Алгоритмы в математике (теория чисел)

Михайлов Максим

11 ноября 2022 г.

Оглавление стр. 2 из 49

Оглавление

Лекц	я 1 4 сентября	4
1	Вводная лекция	4
Лекц	я 2 11 сентября	5
2	Алгебраические структуры	6
	2.1 Структуры с одним законом композиции	6
	2.2 Структуры с двумя законами композиции	7
	2.3 Основные алгебраические структуры	7
Лекц	я 3 18 сентября	8
3	Внешний закон композиции	8
	3.1 Фактор-структуры	9
Лекц	я 4 25 сентября	12
4	Структура групп	12
	I.1 Смежные классы	14
Лекц	я 5 2 октября	17
	1.2 Цепочки гомоморфизмов	17
5	Цействие группы	19
	5.1 Орбиты	20
Лекц	я 6 9 октября	21
6	Действие группы на себя	21
	б.1 Сопряжение	21
	б.2 Левая трансляция	23
7	Диклические группы	23
Лекц	я 7 16 октября	24
8	Силовские группы	25
Лекц	я 8 23 октября	28
	3.1 Теоремы Силова	28
Лекц	я 9 30 октября	30
9	Элементы теории категорий	30
	2.1 Определения	30
	9.2 Коммутативные диаграммы	31
	9.3 Функтор	32
Лекц	я 10 б ноября	34
	9.4 Произведения и копроизведения	34
Лекц	я 11 13 ноября	37

Оглавление	стр. 3 из 49

10 Свободные группы	38
Лекция 12 4 декабря	41
11 Кольца	41
Лекция 13 11 декабря	46
11.1 Делимость в кольце	46

4 сентября

1 Вводная лекция

Хотя этот курс формально называется "теория чисел", мы не будем рассматривать только теорию чисел. Теория чисел, разумеется, про числа, делители, простоту, алгоритм Евклида и т.д.. Однако, её можно обобщить на произвольные полугруппы, группы, кольца и поля. Поэтому мы будем рассматривать теорию чисел через призму общей алгебры.

Например, в кольце целых чисел есть понятие "простое число". А в каких ещё кольцах есть "простые" элементы и каким условиям эти кольца удовлетворяют? Оказывается, кольцо многочленов содержит простые элементы и поэтому там применим алгоритм Евклида.

Мы также затронем теорию категорий (*терминальные объекты*), алгебраическую геометрию (*криптографию на эллиптических кривых*).

11 сентября

План курса:

- Полугруппа
- Группа
 - Гомоморфизм
 - Фактор-группа
 - Теорема о ядре
 - Произведение групп
- Кольцо
 - Z
 - Остатки
 - Китайская теорема об остатках
 - Алгоритм Евклида
 - Кольцо многочленов
 - Алгебра многочленов
- Поле
 - Поля Галуа
 - Расширения Галуа
 - Алгебраические кривые
 - Диофантовы уравнения

Начиная с групп мы будем использовать формализм теории категорий.

2 Алгебраические структуры

2.1 Структуры с одним законом композиции

Пусть M — множество с законом композиции $T: \forall x, y \in M \;\; \exists x T y \in M.$

Примечание. Такой закон называется **внутренним**, т.к. оба его аргумента $\in M$.

Обозначение. $x \cdot y, x \circ y, x + y, x^y, x * y$

Закон задает структуру на множестве.

Определение. $e_L \in M: \forall x \in M \ e_L \cdot x = x$ — левый нейтральный элемент

 $e_R \in M: \forall x \in M \;\; x \cdot e_R = x$ — правый нейтральный элемент

Лемма 1. $\exists e_L, e_R \in M \Rightarrow e_L = e_R \stackrel{\text{def}}{=} e$

Доказательство. $e_L = e_L \cdot e_R = e_R$

Лемма 2. e, e' — нейтральные элементы $\Rightarrow e = e'$.

Доказательство. $e = e \cdot e' = e'$

Определение. $p \in M : p \cdot p = p$ — идемпотент

Определение. $z \in M : z \cdot x = z \cdot y \Rightarrow x = y$ — регулярный элемент (левый)

Определение. $x \in M, \exists e \in M.$ Элемент $z \in M: z \cdot x = e$ — левый обратный элемент к x.

 $y \in M : x \cdot y = e$ — правый обратный элемент к x.

Лемма 3. Если $\exists y, z$, то $y = z \stackrel{\text{def}}{=} x^{-1} - \mathbf{oбратный}$ элемент.

Доказательство. $z=z\cdot e=z\cdot (x\cdot y)=(z\cdot x)\cdot y=e\cdot y=y$. Здесь мы воспользовались ассоциативностью закона композиции.

Определение. $\Theta_L: \forall x \in M \;\; \Theta_L \cdot x = \Theta_L -$ поглощающий (слева) элемент

 $\Theta_R: \forall x \in M \;\; x \cdot \Theta_R = \Theta_R -$ поглощающий (справа) элемент

Лемма 4. $\exists \Theta_L, \Theta_R \Rightarrow \Theta_L = \Theta_R \stackrel{\text{def}}{=} \Theta$

Доказательство. $\Theta_L = \Theta_L \cdot \Theta_R = \Theta_R$

 $\forall x,y,z\in M, x\cdot y\cdot z=(x\cdot y)\cdot z$ или $x\cdot (y\cdot z)$. Какое выбрать? Без ассоциативности непонятно. Поэтому мы требуем ассоциативность в рамках этого курса.

То же самое можно сказать для семейства элементов.

Теорема 1 (об ассоциативном законе). $1 \le k \le n \Rightarrow T_{i=1}^n x_i = (T_{i=1}^k x_i) T(T_{i=k+1}^n x_i)$

Определение. $\sphericalangle \forall x,y \in M \;\; xTy = yTx$. Тогда T называется коммутативным.

Определение. $\exists x,y \in M: xTy = yTx$. Тогда x,y называются **перестановочными** относительно закона.

Теорема 2 (об ассоциативном, коммутативном законе). Аргументы ассоциативного, коммутативного закона можно переставлять как угодно.

2.2 Структуры с двумя законами композиции

Пусть M — множество с законами композиции $*, \circ$. Нас интересует случай, когда эти два закона взаимосвязаны.

Как воспринимать $x*y\circ z$? Может иметь место **дистрибутивность** * относительно \circ (слева): $x*(y\circ z)=(x*y)\circ (x*z)$

 $\triangleleft e$ — нейтральный элемент по \circ . $\triangleleft x * y = x * (e \circ y) = (x * e) \circ (x * y) \Rightarrow x * e = e$. Поэтому из поля нельзя убрать ноль.

2.3 Основные алгебраические структуры

- Полугруппа множество с ассоциативным законом
- Моноид полугруппа с единицей
- Группа моноид с обратным элементом для любого
- Абелева группа группа с коммутативным законом
- Кольцо два закона, по первому абелева группа, по второму полугруппа
- **Поле** по двум законам группа

18 сентября

3 Внешний закон композиции

Пусть Ω — множество.

Определение. Внешний закон композиции — бинарная операция $g: \Omega \times M \to M$:

$$\forall \alpha \in \Omega, x \in M \quad g: (\alpha, x) \mapsto \alpha \perp x \in M$$

Пример. X — линейное пространство над \mathbb{R} . Тогда $g(\alpha, x) = \alpha \cdot x$.

Обозначение. $q(\alpha, x)$ обозначается как:

- $\alpha(x)$
- αx
- x^{α}

Пример. $M=\mathbb{Z}$ — абелева группа по сложению. $\triangleleft z \in \mathbb{Z}$.

$$\underbrace{z+z+z+\dots+z}_{n} = nz$$

Слева написано применение внутреннего закона n-1 раз, а справа — применение внешнего закона. Не всегда внешний закон можно представить в виде внутреннего, иначе внешний закон был бы не содержательным.

Пусть M имеет внутренний закон композиции \top , множество Ω имеет внешний закон \bot .

Обозначение.

 $^{^{1}}$ Относительно M.

- T = 0
- $\perp(\alpha, x) = \alpha x$

Определение. Внешний закон согласован с внутренним законом, если:

$$\alpha(x \circ y) = \alpha(x) \circ \alpha(y)$$

Пример. $\alpha(x+y) = \alpha x + \alpha y$, где $\alpha \in \mathbb{R}$

 \vartriangleleft алгебраические структуры $(M, \circ), (\Omega, *)$ и \bot — внешний закон Ω по M.

Определение.

$$\langle \alpha, \beta \in \Omega, x \in M \quad (\alpha * \beta)x = \alpha(\beta(x))$$

Такой способ согласования мы называем **действием** Ω на M.

$$(\alpha * \beta)(x \circ y) \doteq (\alpha * \beta)(x) \circ (\alpha * \beta)(y)$$
$$\doteq \alpha(\beta(x)) \circ \alpha(\beta(y)) = \alpha(\beta(x \circ y))$$

Пример. $(\mathbb{Z},+),(\mathbb{N},\cdot)$

$$\triangleleft n(z_1 + z_2) = nz_1 + nz_2$$

$$(n \cdot m)(z_1 + z_2)$$

Определение. Пусть есть множества $\{M, N \dots \Omega\}$ со своими внутренними законами композиции. Кроме того, некоторые из них могут являться носителями внешнего закона для других множеств. Этот набор множеств, внутренних и внешних законов есть алгебраическая структура.

