第1章 控制系统的输入条件分析

——2023年春季学期

授课教师: 马 杰 (控制与仿真中心)

霍 鑫 (控制与仿真中心)

马克茂 (控制与仿真中心)

陈松林 (控制与仿真中心)

哈尔滨工业大学控制与仿真中心

作业篇

典型指令分析

举个实际系统的例子,说明其指标并进行典型指令分析 例如:寻迹车的指标及典型指令分析

回顾篇

关于误差

几个基本概念

- ▶ 原理性误差与附加性误差 e = G(s)r(s)?
- ➢ 系统误差与随机误差 e = f(x, t)?
- > 瞬态误差与稳态误差 t->∞?
- ▶ 静态误差与动态误差 e=const?

回顾篇

静态误差系数法——增益和型别

记住3种典型信号(包括**并联和串联**组合)作用下不同型别系统的静态误差(静态误差系数),记住适用条件。

决定静态误差的因素

- 系统的增益和型别
- > 信号的形式和幅值

减小静态误差的方法:

- ▶ 提高增益 (会影响稳定性和动态性能)
- ▶ 提高型別 (不是所有系统都可以)
- > 采用滞后环节

局部校正——滞后环节

滞后环节的用法:

- 提高同样的增益,用多个中心频率 (ω_m)不同的小幅值(α)滞后环节比一 个大幅值的更好,但环节要中心频 率要错开,以避免在局部损失过大 的相角从而导致条件稳定;
- 滞后环节要应用于低频,并尽量远离剪切频率,以减小剪切频率处的相角损失;
- 滞后环节由于处于低频,时间常数较大,因此误差收敛的速度很慢,对于要求误差快速收敛的系统并不适用。

滞后环节是一把频域微创整形手术 刀,必须和增益调整一起用

改变结构——顺馈环节

$$G(s) = \frac{1}{(\tau_e s + 1)(\tau_m s + 1)} \Rightarrow G^{-1}(s) \approx \frac{(\tau_e s + 1)(\tau_m s + 1)}{(T_1 s + 1)(T_2 s + 1)}$$

- 顺馈环节也可用来减小原理性误差(静态和动态),但对非线性因素引起的附加性误差无效;
 - 因为它的输入只包含指令信息,而没有反馈信息,是一种开环控制方式;
- 顺馈环节应用时,在输入指令各阶导数不可用的情况下,必须考虑它的物理可实现性;
 - 可以通过附加极点的方式来近似实现;
- 顺馈环节的结构和参数依赖于被控对象的精确模型,因此对被控对象的 结构和参数摄动等不确定性不具有鲁棒性。
 - 因此对于不确定性较大的系统,使用时要慎重。

回顾篇

改变信号——指令或反馈补偿

针性误误采得误有理的差差,后法,是是的性以偿外。

1 指令补偿 2 反馈补偿

减小静态误差的方法总结

- 1 对于给定典型信号输入下静态误差为无穷大的系统,
- > 必须通过提高系统型别来解决;
- 2 对于静差为非零常数的系统,
- O型系统可以直接加积分环节解决;
- |型系统可以提高增益或加比例+积分环节或者滞后环节来解决 或改善;
- 11型系统则一般只能通过提高增益或加入滞后环节来改善;
- 3 对于模型已知,摄动较小的系统,可以采用<mark>顺馈来减小原理性误差</mark>(开环方法);
- 4 对于具有重复性的误差,还可以通过指令和反馈补偿的方法来减小系统误差(开环补偿)。

提升篇

视角

减小误差方法背后的规律

系统

结构不变:型别与参数(整体和局部)

改变结构: 顺馈(模型信息)

