Ch08.LR과 SVM

교재

학습목표

■ 로지스틱 회귀분석(Logistic Regression)

■ 서포트 벡터 머신(SVM)

1.로지스틱 회귀분석

로지스틱 회귀분석

- 로지스틱 회귀분석
 - 클래스 소속 확률(odds)을 이용하여 분류
 - 활성함수 : Sigmoid 함수 이용

$$h(z) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$
$$-\infty \le a \le \infty$$

$$h(z) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots)}}$$
$$0 \le a \le 1$$

■ 아달라인과 로지스틱 활성함수 차이

$$h(z) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$
$$-\infty \le a \le \infty$$

$$h(z) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots)}}$$
$$0 \le a \le 1$$

■ 활성함수

■ 결합함수 ≠ 활성함수

$$z = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

$$\hat{y} = a = h(z) = \frac{1}{1 + e^{-(z)}}$$

$$= \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n)}}$$

활성화 함수	공식		사례	1차원 그래프
선형 함수	$\phi(z) = z$	z	아달린, 선형 회귀	
단위 계단 함수 (헤비사이드 함수)	$\phi(z) = \begin{cases} 0 \\ 0.5 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	퍼셉트론 유형	
부호 함수	$\phi(z) = \begin{cases} -1 \\ 0 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	퍼셉트론 유형	
부분 선형 함수 ϕ	$(z) = \begin{cases} 0 \\ z + \frac{1}{2} \\ 1 \end{cases}$	z ≤ -½ -½ ≤ z ≤ ½ z ≥ ½	∕₂ 서포트 벡터 머신	+
로지스틱 (시그모이드) 함수	φ(z)=	1 · e ^{-z}	로지스틱 회귀, 다층 신경망	
하이퍼볼릭 탄젠트 (tanh) 함수	$\phi(z) = \frac{e^z}{e^z}$	- e ^{-z} + e ^{-z}	다층 신경망, RNN	
렐루 함수	$\phi(z) = \begin{cases} 0 \\ z \end{cases}$	z < 0 z > 0	다층 신경망, CNN	

No	B1	Fat	Salt	w_0	w_1	W_2	Z	$h(z) = \hat{y}$	y	$(y-\hat{y})$	J(w)	Δw_0	Δw_1	Δw_2
1	1	0.2	0.9				-0.281	0.430	1	0.570	0.843			
2	1	0.1	0.1				-0.294	0.427	0	-0.427	0.557			
3	1	0.2	0.4	0.200	0.050	0.010	-0.286	0.429	0	-0.429	0.560			
4	1	0.2	0.5	-0.300	0.050	0.010	-0.285	0.429	0	-0.429	0.561			
5	1	0.4	0.5				-0.275	0.432	1	0.568	0.840			
6	1	0.3	0.8				-0.277	0.431	1	0.569	0.841			
										cost(J(w))	4.203			

- 활성함수
 - 퍼셉트론, 아달라인, 로지스틱 차이

<u>퍼셉트론</u>

$$\hat{y} = a = h(z) = \begin{cases} -1 & if(z \le 0) \\ 1 & if(z > 0) \end{cases}$$

$$\hat{y} = a = h(z) = h(-0.281)$$

= -1

<u>아달라인</u>

$$\hat{y} = a = h(z) = z$$

$$\hat{y} = a = h(z) = z$$

= $h(-0.281)$
= -0.281

<u>로지스틱</u>

$$\hat{y} = a = h(z) = \frac{1}{1 + e^{-(z)}}$$

$$\hat{y} = a = h(z) = h(-0.281)$$

$$= \frac{1}{1 + e^{-(-0.281)}}$$

$$= 0.430$$

학습

- 학습
 - 비용함수 최소화하는 가중치

• 비용함수
$$J(w) = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}_i)^2$$

$$J(w) = \begin{cases} -\log(h(z)) & \text{if } y = 1\\ -\log(1 - h(z)) & \text{if } y = 0 \end{cases}$$

<u>하나로 결합</u>

$$J(w) = \sum -y \log(h(z)) - (1 - y) \log(1 - h(z))$$

학습

No	B1	Fat	Salt	w_0	w_1	W_2	Z	$h(z) = \hat{y}$	у	$(y-\hat{y})$	J(w)	Δw_0	Δw_1	Δw_2
1	1	0.2	0.9				-0.281	0.430	1	0.570	0.843			
2	1	0.1	0.1				-0.294	0.427	0	-0.427	0.557			
3	1	0.2	0.4	0.200	0.050	0.010	-0.286	0.429	0	-0.429	0.560			
4	1	0.2	0.5	-0.300	0.050	0.010	-0.285	0.429	0	-0.429	0.561			
5	1	0.4	0.5				-0.275	0.432	1	0.568	0.840			
6	1	0.3	0.8				-0.277	0.431	1	0.569	0.841			
										cost(J(w))	4.203			

$$J(w_1) = -y \log(h(z)) - (1 - y) \log(1 - h(z))$$

$$= -1 \log(0.430) - (0) \log(1 - 0.430)$$

$$= -1 \log(0.430)$$

$$= 0.843$$

$$J(w) = \sum -y \log(h(z)) - (1 - y) \log(1 - h(z))$$
$$= 0.843 + \dots + 0.841 = 4.203$$

비용함수

■ 비용함수

아달라인

<u>로지스틱</u>

$$J(w) = \frac{1}{2} \sum_{i=1}^{n=6} (y_i - \hat{y}_i)^2$$
$$= \frac{1}{2} (1.641) + \dots + (1.631) = 3.208$$

$$J(w) = \sum -y \log(h(z)) - (1 - y) \log(1 - h(z))$$
$$= 0.843 + \dots + 0.841 = 4.203$$

