### Discrete Mathematics Recitation Class

Tianyu Qiu

University of Michigan - Shanghai Jiaotong University

Joint Institute

Summer Term 2020

### Contents

Algorithms
Time Complexity

Computer Arithmetic

Recurrence Relation & Divide-and-Conquer Algorithms
Recurrence Relations
Linear Recurrence Relations
Divide-and-Conquer Algorithm



# Time Complexity for Common Algorithms

|                | <i>T</i> ( <i>n</i> ) |
|----------------|-----------------------|
| Linear Search  | $\Theta(n)$           |
| Binary Search  | $\Theta(logn)$        |
| Insertion Sort | $\Theta(n^2)$         |
| Selection Sort | $\Theta(n^2)$         |
| Bubble Sort    | $\Theta(n^2)$         |
| Merge Sort     | $\Theta(nlogn)$       |
| Quick Sort     | $\Theta(nlogn)$       |

### **Theorem**

A sorting algorithm based on comparisons of pairs of elements needs  $\Omega(nlogn)$  comparisons to sort a list of n elements.

## Representation of Integers

### **Definitions:**

- 1. base *b* expansion of *a*
- 2. digits
- 3. base conversion
- 4. integer addition in base 2 (T(n) = O(n))
- 5. integer multiplication in base  $2(T(n) = O(n^2))$

# **Examples for Some Algorithms**

- 1. The Division Algorithm (use O(qloga) bit opearions)
- 2. Modular Exponentiation (use  $O((log m)^2 log n)$  bit operations to find  $b^n \mod m$ )
- 3. Euclidean Algorithm

### Theorem (Lamé's Theorem)

Let  $a, b \in \mathbb{N} \setminus \{0\}$  with  $a \geq b$ . Then the number of divisions used by Euclidean Algorithm to find gcd(a, b) is not greater than five times the number of decimal digits of b.

### Recurrence Relations

#### Definition:

Let  $f: \mathbb{N} \times \mathbb{C}^k \longrightarrow \mathbb{C}$  and let  $a_0, \dots, a_{k-1} \in \mathbb{C}$ . A function  $g: \mathbb{N} \longrightarrow \mathbb{C}$  that satisfies:

$$g(n) = a_n$$
  $0 \le n < k$   
 $g(n) = f(n, g(n-1), \dots, g(n-k))$   $n \ge k$ 

is said to satisfy recurrence relation defined by f with initial conditions  $a_0, \dots, a_{k-1}$ . (P306)

### **Theorem**

Let  $f: \mathbb{N} \times \mathbb{C}^k \longrightarrow \mathbb{C}$  and let  $a_0, \ldots, a_{k-1} \in \mathbb{C}$ . Then there exists a unique  $g: \mathbb{N} \longrightarrow \mathbb{C}$  that satisfies the recurrence relation define by f with initial conditions  $a_0, \ldots, a_{k-1}$ . (P308)

### Linear Recurrence Relations

#### Definition:

linear recurrence relation (P316):

- 1. degree *k*
- 2. homogeneous & inhomogeneous

### Theorem

Let  $(a_n)$  and  $(b_n)$  satisfy the homogeneous linear recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (1)

Then for all  $A, B \in \mathbb{C}$ , the sequence  $(Aa_n + Bb_n)$  also satisfies (1).

## Characteristic Polynomial

#### Definition:

characteristic polynomial: If  $\alpha \in \mathbb{C}$  and the sequence  $(a_n)$  defined by  $a_n = \alpha^n$  satisfies the homogeneous linear recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (2)

Then  $\alpha^n = c_1 \alpha^{n-1} + \cdots + c_k \alpha^{n-k}$ . So, if  $\alpha \neq 0$ , then  $\alpha$  is a root of the polynomial

$$\lambda^k - c_1 \lambda^{k-1} - \dots - c_k \tag{3}$$

(3) is the characteristic polynomial of the recurrence relation (2).

## Characteristic Polynomial

#### **Theorem**

If  $\alpha_1, \ldots, \alpha_k$  are roots of the characteristic polynomial of the linear recurrence relation (2) then for all  $A_1, \ldots, A_k \in \mathbb{C}$ , the sequence  $(a_n)$  defined by

$$a_n = A_1 \alpha_1^n + \dots + A_k \alpha_k^n$$

satisfies (2).

# Homogenous Linear Recurrence Relations

#### **Theorem**

Let  $a_0, \ldots, a_{k-1} \in \mathbb{C}$ . Let  $\alpha_1, \ldots, \alpha_k$  be k distinct roots of the characteristic polymial of the recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (4)

Then there exists a sequence  $(a_n)$  in the form

$$a_n = q_1 \alpha_1^n + \cdots + q_k \alpha_k^n$$

that satisfies (4) with initial conditions  $a_0, \ldots, a_{k-1}$ .

