Solution de la Série $N^{o}1$: Statistique descriptive & dénombrement

Exercice 1

Pour les deux tableaux de données triées ci-dessous, donner les valeurs extrêmes, la médiane, le premier quartile et le troisième quartile. Calculer la moyenne.

Table 1 – Taille (en cm) de 45 enfants de 5 à 7 ans

104	111	114	117	120
107	112	114	117	120
107	112	115	117	121
107	112	115	118	121
108	112	115	118	122
108	113	115	118	123
109	113	115	119	123
110	114	116	119	125
111	114	116	120	128

Table 2 – Cent nombres aléatoires de 1 à 40

1	5	9	13	18	22	26	29	31	36
1	5	9	14	19	22	27	29	31	36
1	5	10	14	19	22	27	30	31	37
1	6	10	14	19	23	27	30	32	37
2	6	11	14	21	23	27	30	32	37
2	7	11	15	21	23	27	30	32	37
3	8	11	15	22	23	28	30	33	38
4	8	12	16	22	24	28	30	34	38
4	8	12	16	22	25	29	31	35	39
5	9	12	17	22	26	29	31	35	39

Tableau à remplir

	minimum	quartile q_1	médiane	quartile q_3	maximum	moyenne
Tailles						
Nombres						

Solution:

1. Le tableau correspondant à l'étude du tableau 1 : Pour caalculer la médiane, on utilise la formule suivante

$$\mathcal{M} = \left\{ \begin{array}{l} X_{\frac{n+1}{2}}, & \text{si } n \text{ est impair,} \\ \frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2}, & \text{sinon.} \end{array} \right.$$

Tableau à remplir

Note x_i	104	107	108	109	110	111	112	113	114	115	116
Effectif n_i	1	3	2	1	1	2	4	2	4	5	2
Fréquence f_i	$\frac{1}{45}$	$\frac{3}{45}$	$\frac{2}{45}$	$\frac{1}{45}$	$\frac{1}{45}$	$\frac{2}{45}$	$\frac{4}{45}$	$\frac{2}{45}$	$\frac{4}{45}$	$\frac{\frac{5}{45}}{\frac{25}{45}}$	$\frac{\frac{2}{45}}{\frac{27}{45}}$
Fréquence f_{c_i}	$\frac{1}{45}$	$\frac{4}{45}$	$\frac{6}{45}$	$\frac{7}{45}$	$\frac{8}{45}$	$\frac{10}{45}$	$\frac{14}{45}$	$\frac{16}{45}$	$\frac{20}{45}$	$\frac{25}{45}$	$\frac{27}{45}$
Produit : $n_i x_i$	104	321	216	109	110	222	448	226	456	575	232
Note x_i	117	118	119	120	121	122	123	125	128		
Effectif n_i	3	3	2	3	2	1	2	1	1		
Fréquence f_i	$\frac{3}{45}$	$\frac{3}{45}$	$\frac{2}{45}$	$\frac{3}{45}$	$\frac{2}{45}$	$\frac{1}{45}$	$\frac{2}{45}$	$\frac{1}{45}$	$\frac{1}{45}$		
Fréquence f_{c_i}	$\frac{3}{45}$ $\frac{30}{45}$	$\frac{33}{45}$	$\frac{35}{45}$	$\frac{38}{45}$	$\frac{40}{45}$	$\frac{41}{45}$	$\frac{43}{45}$	$\frac{44}{45}$	1		
Produit: $n_i x_i$	341	354	238	360	242	122	246	125	128		

avec n=45 est impair; donc $M=X_{\frac{45+1}{2}}=X_{23}=115$ est le terme de la série statistique se trouvant la 23ème position.

La moyenne de la série statistique est calculée par la formule suivante

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{\sum_{i=1}^{p} n_i X_i}{\sum_{i=1}^{p} n_i} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{n}$$

donc

$$\bar{X} = \frac{n_1 x_1 + n_2 x_2 + \ldots + n_p x_p}{n}$$

$$= \frac{104 + 321 + 216 + 109 + 110 + 222 + 448 + 226 + 456 + 575 + 232}{45}$$

$$+ \frac{341 + 354 + 238 + 360 + 242 + 122 + 246 + 125 + 128}{45} = \frac{5176}{45}$$

d'où $\bar{X}=115.0222\approx 115.$ D'où la médiane est égale à la moyenne.

