Calcul différentiel Sous-variétés

Question 1/28

Théorème de Whitney (version faible)

Réponse 1/28

Toute variété différentielle compacte de dimension n se plonge dans \mathbb{R}^N , pour un certain $N \in \mathbb{N}^*$, comme une sous-variété de dimension n

Question 2/28

Espace tangent pour une sous-variété définie par submersion

Réponse 2/28

$$T_x M = \bigcap^{n-d} (\ker(\mathrm{d}(g_i)_x))$$

Question 3/28

Carte pour une variété topologique

Réponse 3/28

$$(U,\varphi)$$
 avec U un ouvert de X et $\varphi\colon U\to \varphi(U)\subset \mathbb{R}^n$ un homéomorphisme

Question 4/28

X est une variété topologique

Réponse 4/28

X est un espace séparé tel que pour tout $x \in X$, il existe un voisinage ouvert de x homéomorphe à un ouvert de \mathbb{R}^n

Question 5/28

Application tangente

Réponse 5/28

Si M et N sont deux variétés, $f:M \to N$ est une application différentiable en a alors $d_a f: T_a M \longrightarrow T_a N$ est une application $[\gamma] \longmapsto [f \circ \gamma]$ tangente

Question 6/28

 $T_x M$

Réponse 6/28

$$\{v \in \mathbb{R}^n, \exists \gamma:]-\varepsilon, \varepsilon[\to M, \gamma(0)=x \land \gamma'(0)=v\}$$

C'est un espace vectoriel de \mathbb{R}^n de dimension $\dim(M)$

Question 7/28

Deux courbes γ_1 et γ_2 sur M sont tangentes en $a \in M$

Réponse 7/28

$$\gamma_1(0) = \gamma_2(0) = a$$
 et il existe une carte $(U \subset \mathbb{R}^n, \varphi)$ telle que $(\varphi \circ \gamma_1)'(0) = (\varphi \circ \gamma_2)'(0)$

Question 8/28

Partitions de l'unité subordonnée à $(W_{\alpha})_{\alpha \in \mathcal{A}}$ des ouverts tels que $X = \bigcup_{\alpha \in \mathcal{A}} (W_{\alpha})$

Réponse 8/28

Fonctions $\chi_{\alpha}: X \to \mathbb{R}_+$ lisses à support compact telles que supp $(\chi_{\alpha}) \subset W_{\alpha}$ et telles que, pour tout $x \in X$, seul un nombre fini de χ_{α} est non nul et $\sum_{\alpha} (\chi_{\alpha}) \equiv 1$

 $\alpha \in \mathcal{A}$

Question 9/28

Théorème de Lagrange

Réponse 9/28

Si U est un ouvert de \mathbb{R}^n , $f, g_1, \dots, g_q: U \to \mathbb{R}$ des applications de classe \mathcal{C}^1 , si $Y = \{x \in U \mid g_1(x) = \dots = g_1(x) = 0\}$ si $f_1 x$

 $X = \{x \in U, g_1(x) = \dots = g_q(x) = 0\}, \text{ si } f_{|X}$ admet un extremum local en $a \in X$ et si $(d(g_i)_a)_{i \in [\![1,q]\!]}$ est une famille libre alors il existe des multiplicateurs de Lagrange

$$(\lambda_1, \cdots, \lambda_q) \in \mathbb{R}^q$$
 tels que $\mathrm{d} f_a = \sum_{i=1}^q (\lambda_i \mathrm{d} (g_i)_a)$

Question 10/28

Espace tangent pour une sous-variété définie par paramétrisation

Réponse 10/28

$$T_x M = \operatorname{im}(\mathrm{d} h_0)$$

Question 11/28

Définition par paramétrisation

Réponse 11/28

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $h \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n , un voisinage ouvert Ω de 0 dans \mathbb{R}^p et une appication $h:\Omega\to\mathbb{R}^n$ qui soit une immersion¹ et un homéomorphisme de classe \mathcal{C}^k sur $M \cap U$

^{1.} dh_x est injective

Question 12/28

CNS pour avoir $f: N \to M \subset \mathbb{R}^n$ différentiable

Réponse 12/28

f est localement la restriction d'une application différentiable $\varphi: N \to \mathbb{R}^n$

Question 13/28

Définition par submersion

Réponse 13/28

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $x \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n et une submersion $g:U\to\mathbb{R}^{n-p}$ de classe \mathcal{C}^k tels que $M \cap U = g^{-1}(0_{\mathbb{R}^{n-p}})$ Il suffit d'avoir la surjectivité sur M car elle se conserve localement

