关系理论

1、函数依赖

- (1) 非平凡的函数依赖: X→Y, Y≠X
- (2) 平凡的函数依赖: X→Y, Y≤X

无特殊说明下,均讨论非平凡的函数依赖。即X可以推出Y,但Y不是X的亏集。因为一般某个集合总能推出其亏集(这种情况就是平凡的函数依赖),没啥用。

- (3) 完全函数依赖: X→1, 并且对于X的任意真专集X, 都有X→Y。则积Y完全函数依赖于X。记作XEY.
- (4) 部分函数依赖: Y不完全函数依赖于X。论作X户Y。例如A→C,又有AB→C,那么C就是部分函数依赖于AB的,这种情况会造成数据冗余。

2. 码

(1) 候选码: 是一个属性组(或者属性),通过该属性组能推出所有的属性,并且该属性组的任意专集都不能再推出所有属性 3. 即在满足完全函数 依赖的前提下,还得是最小的属性组。

求所有候选码的方法:

例:集合U=9A, B, C, D, E, G, B, 函数依赖集F=9AB→C, CD→E, D→A, A→G} IStep 1】

找出一定属于候选码的属性,可能属于候选码的属性,以及不属于候选码的属性。方法如下:

一定属于候选码的属性: 只出现在左边, 或者左右都没出现

可能属于候选码的属性: 左右都出现

不属于候选码的属性: 只出现在石边

【例题分析】

只出现在左边的是B和D,没有左右都没出现的属性,所以BD一定是属于候选码的属性。

左右都出现的有A, C, E, 因此这三个是可能属于候选码的属性, 即待定的备 选。

只出现在右边的有G, 因此G是不属于候选码的属性, 可以不管3。

Ister 21

先对确定的属性求闭包, 若不能构成候选码, 再将确定的属性和待定的属性 讲行组合, 做闭包运算, 直到得到的属性组能够推出全部的属性。

闭包运算:

若要求某属性组的闭包, 首先设有集合X, 今X=1该属性组3。

X^(a)自身

X"=X"中的属性所能推出的

当X"不等于X"时, X" X"中的属性能所推出的

依次类推·直到X(*)以或者X(*) X(*) 就求得了属性组的闭包 (X) ; 。

ps.闭包运算还可用于判断X→Y是否成立: 当Y⊆(X片时,有X→Y。

【例题分析】

根据stepl的分析,一定是候选码的为BD。可能是候选码的有A、C、E。

于是先对BD求闭包(这里可求得BD推不出全部的属性),因此再分别对BDA、BDC、BDE进行闭包运算,看其是否能得到全部属性。如若不能,再增加如BDAC、BDAE之类的组合,直到求出候选码为止。

以BDA为例: 设X=9BDA3

X(0)=BDA

X"=BDACG

·:X"+X", 有X"=BDACGE

因此 (BDA)产为U, 所以 (BDA)产是该选码

全部进行完闭包运算后,可知集合U在F下的候选码为f(BDA), (BDC), (BDE)引

- (2) 超码: 能推出所有属性的属性组的集合,根据概念可知, 候选码是极小的超码集, 是超码的 5 集
- (3) 主码: 与有多个候选码时 (如例题那样),挑出一个作为主码,简称码
- (4) 主属性: 包含在任何一个候选码中的属性, 如例题中ABCDE都是主属性
- (5) 非主属性: 不包含在任何一个候选码中的属性, 如例题中的G
- (b) 外码: 关系模式R中, 若有一个属性或属性组X, 它不是R的码, 但X是另一个关系模式S中的码, 积X是R的外码
- (7) 全码: 最极端情况下,整个属性组都是码, 积为全码

3、 范式

(1) INF: 所有属性都是不可分割的数据项

如果某个属性,例如学校,还可以继续拆分为高中和大学,就不满足INF3。 INF是关系数据库需要满足的最低要求

(2) 2NP: 在满足INP的前提下,不包含非主属性对码的部分函数依赖 (即每一个非主属性都完全函数依赖于码)

例如在关系R中,码是学号和班级,非主属性是姓名,因为通过学号就能直接 推出姓名3,不需要班级,此处姓名就部分依赖于码3,不满足2NF

(3) 3NF: 在满足2NF的前提下,不包含非主属性对码的传递函数依赖 (即码 应该直接决定非主属性,不能间接决定)

传递函数依赖: 若X→Y, Y→Z, 且Z≠Y, Y→X, 有X→1, 此时积Z对X有传递函数依赖。

例如在关系R中,码是客户姓名,非主属性是订单编号和订单负责人,通过客户姓名可以推出他的订单编号,再通过订单编号能推出订单负责人,这种情况下客户姓名和订单负责人是间接决定的,存在传递函数依赖,不满足3NF(4)BCNF: 消除任何属性对核选码的传递依赖,即每一个决定因素都包含码,表现为在函数依赖集当中,左边的都包含核选码(整个属性组!)