信号

指令补偿

反馈补偿

视角:信号与系统,结构与参数,指令与反馈

抬头看路

A1 输入信号和跟踪误差
A2 噪声和它引起的误差

X3 扰动干扰及抑制

1.1.1 输入信号的分析

分析流程

系统工作原理分析

确定典型的输入信号类型

典型输入信号特性分析

输入信号及导数幅值

执行元件、测量元件等 部件选择依据

频谱分析

元部件选型及带宽设计 依据之一

哈尔滨工业大学控制与仿真中心

1.1 输入信号和跟踪误差

1.1.1

输入信号的分析

1.1.2

静态误差系数和动态误差系数

1.1.3

跟踪误差的计算及在控制系统设计 中的应用

学习目标

本节课需要掌握的内容

1掌握几种动态误差系统的方法,求导法、长除法、图解法、低频

模型法; 理解动静态误差系数法的区别, 各自的适用条件;

2 掌握可以求取瞬态误差的**卷积法原理**与具体步骤和方法,理解它与动态误差系数法的区别;

3 通过实例来理解如何使用动态误差系数法来进行控制器设计。

静态误差的局限性

$$A(t) = \arctan\left(\frac{Vt}{X_0}\right)$$

根据终值定理算出的稳态误差是误差信号稳态分量 $e_{ss}(t)$ 在t趋于无穷时的数值,故有时称为终值误差,不能反映 $e_{ss}(t)$ 随时间t的变化规律,具有一定的局限性。

通过静态误差系数求得的稳态误差或 是零,或是有限非零值,或是无穷大,不 能反映误差与时间的关系,而且还限定了 指令形式。

对于任意时间信号输入的系统或者关心动态误 差的系统,如何处理?

1.1 输入信号和跟踪误差

1.1.1

输入信号的分析

1.1.2

静态误差系数和动态误差系数

1.1.3

跟踪误差的计算及在控制系统设计 中的应用

Logo

下列哪些是常用的关于误差的性能指标

- A 阶跃输入下 |e_{ssr}| < E
- B 对于特定频率正弦指令|e_{mag}|<A,|e_{phase}|<H
- $|e_{max}| < E$

误差指标 | 动态误差系数 | 总结 | 不足

▶跟踪误差性能指标形式

ISE
$$J = \int_0^\infty e^2(t)dt$$
 (平方误差积分)

ITSE
$$J = \int_0^\infty t e^2(t) dt$$
 (时间乘平方误差的积分)

IAE
$$J = \int_0^\infty |e(t)| dt$$
 (绝对误差积分)

ITAE
$$J = \int_0^\infty t |e(t)| dt$$
 (时间乘绝对误差的积分)

性能指标的提法也是控制理论研究的一个主要内容。它是评价系统的标准,也是控制系统设计的依据。理想的指标函数不仅更好的刻画(反映)设计者关心的系统性能,还可以方便控制系统的设计。

误差指标 | 动态误差系数 | 总结 | 不足

动态误差系数法——研究输入信号几乎为任意时间函数时的系统稳态误差与时间的关系,因此动态误差系数又称广义误差系数。

考虑系统输入与偏差之间的传递函数

$$\Phi_E(s) = \frac{E(s)}{R(s)} = \frac{1}{1 + G_k}$$

考虑到 $t\to\infty$ 时的情况,也就是 $s\to0$ 的情况。将误差传递函数在s=0的邻域内展开成泰勒级数

$$\Phi_E(s) = \frac{E(s)}{R(s)} = C_0 + C_1 s + \frac{C_2}{2!} s^2 + \dots = \sum_{n=0}^{\infty} \frac{C_n s^n}{n!}$$

误差指标 | 动态误差系数——求导法 | 总结 | 不足

其中:

$$\Phi_E(s) = \frac{E(s)}{R(s)} = C_0 + C_1 s + \frac{C_2}{2!} s^2 + \dots = \sum_{n=0}^{\infty} \frac{C_n s^n}{n!}$$

$$C_0 = \frac{1}{1 + G_k(s)} \bigg|_{s=0}$$

$$C_1 = \frac{d}{ds} \left[\frac{1}{1 + G_k(s)} \right]_{s=0}$$

$$C_0 = \frac{1}{1 + G_k(s)} \bigg|_{s=0} \qquad C_1 = \frac{d}{ds} \left[\frac{1}{1 + G_k(s)} \right] \bigg|_{s=0} \qquad C_2 = \frac{d^2}{ds^2} \left[\frac{1}{1 + G_k(s)} \right] \bigg|_{s=0}$$