^{1.} dg_x est surjective pour tout x

Question 14/28

Variété différentielle de classe \mathcal{C}^k

Réponse 14/28

Variété topologique munie d'une structure différentielle de classe \mathcal{C}^k

Question 15/28

Variétés difféomorphes

Réponse 15/28

M et N sont difféomorphes s'il existe $f: M \to N$ différentiable, bijective et telle que $f^{-1}: N \to N$ soit différentiable Dans ce cas, $\dim(M) = \dim(N)$

Question 16/28

Deux cartes (U_1, φ_1) et (U_2, φ_2) sont compatibles d'ordre k

Réponse 16/28

$$U_1 \cap U_2 = \emptyset$$
 ou $\varphi_2 \circ \varphi_1^{-1} : \varphi_1(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2)$ est un \mathcal{C}^k -difféomorphisme

Question 17/28

Atlas pour une variété topologique

Réponse 17/28

Famille
$$((U_i, \varphi_i))_{i \in I}$$
 tel que $X = \bigcup_{i \in I} (U_i)$

Question 18/28

Fibré tangent

Réponse 18/28

$$\{(x, v), x \in M, v \in T_x M\}$$

Question 19/28

$$f: M \to N$$
 est numérique

Réponse 19/28

f est de classe \mathcal{C}^k et $N = \mathbb{R}$

Question 20/28

Définition par redressement

Réponse 20/28

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $x \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n , un voisinage ouvert V de 0 dans \mathbb{R}^n et un \mathcal{C}^k -difféomorphisme $f:U\to V$ tels que $f(M \cap U) = V \cap (\mathbb{R}^d \times \{0\})$

Question 21/28

 $f: M \to N$ continue est de classe \mathcal{C}^k en aM et N sont deux variétés de classe \mathcal{C}^k

Réponse 21/28

$$f(a) \in N$$
 et il existe (U, φ) et (V, ψ) deux cartes de M et N telles que

cartes de
$$M$$
 et N telles que $\psi \circ f \circ \varphi^{-1} : \varphi(f^{-1}(V) \cap U) \to \psi(V)$ est \mathcal{C}^k

$$\psi \circ f \circ \varphi^{-1} : \varphi(f^{-1}(V) \cap U) \to \psi(V) \text{ est } \mathcal{C}^{k}$$

$$U \xrightarrow{f} V$$

$$\downarrow \varphi \qquad \qquad \downarrow \psi \downarrow$$

$$\varphi(U) \qquad \qquad \psi(V)$$

 $\varphi(f^{-1}(V) \cap U) \stackrel{\cdot}{\hookrightarrow} \psi \circ f \circ \varphi^{-1} \Longrightarrow$

Question 22/28

Espace tangent à une variété M en a

Réponse 22/28

$$T_a M = \{\gamma : I \to M, \gamma(0) = a\} / \sim \text{où } \gamma_1 \sim \gamma_2$$

si et seulement si ces deux courbes sont
tangentes en a

Question 23/28

Atlas d'ordre k

Réponse 23/28

Atlas dont deux cartes sont toujours compatibles d'ordre k

Question 24/28

Théorème de Whitney (version forte)

Réponse 24/28

Toute variété différentielle compacte de dimension n se plonge dans \mathbb{R}^{2n} comme une sous-variété de dimension nCe résultat est optimal car la bouteille de Klein est de dimension 2 mais n'est pas une sous-variété différentielle de dimension 2 de \mathbb{R}^3

Question 25/28

Espace tangent pour une sous-variété définie par un graphe

Réponse 25/28

$$T_x M = \{(h, d\varphi_x(h)), h \in \mathbb{R}^d\}$$

Pour $M = \{(x, \varphi(x)), x \in U\}, U$ un ouvert de \mathbb{R}^d et $\varphi: U \to \mathbb{R}^{n-d}$

Question 26/28

Structure différentielle de classe \mathcal{C}^k de M

Réponse 26/28

Atlas de classe C^k maximal, i.e. si une carte est compatible avec toutes celle de l'atlas alors elle appartient à l'atlas

Question 27/28

CS d'existence de partition de l'unité

Réponse 27/28

Si X est une variété compacte (fermée sans bords) de classe \mathcal{C}^k et $X = \bigcup_{i} (W_{\alpha})$ alors X

possède une partition de l'unité de classe \mathcal{C}^k subordonnée à $(W_{\alpha})_{\alpha \in \mathcal{A}}$

Question 28/28

Définition par les graphes

Réponse 28/28

Une partie non vide M de \mathbb{R}^n est une sous-variété de classe \mathcal{C}^k de dimension p si pour tout $x \in M$, il existe un voisinage ouvert U de x dans \mathbb{R}^n tel que $M \cap U$ soit le graphe d'une application f de classe \mathcal{C}^k d'un ouvert de $\mathbb{R}^d \cong \mathbb{R}^d \times \{0\} \text{ dans } \mathbb{R}^{n-d} \cong \{0\} \times \mathbb{R}^{n-d}$