

Welcome to Discrete Time Signals and Systems

■ Systems manipulate the information carried by signals

Signal processing involves the theory and application of

- filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals by digital or analog devices or techniques
- where signal includes audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and other signals

(IEEE Processing Amendment, 1994) Signal Society Constitutional

Signal Processing

- Signal processing has traditionally been a part of electrical and computer engineering
- But now expands into applied mathematics, statistics, computer science, geophysics, and host of application disciplines
- Initially **analog** signals and systems implemented using resistors, capacitors, inductors, and transistors

- Since the 1940s increasingly **digital** signals and systems implemented using computers and computer code (Matlab, Python, C, ...)
 - Advantages of digital include stability and programmability
 - As computers have shrunk, digital signal processing has become ubiquitous

Signals

DEFINITION

Signal (n): A detectable physical quantity . . . by which messages or information can be transmitted (Merriam-Webster)

- Signals carry **information**
- Examples:
 - Speech signals transmit language via acoustic waves
 - Radar signals transmit the position and velocity of targets via electromagnetic waves
 - Electrophysiology signals transmit information about processes inside the body
 - Financial signals transmit information about events in the economy
- Signal processing systems manipulate the information carried by signals
- This is a course about signals and systems

Signals are Functions

DEFINITION

A signal is a function that maps an independent variable to a dependent variable.

- Signal x[n]: each value of n produces the value x[n]
- In this course, we will focus on **discrete-time** signals:
 - Independent variable is an **integer**: $n \in \mathbb{Z}$ (will refer to as time)
 - Dependent variable is a real or complex number: $x[n] \in \mathbb{R}$ or \mathbb{C}

Plotting Real Signals

lacktriangle When $x[n] \in \mathbb{R}$ (ex: temperature in a room at noon on Monday), we use one signal plot

■ When it is clear from context, we will often suppress the labels on one or both axes, like this

A Menagerie of Signals

■ Google Share daily share price for 5 months

■ Temperature at Houston Intercontinental Airport in 2013 (Celcius)

■ Excerpt from Shakespeare's Hamlet

Plotting Signals Correctly

- In a discrete-time signal x[n], the independent variable n is discrete (integer)
- To plot a discrete-time signal in a program like Matlab, you should use the <u>stem</u> or similar command and not the <u>plot</u> command
- Correct:

Incorrect:

Plotting Complex Signals

- Recall that a complex number $a \in \mathbb{C}$ can be equivalently represented two ways:
 - Polar form: $a = |a| e^{j \angle a}$
 - Rectangular form: $a = \text{Re}\{a\} + j \text{Im}\{a\}$
- \blacksquare Here $j=\sqrt{-1}$ (engineering notation; mathematicians use $i=\sqrt{-1})$
- When $x[n] \in \mathbb{C}$ (ex: magnitude and phase of an electromagnetic wave), we use $\underline{\mathsf{two}}$ signal plots
 - $\bullet \ \ {\rm Rectangular \ form:} \quad \ x[n] = {\rm Re}\{x[n]\} + j\,{\rm Im}\{x[n]\}$
 - Polar form: $x[n] = |x[n]| e^{j \angle x[n]}$

Plotting Complex Signals (Rectangular Form)

 $\qquad \text{Rectangular form:} \qquad x[n] = \operatorname{Re}\{x[n]\} + j\operatorname{Im}\{x[n]\} \in \mathbb{C}$

Plotting Complex Signals (Polar Form)

 $\qquad \text{Polar form:} \qquad x[n] = |x[n]| \ e^{j \angle (x[n])} \in \mathbb{C}$

Summary

- Discrete-time signals
 - Independent variable is an integer: $n \in \mathbb{Z}$ (will refer to as time)
 - Dependent variable is a real or complex number: $x[n] \in \mathbb{R}$ or $\overline{\mathbb{C}}$
- Plot signals correctly!