Table 5 – Tableau à remplir.

	minimum	quartile q_1	médiane	quartile q_3	maximum	moyenne
Tailles	104	112	115	119	128	115
Nombres						

D'après le tableau 5, on remarque que $q_3 - \bar{X} = 119 - 115 = 4 = \bar{X} - q_1$; on en déduit alors que la distribution de cette série statistique est une distribution normale et l'interquartile est $q_3 - q_1 = 119 - 112 = 7$.

2. Le tableau correspondant à l'étude du tableau 2 :

Pour caalculer la médiane, on utilise la formule suivante

$$\mathcal{M} = \left\{ \begin{array}{l} X_{\frac{n+1}{2}}, & \text{si } n \text{ est impair,} \\ \frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2}, & \text{sinon.} \end{array} \right.$$

avec n=100 est impair; donc $M=\frac{X_{50}+X_{51}}{2}=\frac{22+22}{2}=X_{50}=22$ est le terme de la série statistique se trouvant la 50ème position.

Table 6 – Tableau à remplir

Note x_i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Effectif n_i	4	2	1	2	4	2	1	3	3	2	3	3	1	4	2
Fréquence f_i	$\frac{4}{100}$	$\frac{2}{100}$	$\frac{1}{100}$	$\frac{2}{100}$	$\frac{4}{100}$	$\frac{2}{100}$	100	$\frac{3}{100}$	$\frac{3}{100}$	$\frac{2}{100}$	3 100	$\frac{3}{100}$	$\frac{1}{100}$	$\frac{4}{100}$	$\frac{2}{100}$
Fréquence f_{c_i}	$\frac{4}{100}$	$\frac{6}{100}$	$\frac{7}{100}$	$\frac{9}{100}$	$\frac{13}{100}$	15 100	$\frac{16}{100}$	19 100	$\frac{22}{100}$	$\frac{24}{100}$	$\frac{27}{100}$	30 100	$\frac{31}{100}$	35 100	$\frac{37}{100}$
Produit : $n_i x_i$	4	4	3	8	20	12	7	24	27	20	33	36	13	56	30
Note x_i	16	17	18	19	21	22	23	24	25	26	27	28	29	30	31
Effectif n_i	2	1	1	3	2	7	4	1	1	2	5	2	4	6	5
Fréquence f_i	$\frac{2}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{3}{100}$	$\frac{2}{100}$	$\frac{7}{100}$	$\frac{4}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{2}{100}$	$\frac{5}{100}$	$\frac{2}{100}$	$\frac{4}{100}$	$\frac{6}{100}$	$\frac{5}{100}$
Fréquence f_{c_i}	$\frac{39}{100}$	$\frac{40}{100}$	$\frac{41}{100}$	$\frac{44}{100}$	$\frac{46}{100}$	$\frac{53}{100}$	$\frac{57}{100}$	$\frac{58}{100}$	$\frac{59}{100}$	$\frac{61}{100}$	$\frac{66}{100}$	$\frac{68}{100}$	$\frac{72}{100}$	$\frac{78}{100}$	$\frac{83}{100}$
Produit : $n_i x_i$	32	17	18	57	42	154	92	24	25	52	135	56	116	180	155
Note x_i	32	33	34	35	36	37	38	39							
Effectif n_i	3	1	1	2	2	4	2	2							
Fréquence f_i	$\frac{3}{100}$	$\frac{1}{100}$	$\frac{1}{100}$	$\frac{2}{100}$	$\frac{2}{100}$	$\frac{4}{100}$	$\frac{2}{100}$	$\frac{2}{100}$							
Fréquence f_{c_i}	$\frac{86}{100}$	$\frac{87}{100}$	$\frac{88}{100}$	$\frac{90}{100}$	$\frac{92}{100}$	$\frac{96}{100}$	$\frac{98}{100}$	1							
Produit : $n_i x_i$	96	33	34	70	72	148	76	39							

La moyenne de la série statistique est calculée par la formule suivante

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{\sum_{i=1}^{p} n_i X_i}{\sum_{i=1}^{p} n_i} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{n}$$

donc

$$\bar{X} = \frac{n_1 x_1 + n_2 x_2 + \ldots + n_p x_p}{n}$$

$$= \frac{4 + 4 + 3 + 8 + 20 + 12 + 7 + 24 + 27 + 20 + 33 + 36 + 13 + 56 + 30}{100} + \frac{32 + 17 + 18 + 57 + 42 + 154 + 92 + 24 + 25 + 52 + 135 + 56 + 116 + 180 + 155}{100} + \frac{96 + 33 + 34 + 70 + 72 + 148 + 76 + 78}{100} = \frac{2059}{100}$$

d'où $\bar{X}=20.59$ D'où la médiane et la moyenne ne sont égales.

