

Amplitude

Tunable millijoule laser based on Yb:CaF₂: from nanosecond to femtosecond

Vincent Clet, Alizée Mareczko, Sandrine Ricaud, <u>Antoine Courjaud</u>, Eric Mottay Amplitude Systèmes, Pessac, France

Patrice Camy, Jean-Louis Doualan, Richard Moncorgé CIMAP, Caen, France

Outline

- Company activity
- Technology and products
- Motivations
- Experimental results
- Conclusion

- Created in 2000
- >100 employees in ultrafast lasers
- 20M€ turnover
- Products sold in more than 20 countries
- Industrial and scientific lasers
- -Applications in medical, semiconductor, pharmaceutics

Company

Amplitude Systemes - Bordeaux Compact femtosecond lasers

Amplitude Technologies - Paris High power femtosecond lasers

Amplitude Laser - Boston U.S. sales and support

Nothing but ultrafast

- A broad range of technologies
 - Ti:Sapphire lasers

- Yb solid-state lasers

- Yb fiber lasers

Ti:Sa high intensity lasers

Technology:

Ti:Sa: short pulses (30fs) reduces the required energy for a given peak power

Green pumps @10Hz : cost effective flash-pumped technology Temporal contrast is a key issue

0,1-1PW commercially available (3-30J 30fs)

Applications:

- Electron acceleration
 Compact accelerators,
 wake-field regime
- Proton acceleration,
 Cancer therapy

Ti:Sa ultrafast lasers

Higher repetition rates, from 100Hz to 5kHz

Short pulses < 30fs

CEP stabilization is a key technology

At high average power, cryo cooling is used

Applications

- High order harmonic generation,
 Attosecond physics
- Photoinjectors for LINAC
- Femtochemistry, femtosecond spectroscopy

<u>Ultrafast lasers for industry?</u>

Nanosecond pulses (3,3ns)

- Large Heat Affected Zone (HAZ)
- Lack of reproductibility
- Need to adapt wavelength to material

Femtosecond pulses (200 fs)

- Low ablation threshold
- Limited HAZ
- Efficient and stable process
- Interaction with transparent materials is possible through multiphoton absorption

Typical heat transfer dynamics ~5 ps from electrons to lattice Multiphoton process allows interaction with any material

High quality micromachining of metal, glass...

Amplitude A new generation of ultrafast lasers

- We want:
 - A compact, reliable, high performance femtosecond laser
- We need:
 - Direct diode pumping
 - Broadband laser material
 - Efficient optical scheme
- We use:
 - Ytterbium as the active ion
 - All solid-state system
 - Small footprint optical cavities

TECHNOLOGY

Ytterbium lasers : The new generation of Femtosecond laser!

Direct diode pumping capability

Traditional femtosecond lasers:

Amplitude Systemes femtosecond lasers:

Laser architecture

Femtosecond intense lasers: nonlinear issues
Use of Chirped Pulse Amplification architecture (CPA)

Oscillator:

- self starting using Semiconductor Nonlinear Mirror
- compact using diode-pumping & dispersive mirrors
- Crystal based : pure soliton pulses, 10-500nJ energy
- Fiber based : compact, lower energy

Amplifiers:

- regenerative amplifiers using crystals (thermal limitations)
- single stage amplifiers using fibers (nonlinearity limitations)
- Use of **hybrid architecture** to exploit benefits of both fiber and crystal technology

Solid state lasers

Crystal based solid state lasers

		Oscillator	Amplifier
Pulse energy	\odot	20 to 500nJ	Up to 2mJ
Stability, reliability		Vibration >5G Thermal test: 15°C – 35°C Long term stability (12h): <0.5% RMS	
Average power		1 to 5 W	Up to 8W

Fiber lasers

High power fiber lasers

Average power	High exchange area: >20W femtosecond laser
Stability, reliability	Vibration >5G Thermal test: 15°C – 35°C Long term stability (12h): <0.5% RMS
Pulse energy	Non linear effects: 20µJ for PCF 300µJ for rod type fiber

Production

- Clean room production:
 - From mechanical assembly to quality control
- High production capacity
- Vibration and temperature cycling

Mechanical assembly

Laser quality control

Oscillator alignment workstations

t-Pulse series • Up to 5W • Up to 500nJ energy per pulse • Industry ready • 10MHz and 50MHz repetition rate Ultrafast oscillator series

Applications:

- •Glass marking & engraving
- •Biology: Multiphoton excitation
- Multi-photon polymerisation
- Lab-On-Chip direct writing
- Picosecond acoustics...

s-Pulse series

- · Up to 8W
- Up to 2mJ energy per pulse
- · Industry ready
- Up to 300kHz repetition rate

Ultrafast amplifier series

Applications:

- Micro-machining
- Glass marking & engraving
- Chemical & material analysis

Satsuma series

- Up to 10W & 20µJ
- Ultra compact
- Industry ready
- Up to 5MHz repetition rate

Ultrafast fiber amplifier series

Tangerine series

- Up to 20W & 100µJ
- Pulse duration <100fs up to 10ps
- · Industry ready
- Up to 2MHz repetition rate

Ultrafast fiber amplifier series

Sensitivity to environment

Pointing stability

Pointing stability long-term : < 10µrad rms over 2 heures

(divergence 700µrad)

