

Tarea 4 - TALF

Jorge Contreras 201573547-6 Juan Pablo Jorquera 201573533-6

1. Pregunta 1

La máquina de Turing se divide en dos grandes partes: inicialmente compara los tamaños para decidir cual es el menor y luego, de ser iguales compara término a término para definir el menor.

- Entre q0 y q4 va marcando los 1 con \$ y los 0 con * y luego verifica que exista ese dígito en el término de la derecha.
- En q2 se sale al haber encontrado un dígito a la izquierda y haber terminado por completo el de la derecha, entonces el de la derecha es más corto, y en q5 y q6 lo decodifica y limpia el resto.
- En q0 se sale al haber terminado el primer término, entonces avanza hasta la posición actual del término de la derecha y verifica si también terminó.
- En caso de no haber terminado significa que el término de la izquierda era menor, entonces en q8, q9 y q10, limpia el término de la derecha y decodifica el de la izquierda.
- Por otro lado si también termina el término de la derecha, significa que eran de igual tamaño, donde avanza a q11 y de aquí se devuelve al comienzo de la cinta.
- Acá para comparar son dos partes virtualmente simétricas, dependiendo si comienza con 0 o 1 (codificado), lo decodifica y avanza al término de la derecha para comparar hasta q16 y q17 respectivamente.

- En caso de encontrar el mismo valor, se devuelve a q12 para seguir comparando.
- De no ser así se sale en q19 y q22 para terminar devolviendo el término adecuado en el resto de los nodos de esta rama.
- Finalmente en la situación de que ambos sean completamente iguales, se sale de q12 a q13, estándo ya decodificados por el loop los términos, simplemente borra el de la derecha.

2. Pregunta 2

La maquina de Turing presenta tres cintas, la primera es aquella que presenta el input w y las otras dos son cintas inicialmente vacías.

El funcionamiento de la maquina es sencillo, y al igual que el anterior se divide en dos partes:

- El loop presente en la maquina (q0, q1, q2, q3) refiere a leer la primera palabra de w y escribirla en la segunda cinta, dejándola como "X" en la primera, luego se dirige al final de la primera cinta y lee el último termino para escribirlo en la tercera cinta dejando el valor de la primera como "X" nuevamente. Realiza el mismo proceso con la segunda y penúltima letra y así sucesivamente. Si la cantidad de letras es impar no logra entrar a la segunda parte, en cambio si la cantidad es par sí entra.
- Cuando la cantidad de letras es par entra en esta sección (q7), lo primero que hace es llevar la segunda cinta al inicio para luego empezar a comparar la segunda y tercera cinta, como la tercera cinta se empezó escribiendo de atrás para adelante se compara la segunda cinta desde el inicio moviéndose hacia la derecha y la tercera desde el final moviéndose a la izquierda, si la comparación es fructífera llega al estado de aceptación, si no lo es, no lo hará.

3. Pregunta 3

WHAT!?!?!?

4. Pregunta 4

4.1. Parte a

Elijamos $w = a^{n^2}b^nc^n \epsilon L_1$, con |vy| > 0 y |vxy| < n

Sea w de la forma w = uvxyz, al bombear encontramos con 5 casos:

- 1) "u" e "y" se encuentren dentro de a^{n^2} .
- 2) "u" e "y" se encuentren dentro de b^n .
- 3) "u" e "y" se encuentren dentro de c^n .
- 4) "u" e "y" se encuentren en la intersección de a^{n^2} y b^n .
- 5) "u" e "y" se encuentren en la intersección de b^n y c^n .

Bombeamos por casos.

1) uvxyz se encuentran dentro de a^{n^2} .

$$u = a^p$$

$$v = a^q$$

$$x = a^r$$

$$y=a^{3}$$

$$z = a^{n^2 - p - q - r - s}b^n c^n$$

k veces "v" e "y", quedando:

$$a^{n^2+(q+s)(k-1)}b^nc^n$$

$$a^{n^2+(q+s)}b^nc^n$$

Para que pertenesca al lenguaje,

$$n^2 + q + s = n*n$$

$$(q+s) = 0$$

Pero |vy|>0, existiendo así una contradicción.

2)Similar al caso 1, sólo que esta vez se bombea b^n , aumentando la cantidad de estas, quedando:

$$a^{n^2}b^{n+k}c^n$$

con cualquier k>1 nos escapamos del lenguaje.

3)Simétrico al caso 2, sólo que esta vez se bombea c^n .

4)"x" e "y" se encontrarán dentro de las a's y las b's, quedando algo del estilo:

 $a^{n^2+k}b^{n+k}c^n$

bombeando hacia arriba con k=2 queda:

$$a^{n^2+2}b^{n+2}c^n$$

Como no se cumple la igualdad, nos escapamos del lenguaje.

