Тригонометрическая форма комплексного числа

- 1. Пусть $z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1), z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2).$ Докажите, что $z_1z_2 = r_1r_2\big(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)\big).$
- **2.** Пусть $n \in \mathbb{N}$. Вычислите **a**) $(1+i)^n$; **b**) $(\frac{1+i\sqrt{3}}{1-i})^n$.
- 3. а) Пусть $\varphi \in \mathbb{R}$. Выразите $\sin 5\varphi$ через $\sin \varphi$ и $\cos \varphi$.
- **b)** Можно ли так отметить 100 точек на единичной окружности, чтобы все попарные расстояния между ними были рациональными?
- 4. Пусть $z + z^{-1} = \sqrt{3}$, $z \in \mathbb{C}$. Найдите $z^{30} + z^{-30}$.
- **5.** Пусть $\varphi \in \mathbb{R}$ и $n \in \mathbb{N}$. Упростите выражения
- a) $\cos \varphi + \cos 2\varphi + \ldots + \cos n\varphi$;
- b) $\sin \varphi + \sin 2\varphi + \ldots + \sin n\varphi$.
- **6.** Пусть $\varphi \in \mathbb{R}$ и $n \in \mathbb{N}$. Докажите, что уравнение $z^n = r(\cos \varphi + \sin \varphi)$ имеет ровно n решений:

$$z_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), k = 0, 1, \dots, n.$$

- 7. Даны числа α , β , $\gamma \in \mathbb{R}$ такие, что $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$. Докажите, что $\cos(2\alpha) + \cos(2\beta) + \cos(2\gamma) = \sin(2\alpha) + \sin(2\beta) + \sin(2\gamma) = 0$.
- 8. Точки A_1, A_2, \ldots, A_n лежат выше оси Ox, а точки B_1, B_2, \ldots, B_m ниже оси Ox. На оси Ox нашлись точки $C_1, C_2, \ldots, C_{n+m+1}$ такие, что для каждого индекса j верно равенство $\angle A_1C_j\infty + \ldots + \angle A_nC_j\infty = \\ = \angle B_1C_j\infty + \ldots + \angle B_mC_j\infty$, где через $\angle PC_j\infty \in [0,\pi]$ обозначен угол между вектором $\overrightarrow{C_jP}$ и положительным направлением оси Ox. Докажите, что n=m и набор точек A_1, A_2, \ldots, A_n симметричен набору точек

 B_1, B_2, \ldots, B_m относительно оси Ox.