Generalizing discrete convolutions for unstructured point clouds

Eurographics 3DOR 2019

Alexandre Boulch Image Vision Machine Learning team - ONERA www.boulch.eu

Objective

Classification

Semantic segmentation

Point clouds

A point cloud is

- unstructured : not sampled on grid
- unordered : invariant by permutation of points
- scale less : e.g. CAD, photogrammetry
- defined by point coordinates only

Previous works

Generalizing convolutions

Implementation

Experiments

Perspectives and conclusions

Previous works

Hand crafted features

[HWS16] Hackel et al., Fast semantic segmentation of 3D point clouds with strongly varying density, ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016

[JH99] Johnson et al., Using spin images for efficient object recognition in cluttered 3D scenes, IEEE PAMI 1999.

Hand crafted features

- ullet Designing features is difficult o learn them with deep methods
- ullet Exploit images processing approaches o adapt space

Deep approaches: voxelization

[MS15], Maturana and Scherer, Voxnet : A 3D convolutional neural network for real-time object recognition, IROS 2015

[GEM18] Graham et al. 3D semantic segmentation with submanifold sparse convolutional networks. CVPR 2018

Deep approaches: voxelization

Difficulties: Voxel sizes? Voxel orientation?

Deep approaches : 2D approaches

[Su+15] Su et al, Multi-view convolutional neural networks for 3D shape recognition, ICCV, 2015

[Bou+17] Boulch et al, SnapNet : 3D point cloud semantic labeling with 2D deep segmentation networks, Computer & Graphics, 2017

Deep approaches : 2D approaches

Difficulties : Snapshot strategies?

Deep approaches: raw data

Deep approaches: raw data

PointNet: Qi et al [Qi+17a]
Permutation inv.: Max pooling.
Use location as features.

PointCNN: Li et al [Li+18] Input projection on kernel. Use location as features.

PointNet++ : Qi et al [Qi+17b] Hierarchical reprentation. Use location as features.

PCCN : Wang et al [Wan+18a] Feature weighting using MLP

Super-Point graph

(a) RGB point cloud

(b) Geometric partition

(c) Superpoint graph

(d) Semantic segmentation

- Offline segmentation
- Network : PointNet on each primitive + GRU for message passing

[LS18] Landrieu et al., Large-scale point cloud semantic segmentation with superpoint graphs, CVPR, 2018

Generalizing convolutions

Objective

CNNs have proved very efficient for image / voxel processing

Objective

- Adapt convolutions do sparse, unstructured data
- Stick as mush as possible to the original formulation

Formulation for images

$$y = \beta + \sum_{i=1}^{N} \mathbf{w}_i \mathbf{x}_i = \beta + \sum_{i=1}^{N} \sum_{j=1}^{|X|} \mathbf{w}_i \mathbf{x}_j \mathbf{1}(i,j)$$

with X the input patch and $\mathbf{1}(i,j)$ the indicator function.

Formulation with points

$$y = \beta + \frac{1}{|X|} \sum_{j=1}^{|X|} \sum_{i=1}^{N} \mathbf{w}_i \mathbf{x}_j \mathbf{1}(\mathbf{c}_i, \mathbf{p}_j)$$

Valid for structured inputs.

Point cloud particularities

Unstructured inputs would lead to zero value almost all the time.

Indicator function is not the right function for unstructured inputs.

Continuous convolution

$$y = \beta + \frac{1}{|X|} \sum_{i=1}^{|X|} \sum_{i=1}^{N} \mathbf{w}_i \mathbf{x}_j \phi_i(p_j, C)$$

Interpolation to neighbors

Somehow suppose a grid for the kernel.

Hang S_U et al. "SPLATNet : Sparse Lattice Networks for Point Cloud Processing". In : arXiv preprint arXiv :1802.08275 (2018)

Continuous convolution

$$y = \beta + \frac{1}{|X|} \sum_{j=1}^{|X|} \sum_{i=1}^{N} \mathbf{w}_i \mathbf{x}_j \phi_i(p_j, C)$$

 ϕ construction :

- dicrease with the a distance
- deal with relative positions of kernel elements

Inverse ℓ_2 distance? Gaussian functions? ...

