Gradient-Free Optimal Postprocessing of MCMC Output

by

Artem Glebov

Department of Mathematics King's College London The Strand, London WC2R 2LS United Kingdom

Abstract

Contents

1	Background and data		4
	1.1	Why MCMC algorithms	4
	1.2	Challenges of running MCMC	4
	1.3	Optimal thinning as a solution to burn-in and thinning $\ .\ .\ .$.	4
	1.4	Gradient calculation in optimal thinning	4
2	Methodology		5
3	Results		6
4	Conclusions		7
\mathbf{A}	Cod	le	8

Introduction

Introduction to your project.

Background and data

- 1.1 Why MCMC algorithms
- 1.2 Challenges of running MCMC
- 1.3 Optimal thinning as a solution to burn-in and thinning
- 1.4 Gradient calculation in optimal thinning

Methodology

One or more chapters describing the novel methodology you have developed or implemented or the strategy for model comparisons and assessment.

Results

The results of your analysis.

Conclusions

What the reader has learnt from your dissertation and what questions are still open.

Appendix A

\mathbf{Code}

Here you can include relevant bits of the code.

Bibliography

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.