# Syntax Analysis: Simple LR Parsing

Lecture 6

### Objectives

#### By the end of this lecture you should be able to:

- Identify LR(0) items.
- 2 Construct an LR(0) automaton for a CFG.
- **3** Construct the SLR parsing table for a CFG.
- **4** Trace the operation of an SLR parser.

#### Outline

- LR(k) Parsing
- 2 The LR(0) Automaton
- 3 The SLR Parsing Algorithm

#### Outline

- LR(k) Parsing
- 2 The LR(0) Automaton
- The SLR Parsing Algorithm

## What is LR(k) Parsing?

#### Definition

An LR grammar is a grammar for which a deterministic shift-reduce parser may be constructed.

- An LR(k) parser is such a deterministic shift-reduce parser.
- LR(k) stands for left-to-right input scanning in a right-most derivation with k input symbols of lookahead.
- We shall be interested in cases where  $k \leq 1$ .

# What is LR(k) Parsing?

#### Definition

An LR grammar is a grammar for which a deterministic shift-reduce parser may be constructed.

- An LR(k) parser is such a deterministic shift-reduce parser.
- LR(*k*) stands for left-to-right input scanning in a right-most derivation with *k* input symbols of lookahead.
- We shall be interested in cases where  $k \le 1$ .

### Why LR Parsers?

- LR parsers can be constructed to recognize almost all context-free constructs in programming languages.
- Efficient implementations of LR parsers are possible.
- The set of LR grammars is a proper superset of the set of LL grammars.

## Grammar $G_6$

#### Example

We shall often refer to the following grammar  $G_6$ .

$$\begin{array}{ccc} E & \longrightarrow & E+T \mid T \\ T & \longrightarrow & T*F \mid F \\ F & \longrightarrow & (E) \mid \mathbf{id} \end{array}$$

## Problems with Shift-Reduce Parsing (I)

One problem with shift-reduce parsers we have seen so far is that it is always possible to shift if there are symbols available in the input.

#### Example

- With G<sub>6</sub> and input id\*id, having shifted id, a shift-reduce parser may decide to shift \*.
- But clearly, given the rules of  $G_6$ , this will never succeed.

## Problems with Shift-Reduce Parsing (I)

One problem with shift-reduce parsers we have seen so far is that it is always possible to shift if there are symbols available in the input.

#### Example

- With G<sub>6</sub> and input id\*id, having shifted id, a shift-reduce parser may decide to shift \*.
- But clearly, given the rules of  $G_6$ , this will never succeed.

### Problems with Shift-Reduce Parsing (II)

In shift-reduce parsing we can always reduce if the right side of a production appears on top of the stack.

#### Example

- With  $G_6$  and input id\*id, we may reach a configuration where T appears on top of the stack and \*id remains in the input stream.
- We can choose to reduce using the rule  $E \to T$ .
- But clearly, given the rules of  $G_6$ , this will never succeed.

Can we avoid wrong decisions, especially that we know better?

### Problems with Shift-Reduce Parsing (II)

In shift-reduce parsing we can always reduce if the right side of a production appears on top of the stack.

#### Example

- With  $G_6$  and input id\*id, we may reach a configuration where T appears on top of the stack and \*id remains in the input stream.
- We can choose to reduce using the rule  $E \to T$ .
- But clearly, given the rules of  $G_6$ , this will never succeed.

Can we avoid wrong decisions, especially that we know better?



### Problems with Shift-Reduce Parsing (II)

In shift-reduce parsing we can always reduce if the right side of a production appears on top of the stack.

#### Example

- With  $G_6$  and input id\*id, we may reach a configuration where T appears on top of the stack and \*id remains in the input stream.
- We can choose to reduce using the rule  $E \to T$ .
- But clearly, given the rules of  $G_6$ , this will never succeed.

Can we avoid wrong decisions, especially that we know better?

