FLAVOR MIXING IN THE B-MESON SYSTEM AS A PROBE FOR DECOHERENCE

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

PHYSICS AND ASTRONOMY

DECEMBER 2021

By

Jeff Schueler

Thesis Committee:

Sven Vahsen, Chairperson Jason Kumar Jelena Maricic Thomas E. Browder Peter Sadowski

Keywords: B-meson decays, Decoherence, Belle, KEK

Copyright © 2021 by Jeff Schueler

To Bill Fagerbakke,

whose declaration of "That's Mr. Doctor Professor Patrick to you!" lit a fire in me that could only be extinguished by the bureaucracy of academia.

ACKNOWLEDGMENTS

I want to "thank" my committee, without whose ridiculous demands, I would have graduated so, so, very much faster.

ABSTRACT

Theses have elements. Isn't that nice?

TABLE OF CONTENTS

A	cknowledgments	. iv
Al	bstract	. v
\mathbf{Li}	ist of Tables	. vii
Li	ist of Figures	. viii
1	Introduction	. 1
2	Decoherence and EPR correlations	. 2
	2.1 Introduction	. 2
3		
	3.1 Introduction	. 3
	3.2 Decoherence in B physics	. 3
	3.2.1 An open $B\bar{B}$ system	. 3
	3.2.2 Open system $B\bar{B}$ dynamics	. 4
	3.2.3 Observable for $\sin(2\phi_1)$. 10
	3.2.4 Observable in $B\bar{B}$ mixing	
4	KEKB and Belle	. 13
	4.1 Introduction	. 13
5	Event selection	. 14
	5.1 Introduction	. 14
6	Systematic uncertainties	. 15
	6.1 Introduction	. 15
7	Results	. 16
	7.1 Introduction	. 16
8	Discussion and outlook	. 17
Bi	libliography	. 18

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1 INTRODUCTION

CHAPTER 2 DECOHERENCE AND EPR CORRELATIONS

CHAPTER 3 B PHYSICS CONCEPTS

3.1 Introduction

3.2 Decoherence in B physics

In this section, we follow the work of refs [8, 44] to come up with a parametrization of the mixing induced flavor asymmetry parameter, $\mathcal{A}_{\text{mix}}(\Delta t)$, that includes contributions of decoherence.

3.2.1 An open $B\bar{B}$ system

Kraus' Theorem

The notion of closed systems with a single observer is not a realistic representation of the conditions present in B factory experiments. In order to properly model the time evolution of B meson pairs, we must then treat the $B\bar{B}$ system as an *open* system and allow it to interact with its surroundings. These surroundings may include [write more here]

Kraus representations [37] are a convenient way of modeling open system dynamics. The general idea is as follows: Consider a Hilbert space \mathcal{H} composed of two subsystems \mathcal{H}_a and \mathcal{H}_b such that $\mathcal{H} = \mathcal{H}_a \otimes \mathcal{H}_b$. If at a given time, t, we represent quantum states by density matrices $\rho(t)$, $\rho_a(t)$, and $\rho_b(t)$, respectively for \mathcal{H} , \mathcal{H}_a , and \mathcal{H}_b , then $\rho_a(t)$ ($\rho_b(t)$) is related to $\rho(t)$ by a partial trace over b (a), that is,

$$\rho_a(t) = \text{Tr}_b(\rho(t))$$

$$\rho_b(t) = \text{Tr}_a(\rho(t)). \tag{3.1}$$

Now, since \mathcal{H} is unitary, $\rho(t)$ is simply a unitary transformation of $\rho(0)$:

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t), \tag{3.2}$$

for some unitary operator U(t). Plugging 3.1 into 3.2 gives us the time evolution of states in \mathcal{H}_a

$$\rho_a(t) = \text{Tr}_b \left(U(t)\rho(0)U^{\dagger}(t) \right). \tag{3.3}$$

Kraus' theorem states that if $\rho_a(t)$ can be also be written as

$$\rho_a(t) = \sum_i K_i(t)\rho(0)K_i^{\dagger}(t), \tag{3.4}$$

with

$$\sum_{i} K_i(t) K_i^{\dagger}(t) = \mathbb{1}, \tag{3.5}$$

then $K_i(t)$ is a Kraus operator, and $\rho_a(t)$ is completely positive and has a Kraus representation.

3.2.2 Open system $B\bar{B}$ dynamics

To consider the effects of decoherence on the time evolution of neutral BB pairs, we start with an orthonormal basis of states

$$|B^{0}\rangle \doteq \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad |\bar{B}^{0}\rangle \doteq \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad |0\rangle \doteq \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$
 (3.6)

Here, $|B^0\rangle$ ($|\bar{B}^0\rangle$) represent flavor eigenstates for neutral (anti) B-mesons, and $|0\rangle$ is the vacuum state used to describe decays. In this basis, initial meson flavor states are written as $\rho_{B^0}(0) = |B^0\rangle\langle B^0|$ and $\rho_{\bar{B}^0}(0) = |\bar{B}^0\rangle\langle \bar{B}^0|$. The time evolution of $\rho_{B^0}(0)$ and $\rho_{\bar{B}^0}(0)$ are governed by Kraus operators $\{K_i(t)\}_{i=0}^5$ that encode decoherence. In particular

$$\rho_{B^0,\bar{B}^0}(t) = \sum_{i=0}^{5} K_i(t) \rho_{B^0,\bar{B}^0}^{(i)}(0) K_i^{\dagger}(t), \tag{3.7}$$

with

$$K_0 = |0\rangle \langle 0| \tag{3.8}$$

$$K_{1} = \mathcal{K}_{1+} \left(\left| B^{0} \right\rangle \left\langle B^{0} \right| + \left| \bar{B}^{0} \right\rangle \left\langle \bar{B}^{0} \right| \right) + \mathcal{K}_{1-} \left(\frac{p}{q} \left| B^{0} \right\rangle \left\langle \bar{B}^{0} \right| + \frac{q}{p} \left| \bar{B}^{0} \right\rangle \left\langle B^{0} \right| \right)$$
(3.9)

$$K_2 = \mathcal{K}_2 \left(\frac{p+q}{2p} |0\rangle \langle \bar{B}^0| + \frac{p+q}{2q} |0\rangle \langle \bar{B}^0| \right)$$
(3.10)

$$K_{3} = \mathcal{K}_{3+} \frac{p+q}{2p} |0\rangle \langle \bar{B}^{0}| + \mathcal{K}_{3-} \frac{p+q}{2q} |0\rangle \langle \bar{B}^{0}|$$
(3.11)

$$K_4 = \mathcal{K}_4 \left(\left| B^0 \right\rangle \left\langle B^0 \right| + \left| \bar{B}^0 \right\rangle \left\langle \bar{B}^0 \right| + \frac{p}{q} \left| B^0 \right\rangle \left\langle \bar{B}^0 \right| + \frac{q}{p} \left| \bar{B}^0 \right\rangle \left\langle B^0 \right| \right)$$
(3.12)

$$K_{5} = \mathcal{K}_{5} \left(\left| B^{0} \right\rangle \left\langle B^{0} \right| + \left| \bar{B}^{0} \right\rangle \left\langle \bar{B}^{0} \right| - \frac{p}{q} \left| B^{0} \right\rangle \left\langle \bar{B}^{0} \right| - \frac{q}{p} \left| \bar{B}^{0} \right\rangle \left\langle B^{0} \right| \right). \tag{3.13}$$

