Confidence interval on SEIR predictions

4/06/2024

Résumé

My abstract

1 Introduction

This is the introduction section. Here you can write the background of your study, the purpose of your research, and so on.

2 Methods

The data

As the goal of this study is to compare some forecasts on many different pandemics, many synthetic pandemics need to be generated, with a particular attention on the diversity of these pandemics.

Covasim

To generate the pandemics, [3], a python librairy that can simulate the evolution of a pandemic was used. Covasim is an agent-based model that can model many different pandemics and has a high diversity of outputs. This model takes as an input many parameters such as the population type, the population size, the age repartition ... and outputs a complete description of the pandemic, with real-time values of each relevant information, such as the number of severe, of asymptomatic... but also physical values such as the value of the reproduction number. Covasim enables to generate a huge diversity of pandemics, thanks to the plurality of parameters that can be given as the input of the model, but also with interventions that can be planned by the users. These interventions can simulate the impact of a vaccination campaign, with changes in the probability transmission, that can be different for all ages groups.

2.0.1 First pandemics

For the implementation and the first test of the models, two pandemics were generated. The first one focusing on the new deaths count and the second one focusing on the number of hospitalized count. Those pandemics will be referred to as pandemic 1 and pandemic 2.

Table 1 – Table of the parameters used to simulate the first two pandemics.

Parameter	Pandemic 1	Pandemic 2
start day 1	2020-03-02	2020-03-02
end day	2020-07-01	2021-01-01
Population size	1000000	1000000
Interventions	interventions1	interventions2
population type	hybrid	hybrid
β initial	0.015	0.015
location	Sweden	Sweden
n infected initial	20	100

Figure 1 – Mobility reports from Västtrafik.

The parameters used to generate these pandemics are described in the table 1. The parameters that are not specified are the default parameters of the Covasim librairy.

The different interventions were based on mobility reports from Västtrafik 1, the public transport company of the city of Gothenburg, which were reported during the Covid 19 pandemic and has been retrieved in [2]. These interventions correspond to 53 relative weekly variations of the mobility, with a reference value of 1 for the first week of the report, which correspond to the 9-th week of 2020.

2.0.2 Generating diverse pandemics

In order to evaluate the performances of our models on a wide range of pandemics, a training set of pandemics was generated. A huge diversity of pandemics is needed to determine which model is the more consistent. It is so relevant to identify the key parameters that generate this diversity. As Covasim has a very huge set of inputs parameters, a first subset of key parameters was identified: the spread parameters and the severity parameters. The severity parameters are the 4 parameters that correspond to the probability for an agent to get from a compartment to another. The spread parameters are 9 parameters that represent the distribution of probability of the time spend by an agent in a compartment (such as infected, crictical...) once he entered it. This distribution is a lognormal distribution, but the spread-parameters correspond to the mean of this log-normal distribution All the parameters have a default value of 1, which correspond to keeping the reference value. We decided to select 4 parameters and to make them vary in [0.5, 1, 2], leading to a set of 81 pandemics. To select the 4 parameters that generated the most diversity, different diversity metrics were computed.

Let Y_1 , $Y_2 \in \mathbb{R}^n$ be two time series of n days representing the number of hospitalized in two pandemics.

Let:

$$\mathcal{L}_1(Y_1, Y_2) = ||Y_1 - Y_2||_{L_1}$$

 $\mathcal{L}_2(Y_1,Y_2) = \|(\tfrac{max(Y_1)}{max(Y_2)}; \tfrac{max(Y_1')}{max(Y_2')}; \tfrac{max(Y_1'')}{max(Y_2'')}, \|\tilde{Y}_1 - \tilde{Y}_2\|_{L_1}, \|\tilde{Y}_1' - \tilde{Y}_2'\|_{L_1}, \|\tilde{Y}_1'' - \tilde{Y}_2''\|_{L_1})\|_{L_2}, \text{ with } Y_1 \text{ and } Y_2 \text{ the first and second derivatives of } Y_1$

FIGURE 2-4 most diverse pandemics according to each norm.

It can be noted that \mathcal{L}_{\in} looks like the Sobolev norm $\|\tilde{Y}_1 - \tilde{Y}_2\|_{W^{2,1}}$ with squared terms and with additionary terms taking into account the amplitude.

