标准答案及评分标准

2020年1月8日

一、填空(每小题4分,共20分)

1.
$$e^{-2}$$
; 2. $-\frac{1}{2(1+t)^4}$;

3.
$$2e^2$$
; 4. $2\ln 2-1$;

5.
$$x = -y - 1 + Ce^y = |x| + |x| + |x| + C$$

二、计算题(每小题5分,共20分)

所以,
$$k = 4$$
, 从而 $a = 2, b = -8$5分

1

解: 令 y' = p = p(x), 则原方程化为

利用一阶线性微分方程的求解公式得:

由 $y' = Cx^2 + x^3$ 得原方程的通解为

又函数的定义域为: x > 0, 当 $x \in (0, e^{\frac{3}{2}})$ 时, y'' < 0, 函数的图形为上凸的;

当 $x \in (e^{\frac{3}{2}}, +\infty)$ 时,y'' > 0,函数的图形为下凸的。

六、解法一: 取x为积分变量

解法二: 取 y 为积分变量

七、解:建立如图所示坐标系,

直线 AB 的方程为:

$$y = \frac{\sqrt{3}}{3}(\frac{\sqrt{3}}{2}a - x).$$
4

取 x 为积分变量: $x \in [0, \frac{\sqrt{3}}{2}a]$. 选取 [x, x + dx],则压力微元为:

八、解: $\ln(1+x)$ 的麦克劳林展开式为:

由Taylor公式中系数的唯一性.有8分 $a_8 = \frac{f^{(8)}(0)}{8!} = \frac{1}{2}$ $\therefore f^{(8)}(0) = \frac{8!}{2} = 13440$. 九、 $(8 \, \mathcal{G})$ 设函数 f(x)连续, 且满足方程 $\int_{-\infty}^{\infty} (x-t)f(t)dt = xe^{x} - f(x), \ \Re f(x).$ $x \int_{0}^{x} f(t)dt - \int_{0}^{x} tf(t)dt = xe^{x} - f(x)$ 解: $\int_{0}^{x} f(t)dt = e^{x} + xe^{x} - f'(x)$ $f(x) = e^x + e^x + xe^x - f''(x)$2分 $f''(x) + f(x) = (2+x)e^{x}$ f(0) = 0 f'(0) = 1 $r^2 + 1 = 0$ $r = \pm i$ $\bar{f}(x) = C_1 \cos x + C_2 \sin x$ $f * (x) = (Ax + B)e^x$ 代入微分方程得 $A = \frac{1}{2}$ $B = \frac{1}{2}$ $f * (x) = \frac{1}{2}(x+1)e^{x}$ 通解为 $f(x) = C_1 \cos x + C_2 \sin x + \frac{1}{2}(x+1)e^x$6分 由初始条件得 $C_1 = -\frac{1}{2}$ $C_2 = 0$ $f(x) = -\frac{1}{2}\cos x + \frac{1}{2}(x+1)e^{x}$8分 十、解: (1) 由于 $\lim_{x\to 0^+} \frac{\ln(1+\frac{f(x)}{x})}{\sin x} = 3$,所以 $\lim_{x\to 0^+} \frac{f(x)}{x} = 0$, 故 f(0) = 0, $f'(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = 0$;2 分 **(2)** $F(x) = f'(x)e^x$ 根据积分中值定理, $\exists c \in [1,2]$, 使 $f(c) = \int_{-\infty}^{\infty} f(x) dx = 0,$4分 由罗尔定理, $\exists c_1 \in (0,c)$, 使 $f'(c_1) = 0$, $\therefore F(0) = F(c_1),$ 由罗尔定理, ∃ ξ ∈ (0,c₁) ⊂ (0,2), 使 $F'(\xi)$ = 0,

.....6分

 $f''(\xi)e^{\xi} + f'(\xi)e^{\xi} = 0,$

 $f'(\xi) + f''(\xi) = 0.$

即