Programmieraufgaben

Blatt 2

(1) Implementieren Sie die linke Rechtecksregel, die Mittelpunktsregel und die Simpson-Regel in Python. Übergeben Sie dazu eine Funktion, sowie Start- und Endpunkt des Integrationsintervalls und die Anzahl der Teilintervalle. Rückgabewert ist die Näherung ans Integral. Berechnen Sie damit

$$\int_0^3 \cos(x) e^{\sin(x)} dx,$$

(2) Variieren Sie N und erstellen Sie ein Genauigkeit-Aufwandsdiagramm (vgl. Abb. 1.3 im Skript) für Aufgabe (1).

Theorieaufgaben

- (3) Berechnen Sie die (eindeutige) Quadraturformel mit s=4 Stufen und den Knoten $c_1=1/4$, $c_2=1/2$, $c_3=3/4$, $c_4=1$, welche mindestens Ordnung 4 hat. Hat diese Quadraturformel sogar eine höhere Ordnung?
- (4) Seien $(b_i, c_i)_{i=1}^s$ die Gewichte und Knoten einer Quadraturformel der Ordnung $p \geq s$ (mit paarweise verschiedenen Knoten c_i).
 - (a) Setze für $i = 1, \ldots, s$

$$\ell_i(x) = \prod_{\substack{j=1,\dots,s\\j\neq i}} \frac{x-c_j}{c_i-c_j}.$$

Begründen Sie, dass die Polynome ℓ_1, \dots, ℓ_s eine Basis vom Raum der reellen Polynome vom Grad kleiner gleich s-1 bilden.

(b) Zeigen Sie, dass

$$b_i = \int_0^1 \ell_i(x) dx$$
 für $i = 1, \dots, s$.

(5) Berechnen Sie alle Quadraturformeln mit s = 2 Stufen der Ordnung 4 oder höher (ohne a priori Verwendung von Symmetrie, Eindeutigkeit etc.).

Hinweis: Bestimmen Sie die Gewichte b_1 , b_2 und die Knoten c_1 , c_2 so, dass die Ordnungsbedingungen bis einschließlich Ordnung 4 erfüllt sind (4 nichtlineare Gleichungen in 4 Unbekannten). Für c_1 ergibt sich durch geschickte Reduktion die quadratische Gleichung

$$c_1^2 - c_1 + \frac{1}{6} = 0$$

und daraus c_1 , etc.