Assignments

- Assignment 6: Due at beginning of class next Tuesday
- Assignment 8: Due Friday*
- Read Chapter 3 notes
- Read text: Text Chapter 3.1-3.6

Superbowl

• https://projects.fivethirtyeight.com/2018-nfl-predictions/

UPDATED JAN. 20, 2019, AT 10:16 PM

2018 NFL Predictions

For the regular season and playoffs, updated after every game.

More NFL: Every team's Elo history Can you outsmart our forecasts?

Standings Games

					PLAYOFF CHANCES			
ELO RATING	1-WEEK CHANGE		TEAM	DIVISION	MAKE DIV. ROUND	MAKE CONF. CHAMP	MAKE SUPER BOWL	WIN SUPER BOWL
1686	+25	-	New England 13-5	AFC East	✓	✓	✓	53%
1667	+19	4	L.A. Rams 15-3	NFC West	✓	✓	✓	47%
1664		\$	New Orleans 14-4	NFC South	√	√	_	_
1651			Kansas City 13-5	AFC West	√	√	_	_
1626			L.A. Chargers 13-5	AFC West	✓	_	_	_
1620		63	Philadelphia 10-8	NFC East	√	_	_	_

SuperBowl Results

Two Statistical Frameworks: Frequency vs. Bayesian

- Frequency- probability of an event is its relative frequency after many trials
- a- number of occurrences of E
- n- number of opportunities for E to take place
- a/n- relative frequency of E occurring
- $Pr\{E\} \rightarrow a/n \text{ as } n \rightarrow \infty$

Two Statistical Frameworks: Frequency vs. Bayesian

- Bayesian- probability represents the degree of belief of an individual about an outcome of an uncertain event
- Some events occur so rarely that there is no long-term relevant probability
- Two individuals can have different probabilities for same outcome
- Bookies are Bayesian
 - Super Bowl odds 2019: Heavy Patriots money has sportsbooks rooting for Rams

Conditional Probability

- Conditional probability: probability of {E₂} given that {E₁} has occurred
- $Pr\{E_2 \mid E_1\} = Pr\{E_1 \cap E_2\} / Pr\{E_1\}$
- E₁ is the conditioning event
- If E_1 and E_2 are independent of each other, then $Pr\{E_2 \mid E_1\} = Pr\{E_2\}$ and $Pr\{E_1 \mid E_2\} = Pr\{E_1\}$
- Fair coin- Pr{heads} = 0.5
 - chance of getting heads on second toss is independent of the first Pr{heads | heads} = 0.5
 Pr{heads} twice = 0.5 * 0.5 = .25

Bayes Theorem

- $Pr\{E_2 \mid E_1\} = Pr\{E_1 \cap E_2\} / Pr\{E_1\}$
- E₁ is the conditioning event
- What is the advantage? Probability of conditioning event E₁ only computed once
- $Pr\{E_1 \mid E_2\} = Pr\{E_2 \mid E_1\} * Pr\{E_1\} / Pr\{E_2\}$
- $Pr\{E_1 \cap E_2\} = Pr\{E_2 \mid E_1\} * Pr\{E_1\}$
- $Pr\{E_1 \cap E_2\} = Pr\{E_1 \mid E_2\} * Pr\{E_2\}$ then

Application of Bayes theorem: how to be rational responding to probabilities

	Pos Test	Neg Test	TOTAL
DRUG USER	0.495%	0.005%	0.5%
NOT DRUG USER	.995%	98.505%	99.5%
TOTAL	1.49%	98.51%	1

What are odds of a drug user skating?

E₄ – drug user

E₃ - negative test

 $Pr{E_3} - 98.51\%$

 $Pr\{E_4\} - 0.5\%$

 $Pr\{E_3 \cap E_4\} - .005\%$

 $Pr{E_4 | E_3} = Pr{E_4 \cap E_3} / Pr{E_3} = 0.005 / 98.51 = .0051\%$

Out of 10000 people, maybe 1 drug user will test negative Conclusion: people who give drug tests are more interested in making sure drug users are caught than worrying about innocent people being falsely accussed

Forecast Verification

- What is your reason for doing it?
- (Brier and Allen 1951; Compendium of Meteorology)
 - Administrative: who's blowing the forecasts?
 - Scientific: why do errors happen?
 - Economic: what's the impact of forecast errors?

Measures oriented: "give me a number!"

Distill set of forecasts and observations into small # of metrics

		Observed	Observed	Forecast marginal totals
		Yes	No	
Forecast	Yes	а	b	a+b
Forecast	No	С	d	c+d
	Observed marginal totals	a+c	b+d	n=a+b+c+d sample size

• PC = percent correct =
$$\frac{a+d}{n}$$

• FAR = false alarm ratio =
$$\frac{b}{a+b}$$

• TS = CSI =
$$\frac{a}{a+b+c}$$

• POD = HR =
$$\frac{a}{a+c}$$

What if it just happened by chance?

