Suppose A, B, and C are sets.

Theorem. $A \cap (B \cup C) \subseteq (A \cap B) \cup C$

Proof. Let x be arbitrary and suppose $x \in A \cap (B \cup C)$. Thus $x \in A$ and $x \in B$ or $x \in C$. If $x \in C$ then $x \in (A \cap B) \cup C$. In the case where $x \in B$ it follows that $x \in A \cap B$ and therefore $x \in (A \cap B) \cup C$. Since x was arbitrary we can conclude that $A \cap (B \cup C) \subseteq (A \cap B) \cup C$.

3.5.2

Suppose A, B, and C are sets.

Theorem. $(A \cup B) \setminus C \subseteq A \cup (B \setminus C)$

Proof. Let x be arbitrary and suppose $x \in (A \cup B) \setminus C$. Thus $x \notin C$ and $x \in A$ or $x \in B$. If $x \in A$ then $x \in A \cup (B \setminus C)$. If $x \in B$ then if follows that $x \in B \setminus C$ and therefore $x \in A \cup (B \setminus C)$. Since x was arbitrary we can conclude $A \cap (B \cup C) \subseteq (A \cap B) \cup C$.

3.5.3

Suppose A and B are sets.

Theorem. $A \setminus (A \setminus B) = A \cap B$

Proof. Let x be arbitrary and suppose $x \in A \setminus (A \setminus B)$. Then

$$x \in A \setminus (A \setminus B) \text{ iff } x \in A \land x \notin A \setminus B$$

$$\text{iff } x \in A \land \neg (x \in A \land x \notin B)$$

$$\text{iff } x \in A \land (x \notin A \lor x \in B)$$

$$\text{iff } (x \in A \land x \notin A) \lor (x \in A \land x \in B)$$

$$\text{iff } x \in A \land x \in B$$

$$\text{iff } x \in (A \cap B)$$

3.5.4

Theorem. If $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$ then $A \subseteq B$.

Proof. Suppose $A \cap C \subseteq B \cap C$ and $A \cup C \subseteq B \cup C$. Let x be arbitrary and suppose $x \in A$. Thus $x \in A \cup C$ and it follows that $x \in B \cup C$. Now if $x \in B \cup C$ then either $x \in B$ or $x \in C$. If $x \in B$ then since x was arbitrary we can conclude $A \subseteq B$. In the case that $x \in C$, then $x \in A \cap C$ and it follows that $x \in B \cap C$. Therefore $x \in C$ and $x \in B$. Thus, if $x \in A$ then $x \in B$ and since x was arbitrary we can conclude $A \subseteq B$.

Suppose A and B are sets.

Theorem. If $A \triangle B \subseteq A$ then $B \subseteq A$.

Proof. Suppose $A \triangle B \subseteq A$. We will prove by contradiction. Let x be arbitrary and suppose $x \in B$ and $x \notin A$. Since $x \in B$ and $x \notin A$ then $x \in A \triangle B$. Since $A \triangle B \subseteq A$, then $x \in A$. But this contradicts $x \notin A$. Therefore, if $x \in B$ then $x \in A$ and since x was arbitrary we can conclude that $B \subseteq A$.

3.5.6

Suppose A, B, and C are sets.

Theorem. $A \cup C \subseteq B \cup C \iff A \setminus C \subseteq B \setminus C$.

Proof. (\rightarrow) Suppose A, B, and C are sets. Suppose $(A \cup C) \subseteq (B \cup C)$. Let x be arbitrary and suppose $c \in A \setminus C$, which means $x \in A$ and $x \notin C$. Since $x \in A$, then $x \in A \cup C$ and therefore $x \in B \cup C$. This means $x \in B$ or $x \in C$ and since $x \notin C$, it must be that $x \in B$. Now since $x \in B$ and $x \notin C$ then $x \in B \setminus C$. Therefore, if $x \in A \setminus C$ then $x \in B \setminus C$ and since x was arbitrary we can conclude if $A \cup C \subseteq B \cup C$ then $A \setminus C \subseteq B \setminus C$.

