- The McCulloch–Pitts neuron was the earliest neural network discovered in 1943.
- It is usually called as M—P neuron.
- Since the firing of the output neuron is based upon the threshold, the activation function here is defined as

$$f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge \theta \\ 0 & \text{if } y_{in} < \theta \end{cases}$$

• The threshold value should satisfy the following condition: $\theta > nw - p$

- Consider the truth table for AND function
- The M–P neuron has no particular training algorithm
- In M-Pneuron, only analysis is being performed.
- Hence, assume the weights be w1 = 1 and w2 = 1.

$$(1, 1), y_{in} = x_1 w_1 + x_2 w_2 = 1 \times 1 + 1 \times 1 = 2$$

$$(1, 0), y_{in} = x_1 w_1 + x_2 w_2 = 1 \times 1 + 0 \times 1 = 1$$

$$(0, 1), y_{in} = x_1 w_1 + x_2 w_2 = 0 \times 1 + 1 \times 1 = 1$$

$$(0, 0), y_{in} = x_1 w_1 + x_2 w_2 = 0 \times 1 + 0 \times 1 = 0$$

Threshold value is set equal to 2 $(\theta = 2)$.

<i>X</i> ₁	X ₂	у
1	1	1
1	0	0
0	1	0
0	0	0

This can also be obtained by

$$\theta \ge nw - p$$

- Here, n = 2, w = 1 (excitatory weights) and p = 0 (no inhibitory weights).
- Substituting these values in the above-mentioned equation we get $\theta \ge 2 \times 1 0 \Rightarrow \theta \ge 2$
- Thus, the output of neuron Y can be written

$$y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge 2 \\ 0 & \text{if } y_{in} < 2 \end{cases}$$

X ₁	X ₂	у
1	1	1
1	0	0
0	1	0
0	0	0

Find Implement ANDNOT function using McCulloch-Pitts neuron (Soft Computing I ANs. No. 100 Computing I ANs. 100 Co

- Consider the truth table for ANDNOT function
- The M-P neuron has no particular training algorithm
- In M-P neuron, only analysis is being performed.
- Hence, assume the weights be w1 = 1 and w2 = 1.

$$y_{in} = x_1 w_1 + x_2 w_2$$

$$(1, 1), y_{in} = 1 \times 1 + 1 \times 1 = 2$$

$$(1, 0), y_{in} = 1 \times 1 + 0 \times 1 = 1$$

$$(0, 1), y_{in} = 0 \times 1 + 1 \times 1 = 1$$

$$(0, 0), y_{in} = 0 \times 1 + 0 \times 1 = 0$$

From the calculated net inputs, it is not possible to fire the neuron for input (1, 0) only.

Hence, these weights are not suitable.

X ₁	X ₂	у
0	0	0
0	1	0
1	0	1
1	1	0

- Consider the truth table for ANDNOT function
- The M–P neuron has no particular training algorithm
- In M-P neuron, only analysis is being performed.
- Hence, assume the weights be w1 = 1 and w2 = -1.

$$y_{in} = x_1 w_1 + x_2 w_2$$

$$(1, 1), y_{in} = 1 \times 1 + 1 \times -1 = 0$$

$$(1, 0), y_{in} = 1 \times 1 + 0 \times -1 = 1$$

$$(0, 1), y_{in} = 0 \times 1 + 1 \times -1 = -1$$

$$(0, 0), y_{in} = 0 \times 1 + 0 \times -1 = 0$$

From the calculated net inputs, now it is possible to fire the neuron for input (1, 0) only by fixing a threshold of 1, i.e., $\theta \ge 1$ for Y unit.

