

日本結晶成長学会
バルク成長分科会

第52回研究会資料集

—Si単結晶と

Si基板上ヘテロエピタキシャル成長技術—

共催：ナノ構造・エピタキシャル成長

分科会

日時：平成14年2月8日(金)

場所：湘南工科大学東京キャンパス

BEST AVAILABLE COPY

Nitrogen and Carbon Effect on the Formation of Grown-in Defects and Oxygen Precipitation Behavior

K.Natal H. Yokota, J. Takahashi*, A. Tachikawa, K. Kitahara

A. Itaya and M. Tanaka

R&D Group, Wacker NSCE Corp.

*Advanced Technology Research Laboratories, Nippon Steel Corporation

1. Introduction
2. Nitrogen-doping Crystals
3. Growth Holding Experiments
4. Oxygen Precipitation
5. Carbon-doping Crystals
6. Growth Holding Experiments
7. Oxygen Precipitation

Sample
Diameter : 150mm and 200mm
Resistivity : 8-12 Ωcm
Oxygen : $7-9 \times 10^7$ atoms/cm³ (JEIDA)
Nitrogen : 2×10^{13} - 3×10^{13} atoms/cm³
(measured by SIMS, calculation)

Evaluation

As grown

- LSTD scanner, BMD analyzer : areal distribution, density, size
- TEM : Morphology
- OSF evaluation
- 1100°Cx1hr(wet) → Wright Etching
- Oxygen precipitation
- $800^\circ\text{C}4\text{hr}+1000^\circ\text{C}16\text{hr}, 700\text{--}1100^\circ\text{C}8\text{--}128\text{hr}$
- Reduced OI (FTIR), precipitate density (BMD analyzer)

Experimental

BEST AVAILABLE COPY

Two Types of Grown-in Defects and OSF In N-Doped CZ-Si

Precipitate Density Dependence on Heat-Treatment Temperature

Summary : Grown-In Defects and Oxygen Precipitation In Nitrogen-Doped CZ-Si

- Grown-In defects
 - Void defects
 - Size : Decrease with nitrogen concentration
 - Morphology : Plate-like tricrincic
- Grown-In oxygen precipitates
 - Density : Increase with nitrogen concentration
 - Morphology : Platelet (with strain field)
- Defect regions of nitrogen-doped crystals
 - V region (Voids), OSF region and I-region (I-loops)
 - Determined by Nitrogen concentration and V/G existence of N and O
- Oxygen precipitation
 - Precipitate density keep constant level regardless of heat-treatment temperature (even in high temp ~1100°C) or time ($n=3/2$ in Johnson-Mehl Equation)
 - thermally stable oxygen nuclei exist

Defect Distribution Change in Growth Held Crystals of Different N Conc.

Dependence of Cumulative Void Volume on N Conc.

BEST AVAILABLE COPY

Summary : Growth Holding Experiments of Nitrogen-Doped CZ-Si

- Results
 - I region shrinks with increase of nitrogen
 - Voids formed even in OSF region
 - Void formation temperature becomes lower
 - Total void volume is nearly constant regardless of nitrogen concentration
- Mechanisms
 - Nitrogen suppress the void growth
 - Residual vacancies form oxygen clusters → thermally stable oxygen nuclei exists

Experimental

Samples

Diameter : 150mm and 200mm
Resistivity : 8-12 Ωcm
Oxygen : 7.9×10^{17} atoms/cm³ (JEIDA)
Nitrogen : 3×10^{14} - 3×10^{15} atoms/cm³
(measured by SIMS, calculation)
Carbon : 1×10^{17} atoms/cm³ (JEIDA)

Evaluation

As grown
LSTD scanner, BMD analyzer
Optical Precipitate Profiler (OPP) : Size distribution
TEM
OSF evaluation
 $1100^{\circ}\text{C} \times 1\text{hr(wet)} \rightarrow$ Wright Etching
Oxygen precipitation
 $800^{\circ}\text{C}4\text{hr} + 1000^{\circ}\text{C}16\text{hr}, 700 \sim 1100^{\circ}\text{C } 8 \sim 128\text{hr}^*$
→ Reduced OI (FTIR), precipitate density (BMD analyzer)
*before and after epi-layer growth ($>1100^{\circ}\text{C}$)

BEST AVAILABLE COPY

TEM Images of Voids in N-doped, C-doped and N+C-doped Crystals

Temperature Dependence of Cumulative Defect Density In growth held crystals (C doped and N+C doped)

Holding time : 120min

Dependence of Cumulative Void Volume on N Concentration or C Concentration

- Normally grown crystals
- Growth holded crystals (120min)

Reduced Oxygen Concentration Dependence on Heat-Treatment Temperature

BEST AVAILABLE COPY

Summary : Growth Holding Experiments of Carbon-Doped CZ-Si

- Results
 - Region expands with increase of carbon
 - Void formation temperature becomes lower
 - Total void volume is nearly constant regardless of nitrogen concentration
- Mechanisms
 - Induced vacancy concentration becomes lower by Carbon-doping
 - Inconsistent with the result of total void volume

Summary (Nitrogen and Carbon Effects)

Grown-in Defects Formation

- Void
 - Same effect (density → increase, size → decrease)
 - different mechanism
 - N-doping → plate-like or rod-like voids
 - Defect Region
 - N-doping shrinks I-region and C-doping expands I-region
 - Grown-in Oxygen Precipitation
 - N-doping induces stable oxygen nuclei (grown-in precipitates)
 - generate OSF region
- Oxygen Precipitation enhancement
 - High temperature (1000~1100°C): N-doping (stable nuclei)
 - C-doping (nucleation by C)
- Low temperature ($\leq 800^\circ\text{C}$)