 (\leftarrow) Now suppose $A \setminus C \subseteq B \setminus C$. Let x be arbitrary and suppose $x \in A \cup C$, which means $x \in A$ or $x \in C$. If $x \in C$ then $x \in B \cup C$ and since x was arbitrary then $A \cup C \subseteq B \cup C$. In the case that $x \in A$, since $A \setminus C \subseteq B \setminus C$ then $x \in B$. Therefore, $x \in B \cup C$ and since x was arbitrary then $A \cup C \subseteq B \cup C$.

3.5.7

Theorem. For any sets A and B, $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$

Proof. Let A and B be arbitrary sets. Let M be arbitrary and suppose $M \in \mathscr{P}(A) \cup \mathscr{P}(B)$. Thus $M \in \mathscr{P}(A)$ or $M \in \mathscr{P}(B)$, which means $M \subseteq A$ or $M \subseteq B$. In the case where $M \subseteq A$, let x be an arbitrary member of M and it follows that $x \in A$. Since $x \in A$ then $x \in A \cup B$ and because x was arbitrary we can conclude $M \subseteq A \cup B$ and therefore $M \in \mathscr{P}(A \cup B)$. In the case where $M \subseteq B$, let x be an arbitrary member of M and it follows that $x \in B$. Since $x \in B$ then $x \in A \cup B$ and because x was arbitrary we can conclude $M \subseteq A \cup B$ and therefore $M \in \mathscr{P}(A \cup B)$.

3.5.8

Theorem. For any sets A and B, if $\mathscr{P}(A) \cup \mathscr{P}(B) = \mathscr{P}(A \cup B)$ then either $A \subseteq B$ or $B \subseteq A$.

Proof. We will prove the contrapositive. Since we proved that $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$ in exercise 3.5.7, we must show that $\mathscr{P}(A \cup B) \not\subseteq \mathscr{P}(A) \cup \mathscr{P}(B)$ to prove our goal that $\mathscr{P}(A) \cup \mathscr{P}(B) \neq \mathscr{P}(A \cup B)$. Let A and B be arbitrary sets and suppose $A \not\subseteq B$ and $B \not\subseteq A$. This means there is an element $x \in A \setminus B$ and an element $y \in B \setminus A$. Since $x \in A$ and $y \in B$ then both x and y are in $x \in A \cup B$ and therefore the set $x \in A \setminus B$ is in $x \in A \setminus B$ but not in $x \in A \setminus B$. Thus $x \in A \cap B \cap B$ is in $x \in A \cap B \cap B$.

3.5.9

Theorem. Suppose x and y are real numbers and $x \neq 0$. Then y+1/x = 1+y/x iff either x = 1 or y = 1.

Proof. (\rightarrow) Suppose that y+1/x=1+y/x. Now if y=1 then we have proven our goal. So now assume $y \neq 1$ and y+1/x=1+y/x, then it follows that x=1.

 (\leftarrow) Now suppose x=1 or y=1. In the case that x=1 we have

$$y + \frac{1}{x} = y + \frac{1}{1} = y + 1 = 1 + \frac{y}{1} = 1 + \frac{y}{x}$$

In the case that y = 1 we have

$$y + \frac{1}{x} = 1 + \frac{1}{x} = 1 + \frac{y}{x}$$

3.5.10

Theorem. For every real number x, if |x-3| > 3 then $x^2 > 6x$.

Proof. Suppose that x is an arbitrary real number and that |x-3|>3. Then either $x-3\geq 0$ or x-3<0. In the case that $x-3\geq 0$, then |x-3|=x-3 and therefore |x-3|>3=x-3>3. Solving for x, we have x>6 and then multiplying both sides by x we have $x^2>6x$. In the case that x-3<0, then |x-3|=3-x and therefore 3-x>3. Solving for x we have x<0. Multiplying both sides of x<0 by 6-x we have $6x-x^2<0$ and therefore $x^2>6x$. \square

3.5.11

Theorem. For every real number x, |2x - 6| > x iff |x - 4| > 2.

