## MÁY HỌC ỨNG DỤNG

# A. Lý thuyết

## I. Các phương pháp học từ dữ liệu (C4 - Nhập môn AI):

- Học không có giám sát (Unsupervised Learning):
  - + Kmeans, Hierachical Clustering.
- + Thực hiện mô hình hóa một tập data input, **không được gán nhãn**(lớp, giá trị cần predict).
- + Gom cụm, gom nhóm (Clustering): Xây dựng mô hình gom cụm data tập học (không có nhãn) sao cho các data cùng nhóm có các tính chất tương tự nhau và data của 2 nhóm khác nhau sẽ có các tính chất khác nhau.
- Học có giám sát (Supervised Learning):
- + Là thuật toán học tạo ra một hàm ánh xạ data input tới KQ đích mong muốn (nhãn, lớp, giá trị cần dự báo). Tập dữ liệu dùng để huấn luyện phải được gán nhãn, lớp hay giá trị cần dự báo.
  - + **Bài toán hồi quy** (regression): y (nhãn) là giá trị liên tục.
  - + **Bài toán phân lớp** (classification): y là giá trị **không** liên tục.





# Từ tập dữ liệu học/huấn luyện { $(x^1, y^1), (x^2, y^2),...,(x^m, y^m)$ }

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| DI  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| DII | Sunny    | Mild        | Normal   | Strong | Yes        |
| DI2 | Overcast | Mild        | High     | Strong | Yes        |
| DI3 | Overcast | Hot         | Normal   | Weak   | Yes        |
| DI4 | Rain     | Mild        | High     | Strong | No         |

[See:Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997]

Chỉ ra thuộc tính? Nhãn/lớp của tập dữ liệu thời tiết trong bảng trên

+ Thuộc tính: Outlook, Temperature, Humidity, Wind.

+ Nhãn: PlayTennis.

=> Đây là bài toán phân lớp.

| Day | Outlook  | Temp. | Humidity | Wind   | Golf Players |
|-----|----------|-------|----------|--------|--------------|
| 1   | Sunny    | Hot   | High     | Weak   | 25           |
| 2   | Sunny    | Hot   | High     | Strong | 30           |
| 3   | Overcast | Hot   | High     | Weak   | 46           |
| 4   | Rain     | Mild  | High     | Weak   | 45           |
| 5   | Rain     | Cool  | Normal   | Weak   | 52           |
| 6   | Rain     | Cool  | Normal   | Strong | 23           |
| 7   | Overcast | Cool  | Normal   | Strong | 43           |
| 8   | Sunny    | Mild  | High     | Weak   | 35           |
| 9   | Sunny    | Cool  | Normal   | Weak   | 38           |
| 10  | Rain     | Mild  | Normal   | Weak   | 46           |
| 11  | Sunny    | Mild  | Normal   | Strong | 48           |
| 12  | Overcast | Mild  | High     | Strong | 52           |
| 13  | Overcast | Hot   | Normal   | Weak   | 44           |
| 14  | Rain     | Mild  | High     | Strong | 30           |

+ Thuộc tính: Outlook, Temp., Humidity, Wind.

+ Nhãn: Golf Players.

=> Đây là bài toán hồi quy.

+ Đối với **bài toán phân lớp**, xây dựng mô hình phân loại dựa trên data tập học đã có **nhãn** (lớp) **là kiểu liệt kê.** 

**VD:** Có sẵn tập data thư điện thử, *mỗi thư có 1 nhãn là thư rác hay thư bình thường*, mục tiêu là *build mô hình phân lớp tập data thư điện tử thành thư rác hay thư bình thường* để khi có một *thư điện tử mới đến thì mô hình dự báo được thư này có phải là thư rác hay không*.

+ Đối với **bài toán hồi quy**, xây dựng mô hình phân loại dựa trên data tập học đã có nhãn (lớp) là **giá trị liên tục**.

VD: Build mô hình dự báo nước sông Mekong từ các yếu tố thời tiết, mùa, ......

- Học bán giám sát: Kết hợp không giám sát và giám sát.
- Học tăng cường (Reinforcement Learning):
- + Là cách tiếp cận tập trung vào việc học để hoàn thành được mục tiêu bằng việc tương tác trực tiếp với MT.
- + Là các bài toán giúp cho một hệ thống tự động xác định hành động dựa vào môi trường cụ thể để đạt được hiệu quả cao nhất.
- + Bản chất là **trial-and-eror**, nghĩa là thử đi thử lại và rút ra kinh nghiệm sau mỗi lần thử.

#### \*Tóm gọn lại:

Từ tập dữ liệu đầu vào, xác định các thuộc tính (X) và nhãn (Y):

- Nếu có Y, xét Y:
  - + Y rời rạc => Phân lớp.
  - + Y liên tuc => Hồi quy.
- Nếu không có Y => Gom cụm, gom nhóm.

