ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Факультет прикладної математики та інформатики Кафедра обчислювальної математики

КУРСОВА РОБОТА

На тему

Ієрархічні матриці у методі граничних елементів

Студентки э-го курсу групи пмп-эт	
напряму підготовки	
6.040301 "Прикладна матиматика"	
Солук О.О.	
Керівник	
Вавричук В.Г.	
Національна шкала	
King view 6a nip Oninga FCTS	

Зміст

1	1. E	Вступ.		3
2	2. ()бчисл	ення за допомогою ієрархічних матриць.	4
	2.1	Означ	іення кластерного дерева.	4
	2.2	Означ	иення блочного кластерного дерева	5
	2.3	Умова	а допустимості	6
	2.4		иення ${\mathcal H}$ -матриці	7
3	3. F	озв'яз	вання модельного інтегрального рівняння.	8
	3.1	Модел	тьна задача	8
	3.2	Розкл	ад ядра в ряд Тейлора	9
	3.3	Набли	иження низького рангу блоків матриці	10
	3.4	Однов	вимірний випадок побудови блочного кластерного дерева	12
		3.4.1	Приклад побудови кластерного дерева	12
		3.4.2	Умова допустимості	13
	3.5	Прикл	пад побудови блочного кластерного дерева	14
	3.6	Побуд	ова матриці	15
		3.6.1	Недопустимі листки	15
		3.6.2	Допустимі листки	16
		3.6.3	Репрезентація ієрархічної матриці	16
	3.7	Розпи	с інтегралів	18
		3.7.1	Допустимі блоки	18
		3.7.2	Недопустимі блоки	18
	3.8	Метод	ц спряжених градієнтів	20
	3.9	Чисел	вый експерименти	21
		3.9.1	Приклад 1	21
		3.9.2	Приклад 2	21
		3.9.3	Приклад 3	22
4	4. F	озв'яз	вання задачі Діріхле для рівняння Лапласа на площині	23
	4.1	Геоме	трична бісекція	23
	4.2	Обмех	жувальні коробки	24
	4.3	Інтері	поляція	25
		4.3.1	Вироджене наближення	25
		4.3.2	Апроксимація тензорним добутком на обмежувальних коробках	25
		4.3.3	Побудова апроксимації низького рангу	27
	4.4	Внутг	рішня залача Ліріхле	28

		Потенціал простого шару . Реалізація									
5	Висновок									3	31
6	Додатки									9	32

1. Вступ.

Ієрархічна матриця (*Н*-матриця) використовується для апроксимації розрідженими даними щільних матриць. Ці матриці застосовують коли намагаються розв'язати систему лінійних рівнянь

$$Ax = b$$
 $A \in \mathbb{R}^{n \times n}, \quad x \in \mathbb{R}^n$

з майже лінійною складністю $O(n \log(n))$.

Вперше концепцію ієрахічних матриць запропонував Вольфганг Хакбуш в 1998 році. Він розширив ідею панельних кластерних методів, зробивши її застосовною до загальних алгебраїчних операцій над матрицями, оберненими матрицями тощо. Також введені означення для двовимірного випадку.

В цій роботі розглянуто базові означення та процес побудови *H*-матриць, їх застосування на прикладі одновимірної модельної задачі, для розв'язування якої використовують метод граничних елементів (BEM - boundary element method). Введено означення ієрархічних матриць для багатовимірного випадку. Розглянуто двовимірний випадок на прикладі задачі Діріхле для рівняння Лапласа.

Текст цієї роботи написано на основі матеріалів [1],[2]. Також, деякі графічні ілюстрації взяті з роботи [1].

2. Обчислення за допомогою ієрархічних матриць.

2.1 Означення кластерного дерева.

Означення 2.1 (Дерево) $Hexaŭ\ V$ - Henopo - $Hexaŭ\ V$ - Henopo - $Hexaŭ\ V$ - Henopo - $Hexaŭ\ V$ - Henopo - Henopo - $Hexaŭ\ V$ - Henopo - Henopo

- Унікальна вершина $v \in V$ називається коренем дерева і позначається $root(\mathbb{T})$ $\Leftrightarrow \forall w \in V : w \neq v$ виконується $(w,v) \notin E$.
- Для будь-якої вершини $v \in V \setminus root(\mathbb{T})$ існує єдиний простий шлях з $root(\mathbb{T})$ до v.

Іншими словами, дерево - це неорієнтований зв'язний граф без простих циклів. Введемо такі позначення:

ullet Для вершини $v\in V$ множина її синів визначається як

$$S(v) = \{w \in V | (v,w) \in E\}$$

- Множину всіх листків дерева $\mathbb T$ визначають як $\mathcal L(\mathbb T)=\{v\in V|S(v)=\emptyset\}$
- Рівень дерева Т визначається рекурсивно як

$$\mathbb{T}^{(0)} = root(\mathbb{T})$$

$$\mathbb{T}^{(l)} = \{ v \in V | \exists w \in \mathbb{T}^{(l-1)} : (w, v) \in E \}$$

Може позначатися як level.

• Висотою дерева $d(\mathbb{T})$ називається найдовший простий шлях від кореня до листка.

Як I=0,1...n-1 позначемо скінченну множину індексів з потужністю |I|=n. В майбутньому, в ролі I використовуватимемо індекси базових функцій, отриманих для дискретизації з методу граничних елементів.

Означення 2.2 (Кластерне дерево) Дерево \mathbb{T}_I називається кластерним деревом над множиною індексів I з $root(\mathbb{T}_I) = I$, якщо наступні умови виконуються:

- $I \in V$ е коренем \mathbb{T}_I $i \ \forall v \in V, v \neq \emptyset \Rightarrow v \subseteq I$.
- Якщо $v \in V$ не е листком $(S(v) \neq \emptyset)$, то він рівний об'єднанню своїх синів, тобто $v = \bigcup_{w \in S(v)} w$.
- $v \in V$ називають кластером.

2.2 Означення блочного кластерного дерева

Блочне кластирне дерево - це кластерне дерево над множиною індексів $I \times I$ замість I. В загальному, для неквадратних матриць, що належать до $\mathbb{R}^{I \times J}$, потрібно два різні кластерні дерева \mathbb{T}_I та \mathbb{T}_J , тому ми розглядаємо інше кластерне дерево \mathbb{T}_J , яке базується на множині індексів J потужності |J| = m.

Означення 2.3 Нехай \mathbb{T}_I і \mathbb{T}_J - кластерні дерева над множинами індексів I та J відповідно. Кластерне дерево $\mathbb{T}_{I \times J} = \mathbb{T}_{\mathbb{T}_I \times \mathbb{T}_J} = (V, E)$ називається блочним кластерним деревом над добутком множини індексів $I \times J$, якщо $\forall v \in V$ виконуються наступні умови:

- $\mathbb{T}_{I \times J}^{(0)} = I \times J$
- Якщо $v \in \mathbb{T}_{I \times J}^{(l)}$, то існують $\tau \in \mathbb{T}_I^{(l)}$ і $\sigma \in \mathbb{T}_J^{(l)}$ такі, що $v = \tau \times \sigma$.
- Для синів $v = \tau \times \sigma$, де $\tau \in \mathbb{T}_I$ і $\sigma \in \mathbb{T}_J$ виконується $S(v) = \begin{cases} \varnothing, \text{якщо } S(\tau) = \varnothing & \text{або } S(\sigma) = \varnothing \\ \{\tau' \times \sigma' : \tau' \in S(\tau), \sigma' \in S(\sigma)\}, \text{інакше} \end{cases}$

Означення 2.4 Блочне кластерне дерево $\mathbb{T}_{I\times J}$ для \mathbb{T}_I та \mathbb{T}_J називається однорідним, якщо

$$level(t \times s) = level(t) = level(s)$$
 (2.1)

для вс $ix\ t \times s \in \mathbb{T}_{I \times J}$.

Властивості блочного кластирного дерева $\mathbb{T}_{I\times J}$:

- Якщо обоє кластерні дерева \mathbb{T}_I і \mathbb{T}_J є бінарними деревами, то отримане блочне кластерне дерево є quad-деревом, тобто кожний внутрішній вузол має точно чотири нащадки.
- $|\mathcal{L}(\mathbb{T}_{I\times J})| \leq |\mathcal{L}(\mathbb{T}_I)| \cdot |\mathcal{L}(\mathbb{T}_J)|$
- $|\mathbb{T}_{I \times I}^{(l)}| \le |\mathbb{T}_{I}^{(l)}| \cdot |\mathbb{T}_{I}^{(l)}|$
- $d(\mathbb{T}_{I \times J}) = min\{d(\mathbb{T}_I), d(\mathbb{T}_J)\}$
- ullet Якщо $\mathbb{T}_{I \times J}$ однорідне

$$S(t \times s) \neq \emptyset \Rightarrow S(t \times s) = \{t' \times s' : t' \in S(t), s' \in S(s)\}$$

Кількість можливих блоків $t \times s$ з вузлами t, s, що належать дереву \mathbb{T}_I становить $(\#\mathbb{T}_I)^2 = (2n-1)^2 = \mathcal{O}(n^2)$. Оскільки ми не можемо тестувати всі можливі комбінації, нашою метою є зменшення квадратичної збіжності для збірки матриці. Можливим варіантом є тестування блоків рівень за рівнем починаючи від кореня I дерева \mathbb{T}_I і в подальшому заглиблюючись в дерево. Блоки, що тестуються, зберігають в блочному кластерному дереві $\mathbb{T}_{I\times I}$, листки якого утворюють поділ множини індексів $I\times I$.