X ₁	X ₂	y
0	0	0
0	1	0
1	0	1
1	1	0

- Consider the truth table for XOR function
- The M–P neuron has no particular training algorithm
- 0 0 0 0 0 0 1 \(\sqrt{1} \) 0
- In M-P neuron, only analysis is being performed.
- XOR function cannot be represented by simple and single logic function; it is represented as

$$y = x_1 \overline{x_2} + \overline{x_1} x_2$$
Activate Windows

Go to Settings to activate Windows.

$$y = x_1 \overline{x_2} + \overline{x_1} x_2$$

$$y = z_1 + z_2$$
where
$$z_1 = x_1 \overline{x_2} \qquad \text{(function 1)}$$

$$z_2 = \overline{x_1} x_2 \qquad \text{(function 2)}$$

$$y = z_1 \text{ (OR) } z_2 \text{ (function 3)}$$

 A single-layer net is not sufficient to represent the XOR function. We need to add an intermediate layer is necessary.

- First function $z_1 = x_1 x_2$
- The truth table for function z₁

$$w_{11} = w_{21} = 1 \checkmark$$

Calculate the net inputs,

$$(0, 0), z_{1in} = 0 \times 1 + 0 \times 1 = 0 \checkmark$$

$$(0, 1), z_{1in} = 0 \times 1 + 1 \times 1 = 1$$

$$(1, 0), z_{1in} = 1 \times 1 + 0 \times 1 = 1$$

$$(1, 1), z_{1in} = 1 \times 1 + 1 \times 1 = 2^{\checkmark}$$

Hence, it is not possible to obtain function z_1 using these weights.

<i>(()</i>	[1	if	$y_{in} \ge \theta$
$f(y_{in}) = 0$	0	if	$\underbrace{y_{in}}_{y_{in}} \ge \underline{\theta}$

X ₁	X ₂	Z ₁
0	0	0
0	1	0
1	0	_1
1	1	0

- First function $z_1 = x_1 x_2$
- The truth table for function z₁
- Assume the weights are initialized to

$$w_{11} = 1; \quad w_{21} = -1$$

$$f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge \theta \\ 0 & \text{if } y_{in} < \theta \end{cases}$$

X ₁	X ₂	Z ₁
0	0	0
0	1	0
_	•	_

 $w_{11} = 1; \quad w_{21} = -1$ $f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge \theta \\ 0 & \text{if } y_{in} < \theta \end{cases}$ Calculate the net inputs,

$$(0, 0), z_{1in} = 0 \times 1 + 0 \times -1 = 0$$

$$(0, 1), z_{1in} = 0 \times 1 + 1 \times -1 = -1 \chi$$

$$(1, 0), z_{1in} = 1 \times 1 + 0 \times -1 = 1$$

$$(1, 1), z_{1in} = 1 \times 1 + 1 \times -1 = \underline{0}$$
 X

- If the θ =1 then the neuron fires.
- Hence $w_{11} = 1$; $w_{21} = -1$

- Second function $z_2 = \overline{x_1} x_2$
- The truth table for function z₂
- Assume the weights are initialized to

$$w_{12} = w_{22} = 1$$

Calculate the net inputs,

Hence, it is not possible to obtain function z₂
 using these weights.

	X ₁	X ₂	\boldsymbol{z}_{2}
9=1,1	0	0	0
	<u>0</u>	1	_1_
$f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge \theta \\ 0 & \text{if } y_{in} < \theta \end{cases}$	1	0	0
$\int \int $	1	1	0

1=6

• Second function
$$z_2 = \overline{x_1} x_2$$

- The truth table for function z_2
- Assume the weights are initialized to

$$w_{12} = -1;$$
 $w_{22} = 1$ $f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge \theta \\ 0 & \text{if } y_{in} < \theta \end{cases}$

$$w_{12} = -1; \quad w_{22} = 1 \quad f(y_m) = \begin{cases} 1 & \text{if } \\ 0 & \text{if } \end{cases}$$
Calculate the net inputs,

X ₁	X ₂	\mathbf{z}_{2}
0	0	0
0	1	1
1	0	0
4	4	•

- $(0,0), z_{2in} = 0 \times -1 + 0 \times 1 = 0$ $(0,1), z_{2in} = 0 \times -1 + 1 \times 1 = 1$ $(1, 0), z_{2in} = 1 \times -1 + 0 \times 1 = -1$
- $(1, 1), z_{2in} = 1 \times -1 + 1 \times 1 = 0$
- If the θ =1 then the neuron fires.
- Hence $w_{12} = -1$; $w_{22} = 1$

