Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

8 Febbraio 2019

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	12	
problema 2	10	
problema 3	8	
totale	30	

- 1. Si considerino i due seguenti automi definiti sull'alfabeto $E = \{a_1, a_2, b_1, b_2\}$. Automa G (impianto):
 - stati: 0, 1, 2, 3, 4, 5, 6, 7, 8 con 0 stato iniziale e 8 unico stato accettante;
 - transizione da 0 a 1: a_1 , transizione da 0 a 3: a_2 , transizione da 1 a 2: b_1 , transizione da 1 a 4: a_2 , transizione da 2 a 5: a_2 , transizione da 3 a 4: a_1 , transizione da 3 a 6: b_2 , transizione da 4 a 5: b_1 , transizione da 4 a 7: b_2 , transizione da 5 a 8: b_2 , transizione da 6 a 7: a_1 , transizione da 7 a 8: b_1 .

Automa H_a (specifica):

- stati: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 con 0 stato iniziale e 8 unico stato accettante;
- transizione da 0 a 1: a₁, transizione da 0 a 3: a₂, transizione da 1 a 2: b₁, transizione da 1 a 9: a₂, transizione da 2 a 5: a₂, transizione da 3 a 4: a₁, transizione da 3 a 6: b₂, transizione da 4 a 7: b₂, transizione da 5 a 8: b₂, transizione da 6 a 7: a₁, transizione da 7 a 8: b₁, transizione da 9 a 5: b₁.

(a) Si disegnino i grafi dei due automi.

(b) Dati i linguaggi K e $M=\overline{M}$ sull'alfabeto E. Siano $E_c\subseteq E$ e $E_o\subseteq E$. Sia P la proiezione naturale da E^* a E_o^* .

Si scriva la definizione di osservabilita' di K rispetto a M, E_c ed E_o . Traccia di soluzione.

Definizione Siano K e $M=\overline{M}$ linguaggi sull'alfabeto di eventi E. Sia $E_c\subseteq E$ l'insieme degli eventi controllabili. Sia $E_o\subseteq E$ l'insieme degli eventi osservabili con P la proiezione da E^* a E_o^* .

Si dice che K e' osservabile rispetto a M, P, E_c , se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_c$,

$$s\sigma \notin \overline{K} \wedge s\sigma \in M \Rightarrow P^{-1}[P(s)]\{\sigma\} \cap \overline{K} = \emptyset.$$

(c) Siano $M = \mathcal{L}(G)$ e $K = \mathcal{L}_m(H_a)$.

Siano $E_{uo} = \{a_2\}$ e $E_{uc} = \emptyset$.

K e' osservabile rispetto a M, E_c ed E_o ? Lo si verifichi usando la definizione.

Traccia di soluzione.

Si consideri la stringa $s=a_2a_1$ e $\sigma=b_1$, allora si ha che $a_2a_1b_1\not\in\overline{K}$, ma $a_2a_1b_1\in M$; inoltre $P(s)=a_1,\,P^{-1}[P(s)]\{\sigma\}=\{a_2^{\star}a_1a_2^{\star}b_1\}$, percio' $P^{-1}[P(s)]\{\sigma\}\cap\overline{K}=\{a_2^{\star}a_1a_2^{\star}b_1\}\cap\overline{K}=\{a_1a_2b_1\}\neq\emptyset$ il che falsifica la condizione di osservabilita'.

Un altro controesempio speculare al precedente si ottiene con la stringa $s=a_1a_2$ e $\sigma=b_2$. Ovviamente basta trovare un controesempio per stabilire che non vale l'osservabilita'.

Intuitivamente, dopo aver visto a_2a_1 il controllore dovrebbe disabilitare b_1 e abilitare b_2 , mentre dopo aver visto a_1a_2 il controllore dovrebbe abilitare b_1 e disabilitare b_2 , ma per l'inosservabilita' di a_2 il controllore non e' in grado di distinguere a_2a_1 da a_1a_2 (vede la loro proiezione comune come a_1), e quindi non sa che azione intraprendere dopo aver visto a_1 .

(d) Si costruisca $H_{a,obs}$, l'automa osservatore di H_a . Traccia di soluzione.

Nell'automa H_a si sostituisce a_2 con ϵ e poi si applica l'algoritmo per determinizzare mediante la ϵ -chiusura. Si veda l'automa $H_{a,obs}$ risultante in allegato.

(e) Si risponda alla domanda del punto precedente sull'osservabilita' utilizzando l'automa osservatore. Si spieghi con chiarezza il procedimento. Traccia di soluzione.

Si esaminano gli stati di $H_{a,obs}$ per verificare se ce n'e' almeno uno che testimonia un conflitto di controllo. Nel caso specifico, lo stato $\{1,4,9\}$ testimonia tale conflitto, poiche' l'azione di controllo nello stato 4 di H_a richiede l'abilitazione dell'evento b_2 e la disabilitazione dell'evento b_1 , che e' esattamente l'opposto di quanto richiesto per lo stato 9. La presenza di tale conflitto di controllo in $H_{a,obs}$ indica che K non e' osservabile.

