Linear Algebra

Jonny Evans

MATH105

Matrices and vectors

Length of v?

Length of v? $|v| = \sqrt{x^2 + y^2}$

Length of v?

$$|y| = \sqrt{y^2 \pm y}$$

Angle θ ?

Length of
$$v$$
? $|v| = \sqrt{x^2 + y^2}$

Angle
$$\theta$$
? $\theta = \arctan(y/x)$

$$|v| = \sqrt{x^2 + y^2}$$

Length of
$$v$$
? $|v| = \sqrt{x^2 + y^2}$ Angle θ ? $\theta = \arctan(y/x)$

$$\theta$$

$$(|v|\cos\theta)$$

$$v = \begin{pmatrix} |v|\cos\theta\\ |v|\sin\theta \end{pmatrix}.$$

Theorem

If w is obtained by rotating $v = \begin{pmatrix} x \\ y \end{pmatrix}$ by an angle ϕ anticlockwise around its basepoint then

$$w = \begin{pmatrix} x\cos\phi - y\sin\phi \\ x\sin\phi + y\cos\phi \end{pmatrix}.$$

Theorem

If w is obtained by rotating $v = \begin{pmatrix} x \\ y \end{pmatrix}$ by an angle ϕ anticlockwise around its basepoint then

$$w = \begin{pmatrix} x \cos \phi - y \sin \phi \\ x \sin \phi + y \cos \phi \end{pmatrix}.$$

Definition

A 2-by-2 matrix is a grid of numbers $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Given
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $v = \begin{pmatrix} x \\ y \end{pmatrix}$, define the *linear map*

$$\mathbb{R}^2 \to \mathbb{R}^2, \qquad v \mapsto Mv := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}.$$

Similarly, a vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ represents an arrow in \mathbb{R}^3 .

Similarly, a vector $\begin{pmatrix} x \\ y \\ \tau \end{pmatrix}$ represents an arrow in \mathbb{R}^3 .

A 3-by-3 matrix
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 defines a linear map $\mathbb{R}^3 o \mathbb{R}^3$,

Similarly, a vector
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 represents an arrow in \mathbb{R}^3 .

Similarly, a vector
$$\begin{pmatrix} y \\ z \end{pmatrix}$$
 represents an arrow in \mathbb{R}^3 .

A 3-by-3 matrix
$$\begin{pmatrix} a & b & c \\ d & e & f \\ \end{pmatrix}$$
 defines a linear map $\mathbb{R}^3 \to$

A 3-by-3 matrix
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 defines a linear map $\mathbb{R}^3 o \mathbb{R}^3$,

 $\begin{pmatrix} a & b & c \\ d & e & f \\ - & b & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ax + by + cz \\ dx + ey + fz \\ ax + by + iz \end{pmatrix}.$

Definition

An m-by-n matrix is a grid with m rows and n columns

Definition

An m-by-n matrix is a grid with m rows and n columns

$$\begin{array}{c}
 & \longrightarrow \\
 & \longrightarrow \\$$

This defines a linear map $\mathbb{R}^n \to \mathbb{R}^m$

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & \cdots & A_{2n} \\ \vdots & \vdots & & & \vdots \\ A_{m1} & A_{m2} & \cdots & \cdots & A_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} A_{11}x_1 + \cdots + A_{1n}x_n \\ A_{21}x_1 + \cdots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + \cdots + A_{mn}x_n \end{pmatrix}$$

Matrix multiplication

Given
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
, and $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$ we get

Given
$$A=\begin{pmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{pmatrix}$$
, and $B=\begin{pmatrix}B_{11}&B_{12}\\B_{21}&B_{22}\end{pmatrix}$ we get

$$A(B(v)) = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Given
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
, and $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$ we get

$$A(B(v)) = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

:

Given
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
, and $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$ we get
$$A(B(v)) = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\vdots$$
$$= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Definition (Matrix multiplication: 2-by-2)

Define

$$AB = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}.$$

Definition (Matrix multiplication: 2-by-2)

Define

$$AB = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}.$$

Equivalently,

$$(AB)_{ij} = \sum_{k=1}^{2} A_{ik} B_{kj}.$$

Definition (Matrix multiplication: 2-by-2)

Define

$$AB = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}.$$

Equivalently,

$$(AB)_{ij} = \sum_{k=1}^{2} A_{ik} B_{kj}.$$

Definition (Matrix multiplication)

Given an m-by-n matrix A and an n-by-p matrix B, define AB to be the m-by-p matrix with entries

$$(AB)_{ij} = \sum_{k=1}^n A_{ik} B_{kj}.$$

Definition (Matrix powers)

If A is a square matrix and k is a positive integer then A^k denotes the product $AA \cdots A$ (k times, where k = 0 means A = I).

