12. Übung Maß- und Wahrscheinlichkeitstheorie 2 WS2019

- 1. Eine Umkehrung des zentralen Grenzwertsatzes: zeigen Sie, dass aus der Konvergenz in Verteilung von $(X_1+\ldots+X_n)/\sqrt{n}$ gegen die Standardnormalverteilung (wobei (X_n) eine Folge von unabhängigen identisch verteilten Zufallsvariablen ist) folgt, dass $\mathbb{E}(X_n)=0$ und $\mathbb{V}(X_n)=1$ gilt (das hat natürlich mit der Differenzierbarkeit der charakteristischen Funktion zu tun; die erste Ableitung sollte kein Problem darstellen, für die zweite genügt es, den Grenzwert von $(2-\phi(t)-\phi(-t))/t^2$ für $t\to 0$ zu betrachten).
- 2. Zeigen Sie: Wenn für ein $t \neq 0$ $\phi_X(t) = 1$ gilt, dann nimmt X mit Wahrscheinlichkeit 1 nur Werte der Form $2n\pi/t, n \in \mathbb{Z}$ an. Gilt $\phi(t_1) = \phi(t_2) = 1$ für zwei inkommensurable Werte t_1 und t_2 (d.h. t_1/t_2 ist irrational), dann gilt X = 0 fast sicher.
- 3. (a) F und G seien (Wahrscheinlichkeits-) Verteilungsfunktionen, d die Lévy-Prohorov-Metrik. Zeigen Sie für die verallgemeinerten Inversen

$$d(F^{-1}, G^{-1}) \le d(F, G).$$

- (b) Zeigen Sie: $F_n \longrightarrow F$ genau dann, wenn es auf einem geeigneten Wahrscheinlichkeitsraum Zufallsvariable $X_n \sim F_n$, $X \sim F$ gibt mit $X_n \to X$ fast sicher (Darstellungssatz von Skorohod).
- 4. Ein Würfel wird 100 mal geworfen. Bestimmen Sie die Wahrscheinlichkeit, dass die Summe der Augenzahlen mehr als 375 beträgt.
- 5. Wie oft muss man würfeln, damit die Wahrscheinlichkeit dafür, dass die Summe der Augnzahlen größer als 200 ist, mindestens 0.9 ist?
- 6. Wie oft muss man würfeln, damit die Wahrscheinlichkeit dafür, mindestens 100 Sechser zu erzielen, größer als 0.9 ist?
- 7. Ein anderer Weg, das vorige Beispiel zu lösen: die Anzahl der Versuche hat eine negative Binomialverteilung, und diese kann (als Summe von unabhängig geometrisch verteilten Zufallsvariablen) auch durch eine Normalverteilung approximiert werden.