3.1 Фактор-структуры

 $\triangleleft M$, бинарное отношение 2R

Свойства бинарного отношения:

- $\forall x \; \exists y : xRy$ полнота
- $\forall x, y \ xRy \& xRz \Rightarrow yRz$ евклидовость

Определение. R — отношение **эквивалентности**, если оно:

- Рефлексивно
- Симметрично

 $^{^2}$ Над M.

• Транзитивно

Определение. $\sphericalangle(M,R)$ — множество с отношением эквивалентности. Тогда M/R — фактор-множество, состоящее из классов эквивалентности M по R. Каждому $x \in M$ сопоставляется класс эквивалентности $[x] \in M/R$

Пример. $\triangleleft M=\mathbb{N}$ с операцией сложения, $x,y\in M, \triangleleft (x,y)\in M\times M.$

$$(a_1, b_1) \sim (a_2, b_2) \stackrel{\text{def}}{\Leftrightarrow} a_1 + b_2 = a_2 + b_1$$

Несложно заметить, что фактор-множество $(M \times M)/\sim$ соответствует \mathbb{Z} :

Определение. $x \in M, y \in M$

$$[x \circ y] \stackrel{?}{=} [x] * [y]$$

Здесь * — фактор-закон закона ∘.

Пример.

$$(a_1, b_1) \stackrel{\sim}{+} (a_2, b_2) \stackrel{\text{def}}{=} (a_1 + a_2, b_1 + b_2)$$

Чтобы рассмотреть $\stackrel{\wedge}{+}-$ фактор-закон операции $\stackrel{\sim}{+},$ нужно показать, что для $z=[(a_1+a_2,b_1+b_2)]$ верно $z=z_1\stackrel{\wedge}{+}z_2$

Определение. Закон \circ **согласован** с отношением R, если:

$$\begin{cases} \forall x, x_1 \in M & xRx_1 \\ \forall y, y_1 \in M & yRy_1 \end{cases} \Rightarrow (x \circ y)R(x_1 \circ y_1)$$

Теорема 3. Если закон композиции согласован с отношением эквивалентности, то он совпадает со своим фактор-законом.

$$[x] * [y] \stackrel{\mathrm{def}}{=} [x \circ y] = [x] \circ [y]$$

Обозначение.

$$M \cdot N \coloneqq \{m \cdot n \mid m \in M, n \in N\}$$

Пример.

- $(a_1, b_1), (a_2, b_2) \in M \times M$
- $(c_1, d_1) \sim (a_1, b_1) \Leftrightarrow c_1 + b_1 = d_1 + a_1$
- $(a_1, b_1) \rightarrow [(a_1, b_1)] = z_1 \ni (c_1, d_1)$
- $(a_2, b_2) \rightarrow [(a_2, b_2)] = z_2 \ni (c_2, d_2)$
- $(a_1, b_1) \stackrel{\sim}{+} (a_2, b_2) = (a_1 + a_2, b_1 + b_2) \rightarrow [(a_1 + a_2, b_1 + b_2)] = z$

Выполнено ли $(c_1+c_2,d_1+d_2)\in z$?

$$c_1 + c_2 + (b_1 + b_2) = d_1 + d_2 + (a_1 + a_2)$$
$$a_1 + d_1 = b_1 + c_1$$
$$a_2 + d_2 = b_2 + c_2$$

Таким образом, наша операция согласована.

25 сентября

4 Структура групп

Определение (группа). G — множество с внутренним законом \cdot , таким что:

- 1. $\forall x, y, z \in G \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 2. $\exists e \in G : \forall x \in G \ e \cdot x = x \cdot e = x$
- 3. $\forall x \in G \ \exists x^{-1} \in G : xx^{-1} = x^{-1}x = e$

 $\mbox{\it Пример.}$ Пусть S — множество, G — группа. Будем обозначать множество отображений $S \to G$ как M(SG). Наделим его структурой группы:

$$f, g \in M(SG) \Rightarrow \begin{cases} (f \cdot g)(x) = f(x) \cdot g(x) \\ f(x^{-1}) = f(x)^{-1} \\ f_e(x) = e_G \end{cases}$$

Определение. $G, G, \sigma: G \to G'$.

 σ — **гомоморфизм** группы G в группу G', если:

$$\forall x, y \in G \ \sigma(xy) = \sigma(x)\sigma(y), \sigma(e_G) = e_{G'}$$

Лемма 5. $\sigma(x^{-1}) = \sigma(x)^{-1}$

Доказательство.

$$e_{G'} = \sigma(e_G) = \sigma(xx^{-1}) = \sigma(x)\sigma(x^{-1})$$

 $\sigma(x)^{-1}e_{G'} = \sigma(x)^{-1}\sigma(x)\sigma(x^{-1})$
 $\sigma(x)^{-1} = \sigma(x^{-1})$

Обозначение.

- $\hom(G \ G')$ множество всех гомоморфизмов $G \to G'$.
- $\operatorname{End}(G) := \operatorname{hom}(G G)$.

Определение. $\sigma \in \text{hom}(G|G')$ называется изоморфизмом, если:

$$\chi \in \text{hom}(G' G) : \sigma \circ \chi = \text{id}_{G'}, \chi \circ \sigma = \text{id}_{G}$$

Обозначение.

- $\operatorname{Iso}(G G')$ множество всех изоморфизмов
- $\operatorname{Aut}(G) \coloneqq \operatorname{Iso}(G \ G)$ множество автоморфизмов

Лемма 6. $\sigma \in \text{hom}(G G'), \chi \in \text{hom}(G' G'') \Rightarrow \zeta = \chi \circ \sigma \in \text{hom}(G G'')$

Доказательство.

$$\forall x, y \in G \ \zeta(x \cdot y) = (\chi \circ \sigma)(x \cdot y)$$

$$= \chi(\sigma(x \cdot y))$$

$$= \chi(\sigma(x) \cdot \sigma(y))$$

$$= (\chi \circ \sigma)(x) \cdot (\chi \circ \sigma)(y)$$

$$= \zeta(x) \cdot \zeta(y)$$

Примечание. $\operatorname{Aut}(G)$ — группа относительно \circ .

Определение. G — группа.

$$\triangleleft S_G = \{S_i\}_{i \in I}$$
:

$$\forall g \in G \ a = \prod_{i \in J \subseteq I} S_i$$

 S_G тогда называется **множеством образующих группы** G.

Лемма 7. Мы проиграли, вернемся к этой лемме позже.

Определение (ядро гомоморфизма).

$$\ker \sigma := \{g \in G : \sigma(g) = e\}$$

Лемма 8. Если $\ker \sigma = \{e\}$, то $\sigma(x) = \sigma(y) \Rightarrow x = y$, т.е. σ иньективно.

Доказательство.

$$\sigma(x)\sigma(y^{-1}) = \sigma(y)\sigma(y^{-1}) = e_{G'}$$

Таким образом, x есть обратный к y^{-1} , т.е. x = y.

Определение (образ гомоморфизма).

$$\operatorname{Im} \sigma = \{ g' \in G' : \exists g \in G : \sigma(g) = g' \}$$

Лемма 9. $\operatorname{Im} \sigma = G' \Rightarrow \sigma$ сюръективно.

$$\left. egin{aligned} \operatorname{Im} \sigma &= G' \\ \ker \sigma &= \{e\} \end{aligned}
ight\} \Rightarrow \sigma$$
 — изоморфизм

Определение. Подгруппой H группы G называется подмножество элементов G, на котором групповой закон G индуцирует структуру группы.

Определение. Несобственные подгруппы: $\{e_G\}, G$.

Иначе подгруппа собственная.

Пример. $\sigma \in \text{hom}(G G')$. Тогда $\ker \sigma - \text{подгруппа } G$, $\text{Im } \sigma - \text{подгруппа } G'$.

4.1 Смежные классы

Пусть G — группа, H — подгруппа G.

Определение. $qH, q \in G$ — **левый смежный класс** группы G по подгруппе H.

Лемма 10. Пусть $\exists z:z\in gH,z\in g'H.$ Тогда gH=g'H

Доказательство. $z = qh, z = q'h' \Rightarrow qh = q'h' \Rightarrow q = q'h'h^{-1}$

$$gH = (g'h'h^{-1})H = g'h'h^{-1}H$$

Лемма 11.

$$\forall g,g'\in G\ |gH|=|g'H|$$

 \mathcal{A} оказательство. Отображение $h\mapsto gg^{-1}h$ есть биекция между gH и g'H

 $\it Oбозначение. \ (G:H)$ — индекс группы G по H — количество смежных классов.

