Apuntes de clase

José Antonio de la Rosa Cubero

Proposición 1. Todo subgrupo de índice 2 es normal.

Demostración. Sea G finito y $H \leq G$ tal que [G:H]=2. Entonces, por definición, solo existen dos clases:

$$G/H = \{H, aH\}$$
$$H/G = \{H, Ha\}$$

Como $G = H \cup aH = H \cup Ha$, ambas uniones disjuntas, obtenemos que aH = Ha.

Corolario 1. $A_n \leq S_n$ para todo n > 1, pues $[S_n : A_n] = 2$.

Corolario 2. También se deduce que en D_n , el grupo $\langle r \rangle \leq D_n$, puesto que $[\langle r \rangle : D_n] = \frac{|D_n|}{|N|} = \frac{2n}{n} = 2$.

Podemos describir el retículo de subgrupos de A_4 .

$$A_n = \{ id, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3), (1 \ 2 \ 4), (1 \ 4 \ 2), (1 \ 3 \ 4), (1 \ 4 \ 3), (2 \ 3 \ 4), (2 \ 4 \ 3) \}$$

$$K = \{ id, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3) \} \le A_4$$

No hay subgrupos de orden 6. Supongamos que hay un subgrupo de orden 6. Sea $N \leq A_4$ de orden 6, por tanto de índice 2.

Como |N|=6, N tiene un ciclo de longitud 3. Supongamos $(1 \ 2 \ 3) \in N$ y su inverso $(1 \ 2 \ 3)^{-1}=(1 \ 3 \ 2) \in N$.

Sea $\alpha = (1 \quad 2)(3 \quad 4) \in A_4$, como es subgrupo normal de A_4 : $\alpha(1 \quad 2 \quad 3)\alpha^{-1} = (2 \quad 1 \quad 4) = (1 \quad 2 \quad 4)$ y su inverso también.

Procediendo una vez más conseguimos 6 elmentos en N distintos de la identidad, luego |N|>6 y hemos llegado a una contradicción.

Se puede ver que ninguno de los subgrupos de orden 2 o 3 es normal. Por tanto K es el único subgrupo propio normal en A_4 .

Ejemplo, $C_2 = \{ \mathrm{id}, (1 \quad 2)(3 \quad 4) \}$ no es normal. Sea $\alpha = (1 \quad 2 \quad 3)$ entonces:

$$\alpha\alpha\alpha^{-1} = (1 \quad 4)(2 \quad 3) \notin C_2$$

Curiosamente, tenemos que $C_2 \subseteq K$, pero sin embargo $C_2 \subseteq A_4$. En cambio:

Observación 1. Si $N \subseteq G$, y $N \subseteq H \subseteq G$, entonces $N \subseteq H$.

Definición 1 (Grupo cociente de G por N). Sean $N \subseteq G$. Consideramos:

$$G/N = \{aN : a \in G\}$$

Definimos en G/N la siguiente operación binaria:

$$G/N \times G/N \longrightarrow G/N$$

 $(aN, bN) \mapsto (aN)(bN) := abN$

Por ser N normal, la operación está bien definida.

Proposición 2. G/N con la operación anterior tiene estructura de grupo, con el uno dado por N y para cada aN, su inverso es $a^{-1}N$.

Definición 2 (Proyección canónica). Se tiene un epimorfismo de grupos $p: G \longrightarrow G/N$ dado por p(a) := aN, que llamaremos proyección canónica.

Teorema 1 (Descomposición canónica). Sea $f: G \longrightarrow G'$ un homomorfismo de grupos. Sea N un subgrupo normal en G tal que $N \subseteq G$ tal que $N \subseteq \ker(f)$, entonces:

- 1. Existe un único homomorfismo $\overline{f}:G/N\longrightarrow G'$ tal que $\overline{f}\circ p=f$.
- 2. \overline{f} es epimorfismo si y solo si f lo es.
- 3. \overline{f} es monomorfismo si y solo si $N = \ker(f)$.

 \overline{f} se llama el homomorfismo inducido por f en el grupo cociente G/N.

Demostración. Definimos $\overline{f}(aN) := f(a)$. Veamos que está bien definido. Si aN = bN, entonces $b^{-1}a \in N$ y entonces $b^{-1}a \in \ker f$. Pero entonces:

$$f(b)^{-1}f(a) = f(b^{-1}a) = 1 \implies f(a) = f(b)$$

Es fácil ver que \overline{f} es un homomorfismo, así como que $\overline{f} \circ p = f$.