Signal Properties

- Infinite/finite-length signals
- Periodic signals
- Causal signals
- Even/odd signals
- Digital signals

Finite/Infinite-Length Signals

■ An **infinite-length** discrete-time signal x[n] is defined for all $n \in \mathbb{Z}$, i.e., $-\infty < n < \infty$

■ A finite-length discrete-time signal x[n] is defined only for a finite range of $N_1 \leq n \leq N_2$

 \blacksquare Important: a finite-length signal is $\underline{\text{undefined}}$ for $n < N_1$ and $n > N_2$

DEFINITION

Periodic Signals

A discrete-time signal is **periodic** if it repeats with period $N \in \mathbb{Z}$:

$$x[n+mN] = x[n] \quad \forall m \in \mathbb{Z}$$

Notes:

- lacktriangle The period N must be an integer
- A periodic signal is infinite in length

DEFINITION

A discrete-time signal is aperiodic if it is not periodic

Converting between Finite and Infinite-Length Signals

- Convert an infinite-length signal into a finite-length signal by windowing
- Convert a finite-length signal into an infinite-length signal by either
 - (infinite) zero padding, or
 - periodization

Windowing

■ Converts a longer signal into a shorter one

$$y[n] = \begin{cases} x[n] & N_1 \le n \le N_2 \\ 0 & \text{otherwise} \end{cases}$$

Zero Padding

- Converts a shorter signal into a longer one
- Say x[n] is defined for $N_1 \le n \le N_2$

■ Given
$$N_0 \le N_1 \le N_2 \le N_3$$

$$y[n] = \begin{cases} 0 & N_0 \le n < N_1 \\ x[n] & N_1 \le n \le N_2 \\ 0 & N_2 < n \le N_3 \end{cases}$$

Periodization

- Converts a finite-length signal into an infinite-length, periodic signal
- Given finite-length x[n], replicate x[n] periodically with period N

$$y[n] = \sum_{m=-\infty}^{\infty} x[n-mN], \quad n \in \mathbb{Z}$$

= $\dots + x[n+2N] + x[n+N] + x[n] + x[n-N] + x[n-2N] + \dots$

Useful Aside - Modular Arithmetic

- lacktriangle Modular arithmetic with **modulus** N (mod-N) takes place on a **clock** with N "hours"
 - Ex: $(12)_8$ ("twelve mod eight")
- Modulo arithmetic is inherently **periodic**
 - Ex: ... $(-12)_8 = (-4)_8 = (4)_8 = (12)_8 = (20)_8 \dots$

Periodization via Modular Arithmetic

- \blacksquare Consider a length-N signal x[n] defined for $0 \leq n \leq N-1$
- lacksquare A convenient way to express periodization with period N is $y[n]=x[(n)_N], \quad n\in\mathbb{Z}$

- Important interpretation
 - Infinite-length signals live on the (infinite) number line
 - Periodic signals live on a circle
 - a clock with N "hours"

Finite-Length and Periodic Signals are Equivalent

- All of the information in a periodic signal is contained in **one period** (of finite length)
- Any finite-length signal can be periodized
- Conclusion: We can and will think of finite-length signals and periodic signals interchangeably
- We can choose the most convenient viewpoint for solving any given problem
 - Application: Shifting finite length signals

Causal Signals

DEFINITION

A signal x[n] is **causal** if x[n] = 0 for all n < 0.

 \blacksquare A signal x[n] is anti-causal if x[n]=0 for all $n\geq 0$

lacksquare A signal x[n] is **acausal** if it is not causal

Even Signals

DEFINITION

A real signal x[n] is **even** if x[-n] = x[n]

 \blacksquare Even signals are symmetrical around the point n=0

Odd Signals

DEFINITION

A real signal $\boldsymbol{x}[n]$ is \mathbf{odd} if $\boldsymbol{x}[-n] = -\boldsymbol{x}[n]$

 \blacksquare Odd signals are anti-symmetrical around the point n=0

Even+Odd Signal Decomposition

- **Useful fact:** Every signal x[n] can be decomposed into the sum of its even part + its odd part
- Even part: $e[n] = \frac{1}{2}(x[n] + x[-n])$ (easy to verify that e[n] is even)
- Odd part: $o[n] = \frac{1}{2} (x[n] x[-n])$ (easy to verify that o[n] is odd)
- $\qquad \qquad \mathbf{Decomposition} \qquad x[n] = e[n] + o[n]$
- Verify the decomposition:

