

Nombre:	Evaluación Ext- Sep - 18		
Curso:	1º Bachillerato B	Ex. Evaluación Extraordinario	
Fecha:	Septiembre de 2018	Atención: La no explicación clara y concisa de cada ejercicio implica una penalización del 25% de la nota	

2 puntos

Bloque Aritmética y Álgebra

- 1.- (1 punto) Halla la longitud de los catetos de un triángulo rectángulo de 480 m² de área sabiendo que la hipotenusa mide 52 m.
- **2.-** (1 punto) Una pastelería vendió 27 tartas. El número de las de chocolate duplicó al de tartas de nata y entre ambas excedieron en 3 a las ventas de tartas de queso. ¿Cuántas se vendieron de cada tipo?

2,5 puntos

Blogue Trigonometría y Complejo

- 3.- (0,75 puntos) Las diagonales de un paralelogramo miden 16 cm y 28 cm y forman un ángulo de 48°. Calcula el perímetro y el área de dicho paralelogramo.
- **4.-** (0,25 puntos) Demuestra la siguiente identidad: $\cos^4 x \sin^4 x = 2\cos^2 x 1$
- **5.-** (0,5 puntos) Resuelve la siguiente ecuación trigonométrica: $2 \cdot \text{sen } x + \cos x = 1$
- **6.-** (0,25 puntos) Simplifica: $\frac{i^{10}-2i^7}{2+i^{33}}$
- **7.-** (0,75 puntos) Un cuadrado cuyo centro es el origen de coordenadas tiene un vértice en el afijo del número complejo $1 + \sqrt{3} \cdot i$. Determina los otros vértices y la medida del lado del cuadrado.

2,5 puntos

Bloque Geometría y Cónica

- **8.-** (0,75 puntos) Dados los vectores $\vec{u} = (-1,0)$ y $\vec{v} = (1,2)$
 - **a)** Calcula $proy_{\vec{u}} \vec{v}$
 - **b)** Calcula en ángulo que forman.
 - **c)** Da las coordenadas del vector $\vec{w} = (4,6)$ en la base $B(\vec{u}, \vec{v})$
- **9.-** (1 punto) Sean las rectas r y s dadas por: r: y = x + 2

$$s: \begin{cases} x = t \\ y = t - 2 \end{cases}$$

- **a)** Halla la distancia que las separa.
- **b)** Calcula el ángulo que forman.
- **10.-** (0,75 puntos) Sin resolver el sistema formado por sus ecuaciones, estudia la posición relativa de la cónica de ecuación C: $(x-1)^2 + (y+2)^2 = 4$ y la recta r: 3x 4y 1 = 0.

3 puntos

Bloque Análisis de funciones

- **11.-** (1 punto) Considera la función $f(x) = x \ln \frac{x}{a}$, con a > 0. Determina el valor de a para que f(x) tenga un mínimo relativo en x = 1. ¿Cuál es la ecuación de la recta tangente a la función en x = 1?
- **12.-** (1 punto) Dado el polinomio $P(x) = x^3 + ax^2 + bx + c$
 - **a)** Determinar los coeficientes a, b y c sabiendo que tiene extremos relativos en x=-1 y x=+1 y que además pasa por el origen de coordenadas.
 - **b)** Estudiar la naturaleza de ambos extremos relativos (si son máximos o mínimos) y realizar un dibujo aproximado del polinomio.
- **13.-** (0,5 puntos) Calcula el dominio y las asíntotas de la función: $f(x) = \frac{\sqrt{2x} x}{x 2}$
- **14.-** (0,5 puntos) Calcula el siguiente límite: $\lim_{x\to 1} \left(\frac{1}{x-1} \frac{1}{\ln(x)}\right)$

Bloque Aritmética y Álgebra

1.- Halla la longitud de los catetos de un triángulo rectángulo de 480 m² de área sabiendo que la hipotenusa mide 52 m.