 Π римечание. В общем случае это кардинальное число, но мы будем рассматривать только конечные индексы.

(G:1) — количество элементов G (порядок группы).

Лемма 12.

$$(G:1)$$
: $(G:H)$

Теорема 4. H — подгруппа G, K — подгруппа H.

$$(G:H)(H:K) = (G:K)$$

Доказательство.

$$G = \bigcup_{i} g_{i}H \quad H = \bigcup_{j} h_{j}K$$

$$G = \bigcup_{i} \bigcup_{j} g_{i}h_{j}K$$

$$g_{i}h_{j}K = g'_{i}h'_{j}K \Rightarrow \begin{cases} g_{i}H = g'_{i}H \\ h_{j}K = h'_{j}K \end{cases} \Rightarrow \begin{cases} g_{i} = g'_{i} \\ h_{j} = h'_{j} \end{cases}$$

Лемма 13 (проигранная). Дано: G, G' — группы, S_G — множество производящих $G, f: S_G \to G'$.

Если $\exists \tilde{f} \in \text{hom}(G \ G')$, то $\left. \tilde{f} \right|_{S_G} = f \Rightarrow \tilde{f}$ единственно.

Доказательство. $\lessdot g \in G, g' \coloneqq \tilde{f}(g)$

$$g = \prod_{i \in I} S_i \quad \tilde{f}(g) = \tilde{f}\left(\prod_{i \in I} S_i\right) = \prod_{i \in I} \tilde{f}(S_i) = \prod_{i \in I} f(S_i)$$

Определение. Подгруппа H группы G называется **нормальной** или инвариантной, если $\forall g \in G \ gH = Hg.$ Аналогично можно определить через $H = g^{-1}Hg$

Обозначение. $H \lhd G$

Лемма 14.

• *G* — группа

• $\sigma \in \text{hom}(G G')$

Тогда $\ker \sigma$ — нормальная подгруппа G.

Доказательство. $H := \ker \sigma$

$$\sigma(e) = \sigma(g^{-1}g) = \sigma(g^{-1})\sigma(g) = \sigma(g^{-1})e\sigma(g) = \sigma(g^{-1})\sigma(H)\sigma(g) = \sigma(g^{-1}Hg) = e_{G'}$$

Таким образом, $g^{-1}Hg\subset H$. Заменим g на $g^{-1}\colon H\subset g^{-1}Hg\Rightarrow H=g^{-1}Hg$.

 $\triangleleft G$ — группа, H — подгруппа G.

Рассмотрим отношение $\sim: g_1 \sim g_2 \Leftrightarrow g_1g_2^{-1} \in H$. Это отношение эквивалентности:

1.
$$g_1g_1^{-1} = e \in H$$

2.
$$g_1g_2^{-1} \in H \Rightarrow (g_1g_2^{-1})^{-1} \in H \Rightarrow g_1^{-1}g_2 \in H$$

3.
$$g_1g_2^{-1} \in H, g_2g_3^{-1} \in H \Rightarrow g_1g_3^{-1} \in H$$

Кроме того, $g_1 \sim g_2 \Leftrightarrow g_1 H = g_2 H$, поэтому \sim это отношение эквивалентности на смежных классах, будем обозначат фактор-множество как G/H.

Для каких H выполняется следующее: если $x_1 \sim y_1$ и $x_2 \sim y_2$, тогда $(x_1x_2) \sim (y_1y_2)$? $x_1H = y_1H, x_2H = y_2H$. Тогда H — нормальная подгруппа.

$$\sphericalangle G/H, H \vartriangleleft G, \cdot : [x] \cdot [y] = [x \cdot y]$$
. Свойства "·":

1.
$$[x] \cdot ([y] \cdot [z]) = ([x] \cdot [y]) \cdot [z]$$

2.
$$\exists [e] : [x][e] = [e][x] = [x], [e] = H$$

3.
$$[x]^{-1} = [x^{-1}]$$

Примечание. G/H — фактор-группа.

$$\triangleleft \sigma : \ker \sigma = H$$

Тогда пусть $\sigma:G\to G/H,g\mapsto [g].$

2 октября

Определение.

- G группа
- $S\subset G$ подмножество элементов G

Нормализатор S: $N_S := \{g \in G : gS = Sg\}$

Определение.

- *G* группа
- $x \in G$
- $S \subset G$

Централизатор x: $Z_x \coloneqq \{g \in G : gx = xg\}$

$$Z_S := \{g \in G : \forall y \in S \ gy = yg\}$$

 Z_G — **центр** группы G.

 Π ример. В группе $GL(n,\mathbb{R})$ инвертируемых матриц $n \times n$ центр — единичная матрица.

4.2 Цепочки гомоморфизмов

Определение.

- *G*, *G*′, *G*″ группы
- $\sigma \in \text{hom}(G G')$
- $\chi \in \text{hom}(G' G'')$

Рассмотрим цепочку $G \xrightarrow{\sigma} G' \xrightarrow{\chi} G''$. Такая последовательность называется **точной**, если $\ker \chi = \operatorname{Im} \sigma$.

Свойства.

- 1. $\ker(\chi \circ \sigma) = G$
- 2. Если σ сюръекция, то $\ker \chi = G'$
- 3. Если χ инъекция, то $\ker \sigma = G$

Пример. $H \lhd G \Rightarrow H \xrightarrow{j} G \xrightarrow{\varphi} G/H$, где j — вложение, φ — канонический гомоморфизм $g \mapsto gH$. Тогда $\forall h \in H \ (\varphi \circ j)(h) = \varphi(j(h)) = \varphi(h) = hH = 1H = 1_{G/H}$, следовательно эта последовательность точная.

Также рассматриваются последовательности вида $0 \longrightarrow G \stackrel{\sigma}{\longrightarrow} G' \stackrel{\chi}{\longrightarrow} G'' \longrightarrow 0$, где 0 – группа из одного элемента. Пусть эта последовательность точная. Гомоморфизм $0 \to G$ сопоставляет этому элементу G_e , следовательно $\mathrm{Im}(0 \to G) = \{G_e\} \Rightarrow \ker \sigma = \{G_e\} \Rightarrow \sigma$ инъективно. Аналогичными рассуждениями χ сюръективно.

Определение. \vartriangleleft 0 \longrightarrow G $\stackrel{\sigma_1}{\longrightarrow}$ G' $\stackrel{\sigma_2}{\longrightarrow}$ G'' $\stackrel{\sigma_3}{\longrightarrow}$ \dots $\stackrel{\sigma_{n-1}}{\longrightarrow}$ $G^{(n)}$ $\stackrel{\sigma_n}{\longrightarrow}$ \dots . Такая последовательность называется точной, если $\ker \sigma_i = \operatorname{Im} \sigma_{i-1}$.

Покажем, что $\tilde{\sigma}$ единственно. $\tilde{\sigma}: gH \mapsto \sigma(g)$.

Рассмотрим другую цепочку $G \stackrel{\varphi}{\longrightarrow} G/H \stackrel{\lambda}{\longrightarrow} \operatorname{Im} \sigma \stackrel{j}{\longrightarrow} G'$

 $\lambda:gH\mapsto\sigma(g),\ker\lambda=\{H\},\lambda$ — биективно. Таким образом, λ — изоморфизм и $G/H\simeq \mathrm{Im}\,\sigma.$

Примечание.

- *G* группа
- $H \triangleleft G. K \triangleleft G$
- $K \subset H -$ подгруппа

Тогда:

1. $K \triangleleft H$.

$$\forall \chi: G/K \to G/H, gK \mapsto gH, \ker \chi = \{hK\}_{h \in H}, \text{ T.K. } hK \mapsto hH = H.$$

$$(G/K)/(H/K) = G/H$$

5 Действие группы

Определение.

- *G* группа
- S множество

G действует на S, если существует отображение

$$T:G\times S\to S$$

, при этом $(g_1g_2)s = g_1(g_2s)$

Примечание.

$$T_{g_1}T_{g_2} = T_{g_1g_2}$$
 $T_e = id$ $T_{g^{-1}} = T_g^{-1}$

G действует на S как группа перестановок.

Определение.

- $s \in S$
- *G* группа

 $G_s \coloneqq \{g \in G : gs = s\}$ — **стабилизатор** элемента s.

 Π ример. $\mathbb Q$ действует на $\mathbb R^3$ через T.

Лемма 15. $G_s \subset G -$ подгруппа

Доказательство. $g_1, g_2 \in G_s \Rightarrow g_1s = s, g_2s = s$

$$(g_1g_2) \cdot s = g_1(g_2s) = g_1s = s \qquad \Box$$

 $\triangleleft G/G_s$ — фактор-множество.

Лемма 16. $s,s'\in S, s'=xs, x\in G$. Тогда $G_{s'}=xG_sx^{-1}$ и $G_{s'}$ вместе с G_s называются сопряженными

Доказательство.

$$g's' = s' = xs = xgs = xgx^{-1}s'$$
$$g' = xgx^{-1}$$

Определение. Преобразование вида xAx^{-1} , где $A\subset G$ — подгруппа G, называется сопряжением.

