

Ficha n.º 1 - Página 60

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

- **1.1.** $[O, F] \in [C, P]$, por exemplo
- **1.2.** [B, A] e [D, E], por exemplo
- **1.3.** [B, B] e [C, C], por exemplo
- **1.4.** [*F*, *E*] e [*B*, *C*], por exemplo
- **1.5.** [*F*, *O*] e [*O*, *B*], por exemplo
- **1.6.** [*B*, *F*] e [*C*, *E*]
- **2.1.** [*A*, *B*], [*B*, *A*], [*D*, *C*], [*C*, *D*], [*A*, *D*], [*D*, *A*], [*B*, *C*], [*C*, *B*], [*B*, *D*], [*D*, *B*], [*A*, *C*] e [*C*, *A*] Podem ser definidos 12 segmentos orientados.
- **2.2.** \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AD} , \overrightarrow{DA} , \overrightarrow{AC} , \overrightarrow{CA} , \overrightarrow{BD} e \overrightarrow{DB} Podem ser definidos oito vetores.
- **3.** [*C*, *F*], [*D*, *G*], [*E*, *H*] e [*G*, *J*] representam o mesmo vetor. Não há mais nenhum par de segmentos orientados (dos apresentados) que representem o mesmo vetor.

Ficha n.º 1 - Página 61

- **4.1.** Por exemplo:
 - **a)** [A, D] e [E, H]
 - **b)** [*I*, *A*] e [*B*, *J*]
 - **c)** [A, A] e [B, B]
 - **d)** [G, L] e [C, H]
 - **e)** [*C*, *I*] e [*H*, *N*]
- **4.2.** \overrightarrow{AD} , \overrightarrow{EH} , \overrightarrow{IL} e \overrightarrow{MP}
- **4.3.** \overrightarrow{IC} , \overrightarrow{MG} , \overrightarrow{JD} e \overrightarrow{NH}
- **4.4.** $\overrightarrow{MN} \in \overrightarrow{GE}$, por exemplo
- **4.5.** \overrightarrow{IK} e \overrightarrow{GF} , por exemplo
- **4.6.** $\overrightarrow{CG} \in \overrightarrow{DL}$, por exemplo
- **4.7.** $\overrightarrow{FN} \in \overrightarrow{OG}$, por exemplo
- **4.8.** \overrightarrow{MO} , por exemplo
- **4.9.** \overrightarrow{KF} , por exemplo

5. Opção correta: (D)

Os segmentos de reta com a mesma direção têm retas-suporte paralelas.

Ficha n.º 2 – Página 62

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

1.

2.1 e **2.3**.

$$F \rightarrow (-4, 2)$$

2.2.
$$E \rightarrow (2,0)$$

Ficha n.º 2 - Página 63

3.1., 3.2., 3.3., 3.5. e 3.6.

3.4. a) Sejam
$$P \rightarrow (-3, -2)$$
 e $Q \rightarrow (2, -2)$.

$$A_{\text{[APQD]}} = 5 \times 2 = 10 \; , \; A_{\text{[CPB]}} = \frac{2 \times 1}{2} = 1 \; , \; A_{\text{[BQD]}} = \frac{3 \times 2}{2} = 3$$

$$A_{[ACBD]} = 10 - (1+3) = 6$$
 unidades quadradas

b)
$$\overline{CB}^2 = 1^2 + 2^2 \Leftrightarrow \overline{CB}^2 = 5 \underset{\overline{CB} > 0}{\Leftrightarrow} \overline{CB} = \sqrt{5}$$
 unidades de comprimento

Ficha n.º 2 - Página 64

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

4.

