Kap 1

 $p_{\Delta}(t) = \frac{1}{\Delta}$ då $0 < t < \Delta$ annars $0 \int_{-\infty}^{\infty} p_{\Delta}(t) dt = 1$

Om f är deriverbar utom i punkterna a_1,\dots,a_n där den har språng av höjder b_1,\dots,b_n så är

$$f'(t) = f_p'(t) + b_1 \delta(t - a_1) + \ldots + b_n (t - a_n)$$
(1)

där f_p' är derivatan som vi kan läsa av från graf med heavside funktion

Kap 6

Faltning: $f * g(t) = \int_{-\infty}^{\infty} f(t - \tau) * g(\tau) d\tau$

Kap 8

$$trA = \lambda_1 + \ldots + \lambda_n \tag{2}$$

$$det A = \lambda_1 * \dots * \lambda_n \tag{3}$$

$$p(D) = diag(p(\lambda_1), \dots, p(\lambda_n))$$
(4)

p är vårt polynom, t.ex om vi har e^A så blir det, $p(x) = e^x$

$$p(A) = Sp(D)S^{-1} \tag{5}$$

Kap 9 - Lösa diffekvationer

Olika sätt att lösa diff ekvationer av matriser

Laplacetransformation

Diagonalisering genom variabelbyte

Om Aär en diagonaliserbar matris så har det homogena systemet $\frac{du}{dt}=Au$ den allmänna lösningen

$$u = C_1 e^{\lambda_1 t} s_1 + \ldots + C_n * e^{\lambda_n t} s_n$$
(6)

där λ är egenvärden till $A,\,s$ är motsvarande egenvektorer och Cär godtyckliga konstanter.

Exponentialmatris

$$e^{tA} = Se^{tD}S^{-1} = Sdiag(e^{\lambda_1 t}, \dots, e^{\lambda_n * T})S^{-1}$$
 (7)

det homogena systemet $\frac{du}{dt} = Au$ har lösningen $u(t) = e^{tA}u(0)$

Kontrollfrågor

$$\delta(t) = \lim_{\Delta \to 0} p_{\Delta}(t) \tag{8}$$

$$\Delta(t)' = \delta(t) \tag{9}$$

Har alla funktioner en Laplace transformation? - Funktioner vars integral av laplace inte konvergerar saknar Laplace
transformation. Ensidig laplace = TODO: Finish this

$$\delta * f(t) = f(t)$$

System

Vad menas med:

- Linjärt: $S(\alpha w_1 + \beta w_2) = \alpha Sw_1 + \beta Sw_2$
- Tidsinvariant: Om Sw(t) = y(t) så är S * w(t a) = y(t a)
- Stabilt: Varje begränsad insignal w(t) ger upphov till en begränas utsignal v(t).

Detta kan testas med följande sats:

Om ett LTI system S har impulssvaret h(t) så är S stabilt om och endast om integralen $\int_{-\infty}^{\infty} \infty |h(t)dt|$ konvergerar

• Kausalt: Om Sw(t) = y(t) och w(t) = 0 för $t < t_0$ så gäller att y(t) = 0 för $t < t_0$

Detta kan testas med följande sats:

Ett LTI system är kausalt om och endast om impulssvaret h(t) är en kausal funktion. Det kan också testas med följande sats:

Om $H(s) = \frac{Q(s)}{P(s)}$ så är Systemet S stabilt om och endast om $degQ(s) \le degP(s)$ och För varje pol s_j gäller $Res_j \le 0$.

Bra satser:

- System kan beskrivas som faltningar med en fix funktion h(x).
- Impulssvaret är derivatan av stegsvaret: $h(t) = (S\theta(t))'$
- Överföringsfunktionen: $H(s) = \frac{Se^{st}}{e^{st}}$
- Frekvensfunktion H(t) ger oss följande:
- $Ssin(wt) = A(w)sin(wt + \phi(w))$ med amplitudfunktionen A(w) = |H(iw)| och fasfunktionen $\phi(w) = arg(H(iw))$
- För LTI system så är $\mathcal{L}h(t) = H(s)$

Matriser

Det finns diagonaliserbara matriser med flera av samma egenvärden, t.ex A=Ihar egenvärden $\lambda_1=\lambda_2=1$ och är diagonal.

Satser:

$$\bullet \ e^{At} = \sum_{k=0}^{\infty} \frac{A^k * t^k}{k!}$$

• Ortogonal matris:
$$A^{-1} = A^T, \ AA^T = A^TA = I,$$