2. Si consideri il sistema a eventi discreti G dove $\mathcal{L}(G) = \overline{a^*ba^*}$, $\mathcal{L}_m(G) = a^*ba^*$, Sia $E_{uc} = \{b\}$.

Sia dato il linguaggio ammissibile $L_{am} = \{a^mba^n : m \ge n \ge 0\}.$

(a) Il linguaggio $\overline{L_{am}}$ e' regolare?

Traccia di soluzione,

No. Bisogna contare le "a".

(b) Si enunci il teorema di esistenza di un supervisore nonbloccante S tale che $\mathcal{L}_m(S/G) = L_{am}$.

Traccia di soluzione.

Sia dato il sistema a eventi discreti $G = (X, E, f, \Gamma, x_o, X_m)$, dove $E_{uc} \subseteq E$ sono gli eventi incontrollabili e $E_{uo} \subseteq E$ sono gli eventi inosservabili (per cui $E_c = E \setminus E_{uc}$ e $E_o = E \setminus E_{uo}$). Si consideri la proiezione P da E^* a E_o^* , e il linguaggio $L_{am} \subseteq \mathcal{L}_m(G)$, dove $L_{am} \neq \emptyset$. Esiste un P-supervisore non-bloccante S_P per G tale che

$$\mathcal{L}_m(S_P/G) = L_{am}, \quad \mathcal{L}(S_P/G) = \overline{L_{am}}$$

se e solo se le tre condizioni seguenti valgono:

- i. L_{am} e' controllabile rispetto a $\mathcal{L}(G)$ e E_{uc} .
- ii. L_{am} e' osservabile rispetto a $\mathcal{L}(G)$, E_o e E_c .
- iii. L_{am} e' $\mathcal{L}_m(G)$ -chiuso (cioe' $L_{am} = \overline{L_{am}} \cap \mathcal{L}_m(G)$).
- (c) Applicando la definizione, si verifichi se esiste tale supervisore nonbloccante.

Traccia di soluzione.

La controllabilità' di L_{am} e' verificata: si disabilità "a" (evento controllabile) dopo che il numero di "a" che seguono "b" e' pari a quello di "a" che precedono "b".

Inoltre L_{am} soddisfa la $\mathcal{L}_m(G)$ -chiusura: $L_{am} = \overline{L_{am}} \cap \mathcal{L}_m(G)$, che e' vera per costruzione poiche'

$${a^mba^n : m \ge n \ge 0} = \overline{{a^mba^n : m \ge n \ge 0}} \cap a^*ba^*.$$

Quindi esiste un supervisore S nonbloccante tale che $\mathcal{L}(S/G) = \overline{L_{am}}$.

Da cui si ottiene: $\mathcal{L}_m(S/G) = \mathcal{L}(S/G) \cap \mathcal{L}_m(G) = \overline{L_{am}} \cap \mathcal{L}_m(G) = L_{am}$.

- 3. Una rete di Petri marcata e' specificata da una quintupla: $\{P, T, A, w, x\}$, dove P sono i posti, T le transizioni, A gli archi, w la funzione di peso sugli archi, e x il vettore di marcamento (numero di gettoni per posto). $I(t_i)$ indica l'insieme dei posti in ingresso alla transizione t_i , $O(t_j)$ indica l'insieme dei posti in uscita dalla transizione t_j .
 - (a) Si consideri la rete di Petri P_{sup} definita da:
 - $P = \{p_1, p_2, p_3\}$
 - $T = \{t_1, t_2, t_3\}$
 - $A = \{(p_1, t_1), (p_1, t_2), (p_2, t_3), (p_3, t_2), (p_3, t_3), (t_1, p_1), (t_1, p_3), (t_2, p_2), (t_3, p_2)\}$
 - $\forall i, j \ w(p_i, t_j) = 1$
 - $\forall i, j \ w(t_i, p_j) = 1$

Sia $x_0 = [1, 0, 1]$ la marcatura iniziale.

i. Si disegni il grafo della rete di Petri P_{sup} .

ii. Per associare un linguaggio a una rete di Petri s'introduce un insieme di eventi E, una funzione che etichetta le transizioni con eventi $l: T \to E$, e un insieme di stati che accettano $X_m \subseteq N^n$ (n e' il numero di posti) per il linguaggio marcato.

Si assume che alle transizioni t_1 e t_3 e' associato l'evento a, e che a t_2 e' associato l'evento b.

Si determini il linguaggio generato associato alla rete di Petri P_{sup} . E' regolare ?

Traccia di soluzione.

Si noti che si chiede il linguaggio generato e non quello marcato (che richiederebbe la specifica degli stati accettanti X_m).

$$\mathcal{L}(P_{sup}) = \overline{\{a^mba^n, m \geq n \geq 0\}}.$$
 Si noti che $\overline{\{a^mba^n, m \geq n \geq 0\}} = \overline{\{a^mba^m, m \geq 0\}}.$

Non e' regolare: bisogna contare le "a".