第3章

ルート系

この章において,特に断らない限り体 $\mathbb K$ は代数閉体* 1 で,かつ $\mathrm{char}\,\mathbb K=0$ であるとする.また,Lie 代数 $\mathfrak g$ は常に<u>有限次元</u>であるとする.

3.1 公理的方法

Euclid 空間 (Euclid space) とは,

- 体 ℝ 上の有限次元ベクトル空間 ℝ
- 対称かつ正定値な双線型形式 $(,)_{\mathbb{E}}: \mathbb{E} \times \mathbb{E} \longrightarrow \mathbb{R}$

の組 $(\mathbb{E}, (,)_{\mathbb{E}})$ のことを言う*2. Euclid 空間 $(\mathbb{E}, (,)_{\mathbb{E}})$ の任意の元 $\alpha \in \mathbb{E}$ に対して,

• 鏡映面 (reflecting hyperplane)*3

$$P_{\alpha} := \{ \beta \in \mathbb{E} \mid (\beta, \alpha)_{\mathbb{E}} = 0 \} = (\mathbb{R}\alpha)^{\perp}$$

• 鏡映面 P_{α} に関する**鏡映** (reflecting)

$$\sigma_{\boldsymbol{lpha}} \colon \mathbb{E} \longrightarrow \mathbb{E}, \; \beta \longmapsto \beta - 2 \frac{(\beta, \alpha)_{\mathbb{E}}}{(\alpha, \alpha)_{\mathbb{E}}} \alpha$$

を考える.

 $2\frac{(eta, lpha)}{(lpha, lpha)} \in \mathbb{R}$ が頻繁に登場するので,

$$\llbracket \beta, \alpha \rrbracket \coloneqq 2 \frac{(\beta, \, \alpha)_{\mathbb{E}}}{(\alpha, \, \alpha)_{\mathbb{E}}}$$

と略記することにする.写像 $[\![\, , \,]\!]: \mathbb{E} \times \mathbb{E} \longrightarrow \mathbb{R}$ は記号的には内積のように見えるかもしれないが,あくまで第一引数についてのみ線型なのであって,対称でも双線型でもないことに注意.

 $^{^{*1}}$ つまり,定数でない任意の 1 変数多項式 $f(x)\in\mathbb{K}[x]$ に対してある $lpha\in\mathbb{K}$ が存在して f(lpha)=0 を充たす.

^{*2} Euclid 空間と言って位相空間のことを指す場合があるが, そのときは双線型形式 $(\ ,\)_{\mathbb{E}}$ を使って \mathbb{E} 上の距離関数を $d_{\mathbb{E}}$: $\mathbb{E} \times \mathbb{E} \longrightarrow \mathbb{R}_{>0},\ (x,y) \longmapsto (x-y,x-y)_{\mathbb{E}}$ と定義し(これは通常 **Euclid 距離**と呼ばれる), \mathbb{E} に $d_{\mathbb{E}}$ による距離位相を入れる.

^{*3} 余次元 1 の部分 \mathbb{R} -ベクトル空間.最右辺は対称かつ非退化な双線型形式 $(\;,\;)_{\mathbb{E}}$ による直交補空間の意味である.

 σ_{α} は \mathbb{R} -線型でかつ $\forall \beta \in \mathbb{E}$ に対して

$$\sigma_{\alpha} \circ \sigma_{\alpha}(\beta) = (\beta - [\![\beta, \alpha]\!]\alpha) - [\![(\beta - [\![\beta, \alpha]\!]\alpha), \alpha]\!]\alpha$$
$$= \beta - [\![\beta, \alpha]\!]\alpha - [\![\beta, \alpha]\!]\alpha + [\![\beta, \alpha]\!][\![\alpha, \alpha]\!]\alpha$$
$$= \beta - 2[\![\beta, \alpha]\!]\alpha + 2[\![\beta, \alpha]\!]\alpha$$
$$= \beta$$

を充たす, i.e. $\sigma_{\alpha}^{-1} = \sigma_{\alpha}$ なので, $\sigma_{\alpha} \in GL(\mathbb{E})$ である.

補題 3.1.1: 鏡映の特徴付け

Euclid 空間 E と,

- $\mathbb{E} = \operatorname{Span}_{\mathbb{R}} \Phi$
- $\forall \alpha \in \Phi, \ \sigma_{\alpha}(\Phi) = \Phi$

を充たす $\mathbb E$ の有限部分集合 $\Phi \subset \mathbb E$ を与える.

このとき、 $\sigma \in \mathrm{GL}(\mathbb{E})$ が

(RF-1) $\sigma(\Phi) = \Phi$

(RF-2) 余次元 1 の部分ベクトル空間 $P \subset \mathbb{R}$ が存在して, $\forall \beta \in P, \ \sigma(\beta) = \beta$ が成り立つ

(RF-3) $\exists \alpha \in \Phi \setminus \{0\}, \ \sigma(\alpha) = -\alpha$

の 3 条件を満たすならば $\sigma = \sigma_{\alpha}$ (かつ $P = P_{\alpha}$) である.

証明 $\tau := \sigma \circ \sigma_{\alpha} (= \sigma \circ \sigma_{\alpha}^{-1})$ とおき, $\tau = \mathrm{id}_{\mathbb{E}}$ であることを示す.

