

Introduction to Artificial Intelligence and Machine Learning

Dr. Manju VenugopalanDept of CSE
ASC Bangalore

What makes us human?

- What makes us uniquely human?
- We are intelligent, what then, is Artificial Intelligence?

Human Intelligence

Senses

Discover

Infer

Reason

Transfer

Artificial Intelligence (AI)

AI -

Algorithmic strategies that try to match or exceed the capabilities of humans

Applications Domains:

Computer vision

Natural Language Processing

Text to speech

Motion – Robotics

Artificial Intelligence

Machine Learning Reinforcement Supervised Unsupervised Learning Learning Learning Deep

Machine Learning (ML)

Machine learning (ML)

Arthur Samuel coined the term in 1959

- "Learning" Not explicitly programmed
- Prediction or decisions based on data
- More data more accurate results

What, then, is deep learning?

Deep Learning (DL)

Deep learning is a subset of

- Neural networks Nodes and statistical relationships between noded to the way our mind works
- One layer Approximate
 predictions
 Additional layers Optimize and refine for accuracy
- "Deep" Multiple layers (More than 3 layers)
 - O Eliminates some pre-processing
 - O Better with unstructured data

MACHINE LEARNING

Artificial Intelligence

Supervised learning

- Has a defined mapping from input
 to output
- The model learns this mapping from paired input/output data examples

Some terms used

- Regression continuous numbers as output
- Classification- discrete classes as output
- Binary classification— two classes treated differently
- Multiclass classification Multiple classes treated differently

Image

classification discrete classes

- Defect detection
- Security surveillance
- Biometrics

Example Classifier:

- Convolutional Neural Network

Text

Classification

- Spam detection
- Movie / restaurant reviews
- Binary classification (two discrete classes)
- Naïve Bayes, SupportVector Machines(SVM)

Handwriting Recognition

- Postal addresses
- Banking solutions
- **Example Classifiers**
- Convolutional Neural Networks (CNN),
- Long Short-Term Memory Networks (LSTM)

```
456
     8
355535
```


Regression

- Real value output
- Housing rent calculation
- Credit scoring
- Stock price forecasting
- Sales prediction
- Linear Regression, Support Vector Regressor, Neural networks

Medical

Diagnosis - Classification - Binary or multi-class

- Prediction of severity –Regression
- Image Segmentation –Tumor
- Depends on the data and task

Classifiers

CNN, Random Forest(RF),
 SVM, LSTM, CNN-LSTM

Artificial Intelligence

Unsupervised learning

Learning about a dataset without labels

- Clustering
- Finding outliers
- Dimensionality reduction
- Generating new examples
- Filling in missing data

Clusterin

- Documen t retrieval
- Customer preferences
 - Retail
- Social media analysis
- Find patterns in data

Finding outliers

- Banking alert systems
- Surveillance
- Network traffic anomaly

Classifiers

- SVM, Autoencoders

Meow Generator

- Generated realistic images
 of cats in 2-3 hours
- Used Cat dataset
 (https://web.archive.org/web/20150703060412/http:// 137.189.35.203/WebUI/CatDatabase/catData.html)
- Different types of GAN used in a semi-supervised manner

Generative AI: Some examples

- The search suggestion on internet browsers
- Tools like Grammarly that suggest edits and text generation
- Image generation (GANs)
- Translations
- Music generation IBM Watson Beat
- Art, video and game design
- Data augmentation

Artificial Intelligence

Machine Learning Supervised Reinforcement Unsupervised Learning Learning Learning Deep

Reinforcement learning (RL)

- A set of states
- A set of actions
- A set of rewards
- Goal: take actions to change the state so that you receive rewards
- You don't receive any data you must explore the environment yourself to gather data as you go

Steps in implementing an Al model

Steps in implementing an Almodel

Problem identification & Data curation

Problem

Identification
Experts in the field

- Personal experience
- Literature survey
 - -Data curation

Data

Curation

Collection in person

- Public repositories
- Private repositories
- Simulated data
- Synthetic data

Data pre-processing

- The specific steps depend on the type of data used
- Size of the dataset
- Visualize the data and labels
- Data cleaning Remove duplicates or bad samples
- Noise removal

Flawed Data

Data preprocessing - Distribution of data across the classes

Imbalanced data results in a model biased towards the majority class

- Data augmentation
- Resizing the data to meet the model's requirements
- Dividing the data into train, test datasets

Choosing the AI

moden statement and type of data

Classification, Regression, Segmentation, Augmentation, Feature extraction, etc.

Time series – SVM, RF, LSTM, 1D-

CNN, Images - SVM, CNN

Features – LR, SVR / SVM, RF, MLP, NB, DT

2. Computational capacity

Simpler model or may need dimensionality reduction

3.Try various models to choose best fit or go for ensemble

Training the

The data split as part of the training subset is passed onto the chosen AI model

- A small portion of the data is retained as the test data, which is used to test the model's learning

Training or **learning**"

Testing the model

- Choose model appropriate evaluation metrics
- Testing on the hold-out data

Steps in implementing an Almodel

Now it's your turn!

Continue your journey into
the world of machine learning...

Thank you!

