Estudo do lançamento de projéteis

Autores:

João Gameiro, №93097

Francisco Martino, №85088

• Leandro Rito, №92975

Turma: PL4 / Grupo: 3 / Data: 22-10-2019

Sumário

O principal objetivo deste trabalho era o estudo do movimento dos projéteis em diferentes condições, tais como: movimento horizontal, oblíquo e contra um pêndulo balístico. Para a realização do mesmo foram disponibilizados documentos que foram seguidos tanto para a realização do trabalho como para a elaboração deste relatório.

A atividade laboratorial foi realizada de acordo com o enunciado fornecido. Durante o processo experimental foram registados todos os procedimentos seguidos bem como os dados recolhidos para posterior análise e tratamento. Foram calculadas todas as grandezas físicas que o enunciado referia, com auxílio dos dados recolhidos bem como os erros associados. Este relatório foi posteriormente elaborado com recurso a toda a informação recolhida durante a atividade e ao guião da mesma.

Assim posto os resultados esperados serão os seguintes, sendo todos eles baseados nos cálculos com dados teóricos da introdução teórica, assim expectamos que o ângulo ótimo(Parte B) será de 41°.

Introdução Teórica

Um projétil é um corpo que se encontra sujeito apenas às forças da gravidade e da resistência do ar, cujo lançamento pode ser vertical, horizontal ou oblíquo. A sua posição, segundo um plano (x, y), pode ser dada por:

 x_0 e y_0 são respetivamente a abcissa e ordenada da posição inicial, v_0 representa a velocidade inicial do projétil, θ_0 o ângulo entre a inclinação do vetor velocidade inicial e o eixo xx e g a aceleração gravítica (g = 9,8 m s²). A partir das equações anteriores podemos obter uma nova que permite nos permite determinar o ângulo (θ_{amax}) correspondente ao alcance máximo (y_i e y_f são respetivamente as alturas inicial e final).

$$\theta_{amax} = arctg \left(\frac{1}{\sqrt{1 + \frac{2g \cdot (y_i - y_f)}{v_0^2}}} \right)$$

A grandeza a determinar na primeira fase do trabalho será v_0 através do estudo de um movimento horizontal de um projétil (figura 1). Na segunda fase o objetivo passa a ser estudar a relação de dependência entre o ângulo de lançamento e o alcance atingido (movimento oblíquo). Em última instância pretende-se determinar novamente v_0 , no entanto agora com recurso ao pêndulo balístico.

Para a última parte do trabalho dispara-se um projétil contra o pêndulo balístico (figura 3) e, após o mesmo ficar alojado no pêndulo, o conjunto irá adquirir energia cinética que irá ser transformada em energia potencial gravítica. Devido à conservação da energia mecânica iremos concluir que:

$$E_{\rm c}$$
 (inicial) = $E_{\rm p}(m\acute{a}x) \equiv \frac{1}{2}(m+M)v_2^2 = (m+M)\cdot gh$

(m+M – massa do conjunto, v_2 -velocidade do conjunto, h-altura)

Através da perceção que o momento linear seria conservado, iremos conseguir relacionar a velocidade inicial e a altura.

$$mv_0 = (m + M) v_2$$
 (conservação do momento linear)

Essa relação será deduzida através das duas equações anteriores e irá permitir calcular a velocidade inicial.

$$v_0 = \left(\frac{m+M}{m}\right)v_2 \equiv \left(\frac{m+M}{m}\right)\sqrt{2gh}$$

Em todos os casos estudados neste trabalho, os movimentos considerados são suficientemente pequenos e com velocidades relativamente reduzidas para se poder desprezar forças dissipativas.

Procedimento Experimental

Parte A

Figura 1: 1-Lançador de projéteis, 2-Base de fixação, 3-Sensor de passagem (iniciar a contagem), 4-Sensor de passagem (terminar a contagem), 5-Sistema de controlo.

Material Utilizado

- Esfera metálica;
- Lançador de projéteis e base de fixação;
- Sensores fotoelétricos;
- Batão.

Metodologia

- Colocação do lançador de projéteis (LP) na horizontal (montagem evidenciada na Figura 1);
- 2. Medir a distância (s) entre os dois sensores;
- 3. Carregar o LP com a esfera metálica;
- 4. Com auxílio do batão, colocar o LP na posição "Medium Range";
- 5. Preparar o sensor para a medição do tempo:
 - 5.1. Carregar no botão "Select Measurement" repetidamente até selecionar a opção "Time";
 - 5.2. Carregar no botão "Select Mode" repetidamente até selecionar a opção "Two Gates";
 - 5.3. Carregar no botão "Start/Stop" para iniciar o processo de registo do tempo;
- 6. Puxar a corda para disparar a esfera;
- 7. Registar o tempo e retomar a horizontalidade do LP;
- 8. Repetir os passos 3 a 7, cinco vezes;
- 9. Calcular o tempo médio (T_{médio}) e o respetivo erro;
- 10. Calcular a velocidade inicial (V₀).

