COMP130014.02 编译

第四讲: 自顶向下解析

徐辉 xuh@fudan.edu.cn

自顶向下解析

- ❖一、问题定义
- ❖二、Earley算法
- ❖三、LL(1)文法和解析

一、问题定义

自顶向下解析

- 已知一套CFG语法规则和待解析的句子
- 应用语法规则(从左至右)逐步展开每个非终结符
- 从CFG的开始符号应用规则逐步展开其中的非终结符
 - 如果能得到目标句子=>解析成功
 - 如果不能得到目标句子=>解析失败
- 如无二义性问题,则语法解析树唯一

自顶向下解析示例

语法规则:

```
[1] E \rightarrow E OP1 E1
[2] E \rightarrow E1
[3] E1 \rightarrow E1 OP2 E2
[4] E1 \rightarrow E2
[5] E2 \rightarrow E3 OP3 E2
[6] E2 \rightarrow E3
[7] E3 \rightarrow NUM
[8] E3 \rightarrow '(' E ')'
[9] NUM \rightarrow <UNUM>
[10] NUM → '-' <UNUM>
[11] OP1 \rightarrow '+'
[12] OP1 \rightarrow '-'
[13] OP2 \rightarrow '*'
[14] OP2 \rightarrow '/'
[15] OP3 → '^'
```

解析对象: 1+2*3

标签流: <UNUM><ADD><UNUM><MUL><UNUM>

语法解析树

如何自动生成语法推导树?

- 如何判断当前应采用哪条规则展开? 暴力搜索?
- 预测解析: 找出可以生成目标终结符的规则
- 可能存在多种展开方式以及递归问题

二、Earley算法

解析状态分析

- 句柄: 语法规则中已解析的字符
- 规范项(canonical item): 规则 $X \to \gamma$ 对应 $|\gamma| + 1$ 种句柄状态

```
[1] E \rightarrow E OP1 E1
[2] E \rightarrow E1
[3] E1 \rightarrow E1 OP2 E2
\lceil 4 \rceil E1 \rightarrow E2
[5] E2 \rightarrow E3 OP3 E2
[6] E2 \rightarrow E3
[7] E3 \rightarrow NUM
[8] E3 \rightarrow '(' E ')'
[9] NUM \rightarrow \langle UNUM \rangle
[10] NUM → '-' <UNUM>
[11] OP1 \rightarrow '+'
[12] OP1 → '-'
[13] OP2 \rightarrow '*'
[14] OP2 \rightarrow '/'
[15] OP3 → '^'
```

```
句柄分析
```

```
[1] E \rightarrow \circ E OP1 E1
[1] E \rightarrow E \circ OP1 E1
     E \rightarrow E OP1 \circ E1
[1] E \rightarrow E OP1 E1 \circ
      E \rightarrow \circ E1
[2] E \rightarrow E1 \circ
[3] E1 \rightarrow \circ E1 OP2 E2
[3] E1 \rightarrow E1 \circ OP2 E2
[3] E1 \rightarrow E1 OP2 \circ E2
[3] E1 → E1 OP2 E2 ∘
```

Earley算法: 通用自顶向下语法分析算法

- 支持递归
- 三种基本操作:
 - **预测**:对于每个规范项 $X \to \alpha \circ Y\beta$,根据语法规则展开 $Y \to \circ \gamma$
 - **扫描**: 如果下一个终结符是a,且存在规范项 $X \to \alpha \circ a\beta$,则将其更新为 $X \to \alpha a \circ \beta$
 - 完成/更新: $Y \to \gamma \circ$ 即完成了对Y的分析,更新 $X \to \alpha \circ Y \beta$ 为 $X \to \alpha Y \circ \beta$

解析过程演示

```
[1] E \rightarrow E OP1 E1
[2] E \rightarrow E1
[3] E1 \rightarrow E1 OP2 E2
\lceil 4 \rceil E1 \rightarrow E2
[5] E2 \rightarrow E3 OP3 E2
[6] E2 \rightarrow E3
[7] E3 \rightarrow NUM
[8] E3 \rightarrow '(' E ')'
[9] NUM \rightarrow <UNUM>
[10] NUM → '-' <UNUM>
[11] OP1 \rightarrow '+'
[12] OP1 \rightarrow '-'
[13] OP2 \rightarrow '*'
[14] OP2 \rightarrow '/'
[15] OP3 → '^'
```

