Функции

Решение любой задачи естественно стараться свести к решению нескольких маленьких подзадач. Если в программе приходится несколько раз выполнять один и тот же алгоритм, то имеет смысл выделить его в подпрограмму и вызывать ее при необходимости. Такая подпрограмма будет называться функцией.

```
Функция имеет следующий вид:
тип имя(список аргументов)
{
тело функции
}
```

Аргументы перечисляются через запятую с указанием типов. Если аргументов нет, ставятся пустые скобки.

Функции: возвращаемое значение

Функции в языке С++ делятся по смыслу на 2 типа.

- Тип void: функция выполняет определённые действия (чтение данных, вывод на экран, и т.д.). Точка выхода из функции – её последняя команда или return;
- Любой другой тип (int, bool, float, ...): функция вычисляет некоторое значение и возвращает его. Точка выхода из функции – return <значение>;

Функции типа void вызываются по её имени со списком аргументов: print("hello");

После имени функции круглые **скобки ставятся обязательно**, даже если функция не имеет аргументов. Функция должна быть объявлена до того места, где она будет вызвана.

При вызове функций других типов, как правило, сохраняется или используется как-то иначе их возвращаемое значение:

```
int m = max(2, 3);
```

Функции: пример

```
void print(string text)
{
    cout << text << endl;</pre>
    // return; — не обязателен
int max(int a, int b) // тип нужно указывать у каждого аргумента
    // если a > b, функция завершит работу и вернёт значение а
    if (a > b) return a;
    // здесь можно не писать else, т.к. мы попадём сюда только
    // в том случае, если условие не выполнилось
    return b;
int main()
    print("hello");
    cout << max(4, 2) << endl; // выводим возвращаемое значение
```

Количество цифр

Дано три символа. Требуется определить, сколько из них являются цифрами. При решении данной задачи реализуйте функцию, которая возвращает 1, если символ – цифра, и 0 – иначе.

Входные данные

На вход подаются 3 символа без разделителей.

Результат работы

Напечатайте одно натуральное число – количество цифр.

Входные данные	Результат работы
123	3
A5!	1

Сумма простых чисел

Даны N целых чисел. Определите, какие из чисел являются простыми и вычислите их сумму. Также определите, будет ли их сумма простым числом. При решении данной задачи реализуйте функцию, которая проверяет одно целое число на простоту.

Входные данные

На вход подаётся натуральное число N, далее ещё N целых неотрицательных чисел.

Результат работы

На первой строке выведите на экран сумму простых чисел, на второй – слово «Yes», если их сумма – простое число; иначе слово «No».

Входные данные	Результат работы
3	19
3 5 11	Yes
5	2
4 2 0 1 9	Yes
2	0
8 8	No

Суммы цифр

Учительница записала на доске целое число N. Вовочка подсчитал сумму цифр этого числа и записал ее ниже. С полученным числом он проделал то же самое, и продолжал выписывать числа до тех пор, пока два последних записанных числа не совпали. Ваша задача — найти сумму S всех выписанных на доску чисел. Реализуйте подсчёт суммы цифр в числе в виде отдельной функции.

Входные данные

На вход подаётся натуральное число $N \le 2 \cdot 10^9$.

Результат работы

Напечатайте натуральное число S.

Входные данные	Результат работы
34	48
1234	1246
987654	987711

Подсчет букв

Дано три символа. Требуется определить, сколько из них являются буквами латинского алфавита. При решении данной задачи реализуйте функцию, которая возвращает 1, если символ – цифра, и 0 – иначе.

Входные данные

На вход подаются 3 символа без разделителей.

Результат работы

Напечатайте одно натуральное число – количество букв.

Входные данные	Результат работы
i23	1
A5n	2
282	0

В одном шаге от счастья

Вова купил билет в трамвае 13-го маршрута и сразу посчитал суммы первых трёх цифр и последних трёх цифр номера билета (номер у билета шестизначный). Оказалось, что суммы отличаются ровно на единицу. «Я в одном шаге от счастья», – подумал Вова, – «или предыдущий или следующий билет точно счастливый». Прав ли он?

Входные данные

На вход подаётся количество билетов N, далее N шестизначных номеров билетов.

