Neural Network and Deep Learning

Autoencoders & Generative Models

Outline

- Autoencoder
 - Vanilla Autoencoder
 - Autoencoder variants
- Generative models
 - Variational Autoencoder
 - Generative Adversarial Network

Autoencoders consist of two components : an encoder and a decoder

- **Encoder**: Compresses the input data *X* into a lower-dimensional representation, known as the **latent space** *Z*.
 - The *latent space* is a compact representation of the input data.
- **Decoder**: Reconstructs the original input *X* from the latent representation *Z*, aiming to make the output *X'* as close to *X* as possible.

Let $oldsymbol{x}_1,\ldots,oldsymbol{x}_N\in\mathbb{R}^n$ be data

• Encoder: $f_E: \mathbb{R}^n \mapsto \mathbb{R}^d$

• Decoder: $f_D: \mathbb{R}^d \mapsto \mathbb{R}^n$

Input	Hidden				Output	
Values						
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000
01000000	\rightarrow	.15	.99	.99	\rightarrow	01000000
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
00000100	\rightarrow	.01	.11	.88	$\overset{\cdot}{\rightarrow}$	00000100
00000010	\rightarrow	.80	.01	.98	\rightarrow	0000010
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001

FIGURE 4.7

Learned Hidden Layer Representation. This $8 \times 3 \times 8$ network was trained to learn the identity function, using the eight training examples shown. After 5000 training epochs, the three hidden unit values encode the eight distinct inputs using the encoding shown on the right. Notice if the encoded values are rounded to zero or one, the result is the standard binary encoding for eight distinct values.

General types of autoencoders based on size of hidden layer

Overcomplete Undercomplete

The goal of the autoencoder was initially to **minimize** the **reconstruction error** using *Mean Squared Error (MSE)*

$$MSE = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{n} (x_{ij} - x'_{ij})^{2}$$

But now Binary Cross-Entropy (BCE) is used instead (with sigmoid output layer).

BCE =
$$-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{n} \left[x_{ij} \cdot \log(x'_{ij}) + (1 - x_{ij}) \cdot \log(1 - x'_{ij}) \right]$$

Denoising Autoencoder

Denoising Autoencoder

Denoising Autoencoder

Applications of Autoencoder

Latent space

$$q(\mathbf{Z}|\mathbf{X})$$
 a probabilistic encoder

$$p(\mathbf{X}|\mathbf{Z})$$
 a probabilistic decoder

$$\mathcal{L}(\mathbf{X}, \mathbf{X}') + KL$$

$$KL = D_{KL}(q(\mathbf{Z}|\mathbf{X})||\mathcal{N}(0,1))$$

$$= -0.5 \sum_{j=1}^{d} 1 + \log \sigma_j^2 - \mu_j^2 - \sigma_j^2$$

KL the Kulback-Leibler (KL) divergence

Generative Adversarial Network

Generative Adversarial Network

