Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

Trees

We're used to binary trees that repeatedly partition "value space"

Rank and select are about alphabet space; where are the 0s and 1s?
Where are the a's, c's, t's and g's?

Idea: partition alphabet space

mississippi

Partition alphabet into {i, m}, {p, s}

What goes in this next layer?

Can we do full-alphabet versions of access, rank and select?

How big is this?

RSA queries extend naturally to strings:

$$S$$
. access $(i) = S[i]$

S. rank_c(i) =
$$\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

$$S$$
 . select_c $(i) = \max\{j \mid S . rank_c(j) = i\}$

Where S is a string with alphabet Σ and $c \in \Sigma$

$$S$$
. access $(i) = S[i]$

S. rank_c(i) =
$$\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

S . select_c $(i) = \max\{j \mid S : rank_c(j) = i\}$

Wavelet tree access(i):

Given offset *i*:

$$N \leftarrow root$$
while N is not leaf
 $B \leftarrow N$. bitvector
 $b \leftarrow B[i]$
 $N \leftarrow N$. child(b)
 $i \leftarrow B$. rank $_b(i)$
return N . label

Could have picked a different shape for the tree

Could have picked a different shape for the tree

Tree shape defines a (prefix) code

$$C(i) = 0$$

$$C(s) = 10$$

$$C(p) = 110$$

$$C(m) = 111$$

mississippi { i }, {m, p, s} 10110110110 msssspp { s }, {m, p} 1000011 {p}, {m}

This tree is Huffman; previous (balanced) tree was not

$$S$$
. access $(i) = S[i]$

$$S$$
. rank_c(i) = $\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$

$$S$$
. select_c $(i) = \max\{j \mid S . rank_c(j) = i\}$

Note that rank can ask about any character c at any position i

$$S. \operatorname{rank}_{c}(i) = \sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

Algorithm will be similar to access...

Return label

So....where's the answer?

S. rank_c(i) =
$$\sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

Algorithm will be similar to access...

But the path we follow corresponds to c, which isn't necessarily the character at S[i]

Wavelet tree rank_{χ}(i):

Given character x and offset i:

$$N \leftarrow root$$
 $k \leftarrow 0$
while N is not leaf
 $B \leftarrow N$. bitvector
 $b \leftarrow c(x)[k]$
 $i \leftarrow B \cdot rank_b(i)$
 $N \leftarrow N \cdot child(b)$
 $k \leftarrow k + 1$
return i

$$S$$
. access $(i) = S[i]$

S.
$$\operatorname{rank}_{c}(i) = \sum_{j=0}^{i-1} \begin{cases} 1 \text{ if } S[j] = c \\ 0 \text{ otherwise} \end{cases}$$

S. select_c $(i) = \max\{j \mid S . rank_c(j) = i\}$

Answer: 8 mississippi 00110110110 111100 10000 m S . $select_p(0)$

Wavelet tree select_{χ}(i):

Given character x and rank i:

$$N \leftarrow \operatorname{leaf}(x)$$
 $l \leftarrow |c(x)| - 1$
while N is not root
 $N \leftarrow N$. parent()
 $B \leftarrow N$. bitvector
 $b \leftarrow c(x)[k]$
 $i \leftarrow B$. select_b(i)
 $k \leftarrow k - 1$
return i

Assuming *balanced* tree

Exercise: do similar analysis for Huffman-shaped tree, with results in terms of H_0

Exercise: space analysis, assuming bitvectors at internal nodes can be combined in a single level-wise bitvector