1 Lezione del 17-10-24

1.1 Condensatori

Introduciamo un nuovo dipolo: il condensatore o capacitore. Si indica come:

ed è costituito da due armature di materiale conduttore, inframezzate da un dielettrico.

Il verso di percorrenza nei condensatori, come nei resistori, è irrilevante. La loro funzione è quella di accumulare energia, secondo la legge:

$$q(t) = C \cdot v(t)$$

dove C è la **capacità**, misurata in Farad (F).

Nota la superficie delle armature e la distanza fra di esse, si può calcolare la capacità come:

$$C = \varepsilon \cdot \frac{s}{d}$$

Nel caso di dielettrici, si indica con ε_0 la costante dielettrica introdotta e si scrive:

$$C = \varepsilon \cdot \varepsilon_0 \cdot \frac{s}{d}$$

Si ricorda che il Farad è un'unita di misura molto grande, e solitamente si usano i sottomultipli:

Simbolo	Ordine
mF	10^{-3}
$\mu { m F}$	10^{-6}
nF	10^{-9}
pF	10^{-12}

Diciamo che il condensatore ideale è:

- Lineare: dalla legge $q(t) = C \cdot v(t)$;
- **Tempo-invariante:** trascurando cambi di temperatura, si comportano come i resistori;
- **Con memoria:** visto che legano tensione a carica, dobbiamo prendere la corrente come derivata della carica:

$$i(t) = \frac{dq(t)}{dt} = \frac{d}{dt}(C \cdot v(t)) = C\frac{dv(t)}{dt}$$

Possiamo quindi integrare:

$$v(t) = \int_{-\infty}^{t} \frac{1}{C} \cdot i(\tau) d\tau = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau = \frac{1}{C} \left[\int_{-\infty}^{t_0} i(\tau) + \int_{t_0}^{t} i(\tau) \right] = v(t_0) + \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau$$

Abbiamo quindi che la tensione sul condensatore dipende dalla tensione iniziale $v(t_0)$ e dalle correnti precedeneti i(t') a t' < t, ergo è un componente con memoria.

• **Passivo:** anche qui possiamo definire p(t) e derivare:

$$p(t) = v_C(t)i_C(t) = v_C(t) \cdot C\frac{dv_C(t)}{dt}$$

da cui si ottiene che p(t) ha qualsiasi segno. Vediamo quindi l'energia:

$$w(t) = \int_{-\infty}^{t} p(\tau) d\tau = \int_{-\infty}^{t} Cv_C(\tau) \frac{dv_C(\tau)}{d\tau} d\tau = C \int_{-\infty}^{t} v_C(\tau) dv_C(\tau) = C \left[\frac{1}{2} v_C^2(\tau) \right]_{-\infty}^{t}$$

da cui si ha, risolvendo:

$$w(t) = \frac{1}{2}Cv_C^2(t) - \frac{1}{2}Cv_C^2(-\infty)$$

Assumendo $v_C^2(-\infty)=0$, cioè condensatore inizialmente scarico, si ha $w(t)\geq 0$, ergo è un componente passivo. Solo nel caso in cui parte da carico il condensatore può (temporaneamente) erogare energia.

1.2 Induttori

Introduciamo un nuovo dipolo: l'induttore o induttanza. Si indica come:

ed è costituito da spire di materiale ferromagnetico avvolte attorno a un dielettrico. La loro funzione è ancora quella di accumulare energia, secondo la legge:

$$\phi(t) = L \cdot i_L(t)$$

dove L è l'**induttanza**, misurata in Henry (H), e ϕ è il **flusso magnetico**, misurata in Weber (Wb). L'induttanza dipende dalla geometria dell'induttore, e ad esempio in un solenoide di N spire di superficie s su una lunghezza l è:

$$L = \mu \cdot \frac{S}{l} \cdot N^2 = \mu_0 \cdot \mu_r \frac{S}{l} N^2$$

Vediamo quindi le proprietà:

