INF1608 - Análise Numérica

Lab 5: Método dos Mínimos Quadrados

Prof. Waldemar Celes Departamento de Informática, PUC-Rio

Para este exercício, considere a representação de matrizes por vetor de ponteiros do Lab 0 e o método de solução de sistemas lineares do Lab 3. Siga **exatamente** as interfaces "matriz.h" e "sistlinear.h". *Envie as implementações desses códigos junto com a solução deste laboratório para a correção*. Se preferir, você pode copiar as funções necessárias já existentes para o código deste exercício.

Podemos resolver um sistema inconsistente na forma $A_{m \times n} x_n = b_m$ através do Método dos Mínimos Quadrados (MMQ). Na sua forma mais direta, a solução do MMQ é feita resolvendo o sistema linear $n \times n$ definido pela equação normal:

$$A^T A \bar{x} = A^T b$$

onde A^T representa a matriz transposta de A e \bar{x} a solução aproximada do problema. O erro do método pode ser avaliado pelo vetor residual $r=b-A\bar{x}$. Como métrica de erro, podemos usar a norma-2 deste vetor:

$$e = ||r||_2 = \sqrt{\sum_{i=1}^{m} r_i^2}$$

1. Pede-se:

(a) Implemente uma função que resolva o sistema $A_{m \times n} x_n = b_m$ pelo método dos mínimos quadrados. A função cria (aloca dinamicamente) e retorna o vetor que representa a solução aproximada:

double* mmq (int m, int n, double** A, double* b);

(b) Implemente uma função para calcular a norma-2 do resíduo:

double mmq_norma2 (int m, int n, double** A, double* b, double* x);

(c) A concentração de uma droga na corrente sanguínea de um paciente pode seguir o seguinte modelo:

$$c = a t e^{bt}$$

onde c (expresso em ng/ml) representa a concentração da droga ainda presente e t (expresso em h) representa o tempo decorrido após a administração da droga. Esse modelo tem por característica um forte aumento da concentração no início seguido de um decaimento exponencial lento.

Usando o método dos mínimos quadrados, escreva uma função que receba um conjunto de medições (t_i, c_i) e calcule os coeficientes a e b, preenchendo seus valores nos endereços de memória recebidos como parâmetros. O protótipo da função deve ser:

Não se esqueça que para usar o método dos mínimos quadrados, o modelo deve ser linearizado:

$$\ln c = \ln a + \ln t + bt$$

$$k + bt = \ln y - \ln t, \text{ com } k = \ln a : a = e^k$$

- 2. Para testar sua implementação, pede-se:
 - (a) Escreva um programa que resolva os sistemas inconsistentes abaixo usando o MMQ. Para cada sistema, exiba na tela o vetor que representa a solução aproximada e seu respectivo erro associado (norma-2).

a)
$$\begin{bmatrix} 3 & -1 & 2 \\ 4 & 1 & 0 \\ -3 & 2 & 1 \\ 1 & 1 & 5 \\ -2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \\ -5 \\ 15 \\ 0 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 4 & 2 & 3 & 0 \\ -2 & 3 & -1 & 1 \\ 1 & 3 & -4 & 2 \\ 1 & 0 & 1 & -1 \\ 3 & 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 2 \\ 0 \\ 5 \end{bmatrix}$$

(b) Encontre os coeficiente do modelo da concentração observada de uma droga na corrente sanguínea de um paciente, em função do número de horas, considerando os seguintes dados observados:

t(h)	c (ng/ml)
1	8.0
2	12.3
3	15.5
4	16.8
5	17.1
6	15.8
7	15.2
8	14.0

Agrupe os protótipos das funções pedidas em um módulo "mmq.h" e as implementações em um módulo "mmq.c". Escreva um outro módulo "main.c" para o código de teste da sua implementação.

Entrega: O código fonte deste trabalho (isto é, os arquivos "mmq.h", "mmq.c" e "main.c", e eventuais códigos de laboratórios passados usados na solução) devem ser enviados via página da disciplina no EAD. O prazo final para envio é **domingo, dia 26 de setembro**.