Chapitre 6 : Diviser pour régner

La méthode algorithmique « diviser pour régner » (« divide and conquer » en anglais) consiste à ramener la résolution d'un problème dépendant d'un entier n en un ou plusieurs problèmes identiques portant sur des entiers de l'ordre de n/k avec k > 1. La plupart du temps, k = 2.

Le fonctionnement d'un tel algorithme est le suivant : - on divise le problème en un ou plusieurs sous-problèmes ; - on résout récursivement les sous-problèmes ; - on utilise les résultats obtenus pour construire la solution du problème initial.

Les algorithmes utilisant la dichotomies sont des exemples de tels algorithmes.

Nous allons dans ce chapitre étudier plusieurs autres algorithmes « diviser pour régner ».

1 Exponentiation rapide

La version récursive de l'exponentiation rapide est un exemple d'algorithme «diviser pour régner».

```
[1]: let rec puissance x n =
    match n with
    | 0 -> 1
    | 1 -> x
    | _ -> if n mod 2 = 0
    then puissance (x*x) (n/2)
    else x * puissance (x*x) (n/2)
;;
```

[1]: val puissance : int -> int -> int = <fun>

1.1 Terminaison

La fonction termine pour $n \in \{0,1\}$. Pour $n \ge 2$, $\lfloor \frac{n}{2} \rfloor < n$, donc la fonction termine pour tout $n \in \mathbb{N}$.

1.2 Correction

La correction de l'algorithme est assurée par les égalités $x^0=1,\ x^1=x,$ et pour tout $k\in\mathbb{N},$ $x^{2k}=(x^2)^k$ et $x^{2k+1}=x.(x^2)^k.$

1.3 Complexité

Notons c_n le nombre de multiplications effectuées lors de l'appel puissance x n. Alors $c_0=0$, $c_1=0$ et pour tout $n\geqslant 2$, $c_n=c_{\lfloor\frac{n}{2}\rfloor}+f(n)$ où f(n)=1 si n est pair, 2 sinon.

Considérons la suite u telle que $u_1=0$ et pour tout $n\geqslant 2,$ $u_n=u_{\lfloor\frac{n}{2}\rfloor}+2$. Alors pour tout $n\in\mathbb{N}^*,$ $c_n\leqslant u_n.$

De plus, on peut montrer par récurrence forte que la suite u est croissante.

Pour tout $p \in \mathbb{N}$, posons $v_p = u_{2^p}$, alors pour tout $p \in \mathbb{N}$, $v_{p+1} = v_p + 2$, donc la suite v est arithmétique de raison 2: pour tout $p \in \mathbb{N}$, $u_{2^p} = v_p = 2p$.

Soit maintenant $n \in \mathbb{N}^*$ quelconque et $p = \lfloor \log_2 n \rfloor$. Alors $2^p \leqslant n < 2^{p+1}$.

Comme u est croissante, $v_p \leqslant u_n \leqslant v_{p+1}$, donc $2p \leqslant u_n \leqslant 2p+2$. Par encadrement, $u_n \sim 2\log_2 n$. Finalement, $c_n = O(\log n)$.

Remarque:

Dans ce cas particulier, on peut être plus précis en considérant l'écriture binaire de n: si $n=\overline{b_p...b_1b_0}$, alors $c_n=c_{\lfloor\frac{n}{2}\rfloor}+1+b_0$ avec $\lfloor\frac{n}{2}\rfloor=\overline{b_p...b_1}$

On montre donc aisément que $c_n = p + \sum_{k=0}^{p-1} b_k$, donc $p \leqslant c_n \leqslant 2p$, ce qui permet d'affirmer que $c_n = \Theta(\log n)$ (i.e que $c_n = O(\log n)$ et $\log n = O(c_n)$).

2 Tri fusion

Le tri fusion consiste à partager le tableau ou la liste à trier en deux parties de tailles respectives $\left\lceil \frac{n}{2} \right\rceil$ et $\left\lceil \frac{n}{2} \right\rceil$.

qu'on trie par un appel récursif, puis à fusionner les deux parties triées.

Comme il n'est pas aisé d'implémenter correctement la fusion en place dans le cas d'un tableau, nous allons étudier cet algorithme de tri sur les listes.

