А. С. Пудов

Задачи обслуживания бинарного потока объектов в системе с накопительнорасходным компонентом

Пудов Андрей Семенович

Волжский государственный университет водного транспорта, e-mail: andrey@andreypudov.com

Рассматривается модель одностадийного обслуживания конечного детерминированного потока объектов процессором с накопительно-расходным компонентом — резервуаром ограниченной емкости. Поток состоит из подпотока объектов, пополняющих резервуар, и подпотока объектов, заполняемых из резервуара. С каждым объектом ассоциируется линейная функция индивидуального штрафа за время пребывания в системе обслуживания. Изучается задача построения расписания, минимизирующего суммарный штраф по всем объектам потока. Конструируемые алгоритмы основываются на принципе динамического программирования, схеме ветвей и границ, а также их совместной реализации. Приводятся результаты вычислительных экспериментов.

Ключевые слова: динамическое программирование, метод ветвей и границ, NP-трудность

Математическая модель обслуживания, постановка оптимизационной задачи и исследование вычислительной сложности

Изучается модель M, в которой конечный поток объектов $O_n = \{o_1, o_2, ..., o_n\}$ подлежит однофазному обслуживанию стационарным процессором с накопительно-расходным компонентом — резервуаром емкости V^* . Для каждого объекта o_i , $i=\overline{1,n}$ определены целочисленные параметры: t_i — момент поступления в очередь на обслуживание; τ_i — норма длительности обслуживания; a_i — штраф за единицу времени пребывания в системе обслуживания; v_i — объемная характеристика (вместимость объекта). Поток O_n состоит из подпотоков O^+ и O^- . Объекты подпотока O^+ предназначены для пополнения резервуара, объекты подпотока O^- — для заполнения из резервуара. Принадлежность объекта o_i , $i=\overline{1,n}$ тому или иному подпотоку определяется значением параметра w_i ($w_i=+1$, если $o_i\in O^+$; $w_i=-1$, если $o_i\in O^-$). Объекты пронумерованы в порядке их поступления: $0\leq t_1\leq\ldots\leq t_n$.

Заполнение резервуара в момент времени t будем характеризовать переменнои? V(t) с известным начальным значением V(0). Обслуживание объекта o_i из подпотока O^+ может быть начато при наличии в резервуаре достаточного свободного объема; в результате реализации обслуживания

2 А. С. Пудов

такого объекта заполнение резервуара увеличивается на величину v_i . Объект o_i из подпотока O^- может быть начат обслуживанием при наличии достаточного заполнения резервуара; в результате реализации его обслуживания заполнение резервуара уменьшается на величину v_i . Считается, что процессор не может обслуживать более одного объекта одновременно; обслуживание каждого объекта осуществляется без прерываний.

Расписание обслуживания потока O_n определяем как перестановку $\rho = i(1), i(2), \ldots, i(n)$ совокупности индексов $N = 1, 2, \ldots, n$; при его реализации объект с индексом i(k) обслуживается k-m по очереди $(k=\overline{1,n})$. Расписание ρ именуем допустимым, если в процессе его выполнения удовлетворяются отмеченные выше объемные ограничения, т.е.

 $0 \le V(0) + \sum_{p=1}^{n} v_{i(p)} \cdot w_{i(p)} \le V^*, q = 1, 2, \dots, n$. Совокупность допустимых в модели M расписании? обслуживания обозначим Ω .

Как очевидно, заполнение резервуара после завершения обслуживания всех объектов потока O_n оказывается равным $V(0) + \sum_{i=1}^n v_{i(p)} \cdot w_{i(p)}$. При этом выполнение неравенства

$$0 \le V(0) + \sum_{i=1}^{n} v_i \cdot w_i \le V^* \tag{1}$$

является необходимым, но недостаточным условием непустоты множества Ω . Приведем иллюстрирующии? пример: положим $V(0) = V^* = 5$; подпоток O^+ составляет единственныи? объект с объемнои? характеристикои?, равнои? 5; в подпоток $O^?$ входит пять объектов, объемная характеристика каждого из них равна 2. Здесь условие (1) выполнено, но допустимого расписания обслуживания не имеется.

Выделим и назовем моделью M_0 частый случай модели M, в котором все подлежащие обслуживанию объекты изначально присутствуют в системе: $t_k = 0, k = 1, 2, \ldots, n$.