



## **Inequality (Symbols)**

### **Solution**

**1. Answer: (C)** 

Given statement:  $R = Y = P > S \ge H < F \le C$ 

I.  $R > M \rightarrow False$  (as  $R = Y = P > S \ge H < F$ < C = M)

II.  $H = M \rightarrow False$  (as  $H < F \le C = M$ )

Thus, None follows is the correct answer.

**2. Answer: (D)** 

Given statement:  $B = K \ge H = T > U \le I$ 

I.  $H > I \rightarrow False$  (as  $H = T > U \le I$ )

II.  $H \le I \rightarrow False$  (as  $H = T > U \le I$ )

Conclusion I and II is false and it makes complementary form for either or,

Thus, Either conclusion I or II follow.

#### **Additional Information**

Signs between H and I are the opposite, but all three signs are present between H and I, leading to false conclusion so Either or conclusion will be true.

**3. Answer: (A)** 

Given statement:  $A > G < T < U \le W = P > V$ 

mock test platform

I.  $A < P \rightarrow False$  (as  $A > G < T < U \le W = P > Y$  as, the signs are opposite so, definite relation between the A and P cannot be determined)

II.  $T < Y \rightarrow$  False (as  $T < U \le W = P > Y$  as, the signs are opposite so, definite relation between the T and Y cannot be determined) Thus, neither conclusion I nor II follows

**4. Answer: (B)** 

Given **Statements:**  $D < E \le F$ ,  $G > H \ge I > F$ 

On combining:  $D \le E \le F \le I \le H \le G$ 

**Conclusions:** 

I.  $E \le H \rightarrow False$  (as  $E \le F < I \le H \rightarrow E < H$ )

II.  $H > D \rightarrow True$  (as  $D < E \le F < I \le H \rightarrow D < H$ )

Hence, only II is true.

**5. Answer: (D)** 

Given **Statements:**  $M \ge B \ge N = Z > X \le R$ > S

**Conclusions:** 

I.  $M > X \rightarrow True$  (as  $M \ge B \ge N = Z > X \rightarrow M > X)$ 

II.  $N > S \rightarrow False$  (as  $N = Z > X \le R > S \rightarrow Relation between N and S cannot be determined)$ 

Hence, only I is true.

**6. Answer: (D)** 

Given **Statements:**  $M > N \ge O = P \le Q < R$ > S

**Conclusion:** 

I.  $M > P \rightarrow True (as M > N \ge O = P \rightarrow M > P)$ 

II.  $O < R \rightarrow True$  (as  $O = P \le Q < R \rightarrow O < R$ )

Hence, both I and II are true.

7. **Answer:** (B)

Given **Statement:**  $X > Z < Y \le V$ ; P > K > S = Q > V

On Combining:  $P > K > S = Q \ge V \ge Y > Z < X$ 

Conclusion:

I)  $K > X \rightarrow False$  (As  $K > S = Q \ge V \ge Y > Z < X \rightarrow$  so, no direct relation between **K** and **X** can be determined)

II)  $Y < P \rightarrow True$  (As  $P > K > S = Q \ge V \ge Y \rightarrow so P > Y)$ 

Hence, Only II is true.

8. **Answer: (D)** 

Given statements:  $U \le W \ge R > S$ ; T > S = V

on combining:  $U \le W \ge R > S = V < T$ 

**Conclusions:** 

I.  $W < V \rightarrow False$  ( as  $W \ge R > S = V$  ) it is clear that W is greater than V

II.  $T < V \rightarrow False$  (as S = V < T) V is shorter than T



## ISO Certified

conclusion none of the follows therefore **Neither I nor** true **Confusion Points** 

both statements follow the not given statement as per statement  $W \ge R >$ S = V it is clear W > V while in conclusion it is given

W < V so it is false.

similarly  $S = V < T \rightarrow V < T$  but in conclusion it is T < V so it is false therefore None is true.

9. Answer: (B)

Given statements:  $P \ge Q = R \ge N < S$ **Conclusions:** 

I)  $S > Q \rightarrow False$  (as  $Q = R \ge N < S \rightarrow$ relation between S and Q cannot be determined)

II)  $P \ge N \rightarrow True$  (as  $P \ge Q = R \ge N \rightarrow P \ge$ 

Hence, Only conclusion II follows.

