Security of distributed Model Predictive Control under False Data Injection

Rafael Accácio NOGUEIRA rafael.accacio.nogueira@gmail.com

Seminar École Centrale de Lyon / Laboratoire Ampère 25/05/2023 @ Écully

https://bit.ly/43h2jms

About me

Rafael Accácio Nogueira

Postdoctoral researcher at LAAS/CNRS

Guaranteed relative localization and anti collision scenario for autonomous vehicles

Project AutOCampus (GIS neOCampus)

Advised by Soheib Fergani

About me

Bachelor Thesis at Escola Politécnica/UFRJ Identification of DES for fault-diagnosis Advised by Marcos Vicente de Brito Moreira

Rafael Accácio Nogueira

About me

Doctoral Thesis at CentraleSupélec/IETR

Security of dMPC under False Data Injection

Advised by Hervé Guéguen and Romain Bourdais

CS-Rennes (Expertise in MPC for Smart Buildings)

Brittany Region Interest (Cybersecurity)

Context

Smart(er) Cities

Multiple systems interacting

Context

Smart(er) Cities

Multiple systems interacting

- Distribution:
 - Electricity
 - Heat
 - Water
- Traffic

...

Context

Smart(er) Cities

Multiple systems interacting under

- Technical/Comfort Constraints
- We also want
 - Minimize consumption
 - Maximizer satisfaction
 - Follow a trajectory
- Solution → MPC

Model-based Predictive Control

Brief recap

Find optimal control sequence using predictions based on a model.

- We need an optimization problem
 - Decision variable is the control sequence calculated over horizon N
 - Objective function to optimize
 - System's Model
 - Other constraints to respect (QoS, technical restrictions, ...)

minimize
$$J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k])$$

$$\boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k])$$
subject to $g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leqslant 0$
 $h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0$
 $\forall \xi \in \{1, \dots, N\}$
 $\forall i \in \{1, \dots, m\}$
 $\forall j \in \{1, \dots, p\}$

In a nutshell

In a nutshell

In a nutshell

In a nutshell

In a nutshell

Find optimal control sequence, apply first element, rinse repeat \rightarrow Receding Horizon

Rafael Accácio Nogueira

In a nutshell

Nothing is perfect

- Issues
 - Topology
 - Complexity of calculation
 - Flexibility (Add/remove parts)
 - Privacy (RGPD)

Solution: distributed MPC

Objective

Study security in dMPC context

Security in dMPC context is relatively new¹ (First article from 2017²)

- How fragile are dMPC structures?
- How can agents act non-cooperatively?
- How to identify such agents and mitigate the effects?

¹<30 documents in scopus

²Velarde, Jose Maria Maestre, H. Ishii, et al., "Vulnerabilities in Lagrange-Based DMPC in the Context of Cyber-Security"

Outline

- 1 Decomposing the MPC
- 2 Attacks on the dMPC
- **3** Securing the dMPC
- 4 Conclusion

Outline

1 Decomposing the MPC

- We break the MPC optimization problem
- Make agents communicate

In other words

- Agents solve local problems
- Exchange some variables
- Variables are updated

Until Convergence

Remark

If agents exchange same variable \rightarrow consensus problem

Optimization Frameworks

Usually based on optimization decomposition methods³:

- Local problems with auxiliary variables
- Update auxiliary variables

Basically 2 choices⁴:

- Modify based on dual problem⁵ (Solve with dual and send primal)
- Modify based on primal problem (Solve with primal and send dual)

Many methods:

→ Security/privacy properties

• Cutting plane, sub-gradient methods, ...

Boyd et al., "Notes on Decomposition Methods"

⁴Other approaches, but similar concepts

⁵Lagrangian, ADMM, prices, etc +1000 articles in scopus

It is about communication

- We break the MPC optimization problem
- Make agents communicate. But how?
 - Many flavors to choose from⁶
 - Hierarchical / Anarchical
 - Parallel/Sequential
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

Optimization Decomposition

MPC

- Coordinator
 - Enforce global constraints

Optimization Decomposition

- Coordinator → Hierarchical
 - Enforce global constraints

Coordinator

- Coordinator → Hierarchical
 - Enforce global constraints
- Bidirectional

- Coordinator → Hierarchical
 - Enforce global constraints
- Bidirectional
- No delay → Synchronous

- Coordinator → Hierarchical
 - Enforce global constraints
- Bidirectional
- No delay → Synchronous
- But what to send?

