Θ-функции.

Тут всю жизнь будет все сходиться, а мы будем в это верить.

1 Вступление

Определение 1.1. Функция f(z) называется двоякопериодической, если $f(z+\omega_1) \equiv f(z) \equiv f(z+\omega_2)$ для некоторых $\omega_1, \omega_2 \in \mathbb{C}$.

Определение 1.2. Двоякопериодическая аналитическая функция, которая не имеет особенностей, кроме полюсов (которых конечно внутри ограниченной области), называется *эмиптической*.

Предложение 1.1. Сумма вычетов внутри параллелограмма эллиптической функции равна 0.

Доказательство. По теореме о вычетах сумма вычетов это

$$\frac{1}{2\pi i} \int\limits_C f(z) dz.$$

Когда мы пройдем контур C по параллельным сторонам, то соответствующие подынтегральные суммы сократятся, поскольку совмещаются параллельным переносом, но направления обхода разные.

 \Box

Теорема Лиувилля (одна из кучи). Эллиптическая функция, не имеющая полюсов, есть константа.

Доказательство. Доказывается это примерно так. Поскольку параллелограмм компакт, то во всех точках f(z) < K. Есть в ТФКП замечательная формула

$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - a} dz.$$

Она справедливо для любой функции, аналитической в и на контуре C и точки a внутри него.

Потом по этой формуле нужно написать значение |f(z) - f(z')| и оценить это как сколь угодно малое число. Доказательство есть в первом томе Курса современного анализа.

Определение 1.3. Функция F(z) называется *квазиинвариантной* относительно действия группы Γ , если существует такая голоморфная и нигде не нулевая функция $a(\gamma,z)$, что $F(\gamma z)=a(\gamma,z)F(z)$. Функция $a(\gamma,z)$ в таком случае называется фактор автоморфности.

Вот этом момент я не поняла. Мы хотим изучить пространство $H^1(\Gamma, O^*(X))$, где X — односвязное пространство, Γ — дискретная группа на нем, а O^* — пространство голоморфных функций, отличных от нуля во всех точках. Утверждается, что это коциклы, удовлетворяющие

$$a(\gamma_1 \gamma_2, x) = a(\gamma_1, \gamma_2 x) a(\gamma_2, x).$$

То есть это факторы автоморфности (почему-то). Не, ну понятно, что факторы автоморфности этому удовлетворяют, но в чем связь с коциклами пока не ясно. (?)

Определение 1.4. Два коцикла a_1 и a_2 называются *эквивалентными*, если $a_1 = a_2 \frac{F(\gamma x)}{F(x)}$.

Ряд Пуанкаре. Пусть $a(\gamma,x)$ — коцикл. Тогда

$$P(z) = \sum_{\gamma \in \Gamma} f(\gamma z) a^{-1}(\gamma, z)$$

квазиинвариантна и равномерно сходится на компакте.

Доказательство. Проверим:
$$P(\gamma'z) = \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma, \gamma'z) = a(\gamma', z) \sum_{\gamma \in \Gamma} f(\gamma \gamma'z) a^{-1}(\gamma'z) a^{-1}(\gamma'z)$$

2 Знакомство с тэтами

Обозначение 2.1. $e(z) = e^{2\pi i z}$.

Определение 2.1. «Классическая тэта»
$$\Theta(z,\tau) = \sum_{n\in\mathbb{Z}} e^{\pi i \tau n^2 + 2\pi i n z} = \sum_{n\in\mathbb{Z}} e\left(\frac{\tau n^2}{2} + \frac{\tau n^2}{2}\right)$$

Главная лемма. (1) $\Theta(z+1) = \Theta(z);$

(2)
$$\Theta(z+m\tau) = e\left(-\frac{\tau m^2}{2} - mz\right)\Theta(z).$$

Доказательство. (1) Нетрудно видеть, что при сдвиге на 1 каждое слагаемое умножается на $e(n)=e^{2\pi in}=1.$

(2)
$$\Theta(z+m\tau)e\left(\frac{\tau m^2}{2}+mz\right) = \sum_{n\in\mathbb{Z}}e\left(\frac{\tau n^2}{2}+n(z+m\tau)+\frac{\tau m^2}{2}+mz\right) = \sum_{n\in\mathbb{Z}}e\left(\frac{\tau(n+m)^2}{2}+(n+m)z\right)$$
. Что и требовалось.

2

Замечание 2.1. Таким образом, мы нашли фактор автоморфности для классической тэты: $a(n+m\tau,z)=e\left(-\frac{\tau m^2}{2}-mz\right)$.

Предложение. Сходимость тэты. Все корректно и ряд сходится.

Доказательство. В силу главной леммы достаточно проверить сходимость на фундаментальном параллелограмме. $\sum_{n\in\mathbb{Z}} e\left(\frac{\tau n^2}{2} + nz\right) \leqslant \sum_{n\in\mathbb{Z}} |e^{-\pi I m(\tau) n^2 - 2\pi I m(z) n}|.$ Im(z) ограничен (компактность). Что и требовалось.

Определение 2.2. «Модернизированная тэта» $a,b \in \mathbb{R}$

$$\Theta_{\tau} \begin{bmatrix} a \\ b \end{bmatrix} (z) = \sum_{n \in \mathbb{Z}} e \left(\frac{\tau(n+b)^2}{2} + (n+b)(z+a) \right).$$

Замечание 2.2. Индекс τ можно писать, а можно не писать.

Предложение 2.1. $\Theta \begin{bmatrix} a \\ b \end{bmatrix} (z)$ и $\Theta(a+b\tau+z)$ очень похожи:

$$\Theta\begin{bmatrix} a \\ b \end{bmatrix}(z) = e\left(\frac{\tau b^2}{2} + b(z+a)\right)\Theta(a+b\tau+z).$$

Доказательство. Чтобы убедиться в этом, нужно написать на одно равенство больше, чем в определении 2.2. □

Предложение. Фактор автоморфности произвольной тэты. Он такой:

$$a(n+m\tau,z)e(bn-am).$$

Доказательство.
$$\Theta\begin{bmatrix} a \\ b \end{bmatrix}(z+n+m\tau) = e\left(\frac{\tau b^2}{2} + b(z+a+n+m\tau)\right)\Theta(a+b\tau+z+n+m\tau) = e\left(\frac{\tau b^2}{2} + b(z+a)\right)e(b(n+m\tau))\cdot\Theta(a+b\tau+z)e\left(-\frac{\tau m^2}{2} - m(a+b\tau+z)\right) = \Theta\begin{bmatrix} a \\ b \end{bmatrix}(z)\cdot e(b(n+m\tau))e\left(-\frac{\tau m^2}{2} - m(a+b\tau+z)\right) = \Theta\begin{bmatrix} a \\ b \end{bmatrix}(z)\cdot e\left(-\frac{\tau m^2}{2} - m(a+z) + bn\right) = \Theta\begin{bmatrix} a \\ b \end{bmatrix}(z)\cdot a(n+m\tau,z)e(bn-am).$$

Среди всех тэт выделим четыре особенных, потом они будут нужны: $\Theta_{00} = \Theta \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ — классическая, $\Theta_{01} = \Theta \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}$, $\Theta_{10} = \Theta \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$, $\Theta_{11} = \Theta \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$.

Замечание 2.3. (1) Θ_{00} четная.

(2) Θ_{11} нечетная.

3 Матанское отступление

Теорема 3.1. Ряд Фурье кусочно гладкой функции f выглядит так: $f(x) = \sum_{m \in \mathbb{Z}} a_m e^{2\pi i n x}$, где $a_n = \int\limits_0^1 f(x) e^{-2\pi i n x} dx$.

Преобразование Фурье. Перегоняет функцию f в \hat{f} так: $\hat{f}(y) = \int\limits_{-\infty}^{\infty} f(x)e^{-2\pi ixy}dx$

Замечание 3.1. В курсе матана это определяют чутка иначе, но смысл везде один.

Формула Пуассона. Для быстроубывающей на бесконечности $f(x) \sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \hat{f}(n).$

Доказательство.
$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n)$$
. Разложим в ряд Фурье: $F(x) = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n x} = \sum_{n \in \mathbb{Z}} \left(\int\limits_0^1 \left(\sum_{m \in \mathbb{Z}} f(x+m)\right) e^{-2\pi i n x} dx\right) e^{2\pi i n x} = \sum_{n \in \mathbb{Z}} \left(\sum_{m \in \mathbb{Z}} \int\limits_0^1 f(x+m) e^{-2\pi i n (x+m)} d(x+m)\right) e^{2\pi i n x} = \sum_{n \in \mathbb{Z}} \left(\int\limits_{-\infty}^\infty f(t) e^{-2\pi i n t} dt\right) e^{2\pi i n x} = \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{2\pi i n x}.$

 \Box

Положим теперь x = 0, получим что хотим.

Определение 3.1. Индексом кривой $\gamma:[0,1]\to\mathbb{C}$ относительно точки $p\in\mathbb{C}$ называется

$$ind_{\gamma}(p) = \frac{1}{2\pi i} \int\limits_{\gamma} \frac{dz}{z-p} = \frac{1}{2\pi i} \int\limits_{0}^{1} \frac{\gamma'(t)}{\gamma(t)-p} dt.$$

Замечание **3.2.** Топологически это число оборотов кривой вокруг точки с ориентацией, то есть целое число в случае, когда кривая замкнутая. Но это уже

ТФКП.

