

The Effects of Competition and Entry in Multi-sided Markets Guofan Tan, Junjie Zhou('20 RES)

Presenter: Renjie Zhong 2020200977@ruc.edu.cn

Renmin University of China

November 2022

Outline

- 1 Introduction
- 2 Model
- 3 Analysis

Introduction

- 1 Introduction
- 2 Model
 - Setup
 - Equilibrium Analysis
- 3 Analysis
 - The Effects of Competition
 - The Effects of Entry

Motivation and Focus

- Multi-sided platforms enable customers from different sides to interact.
- Cross-subsidization, is driven by the existence of crossside externalities, a key feature of the multi-sided markets. So, we focus on the questions below:
 - Equilibrium Pricing Strategy?
 - 2 The Effects of Competition on Price and Welfare in the Presence of Cross-subsidization?
 - 3 Efficient? socially optimal level of welfare?

Main Findings

- Under Such Assumptions and Setup:
 - 1 customer heterogeneity/platform product differentiation by membership benefits
 - 2 homogeneous network effects (within/cross-side externalities)
 - 3 single-homing and full market coverage
- Main Findings:
 - We establish the existence of a symmetric pricing equilibrium the price equals a mark-up(oligopoly market power) minus a subsidy(externalities)
 - 2 A perverse pattern between prices and competition
 - 3 two U-shaped curves: one for CS and inverted one for Profit how fast each term changes with the number of platfoms n matters!
 - 4 Sufficient conditions under which the overall effect favours excessive entry

Realted Literature

- Two-sided markets:
 - Modelling Externalities and Studying the effects of competition and entry on prices and social welfare Platforms' strategies in two-sided markets and corresponding equilibrium concepts
 - The relationship between free entry and social efficiency The impact of mergers and industry concentration in different industries with two-sidedness features (Empirical Research)
- Oligopoly theory with discrete choice demand.

Model

- 1 Introduction
- 2 Model
 - Setup
 - Equilibrium Analysis
- 3 Analysis
 - The Effects of Competition
 - The Effects of Entry

Setup

Setup

- $n \ge 2$ platforms competing for customers from $s \ge 1$ sides by charging prices/membership fees
- $x^k = \{x_1^k, ..., x_s^k\}$: the participation profile on platform k, representing the aggregate share of customers who select k
- ullet $\epsilon_i = \{\epsilon_i^1, ..., \epsilon_i^n\}$: the matching values/membership benefits of a customer on side $i \in S = \{1, ..., s\}$ with n platforms
- $\phi_i(x^k) + \epsilon_i^k p_i^k$: the utility of a customer on side i from joining platform k, $\phi_i : [0,1]^S \to R$
- $\blacksquare \sum_{i \in S} (p_i^k c_i) x_i^k = \sum_{i \in S} p_i^k x_i^k$: platform k's profit

Assumptions

- a continuum of heterogeneous customers (of measure 1)
- lacksquare ϵ_i is common knowledge and $\epsilon_i \sim_{iid} G_i(\epsilon_i)$
- single-homing and full market coverage: each customer participates in one and only one platform
- Assumptions about $G_i(\cdot)$
 - I Cross-side independence: ϵ_i is independent of ϵ_j across different sides $i \neq j \in S$
 - 2 Cross-platform symmetry: $G_i(\cdot)$ is symmetric across n platforms
 - $G_i(\cdot)$ and $\phi_i(x)$ is continuously differentiable
- $\sigma_i(z) = \sum_{j \in S} \frac{\partial \phi_j(x)}{\partial x_i}|_{x=z1_s}$: the aggregate marginal externality provided by customers from side i to all sides at the symmetric allocation $x=z1_s=z(1,...,1)'$

Equilibrium Analysis

Participation equilibrium

- each customer on side i joins the platform that yields the highest utility in equilibrium
- $\blacksquare \ x_i^{\underline{k}}(P) = \int_{\epsilon_i: k \in argmax_{t \in N} \phi_i(x^k) + \epsilon_i^k p_i^k} dG_i(\epsilon_i)$
- \blacksquare B_{ϵ} : the upper bound of the slopes of the demand functions without externalities
- B_{ϕ} : the upper bound of the marginal externalities

Proposition1

For any price profile P, there exists a participation equilibrium. Moreover, the participation equilibrium is unique if $B_\phi < 1/B_\epsilon$

