

แบบรายงาน Final Project

Design and Simulation of Amplifier Circuits

จัดทำโดย

นายวิวิธวินท์ เจริญงาม 6310501933

เสนอ

ผศ.ดร. วรดร วัฒนพานิช

รายงานนี้เป็นส่วนหนึ่งของวิชา Electronic Circuits and Systems I รหัสวิชา 01205242 คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ปีการศึกษา 2/2564

ความต้องการและเงื่อนไขในการออกแบบ

- 1. วงจรมีอัตราขยายแรงดันมากกว่าหรือเท่ากับ 15 เท่า
- 2. รักษาอัตราขยายในอุณหภูมิ 40 องศาเซลเซียสได้
- 3. สัญญาณเอาต์พุตเป็นสัญญาณรูป Sine มีความเพี้ยน 3%
- 4. ค่าตัวเก็บประจุไฟฟ้าที่ใช้ในวงจรแต่ละตัวมีค่าไม่เกิน 32 µF
- 5. ค่าตัวต้านทานไฟฟ้าที่ใช้ในวงจรแต่ละตัวมีค่าไม่เกิน 10 M Ω
- 6. วงจรใช้กระแสไฟฟ้าทั้งหมดไม่เกิน 42 mA
- 7. Vcc = 5V, Va = 75 mV, f_{in} = 1KHz, R_L = 50Ω , Temp = 40° C

Section 2

สำดับที่	รหัสนิสิต	ชื่อ-หามสกุล	V_{cc}	$V_{\rm a}$	$f_{\rm in}$	$R_{\rm L}(\Omega)$	Temp (°C)
1	6110501298	นายจิรพัฒน์ ตาพวัฒน์	3.3 V	6 mV	10 KHz	8	30
2	6110501425	นายณัฐดนัย เก้าสันเทียะ	5 V	75 mV	1 KHz	50	40
3	6110506061	นายปรมี ปลอดภัย	7.5 V	150 mV	800 Hz	75	50
4	6310500015	นายธนพัฒน์ จันทร์แลง	3.3 V	6 mV	10 KHz	8	60
5	6310500023	นางสาวสิริกัญญ์ หอมแก่นจันทร์	5 V	75 mV	1 KHz	50	70
6	6310500589	นางสาวกัลปัยกร พฤทธิ์ลักษมี	7.5 V	150 mV	800 Hz	75	80
7	6310500619	นายชันยวัต โชติกเดชาณรงศ์	3.3 V	6 mV	10 KHz	8	30
8	6310500651	นางสาวสุริย์ศรี บ้องใชสง	5 V	75 mV	1 KHz	50	40
9	6310501569	นางสาวจิรัชญา พุทธา	7.5 V	150 mV	800 Hz	75	50
10	6310501585	นายเจษฎากร จรัสโชติเสถียร	3.3 V	6 mV	10 KHz	8	60
11	6310501593	นายชัยธรรม วีรสิทธิโชต	5 V	75 mV	1 KHz	50	70
12	6310501712	นายรัชชัย ธนาฤดี	7.5 V	150 mV	800 Hz	75	80
13	6310501721	นายนราวิชญ์ อินทร์แก้ว	3.3 V	6 mV	10 KHz	8	30
14	6310501755	นายปณวัตร ตุงเจริญวงศ์	5 V	75 mV	1 KHz	50	40
15	6310501763	นางสาวปพัชญา จุลอมรโชค	7.5 V	150 mV	800 Hz	75	50
16	6310501798	นายพงศภัค วัฒนาเสรีพล	3.3 V	6 mV	10 KHz	8	60
17	6310501828	นางสาวพัชรามาศ สุขศรี	5 V	75 mV	1 KHz	50	70
18	6310501895	นายภูริภาส ใจดี	7.5 V	150 mV	800 Hz	75	80
19	6310501909	นายรัตน์จิกรณ์ รุ่งสุวรรณกิจ	3.3 V	6 mV	10 KHz	8	30
20	6310501933	นายวิวิธวินท์ เจริญงาม	5 V	75 mV	1 KHz	50	40