10. Answer: (B)

Given statements: F = L; K < L;  $K \ge D$ ; M <D

On combining:  $F = L > K \ge D > M$ 

**Conclusions:** 

II.  $L > D \rightarrow True (as L > K \ge D \rightarrow L > D)$ Hence, only II is True.

11. Answer: (E)

Given statements: H = G > F;  $A < B \ge X$ ; B

On combining:  $H = G > F \ge B > A$ ; H = G > $F \ge B \ge X$ 

**Conclusions:** 

I.  $H \ge A \rightarrow False$  (as  $H = G > F \ge B > A \rightarrow$ 

II.  $X < F \rightarrow False$  (as  $F \ge B \ge X \rightarrow F \ge X$ ) Hence, neither I nor II is True.

12. Answer: (C)

> Given statements:  $A > B \ge C$ ;  $E = D \le C$ On combining:  $A > B \ge C \ge D = E$

**Conclusions:** 

I.  $B \ge D \rightarrow True (as B \ge C \ge D \rightarrow B \ge D)$ 

Keep in touch:



## www.mockopedia.com

II.  $A > E \rightarrow True$  (as  $A > B \ge C \ge D = E \rightarrow$ A > E

Therefore, both conclusion I and II are True.

13. Answer: (C)

> Given statements:  $Q \le A < D < K \le M = J =$ F > Z

**Conclusions:** 

I.  $K > O \rightarrow True$  (as  $O \le A < D < K \le M = J$  $= F > Z \rightarrow K > O)$ 

II.  $F \ge K \rightarrow True$  (as  $Q \le A < D < K \le M =$  $J = F > Z \rightarrow F > K$ 

Therefore, both I and II are true.

14. Answer: (E)

Given statements:  $P = Q \le R$ ; T = P; T > SOn combining:  $S < P = O = T \le R$ I.  $Q < S \rightarrow False$  (as S < P = Q) II.  $R < S \rightarrow False (as S < T \le R)$ Therefore none follows.

15. Answer: (C)

Given statements: C > W; G < N; W = T; N

On combining:  $C > W = T \ge N > G$ 

**Conclusions:** 

I.  $C > G \rightarrow True$  (as  $C > W = T \ge N > G \rightarrow$ C > G)

I.  $F \ge M \rightarrow False$  (as  $F = L > K \ge D > M \rightarrow II.$   $W \ge N \rightarrow True$  (as  $W = T \ge N \rightarrow W \ge N$ ) Hence, both I and II is True.

> 16. Answer: (A)

> > Given statement:  $A < B \ge C$ ; D > E > A; C =F > G

On combining:  $D > E > A < B \ge C = F > G$ Conclusion:

I.  $D \ge C \rightarrow False$  (as  $D > E \rightarrow E > A \rightarrow A <$  $B \rightarrow B \ge C$ ) thus clear relation between D and C cannot be determined, It has no common sign between them.

II.  $B > G \rightarrow True$  (as  $B \ge C \rightarrow C = F \rightarrow F >$  $G \rightarrow B > G$ )

Therefore, only conclusion **II** is true.

**17.** Answer: (B)

Given Statements: A > B = C, D < M,  $M \le$ 

On combining:  $A > B = C \ge M > D$ 

**Conclusions:** I.  $B > M \rightarrow False$  (as  $B = C \ge$  $M \rightarrow B \ge M$ )



## ISO Certified

II.  $D < A \rightarrow True (as A > B = C \ge M > D \rightarrow A > D)$ 

Hence, only II is true.

#### **18. Answer: (D)**

Given statements:  $Y = O \le G \le K = U > L > P$ ; Y = A > R

On combining:  $R \le A = Y = O \le G \le K = U$ > L > P

#### **Conclusions:**

I.  $U > R \rightarrow False$  (as  $R \le A = Y = O \le G \le K = U \rightarrow U \ge R$ )

II.  $R = U \rightarrow False$  (as  $R \le A = Y = O \le G \le K = U \rightarrow U \ge R$ )

Therefore, conclusion I and II forms a complementary pair.

Hence, Either I or II is True.

#### 19. **Answer: (C)**

Given statement:  $L > B < J \le Q$ ; T = O < L; P = Q

# Keep in touch:



# www.mockopedia.com

On combining:  $T = O < L > B < J \le Q = P$ Conclusion:

I.  $T < L \rightarrow True$  (as  $T = O \rightarrow O < L \rightarrow T < L$ )

II.  $P \ge J \rightarrow True$  (as  $J \le Q \rightarrow Q = P \rightarrow P \ge J$ )

Therefore, both conclusions  ${\bf I}$  and  ${\bf II}$  are true.

#### **20. Answer:** (B)

Given statements:  $R \le P \le Q$ ;  $R \ge S > T \le M$ = U

On combining:  $Q \ge P \ge R \ge S > T \le M = U$  Conclusions:

I.  $Q > T \rightarrow True (as Q \ge P \ge R \ge S > T \rightarrow Q > T)$ 

II.  $R \ge M \rightarrow False$  (as  $R \ge S > T \le M \rightarrow clear$  relation between R and M cannot be determined)

Hence, Only I is True.

