Name: Qian Liu ID 443089

Problem 1

```
(a) \bar{X} = \frac{1}{n} \sum_{i=1}^{100} X_i, X_i are iid for all i \in (0, \dots, 100)

X_i \mid \theta \sim N(\theta, 50)

\bar{X}_i \mid \theta \sim N(\theta, 50)
```

```
> prosample = sort(Michelson$velocity)
> model_var = 50;
> n = length(prosample);
>
> mle = function(y)
+ {
+ a = 0;
+ for(i in prosample){
+ a = a + log(dnorm(x = (i-y)/sqrt(model_var)), 0.5)
+ }
+ return (a)
+ }
> mle_mean = optim(par=800, fn = mle)$par; mle_mean
[1] 852.4023
> sample_mean = mean(prosample);
> a = sample_mean - qnorm(0.975)*sqrt(model_var/n);
> b = sample_mean + qnorm(0.975)*sqrt(model_var/n);
> c = c(a,b); c
[1] 851.0141 853.7859
```

(b) PIED = Prior On N(Mo, 50)
model $X:10 \sim N(0, 5^2)$
Posterior distribution D= §x,x,
$P(\theta D) = P(D \theta)P(\theta)/P(D)$
$ \sim P(D \theta)P(\theta) $
$= P(\theta) \stackrel{n}{\Pi} P(X; \theta)$
$\frac{1}{2 \exp(-\frac{1}{2} \left(\theta - \mu_{e}\right)^{2}) + \exp(-\frac{1}{2} \left(X; -\theta\right)^{2})}$
=0xp(-=x2(0-Mo)-===================================
$= exp(1-\frac{1}{2x^2}-\frac{h}{2x^2})\theta^2+\frac{1}{2}\frac{h}{2x^2}+\frac{1}{2}\sum_{i=1}^{\infty}X_{i}[\theta]+C)$
$= \exp\left((-\frac{n}{260} - \frac{n}{26})G^2 - 2\frac{(h_0^2 + \frac{5}{2})}{(\frac{1}{60} + \frac{5}{6})}\theta + m^2\right) + C$
$= exp(-\frac{1}{2}\cdot(\frac{1}{6^2}+\frac{9n}{6^2})(\theta-m)^2+C')$
5. P(DID) & exp(-=== (d-m)2)
OID N N(m, En2)
where $m = \frac{\delta_n^2}{\delta_n^2} \cdot \left(\frac{u_0}{\delta_0^2} + \frac{\sum X_i}{\delta_i^2} \right)$
$\vec{b}_n^2 = \frac{1}{\vec{b}_0^2} + \frac{11}{\vec{b}_2^2}$

As the posterior distribution is normal distribution. The equal-tailed is also narrowest.

```
> pri_var = 50;

> pri_mean = 800;

> post_var = 1/((1/pri_var)+(n/ model_var));

> post_mean = ((pri_mean/pri_var)+sum(prosample/model_var))*post_var;

> a = qnorm(0.975,mean = post_mean, sd = sqrt(post_var))

> b = qnorm(0.025,mean = post_mean, sd = sqrt(post_var))

> c = c(b,a); c

[1] 850.5022 853.2602
```

```
> sequ = seq(848,857,0.02); θ
> d = dnorm(sequ,mean = post_mean, sd = sqrt(post_var));
> plot(x= sequ , y = d, xlab = "velocity", ylab = "Probability")
```



```
> Min inter = function(x)
+ {
+ a = qnorm(x, mean = post_mean, sd = sqrt(post_var))
   b = qnorm(0.95+x, mean = post_mean, sd = sqrt(post_var))
   m = abs(b-a);
+
   return (m);
+ }
>
> a = optim(par= 0.01, fn = Min_inter)$par; a
[1]0.025
> b = 0.95 + a;
> a = qnorm(a,mean = post_mean, sd = sqrt(post_var))
> b = qnorm(b,mean = post_mean, sd = sqrt(post_var))
> c = c(a,b); c
[1] 850.5022 853.2602
```

The posterior distribution is normal distribution. The equal-tailed is also narrowest.

