We leave it as an exercise for the reader to verify Equation (*) for arbitrary nonnegative integers m and n.

Another useful canonical isomorphism (of K-algebras) is given below.

Proposition 33.32. For any two vector spaces E and F, there is a canonical isomorphism (of K-algebras)

$$S(E \oplus F) \cong S(E) \otimes S(F)$$
.

33.12 Problems

Problem 33.1. Prove Proposition 33.4.

Problem 33.2. Given two linear maps $f: E \to E'$ and $g: F \to F'$, we defined the unique linear map

$$f \otimes g \colon E \otimes F \to E' \otimes F'$$

by

$$(f \otimes g)(u \otimes v) = f(u) \otimes g(v),$$

for all $u \in E$ and all $v \in F$. See Proposition 33.9. Thus $f \otimes g \in \text{Hom}(E \otimes F, E' \otimes F')$. If we denote the tensor product $E \otimes F$ by T(E, F), and we assume that E, E' and F, F' are finite dimensional, pick bases and show that the map induced by $f \otimes g \mapsto T(f, g)$ is an isomorphism

$$\operatorname{Hom}(E,F) \otimes \operatorname{Hom}(E',F') \cong \operatorname{Hom}(E \otimes F, E' \otimes F').$$

Problem 33.3. Adjust the proof of Proposition 33.13 (2) to show that

$$E \otimes (F \otimes G) \cong E \otimes F \otimes G$$
,

whenever E, F, and G are arbitrary vector spaces.

Problem 33.4. Given a fixed vector space G, for any two vector spaces M and N and every linear map $f: M \to N$, we defined $\tau_G(f) = f \otimes \mathrm{id}_G$ to be the unique linear map making the following diagram commute.

$$\begin{array}{ccc} M \times G \xrightarrow{\iota_{M \otimes}} M \otimes G \\ f \times \mathrm{id}_G \Big| & & \Big| f \otimes \mathrm{id}_G \\ N \times G \xrightarrow{\iota_{N \otimes}} N \otimes G \end{array}$$

See the proof of Proposition 33.13 (3). Show that

- (1) $\tau_G(0) = 0$,
- (2) $\tau_G(\mathrm{id}_M) = (\mathrm{id}_M \otimes \mathrm{id}_G) = \mathrm{id}_{M \otimes G}$
- (3) If $f': M \to N$ is another linear map, then $\tau_G(f + f') = \tau_G(f) + \tau_G(f')$.