Regularized unbalanced optimal transport as entropy minimization with respect to branching Brownian Motion

Hugo Lavenant^a

March 18, 2022

Applied Probability Seminars, Warwick University

^aDepartment of Decision Sciences, Bocconi University

My coauthor

Joint work with Aymeric Baradat (Université Claude Bernard Lyon 1).

Disclaimer

He is the one who knows about probability!

Regularized (a.k.a. entropic) Optimal Transport...

- Santambrogio, Optimal transport for applied mathematicians
 (2015).
- Peyré and Cuturi, Computational Optimal Transport (2019).

Regularized (a.k.a. entropic) Optimal Transport...

- Santambrogio, Optimal transport for applied mathematicians
 (2015).
- Peyré and Cuturi, Computational Optimal Transport (2019).

... as entropy minimization w.r.t. the law of Brownian Motion

- Schrödinger, Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique (1932).
- Léonard, A survey of the Schrödinger problem and some of its connections with optimal transport (2013).

Regularized (a.k.a. entropic) Unbalanced Optimal Transport...

- Liero, Mielke, Savaré, Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures (2018).
- Chizat, Peyré, Schmitzer, Vialard, Unbalanced optimal transport: Dynamic and Kantorovich formulations (2018).
- Kondratyev, Monsaingeon, Vorotnikov, A new optimal transport distance on the space of finite Radon measures (2016).

... as entropy minimization w.r.t. the law of ??

Regularized (a.k.a. entropic) Unbalanced Optimal Transport...

- Liero, Mielke, Savaré, Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures (2018).
- Chizat, Peyré, Schmitzer, Vialard, Unbalanced optimal transport: Dynamic and Kantorovich formulations (2018).
- Kondratyev, Monsaingeon, Vorotnikov, A new optimal transport distance on the space of finite Radon measures (2016).

... as entropy minimization w.r.t. the law of Branching Brownian Motion

 Baradat and Lavenant, Regularized unbalanced optimal transport as entropy minimization with respect to branching Brownian motion (2021).

Goal: develop a probabilistic interpretation of RUOT.

Optimal Transport

Regularized Optimal Transport

Unbalanced Optimal Transport

Regularized Unbalanced Optimal Transport

Outline

1. The Schrödinger problem

2. The branching Schrödinger problem

3. Equivalence of branching Schrödinger with regularized unbalanced optimal transport

1. The Schrödinger problem

N particles $\sim \alpha$ at time t=0. They follow **Brownian motion**.

N particles $\sim \alpha$ at time t=0. They follow **Brownian motion**.

Expected distribution at time t=1, $\sim \mathcal{N}(0,1)\star \alpha$.

N particles $\sim \alpha$ at time t=0. They follow **Brownian motion**.

Observed distribution at time t=1, $\beta \neq \mathcal{N}(0,1)\star \alpha$.

N particles $\sim \alpha$ at time t=0. They follow **Brownian motion**.

Observed distribution at time t=1, $\beta \neq \mathcal{N}(0,1) \star \alpha$.

If $N \gg 1$, given this unlikely event, what is the most likely evolution?

N particles $\sim \alpha$ at time t=0. They follow **Brownian motion**.

Observed distribution at time t=1, $\beta \neq \mathcal{N}(0,1) \star \alpha$.

The problem

If $N \gg 1$, given this unlikely event, what is the most likely evolution?

Theory of Large Deviation: **entropy minimization** with respect to the law of Brownian motion.

Entropy minimization for the Schrödinger problem

State space \mathbb{T}^d the d-dimensional torus, $\Omega = \mathcal{C}([0,1],\mathbb{T}^d)$.

 $R^{\nu}\in\mathcal{P}(\Omega)$ law of the Brownian motion with diffusivity ν and uniform initial distribution $\mathcal{L}=\mathrm{d}x$ (reversible Wiener measure).

Entropy minimization for the Schrödinger problem

State space \mathbb{T}^d the d-dimensional torus, $\Omega = \mathcal{C}([0,1],\mathbb{T}^d)$.

 $R^{\nu} \in \mathcal{P}(\Omega)$ law of the Brownian motion with diffusivity ν and uniform initial distribution $\mathcal{L} = \mathrm{d}x$ (reversible Wiener measure).