Table 7 – Tableau à remplir

	minimum	quartile q_1	médiane	quartile q_3	maximum	moyenne
Tailles						
Nombres	1	11	22	30	39	20.59

D'après le tableau 7, on remarque que $q_3 - \bar{X} = 30 - 20.59 = 9.41 \approx 9.59 = \bar{X} - q_1$; on en déduit alors que la distribution de cette série statistique est une distribution normale et l'interquartile est $q_3 - q_1 = 30 - 11 = 19$.

Exercice 2

On propose de calculer l'écart-type d'une série statistique simple, connaissant la distribution. Sur un stand de dégustation de gâteaux, on a demandé à 80 personnes de donner une note de 1 à Le tableau suivant va permettre de calculer la moyenne, puis l'écart-type.

Table 8 – Tableau à remplir

Note x_i	1	2	3	4	5	6
Effectif	2	10	14	24	20	10
Produit: $n_i \times x_i$						
Différence à la moyenne : $x_i - \bar{x}$						
Carré de l'écart : $(x_i - \bar{x})^2$						
Prduit: $n_i \times (x_i - \bar{x})^2$						

- 1. (a) Compléter la ligne "Produit : $n_i \times x_i$ " de ce tableau. Calculer la moyenne \bar{x} .
 - (b) Compléter les autres lignes. Calculer la somme des produits de la dernière ligne.
 - (c) Calculer la variance σ^2 de cette série statistique.
 - (d) En déduire l'écart-type σ de cette série statistique.
- 2. (a) Quelles sont les notes situées à plus d'un écart-type de la moyenne?
 - (b) Quel est le pour centage de personnes ayant donné une note située dans l'intervalle $[\bar{x} - \sigma, \bar{x} + \sigma]$?

Solution : On propose de calculer l'écart-type d'une série statistique simple, connaissant la distribution. Sur un stand de dégustation de gâteaux, on a demandé à 80 personnes de donner une note de 1 à 6. Le tableau suivant va permettre de calculer la moyenne, puis l'écart-type.

Table 9 – Tableau à remplir

Note x_i	1	2	3	4	5	6
Effectif	2	10	14	24	20	10
Produit: $n_i \times x_i$	2	20	42	96	100	60
Différence à la moyenne : $x_i - \bar{x}$	-3	-2	-1	0	1	2
Carré de l'écart : $(x_i - \bar{x})^2$	6	4	1	0	1	4
Prduit: $n_i \times (x_i - \bar{x})^2$	6	8	3	0	3	8

1. (a) Voir le tableau 9 que la ligne "Produit : $n_i \times x_i$ " a été bien remplie. Calculons la moyenne \bar{x} : par définition on a

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{\sum_{i=1}^{p} n_i X_i}{\sum_{i=1}^{p} n_i} = \frac{n_1 x_1 + n_2 x_2 + \ldots + n_p x_p}{n}$$

avec n = 80; alors

$$\bar{X} = \frac{2+20+42+96+100+60}{80} = \frac{320}{80} = 4.$$

(b) Voir le tableau 9 que les autres lignes sont compléter. Calculons la somme des produits de la dernière ligne :

$$\sum_{i=1}^{6} n_i (x_i - \bar{x})^2 = 6 + 8 + 3 + 0 + 3 + 8 = 28$$

(c) Par définition, la variance σ^2 de cette série statistique est calculée par la formule suivante :

