

PocketQube műhold numerikus hőtani szimulációja

Jáger Dávid G9GGGT Török Péter KFDKJ7

2014

Konzulens:

Józsa Viktor

Tartalomjegyzék

1. Beveze	etés, probléma rövid leírása	2
1.1.	Fizikai tényezők, működési körülmények a világűrben	3
1.2.	Alapkonstrukció	3
1.3.	Szabványok, előírások	4
1.4.	Konstrukciós lehetőségek	4
1.5.	Megoldási módszerek	5
1.6.	Tervezési folyamat	5
2. Tervez	és kezdeti fázisa	8
2.1.	Egy oldal	9
2.2.	Tömör kocka	11
2.3.	Üreges kocka közepén akkumulátorral	14
2.4.	Üreges kocka közepén akkumulátorral, összekötőelemmel	19
2.5.	Kiértékelés, konklúzió	23
3. Részlet	tes modellek tervezése	25
3.1.	Első konstrukció	25
3.2.	Második konstrukció	29
4. Kiértél	kelés	34
4.1.	Hálófüggetlenségi vizsgálat	34
4.2.	Geometriafüggetlenségi vizsgálat	34
4.3.	Összetett geometriák kiértékelése	35
4.4.	Továbblépési lehetőségek	36
5. Köször	netnyilvánítás	37
G Inodole	amio ovezált	90

1. Bevezetés, probléma rövid leírása

A TDK témánk egy nano-műhold hőtechnikai tervezése. A projekt filozófiája, egy olyan műhold megépítése, amelynek konstrukciója a kis méretből adódóan gyorsabban és könnyebben kivitelezhető, olcsóbban, különböző feladatokkal ellátható. A műhold fedélzetére kerülő mérőrendszer, elsőként a világon a Föld környezetének ember keltette elektromágneses szennyezését (elektroszmog) méri a tv-adók által kibocsátott sávban (470-860 MHz) [21]. A jelenleg alkalmazott műholdakat a költségvetésükből adódóan csak nagyobb tőkével bíró szervezetek engedhetik meg maguknak. Manapság egy nagy probléma a Föld körül keringő, már feladatukat teljesített vagy kudarcba fulladt műholdakból álló űrszemét, amely veszélyezteti a még jelenleg használt űrobjektumokat. Az általunk tervezett műhold alacsony keringési pályájából (LEO - low earth orbit) adódóan, amit az 1.1. ábra mutat rövidebb ideig fog keringeni a bolygó körül, így miután feladatát elvégezte, a légkörben elég. Már a nagyobb szervezetek is foglalkoznak ezzel a probléma körrel, mint például a NASA [1]. Az előzetes feltételezések szerint a fő probléma a kis méretből adódó alacsony hőkapacitás miatti gyors kihűlés. A műhold keringése során nem elhanyagolható időt tölt a Föld árnyékában. Az itt uralkodó körülmények miatt csupán a napos oldalról felvett hőenergiára és a napelemek segítségével termelt elektromos energiára hagyatkozhatunk. Kritikus hőmérsékleti értékeket elérve az elektronikai rendszer bizonyos részei súlyosan meghibásodhatnak. Ezek a körülmények a túlzottan magas, maximum 80 °C, illetve a túlzottan alacsony 0°C alatti hőmérsékletek. Ezek elérését a lítium-ion akkumulátor jó hővezetési tulajdonsága elősegíti, ez számunkra további kedvezőtlen körülmény. A tervezés során a villamos és konstrukciós oldalt is figyelembe kell venni. Ezeket a szimulációkat ANSYS Workbench 15.0 felhasználói környezetben futtattuk.

1.1. ábra: LEO pálya szemléltetése a Föld körül [20]

1.1. Fizikai tényezők, működési körülmények a világűrben

A tervezéshez a várható 400 és 600 km-es pályamagasságban uralkodó extrém környezeti viszonyokkal dolgozunk. Ez a sáv a Föld exoszférájának [2] alsó határán terül el. Itt a hőmérséklet pusztán a kozmikus háttérsugárzásból ered, amelynek értéke 2,7 K [3]. Egy periódus során a műhold 70%-ban van Napon, ekkor az érkező hőáramsűrűség közelítőleg 1367 W/m² [4]. Az ott uralkodó rendkívül ritka légkör miatt a hőátadás és az áramlástani jelenségek a környező közeg és az űrobjektum között elhanyagolhatóak.

1.2. Alapkonstrukció

Az alapkonstrukció egy aktív hajtás és vezérlés nélküli 5 cm-es élhosszúságú kocka geometriájú műhold. Ezen belül foglalnak helyet a méréshez és adáshoz tartozó elektronikát hordozó FR4-es nyáklapok és az akkumulátor. Utóbbira azért van szükség, hogy a Föld árnyékában is tudjon működni az elektronikai rendszer. Az objektum energiaellátásáért a külső rétegen elhelyezkedő napelemek gondoskodnak. Továbbá a műholdnak szüksége van két antennára, amelyeknek a szerkezeten biztosítani kell a megfelelő kivezetéseket. A műhold geometriáját meghatározó befoglaló méreteket az 1.2. ábra mutatja.

1.2. ábra: Műhold szükséges befoglaló méretei

1.3. Szabványok, előírások

Az űrbéli eszközökre szigorú nemzetközi szabványok és előírások vonatkoznak, a tervezés során ezeket is figyelembe kell venni, mint például a felhasznált anyagok maximális megengedett gázkibocsátása, az erre vonatkozó szabvány az AFSPCMAN 91-710 Volume 3 [5].