2.1 Partage de la liste

2.1.1 Implémentation

[2]: val decoupe : 'a list -> 'a list * 'a list = <fun>

2.1.2 Terminaison et correction

On peut montrer par récurrence double sur n que pour toute liste 1 de longueur n, l'appel decoupe 1 termine en effectuant $1 + \left\lfloor \frac{n}{2} \right\rfloor$ appels à decoupe, et que cet appel renvoie deux listes l_1 et l_2 de longueurs respectives $\left\lceil \frac{n}{2} \right\rceil$ et $\left\lfloor \frac{n}{2} \right\rfloor$.

2.1.3 Complexité

Chaque appel de la fonction decoupe effectue uniquement un nombre borné d'opérations, toutes en temps constant, sauf l'éventuel appel récursif.

Par conséquent, l'exécution de decoupe 1 prend un temps en O(n).

2.2 Fusion de listes triées

2.2.1 Implémentation

[3]: val fusion : 'a list -> 'a list -> 'a list = <fun>

2.2.2 Correction

Montrons que pour toutes listes l_1 et l_2 triées par ordre croissant, l'appel **fusion** l_1 l_2 termine et retourne une liste l triée par ordre croissant dont les éléments sont les mêmes que ceux de l_1 @ l_2 (où @ est l'opérateur de concaténation).

Pour cela, notons pour $n \in \mathbb{N}$, $\mathcal{P}(n)$ l'assertion « pour toutes listes l_1 et l_2 triées par ordre croissant dont la somme des longueurs vaut n, la fonction fusion l_1 l_2 termine et retourne une liste l triée par ordre croissant dont les éléments sont les mêmes que ceux de l_1 @ l_2 ».

- Montrons $\mathcal{P}(0)$. Soit l_1 et l_2 deux listes dont la somme des longueurs vaut 0, alors l_1 et l_2 sont vides. Or fusion [] [] renvoie [] qui possède les mêmes éléments que []@[] et qui est triée. $\mathcal{P}(0)$ est donc vérifiée.
- Soit $n \in \mathbb{N}$ quelconque. Supposons que $\mathcal{P}(n)$ est vérifiée et montrons $\mathcal{P}(n+1)$. Soient l_1 et l_2 deux listes triées par ordre croissant dont la somme des longueurs vaut n+1.
 - Si l_1 est vide, fusion l_1 l_2 retourne l_2 , qui est triée par ordre croissant et possède les mêmes éléments que l_1 @ l_2 .
 - Si l_2 est vide, on a le même résultat.
 - Sinon, l_1 et l_2 sont toutes deux non vides.
 - * Si $t_1 < t_2$, alors fusion l_1 l_2 retourne le résultat de l'évaluation de t_1 :: fusion q_1 l_2 . Or q_1 et l_2 sont triées et la somme des longueurs de q_1 et l_2 vaut n. Par hypothèse de récurrence, fusion q_1 l_2 renvoie une liste l triée ayant les mêmes éléments que q_1 @ l_2 . Par conséquent, t_1 :: fusion q_1 l_2 retourne une liste ayant les mêmes éléments que t_1 :: q_1 @ l_2 , donc que l_1 @ l_2 . De plus, l_1 et l_2 sont triées donc t_1 minore tous les éléments de q_1 et t_2 tous ceux de l_2 . Comme de plus $t_1 < t_2$, t_1 minore tous les éléments de q_1 @ l_2 , donc de l, qui est triée. Donc t_1 ::l est triée. L'appel fusion l_1 l_2 termine et retourne une liste triée contenant les mêmes éléments que l_1 @ l_2 .

* Si $t_1 \geqslant t_2$, on montre de même que l'appel fusion l_1 l_2 termine et renvoie une liste triée contenant les mêmes éléments que l_1 @ l_2 .

 \mathcal{P} est donc héréditaire.

On en déduit que P(n) est vrai pour tout entier n.

2.2.3 Complexité

À chaque appel de fusion, on effectue uniquement un nombre borné d'opérations, qui sont toutes de temps constant, sauf l'appel récursif. On en déduit que la complexité temporelle de l'exécution de fusion l_1 l_2 est un O(n) où n est la somme des longueurs de l_1 et l_2 .

