Filtering and Working in the Frequency Domain

Mar-2019

Tonight

- 1. Learn how to think in terms of the frequency domain
- 2. Understand basic filter types
- 3. Practical examples
- 4. Power supply bypassing/filtering

Intimidating? Check back after class!

Why use filters?

Part of moving from functional to functioning <u>WELL</u>

(Almost) all power supplies need filtering

Mechanical switches

Audio electronics

- Cross-overs
- Equalizers
- Class D audio amplifiers need filtering

Analog/mixed-signal electronics

- Sensor noise
- Analog-Digital signal conversion
- Digital-Analog signal conversion

Switch Debouncing

Switch Q – when released, it goes high for 480 µsec before generating 840 µsec of hash, a sure way to blow an interrupt system mad if poorly designed.

Speaker Crossover

ADC Example - Aliasing

Time vs Frequency Domain

Time vs Frequency Domain

Frequency = 1 / Period

2 Sine Waves Added Together

Creating a Waveform from "Harmonics"

Square Wave = Odd Harmonics

Common Waveforms

Note: vertically symmetric waveforms tend not to have even harmonics

Switching Power Supply Noise

Switch Debouncing

What frequencies might need to be retained vs rejected?

Types of Filters

A Conceptual Low Pass Filter

All-pass

Low-pass

Decreases with frequency

RLC Components vs Frequency

RC Filters

LC Filters

RC Low Pass Filter

2nd Order Low Pass Filter

RC High Pass Filter

$$f_c = \frac{1}{RC}$$

RC Band Pass Filter

$$f_L = \frac{1}{R_2 C_2}$$

$$f_U = \frac{1}{R_1 C_1}$$

Low Pass Filter Variations

High Pass Filter Variations

Practical Example - Crossover

Example: Arduino PWM Filtering

PWM Freq Components

25% Duty Cycle

50% Duty Cycle

75% Duty Cycle

Power Supply Noise and Bypassing

LC Resonant Circuit Detail

$$X_C = \frac{-1}{2\pi f C}$$

$$X_L = 2\pi f L$$

Real World Capacitor Bypassing

Filter Digital Noise From Analog

A ferrite bead is sort of a poor (lossy) inductor, converting AC to heat

Ferrite Bead Notes

Tyco BMB2A1000LN2

TDK MPZ1608S101A

Choose bead for high impedance @ freq of interest Choose current rating ~5x higher than bias

From: Analog Devices AN-1368 Ferrite Bead Demystified

Let's take another look!

Week 2: Lab Time!

Option 1: Microcontroller PWM Filter

- Build RC low pass filter
- Adjust, measure with oscilloscope

Option 2: Analog Switch Debounce

- Build RC low pass filter
- Adjust, measure with oscilloscope

Pre-Class Review

https://www.youtube.com/watch?v=EQtwsWJuUPs

https://www.youtube.com/watch?v=vN9aR2wKv0U