A szerkezetnek a feljuttatás során fellépő terheléseket, főleg rezgéseket is ki kell bírnia. Ez nagyságrendileg 10 és 80 terhelési többesnek számít, de a frekvenciasávon haladva eltérő [6].

1.4. Konstrukciós lehetőségek

Az előzőekben leírt követelményeknek megfelelően kell az űrobjektumot kialakítani. Ennek megfelelően két konstrukciós lehetőség merült fel az eddigi tervezés során, amelyeket a 1.3. és a 1.4. ábra mutat. Az első egy zárt FR4-es kocka, amelyet kívülről egy alumínium vázszerkezet fog közre, ezzel redukálva a műhold tömegét, ez a zárt konstrukció mechanikai szempontból is kedvező. A második lehetőség egy nagyon pontosan összeillesztett FR4 lapkákból álló kocka, amelyet két menetes szár tart össze, ennek szerelhetősége jobb, így a későbbi mérések, tesztek során könnyebben kalibrálható, elemei könnyebben és gyorsabban cserélhetőek.

1.3. ábra: Műhold alumínium vázszerkezettel erősítve, bal oldali a teljes, a jobb oldali a szimulációk során használt, napelemektől és antennáktól egyszerűsített szerkezet

1.4. ábra: Műhold menetes szárakkal erősítve, bal oldali a teljes, a jobb oldali a szimulációk során használt, napelemektől és antennáktól egyszerűsített szerkezet

1.5. Megoldási módszerek

A termodinamikai problémákat megoldására több módszer lehetséges. A legegyszerűbbek, legtöbbet használtak, az analitikus zárt formulák, bár leginkább csak becslésre, ellenőrzésre. A pontosabb eredményhez a jelenségeket leíró differenciálegyenlet rendszerek adott kezdeti- és peremfeltételekhez tartozó numerikus iterációjával jutunk. Ehhez a CAE (Computer-aided Engineering) ad lehetőséget. Az általunk választott megoldó az Ansys Workbench 15.0 felhasználói környezetének Transient thermal modulja. Az általa használt iterációs eljárások a Newton-Raphson [18] és a Gauss-Seidel [19], amelyeket a mellékfeltételek alapján alkalmaz. A hozzájuk tartozó konvergencia hibabecslések és interpolációs metódusok különböznek.

1.6. Tervezési folyamat

A tervezés első lépésében az alapproblémát jártuk körbe és lépésről lépésre fejlesztettük a szimulációs modellt. A kapott eredményeket kiértékelve bonyolítottuk a geometriát és a számunkra kitűzött hőmérsékleti tartomány eléréséhez az űrtechnológiában már régóta használt és a jelenleg fejlesztés alatt álló hőszigetelési anyagokkal is vizsgáltuk a műholdat. A későbbiek folyamán tisztán szimulációból adódó eredményeken felül a kísérleti eredményekkel is fejleszteni kívánjuk a modellt. A tervezési folyamatot a 1.5. ábra mutatja.

1.5. ábra: Tervezési folyamatábra [12]

Látható, hogy ez egy végtelen ciklust eredményez, ami azt jelenti, hogy nem létezik tökéletes modell. Azonban véges ciklust futtatva magas fokú modell komplexitást tudunk elérni. A modellt három tényező jellemzi. A számítási idő megadja, hogy fajlagosan mennyi befektetett munkaidő szükséges. A modell megértése megmutatja, hogy az adott rendszer milyen elméleti mélységgel rendelkezik a kezdeti rendszer és valóság között. A modell minősége az előző két paramétertől függ, túlbonyolítva a sok paraméter magas számítási időt, illetve

több numerikus hibát eredményezhet. A modellezési szemléletet az 1.6. ábra tartalmazza.

1.6. ábra: Modellezési szemlélet [8]

Számunkra az előzetes tapasztalatok alapján a legnagyobb hőmérsékletbefolyásoló hatást a hősugárzás jelenti, az alacsony környezeti sűrűség miatt a hőátadás a környezet és az űrobjektum között elhanyagolható. Tehát a fejlesztés során a Kirchhoff-törvény alapján gondolkodtunk, miszerint a test adott irányra és hullámhosszra vonatkozó abszorpciós és emissziós képessége azonos. Ebből következett, hogy sugárzásos hőáram csökkentésére kiválóan alkalmazhatóak a sugárvédő ernyőn alapuló szigetelések [9].

Az anyagkibocsátásra vonatkozó szabvány [5] miatt a korábban készült műholdakon alkalmazott hőszigeteléseket vizsgáltuk és tanulmányoztuk. Elsőként a Naval Research Laboratory űrügynökség által tervezett Vanguard-2 [10] műholdon alkalmazott hőszigetelést tanulmányoztuk. Ebben a belső magot egy aranyfóliával bélelték, amire alumínium réteget gőzöltek fel, végül az így kialakult fóliát szilícium-oxid réteggel vonták be. Számunkra ez fizikai szempontból megfelelő, viszont a hozzá tartozó gyártástechnológia általunk nem, vagy csak nagyon költségesen kivitelezhető.

A következő lépésben az előbb említett problémát kikerülve próbáltunk olyan jelenleg is használt szigetelést használni, ami számunkra elérhető lehet. Ekkor jött számításban a NASA jelenleg leginkább preferált megoldása a hősugárzás elnyelésének redukálására. Ez az úgy nevezett Multi-layer insulation (MLI) [11] [12] [13], ami egy több rétegű vékony fóliákból felépülő komplex védőernyő. Amit az 1.7. ábra szemléltet.

