北京林业大学 2009-2010 学年第_二_学期考试试卷

课程名称:_	数理统计 B	(A卷)	课程所在学院:	理学院	
考试班级	学号_	4号	姓名	成绩	
8. 考试时间	为 <u>120</u> 分钟,请 ,请将试卷和答题	掌握好答题	页,共 <u>十</u> 大部分,请时间; 班级、学号、姓名填写;		
一、填空题(每	手小题 3 分, 共 15	分)			
2. 己知 P(A)= 3. 己知 5%的	0.4, P(B)=0.3, 1	A、B 相互 人是色盲,	4 丸, 其中有 2 丸失效的独立, 则 P(A∪B)=_0.5 假设男人女人各占一半。	8 。	人恰是
4. X 服从参数	対 λ (其中 λ > ())的泊松(Pc	oisson)分布,且E[(X-1	$(X-2)$]=1,则 λ =_	1
5. 己知 X ₁ , 2	$X_2, \cdots X_9$ 是来自	自总体 X 的作	简单随机样本, $EX = \mu$	$\hat{\theta} = \frac{1}{5} \sum_{i=1}^{4} X_i + C \sum_{i=1}^{5} X_i$	$\sum_{i=5}^{6} X_i$,
则当 C = 1/	25 时, ê 为	D总体期望 p	的无偏估计。		

二、单项选择题(每小题3分,共15分)

1. 已知连续型随机变量 X 的概率密度函数为 $f(x) = Ae^{-txl}$,则 A = B

A. 1: B. 0.5: C. 2;

A. 减少: B. 增大: C. 不变: D. 增减不定。

3. 设随机事件 A 、 B 互不相容, 且 P(B) > 0 , 则下列选项必然正确的是____A___。

A.
$$P(A|B) = 0$$
:

A. P(A|B) = 0; B. P(A) = 1 - P(B); C. P(A|B) = 1; D. $P(\overline{AB}) = 0$

4. 设总体X 服从均匀分布U[2,14],从中随机选取容量为10的样本,则样本均值的方差为A。

A. 1.2: B. 12: C. 120: D. 60

设二维随机变量(X,Y)~N(2,1,4,25,0.3),则cov(X,Y)=___D__。

A. 1: B. 30: C. 15: D. 3

三、(12 分) 设离散型随机变量 X 取 0 和 1 两个值,且 X 取 1 的概率是它取 0 的概率的四倍,求 (1) X 的分布列。(2) X 的数学期望和方差。(3) $Y = X^2$ 的分布列。(4) E(XY)。

(4) EXY=E X3=0.8

四、(9分) X的概率密度为: $f(x) = \begin{cases} 2x & 0 < x < 1 \\ 0 & \text{其它} \end{cases}$, 求(1) X的分布函数。(2) $P\{X < 0.5\}$

(3) 令 $Y = e^X$, 求Y的概率密度函数 $f_y(y)$ 。

解: (1)
$$F(x) = \begin{cases} 0, & x \le 0 \\ x^2, 0 < x \le 1 \\ 1, & x > 1 \end{cases}$$
 (2) 0.25 (3) $f_Y(y) = \begin{cases} \frac{\ln y}{y}, 1 \le y \le e \\ 0, 其它 \end{cases}$

五、(6 分) 设随机变量 X_1 、 X_2 的密度函数分别为:

$$f_1(x_1) = \begin{cases} 2e^{-2x_1} & x_1 > 0 \\ 0 & x_1 \le 0 \end{cases} \qquad \text{if } f_2(x_2) = \begin{cases} \frac{1}{4} & 0 < x_2 < 4 \\ 0 & \cancel{1} > 0 \end{cases}$$

(1) 求 $E(2X_1-3X_2)$ 。(2) 设 X_1 、 X_2 相互独立,写出 X_1 和 X_2 的联合密度函数。

解 (1) -5: (2)
$$f(x_1,x_2) = \begin{cases} \frac{1}{2}e^{-2x_1}, x_1 > 0, 0 < x_2 < 4 \\ 0, 其它 \end{cases}$$

六、(8分) 设总体 $X \sim N(40,5^2)$.

- (1) Y = 2X + 1, 求 X, Y 的协方差和相关系数。
- (2) 抽取容量为 36 的样本,用标准正态分布函数 $\Phi(x)$ 表示 $P\{35 \le \overline{X} \le 45\}$ 。

$$DY = D(2X + 1) = 4DX = 100$$
 2 $\%$

 $E(XY) = E[X(2X+1)] = 2EX^2 + EX = 2[DX + (EX)^2] + EX = 2[25+1600] + 40 = 3290 \dots 3$

$$: cov(X,Y) = E(XY) - EX \cdot EY = 3290 - 40 \times 81 = 50$$
4 分

(2)
$$\overline{X} \sim N(40, \frac{25}{36})$$
 _____6 分

$$P\{35 \le \overline{X} \le 45\} = \Phi(\frac{45 - 36}{\sqrt{25/36}}) - \Phi(\frac{35 - 36}{\sqrt{25/36}})$$

$$=\Phi(6)-\Phi(-6)=2\Phi(6)-1$$
 8 分

七、 $(5\ \mathcal{G})$ 一大批产品中优质品占一半,每次抽取一件,看后放回再抽,用中心极限定理求 100次抽取中取到优质品的次数不超过 45 的概率? $\Phi(1)=0.84$.

解: 设
$$X$$
:取到优质品的次数,显然 $X \sim B(100, 0.5)$ 1分

根据題意有:
$$z_{0.025} \times \frac{2\sigma}{\sqrt{n}} = 1.96 \times \frac{2}{\sqrt{n}} \le 1.2$$

所以
$$\sqrt{n} \ge \frac{2 \times 1.96}{1.2}$$
, 即 $n \ge \frac{4 \times 1.96^2}{1.2^2} = \frac{49^2}{15^2} = 10.67$

所以样本容量 n 至少为 11 8 分

十、(12分)农业试验站为了研究某种新化肥对农作物的效果进行试验,得到农作物产量(千克)如下:

施肥 34 35 30 32 33 34

未施肥 29 27 32 31 28 32 31

设两种情况下农作物产量均服从正态分布. 在显著性水平 0.05 下,

(1) 检验这两个正态总体的方差是否相等。

$$F(0.975,5,6) = 0.143, F(0.025,5,6) = 5.99$$
, $F(0.975,6,5) = 0.167, F(0.025,6,5) = 6.98$

(2) 检验该种新化肥对农作物产量的效力是否显著? t(0.05,11) = 2.2。

(1) 检验
$$H_0: \sigma_1^2 = \sigma_2^2$$
 , $H_1: \sigma_1^2 \neq \sigma_2^2$ 5分

因为
$$0.143 = F_{0.925}(5,6) < F < F_{0.025}(5,6) = 5.99$$

所以,接受 H_0 ,即认为两个总体的方差相等(无显著差异)。 8分

$$T = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = 2.828...11 \text{ f}$$

 $t_{\alpha}(n_1+n_2-2)=t_{0.05}(11)=2.2$,因为|T|>2.2,故拒绝 H_0 ,即认为该种新化肥对农作物产量的