Лемма 17. $gG_s, g'G_s \in G/G_s$

$$gs = g's \Leftrightarrow gG_s = g'G_s$$

5.1 Орбиты

Определение. $\mathcal{O}_G(S)\coloneqq \{gs:g\in G\}$ — орбита

Лемма 18. $|\mathcal{O}_G(S)| = (G:G_S)$

Доказательство. Из предыдущей леммы.

Остаётся на следующую лекцию:

- 1. $S = \bigsqcup_{S \in C} \mathcal{O}_G(S)$, где C непересекающиеся орбиты
- 2. Действия группы на себя

Лекция 6

9 октября

Лемма 19. Орбиты элементов $\mathcal{O}_G(s)$ и $\mathcal{O}_G(s')$ или непересекаются или совпадают.

Доказательство. Пусть орбиты пересекаются, т.е. $\exists s_0: s_0 \in \mathcal{O}_G(s)$ и $s_0 \in \mathcal{O}_G(s')$. Тогда $\exists g \in G: s_0 = gs, \exists g' \in G: s_0 = g's'$

$$\mathcal{O}_G(s') = \mathcal{O}_G(g's') = \mathcal{O}_G(s_0) = \mathcal{O}_G(gs) = \mathcal{O}_G(s)$$

Таким образом, $\mathcal{O}_G(s') = \mathcal{O}_G(s)$.

Примечание.

$$S = \bigsqcup_{i \in I} \mathcal{O}_G(S_i)$$

Примечание. Если S — конечно, то

$$|S| = \sum_{i \in I} |\mathcal{O}_G(s_i)|$$

6 Действие группы на себя

Пусть $S_G = G$, т.е. группа действует сама на себя.

6.1 Сопряжение

Пусть $x \in G$. $\sigma: x \mapsto \sigma_x: \sigma_x(y) = xyx^{-1}$

Пусть $y, y' \in G$.

$$\sigma_x(y\cdot y')=xyy'x^{-1}=xyx^{-1}xy'x^{-1}=\sigma_x(y)\sigma_x(y')$$

$$\sigma_x(e) = e$$

Таким образом, σ_x — гомоморфизм.

$$\sigma_x^{-1} = \sigma_{x^{-1}}$$

$$\sigma_x^{-1} \circ \sigma_x = \mathrm{id}_G$$

$$\sigma_x^{-1} \circ \sigma_x(y) = G_x^{-1}(xyx^{-1}) = x^{-1}xyx^{-1}x = y \ \forall y$$

 $\sigma_x \in \operatorname{Aut}(G) \ \forall x$

 $\triangleleft \sigma: G \to \operatorname{Aut}(G).$

$$\sigma_x \sigma_y = \sigma_{xy} \quad \sigma_e = \mathrm{id}_G$$

Таким обрзом, $\sigma \in \text{hom}(G, \text{Aut}(G))$

$$\ker \sigma = \{x \in G : \forall y \ \sigma_x y = y\}$$
$$xyx^{-1} = y$$
$$xy = yx$$

Таким образом, $\ker \sigma = Z_G$

Рассмотрим G как множество. $A \subset G$ — подмножество G.

$$\triangleleft \sigma_x(A) = xAx^{-1} \subset G$$

$$\lhd \sigma_x(H) = xHx^{-1} \subset G$$
 — подгруппа G .

Пусть S — множество подгрупп группы G, H — подгруппа G, рассмотрим G/H.

Пусть $x \in G$.

$$G_x := \{g \in G : \sigma_g(x) = x\} = Z_x$$

$$\mathcal{O}_G(x) = \{\sigma_g(x), g \in G\}$$

$$|\mathcal{O}_G(x)| = (G : Z_x)$$

$$G = \bigsqcup_{i \in I} \mathcal{O}_G(x_i)$$

$$|G| = \sum_{i \in I} (G : Z_{x_i})$$

$$G_H = \{g \in G : \sigma_g H = H\} \stackrel{\text{def}}{=} N_H$$

$$G = \bigsqcup_{i \in I} \mathcal{O}_G(H_i) \quad |G| = \sum_{i \in I} (G : N_i)$$

6.2 Левая трансляция

Пусть $x \in G$. $\tau : x \mapsto \tau_x : y \mapsto xy$.

 $au_x(yy') = xyy'$ — не гомоморфизм.

Пусть $H\subset G$ — подгруппа G. Сопряжение не определяло действие, а трансляция определяет: $\sphericalangle G/H:[g]=gH$, тогда $\tau_x(gH)=xgH=g'H\in G/H$.

7 Циклические группы

Определение. Группа G называется циклической, если $\exists g: \forall h \in G \ h = g^m = \underbrace{g \cdot g \cdot \cdots}_m$.

Обозначение. $G = \langle g \rangle$

Определение. Показатель элемента g в $G=\langle g \rangle$ это число m>0, такое что $g^m=e$.

Определение. Показатель группы $\langle g \rangle$ — число k>0, такое что $\forall x \in G \;\; x^k=e.$

Пример. $(\mathbb{Z},+)$ — бесконечная циклическая группа.

Если H — подгруппа \mathbb{Z} , то $H = \{mz\}_{m \in \mathbb{Z}}, z := \min\{t \in \mathbb{Z} \mid t > 0\}$

16 октября

Пусть G — произвольная группа, $\lhd \sigma: \mathbb{Z} \to G, \sigma: z \longmapsto a^z$

$$\operatorname{Im} \sigma = \langle a \rangle \subset G$$

Есть два случая:

1. $\ker \sigma = \{0\} \Rightarrow \operatorname{Im} \sigma \cong \mathbb{Z}$ и G содержит бесконечную циклическую подгруппу.

2.
$$\ker \sigma \neq \{0\} \Rightarrow \ker \sigma = H \subset \mathbb{Z} \Rightarrow H = \{nh\}_{n \in \mathbb{Z}} \Rightarrow \mathbb{Z}/H = \{[0], [1], [2], \dots, [h-1]\}$$

$$\mathbb{Z} \xrightarrow{\varphi} \mathbb{Z}/H \xrightarrow{\sigma^*} G$$

Разложили $\sigma = \sigma^* \circ \varphi$, где φ — канонический гомоморфизм.

Тогда σ^* отображает \mathbb{Z}/H в $a^0, a^1, a^2 \dots a^{h-1}$, где $a^h = a^0 = e$.

Утверждение. Все элементы различны, т.е. $\triangleleft s, r: a^s = a^r$. Тогда s = r.

Доказательство.
$$a^{s-r} = e \Rightarrow s - r = kh = 0 \Rightarrow s = r$$
.

Определение. Пусть G — циклическая группа $a^0, a^1 \dots a^{h-1}$. Тогда h — **период** элемента a. Это не то же самое, что показатель: показатель имеет вид qh.

Лемма 20. G - конечная \Rightarrow период $\forall g \in G$ делит порядок группы.

Доказательство. Пусть d — период $g \in G$, тогда $g^d = e$.

$$\sphericalangle H = \langle g \rangle$$
 — подгруппа G и $|H| = d$

$$|G| = (G:1) = (G:H)(H:1) = (G:H)|H|$$

Лемма 21. Пусть |G| = p — простое число, $\langle g \in G, g \neq e$.

Тогда $G = \langle g \rangle$.

Доказательство. $\triangleleft g \in G, g \neq e$

$$\triangleleft H = \langle q \rangle \Rightarrow |H| \neq 1$$
, t.k. $e \in H, q \in H$.

$$p=(G:1)=(G:H)(H:1).$$
 Но тогда $(G:H)=1$ по простоте p , следовательно $G=\langle g\rangle$

Лемма 22. G — циклическая группа. Тогда

- 1. $H \subset G$ циклическая
- 2. $\sigma(G)$ циклическая, если $\sigma\in \operatorname{Hom}(G)$

Доказательство. G — циклическая группа

1. (a) G — бесконечная циклическая группа.

Тогда $G \cong \mathbb{Z}$ — знаем все подгруппы (они циклические).

(b) G — конечная циклическая группа.

$$\triangleleft H \subset G$$
 — подгруппа.

$$|G|$$
 : $|H| \Rightarrow |H|$ конечна.

$$\langle a \in H \Rightarrow a = g^n \Rightarrow a^k = g^{kn} \Rightarrow H = \langle a \rangle$$

2. Пусть $G=\langle g \rangle$, тогда $\sigma(g)$ — образующая для $\sigma(G)$ и значит $\sigma(G)=\langle \sigma(g) \rangle$

Лемма 23. G — бесконечная циклическая группа. Тогда у G есть две образующие: g и g^{-1} .

8 Силовские группы

Определение. Группа называется p-группой, если ее порядок является степенью простого числа p.

Определение. Подгруппа H называется p-подгруппой группы G, если $H\subset G,$ H-p-группа.

