第十六章 半群与独异点

定理 **16.1** 设 $V = \langle S, \circ \rangle$ 是半群,则 $\forall x, y \in S$ 有

- $(1) x^n \circ x^m = x^{n+m};$
- $(2) \quad (x^n)^m = x^{nm}.$

定理 16.2 设 $\langle S, o \rangle$ 是半群,则可以适当地定义单位元 e,将这个半群扩张为独异点.

定理 16.3 设 S 为半群,V 为独异点,则 S 的任何子半群的非空交集仍是 S 的子半群,V 的任何子独异点的交集仍是 V 的子独异点。

定理 **16.4** S 为半群, $B \not\in S$ 的非空子集. $\forall n \in \mathbb{Z}^+$, 令

$$B^n = \{b_1 b_2 \cdots b_n \mid b_i \in B, i = 1, 2, \cdots, n\},\$$

则

$$\langle B \rangle = \bigcup_{n \in \mathbb{Z}^+} B^n.$$

定理 **16.5** 设 $V=\langle S,*\rangle$ 为半群, $V'=\{S^S,\circ\}$, \circ 为函数的合成运算,则 V' 是半群,且存在 V 到 V' 的同态.

定理 **16.6** (独异点的表示定理) 设 $V=\langle S,*,e\rangle$ 是独异点,则存在 $T\subseteq S^S$,使 $\langle T,\circ,I_S\rangle$ 同构于 $\langle S,*,e\rangle$.

定理 **16.7** 设 $M^* = \langle Q, \Sigma^*, \Gamma^*, \delta^*, \lambda^* \rangle$ 是扩展的有穷自动机,则 $\forall w_1, w_2 \in \Sigma^*$ 有

- (1) $\delta^*(q, w_1 w_2) = \delta^*(\delta^*(q, w_1), w_2),$
- (2) $\lambda^*(q, w_1 w_2) = \lambda^*(q, w_1)\lambda^*(\delta^*(q, w_1), w_2),$

其中 w_1w_2 是 w_1 与 w_2 的连接.

定理 **16.8** 设 $M = \langle Q, \Sigma, \delta \rangle$ 是半自动机, $M^* = \langle Q, \Sigma^*, \delta^* \rangle$ 是 M 的扩展. 对任意的 $w \in \Sigma^*$,定义 $f_w : Q \to Q$, $f_w(q) = \delta^*(q, w)$. 令 $S = \{f_w \mid w \in \Sigma^*\}$ 是所有这样定义的函数的集合, \circ 是函数的合成运算,则 $T_M = \langle S, \circ, f_{\wedge} \rangle$ 是一个独异点,且是 $\langle Q^Q, \circ, I_Q \rangle$ 的子独异点.

定理 **16.9** 设 $T = \langle S, \cdot, e \rangle$ 是独异点,则存在半自动机 M,且 M 对应的独异点 T_M 同构于 T.

定理 **16.10** 设 $M_1 = \langle Q_1, \Sigma_1, \Gamma_1, \delta_1, \lambda_1 \rangle$, $M_2 = \langle Q_2, \Sigma_2, \Gamma_2, \delta_2, \lambda_2 \rangle$ 是自动机. 它们分别对应独异点 T_{M_1} 和 T_{M_2} . 若 $M_1 \leq M_2$, 则 T_{M_1} 是 T_{M_2} 的同态像.

定理 **16.11** 设 $M_1=\langle Q_1,\Sigma,\Gamma,\delta_1,\lambda_1\rangle$ 是有穷自动机, $M_2=\langle Q_1/\sim,\Sigma,\Gamma,\delta_2,\lambda_2\rangle$ 是 M_1 的商自动机,则 $M_1\sim M_2$.