https://matse.paddel.xyz/spicker

Analysis 2

Patrick Gustav Blaneck

Letzte Änderung: 11. Juni 2021

Inhaltsverzeichnis

1	Funktionen mehrerer Veranderlicher			2
	1.1	Menge	en im \mathbb{R}^n	3
	1.2		n im \mathbb{R}^n	
		enzierbarkeit im \mathbb{R}^n	4	
		1.3.1	Partielle Ableitungen	6
		1.3.2	Das vollständige Differential	
		1.3.3	Partielle Ableitungen höherer Ordnung	
		1.3.4	Taylorentwicklung für $f(x,y)$	10
		1.3.5	Extremwerte ohne Nebenbedingungen	10
		1.3.6	Extremwerte mit Nebenbedingungen	11
		1.3.7	Parametrische Funktionen und Kurvenintegrale	12
2	Meh			12
3	Wachstums- und Zerfallsprozesse			12
4	Gewöhnliche Differentialgleichungen			12
lno	ndex			
Be	Beispiele			

1 Funktionen mehrerer Veränderlicher

Definition: Metrik

Metriken definieren Abstände im \mathbb{R}^n .

Eine Funktion d auf einem Vektorraum V mit

$$d: V \times V \to \mathbb{R}, d(\vec{x}, \vec{y})$$

heißt Metrik, falls gilt

- $d(\vec{x}, \vec{y}) = 0 \iff \vec{x} = \vec{y}$
- $d(\vec{x}, \vec{y}) \le d(\vec{x}, \vec{z}) + d(\vec{y}, \vec{z}), \forall \vec{x}, \vec{y}, \vec{z} \in V$ (Dreiecksungleichung)

Beispiel: Metriken

• Summen-Metrik:

$$\sum_{k=1}^{n} |x_k - y_k|$$

• euklid. Metrik:

$$\sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

• Maximum-Metrik:

$$\max_{k \in [1,n]} |x_k - y_k|$$

Definition: Metrischer Raum

Ein Vektorraum und eine Metrik heißen zusammen metrischer Raum.

Bonus: Zusammenhang Metrik & Norm

Jeder Vektorraum mit einer Metrik d ist normierbar (d.h. dort gibt es eine Norm), falls

$$d(a\vec{x}, 0) = |a| d(\vec{x}, 0)$$
 und $d(\vec{x}, \vec{y}) = d(\vec{x} - \vec{y}, 0)$

Eine Norm wird dann definiert gemäß

$$\|\vec{x}\| := d(\vec{x}, 0)$$

1.1 Mengen im \mathbb{R}^n

Definition: ε -Umgebung im \mathbb{R}^n

Sei $\|\cdot\|$ eine Norm im \mathbb{R}^n , dann heißt

$$U_{\varepsilon}(\vec{x_0}) := \{ \vec{x} \mid ||\vec{x} - \vec{x_0}|| < \varepsilon \}$$

die ε-Umgebung von $\vec{x_0}$ bzgl. der Norm $\|\cdot\|$.

Sei D eine Menge und $\|\cdot\|$ eine Norm. Dann

- ... heißt $\vec{x_0}$ innerer Punkt von D, falls $\forall \varepsilon > 0 : U_{\varepsilon}(\vec{x_0}) \in D$.
- ... heißt *D offene Menge*, falls alle Punkte von *D* innere Punkte sind.

Definition: Abgeschlossene Mengen

Sei D eine Menge und $\|\cdot\|$ eine Norm. Dann

- ... heißt $\vec{x_0}$ Häufungspunkt von D, falls $\forall \varepsilon > 0$ $U_{\varepsilon}(\vec{x_0})$ einen Punkt $\vec{x} \neq \vec{x_0}$ enthält.
- ... heißt *D abgeschlossene Menge*, falls sie alle Häufungspunkte von *D* enthält.

Definition: Beschränktheit von Mengen

Eine Menge $D \subset \mathbb{R}^n$ heißt beschränkt, falls es ein $M \in \mathbb{R}$ gibt mit

$$\|\vec{x}\| < M \quad \forall \vec{x} \in D$$

Existiert eine solche Schranke nicht, so heißt die Menge unbeschränkt.

