SOLUTIONS

CSC 384 Winter 2023 Test 4 Version A

March 27 and 28, 2023

Last Name:	
First Name:	
Email:	

There are 3 questions with a total of 26 marks.

- Q1 (8 marks)
- Q2 (12 marks)
- Q3 (6 marks)

Q1 D-Separation (8 marks)

Consider Figure 1 below. For each question below, circle the best answer and provide an explanation. Use the following format for your explanation (where X, A, B, C, and D are variables).

(Observing/Not observing) X (blocks/doesn't block) the path A-B-C-D by rule 1/2/3.

Q1.1 (2 marks) C and E are unconditionally independent.

True or False

Explain:

Q1.2 (2 marks) F and E are conditionally independent given B.

True or False

Explain:

Q1.3 (2 marks) A and I are unconditionally independent.

True or False

Explain:

Q1.4 (2 marks) C and E are conditionally independent given I.

True or False

Explain:

Figure 1 Above

Q1 Solutions

Q1.1 (2 marks) C and E are unconditionally independent.

True

Not observing D nor D's descendants blocks path CADBE by rule 3. Not observing H nor H's descendants blocks the path CHGDBE and the path CHFDBE by rule 3.

Q1.2 (2 marks) F and E are conditionally independent given B.

True

Observing B blocks the path FDBE by rule 2.

Q1.3 (2 marks) A and I are unconditionally independent.

False

All the nodes on the three paths between A and I follow the chain structure (rule 1). Since none of the nodes are observed, they do not block any path by rule 1.

Q1.4 (2 marks) C and E are conditionally independent given I.

False

Observing I does not block the path CHGDBE by rule 3.

Q2 Variable Elimination Algorithm (12 marks)

Consider the Bayesian network above. A, B, C, and D are binary variables. We use the lower-case letters to denote the values of the variables, e.g. a denotes A = true and $\neg a$ denotes A=false.

Calculate $P(A \mid \neg c)$ by using the Variable Elimination Algorithm.

Eliminate the hidden variables in alphabetical order.

For each step, indicate the following.

- Indicate the operation (e.g. Restrict, Multiply, Sum out, or Normalize).
- Indicate the **factors** on which you are applying the operations.
- Each operation should produce a new factor. Give this factor a unique name and draw a table containing its contents. The table should indicate the variables in the factor and the value for each combination of the variables' values.

Show all your work on pages 6 and 7.

We have created the initial factors for you below.

Factor f1

ractorii	
а	0.1
$\neg a$	0.9

Factor f2

b	0.2
$\neg b$	0.8

Factor f3

d	b	0.3
$\neg d$	b	0.7
d	$\neg b$	0.4
$\neg d$	$\neg b$	0.6

Factor f4

С	а	b	0.5
$\neg c$	а	b	0.5
С	а	$\neg b$	0.6
¬С	а	$\neg b$	0.4
С	$\neg a$	b	0.7
$\neg c$	$\neg a$	b	0.3
С	$\neg a$	$\neg b$	0.8
$\neg c$	$\neg a$	$\neg b$	0.2

Your Q2 final answers:

$P(a \mid \neg c) =$	$P(\neg a \mid \neg c) =$

Your Q2 work starts here.

Your Q2 work continues.

This page is intentionally left blank. You o	ean use this page for rough work.

Q2 Version A Solutions

The final answers:

$P(a \mid \neg c) = 0.175$	$P(\neg a \mid \neg c) = 0.825$

1 Restrict factor f4 to C = false to produce factor f5

f5

а	b	0.5
а	$\neg b$	0.4
$\neg a$	b	0.3
$\neg a$	$\neg b$	0.2

The remaining factors are f1, f2, f3, and f5.

There are two hidden variables, B and D. We will eliminate B first.

2. Multiply factors f2, f3, and f5 to produce factor f6.

f6

a	b	d	0.03
а	b	$\neg d$	0.07
а	$\neg b$	d	0.128
а	$\neg b$	$\neg d$	0.192
$\neg a$	b	d	0.018
$\neg a$	b	$\neg d$	0.042
$\neg a$	$\neg b$	d	0.064
$\neg a$	$\neg b$	$\neg d$	0.096

The remaining factors are f1 and f6.

3. Sum out B from factor f6 to produce factor f7.

f7

а	d	0.158
а	$\neg d$	0.262
$\neg a$	d	0.082
$\neg a$	$\neg d$	0.138

The remaining factors are f1 and f7.

4. Sum out D from factor f7 to produce factor f8.

f8

а	0.42
$\neg a$	0.2

The remaining factors are f1 and f8.

5. Multiply factors f1 and f8 to produce factor f9.

f9

a	0.042
$\neg a$	0.198

The remaining factor is f9.

6. Normalize factor f9 to produce factor f10.

f10

а	0.175
$\neg a$	0.825

Q3 Filtering (6 marks)

Consider the hidden Markov model on the next page.

- S_t denotes the hidden state at time t. $S_t = true$ means it rained on day t ($S_t = false$ otherwise).
- E_t denotes the observation at time t. $E_t = true$ means the director brought an umbrella on day t and $E_t = false$ otherwise.
- α is the normalization constant.

Assume that the first three observations are $\neg e_0$, e_1 , and $\neg e_2$. That is, the director brought an umbrella on day 1 and didn't bring an umbrella on days 0 and 2.

Calculate the filtering probabilities for **day 2**. We have provided the filtering formulas on the next page. **For full marks**, **show ALL your work** and present your solutions to **3 decimal places**.

The Filtering Formulas:

- Base case: $P(S_0|E_0) = \alpha P(S_0) P(E_0|S_0)$
- Recursive case:

$$P(S_k | E_0 \land ... \land E_{k-1}) = \sum_{S_{k-1}} P(S_{k-1} | E_0 \land ... \land E_{k-1}) * P(S_k | S_{k-1})$$

$$\circ P(S_k|E_0 \wedge ... \wedge E_k) = \alpha P(E_k|S_k) P(S_k|E_0 \wedge ... \wedge E_{k-1})$$

Assume that

$$P(s_1 | \neg e_0 \land e_1) = 0.849$$

and
$$P(\neg s_1 | \neg e_0 \land e_1) = 0.151$$

Your final answers::

$$P(s_2|\neg e_0 \land e_1 \land \neg e_2) = P(\neg s_2|\neg e_0 \land e_1 \land \neg e_2) =$$

Your calculations:

This page is intentionally left blank.	You can use this page for rough work.

Q3 Version A Solutions

Step 1: (2 marks)

$$P(s_{2} | \neg e_{0} \land e_{1})$$

$$= P(s_{1} | \neg e_{0} \land e_{1})P(s_{2} | s_{1}) + P(\neg s_{1} | \neg e_{0} \land e_{1})P(s_{2} | \neg s_{1})$$

$$= 0.849 * 0.75 + 0.151 * 0.35 = 0.690$$

$$P(\neg s_{2} | \neg e_{0} \land e_{1}) = 1 - 0.690 = 0.310$$

Step 2: (4 marks)

(2 marks)

$$P(\neg e_2 | s_2) P(s_2 | \neg e_0 \land e_1) = 0.15 * 0.690 = 0.103$$

$$P(\neg e_2 | \neg s_2) P(\neg s_2 | \neg e_0 \land e_1) = 0.90 * 0.310 = 0.279$$

(2 marks)

$$P(s_2 | \neg e_0 \land e_1 \land \neg e_2) = 0.103/(0.103 + 0.279) = 0.270$$

$$P(\neg s_2 | \neg e_0 \land e_1 \land \neg e_2) = 1 - 0.270 = 0.730$$