[Define p and q here]. Substituting equations 3.8–3.13 into 3.7, we find

$$\begin{split} \rho_{B^0}^{(0)}(t) &= |0\rangle \langle 0|B^0\rangle \langle B^0|0\rangle \langle 0| = \mathbf{0} \\ \rho_{B^0}^{(1)}(t) &= \left(K_{1+} \left(|B^0\rangle \langle B^0| + |\bar{B}^0\rangle \langle \bar{B}^0|\right) + K_{1-} \left(\frac{p}{q} |B^0\rangle \langle \bar{B}^0| + \frac{q}{p} |\bar{B}^0\rangle \langle B^0|\right)\right) |B^0\rangle \langle B^0| \\ &\times K_{1+}^* \left(|B^0\rangle \langle B^0| + |\bar{B}^0\rangle \langle \bar{B}^0|\right) + K_{1-}^* \left(\left(\frac{p}{q}\right)^* |\bar{B}^0\rangle \langle B^0| + \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0|\right)\right) \\ &= \left(K_{1+} |B^0\rangle \langle B^0| + K_{1-} \frac{q}{p} |\bar{B}^0\rangle \langle \bar{B}^0|\right) \\ &\times \left(K_{1+}^* \left(|B^0\rangle \langle B^0| + K_{1-} \frac{q}{p} |\bar{B}^0\rangle \langle \bar{B}^0|\right)\right) \\ &\times \left(K_{1+}^* \left(|B^0\rangle \langle B^0| + K_{1+} K_{1-}^* \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0|\right)\right) \\ &= |K_{1+}|^2 |B^0\rangle \langle B^0| + K_{1+} K_{1-}^* \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0| \\ &+ K_{1-} K_{1+}^* \frac{q}{p} |\bar{B}^0\rangle \langle B^0| + |K_{1-}|^2 |\frac{q}{p}|^2 |\bar{B}^0\rangle \langle \bar{B}^0| \\ &+ K_{1-} K_{1+}^* \frac{q}{q} |\bar{B}^0\rangle \langle B^0| + |K_{1-}|^2 |\frac{q}{p}|^2 |\bar{B}^0\rangle \langle \bar{B}^0| \\ &\times K_2^* \left(\left(\frac{p+q}{2p}\right)^* |B^0\rangle \langle 0| + \left(\frac{p+q}{2q}\right)^* |\bar{B}^0\rangle \langle 0|\right) \\ &= |K_2|^2 \left|\frac{p+q}{2p}\right|^2 |0\rangle \langle 0| \\ &\times \left(K_3^* + \left(\frac{p+q}{2p}\right)^* |B^0\rangle \langle 0| + K_3^* - \left(\frac{p+q}{2q}\right)^* |\bar{B}^0\rangle \langle 0|\right) \\ &= |K_{21}|^2 \left|\frac{p+q}{2p}\right|^2 |0\rangle \langle 0| \\ &\times \left(K_3^* + \left(\frac{p+q}{2p}\right)^* |B^0\rangle \langle 0| + K_3^* - \left(\frac{p+q}{2q}\right)^* |\bar{B}^0\rangle \langle 0|\right) \\ &= |K_{3+}|^2 \left|\frac{p+q}{2p}\right|^2 |0\rangle \langle 0| \\ &\times K_4^* \left(|B^0\rangle \langle B^0| + |\bar{B}^0\rangle \langle \bar{B}^0| + \frac{p}{q} |B^0\rangle \langle \bar{B}^0| + \frac{q}{p} |\bar{B}^0\rangle \langle B^0|\right) \\ &\times K_4^* \left(|B^0\rangle \langle B^0| + |\bar{B}^0\rangle \langle \bar{B}^0| + \left(\frac{p}{q}\right)^* |\bar{B}^0\rangle \langle B^0| + \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0|\right) \\ &= |K_4|^2 |B^0\rangle \langle B^0| + |B^0\rangle \langle \bar{B}^0| + \left(\frac{p}{q}\right)^* |\bar{B}^0\rangle \langle B^0| + \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0|\right) \\ &= |K_4|^2 |B^0\rangle \langle B^0| + |B^0\rangle \langle \bar{B}^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0|\right) \\ &= |K_4|^2 |B^0\rangle \langle B^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0|\right) \\ &= |K_4|^2 |B^0\rangle \langle B^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0|\right) \\ &= |K_4|^2 |B^0\rangle \langle B^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0|\right) \\ &= |K_4|^2 |B^0\rangle \langle B^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |B^0\rangle \langle \bar{B}^0| + |K_4|^2 \left(\frac{q}{p}\right)^* |$$

