실험계획과 응용

제5강(5장) 래덤화블록계획과 라틴정방계획

- 5.1 랜덤화블록계획
- 5.2 라틴정방계획 (Latin Square Design)
- 5.3 라틴정방의 구축

정보통계학과 백재욱 교수

제5강 랜덤화블록계획과 라틴정방계획

랜덤화블록계획

랜덤화블록계획 = 4.4절의 혼합모형

completely randomized design

<표 5-1> 완전랜덤화계획의 예

비료				
I	II	III		
농지 8	농지 9	농지 5		
농지 2	농지 1	농지 7		
농지 3	농지 4	농지 6		

randomized block design

<표 5-2> 랜덤화블록계획의 예

비료					
토질	I	II	III		
보통	농지 2	농지 3	농지 1		
진흙	농지 4	농지 6	농지 5		
모래	농지 9	농지 8	농지 7		

〈그림 5-1〉 랜덤화블록계획

◆ 랜덤화블록계획의 통계모형

$$x_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$$
(5.1)
 $i = 1, 2, \dots, a; j = 1, 2, \dots, b$

- μ는 전체평균
- τ_i 는 고정요인인 관심요인의 i 번째 수준의 효과
- β_i 는 블록요인의 j 번째 수준의 효과
- ϵ_{ij} 는 오차항으로 서로 독립인 $N(0, \sigma_E^2)$ 를 따름

◆ 우리의 관심 가설

$$H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0$$
 vs $H_1: 적어도 한 \tau_i 는 0이 아니다.$

<표 5-3> 랜덤화블록계획의 분산분석표

요인	제곱합	자유도	평균제곱	$\boldsymbol{F_0}$
요인 <i>A</i>	SS_A	a-1	MS_A	MS_A/MS_E
블록요인 <i>B</i>	SS_B	b - 1	MS_B	
E	SS_E	(a-1)(b-1)	MS_E	
T	SS_T	ab-1		

예 5.1 4일간(B1, B2, B3, B4) 가열온도(A)를 A1=70℃, A2=80℃, A3=90℃로 랜덤하게 변화시켜 실험한 후 제품강도를 측정하였다. 가열온도가 제품의 강도에 영향을 미치는가?

<표 5-4> 플라스틱 제품의 강도

실험일 온 도	B ₁	B ₂	B ₃	B ₄	합	평 균
A_1	98.0	99.0	98.6	97.6	393.2	98.3
A_2	97.7	98.0	98.2	97.3	391.2	97.8
A_3	96.5	97.9	96.9	96.7	388.0	97.0
합	292.2	294.9	293.7	291.6	1172.4	
평 균	97.4	98.3	97.9	97.2		97.7

물이 (1) 변동의 계산

$$CT = \frac{T^2}{ab} = \frac{1172.4^2}{12} = 114543.48$$

$$SS_T = \sum_i \sum_j x^2_{ij} - CT = 114549.7 - 114543.48 = 6.22$$

$$SS_A = \sum_i \frac{T_i^2}{b} - CT = \frac{1}{4}(393.2^2 + 391.2^2 + 388^2) - CT = 3.44$$

$$SS_B = \sum_j \frac{T_j^2}{a} - CT = \frac{1}{3}(292.2^2 + 294.9^2 + 293.7^2 + 291.6^2) - CT = 2.22$$

$$SS_E = SS_T - SS_A - SS_B = 0.56$$

풀이 (2) 자유도 계산

- 총 변동 : $\phi_T = ab 1 = 11$
- 요인 A : $\phi_A = a 1 = 2$
- 요인 B : $\phi_B = b 1 = 3$

풀이 (3) 분산분석표의 작성

요인	제곱합	자유도	평균제곱	$\boldsymbol{F_0}$
\boldsymbol{A}	3.44	2	1.72	18.5 **
В	2.22	3	0.74	7.96
E	0.56	6	0.093	
T	6.22	11		

18.5 > F(2, 6; 0.01) = 10.9

의 요인 A는 유의수준 $\alpha = 0.01에서 유의하다. (즉, 가열온도 따라 제품의 강도가 모두 같지는 않다.)$

R 실습

y < -c(98, 99, 98.6, 97.6, 97.7, 98, 98.2, 97.3, 96.5, 97.9, 96.9, 96.7)

 $a \leftarrow c(rep(1, 4), rep(2, 4), rep(3, 4))$

b < -c(rep(c(1, 2, 3, 4), 3))

strength <- data.frame(y, a, b)</pre>

strength\$a <- factor(strength\$a, levels=c(1, 2, 3), labels=c("a1", "a2", "a3"))

strength\$b \leftarrow factor(strength\$b, levels=c(1, 2, 3, 4), labels=c("b1", "b2", "b3", "b4"))

boxplot(y ~ a, data=strength, ylab="강도", main="플라스틱 제품 강도")

R 실습

boxplot(y ~ b, data=strength, ylab="강도", main="플라스틱 제품 강도")

anova \leftarrow aov(y \sim a+b, data=strength) summary(anova)

Df Sum Sq Mean Sq F value Pr(>F)

a 2 3.44 1.7200 18.429 0.00274 **

b 3 2.22 0.7400 7.929 0.01647 *

Residuals 6 0.56 0.0933

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.

제5강 랜덤화블록계획과 라틴정방계획

5.2 라틴정방계획(Latin Square Design)

에 다음과 같을 때 $4 \times 4 \times 4 = 64$ 번 실험을 해야 하나? 너무 많지 않은가? $4 \times 4 = 16(=4^{3-1})$ 번의 실험으로도 효과를 파악할 수 있을까?

