Cours LIMITE D'UNE FONCTION avec Exercices avec solutions

1BAC SM BIOF PROF: ATMANI NAJIB

LIMITE D'UNE FONCTION

1) RAPPELLES ET COMPLEMENTS.

 $|a, b| = \{x \in \mathbb{R} | a < x < b\}$

1)Le centre de l'intervalle] a, b [est le réel

$$x_0 = \frac{a+b}{2}$$

2)Le rayon de l'intervalle]a, b[est le réel positif

$$r = \frac{b - a}{2}$$

Activité : Déterminer les bornes d'un intervalle ouvert de centre x_0 et de rayon r

(deux réels données)

Définition: L'ensemble: "

 $[a;b]^* = \{x \in \mathbb{R} \mid a \prec x \prec b\} - \{x_0\} \text{ où } x_0 \text{ est le centre}$

de l'intervalle a, b:

S'appelle l'intervalle Pointé de bornes a et b.

Remarque: Si r est le rayon de l'intervalle a, b[et

 x_0 son centre alors : $a;b^* = |x_0 - r; x_0 + r[-\{x_0\}]$

$$x \in]x_0 - r; x_0 + r[-\{x_0\} \Leftrightarrow \prec |x - x_0| \prec r]$$

Activité1 : Montrer que

$$x \in]x_0 - r; x_0 + r[-\{x_0\} \Leftrightarrow \prec |x - x_0| \prec r]$$

Activité2:

- 1-Rappeler l'image d'un ensemble par une application.
- 2- Rappeler $f(A) \subset B$
- 3- Traduire en utilisant les valeurs absolues :

$$f(]x_0 - r; x_0 + r[-\{x_0\}) \subset]l - \beta; l + \beta[$$

II) LIMITE NULLE EN O.

$$f: \mathbb{R} \to \mathbb{R}$$

Activité3: Considérons la fonction : $x \mapsto \frac{x^3}{1-1}$

- 1- Déterminer l'ensemble de définition de f.
- 2- Ecrire des expressions de f sur des intervalles sans valeur absolue.
- 3- La courbe de f est ci-contre :
- a)- Déterminer un réel α tel que :

$$f(]-\alpha;\alpha[-\{0\})\subset]-2;2[$$

b)- Déterminer un réel α tel que :

$$f(]-\alpha;\alpha[-\{0\})\subset]-10^2;10^2[$$

c)- Déterminer un réel α tel que :

$$f(]-\alpha;\alpha[-\{0\})\subset]-\varepsilon;\varepsilon[$$

En répondant à la question 3-c) on peut

Conclure que :

 $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in Df)(0 < |x| < \alpha \Rightarrow |f(x)| < \varepsilon$ On dit que la fonction *f* admet 0 comme limite

en 0. et on écrit : $\lim_{x \to 0} f(x) = 0$

Définition : Soit *f* une fonction définie sur un intervalle pointé de centre 0. On dit que f admet la limite 0 en 0 si elle vérifie la propriété suivante $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in Df)(0 < |x| < \alpha \Rightarrow |f(x)| < \varepsilon.$

On écrit : $\lim_{x \to 0} f(x) = 0$

Remarques :1)Le faite que f est définie sur un intervalle pointé est essentielle. $g(x) = \sqrt{x} + \sqrt{-x}$ est définie en 0 et n'admet pas de limite en 0. $Dg = \{0\}.$

Propriété :Si f et g sont confondues sur un intervalle pointé de centre 0 et si $\lim_{x\to 0} f(x) = 0$

alors
$$\lim_{x\to 0} g(x) = 0$$

Propriété:Les fonctions : $x \mapsto x^n \ (n \in \mathbb{N}^*)$;

$$x \mapsto \sqrt{|x|}$$
; $x \mapsto kx$

Tendent vers 0 quand x rend vers 0.

Exercice: Soit la fonction : $f: x \mapsto \frac{x}{x+1}$

Montrer en utilisant la définition que : $\lim_{x\to 0} f(x) = 0$

Solution: Montrons que:

 $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in Df)(0 < |x| < \alpha \Rightarrow |f(x)| < \varepsilon$?

Soit:
$$x \in \left] -\frac{1}{2}; \frac{1}{2} \left[\operatorname{donc} \left| f(x) \right| = \left| \frac{x}{x+1} \right| \le 2|x| \right]$$

Soit $\varepsilon > 0$ on cherche $\alpha > 0$ tel que :

$$0 < |x| < \alpha \Rightarrow |f(x)| < \varepsilon$$

Pour avoir $|f(x)| < \varepsilon$ il suffit d'avoir $2|x| \prec \varepsilon$ et

$$|x| \prec \frac{1}{2} \text{ cad } |x| \prec \frac{\varepsilon}{2} \text{ et } |x| \prec \frac{1}{2}$$

Il suffit de prendre α le plus petit des

nombres :
$$\frac{\varepsilon}{2}$$
 et $\frac{1}{2}$

$$\mathsf{donc}: \lim_{x\to 0} f(x) = 0$$

III) LIMITE FINIE L EN a.

Définition : Soit f une fonction définie sur un intervalle pointé de centre a et l un réel. On dit que la fonction f tend vers l

quand x tend vers a si : $\lim_{x\to a} f(x) - l = 0$. c.-à-d. :

 $(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in Df)(0 < |x - \alpha| < \alpha \Rightarrow |f(x) - l| < \varepsilon$

Propriété :Si P est une fonction polynôme alors $\lim P(x) = P(x_0)$

Une fonction polynôme P c'est une fonction qui s'écrit de la forme :

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Exemple: $\lim_{x\to 2} 3x^2 + 2x + 1 = 3 \times 2^2 + 2 \times 2 + 1 = 17$

Propriété: Si sur un intervalle pointé de centre a

on a : $|f(x) - l| \le u(x)$ et $\lim_{x \to a} u(x) = 0$ alors

$$\lim_{x \to a} f(x) = l$$

Exemple1 :1)monter que : $\lim_{x\to 0} x^2 \cos\left(\frac{2}{x}\right) = 0$

2)a)monter que : $\forall x \in]-1;1[: |x^2+5x| \le 6|x|]$

b)Calculer $\lim_{x\to 0} x^2 + 5x$

Solution : 1) $x \in \mathbb{R}^* \left| \cos \left(\frac{2}{x} \right) \right| \le 1$

donc $\left| x^2 \cos \left(\frac{2}{x} \right) \right| \le x^2$ et on a $\lim_{x \to 0} x^2 = 0$

Donc: $\lim_{x\to 0} x^2 \cos\left(\frac{2}{x}\right) = 0$

2)a) on a : $|x^2 + 5x| = |x(x+5)| = |x||x+5|$

Et puisque : $x \in]-1;1[$ alors : $4 \prec x+5 \prec 6$

alors: $|x+5| < 6 \text{ donc } |x^2+5x| \le 6|x|$

b) puisque : $\lim_{x\to 0} 6|x| = 0$ alors : $\lim_{x\to 0} x^2 + 5x$

Exemple2: monter que: $\lim_{x\to 0} 2 + x^2 \sin\left(\frac{1}{x}\right) = 2$

Solution: $x \in \mathbb{R}^*$ $\left| \sin \left(\frac{1}{x} \right) \right| \le 1$ donc:

 $\left| f(x) - 2 \right| = x^2 \left| \sin\left(\frac{1}{x}\right) \right| \le x^2 \text{ et on a } \lim_{x \to 0} x^2 = 0$

Alors: $\lim_{x \to 0} f(x) = 2$

Exemple3: monter que: $\lim_{x\to 4} \sqrt{2x+1} = 3$

Solution: $\forall x \in \left[-\frac{1}{2}; +\infty \right[$

$$|f(x)-3| = |\sqrt{2x+1}-3| = \frac{2|x-4|}{\sqrt{2x+1}+3}$$

et on a $\sqrt{2x+1}+3 \ge 3$ donc : $|f(x)-3| \le \frac{2}{3}|x-4|$

et puisque : $\lim_{x\to 4} |x-4| = 0$ Alors : $\lim_{x\to 4} f(x) = 3$

Propriété : Si f et g sont confondues sur un intervalle pointé de centre a et si $\lim_{x\to a} f(x) = l$

alors $\lim_{x \to a} g(x) = l$

Exemple :On se propose d'étudier la limite de la

fonction: $f(x) = \frac{\sqrt{1+x^2}-1}{x}$ en 0.