Proof. (\rightarrow) Let x be an arbitrary real number and suppose |2x-6|>x. Our goal |x-4|>2 means that either x-4>2 or 4-x>2. Since |2x-6|>2 then either 2x-6>x or 6-2x>x. If 2x-6>x then it follows that x-4>2. Now if 6-2x>x then if follows that 4-x>2.

(\leftarrow) Now suppose |x-4|>2. Our goal |2x-6|>x means that either 2x-6>x or 6-2x>x. Since |x-4|>2 then either x-4>2 or 4-x>2. If x-4>2 then it follows that 2x-6>x. In the case that 4-x>2 then it follows that 6-2x>x.

3.5.12

Theorem. For all real numbers a and b, $|a| \le b$ if and only if $-b \le a \le b$.

Proof. (\rightarrow) Suppose a and b are arbitrary real numbers and that $|a| \leq b$. There are two cases to consider: $a \geq 0$ and a < 0. If $a \geq 0$ then $|a| = a \leq b$. It follows that $-b \leq -a$ and since $a \geq 0$ then $-a \leq a$. Therefore, $-b \leq -a \leq a \leq b$ and $-b \leq a \leq b$. Now in the case that a < 0 then $|a| = -a \leq b$. It follows that $-b \leq a$ and since a < 0 then -a > a or a < -a. Therefore $-b \leq a < -a \leq b$ and $-b \leq a \leq b$.

 (\leftarrow) Now suppose $-b \le a \le b$ and therefore $a \le b$. Now we must prove that $-a \le b$ to complete the proof. If we subtract a from both sides of $-b \le a$ and add b to both sides we have $-a \le b$.

3.5.13

Theorem. For every integer x, $x^2 + x$ is even.

Proof. Let x be an arbitrary integer. There are two cases to consider: x is even or x is odd. If x is even then there exists an integer k such that x=2k. Plugging in 2k for x in x^2+x we have $x^2+x=(2k)^2+2k=4k^2+2k=2(2k^2+k)$. Since $2k^2+k$ is an integer then x^2+x is even. In the case that x is odd there is a j such that x=2j+1. Plugging in 2j+1 for x in x^2+x we have $x^2+x=(2j+1)^2+(2j+1)=(4j^2+4j+1)+(2j+1)=4j^2+6j+2=2(2j^2+3j+1)$. Since $2j^2+3j+1$ is an integer, x^2+x is even.

3.5.14

Theorem. For every integer x, the remainder when x^4 is divided by 8 is either 0 or 1.

Proof. Suppose x is an integer and there exists an integer k such that $8k = x^4$. Since x is an integer, x is either even or odd. If x is even then there exists an integer m such that x = 2m. Then $8k = (2m)^4 = 16m^4$ and $k = 2m^4$ r 0. In the case that x is odd, then there exists an integer m such that x = 2m + 1. Then $8k = (2m+1)^4 = 16x^4 + 32x^3 + 24x^2 + 8x + 1$ and $k = 2x^4 + 4x^3 + 3x^2 + x$ r 1. Therefore, when x^4 is divided by 8 the remainder is either 0 or 1.

Suppose \mathcal{F} and \mathcal{G} are nonempty families of sets.

Theorem. $\cup (\mathcal{F} \cup \mathcal{G}) = (\cup \mathcal{F}) \cup (\cup \mathcal{G})$

- *Proof.* (\rightarrow) Suppose $x \in \cup(\mathcal{F} \cup \mathcal{G})$, which means there is a set in $\mathcal{F} \cup \mathcal{G}$ that contains x. Thus the set that contains x is in \mathcal{F} or \mathcal{G} . If the set that contains x is in \mathcal{F} then $x \in \cup \mathcal{F}$ and $x \in (\cup \mathcal{F}) \cup (\cup \mathcal{G})$. In the case that the set that contains x is in \mathcal{G} , then $x \in \cup \mathcal{G}$ and $x \in (\cup \mathcal{F}) \cup (\cup \mathcal{G})$
- (\leftarrow) Now suppose $x \in (\cup F) \cup (\cup G)$, which means there is a set in \mathcal{F} that contains x or a set in \mathcal{G} that contains x. If there is a set in \mathcal{F} that contains x, and this same set is in $\mathcal{F} \cup \mathcal{G}$. Thus there is a set in $\mathcal{F} \cup \mathcal{G}$ that contains x. In the case that there is a set in \mathcal{G} that contains x, then this set is in $\mathcal{F} \cup \mathcal{G}$. Thus there is a set in $\mathcal{F} \cup \mathcal{G}$ that contains x. Therefore $x \in \cup (\mathcal{F} \cup \mathcal{G})$.

