Practical No. 6

Aim: To implement full adder combinational circuit.

Apparatus: Logic Gate ICs, Connecting wires, Bread Board, Power supply, LED, DMM.

Theory:

Full adder is developed to overcome the drawback of Half Adder circuit. It can add two one-bit numbers A and B, and carry c. The full adder is a three input and two output combinational circuit.

BLOCK DIAGRAM:

TRUTH TABLE:

Inputs			Output	
Α	В	Cin	S Co	
0	0	0	0 0	
0	0	1	1 0	
0	1	0	1 0	
0	1	1	0 1	
1	0	0	1 0	
1	0	1	0 1	
1	1	0	0 1	
1	1	1	1 1	

Combinational Logic:

Procedure:

- i) Do the connection as per Combinational logic diagram for various input data.
- ii) Apply proper input condition and observe the output information of using DMM.
- iii) Compare theoretical data with observation and write conclusion.

Observation Table:<u>Tinker Cad Simulation:</u>

Observation Table:

Inputs			Outputs	
A	В	C	Sum (s)	Carry (c)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

CONCLUSION:

A full adder circuit is central to most digital circuits that perform addition or subtraction. It is so called because it adds together two binary digits, plus a carry-in digit to produce a sum and carry-out digit.