#### Outline

- $\square$  LR(k) Parsing
- 2 The LR(0) Automaton
- 3 The SLR Parsing Algorithm

### LR(0) Items

#### Definition

An LR(0) item of CFG  $G = \langle V, \Sigma, R, S \rangle$  is a pair  $\langle A \to \alpha, i \rangle$ , where  $(A \to \alpha) \in R$  and  $0 \le i \le |\alpha|$ .

- Intuitively, an LR(0) item is a rule and a position in the right side of the rule.
- Rather than using the ordered-pair notation, we represent items by a rule, with a dot (".") added somewhere to its right side.
  - Thus,  $\langle A \rightarrow aBb, 2 \rangle \equiv A \rightarrow aB.b$

### The LR(0) NFA

#### Definition

For a CFG  $G = \langle V, \Sigma, R, S \rangle$ , the LR(0) NFA is an NFA  $N_G = \langle I, V \cup \Sigma, \delta, S' \rightarrow .S, I \rangle$ , where

- *I* is the set LR(0) items of *G* together with  $S' \rightarrow .S$ ;
- $S' \notin V \cup \Sigma$ ;
- $\delta(A \to \alpha.s\beta, s) = \{A \to \alpha s.\beta\};$
- $\delta(A \to \alpha.B\beta, \varepsilon) = \{B \to .\gamma \mid (B \to \gamma) \in R\}$

### The LR(0) Automaton

#### Definition

The LR(0) automaton for a CFG G is the DFA  $M_G$  which is equivalent to  $N_G$  and constructed using the standard subset construction.

- Note that constructing  $M_G$  amounts to computing the  $\varepsilon$ -closures of states of  $N_G$ .
- The language of  $M_G$  (and  $N_G$ ) is the set of all sentential forms that are allowed to appear on top of the stack of a shift-reduce parser.
  - Thus, if other sentential forms appear on top of the stack, parsing fails.

#### Exercise

#### Example

Construct the LR(0) automaton of  $G_6$ :

$$\begin{array}{ccc} E & \longrightarrow & E+T \mid T \\ T & \longrightarrow & T*F \mid F \\ F & \longrightarrow & (E) \mid \mathbf{id} \end{array}$$

### Exercise (II)

#### Example



© Aho et al. (2007)

#### Outline

- $\bigcirc$  LR(k) Parsing
- 2 The LR(0) Automaton
- 3 The SLR Parsing Algorithm

- LR parsers all use a parsing table to guide their decisions.
- The parsing table is really two tables:
  - The Action Table: Associates with each LR(0) automaton state and terminal symbol or \$ an action to be performed.
  - The Goto Table: Associates with each LR(0) automaton state and nonterminal symbol an LR(0) automaton state.
- The method used to construct the table yields different types of LR parsers.
- We first consider simple LR parsers (SLR parsers).

- LR parsers all use a parsing table to guide their decisions.
- The parsing table is really two tables:
  - 1 The Action Table: Associates with each LR(0) automaton state and terminal symbol or \$ an action to be performed.
    - Actions are one of: shift, reduce, accept, or error.
  - ② The Goto Table: Associates with each LR(0) automaton state and nonterminal symbol an LR(0) automaton state.
- The method used to construct the table yields different types of LR parsers.
- We first consider simple LR parsers (SLR parsers).

- LR parsers all use a parsing table to guide their decisions.
- The parsing table is really two tables:
  - The Action Table: Associates with each LR(0) automaton state and terminal symbol or \$ an action to be performed.
    - Actions are one of: shift, reduce, accept, or error.
  - ② The Goto Table: Associates with each LR(0) automaton state and nonterminal symbol an LR(0) automaton state.
- The method used to construct the table yields different types of LR parsers.
- We first consider simple LR parsers (SLR parsers).

