Updated: Jul 3, 2024

Adapted from the Click-iT EdU Imaging Kit protocol (C10340; Manual)

Clearing adapted from DOI: 10.1126/sciadv.aba0365

Table of Contents

- Table of Contents
- Setup
 - Prepare Stock Solutions
 - PBS-T (1%)
 - 4% BSA in PBS
 - F-ara-EdU (20mM stock in DMSO)
 - Alexa Fluor 647 azide (Component B)
 - Click-iT reaction buffer (Component D)
 - Click-iT buffer additive (Component F)
 - Materials
 - Buffers
- Protocol
 - 1. F-ara-EdU Pulse Labeling
 - o 2. Fixation & Permeabilization
 - o 3. Blocking
 - 4. Click-iT F-ara-EdU Fluorescent Labeling and Detection
 - For 250µl reactions:
 - 5. Staining DNA
 - 6. Mounting and Imaging
- Notes/Ideas for Future Tweaking:
- Experiments
 - F-ara-EdU short chase
 - ± chorion
 - Question: Does the chorion affect EdU incorporation?

Setup

Prepare Stock Solutions

PBS-T (1%)

Reagent	Quantity (for 500 mL)	Final concentration
PBS 1X	495mL	-
Tween-20	5mL	1%

4% BSA in PBS

• Dissolve 2g of BSA in 50mL of PBS.

F-ara-EdU (20mM stock in DMSO)

- F-ara-EdU (2'S)-2'-Deoxy-2'-fluoro-5-ethynyluridine, (Sigma #T511293; FW 270.22 g/mol)
 - Note: technically, given the formula weight, this is an 18.5mM stock...
 - Add 1 ml of DMSO or PBS to vial containing 5 mg F-ara-EdU to make a 20 mM stock solution.
 - \circ After being dissolved, remaining F-ara-EdU stock solution is stable for up to 1 year when stored at -20 °C.
 - F-ara-EdU solution should be portioned into single use aliquots to avoid freeze thawing.
 - CAUTION: EdU is incorporated into DNA and is a potential mutagen. Proper protective clothing should be used when handling EdU. Waste, including stock solutions, used substrate, and water containing F-ara-EdU should be considered as hazardous.

Click-It stocks

Alexa Fluor 647 azide (Component B)

- 1. Prepare a master stock solution of the Alexa Fluor® azide (Component B): Add 70 μL of DMSO (Component C) to Component B, then mix well.
- After use, store any remaining working solution at ≤-20°C. When stored as directed, this working solution is stable for up to 1 year.
- 2. Prepare a *Dye Working Stock* by diluting the master stock 1:100 in DMSO (assuming that the final concentration for the master stock from the kit is 5uM)

Click-iT reaction buffer (Component D)

- Prepare a working solution of 1X Click-iT® EdU reaction buffer (Component D):
 - Transfer the solution (4 mL) in the Component D bottle to 36 mL of deionized water.
 - To make smaller amounts of 1X Click-iT® EdU reaction buffer, dilute volumes from the Component D bottle 1:10 with deionized water. After use, store any remaining 1X solution at 2– 8°C. When stored as directed, this 1X solution is stable for 6 months.

Click-iT buffer additive (Component F)

- To make a 10X stock solution of the Click-iT® EdU buffer additive (Component F): Add
 - o 2 mL deionized water to the vial, then mix until fully dissolved.
- After use, store any remaining stock solution at ≤-20°C.
- When stored as directed, this stock solution is stable for up to 1 year.
- If the solution develops a brown color, it has degraded and should be discarded.