$$\rho_{B^{0}}^{(5)}(t) = \mathcal{K}_{5} \left(\left| B^{0} \right\rangle \left\langle B^{0} \right| + \left| \bar{B}^{0} \right\rangle \left\langle \bar{B}^{0} \right| - \frac{p}{q} \left| B^{0} \right\rangle \left\langle \bar{B}^{0} \right| - \frac{q}{p} \left| \bar{B}^{0} \right\rangle \left\langle B^{0} \right| \right) \left| B^{0} \right\rangle \left\langle B^{0} \right| \\
\times \mathcal{K}_{5}^{*} \left(\left| B^{0} \right\rangle \left\langle B^{0} \right| + \left| \bar{B}^{0} \right\rangle \left\langle \bar{B}^{0} \right| - \left(\frac{p}{q} \right)^{*} \left| \bar{B}^{0} \right\rangle \left\langle B^{0} \right| - \left(\frac{q}{p} \right)^{*} \left| B^{0} \right\rangle \left\langle \bar{B}^{0} \right| \right) \\
= \mathcal{K}_{5} \left(\left| B^{0} \right\rangle \left\langle B^{0} \right| - \frac{q}{p} \left| \bar{B}^{0} \right\rangle \left\langle B^{0} \right| \right) \\
\times \mathcal{K}_{5}^{*} \left(\left| B^{0} \right\rangle \left\langle B^{0} \right| + \left| \bar{B}^{0} \right\rangle \left\langle \bar{B}^{0} \right| - \left(\frac{p}{q} \right)^{*} \left| \bar{B}^{0} \right\rangle \left\langle B^{0} \right| - \left(\frac{q}{p} \right)^{*} \left| B^{0} \right\rangle \left\langle \bar{B}^{0} \right| \right) \\
= \left| \mathcal{K}_{5} \right|^{2} \left| B^{0} \right\rangle \left\langle B^{0} \right| - \left| \mathcal{K}_{5} \right|^{2} \left(\frac{q}{p} \right)^{*} \left| B^{0} \right\rangle \left\langle \bar{B}^{0} \right| - \left| \mathcal{K}_{5} \right|^{2} \frac{q}{p} \left| \bar{B}^{0} \right\rangle \left\langle B^{0} \right| + \left| \mathcal{K}_{5} \right|^{2} \left| \frac{q}{p} \right|^{2} \left| \bar{B}^{0} \right\rangle \left\langle \bar{B}^{0} \right| \\
(3.19)$$

Summing everything up in equations 3.14-3.19 and writing in matrix form, we find

$$\rho_{B^{0}}(t) = \begin{pmatrix} |\mathcal{K}_{1+}|^{2} + |\mathcal{K}_{4}|^{2} + |\mathcal{K}_{5}|^{2} & \left(\frac{q}{p}\right)^{*} \left(\mathcal{K}_{1+}\mathcal{K}_{1-}^{*} + |\mathcal{K}_{4}|^{2} - |\mathcal{K}_{5}|^{2}\right) & 0\\ \left(\frac{q}{p}\right) \left(\mathcal{K}_{1+}^{*}\mathcal{K}_{1-} + |\mathcal{K}_{4}|^{2} - |\mathcal{K}_{5}|^{2}\right) & \left|\frac{q}{p}\right|^{2} \left(|\mathcal{K}_{1-}|^{2} + |\mathcal{K}_{4}|^{2} + |\mathcal{K}_{5}|^{2}\right) & 0\\ 0 & 0 & \left|\frac{p+q}{2p}\right|^{2} \left(|\mathcal{K}_{2}|^{2} + |\mathcal{K}_{3}|^{2}\right) \end{pmatrix}$$
(3.20)

The K coefficients in equations 3.8-3.20 are defined as follows [44]:

$$\mathcal{K}_{1\pm} = \frac{1}{2} \left(e^{-(2im_L + \Gamma_L + \lambda)t/2} \pm e^{-(2im_H + \Gamma_H + \lambda)t/2} \right) \\
\mathcal{K}_{2} = \sqrt{\frac{\operatorname{Re} \left[\frac{p-q}{p+q} \right]}{|p|^2 - |q|^2}} \left(1 - e^{-\Gamma_L t} - \frac{(|p|^2 - |q|^2)^2 |1 - e^{-(\Gamma + \lambda - i\Delta m)t}|^2}{1 - e^{-\Gamma_H t}} \right) \\
\mathcal{K}_{3\pm} = \sqrt{\frac{\operatorname{Re} \left[\frac{p-q}{p+q} \right]}{(|p|^2 - |q|^2)(1 - e^{-\Gamma_H t})}} \left[1 - e^{-\Gamma_H t} \pm (1 - e^{-(\Gamma + \lambda - i\Delta m)t})(|p|^2 - |q|^2) \right] \\
\mathcal{K}_{4} = \frac{e^{-\Gamma_L t/2}}{2} \sqrt{1 - e^{-\lambda t}} \\
\mathcal{K}_{5} = \frac{e^{-\Gamma_H t/2}}{2} \sqrt{1 - e^{-\lambda t}}, \tag{3.21}$$

where λ is a decoherence parameter that takes into account the evolution of the system under the influence of the surrounding environment, $\Gamma = \frac{1}{2}(\Gamma_L + \Gamma_H)$ is the mean decay width between mass eigenstates, $\Delta m = m_H - m_L$ is the mass difference between the B mass eigenstates $|B_L^0\rangle$ and $|B_H^0\rangle$, related to the B flavor eigenstates by

$$|B_L^0\rangle = p |B^0\rangle + q |\bar{B}^0\rangle, \quad |B_H^0\rangle = p |B^0\rangle - q |\bar{B}^0\rangle,$$
 (3.22)

with $|p|^2 + |q|^2 = 1$. Substituting the expressions for $\mathcal{K}_{1\pm}$, \mathcal{K}_4 and \mathcal{K}_5^{-1} into 3.20, we first find:

$$\rho_{B^{0}}(t)_{00} = |\mathcal{K}_{1+}|^{2} + |\mathcal{K}_{4}|^{2} + |\mathcal{K}_{5}|^{2} \\
= \frac{1}{4} \left(e^{-(2im_{L} + \Gamma_{L} + \lambda)t/2} + e^{-(2im_{H} + \Gamma_{H} + \lambda)t/2} \right) \left(e^{-(-2im_{L} + \Gamma_{L} + \lambda)t/2} + e^{-(-2im_{H} + \Gamma_{H} + \lambda)t/2} \right) \\
+ \left(\frac{1 - e^{-\lambda t}}{4} \right) \left(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} \right) \\
= \frac{1}{4} \left(e^{-(\Gamma_{L} + \lambda)t} + e^{-(\Gamma_{H} + \lambda)t} + e^{-(\Gamma + \lambda)t} \left(e^{i\Delta mt} + e^{-i\Delta mt} \right) \right) + \left(\frac{1 - e^{-\lambda t}}{4} \right) \left(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} \right) \\
= \frac{1}{4} \left(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} \right) + \frac{e^{-(\Gamma + \lambda)t}}{2} \cos(\Delta mt) \\
= \frac{e^{\Delta \Gamma t}}{4e^{\Gamma_{L}t}} + \frac{e^{-(\Gamma + \lambda)t}}{2} \cos(\Delta mt) \\
= \frac{e^{\Delta \Gamma t}}{4e^{\Gamma_{L}t}} + \frac{e^{-(\Gamma + \lambda)t}}{2} \cos(\Delta mt) \\
= \frac{e^{\Delta \Gamma t}}{2e^{(\Gamma_{L} + \Gamma_{H})t/2}} + \frac{e^{-(\Gamma + \lambda)t}}{2} \cos(\Delta mt) \\
= \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) + \cos(\Delta mt)e^{-\lambda t} \right) \\
= \frac{e^{-\Gamma t}}{2} \left(a_{ch} + a_{c}e^{-\lambda t} \right), \tag{3.23}$$