(RF-1) より $\tau(\Phi) = \Phi$, $\tau(\alpha) = \alpha$ が成り立つので $\tau|_{\mathbb{R}\alpha} = \mathrm{id}_{\mathbb{R}\alpha}$ である. さらに \mathbb{R} -線型写像

$$\overline{\tau} \colon \mathbb{E}/\mathbb{R}\alpha \longrightarrow \mathbb{E}/\mathbb{R}\alpha, \ \beta + \mathbb{R}\alpha \longmapsto \tau(\beta) + \mathbb{R}\alpha$$

は well-defined だが, $(\mathbf{RF-2})$ より $\overline{\tau}=\mathrm{id}_{\mathbb{E}/\mathbb{R}\alpha}$ である.よって τ の固有値は全て 1 であり, τ の最小多項式 f(t) は $(t-1)^{\dim\mathbb{E}}$ の約元である.一方, Φ は有限集合なので, $\forall \beta \in \Phi$ に対してある $k_{\beta} \in \mathbb{N}$ が存在して $\tau^{k_{\beta}}(\beta)=\beta$ を充たす.ここで $k:=\max\{k_{\beta}\mid \beta\in\Phi\}$ とおくと, $(\mathbf{RF-1})$ より $\tau^k=\mathrm{id}_{\mathbb{E}}$ が言える.よって f(t) は t^k-1 の約元でもある.従って, $f(t)=\gcd((t-1)^{\dim\mathbb{E}},t^k-1)=t-1$ だと分かった.故に $\tau=\mathrm{id}_{\mathbb{E}}$ である.

3.1.1 ルート系

前章で与えたルート系の公理を再掲するところから始めよう:

公理 3.1.1: ルート系

- 有限次元 Euclid 空間 (E, (,)_E)
- \mathbb{E} の部分集合 $\Phi \subset \mathbb{E}$

の組 (\mathbb{E}, Φ) が**ルート系** (root system) であるとは、以下の条件を充たすことを言う:

(Root-1) Φ は 0 を含まない有限集合で、かつ $\mathbb{E} = \operatorname{Span}_{\mathbb{R}} \Phi$ を充たす.

(Root-2) $\lambda \alpha \in \Phi \implies \lambda = \pm 1$

(Root-3) $\alpha, \beta \in \Phi \implies \sigma_{\alpha}(\beta) \in \Phi$

(Root-4) $\alpha, \beta \in \Phi \implies [\![\beta, \alpha]\!] \in \mathbb{Z}$

 Φ の元のことを**ルート** (root) と呼ぶ.

本資料の以降では,文脈上直積集合の要素との混同が起きる恐れがないときは Euclid 空間 $\left(\mathbb{E}, (\,,\,)_{\mathbb{E}}\right)$ に備わっている双線型形式を $(\,,\,)_{\mathbb{E}}$ と書く代わりに $(\,,\,)$ と略記する.

ルート系と言ったときに、(Root-2) を除外する場合がある。その場合我々が採用した定義に該当するものは簡約ルート系 (reduced root system) と呼ばれる。

定義 3.1.1:

ルート系 (\mathbb{E}, Φ) の**ランク** (rank) とは、 $\dim \mathbb{E} \in \mathbb{N}$ のことを言う.

公理 (Root-4) は、任意のルートの 2 つ組の配位に非常に強い制約を与える。というのも、2 つのベクトルのなす角の定義を思い出すと、 $\forall \alpha, \beta \in \Phi$ に対してある $\theta \in [0, \pi]$ が存在して

$$[\![\beta,\alpha]\!] = 2 \frac{\|\beta\|}{\|\alpha\|} \cos \theta \in \mathbb{Z}$$
(3.1.1)

$$[\![\alpha,\beta]\!][\![\beta,\alpha]\!] = 4\cos^2\theta \in \mathbb{Z}$$
(3.1.2)

が成り立たねばならないのである. $[\alpha, \beta]$, $[\beta, \alpha] \in \mathbb{Z}$ かつ $0 \le \cos^2 \theta \le 1$ なので, (3.1.2) から

$$\cos^2\theta = 0, \frac{(\pm 1) \cdot (\pm 1)}{4}, \frac{(\pm 1) \cdot (\pm 2)}{4}, \frac{(\pm 1) \cdot (\pm 3)}{4}, \frac{(\pm 1) \cdot (\pm 4)}{4}, \frac{(\pm 2) \cdot (\pm 2)}{4} \quad (\mbox{\em 6FFM})$$

しかあり得ないとわかる. (Root-2) も考慮すると、 $\|\alpha\| \leq \|\beta\|$ ならば *4 あり得る可能性は以下の通り *5 :

表 3.1: 可能なルートの 2 つ組 α , β

$[\![\alpha,\beta]\!]$	$[\![\beta,\alpha]\!]$	θ	$\ \beta\ ^2/\ \alpha\ ^2$
0	0	$\frac{\pi}{2}$	-
1	1	$\frac{\pi}{3}$	1
-1	-1	$ \frac{\pi}{2} $ $ \frac{\pi}{3} $ $ \frac{2\pi}{3} $ $ \frac{\pi}{4} $ $ \frac{\pi}{6} $ $ \frac{5\pi}{6} $	1
1	2	$\frac{\pi}{4}$	2
-1	-2	$\frac{3\pi}{4}$	2
1	3	$\frac{\pi}{6}$	3
-1	-3	$\frac{5\pi}{6}$	3
2	2	0	1
-2	-2	π	1

^{*} 4 このとき (3.1.1) より $[\alpha,\beta] \leq [\beta,\alpha]$

^{*5} 表 3.1 の最後の 2 段は $\beta=\pm\alpha$ の場合に相当する.

