OBJECTIFS 3

- Connaître la notion de fonction dérivée.
- Connaître les formules pour dériver les fonctions puissances ainsi que les sommes et les produits de fonctions puissances par un nombre.
- Savoir calculer la dérivée d'une fonction polynôme de degré inférieur ou égal à trois.
- Connaître le lien entre la dérivée d'une fonction et son sens de variation.
- Déterminer le sens de variation et les extremums d'une fonction polynôme de degré inférieur ou égal à 3.

1

Dérivée d'une fonction

1. Nombre dérivé, fonction dérivée

À RETENIR 99

Définition

Soit f une fonction définie sur un intervalle I.

- Soit $a \in I$. On dit que f est **dérivable** en a si le nombre f'(a) existe.
- On dit que f est **dérivable** sur I si f'(a) existe quelque soit $a \in I$.

Dans ce dernier cas, on appelle f' la fonction qui a tout $x \in I$ associe le nombre dérivé f'(x) : c'est la **fonction dérivée** (ou plus simplement **dérivée**) de f.

INFORMATION |

Remarque

Si f est une fonction dérivable en $a \in \mathbb{R}$, f'(a) est le coefficient directeur de la tangente en a (lorsqu'elle existe). C'est par conséquent la « limite » du taux de variation $\frac{f(b)-f(a)}{b-a}$ lorsque b « tend » vers a.

En faisant le changement de variable b = a + h, on obtient que f'(a) est la « limite » du taux de variation $\frac{f(a+h)-f(a)}{h}$ lorsque h « tend » vers 0.

EXERCICE 1

\circ	7.	1					1 `	\sim	\circ	1	_	ш
S ∩1T	Т	เวา	MONCE	INN.	constante	າດແລ	10 2	-≺	SOIT.	n	\subseteq	יאוו
σ		ւս		ULL	constante	ιcεα	ic a	J.	OUL	ıι	_	□ / 2 •
	.,					- ()						

1	Calcular	$\frac{f(0+h)-f(0)}{h}$	
1.	Calculei	h	•

2. Conjecturer la valeur de f'(0).....

3.	Co	nje	ect	uı	eı	: la	a v	va	lε	eu	r	de	Э.	f'	(.	x) J	00	οι	11	t	0	u	t	x	ϵ	Ξ[R	•	 •	•	•	•	 •	 •	 •	 	•	 •	•	 •	 •	•	 •								

.....

◆Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonction-derivee/#correction-1.

2. Dérivées usuelles

À RETENIR **

Propriété

Soit $n \in \mathbb{N}$. Alors, $x \mapsto x^n$ est définie et dérivable sur \mathbb{R} et sa dérivée est $x \mapsto nx^{n-1}$. En particulier, on a les formules suivantes.

Fonction	Dérivée
$x \mapsto 1$	$x \mapsto 0$
$x \mapsto x$	$x \mapsto 1$
$x \mapsto x^2$	$x \mapsto 2x$
$x \mapsto x^3$	$x \mapsto 3x^2$

EXERCICE 2

Calculer la dérivée des fonctions suivantes.

1. $x \mapsto x^4 : \dots$ **2.** $x \mapsto x^7 : \dots$ **3.** $x \mapsto x^{101} : \dots$

◆Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonction-derivee/#correction-2

3. Opérations sur les dérivées

À RETENIR 00

Propriétés

- 1. Toutes les fonctions polynômiales sont définies et dérivables sur \mathbb{R} .
- **2.** Soient u et v deux fonctions définies et dérivables sur un même intervalle I. Soit $\lambda \in \mathbb{R}$.

Fonction	Dérivée
u + v	u' + v'
λu	$\lambda u'$

$ \sim$	ED	\sim 1	\sim	Ξ3	
ᄗ	EК	C.	U	- 0	- W

Calculer la dérivée des fonctions suivantes.

- 1. $f: x \mapsto x^3 + x$:.....
- **2.** $g: x \mapsto 7x^2:$
-
- 3. $h: x \mapsto \frac{2}{3}x^3 4x$:....

......

4. $i: x \mapsto 4x^3 - x^2 + 3x - 5:$

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonction-derivee/#correction-3.

Il Études de fonctions

1. Lien entre dérivée et variations d'une fonction

À RETENIR 00

Théorème

Soit f une fonction définie et dérivable sur un intervalle I. On a les relations suivantes.

Signe de la dérivée	Variation de la fonction
f'(x) > 0	f est strictement croissante
$f'(x) \ge 0$	f est croissante
f'(x) < 0	f est strictement décroissante
$f'(x) \le 0$	f est décroissante
f'(x) = 0	f est constante

EXEMPLE \$

La fonction *f* du premier exercice est constante et de dérivée nulle.

EXERCICE 4

On considère la fonction $f: x \mapsto x^3 + 4,5x^2 - 12x + 0,5$, définie et dérivable sur [-5;4].

1. Montrer que f'(x) = 3(x-1)(x+4) pour tout $x \in [-5;4]$.

2. Étudier les variations de f sur [-5;4].

2. Extrema

À RETENIR 99

Propriété

Soit f une fonction définie et dérivable sur un intervalle I. Soit $c \in I$. Si f'(c) = 0 et si f' change de signe de part et d'autre de c, alors f(c) est un extremum (local) de f. On a deux situation possibles :

Valeur de x	с
Signe de $f'(x)$	- 0 +
Variations de f	f(c)

Valeur de x	С
Signe de $f'(x)$	+ 0 -
Variations de f	f(c)

EXERCICE 5

On considère la fonction $f: x \mapsto \frac{1}{3}x^3 - 16x$, définie et dérivable sur [-6; 6].

1. Étudier les variations de f sur [-6;6].

2. En déduire les extrema de f sur [-6;6].

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/fonction-derivee/#correction-5.