# Measure Theory and Integration

Luc Veldhuis

27 November 2017

### Integration over multiple variables

$$f(x,y) = \dots$$
$$\int_{\Lambda} f(\overline{x}) d\overline{x}$$

 $\int_{(0,1)^2}^1 xydxdy = \int_0^1 x \int_0^1 ydx \ dx$  iterative integration of single variables.

 $(X, \mathcal{A}, \mu)$  and  $(Y, \mathcal{C}, r)$  are measure spaces.

Can we find  $(X \times Y, ?, \rho)$ .

If  $A \in \mathcal{A}$ ,  $C \in \mathcal{C}$ , we want  $A \times C$  to be measurable and  $\rho(A \times C) = \mu(A)r(C)$ .

Assume  $(X, \mathcal{A}, \mu)$  and  $(Y, \mathcal{C}, r)$  are  $\sigma$ -finite.

 $\exists A_1, A_2, \dots \in \mathcal{A} \ A_i \uparrow X \text{ such that } \mu(A_i) < \infty \ \forall i.$ 

 $\mathcal{A} \times \mathcal{C} = \{A \times C | A \in \mathcal{A}, C \times \mathcal{C}\}$  is in general not a  $\sigma$ -algebra. It is a semi-ring.



#### Definition

$$A\otimes C=\sigma(A\times C)$$

#### Lemma

If  $A = \sigma(\mathcal{F})$ ,  $C = \sigma(\mathcal{G})$  and  $\exists F_i \in \mathcal{F}$ ,  $F_i \uparrow X$  and  $\exists G_i \in \mathcal{G}$ ,  $G_i \uparrow Y$  then  $\sigma(\mathcal{F} \times \mathcal{G}) = A \otimes C$ .

#### Proof

$$\sigma(\mathcal{F} \times \mathcal{G}) \subseteq \sigma(\mathcal{A} \times \mathcal{C}) = \mathcal{A} \otimes \mathcal{C}$$
  
$$\sigma = \{ A \in \mathcal{A} | A \times G \in \sigma(\mathcal{F} \times \mathcal{G}) \ \forall G \in \mathcal{G} \}.$$

Now  $\Sigma$  is a  $\sigma$ -algebra.

First condition:

$$X \times G = \bigcup_{i=1}^{\infty} F_i \times G = \bigcup_{i=1}^{\infty} (F_i \times G) \in \sigma(\mathcal{F} \times \mathcal{G}).$$

Check the rest yourselves.

$$\mathcal{F} \subseteq \Sigma$$
,  $\sigma(\mathcal{F}) = \mathcal{A}$ ,  $\mathcal{A} \subseteq \Sigma$ ,  $\Sigma \subseteq \mathcal{A}$ , so  $\Sigma = \mathcal{A}$ .

So 
$$\mathcal{A} \times \mathcal{G} \subseteq \sigma(\mathcal{F} \times \mathcal{G})$$
.

Similarly, 
$$\mathcal{F} \times \mathcal{C} \subseteq \sigma(\mathcal{F} \times \mathcal{G})$$
.

So 
$$A \times C = (A \times Y) \cap (X \times C)$$

$$=\bigcup_{j,k}(A\times G_k)\cap (F_j\times C)\in \sigma(\mathcal{F}\times\mathcal{G}) \text{ because}$$

$$(A \times G_k) \in \sigma(\mathcal{F} \times \mathcal{G})$$
 and  $(F_j \times C) \in \sigma(\mathcal{F} \times \mathcal{G})$ 



#### Product measure functions

 $(X \times Y, \mathcal{A} \otimes \mathcal{C}, ?)$   $\rho$  should be a measure on  $\mathcal{A} \otimes \mathcal{C}$ .  $\rho(A \times C) = \mu(A)r(C)$ . Even better:  $\mathcal{A} = \sigma(\mathcal{F})$ ,  $C = \sigma(\mathcal{G})$ , only  $\rho(F \times G) = \mu(F)r(G)$  with  $F \in \mathcal{F}$ ,  $G \in \mathcal{G}$ .

#### Intersection stable

If  $\mathcal F$  and  $\mathcal G$  are intersection stable, then  $\mathcal F \times \mathcal G$  are also intersection stable.