- Third function $y = z_1$ (OR) z_2
- The truth table for function y

$$y_{in} = z_1 v_1 + z_2 v_2$$

Assume the weights are initialized to

$$v_1 = v_2 = 1$$

 $v_1 = v_2 = 1$ • Calculate the net inputs, $f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge \theta \\ 0 & \text{if } y_{in} < \theta \end{cases}$

$$(0, 0), y_{in} = 0 \times 1 + 0 \times 1 = 0$$

 $(0, 1), y_{in} = 0 \times 1 + 1 \times 1 = 1$ If the $\theta \neq 1$ then the neuron fires.

$$(1, 0), y_{in} = 1 \times 1 + 0 \times 1 = 1$$
 Hence $v_1 = v_2 = 1$

$$(0, 0), y_{in} = 0 \times 1 + 0 \times 1 = 0$$

$$w_{11} = 1; \quad w_{21} = -1$$

$$w_{12} = -1; \quad w_{22} = 1$$

$$v_1 = v_2 = 1$$

The training data for the AND function

Inputs			Target
<i>X</i> ₁ ′	X ₂	b	у
1	1	1	1
1	-1	1	-1
-1	1	1	-1
-1	-1	1	-1

· Initially the weights and bias are set to zero, i.e.,

$$w_1 = w_2 = b = 0$$

Inputs			larget
X ₁	X ₂	b	у
1	1_	1	1_
1	-1	1	-1
-1	1	1	-1

- First input [x1 x2 b] = [111] and target = 1 [i.e., y = 1]:
- · Setting the initial weights as old weights and applying the Hebb rule, we get

$$w_{i}(\text{new}) = w_{i}(\text{old}) + \Delta w_{i}$$

$$\Delta w_{i} = x_{i}y$$

$$\Delta w_{1} = x_{1}y = 1 \times 1 = 1 \checkmark$$

$$\Delta w_{2} = x_{2}y = 1 \times 1 = 1 \checkmark$$

$$\Delta b = y = 1 \checkmark$$

$$w_1(\text{new}) = w_1(\text{old}) + \Delta w_1 = 0 + 1 = 1$$

 $w_2(\text{new}) = w_2(\text{old}) + \Delta w_2 = 0 + 1 = 1$
 $b(\text{new}) = b(\text{old}) + \Delta b = 0 + 1 = 1$

- Second input [x1 x2 b] = [1 −1 1] and y = −1:
- The weight change here is

$$\Delta w_1 = x_1 y = 1 \times -1 = -1$$

$$\Delta w_2 = x_2 y = -1 \times -1 = 1$$

$$\Delta b = y = -1$$

The new weights here are

$$w_1(\text{new}) = w_1(\text{old}) + \Delta w_1 = 1 - 1 = 0$$

 $w_2(\text{new}) = w_2(\text{old}) + \Delta w_2 = 1 + 1 = 2$
 $b(\text{new}) = b(\text{old}) + \Delta b = 1 - 1 = 0$

Inputs			Target
X ₁	X ₂	b	у
1	1	1	1
1	-1	1	-1
-1	1	1	-1
-1	-1	1	-1

 Similarly, by presenting the third and fourth input patterns, the new weights can be calculated.

	Inputs		W	leight	chan	ges	V	leigh	its
X ₁	X ₂	b	y	ΔW_1	ΔW_2	Δb	W ₁ (0	w, 0	<i>b</i> 0)
1	1	1	1	1	1	1	1	1	1
1	-1	1	-1	-1	1	-1	0	2	0
-1	1	1	-1	1	<u>-1</u>	<u>-1</u>		1	<u>-1</u>
-1	-1	1	-1		_1	-1	2~	2	-2

t		Inputs		Target
	X ₁	X ₂	Ь	у
	1	1	1	1
	1	-1	1	-1
->	\checkmark_1	1	1	-1
\rightarrow	L 1	-1	1	-1
	0	-2		
		2	Y	у
<u>x2</u>	×O-		ctivate Windov o to Settings to activ	

8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network?