1.2 Folgen im \mathbb{R}^n

Definition: Folge

Seien $\vec{x_1}, \vec{x_2}, \dots, \vec{x_m} \in \mathbb{R}^n$, dann heißt $(\vec{x_n})$ Folge im \mathbb{R}^n .

Definition: Konvergenz

 $(\vec{x_n})$ heißt konvergent gegen den Grenzwert \vec{x} , falls $\forall \varepsilon > 0$, $\exists n_0(\varepsilon)$, so dass $\forall n > n_0(\varepsilon)$ gilt:

$$\|\vec{x_n} - \vec{x}\| < \varepsilon$$

Definition: Cauchy-Folge

 $(\vec{x_n})$ heißt Cauchy-Folge gegen \vec{x} , falls $\forall \varepsilon > 0$, $\exists n_0(\varepsilon)$, so dass $\forall n, m > n_0(\varepsilon)$ gilt:

$$\|\vec{x_m} - \vec{x_n}\| < \varepsilon$$

Jede Cauchy-Folge ist konvergent.

Definition: Beschränktheit von Folgen

Eine Folge heißt beschränkt, wenn die Menge aller Folgenglieder in jeder Komponente beschränkt ist.

Definition: Häufungspunkt

 $\vec{x} \in \mathbb{R}^n$ heißt Häufungspunkt von $(\vec{x_n})$, falls $\forall \varepsilon > 0$ unendlich viele $\vec{x_i}$ in der ε -Umgebung von \vec{x} liegen.

Jede unendliche beschränkte Folge ist genau dann konvergent, wenn sie genau einen Häufungspunkt besitzt.

Definition: Bolzano-Weierstrass für Folgen

Jede unendliche beschränkte Folge besitzt mindestens einen Häufungspunkt.

Jede unendliche beschränkte Folge besitzt mindestens eine konvergente Teilfolge.

1.3 Differenzierbarkeit im \mathbb{R}^n

Definition: Grenzwert im \mathbb{R}^n

Wir bezeichnen mit dem Grenzwert

$$g = \lim_{\vec{x} \to \vec{x_n}} f(\vec{x})$$

den *Grenzwert* jeder gegen $\vec{x_0}$ konvergenten Folge $(\vec{x_n})$, falls dieser existiert und damit insbesondere eindeutig ist.

Definition: Stetigkeit

Sei $U \subset \mathbb{R}^n$ offene Menge, $f: U \to \mathbb{R}$, $\vec{x_0} = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T \in U$, f heißt in $\vec{x_0}$ stetig, wenn

$$\lim_{\vec{x} \to \vec{x_0}} f(\vec{x}) = f(\vec{x_0}) = f\left(\lim_{\vec{x} \to \vec{x_0}} \vec{x}\right),$$

wobei $\lim_{\vec{x}\to\vec{x_0}} f(\vec{x_0})$ Grenzwert jeder gegen $\vec{x_0}$ konvergenten Folge $(\vec{x_n})$ ist.

Formal:

$$\lim_{\vec{x} \to \vec{x_0}} f(\vec{x}) := \lim_{n \to \infty} f(\vec{x_n})$$

f heißt stetig in U, wenn die Funktion für jedes $\vec{x_0} = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T \in U$ stetig ist. Stetigkeit bedeutet somit insbesondere Stetigkeit in allen Komponenten.

Definition: Gleichmäßige Stetigkeit

Eine Funktion $f: D \subset \mathbb{R}^n \to \mathbb{R}$ heißt *gleichmäßig stetig*, wenn es zu jedem $\varepsilon > 0$ ein $\delta = \delta(\varepsilon)$ (unabhängig von $\vec{x_0}$) gibt, so dass

$$|f(\vec{x}) - f(\vec{x_0})| < \epsilon$$
, $\forall ||\vec{x} - \vec{x_0}|| < \delta$

Gleichmäßige Stetigkeit ist wegen der Unabhängigkeit von $\vec{x_0}$ insbesondere Stetigkeit im gesamten Definitionsbereich D.

Ist f beschränkt und abgeschlossen, so ist f gleichmäßig stetig.

