Kelley and Meka's proof of Roth's theorem

by

MARCEL K. GOH

23 August 2023

Note. This exposition of Kelley and Meka's proof closely follows that of Bloom and Sisask, but with many extra details supplied. I hope that it will be useful to other students at the Ph.D.-student level.

1. Definitions and elementary facts

We will use G primarily to refer to a finite abelian group. For functions $f,g:G\to {\bf C}$ we have the inner product

$$\langle f, g \rangle = \mathbf{E}_{x \in G} f(x) \overline{g(x)}$$

and the L_p norm

$$||f||_p = \left(\mathbf{E}_{x \in G} |f(x)|^p\right)^{1/p}.$$

In L_p spaces we have the useful Hölder inequality

$$|\langle f, g \rangle| \leq ||f||_p \cdot ||g||_q$$

for $p, q \in [1, \infty)$ with 1/p + 1/q = 1. Assuming now that f and g are **R**-valued, we also have the convolution

$$(f * g)(x) = \mathbf{E}_{y \in G} f(y)g(x - y)$$

and the difference convolution

$$(f \circ g)(x) = \mathbf{E}_{y \in G} f(y)g(x+y).$$

It is easy to check that for all $x \in G$, (f*g)(x) = (g*f)(x), but with the difference convolution we have $(f \circ g)(x) = (g \circ f)(-x)$. We also have the following adjoint property.

Proposition 1 (Adjoint property). Let G be a finite abelian group and let $f, g, h : G \to \mathbf{R}$. Then

$$\langle f, q * h \rangle = \langle h \circ f, q \rangle.$$

Proof. First expand

$$\langle f, g * h \rangle = \mathbf{E}_{x \in G} f(x) (g * h)(x)$$

$$= \mathbf{E}_{x \in G} f(x) \mathbf{E}_{y \in G} g(y) h(x - y)$$

$$= \mathbf{E}_{y \in G} g(y) \mathbf{E}_{x \in G} f(x) h(x - y).$$

Then substituting z = x - y so that x = z + y yields

$$\langle f, g * h \rangle = \mathbf{E}_{y \in G} g(y) \, \mathbf{E}_{z \in G} f(z+y) h(z)$$

$$= \mathbf{E}_{z \in G} (h \circ f)(z) g(z)$$

$$= \langle h \circ f, g \rangle. \quad \blacksquare$$

For a group G the dual group \widehat{G} is the set of all homomorphisms from G to \mathbb{C}^{\times} . The Fourier transform of $f: G \to \mathbb{R}$ is the function $\widehat{f}: \widehat{G} \to \mathbb{C}$ given by

$$\widehat{f}(\chi) = \mathbf{E}_{x \in G} f(x) \chi(-x).$$

The following proposition describes how the convolution and difference convolution behave under the Fourier transform.

Proposition 2 (Convolution laws). Let G be a finite abelian group and let $f, g: G \to \mathbf{R}$. Then the following identities hold:

$$i) \widehat{f * g} = \widehat{f} \cdot \widehat{g}$$

ii)
$$\widehat{f \circ g} = \overline{\widehat{f}} \cdot \widehat{g}$$

In particular, $\widehat{f \circ f} = |\widehat{f}|^2$.

Proof. Expand

$$\widehat{f * g}(\chi) = \mathbf{E}_{x \in G}(f * g)(\chi)\chi(-x)$$

and multiply the right-hand side by $1 = \chi(-y)\chi(y)$ to get

$$\widehat{f * g}(\chi) = \mathbf{E}_{x \in G} \, \mathbf{E}_{y \in G} \, f(y) g(x - y) \chi(-y) \chi(y - x).$$

Then we may interchange the order of summation and substitute z = x - y to arrive at

$$\widehat{f * g}(\chi) = \mathbf{E}_{y \in G} \, \mathbf{E}_{z \in G} \, f(y) g(z) \chi(-y) \chi(-z) = \widehat{f}(\chi) \widehat{g}(\chi),$$

which proves (i). For part (ii), we expand and multiply by the same 1 to get

$$\widehat{f \circ g}(\chi) = \mathbf{E}_{x \in G}(f \circ g)(x)\chi(-x) = \mathbf{E}_{x \in G} \mathbf{E}_{y \in G} f(y)g(x+y)\chi(y)\chi(-x-y).$$

We again interchange the order of summation; this time substituting z = x + y gives us

$$\widehat{f \circ g}(\chi) = \mathbf{E}_{y \in G} \, \mathbf{E}_{z \in G} \, f(y) g(z) \chi(y) \chi(-z)$$

$$= \overline{\mathbf{E}_{y \in G} \, f(y) \chi(-y)} \, \mathbf{E}_{z \in G} \, g(z) \chi(-z)$$

$$= \overline{\widehat{f}(\chi)} \widehat{g}(\chi),$$

which is what we wanted.

When we convolve two functions \widehat{f} and \widehat{g} on the dual group, we take a sum instead of an expectation:

$$(\widehat{f} \circ \widehat{g})(\chi) = \sum_{\psi \in G} \widehat{f}(\psi)\widehat{g}(\chi\psi^{-1}).$$

The same goes in the definition of the inner product $\langle \widehat{f}, \widehat{g} \rangle$.

Let $f^{*\bar{k}}$ denote the k-fold convolution of a function f. The next proposition interprets k-norms in terms of k-fold convolutions of the Fourier transform.

Proposition 3. Let G be a finite abelian group, let $k \ge 1$ be an integer, and let χ_0 denote the identity element of the dual group \widehat{G} of G. We have the identity

$$\mathbf{E}_{x \in G} f(x)^k = \widehat{f}^{*k}(\chi_0).$$

Proof. Expand by the Fourier inversion formula to get

$$\mathbf{E}_{x \in G} f(x)^{k} = \mathbf{E}_{x \in G} \left(\sum_{\chi \in \widehat{G}} \widehat{f}(\chi) \chi(x) \right)^{k}$$

$$= \mathbf{E}_{x \in G} \sum_{\chi_{1} \in \widehat{G}} \cdots \sum_{\chi_{k} \in \widehat{G}} \widehat{f}(\chi_{1}) \cdots \widehat{f}(\chi_{k}) \chi_{1}(x) \cdots \chi_{k}(x)$$

$$= \sum_{\chi_{1} \in \widehat{G}} \cdots \sum_{\chi_{k} \in \widehat{G}} \widehat{f}(\chi_{1}) \cdots \widehat{f}(\chi_{k}) \mathbf{E}_{x \in G} \chi_{1} \cdots \chi_{k}(x).$$

By orthogonality of characters, the inner expectation is zero when $\chi_1 \cdots \chi_k \neq \chi_0$, so we have

$$\mathbf{E}_{x \in G} f(x)^k = \sum_{\chi_1 \cdots \chi_k = \chi_0} \widehat{f}(\chi_1) \cdots \widehat{f}(\chi_k) = \widehat{f}^{*p}(\chi_0). \quad \blacksquare$$

For sets A and X, let $\mu_X(A) = |A \cap X|/|X|$ denote the relative density of A in X, and if X is understood to be a subset of a larger set G, then we use μ_X also to denote the normalised indicator function given by

$$\mu_X(x) = \begin{cases} 1/\mu_G(X), & \text{if } x \in X; \\ 0, & \text{otherwise.} \end{cases}$$

The scaling is done so that $\|\mu_X\|_1 = 1$ for any $X \subseteq G$, as can easily be checked. We denote the ordinary indicator function by $\mathbf{1}_X = \mu_G(X)\mu_X$, and sometimes write $\mathbf{1}_x$ for the indicator function $\mathbf{1}_{\{x\}}$ of a singleton set. Lastly, we also sometimes use the same symbol to denote the indicator function of a statement; i.e., $\mathbf{1}_{[P]}$ is 1 if the statement P is true and 0 if it is false.

