Topology QR Solutions – 12 Sep 2009

by A. K. Wheeler*

updated September 5, 2010

Morning Session

1. Prove that if X is a (non-empty) countable compact Hausdorff space, then X is not connected. (You may use the fact that an intersection of countably many dense open sets in a compact Hausdorff space is dense.)

Solution.

2. Let P be a polygon with an even number of sides. Suppose that the sides are identified in pairs in any way whatsoever. Prove that the quotient space is a manifold.

Solution.

3. Prove that if M is a non-empty compact smooth manifold with boundary, then there is no smooth retraction from M to its boundary ∂M . (You may use Sard's Theorem.)

Solution. Assume there is a smooth retraction $f: M \to \partial M$. Sard's Theorem gives a regular value $y \in \partial M$ for f and $f|_{\partial M} = \mathrm{id}_M$, so $f^{-1}(y)$ is a smooth manifold of dimension $\dim M - \dim \partial M = 1$. Now y is closed implies $f^{-1}(y)$ is closed, hence compact. So since $f^{-1}(y)$ is 1-dimensional, it is a finite disjoint union of circles and line segments. In particular, its boundary is an even number of points. But

$$\begin{array}{rcl} \partial \left(f^{-1}(y) \right) & = & f^{-1}(y) \cap \partial M \\ & = & f \circ f^{-1}(y) \\ & = & y, \end{array}$$

^{*}with additional input from M. Hochster, G.P. Scott, and others from the U of M Mathematics Department

a contradiction. \square

4. Let X be a path-connected topological space. For n > 1 an integer, denote by S_n the symmetric group on n-letters. State and prove a bijective correspondence between degree n covering spaces of X and group homomorphisms $\pi_1(X) \to S_n$. (Note that finding an accurate statement is part of the problem.)

Solution. For a degree n covering space $p: \tilde{X} \to X$, a path γ in X has a unique lift $\tilde{\gamma}$ starting at a given point in $p^{-1}(\gamma(0))$ so this gives a well-defined map $p^{-1} \circ \gamma(0) \to p^{-1} \circ \gamma(1)$. Its inverse L_{γ} is similarly defined using $\bar{\gamma}$, the reverse path of γ . Thus $L_{\gamma_1\gamma_2} = L_{\gamma_1}L_{\gamma_2}$ for any paths γ_1, γ_2 implies L_{γ} only depends on the homotopy class of γ . Thus L_{γ} induces a bijection $\pi_1(X, x_0) \to G$ where $G \subset S_n$ is the group of permutations of $p^{-1}(x_0)$ and x_0 is any base point for X, since X is path connected. \square

5. For integers k, n with $\leq k \leq n$, let

$$S^n = \{(x_1, \dots, x_{n+1}) \mid x_1^2 + \dots + x_{n+1}^2 = 1\} \subset \mathbb{R}^{n+1}$$

and let

$$D_k = \{(x_1, \dots, x_{n+1}) \mid x_1^2 + \dots + x_k^2 \le 1, x_{k+1} = \dots = x_{n+1} = 0\}.$$

Calculate the homology of $X_{k,n} = S^n \cup D_k$.

Solution. Note that S^n is the union of an n-ball and a point. Include the disc D_k to get a CW-complex for $X_{k,n}$. The groups are \mathbb{Z} in the n, k, 1 positions and trivial elsewhere. Hence the homology groups are

$$H_n(X_{k,n}) = \begin{cases} \mathbb{Z} & \text{if } k \neq n-1, n \neq 1 \\ 0 & \text{otherwise} \end{cases}$$

$$H_k(X_{k,n}) = \begin{cases} \mathbb{Z} & \text{if } k \neq n-1, n \neq 1 \\ 0 & \text{otherwise} \end{cases}$$

$$H_0(X_{k,n}) = \mathbb{Z}.$$

All other homology groups are zero. \square

Afternoon Session

1. Prove that the one point compactification $X \cup \{\infty\}$ is Hausdorff if and only if X is locally compact and Hausdorff.

Solution. Suppose X is locally compact Hausdorff, and choose $x \in X$. Choose a compact set C containing a neighborhood U of x. Then U

and $Y \setminus C$ are disjoint neighborhoods of x, ∞ , respectively and hence Y is Hausdorrf.

