

Software Design Processes and Management

Objectives

- To understand how design consists of analysis and resolution activities
- To illustrate and explain generic processes for software product and engineering design
- To explain the five main tasks of project management
- To understand iterative planning and tracking
- To see how to apply project management principles to software design projects

Topics

- Analysis and resolution
- Generic problem-solving and design processes
- Generic software product and engineering design processes
- Project management
- Iterative planning and tracking
- Applying project management to software design projects

Analysis and Resolution

- Confusion arises around the term design.
- This confusion is removed by adopting the following terminology.

Analysis is breaking down a design problem to understand it.

Resolution is solving a design problem.

Analysis and Resolution in Software Design

A Problem-Solving Process

- Understand the problem
- 2. Generate candidate solutions
- 3. Evaluate candidate solutions
- 4. Select the best solution(s)
- 5. Iterate if no solution is adequate
- Ensure the solution is complete and well-documented, and deliver it

A Generic Design Process

A Design Resolution Process

This diagram shows details of the resolution activity from the previous diagram.

Design Process Characteristics

- The best solutions are rarely the first solutions designers think of.
 - Designers should generate many candidate solutions.
- The design process is highly iterative.
 - Designers must frequently reanalyze the problem and must generate and improve solutions many times.

A Generic Software Product Design Process

A Generic Software Engineering Design Process

Architectural and Detailed Design

Architectural design is high-level software engineering design resolution.

Detailed design is low-level software engineering design resolution.

Later discussions will consider architectural and detailed design, the latter being further divided into mid-level and low-level detailed design.

Operations versus Projects

- Operations are standardized activities that occur continuously or at regular intervals.
 - Payroll
 - Hiring and performance evaluation
 - Shipping and receiving
- Projects are one-time efforts to achieve a particular current goal.
 - Process improvement
 - Business restructuring
 - New product introduction (including design)

Project Management Activities

- Planning—Formulating a scheme for doing a project.
- Organizing—Structuring the organizational entities involved in a project and assigning them authority and responsibilities.
- Staffing—Filling the positions in an organizational structure and keeping them filled.
- Tracking—Observing the progress of work and adjusting work and plans accordingly.
- Leading—Directing and supporting people doing project work.

Project Planning

- **Estimation** is calculation of the approximate cost, effort, time or resources required to achieve some end.
- A schedule specifies the start and duration of work tasks.
- Tasks are allocated resources based on the schedule and estimates.
- Risk analysis is an orderly process of identifying, understanding, and assessing risks (any occurrence with negative consequences).
- Policies, procedures, tools, and techniques are specified to govern work.

Project Organization and Staffing

- Organizational structures
 - Project organization
 - Functional organization
 - Matrix organization
- Team structures
 - Hierarchical teams
 - Democratic teams
- Staffing
 - Often the single most important factor in success is having good people to do the work.

Project Tracking

- Projects may not go as planned for many reasons.
 - Resource consumption is not as expected.
 - Tasks do not take as long as expected.
 - Policies, procedures, tools, or techniques cause problems.
 - Something bad occurs (illness, budget cuts, equipment failures, etc.
- When plans fail they must be adjusted.

Leading a Project

- Direction is needed to follow plans, use resources efficiently, etc.
- Directing people is not enough—people need inspiration, help, a congenial work environment, emotional support, etc.

Iterative Planning and Tracking

- Good planning requires knowledge of tasks and their costs, risks, and other details not known until the project is under way—but this is not known when plans are made.
- Iterative planning and tracking is making a rough base or initial project plan and refining it at fixed periods during a project in light of tracking data and completed work products.

Design Project Management

- All five project a management activities are needed to manage a design project.
- Iterative planning and tracking is the best approach to planning and tracking.
- The design project decomposition on the next slide is useful for planning, organization, staffing, and tracking.
- Design constitutes the largest activity in software development, so design can drive an entire development project.

Design Project Decomposition

Work Phase		Typical Work Products
Product Design	Analysis: Design Problem	Statement of interested parties, product concept, project scope, markets, business goals Models (of the problem) Prototypes (exploring the problem)
	Analysis: Detailed Needs	Client surveys, questionnaires, interview transcripts, etc. Problem domain description Lists of needs, stakeholders Models (of the problem) Prototypes (exploring needs)
	Resolution: Product Specification	Requirements specifications Models (of the product) Prototypes (demonstrating the product)
Engineering Design	Analysis	Models (of the engineering problem) Prototypes (exploring the problem)
	Resolution: Architectural Design	Architectural design models Architectural design specifications Architectural prototypes
	Resolution: Detailed Design	Detailed design models Detailed design specifications Detailed design prototypes

Summary

- Analysis is breaking a design problem down to understand it; resolution is solving a design problem.
- Design processes begin with analysis and have a highly iterative resolution phase.
- Designers should generate many candidate solutions and expect to reanalyze and resolve the problem repeatedly.
- Design management is project management and hence requires planning, organization, staffing, tracking, and leadership.
- Iterative planning and tracking is the best way to make and revise plans during a project.