The multivariate Gaussian

Topics we'll cover

- 1 Functional form of the density
- 2 Special case: diagonal Gaussian
- 3 Special case: spherical Gaussian
- 4 Fitting a Gaussian to data

Recall: the bivariate Gaussian

Bivariate Gaussian, parametrized by:

mean
$$\mu=\begin{pmatrix}13.7\\3.0\end{pmatrix}$$
 and covariance matrix $\Sigma=\begin{pmatrix}0.20&0.06\\0.06&0.12\end{pmatrix}$

The multivariate Gaussian

 $N(\mu, \Sigma)$: Gaussian in \mathbb{R}^d

• mean: $\mu \in \mathbb{R}^d$

• covariance: $d \times d$ matrix Σ

Generates points $X = (X_1, X_2, \dots, X_d)$.

• μ is the vector of coordinate-wise means:

$$\mu_1 = \mathbb{E}X_1, \ \mu_2 = \mathbb{E}X_2, \dots, \ \mu_d = \mathbb{E}X_d.$$

• Σ is a matrix containing all pairwise covariances:

$$\Sigma_{ij} = \Sigma_{ji} = \operatorname{cov}(X_i, X_j)$$
 if $i \neq j$
 $\Sigma_{ii} = \operatorname{var}(X_i)$

Density
$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Special case: independent features

Suppose the X_i are independent, and $var(X_i) = \sigma_i^2$.

What is the covariance matrix Σ , and what is its inverse Σ^{-1} ?

Diagonal Gaussian

Diagonal Gaussian: the X_i are independent, with variances σ_i^2 . Thus

$$\Sigma = \mathsf{diag}(\sigma_1^2, \dots, \sigma_d^2)$$
 (off-diagonal elements zero)

Each X_i is an independent one-dimensional Gaussian $N(\mu_i, \sigma_i^2)$:

$$\Pr(x) = \Pr(x_1)\Pr(x_2)\cdots\Pr(x_d) = \frac{1}{(2\pi)^{d/2}\sigma_1\cdots\sigma_d}\exp\left(-\sum_{i=1}^d \frac{(x_i-\mu_i)^2}{2\sigma_i^2}\right)$$

Contours of equal density are axisaligned ellipsoids centered at μ :

Even more special case: spherical Gaussian

The X_i are independent and all have the same variance σ^2 .

$$\Sigma = \sigma^2 I_d = \text{diag}(\sigma^2, \sigma^2, \dots, \sigma^2)$$
 (diagonal elements σ^2 , rest zero)

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma^2)$:

$$\Pr(x) = \Pr(x_1)\Pr(x_2)\cdots\Pr(x_d) = \frac{1}{(2\pi)^{d/2}\sigma^d}\exp\left(-\frac{\|x-\mu\|^2}{2\sigma^2}\right)$$

Density at a point depends only on its distance from μ :

How to fit a Gaussian to data

Fit a Gaussian to data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^d$.

Empirical mean

$$\mu = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right)$$

• Empirical covariance matrix has i, j entry:

$$\Sigma_{ij} = \left(\frac{1}{m} \sum_{k=1}^{m} x_i^{(k)} x_j^{(k)}\right) - \mu_i \mu_j$$