It is easy to check that if μ has $\|\mu\|_1 = 1$, then so does $\mu * \mu$ and $\mu \circ \mu$. We shall say that $\mu : G \to \mathbf{R}_{\geq 0}$ is a *probability measure* on G if $\|\mu\|_1 = 1$. The following proposition concerns such measures.

Proposition 4. Let G be a finite abelian group. If $\mu: G \to \mathbf{R}_{\geq 0}$ is a probability measure, then

$$\widehat{\mu-1} = \widehat{\mu}(1-\mathbf{1}_{\chi_0}).$$

Proof. We expand

$$\widehat{\mu - 1}(\chi) = \mathbf{E}_{x \in G} (\mu(x) - 1) \chi(-x)$$

$$= \mathbf{E}_{x \in G} \mu(x) \chi(-x) - \mathbf{E}_{x \in G} \chi(-x).$$

$$= \widehat{\mu}(\chi) - \mathbf{E}_{x \in G} \chi(-x).$$

If $\chi \neq \chi_0$, then the expectation vanishes, and if $\chi = \chi_0$, then the expection clearly equals 1, and $\mu(\chi_0) = \|\mu\|_1 = 1$, so the whole expression is zero.

If $\mu: G \to \mathbf{R}_{\geq 0}$ is a probability measure and $f, g: G \to \mathbf{C}$ we write

$$\langle f, g \rangle_{\mu} = \mathbf{E}_{x \in G} \,\mu(x) f(x) \overline{g(x)}$$

for the inner product relative to μ , and for $1 \leq p < \infty$ we write

$$||f||_{p(\mu)} = \left(\mathbf{E}_{x \in G} \mu(x) |f(x)|^p\right)^{1/p}$$

for the L_p norm relative to μ . The following basic proposition establishes the monotonicity of L_p norms with respect to p.

Proposition 5 (Monotonicity of L_p norms). Let G be a finite abelian group. Let $\mu: G \to \mathbf{R}_{\geq 0}$ be a probability measure and let $f: G \to \mathbf{C}$. For $1 \leq p < q < \infty$, we have

$$||f||_{p(\mu)} \le ||f||_{q(\mu)}.$$

Proof. Let r = q/p > 1 and let s = r/(r-1) so that 1/r + 1/s = 1. We have

$$\mathbf{E}_{x \in G} \mu(x) |f(x)|^p = \mathbf{E}_{x \in G} \mu(x) |f(x)|^{q/r} \cdot 1$$

Now by Hölder's inequality, we have

$$\mathbf{E}_{x \in G} \mu(x) |f(x)|^p \le \left(\mathbf{E}_{x \in G} \mu(x) |f(x)|^q \right)^{1/r} \left(\mathbf{E}_{x \in G} 1^s \right)^{1/s}$$
$$= \left(\mathbf{E}_{x \in G} \mu(x) |f(x)|^q \right)^{p/q}.$$

Taking pth roots of both sides now produces the inequality we wanted.

For convenience, when $\mu: G \to \mathbf{R}_{\geq 0}$ is a probability measure and $X \subseteq G$, we write

$$\mu(X) = \|\mathbf{1}_X\|_{1(\mu)} = \mathbf{E}_{x \in G} \,\mu(x) \,\mathbf{1}_X(x),$$

and refer to this quantity as the density of X relative to μ .

2. Hölder lifting and unbalancing for finite groups

With preliminaries out of the way, we begin the proof of Kelley and Meka [2], as described and reworked by Bloom and Sisask [1]. In this section we perform the first two steps of the proof, in the general setting of finite groups.

Lemma 6 (Hölder lifting). Let $\epsilon \geq 0$ and let A and C be subsets of a finite abelian group G, where C has relative density γ . Then at least one of the following two statements holds.

i)
$$|\langle \mu_A * \mu_A, \mu_C \rangle - 1| \le \epsilon$$

ii)
$$\|\mu_A \circ \mu_A - 1\|_p \ge \epsilon/2$$
 for some $p = O(\log(1/\gamma))$.

Proof. Linearity of the inner product in the first argument gives

$$\langle \mu_A * \mu_A - 1, \mu_C \rangle = \langle \mu_A * \mu_A, \mu_C \rangle + \langle -1, \mu_C \rangle = \langle \mu_A * \mu_A, \mu_C \rangle - 1,$$

so if the first statement does not hold, then for q = 1/(1 - 1/p), we have, by Hölder's inequality,

$$\epsilon < \left| \langle \mu_A * \mu_A - 1, \mu_C \rangle \right| \le \|\mu_A * \mu_A - 1\|_p \left(\mathbf{E}_{x \in G} \left| \mu_C(x) \right|^q \right)^{1/q}$$

$$\le \|\mu_A * \mu_A - 1\|_p \gamma^{1/q - 1} \le \|\mu_A * \mu_A - 1\|_p \gamma^{-1/p}.$$

Letting p be an even integer greater than $\log_2(1/\gamma)$, we have $\log \gamma \ge p \log(1/2)$, whence $\gamma^{1/p} \ge 1/2$. This gives the inequality

$$\|\mu_A * \mu_A - 1\|_p \ge \frac{\epsilon}{2}.$$

Since p is even,

$$\|\mu_A * \mu_A - 1\|_p^p = \mathbf{E}_{x \in G} |(\mu_A * \mu_A - 1)(x)|^p = \mathbf{E}_{x \in G} (\mu_A * \mu_A - 1)(x)^p,$$

and we can apply Proposition 3 to get

$$||g||_p^p = \widehat{g}^{*p}(\chi_0),$$

where we have put $g = \mu_A * \mu_A - 1$. It was noted earlier that $\mu_A * \mu_A$ has 1-norm equal to 1, so we can apply Propositions 4 and 2 in that order to get

$$\|\mu_A * \mu_A - 1\|_p^p = (\widehat{\mu_A * \mu_A} (1 - \mathbf{1}_{\chi_0}))^{*p} (\chi_0) = (\widehat{\mu_A}^2 (1 - \mathbf{1}_{\chi_0}))^{*p} (\chi_0).$$

Repeating this whole process with $\mu_A \circ \mu_A$ in place of $\mu_A * \mu_A$ produces the very similar identity

$$\|\mu_A \circ \mu_A - 1\|_p^p = (|\widehat{\mu_A}|^2 (1 - \mathbf{1}_{\chi_0}))^{*p} (\chi_0),$$

from which we conclude that

$$\|\mu_A \circ \mu_A - 1\|_p^p \ge \|\mu_A * \mu_A - 1\|_p^p \ge \frac{\epsilon}{2}.$$

This lemma tells us that if $\langle \mu_A * \mu_A, \mu_C \rangle \geq 1/2$, then $\|\mu \circ \mu_A - 1\|_p \geq 1/4$ for some $p = O(\log(1/\gamma))$. This information can then be fed to the following general lemma.