How to tune parameters?

Our approach

Use a MLP for ϕ function [Li+18; Wan+18a] :

$$y = \beta + \frac{1}{|X|} \sum_{j=1}^{|X|} \sum_{i=1}^{N} \mathbf{w}_{i} \mathbf{x}_{j} MLP_{i}(p_{j} - C)$$

Each input influences each kernel elements

Each kernel element sees the whole input

Our approach

Use a MLP for ϕ function [Li+18; Wan+18a] :

$$y = \beta + \frac{1}{|X|} \sum_{j=1}^{|X|} \sum_{i=1}^{N} \mathbf{w}_i \mathbf{x}_j MLP_i(p_j - C)$$

Properties

- **Permutation invariance** : ϕ function of p_i and C
- Translation invariance : C centered on the neighborhood
- Low sensibility to input size : normalized by |X|
- Low sensibility to input scale : X normalized to unit ball

Input

Point sets (neighborhoods) : locations + features

Output

Features at given output locations (center of neighborhoods)

No dimension reduction

One neighborhood for each point of the input cloud.

Images:

Convolution with stride 1.

Dimension reduction

Number of neighborhoods lower than input cloud size.

Images:

Convolution with stride ≥ 2 .

Dimension increase

Output point cloud size greater than input cloud size.

Images:

Convolution transpose.

Implementation

Block representations

Practical implementation

Python implementation

Only differentiable operations Autograd usage (Py-Torch or Tensorflow)

```
features = input.view(-1, input.size(2))[indices]
pts = points.view(-1, points.size(2))[indices]
pts = pts - next points.unsqueeze(2)
if normalize:
   maxi = torch.sqrt((pts**2).sum(3).max(2)[0])
   maxi[maxi==0] = 1
   pts = pts / maxi.view(maxi.size()+(1,1,))
dists = pts.view(pts.size()+(1,)) - centers
dists = dists.view(dists.size(0), dists.size(1),
                dists.size(2), -1)
dists = F.relu(l1(dists))
dists = F.relu(l2(dists))
dists = F.relu(l3(dists))
dists = dists.unsqueeze(3)
features =
           features.view(features.size()+(1.)) *
features = features.mean(2)
features = features.view(features.size()+(1,)) *
                                                 weiaht
features = features.sum([2,3])
features =
           features + bias
```

Neighborhoods computation

Computed using search trees from Scikit-learn.

Precomputation for efficiency, all neighborhoods are computed in the data loader.

Experiments

Network for classification

Classification: state of the art

MNIST dataset

Methods	OA
NiN [LCY13]	99.53
PointNet++ [Qi+17b]	99.49
PointCNN [Li+18]	99.54
Ours	
16 samplings	99.61

ModelNet40 dataset

Methods	OA	AA
DGCNN [Wan+18c]	92.2	90.2
PointNet++ [Qi+17b]	90.7	
PointCNN	92.2	88.1
Ours		
16 samplings	91.6	88.1

Network for segmentation

Part segmentation

Shapenet dataset

Method	ploU	mploU
SPLATNet [Su+18]	85.4	83.7
DGCNN [Wan+18c]	85.1	82.3
PointNet [Qi+17a]	83.7	80.4
PointNet++ [Qi+17b]	85.1	81.9
SGPN [Wan+18b]	85.8	82.8
PointCNN [Li+18]	86.14	84.6
Ours 1024 pts		
16 trees	93.1	82.6

Outdoor, large scale segmentation: Semantic8

Semantic8 dataset

Method	AvloU	OA
TML-PC [MZ+14]	0.391	0.745
TMLC-MS [HWS16]	0.494	0.850
${\sf PointNet}{++}\;{\sf [Qi+17b]}$	0.631	0.857
SnapNet [Bou+17]	0.674	0.910
SPGraph [LS18]	0.762	0.929
Ours	0.666	0.898
ranking	3	3

Indoor segmentation: S3DIS

S3DIS dataset

000.0	aataset		
Method	OA	mAcc	mloU
PointNet [Qi+17a]	78.5	66.2	47.6
SPGraph [LS18]	85.5	73.0	62.1
RSNet [HWN18]	-	66.45	56.47
PCCN [Wan+18a]	-	67.01	58.27
PointCNN [Li+18]	88.14	75.61	65.39
Ours			
1 scale 2m	84.05	-	55.36