가중치 업데이트

- 가중치 업데이트
 - Batch updating

$$w_j^{new} = w_j^{old} + \Delta w_j$$

▶ 가중치 업데이트 : 비용함수를 최소화 – 비용함수를 미분

$$J(w) = \sum_{i=1}^{n} -y \log(h(z)) - (1 - y) \log(1 - h(z))$$

$$J(w_1) = \frac{\partial J}{\partial w_1} = -\sum_{i=1}^{n} (y_i - \hat{y}_i) x_1$$

$$\Delta w_j = -\eta \frac{\partial J}{\partial w_j} = -\eta - \sum_{i=1}^{n} (y_i - \hat{y}_i) x_j = \eta \sum_{i=1}^{n} (y_i - \hat{y}_i) x_j$$

아달라인 함수 미분과 동일

$$J(w) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$J(w_1) = \frac{\partial J}{\partial w_1} = -\sum_{i=1}^{n} (y_i - \hat{y}_i) x_1$$

가중치 업데이트

No	B1	Fat	Salt	w_0	W_1	W_2	Z	$h(z) = \hat{y}$	у	$(y-\hat{y})$	J(w)	Δw_0	Δw_1	Δw_2
1	1	0.2	0.9				-0.281	0.430	1	0.570	0.843	0.570	0.114	0.513
2	1	0.1	0.1				-0.294	0.427	0	-0.427	0.557	-0.427	-0.043	-0.043
3	1	0.2	0.4	0.200	0.050	0.010	-0.286	0.429	0	-0.429	0.560	-0.429	-0.086	-0.172
4	1	0.2	0.5	-0.300	0.050	0.010	-0.285	0.429	0	-0.429	0.561	-0.429	-0.086	-0.215
5	1	0.4	0.5				-0.275	0.432	1	0.568	0.840	0.568	0.227	0.284
6	1	0.3	0.8				-0.277	0.431	1	0.569	0.841	0.569	0.171	0.455
										cost(J(w))	4.203	0.422	0.298	0.823
			-									0.084	0.060	0.165

$$\Delta w_j = -\eta \times J(w_1) = -\eta \frac{\partial J}{\partial w_j} = \eta \sum_{i=1}^n (y_i - \hat{y}_i) x_j$$

$$w_1$$
일 때 , 가중치= $J(w_1) = (1 - (0.430)) \times 0.2 + \dots + (1 - (431)) \times 0.2$
= $(0.570) \times 0.2 + \dots + (0.569) \times 0.2$
= $0.114 + \dots + 0.171 = 0.298$

$$\Delta w_1 = \eta \times J(w_1) = 0.2 \times 0.298 = 0.060$$

가중치 업데이트

No	B1	Fat	Salt	w_0	W_1	W_2	Z	$h(z) = \hat{y}$	y	$(y-\hat{y})$	J(w)	Δw_0	Δw_1	Δw_2
1	1	0.2	0.9				-0.281	0.430	1	0.570	0.843	0.570	0.114	0.513
2	1	0.1	0.1				-0.294	0.427	0	-0.427	0.557	-0.427	-0.043	-0.043
3	1	0.2	0.4	0.200	0.050	0.010	-0.286	0.429	0	-0.429	0.560	-0.429	-0.086	-0.172
4	1	0.2	0.5	-0.300	0.050	0.010	-0.285	0.429	0	-0.429	0.561	-0.429	-0.086	-0.215
5	1	0.4	0.5				-0.275	0.432	1	0.568	0.840	0.568	0.227	0.284
6	1	0.3	0.8				-0.277	0.431	1	0.569	0.841	0.569	0.171	0.455
										cost(J(w))	4.203	0.422	0.298	0.823
			new_w	-0.216	0.110	0.175						0.084	0.060	0.165

$$w_j^{new} = w_j^{old} + \Delta w_j$$

 $w_1^{new} = 0.05 + 0.060$
 $= 0.110$

3개 방법론 비교

	Output	$\hat{y} = a = h(z) = h(-0.281) = -1$
<u>퍼셉트론</u>	오차(error)	$(y - \hat{y}) = (1 - (-1)) = 2$
	가중치 변화율	$\Delta w_j = \eta(y - \hat{y})x_j = 0.2(1 - (-1))0.2 = 0.4$
	Output	$\hat{y} = a = h(z) = z = h(-0.281) = -0.281$
<u>아달라인</u>	오차(error)	$(y - \hat{y}) = (1 - (-0.281)) = 1.281$
	가중치 변화율	$\Delta w_j = \eta \sum_{i=1}^n (y_i - \hat{y}_i) x_j = 0.2\{(1 - (-0.281)) \times 0.2 + \dots\} = 0.159$
	Output	$\hat{y} = a = h(z) = \frac{1}{1 + e^{-(-0.281)}} = 0.430$
<u>로지스틱</u>	오차(error)	$(y - \hat{y}) = (1 - (0.430)) = 0.570$
	가중치 변화율	$\Delta w_j = \eta \sum_{i=1}^n (y_i - \hat{y}_i) x_j = 0.2 \{ (1 - (0.430)) \times 0.2 + \dots \} = 0.159$