$$C_n = \frac{d^n}{ds^n} \left[\frac{1}{1 + G_k(s)} \right]_{s=0}$$

$$C_{n} = \frac{d^{n}}{ds^{n}} \left[\frac{1}{1 + G_{k}(s)} \right]_{s=0}$$

$$G_{k}(s) = \frac{k}{s^{\nu}} \cdot \frac{\prod_{i=1}^{m_{1}} (\tau_{i}s + 1) \prod_{k=1}^{m_{2}} (\tau_{k}s^{2} + 2\zeta_{k}\tau_{k}s + 1)}{\prod_{j=1}^{n_{2}} (T_{j}s + 1) \prod_{l=1}^{n_{2}} (T_{l}s^{2} + 2\zeta_{l}T_{l}s + 1)} = \frac{k}{s^{\nu}} \cdot G_{0}(s)$$

此级数的收敛域是 s=0 的邻域,相当于 $t\to\infty$ 时的情况。求拉 氏反变换,可得 $t \to \infty$ 时误差函数的表达式

$$\lim_{t \to \infty} e(t) = C_0 r(t) + C_1 \frac{dr(t)}{dt} + \frac{C_2}{2!} \frac{d^2 r(t)}{dt^2} + \cdots$$

误差指标 | 动态误差系数——求导法 | 总结 | 不足

$$\lim_{t \to \infty} e(t) = C_0 r(t) + C_1 \frac{dr(t)}{dt} + \frac{C_2}{2!} \frac{d^2 r(t)}{dt^2} + \cdots$$

$$C_n = \frac{d^n}{ds^n} \left[\frac{1}{1 + G_k(s)} \right]_{s=0}$$

可见, $t\to\infty$ 时的误差函数的表达式与输入信号及其各阶导数

有关。仿照静态误差系数的定义,可定义动态误差系数如下:

 C_0 一动态位置误差系数

 C_1 一动态速度误差系数

 C_2 一动态加速度误差系数

用公式求系数比较麻烦,有没有简单的方法?

误差指标 | 动态误差系数——长除法 | 总结 | 不足

将误差传递函数写成 *s* 有理分式形式,利用长除法得到各动态误差系数。

$$G_k(s) = \frac{k}{s^{\nu}} \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + 1}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1}$$

$$\frac{E(s)}{R(s)} = \frac{1}{1 + G_k(s)}$$

$$=\frac{s^{\nu}(a_{n}s^{n}+a_{n-1}s^{n-1}+...+a_{1}s+1)}{s^{\nu}(a_{n}s^{n}+a_{n-1}s^{n-1}+...+a_{1}s+1)+k(b_{m}s^{m}+b_{m-1}s^{m-1}+...+b_{1}s+1)}$$

$$\Phi_E(s) = \frac{E(s)}{R(s)} = C_0 + C_1 s + \frac{C_2}{2!} s^2 + \dots = \sum_{n=0}^{\infty} \frac{C_n s^n}{n!}$$

$$\frac{E(s)}{R(s)} = \frac{s^{\nu}(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1)}{s^{\nu}(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1) + k(b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + 1)}$$

