

Human Performance Evaluation

Minh Nguyen, Liyue Fan, Luciano Nocera, Cyrus Shahabi minhnngu@usc.edu

--0--

Integrated Media Systems Center University of Southern California

2

8.2 million

People die each year from cancer, an estimated 13% of all deaths worldwide

70%

The increase in new cases of cancer expected over the next 2 decades

>100

Cancer types exist, each requiring diagnosis and treatment

- Lung Cancer Elderly People
- Chemotherapy
- 2 Problems:
 - Based on 4 or 6 week intervals
 - Automatic classifier
 - Scoring Type of Activities

Evaluation

- At office
 - Kinect sensor
- At patients' home
 - Wearable devices
 - Minh Nguyen, Liyue Fan, and Cyrus Shahabi, <u>Activity Recognition</u> <u>Using Wrist-Worn Sensors for Human Performance Evaluation</u>, The Sixth Workshop on Biological Data Mining and its Applications in Healthcare in conjunction with the 14th IEEE International Conference on Data Mining (ICDM 2015), Atlantic City, New Jersey, USA, November 14-17, 2015.

- At office
 - Kinect sensor
- At patients' home
 - Wearable devices
 - Minh Nguyen, Liyue Fan, and Cyrus Shahabi, <u>Activity Recognition</u> <u>Using Wrist-Worn Sensors for Human Performance Evaluation</u>, The Sixth Workshop on Biological Data Mining and its Applications in Healthcare in conjunction with the 14th IEEE International Conference on Data Mining (ICDM 2015), Atlantic City, New Jersey, USA, November 14-17, 2015.

- At office
 - Kinect sensor
- At patients' home
 - Wearable devices
 - Minh Nguyen, Liyue Fan, and Cyrus Shahabi, <u>Activity Recognition</u> <u>Using Wrist-Worn Sensors for Human Performance Evaluation</u>, The Sixth Workshop on Biological Data Mining and its Applications in Healthcare in conjunction with the 14th IEEE International Conference on Data Mining (ICDM 2015), Atlantic City, New Jersey, USA, November 14-17, 2015.

Activity Recognition Using Wrist-Worn Sensors for Human Performance Evaluation

Minh Nguyen, Liyue Fan, and Cyrus Shahabi {minhnngu, liyuefan, shahabi}@usc.edu Nov. 14, 2015, Atlantic City, NJ, USA

Motivation

GRADE	ECOG PERFORMANCE STATUS (*)
0	Fully active, able to carry on all pre-disease performance without restriction
1	Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature, e.g., light house work, office work
2	Ambulatory and capable of all self-care but unable to carry out any work activities; up and about more than 50% of waking hours
3	Capable of only limited self-care; confined to bed or chair more than 50% of waking hours
4	Completely disabled; cannot carry on any self-care; totally confined to bed or chair
	to bod or origin

Opportunity – Wearable Devices

Continuous Monitoring

Activity Types

Our Goal

- Unobtrusive, Easy-To-Use
 - —One Wrist-Worn Sensor
 - Only Acceleration Data
- Accuracy
 - Various Single Classifiers
 - Ensemble of Classifiers
- Type of Activities

Outline

- 1. Related Work
- 2. System Components
 - a) Data Collection & Preprocessing
 - b) Feature Extraction
 - c) Classification
- 3. Experiment Result
- 4. Summary Future Work

Related Work

	Sensors/Classification	Result
Bao, et al., 2004	Multiple sensors Decision table C4.5, k-NN, Naïve Bayes	20 activities 80 – 95%
Parkka, et al. 2006	Multiple sensors Automatically Generated Decision Tree, ANN	Lying, Sitting, Standing, Walking, Nordic Walking, Running, Rowing, Cycling 82% - 86%
Brezmes, et al., 2009	Mobile phone sensor K-NN	Walking, Standing up, Sitting down, Climbing stairs 70 - 90%
Bayat, et al. 2014	Mobile phone sensor Multilayer Perceptron	Dancing, Running, Fast-walking, Slow-walking, Stairing up-down 82% - 89.72%

Outline

- Related Work
- 2. System Components
 - a) Data Collection & Preprocessing
 - b) Feature Extraction
 - c) Classification
- 3. Experiment Result
- 4. Summary Future Work

System Components

Data Collection

Acceleration

Data Preprocessing

Segmentation

Feature Extraction

Classifier

Training Recognition Result Recognized

Activities

Data Collection

Sitting

Walking

Standing

Data Collection

Tri-axial Acceleration Raw Data

Data Preprocessing

Timestamp	Χ	Υ	Z	
0		-362 842	401	
33		-409 744	593	Segmentation:
				One window with 128 records
3900		183 -772	-624	corresponding to 4.2s
3933		233 -685	-644	Window Sliding:
				50% Overlapping
6067		360 -735	-609	

Feature Extraction

$$X = \{x_1, x_2, ..., x_{n-1}, x_n\}$$

axis

Mean

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Energy

Energy(X) =
$$\frac{\sum_{i=1}^{n} F_i^2}{n}$$

Frequency-Domain Entropy

$$H = -\sum_{i=1}^{n} p_i \ln p_i$$

X-Y, Y-Z, X-Z

Correlation between 2 axes

$$\rho(X,Y) = \frac{covariance(X,Y)}{\sigma_X \sigma_Y}$$

Classification

- Single Classifiers
 - Naïve Bayes
 - SVM
 - Decision Tree
 - Multilayer Perceptron
 - k-Nearest Neighbors
 - Random Forest

- Ensemble of Classifiers (voting)
 - Average of Probabilities
 - Majority Voting

Popular classifiers/ensembles in activity recognition literature, but not have been tested on wrist-worn acceleration.