or Quantity Decomposition | or Resource Allocation

Allocation θ_i

Update
$$\boldsymbol{\theta}_i^+ = f_i(\boldsymbol{\theta}_i, \boldsymbol{\lambda}_i)$$

Update
$$\boldsymbol{\theta}_i^+ = f_i(\boldsymbol{\theta}_i, \boldsymbol{\lambda}_i)$$

Allocation $oldsymbol{ heta}_i$ Dissatisfaction $oldsymbol{\lambda}_i$

Update
$$\boldsymbol{\theta}_i^+ = f_i(\boldsymbol{\theta}_i, \boldsymbol{\lambda}_i)$$

Primal Decomposition

In detail

- **1** Allocate θ_i for each agent
- They solve local problems and
- **3** Send dual variable λ_i^7
- Allocation is updated⁸ (respect global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,\ldots,oldsymbol{u}_M} & \sum _{i\in \mathcal{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & \mathrm{s.t.} & \sum _{i\in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & \downarrow & \mathsf{For \ each} \ i\in \mathcal{M} \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \, \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} \! + \! \rho^{(p)} \boldsymbol{\lambda}[k]^{(p)})$$

⁷It obfuscates system's parameters (+ Privacy)

⁸Only equation to change to add/remove agents

Example

Until everybody is evenly⁹ dissatisfied

⁹For inequality constraints dynamics are more complex

Distributed Model Predictive Control

Negotiation works if agents comply.

But what if some agents are ill-intentioned and attack the system?

Outline

2 Attacks on the dMPC

Rafael Accácio Nogueira

How can a non-cooperative agent attack?

Literature

¹⁰Velarde, Jose Maria Maestre, Hideaki Ishii, et al., "Scenario-based defense mechanism for distributed model predictive control"

How can a non-cooperative agent attack?

Our approach¹¹

- Primal decomposition
 - Maximum resources fixed
- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

¹¹Nogueira, Bourdais, and Guéguen, "Detection and Mitigation of Corrupted Information in Distributed Model Predictive Control Based on Resource Allocation"

How can a non-cooperative agent attack?

Our approach¹¹

- λ_i is the only interface
- Malicious agent modifies λ_i

$$\tilde{\boldsymbol{\lambda}}_i = \gamma_i(\boldsymbol{\lambda}_i)$$

¹¹Nogueira, Bourdais, and Guéguen, "Detection and Mitigation of Corrupted Information in Distributed Model Predictive Control Based on Resource Allocation"

Attack model

Liar, Liar, Pants of fire

- $\lambda \geqslant 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

- Same attack during negotiation
- Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \rightarrow \lambda = 0$$

- $\tilde{\boldsymbol{\lambda}}_i = T_i[k]\boldsymbol{\lambda}_i$
- Attack is invertible $\rightarrow \exists T_i[k]^{-1}$

Example

4 distinct agents

- Agent 1 is non-cooperative
- It uses $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- Simulate for different τ_1 get J_i
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- But can we mitigate these effects?
- Yes! (At least in some cases)

Outline

3 Securing the dMPC

Classification State of Art Proposed Methods Securing the dMPC Classification

Classification of mitigation techniques

Passive (Robust)

• 1 mode

Active (Resilient)

- 2 modes
 - Attack free
 - When attack is detected
 - Detection/Isolation
 - Mitigation

State of art

Security dMPC

	Decomposition	${\sf Resilient}/{\sf Robust}$	Detection	Mitigation
12	Dual	Robust (Scenario)	NA	NA
13	Dual	Robust (f-robust)	NA	NA
14	Jacobi-Gauß	_	_	_
15	Dual	Resilient	${\sf Analyt./Learn.}$	Disconnect (Robustness)

 $^{^{12} \}mbox{Jos\'e}$ M. Maestre et al., "Scenario-Based Defense Mechanism Against Vulnerabilities in Lagrange-Based Dmpc".

¹³Velarde, José M. Maestre, et al., "Vulnerabilities in Lagrange-Based Distributed Model Predictive Control".

¹⁴Chanfreut, J. M. Maestre, and H. Ishii, "Vulnerabilities in Distributed Model Predictive Control based on Jacobi-Gauss Decomposition".

¹⁵Ananduta et al., "Resilient Distributed Model Predictive Control for Energy Management of Interconnected Microgrids".

Our Approach

Explore Scarcity

- Resilient
- Analytical/Learning | ParameterData reconstruction | Estimation

Explore Scarcity

Outline

Proposed Methods

Resilient Primal Decomposition-based dMPC for deprived systems Resilient Primal Decomposition-based dMPC using Artificial Scarcity

What are deprived systems?