Indoor segmentation: S3DIS

Perspectives and conclusions

Perspectives

- Work on architecture design
- Training strategy: multiscale, layer initialization . . .
- Extend layers

Conclusion

- Competitive results
- A single architecture on all datasets
- Trained on a 12G NVidia Titan GPU

Code available

https://github.com/aboulch/ConvPoint

References i

[AML18]	Matan Atzmon, Haggai Maron et Yaron Lipman. "Point Convolutional Neural Networks by Extension Operators". In : arXiv preprint arXiv:1803.10091 (2018).
[ASC11]	Mathieu Aubry, Ulrich Schlickewei et Daniel Cremers. "The wave kernel signature : A quantum mechanical approach to shape analysis". In : Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on
[BK10]	Michael M Bronstein et lasonas Kokkinos. "Scale-invariant heat kernel signatures for non-rigid shape recognition". In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE. 2010, p. 1704-1711.
[BM12]	Alexandre ${ m BOULCH}$ et Renaud ${ m MARLET}$. "Fast and robust normal estimation for point clouds with sharp features". In : Computer graphics forum. T. 31. 5. Wiley Online Library. 2012, p. 1765-1774.
[Bou+17]	Alexandre BOULCH et al. "SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks". In: Computers & Graphics (2017).
[BSLF17]	Yizhak Ben-Shabat, Michael Lindenbaum et Anath Fischer. "3D Point Cloud Classification and Segmentation using 3D Modified Fisher Vector Representation for Convolutional Neural Networks". In: arXiv preprint arXiv:1711.08241 (2017).
[Dai+17]	Jifeng DAI et al. "Deformable convolutional networks". In : CoRR, abs/1703.06211 1.2 (2017), p. 3.

References ii

[GEM18]

[GENI18]	segmentation with submanifold sparse convolutional networks". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, p. 9224-9232.
[Gra15]	Ben Graham. "Sparse 3D convolutional neural networks". In: arXiv preprint arXiv:1505.02890 (2015).
[Hac+17]	T. HACKEL et al. "Smeantic3D.net: A new large scale point cloud classification benchmark". In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. T. IV-1-W1. 2017, p. 91-98.
[Hop+92]	Hugues HOPPE et al. Surface reconstruction from unorganized points. T. 26. 2. ACM, 1992.
[HWN18]	Qiangui Huang, Weiyue Wang et Ulrich Neumann. "Recurrent Slice Networks for 3D Segmentation of Point Clouds". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, p. 2626-2635.
[HWS16]	Timo HACKEL, Jan D WEGNER et Konrad SCHINDLER. "Fast semantic segmentation of 3D point clouds with strongly varying density". In: ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences 3.3 (2016).
[JH99]	Andrew E. JOHNSON et Martial HEBERT. "Using spin images for efficient object recognition in cluttered 3D scenes". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 21.5 (1999), p. 433-449.

Benjamin GRAHAM Martin ENGELCKE et Laurens van der MAATEN "3D semantic

References iii

[KL17]	Roman Klokov et Victor Lempitsky. "Escape from cells: Deep kd-networks for the recognition of 3D point cloud models". In: <i>IEEE International Conference on Computer Vision (ICCV)</i> . IEEE. 2017, p. 863-872.
[LCHL18]	Jiaxin LI, Ben M CHEN et Gim HEE LEE. "So-net: Self-organizing network for point cloud analysis". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, p. 9397-9406.
[LCY13]	Min LIN, Qiang CHEN et Shuicheng YAN. "Network in network". In: arXiv preprint arXiv:1312.4400 (2013).
[LeC+98]	Yann LeCun et al. "Gradient-based learning applied to document recognition". In: Proceedings of the IEEE 86.11 (1998), p. 2278-2324.
[Li+16]	Yangyan Lı et al. "FPNN : Field probing neural networks for 3D data". In : Advances in Neural Information Processing Systems. 2016, p. 307-315.
[Li+18]	Yangyan Lı et al. "PointCNN: Convolution On X-Transformed Points". In: Advances in Neural Information Processing Systems 31. Curran Associates, Inc., 2018, p. 828-838.
[LJ07]	Haibin Ling et David W Jacobs. "Shape classification using the inner-distance". In: <i>IEEE transactions on pattern analysis and machine intelligence</i> 29.2 (2007), p. 286-299.
[LS18]	Loic LANDRIEU et Martin SIMONOVSKY. "Large-scale point cloud semantic segmentation with superpoint graphs". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, p. 4558-4567.

