School of Electrical Engineering and Computer Science

CAUSAL LEARNING USING INTERVENTION AND EXPERIMENTS

Meghamala Sinha, Stephen Ramsey, Prasad Tadepalli School of EECS, Oregon State University

Introduction & Problem Statement

Observational data are cheap and easily avalable but can be only used to identify among Markov Equivalent structures. For associated events A & B, there is one of these explanations:

A caused B

A and B has a common cause

■ Why do we need to intervene?

- All the above 3 cases are Markov Equivalent, and encode the same conditional independence statement: $x \perp z \mid Y$
- Intervention is needed to determine the causal structure
- Intervening on X will differentiate between direction: X->Y or Y<-X

Motivation

Figure 1: Network inferred from (a) Sachs et. al (b) 2 observational experiments (c) Pooling data from a observational and a interventional experiment d) `Learn and Vote" using same experiments as (c).

Effects of intervening

- Every Intervention has a specific target set
- Can interventions be "perfect"?
- Is the "graph-surgery" assumption feasible in real world?
- Are targets of intervention "deterministic"?
- Can we combine data from various such "mutilated" structures for network prediction?

Causal Network Learning

☐ Assumptions

- Observation of Y: P(X, Y = 1,Z) = P(Z|Y=1) * P(Y=1|X)
- Intervention on Y: P(X, do(Y=1),Z) = P(Z|Y=1) * P(X)
- Satisfies Causal Markov assumption
- Satisfies faithfulness assumption
- Assumes Acyclicity
- Absence of any Latent Variable
- Equal Sample size in each experiment

Methodology and Approach

□ Popular Algorithms □ Datasets

- GDS
- GIES
- Simy
- Sachs et at

- Flow Cytometry
- Lizard
- Asia
- **Alarm**
- **GmInt** Insurance

Our Approach

- Data originated after various kinds of "unknown" conditions resulted after each chemical reagent. The underlying network are no longer "structure equivalent"
- Sachs et al used the (Cooper & Yoo, 1999) score in their work. Implementing their method gave us an extra 8 false positive arcs along with the 17 true predictions
- We analyzed each experiments separately and learned a network by averaging over the results with a threshold of 0.5. This gave us significant reduction of False positives.

Learned Causal Network Results

Figure 2: Network Inferred from:(a) PC, (b) GDS, (c) GIES, (d) ICP, (e) simy, (f) Re-implemented Sachs method (g) 'Learn and Vote'

Comparitive Benchmark

Flow Cytometry	Precision	PC	GDS		Causal Discovery Algorithms						
Flow Cytometry	Precision			GIES	ICP	simy	Sachs et al.	Learn and Vote			
		0.5714	0.4186	0.377	1	0.4222	0.68	0.89			
	Recall	0.4	0.9	0.85	0.45	0.95	0.85	0.89			
	F1 Score	0.47	0.572	0.522	0.62	0.584	0.7558	0.89			
Lizards	Precision	1	1	1	0	1	1	1			
	Recall	1	1	1	0	1	0.5	0.5			
	F1 Score	1	1	1	0	1	0.667	0.667			
Asia_mut1	Precision	1	0.625	0.625	1	0.31578	0.77	1			
	Recall	0.75	0.625	0.625	0.5	0.75	0.875	0.75			
	F1 Score	0.857	0.625	0.625	0.666	0.4444	0.8237	0.857			
Asia_mut2	Precision	1	0.85714	0.85714	1	0.3043	0.666	1			
	Recall	0.75	0.75	0.75	0.5	0.875	0.75	0.75			
	F1 Score	0.857	0.8	0.8	0.666	0.4928	0.7058	0.857			
gmInt	Precision	0.75	0.889	0.889	1	0.889	0.8571	1			
	Recall	0.75	1	1	0.375	1	0.75	0.75			
	F1 Score	0.75	0.94	0.94	0.5454	0.94	0.8	0.857			
Alarm_mut1	Precision	0.666	0.25	0.26	0.7	n/a	0.625	0.564			
	Recall	0.434	0.217	0.26	0.26	n/a	0.4464	0.4			
	F1 Score	0.526	0.2325	0.26	0.38	n/a	0.52	0.468			
Alarm_mut2	Precision	0.666	0.411	0.5128	0.6	n/a	0.725	0.769			
	Recall	0.434	0.456	0.434	0.21	n/a	0.63	0.642			
	F1 Score	0.526	0.432	0.47	0.3115	n/a	0.675	0.7			
Insurance_mut1	Precision	0.7143	0.36	0.3617	0.7	n/a	0.857	0.8			
	Recall	0.288	0.3461	0.327	0.25	n/a	0.577	0.538			
	F1 Score	0.4107	0.352	0.3435	0.368	n/a	0.689	0.643			
Insurance_mut2	Precision	0.7143	0.355	0.366	0.64	n/a	0.676	0.6857			
	Recall	0.288	0.423	0.423	0.21	n/a	0.4423	0.4615			

Figure 4: Sample size vs Accuracy plot for comparing results over various datasets

(c) Asia_mut2

Conclusion

(a) Flow cytometry

 We provide a benchmark for Causal learning algorithms in case of mix of observation and experimental dataset.

(b) Asia_mut1

- We presented a novel way to combine data generated from various conditions (observational or interventional)
- Our results show that while we can combine data from various experiments to learn a Causal Network, such methods can also predict a large number of False Positives.
- Our approach helps reduce the detection of False Positives.

☐ <u>Future Work</u>

- What if targets of intervention are unknown?
- Unequal size of data per experiment
- Categorizing which interventions are more informative
- Presence of latent variable
- Presence of cycles

