Sensors, Noise and Walking: Human Activity Analysis

CourSys - Project Topic: Sensors, Noise, and Walking

Plan:

- 1. Getting data
 - a. Sensor Logger
 - i. Accelerometer
 - ii. Location
 - iii. Gyroscope
 - b. iOS vs Android
 - i. holding two diff branch devices test the result is the same or not
 - c. Different positions of the phone
 - i. hand
 - ii. ankle
 - iii. pocket
- 2. Questions
 - a. Can you calculate walking speed (m/s) from just the accelerometer? How accurate can you get? Can you then determine the differences between the subjects as above?
 - b. Are the results better depending on where the phone is?
 - c. Ankle vs pocket vs hand? Ankle above or below the joint?
 - d. Visualize the GPS
- 3. Noise filtering
 - a. consider abt x,y,z?
 - i. I can't speak for your phone, but my sensor has some bias and/or drift that makes everything go slightly wrong. I had to make the rule "stand still for a second at the start and end" and use that data to un-bias the readings.
 - ii. Maria offers a hint for the best results: it's possible to look at the phone's gyroscope to determine the change in orientation. As the phone moves, there isn't a single one of the x, y, z directions that corresponds to "forward". If you can rotate the signal to keep "forward" and "down" correct, you'll get better results.
 - b. Butterworth filter to deal with noise (Lecture 6)
- 4. Analysis
 - a. x get the frequency of steps
 - b. ANOVA/Post-Hoc/MWU Check data for normality
 - c. ML models Compare multiple ML models for accuracy
 - d. Predict user based on provided accelerometer data

First Meeting task (11/13)

Data collection (Simple data) (For everyone):

- 1mins recording (flat) (50 Hz and 10 Hz each)
- Accelerometer, Location, Gyroscope
- phone on the left hand
- phone on the right hand
- phone strapped to the left ankle (or pocket)
- phone strapped to the right ankle (or pocket)
- at least 8 data for each (remember to edit the title)

Initial filtering and analysis

- Butterworth filter to deal with noise (Lecture 6)
- Fourier transform for frequency of steps
- Check data for normality (ANOVA/Post-Hoc/MWU)
- Compare multiple ML models for accuracy (Lecture 11-12)

Second Meeting task (11/16)

- Fourier transform for frequency of steps
 - IPython Cookbook 10.1. Analyzing the frequency components of a signal with a Fast Fourier Transform (ipython-books.github.io)
 - <u>Fourier Transforms With scipy.fft: Python Signal</u> <u>Processing – Real Python</u>

Third Meeting task (11/22)

- recording bigger data for ML models
 - 5 mins left pocket (upward, screen face to leg), 50Hz
- Compare multiple ML models for accuracy (Lecture 11-12)
 - GaussianNB()
 - KNeighborsClassifier()
 - SVC()
 - DecisionTreeClassifier()
 - RandomForestClassifier()

Forth Meeting task (11/27)

- Record screen on 5 mins data (Matt)
- Split file
 - Import
 - functions
 - getting data
 - filter/fft
 - machine learning
- Machine Leanring

Fith Meeting task (12/1)

- Machine Learning task (find what we can do)
 - Does a minute of data make ML accurate enough?
- Height?
 - data: (need to find more people)
 - Matt: 6'0 (183 cm)
 - Diego: 5'8Sam: 5'10
 - use the freq to predict the height
 - assumption: Tall guys may have lower freq cuz they have longer legs, which makes each step longer
- Human-Activity-Recognition-using-LSTM
 - https://github.com/shashi9323/Human-Activity-Recognition-using-LSTM
 - Activities
 - Walking (flat, up, down)
 - Running

-

Fifth meeting task (12/6)

- Fix the ML prediction of the name label (testing)
- digging into Human-Activity-Recognition-using-LSTM
- Probably start the report from Wednesday (Pydiot353 Report)

Sixth meeting task (12/8)

- Import all needed data into the human activity recognition
- Then change the parameters to get the best result
 - Walking
 - up/downstairs
- Put more comments
- Make src notebook as summary
 - the screen on/off test
 - read raw
 - butter worth filter
 - Fourier transformer