Outline

- 1. Related Work
- 2. System Components
 - a) Data Collection & Preprocessing
 - b) Feature Extraction
 - c) Classification
- 3. Experiment Result
- 4. Summary Future Work

Experiment Methodology

- Dataset of Activity Recognition Challenge
- Acceleration data 3 subjects Morning Activities
- Walking, Standing, Sitting and Lying
- Only consider wrist sensors
- The sampling frequency is 30Hz
- Over 300,000 records or 2300 windows (window length is 128) for each wrist of a subject.

Experiment – Individual Classifier

Classifier	Left Wrist				Right Wrist			
Classifier	S1	S2	S3	Average	S1	S2	S3	Average
Naive Bayes	63.48%	71.09%	76.60%	70.39%	80.46%	67.43%	57.18%	68.36%
SVM (one-vs-one)	75.68%	75.48%	79.13%	76.76%	83.19%	74.89%	81.76%	79.95%
Decision Tree	77.84%	79.06%	81.31%	79.40%	88.30%	79.58%	83.43%	83.77%
Multilayer Perceptron	81.38%	82.52%	83.42%	82.44%	87.65%	80.63%	83.97%	84.08%
k-NN	82 04%	82 71%	QA 5Q%	83 A1%	QO 31%	Q1 71%	Q3 57%	QA Q7%
Random Forest	84.26%	84.99%	85.95%	85.07%	91.92%	84.70%	86.77%	87.80%

Best Average Range: 85.07% - 87.80%

Best Accuracy: Random Forest - Right Wrist - 91.92%

Experiment – Individual Classifier

Ground Truth	a	b	c	d	Classified As
	652	70	43	1	a = Standing
Left Wrist	96	192	12	0	b = Walking
Left Wilst	13	0	510 0 c = S		c = Sitting
	22	5	0	49	d = Lying
	733	33	7	0	a = Standing
Right Wrist	73	226	3		b = Walking
Kight Whst	7	0	521 3 c = 9		c = Sitting
	0	0	10	68	d = Lying

Confusion Matrix of Random Forest

- Misclassification between Standing and Walking (both wrists)
- Misclassification between Standing and Sitting (left wrist)

Right-handed object (dominant hand)

Experiment – Multiple Classifiers

Combination of Classifiers	Avg. of Poss.	Major. Voting
k-NN, Decision Tree, SVM	89.96%	89.79%
Random	89.13%	90.56%
Forest, Decision Tree, SVM	69.1370	90.3070
k-NN,	90.32%	89.55%
Multilayer Perceptron, Decision Tree	90.3270	69.5570
Random	90.86%	89.79%
Forest, kNN, Multilayer Perceptron, SVM	90.80%	69.7970
Random Forest, k-NN, NB	90.20%	90.38%
Random	90.62%	91.27%
Forest, k-NN, Decision Tree	90.0270	91.2770
Random	90.97%	90.56%
Forest, kNN, Multilayer Perceptron, Decision Tree	90.9170	90.3070
Random Forest, k-NN, SVM	91.63%	90.38%
Random	91.15%	91.03%
Forest k-NN Multilaver Percentron	71.1370	71.0370
Random	91.98%	90.20%
Forest, k-NN	71.70 /0	90.2070

Best Accuracy: Random Forest + K-NN

Average of Probabilities: 91.98%

Experiment – Multiple Classifiers

Ground Truth	a	b	c	d	Classified As
	651	69	45	1	a = Standing
Left Wrist	89	196	12	3	b = Walking
Left Wilst	14	0	509	0	c = Sitting
	18	5	0	53	d = Lying
	731	34	7	1	a = Standing
Right Wrist	65	236	1	0	b = Walking
Kight Whst	8	0	517	6	c = Sitting
	0	0	13	65	d = Lying

Confusion Matrix of Random Forest + k-NN

- Misclassification between Standing and Walking (right wrist) is reduced
- More misclassification between Sitting and Lying (right wrist)

Standing <-> Walking

Sitting <-> Lying

K-NN

Random Forest

Outline

- 1. Related Work
- 2. System Components
 - a) Data Collection & Preprocessing
 - b) Feature Extraction
 - c) Classification
- 3. Experiment Result
- 4. Summary Future Work

Summary

- One Wrist-worn Sensor
- Accuracy by individual classifiers range from 68.36% to 87.80%
- Random Forest achieves the highest accuracy: 91.92%
- The combination of Random Forest + k-NN: 91.98%
- Most confusions happen in Walking vs. Standing

Future Work

- Misclassification Walking and Standing
 - Considering other features
- Try Other Ensemble Methods
 - Considering the strength of individual classifiers
- Complex Activities
 - Considering daily activities to include housing cleaning, cooking, working at the computer, etc.

Q&A

Minh Nguyen
University of Southern California
--||-minhnngu@usc.edu