Алгоритм побудови блочного кластерного дерева (викликати з параметрами BuildBlockClusterTree(I,I)):

Algorithm 1 Побудова блочного кластерного дерева $\mathbb{T}_{I\times I}$

```
procedure BuildBlockClusterTree(cluster t,s) if (t,s) is admissible then S(t \times s) := \emptyset; else S(t \times s) := \{t' \times s' | t' \in S(t) \text{ and } s' \in S(s)\}; for t' \in S(t) and s' \in S(s) do BuildBlockClusterTree(t',s'); end for end if
```

2.3 Умова допустимості

Під час побудови блочного кластерного дерева $\mathbb{T}_{I\times J}$ потрібна допоміжна умова, яка перевіряє чи блок $b=\tau\times\sigma\in\mathbb{T}_{I\times J}$ є відповідного розміру і в особливості чи він може бути наближений розрідженою матрицею. Це робиться за допомогою умови допустимості, яка в певному сенсі залежить від геометрії основної проблеми. Умова допустимості певним чином збалансовує точність апроксимації та вимоги до пам'яті \mathcal{H} -матриць.

Означення 2.5 Умова допустимості є булівською функцією

$$Adm: \mathbb{T}_{I\times J} \to \{true, false\}$$

для якої виконується умова

$$Adm(b) \Rightarrow Adm(b')$$
, для всіх синів $b' \subseteq b \in \mathbb{T}_{I \times J}$

і властивість

$$Adm(b) = true$$
, для всіх листків $b \in \mathbb{T}_{I \times J}$

Означення 2.6 Поділ \mathcal{P} називається допустимим (\mathcal{P}_{Adm}) , якщо всі $b = (\tau \times \sigma) \in \mathcal{P}$ є допустимими.

Стандартна умова допустимості була вперше описана в класичній побудові *Н*-матриць, де вона застосовується для розподілу, здебільшого для проблем, що вирішуються за допомогою методу граничних елементів.

Означення 2.7 Нехай $\eta > 0$ - фіксований параметр. Кажуть, що блок $b = \tau \times \sigma$ задовольняє стандартину умову допустимості, якщо

$$Adm_{\eta}(b) = true \Leftrightarrow min(diam(\Omega_{\tau}), diam(\Omega_{\sigma})) \leq \eta \cdot dist(\Omega_{\tau}, \Omega_{\sigma})$$

 $\partial e \ \Omega_{\tau} \ i \ \Omega_{\sigma} \ визначаються як$

$$\Omega_{\tau} := \bigcup_{i \in \tau} supp(\varphi_i)$$

$$\Omega_{\sigma} := \bigcup_{i \in \sigma} supp(\varphi_i)$$

В попередніх означеннях "diam"і "dist"позначають Евклідовий діаметр і відстань між Ω_{τ} та Ω_{σ} . Вони визначаються наступним чином:

$$diam(\Omega_{\tau}) := \max_{x_i, x_j \in \Omega_{\tau}} ||x_i - x_j||$$

$$dist(\Omega_{\tau}, \Omega_{\sigma}) := \min_{x_i \in \Omega_{\tau}, x_j \in \Omega_{\sigma}} ||x_i - x_j||$$

Якщо в означені 4.3 замінити "min"на "max то отримуємо сильну умову допустимості:

$$Adm_{\eta}(b) = true \Leftrightarrow max(diam(\Omega_{\tau}), diam(\Omega_{\sigma})) \leq \eta \cdot dist(\Omega_{\tau}, \Omega_{\sigma})$$

Означення 2.8 Блочне кластерне дерево $\mathbb{T}_{I \times J}$ для \mathbb{T}_I та \mathbb{T}_J називається допустимим у відповідності до умови допустимості, якщо

$$t \times s \in donycmuмuм$$
 або $sons(t) = \emptyset$ або $sons(s) = \emptyset$ (2.2)

виконується для всіх листків $t \times s \in \mathcal{L}(\mathbb{T}_{I \times J})$.

2.4 Означення \mathcal{H} -матриці

На допустимих блоках апроксимуємо за допомогою структури rkmatrix. На недопустимих листках використовуємо структуру fullmatrix.

 n_{min} - розмірність найменшого листка.

Означення 2.9 $Hexaŭ\ M \in \mathbb{R}^{I \times J}$ - матриця над множиною індексів $I \times J$. Підматриця $(M_{i,j})_{(i,j) \in I' \times J'}$ для підмножини $I' \times J'$ множини $I \times J$ позначається як $M|_{I' \times J'}$.

Означення 2.10 (\mathcal{H} -матриця) Нехай $k, n_{min} \in \mathbb{N}_0$. Множина \mathcal{H} -матриць, що базуеться на допустимому поділі \mathcal{P}_{Adm} над блочним кластерним деревом $\mathbb{T} := \mathbb{T}_{I \times J}$ визначається як

$$\mathcal{H}(\mathbb{T},k) := \{ M \in \mathbb{R}^{I \times J} | \forall \tau \times \sigma \in \mathcal{P}_{Adm} : rank(M|_{\tau \times \sigma}) \leq k \text{ abo } \min(|\tau|,|\sigma|) \leq n_{min} \}$$

Спрощене означення \mathcal{H} -матриці виглядає наступним чином

Означення 2.11 Нехай $\mathbb{T}_{I \times I}$ - блочне кластерне дерево над множиною індексів I. Означаємо множину \mathcal{H} -матриць як

 $\mathcal{H}(\mathbb{T}_{I\times I},k):=\{M\in\mathbb{R}^{I\times I}|rank(M|_{t\times s})\leq k\ \text{ dis Beix donycmumux nucmkib }t\times s\ \text{ depera }\mathbb{T}_{I\times I}\}$

3. Розв'язання модельного інтегрального рівняння.

3.1 Модельна задача

Розглянемо застосування \mathcal{H} -матриць на прикладі одновимірного інтегрального рівняння Фредгольма першого роду. Нехай задано функцію $F:[0,1]\to\mathbb{R}$. Шукаємо функцію $u:[0,1]\to\mathbb{R}$, яка задовільняє наступне інтегральне рівняння:

$$\int_0^1 \ln|x - y| u(y) dy = F(x), x \in [0, 1]$$

де $g(x,y) = \ln |x-y|$ називається ядром інтегрального рівняння і має невизначеність на діагоналі x=y.

Використовуючи метод Гальоркіна, проектуємо дане рівнання на n-вимірний простір $V_n = span\{\varphi_0, \dots, \varphi_{n-1}\}$ і отримуємо:

$$\int_0^1 \int_0^1 \varphi_i(x) \ln|x - y| u(y) dy dx = \int_0^1 \varphi_i(x) F(x) dx$$

 $0 \le i < n$

Потрібно знайти u_n в просторі V_n :

$$u_n = \sum_{j=0}^{n-1} u_j \varphi_j$$

таке, що вектор коефіцієнтів $u \in \text{розв'язком лінійної системи}$

$$Gu = f$$

$$G_{ij} = \int_0^1 \int_0^1 \varphi_i(x) \ln|x - y| \varphi_j(y) dy dx$$

$$f_i = \int_0^1 \varphi_i(x) F(x) dx$$

В цьому прикладі визначаємо базисні функції як

$$\varphi_i(x) = \begin{cases} 1, & \text{якщо } \frac{i}{n} \le x < \frac{i+1}{n} \\ 0, & \text{інакше} \end{cases}$$

які в загальному матимуть вигляд

Матриця G є щільною, тобто всі елементи не є нулями. Потрібно знайти наближену матрицю \tilde{G} , яка може бути збереженою в розрідженому форматі. Для того, щоб це досягти потрібно замінити ядро $g(x,y) = \ln|x-y|$ на розкладене ядро

$$\tilde{g}(x,y) = \sum_{v=0}^{k-1} g_v(x) h_v(y)$$

Таким чином, інтегрування за змінною х буде відкремленим від інтегрування за змінною у. Проте, ядро $g(x,y) = \ln |x-y|$ не можна наблизити розкладеним ядром на цілій області $[0,1] \times [0,1]$ (хіба що при великому k). Змість цього, ми будуємо локальні наближення на підобластях $[0,1] \times [0,1]$, де $g \in \Gamma$ ладкою.

