PARTIE I

Pour $n \in \mathbb{N}^*$, on définit $u_n \in \mathbb{R}$ par

$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$

où ln désigne la fonction logarithme népérien.

- **I.1.** Déterminer, lorsque n tend vers $+\infty$, un équivalent de $\mathfrak{u}_{n+1}-\mathfrak{u}_n$ de la forme $\frac{C}{\mathfrak{n}^\alpha}$ où C est une constante.
- **I.2.** En déduire que la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}^*}$ converge.

On posera : $\gamma = \lim_{n \to +\infty} u_n$.

I.3.

I.3.a. Prouver, pour tout $k \in \mathbb{N}^*$, les inégalités :

$$\frac{1}{k+1}\leqslant ln\left(\frac{k+1}{k}\right)\leqslant \frac{1}{k}\cdot$$

I.3.b. Étudier, sur l'intervalle [k,k+1] ($k\in\mathbb{N}^*$), le signe de la fonction f_k définie par :

$$f_k(x) = \frac{1}{k} + \left(\frac{1}{k+1} - \frac{1}{k}\right)(x-k) - \frac{1}{x}$$

En déduire l'encadrement :

$$\frac{1}{k+1} \leqslant ln\left(\frac{k+1}{k}\right) \leqslant \frac{1}{2}\left(\frac{1}{k} + \frac{1}{k+1}\right) \, \cdot$$

I.4. Prouver que : $\frac{1}{2} \leqslant \gamma \leqslant 1$.

PARTIE II

II.1. On définit les fonctions φ_1 et φ_2 sur \mathbb{R}_+^* par :

$$\begin{split} \phi_1(x) &= -\frac{1}{x+1} + ln\left(1 + \frac{1}{x}\right) - \frac{1}{2x^2} \text{ ;} \\ \phi_2(x) &= \phi_1(x) + \frac{2}{3x^3} \; . \end{split}$$

Étudier les variations de φ_1 et φ_2 sur \mathbb{R}_+^* et en déduire leur signe.

II.2. Déduire des résultats de la question précédente que l'on a, pour tout entier $n \ge 1$:

$$\frac{1}{2n^2} - \frac{2}{3n^3} \leqslant u_n - u_{n+1} \leqslant \frac{1}{2n^2} \cdot$$

II.3. Soit $n \ge 2$.

II.3.a. Donner un encadrement, fonction très simple de n, pour $\sum_{k=n}^{+\infty} \frac{1}{k^2}$ et un majorant de

 $\sum_{k=n}^{+\infty} \frac{1}{k^3}$ (on pourra utiliser la comparaison avec une intégrale).

II.3.b. En déduire, pour tout $n \ge 2$, les inégalités :

$$\frac{1}{2n} - \frac{1}{3(n-1)^2} \leqslant \mathfrak{u}_n - \gamma \leqslant \frac{1}{2(n-1)} \cdot$$

II.4. Donner une valeur de l'entier n telle que l'encadrement précédent permette, à partir de u_n , de déterminer γ à moins de 10^{-2} près. Puis encadrer effectivement, par ce procédé, γ à 10^{-2} près (la réponse à cette question prendra la forme d'un petit programme en Python).

PARTIE III

- $\textbf{III.1.} \ \ \text{V\'erifier que, pour tout } n \in \mathbb{N}^* \text{, } \sum_{k=1}^n \frac{1}{k(k+1)} = 1 \frac{1}{n+1} \text{. En d\'eduire la valeur de } \sum_{k=n}^{+\infty} \frac{1}{k(k+1)} \text{.}$
- III.2. Trouver trois constantes a, b et c telles que

$$\forall n \in \mathbb{N}^*$$
, $\frac{1}{n(n+1)(n+2)} = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}$.

En déduire $\sum_{k=1}^{+\infty} \frac{1}{k(k+1)(k+2)} = \frac{1}{4}$ puis la valeur de $\sum_{k=n}^{+\infty} \frac{1}{k(k+1)(k+2)}$ ·

III.3. Déterminer des constantes réelles λ et $\mu,$ de sorte que le développement asymptotique de

$$w_n = u_n - u_{n+1} - \frac{\lambda}{n(n+1)} - \frac{\mu}{n(n+1)(n+2)}$$

selon les puissances de $\frac{1}{n}$, lorsque n tend vers $+\infty$, ait son premier terme non nul d'ordre aussi élevé que possible, et donner alors la valeur $\frac{D}{n^{\beta}}$ de ce premier terme.

III.4. Montrer que pour tout entier n strictement supérieur à 1 :

$$\frac{D}{\beta-1}\left[\frac{1}{n^{\beta-1}}-\frac{1}{(n+1)^{\beta-1}}\right]\leqslant \frac{D}{n^{\beta}}\leqslant \frac{D}{\beta-1}\left[\frac{1}{(n-1)^{\beta-1}}-\frac{1}{(n)^{\beta-1}}\right]$$

et en déduire

$$\sum_{k=n}^{+\infty} \frac{D}{n^{\beta}} \underset{n \to +\infty}{\sim} \frac{D}{(\beta-1)n^{\beta-1}} \cdot \\$$

III.5.

III.5.a. Un résultat intermédiaire :

Soient $\sum x_n$ et $\sum y_n$ deux séries à termes réels positifs. On suppose que la série de terme général y_n est convergente.

i) On suppose que l'on a $x_n=o(y_n)$ lorsque n tend vers $+\infty.$

$$\text{Montrer que la série } \sum x_n \text{ converge, et que } \sum_{k=n}^{+\infty} x_k = o\left(\sum_{k=n}^{+\infty} y_k\right).$$

ii) On suppose maintenant que l'on a $x_n \underset{n \to +\infty}{\sim} y_n$.

Montrer que l'on a également
$$\sum_{k=n}^{+\infty} x_k \underset{n \to +\infty}{\sim} \sum_{k=n}^{+\infty} y_k$$
 .

- III.5.b. Déduire de la question précédente un équivalent simple de $\sum_{k=n}^{+\infty} w_k$.
- III.5.c. En déduire un terme correctif v_n tel que $u_n + v_n \gamma \underset{n \to +\infty}{\sim} \frac{1}{12n^3}$.
- **III.5.d.** Reprendre la valeur calculée en **II.4** pour u_n et lui ajouter le terme correctif v_n . Quelle est la valeur approchée de γ ainsi obtenue?

Maple® donne pour valeur approché : $\gamma \approx 0,577215664901533$. Qu'observez-vous ?