- Using the Hebb rule, find the weights required to perform the following classifications of the given input patterns shown in Figure.
- The pattern is shown as 3×3 matrix form in the squares.
- The "+" symbols represent the value "1" and empty squares indicate "-1"

+	+	+
	+	
+	+	+
	47	

+	+	+
+		+
+	+	+
	(0)	

			•					•				
Pattern					Inp	outs.					Targe	t
	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉	b	у	
1	1	1	1	-1	1	-1	1	1	1	1	1	
0	1	1	1	1	-1	1	1	1	1	1	-1	Activate Windows

'O'

Go to Settings to activate Windows.

■ 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 2. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 2. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 3. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 3. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 4. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 4. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 4. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 4. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 4. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 4. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 4. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 5. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 6. | 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 8. Hebb Net Solved Numerical Example 1 | Soft Computing | Artificial Neural Network 8. Hebb Net Solved Numerical Network

Set the initial weights and bias to

$$w_1 = w_2 = w_3 = w_4 = w_5$$

= $w_6 = w_7 = w_8 = w_9 = b = 0$

Presenting first input pattern (I),

we calculate change in weights:

$$w_i(\text{new}) = w_i(\text{old}) + \Delta w_i \qquad [\Delta w_i = x_i y]$$

Pattern					Inp	uts					Target
	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉	b	y
1	1	1_	1	<u>-1</u>	1	-1	1	1	1	1	1
0	1	1	1	1	-1	1	1	1	1	1	-1
	1	Δw_i	$=x_{i}$	y, i	= 1	to 9		Δw_7	$=x_{7}$, y =	$1 \times 1 = 1$
		Δw_1	$= \underline{x_1}$	y = 1	1×1	= 1		Δw_8	$=x_{s}$	y =	$1 \times 1 = 1$
	7	Δw_2	$=x_2$	y = 1	× 1	= 1		Δw_9	$=x_{\varsigma}$	<i>y</i> =	$1 \times 1 = 1$
		Δw_3	$= x_{3}$	y = 1	× 1	= 1		Δb	= y	= 1	
~ ul	7	Δw_4	$= x_4$	<i>y</i> = -	-1 ×	1 = -	-1				
$x_i y$		Δw_5	$= x_{5.}$	y = 1	1×1	= 1					
		Δw_6	$=x_6$	<i>y</i> = -	-1 ×	1 = -	-1				Windows

 Setting the old weights as the initial weights here, we obtain

$$w_i(\text{new}) = w_i(\text{old}) + \Delta w_i$$

$$w_1(\text{new}) = w_1(\text{old}) + \Delta w_1 = \underline{0} + 1 = 1$$

$$w_2(\text{new}) = w_2(\text{old}) + \Delta w_2 = \underline{0} + 1 = 1$$

$$w_3(\text{new}) = w_3(\text{old}) + \Delta w_3 = \underline{0} + 1 = \underline{1}$$

