

NAAN MUDHALVAN PROJECT AI-BASED DIABETES PREDICTION SYSTEM PHASE-3 DEVELOPMENT PART-1

PRESENTED BY
NAME:P.PARTHIPAN
REG.NO:422221106305
DEPT:ECE 3RD YEAR

INTRODUCTION:

We have implemented various methods or approaches to use our data systematically and in synchronized for the purpose of the development

Of our model. Moreover the test plan is according to our model and can be helpful if we wants to make further improvements and developments to our model.

Import Required Libraries:

Ignore warning messages to prevent them from being displayed during code execution import warnings warnings.filterwarnings('ignore')

import numpy as np # Importing the NumPy library for linear algebra operations import pandas as pd # Importing the Pandas library for data processing and CSV file handling

```
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
```

```
import seaborn as sns

ation
import matplotlib.pyplot as plt
visualizations
import plotly.express as px
alizations

# Importing the Seaborn library for statistical data visualiz

# Importing the Matplotlib library for creating plots and

# Importing the Plotly Express library for interactive visu

alizations
```

Load and Prepare Data:

df=pd.read_csv('/kaggle/input/diabetes-data-set/diabetes.csv')

UnderStanding the Variables:

df.head(10)

	pregnancies	glucose	BP	Skin thickness	insulin	BMI	Diabetes pedigree	age	outcome
							function		
1	10	148	96	35	0	0	33.6	26	1
2	3	85	0	29	0	00	26.6	30	0
3	9	183	40	0	35	0	23.3	33	1
4	5	89	65	23	23	94	28.1	21	0
5	0	137	64	35	0	168	43.1	32	1

6	7	116	66	0	29	0	25.6	31	0
7	8	78	73	32	35	88	31.0	50	1

df.tail(10)

Pregnan cies	Gluc ose	BloodPre ssure	SkinThic kness	Insu lin	B MI	DiabetesPedigree Function	Ag e	Outco me
758	1	106	76	0	0	37.5	0.1 97	26
759	6	190	92	0	0	35.5	0.2 78	66
760	2	88	58	26	16	28.4	0.7 66	22
761	9	170	74	31	0	44.0	0.4 03	43
762	9	89	62	0	0	22.5	0.1 42	33
763	10	101	76	48	180	32.9	0.1 71	63
764	2	122	70	27	0	36.8	0.3 40	27
765	5	121	72	23	112	26.2	0.2 45	30
766	1	126	60	0	0	30.1	0.3 49	47

Pregnan cies	Gluc ose	BloodPre ssure	SkinThic kness	Insu lin	B MI	DiabetesPedigree Function	Ag e	Outco me
767	1	93	70	31	0	30.4	0.3 15	23

df.sample(5)

Pregnan cies	Gluc ose	BloodPre ssure	SkinThic kness	Insu lin	B MI	DiabetesPedigree Function	Ag e	Outco me
355	9	165	88	0	0	30.4	0.3 02	49
187	1	128	98	41	58	32.0	1.3 21	33
235	4	171	72	0	0	43.6	0.4 79	26
df.descri	be()			-				

Pregna ncies	Glucos e	BloodPre ssure	SkinThic kness	Insulin	ВМІ	DiabetesPedigre eFunction	Age	Outcom e
count	768.00 0000	768.0000 00	768.0000 00	768.00 0000	768.00 0000	768.000000	768.00 0000	768.00 0000
mean	3.8450 52	120.8945 31	69.10546 9	20.536 458	79.799 479	31.992578	0.4718 76	33.240 885

Pregna ncies	Glucos e	BloodPre ssure	SkinThic kness	Insulin	ВМІ	DiabetesPedigre eFunction	Age	Outcom e
std	3.3695 78	31.97261 8	19.35580 7	15.952 218	115.24 4002	7.884160	0.3313 29	11.760 232
min	0.0000	0.000000	0.000000	0.0000 00	0.0000 00	0.000000	0.0780 00	21.000 000
25%	1.0000	99.00000 0	62.00000 0	0.0000 00	0.0000 00	27.300000	0.2437 50	24.000 000
50%	3.0000	117.0000 00	72.00000 0	23.000 000	30.500 000	32.000000	0.3725 00	29.000 000
75%	6.0000 00	140.2500 00	80.00000 0	32.000 000	127.25 0000	36.600000	0.6262 50	41.000 000
max	17.000 000	199.0000 00	122.0000 00	99.000 000	846.00 0000	67.100000	2.4200 00	81.000 000

