Real Analysis Homework 13

Francisco Jose Castillo Carrasco

November 20, 2017

1 Problem 6.7.1

- 1. Let X and Z be normed vector spaces and U an open subset of X.
 - (a) Assume that U is convex: for all $x, y \in U$ we have that $(1t)x + ty \in U$ for all $t \in (0,1)$. Assume that $f: \bar{U} \to Z$ is a continuous function and that f is Gateaux differentiable on U and that there exists some M > 0 such that

$$\|\partial f(x,v)\| \le M$$
 for all $x \in U$ and $v \in X, \|v\| = 1$.

Show: f is Lipschitz continuous on \bar{U} and M is a Lipschitz constant for f on \bar{U} .

Solution:

Proof. Define $x_t = (1-t)x + ty$ for all $x, y \in U$ and $t \in (0,1)$. Since, U is convex, $x_t \in U$. By Theorem 6.29 part (a), there exists $t \in (0,1)$ such that, for $z \in Z$ and $x, y \in \overline{U}$

$$||f(y) - f(x) - z|| \le ||\partial f(x, y - x) - z||$$
.

For z = 0,

$$||f(y) - f(x)|| \le ||\partial f(x, y - x)||$$
.

Then, by Lemma 6.18,

$$\partial f(x_t, y - x) = \frac{\|y - x\|}{\|y - x\|} \partial f(x_t, y - x) = \|y - x\| \partial f\left(x_t, \frac{y - x}{\|y - x\|}\right).$$

This gives us,

$$||f(y) - f(x)|| \le ||\partial f(x, y - x)||$$

$$= \left| \left| ||y - x|| \partial f\left(x_t, \frac{y - x}{||y - x||}\right) \right| \right|$$

$$\le \left| \left| \partial f\left(x_t, \frac{y - x}{||y - x||}\right) \right| \left| ||y - x||$$

$$\le M||y - x||.$$

Therefore, f is Lipschitz continuous on \bar{U} and M is a Lipschitz constant for f on \bar{U} .

2. (b) Assume that $f:U\to Z$ is Frechet differentiable on U and that $Df:U\to \mathscr{L}(X,Z)$ is continuous. Show: f is locally Lipschitz continuous on U. Actually for every compact subset K of U there exists an open set V such that $K\subseteq V\subseteq U$ and f is Lipschitz continuous on V.

Solution:

Proof. Let $\varepsilon = 1$. By continuity definition 3.1, there exists some r_1 such that, for $y \in U_{r_1}(x)$, with $x \in U$,

$$||Df(x) - Df(y)|| < 1$$
.

Then, since U is open, there exists some r_2 such that $U_{r_2} \in U$. Let $\delta = \min\{r_1, r_2\}$. Then, for all $y_1 \in U_{\delta}(x)$,

$$||Df(x)|| = ||Df(x) - Df(y_1) + Df(y_1)||$$

$$\leq ||Df(x) - Df(y_1)|| + ||Df(y_1)||$$

$$\leq 1 + ||Df(y_1)||.$$

Note, that $U_{\delta}(x)$ is a convex open set. Set $V = U_{\delta}(x)$ and $M = 1 + \|Df(y)\|$. Then, for $v \in X$ with $\|v\| = 1$ and $y_2 \in V$, $\|Df(y_2)\| < M$ and

$$\|\partial f(y_2, v)\| = \|Df(y_2)v\| \le \|Df(y_2)\|\|v\|$$

= $\|Df(y_2)\| < M$.

Finally, by theorem 6.23, since f is Frechet differentiable on on U, f is also Gateaux differentiable on U. Therefore, from part (a) shown above, f is Lipschitz continuous on V, an open subset of U.

Acknowledgements

The proofs in this homework assignment have been worked and written in close collaboration with Camille Moyer.