2.3 Tri fusion

2.3.1 Implémentation

```
[4]: let rec tri_fusion l =
    match l with
    | [] -> []
    | [x] -> [x]
    | _ -> let l1, l2 = decoupe l in
    fusion (tri_fusion l1) (tri_fusion l2)
;;
```

[4]: val tri_fusion : 'a list -> 'a list = <fun>

2.3.2 Correction

Pour $n \in \mathbb{N}$, notons $\mathcal{P}(n)$ l'assertion « Pour une liste l de n éléments, $\mathtt{tri_fusion}\ l$ renvoie une liste triée par ordre croissant ayant les mêmes éléments que l », et raisonnons par récurrence forte sur n.

 $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies.

Soit $n \geqslant 2$. Supposons $\mathcal{P}(k)$ vraie pour tout k < n. Soit l'une liste de longueur n. Notons l_1 et l_2 les deux listes obtenues par l'appel decoupe l. Alors l_1 et l_2 sont respectivement de longueur $\left\lceil \frac{n}{2} \right\rceil$ et $\left\lfloor \frac{n}{2} \right\rfloor$. Comme $n \geqslant 2$, $n > \left\lceil \frac{n}{2} \right\rceil \geqslant \left\lfloor \frac{n}{2} \right\rfloor$, donc pour $i \in \{1,2\}$, tri_fusion l_i renvoie une liste l_i' triée ayant les mêmes éléments que l_i .

Par conséquent, la liste renvoyée par tri_fusion l est une liste triée (car fusion est correcte) qui possède exactement les mêmes éléments que l_1' @ l_2'

2.3.3 Complexité

Notons, pour $n \in \mathbb{N}$, C(n) le temps de calcul mis dans le pire des cas par tri_fusion l pour une liste l de longueur n.

Les opérations effectuées par tri_fusion sur une liste l de longueur $n \ge 2$ sont un filtrage (en temps constant), un appel à decoupe l en temps O(n), un appel à fusion sur deux listes l'_1 et l'_2 de longueurs respectives $\lceil n/2 \rceil$ et $\lfloor n/2 \rfloor$, ce qui demande un temps $O(\lceil n/2 \rceil + \lfloor n/2 \rfloor) = O(n)$, et

deux appels récursifs à tri_fusion sur des listes de longueurs $\lceil n/2 \rceil$ et $\lfloor n/2 \rfloor$, dont les temps de calcul sont donc au plus respectivement $C(\lceil n/2 \rceil)$ et $C(\lfloor n/2 \rfloor)$.

Le temps de calcul de tri_fusion l est donc au plus $O(n) + C(\lceil n/2 \rceil) + C(\lfloor n/2 \rfloor)$.

Cette inégalité étant vérifiée pour toute liste de longueur n, le temps de calcul de **tri_fusion** sur une liste de longueur n dans le cas le pire vérifie:

$$C(n) \leqslant C\left(\left\lfloor\frac{n}{2}\right\rfloor\right) + C\left(\left\lceil\frac{n}{2}\right\rceil\right) + O(n)$$

Ou bien on suppose que C est croissante, ou bien on introduit plutôt C'(n), le temps de calcul de tri_fusion dans le cas le pire pour une liste de longueur $au \ plus \ n$.

Pour tout $n \in \mathbb{N}$, $C(n) \leqslant C'(n) \leqslant C'(n+1)$, car pour toute liste de longueur n, tri_fusion met un temps au plus égal à C'(n) et pour toute liste de longueur au plus n, tri_fusion met un temps au plus C'(n+1).

Donc C' majore C et est croissante.

De plus, on a:

$$C'(n) \leqslant C'\left(\left\lfloor\frac{n}{2}\right\rfloor\right) + C'\left(\left\lceil\frac{n}{2}\right\rceil\right) + O(n)$$

Pour $k \in \mathbb{N}$, posons $u_k = C'(2^k)$.

Alors, à partir d'un certain rang, $u_k \leq 2u_{k-1} + \alpha 2^k$ où α est une constante.

On pose alors pour tout $k \in \mathbb{N}$, $v_k = \frac{u_k}{2^k}$, de sorte qu'à partir d'un certain rang k_0 , $v_k \leqslant v_{k-1} + \alpha$, d'où $v_k - v_{k-1} \leqslant \alpha$.

Alors pour tout $k\geqslant k_0,$ $v_k-v_{k_0}\leqslant (k-k_0)\alpha,$ donc $v_k\leqslant (k-k_0)\alpha+v_{k_0}.$ Par conséquent, $v_k=O(k),$ donc $u_k=O(k2^k).$

Soit $n \in \mathbb{N}^*$ et $p = \left\lceil \log_2 n \right\rceil$, alors $C(n) \leqslant C'(n) \leqslant C'(2^p)$ avec $C'(2^p) = u_p = O(p2^p)$.

