305 Lecture 3.4 - Features of Validity

Brian Weatherson

This lecture finishes our discussion of truth tables by looking some properties validity has in the truth table system.

Associated Reading

forall x, chapter 12, sections 12.5-12.7.

The Rules

- An argument is invalid if there is a row on the truth table where all the premises are true and the conclusion is false. (Roughly!)
- It is **valid** if all the rows where the premises are all true, the conclusion is true as well.

A Relevance Failure

Is this argument valid?

Α

∴ B∨¬B

A Relevance Failure

Is this argument valid?

Α

∴ B ∨¬B

Yes!

- There is no line where the conclusion is false.
- So there are no lines where the premise is true and the conclusion false.
- So it is not invalid, i.e., it is valid.

Terminology

Say a **valuation** is a function v from sentences to $\{\mathbb{T}, \mathbb{F}\}$ satisfying these constraints.

- 1. $v(\neg A) = \mathbb{T}$ if $v(A) = \mathbb{F}$, and $v(\neg A) = \mathbb{F}$ otherwise.
- 2. $v(A \lor B) = T$ if v(A) = T or v(B) = T, and $v(A \lor B) = F$ otherwise.
- 3. $v(A \land B) = T$ if v(A) = T and v(B) = T, and $v(A \land B) = T$ otherwise.
- 4. $v(A \rightarrow B) = \mathbb{T}$ if $v(A) = \mathbb{F}$ or $v(B) = \mathbb{T}$, and $v(A \rightarrow B) = \mathbb{F}$ otherwise.

Restating

• An argument is valid relative to a class of valuations V iff any valuation $v \in V$ that makes all the premises $\mathbb T$ also makes the conclusion $\mathbb T$.

Restating

- An argument is valid relative to a class of valuations V iff any valuation v ∈ V that makes all the premises T also makes the conclusion T.
- An argument is truth functionally valid when the class V is the class of valuations satisfying the constraints on the previous slide.

Very Technical Terminology

- I'll use Γ ⊨ A to mean that the argument with premises Γ and conclusion A is valid in this sense - i.e., all valuations that make all of Γ come out T also make A come out T.
- The double bar in = is to represent that this is a kind of validity defined in terms of valuations (or, as we'll start calling them, models), and not proofs.
- For purposes of 305, the difference between ⊢ and ⊨ is not important, and if this is the last logic/mathematical philosophy course you plan to take, you don't have to worry about this.
- But I like being pedantic even when it isn't relevant to the course.

If $\Gamma \vDash A$ and $\Gamma \vDash A \to B$ then $\Gamma \vDash B$

If $\Gamma \vDash A$ and $\Gamma \vDash A \rightarrow B$ then $\Gamma \vDash B$.

Proof: Assume this is false. So assume that $\Gamma \nvDash B$. So there is a valuation function v that makes everything in Γ come out $\mathbb T$ and B come out $\mathbb T$

If $\Gamma \vDash A$ and $\Gamma \vDash A \rightarrow B$ then $\Gamma \vDash B$.

Proof: Assume this is false. So assume that $\Gamma \nvDash B$. So there is a valuation function v that makes everything in Γ come out \mathbb{T} and B come out \mathbb{F} . Either $v(A) = \mathbb{T}$ or $v(A) = \mathbb{F}$

If
$$\Gamma \vDash A$$
 and $\Gamma \vDash A \rightarrow B$ then $\Gamma \vDash B$.

Proof: Assume this is false. So assume that $\Gamma \nvDash B$. So there is a valuation function v that makes everything in Γ come out \mathbb{T} and B come out \mathbb{T} . Either $v(A) = \mathbb{T}$ or $v(A) = \mathbb{T}$. If $v(A) = \mathbb{T}$, then $v(A \to B) = \mathbb{F}$, contradicting $\Gamma \vDash A \to B$

If $\Gamma \vDash A$ and $\Gamma \vDash A \rightarrow B$ then $\Gamma \vDash B$.