Результат работы

Для каждого номера выведите на экран "Yes", если Вова был прав; иначе "No"

Входные данные	Результат работы
3	Yes
715068	No
445219	Yes
012200	

Секрет

Вам в руки попала секретная записка на английском языке. Текст записки может быть любым, главное - код, заложенный в тексте. Чтобы расшифровать записку нужно посчитать количество букв «b» и «g» в записке (на любом регистре). Если букв «b» больше, чем букв «g», то все плохо. Если букв «b» меньше, чем букв «g», то все хорошо. Ну, а если буквы содержатся в записке в одинаковом количестве, то пока не ясно, как дела пойдут. Напишите программу для расшифровки таких секретных записок.

Входные данные

На вход подаются строки, состоящие из английских букв, цифр, пробелов и знаков препинания.

Результат работы

Напечатайте все строки в неизменном виде, после на новой строке выведите слово, определяющее тайный смысл записки:

- «GOOD» если все хорошо;
- «ВАD» если все плохо;
- «NEUTRAL» если пока не ясно, как пойдут дела.

Секрет

Входные данные	Результат работы
It is rainy and I have bought umbrella	It is rainy and I have bought umbrella BAD
It is rainy and I have bought tea	It is rainy and I have bought tea NEUTRAL
My aunt Ann is greedy!	My aunt Ann is greedy! GOOD

Рекурсия

Состояние, в котором функция вызывает сама себя или несколько функций вызывают друг друга, называется **рекурсией**. Использование рекурсии часто позволяет упростить реализацию алгоритма, однако иногда её использование существенно снижает эффективность программы.

```
Пример рекурсивной функции:

unsigned long long fact(int n)
{
   if (n < 2)
      return 1;
   else
      return fact(n-1)*n;
}
```

Рекурсия: плохой пример

return 1;

else

Реализуем рекурсивную функцию, вычисляющую n-ое число Фибоначчи по определению: $F_n = F_{n-1} + F_{n-2}$. unsigned long fib(int n) { if (n < 3)

л Попробуйте вычислить с её помощью 40-ое число Фибоначчи. В чём причина низкой производительности?

? Перепишите функцию без использования рекурсии.

return fib(n-1) + fib(n-2);

Разворот

Дано натуральное число N и последовательность из N элементов. Требуется вывести эту последовательность в обратном порядке. Для решения задачи напишите рекурсивную функцию.

Входные данные

На вход подаётся натуральное число N, за ним ещё N натуральных чисел.

Результат работы

Выведите N чисел в обратном порядке.

Входные данные	Результат работы
3	3 2 1
1 2 3	

Рекурсия: задачи

При решении следующих задач используйте рекурсию, пользоваться циклами нельзя. Все числа в задачах натуральные, их количество не превышает 10000.

- ? Напечатайте все числа от 1 до n
- ? Вычислите сумму цифр данного числа
- ? Выведите цифры числа справа налево через пробел
- ? Выведите цифры числа слева направо через пробел
- ? Выведите все нечётные элементы последовательности (0 признак конца)
- Выведите все элементы последовательности с нечётными номерами (0 признак конца)

Работа с файлами

Для работы с файловой системой используется библиотека fstream. Загрузив файлы на чтение или на запись с ними можно работать, как с потоками (например cin, cout).

```
#include <fstream> // библиотека для работы с файлами
#include <iostream>
using namespace std;
int main()
    ifstream input("input.txt"); // открыть файл на чтение
    ofstream out("out.txt"); // открыть файл на запись
    if (!input || !out) // xx
        cout << "Ошибка загрузки файла" << endl;
        return 0:
    string s;
   while (getline(input, s))
        out << s << endl;
```

Работа с файлами: задачи

Создайте файл "matrix.txt" со следующим содержимым:

- 3 4
- 1 2 4 8
- 1 3 9 27
- 1 5 25 125

В первой строке файла заданы размеры матрицы $m \times n$ (количество строк и столбцов). Далее идут строки матрицы.

- ? Считайте содержимое файла и выведите матрицу на экран
- ? Запишите матрицу, умноженную на 2, в файл "out.txt"
- ? Вычислите сумму каждой строки матрицы
- ? Вычислите сумму каждого столбца матрицы

Графы: матрица смежности

Рассмотрим следующую матрицу:

```
i/j 1 2 3 4 5
1 0 1 0 0 1
2 1 0 0 1 0
3 1 0 0 1 1
4 0 0 0 0 0
5 0 0 1 0 1
```

Единица в позиции (i, j) означает, что между **вершинами** i и j существует **ребро**. Квадратная матрица, составленная из нулей и единиц, называется **матрицей смежности**, которая однозначно задаёт наборы вершин V и рёбер между ними E:

```
\begin{split} V &= \{v_1, v_2, v_3, v_4, v_5\}, \\ E &= \{(v_1, v_2), (v_1, v_5), (v_2, v_1) \ldots, (v_5, v_5)\}. \end{split}
```

Множество, объединяющее эти 2 набора $G = \{V, E\}$, называется **графом**. Графы часто используются в программировании: с их помощью удобно задавать карты дорог, связи между компьютерами в сети и т.д.

