- 1. (Question 2-2 from the text book)
- a. We still need to show that A' is a permutation of all elements of A.

b.

Loop invariant: At the beginning of each iteration of the **for** loop of lines 2-4, $A[j] = \min \{A[k] : j \le k \le n\}$, and A[j...n] is a permutation of the original elements in A[j...n] at the time when the loop started.

Initialization: Prior to the first iteration of the loop, j = n, so that the subarray A[j... n] consists of single element A[n], which shows the loop invariant holds.

Maintenance: Consider an iteration for a given value of j. A[j] is the smallest value in A[j... n]. In lines 3-4, if A[j] is less than A[j-1], exchange A[j] and A[j-1], and so A[j-1] will be the smallest element in A[j-1... n] afterward. Since it is the only possible change to the subarray A[j-1... n], and the subarray A[j... n] is a permutation of the elements that were in A[j... n] at the time when the loop started, now that A[j-1... n] is a permutation of the elements that were in A[j-1... n] at the time that the loop started. Decrementing j for the next iteration maintains the invariant.

Termination: At termination, j=i. $A[i] = min\{A[k]: i \le k \le n\}$ and A[i... n] is a permutation of the elements that were in A[i... n] at the time when the loop started.

c.

Loop invariant: At the beginning of each iteration of the for loop of lines 1-4,the subarray A[1... i-1] contains the i-1 smallest elements originally in A[1... n], in sorted order, and A[i... n] contains the n-i+1 remaining elements originally in A[1... n].

Initialization: Prior to the first iteration of the loop, i = 1. The subarray A[1... i-1] is empty, and so that the loop invariant holds.

Maintenance: Consider an iteration for a given value of i. By the loop invariant, A[1... i-1] contains the i smallest elements in A[1... n], in sorted order. Part(b) showed that after executing the for loop of lines 2-4, A[i] is the smallest element in A[i... n], and so A[1... i] is now the i smallest values originally in A[1... n], in sorted order. In addition, since the for loop of lines 2-4 permutes A[i... n], the subarray A[i+1... n] consists of the n-i remaining elements originally in A[1... n]. Incrementing i for the next iteration maintains the invariant.

Termination: At termination, i = n+1, so that i-1=n. A[1... i-1] is the entire array A[1... n], and it contains the original array A[1... n], in sorted order.

d. The basic operation is the exchange operation. For a given value of i, the number of iterations of the for loop of lines 2-4 is n-i. Thus, the total number of exchange operation is

$$\sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i = n^{2} - \frac{n(n+1)}{2} = \frac{n^{2}}{2} - \frac{n}{2}$$

Therefore, the worst-case running time of bubblesort is $\Theta(n^2)$, which is the same as that of the insertion sort. \square

2. (Question 3-2 from the text book):

A	В	О	0	Θ	ω	Ω
$(\lg n)^k$	n ^k	Yes	Yes	No	No	No
n^k	c ⁿ	Yes	Yes	No	No	No
n ^{0.5}	n ^{sin n}	No	No	No	No	No
2 ⁿ	$2^{n/2}$	No	No	No	Yes	Yes
n ^{lg c}	c ^{lg n}	Yes	No	Yes	No	Yes
ln (n!)	lg (n ⁿ)	Yes	No	Yes	No	Yes

(Question 3-4 from the text book): Prove or disprove following conjectures:

a.)
$$f(n) = O(g(n))$$
 implies $g(n) = O(f(n))$ **FALSE**

Let
$$f(n) = n$$
 and $g(n) = n^2$

In this case,
$$n = O(n^2)$$
 but $n^2 \neq O(n)$

Hence, false.

b.)
$$f(n) + g(n) = \Theta(\min(f(n), g(n)))$$
 FALSE

Let
$$f(n) = n^2$$
 and $g(n) = n^3$

$$f(n) + g(n) = \mathbf{n}^2 + \mathbf{n}^3$$

Also,
$$\Theta$$
 min (f(n), g(n)) = Θ (min (n², n³)) = Θ (n²)

Clearly,
$$f(n) + g(n) \neq \Theta(\min(f(n), g(n)))$$

c.) f(n) = O(g(n)) implies lg(f(n)) = O(lg(g(n))) **TRUE**

Given that f(n) = O(g(n)) implies that for some c>0, $n \ge n_0 \ge 0$.

We have

$$0 \le f(n) \le c g(n)$$

Taking log both sides:

$$\lg (f(n)) \le \lg (c g(n))$$

$$\Rightarrow$$
 lg (f(n)) \leq lg c + lg (g(n))

Since $\lg(g(n)) \ge 1$, therefore, $\lg c \cdot \lg(g(n)) \ge \lg c$

Next,
$$\lg ((f(n)) \le \lg (g(n)) + \lg c \cdot \lg (g(n))$$

$$\Rightarrow$$
 lg ((f(n)) \leq (1+ lg c) lg(g(n))

$$\Rightarrow$$
 lg ((f(n)) = O(lg (g(n)))

Hence, true.

d.)
$$f(n) = O(g(n))$$
 implies $2^{f(n)} = O(2^{g(n)})$ **FALSE**

Let
$$f(n) = 2n$$
 and $g(n) = n$

Clearly,
$$f(n) = O(g(n))$$

But
$$2^{2n} \neq O(2^n)$$

Hence, false.

e.)
$$f(n) = O((f(n))^2)$$
 FALSE

Let us assume that $f(n) = O((f(n))^2)$ is true. Therfore,

$$f(n) \le c((f(n))^2$$

$$(1/f(n)) \le c$$
 for all $n \ge n_0$

Such c would exist only if $1/\min(f(n))$ is finite for all values of n, even when n is infinitely large or zero. Otherwise, not.

