Appunti di Matematica Applicata

Nicola Ferru

10 ottobre 2022

Capitolo 1

Introduzione

La Matematica Applicata serve per svolgere problemi complessi, utilizzando degli algoritmi e calcolatori elettronici, si utilizzano teoremi e strumenti.

- 1. Introduzione;
- 2. Richiami e complementi di algebra lineare;
- 3. Trasformata di Fourier;
- 4. Metodi diretti per la soluzione dei sistemi lineari;
- 5. Matedi iterativi per la soluzione dei sistemi lineari;
- 6. Metodi numerici per le equazioni differenziali ordinarie.

1.1 tipi di funzioni trattate

- 1. ODE $\to y(x), y'(x), \dots, y'''(x);$
- 2. PDE $\rightarrow w(x, y, z)$

1.2 Analisi di Reti complesse: algebra lineare numerica

- reti orientata ha un senso unico, e segue un verso, esempio Twitter.
- rete non orientata i rapporti sono coovalenti e non c'è un verso preciso, esempio Facebook.

1.3 Definizione di analisi numerica

La "missione" dell'analisi numerica è ottimizzare il software.

Capitolo 2

spazio vettoriale

uno spazio lineare o vettoriale reale è un insieme V su cui sono definite due operazioni con 10 proprietà $(\forall \alpha \in R)$, $(\forall x, y, z \in V)$

$$+: V*V \to V$$
 . = $R*V \to V$
 $(x,y) \to x+y$ $(\alpha,x) \to \alpha x$

- 1. $x + y \in V$ (chiusura risp. somma)
- 2. $\alpha x \in V$ (chiuura risp. prodotto)
- 3. x + y = y + x (pr. commutativa)
- 4. (x + y) + z = x + (x + z) (pr. associativa)
- 5. esiste $0 \in V$ tale che x + 0 = 0 (eledmento neutro)
- 6. esiste $-x \in V$ tale che x + (-x) = 0 (elemento addizionale)
- 7. $\alpha(\beta x) = (\alpha \beta)x$ (pr. associativa)
- 8. $\alpha(x+y) = \alpha x + \alpha y$ (pr. distributiva in V)
- 9. $(\alpha + \beta)x = \alpha x + \beta x$ (pr. distributiva in \mathbb{R})
- 10. 1x = x (elemento neutro)

2.1 Norme vettoriali

- 1. $||x|| \ge 0$ (positività)
- 2. $||\alpha x|| = |\alpha| * ||x||$ (omogeneità)
- 3. $||x+y|| \le ||x|| + ||y||$ (diseguaglianza triangolare)

Da notare che, per la proprietà 2, ||-x|| = ||x||, il che significa, com'è naturale aspettarsi, che un vettore e suo opposto hanno la stessa lunghezza. È immediato dimostrare che una norma verifica anche la disequalianza

$$||x - y|| \ge |||x|| - ||y|||, \ \forall x, y \in V.$$
(2.1)