Devoir Surveillé n°1

Préliminaires

- 1. (Question de cours) Définition de sh, ch, th. Donner (en les démontrant) la dérivée de th ainsi que les limites en $\pm \infty$.
- 2. (Question de cours) Produit des nombres impairs entre 1 et 2n + 1 (démonstration).
- 3. Montrer que, pour toute fonction $f: \mathbb{R} \to \mathbb{R}$, il existe deux fonctions q et h uniques telles que q soit constante, h soit nulle en 0, et telles que f = q + h.
- 4. Compléter : « Que d'hommes se sont craint..., déplu..., détesté..., nui..., haï..., succédé... ».

Exercice 1 - Logique

1. On note P l'ensemble des professeurs du lycée Faidherbe, S l'ensemble des professeurs de sciences physiques, El'ensemble des élèves (toujours du lycée Faidherbe). Attention, on ne parle pas uniquement des élèves (ou professeurs) de prépa scientifique! Si $x \in E$ et $y \in P$, A(x,y) signifie: y est le professeur de x. Dire (en justifiant rapidement) si les assertions suivantes sont vraies ou fausses.

(a)
$$\forall x \in E, \exists y \in P, A(x, y).$$

(d)
$$\forall (x, y, z) \in E \times P^2$$
, $(A(x, y) \text{ et } A(x, z)) \Rightarrow y = z$.

(b)
$$\forall x \in E, \exists y \in S, A(x, y).$$

(e)
$$\forall (x, y, z) \in E \times P^2, (A(x, z) \text{ et } A(y, z)) \Rightarrow x = y.$$

(c)
$$\forall (x, y, z) \in E \times S^2$$
, $(A(x, y) \text{ et } A(x, z)) \Rightarrow y = z$.

(f)
$$\exists x \in E, \forall y \in P, A(x, y).$$

2. Lesquelles de ces affirmations sont vraies, lesquelles sont fausses?

(a)
$$\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, x \leq y.$$

(b)
$$\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, x > y.$$

(c)
$$\forall x \in \mathbb{N}, \exists y \in \mathbb{Z}, x > y.$$

(d)
$$\exists y \in \mathbb{Z}, \forall x \in \mathbb{N}, x > y$$
.

(e)
$$\exists y \in \mathbb{N}, \forall x \in \mathbb{N}, x \leq y$$
.

(f)
$$\exists a \in \mathbb{N}, \forall b \in \mathbb{N}, a \neq b$$
.

(g)
$$\forall a \in \mathbb{N}, \exists b \in \mathbb{N}, b = a^2$$
.

(h)
$$\forall u \in \mathbb{N}, \forall v \in \mathbb{N}, (u < v) \text{ ou } (v < u).$$

(i)
$$\forall (x,y) \in \mathbb{N}^2, x^2 = y^2 \Rightarrow x = y.$$

(j)
$$\forall (x,y) \in \mathbb{Z}^2, x^2 = y^2 \Rightarrow x = y.$$

3. Donner la négation de la dernière assertion de la question précédente.

Exercice 2 - 2023 est une année exceptionnelle

Le nombre 2023 possède une propriété remarquable : il est égal à la somme de ses chiffres multipliée par le carré de la somme des carrés de ces mêmes chiffres, c'est-à-dire que :

$$2023 = (2+0+2+3) \times (2^2+0^2+2^2+3^2)^2$$

1. Vérifier que 2400 vérifie cette même condition.

Dans la suite, on se donne n un entier (strictement positif) vérifiant cette condition et on note $k \geq 1$ son nombre de chiffres.

- 2. Montrer que $10^{k-1} < k^3 \times 9^5$.
- 3. Justifier rapidement que les nombres suivants sont tous strictement positifs :

•
$$10^8 - 9^8$$
.