3.2 Розклад ядра в ряд Тейлора

Нехай $\tau:=[a,b],\ \sigma:=[c,d],\ \tau\times\sigma\subset[0,1]\times[0,1]$ буде підобластю з властивістю b< c і інтервали є роз'єднаними, тобто

$$\tau \cap \sigma = \emptyset$$

Тоді ядро є визначеним на $\tau \times \sigma$. $x_0 := (a+b)/2$

Лема 3.1 (Похідні $\ln |x-y|$) Похідні $g(x,y)=\ln |x-y|$ для $x\neq y$ і $v\in \mathbb{N}$ мають вигляд

$$\partial_x^v g(x,y) = (-1)^{v-1} (v-1)! (x-y)^{-v}$$
$$\partial_y^v g(x,y) = (v-1)! (x-y)^{-v}$$

Лема 3.2 (Розклад Тейлора для $\ln |x-y|$) Для будь-якого $k \in \mathbb{N}$ функція

$$\tilde{g}(x,y) = \sum_{v=0}^{k-1} \frac{1}{v!} \partial_x^v g(x_0, y) (x - x_0)^v$$

наближае ядро $g(x,y) = \ln |x-y|$ з похибкою

$$|g(x,y) - \tilde{g}(x,y)| \le (1 + \frac{|x_0 - a|}{|c - b|})(1 + \frac{|c - b|}{|x_0 - a|})^{-k}$$

Доведення. Нехай $x \in [a,b], a < b$ і $y \in [c,d]$. В радіусі збіжності ряд Тейлора для ядра g(x,y) в точці x_0 задовільняє

$$g(x,y) = \sum_{v=0}^{\infty} \frac{1}{v!} \partial_x^v g(x_0, y) (x - x_0)^v$$

Залишок $g(x,y)-\tilde{g}(x,y)=\sum_{v=k}^{\infty}\frac{1}{v!}\partial_x^vg(x_0,y)(x-x_0)^v$ може бути оцінений як:

$$\left| \sum_{v=k}^{\infty} \frac{1}{v!} \partial_x^v g(x_0, y) (x - x_0)^v \right| = \left| \sum_{v=k}^{\infty} (-1)^{v-1} \frac{(v - 1)!}{v!} \left(\frac{x - x_0}{x_0 - y} \right)^v \right|$$

$$\leq \sum_{v=k}^{\infty} \left| \frac{x - x_0}{x_0 - y} \right|^v \leq \sum_{v=k}^{\infty} \left(\frac{|x_0 - a|}{|x_0 - a| + |c - b|} \right)^v$$

$$= \left(1 + \frac{|x_0 - a|}{|c - b|} \right) \left(1 + \frac{|c - b|}{|x_0 - a|} \right)^{-k}$$

Радіус збіжності покриває весь інтервал [a, b].

Якщо $c \to b$, то оцінка залишку прямує до нескінченості і наближення буде як завгодно поганим. Проте, якщо замінити умову b < c (диз'юнкція інтервалів) сильнішою умовою допустимості

$$diam(\tau) \le dist(\tau, \sigma)$$

то похибка апроксимації може бути оцінена як

$$|g(x,y) - \tilde{g}(x,y)| \le \frac{3}{2}(1 + \frac{2}{1})^{-k} = \frac{3}{2}3^{-k}$$

Це означає, що ми отримуємо рівномірну оцінку для похибки наближення незалежно від інтервалів, якщо умова допустимості виконується. Похибка зростає експоненціально в залежності від порядку k.

3.3 Наближення низького рангу блоків матриці

Множина індексів $I = \{0, 1, \dots, n-1\}$ містить індекси базових функцій φ_i , які використовуються в дискритизації Галеркіна. Фіксуємо дві підмножини t і s множини індексів I та визначимо відповідні області:

$$\tau = \bigcup_{i \in t} supp(\varphi_i)$$

$$\sigma = \bigcup_{i \in s} supp(\varphi_i)$$

Якщо $\tau \times \sigma$ задовільняє умову допустимості, то ми можемо наблизити ядро g в цій підобласті рядом Тейлора \tilde{q} і замінити елементи матриці

$$G_{ij} = \int_0^1 \int_0^1 \varphi_i(x)g(x,y)\varphi_j(y)dydx$$

використовуючи вироджене ядро $\tilde{g} = \sum_{v=0}^{k-1} g_v(x) h_v(y)$ для індексів $(i,j) \in t \times s$:

$$\tilde{G}_{ij} = \int_0^1 \int_0^1 \varphi_i(x)\tilde{g}(x,y)\varphi_j(y)dydx$$

Розділяємо подвійний інтеграл на два звичайні

$$\tilde{G}_{ij} = \int_0^1 \int_0^1 \varphi_i(x) \sum_{v=0}^{k-1} g_v(x) h_v(y) \varphi_j(y) dy dx$$

$$= \sum_{v=0}^{k-1} \left(\int_0^1 \varphi_i(x) g_v(x) dx \right) \left(\int_0^1 \varphi_j(y) h_v(y) dy \right)$$

Підматриця $G|_{t \times s}$ може бути записана в факторизованій формі

$$G|_{t \times s} = AB^{\top}, \quad A \in \mathbb{R}^{t \times \{0,\dots,k-1\}}, \quad B \in \mathbb{R}^{s \times \{0,\dots,k-1\}}$$

де елементами матиць A і B

$$A_{iv} := \int_0^1 \varphi_i(x) g_v(x) dx, \quad B_{jv} := \int_0^1 \varphi_j(y) h_v(y) dy$$

Матриця AB^{\top} має найбільший ранг k в незалежності від потужності s і t. Похибка наближення блоку матриці оцінена в наступній лемі.

Лема 3.3 Поелементна похибка для елементів матриці G_{ij} апроксимується ядром \tilde{g} в допустимих блоках $t \times s$ (g в інших блоках) обмежена наступним чином

$$|G_{ij} - \tilde{G}_{ij}| \le \frac{3}{2}n^{-2}3^{-k}$$

Доведення.
$$|G_{ij} - \tilde{G}_{ij}| = |\int_0^1 \int_0^1 \varphi_i(x) (g(x,y) - \tilde{g}(x,y)\varphi_j(y) dy dx)|$$

$$\leq \int_0^1 \int_0^1 |\varphi_i(x)| \frac{3}{2} 3^{-k} |\varphi_j(y)| dy dx$$

$$= \frac{3}{2} 3^{-k} \int_0^1 \varphi_i(x) dx \int_0^1 \varphi_j(y) dy$$

$$= \frac{3}{2} n^{-2} 3^{-k} \quad \blacksquare$$

Припустимо, що ми поділили множину індексів $I \times I$ над матрицею G на допустимі блоки, де застосовується апроксимація низького рангу, і недопустимі блоки, де використовуємо елементи матриці G.

$$I \times I = \bigcup_{v=1,\dots,b} t_v \times s_v$$

Глобальну похибку наближення оцінюємо, застосовуючи норму Фробеніуса

$$||M||_F^2 := \sum M_{ij}^2$$

Лема 3.4 Похибка наближення $\|G - \tilde{G}\|_F$ для матриці \tilde{G} , побудованої за допомогою ядра \tilde{g} в допустимих блоках $t_v \times s_v$ та з допомогою g на недопустимих блоках, обмежена наступним чином

$$||G - \tilde{G}||_F \le \frac{3}{2}n^{-1}3^{-k}$$

Постає питання, як поділити множину індексів $I \times I$ на допустимі та недопустимі блоки. Тривіальним поділом був би $\mathcal{P} := \{(i,j)|i\in I,j\in I\}$, де є тільки блоки розмірності 1×1 , ранг рівний 1. В цьому випадку, матриця G є ідентичною до G, але в цьому випадку ми не апроксимуємо матрицю у великих підблоках матрицями низького рангу.

3.4 Одновимірний випадок побудови блочного кластерного дерева

3.4.1 Приклад побудови кластерного дерева

В одновимірному випадку кластерне деревр - збалансоване бінарне дерево.

Приклад. Одновимірний випадок.

Як корінь дерева \mathbb{T}_I беремо множину індексів $I_0^{(0)} = \{0,...,n-1\}$. Для легкості презентації припустимо, що кількість базисних функцій n є степенем 2:

$$n=2^p$$

Розглядаємо випадок, коли p=3.Починаючи з кореня, де тільки один кластер, це дерево конструюється шляхом поділу кожної множини індексів $I_i^{(j)}$ на два нащадки $I_{2i}^{(j+1)}$ і $I_{2i+1}^{(j+1)}$ при $0\leq i,j\leq p$. Нарешті на рівні p всі кластери (вузли) є листками,

наприклад $\mathcal{L}(\mathbb{T}) = \{I_i^{(3)}\}_{i=0}^7$. Кожен вузол (окрім листків) отриманого дерева матиме рівно два нашадки:

рівно два нащадки: Два нащадки $I_0^{(0)}\colon I_0^{(1)}=\{0,...,\frac{n}{2}-1\}$ і $I_1^{(1)}=\{\frac{n}{2},...,n-1\}.$ Два нащадки $I_0^{(1)}\colon I_0^{(2)}=\{0,...,\frac{n}{4}-1\}$ і $I_1^{(2)}=\{\frac{n}{4},...,\frac{n}{2}-1\}.$ Два нащадки $I_1^{(1)}\colon I_2^{(2)}=\{\frac{n}{2},...,\frac{3n}{4}-1\}$ і $I_3^{(2)}=\{\frac{3n}{4},...,n-1\}.$

З практичної точки зору, \mathbb{T}_I зазвичай є бінарним деревом. Висота бінарного дерева $\approx \log(n)$, а отже складність побудови cluster tree - $O(n\log(n))$.

