scientific reports

OPEN

(Machine Learning)

Ashish Goyal, Maheshwar Kuchana & Kameswari Prasada Rao ay Yagari [⋈] (IVF) 가 IVF . IVF . IVF (AI) 가 (HFEA) , F1 (RO C) 가 Without feature selection With feature selection ¬├ F1 without feature selection ROC (ROC AUC) 77%, 76% 84.60% 가 (IVF). IVF 가 . IVF . IVF 가 . IVF IVF . IVF **IVF** (v11). 가 가 (AI), (ML), (DL) . AI

BML Munjal University, Gurugram 122413, India. [™]email: akprasada@yahoo.com

```
가
IVF
                                                            가
                           ML
                                                  . ML DL
  ML
            가
                                                                     , ML
                                        . ML
                                                                    17,18
                                             DL
ML
                                          가,
                                ML
                                                    IVF
            가
                                                         McLernon
                                 IVF
                                            가
                                                                       가
       (IVF
                 가
                                                                                                IV
                                                              1999
                                                                          2008
F
                                                          (HFEA)
                253,417
                                                                 0.76(0.75 - 0.77)
    C-
                 0.69 (0.68 - 0.69)
                                                     C-
  Rafiul Hassan et al. 21 IVF
ll-Climbing
                                                                                      2008
       3
                                , Antral Follicle Counts (AFC),
                                                                                27 가
                                                              IVF
                         , SVM (Support Vector Machine) 19
                                                                  IVF
                                                                                      98.38%, F1-
                                                , K.
                                                        (KNN)
                                                                    Guvenir et al. 22
       (BMI),
         SVM
                      64
                                              84%
                                                                                          Kaufman
n et al.
                      (ANN)
                                    5-6
                                                          59
                                                                                       가
가 IVF
                      IVF
                                        가
                                                                            가 가
  JIAHUI QIU et al. 25
                                                                          (XGBOOST)
                                                                                         SVM
  가
                        IVF
                                                                     2014-2018
  Shengjing
                                  IVF
                                                  7188
                                                                                           , AMH,
BMI,
                                               (ROC)
                                                                                        . Xgboost
                        ROC AUC (Roc Curve)
  가
              IVF
       IVF
IVF
                               31,32
                                  가
                                                                가 2010
              94
                                                                              2016
            IVF
                                                                            141,160
                                           70,580
                                                                <sup>34</sup>, K 가
  ML, DL,
                           <sup>37</sup>, 1-d
                                                                                     . Ensemble Le
arning ^{39}
adaboost 41,
```

```
가
                     ROC-AUC
F1-
                                                                                         2010
-2016
     가
                                                                             2016
                                                                   2010
                                                                     495,630
                                                 94
                                                                                         가
     141,160
        94
                                 가
                    (IRB)
  30
                                                      Bharti Bansal
                                                                         Nice Clinical Guideline (
National Institute of Health and Care Excellence, UK)
                           IVF (ICSI
                                                               PGD/PCS
                                                 94
                                                                           . IVF
          (FSH)
                                        (LH)
                                         999
1. 18 - 34가 0
          . 5
                                                               5 ×
                                                                                         141,1
60
                   25
                                                               70,580
                                                                                가
                                                                                            3
4%,
                 66%
               93,165
               47,995
                                                                                       가
                         가
                                                                                          25
가
```