# II. Giải thuật K láng giềng (KNN):

- Là thuật toán phân lớp các trường hợp mới đến dựa trên một số lượng thông tin "phổ biến" nhất của **k** láng giềng gần nhất với nó.
- Để xác định được lớp của phần tử mới đến:
  - + Tính toán khoảng cách từ phần tử mới đến các phần tử còn lại trong tập huấn luyện.
  - + Cho k phần tử gần nhất với phần tử mới trong tập huấn luyện.
  - + Gán nhãn cho phần tử mới bằng nhãn "phổ biến" nhất của k láng giềng gần nhất.
- Cách chọn k: Nên chọn k là giá trị lẻ và đủ lớn.
- Các độ đo khoảng cách: Khoảng cách được tính theo từng kiểu của data:
  - + Kiểu số.
  - + Kiểu rời rạc (nominal type).
  - + Nhị phân.
- Đo khoảng cách **kiểu số**:

ang each **Rieu so**:  

$$d(i,j) = \sqrt[q]{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

 $i=(x_{i1},x_{i2},\ldots,x_{ip})$  và  $j=(x_{j1},x_{j2},\ldots,x_{jp})$  là 2 phần tử data trong *p*-dimensional, *q* là số nguyên dương.

Nếu q = 1, d là khoảng cách Manhattan:

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

Nếu q = 2, d là khoảng cách Euclid:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

- Đo khoảng cách **kiểu rời rạc**:

Trong đó:

- + m: là số lượng matches.
- + p: là tổng số biến (thuộc tính).
- + Khoảng cách được định nghĩa:

$$d(i,j) = \frac{p-m}{p}$$

#### VD1:

| 3    | Màu tóc | Màu mắt | Chiều cao | Cân nặng   | Trình độ |
|------|---------|---------|-----------|------------|----------|
| Nam  | Đen     | Đen     | Cao       | Trung bình | Cao đẳng |
| Lan  | Nâu     | Đen     | Thấp      | Trung bình | Đại học  |
| Điệp | Nâu     | Đen     | Cao       | Trung bình | Cao đẳng |

| d(Nam, Lan) = 2 / 5 | d(Nam, Điệp) = 1 / 5 |
|---------------------|----------------------|
|---------------------|----------------------|

# Cách tính khoảng cách giữa các phần tử

Mỗi phần tử được biểu diễn bởi tập hợp các thuộc tính



John: Tuổi = 35 Thu nhập = 95K Số thẻ tín dụng = 3



Mary: Tuổi = 41 Thu nhập = 215K Số thẻ tín dụng = 2

Sử dụng khoảng cách Euclide giữa 2 phần tử.

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + ... + |x_{i_p} - x_{j_p}|^2)}$$

# Khoảng cách (John, Mary) = $sqrt [(35-41)^2+(95K-215K)^2+(3-2)^2]$

- Phương pháp KNN:
  - + Đơn giản, **không có quá trình học**. Không có mô hình được xây dựng.
  - + Mất nhiều thời gian so với một mô hình.
  - + KQ phụ thuộc vào việc chọn khoảng cách.
  - + Có thể làm việc trên nhiều loại data.
  - + Giải quyết các vấn đề về phân loại, hồi quy.
  - + Độ phức tạp khá lớn.
- + Úng dụng thành công trong lĩnh vực **tìm kiếm thông tin, nhận dạng, phân tích dữ** liệu.
- + Kết quả cho ra thường chính xác, nhưng chậm do phải duyệt qua data để tìm phần tử gần.
- Cách chuẩn hóa dữ liệu: (max, min thuộc [0;100], đưa các cột dữ liệu về một kiểu số)

$$new\_value = \frac{value - min}{max - min}$$

\*Để xác định nhãn của phần tử mới đến, xác định khoảng cách giữa phần tử mới đến tất cả các phần tử có trong dữ liệu và chọn ra k phần tử gần nhất.

### III. Phương pháp đánh giá mô hình:

- Nếu dữ liệu có 1 tập học và 1 tập kiểm tra sẵn dùng:
  - + Dùng data học để build mô hình.
  - Dùng tập kiểm tra để đánh giá hiệu quả của giải thuật.
- (\*) Dữ liệu kiểm tra và dữ liệu huấn luyện mô hình không được giao nhau.
- Nếu dữ liệu **không có 1 tập kiểm tra** sẵn:
- + Nghi thức **k-fold**: Chia tập data thành **k** phần (fold) bằng nhau, lặp lại **k** lần, mỗi lần sửa dụng **k 1** folds để học và 1 fold để kiểm tra, sau đó tính trung bình của **k** lần kiểm tra.
  - [] Nếu data có số phần tử lớn hơn 300, sử dụng nghi thức k-fold với k = 10.
- [] Nếu data có số phần tử nhỏ hơn, sử dụng nghi thức **leave 1 out** (k-fold với k = số phần tử).
- + Nghi thức **hold-out**: Lấy ngẫu nhiên **2/3** tập data để học và **1/3** tập dữ liệu còn lại dùng cho kiểm tra, có thể lặp lại quá bước này **k** lần rồi tính giá trị trung bình.
- Confusion matrix (C) cho k lóp:

| Dự đoán => | 1 | ••• | k |
|------------|---|-----|---|
| 1          |   |     |   |
| •••        |   |     |   |
| k          |   |     |   |