1.7. ábra: Multi-layer insulation szerkezete [13]

A hőszigetelés következő opciója az összes hőtani jelenség hatásának redukálására is alkalmas aerogél [14], amelyet Steven Kistler [15] fejlesztett ki. Ez egy dendritikus mikrostruktúrájú, már majdnem fraktális szerkezetű, száz pórusokkal nanométernél is kisebb rendelkező szilárd Gyártástechnológiailag gélből származik, amelyben a folyékony komponenst gáznemű anyaggal cserélték ki. A nano-pórusokban található gázatomok kis mozgástere nagy mértékben csökkenti az anyagon belüli hőátadást. Többféle bázisú aerogél is létrehozható. A számunkra szóba jöhető változat egy festékszóróval tetszőleges geometriára könnyen felvihető alumínium bázisú aerogél, amely jelenleg még fejlesztés alatt áll. Ezt egy magyar csoport fejleszti, így kiváló kísérleti lehetőség lenne a használata űrtechnológiai szempontból is. Az aerogél anyagstruktúra elektromikroszkópos képe a 1.8. ábrán látható.

1.8. ábra: Aerogél elektromikroszkópos képe [16]

2. Tervezés kezdeti fázisa

A tervezés során az első lépés az egyszerűsített modellek szimulációja. Ez a szakasz négy lépésre tagolódik. A kezdeti modell során egyetlen egy oldalt vizsgáltunk, amely a műhold külső borításához tartozik, ami a napelemeket és a hozzájuk tartozó elektronikát hordozza. Ez azért is szükséges volt, mert a ciklusonkénti napelemes energiatermelés egyik bemenő paramétere a műhold külső hőmérséklete. A következő lépés során egy tömör, homogén kockát szimuláltunk több földkörüli cikluson keresztül. Ez után a modellt folyamatosan finomítottuk, hogy minél jobban közelítse a valóságot. Finomítási lépésekbe beletartozott egy homogén kockahéj vizsgálata, amelynek közepén az akkumulátor helyezkedett el. Ezt először csupán sugárzásos hőátadással vizsgáltuk, később egy szilárd rúddal kapcsoltuk a héjhoz. Utóbbi esetben már a hővezetéssel is számolnunk kellett az akkumulátor felé.

A szimulációnk során három Föld körüli keringést, periódust állítottunk be. Ezeknek az idő adatit a 2.1-es táblázat tartalmazza:

0 s	Árnyékból indul
$1620 \mathrm{\ s}$	Árnyék -> Nap
$5400 \mathrm{\ s}$	Nap -> Árnyék
$7020 \mathrm{\ s}$	Árnyék -> Nap
$10800 \; {\rm s}$	Nap -> Árnyék
12420 s	Árnyék -> Nap
$16200 \; { m s}$	Ciklus vége

2.1. táblázat: Föld körüli három periódus

A modellezés során használt anyagok hőtechnikai paramétereit a 2.2-es táblázatban foglaltuk össze:

	FR4 epoxy	Alumínium ötvözet	Lítium-ion akkumulátor
Sűrűség [kg/m³]	1900	2770	4000
Fajhő [J/(kg K)]	1150	875	1500
Hővezetési tényező [W/(m K)]	0,294	2.1. ábra	80

2.2. táblázat: Anyagmodellek [17]

2.1. ábra: Alkalmazott alumínium ötvözet hővezetési tényezője a hőmérséklet függvényében [17]

2.1. Egy oldal

Egy oldalra érkező besugárzásból adódó hőmérsékleti adatok az energetikai számításokhoz szükséges egyik kezdeti feltételt biztosították.

2.1.1. Geometria

Az alkalmazott geometria egy 50-szer 50 mm-es FR4-es epoxy nyáklap, amelyet a 2.2. ábra mutat három dimenzióban.

2.2. ábra: Egy oldal geometriája

2.1.2. Anyagmodell

Az alkalmazott anyagmodell az ANSYS Workbench környezetbe beépített FR-4 Epoxy. A hőtani adatait a 2.2-es táblázat tartalmazza.

2.1.3. Háló

A hálózás során Hexa dominant hálót 2 mm-es elemmérettel állítottunk be. A legenerált hálót az 2.3. ábra mutatja.

2.3. ábra: Egy oldalon alkalmazott háló

2.1.4. Perem- és kezdeti feltételek

A kezdeti feltétel a test minden pontjában 22 °C-fokra meghatározott hőmérséklet.

A peremfeltételek megadásánál két beállítást alkalmaztunk. Az egyik beállítás a test felületét behatároló 2,7 K hőmérsékletű környezet, a test és a világűr közötti hősugárzás miatt. A másiknál a napból érkező hőáramsűrűség a Nap sütötte oldalon, amelyet a test esetleges forgásából adódóan a négyzetes közép [7] végtelen időbe konvergáló értékével vettünk figyelembe. Ennek értéke:

$$\Phi_{RMS} = \frac{\sqrt{2}}{2} \Phi_{max} = \frac{\sqrt{2}}{2} 1367 = 966,6 \left[\frac{W}{m^2} \right],$$
(1)

ahol $\Phi_{RMS}\left[\frac{W}{m^2}\right]$ a hőáramsűrűség négyzetes középértéke, $\Phi_{max}\left[\frac{W}{m^2}\right]$ a hőáramsűrűség maximális értéke. Ezzel az értékkel a napelemek által termelt villamos energiát nem vettük még figyelembe. A majdani használt napelem katalógusában meghatározott 27 %- villamos hatásfokkal számolva:

$$\Phi_{nap} = \Phi_{RMS}(1 - 0.27) = 705.6 \left[\frac{W}{m^2} \right].$$
(2)

Mindkét értékkel végeztünk futtatást a problémakör megfelelő körüljárására, hogy a későbbi, bonyolultabb szimulációkhoz több tapasztalatunk legyen.

