

PCle® Cable Update

Alex Haser
OCuLink WG Chair
Molex, LLC

Disclaimer:

Some of the information in this presentation refers to specifications still in the development process. This presentation reflects the current thinking of various PCI-SIG® workgroups, but all material is subject to change before the specifications are released.

Agenda:

ECNs & Errata Completed Against OCuLink 1.0:

- Pin Sequencing Errata
- Memory Map Errata
- Server Space ECN
- Skew ECN
- CPRSNT# ECN
- BP Type ECN
- Wiring Chart ECN
- Performance Table ECN
- Cable SI ECN

Open Items:

- Port & Cable Aggregation ECR
- Power Appendices ECR
- X4 Drawing Corrections ECR
- 16.0 GT/s Performance ECR

Pin Sequencing Errata:

- Contains one pin sequencing erratum against PCIe®
 OCuLink 1.0, correcting a single entry in a table showing
 the pin sequencing for a ground pin as second mate
- Completed: 11/04/2016

Memory Map Errata:

- Modifies the cable assembly memory map; reorganizes bytes for external cable assemblies and modifies fields as needed to align with SFF-8636
- Impact: Existing external OCuLink cables and ports must be modified to accept the new memory map
- Completed: 12/13/2016

Server Space ECN:

- Adds environmental requirements for enterprise applications to *OCuLink 1.0* specification:
 - 5 year field life
 - 65°C operating temperature
 (May be modified in the future to accommodate active cables)
- Impact: Environmental & mechanical requirements for OCuLink connectors and cables are identified for use in enterprise applications
- Completed: 12/13/2016

Skew ECN:

- Corrects maximum skew permitted in OCuLink cables to coincide with requirements in CEM specification
- Impact: (Minimal) Manufacture of compliant cable assemblies may be more challenging
- Completed: 12/13/2016

Table 7-1. Cable Assembly Differential Characteristics Summary						
Description	Reference	Value	Unit			
Maximum insertion loss	7.3.2	15	dB			
Minimum insertion loss	7.3.2	0	dB			
Minimum return loss	7.3.3	Equation (7-5)	dB			
Differential to common-mode return loss	7.3.4	Equation (7-6)	dB			
Differential to common-mode conversion loss minus Insertion Loss	7.3.5	Equation (7-7)	dB			
Common-mode to common-mode return loss	7.3.6	Equation (7-8)	dB			
MDNEXT loss	7.3.7	Equation (7-9)	dB			
MDFEXT loss	7.3.7	Equation (7-10)	dB			
OCuLink Total Cable Assembly Skew (Sc)	7.3.8	€0.9 (max)	ns MAX			

CPRSNT# ECN:

- Fully defines the cable presence (CPRNST#) signal that was incompletely and inaccurately defined in OCuLink 1.0
- Impact: CPRNST# supported 3 states in OCuLink 1.0; it now only supports 2 states
- Completed: 5/31/2017

```
☐ CPRSNT# (required): Cable present detect, an active-low signal provided by a Downstream Subsystem to indicate that it is both present and its power is within tolerance.
```

```
    Vman < 0.8 V ==> Low Level: Cable not present and/or power not applied
```

1.4 V < Vman < 1.8 V ==> Middle Level: Cable present, but power not applied

Vman > 2.7 V ==> High Level: Cable present and power applied

CPRSNT# (required): Cable present detect, an active-low signal provided by an Endpoint to indicate that it is both present and its power is within tolerance.

```
• CPRSNT# = low level (Vman < 0.8 V) ==> Cable present and any power needed to operate the Endpoint is applied
```

CPRSNT# = high level (Vman > 2.7 V) ==> Cable not present and/or power not applied

BP Type ECN:

 Fully defines the Backplane (BP) Type signal that was incompletely defined in the OCuLink 1.0 release

Added figure below to clarify Upstream Port/ Downstream Port

Impact: BP Type pin may be used for VSP after BP Type is

established

Completed: 10/6/2017

Wiring Chart ECR:

- Connector and cable assembly pinout tables have been revised to show complete pinout assignments for all applications
- Impact: Decreases errors misinterpreting wiring diagrams
- Completed: 10/6/2017

Table	6-9. Wiring Chart Cables	for x4 Internal I	Passive and Active Cros	ssover
P1 Row Position	Downstream Port	Cable Termination & Signal Direction	Upstream Port	P2 Row Position
A1 (Bevel)	POWER 3.3 Vact #1 (see Note 1)	NO WIRE	POWER 5V #1 (see Note 5)	B1
A2	GROUND		GROUND	B2
А3	PERp0	←──	РЕТр0	В3
A4	PERn0	←	PETn0	B4
A5	GROUND		GROUND	B5
A6	PERp1		PETp1	В6
A7	PERn1		PETn1	В7
A8	GROUND		GROUND	B8

Performance Table ECN:

- Reorganizes and clarifies mechanical and environmental performance criteria required of OCuLink connectors and cables
- Impact: Test requirements adhere to EIA test methodology
- Completed: 3/15/2018

