1 Modelo Monetario: Análisis Dinámico

1.1 Variables de Estado

Las siguientes variables aparecen con rezago:

- y(t-1)
- g(t-1)
- a(t-1)
- $c^*(t-1)$
- $\xi_{\pi}(t-1)$
- $\xi_r(t-1)$
- $\xi_g(t-1)$

Variables forward-looking:

- y(t+1)
- $\pi(t+1)$
- b(t+1)
- g(t+1)

Variables estáticas:

- r
- r^{nat}

1.2 Residuos de las Ecuaciones Estáticas

Ecuación	Descripción	Residuo
1	New Phillips Curve	0
2	Dynamic IS Curve	0
3	Government Consolidated Budget Constraint	0
4	Modified Monetary-Led Policy Rule	0.26505
5	Optimal Fiscal Policy Rule	-1.0481
6	Natural Interest Rate	0
7	Technology AR(1)	0
8	International Consumption AR(1)	0
9	Domestic Price AR(1)	0
10	Interest Rate AR(1)	0
11	Public Spending AR(1)	0

Table 1: Residuos de las Ecuaciones Estáticas

1.3 Valores en Estado Estacionario

Variable	Valor
\overline{y}	0.522375
π	0.110207
b	-93.0674
r	0.110207
g	0.506537
r^{nat}	0
a	0
c^*	0
ξ_{π}	0
ξ_r	0
$\dot{\xi}_g$	0

Table 2: Resultados del Estado Estacionario

1.4 Autovalores

Módulo	Real	Imaginario
1.344e-17	1.344e-17	0
0.3563	0.3563	0
0.3869	0.3869	0
0.5	0.5	0
0.5	0.5	0
0.5	0.5	0
0.5	0.5	0
0.7	0.7	0
1.01	1.01	0
2.634	2.634	0
3.51	3.51	0

Table 3: Autovalores del Sistema

1.5 Condición de Equilibrio

 ${\rm Hay}~3$ autovalores mayores que 1 en módulo para 4 variables forward-looking. La condición de rango NO se verifica.

Table 4: Parameter Values

	Par	rameter Value Description
θ	0.500	Calvo Probability
σ	1.000	Inverse EIS
α	0.430	Openness Degree
ϕ	1.000	Inverse Labor Supply Elasticity
β	0.990	Discount Factor
$ ho_{lpha}$	0.500	Productivity Shock Autocorrelation
$ ho_{c^*}$	0.500	Int. Consumption Shock Autocorrelation
$ ho_{\pi}$	0.500	Domestic Price Shock Autocorrelation
$ ho_r$	0.700	Interest Rate Shock Autocorrelation
$ ho_g$	0.500	Public Spending Shock Autocorrelation
γ_{π}	1.250	Monetary Authority Inflation Gap Response
ζ_{π}	0.250	Fiscal Authority Inflation Gap Response
γ_y	0.250	Monetary Authority Output Gap Response
ζ_y	1.250	Fiscal Authority Output Gap Response
γ_r	0.700	Interest Rate Smoothing
ζ_g	0.250	Government Spending Response
η	0.690	Domestic-Imported Goods Substitution Elasticity
v	1.000	Cross-Country Goods Substitution Elasticity
au	0.033	Effective Income Tax Rate
$\frac{B}{V}$	0.530	Steady State Debt-GDP Ratio
$egin{array}{c} au & rac{ar{B}}{Y} \ rac{ar{C}}{Y} \ r^* \end{array}$	0.700	Steady State Consumption-GDP Ratio
r^*	0.000	Steady State Interest Rate

$$omega = \sigma \upsilon + (1 - \alpha) (\sigma \eta - 1)$$

$$sigma_alpha = \frac{\sigma}{1 + \alpha \ (omega - 1)}$$

$$lambda = \frac{(1 - \beta \theta) (1 - \theta)}{\theta}$$

 $kappa_upsilon = lambda (sigma_alpha + \phi)$

$$OMICRON_R_LAG1 = \frac{1 + \beta + sigma_alpha \ kappa_upsilon}{\beta}$$

$$OMICRON_R_LAG2 = \frac{(-1)}{\beta}$$

$$OMICRON_PI = \frac{kappa_upsilon \gamma_{\pi}}{sigma_alpha \gamma_{y}}$$

$$OMICRON_Y = \frac{\gamma_y}{sigma_alpha\,\gamma_r}$$

$$OMICRON_R_TAR = \frac{(-\left(sigma_alpha\,kappa_upsilon\right))}{\beta}$$

 $D = kappa_upsilon + sigma_alpha + \beta sigma_alpha$

$$PSI_G_PLUS = \frac{\beta \, sigma_alpha}{D}$$

$$PSI_G_LAG = \frac{sigma_alpha}{D}$$

$$PSI_Y_PLUS = \frac{\beta \, sigma_alpha \, \zeta_y}{D \, \zeta_a}$$

$$PSI_Y_0 = \frac{sigma_alpha \, \zeta_y \, (2+\beta)}{D \, \zeta_q}$$

$$PSI_Y_LAG = \frac{sigma_alpha \, \zeta_y}{D \, \zeta_g}$$

$$PSI_PI_PLUS = \frac{\beta \, sigma_alpha \, \zeta_{\pi} \, \left(sigma_alpha - kappa_upsilon \right)}{D \, \zeta_{g}}$$

$$PSI_PI_0 = \frac{(sigma_alpha - kappa_upsilon) \ sigma_alpha \ \zeta_{\pi}}{D \ \zeta_{g}}$$

