Cáculo Avanzado

Primer Cuatrimestre 2016

Primer Parcial - 10/05/2015

Nombre y apellido:

LU:

Ejercicio 1. Sea $A = \{(z_n)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}} : \exists k \in \mathbb{N} \text{ tal que } z_{n+k} = (z_k)^n \ \forall n \in \mathbb{N}\}.$ Calcular #A.

Solución. Sea $A_k=\{(z_n)_{n\in\mathbb{N}}:z_{n+k}=(z_k)^n \text{ para todo } n\in\mathbb{N}\}$. Recordar que una unión numerable de conjuntos numerables es numerable. Luego, como $A=\bigcup_{k\in\mathbb{N}}A_k$, basta ver que A_k es numerable para cada $k\in\mathbb{N}$ para probar que A también lo es.

Dado $k \in \mathbb{N}$ fijo, veamos la numerabilidad de A_k . Para ello, definimos la función $f: A_k \to \mathbb{Z}^k$ definida como $f((z_n)_{n \in \mathbb{N}}) = (z_1, \dots, z_k)$ y vemos que es biyectiva. En primer lugar, es inyectiva, ya que si $f((a_n)_{n \in \mathbb{N}}) = (a_1, \dots, a_k) = (b_1, \dots, b_k) = f((b_n)_{n \in \mathbb{N}})$, entonces $a_i = b_i$ para todo $i \in \mathbb{N}$: para $i \le k$ esto es inmediato y para i > k se deduce del hecho de que $a_i = a_k^{i-k} = b_k^{i-k} = b_i$. Además, es sobreyectiva: dado $(b_1, \dots, b_k) \in \mathbb{Z}^k$, consideramos la sucesión $(a_n)_{n \in \mathbb{N}}$ en la que $a_i = b_i$ si $i \le k$ y $a_i = b_k^{i-k}$ si i > k. Por construcción $(a_n)_{n \in \mathbb{N}} \in A_k$ y se tiene además $f((a_n)_{n \in \mathbb{N}}) = (b_1, \dots, b_k)$, lo cual prueba que f es sobreyectiva y por lo tanto biyectiva. Como ya sabemos que \mathbb{Z}^k es numerable, esto concluye el ejercicio.

Ejercicio 2. Sea $X = \{0,1\}^{\mathbb{N}}$ el conjunto de sucesiones de ceros y unos. Sean $d_1, d_2 : X \times X \to \mathbb{R}$ definidas por:

$$d_1(x,y) = \begin{cases} 1 & \text{si } x \text{ e } y \text{ differen en infinitos indices,} \\ \frac{k}{k+1} & \text{si } x \text{ e } y \text{ differen en } k \text{ indices.} \end{cases}$$

$$d_2(x,y) = \begin{cases} 0 & \text{ si } x = y, \\ \frac{1}{j} & \text{ si } j \text{ es el primer índice donde difieren } x \in y. \end{cases}$$

- a) Probar que d_1 y d_2 son métricas.
- $\text{b) Para cada } k \in \mathbb{N} \text{, se define } (e^k) \in X \text{ por } e^k_n = \begin{cases} 1 & \text{ si } n = k \\ 0 & \text{ si } n \neq k. \end{cases}$

Calcular la clausura de $A = \{(e^k) : k \in \mathbb{N}\}$ en (X, d_1) y en (X, d_2) .

Solución.

a) Veamos que d_1 es una distancia. Probemos sólo la desigualdad triangular, ya que las otras propiedades que debe cumplir una distancia son inmediatas de la definición. Consideremos la función $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, $f(t) = \frac{t}{t+1}$. Mediante un análisis de función se puede ver que f es creciente. Luego, si $k \in \mathbb{N}$, se tiene que $f(k) \geq f(1) = \frac{1}{2}$. Además, f cumple que $f(k) \leq 1$. Por lo tanto, si $x \neq y$ se tiene que

$$\frac{1}{2} \le d(x, y) \le 1.$$

Sean $x,y,z\in X$ todos distintos entre si pues caso contrario la desigualdad triangular es trivial. Entonces como $x\neq z$ y $z\neq y$ se tiene que $1/2\leq d(x,z)$ y $1/2\leq d(z,y)$ por lo tanto,

$$d(x,y) \le 1 = \frac{1}{2} + \frac{1}{2} \le d(x,z) + d(z,y).$$

Luego d_1 es una distancia.

