

Metabolomics integrative analysis with genome-scale metabolic networks

International Agency for Research on Cancer Lyon, France

Adam Amara

Genome-scale metabolic networks

How does it work?

How to build one?

Constraint-based modelling

Models-based simulations

Metabolomics and metabolic networks

Green: Level 1 annotated metabolites Red: Level 2 annotated metabolites

Blue: organism metabolites

Identification of metabolic pathways changing due to antibiotics production:
Pinpoint key metabolites changing between

two conditions (producer/non-producer).

Quantitative metabolomics data integrated as metabolic fluxes values.

International Agency for Research on Cancer

The University of Manchester

Example

Evolution of human metabolic networks

Global reconstruction of the human metabolic network based on genomic and bibliomic data

Natalie C. Duarte, Scott A. Becker, Neema Jamshidi, Ines Thiele, Monica L. Mo, Thuy D. Vo, Rohith Srivas, and Bernhard Ø. Palsson

PNAS February 6, 2007 104 (6) 1777-1782; https://doi.org/10.1073/pnas.0610772104

Recon1 2007

Human1 2020

RESEARCH ARTICLE METABOLISM

An atlas of human metabolism

Jonathan L. Robinson ^{1,2,*}, [™] Pinar Kocabaş ^{1,2,*}, [™] Hao Wang ^{1,3,4,*}, Pierre-Etienne Cholley ^{4,*}, [™] Daniel Cook ¹, [™] Avlan...
 See all authors and affiliations

Science Signaling 24 Mar 2020: Vol. 13, Issue 624, easz1482 DOI: 10.1126/scisignal.aaz1482

Applications for cancer research

- Improve metabolites annotation (MetClassNet)
- Biomarkers discovery
- Studying metabolic adaptation changes
- Comparative metabolic analysis of cancers
- Multi-omics analysis from genotype to phenotype

Applications

International Agency for Research on Cancer

Evolution

Using omics to constrain the metabolic models

Part 2

What we do at IARC

MetClassNet

MetClassNet overall objectives:

- 1. Develop a novel computational framework to build multilayer networks
- Develop state of art computational solutions exploiting the multilayer topology to improve the power of metabolism analysis
- 3. Generate new biological insight by using combined power of the above approaches.
- 4. Liberate the new software solutions and data toward the community.

A reproducible and modular metabolomics integrative analysis pipeline

Thanks - MetClassNet

