Task 4

Task 4: Use 5-fold cross-validation to select the best λ . Compare the prediction performance between the "optimal" model and "full" model.

5-fold CV

We write an R function cv.logit.lasso to conduct 5-fold cross-validation to select the best λ .

```
cv.logit.lasso <- function(x, y, nfolds = 5, lambda) {
  auc <- data.frame(matrix(ncol = 3, nrow = 0))</pre>
  folds <- createFolds(y, k = nfolds)</pre>
  for (i in 1:nfolds) {
    valid_index <- folds[[i]]</pre>
    x_training <- x[-valid_index, ]</pre>
    y_training <- y[-valid_index]</pre>
    training_dat <- data.frame(cbind(y_training, x_training))</pre>
    x_valid <- cbind(rep(1, length(valid_index)), x[valid_index, ])</pre>
    y_valid <- y[valid_index]</pre>
    res <- LogisticLASSO(dat = training_dat, start = rep(0, ncol(training_dat)), lambda = lambda)
    for (k in 1:nrow(res)) {
      betavec <- res[k, 2:ncol(res)]</pre>
      u_valid <- x_valid %*% betavec
      phat_valid <- sigmoid(u_valid)[, 1]</pre>
      roc <- roc(response = y_valid, predictor = phat_valid)</pre>
      auc <- rbind(auc, c(lambda[k], i, roc$auc[1]))</pre>
    }
  }
  colnames(auc) <- c("lambda", "fold", "auc")</pre>
  cv_res <- auc %>%
    group_by(lambda) %>%
    summarize(auc mean = mean(auc)) %>%
    mutate(auc ranking = min rank(desc(auc mean)))
  bestlambda <- min(cv_res$lambda[cv_res$auc_ranking == 1])</pre>
  return(cv_res)
```

Compare the results of cross-validation using glmnet and using our algorithm.

1. Our function cv.logit.lasso:

```
lambda_max <- max(t(x) %*% y) / length(y)
lambdas <- exp(seq(log(lambda_max), log(lambda_max) - 8, length = 30))
set.seed(1)
res_cv = cv.logit.lasso(x, y, nfolds = 5, lambda = lambdas)
as.matrix(res_cv %>% arrange(-lambda))
```

```
lambda auc_mean auc_ranking
## [1,] 0.3880307793 0.5953964
## [2,] 0.2944833885 0.9663792
                                         29
                                         28
## [3,] 0.2234886270 0.9686033
   [4,] 0.1696094528 0.9732774
                                         27
## [5,] 0.1287195992 0.9746754
                                         26
## [6,] 0.0976875695 0.9772606
                                         25
## [7,] 0.0741368160 0.9809819
                                         24
## [8,] 0.0562637346 0.9819983
                                         23
                                         22
## [9,] 0.0426995385 0.9829513
## [10,] 0.0324054314 0.9839803
                                         17
## [11,] 0.0245930523 0.9842396
                                         13
## [12,] 0.0186641003 0.9837128
                                         20
## [13,] 0.0141645142 0.9833856
                                         21
## [14,] 0.0107496992 0.9846370
                                          8
## [15,] 0.0081581359 0.9850634
                                           1
## [16,] 0.0061913529 0.9848939
                                           4
## [17,] 0.0046987267 0.9848928
                                           5
## [18,] 0.0035659464 0.9849928
                                          3
                                          2
## [19,] 0.0027062595 0.9849937
## [20,] 0.0020538280 0.9847940
                                          6
## [21,] 0.0015586862 0.9846939
                                          7
## [22,] 0.0011829144 0.9842929
                                         12
## [23,] 0.0008977346 0.9844208
                                          9
                                          9
## [24,] 0.0006813066 0.9844208
## [25,] 0.0005170555 0.9843215
                                         11
## [26,] 0.0003924025 0.9842212
                                         14
## [27,] 0.0002978012 0.9839216
                                         18
## [28,] 0.0002260066 0.9841236
                                         15
## [29,] 0.0001715204 0.9839214
                                         19
## [30,] 0.0001301698 0.9840223
                                         16
# best lambda
best_lambda <- res_cv$lambda[res_cv$auc_ranking == 1]</pre>
best_lambda
## [1] 0.008158136
plot(log(res_cv$lambda), res_cv$auc_mean, pch = 16, col = "red")
```



```
# coefficients of the best model
res_coef <- LogisticLASSO(dat = Training, start = rep(0, ncol(Training)),</pre>
                          lambda = lambdas) %>% as.data.frame
res_coef[res_coef$lambda == best_lambda, -1]
##
      (Intercept) radius_mean texture_mean perimeter_mean area_mean
        -0.633966 0.3587031
                                  1.005476
## 15
      smoothness_mean compactness_mean concavity_mean concave.points_mean
##
## 15
            0.2778989
##
      symmetry_mean fractal_dimension_mean
## 15
          0.3388377
```

