Kompiuterių architektūra

Irus Grinis Rudens semestras 2022/23 m.m.

Laboratorinių darbų ir kurso vertinimas (iš sando)

Vertinimo būdas:

 Egzamino rezultatai (60%) ir laboratorinių darbų užduotys (40%);

Atsiskaitymo reikalavimai:

 Egzaminas raštu. Egzaminą gali laikyti tik tie studentai, kurių laboratorinių darbų užduočių atlikimas sumoje įvertintas ne mažiau kaip 25 % nuo pilno užduočių atlikimo įvertinimo.

Laboratoriniai darbai (mūsų grupei)

- Laboratorinių darbų (jų bus 3) struktūra:
 - 5 7 užsiėmimai sudaro vieną laboratorinį darbą;
 - Kokie būna užsiėmimai:
 - Minikontrolinis/testas, kurio tikslas patikrinti per praeitus užsiėmimus įgytas žinias: trukmė yra 25-45 minutės. Testai rašomi pagal žemiau pateiktą grafiką;
 - Naujos medžiagos ir individualiųjų užduočių pristatymas: 20-25 min.;
 - Dėstytojo prižiūrimos pratybos, skirtos naujai medžiagai įsisavinti: 20-25 min.;
 - Individualiųjų užduočių atsiskaitymas, kontrolinio darbo rezultatų apžvalga, konsultavimas užduočių atlikimo klausimais: likęs laikas
- Lankomumo reikalavimai: privaloma lankyti užsiėmimus, per kuriuos rašomas kontrolinis

Laboratoriniai darbai (mūsų grupei)

- Laboratorinių darbų <u>aukščiausi</u> vertinimai:
 - 1 laboratorinis darbas: 1 balas;
 - 2 laboratorinis darbas: 1,5 balo;
 - 3 laboratorinis darbas: 1,5 balo;
- Laboratorinių darbų galutinių vertinimų grafikas:
 - 1 laboratorinis darbas: ~2022 10 10 16, priklausomai nuo pogrupio;
 - 2 laboratorinis darbas: 2022 11 14 20, priklausomai nuo pogrupio;
 - 3 laboratorinis darbas: iki paskutiniojo Jūsų pogrupio užsiėmimo.

Testų grafikas ir aukščiausi vertinimai (mūsų grupei)

Laboratorinių darbų testų rašymo grafikas (datos gali keistis +-1 savaitė):

- -1-o laboratorinio darbo:
 - 2022 09 15 16 (0,25 balo) priklausomai nuo pogrupio;
 - 2022 09 29 30 (0,25 balo) priklausomai nuo pogrupio;
- -2-o laboratorinio darbo:
 - 2022 10 27 28 (0,5 balo) priklausomai nuo pogrupio;
- -3-o laboratorinio darbo:
 - 2022 12 01 02 (0,5 balo) priklausomai nuo pogrupio

1-s laboratorinis darbas, 1 užsiėmimas

Tematika:

- Pozicinės skaičiavimo sistemos (sveikųjų skaičių atvejis), vertimas iš vienos sistemos į kitą, aritmetiniai veiksmai:
 - Dvejetainė skaičiavimo sistema, aritmetiniai veiksmai joje;
 - Aštuntainė skaičiavimo sistema, aritmetiniai veiksmai joje;
 - 16-tainė skaičiavimo sistema, aritmetiniai veiksmai joje;
 - Skaičių su ženklu ir be ženklo vaizdavimas.
- Bitai, baitai, žodžiai, įvairios operacijos

Nuoroda

www.johnloomis.org/ece314/notes/carch/node3.html

Dvejetainė sistema

- 0, 1, 10, 11, 100, 101, 110, 111, 1000,...
- Vertimas iš 10-tainės:
 - Pvz.:
 - $259_{10} \rightarrow ??????_2$

Dvejetainės išraiškos gavimas

Algoritmas natūraliajam skaičiui *n*:

```
- j ← 1;
- kol (n > 0)
    • <j - tasis skaitmuo nuo galo> ← n mod 2;
    • n ← n div 2;
    • j ← j + 1;
```

Veikimo pavyzdys

```
• 1 žingsnis (duoda pirmą nuo galo skaitmenį)
  -259 \mod 2 = 1;
  - 259 div 2 = 129;

    2 žingsnis (duoda 2-ą nuo galo skaitmenį)

  -129 \mod 2 = 1;
  -129 \text{ div } 2 = 64;
• 3 žingsnis
  -64 \mod 2 = 0;
  -64 \text{ div } 2 = 32;
• 4 žingsnis
  -32 \mod 2 = 0;
  -32 \text{ div } 2 = 16;
```

