

GPIO

GENERAL PURPOSE INPUT/OUTPUT PINS

CARACTERÍSTICAS DOS GPIOS

Cada pino pode ser ajustado individualmente

- Direção (Entrada ou Saída)
- Nível Lógico, se saída.
- Habilitação do resistor de Pull-up, se entrada.

Corrente máxima

De cada pino: 20 mA

De cada porta: 100 mA

Total do micro: 200 mA

- DDRx: registrador de direção, usado para definir se os pinos da porta X são entradas ou saídas.
- **PORTx**: registrador de dados, usado para escrever nos pinos da porta X, caso saída ou habilitar os resistores de Pull-up, caso entrada.
- PINx: registrador de entrada, usado para ler o conteúdo dos pinos do PORTx.
- MCUCR: o bit 4 desse registrador (PUD Pull-up Disable) habilita ou desabilita todos os resistores de Pull-up

DDRxn	PORTxn	PUD	I/O	Pull-up Hab?	Comentário
0	0	X	Entrada	Não	Alta impedância
0	I	0	Entrada	Sim	Entrada em 1 caso NC
0	I	I	Entrada	Não	Alta impedância
I	0	X	Saída	Não	Saída em 0
I	I	x	Saída	Não	Saída em I

• Exemplo: Botão e LED com e sem resistor de pull-up

MÁSCARAS DE BITS

- & AND bit a bit: usado para limpar bits, colocar em 0
- | OR bit a bit: usado para ativar bits, colocar em |
- ^ XOR bit a bit: usado para trocar o estado dos bits

Exemplo:


```
0601001000
0601001010
```

0b0100100 ^ 0b0000000 I 0b0100100 I

• Exemplo: Contador com display de 7 segmentos

• Exemplo: Contador com display de 7 segmentos

N°	PC6	PC5	PC4	PC3	PC2	PCI	PC0	HEX
0	I	I	I	I	I	I	0	0x7E
I	0	l	1	0	0	0	0	0x30
2	I	I	0	I	I	0	I	0x6D
3	I	l	I	I	0	0	I	0x79
4	0	I	I	0	0	I	I	0×33
5	I	0	I	I	0	-	I	0x5B
6	I	0	I	- 1	I	-	I	0×5F
7	I	I	I	0	0	0	0	0×70
8	I	I	I	I	I		I	0x7F
9	I	l	1	İ	0	I	1	0x7B

BOUNCING

• Bounce: Existe um ruído ao pressionar qualquer tipo de botão mecânico

Ruído em um botão real

Solução simplista: Adicionar um **delay**

REFERÊNCIAS

IDE

Atmel Studio 7 (gratuito) https://www.microchip.com/mplab/avr-support/atmel-studio-7

Simuladores

- https://www.simulide.com/p/blog-page.html
- https://github.com/lcgamboa/picsimlab/releases
- https://www.labcenter.com/downloads/

Material de referência:

- Datasheet do Atmega 328p: https://www.microchip.com/wwwproducts/en/ATmega328p#datasheet-toggle
- Livro texto: http://borgescorporation.blogspot.com/2012/05/avr-e-arduino-tecnicas-de-projeto.html