Proof: Assume this is false. So assume that $\Gamma \nvDash B$. So there is a valuation function v that makes everything in Γ come out \mathbb{T} and B come out \mathbb{F} . Either $v(A) = \mathbb{T}$ or $v(A) = \mathbb{F}$. If $v(A) = \mathbb{T}$, then $v(A \to B) = \mathbb{F}$, contradicting $\Gamma \vDash A \to B$. If $v(A) = \mathbb{F}$, then v is a counterexample to $\Gamma \vDash A$, but we know $\Gamma \vDash A$ is true. Either way, such a v cannot exist, so $\Gamma \vDash B$ is true.

Monotony

If $\Gamma \vDash A$, and $\Gamma \subset \Delta$, then $\Delta \vDash A$.

That is, adding premises can't turn an argument from being valid to invalid.

- Assume that for all $B \in \Delta$, v(B) = T.
- We need to prove that v(A) = T.

- Assume that for all $B \in \Delta$, v(B) = T.
- We need to prove that v(A) = T.
- Assume $C \in \Gamma$.
- Then $C \in \Delta$, since $\Gamma \subset \Delta$.

- Assume that for all $B \in \Delta$, v(B) = T.
- We need to prove that v(A) = T.
- Assume $C \in \Gamma$.
- Then $C \in \Delta$, since $\Gamma \subset \Delta$.
- So by hypothesis, $v(C) = \mathbb{T}$, since everything in Δ is \mathbb{T} .

- Assume that for all $B \in \Delta$, v(B) = T.
- We need to prove that v(A) = T.
- Assume $C \in \Gamma$.
- Then $C \in \Delta$, since $\Gamma \subset \Delta$.
- So by hypothesis, v(C) = T, since everything in Δ is T.
- So v is such that everything in Γ is \mathbb{T} .

- Assume that for all $B \in \Delta$, v(B) = T.
- We need to prove that v(A) = T.
- Assume $C \in \Gamma$.
- Then $C \in \Delta$, since $\Gamma \subset \Delta$.
- So by hypothesis, v(C) = T, since everything in Δ is T.
- So v is such that everything in Γ is \mathbb{T} .
- And since $\Gamma \vDash A$, that implies v(A) = T, as required.

Monotony Commentary

- This idea, that adding premises doesn't destroy validity, only works for logical arguments.
- It isn't true for good arguments in general.

Tweety the First

Tweety is a bird.

.: Tweety flies.

That's a perfectly good, though not logically valid, argument.

Tweety the Second

Tweety is a bird.

Tweety is black and white, lives in Antarctica, and lays large eggs.

.: Tweety flies.

That's not a very good argument!

Transitivity

If $\Gamma \vDash A$ and $\Delta \cup A \vDash B$ then $\Gamma \cup \Delta \vDash B$

If some premises entail A, and some other premises plus A entail B, then the two sets of premises between them entail B.

Transitivity

If $\Gamma \vDash A$ and $\Delta \cup A \vDash B$ then $\Gamma \cup \Delta \vDash B$

If some premises entail A, and some other premises plus A entail B, then the two sets of premises between them entail B. This is crucial for being able to chain together lines of reasoning.

Transitivity Proof

- Assume that for all $C \in \Gamma \cup \Delta$, v(C) = T.
- We need to prove v(B) = T.

Transitivity Proof

- Assume that for all $C \in \Gamma \cup \Delta$, $v(C) = \mathbb{T}$.
- We need to prove v(B) = T.
- Since everything in Γ is T according to v, and Γ ⊨ A, it follows that v(A) = T.

Transitivity Proof

- Assume that for all $C \in \Gamma \cup \Delta$, v(C) = T.
- We need to prove v(B) = T.
- Since everything in Γ is T according to v, and Γ ⊨ A, it follows that v(A) = T.
- Since everything in ∆ is T according to v, and A is T according to v, and ∆ ∪ A ⊨ B, it follows that v(B) = T, as required.

Deduction Theorem

This is why we define \rightarrow the way we do.

$$\Gamma \vDash A \rightarrow B$$
 if and only if $\Gamma \cup A \vDash B$.

Note that there are two claims here - one each direction. We need to prove each.