当
$$v=0$$
时
$$\frac{E(s)}{R(s)} = \frac{1 + a_1 s + a_2 s^2 \dots + a_{n-1} s^{n-1} + a_n s^n}{(1+k) + (a_1 + b_1 k) s + (a_2 + b_2 k) s^2 + \dots}$$

$$C_0 = \frac{1}{1+k}$$

$$C_1 = \frac{k(a_1 - b_1)}{(1+k)^2}$$

$$C_0 = \frac{1}{1+k} \qquad C_1 = \frac{k(a_1 - b_1)}{(1+k)^2} \qquad \frac{C_2}{2!} = \frac{(a_2 - b_2)k}{(1+k)^3} + \frac{a_1(b_1 - a_1)k}{(1+k)^3} + \frac{b_1(b_1 - a_1)k^2}{(1+k)^3}$$

$$\Phi_E(s) = \frac{E(s)}{R(s)} = C_0 + C_1 s + \frac{C_2}{2!} s^2 + \dots = \sum_{n=0}^{\infty} \frac{C_n s^n}{n!}$$

$$\frac{E(s)}{R(s)} = \frac{s^{\nu}(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1)}{s^{\nu}(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1) + k(b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + 1)}$$

$$\frac{E(s)}{R(s)} = \frac{s + a_1 s^2 + a_2 s^3 \dots + a_{n-1} s^n + a_n s^{n+1}}{k + (b_1 k + 1)s + (b_2 k + a_1)s^2 + \dots}$$

$$C_0 = 0$$

$$C_1 = \frac{1}{k}$$

$$\frac{C_2}{2!} = \frac{a_1 - b_1}{k} - \frac{1}{k^2}$$

$$\Phi_E(s) = \frac{E(s)}{R(s)} = C_0 + C_1 s + \frac{C_2}{2!} s^2 + \dots = \sum_{n=0}^{\infty} \frac{C_n s^n}{n!}$$

$$\frac{E(s)}{R(s)} = \frac{s^{\nu}(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1)}{s^{\nu}(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1) + k(b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + 1)}$$

当
$$v=2$$
时
$$\frac{E(s)}{R(s)} = \frac{s^2 + a_1 s^3 + + a_2 s^4 \dots + a_{n-1} s^{n+1} + a_n s^{n+2}}{k + b_1 k s + (b_2 k + 1) s^2 + \dots}$$

$$C_0 = 0$$
 $C_1 = 0$ $\frac{C_2}{2!} = \frac{1}{k}$ $\frac{C_3}{3!} = \frac{a_1 - b_1}{k}$

关系

系统类型	静态误差系数			动态误差系数		
	K_{P}	K_V	K_A	C_0	C_1	C ₂ /2!
0型	$\frac{1}{1+k}$	8	8	$\frac{1}{1+k}$	$\frac{k(a_1 - b_1)}{\left(1 + k\right)^2}$	$\frac{(a_2-b_2)k}{(1+k)^3}+\cdots$
I型	0	$\frac{1}{k}$	8	0	$\frac{1}{k}$	$\frac{a_1-b_1}{k}-\frac{1}{k^2}$
II型	0	0	$\frac{1}{k}$	0	0	$\frac{1}{k}$

$$r(t) = A \cdot \mathbf{1}(t) + Bt \cdot \mathbf{1}(t) + C \frac{t^2}{2} \cdot \mathbf{1}(t)$$

$$e_{ssr} = AK_P + BK_V + CK_A$$

$$\lim_{t \to \infty} e(t) = C_0 r(t) + C_1 \frac{dr(t)}{dt} + \frac{C_2}{2!} \frac{d^2 r(t)}{dt^2} + \cdots$$

$$G_1(s) = \frac{k}{s} \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + 1}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + 1}$$

$$C_1 = \frac{1}{k} = \frac{1}{\omega_0}$$

$$\frac{C_2}{2!} \approx \frac{a_1}{k} = \frac{1}{\omega_1 \omega_0} = \left(\frac{1}{\omega_2}\right)^2$$

误差指标 | 动态误差系数——图解法 | 总结 | 不足

推导过程

由bode图可得被控对象传函为
$$G(s) = \frac{k}{s} \frac{1}{a_1 s + 1}$$

已知斜率,已知两端的两个交点 ω_0 和 ω_2 ,求取k和 a_1

由
$$G_{40}(s)$$
可得 $\left|G_{40}(j\omega_2)\right| = \left|\frac{k_4}{(j\omega_2)^2}\right| = 1 \Rightarrow k_4 = \omega_2^2 \Rightarrow G_{40}(s) = \frac{\omega_2^2}{s}$

