

Machine Learning

Advice for applying machine learning

Model selection and training/validation/test sets

Overfitting example

Once parameters $\theta_0, \theta_1, \ldots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error.

Model selection

d: degree of polynomial parametro extra

Choose
$$\theta_0 + \dots \theta_5 x^5$$
 — ecolher modelo com menos Jtest

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$.

Problem: $J_{test}(\overline{\theta}^{(5)})$ is likely to be an optimistic estimate of generalization error. I.e. our extra parameter $(\underline{d} = \text{degree of polynomial})$ is fit to test set.

Evaluating your hypothesis dividir em 3

Dataset:

_	Size	Price	1
60%	2104	400	
	1600	330	
	• 2400	369 Town	
	1416	232	
	3000	540	7
	1985	300	
20%	1534	315 7 Cross veridation	•
	1427	199	
ζο•	1380	212 } test set	\rightarrow
	1494	243	

Train/validation/test error

Training error:

$$\rightarrow J_{train}(\theta) = \frac{1}{2m} \sum_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{\infty} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{300} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Model selection

Pick $\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4 \leftarrow$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_1 x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_1 x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_1 x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_1 x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_1 x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_1 x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_1 x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_1 x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_1 x^{10}$ \longrightarrow $h_{$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$ \leftarrow