Safe and Effective Fine-grained TCP Retransmissions for Datacenter Communication

Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat David Andersen, Greg Ganger, Garth Gibson, Brian Mueller*

Carnegie Mellon University, *Panasas Inc.

Datacenter TCP Request-Response

Applications Sensitive to 200ms TCP Timeouts

- "Drive-bys" affecting single-flow request/response
- Barrier-Sync workloads
 - Parallel cluster filesystems (Incast workloads)
 - Massive multi-server queries (e.g., previous talk)
 - Latency-sensitive, customer-facing

Main Takeaways

- Problem: 200ms TCP timeouts can cripple datacenter apps
- Solution: Enable microsecond retransmissions
- Can improve datacenter app throughput/latency
- Safe in the wide-area

The Datacenter Environment

TCP: Loss Recovery Comparison

Data-driven recovery is

Timeout driven recovery is

painfully slow (ms)

I TCP Timeout lasts 1000 RTTs!

6

RTO Estimation and Minimum Bound

- Jacobson's TCP RTO Estimator
 - RTO = SRTT + 4*RTTVAR

- Minimum RTO bound = 200ms
 - Actual RTO Timer = max(200ms, RTO)

The Incast Workload

Client now sends next batch of requests

Storage Servers

Incast Workload Overfills Buffers

Client Link Utilization

Instantaneous Throughput Over Time

200ms Timeouts Cause Throughput Collapse

Cluster
Environment
IGbps Ethernet
100us Delay
200ms RTO
S50 Switch
IMB Block Size

- [Nagle04] called this Incast; provided app-level workaround
 - Cause of throughput collapse: 200ms TCP Timeouts
- Prior work: Other TCP variants did not prevent TCP timeouts. [Phanishayee:FAST2008]

Latency-sensitive Apps

- Request for 4MB of data sharded across 16 servers (256KB each)
- How long does it take for all of the 4MB of data to return?

Timeouts Increase Latency

(256KB from 16 servers)

4MB Block Transfer Time Distribution with No RTO bound

Outline

- Problem Description, Examples
- Solution: Microsecond TCP Retransmissions
- Is it safe?

Eliminate minRTO

- ✓ Simple one-line change in Linux
- Does not change RTT measurement granularity
- Still uses low-resolution, Ims kernel timers

Eliminating the RTO bound helps

Millisecond retransmissions not enough

Requirements for Microsecond RTO

- TCP must track RTT in microseconds
 - Modify internal data-structures
 - Timestamp option (backwards compatible)
- Efficient high-resolution kernel timers
 - Use HPET for efficient interrupt signaling

Microsecond timeouts are necessary

Improvement to Latency

4MB Block Transfer Time Distribution with No RTO bound

Outline

- Problem Description, Examples
- Solution: Microsecond TCP Retransmissions
- Is it safe?
 - Interaction with Delayed ACK
 - Performance in the wide-area

μs RTO and Delayed ACK

RTO on sender triggers before delayed ACK on receiver

Impact of Delayed ACKs

Is it safe for the wide area?

- Potential Concerns:
 - Stability: Could we cause congestion collapse?
 - Performance: Do we often timeout unnecessarily?
- Stability preserved
 - Timeouts retain exponential backoff
 - Spurious timeouts slow rate of transfer
- Performance: spurious timeouts vs. timely response
 - No optimal RTO estimator [Allman99]

Spurious timeouts less harmful

Today's TCP has mechanisms to:

- I. Detect spurious timeouts
 - Using TCP timestamp option
- 2. Recover from spurious timeouts
 - Forward RTO (F-RTO)

Both implemented widely!

Wide-area Performance Without minRTO

Do microsecond timeouts harm wide-area throughput?

Standard TCP

Real BitTorrent Clients

Wide-area Results

• Few total timeouts (spurious or legitimate)

Conclusion

- Microsecond RTOs can help datacenter application response time and throughput
- Safe for wide-area communication as well
- Linux patch available:
 - http://www.cs.cmu.edu/~vrv/incast/

Reasons for Relief in 2009

No ACK ambiguity with TCP timestamp option

 Forward RTO Recovery (RFC4138) more widely deployed (standard in Linux)

The Need for Microsecond Timeouts

- Future datacenters: More bandwidth, less delay, more servers
- Retransmissions should not be bounded

Control Parameter