Теорема (опять ТФКП). Дана голоморфная функция f, Тогда сумма количеств корней с кратностями (отрицательная кратность=полюс) n_i внутри соответствующего контура вычисляется так:

$$\frac{1}{2\pi i} \oint \frac{f'(z)}{f(z)} = \sum n_i.$$

Теорема (опять и опять ТФКП). Дана голоморфная функция f, Тогда сумма корней с коэффициентами кратности (отрицательная кратность=полюс) n_i внутри соответствующего контура вычисляется так:

$$\frac{1}{2\pi i} \oint z \frac{f'(z)}{f(z)} = \sum z_i n_i.$$

4 Нули тэты

Покажем, что у классической тэты внутри параллелограмма $(0,1,1+\tau,\tau)$ всего один и притом простой. Тогда нули всех остальных тэт устроены тоже понятно.

Предложение 4.1. Центр параллелограмма $\frac{1+\tau}{2}$ — нуль тэты.

Доказательство. Как мы уже справедливо заметили, тэта нечётная. Тогда $\Theta(\frac{1+\tau}{2})=\Theta(-\frac{1+\tau}{2}).$ Но еще эти функции отличаются домножением на фактор автоморфности — на $e\left(\frac{\tau}{2}-\frac{1+\tau}{2}\right)=e^{-\pi i}=-1.$ То есть это действительно нуль.

Предложение 4.2. Больше нулей нет, а этот нуль простой.

Доказательство. Для этого мы хотим применить теорему из ТФКП (посчитать интеграл по контуру параллелограмма и убедиться, что он $2\pi i$). Разобьем контур фундаментального параллелограмма на отрезки: $[0,1]=a,[1,1+\tau]=b,[1+\tau,\tau]=c,[\tau,0]$. Тогда интеграл тоже разобьется на сумму четырех. Заметим, что

$$\int_{b} \frac{\Theta'(z)}{\Theta(z)} dz + \int_{d} \frac{\Theta'(z)}{\Theta(z)} dz = 0,$$

поскольку Θ 1-периодична, а отрезки ориентированы в разные стороны.

Далее, из равенства $\Theta(z+\tau)=a(\tau,z)\Theta(z)$ получаем, что $\frac{\Theta'(z+\tau)}{\Theta(z+\tau)}=\frac{\Theta'(z)}{\Theta(z)}+$ $\frac{a'(\tau,z)}{a(\tau,z)}$

Таким образом, для победы достаточно показать, что $-2\pi i \int_{0}^{1} \frac{a'(\tau,z)}{a(\tau,z)} dz = 1$, а это прямая подстановка a.

5 Теорема Абеля о нулях мероморфной функции

Теорема (**Абель**). Пусть на эллиптической кривой задана Γ -периодическая функция f. Пусть внутри образующего параллелограмма есть корни z_i кратностей n_i соответственно. Тогда выполнены следующие условия:

- (1) $\sum n_i = 0;$ (2) $\sum z_i n_i = 0.$

Более того, этих условий на корни и кратности достаточно, чтобы такая функция существовала, даже в каком-то смысле единственная. Доказывать мы это не будем, но функцию построим.

Построение такой функции. Пусть

$$f = \prod_{i} \Theta_{11}^{n_i}(z - z_i).$$

Доказательство. (1) Очевидно, что нули нужные и с нужной кратностью.

(2) Осталось показать периодичность по Γ .

$$f(\gamma + z) = f = \prod_{i} \Theta_{11}^{n_i}(z + \gamma - z_i) = \prod_{i} \Theta_{11}^{n_i}(z - z_i)e(n_i(A_{\gamma}(z - z_i) + B_{\gamma})) = 0.$$

Последнее равенство верно по условию Абеля, предпоследнее — по уже доказанному виду фактора автоморфности.

п-ый пустяк (А. Weyl). Пусть $f,g\in Mer(X)$. Пусть $D_f=\sum_i n_i v_i,\ D_g=$ $\sum\limits_{:}m_{j}w_{j}$ (речь все еще про корни с кратностями). Тогда

$$\prod_{j} f^{m_j}(w_j) = f(D_g) = g(D_f) = \prod_{i} g^{n_i}(v_i).$$

Доказательство. Докажем это для эллиптических кривых. Как они выглядят мы знаем по теореме Абеля.

$$g(D_f) = \prod_i g^{n_i}(v_i) = \prod_{i,j} \Theta^{n_i m_j}(v_i - w_J).$$

Абсолютно так же считается $f(D_g)$. Они отличаются друг от друга домножением на $(-1)^{\sum\limits_{i,j}n_im_j}=(-1)^{(\sum\limits_{i}n_i)(\sum\limits_{j}m_j)}=1.$

6 Градуированная алгебра тэт

Обозначение 6.1. $\Theta_N = \{ f \in Hol(\mathbb{C}) \mid f(z+\gamma) = a^N f(z) \}.$ Таким образом, получилась градуированная алгебра

$$\Theta_a = \bigoplus_{N=0}^{\infty} \Theta_N.$$

Почему это градуированная алгебра? Градуированность очевидна, нужно лишь доказать линейную независимость компонент.

Лемма 6.1. Пусть $f_i \in \Theta_i$ и $f_0 + f_1 + \ldots + f_N = 0$. Тогда все $f_i = 0$.

Доказательство. Подействуем на это дело $\gamma_i \in \Gamma$:

$$\sum_{i=0}^{N} a^{i}(\gamma_{j}, z) f_{i} = 0, \ j = 0, 1, \dots, N.$$

Это означает, что соответствующий определитель Вандермонда, который равен $\prod_{n,m} (a(\gamma_{j_n},z) - a(\gamma_{j_m},z))$, равен нулю. Но очевидно, что можно подобрать такие γ_j , чтобы равенство было выполнено не при всех z.

Теорема 6.1. $dim\Theta_N = N$.

Доказательство. Пусть $f \in \Theta_N$. Разложим в ряд Фурье: $f = \sum_s a_s e^{2\pi i sz}$ (тут мы верим, что разложение существует и оно единственно).

$$f(z+m+n\tau) = e^{N}(-\frac{\tau n^{2}}{2} - nz)f(z) = \sum_{s} a_{s}e^{2\pi i s z}e^{N}(-\frac{\tau n^{2}}{2} - nz) = \sum_{s} a_{s}e^{-\pi i \tau N n^{2}} \cdot e^{2\pi i z(s-nN)} = \sum_{s} a_{s+nN}e^{-\pi i \tau N n^{2}} \cdot e^{2\pi i z s}.$$

С другой стороны, $f(z+m+n\tau)=\sum_s a_s e^{2\pi i s(z+n\tau)}=\sum_s a_s e^{2\pi i s n\tau}\cdot e^{2\pi i s z}$. Таким образом, $a_{s+nN}=e^{2\pi i s n\tau+\pi i N\tau n^2}a_s$. Таким образом, размерность пространства действительно не превышает N.

Осталось показать, что при любом выборе начальных коэффициентов a_0,\ldots,a_{N-1} ряд сойдется. Для этого достаточно показать, что при $a_0=1$ и $a_1=\ldots=a_{N-1}=0$ ряд сойдется.

Действительно, тогда $a_{nN}=e^{\pi iNn^2\tau}$. То есть мы хотим показать, что ряд $\sum_n e^{\pi iNn^2\tau+2\pi nNz}$ сходится. Достаточно будет доказать абсолютную сходимость, то есть просуммировать модули. Это делается аналогично сходимости тэты, правда.

Замечание 6.1. Это несложно проверяется, честно.

- (1) $\Theta_{01}\Theta_{10}\Theta_{11} \in \Theta_3$;
- (2) $\Theta_{11}^2, \Theta_{01}^2, \Theta_{10}^2 \in \Theta_2$;
- (3) $\Theta_{00}^n \in \Theta_n$.

Задачка. (Уиттекер-Уотсон). Как мы знаем, $\Theta_2 = \langle \Theta_{00}^2, \Theta_{11}^2 \rangle$. Тогда существует какая-то линейная комбинация, выражающая Θ_{01}^2 и Θ_{10}^2 через базисные элементы. Так вот задачка в том, что

$$\Theta_{01}^2(\tau, z) = k_1(\tau)\Theta_{00}^2(z) + k_2(\tau)\Theta_{11}^2(z),$$

$$\Theta_{10}^2(\tau, z) = -k_2(\tau)\Theta_{00}^2(z) + k_1(\tau)\Theta_{11}^2(z)$$

Более того,

$$\begin{vmatrix} k_1 & k_2 \\ -k_2 & k_1 \end{vmatrix} = 1$$

Тут у меня получилась только первая половина (та, что без определителя). **Пемма 6.2.** На градуированной алгебре тэт действует инволюция $z \to (-z)$, то есть если $f(z) \in \Theta_a$, то $f(-z) \in \Theta_a$.

Доказательство. Достаточно это показать для $f(z) \in \Theta_N$. Обозначим F(z) = f(-z). Тогда $F(z+m+n\tau) = a^N(m+n\tau)f(-z)$.

Таким образом, на алгебре действует двухэлементная группа, она действует тождественно на подалгебре Θ_a^{ev} — подалгебре четных функций, кроме того $\Theta_a = \Theta_a^{ev} \oplus \Theta_a^{odd}$. Далыпе мы попытаемся поизучать эти две компоненты.

Поскольку Θ_a^{odd} — модуль над Θ_a^{ev} , было бы неплохо найти его образующие. **Лемма 6.3.** $\Theta_a^{odd}=\Theta_{01}\Theta_{10}\Theta_{11}\cdot\Theta_a^{ev}$.

Доказательство. Пусть $f \in \Theta_a^{odd}$. Тогда $0, \frac{1}{2}, \frac{1}{2}\tau$ — нули функции f. Действитльно, f(0) = f(-0) = 0. $f\left(\frac{1}{2}\right) = f\left(-\frac{1}{2}\right)$ по определению коцикла, а из нечетности следует, что знак там другой. Наконец, $f\left(\frac{\tau}{2}\right) = -f\left(-\frac{\tau}{2}\right)$ из нечетности, а, поскольку $a(\tau,\tau/2) = e\left(-\frac{\tau}{2} + \frac{\tau}{2}\right) = 1$, $f\left(\frac{\tau}{2}\right) = f\left(-\frac{\tau}{2}\right)$.

