Bootstrap

Set up: Data X_1, \ldots, X_n — i.i.d. as X with population cdf F (which is not completely known).

Parameter of interest: θ , estimated by $\hat{\theta}$

Examples: Mean, variance, median, quantiles, etc.

Issue: Need to get the *sampling distribution* of $\hat{\theta}$ so that we can compute, e.g., standard error of $\hat{\theta}$, or confidence interval for θ ?

Q: Why not use the methods that we have learnt?

Basics

Bootstrap: A simulation based technique that allows us to approximate the sampling distribution of $\hat{\theta}$. Assumes large n, but its value needed for validity of bootstrap is typically less than that for the usual large-sample procedure.

Original sample: $X_1, \ldots, X_n \sim \text{i.i.d.}$ with cdf F

Bootstrap (re)sample: $X_1^*, \ldots, X_n^* \sim \text{i.i.d.}$ with cdf \hat{F} , where $\hat{F} = \text{estimated cdf (which is completely known)}$

Parametric bootstrap:

- Functional form of F is known (e.g., normal), but F may depend on unknown parameter θ .
- \hat{F} is same as F but with θ replaced by its MLE $\hat{\theta}$. In other words, \hat{F} is the cdf of the fitted model.
- Ex: $F = N(\mu, \sigma^2), \hat{F} =$
- Often easy to simulate i.i.d. draws X_1^*, \ldots, X_n^* from \hat{F} .

Nonparametric bootstrap:

- \bullet Functional form of F is unknown.
- \hat{F} = empirical cdf, where

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le x) = 0$$

- Think of \hat{F} as a discrete distribution that assigns 1/n probability to each of the sample observations, X_1, \ldots, X_n .
- Get X_1^*, \ldots, X_n^* by sampling n times with replacement from X_1, \ldots, X_n .

Bootstrap distribution of estimator $\hat{\theta}$ of θ :

Original sample: X_1, \ldots, X_n — gives $\hat{\theta}$

• Simulate a large number b of bootstrap resamples, and compute $\hat{\theta}^*$ from each resample exactly the way $\hat{\theta}$ is computed from original sample.

- This process gives a large number of draws, $\hat{\theta}_1^*, \dots, \hat{\theta}_b^*$.
- These draws are coming from the bootstrap distribution of $\hat{\theta}$.
- How to see this distribution?
- It approximates the sampling distribution of $\hat{\theta}$.
- Use the draws $\hat{\theta}_1^*, \dots, \hat{\theta}_b^*$ to estimate features of sampling distribution of $\hat{\theta}$ that may be of interest.

Estimating a feature η of distribution of $\hat{\theta}$:

- Get a large number b of draws, $\hat{\theta}_1^*, \dots, \hat{\theta}_b^*$.
- $\hat{\eta}^*$ = same feature computed from these draws.

Ex 1:
$$\eta = E(\hat{\theta}). \ \hat{\eta}^* =$$

Ex 2:
$$\eta = var(\hat{\theta})$$
. $\hat{\eta}^* =$

Ex 3:
$$\eta = \text{bias of } \hat{\theta} = E(\hat{\theta}) - \theta. \ \hat{\eta}^* =$$

Ex 4:
$$\eta = \alpha$$
-th quantile of $\hat{\theta}$. $\hat{\eta}^* =$

Ex 5:
$$\eta = \alpha$$
-th quantile of $\hat{\theta} - \theta$. $\hat{\eta}^* =$

Bootstrap Confidence Intervals

Set up: $\hat{\theta} \approx N(\theta, \hat{V})$ when n is large.

- For example, when $\hat{\theta}$ is MLE and $\hat{V} = \hat{I}^{-1}$.
- Don't need population to be normal.

Recall: The standard (approximate) $100(1-\alpha)\%$ CI for θ is:

$$[\hat{\theta} - z_{1-\alpha/2} \widehat{SE}, \ \hat{\theta} - z_{\alpha/2} \widehat{SE}],$$

where $z_{\alpha} = \alpha$ -th percentile of $T = (\hat{\theta} - \theta)/\widehat{SE} \approx N(0, 1)$.

Why?

Issues: This CI may not be accurate because n may not be large enough for

ullet normal approximation for T to be good, implying that

(The distribution of T may not even be symmetric.)

- bias in $\hat{\theta}$ to be negligible, implying that
- \hat{V} to be a good estimate of true V, implying that

(Often ML-theory based \hat{V} underestimates V.)

Bootstrap CI overcomes these issues to a large extent.

Four Bootstrap CIs for θ

- 1. Normal approximation CI: Use z critical point but correct $\hat{\theta}$ for bias and use \hat{V}^* to estimate V.
 - Estimated bias of $\hat{\theta} =$
 - CI: $\left[\hat{\theta} \hat{B}^* z_{1-\alpha/2}\widehat{SE}^*, \ \hat{\theta} \hat{B}^* z_{\alpha/2}\widehat{SE}^*\right]$.
- **2. Studentized bootstrap CI:** Use bootstrap critical point of \overline{T} instead of z critical point.
 - Get $T_1^* = (\hat{\theta}_1^* \hat{\theta})/\widehat{SE}_1^*, \dots, T_b^* = (\hat{\theta}_b^* \hat{\theta})/\widehat{SE}_b^*$
 - Estimated α -th percentile of T =
 - CI: $\left[\hat{\theta} t^*_{((b+1)(1-\alpha/2))}\widehat{SE}, \ \hat{\theta} t^*_{((b+1)(\alpha/2))}\widehat{SE}\right]$.