(5) 4NF (应该不考这个): 不允许有非平凡且非函数依赖的多值依赖 3值依赖 (个人理解,仅供参考, 我觉得不会细考): X, Y, Z属于集合U, 且Z=U-X-Y。 当给定一组 (x, z) 直的时候,可以确定一组Y的值,但这组Y的值仅仅取决于x, 此时有X→→Y。 其实这里就是存在3一对多的关系,即一个x 和一组z有关,但x并不能唯一确定一个z,通过x和x能找到一组y,但你只通过 x也能确定y。

平凡的多值依赖: 2是空集

非平凡的多值依赖: 2不是空集

判断方法与分解方法:

R为和, B, C, D3

2NF (没有部分函数依赖): 若码是AB, F中若为 (A→C, AB→D), 对于C, 只需要A就能推出, 那么C部分函数依赖于码AB, 这种情况就不是2NF。

若要分解为2NF, 只需将不符合要求的拿出来, 即分为R, YA, B, D3和R, YA, C3

3NF (没有部分函数依赖与传递函数依赖): 若码是AB, F若为\AB→C, C→D\, 这里不存在部分函数依赖。但是对于D, 需要AB推出C后才能间接推出D, 那么D 传递函数依赖于AB, 不满足3NF。

若要分解为3NF,同样将不 i 合要求的拿出来,即分为RiA,B,Ci和RiC,Di。BCNF(没有部分函数依赖,同时每一个决定因素都包含码):

若R是 (A, B, C), F是\(\text{AC}\rightage)B, AB\rightage)C, B\rightage)C, \(\text{bC}\text{NC}\

4、最小函数依赖集

求最小函数依赖集的方法

step 1: 拆分右侧

例如将A→BC拆为A→B和A→C

step 2: 去除自身求闭包

若有有AB→C,BC→E,AE→G,去除AB自身能推出的C,基于剩余的依赖关系求AB的闭包,若AB通过剩余的关系也能求出C,那么删除AB→C这个依赖关系step 3: 左侧最小化

例如目前保留的关系有ABC→D,观察左边的ABC与中,A是否能由BC推出,B是否能由AC推出,C是否能由AB推出。假设C能被AB推出,那么左侧去掉C,更新为AB→D。

例:设F=9C→A, CG→BD, CE→A, ACD→B3, 求最小函数依赖集。

step 1:

将CG→BD拆分为CG→B和CG→D。

step 2:

 $(C)_F^{\dagger} = C$, 因此保留 $C \rightarrow A$. $(CG)_F^{\dagger} = CGADB$, 因此去掉 $CG \rightarrow B$. $(CG)_F^{\dagger} = CGA$, 因此保留 $CG \rightarrow D$. $(CE)_F^{\dagger} = CEA$, 因此去掉 $CE \rightarrow A$. $(ACD)_F^{\dagger} = ACD$, 因此保留 $ACD \rightarrow B$. ster 3:

C→A已经是最小。CG→D 三经是最小。ACD 与中、C可以推出A、去掉A、更新为CD→B。

因此,本题的最小函数依赖集为9C→A, CG→D, CD→B3.

5、模式分解

- (1) 模式分解的准则:无报连接、保持函数依赖
- (2) 无报连接: 分解后再次自然连接, 与分解前相同

判断无损连接的方法

step 1: 画表格。列表示所有的属性,有多少属性就画多少个属性列。行表示分解后的关系,有几个关系就画几个关系行。

step 2: 根据每一行关系进行判断。找到关系中的每个属性对应第几列,并在相应的位置上标为aj,下标j是表格里的列数。其余关系中不存在的属性则标为bij, ij是表格对应的行数和列数。

step 3: 依次对函数依赖集里的各个依赖关系进行考察。例如有XY→2。在属性列中找到X和Y,观察X和Y的行列上是否有相同的标论(b的下标要相同)。若有,则查盲它们对应在属性列2.: 的各个标论。其中若有aj,则将属性列上的这些标论全部改为aj。若没有aj,则找到值最小的bij,将这些标论全部改为bij。 step 4: 仅复执行以上操作,直到某一行全部变为a为止,则表明具有无损连接性。否则不具有无损连接性。