ภาพที่ ก รายชื่อและรายละเอียดที่ได้รับมอบหมาย

ภาพวงจรขยายสัญญาณแบบพลังงานต่ำ

ภาพที่ ข ตัวอย่างวงจรขยายสัญญาณแบบต่ำ

การออกแบบวงจร

ภาพที่ 1 วงจรขยายสัญญาณแบบต่ำ

การออกแบบวงจรขยายสัญญาณแบบต่ำเริ่มจาก เงื่อนไขที่เราต้องการที่จะได้ และ ข้อกำหนดเริ่มต้นของวงจร วงจรที่เราจะทำแบ่งออกเป็นวงจร Buffer ที่ Q1 และ Q4 โดยวงจร Q1 จะใช้ common collector ในการปรับแรงดันให้แบ่งมาที่วงจรมากกว่าที่ Rs โดยการกำหนดใน ส่วนนี้จะต้องมากำหนดอีกครั้งหลังจากออกแบบทุกวงจรเสร็จแล้ว และหาความต้านทานภายใน รวมทุกวงจร วงจร Q4 จะเป็น Darlington Configuration ทำหน้าที่เป็นวงจรที่ขยายกระแสให้สูง เพื่อที่จะนำไปขับตัวต้านทานโหลด เพราะตัวต้านทานโหลดมีขนาดต่ำจึงต้องใช้กระแสสูง

ในส่วนของวงจรขยายสัญญาณ Q2 และ Q4 จะสามารถหาอัตราขยายได้จากอัตราส่วนตัว ต้านทานระหว่าง collector และ emitter โดยให้อัตราขยายอยู่ที่ 7-12 เท่า เนื่องจากอัตราขยายต่ำ เกินไปจะต้องใช้หลายเสตจ แต่ถ้าใช้อัตราขยายสูงเกินไปจะทำให้สัญญาณเกิดความเพี้ยนขึ้น เนื่องจาก ความต้านทานที่ collector จะมีค่ามาก ทำให้แรงดันไฟฟ้าที่ตัวต้านทานมีค่ามากจนเกิน ค่าแรงดันไฟฟ้ากระแสตรง Vcc และเราจะมีการใช้ตัวเก็บประจุเพื่อกรองสัญญาณกระแสตรงออก

เมื่อเราได้แนวทางออกแบบแล้วเราจะต้องไบอัสเพื่อที่จะได้ กระแสเข้าเบสแต่ละเสตจ และ แรงดันไฟฟ้า Vce เพื่อเป็นตัวกำหนดการ active ของ transistor เราจะกำหนด Rb1 มีค่าสูงมากๆ เพื่อที่จะนำไปขนานและไม่ลดความต้านทานวงจรจนแรงดันไฟฟ้าแบ่งไปที่ Rs มากเกินไป เราจะ ออกแบบ Re1 จากเงื่อนไขการ active ของวงจร Q1 โดยที่วงจรไม่ก่อให้สัญญาณเพี้ยน และไม่ลด อัตราขยายมากเกินไป หลังจากนั้นออกแบบ Q2 และ Q3 จากอัตราส่วนความต้านทาน collector และ emitter เพื่อออกแบบอัตราขยาย จากนั้นนำใช้ในการไบอัส และเงื่อนไข active ของวงจร โดย ที่วงจรไม่ก่อให้สัญญาณเพี้ยน และเพิ่มค่อนข้างมาก ในการออกแบบความต้านทานส่วนที่ใช้ใน การไบอัสต้องออกแบบให้มีค่าต่ำ ซึ่งจะส่งผลให้กระแสเบสมีค่าต่ำ แต่จะทำให้เงื่อนไขการ active ผ่าน ส่วนวงจร Darlington Configuration จะออกแบบจากกระแสขั้นต่ำที่จะใช้ในขับโหลดที่เราใช้ กับความต้านทานที่จะนำมาขนานก็ต้องไม่มากเกินไป เพราะจะไม่ลดแรงดันรวมและไม่ลด อัตราขยาย โดยในการไบอัสจะออกแบบให้กระแสตรงที่เข้าเบสสูงเพื่อขับกระแสให้เต็มที่

