Topic: Mean value theorem for integrals

Question: Choose the correct formula.

Given the function f(x) over the interval [a,b], where c is a point in the interval, the mean value theorem for integrals says that...

Answer choices:

$$A \qquad \int_{a}^{b} f(x) \ dx = f(c)(b+a)$$

$$\mathsf{B} \qquad \int_{c}^{c} f(x) \ dx = f(c)(b-a)$$

$$C \qquad \int_{a}^{b} f(x) \ dx = f(c)(b-a)$$

Solution: C

The mean value theorem states that a point c must exist on the given interval [a,b] for the function f(x) such that

$$\int_{a}^{b} f(x) \ dx = f(c)(b - a)$$

If you have trouble remembering this formula, remember that it's just a rearrangement of the average value formula

$$f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) \ dx$$

If we say that $f(c) = f_{avg}$, then we make a substitution and get

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \ dx$$

$$f(c)(b-a) = \int_{a}^{b} f(x) \ dx$$

and we're back to the mean value theorem.

Topic: Mean value theorem for integrals

Question: Apply the mean value theorem.

Use the mean value theorem to find the value of the function at an unknown point c.

$$\int_0^2 f(x) \ dx = 6$$

Answer choices:

- A 3
- B 0
- C 6
- D 2

Solution: A

The mean value theorem states that a point c must exist on the given interval [a,b] for the function f(x) such that

$$\int_{a}^{b} f(x) \ dx = f(c)(b - a)$$

The given integral tells us that a=0, b=2 and f(c)(b-a)=6. We can plug the values of a and b into f(c)(b-a)=6 and then solve for f(c), which is the value of the function at the unknown point c.

$$f(c)(2-0) = 6$$

$$f(c) = 3$$

Topic: Mean value theorem for integrals

Question: Apply the mean value theorem.

Use the mean value theorem to find the value of the function at an unknown point $\it c$.

$$\int_{1}^{5} x^2 dx$$

Answer choices:

$$A \qquad \frac{62}{9}$$

$$B \qquad \frac{31}{3}$$

$$C \qquad \frac{31}{12}$$

D
$$\frac{124}{3}$$

Solution: B

The Mean Value Theorem states that a point c must exist on the given interval [a,b] for the function f(x) such that

$$\int_{a}^{b} f(x) \ dx = f(c)(b - a)$$

The given integral tells us that a = 1, b = 5. We need to solve the definite integral and then we can solve for f(c).

$$\int_{1}^{5} x^{2} dx = \frac{1}{3} x^{3} \Big|_{1}^{5}$$

$$\int_{1}^{5} x^{2} dx = \frac{1}{3} (5)^{3} - \frac{1}{3} (1)^{3}$$

$$\int_{1}^{5} x^2 \ dx = \frac{124}{3}$$

Using the mean value theorem this means that

$$f(c)(b-a) = \frac{124}{3}$$

Now we can solve for f(c), which is the value of the function at the unknown point c.

$$f(c)(5-1) = \frac{124}{3}$$

$$f(c) = \frac{124}{12}$$

	2.1
C()	31
f(c):	= —
J(-)	3

