Задание 9

Коновалов Андрей, 074

0	1	2	3	4	5	6	σ

Задача 1

Докажем, что прозводящая функция, удовлетворяющая $S[t]=1+t^2S^2[t]$ единственна следующим образом: покажем, что коэффициенты при степенях этой функции вычисляются однозначно.

Пусть

$$S[t] = s_0 + s_1 t + \dots + s_n t^n + \dots$$

Тогда

$$s_0 + s_1 t + \dots = 1 + t^2 (s_0 + (s_0 s_1 + s_1 s_0) t + \dots)$$
 (1)

Заметим, что из (1) коэффициенты s_0 и s_1 вычисляются однозначно.

$$s_0 = 1, \ s_1 = 0$$

Заметим, что коэффициенты правой части (1) при t^n зависят лишь от $s_0,...,s_{n-2}$. Получаем, что зная значения $s_0,...,s_{n-2}$ можно однозначно вычислить s_n . Поскольку значение s_0 нам известно, то можно вычислить s_2 . Зная s_0 и s_1 вычисляем s_3 и так далее по индукции.

Залача 3

(i) Докажем, что $g_n = F_{n+2}$ по индукции по длине n слова $w \in L_{\neg bb}$.

 $\emph{\it Eaзa}.$ При n=0 единственное слово $\varepsilon\in L_{\neg bb},$ а значит $g_0=F_2=1.$

При n=1 слова $a,b\in L_{\neg bb},$ а значит $g_1=F_3=2.$

 $\mathit{Переход}. \ \forall n \geq 2. \ \mathit{Пусть} \ \forall k < n \$ количество слов длины k есть $F_{k+2},$ докажем, что количество слов длины n есть $F_{n+2}.$

 $\forall w \in L_{\neg bb}, |w| = n$ возможны 2 варианта: 1) w[-1] = a, 2) w[-1] = b. 1

В первом случае слово w устроено так:

$$w = xa, x \in L_{\neg bb}, |x| = n - 1$$

Количество таких слов w равно количество таких слов x, которое в свою очередь равно F_{n+1} по предположению индукции.

 $^{^1}$ Отрицательным индеком обозначена нумерация с конца строки, так, например w[-1] означает последний символ слова w, а w[-2] - предпоследний.

Во втором случае $w[-2] \neq b$, покольку $w \in L_{\neg bb}$. А значит

$$w = xab, x \in L_{\neg bb}, |x| = n - 2$$

Количество таких слов w равно количество таких слов x, которое в свою очередь равно F_n по предположению индукции.

Итоговое количество таких слов w есть $F_n+F_{n+1}=F_{n+2},$ ч. т. д.

(ii) Построим ДКА A для $L_{\neg bb}$ в соответствии с алгоритмом КМП. A изображен на следующей диаграмме:

По A построим однозначную грамматику в соответствии с алгоритмом из теории предыдущих заданий:

$$S \to A$$

$$A \to \varepsilon |aA|bB$$

$$B \to \varepsilon |aA$$

Преобразуем ее праволинейную:

$$\begin{split} S &\to A|\varepsilon \\ A &\to aA|a|bB|b \\ B &\to aA|a \end{split}$$

Составим СОУ:

$$\begin{cases} S = A + \varepsilon \\ A = aA + a + bB + b \\ B = aA + a \end{cases}$$

Составим систему линейных уравнений:

$$\begin{cases} S[t] = A[t] + 1 \\ A[t] = tA[t] + t + tB[t] + t \\ B[t] = tA[t] + t \end{cases}$$

Выразим S[t]:

$$S[t] = \frac{t+1}{1-t-t^2} = -\frac{1+t}{(t-\frac{-1-\sqrt{5}}{2})(t-\frac{-1+\sqrt{5}}{2})}$$

Разложим на простые дроби:

$$S[t] = \frac{\frac{1-\sqrt{5}}{2\sqrt{5}}}{t - \frac{-1-\sqrt{5}}{2}} - \frac{\frac{1+\sqrt{5}}{2\sqrt{5}}}{t - \frac{-1+\sqrt{5}}{2}}$$

Преобразуем:

$$S[t] = -\frac{\frac{\sqrt{5}(1-\sqrt{5})^2}{20}}{1 - \frac{1-\sqrt{5}}{2}t} + \frac{\frac{\sqrt{5}(1+\sqrt{5})^2}{20}}{1 - \frac{1+\sqrt{5}}{2}t}$$

При разложении в ряд коэффициент s_n при t^n будет:

$$s_n = -\frac{\sqrt{5}(1-\sqrt{5})^2}{20} \left(\frac{1-\sqrt{5}}{2}\right)^n + \frac{\sqrt{5}(1+\sqrt{5})^2}{20} \left(\frac{1+\sqrt{5}}{2}\right)^n$$

Преобразуем:

$$s_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+2} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+2}}{\sqrt{5}}$$

Задача 4

Составим таблицу соответствия символов слова w=010 номерам ячеек ленты для записи конфигураций.

символ слова		0	1	0
номер ячейки	П	1	2	3

(iii) Слово w = 010 принимается, принимающее вычисление:

$$(q_0,1) \vdash (q_1,2) \vdash (q_2,3) \vdash (q_2,4)$$

- (i) Как видно из пункта (iii) состояние $q_{t=010}$, в которое автомат в первый раз выходит из префикса t=010 есть q_2 .
 - (ii) Построим $\tau_{t=010}$.

$$(q_0,3) \vdash (q_1,4)$$

 $(q_1,3) \vdash (q_0,2) \vdash (q_1,3) \vdash \dots$
 $(q_2,3) \vdash (q_2,4)$

Получаем $\tau_{t=010} = (q_0, q_1), (q_1, \star), (q_2, q_2).$