Analysis and visualization of complex software system traces

FINAL EVALUATION

Group 7

QA for Fintech Applications using Machine Learning

PRODUCT OWNERS

Dr. Asitha Bandaranayake
Senior Lecturer
Department of Computer Engineering
Faculty of Engineering
University of Peradeniya

Prof. Rostislav Yavorskiy Head of Research at Exactpro Systems

TEAM MEMBERS (Group 07)

E/18/100

E/18/155

PART 01

INTRODUCTION

Understanding the Problem

Understanding the Problem

- About 15 years ago log files were simple and human readable
- Now, log files extends upto GigaBytes while selections containing the word 'error' is about 200 -300 MegaBytes
- Typically, log files can contain millions of lines per working day, making manual analysis impractical and error-prone.
- QA Engineers nightmare ...

Solution

- To develop machine learning models for anomaly detection and issue identification in system traces (in form of log files)
- To visualize the system traces using interactive dashboards to provide a human understanding of what is happening in the system
- To evaluate the effectiveness of the proposed approach on real-world FinTech applications

Solution

1. Data Collection

- Size of data set = 45 GB
- No. of log files = More than 27,000

2. Exploratory Data Analysis (EDA)

```
"name": "2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.03.01_00.00.01.csv",
"columns": 13,
"size": "156K",
"line count": "1419"
"name": "2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.02.28_00.00.01.csv",
"columns": 13,
"size": "156K",
"line_count": "1418"
"name": "2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.02.27_00.00.00.csv",
"columns": 13,
"size": "156K".
"line_count": "1414"
"name": "2015/2015-CW-9/lphost18 wls2 unix-process prod-appserver 2015.02.26 00.00.00.csv",
"columns": 13,
"size": "152K",
"line_count": "1417"
"name": "2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.02.25_00.00.01.csv",
"columns": 13,
```

File Name	Number of Columns	Size	Line Count
2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.03.01_00.00.01.csv	13	156K	1419
2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.02.28_00.00.01.csv	13	156K	1418
2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.02.27_00.00.00.csv	13	156K	1414
2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.02.26_00.00.00.csv	13	152K	1417
2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.02.25_00.00.01.csv	13	152K	1417
2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.02.24_00.00.01.csv	13	156K	1416
2015/2015-CW-9/lphost18_wls2_unix-process_prod-appserver_2015.02.23_00.00.00.csv	13	156K	1416
2015/2015-CW-9/lphost18_wls2_log_prod-appserver-log_2015.03.01_00.00.01.csv	3	52K	1441
2015/2015-CW-9/lphost18_wls2_log_prod-appserver-log_2015.02.28_00.00.01.csv	3	52K	1441
2015/2015-CW-9/lphost18 wie2 log prod-appearantleg 2015 02 27 00 00 00 csv	3	52K	1//1

3. Statistical Log File Analysis

4. Raw Log Clustering Approach

5. Template-Based Approach

Website Development

Multithreading

- Concurrent handling of requests and ML computations for faster data evaluation.
- Optimal utilization of system resources like CPU cores for improved performance.
- Easy expansion to handle increased data load by distributing tasks efficiently.

Testing

- Unit tests for the backend API's
- Regression testing for changes and updates in the code
- Integration testing to ensure dataflow from frontend to backend to ML model.

PART 02

DEMONSTRATION