¹We leave $\mathcal{K}_{2,3\pm}$ as is because as we'll soon see, they don't have an effect on our calculations of interest.

where $a_{ch} \equiv \cosh\left(\frac{\Delta\Gamma t}{2}\right)$ and $a_c \equiv \cos(\Delta mt)$. Doing the same for $\rho_{B^0}(t)_{01}$, $\rho_{B^0}(t)_{10}$, and $\rho_{B^0}(t)_{11}$:

$$\begin{split} \rho_{B^0}(t)_{01} &= \left(\frac{q}{p}\right)^* (K_{1+}K_{1-}^* + |K_4|^2 - |K_5|^2) \\ &= \frac{1}{4} \left(\frac{q}{p}\right)^* \left(e^{-(2im_h + \Gamma_h + \lambda)t/2} + e^{-(2im_H + \Gamma_H + \lambda)t/2}\right) \left(e^{-(-2im_h + \Gamma_h + \lambda)t/2} - e^{-(-2im_H + \Gamma_H + \lambda)t/2}\right) \\ &+ \left(\frac{q}{p}\right)^* \left(\frac{1 - e^{-\lambda t}}{4}\right) (e^{-\Gamma_L t} - e^{-\Gamma_H t}) \\ &= \frac{1}{4} \left(\frac{q}{p}\right)^* \left(e^{-(\Gamma_L + \lambda)t} - e^{-(\Gamma_H + \lambda)t} + e^{-(\Gamma + \lambda)t} \left(e^{-i\Delta m t} - e^{i\Delta m t}\right)\right) + \left(\frac{q}{p}\right)^* \left(\frac{1 - e^{-\lambda t}}{4}\right) (e^{-\Gamma_L t} - e^{-\Gamma_H t}) \\ &= \left(\frac{q}{p}\right)^* \frac{e^{-\Gamma_L t} - e^{-\Gamma_H t}}{4} - \left(\frac{q}{p}\right)^* \frac{ie^{-(\Gamma + \lambda)t}}{2} \sin(\Delta m t) \\ &= \left(\frac{q}{p}\right)^* \frac{e^{-\Delta t t}}{4e^{\Gamma_2 t}} - \left(\frac{q}{p}\right)^* \frac{ie^{-(\Gamma + \lambda)t}}{2} \sin(\Delta m t) \\ &= \left(\frac{q}{p}\right)^* \frac{e^{-\Delta t t}}{4e^{\Gamma_2 t}} - \left(\frac{q}{p}\right)^* \frac{ie^{-(\Gamma + \lambda)t}}{2} \sin(\Delta m t) \\ &= \left(\frac{q}{p}\right)^* \frac{e^{-\Delta t t}}{4e^{\Gamma_2 t}} - \left(\frac{q}{p}\right)^* \frac{ie^{-(\Gamma + \lambda)t}}{2} \sin(\Delta m t) \\ &= \left(\frac{q}{p}\right)^* \frac{e^{-\Delta t t}}{4e^{\Gamma_2 t}} - \left(\frac{q}{p}\right)^* \frac{ie^{-(\Gamma + \lambda)t}}{2} \sin(\Delta m t) \\ &= -\left(\frac{q}{p}\right)^* \frac{e^{-\Delta t t}}{2} \left(a_{sh} + ia_s e^{-\lambda t}\right), \qquad (3.24) \\ &\rho_{B^0}(t)_{10} &= \left(\frac{q}{p}\right) \left(K_{1+}^* K_1 - + |K_4|^2 - |K_5|^2\right) \\ &= \frac{1}{4} \left(\frac{q}{p}\right) \left(e^{-(2im_h + \Gamma_h + \lambda)t/2} + e^{-(2im_H + \Gamma_H + \lambda)t/2}\right) \left(e^{-(2im_h + \Gamma_h + \lambda)t/2} - e^{-(2im_H + \Gamma_H + \lambda)t/2}\right) \\ &+ \left(\frac{q}{p}\right) \left(\frac{1 - e^{-\lambda t}}{4}\right) \left(e^{-\Gamma_L t} - e^{-\Gamma_H t}\right) \\ &= \frac{1}{4} \left(\frac{q}{p}\right) \left(e^{-(2im_h + \Gamma_h + \lambda)t/2} + e^{-(2im_H + \Gamma_h + \lambda)t/2}\right) \left(e^{-(2im_h + \Gamma_h + \lambda)t/2} - e^{-(2im_H + \Gamma_H + \lambda)t/2}\right) \\ &= \frac{1}{4} \left(\frac{q}{p}\right) \left(e^{-(2im_h + \Gamma_h + \lambda)t/2} + e^{-(2im_H + \Gamma_H + \lambda)t/2}\right) \left(e^{-(2im_h + \Gamma_h + \lambda)t/2} - e^{-(2im_H + \Gamma_H + \lambda)t/2}\right) \\ &= \left(\frac{q}{p}\right) \left(\frac{1 - e^{-\lambda t}}{4}\right) \left(e^{-\Gamma_L t} - e^{-\Gamma_H t}\right) \\ &= \left(\frac{q}{p}\right) \frac{e^{-\Gamma_L t}}{4} + \left(\frac{q}{p}\right) \frac{ie^{-(\Gamma + \lambda)t}}{2} \sin(\Delta m t) \\ &= \left(\frac{q}{p}\right) \frac{e^{-\Delta t}}{4e^{\Gamma_2 t}} - \frac{e^{\Delta t}}{2}}{4e^{\Gamma_L t}} + \left(\frac{q}{p}\right) \frac{ie^{-(\Gamma + \lambda)t}}{2} \sin(\Delta m t) \\ &= \left(\frac{q}{p}\right) \frac{e^{-\Delta t}}{4e^{\Gamma_2 t}} - \frac{e^{\Delta t}}{2}}{4e^{\Gamma_L t}} + \left(\frac{q}{p}\right) \frac{ie^{-(\Gamma + \lambda)t}}{2} \sin(\Delta m t) \\ &= \left(\frac{q}{p}\right) \frac{e^{-\Delta t}}{4e^{\Gamma_L t}} - \frac{e^{\Delta t}}{2}}{4e^{\Gamma_L t}} + \left(\frac{q}{p}\right) \frac{ie^{-(\Gamma + \lambda)t}}{2} \sin(\Delta m t)$$

