homework2-skel

September 23, 2020

NAME: Nigel Mansell

1 Homework 2

1.0.1 Objectives

- Object orientation in Python
- Constructing Data Pre-processing Pipelines
 - Imputing
 - Filtering
 - Simple Numerical Methods
- Do not save work within the ml_practices folder
 - create a folder in your home directory for assignments, and copy the templates there

1.0.2 General References

- Sci-kit Learn Pipelines
- Sci-kit Learn Impute
- Sci-kit Learn Preprocessing
- Pandas Interpolate
- Pandas fillna()

1.0.3 Hand-In Procedure

- Execute all cells so they are showing correct results
- Notebook:
 - Submit this file (.ipynb) to the Canvas HW0 dropbox
- PDF:
 - File/Export Notebook As/PDF -> Produces a copy of the notebook in PDF format
 - Submit the PDF file to the Gradescope HW0 dropbox

```
[1]: import pandas as pd
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
```

```
from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator, TransformerMixin

FIGWIDTH = 10
FIGHEIGHT = 2

%matplotlib inline
```

2 LOAD DATA

```
[2]: fname = '~/demo/data/subject_k1_w10_hw2.csv'
    #makes a dataframe from file and prints the info
    baby_data_raw = pd.read_csv(fname)
    baby_data_raw.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 15000 entries, 0 to 14999
   Data columns (total 7 columns):
   time
                    15000 non-null float64
   left_wrist_x
                    13458 non-null float64
   left_wrist_y
                    13454 non-null float64
   left_wrist_z
                    13454 non-null float64
   right_wrist_x
                    13514 non-null float64
                    13514 non-null float64
   right_wrist_y
   right_wrist_z
                    13514 non-null float64
   dtypes: float64(7)
   memory usage: 820.4 KB
[3]: """ TODO
    Call describe() on the data to get summary statistics
    #calling describe on dataframe
    baby_data_raw.describe()
```

```
[3]:
                         left_wrist_x left_wrist_y
                                                      left_wrist_z right_wrist_x \
                   time
          15000.000000
                         13458.000000 13454.000000
                                                      13454.000000
                                                                      13514.000000
    count
             149.990000
                             0.243580
                                            0.162076
                                                         -0.044767
                                                                          0.271218
    mean
    std
              86.605427
                             0.084823
                                            0.093114
                                                          0.060566
                                                                          0.055190
               0.000000
                             0.027525
                                           -0.046680
                                                         -0.186060
                                                                          0.081230
   min
    25%
              74.995000
                             0.177911
                                            0.096319
                                                         -0.082849
                                                                          0.238649
    50%
             149.990000
                             0.251879
                                            0.154445
                                                         -0.045112
                                                                          0.277340
    75%
             224.985000
                             0.308732
                                            0.245144
                                                         -0.004720
                                                                          0.314673
             299.980000
                             0.389957
                                            0.334027
                                                          0.147053
                                                                          0.396959
    max
```

right_wrist_y right_wrist_z

```
-0.120768
                               -0.207248
    mean
    std
                0.047123
                                0.054263
    min
               -0.275120
                               -0.311197
    25%
               -0.140773
                               -0.245453
    50%
               -0.111330
                               -0.216992
    75%
               -0.085764
                               -0.158773
               -0.040851
                               -0.007693
    max
[4]: """ TODO
    Call head() on the data to observe the first few examples
    #calling head on dataframe
    baby_data_raw.head()
       time left_wrist_x left_wrist_y left_wrist_z right_wrist_x \
[4]:
    0.00
                                              -0.092803
                      NaN
                                0.293503
                                                              0.314738
    1 0.02
                      NaN
                                0.293445
                                              -0.092968
                                                              0.315143
    2 0.04
                      NaN
                                     NaN
                                                    NaN
                                                              0.315974
    3 0.06
                      NaN
                                0.293285
                                              -0.093356
                                                              0.316709
    4 0.08
                 0.163611
                                0.293237
                                              -0.093475
                                                              0.317206
       right_wrist_y right_wrist_z
    0
           -0.113438
                           -0.154972
    1
           -0.113476
                           -0.154807
    2
           -0.113521
                           -0.154429
    3
           -0.113555
                           -0.154063
    4
           -0.113534
                           -0.153886
[5]: """ TODO
    Call tail() on the data to observe the last few examples
    #calling tail on dataframe
    baby_data_raw.tail()
[5]:
             time
                   left_wrist_x left_wrist_y
                                                left_wrist_z right_wrist_x
    14995
          299.90
                        0.371656
                                           NaN
                                                          NaN
                                                                     0.202332
           299.92
    14996
                        0.371723
                                           NaN
                                                          NaN
                                                                     0.202157
           299.94
                                           NaN
                                                          NaN
    14997
                        0.371801
                                                                     0.201895
    14998
           299.96
                        0.371866
                                           NaN
                                                          NaN
                                                                     0.201533
    14999
           299.98
                        0.371907
                                           NaN
                                                          NaN
                                                                     0.201166
           right_wrist_y right_wrist_z
    14995
               -0.073395
                               -0.310776
               -0.073288
    14996
                               -0.310726
    14997
               -0.073102
                               -0.310798
    14998
               -0.072929
                               -0.310848
```

