QBF: Solving and Proofs Exercise Sheet 2

Joshua Blinkhorn

Friedrich-Schilller-Universität Jena

axiom:	\overline{C}	C is a clause in F
oracle:	$\frac{C_1,\ldots,C_k}{C}$	$C_1 \wedge \cdots \wedge C_k \vDash C$ C is not tautological
universal reduction:	$\frac{C \vee a}{C}$	C is a clause a is a universal literal $\operatorname{vars}_{\exists}(C) \subseteq L(\operatorname{var}(a))$

Fig. 1. The inference rules of NP-QU-Resolution. L(var(a)) denotes the existential variables quantified in Q before the universal variable var(a).

Definition 1. An NP-QU-resolution derivation from a QBF $\Phi = Q \cdot F$ is a sequence a clauses $\Pi = C_1, \ldots, C_k$ derived with the rules in Figure 1. The size of Π is k. We call Π a refutation when C_k is the empty clause.

axiom:	\overline{C}	C is a clause in F
oracle:	$rac{C_1,\ldots,C_k}{C}$	$C_1 \wedge \cdots \wedge C_k \vDash C$
universal reduction:	$\frac{C}{C[lpha]}$	C is a clause α is a total assignment to U U is a universal block of $\mathcal Q$ $\operatorname{vars}_\exists(C)\subseteq L(U)$

Fig. 2. The inference rules of P. L(U) denotes the existential variables quantified in Q before the universal block U.

Definition 2. A P derivation from a QBF $\Phi = \mathcal{Q} \cdot F$ is a sequence a clauses $\Pi = C_1, \ldots, C_k$ derived with the rules in Figure 2. The size of Π is k. We call Π a refutation when C_k is the empty clause.

Exercises

- 1. The proof system P is NP-QU-Resolution with a stronger form of universal reduction. Show that P p-simulates NP-QU-Resolution (i.e. show that an NP-QU-Resolution refutation of a QBF Φ can be transformed efficiently into a P refutation of Φ).
- 2. Explain why it is not necessary to forbid tautological clauses in P.
- 3. Let $\Phi = \forall U \mathcal{Q} \cdot F$ be a QBF, and let Π be a P refutation of Φ . Suppose that Π contains more than one universal reduction on the block U. Show that Π can be transformed into a refutation with at most one universal reduction step on U by deleting some of the clauses.
- 4. Let $\Phi = \forall UQ \cdot F$ be a QBF, and let Π be a P refutation of Φ with exactly one universal reduction step on U. Let $\alpha \in \langle U \rangle$ be the assignment used in this step. Show that $\Phi[\alpha]$ is false.
- 5. Let $\Phi = \exists X \forall U \exists Z \cdot F$ be a QBF, and let Π be a refutation of Φ . Using the result of the previous exercise, and the fact that P is closed under existential restrictions, demonstrate how to produce a countermodel for Φ from Π .
- 6. Let $\Phi = \exists X \forall U \exists Z \cdot F$ be a QBF. Prove that the shortest P refutation of Φ has size at least $\sigma(\Phi)$, where

$$\sigma(\Phi) := \min\{|\operatorname{rng}(h)| : h \text{ is a countermodel for } \Phi\}.$$

7. Optional exercise. Let $\Phi = \exists X_1 \forall U_1 \cdots \exists X_n \forall U_n \exists X_{n+1}$ be a QBF, and for each $i \in [n]$ let

$$\sigma_i(\Phi) := \min\{|\operatorname{rng}(h)|_{U_i}| : h \text{ is a countermodel for } \Phi\}.$$

where $\operatorname{rng}(h)|_{U_i}$ is obtained from $\operatorname{rng}(h)$ by deleting the assignments to all univeral blocks except U_i . Prove that the shortest P refutation of Φ has size at least $\max\{\sigma_i(\Phi): i \in [n]\}$.

Hint: You will need to extend the countermodel extraction method from exercise 4 to the general case.