$$\rho_{B^{0}}(t)_{11} = \left| \frac{q}{p} \right|^{2} (|\mathcal{K}_{1-}|^{2} + |\mathcal{K}_{4}|^{2} + |\mathcal{K}_{5}|^{2}) \\
= \frac{1}{4} \left| \frac{q}{p} \right|^{2} \left(e^{-(2im_{L} + \Gamma_{L} + \lambda)t/2} - e^{-(2im_{H} + \Gamma_{H} + \lambda)t/2} \right) \left(e^{-(-2im_{L} + \Gamma_{L} + \lambda)t/2} - e^{-(-2im_{H} + \Gamma_{H} + \lambda)t/2} \right) \\
+ \left| \frac{q}{p} \right|^{2} \left(\frac{1 - e^{-\lambda t}}{4} \right) \left(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} \right) \\
= \frac{1}{4} \left| \frac{q}{p} \right|^{2} \left(e^{-(\Gamma_{L} + \lambda)t} + e^{-(\Gamma_{H} + \lambda)t} - e^{-(\Gamma + \lambda)t} \left(e^{i\Delta mt} + e^{-i\Delta mt} \right) \right) + \left| \frac{q}{p} \right|^{2} \left(\frac{1 - e^{-\lambda t}}{4} \right) \left(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} \right) \\
= \frac{1}{4} \left| \frac{q}{p} \right|^{2} \left(e^{-\Gamma_{L}t} + e^{-\Gamma_{H}t} \right) - \left| \frac{q}{p} \right|^{2} \frac{e^{-(\Gamma + \lambda)t}}{2} \cos(\Delta mt) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{\Delta \Gamma t} + 1}{4e^{\Gamma_{L}t}} - \left| \frac{q}{p} \right|^{2} \frac{e^{-(\Gamma + \lambda)t}}{2} \cos(\Delta mt) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{\Delta \Gamma t}}{4e^{\Gamma_{L}t}} e^{-\frac{\Delta \Gamma t}{2}} - \left| \frac{q}{p} \right|^{2} \frac{e^{-(\Gamma + \lambda)t}}{2} \cos(\Delta mt) \\
= \left| \frac{q}{p} \right|^{2} \frac{\cosh\left(\frac{\Delta \Gamma t}{2}\right)}{2e^{(\Gamma_{L} + \Gamma_{H})t/2}} - \left| \frac{q}{p} \right|^{2} \frac{e^{-(\Gamma + \lambda)t}}{2} \cos(\Delta mt) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cos(\Delta mt) e^{-\lambda t} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cos(\Delta mt) e^{-\lambda t} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cos(\Delta mt) e^{-\lambda t} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cos(\Delta mt) e^{-\lambda t} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cos(\Delta mt) e^{-\lambda t} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cos(\Delta mt) e^{-\lambda t} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cos(\Delta mt) e^{-\lambda t} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cosh\left(\frac{\Delta \Gamma t}{2}\right) e^{-\lambda t} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cosh\left(\frac{\Delta \Gamma t}{2}\right) e^{-\lambda \tau} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cosh\left(\frac{\Delta \Gamma t}{2}\right) e^{-\lambda \tau} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cosh\left(\frac{\Delta \Gamma t}{2}\right) e^{-\lambda \tau} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh\left(\frac{\Delta \Gamma t}{2}\right) - \cosh\left(\frac{\Delta \Gamma t}{2}\right) e^{-\lambda \tau} \right) \\
= \left| \frac{q}{p} \right|^{2} \frac{e^{-\Gamma t}}{2} \left(\cosh$$

where $a_{sh} \equiv \sinh\left(\frac{\Delta\Gamma t}{2}\right)$ and $a_s \equiv \sin(\Delta mt)$. Plugging this all into 3.20 we find

$$\rho_{B^{0}}(t) = \frac{e^{-\Gamma t}}{2} \begin{pmatrix} a_{ch} + e^{-\lambda t} a_{c} & -\left(\frac{q}{p}\right)^{*} \left(a_{sh} + ie^{-\lambda t} a_{s}\right) & 0\\ \left(\frac{q}{p}\right) \left(-a_{sh} + ie^{-\lambda t} a_{s}\right) & \left|\frac{q}{p}\right|^{2} \left(a_{ch} - e^{-\lambda t} a_{c}\right) & 0\\ 0 & 0 & \rho_{B^{0}}(t)_{22} \end{pmatrix}.$$
(3.27)

We can perform this same procedure and time evolve $\rho_{\bar{B}^0}(0)$ using these same six Kraus operators $\{K_i(t)\}_{i=1}^6$ to get $\rho_{\bar{B}^0}(t)$. We summarize the results after doing so as follows

$$\rho_{\pm}(t) = \frac{e^{-\Gamma t}}{2} \begin{pmatrix} a_{ch} \pm e^{-\lambda t} a_c & -\left(\frac{q}{p}\right)^* \left(a_{sh} \pm i e^{-\lambda t} a_s\right) & 0\\ \left(\frac{q}{p}\right) \left(-a_{sh} \pm i e^{-\lambda t} a_s\right) & \left|\frac{q}{p}\right|^2 \left(a_{ch} \mp e^{-\lambda t} a_c\right) & 0\\ 0 & 0 & \rho_{\pm}(t)_{22}) \end{pmatrix}, \tag{3.28}$$

where $\rho_{+}(t)$ and $\rho_{-}(t)$ correspond to B^{0} and \bar{B}^{0} , respectively.

In the $\{|B^0\rangle, |\bar{B}^0\rangle, |0\rangle\}$ basis, we're interested in observables that encode the information about a B decaying into final state f. If we define $A_f \equiv A(B^0 \to f)$ and $\bar{A}_f \equiv A(\bar{B}^0 \to f)$ to be the

amplitudes of a B^0 and \bar{B}^0 , respectively, decaying into a final state f, we can construct an observable as follows:

$$\mathcal{O}_f(t) = \begin{pmatrix} |A_f|^2 & A_f^* \bar{A}_f & 0\\ A_f \bar{A}_f^* & |\bar{A}_f|^2 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$
 (3.29)

In the formalism of density operators, the time dependent expectation value of this observable is a physical quantity that characterizes the probability of a B^0 or \bar{B}^0 decaying into state f at time t

$$\langle \mathcal{O}_f \rangle (t) = \text{Tr}(\mathcal{O}_f \rho_{\pm}(t)) = P_{f\pm}(t),$$
 (3.30)

with P_+ corresponding to $B^0 \to f$ and P_- , corresponding to $\bar{B}^0 \to f$. 3.30 is enough to compute asymmetries that are measurable at B-factory experiments, and since our construction of $\rho_{\pm}(t)$ explicitly includes decoherence effects of neutral B-mesons interacting with their surrounding environment, these asymmetries will depend on decoherence parameter λ .

