Abstract of JP11324625

PROBLEM TO BE SOLVED: To facilitate restart of an internal combustion engine.

SOLUTION: On the basis of a maximum lift position H, an 0-lift position L is set to a rod shaped link 17, and an intermediate lift position M is set to a ring shaped link 13, and a return spring 24 for energizing a control shaft 14 toward from the 0-lift position L to the intermediate lift position M. The control shaft 14 is moved to the intermediate lift position M by the return spring 24 even being every positions between the 0-lift position L and the intermediate lift position M when an actuator is released, and thereby a valve drops into an opening condition. It is thus possible to facilitate restart of an internal combustion engine.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-324625

(43)公開日 平成11年(1999)11月26日

(51) Int.Cl.⁶

F01L 13/00

證別記号

301

FΙ

F01L 13/00

301H

301X

審査請求 未請求 請求項の数4 OL (全 14 頁)

(21)出顧番号

特顯平10-136202

(22)出頭日

平成10年(1998) 5月19日

(71)出願人 000003997

日産自勁車株式会社

神奈川県横浜市神奈川区宝叮2番地

(71)出願人 000167406

株式会社ユニシアジェックス

神奈川県厚木市恩名1370番地

(72)発明者 茂木 克也

神奈川県横浜市神奈川区宝町2番地 日産

自劢車株式会社内

(72)発明者 竹村 信一

神奈川県横浜市神奈川区宝町2番地 日産

自勁車株式会社内

(74)代理人 弁理士 志賀 富士弥 (外3名)

(54) 【発明の名称】 内燃機関の可変助弁機科

(57) 【要約】

【課題】 内燃機関の再始動を容易にする。

【解決手段】 最大リフト位置日を基準に、ロッド状リンク17側に0リフト位置しを、またリング状リンク13側に中リフト位置Mを設定し、コントロールシャフト14を0リフト位置しから中リフト位置Mに向けて付勢する戻りばね24を設ける。コントロールシャフト14は、アクチュエータの抜力時に0リフト位置しと中リフト位置Mとの間のいずれの位置にあっても、戻りばね24によって中リフト位置Mに移動されて、バルブが開き得る状態となるので、内燃機関の再始動が容易となる。

c i…カムシャフトの中心 c 4…別公カムの中心(ロッカーアームの奨励中心) L … g リフト位日 M …中リフト位日 H … 丘大リフト位日

【特許請求の範囲】

【請求項1】 内燃機関のクランク軸によって回転駆動 されるカムシャフトと、該カムシャフトの外周面に固定 された回転カムと、前記カムシャフトにほぼ平行に配設 されたコントロールシャフトと、該コントロールシャフ トと一体の制御カムと、該制御カムによって揺動自在に 支持されたロッカーアームと、前記カムシャフトによっ て揺動自在に支持された揺動カムと、前記回転カムに回 転自在に嵌合して該回転カムと前記ロッカーアームの一 端部とを連結するリング状リンクと、前記ロッカーアー ムの他端部と前記揺動カムとを連結するロッド状リンク と、前記コントロールシャフトを所定の角度範囲で回動 させるアクチュエータと、該アクチュエータを内燃機関 の運転条件に応じて駆動制御する制御手段とを備え、前 記カムシャフトの回転を、前記回転カム、前記リング状 リンク、前記ロッカーアーム、前記ロッド状リンクを介 して前記揺動カムに揺動運動として伝達しバルブを開閉 するとともに、前記制御手段による前記コントロールシ ャフトの回転に伴う前記制御カムの回転により前記揺動 カムの揺動角度を変更してなる内燃機関の可変動弁機構

前記コントロールシャフトの回転を回動範囲の一方の端部に設けた0リフト位置で停止させる0リフト位置ストッパーと、

前記コントロールシャフトの回転を回動範囲の他方の端 部に設けた中リフト位置で停止させる中リフト位置ストッパーと、

前記コントロールシャフトの回動範囲内における前記 0 リフト位置と前記中リフト位置との間に設けられ、前記 コントロールシャフトの中心と前記カムシャフトの中心 とを結ぶ線分上又はこの近傍に設定された最大リフト位 置を経由して前記コントロールシャフトを前記 0 リフト 位置から前記中リフト位置に向けて付勢する第 1 の付勢 部材とを備えることを特徴とする内燃機関の可変動弁機 構。

【請求項2】 前記最大リフト位置を基準として、前記 0リフト位置は前記ロッド状リンク側に設定され、前記 中リフト位置は前記リング状リンク側に設定されること を特徴とする請求項1記載の内燃機関の可変動弁機構。