•
$$\ln(10) \times 10^8 - 3 \times 9^7$$
. • $\ln(10)^2 \times 10^8 - 6 \times 9^6$. • $\ln(10)^3 \times 10^8 - 6 \times 9^5$.

$$\ln(10)^2 \times 10^8 - 6 \times 9^6$$

$$\ln(10)^3 \times 10^8 - 6 \times 9^5$$

4. Prouver que k < 9.

Page 1/4 2023/2024 MP2I Lycée Faidherbe

Exercice 3 - Récurrons :

Les deux questions de cet exercice sont indépendantes.

1. Montrer que:

$$\forall n \in \mathbb{N}, \binom{2n}{n} \le 4^n$$

- 2. (a) Soit $n \in \mathbb{N}$ fixé, et soit $k \in \mathbb{N}$. Montrer que $\binom{n-k}{k} = 0$ dès que k assez grand.
 - (b) On rappelle que la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ est définie par :

$$\left\{ \begin{array}{ll} F_0=0 & F_1=1 \\ \\ \forall n\in\mathbb{N}, & F_{n+2}=F_{n+1}+F_n \end{array} \right.$$

Montrer que :

$$\forall n \in \mathbb{N}^*, F_{n+1} = \sum_{k=0}^{+\infty} \binom{n-k}{k}$$

On ne prêtera pas attention à la somme infinie : d'après la question précédente, les termes de la somme sont nuls pour k assez grand, donc la somme est en fait finie (et donc on pourra la manipuler comme telle sans se poser de questions).

Problème - Plusieurs équivalents.

Si $n \in \mathbb{N}^*$, on définit le n-ième nombre harmonique H_n et la fonction P_n par

$$H_n = \sum_{k=1}^n \frac{1}{k}$$
 et $P_n : \begin{cases}]0;1[\rightarrow \mathbb{R} \\ x \mapsto x \times \prod_{k=1}^n (k-x) \end{cases}$

Dans sa grande mansuétude, le concepteur du sujet précise qu'aucune récurrence n'est attendue dans ce problème. Ainsi, le candidat n'aura pas à se creuser la tête pour trouver un nom pour ses hypothèses (H_n étant déjà pris...). On se donne dans tout le problème un entier $n \in \mathbb{N}^*$ quelconque (ce n'est donc pas la peine de commencer vos réponses par « Soit $n \in \mathbb{N}^*$ » puisque n est déjà défini).

Partie I - Équivalent de H_n et constante d'Euler.

Soient (u_n) et (v_n) les suites de terme général

$$u_n = H_n - \ln(n)$$
 et $v_n = u_n - \frac{1}{n}$

1. Montrer que pour tout $x > -1, \ln(1+x) \le x$. En déduire que les suites (u_n) et (v_n) sont monotones. On pourra remarquer qu'on a les égalités subtiles

$$\frac{n+1}{n} = 1 + \frac{1}{n}$$
 et $\frac{n}{n+1} = \frac{n+1-1}{n+1} = 1 - \frac{1}{n+1}$

- 2. En remarquant que $u_n \geq v_n$, montrer que la suite (u_n) est à valeurs positives.
- 3. Montrer que la suite (u_n) est convergente. Sa limite sera notée γ dans la suite. En d'autres termes,

$$u_n = H_n - \ln(n) = \sum_{k=1}^n \frac{1}{k} - \ln(n) \xrightarrow[n \to +\infty]{} \gamma$$

Partie II - Trois calculs (et demi) de limites.

1. En remarquant que $H_n = u_n + \ln(n)$, donner la limite de (H_n) puis montrer que $H_n/\ln(n) \xrightarrow[n \to +\infty]{} 1$.