DC Operation point

หา DC Operation point โดยการน้ำ Vs ออก และดูการไบแอสของทรานซิสเตอร์แต่ละตัว

```
--- Operating Point ---
V(vs):
                                    voltage
                 3.11498e-013 voltage
V(vci1):
V(vcc):
                                   voltage
                1.03833
0.440478
0.800416
V(vb1):
                                   voltage
V(ve1):
                                   voltage
                                 voltage
V(vo1):
                3.27927
V (vc2):
                                  voltage
                0.172863
1.07209
3.36494
V(ve2):
                                   voltage
∇(vo2):
                                   voltage
V(vc3):
                                   voltage
                0.438022
V(ve3):
                                  voltage
              3.93414 voltage
3.33033 voltage
2.56514 voltage
3.84771e-015 voltage
V(vo3):
V(ve4):
V(ve42):
V(vout):
             0.0637727 device_current
0.000355899 device_current
0.000354252 device_current
1.64651e-006 device_current
0.00109004 device_current
5.01748e-006 device_current
0.00109505 device_current
0.000860363 device_current
0.000864313 device_current
0.000292332 device_current
1.32056e-006 device_current
0.000293652 device_current
1.70759e-017 device_current
device_current
Ic(Q42):
                0.0637727
                                 device_current
                                                          I (Re41):
                                                                           0.0320643 device_current
Ib(Q42):
                                                          I(R42):
                                                                           1.96707e-005 device current
Ie (Q42):
                                                                         2.13172e-005 device_current
                                                          I(R41):
Ic(Q41):
                                                          I(R1):
                                                                           7.69543e-017 device current
Ib (Q41):
Ie (Q41):
                                                                         0.0320643 device_current
                                                          I(Re42):
Ic(Q3):
                                                          I (Rc3):
                                                                         0.00109004 device current
Ib(Q3):
                                                                         0.00109505 device current
                                                          I(Re3):
Ie(Q3):
                                                          I(R32):
                                                                         0.000107209 device current
Ic(Q2):
                                                          I(R31):
                                                                          0.000112226 device current
Ib (Q2):
                                                          I (Rc2):
                                                                          0.000860363 device current
Ie (Q2):
                                                                          0.000864313 device current
Ic(Q1):
                                                          I (Re2):
Ib(Q1):
                                                                          8.00416e-005 device current
                                                          I(R22):
Ie(Q1):
                                                          I(R21):
                                                                          8.39917e-005 device current
I (Co):
                                                          I(Re1):
                                                                          0.000293652 device current
                                                          I(Re1, .
I(Rb1):
                1.70759e-017 device_current
I(Ci4):
                                                                          1.32056e-006 device_current
I(Ci3):
                 -6.62157e-017 device current
                                                                          3.11498e-017 device current
                                                          I (Rs) :
                  1.07981e-017 device_current
I(Ci2):
                                                          I (Vcc) :
                                                                           -0.0665885
I(Ci1):
                  3.11498e-017
                                    device_current
                                                                                            device current
```

ภาพที่ 3 DC operation point

1. DC Operation point of Q1

$$Vcc = 5 V$$
, $Vb1 = 1.04 V$, $Ve1 = 0.44 V$

,
$$Ib(Q1) = 1.32 \mu A$$
, $Ie(Q1) = 0.29 mA$

Check Active:

$$Vce, 1 = Vcc - Ve1 = 5 - 0.44 = 4.56 V -> Q1 Active$$

ภาพที่ 4 วงจร Buffer Q1

2.DC Operation point of Q2

$$Vcc = 5 V$$
, $Vo1 = 0.8 V$, $Vc2 = 3.28 V$, $Ve2 = 0.17 V$

,
$$Ib(Q2) = 3.95 \mu A$$
, $Ic(Q2) = 0.86 mA$

Check Active:

$$Vce,2 = Vcc - Ve2 = 5 - 0.17 = 4.83 -> Q2 Active$$

ภาพที่ 5 วงจร Amplifier Q2

3.DC Operation point of Q3

$$Vcc = 5 V$$
, $Vo2 = 1.07 V$, $Vc3 = 3.36 V$, $Ve3 = 0.43 V$

$$J(Q3) = 5.01 \mu A, Ic(Q3) = 1.09 mA$$

Check Active:

$$Vce,3 = Vcc - Ve3 - VRc3 = 5 - 0.43 - 1.63 = 2.94 -> Q3$$
 Active

ภาพที่ 6 วงจร Amplifier Q3

4.DC Operation point of Q4,1

$$,lb(Q41) = 1.64 \mu A, lc(Q41) = 0.35 mA$$

Check Active:

$$Vce,41 = Vcc - Ve41 = 5 - 3.33 = 1.67 V -> Q41 Active$$

ภาพที่ 7 วงจร Buffer Q4,1

5.DC Operation point of Q4,2

$$Vcc = 5 V$$
, $Ve41 = 3.33 V$, $Vc42 = 5 V$, $Ve42 = 2.56 V$

,lb(Q42) = 0.35 mA, lc(Q42) = 63.77 mA

Check Active:

Vce,42 = Vcc - Ve42 = 5 - 2.56 = 2.44 V -> Q42 Active

ภาพที่ 8 วงจร Buffer Q4,2

การต่อวงจรในการหาค่า DC Operation point

ภาพที่ 9 การต่อวงจรเพื่อหาค่า DC Operation point

กราฟกระแสไฟฟ้าที่ใหลออกจากแหล่งจ่าย (Vcc)

ภาพที่ 10 กราฟกระแสไฟฟ้าที่ Vcc (ไหลเข้า)

Draft	1.raw		×
-Cursor 1	I(Vcc)		
Horz:	379.74761ms	Vert:	-7.5638518mA
Cursor 2	I(Vcc)		
Horz:	380.24338ms	Vert:	-126.66998mA
Diff (Curso	or2 - Cursor1)	_	
Horz:	495.77465µs	Vert:	-119.10613mA

ภาพที่ 11 รายละเอียดของกราฟกระแสไฟฟ้าที่ Vcc

แรงดันไฟฟ้าที่ตำแหน่งเอาต์พุตของแต่ละเสตจ

ภาพที่ 12 กราฟแรงดันไฟฟ้าที่เอาต์พุตของ **Q1**

🧭 Draft1.	raw			×
-Cursor 1	V(ve1)			
Horz:	380.24426ms	Vert	507.79902mV	•
Cursor 2	V(ve1)			
Horz:	380.74846ms	Vert	373.83201mV	•
Diff (Cursor2	- Cursor1)			
Horz:	504.20168µs	Vert:	-133.96702m\	/

ภาพที่ 13 รายละเอียดของกราฟแรงดันไฟฟ้าที่เอาต์พุตของ **Q1**

ภาพที่ 14 กราฟแรงดันไฟฟ้าที่เอาต์พุตของ **Q2**

Draft	1.raw		×
-Cursor 1	V(vc2))	
Horz:	379.75039ms	Vert:	3.7147321V
Cursor 2	\// -0		
	V(vc2))	
Horz:	380.24427ms	Vert:	2.8194614V
Diff (Curso	or2 - Cursor1)		
Horz:	493.88209µs	Vert:	-895.27066mV

ภาพที่ 15 รายละเอียดของกราฟแรงดันไฟฟ้าที่เอาต์พุตของ **Q2**

ภาพที่ 16 กราฟแรงดันไฟฟ้าที่เอาต์พุตของ **Q3**

💆 Draft1.raw	×
- Cursor 1 V(vc3)	
Horz: 380.24428ms	Vert 4.776863V
- Cursor 2 V(vc3)	
Horz: 380.75008ms	Vert 1.8551217V
Diff (Cursor2 - Cursor1)	
Horz: 505.7979µs	Vert: -2.9217414V

ภาพที่ 17 รายละเอียดของกราฟแรงดันไฟฟ้าที่เอาต์พุตของ Q3

ภาพที่ 18 กราฟแรงดันไฟฟ้าที่เอาต์พุตของ **Q41**

🍱 Draf	ft1.raw		×
- Cursor 1	V(ve ⁴	1)	
Horz:	380.24208ms	Vert	4.7232869V
Cursor 2			
	V(ve ⁴	1)	
Horz:	380.74787ms	Vert	1.9021543V
Diff (Curs	or2 - Cursor1)		
Horz:	505.7979µs	Vert:	-2.8211326V

ภาพที่ 19 รายละเอียดของกราฟแรงดันไฟฟ้าที่เอาต์พุตของ **Q41**

ภาพที่ 20 กราฟแรงดันไฟฟ้าที่เอาต์พุตของ **Q42**

⊅ Draft	1.raw		×
Cursor 1	V(ve42)	
Horz:	380.24428ms	Vert	3.9189666V
Cursor 2	V(ve42)	
Horz:	380.74787ms	Vert:	1.2301423V
Diff (Curso	r2 - Cursor1)		
Horz:	503.58918µs	Vert:	-2.6888244V

