Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec 2º Semestre de 2006/2007

7^a Aula Prática

Soluções e algumas resoluções abreviadas

1. Se existirem os limites laterais $f(0^-)$ e $f(0^+)$, temos

$$\lim f\left(-\frac{1}{n}\right) = f(0^-), \quad \lim f\left(\frac{1}{n}\right) = f(0^+).$$

Então,

$$f\left(-\frac{1}{n}\right) + f\left(\frac{1}{n}\right) = 1 \Rightarrow f(0^{-}) + f(0^{+}) = 1.$$

Se existir $\lim_{x\to 0} f(x)$, temos $f(0^-) = f(0^+) = \lim_{x\to 0} f(x)$. Como $f(0^-) + f(0^+) = 1$, temos $2 \lim_{x\to 0} f(x) = 1 \Leftrightarrow \lim_{x\to 0} f(x) = \frac{1}{2}$.

 $2. f: \mathbb{R} \to \mathbb{R},$

$$f(x) = \frac{x + |x|}{2} d(x) = \begin{cases} 0, & \text{se } x \in \mathbb{Q} \lor x < 0, \\ x, & \text{se } x > 0 \land \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

a) Para $x \leq 0$, temos f(x) = 0, logo $f(] - \infty, 0]) = \{0\}$. Para x > 0 temos f(x) = 0, se $x \in \mathbb{Q}$ e f(x) = x se $x \in \mathbb{R} \setminus \mathbb{Q}$. Logo $f(]0, +\infty[= \{0\} \cup \{x \in \mathbb{R} \setminus \mathbb{Q} : x > 0\} = \{0\} \cup \mathbb{R}^+ \setminus \mathbb{Q}$. Assim, $f(\mathbb{R}) = \{0\} \cup \mathbb{R}^+ \setminus \mathbb{Q}$.

A função não é majorada, uma vez que $\mathbb{R}^+ \setminus \mathbb{Q}$ não é majorado, é minorada por 0.

- b) $\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} 0 = 0;$ $\lim_{x\to+\infty} f(x)$ não existe: se $x_n = n$ então $f(x_n) = 0$, se $y_n = \sqrt{2}n$ então $f(y_n) = \sqrt{2}n \to +\infty.$
- c) f contínua para $x \le 0$ (ver Ex.5).
- 3. $f: \mathbb{R} \to \mathbb{R}$, contínua no ponto 1, dada por

$$f(x) = \begin{cases} 0, & \text{se } x \le -1, \\ \arcsin x, & \text{se } -1 < x < 1, \\ K \operatorname{sen}\left(\frac{\pi}{2}x\right), & \text{se } x \ge 1. \end{cases}$$

a) Como fé contínua em 1, temos $f(1)=f(1^+)=f(1^-).$ Temos f(1)=Ke

$$f(1^{-}) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \arcsin x = \frac{\pi}{2}.$$

Logo $K = \frac{\pi}{2}$.

- b) f é contínua em $\mathbb{R} \setminus \{-1\}$ (justificar!)
- c) A partir dos contradomínios de arcsen e sen temos

$$f(\mathbb{R}) = f(]-\infty,-1]) \cup f(]-1,1[) \cup f([1,+\infty[)$$

= $\{0\} \cup]-\frac{\pi}{2},\frac{\pi}{2}[] \cup [-\frac{\pi}{2},\frac{\pi}{2}] = [-\frac{\pi}{2},\frac{\pi}{2}].$

- d) $\lim_{x\to-\infty} f(x) = 0$; $\lim_{x\to+\infty}$, não existe (justificar!).
- 4. $\varphi : \mathbb{R} \to \mathbb{R}$ definida por:

$$\varphi(x) = \begin{cases} \arctan \frac{1}{x} & \text{se } x < 0\\ 1 + e^{1-x} & \text{se } x \ge 0 \end{cases}$$

