HIGHER DIMENSIONS

Let $S \subset \mathbb{R}^d$. The convex hull of S is the smallest convex set containing S. If S is finite, then convS is a polytop. I.e. a polytope is bounded. The intersection of an arbitrary number of halfspaces may yield an unbounded region. Such a region is a polyhedral space.

A hyperplane H has the form $\langle x,a\rangle = c$, or as expands $a_1x_1 + a_2x_2 + \dots + a_dx_d = c$. a face of P. A hyperplane H supports P iff PnH #0 and PcH where H represents the halfspace $\langle x,a\rangle \leq c$.

Each face of P is a polytope.

0-faces vertices 1-faces edges The f-vector of a polytope has: $f_j(P) = \#_j$ -faces of F_j

(d-3)-faces peaks (d-2)-faces ridges (d-1)-faces facets

Ø = the unique (-1)-face P = the unique (d)-face

F(P) = set of all faces of P. Use partial order of inclusion to produce the face lattice (incidence graph) of P.

OPEN QUESTION! Given a lattice, is it the face lattice of some polytope P?

Commetut: Take a face lattice and turn it upside down. The result is the face lattice of the dual polytope.

EXAMPLES

$$V = 8$$

 $e = 12$
 $f = 6$

verter -> face; edge -> edge; face -> vertex.

$$v=6$$

$$e=12$$

$$f=8$$

EXAMPLES

O simplex = convex hull of d+1 affinely independent
$$S_d$$
 points triangle $f(S_d) = (d+1)$ tetrahedron

(3) Cyclic Polytope

Consider the curve $\chi(t) = (t, t^2, ..., t^d)$ Any d points on the curve span a hyperplane

Any d points on the curve span a hyperplane

[The intersection of a hyperplane $H: \langle a, x \rangle = C$ with $\chi(t)$ has the form $Z_a; t^c - C = O$.

with $\chi(t)$ has the form $Z_a; t^c - C = O$.

This is a atthe degree equation and has $\leq d$ zero.

This is a atthe degree equation and has $\leq d$ zero.

Choose n points $\chi(t_1) \chi(t_2) ... \chi(t_n)$ to form a set S where $t_1 < t_2 < ... < t_n$ C(n,d) = conv S = cyclic polytope (simplicial) C(n,d) = conv S = cyclic polytope (simplicial) C(n,d) = conv S = cyclic polytope (simplicial)

and C(n,d) maximizes the total number of faces.

In oremental Algorithm (Simplified)

Assume SCRd, ISI=n and conv S simplicual.

Presort the points along one direction.

Maintain a description of the affine hull of the points encountered so far.

Let pi represent the next point.

If $p_i \notin aff \{P_a, \dots P_{i-1}\}$, perform pyramidal update. Else perform nonpyramidal update.

Non-pyramidal update

A facet F of P is & whote iff hyperplane H>F separated black otherwise

A face G of P is Swhite if contained only in whiteface black if contained only in black face gray otherwise

F black => F is a face of convêta,...Pis F gray => F is a face of convêta,...Pis F'= conv(FUEpis) is a face also!

FACT "White facets form a connected set un the graph where facet = node, ridge = edge

FACT "One of the facets that contains po-, must be white."

Algorithm

Il Identify one white facet by considering the facets containing ٥(دلايال)

2) Determine remaining white facets using DFS (each node (facet) has degree d). O(D_c)

3) Determine all white and gray faces $O(D_i + I_i)$

4) Delete all white faces OCDi)

5) Make new faces from gray ones O(Ii)

Let i= # vertices of P Di= # faces of P deleted each one contains
the new vertex

=> Ii = O(ild=1) It = # faces created &

off from rest of [-take hyperplane and cut pt p: off from rest of polytope => (d-1) dum polytope.

