Step-1

Consider the complex numbers: 3+4i and 1-i.

a) Let
$$z_1 = 3 + 4i$$
 and $z_2 = 1 - i$.

These complex numbers can be taken as ordered pairs $z_1(3,4)$ and $z_2(1,-1)$.

Here, the ordered pair (3,4) lies in the first quadrant.

And also, the ordered pair (1,-1) lies in the fourth quadrant.

Step-2

Now, the positions of complex numbers in the argand plane is shown below

Step-3

b) Find the sum and product of the given complex numbers as follows.

$$sum = (3+4i)+(1-i)$$

$$= 3+4i+1-i$$

$$= (3+1)+i(4-1)$$

$$= 4+3i$$

Product =
$$(3+4i)(1-i)$$

= $3(1-i)+4i(1-i)$
= $(3-3i)+(4i-4i^2)$
= $3-3i+4i-4i^2$
= $3-3i+4i-4(-1)$
= $3-3i+4i+4$
= $7+i$

Hence, the sum of the given complex numbers is 4+3i and the product is 7+i.

Step-4

c) Find the conjugate and absolute values of the given complex numbers.

Conjugate of 3+4i is $\overline{3+4i}$

Where $\overline{3+4i} = 3-4i$

Therefore, the conjugate of 3+4i is 3-4i.

Absolute value of 3 + 4i = |3 + 4i|

$$=\sqrt{3^2+4^2}$$

$$=\sqrt{9+16}$$

= 5

Therefore, the absolute value of 3+4i is $\boxed{5}$.

Step-5

The conjugate of 1-i is $\overline{1-i}$.

Where $\overline{1-i} = 1+i$

Therefore, the conjugate of 1-i is 1+i.

Absolute value of 1-i = |1-i|

$$= \sqrt{1^2 + (-1)^2}$$
$$= \sqrt{1+1}$$
$$= \sqrt{2}$$

Therefore, the absolute value of 1-i is $\sqrt{2}$.

Since both absolute values are 5 and $\sqrt{2}$.

These values are more than 1.

The unit circle has radius 1 unit.

Hence, both the numbers lies outside the unit circle.