Определение. H называется **силовской** подгруппой G, если H-p-подгруппа G и $|H|=p^n$, где p^n — максимальный порядок в группе.

Пусть n — порядок группы G. Мы знаем 1 , что $n=p_1^{n_1}p_2^{n_2}\ldots$, где p_i — простые. n_i — максимальная степень p_i , которая встречается в n, т.е. $n\not/p_i^{n_{i+1}}$. Т.к. порядок подгруппы делит порядок группы, то найдутся подгруппы, порядки которых соответствуют этому разложению.

Лемма 24.

- |G| = m
- Показатель G=n
- G коммутативная группа

Тогда порядок G делит некоторую степень показателя:

$$\exists k: n^k \, \vdots \, m$$

Доказательство. По индукции (по порядку группы)

$$\sphericalangle H \vartriangleleft G, H = \langle b \rangle$$
. Т.к. показатель $G = n, b^n = e$. $\sphericalangle |G/H|$

Так как
$$n : (H:1)$$
 и по индукции $n^k : (G:H)$, то $n^{k+1} : (G:1) = (G:H)(H:1)$

Лемма 25.

- *G* конечная абелева группа
- |G| : p (p простое)

Тогда $\exists H \subset G : |H| = p$.

Доказательство. |G|: p по условию.

$$\triangleleft H = \langle x \rangle, x^n = e$$

Пусть показатель группы G есть n, m — порядок группы.

$$m \, \vdots \, p \Rightarrow \exists s : m = sp$$

Некоторая степень показателя делится на порядок группы: $n^k \, \vdots \, m \Rightarrow \exists z : n^k = z \cdot m = zsp$

$$x^{zs} \eqqcolon y, \;\; y^p = e \Rightarrow H' = \langle y \rangle$$
 — искомая группа

 $[\]overline{^{1}}$ Но докажем потом.

Теорема 5.

- G конечная группа
- |G| : p (p простое)

Тогда в $G \exists$ силовская подгруппа.

Доказательство. По индукции.

Если |G| = p, искомое очевидно.

Пусть искомое доказано для всех порядков меньших G.

Пусть
$$H \subset G \Rightarrow (G:1) = (G:H)(H:1)$$

- 1. Если |H|: p, то силовская подгруппа для G будет силовской подгруппой для H, которая существует по индукционному предположению.
- 2. Если (G:H) : p

Пусть G действует на себя.

$$(G:1) = |Z_G| + \sum_x (G:G_x)$$

Так как (G:1) : p и $\forall x:(G:G_x)$: $p\Rightarrow |Z_G|$: p, т.е. центр нетривиальный. Кроме того, центр абелев, следовательно по лемме 25 $\exists H\subset Z_G$ - абелева подгруппа, такая что |H|=p.

Т.к. $H\subset G,\, H\vartriangleleft G\Rightarrow G/H.$ В G/H существует силовская подгруппа p^{n-1} по индукционному предположению, назовём ее K'.

 $|K'|=p^{n-1}, |K'H|=p^{n-1}\cdot p=p^n$, при этом K'H — подгруппа, т.к. H — нормальная подгруппа. K'H — искомая подгруппа.

23 октября

8.1 Теоремы Силова

Примечание.

- G произвольная группа
- H, K подгруппы G
- $H \subset N_K = \{g \in G : gKg^{-1} = K\}$

Тогда:

1. HK — подгруппа G

Доказательство. $\triangleleft h_1k_1, h_2k_2 \in HK$

$$(h_1k_1)(h_2k_2) = h_1k_1h_2k_2 = \underbrace{h_1h_2}_{h}\underbrace{k_1k_2}_{k}$$

2. $K \triangleleft HK \Rightarrow \exists HK/K$

 $\sphericalangle \varphi: HK \to HK/K$ — канонический гомоморфизм

 $\ker \varphi = K$, т.к. $1 \cdot K \cdot K = K^2 = K$, что есть нейтральный элемент фактор-группы.

Мы запутались, но каким-то образом $HK/K \cong H/H \cap K$.

Не дописано

Теорема 6 (первая теорема Силова). Каждая p-подгруппа содержится в силовской p-подгруппе.

Доказательство. Пусть G — группа, S — множество силовских p-подгрупп и G действует на S сопряжением.

$$\triangleleft \mathcal{P} \in S, S = S_G$$

$$S_0 := O_G(\mathcal{P}) \stackrel{\text{def}}{=} \{g\mathcal{P}g^{-1}\}_{g \in G} = \{\tilde{\mathcal{P}}_1, \tilde{\mathcal{P}}_2 \dots \tilde{\mathcal{P}}_m\}$$

Сколько элементов в S_0 ? $(G:\mathcal{P}) \not /p \Rightarrow |S_0| \not /p$

Пусть H - p-подгруппа G, действующая на S_0 сопряжением.

Примечание. $|H|=p^k\Rightarrow \forall \tilde{H}\subset H\;\;|\tilde{H}|\,\dot{:}\,p$

$$|S_0| = \sum_C (H : \tilde{H}_x)$$

Так как
$$HK/K \cong H/H \cap K$$
, $H\mathcal{P}'/\mathcal{P}' \cong H/(H \cap \mathcal{P}') \Rightarrow \mathcal{P}'H \cong \mathcal{P}' \Rightarrow H \subset \mathcal{P}'$

Теорема 7 (вторая теорема Силова). Силовские p-подгруппы сопряжены.

Теорема 8 (третья теорема Силова). Число силовских p-подгрупп $\equiv 1 \mod p$.

Не дописано

30 октября

9 Элементы теории категорий

Теория категорий позволит нам обобщить уже известные нам утверждения и позволит их применять в других алгебраических структурах, например кольцах.

9.1 Определения

Определение. C — категория:

- 1. Коллекция объектов $\mathrm{Obj}(\mathcal{C}):A,B,C\ldots X,Y$
- 2. Множество морфизмов $Arr(\mathcal{C}): f, g, h, \varphi, \chi, \psi$ $\lessdot A, B \in Obj(\mathcal{C}), A \xrightarrow{f} B, f \in Mor(A, B)$
- 3. $Mor(B, C) \times Mor(A, B) = Mor(A, C)$

Аксиомы категории:

- 1. Множества морфизмов не пересекаются: $f\in \mathrm{Mor}(A,B), f\in \mathrm{Mor}(A',B')\Leftrightarrow A=A',B=B'$
- 2. $f \in \text{Mor}(A, B), g \in \text{Mor}(B, C), h \in \text{Mor}(C, D) \Rightarrow (h \circ g) \circ f = h \circ (g \circ f)$

3.
$$\forall A \in \mathrm{Obj}(\mathcal{C}) \ \exists \mathrm{id}_A \in \mathrm{Mor}(A,A) : \begin{cases} \forall f \in \mathrm{Mor}(A,B) \ f \circ \mathrm{id}_A = f \\ \forall g \in \mathrm{Mor}(B,A) \ \mathrm{id}_A \circ g = g \end{cases}$$

Определение. $f \in \operatorname{Mor}(A,B)$ — изоморфизм, если $\exists g \in \operatorname{Mor}(B,A)$:

$$\begin{cases} g \circ f = \mathrm{id}_A \\ f \circ g = \mathrm{id}_B \end{cases}$$

Определение. Автоморфизм — изоморфизм из объекта в него же, т.е. $f \in \text{Mor}(A,A), f$ — изоморфизм $\Rightarrow f \in \text{Aut}(A)$

Определение. Эндоморфизм — морфизм из объекта в него же, End(A) = Mor(A, A)

Лемма 26. $\mathrm{End}(A)$ — моноид

Лемма 27. Aut(A) — группа

Категории, которые мы будем рассматривать:

- Set -категория множеств.
- Моп категория моноидов.
- Grp категория групп.
- Set_G категория множеств, на которые действует группа.

 $\triangleleft \operatorname{Set}_G = \mathcal{C}, G$ — группа.

Пусть $A, B \in \text{Obj}(\mathcal{C}), A = A_G, B = B_G$

Mor(A, B) — отображения множеств.

Действие группы это $\sigma: x \mapsto \sigma_x$, где $x \in G$, σ_x — перестановка множества A.

9.2 Коммутативные диаграммы

Пусть \mathcal{C} — категория. Рассмотрим категорию $\zeta: \mathrm{Obj}(\zeta) = \mathrm{Arr}(\mathcal{C})$. Пусть $f \in \mathrm{Mor}(A,B), g \in \mathrm{Mor}(A',B')$. Рассмотрим $(\varphi,\psi) \in \mathrm{Mor}(f,g)$, такие что $\varphi,\psi \in \mathrm{Arr}(\mathcal{C})$.

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{\varphi} & & \downarrow^{\psi} \\
A' & \xrightarrow{g} & B'
\end{array}$$

Если свойство $g \circ \varphi = \psi \circ f$ выполнено, то эта диаграмма называется **коммутативной**.

