PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:		(11) International Publication Number: WO 00/5517						
C07H 21/04, C07K 5/04, 16/00, G01N 33/53	A1	(43) International Publication Date: 21 September 2000 (21.09.00)						
(21) International Application Number: PCT/US	00/058	(-,,,,,,,						
(22) International Filing Date: 8 March 2000 ((08.03.0	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,						

US

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

12 March 1999 (12.03,99)

(72) Inventors; and

(30) Priority Data:

60/124,270

- (75) Inventors/Applicants (for US only): ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). RUBEN, Steven, M. [US/US]; 18528 Heritage Hills Drive, Laytonsville, MD 20882 (US).
- (74) Agents: WALES, Michele, M. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: HUMAN BREAST AND OVARIAN CANCER ASSOCIATED GENE SEQUENCES AND POLYPEPTIDES

(57) Abstract

This invention relates to newly identified breast, ovarian, breast cancer and/or ovarian cancer related polynucleotides and the polypeptides encoded by these polynucleotides herein collectively known as "breast/ovarian cancer antigens", and to the complete gene sequences associated therewith and to the expression products thereof, as well as the use of such breast/ovarian cancer antigens for detection, prevention and treatment of disorders of the female reproductive system, particularly disorders of the breast and/or ovary, including the presence of breast cancer and/or ovarian cancer. This invention relates to the breast/ovarian cancer antigens as well as vectors, host cells, antibodies directed to breast/ovarian cancer antigens and recombinant and synthetic methods for producing the same. Also provided are diagnostic methods for diagnosing and treating, preventing and/or prognosing disorders related to the female reproductive system, particularly disorders of the breast and/or ovary, including breast cancer and/or ovarian cancer, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying agonists and antagonists of breast/ovarian cancer antigens of the invention. The present invention further relates to methods and/or compositions for inhibiting the production and/or function of the polypeptides of the present invention.

designated BRCA1 and BRCA2, have been isolated and characterized. BRCA1 is at 17q21 (Claus et al, Am. J. Epidemiology 131:961 (1990); Hall et al, Science 250:1684 (1990); Easton et al, Am. J. of Human Genetics 52 (4):678 (1993); Black et al, Am. J. of Human Genetics 52 (4):702 (1993); Bowcock et al, Am. J. of Human Genetics 52 (4):718 (1993); Miki et al, Science 266:66 (1995)). The demonstration of loss of heterozygosity (LOH) at 17q25 has defined another potential tumor suppressor gene (Lindblom et al, Human Genetics 91:6 (1993); Cornelis et al, Oncogene 8:781 (1993); Theile et al, Oncogene 10:439 (1995)).

There is a need, therefore, for identification and characterization of such factors that modulate activation and differentiation of breast and ovarian cells, both normally and in disease states. In particular, there is a need to isolate and characterize additional molecules that mediate apoptosis, DNA repair, tumor-mediated angiogenesis, genetic imprinting, immune responses to tumors and tumor antigens and, among other things, that can play a role in detecting, preventing, ameliorating or correcting dysfunctions or diseases.

The present invention relates at least in part, to a novel breast and ovarian and breast and ovarian cancer related polynucleotides and polypeptides. The discovery of these breast and ovarian cancer related polynucleotides provides new compositions which are useful in the diagnosis, prevention and treatment of disorders of the female reproductive system, particularly of the ovary including, but not limited to ovarian cancer, and the breast, including but not limited to breast cancer.

20

25

30

5

10

15

Summary of the Invention

The present invention includes isolated nucleic acid molecules comprising, or alternatively, consisting of, a breast, ovarian, breast cancer and/or ovarian cancer associated polynucleotide sequence disclosed in the sequence listing (as SEQ ID Nos:1 to 418) and/or contained in a human cDNA clone described in Tables 1, 2 and 5 and deposited with the American Type Culture Collection ("ATCC"). Fragments, variant, and derivatives of these nucleic acid molecules are also encompassed by the invention. The present invention also includes isolated nucleic acid molecules comprising, or alternatively consisting of, a polynucleotide encoding a breast, ovarian, breast cancer, and/or ovarian cancer polypeptide. The present invention further includes breast, ovarian, breast cancer, and/or ovarian cancer polypeptides encoded by these polynucleotides. Further provided for are amino acid

WO 00/55173 PCT/US00/05881

4

sequences comprising, or alternatively consisting of, breast, ovarian, breast cancer, and/or ovarian cancer polypeptides as disclosed in the sequence listing (as SEQ ID Nos: 419 to 836) and/or encoded by a human cDNA clone described in Tables 1, 2 and 5 and deposited with the ATCC. Antibodies that bind these polypeptides are also encompassed by the invention. Polypeptide fragments, variants, and derivatives of these amino acid sequences are also encompassed by the invention, as are polynucleotides encoding these polypeptides and antibodies that bind these polypeptides. Also provided are diagnostic methods for diagnosing and treating, preventing, and/or prognosing disorders related to the female reproductive system, specifically disorders related to the breast and/or ovary, including breast cancer and/or ovarian cancer, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying agonists and antagonists of breast/ovarian cancer antigens of the invention.

