Algebra homologiczna, Lista 2

- 1. Wymyśl własne przykłady naturalnych przekształceń funktorów.
- 2. Niech X będzie otwartym podzbiorem \mathbf{R}^n (lub, jeśli wolisz, gładką rozmaitością). Rozważmy snop gładkich funkcji na X, traktowany jako funktor $\mathtt{Otw}_X^{op} \to \mathtt{Vect}_{\mathbf{R}}$. Podaj przykłady naturalnych przekształceń tego funktora w siebie, możliwie nietrywialne.
 - Przypomnienie: C_G to jednoobiektowa kategoria związana z grupą G.
- 3. Opisz podkategorie C_G .
- 4. Funktory $C_{\mathbf{Z}} \to C_G$ odpowiadają elementom grupy G. Relacja naturalnej izomorficzności takich funktorów prowadzi, przez tę odpowiedniość, do pewnej relacji równoważności na grupie G. Co to za relacja na G?
- 5. Niech $F, F': C_G \to Set$ będą funktorami. Czym jest w standardowej terminologii matematycznej naturalne przekształcenie $f: F \to F'$?
- 6. Dokończ dowód równoważności kategorii Vect_K^f i jej kategorii szkieletowej (tj. pełnej podkategorii rozpiętej przez obiekty postaci K^n): na wykładzie omówiliśmy funktory w obie strony pokaż, że złożenia tych funktorów są naturalnie izomorficzne z funktorami identycznościowymi.
- 7. Uzasadnij, że funktor zadający równoważność kategorii musi być pełny, wierny i w zasadzie surjektywny.
- 8. Uzasadnij, że kategorie ${\tt Vect}_K^f$ i $({\tt Vect}_K^f)^{op}$ są równoważne.
- 9. Udowodnij, że kategoria skończonych grup abelowych jest równoważna swojej kategorii odwrotnej.
- 10. Niech k będzie ciałem charakterystyki zero, K jego rozszerzeniem Galois, G = Gal(K|k). Rozważmy kategorię skończenie wymiarowych k-algebr izomorficznych z algebrami postaci $\bigoplus K_i$, gdzie K_i są rozszerzeniami k zawartymi w K. Udowodnij, że kategoria odwrotna do opisanej jest równoważna kategorii skończonych G-zbiorów.