補題 3.1.2:

 (\mathbb{E}, Φ) をルート系とする. $\alpha \neq \pm \beta$ を充たす任意の $\alpha, \beta \in \Phi$ に対して以下が成り立つ:

- $(1) \ (\alpha, \beta) > 0 \implies \alpha \beta \in \Phi$
- (2) $(\alpha, \beta) < 0 \implies \alpha + \beta \in \Phi$

<u>証明</u> $(\alpha,\beta) > 0$ とする.このとき $[\alpha,\beta] > 0$ であるから,表 3.1 より $[\alpha,\beta]$, $[\beta,\alpha]$ の少なくとも一方は 1 に等しい. $[\alpha,\beta] = 1$ だとすると, $(\mathbf{Root-3})$ から $\sigma_{\beta}(\alpha) = \alpha - \beta \in \Phi$ がいえる. $[\beta,\alpha] = 1$ ならば $\sigma_{\alpha}(\beta) = \beta - \alpha \in \Phi$ であり, $\sigma_{\beta-\alpha}(\beta-\alpha) = \alpha - \beta \in \Phi$ が従う.(2) は (1) において β の代わりに $-\beta = \sigma_{\beta}(\beta) \in \Phi$ を用いて同じ議論をすれば良い.

定義 3.1.2: α -string through β

 (\mathbb{E}, Φ) をルート系とする. $\alpha \neq \pm \beta$ を充たす任意の $\alpha, \beta \in \Phi$ に対して, Φ の部分集合

$$\{ \beta + \lambda \alpha \in \mathbb{E} \mid \lambda \in \mathbb{Z} \} \cap \Phi$$

のことを α -string through β と呼ぶ.

命題 3.1.1: α -string through β の性質

 (\mathbb{E}, Φ) をルート系とする. $\alpha \neq \pm \beta$ を充たす任意の $\alpha, \beta \in \Phi$ に対して

$$\begin{split} r &\coloneqq \max \big\{ \, \lambda \in \mathbb{Z}_{\geq 0} \, \, \big| \, \, \beta - \lambda \alpha \in \Phi \, \big\}, \\ q &\coloneqq \max \big\{ \, \lambda \in \mathbb{Z}_{\geq 0} \, \, \big| \, \, \beta + \lambda \alpha \in \Phi \, \big\} \end{split}$$

とおく. このとき以下が成り立つ:

(1) α -string through β は $\mathbb E$ の部分集合

$$\left\{ \beta + \lambda \alpha \in \mathbb{E} \mid -r \le \lambda \le q \right\} \tag{3.1.3}$$

に等しい. i.e. $-r \le \forall \lambda \le q$ に対して $\beta + \lambda \alpha \in \Phi$ である.

- (2) α -string through β は鏡映 σ_{α} の作用の下で不変である.
- (3) $r q = [\beta, \alpha]$. 特に α -string through β の長さは 4 以下である.
- <u>証明</u> (1) 背理法により示す.ある $-r < \lambda < q$ に対して $\beta + \lambda \alpha \notin \Phi$ であるとする.このときある $-r \le s が存在して <math>\beta + s\alpha \in \Phi$, $\beta + (s-1)\alpha \notin \Phi$, $\beta + (p-1)\alpha \notin \Phi$, $\beta + p\alpha \in \Phi$ を充たすが,補題 3.1.2 の対偶よりこのとき $(\alpha, \beta + s\alpha) \le 0 \le (\alpha, \beta + p\alpha)$ が成り立つ.よって $(p-s)(\alpha, \alpha) \ge 0$ である.然るに p < s かつ $(\alpha, \alpha) > 0$ なのでこれは矛盾である.
 - (2) $-r \le \forall \lambda \le q$ に対して

$$\sigma_{\alpha}(\beta + \lambda \alpha) = \beta + \lambda \alpha - [\![\beta, \alpha]\!] \alpha - \lambda [\![\alpha, \alpha]\!] \alpha$$
$$= \beta - ([\![\beta, \alpha]\!] + \lambda) \alpha$$

が成り立つ. (Root-3) より最右辺は Φ の元であり、かつ (Root-4) より $[\beta, \alpha] + \lambda \in \mathbb{Z}$ なので、(1)

より $-r \leq [\![\beta, \alpha]\!] + \lambda \leq q$ だと分かった.

(3) r, q の定義より、(2) の証明において

$$\sigma_{\alpha}(\beta + q\alpha) = \beta - (\llbracket \beta, \alpha \rrbracket + q)\alpha = \beta - r\alpha$$

が成り立たねばならない. よって

$$r - q = [\![\beta, \alpha]\!]$$

である. 表 3.1 より $|r-q| \le 3$ であるから, 集合 (3.1.3) の要素数は 4 以下である.

3.1.2 Weyl 群

定義 3.1.3: Weyl 群

 (\mathbb{E}, Φ) をルート系とする. $\operatorname{GL}(\mathbb{E})$ の部分集合 $\left\{\sigma_{\alpha} \in \operatorname{GL}(\mathbb{E}) \mid \alpha \in \Phi\right\}$ が生成する $\operatorname{GL}(\mathbb{E})$ の部分群 のことをルート系 (\mathbb{E}, Φ) の Weyl 群 (Weyl group) と呼び, $\mathscr{W}_{\mathbb{E}}(\Phi)$ と書く.

本資料の以降では、文脈上考えているルート系が明らかな場合 $\mathscr{W}_{\mathbb{R}}(\Phi)$ を \mathscr{W} と略記する.

(Root3) より、 $\forall \tau \in \mathscr{W}_{\mathbb{E}}(\Phi)$ の Φ への制限は全単射である.その上 (Root-1) から Φ は有限集合でかつ $\mathbb{E} = \operatorname{Span}_{\mathbb{R}} \Phi$ が成り立つので、 $\mathscr{W}_{\mathbb{E}}(\Phi)$ を Φ に作用する対称群 $\mathfrak{S}_{|\Phi|}$ の部分群と同一視できる.特に $\mathscr{W}_{\mathbb{E}}(\Phi)$ は有限群である.