ภาพที่ 21 รายละเอียดของกราฟแรงดันไฟฟ้าที่เอาต์พุตของ **Q42**

Error log และ ค่าความเพี้ยนของสัญญาณแรงดันไฟฟ้าขาออก

Vo Distortion

ภาพที่ 22 กราฟ FFT ของแรงดันขาเข้า และแรงดันขาออก

ภาพที่ 23 กราฟ FFT ของแรงดันขาเข้า และแรงดันขาออก ที่ความถี่ 1kHz

Error Log

หาเปอร์เซ็นต์ความเพี้ยนของสัญญาณขาออก

-	nents of V(vs) 4.94844e-018				
c component.	1.910116-010				
armonic	Frequency	Fourier	Normalized	Phase	Normalized
Number	[Hz]	Component	Component	[degree]	Phase [deg]
1	1.000e+03	7.500e-02	1.000e+00	0.00°	0.00°
2	2.000e+03	5.318e-16	7.091e-15	2.01°	2.01°
3	3.000e+03	7.989e-16	1.065e-14	-0.22°	-0.22°
4	4.000e+03	1.066e-15	1.422e-14	-0.04°	-0.04°
5	5.000e+03	1.329e-15	1.772e-14	-0.32°	-0.32°
6	6.000e+03	1.598e-15	2.131e-14	-0.10°	-0.10°
7	7.000e+03	1.868e-15	2.491e-14	-0.09°	-0.09°
8	8.000e+03	2.138e-15	2.850e-14	-0.12°	-0.12°
9	9.000e+03	2.399e-15	3.198e-14	-0.11°	-0.11°
10	1.000e+04	2.666e-15	3.555e-14	-0.18°	-0.18°
-Period=100 ourier compo	c Distortion: 0.0000 nents of V(vout)	00% (0.000974%)			
-Period=100 ourier compo C component:	nents of V(vout) -0.00213353				
-Period=100 courier compo c component:	nents of V(vout) -0.00213353 Frequency	Fourier	Normalized	Phase	Normalized
-Period=100 courier compo C component: armonic	nents of V(vout) -0.00213353 Frequency [Hz]	Fourier Component	Component	[degree]	Phase [deg]
T-Period=100 Courier compo C component: Carmonic Number	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03	Fourier Component 1.371e+00	Component 1.000e+00	[degree] 5.89°	Phase [deg] 0.00°
-Period=100 ourier compo C component: armonic Number 1 2	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03	Fourier Component 1.371e+00 1.050e-02	Component 1.000e+00 7.657e-03	[degree] 5.89° -76.10°	Phase [deg] 0.00° -81.99°
Period=100 Courier compo C component: Carmonic Number 1 2 3	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03 3.000e+03	Fourier Component 1.371e+00 1.050e-02 2.649e-02	Component 1.000e+00 7.657e-03 1.932e-02	[degree] 5.89° -76.10° 5.11°	Phase [deg] 0.00° -81.99° -0.78°
Period=100 Courier compo C component: Carmonic Number 1 2 3 4	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03 3.000e+03 4.000e+03	Fourier Component 1.371e+00 1.050e-02 2.649e-02 1.425e-03	Component 1.000e+00 7.657e-03 1.932e-02 1.039e-03	[degree] 5.89° -76.10° 5.11° -129.14°	Phase [deg] 0.00° -81.99° -0.78° -135.04°
Feriod=100 ourier compo C component: farmonic Number 1 2 3 4 5	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03 3.000e+03 4.000e+03 5.000e+03	Fourier Component 1.371e+00 1.050e-02 2.649e-02 1.425e-03 4.804e-03	Component 1.000e+00 7.657e-03 1.932e-02 1.039e-03 3.504e-03	[degree] 5.89° -76.10° 5.11° -129.14° -172.83°	Phase [deg] 0.00° -81.99° -0.78° -135.04° -178.72°