【請求項3】 最大リフト時の l_0 、 l_1 、 l_2 、 l_3 、 l_4 、 l_5 、 l_6 、 θ_{34} について、

1₀:前記制御カムの中心と前記カムシャフトの中心と を結ぶ線分長さ、

 $oxed{l}_1$: 前記カムシャフトの中心と前記回転カムの中心とを結ぶ線分長さ、

 1_2 :前記回転カムの中心と、前記リング状リンクと前 記ロッカーアームの一端部との連結部の中心とを結ぶ線 分長さ、

1₃:前記リング状リンクと前記ロッカーアームの一端 部との連結部の中心と、前記制御カムの中心とを結ぶ線 分長さ、

14:前記制御カムの中心と、前記ロッカーアームの他端部と前記ロッド状リンクとの連結部の中心とを結ぶ線分長さ

1₅:前記ロッカーアームの他端部と前記ロッド状リンクとの連結部の中心と、前記ロッド状リンクと前記揺動カムとの連結部の中心とを結ぶ線分長さ、

 1_6 :前記ロッド状リンクと前記揺動カムとの連結部の中心と、前記カムシャフトの中心とを結ぶ線分長さ、

 θ_{34} : 前記 1_3 と前記 1_4 との間の挟角、 としたときに、これらの値が、

をほぼ満足するリンクジオメトリを構成するように設定されていることを特徴とする請求項1又は2記載の内燃機関の可変動弁機構。

【請求項4】 前記コントロールシャフトが前記最大リフト位置よりも前記0リフト位置側に位置するときにのみ、前記コントロールシャフトを前記最大リフト位置に向けて付勢する第2の付勢部材を備えることを特徴とする請求項1~3のいずれかに記載の内燃機関の可変動弁機構。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、吸排気弁のバルブタイミング及びバルブリフト量を内燃機関の運転条件に応じて変更することのできる内燃機関の可変動弁機構に関する。

[0002]

【従来の技術】内燃機関の弁機構として、可変動弁機構 が知られている。

【0003】可変動弁機構は、吸気弁や排気弁のバルブタイミング (開閉時期) 及びパルブリフト品を、内燃機

関の運転条件に応じて制御することにより、例えば、低 速低負荷時においては燃費の向上及び安定した運転性を 実現し、また、高速高負荷時には吸気の充填効率を向上 させて十分な出力を確保するものである。

【0004】図12に、従来例として、特開昭55-137305号公報に記載された可変動弁機構の概略を示す。

【0005】同図に示す可変動弁機構は、シリンダへッド1のアッパデッキのほぼ中央近傍上方位置に配置されたカムシャフト2を有し、このカムシャフト2の外周面にはカム2aが固定されている。カムシャフト2の斜め上方には、これと平行に制御シャフト3が配置されおり、この制御シャフト3には偏心カム4を介して、ロッカーアーム5が揺動自在に軸支されている。ロッカーアーム5の一端部5aには、上述のカム2aが当接されている。

【0006】一方、上述のシリンダヘッド1には、吸気 弁6が上下方向摺動自在に配設されており、吸気弁6 は、そのステムの上端部に取り付けられた半割りコレット6a、アッパーリテーナ6bを介してバルブスプリング6cにより上方に付勢されている。これら吸気弁6、アッパーリテーナ6b、バルブスプリング6c等には、バルブリフター7が冠着されている。

【0007】パルブリフター7の上方には、揺動カム8が配設されている。揺動カム8は、上述のカムシャフト2と平行に配置された支軸9によって揺動自在に軸支されており、その下端のカム面8aをパルブリフター7の上面に当接させている。また、揺動カム8の上端面8bは、スプリング10によって上方に付勢され、一端部5aを前述のカム2aに当接されたロッカーアーム5の他端部5bに常時、当接されている。

【0008】上述構成の可変動弁機構においては、カム2aのリフトは、ロッカーアーム5の一端部5a、他端部5b、揺動カム8、そして、バルブリフター7を介して吸気弁6に伝達される。

【0009】また、上述の制御シャフト3は、アクチュエータ(不図示)によって所定角度範囲で回転制御される。この回転制御により、偏心カム4の中心位置が制御され、これにより、ロッカーアーム5の揺動支点が変化するようになっている。

【0010】そして、偏心カム4が正逆の所定回動位置に制御されるとロッカーアーム5の揺動支点が変化し、これによって揺動カム8のカム面8aのバルブリフター7上面に対する当接位置が変化し、揺動カム8の揺動軌跡が変化することにより吸気弁6のバルブタイミングとバルブリフト量とを可変制御するようになっている。

[0011]

【発明が解決しようとする課題】しかしながら、上述の 従来の可変動弁機構によると、アクチュエータの抜力時 (例えば、内燃機関の停止時、アクチュエータの故障 時)には、バルブスブリング6cのばね反力により、バルブリフター7を上方に押し上げようとする力が発生し、この力が揺動力ム8、ロッカーアーム5を介して偏心力ム4に伝わり、偏心力ム4を、バルブリフト量が最も小さくなる回動位置(図12の上方)に付勢することになる。このため、内燃機関の性能上の要求から、吸気弁6のバルブリフト可変範囲に0リフト(弁停止)を含める設定とした場合には、アクチュエータの抜力時には、吸気弁6が0リフト状態に固定されてしまうことになり、吸気不能となるため、内燃機関の再始動ができなくなるという問題があった。