The Schrödinger problem

Given $\alpha, \beta \in \mathcal{P}(\mathbb{T}^d)$, find $\mathbf{P} \in \mathcal{P}(\Omega)$ which minimizes

$$H(P|R^{\nu}) := \int_{\Omega} \log \left(\frac{\mathrm{d}P}{\mathrm{d}R^{\nu}}(X) \right) \, \mathrm{d}P(X).$$

with constraints $X_0 \sim \alpha$ and $X_1 \sim \beta$ under P.

Entropy minimization for the Schrödinger problem

State space \mathbb{T}^d the d-dimensional torus, $\Omega = \mathcal{C}([0,1],\mathbb{T}^d)$.

 $R^{\nu} \in \mathcal{P}(\Omega)$ law of the Brownian motion with diffusivity ν and uniform initial distribution $\mathcal{L} = \mathrm{d} x$ (reversible Wiener measure).

The Schrödinger problem

Given $\alpha, \beta \in \mathcal{P}(\mathbb{T}^d)$, find $\mathbf{P} \in \mathcal{P}(\Omega)$ which minimizes

$$H(P|R^{\nu}):=\int_{\Omega}\log\left(\frac{\mathrm{d}P}{\mathrm{d}R^{\nu}}(X)\right)\,\mathrm{d}P(X).$$

with constraints $X_0 \sim \alpha$ and $X_1 \sim \beta$ under P.

If $H(\alpha|\mathcal{L}), H(\beta|\mathcal{L}) < +\infty$, there exists a unique solution.

Structure of the solutions

Theorem (optimality conditions)

P optimal if and only if there exists $f, g : \mathbb{T}^d \to \mathbb{R}$ such that

$$\frac{\mathrm{d}P}{\mathrm{d}R^{\nu}}(X) = f(X_0)g(X_1).$$

Structure of the solutions

Theorem (optimality conditions)

P optimal if and only if there exists $f, g : \mathbb{T}^d \to \mathbb{R}$ such that

$$\frac{\mathrm{d}P}{\mathrm{d}R^{\nu}}(X) = f(X_0)g(X_1).$$

Under P, $(X_t)_{t \in [0,1]}$ follows:

the **forward** stochastic differential equation

$$dX_t = v(t, X_t)dt + \sqrt{\nu}dB_t$$

with
$$v = \nabla [\tau_{\sqrt{\nu}t} * f]$$

Structure of the solutions

Theorem (optimality conditions)

P optimal if and only if there exists $f, g : \mathbb{T}^d \to \mathbb{R}$ such that

$$\frac{\mathrm{d}P}{\mathrm{d}R^{\nu}}(X) = f(X_0)g(X_1).$$

Under P, $(X_t)_{t \in [0,1]}$ follows:

the **forward** stochastic differential equation

$$dX_t = v(t, X_t)dt + \sqrt{\nu}dB_t$$

with
$$v = \nabla [\tau_{\sqrt{\nu}t} * f]$$

the **backward** stochastic differential equation

$$dX_{1-t} = w(1-t, X_{1-t})dt + \sqrt{\nu}dB_{1-t}$$

with
$$w = \nabla [\tau_{\sqrt{\nu}(1-t)} * g]$$
.

A "projection": regularized optimal transport

Regularized Optimal Transport

Look for ρ and ν time-dependent density and velocity field which minimize

$$\mathcal{A}(\rho, V) = \int_0^1 \int_{\mathbb{T}^d} \frac{|V(t, X)|^2}{2} \rho(t, X) \, \mathrm{d}t \mathrm{d}X$$

under the constraint $\rho_0=lpha$, $ho_1=oldsymbol{eta}$ and $\partial_t
ho +
abla \cdot (
ho \lor)=rac{
u}{2}\Delta
ho$

A "projection": regularized optimal transport

Regularized Optimal Transport

Look for ρ and v time-dependent density and velocity field which minimize

$$\mathcal{A}(\rho, V) = \int_0^1 \int_{\mathbb{T}^d} \frac{|V(t, X)|^2}{2} \rho(t, X) \, \mathrm{d}t \mathrm{d}x$$

under the constraint $\rho_0=lpha$, $\rho_1=eta$ and $\partial_t
ho + \nabla \cdot (
ho
m V)=rac{
u}{2}\Delta
ho$

From Schrödinger to ROT

Given $P \in \mathcal{P}(\Omega)$ with $H(P|R^{\nu}) < +\infty$, define $\rho_t := \text{Law}_P(X_t)$,

$$v(t,X_t) := \lim_{h \to 0, h > 0} \mathbb{E}_{P} \left[\left. \frac{X_{t+h} - X_t}{h} \right| X_t \right].$$

