df = pd.read_csv('second_hand_cars.csv')
df.sample(4)

→		Company Name	Car Name	Variant	Fuel Type	Tyre Condition	Make Year	Owner Type	Registration Number	Mileage	Price	Transmission Type	Body Color	Service Record	Insu
	2200	Nissan	Camry	LE	CNG	Used	2017	First	63-490-6659	18222	583656	Automatic (Tiptronic)	Maroon	Major Service at 149889 km	Vali
	982	Nissan	Camry	XL	Diesel	Needs Replacement	2021	First	18-176-2046	137747	853519	Automatic	Maroon	No Service Record	No (Ins
	2007	Hyundai	Swift	Highline	Diesel	Used	2024	First	18-783-2629	14829	537052	Manual	White	Major Service at 110951 km	Vali
	2276	Volkswagen	Sunny	SE	CNG	Used	2016	First	91-573-2341	194124	361256	Automatic	Grey	No Service Record	Vali

df.info()
df.isnull().sum()

#	Column	Non-Null Count	Dtype	
0	Company Name	2500 non-null	object	
1	Car Name	2500 non-null	object	
2	Variant	2238 non-null	object	
3	Fuel Type	2500 non-null	object	
4	Tyre Condition	2500 non-null	object	
5	Make Year	2500 non-null	int64	
6	Owner Type	2500 non-null	object	
7	Registration Number	2500 non-null	object	
8	Mileage	2500 non-null	int64	
9	Price	2500 non-null	int64	
10	Transmission Type	2500 non-null	object	
11	Body Color	2500 non-null	object	
12	Service Record	2500 non-null	object	
13	Insurance	2500 non-null	object	
14	Registration Certificate	2500 non-null	object	
15	Accessories	2018 non-null	object	
	1 (64/2) 1 1 (42)			

dtypes: int64(3), object(13)
memory usage: 312.6+ KB
Company Name 0
Car Name 0
Variant 262

0 262 Fuel Type 0 Tyre Condition Make Year Owner Type Registration Number Mileage 0 Price Transmission Type Body Color Service Record 0 Insurance 0 Registration Certificate 0 Accessories 482 dtype: int64

Brand = df['Company Name'].value_counts()
plt.pie(Brand, labels=Brand.index,autopct='%1.1f%%')
plt.title("Sell Percentage of Car's Company ")
plt.show()

$\overline{\Rightarrow}$

Sell Percentage of Car's Company

$\overline{\Rightarrow}$

Sell of Different Car's Models


```
variant = ['SE','RXE','GT','Highline','XL ','EX','LE','SL','ZXI']

for x in range(len(cars)):
    # print(f'{df[df['Car Name'] == cars[x]]['Variant'].value_counts()}')
    print(f"{df[df['Car Name'] == cars[x]]['Variant'].value_counts()}")
    fig = plt.figure(figsize=(10, 7))
    plt.pie(df[df['Car Name'] == cars[x]]['Variant'].value_counts(), labels=variant,autopct='%1.1f%%')
    plt.title(f"{cars[x]}'s Sell of Variants")
    plt.show()
```

