Aplicação de Algoritmos Heurísticos ao Problema de Cobertura de Conjunto

Prof. Ademir A. Constantino Departamento de Informática Universidade Estadual de Maringá www.din.uem.br/~ademir

• Objetivo:

* Apresentar alguns algoritmos heurísticos para um problema de Cobertura de Conjunto

• Tópicos:

- * Formalização do problema;
- * Algoritmo de Construção Guloso (Greedy);
- * Algoritmo de Busca Local Vizinhança Aleatória
- * Algoritmo GRASP
- * Algoritmo Simulated Annealing.

Modelo Set Covering

• O problema de cobertura de conjunto (*Set Covering*) é um problema de programação linear inteira.

Minimizar
$$\sum_{j=1}^{n} c_j x_j$$
Sugeito a
$$\sum_{j=1}^{n} a_{ij} x_j \ge 1$$
 para i=1, 2, ..., m, recojuto describation onde
$$c_j = \text{custo da coluna } j;$$

$$a_{ij} = \begin{cases} 1 \text{ se linha } i \text{ é coberta pela coluna } j; \\ 0 \text{ caso contrário} \end{cases}$$

$$x_j = \begin{cases} 1 \text{ se a coluna } j \text{ está na solução;} \\ 0 \text{ caso contrário.} \end{cases}$$

Problema de Cobertura de Conjunto

• Exemplo de Set Covering na forma matricial :

Aplicações do Set Covering

- Existem muitos problemas práticos que são resolvidos como um problema *Set Covering*, por exemplo:
 - * escalonamento de tarefas;
 - * balanceamento de carga em linha de produção;
 - * investimento de capital;
 - * localização de facilidades;
 - * roteirização de veículos;
 - * recuperação de informação.

Proposta de um Algoritmo Guloso (*Greedy*) para o *Set Covering*

Notações utilizadas pelo algoritmo:

- $M=\{1, 2, ..., m\}$ //conjunto das linhas
- $P_i = \{i \in M \mid a_{ij} = 1\}$ //conjunto de linhas cobertas pela coluna j;
- k_j = número de linhas (ainda não cobertas) que podem ser cobertas com a coluna j;
- S = conjunto contendo uma solução (subconjunto de colunas).
- R = conjunto das linhas ainda não cobertas.

Passo 0: Faça R=M, $S=\emptyset$, t=1 e vá para o passo 1;

Passo 1: Se $R = \emptyset$ vá para o passo2. Caso contrário, faça $k_j = |P_j \cap R|$ e escolha a coluna $j_{(t)}$ tal que $f(C_{j(t)}, k_{j(t)}) = \min \{f(c_j, k_j) / k_j > 0, j = 1,...,m\}$ Considere $R = R \setminus P_{j(t)}$, $S = S \cup \{j(t)\}$, t = t+1 e vá para o passo1.

Passo 2: Ordene os elementos de S em ordem decrescente do valor C_j . Considere os elementos $i \in S$ em ordem, e se $S \setminus \{i\}$ é uma solução (cobertura) viável, então faça $S = S \setminus \{i\}$. Quando todos os elementos $i \in S$ forem considerados então S será a cobertura primária.

Propostas de Funções *Greedy* para o *Set Covering*.

- Funções $f(c_i, k_i)$ propostas por Vasco and Wilson (1984):
 - 1. c_{j}
 - $2. c_i/k_i$
 - $3. c_j/\log_2 k_j$
 - $4. c_j/k_j \log_2 k_j$
 - 5. $c_j/k_j \ln k_j$
 - 6. $c_i/(k_i)^2$
 - 7. $(c_i)^{1/2}/(k_i)^2$
- Algoritmo *Greedy* proposto Vasco and Wilson (1984):
 - * Modificar o Passo 1 do algoritmo *Greedy* anterior;
 - * uma função *Greedy* (de 1 a 7) é selecionada aleatoriamente cada vez que uma coluna for selecionada para entrar na solução.

