MA2000: OTML

Madhab Barman & Nachiketa Mishra

Indian Institute of Information Technology, Design & Manufacturing, Kancheepuram

Monte Carlo Integration

Assume that we want to evaluate the integral of f(x) over [0,1]

$$I = \int_0^1 f(x) \, dx$$

 \triangleright Given a uniform random variable X_i over [0,1], then Monte Carlo Integration is

$$\int_0^1 f(x) \, dx \approx \frac{1}{N} \sum_{i=1}^N f(X_i) = \frac{1}{N} \sum_{i=1}^N f_i := I_N, \quad \text{(say)}$$

▶ The variance

$$\sigma_f^2 = \left[\frac{1}{N}\sum_{i=1}^N f_i^2 - \left(\frac{1}{N}\sum_{i=1}^N f_i\right)^2\right]$$

- ▶ Approximate the value of the integral as $I = I_N \pm \frac{\sigma_f}{\sqrt{N}}$
- ▶ The accuracy of Monte Carlo integration increases with the number of sampling points N

Monte Carlo Integration: Estimating π

- $ightharpoonup A_s := a$ unit square Area
- Draw a circle inside this square with a radius of 0.5. The Area of this circle is $A_c = \frac{\pi}{4}$
- We create n random points inside the square
- Therefore, $\frac{A_c}{A_s} = \frac{\pi}{4} \Rightarrow \pi = 4 \times \frac{A_c}{A_s}$
- ► Thus

$$\pi pprox 4 imes rac{ ext{Total number of points in circle}}{ ext{Total number of points}}$$

Importance Sampling

- ► In the simple Monte Carlo integration, we have used the uniform sampling
- For an integrand f(x) that varies rapidly in a narrow region such as a sharp peak:
 - the only sampling points that are important are near the peak, the sampling points far outside will contribute less.
- ► Thus, it seems that a lot of unnecessary sampling points are wasted.
- There are two main ways to use the sampling points more effectively, and they are change of variables and importance sampling.

Figure:
$$f(x) = e^{-(100x)^2}$$

Change of Variables

► The change of variables uses the integrand itself so that it can be transformed to a more uniform (flat) function. For example, the integral

$$I=\int_a^b f(u)\,du$$

▶ Transform by using a known function u = g(v), which yields du = g'(v)dv

$$I = \int_a^b f(u) du = \int_{a_v}^{b_v} f[g(v)]g'(v) dv$$

▶ The idea is to make sure that the new integrand is or close to a constant A

$$\phi(v) = f[g(v)]g'(v) = A$$
, where $v = g^{-1}(u)$

- lacktriangle This means that a uniform sampling can be used for ϕ
- ▶ The new integration limits are $a_v = g^{-1}(a)$ and $b_v = g^{-1}(b)$

Example

- ▶ An exponential function $f(u) = e^{-\alpha u}$
- ► Transform $u = g(v) = -\frac{1}{\alpha} \ln(\alpha v)$
- ► Compute f(u)g'(v) = -1 = A
- We then hav

$$I = \int_a^b f(u) du = \int_{\exp(-\alpha a)/\alpha}^{\exp(-\alpha b)/\alpha} (-1) dv$$

- ▶ Then, we can use a uniform sampling set to estimate the integral.
- ▶ Both these methods are limited either to the case when g^{-1} exists uniquely and has explicit expressions in terms of basic functions, or to the case when f(x) are flat in subregions.
- Otherwise, it is not easy, or even impossible, to make such transformations or domain-decomposition.
- A far more efficient method is to use the importance sampling, rejection sampling

- As the integration is the area (or volume) under a curve (or surface), the region(s) with higher values of integrand will contribute more, thus, we should put more weights on these important points.
- ▶ Importance sampling is just the method for doing such weighted sampling.
- ▶ The integral of interest is often rewritten as the weighted form or a product such that

$$I = \int_a^b f(x) \, dx = \int_a^b \frac{f(x)}{p(x)} p(x) \, dx = \int_a^b h(x) p(x) \, dx = \langle h \rangle_p, \text{ where } h(x) = \frac{f(x)}{p(x)}$$