補題 3.1.3:

 (\mathbb{E}, Φ) をルート系とする. $\tau \in \mathrm{GL}(\mathbb{E})$ が $\tau(\Phi) = \Phi$ を充たすならば、 $\forall \alpha, \beta \in \Phi$ に対して以下が成り立つ:

- (1) $\tau \circ \sigma_{\alpha} \circ \tau^{-1} = \sigma_{\tau(\alpha)}$
- (2) $[\![\beta,\alpha]\!] = [\![\tau(\beta),\tau(\alpha)]\!]$

<u>証明</u> $\forall \alpha, \beta \in \Phi$ をとる. (Root-3) より $\sigma_{\alpha}(\beta) \in \Phi$ なので, $\tau \circ \sigma_{\alpha} \circ \tau^{-1}(\tau(\beta)) = \sigma \circ \sigma_{\alpha}(\beta) \in \Phi$ が成り立っ.一方で

$$\tau \circ \sigma_{\alpha} \circ \tau^{-1}(\tau(\beta)) = \tau(\beta - [\![\beta, \alpha]\!]\alpha) = \tau(\beta) - [\![\beta, \alpha]\!]\tau(\alpha)$$
(3.1.4)

である. $\beta\in\Phi$ は任意で $\tau\in\mathrm{GL}(\mathbb{E})$ は全単射なので

- **(RF-1)** $\tau \circ \sigma_{\alpha} \circ \tau^{-1}(\Phi) = \Phi$
- **(RF-2)** $\forall \beta \in P_{\alpha}, \ \tau \circ \sigma_{\alpha} \circ \tau^{-1}(\beta) = \beta$
- **(RF-3)** $\tau(\alpha) \in \Phi \setminus \{0\}, \ \tau \circ \sigma_{\alpha} \circ \tau^{-1}(\tau(\alpha)) = -\tau(\alpha)$

が成り立つことが分かった.よって補題 3.1.1 より $\tau \circ \sigma_{\alpha} \circ \tau^{-1} = \sigma_{\tau(\alpha)}$ である. さらに (3.1.4) から

$$\tau(\beta) - [\![\beta, \alpha]\!] \tau(\alpha) = \sigma_{\tau(\alpha)} \big(\tau(\beta) \big) = \tau(\beta) - [\![\tau(\beta), \tau(\alpha)]\!] \tau(\alpha)$$

が分かるので (2) が従う.

定義 3.1.4: ルート系の同型

2つのルート系 $(\mathbb{E}, \Phi), (\mathbb{E}', \Phi')$ を与える. 写像

$$\phi \colon \mathbb{E} \longrightarrow \mathbb{E}'$$

がルート系の同型写像 (isomorphism) であるとは、以下の3条件を満たすことを言う:

- (1) ϕ は \mathbb{R} -ベクトル空間の同型写像
- (2) $\phi(\Phi) = \Phi'$
- (3) $\forall \alpha, \beta \in \Phi$ に対して $\llbracket \phi(\beta), \phi(\alpha) \rrbracket = \llbracket \beta, \alpha \rrbracket$

ルート系 (\mathbb{E}, Φ) の自己同型 (automorphism) とは, $\phi \in \operatorname{GL}(\mathbb{E})$ であって $\phi(\Phi) = \Phi$ を充たすもののことを言う.これは補題 3.1.3-(2) により自動的にルート系の同型となる.ルート系の自己同型全体が写像の合成に関してなす群のことを**ルート系の自己同型群**と呼び, $\operatorname{Aut}\Phi$ と書く.

ルート系の同型

$$\phi \colon (\mathbb{E}, \Phi) \longrightarrow (\mathbb{E}', \Phi')$$

について、 $\forall \alpha, \beta \in \Phi$ に対して

$$\sigma_{\phi(\alpha)} \circ \phi(\beta) = \phi(\beta) - \llbracket \phi(\beta), \phi(\alpha) \rrbracket \phi(\alpha) = \phi(\beta - \llbracket \beta, \alpha \rrbracket \alpha) = \phi \circ \sigma_{\alpha}(\beta)$$

が成り立つ. i.e. ルート系の図式

$$\begin{array}{ccc}
\Phi & \stackrel{\phi}{\longrightarrow} & \Phi' \\
\sigma_{\alpha} & & \downarrow \\
\Phi & \stackrel{\phi}{\longrightarrow} & \Phi'
\end{array}$$

は可換である.よってルート系の同型は Weyl 群の自然な(群の)同型

$$\overline{\phi} \colon \mathscr{W}_{\mathbb{E}}(\Phi) \longrightarrow \mathscr{W}_{\mathbb{E}'}(\Phi'),$$

$$\sigma \longmapsto \phi \circ \sigma \circ \phi^{-1}$$

を引き起こす.

補題 3.1.4:

ルート系 (\mathbb{E},Φ) の Weyl 群 $\mathscr{W}_{\mathbb{E}}(\Phi)$ は,ルート系の自己同型群 $\mathrm{Aut}\,\Phi$ の正規部分群である.