=> use (d-1) dum version of upper bound thin

Time complexity: ZnO(Di+Ii) = ZO(Ii)
= ZO(il=1) = O(nl=1)

Entire Incremental Algorithm!
O(n logn + n Lat!)

worst case optimal for even a.

gift-wrapping Chand-kapur 370

Every ridge is contained in exactly two facets
Every edge joins exactly two points

KEY FACT: Given a facet F and a ridge R, one can find the "other" facet that contains R in O(n) time

Algorithm

1) Find some facet.
Call its ridges "open ridges",

2) While there exists an open ridge R,

giffwrap over R to discover new facet F

Update set of open ridges

4)

Time complexity O(nF) where $F = f_{d-1}(convS)$ O(n L d + 1) worst case.

Question: Can some revision to gift wrapping achieve better complexity?

After 4, all vertices have been identified After 5, all edges have been found. All work thereafter is redundant.

Linear Programming

Linear programming in d variables and n constraints can be solved in O(n) time when d is fixed using the prune and search technique [Megiddo and Dyer].* $LP_1(n,d) \leq 2^{C(2^d)} n$

generic 2-D Linear Programing Problem

s minimize ax + bys subject to $a_ix + b_iy + C_i \le 0$ i = 1, 2, ... N

By a change of variables, setting Y=ax+by and X=x, we get

S minimize YS subject to $\sigma_i X + \beta_i Y + C_i \leq 0$ U = 1, 2, ... N.

 $LP_2(n,d) \leq \frac{2^{d^2}}{T_1^2 k!} n \log^2 n = O(\lambda(n,d))$ * Also can obtain a result polynomial in n and d

Shelling Algorithm: (Seider)

Try to discover the facets in a straight-line shelling

Definition: Let P=d-polytope. Fin. Fm is an enumeration of all facets of P. This enumeration 15 called a shelling Iff 12i2m, Fin U. F.; I Vields the nonempty initial portion of some shelling of Fi

Topologically, the union of the first j facets is a d-1 dumensumal ball. The intersection of the ith facet with the union of the first j-1 is a (d-2)-dimensional ball, topologically.

To obtain a straight-line shelling of P, start at a point interior to P; move in a straight line; enumera each face as it is seen from the outside; wrop around at infinity; enumerate remaining faces as they disappear!

Inhen facet i appears at F. pick q & F. shell F; als line gp 7.

. Shelling Higorithm to Compute Convex Hull of SCIR

Pick "origin" as convex combination of the points. Pick shelling line L through the origin: $\chi(t) = \frac{1}{t}a$

Invariant:

d-2) faces -> the horizon ridges "form" a (d-1)-polytope whose facets are the ridges themselves.

1-3) faces -> the horizon peaks are each shared by exactly 2 horizon ridges

Next facet F in shelling order

Case I: F intersects the horizon in >1 ridge \Rightarrow F contains some horizon peak G and its two H-ridges R_1 , R_2 But dim $(R_1 \cup R_2) = \text{dim } R_1 + \text{dim } R_2 - \text{dim } (R_1 \cap R_2)$ = (d-2) + (d-2) - (d-3) = d-1

- · generate a hyperplane He for each hyperplan horizon peak G.
- · Keep a priority queue of the intersections of the HG with the shelling line.

Case II F intersects the horizon in exactly I ridge => F contains some vertex that has never been seen.

We need preprocessing to compute for each p,

"when is p seen for the first time, if ever?"

Generic answer: Linear programming.

We want hyperplane H > peH and tgeS, geH

and H intersects L "first"

1.e. need to find $n=(n_1,n_2,...n_d)$ such that $(p-q,n) \ge 0$. [Can insist < p,n > = 1.] $< p+ \pm a,n > = 0$ [Remember L: $\times (t) = -\frac{1}{t}a$] $t = < p,n > = -\frac{1}{t} < a,n >$

 $\frac{LP}{mun t = -\langle a, n \rangle}$ $\langle p - g, n \rangle \geq 0$ $\langle p, n \rangle = 1$

If for some p, the LP is infeasible, p is interior to conv S. Otherwise, you can discover the first facet in shelling order containing f

Keep another priority queue telling you when the first facet for a new vertex should be output

TOTAL TIME COMPLEXITY: O(n2+Flogn)

If F is superlinear, this beats gift wrapping. Worst case best in odd dimensions, but not provably optimal.

