1.

Algorithm: index(x,L)	Algorithm: linSearch(x,L) [sub-algorithm]	
Requires: a number x and a list L	Requires: a number x and a list L	
Returns: the index number of x in the list, if x is	Returns: True if x occurs in L; False otherwise	
one element in the list; otherwise -1.		
1: if !(linSearch(x,L))	1: if isEmpty(L)	
2: return -1	2: return False	
3: elseif x==head(L)	3: elseif x==head(L)	
4: return 1	4: return True	
5: else	5: else	
6: return 1+index(x,tail(L))	6: return linSearch(x,tail(L))	
7: endif	7: endif	

Note: the sub-algorithm linSearch() (or binSearch) is called to check if x occurs in the list first. In exams, if the question says, "you may call the algorithm/function ...", then it means you can directly use the mentioned algorithm/function for computation without providing further detail (e.g., Q5).

2.

Algorithm: concat(L1,L2)

Requires: two lists L1 and L2

Returns: one list with L1 attaching to front of L2

- 1: if isEmpty(L1)
- 2: return L2
- 3: else
- 4: return cons(head(L1),concat(tail(L1),L2))
- 5: endif

3.

Algorithm: insert(x,i,L)

Requires: a number x, a list L, and an index number i,

 $1 \le i \le length(L) + 1$,

Returns: a list with x inserted as the i-th element

- 1: if i==1
- 2: return cons(x,L)
- 3: else
- 4: return cons(head(L),insert(x,i-1,tail(L)))
- 5: endif
- 4. Refer to Lecture 5 slides.

5.

Algorithm: subset(L1,L2) Requires: two lists L1 and L2

Returns: True if L1 is a subset of L2; False otherwise

1: if length(L1)>length(L2)

2: return False

3: else

4: if isEmpty(L1)5: return True

6: elseif !(linSearch(head(L1),L2))

7: return False

8: else

9: return subset(tail(L1),L2)

10: endif11: endif

6.

Target list	Comparison
[2,3,5,8,13,17,26,33,36,41]	36==2, False
[3,5,8,13,17,26,33,36,41]	36==3, False
[5,8,13,17,26,33,36,41]	36==5, False
[8,13,17,26,33,36,41]	36==8, False
[13,17,26,33,36,41]	36==13, False
[17,26,33,36,41]	36==17, False
[26,33,36,41]	36==16, False
[33,36,41]	36==33, False
[36,41]	36==36, True

9 times of comparisons.

7.

Target list	Middle element	Comparison
[2,3,5,8,13,17,26,33,36,41]	17	36>17
[26,33,36,41]	36	36==36

Use (N/2+1) to compute middle element index. 2 times of comparisons.

Target list	Middle element	Comparison
[2,3,5,8,13,17,26,33,36,41]	13	36>13
[17,26,33,36,41]	26	36>26
[33,36,41]	33	36>33
[36,41]	36	36==36

Use (N/2) to compute middle element index. 4 times of comparisons.

Note: both ways are correct.

In exams, you may use tables/diagrams to show such process more efficiently.

8. i: $O(n^3)$

ii: $O(n^2)$

iii: $O(n \log n)$

iv: O(n)

v: $O(\log n)$

vi: $O(n^2 \log n)$

9. Algorithm (v). Because this function has the slowest growth rate with respect to n.

10.

Left list	Right list
[4,8,3,1,9]	[]
[8,3,1,9]	[4]
[3,1,9]	[4,8]
[1,9]	[3,4,8]
[9]	[1,3,4,8]
[]	[1,3,4,8,9]

11. Refer to Seminar 5 slides.