On remarque que : $(\forall x \in \mathbb{R}^*)$:

$$f(x) = \frac{\left(\sqrt{1+x^2} - 1\right)\left(\sqrt{1+x^2} + 1\right)}{x\left(\sqrt{1+x^2} + 1\right)} = \frac{1+x^2 - 1}{x\left(\sqrt{1+x^2} + 1\right)}$$

(on a multiplié par le conjugué)

$$f(x) = \frac{x}{\sqrt{1+x^2}+1}$$
 D'autre part :

 $(\forall x \in \mathbb{R}^*)(|f(x)| \le |x|)$ et puisque $\lim_{x \to 0} |x| = 0$ alors

$$\lim_{x\to 0} f(x) = 0$$

Propriété : Soit f une fonction définie sur un intervalle pointé de centre a et l un réel. la fonction f tend vers l quand x tend vers a si : la fonction $h \to f(a+h)-l$ tend vers 0 quand x tend vers 0

Exemple1: $f(x) = x^2 + 3x + 2$

monter que : $\lim_{x\to -1} f(x) = 6$

Solution: $f(-1+h)-6=h^2-5h$

$$|f(-1+h)-6| = |h^2-5h| = |h||h-5|$$

Si
$$h \in]-1;1[$$
 alors : $|f(-1+h)-6| \le 6|h|$

puisque : $\lim_{h\to 0} 6|h| = 0$ alors : $\lim_{h\to 0} f(-1+h) - 6 = 0$

donc: $\lim_{x \to 1} f(x) = 6$

Exemple2: $f(x) = \frac{x-1}{x+1}$

monter que : $\lim_{x\to 2} f(x) = \frac{1}{3}$

Solution: $f(-1+h)-6=h^2-5h$

$$f\left(2+h\right) - \frac{1}{3} = \frac{2h}{3+h}$$

Si
$$h \in]-1;1[$$
 alors : $\left| f(2+h) - \frac{1}{3} \right| = \left| \frac{2h}{3+h} \right| \le |h|$

puisque : $\lim_{h\to 0} |h| = 0$ alors : $\lim_{h\to 0} f(2+h) - \frac{1}{3} = 0$

donc: $\lim_{x\to 2} f(x) = \frac{1}{3}$

Propriété :Si sur un intervalle pointé de centre a on a : $g(x) \le f(x) \le h(x)$ et si

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = l \text{ alors } \lim_{x \to a} f(x) = l$$

Propriété : Soit f une fonction définie sur un intervalle pointé de centre a

on a :
$$\lim_{x \to a} |f(x)| = 0 \Leftrightarrow \lim_{x \to a} f(x) = 0$$

Remarque:

$$\lim_{x \to a} |f(x)| = l \Leftrightarrow \lim_{x \to a} f(x) = l \text{ ou } \lim_{x \to a} f(x) = -l$$

Propriété : Si f admet une limite l en a alors cette limite est **unique**.

IV) LIMITE A DROITE, LIMITE A GAUCHE.

1) Définition

Activité :Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x - E(x)$

Où E désigne la partie entière.

- 1- Ecrire les expressions de f sans utiliser la partie entière sur les intervalles]0,1[et]1,2[.
- 2- Construire la courbe de la restriction de f sur [0,2].
- 3- La fonction *f* admet-elle une limite en 1.
- 4- Soit la fonction g(x) = x et h(x) = x 1
- a) Remarquer que f et g sont confondues sur
-]0,1[et que f et h sont confondues sur]1,2[
- b) déterminer les limites de g et de h en 1.

Définition1: Soit f une fonction définie sur un intervalle de la forme] a, a + r[où r > 0 et l un réel. On dit que la fonction f tend vers l quand x tend vers a à droite si la proposition suivante est vraie :

$$(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in Df)(\ \alpha < x < \alpha + \alpha \Rightarrow |f(x) - l| < \varepsilon$$

Et on écrit :
$$\lim_{\substack{x \to a \\ x > a}} f(x) = l$$
 ou $\lim_{\substack{x \to a^+ \\ x > a}} f(x) = l$

Définition2: Soit f une fonction définie sur un intervalle de la forme]a - r, a [où r > 0 et l un réel. On dit que la fonction f tend vers l quand x tend vers a à gauche si la proposition suivante est vraie :

$$(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in Df)(a - \alpha < x < a \Rightarrow |f(x) - l| < \varepsilon$$

Et on écrit : $\lim_{x \to 0} f(x) - \lim_{x \to 0} f(x) - l$

Et on écrit :
$$\lim_{\substack{x \to a \\ x \prec a}} f(x) = l \text{ ou } \lim_{x \to a^{-}} f(x) = l$$

Exemple : Soit la fonction $f: x \mapsto \frac{|x-1|x}{x^2-1}$

Déterminer
$$\lim_{\substack{x \to 1 \\ x > 1}} f(x)$$
 et $\lim_{\substack{x \to 1 \\ x < 1}} f(x)$

Solution: $\forall x \in \mathbb{R} - \{-1, 1\}$

Si:
$$x > 1$$
: $f(x) = \frac{(x-1)x}{(x-1)(x+1)} = \frac{x}{x+1}$

Donc:
$$\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{x}{x+1} = \frac{1}{2}$$

Si:
$$x < 1$$
: $f(x) = \frac{-(x-1)x}{(x-1)(x+1)} = -\frac{x}{x+1}$

Donc:
$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} -\frac{x}{x+1} = -\frac{1}{2}$$

Remarque :
$$\lim_{\substack{x \to 1 \\ x > 1}} f(x) \neq \lim_{\substack{x \to 1 \\ x < 1}} f(x)$$

Exercice1:

La courbe ci-contre est la courbe de la fonction définie par Morceaux comme suite :

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 1 - x \text{ si } x \le 1$$

$$x \mapsto x^2 \operatorname{si} x \succ 2$$

Déterminer graphiquement les limites de la fonction f à droite et à gauche de 1.

Exercice2: Soit la fonction g définie par :

$$g: \mathbb{R} \to \mathbb{R}$$

$$x\mapsto 2x^2-x+3\ si\ x\geq 1$$

$$x \mapsto -x^2 + x + \alpha \operatorname{si} x < 1$$

Déterminer α pour que la fonction g admet une limite en 1.