$$5.1 \qquad \overrightarrow{AG} = \overrightarrow{IO}$$

5.2.
$$\overrightarrow{KF} = \overrightarrow{-CH}$$

5.3.
$$B + \overrightarrow{ON} = A$$

5.4.
$$L + \overrightarrow{OF} = C$$

5.5.
$$M + \overrightarrow{NC} = B$$

5.6.
$$P + \overrightarrow{OE} = F$$

5.7.
$$M + \overrightarrow{FD} = K$$

5.8.
$$\overrightarrow{LE} = -\overrightarrow{AH}$$

5.9.
$$\overrightarrow{JE} = \overrightarrow{HC}$$

5.10.
$$N + \overrightarrow{KB} = E$$

5.11. O vetor \overrightarrow{NL} é colinear com \overrightarrow{FD} .

5.12. O vetor \overrightarrow{JC} é colinear com \overrightarrow{MF} .

5.13. O vetor \overrightarrow{NO} tem metade do comprimento do vetor \overrightarrow{JL} (por exemplo).

5.14. O vetor \overrightarrow{GI} tem a mesma direção, mas sentido contrário ao do vetor \overrightarrow{NL} .

Ficha n.º 2 - Página 65

6.1.
$$H = T_{\overline{CG}}(E)$$

6.3.
$$F = T_{\overline{GH}}(D)$$

6.5.
$$H = F + \overrightarrow{DG}$$

6.7.
$$C = E + \overrightarrow{HG}$$

6.9.
$$T_{\overline{BC}}([ABE]) = [BCF]$$

6.11.
$$T_{FI}([EFH]) = [HIJ]$$

6.13.
$$T_{\overline{CF}}([CD]) = [EF]$$

6.2.
$$J = T_{\overrightarrow{BF}}(H)$$

6.4.
$$F = T_{-\overrightarrow{AB}}(G)$$

6.6.
$$B = B + \vec{I} \vec{I}$$

6.8.
$$J = G + \overrightarrow{CH}$$

6.10.
$$T_{\overline{FH}}([BCF]) = [EFH]$$

6.12.
$$T_{\overline{BF}}([BC]) = [FG]$$
, por exemplo

6.14.
$$T_{\overline{GB}}([IF]) = [EA]$$

- **7.1. Verdadeira**. O transformado de um ponto por uma translação pode coincidir com o próprio ponto se o vetor associado à translação for o vetor nulo.
- 7.2. Falsa. O transformado é um triângulo geometricamente igual ao original.
- 7.3. Verdadeira
- **7.4.** Falsa. $A + \vec{u} = A + \vec{v}$ apenas se \vec{u} e \vec{v} forem vetores iguais.
- 7.5. Verdadeira
- 7.6. Verdadeira
- 8.1.

- **8.2.** \overrightarrow{AB} e \overrightarrow{CD} são vetores iguais.
- **8.3.** O vetor \vec{u} é o representado na figura, sendo E o ponto de coordenadas (4, 6). Assim, [BA] // [CE], para que [BACE] seja um trapézio. A área de [BACE] é, desta forma, $\frac{(5+6)\times 6}{2} = \frac{11\times 6}{2} = 33$, tal como exigido.

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

Ficha n.º 3 – Página 66

1. Opção correta: (C)

$$\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

2.1.
$$T_{\bar{u}}(4) = 8$$

2.2.
$$T_{-\bar{\nu}}(12) = 4$$

2.3.
$$T_{\overline{w}}(5) = 22$$

2.4.
$$T_{-w}(24) = 7$$

2.5.
$$T_{-ii}(17) = 13$$

2.6.
$$T_{-\tilde{\nu}}(21) = 14$$

2.7.
$$T_{-2\bar{\nu}}(18) = 3$$

2.8.
$$T_{-w}(22) = 5$$

2.9.
$$T_{\bar{u}}(18) = 22$$

2.10.
$$18 \xrightarrow{T_{-\bar{w}}} 1 \xrightarrow{T_{2\bar{u}}} 9$$

2.11.
$$7 \underset{T_{\tilde{\nu}+\tilde{\nu}}}{\longrightarrow} 22 \underset{T_{-\tilde{\nu}}}{\longrightarrow} 18$$