- LR parsers all use a parsing table to guide their decisions.
- The parsing table is really two tables:
  - The Action Table: Associates with each LR(0) automaton state and terminal symbol or \$ an action to be performed.
    - Actions are one of: shift, reduce, accept, or error.
  - 2 The Goto Table: Associates with each LR(0) automaton state and nonterminal symbol an LR(0) automaton state.
- The method used to construct the table yields different types of LR parsers.
- We first consider simple LR parsers (SLR parsers).

- LR parsers all use a parsing table to guide their decisions.
- The parsing table is really two tables:
  - **1** The Action Table: Associates with each LR(0) automaton state and terminal symbol or \$ an action to be performed.
    - Actions are one of: shift, reduce, accept, or error.
  - 2 The Goto Table: Associates with each LR(0) automaton state and nonterminal symbol an LR(0) automaton state.
- The method used to construct the table yields different types of LR parsers.
- We first consider simple LR parsers (SLR parsers).

- LR parsers all use a parsing table to guide their decisions.
- The parsing table is really two tables:
  - **1** The Action Table: Associates with each LR(0) automaton state and terminal symbol or \$ an action to be performed.
    - Actions are one of: shift, reduce, accept, or error.
  - 2 The Goto Table: Associates with each LR(0) automaton state and nonterminal symbol an LR(0) automaton state.
- The method used to construct the table yields different types of LR parsers.
- We first consider simple LR parsers (SLR parsers).

- LR parsers all use a parsing table to guide their decisions.
- The parsing table is really two tables:
  - 1 The Action Table: Associates with each LR(0) automaton state and terminal symbol or \$ an action to be performed.
    - Actions are one of: shift, reduce, accept, or error.
  - 2 The Goto Table: Associates with each LR(0) automaton state and nonterminal symbol an LR(0) automaton state.
- The method used to construct the table yields different types of LR parsers.
- We first consider simple LR parsers (SLR parsers).

### Constructing the SLR Parsing Table

We are given a CFG  $G = \langle V, \Sigma, R, S \rangle$ .

- $\bullet$  Construct  $M_G$ .
- **2** For all states q of  $M_G$ 
  - **①** GOTO $(q, A) = \delta(q, A)$ , for every  $A \in V$ .
  - **Q** If  $a \in \Sigma$  and  $(A \to \alpha.a\beta) \in q$ , then  $\operatorname{ACTION}(q, a) =$  "shift  $\delta(q, a)$ ".
  - **③** If  $A \neq S'$ ,  $a \in Follow(A)$ , and  $(A \rightarrow \alpha.) \in q$ , then ACTION(q, a) = "reduce  $A \rightarrow \alpha$ ".

  - **5** Otherwise ACTION(q, a) = "error".

If any conflicting actions result from the above construction, we say that G is not SLR.



### Constructing the SLR Parsing Table

We are given a CFG  $G = \langle V, \Sigma, R, S \rangle$ .

- $\bullet$  Construct  $M_G$ .
- **2** For all states q of  $M_G$ 
  - **①** GOTO $(q, A) = \delta(q, A)$ , for every  $A \in V$ .
  - **Q** If  $a \in \Sigma$  and  $(A \to \alpha.a\beta) \in q$ , then  $\operatorname{ACTION}(q, a) =$  "shift  $\delta(q, a)$ ".
  - § If  $A \neq S'$ ,  $a \in Follow(A)$ , and  $(A \rightarrow \alpha.) \in q$ , then ACTION(q, a) = "reduce  $A \rightarrow \alpha$ ".

  - **6** Otherwise ACTION(q, a) = "error".

If any conflicting actions result from the above construction, we say that G is not SLR.



### Exercise (I)

#### Example

Construct the SLR parsing table for  $G_6$ .

- (1)  $E \longrightarrow E+T$
- $(2) \quad E \quad \longrightarrow \quad T$
- $(3) \quad T \quad \longrightarrow \quad T * F$
- (4)  $T \longrightarrow F$
- $(5) \quad F \quad \longrightarrow \quad (E)$
- $(6) \quad F \quad \longrightarrow \quad \mathbf{id}$

Note:

si means "shift state i".

rj means "reduce rule j".