$$w_4(\text{new}) = -1$$
, $w_5(\text{new}) = 1$, $w_6(\text{new}) = -1$,

$$w_7(\text{new}) = 1$$
, $w_8(\text{new}) = 1$, $w_9(\text{new}) = 1$,

$$b(\text{new}) = \underline{1}$$

Pattern					Inp	outs					Target
	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	<i>X</i> ₈	<i>X</i> ₉	b	у
→	1	1	1	-1	1	-1	1	1	1	1	1
0	1	1	1	1	-1	1	1	1	1	1	-1
		Δw_i	$=x_{i}$	y, i	i = 1	to 9		Δw_7	$=x_{1}$, y =	$1 \times 1 = 1$
		Δw_1	$=x_1$	y = 1	1×1	= 1		Δw_8	$=x_{s}$	₃ y =	$1 \times 1 = 1$
		Δw_2	$=x_2$	y = 1	$\times 1$	= 1		Δw_9	$=x_{\varsigma}$	y =	$1 \times 1 = 1$
\ 1	1	Δw_3	$= x_3$	y = 1	× 1	= 1		Δb	y = y	= 1	
) = -1,		Δw_4	$= x_4$	<i>y</i> = -	-1 ×	1 = -	-1				
= 1, 		Δw_5	$= x_{5}$	y = 1	1×1	1 = 1					
							/	Activat	e Wind	ows	

 $\Delta w_6 = x_6 y = -1 \times 1 = -1$ Go to Settings to a

- The weights after presenting first input pattern are
- w1= w2 = w3 = w5 = w7 = w8 =
 w9 = 1
- w4 = w6 = -1
- and b = 1
- Presenting first input pattern (O),
 we calculate change in weights:

Pattern					Inp	uts					Target
	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	<i>X</i> ₈	<i>X</i> ₉	b	у
1	1	1	1	-1	1	-1	1	1	1	1	1
→ 0	1	1	1	1	-1	1	1	1	1	1	-1
$w_i(\text{new}) = w_i(\text{old}) + \Delta w_i \qquad [\Delta w_i = x_i y]$ $w_1(\text{new}) = w_1(\text{old}) + x_1 y = 1 + 1 \times -1 = 0$ $w_2(\text{new}) = w_2(\text{old}) + x_2 y = 1 + 1 \times -1 = 0$ $w_3(\text{new}) = w_3(\text{old}) + x_3 y = 1 + 1 \times -1 = 0$											
w_4	new	(v) =	$w_4(0)$	old)	+ x	₄ y =	= -1	l + 1	l×-	-1 =	= -2 2 _{ndows}

- The weights after presenting first input pattern are
- w1 = w2 = w3 = w7 = w8 = w9 = 0
- w5 = 2
- w4 = w6 = -2
- and b = 0

Perceptron Training Algorithm - Single Output Class

- Initialize the weights and the bias. Also initialize the learning rate α (0< α ≤ 1).

- Until the final stopping condition is false.
 - for each training pair indicated by s:t.
 - Set each input unit i = 1 to n: $X_i = S_i$
 - Calculate the output of the network.

$$y_{in} = b + \sum_{i=1}^{n} x_i w_i$$

$$y_{in} = b + \sum_{i=1}^{n} x_i w_i$$

$$y = \begin{cases} 1 & \text{if } y_{in} > \theta \\ 0 & \text{if } -\theta \le y_{in} \le \theta \\ -1 & \text{if } y_{in} < -\theta \end{cases}$$

Weight and bias adjustment:

If
$$y \neq t$$
, then
$$w_i(\text{new}) = w_i(\text{old}) + \alpha t x_i'$$

$$b(\text{new}) = b(\text{old}) + \alpha t$$
else we have
$$w_i(\text{new}) = w_i(\text{old})$$

$$b(\text{new}) = b(\text{old})$$

 W_i

Activate Windows Go to Settings to activate Windows.

Train the network until there is no weight change.

Flowchart of

Perceptron Learning Rule

Single Output Class

Perceptron Learning Rule

- In case of the perceptron learning rule, the learning signal is the difference between the calculated output and actual (target) output of a neuron.
- The output "y" is obtained on the basis of the net input calculated and activation function being applied over the net input.

$$\underline{y_{in}} = b + \sum_{i=1}^{n} x_i w_i$$

$$y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} > \theta \\ 0 & \text{if } -\theta \le y_{in} \le \theta \\ -1 & \text{if } y_{in} < -\theta \end{cases}$$

Weights are updated using the formula

If
$$y \neq t$$
, then
$$w(\text{new}) = w(\text{old}) + \alpha tx \quad (\alpha - \text{learning rate})$$
else, we have

w(new) = w(old) Activate Windows

Go to Settings to activate Windows.