- ▶ Obviously, it is required that $p(x) \neq 0$ in [a, b]
- Here the function p(x) acts as the probability density function whose integration over the region [a, b] should be always equal to 1. i.e

$$\int_a^b p(x)\,dx=1$$

▶ The evaluation of the integral becomes the estimation of the expected value of

$$E[h] = \langle h(x) \rangle = \left\langle \frac{f(x)}{p(x)} \right\rangle_{n}$$

- ▶ The idea is to choose a function p(x) such that the sampling points become more important when f(x) is in the region with higher values.
- ▶ That is equivalent to a weighted sum with p(x) as the weighting coefficients.
- ▶ The choice of p(x) should make h(x) = f(x)/p(x) as close to constant as possible.
- ▶ In a special case: p(x) = 1/(b-a), we have the following:
- Monte Carlo integration of f(x) on [a, b] is defined by

$$\int_a^b f(x) dx \approx \frac{b-a}{N} \sum_{i=1}^N f(X_i) = \frac{b-a}{N} \sum_{i=1}^N f_i,$$

where uniform random variable X_i over [a, b]

- Assume, a distribution q that is easy to sample from
- ▶ an upper bound M on $\tilde{p}(x)/q(x)$, where

$$\frac{\tilde{p}(x)}{Z}=p(x),$$

Z is normalization part

Rejection algorithm:

- 1. sample from q(x)
- 2. sample u from a uniform distribution $\mathcal{U}(0,1)$
- 3. keep the sample (accept) if $u \leq \frac{\tilde{p}(x)}{Mq(x)}$, otherwise reject

Drawbacks:

- You may reject a large number of samples.
 - Most samples are rejected for high-dimensional complex distributions
- You need to know M.

Recap: Conditional Probability

▶ The conditional probability of an event *A*, given that the other event *B* has happened,

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

▶ Suppose A and B are independent, P(A, B) = P(A)P(B),

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

MCMC

Definition (Markov chain)

A series of random variables $X_1, X_2, \dots, X_t, \dots \sim f(x)$ is a Markov chain if

$$P(X_{i+1} = y | X_i, X_{i-1}, \dots, X_1) = P(X_{i+1} = y | X_i).$$

Example: random walk $X_{i+1} = X_i + \Delta x_i$ where Δx_i are i.i.d is a Markov chain.

Definition (Stationary)

A Markov chain is stationary if

$$P(X_{i+1} = y | X_i = x)$$

is independent of i.

- ▶ How do we construct a Markov chain whose stationary distribution is our target distribution, f(x) ?
- Metropolis et al. (1953) illustrated how.
- ► Then, the method was generalized by Hastings (1970): Metropolis-Hastings algorithm

Metropolis-Hastings algorithm

▶ **Idea:** To define a Markov chain over possible values, in such a way that the stationary distribution of the Markov chain is in fact f(x).

At each iteration t+1

Step-1. sample $y \sim q(y|x^{(t)})$, where y is the candidate point and q is the proposal distribution

Step-2. compute the probability

$$\alpha(x^{(t)}, y) = \min\left\{1, \frac{f(y)q(x^{(t)}|y)}{f(x^{(t)})q(y|x^{(t)})}\right\}$$

Step-3. Draw u from $\mathcal{U}(0,1)$

Step-4. If
$$\alpha \ge u$$
, then accept $x^{(t+1)} = y$; else reject, $x^{(t+1)} = x^{(t)}$.

- This special case of the Metropolis-Hastings algorithm, in which the proposal distribution is symmetric $q(x^{(t)}|y) = q(y|x^{(t)})$, is referred to as the Metropolis algorithm.
- **Useful feature of the MH algorithm:** it can be implemented even when f(x) is known only up to a constant: that is, f(x) = ch(x) for some known h, but unknown constant c.