序号	操作	规范项	起源			
s[0]	s[0] = • <unum> '+' <unum> '*' <unum></unum></unum></unum>					
1	起始状态	E → ∘ E OP1 E1	s[0]			
2	起始状态	E → ° E1	s[0]			
3	预测[2]	E1 → ° E1 OP2 E2	s[0]			
4	预测[2]	E1 → ° E2	s[0]			
5	预测[4]	E2 → ° E3 OP3 E2	s[0]			
6	预测[4]	E2 → ° E3	s[0]			
7	预测[5]	E3 → ° NUM	s[0]			
8	预测[5]	E3 → ° '(' E ')'	s[0]			
9	预测[7]	NUM → ∘ <unum></unum>	s[0]			
10	预测[7]	NUM → ∘ '-' <unum></unum>	s[0]			
s[1]	= <unum> ° '+' <unum> '*</unum></unum>	' <unum></unum>				
1	基于s[0][9]扫描	NUM → <unum> °</unum>	s[0]			

序号	操作	规范项	起源
s[0] = °	<unum> '+' <unum> '*' <unum></unum></unum></unum>		
1	起始状态	E → ° E OP1 E1	s[0]
2	起始状态	E → ° E1	s[0]
3	预测[2]	E1 → ° E1 OP2 E2	s[0]
4	预测[2]	E1 → ° E2	s[0]
5	预测[4]	E2 → ° E3 OP3 E2	s[0]
6	预测[4]	E2 → ° E3	s[0]
7	预测[5]	E3 → ° NUM	s[0]
8	预测[5]	E3 → ° '(' E ')'	s[0]
9	预测[7]	NUM → ° <unum></unum>	s[0]
10	预测[7]	NUM → ° '-' <unum></unum>	s[0]
s[1] = <	UNUM> ° '+' <unum> '*' <unum></unum></unum>		
1	扫描s[0][9]	NUM → <unum> °</unum>	s[0]
2	基于[1]更新s[0][7]	E3 → NUM ∘	s[0]
3	基于[2]更新s[0][5]	E2 → E3 ∘ OP3 E2	s[0]
4	基于[2]更新s[0][6]	E2 → E3 °	s[0]
5	基于[4]更新s[0][4]	E1 → E2 °	s[0]
6	基于[5]更新s[0][2]	E → E1 °	s[0]
7	基于[5]更新s[0][3]	E1 → E1 ∘ OP2 E2	s[0]
8	基于[6]更新s[0][1]	E → E ∘ OP1 E1	s[0] ₁₁

序号	操作	规范项	起源	
s[1] = <unum> ° '+' <unum> '*' <unum></unum></unum></unum>				
1	扫描s[0][9]	NUM → <unum> °</unum>	s[0]	
2	基于[1]更新s[0][7]	E3 → NUM ∘	s[0]	
3	基于[2]更新s[0][5]	E2 → E3 ∘ OP3 E2	s[0]	
4	基于[2]更新s[0][6]	E2 → E3 ∘	s[0]	
5	基于[4]更新s[0][4]	E1 → E2 ∘	s[0]	
6	基于[5]更新s[0][2]	E → E1 °	s[0]	
7	基于[5]更新s[0][3]	E1 → E1 ∘ OP2 E2	s[0]	
8	基于[6]更新s[0][1]	E → E ∘ OP1 E1	s[0]	
9	预测[3]	OP3 → ° '^'	s[1]	
10	预测[7]	OP2 → ° '*'	s[1]	
11	预测[7]	OP2 → ° '/'	s[1]	
12	预测[8]	OP1 → ° '+'	s[1]	
13	预测[8]	OP1 → ° '-'	s[1]	
s[2] = <	UNUM> '+' • <unum> '*' <unum></unum></unum>			
1	扫描s[1][12]	OP1 → '+' ∘	s[1]	
2				
3				

