Complex Numbers Tutorial 9B: Polar and Exponential Forms Solutions

Additional Practice Questions

$$\begin{vmatrix} z^2 | = 2 \Rightarrow |z| = \sqrt{2} \\ \arg(-iz) &= \frac{\pi}{4} \Rightarrow \arg(-i) + \arg(z) = \frac{\pi}{4} \\ \arg(z) &= \frac{\pi}{4} - \left(-\frac{\pi}{2}\right) \\ &= \frac{3\pi}{4} \\ |wz| = 2\sqrt{2} \\ |w||z| = 2\sqrt{2} \\ \therefore |w| = 2 \\ \arg\left(\frac{z^2}{w}\right) = -\frac{5}{6}\pi \\ 2\arg(z) - \arg(w) = -\frac{5}{6}\pi \\ \arg(w) = 2\left(\frac{3}{4}\pi\right) + \frac{5}{6}\pi \\ &= \frac{7}{3}\pi \\ &= \frac{\pi}{3}(pv) \\ w = 2\left[\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right] \\ &= 1 + \sqrt{3}i \end{aligned}$$

2 (i)
$$w = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^3$$

Let $w_1 = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}$
 $w_2 = \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}$
 $\therefore w = 2(w_1)(w_2)^3$
 $|w| = 2|w_1||w_2|^3 = 2(1)(1) = 2$
 $\arg(w) = \arg\left(2(w_1)(w_2)^3\right)$
 $= \arg(2) + \arg(w_1) + 3\arg(w_2)$
 $= 0 + \frac{3\pi}{4} + 3\left(-\frac{\pi}{6}\right)$
 $= \frac{\pi}{4}$
 $\therefore w = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$
(ii) $|w^n| = |w|^n = 2^n$

(ii)
$$|w^n| = |w|^n = 2^n$$

$$\arg w^n = n \arg(w) = \frac{n\pi}{4}$$

$$\therefore w^n = 2^n (\cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4})$$
When n is a muliple of 4, let $n = 4k$, where k is an integer.
$$w^n = 2^{4k} (\cos k\pi + i \sin k\pi)$$

$$= (-1)^k 2^{4k}$$
(because $\cos k\pi = 1$ when k even, -1 when k odd and $\sin k\pi = 0$ for all k .

$$3 a = 1 + i\sqrt{3} = 2e^{i\left(\frac{\pi}{3}\right)}$$

$$\therefore 1 + a + a^{2} + a^{3} + \dots + a^{9} = \frac{1 - a^{10}}{1 - a} = \frac{1 - \left[2e^{i\left(\frac{\pi}{3}\right)}\right]^{10}}{1 - (1 + i\sqrt{3})}$$

$$= \frac{1 - 2^{10}e^{i\left(-\frac{2\pi}{3}\right)}}{-i\sqrt{3}}$$

$$= \frac{1 - 2^{10}(-\frac{1}{2} - i\frac{\sqrt{3}}{2})}{-i\sqrt{3}}$$

$$= \frac{513 + 512\sqrt{3}i}{-i\sqrt{3}} \times \frac{i\sqrt{3}}{i\sqrt{3}}$$

$$= -512 + 171\sqrt{3}i$$

4(a)
$$z = \sqrt{3} + i = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

$$z^{n} = 2^{n}\left(\cos\frac{n\pi}{6} + i\sin\frac{n\pi}{6}\right)$$

$$z^{n} - \left(z^{*}\right)^{n} = 2i\operatorname{Im}(z^{n}) = 2i\left(2^{n}\sin\frac{n\pi}{6}\right) = 0$$

$$\sin\frac{n\pi}{6} = 0$$

$$\frac{n\pi}{6} = k\pi, k \in \mathbb{Z}^{+}$$

The set of values of *n* is $\{n : n = 6k, k \in \mathbb{Z}^+\}$

(b)
$$z+w = (\sqrt{3}-1)+i(1+\sqrt{3})$$

Note that *OWPZ* is a parallelogram,

$$arg(w) = \pi - tan^{-1} \frac{\sqrt{3}}{1} = \frac{2\pi}{3}$$

$$\angle WOZ = \frac{2\pi}{3} - \frac{\pi}{6} = \frac{\pi}{2}$$

$$OZ=|z|=2$$

$$OW = \left| w \right| = \left| -1 + i\sqrt{3} \right| = 2$$

$$arg(z+w) = arg(z) + \angle POZ = \frac{\pi}{6} + \frac{\pi}{4} = \frac{5\pi}{12}$$