Alternate proof?

Proof.

 $x \in \cup(\mathcal{F} \cup \mathcal{G}) \text{ iff}$ $\exists M \in \mathcal{F} \cup \mathcal{G}(x \in M) \text{ iff}$ $\exists M \in \mathcal{F}(x \in M) \vee \exists M \in \mathcal{G}(x \in M) \text{ iff}$ $x \in \cup\mathcal{F} \vee x \in \cup\mathcal{G} \text{ iff}$ $x \in (\cup\mathcal{F}) \cup (\cup\mathcal{G})$

3.5.16

Suppose \mathcal{F} is a nonempty family of sets and B is a set.

\mathbf{A}

Theorem. $B \cup (\cup \mathcal{F}) \subseteq \cup (\mathcal{F} \cup \{B\})$

Proof. (\rightarrow) Suppose x is arbitrary and $x \in B \cup (\cup \mathcal{F})$. Then $x \in B$ or $x \in \cup \mathcal{F}$. If $x \in B$ then because $B \in \mathcal{F} \cup \{B\}$, it follows that $x \in \cup (\mathcal{F} \cup \{B\})$. In the case that $x \in \cup \mathcal{F}$, there is a set $M \in \mathcal{F}$ such that $x \in M$. Since $M \in \mathcal{F}$ then $M \in \mathcal{F} \cup \{B\}$ and therefore $x \in \cup (\mathcal{F} \cup \{B\})$.

 (\leftarrow) Now suppose $x \in \cup(\mathcal{F} \cup \{B\})$. Then there is a set M such that $x \in M$ and $M \in (\mathcal{F} \cup \{B\})$, which means $M \in \mathcal{F}$ or $M \in \{B\}$. If $M \in \mathcal{F}$ then it follows that $x \in \cup \mathcal{F}$ and thus $x \in B \cup (\cup \mathcal{F})$. In the case that $M \in \{B\}$ then it follows that $x \in B$ and thus $x \in B \cup (\cup \mathcal{F})$.

\mathbf{B}

Theorem. $B \cup (\cap \mathcal{F}) = \bigcap_{A \in \mathcal{F}} (B \cup A)$

Proof. (→) Let x be arbitrary and suppose $x \in B \cup (\cap \mathcal{F})$. Then $x \in B$ or $x \in \cap \mathcal{F}$. If $x \in B$, then $x \in B \cup A$ for any set A and thus $x \in \bigcap_{A \in \mathcal{F}} (B \cup A)$. In the case that $x \in \cap \mathcal{F}$, then x is in every set $A \in \mathcal{F}$ and so $x \in \bigcap_{A \in \mathcal{F}} A$. Therefore $x \in \bigcap_{A \in \mathcal{F}} (B \cup A)$. Since x was arbitrary then $B \cup (\cap \mathcal{F}) \subseteq \bigcap_{A \in \mathcal{F}} (B \cup A)$. (←) Now suppose $x \in \bigcap_{A \in \mathcal{F}} (B \cup A)$. Thus $x \in B$ or $x \in A$ for all $A \in \mathcal{F}$. If $x \in B$ then $x \in B \cup (\cap \mathcal{F})$. If $x \in A$ for all $x \in B$ then $x \in B \cup (\cap \mathcal{F})$. Since x was arbitrary then $\bigcap_{A \in \mathcal{F}} (B \cup A) \subseteq B \cup (\cap \mathcal{F})$. □