Custom Click stocks

Azide Dye Stock

• picolyl-Azide-Dye: 4 mM in H2O (3 mg in 1 ml H2O) (final 8 μM)

Copper Sulfate Stock (CuSO\$_4\$.5H\$_2\$O; MW 249.68)

- Dissolve 250 mg CuSO\$_4\$.5H\$_2\$O in 5 ml H\$_2\$O for 200mM working stock
- Final concentration in reaction: 2mM

Sodium Ascorbate Working Stock (Buffer additive, NaC\$_6\$H\$_7\$O\$_6\$; MW 198.11)

- NOTE: Make Fresh for each experiment
- Dissolve 0.198 g in 1 mL \$H_20\$ for 100mM working stock
- Final concentration in reaction: 10 mM

Clearing stocks

Detergent Mix (1 L)

Reagent	Quantity (for 500 mL)	Final concentration
10% SDS	100mL	1%

- 1% SDS: 100 mL 10% SDS (may be filtered)
- 0.5% Deoxycholate: 5g Deoxycholate (wear a mask when handling the powder) 50 mM Tris-HCl (pH 7.5): 50 mL 1 M Tris-HCl (pH 8.0) 1 mM EDTA (pH 8.0): 2 mL 0.5 M EDTA (pH 8.0) 150 mM NaCl: 30 mL 5 M NaCl

Clearing Solution-1.1

- 8 to 10% (v/v) THEED (Sigma-Aldrich, 87600-100ML)
- 5% (v/v) Triton X-100 (Roth, 3051.2), and
- 5% (w/v) urea (Roth, X999.2) in dH2O

Materials

- 1.5 ml Microcentrifuge tubes (clear)
- Rocker
- Staining vials
- Click-iT EdU Alexa Fluor 647 Imaging Kit (ThermoFisher #C10340)

Protocol

- 1. F-ara-EdU Pulse Labeling
 - 1. Collect embryos at the desired stage.
 - 2. Dechorionate embryos in Filtered Natural Sea Water or ASW.
 - TODO: Test whether dechorionation is necessary. If not, will permit more pulse and longer chases throughout development.
 - 3. Transfer embryos or larvae into 1.5 ml microcentrifuge tube or multi-well plate (e.g. 24-well plate) depending on desired pulse length.
 - If using a plate, you should pre-coat with 0.2% agarose to prevent embryos from sticking and allow for chorion expansion.

- 4. To optimize labeling efficiency and minimize toxicity, you should set up a test matrix of different concentrations and durations of F-ara-EdU labeling.
 - Include cultures treated with vehicle alone for controls.

	30 min	60 min	120 min	24 h
1μΜ				
10μΜ				
100μΜ				
0μM (no EdU control)		х	Х	Х

- 5. Add appropriate volume of F-ara-EdU (20mM stock) to achieve desired final concentration.
 - For example, to achieve a final concentration of 10μM, add 1μl of 20mM F-ara-EdU stock solution to 2ml of FNSW.
- 6. Incubate embryos in F-ara-EdU solution at 18°C for desired time interval.
- 7. If chasing, change back into FNSF + 1% Pen/Strep after pulse for duration of chase interval.
 - Transfer to a clean plate or tube to avoid carryover of f-ara-EdU (e.g. in agarose).
- 8. Proceed immediately to fixation and permeabilization (below).

2. Fixation & Permeabilization

- 1. Fix embryos overnight in 4% PFA in FNSW at 4°C in round bottom 2mL tubes.
 - Alternatively, you may fix embroys for ~1h at RT in 4% PFA in FNSW but O/N is better.
 - Can be left for up to 4 days?
- 2. After fixation, remove fixation buffer and wash embryos in 1mL PBS-T (1%) on rocker.
- 1x 5 min
- 2x 10 min
- 3. Proceed to next step.

3. Clearing (optional)

- 1. Remove PBS-T and add 1mL of prechilled acetone (-20°C) to each tube.
- 2. Keep at -20°C for a minimum of 2h.
- 3. Wash 3x with 1mL PBS-T (1%) for 5-10 min each.
- 4. OPTIONAL (not recommended in *conjunction* with detergent below) Add 500μl of proteinase K (75 μg/mL; Merck 1245680100) and rock for 5 min at RT.
 - Quench with 2x exchanges of 1mL glycine (2mg/mL)
- 5. PREFERRED Wash 3x with 1mL Detergent mix for 20-30 min each at RT.
- 6. Wash 3x with 1mL PBS-T (1%) for 5-10 min each.
- 7. Transfer embryos to glass vial containing 10mL of Clearing Solution-1.1
 - Gently rock for 3-6 hours at 37°C
- 8. Transfer back to 2mL round bottom tubes and wash 3x with 1mL PBS-T (1%) for 5-10 min each.