5)" x" e "y" se encontrarán dentro de las b's y las c's, quedando algo del estilo: $a^{n^2}b^{n+k}c^{n+k}$

bombeando hacia arriba con k=2 queda:

$$a^{n^2}b^{n+2}c^{n+2}$$

Como no se cumple la igualdad, nos escapamos del lenguaje.

Como nos escapamos en todos los casos posibles, L_1 no es LLC

4.2. Parte b

Primero vemos la ecuación de la forma $n=8-\frac{5}{3}m$, donde notamos que en los enteros no negativos solo hay dos combinaciones posibles:

- m = 0; n = 8
- m = 3; n = 3

Por lo que a continuación solo basta hacer el autómata correspondiente:

4b.png

Acá verificamos que incluso el lenguaje es regular, por lo que es de libre contexto.

4.3. Parte c

Al igual que antes, es más fácil armar el PDA viendo la ecución de otra forma: 5m = 24 + 3n

Como hay PDA que lo represente, entonces es LLC.

4.4. Parte d

A continuación se muestra el PDA del lenguaje, y como tiene PDA, entonces es LLC.

4d.png

4.5. Parte e

Elijamos $w = a^n b^n c a^n b^n \epsilon L_5$, con |vy| > 0 y |vxy| < n

Sea w de la forma w = uvxyz, al bombear nos encontramos con 7 casos:

- 1) "u" e "y" se encuentren dentro de las primera a^n .
- 2) "u" e "y" se encuentren dentro de las segundas a^n .
- 3) "u" e "y" se encuentren dentro de las primeras b^n .
- 4) "u" e "y" se encuentren dentro de las segundas b^n .
- 5) "u" e "y" se encuentren en la primera intersección de a's y b's.
- 6) "u" e "y" se encuentren en la segunda intersección de a's y b's.
- 7) "u" e "y" se encuentren en la intersección de las a^n con la c.

Bombeamos por casos.

1) uvxyz se encuentran dentro de a^n .

```
u = a^{p}
v = a^{q}
x = a^{r}
y = a^{s}
z = a^{n-p-q-r-s}b^{n}ca^{n}b^{n}
k \text{ veces } "v" \text{ e } "y", \text{ quedando: }
a^{n+(q+s)(k-1)}b^{n}ca^{n}b^{n}
eligiendo k=0
```

 $a^{n-q-s}b^nca^nb^n$

Para que pertenesca al lenguaje, n-q-s+n=n+n-(q+s)=0

Pero |vy|>0, existiendo así una contradicción.

- 2) Simétrico al caso 1, sólo que esta vez se bombea las segundas a^n .
- 3) Simétrico al caso 1, sólo que esta vez se bombean las primeras b^n .
- 4) Simétrico al caso 1, sólo que esta vez se bombean las segundas b^n .
- 5) |vxy| se encuentra entre a^nb^n , siguiendo la lógica del caso 1) es evidente que si bombeamos hacia arriba aumentamos los valores de a y b, y no se cumpliría la igualdad, ya que los primeros a's y b's son más que los segundos, escapando así del lenguaje.
- 6) Simétrico al caso 5, sólo que esta vez se bombean las segundas $a^n b^n$.
- 7) En los casos en que c se encuentre dentro de "v" o "y" es evidente que al bombear hacia arriba va a aumentar la cantidad de c en la palabra y se escapa logicamente del lenguaje, entonces el caso a analizar es cuando c se encuentra en x.

Así, si bombeamos hacia abajo, se eliminan las b's anteriores a c y las a's seguidas a c. $a^nb^{n-k}ca^{n-k}b^n$ k<0 nos escapamos del lenguaje.

Como nos escapamos en todos los casos posibles, L_5 no es LLC

5. Pregunta 5

5.1. Parte a

• Convertir GLC G en autómata de pila y expresión regular R en AFD.

- Construir PDA que incluya a G y a R simultáneamente $(L(G) \cap L(R))$, aceptando sólo en caso de que ambos acepten.
- Transformar nuevo PDA a GLC.
- Aplicar CYK sobre dicho GLC para verificar la pertenencia.

5.2. Parte b

- Realizar aseo sobre GLC.
- En el GLC verificar si existe algún loop, es decir, si alguna variable se produce a sí misma, o bien se producen entre ellas. De ser así inmediatamente se sabe que existe una palabra w tal que $|w| \ge n$.
- Realizar árbol sobre la gramática con S en la raíz, poninendo en los hijos todas las opciones de variables.
- Repetir el paso anterior para cada hijo incluyendo las combinaciones posibles en cada una.
- En caso de encontrar alguno de los hijos con largo mayor a n, entonces dicha palabra existe. Por otro lado, si se terminó el árbol y no se encontró, entonces dicho lenguaje no contiene palabras con dichas características.