不等式综合

2025年7月24日

三角换元

三角换元的技巧

- 1. 出现形如 $x^2 + y^2$ 的式子时,可以考虑使用三角换元;
- 2. 出现形如 $\sqrt{1+x}$ 的式子时,可以考虑使用 $\tan^2\theta$ 换元;
- 3. 出现形如 $\sqrt{1-x}$ 的式子时,可以考虑使用 $1-\sin^2\theta$ 或 $\frac{1}{\cos^2\theta}$ 换元;
- 4. 注意, 三角函数具有有界性.
- 1. 设 $a \in \mathbb{R}$, 若 $a\sqrt{x} + \sqrt{1+x} \le 1$ 对 x > 0 恒成立, 求 a 的取值范围.

2. 已知 $x^2 + y^2 - \sqrt{3}xy = 1(x, y \in \mathbf{R})$, 求 x + y 的取值范围

3. 已知实数 a, b, c 满足 $a^2 + b^2 + c^2 = 1$, 求 ab + c 的最小值.

4. 已知 $x^2 + y^2 \le 1$,求 $x^2 + xy - y^2$ 的最值

5. 已知实数 x, y, 满足 $x^2 + 2xy = 1$, 求 $x^2 + y^2$ 的最小值.

基本(均值)不等式

基本不等式链:

对于 $x_1, x_2 \in \mathbf{R}$, 且 $x_1, x_2 > 0$, 有

$$\sqrt{\frac{x_1^2 + x_2^2}{2}} \ge \frac{x_1 + x_2}{2} \ge \sqrt{x_1 x_2} \ge \frac{2}{\frac{1}{x_1} + \frac{1}{x_2}}$$

当且仅当 $x_1 = x_2$ 时,等号成立.

均值不等式链:

对于 $n \in \mathbb{N}^+$, $x_1, x_2, \dots, x_n \in \mathbb{R} \$ 且 $x_i > 0$, 有

$$\sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n}} \ge \frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 + \dots + x_n} \ge \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

1. 非零实数 a,b,c,若 $\frac{bc}{a},\frac{ca}{b},\frac{ab}{c}$ 成等比数列,证明 $|b| \leq \frac{|a|+|b|}{2}$.

2. 若
$$a > 0, b > 0$$
, 且 $\frac{1}{a} + \frac{1}{b} = \sqrt{ab}$, 求 $a^2 + b^2$ 的最小值.

3. 已知 $x,y\in(0,+\infty)$,若不等式 $\sqrt{x}+\sqrt{2y}\leq a\sqrt{\frac{x}{2}+y}$ 恒成立,求 a 的取值范围.

4. 已知实数 x, y 满足 $x^2 + xy + 4y^2 = 1$, 则 xy 的最大值是 ________; $x^2 - xy + y^2$ 的最小值是 ________;