Systems whose optimal solution has all constraints active

- Unconstrained Solution $\mathring{m{U}}_i^{\star}[k]$
- $h_i(\mathring{U}_i^{\star}[k]) > \theta_i[k] \rightarrow \text{Scarce resources}$
 - Solution projected onto boundary
 - Same as with equality constraints¹⁶

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\operatorname{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + f_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \operatorname{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array} \longrightarrow$$

 $\begin{array}{c}
\text{minimize} \\
U_i[k] \\
\text{subject to}
\end{array}$

 $\frac{1}{2} \|U_i[k]\|_{H_i}^2 + f_i[k]^T U_i[k]$ $\bar{\Gamma}_i U_i[k] = \theta_i[k] : \lambda_i[k]$

¹⁶If system can have all constraints active simultaneously

Analyzing Deprived Systems

Assumptions

- Quadratic local problems
- Linear inequality constraints
- Scarcity
- Solution is analytical and affine

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\operatorname{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \operatorname{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

$$\lambda_i[k] = -P_i\theta_i[k] - s_i[k]$$

(local parameters unknown by coordinator) $\begin{cases} \bullet & P_i \text{ is time invariant} \\ \bullet & s_i[k] \text{ is time variant} \end{cases}$

Deprived Systems

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait! P_i is not supposed to change!
- \bullet Change \to Probably an Attack! Let's take advantage of this!

Detection Mechanism

• We estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

Assumption

We can estimate \bar{P}_i from a attack free negotiation

- If $\left\| \hat{\tilde{P}}_i[k] \bar{P}_i \right\|_F > \epsilon_P o \mathsf{Attack}$
- ullet Ok, but how can we estimate $\hat{ ilde{P}}_i[k]$?

¹⁷Using Recursive Least Squares for example

Estimating $\hat{\tilde{P}}_i[k]$

- We estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously using RLS
- Challenge: Online estimation during negotiation fails
 - Update function couples $oldsymbol{ heta}_i^p$ and $oldsymbol{\lambda}_i^p o$ low input excitation
- Solution: Send a random¹⁸ sequence to increase excitation until convergence.

¹⁸A random signal causes persistent excitation of any order (Adaptive Control)

Classification of mitigation techniques

- Active (Resilient)
 - Detection/Isolation
 - Mitigation ?

Mitigation mechanism

Reconstructing λ_i

- Now, we have $\hat{ ilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\overset{\text{\tiny rec}}{\boldsymbol{\lambda}}_i = -\bar{P}_i \boldsymbol{\theta}_i - \widehat{T_i[k]^{-1}} \widehat{\tilde{\boldsymbol{s}}}_i[k]$$

Choose adequate version for coordination

$$oldsymbol{\lambda}_i^{^{\mathsf{mod}}} = egin{cases} \hat{oldsymbol{\lambda}}_i, & \mathsf{if} \ \mathsf{attack} \ detected \ & & \hat{oldsymbol{\lambda}}_i, & \mathsf{otherwise} \end{cases}$$

Complete Mechanism

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

Two Phases

- 1 Detect which agents are non-cooperative
- **2** Reconstruct λ_i and use in negotiation

Complete algorithm

RPdMPC-DS¹⁹

¹⁹Nogueira, Bourdais, and Guéguen, "Detection and Mitigation of Corrupted Information in Distributed Model Predictive Control Based on Resource Allocation".

Example

District Heating Network (4 Houses)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h $(T_s = 0.25h \rightarrow k = \{1:20\})$
- Prediction horizon (N=4)
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

Results

Temporal

- Temperature in house I. Error $E_I(k)$.
- Nominal, S Selflish, C Corrected

- Agent starts cheating in k=6
- S Agent increases its comfort
- Restablish behavior close to

Results

Costs

Objective functions J_i (Normalized error %)

Agent	Selfish	Corrected
1	-36.3	0.5
П	21.67	-0.55
Ш	17.39	-0.0
IV	17.63	-0.09
Global	3.53	0.02

Outline

Proposed Methods
Resilient Primal Decomposition-based dMPC using Artificial Scarcity

Relaxing scarcity assumption

- Systems are not completely deprived
 - We can't change our constraints to equality ones anymore
 - Nor use the simpler update equation

minimize
$$\frac{1}{U_i[k]} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

Solution for $\lambda_i[k]$

Instead of having one single affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^0 \\ \vdots & \vdots \\ -P_i^{(Z)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(Z)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^Z \end{cases}$$

Still the $P_i^{(z)}$ are time independent

Solution for $\lambda_i[k]$ (Continued)

Separation surfaces depend on state and local parameters. Unknown by the coordinator.