count

13514.000000

13514.000000

```
14999 -0.072672 -0.310929
```

```
[6]: """ TODO

Display the column names for the data
"""

#Gets all column names in the form of an array
baby_data_raw.columns.values
```

```
[7]: """ TODO

Determine whether any data are NaN. Use isna() and
any() to obtain a summary of which features have at
least one missing value
"""

#displays if column has NaN or not
baby_data_raw.isna().any()
```

```
[7]: time False

left_wrist_x True

left_wrist_y True

left_wrist_z True

right_wrist_x True

right_wrist_y True

right_wrist_z True

dtype: bool
```

3 Create Pipeline Elements

In the lecture, some of the Pipeline components might have taken in or returned numpy arrays and others pandas DataFrames. For this assignment, transform methods for all the Pipeline components will take input as a pandas DataFrame and return a DataFrame.

```
X: is a DataFrame
        RETURNS: a DataFrame of the selected attributes
        return X[self.attribs]
""" TODO
Complete the Pipeline component object for interpolating and filling in
gaps within the data. Whenever data are missing inbetween valid values,
use interpolation to fill in the gaps. For example,
    1.2 NaN NaN 1.5
becomes
    1.2 1.3 1.4 1.5
Whenever data are missing on the edges of the data, fill in the gaps
with the first available valid value. For example,
   NaN NaN 2.3 3.6 3.2 NaN
becomes
    2.3 2.3 2.3 3.6 3.2 3.2
The transform() method should fill in the holes and the edge cases.
class InterpolationImputer(BaseEstimator, TransformerMixin):
    def __init__(self, method='quadratic'):
        self.method = method
    def fit(self, x, y=None):
       return self
    def transform(self, X): # TODO
        PARAMS:
            X: is a DataFrame
        RETURNS: a DataFrame without NaNs
        #creates a copy of the dataframe, calls interpolate and bfill to fill
 → NaN values, return copy
       Xout = X.copy()
        # TODO: Interpolate holes within the data
        Xout = Xout.interpolate()
        # TODO: Fill in the NaNs on the edges of the data
        Xout = Xout.bfill()
        # TODO: return the imputed dataframe
       return Xout
""" TODO
```

```
Complete the Pipeline component object for smoothing specific features
using a gaussian kernel. Use the following formula to apply the filter:
    x'[t] = (w[0]*x[t-3] + w[1]*x[t-2] + w[2]*x[t-1] + w[3]*x[t]
           + w[4]*x[t+1] + w[5]*x[t+2] + w[6]*x[t+3])
    DISCLAIMER: if you implement this computation on more than one line,
                make sure to place parentheses around the entire expression
                such that the interpreter reads the lines as all part of
                one expression
This can be implemented similarly to how the derivative is computed.
Additionally, pad both ends of x with three instances of the adjacent
values, before applying the 7-width filter, to maintain the original signal
length and smoothness. For example,
                1.3 2.1 4.4 4.1 3.2
would be padded as
    1.3 1.3 1.3 1.3 2.1 4.4 4.1 3.2 3.2 3.2 3.2
def computeweights(length=3, sig=1):
    Computes the weights for a Gaussian filter kernel
    PARAMS:
        length: the number of terms in the filter kernel
        sig: the standard deviation (i.e. the scale) of the Gaussian
    RETURNS: a list of filter weights for the Gaussian kernel
    x = np.linspace(-2.5, 2.5, length)
   kernel = stats.norm.pdf(x, scale=sig)
    return kernel / kernel.sum()
class GaussianFilter(BaseEstimator, TransformerMixin):
    def __init__(self, attribs=None, kernelsize=3, sig=1):
        self.attribs = attribs
        self.kernelsize = kernelsize
        self.sig = sig
        self.weights = computeweights(length=kernelsize, sig=sig)
        print("KERNEL WEIGHTS", self.weights)
    def fit(self, x, y=None):
       return self
    def transform(self, X): # TODO
        PARAMS:
            X: is a DataFrame
        RETURNS: a DataFrame with the smoothed signals
        w = self.weights
```

```
Xout = X.copy()
                     if self.attribs == None:
                                self.attribs = Xout.columns
                      #pads then uses the function in comment, returns copy
                     for attrib in self.attribs:
                                values = Xout[attrib].values
                                 # TODO: pad the data as previously described
                                values = np.insert(values, 0, [values[0], values[0]], values[0]])
                                values = np.append(values, [values[-1], values[-1])
                                 # TODO: filter the data
                                index = 0
                                for t in range(3, len(values)-3):
                                           Xout[attrib][index] = (w[0]*values[t-3] + w[1]*values[t-2] + [1]*values[t-2] + [1]*values[t-2] + [1]*values[t-3] + [1]
   \rightarroww[2]*values[t-1] +
                                                                                                          w[3]*values[t]+ w[4]*values[t+1] + 
  \rightarroww[5]*values[t+2] +
                                                                                                          w[6]*values[t+3])
                                            index+=1
                      # TODO: return filtered dataframe
                     return Xout
 """ PROVIDED
Pipeline component object for computing the derivative for specified features
class DerivativeComputer(BaseEstimator, TransformerMixin):
          def __init__(self, attribs=None, prefix='d_', dt=1.0):
                     self.attribs = attribs
                     self.prefix = prefix
                     self.dt = dt
          def fit(self, x, y=None):
                     return self
          def transform(self, X):
                       111
                     PARAMS:
                                 X: is a DataFrame
                     RETURNS: a DataFrame with additional features for the derivatives
                     Xout = X.copy()
                     if self.attribs == None:
                                self.attribs = Xout.columns
                     for attrib in self.attribs:
                                vals = Xout[attrib].values
```

```
diff = vals[1:] - vals[0:-1]
  deriv = diff / self.dt
  deriv = np.append(deriv, 0)
  attrib_name = self.prefix + attrib
  Xout[attrib_name] = pd.Series(deriv)

return Xout
```

