ANALISI E SIMULAZIONE DI SISTEMI DINAMICI

Lezione XIII: Stabilità nei Sistemi Non Lineari

- Stabilità degli Equilibri nei Sistemi NL
- Metodo della Linearizzazione (o metodo indiretto di Lyapunov)
- Esempi
 - Modello preda-predatore
 - Serbatoi accoppiati
 - Algoritmo di Newton
 - Caso critico

Stabilità degli equilibri nei SNL

• Modello espresso in Equazione di stato non lineare.

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x, u) \end{cases}$$

 \bullet Assegnato un ingresso $u(t)=\overline{U}$ costante, gli stati di equilibrio sono le soluzioni \overline{X} dell'equazione non lineare

$$f(\overline{X}, \overline{U}) = 0$$

• Esempio:

$$\begin{cases} \dot{x}_1 = x_1 + x_1^3 u \\ y = x_1 \end{cases}$$

• Il concetto di stabilità può essere associato allo stato di equilibrio (solo localmente) analizzando l'evoluzione dello stato per piccole variazioni delle c.i. rispetto allo stato di equilibrio.

Metodo di Linearizzazione

Modello linearizzato nello stato di equilibrio \overline{X} :

$$\begin{cases} \Delta \dot{x} &= \overline{A} \Delta x + \overline{B} \Delta u \\ \Delta y &= \overline{C} \Delta x + \overline{D} \Delta u \\ \Delta x(0) &= x_0 - \overline{X} \end{cases}$$

dove $\Delta x(t) = x(t) - \overline{X}$, $\Delta y(t) = y(t) - \overline{Y}$, $\Delta u(t) = u(t) - \overline{U}$, e

$$\overline{A} = \frac{\partial f(x, u)}{\partial x} \Big|_{(\overline{X}, \overline{U})} , \quad \overline{B} = \frac{\partial f(x, u)}{\partial u} \Big|_{(\overline{X}, \overline{U})}$$

$$\overline{C} = \frac{\partial h(x, u)}{\partial x} \Big|_{(\overline{X}, \overline{U})} , \quad \overline{D} = \frac{\partial h(x, u)}{\partial u} \Big|_{(\overline{X}, \overline{U})}$$

• È possibile allora usare il modello linearizzato per studiarne la stabilità attraverso il calcolo degli autovalori.

Criterio di stabilità (Metodo indiretto di Lyapunov)

- 1. Tutti gli autovalori di \overline{A} hanno parte reale < 0
 - \Rightarrow Equilibrio $(\overline{X}, \overline{U})$ (localmente) asintoticamente stabile
- 2. Tutti gli autovalori di \overline{A} hanno parte reale < 0
 - \Leftrightarrow Equilibrio $(\overline{X}, \overline{U})$ (localmente) esponenzialmente stabile
- 3. Esiste almeno un autovalore di \overline{A} con parte reale > 0
 - \Rightarrow Equilibrio $(\overline{X}, \overline{U})$ (localmente) instabile

4. CASO CRITICO:

non esiste nessun autovalore di \overline{A} con parte reale > 0 e ne esiste almeno uno con parte reale = 0.

Nota 1: in un sistema non lineare possono coesistere stati di equilibrio stabili ed instabili (Es. Pendolo)

Nota 2: con criteri analoghi, il metodo di linearizzazione si applica anche ai SNL TD.

Esempi

• Modello preda-predatore (normalizzato)

$$\dot{x}_1 = x_1(1-x_2)$$

 $\dot{x}_2 = -x_2(1-x_1)$

Serbatoi accoppiati

$$\dot{x}_1 = -\alpha\sqrt{x}_1 + \beta u
\dot{x}_2 = \gamma\sqrt{x}_1 - \delta\sqrt{x}_2$$

Algoritmo di Newton

$$x(k+1) = x(k) - \frac{g(x(k))}{g'(x(k))}$$

Caso critico

$$\begin{cases} \dot{x}_1 = -x_1^3 + x_2 \\ \dot{x}_2 = -x_1^3 - x_2^3 \end{cases}$$