曲
$$G_{20}(s)$$
可得 $\left|G_{20}(j\omega_0)\right| = \left|\frac{k}{j\omega_0}\right| = 1 \Rightarrow k = \omega_0 \Rightarrow G_{20}(s) = \frac{\omega_0}{s}$

曲
$$G_{20}(s)$$
和 $G_{40}(s)$ 在 ω_1 处相交可得 $|G_{20}(j\omega_1)| = |G_{40}(j\omega_1)| \Rightarrow \left|\frac{k}{j\omega_1}\right| = \left|\frac{k_4}{(j\omega_1)^2}\right| = \left|\frac{\omega_2^2}{(j\omega_1)^2}\right| \Rightarrow k = \frac{\omega_2^2}{\omega_1} \Rightarrow \frac{1}{a_1} = \omega_1 = \frac{\omega_2^2}{\omega_0}$

查表并对误差系数C2简化可得

$$C_0 = 0, C_1 \approx \frac{1}{k}, \frac{C_2}{2!} = \frac{a_1 - b_1}{k} - \frac{1}{k^2} \approx \frac{a_1}{k}$$

带入 k 和 a_1 的值可得

$$C_1 = \frac{1}{k} = \frac{1}{\omega_0} \qquad \frac{C_2}{2!} \approx \frac{a_1}{k} = \frac{1}{\omega_1 \omega_0} = \left(\frac{1}{\omega_2}\right)^2$$

哈尔滨工业大学控制与仿真中心

规律

误差指标 | 动态误差系数——图解法 | 总结 | 不足

总结: 用-20dB延长线求 C_1 用-40dB延长线求 C_2

误差指标 | 动态误差系数——低频模型法 | 总结 | 不足

示例: 假定稳瞄系统输入信号的频谱完全处于系统的低频段,

系统开环传函为

$$\frac{E(s)}{R(s)} = \frac{1}{1 + G_k(s)} \approx \frac{1}{G_k(s)}$$

$$\frac{E(s)}{R(s)} = \frac{\alpha T s^2 + s}{K}$$

3/16/2023

简化

误差指标 | 动态误差系数——低频模型法 | 总结 | 不足

$$\frac{E(s)}{R(s)} = \frac{\alpha T s^2 + s}{K}$$

跟踪误差的低频模型

$$\frac{E(s)}{R(s)} = \frac{1}{K}s + \frac{\alpha T}{K}s^{2}$$

动态误差系数

$$\frac{E(s)}{R(s)} = C_1 s + \frac{C_2}{2!} s^2$$

$$\frac{C_2}{2!} = \frac{a_1 - b_1}{K} - \frac{1}{K^2}$$
$$= \frac{\alpha T - T}{K} - \frac{1}{K^2}$$

误差指标 | 动态误差系数——低频模型法 | 总结 | 不足

输入信号的频谱完全处于系统的低频段 时,动态误差系数就是**低频模型**的各次 系数;

若输入信号频谱延伸至高频段,低频模 型法的精度降低。

$$\frac{E(s)}{R(s)} = \frac{1}{K}s + \frac{\alpha T}{K}s^2 \qquad \frac{E(s)}{R(s)} = C_1 s + \frac{C_2}{2!}s^2$$

$$\frac{E(s)}{R(s)} = C_1 s + \frac{C_2}{2!} s^2$$

误差指标 | 动态误差系数——低频模型法 | 总结 | 不足

- 求导方法更具有普适性,但过程复杂。精度要求高时,需要求取多个系数时或被控对象比较简单时适用;
- 长除法获得的动态误差系数表使用方便,但只能提供有限个系数,精度取决于所使用的系数个数;
- ▶ 图解法简单方便,适用于没有精确数学模型,只有对象 bode图情况,而且精度要求不高的场合;
- 低频模型法使用简单,对输入信号频带有要求,精度有损失。

