Compilation and Program Analysis

By Francescomaria Faticanti (and Théophile Dubuc)

Contents

Ι	Introduction	1
1	Probability	1
2	Random Variable	2
	2.1 Definition	
	2.2 Inverse-Transform Method	
	2.3 Accept-reject Method	3
3	Stochastic Process	4
	3.1 Markov Chains	٦
	3.2 Stationary distributions	Ę
	3.3 Infinite state DTMC	6
	3.4 Ergodicity questions	7

Part I

Introduction

1 Probability

Def 1: Event

Let Ω be a simple space. An **event** is a set $E \subseteq \Omega$.

Let $E, F \subseteq \Omega$, then there are 3 possible operations: $E \cup F, E \cap F, \overline{E}$.

Two events E and F are **exclusive** if $E \cap F = \emptyset$.

 $E_1,...,E_n$ partition F if they are mutually exclusive (i.e. $\forall i,j,\,E_i\cap E_j=\varnothing$) and $\bigcup_{i=1}^n E_i=F$.

Def 2: Union of probability

$$\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F) - \mathbb{P}(E \cap F)$$

Property 1:

$$\begin{split} \mathbb{P}(E \cap F) \leqslant \mathbb{P}(E) + \mathbb{P}(F). \\ \text{Moreover, if } E \cap F = \varnothing \text{ then } \mathbb{P}(E \cap F) = \mathbb{P}(E) + \mathbb{P}(F). \end{split}$$

Def 3: Conditional probability

The **conditional probability** of an event E given F is: $\mathbb{P}(E|F) = \mathbb{P}_F(E) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$

Def 4: Independancy

Two event E and F are **independent** if $\mathbb{P}(E \cap F) = \mathbb{P}(E).\mathbb{P}(F)$ Therefore, $\mathbb{P}(E|F) = \mathbb{E}$

Def 5: Conditionnaly independancy

E and F are conditionally independent given G if $\mathbb{P}(E \cap F|G) = \mathbb{P}(E|G).P(F|G)$

Theorem 1: Low of Probability

$$\begin{split} \mathbb{P}(E) &= \mathbb{P}(E \cap F) + \mathbb{P}(E \cap \overline{F}) \\ &= \mathbb{P}(E|F).\mathbb{P}(F) + \mathbb{P}(E|\overline{F}).\mathbb{P}(\overline{F}) \end{split}$$

Property 2:

Let
$$F_1,...,F_n$$
 be a partition of Ω then $\mathbb{P}(E) = \sum_{i=1}^n \mathbb{P}(E \cap F_i) = \sum_{i=1}^n \mathbb{P}(E|F_i).\mathbb{P}(F_i)$

Theorem 2: Extended Boyes Law

Let
$$F_1,...,F_n$$
 be a partition of Ω then $\mathbb{P}(F|E) = \frac{\mathbb{P}(E|F).\mathbb{P}(F)}{\mathbb{P}(E)} = \frac{\mathbb{P}(E|F).\mathbb{P}(F)}{\sum\limits_{i=1}^{n} \mathbb{P}(E|F_i).\mathbb{P}(F_i)}$

Random Variable

Definition

Def 6: Discrete Random Variable

Let X be a discrete random variable. The probability mass function is $P_X()$ is defined by $P_X(e) = \mathbb{P}(X = e)$ where $\sum P_X(x) = 1$.

The cumulative distribution function of X is $F_X(e) = \mathbb{P}(X \leq e)$.

List of common discrete random variables:

- $X \sim \text{Bernoulli}(p) \text{ if } \mathbb{P}(X=1) = p$
- $X \sim \text{Bernoulli}(n, p) \text{ if } \mathbb{P}(X = k) = \binom{n}{k} p^k (1 p)^{n k}$
- $X \sim \text{Geometric}(p)$ if $\mathbb{P}(X = k) = (1 p)^{k-1} p^{k}$ $X \sim \text{Poisson}(\lambda)$ if $\mathbb{P}(X = k) = \frac{e^{\lambda} \lambda^k}{k!}$

Def 7: p.d.f. for Continous Random Variable

The **probability density function** of a continuous R.V. is a non negative function f_X where $\mathbb{P}(a \leq X \leq b) = \int_a^b f_X(x) \, dx$ where $\int_{-\infty}^{+\infty} f_X(x) \, dx = 1$

We suppose that we have a generator of uniform $\mathcal{U}(0,1)$ random variables.

