Funções de Transferência de Circuitos Elétricos

Fundamentos de Controle

Componente	Tensão-corrente	Corrente-tensão	Tensão-carga	Impedância $Z(s) = V(s)/I(s)$	Admitância $Y(s) = I(s)/V(s)$
— (— Capacitor	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-\\\\\- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Observação: O seguinte conjunto de símbolos e unidades é utilizado neste livro: v(t) - V (volts), i(t) - A (ampères), q(t) - Q (coulombs), C - F (farads), $R - \Omega$ (ohms), G - S (siemens), L - H (henrys).

Exemplo 2.13

Equações das Malhas por Inspeção

PROBLEMA: Escreva, sem resolver, as equações das malhas para o circuito mostrado na Figura 2.9.

$$+ (2s + 2)I_1(s) - (2s + 1)I_2(s) - I_3(s) = V(s)$$

$$-(2s + 1)I_1(s) + (9s + 1)I_2(s) - 4sI_3(s) = 0$$

$$-I_1(s) - 4sI_2(s) + \left(4s + 1 + \frac{1}{s}\right)I_3(s) = 0$$

```
syms s I1 I2 I3 V
A=[(2*s + 2) - (2*s + 1)...
 -1
 -(2*s + 1) (9*s + 1)...
 -4*s
 -1 -4*s...
  (4*s + 1 + 1/s)];
B=[I1;I2;I3];
C=[V;0;0;];
B=inv(A)*C;
pretty(B)
```

Exercício 2.6

PROBLEMA: Determine a função de transferência, $G(s) = V_L(s)/V(s)$, para o circuito dado na Figura 2.14. Resolva o problema de duas maneiras — análise das malhas e análise nodal. Mostre que os dois métodos fornecem o mesmo resultado.

RESPOSTA: $V_L(s)/V(s) = (s^2 + 2s + 1)/(s^2 + 5s + 2)$