from magic import solution

Nikolaj Kuntner

February 2, 2019

Abstract

wow, I'm impress.

Contents

Ι	Men	2
1	Introduction and review of 1.1 Motivation	2
II	We	3
2	section - example 2.1 subsection - example	3
3	section - das ist das 3.1 itemize (subsection)	3 3
4	section 4.1 hyperlink, book reference, footnote (subsubsection)	3
ΤΤ	I Coins	5

Part I

Men

1 Introduction and review of ...

1.1 Motivation

yidi yidi

- blau
- bla

1.2 Resources and literature

yada yada a

1.2.1 brainstorming

yada yada b

• Main page

```
what is this mang
def foo(x): return 2*x
```

1.2.2 boogie nights

Product type is good, mang.

Part II

We

2 section - example

2.1 subsection - example

Here's everything you could ever want to know!

Figure 1: wait...what?

3 section - das ist das...

...text2 file

3.1 itemize (subsection)

- this is item 1
- and this is item 2

3.2 theorems (subsection)

Let G and H be Lie groups with Lie algebras ... Then:

- 1. blabla nr. 1
- 2. blabla nr. 2

<u>Proof</u>: here we prove theorem with the number 3.2.

4 section

4.1 hyperlink, book reference, footnote (subsubsection)

http://en.wikipedia.org/wiki/LaTeX

this is a ref with the number [$\mathbf{testBook}$]. And now follows a footnote.

1	X	7	hi
4	5	6	6
7	8	g	6

$$a^2 + b^2 = c^2 (1)$$

Verweis auf Formel mit der Nummer (1).

$$g_{\mu\mu'}g_{\nu\nu'}\varepsilon^{\mu'\nu'\rho\sigma} = \det(g_{\mu\nu})\varepsilon_{\mu\nu\rho'\sigma'}g^{\rho\rho'}g^{\sigma\sigma'}$$

$$g_{\mu\mu'}g_{\nu\nu'}\varepsilon^{\mu'\nu'\rho\sigma} = \det(g_{\mu\nu})\varepsilon_{\mu\nu\rho'\sigma'}g^{\rho\rho'}g^{\sigma\sigma'} = G$$

 $^{^{1}}$ here is the footnote

Part III Coins

time...to die.