Page 1 of 12

মোঃ মিনহাজুল কবীর

(BSc Engineer in Computer Science and Engineering)
Email: kabir110409@acc.edu.bd or mdminhazulkabir@gmail.com

তথ্য ও যোগাযোগ প্রযুক্তি (একাদশ ও দ্বাদশ শ্রেণী)

তৃতীয় অধ্যায়ঃ সংখ্যা পদ্ধতি (১ম অংশ)

বাইনারিঃ এর base 2. সংখ্যাপুলো হচ্ছে 0, 1. একটা সংখ্যার ঘরের সর্বোচ্চ মান 1 এর থেকে বেশী হতে পারবে না । অক্টালঃ এর base 8. সংখ্যাপুলো হচ্ছে 0, 1, 2, 3, 4, 5, 6, 7. একটা সংখ্যার ঘরের সর্বোচ্চ মান 7 এর থেকে বেশী হতে পারবে না

দশমিকঃ এর base 10. সংখ্যাগুলো হচ্ছে 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. একটা সংখ্যার ঘরের সর্বোচ্চ মান 9 এর থেকে বেশী হতে পারবে না ।

হেক্সাডেসিমেলঃ এর base 16. সংখ্যাগুলো হচ্ছে 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. একটা সংখ্যার ঘরের সর্বোচ্চ মান <math>F এর থেকে বেশী হতে পারবে না ।

Decimal (0-32) to Binary to Hex to Octal Chart

					y to fick to Octai Chart			
Decimal Base-10	Binary Base-2	Octal Base-8	Hexadecimal Base-16		Decimal Base-10	9	Octal Base-8	Hexadecimal Base-16
0	0	0	0		17	10001	21	11
1	1	1	1		18	10010	22	12
2	10	2	2		19	10011	23	13
3	11	3	3		20	10100	24	14
4	100	4	4		21	10101	25	15
5	101	5	5		22	10110	26	16
6	110	6	6		23	10111	27	17
7	111	7	7		24	11000	30	18
8	1000	10	8		25	11001	31	19
9	1001	11	9		26	11010	32	1A
10	1010	12	A		27	11011	33	1B
11	1011	13	В		28	11100	34	1C
12	1100	14	С		29	11101	35	1D
13	1101	15	D		30	11110	36	1E
14	1110	16	E		31	11111	37	1F
15	1111	17	F		32	100000	40	20
16	10000	20	10					

দশমিক থেকে যেকোনো সংখ্যা রূপান্তরের পদ্ধতিঃ

দশমিক থেকে বাইনারি, অক্টাল বা হেক্সাডেসিমেল সংখ্যায় রূপান্তরের জন্যে পুর্ণসংখ্যাকে তার base (বাইনারির জন্যে 2, অক্টালের জন্যে 8 এবং হেক্সাডেসিমেলের জন্যে 16) দিয়ে ভাগ করতে হবে। এবং ভাগফলকে সংরক্ষণ করতে হবে। <u>পরে সর্বনিচ থেকে সর্বউপরে যেতে হবে</u>। আর ভ্রপ্যংশর ক্ষেত্রে তার base (বাইনারির জন্যে 2, অক্টালের জন্যে 8 এবং হেক্সাডেসিমেলের জন্যে 16) দিয়ে গুন করতে হবে। এবং ভ্রমাংশকে গুনের ফলে যে পুর্ণসংখ্যা পাওয়া যাবে তা সংরক্ষণ করতে হবে। <u>পরে সর্বউপর থেকে সর্বনিচ যেতে হবে</u>।

ভাজক	ভাজ্য	
base	ভাগফল	ভাগশেষ

Page 2 of 12

01. দশমিক সংখ্যাকে বাইনারি সংখ্যায় রূপান্তর (দশমিকের পরে ৫ ঘর পর্যন্ত করতে হবে):

 $(409.11)_{10} = (?)_2$

	U	1 I	
শেষে থেকে শুরুর দিকে সাজিয়ে প্রাপ্ত বাইনারি সংখ্যা প্রাপ্ত	ধ্ৰ সংখ্যা =	(1100	011001)2
সুতরাং, ফলাফল (409.11) $_{10}$ = (110011001	.00011	1)2

পুর্ণসংখ্যা	ভগ্নাংশ
	.011
	× 2
0	0.22
	× 2
0	0.44
O	× 2
0	0.88
O	× 2
1	0.76
1	× 2
1	0.52
1	× 2
1	0.04
	·

শুরু থেকে শেষের দিকে সাজিয়ে প্রাপ্ত বাইনারি সংখ্যা = $(0.000111....)_2$

নিজে নিজে চেষ্টা করো ।

$(33.1027)_{10} = (100001.00011010010010101001)_2$	$(37.875)_{10} = (100101.111)_2$,
$(1027.57)_{10} = (10000000011.10010001111010111)_2$	$(110.409)_{10} = (1101110.011010001011010001)_2$,
$(320.320)_{10} = (101000000.01010001111010111)_2$	$(75.105)_{10} = (1001011.000110101110000101)_2$

02. দশমিক সংখ্যাকে অক্টাল সংখ্যায় রুপান্তর (দশমিকের পরে ৫ ঘর পর্যন্ত করতে হবে):

 $(331027.409)_{10} = (?)_{8}$

ভাজক ভাজ্য/ভাগফল	ভাগশেষ
8 331027	_
8 41378	3 ↑
8 5172	2
8 646	4
8 80	6
8 10	0
8 1	2
0	1

