偏微分方程数值解法笔记 Numerical Methods for PDE Notes

丁毅

中国科学院大学,北京 100049

Yi Ding

University of Chinese Academy of Sciences, Beijing 100049, China

2024.8 - 2025.1

序言

本文为笔者本科时的偏微分方程数值解法(Numerical Methods for PDE)笔记。用灰色字体或灰色方框等表示对主干内容的补充、对晦涩概念的理解、定理的具体证明过程等,采用红色字体对重点部分进行强调,同时适当配有插图。这样的颜色和结构安排既突出了知识的主要框架,也保持了笔记的深度和广度,并且不会因为颜色过多而导致难以锁定文本内容,乃是尝试了多种安排后挑选出的最佳方案。如果读者有更佳的颜色和排版方案,可以将建议发送到笔者邮箱 dingyi233@mails.ucas.ac.cn,在此感谢。另外,由于个人自学能力有限,部分内容将会直接跳过。

由于个人学识浅陋,认识有限,书中难免有不妥甚至错误之处,望读者不吝指正,在此感谢。

目录

序	序言		
1	基础知识		1
	1.1	偏微分方程基本概念	1
	1.2	矩阵基本概念	1
	1.3	矩阵重要性质与定理	2
	1.4	向量和矩阵的范数	3
	1.5	常用定理	4
2	有限差分近似基础		
		· 离散化	2
	Z. I	Bit IV (V)	

第1章 基础知识

§1.1 偏微分方程基本概念

相关概念:

- ① 阶数: 未知函数导数的最高阶数
- ② 次数: 最高阶导数的幕次
- ③ 线性:对未知函数及其各阶导数是线性(一次)的
- ④ 拟线性:对最高阶导数是线性的
- ⑤ 非线性: 略
- ⑥ 自由项:不含有未知函数及其导数的项

② 齐次:自由项恒为 0,否则称为非齐次 例如 $\frac{\partial^2 u}{\partial x^2} + \left(\frac{\partial u}{\partial y}\right)^3 = 2xy$ 是二阶、一次(不是三次)、拟线性、齐次 PDE, $\frac{\partial u}{\partial x} + u\frac{\partial u}{\partial y} = x^2$ 是一阶、一次、拟线性、非 齐次 PDE。

方程分类:

考虑二元二阶偏微分方程:

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} + d\frac{\partial u}{\partial x} + e\frac{\partial u}{\partial y} + f = 0$$
(1.1)

其中 a, b, c, d, e, f 可以是常数, 也可以是 x, y, u 及其导数的函数。a, ..., f 仅是 x, y 的函数时(包 括常数),方程是线性的,a,b,c 是 x,y,u,u_x',u_y' 的函数时,方程是拟线性的,其它情况都是非线性的。

$$\begin{cases} b^2 - 4ac < 0, & 椭圆型方程 \\ b^2 - 4ac = 0, & 抛物型方程 \\ b^2 - 4ac > 0, & 双曲型方程 \end{cases}$$
 (1.2)

方程系数取值也范围会影响方程的类型,例如,下面方程在单位圆内是椭圆型,在单位元外是双曲型:

$$\frac{\partial^2 u}{\partial x^2} + (1 - x^2 - y^2) \frac{\partial^2 u}{\partial y^2} = 0 \tag{1.3}$$

方程的特征线:

在方程 1.1 可以

方程组的分类:

定解条件:

§1.2 矩阵基本概念

耳熟能详的概念我们不再赘述,这里提一些不熟悉的概念。

对角占优矩阵:

矩阵; 若 $a_{ij} = 0 (i \neq j)$, 则称A 为对角矩阵; 若 $|a_{ii}| \geqslant \sum_{j=1, j \neq i}^{n} |a_{ij}|$ 对任何i 都成立, 则称A 为对角占优; 若 $|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$ 对任何i 都成立, 则称A 为严格对角占优;

置换矩阵:

置换矩阵 $P = (p_{ij})_{n \times n}$ 是对单位矩阵做行重排(或列重排)而得到的矩阵,这意味着 $p_{ij} \in \{0,1\}$ 且每行每列有且仅有一个非零值。例如:

$$P_{21} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad P_{32}P_{21} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \tag{1.4}$$

置换矩阵 P 是一种特殊的正交矩阵 ($PP^T = I$)。

谱、谱半径:

设矩阵 $A \in \mathbb{C}^{n \times n}$ 的全部特征值为 $\lambda_1, \lambda_2, ..., \lambda_n$,则称这些根构成集合为谱,记作 $\lambda(A) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$,并称包含 A 所有特征值的最小圆半径为 A 的谱半径 $\rho(A)$:

$$\rho(A) = \max |\lambda_i|, \ \lambda_i \in \lambda(A) \tag{1.5}$$

规定:

$$x$$
, \vec{x} 默认为列向量,且基底为标准正交基时, $(x_1,...,x_n)$ 与 $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ 等价。