-Period=100 ourier compo C component: armonic Number 1 2 3 4 5 6	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03 3.000e+03 4.000e+03 5.000e+03 6.000e+03	Fourier Component 1.371e+00 1.050e-02 2.649e-02 1.425e-03 4.804e-03 2.077e-04	Component 1.000e+00 7.657e-03 1.932e-02 1.039e-03 3.504e-03 1.515e-04	[degree] 5.89° -76.10° 5.11° -129.14° -172.83° 1.39°	Phase [deg] 0.00° -81.99° -0.78° -135.04° -178.72° -4.50°
-Period=100 ourier compo C component: armonic Number 1 2 3 4 5 6 7	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03 3.000e+03 4.000e+03 5.000e+03 6.000e+03 7.000e+03	Fourier Component 1.371e+00 1.050e-02 2.649e-02 1.425e-03 4.804e-03 2.077e-04 8.849e-04	Component 1.000e+00 7.657e-03 1.932e-02 1.039e-03 3.504e-03 1.515e-04 6.454e-04	[degree] 5.89° -76.10° 5.11° -129.14° -172.83° 1.39° 11.18°	Phase [deg] 0.00° -81.99° -0.78° -135.04° -178.72° -4.50° 5.28°
r-Period=100 ourier compo C component: armonic Number 1 2 3 4 5 6 7 8	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03 3.000e+03 4.000e+03 5.000e+03 6.000e+03 7.000e+03 8.000e+03	Fourier Component 1.371e+00 1.050e-02 2.649e-02 1.425e-03 4.804e-03 2.077e-04 8.849e-04 1.492e-04	Component 1.000e+00 7.657e-03 1.932e-02 1.039e-03 3.504e-03 1.515e-04 6.454e-04 1.088e-04	[degree] 5.89° -76.10° 5.11° -129.14° -172.83° 1.39° 11.18° 157.78°	Phase [deg] 0.00° -81.99° -0.78° -135.04° -178.72° -4.50° 5.28° 151.88°
r-Period=100 courier compo C component: carmonic Number 1 2 3 4 5 6 7 8 9	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03 4.000e+03 5.000e+03 6.000e+03 7.000e+03 8.000e+03 9.000e+03	Fourier Component 1.371e+00 1.050e-02 2.649e-02 1.425e-03 4.804e-03 2.077e-04 8.849e-04 1.492e-04 2.288e-04	Component 1.000e+00 7.657e-03 1.932e-02 1.039e-03 3.504e-03 1.515e-04 6.454e-04 1.088e-04 1.669e-04	[degree] 5.89° -76.10° 5.11° -129.14° -172.83° 1.39° 11.18° 157.78° -168.00°	Phase [deg] 0.00° -81.99° -0.78° -135.04° -178.72° -4.50° 5.28° 151.88° -173.90°
-Period=100 ourier compo C component: armonic Number 1 2 3 4 5 6 7 8 9 10	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03 4.000e+03 5.000e+03 6.000e+03 7.000e+03 8.000e+03 9.000e+03	Fourier Component 1.371e+00 1.050e-02 2.649e-02 1.425e-03 4.804e-03 2.077e-04 8.849e-04 1.492e-04 2.288e-04 3.115e-05	Component 1.000e+00 7.657e-03 1.932e-02 1.039e-03 3.504e-03 1.515e-04 6.454e-04 1.088e-04	[degree] 5.89° -76.10° 5.11° -129.14° -172.83° 1.39° 11.18° 157.78°	Phase [deg] 0.00° -81.99° -0.78° -135.04° -178.72° -4.50° 5.28° 151.88°
-Period=100 ourier compo C component: armonic Number 1 2 3 4 5 6 7 8 9 10	nents of V(vout) -0.00213353 Frequency [Hz] 1.000e+03 2.000e+03 4.000e+03 5.000e+03 6.000e+03 7.000e+03 8.000e+03 9.000e+03	Fourier Component 1.371e+00 1.050e-02 2.649e-02 1.425e-03 4.804e-03 2.077e-04 8.849e-04 1.492e-04 2.288e-04 3.115e-05	Component 1.000e+00 7.657e-03 1.932e-02 1.039e-03 3.504e-03 1.515e-04 6.454e-04 1.088e-04 1.669e-04	[degree] 5.89° -76.10° 5.11° -129.14° -172.83° 1.39° 11.18° 157.78° -168.00°	Phase [deg] 0.00° -81.99° -0.78° -135.04° -178.72° -4.50° 5.28° 151.88° -173.90°