Théorème : Une fonction f admet une limite l en a si et seulement si elle admet une limite à droite de a égale à sa limite à gauche de a égale à l.

$$\lim_{x \to a} f(x) = l \iff \lim_{\substack{x \to a \\ x \succ a}} f(x) = l \text{ et } \lim_{\substack{x \to a \\ x \prec a}} f(x) = l$$

Exemple : Soit la fonction $f: x \mapsto \frac{(x+1)^2}{|x^2-1|}$

Etudier la limite de f en $x_0 = -1$

Solution:

Déterminons $\lim_{\substack{x \to -1 \\ x \succeq -1}} f(x)$ et $\lim_{\substack{x \to -1 \\ x \preceq -1}} f(x)$?

Solution: $\forall x \in \mathbb{R} - \{-1, 1\}$

Si:
$$-1 \prec x \prec 1$$
: $f(x) = \frac{(x+1)^2}{|x+1||x-1|} = -\frac{x+1}{x-1}$

Donc:
$$\lim_{\substack{x \to -1 \\ x \succ -1}} f(x) = \lim_{\substack{x \to -1 \\ x \succ -1}} -\frac{x+1}{x-1} = 0$$

Si:
$$x < -1$$
: $f(x) = \frac{(x+1)^2}{|x+1||x-1|} = \frac{x+1}{x-1}$

Donc:
$$\lim_{\substack{x \to -1 \\ x < -1}} f(x) = \lim_{\substack{x \to -1 \\ x < -1}} \frac{x+1}{x-1} = 0$$

donc:
$$\lim_{\substack{x \to -1 \\ x \succ -1}} f(x) = \lim_{\substack{x \to -1 \\ x \succ -1}} f(x) = 0$$
 donc: $\lim_{x \to -1} f(x) = 0$

2) Propriétés

Toutes les propriétés mentionnées au paravent sont vraie à droite et à gauche de a en tenant compte des conditions

Propriété: Si sur un intervalle de la forme]a, a + r[on a: $|f(x) - l| \le u(x)$ et $\lim_{\substack{x \to a \\ x > a}} u(x) = 0$

alors
$$\lim_{\substack{x \to a \\ x > a}} f(x) = l$$

Propriété: Si f et g sont confondues sur un intervalle de la forme]a, a + r[et si $\lim_{\substack{x \to a \\ r > a}} f(x) = l$

alors
$$\lim_{\substack{x \to a \\ x \succeq a}} g(x) = l$$

3) Opérations sur les limites finies.

Propriété: Soient f et g deux fonctions tels que

$$\lim_{x\to a} f(x) = l$$
 et $\lim_{x\to a} g(x) = l'$ on a :

$$\lim_{x \to a} (f+g)(x) = l+l' \text{ et } \lim_{x \to a} (f \times g)(x) = l \times l' \text{ et}$$

$$\lim_{x \to a} |f|(x) = |l| \text{ et } \lim_{x \to a} \left(\frac{1}{g}\right)(x) = \frac{1}{l'} \text{ si } l' \neq 0$$

et
$$\lim_{x \to a} \left(\frac{f}{g} \right) (x) = \frac{l}{l'} \text{ si } l' \neq 0 \text{ et } \lim_{x \to a} \sqrt{f} (x) = \sqrt{l} \text{ si } l > 0$$

Ces propriétés sont vraies à droite et à gauche d'un réel a.

Exemple:
$$\lim_{x\to 1} \frac{\sqrt{x^2+3}+1}{2x-1} = \frac{3}{1} = 3$$

V) EXTENTION DE LA NOTION DE LIMITE.

1) Limite infinie à droite (à gauche) de a.

$$f: \mathbb{R} \to \mathbb{R}$$

Activité :Soit la fonction

$$x \mapsto \frac{1}{x}$$

La courbe représentative de f est l'hyperbole de centre O(0,0)

1- Compléter le tableau suivant :

х	10^{-2}	10^{-6}	10^{-20}	 10^{-p}
f(x)				

Que remarquer-vous?

Considérons A = 10100 déterminer un réel α tel que si $0 < x < \alpha$

Alors f(x) > 10100.

Montrer que:

(P): $(\forall A > 0)(\exists \alpha > 0)(\forall x \in Df)(0 < x < \alpha \Rightarrow f(x) > A)$

La propriété (P) veut dire qu'on peut rendre f(x)aussi grand qu'on

veut ; on dit que la limite de f est + ∞ quand xtend vers 0 à droite et

on écrit :
$$\lim_{x\to 0^+} f(x) = +\infty$$

Définition: Soit *f* une fonction définie sur un intervalle de la forme] a, a + r[où r > 0, on dit que la fonction f tend vers $+\infty$ quand x tend vers a adroite si:

$$(\forall A>0)(\exists \alpha>0)(\forall x\in Df\)(0< x-\alpha<\alpha\Rightarrow f(x)>A)$$

On écrit : $\lim_{x \to \infty} f(x) = +\infty$

Propriété:Les fonctions : $x \mapsto k|x|$; $x \mapsto k\sqrt{|x|}$;

 $x \mapsto k |x|^n$ Tendent vers 0 quand x rend vers 0.

Propriétés :

l'inverse des fonctions $x \mapsto k|x|$; $x \mapsto k\sqrt{|x|}$;

 $x \mapsto k |x|^n$ où k un réel strictement positif et $n \in$ $\mathbb{N}*$, tendent vers $+\infty$ quand x tend vers 0.

Définitions :1) $\lim_{x \to a^+} f(x) = -\infty$:

 $(\forall A > 0)(\exists \alpha > 0)(\forall x \in Df)(0 < x - \alpha < \alpha \Rightarrow f(x) < -A)$

2) $\lim f(x) = +\infty$:

 $(\forall A > 0)(\exists \alpha > 0)(\forall x \in Df)(0 < \alpha - x < \alpha \Rightarrow f(x) > A)$

3) $\lim_{x \to \infty} f(x) = -\infty$:

 $(\forall A > 0)(\exists \alpha > 0)(\forall x \in Df)(0 < \alpha - x < \alpha \Rightarrow f(x) < -A)$

Interprétations géométriques :

$$\lim_{x \to a^{+}} f(x) = +\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

Exercice: Compléter l'interprétation géométrique.

Définition : Si la fonction *f* vérifie l'une des limites suivantes:

$$\lim_{x \to a^{+}} f(x) = +\infty \text{ ou } \lim_{x \to a^{+}} f(x) = -\infty \text{ ou}$$

$$\lim_{x \to a^{-}} f(x) = +\infty \text{ ou } \lim_{x \to a^{-}} f(x) = -\infty \text{ Alors}$$

On dit que la droite (Δ): x = a est une Asymptote verticale.

2) Limites finies en ±∞

$$f: \mathbb{R} \to \mathbb{R}$$

Activité :Soit la fonction $x \mapsto \frac{1}{x}$

La courbe représentative de *f* est l'hyperbole de centre O(0,0)

1- Compléter le tableau suivant :

X	10^2	10^{6}	10^{20}	 10^{p}
f(x)				

Que remarquer-vous?

Considérons $\varepsilon = 10^{-100}$ déterminer un réel B tel que si x > B alors $|f(x)| < \varepsilon$.

En général, montrer que :

(P) : $(\forall \varepsilon > 0) \ (\exists B > 0) \ (\forall x \in Df)(x > B \Rightarrow |f(x)| < \varepsilon)$

Définition: Soit f une fonction définie sur un intervalle de la forme $]a, +\infty[$

(a un réel quelconque) et l un réel, on dit que la fonction f tend l quand x tend vers $+\infty$ si :

$$(\forall \varepsilon > 0)(\exists B > 0)(\forall x \in Df)(x > B \Rightarrow |f(x) - l| < \varepsilon)$$

On écrit : $\lim_{x \to +\infty} f(x) = l$

Propriétés : les fonctions $x \mapsto \frac{k}{|x|}$; $x \mapsto \frac{k}{\sqrt{|x|}}$;

$$x \mapsto \frac{k}{|x|^n}$$
 où k un réel donné et $n \in \mathbb{N}$ *

Tendent vers 0 quand x tend vers $+\infty$.