Then (ρ, v) admissible and

$$\nu H(\alpha | \mathcal{L}) + \mathcal{A}(\rho, \nu) \leq \nu H(\mathbf{P} | \mathbf{R}^{\nu}).$$

A "projection": regularized optimal transport

Regularized Optimal Transport

Look for ρ and ν time-dependent density and velocity field which minimize

$$\mathcal{A}(\rho, V) = \int_0^1 \int_{\mathbb{T}^d} \frac{|V(t, X)|^2}{2} \rho(t, X) \, \mathrm{d}t \mathrm{d}x$$

under the constraint $\rho_0 = \alpha$, $\rho_1 = \frac{\beta}{2}$ and $\partial_t \rho + \nabla \cdot (\rho V) = \frac{\nu}{2} \Delta \rho$

From Schrödinger to ROT

Given $P \in \mathcal{P}(\Omega)$ with $H(P|R^{\nu}) < +\infty$, define $\rho_t := \text{Law}_P(X_t)$,

$$v(t, X_t) := \lim_{h \to 0, h > 0} \mathbb{E}_P \left[\left. \frac{X_{t+h} - X_t}{h} \right| X_t \right].$$

Then (ρ, ν) admissible and $\nu H(\alpha | \mathcal{L}) + \mathcal{A}(\rho, \nu) \leq \nu H(\frac{\mathbf{P}}{\mathbf{R}})$.

From ROT to Schrödinger

If (ρ, V) admissible with V smooth, P the law of the SDE

$$\mathrm{d}X_t = v(t, X_t)\,\mathrm{d}t + \sqrt{\nu}\,\mathrm{d}B_t.$$

Then P admissible and $\nu H(\alpha|\mathcal{L}) + \mathcal{A}(\rho, v) = \nu H(P|R^{\nu}).$

Consequence: equality of the values

Theorem

For any α , β with $H(\alpha|\mathcal{L})$, $H(\beta|\mathcal{L}) < +\infty$, there holds

$$\begin{split} \nu H(\alpha | \mathcal{L}) + \min_{\rho, \nu} \left\{ \mathcal{A}(\rho, \nu) \ : \ \partial_t \rho + \nabla \cdot (\rho \nu) = \frac{\nu}{2} \Delta \rho, \ \rho_0 = \alpha, \rho_1 = \beta \right\} \\ = \min_{\rho} \left\{ \nu H(P | R^{\nu}) \ : \ X_0 \sim \alpha \text{ and } X_1 \sim \beta \text{ under } P \right\}. \end{split}$$

Moreover, if (ρ, v) and P optimal then P is the law of the SDE with drift v.

2. The branching Schrödinger

problem

The Branching Brownian motion

Parameters: diffusivity $\nu > 0$, branching rate $\lambda > 0$, law $(p_k)_{k=0,1,\ldots} \in \mathcal{P}(\mathbb{N})$.

Particles diffuse (ν), at temporal rate λ they "branch" and have a k offsprings, drawn from $(p_k)_{k=0,1,\dots} \in \mathcal{P}(\mathbb{N})$.

The Branching Brownian motion

Parameters: diffusivity $\nu > 0$, branching rate $\lambda > 0$, law $(p_k)_{k=0,1,\ldots} \in \mathcal{P}(\mathbb{N})$.

Particles diffuse (ν) , at temporal rate λ they "branch" and have a k offsprings, drawn from $(p_k)_{k=0,1,...} \in \mathcal{P}(\mathbb{N})$.

At time
$$t$$
, random **measure** $M_t = \sum_{X \in \{\text{particles alive at time } t\}} \delta_X$.

The Branching Brownian motion

Parameters: diffusivity $\nu>0$, branching rate $\lambda>0$, law $(p_k)_{k=0,1,\ldots}\in\mathcal{P}(\mathbb{N})$.

Particles diffuse (ν), at temporal rate λ they "branch" and have a k offsprings, drawn from $(p_k)_{k=0,1,\dots} \in \mathcal{P}(\mathbb{N})$.

At time
$$t$$
, random **measure** $M_t = \sum_{X \in \{\text{particles alive at time } t\}} \delta_{X}$.

