		GEOMETRY TEST	1	
Name		Date		
drawn to scale. Do n	te as many problems as yo not assume any pair of line ume all lines that appear s	e segments are congruent,	parallel, or perpendicul	lar unless specifically
	zoid is 40 square inches and		th of 4 inches. If the heig	ght of the trapezoid is 8
inches, find the length (A) 2	n of the other base in inches. (B) 3	(C) 4	(D) 5	(E) 6
2. Find <i>m</i> ∠CBD	D			
A-	$\frac{\left(10x+10\right)^{\circ} \left(8x-10\right)^{\circ}}{B}$	C		
(A) 10°	(\mathbf{B}) 50°	(C) 70°	(D) 110°	$(\mathbf{E}) 150^{\circ}$
3. Two obtuse adjace (A) always	ent angles will be su (B) usually	pplementary. (C) sometimes	(D) seldom	(E) never
4. What is another na	W	X Y Z		
	I. \overrightarrow{XZ}	II. \overrightarrow{ZW}	III. \overrightarrow{ZY}	
(A) I	(B) I and II	(C) I and III	(D) II and III	(E) I, II, and III
5. Find the area of the	e following figure. Assume	consecutive sides are perpe	endicular.	
	10 5 8			
(A) 150	(B) 160	(C) 164	(D) 168	(E) 172
6. The distance aroun (A) $8\pi \text{ft}^2$	and a circular pool is 16π ft. (B) 16π ft ²	Find the area of the pool. (C) $64\pi \text{ft}^2$	(D) $144\pi \text{ft}^2$	(E) $256\pi \text{ft}^2$
(A) 0/1 II	(b) 10% it	(C) 04/11	(D) 144/11	(E) 230% It
7. If B is the midpoin	at of \overline{AC} , find the value of	2B-1. A 10	В	C
(A) 49	(B) 59	(C) 69	(D) 79	(E) 99

(C) 3

(D) 4

8. If WX = 4, WY = 10, and WZ = 18, find YZ - XY.

(B) 2

(A) 1

X

Y

(E) 5

Z

9. How many planes can p (A) 0	ass through a line and a g (B) 1	iven point on the line? (C) 2	(D) 3	(E) an infinite number
10. Two distinct intersecting (A) 1 point	ng lines intersect at (B) 2 points	(C) 3 points	(D) 4 points	(E) an infinite number of points
11. A circular pool has a ra			an area of 12 square feet	t. What surface area of the
water is not covered by the (A) 12π	(B) $24\pi - 12$	(C) $144\pi - 12$	(D) 132	(E) 132π
12. If $m \angle 1 = \frac{60^{\circ}}{x}$, $m \angle 2 = \frac{60^{\circ}}{x}$	$= \frac{40^{\circ}}{x}, \text{ and } m \angle 3 = \frac{80^{\circ}}{x}, \text{ for } x = \frac{80^{\circ}}{x}$	ind the value of $\sqrt{4x^4}$. A	assume $x \neq 0$	
(A) 1	(B) 2	(C) 4	(D) 8	(E) 16
13. On a certain map, four (A) 4 inches	-fifths of an inch equals 5 (B) 4.5 inches	0 miles. If two cities are 2 (C) 4.8 inches	250 miles apart, how far (D) 5 inches	apart will they be on a map? (E) 5.8 inches
14. Find the perimeter. Each	ch distance is measured in	inches and consecutive si	des are perpendicular.	
			6 2	
(A) 26: 1	(D) 20: 1	(C) 40: 1	(D) 42: 1	12 (T) 44: 1
(A) 36 inches	(B) 38 inches	(C) 40 inches	(D) 42 inches	(E) 44 inches
15. If $l_1 l_2, l_2 \perp l_3, l_3 l_4$,				
(A) $l_3 \parallel l_1$	(B) $l_2 \perp l_5$	(C) $l_1 \parallel l_4$	$(\mathbf{D}) l_5 \parallel l_1$	$(\mathbf{E}) l_2 \parallel l_4$
16. For \triangle ABC, $m \angle$ A =				
$(\mathbf{A}) \ \left(22-x\right)^{\circ}$	$(B) (32-x)^{\circ}$	(C) $(32+x)^{\circ}$	(D) $(42-x)^{\circ}$	$(\mathbf{E}) \ \left(42+x\right)^{\circ}$
17. If $15d + 2c - 7 = 753$		$c^{\circ} c^{\circ} b^{\circ}$		
(A) 30	(B) 40	(C) 50	(D) 60	(E) 70
18. Given $\overline{BD} \perp \overline{AC}$, BF	E = 10, $ED = 6$, and AC	=20. Find the area of Al	A E C	
(A) 160	(B) 200	(C) 220	D (D) 260	(E) 300

19. If Y is the midpoint of \overline{WT} and \overline{XZ} , which of the following is not true?

- **(B)** 1.99(WY) < WT (C) $\frac{WT}{2.1}$ < YT (D) $\frac{1}{3}(XY) = \frac{1}{6}(XZ)$ (E) all are true

20. If the area of a circle is 24.267 square inches, what is the ratio of the area to the radius squared? Round the answer to the nearest whole number.