2.2 Inverse-Transform Method

Assumptions:

- (i) We know the c.d.f. $F_X(x) = \mathbb{P}(X \leq x)$ of random variable X that we want to simulate
- (ii) This distribution is easily invertible, i.e. we can get x from $F_X(x)$

Continuous case:

<u>Idea:</u> map $u \in \mathcal{U}(0,1) \to x$ instantce if the RV X whose cdef is $F_X(x)$

Assumption: $X \in [0, +\infty[$

 $(0,\overline{\mathcal{U}}) \mapsto (0,x)$ mapping function g^{-1}, g is increasing

A: a value [0,x] should be output with probability $F_X(x)$.

Q: probability that g^{-1} outputs a value in (0,x). Then the probability of generating (0,u) is u which is equal to $\mathbb{P}(0 < \mathcal{U} < u) = \mathcal{P}(0 < X < x) = F_X(x)$. Then $x = F_X^{-1}(u)$.

Inverse-Transform Method to generate RV X:

- Generate $u \in \mathcal{U}(0,1)$
- Return $X = F_X^{-1}(u)$

Example: Generate $X \equiv Exp(\lambda)$

Remember, $F_X(x) = 1 - e^{-\lambda x}$. Then if $u = F_X(x)$ it means that $x = -\frac{1}{\lambda} ln(1-u)$ given a $u \in \mathcal{U}(0,1)$.

Set $x = -\frac{1}{\lambda}ln(1-u)$ which is an instance of $X \equiv Exp(\lambda)$.

Discrete case:

Generate a discrete R.V. ssuch that $X = \begin{cases} x_0 \text{ with prob } p_0 \\ \vdots \\ x_k \text{ with prob } p_k \end{cases}$

First, arrange $x_0, ..., x_k$ such that $x_0 < ... < x$

Then, generate $u \in \mathcal{U}(0,1)$

- If $0 < u < p_0$ then output x_0
- If $p_0 < u \leqslant p_1$ then output x_1
- If $p_0 + p_1 < u \le p_0 + p_1 + p_2$ then output x_2 General case: If $\sum_{i=0}^{l-1} p_i < u < \sum_{i=0}^{l} p_i$ then output x_l

Accept-reject Method 2.3

Discrete case:

<u>Given:</u> efficient method for generating RV Q with p.m.f. $\{q_J, J \text{ discrete}\}\$ where $q_J = \mathbb{P}(Q = J)$

Requirement: $\forall J$, we must have $q_J > 0 \Leftrightarrow p_J > 0$

Output: RV P with p.m.f. $\{p_J, J \text{ discrete}\}\$ where $p_J = \mathbb{P}(P = J)$

Suppose that we want to generate
$$P = \begin{cases} 1 \text{ with prob } p_1 = 0.36 \\ 2 \text{ with prob } p_2 = 0.24 \text{ and } Q = \begin{cases} 1 \text{ with prob } q_1 = 0.333... \\ 2 \text{ with prob } q_2 = 0.333... \\ 3 \text{ with prob } q_3 = 0.333... \end{cases}$$

Accept-reject Algo to generate discrete RV P:

Let c be a normalized constant such that $\forall J$ such that $p_J > 0$, $\frac{p_J}{q_J} \leqslant c$. Notice that c > 1. In fact, $c = \max\{\frac{p_J}{q_J}, \ \forall J\}.$

Here is the sequence of operation for the algo:

- (0) Find RV Q such that $q_i > 0 \Leftrightarrow p_i > 0$
- (1) Generate an instance of Q, call it J
- (2) Generate RV $\mathcal{U} \in [0,1]$

• (3) If $\mathcal{U} < \frac{p_J}{c \cdot q_J}$ then return P = J and stop, otherwise return to step (1)