Variant
SL 32
XL 28
Highline 27
EX 26
LE 25
RXE 24
ZXI 23
SE 20
GT 18

Name: count, dtype: int64

Elantra's Sell of Variants

Variant

ZXI 42

XL 32

Highline 26

SL 23

LE 23

RXE 22

GT 22

SE 19

EX 17

Name: count, dtype: int64

Accord's Sell of Variants

Highline 25
ZXI 25
GT 24
SE 22
LE 21
EX 20
SL 19
XL 18
RXE 17

Name: count, dtype: int64

Kwid's Sell of Variants

Variant
SE 29
ZXI 29
XL 29
LE 27
RXE 27
Highline 27
SL 24
GT 22
EX 20

EX 20 Name: count, dtype: int64

Sunny's Sell of Variants

Variant EX 38 RXF 34

GT 26 LE 26 SE 24 SL 24 Highline 20 XL 19 ZXI 16

Name: count, dtype: int64

Polo's Sell of Variants

Variant LE SE 32 30 29 29 GT RXE XL ZXI 26 24 SL Highline 22 EX 18

Name: count, dtype: int64

Swift's Sell of Variants

Variant
Highline 33
EX 32
SE 28

RXE 27
LE 27
XL 26
GT 23
ZXI 22
SL 21

Name: count, dtype: int64

Seltos's Sell of Variants

Variant
LE 38
GT 31
SL 27
EX 25
RXE 22
Highline 21
ZXI 16
SE 16
XL 12

Name: count, dtype: int64

Cruze's Sell of Variants

Variant
SE 39
RXE 34
GT 31
Highline 31
XL 27

EX 23 LE 22 SL 21 ZXI 19

Name: count, dtype: int64

F-150's Sell of Variants

Variant
GT 34
ZXI 27
LE 26
Highline 22
EX 22
SE 21
RXE 19
XL 14
SL 13

Name: count, dtype: int64

Camry's Sell of Variants

owner = df['Owner Type'].value_counts()
plt.pie(owner,labels=owner.index,autopct='%1.1f%%')
plt.title("Owner's type")
plt.show()

Owner's type


```
df['Variant'].fillna('Unknown', inplace=True)
df['Accessories'].fillna('None', inplace=True)
df['Make Year'] = df['Make Year'].astype(int)
df['Mileage'] = df['Mileage'].astype(int)
df['Price'] = df['Price'].astype(int)
import seaborn as sns
print(df.dtypes)
plt.figure(figsize=(10, 6))
sns.countplot(x='Fuel Type', data=df)
plt.title('Distribution of Fuel Types')
# plt.show()
print('''
plt.figure(figsize=(10, 6))
sns.histplot(df['Price'], bins=30, kde=True)
plt.title('Distribution of Car Prices')
# plt.show()
print('''
''')
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Mileage', y='Price', data=df,color='orange')
plt.title('Price vs. Mileage')
# plt.show()
print('''
plt.figure(figsize=(12, 8))
numeric_columns = ['Make Year', 'Mileage', 'Price']
numeric_df = df[numeric_columns]
sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
# plt.show()
```

Đ₹	Company Name	object		
	Car Name	object		
	Variant	object		
	Fuel Type	object		
	Tyre Condition	object		
	Make Year	int64		
	Owner Type	object		
	Registration Number	object		
	Mileage	int64		
	Price	int64		
	Transmission Type	object		
	Body Color	object		
	Service Record	object		
	Insurance	object		
	Registration Certificate	object		
	Accessories	object		
	Cluster	int32		
	dtype: object			


```
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
df_scaled = scaler.fit_transform(df[['Mileage', 'Price']])

wcss = []
for i in range(1,11):
    km = KMeans(n_clusters=i)
    km.fit_predict(df_scaled)
    wcss.append(km.inertia )
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fro warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con warnings.warn(

 $/usr/local/lib/python 3.10/dist-packages/sklearn/cluster/_kmeans.py: 870: Future Warning: The default value of `n_init` will change from the control of th$ warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from the control of the con warnings.warn(

WCSS

```
→ [4999.99999999995,
     3111.40779114869.
     1961.7933455019029,
     1246.8970254951014.
     1058.716648034422,
     892.5272692414267,
     751.6121146663704,
     628.2182714172255,
     545.4201665738697,
     491.1986213065466]
```

plt.title("Elbow Method") plt.plot(range(1,11),wcss)

[<matplotlib.lines.Line2D at 0x7cf8232649a0>]


```
kmeans = KMeans(n_clusters=6)
df['Cluster'] = kmeans.fit_predict(df_scaled)
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Mileage', y='Price', hue='Cluster', data=df, palette='viridis')
plt.title('Clusters of Cars')
plt.show()
```