3.2.3 Observable for $\sin(2\phi_1)$

If we let our final state f be the golden mode, $J/\psi K_S$, we can, from 3.30, immediately construct the CP violating observable used to measure $\sin(2\phi_1)$ in [6]:

$$A_{f=J/\psi K_S}(t,\lambda) = \frac{P_{-}(t,\lambda) - P_{+}(t,\lambda)}{P_{-}(t,\lambda) + P_{+}(t,\lambda)},$$
(3.31)

where we are now explicitly writing out the dependence of this asymmetry on decoherence parameter λ . Computing the probabilities in 3.31 using 3.29, 3.28 and 3.30, we find

$$P_{J/\psi K_S \pm}(t,\lambda) = \frac{1}{2} e^{-\Gamma t} \left(|A_f|^2 (a_{ch} \pm e^{-\lambda t} a_c) + |\bar{A}_f|^2 \left| \frac{q}{p} \right|^2 (a_{ch} \mp e^{-\lambda t} a_c) - A_f^* \bar{A}_f \frac{q}{p} (a_{sh} \mp i e^{-\lambda t} a_s) - A_f \bar{A}_f^* \left(\frac{q}{p} \right)^* (a_{sh} \pm i e^{-\lambda t} a_s) \right)$$
(3.32)

Factoring out $|A_f|^2$ from both the numerator and denominator of 3.31 and defining $z \equiv \frac{q}{p}A(\bar{B}^0 \to J/\psi K_S)/A(B^0 \to J/\psi K_S)$, we obtain

$$\mathcal{A}_{J/\Psi K_S}(t,\lambda) = \frac{2(|z|^2 - 1)a_c - 2iza_s + 2iz^*a_s}{2(|z|^2 + 1)a_{ch} - 2za_{sh} - 2z^*a_{sh}} e^{-\lambda t}$$

$$= \frac{(|z|^2 - 1)a_c + 2\operatorname{Im}(z)a_s}{(|z|^2 + 1)a_{ch} - 2\operatorname{Re}(z)a_{sh}} e^{-\lambda t}$$

$$= \frac{(|z|^2 - 1)\cos(\Delta m_d t) + 2\operatorname{Im}(z)\sin(\Delta m_d t)}{(|z|^2 + 1)\cosh(\Delta \Gamma_d t/2) - 2\operatorname{Re}(z)\sinh(\Delta \Gamma_d t/2)} e^{-\lambda t}.$$
(3.33)

where we used the fact that the decay amplitudes are complex numbers, so $\text{Re}(z) = \frac{z+z^*}{2}$ and $\text{Im}(z) = \frac{z-z^*}{2i}$. If we set |z| = 1, $\Delta \Gamma \approx 0$, and note that $\text{Im}(z) \approx \sin(2\phi_1)$, we find

$$A_{J/\Psi K_S}(t,\lambda) \approx \sin(\Delta m_d t) \sin(2\phi_1) e^{-\lambda t},$$
 (3.34)

which, in the limit of no decoherence ($\lambda = 0$), is the well-known mixing and decay-induced CP asymmetry expression used to measure $\sin(2\phi_1)$ in Refs. [6, 7]. Furthermore, the presence of $e^{-\lambda t}$ in 3.34 suggests that the measurement of $\sin(2\phi_1)$ is blurred by decoherence.

3.2.4 Observable in $B\bar{B}$ mixing

In the case where a B^0 decays into a state that is inaccessible from a \bar{B}^0 decay, it follows that z=0 [15], which will lead us to an expression for the time dependent mixing asymmetry \mathcal{A}_{mix} . Indeed, if we consider 3.32 and set the final state to B^0 (or \bar{B}^0), we can compute flavor mixing probabilities. For example, if we were to compute $P_{B^0\to\bar{B}^0}(t)$, we set $A_f=0$ and $\bar{A}_f=1$ in 3.32, we would find

$$P_{B^0 \to \bar{B}^0}(t) \sim \cosh(\Delta \Gamma_d t/2) - e^{-\lambda t} \cos(\Delta m_d t),$$
 (3.35)

where we set $\left|\frac{p}{q}\right|^2 = 1$ which is true in B sector where $\Delta\Gamma \ll \Delta m$ [15]. For the other mixing combinations, we would set $A_f = 0$ and $\bar{A}_f = 1$ for $P_{\bar{B}^0 \to \bar{B}^0}(t)$, and we would set $A_f = 1$ and $\bar{A}_f = 0$ for $P_{\bar{B}^0 \to B^0}(t)$ and $P_{B^0 \to B^0}(t)$, giving

$$P_{\bar{B}^0 \to \bar{B}^0}(t) \sim \cosh(\Delta \Gamma_d t/2) + e^{-\lambda t} \cos(\Delta m_d t)$$
 (3.36)

$$P_{B^0 \to B^0}(t) \sim \cosh(\Delta \Gamma_d t/2) + e^{-\lambda t} \cos(\Delta m_d t)$$
 (3.37)

$$P_{\bar{B}^0 \to B^0}(t) \sim \cosh(\Delta \Gamma_d t/2) - e^{-\lambda t} \cos(\Delta m_d t).$$
 (3.38)

