The exact (optimal) steepest descent algorithm

This algorithm finds a local minimum of $f(x) = f(x_1, ..., x_n)$ when given ∇f .

Start with arbitrary x.

Repeat:

- $r = -\nabla f(x)$
- Compute a, where t = a minimizes $\phi(t)$

$$\phi(t) = f(x + tr)$$

 \bullet x = x + ar

Terminate when |r| is small enough so that x can be considered the local minimum point.

The ϵ -step steepest descent algorithm

This algorithm finds a local minimum of $f(x) = f(x_1, ..., x_n)$ when given ∇f .

Start with arbitrary x.

Repeat:

- $r = -\nabla f(x)$
- choose a small number $\epsilon > 0$
- $x = x + \epsilon r$

Terminate when |r| is small enough so that x can be considered the local minimum point.

Alternative formulation of the ϵ -step steepest descent algorithm

This algorithm finds a local minimum of $(x) = f(x_1, \ldots, x_n)$ when given the derivatives $\frac{\partial f}{\partial x_i}$ for $i = 1, \ldots, n$.

Start with arbitrary x_1, \ldots, x_n .

Repeat:

- choose a small number $\epsilon > 0$
- $x_i = x_i \epsilon \frac{\partial f}{\partial x_i}$ for $i = 1, \dots, n$.

Terminate when the norm of all the partial derivatives $|\frac{\partial f}{\partial x_i}|$ for $i=1,\ldots,n$ are small.