Solution for $\lambda_i[k]$ (Continued) Still?

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^0 \\ \vdots & \vdots \\ -P_i^{(Z)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(Z)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^Z \end{cases}$$
 Scarcity

All constraints active
$$-P_i^{(0)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k] \quad \rightarrow \quad -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$
 None constraints active
$$-P_i^{(Z)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(Z)}[k] \quad \rightarrow \quad \boldsymbol{0}$$

Assumptions

The region $\Re^0_{\lambda_i} \neq \emptyset$ and we known a point $\overset{\circ}{\theta}_i \in \Re^0_{\lambda_i}$

Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

Parameters are modified. But not the regions' limits

$$\tilde{\boldsymbol{\lambda}}_{i}[k] = \begin{cases} -\tilde{P_{i}}^{(0)}\boldsymbol{\theta}_{i}[k] - \tilde{\boldsymbol{s}_{i}}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathbb{R}^{0} \\ \vdots & \vdots \\ -\tilde{P_{i}}^{(Z)}\boldsymbol{\theta}_{i}[k] - \tilde{\boldsymbol{s}_{i}}^{(Z)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathbb{R}^{Z}_{\boldsymbol{\lambda}_{i}} \end{cases}$$

- ullet If we can estimate $\widetilde{P}_i^{\,(0)}$ we can use same strategy than before
- ullet Problem: We don't know in which region $oldsymbol{ heta}_i$ is
- Solution: Let's force it using Artificial Scarcity

Artificial Scarcity

What you thought was way too much is not enough

• We use the point $\overset{\circ}{m{ heta}}_i$, which activates all constraints 20

- Generate points close to $\overset{\circ}{m{ heta}}_i$
- Estimate $\widehat{\widetilde{P}}_i^{(0)}[k]$
- How do we known the radius?
 - Unfortunately we don't.
- How to estimate $\widehat{\widetilde{P}}_i^{(0)}[k]$ nonetheless?
 - Expectation Maximization

²⁰If we have local constraints, we suppose this point respects them.

Expectation Maximization

- Iterative method to estimate parameters of multimodal models²¹
- ullet We give multiple observations $oldsymbol{ heta}_i^o[k]$ and $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
 - $\textbf{ ($\hat{P}_i^{(z)}[k]$, $\hat{\hat{s}}_i^{(z)}[k]$) having generated each $\hat{\lambda}_i^o[k]$}$
 - $m{M}$ new estimates $(\hat{\widetilde{P}}_i^{(z)}[k],\hat{\widetilde{s}}_i^{(z)}[k])$ based on the probabilities
- At the end we have
 - 1 Parameters with associated region index
 - Observations with associated region index
- ullet We consult the index associated to $egin{aligned} \circ & eta_i \end{aligned}$
- \bullet We recover the associated parameter, i.e., $\widehat{\widetilde{P}}_i^{(0)}[k]$

²¹Such as our PWA function after using some tricks

Detection and Mitigation

Same same, but different

Assumption

We estimate nominal $ar{P}_i^{(0)}$ from attack free negotiation

Detection

$$\left\| \hat{\tilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)} \right\|_{F} \ge \epsilon_{P_{i}^{(0)}}$$

Mitigation

$$\widehat{T_i[k]^{-1}} = \bar{P}_i^{(0)} \widehat{\tilde{P}}_i^{(0)}[k]^{-1}.$$

$$\overset{\text{rec}}{\boldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{\boldsymbol{\lambda}}_i.$$

Complete algorithm

RPdMPC-AS²²

²²Nogueira, Bourdais, Leglaive, et al., "Expectation-Maximization Based Defense Mechanism for Distributed Model Predictive Control".

Example

District Heating Network (4 Houses)

- Houses modeled using 3R-2C
- ullet Not enough power (Change $(oldsymbol{x}_0,oldsymbol{w}_0)$)
- Period of 5h $(T_s = 0.25h \rightarrow k = \{1:20\})$
- Prediction horizon (N=4)
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-AS)

Results

Temporal

Temperature in house I. Error $E_I(k)$.

Nominal, S Selflish C Corrected

Results

Costs

Objective functions J_i (Normalized error %)

Agent	Selfish	Corrected
I	-36.49	-4.12e - 05
П	35.81	1.74e - 05
Ш	29.22	2.14e - 05
IV	37.54	1.73e - 05
Global	10.69	-6e - 07

Too good to be true!

