MOOC Econometrics

Lecture 6.1 on Time Series: Motivation

Dick van Dijk, Philip Hans Franses, Christiaan Heij

Erasmus University Rotterdam

Spurious regression

Dependent variable: Y (sample size $n=100$)										
	Coef.	t-Stat.	p-value	Coef.	t-Stat.	p-value				
Constant	15.99	23.45	0.000	2.91	2.87	0.005				
X	0.40	5.78	0.000	0.07	1.53	0.129				
Y(-1)	-	-	-	0.82	14.01	0.000				
R-squared	0.254			0.753						

Introduction

- Time series: variable is observed at regular frequency, yearly, quarterly, monthly, weekly, daily, split-second.
- Past values often have predictive power for future.
- Can get spurious regression results if own past is neglected.
- Data: $x_t = 1 + 0.9x_{t-1} + \varepsilon_{x,t}$ and $y_t = 2 + 0.9y_{t-1} + \varepsilon_{y,t}$ Two series completely uncorrelated: $E(\varepsilon_{x,t}\varepsilon_{y,s}) = 0$ for all t,s.

Lecture 6.1, Slide 2 of 9, Erasmus School of Economics

Test question

Dependent variable: Y (sample size $n=100$)										
	Coef.	t-Stat.	p-value	Coef.	t-Stat.	p-value				
Constant	2.88	2.83	0.006	2.69	2.66	0.009				
Y(-1)	0.83	14.02	0.000	0.86	17.03	0.000				
X	0.15	1.61	0.110	-	-	-				
X(-1)	-0.09	-0.99	0.324	-	-	-				
R-squared	0.756			0.747						

Test

Is joint effect of X and X(-1) on Y significant? Note: The relevant 5% critical value is 3.1.

Answer test

• Use F-test (see Lecture 2): $F = \frac{(R_1^2 - R_0^2)/g}{(1 - R_1^2)/(n - k)}$

• number of restrictions: g = 2

number of observations: n = 100

number of parameters unrestricted model: k = 4

values of R-squared: $R_1^2 = 0.756$ and $R_0^2 = 0.747$

• Substitute these values in formula for *F*-test:

$$F = \frac{(0.756 - 0.747)/2}{(1 - 0.756)/(100 - 4)} = 1.8 < 3.1$$

• Joint effect of X and X(-1) on Y is not significant.

Lecture 6.1, Slide 5 of 9, Erasmus School of Economics

Two airline companies

- After taking logs, seems common trend for series X1 and X2.
- Issues:
 - \rightarrow univariate time series: relate RPK to its own past
 - \rightarrow bivariate time series: relate two RPK series to own and others past

Example: RPK

- RPK: Revenue Passenger Kilometers (in billions)
 yearly totals 1976-2015, trend somewhat exponential
- log(RPK): more linear trend

$$\label{eq:problem} \begin{split} \mathsf{Dlog}(\mathsf{RPK}) &= \mathsf{log}(\mathsf{RPK}) - \mathsf{log}(\mathsf{RPK}) (\text{-}1) \approx \frac{\mathsf{RPK} \text{-} \mathsf{RPK} (\text{-}1)}{\mathsf{RPK} (\text{-}1)} \end{split}$$
 yearly growth rate of RPK

Lecture 6.1, Slide 6 of 9, Erasmus School of Economics

Macroeconomic example

- IP: Monthly index of Industrial Production for USA
- CLI: Monthly Composite Leading Index USA
- Question: Can we predict IP one quarter ahead?
 - → Answers in Lecture 6.5

TRAINING EXERCISE 6.1

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lecture 6.1, Slide 9 of 9, Erasmus School of Economics