【0012】また、この可変動弁機構においては、揺動カム8の回転慣性モーメントが最大となる内燃機関の最高回転数域で一般に用いられる最大バルブリフト状態において、ロッカーアーム5が偏心カム4に及ぼすカベクトルの向きと、偏心カム4の回動位置との関係を考慮した設計がなされていないため、偏心カム4の受ける力が最大となる内燃機関の最高回転数域では、偏心カム4を所定の回動位置に保持するための必要トルクが過大となってしまうという問題があった。

【0013】本発明は、上述の問題を解決し得る、すなわち内燃機関の再始動が容易で、しかも、偏心カムを所定の回動位置に保持するための必要トルクが少なくてすむ可変動弁機構を提供することを目的とする。

【0014】また上述の従来例では、次の①~④のような欠点もある。

【0015】①カム2a(図12参照)と揺動カム8とがそれぞれカムシャフト2と支軸9とに設けられて、内燃機関の幅方向(図12の左右方向)へ大きく離間した位置に個別に配置されている。このため、これらカム2aや揺動カム8の大きな配置スペースが必要となる。

【0016】②カム2aと揺動カム8とが内燃機関幅方向へ大きく離れているため、ロッカーアーム5の両端部5a、5bを必然的に内燃機関の幅方向へほぼ「ヘ字状」に延出させなければならない。したがって、配置スペースの増加と相俟ってロッカーアーム5の大型化により、可変動弁機構の内燃機関への搭載性が悪化し、また、重量が増加する。

【0017】③カムシャフト2の他に支軸9を必要とするので、部品点数が増加するとともに、カムシャフト2と支軸9との互いの軸心のズレが生じやすくなり、これによってバルブタイミングの制御精度が低下するおそれがある。

【0018】④ロッカーアーム5の端部5 bが、揺動力ム8を押圧することによって揺動力ム8の揺動を得る構成のため、ロッカーアーム5の押圧点(当接位置)が揺動力ム8から離脱するおそれがある。したがって、ロッカーアーム5の揺動支点位置に制約が生じ、揺動力ム8の揺動軌跡、ひいては吸気弁6のパルブタイミングやバルブリフト量を比較的大きく設定することができない。

【0019】本発明は、これらの欠点を解決した可変動 弁機構を提供することを第2の目的とする。

[0020]

【課題を解決するための手段】上述の目的を達成するた めの請求項1の発明は、内燃機関のクランク軸によって 回転駆動されるカムシャフトと、該カムシャフトの外周 面に固定された回転カムと、前記カムシャフトにほぼ平 行に配設されたコントロールシャフトと、該コントロー ルシャフトと一体の制御カムと、該制御カムによって揺 動自在に支持されたロッカーアームと、前記カムシャフ トによって揺動自在に支持された揺動カムと、前記回転 カムに回転自在に嵌合して該回転カムと前記ロッカーア ームの一端部とを連結するリング状リンクと、前記ロッ カーアームの他端部と前記揺動カムとを連結するロッド 状リンクと、前記コントロールシャフトを所定の角度範 囲で回動させるアクチュエータと、該アクチュエータを 内燃機関の運転条件に応じて駆動制御する制御手段とを 備え、前記カムシャフトの回転を、前記回転カム、前記 リング状リンク、前記ロッカーアーム、前記ロッド状リ ンクを介して前記揺動カムに揺動運動として伝達しバル ブを開閉するとともに、前記制御手段による前記コント ロールシャフトの回転に伴う前記制御カムの回転により 前記揺動カムの揺動角度を変更してなる内燃機関の可変 動弁機構において、前記コントロールシャフトの回転を 回動範囲の一方の端部に設けた0リフト位置で停止させ る0リフト位置ストッパーと、前記コントロールシャフ トの回転を回動範囲の他方の端部に設けた中リフト位置 で停止させる中リフト位置ストッパーと、前記コントロ ールシャフトの回動範囲内における前記0リフト位置と 前記中リフト位置との間に設けられ、前記コントロール シャフトの中心と前記カムシャフトの中心とを結ぶ線分 上又はこの近傍に設定された最大リフト位置を経由して 前記コントロールシャフトを前記0リフト位置から前記 中リフト位置に向けて付勢する第1の付勢部材とを備え ることを特徴とする。

【0021】請求項2の発明は、請求項1の発明において、前記最大リフト位置を基準として、前記0リフト位置は前記ロッド状リンク側に設定され、前記中リフト位置は前記リング状リンク側に設定されることを特徴とする。

【0022】請求項3の発明は、請求項1又は2の発明において、最大リフト時の 1_0 、 1_1 、 1_2 、 1_3 、 1_4 、 1_5 、 1_6 、 θ_{34} について、