Рис. 3.1: Кластерне дерево при р=3.

3.4.2 Умова допустимості

В подальшому для одновимірної проблеми ми будемо використовувати стандартну умову допустимості в такому вигляді

$$diam(\tau) \leq dist(\tau,\sigma)$$

3.5 Приклад побудови блочного кластерного дерева.

Кроки побудови блочного кластерного дерева при р=3:

1. Коренем дерева є блок $\{0,1,2,3,4,5,6,7\} \times \{0,1,2,3,4,5,6,7\}$, який не задовільняє умову допустимості, тому що відповідною областю до множини індексів $\{0,1,2,3,4,5,6,7\}$ є інтервал [0,1] і

$$diam([0,1]) = 1 \le 0 = dist([0,1],[0,1])$$

2. Чотирьма нащадками кореня в дереві $\mathbb{T}_{I \times I}$ є

$$\{0,1,2,3\} \times \{0,1,2,3\}, \quad \{0,1,2,3\} \times \{4,5,6,7\},$$

$${4,5,6,7} \times {0,1,2,3}, \quad {4,5,6,7} \times {4,5,6,7}.$$

Жоден з них не задовільняє умову допустимості.

3. Після подальшого поділу, отримуємо такі блоки:

$$\{0,1\} \times \{0,1\}, \quad \{0,1\} \times \{2,3\}, \quad \{0,1\} \times \{4,5\}, \quad \{0,1\} \times \{6,7\},$$

$$\{2,3\} \times \{0,1\}, \quad \{2,3\} \times \{2,3\}, \quad \{2,3\} \times \{4,5\}, \quad \{2,3\} \times \{6,7\},$$

$$\{4,5\} \times \{0,1\}, \quad \{4,5\} \times \{2,3\}, \quad \{4,5\} \times \{4,5\}, \quad \{4,5\} \times \{6,7\},$$

$$\{6,7\} \times \{0,1\}, \quad \{6,7\} \times \{2,3\}, \quad \{6,7\} \times \{4,5\}, \quad \{6,7\} \times \{6,7\}.$$

Деякі з циз вузлів задовольняють умову допустимості, наприклад вузол $\{0,1\} \times \{4,5\}$, тому що відповідною областю $\epsilon \left[0,\frac{1}{4}\right] \times \left[\frac{1}{2},\frac{3}{4}\right]$:

$$diam([0,\frac{1}{4}]) = \frac{1}{4} = dist([0,\frac{1}{4}],[\frac{1}{2},\frac{3}{4}])$$

Вузли на діагоналі не задовольняють умову допустимості (відстань від відповідної області до себе самої рівна нулю) і деякі вузли не на діагоналі (наприклад $\{0,1\} \times \{2,3\}$) не задовольняють умову допустимості.

4. Нащадками цих вузлів ϵ $\{(i,j)\}$ для індексів i,j. Кінцева структура буде:

Аналогічно можна побудувати блочного кластерного дерева для p=4 чи p=5.

3.6 Побудова матриці

Ієрархічна матриця розкладається на допустимі і недопустимі листки дерева $\mathbb{T}_{I \times I}$. Для них створені два підкласи, опрацювання яких різниться.

3.6.1 Недопустимі листки

В недопустимих, але малих блоках $t \times s \subset I \times I$ обчислюємо елементи матриці (i,j) за формулою

$$\tilde{G}_{ij} := \int_0^1 \int_0^1 \varphi_i(x) \ln|x - y| \varphi_j(y) dy dx$$
$$= \int_{i/n}^{(i+1)/n} \int_{j/n}^{(j+1)/n} \ln|x - y| dy dx$$

Означення 3.1 (репрезентація fullmatrix) Кажуть, що матриця M розмірності $n \times m$ зберігається у вигляді fullmatrix, якщо її елементи M_{ij} зберігаються як дійсні числа у масиві довжиною тп в стовпцевому порядку

$$M_{11}, \ldots, M_{n1}, M_{12}, \ldots, M_{n2}, \ldots, M_{1m}, \ldots, M_{nm}$$

Порядок елементів матриці в репрезентації fullmatrix є таким самим, як і в стандартних пакетах лінійної алгебри (MATLAB,BLAS,LAPACK тощо).

Реалізація на мові програмування Kotlin:

```
data class Fullmatrix(
  var rows:Int=0,
  var cols:Int=0,
  var e:Array<DoubleArray> = Array(rows){DoubleArray(cols)})
```

3.6.2 Допустимі листки

В допустимих блоках $t \times s \subset I \times I$ з відповідними областями $[a,b] \times [c,d]$ і $x_0 := (a+b)/2$ обчислюємо відповідну матрицю у факторизованій формі

$$\begin{split} \tilde{G}|_{t\times s} &:= AB^\top \\ A_{iv} &:= \int_{i/n}^{(i+1)/n} (x-x_0)^v dx \\ B_{jv} &:= \begin{cases} (-1)^{v+1} v^{-1} \int_{j/n}^{(j+1)/n} (x_0-y)^{-v} dy, & \text{якщо } v>0 \\ \int_{j/n}^{(j+1)/n} \ln|x_0-y| dy, & \text{якщо } v=0 \end{cases} \end{split}$$

Підходящою репрезентацією для відповідної матриці $\tilde{G}|_{t\times s}$ є формат rkmatrix наведений нище.

Означення 3.2 (репрезентація rkmatrix) Кажуть, що матриця M розмірності $n \times m$ найбільшого рангу k зберігається у вигляді rkmatrix, якщо вона зберігається у факторизованій формі $M = AB^{\top}$, де обидві матриці $A \in \mathbb{R}^{n \times k}$ і $B \in \mathbb{R}^{m \times k}$ зберігаються як масиви (в стовпцевому порядку).

Реалізація на мові програмування Kotlin:

```
data class Rkmatrix(
    val k:Int,val rows:Int,val cols:Int,
    var a:Array<DoubleArray> = Array(rows){
        DoubleArray(k)
    },
    var b:Array<DoubleArray> = Array(cols){
        DoubleArray(k)
})
```

3.6.3 Репрезентація ієрархічної матриці

Означення 3.3 (репрезентація \mathcal{H} -матриці) Нехай $\mathbb{T}_{I \times I}$ - блочне кластерне дерево над множиною індексів I. Кажуть, що матриця $M \in \mathcal{H}(\mathbb{T}_{I \times I}, k)$ зберігається в \mathcal{H} -татгіх репрезентації, якщо підматриці, що відповідають недопустимим листкам, зберігаються у вигляді fullmatrix, а ті, що відповідають допустимим листкам - у вигляді rkmatrix.

Однією можливою реалізацією \mathcal{H} -тактіх репрезентації є зберігання допустимих і недопустимих блоків матриці в списку. Збірка і множення матриці на вектор робиться для кожного блоку окремо. Проте, ми використаємо іншу реалізацію, яка базується на структурі block cluster tree $\mathbb{T}_{I\times I}$ (не тільки на листках) і таким чином зберігає матрицю у більш структурованому вигляді.

Кожен блок $t \times s$ в дереві $\mathbb{T}_{I \times I}$ може бути

• листком - тоді відповідний блок матриці представлений у вигляді fullmatrix або rkmatrix.

• не листком - тоді блок $t \times s$ розкладають на його синів $t' \times s'$ з $t' \in S(t)$ та $s' \in S(s)$. Це означає матриця, що відповідає блоку $t \times s$ – supermatrix і вона складається з підматриць, що відповідають блоку $t' \times s'$.

Реалізація на мові програмування Kotlin:

data class Supermatrix(var rows:Int = 0, var cols:Int = 0,
 var blockrows:Int=0, var blockcols:Int =0,
 var rkmatrix:Rkmatrix?=null,
 var fullmatrix: Fullmatrix?=null,
 var supermatrix: Array<Array<Supermatrix>>?=null)

 $M \in \mathbb{R}^{rows \times cols}$

Матриця може бути

• rkmatrix - тоді

$$r \neq null, \quad f = null, \quad s = null$$

Матриця r - це репрезентація rkmatrix матриці M.

• fullmatrix - тоді

$$r = null, \quad f \neq null, \quad s = null$$

Матриця f - це репрезентація fullmatrix матриці M.

• supermatrix - тоді

$$r = null, \quad f = null, \quad s \neq null$$

Матриця s містить вказівники на підматриці $M_{i,j}$:

$$\begin{pmatrix} M_{1,1} & \dots & M_{1,blockcols} \\ \vdots & \ddots & \vdots \\ M_{blockrows,1} & \dots & M_{blockrows,blockcols} \end{pmatrix}$$

в порядку

$$M_{1,1}, \ldots, M_{blockrows,1}, M_{1,2}, \ldots, M_{blockrows,2}, \ldots, M_{1,blockcols}, \ldots, M_{blockrows,blockcols}$$

Реалізацією \mathcal{H} -матриці є дерево з вузлами, що реалізовані як supermatrix. На додаток, структура таж сама, що і в блочному кластерному дереві $\mathbb{T}_{I\times I}$ (нащадки \equiv підматриці) і підматриці, що відповідають допустимим та недопустимим листкам, зберігаються в форматі rkmatrix і fullmatrix.

