Lösungshinweise zum 2. Übungsblatt 27.10.2020

Aufgabe 1: Sei (Q, κ) ein parametrisiertes Problem. Beweisen Sie, dass die folgenden Aussagen äquivalent sind:

- 1. (Q, κ) ist fixed-parameter tractable
- 2. Q ist entscheidbar in Zeit $g(\kappa(x)) + f(\kappa(x)) \cdot p(|x| + \kappa(x)), f, g$ berechenbar, p Polynom
- 3. Q ist entscheidbar in Zeit $g(\kappa(x)) + p(|x|)$, g berechenbar, p Polynom

Lösungshinweis: 3. \implies 2.: Da wir p als nichtfallend annehmen können und f=1 setzen können.

2. \implies 1.: Sei $k = \kappa(x)$, n = |x|. O.B.d.A. $n \ge 1$.

Es gibt ein Polynom $c \cdot n^d$, so dass $p(n) \le c \cdot n^d$. Da $a + b \le a(b+1)$ für alle $a \ge 1$ gilt, erhalten wir:

$$g(k) + f(k) \cdot c(n+k)^d$$

$$\leq g(k) + cf(k) \cdot n^d \cdot (k+1)^d$$

$$\leq g(k) \cdot n^d + cf(k) \cdot n^d \cdot (k+1)^d$$

$$= (g(k) + cf(k) \cdot (k+1)^d) \cdot n^d$$

1. \implies 3.: Es gilt stets $ab \le a^2 + b^2$, also ist $f(\kappa(x)) \cdot p(|x|) \le f(\kappa(x))^2 + p(|x|)^2$.

Aufgabe 2: Das Problem *p-deg-*INDEPENDENT-SET ist wie folgt definiert:

Instanz: Ein Graph G = (V, E) und ein $k \in \mathbb{N}$.

Parameter: $k + \deg(G)$, wobei $\deg(G) = \max\{\deg(v) \mid v \in V\}$.

Frage: Hat der Graph G ein k-elementiges independent set?

Zeigen Sie, dass p-deg-Independent-Set in FPT liegt.

 $L\ddot{o}sungshinweis$: Wir zeigen, dass p-deg-INDEPENDENT-SET in FPT liegt, indem wir eine Kernelisierung angeben.

Beobachtung: Für jeden Graphen G = (V, E) mit $|V| \ge k \cdot (\deg(G) + 1)$ gilt, dass er ein IS der Größe k hat.

Die Kernelisierung besteht dann darin eine positive Instanz $x_1 \in p$ -deg-Independent-Set auszugeben, falls $|V| \ge k(\deg(G) + 1)$, ansonsten die Eingabe selbst.

Beweis der Beobachtung: Per Induktion über k. Jeder Graph hat ein IS der Größe k=0. Für k+1 sei G=(V,E) ein beliebiger Graph mit $|V|\geq (d+1)(k+1),\,v\in V$ ein beliebiger Knoten, und v_1,\ldots,v_e dessen Nachbarn $(e\leq d)$. Dann hat $G\setminus\{v,v_1,\ldots,v_e\}$ mindestens (d+1)k Knoten und nach I.V. ein IS U der Größe k. Da kein Nachbar von v in U vorkommt, ist $\{v\}\cup U$ ein IS der Größe k+1 für G.

Aufgabe 3: Sei (Q, κ) ein parametrisiertes Problem. (Q, κ) liegt letztendlich in P, falls es eine berechenbare Funktion $h \colon \mathbb{N} \to \mathbb{N}$ und einen Polynomialzeitalgorithmus M gibt, der bei Eingabe $x \in \Sigma^*$ mit $|x| \geq h(\kappa(x))$ entscheidet, ob $x \in Q$. Das Verhalten auf Eingaben $x \in \Sigma^*$ mit $|x| < h(\kappa(x))$ ist beliebig. Zeigen Sie, dass

 $(Q, \kappa) \in \mathsf{FPT}$ gdw. Q ist entscheidbar und (Q, κ) ist letztendlich in P .

Lösungshinweis: " \Rightarrow ": $(Q, \kappa) \in \mathsf{FPT} \implies \mathsf{FPT}$ -Algorithmus A, der Q entscheidet mit Laufzeit $f(\kappa(x)) \cdot p(|x|) \implies$ für h = f ist A der gesuchte Polynomialzeitalgorithmus " \Leftarrow ": (Q, κ) ist letztendlich in P via h, M wie oben. Da Q entscheidbar ist, gibt es einen weiteren Algorithmus A, welcher in Zeit r(|x|) läuft. Der fpt-Algorithmus, welcher (Q, κ) entscheidet, sieht dann wie folgt aus. Prüfe, ob $|x| \geq h(\kappa(x))$. Falls ja, dann führe Algorithmus M auf Eingabe x aus. Ansonsten führe Algorithmus A aus. Die Laufzeit im zweiten Fall ist dann beschränkt durch $f = r \circ h$.