Algebraic Methods in Combinatorics

Instructor: Benny Sudakov

Assignment 2

To be completed by October 2

The solution of each problem should be no longer than one page!

Problem 1. Let p be prime. A set $A \subseteq \mathbb{F}_p^n$ is called a *Nikodym* set if for each point $x \in \mathbb{F}_p^n$, there is a line L(x) that contains x and satisfies $L(x) \setminus \{x\} \subseteq A$. Show that any Nikodym set in \mathbb{F}_p^n has size at least $\binom{p-2+n}{n}$.

Problem 2. Let S be an s-distance set in \mathbb{R}^n , i.e. there are at most s possible distances between distinct points in S.

- (a) Show that $|S| \leq {n+s+1 \choose s}$.
- (b) Show that there exists an s-distance set in \mathbb{R}^n of size at least $\binom{n+1}{s}$.

Problem 3. Let \mathcal{A} be a family of subsets of [n], such that the *symmetric differences* $A \triangle B$ (where $A \triangle B = (A \setminus B) \cup (B \setminus A)$) for distinct $A, B \in \mathcal{A}$, have only two possible sizes.

- (a) Show that $|\mathcal{A}| \leq 1 + \frac{n(n+1)}{2}$.
- (b) Find such a family \mathcal{A} of size at least $1 + \frac{n(n-1)}{2}$.