

Hkkjrh; izkS|ksfxdh LkaLFkku iVuk

Indian Institute of Technology Patna

Department of Electrical Engineering

IIT Patna, Campus, Bihta, Patna, Bihar - 801103

Experiment: 5

OPERATIONAL AMPLIFI

OBJECTIVE: Realization of amplifier circuits with Op-Amp (Operational A

MATERIALS REQUIRED

1. Components

Op-Amp : One: LM741.

Resistance: Five: $1 \text{ k}\Omega$ (1 no), $10 \text{ k}\Omega$ (1 no), $12 \text{ k}\Omega$ (2

Offset null 1 741 8 NC Inverting input 2 7 +V Non-inverting input 3 6 Output -V 4 5 Offset null

PRECAUTIONS AND GUIDELINES

- 1. The op-amp generally works on split power supply (e.g. ±12 V). Both positive and negative power supplies must be present whenever op-amp is powered. The range of power supply is from ±5 V to ±15 V. Do not forget to connect the common terminal of the power supply to the *ground* on the breadboard.
- 2. Connecting only one side of power supply or interchanging positive and negative power supplies damages the op-amp.
- 3. For connecting power supply, you have to follow the procedure as given below.
 - a. Disconnect the power supply to op-amps.
 - b. Switch on the power supply.
 - c. Set the output voltage as required (e.g. ±12 V).
 - d. Switch off the power supply.
 - e. Connect the power supply to op-amps.
 - f. Switch on the power supply.
- 4. For any IC, never exceed the input voltage beyond the power supply limits.
- 5. Use the horizontal strips of the breadboard for power supply. Tap the power supply for each IC from these supply lines.
- 6. Keep ground terminals of the oscilloscope, probes and function generator output, and power supply common connected together throughout the experiment.
- 7. Use AFG in "High Z" mode.

Pre-experiment Reading:

Obtain the theoretical values of V_o / V_i for step 5 of Part A. Do this for Part B also.

PART A: INVERTING AMPLIFIER

- 1. Assemble the circuit shown in Fig. 5.1 with $R_1 = 10 \text{ k}\Omega$ and $R_2 = 1 \text{ k}\Omega$. Make sure the power supply ground is connected to the circuit ground.
- 2. Apply 200 mVp-p, 1 kHz sine wave at V_i from the function generator and see the output.
- 3. Observe V_0 and V_1 and determine voltage gain $A = V_0 / V_1$. Also obtain A for $V_1 = 100$ mVp-p and 300 mVp-p.
- 4. Change R_1 & R_2 to 100 k Ω & 10 k Ω respectively and determine A for $V_i = 100$ mVp-p, 200 mVp-p and 300 mVp-p.
- 5. Now apply a fraction of the voltage V_i (keeping V_i at 200 mVp-p) to the point 'X' through the potential divider circuit (instead of directly connecting the source at 'X') as shown in Fig. 5.2 and note the values of V_o for

(i)
$$R_1/R_2 = \frac{100K\Omega}{10K\Omega}$$
 and (ii) $R_1/R_2 = \frac{10K\Omega}{1K\Omega}$

Compute V_o / V_i for (i) and (ii).

PART B: NON-INVERTING AMPLIFIER

- 1) Assemble the circuit shown in Fig. 5.3 with R_1 = 10 k Ω and R_2 = 1 k Ω . Make sure the power supply ground is connected to the circuit ground.
- 2) Apply 200 mVp-p, 1 kHz sine wave at V_i from the function generator and see the output.
- 3) Observe V_o and V_i , and determine voltage gain $A = V_o / V_i$. Also obtain A for $V_i = 100$ mVp-p and 300 mVp-p.
- 4) Change R_1 & R_2 to 100 k Ω & 10 k Ω respectively and determine A for V_i = 100 mVp-p, 200 mVp-p and 300 mVp-p.
- 5) Now apply a fraction of the voltage V_i (keeping V_i at 200 mVp-p) to the point 'X' through the potential divider circuit as shown in Fig. 5.2 and note the values of V_o for

(i)
$$R_1 / R_2 = \frac{100 K\Omega}{10 K\Omega}$$
 and

(ii)
$$R_1/R_2 = \frac{10K\Omega}{1K\Omega}$$

Fig. 5.3 Non-inverting amplifier

- **Q1**. For a source with high internal impedance which configuration (inverting or non-inverting) will be suitable for designing a good amplifier?
- **Q2**. Design an Amplifier system to obtain a gain of '-50' for a source with high internal resistance. You may use combinations of inverting and non-inverting configurations. (Make use of answer of Q1.)

				741	NC						
Operationa	al Amplifier	-I	Inverting input 2 - 7 +V Non-inverting input 3 + 6 output $Exp5$								
Sl. No.	R1	R2	Aru (mVp-p)	Ch1(mVp-p)		Voltage Gain (A=Vo/Vi)					
Part A: INVERTING AMPLIFIER											
1	10K	1K	100								
2	10K	1K	200								
3	10K	1K	300								
			1								
1	100K	10K	100								
2	100K	10K	200								
3	100K	10K	300								
Vin Measur 1 2	e at Point 'X' 100K 10K	(For Voltage 10K 1K	200 200								
Part B : NO	N-INVERTI	NG AMPLIF	IER								
1	10K	1K	100								
2	10K	1K	200								
3	10K	1K	300								
1	10077	1077	100								
1	100K	10K	100								
2	100K	10K	200								
3	100K	10K	300								
Vin Measur	e at Point 'X'	(For Voltage	e Divider)								

1	100K	10K	200		
2	10K	1K	200		