Description

The Branching Brownian Motion is a probability distribution on $c\`{a}dl\`{a}g([0,1],\mathcal{M}_+(\mathbb{T}^d))$.

Assumptions: $0 < \nu, \lambda < \infty$ and $\sum kp_k < +\infty$.

 $\mathbb{E}_P[M_t] \text{ is the deterministic measure } \mathbb{E}_P[M_t](A) = \mathbb{E}_P[M_t(A)].$

 $\mathbb{E}_P[M_t] \text{ is the deterministic measure } \mathbb{E}_P[M_t](A) = \mathbb{E}_P[M_t(A)].$

 $\mathbb{E}_{P}[M_t] \text{ is the deterministic measure } \mathbb{E}_{P}[M_t](A) = \mathbb{E}_{P}[M_t(A)].$

 $\mathbb{E}_P[M_t]$ is the deterministic measure $\mathbb{E}_P[M_t](A) = \mathbb{E}_P[M_t(A)]$.

 $\mathbb{E}_{P}[M_t] \text{ is the deterministic measure } \mathbb{E}_{P}[M_t](A) = \mathbb{E}_{P}[M_t(A)].$

R law of the Branching Brownian Motion with parameters ν , λ and (p_k) .

Branching Schrödinger problem

Given $\alpha, \beta \in \mathcal{M}_+(\mathbb{T}^d)$, find $P \in \mathcal{P}(\operatorname{c\`{a}dl\`{a}g}([0,1],\mathcal{M}_+(\mathbb{T}^d)))$ which minimizes H(P|R) under the constraints $\mathbb{E}_P[M_0] = \alpha$ and $\mathbb{E}_P[M_1] = \beta$.

The Branching Schrödinger problem

 $\mathbb{E}_{\textit{P}}[\textit{M}_t] \text{ is the deterministic measure } \mathbb{E}_{\textit{P}}[\textit{M}_t](\textit{A}) = \mathbb{E}_{\textit{P}}[\textit{M}_t(\textit{A})].$

R law of the Branching Brownian Motion with parameters ν , λ and (p_k) .

Branching Schrödinger problem

Given $\alpha, \beta \in \mathcal{M}_+(\mathbb{T}^d)$, find $P \in \mathcal{P}(\operatorname{c\`{a}dl\`{a}g}([0,1],\mathcal{M}_+(\mathbb{T}^d)))$ which minimizes H(P|R) under the constraints $\mathbb{E}_P[M_0] = \alpha$ and $\mathbb{E}_P[M_1] = \beta$.

Important remark. Ill-posed problem as the constraints are not closed:

$$\forall \varphi \in C(\mathbb{T}^d), \ \mathbb{E}_P\left[\langle \varphi, M_0 \rangle\right] := \mathbb{E}_P\left[\int \varphi(x) \, \mathrm{d} M_0(x)\right] = \int \varphi(x) \, \mathrm{d} \alpha(x)$$

3. Equivalence of branching Schrödinger with regularized

unbalanced optimal transport

The regularized unbalanced optimal transport problem

Regularized

Optimal Transport

Look for ρ , ν time-dependent density, velocity minimize

field which

$$\mathcal{A}(\rho, \mathsf{V}) = \iint \frac{|\mathsf{V}(\mathsf{t}, \mathsf{X})|^2}{2} \rho(\mathsf{t}, \mathsf{X}) \, \mathrm{d}\mathsf{t} \mathrm{d}\mathsf{X}$$

under the constraint
$$ho_0=lpha$$
, $ho_1=eta$ and $\partial_t
ho+
abla\cdot(
ho
m v)=rac{
u}{2}\Delta
ho$

The regularized unbalanced optimal transport problem

 $\Psi:\mathbb{R} \to [0,+\infty]$ convex function.

Regularized Unbalanced Optimal Transport

Look for ρ, v, r time-dependent density, velocity and scalar field which minimize

$$\mathcal{A}(\rho, \mathbf{v}, \mathbf{r}) = \iint \frac{|\mathbf{v}(t, \mathbf{x})|^2}{2} \rho(t, \mathbf{x}) \, \mathrm{d}t \mathrm{d}\mathbf{x} + \iint \Psi(\mathbf{r}(t, \mathbf{x})) \rho(t, \mathbf{x}) \, \mathrm{d}t \mathrm{d}\mathbf{x}$$

under the constraint $\rho_0 = \alpha$, $\rho_1 = \beta$ and $\partial_t \rho + \nabla \cdot (\rho v) = \frac{\nu}{2} \Delta \rho + r \rho$.