Definition: Lipschitz-Stetigkeit

Eine Funktion $f: D \subset \mathbb{R}^n \to \mathbb{R}$ heißt *Lipschitz-stetig*, wenn es eine Konstante *L* gibt (unabhängig von $\vec{x_0}$), so dass

$$|f(\vec{x}) - f(\vec{x_0})| \le L ||\vec{x} - \vec{x_0}||$$

Ist in einer Norm L < 1, so heißt die Abbildung Kontraktion.

Ist eine Funktion f Lipschitz-stetige, so ist f auf ihrem Definitionsbereich D gleichmäßig stetig und in jedem Punkt stetig.

Bonus: Nullstelle

Ein Punkt $\vec{x_0} \in D$ heißt *Nullstelle* einer Funktion f, falls $f(\vec{x_0}) = \vec{0}$.

Definition: Fixpunkt

Ein Punkt $\vec{x^*} \in D$ heißt *Fixpunkt* einer Funktion φ , falls $\varphi(\vec{x^*}) = \vec{x^*}$.

Definition: Fixpunktsatz von Banach

Sei $\varphi:D\subset\mathbb{R}^n\to\mathbb{R}^n$ mit

$$|\varphi(\vec{x}) - \varphi(\vec{y})| \le L ||\vec{x} - \vec{y}||$$
 und $L < 1$,

dann hat φ genau einen Fixpunkt.

1.3.1 Partielle Ableitungen

Definition: Partielle Ableitung

Sei $U \subset \mathbb{R}^n$ offene Menge, $f: U \to \mathbb{R}$, $\vec{x_0} = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T \in U$, f heißt in $\vec{x_0}$ partiell differenzierbar nach x_i , wenn

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$

existiert. Der Wert $\frac{\partial f}{\partial x}$ heißt dann die partielle Ableitung von f nach x_i .

Eine Funktion heißt (partiell) differenzierbar, wenn alle partiellen Ableitungen existieren.

Bonus: Zusammenhang Differenzierbarkeit und Stetigkeit

f heißt stetig partiell differenzierbar, wenn alle partiellen Ableitungen in $\vec{x_i}$ stetige Funktionen (und insbesondere beschränkt) sind.

Ist f in U partiell differenzierbar und in $\vec{x_0} \in U$ stetig partiell differenzierbar, so ist f in $\vec{x_0}$ stetig.

Definition: Gradient

Sei $U \subset \mathbb{R}^n$ offene Menge, $F: U \to \mathbb{R}$ partiell differenzierbar, $\vec{x_0} = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T \in U$, dann heißt

$$\nabla f(x_1,\ldots,x_n) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x_1,\ldots,x_n) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x_1,\ldots,x_n) \end{pmatrix}$$

der Gradient von f in $\vec{x_0}$.

Bonus: Rechenregeln für Gradienten

Sei $U \subset \mathbb{R}^n$ offene Menge, $f,g:U \to \mathbb{R}$ differenzierbar. Dann gilt:

$$\begin{aligned} \nabla(f+g) &&= \nabla(f) + \nabla(g) \\ \nabla(\alpha f) &&= \alpha \cdot \nabla(f) \\ \nabla(fg) &&= g \cdot \nabla(f) + f \cdot \nabla(g) \end{aligned}$$

Definition: Tangentialebene im \mathbb{R}^3

Sei z = f(x,y) eine stetig partiell differenzierbare Funktion in zwei Unbekannten und $z_0 = f(x_0, y_0)$ ein fester Punkt.

Dann ist die Tangentialebene im Punkt (x_0, y_0, z_0) gegeben mit:

$$T = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \cdot \vec{v_1} + \mu \cdot \vec{v_2},$$

wobei $\vec{v_1}$ und $\vec{v_2}$ verschiedene Tangentenvektoren sind.

