Kolor na obrazach cyfrowych

- 1. Percepcja barw
- 2. Przestrzenie barw
- 3. Normalizacja przestrzeni barw RGB
- 4. Histogramy obrazów kolorowych

1. Percepcja barw

Promieniowanie elektromagnetyczne o długościach fal z przedziału 380 – 780 nm powoduje przemiany fotochemiczne w receptorach oka ludzkiego i za pośrednictwem kodowanych impulsów elektrochemicznych przewodzone jest przez układ nerwowy do mózgu, gdzie powstaje wrażenie barwy. Zdolnością wytwarzania informacji dotyczącej barwy charakteryzują się czopki w siatkówce oka.

Widzenie skotopowe (nocne) przy niskich poziomach oświetlenia (poniżej 0,01 lx) nie powstają wrażenia barwne.

Widzenie fotopowe (dzienne) przy poziomie oświetlenia powyżej 30 lx mózg wytwarza wrażenia barwne.

Wrażenia barwy przy widzeniu dziennym

długość fali [nm]	<u>wrażenie barwy</u>
380 - 440	fioletowa
440 - 470	indygo
470 - 480	błękitna
480 - 490	niebieska
490 - 510	niebiesko-zielona
510 - 530	niebieskawo-zielona
530 - 560	zielona
560 - 580	żółto-zielona
580 - 590	żółta
590 – 600	żółto-pomarańczowa
600 - 610	pomarańczowa
610 - 620	pomarańczowo-czerwona
620 - 780	czerwona

2. Przestrzenie barw

Przestrzeń RGB

Kolor reprezentowany jest za pomocą 3 składowych: R, G, B.

R – składowa czerwona (długość fali 700 nm)

G – składowa zielona (długość fali 546 nm)

B − składowa niebieska (długość fali 486 nm)

Model RGB jest wykorzystywany w większości kamer wideo

Przestrzeń HSI

Kolor punktu reprezentowany jest za pomocą składowej achromatycznej *I* i dwóch składowych chromatycznych: barwy *H* i nasycenia *S*.

Transformacja z przestrzeni RGB do HSI ma charakter nieliniowy

$$I = \frac{1}{3}(R + G + B)$$

$$S = 1 - \frac{3}{R + G + B} \left[\min(R, G, B) \right]$$

$$Czerń$$

$$H = \cos^{-1} \left[\frac{0.5[(R - G) + (R - B)]}{\sqrt{(R - G)^2 + (R - B)(G - B)}} \right], \quad dla \ B > G \ H = 2\pi - H$$

Podobnym modelem do HSI jest model HSV zainspirowany sposobem postrzegania barw u człowieka. Model ten często nazywany jest modelem barw dla artystów i może być wykorzystywany do interaktywnej edycji barw.

Biel

Н

Przestrzenie YUV i YIQ

Przestrzeń YUV wykorzystywana jest w standardzie PAL. Kolor reprezentowany jest za pomocą jednego kanału achromatycznego Y i dwóch kanałów chromatycznych U, V:

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.437 \\ 0.615 & -0.515 & -0.100 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Przestrzeń YIQ wykorzystywana jest w standardzie kodowania NTSC. Kolor punktu reprezentowany jest za pomocą jednego kanału achromatycznego *Y* i dwóch kanałów chromatycznych *I* i *Q*:

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.273 & -0.322 \\ 0.212 & -0.522 & 0.315 \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Wykorzystuje się też inne przestrzenie barw, np.: I1I2I3, Lab, OCS, OCSL.

3. Normalizacja przestrzeni barw RGB

L = R + G + B – luminancja (ilościowa informacja o kolorze)

R:G:B – chrominancja (jakościowa informacja o kolorze)

Zalecana przez CIE (Międzynarodowa Komisja Oświetlenia) normalizacja przestrzeni barw RGB polega na podzieleniu każdej składowej przez wartość luminancji:

$$r = \frac{R}{L}$$
, $g = \frac{G}{L}$, $b = \frac{B}{L}$

Ponieważ r + g + b = 1 do dalszego przetwarzania można wybrać tylko dwie składowe (najczęściej są to r i g).

Odseparowanie luminancji z zachowaniem jakościowej informacji o barwie zwiększa niezależność przetwarzania od zmian oświetlenia obiektów.