Duração: 1 hora 50 minutos

P1 de Álgebra Linear I -2006.1

Data: 3 de abril de 2006

Nome:	Matrícula:	
Assinatura:	Turma	

Questão	Valor	Nota	Revis.
1a	1.5		
1b	1.0		
2a	1.0		
2b	1.5		
2c	1.0		
2d	1.0		
3a	1.5		
3b	1.0		
3c	1.0		
Total	10.5		

Instruções

- $\bullet\,$ Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear o caderno de prova.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Respostas a caneta. Escreva de forma clara e legível.
- Justifique de forma clara, ordenada e completa suas respostas. Respostas sem justificativas não serão consideradas.

a) Considere a reta r de equação paramétrica

$$r = (1+t, 2-t, 1+t), \quad t \in \mathbb{R},$$

e os planos π_1,π_2 e π_3 cujas equações cartesianas são

$$\pi_1$$
: $x + 2y + az = b$, π_2 : $x - 2y + cz = d$, π_3 : $x + y + fz = g$.

Determine $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{f}$ e \mathbf{g} para que a interseção dos planos π_1, π_2 e π_3 seja a reta r.

b) Considere os planos ρ_1, ρ_2 e ρ_3 cujas equações cartesianas são

$$\rho_1$$
: $x + y + z = 1$, ρ_2 : $x + 2y + 3z = 1$, ρ_3 : $x + 3y + \alpha z = \beta$.

Determine, explicitamente, valores de α e β para que a interseção dos planos ρ_1, ρ_2 e ρ_3 seja uma reta.

Resposta:

2) Considere a reta

$$r = (1 + t, 1 - t, 2t), \quad t \in \mathbb{R},$$

e o ponto

$$Q = (1, 0, 2).$$

- (a) Escreva a reta r como a interseção de dois planos π e ρ (escritos na forma cartesiana) tais que π é paralelo ao eixo \mathbb{Y} (isto é, o vetor normal do plano π é ortogonal ao vetor \mathbf{j}) e ρ é paralelo ao eixo \mathbb{Z} (isto é, o vetor normal do plano ρ é ortogonal ao vetor \mathbf{k}).
- (b) Determine as equações cartesianas e paramétricas do plano τ que contém a reta r e o ponto Q.
- (c) Determine a distância do ponto Q à reta r.
- (d) Determine um ponto M da reta r tal que os pontos P=(1,1,0), Q e M formem um triângulo retângulo cuja hipotenusa é o segmento PQ. (Observe que P está na reta r).

Resposta:

(a) Considere as retas

$$r_1 = (5 + 2t, -1 - t, 2), \quad t \in \mathbb{R}$$

е

$$r_2 = (4 - t, -5 + 2t, -1 + t), \quad t \in \mathbb{R}.$$

Estude se as retas r_1 e r_2 se interceptam ou são reversas. Caso se interceptem, determine o ponto de interseção. Caso sejam reversas, determine a distância entre as duas retas.

(b) Considere as retas

$$s_1 = (1 + ct, d + t, 6 + 3t), t \in \mathbb{R}$$

е

$$s_2 = (t, a + 2t, 1 + bt), \quad t \in \mathbb{R}.$$

Determine <u>explicitamente</u> valores de \mathbf{a} , \mathbf{b} , \mathbf{c} e \mathbf{d} , para que as retas se interceptem no ponto (1,4,3).

(c) Considere as retas

$$\ell_1 = (1+t, 1-t, 1+t), \quad t \in \mathbb{R}$$

е

$$\ell_2 = (1+2t, 1+t, 1-t), \quad t \in \mathbb{R}.$$

Determine <u>todos</u> os pontos da reta ℓ_2 cuja distância à reta ℓ_1 é $2\sqrt{6}$.

Resposta: