

Semi-Supervised Clustering by Selecting Informative Constraints

P Vidyadhar Rao, C.V Jawahar Center for Visual Information Technology IIIT Hyderabad

Clustering Problem

Input: A set of objects X

Clustering Problem

Output: A set of clusters(subsets)

Kmeans Clustering

• Objective: min $\Sigma ||x_i - \mu_{ij}||_2$

Person

Umbrella

Dog

Women

Person

Umbrella

Dog

Women

Distance function is not known in unsupervised setting.

IIIT Hyderabad

Objective

$$\min \, \phi_A(X) = \sum_{x_i \in X} d_A(x_i, \mu_{I_i}) \tag{1}$$

where $d_A(x,y) = (x-y)^T A(x-y)$ and A is a $d \times d$ PSD matrix.

- Distance metric, A, reflects relationships b/w objects.
- Kmeans with Euclidean distance metric: A = I;
- Choice of distance function decides the quality of clustering.
- Problem: Learn distance function and partitions

Semi-Supervised Clustering

 Supervision offers instance level constraints like must-link and cannot-link constraints.

Partially labeled Image Databases

A case of Conflicting Constraints

 However, it is not a good idea to derive partitions strictly satisfying every constraint!

Selecting Informative Constraints

 Need to exploit partially labeled data and/or (dis)similarity constraints to construct more useful distance function.

Informativeness

Amount of information in the constraint set that the algorithm cannot determine on its own.

Coherence

Amount of agreement with in the constraints themselves, with respect to a given distance metric

 When more informative constraints are under the learned metric, the more likely they are to improve clustering.

Metric Learning

Objective

min
$$D_{ld}(A, A_0)$$

s.t. $A \succeq 0$
 $d_A(x_i, x_j) \leq u$ $(i, j) \in S$
 $d_A(x_i, x_j) \geq v$ $(i, j) \in D$ (2)

where $D_{ld}(A, A_0) = tr(AA_0^{-1}) - \log det(AA_0^{-1}) - d$; v and u are large and small values, respectively.

- Enforce simple distance constraints on instance level constraints.
- ITML algorithm solves Eq.(2) to learn metric under these constraints.

Our Approach

IIIT Hyderaba

Our Approach

Semi-Supervised Clustering by Selecting Informative Constraints

```
1: Initialization: A_0 = I; S_u = S \cup D; S_a = \{\}; k = 0;
 2: repeat
        for (i, j) \in S_u do
 3:
           A^{ij} \leftarrow \mathsf{ITML}(X, A_0, S_a \cup (i, j), u, v);
      (Q^{ij}, I^{ij}) \leftarrow \mathsf{Kmeans}(X, A^{ij}, K);
     end for
 6:
 7: (i^*, j^*) \leftarrow \arg\max_{ij}(Q^{ij});
 8: A_0 \leftarrow A^{i^*j^*};
 9: S_a \leftarrow S_a \cup (i^*, j^*);
10: S_u \leftarrow S_u \setminus (i^*, j^*);
     k_{++};
11:
12: until (k \leq t)
```

Complexity: O(t.|S_u|) metric learning and clustering operations.

Implementation Methods

- Variations to our semi-supervised clustering(SSC) algorithm
 - SSC-rand: Metric learned from randomly selected constraints
 - SSC-OLDML: Metric learned with most recently obtained metric as prior for ITML
 - SSC-active: Metric learned from active constraint set.

IIIT Hyderabad

Experiments

- Image Datasets
 - 10 MNIST handwritten digits: 1000 images
 - 11 objects from Caltech-256: 550 images
 - 20 objects from MSRC2: 600 images

Experiments

- Image Representation
 - Digit Images: Normalized to a 20x20 pixelbox and 400 pixel values are used.
 - Object Images: 800 visual words are extracted using SIFT descriptors.
- Performance Evaluation

$$\phi_{A}(.) \begin{tabular}{ll} Precision &= & \frac{\#PairsCorrectlyPredictedInSameCluster}{\#TotalPairsPredictedInSameCluster} \\ Recall &= & \frac{\#PairsCorrectlyPredictedInSameCluster}{\#TotalPairsInSameCluster} \\ F_1\text{-Score} &= & \frac{2\times Precision \times Recall}{Precision + Recall} \\ Rand Index &= & \frac{\#PairsCorrectlyPredicted}{\#TotalPairs} \\ \end{tabular}$$

IIIT Hyderaba

Results

• Performance measured in terms of $\phi_A(.)$

Dataset	Algorithm						
	K-means	SSC-rand	SSC-OLDML	SSC-active			
MNIST	37380	36562	61474	34726			
Caltech-256	2.665	2.565	2.618	2.020			
MSRC2	2.059	2.275	3.344	1.991			

- SSC methods show improvement over Kmeans.
- SSC-active performs better than K-Means, SSC-rand and SSC-OLDML.

Results

Performance measured in terms of RandIndex

	Algorithm					
Dataset	K-means	SSC-rand	SSC-OLDML	MPCK-means	SSC-active	
MNIST	0.875	0.881	0.861	0.862	0.921	
Caltech-256	0.769	0.758	0.827	0.841	0.807	
MSRC2	0.892	0.895	0.881	0.859	0.904	

- SSC-active performs better than K-Means, SSC-rand and SSC-OLDML
- SSC-active performs better than MPCK-Means on two datasets.

Results

Performance measured in terms of F₁-score

	Algorithm						
Dataset	K-means	SSC-rand	SSC-OLDML	MPCK-means	SSC-active		
MNIST	0.410	0.434	0.334	0.377	0.621		
Caltech-256	0.150	0.156	0.195	0.249	0.215		
MSRC2	0.155	0.162	0.128	0.226	0.203		

- SSC-active performs better than K-Means, SSC-rand and SSC-OLDML
- SSC-active performs close to MPCK-Means on object datasets and outperforms on digit dataset.

• Cars from Caltech-256

Cycles from Caltech-256

Books from MSRC2

Water from MSRC2

Flowers from MSRC2

Conclusions

- SSC-active requires only few informative constraints
- Informativeness is ensured via pairwise distance constraints.
- Coherence is ensured by selecting constraints using SSC-active.
- SSC-active always performed better than unsupervised K-Means unlike MPCK-Means

Future work

- Efficiently select informative constraints using active learning strategies.
- Scalability of our algorithm for large dimension image representations.

Thank You!

Questions?

Backup slides from here

Cars from MSRC2

void cluster from MSRC2

void cluster from MSRC2

void cluster from MSRC2

Cycles from MSRC2

Kmeans Clustering

• Objective: min $\sum ||x_i - \mu_{li}||_2$

Selecting Informative Constraints

 When more informative constraints are under the learned metric, the more likely they are to improve clustering.

Objective

Learn A w.r.t the given constraints such that $\phi_A(X) < \phi_I(X)$.

- Our Approach
 - Iteratively solve for Eq.(1) and Eq.(2)
 - Incrementally select informative constraints
 - Learn metric using informative constraints
 - Use learned metric for Kmeans clustering.

Semi-Supervised Clustering

 Supervision offers instance level constraints like must-link and cannot-link constraints.

Partially labeled Image Databases

Fully labeled Image Databases

 However, it is not a good idea to derive partitions strictly satisfying every constraint!