CapECL1 Devoir surveillé de Mathématiques n°8 Durée : 2h00

Exercice 1 (10 points)

Dans ce problème, on considère un réel $a \in]0,1[$.

1. Dans cette question, on suppose que f est une fonction continue sur \mathbb{R} , à valeurs réelles, solution de l'équation suivante :

25/03/2025

$$(H): \forall x \in \mathbb{R}, \ f(x) = \int_0^{ax} f(t) dt.$$

- (a) Montrer que f est dérivable sur $\mathbb R$ et déterminer, pour $x \in \mathbb R$, f'(x) en fonction de f, a et x.
- (b) Montrer que f est de classe C^{∞} sur \mathbb{R} et que, $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f^{(n)}(x) = a^{\frac{n(n+1)}{2}} f(a^n x)$.
- (c) Montrer que $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \ f(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$.
- (d) Soit $A \in \mathbb{R}_+$.
 - i. Pourquoi peut-on affirmer qu'il existe $M \in \mathbb{R}, \forall x \in [-A, A], |f(x)| \leq M$?
 - ii. En déduire que $\forall n \in \mathbb{N}, \forall x \in [-A, A], |f^{(n)}(x)| \leq M$.
 - iii. Montrer enfin soigneusement que $\forall n \in \mathbb{N}, \forall x \in [-A, A], |f(x)| \leq M \frac{A^{n+1}}{(n+1)!}$.
- (e) En déduire que f est la fonction nulle sur \mathbb{R} .
- 2. Soit ω une fonction continue sur \mathbb{R} à valeurs dans \mathbb{R} . Montrer, à l'aide du 1), qu'il existe au plus une fonction f, continue sur \mathbb{R} et à valeurs réelles, telles que $\forall x \in \mathbb{R}$, $f(x) = \int_0^{ax} f(t) dt + \varphi(x)$.

Exercice 2 (10 points)

On considère l'application f définie sur $]0, +\infty[$ par

$$f(t) = \frac{1}{1 + t - e^{-t}}.$$

Pour x > 0, on définit

$$G(x) = \int_{x}^{2x} f(t) dt.$$

- 1. Montrer que pour tout t > 0, $\frac{1}{1+t} \le f(t) \le \frac{1}{t}$.
- 2. En déduire que G admet une limite finie ℓ en $+\infty$ et la déterminer.
- 3. Montrer que G est dérivable sur \mathbb{R}_+^* et déterminer sa dérivée.
- 4. Pour t > 0, on pose $h(t) = f(t) \frac{1}{2t}$.
 - (a) Montrer que h se prolonge par continuité en 0. (On pourra chercher un $DL_0(0)$ de h.) On note encore h le prolongement.
 - (b) Démontrer que G se prolonge par continuité en 0. Donner la valeur de G(0).
- 5. On pose, pour x > 0,

$$\Delta(x) = G(x) - \int_{x}^{2x} \frac{1}{1+t} dt.$$

- (a) On fixe x > 0. Montrer que $\forall t \in [x, 2x], \ 0 \le f(t) \frac{1}{1+t} \le \frac{e^{-t}}{1+x-e^{-x}}$.
- (b) En déduire que $\Delta(x) = o(\frac{1}{x})$ quand $x \to +\infty$.
- (c) Montrer que $G(x) \ell \sim_{x \to +\infty} -\frac{1}{2x}$.