EEM211 DERSİ LABORATUVARI ÜÇÜNCÜ DENEYİ

- 1. Bir öğrenci A,B ve C olmak üzere 3 ders almaktadır. Bu derslerden başarılı sayılması için
 - a) En az iki dersten başarılı olmalı
 - b) Başarılı olduğu derslerden biri mutlaka C olmalıdır.

Bu koşulları kullanarak başarılı olma durumunu fonksiyon olarak elde ediniz. Elde ettiğiniz fonksiyonu sadece kapılar kullanarak gerçekleştiriniz.

2. Verilen F fonksiyonunu 3x8 kod çözücü kullanarak gerçekleştiriniz. (Kod çözücünün içyapısı kapılar kullanılarak öğrenciler tarafından tasarlanacaktır.)

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

3. Verilen F fonksiyonunu 4x1 MUX kullanarak gerçekleştiriniz. MUX için X ve Y seçme girişleri olacaktır. (Çoklayıcının iç yapısı kapılar kullanılarak öğrenciler tarafından tasarlanacaktır.)

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- 4. İki bitlik çarpıcı devre tasarlayınız. (Çarpıcının iç yapısı kapılar kullanılarak öğrenciler tarafından tasarlanacaktır.)
- 5. İki bitlik bir sayının ikiye tümleyenini alan devreyi tasarlayınız.
- 6. İki bitlik bir sayının bire tümleyenini alan devreyi tasarlayınız.
- 7. Gray kodda girilen üç bitlik veriyi ikilik (binary) koda çeviren devreyi tasarlayınız.
- 8. İkilik (binary) kodda girilen üç bitlik veriyi Gray koda çeviren devreyi tasarlayınız.
- 9. Üç bitlik ikilik (binary) kod için tek eşlenik bitini üreten devreyi tasarlayınız.
- 10. Üç bitlik ikilik (binary) kod için çift eşlenik bitini üreten devreyi tasarlayınız.
- 11. İki bitlik karşılaştırıcı devre tasarlayınız.
- 12. XOR fonksiyonunu 2x4 kod çözücü devre ile elde ediniz.
- 13. XNOR fonksiyonunu 2x4 kod çözücü devre ile elde ediniz.
- 14. Girişleri A ve B, çıkışı F olan OR fonksiyonunu 2x1 MUX kullanarak elde ediniz. (MUX'un iç yapısı öğrenciler tarafından tasarlanacaktır.)
- 15. XOR fonksiyonunu 2x1 çoklayıcı devre ile elde ediniz.
- 16. XNOR fonksiyonunu 2x1 çoklayıcı devre ile elde ediniz.

EEM211-01 PROJE DAĞILIMI

Proje No.	Birinci Öğrenci	İkinci Öğrenci
12	Ali Ozan Köse	Berk Özdemir
5	Oğulcan Sazlı	Berk Erbil Yağcı
3	Dilan Daş	Orkun Sürel
15	Ali Özen Ulusoy	Burak Dalkılıç
11	Ayşe Bayzin	Dilşat Kübra Demirci
7	Cenk Aydın	Simge Pervane
14	Nezif Tamson	Çağatay Özkurt
2	Volkan Erkan	Emir Eray Soydemir
10	Elif Ece Elmas	Ali Can Işık
4	Mustafa Emre Çetinkaya	Tuğberk Muratoğlu

8	Orçun Tenis	Burkay Saraçoğlu
9	Çağrı Güneş	Mesut Özikinci
6	Emrecan Aydın	Berçe Dönmez
16	Anıl Gençer	Orçun Başer
1	Ahmed Ayazoğlu	Onur Utku Topaloğlu

EEM211-02 PROJE DAĞILIMI

Proje No.	Birinci Öğrenci	İkinci Öğrenci
14	Umut Aslan	Emre Atasoy
6	Aytek Yünipek	Emre Berkay Çelik
15	Mevlüt Sari	Mert Sümbül
7	Serkut Kaya	Efe Erdem
12	Erdem Ülğer	Nesli Özden Tatar
13	Oğuzhan Gözübatık	Uğurcan Yumlu
3	Çağrı Türk	Uğur Onar
5	Kami Çevik	Yasin Akın Ayturan
16	Eren Mehmet Akbaş	Hilal Nur Taşçıoğlu
11	Buğra Yazırlı	Erkam Kaya
9	Bora Odabaşı	Mustafa Bal
15	Kübra Murat	Bengisu Yalçınkaya