 1_0 :前記制御カムの中心と前記カムシャフトの中心とを結ぶ線分長さ、

 \mathbf{l}_1 :前記カムシャフトの中心と前記回転カムの中心とを結ぶ線分長さ、

l₂:前記回転カムの中心と、前記リング状リンクと前記ロッカーアームの一端部との連結部の中心とを結ぶ線分長さ、

1₃:前記リング状リンクと前記ロッカーアームの一端 部との連結部の中心と、前記制御カムの中心とを結ぶ線 分長さ、

 1_4 :前記制御カムの中心と、前記ロッカーアームの他端部と前記ロッド状リンクとの連結部の中心とを結ぶ線分長さ、

1₅:前記ロッカーアームの他端部と前記ロッド状リンクとの連結部の中心と、前記ロッド状リンクと前記揺動カムとの連結部の中心とを結ぶ線分長さ、

1₆:前記ロッド状リンクと前記揺動カムとの連結部の中心と、前記カムシャフトの中心とを結ぶ線分長さ、

 θ_{34} :前記 1_3 と前記 1_4 との間の挟角、 としたときに、これらの値が、

をほぼ満足するリンクジオメトリを構成するように設定 されていることを特徴とする。

【0023】請求項4の発明は、請求項1、2、又は3の発明において、前記コントロールシャフトが前記最大リフト位置よりも前記0リフト位置側に位置するときにのみ、前記コントロールシャフトを前記最大リフト位置に向けて付勢する第2の付勢部材を備えることを特徴とする。

[0024]

【発明の効果】請求項1の発明によれば、内燃機関の停止時やアクチュエータの故障時等のアクチュエータの抜力時に、コントロールシャフトが0リフト位置と中リフト位置との間のいずれの位置にあった場合においても、コントロールシャフトは第1の付勢部材によって中リフト位置に配置される、すなわちバルブリフトが可能となるので、内燃機関の再始動が可能となる。

【0025】 請求項2の発明によると、最大リフト位置を基準にして、0リフト位置及び中リフト位置がそれぞ

れロッド状リンク側、リング状リンク側に設定されているので、コントロールシャフト回転角度変化に対するバルブリフト敏感領域を避けることができる。

【0026】請求項3の発明によれば、 $1_0 \sim 1_6$ 、 θ 3_4 が、前述の方程式(1)をほぼ満足するリンクジオメトリを構成するので、コントロールシャフトに最大荷重が作用する最大リフト時のリフトピーク時にコントロールシャフト保持トルクを低減することができる。

【0027】請求項4の発明によれば、第2の付勢部材を設けることで、0リフト位置から最大リフト位置までのコントロールシャフトの付勢部材(第1、第2の付勢部材)の反力の向上と、通常の運転状態(中リフト位置と最大リフト位置との間)の付勢部材(第1の付勢部材)の反力を低減し、通常の運転状態でのアクチュエータの負荷低減とを両立させることができる。

[0028]

【発明の実施の形態】以下、本発明の実施の形態を図面 に基づいて詳述する。

【0029】 [第1の実施の形態] 図1は、本実施の形態の可変助弁機構の概略構成を示す図である。尚、同図においては、各部材の同図中での表裏方向の位置については考慮していないため、実際には他の部材に隠れて見えない部分もすべて実線で図示してある。

【0030】可変動弁機構は、以下の11~24で示す各部材を主要構成部材として構成されている。以下の各部材とは、図1に示すカムシャフト11、回転カム12、リング状リンク13、コントロールシャフト14、制御カム15、ロッカーアーム16、ロッド状リンク17、揺動カム18、パルブ19、図10に示すアクチュエータ20、制御手段21、0リフト位置ストッパー22、中リフト位置ストッパー23、第1の付勢部材24である。以下順に詳述する。

【0031】カムシャフト11は、図1に示すように、その長手方向を図1中の表裏方向に向けて配置されており、内燃機関のクランク軸(いずれも不図示)の回転によって回転駆動される。カムシャフト11の中心(軸心)を c_1 とする。

【0032】回転カム12は、上述のカムシャフト11の外周面に、その中心 c_2 をカムシャフト11の中心 c_1 からオフセットさせた状態で固定されている。回転カム12は、カムシャフト11の回転に伴い、カムシャフト11の中心 c_1 を中心として偏心しつつ回転するようになっている。

【0033】リング状リンク13は、上述の回転カム12と後述のロッカーアーム16とを連結する部材である。リング状リンク13は、大径部13aと小径部13bとを有しており、大径部13aを上述の回転カム12の外周面に遊嵌させるとともに、小径部13bをロッカーアーム16の一端部16aに回動可能に連結している。リング状リンク13は、上述の回転カム12の偏心

しながらの回転を、ロッカーアーム16に揺動運動として伝達するものである。リング状リンク13の小径部13 とロッカーアーム16の一端部16 a との連結部の中心(回動中心)を c_3 とする。尚、リング状リンク13の大径部13 a の中心は、上述の回転力ム12の中心 20、と一致する。

【0034】コントロールシャフト14は、上述のカムシャフト11とほぼ平行に配設されている。コントロールシャフト14の中心(軸心)を14aとする。尚、コントロールシャフト14の回動範囲等については、後に詳述する。

【0035】制御カム15は、上述のコントロールシャフト14と一体的に構成されている。制御カム15の中心 c_4 は、コントロールシャフト14の中心14aからオフセットされている。制御カム15は、後述するように、制御シャフト14を回転させることで、その回転角度に応じて、中心 c_4 が制御シャフト14の中心14aを中心として移動するようになっている。この制御カム15の中心 c_4 が次に説明するロッカーアーム16の揺動中心と一致する。