শেষে থেকে শুরুর দিকে সাজিয়ে প্রাপ্ত বাইনারি সংখ্যা প্রাপ্ত সংখ্যা = $(1206423)_8$ সুতরাং, ফলাফল $(331027.409)_{10}$ = $(1206423.3213207......)_8$

পুর্ণসংখ্যা	ভগ্নাংশ
	.409 × 8
3	0.272 × 8
2	0.176 × 8
1	0.408 × 8
3	0.264 × 8
2	0.112 × 8
0	0.896 × 8
7	0.168

। শুরু থেকে শেষের দিকে সাজিয়ে প্রাপ্ত বাইনারি সংখ্যা $!=(0.3213207....)_8$

Page 3 of 12

🕨 নিজে নিজে চেষ্টা করো ।

$(33.1027)_{10} = (41.0644521405246230276)_8$,	$(37.875)_{10} = (45.7)_8$,
$(1027.57)_{10} = (2003.4436560507534121727)_8$	$(110.409)_{10} = (156.32132071260101422335)_8$
$(320.320)_{10} = (500.2436560507534121727)_8$	$(75.105)_{10} = (113.06560507534121727024)_8$

03. দশমিক সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রুপান্তর (দশমিকের পরে ৫ ঘর পর্যন্ত করতে হবে):

 $(320320.2019)_{10} = (?)_{16}$

শেষে থেকে শুরুর দিকে সাজিয়ে প্রাপ্ত বাইনারি সংখ্যা প্রাপ্ত সংখ্যা = $(4E340)_{16}$

সুতরাং, ফলাফল (320320.2019) $_{10}$ = (4E340.33AFB7E.....) $_{16}$

	পুর্ণসংখ্যা	ভগ্নাংশ
		0.2019
		× 16
	3	0.2304
		× 16
	3	0.6864
	3	× 16
	Λ	0.9824
	A	× 16
	F	0.7184
	Г	× 16
	В	0.4944
	Ь	× 16
	7	0.9104
	7	× 8
$ \Psi $	E	0.5664

া শুরু থেকে শেষের দিকে সাজিয়ে প্রাপ্ত বাইনারি সংখ্যা

= (0.33AFB7E....)₁₆

নিজে নিজে চেষ্টা করো ।

 $(33.1027)_{10} = (21.1\text{A}4\text{A}8\text{C}154\text{C}985\text{F}06\text{F}694)_{16}$, $(37.875)_{10} = (25.\text{E})_{16}$, $(1027.57)_{10} = (403.91\text{E}B851\text{E}B851\text{E}B851\text{E}B8)_{16}$, $(110.409)_{10} = (6\text{E}.68\text{B}4395810624\text{D}2\text{F}1\text{A}\text{A})_{16}$, $(75.105)_{10} = (48.1\text{A}\text{E}147\text{A}\text{E}147\text{A}\text{E}147\text{A}\text{E}14)_{16}$,

💠 যেকোনো সংখ্যা থেকে দশমিক সংখ্যা রূপান্তরের পদ্ধতিঃ

বাইনারি, অক্টাল বা হেক্সাডেসিমেল থেকে দশমিক সংখ্যায় রূপান্তরের জন্যে তার base (বাইনারির জন্যে 2, অক্টালের জন্যে 8 এবং হেক্সাডেসিমেলের জন্যে 16) দিয়ে স্ব স্ব সংখ্যাকে গুন করতে হবে। দশমিকের নিকটস্থ বামের সংখ্যার ঘাত বা পাওয়ার 0 ধরে বামে পর্যায়ক্রমে ধনাত্মক মান বৃদ্ধি পাবে ডানে পর্যায়ক্রমে ঋনাত্মক মান বৃদ্ধি পাবে। গুনফলকে যোগ করার মাধ্যমে সমতুল্য ডেসিমেল সংখ্যা পাওয়া যাবে।

অৰ্থাৎ, সুত্ৰটি হবে, (... abc•xyz ...)_{base} = + a×base² + b×base¹ + c×base⁰ + x×base⁻¹ + y×base⁻² + z×base⁻³ +

04. বাইনারি সংখ্যাকে দশমিক সংখ্যায় রুপান্তরঃ

 $(110011001.000111)_2 = (?)_{10}$ $(110011001.000111)_2 = (1 \times 2^8) + (1 \times 2^7) + (0 \times 2^6) + (0 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) + (0 \times 2^{-1}) + (0 \times 2^{-2}) + (0 \times 2^{-3}) + (1 \times 2^{-4}) + (1 \times 2^{-5}) + (1 \times 2^{-6})$ = 256 + 128 + 0 + 0 + 16 + 8 + 0 + 0 + 1 + 0 + 0 + 1 / 16 + 1 / 32 + 1 / 64 = 409 + 0.109375 = 409.109375

সুতরাং, ফলাফল (110011001.000111) $_2$ = (409.109375) $_{10}$

Page 4 of 12

🕨 নিজে নিজে চেষ্টা করো ।

```
 \begin{array}{ll} (100001.000110100100101010101)_2 = (33.1027)_{10} \,, & (100101.111)_2 = (37.875)_{10} \,, \\ (10000000011.10010001111010111)_2 = (1027.57)_{10} \,, & (1101110.011010001011010001)_2 = (110.409)_{10} \,, \\ (101000000.01010001111010111)_2 = (320.320)_{10} \,, & (1001011.0001101110000101)_2 = (75.105)_{10} \,, \end{array}
```