- C[i, j]: Số phần tử lớp i (dòng) được giải thuật dự đoán là lớp j (cột).
- C[i, I]: Số phần tử phân lớp đúng.
- Độ chính xác lớp I: C[i, i] / C[i,]
- Độ chính xác tổng thể: \( \sum\_{i} \) C[i,i] / C
- Nếu data không cân bằng, cần chọn chỉ số đánh giá phù hợp.
- Confusion matrix (C) cho 2 lóp (+/-)
  - + Precision.
  - + Recall.
  - + Accuracy.
  - + F1

| Dự đoán => | dương | âm |
|------------|-------|----|
| dương      | TP    | FN |
| âm         | FP    | TN |

$$prec = \frac{tp}{tp + fp}$$
  $acc = \frac{tp + tn}{tp + fn + tn + fp}$   $rec = \frac{tp}{tp + fn}$   $F1 = \frac{2 \times prec \times rec}{prec + rec}$ 

- + **TP**: tổng số phần tử lớp **dương** được giải thuật dự đoán là lớp **dương**.
- + FN: tổng số phần tử lớp dương được giải thuật dự đoán là lớp âm.
- + TN: tổng số phần tử lớp âm được giải thuật dự đoán là lớp âm.
- + FP: tổng số phần tử lớp âm được giải thuật dự đoán là lớp dương.

| Dự đoán => | dương   | âm      |
|------------|---------|---------|
| dương      | 10 (TP) | 5 (FN)  |
| âm         | 8 (FP)  | 22 (TN) |

**VD:** Giả sử tập data có 40000 mẫu tin, trong đó có 8 mẫu tin thuộc lớp dương (+1) và 39992 mẫu tin thuộc lớp âm (-1), có 2 mô hình phân lớp M1 và M2 cho KQ tương ướng trong bảng 1, 2 như bên dưới. Tìm mô hình thích hợp để xử lý tập dữ liệu trên.

Ma trận confusion thu được từ mô hình M1 (trái) và M2 (phải):

| Dự đoán => | dương | âm    |
|------------|-------|-------|
| dương      | 1     | 7     |
| âm         | 1     | 39991 |

| Dự đoán => | dương | âm    |
|------------|-------|-------|
| dương      | 8     | 0     |
| âm         | 32    | 39960 |

- Sử dụng mô hình M2 vì giữa dự đoán đúng 1 / 7 và đúng cả 8 thì chọn đúng cả 8.
- Chỉ số đánh giá cho bài toán hồi quy: Đo lường mức độ sai số của các dự đoán. Càng thấp càng tốt. (MAE, MSE, RMSE).

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

Trong đó:  $p_i$  là giá trị dự đoán đánh giá của item i.  $R_i$  là giá trị thực tế của item i.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}$$

#### IV. Giải thuật Bayes thơ ngây (Naive - Bayes)

- Phương pháp Bayes là hệ thống **ham học.**
- Là giải thuật học có giám sát (supervised learning) xây dựng mô hình phân loại dựa trên dữ liệu tập học đã có nhãn (lớp).
- Dựa vào **các đặc trưng** đưa ra kết luận **nhãn** của đối tượng mới đến.
- Khi đưa ra một tập train, hệ thống **ngay lập tức** phân tích dữ liệu và **xây dựng mô hình.** Khi cần phân loại một đối tượng mới đến, hệ thống sử dụng mô hình đã xây dựng để xác định đối tương mới.
- Có xu hướng phân loại nhanh hơn KNN (lười học).
- Cho kết quả tốt.
- Phân lớp không yêu cầu phải ước lượng một cách chính xác xác suất.
- Sử dụng trong phân loại text, spam, etc.
- Data có nhiều attribute du thừa => Naive Bayes k hiệu quả.
- Data liên tục có thể k theo phân phối chuẩn.
- Sử dụng kiến thức **Xác suất thống kê.**

Xác suất của A với điều kiện B xảy ra được định nghĩa như sau:
$$P(A/B) = \frac{P(AB)}{P(B)} = \frac{P(B/A)P(A)}{P(B)}$$

- Triển khai giải thuật:
  - B1. Huấn luyện mô hình: Tính xác suất của tất cả các trường hợp.
- **B2. Dự đoán**: Xác định nhãn của đối tượng mới đến thông qua giá trị xác suất lớn nhất tính được.

**VD1:** Cho tập dữ liệu weather như sau:

| Outlook  | Temp | Humidity | Windy | Play |
|----------|------|----------|-------|------|
| Sunny    | Hot  | High     | False | No   |
| Sunny    | Hot  | High     | True  | No   |
| Overcast | Hot  | High     | False | Yes  |
| Rainy    | Mild | High     | False | Yes  |
| Rainy    | Cool | Normal   | False | Yes  |
| Rainy    | Cool | Normal   | True  | No   |
| Overcast | Cool | Normal   | True  | Yes  |
| Sunny    | Mild | High     | False | No   |
| Sunny    | Cool | Normal   | False | Yes  |
| Rainy    | Mild | Normal   | False | Yes  |
| Sunny    | Mild | Normal   | True  | Yes  |
| Overcast | Mild | High     | True  | Yes  |
| Overcast | Hot  | Normal   | False | Yes  |
| Rainy    | Mild | High     | True  | No   |