- a) Para a>0: φ é contínua em a uma vez que numa vizinhança de a é dada pela função $1+e^{1-x}$, que é contínua por ser dada pela composição de funções contínuas. Para a<0: φ é contínua em a uma vez que numa vizinhança de a é dada pela função arctg $\frac{1}{x}$, que é contínua (em $\mathbb{R}\setminus\{0\}$) por ser dada pela composição de funções contínuas nos seus domínios.
- b) $\varphi(0^+) = \lim_{x \to 0^+} 1 + e^{1-x} = 1 + e$ $\varphi(0^-) = \lim_{x \to 0^-} \operatorname{arctg} \frac{1}{x} = -\frac{\pi}{2}.$ Como $\varphi(0^+) \neq \varphi(0^-)$, φ não é contínua em 0. Mas $\varphi(0^+) = \varphi(0)$, logo φ é contínua à direita em 0.
- c) $\lim_{x \to +\infty} \varphi(x) = \lim_{x \to +\infty} 1 + e^{1-x} = 1,$ $\lim_{x \to -\infty} \varphi(x) = \lim_{x \to -\infty} \arctan \frac{1}{x} = 0.$
- d) $\varphi(\mathbb{R}) = \varphi(]\infty, 0[) \cup \varphi([0, +\infty[) =]0, -\frac{\pi}{2}[\cup]1, 1 + e]$ (justifique!).
- 5. a) $-\varphi$ é dada pela composição de funções contínuas nos seus domínios: a função exponencial, contínua em \mathbb{R} e $-\frac{1}{x^2}$, contínua em $\mathbb{R} \setminus \{0\}$. Logo φ é contínua em $\mathbb{R} \setminus \{0\}$.
 - $-\psi$ é dada pela diferença de duas funções: $x \operatorname{sen} \frac{1}{x}$ e $\cos \frac{1}{x}$. As funções $\operatorname{sen} \frac{1}{x}$ e $\cos \frac{1}{x}$ são contínuas em $\mathbb{R} \setminus \{0\}$, uma vez que são dadas pela composição de funções trigonométricas, contínuas em \mathbb{R} , e $\frac{1}{x}$, contínua em $\mathbb{R} \setminus \{0\}$. Logo, $x \operatorname{sen} \frac{1}{x}$ e $\cos \frac{1}{x}$ são contínuas em $\mathbb{R} \setminus \{0\}$ e ψ também o será.
 - b) φ e ψ são prolongáveis por continuidade a 0 sse existir (em \mathbb{R}) $\lim_{x\to 0} \varphi(x)$, e $\lim_{x\to 0} \psi(x)$, respectivamente. Para φ :

$$\lim_{x \to 0} \varphi(x) = \lim_{x \to 0} e^{-\frac{1}{x^2}} = \lim_{y \to -\infty} e^y = 0.$$

Logo φ é prolongável por continuidade a 0. Quanto a ψ :

 $-\lim_{x\to 0}x\sin\frac{1}{x}=0,$ uma vez que para qualquer sucessão (x_n) com $x_n\to 0,$ temos

$$\lim x_n \sin \frac{1}{x_n} = 0$$

por ser o produto de um infinitésimo por uma sucessão limitada. Por outro lado,

 $-\lim_{x\to 0}\cos\frac{1}{x}$ não existe, uma vez que para $x_n=\frac{1}{2n\pi}$ e $y_n=\frac{1}{(2n+1)\pi}$ tem-se $\lim x_n=\lim y_n=0$ e $\lim\cos\frac{1}{x_n}=\lim\cos(2n\pi)=1$ e $\lim\cos\frac{1}{y_n}=\lim\cos((2n+1)\pi)=-1$.

Logo $\lim_{x\to 0} \psi(x)$ não existe e ψ não é prolongável por continuidade ao ponto 0.