Now let's consider a $B\bar{B}$ produced from the hadronization of $e^+e^- \to \Upsilon(4S) \to b\bar{b}$, which is the mechanism for B production at Belle. Since the $\Upsilon(4S)$ is spin 1, it follows from conservation of angular momentum that the resulting $B\bar{B}$ pair will be in a coherent P-wave state, which means that at a certain time t_0 , nominally the decay time of the first B^0 in the $B\bar{B}$ pair, the flavor the decaying B must be the opposite of the flavor of the other B. This means the probability of observing opposite flavor $P_{B^0\bar{B}^0\to B^0\bar{B}^0}$ or same flavor pairs $P_{B^0\bar{B}^0\to (B^0B^0\text{ or }\bar{B}^0\bar{B}^0)}$ is determined from the proper time difference between the decays of the two B's, $\Delta t \equiv t_1 - t_0$. With this knowledge at our disposal, we see from equations 3.35–3.38 that mixing (creation of same flavor pair) is the result of second B changing flavor and thus has a minus sign in its oscillation probability, whereas an unmixed (opposite flavor) pair has a plus sign in its oscillation probability. This means we can write

$$P_{B^0\bar{B}^0 \to B^0\bar{B}^0}(\Delta t) \sim \cosh(\Delta \Gamma_d \Delta t/2) + e^{-\lambda \Delta t} \cos(\Delta m_d \Delta t) = P_+(\Delta t)$$
(3.39)

$$P_{B^0\bar{B}^0 \to B^0B^0 \text{ or } \bar{B}^0\bar{B}^0}(\Delta t) \sim \cosh(\Delta \Gamma_d \Delta t/2) - e^{-\lambda \Delta t} \cos(\Delta m_d \Delta t) = P_-(\Delta t). \tag{3.40}$$

Finally, we now define the time dependent mixing asymmetry, $A_{\text{mix}}(\Delta t)$ as

$$\mathcal{A}_{\text{mix}}(\Delta t) \equiv \frac{P_{+}(\Delta t) - P_{-}(\Delta t)}{P_{+}(\Delta t) + P_{-}(\Delta t)} = \frac{\cos(\Delta m_d \Delta t)}{\cosh(\Delta \Gamma_d \Delta t/2)} e^{-\lambda \Delta t}.$$
 (3.41)

Just like with 3.33, we see that we now have an expression for the time-dependent asymmetry which also manifestly depends on decoherence parameter λ .

Note: Make sure to cite [14] for the construction of the decoherence parameter in the Kaon system, [10] for the explicit treatment of B mesons as an open system, [11] and [24] and [8] for their explicit usage of Go's dataset to show how updates using Belle I data can still be helpful. And of course, cite Go [31]. Also, also, it looks like [44] explicitly constructs $\rho(t)$ and \mathcal{O} that I use in this chapter. [40] and [32] when bringing up dynamical positive semigroup formalism.

CHAPTER 4 KEKB AND BELLE

CHAPTER 5 EVENT SELECTION

CHAPTER 6 SYSTEMATIC UNCERTAINTIES

CHAPTER 7 RESULTS

CHAPTER 8 DISCUSSION AND OUTLOOK

BIBLIOGRAPHY

- [1] Experimental physics and industrial control system. Available at https://epics.anl.gov.
- [2] Pearson's Chi-Square Test Modifications for Comparison of Unweighted and Weighted Histograms and Two Weighted Histograms. PoS(ACAT)060.
- [3] Strategic accelerator design. Available at http://acc-physics.kek.jp/SAD/.
- [4] Giant dipole resonance neutron yields produced by electrons as a function of target material and thickness. *Health Phys*, 70:207 214, 1996.
- [5] K. Abe, Y. Hoshi, T. Nagamine, K. Neichi, K. Onodera, T. Takahashi, A. Yamaguchi, and H. Yuta. Neutron sensitivity of the endcap rpc modules in belle detector. *IEEE Transactions* on Nuclear Science, 50(4):831–835, 2003.
- [6] Kazuo Abe et al. Observation of large CP violation in the neutral B meson system. Phys. Rev. Lett., 87:091802, 2001.
- [7] Kazuo Abe et al. Improved measurement of CP-violation parameters sin 2phi(1) and —lambda—, B meson lifetimes, and B0 anti-B0 mixing parameter Delta m(d). *Phys. Rev. D*, 71:072003, 2005. [Erratum: Phys.Rev.D 71, 079903 (2005)].
- [8] Ashutosh Kumar Alok, Subhashish Banerjee, and S. Uma Sankar. Re-examining $\sin 2\beta$ and Δm_d from evolution of B_d^0 mesons with decoherence. *Phys. Lett. B*, 749:94–97, 2015.
- [9] T. Aushev, D.Z. Besson, K. Chilikin, R. Chistov, M. Danilov, P. Katrenko, R. Mizuk, G. Pakhlova, P. Pakhlov, V. Rusinov, and et al. A scintillator based endcap kl and muon detector for the belle ii experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 789:134?142, Jul 2015.
- [10] Subhashish Banerjee, Ashutosh Kumar Alok, and Richard MacKenzie. Quantum correlations in B and K meson systems. *Eur. Phys. J. Plus*, 131(5):129, 2016.
- [11] F. Benatti, R. Floreanini, S. Marcantoni, P. Pinotti, and K. Zimmermann. Bound on dissipative effects from semileptonic neutral B-meson decays. *Eur. Phys. J. C*, 77(9):651, 2017.
- [12] R. A. Bertlmann and W. Grimus. Quantum mechanical interference over macroscopic distances in the B0 anti-B0 system. *Phys. Lett. B*, 392:426–432, 1997.
- [13] R. A. Bertlmann, W. Grimus, and B. C. Hiesmayr. Bell inequality and CP violation in the neutral kaon system. *Phys. Lett. A*, 289:21–26, 2001.

- [14] Reinhold A. Bertlmann, Katharina Durstberger, and Beatrix C. Hiesmayr. Decoherence of entangled kaons and its connection to entanglement measures. *Phys. Rev. A*, 68:012111, 2003.
- [15] A. J. Bevan et al. The Physics of the B Factories. Eur. Phys. J. C, 74:3026, 2014.
- [16] Stephen Biagi. Magboltz-transport of electrons in gas mixtures. Available at https://magboltz.web.cern.ch/magboltz/.
- [17] Broglia R.A. Bortignon P.F., Bracco A. Giant Resonances, in: Contemporary Concepts in Physics, volume 10. CRC Press, 1998.
- [18] Belle II Collaboration. Belle II Coordinate System and Guideline of Belle II Numbering Scheme, 2011.
- [19] SuperB Collaboration. Superb: A high-luminosity asymmetric e+ e- super flavor factory. conceptual design report, 2007.
- [20] The ATLAS IBL collaboration. Prototype ATLAS IBL modules using the FE-i4a front-end readout chip. *Journal of Instrumentation*, 7(11):P11010–P11010, nov 2012.
- [21] The ATLAS IBL collaboration. Production and integration of the ATLAS insertable b-layer. Journal of Instrumentation, 13(05):T05008-T05008, may 2018.
- [22] The Belle II Collaboration. Belle II Technical Design Report. Technical Report arXiv:1011.0352. KEK REPORT 2010-1, Nov 2010. Comments: Edited by: Z. Doležal and S. Uno.
- Flux[23] Samuel de Jong. Study**Thermal** ofNeutronfromSuperKEKB Belle II Commissioning Detector. PhD University thesis. of Victoria, https://dspace.library.uvic.ca//handle/1828/8203, 2017.
- [24] Khushboo Dixit, Javid Naikoo, Subhashish Banerjee, and Ashutosh Kumar Alok. Study of coherence and mixedness in meson and neutrino systems. Eur. Phys. J. C, 79(2):96, 2019.
- [25] J. Allison et al. Geant4 developments and applications. *IEEE Transactions on Nuclear Science*, 53(1):270–278, 2006.
- [26] J. Allison et al. Recent developments in geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835:186 – 225, 2016.
- [27] S. Agostinelli et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250 303, 2003.

