微分方程初步,例 2.1

叶卢庆*

2014年12月15日

例. 由根式求微分方程:

$$y = c_1 e^{\alpha_1 x} + c_2 e^{\alpha_2 x}$$
.

其中 c₁,c₂ 为任意常数.

解.

$$\begin{cases} y' = c_1 \alpha_1 e^{\alpha_1 x} + c_2 \alpha_2 e^{\alpha_2 x}, \\ y'' = c_1 \alpha_1^2 e^{\alpha_1 x} + c_2 \alpha_2^2 e^{\alpha_2 x}. \end{cases}$$

当 $\alpha_1\alpha_2^2e^{(\alpha_1+\alpha_2)x}-\alpha_2\alpha_1^2e^{(\alpha_2+\alpha_1)x}\neq 0$, 即 $\alpha_1\alpha_2(\alpha_2-\alpha_1)\neq 0$ 时, c_1 和 c_2 有唯一解. 解得

$$c_1 = \frac{\alpha_1 y' - y''}{\alpha_1 \alpha_2 e^{\alpha_2 x} - \alpha_2^2 e^{\alpha_2 x}}, c_2 = \frac{\alpha_2 y' - y''}{\alpha_1 \alpha_2 e^{\alpha_1 x} - \alpha_1^2 e^{\alpha_1 x}}.$$

将 c_1, c_2 代回原式即可得到相应的微分方程. 而当 $a_1 = a_2 \neq 0$ 时, $y = (c_1 + c_2)e^{a_1x}$, 此时, $y' = (c_1 + c_2)a_1e^{a_1x}$, 于是, 此时微分方程是 $a_1y = y'$. 当 $a_1 = 0$ 时,

$$y = c_1 + c_2 e^{\alpha_2 x},$$

此时 $y' = c_2 a_2 e^{a_2 x}$, 因此 $a_2 y' = y''$. 类似地讨论 $a_2 = 0$ 的情形.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:yeluqingmathematics@gmail.com