Inlever 2 Lial 2

Boris van Boxtel en Lotte Gritter

21 December 2022

Opgave 1. Gegeven zijn twee eindig dimensionale vectorruimten V en W en een lineare afbeelding $A \colon V \to W$. Er wordt bewezen dat als $\dim(V) > \dim(W)$, A niet injectief is.

Bewijs.

Volgens de dimensiestelling geldt de volgende vergelijking:

$$\dim(V) = \dim(\ker(A)) + \dim(A(V)) \tag{1}$$

Hieruit volgt de volgende vergelijking:

$$\dim(V) - \dim(A(V)) = \dim(\ker(A)). \tag{2}$$

Per definitie geldt het volgende: (komt omdat $A(V) \subseteq W$, moet meer uitleg bij?)

$$\dim(W) \ge \dim(A(V)) \tag{3}$$

En samen met het gegeven dat $\dim(V) > \dim(W)$, gelden de volgende ongelijkheden:

$$\dim(V) > \dim(W) \ge \dim(A(V)) \tag{4}$$

$$\dim(V) > \dim(A(V)) \tag{5}$$

Hieruit volgt dat

$$\dim(V) - \dim(A(V)) > 0. \tag{6}$$

Vanuit verg. (2) volgt dus dat $\dim(\ker(A)) > 0$. Samen met **Stelling 7.3.3** is de conclusie dat A niet injectief is.

Opgave 2. Het doel is de oplossingsverzameling van de vergelijking

$$2x^2 - 4xy + 5y^2 = 36\tag{7}$$

om te schrijven naar een vorm

$$a(x')^2 + b(y')^2 = 36 (8)$$

met behulp van lineare algebra. We geven eerst een beeld van de aanpak om dit bereiken.

We beginnen met het schrijven van verg. (7) in de volgende vorm:

$$\mathbf{x}^T A \mathbf{x} = 36 \tag{9}$$

Waar $\mathbf{x} = (x, y)^T$ en A een 2×2 matrix, namelijk $A = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$. We zoeken nu een basis van eigenvectoren van A, zodat we A kunnen diagonaliseren. Wanneer we deze hebben gevonden, kan A geschreven worden als $A = S^{-1}DS$. Voor een coördinatentransformatie matrix S en een diagonaalmatrix D. Als we dit invullen in verg. (9) vinden we de volgende vergelijking:

$$\mathbf{x}^T S^{-1} D S \mathbf{x} = 36. \tag{10}$$

Vervolgens bewijzen we dat $S^{-1} = S^T$, waardoor we verg. (10) kunnen schrijven als:

$$\mathbf{x}^T S^T D S \mathbf{x} = 36. \tag{11}$$

wat we volgens Stelling 3.1.1 kunnen schrijven als volgt:

$$(S\mathbf{x})^T D S\mathbf{x} = 36. \tag{12}$$

Hier zien we in dat we aan de linker en rechterkant nu nieuwe coördinaten $S\mathbf{x} = \mathbf{x}' = (x', y')^T$ hebben, dus we vinden het volgende:

$$\mathbf{x'}^T D \mathbf{x'} = 36. \tag{13}$$

Per definitie is D een diagonaal matrix, dus vinden we een polynoom in de coördinaten $(x', y')^T$ zonder kruistermen. Nu volgt de uitvoering voor de gegeven vergelijking.

Voor een basis van eigenvectoren van A beginnen we bij het zoeken van eigenwaarden van A. Dit doen we door de vergelijking $\det(A - \lambda I) = 0$ op te lossen. Dit geeft de volgende vergelijking in λ :

$$(2 - \lambda)(5 - \lambda) - 4 = 0 \tag{14}$$

De oplossingen hiervan zijn $\lambda_1 = 1, \lambda_2 = 6$, met beide λ_1, λ_2 een algebraïsche multipliciteit van 1. We vinden de eigenvectoren bij de eigenwaarden λ_1 en λ_2 door een basis te vinden van $\ker(A - \lambda_1 I) = E_1$ en $\ker(A - \lambda_2 I) = E_2$ respectievelijk. Dit doen we door Gauss-Jordan toe te passen op de matrix $A - \lambda I$, en vervolgens een basis op te stellen. We vinden de volgende bases van de eigenruimtes:

$$B_1 = \left\{ \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix} \right\} \tag{15}$$

$$B_6 = \left\{ \begin{pmatrix} -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} \right\} \tag{16}$$

Waar B_1 de basis is van E_1 en B_6 de basis van E_6 . Deze specifieke vectoren zijn zo gekozen zodat de lengte 1 is. We zien dat deze bases beide uit 1 vector bestaan. Dus geldt dat de dimensie van E_1 en E_6 beide gelijk is aan 1. Dus voor elke eigenwaarde geldt dat de algebraïsche multipliciteit gelijk is aan de meetkundige multipliciteit, dus A is diagonalizeerbaar. We zien dat het inproduct van de twee vectoren in B_1 en B_6 0 is, dus ze staan loodrecht op elkaar en vormen dus een basis van \mathbb{R}^n . De coördinatentransformatie matrix S en de diagonaal matrix D zijn dus gegeven door:

$$S = \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}$$
 (17)

We laten nu zien dat $S^{-1} = S^T$.

Bewijs.

We kunnen beide matrices berekenen, en vinden het volgende.

$$S^{-1} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \qquad S^{T} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}$$
 (18)

We zien dus dat voor deze S geldt dat $S^{-1} = S^T$.

We hebben alle benodigde componenten gevonden. Als we de gevonden matrix voor D invullen in verg. (13) vinden we het volgende:

$$\mathbf{x'}^T \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix} \mathbf{x'} = 36 \tag{19}$$

en dit kunnen we schrijven als:

$$x'^2 + 6y'^2 = 36. (20)$$

We hebben de orginele vraag beantwoord met oplossing a = 1 en b = 6.

Ook zien we dat de volgende vergelijking geldt:

$$S\mathbf{x} = \mathbf{x}' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 2x + y \\ -x + 2y \end{pmatrix}.$$
 (21)

Als we ter controle deze twee vergelijking van x' en y' invullen in verg. (20), vinden we zoals verwacht verg. (7) terug.

Merk op dat we S kunnen opvatten als rotatiematrix. We zien namelijk dat:

$$\theta = \arccos\left(\frac{2}{\sqrt{5}}\right) \approx 0.4636\dots$$
 $S = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$ (22)

In de volgende figuren is te zien hoe de relatie tussen x, y en x', y' een rotatie over de oorsprong is.

Hieronder is een plot te zien van de oplossingsverzameling van verg. (7), waar \hat{x}' en \hat{y}' staan voor de eenheidsvectoren in de richting van x' en y'.

Figuur 1: Vergelijking (7) in het xy-vlak

En hieronder is een plot te zien van de oplossingverzameling van verg. (20), waar \hat{x} en \hat{y} staan voor de eenheidsvectoren in de richting van x en y.

Figuur 2: Vergelijking (20) in het $x^{\prime}y^{\prime}\text{-vlak}$