4 Construct Pipeline

```
[25]: selected_names = ['left_wrist_x', 'left_wrist_y', 'left_wrist_z']
selected_inds = [baby_data_raw.columns.get_loc(name) for name in selected_names]
nselected = len(selected_names)
time = baby_data_raw['time'].values
Xsel_raw = baby_data_raw[selected_names].values
```

<class 'numpy.ndarray'>

```
[10]: """ TODO
     Create a pipeline that:
     1. Selects a subset of features
     2. Fills gaps within the data by linearly interpolating the values
        in between existing data and fills the remaining gaps at the edges
        of the data with the first or last valid value
     3. Compute the derivatives of the selected features. The data are
        sampled at 50 Hz, therefore, the period or elapsed time (dt) between
        the samples is .02 seconds (dt=.02)
     #creating pipe1
     pipe1 = Pipeline([
         ('selector', DataFrameSelector(selected_names)),
         ('linear', InterpolationImputer()),
         ('derivative', DerivativeComputer(dt = .02))
     1)
     """ TODO
     Create a pipeline that:
     1. Selects a subset of features
     2. Fills gaps within the data by linearly interpolating the values
        in between existing data and fills the remaining gaps at the edges
        of the data with the first or last valid value
     3. Smooth the data with a Gaussian Filter. Use a standard deviation
        of 2 and a kernel size of 7 for the filter
     4. Compute the derivatives of the selected features. The data are
        sampled at 50 Hz, therefore, the period or elapsed time (dt) between
        the samples is .02 seconds (dt=.02)
```

```
#creating pipe2
pipe2 = Pipeline([
    ('selector',DataFrameSelector(selected_names)),
     ('linear', InterpolationImputer()),
     ('filter', GaussianFilter(selected_names,7, 2)),
     ('derivative', DerivativeComputer(dt=.02))
])
```

KERNEL WEIGHTS [0.08868144 0.13687641 0.17759311 0.19369807 0.17759311 0.13687641 0.08868144]

```
[11]:

""" TODO

Fit both Pipelines to the data and transform the data

"""

#fits and transforms both

baby_data1 = pipe1.fit_transform(baby_data_raw)

baby_data2 = pipe2.fit_transform(baby_data_raw)

""" TODO

Display the summary statistics for the pre-processed data

from both pipelines

"""

#displaying both

display(baby_data1)

display(baby_data2)
```

