Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Исправленные номера Типовика №1-2 Математический Анализ

Выполнил: Студент группы Р3116 Брагин Роман Андреевич Практик: Попов Арсений Михайлович Лектор: Трифанова Екатерина Станиславовна

Типовик 1

Задание № 7

Исследуем $\int_{5}^{\infty} \frac{\ln \frac{x-5}{x+5}}{x} dx$

Заметим, что подынтегральная функция не меняет знак, так как $\ln\frac{x-5}{x+5}=\ln(1-\frac{10}{x+5})\leq 0,\,\frac{1}{x}\geq 0.$

Заметим, также, что у нас есть 2 особые точки: 5 и ∞ .

Пусть $f(x) = \frac{1}{x} \ln \frac{x-5}{x+5}$

$$\int_{5}^{\infty} f dx = \int_{5}^{6} f dx + \int_{6}^{\infty} f dx$$

Сходимость исходного интеграла \Leftrightarrow сходимости обоих интегралов.

1) Исследуем на сходимость интеграл

$$\int_{5}^{6} f dx = \int_{5}^{6} \frac{1}{x} \ln \frac{x-5}{x+5} dx = \int_{5}^{6} \frac{\ln(x-5)}{x} dx - \int_{5}^{6} \frac{\ln(x+5)}{x} dx$$

Опять же, сходимость этого интеграла ⇔ сходимости обоих интегралов. Правый интеграл в сумме, очевидно, сходится, исследуем левый интеграл на сходимость.

$$\int_{5}^{6} \frac{\ln(x-5)}{x} dx = \int_{0}^{1} \frac{\ln t}{t+5} dt$$

Заметим, что получившийся интеграл знакомоопределённый, тогда воспользуемся признаком сходимости и найдём эквивалент.

$$rac{\ln t}{t+5} \sim rac{\ln t}{5}$$
 при $t o 0$

 $\frac{1}{5}\int_0^1 \ln t dt$, как известно, сходится, значит сходится и $\int_5^6 f dx$.

2) Исследуем на сходимость интеграл

$$\int_{6}^{\infty} f dx = \int_{6}^{\infty} \frac{1}{x} \ln \frac{x - 5}{x + 5} dx = \int_{6}^{\infty} \frac{1}{x} \ln \left(1 - \frac{10}{x + 5} \right) dx$$
$$\frac{-10}{x + 5} \to 0 \text{ при } x \to +\infty$$

1

Тогда воспользуемся эквивалентом

$$\frac{1}{x}\ln\left(1 - \frac{10}{x+5}\right) \sim \frac{1}{x} \cdot \frac{-10}{x+5} \sim \frac{-10}{x^2}$$

 $\int_{6}^{\infty} \frac{dx}{x^2}$, как известно, сходится, значит сходится и $\int_{6}^{\infty} f dx$. Итого, каждый интеграл в сумме сходится, значит сходится и $\int_{5}^{\infty} f dx$.

Задание № 8

Исследовать интеграл на сходимость в каждой особой точке. Если функция меняет знак – на абсолютную и условную сходимость.

$$\int_0^1 x \ln \ln \frac{1}{x} \, dx$$

Заметим, что у этого интеграла две особые точки: 0 и 1. Поэтому разобьем наш интеграл в сумму двух и рассмотрим их по отдельности:

$$\int_0^1 x \ln \ln \frac{1}{x} \, dx = \int_0^{\frac{1}{e}} x \ln \ln \frac{1}{x} \, dx + \int_{\frac{1}{e}}^1 x \ln \ln \frac{1}{x} \, dx$$

1) Первая часть интеграла $(0 \le x \le \frac{1}{e})$

Заметим, что при $x \in [0, \frac{1}{e}]$ наша функция неотрицательна, а значит, мы можем пользоваться оценками:

$$x \cdot \ln\left(\ln\left(\frac{1}{x}\right)\right) \le x \cdot \ln\left(\frac{1}{x}\right) \le x \cdot \frac{1}{x} = 1$$

Логарифмическая функция действительно меньше степенной. Следовательно, наша функция меньше константы, интеграл которой, очевидно, сходится. Из этого следует, что интеграл

$$\int_0^{\frac{1}{e}} x \ln \ln \frac{1}{x} \, dx$$

также сходится. Поскольку функция на данном промежутке неотрицательна, это автоматически означает абсолютную сходимость функции.

2) Вторая часть интеграла $(\frac{1}{e} \le x \le 1)$ Теперь рассмотрим интеграл на $[\frac{1}{e}, 1]$:

$$\int_{\frac{1}{2}}^{1} x \ln \ln \frac{1}{x} \, dx$$

Пусть $t=\ln\frac{1}{x}$. Тогда $dt=-\frac{1}{x}dx$ и границы интегрирования изменяются следующим образом: - при $x=\frac{1}{e},\,t=1$ - при $x=1,\,t=0$ Перепишем интеграл:

$$\int_{\frac{1}{2}}^{1} x \ln \ln \frac{1}{x} \, dx = \int_{1}^{0} -\frac{e^{-t}}{t} \ln t \, dt = \int_{0}^{1} \frac{e^{-t}}{t} \ln t \, dt$$

Здесь функция $\frac{e^{-t}}{t} \ln t$ достаточно быстро убывает при $t \to 0$, поэтому интеграл сходится. Сходится также и интеграл на этом промежутке.