- [28] Berends F.A., et al. Complete lowest-order calculations for four-lepton final states in electron-positron collisions. *Nuclear Physics B*, 253:441–463, 1985.
- [29] Torben Ferber and Phillip Urquijo. Overview of the belle ii physics generators. Jun 2015.
- [30] Yoshihiro Funakoshi and Yukiyoshi Ohnishi. Highlights from SuperKEKB Commissioning Phase 1 and Plan for Phase 2. *ICFA Beam Dyn. Newslett.*, 72:11–19, 2017.
- [31] A. Go et al. Measurement of EPR-type flavour entanglement in Upsilon(4S) —> B0 anti-B0 decays. *Phys. Rev. Lett.*, 99:131802, 2007.
- [32] Vittorio Gorini, Andrzej Kossakowski, and E. C. G. Sudarshan. Completely Positive Dynamical Semigroups of N Level Systems. *J. Math. Phys.*, 17:821, 1976.
- [33] Michael Hedges. Performance and First Deployment of Novel 3D Nuclear Recoil Detectors. PhD thesis, University of Hawaii, http://hdl.handle.net/10125/62684, 12 2018.
- [34] Y. Hoshi, N. Kikuchi, T. Nagamine, K. Neichi, and A. Yamaguchi. Performance of the endcap rpc in the belle detector under high luminosity operation of the kekb accelerator. *Nuclear Physics B Proceedings Supplements*, 158:190 194, 2006. Proceedings of the 8th International Workshop on Resistive Plate Chambers and Related Detectors.
- [35] I. Jaegle et al. Compact, directional neutron detectors capable of high-resolution nuclear recoil imaging. *Nucl. Instrum. Methods Phys. Res.*, A, 945:162296, Nov 2019.
- [36] J. Janssen and D.L. Pohl. pybar bonn atlas readout in python.
- [37] Karl Kraus, A. Böhm, J. D. Dollard, and W. H. Wootters. States, Effects, and Operations Fundamental Notions of Quantum Theory, volume 190. 1983.
- [38] T. Kuhr, C. Pulvermacher, M. Ritter, T. Hauth, and N. Braun. The belle ii core software. Computing and Software for Big Science, 3, Nov 2018.
- [39] P. M. Lewis et al. First Measurements of Beam Backgrounds at SuperKEKB. Nucl. Instrum. Meth., A914:69–144, 2019.
- [40] Goran Lindblad. On the Generators of Quantum Dynamical Semigroups. *Commun. Math. Phys.*, 48:119, 1976.
- [41] Z. J. Liptak et al. Phase 2 forthcoming paper. 2021.
- [42] Chadwick M.B., et al. Endf/b-vii.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data. *Nuclear Data Sheets*, 112(12):2887 2996, 2011. Special Issue on ENDF/B-VII.1 Library.

- [43] E. Mendoza and D. Cano-Ott. Update of the evaluated neutron cross section libraries for the geant4 code, June 2018.
- [44] Javid Naikoo, Ashutosh Kumar Alok, and Subhashish Banerjee. Study of temporal quantum correlations in decohering B and K meson systems. *Phys. Rev. D*, 97(5):053008, 2018.
- [45] A. Natochii et al. Phase 3 forthcoming paper. 2021.
- [46] A. Natochii, S.E. Vahsen, H. Nakayama, T. Ishibashi, and S. Terui. Improved simulation of beam backgrounds and collimation at SuperKEKB. 2021. Forthcoming publication.
- [47] David R. Nygren and Jay N. Marx. The time projection chamber. *Physics Today*, 31(10):46–53, 1978.
- [48] Yukiyoshi Ohnishi, et al. Accelerator design at SuperKEKB. Progress of Theoretical and Experimental Physics, 2013(3), 03 2013. 03A011.
- [49] Seokhee Park, Youngjoon Kwon, Mikihiko Nakao, Uehara Sadaharu, and Tomoyuki Konno. Environmental Monitoring for Belle II. In 21st IEEE Real Time Conference, 6 2018.
- [50] Ahlburg Patrick. Development of a FE-I4-based module for radiation monitoring with BEAST II during the commissioning phase of the Belle II detector. Master's thesis, Universität Bonn, 2016.
- [51] A. Piwinski. The touschek effect in strong focusing storage rings, 1999.
- [52] Kleiss R., et al. BBBREM—monte carlo simulation of radiative bhabha scattering in the very forward direction. *Computer Physics Communications*, 81(3):372–380, 1994.
- [53] Jadach S., et al. BHWIDE $1.00:\mathcal{O}(\alpha)$ yfs exponentiated monte carlo for bhabha scattering at wide angles for lep1/slc and lep2. *Physics Letters B*, 390(1-4):298–308, 1997.
- [54] Y. Suetsugu, K. Shibata, T. Ishibashi, K. Kanazawa, M. Shirai, S. Terui, and H. Hisamatsu. First commissioning of the superkekb vacuum system. *Phys. Rev. Accel. Beams*, 19:121001, Dec 2016.
- [55] N Toge. KEK B-factory Design Report. Technical Report KEK-Report-95-7, KEK, Tsukuba, 1995.
- [56] S.E. Vahsen et al. The directional dark matter detector (d3). EAS Publications Series, 53:43–50, 2012.
- [57] Sven Vahsen, M.T. Hedges, Igal Jaegle, S.J. Ross, I.S. Seong, Tom Thorpe, J. Yamaoka, J.A. Kadyk, and M. Garcia-Sciveres. 3-d tracking in a miniature time projection chamber. *Nuclear*

- Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, 788, 03 2015.
- [58] Rob Veenhof and H. Schindler. Garfield++, 2018.
- [59] James F. Ziegler, M.D. Ziegler, and J.P. Biersack. Srim—the stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(11):1818 1823, 2010. 19th International Conference on Ion Beam Analysis.