§1.3 矩阵重要性质与定理

二阶差分方程通解(数列):

二阶齐次常系数线性差分方程(可以理解为数列)及其通解为:

$$ax_{i+1} + bx_i + cx_{i-1} = 0 (1.6)$$

$$x_j = C_1 \mu_1^j + C_2 \mu_2^j, \quad j = 1, 2, ..., n, ...$$
 (1.7)

其中 μ_1, μ_2 是特征方程 $a\mu^2 + b\mu + c = 0$ 的两个根, C_1, C_2 是待定常数(由初始值 x_1, x_2 确定)。

三对角矩阵:

矩阵 A 称为三对角矩阵如果有如下形式:

$$A = \begin{bmatrix} a & b & & \\ c & a & \ddots & \\ & \ddots & \ddots & b \\ & c & a \end{bmatrix}$$

$$(1.8)$$

其特征值为:

$$\lambda_j = a + 2\sqrt{bc} \cdot \cos\frac{j\pi}{n+1}, j = 1, 2, ..., n$$
 (1.9)

右特征向量($Ax = \lambda x$)构成右特征矩阵($AX = \lambda X$)的列:

$$X = (x_{jk})_{n \times n} = \left[\left(\frac{c}{b} \right)^{\frac{j}{2}} \sin \frac{jk\pi}{n+1} \right]_{n \times n}, \quad j, k = 1, 2, ..., n$$
 (1.10)

左特征向量 $(y^T A = y^T \lambda)$ 构成左特征矩阵 $(YA = Y\lambda)$ 的行:

$$Y = X^{-1} = (y_{jk})_{n \times n} = \left[\frac{2}{n+1} \left(\frac{c}{b}\right)^{\frac{j}{2}} \sin \frac{jk\pi}{n+1}\right]_{n \times n}, \quad j, k = 1, 2, ..., n$$
(1.11)

Theorem. 1 (Gerschgorin 圆盘定理):

矩阵 $A = (a_{ij})_{n \times n} \in C^{n \times n}$ 的特征值都位于复平面上 n 个的并集内:

$$|\lambda - a_{jj}| \le \sum_{k=1, k \ne j}^{n} |a_{jk}|, \quad s = 1, 2, ..., n$$
 (1.12)

Theorem. 2 (Taussky 定理):

若矩阵 $A \in M(\mathbb{C})_{n \times n}$ 是严格对角占优矩阵,则 A 非奇异 (满秩)。

§1.4 向量和矩阵的范数

向量范数:

向量范数是满足以下三条性质的、从 \mathbb{C}^n 到 $[0,+\infty)$ 的映射:

- ① 正定性: $||x|| > 0, \forall 0 \neq x \in \mathbb{C}^n$
- ② 齐次性: $||c\boldsymbol{x}|| = |c| \cdot ||\boldsymbol{x}||, \forall c \in \mathbb{C}$
- ③ 三角不等式: $\|x + y\| \leq \|x\| + \|y\|, \ \forall \ x, y \in \mathbb{C}^n$

最常见的是三种 p- 范数,分别称为 1-范数、2-范数、 ∞ -范数:

$$||\boldsymbol{x}||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{\frac{1}{p}}, \quad p = 1, 2, \infty, \quad \boldsymbol{x} = (x_1, x_2, \dots, x_n)$$
 (1.13)

特别地, $||x||_{\infty} = \max_i |x_i|$,证明如下:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} = \max_i |x_i| \left(\sum_{i=1}^n \frac{|x_i|^p}{(\max_i |x_i|)^p}\right)^{\frac{1}{p}}$$
(1.14)

$$1 \leqslant \left(\sum_{i=1}^{n} \frac{|x_i|^p}{(\max_i |x_i|)^p}\right)^{\frac{1}{p}} \leqslant n^{\frac{1}{p}} \Longrightarrow ||x||_{\infty} = \lim_{p \to \infty} ||x||_p = \max_i |x_i|$$
 (1.15)

矩阵范数:

矩阵范数是满足以下四条性质的、从 $\mathbb{C}^{m\times n}$ 到 $[0,+\infty)$ 的映射:

- ① 正定性: $||A|| > 0, \forall 0 \neq A \in \mathbb{C}^{m \times n}$
- ② 齐次性: $||cA|| = |c| \cdot ||A||, \forall c \in \mathbb{C}$
- ③ 三角不等式: $||A + B|| \le ||A|| + ||B||, \forall A, B \in \mathbb{C}^{m \times n}$
- ④ 相容性: $||AB|| \leq ||A|| \cdot ||B||, \forall A, B \in \mathbb{C}^{m \times n}$