例: F=9A→C, C→D, B→C, DE→C, CE→A3。分解为R, (AD), R₂(AB), R₃(BC), R₄(CDE), R₅(AE)。

ste	p 1:	画表	格			step 3:	更新	1表书		step 4:反复更新表格								
	Α	B	C	D	E	А	B	C	D	E		Α	B	C	D	E		
R,	ai	b,2	bis	ay	Pis	R, (a)	b,2	Ьз	ay	Pir	R,	ai	b_{α}	(b,3)	ay	Ь,		
R_{λ}	a,	az	bzs	b24	brs	at the state of th				bzt C→D	$R_{\mathbf{z}}$	a,	az	(b,)	ay	Ь.		
				P34		R3 b31								(a3)				
				ay						as	Rx	by	bu	(a3)	ay	a		
Rs	a	b52	p23	b54	as	Rr (a)	b52	b13	boy	as	Rr	a	Pr	(b1)	ay	a		

 K_{Γ} a_{1} b_{12} b_{13} b_{14} a_{2} K_{Γ} a_{1} b_{15} b_{15} b_{15} b_{15} b_{15} b_{15} b_{15} a_{2} k_{Γ} a_{1} b_{15} k_{15} a_{4} a_{5} $A B C D E A B C D E A B C D E R_{1} a_{1} b_{15} b_{15} a_{4}$ b_{15} a_{1} b_{15} a_{2} b_{15} a_{2} a_{3} a_{4} b_{15} a_{2} a_{3} a_{4} b_{15} a_{2} a_{3} a_{4} a_{5} a_{5} a

	ste	» 4:1	反复	更新	1表末	2		ste	p 4:	反复	更亲	月表书	2.		ste	p 4·1	文寫	更别	f表程	2
		A	В	C	D	E			A	В	C	D	E			A	B	C	D	E
	R,	(a)	ba	az	ay	bis		R,	ai	Ьп	a3	ay	bis		R,	a	ba	a ₃	ay	bis
A+C	Rz	(a,)	az	ag	ay	b.s	C -D,	R ₂	a,	az	a3	ay	p=2	B-) C	R ₂	a,	az	a3	a.	ps2
	R_3	P31	a ₂	az	ay	P.C	没有	R3	P31	az	az	ay	bis	没有	R3	P31	az	az	ay	bis
	Ry	(a)	bu	az	ay	as	更新	R4	۵,	Ь	az	Ay	ar	更新	R,	۵,	bu	az	ay	as
	R_{t}	a	Pr	az	ay	as		R _s	ai	Pr	03	ay	ar		Rs	a	pr	az	ay	ar
	ste	y 4:	反复	更新	1表末	各		ste	p 4:	反复	更美	斩表村	8		ste	ep 4:	反复	更	斩表木	8
		Α	B	C	D	E			Α	В	C	D	E			Α	В	C	D	E
	R,	a	bn	az	ay	Pis		R,	a	ba	a ₃	ay	bis	三轮	R,	a	ba	az	ay	Ь
D <u>E→C</u>	R2	a	az	Q 3	a4	b25	CE-A	Rz	a,	az	a3	ay	b=5	扫描		a,	az	az	Dy	Ь.
没有		P31	az	az	ay	bis	没有	R3	P31	a ₂	a,	ay	bsc	没有	R_3	P31	a ₂	az	Ay	b
更新	R.	a,	bu	az	ay	as	更新				az	ay	as	更新	Ry	a,	bu	az	ay	a
	R_{r}	a	bs	03	ay	ar		Rs	a	pr	az	ay	as		Rs	aı	Pr	O3	ay	а
	循环	不终.	止,	没有	出出	见全	为a的					解不.	具有	无报	连打	至性				
	分角	早数 7	居库	为孙	JF.	并信	采持无	报	连接	和已	自教	依赖	的方	法し	不-	一定	专)			
	没有	自属	性集	U,	函数	依束	负集F,	其	模	式分	解后	方应得	争到	多个し	的	支集				
	step	· 1: 3	求出	最小	函数	久依	赖集员	nīn												
	step	P 2: 9	观察	И,	找出	其中	中来在	Pmini	中出	现主	寸的	属性	, 凇	其分	为-	一个	集台	7 .		
	例女	IZU F	有户	BCD	EG,	但只	nin中没	有	关于	日新	依束	负关系	ħ,	则划	分也	1963				
	step	3: 3	观察	Fmin,	若不	有多	个依束	负关	新	白决	定区]素(L RP	左侧)	相	同,	四)	均划	分到	
	同-	- 个	集合	中。	老沙	足有	相同的	闩,	则1	又将	该位	1. 颗关	(系)	划分至	川同	-1	集	合。		
	例女	72 Fmin	中有	A→B	, A-	C.	D→E,	则	刘分	为出自	ABC	和iD	E3							
	ste	4 : :	求出	Fmin 19]恢3	充码	. 老1	炎选	码并	k ±	述分) 类中	出	况,早	月单	独准	争修:	选码	分为	
	- ×	ŧ.																		
	倒女	加上	述 Fini	,的信	线洗石	马为	ADG,	可与	边其	来出	3规	在台	分类	中,	因此	 化再	刘分	j	个集	
		ADG3													-		,, .,			
				可加	1 t	目品	经的力	るゴ	分百	昆为	9 <i>6</i> 33 9	4263	4DE3	SADE	4					

