

Bài 5 Trị riêng và vector riêng

Bài 5 Trị riêng và vector riêng

- 5.1. Đặt vấn đề
- 5.2. Trị riêng, vector riêng
- 5.3. Phương pháp Đanhilepski

5.1 Đặt vấn đề

Lĩnh vực đồ họa hoạt hình trên máy tính

bằng cách lấy đối xứng qua trục Ox.

5.1 Đặt vấn đề

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 là ma trận của phép biến đổi.

Như vậy, với một điểm bất kỳ trong mặt phẳng có tọa độ (x_1, x_2) qua phép biến đổi này ta sẽ thu được một điểm mới có tọa độ (y_1, y_2)

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$$

Câu hỏi: Nếu thực hiện phép biến đổi này liên tiếp đối với điểm (x_1, x_2) có nghĩa là A^k . $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ thì tọa độ của điểm mới được tính như thế nào?

5.1 Trị riêng

Định nghĩa

Cho ma trận vuông $A \in M_{n \times n}(K)$. Nếu tồn tại $X \in K^n, X \neq 0$ sao cho $AX = \lambda.X, \lambda \in K$ thì λ được gọi là trị riêng của ma trận A và X được gọi là véctơ riêng của ma trận A ứng với trị riêng λ .

Ví dụ

Tìm trị riêng, véctơ riêng của ma trận

$$A = \left(\begin{array}{cc} 1 & 4 \\ 2 & 3 \end{array}\right)$$

Biểu thức $AX = \lambda X$ có dạng $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix} \Leftrightarrow$ $\begin{pmatrix} 1 - \lambda & 4 \\ 2 & 3 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \text{ Hệ phương}$

trình thuần nhất này phải có nghiệm $X \neq 0$ nên

$$\begin{vmatrix} 1 - \lambda & 4 \\ 2 & 3 - \lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - 4\lambda - 5 = 0$$

$$\Leftrightarrow \lambda_1 = -1, \lambda_2 = 5.$$

Ứng với $\lambda_1 = -1$. Ta có

$$\begin{cases} 2x_1 + 4x_2 = 0 \\ 2x_1 + 4x_2 = 0 \end{cases} \Leftrightarrow x_1 = -2\alpha, x_2 = \alpha.$$

Vậy véctơ riêng có dạng $\alpha(-2,1)$, $\alpha \neq 0$.

Ứng với $\lambda_2 = 5$. Ta có

$$\begin{cases} -4x_1 + 4x_2 = 0 \\ 2x_1 - 2x_2 = 0 \end{cases} \Leftrightarrow x_1 = \beta, x_2 = \beta.$$

Vậy véctơ riêng có dạng $\beta(1,1), \beta \neq 0$.

Ví dụ

Tìm trị riêng, véctơ riêng của ma trận

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

Biểu thức $AX = \lambda X$ có dạng

$$\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix} \Leftrightarrow$$

$$\begin{pmatrix} 1-\lambda & 2 \\ -2 & 1-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
. Hệ phương

trình thuần nhất này phải có nghiệm $X \neq 0$ nên

$$\begin{vmatrix} 1-\lambda & 2 \\ -2 & 1-\lambda \end{vmatrix} = 0 \Leftrightarrow (1-\lambda)^2 + 4 = 0$$

$$\Leftrightarrow \lambda_{1,2} = 1 \pm 2i$$
.

Ứng với $\lambda_1 = 1 + 2i$. Ta có

$$\begin{cases} -2ix_1 + 2x_2 = 0 \\ -2x_1 - 2ix_2 = 0 \end{cases} \Leftrightarrow x_1 = \alpha, x_2 = \alpha i.$$

Vậy véctơ riêng có dạng $\alpha(1, i)$, $\alpha \neq 0$.

Úng với $\lambda_2 = 1 - 2i$. Ta có

$$\begin{cases} 2ix_1 + 2x_2 = 0 \\ -2x_1 + 2ix_2 = 0 \end{cases} \Leftrightarrow x_1 = \beta, x_2 = -\beta i.$$

Vậy véctơ riêng có dạng $\beta(1,-i), \beta \neq 0$.

