Solutionnaire

Contrôle périodique 3

LOG1810

Sigle du cours

Sigle et titre du cours		Groupe		Trimestre
LOG1810 Structures discrètes		Tous		Été 2025
Professeur		Local		Téléphone
Aurel Randolph, Chargé de cours				
Jour	Date		Durée	Heures
Samedi	14 juin 2025		1h	10h30-11h30
Documentation		Calculatrice		
Aucune		Aucune		Les appareils
⊠ Toute		☐ Toutes		électroniques personnels sont interdits.

LOG1810-É2025 Contrôle périodique 3

Solutionnaire

Exercice 1 (5.5 points)

Soit x un élément de \mathbb{Z} . Déterminez l'ensemble des valeurs de x tel que :

$x \equiv 2 \pmod{88}$ et $x \equiv 1 \pmod{27}$

Réponse :

Transformons chacune des 2 congruences linéaires. Nous avons :

x + 88a = 2 et x + 27b = 1, avec a et b des entiers.

x = -88a + 2 et x = -27b + 1, avec a et b des entiers.

En égalisant les 2 équations, nous avons -88a + 2 = -27b +

Ce qui donne 88a - 27b = 1.

Posons c = -b. Nous avons 88a + 27c = 1.

Résolvons cette dernière équation en utilisant l'algorithme d'Euclide étendu. Nous avons successivement :

[88, 1, 0][27, 0, 1]

[7, 1, -3][27, 0, 1]

[7, 1, -3][6, -3, 10]

[1, 4, -13][6, -3, 10]

[1, 4, -13][1, -23, 75]

En considérant les couples de solutions particulières (4, -13) et (-23, 75) pour (a, c), nous obtenons les couples de de solutions particulières (4, 13) et (-23, -75) pour (a, b).

L'ensemble des solutions pour (a, b) est par exemple (4 - 27k, 13 – 88k), avec k un entier.

En substituant la solution de a dans l'expression correspondante de x, nous avons :

x = -88(4 - 27k) + 2

L'ensemble des valeurs de x recherché est x = 2376k -350, avec k entier.

Note

• Si b est considéré en lieu et place de a, nous obtenons après substitution :

x = -27(13 - 88k) + 1, avec k un entier.

L'ensemble des valeurs de x recherché est x = 2376k -350, avec k entier.

- Si l'ensemble des solutions pour (a, b) est par exemple (-23 27k, -75 88k), avec k un entier. Les substitutions donnent, respectivement :
 - x = -88(-23 27k) + 2, avec k un entier.
 - x = 2376k + 2026, avec k un entier.
 - x = -27(-75 88k) + 1, avec k un entier.
 - x = 2376k + 2026, avec k un entier.

LOG1810-É2025 Contrôle périodique 3 **Solutionnaire**

<u>Exercice 2</u> (**5 points**) Appliquer le petit théorème de Fermat pour des calculs de modulo. Calculez **2025**²⁰²⁵ **mod 17** avec le petit théorème de Fermat, en justifiant chaque étape.

Réponse:

```
On a: 2025 = 17 * 119 + 2.
17 est un nombre premier et 17 ne divise pas 2025, alors on peut appliquer le petit théorème de Fermat. Ainsi
2025^{16} \mod 17 = 1
On a: 2025 = 16 * 126 + 9.
Donc 2025^{2025} \mod 17 = 2025^{16*126+9} \mod 17. Ce qui conduit successivement à :
• 2025^{2025} \mod 17 = (2025^{16*126} * 2025^9) \mod 17.
   2025^{2025} \mod 17 = [(2025^{16*126} \mod 17) * (2025^{9} \mod 17)] \mod 17.
    o Calculons 2025<sup>16*126</sup> mod 17
        2025^{16*126} \mod 17 = (2025^{16})^{126} \mod 17.
        2025^{16*128} \mod 17 = (1)^{126} \mod 17, en appliquant le petit théorème de Fermat.
        2025^{16*126} \mod 17 = 1.
    o Calculons 2025<sup>9</sup> mod 17
        On sait que : 2025 = 17 * 119 + 2 ce qui permet d'établir que :
        2025 mod 17 = 2 et que par la suite
        2025^9 \mod 17 = 2^9 \mod 17 = (2^5 * 2^4) \mod 17.
         2^5 \mod 17 = 15
         2^4 \mod 17 = 16
         • (2^5 * 2^4) \mod 17 = 240
             240 mod 17 = 2
             Alors (2^5 * 2^4) \mod 17 = 2, Donc
             2^9 \mod 17 = 2.
2025^{2025} \mod 17 = (1*2) \mod 7
D'où 2025^{2025} \mod 17 = 2.
```