Field	Type	Description
Patient age at treatment	Categorical	Patient age at treatment, banded as follows: 18-34, 35-37, 38-39, 40-42, 43-44, 45-50
Total number of previous cycles	Numerical	How many treatment cycles of IVF the patient has previously had
Total number of IVF pregnancies	Numerical	How many patients have been pregnant through IVF
Total number of live births- conceived through IVF	Numerical	How many live births the patients have had through IVF
Type of infertility—female primary	Categorical	1 if the patient unable to get pregnant after at least 1 year, 0 otherwise
Type of Infertility—female secondary	Categorical	1 if the patient able to get pregnant at least once but now unable to, 0 otherwise
Type of infertility—male primary	Categorical	1 if the leading cause of the infertility is patient, 0 otherwise
Type of infertility—male secondary	Categorical	1 if the secondary cause of infertility is due to the patient, 0 otherwise
Type of infertility—couple primary	Categorical	1 if the leading cause of the infertility is patient/partner, 0 otherwise
Type of infertility—couple secondary	Categorical	1 if the secondary cause of infertility is due to the patient/partner, 0 otherwise
Cause of infertility—tubal disease	Categorical	1 if there is damage in the fallopian tubes that prevents sperm from reaching the ovary, 0 otherwise
Cause of infertility—ovulatory disorder	Categorical	1 if the primary cause of this infertility is due to ovulation disorder, 0 otherwise
Cause of infertility—male factor	Categorical	$\begin{array}{c} 1 \text{ if the primary cause of this infertility is due to male patients,} \\ 0 \text{ otherwise} \end{array}$
Cause of infertility—patient unexplained	Categorical	1 if the primary cause of infertility in the patient is unknown, 0 otherwise
Cause of infertility—endometriosis	Categorical	1 if the primary cause of this infertility is due to endometriosis, 0 otherwise
Cause of infertility—cervical factors	Categorical	1 if the primary cause of this infertility is due to the Cervical factor, 0 otherwise
Cause of infertility—female factors	Categorical	1 if the primary cause of this infertility is due to female factors, 0 otherwise
Cause of infertility—partner sperm concentration	Categorical	1 if the primary cause of this infertility is due to low sperm count, 0 otherwise
Cause of infertility—partner sperm morphology	Categorical	1 if the primary cause of this infertility is an abnormality in sperm morphology, 0 otherwise
Cause of infertility—partner sperm motility	Categorical	$\begin{array}{c} 1 \text{ if the primary cause of this infertility is poor sperm motility,} \\ 0 \text{ otherwise} \end{array}$
Cause of infertility—partner sperm immunological factors	Categorical	1 if the primary cause of this infertility is due to sperm immunological factors, 0 otherwise
Stimulation used	Categorical	1 if the stimulation medication is used, 0 otherwise
Egg source	Text	Indicates whether the eggs used in this cycle came from Patient (P) or a Donor (D)
Sperm source	Text	Indicates whether the eggs used in this cycle came from Patient (P) or a Donor (D)
Fresh cycle	Categorical	1 if this cycle using fresh embryos, 0 otherwise
Frozen cycle	Categorical	1 if the cycle used from frozen embryos, 0 otherwise
Eggs thawed	Numerical	If this cycle frozen eggs, the number of eggs thawed
Fresh eggs collected	Numerical	The number of eggs collected in this cycle
Eggs mixed with partner sperm	Numerical	The number of eggs mixed with sperm from the partner
Embryos transferred	Numerical	The number of embryos transferred into the patient in this cycle

1. IVF .

46

. (LR), K 가 가 (KNN), (MLP),

. , Adaboost,

Sigmoid

	Model	Precision (%)	Recall (%)	F1-score (%)	ROC AUC score (%)
	Multi-layer Perceptron	74	72	72.98	77.90
Machine learning models	K Nearest Neighbours	71	71	71.00	77.60
	Decision Tree	76	76	76.00	83.30
Deep learning model	DL Classifier	73	72	72.49	78.00
	Voting—hard classifier	75	73	73.98	73.10
Ensemble Learning models	Voting—soft classifier	77	75	75.98	83.20
	Random forest	77	76	76.49	84.60
	AdaBoost	74	72	72.98	77.40

```
SVC +
    GINI
                                                                      , K 가
                             25 \sim 5
                           . ML
                                                                        가
                                                            (DL)
                                                 25
                                                                                          (1-D
                                                                           Sigmoid
                                    (Relu) 47
                                                                           . DL
                                            가
                                                                 . Adam Optimizer <sup>48</sup>
           RMSProp
Adagrad
                                              Adam Optimizer가
                                                                           . Adam Optimizer
                                                                      , RMSProp, Adagrad
                                 Adam Optimizer
DL
                                            50
                      49
                                                                              . 49.
                                                                                           가
                                               가
                             DL
  (512
                              20%가
                   가
                                   가
          128
```


