Paradoks Bertranda

Rafał Głodek

Paradoks Bertranda

- Calcul des Probabilities, 1888 Joseph Bertrand
- W okrąg o promieniu R wpisano trójkąt równoboczny. Jaka jest szansa, że losowo wybrana cięciwa będzie dłuższa niż bok tego trójkąta?
- Trzy sposoby rozwiązania problemu

Podejście pierwsze

- Zdarzenie elementarne: wybór początku i końca cięciwy ↔ wybór kąta wpisanego
- Zdarzenie sprzyjające: cięciwa znajduje się między ramionami trójkąta
- Ustalamy:
 - przestrzeń zdarzeń elementarnych $\Omega = [0, \pi]$

 - zdarzenie sprzyjające $A=\left(\frac{1}{3}\pi,\frac{2}{3}\pi\right)$ obliczone prawdopodobieństwo wynosi $P(A)=\frac{1}{3}$

Podejście drugie

- → Zdarzenie elementarne: wybór odległości między środkami poprowadzonej cięciwy i okręgu
- → Zdarzenie sprzyjające: cięciwa jest bliżej środka niż środek podstawy trójkąta
- → Ustalamy:
 - lacktriangle przestrzeń zdarzeń elementarnych $\,\Omega = [0,1]\,$
 - zdarzenie sprzyjające $B = \left[0, \frac{1}{2}\right)$
 - obliczone prawdopodobieństwo wynosi $P(B) = \frac{1}{2}$

Podejście trzecie

- → Zdarzenie elementarne: wybór punktu wewnątrz koła jednostkowego ↔ wybór cięciwy o środku w tym punkcie
- → Zdarzenie sprzyjające: wybrany punkt należy do koła wpisanego w rozważany trójkąt równoboczny
- → Ustalamy:
 - lacktriangle przestrzeń zdarzeń elementarnych $\Omega = K(0,1)$
 - lacktriangle zdarzenie sprzyjające $C = K\left(0, \frac{1}{2}\right)$
 - obliczone prawdopodobieństwo wynosi

$$P(C) = \frac{S_C}{S_{\Omega}} = \frac{\pi}{4\pi} = \frac{1}{4}$$

Skąd wynika rozbieżność wyników?

- → Każde podejście daje nam inny wynik (w ogólności możemy otrzymać dowolne prawdopodobieństwo między 0 a 1)
- → Istnieje nieskończenie wiele sposobów wyboru cięciw
- → "Losowość" nie jest jednoznaczna
- → Klasyczna (jedyna wówczas znana) definicja prawdopodobieństwa Laplace'a, rozumiana jako ilorazu liczności zbioru zdarzeń sprzyjających, może przysporzyć problemów, gdy pojawiają się nieskończoności

Rozwiązanie paradoksu Bertranda

- → Rozważając zbiory nieskończone, konieczne jest zdefiniowanie funkcji, która w jednoznaczny sposób określa procedurę losowania elementów z tego zbioru
- → Każdy problem wymaga uprzedniego zdefiniowania przestrzeni probabilistycznej
- → Aksjomatyka rachunku prawdopodobieństwa, Kołmogorow (1933)

Źródła

- 1. https://pl.wikipedia.org/wiki/Paradoks_Bertranda
- 2. https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
- 3. https://www.deltami.edu.pl/media/articles/1992/04/delta-1992-04-paradoksy-w-rachunku-prawdopodobienstwa.pdf
- 4. https://www.youtube.com/watch?v=mZBwsm6B280&ab_channel=Numberphile

