3000788 Intro to Comp Molec Biol

Week 2: DNA sequencing and data analysis

Fall 2024

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Part I: DNA sequencing platform & applications

- Unique capability of long-read techniques
- Knowing pros and cons \rightarrow Pick the best platform for your research
- Integration of experimental design with sequencing

Sanger and NGS

Sanger sequencing

Generate all possible products, each with different length

Fluorescence-labeled ddNTP

Product length = bp position

What is the sequence?

Images from https://en.wikipedia.org/wiki/Sanger_sequencing

High throughput from parallel reactions

Roche & Ion Torrent wells

1) Adapter-ligated ssDNA library

2) Clonal amplification on 28 micron beads ... emulsion PCR

3) Beads deposited on PicoTiterPlate wells

Illumina's flow cell

http://training.bioinformatics.ucdavis.edu

Limitation of pyrosequencing

Illumina / Solexa DNA amplification

 Improve sensitivity by sequencing clusters of the amplified DNA molecules deriving from the same original DNA

Multi-step DNA polymerization

Tradeoffs

Sanger

- 1000 bp, low throughput

454 and Ion Torrent

- 400+ bp, medium throughput

Illumina

- <300 bp, high throughput</p>

3rd Generation Sequencing (Long-Read)

Single-Molecule Real-Time (SMRT) sequencing

Zero-mode waveguide (ZMW)

Phospholinked nucleotide

Images from Pacific Biosciences

- Faster, more durable DNA polymerase
- Small wells with single DNA molecule
 - Zero-mode waveguide = nanophotonic confinement structure
 - Allow monitoring of fluorescence signal from individual reaction
- No amplification = direct quantification of DNA/RNA abundance

Video data

- Compared to image data from Illumina platform
- Video gives time information → identification of modified DNA/RNA

Circular consensus sequencing

- Circular extension of each DNA molecule
- Read the extended molecules = multiple resequencing of the original sequence
- Take the consensus (majority vote)
- P(correct base in >k of N passes) \sim Binomial

Images from Pacific Biosciences

Nanopore

Real-time data

- Real time ionic flow signals
- Ability to manipulate individual pore and terminate unwanted reads
- Rapid decision making (no need to wait for the full 16-72hr run)

Detection of modified nucleotides

Geralde et al. Nature Methods 15, 201-206 (2017)

- Modified nucleotides = different 3D structure = different change in ionic flow
- Trained using synthetic nucleotides

Combining short and long read data

Resolve haplotype

Pros and cons

Platform	Read Length	Advantage	Disadvantage	
Illumina	50-300	High throughput Accurate	Short length	
PacBio	10k-25k	Intermediate length Accurate (with more sequencing) Can detect modification	Expensive	
Nanopore	10k-1M	Longest length Can detect modification Real-time Portable	High error rate	

Applications of DNA/RNA sequencing

Sequencing scope

Cost = Base Pair = Scope x Depth

Reduced scope

- Exome sequencing = exons only
- Amplicon sequencing = selected loci
 - 16S rRNA, RDRP gene
 - (Cancer) gene panels

Reduced depth

- Ultra-low pass
 - Detect chromosomal copy alternation
 - Estimate tumor fraction

Euskirchen, P. et al. Acta Neuropathol 134:691-703 (2017)

Enrichment for targeted sequencing

https://en.wikipedia.org/wiki/Exome_sequencing

DNA adenine methylatransferase (DamID)

https://marshall-lab.org/damid/

- Dam attached to protein of interest
- Methylation of GATC
- DpnI/DpnII enzymes

RNA secondary structure

Any question?

Part II: DNA sequencing data handling

- Key file formats
- QC process
- Basics of sequence alignment and assembly
- Basics of variant calling and annotation

Sequencing data quality control

FastQC tool

Measure	Value				
Filename	small_rna.fastq.gz				
File type	Conventional base calls				
Encoding	Sanger / Illumina 1.9				
Total Sequences	250000				
Sequences flagged as poor quality	0				
Sequence length	100				
%GC	45				

Summary

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

FASTQ format

- Header: Location of cluster on Illumina's flow cell
- Sequence
- Quality score

Expected error at the ends of read

```
@ERR000589.41 EAS139_45:5:1:2:111/1
CTTTCCTCCCTGCTTTCCTGGCCCCACCATTTCCAGGGAACATCTTGTCAT
+
3!!!!!!!!!!!>1!!!FF9BG08E001%IG+&?(4)%00646.C1#&(
```

