Aufgabe 1 (Black-Scholes-Modell; 4 Punkte). Zeigen Sie, dass das Semimartingal

$$X_t = X_0 e^{\sigma W_t + t(\mu - \sigma^2/2)}$$

für $\mu \in \mathbb{R},\, \sigma \in \mathbb{R}_+$ und einer Standard Brown'schen Bewegung Wfolgende Darstellung besitzt

$$dX_t = \mu X_t dt + \sigma X_t dW_t = X_t d(\mu t + \sigma W_t).$$

Da W_t stetig ist, gilt $W_- = W$ und $\langle W^c, W^c \rangle = \langle W \rangle$. Es sollte noch gezeigt werden, warum $\langle W \rangle = t$. Nach den Definitionen von Blatt 9 besitzt X_t die gegebene Darstellung, wenn $X_t = X_0 + \int_0^t \mu X_s ds + \int_0^t \sigma X_s dW_s$.