Линейные сортировки. Представление чисел в памяти компьютера

Горденко Мария Константиновна

Представление чисел в компьютере

- Целые знаковые
- Целые беззнаковые
- Вещественные числа

Целые числа без знака

Беззнаковые данные – не могут быть отрицательными.

$$78 = 1001110_2$$

Целые числа без знака

X ₁₀	0	1	128		255		
X ₁₆	0016	01 ₁₆	:	7F ₁₆	80 ₁₆	:	FF ₁₆
X_2	0000 00002	0000 00012		0111 11112	1000 00002		1111 11112

Целые числа без знака

	$X_{\text{max}} = 2^{K} - 1$		
типы данных	X _{max}	X _{min}	K
byte	255	0	8
ushort	65 535	0	16
<u>uint</u>	4 294 967 295	0	32
ulong	18 446 744 073 709 551 615	0	64

Представление целых чисел в памяти компьютера

Выбор способа хранения целых чисел в памяти компьютера — не такая тривиальная задача, как могло бы показаться на первый взгляд. Желательно, чтобы этот способ:

- не требовал усложнения архитектуры процессора для выполнения арифметических операций с отрицательными числами,
- не усложнял арифметические действия,
- хранил бы одинаковое количество положительных и отрицательных чисел.

Рассмотрим разные методы представления.

Прямой код

- При записи числа в **прямом коде** старший разряд является знаковым разрядом. Если его значение равно нулю, то представлено положительное число положительный или ноль, если единице, представлено отрицательное ИЛИ число отрицательный ноль. В остальных разрядах (которые называются цифровыми) записывается двоичное представление модуля числа.
- Например, число –5 в восьмибитном типе данных, использующем прямой код, будет выглядеть так: 10000101.

Таким способом в n-битовом типе данных можно представить диапазон чисел $[-2^{n-1}+1;2^{n-1}+1].$

Прямой код

$$+0 = \mathbf{0}0000000$$
 при N=8
 $-0 = \mathbf{1}0000000$ при N=8

+ VS -

Достоинства представления чисел с помощью прямого кода

- Получить прямой код числа достаточно просто.
- Из-за того, что 0 обозначает +, коды положительных чисел относительно беззнакового кодирования остаются неизменными.
- Количество положительных чисел равно количеству отрицательных.

Недостатки представления чисел с помощью прямого кода

- Выполнение арифметических операций с отрицательными числами требует усложнения архитектуры центрального процессора (например, для вычитания невозможно использовать сумматор, необходима отдельная схема для этого).
- Существуют два нуля: +0(100...000) и -0(000...000), из-за чего усложняется арифметическое сравнение.

Из-за весьма существенных недостатков прямой код используется очень редко.

Обратный код

В качестве альтернативы представления целых чисел может использоваться обратный код.

Алгоритм получения кода числа:

- если число положительное, то в старший разряд (который является знаковым) записывается ноль, а далее записывается само число;
- если число отрицательное, то код получается инвертированием представления модуля числа;
- если число является нулем, то его можно представить двумя способами: +0(000...000) или -0(111...111).

Пример: переведём число –13 в двоичный восьмибитный код. Прямой код модуля –13: 00001101, инвертируем и получаем 11110010. Для получения из обратного кода самого числа достаточно инвертировать все разряды кода.

Таким способом в n-битовом типе данных можно представить диапазон чисел $[-2^{n-1}+1;2^{n-1}+1].$

Обратный код

Положительное деситичное число	Двошчное число в обратном коде	Отрицательное десятичное число	Двоичное число в обратном коде
0	0000 0000	- 0	1111 1111
10	0000 1010	- 10	1111 0101
100	0110 0100	- 100	1001 1011
127	0111 1111	- 127	1000 0000

+ VS -

Достоинства представления чисел с помощью обратного кода

- Простое получение кода отрицательных чисел.
- Из-за того, что 0 обозначает +, коды положительных чисел относительно беззнакового кодирования остаются неизменными.
- Количество положительных чисел равно количеству отрицательных.

