Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

RSS 2023

양현서

July 12, 2024

About

 Author: Tony Z. Zhao, Vikash Kumar, Sergey Levine, Chelsea Finn

• Conference: RSS 2023

Motivation

• Diffusion models well generate high-quality rasterized images

Motivation

- Diffusion models well generate high-quality rasterized images
- However, designers also vastly use vectorized images in practice like SVG (Scalable Vector Graphics)

Motivation

- Diffusion models well generate high-quality rasterized images
- However, designers also vastly use vectorized images in practice like SVG (Scalable Vector Graphics)
- Training diffusion model to generate vectorized images is theoritically possible but practically challenging

Challenges of training diffusion models for vectorized images

Most labeled datasets are for rasterized images

Challenges of training diffusion models for vectorized images

- Most labeled datasets are for rasterized images
- Vectorized images' data structure is more complex (hierarchical and variable-lengthed) than rasterized images'

Baselines

1. Generate a rasterized image with a pretrained diffusion model

Baselines

- 1. Generate a rasterized image with a pretrained diffusion model
- 2. Convert the rasterized image to a vectorized image using a vectorization algorithm: **LIVE algorithm**

Baselines

- 1. Generate a rasterized image with a pretrained diffusion model
- 2. Convert the rasterized image to a vectorized image using a vectorization algorithm: **LIVE algorithm**

Challenges

- Diffusion Models often generate too complex rasterized images to be vectorized
- Automated conversion loses details

VectorFusion

Differentiable vector graphics renderer

VectorFusion

- Differentiable vector graphics renderer
- Score Distillation Sampling

VectorFusion

- Differentiable vector graphics renderer
- Score Distillation Sampling
- SVG-Specific regularization

Background: Vector representation and rendering pipeline

```
<svg width="200" height="200" xmlns="http://www.w3.org/
2000/svg">
        <circle cx="50" cy="50" r="40" stroke="black" stroke-
width="3" fill="red" />
        </svg>
```

Background: Vector representation and rendering pipeline

Background: SVG Path

- M x,y: Move to the point (x, y)
- L x,y: Draw a line to the point (x, y)
- н х: Draw a horizontal line to х
- v y: Draw a vertical line to y
- C x1, y1, x2, y2, x, y: Draw a cubic Bezier curve
- Q x1, y1, x, y: Draw a quadratic Bezier curve
- z: Close the path

Background: SVG Path

Background: SVG Path

Vector Grapchic Parameterization

- s: number of segments
- n: number of paths to add

$$\bullet \ \mathcal{L}_{\mathrm{DDPM}}(\phi,\mathbf{x}) = \mathbb{E}_{t,\epsilon} \big[w(t) \| \epsilon_{\phi}(\alpha_t \mathbf{x} + \sigma_t \epsilon) - \epsilon \|_2^2 \big]^{\mathbf{1}}$$

$$^{ extsf{1}}lpha_{t}=\sqrt{1-eta_{t}}$$
 , $\sigma_{t}=\sqrt{eta_{t}}$

- $\bullet \ \mathcal{L}_{\text{DDPM}}(\phi, \mathbf{x}) = \mathbb{E}_{t, \epsilon} \big[\! w(t) \! \big\| \epsilon_{\phi}(\alpha_t \mathbf{x} + \sigma_t \epsilon) \epsilon \|_2^2 \big]^{\mathbf{2}}$
- w(t): Sampling weight (usually evenly set to 1)

$$^{\mathbf{2}}lpha_{t}=\sqrt{1-eta_{t}}$$
 , $\sigma_{t}=\sqrt{eta_{t}}$

$$\bullet \ \mathcal{L}_{\mathrm{DDPM}}(\phi,\mathbf{x}) = \mathbb{E}_{t,\epsilon} \big[\!\! w(t) \! \big\| \!\! \epsilon_{\phi} \!\! \big(\alpha_t \mathbf{x} + \sigma_t \epsilon \big) - \epsilon \|_2^2 \big]^{\mathbf{3}}$$

- w(t): Sampling weight (usually evenly set to 1)
- ϵ_{ϕ} : Noise Prediction Model

$$^{\mathbf{3}}lpha_{t}=\sqrt{1-eta_{t}}$$
 , $\sigma_{t}=\sqrt{eta_{t}}$

$$\bullet \ \mathcal{L}_{\mathrm{DDPM}}(\phi, \mathbf{x}) = \mathbb{E}_{t,\epsilon} \big[\! w(t) \! \big\| \! \epsilon_{\phi} (\alpha_t \mathbf{x} \! + \sigma_t \epsilon) - \epsilon \|_2^2 \big] \mathbf{4}$$

- w(t): Sampling weight (usually evenly set to 1)
- ϵ_{ϕ} : Noise Prediction Model
- x: Original data sample

$$^{f 4}lpha_t=\sqrt{1-eta_t}$$
 , $\sigma_t=\sqrt{eta_t}$

$$\bullet \ \mathcal{L}_{\mathrm{DDPM}}(\phi, \mathbf{x}) = \mathbb{E}_{t,\epsilon} \big[w(t) \| \epsilon_{\phi}(\alpha_t \mathbf{x} + \sigma_t \epsilon) - \epsilon \|_2^2 \big]^{5}$$