- **Lineare:** sempre per la legge $\phi(t) = L \cdot i_L(t)$;
- Tempo-invariante: il flusso interno dipende solo dalla corrente;
- Con memoria: possamo derivare la legge:

$$v_L(t) = \frac{d\phi(t)}{dt} = \frac{d(Li_L(t))}{dt} = L\frac{di_L(t)}{dt}$$

e ricavare e derivare la corrente $i_L(t)$:

$$i_L(t) = \frac{1}{L} \int_{-\infty}^t v_L(\tau) d\tau = i_L(t_0) + \frac{1}{L} \int_{t_0}^t v_L(\tau) d\tau$$

da dove si ricava che, come il condensatore, l'induttore ha memoria di uno stato iniziale a t_0 .

• Passivo: ritroviamo la potenza:

$$p(t) = v_C(t)i_C(t) = L\frac{di_C(t)}{dt} \cdot i_L(t)$$

da cui si ottiene che p(t) ha qualsiasi segno. Vediamo quindi l'energia:

$$w(t) = \int_{-\infty}^t p(\tau) d\tau = \int_{-\infty}^t L \frac{di_L(\tau)}{d\tau} \cdot i_L(\tau) d\tau = L \int_{-\infty}^t i_L(\tau) di_L(\tau)$$

da cui si ha:

$$w(t) = \frac{1}{2}Li_L^2(t) - \frac{1}{2}Li_L^2(-\infty)$$

Come prima, assumendo $i_L^2(\infty)=0$, cioè induttore inizialmente scarico, si ha $w(t)\geq 0$, e che l'induttore è un componente passivo (salvo parta da carico).

1.2.1 Induttori mutuamente accoppiati

Si possono avere più induttanze (prendiamo 2 per semplicità) accoppiate fra di loro attraverso l'effetto del magnetico generato da entrambe sulle reciproche spire, cioè:

Dove il flusso su una e l'altra induttanza è espresso come:

$$\begin{cases} \phi_1(t) = \phi_{1.1} \pm \phi_{1.2} = L_1 \cdot i_1(t) \pm M i_2(t) \\ \phi_2(t) = \phi_{1.2} \pm \phi_{1.1} = L_2 \cdot i_2(t) \pm M i_1(t) \end{cases}$$

Qui M prende il nome di **coefficiente di mutua induzione**. Anche questo coefficiente dipende dalla geometria della configurazione degli induttori.

Chiamiamo quindi la componente $L_i \cdot i_i$ caduta di auto, per caduta di auto induttanza, e la componente $M \cdot i_i$ caduta di mutua, per caduta di mutua induttanza. Conviene fare una riflessione sui segni delle cadute di auto e di mutua:

- Prendendo riferimenti associati, cioè percorrendo le induttanze nella direzione della corrente propria, si ha che le cadute di auto sono positive. In caso contrario, si prendono come negative;
- Per i segni delle cadute di mutua si usa la regola dei contrassegni:
 - Se la corrente entra al terminale contrassegnato di un induttore e induce una forza elettromotrice \mathcal{E} positiva al terminale contrassegnato dell'altro induttore, si ha che M>0;
 - Altrimenti, se la corrente entra al terminale contrassegnato di un induttore e induce una forza elettromotrice $\mathcal E$ negativa al terminale contrassegnato dell'altro induttore, si ha che M<0;

ergo, scelti riferimenti associati per le cadute di auto, si ha che se le correnti raggiungono il contrassegno della propria induttanza entrambe entrando o uscendo dall'induttore, le cadute di mutua sono positive. Altrimenti, se le correnti raggiungono il contrassegno della propria induttanza una entrando e una uscendo dall'induttore, o viceversa, le cadute di mutua sono negative.