It's a kind of magic! It's a kind of magic!

- No disturbance in communication
- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - · Run multiple times with different initialization and pick best
 - Associate with other methods of the same family

Conclusion

Main takeaways

- Distributed MPC
 - increases privacy and flexibility
 - reduces complexity of calculation
 - in security context, it still is in its baby steps
- Primal decomposition
 - prevents agent to use more resources than agreed upon
 - increases privacy by communicating dual variables instead of primal
- Security for DMPC
 - Attacker can change the communication to receive more ressources.
 - The consequences of an attack are suboptimality and instability
 - We can explore scarcity information to mitigate

Open questions/Future directions

- Reconstruction with partial information (Current work)
- Study of error propagation (Current work)
- Robustness when add noise
- Estimation as Switched Auto-Regressive Exogenous System
- Sensibility to other topologies (more/less vulnerable?)
- Study of security on similar problems (flocking/consensus/averaging/federated learning etc)
- ...

For Further Reading I

- Aström, K.J. and B. Wittenmark. <u>Adaptive Control</u>. Addison-Wesley series in electrical and computer engineering: Control engineering. Addison-Wesley, 1989. ISBN: 9780201097207. DOI: 10.1007/978-3-662-08546-2_24.
- Maestre, José M, Rudy R Negenborn, et al. <u>Distributed Model Predictive Control made easy</u>. Vol. 69. Springer, 2014. ISBN: 978-94-007-7005-8.
- Nogueira, Rafael Accácio. "Security of DMPC under False Data Injection". 2022CSUP0006. PhD thesis. CentraleSupélec, 2022. URL: http://www.theses.fr/2022CSUP0006.

Questions? Comments?

Repository https://github.com/Accacio/thesis

Contact rafael.accacio.nogueira@gmail.com

Conditions

One way to ensure this, is to make the original constraints to form a cone.

No intersection

 $\langle \eta_1^2 = 180^o$

A 3-sided polyhedron.

θ dynamics

√ back

$$\boldsymbol{\theta}^{(p+1)} = \mathcal{A}_{\boldsymbol{\theta}} \boldsymbol{\theta}^{(p)} + \mathcal{B}_{\boldsymbol{\theta}}[k]$$

where

$$\mathcal{A}_{\theta} = \begin{bmatrix} I - \frac{M-1}{M} \rho^{(p)} P_{1} & \frac{1}{M} \rho^{(p)} P_{2} & \dots & \frac{1}{M} \rho^{(p)} P_{M} \\ \frac{1}{M} \rho^{(p)} P_{1} & I - \frac{M-1}{M} \rho^{(p)} P_{2} & \dots & \frac{1}{M} \rho^{(p)} P_{M} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{M} \rho^{(p)} P_{1} & \frac{1}{M} \rho^{(p)} P_{2} & \dots & I - \frac{M-1}{M} \rho^{(p)} P_{M} \end{bmatrix}$$

$$\mathcal{B}_{\theta}[k] = \begin{bmatrix} -\frac{M-1}{M} \rho^{(p)} s_{1}[k] + \frac{1}{M} \rho^{(p)} s_{2}[k] & \dots & -\frac{1}{M} \rho^{(p)} s_{M}[k] \\ \frac{1}{M} \rho^{(p)} s_{1}[k] - \frac{M-1}{M} \rho^{(p)} s_{2}[k] & \dots & -\frac{1}{M} \rho^{(p)} s_{M}[k] \\ \vdots & \vdots & \vdots \\ \frac{1}{M} \rho^{(p)} s_{1}[k] + \frac{1}{M} \rho^{(p)} s_{2}[k] & \dots & -\frac{M-1}{M} \rho^{(p)} s_{M}[k] \end{bmatrix}$$

Parameters estimated depending on Prediction Horizon ${\it N}$

constraints depend on # global constraints c and prediction horizon N

- Number of Regions $= 2^{Nc}$
- ullet Parameters in each region = Matrix $P_i^{(z)} = (Nc)^2 + {
 m vector} \; {m s}_i^{(z)}[k] = Nc$
 - Total $((Nc)^2 + Nc)2^{Nc}$

Some examples

- 1 constraint
 - $N=3 \rightarrow 96$ elements
 - $N=4 \rightarrow 320$ elements

Remark

We can reduce number of elements estimated from $P_i^{(z)}$ if we assume $P_i^{(z)} \in \mathbb{S}$ New total $\to ((Nc)^2 + 3Nc)2^{Nc-1}$