로지스틱 회귀 함수 만들기 실습

```
cost = -y.dot(np.log(h)) - ((1 - y).dot(np.log(1 - h)))
      print('== 비용함수(J)')
       print('cost: ', cost)
       print('')
      self.cost_.append(cost)
   return self
def net_input(self, X):
   """최종 입력 계산"""
   return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, z):
   """선형 황성화 계산"""
   ## np.clip(값, 최소값, 최대값): 최소, 최대값을 벗어나면 최소, 최대값으로 대체, 261 -> 250
   return 1. / (1. + np.exp(-np.clip(z. -250, 250)))
def predict(self, X):
   """단위 계단 함수를 사용하여 클래스 레이블을 반환합니다"""
   return np.where(self.activation(self.net input(X)) >= 0.0.1.0)
```

로지스틱 회귀 함수 만들기 실습

```
logistic = LogisticGD(n_iter = 1, eta = 0.2)
logistic.fit(X, v)
== 에포크
n_iter O
== 초기 가중치(w)
self.w_: [-0.3, 0.05, 0.01]
== 결합함수(z)
z: [-0.281 -0.294 -0.286 -0.285 -0.275 -0.277]
== 활성함수(h)
h: [0.43020863 0.42702488 0.42898341 0.42922839 0.43168002 0.43118942]
== 에러
errors:
0 0.569791
1 -0.427025
2 -0.428983
3 -0.429228
4 0.568320
5 0.568811
Name: Acceptance, dtype: float64
== 가중치 업데이트(X)
X.T.dot(errors): Fat
                        0.297585
Salt 0.823111
dtype: float64
self.eta * X.T.dot(errors): Fat
                                  0.059517
Salt 0.164622
dtype: float64
self.w_[1:]: [0.10951691857915814, 0.17462212832990065]
== 가중치 업데이트(b)
errors.sum(): 0.42168524844191835
self.eta * errors.sum(): 0.08433704968838368
self.w_[0]: -0.2156629503116163
== 최종 가중치(전체)
self.w: [-0.2156629503116163, 0.10951691857915814, 0.17462212832990065]
== 비용함수(J)
cost: 4,202779610365861
```

2.로지스틱 회귀분석 실습

유니버설 은행

- 사례)유니버설 은행
 - target marketing을 활용한 캠페인
 - 개인대출 제안에 대한 수락여부
 - 총데이터: 5,000개
 - 성공율: 9.6%(480명)
 - 분리: 3,000개(학습), 2,000개(검증)

	D1 E 4				신용카드 평균							
TA	나이	경력	소득	가족수	ᆼᆢ 사용액	STOMERS	OF UNIVERSAL	BANK				
	1 -1	Professional	_ ,	Family	CC	교육	담보부채권	개인대출	증권계좌	CD계좌	온라인뱅	킹 신용카드
ID	Âge	Experience	Income	Size	Âvg	Education	Mortgage	Loan	Account	Account	Banking	Card
1	25	1	49	4	1.60	UG	0	No	Yes	No	No	No
2	45	19	34	3	1.50	UG	0	No	Yes	No	No	No
3	39	15	11	1	1.00	UG	0	No	No	No	No	No
4	35	9	100	1	2.70	Grad	0	No	No	No	No	No
5	35	8	45	4	1.00	Grad	0	No	No	No	No	Yes
6	37	13	29	4	0.40	Grad	155	No	No	No	Yes	No
7	53			-1.1		-11		No	No	No	Yes	No
8	50	O	사결	섨나.	무 무	.넬 co	nv	No	No	No	No	Yes
9	35		' -		' <u> </u>	- = =		No	No	No	Yes	No
10	34		100	•	0.50	,,,,,		Yes	No	No	No	No
11	65	39	105	4	2.40	Prof	0	No	No	No	No	No
12	29	5	45	3	0.10	Grad	0	No	No	No	Yes	No
13	48	23	114	2	3.80	Prof	O	No	Yes	No	No	No
14	59	32	40	4	2.50	Grad	0	No	No	No	Yes	No

1.기본 package 설정

```
## 5,분류모델구축 (3장.p.83~130)
# from sklearn,tree import DecisionTreeClassifier # 결정 트리
# from sklearn,naive_bayes import GaussianNB # 나이브 베이즈
# from sklearn,neighbors import KNeighborsClassifier # K-최근접 이웃
# from sklearn,ensemble import RandomForestClassifier # 랜덤 포레스트
# from sklearn,ensemble import BaggingClassifier # 암삼블
# from sklearn,linear_model import Perceptron # 퍼셉트론
from sklearn.linear_model import LogisticRegression # 로지스틱 회귀 모델
# from sklearn,svm import SVC # 서포트 벡터 머신(SVM)
# from sklearn,neural_network import MLPClassifier # 다층인공신경망
```

3.데이터 전처리

3.데이터 전처리

- 문자형 자료를 숫자(범주형)로 인코딩 -> 범주형 변수를 가변수로 처리 : One Hot Encording
- 숫자형 자료를 표준화
- 단, 결정나무, 랜덤 포레스트, 나이브 베이즈 분류 : 원본데이터 그대로 유지

3.1 data(X) 수치형 데이터 표준화

• X.keys()에서 index 키를 가져옴 ['Age', 'Experience', 'Income', 'Family', 'CCAvg']

```
stdsc = StandardScaler()
X.iloc[:,[0,1,2,3,4,6]] = stdsc.fit_transform(X.iloc[:,[0,1,2,3,4,6]])
```

X.head()