Недостатки представления чисел с помощью обратного кода Выполнение арифметических операций с отрицательными числами требует усложнения архитектуры центрального процессора.

• Существуют два нуля: +0 и -0.

Дополнительный код

- Чаще всего для представления отрицательных чисел используется код с **дополнением**.
- Алгоритм получения дополнительного кода числа:
- если число неотрицательное, то в старший разряд записывается ноль, далее записывается само число;
- если число отрицательное, то все биты модуля числа инвертируются, то есть все единицы меняются на нули, а нули на единицы, к инвертированному числу прибавляется единица, далее к результату дописывается знаковый разряд, равный единице.

В качестве примера переведём число –5 в дополнительный восьмибитный код. Прямой код модуля –5: 0000101, обратный — 1111010, прибавляем 1, получаем 1111011, приписываем 1 в качестве знакового разряда, в результате получаем 11111011.

- Также дополнительный код отрицательного числа A, хранящегося в n битах, равен $2^n |A|$. По сути, дополнительный код представляет собой дополнение |A| до 0: так как в n-разрядной арифметике $2^n = 0$ (двоичная запись этого числа состоит из единицы и n нулей, а в n-разрядную ячейку помещаются только n младших разрядов, то есть n нулей), то верно равенство $2^n |A| + |A| = 0$.
- Для получения из дополнительного кода самого числа нужно инвертировать все разряды кода и прибавить к нему единицу. Можно проверить правильность, сложив дополнительный код с самим числом: результат должен быть равен 2^n . Переведём 11111011 обратно. Инвертируем 00000100, прибавляем 1, получаем 00000101 модуль исходного числа -5. Проверим: 11111011+00000101=100000000.
- Можно получить диапазон значений $[-2^{n-1}; 2^{n-1}-1]$.

Дополнительный код

Десятичное число	Прямой код	Дополнительный код
12	00001100	00001100
-12	10001100	11110100
121	01111001	01111001
-121	11111001	10000111
1	0000001	0000001
<u>–1</u>	10000001	11111111

 $\frac{+00001100}{11110100}$ $\cancel{1}00000000$

 $100\ 000\ 000_2 - 10\ 000\ 000_2 = 10\ 000\ 000_2 = 128_{10}$.

 $100000000_2 - 000000000_2 = 1000000000_2$.

+ VS -

- Достоинства представления чисел с помощью кода с дополнением до двух
- Возможность заменить арифметическую операцию вычитания операцией сложения и сделать операции сложения одинаковыми для знаковых и беззнаковых типов данных, что существенно упрощает архитектуру процессора и увеличивает его быстродействие.
- Нет проблемы двух нулей.
- Недостатки представления чисел с помощью кода с дополнением до двух
- Ряд положительных и отрицательных чисел несимметричен, но это не так важно: с помощью дополнительного кода выполнены гораздо более важные вещи, желаемые от способа представления целых чисел.
- В отличие от сложения, числа в дополнительном коде нельзя сравнивать как беззнаковые, или вычитать без расширения разрядности.

Несмотря на недостатки, дополнение до двух в современных вычислительных системах используется чаще всего.

Десятичное	Двоичн	ное представление	(8 бит)
представление	прямой	обратный	дополнительный
127	0111 1111	0111 1111	0111 1111
1	0000 0001	0000 0001	0000 0001
0	0000 0000	0000 0000	0000 0000
-0	1000 0000	1111 1111	
-1	1000 0001	1111 1110	1111 1111
-2	1000 0010	1111 1101	1111 1110
-3	1000 0011	1111 1100	1111 1101
-4	1000 0100	1111 1011	1111 1100
-5	1000 0101	1111 1010	1111 1011
-6	1000 0110	1111 1001	1111 1010
-7	1000 0111	1111 1000	1111 1001
-8	1000 1000	1111 0111	1111 1000
-9	1000 1001	1111 0110	1111 0111
-10	1000 1010	1111 0101	1111 0110
-11	1000 1011	1111 0100	1111 0101
-127	1111 1111	1000 0000	1000 0001
-128	© Гор <u>де</u> нко М	K., 2023, CC BY	1000 0000