Page 2/4 2023/2024

MP2I Lycée Faidherbe

2. On suppose dans cette question uniquement que $n \geq 2$ et on note

$$A_n = \sum_{j=1}^n \frac{1}{j^2}$$
 et $B_n = \sum_{j=1}^n \frac{H_j}{j(j+1)}$

(a) Donner deux réels a et b tels que pour tout $x \neq 0, 1$,

$$\frac{1}{x(x-1)} = \frac{a}{x-1} + \frac{b}{x}$$

(b) Montrer que pour tout $j \in [2; n]$,

$$\frac{1}{i^2} \le \frac{1}{i(i-1)}$$

- (c) En déduire que $A_n \le 2$ puis que la suite (A_n) converge. On admet que sa limite est égale à $\pi^2/6$.
- (d) À l'aide de la question 2.(a), montrer que $B_n = A_n \frac{H_n}{n+1}$.
- (e) Donner finalement la limite de la suite (B_n) . On pourra utiliser la question 1.
- 3. On note

$$S_{2n} = \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k}$$

- (a) Montrer que $S_{2n} = \sum_{i=1}^{n} \frac{1}{2i-1} \frac{H_n}{2}$.
- (b) Montrer de plus que $H_{2n} = \sum_{i=1}^{n} \frac{1}{2i-1} + \frac{H_n}{2}$ et en déduire une expression de S_{2n} en fonction de H_{2n} et de H_n .
- (c) On admet que la suite (u_{2n}) converge également vers γ . En déduire que la suite (S_{2n}) converge vers une limite finie que l'on explicitera.

Partie III - Définition et équivalent de a_n .

1. À l'aide de la fonction $\ln(P_n)$, montrer que pour tout $x \in [0,1]$,

$$\frac{{P_n}'(x)}{P_n(x)} = \sum_{k=0}^{n} \frac{1}{x-k}$$

- 2. Donner le tableau de variations de P_n'/P_n sur] 0;1 [. On détaillera le calcul des limites aux bornes.
- 3. En déduire qu'il existe un unique $a_n \in]0;1[$ tel que $P_n'(a_n)=0.$
- 4. Montrer que

$$\frac{1}{a_n} + \frac{1}{a_n - 1} = \sum_{k=2}^n \frac{1}{k - a_n}$$

5. Montrer que

$$\sum_{k=2}^{n} \frac{1}{k} \le \frac{1}{a_n} + \frac{1}{a_n - 1} \le \sum_{j=1}^{n-1} \frac{1}{j}$$

6. En utilisant la monotonie et le signe de la suite (u_n) définie dans la partie I, montrer que

$$\ln(n) - 1 \le \frac{1}{a_n} + \frac{1}{a_n - 1} \le \ln(n - 1) + 1 \le \ln(n) + 1$$

- 7. Montrer que $\frac{1}{a_n} + \frac{1}{a_n 1} \le \frac{1}{a_n}$ et en déduire que $a_n \xrightarrow[n \to +\infty]{} 0$
- 8. Donner la limite de $\left(\frac{1}{a_n-1}\right)$. En déduire que $a_n \times \ln(n) \xrightarrow[n \to +\infty]{} 1$.

Page 3/4 2023/2024

MP2I Lycée Faidherbe

Partie IV - Un dernier équivalent.

On reprend les notations de la partie précédente (en particulier a_n). On note

$$T_n = \sum_{k=1}^{n} \ln\left(1 - \frac{a_n}{k}\right)$$

- 1. Montrer que, pour tout $x \in [-1/2; 0], -2x^2 \le \ln(1-x) + x \le 0$
- 2. De plus, d'après la question 7 de la partie III, $-a_n \in [-1/2;0]$ pour n assez grand (il n'est pas demandé de le prouver). Montrer que pour n assez grand,

$$-2a_n \times A_n \le T_n + a_n \times H_n \le 0$$

où A_n est la somme définie dans la partie II. En déduire la limite de la suite $(T_n + a_n \times H_n)$ puis la limite de (T_n) .

3. On rappelle que $n! = \prod_{k=1}^n k$ et que si une suite (x_n) converge vers une limite finie L et si f est une fonction continue en L, alors $f(x_n) \xrightarrow[n \to +\infty]{} f(L)$. Montrer que la suite $\left(\frac{\ln(n) \times P_n(a_n)}{n!}\right)$ admet une limite finie que l'on explicitera.

Page 4/4 2023/2024