Training Parameter	Value				
Input Size	(, 25)				
Output Size	(,1)				
Total Dense Layers	9				
Regularization	Batch Normalization, Dropout				
Batch_Size	128				
Optimizer	Adam				
Loss	Binary crossentropy				
Epochs	50				
Callbacks used	Early Stopping (patience = 5)				

가 .

```
가
                                             ML
                             ML
1. Random Forest 2. Adaboost
   , 5
                                                                                  . NC가
                 Y1, Y2, y3,...
                        y_{final} = Max(N_c(y_1), N_c(y_2), N_c(y_3), ..., N_c(y_n))
                                                                                      (1)
                                                            y_{final} = Max\left(\frac{1}{n}\left(\sum (p_1, p_2, ..., p_n)\right)\right)
                                                                                       (2)
  K가 가
                                           Keras
ML
            Scikit-Learn
                                                                                , ROC AUC
                                                                  가
                   ML
                           , DL
                                2
                                                              가 , F1-
                                                                                    ROC
AUC
                                                                   Forest
                                                                                76.49%
가
          F1
                                                                           ROC AUC
 76%
                                        4a
                                   AUC
                                               84.6%
                                  : svc + selectfromomel.
                                                                 3
                                                                               72.98%
                    . Adaboost, 77.60%
, SVC + Adaboost AUC 77.60%
                                                   ROC AUC
                                                                       ROC AUC .
                                                                  가
                                 ROC AUC , F1-
                                                                     가
          SVC +
                                        . 73.46%
                                                                                가
                                                                 72%
         ROC AUC
                           SVC + 가
AUC 가가
                                                                 ROC AUC
  . Adaboost, MLP, DL
         가
                                                                  (
                                    84.6%
                        76.49%
                                                        가
```


	Model	Precision (%)	Recall (%)	F1-score (%)	ROC AUC score (%)
	Multi-layer Perceptron	74	72	72.98	77.50
Machine Learning models	K Nearest Neighbours	67	66	66.49	72.20
	Decision Tree	67	67	67.00	70.10
Deep learning model	DL Classifier	74	72	72.98	77.40
	Voting—Hard classifier	73	71	71.98	71.70
Ensemble Learning models	Voting—Soft classifier	71	70	70.49	75.70
	Random Forest	69	68	68.49	74.00
	AdaBoost	74	72	72.98	77.60

3. , SVC + .

, . . 가 가 IVF

· 가 .

