

Fachprüfung - Multimediatechnik

Prüfungsnummern: DB1330 (PO13)/DB1401 (PO20)

Name:	Matrikelnummer:	
Bearbeitungszeit 60min	J [
zugelassene Hilfsmittel Formelsammlung aus o ximal 2 Seiten A4, Mathematisches Tasche lung, Taschenrechner - nicht programmierb	enbuch, z.B. Papula, Mat	•
Hinweise Diese Klausur umfasst 3 Seiten (eins men und Ihre Matrikelnummer auf diesem Blättern, die Sie als Ausarbeitung abgeben, ten Sie Ihren Studentenausweis bereit.	Deckblatt, auf dem Prüf	ungsbogen sowie auf aller
Aufgabe 1 Aufgabe 2	Aufgabe 3	Aufgabe 4
Gesamtpunkte		

Aufgabe 1 Pegelmaße

Es sei $u(t) = A \cdot \sin(\omega t)$ ein sinusförmiges Signal. Das Signal habe die nachfolgenden Bezugspegel. Bestimmen Sie die dazu gehörigen Effektivwerte und die Spitzenwerte.

- (a) 12dBV
- (b) 20dBV
- (c) −6dBu
- (d) -40dBu
- (e) 3dBu

Pegelmaß	Bezugsgröße	Bemerkungen
dBV	1 V	Absoluter Spannungspegel
dBu	0,775 V	0,775 V entsprechen 1 mW an 600 Ω
dBr		Studiopegel*)
dBmV	1 mV	in A/V-Technik unüblich
dBmW	1 mW	Absoluter Leistungspegel
dBSPL	2 · 10 ⁻⁵ Pa	Schalldruckpegel (sound pressure level)
dBFS	2 ^{k-1} - 1	Digitaler Signalpegel

*) ARD/ZDF: 0 dBr = 6 dBu US-Mischpulte: 0 dBr = 4 dBu

Name:	Matrikelnummer:

Aufgabe 2 Schalldruck und Lautstärke

- (a) Erläutern Sie (kurz und knapp) die Bedeutung der unteren blauen Kurven. (siehe untenstehendes Diagramm)
- (b) Skalieren Sie die rechte Ordinate für den Schalldruckpegel L_p . Markieren Sie dazu die Werte entsprechend für $L_p=0 {
 m dBSPL}$ und $L_p=100 {
 m dBSPL}$
- (c) Ein sinusförmiges Schallereignis mit der Frequenz $f=50{\rm Hz}$ habe einen Schalldruckpegel $L_{p,50{\rm Hz}}=100{\rm dBSPL}$. Markieren Sie diesen Punkt im Diagramm.
- (d) Geben Sie den Lautstärkepegel $L_{s,50\mathrm{Hz}}$ in phon für dieses Ereignis an.
- (e) Geben Sie den Schalldruckpegel $L_{p,4\mathrm{kHz}}$ an, der bei $f=4\mathrm{kHz}$ ein gleichlautes Schallereignis hervorruft. Begründen Sie Ihre Aussage und markieren Sie auch diesen Punkt im Diagramm.

Schalldruckpegel L₀ / dBSPL

Name:	Matrikelnummer:

Aufgabe 3 Kontrastanpassung

Es ist ein Grauwertbild gegeben, in dem für jeden Pixel ein Luminazwert Y mit 8Bit existiert.

- (a) Geben Sie den Wertebereich für die Luminanz an.
- (b) Skizzieren Sie die Kennlinien $y_{in} \rightarrow y_{out}$ für die Erhöhung und für die Reduktion des Kontrastes. *Hinweis:* Verwenden Sie das unten dargestellte Diagramm.
- (c) Welche Probleme bzw. Einschränkungen treten dabei auf?

Aufgabe 4 Farbräume

- (a) Beschreiben Sie den YCbCr Farbraum. Gehen Sie insbesondere auf die Grundidee und auf die Bedeutung der Komponenten der gewählten Farbräume ein.
- (b) In welchen Systemen wird dieser Farbraum angewendet? Welche Vorteile ergeben sich hierdurch?