Parte B

Figura 2: 1-Lançador de projéteis, 2-Base de fixação, 3-Alvo, X-Alcance, Y_i-Altura inicial, θ-Ângulo de lançamento

Material Utilizado

- Esfera metálica;
- Lançador de projéteis e base de fixação;
- Batão;
- Alvo (base de madeira + folha de papel químico + folha de papel milimétrico).

Metodologia

- 1. Colocação do LP segundo um ângulo de 30° com a horizontal (montagem evidenciada na Figura 2);
- 2. Medir a altura da mesa ao LP (altura inicial (h₀));
- 3. Fazer ensaios de teste para determinar o local aonde colocar o alvo;
- 4. Após verificação do ângulo de lançamento e da colocação do LP na posição "Medium Range", efetuar o disparo;
- 5. Medir a distância obtida (base do LP até ao local onde a esfera caiu);
- 6. Repetir os passos 2 a 5;
- 7. Repetir os passos 3 a 6, para diferentes ângulos (37°,41°,45°, 50°);
- 8. Calcular o alcance médio para cada ângulo.

Parte C

Figura 3: 1-LP, 2-Base de fixação, m-esfera metálica, M-Pêndulo

Material Utilizado

- Esfera metálica;
- Lançador de projéteis e base de fixação;
- Pêndulo balístico.

Metodologia

- 1. Medir as massas da esfera metálica (m) e do pêndulo (M);
- 2. Medir o comprimento do pêndulo (I);
- **3.** Colocar o LP na horizontal e preparar o pêndulo;
- **4.** Fazer ensaios de teste para verificar se o pêndulo se encontra bem posicionado;
- **5.** Colocar a esfera no LP e puxar a corda para disparar;
- **6.** Registar o ângulo descrito pelo pêndulo;
- **7.** Reposicionar o pêndulo na posição inicial;
- **8.** Repetir os passos 5 a 6 mais quatro vezes.

Análise e Tratamento de Dados

Parte A

Medições

Distância entre os sensores (s) = 0.116 ± 0.0005 m

Tempos registados:

- $t_1 = 0.0279 \pm 0.0001 s$
- $t_2 = 0.0280 \pm 0.0001 \text{ s}$
- $t_3 = 0.0283 \pm 0.0001 s$
- $t_4 = 0.0282 \pm 0.0001 s$
- $t_5 = 0.0276 \pm 0.0001 s$

Cálculos

Cálculo do tempo médio e respetivo erro:

$$\frac{t_1 + t_2 + t_3 + t_4 + t_5}{5} = 0,0280 \text{ s}$$

 $\Delta t_{médio} = 0,0001 s$

 $t_{médio} = 0.0280 \pm 0.0001 s$

Cálculo da velocidade inicial (V₀) e respetivo erro:

$$V_0 = \frac{s}{t_{m\'edio}} = \frac{0,116}{0,0280} = 4,1429 \ m \ s^{-1}$$

$$\Delta V_0 = \left| \frac{dV_0}{dt_{m\acute{e}dio}} \right| \cdot \Delta t + \left| \frac{dV_0}{dx} \right| \cdot \Delta x \tag{1}$$

Sabendo que:

$$\Delta x = \Delta s = 0,0005 \text{ m}$$
 $x = s = 0, 116 \text{ m}$

$$\Delta t = 0,0001 \text{ s}$$
 $t_{médio} = 0,0280 \text{ s}$

$$\left| \frac{dV_0}{dt_{médio}} \right| = \left| \frac{-x}{t_{médio}^2} \right| = \left| \frac{-116}{0,0280^2} \right| = 147,9592$$

$$\left| \frac{dV_0}{dx} \right| = \left| \frac{1}{t_{médio}} \right| = \left| \frac{1}{0,0280} \right| = 35,7143$$

Logo substituindo na equação (1) vamos obter:

$$\Delta V_0 = \left| \frac{dV_0}{dt_{médio}} \right| \cdot \Delta t + \left| \frac{dV_0}{dx} \right| \cdot \Delta x = (147,9592 \cdot 0,0001) + (35,7143 \cdot 0,0005) = 0,0327 \, m \, s^{-1}$$

Parte B

Medições

Altura inicial: $Y_i = 0.27 \pm 0.005 \text{ m}$

Alcances registados para cada ângulo:

Ângulo (°)	x ₁ (m)	x ₂ (m)	x ₃ (m)
30	1,572	1,568	1,559
37	1,640	1,644	1,642
41	1,662	1,666	1,664
45	1,639	1,641	1,662
50	1,555	1,568	1,574

Cálculos

Cálculo do ângulo máximo, cujo resultado obtido, foi posteriormente usado na escolha dos ângulos para realizar a experiência. Foi usada a fórmula fornecida no enunciado.