Pointing stability short-term : approx. 2 μ rad rms over 5 mn

Energy performances

Example: s-Pulse HP

CW pumping allows any rep rate
No need for compressor readjustment

Versatile source: well adapted for ablation process optimisation

Applications

SCIENTIFIC RESEARCH

DISPLAY

PHARMA

NANOTECHNOLOGY

PHOTOVOLTAIC

Strong R&D activity

Motivations:

- Shorter pulses for specific materials ablation
- Higher power for higher process speed
- Higher intensity for new applications

Recent results:

- Sub-100fs post-compression (60fs 300µJ @ 5kHz)
- High energy femtosecond fiber laser (60W 600µJ 300fs)
- Thin disk Yb:YAG picosecond laser source (20W 500µJ <1ps)
- Thin disk laser based on Yb:Calgo
- High average power cryocooled Yb:CaF₂ laser
- Femtosecond Yb:CaF₂ lasers

Postcompression

Post-compression in LMA fiber / gas capillary:

- 1. Spectral broadening by SPM in fused silica / gas (nitrogen)
- 2. Monomode guiding
- 3. Dispersion compensation (dispersive mirrors)

Allows to achieve sub-100fs pulse duration with

- >50% overall transmission
- Compact architecture

Thin disk Yb:Calgo

Experimental setup

Power performances

CW tunability

Coherent combining

INSTITUT
d'OPTIQUE
GRADUATE SCHOOL

1460 OPTICS LETTERS / Vol. 37, No. 9 / May 1, 2012

Passive coherent combination of two ultrafast rod type fiber chirped pulse amplifiers

Y. Zaouter, ^{1,*} L. Daniault, ² M. Hanna, ² D. N. Papadopoulos, ³ F. Morin, ¹ C. Hönninger, ¹ F. Druon, ² E. Mottay, ¹ and P. Georges

Up to 650µJ 300fs at 100kHz Using 2 rod-type fibers, >90% combining efficiency Fully passive architecture : high robustness

Cryo-cooled Yb:CaF₂

November 15, 2010 / Vol. 35, No. 22 / OPTICS LETTERS

3757

Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF₂

S. Ricaud, 1.4.* D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, P. Georges, and F. Druon

Demonstration of 97W pumped with 245W
Collaboration between LCFIO, CIMAP and Amplitude Systemes
Moderate thermal lensing

Yb:CaF₂: broadband material

Experimental demonstrations (room temperature):

Broad bands

- Tunability CW: 1018 1072 nm
 Lucca et al, Opt Lett, 29, 1879 (2004)
- Femtosecond oscillator: 150 fs @ 1043 nm Lucca et al, Opt Lett, 29, 2767 (2004)
- High energy amplification: 190 mJ 190 fs @1Hz
 Siebold et al, Opt Lett, 33, 2770 (2008)
- High rep rate CPA laser: 0,7 mJ 180 fs @100-10kHz
 Ricaud et al, Opt Lett, 35, 2415 (2010)

Interest for higher intensities and high repetition rate

Experimental setup

Zero-line pumping for lower heat deposition

Yb:CaF₂: 2,5 to 4,5% doping concentration, 3 to 5mm thickness

Conductively cooled on a water cooled baseplate

Energy vs repetition rate

Typical performances: Energy vs repetition rate

Pulse duration: 10ns (roundtrip time)

High extracted energy for moderate pump power (<10W)

Optimum repetition rate ~ 300 Hz

Beam quality

Excellent beam quality: M2=1.10 x 1.07

Spectral investigations

Qswitched output spectrum depends on pumping conditions

Spectral gain measurement confirms broadband spectral gain

Tunability

Up to 3mJ extracted at 100Hz for 10W pumping Tunable between 1030 and 1065nm, max @1050nm!

Discussion

Optimum of energy at 1050nm

trade-off between gain and extractable energy

Specific to Quasi Three Level nature

Femtosecond regime

Improved design for 5mJ regenerative amplification (17W CW pump power)

Seeded by fiber oscillators

- Compacity and integrability
- Investigate 2 different spectral ranges: 1034nm and 1053nm

Diffraction grating stretcher & compressor:

- Flexible and compact architecture
- ~300ps stretched pulses

Injection at 1034nm

Oscillator #1 : injection with λ_0 = 1034nm Amplification @ 1038nm , with 8,8nm bandwidth 2,5mJ recompressed energy (3,6mJ before compression) @100Hz Recompressed pulses : 250fs

Injection at 1053nm

Oscillator #2 : injection with λ_0 = 1053nm Amplification @ 1048nm , with 6nm bandwidth 3,2mJ recompressed energy (4,8mJ before compression) @100Hz Recompressed pulses : 320fs

Extension to 1053nm

Interest for damage threshold tests in the femtosecond regime 1053nm required for specific components (gratings, filters...) 100Hz allows long term testing

Use the same oscillator centered at 1053nm Use spectral shaping before amplification

2mJ compressed energy @1053nm @100Hz Recompressed pulses : 600fs for 3,5nm bandwidth

Conclusion & Outlook

Broadly tunable ns laser from 1030-1065nm at millijoule level

→ good seeder for high energy lasers

10GW class femtosecond lasers at 10-300Hz

--- enlarging the laser portfolio

2mJ 600fs achieved @1053nm

---- for Nd:glass laser components qualification

Outlook:

Improve the thermal management for higher average power

Thank you for your attention !

ISO 9001

BUREAU VERITAS
Certification

AMPLITUDE SYSTEMES

New address since may 2011:

11, avenue de Canteranne 33600 Pessac – France

Tel. 33 5 5646 4060 www.amplitude-systemes.com

