Regra de L'Hôpital

por Abílio Lemos

Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147 - 2019

03 de março de 2020

As formas indeterminadas são as seguintes:

 $0/0,\pm\infty/\pm\infty,0\cdot(\pm\infty),\infty-\infty,0^0,(\pm\infty)^0$ e $1^{\pm\infty}$. As últimas 5, para serem resolvidas, devem ser transformadas nas duas primeiras. *Exemplos de Formas indeterminadas:*

(i)
$$\lim_{x\to 4} \frac{x^2-x-12}{x^2-3x-4}$$
;

(ii)
$$\lim_{x\to 0} \frac{x}{1-2^x}$$
;

(iii)
$$\lim_{x\to\infty}\frac{x^3}{e^x}$$
;

(iv)
$$\lim_{x\to 0^+} x \cdot \ln x$$
;

(v)
$$\lim_{x\to 0^+} x^x$$

Regra de L'Hôpital I: Sejam f e g funções diferenciáveis em um intervalo aberto I, exceto possivelmente em $a \in I$. Suponha que para todo $x \neq a$ em I, $g'(x) \neq 0$. Então se $\lim_{x \to a} f(x) = 0 \ (\pm \infty)$, $\lim_{x \to a} g(x) = 0 \ (\pm \infty)$ e $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$, segue que $\lim_{x \to a} \frac{f(x)}{g(x)} = L$.

Obs:

- (i) A regra continua valendo se em *a* forem considerados limites laterais à esquerda ou à direita;
- (ii) A regra continua valendo se trocarmos L por $\pm \infty$;
- (iii) A regra pode ser aplicada várias vezes.

Regra de L'Hôpital II: Sejam f e g funções diferenciáveis para todo x>n, $n\in\mathbb{R}_+^*$. Suponha que para todo x>n, $g'(x)\neq 0$. Então se $\lim_{x\to\infty}f(x)=0$ $(\pm\infty)$, $\lim_{x\to\infty}g(x)=0$ $(\pm\infty)$ e $\lim_{x\to\infty}\frac{f'(x)}{g'(x)}=L$, segue que $\lim_{x\to\infty}\frac{f(x)}{g(x)}=L$.

Obs:

- (i) A regra continua valendo se trocarmos $x \to \infty$ por $x \to -\infty$;
- (ii) A regra continua valendo se trocarmos L por $\pm \infty$;
- (iii) A regra pode ser aplicada várias vezes.