Рассмотри категорию $\mathcal{C}, A \in \mathrm{Obj}(\mathcal{C})$, рассмотрим $\mathcal{C}_A : f \in \mathrm{Obj}(\mathcal{C}_A) \ f : X \to A \ \forall X \in \mathrm{Obj}(\mathcal{C})$, то есть категорию стрелок в некоторый отмеченный элемент A.

 $\triangleleft f: X \to A, G: X' \to A, \varphi \in \mathrm{Arr}(\mathcal{C}_A), \varphi \in \mathrm{Mor}(f,g), \varphi: X \to X'$, тогда $g \circ \varphi = f$, т.е. следующая диаграмма коммутативна:

9.3 Функтор

Определение. Рассмотрим категории $\mathcal{A}, \mathcal{B}.$ **Ковариантный функтор** — отображение, которое:

- Каждому $A \in \mathrm{Obj}(\mathcal{A})$ сопоставляет $F(A) \in \mathrm{Obj}(\mathcal{B})$.
- Каждому $f \in \text{Mor}(A, B)^1$ сопоставляет $F(f) \in \text{Mor}(F(A), F(B))$

со следующими аксиомами:

1.
$$\forall A \in \text{Obj}(A) \ F(\text{id}_A) = \text{id}_{F(A)}$$

2.
$$\forall f \in \text{Mor}(A, B), q \in \text{Mor}(B, C)$$
 $F(q \circ f) = F(q) \circ F(f)$

 Π ример. $\mathcal{C} \coloneqq \operatorname{Grp}, \operatorname{Obj}(\mathcal{C}) - \operatorname{группы}, \operatorname{Arr}(\mathcal{C}) - \operatorname{гомоморфизмы} \operatorname{групп}.$

Рассмотрим стирающий функтор F, который группам сопоставляет множества, а гомоморфизмам — отображения.

Лемма 28. Функтор переводит изоморфизм в изоморфизм.

Определение. Рассмотрим категории \mathcal{A}, \mathcal{B} . **Контравариантный функтор** — отображение, которое:

- Каждому $A \in \mathrm{Obj}(\mathcal{A})$ сопоставляет $F'(A) \in \mathrm{Obj}(\mathcal{B})$.
- Каждому $f \in \operatorname{Mor}(A, B)^2$ сопоставляет $F'(f) \in \operatorname{Mor}(F'(B), F'(A))$

со следующими аксиомами:

1.
$$\forall A \in \mathrm{Obj}(A)$$
 $F'(\mathrm{id}_A) = \mathrm{id}_{F'(A)}$

2.
$$\forall f \in \text{Mor}(A, B), g \in \text{Mor}(B, C)$$
 $F'(g \circ f) = F'(f) \circ F'(g)$

 $Oбозначение. \ F$ — ковариантный функтор, F' — ковариантный функтор.

$$\langle \mathcal{A}, A \in \mathrm{Obj}(\mathcal{A}), F_A : \mathcal{A} \to \mathrm{Set}$$

$$\forall X \in \mathrm{Obj}(\mathcal{A}) \ F_A(X) = \mathrm{Mor}(A, X)$$

$$\forall f \in \mathrm{Mor}(X, X') \ F_A(f) = \mathrm{Mor}(A, X) \to \mathrm{Mor}(A, X'), \varphi \mapsto f \circ \varphi$$

$$X \xrightarrow{f} X'$$

$$\downarrow^{f} f \circ \varphi$$

 $F_A^c: \mathcal{A} \to \mathrm{Set}$

$$\forall Y \in \text{Obj}(\mathcal{A}) \ F_A^c(Y) = \text{Mor}(Y, A)$$

 $A \in \mathrm{Obj}(\mathcal{A}), B \in \mathrm{Obj}(\mathcal{B})$

 $^{^{2}}A \in \mathrm{Obj}(\mathcal{A}), B \in \mathrm{Obj}(\mathcal{B})$

$$\forall g \in \operatorname{Mor}(Y',Y) \ F_A^c(g) : \operatorname{Mor}(Y',A) \to \operatorname{Mor}(Y,A)$$

Построенные функторы — **представляющие** 3 .

 $[\]overline{\ \ }^{3}$ Кажется, у АС ошибка — такие функторы называются представимыми.

6 ноября

9.4 Произведения и копроизведения

Определение. Произведением $A\in \mathrm{Obj}(\mathcal{A})$ и $B\in \mathrm{Obj}(\mathcal{A})$ называется тройка $\{P,f,g\}$, где:

- $P \in \mathrm{Obj}(\mathcal{A})$
- $f, g \in Arr(\mathcal{A})$

, такая что если $\varphi:A\to C, \psi:B\to C$, тогда \exists морфизм h, такой что $\varphi=f\circ h, \psi=g\circ h$, т.е. следующая диаграмма коммутирует:

Пример. $\mathcal{A} = \operatorname{Set}$

Тогда категориальное произведение $S_1 \in \text{Obj}(\mathcal{A}), S_2 \in \text{Obj}(\mathcal{A})$ есть $\{S_1 \times S_2, \text{proj}_1, \text{proj}_2\}$. Обобщение: $(npsmoe)^2$ произведение $\{A_i\}_{i\in I}$ это $(P, \{f_i\}_{i\in I})$, удовлетворяющее условию:

$$\forall C \in \mathrm{Obj}(\mathcal{A}) : g_i : C \to A_i \ \exists h : g_i = f_i \circ h$$

 $\mbox{$\Pi$pume}$ чание. Произведение двух объектов обозначается как $A\times B$, произведение нескольких как $\prod_{i\in I}A_i$

Определение. Копроизведение $A\in \mathrm{Obj}(\mathcal{A})$ и $B\in \mathrm{Obj}(\mathcal{A})$ — тройка $\{P',f,g\}$, где:

 $^{^{-1}}$ На лекции диаграмма была представлена в другом виде, но категорист во мне взвыл в этот момент.

 $^{^{2}}$ Иногда говорят "прямое", обычно — нет.

- $P' \in \mathrm{Obj}(\mathcal{A})$
- $f, g \in Arr(\mathcal{A})$

, такая что

$$\forall C \in \text{Obj}(\mathcal{A}), \varphi : A \to C, \psi : B \to C \ \exists h : P' \to C : \varphi = h \circ f, \psi = h \circ g$$

, т.е. следующая диаграмма коммутирует:

$$A \xrightarrow{\varphi} h \uparrow \qquad \psi \\ A \xrightarrow{f} P' \xleftarrow{g} B$$

Пример. Пусть $\mathcal{A} = \mathrm{Set}, S_1 \in \mathrm{Obj}(\mathcal{A}), S_2 \in \mathrm{Obj}(\mathcal{A})$. Пусть U — копроизведение S_1 и S_2 . Тогда $U = (\{1\} \times S_1) \cup (\{2\} \times S_2)^3$.

Обобщение: копроизведение $\{A_i\}_{i\in I}$ это $(P',\{f_i\}_{i\in I})$, удовлетворяющее условию:

$$\forall C' \in \text{Obj}(\mathcal{A}) : g_i : A_i \to C \ \exists h : g_i = h \circ f_i$$

Определение. Инициальным объектом в \mathcal{A} называется $I \in \mathrm{Obj}(\mathcal{A})$, такой что:

$$\forall A \in \mathrm{Obj}(\mathcal{A}) \ \exists ! \varphi : I \to A$$

Определение. Терминальным объектом в \mathcal{A} называется $T \in \mathrm{Obj}(\mathcal{A})$, такой что:

$$\forall B \in \mathrm{Obj}(\mathcal{A}) \ \exists ! \varphi : B \to T$$

Примечание. Терминальный и инициальный объект универсальны.

$$I \overset{\varphi}{\underset{\varphi'}{\longmapsto}} I'$$

По определению:

$$\varphi \circ \varphi' : I' \to I'!$$

$$\varphi' \circ \varphi : I \to I!$$

 $^{^{3}}$ Это дизъюнктное объединение.

Рассмотрим категорию $\mathcal{A}, \{A_i\}, B, B' \in \mathrm{Obj}(\mathcal{A})$ и категорию ζ , где $\{f_i: A_i \to B\} \in \mathrm{Obj}(\zeta)$ и $\{f_i': A_i \to B'\} \in \mathrm{Obj}(\zeta)$.

 $\varphi:B\to B'$ — морфизм в \mathcal{A} , но с другой стороны это и морфизм в ζ , т.к. $f_i'=\varphi\circ f_i.$ P— копроизведение.

В $\zeta \; \{g_i: A_i \to P\}$ является универсальным объектом.

Лекция 11

13 ноября

Пусть $\{G_i\}$ — группы. Рассмотрим объект $\prod_i G_i$ — декартово произведение этих групп как множеств.