Problem 2

(a) FOR Prior $\wedge \sim gamma(\alpha, p)$
$P(\lambda) = \frac{\beta^{\alpha}}{T(\alpha)} \lambda^{\alpha-1} \cdot e^{-\beta \lambda}, \lambda > 0$
where $T(\alpha) = \int_0^\infty \lambda^{\alpha-1} e^{-\lambda} d\lambda$
Proterior distribution.
Proterior distribution. $P(\lambda \mid \chi^{(n)}) = \frac{B^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda} \lambda^{n} e^{-\lambda} \sum_{i=1}^{n} \chi_{i}$
= \ e \ e \ is \ \ d \
/ (1a)
$=\frac{(\beta+\frac{2}{2})}{(\alpha+n)} \times (\beta+\frac{2}{2})$ $=\frac{(\beta+\frac{2}{2})}{(\alpha+n)} \times (\beta+\frac{2}{2})$
[(a+ n)
$7 \times Set \alpha = 3, \beta = 1$
then $\lambda (x^{(n)}) \sim gamma(3+n,1+\frac{n}{2},\chi_i)$
(b) For prior P(X)=1
$\frac{P(X^{(n)}) \stackrel{=}{=} P(X^{n} X) \cdot P(X) / P(X^{n})}{< (\geq \times;)^{n+1} X^{n} \cdot e^{-X \geq x};}$
$\Rightarrow \lambda \mid \chi^{(n)} \sim gamma(1+n, \frac{s}{2} \times i)$
J , 3 = 1
(c) for points (a). $\hat{\chi}_{mean} = \frac{\alpha + n}{\beta + \sum_{i} \chi_{i}}$
$\beta + \sum_{i=1}^{n} \chi_{i}$
2 . 7

In part(a), alpha = 3 and beta = 1, mle_mean =3.287695 post_mean_a = 3.26995; In part(b), post_mean_b = 3.353454;

```
> prosample = rexp(50, 3)
> alpha = 3;
> beta = 1;
> mle = function(y)
+ {
+ a=0;
+ for(i in prosample){
+ a = a + log(dexp(x = i, rate = y), 0.5)
+ }
+ return (a)
+ }
> mle mean = optim(par=6, fn = mle)$par; mle_mean
[1] 3.287695
> post mean a = (alpha+length(prosample))/(beta+sum(prosample));post_mean_a
[1] 3.26995
> post_mean_b = (1+length(prosample))/sum(prosample);post_mean_b
[1] 3.353454
```

(D)
In part (a), the interval is [2.449417, 4.207196], range = 1.75778
part (b), the interval is [2.496867, 4.334423], range = 1.83755
The interval in part a is narrower.

```
> a_1 = qgamma(0.975, shape = alpha+length(prosample),scale = 1/(beta+sum(prosample)))
> a_2 = qgamma(0.025, shape = alpha+length(prosample),scale = 1/(beta+sum(prosample)))
> c1 = c(a_2,a_1);c1
[1] 2.449417 4.207196
> b_1 = qgamma(0.975, shape = 1+length(prosample),scale = 1/sum(prosample));
> b_2 = qgamma(0.025, shape = 1+length(prosample),scale = 1/sum(prosample));
> c2 = c(b_2,b_1);c2
[1] 2.496867 4.334423
>> d1 = a_1-a_2;d1
[1] 1.75778
> d2 = b_1-b_2;d2
[1] 1.837556
> d = d1 - d2;d
[1] -0.07977615
```

Problem 3

_
The model
$P(x \theta) = {n \choose x} \cdot \theta^x \cdot (1-\theta)^{n-x}$
$f_{n} = \frac{\partial}{\partial x_{n}} = \frac{\partial}{\partial x_{n}} \frac{\partial}{\partial x_{n}} = \frac{\partial}{\partial x_{$
$P(x \theta) = {n \choose x} \cdot \theta^{x} \cdot (1-\theta)^{n-x}$ for prior $P(\theta) = \frac{\theta^{\alpha}(1-\theta)^{\beta-1}}{\beta(\alpha,\beta)}, \alpha > 1$
The posterior distribution
$p(\theta X) \propto p(\theta) p(x \theta)$ $\propto \theta^{\alpha+\alpha-1} (1-\theta)^{\alpha+\beta} = x^{-1}$
θ1× ~ Beta (α+ x, n+ β- x), α > 1,β>1
A reasonable approximation of the value of the
median of de beta distribution, for both at x, and
n+B-x greater or equal to one, is given by the
$\frac{1}{2}$ $\frac{1}$
formula. $\delta(x) = \text{median } \Leftrightarrow \simeq \frac{\alpha + x - \frac{1}{3}}{\alpha + x + n + \beta - x - \frac{2}{3}} = \frac{\alpha + x - \frac{1}{3}}{\alpha + \beta + n - \frac{2}{3}}$
The risk function & same as MSE under squared
errot (045) is
$R(\theta,\delta(x)) = MSE[\delta(x)]$
= Var[S(x)] + Bias LS(x)]
$= \frac{n\theta(1-\theta)}{+(a+n\theta-\frac{1}{3}-\theta)^2}$
(a+B+n-=) + (x+B+n-== 0)
$\frac{3}{(n\theta-n\theta^2+(\alpha-\frac{1}{3}-\alpha\theta-\beta\theta+\frac{2}{3}\theta)^2)}$
$(\alpha+\beta+n-\frac{2}{3})^{2}$

