DAVID LAYDEN CURRICULUM VITAE

26-313 Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, MA 02139, USA ☑ dlayden@mit.edu **८** +1-857-930-8863 **⑤** d_layden

SUMMARY

Objective: To be a "full-stack" applied quantum theorist, working directly with both theory and experiment teams.

Highlights

- 12 publications (8 as first author) including theory and experiment, cited 145 times
- Featured in The Economist, the MIT News, and Harvard's Tomorrow's Tech Today conference
- Ranked in the top 10 STEM graduate students nationally in the Vanier Canada competition
- Received my department's top annual award for professional promise at MIT

EDUCATION

Massachusetts Institute of Technology, Cambridge, MA

2016-(2020)

PhD Quantum Science and Engineering

- GPA: 5.0/5. Publications: [1–3, 10]
- Thesis: "Device-adapted quantum error correction for near-term experiments." Advisor: Paola Cappellaro
- Committee: Seth Lloyd, William Oliver, Liang Jiang, Paola Cappellaro
- Selected courses: Quantum computation, Superconducting qubits, Algorithms, Machine learning

University of Waterloo, Waterloo, Canada

2014-2016

MMath Applied Mathematics - Quantum Information

- GPA: 95/100. Publications: [4, 5, 7]
- Thesis: "Indirect quantum control: An implementation-independent scheme." Advisor: Achim Kempf
- Committee: Raymond Laflamme, Eduardo Martín-Martínez, Achim Kempf

University of Waterloo, Waterloo, Canada

2010-2014

BSc Mathematical Physics (Honors, Co-operative)

- GPA: 96/100. Publications: [6, 8, 9, 11, 12]
- Thesis: "Universal uncertainty relations." Advisor: Robert Spekkens

RESEARCH

Graduate

Massachusetts Institute of Technology, Cambridge, MA

2016-(2020)

Quantum Engineering Group, Advisor: Paola Cappellaro

Project 1: Tailored quantum error-correcting codes to common noise sources, exponentially reduced overhead [1]

Project 2: Developed new error-correcting codes to enhance near-term quantum sensors [2, 3, 10]

Project 3: Improving robustness of quantum error correction operations in pre-fault-tolerant devices

Institute for Quantum Computing, Waterloo, Canada

2014-2016

Physics of Information Group, Advisor: Achim Kempf

• Developed a novel scheme to control open quantum systems with high fidelity [5] (see also [4,7] for background)

Undergraduate

Perimeter Institute for Theoretical Physics, Waterloo, Canada

FALL 2013

Quantum Foundations Group, Advisor: Robert Spekkens

• Benchmarked and refined a novel method for comparing quantum measurement statistics

CERN, Geneva, Switzerland

Summer 2013

ATLAS Experiment, Supervisor: Brigitte Vachon

- One of five students chosen to represent Canada in CERN's international summer student program
- Performed statistical analysis of LHC calibration data on CLUMEQ supercomputer [12]

Institute for Quantum Computing, Waterloo, Canada

FALL 2012

Superconducting Quantum Devices Group, Supervisor: Adrian Lupaşcu

• Designed and conducted experiments quantifying noise processes affecting superconducting qubits [6]

University Health Network, Toronto, Canada

Winter 2012

Biophotonics Group (University of Toronto), Supervisor: Alex Vitkin

• Theoretically developed a protocol to minimize noise in photonic devices [9,11], now in active experimental use [8]

University of Waterloo, Waterloo, Canada

FALL 2011

Astrophysics Group, Supervisor: Michael Balogh

• Developed a program to automatically identify and describe structures of interest in astronomical data

PUBLICATIONS Total Citations: 145

Submitted Papers

[1] **D. Layden**, M. Chen, P. Cappellaro, Efficient quantum error correction of dephasing induced by a common fluctuator, arXiv:1903.01046 (2019).