<class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

Column Non-Null Count Dtype

0 Pregnancies 768 non-null int64
1 Glucose 768 non-null int64
2 BloodPressure 768 non-null int64
3 SkinThickness 768 non-null int64
4 Insulin 768 non-null int64
5 BMI 768 non-null float64

6 DiabetesPedigreeFunction 768 non-null float64

7 Age 768 non-null int64 8 Outcome 768 non-null int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

```
6912
df.shape
(768, 9)
Data Cleaning:
df.shape
(768, 9)
df=df.drop_duplicates()
df.shape
(768, 9)
Check null Values
df.isnull().sum()
Pregnancies
                     0
Glucose
                    ()
BloodPressure
                      0
SkinThickness
                       ()
Insulin
                   0
                   ()
BMI
DiabetesPedigreeFunction 0
Age
Outcome
dtype: int64
There is no Missing Values present in the Data
df.columns
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
    'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
   dtype='object')
Check the number of Zero Values in Dataset:
print("No. of Zero Values in Glucose ", df[df['Glucose']==0].shape[0])
No. of Zero Values in Glucose 5
print("No. of Zero Values in Glucose ", df[df['Glucose']==0].shape[0])
No. of Zero Values in Glucose 5
print("No. of Zero Values in Blood Pressure ", df[df]'BloodPressure']==0].shape[0])
No. of Zero Values in Blood Pressure 35
print("No. of Zero Values in SkinThickness", df[df['SkinThickness']==0].shape[0])
No. of Zero Values in SkinThickness 227
print("No. of Zero Values in Insulin ", df[df['Insulin']==0].shape[0])
No. of Zero Values in Insulin 374
print("No. of Zero Values in BMI ", df[df['BMI']==0].shape[0])
No. of Zero Values in BMI 11
df['Glucose']=df['Glucose'].replace(0, df['Glucose'].mean())
```

Replace zeroes with mean of that Columns:

print('No of zero Values in Glucose', df[df['Glucose']==0].shape[0])

No of zero Values in Glucose 0

linkcode

df['BloodPressure']=df['BloodPressure'].replace(0, df['BloodPressure'].mean())

df['SkinThickness']=df['SkinThickness'].replace(0, df['SkinThickness'].mean())

df['Insulin']=df['Insulin'].replace(0, df['Insulin'].mean())

 $df['BMI'] = df['BMI'].replace(0,\,df['BMI'].mean())$

Validate the Zero Values:

df.describe()

Pregna ncies	Gluc ose	BloodPr essure	SkinThi ckness	Insuli n	BMI	DiabetesPedigr eeFunction	Age	Outc ome
count	768.00 0000	768.00000 0	768.00000 0	768.00 0000	768.00 0000	768.000000	768.00 0000	768.00 0000
mean	3.8450 52	121.68160 5	72.254807	26.606 479	118.66 0163	32.450805	0.4718 76	33.240 885
std	3.3695 78	30.436016	12.115932	9.6312 41	93.080 358	6.875374	0.3313 29	11.760 232
min	0.0000 00	44.000000	24.000000	7.0000 00	14.000 000	18.200000	0.0780 00	21.000 000
25%	1.0000 00	99.750000	64.000000	20.536 458	79.799 479	27.500000	0.2437 50	24.000 000
50%	3.0000 00	117.00000 0	72.000000	23.000 000	79.799 479	32.000000	0.3725 00	29.000 000
75%	6.0000 00	140.25000 0	80.000000	32.000 000	127.25 0000	36.600000	0.6262 50	41.000 000

Pregna ncies	Gluc	BloodPr essure	SkinThi ckness	Insuli n	BMI	DiabetesPedigr eeFunction	Age	Outc ome
max	17.000 000	199.00000 0	122.00000 0	99.000 000	846.00 0000	67.100000	2.4200 00	81.000 000