Тогда функция $\frac{f}{\Theta_{01}\Theta_{10}\Theta_{11}}$ — голоморфна, поскольку нули знаменателя имеют кратность 1 и принадлежат нулям числителя.

Лемма 6.4. $\Theta_a^{ev} = \mathbb{C}[\Theta_{00}, \Theta_{11}^2].$

Доказательство. Мини — лемма. Если $\lambda\Theta_{00}^2 + \mu\Theta_{11}^2 = 0$, то $\lambda = \mu = 0$. Действительно, это очевидно, поскольку у этих функций просто разные нули.

Докажем теперь, что не существует такого многочлена $P(x,y) \in \mathbb{C}[x,y]$, что $P(\Theta_{00}^2,\Theta_{11}^2)=0$. Предположим, такой P существует. По уже доказанной лемме достаточно доказывать для однородного многочлена. Пусть $P=\prod(x-\lambda_i y)$. Такое невозможно по мини – лемме.

Заметим теперь, что тогда Θ_{00} и Θ_{11}^2 — тоже алгебраически независимы. Осталось показать, что любой элемент $f \in \Theta_a^{ev}$ представим в виде какого-то многочлена от Θ_{00} и Θ_{11} . Разобъем алгебру Θ_a^{ev} на однородные компоненты:

$$\theta_N^{ev} = \big\{ f \in \Theta_a^{ev} \ \big| \ f(z+\gamma) = a^N(\gamma,z) f(z) \big\}.$$

Без ограничения общности f лежит в одной из таких компонент. Будем доказывать это утверждениепо индукции: база для N=1 очевидна. Рассмотрим два случая:

(1) $f \in \Theta_{2N}^{ev}$. Тогда при некотором $\lambda \in \mathbb{C}$ функция $F = (f - \lambda \theta_{11}^{2N}) \in \Theta_{2N}^{ev}$ и $F\left(\frac{1+\tau}{2}\right) = 0$. Тогда $\frac{F}{\Theta_{00}} \in \Theta_{2N-1}^{ev}$ — переход.

(2) $f\in\Theta_{2N+1}$. Покажем, что $f\left(\frac{1+\tau}{2}\right)=0$ и тогда $\frac{f}{\Theta_{00}}\in\Theta_{2N}^{ev}$ — переход индукции.

$$\begin{split} f\left(\frac{1+\tau}{2}\right) &= f\left(-\frac{1+\tau}{2} + (1+\tau)\right) = e^{2N+1}\left(-\frac{\tau}{2} + \frac{1+\tau}{2}\right) f\left(-\frac{1+\tau}{2}\right) = \\ e^{2N+1}\left(\frac{1}{2}\right) f\left(-\frac{1+\tau}{2}\right) &= -f\left(-\frac{1+\tau}{2}\right). \end{split}$$

Но в силу четности $f\left(-\frac{1+\tau}{2}\right) = f\left(\frac{1+\tau}{2}\right)$. Что и требовалось.

Замечание 6.2. Таким образом, $\Theta_a^{odd} = \Theta_{00}\Theta_{01}\Theta_{10}\mathbb{C}[\Theta_{00},\Theta_{11}^2].$

7 Пытаемся обобщить

Определение 7.1. Пусть $E_{\mathbb{R}}^n$ — евклиово пространство, L — некоторая решетка в нем (целые комбинации линейно независимых e_1, \ldots, e_n). Решетка называется $\kappa adpamuunoŭ$, если для любых двух $\ell_i, \ell_j \in L$ скалярное произведение $(\ell_i, \ell_j) \in \mathbb{Z}$.

 \Box

Определение 7.2. Двойственной решеткой для L называется решетка $L^* = \{x \in E_{\mathbb{R}}^n \mid (x,\ell) \in \mathbb{Z} \text{ для любого } \ell \in L\}.$

Замечание 7.1. $L \subset L^*$, это значит, что можно посчитать отношение объемов фундаментальных параллелограммов.

Замечание 7.2. $L^* = \langle f_1, \dots, f_n \rangle$, где f_i образуют двойственный базис к e_j (это значит, что $(f_i, e_j) = \delta_{ij} - \mathit{символ}\ \mathit{Кронекера}$, при всех i и j).

Теорема 7.1. $[L^*:L] = \det Gr(e_1,\ldots,e_n)$ — индекс решетки.

Доказательство. Действительно, $G = Gr(e_1, \dots, e_n) = Gr^{-1}(f_1, \dots, f_n)$. Тогда

$$\frac{Vol(L)}{Vol(L^*)} = \frac{\sqrt{detG}}{\sqrt{detG^{-1}}} = detG$$

Рассмотрим теперь пространство \mathbb{C}^n и векторы в нем e_1,\dots,e_n и $\tau e_1,\dots,\tau e_n$, где $\tau\in H^+,$ а e_i — вещественные. На них натянута решетка $\widetilde{L}.$

Определим аналогично

$$\Theta_{00} = \sum_{\ell \in L} e\left(\frac{\tau(\ell,\ell)}{2} + (\ell,z)\right),$$

$$\Theta_{\lambda} = \sum_{\ell \in L} e\left(\frac{\tau(\ell+\lambda,\ell+\lambda)}{2} + (\ell+\lambda,z)\right), \text{ где } \lambda \in L^*/L.$$

Короче говоря, *произведения* в нужных местах заменили на *скалярные произведения*.

Теорема. О том, что все точно так же.

$$\Theta_{\lambda}(m+n\tau+z) = e\left(-\frac{\tau(n,n)}{2} - (n,z)\right)\Theta_{\lambda}(z).$$

Доказательство. (1) Докажем независимость от m.

$$\sum_{\ell \in L} e\left(\frac{\tau(\ell+\lambda,\ell+\lambda)}{2} + (\ell+\lambda,z+m)\right) = \sum_{\ell \in L} e\left(\frac{\tau(\ell+\lambda,\ell+\lambda)}{2} + (\ell+\lambda,z)\right) \cdot e((\ell,m)).$$

Теперь, проверим при m = 0.

$$\begin{split} \sum_{\ell \in L} e \left(\frac{\tau(\ell + \lambda, \ell + \lambda)}{2} + (\ell + \lambda, z + n\tau) \right) \cdot e \left(\frac{\tau(n, n)}{2} + (n, z) \right) = \\ &= \sum_{\ell \in L} e \left(\frac{\tau(\ell + \lambda, \ell + \lambda) + \tau(n, n)}{2} + (n, z) + (\ell + \lambda, z + n\tau) \right) = \\ &= \sum_{\ell \in L} e \left(\frac{\tau(\ell + n + \lambda, \ell + n + \lambda)}{2} - \tau(n, \ell + \lambda) + (n, z) + (\ell + \lambda, z + n\tau) \right) = \\ &= \sum_{\ell \in L} e \left(\frac{\tau(\ell + n + \lambda, \ell + n + \lambda)}{2} + (\ell + n + \lambda, z) \right) = \Theta_{\lambda}(z). \end{split}$$

Замечание 7.3. $dim\Theta_{a^N}=detG\cdot N^n$, где n — размерность пространства. Заметим, что при n=1 для нашей решетки $L=\langle 1,\tau\rangle$ все так и есть.

П

8 Комплексные торы

Мы живем в пространстве \mathbb{C}^n . Тут есть решетка L полного ранга над \mathbb{R} (то есть ранга 2n). Назовем n – мерным *тором* факторпространство \mathbb{C}^n/L .

Определение 8.1. Комплексным многообразием называется хаусдорфово топологическое многообразие \mathcal{M} , для которого существует открытое покрытие картами $\mathcal{M} = \cup U_{\alpha}$, для которых существует голоморфное отображение в какую-то область в $\mathbb{C}^n \colon z_{\alpha} : U_{\alpha} \to V_{\alpha} \subset \mathbb{C}^n$, причем отображения между картами на пересечениях тоже голоморфны.

Замечание 8.1. Комплексный тор — компактное комплексное многообразие. Замечание 8.2. Если брать разные τ , то будут получаться разные торы.

Хотелось бы понять, когда эти торы будут одинаковыми. **Теорема 8.1.** Я тут не все еще поняла, но тут говорят, что изоморфизм

поднимается обязательно до линейного отображения. Следствие 8.1. $E_{\tau} \simeq E_{\tau'}$ тогда и только тогда, когда $\tau' = \frac{a\tau + b}{c\tau + d}$.

9 Всякие операторы на формах

Определение 9.1. Оператором Лапласа относительно квадратичной формы $Q(x) = \sum_{1 \leq i,j \leq n} a_{ij} x_i x_j > 0$, где $a_{ij} = a_{ji}$, называется оператор

$$\Delta_Q = \sum_{1 \leqslant i, j \leqslant n} a_{ij} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j}.$$

Замечание 9.1. Оператор Лапласа линеен. Доопределим его еще и для форм

$$\Delta(\varphi\omega_{i_1}\wedge\ldots\wedge\omega_{i_k})=\Delta(\varphi)\omega_{i_1}\wedge\ldots\wedge\omega_{i_k}.$$

Обозначение 9.1. $H: \Lambda^k(U) \to \Lambda^k(U) - \mathbb{C}$ –линейный оператор,

$$H(\varphi\omega_{i_1}\wedge\ldots\wedge\omega_{i_k}) = \left(\int_{T^n} \varphi d\mu\right)\omega_{i_1}\wedge\ldots\wedge\omega_{i_k},$$

где $Vol(T^n) = 1$.

Замечание 9.2. $H^2=H$. Тогда $\Lambda^k=ker H\oplus im H$.