AND function using Perceptron Rule Solved Example

- The perceptron network, which uses perceptron learning rule, is used to train the AND function.
- The input patterns are presented to the network one by one.
- When all the four input patterns are presented, then one epoch is said to be completed.
- The initial weights and threshold are set to zero.
- The learning rate a is set equal to 1.

X ₁	X ₂	t
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

AND function using Perceptron Rule Solved Example

$$y_{in} = b + x_1 w_1 + x_2 w_2$$

$$0 + |xD + |xD = 0$$

$$y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} > 0 \\ 0 & \text{if } y_{in} = 0 \\ -1 & \text{if } y_{in} < 0 \end{cases}$$

$$y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} > 0 \\ 0 & \text{if } y_{in} = 0 \\ -1 & \text{if } y_{in} < 0 \end{cases}$$

$$\underline{\Delta w_1} = \underline{\alpha t x_1};$$

$$\underline{\Delta w_2} = \underline{\alpha t x_2};$$

$$\underline{\Delta b} = \underline{\alpha t}$$

Inp	ut	Tornet	Net input	Calculated	Wei	ght change	S		Weights	
x, -	X ₂ ✓	Target (t) ✓	(y _{in})	output (y)	Δw_1	$\Delta w_{_2}$	Δb	W ₁ (0	w ₂	<i>b</i> _0)
EPOCH-1			,	,						
√ 1	1	1	0 🗸	0	1_	1	1_	1	1	1
✓ 1	-1	-1	1_	1	-1	1	- 1	0	2	0
V-1	1	-1	2	1	+1	- 1	-1	1	1	-1
V-1	-1	-1	-3	-1	0	0	0	1	1	-1
EPOCH-2			_	_	_	_	-			
1	1	1.	1	1	0	0	0	1	1	– 1
1	-1	-1	-1	-1	0	0	0	1	1	-1
-1	1	- 1	-1	– 1	0	0	0	1 A	ctivat ł W	ind o ls
- 1	- 1	– 1	-3	- 1	0	0	0	1 G	o to Set i ngs	to a <u>ct</u> iv <mark>a</mark> te Windows.

AND function using Perceptron Rule Solved Example

Perceptron Network (Rule) Solved Example

- Find the weights required to perform the following classification using perceptron network.
- The vectors (1, 1, 1, 1) and (-1, 1 1, -1) are belonging to the class 1, vectors (1, 1, 1, -1) and (1, -1, -1, 1) are belonging to the class -1.
- Assume learning rate as 1
- and Initial weights as 0.

		Input			Target
X ₁	X ₂	X ₃	X ₄	b	(t)
1	1	B	1	1	1
-1	1	-1	-1	1	1
1	1	1	-1	1	-1
1	-1	-1	1		ivate Windows

50 to Settings to activate Windows

Perceptron Network (Rule) Solved Example

$$y_{in} = b + x_1 w_1 + x_2 w_2 + x_3 w_3 + x_4 w_4$$

$$y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge 0 \\ 0 & \text{if } y_{in} = 0 \\ -1 & \text{if } y_{in} < 0 \end{cases}$$