	Test Group								
Test (see Note 1)	1	2	3	4	7				
Low Level Contact Resistance	1, 4, 6	1, 4, 6, 8	1, 4, 6	1, 4, 6, 8, 10	2, 4	_			
Durability (preconditioning)	2	2	2	2					
Temperature Life	3								
Reseating	5	7		9					
Thermal Shock		3							
Cyclic Temperature and Humidity		5		Table 6-13. EIA-364-1000A Test Details					
Temperature Life (preconditioning)			3	Test		Test Procedure	Test Criteria		
Vibration			5	Durability (preconditioned)					
Mixed Flowing Gas						See Note 1			
Thermal Cycling (disturbance)				Durability (s		Cycle rate: 200 cycles/ hour			
Dielectric Withstanding Voltage						(see Notes 1 & 2)			
Durability						Class IIA (see Note 3)			
Notes: 1. Intermediate LLCR measurements may be taken during any test sequestester, but are not required.				Temperature Life		See Note 4	No intermediate requirements during EIA-364		
			y test sequ	Cyclic Temperature and Humidity			1000A testing		

Cable SI ECN:

- Clarifies SI requirements
- Existing limits were validated using an internal reference topology (most common application) & Seasim
- This ECR will act as the starting point for defining 16 GT/s requirements (first priority for 2.0 release)
- Impact: IL limit justifiably accommodates 2m cables
- Completed: 4/13/2018

Open Items:

Port & Cable Aggregation ECR:

- Addresses sideband management for aggregated ports/ cables
- Additions made to the memory map to address issues
- Impact: Additional entries are needed in the memory map of cables that are to be aggregated
- Expected to be completed: Q2 2018 (in 60-day review)

Power Appendices ECR:

- General clean up/ reorganization of power appendices (C & E)
- Workgroup currently addressing comments received
- <u>Impact</u>: User is pointed to SFF-8449 for power requirements
- Expected to be completed: Q2 2018 (in 60-day review)

Open Items (Continued):

x4 Figure clean-up ECR:

- Replaced drawings showing SMT hold-downs with drawings showing through-hole hold downs to reflect the industry's preference
- Corrects dimensions and tolerances based on industry feedback
- Impact: Accurate and concise representation of x4 form factor
- Expected to be completed: Q3 2018

16.0 GT/s Performance ECR

- Adds signal integrity performance requirements necessary to allow OCuLink cables to meet PCIe-4.0 system requirements
- Impact: OCuLink cables may be used in PCIe-4.0 systems
- Expected to be completed: Q4 2018

PCIe Cable Update

Lee Mohrmann
External Cabling WG Chair
National Instruments

Quick Overview

- New Connector- based on SFF-8644
- Independent Clocking
- New Sideband Implementation
 - Includes provision for Vendor Specific Communications via 2-wire interface
- Configuration of PCIe device required before Link Training begins
- Port Flexibility
- Cable Flexibility

PCIe vs. SFF-8644

Pinout

- PCIe cables facilitates a x4 routing solution
- SAS cables route 4 independent x1 links

Sidebands

- PCIe supports End-to-End 2-wire interface, SFF-8449 supports interface to cable assembly plug only
- SFF-8449 Rsvd pin used for CADDR in PCIe cables, allows for address modification of 2-wire devices

Memory Map

- 2 locations reserved in SFF-8639 specifically for PCIe cables
- Definitions change for some fields, though they are similar information

Cable Performance Updates

- The WG has been finalizing cable performance parameters for:
 - Insertion Loss
 - Return Loss
 - Crosstalk Limits

Insertion Loss (Update colors)

Crosstalk

O MDNEXT

Sum of all Near-End Crosstalk Members

MDELFEXT

Sum of all Far-End Crosstalk Members-Insertion Loss

MDELFEXT can scale for insertion loss, but MDNEXT does not

PSXT

PowerSum Crosstalk

- Combines NEXT & FEXT
- Does not scale with Insertion Loss
- Questions arise about Pass/Fail limits vs functionality based on singular "spike"

ICR

Insertion Crosstalk Ratio

ICR = (PSXT – Insertion Loss)

Scales with Crosstalk

Still requires separate Pass/Fail limit for Insertion loss

Susceptible to spikes & excursions in frequency curves

ICN

Integrated Crosstalk Noise

- Use cable assembly PSNEXT and PSFEXT
- Create signal filters based on signal characteristics
 - Filters create the weighting function
- Combine the weighting function with crosstalk curves
- PowerSum the NEXT and FEXT combinations
- The frequency-domain weighting functions are based on Baud Rate, aggressor amplitude, aggressor edge rate, and receiver bandwidth
- Does not scale with Insertion Loss
 - Must create curve of ICN vs Insertion loss
- Used by other organizations for similar speed interfaces

ICN (need to update)

Status (need to update)

- We have updated the aforementioned curves
- Awaiting to approval 0.9 draft
- Please review the specification when it becomes available!

Looking Ahead

Preliminary PCIe 4.0 simulations indicate passive 1m cables will work.

- This included PCIe 4.0 Pkgs provided by the Fixed-Side models used in PCIe 3.0 specification
- Longer cables will need to be updated with better cable terminations
- Approximate loss at 8 GHz is -9 dB, subject to change

Architectural changes needed

- Update the cable memory map to include PCIe 4.0 identifier
- Optionally update CMI to 400kHz operation for quicker cable configuration reads and sideband messaging operations

Thank you for attending the PCI-SIG Developers Conference 2018.

For more information, please go to www.pcisig.com

Don't forget to submit your feedback via the mobile app!

Download the **Crowd Compass** app and then search for **PCI-SIG Developers Conference** or entering the following URL into your mobile browser: https://crowd.cc/s/1rKy0
Enter event code: **DevCon2018**

Alternatively, access here: https://crowd.cc/pcisig2018

Note: Create an account within the app so Admin knows who to contact if selected as the prize winner.

Each session feedback is provided is equivalent to 1 raffle entry (up to 11 sessions).

General survey feedback = 1 raffle entry.

