Guarantees in Reinforcement Learning

Shipra Agrawal

Reinforcement learning

Sequential decision making

- Rounds t = 1, ..., T
 - Observe state take an action
 - Observe response: reward and new state
- Response to an action depends on the state of the system
- Learn how to make decisions using the response
 - Trial and error method
- Applications: autonomous vehicle control, robot navigation, personalized medical treatments, inventory management, intelligent game playing and problem solving....

The reinforcement learning problem

System dynamics given by an MDP (S, A, P, r, s_0)

Rounds t = 1, ..., T. In round t,

- observe state s_t , take action a_t ,
- observe reward $r_t \in [0,1]$, $E[r_t] = r_{s_t,a_t}$
- observe the transition to next state s_{t+1} with probability $P_{s_t,a_t}(s_{t+1})$

The reinforcement learning problem

Solution concept: optimal policy

- Which action to take in which state
- $\pi_t: S \to A$, Action $\pi_t(s)$ in state s

Goal: maximize total reward over a time horizon T

- Unknown reward distributions R and unknown transition function P
- Learn the MDP from observations while maximizing reward

Q-learning (tabular)

Initialize $Q(s, a), \forall s, a$

For
$$t = 1, 2, ...$$
, Greedy

• Take action $a_t = \max_{a} Q(s_t, a)$

- Observe reward r_t , next state s_{t+1}
- Update

$$Q^{t+1}\left(s_{t}, a_{t}\right) \leftarrow (1 - \alpha_{t})Q^{t}(s_{t}, a_{t}) + \alpha_{t}\left(r_{t} + \gamma \max_{a'} Q^{t}(s_{t+1}, a')\right)$$

Q-learning (tabular)

Initialize $Q^0(s, a), \forall s, a$

For t = 1, 2, ...,

- Take action $a_t = \max_a Q(s_t, a)$
- Observe reward r_t , next state s_{t+1}
- Update

$$Q^{t+1}\left(s_t, a_t\right) \leftarrow Q^t(s_t, a_t) + \alpha_t \delta_t$$

where

$$\delta_t = r_t + \gamma \max_{a'} Q^t(s_{t+1}, a') - Q^t(s_t, a_t)$$

Is gradient of $\left(r_t + \gamma \max_{a'} Q^t(s_{t+1}, a') - Q\right)^2$ with respect to Q at $Q^t(s_t, a_t)$

Q-learning function approximation

Use parametric function $Q_{\theta}(s, a)$

• Linear function: feature vector for every s,a: $f_{s,a}=[f_1,f_2,...,f_d]$ $Q_{\theta}(s,a)=f_{s,a}^T\theta$

Deep neural network

Q-learning (function approximation)

Initialize $Q^{\theta}(s,a), \forall s,a$ θ^0

For t = 1, 2, ...,

- Take action $a_t = \max_a Q_{\theta^t}(s_t, a)$
- Observe reward r_t , next state s_{t+1}
- Update

$$\theta^{t+1} \leftarrow \theta^t + \alpha_t \delta_t$$

where

$$\delta_t = \left(r_t + \gamma \max_{a'} Q_{\theta^{t+1}}(s_{t+1}, a') - Q_{\theta^t}(s_t, a_t)\right) \nabla_{\theta^t} Q_{\theta^t}(s_t, a_t)$$

Is gradient of
$$\left(r_t + \gamma \max_{a'} Q^t(s_{t+1}, a') - Q_{\theta}(s_t, a_t)\right)^2$$
 with respect to θ at θ^t

Guarantee (tabular)

Theorem 1 (Watkins and Dayan [1992]). Given bounded rewards $|r_t| \leq R$, learning rates $0 \leq \alpha_t < 1$, and

$$\sum_{i=1}^{\infty} \alpha_{n^i(s,a)} = \infty, \sum_{i=1}^{\infty} (\alpha_{n^i(s,a)})^2 < \infty,$$

then $\hat{Q}^t(s,a) \to Q(s,a)$ as $t \to \infty$ for all s,a with probability 1. Here, $n^i(s,a)$ is the index of the i^{th} time the action a is tried in state s, and $\hat{Q}^t(s,a)$ is the estimate \hat{Q} in round t.