Peer-Reviewed Papers

- [2] **D. Layden**, S. Zhou (equal contributions), P. Cappellaro, L. Jiang, Ancilla-free quantum error correction codes for quantum metrology, Phys. Rev. Lett. **122**, 040502 (2019).
- [3] **D. Layden**, P. Cappellaro, Spatial noise filtering through error correction for quantum sensing, npj Nature Quantum Information 4, 30 (2018).
- [4] D. Grimmer, **D. Layden**, E. Martín-Martínez, R. B. Mann, *Open dynamics under rapid repeated interaction*, Phys. Rev. A **94**, 032126 (2016).
- [5] **D. Layden**, E. Martín-Martínez, A. Kempf, *Universal scheme for indirect quantum control*, Phys. Rev. A **93**, 040301(R) (2016).
- [6] J.-L. Orgiazzi, C. Deng, D. Layden, R. Marchildon, F. Kitapli, F. Shen, M. Bal, F. R. Ong, A. Lupaşcu, Flux qubits in a planar circuit quantum electrodynamics architecture: quantum control and decoherence, Phys. Rev. B 93, 104518 (2016).
- [7] **D. Layden**, E. Martín-Martínez, A. Kempf, Perfect Zeno-like effect through imperfect measurements at a finite frequency, Phys. Rev. A **91**, 022106 (2015).
- [8] A. Gribble, **D. Layden**, and I. A. Vitkin, Experimental validation of the optimum input polarization states for Mueller matrix determination with a dual photoelastic modulator polarimeter, Opt. Lett. **38**, 5272 (2013).
- [9] **D. Layden**, M. F. G. Wood, and I. A. Vitkin, Optimum selection of input polarization states in determining the sample Mueller matrix: a dual photoelastic polarimeter approach, Opt. Express **20**, 20466 (2012).

Conference Proceedings

[10] S. Zhou, **D. Layden**, M. Zhang, J. Preskill, P. Cappellaro, L. Jiang, *Error-corrected quantum sensing*, Proc. SPIE 10934, Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology, 109341J (2019, invited paper).

Book Chapters

[11] **D. Layden**, N. Ghosh, and I. A. Vitkin, "Quantitative Polarimetry for Tissue Characterization and Diagnosis," in *Advanced Biophotonics: Tissue Optical Sectioning*, V. V. Tuchin and R. K. Wang, eds. (Taylor & Francis 2013), pp. 73–108.

Published Reports

[12] D. Layden, Measuring 2012 ATLAS Photon Trigger Efficiency, CERN-STUDENTS-Note-2013-074.

Media Coverage

- The Economist: Letter to the editor regarding Technology Quarterly: Quantum Devices
- MIT News, MIT Daily and Phys.org: Honing quantum sensing
- MIT Nuclear Science and Engineering Spotlight: David Layden: Honing quantum sensing
- Phys.org and University of Waterloo News: Researchers find new way to control quantum systems
- Institute for Quantum Computing News: Handle with quantum care
- Institute for Quantum Computing Annual Report: Quantum Control (featured student profile, page 15)

AWARDS

Highlights

Manson Benedict Award (2019)

• Awarded annually to one MIT graduate student for academic performance and professional promise in Nuclear Science and Engineering

Vanier Canada Graduate Scholarship (2016, Declined)

• Ranked 9th nationally out of 161 finalists across STEM fields

Clarendon Scholarship (2016, Declined)

• For study at the University of Oxford, of greater value than the Rhodes scholarship (as of 2016)