2. glmnet from ${\bf R}$ package caret

[1] 0.003565946


```
# coefficients of the best model
coef(fit.logit.lasso, fit.logit.lasso$lambda.min)
```

```
## 11 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                          -0.59868664
## radius_mean
## texture_mean
                           1.25842810
## perimeter_mean
## area_mean
                           2.80483352
## smoothness_mean
                           0.56978399
## compactness_mean
## concavity_mean
                           0.19041249
## concave.points_mean
                           2.23311614
## symmetry_mean
                           0.46750033
## fractal_dimension_mean -0.03370096
```

The results are slightly different (mean AUC values).

```
tibble(
  lambda = lambdas,
  ours_AUC = res_cv %>% arrange(-lambda) %>% .$auc_mean,
```

```
cv.glmnet_AUC = fit.logit.lasso$cvm
) %>%
knitr::kable()
```

lambda	ours_AUC	cv.glmnet_AUC
0.3880308	0.5953964	0.5000000
0.2944834	0.9663792	0.9664002
0.2234886	0.9686033	0.9696155
0.1696095	0.9732774	0.9739870
0.1287196	0.9746754	0.9749820
0.0976876	0.9772606	0.9778663
0.0741368	0.9809819	0.9806886
0.0562637	0.9819983	0.9822062
0.0426995	0.9829513	0.9830639
0.0324054	0.9839803	0.9841889
0.0245931	0.9842396	0.9842478
0.0186641	0.9837128	0.9836220
0.0141645	0.9833856	0.9835959
0.0107497	0.9846370	0.9847465
0.0081581	0.9850634	0.9849718
0.0061914	0.9848939	0.9850007
0.0046987	0.9848928	0.9849974
0.0035659	0.9849928	0.9850940
0.0027063	0.9849937	0.9849969
0.0020538	0.9847940	0.9847955
0.0015587	0.9846939	0.9847967
0.0011829	0.9842929	0.9842911
0.0008977	0.9844208	0.9844187
0.0006813	0.9844208	0.9844187
0.0005171	0.9843215	0.9843196
0.0003924	0.9842212	0.9842184
0.0002978	0.9839216	0.9840182
0.0002260	0.9841236	0.9839183
0.0001715	0.9839214	0.9838160
0.0001302	0.9840223	0.9840178

The coefficients of the two final models are different because the best λ 's of the two methods are different (but close).

```
# our best lambda
best_lambda
```

[1] 0.008158136

```
# cv.glmnet's best lambda
fit.logit.lasso$lambda.min
```

[1] 0.003565946

```
tibble(
  predictor = c("(Intercept)", names(Training)[-1]),
  ours_coef = res_coef[res_coef$lambda == best_lambda, -1] %>% as.vector %>% as.numeric,
  cv.glmnet_coef = coef(fit.logit.lasso, fit.logit.lasso$lambda.min) %>% as.vector
) %>%
  knitr::kable()
```

ours_coef	$cv.glmnet_coef$
-0.6339660	-0.5986866
0.3587031	0.0000000
1.0054765	1.2584281
0.0000000	0.0000000
1.6000115	2.8048335
0.2778989	0.5697840
0.0000000	0.0000000
0.0000000	0.1904125
2.4234109	2.2331161
0.3388377	0.4675003
0.0000000	-0.0337010
	-0.6339660 0.3587031 1.0054765 0.0000000 1.6000115 0.2778989 0.0000000 0.0000000 2.4234109 0.3388377

