

Introduction to Digital Logic.

CS 64: Computer Organization and Design Logic
Lecture #11
Fall 2019

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative

- Lab 6 will be out today.
 - Due next Wednesday Nov. 20th
- You have 3 more labs after this...

Midterm Exam Grades are on GauchoSpace

- Class average = 82, mean = 83
- Range: 53 100
- 31% of students got 90% score or better

Reviewing Your Midterm Exams

You can review your midterm with a TA during office hours

• Last name: A thru M Kunlong Liu Tu 5 pm – 7 pm

• Last name: N thru Z Charlie Uslu Tu 3 pm – 5 pm*

 If you can't go to these o/hs, you can see me instead, but let me know many days ahead of time first so I can get your exam from the TA...

* Charlie is having "special" hours THIS WEEK ONLY on Thursday

- When reviewing your exams:
 - Do <u>not</u> take pictures, do not copy the questions
 - TA cannot change your grade
 - If you have a legitimate case for grade change, the prof. will decide
 - Legitimate = When we graded, we added the total points wrong
 - Not legitimate = Why did you take off N points on this question????

Lecture Outline

- Intro to Binary (Digital) Logic Gates
- Truth Table Construction
- Logic Functions and their Simplifications
- The Laws of Binary Logic

Digital i.e. Binary Logic

- Electronic circuits when used in computers are a series of switches
- 2 possible states: either ON (1) and OFF (0)

• Perfect for binary logic representation!

Basic Building Blocks of Digital Logic

• Same as the bitwise operators:

NOT

AND

OR

XOR

etc...

• We often refer to these as "logic gates" in digital design

Electronic Circuit Logic Equivalents

11/13/19

Graphical Symbols and Truth Tables *NOT*

A	A or !A
0	1
1	0

Graphical Symbols and Truth Tables *AND* and *NAND*

Practice Drawing the Symbol!

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

A		A
B AND NOT	Ξ	B NAND \bigcirc

A	В	A . B or !(A.B)
0	0	1
0	1	1
1	0	1
1	1	0

11/13/19 Matni, CS64, Fa19

Graphical Symbols and Truth Tables OR and NOR

Practice Drawing the Symbol!

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

A	10	
В	OR NOT	

Α	В	A + B or !(A + B)
0	0	1
0	1	0
1	0	0
1	1	0

11/13/19 Matni, CS64, Fa19

Graphical Symbols and Truth Tables XOR and XNOR

Practice Drawing the Symbol!

A	В	A+B	A+B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Constructing Truth Tables

- T.Ts can be applied to ANY digital circuit
- They show ALL possible inputs with ALL possible outputs
- Number of entries in the T.T.
 - = 2^N, where N is the number of inputs

Example: Constructing the T.T of a 1-bit Adder

- Recall the 1-bit adder:
- 3 inputs: I₁ and I₂ and C₁
 - Input1, Input2, and Carry-In
 - How many entries in the T.T. is that?
- 2 outputs: R and Co
 - Result, and Carry-Out
 - You can have multiple outputs: each will still depend on some combination of the inputs

EXAMPLE:

Example: Constructing the T.T of a 1-bit Adder

T.T Construction Time!

Example: Constructing the T.T of a 1-bit Adder

OUTPUTS

	#	l1	12	CI	CO	R	
	0	0	0	0	0	0	
Note the	1	0	0	1	0	1	
order of the inputs!!!	2	0	1	0	0	1	
	3	0	1	1	1	0	
	4	1	0	0	0	1	
	5	1	0	1	1	0	
	6	1	1	0	1	0	
	7	1	1	1	1	1	

INPUTS

11/13/19

Logic Functions

- An output function F can be seen as

 a combination of 1 or more inputs
- Example: $F = A \cdot B + C$ (all single bits)
- This is called <u>combinatorial logic</u>

Equivalent in C/C++:

```
boolean f (boolean a, boolean b, boolean c)
{
    return ( (a & b) | c );
}
```

OR and AND as Sum and Product

- Logic functions are often expressed with basic logic building blocks, like ORs and ANDs and NOTs, etc...
- OR is sometimes referred to as "logical sum" or "logical union"
 - Partly why it's symbolized as "+"
 - BUT IT'S NOT THE SAME AS NUMERICAL ADDITION!!!!!!
- AND as "logical product" or "logical disjunction"
 - Partly why it's symbolized as "."
 - BUT IT'S NOT THE SAME AS NUMERICAL MULTIPLICATION!!!!!!