关系有三种类型: 基本关系(基本表或基表) 、查询结果和视图

基本关系有6条性质:
①列是同质的(homogeneous),即每一列中的分量是同一类型的数据,来自同一个域。
②不同的列可出自同一个域,称其中的每一列为一个属性,不同的属性要给予不同的属性名。例如,在上面的例子中,也可以只给出两个域:
人(PERSON)(《赤真》,则是 王载)
专业(组从0);("诗典和学与技术,信息管理与信息系统)

彩光系的导师属性和研究生画性都是从PERSON 域中取信。为了避免混淆,必须给这两个属性取不同的属性名,而不能直接使用域名。因此,定义导师属性名为SUPERVISOR,研究到的原序无所谓。即列的次序可以任意交换。由于列顺序是无关紧要的,因此在许多实际的关系数据库产品中增加新属性时,永远是将其插至最后一列。 5个元组的码不能取相同的值。 原序无所谓,即行的次序可以任意交换。 《须取原子值、即每一个分量都必须是不可分的数据项。

关系语言

关系操作的特点是集合操作方式,即操作的对象和结果都是集合 关系模型有三类完整性约束:实体完整性,参照完整性,用户定义完整性

1、关系代数语言

关系的两个不变性

1. 域 域是一组具有 相同数据类型 的值的集合

(1) 集合运算符 (设有关系R和关系S)

并O: RAS, 即由属于R或S的元组构成, 同时去掉重复的元组

差一: RAS, 即由属于R但不属于S的元组构成

交Λ: R交S, 即由腕属于R又属于S的元组构成

2. 笛卡尔·· 即由R中的每个元组与S中的所有元组进行组合

(2) 关系运算符

选择 6: 得到表中的指定行, 写作 6条件(表名)

投影no: 得到表中的指定马:,写作nonn的(表名) ,投影后要去除重复行

连接M:将两个表根据指定条件连接在一起, 写作RMS

等值连接是指条件为属性R.A=S.B

自然连接是指条件为属性RA-SA, 於且要去掉重复列, 写作R SM

悬涉元组是指自然连接时由于S中不匹配而在R中被舍弃的元组

外连接是指保留易污元组的连接,不匹配的位置填NULL,写作X

左升连接是指只保留R中岛沿心经的连接, 写作W

方外连接是指只保留O中国治元组的连接, 另作MC

除之:设R和S除运算的结果为T,则T包含所有在R中但不在S中的属性和值,且 T的元组与S的元组经过组合均能出现在R中

1311 :

R R+ S

BCD ABC

a, b, cz b, cz d,

ar by co bz c, d,

as by co be ca de

a, be c3

az中虽然也出现了S中的b, cz, 但是az与S中其余的b, c, 和b, c, 的 ay be co

刁组合并没有出现在R中 (az bi cz

as be co

关系代数解题方法

(1) 常规殿 (求某几个属性特定值)

格式一般为几___(6___(表名∞表名))

(2) 除运算 (求满足某属性全部值的其他属性)

