Lycée La Martinière Monplaisir PSI* Année 2024/2025 Mathématiques

Feuille d'exercice n° 05 : Valeurs propres et vecteurs propres

I. Valeurs propres et vecteurs propres

Exercice 1 () Déterminer tous les $(x, y) \in \mathbb{R}^2$ tels que la matrice $\begin{pmatrix} x & 1 & 1 \\ 1 & y & 1 \\ 1 & 1 & 0 \end{pmatrix}$ admette $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ pour vecteur propre.

Exercice 2 (\bigcirc) Trouver tous les $(a,b) \in \mathbb{R}^2$ tels que la matrice $A = \begin{pmatrix} 1 & a \\ -1 & b \end{pmatrix}$ admette $U = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $V = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ pour vecteurs propres.

Exercice 3 Soient u endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie $n \geq 2$. On suppose que E est le seul sous-espace vectoriel non nul stable par u.

- 1) L'endomorphisme u possède-t-il des valeurs propres?
- 2) Montrer que pour tout $x \in E \setminus \{0_E\}$, la famille $(x, u(x), \dots, u^{n-1}(x))$ est une base de E. Quelle est la forme de la matrice de u dans cette base?
- 3) Montrer que cette matrice ne dépend pas du choix de x.

Exercice 4

- 1) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = A I_n$. Montrer que n est pair.
- 2) Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = A^2 A$. Montrer que A est de rang pair.

Exercice 5 (\mathscr{O}) Soit $M \in \mathscr{M}_n(\mathbb{C})$ triangulaire admettant a pour unique valeur propre. Montrer l'équivalence entre :

- (i) |a| < 1
- (ii) $\sum_{k=0}^{p} M^k$ converge lorsque $p \to +\infty$
- (iii) $M^p \xrightarrow[p \to +\infty]{} 0$

Exercice 6 Soit $n \ge 1$, on définit sur \mathbb{R}^n la norme $||(x_1, \dots, x_n)||_1 = |x_1| + \dots + |x_n|$.

Soit $f \in \mathcal{L}(\mathbb{R}^n)$ vérifiant $\forall x \in (\mathbb{R}_+)^n$, $f(x) \in (\mathbb{R}_+)^n$ et $||f(x)||_1 = ||x||_1$.

- 1) Donner un exemple d'un tel endomorphisme (différent de l'identité).
- 2) Montrer que 1 est valeur propre de f.

II. Espaces propres

Exercice 7 () Déterminer les valeurs propres et les sous-espaces propres de $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$, et de

$$B = \left(\begin{array}{ccc} 0 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 0 \end{array}\right) \in \mathcal{M}_3(\mathbb{R})$$

Exercice 8 — Soit Φ l'endomorphisme qui a pour matrice dans la base canonique de \mathbb{C}^4

$$A = \left(\begin{array}{cc} 0_2 & -I_2 \\ I_2 & 0_2 \end{array}\right).$$

En appliquant la définition, montrer que i et -i sont des valeurs propres de Φ et déterminer les vecteurs propres associés. En déduire tous les sous-espaces propres de A.

Exercice 9 (${\mathfrak P}$) Soit f l'endomorphisme de ${\mathbb R}[X]$ défini par

$$f: P \mapsto X(P(X) - P(X - 1))$$

Déterminer les éléments propres de f. Quels sont le noyau et l'image de f ?

Exercice 10 () Soit Φ l'endomorphisme de $\mathbb{R}[X]$ défini par $\Phi(P) = (2X+1)P - (X^2-1)P'$. Déterminer les éléments propres de Φ . Indication : on remarquera que, pour tout $\lambda \in \mathbb{R}$ et tout $x \neq \pm 1$, on a $\frac{2x+1-\lambda}{x^2-1} = \frac{1+\lambda}{2(x+1)} + \frac{3-\lambda}{2(x-1)}$.

Exercice 11 (Déterminer les valeurs propres et les sous-espaces propres de

$$f: \mathscr{M}_2(\mathbb{R}) \longrightarrow \mathscr{M}_2(\mathbb{R}), \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \longmapsto \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right).$$

Exercice 12 (E) Soit E l'espace vectoriel des applications continues de \mathbb{R}_+ dans \mathbb{R} . Pour $f \in E$ on définit une application $T_f : \mathbb{R}_+ \to \mathbb{R}$ par $T_f(0) = f(0)$ et

$$\forall x \in \mathbb{R}_+^*, \ T_f(x) = \frac{1}{x} \int_0^x f(t) dt.$$

- 1) Montrer que, pour tout $f \in E$, $T_f \in E$.
- 2) Soit $T: E \to E, f \mapsto T_f$. Montrer que T est linéaire.
- 3) Déterminer les éléments propres de T.

III. Polynôme caractéristique

Exercice 13 (\bigcirc) Soit f un endomorphisme non nul de \mathbb{R}^3 tel que $f \circ (f^2 + \mathrm{id}) = (f^2 + \mathrm{id}) \circ f = f^3 + f = 0$.

1) Montrer que Ker $f \oplus \text{Im } f = \mathbb{R}^3$.

- 2) a) Montrer que, si λ est valeur propre de f, alors $\lambda^3 + \lambda = 0$. En déduire la seule valeur propre réelle possible de f.
 - b) En considérant le degré du polynôme caractéristique de f, expliquer pourquoi f admet au moins une valeur propre réelle. Conclure quant à $\operatorname{Sp}_{\mathbb{R}}(f)$.
- 3) Montrer que l'on peut trouver une base dans laquelle f a pour matrice

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right)$$

Exercice 14 Soit u un endomorphisme de \mathbb{R}^n de rang r. Montrer que u possède un polynôme annulateur de degré r+1.

Exercice 15 Soit $A \in \mathcal{M}_2(\mathbb{K})$ une matrice de trace non nulle. Prouver alors que

$$\forall B \in \mathcal{M}_2(\mathbb{K}), \ \left[A^2B = BA^2 \Rightarrow AB = BA\right].$$

Exercice 16 Donner un exemple de couple (E, u) où E est un \mathbb{K} -espace vectoriel et u un endomorphisme de E n'admettant pas de polynôme annulateur non nul.

Exercice 17 Soit $A \in \mathcal{M}_n(\mathbb{K})$, et $M \in \mathcal{M}_{2n}(\mathbb{K})$ la matrice définie par blocs :

$$M = \left(\begin{array}{cc} I_n & I_n \\ A & A \end{array}\right)$$

Exprimer le polynôme caractéristique de M en fonction de celui de A.

Exercice 18 ($^{\otimes}$) Soit $A \in GL_n(\mathbb{K})$. Exprimer le polynôme caractéristique de A^{-1} en fonction de celui de A.