Пусть
$$G_i = \{x_i', x_i'' \dots\}, \prod_i G_i = \{(x_i, x_j \dots)\} = \{(x_i)\}$$

Лемма 29. $\prod_i G_i$ может быть наделено структурой группы.

$$(x_i), (y_i) \in \prod_i G_i$$
 if $(x_1, x_2 \dots x_n \dots) * (y_1, y_2 \dots y_n \dots) = (x_1 y_1, x_2 y_2 \dots x_n y_n \dots)$

Доказательство. Проверим аксиомы группы. Они все очевидны из аксиом групп G_i . \square

$$\sphericalangle \lambda_j: G_j \to \prod_i G_i \quad \lambda_j(x) = (e_1, e_2 \dots x \dots e_n \dots)$$
 и обратное к нему отображение proj_j Лемма 30. $(\prod_i G_i, \{\operatorname{proj}_k\})$ — произведение в Grp .

Доказательство. Рассмотрим $\tilde{G}\in \mathrm{Obj}(\mathrm{Grp}), \{g_i: \tilde{G}\to G_i\}$. Нужно показать, что $\exists !h:$ $f_i \circ h = g_i$.

$$\sphericalangle y \in \tilde{G}, \ y \xrightarrow{h} (y_i) \xrightarrow{\operatorname{proj}_i} y_i$$

 $g_i(y)=(y)_i$, поэтому $f_i\circ\underbrace{h(y)}_{x_1\dots x_i\dots}=\underbrace{g_i(y)}_{x_i}$. Тогда h(y) существует, и это может быть только $(g_1(y),g_2(y)\dots g_n(y)\dots)$, из этого следует единственность.

Лемма 31 (критерий прямого произведения).

- *G* группа
- H, K подгруппы G
- $H \cap K = \{e\}$
- $\forall x \in H \ y \in K \ xy = yx$
- HK = G

Тогда и только тогда $H \times K \cong G$

Доказательство. $\langle \psi : (x,y) \mapsto xy, \psi \in \text{hom}(H \times K, G)$

Сюръективность очевидна, т.к. HK = G.

Рассмотрим (x,y), такие что $\psi((x,y))=e$. Тогда $xy=e\Rightarrow x=y^{-1}.\ y\in K\Rightarrow y^{-1}\in K\Rightarrow x\in K$, но кроме того $x\in H\Rightarrow x\in H\cap K$, следовательно, x=e. Аналогично y=e.

Т.к.
$$\psi$$
 — биективный гомоморфизм, ψ — изоморфизм.

Обобщение:

$$H_1 \times H_2 \times \dots \times H_n \cong G \Leftrightarrow \begin{cases} H_{j+1} \cap (H_1 H_2 \dots H_j) = \{e\} \\ H_i H_j = H_j H_i \ \forall i, j \end{cases}$$

10 Свободные группы

Рассмотрим S — множество.

 $\triangleleft g:S \rightarrow g(S) \subset G$, где g(S) — множество образующих группы G.

Определение. Отображение $g:S \to G$ порождает группу G, если образ g порождает G.

Определение. S — множество образующих 1 группы G, если $\forall y \in G \;\; y = \prod_i x_i$, где $x_i \in S$ или $x_i^{-1} \in S$

Рассмотрим два отображения $f:S\to F,g:S\to G$, где f(S) порождает F и g(S) порождает G.

По доказанной ранее лемме 13 существует не более одного гомоморфизма g_* .

Рассмотрим категорию ζ , объекты которой являются парами вида (F,f). Рассмотрим гомоморфизм $\varphi:F\to G$, тогда $\varphi\in {\rm Arr}(\zeta)\colon (F,f)\stackrel{\varphi}{\longrightarrow} (G,g)$.

Определение. Свободная группа, определяемая множеством S — инициальный объект в категории ζ .

Теорема 9. Для всякого множества S существует определяемая им свободная группа (F,f), при этом:

- 1. f инъективен.
- 2. f порождает F.

Доказательство. Рассмотрим случай, когда S конечно.

 $\sphericalangle T$ — счётное множество. Пусть на нём мы можем заводить групповые структуры, множество всех таких структур назовём Γ . Пусть тогда T_γ , где $\gamma\in\Gamma$ — реализация группы на T.

Рассмотрим отображение φ между S и T_γ . Т.к. множество образующих можно по-разному вкладывать в T_γ . Чтобы это фиксировать, скажем, что $\varphi:S\to T_{\gamma,\varphi}$. $T_{\gamma,\varphi}\in \mathrm{Obj}(\zeta)$, а $T_\gamma\in\mathrm{Grp}$.

Рассмотрим также множество $M_{\gamma} = \{\varphi\}$ — множество отображений S в $T_{\gamma}.^2$

$$F_0 := \prod_{g \in \Gamma} \prod_{\varphi \in M_\gamma} T_{\gamma,\varphi}$$

 $F_0\in\mathrm{Grp}^3$, поскольку это произведение элементов $\mathrm{Obj}(\mathrm{Grp})$. Рассмотрим $f_0:S o F_0:S\mapsto (\varphi_1(S)_{\gamma_1},\varphi_2(S)_{\gamma_1}\ldots\varphi_1'(S)_{\gamma_2},\varphi_2'(S)_{\gamma_2}\ldots)$.

¹ Также называется множеством порождающих.

 $^{^{2}}M_{\gamma}=\operatorname{Arr}(-,T_{\gamma})$

³ Мы игнорируем тот факт, что произведение это тройка из объекта и двух морфизмов, нас интересует только объект.

Покажем, что $\forall g:S \to G \;\; \exists !g_*:F_0 \to G$, такой что следующая диаграмма коммутативна:

Пусть g(S) порождает G. Т.к. S конечно, $|G| \leq |T|$, т.к. T счётно.

Рассмотрим $\overline{G}=G\times\mathbb{Z}$. Надо, чтобы $|G\times\mathbb{Z}|=|T|$ и тогда будет существовать биекция между $G\times\mathbb{Z}$ и T, тогда $\exists\gamma\in\Gamma:G\times\mathbb{Z}\cong T_\gamma$ с изоморфизмом $\lambda:G\times\mathbb{Z}\to T_\gamma$.

$$S \xrightarrow{g} G \xrightarrow{h} G \times \mathbb{Z} \xrightarrow{\lambda} T_{\gamma}$$

$$\psi := \lambda \circ h \circ g \in M_{\gamma} \quad S \xrightarrow{\psi} T_{\gamma,\psi}$$

$$\psi_{*} := \operatorname{proj}_{G} \circ \lambda^{-1} \circ \operatorname{proj}_{\gamma,\psi}$$

$$F_{0} \xrightarrow{\operatorname{proj}_{\gamma,\psi}} T_{\gamma,\psi}$$

$$\downarrow^{\psi_{*}} \qquad \downarrow^{\lambda^{-1}}$$

$$G \xleftarrow{\operatorname{proj}_{G}} G \times \mathbb{Z}$$

$$f_{0} \xrightarrow{\operatorname{proj}_{\gamma,\psi}} T_{\gamma,\psi}$$

$$\downarrow^{\Lambda^{-1}} \qquad \downarrow^{\varphi}$$

$$G \times \mathbb{Z}$$

$$\downarrow^{\operatorname{proj}_{G}}$$

Рассмотрим $f:S \to F, f(S)=F$. Для единственности g_* мы сужаем его на $g_*\Big|_F$. Весь трюк заключается в том, что в F_0 много лишнего, т.к. там много одинаковых элементов. f инъективно, т.к. всех $\varphi \in M_\gamma$ найдётся инъектвиное.

Если S несчётно, ты мы не знаем что делать.

Если S счётно, то все то же самое, но за T возьмём S и тогда $G \times \mathbb{Z} \cong T$ $\underbrace{\times \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \times \dots}_{\text{нужное количество } \mathbb{Z}}$

Лекция 12

4 декабря

11 Кольца

Определение. Множество R с бинарными операциями + и \cdot называется **кольцом**, если:

- 1. (R, +) коммутативная группа
- 2. (R, \cdot) моноид
- 3. Дистрибутивность справа и слева:

$$a \cdot (b+c) = ab + ac$$
$$(a+b) \cdot c = ac + bc$$

Пример.

- $R = \mathbb{Z}$
- $R = \mathbb{R}_{n \times n}$

Определение. Кольцо R коммутативно, если ab = ba.

 Π римечание. Мы будем рассматривать в основном коммутативные кольца. Если не сказано иначе, то кольцо коммутативно.

Примечание. $0, 1 \in R$, где:

- 0 нейтральный по +
- 1 из моноида (R, \cdot)

Примечание. Если 0 = 1, то $R = \{0\}$

Определение. $a \in R$ называется обратимым, если $\exists b : ab = 1$.

Определение. R^* называется **группой обратимых элементов** (или **группой единиц**):

$$R^* := \{ a \in R \mid \exists b \ ab = 1 \}$$

Теорема 10. (R^*, \cdot) — группа.

Примечание.

- $0 \cdot a = 0$
- $(-1) \cdot a = -a$
- $(-a)(-b) = a \cdot b$

Определение. $S \subset R$ называется **подкольцом**, если S — кольцо с индуцированными операциями.

Примечание. $S \subset R$ — подкольцо, если + и · замкнуты в S.