ASC	:II_BASE=3	3 Illumina	ı, Io	n Torrent	, PacBio	and S	anger				
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59 ;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

Base calling quality

Per base sequence quality

Quality trimming

- Remove bases from the end until a minimum quality is reached
- May lose reads but lead to better results in downstream analysis

Mohsen, A. et al. BMC Bioinformatics 20:581 (2019)

Possible adapter read-through

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
${\tt TGAGGTAGATTGTATAGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	10865	4.346	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TAGCTTATCAGACTGATGTTGACAGATCGGAAGAGCACACGTCTGAACTC}$	10845	4.338	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
${\tt TCTTTGGTTATCTAGCTGTATGAGATCGGAAGAGCACACGTCTGAACTCC}$	7062	2.8247999999999998	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TCTTTGGTTATCTAGCTGTATGAAGATCGGAAGAGCACACGTCTGAACTC}$	4056	1.622399999999998	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
${\tt TGAGGTAGTAGTTTGTGCTGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	3737	1.4948	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TGAGGTAGTAGTTTGTACAGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	3549	1.4196	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TGAGGTAGTAGGTTGTATGGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	2931	1.1724	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt AACCCGTAGATCCGATCTTGTAGATCGGAAGAGCACACGTCTGAACTCCA}$	1910	0.764	Illumina Multiplexing PCR Primer 2.01 (100% over 29bp)
${\tt CGCGACCTCAGATCAGACGTAGATCGGAAGAGCACACGTCTGAACTCCAG}$	1749	0.6996	Illumina Multiplexing PCR Primer 2.01 (100% over 30bp)
${\tt TGAGGTAGTAGGTTGTATAGTTAGATCGGAAGAGCACACGTCTGAACTCC}$	1647	0.6588	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt TCTTTGGTTATCTAGCTGTATAGATCGGAAGAGCACACGTCTGAACTCCA}$	1622	0.6487999999999999	Illumina Multiplexing PCR Primer 2.01 (100% over 29bp)
${\tt TAGCTTATCAGACTGATGTTGATAGATCGGAAGAGCACACGTCTGAACTC}$	1328	0.5312	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)
${\tt TTCAAGTAATCCAGGATAGGCTAGATCGGAAGAGCACACGTCTGAACTCC}$	1248	0.4992	Illumina Multiplexing PCR Primer 2.01 (100% over 28bp)
${\tt AGCAGCATTGTACAGGGCTATGAAGATCGGAAGAGCACACGTCTGAACTC}$	1248	0.4992	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)

Adapter trimming

https://www.ecseq.com/support/ngs/trimming-adapter-sequences-is-it-necessary

Alignment

Sequence alignment is a form of search

Searching with suffix array

Reference Sequence

ATTGCAGTCCG

- Suffix = ending part of a string
- Organize suffixes in an easily searchable data structure
- Also record the start positions

AGTCCG	6
ATTGCAGTCCG	1
CAGTCCG	5
CCG	9
CG	10
G	11
GCAGTCCG	4
GTCCG	7
TCCG	8
TGCAGTCCG	3
TTGCAGTCCG	2

Genome-scale indexing and searching

- Indexing of all short segments of the genome
- 20x smaller memory than straightforward indexing
- 30x faster search speed

Dynamic programming

- Build the solution of complex problem using on the solutions of simpler ones
- There is a pile of 20 rocks. Two players take turns by removing 1 or 2 rocks from the pile. Whoever removes the last rock(s) win. Who is the winner?

Dynamic programming for sequence alignment

Dynamic programming matrix:

- The best alignments for long sequences depend on the best alignments of shorter sequences
- The best alignment for TTCATA vs TGCTCGTA is either
 - T/T + best alignment for TCATA vs GCTCGTA
 - T/- + best alignment for TCATA vs TGCTCGTA
 - -/T + best alignment for TTCATA vs GCTCGTA

Optimum alignment scores 11:

Sequence Alignment Map (SAM)

```
Sort Order = by genomic coordinate
                           SN = reference sequence's name (FASTA header)
QHD VN:1.6 SO:coordinate
                           LN = reference sequence's length
@SQ SN:ref LN:45
r001
      99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA
r003 0 ref 9 30 5S6M
                              * O GCCTAAGCTAA
                                                         * SA:Z:ref,29,-,6H5M,17,0;
r004 0 ref 16 30 6M14N5M
                              * O O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                          * 0
                                     O TAGGC
                                                         * SA:Z:ref,9,+,5S6M,30,1;
     147 ref 37 30 9M
                              = 7 -39 CAGCGGCAT
r001
                                                         * NM:i:1
```

