INTRO TO

MAE ROBOTICS CLUB

IF YOU ARE HERE EARLY ..

- 1. Download Arduino IDE: https://www.arduino.cc/en/Main/Software
- 2. Take an Arduino (the hardware) & Plug into computer
- 3. Open the Arduino IDE, go to tools (on top), select the Port according to your computer

MAC	WINDOWS
Multiple port options, e.g. /dev/cu.wchusbserial1430	Should have only 1 port option, e.g. COM5

If the port is **MISSING**, it means that you need a driver.

- Go to https://tinyurl.com/maerc-ch34x
- Download the link in under "Solution 2"
- 4. Download a test program
- 5. If your program loads on your arduino, you're good to go!

HELLO WORLD

Katherine Kee, Wan Ting Yr 1 CS Dip. AMS

Passion: Robotics & Coding
Skipping Lectures,
Sleeping (Aggressively)

- X Digital Logic Nibbles, Bits, Bytes, ASCII, 1s & Os
- **X** Electrical Basics Volt, Current, Resistors
- What is an Arduino (vs RPi) Family, Components
- ✗ IDE − Serial Commands & Coding Constructs
- X Touchy Time!
 - Led, PWM Led
 - Led + PBs
 - Buzzer, Buzzer + PBs (Doorbell)
 - Ultrasonic Sensor (Bonus)

Experience is what you get when you didn't get what you wanted.

-Randy Pausch

DIGITAL INFORMATION

The building blocks and logic of computers

Bit - Binary Digit 1 or 0

Nibble - (4-bits) 0000

Byte - (8-bits) 0000 0000

Numbering System

Decimal 0-9 (e.g. 13, 77)

Binary 0 or 1 (e.g. 0101 1010)

Hexadecimal 0-9, A-F

Octal 0-7

DATA TYPES

Int, Float, Char

A data type or simply type is a classification of data which tells the compiler or interpreter how the programmer intends to use the data.

This data type defines the operations that can be done on the data, the meaning of the data, and the way values of that type can be stored.

HELLO, WORLD

Hello, wor		Binary 01001000 01100101 01101100 01101111 00101100 00100000 01110111 01100101		Hexadecimal 48 65 6C 6C 6F 2C 20 77 67 72		Decimal 72 101 108 108 111 44 32 119 103 114
o r	=	내용 이 경기 등에 그 아무리를 되었다.			=	
d	=	01101100 01100100	=	6C 64	=	108 100

Dec Hex	Oct	Chr	Dec H	dex C	Oct	HTML	Chr	Dec Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr	
0 0	000	NULL	32 2)40		Space	64 40		@	@	96			`	`	
1 1	001	Start of Header	33 2)41	!	!	65 41		A	Α	97			a	a	
2 2	002	Start of Text	34 2)42	"	"	66 42		B	В	98			b	b	21
3 3	003	End of Text	35 2)43	#	#	67 43		C	C	99				C	
4 4	004	End of Transmission	36 2)44	\$	\$	68 44		D	D	100			d	d	MAE Robotics Club
5 5	005	Enquiry	37 2)45	%	%	69 45		E	E	101				е	
6 6	006	Acknowledgment	38 2)46	&	&	70 46		F	F	102			f	f	
7 7	007	Bell	39 2)47	'	(1)	71 47			G	103			g	g	
8 8	010	Backspace	40 2)50	((72 48		H	Н	104			h	h	
9 9	011	Horizontal Tab	41 2)51))	73 49		I		105			i	i	
10 A	012	Line feed	42 2)52	*	*	74 4A		J		106			j	j	
11 B	013	Vertical Tab	43 2)53	+	+	75 4B		K	K	107			k	k	
12 C	014	Form feed	44 2)54	,	1	76 4C			L	108			l		
13 D	015	Carriage return	45 2)55		-	77 4D		M	M	109			m	m	
1 4 E	016	Shift Out	46 2)56	.		78 4E	116	N	Ν	110	6E	156	n	n	
15 F	017	Shift In	47 2)57	/	/	79 4F		O	0	111		157	o	0	
16 10	020	Data Link Escape	48 3		060	0	0	80 50	120	P	P	112		160	p	p	
17 11	021	Device Control 1	49 3		061	1	1	81 51	121	Q	Q	113		161	q	q	
18 12	022	Device Control 2	50 3	32 0)62	2	2	82 52	122	R	R	114		162	r	r	
19 13	023	Device Control 3	51 3)63		3	83 53		S	S	115			s	S	
20 14	024	Device Control 4	52 3	34 C)64	4	4	84 54	124	T	T	116		164	t	t	
21 15	025	Negative Ack.	53 3	35 C)65	5	5	85 55	125	U	U	117	75	165	u	u	
22 16	026	Synchronous idle	54 3	36 C)66	6	6	86 56	126	V	V	118	76	166	v	V	
23 17	027	End of Trans. Block	55 3	37 C)67	7	7	87 57	127	W	W	119	77	167	w	W	
24 18	030	Cancel	56 3	38 C	70	8	8	88 58	130	X	Χ	120	78	170	x	X	
25 19	031	End of Medium	57 3	39 C)71	9	9	89 59	131	Y	Υ	121	79	171	y	y	
26 1A	032	Substitute	58 3	3A C)72	:	:	90 5A	132	Z	Z	122	7A	172	z	Z	
27 1B	033	Escape	59 3	3B C)73	;	;	91 5B	133	[[123	7B	173	{	{	
28 1C	034	File Separator	60 3	3C C)74	<	<	92 5C	134	\	\	124	7C	174			
29 1D	035	Group Separator	61 3	3D C)75	=	=	93 5D	135]]	125	7D	175	}	}	
30 1E	036	Record Separator	62 3	BE C	76	>	>	94 5E	136	^	٨	126	7E	176	~	~	
31 1F	037	Unit Separator	63 3	BF C)77	?	?	95 5F	137	_	_	127	7F	177		Del	
		-						•						asciio	charstabl	e.com	

