

UESTC 3003: Electronic System Design

Static Errors

Lecture 2.5: Input Offset Currents

Dr Sajjad Hussain Thanks to Prof. Duncan Bremner

WORLD CHANGING GLASGOW

Sajjad.Hussain.2@glasgow.ac.uk

Offset Current

Transistors are closely matched, but... β is up to $\approx 5\%$ out

The difference between the bias currents is the *Offset Current:*

Offset Current (2)

$$I_{OS} = |I_B(+) - I_B(-)|$$
 (Ignore sign)

Note that matching DC resistance compensates for I_B not I_{OS}

Matched resistor trick is only good to about 5% of the total error

Many modern opamps correct for bias current Exceptions are

- Cheap opamps
- Fast opamps (esp. current feedback)
- Some specialised opamps (e.g. audio)

In the worst case the currents flowing into the inputs are equal and opposite: $I_{OS} \le 2I_B$

If bias current has been corrected only the error is left

=> Balancing resistors makes things worse

READ THE DATA SHEET **CAREFULLY** (it is not always easy to see)!

Low Noise, Precision Operational Amplifier

OP27

...you need to read carefully

Data Sheet

FEATURES

Low noise: 80 nV p-p (0.1 Hz to 10 Hz), 3 nV/√Hz

Low drift: 0.2 µV/°C

High speed: 2.8 V/µs slew rate, 8 MHz gain bandwidth

Low Vos: 10 µV

CMRR: 126 dB at VCM of ±11 V High open-loop gain: 1.8 million

Available in die form

GENERAL DESCRIPTION

The OP27 precision operational amplifier combines the low offset and drift of the OP07 with both high speed and low noise. Offsets down to 25 μ V and maximum drift of 0.6 μ V/°C make the OP27 ideal for precision instrumentation applications. Low noise, $e_n = 3.5 \, n$ V/ \sqrt{Hz} , at 10 Hz, a low 1/f noise corner frequency of 2.7 Hz, and high gain (1.8 million), allow accurate high-gain amplification of low-level signals. A gain bandwidth product of 8 MHz and a 2.8 V/ μ s slew rate provide excellent dynamic accuracy in high speed, data-acquisition systems.

A low input bias current of ± 10 nA is achieved by use of a bias current cancellation circuit. Over the military temperature range, this circuit typically holds I_B and I_{OS} to ± 20 nA and 15 nA, respectively.

The output stage has good load driving capability. A guaranteed swing of ± 10 V into 600 Ω and low output distortion make the OP27 an excellent choice for professional audio applications.

PIN CONF NC = NO Figure 1.8-Le NC = NO Figure 2. 8-Lead CERDIP -8-Lead PDIP (P-Suffix)

Figure 3

... and learn to read schematic diagrams See reference MT-38 for how it works...

(Continued on Page 3)

Offset Current (3)

Example: Inverting amplifier, gain of -1

Error if **no** compensation = $R \times I_B(-)$

Error if compensated =

$$R \times (I_B(-) - I_B(+)) = R \times I_{OS}$$

If $I_B(-) = -I_B(+)$ error $= 2R \times I_B(-)$

Potentially worse than uncompensated

Offset Current (4)

The model for current errors in the opamp is now:-

This is how the currents are defined in data sheets

From now on, use this model only

But we express $I_B(-)$ and $I_B(+)$ in terms of their average and difference:

Offset Current (5)

Equal source impedances compensate for bias current in general

is equivalent to

Adds

Offset Current (6)

Don't try to combine bias and offset current to work out specific values of current: these are only <u>limiting</u> specifications:

Example: NE5532, typical spec at 25°C $I_B = 200nA$; $I_{OS} = 10nA$

maximum spec at 25°C $I_B = 800nA$; $I_{OS} = 150nA$

Possible values:

$$I_B(+) = 800nA;$$
 $I_B(-) = 780nA$ $I_B(+) = -780nA;$ $I_B(-) = -700nA$
 $I_B(+) = 0nA;$ $I_B(-) = -150nA$ $I_B(+) = -800nA;$ $I_B(-) = -800nA$

Impossible values:

$$I_B(+) = 800nA; I_B(-) = 820nA$$

$$I_B(+) = -75nA; \quad I_B(-) = 76nA$$

$$I_{DS} = 151nA!$$

If impedances are (very) unbalanced, use bias current spec. If impedances are balanced, use offset current spec.

A word about FETs

Practical consideration:

FET input opamps have very low bias current But bias current is often exponential with temperature:

$$T = 20^{\circ} \text{C}, \quad I_{B} = 50 pA$$
 $T = 30^{\circ} \text{C}, \quad I_{B} = 100 pA$
 $T = 40^{\circ} \text{C}, \quad I_{B} = 200 pA$
 $T = 80^{\circ} \text{C}, \quad I_{B} = 3.2 nA!$

Bipolar opamp's bias much more stable with temperature Important point if designing for rugged environment

Automotive

Military / Aerospace

But not for normal domestic / lab conditions!

Example

If R_x is 0, what is the error?

$$Error = R \times I_B(-) = R \times I_B = 100 mV$$

If R_x is 500k, what is the error?

$$Error = R \times I_{OS} = 5mV$$

Question: What happens if all resistors are reduced e.g. What is the limit on scaling resistors? Hint: It's Free!

x 0.1 ?

Example: Integrator

$$(I_{OS}/2 - I_B)$$
Rx

Neglecting constant terms (including constant of integration)

Example (2)

$$V_{OUT} = \frac{-1}{C} \int idt = \frac{-1}{C} \int \frac{V_{IN} - Rx(I_{OS}/2 - I_B)}{R} - I_B - I_{OS}/2dt$$

$$= -\int \frac{V_{IN}}{RC} - \frac{(Rx(I_{OS}/2 - I_B) + RI_B + RI_{OS}/2)}{RC} dt$$

$$\therefore \text{ Error (RTI)} = -\left([Rx(I_{OS}/2 - I_B) + RI_B + RI_{OS}/2]\right)$$

$$= -\left((Rx + R) \cdot \frac{Ios}{2} + (Rx - R) \cdot I_B\right)$$

If unmatched resistances, Rx=0, just consider bias current

Error (RTI) = $-RI_B$

If matched resistances, Error(RTI) = Rx=R, just consider offset $-R(I_{OS}/2-I_B)-RI_B-RI_{OS}/2=-RI_{OS}$ current

$$I_B = 100nA$$

$$I_{OS} = 5nA$$

Example (3)

Note that the current error corresponds to a change to the input voltage. If $R^*=1M$ then the error is "5mV Referred to input", RTI