Reinforcement learning guarantees

- PAC analysis
 - Bound the sample complexity for finding a near-optimal policy.
- Regret analysis
 - Difference in reward obtained by algorithm compared to a benchmark policy, over the steps of the execution of the algorithm.
- Focus on number of samples vs. reward

Optimistic Q-learning (PAC-type bounds)

[Evan-dar and Mansour 2002]

Initialize
$$Q^0(s,a) = \frac{1}{\prod_t^T (1-\alpha_t)} V_{max}, \forall s, a$$
 For $t=1,2,\ldots$,

- Take action $a_t = \max_a Q(s_t, a)$
- Observe reward r_t , next state s_{t+1}
- Update

$$Q^{t+1}\left(s_{t}, a_{t}\right) \leftarrow (1 - \alpha_{t})Q^{t}(s_{t}, a_{t}) + \alpha_{t}\left(r_{t} + \gamma \max_{a'} Q^{t}(s_{t+1}, a')\right)$$

- Optimism: Guarantees $Q^t(s, a) \ge Q^*(s, a)$, $\forall t \le T$
- **Theorem**: By setting T large enough (inverse function of ϵ, δ), which ever state action is played infinitely many times is near optimal: has $Q^*(s, a) V^*(s) \ge \epsilon$

Delayed Q-learning [Strehl et al. 2006]

- Modified version of optimistic Q-learning
- Batch update of Q-values after sufficient number of plays

Theorem 1 Let M be any MDP and let ϵ and δ be two positive real numbers. If Delayed Q-learning is executed on MDP M, then it will follow an ϵ -optimal policy on all but $O\left(\frac{SA}{(1-\gamma)^8\epsilon^4}\ln\frac{1}{\delta}\ln\frac{1}{\epsilon(1-\gamma)}\ln\frac{SA}{\delta\epsilon(1-\gamma)}\right)$ timesteps, with probability at least $1-\delta$.

Regret minimization

Goal:

• Minimize regret in time T

$$Reg(M,T) = T \rho^* - \sum_{t=1}^{T} r(s_t, a_t)$$

• ho^* is infinite horizon average reward (gain), achieved by the best stationary policy π^*

(We care about **performance** during the execution of the algorithm)

How to learn the response model and state transition model, while minimizing "regret"?

The need for exploration

- Single state MDP
 - Solution concept: optimal action
 - Multi-armed bandit problem
- Uncertainty in rewards
 - Random rewards with unknown mean μ_1 , μ_2
- Exploit only: use the current best estimate
 (MLE/empirical mean) of unknown mean to pick arms
- Initial few trials can mislead into playing red action forever

Exploration-Exploitation tradeoff

- Exploitation: play the empirical mean reward maximizer
- Exploration: play less explored actions to ensure empirical estimates converge

The need for exploration

- Uncertainty in rewards, state transitions
- Unknown reward distribution, transition probabilities
- Exploration-exploitation:
 - Explore actions/states/policies, learn reward distributions and transition model
 - Exploit the (seemingly) best policy

Summary of recent work

Upper confidence bound based algorithms [Jaksch, Ortner, Auer, 2010] [Bartlett, Tewari, 2012]

- Worst-case regret bound $\tilde{O}(DS\sqrt{AT})$ for communicating MDP
- Lower bound $\Omega(\sqrt{DSAT})$

Optimistic Posterior Sampling [A. Jia 2017]

- Worst-case regret bound $\tilde{O}(D\sqrt{SAT})$ for communicating MDP of diameter D
- Improvement by a factor of \sqrt{S}

Optimistic Value iteration [Azar, Osband, Munos, 2017]

• Worst-case reget bound $\tilde{O}(\sqrt{HSAT})$ in episodic setting

Posterior sampling known prior setting [Osband and Van Roy, 2016, 2017]

■ Bayesian regret bound of $\tilde{O}(H\sqrt{SAT})$ in episodic setting, length H episodes

Next...

- >UCRL: Upper confidence bound based algorithm for RL
- Posterior sampling based algorithm for RL
 - Main result
 - Proof techniques

UCRL algorithm [Jacksch, Ortner, Auer 2002]

Similar principles as UCB

This is a *Model-based approach*

- Maintain an estimate of model \hat{P} , \hat{R}
- Occassionally solve the MDP $(S, A, \hat{P}, \hat{R}, s_1)$ to find a policy
- Run this policy for some time to get samples, and update model estimate

Compare to ``model-free" approach or direct learning approach like Q-learning

Directly update Q-values or value function or policy using samples.