Si ha quindi, derivando:

$$\begin{cases} v_1(t) = L_1 \frac{di_1(t)}{dt} \pm M \frac{di_2(t)}{dt} \\ v_2(t) = L_2 \frac{di_2(t)}{dt} \pm M \frac{di_1(t)}{dt} \end{cases}$$

Gli induttori mutuamente accoppiati vengono detti **quadripoli** o **doppi dipoli**, in quanto hanno effettivamente 4 poli.

Si calcola la potenza semplicemente sommando le potenze sulle singole induttanze:

$$p(t) = v_1(t)i_1(t) + v_2(t)i_2(t)$$

$$= \left(L_1 \frac{di_1(t)}{dt} \pm M \frac{di_2(t)}{dt}\right) \cdot i_2(t) + \left(L_2 \frac{di_2(t)}{dt} \pm M \frac{di_1(t)}{dt}\right) \cdot i_1(t)$$

$$= L_1 i_1(t) \frac{di_1(t)}{dt} + L_2 i_2 \frac{di_2(t)}{dt} \pm M \left(i_1(t) \frac{di_2(t)}{dt} + \frac{i_2 di_1(t)}{dt}\right)$$

E l'energia integrando la potenza:

$$w(t) = \int_{-\infty}^{t} p(\tau)d\tau$$

$$= L_{1} \int_{-\infty}^{t} i_{1}(\tau) \frac{di_{1}(\tau)}{d\tau} d\tau + L_{2} \int_{-\infty}^{t} i_{2}(\tau) \frac{di_{2}(\tau)}{d\tau} d\tau \pm M \int_{-\infty}^{t} \left[i_{1}(\tau) \frac{di_{2}(\tau)}{d\tau} + i_{2}(\tau) \frac{di_{1}(\tau)}{d\tau} \right] d\tau$$

$$= L_{1} \cdot \frac{1}{2} i_{1}^{2}(t) + L_{2} \cdot \frac{1}{2} i_{2}^{2}(t) \pm M \int_{-\infty}^{t} \frac{d(i_{1}(\tau) \cdot i_{2}(\tau))}{d\tau} d\tau = L_{1} \cdot \frac{1}{2} i_{1}^{2}(t) + L_{2} \cdot \frac{1}{2} i_{2}^{2}(t) \pm M i_{1}(t) i_{2}(t)$$

Si può dimostrare che $M \le \sqrt{L_1 L_2}$, e nel caso $M = \sqrt{L_1 L_2}$ si parla di **accoppiamento** ideale. Nel caso peggiore si ha quindi:

$$w = \frac{1}{2}L_1i_1^2(t) + \frac{1}{2}L_2i_2^2(t) - \sqrt{L_1L_2}i_1(t)i_2(t) = \frac{1}{2}\left(\sqrt{L_1}i_1(t) - \sqrt{L_2}i_2(t)\right)^2 \ge 0$$

ergo, salvo caricamenti iniziali, le induttanze mutuamente accoppiate sono componenti **passivi**.

1.3 Analisi allo stato stazionario

Vediamo il comportamento dei condensatori e degli induttori in circuiti a regime costante, cioè come quelli che abbiamo studiato finora.

- Condensatori: il condensatore ha legge $q(t) = C \cdot v_C(t) \Rightarrow i_C(t) = C \frac{dv_C(t)}{dt}$, ergo se siamo in continua, $i_C(t) = C \cdot 0 = 0$ e il condensatore si comporta come un **aperto**;
- Induttori: l'induttore ha legge $\phi(t) = L \cdot i_L(t) \Rightarrow V_L(t) = L \frac{di_L(t)}{dt}$. ergo se siamo in continua, $v_L(t) = L \cdot 0 = 0$, e l'induttore si comporta come un **cortocircuito**.

Abbiamo quindi che non si possono apprezzare gli effetti di questi nuovi dipoli finché si studiano circuiti a regime stazionario. Infatti vedremo più nel dettaglio quali sono le loro caratteristiche quando parleremo di circuiti in regime sinusoidale.