CALCUL VECTORIEL DANS LE PLAN

Pr : Ayoub Aissaoui

Niveau: Tronc commun science

Exercice 1

Soit ABC un triangle rectangle en A.

- 1. Construire le point D tel que : $\overrightarrow{DC} = \overrightarrow{AB}$. Quelle est la nature du quadrilatère ABCD?
- 2. Construire le point E tel que : $\overrightarrow{ED} = \overrightarrow{AC}$. Justifier que le quadrilatère ACDE est un rectangle.

Exercice 2

A, B, C et D étant quatre points du plan, construire les points E, F, G et K définis par :

1.
$$\overrightarrow{AB} + \overrightarrow{CE} = \overrightarrow{CD}$$

2.
$$\overrightarrow{AF} = \overrightarrow{AB} - \overrightarrow{AC}$$

3.
$$\overrightarrow{AC} + \overrightarrow{DG} = \overrightarrow{BC} + \overrightarrow{DC}$$

4.
$$\overrightarrow{BA} + \overrightarrow{DK} = \overrightarrow{CA} + \overrightarrow{DA}$$

Exercice 3

A, B et C étant trois points du plan, Construire les vecteurs définis par :

$$\overrightarrow{u}=2\overrightarrow{AB}\;;\;\overrightarrow{v}=-3\overrightarrow{AC}\;;\;\overrightarrow{w}=\frac{2}{3}\overrightarrow{BC}\quad\text{et }\overrightarrow{s}=-\frac{5}{3}\overrightarrow{BC}$$

Exercice 4

Dans chacun des cas de la figure suivante, construire les vecteurs \overrightarrow{w} , \overrightarrow{s} , \overrightarrow{z} et \overrightarrow{t} tels que :

$$\bullet \ \overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$$

•
$$\overrightarrow{z} = 2\overrightarrow{u} + \overrightarrow{v}$$

$$\bullet \ \overrightarrow{s} = \overrightarrow{u} - \overrightarrow{v}$$

$$\bullet \ \overrightarrow{t} = -2\overrightarrow{u} - \overrightarrow{v}$$

Exercice 5

Soit ABC un triangle et les points E et F tels que :

$$\overrightarrow{AE} = \frac{3}{2}\overrightarrow{CB} + \frac{5}{2}\overrightarrow{AC} \quad \text{et} \quad \overrightarrow{CF} = \frac{1}{2}\overrightarrow{AB} - 2\overrightarrow{AC}$$

1. Montrer que

$$\overrightarrow{AE} = \frac{3}{2}\overrightarrow{\overrightarrow{AB}} + \overrightarrow{AC}$$
 et $\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$

- 2. Faire une figure.
- 3. Montrer que B est le milieu de [EF].

Exercice 6

On considère trois points non alignés E, F et G. Le point K est défini par : $\overrightarrow{EK} = \overrightarrow{EG} + 2\overrightarrow{EF}$.

- 1. Faire une figure.
- 2. Démontrer que : $\overrightarrow{GK} = 2\overrightarrow{EF}$.
- 3. Que peut-on conclure sur les vecteurs \overrightarrow{GK} et \overrightarrow{EF} ?

Exercice 7

Soit ABC un triangle.

1. Construire les points E et F tels que :

$$\overrightarrow{AE} = \frac{1}{3}\overrightarrow{AB}$$
 et $\overrightarrow{AF} = 3\overrightarrow{AC}$

2. Montrer que les vecteurs \overrightarrow{EC} et \overrightarrow{FB} sont colinéaires.

Exercice 8

Soit ABC un triangle.

1. Construire les points M et N tels que :

$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$$
 et $\overrightarrow{AN} = \overrightarrow{AB} - \overrightarrow{AC}$

2. Montrer que les vecteurs \overrightarrow{AC} et \overrightarrow{MN} sont colinéaires.

Exercice 9

On considère trois points non alignés A, B et C.

1. Construire les points E et F tels que :

$$\overrightarrow{CE} = -2\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$$
 et $\overrightarrow{AF} = \frac{5}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CB}$

2. Montrer que:

$$\overrightarrow{AE} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AC}$$
 et $\overrightarrow{AF} = \overrightarrow{AB} - 2\overrightarrow{AC}$

3. Montrer que les droites (BF) et (EC) sont parallèles.

Exercice 10

Soit ABC un triangle, tel que:

$$AB=6$$
 , $AC=4$ et $BC=5$.

- 1. Faire une figure.
- 2. Construire les points E et F tels que :

$$\overrightarrow{AE} = \frac{1}{2}\overrightarrow{BC}$$
 et $\overrightarrow{AF} = 3\overrightarrow{AC}$

- 3. Montrer que : $\overrightarrow{BF} = -\overrightarrow{AB} + 2\overrightarrow{AC}$.
- 4. Exprimer \overrightarrow{EC} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .

5. Que peut-on conclure sur les droites (BF) et (EC)?

Exercice 11

On considère un parallélogramme ABCD

1. Construire les points E et F tels que :

$$\overrightarrow{AE} = 3\overrightarrow{AD}$$
 et $\overrightarrow{BF} = \frac{1}{2}\overrightarrow{AB}$.

