OSE2019 Week4 Firm Dynamics Firm entry and exit

Shiqi Li

Description of model

- incumbent firm:
 - production function: $y_{jt} = e^{\varepsilon_{jt}} k_{jt}^{\theta} n_{jt}^{\nu}$
 - idiosyncratic productivity follows a Markov chain: ε_{jt}
 - capital accumulation: $k_{jt+1} = (1 \delta)k_{jt} + i_{jt}$
 - convex adjustment cost (units of output): $-\frac{\varphi}{2} \left(\frac{i_{jt}}{k_{jt}}\right)^2 k_{jt}$
 - fixed cost (units of output) to remain in operation each period: c_f
 - if does not pay the fixed cost, the firm sells its capital with value: $(1 \delta)k$

• potential entrants:

- continuum of potential entrants
- ex-ante identical
- at the beginning of each period, each firm decides whether to pay a fixed cost c_e and enter the economy.
- if enters, then draw a value from idiosyncratic productivity ε_{jt} from some distribution ν and begins an an incumbent firm with $k_{jt} = 0$.
- no adjustment costs at $k_{jt} = 0$.
- free entry among potential entrants, implies the expected value from entering is less than or equal to the entry cost c_e , so $c_e \leq \int v(\varepsilon,0)\nu(d\varepsilon)$, with equality if entry actually takes place, i.e. $m^* > 0$.

• representative household:

- preference over consumption C_t and labour supply N_t .
- expected utility function: $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t (\log C_t aN_t)$

- Steady state recursive competitive equilibrium:
 - set of incumbent value functions $v(\varepsilon, k)$
 - policy rules $k'(\varepsilon, k)$ and $n(\varepsilon, k)$
 - a mass of entrants per period m^*
 - a measure of active firms at the beginning of the period $g^*(\varepsilon, k)$
 - real wage w^* such that :
 - 1. incumbent firms maximize their firm value
 - 2. the free entry condition holds
 - 3. the labor market clears
 - 4. the measure of active firms $g^*(\varepsilon, k)$ is stationary
- Calibration:

$$\theta = 0.21$$

$$\nu = 0.64$$

$$\delta = 0.1$$

$$\beta = 0.96$$

$$\varphi = 0.5$$

$$\varepsilon_{jt+1} = \rho \varepsilon_{jt} + \omega_{jt+1}$$

$$\omega_{jt+1} \sim N(0, \sigma^2)$$

$$\rho = 0.9$$

$$\sigma = 0.02$$

1: define the recursive competitive equilibrium

• Firm optimization: taking w^* as given, $v(\varepsilon, k)$ solves Bellman equation.

$$v(\varepsilon, k) = \max\{(1 - \delta)k, v^{1}(\varepsilon, k) - c_{f}\}$$

$$v^{1}(\varepsilon,k) = \max_{k',n} \varepsilon k^{\theta} n^{\nu} - w^{*}n - (k' - (1-\delta)k) - \frac{\varphi}{2} \left(\frac{k'}{k} - (1-\delta)\right)^{2} k + \beta \mathbb{E}\left[v\left(\varepsilon',k'\right)\right]$$

Solve for policy rules $k'(\varepsilon, k)$ and $n(\varepsilon, k)$

• Free entry condition holds with market clearing:

$$c_e \le \int v(\varepsilon, 0) \nu(d\varepsilon)$$

Solve for w^* together with firm's optimization Problem

• Solve for stationary measure of incumbent firms $g^*(\varepsilon, k)$

2: solve representative firm steady state equilibrium

Suppose that there are no entry and exits, all firms parcitipate in the market in all periods, and k'=k, then we have

• Firm's FOC:

$$-1-\varphi$$