Đa thức đặc trưng

Giả sử λ là trị riêng của ma trận vuông A $\Leftrightarrow \exists X \neq 0 : AX = \lambda.X$ $\Leftrightarrow AX - \lambda X = 0 \Leftrightarrow (A - \lambda I).X = 0$. Hệ thuần nhất này có nghiệm không tầm thường $X \neq 0 \Rightarrow det(A - \lambda I) = 0$

Định nghĩa

Cho $A \in M_{n \times n}(K)$, I là ma trận đơn vị cấp n. Khi đó $\chi_A(\lambda) = \det(A - \lambda I)$ được gọi là đa thức đặc trưng của ma trận A. Phương trình $\det(A - \lambda I) = 0$ được gọi là phương trình đặc trưng của ma trân A.

Đa thức đặc trung

Tìm trị riêng-véc tơ riêng của ma trận vuông

- **Bước** 1. Lập phương trình đặc trưng $det(A \lambda I) = 0.$
- Bước 2. Giải phương trình đặc trưng tìm trị riêng.
- **Bước** 3. Với mỗi trị riêng λ_i , giải hệ $(A \lambda_i I)X = 0$: Tìm véc tơ riêng X ứng với trị riêng λ_i .

Đa thức đặc trưng

Định lý

Cho
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in M_3(K), \text{ khi dó}$$

$$\chi_A(\lambda) = |A - \lambda I| = -\lambda^3 + tr(A)\lambda^2 - \left(\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} \right) \lambda + \det(A)$$

$$\delta \text{ dây } tr(A) = a_{11} + a_{22} + a_{33} - v\text{\'et của ma trận } A.$$

Tính chất của vector riêng

Định nghĩa

Các véctơ riêng ứng với trị riêng λ cùng với véctơ $\mathbf{0}$ tạo thành 1 không gian con được gọi là không gian con riêng ứng với λ . Kí hiệu \mathbf{E}_{λ}

Định nghĩa

Số chiều của không gian con riêng ứng với trị riêng λ được gọi là bội hình học của trị riêng λ . Còn bội đại số của λ là bội của nghiệm của phương trình đặc trưng $\chi_A(\lambda) = 0$.

Tính chất của vector riêng

Ví dụ

$$Cho \ A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$

- Lập đa thức đặc trưng của A
- Tính det(A 2013.I)
- Tîm trị riêng, véctơ riêng của ma trận

Tính chất của vector riêng

1. Đa thức đặc trưng của ma trận A

$$\chi_A(\lambda) = |A - \lambda I| = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 2 & 4 - \lambda & 2 \\ 1 & 1 & 3 - \lambda \end{vmatrix} =$$

$$= -(\lambda - 2)^2(\lambda - 6)$$

- 2. $det(A 2013.I) = -(2013 2)^2(2013 6)$
- 3. Phương trình đặc trưng của A

$$\chi_A(\lambda) = |A - \lambda I| = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 2 & 4 - \lambda & 2 \\ 1 & 1 & 3 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow -(\lambda - 2)^2(\lambda - 6) = 0 \Leftrightarrow \lambda_1 = 2, \lambda_2 = 6.$$

Tính chất của vector riêng

Úng với
$$\lambda_1 = 2$$
 ta xét hệ
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ 2x_1 + 2x_2 + 2x_3 = 0 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

$$\Rightarrow X_1 = \alpha \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \alpha^2 + \beta^2 \neq 0.$$
Bội đại số của $\lambda_1 = 2$ là 2. Bội hình học của

Bội đại số của $\lambda_1 = 2$ là 2. Bội hình học của $\lambda_1 = 2$ cũng là 2.

Tính chất của vector riêng

Ứng với
$$\lambda_2 = 6$$
 ta xét hệ
$$\begin{cases} -3x_1 + x_2 + x_3 = 0 \\ 2x_1 - 2x_2 + 2x_3 = 0 \\ x_1 + x_2 - 3x_3 = 0 \end{cases}$$
 $\Rightarrow X_2 = \gamma \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \gamma \neq 0$. Bội đại số của $\lambda_2 = 6$ là 1. Bội hình học của $\lambda_2 = 6$ cũng là 1.

5.3 Phương pháp Đanhilepski

Ma trận đồng đạng

Định nghĩa

Ma trận B gọi là đồng dạng với ma trận A (B ~ A) nếu tồn tại ma trận không suy biến M ($\det(M) \neq 0$) sao cho $B = M^{-1}A M$

Tính chất:

$$A \sim B \Rightarrow B \sim A$$

$$A \sim B, B \sim C \Rightarrow A \sim C$$

 $A \sim B \Rightarrow$ giá trị riêng λ của A và B trùng nhau.

