An Intermediate System's View of IPSEC

Cheryl Madson
Senior Software Engineer
IOS Security

Agenda

- An overview of ISAKMP, Oakley and IKE
- The view of IPSEC from an intermediate system (e.g. router or firewall)

ISAKMP, Oakley and IKE

ISAKMP, Oakley and IKE

- ISAKMP: Internet Security Association and Key Management Protocol
 - Provides a framework for establishing shared security policy and deriving keying material
 - Supports various key generation mechanisms, ex. Oakley
 - Supports various authentication mechanisms
 - Domains of Interpretation, ex. IPSEC
- Oakley
 - Key generation mechanism used with IPSEC

ISAKMP, Oakley and IKE

- IKE: Internet Key Exchange
 - Formerly known as "the resolution document"
 - Specifies "profile" for applying ISAKMP and Oakley within the context of IPSEC

General ISAKMP Concepts

- ISAKMP "daemons" on the IPSEC peers establish a protected pipe between themselves (main mode).
 - Peers identify themselves, prove themselves to each other, using such mechanisms as
 - pre-shared secrets
 - certificates w/RSA-signatures
 - certificates w/RSA-encryption (encrypted nonces)
 - Authenticated entities derive a shared secret
 - Main Mode identifiers are "blobs" to identify the ISAKMP peers such as IP address, DNS name, DN name

CISCO SYSTEMS

General ISAKMP Concepts

- Session keys and corresponding policy is established using Quick Mode exchanges
 - negotiation of set of security transforms
 - specification the endpoints on whose behalf the security association bundle is being established
 - Source address/subnet, address range
 - Destination address/subnet, address range
 - Protocol
 - Source/destination port (no ranges)
 - derivation of keys for use in data protection

The IPSEC View from an Intermediate System

Mobile User to Firewall

Single (mobile) user interacting with firewall to gain access to the corporate network

- Interaction to establish an IPSEC-protected pipe between client and firewall
- Providing at least authentication/integrity services, possibly also confidentiality services

Mobile User to Firewall

- SA granularity usually pinned down to an individual session, if not host-to-host or host-to-subnet
 - finer-grained SAs can provide input for finer-grained policy decisions
 - fine granularity can quickly consume resources; more state and key management
- Issues of identity
 - secure delivery of DHCP
 - allowing "dynamically obtained" IP address to be used as on-the-fly identification of remote client

Intemediate System Tunnels

IPSEC-protected tunnels between intermediate systems

- Commonly providing both confidentiality and authentication/integrity services
- SA granularity usually subnet-to-subnet basis
 - scaling in terms of state management
 - coarser-grained SAs can provide a limited level of protection against traffic analysis
- IP identities usually known in advance; can predefine identity-based policy

Data Flows

An intermediate system works from the view of "data flows" as opposed to individual sockets

- security transformations applied to flow
 - no concept of socket: no socket_open() with "apply security against socket now"
 - router does not know when an individual (end system) session begins or ends; fine-grained SA lifetime may exceed actual socket lifetime
 - similar issues with dynamic Network Address Translation
 - should link fine-grained SA lifetimes with other dynamic lifetimes; this linking can add to challenge

Data Flows

 SAs at the session level may cause router to reassemble datagrams to select the correct SA; represents a processing hit

Routers have a definite preference for "big fat pipes"

Identity Confusion

- Quick mode IDs determine the identity of the traffic allowed in this tunnel
 - Source address/subnet, address range
 - Destination address/subnet, address range
 - Protocol
 - Source/destination port (no ranges)
 - No "lists" of quick mode IDs; no passing of ACLs
 - Quick mode IDs used as "selector" by sender, "filter" by receiver

Identity Confusion

- For a granularity greater than an individual session, need to determine how to represent a possibly complex policy rule to the peer to ensure selection of correct "pipe"
 - simple: all traffic from subnet A to subnet B is accepted in this IPSEC tunnel and shall be encrypted

Identity Confusion

 more complex: one tunnel for traffic from subnet A to subnet B; EXCEPT traffic from host A.1 to host B.2

- Ideal would be that sender not even send traffic that the receiver would then turn around and drop on the floor
- Ordering of selectors (e.g. ACLs) doesn't help if peers have different ordering
- Punt Quick Mode IDs altogether?

Fault Tolerance and Redundancy

- In a flow-based security mechanism with primarily one-way flows, how does sender know that receiver has died/restarted?
 - may wish to fall back to an alternate receiver or alternate path
 - very short SA lifetimes can be a short term solution -forcing frequent ISAKMP exchanges as a form of peer liveness check
 - a future tunnel discovery mechanism can assist in solving this problem

