

Figure 1: Independent Current Source Element.

Form:

iexp: $\langle instance name \rangle n_1 n_2 \langle parameter list \rangle$

is the positive element node,

 n_2 is the negative element node.

Parameters:

Parameter	Type	Default value	Required?
i1: Initial value (A)	DOUBLE	0	no
i2: Final current (A)	DOUBLE	0	no
tdr: Rise Time delay (s)	DOUBLE	0	no
tdf: Fall Time delay (s)	DOUBLE	0	no
tcr: Rise Time Constant (s)	DOUBLE	0	no
tcf: Fall Time Constant (s)	DOUBLE	0	no

Example:

iexp:isignal 8 0 i1=0.1 i2=0.8 tdr=1 tdf=2 tcr=0.35 tcf=1

Description:

The exponential transient is a single-shot event specifying two exponentials. The current is i_1 for the first t_{dr} seconds at which it begins increasing exponentially towards i_2 with a time constant of t_{cr} seconds. At time t_{df} the current exponentially decays towards i_1 with a time constant of t_{cf} . That is, The waveform shape of an exponential current source is given by

$$i_1 \qquad 0 < t \le t_{d1} \tag{1}$$

$$i_1 + (i_2 - i_1)[1 - e^{-(t - t_{dr})/t_{cr}}] \quad t_{d1} < t \le t_{d2}$$
 (2)

$$i_{1} 0 < t \le t_{d1} (1)$$

$$i_{1} + (i_{2} - i_{1})[1 - e^{-(t - t_{dr})/t_{cr}}] t_{d1} < t \le t_{d2} (2)$$

$$i_{1} + (i_{2} - i_{1})[1 - e^{-(t_{df} - t_{dr})/t_{cr}}]e^{-(t - t_{df})/t_{cf}} t_{d2} < t \le t_{stop} (3)$$

Figure 2: Current source transient exponential waveform for iexp:isignal 8 0 i1=0.1 i2=0.8 tdr=1 tdf=2 tcr=0.35 tcf=1

Notes:

This is the ${\tt I}$ element in the SPICE compatible net list.

Version: 2002.05.15

Credits: Name Affiliation Date Links

Satish Uppathil NC State University May 2002 NC STATE UNIVERSITY svuppath@eos.ncsu.eduwww.ncsu.edu