisk uruchamiający obliczenia
 - po zakończonych obliczeniach wyniki pojawiają się w dedykowanym katalogu, który nie jest nadpisywany przez inne obliczenia

Główne zalety:

- System zintegrowany z HPC dostępnymi w Cyfronecie (Prometeusz, Ares, Atena)
- Zarządzanie przypadkami, plikami wejściowymi, symulacjami oraz rezultatami w jednym miejscu
- Wersjonowanie symulacji dzięki integracji z GIT
- Automatyczne oraz manualne uruchomienie obliczeń

Model Execution Environment - uruchomienie obliczeń

- System sprawdza, czy wszystkie wymagane dane wejściowe są dostępne, jeśli nie obliczenie nie może być uruchomione
- 2. Model zostaje pobrany z repozytorium GIT w wersji wybranej przez użytkownika
- 3. Na podstawie szablonu modelu tworzony jest model dedykowany dla konkretnego przypadku
- System zleca zadanie na infrastrukturę HPC przy użyciu systemu kolejkowego slurm oraz serwisu Rimrock
- 5. Wymagane pliki wejściowe transferowane są na infrastrukturę HPC przy użyciu serwisu PLGData
- 6. MEE monitoruje uruchomione zadanie
- rezultaty pobierane są z HPC i są bezpośrednio dostępne dla użytkownika

Wnioski

- ☐ HPC jest trudny, szczególnie dla osób domenowych (np. zajmujących się spersonalizowaną medycyną)
- Możemy pomóc dostarczając dedykowanych serwisów domenowych zintegrowanych z infrastrukturą HPC
- Przykłady pokazane na tej prezentacji:
 - Model Execution Environment https://mee.cyfronet.pl
 - Rimrock https://rimrock.plgrid.pl
 - PLGData https://data.plgrid.pl

Chętnie weźmiemy udział w ambitnych projektach naukowych, zwłaszcza w ramach Horizon Europe

https://dice.cyfronet.pl
https://dice-cyfronet.github.io

