Домашнее задание 5

Задача 1. Укажите классы сопряжённости в S_5 .

Решение. В общем случае число классов сопряжённости в симметрической группе S_n равно количеству разбиений числа n, так как каждый класс сопряжённости соответствует в точности одному разбиению перестановки $\{1, 2, ..., n\}$ на циклы. Число разбиений для $l(5) = 7 : \{\{5\}, \{4, 1\}, \{3, 2\}, \{3, 1, 1\}, \{2, 2, 1\}, \{2, 1, 1, 1\}, \{1, 1, 1, 1, 1\}\}$ \square

Задача 2. Укажите нормальные подгруппы в S_3 .

Решение. Перечислим все перестановки S_3 :

$$S_3 = \{e, (12), 23, (31), (123), (132)\}\$$

Очевидно что, e и S_3 являются нормальными подгруппами. Проверим остальные: $H = \{e, (12)\}$ является группой, но не является нормальной (для x = (23)). Аналогичные рассуждения приводятся и для $H = \{e, (13)\}, H = \{e, (23)\}.$

 $H = \{e, (123), (132)\}$ - подгруппа, при том индекса 2, а подгруппы иднекса 2 всегда нормальные.

Ответ:
$$\{e\}$$
, $\{e, (123), (132)\}$, S_3

Задача 3. Пусть G - группа, H - $e\ddot{e}$ нормальная подгруппа, докажите, что $\forall x \in H$: $[x] \in H$. (То есть что классы сопряженности должны целиком лежать в нормальной подгруппе)

Решение. Подгруппа H нормальна тогда и только тогда, когда для любых $h \in H$ и $g \in G$ выполнено $ghg^{-1} \in H$. То есть для любого $h \in H$ выполнено $C(h) \subset H$. \square

Задача 4. Используя прошлую задачу докажите, что не существует нетривиальных (не единичный элемент и не сама группа) нормальных подгрупп группы A_5 .

Решение. Группа A_5 представима из циклов вида (ab)(cd)(e) или (abc)(d)(e) - остальные тривиальными. Воспользуемся утвержением, доказанным в Задаче 3. Если существует нетривиальная нормальная подгруппа, то она должна либо целиком содержать классы смежности вида (ab)(cd)(e) или (abc)(d)(e).

Приведём контрпример, где класс смежности (ab)(cd)(e) не образует подгруппу: $(12)(34)\circ(23)(45)=(24531)$. Аналогичный контрпример и для $(abc)(d)(e):(123)\circ(234)=(21)(34)$ — не группа. \square

Задача 5. Докажите, что нормальная подгруппа индекса k содержит все элементы, порядки которых взаимно просты c k.

Peшение. Пусть H - нормальная подгруппа G с индексом k. Пусть также есть x порядка n. НОД(n,k)=1 :

$$x^n = e \in H$$

Фактор-группа G/H имеет порядок k, поэтому $(xH)^k = H$. Воспользуемся нормальностью подгруппы:

$$(xH)^k = x^k H = H \Longrightarrow x^k \in H$$

Так как НОД(n,k)=1, существуют такие целые числа x,y, что

$$kx + ny = 1$$

Возведем в эту степень x:

$$x = x^1 = (x^k)^x \cdot (x^n)^y \in H$$

Утверждение доказано. 🗆