Homework3

陈淇奥 21210160025

2021年10月19日

Exercise 1 (1.5.26). 证明任何序数都可表示为 $\alpha + n$, 其中 $\alpha \neq 0$ 或极限序数,而 $n \in \omega$ 。并且这种表示唯一。

证明. 由定理 1.4.12,任何非 0 序数 β 都可唯一表示为

$$\beta = \omega^{\gamma_0} \cdot \delta_0 + \dots + \omega^{\gamma_{k-1}} \cdot \delta_{k-1}$$

其中 $k \in \omega$, δ_i 和 γ_i 都是序数, $\gamma_i \in \omega$,并且 $\gamma_0 > \cdots > \gamma_{k-1}$ 。若 $\gamma_{k-1} \neq 0$,由练习 1.5.31, β 是极限序数且 $\beta = \beta + 0$ 。若 $\gamma_{k-1} = 0$,令 $\alpha = \omega^{\gamma_0} \cdot \delta_0 + \cdots + \omega^{\gamma_{k-2}} \cdot \delta_{k-2}$,由练习 1.5.31, α 是极限序数, $\beta = \alpha + \delta_{k-1}$

Exercise 2 (1.5.30). 如果 $\alpha < \beta$, 则

- 1. $\alpha + \gamma < \beta + \gamma$
- 2. $\alpha \cdot \gamma \leq \beta \cdot \gamma$

而 < 不能替换为 <

证明. 1. 对 γ 应用超穷归纳证明: 若 $\gamma=0$, 由条件可知 $\alpha \leq \beta$; 若 $\gamma=\delta+1$, 由归纳假设, $\alpha+\delta \leq \beta+\delta$ 。若 $\alpha+\delta=\beta+\delta$,则 $(\alpha+\delta)+1=(\beta+\delta)+1=\alpha+(\delta+1)=\beta+(\delta+1)$; 若 $\alpha+\delta<\beta+\delta$,于是 $(\alpha+\delta)+1\leq \beta+\delta<(\beta+\delta)+1$,而 $(\alpha+\delta)+1=\alpha+(\delta+1)$, $(\beta+\delta)+1=\beta+(\delta+1)$, 因此 $\alpha+(\delta+1)<\beta+(\delta+1)$ 。综上, $\alpha+\gamma\leq\beta+\gamma$ 。

若,对于任意 $\alpha + \theta \in \bigcup \{\alpha + \delta \mid \delta < \gamma\}$,由归纳假设,有 $\alpha + \theta \leq \beta + \theta$ 。 于是 $\bigcup \{\alpha + \delta \mid \delta < \gamma\} \subseteq \bigcup \{\beta + \delta \mid \delta < \gamma\}$,于是 $\alpha + \gamma \leq \beta + \gamma$ 。 若 $\alpha, \beta \in \omega$ 且 $\gamma = \omega$,则 $\alpha + \omega = \beta + \omega$ 。

2. 对 γ 应用超穷归纳证明: 若 $\gamma = 0$, 则 $\alpha \cdot \gamma = 0 = \beta \cdot \gamma$; 若 $\gamma = \delta + 1$, $\alpha \cdot \gamma = \alpha \cdot (\delta + 1) = \alpha \cdot \delta + \delta \leq \beta \cdot \delta + \delta = \beta \cdot (\delta + 1) = \beta \cdot \gamma$; 若 γ 是 极限序数, 对于任意 $\alpha \cdot \theta \in \bigcup \{\alpha \cdot \theta \mid \theta < \gamma\}$, 都有 $\alpha \cdot \theta \leq \beta \cdot \theta$, 于是 $\alpha \cdot \gamma \subseteq \beta \cdot \gamma$, 因此 $\alpha \cdot \gamma \leq \beta \cdot \gamma$