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2 = \frac{28}{80} = 0.35$$

(d) Par définition, l'écart-type σ de cette série statistique est la racine carrée positive de sa variance, soit

$$\sigma = \sqrt{0.35} = 0.5916 \simeq 0.6$$

- 2. (a) Les notes situées à plus d'un écart-type de la moyenne sont les notes supérieures à $\bar{X} + 1\sigma = 4 + 0.6 = 4.6$; c'est à dire elles sont 5 et 6 puisque les notes 5 et 6 qui se trouvent supérieures à 4.6.
 - (b) Le pour centage de personnes ayant donné une note située dans l'intervalle $[\bar x-\sigma,\bar x+\sigma]$: en effet, l'intervalle

$$[\bar{x} - \sigma, \bar{x} + \sigma] = [4 - 0.6, 4 + 0.6] = [3.4; 4.6]$$

alors la seule note située dans cet intervalle est la note 4 d'effectif $n_4=24$; alors sa fréquence $f_4=\frac{24}{80}=0.3$; donc le pourcentage de personnes ayant donné une note située dans l'intervalle $[\bar{x}-\sigma,\bar{x}+\sigma]=[3.4;4.6]$ est $0.3\times 100=30\%$.

Remarque : L'intervalle $[\bar{x} - \sigma, \bar{x} + \sigma] = [3.4; 4.6]$ n'est pas une plage de normalité car le pourcentage de personnes ayant donné une note située dans l'intervalle ne dépasse pas 30% alors que la palage de normalité impose qu'un intervalle de type $[\bar{x} - k\sigma, \bar{x} + k\sigma]$ où $k \in \mathbb{N}$ devait contenir un pourcentage supérieur à 95%.

Exercice 3

Une marque de chocolat propose des cadeaux dans ces tablettes de 100g. Elle livre 500 tablettes de chocolat noir, 300 de chocolat au lait et 200 de fourré noisettes.

20% des tablettes au lait, 10% de celles au chocolat noir et 30% de celles fourré noisettes contiennent un cadeau.

- 1. Dresser le tableau ® donnant la fréquence des cadeaux selon le type de tablettes de chocolat.
- 2. Dresser le tableau (\$) des effectifs. Quel est le pourcentage de tablettes contenant un cadeau ?

R	Cadeau	pas de cadeau	total
au lait			
noir			
fourré noisettes			
ensemble			
S	Cadeau	pas de cadeau	total
© au lait	Cadeau	pas de cadeau	total
0	Cadeau	pas de cadeau	total
au lait	Cadeau	pas de cadeau	total

Solution : Une marque de chocolat propose des cadeaux dans ces tablettes de 100g. Elle livre 500 tablettes de chocolat noir, 300 de chocolat au lait et 200 de fourré noisettes.

20% des tablettes au lait, 10% de celles au chocolat noir et 30% de celles fourré noisettes contiennent un cadeau

A partir d'un tableau de répartition selon deux caractères, $\mathbb R$ et $\mathbb S$, on peut établir trois tableaux :

- Tableau des fréquences : chaque cellule est divisée par la somme de toutes les cellules ;
- Tableau des fréquences en lignes : chaque cellule est divisée par la somme des cellules de la même ligne ; ce tableau donne la fréquence du caractère (S) selon le critère (R).
- Tableau des fréquences en colonnes : chaque cellule est divisée par la somme des cellules de la même colonne ; ce tableau donne la fréquence du caractère ® selon le critère ⑤.
- 1. Dresser le tableau (R) donnant la fréquence des cadeaux selon le type de tablettes de chocolat.

®	Cadeau	pas de cadeau	total
au lait	$\frac{60}{300} = 0.2$	$\frac{240}{300} = 0.8$	1
noir	$\frac{50}{500} = 0.1$	$\frac{450}{500} = 0.9$	1
fourré noisettes	$\frac{60}{200} = 0.3$	$\frac{140}{200} = 0.7$	1
ensemble	$\frac{170}{1000} = 0.17$	$\frac{830}{1000} = 0.83$	1

On dit $0.2 \times 100 = 20\%$ des tablettes au lait contenant un cadeau.

On dit $0.9 \times 100 = 90\%$ des tablettes au chocolat noir ne contiennet pas de un cadeau.

2. Dresser le tableau ® des effectifs.

S	Cadeau	pas de cadeau	total
au lait	$\frac{60}{170} = 0.3529$	$\frac{240}{830} = 0.2892$	$\frac{300}{1000} = 0.3$
noir	$\frac{50}{170} = 0.2941$	$\frac{450}{830} = 0.5422$	$\frac{500}{1000} = 0.5$
fourré noisettes	$\frac{60}{170} = 0.3529$	$\frac{140}{830} = 0.1687$	$\frac{200}{1000} = 0.2$
ensemble	1	1	1

On dit 35.29% de tablettes contenant un cadeau sont des chocolats au lait. 29.41% de tablettes contenant un cadeau sont des chocolats noir.

