Prof. Dr. Jörg Hoffmann, Dr. Daniel Fišer, Daniel Höller, Dr. Sophia Saller

Theoretical Exercise Sheet 10

Deadline Friday, July 8, 23:59

About the submission of this sheet.

- You might submit the solutions to exercises in groups of up to 3 students.
- All students of a group need to be in the same tutorial.
- Write the names of all students of your group on your solution.
- Hand in the solution in CMS and use "Team Groupings".
 - Go to your personal page in CMS. Here you find the entry "Teams".
 - When you click "Create team", you get an invite code.
 - Please share this with your team mates, who need to click on "Join team" and enter the code.
- 1. (5 points) Given two random variables X with the domain $\{x^0, x^1\}$, and Y with the domain $\{y^0, y^1, y^2\}$. Which of the following are valid (joint) probability distributions?

0.3

0.2

2. (3 points) Given the probability distribution P defined by the following table:

$$x^0$$
 x^1

$$y^0 = 0.15 = 0.35$$

$$y^1$$
 0.41 0.09

Calculate the marginal probability of $P(x^1)$. Show how you arrived at the answer.

3. (3 points) Given a probability distribution P defined by the following table:

$$x^{0}$$
 x^{1}

$$y^0 = 0.02 = 0.28$$

$$y^1 = 0.08 = 0.62$$

Calculate the conditional probability $P(y^1|x^0)$. Show how you arrived at the answer.

4. (6 points) Given a probability distribution P defined by the following table:

$$x^{0}$$
 x^{1}

$$y^0 = 0.02 = 0.18$$

$$y^1 = 0.08 = 0.72$$

Show that the random variables X and Y are stochastically independent in P.

5. (24 points) (4 + 4 + 8 + 8) Consider the following domain including three variables: \underline{t} oothache, \underline{c} avity and $\underline{c}\underline{a}$ tch, denoted T, C and A. The variables are Boolean. t^1 means that T is true, t^0 means that T is false, and so on. The full probability distribution is given in the following table:

T	C	A	P
t^0	c^0	a^0	0.576
t^0	c^0	a^1	0.144
t^0	c^1	a^0	0.008
t^0	c^1	a^1	0.072
t^1	c^0	a^0	0.064
t^1	c^0	a^1	0.016
t^1	c^1	a^0	0.012
t^1	c^1	a^1	0.108

Calculate the following probabilities. Show how you arrived at the answer.

- 1. $P(t^1)$
- 2. $P(c^1)$
- 3. $P(c^1|a^1)$
- 4. $P(c^1|t^0)$