	Age	Experience	Income	Family	CCAvg	Education	Mortgage	SecuritiesAccount	CDAccount	Online	CreditCard
0	-1.774417	-1.666078	-0.538229	1.397414	-0.193385	1	-0.555524	1	0	0	0
1	-0.029524	-0.096330	-0.864109	0.525991	-0.250611	1	-0.555524	1	0	0	0
2	-0.552992	-0.445163	-1.363793	-1.216855	-0.536736	1	-0.555524	0	0	0	0
3	-0.901970	-0.968413	0.569765	-1.216855	0.436091	2	-0.555524	0	0	0	0
4	-0.901970	-1.055621	-0.625130	1.397414	-0.536736	2	-0.555524	0	0	0	1

3.데이터 전처리

3.2 data(X) 레이블 인코딩 • 질변변수 가변수화 가변수 처리시 문자로 처리를 해야 변수명 구분이 쉬움 X['Education'] = X['Education'].replace ([1.2.3], ['Under', 'Grad', 'Prof']) X.head() Age Experience CCAvg Education Mortgage SecuritiesAccount CDAccount Online CreditCard Income Family 0 -1.774417 -1.666078 -0.538229 1.397414 -0.193385 Under -0.555524 0 1 -0.029524 -0.096330 -0.864109 0.525991 -0.250611 Under -0.555524 0 2 -0.552992 -0.445163 -1.363793 -1.216855 -0.536736 Under -0.555524 3 -0.901970 -0.968413 0.569765 -1.216855 0.436091 Grad -0.555524 0 0 4 -0.901970 -1.055621 -0.625130 1.397414 -0.536736 Grad -0.555524 0 X.keys() Index(['Age', 'Experience', 'Income', 'Family', 'CCAyg', 'Education', 'Mortgage', 'SecuritiesAccount', 'CDAccount', 'Online', 'CreditCard'], dtype='object') X = pd.get_dummies(X[['Age', 'Experience', 'Income', 'Family', 'CCAvg', 'Education', 'Mortgage', 'SecuritiesAccount', 'CDAccount', 'Online', 'CreditCard']], columns=['Education']. drop first = True) X.head() Age Experience CCAvg Mortgage SecuritiesAccount CDAccount Online CreditCard Education Prof Education Under Income Family 0 -1.774417 -1.666078 -0.538229 1.397414 -0.193385 -0.555524 1 -0.029524 -0.096330 -0.864109 0.525991 -0.250611 -0.555524 2 -0.552992 -0.445163 -1.363793 -1.216855 -0.536736 -0.555524 0 0 0 0 0 0 3 -0.901970 -0.968413 0.569765 -1.216855 0.436091 -0.555524 0 4 -0.901970 -1.055621 -0.625130 1.397414 -0.536736 -0.555524

5.모델구축

6.모델검정

6.2 정오분류표로 검정

	Predict[0]	Predict[1]
True[0]	1349	7
True[1]	117	27

```
print('Classification Report')
print(classification_report(y_test, y_pred))
```

Classificatio	n Report precision	recall	f1-score	support
0 1	0.92 0.79	0.99 0.19	0.96 0.30	1356 144
accuracy macro avg weighted avg	0.86 0.91	0.59 0.92	0.92 0.63 0.89	1500 1500 1500

6.3 정확도, 민감도 확인

• 클래스가 2개일 경우에만 실행

```
print('잘못 분류된 샘플 개수: %d' % (y_test != y_pred).sum())
print('정확도: %.3f' % accuracy_score(y_test, y_pred))
print('정밀도: %.3f' % precision_score(y_true=y_test, y_pred=y_pred))
print('재현율: %.3f' % recall_score(y_true=y_test, y_pred=y_pred))
print('F1: %.3f' % f1_score(y_true=y_test, y_pred=y_pred))
```

잘못 분류된 샘플 개수: 124

정확도: 0.917 정밀도: 0.794 재현율: 0.188 F1: 0.303

부록.Logistic Regress 회귀계수

부록. Logistic Regress 회귀계수

- 전체변수 투입: sm.Logit(y, X)
- 특정변수만 넣고 싶을 때
- Logistic_ml = sm.Logit.from_formula("PersonalLoan ~ Age + Experience + Income + Family + CCAvg", bank_df)

import statsmodels.api as sm

logistic_ml = sm.Logit(y, X) #로지스틱 회귀분석 시행 logistic_coef = logistic_ml.fit() logistic_coef.summary2()

부록.Logistic Regress 회귀계수

Model		Logit	Pseudo R	-squared	0.	528
Dependent Variable	Pers	onalLoan		AIC	1516.1	369
Date	2019-11	-04 14:12		BIC	1594.3	432
No. Observations		5000	Log-L	ikelihood	-746	5.07
Df Model		11		LL-Null	-158	31.0
Df Residuals		4988	LLF	R p-value	0.0	000
Converged		1.0000		Scale	1.0	000
No. Iterations		9.0000				
	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
Age	-0.7512	0.6853	-1.0960	0.2731	-2.0944	0.5921
Experience	0.8612	0.6827	1.2615	0.2071	-0.4768	2.1992
Income	2.4375	0.1145	21.2843	0.0000	2.2130	2.6620
Family	0.3616	0.0714	5.0629	0.0000	0.2216	0.5016
CCAvg	0.3730	0.0748	4.9860	0.0000	0.2264	0.5196
Mortgage	0.0915	0.0576	1.5881	0.1123	-0.0214	0.2045
SecuritiesAccount	-1.7463	0.2888	-6.0472	0.0000	-2.3123	-1.1803
CDAccount	4.9464	0.3341	14.8030	0.0000	4.2915	5.6013
Online	-2.1804	0.1350	-16.1499	0.0000	-2.4450	-1.9158
CreditCard	-2.1050	0.2029	-10.3758	0.0000	-2.5026	-1.7074
Education_Prof	-1.6077	0.1422	-11.3079	0.0000	-1.8864	-1.3290
Education_Under	-5.5799	0.2466	-22.6258	0.0000	-6.0633	-5.0965