Ensuite on a le tableau (S) des effectifs

	Cadeau	pas de cadeau	total
au lait	60	240	300
noir	50	450	500
fourré noisettes	60	140	200
ensemble	170	830	1000

Le pour centage de tablettes contenant un cadeau est de $\frac{170}{1000}\times 100=17\%.$

Exercice 4

Soit n et p des entiers naturels tel que $p \leq n$; on définit le nombre C_n^p par : $C_n^p = \frac{n!}{p!(n-p)!}$

- 1. Montrer que $\forall n>0,\,\forall p\leq n,\,\forall k\leq n$ on a : $C^k_nC^{p-k}_{n-k}=C^p_nC^k_p$
- 2. Montrer les propriétés suivantes : $C_n^p = C_n^{n-p}, \ C_n^p = C_{n-1}^p + C_{n-1}^{p-1}$ et $(C_n^p)^2 \ge 4C_{n-1}^pC_{n-1}^{p-1}$.

- 3. Montrer que (E) : $\mathbf{x}^2 C_n^p \mathbf{x} + C_{n-1}^p C_{n-1}^{p-1} = 0$ admet au moins une solution dans \mathbb{R} .
- 4. En déduire que l'équation (E) admet une unique solution dans \mathbb{R} si et seulement si n=2p. Trouver dans ce cas l'unique solution de l'équation (E).
- 5. Résoudre dans $\mathbb R$ l'équation (E) : puis trouver une condition pour que les solutions soient dans $\mathbb Z$

Peut-on avoir une solution dans \mathbb{N} de l'équation (E)?

Solution : Soit n et p des entiers naturels tel que $p \leq n$; on définit le nombre C_n^p par :

$$C_n^p = \begin{cases} \frac{n!}{p!(n-p)!} & \text{si} \quad n \ge p \\ 0 & \text{si} \quad n < p. \end{cases}$$

1. Montrons que $\forall n>0, \, \forall p\leq n, \, \forall k\leq n \text{ on a}: C_n^kC_{n-k}^{p-k}=C_n^pC_n^k$; en effet

$$C_{n}^{k}C_{n-k}^{p-k} = \frac{n!}{k!(n-k)!} \frac{(n-k)!}{(p-k)!(n-p)!}$$

$$= \underbrace{\frac{n!}{p!(n-p)!}}_{C_{p}^{k}} \underbrace{\frac{p!}{(p-k)!(p-k)!}}_{C_{k}^{k}}$$

d'où le résultat $C_n^k C_{n-k}^{p-k} = C_n^p C_n^k$

2. Montrons les propriétés suivantes

$$C_n^p = C_n^{n-p}, \ C_n^p = C_{n-1}^p + C_{n-1}^{p-1} \text{ et } (C_n^p)^2 \ge 4C_{n-1}^p C_{n-1}^{p-1}$$

- on a
$$C_n^{n-p} = \frac{n!}{(n-p)!p!} = \frac{n!}{p!(n-p)!} = C_n^p$$
;
- on a aussi

$$C_{n-1}^p + C_{n-1}^{p-1} = \frac{(n-1)!}{(n-p-1)!p!} + \frac{(n-1)!}{(n-p)!(p-1)!} = \frac{(n-1)!}{(n-p-1)!(p-1)!} \left[\frac{1}{p} + \frac{1}{n-p} \right]$$

donc

$$C_{n-1}^p + C_{n-1}^{p-1} = \frac{(n-1)!}{(n-p-1)!(p-1)!} \frac{n}{p(n-p)} = \frac{n!}{(n-p)!p!}$$

d'où

$$C_{n-1}^p + C_{n-1}^{p-1} = \frac{n!}{(n-p)!p!} = C_n^p.$$

- on a

$$(C_n^p)^2 - 4C_{n-1}^p C_{n-1}^{p-1} = (C_{n-1}^p + C_{n-1}^{p-1})^2 - 4C_{n-1}^p C_{n-1}^{p-1}$$

$$= (C_{n-1}^p)^2 + (C_{n-1}^{p-1})^2 - 2C_{n-1}^p C_{n-1}^{p-1}$$

donc
$$(C_n^p)^2 - 4C_{n-1}^p C_{n-1}^{p-1} = (C_{n-1}^p - C_{n-1}^{p-1})^2 \ge 0$$
; d'où $(C_n^p)^2 \ge 4C_{n-1}^p C_{n-1}^{p-1}$.