If the best λ 's are the same (here we take the best λ of cv.glmnet), the coefficients are very similar but still slightly different. This difference may cause the slight difference of the CV results (mean AUC), and thus the λ 's that has the largest mean AUC values of the two methods are not the same. (Or maybe due to different 5 folds or other reasons)

```
# use cv.glmnet's best lambda
tibble(
   predictor = c("(Intercept)", names(Training)[-1]),
   ours_coef = res_coef[res_coef$lambda == fit.logit.lasso$lambda.min, -1] %>% as.vector %>% as.numeric,
   cv.glmnet_coef = coef(fit.logit.lasso, fit.logit.lasso$lambda.min) %>% as.vector
) %>%
   knitr::kable()
```

predictor	ours_coef	cv.glmnet_coef
(Intercept)	-0.5995736	-0.5986866
radius_mean	0.0000000	0.0000000
texture_mean	1.2552028	1.2584281
perimeter_mean	0.0000000	0.0000000
area_mean	2.7887923	2.8048335
smoothness_mean	0.5743011	0.5697840
compactness_mean	0.0000000	0.0000000
concavity_mean	0.2001204	0.1904125
concave.points_mean	2.2228355	2.2331161
symmetry_mean	0.4654458	0.4675003
$fractal_dimension_mean$	-0.0423927	-0.0337010

Prediction performance comparison

We probably need resampling methods (conducted in training data) to select the best model. Is the resampling methods in task 2 correct?

Below is the prediction performance on the test data. (I suppose this should not be used for model comparison)

```
# test data
X_test <- cbind(rep(1, nrow(Test)), model.matrix(diagnosis ~ ., Test)[, -1])</pre>
y_test <- Test$diagnosis</pre>
# logistic model
res_logit <- NewtonRaphson(dat = Training, func = logisticstuff, start = rep(0, ncol(Training)))
betavec_logit <- res_logit[nrow(res_logit), 3:ncol(res_logit)]</pre>
u <- X_test %*% betavec_logit
phat <- sigmoid(u)[, 1]</pre>
roc.logit <- roc(response = y_test, predictor = phat)</pre>
# logistic LASSO model
betavec logit.lasso <- res coef[res coef$lambda == best lambda, -1] %>% as.vector %% as.numeric
u <- X_test %*% betavec_logit.lasso</pre>
phat <- sigmoid(u)[, 1]</pre>
roc.logitlasso <- roc(response = y_test, predictor = phat)</pre>
# logistic LASSO model (cv.glmnet)
betavec_logit.lasso.glm <- coef(fit.logit.lasso, fit.logit.lasso$lambda.min) %>% as.vector
u <- X_test %*% betavec_logit.lasso.glm
phat <- sigmoid(u)[, 1]</pre>
roc.logitlasso.glm <- roc(response = y_test, predictor = phat)</pre>
auc <- c(roc.logit$auc[1], roc.logitlasso$auc[1], roc.logitlasso.glm$auc[1])</pre>
plot(roc.logit, legacy.axes = TRUE)
plot(roc.logitlasso, col = 2, add = TRUE)
plot(roc.logitlasso.glm, col = 3, add = TRUE)
modelNames <- c("logistic", "logistic LASSO", "logistic LASSO (cv.glmnet)")</pre>
legend("bottomright", legend = paste0(modelNames, ": ", round(auc, 3)),
col = 1:3, lwd = 2)
```

