Universidad Nacional de Asunción - Facultad Politécnica

Segundo Examen Final de Programación

Fecha: 04 de diciembre de 2021

Directivas y Recomendaciones

- El problema debe de ser resuelto usando el Lenguaje C y las herramientas vistas hasta la fecha del examen.
- Los comentarios aclaratorios pueden ayudar en la corrección del examen, influyendo favorablemente en su calificación.
- Utilice en sus programas los nombres de las estructuras indicadas en el enunciado.
- La duración del examen es de 120 minutos.
- El código fuente debe subirse al aula virtual de la materia (en EDUCA).
- La interpretación del problema es parte de la evaluación del examen.
- Solo si compila el ejercicio tendrá puntos y los mismos serán evaluados por casos de pruebas establecidos por el Profesor.
- El profesor estará evaluando los ejercicios con alguna herramienta de comparación de códigos. Códigos iguales o muy semejantes no serán considerados para la corrección

Ejercicio: Distancia entre pixeles

Una imagen binaria se puede representar como una matriz A de tamaño $M \times N$, donde cada celda de la matriz puede tener los valores 0 (negro) ó 1(blanco). Tener en cuenta que la matriz tiene su origen en posición (1,1) recorriendo las filas de 1 a M y las columnas de 1 a N. Es decir, las coordenadas de la matriz A se puede ver como:

$$A = (1,1) (1,2) (1,3) (1,4)$$

$$(2,1) (2,2) (2,3) (2,4)$$

$$(3,1) (3,2) (3,3) (3,4)$$

El pixel en la fila "x" y en la columna "y" es llamada *pixel* (x,y). La distancia Euclidiana entre dos pixeles p=(xI,yI) y q=(x2,y2) se define como $d(p,q)=\sqrt[2]{(x1-x2)^2+(y1-y2)^2}$

Se pide realizar las siguientes tareas:

- 1. Leer la representación de una imagen binaria a partir de un archivo de entrada llamada **binaria.txt.**
- 2. Programar una función con nombre **transformadaDistancia** que reciba como parámetro un puntero a una matriz A (que representa una imagen binaria) y un puntero a una matriz B, donde cada valor de la celda de esta matriz tendrá la distancia Euclidiana al pixel blanco (con valor 1) más cercano del pixel en esa posición en A.
- 3. Guardar los resultados en un archivo distancia.txt.

Entrada del programa:

En la primera línea del archivo hay un par de enteros M y N separados por tabulador \t). ($1 \le M \le 10$, $1 \le N \le 10$). En cada una de las M siguientes líneas hay una cantidad N de enteros (cada entero puede tener un valor de 0 ó 1, separándose entre sí por tabulador \t).

Validar:

- 1. Valor de M ($1 \le M \le 10$)
- 2. Valor de $N (1 \le N \le 10)$.
- 3. Validar que los valores de las celdas sólo sean 0 ó 1

Salida del programa:

Un archivo donde en la línea x-ésima $(0 \le x < M)$ deben escribirse N enteros separados por tabulador (\t), con la distancia del pixel (x,y) al pixel blanco más cercano. Redondear a cuatro decimales el resultado del cálculo de la distancia.

Ejemplo:

Entrada del programa	Salida del programa
*Binaria.txt: Bloc de notas Archivo Edición Formato Ver Ayuda 3 4 0 0 0 1 0 0 1 1 0 1 1 0	distancia.txt: Bloc de notas Archivo Edición Formato Ver Ayuda 2.2361 1.4142 1.0000 0 1.4142 1.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nota: El archivo es solamente de ejemplo. El programa deberia funcionar con cualquier entrada que cumpla con el formato descrito.

En el ejemplo para el pixel p=(1,1) el pixel más cercano con valor 1 es el pixel q=(2,3), por lo tanto:

$$d(p,q) = \sqrt[2]{(1-2)^2 + (1-3)^2} = 2.2361$$

Valoración del Programa (Puntaje):

- Respeta el formato de las entradas y las salidas esperadas del programa (15 % del ejercicio).
- La salida de la función implementada (**transformadaDistancia**) es correcta (30 % del ejercicio).
- Utiliza aritmética de punteros para realizar operaciones (15 % del ejercicio).
- La salida del programa es correcta (40 % del ejercicio).