Lemma 7 (Unbalancing of spectrally nonnegative functions). Let $\epsilon \in (0,1)$ and let $\nu : G \to \mathbf{R}_{\geq 0}$ have $\|\mu\|_1 = 1$ and $\widehat{\nu} \geq 0$. If $f : G \to \mathbf{R}$ has $\widehat{f} \geq 0$ and $\|f\|_{p(\nu)} \geq \epsilon$ for some $p \geq 1$, then

$$||f+1||_{p'(\nu)} \ge 1 + \frac{\epsilon}{2}$$

for some $p' = O(\epsilon^{-1} \log(\epsilon^{-1})p)$.

Proof. Proposition 5 tells us that $||f||_{p(\mu)}$ is monotonically increasing in p, so without loss of generality we can pick p odd and at least 5. As usual, we denote the identity in \widehat{G} by χ_0 . Using the Fourier inversion formula and orthogonality of characters as we did in the proof of Proposition 3, we observe that

$$||f||_{p(\nu)}^{p} = \mathbf{E}_{x \in G} \left(\sum_{\chi \in \widehat{G}} \widehat{\nu}(\chi) \chi(x) \right) \left(\sum_{\chi \in \widehat{G}} \widehat{f}(\chi) \chi(x) \right)^{p}$$

$$= \sum_{\chi_{1} \in \widehat{G}} \cdots \sum_{\chi_{p+1} \in \widehat{G}} \widehat{f}(\chi_{1}) \cdots \widehat{f}(\chi_{p}) \widehat{\nu}(\chi_{p+1}) \mathbf{E}_{x \in G} \chi_{1}(x) \cdots \chi_{p+1}(x)$$

$$= \sum_{\chi_{1} \cdots \chi_{p+1} = \chi_{0}} \widehat{f}(\chi_{1}) \cdots \widehat{f}(\chi_{p}) \widehat{\nu}(\chi_{p+1})$$

$$= \widehat{\nu} * \widehat{f}^{*p}(\chi_{0}).$$

Let $P = \{x \in G : f(x) \ge 0\}$ and let $g(x) = \max\{f(x), 0\}$. It is easy to see that 2g(x) = f(x) + |f(x)|, so

$$\begin{aligned} 2\langle \mathbf{1}_{P}, f^{p} \rangle_{\nu} &= 2 \, \mathbf{E}_{x \in G} \, \nu(x) \, \mathbf{1}_{P}(x) f(x)^{p} \\ &= 2 \, \mathbf{E}_{x \in G} \, \nu(x) g(x) f(x)^{p-1} \\ &= \langle 2g, f^{p-1} \rangle_{\nu} \\ &= \mathbf{E}_{x \in G} \, \nu(x) f(x)^{p} + \langle |f|, f^{p-1} \rangle_{\nu} \\ &= \widehat{\nu} * \widehat{f}^{*p}(\chi_{0}) + \langle |f|, |f|^{p-1} \rangle_{..}, \end{aligned}$$

where in the last line we used the fact that f is real-valued as well as evenness of p-1. Since the Fourier transforms of f and ν are both nonnegative, the first term is nonnegative, so

$$\langle \mathbf{1}_P, f^p \rangle_{\nu} \geq \frac{\left\langle |f|, |f|^{p-1} \right\rangle_{\nu}}{2} = \frac{\|f\|_{p(\nu)}^p}{2} \geq \frac{\epsilon^p}{2}.$$

Now let $T = \{x \in P : f(x) \ge 3\epsilon/4\}$. Then

$$\langle \mathbf{1}_{T}, f^{p} \rangle_{\nu} = \langle \mathbf{1}_{P} - \mathbf{1}_{P \setminus T}, f^{p} \rangle_{\nu}$$

$$\geq \langle \mathbf{1}_{P}, f^{p} \rangle_{\nu} - \langle \mathbf{1}_{P \setminus T}, f^{p} \rangle_{\nu}$$

$$\geq \frac{\epsilon^{p}}{2} - \mathbf{E}_{x \in G} \mathbf{1}_{P \setminus T} f(x)^{p} \nu(x)$$

$$> \frac{\epsilon^{p}}{2} - \mathbf{E}_{x \in G} (3\epsilon/4)^{p} \nu(x)$$

$$\geq \frac{\epsilon^{p}}{4},$$

where in the last line we used the fact that $(3/4)^p \le (3/4)^5 < 243/1024 < 4$. From this we deduce

$$\frac{\epsilon^{p}}{4} \leq \langle \mathbf{1}_{T}, f^{p} \rangle_{\nu}
= \mathbf{E}_{x \in G} (\nu(x)^{1/2} \mathbf{1}_{T}(x)) (\nu(x)^{1/2} f(x)^{p})
\leq (\mathbf{E}_{x \in G} \nu(x) \mathbf{1}_{T}(x)^{2})^{1/2} (\mathbf{E}_{x \in G} \nu(x) f(x)^{2p})^{1/2}
= (\mathbf{E}_{x \in G} \nu(x) \mathbf{1}_{T}(x))^{1/2} (\mathbf{E}_{x \in G} \nu(x) |f(x)|^{2p})^{p/(2p)}
= \nu(T)^{1/2} ||f||_{2p(\nu)}^{p}$$

by the Cauchy-Schwarz inequality.