### Uniqueness of measures (Repetition)

(X, A),  $A = \sigma(F)$ , F intersection stable.

 $\exists F_i \uparrow X, F_i \in \mathcal{F} \ \forall i.$ 

So the product measure is unique.



### Finding the product measure function

$$\mathcal{A} \otimes \mathcal{C} = \sigma(\mathcal{F} \times \mathcal{G})$$

### Exisence of measure

$$\rho(A \times C) = \mu(A)r(C) = \int_{Y} \int_{X} 1_{A \times C}(x, y) d\mu(x) dr(y) = \int_{X} \int_{Y} 1_{A \times C}(x, y) dr(y) d\mu(x) = \int_{C} \mu(A) dr(y) = \mu(A) \int_{C} dr(y) = \mu(A)r(C).$$

Suggestion: if  $E \in \mathcal{A} \otimes \mathcal{C}$  then

$$\rho(E) = \int_{Y} \int_{X} 1_{E}(x, y) d\mu(x) dr(y) = \int_{X} \int_{Y} 1_{E}(x, y) dr(y) d\mu(x).$$

To check:

- $1_E(x, y)$  is measurable with y fixed with respect to x.
- Also  $\int_X 1_E(x,y) d\mu(x)$  is measurable with respect to y.



#### Theorem

$$(X, \mathcal{A}, \mu)$$
,  $(Y, \mathcal{C}, r)$   $\sigma$ -finite measure spaces.  $\rho: \mathcal{A} \times \mathcal{C} \to [0, \infty)$   $\rho(\mathcal{A} \times \mathcal{C}) \mapsto \mu(\mathcal{A})r(\mathcal{C})$   $\rho$  extents (uniquely) to a measure on  $(X \times Y, \mathcal{A} \otimes \mathcal{C})$  so that  $\forall E \in \mathcal{A} \otimes \mathcal{C}$ ,  $p(E) = \int_{Y} \int_{X} 1_{E}(x, y) d\mu(x) dr(y) = \int_{X} \int_{Y} 1_{E}(x, y) dr(y) d\mu(x)$ 

# Integration over product spaces

### Integration

$$(X, \mathcal{A}, \mu), (Y, \mathcal{C}, r)$$
  
 $(X \times Y, \mathcal{A} \otimes \mathcal{C}, \rho)$ 

 $u: X \times Y \to [0, \infty)$  which is  $\mathcal{A} \otimes \mathcal{C}/\mathcal{B}(\mathbb{R})$  measurable

Then

 $\int_{X\times Y} u d\rho = \int_{Y} \int_{X} u(x,y) d\mu(x) dr(y) = \int_{X} \int_{Y} u(x,y) dr(y) d\mu(x).$  This is Tappli's theorem

This is Tonelli's theorem.

# Integration over product spaces

#### Proof

Take  $0 \le f_j \uparrow u f_j$  simple.

$$f_j(x,y) = \sum_{k=0}^{N_j} \alpha_k 1_{E_k}(x,y).$$

We need the following functions:

 $x \to u(x,y)$ ,  $y \to u(x,y)$  which are measurable.

Claim:

$$\int_{X\times Y} f_j d\rho = \int_Y \int_X f_j(x,y) d\mu(x) dr(y) = \int_X \int_Y f_j(x,y) dr(y) d\mu(x)$$
 then if  $j\to\infty$  we have according to the monotone convergence theorem:

$$\int_{X\times Y} u d\rho = \int_{Y} \int_{X} u(x,y) d\mu(x) dr(y) = \int_{X} \int_{Y} u(x,y) dr(y) d\mu(x)$$



# Integration over product spaces

#### Example

$$\begin{array}{l} f(x,y) = xy^2 \\ \int_{[0,1]^2} f d\lambda^2 = \int_{[0,1]} \int_{[0,1]} f(x,y) d\lambda(x) \lambda(y) = \\ \int_{[0,1]} \int_{[0,1]} xy^2 d\lambda(x) \lambda(y) = \int_{[0,1]} y^2 \int_{[0,1]} x d\lambda(x) \lambda(y) \\ \text{We can use different measures, for example the counting measure.} \end{array}$$