Richian	auciu	la defin	nisione	di seg	mengo	orienta to
200 da	Cerione	la defi	iente.	9	7	
_						
<u>Def</u> : (Jn segv	nento ori	entato	del pia	i T av	Una coppia
*	ordinat	a di pu	inti (A, F	$7 \times \pi \supset (8)$	۲.	
		: BA aw				
Sia	√ π − √ χ	< \(\pi = \) \(\bar{A} \)	B . A.B	E # 4 8'	inzieme	dei segmenti Una relation
orien	tati n	rel pian	o. Voo	Ciamo,	definin	una relation
di ec	qui va lev	180 SO X		7	0	
Nel F	auoi	esistono	infinil	ri seogi	ment a	orientati
che '	harma	s "Stessa	2 gres	Hz, swor	:550 Ver:	orientati so, stessa
m tens Dicia	me c	he avesti	Seawer	.ti orien	a itali	so, stessa ono "equipollenti
due a	x due	1	0			1
			3	A D	No.	
esemo	io:		7	A F	Sov	CD e EF La "Equipollunhi" La Coma
-					fre	Coro
			C			
		A	E			
		9 100:50	C-5-	<u>-\.</u>	1-2	of cases
		2 000000 Li 0000000	co sion	CVQ CON	NOIS E	il punto
Piŭ for	1 arlune	ante.				
u						
Def.		soment.	oriento	BA L	e ci	
	eojui po	ientero	Samen	allo All	ici, ord	se je
	A'BDC	e u	Paral	lelogram	wa.	<u>'</u>
		0	D			٥
ABDC.		-	-71		8	
Paralleloc	Lomo					ARDC non è
AB & CD S	ava _				D	UN parallelog.
equipollenti	Δ					AB e CD non sono
					ومرن	ipollenti (verso diverso)
2 equipor	Elenza	é una r	elazione	di equiva	Cerrea:	
· N ē rif	Assim	(001/4) Sec.	membo o	siendala	e equipal	enh a se stesso)
, , , 4	<u>~</u>		7		Marked	

Infati V AB EX, ABBA è un parallelogramma (degenere) => AB ~ AB

OPERAZIONI SU V

· SOMMA DI VETTORI

Siano V, W E V e siano P, Q E T tali che

 $V = \overrightarrow{OP} = \overrightarrow{OQ}$

Definiano

V + W = 08, tale che OPRO è un parallelogramma (REGOLA DEL PARALLELOGRAMMA)

V v+w, Costruísco R in mado tale Che OPRQ è un parallelogramma

Nota: E se O, P e a sono collineari, cioè giaccions sulla stessa retta?

R/7 Costrisco R tole che i segmenti
OP e Ra hanno la stessa

Cun anterra (in un parallelogramma
i lati opposti sono congruenti).

Stessa

Emghira

Otteniamo così un' operazione binouria interna:

· HOLTIPLICATIONE PER SCALARI

Sia $v \in V$ e sia $P \in \pi$ tale che $V = \overline{CP}$ sia $\lambda \in \mathbb{R}$.

Definiano

 $\lambda \cdot v = \overline{c}$

tale che:

PIANO CARTES IANO Il piano cartesiano è un sistema di riferimento basato sulle coordinate cartesiane. A suda vi hanno insegnato che per definirlo anete bisogno di: • due rete perpendicolari e orientate (chiamate assi

Ora ogni purto P del piano pro errere identificato da del coordinate re e y (chiamate ascissa e ordinata) i vi valori a soluti sono le lunghezze delle processari ortogonali OH e OK sugli assi,

Quindi, fissato un riferimento cartesiano abbiano una bietione:

A purbo medio di
$$OR \Rightarrow \begin{cases} x_{A} = \frac{x_{A} + o}{2} = \frac{x_{A}}{2} \\ y_{A} = \frac{y_{A} + o}{2} = \frac{y_{A}}{2} \end{cases}$$

A purbo medio di $PQ \Rightarrow \begin{cases} x_{A} = \frac{x_{A} + v_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$

the allore

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A} + y_{A}}{2} \end{cases}$$

$$\begin{cases} x_{A} = \frac{y_{A} + y_{A}}{2} \\ y_{A} = \frac{y_{A$$

Per costruzione, i trianopoli OPH e ORK sono simili. Inoltre, dalla definizione dell'operazione di maltipli-cazione per scalare su U, sappiama che OR=1210P Ne deduciamo che 121 è il fattore di proporzionalità. Considerianno ora due casi. Se $\lambda \geq 0$, or è concorde a or e quindi: $\int x_R = |\lambda| x_P = \lambda x_P$ $\int y_R = |\lambda| y_P = \lambda y_P$ Se 200, or édiscorde a or e quindi: $\int x_R = -|\lambda| x_P = \lambda x_P$ $\int y_R = -|\lambda| y_P = \lambda y_P$ λ<0 (n agri caso (per 220 e 2<0) abbiano chi $\int x_R = \lambda x_P$ $y_R = \lambda y_P$ Quindi definiante un'operazione binaria esterna "." •: $IR \times IR^2 \rightarrow IR^2$ | nothplication in IR | $(\lambda, (x,y)) \mapsto \lambda \cdot (x,y) := (\lambda x, \lambda y)$ esempio · (-4) · (1,-2) = (-4.1, -4.(-2)) = (-4,8) In conclusione abbience de finito de operazioni su IR? "compatibili con le operazioni definite su V: +: R2 × 1R2 - R2 (binaria interna) ((x1, y1), (x2, y2)) - (x1, y1) + (x2, y2):= (x1+x2, y1+y2) ·: IR × IR2 - R2 (binaria esterna) $(\lambda, (x,y)) \longrightarrow \lambda \cdot (x,y) := (\lambda x, \lambda y)$

