TANGGAL PERCOBAAN : 4 Mei 2023

TANGGAL PENGUMPULAN : 10 Mei 2023

PRAKTIKUM PEMPROGRAMAN FISIKA KOMPUTASI 118

MODUL-9: PERSAMAAN DIFERENSIAL BIASA METODE EULER

Mencerdaskan & Memartabatkan Bangsa

NAMA : Amanda Agustin Nurzahra

NRM : 1302621031

DOSEN PENGAMPU: Dewi Muliyati, M.Si., M. Sc

ASISTEN LABORATORIUM:

Difa Farhani Hakim – 1306620040

Mohamad Khaeruman - 1302619060

Laporan Awal	Laporan Akhir	Total

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Jakarta 2023

A. Problem Statement

"Membuat program perhitungan untuk mencari solusi persamaan diferensial biasa dengan menggunakan metode Euler."

B. Mathematical Equation

• Problem D1

$$y' = y + t^2 + 1$$

Dengan:

 $0 \le t \le 2$

y(0) = 0.5

• Problem D2

$$y' = y + t + 1$$

Dengan:

 $0 \le t \le 5$

y(0) = 1

C. Algoritma

• Algortima Fungsi 1

- 1. Memulai program
- 2. Mendefinisikan fungsi fungsi(x,y)
- 3. Mengembalikan fungsi $(y-x^{**}2 + 1)$
- 4. Mengakhiri program

Algoritma Fungsi 2

- 1. Memulai program
- 2. Mendefinisikan fungsi perhitungan(y,h)
- 3. Mengembalikan fungsi y + h*fungsi(x,y)
- 4. Mengakhiri program

• Algoritma Fungsi Utama

- 1. Memulai program
- 2. Mencetak("Program PDB dengan Metode Euler")
- 3. Menginisiasi nilai x, y, n
- 4. Menginput xi = float(input("Nilai X yang mau dicari = "))
- 5. Menginput h = float(input("Selang h = "))
- 6. Mencetak("-----")
- 7. Mencetak("|{:^17}|{:^16}|{:^16}|{:^19}|".format("Iterasi","Xi","Yi","Y'="))
- 8. $Mencetak("|\{:^17\}|\{:^16\}|\{:^19\}|".format("ke","","","f(Xi,Yi)"))$

- 9. Mencetak("-----")
- 10. Menginisiasi ty = fungsi(x,y)
- 11. Memulai pengulangan while x <= xi:
 - 11.1Mencetak(" $|\{:^17\}|\{:^16\}|\{:^16\}|\{:^19\}|$ ".format(n,round(x,2),round(y,2),round(ty,2)))
 - 11.2 Mencetak("-----")
 - 11.3 Menginisiasi n += 1
 - 11.4 Menginisiasi x += h
 - 11.5 Menginisiasi y = perhitungan(y,h)
 - 11.6 Menginisiasi ty = fungsi(x,y)
- 12. Mengakhiri program

D. Flowchart

• Flowchart Fungsi 1

• Flowchart Fungsi 2

E. Analisis (Perbandingan Nilai h pada Metode Euler)

Problem D1 meminta jumlah iterasi N=10 dan h=0,2, menghasilkan x=2,0 pada iterasi ke-10. Jadi jika keluaran yang diinginkan adalah N=10, masukan x adalah 2,0 dan masukan x adalah 0,2.

Problem D2.a, meminta nilai perkiraan y(5) dan h = 0.2, menghasilkan x = 5.0. Kemudian bisa memasukkan nilai x = 5.0 dan nilai h = 0.2. Dengan cara ini, jumlah iterasi awal adalah N=24.

Problem D2.b, mendekati problem sebelumnya, tetapi terdapat perbedaan nilai h, jika meminta nilai hampiran y(5) dan h = 0.1 yaitu nilai x = 5.0 maka kita langsung memasukan nilai x = 5.0 dan nilai h = 0.1. Dengan cara ini, jumlah iterasi awal adalah h = 0.1.

Problem D2.c, mendekati dengan problem sebelumnya, tetapi terdapat perbedaan pada nilai h, yaitu diminta nilai aproksimasi y(5) dan h = 0,05, yang mana didapati nilai x = 5.0, kemudian dapat langsung memasukan nilai x = 5.0 dan nilai h = 0,05. Dengan begitu, output jumlah iterasinya didapati yaitu sebanyak N = 100.

Berdasarkan analisis diatas dapat disimpulkan:

Jika kita menginginkan output dengan jumlah iterasi atau N tertentu, kita harus memasukkan nilai perkiraan atau y(x) di N. Sementara itu, untuk mencari posisi x di N, kita bisa mengetik nilai x apa saja, yang kemudian menemukan nilai N yang diinginkan, dan nilai x akan muncul pada baris pada iterasi ini. Kemudian kita dapat menjalankan program lagi dengan memasukkan nilai x yang berada dalam jumlah iterasi yang ditentukan atau N.

Nilai h dan N memiliki hubungan terbalik. Semakin kecil nilai h yang dimasukkan, maka akan semakin banyak iterasi atau N yang dihasilkan. Sebaliknya, semakin besar nilai h yang dimasukkan, akan semakin sedikit iterasi atau N yang dihasilkan.

F. Tentukan nilai eksak dari problem D.2, dan berikan komentar hasil yang diperoleh dari Problem D.2 dan perbandingannya dengan solusi exact.

Persamaan eksak dari problem D.2 didapati adalah :

$$\frac{dy}{dt} = -y + t + 1$$

Sehingga, y = t

Dapat dihasilkan nilai eksak dari probelem D.2, yaitu:

nilai t=0 maka y=0

nilai t=1 maka y=1

nilai t=2 maka y=2

nilai t=3 maka y=3

nilai t=4 maka y=4

nilai t=5 maka y=5

Kita melihat bahwa untuk nilai y $0 \le t \le 5$, pada problem D.2 memberikan hasil yang sama dengan penyelesaian yang tepat. Namun, ada beberapa selisih desimal sebesar 0,01 antara h = 0,1 dan h = 0,05. Kelebihan metode Euler adalah lebih mudah menghitung persamaan diferensial biasa, sedangkan kelemahan metode Euler adalah kurang akurat untuk mendapatkan hasil yang diinginkan.