05. অক্টাল সংখ্যাকে দশমিক সংখ্যায় রূপান্তরঃ

```
\begin{array}{l} (1206423.3213207)_8 = (?)_{10} \\ (1206423.3213207)_8 &= (1\times 8^6) + (2\times 8^5) + (0\times 8^4) + (6\times 8^3) + (4\times 8^2) + (2\times 8^1) + (3\times 8^0) + (3\times 8^{-1}) + (2\times 8^{-2}) + (1\times 8^{-3}) + (3\times 8^{-4}) + (2\times 8^{-5}) + (0\times 8^{-6}) + (7\times 8^{-7}) \\ &= 262144 + 65536 + 0 + 3072 + 256 + 16 + 3 + 0.375 + 0.03125 + 0.001953125 + 0.000732421875 + 0.00006103515625 + 0 + 0.0000033378 \\ &= 331027 + 0.40899991989135742188 \\ &= 331027.409 \end{array}
```

সুতরাং, ফলাফল (1206423.3213207)8 = (331027.409)10

🕨 নিজে নিজে চেষ্টা করো ।

```
 \begin{array}{ll} (41.0644521405246230276)_8 = (33.1027)_{10} \,, \\ (2003.4436560507534121727)_8 = (1027.57)_{10} \,, \\ (500.2436560507534121727)_8 = (320.320)_{10} \,, \\ (13.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 = (75.105)_{10} \,, \\ (113.06560507534121727024)_8 + (75.105)_{10} \,, \\ (113.06560507534121727024)_8 + (75.105)_{10} \,, \\ (113.06560507534121727024)_8 + (75.105
```

06. হেক্সাডেসিমেল সংখ্যাকে দশমিক সংখ্যায় রুপান্তরঃ

```
\begin{array}{lll} (4E340.33AFB7E)_{16} = (?)_{10} \\ (4E340.33AFB7E)_{16} &= (4\times16^4\ ) + (14\times16^3) + (3\times16^2) + (4\times16^1) + (0\times16^0) + (3\times16^{--1}) + \\ & (3\times16^{--2}) + (10\times16^{--3}) + (15\times16^{--4}\ ) + (11\times16^{--5}) + (7\times16^{--6}) + \\ & (14\times16^{--7}) \\ &= 262144 + 57344 + 768 + 64 + 0 + 0.1875 + 0.01171875 + \\ & 0.00244140625 + 0.0002288818359 + 0.00001049041748 + \\ & 0.0000004172325134 + 0.00000005215406418 \\ &= 320320 + 0.20189999788999557495 \\ &= 320320.20189999788999557495 \\ &= 320320.2019 \end{array}
```

সুতরাং, ফলাফল (4E340.33AFB7E)16 = (320320.2019)10

নিজে নিজে চেষ্টা করো ।

$(21.1A4A8C154C985F06F694)_{16} = (33.1027)_{10}$,	$(25.E)_{16} = (37.875)_{10}$,
$(403.91EB851EB851EB851EB8)_{16} = (1027.57)_{10}$	$(6E.68B4395810624DD2F1AA)_{16} = (110.409)_{10}$
$(140.51EB851EB851EB851EB8)_{16} = (320.320)_{10}$	$(4B.1AE147AE147AE147AE14)_{16} = (75.105)_{10}$,

❖ বাইনারি থেকে অক্টাল বা হেক্সাডেসিমালে রূপান্তরের পদ্ধতিঃ

বাইনারি সংখ্যা থেকে অক্টাল বা হেক্সাডেসিমেল সংখ্যায় রূপান্তরের জন্যে তার base (অক্টাল বা 2^3 এর জন্যে 3 এবং হেক্সাডেসিমেল 2^4 এর জন্যে 4) এর উপরে ভিত্তি করে দশমিকের পরে সবচেয়ে নিকটস্থ বাম বা সবচেয়ে নিকটস্থ ডান থেকে 3 বা 4 টি করে জোড় করতে হবে। (Note: সর্ববামে তথা MSB বা সর্ব ডানে তথা LSB দের জন্যে জোড় করতে সংখ্যার ঘাটতি হলে তাদের ফাঁকা স্থানে 0 দিয়ে পুরণ করতে হবে)। জোড়বদ্ধ সংখ্যাগুলোর মান (অক্টাল বা হেক্সাডেসিমেলে) নির্নয় করতে হবে।

07. বাইনারী সংখ্যাকে অক্টাল সংখ্যায় রুপান্তরঃ

```
(110011001.000111)_2 = (?)_8

(100101.111)_2 = (?)_8
```

 $(10000000011.10010001111010111)_2 = (?)_8$

বাইনারী	তিন সংখ্যা করে বিভাজন	অক্টাল সংখ্যা
110011001.000111	110 011 001 .000 111	(631.07)8
100101.111	100 101. 111	(45.7) ₈
10000000011.1001	010 000 000 011 .100 100 011 110 101 110	(2003.443656)8
0001111010111		·

Page 5 of 12

🕨 নিজে নিজে চেষ্টা করো ।

 $\begin{array}{ll} (100001.00011010010010101001)_2 = (41.0644522)_8 \;, \\ (10000000011.10010001111010111)_2 = (2003.443656)_8 \;, \\ (101000000.01010001111010111)_2 = (500.243656)_8 \;, \\ (1010101.000110101110000101)_2 = (156.321321)_8 \\ (1001011.0001101011110000101)_2 = (113.065605)_8 \\ \end{array}$