2. Montrer que:

$$\overrightarrow{CE} = \overrightarrow{AB} + 2\overrightarrow{AD}$$
 et $\overrightarrow{CF} = \overrightarrow{AB} + 2\overrightarrow{AD}$.

3. En déduire que les points C, E et F sont alignés.

Exercice 12

Soit ABC un triangle. On note E, F et G les points définis respectivement par :

$$\overrightarrow{AE} = -2\overrightarrow{AB}$$
 , $\overrightarrow{BF} = \frac{1}{3}\overrightarrow{BC}$ et $\overrightarrow{BG} = -\frac{1}{2}\overrightarrow{AC}$

- 1. Faire une figure.
- 2. (a) Exprimer \overrightarrow{AF} , \overrightarrow{BG} et \overrightarrow{CE} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
 - (b) En déduire que les droites (AF), (BG) et (CE) sont parallèles.

Exercice 13

Soit ABC un triangle. On note I et J les points définis respectivement par :

$$\overrightarrow{AI} = 2\overrightarrow{AB} + \overrightarrow{AC}$$
 et $\overrightarrow{CJ} = -2\overrightarrow{AB}$

- 1. Faire une figure.
- 2. Montrer que les droites (AB) et (IC) sont parallèles.
- 3. Montrer que C est le milieu [IJ].

Exercice 14

On considère le triangle ABC et a un nombre réel. M, N et P sont définis par :

$$\overrightarrow{AM} = a\overrightarrow{AB} \quad , \quad \overrightarrow{AN} = \frac{2}{3}\overrightarrow{AC} \quad \text{et} \quad \overrightarrow{BP} = \frac{2}{5}\overrightarrow{BC}$$

Trouver la valeur du nombre réel a pour que les points M, N et P soient alignés.

Exercice 15

On considère un parallélogramme ABCD.

Soit M le point de [BC] tel que $\overrightarrow{BM} = x\overrightarrow{BC}$ où x>1. On considère le point N tel que : $\overrightarrow{DN} = \frac{1}{x+1}\overrightarrow{DB}$.

- 1. Montrer que les points A, M et N sont alignés.
- 2. La droite (AN) coupe (CD) en E. Déterminer le réel y tel que : $\overrightarrow{DE} = y\overrightarrow{DC}$.

Exercice 16

Soit ABC un triangle. On considère les points G, E et F définis par :

$$\overrightarrow{AG} = \frac{1}{2}\overrightarrow{AB}, \quad \overrightarrow{BE} = \frac{2}{5}\overrightarrow{BC} \quad \text{et} \quad \overrightarrow{AF} = \frac{3}{5}\overrightarrow{CA}.$$

- 1. Construire les points G, E et F.
- 2. Soit I le point tel que :

$$3\overrightarrow{AI} + 3\overrightarrow{BI} + 2\overrightarrow{CI} = \overrightarrow{0}$$

- (a) Montrer que les points A, I et E sont alignés, puis construire I.
- (b) Montrer que les points B, I et F sont alignés.
- (c) Montrer que les points C, I et G sont alignés.
- 3. Soit H le point tel que :

$$3\overrightarrow{BH} = 2\overrightarrow{CH}$$

Montrer que $H \in (FG)$.

Exercice 17

Soit ABC un triangle. Soit I, J et K les points définis par :

$$\overrightarrow{CI} = 3\overrightarrow{CA}, \quad \overrightarrow{BJ} + \overrightarrow{CJ} = \overrightarrow{0} \quad \text{et} \quad \overrightarrow{KA} = \frac{2}{3}\overrightarrow{KB}$$

Soit H le point tel que : $3\overrightarrow{HA} = 2\overrightarrow{HB} + 2\overrightarrow{HC}$

- 1. Montrer que, pour tout point M du plan on a : $\overrightarrow{MH} = 2\overrightarrow{MB} + 2\overrightarrow{MC} 3\overrightarrow{MA}$
- 2. Montrer que les droites (BI), (CK) et (AJ) sont concourantes en H.

Exercice 18

2

Soit ABCD un quadrilatère tel que : $7\overrightarrow{BC} = 5\overrightarrow{AD}$

- 1. Exprimer \overrightarrow{BD} en fonction de \overrightarrow{BA} et \overrightarrow{BC} .
- 2. On considère le point M défini par : $5\overrightarrow{MD} = 2\overrightarrow{AM}$.
 - (a) Calculer \overrightarrow{AM} en fonction de \overrightarrow{AD} .
 - (b) Exprimer \overrightarrow{BM} en fonction de \overrightarrow{BA} et \overrightarrow{BC} .
 - (c) En déduire que les segments [BM] et [CA] ont le même milieu.
- 3. Soit x un nombre réel. On considère le point H tel que :

$$\overrightarrow{BH} = x\overrightarrow{BC} + \overrightarrow{BA}.$$

- (a) Déterminer x pour que A soit le milieu de [DH].
- (b) Dans le cas général, calculer \overrightarrow{AH} en fonction de \overrightarrow{BC} et x.
- (c) Déterminer l'ensemble des points ${\sf H}$ lorsque x décrit l'ensemble des nombres réels.