Supongamos que g es otro homomorfismo que verifica lo mismo. Entonces $g \circ p = f$. Sea $aN \in G/N$. Entonces:

$$g(aN) = g(p(a)) = f(a) = \overline{f}(aN)$$

Como $\text{Im}(f) = \text{Im}(\overline{f})$, f es sobreyectiva si y solo lo es \overline{f} .

Supongamos que \overline{f} es monomorfismo. Veamos que $\ker(f) \leq N$, la otra inclusión ya la tenemos. Sea $a \in \ker(f)$, tenemos que

$$\overline{f}(aN) = f(a) = 1$$

lo que implica que $aN \in \ker(\overline{f}) = \{N\}$ por ser inyectiva, luego aN = N y por tanto $a \in N$.

Veamos que pasa si $N = \ker(f)$. Sea $aN \in G/N$ tal que

$$\overline{f}(aN) = f(a) = 1$$

con lo que tenemos que $a \in \ker(f) = N$, con lo que aN = N y $a \in N$. Así que $\ker(f) = \{N\}$ y (f) es monomorfismo.

Corolario 3 (Primer teorema de isomorfía). Sea $f: G \longrightarrow G'$ un homomorfismo de grupos. Entonces f induce un isomorfismo $G/\ker(f) \cong \operatorname{Im}(f)$ dado por $a \ker(f) \mapsto f(a)$.

Demostraci'on. Consideramos $f: G \longrightarrow \operatorname{Im}(f)$ y aplicando el teorema anterior a $N = \ker(f)$. f induce un homomorfismo, pero al estar definido sobre su imagen, es epimorfismo, y al ser N el núcleo de f, es también monomorfismo. En consecuencia es un isomorfismo.

Proposición 3. Sean G, H finitos $y \gcd(|G|, |H|) = 1$. Veamos que si $f : G \longrightarrow H$ es un homorfismo, entonces f(a) = 1 para todo $a \in G$.

Demostración.

$$|G| = |\ker(f)| |\operatorname{Im}(f)|$$

En particular, |Im(f)|, divide al orden de G, y como $\text{Im}(f) \leq H$ también divide a la imagen de H. Como |Im(f)| = 1, luego $\text{Im}(f) = \{1\}$.

Corolario 4. Si f es un homomorfismo y G y G' son finitos, entonces:

$$|G| = |\mathrm{Im}(f)| \, |\mathrm{ker}(f)|$$

Vamos a estudiar quién es $\mathrm{Sub}(G/N)$ en relación con $\mathrm{Sub}(G)$.

Proposición 4. Sea G un grupo y $N \subseteq G$. Entonces:

1. Si $H \in \operatorname{Sub}(G)$ tal que $N \leq H$ entonces $N \leq H$ y $H/N \in \operatorname{Sub}(G/N)$.

- 2. Si $H_1, H_2 \in \operatorname{Sub}(G)$ tal que $N \leq H_i$ con i = 1, 2, entonces $H_1/N = H_2/N \iff H_1 = H_1$.
- 3. Sea $L \in \operatorname{Sub}(G/N)$ entonces existe un único $H \in \operatorname{Sub}(G)$ tal que $N \subseteq H$ y L = H/N.

Demostración. Si $aNa^{-1} \leq N$, para todo $a \in G$, entonces en particular para $a \in H$, con lo que $N \leq H$.

Para demostrar el siguiente punto vemos que la implicación a la izquierda es obvia. Supongamos que se da la parte izquierda y demostremos por doble inclusión que se da la parte derecha.

 $a \in H_1$, entonces $aN \in H_1/N = H_2/N$ y entonces hay un $b \in H_2$ tal que aN = bN, y entonces $b^{-1}aN \le H_2$. Entonces $a = b(b^{-1}a) \in H_2$. Por tanto $H_1 \le H_2$ y de forma análoga se ve que $H_2 \le H_1$.

Para el siguiente punto consideramos $L \leq G/N$, y consideramos la proyección canónica $p: G \longrightarrow G/N$ tal que p(a) = aN. Entonces $p(L) \leq G$. Sea $H = p^{-1}(L) = \{a \in G : p(a) \in L\} = \{a \in G : aN \in L\} \leq G$.

Veamos que H es el que buscamos. Sea $a \in H$, entonces $p(a) = aN = N \in L$, luego $a \in H$. Es fácil ver que L = H/N.

Teorema 2 (Segundo teorema de isomorfía o del doble cociente). Sea G un grupo y N un subgrupo normal de G. Sea $H \in Sub(G)$ tal que $N \leq H$. Entonces:

$$H/N \trianglelefteq G/N \iff H \trianglelefteq G$$

Además en tal caso

$$G/H \cong (G/N)(H/N)$$

4