Bước 1: Huấn luyện mô hình / Học (Learning Phase)

| Ou       | tlook |     | Tem  | perat | ure | Hu     | midit | y   | 1     | Windy | ,   | Pl   | ay   |
|----------|-------|-----|------|-------|-----|--------|-------|-----|-------|-------|-----|------|------|
|          | Yes   | No  |      | Yes   | No  |        | Yes   | No  |       | Yes   | No  | Yes  | No   |
| Sunny    | 2     | 3   | Hot  | 2     | 2   | High   | 3     | 4   | False | 6     | 2   | 9    | 5    |
| Overcast | 4     | 0   | Mild | 4     | 2   | Normal | 6     | 1   | True  | 3     | 3   |      |      |
| Rainy    | 3     | 2   | Cool | 3     | 1   |        |       |     |       |       |     |      |      |
| Sunny    | 2/9   | 3/5 | Hot  | 2/9   | 2/5 | High   | 3/9   | 4/5 | False | 6/9   | 2/5 | 9/14 | 5/14 |
| Overcast | 4/9   | 0/5 | Mild | 4/9   | 2/5 | Normal | 6/9   | 1/5 | True  | 3/9   | 3/5 |      |      |
| Rainy    | 3/9   | 2/5 | Cool | 3/9   | 1/5 |        |       |     |       |       |     |      |      |

#### Bước 2: Dự báo / Dự đoán

Yêu cầu: Dự báo cho mẫu tin X = [Sunny, Cool, High, True] => Xác định nhãn.

- => Để xác định nhãn cho X (Yes / No) cần tính xác suất của lớp "yes" và xác suất của lớp "no". (Sử dụng CT <u>xác suất có điều kiện</u>)
  - => Nhãn của X dựa trên xác suất lớn hơn giữa 2 lớp "yes" và "no".

$$P(Yes|X) = [P(Outlook = Sunny | Yes).$$

$$P(Temperature = Cool | Yes).$$

$$P(Humidity = High | Yes).$$

$$P(Windy = True | Yes).$$

$$P(Yes)] / P(X)$$

$$= \frac{\frac{2}{9}x\frac{3}{9}x\frac{3}{9}x\frac{3}{9}x\frac{9}{14}}{P(X)} = 0.0053 / P(X)$$

$$P(No|X) = [P(Outlook = Sunny | No).$$

$$P(Temperature = Cool | No).$$

$$P(Humidity = High | No).$$

$$P(Windy = True | No).$$

$$P(No) ] / P(X)$$

$$= \frac{\frac{3}{5}x\frac{1}{5}x\frac{4}{5}x\frac{3}{5}x\frac{5}{14}}{P(X)} = 0.0206 / P(X)$$

Ta có: 
$$P(Yes|X) + P(No|X) = 1 => P(X) = 0.0259$$
.

=> 
$$P(Yes|X) = 0.205$$
 <  $P(No|X) = 0.795$    
Vậy, nhãn cho mẫu tin X[Sunny, Cool, High, True] là "No".

**VD2:** Cho tập dữ liệu weather như sau:

| Outlook  | Temp | Humidity | Windy | Play |
|----------|------|----------|-------|------|
| Sunny    | 85   | 85       | False | No   |
| Sunny    | 80   | 90       | True  | No   |
| Overcast | 83   | 86       | False | Yes  |
| Rainy    | 70   | 96       | False | Yes  |
| Rainy    | 68   | 80       | False | Yes  |
| Rainy    | 65   | 70       | True  | No   |
| Overcast | 64   | 65       | True  | Yes  |
| Sunny    | 72   | 95       | False | No   |
| Sunny    | 69   | 70       | False | Yes  |
| Rainy    | 75   | 80       | False | Yes  |
| Sunny    | 75   | 70       | True  | Yes  |
| Overcast | 72   | 90       | True  | Yes  |
| Overcast | 81   | 75       | False | Yes  |
| Rainy    | 71   | 91       | True  | No   |

Bước 1: Huấn luyện mô hình

| Ou       | tlook |     | Ten        | npera | ture | I          | Iumidit | y    | ,     | Windy | 7   | Pl   | ay   |
|----------|-------|-----|------------|-------|------|------------|---------|------|-------|-------|-----|------|------|
|          | Yes   | No  |            | Yes   | No   |            | Yes     | No   |       | Yes   | No  | Yes  | No   |
| Sunny    | 2     | 3   |            | 83    | 85   |            | 86      | 85   | False | 6     | 2   | 9    | 5    |
| Overcast | 4     | 0   |            | 70    | 80   |            | 96      | 90   | True  | 3     | 3   |      |      |
| Rainy    | 3     | 2   |            | 68    | 65   |            | 80      | 70   |       |       |     |      |      |
|          |       |     |            | 64    | 72   |            | 65      | 95   |       |       |     |      |      |
|          |       |     |            | 69    | 71   |            | 70      | 91   |       |       |     |      |      |
|          |       |     |            | 75    |      |            | 80      |      |       |       |     |      |      |
|          |       |     |            | 75    |      |            | 70      |      |       |       |     |      |      |
|          |       |     |            | 72    |      |            | 90      |      |       |       |     |      |      |
|          |       |     |            | 81    |      |            | 75      |      |       |       |     |      |      |
| Sunny    | 2/9   | 3/5 | μ          | 73    | 74.6 | μ          | 79.1    | 86.2 | False | 6/9   | 2/5 | 9/14 | 5/14 |
| Overcast | 4/9   | 0/5 | σ          | 6.2   | 7.9  | σ          | 10.2    | 9.7  | True  | 3/9   | 3/5 |      |      |
| Rainy    | 3/9   | 2/5 | $\sigma^2$ | 38    | 62.3 | $\sigma^2$ | 104.4   | 94.7 |       |       |     |      |      |

#### Bước 2: Dự đoán / Dự báo:

Yêu cầu: Dự báo cho mẫu tin X = [Sunny, 66, 90, True] => Xác định nhãn.