# Homogenous Linear Recurrence Relations

#### Theorem

Let  $a_0, \ldots, a_{k-1} \in \mathbb{C}$ . Let  $\alpha_1, \ldots, \alpha_t$  be roots of the characteristic polymial of the recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (5)

with multiplicities  $m_1, \ldots, m_t$ , respectively. Then there exists a sequence  $(a_n)$  in the form

$$a_n = Q_1 rac{lpha_1^n}{1} + \cdots + Q_t lpha_t^n$$
 with  $Q_i = \sum_{j=0}^{m_i-1} q_{i,j} n^j$  for  $1 \leq i \leq t$ 

that satisfies (5) with initial conditions  $a_0, \ldots, a_{k-1}$ 

Suppose that the sequences  $(a_n)$  and  $(b_n)$  both satisfy the recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k} + f(n)$$
 (6)

So 
$$a_n - b_n = c_1 (a_{n-1} - b_{n-1}) + \cdots + c_k (a_{n-k} - b_{n-k})$$

And  $(a_n - b_n)$  satisfies the recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (7)

### **Theorem**

Recurrence Relations

Let  $(a_n)$  satisfy the recurrence relation (6). If  $(b_n)$  satisfies the recurrence relation (6) then  $(b_n)$  is of the form

$$b_n = c_n + a_n$$

where  $(c_n)$  satisfies the recurrence relation (7).

# Inhomogeneous Linear Recurrence Relations

This means that by finding a single sequence  $(a_n)$  satisfying

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k} + f(n)$$
 (8)

we can determine a sequence  $(b_n)$  satisfying (8) with any prescribed initial conditions.

# Inhomogeneous Linear Recurrence Relations

### **Theorem**

Let  $c_1, \ldots, c_k \in \mathbb{R}$  and consider the inhomogenoeous recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k} + f(n) \text{ with } f(n) = \left(\sum_{i=0}^t b_i n^i\right) s^n$$
 (9)

Then (9) has a particular solution in the form

$$n^m \left( \sum_{i=0}^t q_i n^i \right) s^n$$

# Inhomogeneous Linear Recurrence Relations

### Theorem (Continued)

where m = 0 if s is not a root of the characteristic polynomial of the homogeneous recurrence relation associated with (9), and if s is a root of the characteristic polynomial of the homogeneous recurrence relation associated with (9), then m is the multiplicity of that root.

# **Examples for Recurrence Relations**

- ► Homogeneous Linear Recurrence Relation:
  - 1. Distinct Solutions for Characteristic Polynomial

$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$

2. Solutions with Multiplicities for Characteristic Polynomial

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$

- ► Inhomogeneous Linear Recurrence Relation:
  - 1. f(x) where x is not the solution for characteristic polynomial

$$a_n = 5a_{n-1} - 6a_{n-2} + 7^n$$

2. f(x) where x is the solution for characteristic polynomial

$$a_n = 6a_{n-1} - 9a_{n-2} + 3^n$$

# **Examples for Recurrence Relations**

e.g.

Let  $(a_n)$  be the sequence such that  $a_0 = 0$ ,  $a_1 = 1$ ,

$$a_n = 5a_{n-1} - 6a_{n-2} + 2^n + 3^n$$

Determine  $a_n$  as function of n ( $n \in \mathbb{N}$ ).

# **Examples for Recurrence Relations**

#### Solution:

Suppose  $a_n = b_n + c_n$  where

$$b_n = 5b_{n-1} - 6b_{n-2} + 2^n$$
  $c_n = 5c_{n-1} - 6c_{n-2} + 3^n$ 

We obtain

$$b_n = p_1 2^n + p_2 3^n + p_3 n 2^n$$
  $c_n = q_1 2^n + q_2 3^n + q_3 n 3^n$ 

Thus

$$a_n = Q_1 2^n + Q_2 3^n + Q_3 n 2^n + Q_4 n 3^n$$

with  $a_0 = 0$ ,  $a_1 = 1$ ,  $a_2 = 18$ ,  $a_3 = 119$  Solving all the coefficient we have

$$a_n = 4 \cdot 2^n - 4 \cdot 3^n - 2n2^n + 3n3^n$$

# Divide-and-Conquer Algorithm

### Theorem

Recurrence Relations

Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + c, \qquad a \ge 1, b \in \mathbb{N} \setminus \{0, 1\}, c > 0$$

whenever n is divisible by b, Then

$$f(n) = \begin{cases} O(n^{log_b a}) & \text{if } a > 1 \\ O(log n) & \text{if } a = 1 \end{cases}$$

Furthermore, whenever a > 1 and  $n = b^k$  for some  $k \in \mathbb{Z}^+$ 

$$f(n) = C_1 n^{\log_b a} + C_2$$

with

$$C_1 = f(1) + \frac{c}{a-1}, \qquad C_2 = -\frac{c}{a-1}$$

### The Master Theorem

Linear Recurrence Relations

#### Theorem

Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + cn^d$$
,  $a \ge 1, b \in \mathbb{N} \setminus \{0, 1\}, c > 0, d \ge 0$ 

whenever n is  $b^k$ , Then

$$f(n) = \begin{cases} O(n^d) & \text{if } a < b^d \\ O(n^d \log n) & \text{if } a = b^d \\ O(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$