	What is it next by trend & Season?
	- Trend can be thought of -s a theoreted line that tries to fit
	the data. Long term direction of the data.
	- Seasonality is the repeating patterns in the data. Seasonality occurs at
	legular intervals. M
•	Decomposition: trend + sessonality + Remainder/error
	-STL v.s. Classical decomposition: STL allows the seasond componet 4
	change over time [Non-fixed). STLis Robust to outliers, Allow
	Changing effects for trend too.
	- additive decomposition: /t = Tz + St + Rt
	- multiplicitue decomposition: /+= L. S. R. = Ins. + los T. + los R.
	desconsisting.
	-additive /E-St=Te+Re
	- Multiplicitus /4/St= Tt+R+
	The different types of Exponented Smoothing Moders (ESM);
	- Simple Exponential Smoothing
	$\dot{Y}_{E+1} = C_{+}$
	2900m (t= x Yt + (1-x)(t-1
	- Holf/Linear
1. 1	Yeth= LethTt
	Z Purins Lt= a Yt + (1-d)(Lt-1+Tt-1)
	$T_{+} = B(L_{+} - L_{+-1}) + (1-B)T_{+-1}$
	- Vamped Tread
	Ŷe+h = Le + > PP'T+
	3perans == Lt= a/t + (1-a)(Lt-1+ DTt-1)
	$T_{+} = \beta(L_{+} - L_{+}) + (1-\beta) \partial T_{-}$
	- Holt - Winters
	- Additive:
	Peth = Lt + hTt + St-pth
	- Multiplicative;
	Ŷth= (Lt+hTt)St-pth

Accuracy Statistics for time series moders: -(MAPE) Mean Absolute Percent Error considuerweights of over-predictions · Actual of & (/E 7 Ø) - (MAE) Mean Absolute Error cons: Not Scale invariant - (RMSE) Square Root of Square Error Cons: . Overweight of larger errors · Bride by O. Sull asymptotic Not scale inverient - AIC : balanced, overfits on small J-marks -AICC + Preferred FOI Small Semple # 5HUCHUNT -BIC: biggest penalty profors simpler moders. What is the difference between Accuracy \$ G.O.F. Staismos? - G.O.F. Statistics are c-Iculated on the training outer - Acturacy STANTHES are alcohold on down the model has not seen petore. RW with Drift Random Walk: YE=C+/6++ ex Yt= Yt-1+et -Totix this we con: Difference. How to Identify a Statemery time Series: Transfered on the non food on these - Constant Mean & Varrience & Currelation Structure or trinsform - We take differences to Make a +5 strong. 058370 - We can use the Unit Root Test to identify stannity deligned White Notse: 1= Et - White noise his a normal distributed error terms modeling. - To tell if we have white notse: - ACF & PACF has no styniftent "opikes" Ho: No Stanffort Auto correlation want - Loury-Box test Ha: Significent Autocorrelation

	(AR) Autoregressive model: PAX / = C + 0, /2-1 + 0, /2 = t+ Op/t-p+E
4) 16	- Forecast bised soley on pisa whiles of 1/2
ı	- PACE Plot gives us our p for our ARCP)
•	(MA) Moving Average Model:
	- Forecat based soley on past error uduas
	- ACF plot gives us or g for our MA(g)
•	THE POTHER AND YE = C+ O, Et-1 + OzE+-+ + + ORE+-9
	MCE Conhelpus deternition
	** Olisha
	(ACF) Auto Correlation Function: PK=(Orr(YE, YE-K)
	· Autocorrelation is the correlation between two sets of
	observations that are seperated by K points in time.
	· ACF(1) Implies two consecutate time points are related. Note: the
	(PACF) Partial Autocorrelation Function: applicables the from ACF.
	Portal Autocorrelation is the currelation between two sets of obs
	previous autocorrelations.
	ARMA & ARIMA moders:
	(P,q) (P,d,q) P=AR terms q=MA terms d=differcing
, A	- ESM focked on then & sesonity ARIMA/ARMA on Autoromolatons,
	- to use ARMAI ARIMA we must have the following:
	- Staronery deta
ARMACZ	3) = Y= w+ 0, Y= + 02 Yt-z + BE t-1 + B2Et-z + B3Et-3 + Et
	AR(Z) MA(3)
	ARIMA(2,1,3) is an ARMA(2,3) done on the 1st lifterences.
	7
	How to make so transling data Statemery :
	differencing 11
	- ARIMAX; fits a linear model with time destales and then
	fitting in ARMA to the Restauris.