Final Presentation

Zach Brazil, Richard Charles, and Adam Kiehl

12/8/21

Introduction

Stat	Pts
PassYds	0.04
PassTD	4.00
PassInt	-1.00
RushYds	0.10
RushTD	6.00
Rec	1.00
RecYds	0.10
RecTD	6.00
FL	-2.00

Data

Passing Analysis pt. 1

Models that were used: - Multiple Linear Regression (MLR) - LASSO - Principal Component Analysis/Regression - Tree - Bagging

Predictors: Cmp, PassAtt, Sk, YdsLost, PassLng, Rate, FirstDPass, FirstDPassPer, CAY, YACPerCmp, PassDrops, BadThrow, BadPer

Dropped PassYAC (multicollinearity)

Passing Analysis pt. 2

##

```
## # A tibble: 1,788 x 17
                                                  Cmp PassAtt PassYds PassTD PassInt Sk YdsLost PassInt PassI
##
                                                                                       <dbl>
                                                                                                                                          <dbl> <dbl> <dbl> <dbl> <
##
                                     <dbl>
                                                                                                                                                                                                                                                                                                                                <dbl>
                                                        21
                                                                                                           30
                                                                                                                                                      255
##
                                                                                                                                                                                                                                                                                                       3
                                                                                                                                                                                                                                                                                                                                                          8
                                                        20
                                                                                                                                                      153
                                                                                                                                                                                                                                                                                                                                                         8
##
                                                                                                           34
##
                        3
                                      24
                                                                                                          32
                                                                                                                                                      354
                                                                                                                                                                                                                                                                                                                                                     12
##
                        4
                                                        17
                                                                                                          27
                                                                                                                                                           90
                        5
                                                             4
##
                                                                                                                                                            36
##
                        6
                                                        24
                                                                                                           35
                                                                                                                                                       220
                                                                                                                                                                                                                                                                                                                                                    26
                                                        13
##
                                                                                                           19
                                                                                                                                                      157
                                                                                                                                                                                                                                                                                                                                                     18
##
                        8
                                                        15
                                                                                                          27
                                                                                                                                                      180
##
                        9
                                                        19
                                                                                                           26
                                                                                                                                                      172
                                                                                                                                                                                                                                                                                                                                                     12
                                                        34
##
                 10
                                                                                                           54
                                                                                                                                                      349
                                                                                                                                                                                                                                                                                                                                                    49
##
                                ... with 1,778 more rows, and 7 more variables: First
                                           FirstDPassPer <dbl>, CAY <dbl>, YACPerCmp <dbl>, Pas
## #
```

BadThrow <dbl>, BadPer <dbl>

204.90

246.20

302.00

372.30

Tree (Passing Touchdowns)

Passing (Fumbles Lost)

Passing Analysis pt. 3

```
## # A tibble: 4 x 6
             MLR LASSO
                               Tree Bagging
##
   Model
                      PCR
   <chr> <dbl> <dbl> <dbl>
##
                               <dbl>
                                     <dbl>
## 1 PassYds 420. 429. 691.
                             1641. 168.
## 2 PassInt 0.513 0.515 0.656
                               0.51
                                     0.305
## 3 PassTD 0.374 0.647 0.788
                               0.609 0.468
## 4 FL
         0.191 0.211 0.193 0.201 0.21
```

Receiving Analysis pt. 1

Predictors: Tgt, RecLng, Fmb, FirstDRec, RecYBC, YBCPerR, RecYAC, YACPerR, ADOT, RecBrkTkl, RecPerBr, RecDrop, DropPerRec, RecInt, Rat

- Goal of simplicity and predictive accuracy
- Correlation matrix and VIF scores to identify multicollinearity (FirstDRec, RecYBC, YBCPerR, YACPerR, DropPerRec)
- RecYAC dropped

Receiving Analysis pt. 2

- Dimension reduction techniques
 - ► Best Subset -> 3-5 predictors used with Tgt and Rat appearing most frequently
 - LASSO -> 5-10 predictors used but didn't perform better than best subset
 - PC regression -> 7-8 principal components used (sharp dropoff afterwards); excellent performance for RecYds
 - Pruned trees -> 2 terminal nodes used for RecTD and 6-7 otherwise. Tgt and Rat
 - ▶ Bagging and Random Forest -> 1-5 important variables with excellent predictive performance

Receiving Results

Model	MLR	Subset	LASSO	PCR	Tree
Rec	0.513	0.532	0.587	0.607	1.178
RecYds	64.832	71.766	84.867	47.466	191.374
RecTD	0.094	0.107	0.077	0.153	0.104

Model	Boost	Bag	RF
Rec	0.398	0.154	0.135
RecYds	50.249	17.797	22.757
RecTD	0.086	0.048	0.057

Receptions Model

Rec: Random forest model chosen with Tgt, FirstDRec, RecYAC, RecYBC, Rat

Receiving Yards Model

 ${\tt RecYds: Bagged \ tree \ model \ chosen \ with \ RecYBC, \ FirstDRec,}$

RecLng, YACPerR
Variable Selection with Bagging

Receiving TDs Model

RecTD: Tree model chosen with only Rat as a predictor

 QBR uses frequencies of completions, yards, touchdowns, and interceptions

Rushing Analysis pt. 1

Rushing Predictors: RushYds, RushTD, FL -Started out with a number of predictors but determined that these 3 were the most important in this case. -When analyzing rushing data, we found that there are a lot of variables that are colinear. -One example of a predictor that I did not end up needing is 'FirstDRush'. This variable does not lead to fantasy points and relates closely with 'RushYds'.

Rushing Analysis pt. 2

-Machine Learning Models: -The models I ended up using were Muliple Linear Regression, Lasso, PCR, Bagging, and Boosting -PCR ended up giving values that were not as useful for our rushing experimentation. -MLR provided the best MSE values for RushTD and FL (Fumbles lost) -Bagging gave the best value for RushYds -Thus these models were selected for final testing.

Rushing Analysis pt. 3

-Models: - Rush Yards Plot - Rush TDs Plot - Fumbles lost Plot

Fumbles Analysis

Results

	Player	Pos	fanPts	MSE
223	Lamar Jackson	QB	30.00	103.62164
65	Christian McCaffrey	RB	26.10	90.37000
222	Kyler Murray	QB	25.56	72.31625
282	Patrick Mahomes	QB	24.22	97.51247
307	Russell Wilson	QB	23.68	105.13337
192	Josh Allen	QΒ	22.50	70.22672
77	Dak Prescott	QΒ	22.46	71.10427
134	Gardner Minshew II	QB	21.84	457.96000
4	Aaron Rodgers	QB	21.42	66.35480
107	Derek Carr	QB	21.42	45.94648
308	Ryan Fitzpatrick	QB	21.28	422.71360

MSE

0 -

ò

10 Square Root of MSE 15

20

Validation

Stat	MSE
PassYds	1647.63
PassTD	0.18
PassInt	0.98
RushYds	259.96
RushTD	0.12
Rec	3.84
RecYds	640.48
RecTD	0.20
FL	0.05
fanPts	50.29

Future Efforts

- ▶ Refit Random Forest models with better subset of predictors
- Injuries
- ► Strength of opponent
- Assuming a Poisson distribution for Rec, TD, Int, FL