=> Để xác định nhãn cho X (Yes / No) cần tính xác suất của lớp "yes" và xác suất của lớp "no" dựa vào công thức phân phối xác suất.

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \mu)^2$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

=> Nhãn của X dựa trên xác suất lớn hơn giữa 2 lớp "yes" và "no".

$$P(Yes|X) = [P(Outlook = Sunny | Yes).$$

$$P(Temperature = Cool | Yes).?$$

$$P(Humidity = High | Yes).?$$

$$P(Windy = True | Yes).$$

$$P(Yes)]/P(X)$$

$$= \frac{\frac{2}{9}x?x?x\frac{3}{9}x\frac{9}{14}}{P(X)} = ?/P(X)$$

$$P(No|X) = [P(Outlook = Sunny | No).$$

$$P(Temperature = Cool | No).?$$

$$P(Humidity = High | No)?.$$

$$P(Windy = True | No).$$

$$P(No)] / P(X)$$

$$= \frac{\frac{3}{5}x?x?x\frac{3}{5}x\frac{5}{14}}{P(X)} = ? / P(X)$$

Ở cột Temperature:

Đối với nhãn "yes":

$$\mu = \frac{1}{9} (83 + 70 + 68 + 64 + 69 + 75 + 75 + 72 + 81) = 73$$

$$\sigma^{2} = \frac{1}{9-1} \left[ (83-73)^{2} + (70-73)^{2} + (68-73)^{2} + (64-73)^{2} + (69-73)^{2} + (75-73)^{2} + (75-73)^{2} + (72-73)^{2} + (81-73)^{2} \right] = 38$$

$$f(Temperature = 66 \mid Yes) = \frac{1}{\sqrt{2\pi} \cdot \sqrt{38}} e^{\frac{-(66-73)^2}{2\cdot 38}} = 0.034$$

- Đối với nhãn "no":

$$\mu = \frac{1}{5} (85 + 90 + 70 + 95 + 91) = 74.6$$

$$\sigma^2 = \frac{1}{5 - 1} \left[ (85 - 74.6)^2 + (90 - 74.6)^2 + (70 - 74.6)^2 + (95 - 74.6)^2 + (91 - 74.6)^2 \right] = 62.3$$

$$f(Temperature = 66 \mid No) = \frac{1}{\sqrt{2\pi} \cdot \sqrt{62.3}} e^{\frac{-(66-74.6)^2}{2.62.3}} = 0.028$$

Ở cột Humidity:

- Đối với nhãn "yes":

$$\mu = \frac{1}{9} \left( 86 + 96 + 80 + 65 + 70 + 80 + 70 + 90 + 75 \right) = 79.1$$

$$\sigma^{2} = \frac{1}{9-1} \left[ (86-79.1)^{2} + (96-79.1)^{2} + (80-79.1)^{2} + (65-79.1)^{2} + (70-79.1)^{2} + (80-79.1)^{2} + (70-79.1)^{2} + (90-79.1)^{2} \right] + (75-79.1)^{2} = 104.4$$

$$f(Humidity = 90 \mid Yes) = \frac{1}{\sqrt{2\pi} \cdot \sqrt{104,4}} e^{\frac{-(90-79.1)^2}{2.104,4}} = 0.022$$

Đối với nhãn "no":

$$f(Humidity = 90 \mid No) = \frac{1}{\sqrt{2\pi} \cdot \sqrt{94.7}} e^{\frac{-(90 - 86.2)^2}{2.94.7}} = 0.038$$

Thế vào 2 công thức P(Yes|X) và P(No|X) ở trên:

$$=> P(Yes|X) = [2/9 * 0.0340 * 0.0221 * 3/9 * 9/14] / P(X) = 0.000036 / P(X)$$
  
 $P(No|X) = [3/5 * 0.0291 * 0.0380 * 3/5 * 5/14] / P(X) = 0.000136 / P(X)$ 

Ta có, 
$$P(Yes|X) + P(No|X) = 1 => P(X) = 0.000172$$

$$=> P(Yes|X) = 0.000036 / 0.000172 = 20.9\%$$
  
 $P(No|X) = 0.000136 / 0.000172 = 79.1\%$ 

Vậy, nhãn cho mẫu tin X = [Sunny, 66, 90, True] là "yes".