부록.Logistic Regress 회귀계수

np.exp(logistic_coe	f.params)	
Age Experience Income Family CCAvg Mortgage SecuritiesAccount CDAccount Online CreditCard Education_Prof Education_Under dtype: float64	0.471820 2.366013 11.444403 1.435643 1.452095 1.095844 0.174414 140.667639 0.112999 0.121845 0.200348 0.003773	

7.1 파이프라인 모델 만들기

- 파이프라인을 이용하여 최적 모델 만들기
- 기본모형은 아무 옵션이 없는 모델로 부터 시작
- 파라미터 옵션 확인: pipe_tree.get_params().keys()

```
pipe_logistic = make_pipeline(LogisticRegression(random_state=1))
```

```
pipe_logistic.get_params().keys()
```

dict_keys(['memory', 'steps', 'verbose', 'logisticregression', 'logisticregression__dual', 'logisticregression__fit_intercept', 'logisticregression__intercept', 'logisticregression__intercept', 'logisticregression__n_jobs__state', 'logisticregression__solver', 'logisticregression__tol', 'logisticregression__tol'

7.2 학습 곡선으로 편향과 분산 문제 분석하기

- 훈렴 샘플링 수를 이용하여 편향과 분산 검정
- 편향: 정확도가 높은지 검정
- 분산: 훈련/검정 데이터의 정확도의 차이가 적은지

1.00

0.98

0.94

0.92

0.90

500

1000

1500

Number of training samples

2000

O.96

training accuracy validation accuracy

3000

2500

7.3 검증 곡선으로 과대적합과 과소적합 조사하기

```
    과대적합: 파라미터가 많음 -> 파라미터 축소
    과소적한: 파라미터가 적음 -> 파라미터 추가
```

```
plt.grid()
plt.xlabel('Number of C') # 수정
plt.legend(loc='lower right')
plt.xlabel('Parameter C') # 수정
plt.ylabel('Accuracy')
plt.ylim([0.9, 1.00]) # 수정
plt.tight_layout()
plt.show()
```


7.4 하이퍼파라미터 튜닝

- 그리드 서치를 사용한 머신 러닝 모델 세부 튜닝
- 기계학습 모델의 성능을 결정하는 하이퍼 파라미터 튜닝

```
param_range = [0.01, 0.1, 1.0, 10, 100, 200] # 수정
param_grid = [{'logisticregression__C': param_range}] # 수정
gs = GridSearchCV(estimator=pipe_logistic, # 수정
                  param_grid=param_grid,
                  scoring='accuracy'.
                  cv = 10.
                  n iobs=-1
gs = gs.fit(X_train, y_train)
print(gs.best_score_)
print(gs.best_params_)
0.9605714285714285
{'logisticregression__C': 100}
```

8.최적화 모델 검정

- 최적모델을 이용해 검정 데이터(full data) 최종 확인
- best_tree 로 모델명 변경

v_pred = best_logistic.predict(X_test)

8.최적화 모델 검정

- 최적모델을 이용해 검정 데이터(full data) 최종 확인
- best_tree 로 모델명 변경

```
best logistic = gs.best estimator
best logistic.fit(X train, v train)
C:#Users#leecho#Anaconda3#lib#site-packages#sklearn#linear_model#logistic.py:432: Futui
in 0.22. Specify a solver to silence this warning.
  FutureWarning)
Pipeline(memory=None.
         steps=[('logisticregression'.
                 LogisticRegression(C=100, class_weight=None, dual=False,
                                    fit_intercept=True, intercept_scaling=1,
                                    II ratio=None, max iter=100.
                                    multi_class='warn', n_iobs=None,
                                    penalty='12', random_state=1, solver='warn',
                                    tol=0.0001, verbose=0, warm_start=False))],
        verbose=False)

    검증용 데이터로 예측
```



```
• 정확도, 민감도 확인
```

• 초기 모델

정확도: 0.917정밀도: 0.794재현율: 0.188

F1: 0.303

```
print('잘못 분류된 샘플 개수: %d' % (y_test != y_k
print('정확도: %.3f' % accuracy_score(y_test, y_p
print('정밀도: %.3f' % precision_score(y_true=y_test)
print('재현율: %.3f' % recall_score(y_true=y_test)
print('F1: %.3f' % f1_score(y_true=y_test, y_pred)
```

잘못 분류된 샘플 개수: 65

정확도: 0.957 정밀도: 0.862 재현물: 0.653 F1: 0.743 ←

6.3 정확도, 민감도 확인

클래스가 2개일 경우에만 실행

```
print('잘못 분류된 샘플 개수: %d' % (print('정확도: %.3f' % accuracy_score print('정밀도: %.3f' % precision_score print('재현율: %.3f' % recall_score(yprint('F1: %.3f' % f1_score(y_true=y_
```

잘못 분류된 샘플 개수: 124

정확도: 0.917 정밀도: 0.794 재헌율: 0.188

F1: 0.303

- 서포트 벡터 머신(Support Vector Machine)
 - 퍼셉트론의 확장
 - 퍼셉트론 학습: 분류오차의 최소화 $(y \hat{y})$
 - SVM 학습: 마진(초평면=결정경계)의 최대화
 - 서포트 벡터