Or $O(\lceil \log_2 n \rceil 2^{\lceil \log_2 n \rceil}) = O(n \log n)$, donc

$$C(n) = O(n \log n)$$

3 Tri par pivot

Ce tri est aussi appelé *tri rapide* (ou *quicksort*), mais ce nom pourrait vous induire en erreur : le tri par pivot, s'il est rapide dans les meilleurs cas, se comporte mal dans le pire des cas.

Ce tri consiste, lorsque la liste l à trier est assez grande à effectuer les étapes suivantes :

- On choisit dans l un élément quelconque p, appelé pivot, et on construit deux listes l_1 et l_2 des autres éléments de l contenant respectivement les éléments inférieurs ou égaux à p et ceux strictement supérieurs à p.
- On trie récursivement les deux listes l_1 et l_2 , ce qui donne deux listes triées l'_1 et l'_2 .
- On renvoie la liste $l'_1 \circ (p::l'_2)$.

3.1 Partition

La fonction filter : ('a -> bool) -> 'a list -> 'a list du module List prend en argument une fonction f : 'a -> bool et une liste lst et renvoie la liste des éléments de lst pour lesquelles la fonction f renvoie true. Sa complexité (temporelle et spatiale) est un O(n).

On en déduit une fonction partition de complexité linéaire :

```
[5]: let partition p l =
   let l1 = List.filter (fun x -> x <= p) l in
   let l2 = List.filter (fun x -> x > p) l in
   l1, l2
;;
```

[5]: val partition : 'a -> 'a list -> 'a list * 'a list = <fun>

3.2 Tri par pivot

3.2.1 Implémentation

[6]: val quicksort : 'a list -> 'a list = <fun>

3.2.2 Complexité

La fonction partition est de complexité linéaire, donc il existe deux constantes α et β telles que pour tout p et pour toute liste l, le temps de calcul de partition p l est majoré par $\alpha |l| + \beta$ où |l| désigne la longueur de la liste l

Le temps de calcul de $\operatorname{\tt quicksort} l$ avec l non vide de longueur n est égal à la somme des coûts du partitionnement, des deux appels récursifs, puis de la concaténation, plus quelques coûts en temps constant.

Le coût en temps de la partition est majoré par $\alpha(n-1) + \beta$.

Le coût de la concaténation est linéaire par rapport à la taille de v_1 , qui est majorée par n-1 donc il existe deux constantes λ , μ telles que le coût de la concaténation est majorée par $\lambda(n-1) + \mu$.

Finalement, il existe des constantes a et b telles que le temps de calcul de quicksort l est majoré par an + b plus le temps de calcul des appels récursifs.

Notons N le nombre total d'appels à quicksort et S la somme des longueurs des listes sur lesquelles s'effectuent ces appels. Alors le temps de calcul de quicksort l est majoré par aS + bN, donc par m(S+N) où $m = \max\{a,b\}$.

Pour tout $n \in \mathbb{N}$, notons C(n) la valeur de S+N dans le pire des cas pour une liste de longueur n.

- C(0) = 1, car si la liste est vide, on réalise un seul appel.
- Soit $n \in \mathbb{N}^*$. Alors il existe $k \in [0, n-1]$ tel que $C(n) \leq C(k) + C(n-1-k) + n + 1$.

Montrons par récurrence forte que $C(n) \leq (n+1)^2$.

- $C(0) \leq (0+1)^2$.
- Soit $n \in \mathbb{N}^*$. On suppose que pour tout $k \in [0, n-1]$, $C(k) \leqslant (k+1)^2$. Comme il existe $k \in [0, n-1]$ tel que $C(n) \leqslant C(k) + C(n-1-k) + n + 1$, avec $k \leqslant n-1$ et $n-1-k \leqslant n-1$, on en déduit que $C(n) \leqslant (k+1)^2 + (n-k)^2 + n + 1$.

Or
$$(k+1)^2 + (n-k)^2 + n + 1 = k^2 + 2k + 1 + n^2 - 2nk + k^2 + n + 1$$

= $n^2 + 2n + 1 + 2k^2 + 2k - 2nk - n + 1$
= $(n+1)^2 - 2k(n-1-k) - (n-1)$

donc
$$C(n) \leqslant (n+1)^2$$

Par conséquent, la complexité temporelle de quicksort l est, dans le pire des cas, en $O(n^2)$.