<u>証明</u> $\forall \sigma \in \mathscr{W}_{\mathbb{E}}(\Phi)$ を 1 つとる.このときある $\alpha_1, \ldots, \alpha_k \in \Phi$ が存在して $\sigma = \sigma_{\alpha_1} \circ \cdots \circ \sigma_{\alpha_k}$ と書ける*6. 従って $\forall \tau \in \operatorname{Aut} \Phi$ に対して,補題 3.1.3-(1) より

$$\tau \circ \sigma \circ \tau^{-1} = (\tau \circ \sigma_{\alpha_1} \circ \tau^{-1}) \circ \cdots \circ (\tau \circ \sigma_{\alpha_k} \circ \tau^{-1}) = \sigma_{\tau(\alpha_1)} \circ \cdots \circ \sigma_{\tau(\alpha_k)} \in \mathscr{W}_{\mathbb{E}}(\Phi)$$

 $^{^{*6}\}sigma_{\alpha_i}^{-1} = \sigma_{\alpha_i}$ なのでこれで良い.

が成り立つ. i.e. $\mathscr{W}_{\mathbb{E}}(\Phi) \triangleleft \operatorname{Aut} \Phi$ である.

定義 3.1.5: 双対ルート系

ルート系 (\mathbb{E}, Φ) に対して

$$\mathbf{\Phi}^{\vee} := \left\{ \frac{2}{(\alpha, \alpha)} \alpha \in \mathbb{E} \mid \alpha \in \Phi \right\}$$

とおき、組 $(\mathbb{E}, \Phi^{\vee})$ のことを (\mathbb{E}, Φ) の双対ルート系 (dual root system) と呼ぶ.

 $\alpha \in \Phi$ に対して

$$\boldsymbol{\alpha}^{\vee} \coloneqq \frac{2}{(\alpha, \, \alpha)} \alpha \in \Phi^{\vee}$$

と書く.

双対ルート系がルート系の公理を充たすことを確認しよう:

(Root-1,2) (\mathbb{E}, Φ) がルート系なので明らか.

(Root-3) $\forall \alpha^{\vee}, \beta^{\vee} \in \Phi^{\vee}$ をとる. このとき

$$\sigma_{\alpha^{\vee}}(\beta^{\vee}) = \frac{2}{(\beta, \beta)}\beta - \left[\left[\frac{2}{(\beta, \beta)}\beta, \frac{2}{(\alpha, \alpha)}\alpha \right] \right] \frac{2}{(\alpha, \alpha)}\alpha$$

$$= \frac{2}{(\beta, \beta)}\beta - \frac{\frac{2}{(\beta, \beta)}}{\frac{2}{(\alpha, \alpha)}} \left[\beta, \alpha \right] \frac{2}{(\alpha, \alpha)}\alpha$$

$$= \frac{2}{(\beta, \beta)}\sigma_{\alpha}(\beta)$$
(3.1.5)

だが,

$$(\sigma_{\alpha}(\beta), \sigma_{\alpha}(\beta)) = (\beta, \beta) - 2[\![\beta, \alpha]\!](\beta, \alpha) + [\![\beta, \alpha]\!]^{2}(\alpha, \alpha)$$
$$= (\beta, \beta) - 2[\![\beta, \alpha]\!](\beta, \alpha) + 2[\![\beta, \alpha]\!](\beta, \alpha)$$
$$= (\beta, \beta)$$

なので

$$\sigma_{\alpha^{\vee}}(\beta^{\vee}) = \sigma_{\alpha}(\beta)^{\vee} \in \Phi^{\vee}$$

だと分かった.

(Root-4) $\forall \frac{2}{(\alpha,\alpha)} \alpha, \frac{2}{(\beta,\beta)} \beta \in \Phi^{\vee}$ をとる. このとき

$$\begin{bmatrix} \beta^{\vee}, \alpha^{\vee} \end{bmatrix} = \begin{bmatrix} \frac{2}{(\beta, \beta)} \beta, \frac{2}{(\alpha, \alpha)} \alpha \end{bmatrix} \\
 = \frac{\frac{2}{(\beta, \beta)}}{\frac{2}{(\alpha, \alpha)}} [\beta, \alpha] \\
 = \frac{\frac{2(\alpha, \beta)}{(\beta, \beta)}}{\frac{2(\beta, \alpha)}{(\alpha, \alpha)}} [\beta, \alpha] \\
 = \frac{[\alpha, \beta]}{[\beta, \alpha]} [\beta, \alpha] \\
 = [\alpha, \beta] \in \mathbb{Z}$$

が言えた.

補題 3.1.5:

$$\mathscr{W}_{\mathbb{E}}(\Phi) \cong \mathscr{W}_{\mathbb{E}}(\Phi^{\vee})$$

<u>証明</u> (3.1.5) より,写像 $\sigma_{\alpha} \longmapsto \sigma_{\alpha}$ は同型写像である.

3.2 単純ルートと Weyl 群

この節では (\mathbb{E}, Φ) を任意のランク l のルート系とし、その Weyl 群を \mathscr{W} と略記する.

3.2.1 ルート系の底と Weyl の区画

定義 3.2.1: ルート系の底

 Φ の部分集合 $\Delta \subset \Phi$ が**底** (base) であるとは、以下を充たすことをいう:

- (B-1) Δ は \mathbb{R} -ベクトル空間 \mathbb{E} の基底である.
- (B-2) $\forall \beta \in \Phi$ に対して整数の族 $\left\{\beta_{\alpha}\right\}_{\alpha \in \Delta} \in \prod_{\alpha \in \Delta} \mathbb{Z}$ が一意的に存在して

$$\beta = \sum_{\alpha \in \Lambda} \beta_{\alpha} \alpha$$

を充たし、 $\forall \alpha \in \Delta, \; \beta_{\alpha} \geq 0$ であるか $\forall \alpha \in \Delta, \; \beta_{\alpha} \leq 0$ であるかのどちらかである.