- r001 = read name (from sequencing FASTQ)
- ref = reference sequence name (from genomic FASTA)
- 7 = first position on the reference sequence
- $30 = Mapping quality score = -10 x Log_{10}(error)$
- 8M2I4M1D3M = CIGAR string = matches, insertion, deletion information

Assembly

De novo assembly

Compeau, P.E. et al. Nature Biotechnology 29:987-991 (2011)

CTGTGTGT GACGTCACT
GTGTCCTGA CTG...
...ACTGT TGTCCTGAC CACTG...
ACTGTGTGT CTGGCGTCA
GTGTGTCCT ACGTCACTG

Chandra Varma Bogaraju, S. Int J Embed Syst 9:74 (2017)

 Each directed path in a de Bruijn graph represents a possible contiguous segment of the genome

Contig and scaffold

Deduplication

Duplicated = derived from the same molecule

- Similar sequences coming from nearby coordinates in Illumina flow cells
- Reads with the same start and end
 - Highly unlikely to generate the exact same
 DNA molecules by chance
- Lead to incorrect frequency estimates

Variant calling

Type of variants

Translocation

Image from wikipedia

Germline vs somatic variants

- Germline mutations = inherited and appear in every cell of the offspring
 - Compare DNA from normal tissues to reference genomes
 - Fixed ploidy
- Somatic mutations = occur during lifetime
 - Compare DNA from disease tissues to normal tissues
 - Also compare to DNA from other healthy individuals
 - Allow variation in ploidy (different disease cells can have different mutations)

Genome Analysis Toolkit (GATK) somatic workflow

- Inclusion of matched normal (N), panels of healthy individual (Panels of Normals), and allele frequency in the general population (G Pop Freqs)
- Also estimate contamination = normal cells in disease sample

Copy number variations

- Look for loci with high or low read frequencies compared to others

Variant Call Format (VCF)

```
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
                                                                                                      = phased
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
                                                                                                    / = unphased
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
               TD
                         REF
                                ALT
                                        QUAL FILTER INFO
                                                                                       FORMAT
                                                                                                   NA00001
                                                                                                                   NA00002
              rs6054257 G
                                             PASS
                                                                                       GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51
20
      14370
                                Α
                                                    NS=3:DP=14:AF=0.5:DB:H2
                                        3
                                             q10
20
      17330
                                                    NS=3:DP=11:AF=0.017
                                                                                       GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
      1110696 rs6040355 A
20
                                G,T
                                        67
                                             PASS
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
20
      1230237 .
                                        47
                                             PASS
                                                     NS=3;DP=13;AA=T
                                                                                       GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51
20
      1234567 microsat1 GTC
                                G,GTCT
                                             PASS
                                                     NS=3;DP=9;AA=G
                                                                                       GT:GQ:DP
                                                                                                   0/1:35:4
                                                                                                                   0/2:17:2
```

Variant annotation

Understanding the importance of a variant

- Impact on sequence
 - Non-synonymous, splice site, frameshift, regulatory element
- Is it known?
 - Genome Aggregation Database: gnomAD
 - dbSNP
- Clinical implication: observed in patients, treatment response, drug target
 - ClinVar, COSMIC, PharmGKB
- Variant effect predictor (VEP)
- Funcotator/Oncotator

Online databases

NM_007294.3(BRCA1):c.*6207C>T

Allele ID: 206177

Variant type: single nucleotide variant

Variant length: 1 bp

Cytogenetic location: 17q21.31

Genomic location: 17: 43039471 (GRCh38) GRCh38 UCSC

17: 41191488 (GRCh37) GRCh37 UCSC

HGVS:

Nucleotide	Protein	Molecular consequence
NC_000017.11:g.43039471G>A		
NC_000017.10:g.41191488G>A		
NG_005905.2:g.178513C>T		

... more HGVS

Protein change:

Other names: 11918 C>T

Functional consequence:

Global minor allele 0.00679 (A)

frequency (GMAF):

0.00079 (A)

Allele frequency: Trans-Omics for Precision Medicine (TOPMed) 0.00211

VARIANT ♦	LITERATURE	DRUGS ♦	GENES ♦	ASSOCIATION
<u>rs2069502</u>	PMCID: <u>PMC3959225</u>	somatropin recombinant	CDK4	Genotype CC is associated with decreased responsible to somatropin recombinant in children with Tun Syndrome as compared to genotypes CT + TT.

Any question?