	Model	Precision (%)	Recall (%)	F1-score (%)	ROC AUC score (%)
	Multi-layer Perceptron	75	72	73.46	77.30
Machine Learning models	K Nearest Neighbours	66	66	66.00	72.60
	Decision Tree	70	69	69.49	73.80
Deep learning model	DL Classifier	75	71	72.94	77.30
	Voting—hard classifier	73	71	71.98	71.00
Ensemble learning models	Voting—soft classifier	72	70	70.98	76.20
	Random Forest	71	70	70.49	74.90
	AdaBoost	74	71	72.46	77.30

```
4.
                                                                       SVC + Extra Trees
                                                                           AUC
                                                                                       84.60%
                                                                                                  76.49% F1-
                                                                     가
        IVF
                가
                              ΑI
                                                                  . IVF
                              : 2020
     : 2020 5 1 ;
                                         10
                                              19
Published online: 01 December 2020
1. Gurunath, S., Pandian, Z., Anderson, A. R. & Bhattacharya, S.
    . 17, 575 – 588. https://doi.org/10.1093/humup.d/dmr01 5 (2011). 2. Loendersloot, V. L., Repping, S., Bossuyt, P.M. M., Vee
n, F. V. D. & Wely, M. V.
                                                                        9
                                                                                   . J. adv.
                                                                                               5, 295 - 301. https:/
/doi.org/10.1016/j.jare.2013.05.002 (2014). 3. Zarinara, A. et al.
                                                                                                      . J.
  . 17, 68 – 81 (2016). 4. Cooper, S. G.
                                                                       . 76, 1018 – 1019. https://doi.org/10.2105/ajph.
76.8.1018 (1986). 5. Gameiro, S., Boivin, J., Peronace, L. & Verhaak, C. M.
                                                               . 18, 652 - 669. https://doi.org/10.1093/humup.d/dms03
1 (2012). 6. Ranjbar, F., Moghadam, Z. B., Borimnejad, L., Saeed, R. G. & Akhondi, M. M.
                  . J.
                          bridge University Press, Cambridge, 2008). 8. Goodfellow, I. et al.
                                                               151 – 161 (The Mit Press, Cambridge, 2016). 9. Deo,
                     . 132, 1920 – 1930 (2015). 10. Handelman, G. S. et al.
                                                                                                 . J.
4, 603 – 619. https://doi.org/10.1111/joim.12822 (2018). 11. Rahimian, F. et al.
                                  . PLOS MED. 11, E1002695. https://doi.org/10.1371/journ al.pmed.10026 95 (2018). 12.
                                                                 . J. 6 (2), 94 – 98. https://doi.org/10.7861/futurehosp
Davenport, T. & Kalakota, R.
.6-2-94 (2019). 13. Blank, C. et al.
326. https://doi.org/10.1016/j.fertn Stert .2018.10.030 (2019). 14. Barash, O., Ivani, K., Weckstein, L. & Hinckley, M.
           IVF PGT
                                                                                 . 110, E372. https://doi.org/10.10
16/j.fertn Stert .2018.07.1038 (2018). 15. Vaughan, D. et al.
                                        . 112, E273. https://doi.org/10.1016/j.fertn Stert .2019.07.808 (2019). 16. John, R. I
                                                                                     . 9, 497. https://doi.org/10.417
                                                                     . Gvnecol.
2/2161-0932.10004 97 (2019). 17. Tran, D., Cooke, S., Illingworth, P. J. & Gardner, D. K.
                                                 . 34, 1011 – 1018. https://doi.org/10.1093/humre.p/dez06.4 (2019). 18.
                                                                  가
                                                                             가
                                                                                             . NPJ Digit Med. 2, 21.
Khosravi, P. et al.
가
                                                                                                    113873
a, S.
                    . BMJ 355, i5735. https://doi.org/10.1136/bmj.i5735 (2016). 20. McLernon, D.J., Steyerberg, E., Velde, E.
                                                                                                  가
R. T., Lee, A. J. & Bhattacharya, S.
```