$left_wrist_x$	left_wrist_y	left_wrist_z	$d_{left_wrist_x}$	\
0.163611	0.293503	-0.092803	0.000000	
0.163611	0.293445	-0.092968	0.000000	
0.163611	0.293365	-0.093162	0.000000	
0.163611	0.293285	-0.093356	0.000000	
0.163611	0.293237	-0.093475	-0.011650	
0.163378	0.293203	-0.093658	-0.011950	
0.163139	0.293190	-0.093735	-0.009400	
0.162951	0.293191	-0.093861	-0.012850	
0.162694	0.293186	-0.093938	-0.008750	
0.162519	0.293118	-0.094113	-0.012300	
0.162273	0.293101	-0.094198	-0.010450	
0.162064	0.293084	-0.094333	-0.010050	
0.161863	0.293077	-0.094401	-0.004800	
0.161767	0.293065	-0.094490	-0.003550	
0.161696	0.293070	-0.094539	0.001400	
0.161724	0.293150	-0.094562	0.004700	
	0.163611 0.163611 0.163611 0.163611 0.163611 0.163378 0.163139 0.162951 0.162951 0.162519 0.162273 1.0.162064 2.0.161863 3.0.161767 4.0.161696	0.163611 0.293503 0.163611 0.293445 0.163611 0.293365 0.163611 0.293285 0.163611 0.293237 0.163378 0.293203 0.163139 0.293190 0.162951 0.293191 0.162694 0.293186 0.162519 0.293118 0.162273 0.293101 1 0.162064 0.293084 2 0.161863 0.293077 3 0.161767 0.293065 4 0.161696 0.293070	0.163611 0.293503 -0.092803 0.163611 0.293445 -0.092968 0.163611 0.293365 -0.093162 0.163611 0.293285 -0.093356 0.163611 0.293237 -0.093475 0.163378 0.293203 -0.093658 0.163139 0.293190 -0.093735 0.162951 0.293191 -0.093861 0.162694 0.293186 -0.093938 0.162519 0.293118 -0.094113 0 0.162273 0.293101 -0.094198 1 0.162064 0.293084 -0.094333 2 0.161863 0.293077 -0.094401 3 0.161767 0.293065 -0.094439 4 0.161696 0.293070 -0.094539	0.163611 0.293503 -0.092803 0.000000 0.163611 0.293445 -0.092968 0.000000 0.163611 0.293365 -0.093162 0.000000 0.163611 0.293285 -0.093356 0.000000 0.163378 0.293203 -0.093475 -0.011650 0.163139 0.293190 -0.093735 -0.009400 0.162951 0.293191 -0.093861 -0.012850 0.162694 0.293186 -0.093938 -0.008750 0.162519 0.293118 -0.094113 -0.012300 0 0.162273 0.293101 -0.094198 -0.010450 1 0.162064 0.293084 -0.094333 -0.010050 2 0.161863 0.293077 -0.094401 -0.004800 3 0.161767 0.293065 -0.094539 0.001400

16	0.161818	0.293317	-0.094441	0.009500
17	0.162008	0.293513	-0.094381	0.009800
18	0.162204	0.293671	-0.094338	0.012550
19	0.162455	0.293684	-0.094440	0.012550
20	0.162706	0.293697	-0.094541	0.011850
21	0.162943	0.293628	-0.094772	0.008325
22	0.163110	0.293576	-0.094975	0.008325
23	0.163276	0.293524	-0.095178	-0.003950
24	0.163197	0.293579	-0.095236	-0.003050
25	0.163136	0.293566	-0.095376	-0.008800
26	0.162960	0.293585	-0.095382	-0.010050
27	0.162759	0.293538	-0.095511	-0.010050
28	0.162558	0.293491	-0.095640	-0.009300
29	0.162372	0.293422	-0.095743	-0.014100
14970	0.373774	0.085690	-0.081843	-0.003700
14971	0.373700	0.085588	-0.082146	-0.001950
14972	0.373661	0.085486	-0.082370	-0.000850
14973	0.373644	0.085377	-0.082788	0.001600
14974	0.373676	0.085400	-0.083032	0.001900
14975	0.373714	0.085329	-0.083364	0.002500
14976	0.373764	0.085266	-0.083650	-0.001350
14977	0.373737	0.085164	-0.084194	-0.007100
14978	0.373595	0.084965	-0.084772	-0.007100
14979	0.373453	0.084766	-0.085350	-0.011950
14980	0.373214	0.084582	-0.086000	-0.016150
14981	0.372891	0.084413	-0.086703	-0.021075
14982	0.372470	0.084140	-0.087417	-0.021075
14983	0.372048	0.083866	-0.088130	-0.016900
14984	0.371710	0.083654	-0.088758	-0.014850
14985	0.371413	0.083326	-0.089609	-0.006200
14986	0.371289	0.083080	-0.090275	-0.006200
14987	0.371165	0.082834	-0.090941	0.001300
14988	0.371191	0.082705	-0.091333	0.002100
14989	0.371233	0.082461	-0.091652	0.002400
14990	0.371281	0.082317	-0.092033	0.005100
14991	0.371383	0.082065	-0.092307	0.006150
14992	0.371506	0.082065	-0.092307	0.006550
14993	0.371637	0.082065	-0.092307	0.000475
14994	0.371646	0.082065	-0.092307	0.000475
14995	0.371656	0.082065	-0.092307	0.003350
14996	0.371723	0.082065	-0.092307	0.003900
14997	0.371801	0.082065	-0.092307	0.003250
14998	0.371866	0.082065	-0.092307	0.002050
14999	0.371907	0.082065	-0.092307	0.000000