序号	操作	规范项	起源
s[2] = <	UNUM> '+' · · <unum> '*' <unum></unum></unum>		
1	扫描s[1][12]	OP1 → '+' ∘	s[1]
2	基于[1]更新s[1][8]	E → E OP1 ∘ E1	s[0]
3	预测[2]	E1 → ° E1 OP2 E2	s[2]
4	预测[2]	E1 → ° E2	s[2]
5	预测[4]	E2 → ∘ E3 OP3 E2	s[2]
6	预测[4]	E2 → ∘ E3	s[2]
7	预测[5]	E3 → ° NUM	s[2]
8	预测[5]	E3 → ° '(' E ')'	s[2]
9	预测[7]	NUM → ° <unum></unum>	s[2]
10	预测[7]	NUM → ° '-' <unum></unum>	s[2]
s[3] = <	UNUM> '+' <unum> ° '*' <unum></unum></unum>		
1	扫描s[2][9]	NUM → <unum> °</unum>	s[2]
2	基于[1]更新s[2][7]	E3 → NUM ∘	s[2]
3	基于[2]更新s[2][5]	E2 → E3 ∘ OP3 E2	s[2]
4	基于[2]更新s[2][6]	E2 → E3 ∘	s[2]
5	基于[4]更新s[2][4]	E1 → E2 °	s[2]
6	基于[5]更新s[2][2]	E → E OP1 E1 °	s[0]
7	基于[5]更新s[2][3]	E1 → E1 ∘ OP2 E2	s[2]
8			13

序号	操作	规范项	起源				
s[3] = <l< td=""><td colspan="7">s[3] = <unum> '+' <unum> ° '*' <unum></unum></unum></unum></td></l<>	s[3] = <unum> '+' <unum> ° '*' <unum></unum></unum></unum>						
1	扫描s[2][9]	NUM → <unum> °</unum>	s[2]				
2	基于[1]更新s[2][7]	E3 → NUM∘	s[2]				
3	基于[2]更新s[2][5]	E2 → E3 ∘ OP3 E2	s[2]				
4	基于[2]更新s[2][6]	E2 → E3 ∘	s[2]				
5	基于[4]更新s[2][4]	E1 → E2 ∘	s[2]				
6	基于[5]更新s[2][2]	E → E OP1 E1 °	s[0]				
7	基于[5]更新s[2][3]	E1 → E1 ∘ OP2 E2	s[2]				
8	预测[3]	OP3 → ° '^'	s[3]				
9	预测[7]	OP2 → ° '*'	s[3]				
10	预测[7]	OP2 → ° '/'	s[3]				
s[4] = <l< td=""><td>JNUM> '+' <unum> '*' · <unum></unum></unum></td><td></td><td></td></l<>	JNUM> '+' <unum> '*' · <unum></unum></unum>						
1	扫描s[3][9]	OP2 → ° '*'	s[3]				
2	基于[1]更新s[3][7]	E1 → E1 OP2 ∘ E2	s[2]				
3	预测[2]	E2 → ° E3 OP3 E2	s[4]				
4	预测[2]	E2 → ° E3	s[4]				
5	预测[3]	E3 → ° NUM	s[4]				
6	预测[3]	E3 → ° '(' E ')'	s[4]				
7	预测[5]	NUM → ° <unum></unum>	s[4]				
8	预测[5]	NUM → ° '-' <unum></unum>	s[4] ₁₄				

序号	操作		起源
s[5] = <l< th=""><th>JNUM> '+' <unum> '*' <unum> °</unum></unum></th><th></th><th></th></l<>	JNUM> '+' <unum> '*' <unum> °</unum></unum>		
1	扫描s[4][7]	NUM → <unum> °</unum>	s[4]
2	基于[1]更新s[4][5]	E3 → NUM ∘	s[4]
3	基于[2]更新s[4][3]	E2 → E3 ∘ OP3 E2	s[4]
4	基于[2]更新s[4][4]	E2 → E3 ∘	s[4]
5	基于[4]更新s[4][2]	E1 → E1 OP2 E2 ∘	s[2]
6	基于[5]更新s[2][2]	E → E OP1 E1 °	s[0]

练习

- 使用Earley算法解析:
 - 1*(2+-3)