The field r = r(t, x) is the **growth rate**.

The regularized unbalanced optimal transport problem

 $\Psi:\mathbb{R} \to [0,+\infty]$ convex function.

Regularized Unbalanced Optimal Transport

Look for ρ, v, r time-dependent density, velocity and scalar field which minimize

$$\mathcal{A}(\rho, \mathbf{v}, \mathbf{r}) = \iint \frac{|\mathbf{v}(t, \mathbf{x})|^2}{2} \rho(t, \mathbf{x}) \, \mathrm{d}t \mathrm{d}\mathbf{x} + \iint \Psi(\mathbf{r}(t, \mathbf{x})) \rho(t, \mathbf{x}) \, \mathrm{d}t \mathrm{d}\mathbf{x}$$

under the constraint $\rho_0 = \alpha$, $\rho_1 = \beta$ and $\partial_t \rho + \nabla \cdot (\rho v) = \frac{\nu}{2} \Delta \rho + r \rho$.

The field r = r(t, x) is the **growth rate**.

If Ψ grows polynomially at $+\infty$ and $H(\beta|\mathcal{L})<+\infty$, then well posed.

$$\mathsf{Ruot}(\alpha,\beta) := \min\big\{\mathcal{A}(\rho,\mathsf{V},\mathsf{r}) \ : \ \partial_\mathsf{t} \rho + \nabla \cdot (\rho \mathsf{V}) = \tfrac{\nu}{2} \Delta \rho + \mathsf{r} \rho, \ \rho_0 = \alpha, \rho_1 = \beta\big\}.$$

Equivalence of the values

Choose Ψ depending on λ, ν and (p_k) (see after).

Define $L: \varphi \to \log \mathbb{E}_R \left[\exp \left(\langle \varphi, M_0 \rangle \right) \right]$ log-Laplace transform of R_0 .

We expect:

$$\nu L^*(\alpha) + \operatorname{Ruot}(\alpha, \frac{\beta}{\beta}) = \inf_{P} \{ \nu H(P|R) : \mathbb{E}_P[M_0] = \alpha \text{ and } \mathbb{E}_P[M_1] = \frac{\beta}{\beta} \}$$

Equivalence of the values

Choose Ψ depending on λ, ν and (p_k) (see after).

Define $L: \varphi \to \log \mathbb{E}_R \left[\exp \left(\langle \varphi, M_0 \rangle \right) \right]$ log-Laplace transform of R_0 .

We expect:

$$\nu L^*(\alpha) + \operatorname{Ruot}(\alpha, {\color{blue}\beta}) \neq \inf_{P} \{ \nu H(P|R) \ : \ \mathbb{E}_P[M_0] = \alpha \ \text{and} \ \mathbb{E}_P[M_1] = {\color{blue}\beta} \}$$

Cannot hold for **all** α , β . (e.g. $\alpha = 0$)

Equivalence of the values

Choose Ψ depending on λ, ν and (p_k) (see after).

Define $L: \varphi \to \log \mathbb{E}_R \left[\exp \left(\langle \varphi, M_0 \rangle \right) \right]$ log-Laplace transform of R_0 .

We expect:

$$\nu L^*(\alpha) + \operatorname{Ruot}(\alpha, \beta) \neq \inf_{P} \{ \nu H(P|R) : \mathbb{E}_{P}[M_0] = \alpha \text{ and } \mathbb{E}_{P}[M_1] = \beta \}$$

Cannot hold for all α , β . (e.g. $\alpha = 0$)

Theorem (equivalence of the values)

The function

$$(\alpha, \beta) \mapsto \nu L^*(\alpha) + \mathsf{Ruot}(\alpha, \beta)$$

is the lower semi continuous envelope of

$$(\alpha, \beta) \mapsto \inf_{P} \{ \nu H(P|R) : \mathbb{E}_{P}[M_0] = \alpha \text{ and } \mathbb{E}_{P}[M_1] = \beta \}$$

for the topology of weak convergence.

Equivalence of the competitors

Additional assumption: R_0 and $(p_k)_{k\in\mathbb{N}}$ have a finite exponential moment.