Итак, каждый из интегралов на соответствующих промежутках сходится, следовательно, исходный интеграл

$$\int_0^1 x \ln \ln \frac{1}{x} \, dx$$

тоже сходится.

Типовик 2

Задание № 5(а)

Исследуем на равномерную сходимость ряд:

$$\sum_{n=1}^{\infty} \frac{x \sin nx}{n+x+n^2x}, \quad D = \left[0, \frac{\pi}{3}\right]$$

1. Частичная сумма $A_N(x)$:

$$A_N(x) = \sum_{n=1}^{N} \frac{x \sin nx}{n + x + n^2 x}$$

2. Выражение для $A_N(x)$: Заметим, что

$$\frac{x}{n+x+n^2x} \le \frac{x}{n^2x} = \frac{1}{n^2}$$

Таким образом,

$$|A_N(x)| \le \sum_{n=1}^N \frac{|\sin nx|}{n^2}$$

3. Равномерная ограниченность: Так как $|\sin nx| \le 1$ для всех x,

$$|A_N(x)| \le \sum_{n=1}^N \frac{1}{n^2}$$

Ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, и сумма его конечна, следовательно, последовательность $A_N(x)$ равномерно ограничена.

4. Анализ функции $g_n(x)$:

$$g_n(x) = \frac{x}{n+x+n^2x}$$

Для $x \in \left[0, \frac{\pi}{3}\right]$:

$$g_n(x) \le \frac{\frac{\pi}{3}}{n + \frac{\pi}{3} + n^2 \cdot \frac{\pi}{3}}$$

Так как n^2 растет быстрее, чем n, и x ограничен,

$$g_n(x) \le \frac{\frac{\pi}{3}}{n^2 \cdot \frac{\pi}{3}} = \frac{1}{n^2}$$

Таким образом, $g_n(x) \to 0$ при $n \to \infty$ равномерно для всех $x \in D$. Так как $A_N(x)$ равномерно ограничена, и $g_n(x) \to 0$ равномерно на D, то по признаку Дирихле данный функциональный ряд сходится равномерно на $D = \left[0, \frac{\pi}{3}\right]$.

Задание № 6

$$f(x) = \sum_{n=1}^{\infty} \frac{n\sqrt{x}}{1 + n^2 x} \ln\left(1 + \frac{1}{n\sqrt{x}}\right)$$

Так как x находится под корнем, то $x \ge 0$. Докажем, что данный ряд равномерно сходится на $x \in (\delta, \infty), \ \delta > 0$.

Для этого рассмотрим выражение:

$$\frac{n\sqrt{x}}{1+n^2x}\ln\left(1+\frac{1}{n\sqrt{x}}\right) \sim \frac{1}{1+n^2x} \le \frac{1}{1+n^2\delta}$$

Теперь рассмотрим ряд:

$$\sum_{n=1}^{\infty} \frac{1}{1 + n^2 \delta}$$

Данный ряд сходится, так как сходится ряд:

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

Следовательно, мы нашли мажоранту и по теореме Вейерштрасса исходный ряд сходится равномерно на $x\in(\delta,\infty),\ \delta>0$. Значит, выбрав конкретный x>0, мы можем говорить о поточечной сходимости.

Тогда исходная функция сходится на промежутке $(0, \infty)$. Это и есть область определения.

Вследствие равномерной сходимости рядов получаем:

$$f(x_0+0) = \lim_{x \to x_0+0} \sum_{n=1}^{\infty} \frac{n\sqrt{x}}{1+n^2x} \ln\left(1+\frac{1}{n\sqrt{x}}\right) = \sum_{n=1}^{\infty} \lim_{x \to x_0+0} \frac{n\sqrt{x}}{1+n^2x} \ln\left(1+\frac{1}{n\sqrt{x}}\right) = \sum_{n=1}^{\infty} \frac{n\sqrt{x_0}}{1+n^2x_0} \ln\left(1+\frac{1}{n\sqrt{x_0}}\right)$$

Аналогично:

$$f(x_0 - 0) = \lim_{x \to x_0 - 0} \sum_{n=1}^{\infty} \frac{n\sqrt{x}}{1 + n^2 x} \ln\left(1 + \frac{1}{n\sqrt{x}}\right) = \sum_{n=1}^{\infty} \lim_{x \to x_0 - 0} \frac{n\sqrt{x}}{1 + n^2 x} \ln\left(1 + \frac{1}{n\sqrt{x}}\right) = \sum_{n=1}^{\infty} \frac{n\sqrt{x_0}}{1 + n^2 x_0} \ln\left(1 + \frac{1}{n\sqrt{x_0}}\right)$$

Таким образом, данная функция непрерывна на области определения $(0, \infty)$.