$$e[n] + o[n] = \frac{1}{2}(x[n] + x[-n]) + \frac{1}{2}(x[n] - x[-n])$$

$$= \frac{1}{2}(x[n] + x[-n] + x[n] - x[-n])$$

$$= \frac{1}{2}(2x[n]) = x[n] \checkmark$$

${\sf Even+Odd\ Signal\ Decomposition\ in\ Pictures}$

Even+Odd Signal Decomposition in Pictures

Digital Signals

- Digital signals are a special sub-class of discrete-time signals
 - Independent variable is still an integer: $n \in \mathbb{Z}$
 - Dependent variable is from a **finite set of integers**: $x[n] \in \{0, 1, \dots, D-1\}$
 - ullet Typically, choose $D=2^q$ and represent each possible level of x[n] as a digital code with q bits
 - Ex: Digital signal with q=2 bits $\Rightarrow D=2^2=4$ levels

• Ex: Compact discs use q=16 bits $\Rightarrow D=2^{16}=65536$ levels

Summary

- Signals can be classified many different ways (real/complex, infinite/finite-length, periodic/aperiodic, causal/acausal, even/odd, . . .)
- Finite-length signals are equivalent to periodic signals; modulo arithmetic useful

Shifting Infinite-Length Signals

lacktriangle Given an infinite-length signal x[n], we can **shift** it back and forth in time via x[n-m], $m\in\mathbb{Z}$

■ When m>0, x[n-m] shifts to the **right** (forward in time, delay)

■ When m < 0, x[n-m] shifts to the **left** (back in time, advance)

Periodic Signals and Modular Arithmetic

lacktriangle A convenient way to express a signal y[n] that is periodic with period N is

$$y[n] = x[(n)_N], \quad n \in \mathbb{Z}$$

where x[n], defined for $0 \le n \le N-1$, comprises one period

- Important interpretation
 - Infinite-length signals live on the (infinite) number line
 - Periodic signals live on a circle a clock with N "hours"

990

Shifting Periodic Signals

 \blacksquare Periodic signals can also be shifted; consider $y[n] = x[(n)_N]$

 \blacksquare Shift one sample into the future: $y[n-1] = x[(n-1)_N]$

Shifting Finite-Length Signals

 \blacksquare Consider finite-length signals x and v defined for $0 \leq n \leq N-1$ and suppose "v[n] = x[n-1] "

$$v[0] = ??$$
 $v[1] = x[0]$
 $v[2] = x[1]$
 $v[3] = x[2]$
 \vdots
 $v[N-1] = x[N-2]$
 $?? = x[N-1]$

- What to put in v[0]? What to do with x[N-1]? We don't want to invent/lose information
- \blacksquare Elegant solution: Assume x and v are both periodic with period N; then $v[n] = x[(n-1)_N]$
- This is called a **periodic** or **circular shift** (see circshift and mod in Matlab)

Circular Shift Example

- Elegant formula for circular shift of x[n] by m time steps: $x[(n-m)_N]$
- Ex: x and v defined for $0 \le n \le 7$, that is, N = 8. Find $v[n] = x[(n-3)_8]$

990

Circular Shift Example

- \blacksquare Elegant formula for circular shift of x[n] by m time steps: $x[(n-m)_N]$
- Ex: x and v defined for $0 \le n \le 7$, that is, N = 8. Find $v[n] = x[(n-m)_N]$

$$v[0] = x[5]$$

$$v[1] = x[6]$$

$$v[2] = x[7]$$

$$v[3] = x[0]$$

$$v[4] = x[1]$$

$$v[5] = x[2]$$

$$v[6] = x[3]$$

$$v[7] = x[4]$$

Circular Time Reversal

- lacktriangle For infinite length signals, the transformation of reversing the time axis x[-n] is obvious
- Not so obvious for periodic/finite-length signals
- lacktriangle Elegant formula for reversing the time axis of a periodic/finite-length signal: $x[(-n)_N]$
- Ex: x and v defined for $0 \le n \le 7$, that is, N = 8. Find $v[n] = x[(-n)_N]$

$$v[0] = x[0]$$

$$v[1] = x[7]$$

$$v[2] = x[6]$$

$$v[3] = x[5]$$

$$v[4] = x[4]$$

$$v[5] = x[3]$$

$$v[6] = x[2]$$

$$v[7] = x[1]$$

Summary

- Shifting a signal moves it forward or backward in time
- Modulo arithmetic provides and easy way to shift periodic signals

