Design and Analysis of Algorithms The question bank has been prepared as a reference for students.

UNIT-1 (Part-A)

Sl. No.	Question	BL	CO
1	Define algorithm and its characteristics	1	1
2	Define space and time complexity	1	1
3	In the analysis of algorithm what do you mean by best, worst and average	1	1
	behavior of an algorithm		
4	Define recursion and significance of base condition	1	1
5	Find the time and space complexity for the below code	1	1
	Consider the following function:		
	int unknown (int n)		
	(Mary Surface Space of the Control o		
	int i, j, $k = 0$;		
	for the miles the move of the contract of the		
	for $(j = 2; j \le n; j = j*2)$		
	k = k + n/2;		
	return (k);		
		1	1
6	. Sort the following functions in the decreasing order of their a	1	1
	complexity:		
	$f1(n) = n^2n$, $f2(n) = 2^n$, $f3(n) = (1.000001)^n$, $f4(n) = n^(10)^2(n/2)$		
7	How can we measure an algorithm's running time?	1	1
8	Show that if $f(n) = a^m n^m + + a_1^n + a_0$ then $f(n) = O(n^m)$.	3	1
9	Define Order of Growth	1	1
10	Prove that $10n^2+3n+4=O(n^2)$. Find the values of n_0 and c.	3	1
	1		
UNIT-1	(Part-B)		

Sl. No.	Question	BL	CO
	The running time of an algorithm is represented by the following recurrence relation: $T(n) = \begin{cases} n & n \leq 3 \\ T\left(\frac{n}{3}\right) + cn & \text{otherwise} \end{cases}$ Solve by using Substitution method, Recursion tree method and Masters' theorem.	3	1
2	Estimate the time complexity using f(n) and g(n) functions in asymptotic	2	1

	notations. Explain with an examples.		
3	Describe the Master's theorem and Solve the following recurrence relation	3	1
	to find the time complexity $T(n)=7T(n/2)+18n^2$.		
4	What is an algorithm? Explain its characteristics and Explain the role of	1	1
	instance characteristics in finding the time complexities with an example.		
5	Solve the following recurrence relation to find the time complexity using	3	1
	substitution Method		
	$T(n)=7T(n/3)+n^2$ if $n>0$		
	T(1)=1 otherwise		X ·
6	Draw recursion tree for $T(n)=4T(n/2)+n$ and provide light asymptotic	3	1
	bounds.		
7	Give control abstraction for divide and conquer	2	1
8	Explain how master theorem has been derived from recursive tree.	2	1

UNIT-2 (Part-A)

Sl. No.	Question	BL	CO
1	Distinguish between greedy and dynamic programming	3	4
2	Differentiate between optimal substructure and overlapping sub-problems.	2	2
3	Give the significance of dominance rules	1	2
4	Define Knapsack problem and what is the difference between 0/1 and	1	2
	fractional knapsack.		
5	Define Huffman Codes. Which data structure is used.	1	2
6	Define Job scheduling with deadlines	1	2
7	Define Travelling Salesman Problem	1	2
8	Define Matrix chain multiplication	1	2
9	Define Longest Common subsequence	1	2
10	Define Optimal Binary search tree.	1	2
11	Define principle of optimality.	1	2

UNIT-2 (Part-B)

Sl. No.	Question	BL	CO
1	Describe the control abstraction for the subset paradigm of greedy method		
	and also explain the functioning of select, feasible and union functions in		
	the control abstraction.		
2	Describe algorithm and time complexity of fractional knapsack problem		
07	using greedy		
3	Consider the following instance of the knapsack problem: n =		
	6,(P1,P2,P3,P4,P5,P6) = (W1,W2,W3,W4,W5,W6) = (100,50,20,10,7,		
	3),and $m = 165$. Find the solution using greedy approach		
4	Describe algorithm and time complexity of Job scheduling with deadlines		
	problem using greedy		
5	What is the solution generated by function Job scheduling with deadlines		
	algorithm when $n=6$ (P1p6) = (3, 5, 20, 18, 1, 6), and (d1d6) = (1, 3, 4,		
	3, 2, 1).		
6	Explain optimal binary search tree problem with proper derivations for		

