Vzorový zkouškový test.

Příklad č.1. Zde bude otázka na aplikaci derivace. Může to být v podobě užití tečné roviny ke grafu nebo vyšetření extrému funkce více proměnných. Ukázky obou typů jsou následující:

(a) Nalezněte bod na elispoidu $x^2 + 2y^2 + 3z^2 = 1$, ve kterém je tečná rovina k elipsoidu rovnoběžná s rovinou 3x - y + 3z - 1 = 0.

Řešení: Body jsou dva, $A_1 = \sqrt{2}(\frac{3}{5}, -\frac{1}{10}, \frac{1}{5})$ a $A_2 = -A_1$.

(b) Plechovka ve tvaru válce má mít objem $54\pi \, cm^3$. Dno a víko jsou z materiálu, jehož cena je $0.25 \, \text{Kč}/cm^2$, a cena pláště je $0.5 \, \text{Kč}/cm^2$. Nalezněte rozměry plechovky tak, aby cena byla minimální.

Řešení: Poloměr dna r a výška plechovky h jsou $r = h = 3\sqrt[3]{2} \, cm$.

Příklad č.2. Prohození pořadí integrace, např.

Přepište následující integrál

$$\int_{1}^{2} \int_{1}^{\sqrt{5-x^2}} f \, dy \, dx$$

nejprve v opačném pořadí integrace a pak v polárních souřadnicích v pořadí $d\varrho\,d\varphi$.

$$\check{\mathbf{R}} \mathsf{e} \check{\mathbf{s}} \mathsf{e} \mathsf{n} \mathbf{\hat{i}} \colon \int_{1}^{2} \int_{1}^{\sqrt{5}-y^{2}} f \, dx \, dy, \quad \int_{\arctan g}^{\pi/4} \int_{1/\sin \varphi}^{\sqrt{5}} f \, \varrho \, d\varrho \, d\varphi + \int_{\pi/4}^{\arctan g} \int_{1/\cos \varphi}^{\sqrt{5}} f \, \varrho \, d\varrho \, d\varphi.$$

Příklad č.3. Zde půjde o aplikaci různých typů integrálu. Dvě ukázky jsou např.

(a) Zjistěte polohu těžiště rovinné oblasti D ohraničené křivkami $y = x^2$ a $y = 2 - x^2$, je-li plošná hustota f(x, y) = |x|.

Řešení: T = (0, 1).

(b) Pomocí Greenovy věty vypočtěte obsah množiny omezené osou x a křivkou

$$x = t^2$$
, $y = t \ln t$, $t \in \langle 0, 1 \rangle$.

Řešení: Obsah(D) = 2/9.

Příklad č.4. Tento příklad bude obsahovat buď rozvoj funkce ve Fourierovu řadu nebo vyšetření konvergence mocninné řady. Ukázky obou typů jsou následující:

(a) Nalezněte Fourierovu řadu pro funkci $f(x) = \max\{0, \cos x\}$; f je 2π -periodická.

Řešení:
$$f(x) = \frac{1}{\pi} + \frac{\cos x}{2} + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\pi} \frac{2}{4k^2 - 1} \cos 2kt$$
.

(b) Vyšetřete, pro která $x \in \mathbb{R}$ konverguje řada

$$\sum_{k=1}^{\infty} \left(1 + \frac{2}{k}\right) x^k,$$

a pomocí derivování nebo integrace nalezněte její součet.

Řešení: $x \in (-1,1)$ a součet řady je $\frac{x}{1-x} - 2\ln(1-x)$.

Příklad č.5. Teoretické otázky na definici pojmů a jednoduché důkazy.

(a) Definice derivace funkce f ve směru h. Spočtěte derivaci funkce $f(x,y) = xy^2$ v bodě (2,1) ve směru jednotkového vektoru mířícího z uvedeného bodu do počátku.

