

Escuela Profesional de Ciencia de la Computación

ICC Fase 1

Computer graphics

Histogram Equalization

MSc. Vicente Machaca Arceda

Universidad Nacional de San Agustín de Arequipa

May 6, 2020

Overview

- Introduction
 - Objectives
 - Sample application
- Point operators
- Definition
 - Histogram Equalization

Table of Contents

- Introduction
 - Objectives
 - Sample application
 - Point operators
 - Definition
 - Histogram Equalization

Objectives

 Understand the difference between point, local and operators in image processing.

- Understand the difference between point, local and operators in image processing.
- Learn Histogram Equalization method.

Figure: Sample application in pattern recognition

Sample application

Figure: Sample application in pattern recognition

Table of Contents

- Introduction
 - Objectives
 - Sample application
 - Point operators
 - Definition
 - Histogram Equalization

Figure: Point operator.

vmachacaa@unsa.edu.pe

Point operators

Formal definition

Point operator

$$O\{f[x,y]\} = g[x',y']$$

Point operators

Examples

- Thresholding
- Contrast Stretching
- Histogram Equalization
- Logarithm Operator
- Exponential/Raise to Power Operator

Figure: Histogram equalization employs a monotonic, non-linear mapping which re-assigns the intensity values of pixels in the input image such that the output image contains a uniform distribution of intensities. This technique is used in image comparison processes (because it is effective in detail enhancement).

Figure: Example of Histogram Equalization.

$$g[x,y]=s_{f[x,y]}$$

$$s_n = \text{floor}\left((L-1)\sum_{j=0}^n P_n\right)$$

$$P_n = \frac{\text{number of pixels with intensity } \boldsymbol{n}}{\text{total number of pixels}}$$

$$n = 0, 1, ..., L - 1$$

Where:

L : Pixel intensity length (256).

Example: Suppose we have a 3-bits image (L = 8) of 64x64 size (m * n = 4096) which have the distribution:

histogram	p_n
790	0.19
1023	0.25
850	0.21
656	0.16
329	0.08
245	0.06
122	0.03
81	0.02
	790 1023 850 656 329 245 122

$$s_n = (L-1)\sum_{j=0}^n P_n$$

$$s_0 = (7) \sum_{j=0}^{n} P_r(r_j) = 7P_0 = 7(0.19) = 1.33$$

$$s_1 = (7) \sum_{i=0}^{n} P_r(r_i) = 7(P_1 + P_0) = 3.08$$

- $s_2 = 4.55$
- $s_3 = 5.67$
- $s_4 = 6.23$
- $s_5 = 6.65$
- $s_6 = 6.86$
- $s_7 = 7.00$

Values s_k : • $s_0 = 1.33$

Histogram Equalization

•
$$s_1 = 3.08$$

•
$$s_2 = 4.55$$

•
$$s_3 = 5.67$$

•
$$s_4 = 6.23$$

•
$$s_4 = 6.25$$

• $s_5 = 6.65$

•
$$s_6 = 6.86$$

•
$$s_7 = 7.00$$

Floor:

•
$$s_0 = 1$$

•
$$s_1 = 3$$

•
$$s_2 = 4$$

•
$$s_3 = 5$$

•
$$s_4 = 6$$

•
$$s_5 = 6$$

•
$$s_6 = 6$$

•
$$s_7 = 7$$

Example

Figure: Example of Histogram Equalization.

Local histogram equalization example

Figure: Original image.

Figure: Image after histogram equalization.

Local histogram equalization example

Figure: Sub image use to compute s_n .

Figure: Image after local histogram equalization.

Questions?