Also,
$$\arg(z+w) = \tan^{-1} \frac{\sqrt{3}+1}{\sqrt{3}-1}$$

$$\therefore \frac{5\pi}{12} = \tan^{-1} \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$$

$$\therefore \tan \frac{5\pi}{12} = \frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{\left(\sqrt{3}+1\right)^2}{3-1} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3} \text{ (deduced)}$$

Given
$$2 = cos \theta + i sin \theta$$

$$= e^{i\theta}$$

$$= \frac{1+e^{i\theta}}{1-e^{i\theta}}$$

$$= \frac{e^{i\frac{\theta}{2}} \left[e^{i\frac{\theta}{2}} + e^{-i\frac{\theta}{2}} \right]}{e^{i\frac{\theta}{2}} \left[e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}} \right]}$$

$$= \frac{2cos \frac{\theta}{2}}{-2i sin \frac{\theta}{2}}$$

$$= cot \frac{\theta}{2} \left(-\frac{1}{i} - \frac{i}{i} \right)$$

$$= i cot \frac{\theta}{2} \#$$

From the diagram,

$$OAPZ$$
 is a rhombus : $OA=OZ$

Also, ZA/OQ , $ZALOP$.

 $ZAPOA=\frac{\theta}{2}$
 $ZPZA=90^{\circ}-\frac{\theta}{2}$
 $ZPZA=90^{\circ}-\frac{\theta}{2}$

6(i)
$$z^{4} = (k + i \sqrt{3})^{4}$$

$$= k^{4} + 4k^{3} (i \sqrt{3}) + 6k^{2} (i \sqrt{3})^{2} + 4k (i \sqrt{3})^{3} + (i \sqrt{3})^{4}$$

$$= k^{4} - 18k^{2} + 9 + i (4\sqrt{3}k^{3} - 12\sqrt{3}k)$$
(ii)
$$z^{4} \text{ real} \implies 4\sqrt{3}k^{3} - 12\sqrt{3}k = 0$$

$$4\sqrt{3}k (k^{2} - 3) = 0$$

$$k = 0 \text{ (rej) or } \pm \sqrt{3}$$

$$z = \sqrt{3} + i \sqrt{3} \text{ or } z = -\sqrt{3} + i \sqrt{3}$$
(iii)
$$\arg \left[(-\sqrt{3} + i \sqrt{3})^{n} \right] = -\frac{\pi}{4}$$

$$n \arg (-\sqrt{3} + i \sqrt{3}) = -\frac{\pi}{4}, \frac{7\pi}{4}, \frac{15\pi}{4}, \dots$$

$$n \left(\frac{3\pi}{4} \right) = -\frac{\pi}{4}, \frac{7\pi}{4}, \frac{15\pi}{4} \dots$$

$$n \left(\frac{3}{4} \right) = -\frac{1}{4}, \frac{7}{4}, \frac{15}{4} \dots$$
Least $n = 5$

$$|z^{n}| = |z|^{5} = (\sqrt{6})^{5} = 36\sqrt{6}$$

Since
$$z = i$$
 is a root,
 $i^3 + 2i + k = 0 \implies k = -i$
Hence the equation becomes $z^3 + 2z - i = 0$.
 $z^3 + 2z - i = (z - i)(z^2 + az + 1)$
Comparing coefficient of z^2 , $a = i$.
For $z^2 + iz + 1 = 0$, $z = \frac{-i \pm \sqrt{i^2 - 4(1)(1)}}{2(1)} = \frac{-i \pm \sqrt{-5}}{2} = \frac{-i \pm i\sqrt{5}}{2}$
Hence the other 2 roots are $\frac{-i + i\sqrt{5}}{2}$ and $\frac{-i - i\sqrt{5}}{2}$.

