ER to Relation

Review: Relational Data Model

Key Abstraction: Relation

Mathematical relations

Given sets: $R = \{1, 2, 3\}, S = \{3, 4\}$

- $R \times S = \{ (1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4) \}$
- A relation on R, S is any subset (⊆) of R × S (e.g: { (1, 4), (3, 4)})

Database relations

Given attribute domains

```
Branches = { Downtown, Brighton, ... }
Accounts = { A-101, A-201, A-217, ... }
Balances = R
```

Account ⊆ Branches × Accounts × Balances { (Downtown, A-101, 500), (Brighton, A-201, 900), (Brighton, A-217, 500) }

bname	acct_no	balance
Downtown	A-101	500
Brighton	A-201	900
Brighton	A-217	500

Review: Terms and Definitions

- Tables = Relations
- 2. Columns = Attributes
- 3. Rows = Tuples
- 4. Relation Schema (or Schema)
 - 1. A list of attributes and their domains
 - 2. We will require the domains to be atomic
 - 3. E.g. account(account-number, branch-name, balance)

5. Relation Instance

- 1. A particular instantiation of a relation with actual values
- 2. Will change with time

So...

- That's the basic relational model
- That's it?
 - What about the constraints?
 - How do we represent one-to-one vs many-to-one relationships?
 - Many of those constraints get embedded in the schema
 - Especially relationship cardinality constraints
 - Others are explicitly represented using other constructs

Convert entity sets into a relational schema with the same set of attributes

Convert relationship sets also into a relational schema

Remember: A relationship is completely described by primary keys of associate entities and its own attributes

Say One-to-Many Relationship from Customer to Account

→ Many accounts per customer

Exactly same information, fewer tables

E/R	Relational Schema
Entity Sets E_i a_n	E = (<u>a</u> ₁ ,, a _n)
Relationship Sets $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R = $(a_1, b_1, c_1,, c_n)$ a_1 : E_1 's key b_1 : E_2 's key $c_1,, c_k$: attributes of R

Not the whole story for Relationship Sets ...

Relationship Cardinality	Relational Schema
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_2 $b_1 \dots b_m$ c_k
n:m R	$E_1 = (\underline{a}_1,, a_n)$ $E_2 = (\underline{b}_1,, b_m)$ $R = (\underline{a}_1, \underline{b}_1, c_1,, c_n)$
n:1	$E_1 = (\underline{a_1},, a_n, b_1, c_1,, c_n)$ $E_2 = (\underline{b_1},, b_m)$

Relationship Cardinality	Relational Schema
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & & \\ & & \\ \hline & & \\ c_k & & \\ \end{array}$
n:m R	$E_1 = (\underline{a}_1,, a_n)$ $E_2 = (\underline{b}_1,, b_m)$ $R = (\underline{a}_1, \underline{b}_1, c_1,, c_n)$
n:1	$E_1 = (\underline{a_1},, a_n, b_1, c_1,, c_n)$ $E_2 = (\underline{b_1},, b_m)$
1:n	$E_1 = (\underline{a_1},, a_n)$ $E_2 = (\underline{b_1},, b_m, a_1, c_1,, c_n)$

Relations	hip Cardinality	Relational Schema
	$\begin{bmatrix} E_1 \\ a_1 \end{bmatrix}$ $\begin{bmatrix} a_n \\ c_1 \end{bmatrix}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
n:m	R	$E_1 = (\underline{a}_1,, a_n)$ $E_2 = (\underline{b}_1,, b_m)$ $R = (\underline{a}_1, \underline{b}_1, c_1,, c_n)$
n:1	$R \longrightarrow$	$E_1 = (\underline{a_1},, a_n, \underline{b_1}, c_1,, c_n)$ $E_2 = (\underline{b_1},, \underline{b_m})$
1:n	R	$E_1 = (\underline{a_1},, a_n)$ $E_2 = (\underline{b_1},, b_{m,}, \underline{a_1}, c_1,, c_n)$
1:1	R	Treat as n:1 or 1:n

Translating E/R Diagrams to Relations

Q. How many tables does this get translated into?

A. 6 (account, branch, customer, loan, depositor, borrower)

Bank Database

Account		
bname	acct_no	balance
Downtown Mianus Perry R.H. Brighton Redwood Brighton	A-101 A-215 A-102 A-305 A-201 A-222 A-217	500 700 400 350 900 700 750

Depositor		
cname	acct_no	
Johnson Smith Hayes Turner Johnson Jones Lindsay	A-101 A-215 A-102 A-305 A-201 A-217 A-222	

Customer		
<u>cname</u> cstreet c		ccity
Jones Smith Hayes Curry Lindsay Turner Williams Adams Johnson Glenn Brooks Green	Main North Main North Park Putnam Nassau Spring Alma Sand Hill Senator Walnut	Harrison Rye Harrison Rye Pittsfield Stanford Princeton Pittsfield Palo Alto Woodside Brooklyn Stanford

Branch		
<u>bname</u>	bcity	assets
Downtown Redwood Perry Mianus R.H. Pownel N. Town Brighton	Brooklyn Palo Alto Horseneck Horseneck Horseneck Bennington Rye Brooklyn	9M 2.1M 1.7M 0.4M 8M 0.3M 3.7M 7.1M

