## ECON 340 Economics Research Methods

Div Bhagia

Lecture 22: Regression Analysis in R

## Housekeeping

```
rm(list=ls())
library(tidyverse)
library(stargazer)
#setwd("~/Dropbox (CSU Fullerton)/Econ340_R")
data <- read.csv("acs2019.csv")</pre>
```

### Preparing the data

```
# Select sample and variables
data <- data %>%
  filter(empstat==1) %>%
  select(-fertyr, -rent)

# Remove missing values
data <- na.omit(data)</pre>
```

### Hourly wage and age

```
ggplot(data, aes(x=age, y=hrly_wage)) +
  geom_point() + theme_classic()
```



## Hourly wage and age

- Too much data to make sense
- Better to plot average hourly wage at each wage
- use stat\_summary() and specify fun as mean

### Average wages by age

```
ggplot(data, aes(x=age, y=hrly_wage)) +
    stat_summary(fun = mean, geom = "point") +
    theme_classic()
```



6/26

### Hourly wage and age

• To fit a quadratic model, generate age-squared term

```
data <- data %>%
  mutate(age.sq = age*age)
```

Fit linear and quadratic model

```
mdl.lnr <- lm(hrly_wage ~ age, data)
mdl.qdr <- lm(hrly_wage ~ age + age.sq, data)</pre>
```

• Output using stargazer()

```
stargazer(mdl.lnr, mdl.qdr, type="text")
```

# Hourly wage and age

|                         | Dependent variable: hrly_wage |                      |
|-------------------------|-------------------------------|----------------------|
|                         |                               |                      |
|                         | (1)                           | (2)                  |
| age                     | 0.375***                      | 2.056***             |
|                         | (0.020)                       | (0.198)              |
| age.sq                  |                               | -0.021***<br>(0.002) |
| Observations            | 17,109                        | 17,109               |
| Adjusted R <sup>2</sup> | 0.021                         | 0.025                |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01   |                      |

### Plotting the fitted curve

```
data$prd.qdr <- predict(mdl.qdr)
ggplot(data, aes(x=age, y=hrly_wage)) +
    stat_summary(fun = mean, geom = "point") +
    geom_line(aes(y=prd.qdr)) + theme_classic()</pre>
```



### **Dummy variables**

```
data %>% group by(female) %>%
 summarise(avg wages=mean(hrly wage))
# A tibble: 2 \times 2
 female avg wages
  <int> <dbl>
 0 31.3
2 1 25.8
```

### Dummy variables

```
mdl1 <- lm(hrly_wage ~ female, data)
mdl2 <- lm(hrly_wage ~ female + yrs_educ, data)
mdl3 <- lm(hrly_wage ~ female*yrs_educ, data)
stargazer(mdl1, mdl2, mdl3, type="text")</pre>
```

## **Dummy variables**

|                 | Dependent variable: hrly_wage |           |           |
|-----------------|-------------------------------|-----------|-----------|
|                 |                               |           |           |
|                 | (1)                           | (2)       | (3)       |
| female          | -5.512***                     | -7.067*** | -0.963    |
|                 | (0.354)                       | (0.334)   | (1.611)   |
| yrs_educ        |                               | 2.637***  | 2.833***  |
|                 |                               | (0.055)   | (0.075)   |
| female:yrs_educ |                               |           | -0.429*** |
| , -             |                               |           | (0.111)   |
| Observations    | 17,109                        | 17,109    | 17,109    |

0.04.4

12 / 26

#### Model 2

```
data$prd2 <- predict(mdl2)
ggplot(data, aes(x=yrs_educ, y=prd2, group=female)) +
   geom_line(aes(color=female)) + theme_classic()</pre>
```



#### **Factor variables**

- R thinks of all variables as numeric unless you tell it otherwise
- To create a factor variable (specifying levels and labels is optional)

```
Female Male 8886 8223
```

#### Model 3

```
data$prd3 <- predict(mdl3)
ggplot(data, aes(x=yrs_educ, y=prd3, group=fem.fct)) +
   geom_line(aes(color=fem.fct)) + theme_classic()</pre>
```



