Chapitre 1: La gravitation universelle

الوحدة 1: التجاذب الكوني

www.pc1.ma

❖ Situation-problème N°1 :

Toutes les planètes du système solaire gravitent autour du soleil

- Comment peut-on expliquer la cohésion de ce système solaire ?
- Pourquoi la lune tourne-t-elle autour de la terre ?
- Pourquoi une pomme tombe-t-elle d'arbre vers le bas ?

❖ Situation-problème N°2 :

Des microscopes perfectionnés nous permettent d'explorer la matière jusqu'au niveau atomique. Grâce à des télescopes de plus en plus performants, nous observons des galaxies très éloignées.

- Comment pouvons-nous exprimer des distances et des tailles allant de l'échelle microscopique jusqu'à l'échelle cosmique ?
- Comment pouvons-nous positionner ces objets sur une même échelle des longueurs ?
- **Objectifs**: Connaissances et savoir-faire exigibles
- ✓ Savoir classer des objets, des noyaux atomiques jusqu'aux galaxies en fonction de leur taille
- ✓ Savoir positionner ces objets sur une échelle des longueurs graduée en puissance de 10
- ✓ Savoir donner un ordre de grandeur et l'utiliser pour comparer deux longueurs
- ✓ Connaitre la loi de l'attraction gravitationnelle de Newton
- ✓ Expliquer pourquoi les planètes gravitent autour du soleil
- ✓ Utiliser la relation entre le poids et la masse d'un objet

I. Échelle des longueurs (ou des distances)

1. Écriture scientifique / notation scientifique

L'écriture scientifique d'un nombre s'écrit sous la forme de produit : $a.10^n$, avec a est nombre décimal : $(1 \le a < 10)$ et n est un nombre entier relatif (positif ou négatif)

Exercice 1:

Écrire les nombres suivants en notation scientifique (compléter le tableau)

Nombres	4	400	0,400	2019	0,00603	893 .10 ⁶	901.10-33
Notation scientifique							

2. Ordre de grandeur :

L'ordre de grandeur d'un nombre est la puissance de 10 la plus proche de ce nombre

Dans la notation scientifique a.10ⁿ

- ✓ Si a < 5. alors l'ordre de grandeur de ce nombre est 10^n :.
- ✓ Si $a \ge 5$. alors l'ordre de grandeur est 10^{n+1}

Exercice 2:

compléter le tableau suivant :

Notation scientifique	4.10°	4.10^{2}	4,00 .10 ⁻¹	6,03.10 ⁻³	8,93.10 ⁸	9,01.10 ⁻³¹
Ordre de grandeur						

3. Intérêt de l'ordre de grandeur :

- Connaître l'ordre de grandeur d'une longueur permet de la situer sur l'échelle des longueurs qui composent notre univers, et de la comparer aux autres longueurs. On peut ainsi mémoriser facilement certaines tailles ou distances caractéristiques.
 - **Exemple**: l'ordre de grandeur du diamètre atomique est 10^{-10} m.
- ✓ Estimer l'ordre de grandeur d'une longueur permet également de vérifier rapidement un calcul

Remarque:

- Pour comparer les valeurs prises par une grandeur physique (masse, longueur, énergie ...) il faut les convertir dans la même unité.
 - 4. Les unités de longueurs : multiples et sous-multiples du mètre :

Dans le système international d'unités (S.I) ; l'unité de longueur est le mètre (m) .mais on exprime souvent les longueurs avec des multiples ou des sous-multiples de mètre.

