Data Structure

Tree

Shin Hong

May 26, 2020

Ch. 5 Tree

Motivation

Tree

Data Structure

- A tree is a finite set of one or more nodes such that:
 - there exists a specifically designated node called the root, and
 - the remaining nodes are partitioned into disjoint sets T_1, T_2, \dots, T_n , where each of these sets is a tree (subtree)

Tree

LEVEL

Terminologies

- Node: the iterm of information
- Branch: links between two nodes
- Degree of a node: the number of subtrees
 - Degree of a tree
- Leaf (terminal) node: node with degree zero
 - non-terminal nodes
- Children, Parent, Siblings, Ancestors
- Level of a node
- Height of a tree

Tree Representation

- List representation
 - Data, or (Data $(T_1, T_2, ..., T_N)$)

- E.g.,

$$(A (B (E (K,L),F),C (G),D (H (M),I,J)))$$

Tree

Tree Representation

• Left child-right silbling representation

data						
left child	right child					

Binary Tree

- A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees
 - A binary tree is a tree with a degree 2
 - each node may have a left child and a right child
- The definition of binary tree differs from the standard notion of a tree
 - no tree with zero node, but there's an empty binary tree
 - no ordering in children in a tree, but a binary has

Tree

Abstract Data Type BinTree

 Objects: a finite set of nodes consisting of left BinTree and right BinTree, or empty

- Functions
 - is_empty(bt)
 - make_bintree(left, right)
 - get_data(bt)
 - get_left_child(bt)
 - get_right_child(bt)

Tree

Properties of Binary Tree (I)

- The max number of nodes on level i of a binary tree is 2^{i-1} for 0 < i
- The max number of nodes in a binary tree of depth k is 2^{k-1} for 0 < k

Tree

Data Structure

Properties of Binary Tree (2)

• For a non-empty binary tree, if b is the number of branches and n is the number of nodes, then n = b + 1

• For a non-empty binary tree, if n_0 is the number of leaf nodes and n_2 is the number of nodes of degree 2, then $n_0 = n_2 + 1$

Tree

Terminologies (1/2)

• A full binary tree of depth k is a binary tree of depth k having $2^k - 1$ nodes

Tree

Data Structure

Terminologies (2/2)

- A binary tree with n nodes and depth k is **complete** if and only if its nodes correspond to the nodes numbered from I to n in the full binary tree of depth k
- The highest of a complete binary tree with n nodes is $\lceil \log_2(n+1) \rceil$
- A tree is called skewed if nodes are skewed at left or right subtrees

Tree

Data Structure

Representation: with array

- If a complete binary with n nodes is represented sequentially, then for any node with index i, the following properties hold
 - I. parent(i) is at index floor $\lfloor i/2 \rfloor$ except the root node (i is I)
 - 2. $left_child(i)$ is at 2i
 - 3. right_child(i) is at 2i + 1

Data Structure

Tree

Data Structure

Representation: linked list

```
struct tree {
   int data;
   struct tree * left;
   struct tree * right;
}
```


Tree

Data Structure

Binary Tree Traversal

- A tree traversal is to visit each node in the tree exactly once and performs an operation at each visit of a node
- Traversal ordering: ordering of performing the operation
 - **Inorder traversal**: Left subtree → Visiting node → Right subtree
 - **Preorder traversal**: Visiting node → Left subtree → Right subtree
 - **Postorder traversal**: Left subtree → Right subtree → Visiting node

Tree

Binary Tree Traversal (Con'd)

- Level-order traversal (breadth first search)
 - visit the nodes in their numbering order
 - a queue is needed for level-order traversal

```
- algorithm
  enqueue(root)
  while queue is not empty do
    n = dequeue()
    visit(n)
    enqueue(left(n))
    enqueue(right(n))
  done
```


Binary Search Tree

- A binary search tree is a binary tree with the following properties
 - (I) each node has a unique key
 - (2) keys in the left subtree are smaller than the key in the root
 - (3) keys in the right subtree are greater than the key in the root
- A binary search tree can be used for constructing a dictionary as a collection of key-value pairs
- Examples

Tree

Data Structure

Binary Search Tree - Operations

- search(*T*, *K*)
- insert(T, K, V)
- delete(T, K)
 locate node X whose key is K
 - if it is a leaf, delete X
 - if it has a single child, replace X with its child
 - if it has two children:
 - find node Y immediately next to X
 - replace the element of X with that of Y
 - delete Y

Tree

Data Structure

Representation of Disjoint Sets

Disjoint set union. If S_i and S_j are two disjoint sets, then their union $S_i \cup S_j = \{all elements, x, such that x is in <math>S_i$ or $S_j\}$. Thus, $S_1 \cup S_2 = \{0, 6, 7, 8, 1, 4, 9\}$. Since we have assumed that all sets are disjoint, following the union of S_i and S_j we can assume that the sets S_i and S_j no longer exist independently. That is, we replace them by $S_i \cup S_j$.

Tree

Data Structure

Union Operation

Tree

Data Structure

Find Operation

i	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
parent	-1	4	-1	2	-1	2	0	0	0	4

Tree

Data Structure

Data Structure

Data Structure

Data Structure