Using Bayes Theorem for Classification

Consider each attribute and class label as random variables

- □ Given a record with attributes (X₁, X₂,..., X_d)
 - Goal is to predict class Y
 - Specifically, we want to find the value of Y that maximizes P(Y| X₁, X₂,..., X_d)
- Can we estimate P(Y| X₁, X₂,..., X_d) directly from data?

Using Bayes Theorem for Classification

- Approach:
 - compute posterior probability P(Y | X₁, X₂, ..., X_d) using the Bayes theorem

$$P(Y | X_1 X_2 ... X_n) = \frac{P(X_1 X_2 ... X_d | Y) P(Y)}{P(X_1 X_2 ... X_d)}$$

- Maximum a-posteriori: Choose Y that maximizes
 P(Y | X₁, X₂, ..., X_d)
- Equivalent to choosing value of Y that maximizes
 P(X₁, X₂, ..., X_d|Y) P(Y)
- □ How to estimate $P(X_1, X_2, ..., X_d | Y)$?

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Can we estimate

P(Evade = Yes | X) and P(Evade = No | X)?

In the following we will replace

Evade = Yes by Yes, and

Evade = No by No

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Using Bayes Theorem:

$$P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$$

$$P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$$

How to estimate P(X | Yes) and P(X | No)?

Naïve Bayes Classifier

- Assume independence among attributes X_i when class is given:
 - $P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | Y_j) P(X_2 | Y_j)... P(X_d | Y_j)$
 - Now we can estimate $P(X_i|Y_j)$ for all X_i and Y_j combinations from the training data
 - New point is classified to Y_j if $P(Y_j) \prod P(X_i|Y_j)$ is maximal.

Conditional Independence

X and Y are conditionally independent given Z if P(X|YZ) = P(X|Z)

- Example: Arm length and reading skills
 - Young child has shorter arm length and limited reading skills, compared to adults
 - If age is fixed, no apparent relationship between arm length and reading skills
 - Arm length and reading skills are conditionally independent given age

Naïve Bayes on Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 \mid Class: $P(Y) = N_c/N$

- e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

For categorical attributes:

$$P(X_i \mid Y_k) = |X_{ik}| / N_{c_k}$$

- where |X_{ik}| is number of instances having attribute value X_i and belonging to class Y_k
- Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0