2.1.5. Szimulációs eredmények

Az eredményeket a 2.4. ábra mutatja. Ez közelítőleg homogénnek tekinthető. Látható, hogy több, mint 120 °C-os a hőingadozás értéke.

2.4. ábra: A testen az adott pillanatban lévő maximális hőmérséklet

2.2. Tömör kocka

A modellezésünk során az egyszerűbb modellektől haladtunk az összetettebb geometriák felé, így elsőként egy tömör kockán végeztünk szimulációt.

2.2.1. Geometria

Az alkalmazott geometria egy 50 mm-es élhosszúságú FR4-es epoxy tömör kocka, amelyet a 2.5. ábra mutatja három dimenzióban.

2.5. ábra: Tömör kocka geometriája

2.2.2. Anyagmodell

Az alkalmazott anyagmodell az ANSYS Workbench környezetbe beépített FR-4 Epoxy. A hőtani adatait a 2.2-es táblázat tartalmazza.

2.2.3. Háló

A hálózás során Hexa dominant hálót 2,5 mm-es elemmérettel állítottunk be. A legenerált hálót az 2.6. ábra mutatja.

2.6. ábra: Tömör kockán alkalmazott háló

2.2.4. Perem- és kezdeti feltételek

A kezdeti feltétel a test minden pontjában 22 °C-ra meghatározott hőmérséklet.

A peremfeltételek megadásánál két beállítást alkalmaztunk. Az egyik beállítás a test felületét behatároló 2,7 K hőmérsékletű környezet, a test és a világűr közötti hősugárzás miatt. A másiknál a napból érkező hőáramsűrűség a Nap sütötte oldalon, amelyet a test esetleges forgásából adódóan a négyzetes közép [7] végtelen időbe konvergáló értékével vettünk figyelembe. Ennek értékét az (1), illetve a (2) egyenlet szerint állítottuk be.

2.2.5. Futtatási eredmények

Az eredményeket a 2.7. ábra mutatja. Látható, hogy a jelleggörbéje periodikusan változik a ciklusokon át, azonban a második és harmadik ciklusnál egy közel állandó középérték körül ingadozik, ennek értéke 70 és 80 °C közé tehető.

2.7. ábra: A testen az adott pillanatban lévő maximális hőmérséklet

Ezt a szimulációt alapul véve belátható, hogy feltehetőleg a hővezetés és a hőátadás elhanyagolható hőmérsékletváltozást okoz a későbbi geometriák esetében. Ez egy egyszerű, egydimenziós, nagyságrendi becsléssel bebizonyítható. A hősugárzást leíró Kirchhoff-törvény alapján a hőfluxus értéke:

$$\dot{q} = \varepsilon \sigma_0 (T_1^4 - T_2^4) \approx 500 \left[\frac{W}{m^2} \right],$$
 (3)

ahol ε [-] az emissziós tényező, σ_0 $\left[\frac{W}{m^2K^4}\right]$ a Stefan-Boltzmann állandó, T_1 és T_2 [K] a hőmérséklet a két szemközti felületen. Ezzel szemben a Fourier-féle hővezetési törvény alapján

$$\dot{q} = -k \operatorname{grad}(T) = -k \frac{dT}{dx} \approx 20 \left[\frac{W}{m^2} \right],$$
 (4)

ahol $k\left[\frac{W}{mK}\right]$ az anyag hővezetési tényezője, $\operatorname{grad}(T)\left[\frac{K}{m}\right]$ a hőmérsékleti gradiens. A két érték közötti eltérés körülbelül 4%, tehát elhanyagolható. Ezen túl a test és környezet közötti hőátadás ritka légkör miatt elhanyagolható.

2.3. Üreges kocka közepén akkumulátorral

A második lépésben egy kockahéjba elhelyezett akkumulátoros modellt vizsgáltunk. Ebben négy tranziens futtatást végeztünk a probléma megfelelő áttekintése céljából. Az adatokat a 2.3. táblázat foglalja össze.

Átállított	Napból érkező	Akkumulátor emissziós	Héj belső emissziós
értékek	sugárzás [W/m²]	tényezője [-]	tényezője [-]
1. futtatás	966,6	0,4	0,9
2. futtatás	966,6	0,03	0,03
3. futtatás	705,6	0,4	0,9
4. futtatás	705,6	0,03	0,03

2.3. táblázat: Kezdeti szerkezetek futtatási paraméterei

A sugárzási paramétereket a 2.1.4. bekezdés alapján választottuk. Az emissziós tényezőnél a szigetelés nélküli és az MLI szigeteléssel ellátott felületeket vizsgáltuk. A szigetelt esetekben az eredmény csak a sokadik ciklus után fogja elérni az állandósult középértéket. A túlsok számítási idő kiküszöbölésére előzetes Steady-State Thermal modullal végeztünk futtatás, hogy a kezdeti hőmérsékletet a tranziens futtatáshoz tartozó állandósult középértékhez közel essen. Ennek megfelelően meg kellett határozni az egy ciklus során a Napból érkező hősugárzás négyzetes középértékét, amely az (1) és (2) egyenletre alkalmazva

$$\Phi_{RMS,stat} = 0.7 \, \Phi_{RMS} = 676.2 \, \left[\frac{W}{m^2} \right],$$
(4)

$$\Phi_{nap,stat} = 0.7 \, \Phi_{nap} = 493.9 \, \left[\frac{W}{m^2} \right],$$
(5)

ezeket a négyszögjelre számolva az árnyékos és Napsütötte oldal arányából kaptuk.