Замечание 9.3. Пусть $f \in Hol(\mathbb{C}^n)$ — периодична по решетке L. Тогда существует разложение в многомерный ряд Фурье:

$$f(x) = \sum_{\ell^* \in L^*} a(\ell^*) e^{2\pi i \langle x, \ell^* \rangle}$$
, где $a(\ell^*) = \int_{T^n} f(x) e^{-2\pi i \langle x, \ell^* \rangle} d\mu$.

Теорема (частный случай теоремы Ходжа). Существует такой $\mathbb C$ – линейный оператор $G:\Lambda^k(U)\to\Lambda^k(U)$, что

- (1) $\Delta G(\varphi) = G\Delta(\varphi) = \varphi H\varphi;$
- (2) $HG(\varphi) = GH(\varphi) = 0$.

Доказательство. Конструкция.

$$G(f) = -\frac{1}{4\pi^2} \sum_{\ell^* \in L^*, \ell^* \neq 0} \frac{a(\ell^*)}{Q(\ell^*)} e^{2\pi i \langle x, \ell^* \rangle}.$$

Далее при проверке свойств будем считать, что $f = a(\ell^*)e^{2\pi i \langle x, \ell^* \rangle}$.

Свойство (1). Тогда $G(f)=-\frac{1}{4\pi^2}\frac{a(\ell^*)}{Q(\ell^*)}e^{2\pi i\langle x,\ell^*\rangle}$. или G(f)=0, в случае, когда $\ell^*=0$ (но этот случай очевиден, не будем его рассматривать). А $\Delta(f)=-4\pi^2Q(\ell^*)f$. Теперь вроде видно.

Свойство (2). Оба равенства верны просто по построению и предложению (0).

Следствие 9.1. (0) H(f) = a(0).

- (1) $\Delta H = H\Delta = 0$.
- (2) Если $\varphi \in ker H$, то $G\varphi \in ker H$. Таким образом, G действует на ker H. Аналогичное верно и для Δ .
 - (3) Если $\varphi \in ker H$, то $\Delta G(\varphi) = G\Delta(\varphi) = \varphi$.

Доказательство. (0) Ну действительно, остальные просто обнулятся.

- (1) $\Delta(H(f)) = \Delta(a(0)) = 0$.
- В обратную сторону чуть сложнее. Докажем это покомпонентно. Пусть $f = a(\ell^*)e^{2\pi i \langle x,\ell^* \rangle}$. Заметим, что тогда $\Delta(f) = -4\pi^2 Q(\ell^*)f$. В случае, когда $\ell^* = 0$, уже $\Delta(f) = 0$, иначе члены ряда Фурье обнулятся при интегрировании.
 - (2) Действительно, $H(G(\varphi)) = G(H(\varphi)) = G(0) = 0$. Для Δ все аналогично.

П

(3) Следствие 1 свойства.

Лемма 9.1. $ker\Delta = imH$ и ker G = imH.

Доказательство. Действительно, пусть $\varphi = \varphi_K + \varphi_H$, где $\varphi_K \in \ker H, \varphi_H \in imH$. Тогда $\Delta(\varphi) = \Delta(\varphi_K)$, кроме того $G\Delta(\varphi_K) = \varphi_K$. Значит, ядро Δ это в точности образ H.

Аналогично, $G(\varphi) = G(\varphi_K)$ b $\Delta(G(\varphi_K)) = \varphi_K$.

Предложение 9.1. Пусть $T: \Lambda^k \to \Lambda^k$ — некоторый \mathbb{C} — линейный оператор, который коммутирует с Δ . Тогда он коммутирует с H (1) и G (2) тоже.

Доказательство. (1) Разложим опять $\varphi = \varphi_K + \varphi_H$. Достаточно доказать покомпонентно.

 $\varphi=\varphi_K$. Тогда $TH(\varphi)=T(0)=0$. По доказанному ранее $\varphi_K=\Delta G(\varphi_K)$, следовательно, $HT(\varphi_K)=HT\Delta G(\varphi_K)=(H\Delta)T(\varphi_K)=0$.

 $\varphi=\varphi_{H}=Hf$. Тогда $TH(\varphi)=TH(f)$. Таким образом, нам хочется показать, что HTH(f)=TH(f), иными словами, $TH(f)\in imH$. Поскольку $imH=\ker\Delta$, достаточно проверить, что $\Delta TH(f)=T(\Delta H)(f)=0$.

(2) Разберем аналогичные 2 случая.

 $arphi=arphi_K$. Тогда $GT(arphi_K)=GT(\Delta Garphi_K)=(G\Delta)(TGarphi_K)=TGarphi_K-HTGarphi_K=TGarphi_K-T(HG)arphi_K=TGarphi_K.$

 $\varphi=\varphi_H=Hf$. Тогда T(GH)f=0 и GTHf=(GH)(Tf)=0.

10 Дивизоры

Пусть \mathcal{M} — комплексное многообразие, с атласом $\{U_{\alpha},z_{\alpha}\}$ (считаем, что карты связны). Пусть на каждой карте задана мероморфная структура f_{α} , причем на пересечении $U_{\alpha} \cap U_{\beta}$ отношение $\zeta_{\alpha\beta} = \frac{f_{\alpha}}{f_{\beta}}$ — голоморфная функция, нигде не равная 0.

Определение 10.1. Голоморфную функцию, нигде не равную 0, назовем единицей, а семейство пар $\{U_{\alpha}, f_{\alpha}\}$ — представлением.

Определение 10.2. Два представления $\{U_{\alpha}, f_{\alpha}\}$ и $\{V_{\beta}, g_{\beta}\}$ называются эквивалентными, если на пересечении любых двух карт $U_{\alpha} \cap V_{\beta}$ существует такая единица $h_{\alpha\beta}$, что $f_{\alpha} = h_{\alpha\beta} \cdot g_{\beta}$.

Замечание 10.1. Это честное отношение эквивалентности.

Определение 10.3. Дивизором \mathcal{D} на многообразии \mathcal{M} называется класс эквивалентных представлений.

Замечание 10.2. Любые два дивизора допускают представления на картах одного и того же атласа. Действительно, если карту порезать на маленькие кусочки и перенести функцию, получится эквивалентное представление.

Определение 10.4. Пусть функция f — мероморфна на всем многообразии \mathcal{M} . Тогда для любого атласа она определяет дивизор (f) с представлением $\{U_{\alpha}, f_{\alpha}\}$, где $f_{\alpha} = f|_{U_{\alpha}}$. Такой дивизор (f) называется главным.

Определение 10.5. Дивизор называется *положительным* $\mathcal{D} > 0$, если он допускает представление $\{U_{\alpha}, f_{\alpha}\}$ с голоморфными f_{α} .

Проблема Кузена. Верно ли, что любой положительный дивизор на \mathcal{M} является главным?

Задачка. Покажите, что для тора это не так.

Определение 10.6. У проблемы Кузена существует обобщение, связанное с переходом к универсальной накрывающей $\widetilde{\mathcal{M}}$.

Задачка. Докажите, что если $\mathcal{M}-$ комплексное многообразие, то $\widetilde{\mathcal{M}}-$ тоже. Верно ли обратное?

11 Тэта – функции решают обобщенную проблему Кузена

Рассмотрим комплексное векторное пространство V размерности n и решетку $L\subset V$ на нем. Комплексный тор обозначим через $T_{\mathbb C}$.

Определение 11.1. Голоморфная на V (отличная от 0) функция Θ называется $m \ni ma - \phi y$ нкцией, если для всех $x \in V$, $\ell \in L$ выполнено

$$\Theta(z+\ell) = e(Q_{\ell}(z) + c_{\ell})\Theta(z),$$

где $Q_\ell(z) - \mathbb{C}$ – линейный функционал, а $c_\ell \in \mathbb{C}$ — некоторая константа.

Предложение 11.1. Если P(z) — многочлен степени не большей, чем 2, на V, то e(P(z)) — тэта — функция.

Доказательство. Действительно, пусть $P(z) = az^2 + bz + c$. Тогда

$$e(P(z+\ell)) = e(P(z) + a(2\ell z + ell^2) + b\ell) = e(2a\ell z + a\ell^2 + b\ell) \cdot e(P(z)).$$

Определение 11.2. Тэта – функцию вида e(P(z)) принято называть *тривиальной*.

Предложение 11.2. Тэта – функции образуют полугруппу по умножению, а все ее обратимые элементы — тривиальны.

Доказательство. То, что это полугруппа, очевидно — при умножении показатели экспоненты складываются.

Чтобы доказать, что все обратимые тривиальны, достаточно показать, что их коциклы имеют нужный вид. Тогда остается заметить, что все функции с данным коциклом отличаются друг от друга домножением на константу.

Итак, поскольку $\Theta \neq 0$, то от нее можно взять логарифм, зафиксировав одну ветвь: $\varphi = ln(\Theta)$. Тогда $\varphi(z+\ell) = \varphi(z) + (Q_{\ell}(z) + c_{\ell})$. Следовательно, функция φ'' периодична по L, значит, является константой. Таким образом, $\varphi(z) = az^2 + bz + c$.

Вернемся к комплексному тору $T_{\mathbb{C}}$. Пусть

$$\pi: T \xrightarrow[mod\ L]{} T_{\mathbb{C}}$$
 — отображение факторизации,

которое является универсальным накрытием тора.

Определение 11.3. Назовем атлас $\{T_{\alpha}\}$ на торе *хорошим*, если прообраз $\pi^{-1}(T_{\alpha})$ любой карты состоит из объединения таких попарно непересекающихся окрестностей U_{α}^{ℓ} , что ограничение $\pi:U_{\alpha}^{\ell}\to T_{\alpha}$ является гомеоморфизмом для всех α и ℓ . Тут мы пользуемся тем фактом, что элементы прообраза нумеруются элементами фундаментальной группы.