Řešení: Definice je

$$\frac{\partial f}{\partial \boldsymbol{h}} = \lim_{t \to 0} \frac{f(\boldsymbol{x} + t\boldsymbol{h}) - f(\boldsymbol{x})}{t}.$$

Pro zadanou funkci a vektor je směrová derivace rovna

$$\frac{\partial f}{\partial \mathbf{h}} = -\frac{1}{\sqrt{5}}(2,1) \cdot (y^2, 2xy)|_{(2,1)} = -\frac{1}{\sqrt{5}}(2,1) \cdot (1,4) = -\frac{6}{\sqrt{5}}.$$

(b) Dokažte, že integrál přes uzavřenou křivku v potenciálním poli je roven nule.

Řešení: Potenciální pole je typu $\vec{F} = \operatorname{grad} f$ pro nějakou C^1 funkci $f : \mathbb{R}^n \longrightarrow \mathbb{R}$. Je-li $\varphi : \langle a, b \rangle \longrightarrow \mathbb{R}^n$ parametrizace uzavřené křivky, tj. $\varphi(a) = \varphi(b)$, pak

$$\int_{(C)} \vec{F} \, d\vec{s} = \int_a^b (\operatorname{grad} f)(\varphi(t)) \cdot \varphi'(t) \, dt = \int_a^b \frac{d}{dt} f(\varphi(t)) \, dt = f(\varphi(b)) - f(\varphi(a)) = 0.$$

Seznam pojmů a vět k teoretické otázce v písemné části.

Definice:

- Norma prvku $\mathbf{x} \in \mathbb{R}^n$; skalární součin prvků $\mathbf{x} = (x_1, \dots, x_n)$ a $\mathbf{y} = (y_1, \dots, y_n)$; okolí bodu; vnitřní a hraniční bod množiny; hromadný a izolovaný bod množiny; otevřená a uzavřená množina.
- Derivace ve směru; diferenciál funkce; význam gradientu.
- Klasifikace lokálních extrémů pomocí Hessovy matice; Sylvestrovo kritérium.
- Polární, sférické a cylindrické souřadnice; jakobián zobrazení; potenciální pole.
- Mocninná řada; poloměr konvergence; stejnoměrná konvergence; periodická funkce; Fourierova řada a podmínky konvergence Fourierovy řady.

Znění vět bez jejich důkazů:

- Věta o derivaci složené funkce,
- Gaussova věta,
- Greenova věta,
- Stokesova věta,
- Weierstrassovo kritérium pro stejnoměrnou konvergenci řady funkcí.

Věty a jejich důkazy:

- Jsou-li $\langle a_n, b_n \rangle$ do sebe vnořené uzavřené a omezené intervaly, $\langle a_{n+1}, b_{n+1} \rangle \subset \langle a_n, b_n \rangle$, pak průnik $\bigcap_{n=1}^{\infty} \langle a_n, b_n \rangle \neq \emptyset$.
- Každá nekonečná omezená množina v \mathbb{R}^n má hromadný bod.
- Věta o střední hodnotě: $f(x + h) f(x) = \frac{\partial f}{\partial h}(x + \vartheta h)$ pro nějaké $\vartheta \in (0, 1)$.
- Má-li f v bodě $\boldsymbol{x} \in \mathbb{R}^n$ diferenciál, je v bodě \boldsymbol{x} spojitá.
- Má-li funkce f v bodě $x \in \mathbb{R}^n$ extrém a existuje-li v bodě x diferenciál, pak je nulový.
- Je-li \vec{F} potenciální vektorové pole v \mathbb{R}^n , pak integrály pole \vec{F} přes uzavřené křivky jsou nulové.

Požadavky pro ústní zkoušku (pouze na známku A):

K důkazům z předchozího výše uvedeného seznamu jsou navíc důkazy vět:

- Spojitá funkce na uzavřené omezené množině nabývá minima i maxima.
- Věta o derivaci složené funkce.
- Nezávislost křivkového integrálu na parametrizaci.
- Ekvivalentní podmínky pro potenciální pole.