Seeing with Algorithms: Deep Dive into Object Detection

From Classification to Localization and Detection Metrics

Nipun Batra and teaching staff

IIT Gandhinagar

August 30, 2025

Learning Outcomes

- Understand classification, localization, and detection
- Master precision, recall, AP, mAP, and CA-mAP
- Build strong intuition with toy examples and visual explanations
- · Learn to evaluate object detectors thoroughly and effectively

"Detection is not just about finding objects, but finding them right."

Roadmap

- 1. Classification vs Localization vs Detection
- 2. Bounding Boxes & Coordinates
- 3. IoU (Intersection over Union)
- 4. Precision and Recall
- 5. Ranking and PR Curve
- 6. Average Precision (AP)
- 7. Mean AP and Class-Agnostic mAP
- 8. COCO-Style Evaluation

Classification vs Localization vs Detection

Task Definitions

Definition: Three Fundamental Computer Vision Tasks

- Classification: What is present in the image?
- Localization: Where is the object in the image?
- Detection = Classification + Localization (for multiple objects)

Each task builds upon the previous one, increasing in complexity and practical utility.

Visual Examples

Output Formats

	Task	Output Format	Example
	Classification	label	"dog"
	Localization	label, bbox	"dog", (30,30,100,1
	Detection	[label, conf, bbox] × N	["dog", 0.95, (30,3
			["person", 0.87, (1
			["bike", 0.72, (80

Key Points:

Key Insight: Detection outputs include confidence scores, enabling ranking and threshold-based filtering!

Bounding Boxes & Coordinates

What is a Bounding Box?

Definition: Bounding Box Formats

- Corner format: $(x_{min}, y_{min}, x_{max}, y_{max})$
- Center format: $(x_{center}, y_{center}, width, height)$

Ground Truth vs Predictions

Key Points:

Matching Question: How do we decide which predictions correspond to which ground truth objects?

IoU (Intersection over Union)

IoU Definition

Definition: Intersection over Union (IoU)

$$\mathsf{IoU} = \frac{\mathsf{Area\ of\ Overlap}}{\mathsf{Area\ of\ Union}} = \frac{|A \cap B|}{|A \cup B|}$$

Prediction

IoU Calculation Example

Example: Step-by-Step IoU Calculation

Ground Truth: (30, 30, 100, 100)**Prediction**: (50, 50, 120, 120)

Step 1: Find intersection

 $x_{min} = \max(30, 50) = 50$ $y_{min} = \max(30, 50) = 50$

 $x_{max} = \min(100, 120) = 100$ $y_{max} = \min(100, 120) = 100$

Step 2: Calculate areas

Intersection: $50 \times 50 = 2500$ GT area: $70 \times 70 = 4900$ Pred area: $70 \times 70 = 4900$

Union:

4900 + 4900 - 2500 = 7300

Precision and Recall

Definitions

Definition: Core Metrics

$$Precision = \frac{TP}{TP + FP} \quad Recall = \frac{TP}{TP + FN}$$

- Precision: What fraction of detections are correct? (Quality)
- Recall: What fraction of ground truth objects are detected? (Coverage)
- TP: True Positive (correct detection, IoU ≥ threshold)
- FP: False Positive (incorrect detection, IoU < threshold or extra detection)
- **FN**: False Negative (missed ground truth object)

Key Points:

11/24

Example: Counting TP, FP, FN

Scenario: 2 GT objects, 3 predictions

Analysis (IoU threshold = 0.5):

Metrics:

P1 matches GT1: TP

• TP = 2, FP = 1, FN = 0

Ranking and PR Curve

Ranked Predictions Table

Example: Detection Results Sorted by Confidence

Given 5 predictions from our detector across the test set:

Confidence	Class	Box	TP/FP
0.95	Dog	(30,30,100,100)	TP
0.88	Bike	(150,120,200,180)	FP
0.80	Dog	(50,50,120,120)	TP
0.70	Person	(200,50,280,150)	TP
0.40	Cat	(100,100,150,150)	FP

Key Points: B

y varying the confidence threshold, we can trade off precision vs recall!