Other Selected Awards

Award	Value	Years
Meredith and Ray Rothrock Fund Fellowship	37 500 US\$	2016
NSERC Canada Graduate Scholarship - Doctoral (CGS D, declined)	$3 \times 35000 \text{ C}$ \$	2016 – 2019
NSERC Canada Graduate Scholarship - Doctoral (PGS D, declined third year)	3×21000 C\$	2016-2019
NSERC Canada Graduate Scholarship - Master's (CGS M)	17 500 C\$	2014 – 2015
Ontario Graduate Scholarship	15 000 C\$	2015 – 2016
Mensa Canada Scholarship - Woodhams Memorial Trust Award	10 100 C\$	2016
President's Graduate Scholarship $(\times 2)$	$2 \times 10000 \text{ C}$ \$	2014 – 2016
Mike Lazaridis Scholarship in Theoretical Physics (declined)	7500 C\$	2013
Institute of Particle Physics Summer Fellowship	7100 C\$	2013
NSERC Undergraduate Student Research Award (×3)	3×4500 C\$	2011 – 2013
Alpha Nu Sigma (honorary branch of the American Nuclear Society)	-	2018
Rhodes Scholarship Finalist (Quebec, Canada)	-	2014

Presentations

• expenses paid by organizers

Value: $3 \times 50000 \text{ C}$ \$

Value: 110 000 £

Invited Talks

• Institute for Quantum Computing Special Seminar, April 10, 2018 (Waterloo, Canada) "Spatial noise filtering through error correction for quantum sensing"

Contributed Talks

- APS March Meeting 2019 (Boston, MA) "Spatial noise filtering through new error-correcting codes for quantum sensing"
- MIT-Harvard Center for Ultracold Atoms 2019 Retreat (Plymouth, NH) "Spatial noise filtering through new error-correcting codes for quantum sensing"
- APS March Meeting 2016 (Baltimore, MD) "A universal scheme for indirect quantum control"
- GRC Quantum Control of Light & Matter 2015 (South Hadley, MA) "Emergent unitarity in open quantum systems"
 Only student talk out of 50-75 applicants
- APS March Meeting 2015 (San Antonio, TX) "Perfect Zeno effect through imperfect measurements at a finite frequency"
- CERN Student Sessions 2013 (Geneva, Switzerland; Video: 12:30 26:30)

Posters

- 5th International Conference on Quantum Error Correction 2019 (London, UK)
- MIT Nuclear Science and Engineering Graduate Research Expo 2019 (Boston, MA)
- GRC Quantum Science 2018 (Easton, MA partial financial support)
- IBM ThinkQ 2017: Approximate Quantum Computing (Yorktown Heights, NY)
- MIT-Harvard Center for Ultracold Atoms 2017 Retreat (Plymouth, NH)
- Coherent Control of Complex Quantum Systems 2016 (Okinawa, Japan)
- GRC Quantum Control of Light & Matter 2015 (South Hadley, MA)
- CERN Summer Student Poster Session 2013 (Geneva, Switzerland)

TEACHING, SUPERVISION & SERVICE

Course Development

Theory of Quantum Optics (QIC 895), University of Waterloo

• Designed and organized a graduate seminar/reading course featuring faculty guest speakers

Spring 2015

Supervision

• Supervising MIT undergraduate Louisa Huang for UROP and SuperUROP research projects

2018

Service and Outreach

- Selected to give the Quantum Technology talk at Harvard's DayCon 2018, a public event on emerging technologies
- Leadership board member for MIT's Interdisciplinary Quantum Information Science and Engineering seminar series
- Outreach volunteer for Let's Talk Science, conducted classroom (K-12) and community visits (2015-16)
- Reviewer for Physical Review Letters and Physical Review A

Teaching Programs

Kaufman Teaching Certificate Program, Massachusetts Institute of Technology

Summer 2019

Teaching Assistantships

Quantum Theory 2 (AMath 673/473), University of Waterloo (Instructor: Robert Koenig) Multivariate Calculus (Math 207), University of Waterloo

FALL 2014 FALL 2015

• Nominated for Outstanding TA Awards for both courses on the basis of my tutorials

Declined a TA position for MIT's Intro to Machine Learning course (6.036 Spring 2019).

Programming

Languages & Systems: Python, Matlab, Mathematica, Maple, Git

Libraries: QuTiP, Keras, NumPy, SciPy

Prepared July 5, 2019.