		Observed	Observed	Forecast marginal totals
		Yes	No	
Forecast	Yes	а	b	a+b
Forecast	No	С	d	c+d
	Observed marginal totals	a+c	b+d	n=a+b+c+d sample size

- Random correct yes forecast by chance = $\frac{(a+b)}{n} \frac{(a+c)}{n}$
- Random correct no forecast by chance = $\frac{(b+d)}{n} \frac{(c+d)}{n}$
- $SS = \frac{(correct forecasts random correct forecasts)}{(total forecasts random correct forecasts)}$

$$\bullet \quad HSS = \frac{2(ad-bc)}{(a+c)(b+d)+(a+b)(b+d)}$$

Verifying wind forecasts

		Observed	Observed	Forecast Marginal totals
		≥ 5m/s	<5 m/s	
Forecast	≥ 5m/s	11	6	17
Forecast	<5 m/s	16	44	60
	Observed Marginal totals	27	50	77

PC= 71.4%; FAR= 35.3%; TS= 33.3%; and POD = 40.7%

randomly correct yes forecast: 7.7%

randomly correct no forecast: 50.1%

HSS= 31.4%

Distributions oriented: "how close am I?"

- Assessing the characteristics of joint distribution of errors
- Categorize errors: which errors are smallest, which are biggest as a function of the range of values?
- Relies heavily on conditional probabilities
- http://meso1.chpc.utah.edu/jfsp/

Forecast Verification

- http://meso1.chpc.utah.edu/jfsp/
- Select Wildfires by WFO
- Select SLC
- Look at over all years, then focus on wildfires in Utah in 2016
- Then follow along in class

Assessing Forecast Accuracy

		Observed	Observed	Observed	Error Marginal totals
		≤3 m/s	3-6 m/s	≥6 m/s	
Error	≤ -2 m/s	0	10	11	21
Error	± 2 m/s	22	20	7	49
Error	> 2 m/s	0	7	0	7
	Observed Marginal totals	22	37	18	77

- 26% of the forecasts were within 2 m/s when the wind speeds were between 3 and 6 m/s (20/77)
- Given that the observed wind speed is greater than 6 m/s: $(Pr\{E_1\} = 18/77 = 23.4\%)$
- Probability that the forecasters predict strong winds to be too light $Pr\{E_2 \mid E_1\}$: $Pr\{E_2 \mid E_1\} = Pr\{E_1 \cap E_2\} / Pr\{E_1\} = ((11/77)/(18/77)) = 64.7\%$

What can we say about estimating this winter's snow total will be?

- What physically is happening?
- Could we use last winter's snow total to predict this winter's?
 - Persistence from one year to next
- What about the amount of snow earlier this winter or right now?
 - Persistence from one month to the next...

Alta Snowfall Seasonal Totals

Atla Snowfall Accumulation Each Winter

How Much Snow Might Accumulate During the Season at Alta?

Predict May 1 Snowfall from Dec 1 Snowfall

Case 1. Predictor: Dec1 total snowfall (cm)								
Predictand:		Below	Near	Above	Marginal Totals			
May 1 Total	Below	14	9	1	24			
snowfall at	Near	6	9	10	25			
Alta (cm)	Above	4	7	13	24			
	Marginal Totals	24	25	24	73			

Predict May 1 Snowfall from Dec 1 Snowfall

Pr{E ₁ }	24/73=33%	$Pr\{M_3 \mid E_3\}$	13/24=54%
$Pr\{E_1 \cap E_2\}$	0	$Pr\{E_1 \mid M_1\}$	14/24=58%
Pr{E ₁ ∩M ₁ }	14/73=19%	$Pr\{E_2 \mid M_1\}$	9/24=38%
Pr{E ₁ ∩M ₃ }	4/73= 5%	$Pr\{E_3 \mid M_1\}$	1/24=4%
Pr{M ₁ E ₁ }	14/24=58%	Pr{E ₃ M ₃ }	13/24=54%
Pr{M ₃ E ₁ }	4/24=17%	$Pr{E_1 \cap M_1}$ IF random	9/72=11%
Pr{M ₃ E ₂ }	7/24=29%	% May 1 total same as Predictor	36/73= 49%

Predict May 1 Snowfall from Last Year's May 1 Snowfall

Case 6. Predictor: May1 Prior Year total snowfall (cm)								
Predictand: May 1 Total snowfall at Alta (cm)		Below	Near	Above	Marginal Totals			
	Below	10	7	7	24			
	Near	5	12	7	24			
	Above	8	6	10	24			
	Marginal Totals	23	25	24	72			

Empirical vs. Parametric Distributions

Parameteric distributions:

- Theoretical approach to define populations with known properties
- Can be defined by a function with couple parameters and assumption that population composed of random events

Random Continuous Variable x

- f(x) probability density function (PDF) for a random continuous variable x
- f(x)dx incremental contribution to total probability

Cumulative Density Function of Continuous Variable

- F(X)- total probability below a threshhold
- F(0) = 50%
- F(.66) = 75%

$$F(X) = \Pr\{x \le X\} = \int_{-\infty}^{X} f(x) dx$$

- X(F) quantile function- value of random variable corresponding to particular cumulative probability
- X(75%) = 0.66

Gaussian Parametric Distribution

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

$$F(X) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{X} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) dx$$

- Two parameters define Gaussian distribution: μ and σ
- Nothing magic or "normal" about the Gaussian distribution- it is a mathematical construct

Using parametric distributions

- Generate an empirical cumulative probability (CDF)
- Use dfittool to see if there is a good match between the empirical CDF and a particular parametric distribution
- Use the parameters from that parametric distribution to estimate the probabilities of values above below a threshhold or extreme events