- Khi xác suất bằng 0, sử dụng *ước lượng Laplace*. (Laplace estimator)
  - Xác suất không bao giờ có giá tri 0.
- + Cộng thêm cho tử một giá trị là  $p_i\mu$  và mẫu số giá trị  $\mu$  để tính xác suất.  $\mu$  hằng số dương và  $p_i$  là hệ số dương sao cho tổng các  $p_i = 1$  (i = 1 ... n).

**VD:** Cho tập dữ liệu sau:

| Outlook  | Temp | Humidity | Windy | Play |
|----------|------|----------|-------|------|
| Sunny    | Hot  | High     | False | No   |
| Sunny    | Hot  | High     | True  | No   |
| Overcast | Hot  | High     | False | Yes  |
| Rainy    | Mild | High     | False | Yes  |
| Rainy    | Cool | Normal   | False | Yes  |
| Rainy    | Cool | Normal   | True  | No   |
| Overcast | Cool | Normal   | True  | Yes  |
| Sunny    | Mild | High     | False | No   |
| Sunny    | Cool | Normal   | False | Yes  |
| Rainy    | Mild | Normal   | False | Yes  |
| Sunny    | Mild | Normal   | True  | Yes  |
| Overcast | Mild | High     | True  | Yes  |
| Overcast | Hot  | Normal   | False | Yes  |
| Rainy    | Mild | High     | True  | No   |

#### Dự đoán nhãn của X = [Overcast, Cool, High, True].

Từ bảng huấn luyện mô hình đã có, ta được kết quả:

$$P(Yes|X) = [P(Outlook = Overcast | Yes).$$

$$P(Temperature = Cool | Yes).$$

$$P(Humidity = High | Yes).$$

$$P(Windy = True | Yes).$$

$$P(Yes)] / P(X)$$

$$= \frac{\frac{4}{9}x\frac{3}{9}x\frac{3}{9}x\frac{3}{9}x\frac{9}{14}}{P(X)} = 0.0105 / P(X)$$

$$P(No|X) = [P(Outlook = Overcast|No).$$

$$P(Temperature = Cool|No).$$

$$P(Humidity = High|No).$$

$$P(Windy = True|No).$$

$$P(No)]/P(X)$$

$$= \frac{0}{5}x\frac{1}{5}x\frac{4}{5}x\frac{3}{5}x\frac{5}{14} = 0$$

=> Xảy ra vấn đề => Sử dụng Laplace estimator.

Thuộc tính outlook cho lớp "no" =>  $p_1 = p_2 = p_3 = 1/3$ ;  $\mu = 1$ .

**Sunny:** 

$$\frac{3 + \frac{\mu}{3}}{5 + \mu} = \frac{3 + \frac{1}{3}}{5 + 1} = \frac{10}{18}$$

**Overcast:** 

$$\frac{0 + \frac{\mu}{3}}{5 + \mu} = \frac{0 + \frac{1}{3}}{5 + 1} = \frac{1}{18}$$

Rainy:

$$\frac{2 + \frac{\mu}{3}}{5 + \mu} = \frac{2 + \frac{1}{3}}{5 + 1} = \frac{7}{18}$$

$$=> P(No|X) = [P(Outlook = Overcast|No).$$

$$P(Temperature = Cool|No).$$

$$P(Humidity = High|No).$$

$$P(Windy = True|No).$$

$$P(No)]/P(X)$$

$$= \frac{1}{18} x \frac{1}{5} x \frac{4}{5} x \frac{3}{5} x \frac{5}{14} = 0,0019$$

Vậy, nhãn của X = [Overcast, Cool, High, True] là "yes".

- Giá trị thuộc tính bị nhiễu:
  - + Học: Bỏ qua dữ liệu nhiễu.
  - + Phân lớp: Bỏ qua các thuộc tính nhiễu.
- (\*) Khi thuộc tính của dữ liệu mới đến bị thiếu, bỏ qua luôn thuộc tính đó. Nói cách khác, xác suất chỗ đó được xem như bằng 1.

# V. Phương pháp học cây quyết định: (Decision Tree)



- Cây quyết định là giải thuật học:
  - + Kết quả sinh ra dễ diễn dịch (if ... then ...).
  - + Khá đơn giản, nhanh, hiệu quả được sử dụng nhiều.
  - + Giải quyết các vấn đề của phân loại, hồi quy.
  - + Làm việc cho dữ liệu số và kiểu liệt kê.
- + Thành công trong hầu hết các lĩnh vực về phân tích dữ liệu, phân loại text, spam, phân loại gien, etc.
- Cây quyết định:
  - + **Nút trong**: Được tích hợp với điều kiên để kiểm tra rẽ nhánh.
  - + **Nút lá:** Được gán nhãn tương ứng với lớp của dữ liệu.
  - + 1 nhánh: Trình bày cho data thỏa mãn điều kiến kiểm tra, ví du: age < 25.
- + Ở mỗi nút, 1 thuộc tính được chọn để phân hoạch dữ liệu học sao cho tách rời các lớp tốt nhất có thể.
- + Một luật quyết định có dạng IF THEN được tạo ra từ việc thực hiện AND trên các điều kiện theo đường dẫn từ nút gốc đến nút lá.
- + Dữ liệu mới đến được phân loại bằng cách duyệt từ nút gốc của cây cho đến khi đụng đến nút lá, từ đó rút ra lớp của đối tượng cần xét.
- Xây dựng **cây Top-down**:
  - + Bắt đầu từ nút gốc, tất cả các data học ở nút gốc.
- + Nếu data tại 1 nút có cùng lớp => Nút lá. Nếu dữ liệu ở nút chứa **các phần tử có lớp rất khác nhau** thì **phân hoạch dữ liệu một cách đệ quy** bằng việc chọn 1 thuộc tính để thực hiện phân hoạch tốt nhất có thể.
- Chon thuộc tính phân hoach:
- + Tại mỗi nút, các thuộc tính được đánh giá dựa trên phân tách dữ liệu học **tốt nhất** có thể.
- + **Độ lợi thông tin** (chọn thuộc tính có chỉ số lớn) information gain (ID3/C4.5 Quinlan).
  - + Chỉ số gini (chọn thuộc tính có chỉ số nhỏ) gini index (CART Breiman).
- Nếu dữ liệu T có n lớp, chỉ số gini(T) được định nghĩa như sau:

$$gini(T) = 1 - \sum_{j=1}^{n} (p_j)^2$$

 $p_i$  là xác suất của lớp j trong T.

- gini(T) là nhỏ nhất nếu những lớp trong T bị lệch.
- Sau khi phân hoạch T thành 2 tập con T1 & T2 với kích thước N1 & N2, chỉ số gini:

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

Thuộc tính có gini<sub>split</sub>(T) nhỏ nhất được chọn để phân hoạch.

VD: Cho tập dữ liệu (kinh điển) sau:

| Outlook  | Temp | Humidity | Windy | Play |
|----------|------|----------|-------|------|
| Sunny    | Hot  | High     | False | No   |
| Sunny    | Hot  | High     | True  | No   |
| Overcast | Hot  | High     | False | Yes  |
| Rainy    | Mild | High     | False | Yes  |
| Rainy    | Cool | Normal   | False | Yes  |
| Rainy    | Cool | Normal   | True  | No   |
| Overcast | Cool | Normal   | True  | Yes  |
| Sunny    | Mild | High     | False | No   |
| Sunny    | Cool | Normal   | False | Yes  |
| Rainy    | Mild | Normal   | False | Yes  |
| Sunny    | Mild | Normal   | True  | Yes  |
| Overcast | Mild | High     | True  | Yes  |
| Overcast | Hot  | Normal   | False | Yes  |
| Rainy    | Mild | High     | True  | No   |

# Xây dựng cây quyết định với chỉ số gini từ tập dữ liệu trên.

<sup>\*</sup>Tính gini cho thuộc tính Outlook:

|       | Outlook  |       |
|-------|----------|-------|
|       | /        |       |
| Sunny | Overcast | Rainy |
|       | <u> </u> |       |
| Yes   | Yes      | Yes   |
| Yes   | Yes      | Yes   |
| No    | Yes      | Yes   |
| No    | Yes      | No    |
| No    |          | No    |

Gini(Outlook=Sunny) = 
$$1 - \left[ \left( \frac{2}{5} \right)^2 + \left( \frac{3}{5} \right)^2 \right] = 1 - 0.16 - 0.36 = 0.48$$
.  
Gini(Outlook=Overcast) =  $1 - \left[ \left( \frac{4}{4} \right)^2 + \left( \frac{0}{4} \right)^2 \right] = 0$   
Gini(Outlook=Rain) =  $1 - \left[ \left( \frac{3}{5} \right)^2 + \left( \frac{2}{5} \right)^2 \right] = 1 - 0.36 - 0.16 = 0.48$   
=> Gini(Outlook) =  $\frac{5}{14} * 0.48 + \frac{4}{14} * 0 + \frac{5}{14} * 0.48 = 0.342$ 

<sup>\*</sup>Tính gini cho thuộc tính Temperature:



Gini(Temp=Hot) = 
$$1 - \left[ \left( \frac{2}{4} \right)^2 + \left( \frac{2}{4} \right)^2 \right] = 1 - 0.25 - 0.25 = 0.5$$
  
Gini(Temp=Mild) =  $1 - \left[ \left( \frac{4}{6} \right)^2 + \left( \frac{2}{6} \right)^2 \right] = 1 - 0.444 - 0.111 = 0.445$   
Gini(Temp=Cool) =  $1 - \left[ \left( \frac{3}{4} \right)^2 + \left( \frac{1}{4} \right)^2 \right] = 1 - 0.5625 - 0.0625 = 0.375$   
=>Gini(Temp) =  $0.5 * \frac{4}{14} + 0.445 * \frac{6}{14} + 0.375 * \frac{4}{14} = 0.439$ 

\*Tính gini cho thuộc tính Humidity:



Gini(Humidity=

#### B. Bài tập:

BT1: Cho tập dữ liệu như sau:

| age         | income | student | credit_rating | Class: buys computer |
|-------------|--------|---------|---------------|----------------------|
| youth       | high   | no      | fair          | no                   |
| youth       | high   | no      | excellent     | no                   |
| middle_aged | high   | no      | fair          | yes                  |
| senior      | medium | no      | fair          | yes                  |
| senior      | low    | yes     | fair          | yes                  |
| senior      | low    | yes     | excellent     | no                   |
| middle_aged | low    | yes     | excellent     | yes                  |
| youth       | medium | no      | fair          | no                   |
| youth       | low    | yes     | fair          | yes                  |
| senior      | medium | yes     | fair          | yes                  |
| youth       | medium | yes     | excellent     | yes                  |
| middle_aged | medium | no      | excellent     | yes                  |
| middle_aged | high   | yes     | fair          | yes                  |
| senior      | medium | no      | excellent     | no                   |

- Dự đoán nhãn của phần tử X1 = (youth, medium, yes, fair) bằng KNN với k = 3.
- Dự đoán nhãn của phần tử X2 = (senior, high, no, excellent) bằng Naive\_Bayes.
- Dự đoán nhãn của phần tử X3 = (middle\_aged, ?, yes, fair) bằng Naive\_Bayes.

**BT2:** Cho tập dữ liệu như sau:

| Outlook  | Temp | Humidity | Windy | Play |
|----------|------|----------|-------|------|
| Sunny    | Hot  | High     | False | No   |
| Sunny    | Hot  | High     | True  | No   |
| Overcast | Hot  | High     | False | Yes  |
| Rainy    | Mild | High     | False | Yes  |
| Rainy    | Cool | Normal   | False | Yes  |
| Rainy    | Cool | Normal   | True  | No   |
| Overcast | Cool | Normal   | True  | Yes  |
| Sunny    | Mild | High     | False | No   |
| Sunny    | Cool | Normal   | False | Yes  |
| Rainy    | Mild | Normal   | False | Yes  |
| Sunny    | Mild | Normal   | True  | Yes  |
| Overcast | Mild | High     | True  | Yes  |
| Overcast | Hot  | Normal   | False | Yes  |
| Rainy    | Mild | High     | True  | No   |
| Sunny    | High | Cool     | True  | No   |

Dự đoán nhãn của phần tử  $X = \{Rain, Hot, High, False\}$  bằng Navie\_Bayes và KNN với k = 3.

BT3: Cho tập dữ liệu như sau: (Tập data được trích từ file "iris data.csv")

| sepalLength | sepalWidth | petalLength | petalWidth | nhan            |
|-------------|------------|-------------|------------|-----------------|
| 5.1         | 3.5        | 1.4         | 0.2        | Iris-setosa     |
| 4.9         | 3          | 1.4         | 0.2        | Iris-setosa     |
| 6.3         | 3.3        | 6           | 2.5        | Iris-virginica  |
| 4.7         | 3.2        | 1.3         | 0.2        | Iris-setosa     |
| 6.2         | 2.2        | 4.5         | 1.5        | Iris-versicolor |
| 5.9         | 3          | 5.1         | 1.8        | Iris-virginica  |
| 7           | 3.2        | 4.7         | 1.4        | Iris-versicolor |
| 6.4         | 3.2        | 4.5         | 1.5        | Iris-versicolor |
| 5           | 3          | 1.6         | 0.2        | Iris-setosa     |
| 4.3         | 3          | 1.1         | 0.1        | Iris-setosa     |
| 5.8         | 2.7        | 5.1         | 1.9        | Iris-virginica  |
| 5.6         | 2.8        | 4.9         | 2          | Iris-virginica  |
| 5.5         | 2.4        | 3.8         | 1.1        | Iris-versicolor |
| 5.1         | 3.8        | 1.9         | 0.4        | Iris-setosa     |
| 6.5         | 3          | 5.2         | 2          | Iris-virginica  |

- Dự đoán nhãn X1 = [6, 3, 4.8, 1.8] bằng KNN với k = 3. Dự đoán nhãn X2 = [5, 2.3, 3.3, 1] bằng Naive\_Bayes.

BT4: Ước lượng Laplace cho trường hợp sau:  $p_i$ ,  $\mu = ?$ 

|    | A   | В    | С    |
|----|-----|------|------|
| T1 | 2/8 | 2/10 | 5/13 |
| T2 | 2/8 | 1/10 | 3/13 |
| T3 | 1/8 | 2/10 | 0/13 |
| T4 | 3/8 | 5/10 | 5/13 |

BT5: Cho tập dữ liệu sau:

| age         | income | student | credit rating | Class:        |
|-------------|--------|---------|---------------|---------------|
|             |        |         |               | buys_computer |
| youth       | high   | no      | fair          | no            |
| youth       | high   | no      | excellent     | no            |
| middle_aged | high   | no      | fair          | yes           |
| senior      | medium | no      | fair          | yes           |
| senior      | low    | yes     | fair          | yes           |
| senior      | low    | yes     | excellent     | no            |
| middle_aged | low    | yes     | excellent     | yes           |
| youth       | medium | no      | fair          | no            |
| youth       | low    | yes     | fair          | yes           |
| senior      | medium | yes     | fair          | yes           |
| youth       | medium | yes     | excellent     | yes           |
| middle_aged | medium | no      | excellent     | yes           |
| middle_aged | high   | yes     | fair          | yes           |
| senior      | medium | no      | excellent     | no            |

Xây dựng cây quyết định từ tập dữ liệu trên.