

GOSFORD HIGH SCHOOL

2011 TRIAL HSC EXAMINATION

EXTENSION 2 MATHEMATICS

General Instructions:

• Reading time: 5minutes.

• Working time: 3 hours

- Write using black or blue pen.
- Board-approved calculators may be used.
- Each question should be started on a separate writing booklet.
- All necessary working should be shown in every question.

Total marks: - 120

Attempt all Questions 1-8.

Question 1 (15 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int \frac{dx}{\sqrt{9x^2-1}}$$
.

(b) Find
$$\int \frac{dx}{\sqrt{4x-x^2}}$$
. (2)

(c) Evaluate
$$\int_0^{\pi} x \sin x \, dx$$
. (3)

(d) Find
$$\int \cos^5 x \sin^2 x \, dx$$
. (4)

(e) Use the substitution
$$t = \tan \frac{x}{2}$$
, or otherwise, evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}$. (4)

Question 2 (15 marks) Use a SEPARATE writing booklet.

(a) If z = 2 + i and $\omega = 1 - 3i$ find in the form x + iy

(i)
$$z^2$$
. (1)

(ii)
$$z\overline{\omega}$$
. (1)

(iii)
$$\frac{z}{\omega}$$
. (1)

(b)

(i) Express
$$z = 1 + \sqrt{3}i$$
 in modulus-argument form. (2)

(ii) Show that
$$(1 + \sqrt{3}i)^6$$
 is a real number. (2)

(c) For the complex number z = x + iy, where x and y are real numbers, find and clearly sketch the curve on an Argand diagram for which

$$(i) |z + \overline{z}| \le 2. \tag{2}$$

(ii)
$$Re(z^2 - 4) = 0$$
. (3)

(d) The point A in the Argand diagram below represents the complex number z = a + ib. The point B represents the complex number 2 + 5i.

If the complex number represented by the point C is such that OABC is a square, find C in terms of a and b and hence evaluate a and b. (3)

Question 3 (15 marks) Use a SEPARATE writing booklet.

(a) The function defined by y = f(x) is drawn below.

Draw separate one-third page sketches of

.

(i)
$$y = f(x) \text{ and } y = f(-x).$$
 (2)

(ii)
$$y = f(x) \text{ and } = \frac{1}{f(x)}$$
. (2)

(iii)
$$y = f(x)$$
 and $|y| = f(x)$. (2)

(iv)
$$y = f(x) \text{ and } y^2 = f(x)$$
. (3)

- (b) The equation of a curve is $4x^2 + xy + y^2 = 10$. Find the equation of the tangent to the curve at the point (1,2) on it. (3)
- (c) Find the number of different ways of arranging any 4 of the letters from the word EXERCISES. (3)

Question 4 (15 marks) Use a SEPARATE writing booklet.

- (a) When a polynomial P(x) is divided by (x-3) the remainder is 10 and when P(x) is divided by (x-4) the remainder is 13. Determine the remainder when P(x) is divided by (x-3)(x-4).
- (b) If α, β and γ are the roots of the equation $x^3 7x^2 7 = 0$ find the equations whose roots are

(i)
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$, $\frac{1}{\gamma}$. (2)

(ii)
$$\alpha^2$$
, β^2 , γ^2 . (2)

(c)

(i) Express
$$\frac{2}{x^3+2x}$$
 in the form $\frac{A}{x} + \frac{Bx+C}{x^2+2}$. (2)

(ii) Show that
$$\int_{1}^{2} \frac{2}{x^3 + 2x} dx = \frac{1}{2} \ln 2$$
. (2)

(d) Consider the equation $z^4 + pz^3 + qz + r = 0$, where p, q & r are real numbers. The sum of the roots of this equation is 6 more than the product of the roots. If 1 + i is a root of the equation, find

$$(i) p,q \& r. (3)$$

Question 5 (15 marks) Use a SEPARATE writing booklet.

- (a) The region bounded by the x-axis and the curve $y = -2 + 3x x^2$ is rotated about the line x = 3 to form a solid. Use the method of cylindrical shells to find the volume of the solid formed. (5)
- (b) The diagram below shows the frustrum of a right cone. (A frustrum of a cone is a cone with its top cut off.) The height of the frustrum is 20 cm and the radii of the base and the top are 15 cm and 10 cm respectively.

A horizontal cross-section taken at height h cm is a circle of radius r units.

(i) Show that
$$r = 15 - \frac{h}{4}$$
. (2)

(ii) Find the volume of the frustrum. (3)

(c) The region bounded by $y = 4x - x^2$ and the x-axis is rotated about the y-axis to form a solid of revolution. If a horizontal line is drawn from the point P(x, y) on the curve, where 2 < x < 4, to the y-axis it sweeps out an annulus.

