Mathematical Analysis Notes

Michael Harmon

July 9, 2017

Chapter 1

Banach Spaces

Metric: For a given set \mathbf{X} , $d: \mathbf{X} \times \mathbf{X} \to \mathbb{R}$ is a metric if,

- 1. $\forall x, y \in \mathbf{X}, d(x, y) \ge 0$
- 2. $\forall x, y \in \mathbf{X}, d(x, y) = d(y, x)$
- 3. $\forall x, y, z \in \mathbf{X}, d(x, z) \leq d(x, y) + d(y, z)$

Metric Space: Let **X** b a set and $d: \mathbf{X} \times \mathbf{X} \to \mathbb{R}$ be a metric, then (\mathbf{X}, d) is a metric space.

A metric space is complete if every Cauchy sequence converges to a point in it.

Normed Linear Space: Let **X** be a vector space and $\|\cdot\|$ a norm such that $\forall \mathbf{x}, \mathbf{y} \in \mathbf{X}$ and $\lambda \in \mathbb{R}$ or \mathbb{C} ,

- 1. $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$
- $2. \|\mathbf{x}\| = 0 \leftrightarrow \mathbf{x} = 0$
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

then $(\mathbf{X}, \|\cdot\|)$ is a NLS.

Example:

$$C([a,b]) = \left\{ f: \, [a,b] o \mathbb{F}, \, \text{where f is cont. and} \, \sup_{[a,b]} |f(x)| < \infty
ight\}$$