A Toolbox of Test Signals

- Delta function
- Unit step
- Unit pulse
- Real exponential
- Still to come: sinusoids, complex exponentials
- **Note:** We will introduce the test signals as <u>infinite-length</u> signals, but each has a finite-length equivalent

Delta Function

DEFINITION

The **delta function** (aka unit impulse) $\delta[n] = \begin{cases} 1 & n=0 \\ 0 & \text{otherwise} \end{cases}$

 \blacksquare The shifted delta function $\delta[n-m]$ peaks up at n=m; here m=9

Delta Functions Sample

 Multiplying a signal by a shifted delta function picks out one sample of the signal and sets all other samples to zero

$$y[n] = x[n] \delta[n-m] = x[m] \delta[n-m]$$

■ Important: m is a fixed constant, and so x[m] is a constant (and not a signal)

Unit Step

DEFINITION

The unit step $u[n] = \begin{cases} 1 & n \geq 0 \\ 0 & n < 0 \end{cases}$

 \blacksquare The shifted unit step u[n-m] jumps from 0 to 1 at n=m; here m=5

Unit Step Selects Part of a Signal

 $\,\blacksquare\,$ Multiplying a signal by a shifted unit step function zeros out its entries for n < m

$$y[n] = x[n] u[n-m]$$

(Note: For m = 0, this makes y[n] causal)

Unit Pulse

DEFINITION

The **unit pulse** (aka boxcar) $p[n] = \begin{cases} 0 & n < N_1 \\ 1 & N_1 \le n \le N_2 \\ 0 & n > N_2 \end{cases}$

 \bullet Ex: p[n] for $N_1=-5$ and $N_2=3$

One of many different formulas for the unit pulse

$$p[n] = u[n - N_1] - u[n - (N_2 + 1)]$$

Real Exponential

DEFINITION

The real exponential $r[n] = a^n$, $a \in \mathbb{R}$, $a \ge 0$

lacksquare For a>1, r[n] shrinks to the left and grows to the right; here a=1.1

lacksquare For 0 < a < 1, r[n] grows to the left and shrinks to the right; here a = 0.9

Summary

■ We will use our test signals often, especially the delta function and unit step

Sinusoids

- Sinusoids appear in myriad disciplines, in particular signal processing
- They are the basis (literally) of Fourier analysis (DFT, DTFT)
- We will introduce
 - Real-valued sinusoids
 - (Complex) sinusoid
 - Complex exponential

Sinusoids

■ There are two natural real-valued sinusoids: $\cos(\omega n + \phi)$ and $\sin(\omega n + \phi)$

• Frequency: ω (units: radians/sample)

Phase: ϕ (units: radians)

 $\cos(\omega n)$

 \bullet $\sin(\omega n)$ (odd)

Sinusoid Examples

 $\cos(0n)$

 $= \sin(0n)$

 $\cos(\pi n)$

Get Comfortable with Sinusoids!

■ It's easy to play around in Matlab to get comfortable with the properties of sinusoids

```
\label{eq:N=36;} \begin{split} &\text{N=36;}\\ &\text{n=0:N-1;}\\ &\text{omega=pi/6;}\\ &\text{phi=pi/4;}\\ &\text{x=cos(omega*n+phi);}\\ &\text{stem(n,x)} \end{split}
```


99@

Complex Sinusoid

lacktriangle The complex-valued sinusoid combines both the \cos and \sin terms (via Euler's identity)

$$e^{j(\omega n + \phi)} = \cos(\omega n + \phi) + j\sin(\omega n + \phi)$$

A Complex Sinusoid is a Helix

$$e^{j(\omega n + \phi)} = \cos(\omega n + \phi) + j\sin(\omega n + \phi)$$

- A complex sinusoid is a **helix** in 3D space $(Re{}\{\}, Im{}\{\}, n)$
 - \bullet Real part (\cos term) is the projection onto the $\operatorname{Re}\{\}$ axis
 - \bullet Imaginary part $(\sin$ term) is the projection onto the $\mathrm{Im}\{\}$ axis
- \blacksquare Frequency ω determines rotation $\underline{\mathsf{speed}}$ and $\underline{\mathsf{direction}}$ of helix
 - $\omega > 0 \Rightarrow$ anticlockwise rotation
 - $\omega < 0 \Rightarrow$ clockwise rotation