4. Blocking

- 1. Block embryos in 1mL 4% BSA in PBS for 1h at RT on rocker.
- 2. Wash embryos in 1mL 4% BSA in PBS 1 x 5 min on rocker.
- 3. Proceed to next step.

PAUSE POINT: Store at 4°C

5. Click-iT F-ara-EdU Fluorescent Labeling and Detection

- 1. Allow Click-iT kit components to come to room temperature before opening.
- 2. Prepare *1X Click-iT® EdU buffer additive* (Component F) by diluting the 10X stock solution 1:10 in deionized water. Prepare this solution fresh and use the solution on the same day.
- 3. Prepare *Click-iT® reaction cocktail* according to Table. It is important to add the ingredients in the order listed in the table; otherwise, the reaction will not proceed optimally. Use the Click-iT® reaction cocktail within 15 minutes of preparation.
- For each tube mix together:
 - 430 μl of 1x Click-iT reaction buffer
 - o 20 μl CuSO4 (Component E)
 - 1.2 μl fluorescent azide (Component B)
 - o 50 μl 1x reaction buffer additive (Component F; diluted above from 10x stock).
- Scale up the mixture for the number of samples to be treated and add 500 μl to each tube.
- It is important to use the cocktail within 15 min of preparation.
- It is good practice to include a control sample of cells not exposed to EdU. In addition, these cells are needed for single staining compensation controls for intracellular antigens or antigens stained with RPE, PE-tandem, or Qdot antibody conjugates.

Table 3. Click-iT[®] reaction cocktails.

Reaction	Number of coverslips								
components*	1	2	4	5	10	25	50		
1X Click-iT* reaction buffer (prepared in step 1.4)	430 μL	860 μL	1.8 mL	2.2 mL	4.3 mL	10.7 mL	21.4 mL		
CuSO ₄ (Component E)	20 μL	40 μL	80 μL	100 μL	200 μL	500 μL	1 mL		
Alexa Fluor® azide (prepared in step 1.3)	1.2 μL	2.5 μL	5 μL	6 μL	12.5 μL	31 μL	62 μL		
Reaction buffer additive (prepared in step 4.1)	50 μL	100 μL	200 μL	250 μL	500 μL	1.25 mL	2.5 mL		
Total volume	500 μL	1 mL	2 mL	2.5 mL	5 mL	12.5 mL	25 mL		
*Note: Add the ingredients in the order listed in the table.									

5. ALTERNATE Custom Click Rxn Table

Reaction Components / Reaction	1	2	4	5	10	25	50
1x PBS	394 μΙ	xμl	xμl	x ml	x ml	x ml	x ml
CuSO4 (200 mM)	5 μΙ	xμl	xμl	xμl	xμl	xμl	хμΙ
Fluorescent azide (4 mM)	1 μΙ	xμl	xμl	xμl	xμl	xμl	хμΙ

Reaction Components / Reaction	1	2	4	5	10	25	50
DMSO	50 μΙ	xμl	xμl	xμl	xμl	xμl	x ml
Sodium Ascorbate (100 mM; Fresh)	50 μΙ	xμl	xμl	xμl	xμl	xμl	x ml
Total volume	500 μΙ	χ μΙ	x ml				

^{*} Add reagents in the order listed above. Use within 15 min of preparation.