1	-0.004000	-0.009700
2	-0.004000	-0.009700
3	-0.002400	-0.005950
4	-0.001700	-0.009150
5	-0.000650	-0.003850
6	0.000050	-0.006300
7	-0.000250	-0.003850
8	-0.003400	-0.008750
9	-0.000850	-0.004250
10	-0.000850	-0.006750
11	-0.000350	-0.003400
12	-0.000330	-0.003400
13	0.000250	-0.004450
14	0.004000	-0.001150
15	0.008350	0.006050
16	0.009800	0.003000
17	0.007900	0.002150
18	0.000650	-0.005075
19	0.000650	-0.005075
20	-0.003450	-0.011550
21	-0.002600	-0.010150
22	-0.002600	-0.010150
23	0.002750	-0.002900
24	-0.000650	-0.007000
25	0.000950	-0.000300
26	-0.002350	-0.006450
27	-0.002350	-0.006450
28	-0.003450	-0.005150
29	-0.000300	-0.000600
14970	-0.005100	-0.015150
14971	-0.005100	-0.011200
14972	-0.005450	-0.020900
14973	0.001150	-0.012200
14974	-0.003550	-0.016600
14975	-0.003150	-0.014300
14976	-0.005100	-0.027200
14977	-0.009950	-0.028900
14978	-0.009950	-0.028900
14979	-0.009200	-0.032500
14980	-0.008450	-0.035150
14981	-0.013675	-0.035675
14982	-0.013675	-0.035675
14983	-0.010600	-0.033073
14984	-0.010000	-0.031400
14985	-0.010400	-0.033300
	-0.012300	-0.033300
14986		
14987	-0.006450	-0.019600

14988	-0.012200	-0.015950
14989	-0.007200	-0.019050
14990	-0.012600	-0.013700
14991	0.000000	0.000000
14992	0.000000	0.000000
14993	0.000000	0.000000
14994	0.000000	0.000000
14995	0.000000	0.000000
14996	0.000000	0.000000
14997	0.000000	0.000000
14998	0.000000	0.000000
14999	0.000000	0.000000

[15000 rows x 6 columns]

	<pre>left_wrist_x</pre>	<pre>left_wrist_y</pre>	left_wrist_z	d_left_wrist_x	\
0	0.163611	0.293454	-0.092930	0.000000	
1	0.163611	0.293414	-0.093034	-0.001033	
2	0.163590	0.293364	-0.093168	-0.002654	
3	0.163537	0.293312	-0.093315	-0.004538	
4	0.163446	0.293265	-0.093468	-0.006805	
5	0.163310	0.293229	-0.093606	-0.008588	
6	0.163139	0.293200	-0.093736	-0.010108	
7	0.162936	0.293178	-0.093855	-0.010991	
8	0.162717	0.293156	-0.093973	-0.010829	
9	0.162500	0.293135	-0.094085	-0.010186	
10	0.162296	0.293114	-0.094195	-0.009302	
11	0.162110	0.293096	-0.094296	-0.007476	
12	0.161961	0.293089	-0.094385	-0.005258	
13	0.161856	0.293108	-0.094441	-0.002108	
14	0.161813	0.293159	-0.094470	0.001097	
15	0.161835	0.293243	-0.094468	0.004389	
16	0.161923	0.293347	-0.094455	0.007123	
17	0.162066	0.293457	-0.094445	0.009350	
18	0.162253	0.293550	-0.094464	0.010478	
19	0.162462	0.293611	-0.094525	0.010826	
20	0.162679	0.293631	-0.094638	0.009379	
21	0.162866	0.293624	-0.094780	0.007215	
22	0.163011	0.293602	-0.094939	0.003927	
23	0.163089	0.293584	-0.095085	0.000266	
24	0.163094	0.293568	-0.095218	-0.003244	
25	0.163030	0.293556	-0.095331	-0.006034	
26	0.162909	0.293540	-0.095433	-0.008585	
27	0.162737	0.293519	-0.095522	-0.009834	
28	0.162540	0.293481	-0.095607	-0.011094	
29	0.162319	0.293439	-0.095675	-0.011601	