Définitions: Soit f une fonction définie sur un intervalle de la forme $]-\infty$, a[(a un réel quelconque) et l un réel, on dit que la fonction f tend l quand x tend vers $-\infty$ si : $(\forall \varepsilon > 0)(\exists B > 0)(\forall x \in Df)(x < -B \Rightarrow |f(x) - l| < \varepsilon)$ On écrit : $\lim_{x \to -\infty} f(x) = l$

Propriété:

• Soit f et u deux fonctions définies sur un intervalle de la forme : $I =]a, +\infty[$

Si
$$\forall x \in I : |f(x)| \le u(x)$$
 et $\lim_{x \to +\infty} u(x) = 0$

alors
$$\lim_{x \to +\infty} f(x) = 0$$

• Soit f et u deux fonctions définies sur un

intervalle de la forme : I=] – ∞ , a[

Si
$$\forall x \in I : |f(x)| \le u(x)$$
 et $\lim_{x \to -\infty} u(x) = 0$

alors $\lim_{x \to -\infty} f(x) = 0$

Exemple1: Soit la fonction : $f: x \mapsto \frac{-3}{x^2+2}$

déterminer : $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$

Solution : $\forall x \in \mathbb{R}^*$ on a $x^2 + 2 \ge x^2$ donc

$$|f(x)| \le \frac{3}{x^2}$$
 et on a $\lim_{x \to +\infty} \frac{3}{x^2} = \lim_{x \to -\infty} \frac{3}{x^2} = 0$ donc:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$$

Exemple2: Soit la fonction : $f: x \mapsto \frac{1+\sin x}{1+\sqrt{x}}$

déterminer : $\lim_{x \to +\infty} f(x)$

Solution : $\forall x \in \mathbb{R}_+^*$ on a $1 + \sqrt{x} \ge \sqrt{x}$ et

$$0 \le 1 + \sin x \le 2$$
 donc $\left| \frac{1 + \sin x}{1 + \sqrt{x}} \right| \le \frac{2}{\sqrt{x}}$ donc

$$|f(x)| \le \frac{2}{\sqrt{x}}$$
 et on a $\lim_{x \to +\infty} \frac{2}{\sqrt{x}} = 0$ donc :

$$\lim_{x \to +\infty} f(x) = 0$$

Interprétation géométrique :

Compléter les autres interprétations.

Définition : Si la fonction f vérifie l'une des

limites suivantes :
$$\lim_{x \to +\infty} f(x) = l$$
 ou $\lim_{x \to -\infty} f(x) = l$

Alors, on dit que la droite (Δ) : y = l est une asymptote horizontale.

Remarque : La position de la courbe Cf par rapport à son asymptote horizontale se détermine par le signe de f(x) - l:

- 1) Si $f(x) l \ge 0$ alors Cf est au-dessus de (Δ) : y = l
- 2)Si $f(x) l \le 0$ alors Cf est au-dessous de (Δ): y = l
- 3) Limite infinies en ±∞

Activité : Considérons la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$

La courbe représentative de f est la parabole de centre O(0,0)

1- Compléter le tableau suivant :

х	10^2	10 ⁶	10^{20}	 10 ^p
f(x)				

Que remarquer-vous?

Considérons A = 10100 déterminer un réel B tel que si x > B alors f(x) > A.

En général, montrer que :

(P):
$$(\forall A > 0)(\exists B > 0)(\forall x \in Df)(x > B \Rightarrow f(x) > A)$$

Définition: Soit f une fonction]a, $+\infty[$ (où a est un réel quelconque) on dit que la fonction f tend vers $+\infty$ quand x tend vers $+\infty$ si :

$$(\forall A>0)(\exists B>0)(\forall x\in Df\)(x>B\Rightarrow f(x)>A)$$

on écrit : $\lim_{x \to +\infty} f(x) = +\infty$

Propriété:Les fonctions:

$$x \mapsto x^2$$
; $x \mapsto x^n$ $(n \in \mathbb{N}^*)$; $x \mapsto \sqrt{x}$; $x \mapsto |x|$

tendent vers $+\infty$ quand x tend vers $+\infty$

Définitions: $\lim_{x \to +\infty} f(x) = +\infty$ si

$$(\forall A > 0)(\exists B > 0)(\forall x \in Df)(x > B \Rightarrow f(x) > A)$$

$$\lim_{x \to +\infty} f(x) = -\infty \text{ si}$$

$$(\forall A > 0)(\exists B > 0)(\forall x \in Df)(x > B \Rightarrow f(x) < -A)$$

$$\lim_{x \to -\infty} f(x) = +\infty \text{ si}$$

$$(\forall A > 0)(\exists B > 0)(\forall x \in Df)(x < \neg B \Rightarrow f(x) > A)$$

$$\lim_{x \to \infty} f(x) = -\infty \operatorname{si}$$

$$(\forall A>0)(\exists B>0)(\forall x\in Df\)(x<-B\Rightarrow f(x)<-A)$$

Remarque :Pour l'interprétation géométrique, il y' a plusieurs cas qu'on va étudier par la suite (Etude de fonction).

VI) OPERATIONS SUR LES LIMITES.

1) Limites et ordres.

Propriété : Si sur un intervalle pointé de centre

$$a ext{ on a}: |f(x) - l| \le u(x) ext{ et } \lim_{x \to a} u(x) = 0 ext{ alors}$$

$$\lim_{x \to a} f(x) = l$$

(On peut citer les mêmes propriétés à gauche et adroites de a ou $+\infty$ ou $-\infty$.)

Propriété : Si f et g sont confondues sur un

intervalle pointé de centre
$$a$$
 et si $\lim_{x\to a} f(x) = l$

alors
$$\lim_{x \to a} g(x) = l$$

Propriété :1) soit f est une fonction définit sur un intervalle de la forme $I = \left]a - r; a - r\left[-\left\{a\right\}\right]$ avec $a \in \mathbb{R}$ et r > 0

Si f admet une limite en a et f positif sur I alors $\lim_{x\to a} f(x) \ge 0$

2) soit f est une fonction définit sur un intervalle de la forme $I=\left]a-r;a-r\right[-\left\{a\right\}$ avec $a\in\mathbb{R}$ et $r\succ 0$

Si f admet une limite en a et g admet une limite en a et $f \le g \operatorname{sur} I$ alors $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

3)si on a :
$$g(x) \le f(x) \le h(x)$$
 et si $\lim_{x \to a} g(x) = l$

et
$$\lim_{x \to a} h(x) = l$$
 alors $\lim_{x \to a} f(x) = l$

Les propriétés précédentes sont vraies si x tend vers a à droite, ou a à gauche, ou $+\infty$ ou $-\infty$ en tenant compte des conditions pour chaque cas. On peut citer les mêmes propriétés à gauche de a.) $|a-r;a-r|-\{a\}$

Propriété :1)Si sur un intervalle de la forme

]
$$a, a + r[$$
 on $a : u(x) \le v(x)$ et $\lim_{x \to a^+} u(x) = +\infty$

alors:
$$\lim_{x \to a^+} v(x) = +\infty$$

2)Si sur un intervalle de la forme]a, a + r[on a :

$$u(x) \le v(x)$$
 et $\lim_{x \to a^+} v(x) = -\infty$

alors:
$$\lim_{x\to a^+} u(x) = -\infty$$

La propriété précédente est vraie si x tend vers a à gauche, ou $+\infty$ ou $-\infty$ en tenant compte des conditions pour chaque cas.