Sol: Un lado mide 48 metros y el otro 20 metros.

2.- Una pastelería vendió 27 tartas. El número de las de chocolate duplicó al de tartas de nata y entre ambas excedieron en 3 a las ventas de tartas de queso. ¿Cuántas se vendieron de cada tipo?

 $x = n.^{\circ}$ de tartas de chocolate

 $y = n.^{\circ}$ de tartas de nata

 $z = n.^{o}$ de tartas de queso

Expresamos las condiciones mediante las siguientes ecuaciones:

$$\begin{cases} x + y + z = 27 \\ x = 2y \\ x + y = z + 3 \end{cases} \rightarrow x = 10, \ y = 5, \ z = 12$$

Vendió 10 tartas de chocolate, 5 tartas de nata y 12 tartas de queso.

Bloque Trigonometría v Compleios

3.- Las diagonales de un paralelogramo miden 16 cm y 28 cm y forman un ángulo de 48°. Calcula el perímetro y el área de dicho paralelogramo.

Utilizamos el teorema del coseno en los triángulos BOC y AOB.

$$\overline{BC}^2 = 14^2 + 8^2 - 2 \cdot 14 \cdot 8 \cos 48^\circ \rightarrow \overline{BC} = 10,49 \text{ cm}$$

$$\overline{AB}^2 = 14^2 + 8^2 - 2.14.8 \cos(180^\circ - 48^\circ) \rightarrow \overline{AB} = 20,25 \text{ cm}$$

Perímetro =
$$(10,49 + 20,25) \cdot 2 = 61,48$$
 cm

Para hallar el área, necesitamos conocer un ángulo del paralelogramo.

Hallamos el ángulo \hat{A} del triángulo AOB.

$$\frac{14}{sen\ \widehat{BAO}} = \frac{20,35}{sen\ 132^{\circ}} \rightarrow sen\ \widehat{BAO} = \frac{14 \cdot sen\ 132^{\circ}}{20,25} \rightarrow \widehat{BAO} = 30^{\circ}\ 54'\ 57''$$

En el triángulo ACD, hallamos la altura.

$$\widehat{BAO} = \widehat{ACD} \rightarrow sen 30^{\circ} 54' 57'' = \frac{h}{16} \rightarrow h = 8,22 \text{ cm}$$

Área =
$$\frac{20,25 \cdot 8,22}{2}$$
 = 83,23 cm²

4.- Demuestra la siguiente identidad: $\cos^4 x - \sin^4 x = 2\cos^2 x - 1$

a)
$$cos^4 x - sen^4 x = (cos^2 x + sen^2 x) (cos^2 x - sen^2 x) = cos^2 x - sen^2 x = cos^2 x - (1 - cos^2 x) = 2 cos^2 x - 1$$

5.- Resuelve la siguiente ecuación trigonométrica: $2 \cdot \text{sen } x + \cos x = 1$

$$2sen \ x + cos \ x = 1 \rightarrow (2 \ sen \ x)^2 = (1 - cos \ x)^2 \rightarrow 4sen^2 \ x = 1 + cos^2 \ x - 2 \ cos \ x \rightarrow$$

$$\rightarrow 5\cos^2 x - 2\cos x - 3 = 0 \rightarrow \cos x = \frac{2 \pm \sqrt{64}}{10} < \cos x = 1$$

$$\cos x = 1 \rightarrow x_1 = 0^\circ + 360^\circ \cdot k; \ k \in \mathbb{Z} \rightarrow \text{Vale.}$$

$$cos \ x = -\frac{3}{5}$$
 $x_2 = 126^{\circ} 52' 12'' + 360^{\circ} \ k, \quad k \in \mathbb{Z} \rightarrow Vale.$
 $x_3 = 233^{\circ} 7' 48'' \rightarrow No vale.$

Hemos comprobado las soluciones en la ecuación dada.