Veikimo pavyzdys

```
• 5 žingsnis
  -16 \mod 2 = 0;
  - 16 \text{ div } 2 = 8;
• 6 žingsnis
  -8 \mod 2 = 0;
  - 8 \text{ div } 2 = 4;
• 7 žingsnis
  -4 \mod 2 = 0;
   -4 \text{ div } 2 = 2;
• 8 žingsnis
  -2 \mod 2 = 0;
  -2 \text{ div } 2 = 1;
• 9 žingsnis (paskutinis)
  -1 \mod 2 = 1;
  -1 \text{ div } 2 = 0;
```

Išvada

 $259_{10} \ \to \ 100000011_2$

Iš 2-tainės į 10-tainę

 Idėja: sumuojame atitinkamus dvejeto laipsnius:

76543210

Aritmetiniai veiksmai su dvejetainiais skaičiais: sudėtis

Pvz.:

```
10001101
+ 111011
-----
11001000
```

Taisyklės:

$$1 + 1 = 10$$
 $10 + 1 = 11$

8-tainė

- 0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20, ... Vertimo iš dešimtainės algoritmas tas pats, tik dalinti ir ieškoti liekanos reikia iš 8;
- Analogiškai vertimas į dešimtainę;
- Įdomesnis vertimas į/iš dvejetainę(-ės). Tam labai praverčia tokia lentelė:

```
- 0 ↔ 000
- 1 ↔ 001
- 2 ↔ 010
- 3 ↔ 011
```

8-tainė (tęsinys)

Vertimas iš dvejetainės į aštuntainę:

```
Pvz.:
```

```
1110111010110 → <suskaidome po tris skaitmenis nuo galo> →
```

 Analogiškai verčiame iš aštuntainės į dvejetainę: kiekvieną skaitmenį keičiame dvejetainiu "kodu".

16-tainė sistema

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,
 10,11,12,13,14,15,16,17,18,19,1A,1B,...

Dėmesio:

Šiame *institute* labai patartina išmokti ATMINTINAI 16-tainių skaitmenų dvejetainius "kodus", nes tai yra "klasikinių programerių kultūrinių įgūdžių dalis"

 Toliau paprstame tekste visur 16-tainius skaičius rašysime su priesaga "h", pvz., 123Fh

16-tainės sistemos skaitmenų dvejetainė išraiška

```
- 0 \leftrightarrow 0000
                 -8 \leftrightarrow 1000
-1 ↔ 0001
                 -9 ↔ 1001
-2 ↔ 0010
                 - A ↔ 1010
- 3 ↔ 0011
                 - B ↔ 1011
-4 ↔ 0100
                 - C ↔ 1100
- 5 ↔ 0101
                 - D ↔ 1101
-6 ↔ 0110
                 - E ↔ 1110
-7 ↔ 0111
                 - F ↔ 1111
```

Vertimas iš dvejetainės į 16-tainę

```
• PVZ.:
10011010111010 \rightarrow
0010 0110 1011 1010 \rightarrow
2 6 B A \rightarrow
26BA<sub>16</sub>
```

Sudėtis 16-tainėje sistemoje

Pvz.:

```
3ABC09
```

49C4DA

Taisyklė:) F + 1 = 10

Skaičiai su ženklu

- Yra trys pagrindiniai būdai, kurie naudojami skaičiams su ženklu pavaizduoti:
 - poslinkio būdas;
 - [ženklas] [modulis];
 - Dvejeto papildinys;

— ...

Pastaba. Turime omenyje, kad dirbame su fiksuotu dvejetainių skaitmenų skaičiumi.

Poslinkio būdas

 Per viduri intervalo nustatome nuli, pvz., jeigu reikėtų vaizduoti neigiamus skaičius "pusbaityje" (4 bitai), tai galima būtų imti nulį ..1000":

$$0000 \rightarrow -7$$

$$1001 \rightarrow +1$$

$$0001 \rightarrow -6$$

$$1000 \rightarrow 0$$

$$0001 \rightarrow -6 \quad 1000 \rightarrow 0 \quad 1010 \rightarrow +2$$

$$0111 \rightarrow -1$$

$$1111 \rightarrow +7$$

[ženklas][modulis]

Vyresnį bitą skelbiame "ženklu" ("1" → "-", o "0" → "+"), o likusieji bitai rodo modulį. Pvz., baitas
 10001010 → -10,

o baitas

 $00001010 \rightarrow +10$

Pastaba: yra du nuliai:)

Dvejeto papildinys

- Jis patogus, nes paprastai realizuojamas pačiame procesoriuje.
- Kaip jis sudaromas?
 - Kiekvieną bitą keičiame komplimentariu (0 ↔ 1);
 - 2) Pridedame 1.