• When the degree of externalities is small, relatively to the dispersion of customers' heterogeneity, $x_i^k(P)$ forms a contraction mapping

Prcing Equilibrium: Notations

- $H_i(\cdot;n)$ and $h_i(\cdot;n)$: the CDF and PDF of $\epsilon_i^1 \max_{k \neq 1} \epsilon_i^k$, independent of n
- lacksquare the inverse hazard rate at 0: $M_i(n)=rac{1-H_i(0;n)}{h_i(0;n)}$
- the average marginal externality: $\eta_i(n) = \frac{1}{n-1}\sigma_i(\frac{1}{n})$

Assumption1

Every stationary point of $R(\cdot)$ on $[0,1]^s$ is a global maximum point, where

$$R(z) = \sum_{i \in S} z_i \{ p_i^* + H_i^{-1} (1 - z_i; n) + [\phi_i(z) - \phi_i(\frac{1_s - z}{n - 1})] \}$$

Prcing Equilibrium

- Under Assumption 1, there exists a subgame perfect equilibrium such that

 - $2 x^* = \frac{1}{n} 1_s$
 - 3 $p_i^*(n) = M_i(n) \eta_i(n)$
- the equilibrium price consists of two additively separable terms:
 - $M_i(n) = \frac{1 H_i(0;n)}{h_i(0;n)}$ market power of oligopolistic firms offering different products determined by the heterogeneity of membership benefits
 - $2 \eta_i(n) = \frac{1}{n-1} \sigma_i(\frac{1}{n}) = \sum_{j \in S} \left(\underbrace{1 + \frac{1}{n-1}}_{\text{the loop effect}} \right) x_j^* \frac{\partial \phi_j}{x_i}$

subsidy term=business-stealing effect+direct externalities

Equilibrium Analysis

Examples

Example 1 In his model of platform competition (n=2) in two-sided markets (s=2), Armstrong (2006) uses a Hotelling specification with uniform distribution of consumer location. The equilibrium prices in his setting are given by

$$p_1^* = t_1 - \alpha_2, \ p_2^* = t_2 - \alpha_1,$$

where t_1 and t_2 are unit transport costs, and α_1 and α_2 are the degrees of cross-group externalities enjoyed by two sides, respectively. This pricing formula is the same as ours in (7). Indeed, in this Hotelling specification, the market power effect is just t_i .²³

Example 2 Consider a one-sided market with linear form of within-side externalities and Gumbel distribution of matching values studied in Anderson *et al.* (1992). Under the assumption that $\beta > \frac{8}{27} \frac{n}{n-1} \gamma$, the symmetric equilibrium price is given by

$$p^* = \frac{n}{n-1}\beta - \frac{\gamma}{n-1},$$

where β is the scale parameter of Gumbel distribution and γ is the constant network effect parameter. This pricing formula is the same as ours in (7).²⁴

Analysis

- 1 Introduction
- 2 Model
 - Setup
 - Equilibrium Analysis
- 3 Analysis
 - The Effects of Competition
 - The Effects of Entry

Price

restrict our attention to IID matching values

Lemma1

If $\frac{z}{1-z}\sigma_i(z)$ increases (decreases) in z for $z\in(0,1)$, the equilibrium cross-subsidy $\eta_i(n)$ decreases (increases) with n. Moreover, if $\lim_{z\to 0}z\sigma_i(z)=0$, then $\lim_{n\to\infty}\eta_i(n)=0$.

- Indeed, we can decompose the subsidy term into 3 effects:
 - 1 the loop effect $1 + \frac{1}{n-1}$ decreases with n
 - 2 the market share $\frac{1}{n}$ decreases with n
 - 3 aggregate marginal externality $\sigma_i(\frac{1}{n})$ may increase or decrease with n

Price

- Typically $M_i(n)$ is monotonically decreasing in n (under the log-concavity of f_i (Zhou,2017))
- If $\eta_i(n)$ also increases with n, then the price decreases with n, as in the standard single-sided market setting.
- \bullet $\eta_i(n)$ typically decreases with n as well, which can easily offset the monotonicity of the product differentiation effect
- Examples: Suppose linear externalities $\phi_i(x) = \sum_{j \in S} \gamma_{ij} x_j$, thus $\sigma_i = \tilde{\gamma}_i = \sum_{j \in S} \gamma_{ij}$
 - **1** an exponential distribution with $\lambda_i > 0$, $p_i^*(n) = \frac{1}{\lambda_i} \frac{1}{n-1} \tilde{\gamma}_i$
 - **2** the Gumbel distribution with $\beta_i > 0$, $p_i^*(n) = \frac{n}{n-1}\beta_i \frac{1}{n-1}\tilde{\gamma}_i$