Precision-Recall Table

Threshold	Predictions	TP	FP	Precision	Recall
0.95	1	1	0	1.000	0.333
0.88	2	1	1	0.500	0.333
0.80	3	2	1	0.667	0.667
0.70	4	3	1	0.750	1.000
0.40	5	3	2	0.600	1.000

Assumptions: 3 ground truth objects total, IoU threshold = 0.5

- As threshold decreases \rightarrow more predictions \rightarrow recall increases
- But also more false positives \rightarrow precision can decrease

Precision-Recall Curve

Average Precision (AP)

AP = Area under PR Curve

Definition: Average Precision Calculation

$$AP = \int_0^1 P(R) \, dR$$

In practice: Numerical integration or 11-point interpolation

11-Point Interpolation:

- Sample at recall levels: 0, 0.1, 0.2, ..., 1.0
- For each recall r, find max precision for recall > r
- · Average the 11 precision values

Class-wise AP Example

Class	AP@0.5	Visual
Dog	0.85	Excellent
Person	0.71	Good
Bicycle	0.40	Poor

Interpretation: Dog detection works well, but bicycle detection $_{17/24}$

Mean AP and Class-Agnostic mAP

Mean Average Precision (mAP)

Definition: mAP Calculation

$$\mathsf{mAP} = \frac{1}{C} \sum_{c=1}^{C} \mathsf{AP}_c$$

where C is the number of classes

Example: Our Example

$$\begin{aligned} \mathsf{mAP} &= \frac{\mathsf{AP}_{dog} + \mathsf{AP}_{person} + \mathsf{AP}_{bicycle}}{3} \\ &= \frac{0.85 + 0.71 + 0.40}{3} = \mathbf{0.653} \end{aligned}$$

Class-Agnostic mAP (CA-mAP)

Definition: Class-Agnostic Evaluation

Ignore class labels when matching predictions to ground truth.

Match based on IoU overlap alone.

Standard mAP:

- Dog pred Dog GT:
- Dog pred Person GT:

Class-Agnostic mAP:

- Any pred Any GT (if IoU > threshold):
- Useful for generic object

COCO-Style Evaluation

Strict Evaluation: COCO Metrics

Definition: COCO Evaluation Protocol

- **AP@50**: IoU threshold = 0.5 (lenient)
- AP@75: IoU threshold = 0.75 (strict)
- **AP@[.5:.95]**: Average over IoU thresholds 0.5, 0.55, 0.6, ..., 0.95

Metric	Value	Interpretation
mAP@50	0.71	Good localization (loose)
mAP@75	0.45	Moderate precise localization
mAP@[.5:.95]	0.42	Overall localization quality

Key Points:

Interactive Quiz

Pop Quiz 1: Compute Precision & Recall

Answer this!

Given the detection scenario below, compute precision and recall (IoU threshold = 0.5):

Pop Quiz 1: Answer

Example: Solution

Analysis (with IoU > 0.5 matching):

- P1 (Dog 0.9) matches GT1 (Dog): TP
- P2 (Car 0.8) no GT match: FP
- P3 (Cat 0.7) matches GT2 (Cat): TP
- P4 (Dog 0.6) no GT match: FP
- P5 (Bird 0.5) poor overlap with GT3: FP
- GT3 (Bird) unmatched: FN

Final counts: TP = 2, FP = 3, FN = 1

Precision =
$$\frac{2}{2+3} = 0.40$$
 Recall = $\frac{2}{2+1} = 0.67$

Summary & Takeaways

Summary Table

Concept	Meaning	Key Insight
IoU	Box overlap quality	Matching criterion (usually $>$ 0.
Precision	Detection quality	$\frac{TP}{TP+FP}$ (fewer false alarms)
Recall	Detection coverage	$\frac{TP}{TP+FN}$ (fewer missed objects)
AP	Area under PR curve	Single-class performance metric
mAP	Average AP over classes	Multi-class detector performance
CA-mAP	Class-agnostic mAP	Localization-only evaluation
COCO	Multi-IoU evaluation	AP@[.5:.95] for precise localizati

Key Points:

Golden Rule "Detection is not just about finding objects, but finding them right."

What We've Learned

- Task hierarchy: Classification → Localization → Detection
- Evaluation pipeline: IoU matching \rightarrow TP/FP counting \rightarrow PR curves \rightarrow AP/mAP
- Trade-offs: Precision vs Recall, lenient vs strict IoU thresholds
- Practical metrics: COCO-style evaluation for real-world deployment

Next steps: Explore modern architectures (YOLO, R-CNN, Transformers) and their mAP performance!