	calculating min	imum	cost o	f the tree.						
7	Consider 4 elen				with q(0) = 1/8	g(1) = 1/3	16,		
	q(2) = q(3) = q(3)									
	Construct the ta									
	OBST algorithm	n to co	mpute	the roots	of optim	al sub tre	es.	•		
8	Evaluate 0/1 kn	apsack	probl	lem, for g	reedy and	dynamic	programi	ing is	4	4
	applied				-					
9	Describe algori	thm an	d time	complex	ity of OB	ST				
10	Consider the fo	llowin	g insta	nce of the	e 0/1 knap	sack prol	olem n=5,	,		х .
	(p1,p2,,p5)=(1	0,15,6	,8,4),	(w1,w2,	(4,6)	(3,4,2), an	nd m=12.		1	
	Find the solution									>
11	Describe algori			complex	ity of $0/1$	knapsack	c problem	using		
	dynamic progra									
12	Find the minim	um cos	st of th	ne path for	r the follo	wing trav	elling Sal	lesman		
	problem.			_						
				[[∞] 5 1	1 10 6		C			
				$1 \propto 4$	1 10 0 1 12 7 2 4 16 3 ∞ 9		.			
				[3 6 ∝	4 16		X			
				7 1 3	3 ∞ 9 -		y			
13	Describe algori	thm on	d time		$\frac{7}{6} \times \frac{6}{100} \times \frac{1}{100}$	trovalling	Coloomo	<u> </u>		
13	problem using of			-	•	uavennig	g Salesilia	.11		
14	Consider A ₁ =12					and Anni	ly matrix	chain		
14	multiplication t					and Appi	ly mama	Ciiaiii		
15	Describe algori					triv chain	multiplic	ation		
13	using dynamic				ity of ma	uix cham	munipine	ation		
16	Determine a Lo				equence (of (1 0 0	1 0 1	0 1) and		
10	(0, 1, 0, 1, 1, 0,				equence c	71 (1, 0, 0	, 1, 0, 1,	0, 1) and		
	(0, 1, 0, 1, 1, 0,	1, 1, 0). 	90						
17	Describe algori	ithm a	nd tin	ne compl	exity of	matrix cl	nain mult	iplication		
	using dynamic	progra	mmin	g						
10	Determine (1)	C-11-	* T1	CC	- 1- C	11	-4 A-		-	
18	Determine the		_					_		
	length and leng Characters		rman e E	incoded n	_	III the be		T		
	Characters	A	E	1	O	U	S	1		
	Frequencies	10	15	12	3	4	13	1		
							_			

	1									
UNIT-3	(Part-A)									
Sl. No.				Que	stion				BL	CO
1	Draw the state s	pace tree	of 4-Q	ueen'	s problen	1.			2	2
2	What is an artic	ulation po	oint?						1	2
3	Define implicit	and expli	cit con	straint	ts with ex	amples.			1	2
4	Difference betw	een back	trackin	g and	branch ar	nd bound			2	3
5	Difference betw	een back	trackin	g and	dynamic	programi	ning.		2	3
6	How are two qu	eens on the	he sam	e diag	onal iden	tified?			1	2
7	Difference betw	een static	and d	ynami	c trees				2	3
8	Write the applic	ations of	backtra	acking	<u> </u>		·	·	1	2

9	What is planar graph and chromatic number?	1	2
10	What is a Hamiltonian cycle. Identify articulation points in the given	1	2
	graph.		
11	Define Live Node, E-node & Dead Node.	1	2.