Example of MH

▶ Here, we implement the algorithm to sample from an exponential distribution:

$$f(x) = \exp(-x), \quad x \ge 0$$

▶ So, **target** distribution is $f(x) = \exp(-x)$

```
target = function(x){
  return(ifelse(x<0,0,exp(-x)))
}</pre>
```

```
x = rep(0,10000)
x[1] = 3  #initialize; I've set arbitrarily set this to 3
for(i in 2:10000) {
    current_x = x[i-1]
    proposed_x = current_x + rnorm(1,mean=0,sd=1)
    A = target(proposed_x)/target(current_x)
    if(runif(1)<A) {
        x[i] = proposed_x  # accept move with probabily min(1,A)
    } else {
        x[i] = current_x  # otherwise "reject" move, and stay where we are
    }
}</pre>
```

contd.

Histogram of values of x visited by MH algorithm

- ightharpoonup Here q is symmetric, therefore, the ratio of q's become 1
- ▶ Remember! we designed this algorithm to sample from an exponential distribution.
- ► The histogram of x should look like an exponential distribution

Markov Chain And Optimization

- ▶ **Stochastic approach:** pick items randomly $x_1, x_2, ..., x_N$ from your search space X and return arg $\max_{i=1,2,...,N} f(x_i)$ or arg $\min_{i=1,2,...,N} f(x_i)$
- What probability distribution should we use to pick these points?
- Pick x uniformly from X which is simple (bad) distribution.
 - Problem: we might spend most of the time sampling junk.
- ▶ Great distribution: Softmax $p(x) = \frac{e^{f(x)/T}}{Z}$ where T is a parameter and $Z = \sum_{x} e^{f(x)/T}$ is the normalization term.
- ▶ It is not easy to calculate Z when dimension increases.
- To solve this problem we use MCMC (Markov Chain Monte Carlo) sampling.

Simulated Annealing

Unconstrained optimization

$$\min_{x} f(x)$$

- Simulated annealing:
 - 1. Start from an initial point
 - 2. Repeatedly consider various new solution points
 - 3. Accept or reject some of these solution candidates by
 - 4. Converge to the optimal solution
- ▶ It is based on "similarities" and "analogies" with the way that alloys manage to find a nearly global minimum energy level when they are cooled slowly
- ▶ **Applications:** the knapsack problem, the traveling salesman problem, Air traffic optimization, etc..

Local optimization vs. Simulated annealing

Simulated annealing

- 1. Start from an initial point
- 2. Repeatedly consider various new solution points
- Accept/reject new solution using probability at each iteration
- 4. Converge to the optimal solution

Local optimization

- 1. Start from an initial point
- 2. Repeatedly consider various new solution points
- 3. Reduce cost function at each iteration
- 4. Converge to the optimal solution

Simulated Annealing

Let the objective function f(X), $X \in \mathbb{R}^n$

- ▶ Initialize initial temperature T_0 and initial guess $X = X^{(0)}$ and i = 0
- ightharpoonup Set minimum temperature T_{min} and max number of iterations N, and cooling rate α
- ▶ Define cooling schedule $T \rightarrow \alpha T$ where $0 < \alpha < 1$.
- ▶ While $(T < T_{min} \text{ and } i < N)$
 - Move randomly to new locations $X^{(i+1)} = X^{(i)} + rand$
 - Calculate $\Delta f = f(X^{(i+1)}) f(X^{(i)}) = f^{(i+1)} f^{(i)}$
 - Accept the new solution if better i.e., $f(X^{(i+1)}) < f(X^{(i)})$
 - ▶ If not improved i.e., $f(X^{(i+1)}) \ge f(X^{(i)})$
 - ightharpoonup Generate a random number r
 - Accept if $p = \exp(-\Delta f/T) > r$
 - End if
 - Update the best X_{*} and f_{*}
 - i = i+1
- ► End While

Example.