- 블록요인 2개 : 수준이 4인 블록요인 1 (사람: 4명), 수준이 4인 블록요인 2 (오븐 내 위치: 4군데)
- 관심요인 1개: 수준이 4인 관심요인 (케이크 종류: 4개)

◆ 라틴정방

- 라틴(Latin)은 A, B, C, D,를 말한다.
- 정방(Square)은 정사각형을 말한다.
- 다음 16번 실험으로 관심요인의 효과를 파악할 수 있다.

■ 행에 블록요인1 배치, 열에 블록요인2 배치, 라틴글자(A, B, C, D)에 관심요인 배치

◆ 실험순서

사람을 우선 랜덤하게 행에 배치하고, 오분 내 위치를 랜덤하게 열에 배치하며, 케이크 종류를 라틴글자에 랜덤하게 배치하여 실험한다.

◆ 모형

- $x_{ijk} = \mu + \rho_i + \gamma_j + \tau_k + \epsilon_{ijk}$, $(i, j, k = 1, \dots, p)$
- ρ_i : i 번째 행의 효과, γ_i : j 번째 열의 효과, τ_k : k 번째 처리의 효과
- 귀무가설 $H_0: \tau_k = 0 \ (k = 1, ..., p)$
- 검정통계량 $F = \frac{MS_{Trt}}{MS_E}$

〈표 5-5〉p × p 라틴정방계획에 대한 분산분석표

요인	제곱합	자유도	평균제곱	$\boldsymbol{F_0}$
R (행블록)	SS_R	p-1	MS_R	
C (열블록)	SS_C	<i>p</i> - 1	MS_C	
Trt	SS_{Trt}	p-1	MS_{Trt}	MS_{Trt}/MS_{E}
E	SS_E	(p-2)(p-1)	MS_E	
T	SS_T	$p^2 - 1$		

 $F_0 > F(p-1,(p-2)(p-1); \alpha)$ 이면 귀무가설 기각 (처리 수준 간 효과에 차이가 없다고는 할 수 없음)

예 5.2 관심사: 5가지 로켓 추진제(Trt)의 성능 비교

블록요인1: 5가지 원료

블록요인2 : 5명의 기사

관심요인 : 5가지 로켓 추진제

〈표 5-6〉로켓 추진제 데이터

0 =	기사					
원료 뭉치	1	2	3	4	5	
1	A = - 1	B= - 5	C = -6	D= - 1	E= - 1	
II	B= -8	C = - 1	D= 5	E= 2	A = 11	
III	C = - 7	D= 13	E= 1	A = 2	B= -4	
IV	D= 1	E= 6	A = 1	B= - 2	C = - 3	
V	E= -3	A = 5	B= - 5	C = 4	D= 6	

풀이

〈표 5-7〉 추진제 데이터에 대한 분산분석표

요인	제곱합	자유도	평균제곱	F
원료(행블 록)	68.00	4	17.00	
기사(열블 록)	150.00	4	37.50	
추진제	330.00	4	82.50	7.73**
오차	128.00	12	10.67	

▶ 추진제 제조공식에 따라 성능이 모두 똑같은 것은 아니다. 그러면 어느 것이 가장 좋은가? 추후분석이 필요하다!

R 실습

```
 y <-c(-1,-5,-6,-1,-1,-8,-1,5,2,11,-7,13,1,2,-4,1,6,1,-2,-3,-3,5,-5,4,6) 
 row <-factor(c(rep(1, 5), rep(2, 5), rep(3, 5), rep(4, 5), rep(5, 5))) 
 col <-factor(c(rep(c(1, 2, 3, 4, 5), 5))) 
 trt <-c("a","b","c","d","e","b","c","d","e","a","c","d","e","a","b","d","e","a","b","c","e","a","b","c","d") 
 rocket.data <-data.frame(y, row, col, trt) 
 boxplot(rocket.data\$y, rocket.data\$row)
```


R 실습

boxplot(rocket.data\$y, rocket.data\$col)

boxplot(rocket.data\$y, rocket.data\$trt)

anova <- aov(y ~ row+col+trt, data=rocket.data)
summary(anova)</pre>

Df Sum Sq Mean Sq F value Pr(>F)

row 4 68 17.00 1.594 0.23906

col 4 150 37.50 3.516 0.04037 *

trt 4 330 82.50 7.734 0.00254 **

Residuals 12 128 10.67

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0

정보통계학과 백재욱 교수

제5강 랜덤화블록계획과 라틴정방계획

5.3 라틴정방의 구축

5.3 라틴정방의 구축

5.3 라틴정방의 구축

예 4 × 4 라틴정방 표준형: 4개

Α	В	С	D
В	С	D	Α
	D	Α	В
ח	Α	В	С

А В С	D
R A D	С
	Α

A	В	C	D
В	D	Α	C
C	Α	D	В
ח	С	В	Α

예 5 ×5 라틴정방 표준형: 56개

5.3 라틴정방의 구축

<삼원배치법과의 관계>

< 4 × 4 그레코라틴정방계획>

÷11		(열	
행	1	2	3	4
1	$A\alpha$	$B\beta$	$C\gamma$	$D\delta$
2	$B\delta$	Αγ	$D\beta$	$C\alpha$
3	Сβ	$D\alpha$	$A\delta$	$B\gamma$
4	Dγ	Сδ	$B\alpha$	$A\beta$

실험순서: 라틴정방계획의 실험순서와 유사

다음 시간 안내

제6강 (6장)

회귀분석과 공분산분석