$$\Delta w_1 = \alpha t x_1;$$

$$\Delta w_2 = \alpha t x_2;$$

$$\Delta w_3 = \alpha t x_3;$$

$$\Delta w_4 = \alpha t x_4;$$

$$\Delta b = \alpha t$$

			Inputs	5	Tornet	Net	autmut		Weig	ht char	nges			V	Weights		
	(x ₁	X ₂	X ₃	X 4	Target (t)	input (y _{in})	output (y)	(Δ w ₁	Δw_2	Δw_3	ΔW_4	∆ b)	W ₁	W ₂	W ₃	W ₄	b 0)
	EPOC	H-1															
V	(1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1
V	(-1	1	-1	-1	1	-1	-1	-1	1	-1	-1	1	0	2	0	0	2
1	V	1	1	-1	-1	4	1	-1	-1	-1	1	-1	-1	1	-1	1	1
V	(1	-1	-1	1	-1	1	1	-1	1	1	-1	-1	-2	2	0	0	0
	EPOC	H-2															
V	(1	1	1	1	_1	0	0	_1	1	1	1	1	-1	3	1	1	1
V	(-1	1	-1	-1	1	$\frac{0}{3}$	_1	0	0	0	0	0	-1	3	1	1	1
	Cr	1	1	-1	-1	4	1	-1	-1	-1	1	-1	-2	2	0	2	0
J	(1	-1	-1	1	<u>-1</u>	-2	-1	0	0	0	0	0	-2	2	0	2	0
i	EPOC	:H-3															
J	(1	1	1	1	1	2	1	0	0	0	0	0	-2	2	0	2	0
	(-1	1	-1	-1	1	2	1	0	0	0	0	0	-2	2	0	2	0
- 1	(1	1	1	-1	-1	-2	-1	0	0	0	0	0	Activa	te Win	dove	2	0
- 1	(1	-1	-1	1	-1	-2	-1	0	0	0	0	0	Go to Se	ettings to 2	activate 0	Windows.	0

Perceptron Network (Rule) Solved Example

- Using back-propagation network, find the new weights for the figure shown.
- It is presented with the input pattern
 [-1, 1] and the target output is 1.
- Use a learning rate $\alpha = 0.25$ and binary sigmoidal activation function.

- The new weights are calculated based on the back propagation training algorithm.
- The initial weights are

•
$$[v_{11}, v_{21}, v_{01}] = [0.6, -0.1, 0.3]$$

•
$$[v_{12}, v_{22}, v_{02}] = [-0.3, 0.4, 0.5]$$

•
$$[w_1, w_2, w_0] = [0.4, 0.1, -0.2]$$

• and the learning' rate is $\alpha = 0.25$

Activation function used is binary sigmoidal activation function and is given by

$$f(x) = \frac{2}{1 + e^{-x}} - 1 = \frac{1 - e^{-x}}{1 + e^{-x}}$$

Given the input sample $[x_1, x_2] = [-1, 1]$ and target t = 1:

· Calculate the net input: For z1 layer

$$z_{in1} = v_{01} + x_1 v_{11} + x_2 v_{21}$$

= 0.3 + (-1) × 0.6 + 1 × -0.1 = -0.4

For z₂ layer

$$z_{in2} = v_{02} + x_1 v_{12} + x_2 v_{22}$$
$$= 0.5 + (-1) \times -0.3 + 1 \times 0.4 = 1.2$$

Applying activation to calculate the output, we obtain

$$z_1 = f(z_{in1}) = \frac{1 - e^{-z_{in1}}}{1 + e^{-z_{in1}}} = \frac{1 - e^{0.4}}{1 + e^{0.4}} = -0.1974$$

$$z_2 = f(z_{in2}) = \frac{1 - e^{-z_{in1}}}{1 + e^{-z_{in2}}} = \frac{1 - e^{-1.2}}{1 + e^{-1.2}} = 0.537$$

Calculate the net input entering the output layer. For y layer

$$y_{in} = w_0 + z_1 w_1 + z_2 w_2$$

= -0.2 + (-0.1974) × 0.4 + 0.537 × 0.1
= -0.22526

Applying activations to calculate the output, we obtain

$$y = f(y_{in}) = \frac{1 - e^{-y_{in}}}{1 + e^{-y_{in}}} = \frac{1 - e^{0.22526}}{1 + e^{0.22526}} = -0.1122$$