Now if $||f+1||_{2p(\nu)} > 2$, then we could take p' = 2p, so assume that this norm is at most 2. By the triangle inequality, we have

$$||f||_{2p(\nu)} \le ||-1||_{2p(\nu)} + ||f+1||_{2p(\nu)} \le 3,$$

hence

$$\nu(T)^{1/2}3^p \ge \frac{\epsilon^p}{4}.$$

Once again using the fact that 4 < 1024/243, we have $4^{1/p} < 4/3$ and thus

$$\nu(T) \geq \frac{\epsilon^{2p}}{16 \cdot 3^{2p}} = \left(\frac{\epsilon}{4^{1/p} \cdot 3}\right)^{2p} > \left(\frac{\epsilon}{4}\right)^{2p}.$$

This allows us to bound

$$||f+1||_{p'(\nu)} = \left(\mathbf{E}_{x\in G}\nu(x)|f(x)+1|^{p'}\right)^{1/p'}$$

$$\geq \left(\mathbf{E}_{x\in G}\nu(x)\mathbf{1}_{T}(x)|f(x)+1|^{p'}\right)^{1/p'}$$

$$\geq \left(\nu(T)(1+3\epsilon/4)^{p'}\right)^{1/p'}$$

$$> \left(\frac{\epsilon}{4}\right)^{2p/p'}\left(1+\frac{3}{4}\epsilon\right).$$

Now if $p' \ge (8p/\epsilon) \log(4/\epsilon) = O(\epsilon^{-1} \log(\epsilon^{-1})p)$, then $\epsilon/4 \ge (2p/p') \log(4/\epsilon)$ and thus

$$-\frac{2p}{p'}\log\left(\frac{4}{\epsilon}\right) \ge -\frac{\epsilon}{4}.$$

Taking e to the power of both sides gives us

$$\left(\frac{4}{\epsilon}\right)^{-2p/p'} \ge e^{-\epsilon/4} \ge 1 - \frac{\epsilon}{4},$$

and plugging this in above gives the bound

$$||f+1||_{p'(\nu)} > \left(1 - \frac{\epsilon}{4}\right) \left(1 + \frac{3}{4}\epsilon\right) = 1 + \frac{\epsilon}{2} - \frac{3\epsilon^2}{16} \ge 1 + \frac{\epsilon}{2},$$

which is what we needed.

3. Dependent random choice

The next lemma uses a dependent random choice argument to pass the information from the previous step down to high density subsets, which allows us to iterate the argument.

Lemma 8 (Dependent random choice). Let G be a finite abelian group and let A be a subset of G with density α . Let $B_1, B_2 \subseteq G$ and $\mu = \mu_{B_1} \circ \mu_{B_2}$. For any function $f: G \to \mathbf{R}_{\geq 0}$ there exist sets $A_1 \subseteq B_1$ and $A_2 \subseteq B_2$ with densities satisfying

$$\min\{\mu_{B_1}(A_1), \mu_{B_2}(A_2)\} \ge \frac{1}{4}\alpha^{2p} \|\mu_A \circ \mu_A\|_{p(\mu)}^{2p}.$$

and such that

$$\langle \mu_{A_1} \circ \mu_{A_2}, f \rangle \le 2 \frac{\langle (\mu_A \circ \mu_A)^p, f \rangle_{\mu}}{\|\mu_A \circ \mu_A\|_{p(\mu)}^p}.$$

Proof. For $s = (s_1, \ldots, s_p) \in G^p$ let $A_1(s) = B_1 \cap (A + s_1) \cap \cdots \cap (A + s_p)$, and define $A_2(s)$ analogously. First we expand

$$\langle (\mu_A \circ \mu_A)^p, f \rangle_{\mu} = \mathbf{E}_{x \in G} \mu(x) (\mu_A \circ \mu_A)(x)^p f(x)$$

$$= \mathbf{E}_{x \in G} \mathbf{E}_{y \in G} \mu_{B_1}(y) \mu_{B_2}(x+y) (\mu_A \circ \mu_A)(x)^p f(x)$$

$$= \frac{1}{|B_1| \cdot |B_2|} \sum_{x \in G} \sum_{y \in G} \mathbf{1}_{B_1}(y) \mathbf{1}_{B_2}(x+y) (\mu_A \circ \mu_A)(x)^p f(x).$$

Renaming $b_1 = y$ and performing the change of variable $b_2 = x + b_1 = x + y$, we have

$$\langle (\mu_A \circ \mu_A)^p, f \rangle_{\mu} = \frac{1}{|B_1||B_2|} \sum_{\substack{b_1 \in G \\ b_2 \in G}} \mathbf{1}_{B_1}(b_1) \, \mathbf{1}_{B_2}(b_2) (\mu_A \circ \mu_A) (b_2 - b_1)^p f(b_2 - b_1)$$

$$= \mathbf{E}_{b_1 \in B_1, b_2 \in B_2} (\mu_A \circ \mu_A) (b_2 - b_1)^p f(b_2 - b_1)$$

$$= \mathbf{E}_{b_1 \in B_1, b_2 \in B_2} \left(\alpha^{-2} \, \mathbf{E}_{y \in G} \, \mathbf{1}_A(y) \, \mathbf{1}_A(b_2 - b_1 + y) \right)^p f(b_2 - b_1).$$

Now since $y \in A$ if and only if $b_1 \in A + b_1 - y$ and $b_2 - b_1 + y \in A$ if and only if $b_2 \in A + b_1 - y$, so writing $t = b_1 - y$ and changing variables, we have

$$\langle (\mu_A \circ \mu_A)^p, f \rangle_{\mu} = \mathbf{E}_{b_1 \in B_1, b_2 \in B_2} \Big(\alpha^{-2} \, \mathbf{E}_{t \in G} \, \mathbf{1}_{A+t}(b_1) \, \mathbf{1}_{A+t}(b_2) \Big)^p f(b_2 - b_1)$$
$$= \alpha^{-2p} \, \mathbf{E}_{b_1 \in B_1, b_2 \in B_2} \, \mathbf{E}_{s \in G^p} \, \mathbf{1}_{A_1(s)}(b_1) \, \mathbf{1}_{A_2(s)}(b_2) f(b_2 - b_1).$$

Putting $y = b_2 - b_1$ so that $b_2 = y + b_1$, we have

$$\langle (\mu_A \circ \mu_A)^p, f \rangle_{\mu} = \alpha^{-2p} \mathbf{E}_{s \in G^p} \mathbf{E}_{b_1 \in B_1} \frac{|G|}{|B_2|} \mathbf{E}_{y \in G} \mathbf{1}_{A_1(s)}(b_1) \mathbf{1}_{A_2(s)}(y + b_1) f(y)$$

$$= \frac{|G|}{\alpha^{2p} |B_2|} \mathbf{E}_{s \in G^p} \mathbf{E}_{b_1 \in B_1} \langle \mathbf{1}_{A_1(s)} \circ \mathbf{1}_{A_2(s)}, f \rangle$$

$$= \frac{|G|^2}{\alpha^{2p} |B_1| \cdot |B_2|} \mathbf{E}_{s \in G^p} \langle \mathbf{1}_{A_1(s)} \circ \mathbf{1}_{A_2(s)}, f \rangle.$$

Thus we let $\beta_i = |B_i|/|G|$ and $\alpha_i(s) = \frac{|A_i(s)|}{|G|}$ for $i \in \{1, 2\}$, and then apply the above in the case where f is the constant function 1 to obtain

$$\|(\mu_{A} \circ \mu_{A})^{p}, f\|_{p(\mu)}^{p} = \frac{|G|^{2}}{\alpha^{2p}|B_{1}| \cdot |B_{2}|} \mathbf{E}_{s \in G^{p}} \mathbf{E}_{x \in G} \mathbf{E}_{y \in G} \mathbf{1}_{A_{1}(s)}(y) \mathbf{1}_{A_{2}(s)}(x+y)$$

$$= \frac{1}{\alpha^{2p}\beta_{1}\beta_{2}} \mathbf{E}_{s \in G^{p}} \mathbf{E}_{y \in G} \mathbf{1}_{A_{1}(s)}(y) \mathbf{E}_{x \in G} \mathbf{1}_{A_{2}(s)}(x+y)$$

$$= \frac{1}{\alpha^{2p}\beta_{1}\beta_{2}} \mathbf{E}_{s \in G^{p}} \alpha_{1}(s)\alpha_{2}(s)$$

