PCSO: physique des ondes Cours 4 - ondes périodiques

wooclap.com/LKFQYK

Rappels

- A connaître : célérité, période, fréquence, pulsation.
- La fréquence est imposée par la source et la célérité dépend du milieu.
- Les ondes peuvent présenter des oscillations sinusoïdales.
- Les phénomènes sinusoïdaux sont décrits par des fonctions trigonométriques.

Exercices

TD2: 1.1, 1.2, 1.3

Longueur d'onde

La longueur d'onde, ou période spatiale, est la distance séparant deux points consécutifs dans le même état vibratoire. On la note en général λ et elle correspond à la distance de propagation pendant une période (temporelle) :

$$\lambda = cT = c/v$$

Vecteur d'onde

Le vecteur d'onde est le vecteur de norme $2\pi/\lambda$ orienté dans le sens de propagation de l'onde. Dans ce cours on ne s'intéresse qu'à son module : $k = 2\pi/\lambda = \omega/c$

Une onde n'est pas forcément sinusoïdale

Cette onde ne peut pas être représentée par un cosinus mais elle présente néanmoins une période car elle se répète à l'identique. La période T est la durée qu'il faut à l'onde pour se propager d'une longueur λ.

Onde sinusoïdale

On a vu qu'on pouvait écrire le mouvement d'un point au cours du temps comme : $f(t) = A \cos(\omega t + \varphi)$.

Une onde est une fonction du temps et de l'espace, on peut donc déplacer l'onde en remplaçant t par $t\pm x/c$.

$$f(x,t) = A \cos(\omega(t\pm x/c) + \varphi) = A \cos(\omega t \pm kx + \varphi)$$

Le cas + correspond à une onde gauche et le cas - à une onde droite.

Phase

La phase de l'onde est l'argument du cosinus : $\omega t \pm kx + \varphi$.

- ωt correspond à la propagation temporelle de l'onde.
- kx correspond à la propagation spatiale de l'onde.
- φ correspond au déphasage de l'onde, c'est-à-dire à la valeur de sa phase à l'origine : $f(0,0) = A \cos(\varphi)$. Le déphase introduit un simple décalage, que l'on considère nul dans la suite.

Amplitude

$$f(x,t) = A \cos(\omega t \pm kx)$$

 $f(0,0) = A \cos(0) = A$. A est donc la valeur de la fonction représentant l'onde à l'origine des temps et des positions.

A correspond également à la valeur maximale que prend la fonction f car la valeur maximale de cosinus est 1. Ce sera par exemple la hauteur maximale des vagues à la surface de l'eau ou d'une corde agitée.

Ondes électromagnétiques

Les ondes électromagnétiques se comportent différemment selon leur longueur d'onde. On parle de spectre électromagnétique :

La fréquence associée à la longueur d'onde est $v = c/\lambda = 3 \times 10^8 \text{m.s}^{-1}/\lambda$

Energie (pour la culture)

Une onde électromagnétique de fréquence ν (en fait un photon) transporte une énergie $E = h\nu = hc/\lambda$ avec $h = 6.63 \times 10^{-34} J.s$ la constante de Planck.