c) $-\varphi(x) > 0$, uma vez que a função exponencial é sempre positiva. Por outro lado, $-\frac{1}{x^2} < 0$, logo como a função exponencial é crescente, temos $e^{-\frac{1}{x^2}} < e^0 = 1$. Conclui-se que $0 < \varphi(x) < 1$, e φ é limitada. $-\operatorname{Para} \psi : \cos \frac{1}{x}$ é limitada, com $-1 \le \cos \frac{1}{x} \le 1$. Quanto a $x \operatorname{sen} \frac{1}{x}$, temos

$$\lim_{x \to +\infty} x \operatorname{sen} \frac{1}{x} = \lim_{x \to +\infty} \frac{\operatorname{sen} \frac{1}{x}}{\frac{1}{x}} = \lim_{y \to 0^+} \frac{\operatorname{sen} y}{y} = 1$$

e da mesma forma $\lim_{x\to-\infty} x \operatorname{sen} \frac{1}{x} = 1$ (aliás, a função é par). Logo, como existem em \mathbb{R} , os limites em $+\infty$ e $-\infty$, existe a>0 tal que ψ é limitada em $[a,+\infty[$ e em $]-\infty,-a]$. Para $x\in[-a,a]$, temos

$$\left| x \operatorname{sen} \frac{1}{x} \right| \le |x| \Rightarrow \left| x \operatorname{sen} \frac{1}{x} \right| \le a.$$

Logo ψ é limitada em \mathbb{R} . (Alternativamente, como ψ é prolongável por continuidade a 0, o Teorema de Weierstrass garante que o seu prolongamento contínuo terá máximo e mínimo em [-a, a], logo será limitado e ψ , por consequência, também.)

- 6. a) $D = \{x \in \mathbb{R} : x \ge 0 \land x 1 \ne 0\} = [0, 1[\cup]1, +\infty[$.
 - b)

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sqrt{x}}{x - 1} = \lim_{x \to +\infty} \frac{\frac{1}{\sqrt{x}}}{1 - \frac{1}{x}} = 0.$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{\sqrt{x}}{x - 1} = -\infty.$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{\sqrt{x}}{x - 1} = +\infty.$$

- c) $f(D) = f([0,1[) \cup f(]1,+\infty[).$
 - $-f([0,1[): \text{se } x \in [0,1[, \text{então } x-1 < 0 \text{ e assim } f(x) \leq 0, \text{ ou seja} f([0,1[) \subset]-\infty,0].$ Por outro lado, como f(0)=0 e $\lim_{x\to 1^-}f(x)=-\infty$, e f é contínua no seu domínio (por ser o quociente de funções contínuas), do Teorema do Valor Intermédio temos que $]-\infty,0] \subset f([0,1[). \text{ Logo, } f([0,1[)=]-\infty,0].$
 - $-f(]1,+\infty[)$: se $x \in]1,+\infty[$, então f(x) > 0, ou seja $f(]1,+\infty[) \subset]0,+\infty[$. Como f é contínua em $]1,+\infty[$, e $\lim_{x\to 1^+} f(x) = +\infty,$

 $\lim_{x\to+\infty} f(x) = 0$, temos de novo pelo Teorema do Valor Intermédio, que $]0, +\infty[\subset f(]1, +\infty[)$. Logo, $f(]1, +\infty[) =]0, +\infty[$. Conclui-se que $f(D) = \mathbb{R}$.

- d) (u_n) convergente com $(f(u_n))$ divergente: qualquer sucessão no domínio de f com $u_n \to 1$, por exemplo, $u_n = 1 \frac{1}{n} \to 1$ e $f(u_n) \to -\infty$.
 - $-(v_n)$ divergente com $(f(v_n))$ convergente: qualquer sucessão no domínio de f com $v_n \to +\infty$, por exemplo, $u_n = n \to +\infty$ e $f(u_n) \to 0$.
- 7. a) $f \in g$ são contínuas no seu domínio, $]0, +\infty[$, por serem dadas pela composição e produto de funções contínuas nos seus domínios.
 - b) $\lim_{x\to+\infty} f(x) = +\infty$, $\lim_{x\to+\infty} g(x) = 0$
 - c) $\lim_{x\to 0} f(x) = -\infty$, logo f não é prolongável por continuidade a 0; $\lim_{x\to 0} g(x) = 0$, logo g é prolongável por continuidade a 0.
 - d) Como f é contínua em \mathbb{R} e $\lim_{x\to 0} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = +\infty$, temos do Teorema do Valor Intermédio, que $f(D) = \mathbb{R}$. (Alternativamente, $x \in]0, +\infty[\Leftrightarrow 1+x \in]1, +\infty[$ e $\log(]1, +\infty[) =]0, +\infty[$. Logo, $f(D) = \log(]0, +\infty[) = \mathbb{R}$.)
- 8. a) $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -e^{\frac{1}{x}} = -1$. $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \log \frac{1}{1+x^2} = -\infty$.
 - b) Em a > 0: f é contínua em a uma vez que, numa vizinhança de a, f é dada pela função $\log \frac{1}{1+x^2}$, que é a composta de funções contínuas nos seus domínios e portanto contínua no seu domínio.