2.12.
$$T_{-\tilde{u}} \circ T_{\tilde{v}}(9) = T_{-\tilde{u}}(T_{\tilde{v}}(9)) = T_{-\tilde{u}}(17) = 13$$

3.1.

a)
$$\overrightarrow{EG} + \overrightarrow{HL} = \overrightarrow{EK}$$

b)
$$\overrightarrow{AD} + \overrightarrow{LO} = \overrightarrow{AG}$$

c)
$$\overrightarrow{KE} + \overrightarrow{GD} = \overrightarrow{KB}$$

d)
$$\overrightarrow{LN} + \overrightarrow{KB} = \overrightarrow{LE}$$

e)
$$\overrightarrow{MJ} + \overrightarrow{IE} = \overrightarrow{IB}$$

f)
$$\overrightarrow{AB} + \overrightarrow{GF} = \overrightarrow{0}$$

g)
$$\overrightarrow{HC} + \overrightarrow{CK} = \overrightarrow{DG}$$

h)
$$\overrightarrow{BI} + \overrightarrow{KB} = \overrightarrow{OM}$$

3.2. Retângulo [FGKJ]

Ficha n.º 3 - Página 67

4.

+	Āİ	ΗĎ	ĪŇ
ĀŇ	ĀĴ	ĀB	BN
ĒĖ	ĀĴ	CD	ĒĠ
ĪK	ĀĤ	ĪĎ	Ö

5.

6. Se [ABCD] é um paralelogramo, então os seus lados opostos são geometricamente iguais e paralelos, logo $\overrightarrow{AD} = \overrightarrow{BC}$ e $\overrightarrow{DC} = \overrightarrow{AB}$.

$$\overrightarrow{AX} = \overrightarrow{AD} + \overrightarrow{DX}$$
 e $\overrightarrow{YC} = \overrightarrow{YB} + \overrightarrow{BC}$

Como $\overrightarrow{AD} = \overrightarrow{BC}$ e $\overrightarrow{DX} = \overrightarrow{YB}$ (pois partilham a mesma reta-suporte, o mesmo sentido e o mesmo comprimento), então $\overrightarrow{AD} + \overrightarrow{DX} = \overrightarrow{YB} + \overrightarrow{BC}$ e, portanto, $\overrightarrow{AX} = \overrightarrow{YC}$.

Por um raciocínio semelhante, $\overrightarrow{XC} = \overrightarrow{XD} + \overrightarrow{DC}$ e $\overrightarrow{AY} = \overrightarrow{AB} + \overrightarrow{BY}$. Como $\overrightarrow{XD} = \overrightarrow{BY}$ e $\overrightarrow{DC} = \overrightarrow{AB}$, então $\overrightarrow{XD} + \overrightarrow{DC} = \overrightarrow{BY} + \overrightarrow{AB}$, ou seja, $\overrightarrow{XC} = \overrightarrow{AY}$. Como $\overrightarrow{AX} = \overrightarrow{YC}$ e $\overrightarrow{XC} = \overrightarrow{AY}$, então [AYCX] é um paralelogramo.

Ficha n.º 3 – Página 68

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

7.

8.

Ficha n.º 3 - Página 69

9.1.

9.2. Relatório sucinto: com o auxílio de régua e esquadro, marcam-se três representantes do vetor $-\vec{z}$, com origem em A, B e C. As extremidades destes três representantes serão, portanto, os pontos A', B' e C', respetivamente, vértices do triângulo pedido.

10.1.

- 10.2. O quadrilátero [ABCD] é um paralelogramo.
- 10.3. Os vetores são iguais.
- 10.4. Os vetores são simétricos.