The constants out front do not depend on f, so we see that

$$\frac{\left\langle (\mu_A \circ \mu_A)^p, f \right\rangle_{\mu}}{\|\mu_A \circ \mu_A\|_{p(\mu)}^p} = \frac{\mathbf{E}_{s \in G^p} \left\langle \mathbf{1}_{A_1(s)} \circ \mathbf{1}_{A_2(s)}, f \right\rangle}{\mathbf{E}_{s \in G^p} \alpha_1(s) \alpha_2(s)};$$

call this quotient η for brevity. Now we consider the quantity

$$\mathbf{E}_{s \in G^p} \, \mathbf{E}_{x \in G} \, \mathbf{1}_{A_1(s)}(x).$$

For a given $s=(s_1,\ldots,s_p)\in G^p$ and $x\in G$, the corresponding $\mathbf{1}_{A_1(s)}(x)$ term is 1 if and only if $x\in B_1$ and $x-s_i\in A$ for all $1\leq i\leq p$. Hence we have

$$\mathbf{E}_{s \in G^p} \, \mathbf{E}_{x \in G} \, \mathbf{1}_{A_1(s)}(x) = \frac{|B_1| \cdot |A|^p}{|G|^{p+1}} = \alpha^p \beta_1.$$

The analogous identity holds for $A_2(s)$. So, letting

$$M = \frac{1}{2} \alpha^p (\beta_1 \beta_2)^{1/2} \| \mu_A \circ \mu_A \|_{p(\mu)}^p,$$

we have

$$\mathbf{E}_{s \in G^{p}} \mathbf{1}_{[\alpha_{1}(s)\alpha_{2} < M^{2}]} \alpha_{1}(s)\alpha_{2}(s) < \mathbf{E}_{s \in G^{p}} M \sqrt{\alpha_{1}(s)\alpha_{2}(s)}$$

$$\leq \left(\mathbf{E}_{s \in G^{p}} M \alpha_{1}(s)\right)^{1/2} \left(\mathbf{E}_{s \in G^{p}} M \alpha_{2}(s)\right)^{1/2}$$

$$= M \left(\mathbf{E}_{s \in G^{p}} \mathbf{E}_{x \in G} \mathbf{1}_{A_{1}(s)}(x)\right)^{1/2}$$

$$\left(\mathbf{E}_{s \in G^{p}} \mathbf{E}_{x \in G} \mathbf{1}_{A_{2}(s)}(x)\right)^{1/2}$$

$$= M \alpha^{p} \sqrt{\beta_{1}\beta_{2}}$$

$$= \frac{1}{2} \alpha^{2p} \beta_{1}\beta_{2} \|\mu_{A} \circ \mu_{A}\|_{p(\mu)}^{p}$$

$$= \frac{1}{2} \mathbf{E}_{s \in G^{p}} \alpha_{1}(s)\alpha_{2}(s)$$

and consequently

$$\mathbf{E}_{s \in G^p} \, \mathbf{1}_{[\alpha_1(s)\alpha_2 \ge M^2]} \, \alpha_1(s) \alpha_2(s) > \frac{1}{2} \, \mathbf{E}_{s \in G^p} \, \alpha_1(s) \alpha_2(s).$$

So we have

$$\mathbf{E}_{s \in G^p} \langle \mathbf{1}_{A_1(s)} \circ \mathbf{1}_{A_2(s)}, f \rangle = \eta \, \mathbf{E}_{s \in G^p} \, \alpha_1(s) \alpha_2(s)$$

$$< 2\eta \, \mathbf{E}_{s \in G^p} \, \alpha_1(s) \alpha_2(s) \, \mathbf{1}_{[\alpha_1(s)\alpha_2(s) > M^2]},$$

and thus there must be some s such that

$$\langle \mathbf{1}_{A_1(s)} \circ \mathbf{1}_{A_2(s)}, f \rangle < 2\eta \alpha_1(s) \alpha_2(s) \mathbf{1}_{[\alpha_1(s)\alpha_2(s) \geq M^2]}.$$

Since $f(x) \ge 0$ for all x, the left-hand side is nonnegative, meaning that the right-hand side cannot be 0. Thus such an s must satisfy $\alpha_1(s)\alpha_2(s) \ge M^2$. Letting $A_1 = A_1(s)$ and $A_2 = A_2(s)$ for this particular s, we have

$$\frac{|A_1|\cdot |A_2|}{|G|^2} \ge \frac{1}{4}\alpha^{2p} \frac{|B_1|\cdot |B_2|}{|G|^2} \|\mu_A \circ \mu_A\|_{p(\mu)}^{2p},$$

whence

$$\mu_{B_1}(A_1)\mu_{B_2}(A_2) \ge \frac{1}{4}\alpha^{2p} \|\mu_A \circ \mu_A\|_{p(\mu)}^{2p},$$

so neither $\mu_{B_1}(A_1)$ nor $\mu_{B_2}(A_2)$ can be less than the right-hand side. On the other hand, letting $\alpha_1 = \alpha_1(s)$ and $\alpha_2 = \alpha_2(s)$, we also have

$$\langle \mu_{A_1} \circ \mu_{A_2}, f \rangle = \mathbf{E}_{x \in G} \, \mathbf{E}_{y \in G} \, \mu_{A_1}(y) \mu_{A_2}(x+y) f(x)$$

$$= \alpha_1^{-1} \alpha_2^{-1} \, \mathbf{E}_{x \in G} \, \mathbf{E}_{y \in G} \, \mathbf{1}_{A_1}(y) \, \mathbf{1}_{A_2}(x+y) f(x)$$

$$= \alpha_1^{-1} \alpha_2^{-1} \langle \mathbf{1}_{A_1} \circ \mathbf{1}_{A_2}, f \rangle$$

$$< 2\eta$$

$$= 2 \frac{\langle (\mu_A \circ \mu_A)^p, f \rangle_{\mu}}{\|\mu_A \circ \mu_A\|_{p(\mu)}^p},$$

which proves the lemma.

This lemma is slightly more general than we shall require. The version that suffices for all our applications is the following.