 $\mathcal{L}_3 = \mathcal{W}(\tilde{Y}_1 - \tilde{Y}_2)$, with \mathcal{W} the Wasserstein distance.

$$\mathcal{L}_3 = \mathcal{W}(Y_1 - Y_2), \text{ with } \mathcal{W} \text{ the wasserstein distance.}$$

$$\mathcal{L}_4(Y_1, Y_2) = \|(\frac{max(Y_1)}{max(Y_2)}; \frac{max(Y_1')}{max(Y_2')}; \frac{max(Y_1'')}{max(Y_2'')}, \mathcal{W}(\tilde{Y}_1 - \tilde{Y}_2), \mathcal{W}(\tilde{Y}_1' - \tilde{Y}_2'), \mathcal{W}(\tilde{Y}_1'' - \tilde{Y}_2''))\|_{L_2}, \text{ with } Y_1 \text{ and } Y_2 \text{ the first and second derivatives of } Y_1$$

To determine which measure to use, we generated 14 pandemics. Each pandemic has default parameters except one of them which was doubled, except for the last one which only have the default

For each norm \mathcal{L}_k , we determined S, the subset of 4 pandemics that maximized the following quantity:

$$\sum_{i,j \in S, i \neq j} \mathcal{L}_k(Y_i, Y_j)$$

The 4 most divers pandemics accorded to each norm are shown in the figure 2. We then decided that \mathcal{L}_2 norm was the most relevant to determine the diversity of the pandemics. But, keeping the parameters [0, 5, 10, 12] would not be relevant, the parameters were increased independently, and the diversity did not take into account the correlation between some of them.

Finding the parameters that maximise the \mathcal{L}_2 diversity is equivalent to solve the following problem:

$$S_{opt} = \underset{S' \subset S, |S'|=4}{argmax} \mathcal{L}(S')$$
, with $\mathcal{L}(S') = \sum_{s,t \in \mathcal{P}(S'), s \neq t} \mathcal{L}_2(s,t)$, and $\mathcal{P}(S')$ the set of the 81 pandemics generated with the 4 parameters of S'

However, generating a pandemic with Covasim is time consuming, and it is not possible to compute the diversity of each set of 4 parameters included inn S.

A MCMC algorithm [1] was then implemented, to perform a clever grid search on the different subsets of parameters. The MCMC algorithm is a method which is used to sample from a distribution that can't be directly sampled. The main idea is to construct a Markov Chain whose stationary distribution is the objective distribution.

Let \mathcal{X} be the support of the target distribution, which is, in our case, the set of all the 715 combinations of the 4 parameters among the 13 different possible, and let π be the target distribution on \mathcal{X} . $\forall x \in \mathcal{X}, \pi(x) = \frac{\mathcal{L}(x)}{\sum_{x \in \mathcal{X}} \mathcal{L}(x)}$ For each $x = [a, b, c, d] \in \mathcal{X}$, let ne(x) be the set of the neighbourghs of x, i.e the set of all the

elemnts of \mathcal{X} who have only one parameter different from x.

Let U_n be a sequence of independent uniform random variables on [0,1] and $\forall s \in \mathcal{X}$, let $U_n^{ne(s)}$ be a sequence of independant uniform random variables on ne(s) . Let $x_0 \in \mathcal{X}$ and let X_n be the random sequence defined as follow:

$$\begin{cases} X_0 = x_0 \\ \forall n \in \mathbb{N}, \alpha_n = \frac{\mathcal{L}(U_n^{ne(X_n)})}{\mathcal{X}_n} \\ \forall n \in \mathbb{N}, X_{n+1} = U_n^{ne(X_n)} \not \Vdash_{U_n < \alpha_n} + X_n \not \vdash_{U_n > \alpha_n} \end{cases}$$

As X_{n+1} is a function of X_n and of other independent variables, the sequence X_n is a homogenous Markov Chain. This formula means that at each iteration, a neighbourgh of X_n is uniformly selected among all the neighbourghs of X_n . The Markov Chain moves to this neighbourgh if the value of the function \mathcal{L} is higher than the value of the function \mathcal{L} at the current state. If the value of \mathcal{L} is smaller, the markov chain moves with a probability that is equal to the ratio of the two values. This way of moving on the different subsets prevents to be stucked in a local maxima but avoids exploring dummies areas, in which the diversity is very small. MAINTENANT IN PROIVE QUE C EST LA PROBA INVARIANTE DONC STATIONNAIRE ET HOP