### Exercise (I)

#### Example

Construct the SLR parsing table for  $G_6$ .

- (1)  $E \longrightarrow E + T$
- (2)  $E \longrightarrow T$
- $(3) \quad T \quad \longrightarrow \quad T * F$
- (4)  $T \longrightarrow F$
- (5)  $F \longrightarrow (E)$
- $(6) \quad F \quad \longrightarrow \quad \mathbf{id}$

Note:

si means "shift state i".

rj means "reduce rule j".



### Exercise (II)

### Example ( • table construction , • automaton )

| STATE  | ACTION |    |    |    |     |     | GOTO |   |    |
|--------|--------|----|----|----|-----|-----|------|---|----|
|        | id     | +  | *  | (  | )   | \$  | E    | T | F  |
| 0      | s5     |    |    | s4 |     |     | 1    | 2 | 3  |
| 1      | 1      | s6 |    |    |     | acc |      |   |    |
| 2      | 1      | r2 | s7 |    | r2  | r2  |      |   |    |
| 2<br>3 |        | r4 | r4 |    | r4  | r4  |      |   |    |
| 4      | s5     |    |    | s4 |     |     | 8    | 2 | 3  |
| 5      | ł      | r6 | r6 |    | r6  | r6  |      |   |    |
| 6      | s5     |    |    | s4 |     |     |      | 9 | 3  |
| 7      | s5     |    |    | s4 |     |     |      |   | 10 |
| 8      |        | s6 |    |    | s11 |     |      |   |    |
| 9      |        | r1 | s7 |    | r1  | r1  |      |   |    |
| 10     |        | r3 | r3 |    | r3  | r3  | 1    |   |    |
| 11     |        | r5 | r5 |    | r5  | r5  |      |   |    |

© Aho et al. (2007)

- The LR parsing algorithm takes a CFG G and an input string w as input and produces a reduction of w to S, the start variable of G.
- Note that the basic algorithm to be presented is a general LR parser.
- Depending on how the parsing table is constructed, we get special types of LR parsers.
- The algorithm uses a stack together with the parse table to parse the input.

- The LR parsing algorithm takes a CFG G and an input string w as input and produces a reduction of w to S, the start variable of G.
- Note that the basic algorithm to be presented is a general LR parser.
- Depending on how the parsing table is constructed, we get special types of LR parsers.
- The algorithm uses a stack together with the parse table to parse the input.

- The LR parsing algorithm takes a CFG G and an input string w as input and produces a reduction of w to S, the start variable of G.
- Note that the basic algorithm to be presented is a general LR parser.
- Depending on how the parsing table is constructed, we get special types of LR parsers.
- The algorithm uses a stack together with the parse table to parse the input.

- The LR parsing algorithm takes a CFG G and an input string w as input and produces a reduction of w to S, the start variable of G.
- Note that the basic algorithm to be presented is a general LR parser.
- Depending on how the parsing table is constructed, we get special types of LR parsers.
- The algorithm uses a stack together with the parse table to parse the input.

### The Algorithm

Given  $G = \langle V, \Sigma, R, S \rangle$  and w.

- **1** Construct  $M_G$  and the parsing table for G.
- 2 Push the start state of  $M_G$  onto the stack.
- 3 While (true) do
  - $\bullet$  s  $\leftarrow$  top of the stack state.
  - $a \leftarrow$  first symbol of w.
  - § If ACTION(s, a) = "shift t", then
    - Push *t* on top of the stack.
    - $w \leftarrow w$  with a removed.
  - **4** If ACTION(s, a) = "reduce  $A \rightarrow \alpha$ ", then
    - **1** Pop  $|\alpha|$  states off the stack.

    - **3** Push GOTO(t, A) onto the stack.
    - ① Output the rule  $A \rightarrow \alpha$ .
  - **5** If ACTION(s, a) = "accept", then break.
  - Else call error-recovery routine.

