cv and ml

architecture ideas and segmentation

Владимир Глазачев cv в rosebud.ai

Компоненты Conv Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Conv Layer

Conv Layer

28x28 grid, at each point a 6-dim vector Also 6-dim bias vector: 3x32x32 image Convolution Layer 32 6x3x5x5 32 Stack activations to get a filters 6x28x28 output image!

Conv networks

Conv Network

- + Мало весов в конволюциях
- + Хорошая структурная регуляризация и переиспользование данных
- + Как то работает, не надо руками крафтить фичи

- Много весов в dense слоях
- Работаем с фиксированным размером входа
- В таком виде плохо обучалось
- Исторически до gpu было оч медленно :)

Проблемы

- Нужно много размеченных данных, даже простая архитектура вычислительно довольно тяжелая на старом железе
 - o cuda вычисления двинули это все в массы
- все еще инпут картинки фиксированного размера
 - это можно решить какими то трюками :)
- плохо учится частично обсудим
 - инициализация
 - о нормализация
 - о затухание градиентов

Напоминание про градиенты

AlexNet

- ImageNet: >15 миллионов картинок, ≈ 22000 категорий.
- Размечены руками (Amazon Mechanical Turk).
- Классическая сеть AlexNet (Krizhevsky, Sutskever, Hinton, 2012).

На большом массиве данных получилось обучить convnet, до этого - игрушечные задачи вроде mnist

AlexNet

- В прошлый раз кратко обсудили какой нужен размер свертки
- B AlexNet свертки 11х11, 5х5, 3х3

- В прошлый раз кратко обсудили какой нужен размер свертки
- В AlexNet свертки 11х11, 5х5, 3х3

В свертке 5x5 25 параметров в 2 свертках 3x3 - 18 параметров

- В прошлый раз кратко обсудили какой нужен размер свертки
- В AlexNet свертки 11х11, 5х5, 3х3

В свертке 5x5 25 параметров в 2 свертках 3x3 - 18 параметров

работает как регуляризация, качество не теряем, большие свертки почти не используются

AlexNet

VGG16

VGG19

Softmax

- Хотим избавиться от dense слоев в конце большинство параметров все еще там
- Global Average Pooling

- Хотим избавиться от dense слоев в конце большинство параметров все еще там
- Global Average Pooling

- Хотим избавиться от dense слоев в конце большинство параметров все еще там
- Global Average Pooling

- Хотим избавиться от dense слоев в конце большинство параметров все еще там
- Global Average Pooling

S4 -> avgpool -> вектор размера 16 Соединяпем его с выходом dense слоем

- Глубокие модели плохо обучаются
- Почему? Насыщение (затухание) градиентов

- Где то тут появился батчнорм
- Доп головы не нужны, можем обучать глубокие сети (10+ слоев) особо не думая

- Где то тут появился батчнорм
- Доп головы не нужны, можем обучать глубокие сети (10+ слоев) особо не думая
- Почему работает? Пространство становится более гладким

- Где то тут появился батчнорм
- Доп головы не нужны, можем обучать глубокие сети (10+ слоев) особо не думая
- Почему работает? Пространство становится более гладким
- internal covariate shift , но никто не знает что это такое

- Где то тут появился батчнорм
- Доп головы не нужны, можем обучать глубокие сети (10+ слоев) особо не думая
- Почему работает? Пространство становится более гладким
- internal covariate shift , но никто не знает что это такое
- математически nn функция, f(x);
 Липшицева константа меньше

1х1 конволюции

Проблемы глубоких сетей

Проблемы глубоких сетей

Проблемы глубоких сетей

Большая сеть имеет маленькую своей подсетью, так что проблема не в архитектуре а в обучении

ResNet

ResNet

Конец ImageNet

К чему это все пришло

- делаем качество выше
- делаем скорость выше
- количество параметров меньше
- воюем во все стороны сразу

- есть еще подмножество задач про микро модели, когда хочется засунуть в embed устройство или старый телефон (в новый телефон влезет много что)
- на современном встроенном на iphone чипе вы можете делать тоже самое что на довольно мощной карте, порядка 1080; т.е. хороший реалтайм

Аугментации

TestTime аугментации

Все еще кот так что можно аггрегировать, всегда (когда имеет смысл) может улучшить результат, но дорого

А нужна ли нам классификация?

- Классификация даст ответ на вопрос есть ли что то на картинке
- Какие бизнес задачи мы через это можем решить?

А нужна ли нам классификация?

- Какие задачи есть
 - self driving
 - распознать окружение и разметку
 - распознать людей
 - понять собственную ориентацию в пространстве
 - ...
 - medical
 - найти аномалию на рентгене
 - посчитать какие нибудь клетки
 - подсветить опухоли
 - manufacturing
 - найти аномалию
 - складская навигация
 - robotics на конвейерах
 - security
 - идентификация
 - retail автоматические магазины без продавцов
 - o agro
 - поля размечать
 - предсказывать урожайность
 - искать аномалии и проблемы, болезни, жуков
 - o fun
 - фильтр в инстаграме сделать
 - лицо натянуть на дипфейк
 - о ... мало где тут задача является классификацией

Детекция и сегментация

Is this a dog?

Image Classification

What is there in image and where?

Object Detection

Which pixels belong to which object?

Image Segmentation

Детекция и сегментация

Is this a dog?

Image Classification

What is there in image and where?

Object Detection

Which pixels belong to which object?

Image Segmentation

А зачем детекция если умеем сегментацию?

Сегментация - задачи

Медленно, не используем маски во время обучения

Медленно, не используем маски во время обучения

Сегментация - end2end

loss – per pixel cross entropy

fully conv network - конволюционизация

сегментация - лосс и проблемы

- кросентропия (попикселная класификация)
- может быть довольно unbalanced
- в какой то момент вы умеете хорошо решать задачу так что важны становятся границы - а оно не отбалансено
- іои и дифф версии этого

че делать?

не надо изобретать велосипед

- берете резнет50 или резнекст50 ; это даст вам хороший бейзлайн ;
- если на ембединг девайсе посмотреть не лезут ли пункт выше)) если нет то посмотреть более компактные версии (резнет34 и т д) и мобайл архитектуры
- на сегментации ищите кто решал похожую задачу; хорошим бейзлайном будет взять резнет50, накинуть скип слоев и декодера и обучить unet лайк модель; если ваш датасет ок - то все будет норм

че делать х2?

- сегментация дорогая, че делать?
 - размечаем часть картинок, обучайте модель, сегментируйте с heavy агументациями, аггрегируйте маску - смотрим глазами , мб через это вы получите бесплатно еще кучу примеров + можно выделить то что плохо работало отправить на доразметку
 - о обучаем новую модель на новых данных, повторяем процесс
 - через пару итераций датасет будет разумного качества чтоб показать какое то решение
 - !!! обычн это не очень работает в традиционном мл, я пробовал !!! но в дл вы часто можете делать себе данные сами

Ссылки

- в части про архитектуры многие картинки из курса по compvision michigan university https://www.youtube.com/watch?v=XaZIIVrIO-Q&t=3282s
- если есть вопросы можно мне написать в телеграмме @vladgl