

标识认证在网络安全的创新应用

刘鹏 北京仁信证科技有限公司CTO

ISC 互联网安全大会 中国・北京

Internet Security Conference 2018 Beijing · China

目录

- 一、网络安全认证体系现状分析
- 二、标识认证在网络安全的创新应用

WEB INTERNET
INFORMATION LEAK
TERMINAL AGE
PERSONAL PRIVACY IDENTITY SECURITY
IDENTITY
AUTHENTICATION
ISC 互联网安全大会中国・北京
Internet Security Conference 2018 Beijing-China Tio

一、网络安全认证体系现状分析

WEB INTERNET
INFORMATION LEAK
TERMINAL AGE
PERSONAL PRIVACY IDENTITY SECURITY
IDENTITY
AUTHENTICATION
ISC 互联网安全大会中国·北京
Internet Security Conference 2018 Beijing-China, 1100

万物互联,网络无界

万物互联的新时代

ZERO TRUST SECURITY

ISC 互联网安全大会 中国·北京 Internet Security Conference 2018 Beijing China

开放网络, 攻击泛滥

360公司破解特斯拉

"乌克兰电网"事件

- 1、网络攻击行为从以窃取用户信息、盗取用户资金为目的传统互联网和移动互联网攻击,演进为可危及工业设施安全、公共交通安全等的对工控网、车联网等泛在网络的攻击。
- 2、网络安全事件频发的大多数原因可归结于身份认证、访问控制的问题。

捍卫安全, 认证为本

OSI安全体系架构

● 基于知识因素的身份认证

> 账号口令

● 基于拥有因素的身份认证

- > 短信验证码
- > 对称密钥认证技术
- ▶ PKI签名认证技术
- > 其他签名认证技术

● 基于固有因素的身份认证

- 人的声纹、指纹、面纹等
- > 设备的设备ID等信息

对设备进行认证主要依托对称密钥认证技术以及签 名认证技术。

ISC 互联网安全大会 中国·北京

新的网络,新的挑战

新型网络条件下对认证技术提出的挑战:

融合网络中的短程通信网络带宽资源受限;多对多结构导致由中心认证方式转变为多节点交叉认证;拓扑快速变化要求在节点间可通信范围内完成认证;规模庞大的节点增加了并发计算的压力,节点计算能力不均衡需要轻量级的认证服务。

TION

2018 Bailing China

新的网络,新的挑战

万物互联时代,传统PKI能否独当泛在网络下的可信身份认证之大任?

PKI在车联网应用中的缺陷:

- 1、带宽占用量大,ETSI标准定义一个环境通知消息DENM数据包消息体长度约40Byte,而单个证书容量基本超过1K,将增加了传输报文20倍以上。在大用户量下,将会造成极大的通信拥堵。
- 2、RSU验证签名之前要验证证书链的合法性,大大增加了验证的时间, RSU需要集中处理众多车辆的消息,验证时间加长可能会导致RSU消息处 理时间大于消息报文传输时间,将会导致大量的消息丢弃。

因此,PKI体系不适合在车联网很多场景下的应用。

车联网等新型网络场景下的可信身份认证技术何去何从

TECHNOLOGY
TERMINAL AGE
TECHNOLOGY
TERMINAL AGE
TECHNOLOGY
TECHNO

ZERO TRUST SECURITY

二、标识认证在网络安全的创新应用

WEB INTERNET
INFORMATION LEAK
TERMINAL AGE
PERSONAL PRIVACY IDENTITY SECURITY
IDENTITY
AUTHENTICATION
ISC 互联网安全大会中国・北京
Internet Security Conference 2018 Beijing-China

标识密码技术

基于身份标识的密码系统(Identity-Based Cryptograph, 简称IBC),是一种公钥密码体系。标识密码最主要观点是系统中不需要证 书,使用用户/设备的标识如电子邮箱地址、手机号码、设备ID等作为公钥。用户的私钥由密钥生成中心根据系统主密钥和用户标识计算得出。 用户的公钥由用户标识唯一确定,从而用户不需要第三方来保证公钥的真实性。通过标识密码技术,无需证书的签发和交换,极大简化了公 钥认证和加密的流程。IBC包含PBC和CPK两种技术体系。

标识认证技术——CPK密码体制

CPK即组合公钥体制,将密钥生产和管理结合,能够实现数字签名和密钥交换,可以满足超大规模的标识鉴别、实体鉴别、数据保密需求。**密钥生产管理集中、使用去中心化、可离线认证的特性,** 尤其适用于物联网(车联网)场景。

- > 大规模
- > 轻体量
- > 去中心
- > 高效率
- > 更简洁
- > 抗量子
- > 更安全

INFORMATION LEAK TERMINAL AGE PERSONAL PRIVACY TECHNOLOGY

IDENTITY SECURITY

UTHENTICATION

SC 互联网安全大会 中国・北京

Internet Security Conference 2018 Beijing China

ZERO TRUST SECURITY

标识认证技术——CPK密码体制

- 有证书传递过程,对网络环境敏感度高
- 认证流程复杂,对接和开发成本高
- > 系统间依赖程度高, 故障易传导
- > 信任传递使安全性脆弱, 存在中间人攻击

- ▶ 基于标识直接认证,对网络环境容忍度高
- 认证流程简洁高效,对接和开发成本低
- ▶ 系统一手掌握,故障率低
- > 不存在信任传递,没有中间人攻击

CPK基于椭圆曲线运算,而SM9基于双线性对运算,双线性对计算复杂,因此CPK相比于SM9具有更快的运算速度!

