西安交通大学考试题

成绩

课	程	计算方法 B				
学	院		考试	日期	2018年1	月 10 日
专业	班 号					
姓	名		学号		期中	期末 ✓
- 、	填空	题(每空2分,共	48分)			
1.7	在计算	[方法中,主要研究]	的是	_误差和_	误	差。
2.	使用酒	孚点数系 $F(\beta,t,L,U)$	可以表示计	算机中所	有的浮点数	女,则个数为
			_。在浮点数	系 F(10,8,-	-38,+38) 中。	,能表示的最
小的正	数是_		o			
3.	己知	√896≈29.93,且方疗	程 $x^2-30x+1$	=0有一	个根为 x ₁ :	= 29.96 ,则在
$F(10,4,-10,10)$ 中计算得到的该方程的另一个根 $x_2 = $ 。						
4. i	已知π	· ≈ 3.14159265,则	其近似数 π, =	3.14152 月	具有位	有效数字。
5.1	已知 \vec{x}	$= (1 2 3 4)^T, \text{II}$	$\vec{x}\Big _1 = \underline{\qquad},$	$\left \overrightarrow{x} \right _2 = \underline{\hspace{1cm}}$, $ \left\ \overrightarrow{x} \right\ _{\infty} = $	o
6.	已知方	$\pi程组 \begin{cases} 3x_1 + 2x_2 = 5\\ -2x_1 + x_2 = 1 \end{cases}$,则对其系数:	矩阵 A ,有	$ A _1 = \underline{\hspace{1cm}}$,并且 <i>A</i> 的
条件数	$cond_{\alpha}$	$(A) = \underline{\qquad}, \underline{\underline{\qquad}}$	6此数较大时,	该方程组	且称为	0
7.	己知,	1个互不相同的点 x	$(x_1, x_2,, x_n, \sharp)$	所构成的	Lagrange 撎	盾值基函数为
$l_i(x) = $,并且有	$l_i(x_i) = $	o
8.5	若 ƒ(x	$x(x) = x^4 - 2017x^3 + 20$	$18x^2 + 2019x$	+ m ,则差	商 f[0,1,2,3,	4]=,
f[0,1,2	,3,4,5]	=。若 f[0,1,2,	3] = 2017 ,贝 刃	f[1,2,3,4] =	:o	
9.,	具有n	+1个节点的插值型数	数值积分公式	,其代数精	情度最少可以	从达到,
而具有	相同	方点的高斯型求积公	式,代数精度	更可以达到	<u> </u>	_

10.具有 2 个积分点的梯形求积公式为 $\int_a^b f(x)dx \approx$						
误差为 $E_1 =$						
计算定积分 $\int_0^{\frac{\pi}{2}} (\cos t) dt$,则其近似值为。						
11. 在积分区间[0,1]上, $\varphi_2(x)$ 是关于权函数 $\rho(x) = \sqrt{x}$ 的最高次项系数为 1						
的二次正交多项式,则积分 $\int_0^1 \sqrt{x}(x+3)\varphi_2(x)dx = $ 。						
12.若有非线性方程 $f(x) = x$,则其牛顿迭代格式为						
由于该迭代格式具有						
应满足的条件是。						
13.对于以下常微分方程的初值问题 $y'(t) = -10y, y(0) = 1, t \in [0,1]$, 使用后退						
Euler 方法时的计算公式为 $y_{i+1} =$						
°						
二、简答题(共 52 分)						
1. 求插值以下数据点不超过 4 次的插值多项式,并给出余项公式。(6 分)						
$x_i = 0 + 1 + 2$						
$f(x_i)$ 1 0 5 $f'(x_i)$ 2 2						

西安交通大学考试题

2. 已知方程组 $\begin{cases} 2x_1 + x_2 + 4x_3 = 8 \\ 4x_1 + 4x_2 + x_3 = 13 \end{cases}$ 给出系数矩阵的 LU 分解形式,并求解该方 $6x_1 + 5x_2 + 12x_3 = 28$

程。(6分)

2. 已知 $S(x) = \begin{cases} (x+1)^3 + a(x+1)^2 + b(x+1) + c & -2 \le x < -1 \\ \frac{1}{2}x^3 & -1 \le x \le 0 \end{cases}$ 是区间 [-2,0] 上的三

次样条插值函数,求a,b,c的值。(6分)

$\int 2x_1 + x_2 + x_3 = 3$
3. 针对方程组 $\left\{x_1 + x_2 + x_3 = 2\right\}$,给出雅可比迭代格式和高斯-赛德尔迭代格式,
$x_1 + x_2 - 2x_3 = -1$
并讨论针对任意初始向量它们是否收敛。(6分)

西安交通大学考试题

4. 求以下数值积分公式中的系数使其具有尽可能高的代数精度,并给出误差估计式(6分)

$$\int_{-2}^{2} f(x)dx \approx A_0 f(-1) + A_1 f(0) + A_2 f(1)$$

6. 若方程 $x^3 - x^2 - 1 = 0$ 在 $x_0 = 1.5$ 附近有根, 对于 $x_{k+1} = x_k - \frac{x_k^3 - x_k^2 - 1}{3x_k^2 - 2x_k}$ 的迭代格式

判断其收敛性,若不收敛,则将其进行改造为收敛的迭代格式。(6分)