References iv

[MS15]

[She+18]

[M213]	real-time object recognition". In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE. 2015, p. 922-928.
[MZ+14]	Javier A MONTOYA-ZEGARRA et al. "Mind the gap: modeling local and global context in (road) networks". In: German Conference on Pattern Recognition. Springer. 2014, p. 212-223.
[Qi+16]	Charles R QI et al. "Volumetric and multi-view CNNs for object classification on 3D data". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, p. 5648-5656.
[Qi+17a]	Charles R QI et al. "PointNet: Deep learning on point sets for 3D classification and segmentation". In: Proc. Computer Vision and Pattern Recognition (CVPR), IEEE 1.2 (2017), p. 4.
[Qi+17b]	Charles Ruizhongtai Q_I et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space". In : Advances in Neural Information Processing Systems. 2017, p. 5105-5114.
[RFB15]	Olaf RONNEBERGER, Philipp FISCHER et Thomas BROX. "U-net: Convolutional networks for biomedical image segmentation". In: International Conference on Medical image computing and computer-assisted intervention. Springer. 2015, p. 234-241.

Recognition. T. 4. 2018.

Yiru Shen et al. "Mining point cloud local structures by kernel correlation and graph pooling". In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Daniel MATURANA et Sebastian SCHERER "Voynet : A 3D convolutional neural network for

References v

[SSP+03]	Patrice Y SIMARD, David STEINKRAUS, John C PLATT et al. "Best practices for convolutional neural networks applied to visual document analysis.". In: <i>ICDAR</i> . T. 3. 2003, p. 958-962.
[Su+15]	Hang Su et al. "Multi-view convolutional neural networks for 3D shape recognition". In : Proceedings of the IEEE international conference on computer vision. 2015, p. 945-953.
[Su+18]	Hang SU et al. "SPLATNet: Sparse Lattice Networks for Point Cloud Processing". In : arXiv preprint arXiv:1802.08275 (2018).
[Wan+18a]	Shenlong Wang et al. "Deep parametric continuous convolutional neural networks". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, p. 2589-2597.
[Wan+18b]	Weiyue WANG et al. "SGPN: Similarity group proposal network for 3D point cloud instance segmentation". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, p. 2569-2578.
[Wan+18c]	Yue WANG et al. "Dynamic graph CNN for learning on point clouds". In: arXiv preprint arXiv:1801.07829 (2018).
[WP15]	Dominic Zeng WANG et Ingmar POSNER. "Voting for Voting in Online Point Cloud Object Detection.". In: Robotics: Science and Systems. T. 1. 2015, p. 5.
[WSS18]	Chu WANG, Babak SAMARI et Kaleem SIDDIQI. "Local Spectral Graph Convolution for Point Set Feature Learning". In : arXiv preprint arXiv:1803.05827 (2018).

References vi

[Wu+15]	Zhirong WU et al. "3D shapenets: A deep representation for volumetric shapes". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, p. 1912-1920.
[Xu+18]	Yifan X_U et al. "SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters". In: arXiv preprint arXiv:1803.11527 (2018).
[Yi+16]	Li YI et al. "A scalable active framework for region annotation in 3D shape collections". In: ACM Transactions on Graphics (TOG) 35.6 (2016), p. 210.
[Yi+17]	Li Y1 et al. "SyncSpecCNN: Synchronized spectral CNN for 3D shape segmentation". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, p. 2282-2290.
[Arm+17]	I. ARMENI et al. "Joint 2D-3D-Semantic Data for Indoor Scene Understanding". In: ArXiv e-prints (fév. 2017). arXiv: 1702.01105 [cs.CV].