(A) 1

- **(B)** 2
- **(C)** 3
- **(D)** 4

 (\mathbf{E}) 5

21. What is the absolute value of the difference between 2 times the sum of an angle and its supplement and 3 times the sum of the angle and its complement?

- **(A)** 45°
- **(B)** 60°
- (**C**) 90°
- **(D)** 120°

(E) 180°

22. A rectangle has the same area as a triangle. If the length of the rectangle is the same as the length of the base of the triangle, what is the ratio of the width of the rectangle to the height of the triangle?

- (A) 2:1
- **(B)** 4:1
- (C) 1:2
- **(D)** 1:3

(E) 1:4

23. If you triple the radius of a cone and change the slant height so that it is one-third of what it was before, by how much will the total area of the cone increase? The total area of a cone equals $rl\pi + \pi r^2$ where r is the radius and l is the slant height.

 $(\mathbf{A}) 0$

- **(B)** $5\pi r^2$
- (C) $6\pi r^2$
- **(D)** $8\pi r^2$

24. Find the measure of $\angle 1$ if $m\angle 2 = (2x+3)^{\circ}$ and $m\angle 3 = (4x-1)^{\circ}$.

(**A**) 2

- **(D)** $150.\overline{3}^{\circ}$
- **(E)** 173°

25. If the circumference of a circle is 48.688 inches, what is the ratio of the circumference to its diameter? Round the answer to the nearest whole number.

(**A**) 2

- **(B)** 3
- **(C)** 4
- **(D)** 5
- **(E)** 6

GEOMETRY TEST 1 ANSWERS

1. E	2. C	3. E	4. D	5. B
6. C	7. A	8. B	9. E	10. A
11. C	12. B	13. A	14. C	15. D
16. A	17. B	18. A	19. E	20. C
21. C	22. C	23. D	24. E	25. B

1.
$$40 = \frac{1}{2} \cdot 8(4+b) \rightarrow b = 6$$

2.
$$10x+10+8x-10=180 \rightarrow x=10 \rightarrow m\angle CBD=8x-10=70^{\circ}$$

- 3. never
- 4. II and III
- 5. 200-40=160
- 6. $16\pi = \pi d \rightarrow r = 8 \rightarrow A = 64\pi$

7.
$$2B-1=2(25)-1=49$$

- 8. 8-6=2
- 9. An infinite number of planes can pass through a line and a given point on the line. Only one plane can pass through a line and a given point not on the line.
- 10. 1 point

11.
$$A_{\text{pool}} - A_{\text{rect}} = \pi r^2 - 12 = \pi \cdot 12^2 - 12 = 144\pi - 12$$

$$12. \ m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ} \rightarrow \frac{60^{\circ}}{x} + \frac{40^{\circ}}{x} + \frac{80^{\circ}}{x} = 180^{\circ} \rightarrow \frac{180^{\circ}}{x} = 180^{\circ} \rightarrow x = 1 \rightarrow \sqrt{4x^{4}} = \sqrt{4(1)^{4}} = \sqrt{4} = 2$$

13.
$$\frac{4}{5} \left(\frac{250}{50} \right) = 4$$

14.
$$2(6+12+2)=40$$

15.
$$l_5 \| l_1$$

16.
$$m\angle C = 180^{\circ} - (158 + x)^{\circ} = (22 - x)^{\circ}$$
 Therefore A.

17.
$$15d + 2c - 7 = 753 + 3d \rightarrow 12d + 2c = 760 \rightarrow 6d + c = 380$$
. Since $d + c = 180$, applying SPOE yields

$$5d = 200 \rightarrow d = 40.$$

18.
$$\frac{1}{2} \cdot 20 \cdot 10 + \frac{1}{2} \cdot 20 \cdot 6 = 160$$

19. all are true

20.
$$\frac{A}{r^2} = \pi$$
 which rounds to 3.

21.
$$2x + (180 - x) - 3x + (90 - x) = 2.180 - 3.90 = 360 - 270 = 90^{\circ}$$

22.
$$bw = \frac{1}{2}bh \to w = \frac{1}{2}h \to \frac{w}{h} = \frac{1}{2}$$

23.
$$A_{\text{after increase}} - A_{\text{before increase}} = (3r) \left(\frac{1}{3}l\right) \pi + \pi (3r)^2 - \left(rl\pi + \pi r^2\right) = rl\pi + 9\pi r^2 - rl\pi - \pi r^2 = 8\pi r^2$$

choice A = choice B

24.
$$2x+3=4x-1 \rightarrow x=2 \rightarrow m\angle 2=2\cdot 2+3=7^{\circ} \rightarrow m\angle 1=180^{\circ}-7^{\circ}=173^{\circ}$$

25.
$$\frac{C}{d} = \pi$$
 which rounds to 3.