#### Basi di Dati

#### Progettazione Logica delle Basi di Dati

Prof. Giuseppe Polese

#### Requisiti della base di dati

Progettazione concettuale

Schema concettuale

Progettazione logica

Schema logico

Progettazione Fisica

Schema fisico

# Obiettivo della progettazione logica

"tradurre" lo schema concettuale in uno schema logico che rappresenti gli stessi dati nel formato di un modello intermedio (modello logico), ad es. il modello relazionale.

## Dati di ingresso e uscita

#### ■ Ingresso:

- schema concettuale
- informazioni sul carico applicativo
- modello logico

#### Uscita:

- schema logico (memorizzabile tramite il DBMS)
- documentazione associata

### Traduzione ER-Relazionale

- Non si tratta di una semplice trascrizione tra i due modelli
- Alcuni aspetti dello schema concettuale non sono direttamente rappresentabili nello schema logico
- In questa fase è opportuno anche valutare le prestazioni

# Carico applicativo

#### Schema E-R

# Ristrutturazione dello schema E-R

Modello logico

Schema E-R ristrutturato

Traduzione nel modello logico

Schema logico

### Ristrutturazione schema E-R

- Motivazioni:
  - semplificare la traduzione
  - "ottimizzare" le prestazioni
- Per ottimizzare il risultato abbiamo bisogno di analizzare le prestazioni a questo livello
- Le prestazioni non sono valutabili con precisione su di uno schema concettuale!

# Parametri per valutare le prestazioni

- numero di occorrenze previste
- numero di accessi ad occorrenze (di entità ed associazioni) durante un'operazione

## Principio di Pareto (80:20)

- Regola empirica secondo la quale un sistema dedica l'80% delle sue risorse per elaborare il 20% delle operazioni più frequenti.
- Sfruttando questo principio calcoliamo gli accessi totali per il 20% di operazioni più frequenti.

#### Tavole di Carico

- Pertanto, per stimare le prestazioni sviluppiamo 3 tipi di tavole:
  - Tavola Volumi, contenente una stima delle occorrenze per entità ed associazioni
  - Tavola operazioni, riporta tipo e frequenza per il 20% di operazioni più frequenti
  - Tavole accessi, numero accessi in lettura e scrittura su entità ed associazioni per il 20% di operazioni più frequenti



## Tavola dei volumi

| Concetto       | Tipo | Volume |
|----------------|------|--------|
| Sede           | Ш    | 10     |
| Dipartimento   | Ш    | 80     |
| Impiegato      | Ш    | 2000 — |
| Progetto       | Ш    | 500    |
| Composizione   | R    | (80)   |
| Afferenza      | R    | (1900) |
| Direzione      | R    | (80)   |
| Partecipazione | R    | 6000   |

## Tavola delle operazioni

| Operazione   | Tipo | Frequenza      |
|--------------|------|----------------|
| Operazione 1 |      | 1 volta/giorno |
| Operazione 2 | В    | 1 volta/mese   |

- I: Operazione Interattiva
- B: Operazione Batch

In questo caso sono state previste 10 operazioni, quindi la stima si concentra sul 20% (2) con maggiore frequenza

# Esempio di valutazione di costo

- Operazione frequente:
  - trova tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa

 Si costruisce una tavola degli accessi basata su di uno schema di navigazione



# Tavola degli accessi

| Concetto       | Costrutto | Accessi | Tipo |
|----------------|-----------|---------|------|
| Impiegato      | Entità    | 1       | Г    |
| Afferenza      | Relazione | 1       | L    |
| Dipartimento   | Entità    | 1       | L    |
| Partecipazione | Relazione | 3       | L    |
| Progetto       | Entità    | 3       | L    |

### Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e associazioni
- Scelta degli identificatori primari

### Analisi delle ridondanze

- Una ridondanza in uno schema E-R è una informazione significativa ma derivabile da altre
- In questa fase si decide se eliminare le ridondanze eventualmente presenti o di mantenerle, in base al loro impatto sul numero di accessi per il 20% di operazioni più frequenti

### Ridondanze

## Vantaggi

 semplificazione delle interrogazioni

## Svantaggi

- appesantimento degli aggiornamenti
- maggiore occupazione di spazio

# Forme di ridondanza in uno schema E-R

- attributi derivabili:
  - da altri attributi della stessa entità (o associazione)
  - da attributi di altre entità (o associazioni)
- Associazioni derivabili dalla composizione di altre associazioni in presenza di cicli

### Attributo derivabile



# Attributo derivabile da altra entità





### Analisi di una ridondanza



## Ipotesi di Tavola dei volumi

| Concetto  | Tipo | Volume  |
|-----------|------|---------|
| Città     | Ш    | 200     |
| Persona   | Е    | 1000000 |
| Residenza | R    | 1000000 |

Inoltre, se una città può avere fino a milioni di abitanti, occorrono circa 3 byte per città per memorizzare il dato ridondante, totale 600 byte.