Exemple1: Soit la fonction:

$$f: x \mapsto (x^2 + x^4) \sin \frac{1}{x}$$
 déterminer : $\lim_{x \to 0} f(x)$

Solution: $\forall x \in \mathbb{R}^* \text{ on a } -1 \le \sin \frac{1}{x} \le 1 \text{ et } x^2 + x^4 \ge 0$

donc
$$-x^2 - x^4 \le (x^2 + x^4) \sin \frac{1}{x} \le x^2 + x^4$$
 et puisque :

$$\lim_{x \to 0} x^2 + x^4 = \lim_{x \to 0} -x^2 - x^4 = 0 \text{ alors}: \lim_{x \to 0} f(x) = 0$$

Exemple2: Soit la fonction : $f: x \mapsto 3x^2 + 5x + 1$

déterminer :
$$\lim_{x \to \infty} f(x)$$

Solution : $\forall x \in \mathbb{R}^+$ on a $3x^2 \le 3x^2 + 5x + 1$ et et

puisque : $\lim_{x \to +\infty} 3x^2 = +\infty$ alors : $\lim_{x \to +\infty} f(x) = +\infty$

Exemple3: Soit la fonction : $f: x \mapsto x + \sin x - 1$

déterminer : $\lim_{x \to -\infty} f(x)$

Solution : $\forall x \in \mathbb{R}$ on a $-1 \le \sin x \le 1$ donc :

 $x-2 \le f(x) \le x$ et puisque :

 $\lim_{x \to -\infty} x = -\infty \text{ alors}: \lim_{x \to -\infty} f(x) = -\infty$

Exercice : Soit $f(x) = \frac{2 + \sin\left(\frac{1}{x}\right)}{x^2}$

1- Montrer que $(\forall x \in \mathbb{R}^*) f(x) \ge \frac{1}{x^2}$

2- En déduire $\lim_{x\to 0} f(x)$

2) Opérations sur les limites

Toutes les propriétés qui seront citées dans ce paragraphe sous forme de tableau sont admises et on peut les démontrer en utilisant les définitions des limites.

1) Limite de la somme

lim f	Ł	Ł	Ł	+ ∞	- ∞	+∞
lim g	ℓ'	+ ∞	- ∞	+ ∞	- ∞	- ∞
lim f + g	ℓ +ℓ'	+ ∞	- ∞	+ ∞	- ∞	Forme ind

Ces propriétés sont vraies si x tend vers a+; a-; $+\infty$ ou $-\infty$

Formes indéterminées: Veut dire qu'on ne peut pas calculer la limite directement, il faut faire d'autres calcules car il y a plusieurs cas.

Exemple1:1) $f(x) = 2 + x^2$, $g(x) = 5 - x^2$ on a

$$\lim_{x \to +\infty} f(x) = +\infty; \lim_{x \to +\infty} f(x) = -\infty$$

et
$$\lim_{x \to +\infty} f(x) + g(x) = -7$$

$$(2)f(x) = 2 + x^2$$
, $g(x) = 5 - x$ on a

$$\lim_{x \to +\infty} f(x) = +\infty; \lim_{x \to +\infty} g(x) = -\infty$$

et
$$\lim_{x \to +\infty} f(x) + g(x) = \lim_{x \to +\infty} x^2 - x + 7 = \lim_{x \to +\infty} x^2 \left(1 - \frac{1}{x} + \frac{7}{x^2}\right) = +\infty$$

Dans les deux exemples on a le même cas que dans la dernière colonne du tableau mais on a deux résultats différents

Exemple2: déterminer : $\lim_{x \to +\infty} x^2 - \sqrt{x}$

on a
$$\lim_{x \to +\infty} x^2 = +\infty$$
; $\lim_{x \to +\infty} -\sqrt{x} = -\infty$

Donc Formes indéterminée : " $+\infty-\infty$ "

$$\lim_{x \to +\infty} x^2 - \sqrt{x} = \lim_{x \to +\infty} x^2 \left(1 - \frac{\sqrt{x}}{x^2} \right) = \lim_{x \to +\infty} x^2 \left(1 - \frac{1}{x\sqrt{x}} \right)$$

puisque : $\lim_{x \to +\infty} \frac{1}{x \sqrt{x}} = 0$ et $\lim_{x \to +\infty} x^2 = +\infty$

alors: $\lim_{x \to +\infty} x^2 - \sqrt{x} = +\infty$

2) Limites des produits

lim f	l	£ >0	£ >0	£<0	£<0	0	0	+ ∞	- 00	+ ∞
lim g	ℓ'	+ ∞	- 00	+ ∞	- 00	+ ∞	- 00	+ ∞	- 00	- 00
lim f × g	ℓℓ'	+ ∞	- 00	- 00	+ ∞	Forme ind	Forme ind	+ ∞	+ ∞	- 00

3)Limites des inverses

lim f	ℓ ≠0	0+	0-	+∞	- ∞
$\lim \frac{1}{f}$	$\frac{1}{\ell}$	+ ∞	- 8	0	0

4) Limites des quotients

lim f	Ł	l	ℓ ≠ 0	±∞	0	±∞
lim g	ℓ'≠0	±∞	0	l	0	±∞
$\lim \frac{f}{g}$	$\frac{\ell}{\ell'}$	0	± 8	±∞	?	?

Exemple1: déterminer: $\lim_{x\to 0} x^2 + x + 2 + \frac{1}{x^2}$

Solution: on a: $\lim_{x\to 0} x^2 + x + 2 = 2$ et $\lim_{x\to 0} \frac{1}{x^2} = +\infty$

Donc: $\lim_{x\to 0} x^2 + x + 2 + \frac{1}{x^2} = +\infty$

Exemple2: déterminer:

1)
$$\lim_{x \to 1} \frac{x^3 + 1}{(x - 1)^2}$$
 2) $\lim_{x \to +\infty} \frac{x^3 + 1}{(x - 1)^2}$

3)
$$\lim_{x \to \pm \infty} 2x^3 + x^2 - x + 4$$

Solution : 1)on a : $\lim_{x \to 1} (x-1)^2 = 0^+$ et

$$\lim_{x \to 1} x^3 + 1 = 2 \operatorname{Donc} : \lim_{x \to 1} \frac{x^3 + 1}{(x - 1)^2} = +\infty$$

2)on a:
$$\lim_{x \to +\infty} \frac{x^3 + 1}{(x - 1)^2} = \lim_{x \to +\infty} \frac{x^3 \left(1 + \frac{1}{x^3}\right)}{x^2 \left(1 - \frac{1}{x}\right)^2} = \lim_{x \to +\infty} x \frac{1 + \frac{1}{x^3}}{\left(1 - \frac{1}{x}\right)^2}$$

et on a :
$$\lim_{x \to +\infty} \frac{1}{x^3} = 0$$
 et $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{x \to +\infty} 1 + \frac{1}{x^3} = 1$

et
$$\lim_{x \to +\infty} 1 - \frac{1}{x} = 1$$
 Donc: $\lim_{x \to +\infty} \frac{x^3 + 1}{(x - 1)^2} = +\infty$ car $\lim_{x \to +\infty} x = +\infty$

