Дополнительное задание 1

Мы протестировали optuna на функциях из первой лабораторной работы:

1)
$$x^{**}2 + (x - 5)^{**}2 + (2^*x - 4^*y)^{**}2$$

2)
$$x^{**}2 - x^{*}y + 2^{*}x + y^{**}2 - 4^{*}y + 3$$

3)
$$(1-x)^{**}2 + 100^{*}(y-x^{**}2)^{**}2$$

Полученная погрешность:

- 1) 0.0003693441390737462
- 2) 2.027238616975069e-06
- 3) 0.0007984539416227669

Чтобы оценить полученный результат давайте вспомним, какой погрешности нам удалось добиться используя классические методы рассмотренные в первой лабораторной работе:

	NELDER- MEAD	GRADIENT DESCENT	NEWTON	QUASI- NEWTON
1	10**(-9)	10**(-7)	0	0
2	10**(-1)	10**(-1)	0	0
3	-	-	10**(-13)	10**(-11)

Нетрудно заметить, что optuna может конкурировать с Nelder-Mead и классическим градиентным спуском, как минимум в плане стабильности, но вот до уровня Ньютоновских и Квазиньютоновских методов optuna не дотягивает даже близко.

Дополнительное задание 2

Нами было решено изучить возможности optuna на базе "Adam", "RMSprop" и "Adagrad"

Список и значения hyperпараметров из третьей лабораторной работы :

```
"Adam": {"learning rate":
        [0.01, 0.001, 0.0001, 0.00001],
        "beta 1":
        [0.9, 0.85, 0.8, 0.75, 0.5],
        "beta 2":
        [0.999, 0.999999, 0.95, 0.9],
        "amsgrad": [False, True]},
"RMSprop": {"learning rate":
           [0.01, 0.001,
            0.0001,0.00001],
           "rho":
            [0.9, 0.75, 0.5, 0.25, 0.1],
           "centered":
            [False, True]},
"Adagrad": {"learning rate":
            [0.01, 0.001, 0.0001,
            0.000011,
           "initial accumulator value":
           [0.1, 0.05, 0.25]}
```

Давайте вспомним результаты полученные во время выполнения третьей лабораторной работы(Epochs=64, Batch_size=256):

1) Adam

Best loss: 2772358144

learning_rate: 0.01

beta_1: 0.5

beta 2: 0.999

amsgrad: True

2) RMSprop

Best loss: 2686508032

learning rate: 0.01

rho: 0.25

centered: True

3) Adagrad

Best loss: 7386808832

learning_rate: 0.01

initial_accumulator_value: 0.25

Теперь давайте посмотрим на результаты полученные с помощью optuna(Epochs=64, Batch_size=25, n_trials=100):

1) Adam

Best loss: 2717511936

learning_rate: 0.008871374108991116

beta_1: 0.8459746435885729

beta 2: 0.9532159743045338

amsgrad: False

2) RMSprop

Best loss: 2612644352

learning_rate: 0.005950416848779665

rho: 0.2020137163048854

centered: True

3) Adagrad

Best_loss: 7030209536

learning_rate: 0.009961119760081604

initial_accumulator_value: 0.10358843630249222

Нетрудно заметить, что optuna действительно справилась со своей задачей, найдя более оптимальные hyperпараметры для каждого из трёх optimizers