(i) Show that the area of the annulus is given by

$$A = \pi \left[4\sqrt{16 - 4y} \right]. \tag{3}$$

(ii) Hence find the volume of the solid. (2)

Question 6 (15 marks) Use a SEPARATE writing booklet.

- (a) Consider the ellipse \mathcal{E} , with equation $\frac{x^2}{100} + \frac{y^2}{64} = 1$.
 - (i) Calculate the eccentricity of \mathcal{E} . (1)
 - (ii) Find the coordinates of the foci and the equations of the directrices of \mathcal{E} . (2)
 - (iii) Show that the equation of the tangent at the point $P(x_0, y_0)$ on \mathcal{E} is

$$\frac{x_0 x}{100} + \frac{y_0 y}{64} = 1. ag{3}$$

- (b) A conic is a rectangular hyperbola with eccentricity $\sqrt{2}$, focus (2,0) and directrix x = 1.
 - (i) Find the equation of this hyperbola. (1)
 - (ii) Sketch this hyperbola clearly showing the asymptotes and vertices. (1)
 - (iii) Show that the equation of the normal at the point $P(asec\theta, atan\theta)$ is $xtan\theta + ysec\theta = 2\sqrt{2}sec\theta tan\theta$. (3)
 - (iv) This normal meets the x-axis at Q(X, 0) and the y-axis at R(0, Y).

 If T is the point (X, Y), find the locus of T and describe this locus geometrically.

 (4)

Question 7 (15 marks) Use a SEPARATE writing booklet.

- (a) A particle of unit mass is projected vertically upwards from ground level with initial speed *U*. Assume that air resistance is *kv*, where *v* is the particle's speed and *k* is a positive constant. We wish to consider the particle's motion as it falls back to ground level. Let *y* be the displacement of the particle measured vertically downwards from the point of maximum height, *t* be the time elapsed after the particle has reached maximum height, and *g* be the acceleration due to gravity.
 - (i) Explain why v(0) = 0 and $\frac{dv}{dt} = g kv$ while the particle is in motion. (1)

(ii) Deduce that
$$v = \frac{g}{k} (1 - e^{-kt})$$
 for $t \ge 0$. (3)

(iii) By writing
$$\frac{dv}{dt} = v \frac{dv}{dy}$$
, deduce from part (i) that
$$\frac{g}{k} \log_e \left(\frac{g - kv}{g} \right) + v = -ky. \tag{3}$$

(iv) Using parts (ii) and (iii) deduce that
$$t = \frac{v + ky}{g}$$
. (2)

- (v) Given that the particle reaches a maximum height $h = \frac{1}{k} \left[U \frac{g}{k} \log_e \left(\frac{g + kU}{g} \right) \right] \text{ in time } t_h = \frac{1}{k} \log_e \left(\frac{g + kU}{g} \right), \text{ deduce}$ that the total time T that the particle is in the air is $T = \frac{U + V}{g}$, where V is the final speed of the particle when it returns to ground level. (1)
- (b) If $I_n = \int_0^1 (x^2 1)^n dx$, n = 0,1,2,...

(i) Show that
$$I_0 = 1$$
. (1)

(ii) Prove that
$$I_n = \frac{-2n}{2n+1} I_{n-1}$$
. (3)

(iii) Hence evaluate
$$\int_0^1 (x^2 - 1)^4 dx$$
. (1)

Question 8 (15 marks) Use a SEPARATE writing booklet.

(a)

- (i) Use DeMoivre's Theorem to express $\cos 4\theta$ and $\sin 4\theta$ in powers of $\cos \theta$ and $\sin \theta$. Hence express $\tan 4\theta$ as a rational function of t, where $t = \tan \theta$. (4)
- (ii) Hence solve the equation $t^4 + 4t^3 6t^2 4t + 1 = 0$. (3)
- (b) A particle is projected from the origin with an initial velocity of $V ms^{-1}$ at an angle of α to the horizontal.
 - (i) Show that the maximum range on the horizontal plane is $\frac{V^2}{g}$ when $\alpha = \frac{\pi}{4}$.(4)
 - (ii) The particle is now to hit a target which is h metres above its horizontal position when the maximum range in part (i) is reached. If the angle of projection α remains the same, show that the initial velocity must be increased

from
$$V ms^{-1}$$
 to $\frac{V^2}{\sqrt{V^2 - gh}} ms^{-1}$. (Air resistance is neglected). (4)