From Branching Schrödinger to RUOT

Given P with $H(P|R) < +\infty$ we build (ρ, v, r) competitor for RUOT with

$$\nu L^*(\alpha) + \mathcal{A}(\rho, \mathbf{V}, \mathbf{r}) \leqslant \nu H(P|R).$$

If $H(P|R) < +\infty$ then P is the law of BBM with random (predictable) space time dependent drift \tilde{v} , branching rate $\tilde{\lambda}$, law of offsprings $(\tilde{p}_k)_{k \in \mathbb{N}}$.

Equivalence of the competitors

Additional assumption: R_0 and $(p_k)_{k\in\mathbb{N}}$ have a finite exponential moment.

From Branching Schrödinger to RUOT

Given P with $H(P|R)<+\infty$ we build (ρ, \mathbf{v}, r) competitor for RUOT with

$$\nu L^*(\alpha) + \mathcal{A}(\rho, \mathbf{V}, \mathbf{r}) \leqslant \nu H(P|R).$$

If $H(P|R) < +\infty$ then P is the law of BBM with random (predictable) space time dependent drift \tilde{v} , branching rate $\tilde{\lambda}$, law of offsprings $(\tilde{p}_k)_{k \in \mathbb{N}}$.

From RUOT to Branching Schrödinger

Up to smoothing everything (including α, β) from (ρ, v, r) admissible we build a Branching Brownian Motion with drift v and branching rate, law of offsprings depending on r such that

$$\nu L^*(\alpha) + \mathcal{A}(\rho, \mathbf{v}, r) \geqslant \nu H(P|R).$$

Definition (growth penalization)

Given ν , λ and (p_k) choose

$$\Psi(r) = \nu \inf_{\tilde{\lambda}, (\tilde{\rho}_k)} \left\{ H(\tilde{\lambda}(\tilde{\rho}_k) | \lambda(p_k)) \text{ such that } \sum_{k=0}^{+\infty} (k-1) \tilde{\lambda} \tilde{\rho}_k = r \right\}.$$

Equivalently with
$$\Phi_p(X) = \sum p_k X^k$$
 then $\Psi^*(s) = \nu \lambda \left(e^{-s/\nu} \Phi_p(e^{s/\nu}) - 1\right)$.

Definition (growth penalization)

Given ν , λ and (p_k) choose

$$\Psi(r) = \nu \inf_{\tilde{\pmb{\lambda}}, (\tilde{\pmb{\rho}}_k)} \left\{ H(\tilde{\pmb{\lambda}}(\tilde{\pmb{\rho}}_k) | \lambda(p_k)) \text{ such that } \sum_{k=0}^{+\infty} (k-1) \tilde{\pmb{\lambda}} \tilde{\pmb{\rho}}_k = r \right\}.$$

Equivalently with
$$\Phi_p(X) = \sum p_k X^k$$
 then $\Psi^*(s) = \nu \lambda \left(e^{-s/\nu} \Phi_p(e^{s/\nu}) - 1\right)$.

If $p_0 = p_2 = 1/2$ then

$$\Psi^*(s) = \lambda \nu \left(\cosh \left[\frac{s}{\nu} \right] - 1 \right),$$

 Ψ convex, minimal for r=0.

Definition (growth penalization)

Given ν , λ and (p_k) choose

$$\Psi(r) = \nu \inf_{\tilde{\pmb{\lambda}}, (\tilde{\pmb{\rho}}_k)} \left\{ H(\tilde{\pmb{\lambda}}(\tilde{\pmb{\rho}}_k) | \lambda(p_k)) \text{ such that } \sum_{k=0}^{+\infty} (k-1) \tilde{\pmb{\lambda}} \tilde{\pmb{\rho}}_k = r \right\}.$$

Equivalently with
$$\Phi_p(X) = \sum p_k X^k$$
 then $\Psi^*(s) = \nu \lambda \left(e^{-s/\nu} \Phi_p(e^{s/\nu}) - 1\right)$.

If
$$p_0 = 0.95$$
, $p_2 = 0.05$

then Ψ minimal for $\bar{r} < 0$.

Definition (growth penalization)

Given ν , λ and (p_k) choose

$$\Psi(r) = \nu \inf_{\tilde{\lambda}, (\tilde{\rho}_k)} \left\{ H(\tilde{\lambda}(\tilde{\rho}_k) | \lambda(p_k)) \text{ such that } \sum_{k=0}^{+\infty} (k-1) \tilde{\lambda} \tilde{\rho}_k = r \right\}.$$

Equivalently with
$$\Phi_p(X) = \sum p_k X^k$$
 then $\Psi^*(s) = \nu \lambda \left(e^{-s/\nu} \Phi_p(e^{s/\nu}) - 1\right)$.