- * For lower dye concentrations, you can try 10 μl of 10μM dye in 500 μl reaction for a final conc. of 200nM.
 - 1. Remove the blocking buffer.
 - 2. Quick wash each sample twice with 1 mL of PBS. Remove the wash solution.
 - 3. Add 0.5 mL of Click reaction cocktail to each tube. place on rocker.
 - 4. Incubate for 30-60 minutes at room temperature, protected from light (longer gets deeper in hatchlings).
 - 5. Remove the reaction cocktail and wash twice with 1 mL of 4% BSA in PBS.
 - 6. Optional: Keep overnight in 4% BSA in PBS at 4°C to allow excess dye to diffuse out of yolk.

6. Staining DNA

- 1. Add 1µl of 1000X DAPI (**TODO: Need concentration**) to each tube.
- 2. Stain for 30-60 min at RT on rocker. (longer gets deeper into hatchlings).
- 3. Remove DAPI and wash once with 1 mL of PBS w/ 4% BSA.
- 4. Final wash in 1x PBS
- 5. Store at 4°C until imaging.

7. Mounting and Imaging

- 1. Mount on Matex in 1% agarose in Fluoromount-G
- 2. Image on confocal microscope.

Notes/Ideas for Future Tweaking:

- Background in yolk significantly reduced with pre-block with BSA.
 - May also try casein (milk) for blocking too. or LMW-Dextran.
- A few suggestions for optimizing:
- Can we reduce the amount of fluorescent dye?
- Longer washes after Click (trying ON soak in PBS currently)
- Wash in high DMSO (≤50% w/v) to remove unbound dye?
- 5% Urea wash to disrupt hydrophobic interactions with yolk?
- Can likely scale down the Click Rxn to 250μl in 2mL tubes. (This did not work so well first time.)
- Probably need to consider:
 - Increasing the dose >100μM for shorter pulses
 - Need to read up on what is usual dosing for EdU in other systems (e.g. zebrafish embryos; 400 μM EdU for 1 h at room temperature?)

^{*} DMSO protects the DNA from free radicals generated by the Cu(I) catalyst.

• Increasing the pulse time (1 hour is not really labeling much, and 24 hours seems good, but maybe because some cells are cycling twice?)

0

Experiments

F-ara-EdU short chase

- Pulse St20 embryos for 1 hr with 100μM F-ara-Edu
 - 5mL FNSW required per dish
 - 25µl 20mM F-ara-EdU per 5mL FNSW
- change back into FNSF + 1% Pen/Strep after pulse
 - Reserve some Ohr chase embryos for comparison
- · Collect after:
 - Oh
 - o 1h
 - o 2h
 - o 4h
 - o 8h
 - o 12h
 - o 24h

Results

- Need to wash embryos more thoroughly after Click Rxn
- May need higher dose (400μM?) and/or longer pulse for better labeling

± chorion

Question: Does the chorion affect EdU incorporation?

- Pulsed St26 embryos ± chorion in 50μM F-ara-Edu (12.5μl per 5ml FNSF) for:
 - o 1h
 - o 24h
- Blocked for 1h
- Only used 250µl Click Rxn
- Result for 1 hr is very weak/low staining with moderately high background:
 - o likely because of less proliferation at later stage, short pulse, and/or accessibility
- Need to assess the 24 hr pulse as well
 - o 24 hour pulse click Rxn performed in 500 mL reaction
 - o 24 hour pulse much stronger and cleaner

Results

- Lower levels of F-ara-EdU incorporation in embryos with chorion
- Interesting structures observed on anterior side.

Suggestions from the Lab

- Bring dye conentration down to ~50nM (vs 5μM final in standard ClickIt kit)
 - Azdye 647 azide plus (Click chemistry tools)
 - o 50nM
 - o On ice, one minute
 - Get Richard's protocol for EdU-click
 - 1 mM CuSO4
 - 200 nM AzPlus-dye in PBS-T w/ 10% DMSO (This is 2 orders of magnitude lower than the Alexa647 in the ClickIt kit)
 - 5 mM sodium ascorbate
 - Stocks:
 - 100mM CuSO4
 - 100mM sodium Ascorbate