Logo

为什么静态误差系数只适用于阶跃、斜坡和抛物 线三种指令?

$$\lim_{t \to \infty} e(t) = C_0 r(t) + C_1 \frac{dr(t)}{dt} + \frac{C_2}{2!} \frac{d^2 r(t)}{dt^2} + \cdots$$

正常使用主观题需2.0以上版本雨课堂

误差指标 | 动态误差系数——低频模型法 | 总结 | 不足

$$\lim_{t \to \infty} e(t) = C_0 r(t) + C_1 \frac{dr(t)}{dt} + \frac{C_2}{2!} \frac{d^2 r(t)}{dt^2} + \cdots$$

这里所谓"动态"两字的含义是指这种方法可以完整描述系统 **稳态误** $\hat{e}_{ssr}(t)$ **随时间变化的规律**,而不是指误差信号中的瞬态分量 $e_{ts}(t)$ 随时间变化的情况,**即不包含误差信号中随时间趋于零的分**量。

Logo

能不能把瞬态误差也计算出来?

正常使用主观题需2.0以上版本雨课堂

3/16/2023 35

作答

1.1 输入信号和跟踪误差

1.1.1

输入信号的分析

1.1.2

静态误差系数和动态误差系数

1.1.3

跟踪误差的计算及在控制系统 设计中的应用

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

线性控制系统脉冲响应的拉氏变换等于其传递函数

$$x(t)$$
 $x(t)$ $x(t)$

可以把系统输入看做无数个幅值随u(t)变化的脉冲函数的和,每一个都会产生脉冲响应,线性系统的输出就是这些脉冲响应的线性叠加

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

已知系统的输入与输出之间满足卷积关系

$$x(t) = \int_{-\infty}^{\infty} h(t - \tau)u(\tau)d\tau = h(t) * u(t)$$

式中 $h(t-\tau)$ 是控制系统的单位脉冲响应。

思路:通过系统误差的脉冲响应(即r(t)到e(t)的脉冲响

应) 求解跟踪误差!

联系

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

$$e(t) = \int_{-\infty}^{\infty} h(t-\tau)u(\tau)d\tau = h(t)*u(t)$$

具体计算时,采用数值法,用卷积和代替卷积分

$$e(k) = \Delta t \sum_{n=-\infty}^{+\infty} w(k-n)u(n)$$

式中 w(k) 是单位脉冲响应。w(k) 具有一定的宽度 N, 即 w(k) = 0, k < 0 或 $k \ge N$

$$e(k) = \Delta t \sum_{n=k-N}^{k} w(k-n)u(n)$$

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

$$e(k) = \Delta t \sum_{n=k-N}^{k} w(k-n)u(n)$$

获取脉冲响应函数的3 种方法

- 1.解析(传递函数的反 拉氏变换)
- 2.仿真(根据传递函数 matlab仿真)
- 3.实验(给实际系统注 入脉冲信号获取)

首先求解从r(t)到e(t)的脉冲响应h(t)

根据h(t)的宽度确定w(k)宽度N

计算:
$$e(k) = \Delta t \sum_{n=k-N}^{k} w(k-n)u(n)$$

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

例1: 计算一小功率随动系统的跟踪误差。

设该系统初步设计后,开环传递函数 $G_k(s) = \frac{K}{s} \frac{Ts+1}{\alpha Ts+1}$

式中, K=500, T=0.025, $\alpha T=0.15$

$$A(t) = \arctan\left(\frac{Vt}{X_0}\right) = \arctan(at)$$

$$\frac{dA}{dt} = a\cos^2 A$$

$$\frac{d^2A}{dt^2} = -a^2\sin 2A \cdot \cos^2 A$$

转化

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

例1: 计算一小功率随动系统的跟踪误差。

首先求解从 $\dot{r}(t)$ 到e(t)的脉冲响应。

 $G_k(s) = \frac{K}{s} \frac{Ts+1}{\alpha Ts+1}$

$$\frac{E(s)}{sR(s)} = \frac{1}{s} \frac{1}{1 + G_k}$$

哈尔滨工业大学控制与仿真中心

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

例1: 计算一小功率随动系统的跟踪误差(卷积法)。

从 $\dot{r}(t)$ 到e(t)的脉冲响应 (利用MATLAB中的 Isim计算)