- 비용함수
 - 마진(초평면=결정경계)의 최대화
 - 마진 = 서포트 벡터와 직교하는 직선(w)과의 거리

- 피타고라스의 정리
 - 직각 삼각형의 두 직각변 a, b를 각각 한 변으로 하는 정사각형 면적의 합은 빗변 c를 한 변으로 하는 정사각형의 면적과 같음

$$c^2 = a^2 + b^2$$

$$c = \sqrt{a^2 + b^2}$$

$$c = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}$$

- 유클리드 거리(Euclidean distance)
 - 공간(좌표)에서 두 점 사이의 거리를 계산
 - 파타고라스 정리 활용

$$a = (q_1 - p_1)$$

$$b = (q_2 - p_2)$$

$$c = \sqrt{a^2 + b^2}$$

$$c = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2}$$

- 유클리드 거리(Euclidean distance)
 - 두점 사이의 거리공간에서 두점 사이의 거리를 계산

$$p = (1,1)$$
 $q = (2,3)$

$$a = (2 - 1) = 1$$

$$b = (3 - 1) = 2$$

$$c = \sqrt{a^2 + b^2}$$

$$d = c = \sqrt{(1)^2 + (2)^2} = \sqrt{5}$$

- 노름(norm, length, magnitude)
 - 벡터공간의 벡터들에 대한 '길이' 혹은 '크기'를 부여하는 함수
 - 원점에서 점 $P(x_1, x_2, ..., x_i)$ 에 이르는 거리

$$||x|| = \sqrt{(x_1)^2 + (x_2)^2 + \dots + (x_i)^2}$$

- 유클리디안 노름
 - ▶ 두 점에 이르는 거리

$$||q - p|| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \cdots}$$

- 초평면을 구하는 방법
 - 두 점 p = (1,1), q = (2,3) 를 지나
 는 선(벡터(w))를 이용
 - 두 점을 지나면서 직교(직각)인 선 (초평면)을 구함
 - 두 점의 중앙을 지나면서 직교(직 각)인 선(초평면)을 구함

■ 예제)

- **•** +1: (2,3)
- **■** -1 : (1,1), (2,0)
- +1과 -1사이의 가장 가까운 두 점 찾기
 - **+1**: (2,3)
 - **■** -1: (1,1)
- 두 점의 중앙을 지나면서 직교(직 각)인 선(초평면)을 구함

$$w = (a, 2a)$$

■ 두 점을 지나면서 직교(직각)인 선 (초평면)을 구함

$$w_1 x_1 + w_2 x_2 + b = 1$$

$$w_1 x_1 + w_2 x_2 + b = -1$$

- +1: (2,3) $ax_1 + 2ax_2 + b = -1$ 1a + 2a + b = -1
- -1: (1,1) $ax_1 + 2ax_2 + b = 1$ 2a + 6(2 * 3)a + b = 1 $a = \frac{2}{5}, b = -\frac{11}{5}$

■ 두 점의 중앙을 지나면서 직교(직 각)인 선(초평면)을 구함

$$a = \frac{2}{5}, b = -\frac{11}{5}$$

$$w = (a, 2a) = (\frac{2}{5}, \frac{4}{5})$$

$$w_1 x_1 + w_2 x_2 + b = 0$$

$$\frac{2}{5}x_1 + \frac{2}{5}x_2 - \frac{11}{5} = 0$$

$$x_1 + 2x_2 - 5.5 = 0$$

margin

$$\frac{2}{\|w\|} = \sqrt{\left(\frac{2}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = \sqrt{\frac{20}{25}} = \sqrt{5}$$

margin

$$\rho = \frac{2}{\|w\|}$$

$$||w|| = \sqrt{\left(\frac{2}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = \sqrt{\frac{20}{25}} = \sqrt{5}$$

$$\frac{2}{\|w\|} = \frac{2}{\sqrt{\frac{20}{25}}} = \frac{2}{2\frac{1}{\sqrt{5}}} = \sqrt{5}$$

- SVM을 이용한 비선형 문제
 - 직선으로 구분이 안될 경우
 - 커널을 이용
- SVM Kernel
 - rbf(radial basis function)
 - Gaussian kernel
 - Polynomial kernel

■ 규제

- L2규제: 개별 가중치 값을 제한하여 모 델 복잡도 축소
- 규제증가(C(↑)) → 가중치감소(w(↓)) →
 훈련데이터의 의존성을 축소

▼ 그림 3-10 C 값에 따라 달라지는 SVM의 결정 경계와 마진

♥ 그림 4-5 L2 규제와 비용 함수

- Python SVM 옵션
 - Kernel : rbf(radial basis function), linear, poly(polynomial)
 - C: 규제 함수값 제한
 - gamma : 가우시안 구(γ)의 크기 제한
 - γ(↑) → 서포트 벡터의 영향(↓)
 - γ(↑) → 경계가 샘플에 가까워짐

4.SVM 실습

예제 데이터

■ 사례) 자동차 사고

변수명	설명
ALCHL_I	음주 여부: 1=있음, 2=없음
PROFIL_I_R	도로 정보: 0=기타, 1=level1
SUR_CONM	도로의 노면상태: 1=건조, 2=젖음, 3=눈/진흙, 9=모름
VEH_INVL	관련된 차량의 수
MAX_SEV_IR	상해/치명 여부: 0=무상해, 1=상해, 2=치명

TABLE 11.4 SUBSET FROM THE ACCIDENTS DATA, FOR A HIGH-FATALITY REGION

Obs.	ALCHL_I	PROFIL_I_R	SUR_COND	VEH_INVL	MAX_SEV_IR
1	1	1	1	1	1
2	2	1	1	1	0
3	2	1	1	1	1
4	1	1	1	1	0
5	2	1	1	1	2
6	2	0	1	1	1
7	2	0	1	3	1
8	2	0	1	4	1
9	2	0	1	2	0
10	2	0	1	2	0