这种题是指求是满足B表某属性全部值的在A表上的其他属性。这是除运算的特性,因此在出现"全部"二字时,需要用除运算完成。通常分别对A和B做投影运算,再对任成的方表进行除运算。

A中包含属性x和y,B中包含属性y,且B中属性y的值为全集且无重复,求全部y的x'写作: $T_{x,y}(A)
eq T_{y}(B)$

例如A表为学生选课表(属性包括学号和所选的课程),B表为课程信息表(属性包括课程),求选多全部课程的学生学号。全部课程只在B表出现,学号只在A表出现。于是先全选A表的学号字段和课程字段,再全选B表的课程字段,将二者相除: Turner (A) ~ Turner (B)

(3) 差运算

例:有学生表SC,包含属性姓名、成绩,求没有任何一门课程低于80分的学生的姓名。

周路: 可以先求有课程低于80分的学生姓名, 再用全表相减。

Tung(SC)-Tung(O成结(80 (SC))

2、元组关系演算语言

- (1) 元组演算表达式·ft | Ø(t)j, 其中t是元组变量, Ø(t)是公式, 它由原 亏公式和运算符组成。
- (12)原方公式
- 1、R(t) 表示t是关系R中的元组

- 2、tlilθulill表示元组t的素i个分量和元组u的第i个分量满足比较关系θ
- 3、tlijθc或cθtlij表示元组t的第i个分量和常量:满足比较关系θ
- (3) 运算符 (按优先级从高到低书写)
- 1、比较运算符: >><
- 2、量词运算符:包括3和V。其中3的优先级大于V
- 3、逻辑运算符:包括¬和Λ和V。其中¬的优先级大于Λ, Λ的优先级大于V 关系代数语言和元组演算语言的转标:
- (1) 并

RUS = 9 t | R(t) VS(t))

(2) 交

RAS = 9 + 1 R(t) AS(t)

(3) 差

 $R-S = 9 + 1 R(t) \wedge \neg S(t)$

(4) 笛卡尔积

 $R\times S = \{t^{(n+m)} (\exists u^{(n)})(\exists v^{(n)})R(u) \wedge S(v) \wedge t! | J=u[1] \wedge \cdots \wedge t[nJ=u[n] \wedge t[n+1]=v! | J \cdots \cdots \wedge t[nJ=u[n] \wedge t[n] \wedge t[n$

其中R有n个属性, S有m个属性, 根据笛卡尔科的定义, t的目数为n+m (即有n+m个属性)

(5) 投影

Toilid, with = 9 to law LR(n) At[1]=n[i] A At[k]=n[ik]3

表示最终需要k列,因此t的目数为k。选取中间变量u,令u为R中的全部元组,令结果集t的第一列为R中需要的第一列(即il),最后一列k列为R中的让列

(b) 选择

6= (R) = 9 + 1 R(+) 1 }

F是选择条件, F'是F等价代换后的元组演算表达式

例题:

1、查询Student表中IS系的全体学生,其中学生所在系为第五列属性。

Sis = 9 t | Student(t) At[5]='IS' }

IS. 2、 查询Student表中学生的姓名和所在系,其中姓名为第二列,所在系为第五列。 S、 = 9 t ^(m) (∃u)(Student(u)∧t[I]=u[2]∧t[2]=u[5]) j 上式表示设结果集为S1,其中的元组t有两列属性,这两列属性满足条件: 设有元组u,u是Student表中的元组,结果集的第一列(即t[1])为Stusent表的第二列(即u[2]),结果集的第二列为Student表的第五列。
五列。 S, = 9 t ⁽ⁿ⁾ (Ju)(Student(u)At[I]=u[2]At[2]=u[5]) j 上式表示设结果集为S ₁ , 其中的元组t有两列属性,这两列属性满足条件: 设有元组u, u是Student表中的元组,结果集的第一列(即t[1])为Stusent表的第二列(即u[2]),结果集的第二列为Student表的第五列。
$S_1 = 9 t^{10}1 (3n)(Student(n)\Lambda t [1]=n [2] \Lambda t [2]=n [5]) i$ 上式表示设结果集为 S_1 ,其中的元组t有两列属性,这两列属性满足条件: 设有元组n,n是Student表中的元组,结果集的第一列(即t [1])为Stusent表的第二列(即u [2]),结果集的第二列为Student表的第五列。
上式表示设结果集为S ₁ , 其中的元组t有两列属性, 这两列属性满足条件: 设有元组u, u是Student表中的元组, 结果集的第一列 (即tīl]) 为Stusent表的第二列 (即uīl]) ,结果集的第二列为Student表的第五列。
设有元组n,n是Student表中的元组,结果集的第一列(即t[1])为Stusent表的第二列(即n[2]),结果集的第二列为Student表的第五列。
的第二列 (即u[2]),结果集的第二列为Student表的第五列。
N 87 +0 41
解
首先设结果集 (例如设为S), 令其中的元组为t。若题目中指明了需要哪些
属性时, 需要标注t的目数。 当需要用量词运算符时, 记得前后用括号括起
来。各条件之间一般用交运算。在元组表达式中,论得首先要指出所设元组
属于哪个关系。
S=9t 1 (量词运算) (指出元组所属的关系//元组需要满足的条件) }
补: 把不产生无限关系的表达式称为安全表达式, 所采取的措施称为安全指
施