- Δ の元のことを単純ルート (simple root) と呼ぶ.
- $\beta = \sum_{\alpha \in \Delta} \beta_{\alpha} \alpha \in \Phi$ に対して

$$\mathbf{ht}\,\boldsymbol{\beta} \coloneqq \sum_{\alpha \in \Delta} \beta_\alpha \in \mathbb{Z}$$

と定義し、底 Δ に関するルート β の高さ (height) と呼ぶ.

- $\beta = \sum_{\alpha \in \Delta} \beta_{\alpha} \alpha \in \Phi$ が正 (resp. 負) であるとは、 $\forall \alpha \in \Delta, \ \beta_{\alpha} \geq 0$ (resp. $\forall \alpha \in \Delta, \ \beta_{\alpha} \leq 0$) が成り立つことを言い、 $\beta \succ 0$ (resp. $\beta \prec 0$) と書く。
- 正 (resp. 負) のルート全体の集合のことを Φ^+ (resp. Φ^-) と書く b .
- 上の半順序 ~ □ E × E を

$$\mu \prec \lambda \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad \exists ! \{k_{\alpha}\}_{\alpha \in \Delta} \in \prod_{\alpha \in \Delta} \mathbb{R}_{\geq 0}, \ \lambda - \mu = \sum_{\alpha \in \Delta} k_{\alpha} \alpha$$

と定義する.

≺ が半順序になっていることを確認しておこう:

(反射律) $\forall \mu \in \mathbb{E}$ に対して $\mu - \mu = 0$ が成り立つので $\mu \prec \mu$ である.

(反対称律) $\mu \prec \lambda$ かつ $\lambda \prec \mu$ だとする. このとき $\left\{k_{\alpha}\right\}_{\alpha \in \Delta}, \ \left\{l_{\alpha}\right\}_{\alpha \in \Delta} \in \prod_{\alpha \in \Delta} \mathbb{R}_{\geq 0}$ が一意的に存在して

$$\lambda - \mu = \sum_{\alpha \in \Delta} k_{\alpha} \alpha, \qquad \mu - \lambda = \sum_{\alpha \in \Delta} l_{\alpha} \alpha$$

と書ける. 辺々足すと (B-1) より $\forall \alpha \in \Delta$ に対して $k_{\alpha} + l_{\alpha} = 0$ だと分かるが, $k_{\alpha} \geq 0$ かつ $l_{\alpha} \geq 0$ なので $k_{\alpha} = l_{\alpha} = 0$, i.e. $\mu - \lambda = 0$ \iff $\mu = \lambda$ が言えた.

(推移律) $\mu \prec \lambda$ かつ $\lambda \prec \nu$ だとする. このとき $\nu - \mu = (\nu - \lambda) + (\lambda - \mu)$ なので明らかに $\mu \prec \nu$ である.

ルート系 (\mathbb{E}, Φ) の底を定義したのは良いが、存在しなくては意味がない.

補題 3.2.1:

 Δ が Φ の底ならば、相異なる任意の 2 つの単純ルート $\alpha,\beta\in\Delta$ に対して $(\alpha,\beta)\leq 0$ であり、 $\alpha-\beta\notin\Delta$ である.

<u>証明</u> 背理法により示す. $(\alpha, \beta) > 0$ だとする. 仮定より $\alpha \neq \beta$ であり、かつ Δ の元の線型独立性から $\beta \neq -\alpha$ なので、補題 3.1.2 から $\alpha - \beta \in \Delta$ と言うことになる. 然るにこのとき $\alpha - \beta \in \Phi$ が $\alpha, \beta \in \Delta$ の係数 1, -1 の線型結合で書けていることになり (B-2) に矛盾する.

 $[^]a$ IAT_EX コマンドは \succ が \succ , \prec が \prec である.

 $^{^{}b}$ 明らかに $\Phi^{-}=-\Phi^{+}$ である.

定義 3.2.2:

 $\forall \gamma \in \mathbb{E}$ に対して以下を定義する:

Φ の部分集合

$$\mathbf{\Phi}^{+}(\boldsymbol{\gamma}) \coloneqq \left\{ \alpha \in \Phi \mid (\gamma, \alpha) > 0 \right\}$$

•

$$\gamma \in \mathbb{E} \setminus \bigcup_{\alpha \in \Phi} P_{\alpha}$$

のとき、 γ は正則 (regular) であるという. γ が正則でないとき特異 (sigular) であると言う.

• $\alpha \in \Phi^+(\gamma)$ \hbar i

$$\exists \beta_1, \beta_2 \in \Phi^+(\gamma), \ \alpha = \beta_1 + \beta_2$$

を充たすとき, α は**分割可能** (decomposable) であると言う. 分割可能でないとき**分割不可能** (indecomposable) であると言う.

 γ が正則ならば $\forall \alpha \in \Phi$ に対して $(\gamma, \alpha) \neq 0$ なので, $\Phi = \Phi^+(\gamma) \coprod \left(-\Phi^+(\gamma)\right)$ (disjoint union) が成り立つ.

定理 3.2.1: 底の存在

正則な任意の $\gamma \in \mathbb{E}$ を与える. このとき集合

$$\Delta(\gamma) := \{ \alpha \in \Phi^+(\gamma) \mid \text{ βin πor i} \}$$

は Φ の底である. 逆に Φ の任意の底 Δ に対してある正則な $\gamma \in \mathbb{E}$ が存在して $\Delta = \Delta(\gamma)$ となる.

