22b Cache Examples – Part 2 CSC 230

Department of Computer Science University of Victoria

Problem 5.6 (H textbook)

A program consists of two nested loops – a small inner loop and a much larger outer loop (see below). The decimal memory addresses delineate the locations of the two loops and the program. All locations in the sections (e.g. 17-22, 23-264) contain sequential instructions. Cache and memory organized as in previous example.

Main memory = 64K words

Cache size = 1K words

Block size = 128 words

Cache
each block = 128 words
total 1K words

Think it through again (see ex. 5.6)

How are the total bits organized in a direct-mapped cache with:

Main memory = 64K words

Cache size = 1K words

Block size = 128 words

Memory = 64 K words = $2^6 \times 2^{10}$ words = 2^{16} words

Cache = 1 K words = 2^{10} words

since block size = 128 words = 2^7 words, then:

 2^{10} words / 2^{7} words = 2^{3} \rightarrow 8 blocks in cache

thus cache has 8 blocks, each containing 128 words

Compute total time needed for instruction fetching during execution

Block 0	0	1024
	127	1151
Block 1	128	1152
	255	1279
Block 2	256	1280
	383	1407
Block 3	384	1408
	511	1535
Block 4	512	
	639	
Block 5	640	
	767	
Block 6	768	
Diook o	895	
Block 7	896	
	1023	

0	1024
127	1151
128	1152
255	1279
256	1280
383	1407
384	1408
511	1535
512	
639	
640	
767	
768	
895	
896	
1023	
	127 128 255 256 383 384 511 512 639 640 767 768 895 896

Blocks 0 and 1 get overwritten, 2-7 remain

Sequence of blocks read from memory:

memory access 10 t, cache 1 t

[1] 0,1,2,3,4,5,6,7,0,1

then:

[2] 0,1,0,1

[3] 0,1,0,1

[4] 0,1,0,1

[5] 0,1,0,1

[6] 0,1,0,1

[7] 0,1,0,1

[8] 0,1,0,1

[9] 0,1,0,1

[10] 0,1,0,1,2,3

$$[1] = 10$$

$$[2] - [9] = 4 \times 8$$

$$[10] = 6$$

 $(48 t) \times 128 \text{ words } \times 10 t = 61,440 t$

→ time to read from memory into cache

end part = (1500-1200) x 1 time @ 1t

 $(48 t) \times 128 \text{ words} \times 10 t = 61,440 t$

→ time to read from memory into cache

```
inner loop = (239-164) x 200 times @ 1t = 11,030 t

outer - inner = (1200-22) - (239-164) lines

x 10 times @ 1t = 15,000 t

end part = (1500-1200) x 1 time @ 1t = 300 t
```

$$TOTAL = 61,440 + (11,030 + 15,000 + 300) = 87,770$$

NOTE: if no cache = 61,440 + 263,300 = 324,740 with cache only 27% of time