Progress in Computing Nozzle/Plume Flow Fields

Stephen M. Ruffin NASA Ames Research Center, Moffett Field, CA

> Ethiraj Venkatapathy Eloret Institute, Sunnyvale, CA

William J. Feiereisen NASA Ames Research Center, Moffett Field, CA

> Seung-Ho Lee Eloret Institute, Sunnyvale, CA

Abstract

The long-term goal of this work is to develop the capability to predict chemically-reacting, multi-stream nozzle and plume flow fields. Two basic Navier-Stokes solvers, including the widely used F-3D code, are upgraded to include several upwind difference schemes and portable chemistry packages. Current computational capabilities for solving eqilibrium single-stream and multi-stream, frozen gas and finite rate chemistry problems are described. A variety of complex nozzle and plume flows have been computed. Solutions presented herein include axisymmetric plume flow for ideal and equilibrium air, 3-D NASP nozzle/afterbody flow, and an internal nozzle calculation comparing various finite-rate chemistry packages.

Motivations, Objective, and Applications

Motivations

- Flow in nozzle and propulsive plume strongly influence performance of hypersonic vehicles.
- Ground-based facilities can not fully simulate these flow fields.
- Validated, accurate and efficient flow codes are needed to design integrated propulsion systems of hypersonic vehicles.

Objective

 Develop computational ability to predict chemically reacting, multi-stream, nozzle/plume flow fields.

Applications

NASP, Space Shuttle, general plume flows and signatures

SCHEMATIC OF AXISYMMETRIC PLUME FLOWS

Plume Flow in Subsonic External Stream

Plume Flow in Supersonic External Stream

	Nozzle/Plun	Vozzle/Plume Flow Solvers	S
Difference Scheme	2-D Axisym. Eqns. Flux-Split in 2-D	3-D Eqns. Flux-Split in 1-D Central Diff. in 2-D	3-D Eqns. Roe's upwind averaging in 3-D
Implicit Soln. Algorithm	Beam & Warming in "delta form"	Two-Factor Flux-Split	LDU-ADI
Viscous Terms	in 1-D	in 1-D	in 3-D
Chemistry	Ideal Gas Equil. single-stream Equil. multi-stream Frozen	ldeal Gas Finite-Rate	ldeal Gas Equil. single-stream
Calibration	Ideal Gas: Mach disk location for jet plumes Equil. 1-stream: Shock standoff dist., and shape and species distribution for blunt body flow.	Ideal Gas: Numerous flows including Space Shuttle, Mach No., pressure and Mach disk location for plumes Finite-Rate: H ₂ -air species distribution for axsymm. nozzle.	Ideal Gas: Numerous flows including Space Shuttle, Mach No., pressure and Mach disk location for plumes, plume structure in quiescent freestream

Nozzle/Plume Flow Solvers (cont.)

- All calculations performed for laminar flow
- Adaptive grid routine used for all 2-D cases (3-D adaptive grid routine recently completed)
- 3-D code can handle multiple, patched-grid regions and generalized specification of boundary conditions

Equilibrium and Frozen Gas Chemistry

Constant Elemental Composition (i.e., single-stream)

Uniform gas throughout flow field

Equilibrium Gas - table look-up, curve fits - relatively fast

- must be pre-calculated

Variable Elemental Composition (i.e., multi-stream)

Solution of species partial density equations allows for convection, diffusion and mixing of multiple streams

Equilibrium Gas - Gordon-McBride free energy minimization

arbitrary gas mixtures
 Frozen Chemistry

No reactions

Finite Rate Chemistry

H₂ - air chemistry currently being used
JANNAF plume model (Dash and Pergament, 1980)
7 Species: H, H₂, H₂ O, O, OH, O₂, N₂
8 Reactions

Specific heats from curve fits (Gordon and McBride data)

Binary diffusion - Fick's Law with D_{i,j} given by Reid, et.al., 1977)

Non-catalytic wall

Chemistry Coupling - Fully-Coupled

Invert large matrix of order 5 + (N_{species} - 1) per node

- Loosely-Coupled

Invert two smaller matrices of order 5 and N species - 1 per node. Locally constant $\bar{\gamma}$ P not affected by species concentration variations

Types of Nozzle/Plume Flows Computed	/Plume	Flow	S CC	mputed
	Main complexity is due to:	lexity is	due to:	
Cases	Fluid Dyn. Features	Body Geom.	Flow Chem.	References
 I. Axisymmetric Single-Nozzle Plume A. Not including afterbody Ideal gas, sub. freestream Ideal gas, sup. freestream 	××			AIAA 89-0129 AIAA 88-3158
B. Including afterbody Ideal Gas Equil. single-stream Equil. multi-stream Frozen	×× ××	××××	×××	AIAA 88-2636 AIAA 88-2636 in preparation in preparation
II. 3-D Multiple-Nozzle Plume A. Not including afterbody B. Including afterbody	××	×		AIAA 88-3158 AIAA 89-0129
III. Hypersonic Nozzle/AfterbodyA. 2-D GeometrySubsonic freestreamSupersonic freestreamB. 3-D GeometryPlume region alone	×× ×	×		AIAA 89-0446 AIAA 89-0446 AIAA 89-0446
	×	×	×	AIAA 89-0446 in preparation

Axisymmetric Plume Flow in Quiscent Air Pj/Pinf = 21.9 - Mj = 1.5

Upper Half - Computed Mach Contours with Adapted Grid

Lower Half - Experimetnal Shadowgraph - (NASA TR R 6)

Axisymmetric Plume Solutions

Comparison of Shock Reflection Location vs Altitude

ORIGINAL PAGE IS OF POOR QUALITY

1		

PRECEDERO PART HERRY ROT FILMED

OFFICIAL PAGE IS OF FOOR QUALITY

I		

Concluding Remarks

- A variety of nozzle/plume flows have been successfully
- Complex flow structures and geometries have been studied
 Good agreement with experimental and other computed results has been found for plume structure and Mach disk
- Equilibrium single-stream, equil. multi-stream, finite rate, and frozen chemistry packages have been incorporated.
- Turbulence modeling for complex plume flows is currently being studied
- 3-D code will be validated against hypersonic nozzle/afterbody experimental data
- Significant progress has been made toward goal of a single code capable of solving complex chemically reacting nozzle/plume