

Perceptual Color Spaces

Scientific Visualization Professor Eric Shaffer

The Most Important Thing to Know About Color

Color is a perceptual phenomenon

It is not a physical property of a material or of light

So, how does color perception work?

Light

- Human vision senses energy in a portion of the electromagnetic spectrum
- Energy carried by photons
- The energy of each photon is proportional to its frequency
 - Frequency = inverse of wavelength
- The intensity of light is related to the number of photons received

xkcd.com/273

Human Visual System: Rod and Cone Cells

- Rods measure intensity
 - 80 million
 - denser away from fovea
 - astronomers learn to glance off to the side of what they are studying
 - sensitive, shut down in daylight
- L,M and S cones
 - 5 million total
 - 100K 325K cones/mm² in fovea
 - 150 hues
 - Combined
 - 7 million shades

Cone Cell Response

$V(\lambda)$ is the luminosity function

It indicates perceived brightness

Of total number of cones:

- 63% are L cones
- 31% are M cones
- 6% are S Cones

Luminosity peaks at 555nm

- Green-yellows are perceived as brightest
- Blues are perceived as dark

Graph shows relative sensitivity of each type of cone to different wavelengths of light

The Human Visual System

A color corresponds to some amount of stimulus of the cones

Light is usually a mix of wavelengths

- A spectral power distribution
- This distribution is for a "white" light

Two different distributions can produce the same stimulus

- Thus they produce the same perceived color
- Different distributions that produce the same color are *metamers*

Color Spaces

- To create a color image we need a way to specify colors
- A color corresponds to some level of stimulation of the L, M, S cones
 - The set of possible tristimulus values forms a 3D vector space
- The basis vectors for the space are not physical
 - No wavelength of light stimulates only one kind of cone

Color Spaces

- To create a color space with a physical meaning
 - We can choose 3 discrete wavelengths which we will call primaries.
- The wavelengths can be mixed at different intensities
 - These spectral distributions correspond to colors defined for some average viewer

CIE RGB Color Space

CIE RGB Color Space

- Defined in 1931 by the International Commission on Illumination
- CIE is from the French name Commission Internationale de L'éclairage

Used primary wavelengths

- 435.8 nm ("blue")
- 546.1 nm ("green")
- 700 nm ("red")

Color Matching Experiments

The Experiment

- A set of viewers were shown a mono-spectral light
- The viewers tried to match the color by mixing the 3 primaries
- This was sometimes impossible
- ...but a match could be made by mixing one of primaries with the mono-spectral light
- You can see these events in the graph as negative values

The plot of the functions was created by

- Repeating the experiment for different wavelengths of mono-spectral light
- Averaging/filtering the data from the test subjects

CIE RGB Color Space

The intensity of the primaries for the CIE RGB color space are computed as follows: Given a spectral power distribution $P(\lambda)$

Compute

$$R = \int_{\lambda} \overline{r}(\lambda) P(\lambda) d\lambda$$
$$G = \int_{\lambda} \overline{g}(\lambda) P(\lambda) d\lambda$$
$$B = \int_{\lambda} \overline{b}(\lambda) P(\lambda) d\lambda$$

This is not the RGB color space you know It is the basis for it...as we'll see

CIE XYZ Color Space

CIE RGB had two problems

- Negative values...people don't like negative values
- It would be useful to separate perceived luminance from chromaticity
 - i.e. separate "brightness" and "hue"

CIE XYZ solves those problems

Convert from RGB to XYZ

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 2.768892 & 1.751748 & 1.130160 \\ 1 & 4.590700 & 0.060100 \\ 0 & 0.056508 & 5.594292 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

CIE XYZ Color Space

CIE XYZ

- Primaries only take on positive values
- $\bar{y}(\lambda)$ corresponds closely to the values of the luminosity function
 - So Y corresponds to perceived brightness
- CIE XYZ
- Primaries only take on positive values
- $\bar{y}(\lambda)$ corresponds closely to the values of the luminosity function
 - So Y corresponds to perceived brightness

xyY Color Space

It can be useful to have normalized chromaticity values

- Fall in range [0,1]
- Do not change with luminance

Standard way to do this is to take

$$x = \frac{X}{X + Y + Z}$$
, $y = \frac{Y}{X + Y + Z}$, and $z = \frac{Z}{X + Y + Z}$

- Convention is to use x and y to indicate chromaticity
- Combined with the original Y value gives a color in the xyY colorspace

CIE xy Chromaticity Diagram

The diagram depicts all colors visible to an average human

The curved boundary is the spectral locus

- It consists of all the colors associated with a single wavelength
- The bottom line of purples are not single wavelength colors

Points not on the curved boundary are mixture of multiple wavelengths

The standard sRGB color space is defined by 3 points labeled R,G, and B

- All the colors possible in that space lie in the RGB triangle
- The set of producible colors in a space is called the gamut

Three Primary Colors Cannot Produce All Possible Colors

The CIE RGB color space includes all possible colors

...at least for most people

No space defined by 3 primary colors can include all colors

....no triangle can cover the horseshoe in the diagram

What about CIE RGB space? It has 3 primaries

The CIE RGB primaries are not colors

The CIE RGB are not physical lights

The CIE RGB primaries are a function of the color-matching curves

Standard Illuminants

So...what point on the diagram corresponds to white light?

- Perfectly white light occurs at $\left(\frac{1}{3}, \frac{1}{3}\right)$
- This is called standard illuminant E

Most light sources are not perfectly white.

Illuminant D65 is at (0.3127,0.2390)

- Approximates average daylight in most geographic locations
- Defines white light for the sRGB color space
- Has the spectral power distribution shown below