- w(t): Sampling weight (usually evenly set to 1)
- ϵ_{ϕ} : Noise Prediction Model
- x: Original data sample
- ϵ : Random (Gaussian) noise

$$^{\mathbf{5}} lpha_t = \sqrt{1-eta_t}$$
 , $\sigma_t = \sqrt{eta_t}$

$$\bullet \ \mathcal{L}_{\mathrm{DDPM}}(\phi, \mathbf{x}) = \mathbb{E}_{t,\epsilon} \left[w(t) \| \epsilon_{\phi}(\alpha_t \mathbf{x} + \sigma_t \epsilon) - \epsilon \|_2^2 \right]^6$$

- w(t): Sampling weight (usually evenly set to 1)
- ϵ_{ϕ} : Noise Prediction Model
- x: Original data sample
- ϵ : Random (Gaussian) noise
- α_t , σ_t : Propotion of x and ϵ

$$^{\mathbf{6}}lpha_{t}=\sqrt{1-eta_{t}}$$
 , $\sigma_{t}=\sqrt{eta_{t}}$

Background: Diffusion Models Sampling

- 1. Sample x_t from a prior.
- 2. Predict noise $\epsilon_{\phi}(\mathbf{x}_t)$.
- 3. Compute \hat{x} .

$$\hat{\mathbf{x}} = \frac{\mathbf{x}_t - \sigma_t \epsilon_{\phi}(\mathbf{x}_t)}{\alpha_t}$$

4. Compute x_{t-1} and feed to the next step.

$$\mathbf{x}_{t-1} = \alpha_{t-1}\hat{\mathbf{x}} + \sigma_{t-1}\epsilon_{\phi}(\mathbf{x}_t)$$

Background: Classifier Free Guidance

$$\hat{\epsilon}_{\phi}(\mathbf{x},y) = (1+\omega) * \epsilon_{\phi}(\mathbf{x},y) - \omega * \epsilon_{\phi}(\mathbf{x})$$

• Generate both conditional and unconditional prediction for the noise. $\epsilon_\phi(\mathbf{x},y)$ and $\epsilon_\phi(\mathbf{x})$

Background: Classifier Free Guidance

$$\hat{\epsilon}_{\phi}(\mathbf{x},y) = (1+\omega) * \epsilon_{\phi}(\mathbf{x},y) - \omega * \epsilon_{\phi}(\mathbf{x})$$

- Generate both conditional and unconditional prediction for the noise. $\epsilon_\phi(\mathbf{x},y)$ and $\epsilon_\phi(\mathbf{x})$
- Combine them with a weight ω

Background: Classifier Free Guidance

$$\hat{\epsilon}_{\phi}(\mathbf{x},y) = (1+\omega) * \epsilon_{\phi}(\mathbf{x},y) - \omega * \epsilon_{\phi}(\mathbf{x})$$

- Generate both conditional and unconditional prediction for the noise. $\epsilon_{\phi}(\mathbf{x},y)$ and $\epsilon_{\phi}(\mathbf{x})$
- Combine them with a weight ω
- This enhances the model's ability to generate images with the desired class.

Score Distillation Sampling

$$\mathcal{L}_{\text{SDS}} = \mathbb{E}_{t,\epsilon} \Big[\tfrac{\sigma_t}{\alpha_t} w(t) \operatorname{KL} \big(q(\mathbf{x}_t | g(\theta); y, t) \| \ p_\phi(\mathbf{x}_t; y, t) \big) \Big]$$

Score Distillation Sampling

$$\mathcal{L}_{\text{SDS}} = \mathbb{E}_{t,\epsilon} \Big[\tfrac{\sigma_t}{\alpha_t} w(t) \operatorname{KL} \big(q(\mathbf{x}_t | g(\theta); y, t) \| \ p_\phi(\mathbf{x}_t; y, t) \big) \Big]$$

- p_{ϕ} is a **frozen** noise prediction model
- q is a unimodal gaussian centered at a learned image $g(\theta)$
- The larger $\frac{\sigma_t}{\alpha_t}$, the more the model prediction is important

Score Distillation Sampling

$$\mathcal{L}_{\text{SDS}} = \mathbb{E}_{t,\epsilon} \Big[\tfrac{\sigma_t}{\alpha_t} w(t) \operatorname{KL} \big(q(\mathbf{x}_t | g(\theta); y, t) \| \ p_\phi(\mathbf{x}_t; y, t) \big) \Big]$$

- p_{ϕ} is a **frozen** noise prediction model
- q is a unimodal gaussian centered at a learned image $g(\theta)$
- The larger $\frac{\sigma_t}{\alpha_t}$, the more the model prediction is important

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}} = \mathbb{E}_{t,\epsilon} \Big[w(t) (\hat{\epsilon}_t(\mathbf{x}_t; y, t) - \epsilon) \tfrac{\partial \mathbf{x}}{\partial \theta} \Big]$$

Method

Baseline

1. Sample an image using a pretrained diffusion model.

Baseline

- 1. Sample an image using a pretrained diffusion model.
- 2. Automatically convert the image to an SVG using the LIVE algorithm.

