Centre No.			Paper Reference			Surname	Initial(s)				
Candidate No.			6	6	7	7	/	0	1	Signature	

Paper Reference(s)

6677/01

Edexcel GCE

Mechanics M1

Advanced/Advanced Subsidiary

Tuesday 6 June 2006 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination	Items included with question papers
Mathematical Formulae (Green)	Nil

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

If you need more space to complete your answer to any question, use additional answer sheets.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 7 questions in this question paper. The total mark for this question paper is 75.

There are 16 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2006 Edexcel Limited

N22331A W850/R6677/57570 3/3/3/3/38,200

Examiner's use only

Team Leader's use only

Question Number

2

Leave Blank

Turn over

Leave blank

1. Figure 1

Figure 1 shows the speed-time graph of a cyclist moving on a straight road over a 7 s period. The sections of the graph from t = 0 to t = 3, and from t = 3 to t = 7, are straight lines. The section from t = 3 to t = 7 is parallel to the t-axis.

State what can be deduced about the motion of the cyclist from the fact that

(a) the graph from t = 0 to t = 3 is a straight line,

(1)

(b) the graph from t = 3 to t = 7 is parallel to the *t*-axis.

(1)

(c) Find the distance travelled by the cyclist during this 7 s period.

(4)

2

	Lea blai
Question 1 continued	
	Q1
(Total 6 ma	

	Two particles A and B have mass 0.4 kg and 0.3 kg respectively. They are moving in opposite directions on a smooth horizontal table and collide directly. Immediately before the collision, the speed of A is 6 m s ⁻¹ and the speed of B is 2 m s ⁻¹ . As a result of the collision, the direction of motion of B is reversed and its speed immediately after the collision is 3 m s ⁻¹ . Find					
	(a) the speed of A immediately after the collision, stating clearly whether the direction of A is changed by the collision,					
			(4)			
(b) the magnitude of the impulse exerted on <i>B</i> in the collision, stating of which your answer is given.		ne magnitude of the impulse exerted on B in the collision, stating clearly the unityhich your answer is given.				
			(3)			
_						

	Leav blan
Question 2 continued	
	Q2
(Total 7 marks)	

3.	A train moves along a straight track with constant acceleration. Three telegraph poles set at equal intervals beside the track at points A , B and C , where $AB = 50$ m a $BC = 50$ m. The front of the train passes A with speed 22.5 m s ⁻¹ , and 2 s later it passes Find	and
	(a) the acceleration of the train,	
		(3)
	(b) the speed of the front of the train when it passes C ,	(3)
	(c) the time that elapses from the instant the front of the train passes <i>B</i> to the instant passes <i>C</i> .	t it
		(4)

Question 3 continued		Lea bla
Question 5 continued		
		Ç
	(Total 10 marks)	

4. Figure 2

A particle P of mass 0.5 kg is on a rough plane inclined at an angle α to the horizontal, where tan $\alpha = \frac{3}{4}$. The particle is held at rest on the plane by the action of a force of magnitude 4 N acting up the plane in a direction parallel to a line of greatest slope of the plane, as shown in Figure 2. The particle is on the point of slipping up the plane.

(a) Find the coefficient of friction between P and the plane.

(7)

The force of magnitude 4 N is removed.

(b) Find the acceleration of *P* down the plane.

(4)

·	

estion 4 continued	

Leave blank

5.

A steel girder AB has weight 210 N. It is held in equilibrium in a horizontal position by two vertical cables. One cable is attached to the end A. The other cable is attached to the point C on the girder, where AC = 90 cm, as shown in Figure 3. The girder is modelled as a uniform rod, and the cables as light inextensible strings.

Given that the tension in the cable at C is twice the tension in the cable at A, find

(a) the tension in the cable at A,

(2)

(b) show that AB = 120 cm.

(4)

A small load of weight W newtons is attached to the girder at B. The load is modelled as a particle. The girder remains in equilibrium in a horizontal position. The tension in the cable at C is now three times the tension in the cable at A.

(c) Find the value of W.

(7)

10

uestion 5 continued	

6.	A car is towing a trailer along a straight horizontal road by means of a horizontal tow-rope. The mass of the car is 1400 kg. The mass of the trailer is 700 kg. The car and the trailer are modelled as particles and the tow-rope as a light inextensible string. The resistances to motion of the car and the trailer are assumed to be constant and of magnitude 630 N and 280 N respectively. The driving force on the car, due to its engine, is 2380 N. Find	Ole
	(a) the acceleration of the car, (3)	
	(b) the tension in the tow-rope.	
	(3)	
	When the car and trailer are moving at 12 m s ⁻¹ , the tow-rope breaks. Assuming that the driving force on the car and the resistances to motion are unchanged,	
	(c) find the distance moved by the car in the first 4 s after the tow-rope breaks.	
	(6)	
	(d) State how you have used the modelling assumption that the tow-rope is inextensible. (1)	

	Leave blank
Question 6 continued	
	Q6
(Total 13 marks)	

[In this question the unit vectors \mathbf{i} and \mathbf{j} are due east and north respectively.]	
A ship S is moving with constant velocity $(-2.5\mathbf{i} + 6\mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$. At time 1200, the povector of S relative to a fixed origin O is $(16\mathbf{i} + 5\mathbf{j}) \mathrm{km}$. Find	osition
(a) the speed of S ,	(2)
(b) the bearing on which S is moving.	(2)
The ship is heading directly towards a submerged rock R . A radar tracking scalculates that, if S continues on the same course with the same speed, it will hit R time 1500.	
(c) Find the position vector of <i>R</i> .	
	(2)
The tracking station warns the ship's captain of the situation. The captain maintain its course with the same speed until the time is 1400. He then changes course so moves due north at a constant speed of 5 km h^{-1} . Assuming that S continues to move this new constant velocity, find	that S
(d) an expression for the position vector of the ship t hours after 1400,	
	(4)
(e) the time when S will be due east of R,	
	(2)
(f) the distance of S from R at the time 1600.	
	(3)

	Leave blank
Question 7 continued	

Question 7 continued		blan
Z		
		Q
	(Total 15 marks)	
	TOTAL FOR PAPER: 75 MARKS	
	END	