若 $\alpha, \beta \in \omega$,则 $\alpha \cdot \omega = \beta \cdot \omega$

Exercise 3 (1.5.31). 一个序数 α 是极限序数当且仅当存在 β , $\alpha = \omega \cdot \beta$

证明. 若 $\alpha=\omega\cdot\beta$,对于任意 $\omega\leq\gamma<\alpha$,由定理 1.4.12, $\gamma=\omega\cdot\delta_0+\delta_1$,其中 $\delta_0<\beta$ 。于是

$$\gamma+1=(\omega\cdot\delta_0+\delta_1)+1=\omega\cdot\delta_0+(\delta_1+1)<\omega\cdot\delta_0+\omega=\omega\cdot(\delta_0+1)\leq\omega\cdot\beta$$

对于任意 $\gamma < \omega$, $\gamma + 1 < \omega < \alpha$ 。因此 α 不是后继序数,于是它是极限序数 若 α 是极限序数,由定理 1.4.12 可知

$$\alpha = \omega^{\gamma_0} \cdot \delta_0 + \dots + \omega^{\gamma_{k-1}} \cdot \delta_{k-1}$$

其中 $k\in\omega$, δ_i 和 γ_i 都是序数且 $\gamma_0>\cdots>\gamma_{k-1}$ 。若 $\gamma_{k-1}=0$,则因为 $\delta_{k-1}\in\omega$ 是后继序数,所以 $\delta_{k-1}=\delta'_{k-1}+1'$,于是

$$\alpha = (\omega^{\gamma_0} \cdot \delta_0 + \dots + \omega^{\gamma_{k-2}} \cdot \delta_{k-2} + \delta'_{k-1}) + 1$$

是后继序数,矛盾。因此 $\gamma_{k-1} \neq 0$,于是

$$\alpha = \omega \cdot (\omega^{\gamma_0 - 1} \cdot \delta_0 + \dots + \omega^{\gamma_{k-1} - 1} \cdot \delta_{k-1})$$

Exercise 4 (1.5.33). 找到函数 $f: \omega \to \omega + \omega$ 和 $g: \omega + \omega \to \omega + \omega + \omega$ 满足

- 1. $\sup(f[\omega]) = \omega + \omega$
- 2. $\sup(g[\omega + \omega]) = \omega + \omega + \omega$
- 3. 如果 $h = g \circ f$,有 $\sup(h[\omega]) < \omega + \omega + \omega$

证明. 对于任意 $x \in \omega$

$$f(x) = \begin{cases} \omega + x & x$$
是偶数
$$0 & x$$
是奇数

$$g(x) = \begin{cases} 0 & x \in \mathbb{R} \\ \omega + x & x \in \mathbb{R} \end{cases}$$

$$g(\omega + x) = \begin{cases} 0 & x \in \mathbb{R} \\ \omega + \omega + x & x \in \mathbb{R} \end{cases}$$

Exercise 5 (1.5.38). 对任意集合 X, 存在一个序数 H(X), H(X) 不与 X 的任意子集等势,并且是具有如此性质的最小序数。令 $W = \{w \subseteq X \mid w \perp \text{存在良序}\}$,

$$H(X) = \{ \alpha \mid$$
 存在 $w \in W, \alpha$ 是与 w 同构的唯一序数 $\}$

证明 W 是集合, H(X) 是序数。

证明. 令

$$\varphi(w) = \exists R(R \subseteq X \times X \land \forall x \forall y ((x, x) \notin R \land ((x, y) \in R \rightarrow \neg (y, x) \notin R)))$$
$$\land \forall Y(Y \subseteq X \land Y \neq \emptyset \land \exists y_0 (y_0 \in Y \land \forall y (y \in Y \rightarrow y_0 = y \lor y_0 < y))))$$

于是 $\varphi(w)$ 表达了 w 上存在良序,于是 $W = \{w \in \mathcal{P}(X) \mid \varphi(w)\}$ 是集合。

由替换公理,H(X) 是集合。由引理 1.3.28, \in 在 H(X) 是良序。对于任意非空 $y \in H(X)$ 与 $x \in y$,y 与某个 $w \in W$ 同构,记为 $f: y \to w$,则 f|x 依然是同构。因为 x 是序数,f 保序,于是 f(x) 是良序集,因此 $f(x) \in W$,所以 $x \in H(X)$ 。从而 H(X) 是传递的,于是 H(X) 是序数。