当 $t \ge 0.16s$, 脉冲响应为零。

若
$$\Delta t = 0.01s$$
 , $N = 16$, 即

$$w(k) = \begin{cases} 0 & k < 0 \\ h(k \cdot \Delta t) & 0 \le k < N \\ 0 & k \ge N \end{cases}$$

$$e(k) = \Delta t \sum_{n=k-N}^{k} w(k-n)r(n)$$

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

计算 $\dot{r}(t)$ 和 w(k) 的卷积, N=16。

卷积法可以计算包含瞬态误差在内的跟踪误差, 该图曲线包含速度阶跃作用下的瞬态误差。

跟踪误差中的稳态部分

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

跟踪误差计算—动态误差系数法

例2: 计算一小功率随动系统的跟踪误差(查表法)。

设该系统初步设计后,开环传递函数

$$G_k(s) = \frac{K}{s} \frac{Ts+1}{\alpha Ts+1}$$

式中,K=500,T=0.025, $\alpha T=0.15$

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

跟踪误差计算—动态误差系数法

该系统跟踪直线飞行目标时,输入信号分析结果为:

$$A(t) = \arctan\left(\frac{Vt}{X_0}\right) = \arctan\left(at\right)$$

$$\frac{dA}{dt} = a\cos^2 A$$

$$\frac{d^2A}{dt^2} = -a^2\sin 2A \cdot \cos^2 A$$

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

跟踪误差计算—动态误差系数法

动态误差及动态误差系数为:

$$G_k(s) = \frac{K}{s} \frac{Ts+1}{\alpha Ts+1}$$

$$\lim_{t \to \infty} e(t) = C_0 r(t) + C_1 \frac{dr(t)}{dt} + \frac{C_2}{2!} \frac{d^2 r(t)}{dt^2} + \cdots$$

查表或求导

I型系统

$$C_0 = 0$$

$$C_1 = \frac{1}{K} = 0.002$$

$$\frac{C_2}{2!} = \frac{a_1 - b_1}{K} - \frac{1}{K^2} = 2.46 \times 10^{-4}$$

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

跟踪误差计算—动态误差系数法

动态误差计算结果:

$$e(t) = C_1 \frac{dA}{dt} + \frac{C_2}{2!} \frac{d^2 A}{dt^2}$$

$$= C_1 \times a \cos^2 A - \frac{C_2}{2} a^2 \sin 2A \cos^2 A$$

如果指令没有解析表达式,动态误差系数法如何应用?

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

例2: 计算一小功率随动系统的跟踪误差(低频模型法)。

设该系统初步设计后,开环传递函数式中,K=500, T=0.025, $\alpha T=0.15$

$$G_{k}(s) = \frac{K}{s} \frac{Ts+1}{\alpha Ts+1}$$

$$\frac{E(s)}{R(s)} = \frac{1}{K}s + \frac{\alpha T}{K}s^2 \frac{E(s)}{R(s)} = C_1 s + \frac{C_2}{2!}s^2$$

$$C_1 = \frac{1}{K} = \frac{1}{500} = 0.002$$

$$\frac{C_2}{2!} = \frac{\alpha T}{K} = \frac{0.15}{500} = 3 \times 10^{-4}$$

简化

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

跟踪误差计算—用于控制器设计

例3: 小功率随动系统。

$$G_k(s) = \frac{K}{s} \frac{Ts+1}{\alpha Ts+1}$$

(1) 若方位角最大角速度为a=0.5rad/s,跟踪误差不大于

1mrad,确定系统增益。

跟踪误差的低频模型 $\frac{E(s)}{sR(s)} = \frac{1}{K} + \frac{\alpha T}{K}s$, 输入信号频谱在第一

个转折频率之前,故可将误差模型进一步简化(忽略C2)为

$$\frac{E(s)}{sR(s)} = \frac{1}{K} \implies e(t) = \frac{1}{K}\dot{r}(t) = \frac{0.5}{K} < 0.001 \implies K \ge 500$$