2.3.1. Geometria

Az alkalmazott geometria egy 50 mm-es élhosszúságú FR4-es epoxy kockahéj 2 mm-es falvastagsággal. Ennek közepén helyezkedik el a 35x35x5 mm-es befoglaló méretű akkumulátor. Ezt a 2.8. ábra mutatja három dimenzióban.

2.8. ábra: Kockahéj és akkumulátor geometriája

2.3.2. Anyagmodell

Az alkalmazott anyagmodell az ANSYS Workbench környezetbe beépített FR-4 Epoxy és egy Lítium-ion akkumulátorhoz tartozó átlagos anyagparaméterek. A hőtani adatait a 2.2-es táblázat tartalmazza.

2.3.3. Háló

A hálózás során Hexa dominant hálót 2 mm-es elemmérettel állítottunk be. A legenerált hálót a 2.9. és a 2.10. ábra mutatja.

2.9. ábra: Kockahéjon alkalmazott háló

2.10. ábra: Akkumulátoron alkalmazott háló

2.3.4. Perem- és kezdeti feltételek

A kezdeti feltétel a test minden pontjában 22 °C-ra meghatározott hőmérséklet.

A peremfeltételek megadásánál négy beállítást alkalmaztunk. Az egyik beállítás a test felületét behatároló 2,7 K hőmérsékletű környezet, a test és a világűr közötti hősugárzás miatt. A másiknál a napból érkező hőáramsűrűség a Nap sütötte oldalon, amelyet a test esetleges forgásából adódóan a négyzetes közép [7] végtelen időbe konvergáló értékével vettünk figyelembe. Ennek értékét az (1), illetve (2) egyenlet szerint állítottuk be. A harmadik az akkumulátor és a héj belső felülete közötti hősugárzás. Végezetül a teljes elektronikából származó hőteljesítmény, aminek értéke 20 mW. Ezt az adatot egyelőre egy várható értékre állítottuk, amit méréssel pontosítunk a továbbiakban.

2.3.5. Futtatási eredmények

A szigetelő nélküli eredményeket a 2.11. és 2.12. ábra mutatja. Mivel a lítium-ion akkumulátor jó hővezető, ezért a kialakuló hőmérséklet eloszlás közel homogén, így a szimulációk során csak a maximális hőmérsékletet ábrázoljuk. Látható, hogy a jelleggörbéje periodikusan változik a ciklusokon át, azonban a második és harmadik ciklusnál egy közel állandó középérték körül ingadozik.

 $2.11.~\acute{a}bra$: A szigetelés nélküli, maximális hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

2.12. ábra: A szigetelés nélküli, hasznosított hőteljesítmény nélküli hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

A szigetelt eredményeket a 2.13. és 2.14. ábra mutatja. Látható, hogy a jelleggörbéje periodikusan változik a ciklusokon át, azonban a második és harmadik ciklusnál egy közel állandó középérték körül ingadoznak.

2.13. ábra: A szigetelt, maximális hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

2.14. ábra: A szigetelt, hasznosított hőteljesítmény nélküli hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

2.4. Üreges kocka közepén akkumulátorral, összekötőelemmel

A harmadik lépésben egy kockahéjba elhelyezett akkumulátoros modellt vizsgáltunk. Ebben négy tranziens futtatást végeztünk a probléma megfelelő áttekintése céljából. Az adatokat a 2.1. táblázat foglalja össze és a számításokat a 2.3. bekezdés alapján végeztük.

2.4.1. Geometria

Az alkalmazott geometria egy 50 mm-es élhosszúságú FR4-es epoxy kockahéj 2 mm-es falvastagsággal. Ennek közepén helyezkedik el a 35x35x5 mm-es befoglaló méretű akkumulátor. Ezt a 2.15. ábra mutatja három dimenzióban.

2.15. ábra: Kockahéj és akkumulátor geometriája

2.4.2. Anyagmodell

Az alkalmazott anyagmodell az ANSYS Workbench környezetbe beépített FR-4 Epoxy és egy Lítium-ion akkumulátorhoz tartozó átlagos anyagparaméterek. A hőtani adatait a 2.2-es táblázat tartalmazza.

2.4.3. Háló

A hálózás során Hexa dominant hálót 2 mm-es elemmérettel állítottunk be. A legenerált hálót a 2.9. a 2.10. és a 2.16. ábra mutatja.

2.16. ábra: Tartóelemen alkalmazott háló

2.4.4. Perem- és kezdeti feltételek

A kezdeti feltétel a test minden pontjában 22 °C-ra meghatározott hőmérséklet.

A peremfeltételek megadásánál négy beállítást alkalmaztunk. Az egyik beállítás a test felületét behatároló 2,7 K hőmérsékletű környezet, a test és a világűr közötti hősugárzás miatt. A másiknál a napból érkező hőáramsűrűség a Nap sütötte oldalon, amelyet a test esetleges forgásából adódóan a négyzetes közép [7] végtelen időbe konvergáló értékével vettünk figyelembe. Ennek értékét az (1), illetve (2) egyenlet szerint állítottuk be. A harmadik az akkumulátor, illetve a tartóelem és a héj belső felülete közötti hősugárzás. Végezetül a teljes elektronikából származó hőteljesítmény, aminek értéke 20 mW. Ezt az adatot egyelőre egy várható értékre állítottuk, amit méréssel pontosítunk a továbbiakban.

2.4.5. Futtatási eredmények

A szigetelés nélküli eredményeket a 2.17. és 2.18. ábra mutatja. Látható, hogy a jelleggörbéje periodikusan változik a ciklusokon át, azonban a második és harmadik ciklusnál egy közel állandó középérték körül ingadoznak.