标识密码保障车联网安全——车联网架构

Internet Security Conference 2018 Beijing China

标识密码保障车联网安全——车联网安全威胁

A A A			
序号	攻击目的	攻击手段	安全诉求
1	享受更好的 道路资源	通过软件定义无线电等冒充RSU或者篡改合法RSU向其他车辆发布虚假的交通拥堵、事故等信息,以达到享受更好的道路资源目的。	RSU消息的认证性、完整性 (车辆对RSU消息的认证)
2	非授权互联 网接入服务	分析AP接入认证的漏洞,达到非授权的 AP接入目的,享受免费的互联网接入服务。	车辆消息的认证性(AP对车 辆的认证)
3	犯罪或交通 事故逃避责 任	通过在篡改车辆传输过程中的消息或篡改已保存的消息(如位置、时间等信息),制造不在场等证据,已达到逃避责任的目的	车辆消息的认证性、完整性、 不可否认性(RSU对车辆、 车辆对车辆的认证)
4	扰乱交通	可通过冒充RSU等多种手段发布虚假信息 以扰乱交通秩序或制造事故	车辆、RSU消息的认证性、 完整性、不可否认性。

标识密码保障车联网安全——V2V、V2I快速认证

V2V 认证:						
车辆A向车辆B发送的认证数据						
车辆A的ID	消息数据	时间戳	签名值			
车辆B向车辆A发送的认证数据						
车辆B的ID	消息数据	时间戳	签名值			
V2I认证:						

V2I认证: 车辆A向RSU发送的认证数据 车辆A的ID 消息数据 时间戳 签名值 RSU向车辆A发送的认证数据 RSU的ID 消息数据 时间戳 签名值

基于ID的快速认证,认证速度快(无需验证书链), 网络负载低(无需传输证书),解决了车辆和RSU 发送消息的认证性、完整性和不可抵赖性。

标识密码保障车联网安全——匿名认证

虚拟ID映射

• 将真实的VIN号等映射成虚拟 ID,通过虚拟ID对应的私钥签 名,保障了发送消息的匿名性

多虚拟ID机制

• 通过给车辆生成多个虚拟ID, 车辆签名时可随机选择使用哪 个虚拟ID私钥进行验签,避免 使用同一ID被追踪路径

短时效的匿名ID

• 可将有效期作为匿名ID的一部 分构成,验证方直接判断匿名 ID是否失效

可追溯责任

 车辆发生消息对其他车辆和 RSU是匿名的,但密钥管理中 心保存着真实ID的匹配关系, 能够对签名主体进行追责。

TECHNOLOGY Y SECURITY

ZERO TRUST SECURITY

SC 互联网安全大会 中国・北京

Internet Security Conference 2018 Beijing China

标识密码保障车联网安全——基于移动预测的快速认证切换

- 车辆请求AP或平台认证时, 只携带标识、签名值等信息, 无需携带证书,数据量小, 极大减少了DSRC的带宽资 源和传输速率的压力;
- AP或平台对车辆身份认证 时,只需根据ID计算公钥, 再对签名进行验证,而无需 验证证书链,极大加快了验 证的效率;
- 基于感知网络的预测,可提前进行预认证处理,加快了车辆在不同AP切换时的认证速度。

AL AGE TECHNOLOGY
PRIVACY IDENTITY SECURITY

AUTHENTICATION ISC 互联网安全大会。中国·北京

Internet Security Conference 2018 Beijing-China

标识密码保障车联网安全——安全性分析

1 算法强度

· CPK算法是基于 ECC/SM2算法根据ID组 合出公钥,本质上是利 用ECC的签名验签原理, 因此其算法强度是等价 于ECC/SM2算法的强度。

2 无中间人攻击

• CPK算法直接以用户ID绑定用户的公钥,无需第三方保证公钥的合法性,无需传递证书,不存在信任的传递,因此无中间人攻击。

3 抗重放攻击

- V2X通信本身是高速运动状态 下的认证,并且通信距离相对 较短,重放攻击的实施条件较 难具备;
- 认证报文中加入时间戳,有效抵抗重放攻击。

标识密码保障车联网安全——其他应用场景

标识密码其他创新应用场景

- 传统PKI的应用领域均可使用标识 密码技术进行代替。
- 非对称加密业务场景中,标识密码相比于PKI始终是最优选择。
- 在多对多认证、通信带宽小、效率要求高等认证场景下,标识密码技术尤为适用。

ZERO TRUST SECURITY

TERMINAL AGE TECHNOLOGY
ERSONAL PRIVACY IDENTITY SECURITY
IDENTITY
AUTHENTICATION

ISC 互联网安全大会 中国·北京

谢谢!

ISC 互联网安全大会 中国·北京
Internet Security Conference 2018 Beijing · China