証明 $\mathtt{step1}\colon \Phi^+(\gamma)$ の任意の元は $\Delta(\gamma)$ の $\mathbb{Z}_{\geq 0}$ -係数線型結合で書ける

背理法により示す. $\Delta(\gamma)$ の $\mathbb{Z}_{\geq 0}$ -係数線型結合で書けない $\alpha \in \Phi^+(\gamma)$ が存在するとする. このとき, そのような α のうち (γ,α) が最小であるようなものが存在するのでそれを α_0 とおく. $\alpha_0 \notin \Delta(\gamma)$ なので $^{*7}\alpha_0$ は分割可能であり, ある $\beta_1, \beta_2 \in \Phi^+(\gamma)$ が存在して $\alpha = \beta_1 + \beta_2$ と書ける. このとき

$$(\gamma, \alpha_0) = (\gamma, \beta_1) + (\gamma, \beta_2) > (\gamma, \beta_i)$$

が成り立つので、 α_0 の最小性から β_1 、 β_2 はどちらも $\Delta(\gamma)$ の元の $\mathbb{Z}_{\geq 0}$ -係数線型結合で書ける.然る にこのとき α も $\Delta(\gamma)$ の元の $\mathbb{Z}_{\geq 0}$ -係数線型結合で書けることになって矛盾.

step2: $\alpha, \beta \in \Delta(\gamma)$ かつ $\alpha \neq \beta$ ならば, $(\alpha, \beta) \leq 0$

背理法により示す. $(\alpha,\beta)>0$ を仮定する. このとき補題 3.1.2-(1) より $\alpha-\beta\in\Phi$ であり, $\beta-\alpha=\sigma_{\alpha-\beta}(\alpha-\beta)\in\Phi$ もわかる. よって $\alpha-\beta\in\Phi^+(\gamma)$ または $\beta-\alpha\in\Phi^+(\gamma)$ である. 然るに 前者の場合 $\alpha=\beta+(\alpha-\beta)$ なので $\alpha\in\Delta(\gamma)$ が分割可能ということになって矛盾し,後者の場合は $\beta=\alpha+(\beta-\alpha)$ なので $\beta\in\Delta(\gamma)$ が分割可能ということになって矛盾である.

 $^{^{*7}}$ $lpha_0\in\Delta(\gamma)$ だとすると, $lpha_0\in\Delta(\gamma)$ の係数 $1\in\mathbb{Z}_{\geq0}$ の線型結合として書けていることになり矛盾.

$step3: \Delta(\gamma)$ の元は互いに線型独立

 $\left\{k_{\alpha}
ight\}_{\alpha\in\Delta(\gamma)}\in\prod_{lpha\in\Delta}\mathbb{R}$ に対して $\sum_{lpha\in\Delta(\gamma)}k_{lpha}lpha=0$ を仮定する. $orall lpha\in\Delta(\gamma)$ に対して

$$s_\alpha \coloneqq \begin{cases} k_\alpha, & k_\alpha > 0 \\ 0, & k_\alpha \leq 0 \end{cases} \qquad t_\alpha \coloneqq \begin{cases} -k_\alpha, & k_\alpha < 0 \\ 0, & k_\alpha \geq 0 \end{cases}$$

とおくと, 仮定より

$$\sum_{\alpha \in \Delta(\gamma)} s_{\alpha} \alpha = \sum_{\alpha \in \Delta(\gamma)} t_{\alpha} \alpha$$

が成り立つ. $\varepsilon \coloneqq \sum_{\alpha \in \Delta} s_{\alpha} \alpha$ とおくと, step2 から

$$0 \le (\varepsilon, \varepsilon) = \sum_{\alpha, \beta \in \Delta(\gamma), \ \alpha \ne \beta} s_{\alpha} t_{\beta}(\alpha, \beta) \le 0$$

が成り立つので $\varepsilon = 0$ だとわかる. よって

$$0 = (\gamma, \varepsilon) = \sum_{\alpha \in \Delta(\gamma)} s_{\alpha}(\gamma, \alpha) = \sum_{\alpha \in \Delta(\gamma)} t_{\alpha}(\gamma, \alpha)$$

であり、 $\forall \alpha \in \Delta(\gamma), s_{\alpha} = t_{\alpha} = 0$ が言えた.

step4: $\Delta(\gamma)$ は Φ の底

 $\Phi = \Phi^+(\gamma) \coprod (-\Phi^+(\gamma))$ なので、**step1** と併せて **(B-2)** が、**step3** と併せて **(B-1)** が従う.

step5: 任意の底 Δ に対してある正則な $\gamma \in \mathbb{E}$ が存在して $\Delta = \Delta(\gamma)$ となる

 Φ の底 Δ が与えられたとき、 $\forall \alpha \in \Delta$ に対して $(\gamma, \alpha) > 0$ を充たす $\gamma \in \mathbb{E}$ をとる*8. (B-2) より γ は正則であり、かつ $\forall \beta = \sum_{\alpha \in \Delta} \beta_{\alpha} \alpha \in \Phi^+$ に対して

$$(\gamma, \beta) = \sum_{\alpha \in \Delta} \beta_{\alpha}(\gamma, \alpha) > 0$$

が成り立つので $\beta \in \Phi^+(\gamma)$, i.e. $\Phi^+ \subset \Phi^+(\gamma)$, $\Phi^- = -\Phi^- \subset -\Phi^+(\gamma)$ も分かる. ところが **step4** より $\Phi = \Phi^+ \coprod \Phi^- = \Phi^+(\gamma) \coprod \left(-\Phi^+(\gamma)\right)$ なので, $\Phi^+ = \Phi^+(\gamma)$ でなくてはいけない. 従って $\forall \alpha \in \Delta$ は分割不可能であり*9, $\Delta \subset \Delta(\gamma)$ だと分かった. **(B-1)** および **step4** より $|\Delta| = |\Delta(\gamma)| = l$ なので*10 $\Delta = \Delta(\gamma)$ が言えた.

