Лабораторная работа №5

Синтез сложной комбинационной схемы Моделирование сложной комбинационной схемы в системе МСАР

Задание.

Требуется разработать схему, для полученных в 4 лабораторной работе 8 выражений, и промоделировать её в MCAP.

Особенности работы в МСАР.

- 1. В примитивах МСАР нет 4-х и 8-входовых элементов. Вместо них использовать 5 и 9-входовые.
- 2. Пустых (не подключенных) ножек быть не может! Подумайте, как поступить!
- 3. При расчете количества микросхем К155 серии, если входов больше 4, то используем ЛА2 (8-входовую схему). Конечно, в 155 серии появилась 5-входовая схема, но это не классика
- 4. Схема большая. Бесплатный MCAP разрешает использовать не более 50 элементов. В 2 вариантах это вызывает проблемы. Можно убрать на выходе инверторы, но в отчете об этом надо написать обязательно!

Содержание отчета.

- 1. Типовой титульный лист.
- 2. Исходные данные варианта.
- 3. Выбранные уравнения.
- 4. Перевод в базис Шеффера.
- 5. Схема в МСАР.
- 6. Временная диаграмма для ваших существенных наборов (запрограммировать задатчик).
- 7. Расчет времени задержки.
- 8. Расчет количества микросхем, которые требуются для реализации схемы

Пример отчета.

Вариант № ХХ

Входные сигналы

16c/c	2c/c	16c/c	2c/c	
01	00001	7b	01111011	
02	00010	d9	11011001	
03	00011	ь0	10110000	
05	00101	62	01100010	
07	00111	3f	00111111	
09	01001	c 0	11000000	
0a	01010	05	00000101	
0c	01100	b 9	10111001	
0e	01110	db	11011011	
11	10001	3 f	00111111	
12	10010	69	01101001	
13	10011	70	01110000	
16	10110	a7	10100111	
18	11000	fb	11111011	
1a	11010	0e	00001110	
1c	11100	c6	11000110	
1e	11110		11111110	
		fe	-	
1f	11111	58	01011000	
Выбранные функ	ции:			
^Y1=x1*^x4*x5	+ ^x2*x3*^x5 + ^x2*	*^x3*x4 + ^x1*^x2*^x5	(Сложность 23)	
Y2=^x3*x4 + x2*	x3 + x1*^x3*^x5 + /	^x2*x3*^x4*x5 + x4*^x5	(Сложность 25)	
Y3=^x3*x4 + x1*	x3*x4 + ^x2*^x3*^	x5 + x1*x3*x5 + ^x1*^x2	*^x5 (Сложность 27)	
^Y4=^x1*x3*^x4 (Сложность 35)	+ x2*^x3 + ^x3*x4	+ ^x1*^x2*^x4*^x5 + ^x	2*x3*^x4*^x5 + ^x1*x2*^x5	
Y5=x2*^x3*^x4	+ ^x2*x4*x5 + ^x1*/	^x2*^x3 + x1*x3*x4 + x1	*^x2*x3*^x5 (Сложность 31)	
Y6=^x1*x2 + x2*	x5 + ^x3*^x4*x5 + ′	x2*x4*^x5 + x2*x3*^x4	(Сложность 25)	
Y7=x3*^x4 + ^x2	.*x3 + x1*^x3*^x5 +	^x1*^x2*x5 + x2*^x3*x	4*x5 (Сложность 27)	
Y8=^x1*x2 + ^x2	.*^x5 + x3*^x4 + ^x3	3*x4*x5 (Сложность 17)		
Штрих Шеффер	a:			
^Y1= ^(^(x1*^x4	*x5) * ^(^x2*x3*^x	5) * ^(^x2*^x3*x4) * <mark>^(^</mark>	<mark>x1*^x2*^x5)</mark>) (Сложность 23)	
Y2=^(<mark>^(^x3*x4)</mark>	* ^(x2*x3) * <mark>^(x1*^</mark> >	<mark>:3*^x5)</mark> * ^(^x2*x3*^x4*	⁽ x5) * ^(x4*^x5)) (Сложность 2	5)
Y3=^(<mark>^(^x3*x4)</mark> 27)	* <mark>^(x1*x3*x4)</mark> * ^(^>	2*^x3*^x5) * ^(x1*x3*x	х5) * <mark>^(^x1*^x2*^x5)</mark>) (Сложно	СТЬ

Выходные сигналы

```
^Y4=^(^(^x1*x3*^x4) * ^(x2*^x3) * <mark>^(^x3*x4)</mark> * ^(^x1*^x2*^x4*^x5) * ^(^x2*x3*^x4*^x5) * ^(^x1*x2*^x5)) (Сложность 35)

Y5=^(^(x2*^x3*^x4) * ^(^x2*x4*x5) * ^(^x1*^x2*^x3) * <mark>^(x1*x3*x4)</mark> * ^(x1*^x2*x3*^x5)) (Сложность 31)

Y6=^(<mark>^(^x1*x2)</mark> * ^(x2*x5) * ^(^x3*^x4*x5) * ^(^x2*x4*^x5) * ^(x2*x3*^x4)) (Сложность 25)

Y7=^(<mark>^(x3*^x4)</mark> * ^(^x2*x3) * <mark>^(x1*^x3*^x5)</mark> * ^(^x1*^x2*x5) * ^(x2*^x3*x4*x5)) (Сложность 27)

Y8=^(<mark>^(^x1*x2)</mark> * ^(^x2*^x5) * <mark>^(x3*^x4)</mark> * ^(^x3*^x4) * ^(^x3*x4*x5)) (Сложность 17)
```

Суммарная сложность - 210.

Суммарная сложность с учетом повторений – 183.

Необходимые компоненты:

НЕ (К155ЛН1) – 2 микросхемы (7 элементов используется, 5 свободных)

2И-НЕ (К155ЛА3) – 3 микросхемы (10 элементов используется, 2 свободных)

ЗИ-НЕ (К155ЛА4) – 6 микросхем (18 элементов используется, свободных нет)

4И-НЕ (К155ЛА1) – 4 микросхемы (7 элементов используется, 1 свободный)

Не получилось найти микросхему 5И-НЕ, ее можно заменить на 8И-НЕ.

8И-НЕ (К155ЛА2) – 6 микросхем (Причем элемент U141 становится не нужным)

Оптимизация:

- Можно избавиться от одной микросхемы HE - Соединить два контакта элемента 2И-НЕ и получится инвертор.

Тогда необходимые компоненты:

НЕ (К155ЛН1) – 1 микросхема (все элементов используется, свободных нет)

2И-НЕ (К155ЛА3) – 3 микросхемы (11 элементов используется, 1 свободный)

ЗИ-НЕ (К155ЛА4) – 6 микросхем (18 элементов используется, свободных нет)

4И-НЕ (К155ЛА1) – 4 микросхемы (7 элементов используется, 1 свободный)

8И-HE (K155ЛA2) — 6 микросхем

Временная задержка 50нс по микрокапу, если используется связка элементов U143 и U141

Временная задержка 40нс, если вместо них использовать 8И-НЕ