Frequentists believe that scientific inference is not inductive but deductive. Their approach to statistics is also associated with the philosophy and follows Popper's doctrine of falsification. In contrast, Bayesian inference is associated with inductive reasoning and the idea that a model can be replaced by better ones but can never be directly falsified by a significance test. Bayesians may apply 'Bayesian Model Averaging' to minimize the risk, but the 'poor model' is still involved in the model averaging process. For example, frequentists deduct central limit theory and generate some statistic model and test model based on that. For example, when σ is known, $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} N(0,1)$ where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} Xi$, $E[X] = \mu$, $Var[X] = \sigma^2$; And when when σ is unknown, $\frac{\bar{X}-\mu}{s/\sqrt{n}} \stackrel{d}{\to} \mathsf{T}_{(n-1)}$, where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} Xi$, $\mathsf{E}[\mathsf{X}] = \mu$, $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} Xi^2 - \bar{X}^2$; They falsify other models and only believe in the model they have deducted. However, Bayesian inference is different, they might create a model Class = {m1,m2,m3..., mn}, they can define each model and train those models by optimizing those parameters with some training data set. The model class after training can be, for example, m1: $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} N(0,1)$; m2: $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} Poisson(1)$; m3: $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} N(0,1)$; m3: $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\to} N(0,1)$ $\stackrel{d}{\rightarrow}$ gamma(1,1);m4: $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \stackrel{d}{\rightarrow}$ beta(1,1);; The probability of each model might be like P (m1) = 0.5; P(m2) = 0.1; P(m3)=0.01;...; and $\sum_{i=1}^{n} p(mi) = 1$; Then, they average all those models with respect to their weights. Given some data set, 'Bayesian Model Averaging' may work well while the model deducted by frequentists doesn't fit. However, as there is no perfect model that can fit all problems, so it is also possible that BMA does poor performance on other data set while frequentists' model may work well.

b = 0.95 + a:

```
Appendix
R code for problem 1:
prosample = sort(Michelson$velocity)
model_var = 50;
n = length(prosample);
mle = function(y)
 a = 0:
 for(i in prosample){
    a = a + log(dnorm(x = (i-y)/sqrt(model var)), 0.5)
  return (a)
mle_mean = optim(par=800, fn = mle)$par; mle_mean
sample_mean = mean(prosample);
a = sample_mean - qnorm(0.025)*sqrt(model_var/n);
b = sample_mean + qnorm(0.025)*sqrt(model_var/n);
c = c(a,b); c
pri var = 50;
pri mean = 800;
post_var = 1/((1/pri_var)+(n/ model_var));
post mean = ((pri mean/pri var)+sum(prosample/model var))*post var;
a = qnorm(0.975, mean = post_mean, sd = sqrt(post_var))
b = gnorm(0.025, mean = post mean, sd = sgrt(post var))
c = c(b,a); c
sequ = seq(848,857,0.02);
d = dnorm(sequ,mean = post_mean, sd = sqrt(post_var));
plot(x= sequ , y = d, xlab = "velocity", ylab = "Probability")
a = gnorm(0.975, mean = post mean, sd = sgrt(post var))
b = gnorm(0.025, mean = post mean, sd = sqrt(post var))
c = c(b,a); c
Min inter = function(x)
{
    a = qnorm(x, mean = post_mean, sd = sqrt(post_var))
    b = qnorm(0.95+x, mean = post_mean, sd = sqrt(post_var))
    m = abs(b-a);
    return (m);
}
a = optim(par= 0.01, fn = Min inter)$par;
```

a = qnorm(a,mean = post_mean, sd = sqrt(post_var))

```
b = gnorm(b,mean = post_mean, sd = sqrt(post_var))
c = c(a,b); c
R code for problem 2:
prosample = rexp(50, 3)
alpha = 3;
beta = 1
mle = function(y)
{
a=0;
for(i in prosample){
 a = a + log(dexp(x = i, rate = y), 0.5)
return (a)
}
mle mean = optim(par=6, fn = mle)$par; mle mean
post_mean_a = (alpha+length(prosample))/(beta+sum(prosample));post_mean_a
post_mean_b = (1+length(prosample))/sum(prosample);post_mean_b
a_1 = qgamma(0.975, shape = alpha+length(prosample),scale = 1/(beta+sum(prosample)))
a_2 = qgamma(0.025, shape = alpha+length(prosample),scale = 1/(beta+sum(prosample)))
c1 = c(a 2,a 1);c1
b 1 = qgamma(0.975, shape = 1+length(prosample), scale = 1/sum(prosample));
b_2 = qgamma(0.025, shape = 1+length(prosample), scale = 1/sum(prosample));
c2 = c(b_2,b_1);c2
d1 = a_1-a_2;d1
d2 = b_1-b_2;d2
d = d1 - d2;d
```