Find the minimum to the objective function

$$f(x_1, x_2) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2,$$

where $-10 \le x_1, x_2 \le 10$. $(\min(f) = 0 \text{ at } x_1 = 1, x_2 = 3)$

Example

Step-1 Initialization

Initial guess $X^{(0)}=(0,0)$; Initial temperature T=1000 and the initial value of iteration counter i=0. So $f(X^{(0)})=74$, Choose $\alpha=0.5$, $T_{min}=1$, i=1.

Step-2 Generation of a new point in the nbd. of current point

Pick a new point $X^{(1)} = X^{(0)} + \text{rand}$ such that $X^{(1)} \in [-10, 10]$ $X^{(1)} = (-7.337, 0.53718)$ and $f(X^{(1)}) = 542.11$; Compute $\Delta f = f(X^{(k+1)}) - f(X^{(k)}) = 542.11 - 74 = 468.11$

Step-3 Checking the Acceptance of the new point

Since $f(X^{(1)}) > f(X^{(0)})$, new solution is not improved. So, we calculate the probability of accepting the new point $X^{(1)}$: $p = e^{-\Delta f/T} = e^{-468.11/1000} = 0.6262$. Next, we pick a random number in between 0 and 1, say, r = 0.43091 Now, since p > r we **accept** the new point $X^{(1)} = (-7.337, 0.53718)$.

Step-4 Lowering the temperature as per cooling schedule

The new temperature $T = \alpha T = 0.5*1000 = 500$ and since $T > T_{min} = 1$, we go to **Step-2**. Repeat!

Example

- Now i = i + 1 = 2
- Step-2 We pick $X^{(2)} = (-11.2205, 1.8084)$ which is not belongs to the region [-10, 10]. So $X^{(2)}$ remains same as $X^{(1)}$ i.e., $X^{(2)} = (-7.337, 0.53718)$. Go to **Step-4**.
- Step-4 T = 0.5 * 500 = 250 and since $T > T_{min}$, go to **Step-2**.
 - Now i = i + 1 = 3
- Step-2 $X^{(3)} = (-8.2649, 0.6315)$ and $f(X^{(3)}) = 632.79$; Compute $\Delta f = f(X^{(3)}) f(X^{(1)}) = 632.79 542.11 = 90.68$
- Step-3 Compute $p = e^{-90.68/250} = 0.69578$ and select random $r \in (0,1), r = 0.25622$ Now, since p > r we **accept** the new point $X^{(3)} = (-8.2649, 0.6315)$.
- Step-4 T = 0.5 * 250 = 125 and since $T > T_{min}$, go to **Step-2.** and **Repeat!**

First 10 iterations

Iteration	Values of the Variables
i = 0	$X^{(0)} = (0, 0)$
i = 1	$X^{(1)} = (-7.337, 0.53718)$
i = 2	$X^{(2)} = (-7.337, 0.53718)$
i = 3	$X^{(3)} = (-8.2649, 0.6315)$
i = 4	$X^{(4)} = (-8.2649, 0.6315)$
i = 5	$X^{(5)} = (-8.9895, 1.6117)$
i = 6	$X^{(6)} = (-5.4466, 2.3564)$
i = 7	$X^{(7)} = (-5.4466, 2.3564)$
i = 8	$X^{(8)} = (-3.2893, 5.386)$
i = 9	$X^{(9)} = (-1.4429, 2.6077)$
i = 10	$X^{(10)} = (-1.4429, 2.6077)$

▶ If we run this algorithm in MATLAB/Python/Etc., we will get $X^* = (0.97556, 3.0229)$. Therefore, required approximated minimum of f is equal to 0.00113.

Exercise

A. Apply SA to find the minimum of the function

$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

on
$$[-10, 10] \times [-10, 10]$$
.

B. Python code: https://machinelearningmastery.com/ simulated-annealing-from-scratch-in-python/