Detailed Description

15

20

25

30

5

10

Tables

Table 1 summarizes some of the breast/ovarian cancer antigens encompassed by the invention (including contig sequences (SEQ ID NO:X) and the cDNA clone related to the contig sequence) and further summarizes certain characteristics of the breast/ovarian cancer polynucleotides and the polypeptides encoded thereby. The first column shows the "SEQ ID NO:" for each of the 418 breast/ovarian cancer antigen polynucleotide sequences of the invention. The second column provides a unique "Sequence/Contig ID" identification for each breast, ovarian, breast cancer and/or ovarian cancer associated sequence. The third column, "Gene Name," and the fourth column, "Overlap," provide a putative identification of the gene based on the sequence similarity of its translation product to an amino acid sequence found in a publicly accessible gene database and the database accession no. for the database sequence having similarity, respectively. The fifth and sixth columns provide the location (nucleotide position nos. within the contig), "Start" and "End", in the polynucleotide sequence "SEQ ID NO:X" that delineate the preferred ORF shown in the sequence listing as SEQ ID NO:Y. The seventh and eighth columns provide the "% Identity" (percent identity) and "% Similarity" (percent similarity), respectively, observed between the aligned sequence

<211> 465 <212> PRT <213> Homo sapiens <220> <221> SITE <222> (5) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (6) <223> Xaa equals any of the naturally occurring L-amino acids <220> <221> SITE <222> (16) <223> Xaa equals any of the naturally occurring L-amino acids <400> 676 Asn Asp Ser Leu Xaa Xaa Lys Ala Gly Thr Pro Ala Gly Asn Arg Xaa Gly Ile Pro Gly Ser Thr His Ala Ser Ala Ala Ala Pro Phe Ala Ala Ala Leu Ala Arg Asp Pro Asn Pro Ala Ser Pro Leu Pro Glu His Arg 40 Pro Arg Leu His Arg Gly Pro Gly Pro Pro Ala Arg Leu Ala Ala Ala 55 60 Met Ala Asp Pro Lys Tyr Ala Asp Leu Pro Gly Ile Ala Arg Asn Glu Pro Asp Val Tyr Glu Thr Ser Asp Leu Pro Glu Asp Asp Gln Ala Glu 90 Phe Asp Ala Glu Glu Leu Thr Ser Thr Ser Val Glu His Ile Ile Val 105 Asn Pro Asn Ala Ala Tyr Asp Lys Phe Lys Asp Lys Arg Val Gly Thr 120 Lys Gly Leu Asp Phe Ser Asp Arg Ile Gly Lys Thr Lys Arg Thr Gly 130 135 Tyr Glu Ser Gly Glu Tyr Glu Met Leu Gly Glu Gly Leu Gly Val Lys 155 Glu Thr Pro Gln Gln Lys Tyr Gln Arg Leu Leu His Glu Val Gln Glu

647

				165					170					175	
Leu	Thr	Thr	Glu 180		Glu	Lys	Ile	Lys 185		Thr	Val	Lys	Glu 190	Ser	Ala
Thr	Glu	Glu 195		Leu	Thr	Pro	Val 200	Leu	Leu	Ala	Lys	Gln 205	Leu	Ala	Ala
Leu	Lys 210		Gln	Leu	Val	Ala 215	Ser	His	Leu	Glu	Lys 220	Leu	Leu	Gly	Pro
Asp 225		Ala	Ile	Asn	Leu 230		Asp	Pro	Asp	Gly 235	Ala	Leu	Ala	Lys	Arg 240
Leu	Leu	Leu	Gln	Leu 245			Thr	Lys	Asn 250	Ser	Lys	Gly	Gly	Ser 255	Gly
Gly	Lys	Thr	Thr 260	Gly	Thr	Pro	Pro	Asp 265	Ser	Ser	Leu	Val	Thr 270	Tyr	Glu
Leu	His	Ser 275	Arg	Pro	Glu	Gln	Asp 280	Lys	Phe	Ser	Gln	Ala 285	Ala	Lys	Val
Ala	Glu 290	Leu	Glu	Lys	Arg	Leu 295	Thr	Glu	Leu	Glu	Thr 300	Ala	Val	Arg	Cys
Asp 305	Gln	Asp	Ala	Gln	Asn 310	Pro	Leu	Ser	Ala	Gly 315	Leu	Gln	Gly	Ala	Cys 320
Leu	Met	Glu	Thr	Val 325	Glu	Leu	Leu	Gln	Ala 330	Lys	Val	Ser	Ala	Leu 335	Asp
			340				Glu	345					350		_
		355					His 360					365			
	370					375	Leu				380			_	
385					390		Glu			395					400
				405			Met		410					415	
			420				Ile	425					430		
Thr	Leu	Leu	Thr	Gln	Val	Gln	Thr	Thr	Met	Arg	Glu	Asn	Leu	Ala	Thr

WO 00/55173

648

435 440 445

Val Glu Gly Asn Phe Ala Ser Ile Asp Glu Arg Met Lys Lys Leu Gly 450 455

Lys

465

<210> 677

<211> 48

<212> PRT

<213> Homo sapiens

<400> 677

Ala Phe Ser Phe Thr Thr Lys Glu Arg Asp Gln Lys Pro Leu Ile Phe 20 25 30

Asn Phe His Lys Met Leu Glu Val Tyr Ile Tyr Ile Tyr Ile Phe Leu 35 40 45

<210> 678

<211> 940

<212> PRT

<213> Homo sapiens

<400> 678

Val Leu Gly Glu Gly Ile Ser Phe Leu Leu Ser Pro Pro Leu Pro Thr
1 5 10 15

Pro Ser Ile Asn Ile Ile Leu Leu Lys Ile Leu Arg Cys Gln Ala Ala 20 25 30

Lys Val Glu Ser Ala Ile Ala Glu Gly Gly Ala Ser Arg Phe Ser Ala 35 40 45

Ser Ser Gly Gly Gly Ser Arg Gly Ala Pro Gln His Tyr Pro Lys
50 60

Thr Ala Gly Asn Ser Glu Phe Leu Gly Lys Thr Pro Gly Gln Asn Ala 65 70 75 80