3.7 Розпис інтегралів

Для заповнення \mathcal{H} -матриці потрібно обчислити інтеграли. Для цього будемо застосовувати наступні формули, отримані за правилом інтегрування чистинами:

$$\int \log(x)dx = x\log(x) - \int 1dx = x\log(x) - x$$

$$\int x\log(x)dx = \int \log(x)d\left(\frac{x^2}{2}\right) = \frac{x^2\log(x)}{2} - \int \frac{x}{2}dx = \frac{x^2\log(x)}{2} - \frac{x^2}{4} = \frac{1}{4}x^2(2\log(x) - 1)$$

$$\int x\log(x)dx = \frac{1}{4}x^2(2\log(x) - 1)$$
(3.1)

3.7.1 Допустимі блоки

Для заповнення матриці A:

$$\int_{a}^{b} (x - x_0)^{v} dx = \frac{(x - x_0)^{v+1}}{v+1} \bigg|_{a}^{b}$$

Для заповнення матриці B при v > 0:

$$\int_{a}^{b} (x_0 - y)^{-v} dy = -\frac{(x_0 - y)^{-v+1}}{-v+1} \bigg|_{a}^{b}$$

У випадку $v \leq 0$ розглядаємо два випадки для того, щоб розкрити модуль

$$\int_{a}^{b} \log|x_{0} - y| dy = \begin{cases} \int_{a}^{b} \log(x_{0} - y) dy, & \text{якщо } y \leq x_{0} \\ \int_{a}^{b} \log(y - x_{0}) dy, & \text{якщо } y > x_{0} \end{cases}$$

До отриманих інтегралів застосовуємо (3.1).

3.7.2 Недопустимі блоки

Для розв'язання інтегралів можемо розглянути два методи.

- ullet 3 огляду на розташування інтервалів [a,b] і [c,d] розкриваємо інтеграли.
 - \bullet a = b

$$\int_{a}^{b} \int_{a}^{b} \log|x - y| dy dx = \int_{a}^{b} \left\{ \int_{a}^{x} \log(x - y) dy + \int_{x}^{b} \log(y - x) dy \right\} dx =$$

$$\int_{a}^{b} \left\{ \left(-(x - y) \log(x - y) + (x - y) \right) \Big|_{y = a}^{y = x} + \left((y - x) \log(y - x) - (y - x) \right) \Big|_{y = x}^{y = b} \right\} dx =$$

$$\int_{a}^{b} \left\{ (x - a) \log(x - a) - x + a + (b - x) \log(b - x) - b + x \right\} dx =$$

$$\int_{a}^{b} \left\{ (x-a)\log(x-a) + (b-x)\log(b-x) + a - b \right\} dx =$$

$$\left(\frac{1}{4}(x-a)^{2} \left(2\log(x-a) - 1 \right) - \frac{1}{4}(b-x)^{2} \left(2\log(b-x) - 1 \right) + ax - bx \right) \Big|_{x=a}^{x=b} =$$

$$\frac{1}{4}(b-a)^{2} \left(2\log(b-a) - 1 \right) + ab - b^{2} + \frac{1}{4}(b-a)^{2} \left(2\log(b-a) - 1 \right) - a^{2} + ab =$$

$$\frac{1}{2}(b-a)^{2} \left(2\log(b-a) - 1 \right) - (b-a)^{2} =$$

$$(b-a)^{2} \log(b-a) - \frac{3(b-a)^{2}}{2}$$

• a < 0

$$\int_{a}^{b} \int_{c}^{d} \log |x - y| dy dx = \int_{a}^{b} \int_{c}^{d} \log(y - x) dy dx =$$

$$\int_{a}^{b} \left\{ ((y - x) \log(y - x) - y + x) \Big|_{y = c}^{y = d} \right\} dx =$$

$$\int_{a}^{b} \left\{ (d - x) \log(d - x) - d + x - (c - x) \log(c - x) + c - x \right\} dx =$$

$$\int_{a}^{b} \left\{ (d - x) \log(d - x) - (c - x) \log(c - x) + c - d \right\} dx =$$

$$\left(-\frac{1}{4} (d - x)^{2} \left(2 \log(d - x) - 1 \right) + \frac{1}{4} (c - x)^{2} \left(2 \log(c - x) - 1 \right) + cx - dx \right) \Big|_{x = a}^{x = b} =$$

$$-\frac{1}{4} (d - b)^{2} \left(2 \log(d - b) - 1 \right) + \frac{1}{4} (c - b)^{2} \left(2 \log(c - b) - 1 \right) + \frac{1}{4} (d - a)^{2} \left(2 \log(d - a) - 1 \right)$$

$$-\frac{1}{4} (c - a)^{2} \left(2 \log(c - a) - 1 \right) + cb - db - ca + da$$

• a > c

$$\int_{a}^{b} \int_{c}^{d} \log|x - y| dy dx = \int_{a}^{b} \int_{c}^{d} \log(x - y) dy dx =$$

$$\int_{a}^{b} \left\{ \left(-(x - y) \log(x - y) + x - y \right) \Big|_{y = c}^{y = d} \right\} dx =$$

$$\int_{a}^{b} \left\{ -(x - d) \log(x - d) + (x - c) \log(x - c) + c - d \right\} dx =$$

$$\left(-\frac{1}{4}(x - d)^{2} \left(2\log(x - d) - 1 \right) + \frac{1}{4}(x - c)^{2} \left(2\log(x - c) - 1 \right) + cx - dx \right) \Big|_{x = a}^{x = b} =$$

$$-\frac{1}{4}(b - d)^{2} \left(2\log(b - d) - 1 \right) + \frac{1}{4}(b - c)^{2} \left(2\log(b - c) - 1 \right) + \frac{1}{4}(a - d)^{2} \left(2\log(a - d) - 1 \right)$$

$$-\frac{1}{4}(a - c)^{2} \left(2\log(a - c) - 1 \right) + cb - db - ca + da$$

- Застосовуємо формулу інтегрування частинами

$$\int_{a}^{b} \int_{c}^{d} \log |x - y| dy dx = \int_{a}^{b} \mathcal{F}(x) dx$$

$$\int \log |y - x| dy = \left[u = y - x \to dy = du \right] = \int \log |u| du$$

Застосовуємо інтегрування частинами $\int fg' = fg - \int f'g$, де $f = \log |u|, g' = 1$.

$$\int \log |u| du = u \log |u| - \int 1 du = u \log |u| - u = (y - x) \log |y - x| - y + x + C$$

$$\mathcal{F}(x) = \left((y - x) (\log (|y - x|) - 1) \right) \Big|_{y=c}^{y=d} = (d - x) (\log |d - x| - 1) + (x - c) \log |x - c| - d + c$$

Аналогічно до виведення (3.2) можна розписати отримані інтеграли

$$\int_{a}^{b} \mathcal{F}(x)dx = \int_{a}^{b} \left\{ (d-x) \left(\log|d-x|-1 \right) + (x-c) \log|x-c|-d+c \right\} dx = \left(-\frac{(x-d)^{2} \left(2\ln\left(|x-d|\right) - 1 \right)}{4} + \frac{(x-c)^{2} \left(2\ln\left(|x-c|\right) - 1 \right)}{4} - dx + cx \right) \Big|_{a}^{b}$$

3.8 Метод спряжених градієнтів

Метод спряжених градієнтів (conjugate gradient method) - це найпопулярніший ітеративний метод для розв'язування великих систем лінійних рівнянь. Такі ітеративні методи добре підходять, коли розглядають розріджені матриці. Метод спряжених градієнтів є ефективним для систем у вигляді

$$Ax = b$$

де х-невідомий вектор

b - відомий вектор

A - відома, квадратна, симетрична, додатньо визначена матриця.

Ці системи виникають у багатьох задачах, таких як скінченна різниця і метод скінченних елементів для розв'язання диференціальних рівняння з частинними похідними.

Цей метод випливає з того, що x_* (розв'язок системи) мінімізує єдиним чином квадратичну функцію

$$f(x) = \frac{1}{2}x^{\top}Ax - x^{\top}b, x \in \mathbb{R}^n$$

Метод спряжених градієнтів вимагає від матриці тільки можливості помножити її на вектор, що дає можливість застосовувати спеціальні формати зберігання матриці.

Algorithm 2 Алгоритм методу спряжених градієнтів

```
r_0 := b - Ax p_0 := r_0 k := 0 while true do \alpha_k := \frac{r_k^T r_k}{p_k^T A p_k} x_{k+1} := x_k + \alpha_k p_k r_{k+1} := r_k - \alpha_k A p_k if r_{k+1} достатньо мале then вийти з циклу end if \beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} p_{k+1} := r_{k+1} + \beta_k p_k k := k+1 end while результатом є x_{k+1}
```

3.9 Чисельні експерименти

В усіх наведених експериментах, розглядаємо випадок $n_{min}=2k$.