Data Visualization:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Assuming 'df' is your DataFrame containing the dataset
# If you haven't imported your dataset yet, import it here
# Create subplots
f, ax = plt.subplots(1, 2, figsize=(10, 5))
# Pie chart for Outcome distribution
df['Outcome'].value_counts().plot.pie(explode=[0, 0.1], autopct='%1.1f%%', ax=ax[0], shad
ow=True)
ax[0].set_title('Outcome')
ax[0].set_ylabel(' ')
# Count plot for Outcome distribution
sns.countplot(x='Outcome', data=df, ax=ax[1]) # Use 'x' instead of 'Outcome'
ax[1].set_title('Outcome')
# Count plot for Outcome distribution
sns.countplot(x='Outcome', data=df, ax=ax[1]) # Use 'x' instead of 'Outcome'
ax[1].set_title('Outcome')
# Display class distribution
N, P = df['Outcome'].value_counts()
print('Negative (0):', N)
print('Positive (1):', P)
# Adding grid and showing plots
plt.grid()
plt.show()
Negative (0): 500
Positive (1): 268
```


- 1 Represent --> Diabetes Positive 0 Represent --> Daibetes Negative

Histograms:

```
df.hist(bins=10, figsize=(10, 10))
plt.show()
```


Scatter Plot:

```
from pandas.plotting import scatter_matrix
scatter_matrix(df, figsize =(20, 20))
```

<Axes: xlabel='SkinThickness', ylabel='Glucose'>,

```
<Axes: xlabel='Insulin', ylabel='Glucose'>,
<Axes: xlabel='BMI', ylabel='Glucose'>,
<Axes: xlabel='DiabetesPedigreeFunction', ylabel='Glucose'>,
<Axes: xlabel='Age', ylabel='Glucose'>,
<Axes: xlabel='Outcome', ylabel='Glucose'>],
[<Axes: xlabel='Pregnancies', ylabel='BloodPressure'>,
<Axes: xlabel='Glucose', ylabel='BloodPressure'>,
     <Axes: xlabel='BloodPressure', ylabel='BloodPressure'>,
<Axes: xlabel='SkinThickness', ylabel='BloodPressure'>,
<Axes: xlabel='Insulin', ylabel='BloodPressure'>,
<Axes: xlabel='BMI', ylabel='BloodPressure'>,
<Axes: xlabel='DiabetesPedigreeFunction', ylabel='BloodPressure'>,
<Axes: xlabel='Age', ylabel='BloodPressure'>,
<Axes: xlabel='Outcome', ylabel='BloodPressure'>],
[<Axes: xlabel='Pregnancies', ylabel='SkinThickness'>,
<Axes: xlabel='Glucose', ylabel='SkinThickness'>,
<Axes: xlabel='BloodPressure', ylabel='SkinThickness'>,
<Axes: xlabel='SkinThickness', ylabel='SkinThickness'>,
<Axes: xlabel='Insulin', ylabel='SkinThickness'>,
<Axes: xlabel='BMI', ylabel='SkinThickness'>,
<Axes: xlabel='DiabetesPedigreeFunction', ylabel='SkinThickness'>,
<Axes: xlabel='Age', ylabel='SkinThickness'>,
<Axes: xlabel='Outcome', ylabel='SkinThickness'>],
[<Axes: xlabel='Pregnancies', ylabel='Insulin'>,
<Axes: xlabel='Glucose', ylabel='Insulin'>,
<Axes: xlabel='BloodPressure', ylabel='Insulin'>,
<Axes: xlabel='SkinThickness', ylabel='Insulin'>,
<Axes: xlabel='Insulin', ylabel='Insulin'>,
<Axes: xlabel='BMI', ylabel='Insulin'>,
<Axes: xlabel='DiabetesPedigreeFunction', ylabel='Insulin'>,
<Axes: xlabel='Age', ylabel='Insulin'>,
<Axes: xlabel='Outcome', ylabel='Insulin'>],
[<Axes: xlabel='Pregnancies', ylabel='BMI'>,
<Axes: xlabel='Glucose', ylabel='BMI'>,
<Axes: xlabel='BloodPressure', ylabel='BMI'>,
<Axes: xlabel='SkinThickness', ylabel='BMI'>,
<Axes: xlabel='Insulin', ylabel='BMI'>,
<Axes: xlabel='BMI', ylabel='BMI'>,
<Axes: xlabel='DiabetesPedigreeFunction', ylabel='BMI'>,
<Axes: xlabel='Age', ylabel='BMI'>,
<Axes: xlabel='Outcome', ylabel='BMI'>],
[<Axes: xlabel='Pregnancies', ylabel='DiabetesPedigreeFunction'>,
<Axes: xlabel='Glucose', ylabel='DiabetesPedigreeFunction'>,
<Axes: xlabel='BloodPressure', ylabel='DiabetesPedigreeFunction'>,
<Axes: xlabel='SkinThickness', ylabel='DiabetesPedigreeFunction'>,
<Axes: xlabel='Insulin', ylabel='DiabetesPedigreeFunction'>,
<Axes: xlabel='BMI', ylabel='DiabetesPedigreeFunction'>,
<Axes: xlabel='DiabetesPedigreeFunction', ylabel='DiabetesPedigreeFunction'>,
<Axes: xlabel='Age', ylabel='DiabetesPedigreeFunction'>,
<Axes: xlabel='Outcome', ylabel='DiabetesPedigreeFunction'>],
```