1.기본 package 설정

```
## 5,분류모델구축 (3장.p.83~180)
# from sklearn,tree import DecisionTreeClassifier # 결정 트리
# from sklearn,naive_bayes import GaussianNB # 나이브 베이즈
# from sklearn,neighbors import KNeighborsClassifier # K-최근접 이웃
# from sklearn,ensemble import RandomForestClassifier # 랜덤 포레스트
# from sklearn,ensemble import BaggingClassifier # 앙상블
# from sklearn,linear_model import Perceptron # 퍼센트론
# from sklearn,linear_model import LogisticRegression # 로지스틱 회귀 모델
from sklearn.svm import SVC # 서포트 벡터 대신(SVM)
# from sklearn,neural_network import MLPClassifier # 다츰인공신경망
```

2.데이터 가져오기

2.1 데이터프레임으로 저장

• 원본데이터(csv)를 dataframe 형태로 가져오기(pandas)

accidents_df = pd.read_csv('accidentsnn.csv')
accidents_df.head()

	ALCHL_I	PROFIL_I_R	SUR_COND	VEH_INVL	MAX_SEV_IR
0	2	0	1	1	0
1	2	1	1	1	2
2	1	0	1	1	0
3	2	0	2	2	1
4	2	1	1	2	1

• 자료구조 살펴보기

accidents_df.shape

(999, 5)

자료구조 살펴보기 accidents_df.keys()

Index(['ALCHL_I', 'PROFIL_I_R', 'SUR_COND', 'VEH_INVL', 'MAX_SEV_IR'], dtype='object')

2.데이터 가져오기

2.2 data와 target으로 분리

- 필요한 데이터만 추출
- data: X, target: y 로 분리

```
X = accidents_df.drop (['MAX_SEV_IR'], axis=1)
X.head()
```

	ALCHL_I PR	OFIL_I_R	SUR_COND	VEH_INVL
--	------------	----------	----------	----------

0	2	0	1	1
1	2	1	1	1
2	1	0	1	1
3	2	0	2	2
4	2	1	1	2

```
y = accidents_df['MAX_SEV_IR']
np.bincount(y)
```

array([551, 299, 149], dtype=int64)

3.데이터 전처리

3.1 data(X) 수치형 데이터 표준화

• X.keys()에서 index 키를 가져옴

```
stdsc = StandardScaler()
X.iloc[:,[3]] = stdsc.fit_transform(X.iloc[:,[3]])
```

X.head()

	ALCHL_I	PROFIL_I_R	SUR_COND	VEH_INVL
0	2	0	1	-0.517878
1	2	1	1	-0.517878
2	1	0	1	-0.517878
3	2	0	2	1.206655
4	2	1	1	1.206655

3.데이터 전처리

3.2 data(X) 레이블 인코딩

- 질변변수 가변수화
- 가변수 처리시 문자로 처리를 해야 변수명 구분이 쉬움

```
X['ALCHL_I'] = X['ALCHL_I'].replace ([1,2], ['Yes','No'])

X['PROFIL_I_R'] = X['PROFIL_I_R'].replace ([0,1], ['etc','level1'])
```

```
X['SUR_COND'] = X['SUR_COND'].replace ([1,2,3,9], ['dry','wet','snow','non'])
```

X.head()

	ALCHL_I	PROFIL_I_R	SUR_COND	VEH_INVL
0	No	etc	dry	-0.517878
1	No	level1	dry	-0.517878
2	Yes	etc	dry	-0.517878
3	No	etc	wet	1.206655
4	No	level1	dry	1.206655

3.데이터 전처리

```
X.keys()
Index(['ALCHL_I', 'PROFIL_I_R', 'SUR_COND', 'VEH_INVL'], dtype='object')
X = pd.get_dummies(X[['ALCHL_I', 'PROFIL_I_R', 'VEH_INVL', 'SUR_COND']],
                  columns=['ALCHL_I', 'PROFIL_I_R', 'SUR_COND'],
                  drop first=True)
X.head()
   VEH_INVL ALCHL_I_Yes PROFIL_I_R_level1 SUR_COND_dry SUR_COND_non SUR_COND_snow SUR_COND_wet
  -0.517878
                       0
                                        0
                                                                       0
   -0.517878
2 -0.517878
    1.206655
    1.206655
```

5.모델구축

5.모델구축

- kernel = linear 일때는 gamma는 사용 못함
- https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

6.모델검정

6.2 정오분류표로 검정

class label이 3개 이므로 추가

	Predict[0]	Predict[1]	Predict[2]
True[0]	160	0	5
True[1]	0	90	0
True[2]	14	23	8

```
print('Classification Report')
print(classification_report(y_test, y_pred))
```

Classificatio	n Report precision	recall	f1-score	support
0 1 2	0.92 0.80 0.62	0.97 1.00 0.18	0.94 0.89 0.28	165 90 45
accuracy macro avg weighted avg	0.78 0.84	0.72 0.86	0.86 0.70 0.83	300 300 300

6.모델검정

```
print('Classification Report')
print(classification_report(y_test, y_pred))
Classification Report
             precision
                         recall f1-score
                                          support
                  0.92
                          0.97
                                     0.94
                                                165
                  0.80
                         1.00
                                     0.89
                                                 90
                  0.62
                           0.18
                                     0.28
                                                 45
                                     0.86
                                                300
    accuracy
                  0.78
                           0.72
                                     0.70
                                                300
   macro avg
                           0.86
                                                300
weighted avg
                  0.84
                                     0.83
```