Therefore, this holds true only if the function has a non-zero minimum value for all values $n \ge n_0$. Hence, false.

f.)
$$f(n) = O(g(n))$$
 implies $g(n) = \Omega(f(n))$ **TRUE**

By definition, if f(n) = O(g(n)) then,

$$0 \le f(n) \le c g(n)$$

$$=> 0 \le (1/c) f(n) \le g(n)$$

$$=> g(n) \ge (1/c) f(n) \ge 0$$

$$\Rightarrow$$
 g(n) = $\Omega(f(n))$

Hence, true.

g.)
$$f(n) = \Theta(f(n/2))$$
 FALSE
Let $f(n)=2^{2n}$
Therefore, $f(n/2)=2^n$
Clearly, $\mathbf{2^{2n}} \neq \Theta(\mathbf{2^n})$

Hence, false

3.

a) Functions in increasing order of asymptotic growth:

$$2^{-3n}$$
,
 $n^{-n} + \log(n) + 2$,
 $\log(n) + 1$,
 $\log(n) + \sqrt{n} + 12$,
 $2n - 10$,
 n^2 ,
 $n - n^3 + 7n^5$,
 $n^{n/5}$,
 $n!$

b) Out of the above functions, $n^{-n} + \log(n) + 2$ and $\log(n) + 1$ are exchangeable since they are in the same asymptotic class; i.e. $n^{-n} + \log(n) + 2$ is $\Theta(\log(n) + 1)$ and vice versa.

4.

Hint: Apply l'Hôpital's rule "t" times.

This reduces the term n^t to t!

Therefore,

$$\lim_{n\to\infty}\frac{e^n}{n^t}$$

$$=\lim_{n\to\infty}\frac{e^n}{t!}=\infty$$

5. Algorithm to find aⁿ in logn time:

```
Fast_Power(integer a, n)
       Integer i;
       Integer Product;
       //Assume 'n' is a power of 2
       // log<sub>2</sub>(n) returns the logarithm to the base 2 of 'n'
       Product = a;
       For i=1 to log_2(n) do
              Product = Product * Product;
       End For
       return Product;
This algorithm calculates a<sup>n</sup> in logn executions of the loop.
The basic operation is multiplication
Multiplication times: log n
So the running time is \Theta(\log n)
Alternate Solution:
Pseudocode
    product \leftarrow a;
   i \leftarrow 1
2
3
    while i<n
4
         product \leftarrow product \times product
5
         i \leftarrow i \times 2
6
   Endwhile
   return(product)
```

Loop invariant: At the beginning of each iteration, $product = a^i$ for $1 \le i \le n$

Initialization: Prior to the first iteration of the loop, i=1 and product=a, which shows the loop invariant holds.

Maintenance: Consider an iteration for a given value of i=k. Before this iteration, $product = a^k$. Then in line 4, product becomes a^{2k} and i changes to 2k. So before the iteration for i=2k, $product = a^{2k}$. Multiply i by 2 for the next iteration maintains the invariant.

Termination: At termination, i=n, so that $product = a^n$

Time complexity:

The basic operation is multiplication

Multiplication times: log n

So the running time is $\Theta(\log n)$

6.

a) Assuming that the merge procedure takes (i + j - 1) time to merge two sorted arrays of size i and j, we can list the times taken at each step by the given algorithm as follows:

Step 1	2n - 1
Step 2	3n - 1
Step 3	4n - 1
Step k-1	kn-1
Total	$2n + 3n + \dots + kn - (k-1)$

We can simplify the total as follows:

$$T(n,k) = -n + n + 2n + 3n + \dots + kn - (k-1)$$

$$= n(1+2+3+\dots+k) - (n+k-1)$$

$$= n \cdot \frac{k(k+1)}{2} - (n+k-1)$$

Therefore, T(n, k) is $O(nk^2)$.

b) A more efficient approach would be to simply merge the arrays pair-wise, as illustrated below:

Listing the times in each step, we have: (assume k is a power of 2)

Step 1	$(k/2)\cdot(2n-1)=kn-k/2$
Step 2	$(k/4)\cdot(4n-1)=kn-k/4$
Step 3	$(k/8) \cdot (8n-1) = kn - k/8$
•••	
Step $\log_2 k$	$1 \cdot (kn - 1) = kn - 1$
Total	$kn \cdot \log_2 k - (k/2 + k/4 + \dots + 1)$

Therefore,

$$T'(n,k) = kn \cdot \log_2 k - \sum_{i=1}^{\log_2 k} k \cdot (1/2)^i$$

$$= kn \cdot \log_2 k - \frac{(k/2) \cdot [1 - (1/2)^{\log_2 k}]}{1 - (1/2)}$$

$$= kn \cdot \log_2 k - k \cdot [1 - (1/k)]$$

$$= kn \cdot \log_2 k - k + 1$$

which is $O(nk \log_2 k)$. This is clearly better than $O(nk^2)$.

A recursive algorithm for this would look like:

MultiMerge(\mathbf{L} : array of lists to merge, \mathbf{k} : integer indicating how many lists there are in \mathbf{L})

If k == 1 // i.e. there is only one list

Return **L**[0]

Else

 $L1 = MultiMerge(\textbf{L}[0:k/2],\,k/2) \quad // \ Do\ a\ "multi-merge"\ of\ the\ first\ k/2\ lists$

L2 = MultiMerge(L[(k/2)+1 : k], k/2) // Ditto for the last k/2

Return MERGE(L1, L2) // merge the results (i.e., merge two lists of size k)

The time complexity of this algorithm can be computed using:

$$T(n,k) = 2T(n,k/2) + kn - 1$$

Note that the algorithm's time complexity really only depends on k, so we can write it as $n \cdot T'(k)$ where $T'(k) \leq 2T'(k/2) + k$ And this is clearly $O(k \log_2 k)$.