Em a<0: f é contínua em a uma vez que, numa vizinhança de a, f é dada pela função $-e^{\frac{1}{x}}$, que é a composta de funções contínuas nos seus domínios e portanto contínua no seu domínio.

c) Temos

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \log \frac{1}{1 + x^2} = \log(1) = 0$$
$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -e^{\frac{1}{x}} = 0.$$

Logo existe $\lim_{x\to 0} f(x) = 0$ e f é prolongável por continuidade a 0.

d) Se q é o prolongamento por continuidade de f a 0, ou seja,

$$g(x) = \begin{cases} -e^{\frac{1}{x}}, & \text{se } x < 0, \\ 0, & \text{se } x = 0, \\ \log \frac{1}{1+x^2}, & \text{se } x > 0. \end{cases}$$

então g é contínua em \mathbb{R} (é contínua em 0 por definição, e é contínua em $\mathbb{R} \setminus \{0\}$ porque f é). Logo, do Teorema de Weierstrass terá máximo (e mínimo) em qualquer intervalo limitado e fechado. Em particular, em qualquer intervalo $[-\epsilon, \epsilon]$, com $\epsilon > 0$.

Como $-e^{\frac{1}{x}}$ é crescente (a exponencial é crescente, $\frac{1}{x}$ é decrescente, logo $e^{\frac{1}{x}}$ é decrescente), temos para $x \in [-\epsilon, 0[$ que $g(x) \leq g(0^-) = 0$. Por outro lado, $\log \frac{1}{1+x^2}$ é decrescente (o logaritmo é crescente e $\frac{1}{1+x^2}$ é decrescente), logo para $x \in]0, \epsilon], g(x) \leq g(0^+) = 0$. Conclui-se que $\max_{x \in [-\epsilon, \epsilon]} g(x) = g(0) = 0$.

9. a) A função φ é contínua no seu domínio $D=\{x\in\mathbb{R}: 1-x^2\in[0,+\infty[\},$ uma vez que é dada pela composição de funções contínuas nos seus domínios. Temos

$$1 - x^2 \in [0, +\infty] \Leftrightarrow 1 - x^2 \ge 0 \Leftrightarrow x^2 \le 1 \Leftrightarrow x \in [-1, 1],$$

ou seja, D=[-1,1]. Como D é um intervalo limitado e fechado, o Teorema de Weierstrass garante que ϕ tem máximo e mínimo em D.

- b) Não. Neste caso, o domínio de φ seria] -1, 1[. Tomando uma função g ilimitada numa vizinhança de 0, teríamos que φ seria ilimitada em vizinhanças de -1 e 1. Por exemplo, se $g(x) = \log(x)$, então $\lim_{x\to 1^-} \varphi(x) = \lim_{x\to -1^+} \varphi(x) = -\infty$.
- 10. Seja $g:]a,b[\to \mathbb{R}$ uma função contínua em $]a,b[,\,a,b\in \mathbb{R}$ tal que

$$\lim_{x \to a} g(x) = -\lim_{x \to b} g(x) = -\infty.$$

Queremos ver que existe uma e uma só função contínua h definida em [a,b] tal que

$$h(x) = \arctan[g(x)^2], \ x \in]a, b[.$$

Então, para $x \in]a, b[$, a função h já está definida, de forma única, pela fórmula acima, ou seja, definimos $h(x) = \text{arctg}[g(x)^2]$. Para x = a, como h é contínua em a, temos necessariamente

$$h(a) = \lim_{x \to a^+} \operatorname{arctg}[g(x)^2] = \lim_{y \to +\infty} \operatorname{arctg} y = \frac{\pi}{2},$$

e da mesma forma

$$h(b) = \lim_{x \to b^{-}} \operatorname{arctg}[g(x)^{2}] = \lim_{y \to +\infty} \operatorname{arctg} y = \frac{\pi}{2}.$$