Conversely, suppose $Y = X \cup \{\infty\}$ is Hausdorff. Then X is automatically Hausdorff. For $x \in X$, choose disjoint neighborhoods U, V around x, ∞ , respectively. Then $C = Y \setminus V$ is closed in Y, hence compact; $C \subset X$ implies C is compact in X. And, C contains the neighborhood U of $x \in X$. Hence X is locally compact Hausdorff. \square

2. Let $S^2 \subset \mathbb{R}^3$ be the unit sphere. The point $(x,y) \in \mathbb{R}^2$ is the stereographic projection of the point $(\xi,\eta,\zeta) \in S^2$ if and only if the three points (0,0,1),(x,y,0), and (ξ,η,ζ) are collinear; this defines a map $\sigma:\mathbb{R}^2\to S^2$, $\sigma(x,y)=(\xi,\eta,\zeta)$. Show that σ maps \mathbb{R}^2 diffeomorphically onto the complement of a point in S^2 .

Solution.

3. By definition, a topological group is a set G with both a toplogy and a group structure, such that the map $G \to G$ sending x to x^{-1} and the map $G \times G \to G$ sending (x,y) to xy are both continuous. Let $a \in G$ denote the identity of this topological group G. Show that $\pi_1(G,1)$ is abelian.

Solution.

4. Show that the map $\phi: S^1 \times S^1 \to \mathbb{R}^3$ defined by

$$\phi(u,v) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 + \cos \beta \\ 0 \\ \sin \beta \end{pmatrix}$$

for $u = (\cos \alpha, \sin \alpha)$ and $v(\cos \beta, \sin \beta)$ is an embedding.

Solution. Note ϕ also defines a map $[0,2\pi] \times [0,2\pi] \to \mathbb{R}^3$ by

$$(\alpha, \beta) \mapsto \begin{pmatrix} (\cos \alpha)(2 + \cos \beta) \\ (\sin \alpha)(2 + \cos \beta) \\ \sin \beta \end{pmatrix}$$

which has Jacobian

$$J = \begin{pmatrix} -(\sin \alpha)(2 + \cos \beta & (\cos \alpha)(-\sin \beta) \\ (\cos \alpha)(2 + \cos \beta) & (\sin \alpha)(-\sin \beta) \\ 0 & \cos \beta \end{pmatrix}.$$

If J maps $(\alpha_0, \beta_0) \in [0, 2\pi] \times [0, 2\pi]$ to zero, then $\beta_0 \cos \beta = 0$. If $\cos \beta = 0$ then $\sin \alpha = \cos \alpha = 0$, a contradiction. So $\beta_0 = 0$, and this then implies $\alpha_0 = 0$. Therefore J is injective, i.e., ϕ is an immersion.

Now, $[0,2\pi] \times [0,2\pi]$ (and $S^1 \times S^1$) are compact so the image of ϕ is compact, hence closed as well. So a compact set in \mathbb{R}^3 intersects the image of ϕ in a closed set, C, which is also closed in the image of ϕ . Then by continuity of ϕ , $\phi^{-1}(C)$ is a closed subset of the compact space $[0,2\pi] \times [0,2\pi]$, so is compact. Conclude ϕ is proper. Together with the conclusion ϕ is an immersion, this implies ϕ is an embedding. \square

5. Let X be a finite simplicial complex of dimension 1. Prove that either $\pi_1 X \cong \mathbb{Z}$, or every continuous map $f: X \to X$ homotopic to the identity has a fixed point.

Solution. Let $f: X \to X$ be continuous and homotopic to the identity. So the Lefshetz number for f is equal to the Euler characteristic $\chi(X)$. If f does not have a fixed point then $\chi(X) = 0$. Equivalently, X has an equal number of vertices and edges.

Given any finite simplicial complex of dimension 1 with V vertices and E edges, what happens when adding an edge? Then E becomes E+1 and either V remains fixed or becomes V+1. If V remains fixed then the Euler characteristic goes down by 1. If not, then the Euler characteristic remains fixed.

When E=1 the only possible complex is a closed line segment, so $\chi(X)=-1$. Similarly, when E=2, $\chi(X)=-1$. For $E\geq 3$, add each edge one at a time to construct X from the E=2 case. Then V must increase exactly once for $\chi(X)=0$. If this happens it means a circuit has formed. Then X is homotopy equivalent to a circle, so $\pi_1(X)\simeq \mathbb{Z}$.

Conversely, a small rotation of a circle is homotopic to the identity but fixes no points. \Box