08. বাইনারী সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রূপান্তরঃ

 $(110011001.000111)_2 = (?)_{16}$

 $(100101.111)_2 = (?)_{16}$

 $(10000000011.10010001111010111)_2 = (?)_{16}$

বাইনারী	চার সংখ্যা করে বিভাজন	হেক্সাডেসিমাল
110011001.000111	0001 1001 1001 .0001 1100	(199.1C) ₁₆
100101.111	0010 0101 .1110	(25.E) ₁₆
1000000011.1001	0100 0000 0011 .1001 0001 1110 1011 1000	(403.91EB8) ₁₆
0001111010111		

নিজে নিজে চেষ্টা করো ।

 $\begin{array}{ll} (100001.000110100100101010101)_2 = (21.1A4A9)_{16} \,, \\ (10000000011.10010001111010111)_2 = (403.91EB8)_{16} \,, \\ (101000000.01010001111010111)_2 = (140.51EB8)_{16} \,, \\ (1001011.00011010101010101)_2 = (4B.1AE14)_{16} \\ \end{array}$

❖ অক্টাল বা হেক্সাডেসিমাল থেকে বাইনারিতে রূপান্তরের পদ্ধতিঃ _

অক্টাল বা হেক্সাডেসিমেল সংখ্যা থেকে বাইনারিতে রূপান্তরের জন্যে অক্টাল বা হেক্সাডেসিমেল সংখ্যার প্রতিটা ডিজিটের বাইনারি মান বের করতে হবে । বাইনারি মান গলোকে একত্রিত করতে হবে ।

09. অক্টাল সংখ্যাকে বাইনারী সংখ্যায় রুপান্তরঃ

 $(631.07)_8 = (?)_2$

 $(45.7)_8 = (?)_2$

 $(2003.443656)_8 = (?)_2$

অক্টাল সংখ্যা	সমতুল্য তিন বিট বাইনারী মান	বাইনারী
(631.07)8	110 011 001 .000 111	(110011001.000111)2
$(45.7)_8$	100 101. 111	$(100101.111)_2$
(2003.443656)8	010 000 000 011 .100 100 011 110 101	(010000000011.100100
	110	$011110101110)_2$

নিজে নিজে চেষ্টা করো ।

10. হেক্সাডেসিমেল সংখ্যাকে বাইনারী সংখ্যায় রুপান্তরঃ

 $(199.1C)_{16} = (?)_2$

 $(25.E)_{16} = (?)_2$

 $(403.91EB8)_{16} = (?)_2$

(100.51220)10) (*)2	
হেক্সাডেসিমাল	সমতুল্য চার বিট বাইনারী মান	বাইনারী
(199.1C) ₁₆	0001 1001 1001 .0001 1100	$(110011001.00011100)_2$
(25.E) ₁₆	0010 0101 .1110	(100101.1110) ₂
(403.91EB8) ₁₆	0100 0000 0011 .1001 0001 1110 1011 1000	(10000000011.1001000
		11110101111000)2

নিজে নিজে চেষ্টা করো ।

$(21.1A4A9)_{16} = (100001.00011010010010101001)_2$	$(25.E)_{16} = (100101.111)_2$,
$(403.91EB8)_{16} = (10000000011.10010001111010111)_2$	$(6E.68B44)_{16} = (1101110.011010001011010001)_2$
$(140.51EB8)_{16} = (101000000.01010001111010111)_2$,	$(4B.1AE14)_{16} = (1001011.000110101110000101)_2$

Page 6 of 12

❖ অক্টাল থেকে হেক্সাডেসিমাল বা হেক্সাডেসিমাল থেকে অক্টালে রূপান্তরিত করার পদ্ধতিঃ

অক্টাল থেকে হেক্সাডেসিমেল বা হেক্সাডেসিমেল থেকে অক্টালে রূপান্তর সরাসরি করা যায় না। সেক্ষেত্রে প্রথম ধাপে বাইনারিতে রূপান্তরিত করে নিতে হয়। Stage 01: প্রতিটি অক্টাল ডিজিটের সাপেক্ষে 3 টি বাইনারি ডিজিট পাওয়া যাবে। সেসব বাইনারি সংখ্যাকে একত্রিত করতে হবে। পরে সে বাইনারি সংখ্যাকে যেভাবে হেক্সাডেসিমেলে রূপান্তরিত করতে হয় সেভাবে করতে হবে। Stage 02: প্রতিটি হেক্সাডেসিমেলের ডিজিটের সাপেক্ষে 4 টি বাইনারি ডিজিট পাওয়া যাবে। সেসব বাইনারি সংখ্যাকে একত্রিত করতে হবে। পরে সে বাইনারি সংখ্যাকে যেভাবে অক্টালে করতে হয় সেভাবে করতে হবে।

11. অক্টাল সংখ্যাকে হেক্সাডেসিমেল সংখ্যায় রুপান্তরঃ

🕨 নিজে নিজে চেষ্টা করো ।

$(41.0644522)_8 = (21.1A4A9)_{16}$,	$(45.7)_8 = (25.E)_{16}$,
$(2003.443656)_8 = (403.91EB8)_{16}$,	$(156.321321)_8 = (6E.68B44)_{16}$
$(500.243656)_8 = (140.51EB8)_{16}$,	$(113.065605)_8 = (4B.1AE14)_{16}$

