Seminar class 4

Exercise 1 (exercise 6.6 in the book)

Consider the class \mathcal{H}^d_{mcon} of monotone Boolean conjunctions over $\{0,1\}^d$. Monotonicity here means that the conjunctions do not contain negations. As in \mathcal{H}^d_{con} , the empty conjunction is interpreted as the all-positive hypothesis. We augment \mathcal{H}^d_{mcon} with the all-negative hypothesis h^- . Show that $VCdim(\mathcal{H}^d_{mcon}) = d$.

Exercise 2 (exercise 6.9 in the book)

Let \mathcal{H} be the class of signed intervals, that is, $\mathcal{H} = \{h_{a,b,s} : a \le b, s \in \{-1,1\}\}$ where

$$h_{a,b,s}(x) = \begin{cases} s & \text{if } x \in [a,b] \\ -s & \text{if } x \notin [a,b] \end{cases}$$

Calculate VCdim(H).

Exercise 3 (exercise 3.13 in the book "Foundations of Machine Learning", 2nd edition)

3.13 VC-dimension of union of k intervals. What is the VC-dimension of subsets of the real line formed by the union of k intervals?

Exercise 4 (exercise 3.15 in the book "Foundations of Machine Learning", 2nd edition)

VC-dimension of subsets. What is the VC-dimension of the set of subsets I_{α} of the real line parameterized by a single parameter α : $I_{\alpha} = [\alpha, \alpha+1] \cup [\alpha+2, +\infty)$?

Exercise 5 (exercise 8.1 in the book)

Let \mathcal{H} be the class of intervals on the line (formally equivalent to axis aligned rectangles in dimension n=1). Propose an implementation of the $ERM_{\mathcal{H}}$ learning rule (in the agnostic case) that given a training set of size m, runs in time $O(m^2)$. Hint: Use dynamic programming.