Целые числа со знаком

X_{10}	-128	-127	:	-1	0		127
X_{16}	80 ₁₆	81 ₁₆	:	FF ₁₆	00 ₁₆	•••	7F ₁₆
X_2	1000 00002	1000 00012		1111 1111 ₂	0000 00002		0111 11112

Целые числа со знаком

	$X_{\min} = -2^{K-1}$	X_{\max}	$=2^{K-1}-1$
κ	X _{min}	X _{max}	типы данных
8	- 128	127	sbyte
16	- 32 768	32 767	short
32	-2 147 483 648	2 147 483 647	int
64	_9 223 372 036 854 775 808	9 223 372 036 854 775 807	long

Алгоритм перевода отрицательного числа в дополнительный код

- Записать модуль числа в двоичных разрядах прямым кодом
- Инвертировать значения всех битов в полученной записи
- К полученному коду, рассматриваемому как двоичное натуральное число, прибавить 1.

```
Дано десятичное число -10
Переводим в прямой код:
10 = 0000 1010 ----> -10 = 1000 1010
Инвертируем значение (получаем обратный код):
1000 1010 ----> 1111 0101
К полученной инверсии прибавляем 1:
1111 0101 + 1 = 1111 0110 - десятичное число -10 в дополнительном коде
```

Алгоритм перевода дополнительного года отрицательного числа в десятичное число

- Инвертировать дополнительный код;
- Прибавить к полученному коду 1;
- Перевести полученное двоичное число в десятичное и приписать знак "—".

В результате выполнения следующего фрагмента программы на экран будет выведено

sbyte a = 6;

Console.WriteLine((sbyte)((a << 5)));

Ответ: -64

В результате выполнения следующего фрагмента программы на экран будет выведено

```
sbyte a = 6;
```

Console.WriteLine((sbyte)((a << 5)));

```
00000110 = 6
11000000 = 6 << 5 (прямой код)
10111111 = инверсия
11000000 = +1 к числу (доп. код)
Итого получаем -64
```

Представление вещественных чисел

$$A = \pm M \cdot P^{\pm N}$$

где M – мантисса, P – основание системы счисления, N – порядок.

Пример:
$$A_{10} = 0.0225 \cdot 10^3 = 0.225 \cdot 10^2 = 2.25 \cdot 10^1 = 22.5 \cdot 10^0 = 225 \cdot 10^{-1} = 22.5$$

Вещественные числа одинарной длины.

- Длина разрядной сетки 32 разряда
- Число разрядов мантиссы $N_M = 23$
- Число разрядов характеристики $N_Z = 8$
- Знак − 1 разряд
- Правило формирования характеристики: $Z_2 = 2^7 1 + N_2$ или $Z_{10} = 127_{10} + N_{10}$

Пример

Выполним кодирование числа $A_{10} = 0.75$.

Двоичное представление числа соответствует $A_2 = 0.11 \cdot 2^0$.

После нормализации $A_2 = 1.1 \cdot 2^{-1}$. Отбрасываем старшую единицу и получаем код мантиссы: 100 0000 0000 0000 0000 0000.

Характеристика $Z_{10} = 127 + (-1) = 126$ или $Z_2 = 0111$ 1110 Знак числа = 0 (+)

После записи компонентов кода в разрядную сетку получим:

Вещественные числа двойной длины.

- Длина разрядной сетки 64 разряда
- Число разрядов мантиссы $N_M = 52$
- Число разрядов характеристики $N_Z = 11$
- Знак 1 разряд
- Правило формирования характеристики: $Z_2 = 2^{10} 1 + N_2$ или $Z_{10} = 1023_{10} + N_{10}$ Выполним кодирование числа $A_{10} = -0.75$.