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

跟踪误差计算—用于控制设计

例3: 小功率随动系统。

(2)若方位角最大角速度为 a=0.244rad/s, 最大角加速度为

0.039rad/s², 跟踪误差不大于3′, 确定系统增益。

假设采用II型系统,跟踪误差的低频模型简化为

$$e(t) = \frac{C_2}{2!}\ddot{r}(t) = \frac{1}{K_a}\ddot{r}(t)$$
 $K_a > \frac{0.039}{3/60/57.3} = 44.7$

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

低频模型法的适用条件

由方位角频谱特性和开环系统bode图比较可知,输入信号的频谱完全处于系统的低频段,因此可以用低频数学模型 法求取动态误差系数,进而计算动态误差。

3/16/2023

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

卷积法必须要有脉冲响应函数(必须通过**解析、仿真**或者 **实验**的方法获得),还要进行求和计算,过程比较繁琐。 优点是可以计算包含**瞬态误差**在内的整个时段的误差;

动态误差系数法使用较为方便,但精度较低。应用时必须给定指令信号的各阶导数,结果中只包含稳态误差;

结论

卷积法基本原理 | 计算方法及示例 | 跟踪误差计算 | 总结

- 1、根据系统误差要求确定下来的系统增益或型别 是硬性要求,在系统设计中不允许改动;
- 2、系统设计时第一个转折频率要超出输入信号的 频谱宽度;

第四周 课后作业

8-1 必选作业(多个滞后环节及复合控制的仿真)

给定系统 G(s) = 50/(0.2s+1)(0.02s+1)

- (1) 采用比例控制器 $C(s)=K_1$ (自行设计 K_1), 观察单位阶跃信号下静态误差;
- (2) 在控制器K₁的基础上, 在0.1Hz, 0.3Hz和1Hz处分别加入三个2倍的滞后校正环节, 将低频增益提升8倍, 观察阶跃下的静态误差, 与(1)的对比, 看看误差是否减小了1/8.

要求:参考下面的图,要画出每种情况下校正前后系统的Bode图,和阶跃响应

曲线

(3) 在(1)的基础上,采用复合控制,加入近似顺馈环节,观察系统的输出 误差变化和阶跃响应曲线变化,分析观察到的现象。

第四周 课后作业

2 可选作业

- 8.1 编程题: 自行规划S曲线 (速度和加速信号串联) , 作为指令输入前面搭建的 闭环控制系统, 观察系统的稳态误差;
- 8.2 思考题: 动态和静态误差要求时间趋于无穷才成立, 这样的结论工程上能用吗?
- 8.3 总结题: 总结动静态误差系数相关知识, 可以画思维导图。
- 8.4 仿真题: 给定0.2Hz信号正弦信号,将其分别输入开环系统 $G_1(s) = 50/(0.2s+1)(0.02s+1)$ 和 $G_2(s) = 50/(0.2s+1)$,画出输出信号的误差,你能得到什么结论;
- 8.5 思考题:课件中的卷积法例子,为什么求取为什么用速度指令的脉冲响应,而不直接用位置的脉冲响应来计算跟踪误差;
- 8.6 仿真题:利用仿真复现课件中各种动态误差的计算实例(卷积法、动态误差法),绘制曲线,比较各种方法计算结果的差异;
- 8.7 总结题: 总结整理各种减小误差方法的优缺点和适用条件;
- 8.8 思考题:相比于动态误差系数法,卷积法在指导控制设计上有什么不足。

实验C作品展示

3/16/2023

Thank You!

3/16/2023