Veamos que d_2 es una distancia. Al igual que antes veamos sólo la desigualdad triangular para $x,y,z\in X$ distintos entre sí. Supongamos que la primer diferencia entre x e y ocurre en el lugar j-ésimo, es decir, $d_2(x,y)=\frac{1}{j}$. Sea k la primer coordenada donde x difiere de x y sea x la primer coordenada donde x difiere de x y sea x la primer coordenada x difiere de x supongamos que x difiere con x antes de la coordenada x-ésima, es decir, x decir, x la como x es igual a x hasta la coordenada x la coo

Concluimos asi que d_2 satisface la desigualdad triangular.

b) Calculemos la clausura del conjunto A en (X,d_1) . Vimos que si $x \neq y$, $d_1(x,y) \geq 1/2$. Sea $x \in \overline{A}$. Por definición de clausura, tomando $\varepsilon = 1/2$, se tendrá que $B_{1/2}(x) \cap A \neq \emptyset$. Pero $B_{1/2}(x) = \{x\}$, luego debe ser $x \in A$. Por lo tanto, $A = \overline{A}$. Observar que (X,d_1) es un espacio discreto.

Veamos qué sucede en el caso de d_2 . Sabemos que siempre $A\subseteq \overline{A}$. Además, si $(\mathbf{0})=(0,0,0,\dots)$ es la sucesión constantemente 0, entonces $d_2((e^k),(\mathbf{0}))=1/k\to 0$, es decir, $e^k\to \mathbf{0}$. Por lo tanto, $\mathbf{0}\in \overline{A}$. Veamos que si $x\notin A\cup \{\mathbf{0}\}$, entonces $x\notin \overline{A}$. Sea $x\notin A\cup \{\mathbf{0}\}$, como x no es cero y no es una sucesión canónica, la sucesión x posee al menos dos 1's. Supongamos que el primer 1 se encuentra en la coordenada i-ésima y el segundo en la coordenada j-ésima, con i< j. Entonces

 $d_2(x,e^k)=1/k$ si k< i, $d_2(x,e^k)=1/j$ si k=i y $d_2(x,e^k)=1/i$ si k>i. En cualquier caso, $d_2(x,e^k)\geq 1/j$ (recordar que j está fijo, depende sólo de x). Es decir, x está a distancia mayor o igual a 1/j de cualquier elemento de A, por lo tanto, no existe sucesión en A que lo tenga como límite. Es decir, x no es un punto clausura del conjunto A. Luego, será $\overline{A}=A\cup\{\mathbf{0}\}$.

Ejercicio 3. Sean X e Y espacios métricos y sea B(X,Y) el conjunto de funciones acotadas de X en Y, con la métrica infinito. Dotamos al espacio producto $B(X,Y) \times X$ de la métrica infinito. Se define la *función evaluación* por

$$\operatorname{ev}: B(X,Y) \times X \to Y$$

$$(f, x) \longmapsto f(x)$$

Probar que ev es continua en (f, x) si y sólo si f es continua en x.

Solución.

- \Rightarrow) Para mostrar que f es continua en x alcanza con ver que para toda sucesión $(x_n)_{n\in\mathbb{N}}\subseteq X$ tal que $x_n\to x$, es $f(x_n)\to f(x)$. Sea entonces $(x_n)_{n\in\mathbb{N}}$ una tal sucesión. Necesitamos probar que $d(f(x_n),f(x))\to 0$. Como $d(f(x_n),f(x))=d(\mathrm{ev}(f,x_n),\mathrm{ev}(f,x))$ y $(f,x_n)\to (f,x)$ en $B(X,Y)\times X$ (puesto que $d((f,x_n),(f,x))=d(x_n,x)$), la conclusión deseada se sigue de la continuidad de ev en (f,x).
- \Leftarrow) Nuevamente, tomemos una sucesión $(f_n,x_n)_{n\in\mathbb{N}}\subseteq B(X,Y)\times Y$ con $(f_n,x_n)\to (f,x)$ (equivalentemente, con $f_n\to f$ y $x_n\to x$) y probemos que $\operatorname{ev}(f_n,x_n)\to\operatorname{ev}(f,x)$. Lo que debemos ver entonces es $d(f_n(x_n),f(x))\to 0$. Como es de esperar, vamos a utilizar la desigualdad triangular para lograrlo. Intercalando con $f(x_n)$, vemos que

$$d(f_n(x_n), f(x)) \le d(f_n(x_n), f(x_n)) + d(f(x_n), f(x)).$$

El primer sumando converge a 0 porque $f_n \to f$ en B(X,Y) y el segundo porque $x_n \to x$ en X y f es continua en x.

