复变函数单元测验试题(一)

1.
$$-1+3i$$
的 辐角及主 辐角为
A. $Arg(-1+3i) = \arctan(-3) + (2k+1)\pi$, $\arg(-1+3i) = \arctan(-3) + \pi$; B. $Arg(-1+3i) = \arctan(-3) + 2k\pi$, $\arg(-1+3i) = \arctan(-3)$; C. $Arg(-1+3i) = \arctan(-3) + (2k-1)\pi$, $\arg(-1+3i) = \arctan(-3) - \pi$; D. $Arg(-1+3i) = \arctan(-3) + 2k\pi$, $\arg(-1+3i) = \arctan(-3) - \pi$; D. $Arg(-1+3i) = \arctan(-3) + 2k\pi$, $\arg(-1+3i) = \arctan(-3) + \pi$.

2. 方程 $z^3 + 8 = 0$ 的根为
A. $z_1 = -2$, $z_2 = 1 + \sqrt{3}i$, $z_3 = 1 - \sqrt{3}i$; B. $z_1 = -2$, $z_2 = 1 + \sqrt{3}i$, $z_3 = -1 - \sqrt{3}i$; C. $z_1 = -2$, $z_2 = \sqrt{3} + i$, $z_3 = \sqrt{3} - i$; D. $z_1 = -2$, $z_2 = -\sqrt{3} + i$, $z_3 = -\sqrt{3} - i$.

3. $|z+i| > |z-i|$ 所表示的平面区域为
A. 上半平面; B. 下半平面; C. 以i为中心, $|2i|$ 为半径的圆的内部; D. 以i为中心, $|2i|$ 为半径的圆的外部。

4. 设 $f(z) = x^3 - 3xy^2 + i(3x^2y - y^3)$, 则 $f'(z) =$ A. $3x^2 - 3y^2 + i6xy$; B. $3x^2 - 3y^2 + i(3x^2 - 3y^2)$; C. $-6xy + i(3x^2 - 3y^2)$; D. 不存在。

5. 函数 $f(z) = x^2 + iy^2$, () A. $\pi x = y$ 上可导在复平面上不解析;

B. 仅在*x* = *y* 上解析; C. 在整个复平面上解析;

D. 在除x = y的复平面上解析•

6. 已知调和函数
$$u(x,y) = 2x^2 - 2y^2 + x$$
,求函数 $v(x,y)$,
使函数 $f(z) = u(x,y) + iv(x,y)$ 解析且满足 $f(-1) = 1 + 2i$ 。 ()

A.
$$f(z) = (2x^2 - 2y^2 + x) + i(4xy + y + 2)$$
;

B.
$$f(z) = (2x^2 - 2y^2 + x) + i(4xy - y + 2)$$
;

C.
$$f(z) = (2x^2 - 2y^2 + x) + i(-4xy + y + 2)$$
;

D.
$$f(z) = (2x^2 - 2y^2 + x) + i(-4xy - y + 2)$$
.

7.
$$(-1-i)^{(1+i)}$$
 的值为 ()

A.
$$\sqrt{2}e^{\frac{3\pi}{4}-2k\pi}e^{i\left(-\frac{3\pi}{4}+\ln\sqrt{2}\right)}$$
; B. $\sqrt{2}e^{-\frac{3\pi}{4}-2k\pi}e^{i\left(\frac{3\pi}{4}+\ln\sqrt{2}\right)}$;

C.
$$\sqrt{2}e^{\frac{\pi}{4}-2k\pi}e^{i\left(-\frac{\pi}{4}+\ln\sqrt{2}\right)}$$
; D. $\sqrt{2}e^{-\frac{3\pi}{4}-2k\pi}e^{i\left(-\frac{3\pi}{4}+\ln\sqrt{2}\right)}$.

8. 积分
$$\oint_{|z|=1} \frac{z}{(2z+1)(z-2)} dz =$$
 ()

A.
$$\frac{1}{5}\pi i$$
; B. $-\frac{1}{3}\pi i$; C. $\frac{3}{5}\pi i$; D. $\frac{2}{5}\pi i$ •

9. 积分
$$\oint_{|z|=2} \frac{8\sin z}{(2z-\pi)^3} dz =$$
 ()

A.
$$\pi i$$
; B. $2\pi i$; C. $-\pi i$; D. $8\pi i$.

A.
$$2\pi(-6+13i)$$
; B. $13+6i$;

C.
$$\frac{13+6i}{2\pi i}$$
; D. $\frac{-49}{(2-i)^2}$.