3.9.1 Приклад 1

Розглядаємо рівняння

$$\int_0^1 \log|x - y|u(y)dy = x \log|x| + (1 - x) \log|1 - x| - 1$$

Враховуючи $\frac{d(|x|)}{dx} = \frac{x}{|x|}$ і застосувавши формулу похідної від добутку, можемо показати що точний розв'язок $u^*(x) = 1$:

$$\int \log|x - y| dy = (y - x) \left(\log|y - x| - 1 \right)$$

$$\frac{d}{dy} \left((y - x) \left(\log|y - x| - 1 \right) \right) = \log|y - x| - 1 + (y - x) \frac{1}{|y - x|} \frac{(y - x)}{|y - x|} = \log|y - x|$$

3.9.2 Приклад 2

Розглядаємо рівняння

$$\int_0^1 \log|x - y|u(y)dy = \frac{2x^2 \log|x| - 2\log|x - 1|(x^2 - 1) - 2x - 1}{4}$$

Точний розв'язок даного рівняння має вигляд $u^*(x) = x$

n k	1	$\frac{n}{4}$	$\frac{n}{2}$	$\frac{3n}{4}$	n
4	8.881784E-16	8.881784E-16	8.8818E-16	8.8818E-16	8.8818E-16
16	1.99770E-6	2.02060 E-14	2.020606E-14	2.020606E-14	2.042810E-14
64	1.9708842E-5	4.993783E-13	4.9938E-13	4.993783E-13	5.140338E-13
256	7.34135E-5	1.18067E-11	1.18067E-11	1.18067E-11	1.176681E-11
1024	2.3177027E-4	2.04782E-10	1.98478E-10	1.9847878E-10	2.00121E-10

Табл. 3.1: Похибки при різних n і n_{min}

n k	1	$\frac{n}{4}$	$\frac{n}{2}$	$\frac{3n}{4}$	n
4	0.142393	0.142393	0.1423937	0.1423937	0.1423937
16	0.035737	0.0357365	0.0357365	0.0357365	0.0357365
64	0.00894708	0.00894237	0.00894237	0.00894237	0.00894237
256	0.0022506	0.00223609	0.00223609	0.00223609	0.00223609
1024	7.7118E-4	5.590532E-4	5.59053E-4	5.59053E-4	5.5905321665E-4

Табл. 3.2: Похибки при різних n і k

3.9.3 Приклад 3

Розглядаємо рівняння

$$\int_0^1 \log|x - y| u(y) dy = -(y - 1) y (x - y) (\ln(|x - y|) - 1)$$

Точний розв'язок даного рівняння має вигляд $u^*(x) = x(1-x)$

n k	1	$\frac{n}{4}$	$\frac{n}{2}$	$\frac{3n}{4}$	n
4	0.09689281	0.09689281	0.09689281	0.09689281	0.09689281
16	0.03246286	0.032463147	0.032463147	0.03246314722	0.03246314722
64	0.00873409	0.008736689	0.008736689	0.008736689	0.008736689
256	0.002215192	0.0022232	0.0022232	00.0022232047	0.00222320
1024	5.40425E-4	5.58247E-4	5.58247E-4	5.582473E-4	5.582473E-4

Табл. 3.3: Похибки при різних n і k

4. Розв'язання задачі Діріхле для рівняння Лапласа на площині

В попередньому розділі, ми розглядали одновимірний випадок побудови ієрархічної матриці. Тепер проаналізуємо багатовимірний випадок і розглянемо розв'язання задачі Діріхле для рівняння Лапласа методом граничних елементів в \mathbb{R}^2 .

Розширення на *п*-вимірний випадок вимагає зміни методу побудови кластерного дерева. Зокрема для побудови багатовимірного кластерного дерева застосовуємо метод бісекцій. Також розширюємо умову допустимості.

4.1 Геометрична бісекція

Для побудови багатовимірного кластерного дерева для заданої множини базисних функцій використовуємо метод геометричної бісекції.

Складність геометричних операцій для їєрархічної матриці напряму пов'язана з кількістю листків блочного кластерного дерева, тому кластерне дерево повинне забезпечувати, що блоки стають допустимими якомога швидше. Допустимість блоку залежить від діаметрів носіїв базисних функцій і від відстаней між ними. Ми можемо спробувати вибрати кластерне дерево таким чином, щоб діаметри зменшувалися швидко.

Для кожного $i \in I$ позначаємо носій відповідної базисної функції φ_i як $\Omega_i := supp(\varphi_i)$. Оскільки працювати з носіями функцій буде важко, ми вибираємо точку $x_i \in \Omega_i$ для кожного індекса $i \in I$ і надалі працюємо з цими точками.

Побудова кластерного дерева починається з повної множини індексів I, яка є коренем кластерного дерева. Тоді ми застосовуємо відповідну техніку для знаходження непересічного поділу множини індексів і застосовуємо цей поділ для побудови дочірніх кластерів. Цю процедуру застосовуємо рекурсивно до до всіх синів доки множини індексів не є достатньо малими.

Ми хочемо поділити множину індексів $\hat{t} \in I$, що відповідає кластеру t. Для кожного індекса $i \in \hat{t}$, що відповідає точці $x_i \in \mathbb{R}^n$ можемо визначити

$$a_l := \min\{(x_i)_l : i \in \hat{t}\}\$$

$$b_l := \max\{(x_i)_l : i \in \hat{t}\}$$

для кожного $l \in \{1, ..., n\}$.

Таким чином всі точки знаходяться в паралельній осі коробці $[a_1, b_1] \times ... \times [a_n, b_n]$. Тепер є вибір: ми можемо розділити коробку в усіх напрямках координат одночасно (отримуємо 2^n підмножини) або ми можемо вибрати координатний напрямок

найбільшої відстані і поділити коробку перпендикулярно до цього напрямку на дві підмножини.

При першому підході, ми отримуємо, що діаметри субдомейнів поділені навпіл. Але це призводить до маленької кількості кластерів, а отже ми отримуємо маленьку кількість кандидатів, з яких будемо обирати при побудові поділу блоків.

Другий підхід прзводить до побудови дерева з великою кількістю кластерів. Недоліком є те, що діаметри кластерів будуть збільшуватися в $\sqrt{1-\frac{3}{4n}}$ разів після одного кроку процедури. Водночає виконання n кроків дасть нам 2^n кластерів з діаметрами, поділеними навпіл, точно як і в першому підході.

4.2 Обмежувальні коробки

Перевіряти умову допустимості для всієї області визначення може звбирати велику кількість ресурсів, ому ми шукаємо спрощену умову. Традиційним способом є визначення кіл (в 2D) або сфер(3D) Чебишева для області визначення, оскільки діаметри і відстані між колами і сферами може бути порахована зі складністю O(1). Однак ми застосовуємо простішу техніку: коробки, паралельні осям.

Для кожного кластера $t \in \mathbb{T}_I$ визначаємо коробку паралельну осям $Q_t \subseteq \mathbb{R}^n$ так що виконується $\Omega_t \subseteq Q_t$. Цю коробку назвемо обмежувальною коробкою кластера t.

Замінюючи області визначення Ω_t s Ω_s в загальній умові допустимості більшими коробками Q_t і Q_s , ми отримуємо наступну умову допустимості $max(diam(Q_t), diam(Q_s)) \leq \eta \cdot dist(Q_t, Q_s)$

Якщо $Q_t = [a_1, b_1] \times ... \times [a_n, b_n]$ і $Q_s = [c_1, d_1] \times ... \times [c_n, d_n]$, то діаметр і відстань рахуємо за наступними формулами

$$diam(Q_t) = \left(\sum_{l=1}^{n} (b_l - a_l)^2\right)^{\frac{1}{2}}$$
$$diam(Q_s) = \left(\sum_{l=1}^{n} (d_l - c_l)^2\right)^{\frac{1}{2}}$$
$$dist(Q_t, Q_s) = \left(\sum_{l=1}^{n} dist([a_l, b_l], [c_l, d_l])^2\right)^{\frac{1}{2}}$$

Ці величини можна порахувати зі складністю O(1).

4.3 Інтерполяція

4.3.1 Вироджене наближення

В попередньому розділі для розкладу ядра використовувався розклад Тейлора. Тепер будемо використовувати інтерполяцію для побудови апроксимації:

- ullet $(x_v)_{v\in K}$ множина інтерполяційних точок в \mathbb{R}^n
- $(\mathcal{L}_v)_{v \in K}$ відповідна функція Лагранжа, для якої виконується

$$\mathcal{L}_v(x_\mu) = \sigma_{v,\mu}$$

для всіх $v, \mu \in K$.

Внаслідок інтерпрляції отримуємо

$$\tilde{g}(x,y) := \sum_{v \in K} g(x_v, y) \mathcal{L}_v(x)$$

Використовуючи цю апроксимацію матрицю G замінюємо на матрицю \hat{G} , визначену наступним чином

$$\tilde{G}_{ij} = \int_{\Omega} \varphi_i(x) \int_{\Omega} \tilde{g}(x, y) \varphi_j(y) dy dx = \sum_{v \in K} \int_{\Omega} \varphi_i(x) \mathcal{L}_v(x) dx \int_{\Omega} \varphi_j(y) g(x_v, y) dy = (AB^{\top})_{ij}$$

де відповідні матриці визначені наступним чином

$$A_{iv} := \int_{\Omega} \varphi_i(x) \mathcal{L}_v(x) dx$$

$$B_{jv} := \int_{\Omega} \varphi_j(x) \tilde{g}(x_v, y) dy$$

Очевидно, що ранг матриці $\tilde{G} = AB^{\top}$ обмежений числом K, тож ми знайшли альтернативний метод для обчислення низькорівневих апроксимацій.