^{*8} このような γ が存在することを示そう. (B-1) より Δ は $\mathbb E$ の基底だから、 $\forall \alpha$ に対して $\gamma_{\alpha} \in \mathbb E$ を、 $\mathbb E$ の部分ベクトル空間 $\operatorname{Span}_{\mathbb K}(\Delta \setminus \{\alpha\})$ の $(\ ,\)$ に関する直交補空間 $\left(\operatorname{Span}_{\mathbb K}(\Delta \setminus \{\alpha\})\right)^{\perp}$ への α の射影とする. Δ の元は全て互いに線型独立なので $\gamma_{\alpha} \neq 0$ である. このとき、 $\left\{k_{\alpha}\right\}_{\alpha \in \Delta} \in \prod_{\alpha \in \Delta} \mathbb R_{>0}$ に対して $\gamma \coloneqq \sum_{\alpha \in \Delta} k_{\alpha} \gamma_{\alpha}$ とおけば、 $\forall \alpha \in \Delta$ に対して $(\gamma,\alpha) = k_{\alpha}(\gamma_{\alpha},\alpha) > 0$ が成り立つ.

^{*9} $\beta_1 = \sum_{\alpha \in \Delta} \beta_{1\alpha}\alpha$, $\beta_2 = \sum_{\alpha \in \Delta} \beta_{2\alpha}\alpha \in \Phi^+ = \Phi^+(\gamma)$ を用いて $\alpha = \beta_1 + \beta_2$ と書けたとする.このとき Δ の元の線型独立性から $\beta_{1\alpha} + \beta_{2\alpha} = 1$ かつ $\forall \gamma \in \Delta \setminus \{\alpha\}$, $\beta_{1\gamma} + \beta_{2\gamma} = 0$ が成り立つが,**(B-2)** より $(\beta_{1\alpha}, \beta_{2\alpha}) = (1, 0)$ または (0, 1) かつ $\forall \gamma \in \Delta \setminus \{\alpha\}$, $\beta_{1\gamma} = \beta_{2\gamma} = 0$, i.e. $(\beta_1, \beta_2) = (\alpha, 0)$ または $(0, \alpha)$ でなくてはならず, $0 \notin \Phi^+$ に矛盾.

^{*10 [?]} では集合の**濃度** (cardinality) の意味で $\operatorname{Card} \Delta$ と書かれていた.

定義 3.2.3: Weyl の区画

- 位相空間 a $\mathbb E$ の部分空間 $\mathbb E\setminus\bigcup_{\alpha\in\Phi}P_\alpha$ の連結成分の 1 つのことを(開な)Weyl の区画 (Weyl chamber) b と呼ぶ.
- 正則な $\gamma \in \mathbb{E}$ が属する Weyl の区画のことを $\mathfrak{C}(\gamma)$ と書く c .
- Φ の底 Δ に対して定理 3.2.1 の意味で $\Delta = \Delta(\gamma)$ ならば $\mathfrak{C}(\Delta) := \mathfrak{C}(\gamma)$ とおき, Δ に関する Weyl の基本区画 (fundamental Weyl chamber relative to Δ) d と呼ぶ.

補題 3.2.2: Weyl の区画の基本性質

正則な任意の $\gamma, \gamma' \in \mathbb{E}$ および任意の Φ の底 Δ を与える. 定理 3.2.1 によって得られる Φ の底を $\Delta(\gamma)$ と書く.

(1)
$$\mathfrak{C}(\gamma) = \mathfrak{C}(\gamma') \iff \Delta(\gamma) = \Delta(\gamma')$$

(2) 写像

$$\{\mathbf{\underline{K}}$$
全体の集合 $\}$ \longrightarrow $\{$ Weyl の区画全体の集合 $\}$, $\Delta \longmapsto \mathfrak{C}(\Delta)$

は全単射である.

(3) $\mathfrak{C}(\Delta) = \{ \gamma \in \mathbb{E} \mid \forall \alpha \in \Delta, \ (\gamma, \alpha) > 0 \}$

証明 (1)

補題 3.2.3: Weyl の区画と Weyl 群の関係

正則な任意の $\gamma \in \mathbb{E}$ および任意の Φ の底 Δ を与える. このとき以下が成り立つ:

- (1) $\forall \sigma \in \mathcal{W}$ に対して $\sigma(\Delta(\gamma)) = \Delta(\sigma(\gamma))$
- $(2) \forall \sigma \in \mathcal{W}$ に対して $\sigma(\Delta)$ もまた Φ の底である.
- (3) $\sigma(\mathfrak{C}(\gamma)) = \mathfrak{C}(\sigma(\gamma))$
- (4) $\sigma(\mathfrak{C}(\Delta)) = \mathfrak{C}(\sigma(\Delta))$

証明 (1)

^a Euclid 空間の定義の脚注を参照.

 $[^]b$ この訳語は筆者が勝手につけたものである. [?] では \mathbf{Weyl} の部屋と呼ばれていた.

 $[^]c$ LAT $_{
m E}$ X コマンドは \mathfrak{C}

 $[^]d$ これの訳語は全く普及していない気がする. Δ に関する基本 Weyl の部屋だと語感が悪いと思ったのでこのような訳語を充てた.

3.2.2	単純ルートの性質
3.2.3	Weyl 群の性質
3.2.4	既約なルート系

3.3 ルート系の分類