

Błędy oprogramowania

- Odstępstwa od ustalonej specyfikacji
 - Oprogramowanie nie wykonuje czegoś, co powinno wykonywać
 - Oprogramowanie robi coś, czego nie powinno robić
 - Oprogramowanie nie wypełnia warunków dotyczących cech pozafunkcjonalnych (szybkość działania, łatwość użycia itd.)
 - Oprogramowanie zachowuje się w sposób nie przewidziany specyfikacją
- Pluskwa: usterka w kodzie programu wynikająca z nieuwagi lub przeoczenia programisty

Politechniko Warszawsko

Inżynieria oprogramowania

Badanie jakości testowania

- · Metoda posiewowa
 - Wprowadzenie do kodu pewnej liczby sztucznie wytworzonych błędów
 - B liczba wykrytych błędów
 - b liczba posianych błędów, które zostały wykryte
 - P liczba posianych błędów
 - szacunkowa liczba błędów:

•
$$(B-b) * {}^{P}/_{b}$$

– szacunkowa liczba wykrytych błędów:

•
$$(B - b) * (P/b - 1)$$

Politechniko Warszawsko Inżynieria oprogramowania

Testy czarnej skrzynki

- Ocena działania programu jedynie na podstawie obserwacji danych wejściowych i wyjściowych
- Brak ingerencji oraz wiedzy o kodzie programu
- Badanie programu z punktu widzenia jego użytkowników
- Porównanie programu ze specyfikacją (np. wymaganiami)
- Techniki wykorzystywane w metodach czarnej skrzynki
 - Tworzenie klas równoważności, warunki graniczne, zmiany stanu, niedoświadczony użytkownik

Politechnika Warszawska

Inżynieria oprogramowania

5

5

Metoda klas równoważności

- Brak możliwości przebadania ogromnej liczby możliwych stanów systemu
- Określenie zbioru zadań testowych
 - Odpowiednie pokrycie równoważnych stanów
 - Dobranie optymalnej liczby klas równoważności
 - Identyfikacja klas równoważności
 - Pokrycie testami wartości domyślnych, zerowych, początkowych
 - Pokrycie testami wartości błędnych

Politechnika Warszawska Inżynieria oprogramowania

Metoda warunków granicznych

- Określenie podziałów przyjmowanych przez dane wejściowe
 - Zakresy dopuszczalnych wartości danych i granice tych zakresów
- Sprawdzenie zachowania się systemu dla danych w okolicy podziałów
 - Dane mieszczące się w zakresie jak i spoza zakresów
- Przykład: kontrola zakresu liczbowego <a,b>
 - Sprawdzamy działanie programu dla x=a-1, a, a+1, b-1, b, b+1
 - Sprawdzamy wybrane wartości z wnętrza przedziału, np.
 x = (a+b)/2, a-2

Politechnika Warszawska

Inżynieria oprogramowania

7

7

Metoda zmian stanów

- Liczba przejść między stanami rośnie lawinowo wraz z liczbą stanów
 - Problem komiwojażera (5 miejscowości, 120 dróg)
- Stworzenie mapy stanów (np. diagram maszyny stanów)
- Każdy stan powinien być odwiedzony przynajmniej raz
 - Badania często wykorzystywanych przejść między stanami
 - Badania stanów awaryjnych
- Konieczne wykorzystanie narzędzi do testów automatycznych
 - Możliwość wprowadzenia elementów losowości
 - Testowanie dla zmiennego obciążenia systemu

Politechnika Warszawska Inżynieria oprogramowania

Metoda niedoświadczonego użytkownika

- Uczestnictwo realnych użytkowników
- Osoby bez doświadczenia z systemem
- Wykorzystanie systemu w niestandardowy, nieoczekiwany sposób
- Testerzy dostają zadania odpowiadające przypadkom użycia systemu
 - Zadania wykonywane zgodnie z intuicją użytkowników
 - Możliwe wprowadzanie niewłaściwych danych itp.
 - Cenne wskazówki dotyczące oceny systemu przez użytkowników

Politechnika Warszawska

Inżynieria oprogramowania

9

9

Testy szklanej (białej) skrzynki

- Wykorzystują wiedzę o kodzie programu
- · Badanie przebiegów przez kod programu
- Formalne i nieformalne przeglądy kodu
- Wykorzystanie analizatorów kodu
- Wykorzystanie modeli projektowych
 - Diagramy sekwencji opisują działanie kodu
 - Diagramy czynności opisują algorytmy

Politechniko Warszawsko

Inżynieria oprogramowania

Techniki pokrycia instrukcji i gałęzi

- Przejście przez wszystkie instrukcje kodu przynajmniej raz
- Przejście przez wszystkie gałęzie wychodzące z instrukcji warunkowych
- · Wykorzystanie diagramów blokowych
 - Pokazanie możliwych ścieżek wykonania kodu

Politechnika Warszawska

Inżynieria oprogramowania

11

11

Technika pokrycia warunków; testowanie pętli

- Sprawdzenie działania kodu dla różnych kombinacji warunków w instrukcjach warunkowych
- Przykład: if (x==0 || y==0)
 - Sprawdzamy dla x=0 i y=0
 - Sprawdzamy dla x=0 i y=2 oraz x=3 i y=0
 - Dodatkowo sprawdzamy dla x=2 i y=3
- Ogólnie: sprawdzamy działanie dla wszystkich kombinacji wartości wyrażeń logicznych
- Sprawdzenie działania pętli
 - Szczególnie istotne pierwsze i ostatnie przebiegi
 - Wyjście z pętli przez zakończeniem
 - Próba wykonania większej liczby iteracji

Politechnika Warszawska

Inżynieria oprogramowania

Technika ścieżek bazowych

- Określenie złożoności cyklomatycznej kodu
- Wykorzystanie diagramu czynności
 - Węzły instrukcje; przejścia kolejność wykonania
- Złożoność liczymy na podstawie liczby węzłów decyzyjnych, węzłów złączenia oraz regionów
 - Region: obszar zamknięty krawędziami łączącymi węzły
- Złożoność cykliczna determinuje liczbę niezależnych ścieżek wykonania kodu
 - Określamy liczbę testów niezbędnych do pokrycia wszystkich instrukcji w danym fragmencie kod

Politechnika Warszawska

Inżynieria oprogramowania

13

13

Testowanie przypadków użycia

- Scenariusze testowe
 - Opis kolejnych kroków interakcji użytkownika z systemem
 - Metoda czarnej skrzynki
 - Wykorzystanie scenariuszy przypadków użycia
 - Złożenie scenariuszy dla kilku przypadków użycia
- Scenariusze pozytywne i negatywne
 - Sprawdzenie pozytywnego działania systemu
 - Wyeliminowanie niechcianego działania systemu

Politechnika Warszawska Inżynieria oprogramowania