CONS

$$=\frac{\alpha \left(sigma_alpha\,\frac{\bar{C}}{\bar{Y}}-sigma_alpha-kappa_upsilon\,\frac{\bar{C}}{\bar{Y}}+sigma_alpha\,\tau-\frac{\bar{B}}{\bar{Y}}\,sigma_alpha^2+kappa_upsilon\,\frac{\bar{C}}{\bar{Y}}\right)}{D\,\zeta_g\,\beta\,\frac{\bar{B}}{\bar{Y}}}$$

$$V = sigma_alpha \gamma_y + sigma_alpha \beta \gamma_y + kappa_upsilon \gamma_y + \beta \gamma_r sigma_alpha^3 + \gamma_r sigma_alpha^3 + kappa_upsilon \gamma_r sigma_alpha^2$$

$$UPSILON_G_PLUS = \frac{sigma_alpha\,\gamma_y\,\left(sigma_alpha + kappa_upsilon\right)}{V}$$

$$UPSILON_G_LAG = \frac{\gamma_y \, sigma_alpha^2}{V}$$

UPSILON Y PLUS

$$=\frac{sigma_alpha \gamma_y \; (\beta \, sigma_alpha \, \zeta_y + kappa_upsilon \, \zeta_g + sigma_alpha \, \beta \, \zeta_g + sigma_alpha \, \zeta_g)}{\zeta_g \, V}$$

$$UPSILON_Y_0 = \frac{(2+\beta) \ sigma_alpha^2 \ \gamma_y \ \zeta_g}{\zeta_g \ V}$$

$$UPSILON_Y_LAG = \frac{sigma_alpha^2 \gamma_y \zeta_y}{\zeta_g V}$$

 $UPSILON_PI_PLUS$

$$=\frac{\gamma_y \left(\zeta_\pi \, sigma_alpha^2 \, \left(-\beta\right) - sigma_alpha \, \beta \, \zeta_g - sigma_alpha \, \zeta_g + \zeta_\pi \, \beta \, sigma_alpha^3 - kappa_upsilon \right.}{\zeta_g \, V}$$

$$UPSILON_PI_0 = \frac{(sigma_alpha - kappa_upsilon) \ sigma_alpha^2 \ \gamma_y \ \zeta_\pi}{\zeta_g \ V}$$

$$UPSILON_RN = \frac{\gamma_y}{\gamma_y + \gamma_r \, sigma_alpha^2}$$

$$K = \frac{\alpha \, sigma_alpha \, \gamma_y \, \left(kappa_upsilon \, sigma_alpha \, \frac{\bar{B}}{\bar{Y}} + sigma_alpha \, \frac{\bar{C}}{\bar{Y}} + sigma_alpha \, \tau - sigma_alpha \, - sigma_alpha \,$$

$$\pi_{tt} = \beta \, \pi_{tt+1} + kappa_upsilon \, \tilde{y}_{tt} - sigma_alpha \, \tilde{g}_{tt} + \xi_{\pi_t} \tag{1}$$

$$\tilde{y}_{tt} = \tilde{y}_{tt+1} - \frac{1}{sigma_alpha} \left(r_{tt} - \pi_{tt+1} - r^n_{t} \right) - \left(\tilde{g}_{tt+1} - \tilde{g}_{tt} \right)$$
(2)

$$\tilde{b}_{tt+1} = r_{tt} - r^n_{t} + \frac{1}{\beta} \left(\tilde{b}_{tt} - \pi_{tt} + \tilde{g}_{tt} \frac{\frac{\bar{C}}{\bar{Y}}}{\frac{\bar{B}}{\bar{Y}}} + \tilde{y}_{tt} \frac{1 - \tau - \frac{\bar{C}}{\bar{Y}}}{\frac{\bar{B}}{\bar{Y}}} \right)$$
(3)

$$r_{tt} = K - \tilde{g}_{tt+1} UPSILON_G_PLUS + UPSILON_G_LAG \tilde{g}_{tt-1} \\ + \tilde{y}_{tt+1} UPSILON_Y_PLUS - \tilde{y}_{tt} UPSILON_Y_0 + UPSILON_Y_LAG \tilde{y}_{tt-1} \\ + \pi_{tt+1} UPSILON_PI_PLUS - \pi_{tt} UPSILON_PI_0 + r^* + r^n_t UPSILON_RN + \xi_{rt}$$

$$(4)$$

$$\tilde{g}_{tt} = \tilde{g}_{tt+1} PSI_G_PLUS - CONS + \tilde{g}_{tt-1} PSI_G_LAG + \tilde{y}_{tt+1} PSI_Y_PLUS - \tilde{y}_{tt} PSI_Y_0 + \tilde{y}_{tt-1} PSI_Y_LAG - \pi_{tt+1} PSI_PI_PLUS + \pi_{tt} PSI_PI_0 + \xi_{qt}$$

$$(5)$$

$$r^{n}_{t} = \frac{sigma_alpha (1 + \phi) (\rho_{\alpha} - 1)}{sigma \ alpha + \phi} a_{tt} + \frac{(omega - 1) \alpha \phi}{sigma \ alpha + \phi} (\rho_{c^{*}} - 1) c_{tt}^{*}$$

$$(6)$$

$$a_{tt} = \rho_{\alpha} \, a_{tt-1} + \varepsilon^a_{\ t} \tag{7}$$

$$c_{t\,t}^* = \rho_{c^*} \, c_{t\,t-1}^* + \varepsilon^c_{\ t} \tag{8}$$

$$\xi_{\pi_t} = \rho_{\pi} \, \xi_{\pi_{t-1}} + \varepsilon^{\pi}_{t} \tag{9}$$

$$\xi_{rt} = \rho_r \, \xi_{rt-1} + \varepsilon^r_{\ t} \tag{10}$$

$$\xi_{g_t} = \rho_g \, \xi_{g_{t-1}} + \varepsilon^g_{\ t} \tag{11}$$