2.17. ábra: A szigetelés nélküli, maximális hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

2.18. ábra: A szigetelés nélküli, hasznosított hőteljesítmény nélküli hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

A szigeteléses modell eredményeit a 2.19. és 2.20. ábra mutatja. Látható, hogy a jelleggörbéje periodikusan változik a ciklusokon át, azonban a második és harmadik ciklusnál egy közel állandó középérték körül ingadoznak.

2.19. ábra: A szigetelt, maximális hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

2.20. ábra: A szigetelt, hasznosított hőteljesítmény nélküli hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

2.5. Kiértékelés, konklúzió

A szigetelés nélküli kockahéjas és kockahéj tartóelemes modellek maximális akkumulátor hőmérsékleteit a 2.17. ábra mutatja.

2.17. ábra: Szigetelés nélküli modelleken számolt maximális hőmérsékletek az akkumulátoron.

A fenti ábrán látható folytonos vonalak a maximális hőfluxussal terhelt modelleket ábrázolják, a szaggatottak pedig a napelemek hatásfokait figyelembe vevő hőfluxus modellek értékeit. A pirossal jelölt tartóelemes eset hőmérséklet értékei magasabbak, mint a kékkel jelölt tartóelem nélküli modell esetén. Ennek oka a kontakton keresztüli hővezetés miatti hőáram többlet. A kontaktos modell a valósághoz közelebb áll, hiszen az akkumulátort mindenképpen rögzíteni kell a végleges modellben. Azonban könnyen belátható, hogy ezekben az esetekben nagy hőmérséklet különbség nem mutatkozik. Tehát a 2.2.5. bekezdésben tett elméleti feltételezések helyesek, miszerint a hővezetés és a hőátadás nagyságrendileg elhanyagolható a hősugárzáshoz képest a kezdeti, nagyságrendi becslések céljából készített modellekben.

A szigetelt kockahéjas és kockahéj tartóelemes modellek maximális akkumulátor hőmérsékleteit a 2.18. ábra mutatja.

2.18. ábra: Szigetelés nélküli modelleken számolt maximális hőmérsékletek az akkumulátoron.

A 2.18. ábrán az MLI szigeteléssel ellátott egyszerűbb geometriák akkumulátorainak a hőmérsékletei láthatók. Elsőként a maximális hőfluxushoz tartozó hőmérsékleti értékeket hasonlítjuk össze (folytonos vonalak). A tartóelem nélküli középhőmérséklet nagyobb, viszont az ehhez tartozó hőmérsékleti amplitúdó alacsonyabb értékű, ami az előzőekben ismertetett okokból, tehát a hővezetéshez és hősugárzáshoz tartozó hőáramsűrűségi vektorok közti differenciálból adódik. Ugyan ez figyelhető meg a kisebb hőfluxus értékeken is (szaggatott vonalak). Ezeket a 2.4. táblázat foglalja össze.

	Maximum [°C]	Minimum [°C]	Amplitúdó	Közép hőmérséklet [°C]
Kockahéj tartóelemmel, φ=966 [W/m²]	82,45	80,36	2,089	81,56
Kockahéj tartóelemmel, φ=705 [W/m²]	61,11	59,86	1,25	60,57
Kockahéj, φ=966 [W/m²]	91,09	89,83	1,258	90,49
Kockahéj, φ=705 [W/m²]	72,01	71,17	0,845	71,59

 $2.4.\ táblázat:$ Szigetelt modellek hőmérséklet lefolyásainak jellemző paraméterei

3. Részletes modellek tervezése

Az egyszerűsített geometriák után a következő lépés a 1.5. ábra alapján a szimulációs modell fejlesztése a bonyolultabb konstrukciók irányába. Erre egyenlőre az előzőleg említett 1.4. bekezdés szerint két lehetőség merült fel. A továbbiakban ezek részletezésére kerül sor.

3.1. Első konstrukció

Itt az 1.3. ábrán látható alumínium vázszerkezetes modellt vizsgáljuk. A szimuláció során a napelemeket, kapcsolókat és antennákat a számítások egyszerűsítése végett eltávolítjuk.

3.1.1. Geometria

Az alkalmazott geometria egymásba illesztett 1,55 mm-es FR4-es epoxy lemezekből áll, amelyeket egy alumínium keret fog közre, ezt a 3.1. ábra mutatja. A teljes geometria befoglaló mérete az alaplapon kívül 50 mm-es élhosszúságú kocka, ennek az alsó lemeze 64x56 mm élhosszúságú, az 1.2. ábra alapján. A kocka belsejében 5 darab ugyancsak FR4-es epoxy hordozó nyáklap foglal helyet összeilleszkedve a külső héjjal, ez a 3.2. ábrán látható. A harmadik szinten helyezkedik el a 35x35x5 mm-es befoglaló méretű akkumulátor. Ezt is a 3.2. ábra mutatja.

3.1. ábra: Vázszerkezetes konsrukció külső része

3.2. ábra: Vázszerkezetes konstrukció belső elrendezése

3.1.2. Anyagmodell

Az alkalmazott anyagmodell az ANSYS Workbench környezetbe beépített FR-4 Epoxy, alumínium ötvözet és a Lítium-ion akkumulátorhoz tartozó átlagos anyagparaméterek. A hőtani adatait a 2.2. táblázat tartalmazza.

3.1.3. Háló

A hálózás során Hexa Dominant módszert választottunk minden alkatrész esetében különböző elemméreteket beállítva, ezeket a 3.1. táblázat tartalmazza. A behálózott geometriát a 3.3. ábra mutatja.