Lemma 9. Let G be a finite abelian group, let $p \geq 1$ be an integer, and let $\epsilon, \delta > 0$. Let B_1 and B_2 be subsets of G and let $\mu = \mu_{B_1} \circ \mu_{B_2}$. If $A \subseteq G$ has density α and

$$S = \{ x \in G : (\mu_A \circ \mu_A)(x) > (1 - \epsilon) \| \mu_A \circ \mu_A \|_{p(\mu)} \},$$

then there exist $A_1 \subseteq B_1$ and $A_2 \subseteq B_2$ with densities satisfying

$$\min \{ \mu_{B_1}(A_1), \mu_{B_2}(A_2) \} = \Omega ((\alpha \| \mu_A \circ \mu_A \|_{p(\mu)})^{2p + O(\epsilon^{-1} \log(\delta^{-1}))}).$$

such that

$$\langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_S \rangle \geq 1 - \delta.$$

Proof. Let p' be the smallest even integer at least $p + \epsilon^{-1} \log(\delta^{-1})$. By the previous lemma applied to the set $\mathbf{1}_{G \setminus S}$, there exist sets $A_1 \subseteq B_1$ and $A_2 \subseteq B_2$ with densities satisfying

$$\min\{\mu_{B_1}(A_1), \mu_{B_2}(A_2)\} \ge \frac{1}{4}\alpha^{2p'} \|\mu_A \circ \mu_A\|_{p'(\mu)}^{2p'}$$

$$\ge \frac{1}{4} (\alpha \|\mu_A \circ \mu_A\|_{p(\mu)})^{2p+2\epsilon^{-1}\log(\delta^{-1})+O(1)}$$

$$= \Omega((\alpha \|\mu_A \circ \mu_A\|_{p(\mu)})^{2p+O(\epsilon^{-1}\log(\delta^{-1}))})$$

such that

$$\langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_{G \setminus S} \rangle \leq \frac{\langle (\mu_A \circ \mu_A)^{p'}, \mathbf{1}_{G \setminus S} \rangle_{\mu}}{\|\mu_A \circ \mu_A\|_{n'(\mu)}^{p'}}.$$

Our construction of S ensures that

$$\frac{\left\langle (\mu_A \circ \mu_A)^{p'}, \mathbf{1}_{G \setminus S} \right\rangle_{\mu}}{\|\mu_A \circ \mu_A\|_{p'(\mu)}^{p'}} \le (1 - \epsilon)^{p'},$$

and since $p' \geq \epsilon^{-1} \log(\delta^{-1})$, we have

$$(1 - \epsilon)^{p'} < e^{-\epsilon p'} < \delta.$$

Putting everything together, we have

$$\langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_{G \setminus S} \rangle \leq \delta,$$

so that

$$\langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_S \rangle = 1 - \langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_{G \setminus S} \rangle \ge 1 - \delta,$$

which completes the proof.

4. The finite-field case

We now use the methods of Kelley and Meka to give upper bounds on the size of a subset of \mathbf{F}_q^n without any three-term arithmetic progressions. First, we restate the dependent random choice lemma in the special case that applies to this finite field context.

Corollary 10. Let $p \ge 1$ be an integer and $\epsilon \in (0, 1/2]$. If $A \subseteq G$ is such that $\|\mu_A \circ \mu_A\|_p \ge 1 + \epsilon$ and $S = \{x \in G : (\mu_A \circ \mu_A)(x) > 1 + \epsilon/2\}$, then there are subsets A_1 and A_2 of G, each of density $\Omega(\alpha^{2p+O(\epsilon^{-1}\log(\epsilon^{-1}))})$, such that

$$\langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_S \rangle \ge 1 - \epsilon/8.$$

Proof. Let $S' = \{x \in G : (\mu_A \circ \mu_A)(x) > (1+\epsilon) \| \mu_A \circ \mu_A \|_p \}$, and apply Lemma 9 with the same p and ϵ , but δ set to $\epsilon/8$, S set to S', and $B_1 = B_2 = G$ so that $\mu = \mu_{B_1} = \mu_{B_2}$ is the uniform measure on G. Hence the sets A_1 and A_2 given by the lemma will each have density

$$\Omega((\alpha(1+\epsilon))^{2p+O(\epsilon^{-1}\log(8/\epsilon))}) = \Omega(\alpha^{2p+O(\epsilon^{-1}\log(\epsilon^{-1}))})$$

in G, and since

$$(1 - \epsilon) \|\mu_A \circ \mu_A\|_p \ge (1 - \epsilon)(1 + \epsilon) = 1 - \epsilon^2 \ge 1 - \epsilon/2,$$

we have $S' \subseteq S$ and thus

$$\langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_S \rangle \ge \langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_{S'} \rangle \ge 1 - \epsilon/8.$$

There is a theorem that we need which, for now, we shall just state without proof. (This is Theorem 3.2 of [3].)

Theorem 11 (Schoen–Sisask, 2016). Let $\epsilon \in (0,1)$, let $S \subseteq \mathbf{F}_q^n$, and let $A_1, A_2 \subseteq \mathbf{F}_q^n$ be subsets of relative density at least α . There is a subspace V of codimension $O(\epsilon^{-2} \log(\epsilon^{-1}\alpha^{-1})^2 \log(\alpha^{-1})^2)$ such that

$$|\langle \mu_V * \mu_{A_1} * \mu_{A_2}, \mathbf{1}_S \rangle - \langle \mu_{A_1} * \mu_{A_2}, \mathbf{1}_S \rangle| \le \epsilon.$$

The following lemma encapsulates the density increment argument that underlies the proof of Roth's theorem.

Lemma 12 (Density increment). Let $\epsilon \in (0,1)$ and let A and C be subsets of $G = \mathbf{F}_q^n$ with relative densities α and γ , respectively. Then either

- i) $|\langle \mu_A * \mu_A, \mu_C \rangle 1| \leq \epsilon$; or
- ii) there is a subspace V of codimension

$$O\left(\epsilon^{-2} \left(\log(1/\gamma) + \epsilon^{-1} \log(\epsilon^{-1})\right)^4 \log(1/\alpha)^4\right)$$

such that $\max_{x \in G} (\mathbf{1}_A * \mu_V)(x) \ge (1 + \epsilon/32)\alpha$.

Proof. Suppose that (i) fails. Then by Lemma 6 there is some $p = O(\log(1/\gamma))$ such that $\|\mu_A \circ \mu_A - 1\|_p \ge \epsilon/2$. By the second convolution law (part (ii) of

Proposition 2), $\mu_A \circ \mu_A$ is a nonnegative function, and note also that if ν is the uniform measure on \mathbf{F}_q^n , then for any $\chi : \widehat{\mathbf{F}_q^n} \to \mathbf{C}$,

$$\widehat{\nu}(\chi) = \mathbf{E}_{x \in G} \, \nu(x) \chi(-x) = \begin{cases} q^{-n}, & \text{if } \chi \text{ is the trivial character;} \\ 0, & \text{otherwise.} \end{cases}$$