Otra solución.

- $\Rightarrow) \mbox{ Sea } \varepsilon>0. \mbox{ Buscamos } \delta>0 \mbox{ de manera que } d(f(y),f(x))<\varepsilon \mbox{ siempre que } d(y,x)<\delta,y\in X. \mbox{ Reescribiendo para poder usar la hipótesis, lo que necesitamos controlar es } d(\mathrm{ev}(f,y),\mathrm{ev}(f,x)) \mbox{ para } y\in X \mbox{ suficientemente cerca de } x. \mbox{ Como ev es continua en } (f,x), \mbox{ existe } \delta>0 \mbox{ tal que si } (g,y)\in B(X,Y)\times X \mbox{ es tal que } d((g,y),(f,x))<\delta \mbox{ entonces } d(\mathrm{ev}(g,y),\mathrm{ev}(f,x))<\varepsilon. \mbox{ Tal } \delta \mbox{ sirve para nuestros propósitos: en efecto, si } y\in X \mbox{ satisface } d(y,x)<\delta \mbox{ claramente } d((f,y),(f,x))<\delta \mbox{ en } B(X,Y)\times X \mbox{ y luego } d(\mathrm{ev}(f,y),\mathrm{ev}(f,x))=d(f(y),f(x))<\varepsilon \mbox{ por la elección de } \delta. \mbox{ Por lo tanto } f \mbox{ es continua en } x.$
- $\Leftarrow) \mbox{ Sea } \varepsilon > 0. \mbox{ Ahora necesitamos encontrar } \delta > 0 \mbox{ tal que } d(\mathrm{ev}(g,y),\mathrm{ev}(f,x)) < \varepsilon \mbox{ siempre que } d((g,y),(f,x)) < \delta, (g,y) \in B(X,Y) \times X. \mbox{ Fijemos } (g,y) \in B(X,Y) \times X. \mbox{ Para acotar } d(\mathrm{ev}(g,y),\mathrm{ev}(f,x)) = d(g(y),f(x)) \mbox{ usaremos la desigualdad triangular intercalando un punto que nos permita controlar todos los términos involucrados. El valor que sirve es <math>f(y)$. En efecto:
 - d(g(y), f(y)) está acotado por d(g, f) en B(X, Y) y eso lo podemos hacer arbitrariamente chico pidiendo que (g, y) esté suficientemente cerca de (f, x).
 - d(f(y), f(x)) también es arbitrariamente chico si y está cerca de x pues f es continua en x por hipótesis. Esto también lo podemos lograr si (g, y) está suficientemente cerca de (f, x).

A partir de acá, una cuenta rutinaria del estilo $\frac{\varepsilon}{2}$ muestra que $d(\mathrm{ev}(g,y),\mathrm{ev}(f,x))<\varepsilon$ si $d((g,y),(f,x))<\delta$ para un δ apropiado.

Nota: El otro "candidato" natural para intercalar era g(x). Fíjense que eso no funciona bien porque no podemos controlar d(g(y),g(x)) en términos d la distancia de (g,y) a (f,x).

Ejercicio 4. Sea $\varphi:A\to B$ un homeomorfismo local (es decir, para todo $a\in A$, existe $U\subseteq A$ abierto tal que $a\in U$ y $\varphi|_U:U\to \varphi(U)$ es homeomorfismo). Dado X un espacio métrico, sean $f,g:X\to A$ funciones continuas tales que $\varphi\circ f=\varphi\circ g$. Probar que si X es conexo, entonces f(x)=g(x) para todo $x\in X$ o $f(x)\neq g(x)$ para todo $x\in X$.

Solución. Consideramos el conjunto $Y=\{x\in X: f(x)=g(x)\}$. El ejercicio nos pide probar que Y es o bien todo X o bien el conjunto vacío. Como el espacio X es conexo, para ver esto alcanza con probar que Y es abierto y cerrado en X. Veamos esto.

En primer lugar, probemos que Y es cerrado en X. Sea $(x_n)_{n\in\mathbb{N}}$ es una sucesión de elementos de Y con $x_n \longrightarrow x \in X$. Como para todo $n \in \mathbb{N}$ tenemos que $x_n \in Y$, entonces $f(x_n) = g(x_n)$. Ahora bien, la continuidad de las funciones f y g nos asegura que $f(x_n) \longrightarrow f(x)$ y que $g(x_n) \longrightarrow g(x)$. Juntando estos hechos, obtenemos que f(x) = g(x) por unicidad del límite, y así $x \in Y$. Esto prueba que Y es cerrado en X.