Algorithmus: Tangentialebene im \mathbb{R}^3

Betrachten wir die Tangenten entlang der Koordinatenachsen, so erhalten wir

$$T = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ f_x(x_0, y_0) \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ f_y(x_0, y_0) \end{pmatrix}$$

oder äquivalent

$$T(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Bonus: Tangentialebene im \mathbb{R}^n

Die Tangentialebene im \mathbb{R}^n einer Funktion f in $\vec{x} \in \mathbb{R}^n$ an der Stelle $\vec{x_0} = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T$ analog definiert durch

$$T(\vec{x}) = f(\vec{x_0}) + \nabla f(\vec{x} - \vec{x_0})$$

Definition: Richtungsableitung

Die Ableitung in Richtung des Vektors $\vec{v} = (v_1, \dots, v_n)^T$ mit $||\vec{v}|| = 1$ heißt *Richtungsableitung* $D_{\vec{v}}(f)$ von f in Richtung von \vec{v} . Es ist

$$\begin{split} \frac{\partial f}{\partial v} &:= D_{\vec{v}}(f) = \lim_{h \to 0} \frac{f(\vec{x} + h\vec{v}) - f(\vec{x})}{h} \\ &= \lim_{h \to 0} \frac{f(x_1 + hv_1, \dots, x_n + hv_n) - f(x_1, \dots, x_n)}{h} \end{split}$$

Algorithmus: Richtungsableitung

Sei $\vec{v} \in \mathbb{R}^n$ mit $\|\vec{v}\| = 1$. Dann ist die Richtungsableitung von f im Punkt $\vec{x_0}$ in Richtung \vec{v} gegeben mit

$$\frac{\partial f}{\partial v} = D_{\vec{v}}(f) = \nabla(f(\vec{x}_0)) \cdot \vec{v}$$

Algorithmus: Extremster Anstieg

Insgesamt gilt, falls wir nur die Richtung (ohne Normierung) betrachten:

$$\vec{v} = \frac{\nabla f}{\|\nabla f\|}$$
 ist die Richtung des steilsten Anstiegs von f

$$\vec{v} = -\frac{\nabla f}{\|\nabla f\|}$$
 ist die Richtung des steilsten Abstiegs von f

1.3.2 Das vollständige Differential

Definition: Vollständiges Differential

Unter dem *vollständigen Differential* der Funktion z = f(x, y) im Punkt (x_0, y_0) versteht man den Ausdruck

$$dz = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$$

Algorithmus: Absoluter Fehler

Es gilt für $z = f(x_1, ..., x_n)$ der absolute Fehler:

$$\Delta z_{\max} \leq \sum_{i=1}^{n} |f_{x_i}| \cdot |\Delta x_i|$$

Algorithmus: Relativer Fehler

Es gilt für $z = f(x, y) = c \cdot x^a \cdot y^b$ anhand der möglichen relativen Eingabefehler $\frac{\Delta x}{x}$ und $\frac{\Delta y}{y}$ der *relative Fehler*:

$$\frac{\Delta z}{z} \le a \cdot \left| \frac{\Delta x}{x} \right| + b \cdot \left| \frac{\Delta y}{y} \right|$$

Definition: Kurve

Seien x(t) und y(t) in t stetige Funktionen. Die Menge

$$\{(x,y) \mid x = x(t), y = y(t), t \in \mathbb{R}\}$$

heißt *Kurve*. Die Darstellung $t o \mathbb{R}^2$

$$\vec{x}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

heißt Parameterdarstellung der Kurve.

Definition: Kettenregel für Funktionen mit einem Parameter

Sei $z = f(\vec{x}) = f(\vec{x}(t))$ und $\vec{x}(t)$ stetig in jeder Komponente x_i . Dann gilt:

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \sum_{i=1}^{n} \frac{\partial z}{\partial x_i} \cdot \frac{\mathrm{d}x_i}{\mathrm{d}t}$$

Definition: Kettenregel für Funktionen mit zwei Parametern

Sei $z = f(\vec{x}) = f(\vec{x}(u, v))$ und $\vec{x}(u, v)$ stetig in jeder Komponente x_i . Dann gilt:

$$\frac{\partial z}{\partial u} = \sum_{i=1}^{n} \frac{\partial z}{\partial x_i} \cdot \frac{\mathrm{d}x_i}{\mathrm{d}u}$$

$$\frac{\partial z}{\partial v} = \sum_{i=1}^{n} \frac{\partial z}{\partial x_i} \cdot \frac{\mathrm{d}x_i}{\mathrm{d}v}$$

1.3.3 Partielle Ableitungen höherer Ordnung

Definition: Satz von Schwarz

Sind die partiellen Ableitungen *k*-ter Ordnung einer Funktion stetige Funktionen, so darf die Reihenfolge der Differentiation beliebig vertauscht werden.

