

Архитектура

224

224

2048

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

1	0
2	-1

7	-1	-6
9	1	-5
-2	0	-1

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

1	0
2	-1

1*1+3*	0+2*2+	(-2*-1)	=7
	·		- / /

7	-1	-6
9	1	-5
-2	0	-1

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

1	0
2	-1

1*1+3*0+2*2+(-2*-1)=	<i>-</i> 7
3*1-1*0-2*2+0*-1=-	-1

7	-1	-6
9	1	-5
-2	0	-1

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

2	4	9
-5	1	7
-2	0	-1

2	4	9
-5	1	7
-2	0	-1

2	4	9
-5	1	7
-2	0	-1

2	4	9
-5	1	7
-2	0	-1

Ректификация (ReLu)

7	-1	-6
9	1	-5
-2	0	-1

f(x))= <i>1</i>	nax	(0,	x)

7	0	0
9	1	0
0	0	0

1	3	1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

1	M	1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

3	

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

3	5

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

3	5	
4		

1	3	-1	0
2	-2	0	5
4	1	-1	3
-3	0	1	2

3	5	
4	3	

Полносвязный слой

Softmax

$$p(C_k|x) = \frac{p(x|C_k)p(C_k)}{\sum_{j=1}^{K} p(x|C_j)p(C_j)} = \frac{e^{a_k}}{\sum_{j=1}^{K} e^{a_j}}$$

$$a_k = \ln p(x|C_k) p(C_k)$$

Слои нормализации: dropout

Слои нормализации: BatchNormalization

$$\widehat{x}_i = \frac{x_i - \mu_B}{\sigma_B^2 + \epsilon}$$

$$\hat{y}_i = \gamma \hat{x}_i - \beta$$

Слои нормализации: CrossChannelNormalization

$$x' = \frac{x}{\left(K + \frac{\alpha \cdot ss}{windowChannelSize}\right)^{\beta}}$$