# CSC 212: Data Structures and Abstractions Quick Sort

#### Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Fall 2020



### Quick Notes

- Assignment 4 is out (recursion/stacks)
  - ✓ 1-2 students
  - √ time-consuming, start early
- Problem Set
  - ✓ grading 60% completed
  - ✓ 2 submissions can't be graded properly
- Midterm Exam (timed)
  - √ past exams available
  - √ perhaps a Saturday / Monday review session?

### Quick Sort

- Divide the array into two partitions (subarrays)
  - need to pick a *pivot* and rearrange the elements into two
     partitions
- Conquer Recursively each half
  - call Quick Sort on each partition (i.e. solve 2 smaller problems)
- Combine Solutions
  - there is no need to combine the solutions

## Quick Sort: pseudocode

```
if (hi <= lo) return;
int p = partition(A, lo, hi);
quicksort(A, lo, p-1);
quicksort(A, p+1, hi);
```

### Partition



10 — pick a **pivot** (it can be the first element)



## Partition: algorithm

```
    lo
    hi

    10
    1
    31
    20
    3
    4
    22
    15
    2
    35

    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
    i →
```

```
while (true)
    scan i left-to-right (while a[i] < a[lo])
    scan j right-to-left (while a[j] > a[lo])
    if i and j crossed then
        break
    swap a[i] with a[j]
swap a[lo] with a[j]
```

## Partition: do it yourself

```
while (true)
    scan i left-to-right (while a[i] < a[lo])
    scan j right-to-left (while a[j] > a[lo])
    if i and j crossed then
        break
    swap a[i] with a[j]
swap a[lo] with a[j]
```

### Partition: implementation

```
int partition(int *A, int lo, int hi) {
    int i = lo;
    int j = hi + 1;
   while (1) {
        // while A[i] < pivot, increase i</pre>
        while (A[++i] < A[lo]) if (i == hi) break;
        // while A[i] > pivot, decrease j
        while (A[lo] < A[--j]) if (j == lo) break;
        // if i and j cross exit the loop
        if (i >= j) break;
        // swap A[i] and A[j]
        std::swap(A[i], A[j]);
    // swap the pivot with A[j]
    std::swap(A[lo], A[j]);
    // return pivot's position
    return j;
```

## Quick Sort: implementation

```
void r_quicksort(int *A, int lo, int hi) {
   if (hi <= lo) return;
   int p = partition(A, lo, hi);
   r_quicksort(A, lo, p-1);
   r_quicksort(A, p+1, hi);
}</pre>
```

```
void quicksort(int *A, int n, int m) {
    // shuffle the array
    std::random_shuffle(A, A+n);
    // call recursive quicksort
    r_quicksort(A, 0, n-1);
}
```

### Animation

### https://www.toptal.com/developers/ sorting-algorithms/quick-sort



### Analysis of Quick Sort

#### Best-case

√ pivot partitions array evenly (almost never happens)

$$T(n) = 2T(n/2) + \Theta(n)$$

$$= \dots$$

$$= \Theta(n \log n)$$

## Analysis of Quick Sort

#### Worst-case

√ input sorted, reverse order, equal elements

$$T(n) = T(n-1) + T(0) + \Theta(n)$$

$$= T(n-1) + \Theta(1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \dots$$

$$= \Theta(n^2)$$

can shuffle the array (to avoid the worst-case)

### Analysis of Quick Sort

### Average-case

√ analysis is more complex (assumes distinct elements)

- Consider a 9-to-1 proportional split
- <sup>4</sup> Even a 99-to-1 split yields same running time
- Faster than merge sort in practice (less data movement)

$$T(n) = T(9n/10) + T(n/10) + \Theta(n)$$

$$= ...$$

$$= \Theta(n \log n)$$

### Comments on Quick Sort

### Properties

- ' it is in-place but not stable
- √ benefits substantially from code tuning

### Improvements

- √ use insertion sort for small arrays
  - avoid overhead on small instances (~10 elements)
- √ median of 3 elements
  - estimate true median by inspecting 3 random elements
- √ three-way partitioning
  - create three partitions < pivot, == pivot, > pivot

## Sorting Algorithms

|                   | Best-Case | Average-<br>Case | Worst-Case | Stable? | In-place? |
|-------------------|-----------|------------------|------------|---------|-----------|
| Selection<br>Sort | θ(n²)     | θ(n²)            | θ(n²)      | No      | Yes       |
| Insertion<br>Sort | θ(n)      | θ(n²)            | θ(n²)      | Yes     | Yes       |
| Merge<br>Sort     | θ(nlogn)  | θ(nlogn)         | θ(nlogn)   | Yes     | No        |
| Quick<br>Sort     | θ(nlogn)  | θ(nlogn)         | θ(n²)      | No      | Yes       |

## Empirical Analysis

#### Running time estimates:

- Home PC executes 10<sup>8</sup> compares/second.
- Supercomputer executes 10<sup>12</sup> compares/second.

|          | insertion sort (N²) |           |           | mergesort (N log N) |          |         | quicksort (N log N) |         |         |
|----------|---------------------|-----------|-----------|---------------------|----------|---------|---------------------|---------|---------|
| computer | thousand            | million   | billion   | thousand            | million  | billion | thousand            | million | billion |
| home     | instant             | 2.8 hours | 317 years | instant             | 1 second | 18 min  | instant             | 0.6 sec | 12 min  |
| super    | instant             | 1 second  | 1 week    | instant             | instant  | instant | instant             | instant | instant |

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.