Матрица смежности: задачи

Создайте файл "m.txt" со следующим содержимым:

- 5 5
- 01001
- 10010
- 10011
- 00000
- 00101
- В первой строке файла заданы размеры матрицы $m \times n$ (количество строк и столбцов). Далее идут строки матрицы смежности. Будем считать, что матрицей задана карта дорог между городами.
- ? Подсчитайте общее количество дорог между городами
- ? Определите, между какими городами есть дороги
- ? Определите, есть ли прямая дорога из города і в город ј
- ? Определите, сколько в графе концевых вершин, т.е. городов, из которых нет ни одной дороги
- ? Определите, сколько в графе **петель**, т.е. дорог, ведущих из города і в город і

Матрица смежности: ещё задачи

Создайте файл "m.txt" со следующим содержимым:

В первой строке файла заданы размеры матрицы $m \times n$ (количество строк и столбцов). Далее идут строки матрицы смежности. Будем считать, что матрицей задана карта дорог между городами.

- Двумерный вектор: vector < vector int> >(n, vector <int>(n));
- ? Найдите **степени** всех вершин графа, т.е. количество дорог, входящих и выходящих из каждого города
- ? Определите, сколько в графе **изолированных вершин**, т.е. городов из которых нет и в которые нет ни одной дороги
- ? Граф называется **регулярным**, если степени всех его вершин равны. Проверьте, является ли заданный граф регулярным
- ? Граф называется **ориентированным**, если его рёбрам задано направление. Проверьте, является ли заданный граф ориентированным

Надёжный пароль

Будем считать пароль надёжным, если он включает в себя хотя бы одну строчную английскую букву, хотя бы одну заглавную английскую букву и хотя бы одну цифру, при этом его длина должна быть не менее 12 символов. Требуется по данному паролю определить, надёжный ли он.

Входные данные

На вход программе подаётся одна строка.

Результат работы

Выведите на экран "Safe", если пароль надёжный, и "Unsafe" в противном случае.

Входные данные	Результат работы
VasyaPupkin007	Safe
xXx1337xXx	Unsafe
PupkinVasiliyVasilyevich	Unsafe

ІР-адрес

Для того чтобы выходить в Интернет, каждому компьютеру присваивается так называемый IP-адрес. Он состоит из четырех целых чисел в диапазоне от 0 до 255, разделенных точками. По заданной строке требуется определить, является ли она правильным IP-адресом.

Входные данные

На вход программе подаётся произвольная строка не длиннее 1000 символов.

Результат работы

Выведите на экран "Good", если строка является правильным IP-адресом, и "Bad" в противном случае.

Входные данные	Результат работы
192.168.1.1	Good
1.2.3.4	Good
123.456.321.1	Bad
12.3	Bad
1.2.3.	Bad
10.010.0010.12	Good 21

Напёрстки

Шулер показывает следующий трюк. Он имеет три одинаковых наперстка. Под первый (левый) он кладет маленький шарик. Затем он очень быстро выполняет ряд перемещений наперстков, каждое из которых — это одно из трех перемещений - A, B, C:

А - обменять местами левый и центральный наперстки,

В - обменять местами правый и центральный наперстки,

С - обменять местами левый и правый наперстки.

Необходимо определить, под каким из наперстков окажется шарик после всех перемещений.

Входные данные

На вход программе подаётся строка, состоящая из букв А, В, С.

Результат работы

Выведите на экран номер напёрстка, под которым окажется шарик: 1, 2 или 3.

Входные данные	Результат работы
CBABCACCC	1
С	3

Цветной дождь

В Банановой республике очень много холмов, соединенных мостами. На химическом заводе произошла авария, в результате чего испарилось экспериментальное удобрение. На следующий день выпал цветной дождь, причем он прошел только над холмами. В некоторых местах падали красные капли, в некоторых - синие, а в остальных - зеленые. Президенту Банановой республики захотелось покрасить мосты между вершинами в цвет холмов, которые они соединяют. Если холмы разного цвета, то покрасить мост таким образом не удастся. Посчитайте количество таких "плохих" мостов.