Definition: Divergenz

Wir bezeichnen die *Divergenz* einer Funktion f mit

$$\operatorname{div} f := \nabla \cdot f = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{pmatrix} = \sum_{i=1}^n \frac{\partial f_i(x_1, \dots, x_n)}{\partial x_i}$$

Definition: Rotation

Wir bezeichnen die *Rotation* einer Funktion *f* mit

$$\operatorname{rot} f := \nabla \times f = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \times \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{pmatrix}$$

Bonus: Quellen und Senken

Die Punkte mit div f > 0 heißen Quellen des Vektorfeldes, die mit div f < 0 heißen Senken.

Gilt stets div f = 0, so heißt die Funktion *quellenfrei*.

Gilt rot f = 0, so heißt die Funktion wirbelfrei.

Definition: Jacobi-Matrix

Die Matrix

$$J = \begin{pmatrix} \frac{\partial f_1}{x_1} & \cdots & \frac{\partial f_1}{x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{x_1} & \cdots & \frac{\partial f_n}{x_n} \end{pmatrix}$$

heißt *Jacobi-Matrix* von *f* .

1.3.4 Taylorentwicklung für f(x, y)

Definition: Quadratische Approximation

Für f(x, y) ist die quadratische Approximation gegeben mit

$$f(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + \frac{f_{xx}(x_0,y_0)(x-x_0)^2}{2} + f_{xy}(x_0,y_0)(x-x_0)(y-y_0) + \frac{f_{yy}(x_0,y_0)(x-x_0)^2}{2}$$

1.3.5 Extremwerte ohne Nebenbedingungen

Algorithmus: Lokale Extrema ohne Nebenbedingungen im \mathbb{R}^2

1. Berechne $f_x(x,y)$ und $f_y(x,y)$ und suche diejenigen Stellen (x_0,y_0) mit

$$f_x(x_0, y_0) = f_y(x_0, y_0) = 0$$

Diese Stellen sind die Kandidaten für lokale Extrema.

2. Berechne für jeden Kandidaten (x_0, y_0) die Werte $f_{xx}(x_0, y_0)$, $f_{xy}(x_0, y_0)$ und $f_{yy}(x_0, y_0)$ und daraus den Wert

$$d := f_{xx}(x_0, y_0) \cdot f_{yy}(x_0, y_0) - (f_{xy}(x_0, y_0))^2$$

3. Dann gilt:

$$f_{xx}(x_0, y_0) > 0 \land d > 0 \implies lokales Minimum$$

 $f_{xx}(x_0, y_0) < 0 \land d > 0 \implies lokales Maximum$
 $d < 0 \implies Sattelpunkt$
 $d = 0 \implies h\"{o}here Ableitung entscheidet$

Definition: Hesse-Matrix im \mathbb{R}^2

Die *Hesse-Matrix* im \mathbb{R}^2 ist definiert mit

$$H = \begin{pmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{xy}(x_0, y_0) & f_{yy}(x_0, y_0) \end{pmatrix}$$

Ist *H positiv definit*, so liegt ein Minimum vor, ist *H negativ definit* ein Maximum und bei *indefinitem H* ein Sattelpunkt.

Es gilt:

- *H* ist positiv definit $\iff f_{xx}(x_0, y_0) < 0 \land \det H > 0$
- *H* ist negativ definit $\iff f_{xx}(x_0, y_0) > 0 \land \det H > 0$
- H indefinit \iff det H < 0

Definition: Hesse-Matrix im \mathbb{R}^n

Die *Hesse-Matrix* im \mathbb{R}^n ist definiert mit

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Ist *H positiv definit*, so liegt ein Minimum vor, ist *H negativ definit* ein Maximum und bei *indefinitem H* ein Sattelpunkt.