#### More Interaction Terms

```
mdl.int1 <- lm(hrly_wage ~ female*married, data)
stargazer(mdl.int1, type="text")</pre>
```

|                | Dependent variable:  |  |
|----------------|----------------------|--|
| _              | hrly_wage            |  |
| female         | -1.738***<br>(0.548) |  |
| married        | 10.652***<br>(0.495) |  |
| female:married | -6.070***<br>(0.710) |  |

#### **More Interaction Terms**

```
mdl.int2 <- lm(hrly_wage ~ black*female, data)
stargazer(mdl.int2, type="text")</pre>
```

|              | Dependent variable:<br>hrly_wage |  |
|--------------|----------------------------------|--|
| _            |                                  |  |
| black        | <b>-7.645</b> ***                |  |
|              | (0.912)                          |  |
| female       | -5.817***                        |  |
|              | (0.370)                          |  |
| black:female | 4.659***                         |  |
|              | (1.249)                          |  |

```
# Specify levels and labels
levs \leftarrow c(1, 2, 3, 4, 5)
labs <- c("Less than HS", "High School",
           "Some College", "College Degree",
           "More than College")
# Create factor variable
data$educ.fct <- factor(data$educ cat,</pre>
                          levels=levs, labels=labs)
```

```
data %>% group by(educ.fct) %>%
  summarise(m = mean(hrly wage))
# A tibble: 5 \times 2
  educ.fct
                           m
  \langle fct. \rangle
                       <dbl>
1 Less than HS
                        17.5
2 High School
                        20.6
                        23.7
3 Some College
4 College Degree
                        34.2
                        43.5
5 More than College
```

- Want to specify to R to treat education as a categorical variable
- Which of the following models is correct?

```
summary(lm(hrly_wage ~ educ_cat, data))
summary(lm(hrly_wage ~ as.factor(educ_cat), data))
summary(lm(hrly_wage ~ educ.fct, data))
```

• Coefficients capture mean differences from the baseline

Note.

|                           | Dependent variable: |
|---------------------------|---------------------|
| _                         | hrly_wage           |
| educ.fctHigh School       | 3.139***            |
| -                         | (0.820)             |
| educ.fctSome College      | 6.180***            |
|                           | (0.831)             |
| educ.fctCollege Degree    | 16.715***           |
|                           | (0.825)             |
| educ.fctMore than College | 26.035***           |
|                           | (0.859)             |
| Constant                  | 17.497***           |
|                           | (0.759)             |
| Observations              | 17,109              |
| Adjusted R <sup>2</sup>   | 0.139               |

\*n<0.1·\*\*n<0.05·\*\*\*n<0.01

Create transformed variable

```
data$lwage <- log(data$hrly_wage)
```

• Fit the model and output results

```
mdl.lnr <- lm(hrly_wage ~ yrs_educ, data)
mdl.log <- lm(lwage ~ yrs_educ, data)
stargazer(mdl.lnr, mdl.log, type="text")</pre>
```

|                         | Dependent variable:         |          |  |
|-------------------------|-----------------------------|----------|--|
|                         | hrly_wage                   | Iwage    |  |
|                         | (1)                         | (2)      |  |
| yrs_educ                | 2.524***                    | 0.086*** |  |
|                         | (0.056)                     | (0.002)  |  |
| Constant                | -7.223***                   | 1.901*** |  |
|                         | (0.807)                     | (0.023)  |  |
| Observations            | 17,109                      | 17,109   |  |
| Adjusted R <sup>2</sup> | 0.107                       | 0.147    |  |
| Note:                   | *p<0.1; **p<0.05; ***p<0.01 |          |  |

How much does hourly wage change going from 10 to 11 years of education?

- Linear model: \$2.52
- Log-level model:  $100 \times 0.086 = 8.6\%$  of \$18.87 = \$1.68

```
data %>% filter(yrs_educ==10) %>%
  summarise(m = mean(hrly_wage))
```

```
m
1 18.87474
```

- What about going from 13 to 14 years of education?
- Fitting a linear model between log wages and years of education → non-linear model between wages and years of education

```
# Predictions from the log-level model
data$lw.hat <- predict(mdl.log)

# Convert predictions back to levels
data$w.hat <- exp(data$lw.hat)</pre>
```

```
ggplot(data, aes(x=yrs_educ, y=w.hat)) +
  geom_line() + theme_classic()
```

