Interpolation

Content

- Lagrange's Interpolation
- Divided Differences
- > Interpolation using Divided Differences
- > Newton Interpolation Formula

What is Interpolation?

Given (x_0,y_0) , (x_1,y_1) , (x_n,y_n) , find the value of 'y' at a value of 'x' that is not given.

Interpolations

Polynomials are the most common choice of interpolation because they are easy to:

- Evaluate
- Differentiate, and
- Integrate.

Lagrange's Interpolation

If y=f(x) takes the values y0, y1, y2.....yn, corresponding to x_0, x_1, x_2 x_n then

$$f(x) = \frac{(x - x_1)(x - x_2)....(x - x_n)}{(x_0 - x_1)(x_0 - x_2)....(x_0 - x_n)} \times y_0 + \frac{(x - x_0)(x - x_2)....(x - x_n)}{(x_1 - x_0)(x_1 - x_2)....(x_1 - x_n)} \times y_1 +$$

$$\frac{(x - x_0)(x - x_1)....(x - x_{n-1})}{(x_n - x_0)(x_n - x_1)....(x_n - x_{n-1})} \times y_n$$

Proof

Let y=f(x) be a function which takes the data points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ since there are n+1 pairs of values of x. we can represent f(x) by a polynomial in x of degree n. Let this polynomial be of the form

$$y = f(x) = a_0(x - x_1)(x - x_2)....(x - x_n) +$$

$$a_1(x - x_0)(x - x_2)....(x - x_n) +$$

$$a_2(x - x_0)(x - x_1)(x - x_3) +(x - x_n) + +(1)$$

$$a_n(x - x_0)(x - x_1)(x - x_2) +(x - x_{n-1})$$

Lagrange's Interpolation (Cont..)

Putting $x=x_0$ and $y=y_0$ in equation (1)

$$y_0 = a_0(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)$$

$$a_0 = \frac{y_0}{(x_0 - x_1)(x_0 - x_2)....(x_0 - x_n)}$$

Similarly putting $x=x_1$ and $y=y_1$ in equation (1), we have

$$a_1 = \frac{y_1}{(x_1 - x_0)(x_1 - x_2)....(x_1 - x_n)}$$

Proceeding the same way, we find a_2 , a_3 , a_n .

Lagrange's Interpolation (Cont..)

Substituting the values of a_0, a_1, \dots, a_n in equation (1), we get

$$f(x) = \frac{(x - x_1)(x - x_2)....(x - x_n)}{(x_0 - x_1)(x_0 - x_2)....(x_0 - x_n)} \times y_0 + \frac{(x - x_0)(x - x_2)....(x - x_n)}{(x_1 - x_0)(x_1 - x_2)....(x_1 - x_n)} \times y_1 +$$

$$\frac{(x - x_0)(x - x_1)....(x - x_{n-1})}{(x_n - x_0)(x_n - x_1)....(x_n - x_{n-1})} \times y_n$$

Lagrange's formula can be applied whether the values x_i are equally spaced or not. It is easy to remember but cumbersome to apply.

Lagrange's Interpolation:Summary

Lagrangian interpolating polynomial is given by

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

where 'n' in $f_n(x)$ stands for the n^{th} order polynomial that approximates the function y = f(x) given at (n+1) data points as $(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}), (x_n, y_n)$, and

$$L_i(x) = \prod_{\substack{j=0\\i\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

 $L_i(x)$ is a weighting function that includes a product of (n-1) terms with terms of j=i omitted.

Example

Given the values

<u>X</u>	$\underline{\mathbf{f}(\mathbf{x})}$		
5	150		
7	392		
11	1452		
13	2366		
17	5202		

Evaluate f(9), using Lagrange's formula.

Solution

$$f(x) = \sum_{i=0}^{3} L_i(x) f(x_i)$$

$$x0=5$$
, $x1=7$, $x2=13$, $x3=17$
 $f(x0)=150$, $f(x1)=392$, $f(x2)=1452$, $f(x3)=5202$

$$f(9) = \frac{(9-7)(9-11)(9-13)(9-17)}{(5-7)(5-11)(5-13)(5-17)} \times 150 + \frac{(9-5)(9-11)(9-13)(9-17)}{(7-5)(7-11)(7-13)(7-17)} \times 392 + \frac{(9-7)(9-11)(9-13)(9-17)}{(9-7)(9-11)(9-13)(9-17)} \times 392 + \frac{(9-7)(9-11)(9-13)(9-17)}{(9-7)(9-17)} \times 392 + \frac{(9-7)(9-11)(9-13)(9-17)}{(9-7)(9-17)} \times 392 + \frac{(9-7)(9-11)(9-17)}{(9-7)(9-17)} \times 392 + \frac{(9-7)(9-17)(9-17)}{(9-7)(9-17)} \times 392 + \frac{(9-7)(9-17)}{(9-7)(9-17)} \times 392$$

$$\frac{(9-5)(9-7)(9-13)(9-17)}{(11-5)(11-7)(11-13)(11-17)}\times 1452 + \frac{(9-5)(9-7)(9-11)(9-17)}{(13-5)(13-7)(13-11)(13-17)}\times 2366$$

$$+\frac{(9-5)(9-7)(9-11)(9-13)}{(17-5)(17-7)(17-11)(17-13)}\times 5202$$

$$=810$$

Practice Problems

1. The following table is given

X	0	1	2	5
f(x)	2	3	12	147

What is the form of f(x)?

2. Apply Lagrange's formula to find f(5) given that f(1)=2, f(2)=4, f(3)=8, f(4)=16, f(7)=128.

Suggested books

1. Numerical Methods by S.R.K Lyenger & R.K. Jain.

2. Numerical Analysis by Richard L. Burden.

3. Introductory methods of Numerical analysis by **S.S. Sastry**.

Thank you