Assignment 1

1. Anscombe01.R

> data(anscombe) # Load Anscombe's data

> View(anscombe) # View the data

	B ⊧	RStudi	О															
	File	Edit	Code	V	iew	Plots	Se	ssion	Build	d D	ebug	g Pro	ofile	Tool	s H	lelp		
	,	1 🥞	💣	-	Ħ	#	•	•	Go to	file/i	functi	ion		# •	Ad	ldins	,	
anscombe01.R × anscombe ×																		
	+	⇒	/=	T I	Filter													
			x1	÷	x2	‡	х3	÷	x4	÷	y1	÷	y2	÷	у3	÷	y4	‡
		1		10		10		10		8		8.04		9.14		7.46		6.58
		2		8		8		8		8		6.95		8.14		6.77		5.76
		3		13		13		13		8		7.58		8.74		12.74		7.71
		4		9		9		9		8		8.81		8.77		7.11		8.84
		5		11		11		11		8		8.33		9.26		7.81		8.47
		6		14		14		14		8		9.96		8.10		8.84		7.04
		7		6		6		6		8		7.24		6.13		6.08		5.25
		8		4		4		4		19		4.26		3.10		5.39	i	12.50
		9		12		12		12		8		10.84		9.13		8.15		5.56
		10		7		7		7		8		4.82		7.26		6.42		7.91
		11		5		5		5		8		5.68		4.74		5.73		6.89
	Sho	wing 1	to 11 c	of 11	l entr	ries, 8 t	otal	columi	ns									

> summary(anscombe)

> ## Simple version

> plot(anscombe\$x1,anscombe\$y1)

> summary (anscombe)

```
x1 x2 x3 x4 y1 y2 y3 y4

Min.: 4.0 Min.: 4.0 Min.: 4.0 Min.: 8 Min.: 4.260 Min.: 3.100 Min.: 5.39 Min.: 5.250

1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8 1st Qu.: 6.315 1st Qu.: 6.695 1st Qu.: 6.25 1st Qu.: 6.170

Median: 9.0 Median: 9.0 Median: 9.0 Median: 8 Median: 7.580 Median: 8.140 Median: 7.11 Median: 7.040

Mean: 9.0 Mean: 9.0 Mean: 9.0 Mean: 9.0 Mean: 9 Mean: 7.501 Mean: 7.501 Mean: 7.500 Mean: 7.501

3rd Qu.: 11.5 3rd Qu.: 11.5 3rd Qu.: 11.5 3rd Qu.: 8 3rd Qu.: 8.570 3rd Qu.: 8.950 3rd Qu.: 7.98 3rd Qu.: 8.190

Max.: 14.0 Max.: 14.0 Max.: 14.0 Max.: 14.0 Max.: 19 Max.: 10.840 Max.: 9.260 Max.: 12.74 Max.: 12.500
```

> abline(coefficients(lm1))

> abline(coefficients(lm2))

> abline(coefficients(lm3))

> abline(coefficients(lm4))


```
7
                                         5
                                         9
    9
ž
                                     ğ
   ω
                                         ω
    9
                                         9
    4
                                         4
                          15
                                                                15
           5
                                                5
                  10
                                                        10
                    x1
                                                         x2
   7
                                         5
   9
                                         9
જૂ
                                     ž
    ω
                                         \infty
    ဖ
                                         ဖ
    4
                                         4
                          15
                                                                15
                  10
                                                        10
           5
                                                5
                    х3
                                                         х4
```


2. Google "generative art". Cite some examples.

Spittel, A, & Reichard, J. (2018). An introduction to Generative Art: what it is, and how you make it. freeCodeCamp. https://www.freecodecamp.org/news/an-introduction-to-generative-art-what-it-is-and-how-you-make-it-b0b363b50a70/

Examples of Generative Art (as offered by this online article)

Kate Compton's Flowers:

Cellular Automata and the Edge of Chaos

3. Run Fall.R (on Teams)

```
# Define elements in plant art
# Each image corresponds to a different axiom, rules, angle and depth
# Leaf of Fall
axiom="X"
rules=list("X"="F-[[X]+X]+F[+FX]-X", "F"="FF")
angle=22.5
depth=6
for (i in 1:depth) axiom=gsubfn(".", rules, axiom)
actions=str_extract_all(axiom, "\\d*\\+|\\d*\\-|F|L|R|\\[|\\||") %>% unlist
status=data.frame(x=numeric(0), y=numeric(0), alfa=numeric(0))
points=data.frame(x1 = 0, y1 = 0, x2 = NA, y2 = NA, alfa=90, depth=1)
```


3a. Give your own colors (e.g. Winter).

3b. Export the file and post on your GitHub website.