Veamos ahora que Y es abierto en X. Supongamos $x \in Y$: sabemos entonces que f(x) = g(x). Como φ es un homeomorfismo local, existe un abierto $U \subseteq A$ que contiene a f(x) de modo que $\varphi|_U: U \to \varphi(U)$ es un homeomorfismo. Como U es abierto en X, existe un radio $\varepsilon > 0$ tal que $B_\varepsilon(f(x)) \subseteq U$. Además, f y g son funciones continuas, por lo que existe un radio $\delta > 0$ de modo que si $y \in X$ es tal que $d_X(x,y) < \delta$ entonces $d_A(f(x),f(y)) < \varepsilon$ y $d_A(g(x),g(y)) < \varepsilon$. Como f(x) = g(x), esto nos dice que la imagen de $B_\delta(x)$ por tanto la función f como la función g cae dentro de $B_\varepsilon(f(x))$ y por lo tanto dentro de G. De este modo, tenemos que

$$\varphi|_{U} \circ f(B_{\delta}(x)) = \varphi \circ f(B_{\delta}(x)) = \varphi \circ g(B_{\delta}(x)) = \varphi|_{U} \circ g(B_{\delta}(x)).$$

Aplicando $\varphi|_U^{-1}$ a las puntas de esta igualdad, obtenemos $f(B_\delta(x)) = g(B_\delta(x))$ y de este modo probamos que $B_\delta(x) \subseteq Y$, por lo que Y es abierto en X.

Una pequeña observación: el razonamiento del final se puede adaptar para probar el resultado incluso aunque φ no sea un homeomorfismo local: solamente hace falta que sea localmente inyectiva.

Ejercicio 5. Probar que no existe una función continua $f: \mathbb{R} \to \mathbb{R}$ tal que $f(\mathbb{R} \setminus \mathbb{Q}) \subseteq \mathbb{Q}$ y $f(\mathbb{Q}) \subseteq \mathbb{R} \setminus \mathbb{Q}$.

Solución. Supongamos que existe una función f que verifica las condiciones del enunciado. La imagen de f es la unión de $f(\mathbb{Q})$, que es a lo sumo numerable por ser imagen de un conjunto numerable, y $f(\mathbb{R} \setminus \mathbb{Q})$, que también es a lo sumo numerable pues está contenido en los racionales. Por lo tanto, la imagen de f es a lo sumo numerable. Ahora bien, como \mathbb{R} es conexo y f es continua, $f(\mathbb{R})$ es un espacio conexo y a lo sumo numerable. Por otro lado, sabemos que un espacio conexo que contiene más de un punto

tiene cardinal mayor o igual a c (este es el ejercicio 6 de la práctica de conexión). Estos dos hechos nos dicen que la imagen de f consiste de un único punto; en otras palabras, f debe ser una función constante, lo cual contradice el hecho de que f intercambia racionales con irracionales.

Otra solución: Supongamos de nuevo que existe una función f que cumple las condiciones del enunciado. Si $q \in \mathbb{Q}$, entonces $f(x) \neq qx$ para todo $x \in \mathbb{R}$. En efecto, si x es racional entonces qx también, pero f(x) no; una situación similar ocurre si x es irracional. En otras palabras, la función $x \mapsto f(x) - qx$, que es continua, no se anula: por lo tanto, por el teorema de valor medio sabemos que o bien f(x) > qx para todo $x \in \mathbb{R}$ o bien f(x) < qx para todo $x \in \mathbb{R}$.

Llamemos m=f(1) y consideremos racionales q,q' de modo que q< m< q'. Las desigualdades qx< f(x)< q'x valen en x=1 y la observación previa nos asegura que valen para todo $x\in\mathbb{R}$. Acercándonos a m por izquierda con racionales q y por derecha con racionales q' y tomando límite obtenemos que f(x)=mx para todo $x\in\mathbb{R}$.

Obviamente $m \neq 0$ pues de lo contrario f sería constante y no verificaría las condiciones del enunciado. Pero si $m \neq 0$, entonces f es una biyección, y en particular induce biyecciones entre \mathbb{Q} y $\mathbb{R} \setminus \mathbb{Q}$, lo cual es una contradicción.