3-D Divide and Conquer Higorithm (Heparata & Hong)

Present the points of S with respect to x,-coordinate. Let P= Epi, pz, ... pnS represent the resulting order, Call Convexture (P, n)

ConvexHull (P,n)

If n=7 then construct P= convP by brute force. Else

DIVIDE: Set K= [1/2] define Pi= {pi,...px} define P2= 2 PK+12 ... PnJ

RECUR: Convex Hull (P1 K) ConvexHull (Pz, n-K)

MERGE: P= merge (P1, P2) (i.e. wrap P and P2 into one polytope P.

3 Ho I x,-axis such that Ho separates P1, P2

Ho intersects P=conv(P1, P2) in a 2-D convex polygon.

Each facet and edge of p which is not a facet or edge of Pi or P2 MUST These faces define a "sleeve."

Assume that all facets will be triangles. Which facets of P1 (P2) should be removed?

- 1) Any facet F of P, for which there is a vertex of of P2 such that q is on the "wrong" side of the plane containing F. Call such a facet "red."
- 2) edge e of Pi if it is contained only in red facilits unless e is a border edge. Call These edges "red" edges
- 3) vertex v of Pi if it is only incident to red edges unless v is part of the border

Claim I The red facets and edges of P, form
a connected component. [Consider dual graph]

Claim 2 One red facet of P, can be found

in O(1P11) time. [x,-coordinate. Take some vertex of P2, look for a facet of P3, look for a facet of P4, that contains the J3.

Claim 3 If the border of the sleeve is known, all red facets of Pi can be found in O(1Pi1).

[Use claim 2 to find one red facet.

Perform DFS. Backfrack at border edge].

. How to determine the sleeve

- 1. Orthogonally project P1, P2 onto X1-X2 place X. Produce convex polygons Q1, Q2 separated by X1 H=1
- 2. Find bridge over l.
 This bridge is the projection of a "new" edge of
 the sleeve. Call this sleeve edge (Pinit, ginit)
- 3. Assume e=(p,q) is a non-border edge of the sleeve. Want to find the "new" sleeve facet that contains e.
- 4. Let $CCW(p) = \frac{3}{6}p_0, p_1, \dots p_3^2$ be vertices of P_1 adjacent to p in CCW order.

 Let $CW(q) = \frac{5}{6}q_0, q_1, \dots q_p^3$ be vertices of P_2 adjacent to q in CW order.
- 5. Let PLE CCW(p); Let &t ECW(g)
- 6. Search CCW(p) starting at pt for the first pi > the hyperplane the spanned by P, g, P: Keeps pi-1 and Pi+1 on the same side.
- 7. Search (W(g) starting at 9th for the first gis the hyperplane Hz spanned by p, q, g; Keeps 9j-1, 9j+1 on the same side.
 - (Hy tangent to Py at ppi Hz tangent to Pz at 99.

8. Pick the winner of Ha, Hz. Pick Hz Iff q; is on the same side of Hz as p; Pick Hz Iff pi is on the same side of Hz as q; Assume Hz wins. We know EP, & Pi) spans a facet of the sleeve. 2 Ps Pil is a border edge ? Pi, &) is a "new" edge of the sleeve. (non-border) gift wap over this new edge. In (CW(pi) start search at p. In CCW(q) start search at qi Repeat until (Pinet, Binit is reached. Claem! for every vertex p (g) on sleeve, ccw (p) and cw(g) is traversed in total at most once. [Convince yourself!] Therefore, time to find sheve is O(\(\Sigma\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) =) merge takes linear time. Theorem: The 3-D CH problem can be solved in O(nlogn) time.