UCRL algorithm

 Proceed in epochs, an epoch ends when the number of visits of some stateaction pair doubles.

In the beginning of every epoch k

- Use samples to compute an optimistic MDP (S, A, \tilde{R} , \tilde{P} , s_1)
 - MDP with value greater than true MDP (Upper bound!!)
- Solve the optimistic MDP to find optimal policy $\tilde{\pi}$

Execute $\tilde{\pi}$ in epoch k

• observe samples s_t, r_t, s_{t+1}

Go to next epoch If visits of *some* state-action pair doubles

• If $n_k(s, a) \ge 2 n_{k-1}(s, a)$ for some s, a

UCRL algorithm (computing optimistic MDP)

In the beginning of every epoch k

- For every s, a, compute **empirical** model estimate
 - let $n_k(s, a)$ be the number of times s, a was visited before this epoch,
 - let $n_k(s, a, s')$ be the number of transition to s'
 - Set $\hat{R}(s, a)$ as average reward over these $n_k(s, a)$ steps
 - Set $\hat{P}(s, a, s')$ as $\frac{n_k(s, a, s')}{n_k(s, a)}$
- Compute optimistic model estimate
 - Use Chernoff bounds to define confidence region around \hat{R} , \hat{P}

$$|\widehat{P}(s, a, s') - P(s, a, s')| \le \frac{\log(t)}{\sqrt{n_k(s, a)}}$$
 with probability $1 - \frac{1}{t^2}$

- True R, P lies in this region
- Find the best combination , \tilde{R} , \tilde{P} in this region
 - MDP (S, A, \tilde{R} , \tilde{P} , s_1) with maximum value
 - Will have value more than the true MDP

Main result

Recall regret:

Regret(M,T) =
$$T \rho^* - \sum_{t=1}^{T} r(s_t, a_t)$$

• Theorem: For any **communicating** MDP M with (unknown) diameter D, with high probability:

$$Regret(M,T) \leq \tilde{O}(DS\sqrt{AT})$$

• $\tilde{O}()$ notation hides logarithmic factors in S,A,T beyond constants.

Communicating MDPs

Non-episodic setting, no restarts

Can get stuck on a bad state for a long time

Communicating MDPs:

- There is always a way to get out of a bad state in finite time
- Definition: For every pair of states s, s', there exists a policy π such that using this policy starting from s, expected time to reach s' is finite and bounded by D, called **the diameter** of the MDP

Useful properties of communicating MDPs

- Optimal asymptotic average reward doesn't depend on the starting state.
- Asymptotic average reward (**Gain**) of policy π

$$\rho^{\pi}(s) = E\left[\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} r(s_t, \pi(s_t)) \mid s_1 = s\right]$$

• There exists a single policy π^* such that

$$\max_{\pi} \rho^{\pi}(s) = \rho^{\pi^*}(s), \forall s =: \rho^* \text{ (Optimal gain)}$$

Main result

Recall regret:

Regret(M,T) =
$$T \rho^* - \sum_{t=1}^{T} r(s_t, a_t)$$

• Theorem: For any **communicating** MDP M with (unknown) diameter D, with high probability:

$$\operatorname{Regret}(M,T) \leq \tilde{O}(DS\sqrt{AT})$$

• $\tilde{O}()$ notation hides logarithmic factors in S,A,T beyond constants.

Next...

- Our setting, regret definition
- **▶ Posterior sampling algorithm** for MDPs
 - Main result
 - Proof techniques

Posterior Sampling: main idea [Thompson 1933]

- Maintain Bayesian posteriors for unknown parameters
- With more trials posteriors concentrate on the true parameters
 - Mode captures MLE: enables exploitation
- Less trials means more uncertainty in estimates
 - Spread/variance captures uncertainty: enables exploration
- A sample from the posterior is used as an estimate for unknown parameters to make decisions

Posterior Sampling: Bayesian posteriors

- Assume for simplicity: Known reward distribution
- Needs to learn the unknown transition probability vector $P_{s,a} = (P_{s,a}(1), ..., P_{s,a}(S))$ for all s,a
- In any state $s_t = s$, $a_t = a$, observes new state s_{t+1}
 - outcome of a Multivariate Bernoulli trial with probability vector $P_{s,a}$

