A Haar wavelet-based perceptual similarity index for image quality assessment

Huang Yijun

SZU

July 22, 2022

Outline

- 1 The Feature Similarity Index
 - Gradient Map and Phase Congruency Map
 - Local Feature Similarity Map
 - The Feature Similarity Index(FSIM)
- 2 The Haar Wavelet-based Perceptual Similarity Index(HaarPSI)
 - The Haar Wavelet Filters
 - The Local Similarity Measure
 - HaarPSI
- 3 Experiments

Gradient Map and Phase Congruency Map

• For a grayscale image $f \in \mathbb{R}^2$, the gradient map is defined by,

$$G_f[x] = \sqrt{((g^{hor} * f)[x])^2 + ((g^{ver} * f)[x])^2}$$
 (1)

where q^{hor} and q^{ver} denote horizontal and vertical gradient filters, and * denotes the two-dimensional convolution operator.

• The phase congruency map of a grayscale image f is given by

$$PC_{f}[x] = \frac{\left|\sum_{n} (g_{n}^{c} * f)[x]\right|}{\sum_{n} |(g_{n}^{c} * f)[x]|}$$
(2)

where g_n^c denotes differently scaled and oriented wavelet filters

Local Feature Similarity Map

• The local feature similarity map for two grayscale images $f_1, f_2 \in \mathbb{R}^2$ is defined by

$$FS_{f_1,f_2} = S(G_{f_1}[x], G_{f_2}, C_1)^{\beta} \cdot S(PC_{f_1}[x], PC_{f_2}, C_2)^{\gamma}$$
(3)

where $C_1, C_2 > 0$ and $\beta, \gamma > 0, S$ denotes the similarity measure function, which is defined by

$$S(a, b, C) = \frac{2ab + C}{a^2 + b^2 + C}$$

Eventually, the feature similarity index is computed by taking the weighted mean of all local feature similarities, where the phase congruency map is used as a weight

$$FSIM_{f_1,f_2} = \frac{\sum_{x} FS_{f_1,f_2}[x] \cdot PC_{f_1,f_2}[x]}{\sum_{x} PC_{f_1,f_2}[x]}$$
(4)

The Haar Wavelet Filters

The 2-dimensional orthogonal Haar wavelet filters are

$$g_1^0 = \begin{bmatrix} 1/4 & 1/4 & 0 \\ 1/4 & 1/4 & 0 \\ 0 & 0 & 0 \end{bmatrix} g_1^1 = \begin{bmatrix} -1/4 & 1/4 & 0 \\ -1/4 & 1/4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$g_1^2 = \begin{bmatrix} 1/4 & 1/4 & 0 \\ -1/4 & -1/4 & 0 \\ 0 & 0 & 0 \end{bmatrix} g_1^3 = \begin{bmatrix} 1/4 & -1/4 & 0 \\ -1/4 & 1/4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where the subscript of $g_i^k (j \in N, k \in \{0, 1, 2, 3\})$ denotes the scale and the superscript is the type of the filter.

The local similarity measure used to compute the HaarPSI is based on the first two stages of a two-dimensional discrete Haar wavelet transform and given by

$$HS_{f_1,f_2}^k[x] = l_\alpha \left(\frac{1}{2} \sum_{j=1}^2 S\left(|(g_j^k * f_1)[x]|, |(g_j^k * f_2)[x]|, C \right) \right)$$
 (5)

where $l_{\alpha} = \frac{1}{1+e^{-\alpha x}}$ is the logistic function with $\alpha > 0$ and $k \in \{1, 2\}.$

HaarPSI

The Haar-wavelet based perceptually similarity index for two grayscale images f_1, f_2 is eventually given as the weighted average of the local similarity map HS_{f_1,f_2}^k that is

$$HaarPSI_{f_1,f_2} = l_{\alpha}^{-1} \left(\frac{\sum_{x} \sum_{k=1}^{2} HS_{f_1,f_2}^{k}[x] \cdot W_{f_1,f_2}^{k}[x]}{\sum_{x} \sum_{k=1}^{2} W_{f_1,f_2}^{k}[x]} \right)^{2}$$
(6)

where
$$W_{f_1,f_2}^k[x] = \max(W_{f_1}^k[x], W_{f_2}^k[x]), W_f^k[x] = |g_3^k * f[x]|$$

Experiments result

(a) reference

(b) ALOHA

(c) FADHFA

(d) ESPIRiT

(e) 3D-US

The comparison of the SSIM and HaarPSI

The comparison of the SSIM and HaarPSI

Algorithm	SSIM	HaarPSI
ALOHA	0.765	0.818
FADHFA	0.735	0.836
ESPIRiT	0.520	0.873
3D-US	0.629	0.920

Comparison

Comparison

Comparison