990

7

© 2006 www.radartutorial.eu

Complex Sinusoid is a Helix (Animation)

■ Complex sinusoid animation

Negative Frequency

■ Negative frequency is nothing to be afraid of! Consider a sinusoid with a negative frequency $-\omega$

$$e^{j(-\omega)n} = e^{-j\omega n} = \cos(-\omega n) + j\sin(-\omega n) = \cos(\omega n) - j\sin(\omega n)$$

- Also note: $e^{j(-\omega)n} = e^{-j\omega n} = (e^{j\omega n})^*$
- Bottom line: negating the frequency is equivalent to complex conjugating a complex sinusoid, which flips the sign of the imaginary, \sin term

Phase of a Sinusoid

$$e^{j(\omega n + \phi)}$$

 $\ \ \, \phi$ is a (frequency independent) shift that is referenced to one period of oscillation

$$\cos\left(\frac{\pi}{6}n - 0\right)$$

$$\cos\left(\frac{\pi}{6}n - \frac{\pi}{4}\right)$$

Summary

- Sinusoids play a starring role in both the theory and applications of signals and systems
- A sinusoid has a **frequency** and a **phase**
- A complex sinusoid is a helix in three-dimensional space and naturally induces the sine and cosine
- Negative frequency is nothing to be scared by; it just means that the helix spins backwards

Discrete-Time Sinusoids are Weird!

- lacktriangle Discrete-time sinusoids $e^{j(\omega n + \phi)}$ have two counterintuitive properties
- \blacksquare Both involve the frequency ω
- Weird property #1: Aliasing
- Weird property #2: Aperiodicity

Weird Property #1: Aliasing of Sinusoids

- Consider two sinusoids with two different frequencies
 - ω \Rightarrow $x_1[n] = e^{j(\omega n + \phi)}$
 - $\omega + 2\pi$ \Rightarrow $x_2[n] = e^{j((\omega + 2\pi)n + \phi)}$
- But note that

$$x_2[n] = e^{j((\omega + 2\pi)n + \phi)} = e^{j(\omega n + \phi) + j2\pi n} = e^{j(\omega n + \phi)} e^{j2\pi n} = e^{j(\omega n + \phi)} = x_1[n]$$

- The signals x_1 and x_2 have different frequencies but are **identical**!
- We say that x_1 and x_2 are aliases; this phenomenon is called **aliasing**
- Note: Any integer multiple of 2π will do; try with $x_3[n]=e^{j((\omega+2\pi m)n+\phi)}$, $m\in\mathbb{Z}$

Aliasing of Sinusoids – Example

 $x_1[n] = \cos\left(\frac{\pi}{6}n\right)$

 $x_2[n] = \cos\left(\frac{13\pi}{6}n\right) = \cos\left(\left(\frac{\pi}{6} + 2\pi\right)n\right)$

Alias-Free Frequencies

Since

$$x_3[n] = e^{j(\omega + 2\pi m)n + \phi} = e^{j(\omega n + \phi)} = x_1[n] \quad \forall m \in \mathbb{Z}$$

the only frequencies that lead to unique (distinct) sinusoids lie in an interval of length 2π

- lacktriangle Convenient to interpret the frequency ω as an **angle** (then aliasing is handled automatically; more on this later)
- Two intervals are typically used in the signal processing literature (and in this course)
 - $0 < \omega < 2\pi$
 - $-\pi < \omega < \pi$

Low and High Frequencies

 $e^{j(\omega n + \phi)}$

 \blacksquare Low frequencies: ω close to 0 or 2π rad

Ex: $\cos\left(\frac{\pi}{10}n\right)$

■ High frequencies: ω close to π or $-\pi$ rad

Ex: $\cos\left(\frac{9\pi}{10}n\right)$

Weird Property #2: Periodicity of Sinusoids

- Consider $x_1[n]=e^{j(\omega n+\phi)}$ with frequency $\omega=\frac{2\pi k}{N}$, $k,N\in\mathbb{Z}$ (harmonic frequency)
- It is easy to show that $\underline{x_1}$ is periodic with period N, since

$$x_1[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n + \omega N + \phi)} = e^{j(\omega n + \phi)} e^{j(\omega N)} = e^{j(\omega n + \phi)} e^{j(\frac{2\pi k}{N}N)} = x_1[n] \checkmark$$