Nội dung phương pháp

Thực hiện n-1 lần biến đổi:

* Lần biến đổi 1: Tìm M^{-1} , M sao cho $A_1 = M^{-1}$ A $M \sim A$

và dòng n của A₁ có dạng: 0 0 0 ... 1 0

$$\mathbf{M}^{-1} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ 0 & 0 & \dots & 1 \end{bmatrix} \mathbf{M}^{-1}_{n-1j} = \mathbf{a}_{nj}$$

$$M \ = \ \begin{pmatrix} 1 & 0 & ... & 0 & 0 \\ 0 & 1 & ... & 0 & 0 \\ \frac{-a_{n1}}{a_{nn-1}} & \frac{-a_{n2}}{a_{nn-1}} & & \frac{1}{a_{nn-1}} & \frac{-a_{nn}}{a_{nn-1}} \\ 0 & 0 & ... & 0 & 1 \end{pmatrix} \qquad M_{n\text{-}1j} \ = \ \begin{pmatrix} \frac{1}{a_{m-1}} & \text{n\'eu} \ j = n \ -1 \\ \frac{-a_{nj}}{a_{nn-1}} & \text{n\'eu} \ j \# n \ -1 \\ A_1 = M_{-1} \ A \ M \sim A \end{pmatrix}$$

$$M_{n-1\,j} = \begin{cases} \frac{1}{a_{mn-1}} & \text{n\'eu} \ j = n-1 \\ \\ \frac{-a_{nj}}{a_{mn-1}} & \text{n\'eu} \ j \ \# \ n-1 \end{cases}$$

$$A_1 = M_{-1} \ A \ M \sim A$$

* Lần biến đổi 2: Chọn M_{-1} , M sao cho $A_2 = M_{-1} A_1 M \sim A_1$ và dòng n-1 của A_2 có dạng: 0 0 0 ... 1 0 0 $A_2 \sim A_1$, $A_1 \sim A \implies A_2 \sim A$ (tính chất)

* Lần biến đổi thứ n-1

Ta nhận được ma trận $A_{n-1} \sim A$ và A_{n-1} có dạng của P.

Khi đó định thức

$$\begin{split} \det \left(P \text{-} \lambda E \right) &= \left(\text{-} 1 \right)^n \left(\lambda^n \text{-} p_1 \; \lambda^{n \text{-} 1} \text{-} \ldots \text{-} p_{n \text{-} 1} \lambda \text{-} p_n \right) \\ \det \left(p \text{-} \lambda E \right) &= 0 \; \iff \lambda^n \text{-} p_1 \; \lambda^{n \text{-} 1} \text{-} \ldots \text{-} p_{n \text{-} 1} \lambda \text{-} p_n = 0 \end{split}$$

Giải phương trình, suy ra λ

Ví dụ 1. Tìm giá trị riêng của ma trận:

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad n = 3$$

Lần 1: Chọn

$$\mathbf{M}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 0 \end{pmatrix} \quad \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

ta tìm:

$$P = \begin{bmatrix} p_1 & p_2 & P_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A_1 = M^{-1}A M = \begin{bmatrix} 2 & 1 & -2 \\ \hline 1 & 5 & -5 \\ 0 & 1 & 0 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} 1 & 5 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$1 & -5 & 5$$

$$M = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_2 = M^{-1}A_1M = \begin{pmatrix} 7 & -14 & 8 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = P$$

Giá trị riêng λ là nghiệm phương trình: $\lambda^3 - 7\lambda^2 + 14\lambda - 8 = 0$

$$\Leftrightarrow$$
 (λ -2) (λ -1) (λ -4) = 0 \Leftrightarrow λ = 2; λ =1; λ =4

Thuật toán

- Nhập n, a_{ij} ($i,j = 1 \rightarrow n$)
- Khai báo hàm nhân 2 ma trận vuông cấp n

$$(C = A \times B = > c_{ij} = \sum_{k=1}^{n} a_{ik} \times b_{kj})$$

Lặp k = n -1 → 1 (phần tử biến đổi : a_{k+1 k})

/* Tính 2 ma trận M, M1 (M1 la ma tran nghich dao cua M) */

```
for i = 1 \rightarrow n

for j = 1 n

if i \neq k

if i = j {M[i,j] = 1; M1[i,j] = 1 }

else {M[i,j] = 0; M1[i,j] = 0 }

else {M1[i,j] = a[k+1,j]

if (j = k) M[i,j] = 1/a[k+1,k]

else M[i,j] = - a[k+1,j]/a[k+1,k] }
```

```
/* Gọi hàm nhân 2 lần */
Lần 1 : vào A, M; ra B
Lần 2 : vào M1; B; ra A
- Xuất a<sub>ij</sub> ( i,j = 1→n)
```