Example

- A XOR B takes the value "1" (i.e. is TRUE) if and only if
 - A = 0, B = 1 i.e. **!A.B** is TRUE, **or**
 - A = 1, B = 0 i.e. **A.!B** is TRUE
- In other words, A XOR B is TRUE iff (if and only if) A!B + !AB is TRUE

$$A+B = !A.B + A.!B$$

Which can also be written as: $\overline{A.B} + A.\overline{B}$

Representing the Circuit Graphically

What is The Logical Function for The **Half Adder**?

	IN	PUTS	OUT	PUTS
#	l1	12	CO	R
0	0	0	0	0
1	0	1	0	1
2	1	0	0	1
3	1	1	1	0

Our attempt to describe the outputs as functions of the inputs:

$$CO = I_1 . I_2$$

 $R = I_1 + I_2$

Half Adder

1-bit adder that does not have a Carry-In (Ci) bit.

This logic block has only 2 1-bit inputs and 2 1-bit outputs

What is The Logical Function for A **Full** 1-bit adder?

		INPUTS		OUT	PUTS 💳
#	l1	12	CI	CO	R
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1

Ans.:

CO = !|1.|2.C| + |1.!|2.C| + |1.|2.!C| + |1.|2.C| R = !|1.!|2.C| + !|1.|2.!C| + |1.!|2.!C| + |1.|2.C|

Minimization of Binary Logic

- Why?
 - It's MUCH easier to read and understand...
 - Saves memory (software) and/or physical space (hardware)
 - Runs faster / performs better
 - Why?... remember *latency*?
- For example, when we do the T.T. for (see demo on board):

X = A.B + A.!B + B.!A, we find that it is the same as

$$A + B$$

(saved ourselves a bunch of logic gates!)

Using T.Ts vs. Using Logic Rules

• In an effort to simplify a logic function, we don't always have to use T.Ts – we can use *logic rules* instead

Example: What are the following logic outcomes?

A.A A

A + A

A.1 A

A+1 1

A.0

A + 0

Using T.Ts vs. Using Logic Rules

• Binary Logic works in **Associative** ways

```
• (A.B).C is the same as A.(B.C)
```

•
$$(A+B)+C$$
 is the same as $A+(B+C)$

• It also works in **Distributive** ways

```
• (A + B).C is the same as: A.C + B.C
```

•
$$(A + B).(A + C)$$
 is the same as:

$$A.A + A.C + B.A + B.C$$

$$= A + A.C + A.B + B.C$$

$$= A + B.C$$

More Examples of Minimization a.k.a Simplification

• Simplify:
$$R = A.B + !A.B$$
 Let's verify it with a truth-table $= (A + !A).B$ $= B$

Note: often, the AND dot symbol (.) is omitted, but understood to be there (like with multiplication dot symbol)

Matni, CS64, Fa19

More Simplification Exercises

You can verify it with a truth-table

Reformulate using only AND and NOT logic:

Law

Important: Laws of Binary Logic

Circuit Equivalence - each law has 2 forms that are duals of each other.

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	A + A = 1
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

More Simplification Examples

Simplify the Boolean expression:

Simplify the Boolean expression and write it out on a truth table as proof

• X.Z + Z.(X' + X.Y)

Use DeMorgan's Theorm to re-write the expression below using at least one OR operation

• NOT(X + Y.Z)

Scaling Up Simplification

 When we get to more than 3 variables, it becomes challenging to use truth tables

 We can instead use Karnaugh Maps to make it immediately apparent as to what can be simplified

Your To-Dos

Review this material for next week!

Lab #6 is due on Wednesday 11/20