Price

- $lacksquare r=1+lim_{z o0}zrac{\sigma_i'(z)}{\sigma_i(z)}$: the elasticity of $rac{z}{1-z}\sigma_i(z)$ w.r.t z at z=0

Theorem 1

For each $i \in S$, assume f_i is log-concave. Then the following hold:

- If $0 < \tau_i < r_i$, there exists a positive n_0 such that $p_i^*(n)$ decreases with n for any $n \ge n_0$;
- 2 If $0 < r_i < \tau_i$, there exists a positive n_0 such that, for any $n \ge n_0$, $p_i^*(n)$ increases (decreases) with n whenever $\eta_i(n) > (<)0$

Consumer Suprlus

- $CS_i(n) = \delta_i(n) p_i^*(n) + \phi_i(1_s q^*(n))$ quad where $\delta_i(n) = E[max_{k \in N} \epsilon_i^k], \ q^*(n) = \frac{1}{n}$
- we can decompse the competition effect into 3 effects:
 - 1 the platform/product variety effect, $\frac{\partial \delta_i(n)}{\partial n}$
 - 2 the price effect, $-\frac{\partial p_i^*(n)}{\partial n}$
 - 3 the network consolidation effect, $-\frac{\partial \phi_i(1_s q^*(n))}{\partial n}$
- In absence of any externalities, competition increases CS
- The presence of (within-side and/or cross-side) externalities affects CS in two ways:
 - the perverse competition-price pattern emerges(-)
 - 2 the network consolidation effect(?)=aggregate marginal externality(+)+the business-stealing effect(-)

U-shaped Consumer Suprlus Curve

Platform Profits

- $\blacksquare \Pi(n) = q^*(n) \sum_{i \in S} p^*(n)$
- we can decompse the competition effect into 2 effects:
 - 1 the market share effect(-), $q^*(n)$
 - 2 the price effect(?), $p^*(n)$

Inverted U-shaped Platform Profit Curve

Asymptotic Impact of Competition

- Suppose n is sufficiently large (goes to infinite)
- In CS: $CS_i(n) = \delta_i(n) p_i^*(n) + \phi_i(1_s q^*(n))$ the product variety term is unbounded for a distribution with unbounded support, while the other two terms are bounded under fairly weak conditions.
 - ⇒ the variety effect dominates the two other effects
 - \Rightarrow the ultimate monotonicity of consumer surplus
- In profit: $\Pi(n) = q^*(n) \sum_{i \in S} p^*(n)$ market share diminishes to zero while the price generally is bounded (under the log-concavity and the assumption1),
 - ⇒ platform profit converges to zero
 - \Rightarrow platform profit is most likely to be decreasing when n is sufficiently large.

Notations

- the total welfare: $W(n) = n\Pi(n) + \sum_{i \in S} CS_i(n)$
- the fixed cost of entry: *K*
- the socially optimal: $n^* = argmax_{n\geq 2}(W(n) nK)$
- \blacksquare the free-entry equilibrium number of platforms: $n^e = max_{n \geq 2}\Pi(n) K$
- \blacksquare entry excessive (insufficient) if $n^e>(<)n^*$

Notations

■ the total welfare:

$$W(n)' = \Pi^*(n) + \sum_{i \in S} [\delta_i'(n) + \frac{\partial q^*(n)}{\partial n} (np_i^* + \sigma_i(q_n))]$$

- we can decompose the term in the bracket into 2 effects:
 - 11 the platform/product variety effect(+) $\delta'_i(n)$
 - 2 the business-stealing effect $\frac{\partial q^*(n)}{\partial n}(np_i^* + \sigma_i(q_n))]$
- Indeed, the business-stealing effect consists of two distinct components:
 - 1 the mark-up(?) \times the reduction in market shares(-)
 - the network consolidation effect(?)
 (a reduction in market share(-) on the aggregate marginal
 externality generated(?))

