```
### **Flúor (F)**
**Propriedades:**
- Símbolo: **F**
- Número atômico: **9**
- Massa atômica: **19,00 u**
- Ponto de fusão: **-219,6 °C**
- Ponto de ebulição: **-188,1 °C**
- Eletronegatividade: **3,98** (a maior de todos)
- Estados de oxidação: **-1** (sempre)
- Distribuição eletrônica: **[He] 2s2 2p5**
**Características:**
- Gás amarelo-pálido, diatômico (F<sub>2</sub>)
- Mais reativo de todos os elementos
- Reage violentamente com a maioria dos compostos
**Para que serve?**
- Pasta de dente (fluoreto de sódio)
- Refrigeração (CFCs, em desuso)
- Produção de urânio (UF<sub>6</sub>)
- Teflon (politetrafluoretileno)
**Onde é encontrado?**
- Fluorita (CaF<sub>2</sub>)
- Criolita (Na<sub>3</sub>AIF<sub>6</sub>)
- Água fluorada
### **Cloro (CI)**
**Propriedades:**
- Símbolo: **Cl**
- Número atômico: **17**
- Massa atômica: **35,45 u**
- Ponto de fusão: **-101,5 °C**
- Ponto de ebulição: **-34,0 °C**
- Eletronegatividade: **3,16**
- Estados de oxidação: **-1, +1, +3, +5, +7**
- Distribuição eletrônica: **[Ne] 3s2 3p5**
**Características:**
- Gás verde-amarelado, tóxico (Cl<sub>2</sub>)
- Solúvel em água (forma ácido hipocloroso)
- Usado como arma química na 1ª Guerra
**Para que serve?**
- Tratamento de água (desinfecção)
```

- PVC (policloreto de vinila)

- Produtos de limpeza (água sanitária)
- Produção de papel e medicamentos
- **Onde é encontrado?**
- Sal marinho (NaCl)
- Silvita (KCI)
- Produzido por eletrólise

```
### **Bromo (Br)**
```

- **Propriedades:**
- Símbolo: **Br**
- Número atômico: **35**
- Massa atômica: **79,90 u**
- Ponto de fusão: **-7,2 °C**
- Ponto de ebulição: **58,8 °C**
- Eletronegatividade: **2,96**
- Estados de oxidação: **-1, +1, +3, +5**
- Distribuição eletrônica: **[Ar] 3d10 4s2 4p5**
- **Características:**
- Líquido vermelho-escuro, volátil (Br₂)
- Único halogênio líquido em condições normais
- Vapores são irritantes e tóxicos
- **Para que serve?**
- Retardantes de chama (éteres bromados)
- Fotografia (AgBr sensível à luz)
- Fluidos de perfuração
- Purificação de água em piscinas
- **Onde é encontrado?**
- Água do mar (brometos)
- Lagos salgados (Mar Morto)
- Produzido a partir de salmoura

lodo (I)

- **Propriedades:**
- Símbolo: **I**
- Número atômico: **53**
- Massa atômica: **126,90 u**
- Ponto de fusão: **113,7 °C**
- Ponto de ebulição: **184,3 °C**
- Eletronegatividade: **2,66**
- Estados de oxidação: **-1, +1, +5, +7**

```
- Distribuição eletrônica: **[Kr] 4d10 5s2 5p5**
**Características:**
- Sólido negro, brilhante, sublima (I<sub>2</sub>)
- Essencial para a tireoide
- Solução alcoólica (tintura de iodo)
**Para que serve?**
- Desinfetante (antisséptico)
- Contraste radiológico
- Sal iodado (prevenção de bócio)
- Fotografia e LED
**Onde é encontrado?**
- Algas marinhas
- Caliche (depósitos de nitrato)
- Água do mar (traços)
### **Astato (At)**
**Propriedades:**
- Símbolo: **At**
- Número atômico: **85**
- Massa atômica: **[210]** (isótopo mais estável)
- Ponto de fusão: **302 °C**
- Ponto de ebulição: **337 °C**
- Eletronegatividade: **2,2**
- Estados de oxidação: **-1, +1, +3, +5, +7**
- Distribuição eletrônica: **[Xe] 4f14 5d10 6s2 6p5**
**Características:**
- Elemento mais raro na natureza
- Altamente radioativo (meia-vida 8,1 horas)
- Propriedades entre iodo e metais
**Para que serve?**
- Pesquisa médica (terapia alvo)
- Estudos de radioquímica
- Aplicações limitadas pela instabilidade
**Onde é encontrado?**
- Traços em minérios de urânio
- Produzido em aceleradores
```

Tenessino (Ts) - Elemento Sintético

```
**Propriedades:**
- Símbolo: **Ts**
```

- Número atômico: **117**
- Massa atômica: **[294]** (isótopo mais estável)
- Estado físico: **Sólido (previsto)**
- Eletronegatividade: **Desconhecida**
- Distribuição eletrônica: **[Rn] 5f¹⁴ 6d¹⁰ 7s² 7p^{5**} (prevista)
- **Características:**
- Radioativo (meia-vida ~50 ms)
- Comportamento químico similar ao astato
- Produzido em quantidades mínimas
- **Para que serve?**
- Pesquisa em física nuclear
- Estudo de elementos superpesados
- **Onde é encontrado?**
- Produzido em aceleradores de partículas
- Joint Institute for Nuclear Research (Rússia)

Comparação entre os Halogênios

- **Evolução de Propriedades:**
- 1. **Flúor** → Gás superreativo (só forma -1)
- 2. **Cloro** → Gás desinfetante versátil
- 3. **Bromo** → Líquido vermelho tóxico
- 4. **lodo** → Sólido essencial para saúde
- 5. **Astato** → Radioativo e raro
- 6. **Tenessino** → Artificial e instável
- **Aplicações Chave:**
- **Flúor**: Odontologia e materiais antiaderentes
- **Cloro**: Purificação de água e plásticos
- **Bromo**: Retardantes de chama e fotografia
- **lodo**: Medicina e nutrição
- **Astato**: Pesquisa em terapia alvo
- **Tenessino**: Estudo de elementos superpesados
- **Fatos Interessantes:**
- 1. O flúor é tão reativo que forma compostos com gases nobres
- 2. O cloro salvou milhões de vidas ao purificar água
- 3. Bromo vem do grego "bromos" (odor fétido)
- 4. Deficiência de iodo é a principal causa evitável de retardo mental
- 5. Astato significa "instável" em grego
- 6. Tenessino homenageia o Tennessee (EUA) e o Instituto de Pesquisa russo

Conclusão sobre o Grupo 7A

Os halogênios formam uma família única:

- **Reatividade decrescente**: Flúor (extremamente reativo) → Astato (menos reativo)
- **Estados físicos variados**: Gás (F, Cl) \rightarrow Líquido (Br) \rightarrow Sólido (I, At)
- **Importância vital**: Cloro e iodo essenciais para saúde
- **Aplicações industriais**: Desde desinfetantes até plásticos
- **Desafios ambientais**: CFCs e retardantes de chama bromados

Esta família ilustra perfeitamente como elementos com configuração eletrônica ns² np⁵ apresentam propriedades químicas similares, mas com gradientes marcantes em reatividade e características físicas, sendo essenciais tanto para a vida quanto para a indústria moderna.