14970	0.373806	0.085737	-0.081805	-0.003118
14971	0.373744	0.085616	-0.082124	-0.001914
14972	0.373706	0.085517	-0.082436	-0.000673
14973	0.373692	0.085441	-0.082741	0.000124
14974	0.373695	0.085372	-0.083066	-0.000008
14975	0.373694	0.085296	-0.083427	-0.000876
14976	0.373677	0.085202	-0.083839	-0.002708
14977	0.373623	0.085084	-0.084302	-0.005433
14978	0.373514	0.084937	-0.084833	-0.008801
14979	0.373338	0.084764	-0.085422	-0.012289
14980	0.373092	0.084565	-0.086064	-0.014978
14981	0.372793	0.084350	-0.086726	-0.016589
14982	0.372461	0.084117	-0.087417	-0.016679
14983	0.372127	0.083872	-0.088123	-0.015369
14984	0.371820	0.083616	-0.088833	-0.012466
14985	0.371571	0.083364	-0.089514	-0.008757
14986	0.371396	0.083122	-0.090144	-0.005102
14987	0.371294	0.082898	-0.090711	-0.001861
14988	0.371256	0.082681	-0.091205	0.000909
14989	0.371274	0.082495	-0.091591	0.002794
14990	0.371330	0.082340	-0.091883	0.003848
14991	0.371407	0.082221	-0.092082	0.003882
14992	0.371485	0.082135	-0.092211	0.003718
14993	0.371559	0.082087	-0.092283	0.003438
14994	0.371628	0.082065	-0.092307	0.003035
14995	0.371689	0.082065	-0.092307	0.002698
14996	0.371743	0.082065	-0.092307	0.002315
14997	0.371789	0.082065	-0.092307	0.002187
14998	0.371833	0.082065	-0.092307	0.001805
14999	0.371869	0.082065	-0.092307	0.000000
	d_left_wrist_y	d_left_wrist_z		
0	-0.002032	-0.005176		
1	-0.002479	-0.006693		
2	-0.002599	-0.007381		
3	-0.002366	-0.007645		
4	-0.001789	-0.006904		
5	-0.001438	-0.006467		
6	-0.001136	-0.005942		
7	-0.001075	-0.005937		
8	-0.001052	-0.005563		
9	-0.001050	-0.005522		
10	-0.000925	-0.005032		
11	-0.000354	-0.004443		
12	0.000962	-0.002823		
13	0.002541	-0.001439		
14	0.004231	0.000107		
15	0.005188	0.000615		

16	0.005500	0.000518
17	0.004667	-0.000945
18	0.003023	-0.003036
19	0.000993	-0.005665
20	-0.000337	-0.007092
21	-0.001113	-0.007982
22	-0.000896	-0.007299
23	-0.000785	-0.006634
24	-0.000585	-0.005668
25	-0.000831	-0.005083
26	-0.001048	-0.004422
27	-0.001875	-0.004275
28	-0.002106	-0.003408
29	-0.002713	-0.003575
14970	-0.006075	-0.015953
14971	-0.004921	-0.015615
14972	-0.003832	-0.015228
14973	-0.003409	-0.016269
14974	-0.003822	-0.018061
14975	-0.004717	-0.020590
14976	-0.005876	-0.023133
14977	-0.007355	-0.026556
14978	-0.008675	-0.029468
14979	-0.009948	-0.032085
14980	-0.010755	-0.033102
14981	-0.011625	-0.034571
14982	-0.012268	-0.035293
14983	-0.012790	-0.035486
14984	-0.012584	-0.034075
14985	-0.012108	-0.031479
14986	-0.011206	-0.028326
14987	-0.010841	-0.024697
14988	-0.009286	-0.019340
14989	-0.007773	-0.014591
14990	-0.005961	-0.009958
14991	-0.004305	-0.006455
14992	-0.002363	-0.003565
14993	-0.001117	-0.001215
14994	0.000000	0.000000
14995	0.000000	0.000000
14996	0.000000	0.000000
14997	0.000000	0.000000
14998	0.000000	0.000000
14999	0.000000	0.000000