Earley算法复杂度分析

- 1) O(句子长度 * 规则个数 * 规则长度)
- 2) O(句子长度2 * 规则个数 * 规则长度)
- 3) 其它

三、LL(1)文法和解析

通过限制文法复杂度提升解析效率

- LL(1)文法的基本要求:
 - 无左递归
 - 无回溯
- LL(1)文法: Left-to-Right, Leftmost, 前瞻一个字符无回溯
- LL(k)文法: Left-to-Right, Leftmost, 前瞻k个字符无回溯

左递归问题

- 一条规则中右侧的第一个符号与左侧符号相同
- 可能导致搜索算法无限递归,不终止

```
[1] E \rightarrow E OP1 E1
[2] E \rightarrow E1
[3] E1 \rightarrow E1 OP2 E2
[4] E1 \rightarrow E2
[5] E2 \rightarrow E3 OP3 E2
[6] E2 \rightarrow E3
[7] E3 \rightarrow NUM
[8] E3 \rightarrow '(' E ')'
[9] NUM \rightarrow \langle UNUM \rangle
[10] NUM → '-' <UNUM>
[11] OP1 \rightarrow '+'
[12] OP1 \rightarrow '-'
[13] OP2 → '*'
[14] OP2 \rightarrow '/'
[15] OP3 → '^'
```

消除左递归

- 改写语法规则,使新旧规则等价:
 - 1) 引入新的非终结符E',使其可以为 ϵ
 - 2) 将递归规则之外的产生式右侧置于*E'*之前
 - 3) 为E'构造产生式,使新旧规则等价

$$\begin{array}{c|c}
E \to E & \alpha \\
E' \to \alpha & E' \\
E' \to \epsilon
\end{array}$$

$$\begin{array}{c|c}
E \to E & \alpha \\
E \to \beta & E' \\
E \to \beta & E' \\
E \to \gamma & E' \\
E' \to \alpha & E'
\end{array}$$

$$\begin{array}{c|c}
E \to \beta & E' \\
E \to \gamma & E' \\
E' \to \alpha & E' \\
E' \to \alpha & E' \\
E' \to \alpha & E'
\end{array}$$

$$\begin{array}{c|c}
\beta \alpha, \beta \alpha \alpha, \beta \alpha \alpha, \beta \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha \alpha, \gamma \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha, \alpha \alpha, \gamma \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha, \alpha \alpha, \gamma \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha, \alpha \alpha, \gamma \alpha, \dots \\
\beta \alpha, \gamma \alpha, \beta \alpha, \dots \\
\beta \alpha, \gamma \alpha, \dots \\$$

应用

```
[1] E \rightarrow E OP1 E1
[2] E \rightarrow E1
                                         消除左递归
[3] E1 \rightarrow E1 OP2 E2
[4] E1 \rightarrow E2
[5] E2 \rightarrow E3 OP3 E2
[6] E2 \rightarrow E3
[7] E3 \rightarrow NUM
[8] E3 \rightarrow '(' E ')'
[9] NUM \rightarrow \langle UNUM \rangle
[10] NUM \rightarrow '-' <UNUM>
[11] OP1 \rightarrow '+'
[12] OP1 \rightarrow '-'
[13] OP2 \rightarrow '*'
[14] OP2 \rightarrow '/'
[15] OP3 \rightarrow '^'
```

```
[1] E \rightarrow E1 E'
[2] E' → OP1 E1 E'
[3] E' \rightarrow \epsilon
[4] E1 → E2 E1'
[5] E1' → OP2 E2 E1'
[6] E1' \rightarrow \epsilon
[7] E2 \rightarrow E3 OP3 E2
[8] E2 \rightarrow E3
[9] E3 \rightarrow NUM
[10] E3 \rightarrow '(' E ')'
[11] NUM \rightarrow <UNUM>
[12] NUM \rightarrow '-' <UNUM>
[13] OP1 \rightarrow '+'
[14] OP1 \rightarrow '-'
[15] OP2 \rightarrow '*'
[16] OP2 \rightarrow '/'
[17] OP3 \rightarrow '^'
```