Algoritmo de busca na vizinhança de Jacobs and Brusco (1995)

• Parâmetros:

```
* S = conjunto com as colunas que estão na solução;
* S' = conjunto com as colunas que não estão na solução;
* w<sub>i</sub>= o número de colunas que cobrem a linha i;
* U= Conjunto das linhas descobertas;
* Z(S) = Custo da solução;
* N(S)= o número de colunas no conjunto S
* Q(S)= max{c<sub>j</sub>: ∀ j ∈ S}
* ρ<sub>1</sub> ∈ [0,1] = percentual de N(S)
* ρ<sub>2</sub> ∈ [0,1] = percentual de Q(S)
```

Algoritmo de Busca na Vizinhança de Jacobs and Brusco (1995)

- 0. Faça d=0, $D=\lceil \rho_1 N(S) \rceil$, $E=\lceil \rho_2 Q(S) \rceil$ e $w_i = \sum_{k \in S} a_{ik}$, i=1,...,m
- 1. Selecione aleatoriamente uma coluna $k, k \in S$.
- 2. Troque k de S para S'. Faça $w_i = w_i$ a_{ik} para todo $i \in M$. Faça d=d+1. Se d=D, vá para 3, caso contrário retorne para 1.
- 3. Defina U como o conjunto das linhas com $w_i = 0$. Se $U = \emptyset$, então vá para 6, caso contrário vá para 4.
- 4. Defina S'_{E} como o conjunto das colunas com $c_{j} \leq E/j \in S'$. Calcule o seguinte:
 - $\alpha_{ij} = 1$ se $w_i = 0$ e $a_{ij} = 1$ para todo $i \in M, j \in S'_E$; 0 caso contrário.
 - $v_j = \sum_{i \in M} \alpha_{ij}$ para todo $j \in S'_E$.
 - $\beta_i = c_i/v_i$ para todo $j \in S'_E$.
 - $\beta_{\min} = \min \{\beta_j / j \in S'_E\}$
 - $K = \text{conjunto das colunas com } \beta_i = \beta_{\min} / j \in S'_E$.
- 5. Selecione aleatoriamente uma coluna $k \in K$ e troque esta coluna de S' para S. Faça $w_i = w_i + a_{ik}$ para todo $i \in I$. Retorne para 3.
- 6. Examine cada coluna $k, k \in S$, na ordem inversa. Se w_i $a_{ik} \ge 1$ para todo $i \in M$, então troque k de S para S' e faça $w_i = w_i$ a_{ik} para todo $i \in M$.

- Característica do problema estudado
 - * Custo unitário $c_j = 1$ para j=1,...,n

- Fase de Construção
- Escolha gulosa:
 - * Selecionar o conjunto P_j que cobre o maior número de linhas ainda não cobertas, isto é, maior valor para k_j .
- Escolha Semi-gulosa (semi-greedy):
 - * Selecionar aleatoariamente um conjunto P_j de uma lista RCL contendo somente os conjuntos que cobrem ao menos um percentual α do maior valor para k_j .

• Exemplo:

- $\forall \alpha = 40\%$, então RCL={ P_1, P_4, P_5, P_6, P_7 } para solução inicial
- Suponha que P_5 tenha sido selecionado aleatoriamente. Então, excluir as linhas 3, 4 e 5 que foram cobertas.

- RCL: ={ P_3, P_4, P_6, P_7 }
- Próxima escolha aleatória seja P_3 . Então, restará apenas P_6 .
- Solução $S = \{P_3, P_5, P_6\}$ de tamanho 3.

• Por outro lado, se P6 tivesse sido escolhido inicialmente em lugar de P5, teríamos outra situação:

• Escolhendo P_4 , teríamos uma cobertura menor $S = \{P_4, P_6\}$ de tamanho 2.