## Ipotesi di Tavola Operazioni

| Concetto     | Tipo | Volume           |
|--------------|------|------------------|
| Operazione 1 |      | 500 volte/giorno |
| Operazione 2 | В    | 2 volte/giorno   |

- Operazione 1: memorizza una nuova persona e relativa città di residenza
- Operazione 2: stampa i dati di una città (incluso il numero di abitanti)

# Tavole accessi (In presenza di ridondanza)

#### **Operazione 1**

| Concetto  | Costrutto | Accessi | Tipo |
|-----------|-----------|---------|------|
| Persona   | Entità    | 1       | S    |
| Residenza | Relazione | 1       | S    |
| Città     | Entità    | 1       | L    |
| Città     | Entità    | 1       | S    |

#### **Operazione 2**

| Concetto | Costrutto | Accessi | Tipo |
|----------|-----------|---------|------|
| Città    | Entità    | 1       | L    |

# Tavole accessi (In assenza di ridondanza)

#### **Operazione 1**

| Concetto  | Costrutto | Accessi | Tipo |
|-----------|-----------|---------|------|
| Persona   | Entità    | 1       | S    |
| Residenza | Relazione | 1       | S    |

#### **Operazione 2**

| Concetto  | Costrutto | Accessi | Tipo |
|-----------|-----------|---------|------|
| Città     | Entità    | 1       | L    |
| Residenza | Relazione | 5000    | L    |

# Numero totale accessi (In presenza di ridondanza)

#### Costi:

- Operazione 1: 1500 accessi in scrittura e 500 accessi in lettura al giorno
- Operazione 2: 2 accessi in lettura.
- Contiamo doppi gli accessi in scrittura
- Totale di 3502 accessi al giorno e 600 byte per il dato ridondante

### Assenza di ridondanza

#### Costi:

- Operazione 1: 1000 accessi in scrittura
- Operazione 2: 10002 accessi in lettura al giorno
- Contando doppi gli accessi in scrittura si hanno 12002 accessi al giorno

### Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relazioni
- Scelta degli identificatori primari

## Eliminazione delle gerarchie

- il modello relazionale non può rappresentare direttamente le generalizzazioni
- entità e associazioni sono invece direttamente rappresentabili
- si eliminano perciò le gerarchie, sostituendole con entità e associazioni

## Tre possibilità

- accorpamento delle figlie della generalizzazione nel genitore
- accorpamento del genitore della generalizzazione nelle figlie
- sostituzione della generalizzazione con associazioni













## Scelte progettuali

 la scelta fra le alternative si può fare con metodo simile a quello visto per l'analisi delle ridondanze (però non basato solo sul numero degli accessi)

 è possibile però seguire alcune semplici regole generali

#### Criteri di scelta

- conviene se gli accessi al padre e alle figlie sono contestuali
- conviene se gli accessi alle figlie sono distinti
- conviene se gli accessi alle entità figlie sono separati dagli accessi al padre
- sono anche possibili soluzioni "ibride", soprattutto in gerarchie a più livelli





#### Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e associazioni
- Scelta degli identificatori primari

## Partizionamenti e Accorpamenti

- Ristrutturazioni effettuate per rendere più efficienti le operazioni in base ad un semplice principio
- Gli accessi si riducono:
  - separando attributi di un concetto che vengono acceduti separatamente
  - raggruppando attributi di concetti diversi acceduti insieme

## Ristrutturazioni, casi principali

- partizionamento verticale di entità
- partizionamento orizzontale di associazioni
- eliminazione di attributi multivalore
- accorpamento di entità/associazioni









### Accorpamento: Esempio 1



### Accorpamento: Esempio1



#### Partizionamento Orizzontale





#### Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e associazioni
- Scelta degli identificatori primari

# Scelta degli identificatori principali

- Operazione indispensabile per la traduzione nel modello relazionale
- Criteri
  - assenza di opzionalità
  - semplicità
  - utilizzo nelle operazioni più frequenti o importanti

## Se nessuno degli identificatori soddisfa i requisiti visti?

Si introducono nuovi attributi (codici) contenenti valori speciali generati per questo scopo