注意间接左递归问题

无回溯语法

- 任意非终结符的任意两个产生式生成的首个终结符均不同
- 前瞻一个终结符总能选择正确的规则
- 消除语法规则选择时的不确定性, 避免回溯

[1]
$$S \to \alpha \to \cdots \to a\gamma$$

[2] $S \to \beta \to \cdots \to b\delta$

消除回溯: 提取左因子

- 改写语法规则,使新旧规则等价:
 - 对一组生成式提取共同前缀,置于新非终结符E'之前
 - 为E'编写生成式规则,使新旧规则等价

$$E \to \alpha \beta_1 |\alpha \beta_2| \dots |\alpha \beta_n |\gamma_1| \dots |\gamma_j| \qquad \qquad \qquad E \to \alpha E' |\gamma_1| \dots |\gamma_j| \\ E' \to \beta_1 |\beta_2| \dots |\beta_n|$$

应用

```
[1] E \rightarrow E1 E'
[2] E' \rightarrow OP1 E1 E'
[3] E' \rightarrow \epsilon
[4] E1 \rightarrow E2 E1'
[5] E1' \rightarrow OP2 E2 E1'
[6] E1' \rightarrow \epsilon
[7] E2 \rightarrow E3 OP3 E2
[8] E2 \rightarrow E3
[9] E3 \rightarrow NUM
[10] E3 \rightarrow '(' E ')'
[11] NUM \rightarrow <UNUM>
[12] NUM \rightarrow '-' <UNUM>
[13] OP1 \rightarrow '+'
[14] OP1 \rightarrow '-'
[15] OP2 \rightarrow '*'
[16] OP2 \rightarrow '/'
[17] OP3 \rightarrow '^'
```

```
消除回溯语法
```

```
[1] E \rightarrow E1 E'
[2] E' \rightarrow OP1 E1 E'
[3] E' \rightarrow \epsilon
[4] E1 \rightarrow E2 E1'
[5] E1' \rightarrow OP2 E2 E1'
[6] E1' \rightarrow \epsilon
[7] E2 \rightarrow E3 E2'
[8] E2' → OP3 E2
[9] E2' \rightarrow \epsilon
[10] E3 \rightarrow NUM
[11] E3 \rightarrow '(' E ')'
[12] NUM \rightarrow <UNUM>
[13] NUM \rightarrow '-' <UNUM>
[14] OP1 \rightarrow '+'
[15] OP1 \rightarrow '-'
[16] OP2 \rightarrow '*'
[17] OP2 \rightarrow '/'
[18] OP3 \rightarrow '^'
```

First集合计算

- 对于生成式 $A \rightarrow \beta_1 \beta_2 \dots \beta_n$ 来说:
 - 如果 $\epsilon \notin First(\beta_1)$,则 $First(A) = First(\beta_1)$
 - 如果 $\epsilon \in First(\beta_1)$ & ... & $\epsilon \in First(\beta_i)$, 则 $First(A) = First(\beta_1) \cup ... \cup First(\beta_{i+1})$

[18] OP3 → '^'	[1] $E \rightarrow E1$ E' [2] $E' \rightarrow OP1$ $E1$ E' [3] $E' \rightarrow \epsilon$ [4] $E1 \rightarrow E2$ $E1'$ [5] $E1' \rightarrow OP2$ $E2$ $E1'$ [6] $E1' \rightarrow \epsilon$ [7] $E2 \rightarrow E3$ $E2'$ [8] $E2' \rightarrow OP3$ $E2$ [9] $E2' \rightarrow \epsilon$ [10] $E3 \rightarrow NUM$ [11] $E3 \rightarrow '(' E ')'$ [12] $E3 \rightarrow (' E ')'$ [13] $E3 \rightarrow (' E ')'$ [14] $E3 \rightarrow (' E ')'$ [15] $E3 \rightarrow (' E ')'$ [16] $E3 \rightarrow (' E ')'$ [17] $E3 \rightarrow (' E ')'$
	[17] OP2 → '/'

	<unum></unum>	'+'	'-'	'*'	'/'	'^'	'('	')'	E
E	[1]		[1]				[1]		
E'		[2]	[2]						[3]
E1	[4]		[4]				[4]		
E1'				[5]	[5]				[6]
E2	[7]		[7]				[7]		
E2'						[8]			[9]
E3	[10]		[10]				[11]		
NUM	[12]		[13]						
OP1		[14]	[15]						
OP2				[16]	[17]				
0P3						[18]			