[15000 rows x 6 columns]

```
[12]: """ TODO
     Display the first few values for the pre-processed data
     from both pipelines
     #displaying both heads
     display(baby_data1.head())
     display(baby_data2.head())
       left_wrist_x left_wrist_y left_wrist_z d_left_wrist_x d_left_wrist_y \
    0
           0.163611
                          0.293503
                                        -0.092803
                                                          0.00000
                                                                           -0.0029
    1
           0.163611
                          0.293445
                                        -0.092968
                                                          0.00000
                                                                           -0.0040
    2
           0.163611
                          0.293365
                                        -0.093162
                                                          0.00000
                                                                           -0.0040
                                        -0.093356
    3
           0.163611
                          0.293285
                                                          0.00000
                                                                           -0.0024
    4
           0.163611
                          0.293237
                                        -0.093475
                                                         -0.01165
                                                                           -0.0017
       d_left_wrist_z
    0
             -0.00825
    1
              -0.00970
    2
              -0.00970
    3
              -0.00595
    4
              -0.00915
       left_wrist_x left_wrist_y left_wrist_z d_left_wrist_x d_left_wrist_y \
    0
           0.163611
                          0.293454
                                        -0.092930
                                                         0.00000
                                                                         -0.002032
    1
           0.163611
                          0.293414
                                        -0.093034
                                                                         -0.002479
                                                        -0.001033
    2
           0.163590
                          0.293364
                                        -0.093168
                                                        -0.002654
                                                                         -0.002599
    3
           0.163537
                          0.293312
                                        -0.093315
                                                        -0.004538
                                                                         -0.002366
           0.163446
                          0.293265
                                       -0.093468
                                                        -0.006805
                                                                         -0.001789
       d_left_wrist_z
             -0.005176
    0
    1
             -0.006693
    2
             -0.007381
    3
             -0.007645
            -0.006904
[13]: """ TODO
     Display the last few values for the pre-processed data
     from both pipelines
     #displaying both tails
     display(baby_data1.tail())
     display(baby_data2.tail())
```

left_wrist_x left_wrist_y left_wrist_z d_left_wrist_x \

```
14996
               0.371723
                              0.082065
                                           -0.092307
                                                              0.00390
    14997
               0.371801
                              0.082065
                                           -0.092307
                                                              0.00325
    14998
               0.371866
                              0.082065
                                           -0.092307
                                                              0.00205
    14999
               0.371907
                              0.082065
                                           -0.092307
                                                              0.00000
           d_left_wrist_y d_left_wrist_z
                      0.0
    14995
                                       0.0
    14996
                      0.0
                                       0.0
    14997
                      0.0
                                       0.0
    14998
                      0.0
                                       0.0
    14999
                      0.0
                                       0.0
           left_wrist_x left_wrist_y left_wrist_z d_left_wrist_x \
    14995
               0.371689
                              0.082065
                                           -0.092307
                                                             0.002698
    14996
               0.371743
                              0.082065
                                           -0.092307
                                                             0.002315
    14997
               0.371789
                              0.082065
                                           -0.092307
                                                             0.002187
    14998
               0.371833
                              0.082065
                                           -0.092307
                                                             0.001805
    14999
                             0.082065
                                           -0.092307
                                                             0.00000
               0.371869
           d_left_wrist_y d_left_wrist_z
    14995
                      0.0
                                       0.0
                      0.0
                                       0.0
    14996
    14997
                      0.0
                                       0.0
                                       0.0
    14998
                      0.0
    14999
                      0.0
                                       0.0
[37]: """ TODO
     Construct plots comparing the raw data to the pre-processed data
     for each selected feature from both pipelines. For each selected
     feature, create a figure displaying the raw data and the cleaned
     data in the same subplot. The raw data should be shifted upwards
     to clearly observe where the gaps are filled in the cleaned data.
     There should be three subplots per feature figure. Each subplot
     is in a separate row.
         subplot(1) will compare the original raw data to the pipeline1
                    pre-processed data
         subplot(2) will compare the original raw data to the pipeline2
                    pre-processed data
```