6.- Simplifica:
$$\frac{i^{10} - 2i^7}{2 + i^{33}}$$

$$i^{10} = i^4 \cdot i^4 \cdot i^2 = -1$$
: $i^7 = i^4 \cdot i^2 \cdot i = -i$

$$i^{33} = (i^4)^8 \cdot i = i$$

$$\frac{i^{10} - 2i^7}{2 + i^{33}} = \frac{-1 - 2\left(-i\right)}{2 + i} = \frac{-1 + 2i}{2 + i} = \frac{\left(-1 + 2i\right)\left(2 - i\right)}{\left(2 + i\right)\left(2 - i\right)} = \frac{-2 + i + 4i - 2i^2}{\left(2\right)^2 - \left(i\right)^2} = \frac{5i}{5} = i$$

7.- Un cuadrado cuyo centro es el origen de coordenadas tiene un vértice en el afijo del número complejo $1+\sqrt{3}$: Determina los otros vértices y la medida del lado del cuadrado.

Hacemos giros de 90°. Para ello, multiplicamos por 1900:

$$A = 1 + \sqrt{3} i = 2_{60^{\circ}}$$

$$B = 2_{60^{\circ}} \cdot 1_{90^{\circ}} = 2_{150^{\circ}}$$

$$C = 2_{150^{\circ}} \cdot 1_{90^{\circ}} = 2_{240^{\circ}} \qquad \qquad D = 2_{240^{\circ}} \cdot 1_{90^{\circ}} = 2_{330^{\circ}}$$

$$D = 2_{240^{\circ}} \cdot 1_{90^{\circ}} = 2_{330^{\circ}}$$

$$\overline{AB}^2 = 2^2 + 2^2 \rightarrow \overline{AB} = 2\sqrt{2} \text{ u}$$

- **8.-** Dados los vectores $\vec{u} = (-1,0)$ y $\vec{v} = (1,2)$
 - **a)** Calcula $proy_{\vec{v}} \vec{v}$
 - **b)** Calcula en ángulo que forman.
 - **c)** Da las coordenadas del vector $\vec{w} = (4,6)$ en la base $B(\vec{u}, \vec{v})$

a)
$$proy_{\overrightarrow{u}} \overrightarrow{v} = |\overrightarrow{v}| cos \alpha = \frac{|\overrightarrow{v}| \cdot (\overrightarrow{u} \cdot \overrightarrow{v})}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}|} = \frac{-1}{1} = -1$$

b)
$$\cos(\widehat{u}, \widehat{v}) = \frac{\widehat{u} \cdot \widehat{v}}{|\widehat{u}| |\widehat{v}|} = \frac{-1}{1 \cdot \sqrt{5}} = -\frac{\sqrt{5}}{5} \rightarrow (\widehat{u}, \widehat{v}) = arc \cos(-\frac{\sqrt{5}}{5}) = 116^{\circ} 33' 54''$$

c)
$$\vec{w} = k\vec{u} + s\vec{v} \rightarrow (4, 6) = k(-1, 0) + s(1, 2) = (-k + s, 25) \rightarrow \frac{-k + s = 4}{2s = 6}$$
 $s = 3, k = -1$ $w = -\vec{u} + 3\vec{v}$

9.- Sean las rectas r y s:

$$r: y = x + 2 \qquad s: \begin{cases} x = t \\ y = t - 2 \end{cases}$$

- **a)** Halla la distancia que las separa.
- **b)** Calcula el ángulo que forman.

Departamento de Matemáticas LE.Junn Rundo Jimono. Casablanca

Vectores de dirección de las rectas: $\vec{d}_r = (1, 1)$, $\vec{d}_s = (1, 1)$, luego son paralelas.

Sea $P \in s$, por ejemplo, P = (0, -2).

$$r: y = x + 2 \implies x - y + 2 = 0$$

$$dist(r, s) = dist(P, r) = \left| \frac{-(-2) + 2}{\sqrt{2}} \right| = 2\sqrt{2}$$

10.- Sin resolver el sistema formado por sus ecuaciones, estudia la posición relativa de la cónica de ecuación C: $(x-1)^2 + (y+2)^2 = 4$ y la recta r: 3x - 4y - 1 = 0.