矩阵 1-范数、2-范数和向量完全相同,但 ∞ -范数无法直接推广(不满足相容性),我们利用矩阵与向量的相容性来定义矩阵诱导 p-范数,

- ① 列和范数: $||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$
- ② 谱范数: $||A||_2 = \max \sqrt{\lambda(AA^H)} = \sqrt{\rho(AA^H)}$
- ③ 行和范数: $||A||_{\infty} = \max_{i} \sum_{i=1}^{n} |a_{ij}|$

§1.5 常用定理

Theorem.3 (实系数多项式的根):

实系数二次方程 $x^2+bx+c=0$ 的两根按模不大于 1 的充要条件是 $|b|\leqslant 1-c\leqslant 2$

Newton-Cotes 型数值积分公式:

Newton-Cotes 数值积分公式借助 Lagrange 插值来近似计算函数积分,例如 f(x) 在 [a,b] 上的 n 阶 Newton-Cotes 型数值积分(需要 n+1 个已知结点):

$$\int_{a}^{b} f(x) dx \approx I_{n}(f) = \sum_{i=0}^{n} \int_{a}^{b} P_{i}(x) dx$$
 (1.16)

$$P_i(x) = f(a_i) \cdot \frac{(x - a_0) \cdots (x - a_{i-1})(x - a_{i+1}) \cdots (x - a_n)}{(a_i - a_0) \cdots (a_i - a_{i-1})(a_i - a_{i+1}) \cdots (a_i - a_n)}$$
(1.17)

其中 $a_0, a_1, ..., a_n \in [a, b]$ 为给定的 n+1 个结点横坐标。

若 f 有 n+1 阶连续导数,积分误差为:

$$E_n(f) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \int_a^b (x - a_0)(x - a_1) \cdots (x - a_n) dx , \quad \xi \in (a, b)$$
 (1.18)

特别地, 当结点为等距结点 $h=x_i-x_{i-1}$ 时, Newton-Cotes 型数值积分公式可简化为:

$$\int_{a}^{b} P_{i}(x) dx = (-1)^{n+1-i} \frac{h}{(i-1)!(n+1-i)!} \int_{0}^{n} x(x-1) \cdots (x-n) dx$$
 (1.19)

第2章 有限差分近似基础

§ 2.1 离散与差分

网格及有限差分记号:

最简单的平面网格涉及时间和一维空间(共二维),也即 $[x_0,x_e] \times [t_0,t_e]$,空间间隔记为 h_x ,时间间隔记为 h_t ,直线的交点称为结点。离散化后,我们通常将 u(x,t) 简记为 $u(x,t) = u(x_0 + jh_x,t_0 + kh_t) = u_j^k$,类似的,多元函数的情况简记为 u_{j_1,j_2,\dots,j_n}^k 。

空间导数近似:

导数的差分近似可由泰勒公式推得:在固定其它变量的情况下,对单一变元使用 Talor 公式以求得导数的差分表达式。

例如,对函数 u 在 $x + rh_x \in [x_0, x_e]$ 处进行 Talor 展开 $(r \in \mathbb{Z})$:

$$u_{j+r} = u_j + (rh_x) \left(\frac{\partial u}{\partial x}\right)_j + \frac{1}{2} (rh_x)^2 \left(\frac{\partial^2 u}{\partial x^2}\right)_j + \dots + \frac{1}{n!} (rh_x)^n \left(\frac{\partial^n u}{\partial x^n}\right)_j + \dots$$
 (2.1)

在公式 2.1 中令 r = -1, 1 得到:

$$u_{j+1} = u_j + h_x \left(\frac{\partial u}{\partial x}\right)_j + \frac{1}{2}h_x^2 \left(\frac{\partial^2 u}{\partial x^2}\right)_j + \dots + \frac{1}{n!}h_x^n \left(\frac{\partial^n u}{\partial x^n}\right)_j + \dots$$
 (2.2)

$$u_{j-1} = u_j - h_x \left(\frac{\partial u}{\partial x}\right)_j + \frac{1}{2}h_x^2 \left(\frac{\partial^2 u}{\partial x^2}\right)_j - \dots + \frac{(-1)^n}{n!}h_x^n \left(\frac{\partial^n u}{\partial x^n}\right)_j + \dots$$
 (2.3)

公式 2.2、公式 2.3、两式相减消去二阶导数,一共得到三种一阶导数差分:

一阶导数向前差分:
$$\left(\frac{\partial u}{\partial x}\right)_{j} = \frac{u_{j+1} - u_{j}}{h_{x}} + O(h_{x})$$
 一阶导数向后差分:
$$\left(\frac{\partial u}{\partial x}\right)_{j} = \frac{u_{j} - u_{j-1}}{h_{x}} + O(h_{x})$$
 (2.4) 一阶导数中心差分:
$$\left(\frac{\partial u}{\partial x}\right)_{j} = \frac{u_{j+1} - u_{j-1}}{2h_{x}} + O(h_{x}^{2})$$