3. <u>Basic bootstrap CI:</u> Based on percentiles of $\hat{\theta} - \theta$ rather than $(\hat{\theta} - \theta)/\widehat{SE}$. Use bootstrap to estimate them. Notice

$$1 - \alpha = P(a_{\alpha/2} \le \hat{\theta} - \theta \le a_{1-\alpha/2})$$
=

- Estimated $a_{\alpha} =$
- CI: $\left[2\hat{\theta} \hat{\theta}^*_{((b+1)(1-\alpha/2))}, 2\hat{\theta} \hat{\theta}^*_{((b+1)(\alpha/2))}\right]$.
- Doesn't require \widehat{SE} .

4. Percentile bootstrap CI: Works as in basic bootstrap but uses "magic." Suppose there exists a transformation h so that the distribution of $h(\hat{\theta}) - h(\theta)$ is symmetric about zero. Let $U = h(\hat{\theta})$. As before, we can write

$$\begin{aligned} 1 - \alpha &= P\left(a_{\alpha/2} \le U - h(\theta) \le a_{1-\alpha/2}\right) \\ &= P\left(-a_{1-\alpha/2} \le U - h(\theta) \le -a_{\alpha/2}\right) \\ &= P\left(U + a_{\alpha/2} \le h(\theta) \le U + a_{1-\alpha/2}\right) \end{aligned}$$

- Estimated $a_{\alpha} =$
- $U + a_{\alpha/2} \approx U + \left\{ U_{((b+1)(\alpha/2))}^* U \right\} = U *_{((b+1)(\alpha/2))}$
- Similarly, $U + a_{1-\alpha/2} = U^*_{((b+1)(1-\alpha/2))}$

Therefore,

$$1 - \alpha \approx P\left(U^*_{\left((b+1)(\alpha/2)\right)} \le h(\theta) \le U^*_{\left((b+1)(1-\alpha/2)\right)}\right)$$

• CI:
$$\left[\hat{\theta}^*_{\left((b+1)(\alpha/2)\right)}, \ \hat{\theta}^*_{\left((b+1)(1-\alpha/2)\right)}\right]$$
.

• Magic:

Q. Which method to use?

Research shows that studentized bootstrap is the best choice, but it requires \widehat{SE} . However, if \widehat{SE} is not available, then percentile bootstrap is often the next best choice. More accurate versions of this method are available.

Example: Recall the CPU time data from Example 8.12 on page 217. We had seen that a gamma distribution fit well to these data. Suppose we would like to perform inference on median cpu time.

R code:

```
# use install.packages("boot") to first install
# the package and then load it
library(boot)
# read the cpu data (we have seen these before)
> (cpu <- scan(file="cputime.txt"))</pre>
Read 30 items
 [1] 70 36 43 69 82 48 34 62 35 15 59 139
 46 37 42 30 55 56
```

```
[19] 36 82 38 89 54 25 35 24 22
>
# Parameter of interest: Median
##################################
# Nonparametric Bootstrap #
#################################
median.npar <- function(x, indices) {</pre>
  result <- median(x[indices])
  return(result)
  }
> (median.npar.boot <- boot(cpu, median.npar, R=999,</pre>
sim="ordinary", stype="i"))
```

ORDINARY NONPARAMETRIC BOOTSTRAP

```
Call:
boot(data = cpu, statistic = median.npar, R = 999,
sim = "ordinary", stype = "i")
Bootstrap Statistics:
   original bias std. error
t1* 42.5 0.6721722 5.876943
>
# Let's verify the calculations
# See what's else is stored in median.npar.boot
> names(median.npar.boot)
 [1] "t0"
                "±"
                           "R"
                                       "data"
 "seed" "statistic"
 [7] "sim" "call"
                           "stype" "strata"
 "weights"
```

```
> median(cpu)
[1] 42.5
>
> median.npar.boot$t0
[1] 42.5
>
> mean(median.npar.boot$t)-median.npar.boot$t0
[1] 0.6721722
>
> sd(median.npar.boot$t)
[1] 5.876943
>
# See the bootstrap distribution of median estimate
plot(median.npar.boot)
```

Histogram of t


```
# Get the 95% confidence interval for median
> boot.ci(median.npar.boot)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates
CALL:
boot.ci(boot.out = median.npar.boot)
Intervals:
Level Normal
                              Basic
95% (30.31, 53.35) (29.50, 49.50)
Level Percentile
                               BCa
95% (35.5, 55.5) (35.0, 55.5)
Calculations and Intervals on Original Scale
Warning message:
In boot.ci(median.npar.boot) :
  bootstrap variances needed for studentized intervals
```

```
# Let's verify
# Normal approximation method
> c(42.5 - 0.6721722 - qnorm(0.975) * 5.876943,
    42.5 - 0.6721722 - qnorm(0.025) * 5.876943)
[1] 30.30923 53.34642
>
# Percentile bootstrap method
> sort(median.npar.boot$t)[c(25, 975)]
[1] 35.5 55.5
# Basic bootstrap method
> c(2*42.5-55.5, 2*42.5-35.5)
[1] 29.5 49.5
>
```