Compute the error portion δ_k :

$$\delta_k = (t_k - y_k)f'(y_{ink})$$

$$f'(x) = \frac{\lambda}{2} [1 + f(x)][1 - f(x)]$$

Now

$$f'(y_{in}) = 0.5[1 + f(y_{in})][1 - f(y_{in})]$$

= 0.5[1 - 0.1122][1 + 0.1122] = 0.4937

This implies

$$\delta_1 = (1 + 0.1122) (0.4937) = 0.5491$$

Find the changes in weights between hidden and output layer:

$$\Delta w_1 = \alpha \delta_1 z_1 = 0.25 \times 0.5491 \times -0.1974$$
$$= -0.0271$$
$$\Delta w_2 = \alpha \delta_1 z_2 = 0.25 \times 0.5491 \times 0.537 = 0.0737$$

$$\Delta w_2 = \alpha \delta_1 z_2 = 0.25 \times 0.5491 \times 0.537 =$$

 $\Delta w_0 = \alpha \delta_1 = 0.25 \times 0.5491 = 0.1373$

Compute the error portion δ_j between input and hidden layer (j = 1 to 2):

$$\delta_{inj} = \delta_{inj} f'(z_{inj})$$

$$\delta_{inj} = \sum_{k=1}^{m} \delta_k w_{jk}$$

$$\delta_{inj} = \delta_1 w_{j1} \quad [\because \text{only one output neuron}]$$

$$\Rightarrow \delta_{in1} = \delta_1 w_{11} = 0.5491 \times 0.4 = 0.21964$$

$$\Rightarrow \delta_{in2} = \delta_1 w_{21} = 0.5491 \times 0.1 = 0.05491$$
Error, $\delta_1 = \delta_{in1} f'(z_{in1}) = 0.21964 \times 0.5$

$$\times (1 + 0.1974)(1 - 0.1974) = 0.1056$$
Error, $\delta_2 = \delta_{in2} f'(z_{in2}) = 0.05491 \times 0.5$

$$\times (1 - 0.537)(1 + 0.537) = 0.0195$$

Now find the changes in weights between input and hidden layer:

$$\Delta v_{11} = \alpha \delta_1 x_1 = 0.25 \times 0.1056 \times -1 = -0.0264$$

$$\Delta v_{21} = \alpha \delta_1 x_2 = 0.25 \times 0.1056 \times 1 = 0.0264$$

$$\Delta v_{01} = \alpha \delta_1 = 0.25 \times 0.1056 = 0.0264$$

$$\Delta v_{12} = \alpha \delta_2 x_1 = 0.25 \times 0.0195 \times -1 = -0.0049$$

$$\Delta v_{22} = \alpha \delta_2 x_2 = 0.25 \times 0.0195 \times 1 = 0.0049$$

$$\Delta \nu_{02} = \alpha \delta_2 = 0.25 \times 0.0195 = 0.0049$$

$$\frac{v_{11}(\text{new}) = v_{11}(\text{old}) + \Delta v_{11} = 0.6 - 0.0264}{0.5736}$$
$$= 0.5736$$
$$v_{12}(\text{new}) = v_{12}(\text{old}) + \Delta v_{12} = -0.3 - 0.0049$$

$$v_{12}(\text{new}) = v_{12}(\text{old}) + \Delta v_{12} = -0.3 - 0.0049$$

= -0.3049

$$v_{21}(\text{new}) = v_{21}(\text{old}) + \Delta v_{21} = -0.1 + 0.0264$$

= -0.0736

$$v_{22}(\text{new}) = v_{22}(\text{old}) + \Delta v_{22} = 0.4 + 0.0049$$

= 0.4049

$$w_1(\text{new}) = w_1(\text{old}) + \Delta w_1 = 0.4 - 0.0271$$

= 0.3729

$$w_2(\text{new}) = w_2(\text{old}) + \Delta w_2 = 0.1 + 0.0737$$

= 0.1737

$$v_{01}(\text{new}) = v_{01}(\text{old}) + \Delta v_{01} = 0.3 + 0.0264$$

= 0.3264

$$v_{02}(\text{new}) = v_{02}(\text{old}) + \Delta v_{02} = 0.5 + 0.0049$$

= 0.5049

$$w_0(\text{new}) = w_0(\text{old}) + \Delta w_0 = -0.2 + 0.1373$$

= -0.0627

Go to Settings to activate Windows.