Entry Effects

further decomposition:

$$\frac{\partial q^*(n)}{\partial n}(np_i^* + \sigma_i(q_n)) = \frac{\partial q^*(n)}{\partial n}[nM_i(n) - \frac{1}{n-1}\sigma_i(q_n)]$$

Theorem 2(Entry effects)

The difference between the marginal welfare and per-platform profit equals: $W(n)' - \Pi(n) = [\delta_i'(n) - \frac{M_i(n)}{n} - \frac{\sigma(1/n)}{(n-1)n^2}]$

Suffcient Conditions for Excessive Entry

further decomposition:

$$\frac{\partial q^*(n)}{\partial n}(np_i^* + \sigma_i(q_n)) = \frac{\partial q^*(n)}{\partial n}[nM_i(n) - \frac{1}{n-1}\sigma_i(q_n)]$$

Theorem 3(Entry effects)

Assume that for each $i \in S$, f_i is log-concave. Excessive entry occurs when either one of the following three conditions holds:

- 2 $\overline{\phi_i(x)}$ is linear or convex in $x \in [0,1]^s$ for each $i \in S$
- $(\frac{n}{n-1})\delta_i'(n) \leq \frac{M_i(n)}{n}$ for each $i \in S$ and $n \geq 2$

The Effects of Entry

Intuition behind 3 conditions

- Condition 1: $\sum_{i \in S} \sigma_i(z) \le 0$ ⇒ the aggregate marginal externality over all sides ≤ 0
- Condition 2: $\phi_i(x)$ is linear or convex in $x \in [0,1]^s$ excess entry occurs $\Leftrightarrow W(n+1) W(n) \Pi(n+1) \leq 0$ $\Leftrightarrow \sum_i \phi_i(\frac{1}{n+1}1_s) \sum_i \phi_i(\frac{1}{n}1_s) + \sum_{i,j} \frac{1}{n(n+1)} \frac{\partial \phi_i(x)}{\partial (x_j)}|_{x=\frac{1}{n+1}1_s} \leq 0$ \Leftrightarrow a reduction in network benefits>the aggregate subsidy paid by the entrant \Leftrightarrow convex(Jensen's Inequality) or linear
- Condition 3: $(\frac{n}{n-1})\delta_i'(n) \leq \frac{M_i(n)}{n}$ $(\frac{n}{n-1})W'(n) \Pi(n) = \sum_{i \in S} \{(\frac{n}{n-1})\delta_i'(n) \frac{M_i(n)}{n}\}$

the variety effect is dominated by the business-stealing effect

An Equivalent Condition to C3 in Theorem 3

Lemma 2

For any $i \in S$, fi satisfies Condition 3 if and only if the corresponding quantile density function $L(z) = f_i(F_i^{-1}(z))$ satisfies the following:

$$n^3(\int_0^1 z^{n-2}L(z)dz)(\int_0^1 \frac{z^n \ln(1/z)}{L(z)}dz) \leq 1$$
 for any $n \geq 2$

A large class of distributions, including commonly used ones like the Gumbel, uniform and reversed Weibull distributions, satisfies it.

The Effects of Entry

Not Necessary: An Example

Example 5 (Insufficient entry) Consider a two-sided market with distribution $F_i(\theta_i) = 1 - \exp(-\theta_i)$ on both sides and externality function $\phi_1(x_1, x_2) = \alpha_1 x_2^{\rho}$ and $\phi_2(x_1, x_2) = \alpha_2 x_1^{\rho}$. Under parameter values $\alpha_1 = \alpha_2 = 11.9015$, $\rho = 0.05515$, and entry cost K = 0.0978, the free entry equilibrium number is shown to be 6, while the socially optimal number is 7.⁵³ The combination of the first two effects in (15) of Theorem 2 is negative, which is consistent with Anderson *et al.* (1995), but it is dominated by the third positive term generated by the concave externality functions (*i.e.* decreasing returns to scale).

In the example, none of the sufficient conditions in Theorem 3 is applicable, as ϕ_i is monotonically increasing and strictly concave, and the exponential distribution violates the inequality in Lemma 2. Under the exponential distribution (which has a log-concave density) and without externalities, there is excessive entry. However, in the presence of cross-side externalities with decreasing returns of scale, free entry is socially insufficient. This example indicates that multi-sidedness and the nature of externalities may help provide a plausible explanation for industry concentration in many high-technology markets involving platforms.