【0036】ロッカーアーム16は、上述の制御カム1 5によって揺動自在に支持されている。ロッカーアーム 16の一端部16aには、上述のリング状リンク13の **小径部13bが回動自在に連結されており、また、他端** 部には、後述のロッド状リンク17の上端部17aが回 動自在に連結されている。ロッカーアーム16の他端部 16 bとロッド状リンク17の上端部17 aとの連結部 の中心を c5 とする。ロッカーアーム16は、上述の制 御カム15の中心 c』を揺動中心として、その一端部1 6 a 及び他端部 1 6 b がほぼ上下方向に揺動するように なっている。このときの揺動中心は、上述のコントロー ルシャフト14の回転によって移動する。 すなわち、コ ントロールシャフト14の回転によって制御カム15の 中心c」が移動すると、この移動した点がロッカーアー ム16の揺動中心となる。このロッカーアーム16の揺 動中心が移動することによって、吸気弁19のバルブタ イミング及びパルプリフト量が変更されるようになって

【0037】ロッド状リンク17は、上述のロッカーアーム16と後述の揺動カム18とを連結している。ロッド状リンク17は、ほぼ上下方向に向けて配置されており、上端部17aを上述のロッカーアーム16の他端部16bに回動自在に連結させる一方、下端部17bを次に説明する揺動カム18の下端部18bに回動自在に連結させている。ロッド状リンク17は、ロッカーアーム16の揺動運動を、揺動カム18の揺動運動として伝達するものである。

【0038】揺動カム18は、上述のカムシャフト11と、バルブ19に嵌着されたバルブリフター19aとの間に介装されている。揺動カム18は、その上端部18

aが、カムシャフト11の外周に嵌合して揺動自在に支持されるとともに、下端部18bに上述のロッド状リンク17の下端部17bが回動自在に連結されている。この連結部の中心を c_6 とする。揺動カム18の揺動中心は、上述のカムシャフト11の中心 c_1 と一致する。揺動カム18は、下端部に形成されたカム面18cをバルブリフター19aの上面19bに当接させている。揺動カム18は、上端部18aの中心 c_1 を中心として、上述のロッド状リンク17により下端部18bが揺動される。これにより、バルブリフター19aを介してバルブ19を昇降させるようになっている。

【0039】尚、バルブ19を上方に付勢する構成については、図12に示す従来例のものと同様なのでその重複説明は省略するものとする。

【0040】アクチュエータ20は、図10に示すように、コントロールシャフト14の一方の端部に連結されており、コントロールシャフト14を所定角度範囲で回動させるものである。アクチュエータ20としては、例えば、回転型油圧アクチュエータや動作信号のパルス数に比例した回転角度だけ回転するステッピングモータ等を使用することができる。

【0041】制御手段21は、上述のアクチュエータ20に接続されている。制御手段21は、内燃機関の運転状態(例えば、低速低負荷時、高速高負荷時等)に応じてアクチュエータ20の回転角度を制御することで、コントロールシャフト14の回転角度を制御し、これにより、コントロールシャフト14と一体の制御カム15の中心c4、すなわちロッカーアーム16の揺動中心を移動させるものである。

【0042】0リフト位置ストッパー22は、コントロールシャフト14の外周面に突設された係合部材25に当接して、コントロールシャフト14の一方の回転限度を規制するものである。0リフト位置ストッパー22は、係合部材25がこれに当接したときには、バルブ19のバルブリフト量(最大リフト量)が0となるような位置に設定されている。

【0043】中リフト位置ストッパー23は、コントロールシャフト14の係合部材25に当接して、コントロールシャフト14の他方の回転限度を規制するものである。中リフト位置ストッパー23は、係合部材25がこれに当接したときには、バルブ19のバルブリフト量

(最大リフト量)が0と最大とのほぼ中間となるような位置に設定されている。本実施の形態においては、前述のコントロールシャフト14は、上述の0リフト位置ストッパー22によって規制される0リフト位置L(図2参照)と、中リフト位置ストッパー23によって規制される中リフト位置Mとの間を正逆の双方向に回転することができ、その間の所定の位置にバルブリフト量が最大となる最大リフト位置Hが設定されている。

【0044】第1の付勢部材としての戻りばね24は、

例えば、トーショナルスプリングによって構成された戻りばねであり、コントロールシャフト14を、0リフト位置しから最大リフト位置Hを経由して中リフト位置Mに向けて付勢している。戻りばね24のばね力は、上述のアクチュエータ20の抜力時には、コントロールシャフト14が0リフト位置Lと中リフト位置Mとの間のいずれの位置に回転されていた場合でも、これを中リフト位置Mに移動させることができる程度に設定されている。