• Ex: $x_1[n] = \cos(\frac{2\pi 3}{16}n)$, N = 16

Aperiodicity of Sinusoids

- Consider $x_2[n] = e^{j(\omega n + \phi)}$ with frequency $\omega \neq \frac{2\pi k}{N}$, $k, N \in \mathbb{Z}$ (not harmonic frequency)
- Is x_2 periodic?

$$x_2[n+N] = e^{j(\omega(n+N)+\phi)} = e^{j(\omega n+\omega N+\phi)} = e^{j(\omega n+\phi)} e^{j(\omega N)} \neq x_1[n]$$
 NO!

• Ex: $x_2[n] = \cos(1.16 \, n)$

lacktriangleright If its frequency ω is not harmonic, then a sinusoid oscillates but is not periodic!

Harmonic Sinusoids

$$e^{j(\omega n + \phi)}$$

■ Semi-amazing fact: The **only** periodic discrete-time sinusoids are those with **harmonic frequencies**

$$\omega = \frac{2\pi k}{N}, \quad k, N \in \mathbb{Z}$$

- Which means that
 - Most discrete-time sinusoids are not periodic!
 - The harmonic sinusoids are somehow magical (they play a starring role later in the DFT)

Harmonic Sinusoids (Matlab)

■ <u>Click here</u> to view a MATLAB demo that visualizes harmonic sinusoids.

Summary

- \blacksquare Discrete-time sinusoids $e^{j(\omega n + \phi)}$ have two counterintuitive properties
- \blacksquare Both involve the frequency ω
- Weird property #1: Aliasing
- Weird property #2: Aperidiocity
- The only sinusoids that are periodic: Harmonic sinusoids $e^{j(\frac{2\pi k}{N}n+\phi)}$, $n,k,N\in\mathbb{Z}$

Complex Exponential

- lacktriangle Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\mathrm{Purely\ Imaginary\ Numbers}}$
- lacksquare Generallize to $e^{
 m General\ Complex\ Numbers}$
- \blacksquare Consider the general complex number $\;\;z=|z|\;e^{j\omega}$, $z\in\mathbb{C}$
 - |z| = magnitude of z
 - $\omega = \angle(z)$, phase angle of z
 - Can visualize $z \in \mathbb{C}$ as a **point** in the **complex plane**
- Now we have

$$z^{n} = (|z|e^{j\omega})^{n} = |z|^{n}(e^{j\omega})^{n} = |z|^{n}e^{j\omega n}$$

- $|z|^n$ is a real exponential $(a^n \text{ with } a = |z|)$ $e^{j\omega n}$ is a complex sinusoid

Complex Exponential is a Spiral

$$z^n = (|z|e^{j\omega})^n = |z|^n e^{j\omega n}$$

- $lacksquare |z|^n$ is a **real exponential** envelope $(a^n \text{ with } a = |z|)$
- $lacksquare e^{j\omega n}$ is a complex sinusoid
- lacksquare z^n is a helix with expanding radius (spiral)

Complex Exponential is a Spiral

$$z^n = (|z| e^{j\omega n})^n = |z|^n e^{j\omega n}$$

- $lacksquare |z|^n$ is a **real exponential** envelope $(a^n \text{ with } a = |z|)$
- $lackbox{ } e^{j\omega n}$ is a complex sinusoid

|z| < 1

|z| > 1

Complex Exponentials and z Plane (Matlab)

Click here to view a MATLAB demo plotting the signals z^n .

Summary

- lacktriangle Complex sinusoid $e^{j(\omega n + \phi)}$ is of the form $e^{\mathrm{Purely\ Imaginary\ Numbers}}$
- lacktriangle Complex exponential: Generalize $e^{j(\omega n + \phi)}$ to $e^{\mathrm{General~Complex~Numbers}}$
- A complex exponential is the product of a real exponential and a complex sinusoid
- A complex exponential is a spiral in three-dimensional space