Institute for Analysis and Scientific Computing

Lothar Nannen, Michael Neunteufel

Numerik partieller Differentialgleichungen: stationäre Probleme - Übung 5

Übungstermin: 9.12.2020 27. November 2020

Aufgabe 21:

Sei $A \in \mathbb{R}^{2 \times 2}$ eine symmetrische, positiv definite Matrix, $b \in \mathbb{R}^2$ und c > 0 mit $c - \frac{1}{2} \operatorname{div} b \geq 0$. Weiter seien $\Omega \subset \mathbb{R}^2$ ein beschränktes Lipschitz-Gebiet und $f \in L^2(\Omega)$.

a) Beweisen Sie, dass eine eindeutige schwache Lösung $u \in H_0^1(\Omega)$ von

$$-\operatorname{div}(A\nabla u) + b \cdot \nabla u + cu = f \qquad \text{auf } \Omega, \tag{1a}$$

$$u = 0$$
 auf $\partial \Omega$, (1b)

existiert.

- b) Sei $u_h \in \mathcal{S}_0^1(\mathcal{T})$ die eindeutige, schwache Finite-Elemente Lösung. Konstruieren Sie einen residualen Fehlerschätzer für $\|u u_h\|_{H_0^1(\Omega)}$.
- c) Beweisen Sie, dass dieser Fehlerschätzer zuverlässig ist.

Hinweis: Zeigen Sie zuerst, dass die zugehörige Bilinearform elliptisch ist.

Aufgabe 22:

Beweisen Sie die Aussage aus Ex. 26 des Vorlesungsskriptes.

Aufgabe 23:

Beweisen Sie die Aussagen aus Ex. 29 und Ex. 30 des Vorlesungsskriptes.

Aufgabe 24:

Sei $u \in H_0^1(\Omega)$ für ein beschränktes Lipschitz-Gebiet $\Omega \subset \mathbb{R}^2$ die Lösung des Poisson Problems

$$(\nabla u; \nabla v)_{L^2(\Omega)} = (f; v)_{L^2(\Omega)} \qquad \forall v \in H_0^1(\Omega), \tag{2}$$

und $u_h \in \mathcal{S}_0^1(\mathcal{T})$ die zugehörige diskrete Finite-Elemente Lösung. Weiter sei \mathcal{K} die Knotenmenge der Triangulierung \mathcal{T} , $\zeta_z \in \mathcal{S}_0^1(\mathcal{T})$ für alle $z \in \mathcal{K}$ die Hutfunktionen, $\tilde{\Omega}_z := \{T \in \mathcal{T} | z \in T\}$ der Knotenpatch aus Abschnitt 4.2 und

$$\tilde{v}_h := \sum_{z \in \mathcal{K}} \left(\frac{1}{|\tilde{\Omega}_z|} \sum_{T \in \tilde{\Omega}_z} \nabla u_h|_T \right) \zeta_z \tag{3}$$

der gemittelte Gradient von u_h .

a) Beweisen Sie, dass

$$\eta_{ZZ} := \|\nabla u_h - \tilde{v}_h\|_{L^2(\Omega)} \tag{4}$$

ein zuverlässiger und effizienter Fehlerschätzer ist, wenn der gemittelte Gradient eine bessere Approximation an den echten Gradienten ist als der Gradient der FE-Lösung, d.h. wenn eine Konstante $\alpha < 1$ existiert sodass

$$\|\nabla u - \tilde{v}_h\|_{L^2(\Omega)} \le \alpha \|\nabla u - \nabla u_h\|_{L^2(\Omega)}. \tag{5}$$

b) Implementieren Sie diesen Fehlerschätzer in NGSolve und testen Sie numerisch sowohl die Güte des Fehlerschätzers als auch die Ungleichung (5). Konstruieren Sie sich dazu analog zu Beispiel 10 geeignete Referenzlösungen.

Hinweis: In NGSolve is \tilde{v}_h sehr elegant mit den Code-Zeilen

- fe_ag = VectorH1(mesh, order=1)
- vtilde = GridFunction(fe_ag)
- flux = grad(gfu)
- vtilde.Set(flux)

zu berechnen.

Aufgabe 25:

Verwenden Sie die Dörfler Markierung (Equation (4.54)) zusammen mit dem Fehlerschätzer aus Aufgabe 24, um das Beispiel aus Aufg. 15b adaptiv in NGSolve zu lösen. Hilfreich können dabei die Python-Codeschnipsel

- Integrate (..., mesh, VOL, element_wise=True),
- autoupdate=True als Argument von einer Gridfunction und eines FE-Raumes,
- die Markierung von Elementen eines ngsolve-Gitters zur Verfeinerung über for el in mesh. Elements(): mesh. Set Refinement Flag(el,...)
- und die NGSolve-Verfeinerung eins so markierten Gittes über mesh.Refine()

sein. Ein NGSolve Vector kann via .NumPy() zu einem NumPy Array konvertiert werden.