1 Metoda "Delayed Column Generation"

1.1 Algorytm

$$L \ge l_1 a_1 + \dots + l_m a_m \tag{1}$$

$$b_1 a_1 + \dots + b_m a_m > c \tag{2}$$

- 1. Określnie m poczatkowych rokrojów i ich kosztu w następujący sposób: dla każdego i wybranie długości bazowej L_j dla której $L_j > l_i$ i określenie i-tego rokroju jako wycięcie $a_{ii} = [L_j/l_i]$ elementów o długości l_i z długości L_j . Koszt i-tego rozkroju będzie równy kosztowi c_j długości L_j z której i-ta operacja wycina odcinki o długości l_i .
- 2. Uformowanie macierzy \boldsymbol{B}

gdzie a_{ii} jest ilością odcinków o długości l_i wyciętych w i-tym rozkroju z długości bazowej o koszcie c_j . Ostatnie m kolumn jets powiązane z rozkrojami. Dane te będą aktualizowane gdy zostanie znaleziony wynik który poprawi rozwiązanie.

Utworzenie m m+1 wymiarowych wektorów kolumnowych $S_1,...,S_m$ odnoszących się do zmiennych dodatkowych, gdzie S_i posiada same zera z wyjątkiem wiersza (i+1) w którym jest -1. Dodatkowo utworzenie m+1 wymiarowego wektora kolumnowego N' który jako pierwszy element przyjmuje 0, a w następnych i-tych wierszach posiada wartośic N_i .

Obliczenie B^{-1} która wynosi:

Niech $N = B^{-1} \cdot N'$. Sprawdzając czy pierwszy element z $B^{-1} \cdot P$ jest dodatni można określić czy istnieje możliwość polepszenia rozwiązania. Wektor kolumnowy P jets wektorem złożonym ze zmiennych nieuzytych w bieżącym rozwiązaniu, np. pierwszy element to negatywny koszt, a pozostałe m wierszy jest równe zmiennym a_{ij} .

- 3. Z powyższego puntku wynika że jeśli i-ta zmienna dodatkowa która nie wchodzi w skład rozwiązania może ulepszyć rozwiązanie wtedy i tylko wtedy gdy (i+1) element pierwszego wiersza B^{-1} jest ujemny.
- 4. Jeśli nie jest możliwe polepszenie rozwiązania nalezy określić czy wprowadznie nowego rozkroju ulepszy bieżące rozwiązanie. Jets to możliwe poprzez sprawdznie czy dla L z kosztem c istnieje rozwiązanie nierówności 5.1Algorytmequation.5.1 oraz 5.2Algorytmequation.5.2, gdzie b_1, \ldots, b_m to ostatnie m elementów w piwerwszym wierszu \mathbf{B}^{-1} . Jeśli te nierównoście nie posiadają rozwiązania dla dowolnej długości L_1, \ldots, L_k z kosztem odpowiednio c_1, \ldots, c_m wtedy bieżące rozwiązanie jest minimum. Rozwiązanie i jego koszt jest określone poprzez \mathbf{N} , gdzie pierwszy wiersz to koszt, a pozostałe m wierszy jest, w kolejności, odpowiednimi wartościami m-tej kolumny z \mathbf{B}^{-1} .
 - Jeśli nowy rozkrój poprawi rozwiązanie wtedy formowany jest nowy wektor P ze współczynnikami, w kolejności $-c, a_1, a_2, \ldots, a_m$.
- 5. Wprowadznie zarówno dodatkowej zmiennej jak i nowego rozkroju może poprawić rozwiązanie. W obu przypadkach P będzie kolumnowym wektorem ze zmiennymi. Dla określenia nowych B^{-1} oraz N które opisują ulepszone rozwiązanie i jego koszt, co pozawala na przejście przez kkroki 3, 4 oraz kontynujacje kroku 5 w nastepujący sposób: Obliczenie $B^{-1} \cdot P$ niech elementy wynikime będą elementy $y_1, \ldots, y_m, y_{m+1}$ oraz niech elementami bierzącego wektora N będą $x_1, \ldots, x_m, x_{m+1}$. Ustalenie $i, i \geq 2$ dla każdego $y_i > 0, x_i \geq 0$ oraz x_i/y_i jest najminiejsze i przypisanie tej wartości do zmiennej k. Minimalny stosunek powinien być zerem aby można było wykorzystać metodę degeneracji.

Jeśli stosunek nie jest równy zero wtedy k-ty element wektora \boldsymbol{P}, y_k będzie elementem wokół którego zajdzie eliminacja Gaussa odbywająca się równocześnie na $\boldsymbol{B}^{-1}, \ \boldsymbol{B}^{-1} \cdot \boldsymbol{P}$ oraz \boldsymbol{N} . Eliminacja ta przebiega na macierzy $(m+1) \times (m+3)$ wymiarowej \boldsymbol{G} uformowanej z \boldsymbol{B}^{-1} poprzez dołączenie kolumn $\boldsymbol{B}^{-1} \cdot \boldsymbol{P}$ oraz \boldsymbol{N} . Pierwsze m+1 kolumn \boldsymbol{G}^{-1} formuje nową macierz \boldsymbol{B}^{-1} , a kolumna m+2 to nowy wektor \boldsymbol{N} . Zależność między kolumnami \boldsymbol{B}^{-1} a rozkrojami lub zmiennymi dodatkowymi jets aktualizowana poprzez usunięcie k-tej kolumny i podmienieniu jej na nowy rozkruj lub zmienną dodatkową.

Degeneracja w razie wystąpienia może być obsłużona w tradycyjny sposób. Pewne środki ostrożności powinny zostać podjęte w celu uniknięcia cykliczności. Nowa kolumna N^1 z dodatnimi elementami x'_1, \ldots, x'_{m+1} która jest niezależna pd N jest dołączana do G i wybór takiego $y_i > 0$ dla którego $x_i = 0$ który jest elementem osiowym jets dokonywany na podstawie takiego i dla którego i0 oraz i1 o oraz i2 o oraz i3 jest najmniejsze. Gdy element osiowy zostanie wybrany, wówczas eliminacja Gaussa zachodzi tak jak w poprzednim przypadku na powiększonej macierzy

- G. Dodatkowa kolumna jest przechowywane w G dopóki istnieje takie i dla którego x_i/y_i jest dodatnie i skończone, jeśli warunek ten jest spełniony wówczas kolumna zostaje usunięta. Powinno to nastąpić w przypadku gdy nie istnieje takie i dla którego x_i/y_i oraz x_i'/y_i są dodatnie i skończone. Wówczas powinna zostać dodana kolumna N^2 nizależna od N oraz N^1 . Podobnie dowolna liczba kolumn może zostać dodana i usunięta gdy przestanie byc potrzebna. Dopóki kolumny są niezależne w czasie dodawania i pozostają takie po eliminacji Gaussa, nie potrzeba więcej jak m nowych kolumn. Każda dodana kolumna definiuje nowy problem liniowy który eliminuje problem cykliczności tak długo aż degeneracja nie wystąpi.
- 1.2 Metody użyte w implementacji
- 1.2.1 Dwufazowa metoda simplex
- 1.2.2 Metoda podziału i ograniczeń
- 1.3 Przykład