This implies in particular that $\widehat{\nu} \geq 0$, so by Lemma 7 applied with $f = \mu_A \circ \mu_A$ and the uniform measure for ν , we find that $\|\mu_A \circ \mu_A\|_{p'} \geq 1 + \epsilon/4$ for some $p' = O\left((2/\epsilon)\log(2/\epsilon)p\right) = O\left(\epsilon^{-1}\log(\epsilon^{-1})\log(1/\gamma)\right)$. Let $C(\epsilon) = \epsilon^{-1}\log(\epsilon^{-1})$. By Corollary 10, there are sets $A_1, A_2 \subseteq G$, each of density $\Omega(\alpha^{2p'+O(C(\epsilon))})$, such that

$$\langle \mu_{A_1} \circ \mu_{A_2}, \mathbf{1}_S \rangle \geq 1 - \epsilon/32,$$

where $S = \{x \in G : (\mu_A \circ \mu_A)(x) \ge 1 + \epsilon/8\}$. Feeding $-A_1$, A_2 , and S into Theorem 11 with $\epsilon/32$ gives us a subspace V of codimension

$$O\left(\epsilon^{-2}\log\left(\epsilon^{-1}\alpha^{-2p'-O(C(\epsilon))}\right)^{2}\log\left(\alpha^{-2p'-O(C(\epsilon))}\right)^{2}\right)$$

$$=O\left(\epsilon^{-2}(2p'+C(\epsilon))^{2}\log(1/\alpha)^{2}\left((2p'+C(\epsilon))\log(1/\alpha)+\log(\epsilon^{-1})\right)^{2}\right)$$

$$=O\left(\epsilon^{-2}\left(\log(1/\gamma)+C(\epsilon)\right)^{4}\log(1/\alpha)^{4}\right)$$

such that

$$\left| \langle \mu_V * \mu_{-A_1} * \mu_{A_2}, \mathbf{1}_S \rangle - \langle \mu_{-A_1} * \mu_{A_2}, \mathbf{1}_S \rangle \right| \le \epsilon/32.$$

It is easily checked that $\mu_{-A_1} * \mu_{A_2} = \mu_{A_1} \circ \mu_{A_2}$, so we find that

$$\langle \mu_V * (\mu_{A_1} \circ \mu_{A_2}), \mathbf{1}_S \rangle \ge 1 - \epsilon/16.$$

Now we observe that

$$\|(\mu_{A_1} \circ \mu_{A_2}) \circ \mu_{A_2}\|_1 = \mathbf{E}_{z \in G} \,\mu_{A_1}(z) \, \mathbf{E}_{y \in G} \,\mu_{A_2}(y+z) \, \mathbf{E}_{x \in G} \,\mu_{A}(x+y) = 1,$$

so that,

$$\max_{x \in G} (\mu_V * \mathbf{1}_A)(x) = \alpha \max_{x \in G} (\mu_V * \mu_A)(x)$$

$$= \alpha \| (\mu_{A_1} \circ \mu_{A_2}) \circ \mu_A \|_1 \max_{x \in G} (\mu_V * \mu_A)(x)$$

$$\geq \alpha \langle \mu_V * \mu_A, (\mu_{A_1} \circ \mu_{A_2}) \circ \mu_A \rangle$$

$$= \alpha \langle \mu_V * \mu_A * (\mu_{A_1} \circ \mu_{A_2}), \mu_A \rangle$$

$$= \alpha \langle \mu_V * (\mu_{A_1} \circ \mu_{A_2}), \mu_A \circ \mu_A \rangle,$$

where in the last two lines we have employed the adjoint property $\langle f, g * h \rangle = \langle h \circ f, g \rangle$, as well as the commutative properties f * g = g * f and $\langle f, g \rangle = \langle g, f \rangle$,

all of which hold for functions $f, g, h : G \to \mathbf{R}$. But by the construction of S, we have $\mathbf{1}_S(x)(\mu_A \circ \mu_A)(x) \geq (1 + \epsilon/8) \mathbf{1}_S$, so

$$\langle \mu_{V} * (\mu_{A_1} \circ \mu_{A_2}), \mu_{A} \circ \mu_{A} \rangle \geq \langle \mu_{V} * (\mu_{A_1} \circ \mu_{A_2}), \mathbf{1}_{S}(\mu_{A} \circ \mu_{A}) \rangle$$

$$\geq (1 + \epsilon/8) \langle \mu_{V} * (\mu_{A_1} \circ \mu_{A_2}), \mathbf{1}_{S} \rangle$$

$$\geq (1 + \epsilon/8)(1 - \epsilon/16)$$

$$\geq 1 + \epsilon/32,$$

hence we conclude that

$$\max_{x \in G} (\mathbf{1}_A * \mu_V)(x) \ge (1 + \epsilon/32)\alpha \quad \blacksquare$$

Theorem 13 (Finite field). Let q be a power of an odd prime and let A be a subset of $G = \mathbf{F}_q^n$ of cardinality αq^n . The number of (possibly trivial) three-term arithmetic progressions contained in A is at least

$$\frac{\alpha^3}{2}q^{2n-O(\log(1/\alpha)^9)}.$$

Hence if $A \subseteq \mathbf{F}_q^n$ contains no nontrivial three-term arithmetic progressions, then $\alpha \leq q^{-\Omega(n^{1/9})}$.

Proof. Let $C = 2 \cdot A = \{2a : a \in A\}$, so that $\gamma = |C|/q^n = \alpha$. By Lemma 12 applied to A and C with parameter $\epsilon = 1/2$, we find that either $\langle \mu_A * \mu_A, \mu_C \rangle \geq 1/2$ or there is a subspace V of codimension $O(\log(1/\alpha)^8)$ such that $\max_{x \in G} (\mathbf{1}_A * \mu_V)(x) \geq (1 + \epsilon/64)\alpha$.

In the second case, there exists some $x \in G$ such that

$$\mathbf{E}_{y \in G} \mathbf{1}_A(y) \mu_V(x - y) \ge (1 + \epsilon/64) \alpha.$$

But $x - y \in V$ if and only if $y - x \in V$ if and only if $y \in V + x$, so we find that

$$|A \cap V + x| \ge (1 + \epsilon/64)\alpha |V|.$$

Now A has exactly the same number of three-term arithmetic progressions as A-x, so we can invoke Lemma 12 again with V in place of G and A-x in place of A, but note that α has been replaced by $(1+\epsilon/64)\alpha$, so this iteration can only happen $\log_{1+\epsilon/64}(1/\alpha) = O(\log(1/\alpha))$ times before the second case of the lemma becomes impossible, since $\alpha \leq 1$. Hence we deduce that there is some subspace V of codimension $O(\log(1/\alpha)^9)$ and some translate A+x' of A such that

$$\mathbf{E}_{x \in V} \mathbf{E}_{y \in V} \mu_{A'}(y) \mu_{A'}(x - y) \mu_{2 \cdot A'}(x) \ge \frac{1}{2},$$

where $A' = (A + x) \cap V$ and the relative densities are taken with respect to the subspace V. Expanding further, this implies that

$$\frac{|V|^3}{|A'|^3|V|^2} \sum_{x \in V} \sum_{y \in V} \mathbf{1}_{A'}(y) \, \mathbf{1}_{A'}(x-y) \, \mathbf{1}_{2 \cdot A'}(x) \ge \frac{1}{2};$$

that is,

$$\left| \left\{ (x,y) \in (2 \cdot A) \times A : x - y \in A' \right\} \right| \ge \frac{|A'|^3 |V|^5}{2|V|^3} \ge \frac{\alpha^3}{2} q^{2n - O(\log(1/\alpha)^9)}.$$

Renaming variables, this counts the number of pairs $(x, z) \in A' \times A'$ such that x + z = 2y for some $y \in A'$. Since this equation implies that z - y = y - x, the above expression counts the number of three-term arithmetic progressions in A', including the |A'| trivial instances of x = y = z. This proves the first part of the theorem.