En considérant le cas où la liste est déjà triée, on peut montrer que cette borne est atteinte.

4 Exercices

4.1 Exercice 1

Écrire un tri fusion qui trie suivant l'ordre lexicographique un tableau dont les éléments sont des couples de flottants. On pourra utiliser la commande Array.sub t i n renvoyant le sous-tableau de t commençant à l'indice i et de longueur n. On rappelle que l'ordre lexicographique est utilisé par défaut par OCaml pour comparer des couples de flottants :

```
[7]: (4,2)<(2,3);;
(2,2)<(2,3);;
```

```
[7]: - : bool = false
- : bool = true
```

4.2 Exercice 2 : distance minimale entre les points d'un nuage de points

On se donne un tableau de taille n contenant des couples de flottants représentant un nuage de points du plan, que l'on suppose deux à deux distincts. On souhaite déterminer les deux points les plus proches.

1) Quelle est la complexité de l'algorithme consistant à considérer tous les couples de points ?

Si le nuage comporte peu de points, on utilisera l'algorithme naïf. Dans le cas contraire, on va appliquer une stratégie « diviser pour régner ». On sépare le nuage de points P en deux parties P_G et P_D approximativement de mêmes tailles autour d'un axe vertical d'équation $x=\ell$.

La distance minimale entre deux points de P est donc atteinte :

- soit entre deux points de P_G ;
- soit entre deux points de P_D ;

• soit entre un point de P_G et un point de P_D .

On calcule récursivement la distance minimale δ_G séparant les points du nuage P_G et la distance minimale δ_D séparant les points du nuage P_D .

On pose ensuite $\delta = \min\{\delta_G, \delta_D\}$.

- 2) Quelle serait la complexité de l'algorithme si on calcule les distances entre tous les couples de points constitués d'un point de P_G et d'un point de P_D ?
- 3) Montrer que si la distance minimale est atteinte dans le troisième cas, alors elle l'est entre deux points dont les abscisses appartiennent à $[\ell \delta, \ell + \delta]$.

Notons B l'ensemble des points de P dont les abscisses appartiennent à $[\ell - \delta, \ell + \delta]$.

4) Soit $M(x_M, y_M)$ un point de B. Montrer qu'il existe au plus sept autres points N(x, y) de B tels que $y_M \leq y \leq y_M + \delta$.

Pour déterminer si deux points de B sont distants de moins de δ , il suffit donc de calculer la distance entre chaque point de B et les sept suivants par ordonnée croissante.

Pour séparer le nuage en deux, il est préférable que P soit trié par abscisse croissante, mais pour la dernière étape, il faudrait disposer des points triés par ordonnée croissante. Pour éviter d'avoir à trier les sous-tableaux à chaque appel récursif, on introduit de la redondance : on prendra en entrée deux tableaux x et y, contenant tous les deux les mêmes couples de points. Les éléments de x seront triés selon l'ordre lexicographique en prenant d'abord en compte les abscisses, et ceux de y seront triés selon l'ordre lexicographique en prenant d'abord en compte les ordonnées. Ainsi, dans une première étape, on coupera x en deux : les deux sous-tableaux obtenus x_1 et x_2 seront encore triés lexicographiquement par abscisse. On coupera alors y en deux sous-tableaux, en répartissant les éléments suivants qu'ils sont strictement inférieurs ou supérieurs ou égaux au 1er élément de x_2 . On obtient deux sous-tableaux y_1 et y_2 qui sont encore trisé lexicographiquement par ordonnée. Les éléments du nuage étant deux à distincts, on peut montrer que les points de x_1 et y_1 sont les mêmes, ainsi que ceux de y_1 et y_2 . Finalement, nous n'aurons jamais à effectuer de tri, ni au début car les tableaux donnés x et y sont supposés triés, ni lors des appels récursifs.

Enfin, les tableaux à 1, 2 ou 3 éléments sont pénibles à manipuler pour l'algorithme diviser pour régner : pour les trier on utilisera l'algorithme naïf.

5) Proposer un algorithme qui renvoie la plus petite distance ainsi qu'un couple de points la réalisant, et évaluer sa complexité. On pourra utiliser la commande Array.of_list 1 qui convertit une liste 1 en tableau.