

دانشکدگان علوم دانشکده ریاضی، آمار و علوم کامپیوتر

مهلت تحویل: ۱۸ اردیبهشت

تمرین عملی دوم

مسئله ۱. تابع زیر را در نظر بگیرید.

$$f(x) = x_1^{\mathsf{F}} + \mathsf{T} x_1^{\mathsf{F}} + x_1$$

برای محاسبه گرادیان و ماتریس hessian بنویسید. f(x) بنویسید.

back - را به روش گرادیان کاهشی و انتخاب طول گام به روش x. $=(\mathfrak{d},\mathfrak{k})^T$ را به روش گرادیان کاهشی و انتخاب طول گام به روش x. $=(\mathfrak{d},\mathfrak{k})^T$ بهینه کنید. tracking

- یند. و تاثیر این دو پارامتر را بر روی عملکرد مدل تحلیل کنید. و تاثیر این دو پارامتر را بر روی عملکرد مدل تحلیل کنید.
 - بهینه کنید. pure newton بهینه کنید. و $f(\mathbf{x})$ با شروع از نقطه $x.=(\mathfrak{d},\mathfrak{k})^T$ با شروع از نقطه x
 - e) این بار از روش نیوتن و انتخاب طول گام با روشی متفاوت، تابع را بهینه کنید.
- و جود آیا روشی و با از این دو روش را بیان کنید. آیا روشی و جود d و d و d و d و d و d و d دارد که بتوانیم از مزایای هر دو روش به طور همزمان استفاده کنیم؟

نكات تكميلي:

- مقدار تابع را در حین فرایند بهینه سازی برای هر یک از روش ها رسم کنید.
- تعداد iteration هر یک از روش ها را تا رسیدن به جواب بهینه گزارش کنید.
- stopping criterion های متفاوتی وجود دارد، با توجه به مساله مناسب ترین را انتخاب کنید.

مسئله ۲. میخواهیم یک چندجمله ای درجه دو به داده های زیر برازش دهیم.

$$x = [-\Upsilon, -1/\Delta, -1, \cdot, 1, \Upsilon]$$
$$y = [\Lambda/\Upsilon, \Delta, \Upsilon/\cdot, \cdot/\Upsilon, \Upsilon/\Delta, \Lambda]$$

فرض کنید فرم چندجملهای به شکل $f(x,\theta)=\theta.+\theta_1x+\theta_7x^7$ باشد . میخواهیم θ بهینه ای را پیدا کنیم که تابع loss یعنی میانگین مجموع مربعات خطا (MSE) کمینه شود.

$$L(\theta) = \sum_{i=1}^{n} \frac{1}{n} (f(x_i, \theta) - y_i)^{\mathsf{Y}}$$

- ی تابع خطا (θ) را بر حسب (θ) و (θ) بنویسید.
- را برای (θ) محاسبه کنید. hessian را برای (t
- و نقطه اولیه $\theta=(\,\cdot\,,\,\cdot\,,\,\cdot\,)$ مقدار بهینه θ را پیدا کنید. θ را پیدا کنید.
 -) از همان نقطه اولیه شروع کرده و این بار با روش نیوتن مقدار بهینه θ را بیابید.
 - e) نتایج دو مدل را با هم مقایسه کنید.
- f) با نقطه شروع متفاوتی هر دو روش را تکرار کنید و تاثیر نقطه شروع را بر روی عملکرد هر دو مدل بررسی کنید.

نكات تكميلي:

- مقدار تابع خطا را در حین فرایند بهینه سازی برای هر یک از روش ها رسم کنید.
 - تعداد iteration هر یک از روش ها را تا رسیدن به جواب بهینه گزارش کنید.
- مقدار بهینه پارامتر θ را برای هر دو روش گزارش کنید و نمودار چندجملهای برازش داده شده را در کنار نقاط داده شده در یک نمودار رسم کنید.
 - برای انتخاب طول گام در هر دو روش میتوانید از طول گام ثابت یک استفاده کنید.