

### **North South University**

Department of Electrical & Computer Engineering

Course Code: CSE231L.8

Course Title: Digital Logic Design

Faculty Name: Prof. Dr. M. A. Razzak (Azz)

**Project Report of** 

"Design a Combinational and Sequential Circuit to display "DL2-31D230S12" on a 7 Segment Display including"

Section: 08

**Group Number**: 06

Submitted To: Jannatul Ferdaous

| Submitted E | Ву:                     |            | Score |
|-------------|-------------------------|------------|-------|
| S.N.        | Student Name            | ID         |       |
| 14          | Asrar Al Mohaimen Ahmed | 2112324642 |       |
| 17          | Nuzhat Tahsin           | 2121613642 |       |
| 23          | Tahsinul Haque Wrudra   | 2131252642 |       |
| 26          | Simon Yeamin            | 2132131642 |       |
| 30          | Anindita Das Mishi      | 2211364642 |       |

### **Introduction:**

This project is about displaying "DL2-31D230S12" with the help of a seven-segment display, including combinational and sequential circuits.

#### **Phase 1: Combinational Part**

#### **Truth Table:**

| Displays | Inputs Outputs |   |   |   |   |   |   |   |   |   |   |
|----------|----------------|---|---|---|---|---|---|---|---|---|---|
|          | Α              | В | С | D | а | b | С | d | е | f | g |
| D        | 0              | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| L        | 0              | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 2        | 0              | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| -        | 0              | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 3        | 0              | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1        | 0              | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| D        | 0              | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 2        | 0              | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 3        | 1              | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0        | 1              | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| S        | 1              | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |   |
| 1        | 1              | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 2        | 1              | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
|          | 1              | 1 | 0 | 1 | Х | Х | Х | Х | Х | Х | Х |
|          | 1              | 1 | 1 | 0 | Х | Х | Х | Х | Х | Х | Х |
|          | 1              | 1 | 1 | 1 | Х | Х | Х | Х | Х | Х | Х |

#### **Canonical SOP form:**

a = A'B'C'D' + A'B'CD' + A'BC'D' + A'BCD' + A'BCD + AB'C'D' + AB'C'D + A'BC'D + ABC'D'

 $\mathbf{b} = A'B'C'D' + A'B'CD' + A'BC'D' + A'BCD' + A'BCD' + AB'C'D' + AB'C'D + AB'C'D'$ 

c = A'B'C'D' + A'BC'D' + A'BC'D + A'BCD' + AB'C'D' + AB'C'D + AB'CD' + AB'CD

 $\mathbf{d} = A'B'C'D' + A'B'C'D + A'B'CD' + A'BC'D' + A'BCD' + A'BCD + AB'C'D' + AB'C'D + AB'CD'$ 

**e** = A'B'C'D' +A'B'C'D +A'B'CD' + A'BCD' + A'BCD + AB'C'D + ABC'D'

 $\mathbf{f} = A'B'C'D' + A'B'C'D + A'BCD' + AB'C'D + AB'CD'$ 

g = A'B'CD' + A'B'CD + A'BC'D' + A'BCD + AB'C'D' + AB'CD' + ABC'D'

#### **Canonical POS form:**

a = (A'+B'+C'+D). (A'+B'+C+D). (A'+B+C'+D). (A+B'+C+D)

 $\mathbf{b} = (A'+B'+C'+D). (A'+B'+C+D). (A+B'+C+D')$ 

c = (A'+B'+C'+D)(A'+B'+C+D')(A'+B'+C+D)(A'+B+C+D). (A+B+C'+D')

 $\mathbf{d} = (A'+B'+C+D)(A'+B+C'+D)(A+B'+C+D)$ 

e = (A'+B'+C+D)(A'+B+C'+D')(A'+B+C'+D)(A+B'+C'+D')(A+B'+C+D')(A+B'+C+D)

 $\mathbf{f} = (A'+B'+C+D')(A'+B'+C+D)(A'+B+C'+D')(A'+B+C'+D)(A'+B+C+D)(A+B'+C'+D')$ (A+B'+C+D)(A+B+C'+D')

 $\mathbf{g} = (A'+B'+C'+D')(A'+B'+C'+D)(A'+B+C'+D)(A'+B+C+D')(A+B'+C'+D)(A+B'+C+D)$ 

# **Using NAND gates:**



0001 Displaying - "L"

# **Using NOR gates:**



0111 Displaying - "2"

#### **Using SOP:**

### **SOP Kmaps**





| ÁB     1     1     0     1       ÁB     0     0     1     1       AB     1     X     X     X | AB CD | ēδ | i co l | CD | сб |  |
|----------------------------------------------------------------------------------------------|-------|----|--------|----|----|--|
| AB (1 X X X X)                                                                               | ÁĞ    | 1  | 1      | 0  | 1  |  |
|                                                                                              | ĀB    | 0  | 0.     | 1  | 1  |  |
|                                                                                              | АВ    | (1 | X      | ×  | ×  |  |
| AB 0 (1) 0 0                                                                                 | AB    | 0  | (1)    | 0  | 0  |  |

| PB' | OD.      | Ć,  | 101 | бÞ | cĎ        |
|-----|----------|-----|-----|----|-----------|
|     | A3<br>AB | (1  | 1   | 0  | 0         |
|     | AB       | 0   | 0   | 0  | 1         |
|     | AB       | 0   | ×   | ×  | $\otimes$ |
|     | AB       | - 0 | (1) | 0  | 1         |
|     |          |     | 1   |    |           |

| AB CD | СБ | CD | CD  | 1CD L |
|-------|----|----|-----|-------|
| A8    | 0  | 0  | (1) | 1     |
| AB    | 1  | 0  | 1   | 0     |
| AB    | D  | ×  | ×   | ×     |
| AB    | 1  | ٥  | 0   | 1     |