12. হেক্সাডেসিমেল সংখ্যাকে অক্টাল সংখ্যায় রূপান্তরঃ

🕨 নিজে নিজে চেষ্টা করো ।

$(21.1A4A9)_{16} = (41.0644522)_8$,	$(25.E)_{16} = (45.7)_8$,
$(403.91EB8)_{16} = (2003.443656)_8$	$(6E.68B44)_{16} = (156.321321)_8$,
$(140.51EB8)_{16} = (500.243656)_8$	$(4B.1AE14)_{16} = (113.065605)_8$

যোগের পদ্ধতিঃ

ি কোনো সংখ্যার যোগফলের মান তার baseএর সর্বোচ্চ মানের (বাইনারির জন্যে 1, অক্টালের জন্যে 7, ডেসিমেলের জন্যে 9, হেক্সাডেসিমেলের জন্যে F) চেয়ে বেশী হলে base (বাইনারির জন্যে 2, অক্টালের জন্যে 8, ডেসিমেলের জন্যে 10, হেক্সাডেসিমেলের জন্যে 16) দিয়ে যোগফলকে ভাগ দিতে হয়।

$ \begin{array}{r} (110011001.1010)_2 \\ +(1100110.1001)_2 \\ \hline (1000000000.0011)_2 \end{array} $	(631.50) ₈ +(146.44) ₈ (1000.14) ₈
$ \begin{array}{r} (409.6250)_{10} \\ +(102.5625)_{10} \\ (512.1875)_{10} \end{array} $	$ \begin{array}{r} (199.A)_{16} \\ +(66.9)_{16} \\ (200.3)_{16} \end{array} $

পাঠ্যপুস্তকের বিকল্প হিসেবে শ্রেষ্ঠ বা সেরা কিছুই নেই

Page 7 of 12

দশমিক:

- A. সর্বডানের চারটি 9 যোগ করলে হয় 36. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 6 (যা আমরা বসিয়ে দেই)
- B. তারপরের ঘরের 9,9,9,7 আর হাতের 3 যোগ করলে পাওয়া যায় 37. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 7 (যা আমরা বসিয়ে দেই)
- C. তারপরের ঘরের 9,9,6,9 আর হাতের 3 যোগ করলে পাওয়া যায় 36. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 6 (যা আমরা বসিয়ে দেই)
- D. তারপরের ঘরের 9,8,8,9 আর হাতের 3 যোগ করলে পাওয়া যায় 37. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 7 (যা আমরা বসিয়ে দেই)
- E. তারপরের ঘরের 9,9,9,9 আর হাতের 3 যোগ করলে পাওয়া যায় 39. যাকে বেজ তথা 10 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 9 (যা আমরা বসিয়ে দেই)
- F. হাতের 3 বসালে পাওয়া যায় 3

FEDCBA

বাইনারি:

- a) সর্বডানের চারটি 1 যোগ করলে হয় 4. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 0 (যা আমরা বসিয়ে দেই)
- b) তারপরের ঘরের 1,0,0,1 আর হাতের 2 যোগ করলে পাওয়া যায় 4. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 0 (যা আমরা বসিয়ে দেই)
- c) তারপরের ঘরের 0,1,1,1 আর হাতের 2 যোগ করলে পাওয়া যায় 5. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 1 (যা আমরা বসিয়ে দেই)
- d) তারপরের ঘরের 1,1,1,1 আর হাতের 2 যোগ করলে পাওয়া যায় 6. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 0 (যা আমরা বসিয়ে দেই)
- e) তারপরের ঘরের 1,1,1,1 আর হাতের 3 যোগ করলে পাওয়া যায় 7. যাকে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 3 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 1 (যা আমরা বসিয়ে দেই)
- f) হাতের 3কে বেজ তথা 2 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 1 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 1 (যা আমরা বসিয়ে দেই)
- g) হাতের 1 বসালে পাওয়া যায় 1

		1	1	0	1	1
		1	1	1	0	1
		1	1	1	0	1
	+	1	1	1	1	1
1	1	1	0	1	0	0

g f e d c b a

অক্টালঃ

- A. সর্বডানের 5,3,7 যোগ করলে হয় 15. যাকে বেজ তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 1 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 7 (যা আমরা বসিয়ে দেই)
- B. তারপরে দশমিকের পরের ঘরের 6,4,3 আর হাতের 1 যোগ করলে পাওয়া যায় 14. যাকে বেজ তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 1 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 6 (যা আমরা বসিয়ে দেই)
- C. তারপরের ঘরের 6,4,6 আর হাতের 1 যোগ করলে পাওয়া যায় 17. যাকে বেজ তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (য় হাতে থাকে) আর ভাগশেষ পাওয়া যায় 1 (য় আমরা বসিয়ে দেই)
- D. তারপরের ঘরের 7.3.7 আর হাতের 2 যোগ করলে পাওয়া যায় 19. যাকে বেজ

F E D C B A

Page 8 of 12

- তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 3 (যা আমরা বসিয়ে দেই)
- E. তারপরের ঘরের 6 আর হাতের 2 যোগ করলে পাওয়া যায় 8. যাকে বেজ তথা 8 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 1 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 0 (যা আমরা বসিয়ে দেই)
- ${
 m F.}$ হাতের 1 বসালে পাওয়া যায় 1

হেক্সাডেসিমেল:

- A. সর্বডানের তিনটি F যোগ করলে হয় 45. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 13(D) (যা আমরা বসিয়ে দেই)
- B. তারপরে দশমিকের পরের ঘরের F,F,F আর হাতের 2 যোগ করলে পাওয়া যায় 47. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 15(F) (যা আমরা বসিয়ে দেই)
- C. তারপরে দশমিকের পরের ঘরের F,F,F আর হাতের 2 যোগ করলে পাওয়া যায় 47. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 15(F) (যা আমরা বসিয়ে দেই)
- D. তারপরে দশমিকের পরের ঘরের F,F,F আর হাতের 2 যোগ করলে পাওয়া যায় 47. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 15(F) (যা আমরা বসিয়ে দেই)
- E. তারপরে দশমিকের পরের ঘরের F,F,F আর হাতের 2 যোগ করলে পাওয়া যায় 47. যাকে বেজ তথা 16 দিয়ে ভাগ দিলে ভাগফল পাওয়া যায় 2 (যা হাতে থাকে) আর ভাগশেষ পাওয়া যায় 15(F) (যা আমরা বসিয়ে দেই)
- F. হাতের 2 বসালে পাওয়া যায় 2

FEDCBA

বিয়োগের পদ্ধতিঃ

ি বিযোজন থেকে বিয়োজ্য বিয়োগ করার সময়ে যদি বিয়োজনের একটি সংখ্যার মান তার অবস্থানে থাকা বিয়োজ্য সংখ্যার চেয়ে ছোট হয় । তখন বিয়োজনের সাথে সে সংখ্যার base (বাইনারির জন্যে 2, অক্টালের জন্যে 8, ডেসিমেলের জন্যে 10, হেক্সাডেসিমেলের জন্যে 16) যোগ করতে হয় । এবং হাতে 1 থাকে যা পরবর্তি অবস্থানে থাকা বিয়োজ্য সংখ্যার সাথে যোগ হয় ।

দশমিক:

- A. সর্বডানের উপরের 0 ছোট নিচের 3 এর থেকে । তাই, 0 এর সাথে বেজ 10 যোগ করি । এখন 10 থেকে 3 বিয়োগ করলে পাই 7 . এবং হাতে থাকে 1
- B. এরপর নিচের 7 এর সাথে হাতের 1 যোগ করলে পাই 8 . উপরের 3 ছোট নিচের 8 এর থেকে । তাই, 3 এর সাথে বেজ 10 যোগ করি । এখন 13 থেকে 8 বিয়োগ করলে পাই 5 . এবং হাতে থাকে 1
- C. এরপর নিচের 8 এর সাথে হাতের 1 যোগ করলে পাই 9 . উপরের 0 ছোট নিচের 9 এর থেকে । তাই, 0 এর সাথে বেজ 10 যোগ করি । এখন 10 থেকে 9 বিয়োগ করলে পাই 1 . এবং হাতে থাকে 1
- D. এরপর নিচের 2 এর সাথে হাতের 1 যোগ করলে পাই 3 . উপরের 8 বড় নিচের 3 এর থেকে । এখন 8 থেকে 3 বিয়োগ করলে পাই 5 . এবং হাতে কিছুই থাকে না ।
- E. এরপর উপরের 1 ছোট নিচের 5 এর থেকে । তাই, 1 এর সাথে বেজ 10 যোগ করি । এখন 11 থেকে 5 বিয়োগ করলে পাই 6 . এবং হাতে থাকে 1
- F. নিচের ফাঁকা / 0 এর সাথে 1 যোগ করলে পাই, 1 . এখন 1 থেকে 1 বিয়োগ করলে পাই 0 . এবং হাতে কিছুই থাকে না ।

1 1 8 0 3 0 - 5 2 8 7 3 6 5 1 5 7

FEDCBA

Page 9 of 12

বাইনারি:

- A. সর্বডানের উপরের 0 ছোট নিচের 1 এর থেকে । তাই, 0 এর সাথে বেজ 2 যোগ করি । এখন 2 থেকে 1 বিয়োগ করলে পাই 1 . এবং হাতে থাকে 1
- B. এরপর নিচের 1 এর সাথে হাতের 1 যোগ করলে পাই 2 . উপরের 1 ছোট নিচের 2 এর থেকে । তাই, 1 এর সাথে বেজ 2 যোগ করি । এখন 3 থেকে 2 বিয়োগ করলে পাই 1 . এবং হাতে থাকে 1
- C. এরপর নিচের 1 এর সাথে হাতের 1 যোগ করলে পাই 2 . উপরের 0 ছোট নিচের 2 এর থেকে । তাই, 0 এর সাথে বেজ 2 যোগ করি । এখন 2 থেকে 2 বিয়োগ করলে পাই 0 . এবং হাতে থাকে 1
- D. এরপর নিচের 1 এর সাথে হাতের 1 যোগ করলে পাই 2 . উপরের 0 ছোট নিচের 2 এর থেকে । তাই, 0 এর সাথে বেজ 2 যোগ করি । এখন 2 থেকে 2 বিয়োগ করলে পাই 0 . এবং হাতে থাকে 1
- E. এরপর নিচের 1 এর সাথে হাতের 1 যোগ করলে পাই 2 . উপরের 1 ছোট নিচের 2 এর থেকে । তাই, 1 এর সাথে বেজ 2 যোগ করি । এখন 3 থেকে 2 বিয়োগ করলে পাই 1 . এবং হাতে থাকে 1
- F. নিচের ফাঁকা/0 এর সাথে 1 যোগ করলে পাই, 1 . এখন 1 থেকে 1 বিয়োগ করলে পাই 0 . এবং হাতে কিছুই থাকে না ।