Пусть \mathcal{D} — дивизор на торе $T_{\mathbb{C}}$. Рассмотрим его представление $\{T_{\alpha}, f_{\alpha}\}$ на хорошем атласе (такое представление существует, достаточно рассмотреть любое представление и порезать его карты на компоненты связности на фундаментальном параллелограмме). Тогда \mathcal{D} определит дивизор на V, который называется подъемом $\pi^*(\mathcal{D})$ дивизора \mathcal{D} . Ему будет соответствовать атлас $\{U_{\alpha}^{\ell}, f_{\alpha} \circ \pi\}$.

Вопрос. Верно ли, что $\pi^*(\mathcal{D})$ — главный дивизор на V?

Теорема 11.1. Если $\mathcal{D}-$ положительный дивизор на $T_{\mathbb{C}},$ то $\pi^*(\mathcal{D})-$ главный дивизор некторой тэта — функции.

Замечание — цитата. Голыми руками эту теорему не возьмешь. Хитроумному Мамфорду и то потребовалось 1,5 страницы, чтобы объясниться.

Предложение 11.3. Пусть $\pi^*(\mathcal{D})$ — главный дивизор (F). Тогда F(z) — автоморфная форма (то есть $F(z+\ell)=a(\ell,z)F(z)$ для некоторого фактора автоморфности).

Доказательство. F и \widetilde{f}_{α} — два представления одного и того же дивизора, поэтому они отличаются домножением на единицу $F(z)=h_0(z)\widetilde{f}_{\alpha}(z)$ и $F(z+\ell)=h_\ell(z)\widetilde{f}_{\alpha}(z+\ell)$. Таким образом, поскольку $\widetilde{(f)}_{\alpha}(z)=\widetilde{f}_{\alpha}(z+\ell)$, то искомых коцикл — это $\frac{h_0}{h_{\alpha}}$.

12 Введение в доказательство теоремы по А.Вейлю

Определение 12.1. В силу компактности тора $T_{\mathbb{C}}$ можно выбрать конечный хороший атлас, обладающий следующим свойством: связные компоненты прообразов карт — суть открытые шары. Таким образом, все пересечения $T_i \cap T_j$ связны и односвязны. Назовем такой атлас великолепным.

Рассмотрим положительный дивизор $\mathcal{D} > 0$ и его представление в великолепном атласе:

$$\mathcal{D} = \{T_i, f_i\}, \ f_i \in O(T_i).$$

На пересечении $T_i \cap T_j$ определены единицы $\zeta_{ij} \frac{f_i}{f_j} \in O(T_{ij})$.

Рассмотрим голоморфные функции $g_{jk} = \frac{1}{2\pi i} \ln \zeta_{jk}$, в односвязной области $T_i \cap T_j$ они определены однозначно с точностью до сдвига на \mathbb{Z} . Однако функции $Im(g_{ij})$ определены однозначно и на $T_{ijk} = T_i \cap T_j \cap T_k$ выполнено:

$$Im(g_{ij}) + Im(g_{jk}) + Im(g_{ki}) = -Re\left(\frac{1}{2\pi}\ln\left(\zeta_{ij} \cdot \zeta_{jk} \cdot \zeta_{ki}\right)\right) = 0.$$

Выбрем разбиение единицы $\{\rho_i\}$, подчиненное покрытию T_i и рассмотрим функции

$$g_j = \sum_i (Im(g_{ji})) \rho_i.$$

Замечание 12.1.

$$g_j - g_k = \sum_i Im(g_{ji} - g_{ki})\rho_i = \sum_i Im(g_{jk})\rho_i = Im(g_{jk}).$$

13 Ликбез для понимания доказательства длинной леммы

Пусть $V_{\mathbb C}$ — комплексное векторное пространство размерности $n.\ L\subset V_{\mathbb C}$ — решетка полного ранга, $T_{\mathbb C}=V_{\mathbb C}/L$ — соответствующий комплексный тор.

Отождествим $V_{\mathbb{C}}$ и \mathbb{C}^n с координатами z_1, z_2, \ldots, z_n и дифференциалами dz_1, \ldots, dz_n . Эти дифференциалы определяют базис $\omega_1, \ldots, \omega_n, \overline{\omega}_1, \ldots, \overline{\omega}_n$ в пространстве \mathcal{F}^1 1-форм. Это означает, что (p,q) форму можно однозначно определить локально:

$$\varphi^{(p,q)} = \sum \varphi_{i_1,\dots,i_p,j_1,\dots,j_q} \omega_{i_1} \wedge \dots \wedge \omega_{i_p} \wedge \overline{\omega}_{j_1} \wedge \dots \wedge \overline{\omega}_{j_q} = \sum \varphi_{I,J} \Omega_I \wedge \widetilde{\Omega}_J.$$

Пусть U — это координатная карта на торе, то $\mathcal{F}(U)$ — это биградуированное линейное пространство:

$$\mathcal{F}(U) = \oplus \mathcal{F}^{(p,q)}()U).$$

Замечание 13.1.
$$2\frac{\partial}{\partial z_i} = \frac{\partial}{\partial x_i} - i\frac{\partial}{\partial y_i}, \ 2\frac{\partial}{\partial \overline{z}_i} = \frac{\partial}{\partial x_i} + i\frac{\partial}{\partial y_i}.$$

Определение 13.1. Опрераторы $d_z: \mathcal{F}^{(p,q)} \to \mathcal{F}^{(p+1,q)}$ и $d_{\overline{z}}: \mathcal{F}^{(p,q)} \to \mathcal{F}^{(p,q+1)}$ определены естественно, заменой $\varphi_{I,J}$ на $d_z \varphi_{I,J}$ (или $d_{\overline{z}} \varphi_{I,J}$ соответственно). Оператор d — это их сумма: $d = d_z + d_{\overline{z}}$.

Замечание 13.2. $d_z^2 = d_{\overline{z}}^2 = d_z d_{\overline{z}} + d_{\overline{z}} d_z = 0.$

Операторы δ_z и $\delta_{\overline{z}}$.

Пусть $\Omega_I = \omega_{i_1} \wedge \ldots \wedge \omega_{i_p}$ и для любого $frm[o] - -leqa \leqslant p$ определим форму $\Omega_I^a = \omega_{i_1} \wedge \ldots \wedge \omega_{i_{a-1}} \wedge \omega_{i_{a+1}} \wedge \ldots \wedge \omega_{i_p}$. Аналогичный смысл у $\widetilde{\Omega}_J$ и $\widetilde{\Omega}_J^b$.

Определим оператор δ_z ($\delta_{\overline{z}}$ будет определен аналогично). Определим на (p,q) формах, на всех остальных формах доопределим по линейности. Пусть $\varphi=f\Omega_I\wedge\Omega_J$, тогда

$$\delta_z \varphi = 2 \sum (-1)^a (\partial_{\overline{z}_{i_a}} f) \Omega_I^a \wedge \overline{\Omega}_J.$$

Соответственно

$$\delta_{\overline{z}}\varphi = 2\sum (-1)^{p+b}(\partial_{z_{i_b}}f)\Omega_I \wedge \overline{\Omega}_J^b.$$

Замечание 13.3. $\delta_{\overline{z}}:\mathcal{F}^{(p,q)}\to\mathcal{F}^{(p-1,q)},\ \delta_z:\mathcal{F}^{(p,q)}\to\mathcal{F}^{(p,q-1)}$ и $\delta_{\overline{z}}^2=\delta_z^2=\delta_{\overline{z}}\delta_z+\delta_z\delta_{\overline{z}}=0.$

Про операторы Лапласа, G и H. Пусть теперь оператор Лапласа ассоциирован с квадратичной формой $Q = \sum x_i^2 + \sum y_i^2$.

$$\Delta f = -4 \sum \partial_{z_i} \partial_{\overline{z}_i} f.$$

Замечание 13.4. Нетрудно проверить, что

$$\Delta = 2(d_z\delta_z + \delta_z d_z) = 2(d_{\overline{z}}\delta_{\overline{z}} + \delta_{\overline{z}}d_z).$$

Лемма 13.1. Операторы $d_z, d_{\overline{z}}, \delta_z, \delta_{\overline{z}}$ коммутируют с оператором Лапласа Δ .

Доказательство. Следует из предыдущего замечания прямыми выкладками.

Следствие 13.1. Как мы знаем, из коммутируемости с Δ следует коммутируемость с G и H.

14 Вспомогательная длинная лемма

Лемма 14.1. Существуют такие (1,0) – формы $\varphi_j \in \mathcal{F}^{(1,0)}(T_j)$, что

- **(1)** $\Delta \varphi_j = 0$ (локально гармонические);
- (2) $\varphi_i \varphi_j = dg_{ij}$ на T_{ij} ;
- (3) существует такая (1,1) форма α , что $\alpha \mid_{T} = d\varphi_i = d_{\overline{z}}\varphi_i$;
- (4) $H\alpha = \alpha$, то есть α это (1,1) форма с постоянными коэффициентами.

Доказательство. 1 шаг. Построение φ_j . Введем вспомогательные (1,1) – формы $\widetilde{\varphi}_j=2id_zg_j$ на T_j .

Замечание 14.1. Поскольку функция голоморфна то,

$$\widetilde{\varphi}_j - \widetilde{\varphi}_k = 2id_z(g_j - g_k) = 2id_z(Img_{jk}) = d_z(g_{jk}).$$

Замечание 14.2. В силу предыдущего замечания, продифференцировав равенство по \overline{z} получаем: $d_{\overline{z}}\widetilde{\varphi}_j=d_{\overline{z}}\widetilde{\varphi}_k$ на T_{jk} (потому что дифференцируем голоморфную функцию).