Then
$$\mathbb{P}(P \text{ ends up being set to } J) = p_J$$

$$\mathbb{P}(P \text{ is set to } P_J) = \frac{fraction \text{ of times } J \text{ is generated and } J \text{ is accepted}}{fraction \text{ of times any thing is accepted}}$$

$$= \frac{\mathbb{P}(J \text{ is generated})\mathbb{P}(J \text{ is accepted} \mid J \text{ is generated})}{\sum_{J} fraction \text{ of times } J \text{ is generated and adopted}}$$

$$= \frac{q_J \cdot \frac{p_J}{\sum_{J} \frac{p_J}{c}}}{\sum_{J} \frac{p_J}{c}} = \frac{\frac{p_J}{c}}{\frac{1}{c}} = p_J$$

Continuous case:

- Find continuous RV Y such that $f_Y(t) > 0 \Leftrightarrow f_X(t) > 0$. Let c be a constant such that $\forall t$, such that $f_X(t) > 0$ $\frac{f_X(t)}{f_Y(t)}$, we take the smallest c possible.
- Generate an instance t of Y.
- With prob $\frac{f_X(t)}{c.f_Y(t)}$, return X = t else reject and return to previous step.

3 Stochastic Process

Def 8: Stochastic Processes

A stochastic process is an orderred collection of RVs $\{X_t, t \in T\}$. Values assured by $X_t \to$ state space of process (S). t is index of the process.

 $\forall i \in \{1, 2\}, t = t_i$, SP is a standard RV X_{t_i} of p.m.f. $f_X(t_i)(x)$.

 $f_X(t_1)(x) \neq f_X(t_2)(x).$

We denote by $X_{s1}(t)$ the (deterministique) function of time.

There is 4 cases:

- CS-CT: $s \in \mathbb{R}, t \in \mathbb{R}$
- CS-DT: $s \in \mathbb{R}, t \in \mathbb{Z}$
- DS-CT: $s \in \mathbb{Z}$, $t \in \mathbb{R}$
- DS-DT: $s \in \mathbb{Z}$, $t \in \mathbb{Z}$

When there is 'DS', we call the stochastic process chains.

Property 3:

Let $(X_t)_t$ be a Poisson process of intensity λ , i.e. stochastic process made of Random variables such that $X(t+t') - X(t) \equiv Poisson(\lambda t')$. $(X_t)_t$ is a Poisson process iff for any $\varepsilon \leftarrow 0$,

$$\mathbb{P}(X(t+\varepsilon) - X(t) = J) = \begin{cases} 1 - \lambda \cdot \varepsilon + o(\varepsilon) & \text{if } J = 0\\ \lambda \cdot \varepsilon + o(\varepsilon) & \text{if } J = 1\\ o(\varepsilon) & \text{if } J \geqslant 2 \end{cases}$$

Property 4:

Let $(N_t^X)_t$) and $(N_t^Y)_t$ be two independent *Poisson* processes of intensity λ and μ . Let $(N_t^Z)_t$ be the process obtained by addition of $(N_t^X)_t$ and $(N_t^Y)_t$, i.e. $N_t^Z = N_t^X + N_t^Y$. Then, $(N_t^Z)_t$ is a *Poisson* process of intensity $\lambda + \mu$.

3.1 Markov Chains

Def 9: DTMC

A DTMC is a stochastic process $\{X_n, n \in \mathbb{N}\}$ where X_n is the state (discrete) time step n such that $\forall n \in \mathbb{K}, \forall i, j, \forall i_0, ..., i_{n-1}$ we have:

$$\mathbb{P}(X_{n+1} = j \mid X_n = i, X_{n-1} = i_{n-1}, ..., X_0 = i_0) = \mathbb{P}(X_{n+1} = j \mid X_n = i) = P_{i,j}$$

Def 10: Markovian property

The conditional distribution of any future state X_{n+1} , given the past states $X_0, ..., X_{n-1}$ and the current state X_n is independent of the past and only depend on the present state X_n .