For the last part of the theorem statement, suppose that A does not contain any nontrivial three-term arithmetic progressions. Then

$$\frac{\alpha^3}{2} q^{2n - O(\log(1/\alpha)^9)} \le \left| \{ (x, y) \in (2 \cdot A) \times A : x - y \in A' \} \right| \le |A'| \le \alpha q^n,$$

whence

$$q^n \le \frac{2q^{O(\log(1/\alpha)^9)}}{\alpha^2},$$

and taking qth logs of both sides yields

$$n \le \log_q \left(\frac{2q^{O(\log(1/\alpha)^9)}}{\alpha^2} \right) = O\left(\log(1/\alpha)^9\right) = O\left(\log_q(1/\alpha)^9\right).$$

Letting C be the constant implicit in the last big-O bound, we invert this to obtain

$$\alpha \le q^{-n^{1/9}/C^{1/9}} = q^{-\Omega(n^{1/9})},$$

which is what we wanted.

5. Bohr sets

To transfer the ideas of the finite-field proof over to the integer case, we will need the machinery of Bohr sets. These are, in some sense, the analogue in general abelian groups to subspaces in \mathbf{F}_{a}^{n} .

Let G be a finite abelian group, Γ be a nonempty subset of \widehat{G} , and let $\nu:\Gamma\to[0,2]$. The Bohr set $B=\mathrm{Bohr}_{\nu}(\Gamma)$ corresponding to this data is the set

$$Bohr_{\nu}(\Gamma) = \{ x \in G : |1 - \gamma(x)| \le \nu(\gamma) \text{ for all } \gamma \in \Gamma \}.$$

The set Γ is called the *frequency set* of B, and ν is its width function. We shall also say that B has rank d if $|\Gamma| = d$. Bohr sets contain 0, since $\gamma(0) = 1$ for all characters γ , and $x \in B$ if and only if $-x \in B$, since $|1 - \gamma(x)| = |1 - \gamma(-x)|$. Note that the set $\mathrm{Bohr}_{\nu}(\Gamma)$ does not uniquely determine the pair (Γ, ν) . When we write $B' \subseteq B$ for Bohr sets B' and B, we mean an inclusion of sets, and

do not intend to say anything about the corresponding frequency sets or width functions.

Let $B = \operatorname{Bohr}_{\nu}(\Gamma)$ be a Bohr set and let $\rho > 0$. Let $\nu_{\rho} : \Gamma \to [0, 2]$ be the width function given by $\nu_{\rho}(\gamma) = \max\{\rho \cdot \nu(\gamma), 2\}$. We define the *dilate* of B by ρ to be the Bohr set $\operatorname{Bohr}_{\rho\nu}(\Gamma)$. If $\rho \leq 1$, $\rho\nu(\gamma) \leq \nu$, meaning that the condition $|1 - \gamma(x)| \leq \rho\nu(\gamma)$ is now stronger. so $B_{\rho} \subseteq B$, and similarly $B \subseteq B_{\rho}$ if $\rho \geq 1$.

We now introduce a definition that characterises when a Bohr set is approximately closed under addition. Let B be a Bohr set of rank d. We say that B is regular if for all κ with $|\kappa| \leq 1/(100d)$,

$$(1 - 100d|\kappa|)|B| \le |B_{1+\kappa}| \le (1 + 100d|\kappa|)|B|.$$

The following proposition will be used frequently in the following sections.

Proposition 14. Let G be a finite abelian group and let k be an integer with gcd(k, |G|) = 1. If $B = Bohr_{\nu}(\Gamma)$ is a regular Bohr set of rank d, then $k \cdot B$ is also a regular Bohr set of rank d.

Proof. We will construct the frequency set and width function of $k \cdot B$. Note first that if we have kx = kx', then k(x - x') = 0. But since $\gcd(k, |G|) = 1$, k(x - x') = 0 implies that x - x' = 0, so x = x' and thus the function $x \mapsto kx$ permutes G. We will write its inverse as $x \mapsto x/k$. For all $\gamma \in \Gamma$, let γ_k be given by $\gamma_k(x) = \gamma(kx)$, and let $\gamma_{k-1}(x) = \gamma(x/k)$. We let

$$\Gamma' = \{ \gamma_{k^{-1}} : \gamma \in \Gamma \}$$

and let $\nu': \Gamma' \to [0,2]$ be given by $\nu'(\gamma') = \gamma'_k$. Then we have a bijection $\gamma \mapsto \gamma'$ such that $\nu(\gamma) = \nu'(\gamma')$, so we see that

$$k \cdot B = \left\{ kx \in G : \gamma(x) \le \nu(\gamma) \text{ for all } \gamma \in \Gamma \right\}$$

$$= \left\{ x \in G : \gamma_{k^{-1}}(x) \le \nu(\gamma) \text{ for all } \gamma \in \Gamma \right\}$$

$$= \left\{ x \in G : \gamma'(x) \le \nu'(\gamma') \text{ for all } \gamma' \in \Gamma' \right\}$$

$$= \operatorname{Bohr}_{\nu'}(\Gamma'),$$

so $k \cdot B$ is a Bohr set of rank d as well.

To check regularity, it suffices to show that $|(k \cdot B)_{1+\kappa}| = |B_{1+\kappa}|$. We actually have the stronger fact that

$$(k \cdot B)_{1+\kappa} = \left\{ x \in G : \gamma'(x) \le (1+\kappa)\nu'(\gamma') \text{ for all } \gamma' \in \Gamma' \right\}$$
$$= \left\{ x \in G : \gamma_{k^{-1}}(x) \le (1+\kappa)\nu(\gamma) \text{ for all } \gamma \in \Gamma \right\}$$
$$= \left\{ kx \in G : \gamma(x) \le (1+\kappa)\nu(\gamma) \text{ for all } \gamma \in \Gamma \right\}$$
$$= k \cdot B_{1+\kappa}. \quad \blacksquare$$

References

[1] Thomas Bloom and Olof Sisask, "The Kelley–Meka bounds for sets free of three-term arithmetic progressions," arXiv preprint 2302.07211 (20 pp), 2023.

- [2] Zander Kelley and Raghu Meka, "Strong bounds for 3-progressions," arXiv preprint 2302.05537 (2023), 78 pp.
- [3] Tomasz Schoen and Olof Sisask, "Roth's theorem for four variables and additive structures in sums of sparse sets," Forum of Mathematics, Sigma 4 (2016), article no. e5.