[4]

Solve the recurrence relation

$$a_r - 4a_{r-1} + 4a_{r-2} \simeq (r+1)^2, r \ge 2$$

Unit - V

- 9. a) Write the definition of the following:
 - i) Subgraph
 - ii) Incidence and degree of graph
 - iii) Hamilton graph
 - iv) Isomorphism
 - v) Centre of tree
 - b) Write the adjacency matrix of the following graph.

- 10. a) Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$.
 - Find the minimum spanning tree for the graph shown below using Kruskal's algorithm.

www.rgpvonline.com

Total No. of Questions: 101

[Total No. of Printed Pages :4

Roll No

MCTA-101

M.E/M.Tech., I Semester

Examination, December 2013

Mathematical Foundation of Computer Application

Time: Three Hours

Maximum Marks: 70

Note: Attempt any one question from each unit (inclusive of both parts). All questions carry equal marks.

Unit - I

1. a) If A, B, C are any three sets, prove that

i)
$$A-(B\cap C)=(A-B)\cup (A-C)$$

ii)
$$A-(B\cup C)=(A-B)\cap (A-C)$$

b) Let L = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24} be ordered by the relation 'l' where x/y means 'x divides y'. Show that D₂₄ the set of all divisors of the integer 24 of L is a sublattice of the lattice (L, 1).

OR

- Show that the relation R = {(a,b): a-b=even integer and a, b∈I} in the set I of integers is an equivalence relation.
 - Prove that the product of any invertible mapping f with its inverse mapping f⁻¹ is an identity mapping.

www.rgpvonline.com

www.rgpvonline.com

[2]

Unit - II

- a) Prove that (p ⇔ q)∧(q ⇔ r)⇒(p ⇔ r) is a tautology.
 - Express the following formula into conjunctive normal form ~ (p ∨ q)↔(p ∧ q).

OR

- a) Prove by truth table that the following is tautology (p⇒q)√(r⇒p)
 - b) Distinguish between tautology and contradiction.

Unit-III

- 5. a) What are the six parts of finite state machine and how machine M is denoted?
 - b) Let A = {a, b}. Construct an automation M which will accept precisely those words from A which have an even number of a's?

OR

a) Minimize the finite state machine given by the following state table.

	State	Input		Output
		0	1	
\Rightarrow	Α	D	В	1
	В	E	В	0
	C	D	Α	1
	D	С	D	0
	Е	В	Α	1
				-1

[3]

b) For the finite state machine shown below, find all equivalent states and obtain an equivalent finite state machine with the smallest number of states:

State	Input		Output
	0	ı	
⇒ A	F	В	0
В	D	C	Ð
С	G	В	0
D	Е	Α	1
Е	Ð	Α	0
F	Α	G	1
G	С	Н	1
Н	. A	H	1

Unit - IV

 a) Determine the generating function of the numeric function a_c,

$$a_r = \begin{cases} 2^r, & \text{if } r \text{ is even} \\ -2^r, & \text{if } r \text{ is odd} \end{cases}$$

Solve the recurrence relation a_r - 5a_{r-1} + 6a_{r-2} = 2 + r,
r ≥ 2 with boundary conditions a₀ = 0 and a₁ = 1.

OR

8. a) Determine the numeric function corresponding to the generating function $A(z) = \frac{1}{1 - 9z^2}$.