Thuật toán nhân 2 ma trận

```
for (i=1, i <= n; i++)

for (j=1; j<= n; j++) {

c[i][j] = 0

for (k=1; k <= n; k++) c[i][j] += a[i][k] * b[k][j]
```

Xây dựng công thức

Gọi y là vectơ riêng của ma trận P ~ A

Ta có:
$$(P - \lambda E) \overrightarrow{y} = 0$$

 $P \overrightarrow{y} = \lambda E \overrightarrow{y}$
 $M^{-1} \cdot A \cdot M \cdot \overrightarrow{y} = \lambda E \overrightarrow{y}$

Nhân 2 vế cho M:

$$M\ M^{\text{-1.}}\ A\ M\ \stackrel{\rightarrow}{y} = M\ \lambda E\stackrel{\rightarrow}{y}$$

$$A\ M\ \stackrel{\rightarrow}{y} = \lambda\ E\ M\stackrel{\rightarrow}{y}$$

$$\text{Đặt }\stackrel{\rightarrow}{x} = M\stackrel{\rightarrow}{y}$$

$$\overrightarrow{A} \overrightarrow{x} = \lambda \overrightarrow{E} \overrightarrow{x}$$

 $(A - \lambda E) \overrightarrow{x} = 0$

Vây $\vec{x} = M\vec{y}$ là vecto riêng của A

$$P = M_{n-1}^{-1}.M_{n-2}^{-1}...M_1^{-1}.A.M_1.M_2.M_{n-1}$$

M_i: Ma trận M xác định được ở lần biến đổi thứ i

$$v\grave{a} M = M_1 M_2 ... M_{n-1}$$

Xác định
$$\vec{y}$$

 $(P-\lambda E)\vec{y} = 0$

$$\begin{cases} (p_1 - \lambda)y_1 + p_2y_2 + \dots + p_{n-1}y_{n-1} + p_ny_n = 0 \\ y_1 - \lambda y_2 = 0 \\ \\ y_{n-1} - \lambda y_n = 0 \end{cases}$$

cho:
$$y_n = 1 \Rightarrow y_{n-1} = \lambda$$
,
$$y_{n-2} = \lambda y_{n-1} = \lambda^2, \dots, y_1 = \lambda^{n-1}$$

Vậy
$$\overrightarrow{y} = (\lambda^{n-1}, \lambda^{n-2}, \dots, \lambda^2, \lambda, 1)$$

Ví dụ 2. Tìm vectơ riêng của A

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Giải: Gọi y là vectơ riêng của ma trận P ~ A

Ở ví dụ 1 ta có:

$$\lambda_1 = 2 \implies \stackrel{\rightarrow}{y}_1 = (4, 2, 1)$$

$$\lambda_2 = 1 \implies \stackrel{\rightarrow}{y}_2 = (1, 1, 1)$$

$$\lambda_3 = 4 \implies \stackrel{\rightarrow}{y}_3 = (16, 4, 1)$$

Tìm M:

$$\mathbf{M} = \mathbf{M}_{1}^{1}.\mathbf{M}_{2}^{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -5 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -5 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\vec{x} = \vec{M} \vec{y}$$

$$\vec{x}_{1} = \begin{bmatrix} 1 & -5 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\vec{x}_{2} = \begin{bmatrix} 1 & -5 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$\vec{x}_{3} = \begin{bmatrix} 1 & -5 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 16 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Vậy vectơ riêng của A:

$$\vec{x}_1 = (-1, 0, 1)$$
 $\vec{x}_2 = (1, -1, 1)$ $\vec{x}_3 = (1, 2, 1)$

Bổ sung thêm lệnh trong thuật toán tìm trị riêng như sau:

```
    Khởi tạo B1 = E

- Lặp k = n-1 \rightarrow 1
       /* Tính 2 ma trận M, M1 */
       /* Gọi hàm nhân 3 lần */
            Lần 1: vào A, M; ra B
            Lần 2: vào M1, B; ra A
            Lần 3: vào B1, M; ra B
             /* Gán lại ma trận B1=B */
- Xuất a<sub>ij</sub>, b<sub>ij</sub>
```