Reservoir Heterogeneity determination using Normal Distribution

Sandstone Reservoir

Permeability Range: 45-50 mD

Heatmap of Res 1

Permeability Distribution 20 x 20 2D Model

Mean k = 47.0325 mD

 $Std_Dev = 1.38976$

2

Carbonate Reservoir

Permeability Range: 0.1-100 mD

Permeability Distribution 20 x 20 2D Model

Mean k = 48.1875 mD

Std Dev = 29.5338

20 x 20 2D Model

Reservoir	Sandstone Reservoir	Carbonate Reservoir
Permeability Range	45-50 mD	0.1-100 mD
Mean K	47.0325 mD	48.187564 mD
Std_Dev	1.38976	29.5338

 A broader probability distribution curve signifies increased variance, indicating higher heterogeneity within the reservoir.

- > Sandstone and carbonate reservoirs may share the same mean value.
- Higher standard deviation in carbonate reservoirs is a crucial observation that makes it a heterogeneous reservoir.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- ▶ 68% Rule: About 68% of the values fall within one standard deviation from the mean.
- > 95% Rule: Approximately 95% of the values fall within two standard deviations from the mean.
- > 99.7% Rule: Almost 99.7% of the values fall within three standard deviations from the mean.