Philips Semiconductors Product data

Timer

NE/SA/SE555/SE555C

DESCRIPTION

The 555 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA.

FEATURES

- Turn-off time less than 2 μs
- Max. operating frequency greater than 500 kHz
- Timing from microseconds to hours
- Operates in both astable and monostable modes
- High output current
- Adjustable duty cycle
- TTL compatible
- Temperature stability of 0.005% per °C

APPLICATIONS

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation

PIN CONFIGURATION

Figure 1. Pin configuration

BLOCK DIAGRAM

Figure 2. Block Diagram

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #	
8-Pin Plastic Small Outline (SO) Package	0 to +70 °C	NE555D	SOT96-1	
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70 °C	NE555N	SOT97-1	
8-Pin Plastic Small Outline (SO) Package	−40 °C to +85 °C	SA555D	SOT96-1	
8-Pin Plastic Dual In-Line Package (DIP)	−40 °C to +85 °C	SA555N	SOT97-1	
8-Pin Plastic Dual In-Line Package (DIP)	−55 °C to +125 °C	SE555CN	SOT97-1	
8-Pin Plastic Dual In-Line Package (DIP)	−55 °C to +125 °C	SE555N	SOT97-1	

2003 Feb 14 2

Philips Semiconductors Product data

Timer

NE/SA/SE555/SE555C

EQUIVALENT SCHEMATIC

Figure 3. Equivalent schematic

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT	
Vcc	Supply voltage SE555 NE555, SE555C, SA555	+18 +16	V	
P _D	Maximum allowable power dissipation ¹	600	mW	
T _{amb}	Operating ambient temperature range NE555 SA555 SE555, SE555C	0 to +70 -40 to +85 -55 to +125	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	
T _{stg}	Storage temperature range	-65 to +150	°C	
T _{SOLD}	Lead soldering temperature (10 sec max)	+230	°C	

NOTE:

2003 Feb 14 3

The junction temperature must be kept below 125 °C for the D package and below 150°C for the N package.
 At ambient temperatures above 25 °C, where this limit would be derated by the following factors:

D package 160 °C/W

N package 100 °C/W

Philips Semiconductors Product data

Timer

NE/SA/SE555/SE555C

DC AND AC ELECTRICAL CHARACTERISTICS

 T_{amb} = 25 °C, V_{CC} = +5 V to +15 V unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	SE555			NE555/SA555/SE555C		LINUT	
			Min	Тур	Max	Min	Тур	Max	UNIT
V _{CC}	Supply voltage		4.5		18	4.5		16	V
lcc	Supply current (low state) ¹	$V_{CC} = 5 \text{ V}, R_L = \infty$ $V_{CC} = 15 \text{ V}, R_L = \infty$		3 10	5 12		3 10	6 15	mA mA
t _M Δt _M /ΔΤ Δt _M /ΔV _S	Timing error (monostable) Initial accuracy ² Drift with temperature Drift with supply voltage	R_A = 2 kΩ to 100 kΩ C=0.1 μF		0.5 30 0.05	2.0 100 0.2		1.0 50 0.1	3.0 150 0.5	% ppm/°C %/V
t_{A} $\Delta t_{A}/\Delta T$ $\Delta t_{A}/\Delta V_{S}$	Timing error (astable) Initial accuracy ² Drift with temperature Drift with supply voltage	R_A , $R_B = 1 \text{ k}\Omega$ to 100 k Ω $C = 0.1 \mu\text{F}$ $V_{CC} = 15 \text{ V}$		4 0.15	6 500 0.6		5 0.3	13 500 1	% ppm/°C %/V
V _C	Control voltage level	V _{CC} = 15 V V _{CC} = 5 V	9.6 2.9	10.0 3.33	10.4 3.8	9.0 2.6	10.0 3.33	11.0 4.0	V V
V _{TH}	Threshold voltage	V _{CC} = 15 V V _{CC} = 5 V	9.4 2.7	10.0 3.33	10.6 4.0	8.8 2.4	10.0 3.33	11.2 4.2	V V
I _{TH}	Threshold current ³			0.1	0.25		0.1	0.25	μΑ
V_{TRIG}	Trigger voltage	V _{CC} = 15 V V _{CC} = 5 V	4.8 1.45	5.0 1.67	5.2 1.9	4.5 1.1	5.0 1.67	5.6 2.2	V V
I _{TRIG}	Trigger current	V _{TRIG} = 0 V		0.5	0.9		0.5	2.0	μΑ
V _{RESET}	Reset voltage ⁴	V _{CC} = 15 V, V _{TH} = 10.5 V	0.3		1.0	0.3		1.0	V
I _{RESET}	Reset current Reset current	V _{RESET} = 0.4 V V _{RESET} = 0 V		0.1 0.4	0.4 1.0		0.1 0.4	0.4 1.5	mA mA
V _{OL}	LOW-level output voltage	$V_{CC} = 15 \text{ V}$ $I_{SINK} = 10 \text{ mA}$ $I_{SINK} = 50 \text{ mA}$ $I_{SINK} = 100 \text{ mA}$ $I_{SINK} = 200 \text{ mA}$ $V_{CC} = 5 \text{ V}$ $I_{SINK} = 8 \text{ mA}$ $I_{SINK} = 5 \text{ mA}$		0.1 0.4 2.0 2.5 0.1 0.05	0.15 0.5 2.2 0.25 0.2		0.1 0.4 2.0 2.5	0.25 0.75 2.5 0.4 0.35	V V V V
V _{OH}	HIGH-level output voltage	$V_{CC} = 15 \text{ V}$ $I_{SOURCE} = 200 \text{ mA}$ $I_{SOURCE} = 100 \text{ mA}$ $V_{CC} = 5 \text{ V}$ $I_{SOURCE} = 100 \text{ mA}$	13.0	12.5 13.3 3.3		12.75 2.75	12.5 13.3 3.3		V V
t _{OFF}	Turn-off time ⁵	V _{RESET} = V _{CC}		0.5	2.0		0.5	2.0	μs
t _R	Rise time of output			100	200		100	300	ns
t _F	Fall time of output			100	200		100	300	ns
	Discharge leakage current	1		20	100		20	100	nA

- Supply current when output high typically 1 mA less.
 Tested at V_{CC} = 5 V and V_{CC} = 15 V.
 This will determine the max value of R_A+R_B, for 15 V operation, the max total R = 10 MΩ, and for 5 V operation, the max. total R = 3.4 MΩ.
 Specified with trigger input HIGH.
- 5. Time measured from a positive-going input pulse from 0 to 0.8×V_{CC} into the threshold to the drop from HIGH to LOW of the output. Trigger is tied to threshold.

2003 Feb 14

Philips Semiconductors Product data

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical Performance Characteristics

2003 Feb 14 5