Двоичное представление числа соответствует $A_2 = -0.11 \cdot 2^0$.

Характеристика $Z_{10} = 1023 + (-1) = 1022$ или $Z_2 = 011$ 1111 1110

Знак числа = 1 (–)

После записи компонентов кода в разрядную сетку получим:

1 011 1111 1110 1000 0000 0000 0000 0000 0000 ... 0000 0000 0000

или в виде шестнадцатеричного кода **BFE80000000000** $_{16}$.

Пример

Код **С0880000**₁₆ соответствует представлению вещественного числа одинарной длины. Определить десятичное число, представленное этим кодом.

1. Запишем двоичное представление кода в разрядной сетке

1	100 00	000 1	000	000 1000 0000 0000 0000 0000									
	\mathbf{C}_{16}	0	8	8	0	0	0	0					

- 2. Из анализа старшего разряда следует, что это код отрицательного числа
- 3. Z_2 = 10000001 или Z_{10} =129. Отсюда N_{10} = Z_{10} 127 или N_{10} = 2
- 4. Восстановим отброшенную при записи кода единицу в записи мантиссы:

- 5. Модуль двоичного числа = $1.0001 \cdot 2^2$ или 100.01
- 6. Модуль десятичного числа = $1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 4.25$

Ответ: код **C0880000**₁₆ соответствует десятичному числу (-4.25)

Алгоритм для получения представления действительного числа в памяти ЭВМ

- перевести модуль данного числа в двоичную систему счисления;
- нормализовать двоичное число, т.е. записать в виде $M \cdot 2^p$, где M мантисса (ее целая часть равна 1_2) и p порядок, записанный в десятичной системе счисления;
- прибавить к порядку смещение и перевести смещенный порядок в двоичную систему счисления;
- учитывая знак заданного числа (0 = положительное; 1 = отрицательное), выписать его представление в памяти ЭВМ.

$$-121_{10} = -79_{16} = -111\ 1001_2$$

 $0.1_{10} = 0.0(0011)_2$

$$A = -111 \ 1001.0(0011) = -1.1110010(0011) \cdot 2^6$$

 $E = 6 + 127 = 133 = 10000101_2$
 $M = 1110010(0011)$

	3	на	K																													
		По	ря	до	k (8	3 бы	AT)										Ma	ант	исс	a (23+	-1 6	бит	a)								
0	0	0	0	0	0	0	0	0	1,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	30							23		22	2																					0

Порядок записан со сдвигом —127.

© Горденко М.К., 2023, СС ВУ

	2	
0	0.2	
	2	
0	0.4	
	2	_
0	0.8	_

$$-121_{10} = -79_{16} = -111\ 1001_2$$
$$0.1_{10} = 0.0(0011)_2$$

$$A = -111 \ 1001.0(0011) = -1.1110010(0011) \cdot 2^{6}$$

 $E = 6 + 127 = 133 = 10000101_{2}$
 $M = 1110010(0011)$

Ответ: C2F23333

Ноль (со знаком)

Как уже было оговорено выше, в нормализованной форме числа с плавающей точкой невозможно представить ноль. Поэтому для его представления зарезервированы специальные значения мантиссы и порядка — число считается нулём, если все его биты, кроме знакового, равны нулю. При этом в зависимости от значения бита знака ноль может быть как положительным, так и отрицательным.