Exercice 3:

> compléter le tableau suivant :

nom	Téramètre	Gigamètre	Mégamètre	Kilomètre	mètre	Millimètre	micromètre	nanomètre	picomètre	femtomètre
symbole										
valeur										

* Remarque:

- Unités utilisées en astronomie :
 - ✓ Unité Astronomique (U.A): est la distance moyenne entre le centre de la terre et le centre du soleil tel que 1 U.A = $1,5.10^8$ m.
 - ✓ Année Lumière (A.L): est la distance parcourue par la lumière au cours d'une année avec la vitesse de propagation c = 3.10⁸ m.s⁻¹ dans le vide tel que 1 A.L = 9,5.10¹⁵ m
- Unités utilisées en atomistique :
 - ✓ Angström: pour donner la taille des particules, des atomes..., on utilise parfois l'Angström, de symbole \mathring{A} , Tel que $\mathring{A} = 10^{-10} \text{ m}$
 - ✓ **Micron**: on emploi également le terme «**micron**» au lieu micro-mètre

5. Les chiffres significatifs :

Les chiffres significatifs d'un nombre sont les chiffres écrits en partant de la gauche, à partir du premier chiffre différent de zéro.

Exemples:

- ✓ 2,3: les chiffres significatifs sont 2 et 3
- ✓ 2,30: les chiffres significatifs sont 2.3 et 0
- ✓ 0,063 Ce nombre comporte 2 chiffres significatifs : 6 et 3
- \checkmark 0,00803 Ce nombre est écrit avec 3 chiffres significatifs : 8,0 et 3

Remarque:

- Le nombre des chiffres significatifs est concerné la précision de mesure, par exemple 2,30 est plus précis que 2,3. Puisque 2,30 possède 3 chiffres significatifs par contre 2,3 n'en possède que 2
- Un nombre écrit en notation scientifique, sous la forme a.10ⁿ, possède les mêmes chiffres significatifs que a

Exercice 4:

Compléter le tableau suivant

Nombre	6,4	6,40	0,0801	8010	0,002019
Notation scientifique					
Chiffres significatifs					

Exercice 5: Écriture scientifique, ordre de grandeur et chiffres significatifs

Complétez le tableau suivant :

Dimension	valeur	écriture scientifique (en m)	Ordre de grandeur	Nombre des chiffres significatifs
Taille d'être humain adulte	170 cm			
Hauteur de la Tour Hassan	44,3 m			
Altitude de Toubkal	4,16 Km			
Diamètre d'un globule rouge	7 um			
Rayon atome d'hydrogène	0,105 nm			
Rayon de la terre	6400 Km			
Distance moyenne Terre –Lune	380 000 Km			
Distance moyenne Terre- Soleil	150.10 ⁹ Km			

6. L'axe des puissances de 10 :

♣ Activité 1 : L'axe des puissances de 10 :

La représentation des longueurs : il est difficile de représenter sur une même échelle la taille d'un objet observé au microscope et celle d'une galaxie photographiée à l'aide d'un télescope. Pour cela, il faut utiliser un outil mathématique adapté : Les physiciens utilisent une échelle des longueurs graduée en puissance de 10 : c'est l'axe de puissance de 10.

Exploitation:

- 1. En utilisant le tableau précédant, essayez de graduer un axe orienté et d'y faire figurer les quatre longueurs les plus petites. conclure
- 2. Graduez un axe orienté, de la plus petite à la plus grande valeur de n et placez alors les longueurs du tableau précédant sur cet axe sans chercher précisément l'emplacement entre deux graduations.

***** Interprétation:

1. il est difficile de représenter ces quatre longueurs sur une même échelle, donc il faut utiliser un autre outil mathématique : l'axe des puissances de 10

2. voir la figure ci-contre

II. L'attraction gravitationnelle :

> Introduction

Au XVIIème siècle, Isaac Newton a découvert que deux corps massifs s'attirent avec une force proportionnelle au produit de leur masse et inversement proportionnelle au carré de leur distance. Cette loi universelle de la gravitation régit le mouvement des planètes et explique pourquoi la Terre nous retient à sa surface.