Follow集合计算

• 如果存在规则 $A \rightarrow \epsilon$,选择规则时需要考虑A之后紧跟的字符

$$First^{+}(A \to \beta) = \begin{cases} First(\beta), & if \epsilon \notin First(\beta) \\ First(\beta) \cup Follow(A), & otherwise \end{cases}$$

```
[1] E → E1 E'
[2] E' → OP1 E1 E'
[3] E' \rightarrow \epsilon
[4] E1 → E2 E1'
[5] E1' → OP2 E2 E1'
[6] E1' \rightarrow \epsilon
[7] E2 → E3 E2'
[8] E2' \rightarrow OP3 E2
[9] E2' \rightarrow \epsilon
[10] E3 → NUM
[11] E3 \rightarrow '(' E ')'
[12] NUM \rightarrow \langle UNUM \rangle
[13] NUM → '-' <UNUM>
[14] OP1 \rightarrow '+'
[15] OP1 → '-'
[16] OP2 \rightarrow '*'
[17] OP2 → '/'
[18] OP3 → '^'
```

	<unum></unum>	'+'	'-'	'*'	'/'	'^'	'('	')'	E	
E	[1]		[1]				[1]			
E'		[2]	[2]					[3]	[3]	
E1	[4]		[4]		$igl[ext{ } Fol igl]$	low(E')) = Followskip	low(E)		
E1'		[6]	[6]	[5]	[5]			[6]	[6]	
E2	Follo	w(E1')	= Foll	ow(E1) = Fir	$rst^+(E')$	[7]			
E2'		[9]	[9]	[9]	[9]	[8]		[9]	[9]	
E3	Foll	ow(E2')) = Fol	llow(E	(2) = Fi	$rst^+(E$	1') 1]			
NUM	[12]		[13]							
OP1		[14]	[15]							
OP2				[16]	[17]					
OP3						[18]				

基于First+集合得到解析表

- 解析表每一个单元格最多只有一条可选规则
- 无回溯语法特性:

$$\forall 1 \leq i, j \leq n, First^+(A \rightarrow \beta_i) \cap First^+(A \rightarrow \beta_j) = \emptyset$$

	<unum></unum>	'+'	'-'	'*'	'/'	'^'	'('	')'
E	[1]		[1]				[1]	
E'		[2]	[2]					[3]
E1	[4]		[4]				[4]	
E1'		[6]	[6]	[5]	[5]			[6]
E2	[7]		[7]				[7]	
E2'		[9]	[9]	[9]	[9]	[8]		[9]
E3	[10]		[10]				[11]	
NUM	[12]		[13]					
OP1		[14]	[15]					
OP2				[16]	[17]			
OP3						[18]		

LL(1)解析表应用示例

```
[1] E \rightarrow E1 E'
     E' → OP1 E1 E'
     E' \rightarrow \epsilon
     E1 → E2 E1'
     E1' → OP2 E2 E1'
     E1' \rightarrow \epsilon
     E2 → E3 E2'
     E2' → OP3 E2
[9] E2' \rightarrow \epsilon
[10] E3 \rightarrow NUM
[11] E3 \rightarrow '(' E ')'
      NUM → <UNUM>
      NUM → '-' <UNUM>
      OP1 → '+'
      OP1 →
[16]
      0P2 →
      OP2 → '/'
[18] OP3 →
```

解析对象: 1+2*3

标签流: <UNUM><ADD><UNUM><MUL><UNUM>

LL(1)算法复杂度分析

- 1) O(句子长度 * 规则个数)
- 2) O(句子长度 * 解析表行数)
- 3) 其它

练习

• 将正则表达式CFG改写为LL(1)语法并写出解析表

```
[1] REGEX → REGEX '|' CONCAT

[2] REGEX → CONCAT

[3] CONCAT → CONCAT CLOSURE

[4] CONCAT → CLOSURE

[5] CLOSURE → CLOSURE '*'

[6] CLOSURE → ITEM

[7] ITEM → '(' REGEX ')'

[8] ITEM → <CHAR>
```