(b)(i)	$\frac{1}{1} = \frac{1}{\pi} [\cos(-\theta) + i\sin(-\theta)] = \frac{1}{\pi} (\cos\theta - i\sin\theta)$
(ii)	$\left \frac{w}{500} \right = 3 \left w \right + 40i$
	$\frac{500}{r}(\cos\theta - i\sin\theta) = 3r + 40i$
	Comparing real and imaginary parts,
	$\frac{500}{r}\cos\theta = 3r, -\frac{500}{r}\sin\theta = 40$
	$\cos\theta = \frac{3r^2}{500}, \sin\theta = -\frac{40r}{500}$
	$\left(3r^2\right)^2 \left(40r\right)^2$
	$\left(\frac{3r^2}{500}\right)^2 + \left(\frac{40r}{500}\right)^2 = 1$
	$9r^4 + 1600r^2 - 250000 = 0$
	$(r^2 - 100)(9r^2 + 2500) = 0$
	$(r-10)(r+10)(9r^2+2500) = 0$
	Since $r \in \mathbb{R}^+$, $r = 10$
(iii)	Subst $r = 10$, $\cos \theta = \frac{3}{5}$, $\sin \theta = -\frac{4}{5}$
	$\therefore w = 10\left(\frac{3}{5} - \frac{4}{5}i\right) = 6 - 8i$
	From $\frac{500}{w} = 3 w + 40i$, consider the modulus of both sides to get
	$\left \frac{500}{r} = \left 3r + 40i \right = \sqrt{(3r)^2 + 40^2}$. This leads directly to the same equation for r
	as above, and is solved similarly to get $r = 10$. Then $w = \frac{500}{3(10) + 40i} = 6 - 8i$.
	From $\cos \theta = \frac{3r^2}{500}$, $\sin \theta = -\frac{40r}{500}$, eliminate r to get
	$\cos \theta = \frac{3}{500} \left(-\frac{500}{40} \sin \theta \right)^2 = \frac{16}{15} \sin^2 \theta = \frac{16}{15} \left(1 - \cos^2 \theta \right).$
	Solve this quadratic to get $\cos \theta = \frac{3}{5}$, rejecting the other root, and proceed to
	get $r^2 = \frac{500}{3}\cos\theta = 100$. Thus $r = 10$ and $\sin\theta = -\frac{40}{500}r = -\frac{4}{5}$. Finally
	$w = r\cos\theta + i\sin\theta = 6 - 8i.$

8(i)	By conjugate root theorem, $z = 1 - i\sqrt{3}$ is also a root.
	Hence $\left(z - \left(1 + i\sqrt{3}\right)\right)\left(z - \left(1 - i\sqrt{3}\right)\right) = z^2 - 2z + 4$ is a factor of $f(z)$.
	$(Az+B)(z^2-2z+4) = z^3-z^2+bz+4$
	By comparison of coefficients, $A = 1$, $B = 1$.
	Hence $z = -1$ is also a root.
(ii)	$4w^3 + bw^2 - w + 1 = 0$
	$4 + b\left(\frac{1}{w}\right) - \left(\frac{1}{w}\right)^2 + \left(\frac{1}{w}\right)^3 = 0$
	Hence $w = \frac{1}{z}$
	$=\frac{1}{-1}, \frac{1}{1+i\sqrt{3}}, \text{ or } \frac{1}{1-i\sqrt{3}}$
	$=-1, \frac{1-i\sqrt{3}}{4}, \text{ or } \frac{1+i\sqrt{3}}{4}$
(iii)	$z = 1 - i\sqrt{3} = 2e^{-\frac{\pi}{3}i}$
	$z^{n} \in \mathbb{R} \Rightarrow n\left(-\frac{\pi}{3}\right) = k\pi, k \in \mathbb{Z}$
	Hence $n = -3k$
	Thus least $n = 3$ and $z^3 = 2^3 e^{-\pi i} = -8$