قاعده انتگرال گیری رامبرگ

با استفاده از قاعده رامبرگ و به کمک مقادیر تقریبی که از روشهای ساده ای همچون قاعده فوزنقه ای برای تعیین مقدار عددی انتگرال معین یک تابع بدست می آید و بدون محاسبهٔ تابع $\int_a^b f(x) \, dx$ در نقاط اضافی، می توان تقریبهای بهتری برای $\int_a^b f(x) \, dx$ بدست آورد.

به روش پیچیده ای که در اینجا از ذکر آن خودداری می کنیم، می توان نشان داد که

$$I = \int_{a}^{b} f(x) dx = \frac{T}{N} + E_{\gamma} h^{\gamma} + E_{\gamma} h^{\gamma} + E_{\gamma} h^{\gamma} + \dots$$

که در آن $[E_i]$ (ضرایب برنولی) تنها به مشتق $[E_i]$ مشتق ام تابع $[E_i]$ بستگی دارند و مستقل از $[E_i]$ و $[E_i]$ هستند.

اگر در رابطه فوق، $\frac{h}{r}$ را به $\frac{h}{r}$ تبدیل کنیم خواهیم داشت:

$$I = \int_{a}^{b} f(x) dx = \frac{T_{\gamma N}}{f} + E_{\gamma} \left(\frac{h}{\gamma}\right)^{\gamma} + E_{\gamma} \left(\frac{h}$$

برای حذف کی چنین عمل می کنیم:

$$\forall I = FI - I = FT_{VN} - T_{N} + E_{F}(\frac{h^{F}}{F} - h^{F}) + E_{F}(\frac{h^{F}}{VF} - h^{F}) + \dots$$

در نتيجه:

$$I = \frac{f T_{\gamma N} - T_{N}}{r} + E'_{\gamma} h^{\gamma} + E'_{\gamma} h^{\gamma} + \dots$$

رابطهٔ بالا نشان می دهد که مقدار ۴ T_{۲N} - T_N تقریب عددی دقیق تری از I است که

خطای آن متناسب با $\frac{h^{\gamma}}{h}$ است (خطای $T_{\gamma N}$ و $T_{\gamma N}$ متناسب با h^{γ} است).

اکنون قرار می دهیم:
$$I = \int_{a}^{b} f(x) dx = T_{YN}^{(1)} + E_{Y}^{(1)} h^{Y} + E_{S}^{'} h^{S} + ...$$

مجدداً در رابطه فوق ، $\frac{h}{t}$ را به $\frac{h}{t}$ تبدیل می کنیم خواهیم داشت:

$$I = T_{\Psi \, N}^{(1)} \ + \ E_{\Psi}^{'} \left(\frac{h}{\Upsilon}\right)^{\Psi} + E_{\, \hat{\gamma}}^{'} \left(\frac{h}{\Upsilon}\right)^{\hat{\gamma}} + ...$$

لذا برای حذف عل چنین عمل می کنیم:

10 I = 19
$$T_{YN}^{(1)} - T_{YN}^{(1)} + E_{S}'' h^{S} + ...$$

$$I = \frac{15 T_{YN}^{(1)} - T_{YN}^{(1)}}{10} + E_{S}'' h^{S} + E_{A}'' h^{A} + ...$$

$$I = T_{\forall N}^{(\forall)} + o(h^{\forall})$$

$$I = T_{fN}^{(f)} + o(h^{f})$$
 آنگاه $T_{fN}^{(f)} = \frac{15 T_{fN}^{(1)} - T_{fN}^{(1)}}{10}$ انگاه واگر قرار دهیم:

با تکرار این روند، مقادیر تقریبی T_{κ} , T_{κ}

$$T_{k}^{(m)} = \frac{ {m \choose m-1} {m-1 \choose k} - T_{k-1}^{(m-1)}}{{m \choose k-1}}$$

در واقع:

و خطای
$$T_k^{(m)}$$
 متناسب با h^{Tm+T} است .

(m) با استفاده از جدول زیر می توانیم مقادیر $T_{\downarrow k}$ را محاسبه کنیم $T_{\downarrow k}$

m = 1	m =Y	m = "
$T_{N}^{(1)}$		
_(<u>))</u>	_(Y)	
TFN	T _{fN}	200 100 100
$T_{\lambda N}^{(1)}$	T _{AN}	T _{A N}
	T _{YN} (1) (1)	T _{fN} (1) T _{fN} (1)

 $\mathbf{m} = \mathbf{r}$ و $I = \int_0^1 \frac{dx}{1+x}$ و $I = \int_0^1 \frac{dx}{1+x}$ و $I = \int_0^1 \frac{dx}{1+x}$ و محاسه کنید.

$$x_0 = 0$$
, $x_1 = 1$, $h = 1$, $f(x) = \frac{1}{1+x}$

$$h=1$$
: $T_1 = \frac{h}{2}(f_0 + f_1) = \frac{1}{2}(1 + \frac{1}{2}) = 0.75$

$$h = \frac{1}{2}$$
: $T_2 = \frac{h}{2}(f_0 + 2f_1 + f_2) = \frac{1}{4}(1 + \frac{2}{1.5} + \frac{1}{2}) = 0.708333$

$$h = \frac{1}{4}$$
: $T_4 = \frac{h}{2}(f_0 + 2f_1 + 2f_2 + 2f_3 + f_4) = \frac{1}{8}(1 + \frac{2}{1.25} + \dots + \frac{1}{2}) = 0.697023$

$$h = \frac{1}{8}$$
: $T_8 = \frac{h}{2}(f_0 + 2f_1 + 2f_2 + \dots + 2f_7 + f_8) = 0.694122$

m = 0	m = 1	m =Y	m = ٣
$T_1^{(0)} = 0.75$			
$T_2^{(0)} = 0.708333$	$T_2^{(1)} = \frac{4 \times 0.708333 - 0.75}{3}$ = 0.69444	16 > 0 603254 = 0 60444	
$T_4^{(0)} = 0.697023$	$T_4^{(1)} = 0.693254$	$T_4^{(2)} = \frac{16 \times 0.693254 - 0.69444}{15}$ $= 0.693175$	
$T_8^{(0)} = 0.694122$	$T_8^{(1)} = 0.6931555$	$T_8^{(2)} = 0.693148$	$T_8^{(3)}$

$$T_8^{(3)} = \frac{64 \times 0.693148 - 0.693175}{63} = 0.693148$$
 (6D)