\mathbf{C}

Theorem. $B \cap (\cap \mathcal{F}) = \bigcap_{A \in \mathcal{F}} (B \cap A)$

Proof. (→) Let x be arbitrary and suppose $x \in B \cap (\cap \mathcal{F})$, which means $x \in B$ and for all $A \in \mathcal{F}$, $x \in A$. Thus $x \in A \cap B$ and since $x \in A$ for all $A \in \mathcal{F}$, then $x \in \bigcap_{A \in \mathcal{F}} (A \cap B)$. Since x was arbitrary, we conclude $B \cap (\cap \mathcal{F}) \subseteq \bigcap_{A \in \mathcal{F}} (B \cap A)$. (←) Now suppose $x \in \bigcap_{A \in \mathcal{F}} (A \cap B)$, which means for all $A \in \mathcal{F}$, $x \in A \cap B$. Therefore $x \in B$ and for all $A \in \mathcal{F}$, $x \in A$ and thus $x \in \cap \mathcal{F}$. Since x was arbitrary we conclude $\bigcap_{A \in \mathcal{F}} (B \cap A) \subseteq B \cap (\cap \mathcal{F})$.

3.5.17

Theorem. Suppose \mathcal{F} , \mathcal{G} , and \mathcal{H} are nonempty families of sets and for every $A \in \mathcal{F}$ and every $B \in \mathcal{G}$, $A \cup B \in \mathcal{H}$, then $\cap \mathcal{H}$ is a subset of $(\cap \mathcal{F}) \cup (\cap \mathcal{G})$.

Proof. Suppose A and B are arbitrary sets, $A \in \mathcal{F}$, $B \in \mathcal{G}$, and $A \cup B \in \mathcal{H}$. Let x be arbitrary and suppose $x \in \cap \mathcal{H}$, which means x is in every set in \mathcal{H} . Since $A \cup B \in \mathcal{H}$, it follows that $x \in A$ or $x \in B$. If $x \in A$, then since A is an arbitrary set in \mathcal{F} , then $x \in \cap \mathcal{F}$. If $x \in B$, then since B is an arbitrary set in \mathcal{G} , then $x \in \cap \mathcal{G}$. Therefore, $x \in (\cap \mathcal{F}) \cup (\cap \mathcal{G})$ and since x was arbitrary we conclude that $\cap \mathcal{H} \subseteq (\cap \mathcal{F}) \cup (\cap \mathcal{G})$.

3.5.18

Theorem. Suppose A and B are sets. Then $\forall x (x \in A \triangle B \iff (x \in A \iff x \notin B))$

Proof. Let x be arbitrary and suppose $x \in A \triangle B$. Then

```
x \in A \triangle B \text{ iff } x \in (A \cup B) \setminus (A \cap B)
\text{iff } (x \in A \cup B) \land x \notin (A \cap B)
\text{iff } (x \in A \lor x \in B) \land (x \notin A \lor x \notin B)
\text{iff } (x \notin B \implies x \in A) \land (x \in A \implies x \notin B)
\text{iff } x \in A \iff x \notin B
```

Theorem. Suppose A, B, and C are sets. Then $A \triangle B$ and C are disjoint if and only if $A \cap C = B \cap C$.

Proof. (→) We will prove by contradiction. Suppose $(A\triangle B) \cap C = \emptyset$. Recall that $x \in A\triangle B$ means that $x \in A \setminus B$ or $x \in B \setminus A$. Now suppose $A \cap C \neq B \cap C$, which means $A \cap C \not\subseteq B \cap C$ or $B \cap C \not\subseteq A \cap C$. If $A \cap C \not\subseteq B \cap C$ then there exists an x such that $x \in A \cap C$ and $x \notin B \cap C$. Thus $x \in C$ and $x \in A \setminus B$, which also means $x \in A\triangle B$. However this contradicts our assumption that $(A\triangle B) \cap C = \emptyset$. In the case that $B \cap C \not\subseteq A \cap C$, there exists an x such that $x \in B \cap C$ and $x \notin A \cap C$. Thus $x \in C$ and $x \in B \setminus A$, which also means $x \in A\triangle B$. However this contradicts our assumption that $(A\triangle B) \cap C = \emptyset$.