Posterior Sampling with Dirichlet priors

- Given prior Dirichlet($\alpha_1, \alpha_2, ..., \alpha_S$) on $P_{s,a}$
- After a Multinoulli trial with outcome (new state) i, Bayesian posterior on $P_{s,a}$ Dirichlet $(\alpha_1, \alpha_2, ..., \alpha_i + 1, ..., \alpha_S)$
- After $n_{s,a} = \alpha_1 + \cdots + \alpha_S$ observations for a state-action pair s,a
 - Posterior mean vector is empirical mean

$$\widehat{P}_{s,a}(i) = \frac{\alpha_i}{\alpha_1 + \dots + \alpha_S} = \frac{\alpha_i}{n_{s,a}}$$

- variance bounded by $\frac{1}{n_{s,a}}$
- With more trials of s, a, the posterior mean concentrates around true mean

Posterior Sampling for RL (Thompson Sampling)

Learning

- Maintain a Dirichlet posterior for $P_{s,a}$ for every s,a
 - After round t, on observing outcome s_{t+1} , update for state s_t and action a_t

To decide action

- Sample a $\tilde{P}_{s,a}$ for every s, a
- Compute the optimal policy $\tilde{\pi}$ for sample MDP $(S, A, \tilde{P}, r, s_0)$
- Choose $a_t = \tilde{\pi}(s_t)$

Exploration-exploitation

- Exploitation: With more observations Dirichlet posterior concentrates, $\tilde{P}_{s,a}$ approaches empirical mean $\hat{P}_{s,a}$
- Exploration: Anti-concentration of Dirichlet ensures exploration for states/actions/policies less explored

Optimistic Posterior Sampling [A., Jia, NIPS 2017]

• Proceed in epochs, an epoch ends when the number of visits $N_{s,a}$ of any state-action pair doubles.

In every epoch

- For every s, a, generate **multiple** $\psi = \tilde{O}(S)$ independent samples from a Dirichlet posterior for $P_{s,a}$
- Form **extended** sample MDP $(S, \psi A, \tilde{P}, r, s_0)$
- Find optimal policy $\tilde{\pi}$ and use through the epoch

Further, initial exploration:

• For s,a with very small $N_{s,a}<\sqrt{\frac{TS}{A}}$, use a simple optimistic sampling, that provides extra exploration

Main result [A., Jia NIPS 2017]

- An algorithm based on posterior sampling with high probability near-optimal worst-case regret upper bound
- Recall regret:

Regret(M,T) =
$$T \rho^* - \sum_{t=1}^{T} r(s_t, a_t)$$

• <u>Theorem:</u> For any **communicating** MDP M with (unknown) diameter D, and for $T \ge S^5 A$, with high probability:

$$Regret(M,T) \leq \tilde{O}(D\sqrt{SAT})$$

• Improvement of \sqrt{S} factor above UCB based algorithm

Next...

- UCRL
- Posterior sampling algorithm for MDPs
- **▶** Proof techniques

Regret Analysis (outline)

Average regret in an epoch k

$$\rho^* - \frac{1}{T_k} \sum_{t \in T_k} r_{s_t, a_t} = (\rho^* - \tilde{\rho}) + \left(\tilde{\rho} - \frac{1}{T_k} \sum_{t \in T_k} r_{s_t, a_t}\right)$$

- Optimal Gain (Asymptotic average reward) for true MDP M (policy π^*)
- Optimal Gain for sample extended MDP (policy $\tilde{\pi}_k$)
- First term: we show optimism $\tilde{\rho} \geq \rho^*$
 - Immediate for UCB
 - Needs to use spread (anti-concentration) of posterior in Thompson Sampling

Regret Analysis (main insights)

- Average regret in an epoch k $\rho^* \frac{1}{T_k} \sum_{t \in T_k} r_{s_t, a_t} = (\rho^* \tilde{\rho}) + \left(\tilde{\rho} \frac{1}{T_k} \sum_{t \in T_k} r_{s_t, a_t}\right)$
 - Optimal Gain for true MDP M (policy π^*)
 - Optimal Gain for sample extended MDP (policy $\tilde{\pi}_k$)

Second term

- Same policy but different MDP
- ullet $\widetilde{
 ho}$: follows estimated/sampled transition probability vector
- $\frac{1}{T_k}\sum_{t\in T_k}r_{s_t,a_t}$: follows true transition probability vector
- Bounded using concentration of estimated/sampled transition probability vector