Assignment 3: Data Exploration

Leonardo Rueda

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Exploration.

Directions

- 1. Rename this file <FirstLast>_A03_DataExploration.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 6. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai.

The completed exercise is due on Sept 30th.

Set up your R session

1. Check your working directory, load necessary packages (tidyverse), and upload two datasets: the ECOTOX neonicotinoid dataset (ECOTOX_Neonicotinoids_Insects_raw.csv) and the Niwot Ridge NEON dataset for litter and woody debris (NEON_NIWO_Litter_massdata_2018-08_raw.csv). Name these datasets "Neonics" and "Litter", respectively. Be sure to include the subcommand to read strings in as factors.

getwd()

[1] "C:/Users/leor9/OneDrive/Leonardo/MIDP Courses Fall 2022/R Class/EDA-Fall2022/Assignments"

Learn about your system

2. The neonicotinoid dataset was collected from the Environmental Protection Agency's ECOTOX Knowledgebase, a database for ecotoxicology research. Neonicotinoids are a class of insecticides used widely in agriculture. The dataset that has been pulled includes all studies published on insects. Why might we be interested in the ecotoxicology of neonicotinoids on insects? Feel free to do a brief internet search if you feel you need more background information.

Answer: Yes, for instance some studies have found that some concentrations of this insectiside can be harmful for the population of bees.

3. The Niwot Ridge litter and woody debris dataset was collected from the National Ecological Observatory Network, which collectively includes 81 aquatic and terrestrial sites across 20 ecoclimatic domains. 32 of these sites sample forest litter and woody debris, and we will focus on the Niwot Ridge long-term ecological research (LTER) station in Colorado. Why might we be interested in studying litter and woody debris that falls to the ground in forests? Feel free to do a brief internet search if you feel you need more background information.

Answer: We might be interested in studying litter and woody debris in the forest ecosystem because they play a role in carbon budgets and nutrient cycling.

4. How is litter and woody debris sampled as part of the NEON network? Read the NEON_Litterfall_UserGuide.pdf document to learn more. List three pieces of salient information about the sampling methods here:

Answer: This are three pieces of salient information about the sampling methods: 1) Spatial Sampling Design: Litter and fine woody debris sampling is executed at terrestrial NEON sites that contain woody vegetation >2m tall. 2) Along with most of NEON's plant productivity measurements, sampling for this product occurs only in tower plots 3) Temporal Sampling Design: Ground traps are sampled once per year.

Obtain basic summaries of your data (Neonics)

5. What are the dimensions of the dataset?

dim(Neonics_dataset)

[1] 4623 30

6. Using the summary function on the "Effect" column, determine the most common effects that are studied. Why might these effects specifically be of interest?

summary(Neonics_dataset\$Effect)

##	Accumulation	Avoidance	Behavior	Biochemistry
##	12	102	360	11
##	Cell(s)	Development	Enzyme(s)	Feeding behavior
##	9	136	62	255
##	Genetics	Growth	Histology	Hormone(s)
##	82	38	5	1
##	Immunological	Intoxication	Morphology	Mortality
##	16	12	22	1493
##	Physiology	Population	Reproduction	
##	7	1803	197	

Answer: The most common effects of the study are Mortality, Population and Feeding behavior. These effects could be of interest to understand how the population of insects evolve when they are exposed to this insecticide.

7. Using the summary function, determine the six most commonly studied species in the dataset (common name). What do these species have in common, and why might they be of interest over other insects? Feel free to do a brief internet search for more information if needed.

summary(Neonics_dataset\$Species.Common.Name)

##	Honey Bee	Parasitic Wasp
##	667	285
##	Buff Tailed Bumblebee	Carniolan Honey Bee
##	183	152
##	Bumble Bee	Italian Honeybee
##	140	113
##	Japanese Beetle	Asian Lady Beetle
##	94	76
##	Euonymus Scale	Wireworm
##	75	69
##	European Dark Bee	Minute Pirate Bug
##	66	62
##	Asian Citrus Psyllid	Parastic Wasp
##	60	58
##	Colorado Potato Beetle	Parasitoid Wasp
##	57	51
##	Erythrina Gall Wasp	Beetle Order
##	49	47
##	Snout Beetle Family, Weevil	Sevenspotted Lady Beetle
##	47	46
##	True Bug Order	Buff-tailed Bumblebee
##	45	39
##	Aphid Family	Cabbage Looper
##	38	38
##	Sweetpotato Whitefly	Braconid Wasp
##	37	33
##	Cotton Aphid	Predatory Mite
##	33	33
##	Ladybird Beetle Family	Parasitoid
##	30	30
##	Scarab Beetle	Spring Tiphia
##	29	29
##	Thrip Order	Ground Beetle Family
##	29	27
##	Rove Beetle Family	Tobacco Aphid
##	27	27
##	Chalcid Wasp	Convergent Lady Beetle
##	25	25
##	Stingless Bee	Spider/Mite Class
##	25	Spidel/File Class
##	Tobacco Flea Beetle	Citrus Leafminer
##	10Dacco Flea Beetle 24	citrus Learminer 23
##	Ladybird Beetle	Mason Bee