If $p_2 = 0.2$, $p_4 = 0.8$ (no killing allowed),

then $\Psi(r) = +\infty$ for r < 0.

Definition (growth penalization)

Given ν , λ and (p_k) choose

$$\Psi(\mathbf{r}) = \nu \inf_{\tilde{\pmb{\lambda}}, (\tilde{\pmb{\rho}}_{k})} \left\{ H(\tilde{\pmb{\lambda}}(\tilde{\pmb{\rho}}_{k}) | \lambda(p_{k})) \text{ such that } \sum_{k=0}^{+\infty} (k-1) \tilde{\pmb{\lambda}} \tilde{\pmb{\rho}}_{k} = \mathbf{r} \right\}.$$

Equivalently with
$$\Phi_p(X) = \sum p_k X^k$$
 then $\Psi^*(s) = \nu \lambda \left(e^{-s/\nu} \Phi_p(e^{s/\nu}) - 1\right)$.

If
$$p_k=1/(k-1)^{2.2}$$
, and $p_0=1-\sum_{k\geq 2}p_k$ (no exponential moment)

then $\Psi(r) = 0$ for $r \geq \bar{r}$.

Other measure valued processes?

Given a process R, need for the computation of $\mathbb{E}_R \left[\exp(\langle \theta, M_1 \rangle) | M_0 \right]$.

Other measure valued processes?

Given a process R, need for the computation of $\mathbb{E}_R \left[\exp(\langle \theta, M_1 \rangle) | M_0 \right]$.

Example (Dawson-Watanabe)

If R Dawson-Watanabe superprocess then the associated PDE is

$$\partial_t \phi + \frac{1}{2} \Delta \phi + \frac{1}{2} \phi^2 = 0$$

as

$$\mathbb{E}_{R}\left[\left.\exp(\langle\phi(1,\cdot),\mathsf{M}_{1}\rangle)\right|\mathsf{M}_{0}\right]=\exp(\langle\phi(0,\cdot),\mathsf{M}_{0}\rangle).$$

We expect the value of the Schrödinger problem to coincide with

$$L^*(\alpha) + \min_{\rho,r} \left\{ \iint r^2 \rho : \partial_t \rho = \frac{\nu}{2} \Delta \rho + r \rho \right\}$$

(that is Ψ quadratic and v = 0).

Idea: use the optimal transport to reconstruct the temporal couplings.

- Schiebinger et al, Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming (2019).
- Lavenant, Zhang, Kim and Schiebinger, Towards a mathematical theory of trajectory inference (2021).

In reality cells divided and die.

Idea: use the optimal transport to reconstruct the temporal couplings.

- Schiebinger et al, Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming (2019).
- Lavenant, Zhang, Kim and Schiebinger, Towards a mathematical theory of trajectory inference (2021).

In reality cells divided and die.

Idea: use the optimal transport to reconstruct the temporal couplings.

- Schiebinger et al, Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming (2019).
- Lavenant, Zhang, Kim and Schiebinger, Towards a mathematical theory of trajectory inference (2021).

Use **unbalanced** optimal transport to account for cell division.

Conclusion

What I have not presented:

- Proof of the equivalence (convex analysis, stochastic analysis).
- Small noise limit $\nu, \lambda \to 0$: partial optimal transport ($\Psi(r) = |r|$).
- Numerical simulations with the dynamical formulation of RUOT.

Conclusion

What I have not presented:

- Proof of the equivalence (convex analysis, stochastic analysis).
- Small noise limit $\nu, \lambda \to 0$: partial optimal transport ($\Psi(r) = |r|$).
- · Numerical simulations with the dynamical formulation of RUOT.

Future directions:

- Find other interesting process R, not only BBM?
- Prove some regularity of the solutions.
- Applications to trajectory inference.

Conclusion

What I have not presented:

- Proof of the equivalence (convex analysis, stochastic analysis).
- Small noise limit $\nu, \lambda \to 0$: partial optimal transport ($\Psi(r) = |r|$).
- Numerical simulations with the dynamical formulation of RUOT.

Future directions:

- Find other interesting process R, not only BBM?
- · Prove some regularity of the solutions.
- · Applications to trajectory inference.

Thank you for your attention