ภาพที่ 24 Error log ของแรงดันไฟฟ้าขาเข้า และแรงดันไฟฟ้าขาออก

ความเพี้ยนของแรงดันไฟฟ้าขาออกคือ 2.41% ซึ่งมีค่าน้อยกว่า 3%

กราฟฟังก์ชั่นส่งผ่านของแต่ละเสตจ

ภาพที่ 25 Bode magnitude plot และ Bode phase plot ของ Q1

Draft1	.raw			×		
Cursor 1		V(ve1)				
Freq:	1KHz	Mag:	-943.18939mdB	•		
		Phase:	-27.040538m°	0		
	Gı	roup Delay:	77.091794ns			
Cursor 2		V(ve1)				
Freq:	1KHz	Mag:	-943.18939mdB	0		
		Phase:	-27.040538m°	•		
	G	roup Delay:	77.091794ns			
	Ratio (Cursor2 / Cursor1)					
Freq:	0Hz	Mag:	0dB			
		Phase:	0°			

ภาพที่ 26 รายละเอียดของ Bode magnitude plot และ Bode phase plot ของ Q1

ภาพที่ 27 Bode magnitude plot และ Bode phase plot ของ Q2

Draft1	1.raw			×
-Cursor 1				
		V(vc2)		
Freq:	1KHz	Mag:	15.587532dB	•
		Phase:	-180.01186°	0
	Gro	oup Delay: [220.19458ns	
Cursor 2				
		V(vc2)		
Freq:	1KHz	Mag:	15.587532dB	0
		Phase:	-180.01186°	•
	Gr	oup Delay:	220.19458ns	
	Ratio	Cursor2/C	Cursor1)	
Freq:	0Hz	Mag:	0dB	
		Phase:	-0°	

ภาพที่ 28 รายละเอียดของ Bode magnitude plot และ Bode phase plot ของ Q2

ภาพที่ 29 Bode magnitude plot และ Bode phase plot ของ Q3

🤁 Draft1.raw			×
Cursor 1			
V	(vc3)		
Freq: 997.36441Hz	Mag:	26.154994dB	•
	Phase:	18.297865m°	0
Grou	ıp Delay:	346.86396ns	
Cursor 2			
\	/(vc3)		
Freq: 997.36441Hz	Mag:	26.154994dB	0
	Phase:	18.297865m°	
Grou	up Delay:	346.86396ns	
Ratio (Cursor2/	Cursor1)	
Freq: 0Hz	Mag:	0dB	
	Phase:	0°	

ภาพที่ 30 รายละเอียดของ Bode magnitude plot และ Bode phase plot ของ Q3

ภาพที่ 31 Bode magnitude plot และ Bode phase plot ของ Q41

ภาพที่ 32 รายละเอียดของ Bode magnitude plot และ Bode phase plot ของ Q41

ภาพที่ 33 Bode magnitude plot และ Bode phase plot ของ Q42

ภาพที่ 34 รายละเอียดของ Bode magnitude plot และ Bode phase plot ของ Q42

ภาพที่ 35 Bode magnitude plot และ Bode phase plot ของ Vout

ภาพที่ 36 รายละเอียดของ Bode magnitude plot และ Bode phase plot ของ Vout

Gain ของวงจร

สัญญาณแรงดันไฟฟ้าขาเข้า

ภาพที่ 37 กราฟแรงดันไฟฟ้าของสัญญาณขาเข้า

🧭 Draft1.	raw		X
Cursor 1	V(vs)		
Horz:	380.24358ms	Vert	74.915261mV
Cursor 2			
	V(vs)		
Horz:	380.7486ms	Vert:	-74.981589mV
-Diff (Cursor2	- Cursor1)		
Horz:	505.02793µs	Vert:	-149.89685mV

ภาพที่ 38 รายละเอียดกราฟแรงดันไฟฟ้าของสัญญาณขาเข้า

สัญญาณแรงดันไฟฟ้าขาออก

ภาพที่ 39 กราฟแรงดันไฟฟ้าของสัญญาณขาออก

🥰 Draft1.raw				×
-Cursor 1-	V(voi	ıt)		
Horz:	380.22585ms	Vert:	1.350658V	
Cursor 2				
V(vout)				
Horz:	380.73167ms	Vert:	-1.327516V	
Diff (Cursor2 - Cursor1)				
Horz:	505.82363µs	Vert:	-2.678174V	

