De Effecten van Suiker op de CO2 Productie van Bakkersgist

Arjan Koens ¹, Ivar Lottman ¹, Stijn Vermeulen ²

¹Hanzehogeschool

Samenvatting

Geef hier je samenvatting in maximaal 150 woorden. Het is een samenvatting van het hele artikel; niet alleen de resultaten! Begin met het belang van dit onderzoek, dan hoe het onderzoek is aangepakt en de belangrijkste resultaten en eindig met de implicaties ervan voor de wetenschap/de maatschappij. Neem nooit figuren of tabellen op in de samenvatting.

1 Introductie

Gist is een micro-orgasme dat al duizenden jaren wordt gebruikt door mensen voor verschillende applicaties. Voor het maken van brood, om lucht in het deeg te krijgen. Voor het maken van alcoholische dranken. Die door de alcohol veiliger waren om te drinken dan water. Om een degelijk resultaat te krijgen bij deze applicaties van gist is het dan ook van belang om te weten wat de ideale omstandigheden van gist zijn.

De opstelling van dit onderzoek is gebaseerd op het onderzoek [?] waar CO_2 productie van bakkersgist op verschillende suiker concentraties is onderzocht. Om dit als alternatief CO_2 productie medium te kunnen gebruiken in de BG-Sentinel® muggen val.

Om deze ideale omstandigheden te bepalen wordt er in dit rapport gekeken de CO_2 van bakkersgist in verschillende zout en suiker concentraties. Waar suiker als voeding voor gist functioneert en zout als extra stress factor. Dit rapport dient om een optimaal suiker concentratie te vinden voor bakkersgist die resulteert in de hoogste CO_2 productie. Door verschillende suiker concentraties te nemen en de geproduceerde CO_2 van bakkersgist in deze concentraties te meten kan er mogelijk een correlatie en een optimum worden bepaald.

2 Materialen en Methoden

Alle informatie is in een github repo opgeslagen. Die repo is hier te vinden.

2.1 Materialen

Voor deze studie wordt standaard bakkersgist gebruikt. In totaal was 84g gist gebruikt. De suiker is standaard sucrose en daarvan was in totaal 72g en voor het zout wordt NaCl met 12g zout in totaal. Als water was kraanwater gebruikt. Wij hebben voor elk individuele proef een maatcilinder van 250 ml, een luchtdichte pot met een goed afsluitende deksel, een 30 cm lang buisje en een klem. In totaal zijn 12 proeven uitgevoerd voor

dit experiment. Hiernaast is ook 1 waterbad gebruikt, met de afmetingen $35 \times 70 \times 15$ cm, 4 waterbakken, met de afmetingen $20 \times 20 \times 15$ cm en een rol duct tape.

2.2 Uitvoering

Het waterbad werd met kraanwater tot het 10 cm hoog stond en de verwarming van het waterbad op 30 °C gezet. Daarnaast werden ook de waterbakken gevuld tot het water tot 10 ± 1.5 cm hoog stond. Hierna werden de maatcilinders vrijwel helemaal met water gevuld en werden ze op de kop neergezet in de waterbakken, zodat de waardes afgelezen konden worden en er te minste 2 cm ruimte tussen de bodem van de bak en het uiteinde van de maatcilinder zit. Als de waardes niet leesbaar waren of als de maatcilinder meer dan 60 ml aflas, werd de maatcilinder uit de bak gehaald en werd de stap herhaald. Als de stap goed was uitgevoerd werd het waterpeil afgelezen en genoteerd als de nulmeting. In de deksels van de potten werden gaten gemaakt en de buisjes werden vervolgens door de gaten gestopt. De mogelijke overige gaten werden afgeplakt met duct tape. Toen de opzet was voltooid konden de proeven worden gemaakt. Elke proef had 7 gram gist en een totaal gewicht van 200 g, met als variabele concentratie suiker en zout. Er werden 3 verschillende concentraties van suiker en zout getest, in duplo(aangegeven met een d in het ID).

```
## ID = S1 : suiker = 0 g, zout = 1.14 g
## ID = Sd1 : suiker = 0 g, zout = 1.02 g
## ID = S2 : suiker = 6.06 g, zout = 1.01 g
## ID = Sd2 : suiker = 6.08 g, zout = 1.06 g
## ID = S3 : suiker = 12.07 g, zout = 1.09 g
## ID = Sd3 : suiker = 12.03 g, zout = 1 g
## ID = Z1 : suiker = 6.11 g, zout = 0 g
## ID = Zd1 : suiker = 6.09 g, zout = 0 g
## ID = Zd2 : suiker = 6.18 g, zout = 1 g
## ID = Zd2 : suiker = 6.16 g, zout = 1.03 g
## ID = Zd3 : suiker = 6.06 g, zout = 2.04 g
## ID = Zd3 : suiker = 6.10 g, zout = 2.02 g
```