Входные данные

В файле m1.txt в первой строке записано число холмов n, а в следующих n строках записана матрица смежности, описывающая наличие мостов между холмами. В последней строке записаны n чисел, обозначающие цвета холмов: 1 - красный, 2 - синий, 3 - зеленый.

Результат работы

Выведите на экран количество "плохих" мостов.

Цветной дождь

Входные данные	Результат работы
7	4
0 1 0 0 0 1 1	
1010000	
0 1 0 0 1 1 0	
0 0 0 0 0 0 0	
0010010	
1010100	
100000	

Числа-палиндромы

Палиндромом называется строка, которая одинаково читается как слева направо, так и справа налево. Рассмотрим все натуральные числа, запись которых в десятичной системе счисления является палиндромом (при этом запись не начинается с нуля). Например, числа 121 и 1331 являются палиндромами, а число 123 — нет. По данному числу N найдите N-е в порядке возрастания число-палиндром.

Входные данные

Программа получает на вход одно натуральное число N, не превосходящее 100000.

Результат работы

Программа должна вывести одно натуральное число — N-е в порядке возрастания число-палиндром.

Входные данные	Результат работы
20	111

Библиотека glcanvas: создание окна

Начало координат в окне — левый верхний угол; ось X направлена влево, ось Y — вниз. Функция принимает размеры окна в пикселях; размер по умолчанию: 640×480 пикселей.

void window(int w = 640, int h = 480)

Функция прорисовки

Все операции, связанные с прорисовкой графики, нужно помещать внутри одной функции. В main эту функцию необходимо специально "зарегистрировать" как glutDisplayFunc. После этого функция будет вызываться автоматически, когда необходимо перерисовать содержимое окна. Для работы с функциями glcanvas нужно подключить саму библиотеку, также удобно использовать пространство имён cnv.

```
// минимальный пример
#include <glcanvas.hpp>
using namespace cnv;
void draw()
    glutSwapBuffers();
int main()
    window();
    glutDisplayFunc(draw);
    glutMainLoop();
```

Основные функции

```
void draw()
{
    // очистка экрана (цвет фона)
    clear(255, 255, 255);
    // окружность и круг (координаты центра и радиус)
    circle(100, 100, 20);
    circle fill(240, 175, 25);
    // прямоугольники (координаты двух углов)
    rect(120, 150, 200, 450);
    rect fill(500, 300, 520, 320);
    // отрезки (координаты концов)
    line(40, 40, 80, 80);
    line(80, 80, 20, 80);
    line(20, 80, 40, 40);
    // вывод текста
    position(300, 300);
    text out << "Hello, world!";
    // вывод содержимого буфера в окно
    glutSwapBuffers();
```

Цвет

Цвет в формате RGB задаётся тремя компонентами (красный, зелёный, синий). Он может быть записан двумя способами: как тройка десятичных чисел (r,g,b) от 0 до 255 или как одно шестнадцатеричное число 0xrrggbb, в котором каждый байт содержит соответствующую компоненту.

В glcanvas цвет по умолчанию — чёрный. Изменить его можно функциями color(hex) и color4(r, g, b). Кроме того, в функции рисования фигур (circle, rect и т.д.) можно передать цвет в формате НЕХ последним аргументом:

circle(100, 200, 40, 0xff0000); Для перевода цвета из RGB в HEX есть функция hexcolor(r, g, b): circle(100, 200, 40, hexcolor(255, 0, 0));

Мышь и клавиатура, анимация

Анимация графики осуществляется путём её перерисовки после некоторого события: например, движение мышки, нажатие клавиши на клавиатуре или срабатывание таймера.

```
// Реагирует на движение мыши с нажатой кнопкой (перетаскивание) void glutMotionFunc(void (*func)(int x, int y));
// Реагирует на любое движение мыши void glutPassiveMotionFunc(void (*func)(int x, int y));
// Реагирует на клики
// button: GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, GLUT_RIGHT_BUTTON
// state: GLUT_UP, GLUT_DOWN
void glutMouseFunc(void (*func)(int button, int state, int x, int y));
// Реагирует на нажатие клавиши
void glutKeyboardFunc(void (*func)(unsigned char key, int x, int y));
// В функциях выше x, y - координаты курсора
// Срабатывает по таймеру каждые msecs миллисекунд
void glutTimerFunc(unsigned int msecs, void (*func)(int value), value);
```