PAG 9.2

The rate of reaction of calcium carbonate and hydrochloric acid

Rosie Bartlett

1 Mass experiment

1.1 Results

Mass of reaction vessel with respect to time

1.2 Analysis of results

1. Half life $1 \rightarrow 75s$

Half life 2 \rightarrow 55s

Half life $3 \to 55 s$

2. The half live values above include one anomaly, which when excluded give a constant half life.

2 Gas reaction

2.1 Results

By using the formula below, we can calculate the concentration of HCl from the volume of gas produced. Where $V(\text{CO}_2)$ is the volume of CO_2 produced.

[HCl] =
$$\frac{120 - V(\text{CO}_2)}{240}$$

Concentration of HCl with respect to time

2.2 Analysis of results

1. Half life $1 \rightarrow 43.5s$

Half life $2 \to 50 s$

Half life $3 \rightarrow 45.5s$

2. Since all the half lives are similar, we can suggest that the reaction is first order.

3 Extension opportunities

Gas produced:

1. (a) Mass lost:

Since there was an excess of $CaCO_3$, when the reaction reached completion, there would have been 0.04 mol of CO_2 produced. this would hav had a mass of 0.88g, meaning 0.88g would have been lost. In the reaction we only saw a loss of 0.5g, so the reaction did not go to completion.

Again the CaCO₃ was in excess, so at the end of the reaction, 0.01 mol of CO₂ would have been produced, with a volume of 120cm³. we only saw a maximum volume of 69cm³, so the reaction did not go to completion.

- (b) As the reaction progresses, the concentration of HCl is constantly decreasing, which constantly decreases the rate, meaning a very long long time would be required to run the reaction to completion.
- (c) For the reaction to go to completion, we would need a larger gas syringe to account for the extra 20cm3 of CO2 produced.

2. Mass lost:

At t = 0, $\frac{dM}{dt}$ was -4×10^{-3} g s⁻¹. At $t = T_{\frac{1}{2}}$, $\frac{dM}{dt}$ was -3×10^{-3} g s⁻¹.

At t=0, $\frac{\text{d[HCl]}}{\text{d}t}$ was $\frac{1}{240}$ mol dm³ s⁻¹ or approximately 4.17×10^{-3} mol dm³ s⁻¹. At $t=T_{\frac{1}{2}}$, $\frac{\text{d[HCl]}}{\text{d}t}$ was 2.5×10^{-3} mol dm³ s⁻¹.

In both cases, the gradient at $T_{\frac{1}{2}}$ is approximately half of what t was at t=0, giving further evidence that the reaction is first order.

2