Baseline

- 1. Sample an image using a pretrained diffusion model.
- 2. Automatically convert the image to an SVG using the LIVE algorithm.

Provide "minimal flat 2d vector icon. lineal color. on a white background. trending on artstation" as a prompt.

Baseline

- 1. Sample an image using a pretrained diffusion model.
- 2. Automatically convert the image to an SVG using the LIVE algorithm.

Provide "minimal flat 2d vector icon. lineal color. on a white background. trending on artstation" as a prompt.

Rejection Sampling

Sample K=4 images, select best by CLIP ViT-B/16 score

1. Initialize a parameter $\{p_1, p_2, ..., p_k\}$

- 1. Initialize a parameter $\{p_1, p_2, ..., p_k\}$
- 2. Repeat the following:

- 1. Initialize a parameter $\{p_1, p_2, ..., p_k\}$
- 2. Repeat the following:
 - 1. DiffVg renders a 600×600 image using the parameters

- 1. Initialize a parameter $\{p_1, p_2, ..., p_k\}$
- 2. Repeat the following:
 - 1. DiffVg renders a 600×600 image using the parameters
 - 2. Augment the image (perspective transformation, 512 × 512 crop)

- 1. Initialize a parameter $\{p_1, p_2, ..., p_k\}$
- 2. Repeat the following:
 - 1. DiffVg renders a 600×600 image using the parameters
 - 2. Augment the image (perspective transformation, 512 × 512 crop)
 - 3. Map the image to the latent space

- 1. Initialize a parameter $\{p_1, p_2, ..., p_k\}$
- 2. Repeat the following:
 - 1. DiffVg renders a 600×600 image using the parameters
 - 2. Augment the image (perspective transformation, 512 × 512 crop)
 - 3. Map the image to the latent space
 - 4. Compute $z_t = \alpha_t z + \sigma_t \epsilon$

- 1. Initialize a parameter $\{p_1, p_2, ..., p_k\}$
- 2. Repeat the following:
 - 1. DiffVg renders a 600×600 image using the parameters
 - 2. Augment the image (perspective transformation, 512 × 512 crop)
 - 3. Map the image to the latent space
 - 4. Compute $z_t = \alpha_t z + \sigma_t \epsilon$
 - 5. Remove the noise using the noise prediction model

- 1. Initialize a parameter $\{p_1, p_2, ..., p_k\}$
- 2. Repeat the following:
 - 1. DiffVg renders a 600×600 image using the parameters
 - 2. Augment the image (perspective transformation, 512 × 512 crop)
 - 3. Map the image to the latent space
 - 4. Compute $z_t = \alpha_t z + \sigma_t \epsilon$
 - 5. Remove the noise using the noise prediction model
 - 6. Update the parameters using SDS loss

VectorFusion: Details

- Sample t = Uniform(50, 950)
- Use fp16 precision
 - ▶ Use fp32 precision for $\frac{\partial z}{\partial x_{ang}}$ for stability
- Apply self intersection regularizer loss also⁷

$$\mathcal{L}_{\mathrm{Xing}} = D_1(\mathrm{ReLU}(-D_2) + (1-D_1)(\mathrm{ReLU}(D_2)))$$

Reinitialize low opacity or shrinked paths

$${}^{7}D_{1}=\mathbb{I}ig(\overrightarrow{AB}\cdot\overrightarrow{BC}ig)$$
, $D_{2}=rac{\overrightarrow{AB}\cdot\overrightarrow{CD}}{\|\overrightarrow{AB}\|\|\overrightarrow{CD}\|}$

VectorFusion: Architecture

No test dataset available for vector graphics

Therefore, use CLIP as an evaluation metric

No test dataset available for vector graphics

Therefore, use CLIP as an evaluation metric

R-Precision

For 128 SVGs, assign the captions by the CLIP score and check if it was the correct caption. Get the fraction of correct captions.

No test dataset available for vector graphics

Therefore, use CLIP as an evaluation metric

R-Precision

For 128 SVGs, assign the captions by the CLIP score and check if it was the correct caption. Get the fraction of correct captions.

Used rejection sampling (K in the table)

- CLIPDraw performed best, but qualitative results are poor
- Therefore, also use OpenCLIP score
- Effect of rejection sampling \sim caption consistency

Qualitative Results

Discussion

- Utilizes pretrained diffusion models without captioned SVG datasets
- Effectively shows the distillation of generative models compared to contrastive models

Discussion

- Utilizes pretrained diffusion models without captioned SVG datasets
- Effectively shows the distillation of generative models compared to contrastive models

- Computationally more expensive than CLIP-based approaches
- Limited by the quality and biases of the pretrained diffusion model

References

- DiffVG
- LIVE
- VectorFusion