4.3.2 Апроксимація тензорним добутком на обмежувальних коробках

Потрібно знайти множину інтерполяційних точок і відповідну множину функцій Лагранжа для кожного кластера $t \in \mathbb{T}_I$, такі що похибка апроксимації відповідної області визначення Ω_t є достатньо малою.

Застосовуємо наступне спрощення: замість наближення функції ядра на загальній підмножині $\Omega_t \in \mathbb{R}^n$, ми апроксимуємо її на обмежувальній коробці $Q_t \supseteq \Omega_t$.

Оскільки обмежувальна коробка Q_t є тензорним добутком інтервалів, застосовуємо інтерполяцію на інтервалах. Для інтервала [-1,1], хорошим вибором є точки Чебишева m-того порядку

$$(x_v)_{v=0}^m = \left(\cos\left(\frac{2v+1}{2m+2}\pi\right)\right)_{v=0}^m$$

Поліноми Лагранжа мають вигляд

$$\mathcal{L}_v(x) = \prod_{\mu=0, \mu \neq v}^m \frac{x - x_\mu}{x_v - x_\mu}$$

Відповідний інтерполяційний оператор задається наступним чином

$$\mathcal{J}_m: C[-1,1] \to \mathcal{P}_m$$

$$f \mapsto \sum_{v=0}^{m} f(x_v) \mathcal{L}_v$$

Для того, щоб отримати інтерполяційний оператор для непорожнього інтервалу [a,b], ми використовуємо афінні трансформацію

$$\Phi_{[a,b]}: [-1,1] \to [a,b]$$

$$x \mapsto \frac{b+a}{2} + \frac{b-a}{2}x$$

і визначаємо трансформований інтерполяційний оператор $\mathcal{J}_m^{[a,b]}:C[a,b] o\mathcal{P}_m$ як

$$\mathcal{J}_{m}^{[a,b]}[f] := (\mathcal{J}_{m}[f \circ \Phi_{[a,b]}]) \circ \Phi_{[a,b]}^{-1} = \sum_{v=0}^{m} f(\Phi_{[a,b]}(x_{v})) \mathcal{L}_{v} \circ \Phi_{[a,b]}^{-1}$$

Визначаємо трансформовані інтерполяційні точки

$$x_v^{[a,b]} := \Phi_{[a,b]}(x_v) = \frac{b+a}{2} + \frac{b-a}{2}x_v$$

і відповідні функції Лагранжа

$$\mathcal{L}_v^{[a,b]} := \mathcal{L}_v \circ \Phi_{[a,b]}^{-1}$$

Зазначимо, що

$$\mathcal{L}_{v}^{[a,b]}(x_{\mu}^{[a,b]}) = \mathcal{L}_{v} \circ \Phi_{[a,b]}^{-1}(\Phi_{[a,b]}(x_{\mu})) = \mathcal{L}_{v}(x_{\mu}) = \sigma_{v\mu}$$

правдиве для всіх $v, \mu \in \{0, ..., m\}$. Звідси отримуємо, що

$$\mathcal{L}_{v}^{[a,b]}(x) = \prod_{\mu=0, \mu \neq v}^{m} \frac{x - x_{\mu}^{[a,b]}}{x_{v}^{[a,b]} - x_{\mu}^{[a,b]}}$$

В п-вимірному випадку, областю визначення інтерполяції є обмежувальна коробка, паралельна до осей $Q_t = [a_1, b_1] \times ... \times [a_n, b_n]$. Оскільки область визначення має структуру тензорного добутку, напряму використовуємо інтерполяцію тензорним добутком, тобто визначаємо

$$\mathbb{J}_m^t := \mathcal{J}_m^{[a_1,b_1]} \otimes ... \otimes \mathcal{J}_m^{[a_n,b_n]}$$

Визначаємо

• множину мультиіндексів

$$K := \{v \in \mathbb{N}_0^n : v_i \le m \text{ для всіх } i \in \{1, ..., d\}\} = \{0, ...m\}^n$$

• відповідні точки інтерполяції

$$x_v^t := (x_{v_1}^{[a_1,b_1]}, ..., x_{v_n}^{[a_n,b_n]})$$

• поліноми Лагранжа

$$\mathcal{L}_v^t := \mathcal{L}_{v_1}^{[a_1,b_1]} \otimes ... \otimes \mathcal{L}_{v_n}^{[a_n,b_n]}$$

Тепер ми можемо визначити \mathcal{J}_m^t в знайомій формі

$$\mathcal{J}_m^t[f](x) = \sum_{v \in K} f(x_v^t) \mathcal{L}_v^t(x)$$

Оцінити \mathcal{L}_{v}^{t} досить просто

$$\mathcal{L}_{v}^{t}(x) = \left(\mathcal{L}_{v_{1}}^{[a_{1},b_{1}]} \otimes \ldots \otimes \mathcal{L}_{v_{n}}^{[a_{n},b_{n}]}\right)(x) = \prod_{i=1}^{n} \mathcal{L}_{v_{i}}^{[a_{i},b_{i}]}(x_{i}) = \prod_{i=1}^{n} \prod_{\mu=0, \mu \neq v_{i}}^{m} \frac{x_{i} - x_{\mu}^{[a_{i},b_{i}]}}{x_{v_{i}}^{[a_{i},b_{i}]} - x_{\mu}^{[a_{i},b_{i}]}}$$

4.3.3 Побудова апроксимації низького рангу

Розглянемо допустиму пару кластерів (t,s). Допустимість каже, що виконується наступна умова

$$\min\{diam(Q_T), diam(Q_s) \le \nu dist(Q_t, Q_s)\}$$

Якщо $diam(Q_t) \leq diam(Q_s)$, то ми застосовуємо інтерполяцію до першого аргумента функції ядра. Відповідний блок матриці має вигляд $(AB)^{\top}$, і ми обчислюємо матриці $A^{t,s}$ та $B^{t,s}$ наступним чином

$$A_{iv}^{t,s} = \int_{\Omega} \varphi_i(x) \mathcal{L}_v^t(x) dx$$

$$B_{jv}^{t,s} = \int_{\Omega} \varphi_j(y) g(x_v^t, y) dy$$

де x_v^t і \mathcal{L}_v^t - перетворені інтерполяційні точки і поліноми Лагранжа відповідно.

Якщо $diam(Q_s) \leq diam(Q_t)$, то ми застосовуємо інтерполяцію до другого аргумента функції ядра і обчислюємо матриці $A^{t,s}$ та $B^{t,s}$:

$$A_{iv}^{t,s} = \int_{\Omega} \varphi_i(x) g(x, x_v^s) dx$$

$$B_{jv}^{t,s} = \int_{\Omega} \varphi_j(y) \mathcal{L}_v^s(y) dy$$

4.4 Внутрішня задача Діріхле

Нехай $\Omega \subset \mathbb{R}^2$ - обмежена однозв'язна область з границею $\Gamma \subset C^2$.

Знайти функцію u, яка гармоніча в Ω , неперервна в $\bar{\Omega}$ і задовольняє граничну умову

$$u=f$$
 на Γ

де f - задана неперервна функція.

1

Знайти $u \in C^2(\Omega) \cap C(\bar{\Omega})$:

$$\triangle u = 0$$
 в Ω

$$u=f$$
 на Γ

де $f \in C(\Gamma)$ - задана.

Фундаментальний розв'язок рівняння Лапласа при $\Omega \in \mathbb{R}^2$ має вигляд

$$\Phi(x,y) = \frac{1}{2\pi} \log \frac{1}{|x-y|} = -\frac{1}{2\pi} \log(|x-y|)$$

Нас цікавить проблема граничного інтегралу, тобто множина Ω буде підмноговидом. В нашому випадку, Ω є одновимірним підмноговидом \mathbb{R}^2 тобто є кривою.

4.4.1 Потенціал простого шару

Означення 4.1 Вважаємо, що задано $\varphi \in C(\Gamma)$. Функція

$$u(x) = \int_{\Gamma} \varphi(y) \Phi(x, y) ds(y), x \notin \Gamma$$

називається потенціалом простого шару.

Зафіксуємо n точок $p_0,...p_{n-1} \in \mathbb{R}^2$ і нехай $p_0 := p_n$. Означимо афінну параметризацію

$$\gamma_i : [0,1] \to \mathbb{R}^2$$
$$y \mapsto p_{i-1}(1-y) + p_i y$$

для $i \in \{1,...,n\}.$

Нехай для всіх $i,j\in\{0,...,n-1\}$ з $i\neq j$ виконується $p_i\neq p_j$. Тепер можемо визначити багатокутну криву

$$\Gamma := \bigcup_{i=1}^{m} \gamma_i([0,1])$$

На кривій Γ , можемо означити оператор потенціалу простого шару

$$\Upsilon_{slp}[u](x) := -\frac{1}{2\pi} \int_{\Gamma} \log(\|x - y\|) u(y) dy$$

і відповідну білінійну форму

$$a_{slp}(u,v) := -\frac{1}{2\pi} \int_{\Gamma} v(x) \int_{\Gamma} \log(\|x - y\|) u(y) dy dx$$

Дискретизуємо $a_{slp}(\cdot,\cdot)$ кусково-постійними функціями $(\varphi_i)_{i=1}^n$ визначинеми як

$$\varphi_i \circ \gamma_j = \delta_{ij}$$

для $i, j \in I := 1, ..., n$.