	3	нак	C														
		По	ряд	цок													
0/1	0	0	0	0	0	1,	0	0	0	0	0	0	0	0	0	0	= ±0
	14				10		9							0			

Арифметика нуля со знаком

Арифметика отрицательного нуля аналогична таковой для любого отрицательного числа и понятна интуитивно. Вот несколько примеров:

•
$$\frac{-0}{|x|} = -0$$
 (если $x \neq 0$)

•
$$(-0) \cdot (-0) = +0$$

•
$$|x| \cdot (-0) = -0$$

•
$$x + (\pm 0) = x$$

$$(-0) + (-0) = -0$$

•
$$(+0) + (+0) = +0$$

•
$$\frac{-0}{-\infty} = +0$$

•
$$\frac{|x|}{-0} = -\infty$$
 (если $x \neq 0$)

Неопределенность (*NaN*)

NaN — это аббревиатура от фразы "*not a number*". NaN является результатом арифметических операций, если во время их выполнения произошла ошибка (примеры см. ниже). В IEEE 754 NaN представлен как число, в котором все двоичные разряды порядка — единицы, а мантисса не нулевая.

	3	нак	C														
		Ποι	ряд	цок													
0/1	1	1	1	1	1	1,	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	= <i>NaN</i>
	14				10		9										

Любая операция с NaN возвращает NaN. При желании в мантиссу можно записывать информацию, которую программа сможет интерпретировать. Стандартом это не оговорено и мантисса чаще всего игнорируется.

Как можно получить NaN?

- $\infty + (-\infty) = NaN$
- $0 \times \infty = NaN$
- $\bullet \ \frac{\pm 0}{\pm 0} = \frac{\pm \infty}{\pm \infty} = NaN$
- $\sqrt{x} = NaN$, где x < 0

Бесконечности

В число с плавающей запятой можно записать значение $+\infty$ или $-\infty$. Как и нули со знаком, бесконечности позволяют получить хотя бы близкий к правильному результат вычисления в случае переполнения. Согласно стандарту IEEE 754 число с плавающей запятой считается равным бесконечности, если все двоичные разряды его порядка — единицы, а мантисса равна нулю. Знак бесконечности определяется знаковым битом числа.

Знак																	
		По	ряд	цок		Мантисса											
0/1	1	1	1	1	1	1,	0	0	0	0	0	0	0	0	0	0	=±∞
	14			10			9									0	

Получить бесконечность можно при переполнении и при делении ненулевого числа на ноль. При этом $\frac{x}{0} = \begin{cases} +\infty, & \text{если } x > 0; \\ NaN, & \text{если } x = 0; \\ -\infty, & \text{если } x < 0. \end{cases}$

Поразрядная сортировка для данных с плавающей запятой

Старший бит типов с плавающей точкой кодирует знак числа, поэтому сортировка по старшему биту должна выполняться в обратном порядке (1 "меньше" 0).

Для положительных чисел большее значение порядка соответствует большему числу, т.к:

• в случае нормализованного представления неявный старший бит мантиссы равен 1;

• в случае денормализованного представления значение поля соответствует минимальному, а неявный старший бит мантиссы равен 0.

Поразрядная сортировка для данных с плавающей запятой

Для положительных чисел в случае равенства порядка, большее значение мантиссы соответствует большему числу. Таким образом, побайтовая сортировка положительных чисел допустима и по всем байтам должна выполняться в обычном порядке (0 "меньше" 1).

Для отрицательных чисел большее значение порядка соответствует меньшему числу (рассуждения аналогичны рассуждениям о положительных числах). Таким образом, сортировка отрицательных чисел по всем байтам должна выполняться в обратном порядке (1 "меньше" 0).

Общий алгоритм сортировки типов с плавающей точкой:

- сортировка чисел по старшему биту, разделяя числа на две группы: отрицательные и положительные;
- для положительных чисел сортировка по всем байтам выполняется в обычном порядке (0 "меньше" 1);
- для отрицательных чисел сортировка по всем байтам выполняется в обратном порядке (1 "меньше" 0).

КОНТАКТЫ

https://ru.linkedin.com/in/mariia-gordenko-78617618b

Telegram, Instagram oduvan_ja

Адрес электронной почты

mgordenko@hse.ru mkgordenko@gmail.com

Личная страница
https://www.hse.ru/staff/gordenko