- 11.1. Verdadeira
- 11.2. Verdadeira
- 11.3. Verdadeira, pela propriedade comutativa da adição de vetores.
- **11.4.** Falsa. $\vec{u} + \vec{0} = \vec{u}$, pois $\vec{0}$ é o elemento neutro da adição de vetores.
- **11.5.** Falsa, pois se $\vec{u} \neq \vec{0}$, $T_{\vec{u}}(A)$ nunca irá coincidir com o ponto A.
- **11.6.** Falsa, pois $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.
- **11.7.** Verdadeira, pois $\vec{u} + (-\vec{u}) = \vec{0}$.
- 11.8. Verdadeira

Ficha n.º 4 – Página 70

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

1.1. Opção correta: (A)

1.2. Opção correta: (B)

1.3. Opção correta: (C)

1.4. Opção correta: (D)

2.1. e **2.2.**

Ficha n.º 4 – Página 71

3.

4.1. e **4.3**.

4.2. Não existe uma reflexão deslizante de eixo r e vetor \vec{v} porque r e \vec{v} não são paralelos e, numa reflexão deslizante, o eixo de reflexão e o vetor têm de ter a mesma direção, ou seja, têm de ser paralelos.

Ficha n.º 5 - Página 72

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

- 1. I: A figura da direita é a transformada da da esquerda por uma reflexão axial, logo é uma isometria.
 - II: A figura da direita é a transformada da da esquerda por uma translação, logo é um isometria.
 - III: A figura da direita é a transformada da da esquerda por uma reflexão de eixo vertical, composta com uma rotação de 180º, logo é uma composta de isometrias.
 - IV: A figura da direita é a transformada da da esquerda por uma rotação, logo é uma isometria.
 - V: A figura da direita é a transformada da da esquerda por uma reflexão deslizante, logo é uma isometria (ou composta de duas isometrias: uma reflexão e uma translação).
 - VI: A figura da direita é a transformada da da esquerda por uma reflexão de eixo vertical, composta com uma reflexão de eixo horizontal, logo é uma composta de isometrias (ou por uma rotação de centro no ponto de interseção dos eixos de reflexão e amplitude 180º, ou seja uma isometria).

VII: A figura da direita é a transformada da da esquerda por uma ampliação, logo não é uma isometria.

VIII: A figura da direita é a transformada da da esquerda por uma redução, logo não é uma isometria.

Ficha n.º 5 – Página 73

2.1. A: Translação

B: Reflexão

C: Reflexão deslizante

D: Rotação

2.2.

Situação	Conserva a direção dos	Conserva o sentido	Conserva a orientação
	segmentos de reta		dos ângulos
Α	Sim	Sim	Sim
В	Não	Não	Não
С	Não	Não	Não
D	Não	Não	Sim

3.

4.

Ficha n.º 5 - Página 74

O centro de rotação tem de estar à mesma distância de um ponto e do seu transformado. Assim, foram traçadas as mediatrizes dos segmentos de reta [AA'] e [BB'] que se interseta em O. Um valor aproximado da amplitude do ângulo é 51º (ângulo A'OA medido com transferidor).

- **6.1.** *B*
- 6.2.
- 6.3.
- **6.4.** *A*

- **6.5.** *G*
- **6.6.** *C*
- **6.7.** *E*

D

6.8. *E*

- **6.9.** *C*
- **6.10.** *G*

Nota: $360^{\circ}: 8 = 45^{\circ}; 135^{\circ} = 45^{\circ} \times 3; 225^{\circ} = 45^{\circ} \times 5; 315^{\circ} = 45^{\circ} \times 7$

F

7.

- **8. Figura I:** Translação associada a um vetor com a direção perpendicular aos eixos de reflexão e comprimento igual ao dobro da distância entre os dois eixos de reflexão r e s.
- **Figura II:** Rotação de centro no ponto de interseção dos eixos de reflexão e amplitude igual a 180º (o dobro da amplitude do ângulo formado pelos eixos de reflexão r e s).

