RESULT OF EDA ANALYSIS

I used the 1% sample data from 8th of February until 14th of February 2021.

There are total 19 variables, but I reduce it until it became 17 variables. Reasons: The column of device_id have no values in each row and connection column has many null values so I have to delete these columns.

After doing "cleansing" to the data like deleting the unimportant columns, changing type of data from some columns that need to be changed (like time and event_time to datetime type), I perform the EDA (Exploratory Data Analysis) using statistical method that python has already a feature to. First, I used .describe() to find count, mean, std, min, max for the columns that having int64 as its type (year, month, day) and I have these value to be presented:

	year	month	day
count	393749.0	393749.0	393749.000000
mean	2021.0	2.0	11.000008
std	0.0	0.0	1.999999
min	2021.0	2.0	8.000000
25%	2021.0	2.0	9.000000
50%	2021.0	2.0	11.000000
75%	2021.0	2.0	13.000000
max	2021.0	2.0	14.000000

Gambar 1.1

The calculation looks very simple, because this data is qualitative and no need to perform such a hard calculation.

And here's the type of each column before I start performing EDA

Data	columns (total	17 columns):	
#	Column	Non-Null Count	Dtype
0	id	393749 non-null	object
1	browser_id	393749 non-null	object
2	os_id	393749 non-null	object
3	domain_id	393734 non-null	object
4	device_info_id	393749 non-null	object
5	visit_id	393749 non-null	object
6	visitor_id	393749 non-null	object
7	user_id	16898 non-null	float64
8	login_status	393749 non-null	bool
9	user_agent	393749 non-null	object
10	platform	393749 non-null	object
11	referrer	393735 non-null	object
12	time	393749 non-null	datetime64[ns, UTC]
13	event_time	393749 non-null	datetime64[ns, UTC]
14	year	393749 non-null	int64
15	month	393749 non-null	int64
16	day	393749 non-null	int64

Gambar 1.2

Second, I used the library pandas profiling to resume all the calculation using statistical method in a file KLY_Dian_Nuryani_question_1.html that I have already upload it to my gdrive. And here's the resume that I rewrite it again here to add some explanation that might be needed.

Start with the Variable Analysis

1. id = record ID

Gambar 1.3

From the picture above we can see that all ids is totally **UNIQUE.** The distinct have total 393749 with percentage 100%, and no missing value.

2. browser_id = browser type

Gambar 1.4

From the picture above, pandas profiling define browser_id column as high cardinality. There are many ids who use the same type of browser, here's the detail count of each browser type:

Gambar 1.5

The top browser type is **Chrome mobile**; **88.0.4324** with the frequency 20.3%

3. os_id = Operating System type

Gambar 1.6

From the picture above, pandas profiling define os_id column as high cardinality. There are many ids who use the same type of operating system, here's the detail count of each operating system:

Common Values	Overview	
Value	Count	Frequency (%)
android;10	106787	27.1%
android;9	73418	18.6%
android;8.1.0	57611	14.6%
windows;10	29694	7.5%
android;6.0.1	13229	3.4%
android;7.1.2	11757	3.0%
windows;7	11485	2.9%
android;7.1.1	11359	2.9%
android;5.1.1	10854	2.8%
android;7.0	8918	2.3%
Other values (247)	58637	14.9%

Gambar 1.7

The top browser type is **Android**; **10** with the frequency 27.1%

4. domain_id = domain or subdomain of webpage

Gambar 1.8

From the picture above, pandas profiling define domain_id column as high cardinality and have high correlation with id. Domain_id shows how much each id visit the domain, here's the detail count of each domain_id:

Gambar 1.9

The top browser type is m.kapanlagi.com with the frequency 20.5%

5. device_info_id = device detail information

Gambar 1.10

From the picture above, pandas profiling define device_info_id column as high cardinality. Device_info_id device detail information. Having distinct 0.6%, here's the detail count of each device_info_id:

Common Values	Overview	
Value	Count	Frequency (%)
generic;generic sn	artphone 94170	23.9%
;other	47531	12.1%
generic_android;w	17007	4.3%
apple;iphone	16574	4.2%
generic_android;c	11803 5076	1.3%
generic_android;c	11909 5075	1.3%
xiaomi;xiaomi redr	6a 4809	1.2%
xiaomi;xiaomi redr	note 8 4349	1.1%
xiaomi;xiaomi redr	5a 4300	1.1%
samsung;samsung	sm-g610f 3777	1.0%
Other values (243	191081	48.5%
		A

Gambar 1.11

The top browser type is **generic;generic;smartphone** with the frequency 23.9%

6. visit_id = users session id

visit_id Categorical HIGH CARDINALITY UNIFORM	Distinct Distinct (%)	387502 98.4%	8d7a9c48-cf7f-4c3d-97d1-9f18f962d0b2 104 a7e45b49-37dc-49d4-888e-bd2ba2699 82
	Missing	0	ee3f8bf5-e062-48c0-8729-ecfb7c6fab50
UNIFORM	Missing (%)	0.0%	37ae104a-a3b4-4bb1-a3fa-d82aa36d4a ³⁶ Other values (387497) 393394
	Memory size	3.0 MiB	