1. Énoncé de La loi de la gravitation universelle

Deux corps s'attirent mutuellement à cause de leur masse, exercent l'un sur l'autre des forces attractives de même valeur

- 2. Formulation mathématique
 - 2. 1 Cas deux corps ponctuels :

Deux corps ponctuels, respectivement de masse m_A et m_B , séparés par une distance d = AB, exercent l'un sur l'autre des forces attractives, modélisées par :

- $\overline{\mathbf{F}_{\mathbf{A}/\mathbf{B}}}$: la force exercée par A sur B
- $\overline{F_{B/A}}$: la force exercée par B sur A

Les caractéristiques de la force $\overrightarrow{F}_{A/B}$	Les caractéristiques de la force $ec{F}_{A/B}$
 Point d'application : Droite d'action : Le sens : 	
	• L'intensité:

Dans le système international d'unités, les masses m_A et m_B sont exprimés en Kilogramme (Kg), la distance d en mètre (m), et les forces en N, avec ces unités G en N .m² .kg⁻²
 G étant une constante de la gravitation universelle. Elle vaut G = 6,67.10⁻¹¹ N .m² .kg⁻²

Conclusion:

Ces deux forces $\overrightarrow{F_{A/B}}$ et $\overrightarrow{F_{B/A}}$ ont :

- **✓** Des points d'application différents
- ✓ La même ligne d'action (direction) : c'est la droite (AB)
- ✓ Des sens opposés : la force $\overrightarrow{F_{A/B}}$ exercée par A sur B est dirigée vers A, celle exercée par B sur A, $\overrightarrow{F_{B/A}}$ est dirigée vers B
- ✓ La même intensité (la même valeur); $F_{A/B} = F_{B/A} = G \frac{m_A m_B}{d^2}$

* Remarque :

- D'après les caractéristiques précédentes on peut écrire que $\overrightarrow{F_{A/B}} = -\overrightarrow{F_{B/A}}$
- Cette loi est aussi valable pour des corps volumineux présentant une répartition sphérique de masse (même répartition de masse autour du centre de l'objet). C'est le cas des planètes et des étoiles, la distance d est celle qui sépare leurs centres.
 - 2. 2 Cas deux corps sphériques :

$$\mathbf{F}_{A/B} = \mathbf{F}_{B/A} = \mathbf{G} \frac{m_A m_B}{(G_A G_B)^2}$$

GAGB: la distance entre les centres de gravité de corps A et B

Remarque:

- On constate que la valeur de ces forces est :
 - ✓ **Proportionnelle** à la masse de chacun des systèmes
 - ✓ Inversement proportionnelle au carré de la distance qui sépare leurs centres

3. Attraction gravitationnelle entre la terre et un corps de petite taille :

Soit un corps A de petite taille de masse m_A situé à l'altitude h au-dessus de la surface de la terre.

La valeur F des forces d'attraction gravitationnelle entre la Terre et le corps

s'écrit : $\mathbf{F} = \mathbf{G} \frac{M_T m_A}{(R_T + h)^2}$; tel que : M_T : la masse de la terre ; $M_T = 5.98 \cdot 10^{24}$ Kg

et R_T : le rayon de la terre ; $R_T = 6380 \text{ Km}$

Exercice 6 : Force de gravitation universelle

On considère un satellite de télécommunications (S) de masse $m_s = 50.96~Kg~$, en rotation autour de la Terre selon une orbite circulaire de rayon $r = 7R_T$ à partir du centre de la terre.

- 1. Représenter $\overrightarrow{F_{T/S}}$ la force de gravitation exercée par la terre sur le satellite (S)
- 2. Exprimer littéralement L'intensité de la force $\overrightarrow{F_{T/S}}$
- 3. Calculer la valeur de cette force
- 4. Déterminer la valeur de la force d'attraction gravitationnelle $\overrightarrow{F_{s/T}}$ exercée par le satellite sur la terre
- 5. Calculer l'intensité de la force d'attraction gravitationnelle entre la terre et le satellite (S) , si le satellite est placé sur la terre

Données: $m_s = 50.96 \text{ Kg}$; $M_T = 5.98 \cdot 10^{24} \text{ Kg}$; $R_T = 6380 \text{ Km}$; $G = 6.67 \cdot 10^{-11} \text{ S}$. I

III. Poids d'un objet

1. Définition:

Tous corps, de masse m_A et de centre de gravité G, placé au voisinage de la terre est soumis à une force attractive appelé \overrightarrow{P} .

