## Gilobal States



Recap:

Co: Processes: Pi, Pj, and PK

if s(mij) -> Send (mkj)

then receive (mij) -> Receive (mkj)

 $P_1$   $P_2$   $P_3$   $P_4$   $P_4$   $P_5$   $P_6$   $P_7$   $P_8$   $P_8$ 

- no Shared memory

>no Common clock

- transmission (message passing)

Local (Internatevent) -> State of the processes and external events -> States up the processes and channels

LS; Defore e; )

 $= \underbrace{e_{i}^{x-2} e_{i}^{x-1}}_{S.x} = \underbrace{e_{i}^{x}}_{S.x}$ 

[LSi > Initial state.

send (m) < LSi, 3y, 1445x s.t

e = Seud (m)



Q: Whether the global State captured is consistent or not?

global State is a Consistent Eps iff + my: send (my) \$ LSi ( ) mij & SCij / rec (mij) & LS; ULSi, USCik ]

GS2 = 
$$\{LS_1^2, LS_2^4, LS_3^4, LS_4^2\}$$
  
 $\Rightarrow$  GS2 is consistent