Computing confidence intervals on the prediction 2.1

Assumption:

We suppose that the data of the pandemic observed follows the model h, of parameter $\theta^* \in \mathbb{R}^d$. Let Y_i , $i=1,\ldots,n$ be the number of hospitalized at each day. We suppose that $Y_i=h_{\theta^*}(i)+\epsilon_i$, with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, iid, and independent from all the other variables. The objective is to estimate θ^* . We use $\hat{\theta}$, the least square estimator of θ^* as an estimator of θ^* :

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \sum_{i=1}^n (Y_i - h_{\theta}(i))^2$$

Let:

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$$

$$h_{\theta} = \begin{pmatrix} h_{\theta}(1) \\ \vdots \\ h_{\theta}(n) \end{pmatrix}$$

We have:

$$\hat{\theta} = \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \|Y - h_{\theta}\|^2$$

Now, if θ is close enough to θ^* , we can write :

$$\forall i \in \{1, ..., n\} : h_{\theta}(i) = h_{\theta^*}(i) + (\theta - \theta^*)^T \nabla_{\theta} h_{\theta^*}(i)$$

which leads to:

$$\hat{\theta} = \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \left\| Y - h_{\theta^*} - (\theta - \theta^*)^T \nabla_{\theta} h_{\theta^*} \right\|^2$$

Let us define:

$$\tilde{Y} = Y - h_{\theta^*}$$

$$\beta = \theta - \theta^*$$

$$\hat{\beta} = \theta - \hat{\theta}$$

and let us define the matrix $A \in \mathbb{R}^{n \times d}$ such that $\forall i \in \{1,...,n\}, \forall j \in \{1,...,d\}, A_{i,j} = \frac{dh_{\theta^*}}{d\theta_j}(i)$. The previous problem can be re-written as:

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \left\| \tilde{Y} - A\beta \right\|^2$$

This is a regression linear problem.

Let us solve this problem in the general case.

Let (A_i, \tilde{Y}_i) be the observations Let \mathbb{P} be the law of A_i , and let us assume that $Y_i = A_i \beta^* + \epsilon_i$, with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The solution of this problem is explicitly:

$$\hat{\beta} = (A^T A)^{-1} A^T \tilde{Y}$$

This least-square estimator is unbiased:

$$\mathbb{E}[\hat{\beta}] = \beta^*$$

$$\hat{\beta} = \left(\sum_{i=1}^{n} A_i^T A_i\right)^{-1} \times \left(\sum_{i=1}^{n} A_i^T \tilde{Y}_i\right)$$

$$\hat{\beta} = \frac{n}{n} \left(\sum_{i=1}^{n} A_i^T A_i \right)^{-1} \times \left(\sum_{i=1}^{n} A_i^T \tilde{Y}_i \right)$$

$$\hat{\beta} = \left(\frac{1}{n} \sum_{i=1}^{n} A_i^T A_i\right)^{-1} \times \left(\frac{1}{n} \sum_{i=1}^{n} A_i^T \tilde{Y}_i\right)$$

Let us denote:

$$\hat{D} = \frac{1}{n} \sum_{i=1}^{n} A_i^T A_i, \text{ and } \hat{\delta} = \left(\frac{1}{n} \sum_{i=1}^{n} A_i^T \tilde{Y}_i\right)$$

We have:

$$\hat{\beta} = \hat{D}^{-1}\hat{\delta}$$

$$\hat{D} \underset{a,s}{\rightarrow} D = \mathbb{E}[A_i^T A_i]$$

$$\hat{\delta} \underset{a.s}{\rightarrow} \delta = \mathbb{E}[A_i^T \tilde{Y}_i]$$

 $\hat{\beta}=\hat{D}^{-1}\hat{\delta}\underset{a,s}{\rightarrow}D^{-1}\delta$, as the following function ϕ is continuous :

$$\phi: \left\{ \begin{array}{ccc} \mathcal{GL}_n(\mathbb{R}) & \to & \mathcal{GL}_n(\mathbb{R}) \\ A & \mapsto & A^{-1} \end{array} \right.$$