Gambar 1.12

From the picture above, pandas profiling define visit_id column as high cardinality and uniform distributed. **Almost have UNIQUE** values with the distinct is 98.4%, here's the detail count of each visit_id:

Common Values	Overview			
Value		Count	Frequency (%)	
8d7a9c48-cf7f-4c3	d-97d1-9f18f962d0b2	104	< 0.1%	
a7e45b49-37dc-49	9d4-888e-bd2ba2699291	82	< 0.1%	
ee3f8bf5-e062-486	c0-8729-ecfb7c6fab50	69	< 0.1%	
8e0f6d3a-0d22-4f.	28-9285-abd11b32b04b	64	< 0.1%	
37ae104a-a3b4-4	pb1-a3fa-d82aa36d4aa3	36	< 0.1%	
006e34da-1018-4	744-bf71-1994ee19628b	35	< 0.1%	
7410c83b-a566-4	da3-93de-50b37adc1c2a	33	< 0.1%	
94e5a008-7615-4	d42-b968-eab3243ae218	24	< 0.1%	
639a7c50-d336-4	c9b-8da5-25f8cd695d3a	22	< 0.1%	
70994b54-3cbe-4l	pea-9234-1b65fcff5e1c	21	< 0.1%	
Other values (387	492)	393259	99.9%	Activate Windows

Gambar 1.13

All these visit id have percentage below 0.1%. That's why this variable almost UNIQUE.

7. visitor_id = unique user id

Gambar 1.14

From the picture above, pandas profiling define visitor_id column as high cardinality and uniform distributed. **Almost have UNIQUE** values with the distinct is 96.4%, here's the detail count of each visitor_id:

Gambar 1.15

The visitor_id variable goes the same with visit_id. All these visitor_id have percentage below 0.1%. That's why this variable **almost UNIQUE.**

8. user_id = user login id

Gambar 1.16

From the picture above, pandas profiling define user_id column as missing. There are many missing values, it means, many users do not log in to the website page, This might be indicating that users are just scrolling or visit the website without sign in. Having distinct value in 96.7%, here's the detail of each user_id:

- Statistics

tatistics Histogram Common v	values Extreme values		Toggle d
Quantile statistics		Descriptive statistics	
Minimum	4	Standard deviation	13079164.9
5-th percentile	22409817.7	Coefficient of variation (CV)	0.2677747763
Q1	42924471	Kurtosis	2.606767474
median	54662745.5	Mean	48843901.88
Q3	58017062.75	Median Absolute Deviation (MAD)	4392409.5
95-th percentile	59489923.75	Skewness	-1.682944873
Maximum	59751864	Sum	8.253642539e+11
Range	59751860	Variance	1.710645544e+14
Interquartile range (IQR)	15092591.75	Monotocity	Not monotonic

Gambar 1.17

The picture shows statistics calculation on this user_id variable.

- Extreme values

Gambar 1.18

Extreme values shows how much user_id visit the website. The most often shows that user_id = 4 have visited domain in 32 rimes.

9. login_status = boolean status of user login

Gambar 1.19

From the picture above we can conclude that many users do not log in when they visit the website. The percentage for the log in users is 4.3% and percentage for the "not log-in" users is 95.7%.

10. user_agent = browsers user agent details

From the picture above, pandas profiling define user_agent column as high cardinality. The distinct is 23.3%, here's the details count for each user agent:

Gambar 1.21

The top browsers user agenty is **Mozilla/5.0** with frequency 3%.

11. platform = device platform, ie desktop or mobile

From the picture above we can see the flatform column have high correlation. Users have visited domains via web-mobile with 86.7% total and via web-desktop with 13.3%.

12. referrer = attribution of the visit, source of visitor coming from

referrer	Distinct	121287	https://m.vidio.com/live/665-rcti	2759
Categorical			https://m.merdeka.com	2594
Catogorium	Distinct (%) 30.8	30.8%	https://m.vidio.com/	2126
HIGH CARDINALITY	Missing	14	https://m.kapanlagi.com	2037
	Missing (%)	< 0.1%	https://m.brilio.net/selebritis/potret-10-se	1962
	Missing (%)	< 0.176	Other values (121282)	382257
	Memory size	3.0 MiB		

Gambar 1.23

From the picture above, referrer has high cardinality, the distinct is 30.8%. We also can see that the source of visitor coming is very diverse. Here's the detail count of each source:

Gambar 1.23

The top source is from **vidio.com/665-rcti** with frequency 0.7%. There is just a little difference between the first place and the second, it shows that the source is very evenly.

13. time = users visit time

The picture above shows that time variable might have high chance to become unique, just a few users who have exactly visit the same time. The distinct is 70.7%, and this time column has high cardinality and uniform distributed.

14. event_time = logging time

Gambar 1.25

Same for the time variable, the even_time shows very diverse in time. just a few users who have exactly visit the same time. The distinct is 70.8%. Also this event_time column has high cardinality and uniform distributed.

CORRELATION

Pandas profiling have feature to calculate the correlation using various method, but here I will present correlation between variables = domain_id, user_id, login_status, platform, and day using Phik method.