```
[<Axes: xlabel='Pregnancies', ylabel='Age'>,
    <Axes: xlabel='Glucose', ylabel='Age'>,
         <Axes: xlabel='BloodPressure', ylabel='Age'>,
    <Axes: xlabel='SkinThickness', ylabel='Age'>,
    <Axes: xlabel='Insulin', ylabel='Age'>,
    <Axes: xlabel='BMI', ylabel='Age'>,
    <Axes: xlabel='DiabetesPedigreeFunction', ylabel='Age'>,
    <Axes: xlabel='Age', ylabel='Age'>,
<Axes: xlabel='Outcome', ylabel='Age'>],
    [<Axes: xlabel='Pregnancies', ylabel='Outcome'>,
    <Axes: xlabel='Glucose', ylabel='Outcome'>,
    <Axes: xlabel='BloodPressure', ylabel='Outcome'>,
    <Axes: xlabel='SkinThickness', ylabel='Outcome'>,
    <Axes: xlabel='Insulin', ylabel='Outcome'>,
    <Axes: xlabel='BMI', ylabel='Outcome'>,
    <Axes: xlabel='DiabetesPedigreeFunction', ylabel='Outcome'>,
    <Axes: xlabel='Age', ylabel='Outcome'>,
    <Axes: xlabel='Outcome', ylabel='Outcome'>]], dtype=object)
```


Pair plot:

sns.pairplot(data=df, hue='Outcome')
plt.show()

plt.figure(figsize=(12, 6)) sns.heatmap(df.corr(), annot=True, cmap='Reds') plt.plot()

Creating a heatmap of the correlation matrix for the columns in the DataFrame data

mean = df['Outcome'].mean()

Calculating the mean value of the 'Outcome' column in the DataFrame data mean

Displaying the calculated mean value

0.34895833333333333

Split the DataFrame into X and y:

target_name='Outcome'

y=df[target_name]

X= df.drop(target_name, axis=1)

X.head()

Pregnanci es	Gluco se	BloodPress ure	SkinThickne ss	Insulin	ВМІ	DiabetesPedigreeFun ction	Age
0	6	148.0	72.0	35.0000 00	79.79947 9	33.6	0.62 7
1	1	85.0	66.0	29.0000 00	79.79947 9	26.6	0.35

Pregnanci es	Gluco se	BloodPress ure	SkinThickne ss	Insulin	ВМІ	DiabetesPedigreeFun ction	Age
2	8	183.0	64.0	20.5364 58	79.79947 9	23.3	0.67
3	1	89.0	66.0	23.0000 00	94.00000 0	28.1	0.16 7
4	0	137.0	40.0	35.0000 00	168.0000 00	43.1	2.28

y.head()

0 1

1 0

2 1

3 0

4 1

Name: Outcome, dtype: int64

Future Scalling:

Standard Scaler:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(X)

SSX = scaler.transform(X)

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(SSX, y, test_size=0.2, random_state=7)

X_train.shape, y_train.shape

((154, 8), (154,))

Making prediction:

X_test.shape

(154, 8)

lr_pred=lr.predict(X_test)

lr_pred.shape

(154,)

linkcode

Decision Tree:

dt_pred=dt.predict(X_test)

For Logistic Regression:

from sklearn.metrics import accuracy_score

print("Train Accuracy of Logistic Regression: ", lr.score(X_train, y_train)*100)

print("Accuracy (Test) Score of Logistic Regression: ", lr.score(X_test, y_test)*100)

print("Accuracy Score of Logistic Regression: ", accuracy_score(y_test, lr_pred)*100)

Train Accuracy of Logistic Regression: 77.36156351791531

Accuracy (Test) Score of Logistic Regression: 77.272727272727

Accuracy Score of Logistic Regression: 77.272727272727

linkcode

For Decesion Tree:

print("Train Accuracy of Decesion Tree: ", dt.score(X_train, y_train)*100) print("Accuracy (Test) Score of Decesion Tree: ", dt.score(X_test, y_test)*100) print("Accuracy Score of Decesion Tree: ", accuracy_score(y_test, dt_pred)*100)

Train Accuracy of Decesion Tree: 100.0

Accuracy (Test) Score of Decesion Tree: 80.51948051948052

Accuracy Score of Decesion Tree: 80.51948051948052

from sklearn.metrics import precision_score

print("Precision Score is: ", precision_score(y_test, lr_pred)*100)

