Practice: Solving Sudoku with Evolutionary Computation

The problem consists into solving a sudoku using Evolutionary Computation What is the size of the search space?

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

REPRESENTATION

Phenotype (9x9 matrix)

5	3	1	2	7	3	4	5	6
6	2	3	1	9	5	4	7	8
1	9	8	2	3	4	5	6	7
8	1	2	4	6	5	7	9	3
4	2	5	8	6	3	7	9	1
7	1	3	4	2	5	8	9	6
1	6	3	4	5	7	2	8	9
2	3	6	4	1	9	7	8	5
1	2	3	4	8	5	6	7	9

Genotype (missing values permutations)

1,	2,	4,	6,	8,	9
	3,				
1,	2,	3,	4,	5,	7
1,	2,	4,	5,	7,	9
2,	5,	6,	7,	9	
1,	3,	4,	5,	8,	9
1,	3,	4,	5,	7,	9
2,	3,	6,	7,	8	
1,	2,	3,	4,	5,	6

FITNESS

5	3	1	2	7	S	4	<u>5</u>	6
6	2	3	1	9	5	4	7	8
1	9	8	2	3	4	5	6	7
8	1	2	4	6	5	7	9	3
4	2	5	8	6	3	7	9	1
7	1	3	4	2	5	8	9	6
1	6	3	4	5	7	2	8	9
2	3	6	4	1	9	7	8	5
1	2	3	4	8	<mark>5</mark>	6	7	9

Fitness = Number of cells

Fitness (example) = 6

TERMINATION CONDITION: Until we find an individual with fitness equal to the number of missing values.

PARENT SELECTION: Binary tournament, for selecting each parent: randomly choose two individuals from the population and select the one with the best fitness.

CROSSOVER (OR RECOMBINATION): One point crossover

Parent 1	Parent 2	Offspring	
1, 2, 4, 6, 8, 9	8, 9, 2, 4, 1, 6	1, 2, 4, 6, 8, 9	
2, 3, 4, 7, 8	7, 3, 2, 4, 8	2, 3, 4, 7, 8	
1, 2, 3, 4, 5, 7	5, 4, 3, 7, 1, 2	1, 2, 3, 4, 5, 7	
1, 2, 4, 5, 7, 9	9, 5, 7, 2, 4, 1	1, 2, 4, 5, 7, 9	
2, 5, 6, 7, 9	6, 2, 5, 9, 7	6, 2, 5, 9, 7	
1, 3, 4, 5, 8, 9	1, 8, 9, 4, 3, 5	1, 8, 9, 4, 3, 5	
1, 3, 4, 5, 7, 9	7, 5, 4, 1, 3, 9	7, 5, 4, 1, 3, 9	
2, 3, 6, 7, 8	8, 6, 2, 7, 3	8, 6, 2, 7, 3	
1, 2, 3, 4, 5, 6	5, 4, 1, 6, 2, 3	5, 4, 1, 6, 2, 3	

MUTATION: Random Swap

Original	Mutated		
1, 2, 4, 6, 8, 9	1, 2, 4, 6, 8, 9		
2, <mark>3,</mark> 4, 7, <mark>8</mark>	2, <mark>8,</mark> 4, 7, <mark>3</mark>		
1, 2, 3, 4, 5, 7	1, 2, 3, 4, 5, 7		
1, 2, 4, 5, 7, 9	1, 2, 4, 5, 7, 9		
2, 5, 6, 7, 9	2, 5, 6, 7, 9		
1, 3, 4, 5, 8, 9	1, 3, 4, 5, 8, 9		
1, 3, 4, 5, 7, 9	1, 3, 4, 5, 7, 9		
2, 3, 6, 7, 8	2, 3, 6, 7, 8		
1, 2, 3, 4, 5, 6	1, 2, 3, 4, 5, 6		

SURVIVAL SELECTION: Save only the best individuals from the parents and children.

PSEUDOCODE:

```
Parameters:
N: population size
Pcrossover: Crossover probability
P<sub>mutation</sub>: Mutation probability
     1. Calculate the missing values
     2. P_0 <- Generate the initial population as random permutation of the missing values
     3. F_0 \leftarrow Fitness of individuals in P_0
     4. Elite <- The best individual of P<sub>0</sub>
     5. k = 0
         While termination condition is not met:
     6.
    7.
               k = k+1
     8.
               For each new individual in P<sub>k</sub>:
     9.
                    If random() <= P<sub>crossover</sub>:
                          Select two parents with binary tournament
     10.
     11.
                          Create a new offspring as the parents recombination
     12.
                    Else:
                          Select one parent with binary tournament
     13.
                          Create a new offspring as the copy of the parent
     14.
     15.
                    If random() <= P<sub>mutation</sub>:
                         Mutate the offspring with random swap
     16.
               F<sub>k</sub><- Fitness of individuals in Pk
     17.
               Update Elite
     18.
     19.
               P_k <- The best individuals from P_{k-1} and P_k
     20. Return Elite
```