Vediano ora quali sono le proprietà di queste operazioni. Propriétà 1) COMMUTATIVITÀ (consequero del fato che (R,+) è communativa) Y (x1, y1), (x2, y2) ∈ 1R2, (x1, y1) + (x2, y2) = (x2, y2) + (x1, y1) 2) ASSOCIATIVITA (consequenta del fatto che (R,+) è associatia) Y (x1, y1), (x2, y2), (x3, y3) E R2, $((x_1, y_4) + (x_2, y_2)) + (x_3, y_3) = (x_1, y_4) + ((x_2, y_2) + (x_3, y_3))$ 3) ESISTENZA ELEMENTO NEUTRO (consequenza dell'existenza in (R,+)) (0,0) ∈ R2 € tale che (x,4) + (0,0) = (0,0)+(x,4) = (x,4), A (x,q) ∈ 1R2. (consequente dell'esistente dell'esistente dell'esistente dell'epposto in (IR, +) y (x,y) ∈ R2, 3 (x',y')∈ R2 tale che (x,y)+(x',y')=(x',y')+(x,y)=(00) (x' = -x & y' = -y) " opposto di se in 1R rispetto a t 5) PROPRIETA DISTRIBUTIVA RISPETTO ALLA SONHA DI IR2 Y (x1, y1), (x2, y2) ∈ 1R, Y L ∈ 1R 2. ((x, y,) + (x2, y2)) = 2. (x2, y2) + 2. (x2, y2) 6) PROPRIETA' DISTRIBUTIVA RISPETTO ALLA SONNA DI IR $\forall (x,y) \in \mathbb{R}^2 \ \forall \ \lambda, \mu \in \mathbb{R} \$ $(\lambda + \mu) \cdot (x, y) = \lambda \cdot (x, y) + \mu \cdot (x, y)$ 8) $\forall (x,y) \in \mathbb{R}^2$ $1 \cdot (x,y) = (x,y)$ (1 EIR è elemento neutro) della maltiplicazione per scalari elemento neutro di IR rispetto alla moltiplicatione

(IR²,+·) è il nostro primo esempio di "spazio veltoriale" su IR. Più in generale una spazio vettoriale (o spazio Cineare) è una struttura algebrica composta da: · un campo K, i cui elementi sono detti scalari (nel nostro esempio K=1R) · un insieme V, i wi elementi sono delli vettori · <u>due operazioni binarie</u> canatherizzate da determinate Def: Sia K un campo. Uno spazio vettoriale su K è un insieme V dotato di de operazioni: +: V× V → ∨ • : K x V --> V che verificano le sequenti proprieto: per differentia 1) COMMUTATIVITÀ: V v, W E V, v+w = w+v da 0, element 2) ASSOCIATIVITA: $\forall v, v \in V$, $\forall v \in V$ $\forall v \in V$ 3) ESISTENZA ELEMENTO NEUTRO : 3 0 EV +.C.
0+v=v+0=v, VvEV () ESISTENZA DELL'OPPOSTO: Y J V'EV J V'EV t.c. 5) PROPRIETA DISTRIBUTIVA RISPETTO ALLA SONNA DI VETTORI V v,ω∈V, ∀ λ∈K , λ· (v+ω) = λ·σ+ λ·ω 6) PROPRIETA' DISTRIBUTIVA RISPETTO ALLA SONNA DI SCALARI 4 vev, 4 2, mek, (2+ m). v = 2. v+ m. v 7) Y vev, Y2, mex, (2m) · v = 2 · (m·v). 8) $1 \cdot v = v$, $\forall v \in V$ (done $d \in \ell'$ elemento neutro $d \in (\kappa, l)$) Chiamianus vettori gli elementi di V e <u>scalari</u> gli elementi di K. K = IR - sportio vertoriale real. K = C - sportio vertoriale complesso.

4)
$$\forall \lambda \in \mathbb{K}$$
, $\lambda \cdot Q = Q$

Dim

 $\lambda \cdot Q = \lambda \cdot (Q + Q) = \lambda \cdot Q + \lambda \cdot Q$

In marriera analoga a 3 concludiant du $\lambda \cdot Q = Q$

5) Siano
$$\lambda \in K$$
, $\tau \in V$ tali che $\lambda \cdot \tau = Q$, allora $\lambda = 0$ o $\tau = Q$.

Dim per exercitio.