Name: Shravani Ingle

Roll No. – 315 Class: C1

PRN No. - 202201070028

GRADED ASSIGNMENT 5

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd

Load the CSV file into a DataFrame

df = pd.read_csv("/content/drive/MyDrive/Automobile.csv")
print(df)

	name	mpg	cylinders	displacement					
horsepower \									
0 chevro	let chevelle malibu	18.0	8	307.0					
1 165.0	buick skylark 320	15.0	8	350.0					
2 150.0	plymouth satellite	18.0	8	318.0					
3 150.0	amc rebel sst	16.0	8	304.0					
4 140.0	ford torino	17.0	8	302.0					
•••	•••	•••							
393 86.0	ford mustang gl	27.0	4	140.0					
394 52.0	vw pickup	44.0	4	97.0					
395 84.0	dodge rampage	32.0	4	135.0					
396 79.0	ford ranger	28.0	4	120.0					

397	chevy s-10	31.0	4	119.0
82.0				

	weight	acceleration	model_year	origin
0	3504	12.0	70	usa
1	3693	11.5	70	usa
2	3436	11.0	70	usa
3	3433	12.0	70	usa
4	3449	10.5	70	usa
393	2790	15.6	82	usa
394	2130	24.6	82	europe
395	2295	11.6	82	usa
396	2625	18.6	82	usa
397	2720	19.4	82	usa

Statement 1: Plot the distribution of MPG (Miles Per Gallon)

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.histplot(data=df, x='mpg')
plt.xlabel('MPG')
plt.ylabel('Count')
```

plt.title('Distribution of MPG')plt.show()

Statement 2: Display the count of each number of cylinders

```
sns.countplot(data=df, x='cylinders')
plt.xlabel('Number of Cylinders')
plt.ylabel('Count')
plt.title('Count of Cylinders')
plt.show()
```


Statement 3: Show the relationship between horsepower and weight

```
sns.scatterplot(data=df, x='horsepower', y='weight')
plt.xlabel('Horsepower')
plt.ylabel('Weight')
plt.title('Horsepower vs Weight')
plt.show()
```


Statement 4: Compare the average acceleration for each origin

```
sns.barplot(data=df, x='origin', y='acceleration')
plt.xlabel('Origin')
plt.ylabel('Average Acceleration')
plt.title('Average Acceleration by Origin')
plt.show()
```


Statement 5: Visualize the distribution of weight

```
sns.histplot(data=df, x='weight')
plt.xlabel('Weight')
plt.ylabel('Count')
plt.title('Distribution of Weight')
plt.show()
```


Statement 6: Plot the average MPG for each model year

```
sns.lineplot(data=df, x='model_year', y='mpg')
plt.xlabel('Model Year')
plt.ylabel('Average MPG')
plt.title('Average MPG by Model Year')
plt.show()
```


Model Year

Statement 7: Display the count of cars for each origin

```
sns.countplot(data=df, x='origin')
plt.xlabel('Origin')
plt.ylabel('Count')
plt.title('Count of Cars by Origin')
plt.show()
```


Statement 8: Show the relationship between displacement and MPG

```
sns.scatterplot(data=df, x='displacement', y='mpg')
plt.xlabel('Displacement')
plt.ylabel('MPG')
plt.title('Displacement vs MPG')
plt.show()
```


Statement 9: Compare the average horsepower for each number of cylinders

```
sns.barplot(data=df, x='cylinders', y='horsepower')
plt.xlabel('Number of Cylinders')
plt.ylabel('Average Horsepower')
plt.title('Average Horsepower by Number of Cylinders')
plt.sow()
```


Statement 10: Visualize the distribution of horsepower

```
sns.histplot(data=df, x='horsepower')
plt.xlabel('Horsepower')
plt.ylabel('Count')
plt.title('Distribution of Horsepower')
plt.show()
```


Statement 11: Plot the average weight for each number of cylinders

```
sns.barplot(data=df, x='cylinders', y='weight')
plt.xlabel('Number of Cylinders')
plt.ylabel('Average Weight')
plt.title('Average Weight by Number of Cylinders')
plt.show()
```


Statement 12: Display the count of cars for each model year

```
sns.countplot(data=df, x='model_year')
plt.xlabel('Model Year')
plt.ylabel('Count')
plt.title('Count of Cars by Model Year')
plt.show()
```


Statement 13: Show the relationship between acceleration and MPG

```
sns.scatterplot(data=df, x='acceleration', y='mpg')
plt.xlabel('Acceleration')
plt.ylabel('MPG')
plt.title('Acceleration vs MPG')
plt.show()
```


Statement 14: Compare the average displacement for each origin

```
sns.barplot(data=df, x='origin', y='displacement')
plt.xlabel('Origin')
plt.ylabel('Average Displacement')
plt.title('Average Displacement by Origin')
plt.show()
```


Statement 15: Visualize the distribution of MPG for each number of cylinders

```
sns.boxplot(data=df, x='cylinders', y='mpg')
plt.xlabel('Number of Cylinders')
plt.ylabel('MPG')
plt.title('MPG Distribution by Number of Cylinders')
plt.show()
```