Def 11:

The **transition probability matrix** associated with any DTMC P whose entry (i, j) denoted by $P_{i,j}$ represents the probability of moving to state j on the next transition given that the current state is i. Then $\forall i, \sum_{j} P_{i,j} = 1$

Property 5:

$$\lim_{n \to +\infty} P_{i,j}^n = (\lim_{n \to +\infty} P^n)_{i,j}$$

Def 12: Limiting probability and distribution

Let $\Pi_j = \lim_{n \to +\infty} P_{i,j}^n$. Then Π_j represents the **limiting probability** that the chain is in state j (independently of the state i). For a M-state DTMC with state 1, ..., M, $\vec{\Pi} = (\Pi_1, ..., \Pi_M)$ where $\sum_{i=1}^{M} \Pi_i = 1$ represents the **limiting distribution** of being in each state.

3.2 Stationary distributions

Def 13: Stationary distribution

A probabilistic distribution $\vec{\Pi} = (\Pi_1, ..., \Pi_M)$ is said to be **stationary** for the M.C. if $\vec{\Pi}.P = \vec{\Pi}$ and $\sum_{i=1}^{M} \Pi_i = 1$. These is the **stationary equations**.

Theorem 3: Stationary distribution

Given a finite state DTMC with M states, let $\Pi_j = \lim_{n \to +\infty} P_{i,j}^n > 0$ be the limiting probability of being in state j and let $\vec{\Pi} = (\Pi_1, ..., \Pi_M)$ where $\sum_{i=1}^M \Pi_i = 1$ be the limiting distribution. Assuming that the limiting distribution exists, $\vec{\Pi}$ is also a stationary distribution and it is unique.

5

Proof:

$$\Pi_{j}.P = \lim_{n \to +\infty} P_{i,j}^{n+1} = \lim_{n \to +\infty} \sum_{k=1}^{M} P_{i,k}^{n}.P_{k,j} = \sum_{k=1}^{M} \lim_{n \to +\infty} P_{i,k}^{n}.P_{k,j} = \sum_{k=1}^{M} \Pi_{k}.P_{k,j} = \Pi_{j}$$
Then $\vec{\Pi} P = \vec{\Pi}$

Let $\vec{\Pi}'$ be a stationary distribution. Let $\vec{\Pi}$ is the limiting distribution. Let's show that $\vec{\Pi}'$ and $\vec{\Pi}$ are equals. Let's assume we start at time \emptyset with distribution $\vec{\Pi}'$.

$$\Pi'_j = \mathbb{P}(X_0 = j) = \mathbb{P}(X_n = j).$$

Then,
$$\forall n \in \mathbb{N}, \ \Pi'_j = \sum_{i=1}^{M} \mathbb{P}(X_n = j \mid X_0 = i).\mathbb{P}(X_0 = i) = \sum_{i=1}^{M} P_{i,j}^n.\Pi'_i$$

Nevertheless
$$\Pi'_j = \lim_{n \to +\infty} \Pi'_j = \lim_{n \to +\infty} \sum_{i=1}^M P_{i,j}^n . \Pi'_i = \sum_{i=1}^M \lim_{n \to +\infty} P_{i,j}^n . \Pi'_i = \sum_{i=1}^M \Pi_j . \Pi'_i = \Pi_j \sum_{i=1}^M \Pi_i = \Pi_j$$

Then, the stationary distribution is unique.

Summary: Finding the limiting probability in a finite state DTMC

By the previous theorem [3.2], given that the limiting distribution $\{\Pi_j , 1 \leq j \leq M\}$ exist, we can obtain it by solving the sattionary equations $\vec{\Pi}.P = \vec{\Pi}$ and $\sum_{i=1}^{M} \Pi_i = 1$ where $\vec{\Pi} = (\Pi_1, ..., \Pi_M)$.

Def 14: Stationary Markov Chains

A MC for which the limiting probabilities exist is said to be **stationary** (or in **steady state**) if the initial state is chosen according to the stationary probabilities.

3.3 Infinite state DTMC

Now,
$$\vec{\Pi} = (\Pi_0, ...,)$$
 and $\Pi_j = \lim_{n \to +\infty} P_{i,j}^n$ and $\sum_{j=0}^{+\infty} \Pi_j = 1$.