```
average_price_by_fuel = df.groupby('Fuel Type')['Price'].mean()
print(average_price_by_fuel)
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
X = df[['Mileage', 'Make Year']]
y = df['Price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = LinearRegression()
model.fit(X_train, y_train)
pred = model.predict(X_test)
pred
    Fuel Type
₹
               608814.659524
     CNG
     Diesel
               601408,979592
     Petrol
               614176.844015
     Name: Price, dtype: float64
     array([615722.34535501, 610820.8889521 , 611535.76956023, 600032.67472487,
            596386.25357253, 597555.22691041, 613001.16353671, 609967.8625108
            608938.34715651, 596458.54154949, 611711.53810255, 611292.74499252,
            602818.04811389, 613771.81622885, 606728.66509134, 610040.48391975,
            613937.07983971, 609070.5902075 , 610844.02799789, 610869.952156
            609913.30533242, 607010.97836221, 610640.06688064, 602257.60339621,
            610434.72946327, 601673.93390546, 608465.80296603, 600116.29560027,
            612296.47629709, 611101.98760882, 596375.93132162, 612445.10606715,
            611954.46571698, 612203.79123155, 607765.53519514, 607273.59392057,
            607842.2961475 , 600411.31836119, 601274.23695961, 607846.79070045,
            600062.43721499, 608646.48551206, 602495.94008737, 608243.88550601,
            599084.56504436, 610223.65007522, 602769.77001333, 610586.30515716,
            610157.8566602 , 609863.44667362, 611932.4987132 , 596345.73873771,
            611737.06409599, 610457.53507707, 606970.35622256, 600828.96100677,
            609869.15613222, 604035.17037845, 606551.90718756, 600983.44005234,
            614719.68913916, 614651.18598754, 605271.15232847, 604888.23997487,
            596577.07539743, 609230.64953778, 613132.39594017, 605239.47584812,
            610471.79261327, 613877.30744624, 599326.57896454, 615274.21984865,
            613086.12849163, 602708.96539476, 610417.85885227, 610245.68181169,
            608141.60920326, 611718.11839176, 610698.52741519, 615595.96222257,
            605751.58866709, 600147.1979118 , 615107.63373582, 602955.86080656,
            613021.34572414, 612024.27008449, 613737.6345615 , 612632.22908547,
            598759.28525834, 612692.23795766, 607063.38536313, 602502.53101962,
            604885.0788584 , 599280.41911232, 611878.14550145, 600084.24282429,
            603763.31888391, 601465.97277025, 607032.35416921, 610797.69610815,
            608079.12707317, 609732.14982897, 612224.39257825, 609658.09832173,
            604638.20502416, 610541.67206501, 601825.8646089 , 608822.53339673,
            608723.83795268, 603541.63790261, 610839.58753458, 605300.01176738,
            612519.20043802,\ 612447.4930148\ ,\ 613207.56539976,\ 608164.74795756,
            600659.65451431, 603375.5247472 , 606494.09164795, 614911.84440055,
```

```
605053.60024753, 617473.18178972, 616615.05866416, 598978.64373319, 603631.25851347, 601901.34592293, 600993.0416411, 600594.44165303, 603223.66941949, 608076.48206925, 611383.32274424, 614945.99384731, 607936.86298267, 604415.79273768, 614325.41137504, 610884.18811464, 615900.21056812, 613981.20746235, 603725.11591251, 613035.74307725, 612110.91225944, 609201.74723524, 610657.17397036, 612722.21534893, 614922.09127574, 605043.38559294, 605475.64049279, 608466.19019618, 602818.33839076, 598194.86239173, 598328.77201971, 611449.27755374, 605179.81134245, 603492.72515866, 603541.55159236, 607799.07157607, 613936.42391025, 604554.47626096, 612283.34764778, 598974.42881407,
```