ASCII (ask-ee)

American Standard Code for Information Interchange

Usefulness

```
Instead of -> printf("%c %c %c %c %c", 'A', 'B', 'C', 'D', 'E');

Now -> for (i = 65; i<=69; i++)
{
    printf("Letter: %c", i);
}
```


ELECTRONICS

Current, Voltage

Voltage & Current

Volt - 5V Current - 18 mA (to light up LED)

R = V/I = 279 ohms ~ 220 ohm

MICROCONTROLLERS

Brain of hardware Have multiple lines, or connections

ARDUINO?

Ar-du-ween-Oh?

ARDUINO VS RASPBERRY PI

Specs	Arduino Uno	Raspberry Pi Model B+
CPU type	Microcontroller	Microprocessor
Operating System	None	Linux (usually Raspbian)
Speed	16 Mhz	700 Mhz
RAM	2KB	512MB
GPU/Display	None	VideoCore IV GPU
Disk	32KB	Depends on SD card
GPIO pins	14 digital pins (includes 6 analog)	26 digital pins
Other connectivity	None	USB, Ethernet, HDMI, audio
Power consumption	0.25W	3.5W

ARDUINO FAMILY

Uno

Mega

LilyPad

BT

Nano

IDE

Integrated development environment

Arduino IDE

Source Code Editor, Build Automation Tools, Debugger

ARDUINO 1.8.7

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. It runs on Windows, Mac OS X, and Linux. The environment is written in Java and based on Processing and other open-source software.

This software can be used with any Arduino board. Refer to the Getting Started page for Installation instructions. Windows Installer, for Windows XP and up Windows ZIP file for non admin install

Windows app Requires Win 8.1 or 10

Get
Mac OS X 10.8 Mountain Lion or newer

Linux 32 bits
Linux 64 bits
Linux ARM

Release Notes
Source Code
Checksums (sha512)


```
- - X
  sketch jan22a Arduino 1.6.13
Archivo Editar Programa Herramientas Ayuda
  sketch jan22a
 void setup() (
  // put your setup code here, to run once:
 void loop() {
  // put your main code here, to run repeatedly:
                                              Arduino/Genuino Uno en COM5
```


- -Select board (Arduino Uno)
- -Select port (it changes if you change to a different USB port)

EXAMPLES

- -See sample programs
- -Test if arduino is connected successfully

setup(): A function present in every Arduino sketch. Run once before the loop() function.
 Often used to set pinmode to input or output -> variable declaration

The setup() function looks like:

```
void setup() {
//code goes here
}
```

loop(): A function present in every single Arduino sketch. The loop() is where (almost) everything happens. The one exception to this is setup() and variable declaration.

