Felipe José Bravo Márquez

July 5, 2021

- In this class we are going to revisit the linear regression model from a Bayesian point of view.
- The idea is the same as in the frequentist approach, to model the relationship of a numerical dependent variable \mathbf{y} with n independent variables $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$.
- We again use a Gaussian distribution to describe our uncertainty about the response variable: $y_i \sim N(\mu_i, \sigma^2)$.
- And we also assume that each attribute has a linear relationship to the mean of the outcome.

$$\mu_i = \beta_0 + \beta_1 x_i + \dots \beta_n x_n$$

• Instead of using least squares or maximum likelihood estimation we are going to estimate the joint posterior distribution of all the parameters of the model:

$$f(\theta|\mathbf{d}) = f(\beta_0, \beta_1, \dots, \beta_n, \sigma|\mathbf{d})$$

- This approach is more flexible as it allows incorporating prior information.
- It also allows to interpret the uncertainty of the model in a clearer way.

- Notice the the parameters of the model are $\beta_0, \beta_1, \dots, \beta_b$ and σ .
- The mean of the outcome μ_i is not treated as parameter because it is determined deterministically from the linear model's coefficients.
- To complete the model, we need a joint prior density:

$$f(\theta) = f(\beta_0, \beta_1, \dots, \beta_n, \sigma)$$

And the posterior gets specified as follows:

$$f(\theta|\mathbf{d}) = \frac{\prod_{i=1}^{m} f(\mathbf{d}_i|\beta_0, \beta_1, \cdots, \beta_n, \sigma) * f(\beta_0, \beta_1, \dots, \beta_n, \sigma)}{f(\mathbf{d})}$$

here d_i corresponds to each data point containing values for y and x_1, \ldots, x_n .

The evidence is expressed by a multiple integral:

$$f(d) = \int \int \cdots \int \prod_{i=1}^{m} f(d_{i}|\beta_{0}, \beta_{1}, \cdots, \beta_{n}, \sigma) * f(\beta_{0}, \beta_{1}, \dots, \beta_{n}, \sigma) d\beta_{0} d\beta_{1} \cdots d\beta_{n} d\sigma$$

 In most cases, priors are specified independently for each parameter, which amounts to assuming:

$$f(\beta_0, \beta_1, \cdots, \beta_b, \sigma) = f(\beta_0) * f(\beta_1) * \cdots * f(\beta_n) * f(\sigma).$$

This class is based on chapters 4 and 5 of [McElreath, 2020]

A model of height revisited

- Let's fit again a linear model relating height and weight for the !Kung San people.
- But his time we will use a Bayesian approach.
- We need to define a probabilistic model specifying all the components of the Bayesian model:

$h_i \sim \text{Normal}(\mu_i, \sigma)$	[likelihood]
$\mu_i = \alpha + \beta x_i$	[linear model]
$\alpha \sim \text{Normal}(178, 100)$	$[\alpha \ { m prior}]$
$\beta \sim \text{Normal}(0, 10)$	[eta prior]
$\sigma \sim \text{Uniform}(0, 50)$	$[\sigma \text{ prior}]$

Conclusions

Blabla

References I

McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press.