Таким образом, формы $\{d_{\overline{z}}\widetilde{\varphi}_k\}$ можно склеить в глобальную (1,1) – форму на $T_{\mathbb{C}}$.

$$\Delta \widetilde{\varphi}_i = 2(d_{\overline{z}}\delta_{\overline{z}} + \delta_{\overline{z}}d_{\overline{z}})\widetilde{\varphi}_i = 2\delta_{\overline{z}}d_{\overline{z}}\widetilde{\varphi}_i.$$

Таким образом, $\Delta\widetilde{\varphi}_j$ является ограничением на T_j глобальной (1,0) – формы $\widetilde{\Psi}$.

Поскольку H коммутирует с $d_{\overline{z}}$ и $\delta_{\overline{z}}$, а $\delta_{\overline{z}}H=0$, то $H\widetilde{\Psi}=0$. Оператор G обратен оператору Лапласа на ядре $H\colon \widetilde{\Psi}=\Delta G\widetilde{\Psi}$. Выберем

$$\varphi_i = \widetilde{\varphi}_i - G\widetilde{\Psi}.$$

2 шаг. Проверка (1) и (2). Проверим свойство (1):

$$\Delta \varphi_j = \Delta \widetilde{\varphi}_j - \Delta G \widetilde{\Psi} = \widetilde{\Psi} - \widetilde{\Psi} = 0.$$

Проверим свойство (2):

$$\varphi_i - \varphi_j = \widetilde{\varphi}_i - \widetilde{\varphi}_j = d_z g_{ij} = dg_{ij}.$$

Шаг третий. Проверка (3). Из (2) следует, что $d\varphi_j = d\varphi_k$ на T_{jk} . Тогда существует такая глобальная (1,1) – форма α , что $d\mid_{T_i} = d\varphi_j$.

<u>Шаг 4. Проверка (4).</u> $H\alpha = \alpha$ равносильно тому, что $\alpha \in im(H) = \ker(\Delta)$. Проверим это:

$$\Delta\alpha = \Delta d_{\overline{z}}\varphi_i = d_{\overline{z}}\Delta\varphi_i = 0.$$

15 Конец длинного доказательства теоремы

Сохраним обозначения из леммы. Пусть \widetilde{F}_i^ℓ — поднятие формы φ_i на компоненту U_i^ℓ прообраза T_i . Итак, $\widetilde{F}_i^\ell = \varphi_i(\pi(z))$. Напомним, что $\alpha = \sum_{i,j} a_{i,j} \omega_i \wedge \overline{\omega}_j$.

Ясно, что
$$\alpha^* = \pi^* \alpha = \sum_{i,j} a_{i,j} dz_i \wedge d\overline{z}_j$$
.

Рассмотрим (1,0) – форму на U_i^{ℓ} :

$$F_i^{\ell} = \widetilde{F}_i^{\ell} + \sum_{i,j} a_{i,j} (\overline{z} - \overline{e})_j dz_i.$$

Замечание 15.1. $d_{\overline{z}}F_i^{\ell}=0$.

Голоморфный вариант теоремы Пуакаре для односвязной области U_i^ℓ в \mathbb{C}^n гарантирует существование такой голоморфной функции $h_i^\ell \in O(U_i^\ell)$, что $dh_i^\ell = d_z h_i^\ell = F_i^\ell$.

Локальные тэты и их аналитическое продолжение.

Пусть дивизор \mathcal{D} имеет представление $\{T_i, f_i\}$. На карте U_i^{ℓ} в \mathbb{C}^n определим функцию

$$\Theta_i^{\ell}(z) = f_i(\pi(z))e(-h_i^{\ell}(z)).$$

Предложение 15.1. Локально определенные таким образом теты неплохо связаны на пересечениях. Если $z \in U_i^\ell \cap U_i^m$:

$$\Theta_i^{\ell}(z) = \Theta_j^m(z)e(\sum_{p,q} z_p(\overline{\ell} - \overline{m})_q + const).$$

Доказательство. Применим опрератор $d\ln$ как указано:

$$d(\ln f_i(\pi(z)) - h_i^{\ell} - \ln f_j(\pi(z)) + h_j^{m}(z) - \sum_{p,q} a_{p,q}(\overline{\ell} - \overline{m})_q z_p) =$$

$$= dg_{ij}(\pi(z)) - F_i^{\ell} + F_j^{m} - \sum_{p,q} (\overline{\ell} - \overline{m})_q dz_p.$$

А это уже вверно по выбору функции F_i^{ℓ} .

Замечание 15.2. Аналогично доказывается, что $\Theta_i^\ell(z+\ell) = \Theta_i^0(z) \cdot e(const)$. Строим единую тэту. Зафиксируем карту $U_{i_0}^0$ и положим на ней $\Theta = \Theta_{i_0}^0$, доопределим на всех соседних картах, потом на соседних новой области и так далее. Все корректно. Несложно заметить, что

$$\Theta = \Theta_i^\ell e \left(-\sum_{p,q} a_{p,q} z_p \overline{\ell}_q + const \right).$$

Фактор автоморфности тэты. В силу предыдущего замечания

$$\Theta(z+\ell) = \Theta(z)e\left(-\sum_{p,q} a_{pq}z_p\overline{\ell}_q + const\right).$$

полученная тэта — честное представление дивизора \mathcal{D} .

16 Квазиэрмитовы формы

Определение 16.1. Пусть V — комплекное векторное пространство. *Квази-эрмитовой формой* на $V \times V$ называется комплекснозначная функция Q(z,w), для которой выполнено:

- (1) \mathbb{C} линейна по переменной z;
- (2) \mathbb{R} линейна по переменной w;
- (3) $A_Q(z,w) = \frac{1}{2i}(Q(z,w) Q(w,z))$ принимает вещественные значения.

Лемма 16.1. Для того, чтобы квазиэрмитова форма была эрмитовой, необходимо и достаточно, чтобы Q(iz,w)+Q(z,iw)=0 (*).

Доказательство. Для эрмитовой функции Q(iz,w)+Q(z,iw)=iQ(z,w)-iQ(z,w)=0.

Теперь в другую сторону. По условию функция \mathbb{C} — линейна по первой координате. То есть достаточно показать, что $Q(z,w)=\overline{Q(w,z)}$. По условию 3 имеем $Q(z,w)=\overline{Q(w,z)}+\alpha(z,w)$, где $\alpha(z,w)$ — чисто мнимое. Покажем, что α — тождественно нулевая функция. По условию (*)

$$-iQ(z,w) = Q(z,iw) = -i\overline{Q(w,z)} + \alpha(z,iw).$$

Прибавим к обеим частям i(Q(w,z)). Слева получим вещественное число, а справа будет сумма: $i(Q(w,z)-\overline{Q(w,z)})$ — вещественное, $\alpha(z,iw)$ — мнимое. Получается, что α — одновеременно мнимое и вещественное, то есть 0.

Предложение 16.1. Предположим, форма Q — квазиэрмитова. Тогда

- (1) форма $H(z,w) = \frac{1}{2i}(Q(iz,w) Q(z,iw))$ эрмитова;
- (2) форма $S(z,w)=rac{1}{2i}(Q(iz,w)+Q(z,iw))-\mathbb{C}$ билинейная и симметрическая.

П

П

Доказательство. Тут нужно ловко выносить i.

Маленькая теорема. Форма Q(z,w) тогда и только тогда квазиэрмитова, когда она единственным образом представима в виде суммы эрмитовой и \mathbb{C} – билинейной симметричной формы

$$Q(z, w) = H(z, w) + S(z, w).$$

Доказательство. Естественное следствие предыдущего предложения.

17 Меморандум Эрмита

Эрмит учил, что если H(z,w) — эрмитова форма в комплексном векторном пространстве, то

а) H=ReH+iImH, причем ReH — это \mathbb{R} — билинейная симметрическая форма, а ImH — это \mathbb{R} —билинейная кососимметрическая форма, которую мы будем обозначать буквой A.

Проверим это. Пункт **a)** видно просто из явных формул $ReH = \frac{H(z,w) + H(w,z)}{2}$,

$$ImH = \frac{H(z, w) - H(w, z)}{2i}.$$

б) A(iz, iw) = A(z, w) и H(z, w) = A(iz, w) + iA(z, w). Проверим и это.

$$A(iz, w) = \frac{H(iz, iw) - H(iw, iz)}{2i} = \frac{H(z, w) - H(w, z)}{2i} = A(z, w).$$

$$\begin{split} A(iz,w) + iA(z,w) &= \frac{H(iz,w) - H(w,iz) + iH(z,w) - iH(w,z)}{2i} = \\ &= \frac{iH(z,w) + iH(w,z) + iH(z,w) - iH(w,z)}{2i} = H(z,w). \end{split}$$

Лемма 17.1. Ядро кососимметрической формы A состоит из изотропных векторов H.

Доказательство. Пусть $z_0 \in \ker A$. Это значит, что для любого $w \in V$ выполнено $A(z_0, w) = 0$. По пункту **б)** имеем:

$$H(z_0, z_0) = A(iz_0, z_0) + iA(z_0, z_0) = 0.$$

Замечание 17.1. При условии, что $H \geqslant 0$, верно и обратное. Достаточно предположить противное: существуют такие $z_0, x \in V$, что $H(z_0, z_0) = 0$, $H(z_0, x) = i$, тогда при всех $a \in \mathbb{R}$ должо быть верно $H(az_0 + ix, az_0 + ix) > 0$. Дальше нужно скобки раскрыть.

Следствие 17.1. Если H > 0, то форма A — невырождена.

Определение 17.1. Пусть V — комплексное векторное пространство, $L \subset V$ — решетка полного ранга. Эрмитова форма H(z,w) для пары (V,L) называется формой Pимана, если $H \geqslant 0$ и $(ImH)(L \times L) = A(L \times L) \in \mathbb{Z}$.

Напоминание. Любая решетка в нужном базисе записывается в виде $\Omega_{n\times 2n}(E_n, \tau_n)$ любой вектор этой решетки однозначно представляется в виде $\ell = E_n m + \tau_n k$, где m, k — целочисленные вектор — столбцы.