ภาพที่ 40 รายละเอียดกราฟแรงดันไฟฟ้าของสัญญาณขาออก

ขนาดของแรงดันไฟฟ้าสัญญาณขาเข้าจากยอดถึงยอด คือ 149.89685 mV ขนาดของแรงดันไฟฟ้าสัญญาณขาออกจากยอดถึงยอด คือ 2.678174 V อัตราขยายสัญญาณ คือ 17.867 เท่า ซึ่งมากกว่า 15 เท่า

เงื่อนไขในการออกแบบ

เงื่อนไขที่ทำได้

- 1. อัตราขยาย 17.86 เท่า > 15 เท่า
- 2. อุณหภูมิ 40°C
- 4. Capacitor ในวงจรไม่เกิน 32 µF
- 5. Resistor ในวงจรไม่เกิน 10 M Ω
- 6. Vcc = 5V, Va = 75 mV, f_{in} = 1KHz, R_L = 50 Ω , Temp = 40°C ตามที่กำหนด

เงื่อนไขที่ทำไม่ได้

1. กระแสในวงจรเกิน 42 mA: Ic(Q42) = 63.77 mA เพราะต้องการกระแสสูงไปขับโหลดต่ำ

คำถามในการออกแบบ

1.จงอธิบายว่าเหตุใดจึงต้องออกแบบวงจรขยายเป็นแบบหลายเสตจ และน่าจะมีปัญหาอย่างไรถ้า นิสิตทำการออกแบบวงจรขยายดังกล่าวเป็นแบบเสตจเดียวเพื่อให้ได้อัตราขยายตามที่ต้องการ <u>ตอบ</u> การขยายวงจรเสตจเดียวให้ได้อัตราขยายวงจรจะทำให้แรงดันขาออกเพี้ยน เกิดจากตัว ต้านทาน และแรงดันไฟฟ้ากระแสตรง เราจึงต้องใช้หลายเสตจเพื่อให้การทำงานเป็นไปตาม เงื่อนไขที่กำหนด โดยต้องมีการปรับให้วงจรขยายทำงานได้ดี และใช้กับโหลดได้ดี

2.จงอธิบายหลักการในการออกแบบวงจร Common Collector สำหรับเป็น Voltage Buffer ใน เสตจที่ 1 นิสิตต้องเลือกที่จะทำการไบอัส Q1 อย่างไรเพื่อให้เหมาะสมกับความต้านทาน Rs และ ความต้านทานขาเข้าของวงจรขยายสัญญาณเสตจที่ 2

<u>ตอบ</u> การไบอัส Q1 ต้องกำหนดให้ Rs กินกระแสน้อยที่สุด และต้องออกแบบให้อัตราขยาย ใกล้เคียง 1 ที่สุด เพื่อที่จะใช้ต่อไปในวงจรขยายสัญญาณเสตจที่ 2 โดยเราต้องหาความต้านทาน ภายในทุกเสตจและนำมาเป็นตัวกำหนด Rb1 โดยกำหนดให้ความต้านทานมากกว่า Rs มากๆ 3.จงอธิบายว่าเหตุใดจึงควรใช้ Darlington Configuration (Q4,1และ Q4,2) สำหรับเป็นเสตจ เอาต์พุตในการขับโหลด ถ้านิสิตไม่ใช้ DarlingtonConfiguration จะกระทบกับการออกแบบ วงจรขยายในเสตจที่ 3 (ที่ประกอบด้วยทรานซิสเตอร์ Q3) อย่างไร

<u>ตอบ</u> การใช้วงจร Darlington Configuration เพื่อเพิ่มกระแสที่จะนำมาขับตัวต้านทานโหลด เนื่องจากตัวต้านทานโหลดมีค่าน้อยจึงต้องอาศัยกระแสที่มีค่ามาก ซึ่งวงจร Darlington สามารถ เพิ่มกระแสได้สูงสุด (β + 1)² เท่า จากกระแสเข้าเบส โดยที่การไม่ใช้วงจรนี้เป็นวงจร Buffer จะ ส่งผลให้แรงดันที่ขาออกมีค่าน้อยลง และอัตราขยายจะมีค่าที่ต่ำลง