3)
$$\lim_{x \to +\infty} 2x^3 + x^2 - x + 4 = \lim_{x \to +\infty} 2x^3 \left(1 + \frac{1}{2x} - \frac{1}{2x^2} + \frac{2}{x^3} \right)$$

on a:
$$\lim_{x \to +\infty} \frac{2}{x^3} = \lim_{x \to +\infty} \frac{1}{2x^2} = \lim_{x \to +\infty} \frac{1}{2x} = 0$$
 et

$$\lim_{x \to +\infty} x^3 = +\infty$$
 donc $\lim_{x \to +\infty} 2x^3 + x^2 - x + 4 = +\infty$

$$\lim_{x \to -\infty} 2x^3 + x^2 - x + 4 = \lim_{x \to -\infty} 2x^3 \left(1 + \frac{1}{2x} - \frac{1}{2x^2} + \frac{2}{x^3} \right)$$

on a:
$$\lim_{x \to -\infty} \frac{2}{x^3} = \lim_{x \to -\infty} \frac{1}{2x^2} = \lim_{x \to -\infty} \frac{1}{2x} = 0$$
 et

$$\lim_{x \to -\infty} x^3 = -\infty \quad \text{donc } \lim_{x \to +\infty} 2x^3 + x^2 - x + 4 = -\infty$$

Exemple3: On veut déterminer

$$\lim_{x \to 1^+} \frac{3x+1}{x^2 + x - 2}$$

on a :
$$\lim_{x \to 1^{+}} 3x + 1 = 4$$

on a :
$$\lim_{x \to 1^+} x^2 + x - 2 = 0^+$$

Donc
$$\lim_{x \to 1^+} \frac{3x+1}{x^2+x-2} = +\infty$$

Remarque:1) Eviter d'écrire ces expressions

qui n'ont pas de sens mathématique : $\frac{?}{Q^+}$ et $\frac{?}{Q^-}$

2)Ne pas utiliser +∞ ou -∞ dans les opérations dans R (+∞ et -∞ ne sont pas des réels)

Exercices : Déterminer les limites suivantes :

$$\lim_{x \to 1} \frac{3x^2 - x}{2x^3 + 2x - 4} \qquad \lim_{x \to 2} \frac{\sqrt{4x + 1} - 3}{x^2 - 3x + 2}$$

3) Limites d'une fonction polynôme en ±∞

$$\lim_{x \to +\infty} f(x) = +\infty$$

Soit f une fonction polynôme de degré n tel que : $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$

avec $a_n \neq 0$ On a:

$$f(x) = a_n x^n \left(\frac{a_0}{a_n x^n} + \frac{a_1}{a_n x^{n-1}} + \frac{a_2}{a_n x^{n-2}} + \dots + \frac{a_{n-1}}{a_n x} + 1 \right)$$

puisque
$$\lim_{x \to +\infty} \frac{a_0}{a_n x^n} + \frac{a_1}{a_n x^{n-1}} + \frac{a_2}{a_n x^{n-2}} + \dots + \frac{a_{n-1}}{a_n x} + 1 = 1$$

alors
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} a_n x^n$$

Même chose si x tend vers $-\infty$

Propriété :La limite d'une fonction polynôme en +∞ (-∞) est la limite de son plus grand terme en +∞ (-∞)

Exemple:

$$\lim_{x \to +\infty} 2x^3 + x^2 - x + 4 = \lim_{x \to +\infty} 2x^3 = +\infty$$

4) Limites d'une fonction rationnelle en ±∞

Une fonction rationnelle est le rapport de deux

fonctions polynômes :
$$h(x) = \frac{f(x)}{g(x)}$$

$$f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$
 avec $an \neq 0$

$$g(x) = b_0 + b_1 x + b_2 x^2 + ... + b_m x^m \text{ avec } b_m \neq 0$$

$$h(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{b_0 + b_1 x + b_2 x^2 + \dots + b_m x}$$

$$h(x) = \frac{a_n x^n \left(\frac{a_0}{a_n x^n} + \frac{a_1}{a_n x^{n-1}} + \frac{a_2}{a_n x^{n-2}} + \dots + \frac{a_{n-1}}{a_n x} + 1\right)}{b_m x^m \left(\frac{b_0}{b_m x^m} + \frac{b_1}{b_m x^{m-1}} + \frac{b_2}{b_m x^{m-2}} + \dots + \frac{b_{m-1}}{b_m x} + 1\right)}$$

et puisque :
$$\lim_{x \to +\infty} \frac{\frac{a_0}{a_n x^n} + \frac{a_1}{a_n x^{n-1}} + \frac{a_2}{a_n x^{n-2}} + ... + \frac{a_{n-1}}{a_n x} + 1}{\frac{b_0}{b_n x^m} + \frac{b_1}{b_n x^{m-1}} + \frac{b_2}{b_n x^{m-2}} + ... + \frac{b_{m-1}}{b_n x} + 1} = 1$$

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{a_n x^n}{b_m x^m}$$

Même chose si x tend vers -∞

Propriété: La limite d'une fonction rationnelle en +∞ (-∞) est la limite du rapport des termes de plus grand degré en +∞ (-∞)

Exemples:

1)
$$\lim_{x \to +\infty} \frac{2x + 5x^2 - 7x^4}{x - 10x^2 + 14x^3} = \lim_{x \to +\infty} \frac{-7x^4}{14x^3} = \lim_{x \to +\infty} \frac{-x}{2} = -\infty$$

2)
$$\lim_{x \to -\infty} \frac{3x + 8x^2 - 2x^5}{x^2 + 2x^6} = \lim_{x \to -\infty} \frac{-2x^5}{2x^6} = \lim_{x \to -\infty} -\frac{1}{x} = 0$$

Remarque : La propriété précédente n'est vraie que si x tend vers $+\infty$ ou $-\infty$

Exercice: Déterminer $\lim_{x \to +\infty} \frac{x^2 \sqrt{x} - x \sqrt{x}}{x^3 + 2x \sqrt{x}}$ vous

pouvez poser $\sqrt{x} = t$

5) Limites des fonctions trigonométriques.

Activité :Dans le plan muni d'un repère $(O; \vec{i}; \vec{j})$

On considère le cercle

Trigonométrique d'origine A(1,0). $x \in]0, \frac{\pi}{2}[$

et B le point sur le cercle

trigonométrique tel que : $\left(\overline{\overrightarrow{OA}}; \overline{\overrightarrow{OB}}\right) \equiv x[2\pi]$

- 1-Déterminer en fonction de x la surface du domaine circulaire $\mathcal D$ limité par
- [OA), [OB) et l'arc géométrique AB
- 2- Soit *H* la projection orthogonale de *B* sur (*OA*).
- a) Déterminer en fonction de x l'aire du triangle OAB
- b) Comparer les aires du domaine \mathcal{D} et du triangle, que peut-on conclure ?
- 3- Montrer que : $(\forall x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]) (|sinx| \le |x|).$
- 4- Déterminer les limites $\lim_{x\to 0} \sin x$ et $\lim_{x\to a} \sin x$
- et $\lim_{x \to a} \cos x$
- 5- Considérons la droite (Δ) la droite tangente au cercle ($\mathcal C$) en A
- a) Soit T l'intersection de (Δ) et (OB), Déterminer en fonction de x la surface de OAT.
- b) En déduire que $(\forall x \]0; \frac{\pi}{2}[) \ (x \le tanx)$
- c) En déduire que $(\forall x] \frac{\pi}{2}; \frac{\pi}{2}[) (|x| \le |tanx|)$
- 6- En utilisant les résultats précédents. Montrer

que :a)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 b) $\lim_{x \to 0} \frac{\tan x}{x} = 1$

c)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

Propriété : Soit a un réel on a :

