

CTA PRACTICAL 8 20MCED08

Practical 8

Implement Matrix Chain Multiplication using dynamic programming concepts.

Introduction

- Given a sequence of matrices, find the most efficient way to multiply these matrices together.
- The problem is not actually to perform the multiplications, but merely to decide in which order to perform the multiplications.
- We have many options to multiply a chain of matrices because matrix multiplication is associative.
- In other words, no matter how we parenthesize the product, the result will be the same.
- For example, if we had four matrices A, B, C, and D, we would have:
- (ABC)D = (AB)(CD) = A(BCD) =

Example min $\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\}$					
Compute A A A		1	2	3	
 Compute A₁ · A₂ · A₃ A₁: 10 x 100 (p₀ x p₁) 	3	2 7500	2 25000	0	
• A_1 : 10 x 100 (p_0 x p_1) • A_2 : 100 x 5 (p_1 x p_2)	2	1 5000	0		
• A_3 : 5 x 50 $(p_2 x p_3)$	1	0			
m[i, i] = 0 for $i = 1, 2, 3$					
$m[1, 2] = m[1, 1] + m[2, 2] + p_0p_1p_2$ (A_1A_2)					
= 0 + 0 + 10 *100* 5 = 5,000					
$m[2, 3] = m[2, 2] + m[3, 3] + p_1p_2p_3$			(A_2A_3)		
= 0 + 0 + 100 * 5 * 50 = 25,000					
m[1, 3] = min \int m[1, 1] + m[2, 3] + p ₀ p ₁ p ₃ = 75,000 (A ₁ (A ₂ A ₃)) m[1, 2] + m[3, 3] + p ₀ p ₂ p ₃ = 7,500 ((A ₁ A ₂)A ₃)					

Python Program for Matrix Chain Multiplication

```
import sys
def printParenthesis(m, j, i ):
    # Displaying the parenthesis.
    if j == i:
        print(chr(65 + j), end = "")
        return;
        print("(", end = "")
        # Passing (m, k, i) instead of (s, i, k)
        printParenthesis(m, m[j][i] - 1, i)
        printParenthesis(m, j, m[j][i])
        print (")", end = "" )
def MatrixChainOrder(arr, n):
    p = [None for i in range (0,n+1)]
    p[0] = arr[0][0]
    p[n] = arr[n-1][1]
    for i in range(1,len(arr)):
        p[i] = arr[i][0]
    m = [[0 for x in range(n)] for x in range(n)]
    s = [[None for x in range(n)] for x in range(n)]
    for i in range(0, n):
        m[i][i] = 0
    for i in range(0,n-1):
        m[i][i+1] = (p[i]*p[i+1]*p[i+2])
    for L in range(2, n+1):
        for i in range(0, n-L + 1):
            j = i + L-1
            m[i][j] = sys.maxsize
            for k in range(i, j):
                q = m[i][k] + m[k + 1][j] + p[i]*p[k+1]*p[j+1]
                if q < m[i][j]:</pre>
                    m[i][j] = q
                    m[j][i] = k + 1
    return m
arr = [[10,100],[100,5],[5,50]]
\# arr = [[4,10],[10,3],[3,12],[12,20],[20,7]]
```

Output:

```
Minimum number of multiplications is 7500 ((AB)C)
```

Observation:

The time complexity of this tabular method is o(n2).