

S05P0304

1/34

FIG.1

BEST AVAILABLE COPY

FIG. 2

FIG.3A**FIG.3B****FIG.3C****FIG.3D**

FIG.4

S05P0304

FIG.5A

FIG.5B

FIG.5C

FIG. 6A
FIG. 6B

FIG. 7

FIG.8

9/34

FIG.9

FIG. 10

FIG. 11

FIG.12A

FIG.12B

FIG.12C

4cm × 30cm × 10cm/21cm

FIG. 13A

FIG. 13B

FIG. 13C

3cm × 33cm × 12cm/32cm

FIG. 14A

FIG. 14B
FIG. 14C

FIG. 14D

FIG. 1 5A

FIG. 17

FIG. 18

FIG.19

FIG.20

FIG. 21 B

FIG.22

Input: pts : vector of points, n : number of points, α, d, σ : parameters and std-dev of fitted line.

Output : true if curve contains a zig-zag- shape, false otherwise.

Sequence :

```

if  $\sigma > thresh\sigma$  then
     $val0 = pts[0].x * \cos \alpha + pts[0].y * \sin \alpha + d$ 
     $count = 1$ 
    for  $i = 1$  to  $(n-1)$  do
         $val = pts[i].x * \cos \alpha + pts[i].y * \sin \alpha + d$ 
        if  $(val * val0 <= 0)$  then
             $val0 = val$ 
             $count = 1$ 
        else
             $count = count + 1$ 
        if  $(count >= min-points-for-zig-zag-shape)$  then
            return true
        endif
    endif
endfor
endif
return false

```


FIG. 24

S05P0304

25/34

FIG. 25

FIG.26

FIG.27B

FIG.27A

Algorithm *FindSeedRegion*

Input: $\text{lines}[i]$: vector of lines for each image row (or column) i ,

n : number of image rows (or columns)

Output : set of lines (seed region) or empty set (no seed found).

Sequence :

```

for  $i = 0$  to  $(n-3)$  do
    for  $l_1$  in  $\text{lines}[i]$  do
        for  $l_2$  in  $\text{lines}[i+1]$  do
            for  $l_3$  in  $\text{lines}[i+2]$  do
                if  $\text{overlap}(l_1, l_2)$  and  $\text{overlap}(l_2, l_3)$  then
                     $(n, d) = \text{fitPlane}(l_1, l_2, l_3)$ 
                    if  $\text{rms}(l_1, l_2, l_3) < \text{thresh1}_{\text{rms}}$  then
                         $\text{seed} = \{l_1, l_2, l_3\}$ 
                         $\text{remove}(l_1, l_2, l_3)$ 
                        return  $\text{seed}$ 
                    endif
                endif
            endfor
        endfor
    endfor
endfor
return {}

```

Algorithm *RegionGrowing*

Input: *region* : set of lines as seed region,

lines[i] : vector of lines for esch image row (or column) *i*,

n: number of image rows (or columns)

Sequence :

A = 0, *b* = 0

for *I* in *region* do (*A*,*b*) = *add(A,b,I)* endfor

(*n,d*) = *solve(A,b)*

open = *region*

while *not empty(open)* do

I₁ = *select(open)*, *open* = *open* - {*I₁*}

for *i* in *neighbor(index(I₁))* do

for *I₂* in *lines[i]* do

if *overlap(I₁,I₂)* and *rms(I₂) < thresh2_{rms}* then

region = *region* + {*I₂*},

(*A*,*b*) = *add(A,b,I₂)*, (*n,d*) = *solve(A,b)*

open = *open* + {*I₂*},

remove(I₂)

endif

endfor

endfor

endfor

plane = {*n,d,A,b,region*}

planes = *planes* + {*plane*}

30/34

FIG. 30A

FIG. 30C

FIG. 30B

FIG.31A

No	max_d	enable zig-zag	correct extraction (horizontal)	correct extraction (vertical)
1	30	no	0 / 10	0 / 10
2	25	no	0 / 10	0 / 10
3	20	no	10 / 10	0 / 10
4	15	no	10 / 10	3 / 10
5	10	no	10 / 10	10 / 10
6	30	yes	10 / 10	10 / 10

FIG.31B

FIG.31C

FIG.31D

FIG. 32B

FIG. 32C

FIG. 32A

FIG.3 3A**FIG.3 3B****FIG.3 3C****FIG.3 3D**

34/34

FIG.34A**FIG.34B****FIG.34C****FIG.34D**

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.