

Implementação da ULA e da Unidade de Controle

Universidade Federal de Uberlândia Faculdade de Computação Prof. Dr. rer. nat. Daniel D. Abdala

Na Aula Anterior ...

- O conceito de μarquitetura;
- Organização Monociclo;

Nesta Aula

- A ULA Unidade Lógica e Aritmética;
- Subsistemas da ULA;
- Diferentes formas de organizar a ULA;
- Subsistema de Controle;
- Sinais de Controle;

ULA – Unidade Lógica e Aritmética

- "Coração" do μprocessador;
- É a coleção de subsistemas digitais que executam boa parte das funções de um processador;
- A ULA deve ser especificamente projetada para implementar um tipo de aritmética;
- ULA-ℤ ≠ ULA-ℝ

ULA – Visão Geral

- A,B entradas de dados;
- C controle, indica que operação será executada;
- **S** saída de dados;
- F flags, indicam o estado da ULA;
- **CE** chip enable, habilita o funcionamento da ULA.

Operações Contempladas

Operações

- 1. Adição
- 2. Subtração
- 3. E lógico
- 4. OU lógico
- 5. NÃO-OU lógico
- 6. XOU lógico
- 7. Comparação*

Considerações

- Projetar um subsistema para cada operação;
- Executar todas as operações sempre;
- Selecionar o resultado que se deseja via multiplexação;
- Resultados das comparações são espelhados diretamente nos flags.

Flags

- Sinais (bits) que indicam o estado da ULA;
 - 1. Me \rightarrow A < B
 - 2. $\lg \rightarrow A = B$
 - 3. Ma \rightarrow A > B
 - 4. Io \rightarrow Integer Overflow
 - 5. $lu \rightarrow Integer Underflow$

Subsistema "E" (8 bits)

Somador Completo (1 bit)

Somador (8 bits)

Somador (32 bits)

ULA – Diagrama Esquemático

Considerações ULA Apresentada

- Todas as operações são executadas paralelamente;
- Todos os circuitos consumem energia;
- Diferentes organizações da ULA podem priorizar interesses distintos;
 - Consumo de energia;
 - Velocidade de processamento;
 - Número de transistores utilizados;
 - Didática (nosso caso);

Unidade de Controle

- A função da UC é decodificar as instruções e configurar o restante da CPU para executar a instruções decodificadas;
- A decodificação converte os bits dos campos OPCODE e FUNCT para uma série de sinais de controle;
- O processo de configuração é alcançado via a definição de uma série de sinais de controle internos que roteiam a informação pelo processador;

Sinais de Controle

- **RegDst** → Sinal que controla o registrador de destino de uma instrução (rd ou rt);
- **Branch** → Sinal gerado quando uma instrução de salto condicional deve ser executada;
- MemRd → Sinal que controla a leitura da memória;
- **MemWr** → Sinal que controla a escrita da memória
- M2R → Sinal que controla de a saída da ULA vai para o register file ou memória;
- AluSrc → Sinal que controla a fonte de dados (B) da ULA;
- **RegWr** → Sinal que controla a escrita de registradores no register file;
- **Jump** → Sinal gerado quando uma instrução de salto incondicional deve ser executada;

Tabela de Decodificação de Instruções

Instruction	op[5,4,3,2,1,0]	fc[5,4,3,2,1,0]	RegDst	Branch	MemRd	MemWr	M2R	AluSrc	RegWr	Jump
add	000000	100000	00	0	0	0	000	0	1	00
sub	000000	100010	00	0	0	0	000	0	1	00
and	000000	100100	00	0	0	0	000	0	1	00
or	000000	100101	00	0	0	0	000	0	1	00
nor	000000	100111	00	0	0	0	000	0	1	00
xor	000000	100110	00	0	0	0	000	0	1	00
slt	000000	101010	00	0	0	0	001	0	1	00
addi	001000		01	0	0	0	000	1	1	00
andi	001100		01	0	0	0	000	1	1	00
ori	001101		01	0	0	0	000	1	1	00
xori	001110		01	0	0	0	000	1	1	00
sll	000000	000000	00	0	0	0	000	0	1	00
srl	000000	000010	00	0	0	0	000	0	1	00
beq	000100		XX	1	0	0	XXX	0	0	00
j	000010		XX	0	0	0	XXX	Х	0	01
jr	00000	001000	XX	0	0	0	XXX	Х	0	10
jal	000011		10	0	0	0	XXX	Х	0	01
lw	100011		01	0	1	0	001	1	1	00
sw	101011		XX	0	0	1	XXX	1	0	00
mul	000000	011000	XX	0	0	0	XXX	0	0	00
div	000000	011010	XX	0	0	0	XXX	0	0	00
mfo	000000	010010	00	0	0	0	011	0	1	00
mfhi	000000	010000	00	0	0	0	100	0	1	00
lui	001111		01	0	0	0	101	Χ	1	00

Decodificação de Instruções

Decodificação de Instruções