Now, let us show that $\hat{\beta}$ is asymptotically normal:

$$\begin{split} \sqrt{n}(\hat{\beta} - \beta^*) &= \sqrt{n}(\hat{D}^{-1}\hat{\delta} - \beta^*) \\ &= \sqrt{n}(\hat{D}^{-1}\hat{\delta} - \hat{D}^{-1}\hat{D}\beta^*) \\ &= \sqrt{n}\hat{D}^{-1}(\hat{\delta} - \hat{D}\beta^*) \\ &= \sqrt{n}\hat{D}^{-1}\left(\frac{1}{n}\sum_{i=1}^n A_i^T \tilde{Y}_i - \frac{1}{n}\sum_{i=1}^n A_i^T A_i\beta^*\right) \\ &= \frac{\sqrt{n}}{n}\hat{D}^{-1}\left(\sum_{i=1}^n A_i^T (\tilde{Y}_i - A_i\beta^*)\right) \\ &= \frac{1}{\sqrt{n}}\hat{D}^{-1}\left(\sum_{i=1}^n A_i^T \epsilon_i\right) \end{split}$$

This line is made of two terms. Let's show that each one of them converges in law.

$$\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} A_i^T \epsilon_i' \right) = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} A_i^T \epsilon_i' \right)$$
$$= \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} A_i^T \epsilon_i' - 0 \right)$$
$$\xrightarrow{\mathcal{L}} \mathcal{N}(0, \operatorname{Var}(A_i^T \epsilon_i))$$

Yet, as ϵ_i and A_i are independent, and $\mathbb{E}[A_i^T \epsilon_i'] = 0$, $\operatorname{Var}(A_i^T \epsilon_i) = \mathbb{E}[A_i A_i^T \epsilon_i^2] = \mathbb{E}[A_i A_i^T] \sigma'^2$. Finally, $\frac{1}{\sqrt{n}} \left(\sum_{i=1}^n A_i^T \epsilon_i' \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, D\sigma'^2)$.

On the other hand, $\hat{D}^{-1} \xrightarrow{\mathcal{L}} D^{-1}$, which is constant. Finally, with Slutsky, we obtain that :

$$\sqrt{n}(\hat{\beta} - \beta^*) \xrightarrow{\mathcal{L}} D^{-1} \mathcal{N}(0, D\sigma'^2)$$

$$\xrightarrow{\mathcal{L}} \mathcal{N}(0, D^{-1}(D\sigma'^2)(D^{-1})^T)$$

$$\xrightarrow{\mathcal{L}} \mathcal{N}(0, D^{-1}D\sigma'^2(D^{-1})^T)$$

$$\xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma'^2D^{-1})$$

$$\xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma'^2(A^TA)^{-1})$$

Let's get back to the first problem : As $\beta^* = 0$ and $\hat{\beta} = \hat{\theta} - \theta^*$, we have :

$$\sqrt{n}(\hat{\theta} - \theta^*) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2(A^T A)^{-1})$$

and.

$$\hat{\theta} \sim \mathcal{N}(\theta^*, \frac{\sigma^2}{n} (A^T A)^{-1})$$

As a first conclusion, we have that $\hat{\theta}$ is asymptotically normal.

Let Σ be the covariance matrix estimated from the computation of $\hat{\theta}$. In our case, $\Sigma = \frac{\sigma^2}{n} (A^T A)^{-1}$. As $\hat{\theta}$ is asymptotically normal, we can apply the delta-method:

$$\sqrt{n}(\hat{\theta} - \theta^*) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \ \Sigma)$$

$$\sqrt{n}(h_{\hat{\theta}} - h_{\theta^*}) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \nabla_{\theta} h_{\theta}^T \Sigma \nabla_{\theta} h_{\theta})$$

And finally:

$$h_{\hat{\theta}} o \mathcal{N}(h_{\theta^*}, \frac{1}{n} \nabla_{\theta} h_{\theta}^T \Sigma \nabla_{\theta} h_{\theta})$$

By estimating $\frac{1}{n}\Sigma$ from curve_fit, we can compute the confidence interval of the prediction with the quantiles of the normal distribution.

Results

Discussion

Conclusion

Références

- [1] Persi Diaconis. "The markov chain monte carlo revolution". In: Bulletin of the American Mathematical Society 46.2 (2009), p. 179-205.
- [2] Philip Gerlee et al. "Predicting regional COVID-19 hospital admissions in Sweden using mobility data". In: Scientific reports 11.1 (2021), p. 24171.
- [3] Cliff C KERR et al. "Covasim: an agent-based model of COVID-19 dynamics and interventions". In: PLOS Computational Biology 17.7 (2021), e1009149.