UNIT-3 (Part-B)

Sl. No.	Question	BL	CO
1	Draw the state space tree for 4-queens problem.	2	2
2	Write the algorithm for n-queens problem. Write the time complexity of	1	2
	the algorithm.		
3	Write the control abstraction of Iterative/Recursive backtracking.	1	2
4	Write the control abstraction of branch and bound.	1	2
5	Apply backtracking to find all possible Hamiltonian Cycles for following	3	3
	graph.		
	D		
	A E		
	$B \subset C \subset F$		
6	Explain the Graph – coloring problem. Draw the state space tree for m=3	2	4
	colors n=4 vertices graph. Interpret the time and space complexity.		
7	Develop the portion of the state space tree generated by FIFOBB and	3	4
	LCBB for the job sequencing with deadlines instance $n = 5$,		
	(p1,p2,,p5)=(6, 3,4, 8,5), (t1,t2,,t5)=(2,1,2,1,1) and (d1,d2,,d5)=(3,		
	1,4, 2, 4). What is the penalty corresponding to an optimal solution? Use a		
_	variable tuple size formulation and c(.) and u(.)		_
8	Write graph coloring algorithm. Write the applications of graph coloring.	1	2
9	Write an algorithm for Hamiltonian cycle. Determine the order of	3	4
	magnitude of the worst case computing time for backtracking procedure		
	that finds all Hamiltonian cycle? Write the applications of Hamiltonian		
10	cycle.		4
10	Solve 0/1 knapsack using FIFOBB and LCBB branch and bound where		4
OY	(pi, p2, p3, p4) = (10, 10, 12, 18)		
	(wi. w2, w3, w4) = (2, 4, 6, 9)		
11	M = 15 Solve travalling colorages a problem using EIEODD and LCDD branch and	-	4
11	Solve travelling salesperson problem using FIFOBB and LCBB branch and		4
	bound where the cost matrix is given. Evaluate the efficiency of both the methods.		
	inculous.	l	

0	10	15	20		
5	0	9	10		
6	13	0	12	2	
8	8	9	0		

UNIT-4 (Part-A)

Sl. No.	Question	BL	CO
1	What are the applications of DFS.	10	2
2	What is an articulation point?	1	2
3	What are strongly connected components?	1	2
4	What is a DAG?	1	2
5	Write the applications for topological sort.	1	2
6	Write the difference between Kruskal'a and Prim's algorithm.	1	4

UNIT-4 (Part-B)

Sl. No.	Question	BL	CO
1	Write an algorithm for DFS. What is the time complexity? Explain the	2	2
	various applications of DFS.		
2	Write Kosaraju's Algorithm to determine strongly connected components.	2	2
3	Write Kahn's algorithm for topological sorting.	2	2
4	Write dijkstra's algorithm for finding shortest path.	2	2
5	Write Bellman-ford's algorithm for finding shortest path.	2	2
6	Write Floyd-Warshall algorithm for finding shortest path.	2	2
7	Determine the algorithm which has better performance for finding the	4	3
	shortest path.		
8	Write Johnson's algorithm for finding shortest path.	2	2
9	Write Prim's and Kruskal's algorithm for minimum spanning tree.	2	4
	Determine the performance of the algorithms.		
10	Find minimum cost spanning tree using prim's and kruskal's for the given	3	5
	graph. Evaluate the performance of both the methods.		
	1 1 2 3 4 6 4 5 6 3 3 8 6		

UNIT-5 (Part-A)

Sl. No.	Question	BL	CO
1	What are intractable problems?	3	6
2	What is Reduction and what are Reduction algorithms?	4	6
3	What are the complexity classes P, NP, NP-hard, NP-complete?	4	6
4	What is a Clique?	3	6

5	What is vertex cover problem?	4	6
6	What is subset sum problem?	4	6

UNIT-5 (Part-B)

Sl. No.	Question	BL	CO
1	Prove that the Clique problem is NP-complete?	3	6
2	Give the Reduction procedure for Vertex cover problem?	4	6
3	Give a description of the relation between P,NP,CO-NP,NP-hard,NP-complete?	4	6
4	Prove that the circuit satisfiability belongs to NP class	4	6

questic from each profit. Profit.

Propared by A. Sangeetha, A. Sangeeth Students should be thorough in all units and not rely solely on this question bank. It has been shared only to help you understand how questions can be asked from each unit.