dm24s1 Topic 02: Motivating Example Part 02: Introduction to Data Operations Exploring Data Dr Bernard Butler Data 2 **Data Handling Building Models** Department of Computing and Mathematics, WIT. (bernard.butler@setu.ie) Autumn Semester, 2025 Prediction Outline Characteristics of data sets Operations on tabular data

Wrap up

Data Mining (Week 2) Introduction Motivating Example Preparation Exploring Data 1 Exploring Data 2 Building Models Data Handling Prediction Regression Regression Classification Classification Clustering $\mathbf{2}$ Wrap up

Data sources

Type	Format	Example	DBMS	Language	Readiness for ML
Relational	Table	Transactions	s MySQL,	SQL	Maps to dataframe
			Post-		
			gresql,		
Flat	Key + Value	Caches	Redis,	DBMS-Specific	Not rich enough
			mem-		
			cached,		
Document	Serialised objects	Tweets	Mongodb,	MQL, CQL	Too rich
			Cassan-		
			dra		
Graph	Nodes and edges	Social	Neo4j,	Gremlin, Cypher,	Specialised analyses
		relation-	Dgraph,	DQL,	
		ships			
Columnar	DataSet	Logs	HBase,	Hive QL, Spark SQL	Maps to dataframe
			Spark		
			DataSet		

Preparing data

Data Preparation is the first step in data mining

In practice, data can be

- structured or unstructured,
- consolidated or scattered,
- consistent or inconsistent,
- clean or with error.

ML prefers structured, consolidated, consistent data, as clean as possible.

The auto_mpg.csv dataset already has these characteristics.

The auto-mpg dataset

1	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
2	18	8	307	130	3504	12	70	1	chevrolet chevelle malibu
3	15	8	350	165	3693	11.5	70	1	buick skylark 320
4	18	8	318	150	3436	11	70	1	plymouth satellite
5	16	8	304	150	3433	12	70	1	amc rebel sst
6	17	8	302	140	3449	10.5	70	1	ford torino
7	15	8	429	198	4341	10	70	1	ford galaxie 500
8	14	8	454	220	4354	9	70	1	chevrolet impala
9	14	8	440	215	4312	8.5	70	1	plymouth fury iii
10	14	8	455	225	4425	10	70	1	pontiac catalina
11	15	8	390	190	3850	8.5	70	1	amc ambassador dpl
12	15	8	383	170	3563	10	70	1	dodge challenger se

Notes

- The data is structured, consolidated, consistent and clean
- 2 The first row contains the headings (column names), the remaining rows are the observations (cases, instances,...)
- 3 Each column stores a *variable*. Other terms include attributes and targets.
- Machine learning uses combinations of these columns to build models.

Understanding the auto-mpg dataset: Column Sufficiency

Learning

- Given a collection of columns (a *projection* of the full dataset), how does this help the machine to learn?
- It provides example data representing a phenomenon...
- But what collection of columns to use?
- Depends on the problem we wish to solve...
- Can it be used to predict some quantity (a target)?
- And what does *prediction* mean?
- Are there other forms of learning apart from being able to predict?

Applied to auto-mpg

- Given explanatory variables displacement, horsepower, weight, can we predict *mpg* (target)?
- Are all these explanatory variables needed, or could some be dropped?
- Are additional explanatory variables needed, either from auto-mpg or elsewhere?
- How do we measure the *quality* of a prediction?
- What other learning can be derived from the chosen column collection?

Understanding the auto-mpg dataset: Row Sufficiency

Selection

- Do we have enough, too many or just enough observations?
- If we project the data, we might have multiple rows with the same explanatory values but different target values...
- ... Is this good or bad?
- How can we exclude unnecessary or incompatible observations?
- ... We can use *selection* (also known as *restriction*) but how do we choose which rows to keep?

Example

```
SELECT displacement, horsepower, weight, mpg
FROM auto_mpg
WHERE horsepower > 79;
```

- SELECT clause: projection (restricting columns: column sufficiency)
- WHERE clause: selection (restricting rows: row sufficiency)

Understanding the auto-mpg dataset: Summarising

Often in data mining, we need to "see the wood for the trees"

- Generally, we want our data to be as granular as possible more detail is better
- ... We can remove detail if needed, but cannot add it later
- Is duplicate data good or bad in machine learning?
- ...GOOD: estimating variability in a quantity, using statistical methods
- ...BAD: can obscure useful implementation an aggregated value might be more useful
- Can generate summaries in three ways
 - Sampling reduce/remove row duplication
 - Banding reduce the cardinality of a column
 - Grouped Aggregation roll up by level, aggregating as needed

Understanding the auto-mpg dataset: Sampling

To reduce (but not remove) duplication, sampling can be a good compromise

- To reduce bias, the sample should be random (each row has the same probability of being picked)
- Number of rows to keep in the sample is a compromise
- Can reduce runtime while allowing estimates of the uncertainty in a predictive model
- However, an aggregated column might be a better choice

```
-- Return a random sample of 3 Japanese cars
SELECT *
FROM AutoMpg
WHERE originID = 3
ORDER BY RANDOM()
LIMIT 3;
```

Understanding the auto-mpg dataset: Banding

A new column with reduced cardinality is often more understandable

- Sometimes a column with fewer distinct values offers fresh insights
- ...Derive carMaker from carName compare different manufacturers
- When a column contains real numbers, currency, etc., this is very noticeable
- ... Banding assigning those numbers to non-overlapping ranges can simplify analysis

Understanding the auto-mpg dataset: Grouped Aggregation

A grouped aggregation changes the effective key structure

- Aggregations include: MIN(), SUM(), COUNT(DISTINCT ...)
- ... Take a set of values, compute an aggregate value
- Sets can be partitioned by grouping variable, aggregate applied to each partition
- ... Example: average mpg per country of manufacture

SELECT originID, AVG(mpg)
FROM AutoMpg
GROUP BY originID;

Summary

- Semantically rich, flat data is preferred for machine learning
- Ideally, this data would also be structured, consolidated, consistent and clean
- Several data operations were described, using the AutoMpg dataset as an example data source
 - Projection
 - Selection
 - Summarising: Sampling, Banding, Grouped Aggregation

> Your task is to apply this to datasets using the python toolchain.