事务调度

1、事务调度的准则

(1) 一组事务的调度必须保证:

包含3所有事务的操作指令;一个事务内部的指令顺序必须保持不变

(2) 并行事务调度必须保证:

可导性化,将所有可能的导行调度结果推演一遍,对于某个具体的并行调度再执行一遍,看是否能与某个导行调度的结果相同

(3) 判断可导性化的充分条件:冲突可导性化 (冲突可导性化一定是可导性化调度,但可导性化调度不一定是冲突可导性化)

冲突操作:不同事务对同一数据分别进行读和写;不同事务对同一数据分别进行写和写

冲突可导性化调度即不交换不同事务的冲突操作次序, 也不交换同一事务的两个操作的次序。但可以交换不同事务对不同数据各种操作次序, 也可以交换不同事务对同一数据的读取操作次序

2、封锁

(1) X锁: 写锁, 某事务对数据对象上锁后, 可读取和修改该数据对象, 其他事务不可再对该数据对象添加锁

表示方法: 上锁Xlock() 释放锁Unlock()

(2) S锁: 读锁, 某事务对数据对象上锁后, 可读取但不可修改该数据对象, 其他事务可以对该数据对象添加S锁, 但不能添加X锁

表示方法: 上锁Slock() 释放锁Unlock()

(3) 封锁协议

- 一级封锁协议:写前加写锁,事务结束辩放写锁;可防止丢失修改
- 二级封锁协议:写前加写锁,读前加读锁,读完释放读锁,事务结束释放写锁;可防止丢失修改和读脏数据

三级 对锁协议 (常用: 支持一致性维护): 写前加写锁, 读前加读锁, 事务 结束释放各锁; 可防止丢失修改、读脏数据和不可重复读

(4)	IH	段	锁拉	かう	X	12	PL)																						
三级	封台	锁协	议	可	以	保	证	并	发	操	17	的	Æ	确	性	,	但	由	7	其	X	धं	严	刮	,	对	并	发	庚	
有负	面	的唯] _	=	级	封	锁	协	议	家	际	足)两	段	锁	协	议	舸	特	例		昆	吏	严	格	舸	声	段	锁	
协议																														
两段4	锁	办议	中	求	÷	争	务	在	对	任	何	教	挑	进	竹	谗	写	前	,	需	要	教	得	对	该	教	搥	的	封	
锁; i	而	当事	劣	在	释	放	任	何	_	个	封	锁	6	,	不	切	再	教	得	任	何	其	他	封	锁					
争务	遵	盾供	段	锁	协	议	是	划	串	性	·l	的	充	分	条	件	,	遵	循	声	段	锁	协	议	是	可	能	发	生	
死锁1	的																													

	数据库设计
1.	画E-R图 (概念结构设计)
	家体: [
	关系:
	属性: 注意: 实体和关系都可以具有属性
	J 联系: 个A对应 个B
	对n联系: 个A对应n个B A / B
	n对m联系: n个A对应m个B A n B
2.	E-R图转换为关系模型 (逻辑结构设计)
	第一步: 将各个实体的名字转换为各个关系模式的名字
	第二步: 实体的属性就是关系的属性, 实体的码就是关系的码
	第三步: 实体间联系的转换
	对 联系: 在任意一方加入对方的主码并设为其外码, 并加入联系
	本身的属性
	对n联系:将 方的主码加入n方作为外码,并同时将联系的属性加
	入n方
	n对m联系:将联系本身转换为一个关系模式,将联系双方的主码加
	入其中设为码, 并将联系的属性也加入其中