Ficha n.º 5 - Página 75

9.1. a)
$$360^{\circ}: 32 = 11,25^{\circ}$$

$$4 \times 11,25^{\circ} = 45^{\circ}$$

A amplitude do ângulo associado à rotação efetuada em torno do centro da roda gigante é 45º.

b) Diâmetro: 135 m

Raio:
$$\frac{135}{2} = 67,5 \text{ m}$$

$$P_{\text{circulo}} = \pi \times d = \pi \times 135 = 135\pi$$

O comprimento do referido arco, representado por *x*, é tal que:

$$\frac{x}{45^{\circ}} = \frac{135\pi}{360^{\circ}} \iff x = \frac{45^{\circ} \times 135\pi}{360^{\circ}} \iff x \approx 53 \text{ m}$$

O comprimento do arco de circunferência descrito pela cabine é, aproximadamente, 53 m.

9.2.
$$3465^{\circ} = \underbrace{360^{\circ} \times 9}_{9 \text{ voltas completas}} + 225^{\circ}$$

225º:11,25º=20, ou seja, a cabina da Joana roda o correspondente a 20 cabinas, ficando, por isso, na posição que anteriormente era ocupada pela cabina 21.

10.1. Verdadeira

- 10.2. Falsa. As reflexões axiais conservam a amplitude, mas não a orientação dos ângulos.
- **10.3.** Falsa. Nas rotações o ponto correspondente ao seu centro fica fixo.
- 10.4. Falsa. As reflexões axiais, por exemplo, não conservam a orientação dos ângulos.
- 10.5. Verdadeira
- 10.6. Verdadeira
- 10.7. Verdadeira
- 10.8. Falsa. As reduções e ampliações não conservam distâncias e, por isso, não são isometrias.

Ficha n.º 6 – Página 76

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

- 1. Opção correta: (B)
- 2. Simetria de translação e Simetria de reflexão de eixo vertical
- 3. Opção correta: (B)

Ficha n.º 6 – Página 77

- 4. (A): Simetria de reflexão e de rotação
 - (B): Simetria de reflexão
 - (C): Simetria de reflexão e de rotação
 - (D): Simetria de reflexão e de rotação
 - (E): Simetria de reflexão
- **5.1.** Reflexão de eixo *PS*
- **5.2.** Rotação de 180º e centro no ponto médio de [CS]
- **5.3.** Reflexão de eixo SG
- **5.4.** Translação associada ao vetor \overrightarrow{ES}
- **6.1.** Simetria de translação
- 6.2. Simetria de translação e de reflexão deslizante
- **6.3.** Simetria de translação

Teste n.º 1 – Página 78

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

- **1.1.** Por exemplo:
 - **a)** [AE]
 - **b)** [*M*, *N*]
 - **c)** [A, F]

Pelo Teorema de Pitágoras: $\overline{AF}^2 = \overline{AB}^2 + \overline{BF}^2$

$$\overline{AF}^2 = \overline{AB}^2 + \overline{BF}^2 \Leftrightarrow \overline{AF}^2 = 2^2 + 1^2 \Leftrightarrow \overline{AF}^2 = 5 \Leftrightarrow \overline{AF} = \sqrt{5}$$

- **d)** [*I*, *F*]
- **e)** [C, G]
- f) [C, P]
- **1.2.** a) $\overrightarrow{JK} = -\overrightarrow{KJ}$, por exemplo
 - c) $\overrightarrow{MN} + \overrightarrow{GH} = \overrightarrow{MO}$, por exemplo
 - e) $I + \overrightarrow{KD} = B$
- **1.3.** \overrightarrow{CI} e \overrightarrow{GM} , por exemplo
- **1.4.** \overrightarrow{DB} , por exemplo
- **1.5.** *O*
- **1.6.** [*NK*]
- **1.7.** \overrightarrow{KE} , por exemplo
- **1.8.** *K*
- **1.9.** [*BCGF*]
- **1.10.** Eixo *EF*
- **1.11.** /
- **1.12.** Triângulo [*HGD*]