END OF PAPER

()- sin2x)2 sin2x cosx Ztusx 7=0 CO1 X = ᅿ 2 dt 2 + 1-62 2 dt Jo 2+2+2+1-+2 dt

	QUESTICN 2
i i	α) $\geq = 2 + i$ $\omega = 1 - 3i$
 -	
 	$(1) \mathbf{Z}^2 = \left(2+\mathbf{i}\right)^2$
	= 4+ 4i + i ² ()
	= 3 + Hi
	m 25 = (2+i)(1+3i)
	= 2+6i+i+3i2
	= -1470
	$(m) \ge = (2+i) \times (1+3i)$
/	W (1-3i) (143i)
	= -1+70 1-9i2
	1-91
<u> </u>	- 147
·	(1)
<u> </u>	and the second of the second o
	10. 16
	b) Z = 1453i
	λ
	(i) $\sqrt{3}$ $ 2 = \sqrt{(\sqrt{3})^2 + 2 }$
,	= 2
	arg z = tan s
	3
	Z = 2 and (2)
	3
	(ii) Z = 2 as 61
	3
<u> </u>	= 64 cm 2T
	= 64 (co) 2TT + i sn 2TT)
<u> </u>	$= 6L(1+0l) \qquad (2)$
	= 64 which is real.

QUESTION 3.

a) (i)

2)

2

	No of obligated arrangements of each classification 12
	$(1) SC_1 \times \frac{L_1}{L_1} = 20$
	(ii) (56, + 56), b! = 240
	(m) 1 x 41 : L
	$2^{2} \cdot 2^{2}$ (ii) $b = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = $
	· Nobi no. of deffect arragements is 626.
-	
· ,	
,	•
•	
}	

·	
	$(11)^{2} - 2 dx = (2 1 - x) dx$
	J, 23,22 J, 2 22+2
	= [hx - 1 h (2 +2)
,	(h2-jh6)-(h1-jh3)
	= h2 - h J6 + h J3
	$\frac{h}{\sqrt{6}}\left(\frac{2\sqrt{3}}{\sqrt{6}}\right)$
	$\begin{array}{c c} & L & \left(\frac{2}{5}\right) \\ \hline \end{array}$
— <u> </u>	1/2
	= h(52).
•	こ 3 ん2.
	d)(1) 19 1 si 1) a root of the ago we man
	a) (1) If I is is a root of the eg? we many
	Now (bi) = 422 42
	= 2 i
	$(1+i)^3 = 2i(1+i)$
	= -2 -2i
·	$(1+i)^{4} = (2i)^{2}$
	= -4
	: 1 (1+1) 4 + p(1+i) 3 + q(1+i) + r=0
	-4 + p(-2+2i) + q(1+i) + = =0
	But 2 = -p 2 2 2B88 = = r
, , , , , , , , , , , , , , , , , , , ,	lince -p = b+r
)	r = -p-6
	· , · · · · · · · · · · · · · · · · · ·

		,
		•
	QUESTION 6.	
	a) (1) 1/ 22 1 y2 = 1	
<u> </u>	100 64	
•	a=10 b=8.	
	$b^2 = a^2 \left(1 - e^2 \right)$	
	64 = 100 (1-82)	
	64 = 1-e2	
:	190	
	e2: 1- W	
	100	
)	67 - 36	
	e ² = 36	:
	4 3	
	$e = \frac{3}{5}, e > 0$	•
	/\(\)\(\)\(\)\(\)	
	(ii) Faci are (± ae, o)	
	$\alpha e = 10 \times \frac{3}{5}$	
· · · · · · · · · · · · · · · · · · ·	= 6	
		<u> </u>
	Foci are (±6,0)	
-)		
· · · · · · · · · · · · · · · · · · ·	Directrices are x= ± a (2)	·
•		· · ·
	a : 10/3	
	= 59/3	
	Directnices one $x = \pm \frac{50}{3}$	
	3	
	(iii) If x2 1 42 -0	
``	100 64	
	100 BU J = 0	
	0 1 - 2-	
	by y = 22 by 100	

(x-x) Jou Val (x-20) 大武 100 100 Xo xot = <u> 40 0</u> 100 70X (30) b) in Since bow 15 (ae, 0)

QUESTION 8. (cos O + i sn D) = cos hD + i sin hD But (ca 0+ i sn 0) = cos 40 + Leos 30 isn 0 , 6 cos 20 isn 20 + Licon O i3 sn30 + it sn40 RHS = com 0 - 60030 5020 + SHOND + U/4 6030 500 - 14 cos 0 5030 (05 40 = cx40 - 6 cos 0 sn 20 + sn 40) 40030 sno - 4000 sn30 Lun3 6 sn 0 - 4con 0 sn3 0 Cos 40 - 6cos 20 sn20 + sn40 - Throughout by Gos 40 ta. 40 - 4000 sno - 4000 sn30 Cost O (g) 0 - 6 (g) 0 (g) 0 + 5, 4 0 (g) 0 4 ta 0 - 4 ta 30 LO: Lt-Lt3 ten 40 = 1 4t - 4t3 1-612 + 44 1-612 + 44 t + 413-62-4+1=0