【0045】上述の本実施の形態によれば、回転カム12が固定されたカムシャフト11を、揺動カム18を揺動自在に支持するシャフトとしても兼用するため、装置全体の配置スペースが小さくなり、機関への搭載性が向上するとともに、バルブタイミングの制御精度が向上する。また、リング状リンク13の大径部13aを、回転カム12の外周面に遊嵌し、また、ロッカーアーム16と揺動カム18とをロッド状リンク17で図1に示すように連結することで、バルブタイミングやバルブリフト量を比較的大きく設定しても、揺動カム18が離脱したりするような恐れがない。つまり、図12に示す従来例の欠点として挙げた前述の①~④を解消することができる。

【0046】次に、図2を参照して、本実施の形態の特 徴部分について詳細に説明する。

【0047】前述のように、制御カム15と一体のコン トロールシャフト14は、0リフト位置ストッパー22 と中リフト位置ストッパー23とによって、回動範囲の 両端、すなわち0リフト位置Lと中リフト位置Mとが設 定され、その間を回動することができる。そして、その 間に最大リフト位置Hが設定されている。言い換える と、コントロールシャフト14の回転に伴って、制御カ ム15の中心 c_4 、すなわちロッカーアーム16の揺動 中心がコントロールシャフト14の中心14aを中心と して、0リフト位置Lから中リフト位置Mまで移動する ことができるようになっていて、0リフト位置しと中リ フト位置Mとの間に最大リフト位置Hが設定されてい る。本実施の形態においては、最大リフト位置Hは、コ ントロールシャフト14の中心14aと、カムシャフト 11の中心c」とを結ぶ直線上又はその近傍に位置する ようになっている。

【0048】上述のように、本実施の形態においては、 最大リフト位置Hを基準として、ロッド状リンク17側 に0リフト位置しを設定し、また、リング状リンク13 側に中リフト位置Mを設定している。

【0049】また、前述の第1の付勢部材としての戻りばね24は、コントロールシャフト14を、アクチュエータ20の抜力時には、0リフト位置しから中リフト位置Mへ戻すように作用する。

[0050] さらに、本実施の形態では、これらに加えて、図6(a)に示すように、最大リフト時の制御カム

15の中心 c_4 とカムシャフト 11の中心 c_1 とを結ぶ線分長さを 1_0 、カムシャフト 11 の中心 c_1 とリング状リンク 13 の大径部 13 a の中心(回転カム 12 の中心) c_2 とを結ぶ線分長さを 1_1 、リング状リンク 13 の大径部 13 a の中心 c_2 と連結部(リング状リンク 13 の小径部 13 b とロッカーアーム 16 の一端部 16 a との連結部)の中心 c_3 とを結ぶ線分長さを 1_2 、連結部の中心 c_3 と制御カム 15 の中心 c_4 とを結ぶ線分長 さを 1_3 、制御カム 15 の中心 c_4 と連結部(ロッカーアーム 16 の他端部 16 b とロッド状リンク 17 の上端部 17 a との連結部)の中心 c_5 とを結ぶ線分長さを 14 、連結部の中心 15 と連結部(ロッド状リンク 15 の下端部 15 と 15 と 15 と 15 と 15 と 15 の下端部 15 と 15

部)の中心 c_6 とを結ぶ線分長さを l_5 、連結部の中心 c_6 とカムシャフト 1 1 の中心 c_1 とを結ぶ線分長さを l_6 、そして、上述の l_3 と l_4 との間の挟角を θ_{34} と したとき、これら l_0 、 l_1 、 l_2 、 l_3 、 l_4 、 l_5 、 l_6 、 θ_{34} の値が、前述の式(1) をほぼ満足する リンクジオメトリを構成するように設定されている。 尚、式(1) は、図 θ_{34} (b) に基づいて以下のようにして導かれる。

【0051】まず、最大リフト時に、図6のベクトルA とベクトルBの合力がカムシャフト11の中心 c_1 に向 くためのリンク長さについて検討する。

【0052】三角形①について

これはベクトルAのx成分絶対値に比例する。

【0053】また三角形①について

$$\begin{array}{l} (1_1+1_2) \ ^2=1_3^2+1_0^2-2 \ 1_3 \ 1_0 cos \ \theta_3 \\ \theta_3=cos \ ^{-1} \ \{ \ (1_3^2+1_0^2-1_1^2-1_2^2-2 \ 1_1 \ 1_2) \ /2 \ 1_0 \ 1_3) \ \} \\ \ \ \, \& \supset \mathcal{T} \\ \theta_4=\theta_{34}-cos \ ^{-1} \ \{ \ (1_3^2+1_0^2-1_1^2-1_2^2-2 \ 1_1 \ 1_2) \ /2 \ 1_0 \ 1_3) \ \} \\ \cdots \ (3) \end{array}$$

また三角形②より

$$1^{2} = 1_{4}^{2} + 1_{0}^{2} - 2 \cdot 1_{0} \cdot 1_{4} \cos \theta_{4} \cdots (4)$$

$$1 = \sqrt{(1_{4}^{2} + 1_{0}^{2} - 2 \cdot 1_{0} \cdot 1_{4} \cos \theta_{4}) \cdots (5)}$$