##	23	22
##	Mosquito	Argentine Ant
##	22	21
##	Beetle	Flatheaded Appletree Borer
##	21	20
##	Horned Oak Gall Wasp	Leaf Beetle Family
##	20	20
##	Potato Leafhopper	Tooth-necked Fungus Beetle
##	20	20
##		
	Codling Moth	Black-spotted Lady Beetle
##	19	18
##	Calico Scale	Fairyfly Parasitoid
##	18	18
##	Lady Beetle	Minute Parasitic Wasps
##	18	18
##	Mirid Bug	Mulberry Pyralid
##	18	18
##	Silkworm	Vedalia Beetle
##	18	18
##	Araneoid Spider Order	Bee Order
##	17	17
##	Egg Parasitoid	Insect Class
##	17	17
##	Moth And Butterfly Order	Oystershell Scale Parasitoid
##	17	bystersherr beare rarasitoru 17
	Hemlock Woolly Adelgid Lady Beetle	Hemlock Wooly Adelgid
##	16	16
##	Mite	Onion Thrip
##	16	16
##	Western Flower Thrips	Corn Earworm
##	15	14
##	Green Peach Aphid	House Fly
##	14	14
##	Ox Beetle	Red Scale Parasite
##	14	14
##	Spined Soldier Bug	Armoured Scale Family
##	14	13
##	Diamondback Moth	Eulophid Wasp
##	13	13
##	Monarch Butterfly	Predatory Bug
##	13	13
##	Yellow Fever Mosquito	Braconid Parasitoid
##	13	12
##		
	Common Thrip	Eastern Subterranean Termite
##	12	12
##	Jassid	Mite Order
##	12	12
##	Pea Aphid	Pond Wolf Spider
##	12	12
##	Spotless Ladybird Beetle	Glasshouse Potato Wasp
##	11	10
##	Lacewing	Southern House Mosquito
##	10	10
##	Two Spotted Lady Beetle	Ant Family
	± v	3

Answer: The most studied species of insects in the dataset are the Honeybee, the Parasitic Wasp, and the Buff Tailed Bumblebee. They are of interest because they either play a key role in the politization of several plants, or they control the population of other species in the ecosystem.

8. Concentrations are always a numeric value. What is the class of Conc.1..Author. in the dataset, and why is it not numeric?

```
class(Neonics_dataset$Conc.1..Author.)
```

[1] "factor"

Answer: The variable Conc.1..Author. in the dataset Neonics_dataset is a factor because some of the observations contain non numeric values such as the symbols /, NR/ and \sim

Explore your data graphically (Neonics)

9. Using geom_freqpoly, generate a plot of the number of studies conducted by publication year.

10. Reproduce the same graph but now add a color aesthetic so that different Test.Location are displayed as different colors.

Interpret this graph. What are the most common test locations, and do they differ over time?

Answer: The most common test locations in the period analyzed are "Lab" and "Field natural" and the relative importance of each one has changed over time. For instance, between 1990 and 2000, "Field natural" was the most common, while between 2000 and 2020 "Lab" predominated most of the time (except for a couple of years before 2010).

11. Create a bar graph of Endpoint counts. What are the two most common end points, and how are they defined? Consult the ECOTOX_CodeAppendix for more information.

```
ggplot(Neonics_dataset, aes(x = Endpoint)) + geom_bar() + theme(axis.text.x = element_text(angle = 90,
    vjust = 0.5, hjust = 1))
```


Answer: The two most common endpoints are "NOEL" and "LOEL". "NOEL" is defined as No-observable-effect-level, with the highest dose (concentration) producing effects not significantly different from responses of controls according to the author's reported statistical test (NOEAL/NOEC), and "LOEL" is defined as the lowest-observable-effect-level, with the lowest dose (concentration) producing effects that were significantly different (as reported by authors) from responses of controls (LOEAL/LOEC).

Explore your data (Litter)

12. Determine the class of collectDate. Is it a date? If not, change to a date and confirm the new class of the variable. Using the unique function, determine which dates litter was sampled in August 2018.

[1] "Date"

unique(Litter_dataset\$collectDate)

```
## [1] "2018-08-02" "2018-08-30"
```

13. Using the unique function, determine how many plots were sampled at Niwot Ridge. How is the information obtained from unique different from that obtained from summary?

```
unique(Litter_dataset$plotID)
```

```
## [1] NIWO_061 NIWO_064 NIWO_067 NIWO_040 NIWO_041 NIWO_063 NIWO_047 NIWO_051 ## [9] NIWO_058 NIWO_046 NIWO_062 NIWO_057 ## 12 Levels: NIWO_040 NIWO_041 NIWO_046 NIWO_047 NIWO_051 NIWO_057 ... NIWO_067
```

```
summary(Litter_dataset$plotID)
```

```
## NIWO_040 NIWO_041 NIWO_046 NIWO_047 NIWO_051 NIWO_057 NIWO_058 NIWO_061
                                      15
##
         20
                   19
                                               14
                                                          8
                                                                  16
                                                                            17
                            18
## NIWO_062 NIWO_063 NIWO_064 NIWO_067
##
         14
                   14
                            16
                                      17
```

Answer: The "unique" function returns the number of plots that were sampled at least once, in this case 12. On the other hand, the function "summary" returns the total number of plots that were sampled for each category.

14. Create a bar graph of functional Group counts. This shows you what type of litter is collected at the Niwot Ridge sites. Notice that litter types are fairly equally distributed across the Niwot Ridge sites.

15. Using geom_boxplot and geom_violin, create a boxplot and a violin plot of dryMass by functional-Group.

```
ggplot(Litter_dataset) + geom_boxplot(aes(x = dryMass, y = functionalGroup))
```



```
ggplot(Litter_dataset) + geom_violin(aes(x = dryMass, y = functionalGroup),
    draw_quantiles = c(0.25, 0.5, 0.75))

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
```


Why is the boxplot a more effective visualization option than the violin plot in this case?

Answer: The boxplot is a more effective visualization because this type of graph shows a box in which we find most of the observations disregarding the distribution inside the box, while the violin plot shows how they are effectively distributed. Given that litter types are distributed fairly equally, the violin plot only shows a line.

What type(s) of litter tend to have the highest biomass at these sites?

Answer: The types of litter that tend to have the highest biomass are "needles" and "mixed".