

System performance parameters

Outline

Performance parameters

- Utilization
- Solar system efficiency
- Solar energy yield
- Solar fraction
- Fractional energy savings
- Exergy efficiency

Outline

- Heat exchangers
 - Types
 - Sizing and performance assessment methods

Performance parameters

- Utilization
- Solar system efficiency
- Solar energy yield
- Solar fraction
- Fractional energy savings
- Exergy efficiency

Utilisation: solar field size as compared to demand, sizing parameter

$$Ut_{sol} = \frac{Q_{demand}}{A_{coll}}$$
 [kWhm⁻²a⁻¹]

Solar system efficiency: limited to the solar loop

$$\eta_{\infty l} = \frac{Q_{\infty l}}{G A_{coll}}$$
 [- , %]

Solar fraction: share of demand covered by solar loop

$$SF_{sol} = \frac{Q_{sol}}{Q_{demend}} \qquad [-, \%]$$

where $\mathbf{Q_{sol}}$ is the heat input in the storage from the solar loop

Utilisation:
$$Ut_{sol} = \frac{Q_{demand}}{A_{coll}}$$

[kWhm⁻²a⁻¹]

$$\eta_{\infty l} = \frac{Q_{\infty l}}{G A_{\infty l}} \quad [-, \%]$$

Solar system efficiency: $\eta_{sol} = \frac{Q_{sol}}{G A_{coll}}$ [-, %] Solar fraction: $SF_{sol} = \frac{Q_{sol}}{Q_{demend}}$ [-, %]

Solar fraction: share of demand covered by solar loop

$$SF_{sol} = \frac{Q_{sol}}{Q_{demand}}$$

[-,%]

Is the solar system being "blamed" for thermal storage

Solar fraction: share of demand covered by solar loop

$$SF_{sol} = \frac{Q_{sol}}{Q_{demend}} \qquad [-, \%]$$

Is the solar system being "blamed" for thermal storage

losses??

Source: Heimrath, 2004

Thermal fractional energy savings: $\frac{Q_{boiler}}{n_{boiler}} + \frac{Q_{el,heater}}{n_{boiler}}$

$$f_{\text{sav, therm}} = 1 - \frac{\frac{E_{\text{olier}} + E_{\text{el.heater}}}{\eta_{\text{boiler, ref}}}}{\frac{Q_{\text{boiler, ref}}}{\eta_{\text{boiler, ref}}}} = 1 - \frac{E_{\text{aux}}}{E_{\text{ref}}}$$

Extended fractional energy savings:

$$f_{\text{sav, ext}} = 1 - \frac{\frac{Q_{\text{boiler}} + \frac{Q_{\text{el.hetaer}}}{\eta_{\text{boiler}} + \frac{W_{\text{par}}}{\eta_{\text{el}}}}}{\frac{Q_{\text{boiler, ref}}}{\eta_{\text{boiler, ref}} + \frac{W_{\text{par, ref}}}{\eta_{\text{el}}}} = 1 - \frac{E_{\text{total}}}{E_{\text{total, ref}}}$$

Source: Streicher, 2003

Source: Heimrath, 2004

- Utilisation, Ut_{sol}
- Solar system efficiency, η_{sol}
- Solar fraction, Sf_{sol}
- Thermal fractional energy savings, f_{sav,therm}
- Extended fractional energy savings, f_{sav,ext}
- **Specific collector yield** (yearly), q_{sol}: gives an idea of the thermal output of the solar field

$$q_{\infty l} = \frac{Q_{\infty l}}{A_{\infty ll}} \qquad [kWhm^{-2}a^{-1}]$$

Typical figures for different system setups

	Units	DHW small
Ut _{sol}	[kWhm ⁻² a ⁻¹]	300-400
η_{sol}	-	0.35
SF _{sol}	-	0.60
q _{sol}	[kWhm ⁻² a ⁻¹]	350-400
Costs	€m ⁻²	800-1000

Typical figures for different system setups

	Units	DHW small	DHW big
Ut _{sol}	[kWhm ⁻² a ⁻¹]	300-400	1000-1500
η_{sol}	-	0.35	0.50
SF _{sol}	-	0.60	0.35
q _{sol}	[kWhm ⁻² a ⁻¹]	350-400	500
Costs	€m ⁻²	800-1000	800

Typical figures for different system setups

	Units	DHW small	DHW big	DHW + SH
Ut _{sol}	[kWhm ⁻² a ⁻¹]	300-400	1000-1500	1500-2500
η_{sol}	-	0.35	0.50	0.20-0.30
SF _{sol}	-	0.60	0.35	0.25-0.30
q _{sol}	[kWhm ⁻² a ⁻¹]	350-400	500	200-300
Costs	€m ⁻²	800-1000	800	600-900

References

- Weselak, Schabbach. 2009. *Regenerative Energietechnik.* Springer Ed.
- Streicher, 2003. Report on Solar Combisystems Modelled in Task 26 (System Description, Modelling, Sensitivity, Optimisation). IEA SHC Task 26.
- Incropera et al., 2007. Fundamentals of Heat and Mass Transfer.
 John Wiley and Sons, 2007