Trabalho III

Bruno Iochins Grisci

Universidade Federal do Rio Grande do Sul bigrisci@inf.ufrgs.br

6 de julho de 2017

Sumário

- Prelúdio
- 2 Criação da proteína
- 3 Implementação
- 4 Resultados

Antes de começar...

Correção da formatação do arquivo PDB do trabalho II.

Otimização

Particle Swarm Optimization

- Minimização
- Função de avaliação: RMSD_{all}
- Dimensões: $2 \times \parallel AA \parallel -2$
- Limites: $[-\pi, \pi]$
- População: 200
- Iterações: 300

Minimização do RMSD

Tempo de execução: 19 minutos

Resultados

• $RMSD_{C_{\alpha}}$: 0.40Å

• RMSD_{backbone}: 0.83Å

• *RMSD_{all}* : 2.38Å

Ângulos (1PLX × 1PLX-F)

AA	PHI	PSI	OMEGA
TYR	360.00×360.00	176.63 x -115.80	360.00 x 360.00
GLY	148.48 x 121.15	-21.96×10.17	179.86 x 179.98
GLY	114.02×78.37	29.89 x 35.39	179.81 x -179.99
PHE	-88.00 x -81.96	-38.16 x -93.28	179.75 x 179.97
MFT	-74 24 × -9 66	360 00 × 360 00	-179 95 x 180 00

Ferramentas

- Python;
- Numpy;
- Orientado a Objetos;
- Trabalhos I e II.

1L2Y

Sequência: NLYIQWLKDGGPSSGRPPPS;

• 1L2Y x 1L2Y-P:

• RMSD_C : 17.89Å

• RMSD_{backbone}: 18.08Å

RMSD_{all}: 19.13Å

Energia Potencial (AMBER99)

```
\begin{split} E_{total} &= \\ \sum_{bonds} K_b (b - b_0)^2 + \\ \sum_{UB} K_{UB} (S - S_0)^2 + \\ \sum_{angle} K_{\theta} (\theta - \theta_0)^2 + \\ \sum_{dihedrals} K_{\chi} (1 + \cos(\eta - \delta)) + \\ \sum_{impropers} K_{imp} (\varphi - \varphi_0)^2 + \\ \sum_{nonbond} \varepsilon_{ij} \left[ \left( \frac{R_{minij}}{r_{ij}} \right)^{12} - 2 \left( \frac{R_{minij}}{r_{ij}} \right)^6 \right] + \varepsilon_1 \frac{q_i q_j}{r_{ij}} \end{split}
```

Termos não ligados

$$\begin{split} \varepsilon_{ij} &= \sqrt{\varepsilon_{i}\varepsilon_{j}} \\ R_{mini} &= \sigma_{i} \cdot 2^{1/6} \\ r_{ij} &= \parallel P_{i} - P_{j} \parallel / 10 (nm) \\ R_{minij} &= \frac{R_{mini} + R_{minj}}{2} \\ U_{ij}^{LJ} &= \sqrt{\varepsilon_{i}\varepsilon_{j}} \left[\left(\frac{R_{mini} + R_{minj}}{2r_{ij}} \right)^{12} - 2 \left(\frac{R_{mini} + R_{minj}}{2r_{ij}} \right)^{6} \right] \\ \varepsilon_{1} &= 9 \cdot 10^{9} \cdot \frac{(1.6022 \cdot 10^{-19})^{2}}{1 \cdot 10^{-9}} \cdot \frac{6.022140857 \cdot 10^{23}}{1000} (kJ/mol) \\ E_{nonbond} &= \sum_{nonbond} \varepsilon_{ij} \left[\left(\frac{R_{minij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{minij}}{r_{ij}} \right)^{6} \right] + \varepsilon_{1} \frac{q_{i}q_{j}}{r_{ij}} \end{split}$$

Otimização

Particle Swarm Optimization

- Minimização;
- Função de avaliação: *E*_{nonbond} (AMBER99);
- Dimensões: 2× || AA || −2;
- Limites: $[-\pi, \pi]$;
- População: 60;
- Iterações: 200

Energia X RMSD

Tempo:

1L2Y X 1L2Y-F

- $E_{nonbond}^{1L2Y}$: kJ/mol
- $E_{nonbond}^{1L2Y-F}$: kJ/mol

- $RMSD_{C_{\alpha}}$: Å
- RMSD_{backbone} : Å
- RMSD_{all} : Å

Fim