Es gilt:

- H ist positiv definit \iff alle Unterdeterminanten (links oben beginnend) sind positiv
- H ist negativ definit \iff alle *Unterdeterminanten* (links oben beginnend) haben wechselndes Vorzeichen (beginnend mit negativem Vorzeichen)
- H indefinit \iff sonst

1.3.6 Extremwerte mit Nebenbedingungen

Definition: Lagrange-Funktion

Gegeben seien eine Funktion f(x,y) und eine Nebenbedingung g(x,y)=0. Dann ist die Lagrange-Funktion gegeben mit

$$L(x,y,\lambda) = f(x,y) + \lambda g(x,y)$$

Es gilt damit:

$$L_{\lambda} = g(x,y) \quad \wedge \quad g(x,y) = 0 \implies L(x,y,\lambda) = f(x,y)$$

Algorithmus: Lokale Extrema mit Nebenbedingung im \mathbb{R}^2

1. Berechne die Kandidaten wie in freien Optimierungen mit

$$\nabla(L) = \vec{0}$$

2. Aufstellen der geränderten Hesse-Matrix für die drei Unbekannten mit

$$H = \begin{pmatrix} L_{xx} & L_{xy} & g_x \\ L_{xy} & L_{yy} & g_y \\ g_x & g_y & 0 \end{pmatrix}$$

3. Dann gilt:

 $\det H > 0 \implies Maximum$

 $\det H < 0 \implies Minimum$

 $\det H = 0 \implies \text{keine Entscheidung möglich}$

1.3.7 Parametrische Funktionen und Kurvenintegrale

Definition: Tangentenvektor

Der Tangentenvektor einer Kurve $\vec{x}(t)$ ist gegeben mit

$$\vec{x'}(t) = \begin{pmatrix} x'_1(t) \\ \vdots \\ x'_n(t) \end{pmatrix}$$

Definition: Tangente

Die *Tangente* einer Kurve $\vec{x}(t)$ ist gegeben mit

$$T(t) = \vec{x}(t) + \lambda \vec{x'}(t)$$

- 2 Mehrdimensionale Integration
- 3 Wachstums- und Zerfallsprozesse
- 4 Gewöhnliche Differentialgleichungen

Index

 ε -Umgebung im \mathbb{R}^n , 3

Abgeschlossene Mengen, 3 Absoluter Fehler, 8

Beschränktheit von Folgen, 3 Beschränktheit von Mengen, 3 Bolzano-Weierstrass für Folgen, 4

Cauchy-Folge, 3

Divergenz, 9

Extremster Anstieg, 7

Fixpunkt, 5 Fixpunktsatz von Banach, 5 Folge, 3

Gleichmäßige Stetigkeit, 4 Gradient, 6 Grenzwert im \mathbb{R}^n , 4

Hesse-Matrix im \mathbb{R}^2 , 10 Hesse-Matrix im \mathbb{R}^n , 10 Häufungspunkt, 4

Jacobi-Matrix, 9

Kettenregel für Funktionen mit einem Parameter, 8 Kettenregel für Funktionen mit zwei Parametern, 8 Konvergenz, 3

Kurve, 8

Lagrange-Funktion, 11 Lipschitz-Stetigkeit, 5

Lokale Extrema mit Nebenbedingung im \mathbb{R}^2 , 11

Lokale Extrema ohne Nebenbedingungen im \mathbb{R}^2 , 10

Metrik, 2 Metrischer Raum, 2

Nullstelle, 5

Partielle Ableitung, 6

Quadratische Approximation, 10 Quellen und Senken, 9

Rechenregeln für Gradienten, 6 Relativer Fehler, 8 Richtungsableitung, 7 Rotation, 9

Satz von Schwarz, 9 Stetigkeit, 4

Tangente, 12 Tangentenvektor, 12 Tangentialebene im \mathbb{R}^3 , 6 Tangentialebene im \mathbb{R}^n , 7

Vollständiges Differential, 8

Zusammenhang Differenzierbarkeit und Stetigkeit, 6 Zusammenhang Metrik & Norm, 2

Beispiele

Metriken, 2