Dvejeto papildinys

Tarkime, dirbame su 8 bitais. Raskime skaičiui $123_{10} \rightarrow 01111011$ 2' papildymą:

01111011 \rightarrow (komplimentuojame) 10000100 \rightarrow (pridedame 1) 10000101 \rightarrow 133 $_{10}$

Gautas skaičius "skelbiamas" -123.

Dvejeto papildinys

Sudėkime dabar abu skaičius:

```
01111011
10000101
-----
(<u>1</u>)0000000
```

Jau išėjome iš 8 bitų.

Pratimas

Tarkime, kad dirbame su pusbaičiais. Raskite kiekvieno pusbaičio papildomą kodą:

0000, 0001, ..., 1111

Bitai, baitai, žodžiai

Bitai ir baitai

- Kompiuterio operatyviąją atmintį galima įsivaizduoti kaip blokų, kurie sudaryti iš vienodo bitų skaičiaus, masyvą
- Mažiausiai toks blokas baitas (8 bitai)
 - Beženkliai skaičiai sudaro diapazoną [0,255] → [00,FF] (16-tainėje)
- Mes nagrinėsime šiandieninių personalinių kompiuterių senelį, IBM PC (toliau – tiesiog PK), su jame tada plačiai naudota OS MS DOS :)

ASCII kodai

- Simboliai klasikiniame PC talpinami į baitus. Labai patartina žinoti kai kuriuos ASCII kodus (16-tainėje):
- 0D 0A → '\n'
- 20 → tarpas
- $'0',...,'9' \rightarrow 30,...,39$
- 'A',..., 'Z' → 41,..., 5A
- 'a',..., 'z' \rightarrow 61, ..., 7A

Žodžiai (word)

- Tai tiesiog du baitai.
- Jeigu nagrinėsime skaičius be ženklo, tai turėsime diapazoną [0, 65535] → [0000, FFFF] (16-tainėje).
- Intel architektūroje atmintyje baitai eina nuo jaunesnio prie vyresnio (little-endian). Ką tai reiškia? Jeigu turime, pvz., skaičių 321₁0 → 141₁6, tai pradžioje eina baitas 41₁6, po to 01₁6.

Perėjimas nuo baito iki žodžio ir ženklas

 CPU turi specialių operacijų, kurios leidžia pereiti nuo baito iki žodžio neprarandant ženklo. Toks perėjimas vadinamas ženklo išplėtimu (sign extension):

Pvz.:

- 1) $00101100 \rightarrow 00000000101100$;
- 2) 10101100 \rightarrow 1111111110101100

Loginės operacijos su baitais ir žodžiais

- Mūsų CPU (8086) gali atlikti įvairias logines operacijas su baitais ir žodžiais:
 - AND
 - OR
 - NOT
 - XOR

Visos jos atliekamos su kiekvienu bitu.

Loginės operacijos su baitais ir žodžiais

Pavyzdys (baitams):

```
10001100 AND 11101010 \rightarrow 10001000 10001100 OR 11101010 \rightarrow 11101110 10001100 XOR 11101010 \rightarrow 01100110 NOT 10001100 \rightarrow 01110011
```

Postūmiai ir cikliniai postūmiai

Pavyzdys baitams:

01011010 **SHL** 1 (postūmis kairėn per vieną bitą) → 10110100 (tas pats kaip padauginti iš 2);

01011010 **SHR** 1 (postūmis dešinėn per vieną bitą) → 00101101 (tas pats kaip padalinti iš 2);

 $\underline{\mathbf{1}}$ 1011010 **ROL** 1 (ciklinis postūmis kairėn per vieną bitą) → 1011010 $\underline{\mathbf{1}}$

01011011 ROR 1 (ciklinis postūmis dešinėn per vieną bitą) \rightarrow 10101101

Per kontrolinį Nr. 1

- Gebėti versti skaičius iš vienos sk. sistemos į kitą (ir puikia žinoti vertimo algoritmą);
- Atlikti aritmetines operacijas 2-tainėje ir 16-tainėje sistemoje;
- Mokėti paskaičiuoti dvejetainį papildomą kodą baitams ir žodžiams, konvertuoti baitą į žodį išplečiant ženklą;
- Atlikti logines ir postūmių operacijas su baitais ir žodžiais

Baitai ir žodžiai užduotyse gali būti užrašyti 10-tainėje, 2-tainėje ir 16-tainėje sistemose