-0.092307

0.00335

14995

11 11 11

0.371656

0.082065

subplot(3) will compare pipeline1 to pipeline2. Set the x limit

to 45 and 55 seconds

#creates a copy of data to drop time

noTime = baby_data_raw.copy()

For all subplots, include axis labels, legends and titles.

```
fig, axs = plt.subplots(3, len(noTime.columns.values)-1, figsize=(35, 15))
del noTime['time']
fig.tight_layout(pad=3.0)
#qeting column names
origColNames = noTime.columns.values
babyDataNames = baby_data1.columns.values
from matplotlib import transforms
limit1 = np.where(time == 45)
limit2 = np.where(time == 55)
#loops through names to plot the data, transform is used to shit upward.
for i in range(len(origColNames)):
    #to clean up empty subplots
    if(origColNames[i] == babyDataNames[i]):
        axs[0][i].set_xlabel('Data Entry')
        axs[0][i].set_ylabel('Data Value')
        axs[0][i].set_title("Original vs pipeline1")
        transform = transforms.Affine2D().translate(0, 0.250) + axs[0][i].
 →transData
        axs[0][i].plot(noTime[origColNames[i]], color='y', label='Original',__
 →transform=transform)
        axs[0][i].plot(baby_data1[babyDataNames[i]], color='b',__
 →label='Pipeline1')
        axs[0][i].legend(loc="upper right")
        axs[1][i].set_xlabel('Length of Data')
        transform = transforms.Affine2D().translate(0, 0.30) + axs[1][i].
 ⇔transData
        axs[1][i].set_ylabel('Data Value')
        axs[1][i].set_title("Original vs pipeline2")
        axs[1][i].plot(noTime[origColNames[i]], color='y', label='Original',
 →transform=transform)
        axs[1][i].plot(baby_data2[babyDataNames[i]], color='b',_
 →label='Pipeline2')
        axs[1][i].legend(loc="upper right")
    else:
        fig.delaxes(axs[0][i])
        fig.delaxes(axs[1][i])
    axs[2][i].set_xlim(limit1[0], limit2[-1])
    axs[2][i].set_xlabel('Seconds')
    axs[2][i].set_ylabel('Data Value')
    axs[2][i].set_title(babyDataNames[i])
    axs[2][i].plot(baby_data1[babyDataNames[i]], color='b', label='pipeline1')
    axs[2][i].plot(baby_data2[babyDataNames[i]], color='y', label='pipeline2')
    axs[2][i].legend(loc="upper right")
```



```
[38]: """ TODO
     Construct plots for each feature presenting the feature and its
     derivative from both pipelines. Each figure should have
     3 subplots:
         1: the pipeline1 feature data and cooresponding derivative
         2: the pipeline2 feature data and corresponding derivative
         3: pipeline1 derivative and pipeline2 derivative. Set the x limit
            to 8 and 12 seconds.
     For all subplots, include axis labels, legends and titles.
     #firstHalf are non derivative, lastHalf are derivative
     firstHalf = babyDataNames[:3]
     lastHalf = babyDataNames[3:]
     fig, axs = plt.subplots(3, 3, figsize=(35, 15))
     fig.tight_layout(pad=3.0)
     #plots data
     limit1 = np.where(time == 8)
     limit2 = np.where(time == 12)
     for i in range(len(firstHalf)):
         axs[0][i].set_title(firstHalf[i])
         axs[0][i].set_xlabel('Data Entry')
         axs[0][i].set_ylabel('Data Value')
         axs[0][i].plot(baby_data1[lastHalf[i]], color='g', label="Derivative")
         axs[0][i].plot(baby_data1[firstHalf[i]], color='r',label="Feature")
         axs[0][i].legend(loc="upper right")
         axs[1][i].set_title(firstHalf[i])
         axs[1][i].set_xlabel('Data Entry')
         axs[1][i].set_ylabel('Data Value')
         axs[1][i].plot(baby_data2[lastHalf[i]], color='g', label="Derivative")
         axs[1][i].plot(baby_data2[firstHalf[i]], color='r', label="Feature")
         axs[1][i].legend(loc="upper right")
```

```
axs[2][i].set_xlim(limit1[0], limit2[-1])
axs[2][i].set_xlabel('Seconds')
axs[2][i].set_ylabel('Data Value')
axs[2][i].set_title(lastHalf[i])
axs[2][i].plot(baby_data1[lastHalf[i]], color='y', label="pipeline1")
axs[2][i].plot(baby_data2[lastHalf[i]], color='b', label="pipeline2")
axs[2][i].legend(loc="upper right")
```