The loop() function looks like:

```
void loop() {
//code goes here
}
```



```
BareMinimum | Arduino 1.0.3
File Edit Sketch Tools Help
  BareMinimum
void setup() {
 // put your setup code here, to run once:
void loop() {
 // put your main code here, to run repeatedly:
  error & status messages
                                 LilyPad Arduino w/ ATmega328 on COM28
```

Two required functions / methods / routines:

```
void setup()
         runs once
void loop()
         repeats
```


SOME TERMINOLOGY

input: A pin mode that **intakes** information

output: A pin mode that **sends** information

HIGH: Electrical signal present (5V for Uno). -> ON /True

LOW: No electrical signal present (0V). -> OFF or False

BASIC SYNTAX

; Semicolon Used to end a statement.

{} Curly Braces / () Parentheses / [] Brackets

// or /**/ Comments

PinMode(pin_number, INPUT/OUTPUT)

This function declares a given pin to be input or output pin.

digitalWrite(pin_number,0/1/HIGH/LOW):

This function produces a digital signal of either HIGH(5V) or LOW(0V) on the given pin.

analogWrite(pin_number, value)

This function produces an analog signal varying between 0 to 5V on the given pin.

analogRead(pin_number)

This function reads the voltage on the given pin and outputs its value as an integer ranging from 0 to 1023.

digitalRead(pin_number)

This function reads the voltage on the given pin and outputs its value as either 0 or 1.

Serial.begin(baud_rate)

This function begins serial communication between the microcontroller and the arduino.

Serial.print()

This function prints the value in its argument on the serial monitor of the arduino IDE.

delay(time)

This function provides delay of given time (in milliseconds) during execution of the code.

- void setup(): The code inside this function is run only once, when new code has been uploaded.
- void loop(): The code inside this runs on a loop. Without any delay function, the default rate of delay is 1ms.

LET'S GET PHYSICAL

Components/Sensors

Name Ima	age Type	Function	Notes
Push Button	Digital Inp	ut Switch - Closes or opens circuit	Polarized, needs resistor
Trim potentiometer	Analog In	out Variable resistor	Also called a Trimpot.
Photoresistor	Analog In	Dut Light Dependent Resistor (LDR)	Resistance varies with light.
Relay	Digital Ou	tput Switch driven by a small signal	Used to control larger voltages
Temp Sensor	Analog In	out Temp Dependent Resistor	
Flex Sensor	Analog In	out Variable resistor	
Soft Trimpot	Analog In	out Variable resistor	Careful of shorts
RGB LED	Dig & Ana Output	log 16,777,216 different colors	Ooh So pretty.

BREADBOARD UNDERSTANDING TEST

1. Is A5 connected to E5?

2. Is A5 connected to A7?

3. Is E5 connected to F5?

4. Is D10 connected to H50?

BREADBOARD UNDERSTANDING TEST

1. Is A5 connected to E5?

2. Is A5 connected to A7?

3. Is E5 connected to F5?

4. Is D10 connected to H50?

HOW TO READ RESISTORS

TOUCHY TIME

Hardware

- X Arduino Uno
- **X** Breadboard
- **✗** Type A−B USB Cable
- × 220 Ohm Resistor
- **X** LED
- Push Button
- X Buzzer
- X Jumper Wires 5

Software

- Arduino IDE –
 https://www.arduino.cc/en/Main/Software
- Driver (May not need) https://sparks.gogo.co.nz/c h340.html

RMB TO ADD RESISTOR

Arduino current < 50mA

LED current < 30mA

Source voltage = 5V

LED voltage drop = 2V

Resistance = 220 Ohm

V = iR

Current = (5V-2V)/220 Ohm = 14mA

CODE

```
AE Robotics (
```

```
pinMode(9, OUTPUT); }
Initialize ledPin (pin 9) as OUTPUT pin
```

void setup() {

```
void loop() {
   digitalWrite(9, HIGH);
   delay(1000);
   digitalWrite(9, LOW);
   delay(1000);
}
```

Turn LED on by setting voltage to high, sleep for 1s, then turn LED off by setting voltage to low $_{_{41}}$

PWM

You can also use pulse width modulation to control the angle of a servo motor

. Servos have a shaft that turns to specific position based on its control line. Our servo motors have a range of about 180 degrees.