- **b)** $-\overrightarrow{CI} = \overrightarrow{IC}$, por exemplo
- **d)** $\overrightarrow{JL} + \overrightarrow{LJ} = \overrightarrow{0}$, por exemplo
- f) $A + \overrightarrow{KP} = F$

Teste n.º 1 - Página 79

- 1.13. *H*
- **1.14.** Triângulo [*IKG*]

1.15. a)
$$\left(T_{\overline{GF}} \circ T_{\overline{AB}}\right)(G) = T_{\overline{GF}}\left(T_{\overline{AB}}(G)\right) = T_{\overline{GF}}(H) = G$$
 b) $T_{\overline{GF}}\left(T_{\overline{KP}}(G)\right) = T_{\overline{GF}}(L) = K$

b)
$$T_{\overline{GF}}(T_{\overline{KP}}(G)) = T_{\overline{GF}}(L) = K$$

c)
$$(J + \overrightarrow{OL}) + \overrightarrow{CI} = G + \overrightarrow{CI} = M$$

d)
$$\overrightarrow{AF} + \overrightarrow{OP} + \overrightarrow{MJ} = \overrightarrow{AG} + \overrightarrow{MJ} = \overrightarrow{AD}$$

- 2.1. Reflexão de eixo Ox
- 2.2. Reflexão deslizante de eixo Ox e vetor com a direção e sentido do mesmo eixo e 4 unidades de comprimento
- 2.3. Rotação de centro (-2, 1) e ângulo 90º
- 2.4. Translação associada a um vetor com a direção do eixo Ox, mas com sentido contrário ao do eixo, e com 4 unidades de comprimento
- 2.5. Reflexão deslizante em que o eixo é a reta paralela ao eixo Ox e que passa no ponto (0, 3) e o vetor tem a direção e sentido do eixo Ox e 1 unidade de comprimento
- 2.6. Translação de vetor AB, sendo A o ponto de coordenadas (2, -3) e B o ponto de coordenadas (3,3).
- Reflexão deslizante em que o eixo é a reta paralela ao eixo Ox e que passa no ponto de coordenadas 2.7. (0, 3) e o vetor tem a direção e sentido do eixo Ox e 5 unidades de comprimento
- 3. (A): Simetria de translação
 - (B): Simetria de translação e de reflexão deslizante
 - (C): Simetria de translação e de rotação

Teste n.º 2 - Página 80

4. VETORES, TRANSLAÇÕES E ISOMETRIAS

1.

	$-\sqrt{3} + 3$	<u>40</u> 8	₃ √−1	0,2(4)	$-\frac{2}{45}$	$-(\pi^2)^2$	$\sqrt{\frac{1}{64}}$	$\sqrt{25}\left(\sqrt{25}-\sqrt{9}\right)+\sqrt{16}$
N		Х						х
\mathbb{Z}		Х	х					х
\mathbb{Q}		Х	X	X	Х		X	х
\mathbb{R}	Х	Х	Х	Х	Х	Х	Х	Х

Cálculos auxiliares:
$$\frac{40}{8} = 5$$
; $\sqrt[3]{-1} = -1$; $-\left(\pi^2\right)^2 = -\pi^4$; $\sqrt{\frac{1}{64}} = \frac{1}{8}$; $\sqrt{25}\left(\sqrt{25} - \sqrt{9}\right) + \sqrt{16} = 5(5-3) + 4 = 25 - 15 + 4 = 14$

- 2. Por exemplo, $\frac{8}{40} = \frac{1}{5} = \frac{2}{10}$.
- 3. $10\times0,2(4)=2,(4);\ 100\times0,2(4)=24,(4);\ 100\times0,2(4)-10\times0,2(4)=24,(4)-2,(4)=22$ $100\times0,2(4)-10\times0,2(4)=(100-10)\times0,2(4)=90\times0,2(4)$ $Assim,\ 90\times0,2(4)=22\ , logo\ 0,2(4)=\frac{22}{90}=\frac{11}{45}\ .$
- 4. Por exemplo: $3,6\pi$