1 1 0 0 1 0 - 1 1 1 1 1 1

FEDCBA

অক্টালঃ

- A. সর্বডানের উপরের 5 ছোট নিচের 7 এর থেকে । তাই, 5 এর সাথে বেজ 8 যোগ করি । এখন 13 থেকে 7 বিয়োগ করলে পাই 6 . এবং হাতে থাকে 1
- B. এরপর নিচের 2 এর সাথে হাতের 1 যোগ করলে পাই 3 . উপরের 3 থেকে নিচের 3 বিয়োগ করলে পাই 0 . এবং হাতে কিছু থাকে না
- C. এরপর উপরের 2 ছোট নিচের 3 এর থেকে । তাই, 2 এর সাথে বেজ 8 যোগ করি । এখন 10 থেকে 3 বিয়োগ করলে পাই 7 . এবং হাতে থাকে 1

7	2	3	•	5
 1	3	2	•	7
5	7	0		6

D C B A

হেক্সাডেসিমেলঃ

- A. সর্বডানের উপরের 1 ছোট নিচের B এর থেকে । তাই, 1 এর সাথে বেজ 16 যোগ করি । এখন 17 থেকে 11 বিয়োগ করলে পাই 6 . এবং হাতে থাকে 1
- B. এরপর নিচের D এর সাথে হাতের 1 যোগ করলে পাই 14 . উপরের 0 ছোট নিচের 14 এর থেকে । তাই, 0 এর সাথে বেজ 16 যোগ করি । এখন 16 থেকে 14 বিয়োগ করলে পাই 2 . এবং হাতে থাকে 1
- C. এরপর নিচের C এর সাথে হাতের 1 যোগ করলে পাই 13 . উপরের A ছোট নিচের 13 এর থেকে । তাই, A এর সাথে বেজ 16 যোগ করি । এখন 26 থেকে 13 বিয়োগ করলে পাই 13 (D) . এবং হাতে থাকে 1
- D. এরপর নিচের E এর সাথে হাতের 1 যোগ করলে পাই 15 . উপরের D ছোট নিচের 14 এর থেকে । তাই, D এর সাথে বেজ 16 যোগ করি । এখন 29 থেকে 15 বিয়োগ করলে পাই 14 (E) . এবং হাতে থাকে 1
- E. এরপর নিচের 9 এর সাথে হাতের 1 যোগ করলে পাই 10 . উপরের F থেকে 10 বিয়োগ করলে পাই 5 . এবং হাতে কিছুই থাকে না ।

F D A 0 1 - 9 E C D B

EDCBA

BCD:

Binary Codded Decimal প্রতিটি দশমিক সংখ্যার সমতুল্য 4টি বাইনারি মান। $(14)_{10}$ এর সমকক্ষ BCD কোড $(0001\ 0100)_{BCD}$ এবং বাইনারি সংখ্যা $(1110)_2$ । সেজন্য বাইনারি থেকে BCD তে বেশী বিট লাগে।

Page 10 of 12

1 এর পরিপূরকঃ কোনো বাইনারি সংখ্যার 0 এর স্থলে 1 এবং 1 এর স্থলে 0 বসিয়ে যে বাইনারি সংখ্যা গঠন করা হয় তাকে 1 এর পরিপূরক সংখ্যা বলা হয়। যেমনঃ 110101 এর 1 এর পরিপূরক হলো 001010.

 ${f 2}$ এর পরিপূরকঃ কোনো বাইনারি সংখ্যার ${f 1}$ এর পরিপূরকের সাথে ${f 1}$ যোগ করলে যে বাইনারি সংখ্যা গঠন হয় তাকে, ${f 2}$ এর পরিপূরক সংখ্যা বলে । যেমনঃ

আসল বাইনারি সংখ্যা	1	0	1	0	1	1	0	0
	\downarrow							
1 এর পরিপূরক মান	0	1	0	1	0	0	1	1
	1	+						
2 এর পরিপূরক মান	1	1	0	1	0	0	1	1

2 এর পরিপুরক করার পদ্ধতিঃ

- 1) দশমিক দুইটা সংখ্যার বাইনারি মান বের করে, তাদের ৮ বিট রেজিস্টারে নিতে হবে।
- 2) শুধুমাত্র যে যে সংখ্যার মান ঋণাত্মক তাদের পরিপুরক বের করতে হবে।
- 3) বাইনারি দুইটা সংখ্যা যোগ করতে হবে।
- 4) যোগফল ধনাত্মক হলে, তা হতে সরাসরি দশমিক মান বের করা যাবে। যোগফল ঋণাত্মক হলে তাকে পুনরায় 2 এর পরিপূরক করে দশমিক মান বের করা যাবে।

Note: ৮ বিট রেজিস্টারের ১ম বিট 0 হলে ধনাত্মক আর ১ম বিট 1 হলে ঋণাত্মক।

1	1	1	1	1	0	0	O

 O
 O
 O
 O
 O
 O

 এইখানে, ১ম বিট এর মান O
 সেজন্য এটার মান ধনাত্মক হবে।

এইখানে, ১ম বিট এর মান 1 সেজন্য এটার মান ঋণাত্মক হবে।

৮ বিটের ১ম বিট চিহ্ন বিট বাকি ৭টা বিটে মান থাকে।

■ 2 এর পরিপূরক ব্যবহার করে (-8)₁₀ থেকে (-15)₁₀ বিয়োগ।

(-8) - (-15) অর্থাৎ (-8) + (+15) নির্ণয় করতে হবে।

(+8)₁₀ এর বাইনারি = (0 0 0 0 1 0 0 0)₂

(+15)₁₀ এর বাইনারি = (0 0 0 0 1 1 1 1)₂

সূতরাং যোগফলঃ

 $Carry\ 1$ বিট এখানে বিবেচনা করা হবে না । এখানে, sign বিট 0 তথা ধনাত্মক । তাই, একে পুনরায় আর পরিপূরক করা লাগবে না । সুতরাং, নির্ণেয় যোগফল, (-8) + (+15) = $(00000111)_2$ বা (+7) $_{10}$