### Exercise (I)

#### Example

Trace the operation of the LR parsing algorithm given  $G_6$  and input  $i\mathbf{d}*i\mathbf{d}+i\mathbf{d}$ .

### Exercise (II)

### Example ( ightharpoonup algorithm , ightharpoonup automaton , ightharpoonup table )

|      | STACK    | SYMBOLS | INPUT        | ACTION                        |
|------|----------|---------|--------------|-------------------------------|
| (1)  | 0        |         | id*id+id\$   | shift                         |
| (2)  | 0.5      | id      | * id + id \$ | reduce by $F \to \mathbf{id}$ |
| (3)  | 0.3      | F       | * id + id \$ | reduce by $T \to F$           |
| (4)  | 0 2      | T       | *id + id \$  | shift                         |
| (5)  | 0 2 7    | T*      | id + id \$   | shift                         |
| (6)  | 0275     | T*id    | + id \$      | reduce by $F \to id$          |
| (7)  | 0 2 7 10 | T * F   | + id \$      | reduce by $T \to T * F$       |
| (8)  | 0 2      | T       | + id \$      | reduce by $E \to T$           |
| (9)  | 0 1      | E       | + id \$      | shift                         |
| (10) | 016      | E +     | id \$        | shift                         |
| (11) | 0165     | E + id  | \$           | reduce by $F \to id$          |
| (12) | 0163     | E+F     | \$           | reduce by $T \to F$           |
| (13) | 0169     | E+T     | \$           | reduce by $E \to E + 2$       |
| (14) | 0.1      | E       | \$           | accept                        |

#### **Grammars Not SLR**

#### Example

Consider the following grammar  $G_7$ :

$$\begin{array}{ccc}
S & \longrightarrow & L=R \mid R \\
L & \longrightarrow & *R \mid \mathbf{id} \\
R & \longrightarrow & L
\end{array}$$

### Grammars Not SLR: States

### Example

$$\begin{array}{ll} I_0 \colon & S' \to \cdot S \\ & S \to \cdot L = R \\ & S \to \cdot R \\ & L \to \cdot *R \\ & L \to \cdot \mathbf{id} \\ & R \to \cdot L \end{array}$$

$$I_1: S' \to S$$

$$I_2: S \to L \cdot = R$$
  
 $R \to L \cdot$ 

$$I_3: S \to R$$

$$I_4: \quad L \to * \cdot R \\ R \to \cdot L \\ L \to \cdot * R \\ L \to \cdot \mathbf{id}$$

$$I_5: L \rightarrow id$$

$$I_6: \quad S \to L = \cdot R$$

$$R \to \cdot L$$

$$L \to \cdot *R$$

$$L \to \cdot id$$

$$I_7: L \to *R$$

$$I_8$$
:  $R \to L$ ·

$$I_9$$
:  $S \to L = R$ ·

#### Example

- Due to  $(S \rightarrow L.=R)$ , we get "shift 6".
- But  $= \in Follow(R)$ . (Why?)
- Thus, due to  $(R \to L)$ , we get "reduce  $R \to L$ ".
- Hence, a shift/reduce conflict.

#### Example

- Due to  $(S \rightarrow L.=R)$ , we get "shift 6".
- But  $= \in Follow(R)$ . (Why?)
- Thus, due to  $(R \to L)$ , we get "reduce  $R \to L$ ".
- Hence, a shift/reduce conflict.

#### Example

- Due to  $(S \rightarrow L.=R)$ , we get "shift 6".
- But  $= \in Follow(R)$ . (Why?)
- Thus, due to  $(R \to L)$ , we get "reduce  $R \to L$ ".
- Hence, a shift/reduce conflict.

#### Example

- Due to  $(S \rightarrow L.=R)$ , we get "shift 6".
- But  $= \in Follow(R)$ . (Why?)
- Thus, due to  $(R \to L)$ , we get "reduce  $R \to L$ ".
- Hence, a shift/reduce conflict.