. BMJ 363, K3598. https://doi.org/10.1136/bmj.k3598 (2018).

```
21. Hassan, R., Al-Insaif, S., Hossain, M. I. & Kamruzzaman, J. IVF
                                                                                                                  . Springer 3
2, 2283 - 2297. https://doi.org/10.1007/s0052 1-018-3693-9 (2020). 22. Guvenir, A. H. et al.
                                                                                                                     IVF
                               . Springer 53, 911 – 920. https://doi.org/10.1007/s1151 7-015-1299-2 (2015). 23. Kaufmann, S.
                                                                   . 12 (7), 1454 – 1457. https://doi.org/10.1093/humre p/12.7.
1454 (1997). 24.
                                                                                                           . 7 (2019). 25. Qiu,
J. et al.
                                                                                                  . 17, 317. https://doi.org/10
.1186/S1296 7-019-2062-5 (2019). 26. Olmedo, S. B., Chillik, C. & Kopelman, S.
1-53. https://doi.org/10.1016/s1472-6483 (10) 62187-6 (2001). 27. Cedars, M. & Jaffe, R. B.
                                                                                                          . J. Clin.
        . 90, 4. https://doi.org/10.1210/jcem.90.4.9997 (2005). 28. Masoumi, Z. S. et al.
                                                                                               Fatemieh Hospital
                                                                          . 13, 513 - 516 (2015). 29. Templeton, A., Morris,
                                                              J.
K. J. & Parslow, W. Vitro
                                                         . Lancet 348, 1402 – 1406. https://doi.org/10.1016/s0140 -6736 (96)
05291 -9 (1996). 30. Bhattarcharya, S. et al.
                                                                . 11, 819 (2010). 31. Lackner, J. et al.
                                                              . 84, 1657 – 1661. https://doi.org/10.1016/j.fertn Stert .2005.05.0
49 (2005). 32. Cooper, T. G. et al.
                                                                             가 . . .
                                                                                                      . 16, 231 – 245. https://
doi.org/10.1093/humup d/dmp04 8 (2010). 33.
                                                                    . https://www.hfea.gov.uk/media/2667/ar-2015-2016-xlsb.
xlsb (2016), 34. Dreiseitl, S. & Machado, L. O.
                                                                                                    J
35, 5-6. https://doi.org/10.1016/s1532 -0464 (03) 00034 -0 (2002). 35. T. Cover & P. Hart. 가
                                                                                                                    . IEEE
                  , 13, 21 – 27. doi: https://doi.org/10.1109/tit.1967.10539 64 (1967) 36. Almeida, L. B.
             (Oxford University Press, Oxford, 1997). 37. Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A.
   (CRC Press, Boca Raton, 1984). 38. Anderson, J. A. et al.
                                                                                             (The Mit Press, Cambridge, 2000)
                                                                                         (Springer, Berlin, 2000). 40. Breiman,
 39. Dietterich, T. G.
                     45, 5 – 32. https://doi.org/10.1023/a:1010933404324(2001). 41. Freund, Y. & Schapire, R. E.
                                                              (ICML'96) 148 – 156 (1996) 42. Raschka, S. Python Machine Lea
rning (Packt Publishing, Birmingham, 2015). 43. Moon, M. & Nakai, K.
                                                                                                      L 1-Norm
                                      . BMC
                                                 . 17, 1026. https://doi.org/10.1186/S1286 4-016-3320-Z (2016). 44. Uddin, M
. T. & Uddiny, M. A.
                         , 1-6. https://doi.org/10.1109/iceei ct.2015.73073 84 (2015) 45. Ahemmed, B. et al.
          (ICEICT),
                                                                                               . int. J.
                                                                                                                 . 2017, 94512
35. https://doi.org/10.1155/2017/94512 35 (2017). 46. Rakesh, R. & Richa, S. Chi-Square
                                                                                                 가
                                                                                                                   . J. Pract.
               . 1, 69 – 71. https://doi.org/10.4103/2395-5414.15757 7 (2015). 47. Vinod N., & Geoffrey, E. Hinton.
                                                                           (ICML)
                                                                                                                . Omnipress,
Madison, WI, USA, 807 - 814 (2017) 48. Kingma, DP, & BA, J. Adam:
                                                                                                 . Corr, https://arxiv.org/abs/
1412.6980 (2015) 49. Ioffe, S., & Szegedy, C.
                                                                                                                  가
    . https://arxiv.org/abs/1502.03167 (2015)
         Bharti Bansal
                                                 , -Jawaharlal Nehru Medical College, Aligarh —2006)
                               (MS-
                                                                                            . M.K:
A.G.:
                                                                  . K.P.R.A. :
     , AI
   가
                  https://doi.org/10.1038/s4159 8-020-76928 -Z
                                                                                          가
                                  K.P.R.A.
                             www.nature.com/reprints
                  Springer Nature
```

<u>@</u> _	(i)	Open Access	(Creative Commons Attribution 4.0 International				
	,	, ,	(. Creative C	Commons			
						3		
				Creative Commor	ns			Creative C
omm	ons		가					
					가			
	http:	: // Creat Iveco	mmons .org	/licen ses/by/4.0/				
©	20	20						