Para determinar o contradomínio de h, determinamos primeiro o contradomínio de g: uma vez que g é contínua em]a,b[e $\lim_{x\to a}g(x)=-\infty,$ $\lim_{x\to b}g(x)=+\infty,$ tem-se do Teorema do Valor Intermédio que $g(]a,b[)=\mathbb{R}.$ Conclui-se que o contradomínio de g^2 é $[0,+\infty[$ e portanto

$$h(]a,b[)=\arctan([0,+\infty[)=\left[0,\frac{\pi}{2}\right[.$$

Como $h(a) = h(b) = \frac{\pi}{2}$, temos então que $h([a, b]) = [0, \frac{\pi}{2}]$.

- 11. Para x=0, temos sen³ $0+\cos^3 0=1$ e para $x=\pi$, sen³ $\pi+\cos^3 \pi=-1$. Se $f(x)=\sin^3 x+\cos^3 x$, então f é contínua porque é dada pela soma e produto de funções contínuas e f(0)=1>0, $f(\pi)=-1<0$, logo, pelo Teorema do Valor Intermédio, existe $x\in]0,\pi[$ tal que $f(x)=0\Leftrightarrow \sin^3 x+\cos^3 x=0$.
- 12. Seja f contínua em $\mathbb R$ tal que existem e são finitos $\lim_{x\to +\infty} f(x)$ e $\lim_{x\to -\infty} f(x)$.
 - a) Como existe (em \mathbb{R}) $\lim_{x\to+\infty} f(x)$, temos que f é limitada numa vizinhança de $+\infty$, ou seja num intervalo $[b,+\infty[$, para algum $b\in\mathbb{R}$. Da mesma forma, f será limitada num intervalo $]-\infty,a]$ para algum $a\in\mathbb{R}$.

Por outro lado, por ser contínua, o Teorema de Weierstrass garante que f é limitada em [a,b]. Logo é limitada em \mathbb{R} .

- b) Para $g(x) = \frac{1}{1+|f(x)|^2}$, temos $g(x) \leq 1$ e $g(x) = 1 \Leftrightarrow f(x) = 0$. Agora, se o produto dos dois limites indicados é negativo, ou seja, se os limites indicados têm sinais diferentes, então existe um ponto c tal que f(c) = 0: existem $a, b \in \mathbb{R}$ tais que f(a) > 0 e f(b) < 0, logo como f é contínua o Teorema do Valor Intermédio garante que existe c tal que f(c) = 0. Temos neste caso $g(c) = 1 = \max g(x)$.
- 13. a) $(\operatorname{tg} x x)' = \frac{1}{\cos^2 x} 1 = \operatorname{tg}^2 x$,
 - b) $\left(\frac{x + \cos x}{1 \sin x}\right)' = 1 + \frac{\cos x(x + \cos x)}{(1 \sin x)^2}$,
 - c) $(e^{\operatorname{arctg} x})' = \frac{e^{\operatorname{arctg} x}}{1+x^2},$
 - d) $\left(e^{\log^2 x}\right)' = \frac{2\log x}{x} e^{\log^2 x}$, para x > 0,
 - e) $(\operatorname{sen} x \cdot \operatorname{cos} x \cdot \operatorname{tg} x)' = (\operatorname{sen}^2 x)' = 2 \operatorname{sen} x \operatorname{cos} x = \operatorname{sen} 2x$, para $x \neq \frac{\pi}{2} + k\pi$,
 - f) $(x^2(1 + \log x))' = 3x + 2x \log x$,
 - g) $(\cos \arcsin x)' = \frac{-\sin(\arcsin x)}{\sqrt{1-x^2}} = -\frac{x}{\sqrt{1-x^2}},$
 - h) $((\log x)^x)' = (e^{\log((\log x)^x)})' = (e^{x \log(\log x)})' = (\log x)^x (\log(\log x) + \frac{1}{\log x}),$
 - i) $(x^{\sin 2x})' = (e^{\sin 2x \log x})' = x^{\sin 2x} (2\cos 2x \log x + \frac{\sec 2x}{x}),$
 - j) $\left(\sqrt{1-x^2}\right)' = \left((1-x^2)^{\frac{1}{2}}\right)' = -\frac{x}{\sqrt{1-x^2}},$
 - k) $\left(\frac{1}{\sqrt{1-e^x}}\right)' = \frac{e^x}{2(1-e^x)^{\frac{3}{2}}}$.
- 14. a) $(\operatorname{arctg} x^4 (\operatorname{arctg} x)^4)' = \frac{4x^3}{1+x^8} \frac{4\operatorname{arctg}^3 x}{1+x^2}$.
 - b) $((\operatorname{sen} x)^x)' = (e^{x \log \operatorname{sen} x})' = (\log \operatorname{sen} x + \frac{x \cos x}{\operatorname{sen} x})e^{x \log \operatorname{sen} x}$ = $(\log \operatorname{sen} x + \frac{x \cos x}{\operatorname{sen} x})(\operatorname{sen} x)^x$.
 - c) $(\log \log x)' = \frac{1}{x \log x}$.

