Introduction to Reinforcement Learning

Subrahmanya Swamy Peruru

Supervised Learning

Unsupervised Learning

Supervised Learning

Labeled Training Data

Unsupervised Learning

Unlabeled Data

Reinforcement Learning

- 1. Agent observes the state and takes action
- 2. Environment puts the agent in a new state &
- 3. Gives a reward based on the action taken

GOAL: Learn policy to maximize the cumulative reward $\sum_{t} R_{-t}$

Supervised Learning

Unsupervised Learning

- Supervised Learning
 - Fitting a function for the given labeled data (x, y)
 - $y \approx f(x)$
- Unsupervised Learning

- Supervised Learning
 - Fitting a function for the given labeled data (x, y)
 - $y \approx f(x)$
- Unsupervised Learning
 - Identifying patterns in unlabeled data
 - E.g. Clustering

- Supervised Learning
 - Fitting a function for the given labeled data (x, y)
 - $y \approx f(x)$
- Unsupervised Learning
 - Identifying patterns in unlabeled data
 - E.g. Clustering

- Reinforcement Learning
 - Learning sequential tasks through trial and error
 - Feedback through reward/penalty

Autonomous Helicopter

Pong game

AlphaGo by DeepMind

Autonomous Helicopter

Pong game

AlphaGo by DeepMind

Autonomous Helicopter

Pong game

AlphaGo by DeepMind

Autonomous Helicopter

Pong game

AlphaGo by DeepMind

One State RL: Multi-arm Bandits

- Simplified version of RL problem: "Multi-arm Bandit" problem.
 - Only one state
 - Multiple actions (a.k.a. arms)
 - \mathcal{A} Action set
- A reward distribution corresponding to each arm
 - \mathcal{R}_a Reward distrution for action a
 - $\mu_a = \mathbb{E}[\mathcal{R}_a]$ Expected reward for action a
- Applications: Recommendation systems, Ad placement, ...

Multi-arm Bandits

Problem:

- Reward distributions are unknown
- Given **T chances** to pull the arms
- Which arms should be pulled to maximize the total reward in those T rounds

Exploration
Vs
Exploitation dilemma

ETC (Explore-Then-Commit)

- **1. Explore:** Play each arm *N* times
- 2. Compute the sample average rewards $\bar{\mu}(a) = \frac{1}{N} \sum_{t=1}^{KN} R_t \ 1\{a_t = a\}$ for each arm $a \in \mathcal{A}$
- 3. Commit: Play the arm with the highest sample average for the remaining T KN rounds

```
u^* - Optimal arm's expected reward R_t - Sample reward obtained in round t
```

 a_t - Arm played in round t - Total number of rounds

K - Number of arms

Performance (ETC Vs Best possible reward): $T\mu^* - \sum_{t=1}^T \mathbb{E}[R_t]$ How much to Explore? $N \approx (\frac{T}{K})^{\frac{2}{3}}$

ϵ -Greedy (Explore uniformly)

- 1. Play each arm once
- 2. In each round t:
 - Toss a coin with bias ϵ .
 - If it lands in head: Explore Play any arm randomly
 - Else: Exploit Play the arm with the highest sample average so far

What
$$\epsilon$$
 to choose? $\epsilon \approx (\frac{K}{T})^{\frac{1}{3}}$

UCB (Upper Confidence Bound)

Optimism under UnCertainty

- 1. Play each arm once in the first K rounds
- 2. For t > K:
 - Play the arm with the highest $UCB_t(a) = \overline{\mu_{t-1}}(a) + \sqrt{\frac{2 \log T}{n_{t-1}(a)}}$
 - Based on the observed sample reward R_t , update $n_t(a_t)$ and $\overline{\mu_t}(a_t)$
 - $n_t(a_t) = n_{t-1}(a_t) + 1$
 - $\overline{\mu}_t(a_t) = \frac{1}{n_t(a_t)} [(n_t(a_t) 1) \overline{\mu_{t-1}}(a_t) + R_t]$

Exploit: High sample reward arms are favoured

Explore: Least played arms are favoured

Explore

Exploit

Contextual Bandits – Multiple states

News article Recommendation systems

- Articles arms
- Like / Dislike Reward
- User State

Different users have different preferences to articles