LOG1810-É2025 Contrôle périodique 3 **Solutionnaire**

Question 3 (5.5 points)

Utilisez le principe de l'induction pour prouver que :

```
1*2*3 + 2*3*4 + ... + n(n+1)(n+2) = n(n+1)(n+2)(n+3)/4
```

Note: * est l'opérateur de multiplication des entiers.

Réponse:

```
Posons S(n) = 1*2*3 + 2*3*4 + ... + n(n+1)(n+2).
```

Montrons par induction mathématique que S(n) = n(n+1)(n+2)(n+3)/4

Étape de base.

Soit le cas de base n = 1.

Nous avons S(1) = 1*2*3. Ainsi, S(1) = 6

n(n+1)(n+2)(n+3)/4 = 1(2)(3)(4)/4. Ainsi, n(n+1)(n+2)(n+3)/4 = 6

On peut déduire que S(1) = 1(1+1)(1+2)(1+3)/4

L'égalité est vérifiée pour n = 1.

Étape inductive

Supposons pour un certain entier n que S(n) = n(n+1)(n+2)(n+3)/4.

Montrons que S(n+1) = (n+1)(n+2)(n+3)(n+4)/4.

Par définition, S(n+1) = 1*2*3 + 2*3*4 + ... + n(n+1)(n+2) + (n+1)(n+2)(n+3)

Nous avons donc S(n+1) = S(n) + (n+1)(n+2)(n+3).

En considérant l'hypothèse d'induction, nous avons successivement :

S(n+1) = n(n+1)(n+2)(n+3)/4 + (n+1)(n+2)(n+3)

S(n+1) = [n(n+1)(n+2)(n+3) + 4(n+1)(n+2)(n+3)]/4

S(n+1) = [(n+1)(n+2)(n+3)(n+4)]/4

L'égalité est donc vérifiée pour à l'ordre n+1.

Nous concluons l'étape inductive à l'effet que lorsque l'égalité est vraie à l'ordre n, elle l'est à l'ordre n+1.

Conclusion

L'égalité est vraie à l'ordre 1. Lorsqu'elle est vraie à l'ordre n, elle l'est à l'ordre n+1. D'après le principe d'induction, elle est vraie pour tout entier n.

Question 4 (4 points) Résoudre une relation de récurrence linéaire homogène.

Résolvez la relation suivante, en détaillant chaque étape :

$$a_{n+2} = 4a_{n+1} - 4a_n$$
, $a_0 = 3$, $a_1 = 10$

Réponse:

Nous avons une relation de récurrence linéaire homogène à coefficients constants de degré 2.

• Équation caractéristique :

Soit r une variable réelle.

L'équation caractéristique est :

$$r^2 - 4r + 4 = 0$$

• Racines de l'équation caractéristique

On a $(r-2)^2 = 0$.

La racine de l'équation caractéristique est alors

• Forme de la solution générale

Soit u et v deux réels. On a :

$$a_n = u (2)^n + v.n(2)^n$$

• Solution générale

En utilisant les cas de base on obtient le système d'équations suivant :

$$\begin{cases} u = 3 \\ 2u + 2v = 10 \end{cases}$$

En résolvant le système d'équations, on a : $\mathbf{u} = \mathbf{3}$; $\mathbf{v} = \mathbf{2}$.

• Solution de la relation de récurrence

La solution de la relation de récurrence :

$$a_n = (3 + 2n)*2^n$$