Borrower		
cname	Ino	
Jones Smith Hayes Jackson Curry Smith Williams Adams	L-17 L-23 L-15 L-14 L-93 L-11 L-17	

Loan		
bname	<u>lno</u>	amt
Downtown	L-17	1000
Redwood	L-23	2000
Perry	L-15	1500
Downtown	L-14	1500
Mianus	L-93	500
R.H.	L-11	900
Perry	L-16	1300

E/R

Relational Schema

Weak Entity Sets

$$E_1 = (\underline{a}_1, ..., a_n)$$

 $E_2 = (\underline{a}_1, \underline{b}_1, ..., \underline{b}_m)$

E/R

Relational Schema

Multivalued Attributes

Emp = (ssn, name)

Emp-Phones = (ssn, phone)

ssn	name
001	Smith

Emp

ssn	phone
001	4-1234
001	4-5678
•••	

Emp-Phones

How to create Tables

- The relationship model represents the database as a collection of relations.
- A relation is made up of 2 parts:
- Relation instance: a table, with rows and columns.
- (columns = fields = attribute)(rows = tuples)
- 2. Relation scheme: specifies the name of relation, plus name and domain of each field.

The relation schema is: Customers (customer-name, customer-street)

customer-name	customer-street
US-Robotics	Main
Westing	North
US-Robotics	North

Basic Structure

We also represent the schema in the following way:

Customer customer-street

- The notions of superkey, candidate keys and primary key are
- applicable to a relation.
- The primary key is underlined in the above. We can think of a relation as a set of rows or tuples. A key can uniquely identify the tuples.

Schema Definition in SQL

Customer customer-name customer-street customer-city

```
    Create table customer
```

```
    customer-name char(20) not null,
    customer-street char(30),
    customer-city char(30),
    primary key (customer-name)
```

Schema Definition in SQL

- To remove a relation from an SQL database, we use the
- drop table command: drop table r.
- We use the alter table command to add or delete attributes to an existing relation.
- All tuples in the relation are assigned null for a new attribute.
 - alter table customer add phone char(10)
 - alter table customer drop phone

Integrity Contraints (ICs)

- IC: condition that must be true for any instance of the database.
- E.g. The not null constraint means the value of the attribute cannot be null.
- ICs are specified when the schema is defined.
- · ICs are checked when relations are modified.

Domain Constraints

- create domain hourly-wage numeric(5,2)
- constraint wage-value-test check (value > 4.00)

Constraint name (optional): if the constraint is violated, the constraint name is returned and can be used to identify the error

- The domain hourly-wage is a decimal number with 5 digits,
- 2 of which are placed after the decimal point.
- The domain has a constraint that ensures that the hourly wage is greater than 4.00.

- In SQL, we can declare
 - a key by the UNIQUE command
 - a primary key by the PRIMARY KEY constraint.

```
CREATE TABLE Students
      (sid CHAR(20),
                                 Primary key
      name CHAR(30),
      login CHAR(20),
                          key
      age INTEGER,
      gpa REAL,
      UNIQUE (name, age),
      CONSTRAINT StudentsKey PRIMARY KEY (sid))
  Constraint name (optional)
```

account-number branch-name balance account Create table account char(10) account-number not null branch-name char(15), balance integer, primary key (account-number) foreign key (branch-name) references branch) Branch branch-name branch-district assets

- A foreign key is a set of fields in one relation r that is used
- to refer to a tuple in another relation s. (It must
- correspond to the primary key of the second relation.)
- The foreign key condition specifies a referential integrity
- · constraint.

Depositor <u>customer-name</u> <u>account-number</u>

```
    Create table depositor
    ( customer-name char(20) not null,
    account-number char(10) not null,
```

- primary key (customer-name, account-number),
- foreign key (customer-name) references customer
- foreign key (account-number) references account)

cannot add (KLN, 111, 3) to Account.

• Example: cannot add (Chris, 222) to Depositor. cannot add (Mary, 999) to Depositor.

Customer

customer-name	customer-street
Tim	Main
Smith	North
Mary	North

Branch

branch-name	branch-district	assets
CUHK	Shatin	1000
CMTR	Central	2000
SKCR	Shatin	4000

Account

branch-name	account-number	balance
CUHK	222	2
CUHK	777	5
CMTR	333	1
SKCR	444	5
SKCR	888	5

Depositor

customer-name	account-number
Tim	222
Mary	888
Tim	444
Smith	333
Tim	333

Example:

Cannot simply delete Customer Tim, Cannot simply delete branch CUHK

Customer

customer-name	customer-street
Tim	Main
Smith	North
Mary	North

Branch

branch-name	branch-district	assets
CUHK	Shatin	1000
CMTR	Central	2000
SKCR	Shatin	4000

Account

Depositor

branch-name	account-number	balance
CUHK	222	2
CUHK	777	5
CMTR	333	1
SKCR	444	5
SKCR	888	5

customer-name	account-number
Tim	222
Mary	888
Tim	444
Smith	777
Tim	333
Smith	888

- Cascading delete:
- · Delete Customer Tim, cascaded delete on depositor
- Delete branch CUHK, cascaded delete on account
- create table account
- (branch-name char(15),
- account-number char(10) not null,
- balance integer,
- primary key (account-number),
- foreign key (branch-name) references branch
- on delete cascade
- on update cascade)