5.
$$x = \left[\left(\frac{7}{2} \right)^{-5} \right]^{2} : \left(-4 \right)^{10} \times 14^{10} : \left(1 - \frac{13}{14} \right)^{0} = \left(\frac{7}{2} \right)^{-10} : \left(-4 \right)^{10} \times 14^{10} : 1 = \left(\frac{2}{7} \right)^{10} : 4^{10} \times 14^{10} = \left(\frac{2}{7} : 4 \right)^{10} \times 14^{10} = \left(\frac{2$$

Assim, x = y.

6. $4:800 = 0,005 \text{ cm} = 0,05 \text{ mm} = 5 \times 10^{-2} \text{ mm}$ Uma folha do livro tem $5 \times 10^{-2} \text{ mm}$ de espessura.

Teste n.º 2 - Página 81

7. Opção correta: (A)

$$\overline{AC}^2 = 6^2 + 12^2 \Leftrightarrow \overline{AC}^2 = 36 + 144 \Leftrightarrow \overline{AC}^2 = 180 \underset{\overline{AC}>0}{\Leftrightarrow} \overline{AC} = \sqrt{180}$$

$$A_{\text{quadrado construído sobre [AC]}} = \left(\sqrt{180}\right)^2 = 180 \text{ cm}^2$$

8.
$$y^2 = 1^2 + 1^2 \Leftrightarrow y^2 = 2 \Leftrightarrow \Leftrightarrow_{y>0} y = \sqrt{2}$$

(comprimento da diagonal da base do paralelepípedo)

$$x^2 = (\sqrt{2})^2 + 2.5^2 \Leftrightarrow x^2 = 2 + 6.25 \Leftrightarrow x^2 = 8.25 \Leftrightarrow_{x>0} x = \sqrt{8.25} \Leftrightarrow x \approx 2.87 \text{ m}$$

Como 2,7 < 2,87, então a bandeira cabe no elevador.

O João pode transportar a bandeira no elevador.

9.1.
$$\frac{3}{x} = \frac{4}{6} \Leftrightarrow 4x = 18 \Leftrightarrow x = \frac{18}{4} \Leftrightarrow x = 4,5$$

Logo,
$$\overline{AB} = 2 \times 4, 5 = 9 \text{ m}$$

9.2.
$$V_{tronco} = V_{pir\hat{a}mide} - V_{pir\hat{a}mide} = i pir\hat{a}mide$$

$$=\frac{1}{3}\times\textit{A}_{[\textit{ABCD}]}\times\overline{\textit{EO}}-\frac{1}{3}\times\textit{A}_{[\textit{FGHI}]}\times\overline{\textit{EP}}=\frac{1}{3}\times9\times9\times6-\frac{1}{3}\times6\times6\times4=162-48=114~\text{m}^3$$

10. Geratriz do cone: Pelo teorema de Pitágoras,

$$x^2 = 16^2 + 30^2 \Leftrightarrow x^2 = 256 + 900 \Leftrightarrow x^2 = 1156 \Leftrightarrow x = \sqrt{1156} \Leftrightarrow x = 34 \text{ cm}$$

$$A_{T} = A_{base} + A_{I} = A_{base} + \frac{P_{b}}{2} \times g = \pi \times 16^{2} + \frac{\cancel{2} \times \pi \times 16}{\cancel{2}} \times 34 = 256\pi + 544\pi = 10^{2}$$

$$=800\pi \simeq 2513,27$$
 cm²

Teste n.º 2 - Página 82

- **11.1.** a) [F, G] e [A, I], por exemplo
 - **b)** \overrightarrow{EH} e \overrightarrow{IA} , por exemplo
 - c) \overrightarrow{HF} , por exemplo
 - d) Triângulo [BGF]
 - e) Triângulo [AIF]
 - f) Triângulo [HIC] Nota: $\overrightarrow{CG} + \overrightarrow{EH} = \overrightarrow{IG}$
 - g) \overrightarrow{EI} , por exemplo
 - **h)** Triângulo [*IFG*] **Nota:** $\frac{360^{\circ}}{6} = 60^{\circ}$, logo $\hat{GIC} = 60^{\circ} = 300^{\circ} = 60^{\circ} \times 5$.
 - i) 180º

