## Tree Traversal



Course Code: 00090 Course Title: Discrete Mathematics

# Dept. of Computer Science Faculty of Science and Technology

| Lecturer No: | 22           | Week No: | 13 | Semester: |  |
|--------------|--------------|----------|----|-----------|--|
| Lecturer:    | Name & email |          |    |           |  |

## Lecture Outline



#### 8.3 Tree Traversal

- Preorder Traversal
- Inorder Traversal
- Postorder Traversal

# Objectives and Outcomes



 Objectives: To understand the different types of tree traversal algorithms and apply them.

 Outcomes: The students are expected to be able to perform preorder, inorder and postorder tree traversal.

## Tree Traversal



#### Tree traversal:

- A listing of the vertices of a tree
- Is a procedure that systematically visits every vertex of an ordered rooted tree



## **Traversal Algorithms**

- Procedures for systematically visiting every vertex of an ordered rooted tree are called traversal algorithms.
- Three most commonly used traversal algorithms:
  - Preorder traversal
  - 2) Inorder traversal
  - Postorder traversal



#### **Preorder Traversal**

DEFINITION: Let T be an ordered rooted tree with root r. If T consists only of r, then r is the preorder traversal of T. Otherwise, suppose that T<sub>1</sub>, T<sub>2</sub>, . . . , T<sub>n</sub> are the subtrees at r from left to right in T.
 The preorder traversal begins by visiting r. It

continues by traversing  $T_1$  in preorder, then  $T_2$  in preorder, and so on, until  $T_n$  is traversed in preorder.

#### Examples of Preorder Traversal







 In which order does a preorder traversal visit the vertices in the ordered rooted tree T shown in Figure 3?

#### **Solution**:

The steps of the preorder traversal of T are shown in Figure 4. We traverse T in preorder by first listing the root a, followed by the preorder list of the subtree with root b, the preorder list of the subtree with root c (which is just c) and the preorder list of the subtree with root d.



#### Figure 3



Preorder traversal: Visit root, visit subtrees left to right







FIGURE 4 The Preorder Traversal of T.



#### Another Example Of **Preorder** Traversal



# THE THE PRACTICAL PROPERTY OF THE PRACTICAL

#### Another Example Of **Preorder** Traversal



















T



## Inorder Traversal



DEFINITION 2: Let T be an ordered rooted tree with root r. If T consists only of r, then r is the inorder traversal of T. Otherwise, suppose that T<sub>1</sub>, T<sub>2</sub>, . . . , T<sub>n</sub> are the subtrees at r from left to right.

The *inorder traversal* begins by traversing  $T_1$  in inorder, then visiting r. It continues by traversing  $T_2$  in inorder, then  $T_3$  in inorder,..., and finally  $T_n$  in inorder.



#### **Inorder Traversal**

Step 1: Visit  $T_1$  in inorder

Step 2: Visit the root *r* 

Step 3: Visit  $T_2$  in inorder

•

Step n+1: Visit  $T_n$  in inorder





#### Examples of Inorder Traversal





## **Example Inorder Traversal**

- **EXAMPLE 3:** In which order does an inorder traversal visit the vertices of the ordered rooted tree T in Figure 3?
- Solution: The steps of the inorder traversal of the ordered rooted tree T are shown in Figure 6. The inorder traversal begins with an inorder traversal of the subtree with root *b*, the root *a*, the inorder listing of the subtree with root *c*, which is just *c*, and the inorder listing of the subtree with root *d*.



## **Example of Inorder Traversal**

#### Figure 3



FIGURE 6 The Inorder Traversal of T.



#### **Postorder Traversal**

• **<u>DEFINITION 3</u>**: Let T be an ordered rooted tree with root r. If T consists only of r, then r is the postorder traversal of T . Otherwise, suppose that  $T_1, T_2, \ldots, T_n$  are the subtrees at r from left to right.

The postorder traversal begins by traversing  $T_1$  in postorder, then  $T_2$  in postorder, . . . , then  $T_n$  in postorder, and ends by visiting r.



#### **Postorder Traversal**

Step 1: Visit  $T_1$  in postorder

Step 2: Visit  $T_2$  in postorder

•

Step n: Visit  $T_n$  in postorder

Step n+1: Visit r





- EXAMPLE 4: In which order does a postorder traversal visit the vertices of the ordered rooted tree T shown in Figure 3?
- Solution: The steps of the postorder traversal of the ordered rooted tree T are shown in Figure 8. The postorder traversal begins with the postorder traversal of the subtree with root *b*, the postorder traversal of the subtree with root *c*, which is just *c*, the postorder traversal of the subtree with root *d*, followed by the root *a*.



### Figure 3



Postorder traversal: Visit subtrees left to right; visit root







FIGURE 8 The Postorder Traversal of T.

#### **Class Work**

Determine the order in which a (a) **Preorder**, (b) **Inorder**, and (c) **Postorder** traversal visits the vertices of the ordered rooted tree below.





## **Answers**

a) Preorder: abejknopfcdglmhi

b) Inorder: jenkopbfaclgmdhi

c) Postorder: jnopkefbclmghida



#### **Books**

 Rosen, K. H., & Krithivasan, K. (2012). Discrete mathematics and its applications: with combinatorics and graph theory. Tata McGraw-Hill Education. (7<sup>th</sup> Edition)

#### References



- 1. Discrete Mathematics, Richard Johnsonbaugh, Pearson education, Inc.
- 2. Discrete Mathematical Structures, *Bernard Kolman*, *Robert C. Busby*, *Sharon Ross*, Prentice-Hall, Inc.
- 3. SCHAUM'S outlines Discrete Mathematics(2<sup>nd</sup> edition), by Seymour Lipschutz, Marc Lipson
- University of Hawaii
  <a href="http://courses.ics.hawaii.edu/ReviewICS241/morea/trees/TreeTraversal-QA.pdf">http://courses.ics.hawaii.edu/ReviewICS241/morea/trees/TreeTraversal-QA.pdf</a>
- Florida State University
  <a href="http://www.cs.fsu.edu/~lacher/lectures/Output/trees">http://www.cs.fsu.edu/~lacher/lectures/Output/trees</a> intro/script.html