Alkatrész	Méret [mm]
Alumínium váz	0,5
Külső FR4 epoxy lemezek	1
Belső FR4 epoxy lemezek	1
Akkumulátor	1

3.1. táblázat: Vázszerkezetes konstrukció hálóméretei

3.3. ábra: Vázszerkezetes konstrukció hálója

3.1.4. Perem- és kezdeti feltételek

A kezdeti feltétel a test minden pontjában 22 °C-ra meghatározott hőmérséklet.

A peremfeltételek megadásánál több beállítást alkalmaztunk. Az egyik beállítás a test felületét behatároló 2,7 K hőmérsékletű környezet, a test és a világűr közötti hősugárzás miatt. Egy másik a Napból érkező hőáramsűrűség a Nap sütötte oldalon, amelyet a test esetleges forgásából adódóan a négyzetes közép [7] végtelen időbe konvergáló értékével vettünk figyelembe. Ennek értékét az (1) és (2) egyenlet szerint állítottuk be. A harmadik az akkumulátor, a belső lemezek és a héj belső felülete közötti hősugárzás. Végezetül a teljes elektronikából származó hőteljesítmény, aminek értéke 20 mW. Ezt az adatot egyelőre egy maximális értékre állítottuk, amit a későbbiekben pontosítunk. Az emissziós tényezőket a 3.2. táblázat mutatja. Ebben az esetben az akkumulátort már védőfóliával ellátva vizsgáltuk. A peremfeltételeket a 3.4. ábra szemlélteti.

Alkatrész	Emissziós tényező [mm]
Alumínium váz	0,4
Külső FR4 epoxy lemezek	0,9
Belső FR4 epoxy lemezek	0,9
Akkumulátor	0,03

3.2. táblázat: Emissziós tényezők

3.4. ábra: Vázszerkezetes konstrukció peremfeltételei

3.1.5. Futtatási eredmények

A vázszerkezetes konstrukciós modell maximális akkumulátor hőmérsékleteit a 3.5. ábra mutatja.

3.5. ábra: Vázszerkezetes konstrukció akkumulátorának maximális hőmérséklete

3.2. Második konstrukció

Ebben az 1.4. ábrán látható menetes szárakkal merevített modellt vizsgáljuk. A szimuláció során a napelemeket, menetes szárakat, kapcsolókat és antennákat a számítások egyszerűsítése végett eltávolítjuk.

3.2.1. Geometria

Az alkalmazott geometria egymásba illesztett 1,55 mm-es FR4-es epoxy lemezekből áll, ezt a 3.6. ábra mutatja. A teljes geometria befoglaló mérete az alaplapon kívül 50 mm-es élhosszúságú kocka, ennek az alsó lemeze 64x56 mm élhosszúságú, az 1.2. ábra alapján. A kocka belsejében 5 darab ugyancsak FR4-es epoxy hordozó nyáklap foglal helyet összeilleszkedve a külső héjjal, ez a 3.7. ábrán látható. A harmadik szinten helyezkedik el a 35x35x5 mm-es befoglaló méretű akkumulátor. Ezt is a 3.7. ábra mutatja.

 $\it 3.6.~\acute{a}bra$: Menetes szárakkal erősített konstrukció belső elrendezése

 $3.7.\,\acute{a}bra:$ Menetes szárakkal erősített konstrukció belső elrendezése

3.2.2. Anyagmodell

Az alkalmazott anyagmodell az ANSYS Workbench környezetbe beépített FR-4 Epoxy és a Lítium-ion akkumulátorhoz tartozó átlagos anyagparaméterek. A hőtani adatait a 2.2-es táblázat tartalmazza.

3.2.3. Háló

A hálózás során Hexa Dominant módszert választottunk minden alkatrész esetében 1 mm-es elemméretet beállítva. A behálózott geometriát a 3.8. ábra mutatja.

3.8. ábra: Menetes szárakkal erősített konstrukció hálója

3.2.4. Perem- és kezdeti feltételek

A kezdeti feltétel a test minden pontjában 22 °C-ra meghatározott hőmérséklet.

A peremfeltételek megadásánál több beállítást alkalmaztunk. Az egyik beállítás a test felületét behatároló 2,7 K hőmérsékletű környezet, a test és a világűr közötti hősugárzás miatt. Egy másik a Napból érkező hőáramsűrűség a Nap sütötte oldalon, amelyet a test esetleges forgásából adódóan a négyzetes közép [7] végtelen időbe konvergáló értékével vettünk figyelembe. Ennek értékét

az (1) és (2) egyenlet szerint állítottuk be. A harmadik az akkumulátor, a belső lemezek és a héj belső felülete közötti hősugárzás. Végezetül a teljes elektronikából származó hőteljesítmény, aminek értéke 20 mW. Ezt az adatot egyelőre egy maximális értékre állítottuk, amit a későbbiekben pontosítunk. Az emissziós tényezőket a 3.2. táblázat mutatja. Ebben az esetben az akkumulátort már védőfóliával ellátva vizsgáltuk. A peremfeltételeket a 3.9. ábra szemlélteti.

3.9. ábra: Vázszerkezetes konstrukció peremfeltételei

3.2.5. Futtatási eredmények

A menetes szárral erősített konstrukciós modell akkumulátor hőmérsékleteit a 3.10. ábra és 3.11. ábra mutatja.

3.10. ábra: Menetes szárakkal erősített konstrukció maximális hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

3.11. ábra: Menetes szárral erősített konstrukció hasznosított hőteljesítmény nélküli hőfluxussal számolt maximális hőmérsékletek az akkumulátoron.