Deduction Theorem Left-to-Right

- Assume $\Gamma \vDash A \rightarrow B$, and prove $\Gamma \cup A \vDash B$.
- So assume v(C) = T for all C ∈ Γ, and v(A) = T, and aim to prove v(B) = T.

Deduction Theorem Left-to-Right

- Assume $\Gamma \vDash A \rightarrow B$, and prove $\Gamma \cup A \vDash B$.
- So assume v(C) = T for all C ∈ Γ, and v(A) = T, and aim to prove v(B) = T.
- Since Γ ⊨ A → B and v(C) = T for all C ∈ Γ, it follows that v(A → B) = T.

Deduction Theorem Left-to-Right

- Assume $\Gamma \vDash A \rightarrow B$, and prove $\Gamma \cup A \vDash B$.
- So assume v(C) = T for all C ∈ Γ, and v(A) = T, and aim to prove v(B) = T.
- Since $\Gamma \vDash A \to B$ and v(C) = T for all $C \in \Gamma$, it follows that $v(A \to B) = T$.
- Since v(A → B) = T and v(A) = T, it must be that v(B) = T, since that's the only line on the truth table where A → B and A are both T.

- Assume that $\Gamma \cup A \models B$, and prove $\Gamma \models A \rightarrow B$.
- So assume $v(C) = \mathbb{T}$ for all $C \in \Gamma$, and prove $v(A \to B) = \mathbb{T}$.

- Assume that $\Gamma \cup A \models B$, and prove $\Gamma \models A \rightarrow B$.
- So assume $v(C) = \mathbb{T}$ for all $C \in \Gamma$, and prove $v(A \to B) = \mathbb{T}$.
- Either v(A) = T or v(A) = F. Take each case in turn.

- Assume that $\Gamma \cup A \models B$, and prove $\Gamma \models A \rightarrow B$.
- So assume $v(C) = \mathbb{T}$ for all $C \in \Gamma$, and prove $v(A \to B) = \mathbb{T}$.
- Either v(A) = T or v(A) = F. Take each case in turn.
- If v(A) = T, then since v(C) = T for all C ∈ Γ, and Γ ∪ A ⊨ B, it follows that v(B) = T

- Assume that $\Gamma \cup A \models B$, and prove $\Gamma \models A \rightarrow B$.
- So assume $v(C) = \mathbb{T}$ for all $C \in \Gamma$, and prove $v(A \to B) = \mathbb{T}$.
- Either v(A) = T or v(A) = F. Take each case in turn.
- If v(A) = T, then since v(C) = T for all C ∈ Γ, and Γ ∪ A ⊨ B, it follows that v(B) = T, so v(A → B) = T

- Assume that $\Gamma \cup A \models B$, and prove $\Gamma \models A \rightarrow B$.
- So assume $v(C) = \mathbb{T}$ for all $C \in \Gamma$, and prove $v(A \to B) = \mathbb{T}$.
- Either $v(A) = \mathbb{T}$ or $v(A) = \mathbb{F}$. Take each case in turn.
- If v(A) = T, then since v(C) = T for all C ∈ Γ, and Γ ∪ A ⊨ B, it follows that v(B) = T, so v(A → B) = T.
- If v(A) = F, it follows directly that v(A → B) = T

- Assume that $\Gamma \cup A \models B$, and prove $\Gamma \models A \rightarrow B$.
- So assume $v(C) = \mathbb{T}$ for all $C \in \Gamma$, and prove $v(A \to B) = \mathbb{T}$.
- Either v(A) = T or v(A) = F. Take each case in turn.
- If v(A) = T, then since v(C) = T for all C ∈ Γ, and Γ ∪ A ⊨ B, it follows that v(B) = T, so v(A → B) = T.
- If v(A) = F, it follows directly that v(A → B) = T.
- Either way, v(A → B) = T as required.

Deduction Theorem Comments

- This is a striking result.
- It shows that proving A → B is just the same as proving B, assuming you're allowed to add A as an extra assumption.
- And that's a good thing, intuitively. That is how we prove conditionals.
- But it only works if you have the (very odd looking) truth table that we're using for →.
- This is the main reason for thinking, despite it's odd appearance, that this truth table is the right one for →.