* Remarque:

En négligeant la rotation de la terre, sur elle-même, on peut dire que le poids de l'objet est simplement la force d'attraction gravitationnelle exercée par la terre sur l'objet c'est-à dire $P = F_{T/A}$

2. Les Caractéristiques du poids d'un corps A

- ✓ Point d'application : Le point G , centre de gravité de l'objet A
- ✓ Direction : droite passant par le centre du corps et le centre de la terre (la verticale passant par G)
- ✓ Sens : du haut vers le bas (dirigé vers le centre de la terre)
- ✓ Intensité: $P = m_A \cdot g$, Avec m_A la masse de l'objet en Kg et g l'intensité de la pesanteur en N.kg⁻¹

3. Expression de la pesanteur g à une hauteur h de surface de la terre:

D'après le paragraphe (III.1) nous avons prouvé que $\mathbf{P} = \mathbf{F}_{T/A}$ avec $\mathbf{P} = \mathbf{m}_{A} \cdot \mathbf{g}$ et $\mathbf{F}_{T/A} = \mathbf{G} \cdot \frac{\mathbf{M}_{T} \mathbf{m}_{A}}{(\mathbf{R}_{T} + \mathbf{h})^{2}}$ ce qui donne $\mathbf{m}_{A} \mathbf{g} = \mathbf{G} \cdot \frac{\mathbf{M}_{T} \mathbf{m}_{A}}{(\mathbf{R}_{T} + \mathbf{h})^{2}}$ d'où $\mathbf{g} = \mathbf{G} \cdot \frac{\mathbf{M}_{T}}{(\mathbf{R}_{T} + \mathbf{h})^{2}}$

* Remarque:

- Cette écriture revient à dire que la pesanteur est due à l'attraction gravitationnelle de la terre et que g varie selon l'altitude h . donc le poids dépend de l'altitude , plus un corps s'élève , plus son poids est faible, alors que sa masse reste constante
- A la surface de la terre on a h = 0 donc $g_0 = G \frac{M_T}{R_T^2}$
- Etant donné que la terre n'est pas exactement sphérique, elle est légèrement aplatie aux pôles. Les pôles sont donc moins éloignés du centre de la terre que les points de l'équateur.

Pour une altitude nulle : à l'équateur $g = 9,79 \text{ N.kg}^{-1}$, aux pôles $g = 9,83 \text{ N.kg}^{-1}$

Exercice 7 : Le poids d'un objet

On considère un astronaute (A), de masse m_A, se trouve à une hauteur h de la surface de la Lune de masse m_L.

- 1. Représenter sur un schema $\overline{F_{L/A}}$ la force d'attraction gravitationnelle exercée par la Lune sur l'astronaute (A)
- 2. Donner l'expression de la force de gravitation exercée par la Lune sur L'astronaute A
- 3. Déterminer l'expression littérale de l'intensité de la pesanteur g_h à la hauteur h de la surface de la lune
- 4. En déduire l'expression de l'intensité de la pesanteur à la surface de la Lune g_{0L} , puis calculer sa valeur
- 5. Donner l'expression de la hauteur h en fonction de $g_{0L};\,g_h^{}\,$ et $\,R_L^{}\,$
- 6. Calculer h L'altitude de l'astronaute A de la surface de la Lune pour $g_h = 0.45 \text{ N.Kg}^{-1}$
- 7. Donner l'expression littérale de l'intensité de la pesanteur g_{0T} à la surface de la terre
- 8. Comparer g_{0L} et g_{0T} , commenter
- 9. Déterminer le poids de l'astronaute A à la surface de la lune puis à la surface de la terre
- 10. Des astronautes ont rapporté $m_r = 120 \text{ Kg}$ de roches. déterminer le poids de ces roches :
 - 10. 1 A la surface de la lune
 - 10. 2 Dans la capsule en orbite autour de la lune ; à l'altitude $h=150\ km$