Probability and Statistical Inference

Tianqi Zhang Emory University

 $\mathrm{Apr}\ 17\mathrm{th}\ 2025$

13 Lebesgue Integration

13.1 Set up:

- In $(\Omega, \mathcal{F}, \mu)$, let $f: \Omega \to \mathbb{R}$ be measurable.
- Recall: Indicator functions are measurable.
 - Integration of indicator functions equals the measure of the indicator function.

Definition 13.1.1 (Simple Functions).

f is said to be a simple function is f is a finite linear combinations of indicator functions:

$$f(x) = \sum_{i=1}^{n} c_i \cdot \mathbb{I}_{A_i}(x)$$
, for some measurable sets $\{A_i\}$ and constants $c_i \in \mathbb{R}$.

Definition 13.1.3 (Lebesgue Integral (for Simple Functions)).

Define the set

$$S^+:=\{f:\Omega\to\mathbb{R}\mid f\text{ is simple function, }f\geq 0\}.$$

For $f \in S^+$: define its Lebesgue integral w.r.t. its measure μ as:

$$\int_{\Omega} f \, d\mu := \sum_{i=1}^{n} c_i \cdot \mu(A_i), \quad \forall f \in S^+$$

Notation:

$$\int_{\Omega} f \, d\mu$$
 or $\int_{\Omega} f(x) \, d\mu(x)$.

Proposition 13.1.4 Lebesgue Integral:

- Linearity: $\int_{\Omega} (\alpha f + \beta g) d\mu = \alpha \int_{\Omega} f d\mu + \beta \int_{\Omega} g d\mu$, $\forall f, g \in S^+, \alpha, \beta \geq 0$.
- Monotonicity: If $f \leq g$, then $\int_{\Omega} f d\mu \leq \int_{\Omega} g d\mu$.

13.2 Lebesgue Integral

Definition 13.2.1 (Lebesgue Integral).

- 1. For any $f: \Omega \to \mathbb{R}$, define the set $\mathcal{S}_{\{}^+ = \{h \in S^+ \mid h < f\}$.
- 2. Compute all Lebesgue integral I(h) according to the previous definition.

We define

$$\int_{\Omega} f d\mu = \sup_{h \in \mathcal{S}_{\ell}^+} I(h)$$

And we note that f is μ -integrable (or just integrable if the context if clear) if $\int_{\Omega} f d\mu < \infty$.

13.3 Important results and theorems

Lemma 13.3.1 Fatou's Lemma:

Given a measure space $(\Omega, \mathscr{F}, \mu)$ and a sequence of measurable, non-negative functions $\{f_n\}$ each maps from $(\Omega, \mathscr{F}, \mu) \to (\mathbb{R}, \mathscr{B}, \cdot)$. Define a function $f \equiv \liminf_{n \to \infty} f_n(x)$, then f is measurable and we have the following inequality:

$$\int_{\Omega} f \, d\mu \le \liminf_{n \to \infty} \int_{\Omega} f_n \, d\mu$$

Corollary 13.3.2 Beppo Levi's Monotone Convergence:

Let $(\Omega, \mathscr{F}, \mu)$ be a measure space, and let $\{X_n\}$ be a sequence of non-negative measurable functions defined on Ω . Suppose:

 $0 \le X_n(\omega) \le X_{n+1}(\omega) \quad \forall \omega \in \Omega \quad \text{(monotonically increasing sequence of functions)}$

Define the pointwise limit function:

$$X(\omega) = \lim_{n \to \infty} X_n(\omega), \quad \forall \omega \in \Omega$$

Then:

$$\lim_{n\to\infty} \int_{\Omega} X_n \, d\mu = \int_{\Omega} X \, d\mu$$

Theorem 13.3.3 Lebesgue's Dominated Convergence Theorem

Let $(\Omega, \mathscr{F}, \mu)$ be a measure space, and let $\{f_n\}$ be a sequence of measurable functions mapping from $(\Omega, \mathscr{F}, \mu)$ to $(\mathbb{R}, \mathscr{B})$. Suppose:

- $f_n \to f$ pointwise almost everywhere on Ω , and
- there exists an integrable function $g: \Omega \to \mathbb{R}$ such that $|f_n(\omega)| \leq g(\omega)$ for all $\omega \in \Omega$ and all $n \in \mathbb{N}$.

Then all f_n and f integrable, and

$$\lim_{n \to \infty} \int_{\Omega} f_n d\mu = \int_{\Omega} \lim_{n \to \infty} f_n d\mu = \int_{\Omega} f d\mu$$

13.4 Expectation

Definition 13.4.1 (Expectation). Consider a measure space (Ω, \mathcal{F}, P) and a random variable $X : \Omega \to \mathbb{R}$. Its expectation is defined to be a Lebesgue integral

$$\mathbf{E}[X] = \int_{\Omega} X(\omega) dP(\omega)$$

Corollary 13.4.2 Jensen's Inequality:

If X is a random variable and $\varphi : \mathbb{R} \to \mathbb{R}$ is a convex function, then:

$$\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$$

Special Case: For $\varphi(x) = |x|$, we obtain:

$$|\mathbb{E}[X]| \le \mathbb{E}[|X|]$$

Intuition: The expectation of a convex function applied to X is at least as large as applying the function to the expectation of X. Convexity "pulls the curve upwards," leading to this inequality. Corollary 13.4.3 Markov's Inequality:

For a non-negative random variable X and any $\alpha > 0$.

$$P(|X| > \alpha) \le \frac{\mathbb{E}[|X|]}{\alpha}$$

Intuition: The probability that X exceeds some threshold α is bounded by the ratio of its expected value to α . It provides an upper bound on tail probabilities.