Calculamos la distancia de la recta al centro de la circunferencia, C(1, -2):

dist
$$(r, C) = \frac{3 \cdot 1 - 4(-2) - 1}{\sqrt{3^2 + 4^2}} = \frac{10}{5} = 2$$

Esta distancia coincide con el radio de la circunferencia. Por tanto, son tangentes.

Bloque Análisis de funciones

11.- Considera la función $f(x) = x \ln \frac{x}{a}$, con a > 0. Determina el valor de a para que f(x) tenga un mínimo relativo en x = 1. ¿Cuál es la ecuación de la recta tangente a la función en x = 1?

Para que la función f tenga un mínimo relativo en x=1, tiene que ocurrir que f'(1)=0

Derivamos la función f:

$$f(x) = x \ln \frac{x}{a}$$
 \rightarrow $f'(x) = 1 \cdot \ln \frac{x}{a} + x \cdot \frac{a}{x} \cdot \frac{1}{a} = \ln \frac{x}{a} + 1$

Calculamos la derivada en x=1, e igualamos a cero:

$$f'(x) = \ln \frac{x}{a} + 1$$
 \rightarrow $f'(1) = \ln \frac{1}{a} + 1 = 1 - \ln a$ \rightarrow $f'(1) = 0$ \rightarrow $\ln \frac{1}{a} + 1 = 0$

Despejamos a:

$$\ln \frac{1}{a} + 1 = 0 \quad \leftrightarrow \quad \ln \frac{1}{a} = -1 \quad \leftrightarrow \quad \ln 1 - \ln a = -1 \quad \leftrightarrow \quad -\ln a = -1 \quad \leftrightarrow \quad \ln a = 1 \quad \leftrightarrow \quad a = e$$

Por tanto, para que la función f tenga un mínimo en x=1, a debe ser a=e.

La ecuación de la recta tangente es: $y - f(x_0) = f'(x_0)(x - x_0)$ y en el punto x = 1: y - f(1) = f'(1)(x - 1)

Como:
$$\begin{cases} f(1) = \ln\left(\frac{1}{e}\right) + 1 = 1 - 1 = 0 \\ f'(1) = e \end{cases} \rightarrow \begin{cases} y - f(1) = f'(1) \cdot (x - 1) \\ y = e(x - 1) \end{cases}$$

Por tanto, la recta tangente en x=1 es: y=e(x-1)

- **12.-** Dado el polinomio $P(x)=x^3+ax^2+bx+c$
 - **a)** Determinar los coeficientes a, b y c sabiendo que tiene extremos relativos en x=-1 y x=+1 y que además pasa por el origen de coordenadas.
 - **b)** Estudiar la naturaleza de ambos extremos relativos (si son máximos o mínimos) y realizar un dibujo aproximado del polinomio.
- a) Como P(x) tiene extremos relativos en ± 1 : $\begin{cases} f'(-1) = 0 \\ f'(1) = 0 \end{cases}$

Calculamos P'(x): $P'(x) = 3x^2 + 2ax + b$ y si sustituimos lo anterior, obtenemos:

$$\begin{cases} f'(-1) = 0 & \to & 3(-1)^2 + 2a(-1) + b = 0 \\ f'(1) = 0 & \to & 3(1)^2 + 2a(1) + b = 0 \end{cases} \to \begin{cases} 3 - 2a + b = 0 \\ 3 + 2a + b = 0 \end{cases} \to \begin{cases} 6 + 2b = 0 \\ a = 0 \end{cases}$$

Como nos dicen que pasa por el origen O, entonces: $P(0) = 0 \rightarrow P(0) = 0^3 + a0^2 + b0 + c = 0 \rightarrow c = 0$