 $l_0^{2}=l_4^{2}+l^2-2l_4\cos\theta_5$ 上式に(4)、(5)を代入して整理すると、

$$\cos \theta_{5} = (1_{4} - 1_{0}\cos \theta_{4}) / \sqrt{(1_{4}^{2} + 1_{0}^{2} - 2 \cdot 1_{0} \cdot 1_{4}\cos \theta_{4})}$$

$$\theta_{5} = \cos^{-1} \{ (1_{4} - 1_{0}\cos \theta_{4}) / \sqrt{(1_{4}^{2} + 1_{0}^{2} - 2 \cdot 1_{0} \cdot 1_{4}\cos \theta_{4}) \}} \cdots (6)$$

三角形③より

上式に (4) 、 (5) を代入して整理すると、

$$1_{6}^{2} = 1_{5}^{2} + 1^{2} - 2 1 1_{5} \cos \theta_{5}$$

よって、(3)、(6)、(7)より、

これはベクトルBのx成分絶対値に比例する。

【0054】最大リフト時に、ロッカアーム16を介してコントロールシャフト14に作用する合力がカムシャフト11の中心 c_1 付近を向くには、(2) = (8) が成立するリンクジオメトリーであることが必要である。つまり、前述の(1) 式が成立すればよい。

【0055】次に、本実施の形態の可変動弁機構の特徴的な動作について説明する。

[0056]0リフト位置しと中リフト位置Mが最大リフト位置Hを挟んで設定され、かつ0リフト位置Lから中リフト位置Mへ向かう方向にコントロールシャフト14を回転させる戻りばね24が設けてあるので、内燃機関の停止時やアクチュエータ20の故障時等のアクチュエータ20の抜力時には、制御カム15の中心 c_4 は、いずれの位置にあった場合でも、中リフト位置Mに移動されることになる。これにより、アクチュエータ20の

抜力時には、必ず、内燃機関の再始動が可能なバルブリフト最を確保することができる。

【0057】また、最大リフト位置Hを境にして0リフ ト位置し側は、0リフト及び極小リフトを行なうときの み使用する。また、最大リフト位置Hを境にして中リフ ト位置M側を通常の運転領域(通常運転使用領域)とし て使用する。このように最大リフト位置Hを境として、 使用する領域を区分することにより、図3に示すような コントロールシャフト回転角度変化に対するパルブリフ ト敏感領域を避けることができる。このようなバルブリ フト敏感領域なるものが存在する理由は、図4に示すよ うに、矢印A方向に制御カム15の中心 c4 が移動する ときには、中心 c_{λ} とカムシャフト11の中心 c_{1} のY軸方向の距離は拡大しリフトを縮小させるように働く が、X軸方向では、可変動弁機構全体をカムシャフト1 1の中心 c_1 を中心として時計回りに回転させてリフト を拡大させるように働くため、Y軸方向のリフト縮小効 果をX軸方向のリフト拡大効果が目減りさせて、コント ロールシャフト回転角度変化に対するバルブリフト量を 制御することができる。一方、矢印B方向に制御カム1 5の中心c4が移動するときには、中心c4とカムシャ フト11の中心 c,のY軸方向の距離は拡大しリフトを 縮小させるように働くのに加えて、X軸方向では可変動 弁機構全体をカムシャフト11の中心 c , を中心として 反時計回りに回転させてリフトをさらに縮小させるよう に働くため、Y軸方向のリフト縮小効果にX軸方向のリ フト縮小効果が加えられて、コントロールシャフト回転 角度変化に対するバルブリフト量が大きくなり過ぎてし まうことによる。

【0058】また、制御カム15の中心 c_4 が中リフト位置M側に存在するときは、戻りばね24の戻り側にあり、戻りばね力が小さくなってしまうが、最大リフト位置Hを境にして、中リフト位置M側ではバルブスプリング反力により、制御カム15の中心 c_4 は、確実に中リフト位置Mへ動かされることになる。

【0059】さらに、図5(a)、(b)、(c)に示すように、本実施の形態の可変動弁機構では、リフトを拡大する程、揺動カム18のリフトピークでの回転角加速度が飛躍的に増大する。特に最大リフト位置状態では、内燃機関の最高回転時に使用されるため、揺動カム18の回転慣性モーメントによる荷重は非常に大きくなり、コントロールシャフト14の保持トルクも過大となる。

【0060】しかし、ほぼカムシャフト110の中心 c_1 方向を挟んで制御カム150の中心 c_4 が左右に移動するため、最大リフト方向は必然的にほぼカムシャフト11の中心 c_1 方向となり、さらに前述の方程式(1)がほぼ成立するような、 1_0 、 1_1 、 1_2 、 1_3 、 1_4 、 1_5 、 1_6 、 θ_{34} の組み合わせを有するリンクジオメトリであるので、図6 (b) に示すように、制御カム150

中心 c_4 がほぼカムシャフト11の中心 c_1 方向を向いている最大リフト時のリフトピークで、ロッド状リンク17がロッカーアーム16に及ぼすカベクトルAのX成分絶対値と、リング状リンク13がロッカーアーム16に及ぼすカベクトルBのX成分絶対値とが等しくなり、コントロールシャフト14に作用するカベクトルAとカベクトルBの合力はカムシャフト11の中心 c_1 方向を向く。これにより、図7 (a)の本実施の形態に示すように、(b)の参考例とは異なり、コントロールシャフト14への入力が最大となるときには、この回転モーメントの腕Rをなくすことができるので、コントロールシャフト14に必要な保持トルクを図8に示すように低減することができる。