Теорема, которую пока что не будем доказывать. (Но если станет интересно, это записывается в 10 строк у Мамфорда «Лекции о тэта – функциях».)

- (1) Решетка $L = E_n m + \tau_n k$ в \mathbb{C}^n тогда и только тогда допускает невырожденную риманову эрмитову форму, когда матрица τ_n симметрична и ее мнимая часть положительно определена.
- (2) Решетки L в \mathbb{C}^n , допускающие риманову невырожденную эрмитову форму, это ровно те решетки, для которых комплексный тор $T = \mathbb{C}^n/L$ является проективным алгебраическим многообразием, которое называется абелевым.
 - (3) Риманова форма выглядит так:

$$H(E,\tau) = z^t (Im\tau)^{-1} \overline{w}.$$

Замечание 17.2. Формы $A = \frac{Q(z,w) - Q(w,z)}{2i}$ и ImH на самом деле совпадают:

$$A = \frac{Q(z, w) - Q(w, z)}{2i} = \frac{S(z, w) - S(w, z) + H(z, w) - H(w, z)}{2i} = ImH.$$

18 Снова к тэтам

Теорема 18.1. Пусть $\Theta(\ell,z) = e(Q_{\ell}(z) + c_{\ell})$ — тэта – фактор автоморфности для решетки L. Тогда существует такая квазиэрмитова форма Q(z,w), что

(1)
$$Q(z,\ell) = 2iQ_{\ell}(z)$$
.

- (2) Кососимметрическая форма $\frac{1}{2i}(Q(z,w)-Q(w,z))$ принимает целые значения на $L\times L$.
- (3) Если Q = H + S разложение формы на эрмитову и симметрическую части, то $H \geqslant 0$.

Доказательство. (1) Вспоминая, что $\Theta(z,\ell)$ — фактор автоморфности, получаем

$$Q_{\ell_1+\ell_2}(z) + c_{\ell_1+\ell_2} = Q_{\ell_1}(z+\ell_2) + c_{\ell_1} + Q_{\ell_2}(z) + c_{\ell_2} \mod \mathbb{Z}.$$

Следовательно,

$$Q_{\ell_1+\ell_2}(z) = Q_{\ell_1}(z) + Q_{\ell_2}(z),$$

$$c_{\ell_1+\ell_2} \equiv Q_{\ell_1}(\ell_2) + c_{\ell_1} + c_{\ell_2} \mod \mathbb{Z}.$$

Из последнего следует, что $Q_{\ell_1}(\ell_2) = Q_{\ell_2}(\ell_1) \mod \mathbb{Z}$. А из первого, что $Q_{\ell}(z) \mathbb{C}$ – линейна по z и \mathbb{Z} – линейна по ℓ . Но решетка L свободно порождает V над \mathbb{R} , то есть при фиксированном z функцию $Q_{\ell}(z)$ можно продолжить на V по линейности, которое мы обозначим $Q_w(z)$. Докажем, что $Q(z,w) = 2iQ_w(z)$ является искомой квазиэрмитовой формой. Обе линейности есть по построению, то есть нужно проверить только последнее условие, что $A_Q(z,w) = Q_w(z) - Q_z(w)$ — вещественная, а это так.

- **(2)** $Q_{\ell_1}(\ell_2) Q_{\ell_2}(\ell_1) \in \mathbb{Z}$ по доказанному.
- (3) Следующая секция.

19 Доказательство последний части теоремы о факторах автоморфности и квазиэрмитовых форм

Запишем нашу форму в виде Q(z,w)=H+S. Положим $b_\ell=c_\ell-\frac{Q(\ell,\ell)}{4i},$ $\ell\in L$, форма $A(z,w)=\frac{1}{2i}(Q(z,w)-Q(w,z))=ImH$ — целая на $L\times L$.

Лемма 19.1. Числа $\{b_\ell\}$ удовлетворяют условию

$$b_{\ell_1+\ell_2} = b_{\ell_1} + b_{\ell_2} + \frac{A(\ell_1, \ell_2)}{2} \pmod{\mathbb{Z}} \ (**).$$

Доказательство.

$$b_{\ell_1+\ell_2} = c_{\ell_1+\ell_2} - \frac{Q(\ell_1 + \ell_2, \ell_1 + \ell_2)}{4i} = \frac{1}{2i}Q(\ell_1, \ell_2) + c_{\ell_1} + c_{\ell_2} - \frac{Q(\ell_1, \ell_1) + Q(\ell_2, \ell_2) + Q(\ell_1, \ell_2) + Q(\ell_2, \ell_1)}{4i} = b_{\ell_1} + b_{\ell_2} + \frac{A(\ell_1, \ell_2)}{2}.$$

Следствие 19.1. Числа $\varphi(\ell) = e(b_\ell)$ удовлетворяют *уравнению квазихарак- тера* относительно кососимметрической формы A:

 \Box

$$\varphi(\ell_1 + \ell_2) = \varphi(\ell) \cdot \varphi(\ell_2) e^{i\pi A(\ell_1, \ell_2)} \ (***).$$

Действительно, нужно просто число e возвести в степень (**), умноженную на $2\pi i$.

Замечание 19.1. Если $A(L \times L) \subset 2\mathbb{Z}$, то квазихарактер становится настоящим характером (то есть коэффициент $e^{i\pi A(\ell_1,\ell_2)}$ исчезает). Отношение двух квазихарактеров относительно одних и тех же формы A и решетки L является характером.

Лемма 19.2. Для любого квазихарактера φ решетки L относительно кососимметрицеской формы A (целочисленной на решетке) существует такая \mathbb{C} – линейная функция $m(z):V\to\mathbb{C}$, что квазихарактер $\widetilde{\varphi}(\ell)=\varphi(\ell)e(-m(\ell))$ принимает на решетке L значения, равные по модулю 1. Такая функция m(z) единственна.

Доказательство. Докажем сначала, что мнимя часть функции m(z) определена однозначно. Действительно, $|e(-m(\ell))| = |\varphi(\ell)|^{-1}$, то есть $Imm(\ell)$ определена однозначно, но решетка L — полная, тогда по линейности Imm(z) определена однознечно. Любая вещественная часть — чья-то мнимая. поэтому в силу $\mathbb C$ — линейности и сама функция определена однозначно. Это определение корректно по построению.

Теорема 19.1. Пусть $\Theta_\ell(z)$ — тэта фактор автоморфности. Тогда существуют такая квазиэрмитова форма Q(z,w) на $V\times V$, $\mathbb C$ — линейная форма m на V и квазифактор $\widetilde{\varphi}$ решетки L относительно формы $A=ImH=\dfrac{Q(z,w)-Q(w,z)}{2i},$ принимающий значения в множестве $\{z\in\mathbb C\big||z|=1\},$ что

$$\Theta(\ell,z) = e\left(\frac{1}{2i}Q(z,\ell) + \frac{1}{4i}Q(\ell,\ell) + m(\ell)\right)\widetilde{\varphi(\ell)}.$$

Доказательство.

$$\Theta(\ell,z) = e\left(\frac{1}{2i}Q(z,\ell) + b_{\ell} + \frac{Q(\ell,\ell)}{4i}\right) = e\left(\frac{1}{2i}Q(z,\ell) + \frac{Q(\ell,\ell)}{4i}\right)\varphi(\ell) = e\left(\frac{1}{2i}Q(z,\ell) + \frac{Q(\ell,\ell)}{4i}\right)\varphi(\ell)$$

Замечание 19.2. По фактору автоморфности тройка $(Q, m, \widetilde{\varphi})$ определяется однозначно.

Операция нормализации. Пусть есть тэта – функция Θ :

$$\Theta(z+\ell) = a(z,\ell)\Theta(z),$$

где фактору автоморфности $a(z,\ell)$ соответствует тройка $(Q,m,\widetilde{\varphi})$. Рассмотрим обратимую тэту:

$$\Theta_0 = 6\left(\frac{S(z,z)}{4i} + m(z)\right).$$

Её фактор автоморфности — $e\left(\frac{S(\ell,\ell)}{4i}+\frac{S(\ell,z)}{2i}+m(\ell)\right)$. Тогда тэта — функции

 $\widetilde{\Theta} = \Theta\Theta_0^{-1}$ будет соответствовать тройка $(H,0,\widetilde{\varphi}).$

Лемма 19.3. Рассмотрим функцию $|\widetilde{\Theta}| \cdot e^{-\frac{\pi}{2}H(z,z)}$.

(1) Эта функция непрерывна и инвариантна
относительно сдвигов на векторы решетки ${\cal L}.$

(2) $|\widetilde{\Theta}| < e^{\frac{\pi}{2}H(z,z)} \cdot const.$

Доказательство. (1) Функция непрерывна как произведение непрерывных. Докажем инвариантность:

$$\begin{split} \widetilde{\Theta}(z+\ell) \cdot e^{-\frac{\pi}{2}H(z+\ell,z+\ell)} &= \widetilde{\Theta}(z) \cdot e\left(\frac{H(z,\ell))}{2i} + \frac{H(\ell,\ell)}{4i} - \frac{H(z+\ell,z+\ell)}{4i}\right) \cdot \varphi(\ell) = \\ &= \widetilde{\Theta}(z) \cdot e^{-\frac{\pi}{2}H(z,z)} e\left(\frac{H(z,\ell) - H(\ell,z))}{4i}\right) \cdot \varphi(\ell). \end{split}$$

Осталось заметить, что то, что стоит по экспонентой — вещественно, то есть модуль действительно не изменился.

(2) Непрерывная функция на фундаментальном параллелепипеде достигает максимума по модулю, а поскольку функция инвариантна о тносительно сдвигов, то этот максимум — максимум для всего пространства.