De concentratie werd aangevuld met water tot het in totaal 200 g is. De concentraties van de verschillende proeven waren:

```
## ID = S1 : suiker = 0 %, zout = 0.57 %

## ID = Sd1 : suiker = 0 %, zout = 0.51 %

## ID = S2 : suiker = 3.03 %, zout = 0.505 %

## ID = Sd2 : suiker = 3.04 %, zout = 0.53 %

## ID = S3 : suiker = 6.035 %, zout = 0.545 %

## ID = Sd3 : suiker = 6.015 %, zout = 0.5 %

## ID = Z1 : suiker = 3.055 %, zout = 0 %

## ID = Zd1 : suiker = 3.045 %, zout = 0 %

## ID = Zd2 : suiker = 3.08 %, zout = 0.5 %
```

```
## ID = Z3 : suiker = 3.03 %, zout = 1.02 %
## ID = Zd3 : suiker = 3.05 %, zout = 1.01 %
```

Deze concentraties werden in verschillende potten gedaan en toen alles was opgelost, kon het deksel op de pot en werd de pot in het waterbad gezet. Het buisje werd daarna tot onder in de maatcilinder geleidt, zodat er een waterslot ontstond. Toen alle proeven in het waterbad stonden werd er om de 15 minuten het waterpeil van de maatcilinders afgemeten. Als het waterpeil niet leesbaar was door overproductie van gas, werd het maximale aantal(250ml) opgeschreven en moest de maatcilinder opnieuw worden gevuld en werd een nieuwe nulmeting genoteerd naast de meting.

2.3 Gebruikte tools

Voor de visualisatie en de tests worden verschillende tools gebruikt.

tidyverse, waarvan deze library's worden gebruikt: ggplot2 (versie 3.5.1), die gebruikt wordt voor het visualiseren van data door middel van plotten; dplyr (versie 1.1.4), voor het aanpassen van data; en tidyr (versie 1.3.1), om data op een 'tidy' manier in de code te krijgen. Verder wordt de 'pwr' library gebruikt, voor de power tests, waarvan de 1-weg-anova en t test op versie 1.3-0 worden toegepast en de 'zoo' library om lineaire interpolatie toe te kunnen passen. Deze wordt gebruikt in versie 1.8-12.

2.4 Gebruikte methodes

De pairwise t test wordt gebruikt om aan te tonen of er significante verschillen zitten tussen de verschillende concentraties van suiker en zout.

De power analise is om te zien of er genoeg proeven zijn om iets te kunnen bewijzen. Als power groter is dan 80%, is de kans op een type II fout klein genoeg.

Cohens f wordt gebruikt om zeker te zijn dat als we een significant verschil waarnemen dat verschil ook relevant is.

De one-weg-anova wordt twee keer gebruikt, omdat er op twee factoren worden getest(suiker en zout), maar er te weinig proeven waren om een 2-weg-anova te kunnen gebruiken. Het wordt gebruikt om te kijken of de groepen vergelijkbaar of precies hetzelfde als elkaar zijn, maar de 1-weg-anova heeft wel wat aannames, het gaat er bijvoorbeeld vanuit dat de data normaal verdeeld zijn. Dus als uit de histogram blijkt dat de data niet normaal verdeeld zijn, dan wordt de kruskal wallis test naast de 1-weg-anova ook gebruikt voor een beter idee of de groepen vergelijkbaar zijn.

3 Resultaten

4 Discussie en Conclusies

5 Online bijlagen

5.1 Wordcount

```
#install.packages("devtools")
#devtools::install_github("benmarwick/wordcountaddin", type = "source", dependencies = TRUE)
wordcountaddin:::text_stats()
```

Method	koRpus	stringi
Word count	931	883
Character count	5458	5452
Sentence count	59	Not available
Reading time	4.7 minutes	4.4 minutes

6 Referenties