 (\leftarrow) We will prove by contradiction. Suppose $A \cap C = B \cap C$. Now suppose that $(A \triangle B) \cap C \neq \emptyset$, which means there exists an x such that $x \in (A \setminus B) \cap C$ or $x \in (B \setminus A) \cap C$. If $x \in (A \setminus B) \cap C$, then $x \in A \setminus B$, which means $x \in A$ and $x \notin B$. Since $x \in A$ and $x \in C$, then $x \in A \cap C$. If follows that $x \in B \cap C$ because $A \cap C = B \cap C$, however this contradicts our assumption that $x \notin B$. In the case that $x \in (B \setminus A) \cap C$, $x \in B \setminus A$. Thus $x \in B$ and $x \notin A$. Since $x \in B$ and $x \in C$, then $x \in B \cap C$. It follows that $x \in A \cap C$ because $x \in C \cap C \cap C \cap C$. However, this contradicts our assumption that $x \notin A$.

3.5.20

Theorem. Suppose A, B, and C are sets. Then $A \triangle B \subseteq C$ if and only if $A \cup C = B \cup C$.

Proof. (→) Suppose $A \triangle B \subseteq C$. Let x be arbitrary and suppose $x \in A \cup C$. Thus $x \in A$ or $x \in C$. If $x \in C$ then $x \in B \cup C$. In the case that $x \in A$ then $x \notin C$ and it follows that $x \notin A \triangle B$ and thus $x \in A \cap B$. Since $x \in A \cap B$, $x \in B$ and thus $x \in B \cup C$. Now to prove the other direction suppose $x \in B \cup C$. Thus $x \in B$ or $x \in C$. If $x \in C$ then $x \in B \cup C$. In the case that $x \in B$ then $x \notin C$ and it follows that $x \notin A \triangle B$ and thus $x \in A \cap B$. Since $x \in A \cap B$, $x \in A$ and thus $x \in A \cup C$.

(←) Now suppose $A \cup C = B \cup C$ and $x \in A \triangle B$. By the definition of symmetrical difference, $x \in A \setminus B$ or $x \in B \setminus A$. If $x \in A \setminus B$ then $x \in A$ and $x \notin B$. It follows that $x \in A \cup C$ and therefore $x \in B \cup C$. Since $x \in B \cup C$ and $x \notin B$, then $x \in C$. In the case that $x \in B \setminus A$, $x \in B$ and $x \notin A$. It follows that $x \in B \cup C$ and therefore $x \in A \cup C$. Since $x \in A \cup C$ and $x \notin A$, then $x \in C$. □

3.5.21

Theorem. Suppose A, B, and C are sets. Then $C \subseteq A \triangle B$ if and only if $C \subseteq A \cup B$ and $A \cap B \cap C = \emptyset$.

- *Proof.* (\rightarrow) Suppose $C\subseteq A\triangle B$. To show that $C\subseteq A\cup B$, let x be arbitrary and suppose $x\in C$. Since $x\in C$ then $x\in A\triangle B$. By the definition of symmetric difference, $x\in A\cup B$ and $x\notin A\cap B$. Thus if $x\in C$ then $x\in A\cup B$. To prove that $A\cap B\cap C=\varnothing$ we will used proof by contradiction. Suppose there is an element y such that $y\in A, y\in B$ and $y\in C$. Since $y\in C$ then $y\in A\triangle B$. As noted earlier, if $y\in A\triangle B$ then $y\notin A\cap B$; however, this contradicts our assumption that $y\in A$ and $y\in B$. Thus, it must be that $A\cap B\cap C=\varnothing$.
- (\leftarrow) Now suppose $C \subseteq A \cup B$ and $A \cap B \cap C = \emptyset$. Let x be arbitrary and suppose $x \in C$. It follows that $x \in A \cup B$. Since $x \in C$ and $A \cap B \cap C = \emptyset$, then $x \notin A \cap B$. Now since $x \in A \cup B$ and $x \notin A \cap B$, then $x \in A \triangle B$.