$$\theta_{amax} = arctg\left(\frac{1}{\sqrt{1 + \frac{2g \cdot (y_i - y_f)}{{v_0}^2}}}\right) = arctg\left(\frac{1}{\sqrt{1 + \frac{2g \cdot (0,27)}{4,14^2}}}\right) = 41,157^{\circ}$$

Para o cálculo dos ângulos médios foi usada a fórmula (2) com os valores obtidos para cada ângulo.

$$x_{médio} = \frac{x_1 + x_2 + x_3}{3}$$
 (2) Os resultados obtidos foram:

Ângulo (°)	Alcance médio (m)
30	1,566
37	1,642
41	1.664
45	1,634
50	1,566

Parte C

Medições

Comprimento do Pêndulo (/): 0,30 ± 0,0005 m;

Ângulos registados

$lpha_1$	29°
α_2	31°
α_3	29°
$lpha_4$	32°
α_5	31°

Massa da esfera metálica (m): 63,63 ± 0,01 g;

Massa do pêndulo (M): 237,67 ± 0,01 g.

Cálculos

Cálculo do ângulo médio

$$\alpha_{m\acute{e}dio} = \frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{5} = 30.4 \pm 0.025^{\circ}$$

Cálculo da altura (h) e o seu respetivo erro:

Para o cálculo da altura, foi considerado um triângulo retângulo com hipotenusa de comprimento *I*, e um dos lados com comprimento *adj*.

Figura 4: Esboço para o auxílio do cálculo da altura (h)

 $\cos\alpha_{m\acute{e}dio} = \frac{adj}{l} \equiv l \cdot \cos\alpha_{m\acute{e}dio} = adj \quad \text{logo a partir desta fórmula obtemos que}$ $h = l - l\cos\alpha_{m\acute{e}dio} = l(1-\cos\alpha) = 0, \\ 3(1-\cos30, 4^\circ) = 4, \\ 125 \cdot 10^{-2}m \text{ m}$ $\Delta h = \left|\frac{dh}{l}\right| \cdot \Delta l + \left|\frac{dh}{\alpha_{m\acute{e}dio}}\right| \cdot \Delta a_{m\acute{e}dio} = (1-\cos\alpha) \cdot \Delta l + l \cdot (1+\sin\alpha) \cdot \Delta a_{m\acute{e}dio} = 0, \\ 0.114 m$

Logo concluindo h = $4,125 \pm 0,014$ m

Cálculo da velocidade inicial (v_0) e o seu respetivo erro. Foi feito usando a fórmula fornecida no enunciado.

$$v_0 = \left(\frac{m+M}{m}\right) \cdot \sqrt{2gh} = \left(\frac{63,63+237,67}{63,63}\right) \cdot \sqrt{2 \cdot 9,8 \cdot (4,125 \cdot 10^{-2})}$$
$$= 4.258 \ m \ s^{-1}$$

Cálculo do erro

$$\Delta v_0 = \left| \frac{dv_0}{m} \right| \cdot \Delta m + \left| \frac{dv_0}{M} \right| \cdot \Delta M + \left| \frac{dv_0}{h} \right| \cdot \Delta h =$$

$$= \left| \left(1 - \frac{M}{m^2} \right) \sqrt{2gh} \right| \cdot \Delta m + \left| \left(1 + \frac{1}{m} \right) \sqrt{2gh} \right| \cdot \Delta M + \left| \left(1 + \frac{M}{m} \right) \frac{g}{\sqrt{2gh}} \right| \cdot \Delta h$$

$$= 0.6080 \ m \ s^{-1}$$

Concluindo v_0 = 4,258 ± 0,6080 $m \ s^{-1}$

Discussão e Conclusão

Para cada parte do trabalho foi seguida a metodologia referida no procedimento experimental. Todos os cálculos efetuados são apresentados na secção seguinte.

Resultados obtidos

Na parte A o objetivo era calcular a velocidade inicial através das equações do movimento fornecidas no enunciado e o resultado obtido foi:

$$V_0 = 4,1429 \pm 0,0327 \text{ m s}^{-1}$$

Para a parte B o objetivo era verificar a relação entre o ângulo de lançamento e o alcance atingido. Foi comprovado experimentalmente que o ângulo máximo de lançamento (calculado teoricamente), para o qual o alcance era máximo foi 41°.

Para a parte C o objetivo era calcular a velocidade inicial do projétil utilizando um pêndulo balístico. O resultado obtido foi:

$$v_0$$
 = 4,258 ± 0,6080 $m s^{-1}$

Discussão

Na parte B, o ângulo calculado teoricamente foi de 41°, e através do procedimento experimental concluímos que este era o valor para o qual o alcance era maior.

Possíveis fontes de erro:

- Colocação imprecisa das células fotoelétricas;
- Medições arredondadas por imprecisão do olho humano;