Image Classification from Coded Aperture

Jocelyn Ornelas Muñoz, Erica M. Rutter, Roummel F. Marcia Department of Applied Mathematics, UC Merced

Thursday, December 8, 2022

Motivation

In medical imaging, radiography typically uses apertures to modulate the radiation emitted by an x-ray source.

Motivation

In medical imaging, radiography typically uses apertures to modulate the radiation emitted by an x-ray source.

Problem: With more complicated apertures, a decoding procedure is necessary to reconstruct the image.

Motivation

In medical imaging, radiography typically uses apertures to modulate the radiation emitted by an x-ray source.

Problem: With more complicated apertures, a decoding procedure is necessary to reconstruct the image.

Goal: Classify images from coded observations without reconstructing the image.

Aperture Imaging

 $\textbf{Small} \ \text{pinholes allow little light} \implies \textbf{faint} \ \text{observatons}$

Aperture Imaging

 $\textbf{Larger} \ \text{pinholes allow more light, but decrease resolution} \implies \textbf{blurry} \ \text{observations}$

Aperture Imaging

Multiple small pinholes ⇒ overlapping observations

A MURA pattern A consists of specified openings that has a corresponding decoding pattern G^1 .

¹Gottesman and Fenimore (1989)

A MURA pattern A consists of specified openings that has a corresponding decoding pattern G^1 .

Let p be a prime number and $A = \{A_{ij}\}_{i,j=0}^{p-1}$ be the binary aperture array. Set

$$A_{ij} = \begin{cases} 0 & \text{if } i = 0 \\ 1 & \text{if } j = 0, i \neq 0 \\ 1 & \text{if } C_i C_j = +1 \\ 0 & \text{otherwise} \end{cases}$$

where

$$C_i = egin{cases} +1 & ext{if } i ext{ is a quadratic residue modulo } p \ -1 & ext{otherwise} \end{cases}$$

¹Gottesman and Fenimore (1989)

A MURA pattern A consists of specified openings that has a corresponding decoding pattern G^1 .

The decoding function G is constructed as follows:

$$G_{ij} = \begin{cases} +1 & \text{if } i+j=0\\ +1 & \text{if } A_{ij}=1, i+j \neq 0\\ -1 & \text{if } A_{ij}=1, i+j \neq 0 \end{cases}$$

A MURA pattern A consists of specified openings that has a corresponding decoding pattern G^1 .

¹Gottesman and Fenimore (1989)

Coded observation

Coded observations appear irrecognizable, but MURAs are 50% open patterns¹ ⇒ decoded observations are much brighter than those from small pinhole cameras.

¹Gottesman and Fenimore (1989)

MURA aperture imaging

The observation D is given by

$$D = S * A + B$$

where B is background noise. The MURA reconstruction is given by

$$\hat{S} = D * G$$

where G is the decoding pattern.

Proposed Method

Goal: Classify handwritten digits from coded observations using a convolutional neural network (CNN) without reconstructing the image.

Dataset: MNIST Handwritten Digits

- 28×28 pixels (grayscale)
- 60,000 training images
- 10,000 testing images

Dataset: MNIST Handwritten Digits

- 28×28 pixels (grayscale)
- 60,000 training images
- 10,000 testing images

Approach:

• Resize MNIST digits to 23×23 pixels

Dataset: MNIST Handwritten Digits

- 28×28 pixels (grayscale)
- 60,000 training images
- 10,000 testing images

Approach:

- Resize MNIST digits to 23 x 23 pixels
- ② Generate aperture of size 23×23 (in C++)

Dataset: MNIST Handwritten Digits

- 28×28 pixels (grayscale)
- 60,000 training images
- 10,000 testing images

Approach:

- **1** Resize MNIST digits to 23×23 pixels
- ② Generate aperture of size 23×23 (in C++)
- Convolve images with aperture using series of 1D Fast Fourier Transforms (FFT) and 1D inverse FFT to get coded observations (in C++)

Dataset: MNIST Handwritten Digits

- 28×28 pixels (grayscale)
- 60,000 training images
- 10,000 testing images

Approach:

- Resize MNIST digits to 23 x 23 pixels
- **②** Generate aperture of size 23×23 (in C++)
- **②** Convolve images with aperture using series of 1D Fast Fourier Transforms (FFT) and 1D inverse FFT to get coded observations (in C++)
- Train a 2-layer CNN

Results

CNN performance on coded observations test set.

Accuracy: 95.35%

Coded Aperture

Digits 3,5 and 7 were the most common misclassifications.

Results

Most common misclassifications:

Observation

True label: 3

Gracias!

12 / 12