■ 2 এর পরিপূরক ব্যবহার করে (-3)₁₀ থেকে (4)₁₀ বিয়োগ ।

-3 - 4 অর্থাৎ (-3) + (-4) নির্ণয় করতে হবে।

(+3)₁₀ এর বাইনারি = (0 0 0 0 0 1 1)₂

(+4)₁₀ এর বাইনারি = (0 0 0 0 1 0 0)₂

এখন,

00000011 এর 1 এর পরিপূরক = 1 1 1 1 1 1 0 0 + 1

00001000 এর 2 এর পরিপুরক = 1 1 1 1 1 1 0 1

Page 11 of 12

আবার,

সুতরাং যোগফলঃ

$$(-3)_{10} =$$
 1 1 1 1 1 0 1
 $+(-4)_{10} =$ 1 1 1 1 1 0 0

 $Carry\ 1$ বিট এখানে বিবেচনা করা হবে না । এখানে, sign বিট 1 তথা ধনাত্মক । তাই, একে পুনরায় আর পরিপূরক করা লাগবে । 11111001 এর 1 এর পরিপূরক = 0 0 0 0 0 1 1 0

$$+ 1$$
 11111001 এর 2 এর পরিপূরক = $0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1$
সুতরাং, নির্ণেয় যোগফল, $(-3) + (-4) = (11111001)_2$ বা $(-7)_{10}$

Note: যদি পুরিপুরকে যোগফল ১২৭ অপেক্ষা বেশী হয় তখন ৮ বিট বেজিস্টারের বদলে ১৬ বিট রেজিস্টার ব্যবহার করতে হবে । যদিও, পরিক্ষায় ১৬ বিট রেজিস্টার ব্যবহার করে কোনো গণিত দেয়া থাকবে না ।

যোগফল বের করো।	বিয়োগফল বের করো	পরিপূরক করো	মাথা খাটাওঃ
(101011) ₂ (EBCA) ₁₆ (5422) ₈ +(97421) ₁₀	(98239823) ₁₀ -(BABA) ₁₆	64 থেকে (-63) বিয়োগ	$(30213)_4 = (?)_{10}$ $(93582)_{10} = (?)_6$

Page 12 of 12

সমস্যাঃ পেঁয়াজের দাম বাড়ার সুযোগে আড়ৎদার মি. মওলা তার পূর্বের কেনা $(27)_{10}$ টাকা কেজি দরের পেঁয়াজের সর্বমোট $(765)_8$ কেজি পেঁয়াজ অবৈধভাবে মজুদ করে কৃত্রিম সংকট তৈরি করে প্রতি কেজি $(1101110)_2$ টাকা দরে বিক্রি করেছিল । মজুদকৃত পেঁয়াজের এক তৃতীয়াংশ বিক্রির পরে বিষয়টি জানতে পেরে ভ্রাম্যমান আদালত তার মজুদকৃত বাকী পেঁয়াজ বাজেয়াপ্ত করেন এবং মি. মওলা কে $(61A8)_{16}$ টাকা জরিমানা করলেন।

- গ. উদ্দিপকের আলোকে মি. মওলার কতটুকু পরিমাপ পেঁয়াজ বাজেয়াপ্ত করা হয়েছে –হেক্সাডেসিমেল সিস্টেমে প্রকাশ কর।
- ঘ, জরিমানা করার কারণে মি. মওলার লাভ নাকি লস হয়েছে ? এবং কত? বিশ্লেষণ কর।

সমাধানঃ

= 501

 $(334)_{10}$ কে Hexadecimal এ প্রকাশ করে পাই $(334)_{10} = (14E)_{16}$

ঘ) মি. মওলার প্রতি কেজি প্রেয়াজের মুল্য (1101110)₂ টাকা।

$$(1101110)_2 = (1 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)$$

$$= 64 + 32 + 0 + 8 + 4 + 2 + 0$$

$$= (110)_{10}$$

প্রতি কেজি প্রেয়াজের বিক্রি মুল্য 110 টাকা ৷

পেঁয়াজের সর্বমোট (765) $_8$ কেজি বা (501) $_{10}$ কেজি ।

মওলার জরিমানার পরিমাণ = $(61A8)_{16}$

$$(61A8)_{16} = (6 \times 16^{3}) + (1 \times 16^{2}) + (10 \times 16^{1}) + (8 \times 16^{0})$$

= 24576 + 256 + 160 + 8
= (25000)_{10}

মওলার জরিমানার পরিমাণ $(25000)_{10}$

পেঁয়াজ ক্রয় = 501×27 টাকা = 13527 টাকা । পেঁয়াজ বিক্রি = $501/3 \times 110$ টাকা = 18370 টাকা । বিক্রি করে লাভ = 18370- 13527 টাকা = 4843 টাকা । জরিমানার পরে লস = (4843-25000) টাকা = -20157 টাকা । জরিমানা করার কারণে মি. মওলার 20157 টাকা লস হয়েছে ।