

Fair and **Efficient**

Social Decision-Making

CSCI 699

Voting: Impartial Selection

Evi Micha

Credit for the slides: Nisarg Shah

Impartial Selection

Impartial Selection

- "How can we select k people out of n people?"
 - \succ Applications: electing a student representation committee, selecting k out of n grant applications to fund using peer review, ...

Model

- \triangleright Input: a *directed* graph G = (V, E)
- > Nodes $V = \{v_1, \dots, v_n\}$ are the n people
- > Edge $e = (v_i, v_j) \in E$: v_i supports/approves of v_j
 - \circ We do not allow or ignore self-edges (v_i, v_i)
- \triangleright Output: a subset $V' \subseteq V$ with |V'| = k
- > $k \in \{1, \dots, n-1\}$ is given

Impartial Selection

- Impartiality: A k-selection rule f is impartial if whether or not $v_i \in f(G)$ does not depend on the outgoing edges of v_i
 - $\triangleright v_i$ cannot manipulate his outgoing edges to get selected
 - ▶ Q: But the definition says v_i can neither go from $v_i \notin f(G)$ to $v_i \in f(G)$, nor from $v_i \in f(G)$ to $v_i \notin f(G)$. Why?
- Societal goal: maximize the sum of in-degrees of selected agents $\sum_{v \in f(G)} |in(v)|$
 - $\rightarrow in(v)$ = set of nodes that have an edge to v
 - $\rightarrow out(v)$ = set of nodes that v has an edge to
 - ➤ Note: OPT will pick the k nodes with the highest indegrees

Optimal ≠ Impartial

- An optimal 1-selecton rule must select v_1 or v_2
- The other node can remove his edge to the winner, and make sure the optimal rule selects him instead
- This violates impartiality

Goal: Approximately Optimal

- α -approximation: We want a k-selection system that always returns a set with total indegree at least α times the total indegree of the optimal set
- Q: For k=1, what about the following rule?

```
Rule: "Select the lowest index vertex in out(v_1).

If out(v_1) = \emptyset, select v_2."
```

- > A. Impartial + constant approximation
- > B. Impartial + bad approximation
- > C. Not impartial + constant approximation
- > D. Not impartial + bad approximation

No Finite Approximation ⁽²⁾

• Theorem [Alon et al. 2011] For every $k \in \{1, ..., n-1\}$, there is no impartial k-selection rule with a finite approximation ratio.

Proof:

- > For small k, this is trivial. E.g., consider k=1.
 - \circ Consider G that has two nodes v_1 and v_2 that point to each other, and there are no other edges
 - \circ For finite approximation, the rule must choose either v_1 or v_2
 - \circ Say it chooses v_1 . If v_2 now removes his edge to v_1 , the rule must choose v_2 for any finite approximation, which violates impartiality

No Finite Approximation ⁽²⁾

• Theorem [Alon et al. 2011] For every $k \in \{1, ..., n-1\}$, there is no impartial k-selection rule with a finite approximation ratio.

• Proof:

- \triangleright Proof is more intricate for larger k. Let's do k=n-1.
 - o k = n 1: given a graph, "eliminate" a node.
- \triangleright Suppose for contradiction that there is such a rule f.
- \triangleright W.l.o.g., say v_n is eliminated in the empty graph.
- > Consider a family of graphs in which a subset of $\{v_1,\dots,v_{n-1}\}$ have edges to v_n .

No Finite Approximation (3)

- Proof (k = n 1 continued):
 - > Consider *star graphs*
 - \circ A non-empty subset of $\{v_1, \dots, v_{n-1}\}$ has an edge to v_n and there are no other edges
 - \circ Represented by bit strings $\{0,1\}^{n-1}\setminus\{\vec{0}\}$
 - $> v_n$ cannot be eliminated in any star graph (Why?)
 - $f: \{0,1\}^{n-1} \setminus \{\vec{0}\} \to \{1, ..., n-1\}$
 - "Who will be eliminated?"

No Finite Approximation ³

- Proof (k = n 1 continued):
 - > Impartiality: $f(\vec{x}) = i \Leftrightarrow f(\text{flip}_i(\vec{x})) = i$
 - o flip $_i$ flips the i^{th} coordinate
 - \circ "i cannot add/remove his edge to v_n to change whether he is eliminated"
 - \triangleright For each i, strings on which f outputs i are paired
 - So, for each i, the number of strings on which f outputs i is even
 - But this is impossible (Why?)
 - So, impartiality must be violated

Back to Impartial Selection

- So what can we do to select impartially? Randomize!
- Impartiality for randomized mechanisms
 - An agent cannot change the probability of her getting selected by changing her outgoing edges

Example

- Choose k nodes uniformly at random
- > Impartial by design
- Question: What is its approximation ratio?
- \rightarrow Good when $k \approx n$ but bad when $k \ll n$

Random Partition

Idea

- \succ Partition V into V_1 and V_2 and select k nodes from V_1 based only on edges coming to from V_2
- \succ For impartiality, agents shouldn't be able to affect whether they end up in V_1
- > But a deterministic partition would be bad in the worst case

Mechanism

- \triangleright Assign each node to V_1 or V_2 i.i.d. with probability $\frac{1}{2}$
- \succ Choose k nodes from V_1 that have most incoming edges from nodes in V_2

Random Partition

Analysis:

- $\rightarrow OPT$ = optimal set of k nodes
- \triangleright We pick X = k nodes in V_1 with most incoming edges from V_2
- > $I = \# V \rightarrow OPT$ edges
- $> I' = \# V_2 \rightarrow OPT \cap V_1 \text{ edges}$
- > Note: E[I'] = I/4 (Why?)
- \succ # incoming edges to $X \ge I'$
 - E[#incoming edges to X] $\geq E[I'] = \frac{I}{4}$

Random Partition

Generalization

 \triangleright Divide into ℓ parts, pick k/ℓ nodes from each part based on incoming edges from all other parts

• Theorem [Alon et al. 2011]:

- > $\ell = 2$ gives a 4-approximation
- > For $k \ge 2$, $\ell \sim k^{1/3}$ gives $1 + O\left(\frac{1}{k^{1/3}}\right)$ approximation

Better Approximations

- Alon et al. [2011]'s conjecture
 - > There should be a randomized 1-selection mechanism that achieves 2-approximation
 - Settled by Fischer & Klimm [2014]
 - > Permutation mechanism:
 - \circ Select a random permutation $(\pi_1, \pi_2, ..., \pi_n)$ of the vertices
 - \circ Start by selecting $y = \pi_1$ as the "current answer"
 - \circ At any iteration t, let $y \in \{\pi_1, ..., \pi_t\}$ be the current answer
 - \circ From $\{\pi_1, \dots, \pi_t\} \setminus \{y\}$, if there are more edges to π_{t+1} than to y, change the current answer to $y = \pi_{t+1}$

Better Approximations

2-approximation is tight

- > In an n-node graph, fix u and v, and suppose no other nodes have any incoming/outgoing edges
- > Three cases: only $u \rightarrow v$ edge, only $v \rightarrow u$, or both.
 - \circ The best impartial mechanism selects u and v with probability $\frac{1}{2}$ in every case, and achieves 2-approximation

Worst case is a bit eccentric

- > n-2 nodes are not voting.
- > What if every node must have an outgoing edge?
- > Fischer & Klimm [2014]
 - o In that case, permutation mechanism gives between $^{12}/_{7}$ and $^{3}/_{2}$ approximation, and no mechanism can do better than $^{4}/_{3}$