Comparison of Memetic Algorithm and Local Search Algorithm for University Exam Timetabling Problem(UTP)

Muskaan 2015CS10240 Divgian Singh Sidhu 2015CS10226

April 5, 2018

1 Introduction

1.1 The Timetable Problem

The scheduling of exams in institutions of higher education is known to be a highly constrained problem. Many constraints involved in exam scheduling vary from institution to institution.

Following constraints have been considered for this project:

- 1. Hard constraint: No student can sit more than one exam at any one time.
- 2. *Hard constraint*: For each period in timetable, the resource(rooms) demanded by the exams should not exceed the available resources.
- 3. Soft constraint: No student should have to take two exams in adjacent periods.

Conflicting exams are exams having common students.

Penalty defined as the number of students common between any consecutive periods.

1.2 Memetic Algorithm

Memetic algorithm uses hill climbing with genetic algorithm to improve its results.

Implemented this paper: https://link.springer.com/content/pdf/10.1007/3-540-61794-9_63.pdf for comparison with local search method.

1.3 Our Local Search Algorithm

Input:

- 1. Enrolements a list of exams for each student.
- 2. Exam_time list of exam and time duration of that exam.

3. Period_capacity - Period and its capacity according to the room sizes available.

Output:

- 1. Feasible Timetable
- 2. Conflicts
- 3. No. of Unscheduled exams

Algorithm 1:

- 1. Initialization:
- Choose exams randomly from unscheduled exams
- keep placing exams in period considering total capacity of period = sum of room capacities

//Not considering the constraint of room size

2. Hill climbing:

While no change in fitness of timetable is observed for every exam in timetable try placing it in another period with least penalty

Here, no. Of hill climbing iterations turns out to be approx = 10

- 3.Bin packing (next fit decreasing)
- Sort the rooms according to their capacity in decreasing order. for every period
- Sort the exams in that period in decreasing order according to their capacity.
- Place exams starting from the first room wherever they fit.

In this implementation, room sizes were taken input and a coarse timetable was generated by not considering the room sizes in beginning and then with bin packing exams were fit in the rooms of periods.

Initialization was done differently in Genetic Algorithm by considering the room sizes.

So with this implementation, improvements after the hill climbing saturated and results were worse than Genetic Algorithm.

Due to unavailability of room sizes with datasets, period size(instead of individual room sizes) was consisted in the final algorithm.

Algorithm 2:

- 1. Initialization:
- Choose exams randomly form unscheduled exams
- keep placing exams in period considering total capacity of period = sum of room capacities(or period capacity)

//Not considering the constraint of room of size

2. Hill climbing:

While no change in fitness of timetable is observed for every exam in timetable try placing it in another period with least penalty

Here, no. Of hill climbing iterations turns out to be approx = 10

3.Local moves

Following 4 moves were tried in a loop -

- 1. Pick an unscheduled exam and try scheduling it into any other period with minimum penalty.
- 2. If there exists no such period in which it can be scheduled without conflicts, then find a period which has minimum number of conlicting exams.

Try swapping all the conflicting exams with exams in other periods such that the unscheduled exam can be scheduled in that particular period.

- 3. If the exam is still not scheduled, then we schedule the exam in period with minimum(1) conflicting exams and unschedule the conflicting exam.
- 4. 2-swap in which every pair of scheduled exams are swapped if they reduce the penalty.

Local moves were tried independently but **Best Result** was obtained with Algorithm 2 by scheduling exams comprimising the penalty(soft constraint).

2 Results

Datasets taken from: http://www.cs.nott.ac.uk/~pszrq/data.htm Dataset 1, 2: www.cs.nott.ac.uk/~pszrq/files/instanceGenerator.zip Dataset 3, 4: ftp://ftp.mie.utoronto.ca/pub/carter/testprob

Observation 1 : From Table 1, it can be inferred that number of unscheduled exams were less than the result obtained from genetic algorithms.

Observation 2 : lp and sp datasets ahve different time table density, which effects the result. In 17 / 20 results, local search per formed better than genetic algorithms.

Observation 3: In Burke's paper, it is claimed that "To give some comparison the Nottingham data was also used to test how well the algorithm compared against a straight-forward random descent algorithm. This consists of randomly generating a timetable then making random improvements until a number of tries have elapsed in which no improvements could be found.". But this local search algorithm gave promising results.

Observation 4: It is also claimed that genetic algorithm takes respective time(1 hr, 1.5 hr) as mentioned in E.K.Burke's paper. Our algorithm for the same test case gave similar results in (0.5 hr, 0.5 hr). This can be seen from *Table 4*

3 Code

Code for implementation of genetic algorithms and local search is https://github.com/muskaankularia/local-search

			LS		LS+10 ite	er	MA	
Period	Exam	Room	Conflict	Unsched	Conflict	Unsched	Conflict	Unsched
10	88	500	76	48	89	46	122	48
15	140	500	223	57	236	54	215	58
20	189	500	245	68	247	64	351	68
25	215	500	397	66	416	57	382	65
30	283	500	591	52	542	48	419	63
35	327	500	621	47	680	44	644	52
40	358	500	656	44	736	35	606	52
45	416	500	823	26	815	21	668	37
50	463	500	991	17	922	14	868	21
55	487	500	884	11	887	11	965	11
30	289	200	357	1	349	1	360	7
30	267	250	431	15	453	8	250	13
30	264	300	456	23	509	19	460	22
30	278	350	486	28	501	25	550	37
30	280	400	527	41	526	34	530	39
30	283	500	591	52	517	50	520	55
30	282	600	461	70	491	65	480	74
30	274	700	488	81	583	75	560	84
30	284	800	629	85	548	86	530	100
30	274	900	431	96	493	91	450	100

Table 1: Varying number of periods keeping room capacity fixed and Varying Room capacity keeping number of periods fixed $\,$

		LS		MA	
Periods	Exams	UNSCHED	PENALTY	UNSCHED	PENALTY
15	80	0	0	0	0
15	100	0	0	0	0
15	80	0	0	0	0
15	80	0	1	0	0
15	80	0	36	0	42
15	80	0	86	0	76
19	100	1	113	2	119
19	81	1	56	0	74
19	80	1	96	0	100
20	526	0	26	0	110
20	511	15	498	40	425
24	508	17	681	44	505
30	533	26	820	57	616
35	542	39	1002	55	705
35	550	85	862	91	818
50	524	35	858	53	657
60	513	19	798	25	672
70	567	31	1028	46	714

Table 2: lp and sp dataset from www.cs.nott.ac.uk/~pszrq/files/instanceGenerator.zip

	LS			LS(PAPER)		MA		
Periods	Unsched	Penalty	time	Unsched	Penalty	Unsched	Penalty	time
32	0	0	36 min	0	0	0	0	1 hr
31	0	0	37 min	0	0	0	0	$1.5 \ \mathrm{hr}$
30	0	25		0	4	0	4	
26	0	56		0	53	0	53	
23	0	252		3	269	0	269	

Table 3: Nottingham Dataset and comparison with paper's genetic algorithm results

	LS		MA	
	Unsched	Penalty	Unsched	Penalty
carf91	0	230	0	81
carf92	0	582	0	331
tre	0	31	0	3

Table 4: Other datasets from the same paper and comparison with paper results