The result of theorem 3.2 still holds for infinite state DTMC.

Example:

Suppose an unbounded queue system when at each time step, with probability $p = \frac{1}{40}$, one job arrives and, independently, with probability $q = \frac{1}{30}$, one job departs.

Q: what is the average number of jobs in the system?

Let's construct an infinite DTMC A such that $\forall i, j \in \mathbb{N}$, $A_{i,j}$ is the probability that there is currently i jobs in the system and it will be j after the time step.

Therefore,
$$\forall i \in \mathbb{N}^*$$
, $A_{i-1,i} = p(1-q) = r$, $A_{i,i-1} = q(1-p) = s$, $A_{i,i} = 1 - r - s$ and $A_{0,0} = 1 - r$.

The stationnary equations are:

$$\Pi_{0} = (1 - r)\Pi_{0} + s\Pi_{1}$$

$$\Pi_{1} = rPi_{0} + (1 - r - s)\Pi_{1} + s\Pi_{2}$$

$$\vdots$$
and
$$\Pi_{0} + \Pi_{1} + \dots = 1$$

Then,
$$\Pi_1 = \frac{r}{s}\Pi_0$$
, $\Pi_2 = (\frac{r}{s})^2\Pi_0$, $\Pi_3 = (\frac{r}{s})^3\Pi_0$. In fact $\forall i \in \mathbb{N}$, $\Pi_i = (\frac{r}{s})^i\Pi_0$

To verify that, $\forall i > 0$, Π_i has to be equal to $r\Pi_{i-1} + (1 - r - s)\Pi_i + s\Pi_{i+1}$. In fact, that is can be verify through calculus.

To find Π_0 , we exploit the last stationary equation : $\sum_{i=0}^{+\infty} \Pi_i = 1$. Then $\Pi_0 \sum_{i=0}^{+\infty} (\frac{r}{s})^i = 1$. Therefore, $\Pi_0 = 1 - \frac{r}{s}$. Then $\Pi_i = (\frac{r}{s})^i \cdot (1 - \frac{r}{s})$.

Let's call N the number or jobs in the system and $\alpha = \frac{r}{a}$.

Then
$$\mathbb{E}(N) = \sum_{i=0}^{+\infty} i \Pi_i = \sum_{i=0}^{+\infty} i \alpha^i (1-\alpha) = \alpha \cdot (1-\alpha) \sum_{i=1}^{+\infty} (i \cdot \alpha^{i-1}) = \alpha \cdot (1-\alpha) \frac{d}{dp} (\frac{1}{1-\alpha}) = \frac{\alpha}{1-\alpha}$$

3.4 Ergodicity questions

Def 15: Period

The **period** of a state j is the greatest common divisor (GCD) of the set of integers n such that $P_{i,j}^n > 0$.

A state is **aperiodic** is it has period 1.

A chain is aperiodic if all its states are aperiodic.

Def 16: accessibility

A state j is **accessible** from i if $\exists n \in \mathbb{N}$ such that $P_{i,j}^n > 0$.

Two states i and j communicate if i is accessible from j and conversly.

A MC is **irreductible** if all its states communicate with each other.

Theorem 4:

For an irreductible aperiodic finite state MC with transition matrix P, $m_{j,j} = \frac{1}{\Pi_i}$???

Def 17: Recurrent & transiant

 f_i is the probability that a chain starting in state j ever return to state j.

If $f_i = 1$, j is said to be **recurrent** otherwise, it is **transient**.

Recurrent MCs fall into two types:

- **Positive recurrent**: The wait time between recurrences is finite.
- Null recurrent: The wait time between recurrences is null.

Def 18: Ergodic DTMC

An **ergodic** DTMC is one that have the 3 following properties:

- is aperiodic
- is irreductible
- is positive recurrent

Theorem 5: Ergodic thm of DTMC

Given a recurrent, aperiodic and irreductible DTMC, $\Pi_j = \lim_{n \to +\infty} P_{i,j}^n$ exists and $\Pi_j = \frac{1}{m_{j,j}}$ For a positive recurrent, aperiodic and irreductible DTMC, $\forall j, \ \Pi_j > 0$.