W-Map forz "g"
$$g = \overline{B}C\overline{D} + \overline{A}CD + B\overline{C}\overline{D} + A\overline{C}\overline{D}.$$

#### **SOP Simulation**



0001 Displaying - "L"

#### **POS Simulation**



0001 Displaying - "L"

<u>MUX</u>

16 to 1 mux using 8 to 1 mux

| Α | В | С | D | F | а |                    | b |                    | С |                   | d |                    | e |                    | f |                   | g |                    |
|---|---|---|---|---|---|--------------------|---|--------------------|---|-------------------|---|--------------------|---|--------------------|---|-------------------|---|--------------------|
| 0 | 0 | 0 | 0 | D | 1 |                    | 1 |                    | 1 |                   | 1 |                    | 1 |                    | 1 |                   | 0 |                    |
| 0 | 0 | 0 | 1 | L | 0 | I₀=D'              | 0 | I₀=D'              | 0 | I₀=D'             | 1 | I <sub>0</sub> =1  | 1 | I <sub>0</sub> =1  | 1 | I <sub>0</sub> =1 | 0 | I <sub>0</sub> =0  |
| 0 | 0 | 1 | 0 | 2 | 1 |                    | 1 |                    | 0 |                   | 1 |                    | 1 |                    | 0 |                   | 1 |                    |
| 0 | 0 | 1 | 1 | - | 0 | I₁=D'              | 0 | I₁=D'              | 0 | I1=0              | 0 | I₁=D'              | 0 | I <sub>1</sub> =D' | 0 | I1=0              | 1 | I <sub>1</sub> =1  |
| 0 | 1 | 0 | 0 | 3 | 1 |                    | 1 |                    | 1 |                   | 1 |                    | 0 |                    | 0 |                   | 1 |                    |
| 0 | 1 | 0 | 1 | 1 | 0 | I <sub>2</sub> =D' | 1 | I <sub>2</sub> =1  | 1 | I <sub>2</sub> =1 | 0 | I <sub>2</sub> =D' | 0 | I <sub>2</sub> =0  | 0 | I <sub>2</sub> =0 | 0 | I <sub>2</sub> =D' |
| 0 | 1 | 1 | 0 | D | 1 |                    | 1 |                    | 1 |                   | 1 |                    | 1 |                    | 1 |                   | 0 |                    |
| 0 | 1 | 1 | 1 | 2 | 1 | l₃=1               | 1 | I₃=1               | 0 | I₃=D'             | 1 | I₃=1               | 1 | I₃=1               | 0 | I₃=D'             | 1 | I₃=D               |
| 1 | 0 | 0 | 0 | 3 | 1 |                    | 1 | -                  | 1 |                   | 1 |                    | 0 | -                  | 0 |                   | 1 |                    |
| 1 | 0 | 0 | 1 | 0 | 1 | I <sub>4</sub> =1  | 1 | I <sub>4</sub> =1  | 1 | I <sub>4</sub> =1 | 1 | I <sub>4</sub> =1  | 1 | I <sub>4</sub> =D  | 1 | I <sub>4</sub> =D | 0 | I <sub>4</sub> =D' |
| 1 | 0 | 1 | 0 | S | 1 | -                  | 0 | -                  | 1 | -                 | 1 | -                  | 0 |                    | 1 | -                 | 1 | -                  |
| 1 | 0 | 1 | 1 | 1 | 0 | I₅=D'              | 1 | I₅=D               | 1 | I₅=1              | 0 | I₅=D'              | 0 | I <sub>5</sub> =0  | 0 | I₅=D'             | 0 | I₅=D'              |
| 1 | 1 | 0 | 0 | 2 | 1 | -                  | 1 | -                  | 0 | -                 | 1 | -                  | 1 | -                  | 0 | -                 | 1 | -                  |
| 1 | 1 | 0 | 1 |   | 0 | I <sub>6</sub> =D' | 0 | I <sub>6</sub> =D' | 0 | I <sub>6</sub> =0 | 0 | I <sub>6</sub> =D' | 0 | I <sub>6</sub> =D' | 0 | I <sub>6</sub> =0 | 0 | I <sub>6</sub> =D' |

# **MUX Simulation**



0111 Displaying - "2"

# **Decoder Simulation**



0111 Displaying - "2"

### **Budget for the project (Without Flip Flop):**

As we are using Multiplexer to display "DL2-31D230S12", we require

1-Cathode 7-Segment Display = 12 Tk 7-IC 74HC151N (8:1 MUX) = 224 Tk 1-IC NOT 7404 (2-input NOT) = 26 TK 2 Breadboard = 260 TK Wires = 90 TK

Total Cost = 612 TK