Tanım 1. \mathbb{Q}_1 in her \mathbb{Q}_{01} altçizgesi için,

$$\kappa_{01} = \delta_{02} - \tilde{\delta}_{02}$$

eşitliğinin sağlandığı \mathbb{Q}_2 çizgesine, \mathbb{Q}_1 in $\mathit{cifteşi}$ denir.

Tanım 1 de, $\zeta_{02}=\zeta_2$ alınırsa $\tilde{\zeta}_{02}=\phi$ olacaktır. Öyleyse, $\tilde{\delta}_{02}$ sıfıra eşittir. Buradan da,

$$\kappa_1 = \delta_2$$

buluruz. Ya da \mathbb{Q}_1 ve \mathbb{Q}_2 deki ayrıt sayılarının eşitliğinden,

$$a - \kappa_1 = a - \delta_2$$

$$\delta_1 = \kappa_2$$

elde ederiz. Demek ki C_2 , C_1 in çifteşi ise, birinin aşaması öbürünün boşluğuna eşittir. C_1 çizgesinin, C_{01} ve \tilde{C}_{01} olarak iki altkümeye ayrıldığını düşünelim,

$$\zeta_1 = \zeta_{01} \cup \tilde{\zeta}_{01}$$

Bu altçizgelerdeki ayrıtların sayısı,

$$a = a_1 + a_2$$

eşitliğini sağlayacaktır. Tanım 1 den,