Por tanto, el polinomio buscado es: $P(x) = x^3-3x$

- b) Utilizando la segunda derivada podemos distinguir si son máximo o mínimo: P''(x) = 6x + 2a = 6x
 - En x=-1, P''(-1) = 6(-1) = -6 < 0 \rightarrow Mínimo en x = -1
 - En x=1, P''(1) = 6(1) = 6 > 0 \rightarrow *Máximo en x* = -1

Calculamos la "altura" de los extremos: $\begin{cases} P(-1) = -1 + 3 = 2 & \rightarrow & Min(-1,2) \\ P(1) = 1 - 3 = -2 & \rightarrow & Max(1,-2) \end{cases}$

Calculamos los puntos de corte con el eje x:

Calculamos los puntos de corte con el eje x:
$$P(x) = 0 \quad \Leftrightarrow \quad x^3 - 3x = 0 \quad \to \quad x\left(x^2 - 3\right) = 0 \quad \to \quad \begin{cases} x_1 = -\sqrt{3} \\ x_2 = 0 \\ x_3 = \sqrt{3} \end{cases}$$

Y vemos sun comportamiento en los infinitos: $\lim_{x \to \infty} x^3 - 3x = \pm \infty$

Por tanto el boceto será el representado a la derecha.

13.- Calcula el dominio y las asíntotas de la siguiente función: $f(x) = \frac{\sqrt{2x-x}}{x-2}$

En la función
$$f(x) = \frac{\sqrt{2x} - x}{x - 2}$$
:
$$\begin{cases} 2x \ge 0 \\ x - 2 \ne 0 \end{cases} \rightarrow \begin{cases} x \ge 0 \\ x \ne 2 \end{cases} \rightarrow Dom(f) = [0, 2) \cup (2, +\infty)$$

Sabemos que una función f presenta una A.V. en un punto x_o si: $\lim f(x) = \pm \infty$

Calculamos el límite en x=2:

$$\lim_{x \to 2} \frac{\sqrt{2x} - x}{x - 2} = \frac{0}{0} = \lim_{x \to 2} \frac{\left(\sqrt{2x} - x\right)\left(\sqrt{2x} + x\right)}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x - x^2}{\left(x - 2\right)\left(\sqrt{2x} + x\right)} = \lim_{x \to 2} \frac{2x -$$

Por tanto, no hay asíntota vertical.

También sabemos que una función f presenta una asíntota horizontal en la dirección y=k si:

$$\lim_{x \to \pm \infty} f(x) = k \qquad \forall \in \mathbb{R}$$

Calculamos el límite en el infinito: $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{\sqrt{2x - x}}{x - 2} = -1$ A. Horizontal en la dirección y=-1

Departamento de Matemáticas LE June Runde Jimonio Casabianca

5.- Calcula el siguiente límite: $\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{\ln(x)} \right)$

$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{1}{\ln(x)} \right) = \infty - \infty \quad \to \quad \lim_{x \to 1} \left(\frac{\ln(x) - x + 1}{(x - 1)\ln(x)} \right) = \frac{0}{0} = \lim_{x \to 1} \left(\frac{\frac{1}{x} - 1}{\ln(x) + \frac{x - 1}{x}} \right) = \lim_{x \to 1} \left(\frac{\frac{1 - x}{x}}{\frac{x \cdot \ln(x) + (x - 1)}{x}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{x \cdot \ln(x) + (x - 1)}{x}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) = \lim_{x \to 1} \left(\frac{1 - x}{\frac{1 - x}{x \cdot \ln(x) + (x - 1)}} \right) =$$

Donde hemos aplicado la regla de L'Hopital que dice:

Sean *f* y *g* dos funciones reales que cumplen las siguientes condiciones:

- ✓ las funciones f y g son derivables en un entorno E del punto a.
- \checkmark f(a)=g(a)=0
- $\checkmark \quad \text{Existe } \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Entonces se cumple que: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$