- 1) $\lim_{x \to a} \sin x = \sin a$
- $2) \lim_{x \to a} \cos x = \cos a$

3)si $a \neq \frac{\pi}{2} + k\pi \lim_{x \to a} \tan x = \tan a$

Propriété : Soit $a \in \mathbb{R}^*$

a)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 b) $\lim_{x\to 0} \frac{\tan x}{x} = 1$

c)
$$\lim_{x\to 0} \frac{\sin ax}{ax} = 1$$
 b) $\lim_{x\to 0} \frac{\tan ax}{ax} = 1$

c)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

Exemples: Déterminer les limites suivantes:

1)
$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x}$$
 2) $\lim_{x \to 0^+} \frac{\cos \sqrt{x} - 1}{x}$ 3) $\lim_{x \to \frac{\pi}{6}} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}}$

Solution: 1)

$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x} = \lim_{x \to 0} \frac{\sin 2x}{2x} \times \frac{3x}{\sin 3x} \times \frac{2}{3} = 1 \times 1 \times \frac{2}{3} = \frac{2}{3}$$

2) $\lim_{x\to 0^+} \frac{\cos\sqrt{x}-1}{x}$ directement on trouve une

formes indéterminée : $\frac{0}{0}$

$$\lim_{x \to 0^{+}} \frac{\cos \sqrt{x} - 1}{x} = \lim_{x \to 0^{+}} -\frac{1}{2} \left(\frac{1 - \cos \sqrt{x}}{\left(\sqrt{x}\right)^{2}} \right) = \lim_{h \to 0^{+}} -\frac{1}{2} \left(\frac{1 - \cosh}{\frac{h^{2}}{2}} \right) = -\frac{1}{2} \times 1 = -\frac{1}{2}$$

(On pose $\sqrt{x} = h$)

$$3) \lim_{x \to \frac{\pi}{6}} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}}$$

On montre que : $\sqrt{3}\sin x - \cos x = 2\sin\left(x - \frac{\pi}{6}\right)$

$$\lim_{x \to \frac{\pi}{6}} \frac{\sqrt{3} \sin x - \cos x}{x - \frac{\pi}{6}} = \lim_{x \to \frac{\pi}{6}} \frac{2 \sin \left(x - \frac{\pi}{6}\right)}{x - \frac{\pi}{6}}$$

On pose $x - \frac{\pi}{6} = h$) donc $x \to \frac{\pi}{6} \Leftrightarrow h \to 0$

$$Donc: = 2\lim_{h\to 0} \frac{\sin h}{h} = 2 \times 1 = 2$$

Exercice : Déterminer les limites suivantes :

1)
$$\lim_{x \to 0} x^2 \sin \frac{1}{x}$$
 2) $\lim_{x \to +\infty} \frac{\cos x}{x^3}$ 3) $\lim_{x \to +\infty} \frac{1 + \sin x}{x^2 (2 + \cos x)}$

4)
$$\lim_{x \to -\infty} 1 + \frac{x}{2 + \sqrt{x^4 + 1}}$$

Solution : 1)on pose : $f(x) = x^2 \sin \frac{1}{x}$

$$\forall x \in \mathbb{R}^* \left| \sin \left(\frac{1}{x} \right) \right| \le 1 \text{ donc } : \left| f(x) \right| \le x^2 \text{ et on a}$$

$$\lim_{x\to 0} x^2 = 0$$
 Alors: $\lim_{x\to 0} f(x) = 0$

2)
$$\lim_{x \to +\infty} \frac{\cos x}{x^3}$$
 ? on pose : $f(x) = \frac{\cos x}{x^3}$

$$\forall x \in \mathbb{R}^* \left| \cos x \right| \le 1 \text{ donc } : \left| f(x) \right| \le \frac{1}{\left| x \right|^3} \text{ et on a}$$

$$\lim_{x \to +\infty} \frac{1}{|x|^3} = 0 \text{ Alors} : \lim_{x \to +\infty} f(x) = 0$$

3)
$$\lim_{x \to +\infty} \frac{1+\sin x}{x^2(2+\cos x)}$$
 ? on pose : $f(x) = \frac{1+\sin x}{x^2(2+\cos x)}$

$$\forall x \in \mathbb{R}^* -1 \le \cos x \le 1$$
 et $-1 \le \sin x \le 1$ donc:

$$0 \le \frac{1+\sin x}{2+\cos x} \le 2 \operatorname{donc} 0 \le f(x) \le \frac{2}{x^2}$$

Et puisque :
$$\lim_{x\to +\infty} 0 = 0$$
 et $\lim_{x\to +\infty} \frac{2}{x^2} = 0$ Alors :

$$\lim_{x \to +\infty} f(x) = 0$$

4)
$$\lim_{x \to -\infty} 1 + \frac{x}{2 + \sqrt{x^4 + 1}}$$
 ? on pose : $f(x) = 1 + \frac{x}{2 + \sqrt{x^4 + 1}}$

$$\forall x \in \mathbb{R}^* \ 2 + \sqrt{x^4 + 1} \ge \sqrt{x^4} \ \text{cad} \ 2 + \sqrt{x^4 + 1} \ge x^2$$

donc:
$$\frac{1}{2+\sqrt{x^4+1}} \le \frac{1}{x^2}$$
 donc: $|f(x)-1| \le \frac{1}{|x|}$

Et puisque :
$$\lim_{x\to-\infty}\frac{1}{|x|}=0$$
 Alors : $\lim_{x\to-\infty}f(x)=1$

Exercice: Soient les fonctions tels que :

$$f(x) = \sqrt{2x+1}(-3x^2+x)$$
 et $g(x) = \frac{-2x^2+1}{(x-3)^2}(\sqrt{x}+1)$

$$k(x) = \frac{-3x+1}{x(x-2)}$$
 et $h(x) = \frac{x^2+1}{x^3}\sin x$

1)Déterminer : $\lim_{x\to 2} f(x)$ et $\lim_{x\to +\infty} f(x)$

2)Déterminer : $\lim_{x\to +\infty} g(x)$ et $\lim_{x\to 3} g(x)$

3)Déterminer : $\lim_{x\to 0} h(x)$

4)Déterminer les limites aux bornes du domaine de définition de k

Solution:

1) Déterminer : $\lim_{x \to 2} f(x)$ et $f(x) = \sqrt{2x+1}(-3x^2+x)$

 $\lim_{x\to 2} 2x + 1 = 5$ et $\lim_{x\to 2} -3x^2 + x = -10$

Donc: $\lim_{x\to 2} f(x) = \sqrt{5} \times (-10) = -10\sqrt{5}$

 $\lim_{x \to +\infty} 2x + 1 = \lim_{x \to +\infty} 2x = +\infty$

Donc: $\lim_{x \to +\infty} \sqrt{2x+1} = +\infty$

Et on a : $\lim_{x \to 0^{-}} -3x^2 + x = \lim_{x \to 0^{-}} -3x^2 = -\infty$

Donc: $\lim_{x \to +\infty} f(x) = -\infty$

• 2)
$$\lim_{x \to +\infty} g(x)$$
 ? et $g(x) = \frac{-2x^2 + 1}{(x-3)^2} (\sqrt{x} + 1)$