PWM

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means.

Digital control is used to create a square wave, a signal switched between on and off. This on-off pattern can simulate voltages in between full on (5 Volts) and off (0 Volts) by changing the portion of the time the signal spends on versus the time that the signal spends off. The duration of "on time" is called the pulse width.

ANALOG - PWM

analogRead(pin_number)

This function reads the voltage on the given pin and outputs its value as an integer ranging from 0 to 1023.

analogWrite(pin_number, value)

This function produces an analog signal varying between 0 to 5V on the given pin.

This allows you to get readings from analog sensors or interfaces that have more than two states.

This allows you to set output to a PWM value instead of just HIGH or LOW.

PWM: Stands for Pulse-Width Modulation, a method of emulating an analog signal through a digital pin. A value between or including 0 and 255. Used with analogWrite.

ANALOG RANGE: 0 - 255

A bit is a binary digit. So a byte can hold 2 (binary) $^{\circ}$ 8 numbers ranging from 0 to 2° 8-1 = 255.

A byte, by its standard definition, is 8 bits which can represent 256 values (0 through 255).

CODE

```
MAE Robotics Club
```

```
int x = 0;
void setup() {
  pinMode(9, OUTPUT); }
void loop() {
  analogWrite (9, x);
  if(x == 255) {
      x = 0;
  else{
     \times + +;
  delay(10);
```

BAUD RATE

PUSH BUTTON

However, one must be careful to remember the orientation of the legs within the push button.

Legs 1 and 2 are always connected!
Legs 3 and 4 are always connected!
The disconnection is between 12 and 34!

MAE Robotics Club

KFC-7x7-B

BOOLEAN OPERATORS

<boolean></boolean>					Description
()	==	()	is equal?
()	!=	()	is not equal?
()	>	()	greater than
()	>=	()	greater than or equal
()	<	()	less than
()	<=	()	less than or equal

BUTTONS AND BOOLEANS

PB is pin 2 LED is pin 9

PB Set to high.

If PB Pressed, LED light up.

```
int signal1;
void setup() {
      pinMode(9, OUTPUT);
      pinMode(2, INPUT PULLUP);
      Serial.begin(9600);
void loop() {
      signal1 = digitalRead(2);
      Serial.println(signal1);
      if (signal1 == 0)
             digitalWrite(9, HIGH);
             delay(10);
      else{
             digitalWrite(9, LOW);
             delay(10);
```


MAE Robotics Club

PIEZO BUZZER

tone()

Generates a square wave of the specified frequency (and 50% duty cycle) on a pin. A duration can be specified, otherwise the wave continues until a call to noTone(). The pin can be connected to a piezo buzzer or other speaker to play tones.

Only one tone can be generated at a time. If a tone is already playing on a different pin, the call to tone() will have no effect. If the tone is playing on the same pin, the call will set its frequency.

TONE

tone()

Syntax tone(pin, frequency) tone(pin, frequency, duration) noTone()

Stops the generation of a square wave triggered by tone(). Has no effect if no tone is being generated.

NOTE: if you want to play different pitches on multiple pins, you need to call noTone() on one pin before calling tone() on the next pin.

Syntax noTone(pin)


```
void setup() {
    pinMode(9, OUTPUT);
void loop() {
    tone(9, 262, 500);
    delay(1000);
    noTone(9);
    delay(500);
```


DOORBELL

```
int signal1;

void setup() {
 pinMode(9, OUTPUT);
 pinMode(2, INPUT_PULLUP);
}
```

```
void loop() {
     signal1 = digitalRead(2);
    if(signal1 == 0)
          tone(9, 262, 500);
          delay(600);
          tone(9, 440, 500);
          delay(600);
          tone(9, 262, 1000);
          delay(1200);
     else{
          noTone(9);
```

DOORBELL DEMO

THANKS!

Want the slides? Pls give me feedback: https://tinyurl.com/MAERCarduino

https://www.facebook.com/ntu.mae.rc

https://www.instagram.com/mae.robotics/