- Fase de Busca Local
- Define-se a vizinhança (k,p)-troca da seguinte forma: para todas as k-ênuplas em uma cobertura S que seja possível trocálas por uma p-ênupla (p<k) que não está em S.
- Exemplo: considere o exemplo abaixo com cobertura $=\{P_3, P_5, P_6\}.$

P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	
					•			1
		•	•			•		2
•	•		•	•		•		3
•			•	•	•		•	4
				•	•			5
		<u> </u>	•	<u> </u>	<u> </u>	•	•	,

- Aplicando (2,1)-*troca* que substitui a
 - * 2-ênupla $\{P_3, P_5\}$
 - * pela 1-ênupla $\{P_4\}$,
 - * resultaria na cobertura ótima $S = \{P_4, P_6\}$.

P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	
					•			1
		•	•			•		2
•	•		•	•		•		3
•			•	•	•		•	4
				•	•			5
	•		\uparrow	•	\uparrow	1		,

- Característica do problema estudado
 - * Custo unitário $c_j = 1$ para j=1,...,n
 - * *N*= Número de iterações;

```
Procedure GRASP(n, P_1,...,P_n, \alpha, N, S) x:= n; Para i:=1,...,N faça Para j=1,...,n faça \eta_j = P_j; Faça S:=\emptyset; Enquanto \eta_j \neq \emptyset, \forall j=1,...,n faça //constrói a solução \Gamma:=\max\{/\eta_j|\ , \ \forall j=1,...,n\ \}; RCL ={ j:/\eta_j| \geq \alpha \ \Gamma, \ \forall j=1,...,n\}; Selecionar aleatoriamente K de RCL; S:=S\cup k; Para j=1,...,n faça \eta_j = \eta_j - P_k; //retira de todas as colunas as linhas cobertas por P_k Aplicar (1,0)-Troca em S; //busca local Se |S| < x então x:=|S|; S^*:=S;
```

Um Algoritmo Simulated Annealing (Jacobs and Brusco, 1995)

- Entrada: T_0 , T_f , N_{it} , α (entre 0 e 1)
- $T \leftarrow T_0$; $S_0 \leftarrow$ gera solução inicial; $S \leftarrow S_0$; $S^* \leftarrow S_0$
- enquanto $T > T_f$ faça (temperatura alta)
- para cont $\leftarrow 1$ até M_{it} faça (iterações para equilíbrio)
- $S' \leftarrow$ seleciona uma solução vizinha de S
- \triangle custo \leftarrow custo(S') -custo(S)
- se Δ custo < 0 ou U[0,1] $< \exp(-\Delta \text{custo}/T)$
- então $S \leftarrow S'$
- se $(S < S^*)$ então $S^* \leftarrow S$
- fim do para
- $T \leftarrow \alpha T$
- fim-enquanto

Parâmetros considerados por Jacobs and Brusco (1995)

Teste	ρ	ρ_2	T_0	α	N_{t}	Tempo
	-	-				Miximo
1	Q 1	1.1	1.3	Q9	100	240seg
2	Q 1	20	1.3	Q9	100	240seg
3	Q 4	1.1	1.3	Q9	100	240 seg
4	04	20	1.3	09	100	240seg

Referências

- Feo, T. A. and Resende, M. G. C. A Probabilistic Heuristic for a Computationally Difficult Set Covering. *Operations Research Letters*, 8, pp. 67-71, 1989.
- Feo, T.A. and Resende, M.G.C. Greedy Randomized Adaptive Search Procedure. *J. of Global Optimization*, vol. 6, pp. 109-133, 1995.
- Jacobs, L. W. and Brusco, M. J. A Local-Search Heuristic for Large Set-Covering Problems. *Naval Research Logistic*. Vol. 42, pp. 1129-1140, 1995.
- Vasko, F. J. and Wilson, G. R. An Efficient Heuristic for Large Set Covering Problems. *Naval Research Logistic Quarterly*, V. 31, pp. 163-171, 1984.