6.3 정확도, 민감도 확인

• 클래스가 2개일 경우에만 실행

```
print('잘못 분류된 샘플 개수: %d' % (y_test != y_pred).sum())
print('정확도: %.3f' % accuracy_score(y_test, y_pred))
# print('정말도: %,3f' % precision_score(y_true=y_test, y_pred=y_pred))
# print('재현율: %,3f' % recall_score(y_true=y_test, y_pred=y_pred))
# print('F1: %,3f' % f1_score(y_true=y_test, y_pred=y_pred))

자모 보르되 새표 기사 42
```

잘못 분류된 샘플 개수: 42

정확도: 0.860

7.1 파이프라인 모델 만들기

- 파이프라인을 이용하여 최적 모델 만들기
- 기본모형은 아무 옵션이 없는 모델로 부터 시작
- 파라미터 옵션 확인: pipe_tree.get_params().keys()

```
pipe_svm = make_pipeline(SVC(random_state=1))

pipe_svm.get_params().keys()

dict_keys(['memory', 'steps', 'verbose', 'svc', 'svc__C', 'svc__cache_size', 'svc__class_weighte', 'svc__degree', 'svc__gamma', 'svc__kernel', 'svc__max_iter', 'svc__probability', 'svc__ravc__verbose'])
```

7.2 학습 곡선으로 편향과 분산 문제 분석하기

- 훈렴 샘플링 수를 이용하여 편향과 분산 검정
- 편향: 정확도가 높은지 검정
- 분산: 훈련/검정 데이터의 정확도의 차이가 적은지

0.88

0.86

0.82

0.80

100

200

300

Number of training samples

400

Accuracy

training accuracy validation accuracy

600

500

7.3 검증 곡선으로 과대적합과 과소적합 조사하기

과대적합: 파라미터가 많음 -> 파라미터 축소
 과소적합: 파라미터가 적음 -> 파라미터 추가

```
plt.grid()
plt.xlabel('Number of C') # 수정
plt.legend(loc='lower right')
plt.xlabel('Parameter C') # 수정
plt.ylabel('Accuracy')
plt.ylim([0.9, 1.00]) # 수정
plt.tight_layout()
plt.show()
```


7.4 하이퍼파라미터 튜닝

- 그리드 서치를 사용한 머신 러닝 모델 세부 튜닝
- 기계학습 모델의 성능을 결정하는 하이퍼 파라미터 튜닝

```
param_range = [0.01, 0.1, 1.0, 10, 100] # 수정
param_grid = [{'svc__C': param_range, # 수정
               'svc__gamma': param_range, # 수정
               'svc_kernel': ['rbf']}] # 수정
gs = GridSearchCV(estimator=pipe_svm, # 수정
                  param_grid=param_grid,
                  scoring='accuracy'.
                  cv=10.
                 n iobs=-1)
gs = gs.fit(X_train, y_train)
print(gs.best_score_)
print(gs.best params)
0.8683834048640916
{'svc__C': 10, 'svc__gamma': 0.1, 'svc__kernel': 'rbf'}
```

8.최적화 모델 검정

8.최적화 모델 검정

- 최적모델을 이용해 검정 데이터(full data) 최종 확인
- best_tree 로 모델명 변경

8.최적화 모델 검정

```
• 정오분류표로 검정
confmat = pd.DataFrame(confusion_matrix(y_test, y_pred),
                     index=['True[0]','True[1]','True[2]'],
                     columns=['Predict[0]', 'Predict[1]', 'Predict[2]'])
confmat
       Predict[0] Predict[1] Predict[2]
            160
                                5
True[0]
True[1]
              0
                      88
                                2
True[2]
             14
                      19
                                12
print('Classification Report')
print(classification_report(v_test, v_pred))
Classification Report
             precision
                        recall f1-score support
                  0.92
                           0.97
                                    0.94
                                               165
          0
                  0.82
                           0.98
                                    0.89
                                                90
          2
                  0.63
                           0.27
                                    0.38
                                                45
                                               300
                                    0.87
   accuracy
                  0.79
                                               300
                           0.74
                                    0.74
  macro avg
                 0.85
                           0.87
                                               300
weighted avg
                                    0.84
 • 정확도, 민감도 확인
print('잘못 분류된 샘플 개수: %d' % (y_test != y_pred).sum())
print('정확도: %.3f' % accuracy_score(y_test, y_pred))
# print('정말도: %,3f' % precision_score(v_true=v_test, v_pred=v_pred))
# print('재현율: %,3f' % recall_score(v_true=v_test, v_pred=v_pred))
# print('F1: %,3f' % f1_score(v_true=v_test, v_pred=v_pred))
잘못 분류된 샘플 개수: 40
정확도: 0.867
```

참고자료

동영상 및 참고교재

International

 CS231n: Convolutional Neural Networks for Visual Recognition, http://cs231n.stanford.edu/

Domestic

- **머신러닝 교과서 with 파이썬, 사이킷런, 텐서플로**, 세바스찬 라시카, 바히드 미자리리 지음, 박해선 옮김, 길벗, 2019
- 케라스 창시자에게 배우는 딥러닝, 프랑소와 숄레 지음, 박해선 옮김, 길벗, 2019
- K-MOOC
 - 파이썬 프로그래밍, 김경미, 한동대학교
 - 파이썬을 이용한 빅데이터 분석, 유성준, 세종대학교
 - 딥러닝 개론, 김희철, 대구대학교
 - 파이썬으로 배우는 기계학습 입문, 김영섭, 한동대학교