Definition (Matrix powers)

If A is a square matrix and k is a positive integer then A^k denotes the product $AA \cdots A$ (k times, where k = 0 means A = I).

Definition (Matrix sum)

$$(A+B)_{ij}=A_{ij}+B_{ij}.$$

Definition (Matrix powers)

If A is a square matrix and k is a positive integer then A^k denotes the product $AA \cdots A$ (k times, where k = 0 means A = I).

Definition (Matrix sum)

$$(A+B)_{ij}=A_{ij}+B_{ij}.$$

Definition (Matrix scaling)

$$(\lambda A)_{ij} = \lambda A_{ij}.$$

Matrix exponential

Definition (Matrix exponential)

Given an n-by-n matrix A, define

$$\exp(A) = I + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \dots = \sum_{n \ge 0} \frac{1}{n!}A^n.$$

Dot products & orthogonal matrices

Definition

Given vectors
$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
 and $w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$ define the *dot product*

$$v \cdot w := v_1 w_1 + \cdots + v_n w_n = \sum_{i=1}^n v_i w_i.$$

Definition

Given vectors
$$v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$
 and $w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$ define the *dot product*

$$v \cdot w := v_1 w_1 + \cdots + v_n w_n = \sum_{i=1}^n v_i w_i.$$

Theorem (Proof later!)

If v and w make an angle ϕ then

$$v \cdot w = |v||w|\cos\phi$$
.

Note that

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}.$$

Note that

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}.$$

Definition

Define the *transpose* A^T of an *m*-by-*n* matrix A to be the *n*-by-*m* matrix with entries $(A^T)_{ii} = A_{ii}$.

So $v \cdot w = v^T w$.

Lemma

$$(AB)^T = B^T A^T.$$

Lemma

$$(AB)^T = B^T A^T$$
.

Definition (Orthogonal matrix)

A square matrix A is orthogonal if $A^TA = I$.

Lemma

$$(AB)^T = B^T A^T$$
.

Definition (Orthogonal matrix)

A square matrix A is orthogonal if $A^TA = I$.

Lemma

If A is orthogonal then $(Av) \cdot (Aw) = v \cdot w$.

i.e. orthogonal matrices preserve lengths and angles.

3-d rotations

Example

$$A = \begin{pmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$B = \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0 \end{pmatrix}$$

 $C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

Example

$$D = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- Find axis u: solve Du = u.
- ▶ Find angle: pick $v \perp u$ and compute angle between v and Dv.

Example

$$E = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} + \frac{1}{\sqrt{3}} & -\frac{1}{3} + \frac{1}{\sqrt{3}} \\ \frac{1}{3} - \frac{1}{\sqrt{3}} & \frac{1}{3} & -\frac{1}{3} - \frac{1}{\sqrt{3}} \\ -\frac{1}{3} - \frac{1}{\sqrt{2}} & -\frac{1}{3} + \frac{1}{\sqrt{2}} & \frac{1}{3} \end{pmatrix}.$$

- Find axis u: solve Eu = u.
- ▶ Find angle: pick $v \perp u$ and compute angle between v and Ev.

We saw earlier that
$$\exp\begin{pmatrix}0 & -\theta\\ \theta & 0\end{pmatrix} = \begin{pmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{pmatrix}$$
. In fact...

Theorem

 $\exp(tA)$ is orthogonal for all $t \in \mathbb{R}$ if and only if A is antisymmetric, i.e. $A^T = -A$.

Proof.

If $A^T = -A$ then

$$(\exp(tA))^T = \exp(tA^T) = \exp(-tA).$$

 $\exp(-tA)\exp(tA) = I,$

so exp(tA) is orthogonal. Conversely...

Theorem

 $\exp(tA)$ is orthogonal for all $t \in \mathbb{R}$ if and only if A is antisymmetric, i.e. $A^T = -A$.

Proof.

If $\exp(tA)$ is orthogonal, then $\exp(tA)^T \exp(tA) = I$ for all t. Differentiate with respect to t:

$$A^{T} \exp(tA^{T}) \exp(tA) + \exp(tA^{T}) A \exp(tA) = 0,$$

and set t=0:

$$A^T + A = 0$$
, as $exp(0A) = I$.

Need to show:

$$\exp(-B)\exp(B) = I$$

 $\exp(B)^T = \exp(B^T)$

 $\frac{d}{dt}\exp(tA) = A\exp(tA)$

 $\frac{d}{dt}(A(t)B(t)) = \frac{dA(t)}{dt}B(t) + A(t)\frac{dB(t)}{dt}.$