【0061】 [第2の実施の形態] 図9に示す本実施の 形態については、上述の第1の実施の形態と異なる部分 を主に説明する。

【0062】0リフト位置しから中リフト位置Mまでコ ントロールシャフト14を動かす戻りばね24に加え て、制御カム15の中心c₄が最大リフト位置Hから0 リフト位置し側に位置するときのみ、ばね反力を発生し 0 リフト位置しから最大リフト位置Hへ行く方向にコン トロールシャフト14を付勢する第2の付勢部材として の戻りばね(例えば、トーシャナルスプリング)26を 有する。例えば、制御カム15の中心c』が0リフト位 置Lと最大リフト位置Hとの間に存在するときは、図1 1に示すように、戻りばね26の腕26aが戻りばねス トッパー27と接触しているので、戻りばね26はばね 反力を発生するが、制御カム15の中心c₄ が中リフト 位置Mと前記最大リフト位置Hとの間に存在するとき は、戻りばね26の自然角度(又は自然長)を超えるの で、戻りばね26の腕26aは戻りばねストッパー27 と接触することなく、戻りばね26はばね反力を発生し ない。

【0063】制御カム15の中心 c_4 が0リフト位置 L と前記最大リフト位置 H との間に存在するときは、2つの戻りばね24、26を用いて、バルブスプリングの反力に打ち勝ってコントロールシャフト14を確実に戻すのに対し、通常の運転状態である、制御カム15の中心 c_4 が中リフト位置 M と最大リフト位置 H との間に存在するときは、戻りばね24とバルブスプリングの反力とによりコントロールシャフト14を戻す。これにより、0リフト位置 L から最大リフト位置 H までのコントロールシャフト14の戻りばね反力を向上させることと、通常の運転状態(中リフト位置 M と最大リフト位置 H との目)での戻りばね反力を低減してアクチュエータ20の負荷を低減させることとを両立させることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態の可変動弁機構を示す図。

【図2】第1の実施の形態における0リフト位置し、中

リフト位置M、最大リフト位置H、制御カムの中心(ロッカーアームの揺動中心)、カムシャフトの中心、第1の付勢部材(戻りばね)等の位置関係を示す図。

【図3】第1の実施の形態における、コントロールシャフト回転角度に対するバルブリフト変化特性を示す図。

【図4】図3の定性的説明図。

【図5】(a)、(b)、(c)は第1の実施の形態に おける揺動カムの揺動特性を示す図。

【図6】(a)、(b)は第1の実施の形態におけるリンクジオメトリを説明する図。

【図7】(a)は第1の実施の形態におけるコントロールシャフト保持トルク低減効果を説明する図。(b)は、(a)の比較例を示す図。

【図8】第1の実施の形態におけるコントロールシャフト保持トルク計算結果を示す図。

【図9】第2の実施の形態における0リフト位置L、中リフト位置M、最大リフト位置H、制御力ムの中心(ロッカーアームの揺動中心)、カムシャフトの中心、第1の付勢部材(戻りばね)、第2の付勢部材(戻りばね)等の位置関係を示す図。

【図10】第1の実施の形態における、0リフト位置ストッパー、中リフト位置ストッパー、第1の付勢部材 (戻りばね)等の構成を示す斜視図。

【図11】第2の実施の形態における、0リフト位置ストッパー、中リフト位置ストッパー、第1の付勢部材

(戻りばね)、第2の付勢部材(戻りばね)等の構成を 示す斜視図。

【図12】従来の可変動弁機構を示す図。

【符号の説明】

11…カムシャフト

12…回転カム

13…リング状リンク

14…コントロールシャフト

14a…コントロールシャフトの中心

15…制御カム

16…ロッカーアーム

17…ロッド状リンク・

18…揺動カム

19…パルブ

20…アクチュエータ

21…制御手段

22…0リフト位置ストッパー

23…中リフト位置ストッパー

24…第1の付勢部材(戻りばね)

26…第2の付勢部材(戻りばね)

c,…カムシャフトの中心

c₄ …制御カムの中心 (ロッカーアームの揺動中心)

L…0リフト位置

M…中リフト位置

H…最大リフト位置

【図1】

11…カムシャフト 12…回転カム 13…リング状リンク

4…コントロールシャフト 18…扱助カ 4m…コントロールシャフトの中心⁻ 19…パルブ

.5…何御カム .6…ロッカーアーム .7…ロッド状リンク .8…招助カム 【図4】

c 1…カムシャフトの中心 c 4…例白カムの中心(ロッカーアームの揺跡中心) L… 0 リフト位程 M…中リフト位程 H…最大リフト位程

[図5] 揺動カムの揺動運動について

[図9]

[図10]

【図8】

(b)

[図11]

【図12】