公式 2.2和公式 2.3相加消去一阶导数,得到二阶导数的差分:

$$\left(\frac{\partial^2 u}{\partial x^2}\right)_j = \frac{u_{j+1} - 2u_j + u_{j-1}}{h_x^2} + O(h_x^2)$$
 (2.5)

更高阶空间导数近似:

更高阶的空间导数近似可由待定系数法解线性方程组得到,例如考虑 $\left(rac{\partial^2 u}{\partial x^2}
ight)$ 的更高阶近似:

$$h_x^2 \left(\frac{\partial^2 u}{\partial x^2}\right)_j = c_1 u_{j-2} + c_2 u_{j-1} + c_3 u_j + c_4 u_{j+1} + c_5 u_{j+2} + O(h_x^?)$$
(2.6)

其中 $c_1,...,c_5$ 为待定常量。将右端四项在 x 处作泰勒展开,也即在公式 2.1 中令 $r=\pm 1,\pm 2$,整理得:

$$h_{x}^{2} \left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{j} = \left(c_{1} + c_{2} + c_{3} + c_{4} + c_{5}\right)u_{j}$$

$$+ \left[\frac{(-2)}{1!}c_{1} + \frac{(-1)}{1!}c_{2} + \frac{(+1)}{1!}c_{4} + \frac{(+2)}{1!}c_{5}\right]\left(h_{x}\right)\left(\frac{\partial u}{\partial x}\right)_{j}$$

$$+ \left[\frac{(-2)^{2}}{2!}c_{1} + \frac{(-1)^{2}}{2!}c_{2} + \frac{(+1)^{2}}{2!}c_{4} + \frac{(+2)^{2}}{2!}c_{5}\right]\left(h_{x}\right)^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{j}$$

$$+ \left[\frac{(-2)^{3}}{3!}c_{1} + \frac{(-1)^{3}}{3!}c_{2} + \frac{(+1)^{3}}{3!}c_{4} + \frac{(+2)^{3}}{3!}c_{5}\right]\left(h_{x}\right)^{3}\left(\frac{\partial^{3} u}{\partial x^{3}}\right)$$

$$+ \left[\frac{(-2)^{4}}{4!}c_{1} + \frac{(-1)^{4}}{4!}c_{2} + \frac{(+1)^{4}}{4!}c_{4} + \frac{(+2)^{4}}{4!}c_{5}\right]\left(h_{x}\right)^{4}\left(\frac{\partial^{4} u}{\partial x^{4}}\right)_{j}$$

$$+ \left[\frac{(-2)^{5}}{5!}c_{1} + \frac{(-1)^{5}}{5!}c_{2} + \frac{(+1)^{5}}{5!}c_{4} + \frac{(+2)^{5}}{5!}c_{5}\right]\left(h_{x}\right)^{5}\left(\frac{\partial^{5} u}{\partial x^{5}}\right)_{j}$$

$$+ O(h_{x}^{6}).$$

两端各项系数应相同,因此有方程组:

$$\begin{cases}
c_{1} + c_{2} + c_{3} + c_{4} + c_{5} = 0 \\
-2c_{1} - c_{2} + c_{4} + 2c_{5} = 0 \\
4c_{1} + c_{2} + c_{4} + 4c_{5} = 2 \\
-8c_{1} - c_{2} + c_{4} + 8c_{5} = 0 \\
16c_{1} + c_{2} + c_{4} + 16c_{5} = 0
\end{cases}
\iff
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2 \\
4 & 1 & 0 & 1 & 4 \\
-8 & -1 & 0 & 1 & 8 \\
16 & 1 & 0 & 1 & 16
\end{bmatrix}
\cdot
\begin{bmatrix}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
2 \\
0 \\
0
\end{bmatrix}$$
(2.8)

$$\Longrightarrow \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \end{bmatrix} = \begin{bmatrix} -\frac{1}{12} & \frac{4}{3} & -\frac{5}{2} & \frac{4}{3} & -\frac{1}{12} \end{bmatrix}$$
 (2.9)

$$\Rightarrow \frac{\partial^2 u}{\partial x^2} = \frac{-u_{j-2} + 16u_{j-1} - 30u_j + 16u_{j+1} - u_{j+2}}{12h_x^2} + O(h_x^4)$$
 (2.10)

例如,方程 $\frac{\partial u}{\partial t} = a \frac{\partial^2 u}{\partial x^2}$ 的一个 $O(h_x^4 + h_t)$ 阶精度近似为:

$$u_j^{k+1} = u_j^k + \frac{ah_t}{12h_x^2} \left(-u_{j-2}^k + 16u_{j-1}^k - 30u_j^k + 16u_{j+1}^k - u_{j+2}^k \right)$$
(2.11)

§ 2.2 差分精度