print("Micro Average Precision Score is: ", precision_score(y_test, lr_pred, average='micro') *100)

print("Macro Average Precision Score is: ", precision_score(y_test, lr_pred, average='macro') *100)

print("Weighted Average Precision Score is: ", precision_score(y_test, lr_pred, average='weighted')*100)

print("precision Score on Non Weighted score is: ", precision_score(y_test, lr_pred, average= None)*100)

Precision Score is: 75.0

Micro Average Precision Score is: 77.272727272727 Macro Average Precision Score is: 76.5909090909091 Weighted Average Precision Score is: 77.00413223140497 precision Score on Non Weighted score is: [78.18181818 75.

print('Classification Report of Logistic Regression: \n', classification_report(y_test, lr_pred, d igits=4))

Classification Report of Logistic Regression:

precision recall f1-score support

 0
 0.7818
 0.8866
 0.8309
 97

 1
 0.7500
 0.5789
 0.6535
 57

accuracy 0.7727 154

macro avg 0.7659 0.7328 0.7422 154 weighted avg 0.7700 0.7727 0.7652 154

True Positive Rate(TPR)

Recall = True Positive/True Positive + False Negative

Recall = TP/TP+FN

In [65]:

recall_score = TP/ float(TP+FN)*100
print('recall_score', recall_score)

recall_score 57.89473684210527

In [66]:

TP, FN

Out[66]:

(33, 24)

from sklearn.metrics import recall_score

print('Recall or Sensitivity_Score: ', recall_score(y_test, lr_pred)*100)

Recall or Sensitivity_Score: 57.89473684210527

In [69]:

linkcode

print("recall Score is: ", recall_score(y_test, lr_pred)*100)

print("Micro Average recall Score is: ", recall_score(y_test, lr_pred, average='micro')*100) print("Macro Average recall Score is: ", recall_score(y_test, lr_pred, average='macro')*100) print("Weighted Average recall Score is: ", recall_score(y_test, lr_pred, average='weighted')* 100)

recall Score is: 57.89473684210527

Micro Average recall Score is: 77.272727272727 Macro Average recall Score is: 73.27726532826912 Weighted Average recall Score is: 77.272727272727

recall Score on Non Weighted score is: [88.65979381 57.89473684]

print('Classification Report of Logistic Regression: \n', classification_report(y_test, lr_pred, d igits=4))

Classification Report of Logistic Regression:

precision recall f1-score support

0 0.7818 0.8866 0.8309 97 1 0.7500 0.5789 0.6535 57

accuracy 0.7727 154 macro avg 0.7659 0.7328 0.7422 154 weighted avg 0.7700 0.7727 0.7652 154

ROC Curve& ROC AUC

Area under Curve:

auc= roc_auc_score(y_test, lr_pred)

```
print("ROC AUC SCORE of logistic Regression is ", auc)
ROC AUC SCORE of logistic Regression is 0.7327726532826913
```

In [79]:

linkcode

from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt

from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt

```
fpr, tpr, thresholds = roc_curve(y_test, lr_pred)
plt.plot(fpr, tpr, color='orange', label="ROC")
plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--', label='ROC curve (area = %0.2f)' % auc (fpr, tpr))
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristics (ROC) Curve of Logistic Regression")
plt.legend()
plt.grid()
plt.show()
```

Receiver Operating Characteristics (ROC) Curve of Logistic Regression

CONCLUSION:

We have pre-processed our data and made it useful and made it useful to the further implemen t-tation .various missing values are replaced,many columns are deleted and converted into Numerical values in order to have positive impact on model.