ProblemSet 4 – Finite fields and codes

George McNinch

due 2024-03-29

1. Let q be a power of a prime $p \neq 3$, let $k = \mathbb{F}_q$ and let $\ell = \mathbb{F}_{q^3}$ be the degree 3 extension.

Suppose that $3 \mid q - 1$.

(Examples: q = 7, 13, 16, 19, 25, ...)

a. Show that there are elements $\alpha \in k$ for which $T^3 - \alpha \in k[T]$ is *irreducible*.

b. Choose $\alpha \in k$ as in (a), explain why $\ell = k[\beta] \simeq k[T]/\langle T^3 - \alpha \rangle$ where $\beta^3 = \alpha$. Explain why $1, \beta, \beta^2$ is a k-basis for ℓ .

View ℓ as a k-vector space; for any $\gamma \in \ell$, multiplication by γ defines a k-linear map

$$\lambda_{\gamma}: \ell \to \ell$$
 defined by $\lambda_{\gamma}(x) = \gamma \cdot x$

The $\mathit{trace}\ \mathrm{tr} = \mathrm{tr}_{\ell/k} : \ell \to k \ \mathrm{is} \ \mathrm{defined} \ \mathrm{by} \ \mathrm{tr}(\gamma) = \mathrm{tr}(\lambda_\gamma).$

c. Compute the matrix of the linear mapping $\lambda_{\beta}: \ell = k[\beta] \to \ell = k[\beta]$ in the basis $1, \beta, \beta^2$.

d. Prove that tr(1) = 3 and $tr(\beta) = tr(\beta^2) = 0$. Conclude that $tr : \ell \to k$ is a non-zero linear mapping.

e. Compute the matrix of the bilinear form

$$\langle -, - \rangle = \ell \times \ell \to k$$

defined for $x,y\in\ell$ by $\langle x,y\rangle=\operatorname{tr}(xy)$ in the basis $e_0=1,e_1=\beta,e_2=\beta^2.$ In other words, compute the 3×3 matrix

$$M=(\langle e_i,e_j\rangle)_{ij}=(\operatorname{tr}(e_ie_j))_{ij}\in\operatorname{Mat}_{3\times 3}(k).$$

f. Show that det $M \neq 0$ so that $\langle x, y \rangle = \operatorname{tr}(xy)$ is a non-degenerate symmetric bilinear form on ℓ .

g. Let X, Y, Z be polynomial variables, let

$$v=X+Y\beta+Z\beta^2=Xe_0+Ye_1+Ze_2\in\ell[X,Y,Z]_1$$

and compute 1

$$Q(X,Y,Z):=\langle v,v\rangle\in k[X,Y,Z]_2.$$

Note that

$$Q(X,Y,Z) = \begin{bmatrix} X & Y & Z \end{bmatrix} \cdot M \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix},$$

and that Q is a homogeneous polynomial of degree 2.

h. For any $P=(x:y:z)\in\mathbb{P}^2_k$, prove that $Q(P)\neq 0$.

- 2. Let $f = T^{11} 1 \in \mathbb{F}_4[T]$.
 - a. Show that $T^{11}-1$ has a root in \mathbb{F}_{4^5} .

$$\langle Xv+Yw,Zu\rangle=XZ\langle v,u\rangle+YZ\langle w,u\rangle.$$

¹We are extending the bilinear form linearly; to compute for example the quantity $\langle Xv + Yw, Zu \rangle$ for vectors $v, w, u \in \ell$, we must take

- b. If $\alpha \in F_{4^5}$ is a primitive element i.e. an element of order 4^5-1 , find an element $a=\alpha^i \in \mathbb{F}_{4^5}$ of order 11, for a suitable i.
- c. Show that the minimal polynomial g of a over \mathbb{F}_4 has degree 5, and that the roots of g are powers of a. Which powers?
- d. Show that $f = g \cdot h \cdot (T 1)$ for another irreducible polynomial $h \in \mathbb{F}_4[T]$ of degree 5. The roots of h are again powers of a. Which powers?
- e. Show that $\langle f \rangle$ is a $[11, 6, d]_4$ code for which $d \geq 4$.
- 3. Consider the following variant of a Reed-Solomon code: let $\mathcal{P} \subset \mathbb{F}_q$ be a subset with $n = |\mathcal{P}|$ and write $\mathcal{P} = \{a_1, \cdots, a_n\}$. Let $1 \leq k \leq n$ and write $\mathbb{F}_q[T]_{\leq k}$ for the space of polynomial of degree $\leq k$, and let

$$C \subset \mathbb{F}_q^n$$
 be given by

$$C=\{(p(a_1),\cdots,p(a_n))\mid p\in\mathbb{F}_q[T]_{< k}.$$

- a. Prove that C is a $[n, k, n-k]_q$ -code.
- b. If $P = \mathbb{F}_q^{\times}$, prove that C is a *cyclic code*.
- c. If q=p is *prime* and if $P=\mathbb{F}_p$, prove that C is a *cyclic code*.