On a:
$$\lim_{x \to \infty} \sqrt{x} = +\infty$$
 donc: $\lim_{x \to \infty} \sqrt{x} + 1 = +\infty$

Et
$$\lim_{x \to +\infty} \frac{-2x^2 + 1}{(x-3)^2} = \lim_{x \to +\infty} \frac{-2x^2}{x^2} = -2$$
 donc: $\lim_{x \to +\infty} g(x) = -\infty$

• 2)
$$\lim_{x \to 3} g(x)$$
? et $g(x) = \frac{-2x^2 + 1}{(x-3)^2} (\sqrt{x} + 1)$

$$\lim_{x\to 3} \sqrt{x} + 1 = \sqrt{3} + 1 \text{ et } \lim_{x\to 3} -2x^2 + 1 = -17 \text{ et}$$

$$\lim_{x \to 3} (x-3)^2 = 0^+ \text{ donc} : \lim_{x \to 3} g(x) = -\infty$$

3)
$$\lim_{x\to 0} h(x)$$
 ?.

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} \frac{x^2 + 1}{x^2} \frac{\sin x}{x}$$

Or
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 et puisque : $\lim_{x\to 0} x^2 + 1 = 1$ et $\lim_{x\to 0} x^2 = 0^+$

et
$$\lim_{x \to 0} \frac{x^2 + 1}{x^2} = +\infty$$
 alors : $\lim_{x \to 0} h(x) = +\infty$

4)
$$k(x) = \frac{-3x+1}{x(x-2)}$$
 donc : $D_k =]-\infty; 0[\cup]0; 2[\cup]2; +\infty[$

•
$$\lim_{x \to +\infty} k(x) = \lim_{x \to +\infty} \frac{-3x+1}{x^2 - 2x} = \lim_{x \to +\infty} \frac{-3x}{x^2} = \lim_{x \to +\infty} \frac{-3}{x} = 0$$

$$\bullet \lim_{x \to -\infty} k(x) = \lim_{x \to -\infty} \frac{-3x+1}{x^2 - 2x} = \lim_{x \to -\infty} \frac{-3x}{x^2} = \lim_{x \to -\infty} \frac{-3}{x} = 0$$

•
$$\lim_{x \to 0} -3x + 1 = 1$$
 et $\lim_{x \to 0} x^2 - 2x = 0$

Etude du signe de : $x^2 - 2x$

x	$-\infty$	0		2	$+\infty$
x(x-2)	+	þ	_	þ	+

Donc:
$$\lim_{x \to 0^+} x^2 - 2x = 0^-$$
 et $\lim_{x \to 0^-} x^2 - 2x = 0^+$

Donc:
$$\lim_{x\to 0^+} k(x) = -\infty$$
 et $\lim_{x\to 0^-} k(x) = +\infty$

$$\lim_{x\to 2} -3x + 1 = -5$$
 et $\lim_{x\to 2^+} x^2 - 2x = 0^+$ et $\lim_{x\to 2^-} x^2 - 2x = 0^-$

Donc:
$$\lim_{x \to 2^+} k(x) = -\infty$$
 et $\lim_{x \to 2^-} k(x) = +\infty$

Exercice: calculer les limites suivantes:

1)
$$\lim_{x \to 2} \frac{\sqrt{2x} - 2}{x^2 + 3x - 10}$$
 2) $\lim_{x \to 1} \frac{2x^3 + 3x^2 - 4x - 1}{x^3 - 1}$

3)
$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x$$
 4) $\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}}$

Solution : 1)
$$\lim_{x\to 2} \sqrt{2x} - 2 = 0$$
 et $\lim_{x\to 2} x^2 + 3x - 10 = 0$

on trouve une formes indéterminée : $-\frac{0}{0}$

$$\lim_{x \to 2} \frac{\sqrt{2x} - 2}{x^2 + 3x - 10} = \lim_{x \to 2} \frac{\left(\sqrt{2x} - 2\right)\left(\sqrt{2x} + 2\right)}{\left(x^2 + 3x - 10\right)\left(\sqrt{2x} + 2\right)}$$

$$= \lim_{x \to 2} \frac{\left(2x - 4\right)}{\left(\sqrt{2x} + 2\right)} \times \frac{1}{\left(x - 2\right)\left(x + 5\right)} = \lim_{x \to 2} \frac{2}{\left(\sqrt{2x} + 2\right)} \times \frac{1}{\left(x + 5\right)} = \frac{2}{14}$$

2)
$$\lim_{x \to 1} \frac{2x^3 + 3x^2 - 4x - 1}{x^3 - 1}$$
 ?

On a:
$$x^3 - 1 = (x-1)(x^2 + x + 1)$$

Et
$$2x^3 + 3x^2 - 4x - 1 = (x-1)(2x^2 + 5x + 1)$$

Donc:

$$\lim_{x \to 1} \frac{2x^3 + 3x^2 - 4x - 1}{x^3 - 1} = \lim_{x \to 1} \frac{(x - 1)(2x^2 + 5x + 1)}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1} \frac{2x^2 + 5x + 1}{x^2 + x + 1} = \frac{8}{3}$$

3)
$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x$$
 ?

On a:
$$\lim_{x \to +\infty} x^2 + x = +\infty$$
 donc: $\lim_{x \to +\infty} \sqrt{x^2 + x} = +\infty$

Et
$$\lim_{x\to +\infty} -x = -\infty$$

on trouve une formes indéterminée : " $+\infty-\infty$ "

$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x = \lim_{x \to +\infty} \frac{\left(\sqrt{x^2 + x} - x\right)\left(\sqrt{x^2 + x} + x\right)}{\left(\sqrt{x^2 + x} + x\right)}$$

$$\lim_{x \to +\infty} \sqrt{x^2 + x} - x = \lim_{x \to +\infty} \frac{x^2 + x - x^2}{\sqrt{x^2 + x} + x} = \lim_{x \to +\infty} \frac{x}{\sqrt{x^2 \left(1 + \frac{1}{x}\right) + x}}$$

$$= \lim_{x \to +\infty} \frac{x}{\left|x\right| \sqrt{\left(1 + \frac{1}{x}\right) + x}} \text{ or } x \to +\infty \text{ donc } \left|x\right| = x$$

$$= \lim_{x \to +\infty} \frac{x}{x \left(\sqrt{\left(1 + \frac{1}{x}\right)} + 1 \right)} = \lim_{x \to +\infty} \frac{1}{\sqrt{\left(1 + \frac{1}{x}\right)} + 1} = \frac{1}{2}$$

4)
$$\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}}$$

On pose
$$x - \frac{\pi}{4} = h$$
 donc $x \to \frac{\pi}{4} \Leftrightarrow h \to 0$ (

$$\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}} = \lim_{h \to 0} \frac{\tan\left(h + \frac{\pi}{4}\right)}{h}$$

or:
$$\tan\left(h + \frac{\pi}{4}\right) = \frac{\tan h + \tan\frac{\pi}{4}}{1 - \tan h \times \tan\frac{\pi}{4}} = \frac{\tan h + 1}{1 - \tan h}$$

$$\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}} = \lim_{h \to 0} \frac{2}{1 - \tan h} \times \frac{\tan h}{h} = \frac{2}{1} \times 1 = 2$$

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