4. Kiértékelés

4.1. Hálófüggetlenségi vizsgálat

A hálófüggetlenségi vizsgálatot a 4.1. ábra szemlélteti. Látható, hogy a két görbe szinte tökéletesen, 1%-os relatív eltérésen belül fedi le egymást. Ebből következik, hogy az általunk használt háló megfelelő, illetve a későbbi modellek során alkalmazott hálófelbontás is várhatóan hiteles eredményeket fog szolgáltatni, mivel a modell nem tartalmaz nemlineáris tagot.

4.1. ábra: Hálófüggetlenségi vizsgálat

4.2. Geometriafüggetlenségi vizsgálat

A 4.2. ábrán látható a Vázszerkezetes összetett geometriájú modell geometriafüggetlenségi vizsgálata az egyszerű modellekkel. Az ábrán a hőfluxust minden esetben (2) képlet szerint állítottuk be. A mi szempontunkból a hőmérsékleti felterhelés kevésbé releváns, a lényeg, hogy az alkalmazott geometriák esetében fellépő bekonvergált hőmérséklet mennyiben tér el. Az egyszerű modellek esetén az állandósult középértékhez tartozó hőmérsékleti ingadozást ábrázoljuk. A 15000-16200 s-os időintervallumban látható, hogy a különböző geometriák esetében nincs számottevő középhőmérsékleti különbség.

4.2. ábra: Geometriafüggetlenségi vizsgálat

4.3. Összetett geometriák kiértékelése

A 4.3. ábrán látható az összetett konstrukciókhoz tartozó akkumulátor hőmérsékleti diagramok. Megfigyelhető, hogy a két különböző konstrukciónál közel azonos hőmérsékleti különbség lép fel a két hőfluxussal számolt hőmérsékleti eloszlás esetén a modelleken belül. A menetes száras konstrukció esetében a fejlettebb hőszigetelés következtében jól látható az alacsonyabb hőmérséklet lefutás a vázszerkezetes modellhez képest.

4.3. ábra: Összetett geometriák összehasonlítása

4.4. Továbblépési lehetőségek

A 4.3. ábra és a 2.17. ábra alapján levonható a következtetés, hogy a kívánt hőmérsékleti tartomány elérése legfőképp az alkalmazott szigeteléssel, valamint annak emissziós tényezőjének megfelelő beállításával lehetséges.

A számunkra még számításba vehető szigetelési lehetőség az 1.6. bekezdésben részletezett aerogél jelegű szigetelőanyag használata, kombinációja a jelenleg is alkalmazott MLI szigetelővel.

Az eredmények további részletes kiértékelésére szükségesek a valós kísérletek is, hogy a modellünket összehasonlítsuk, majd validáljuk a valósággal.

5. Köszönetnyilvánítás

Szeretnénk tiszteletteljes köszönetünket kifejezni Józsa Viktor felé, hogy TDK dolgozatunk létrejöttéhez nagyban hozzájárult és segített a tudományos munkánkban. Továbbá köszönjük a lehetőséget is, hogy biztosította számunkra egy ilyen nagy volumenű projektben. Úgy gondoljuk ez a kis kocka kiváló példája annak, hogy az igazi szépség és a nagy dolgok olykor a centiméteres vagy annál is kisebb dolgokban rejlenek. Reméljük, hogy épp emiatt tanultunk és fogunk még tanulni belőle, valamint ezzel örömet és sikert szerezhetünk magunknak és az egész csapatnak.

6. Irodalomjegyzék

- [1] Debra Werner: NASA Lining Up Cubesats for Heavy-lift Rocket's Debut, 2014
- [2] Allison June Barlow Chaney: Exosphere http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Exosphere.html
- [3] http://hyperphysics.phy-astr.gsu.edu/hbase/bkg3k.html
- [4] http://science.nasa.gov/science-news/science-at-nasa/2003/17jan_solcon/, 2003
- [5] Air Force Space Command Manual 91-710 v3, 2004
- [6] Gasser F. Abdelal , Nader Abuelfoutouh , Ahmed H. Gad : Finite Element Analysis for Satellite Structures
- [7] http://en.wikipedia.org/wiki/Root_mean_square
- [8] Alain Goriely: What Maths Really Does, University of Oxford, 2014
- [9] Gróf Gy.: Hőközlés, 1999
- [10] http://en.wikipedia.org/wiki/Vanguard_2
- [11] http://en.wikipedia.org/wiki/Multi-layer_insulation
- [12] Junko Murakami, Toshiya Hanada, J.-C.Liou, Eugene Stansbery: Micro-Satellite Impact Tests To Investigate Multi-Layer Insulation Fragments, 2008
- [13] S.E.Woodard, B.D.Taylor, T.W.Jones, Q.A.Shams, F.Lyons, D.Henderson: A Method to have Multi-Layer Thermal Insulation Provide Damage Detection, 2007
- [14] http://en.wikipedia.org/wiki/Aerogel
- [15] http://en.wikipedia.org/wiki/Steven_Kistler
- [16] http://www.aerogel.org/?p=932
- [17] ANSYS Workbench 15.0/Engineering Data Sources
- [18] ANSYS Help 15.0: 14.12. Newton-Raphson Procedure
- [19] ANSYS Help 15.0: 20.7.3.5.1. Gauss-Seidel
- [20] http://upload.wikimedia.org/wikipedia/commons/thumb/8/82/ Orbitalaltitudes.jpg/1920px-Orbitalaltitudes.jpg
- [21] http://gnd.bme.hu/bme1/index.php