PCI 兼容设备的端口列表

图 6-1 PCI 兼容设备

- 1. ad[31:0] 地址总线,包含传输数据读出或写入的地址信息。它也是数据总线。
- 2. <u>c/be[31:0]</u> 指令总线,包含下表所示的指令之一。它也是字节允许总线,定义数据总线中可以传输哪些字节。

表 6-1 PCI 总线指令	
C/BE[3:0]	命令类型
0000	中断确认(Interrupt Acknowledge)
0001	特殊周期(Special Cycle)
0010	I/O 读
0011	I/O 写
0100	保留
0101	保留
0110	存储读(Memory Read)
0111	存储写(Memory Write)
1000	保留
1001	保留
1010	配置读(Configuration Read)
1011	配置写(Configuration Write)
1100	多次存储器读(Memory Read Multiple)
1101	双重地址周期(Dual Address cycle)
1110	存储读线
1111	存储写、无效(Memory Write and Invalidate)

- 3. *par* 奇偶校验位,在 *ad[31:0]*, *c/be[31:0]*, *par* 中应该一共有偶数个 1 出现。该校验位的值被驱动的时刻是在 *ad[31:0]* 被驱动的一个时钟周期之后。
- 4. <u>framen</u> 帧信号,被事务主控所断言。当帧信号被断言的同时,主控在 <u>c/be[31:0]</u> 上设置适当的指令来表示事务性质。当主控即将完成最后的数据传输时,该帧信号被取消断言。
- 5. <u>trdyn</u> 目标预备信号,由主控当前所给地址对应的目标设备断言。设备通过断言该信号来告知主 控已准备好进行事务的状态。
- 6. <u>irdyn</u> 主控预备信号,由需要做事务的主控断言。

devseln: 设备选择信号,选择从机时断言该信号,只有断言了这个信号,才能断言 trdyn

- 7. idsel 初始设备选择信号,在进行 PCI 配置读写事务时作为芯片选择信号。
- 8. perrn 校验位错误信号,在主控或从设备发现校验位出错时刻的一个时钟周期后断言。
- 9. seern 系统错误信号, 主控和从设备的输出信号。当致命错误发生时断言。
- 10. reqn 请求信号,主控设备使用该信号发出 PCI 总线的使用请求。
- 11. gntn 授予信号,表示 PCI 设备有使用 PCI 总线的许可。

PCI 读数据的实例

- 1. 读数据的概念: 读数据的命令由 master 发起,选择一个 slave, slave 将数据返回 master。
- 2. 读数据的步骤:
 - *STEP1:* master 使能 *framen* 信号并对 *ad[31:0]* 写入一个地址,同时对 *c/be[31:0]* 写入存储读命令。
 - **STEP2:** 所有 slave 通过对 **ad[31:0]** 解码来识别自己,一旦识别自己,则使能 **devseln** 信号。
 - <u>STEP3:</u> master 仍保持对 <u>framen</u> 信号的使能,由于已经选择到了特定的 slave,因此停止驱动 <u>ad[31:0]</u>,并使能 <u>irdyn</u> 信号,并对 <u>c/be[31:0]</u> 写入一个中断确认命令。
 - *STEP4:* slave 将需要返回的数据的第一部分写入 *ad[31:0]*. 并使能 *trdyn* 来确保数据有效。
 - <u>STEP5:</u> 此时,<u>trdyn</u> 和 <u>irdyn</u> 均已使能,因此 master 可以将 <u>ad[31:0]</u> 的数据读出来。
 - <u>STEP6:</u> 现在,master 结束了第一部分数据的读取,需要后面若干部分数据的读取。重复 STEP4 和 STEP5 即可。
 - o 如果 slave 没有准备好将下部分的数据写入 <u>ad[31:0]</u>,则停止使能 <u>trdyn</u> 信号,等待 slave 准备好,再使能 <u>trdyn</u> 信号。在等待期间,<u>devseln</u> 信号仍然保持使能, ad[31:0] 中仍是上一部分的数据。但是 master 不会读取,原因见 STEP5。
 - **STEP7:** 现在,master 即将开始最后一部分数据的读取。master 通过停止使能 **framen** 信号表示这是最后一部分数据。一旦 master 完成最后一部分数据的读入,则停止使能 **irdyn** 信号,此时 slave 取消使能 **trdyn** 信号和 **devseln** 信号,总线回到停滞状态。