# EM 561 – MECÂNICA DOS FLUIDOS II



### 2ª Prova - 28/06/2007 - Prova Individual e Sem Consulta

Turmas A e Especial: Prof. Antonio C. Bannwart
Turma B: Prof. Celso K. Morooka

Turma C: Prof. Luiz Felipe M. Moura

| NOME DO LETTIC |     |       |
|----------------|-----|-------|
| NOME DO ALUNO: | RA: | TURMA |
|                |     |       |

## INSTRUÇÕES:

- A duração desta prova é de 2 horas.
- 2. Leia o exame todo antes de tentar resolvê-lo.
- 3. Qualquer dado que o aluno julgar necessário e que não tenha sido fornecido deve ser assumido.
- A interpretação do texto faz parte da prova.
- 5. Devolver a folha de questões ao final da prova.

## QUESTÕES:

1) (Valor: 3,0 pontos) Testes realizados com uma turbina hidráulica de reação do tipo Francis forneceram os resultados dados da tabela abaixo:

|     | Q, l/s                | 550 | 1100 | 1400 |
|-----|-----------------------|-----|------|------|
| 600 | H, m                  | 42  | 47   | 43   |
| rpm | $\dot{W}_{eixo}$ , kW | 170 | 460  | 510  |
|     | η, %                  | 75  | 90   | 86   |

#### Pede-se:

- a) Preencher na tabela acima a linha com os valores de eficiência;
- b) Preencher a tabela abaixo com os valores esperados para a mesma turbina girando a 300 rpm:

|     | Q, l/s                                    |  |
|-----|-------------------------------------------|--|
| 300 | H, m                                      |  |
| rpm | $\dot{\mathbf{W}}_{eixo}$ , $\mathbf{kW}$ |  |
|     | η, %                                      |  |

2) (Valor: 3,0 pontos) Um duto de área constante (D = 150 mm) deve ser alimentado por um bocal convergente-divergente a partir de um tanque contendo ar (k = 1,4; R = 287 J/kg/K) a 295 K e 1,0 MPa (abs.). Uma operação livre de choque é desejada. Os números de Mach na entrada e na saída do duto devem ser 2,1 e 1,4, respectivamente. Todo conjunto será isolado termicamente. Determinar a pressão na saída do duto e o seu comprimento (considerar o fator de atrito f = 0,006).

3) (Valor: 4,0 pontos) As características de uma bomba centrífuga, a uma dada rotação constante, estão apresentadas na tabela abaixo:

| Q (l/s) | 0    | 12   | 18   | 24   | 30   | 36  | 42  |
|---------|------|------|------|------|------|-----|-----|
| H (m)   | 22,6 | 21,3 | 19,4 | 16,2 | 11,6 | 6,5 | 0,6 |
| η (%)   | 0    | 74   | 86   | 85   | 70   | 46  | 8   |

A bomba é usada para elevar água vencendo uma altura geométrica de 6,5 m, através de uma tubulação de 0,10 m de diâmetro, 65 m de comprimento e fator de atrito f = 0,020. Pede-se:

- a) Determine a vazão e a potência consumida pela bomba.
- b) Sendo necessário aumentar a vazão pela adição de uma segunda bomba idêntica à outra, investigue se a nova bomba deve ser instalada em série ou em paralelo com a bomba original.

Justifique a resposta pela determinação do acréscimo de vazão e potência consumida por ambas as bombas nas associações. Utilize o gráfico abaixo para traçar as curvas necessárias.