d)
$$\left(\frac{\operatorname{sen}\operatorname{sen}x}{\operatorname{sen}x}\right)' = \frac{\cos(\operatorname{sen}x)\cos x \operatorname{sen}x - \operatorname{sen}(\operatorname{sen}x)\cos x}{\operatorname{sen}^2x}$$
.

d)
$$\left(\frac{\operatorname{sen \, sen} x}{\operatorname{sen} x}\right)' = \frac{\cos(\operatorname{sen} x)\cos x \operatorname{sen} x - \operatorname{sen}(\operatorname{sen} x)\cos x}{\operatorname{sen}^2 x}$$
.
e) $\left(\left(\operatorname{arctg} x\right)^{\operatorname{arcsen} x}\right)' = \left(\operatorname{arctg} x\right)^{\operatorname{arcsen} x} \left(\frac{\log \operatorname{arctg} x}{\sqrt{1-x^2}} + \frac{\operatorname{arcsen} x}{\operatorname{arctg} x(1+x^2)}\right)$.

15. a) f(x) = x|x| é diferenciável em $\mathbb{R} \setminus \{0\}$ por ser o produto de duas funções diferenciáveis em $\mathbb{R} \setminus \{0\}$. Em x = 0, temos

$$f'_d(0) = \lim_{x \to 0^+} \frac{x|x| - 0}{x - 0} = \lim_{x \to 0^+} x = 0$$

$$f'_e(0) = \lim_{x \to 0^-} \frac{x|x| - 0}{x - 0} = \lim_{x \to 0^+} -x = 0.$$

Como $f'_d(0) = f'_e(0)$, a função é também diferenciável para x = 0, ou seja é diferenciável em \mathbb{R} , com derivada f'(x) = 2x, se x > 0, f'(0) = 0, f'(x) = -2x, se x < 0.

- b) $f(x) = e^{-|x|}$ é diferenciável em $\mathbb{R} \setminus \{0\}$ por ser dada pela composição da função exponencial que é diferenciável em \mathbb{R} e |x|, que é diferenciável em $\mathbb{R} \setminus \{0\}$. Em x = 0, tem-se $f'_d(0) = 1$ e $f'_e(0) = -1$ (justifique!), logo f não é diferenciável em 0.
- c) $f(x) = \log |x|$ é diferenciável no seu domínio, $\mathbb{R} \setminus \{0\}$, por ser dada pela composição de log, que é diferenciável no seu domínio \mathbb{R}^+ e |x|que é diferenciável em $\mathbb{R} \setminus \{0\}$.
- d) $f(x) = e^{x-|x|}$ é diferenciável em $\mathbb{R} \setminus \{0\}$ (como em b)). Em x = 0, $f'_d(0) = 0, f'_e(0) = 2$ (justifique!), logo f não é diferenciável em 0.