Коефіцієнти відповідних матриць задаються наступним чином

$$G_{ij} = a_{slp}(\varphi_j, \varphi_i) = -\frac{1}{2\pi} \int_{\Gamma} \varphi_i(x) \int_{\Gamma} \log(\|x - y\|) \varphi_j(y) dy dx$$

$$= -\frac{1}{2\pi} \|p_i - p_{i-1}\| \|p_j - p_{j-1}\| \int_0^1 \int_0^1 \log(\|\gamma_i(x) - \gamma_j(y)\|) dy dx$$

Тепер ми можемо побудувати ієрархічну матрицю так чк в попередньому розділі, замінивши логарифмічне ядро $g(x,y) = \log(\|x-y\|)$ відповідними апроксимаціями.

4.4.2 Реалізація

Опрацювання повних матриць(full matrix) включає детальну оцінку сингулярних інтегралів.

Розглянемо опрацювання низькорівневих блоків. Вони відповідають допустимим парам кластерів (t,s) і вимагає оцінки вироджених наближень функції ядра. Припустимо, що $diam(Q_t) \leq diam(Q_s)$ виконується. Тоді апроксимація має вигляд

$$\tilde{g}(x, y) = \sum_{v \in K} \log(\|x_v^t - y\|) \mathcal{L}_v^t(x)$$

Потрібно обчислити матриці

$$A_{iv}^{(t,s)} = \int_{\Gamma} \varphi_i(x) \mathcal{L}_v^t(x) dx = \|p_i - p_{i-1}\| \int_0^1 \mathcal{L}_v^t(\gamma_i(x)) dx$$

$$B_{jv}^{t,s} = -\frac{1}{2\pi} \int_{\Gamma} \varphi_j(y) \log(\|x_v^t - y\|) dy = -\frac{1}{2\pi} \|p_j - p_{j-1}\| \int_0^1 \log(\|x_v^t - \gamma_j(y)\|) dy$$

Оскільки γ_i є афінними функціями, то перший інтегранд є поліномом степеня m, тому ми можемо застосувати точну квадратуру для їхнього обрахунку.

Для того, щоб виконати обчислення, нам потрібні наступні дані:

- Масив розмірності n, який містить координати точок $(p_i)_{i=0}^{n-1}$.
- масиви хq і wq розмірності q, які містять точки і ваги відповідних квадратур(наприклад Гауса).
- Масив I розмірності р, що містить трансформовані інтерполяційні точки.

Щоб заповнити матрицю $B^{t,s}$ потрібно проінтегрувати функцію ядра для точок x_v^t на інтервалах заданих точками p_{i-1} і p_i . В цьому випадку, це може бути зроблено аналітично. В загальному, ми можемо використовувати ту саму квадратуру, як у випадку інтегрування поліномів Лагранжа.

Висновок

В цій роботі розглянуто основні принципи побудови та використання \mathcal{H} -матриць. Описано такі ключові поняття як дерево, кластерне дерево та блочне кластерне дерево, які лягли в основу означення структури ієрархічної матриці. Також розглянуто відповідні структури через які ієрархічні матриці реалізують програмно: rkmatrix, fullmatrix та supermatrix. Наведено алгоритми реалізації блочного кластерного дерева і методу спряжених градієнтів.

Застосування \mathcal{H} -матриць розглянуто на прикладі методу скінченних елементів (ВЕМ). У даному прикладі застосовується метод Галеркіна та метод спряжених градієнтів. Розглянута теорія побудови \mathcal{H} -матриць для двовимірного випадку на прикладі задачі Діріхле для рівняння Лапласа.

Додатки

1. Побудова кластерного дерева

```
private fun buildRealClusterTree(begin:Int, end:Int, level:Int,
         numberOfLeaf: Int,
         arr:IntArray,nmin:Int):ClusterTree{
       val tree = ClusterTree()
       tree.level = level
       tree.numberOfLeaf = numberOfLeaf
       tree.leaf = (begin..end).toList().toIntArray()
       var m = Math.pow(2.0, level.toDouble()).toInt() - arr[level]
       arr[level]--
       if((end - begin+1) > nmin) {
           tree.leftTree = buildRealClusterTree(begin, (begin + end + 1) / 2 - 1,
                                    level + 1, m, arr,nmin)
           m = Math.pow(2.0, level.toDouble()).toInt() - arr[level]
           arr[level]--
           tree.rightTree = buildRealClusterTree((begin + end + 1) / 2, end,
            level + 1, m, arr,nmin)
       } else{
           tree.leftTree = null
           tree.rightTree = null
       return tree
   }
2. Побудова блочного кластерного дерева
  fun buildBlockClusterTree(t: ClusterTree?, s: ClusterTree?, spr: Supermatrix,
                                   n: Int,k: Int): Supermatrix {
      //admissible -rkmatrix
      val nMin = 2*k
      if (isAdmissible(t, s)) {
          spr.supermatrix = null
          if(t!= null && s!= null)
          spr.rkmatrix = buildRkmatrix(s,t, n,nMin)
          return spr
      } else {
```

```
if (t!= null && t.leaf.size >nMin)
   {
        spr.rows = n
        spr.cols = n
        spr.blockrows = 2
        spr.blockcols = 2
        spr.supermatrix = Array(2){ Array(2){Supermatrix()} }
        spr.supermatrix!![0][0] = buildBlockClusterTree(t.leftTree,
                     s?.leftTree, spr.supermatrix!![0][ 0],n,nMin)
        spr.supermatrix!![0][1] = buildBlockClusterTree(t.rightTree,
                     s?.leftTree, spr.supermatrix!![0][1],n,nMin)
        spr.supermatrix!![1][0] = buildBlockClusterTree(t.leftTree,
                     s?.rightTree,spr.supermatrix!![1][0],n,nMin)
        spr.supermatrix!![1][1] = buildBlockClusterTree(t.rightTree,
                     s?.rightTree,spr.supermatrix!![1][1],n,nMin)
   }else{
        spr.rows = n;
        spr.cols = n;
        spr.supermatrix = null;
        spr.fullmatrix = Fullmatrix()
        spr.fullmatrix!!.cols = s!!.leaf.size
        spr.fullmatrix!!.rows = t!!.leaf.size
        spr.fullmatrix!!.e = Array(spr.fullmatrix!!.rows){
                        DoubleArray(spr.fullmatrix!!.cols)}
        //filling Fullmatrix
        for(i in 0 until spr.fullmatrix!!.rows){
             for (j in 0 until spr.fullmatrix!!.cols)
                spr.fullmatrix!!.e[i][j] = Egtulda(s.leaf[i],t.leaf[j], n)
            }
          }
       return spr
   }
}
```

3. Реалізація алгоритму методу спряжених градієнтів

```
var betak: Double
    var k = 0
    var rsold =0.0
    for( i in 0 until r0.size){
       rsold+=r0[i]*r0[i]
    }
    for(i in 0 until vector.size) {
         val temp2 = BlockClusterTree.MultHMatrixByVector(matrix, p0)
         val temp3 = multiplyVectorByVector(temp2, p0)
         alphak = rsold / temp3
         for (j in 0..(n - 1)) {
             x1[j] = x0[j] + alphak * p0[j]
             r1[j] = r0[j] - alphak * temp2[j]
         }
         var rsnew =0.0
         for( j in 0 until r0.size){
             rsnew+=r1[j]*r1[j]
         }
         if (sqrt(rsnew) < eps)</pre>
              break
         for (j in 0..(n - 1))
              p1[j] = r1[j] + (rsnew / rsold) * p0[j]
           p0 = p1
         r0 = r1
         x0 = x1
         rsold = rsnew
         k++
    }
    return x1
}
```

Бібліоґрафія

- [1] Steffen Börm *Hierarchical Matrices* / Lars Grasedyck, Wolfgang Hackbusch електронний ресурс, 2005. 136 с.
- [2] Mohammad Izadi *Hierarchical Matrix Techniques on Massively Parallel Computers*. Dissertation—K.: Max Planck Institute for Mathematics in the Sciences, 2012.—212 c.
- [3] Нікольський Ю.В. Дискретна математика / Пасічник В.В., Щербина Ю.М.— К.: Видавнича група ВНV,2007.—368 с.
- [4] Wolfgang Hackbusch *Hierarchical Matrices: Algorithms and Analysis*—K.: Springer-Verlag, 2015.—505 c.
- [5] Lin Lin Fast construction of hierarchical matrix representation from matrix-vector multiplication / Jianfeng Lu, Lexing Ying K.: Journal of Computational Physics 230 4071–4087,2011.—17 c.
- [6] Jonathan Richard Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain —K.:School of Computer Science, Pittsburg,PA 15213,1994.—64 c.