<u>Наконец-то доказываем.</u> Тут начинается доказательство пункта (3) теоремы 17, то есть доказываем, что $H \geqslant 0$.

Предположим, для некоторого $z_0 \in V$ это неверно, то есть $H(z_0,z_0) < 0$. Тогда $H(z+\lambda z_0,z+\lambda z_0) = H(z_0,z_0)|\lambda|^2 + O(\lambda)$. Тогда по предыдущей лемме при $|\lambda| \to \infty$ выполнено $\widetilde{\Theta}(z+\lambda z_0) \to 0$. Но функция периодична по L, тогда $\widetilde{\Theta}(z) = 0$ на всем пространстве. Тогда и $\Theta = 0$, что противоречит выбору Θ .

20 Размерность пространства тэта — функций с фактором автоморфности, определяемым тройкой (Q,0,0)

Будем считать, что H > 0.

Лемма о симплектическом базисе решетки (есть в Винберге). Решетка L допускает базис $(e_1,\ldots,e_n,f_1,\ldots,f_n)$, что $A(e_i,i_j)=A(f_i,f_j)=0$, $A(e_i,f_j)=\delta_{ij}d_{ij}$, причем $d_{11}|d_{22}|\ldots|d_{nn}$.

Произведение $Pf(L) = \prod_{i=1}^n d_{ii}$ называется $n \phi a \phi \phi$ ианом формы A на решетке L. Далее будем обозначать $d_{ii} = d_i$.

Теорема 20.1. $dim_{\mathbb{C}}\Theta(Q,0,0) = Pf(L)$.

Доказательство. Будем изучать свойства формы Q. Выберем базис в комплексном векторном пространстве $\left\{\frac{f_i}{d_i}\right\}$. Форма A на подпространстве $\mathcal{L} = \mathbb{R}\left(\frac{f_1}{d_1}\right) +$

 $\ldots + \mathbb{R}\left(\frac{f_n}{d_n}\right)$ (лагранжевом подпространстве) тождественно нулевая. То есть форма H в этом базисе записывается вещественной матрицей h (заметим, что $h=h^t$). Таким образом,

$$H(z, w) = z^t h \overline{w}.$$

Рассмотрим симметрическую на V форму $S_0(z,w)=z^thw$. Тогда, домножив нашу тэту на тривиальную тэту $e\left(\frac{-S(z,z)-S_0(z,z)}{4i}\right)$, получим новую тэту с хорошим свойством:

$$w \in \mathcal{L}, z \in V \Longrightarrow Q(z, w) = 0.$$

Чтобы в этом убедиться, достаточно посчитать фактор автоморфности тривиальной тэты. Ноль получится за счет того, что $\overline{w}=w$.

Теперь наша ближайшая цель — понять, что такое Q(z,w) в выбранном базисе.

$$Q(z,w) = Q\left(\sum_{i=1}^{n} z_i \left(\frac{f_i}{d_i}\right), w\right) = \sum_{i=1}^{n} \frac{z_i Q(f_i, w)}{d_i} (*).$$

Заметим, что тэта инвариантна относительно сдвигов на $v^t = (d_1 \mathbb{Z}, d_2 \mathbb{Z}, \dots, d_n \mathbb{Z})$. Вспоминаем про оставшиеся базисные векторы решетки — $\{e_i\}$. Введем матрицу периодов $\Omega = (\omega_{ij})$:

$$e_i = \sum_{j=1}^{n} \omega_{ij} \left(\frac{f_j}{d_j} \right).$$

Пусть теперь $w = p_1 e_1 + \ldots + p_n e_n \in (e_1 \mathbb{Z} + \ldots + e_n \mathbb{Z})$. Тогда

$$Q(z, w) = 2i \sum_{i,j=1}^{n,n} \frac{p_j z_i}{d_i} A(f_i, e_j) = -2i z^t p,$$

тут мы воспользовались xopouum csoucmsom во втором равенстве, а p — векторстолбен.

Заметим, что
$$Q(e_i,e_j)=Q\left(\sum \omega_{ik}\frac{f_k}{d_k},e_j\right)=-2i\omega_{ij}.$$
 Поэтому

$$Q\left(\sum p_i e_i, \sum q_i e_i\right) = -2ip^t \omega q.$$

Таким образом, значение фактора автоморфности:

$$\Theta(z, \sum p_i e_i) = e\left(\frac{Q\left(z, \sum p_i e_i\right)}{2i} + \frac{Q\left(\sum p_i e_i, \sum p_j e_j\right)}{4i}\right) = e\left(-z^t p - \frac{1}{2}p^t \Omega p\right).$$

Теперь докажем, что матрица Ω обладает двумя свойствами: $\Omega^t = \Omega$ и $Im\Omega > 0$. Первое понятно: $Q(e_i,e_j) = Q(e_j,e_i)$ (потому что их разность — $A(e_i,e_j) = 0$)) В самом деле, $Q(z,w) = z^t h(\overline{w}-w) = -2iz^t hIm(w)$. Следовательно, $Re(Q(z,w)) = 2(Im(z))^t h(Im(w))$.

Поскольку h — симметричная положительно определенная матрица, то Re(Q(z,z)) 20, если $Im(z)\neq 0$. Как уже было замечено, $Im\Omega=\frac{1}{2}Re(Q(e_i,e_j))$. То есть Ω — положительно определена.

Следствие **20.1.** $h = (Im\Omega)^{-1}$.

Доказательство. Хотим показать, что $Im(\Omega h)=E$. Достаточно показать, что $f_i^t Im(\Omega h) f_j=d_i d_j \delta_{ij}$. Действительно,

$$Im((f_i^t\Omega)hf_j) = Im(d_ie_i^thf_j = d_iA(e_i, f_j) = d_id_j\delta_{ij}.$$

Замечание 20.1. Комплексные симметрические матрицы вида $Z_n = X_n + iY_n, Y_n > 0$ являются аналогом верхней полуплоскости и называются верхней полуплоскостью Зигеля рода n

Поскольку наша тэта инвариантна относительно сдвигов на $d_1\mathbb{Z} + \ldots + d_n\mathbb{Z}$, то она раскладывается в ряд Фурье:

$$\Theta(z) = \sum_{r = \frac{\mathbb{Z}}{d_1} + \dots + \frac{\mathbb{Z}}{d_n}} a(r)e(z^t r).$$

Дальше доказательство аналогично доказательству теоремы о размерности в пункте 6. Заметим, что

$$\Theta(z+p) = \Theta(z)e(-z^tp - \frac{1}{2}p^t\Omega p).$$

Сгруппируем теперь все коэффициенты со здвигом на целое p. Таких групп будет как раз $d_1 \cdot \ldots \cdot d_n$.

Ряды сходятся по обсолютно аналогичным причинам. Линейная независимость следует из единственности разложения в ряд Фурье.

21 Короткий разговор про одномерные тэты

Напоминание про классическю тэту. Она выглядит так:

$$\Theta(\tau, z) = \sum_{n \in \mathbb{Z}} e\left(\frac{\tau}{2}n^2 + nz\right)$$

Напоминание про формулу Пуассона. Пусть $f:\mathbb{R}\to\mathbb{C}$ — быстроубывающая на бесконечности функция. $\hat{f}=\int\limits_{-\infty}^{\infty}f(x)e(-xy)$ — её преобразование Фурье. Тогда

$$\sum_{k \in \mathbb{Z}} f(x+k) = \sum_{k \in \mathbb{Z}} \hat{f}(k)e(kx).$$

Если подставить x = 0, получится

$$\sum_{k \in \mathbb{Z}} f(k) = \sum_{k \in \mathbb{Z}} \hat{f}(k).$$

Замечание 21.1. Если $f(x)=e^{-\pi x^2 v}, v>0$ то $\hat{f}(y)=\frac{1}{\sqrt{v}e^{-\frac{\pi y^2}{v}}}$. Для этой функции Формула Пуассона дает:

$$\sum_{k \in \mathbb{Z}} e^{-\pi(x+k)^2 v} = v^{-\frac{1}{2}} \sum_{k \in \mathbb{Z}} e^{-\frac{-\pi k^2}{v}} e(kx), \ x \in \mathbb{R}.$$

Эта функция аналитична, значит, ее можно аналитически продолжить до \mathbb{C} . Немножко перепишем её:

$$\sum_{k\in\mathbb{Z}}e^{i\pi(z+k)^2(vi)}=\left(\frac{vi}{i}\right)^{-\frac{1}{2}}\sum_{k\in\mathbb{Z}}e^{-\frac{-i\pi k^2}{iv}}e(kz),\ z\in\mathbb{C}.$$

Заменим $iv = \tau$:

$$\sqrt{\frac{\tau}{i}} \sum_{k \in \mathbb{Z}} e^{i\pi(z+k)^2 \tau} = \sum_{k \in \mathbb{Z}} e^{-\frac{-i\pi k^2}{\tau}} e(kz).$$

Таким образом,

$$\Theta\left(-\frac{1}{\tau},\frac{z}{\tau}\right) = \sum_{n \in \mathbb{Z}} e\left(-\frac{1}{2\tau}n^2 + \frac{nz}{\tau}\right) = \sqrt{\frac{\tau}{i}} \sum_{k \in \mathbb{Z}} e\left(\frac{(\frac{z}{\tau} + k)^2 \tau}{2}\right) = \sqrt{\frac{\tau}{i}} \Theta(\tau,z) e\left(\frac{z^2}{2\tau}\right).$$

Таким образом, $\Theta(\frac{-1}{\tau},0) = \frac{\tau}{i}\Theta(\tau,0)$.

Определение 21.1. Голоморфная на верхней полуплоскости функция $f(\tau)$ называется модулярной формой, если $f(\tau+1)=f(\tau)$ и $f(\frac{-1}{\tau})=\tau^k f(\tau)$. Замечание 21.2. Тут должно было случиться чудо, но оно не произошло.