3. Montrons que l'équation

(E) :
$$x^2 - C_n^p x + C_{n-1}^p C_{n-1}^{p-1} = 0$$

admet au moins une solution dans \mathbb{R} ; en effet, le discriminant \triangle de cette équation est

$$\triangle = b^2 - 4a * c = (C_n^p)^2 - 4C_{n-1}^p C_{n-1}^{p-1}$$

d'après la question 2. on a $C_{n-1}^p + C_{n-1}^{p-1} = C_n^p$ et donc

$$\triangle = b^2 - 4a * c = (C_{n-1}^p + C_{n-1}^{p-1})^2 - 4C_{n-1}^p C_{n-1}^{p-1} = (C_{n-1}^p)^2 + (C_{n-1}^{p-1})^2 - 2C_{n-1}^p C_{n-1}^{p-1}$$

soit $\triangle = (C_{n-1}^p - C_{n-1}^{p-1})^2$ qui est positif; d'où (E) admet au moins une solution réelle.

4. L'équation (E) admet une unique solution dans \mathbb{R} si et seulement si $\Delta = 0$

$$\Delta = 0 \qquad \Leftrightarrow \qquad (C_n^p)^2 - 4C_{n-1}^p C_{n-1}^{p-1} = 0$$

$$\Leftrightarrow \qquad (C_{n-1}^p - C_{n-1}^{p-1})^2 = 0$$

$$\Leftrightarrow \qquad n^2 - 4np + 4p^2 = 0$$

$$\Leftrightarrow \qquad (n-2p)^2 = 0$$

d'où (E) admet une unique solution dans $\mathbb R$ si et seulement si n=2p.Dans ce cas l'unique solution de l'équation (E) est $\alpha = -\frac{b}{2a} = \frac{C_{2p}^p}{2} = \frac{(2p)!}{2(n!)^2}$

5. Les solutions de l'équation (E) dans \mathbb{R} ; supposons que $\Delta > 0$, alors (E) admet deux solutions distinctes dans \mathbb{R}

$$x_1 = \frac{-b - \sqrt{\triangle}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\triangle}}{2a}$

donc

$$x_1 = \frac{C_n^p - \sqrt{(C_{n-1}^p - C_{n-1}^{p-1})^2}}{2} = \frac{C_n^p - |C_{n-1}^p - C_{n-1}^{p-1}|}{2}$$
$$x_2 = \frac{C_n^p + \sqrt{(C_{n-1}^p - C_{n-1}^{p-1})^2}}{2} = \frac{C_n^p + |C_{n-1}^p - C_{n-1}^{p-1}|}{2}$$

d'où

$$x_1 = \frac{C_n^p - (C_{n-1}^p - C_{n-1}^{p-1})}{2} = \frac{2C_{n-1}^{p-1}}{2} = C_{n-1}^{p-1}$$

$$x_2 = \frac{C_n^p + (C_{n-1}^p - C_{n-1}^{p-1})}{2} = \frac{2C_{n-1}^p}{2} = C_{n-1}^p$$

où bien

$$\begin{array}{rcl} x_1 & = & \frac{C_n^p - \left(-C_{n-1}^p + C_{n-1}^{p-1}\right)}{2} = \frac{2C_{n-1}^p}{2} = C_{n-1}^p \\ x_2 & = & \frac{C_n^p + \left(-C_{n-1}^p + C_{n-1}^{p-1}\right)}{2} = \frac{2C_{n-1}^{p-1}}{2} = C_{n-1}^{p-1} \end{array}$$

finalement, il s'agit d'une alternative symétrique; d'où on déduit que $x_1 = C_{n-1}^{p-1}$ et $x_2 = C_{n-1}^p$.

Le nombre de combinaisons est un entier naturel, alors les solutions sont dans $\mathbb Z$ sans conditions.

La même chose les solutions l'équation (E) sont dans \mathbb{N} sans conditions.