11.2. a) Verdadeira

b) Falsa.
$$-\overrightarrow{AC} + \overrightarrow{BG} = \overrightarrow{CA} + \overrightarrow{BG} = \overrightarrow{CE} = \overrightarrow{GA} \neq \overrightarrow{AG}$$

c) Verdadeira.
$$\overrightarrow{EH} + \overrightarrow{CG} + \overrightarrow{FA} = \overrightarrow{EI} + \overrightarrow{FA} = \overrightarrow{0}$$

d) Falsa.
$$\left(T_{\overline{FG}} \circ T_{\overline{GA}}\right)(D) = \left(T_{\overline{FG}}\left(T_{\overline{GA}}\left(D\right)\right)\right) = \left(T_{\overline{GA}}\left(T_{\overline{FG}}\left(D\right)\right)\right) = T_{\overline{GA}}\left(C\right) = E \neq G$$

11.3.
$$\overline{AB} = 8$$
; $\overline{FB} = \frac{8}{2} = 4 \rightarrow \text{lado do triângulo } [BGF]$

$$h^2 + 2^2 = 4^2 \iff h^2 + 4 = 16 \iff h^2 = 12 \iff_{h>0} h = \sqrt{12}$$

$$A_{\text{triângulo }[BGF]} = \frac{4 \times \sqrt{12}}{2} = 2\sqrt{12}$$

$$A_{\text{osango }[ABCD]} = 8 \times A_{\text{triångulo }[BGF]} = 8 \times 2\sqrt{12} = 16\sqrt{12} \approx 55,4$$
 unidades quadradas

12.1. Verdadeira. $5^{-n} = \frac{1}{5^n}$

A decomposição em fatores primos de 5^n tem apenas o número primo 5, logo a dízima que representa $\frac{1}{5^n}$ é finita.

12.2. Verdadeira

$$x^{2} + x^{2} = n^{2} \Leftrightarrow 2x^{2} = n^{2} \Leftrightarrow x^{2} = \frac{n^{2}}{2} \Leftrightarrow x = \sqrt{\frac{n^{2}}{2}} \Leftrightarrow x = \frac{n}{\sqrt{2}} \Leftrightarrow x = \frac{n}{\sqrt{2}} \Leftrightarrow x = \frac{n}{\sqrt{2}} \Leftrightarrow x = \frac{\sqrt{2}n}{\sqrt{2}} \Leftrightarrow x = \frac{\sqrt{2}n}{\sqrt{2}} \Leftrightarrow x = \frac{\sqrt{2}n}{\sqrt{2}} \Leftrightarrow x = \frac{\sqrt{2}n}{\sqrt{2}} \Leftrightarrow x = \frac{n}{\sqrt{2}} \Leftrightarrow x = \frac{$$

$$\underset{x\sqrt{2}}{\Leftrightarrow} x = \frac{\sqrt{2}n}{\left(\sqrt{2}\right)^2} \Leftrightarrow x = \frac{\sqrt{2}n}{2} \Leftrightarrow x = \frac{\sqrt{2}}{2}n$$

12.3. Falsa. Todas as isometrias preservam as distâncias entre pontos e as amplitudes dos ângulos, mas nem todas preservam as orientações dos ângulos (como, por exemplo, as reflexões axiais).

Teste n.º 2 – Página 83

13.

14. Opção correta: (C)

A rosácea apresenta quatro eixos de reflexão e qualquer rotação de centro no centro da rosácea e amplitude múltipla de 90º deixa a rosácea invariante.