Пример. $S = 2\mathbb{Z} -$ подкольцо

Вообще говоря, можно рассматривать кольцо без 1.

Определение. $J\subset R$ называется **идеалом**, если J — подкольцо и $\forall a\in R \ \forall x\in J \ ax\in J$

Пример. $J = 2\mathbb{Z} -$ идеал

Определение. $\mathcal{I}(R)$ — множество идеалов. ¹

Определение. Если $J_1, J_2 \in \mathcal{I}(R)$, то:

$$J_1 + J_2 := \langle J_1 + J_2 \rangle := \{ x + y \mid x \in J_1, y \in J_2 \}$$

Теорема 11. $J_1 + J_2 \in \mathcal{I}(R)$

Доказательство. $\langle x_1 + y_1, x_2 + y_2 \in J_1 + J_2 \rangle$

$$(x_1 + y_1) + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) \in J_1 + J_2$$

 $\triangleleft a \in R, x + y \in J_1 + J_2$

$$a \cdot (x+y) = \underbrace{ax}_{J_1} + \underbrace{ay}_{J_2} \in J_1 + J_2$$

Примечание. Если S — подкольцо, то $0 \in S$

Теорема 12. $J_1 \in \mathcal{I}(J_1 + J_2)$

 $[\]overline{^{1}}$ На лекции обозначено I, но это чаще используется для дробных идеалов.

Определение. Если $J_1,J_2\in\mathcal{I}(R)$, то:

$$\underbrace{J_1 \cdot J_2}_{\text{умножение}} \coloneqq \underbrace{\langle J_1 \cdot J_2 \rangle}_{\text{поэлементное умножение}} \coloneqq \left\{ \sum_{k=1}^n x_k y_k \mid x_k \in J_1, y_k \in J_2, n \in \mathbb{N} \right\}$$

Теорема 13. $J_1 \cdot J_2 \in \mathcal{I}(R)$

Доказательство. $\triangleleft a \in R$

$$\sum_{k=1}^{n} x_k y_k \in J_1 J_2$$

$$a \sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} \underbrace{a x_k}_{\in J_1} y_k \in J_1 \cdot J_2$$

 Π римечание. Вообще говоря, $\mathcal{I}(R)$ — не кольцо, только полукольцо.

Определение. Если $J_1, J_2 \in \mathcal{I}(R)$, то:

$$J_1 \cap J_2 := \{x \mid x \in J_1, x \in J_2\}$$

Теорема 14. $J_1 \cap J_2 \in \mathcal{I}(R)$

Доказательство. $\langle x_1, x_2 \in J_1 \cap J_2 \rangle$

$$J_2 \ni x_1 + x_2 \in J_1$$

 $\triangleleft a \in R, x \in J_1 \cap J_2$

$$J_2 \ni ax \in J_1$$

Определение. $J_1 \leq J_2$, если $J_1 \subset J_2$.

Примечание. Это частичный порядок.

Определение.

- $\{0\}$ **тривиальный** идеал
- J = R несобственный идеал

Определение. $J \in \mathcal{I}(R)$, тогда $x \sim y$, если $x-y \in J \Leftrightarrow x+J=y+J$

Примечание. $J^+ \lhd R^+$

Определение. $R_{/J}$ – фактор-кольцо:

$$R_{I} := \{ [x] \mid x \in R \} = \{ x + J \mid x \in R \}$$

Теорема 15. R_{J} – кольцо.

Доказательство. $\langle x+J,y+J\in R\rangle_J$

$$x + J + y + J = x + y + J + J = x + y + J$$

$$(x+J)(y+J) = xy + xJ + Jy + JJ = xy + J$$

Пример. $R = \mathbb{Z}, J = 5\mathbb{Z}$

$$R_{J} = \{0 + J, 1 + J, 2 + J, 3 + J, 4 + J\}$$

$$R_{J} \cong \mathbb{Z}_{5}$$

Примечание. R_{J} называют кольцом вычетов $\operatorname{mod} J$.

Определение. Если $x, y \in R, J \in \mathcal{I}(R)$, то:

$$x \equiv y \mod J \stackrel{\text{def}}{\Leftrightarrow} x - y \in J$$

x и y называются сравнимыми $\operatorname{mod} J$.

Примечание. $x \in R, J = x \cdot R \in \mathcal{I}(R)$

Определение. $a_k \in R$, тогда $(a_1 \dots a_n)$ называется **идеалом, порожденным** элементами $a_1 \dots a_n$:

$$(a_1 \dots a_n) = a_1 R + \dots + a_n R$$

Примечание.

- ⟨…⟩ кольцо
- (...) идеал

Пример. $\triangleleft R = \mathbb{Z}$

$$(12, 18) = \{12x + 18y \mid x, y \in \mathbb{Z}\} = 6\mathbb{Z}$$

Определение. $J \in \mathcal{I}(R)$ называется **главным** идеалом, если:

$$\exists a \in R \quad J = (a) = aR$$

Определение. R называется **кольцом главных идеалов**, если в нём любой идеал — главный.

Определение. $f: R \to R'$ — гомоморфизм, если:

- f(x+y) = f(x) + f(y)
- f(xy) = f(x)f(y)
- f(0) = 0
- f(1) = 1, если $1 \in R$

Примечание. Пунктов 1 и 2 достаточно.

Определение.

$$\ker f \coloneqq \{x \in R \mid f(x) = 0\}$$

$$\operatorname{Im} f \coloneqq f(R) = \{y \in R' \mid \exists x \ f(x) = y\}$$

Лемма 32. $\ker f \in \mathcal{I}(R)$

Доказательство. Замкнутость по сложению следует из того что f есть гомоморфизм абелевых групп.

 $\triangleleft a \in R, x \in \ker f$

$$ax \in \ker f \Leftrightarrow f(ax) = 0$$

$$f(ax) = f(a)f(x) = f(a) \cdot 0 = 0$$

Теорема 16. Если $f:R \to R'$ — гомоморфизм, то $R_{\ker f} \cong \operatorname{Im} f$.

Доказательство. Построим $\sigma: R_{\ker f} \to \operatorname{Im} f \subset R'.$

$$\sigma(x + \ker f) \coloneqq f(x)$$

Тогда σ — изоморфизм.

Лекция 13

11 декабря

11.1 Делимость в кольце

Пусть R — кольцо.

Определение. Делителями нуля в кольце R называются такие элементы, что $x \cdot y = 0$, при этом $x \neq 0, y \neq 0$.

Примечание. Если в R нет делителей нуля, то R называется **кольцом целостности**.

Пример. \mathbb{Z}, \mathbb{Z}_p — кольца целостности.

Определение. Единицей кольца называется любой элемент $u \in R$, такой что $\exists v: u \cdot v = 1. \ \{u\}$ — группа обратимых элементов кольца, обозначим R^* .

Лемма 33. R — целостное, тогда

$$Rx = Ry \Leftrightarrow \exists u \in R^* : y = ux$$

Доказательство.

"⇒"
$$\lhd y \in Rx \Rightarrow y = bx, \lhd x \in Ry \Rightarrow x = ay, y = bay \Rightarrow (1-ba)y = 0 \Rightarrow$$
 или $y = 0$, или $1-ba = 0$.

$$\triangleleft y = 0 \Rightarrow x = 0 \Rightarrow 0 = 1 \cdot 0$$

$$\langle 1-ba=0 \Rightarrow ba=1 \Rightarrow$$
 и a , и b — единицы R .

"⇐"

$$Ry = R(ux) \subseteq Rx = R(u^{-1}y) \subseteq Ry$$

¹ С единицей.

Определение (1). Пусть \mathcal{P} — идеал в R и $R_{\mathcal{P}}$ — целостное кольцо. Тогда \mathcal{P} называется **простым идеалом**.

Определение (2). \mathcal{P} — простой идеал, если $x \cdot y \in \mathcal{P} \Rightarrow x \in \mathcal{P}$ или $y \in \mathcal{P}$.

Лемма 34. 1 ⇔ 2

Доказательство. $\sphericalangle \mathcal{P}: R/_{\mathcal{P}}$ — целостное

"
$$\Rightarrow$$
" $\triangleleft[x], [y] \in \mathbb{R}/\mathcal{P} \Rightarrow [x] = x + \mathcal{P}, [y] = y + \mathcal{P}.$

$$[x][y] = [0] \Leftrightarrow [x] = [0] \text{ или } [y] = [0]$$

$$[xy] = xy + \mathcal{P} = \mathcal{P} \Rightarrow x \in \mathcal{P} \text{ или } y \in \mathcal{P}$$

"
$$\Leftarrow$$
" $\lessdot x,y \in \mathcal{P} \Rightarrow x \in \mathcal{P}$ или $y \in \mathcal{P}$

$$\triangleleft[x] = x + \mathcal{P}, [y] = y + \mathcal{P}$$

$$[x] \cdot [y] = \underbrace{x \cdot y}_{\in \mathcal{P}} + \mathcal{P} = \mathcal{P} = [0]$$

Лемма 35. $\lhd \sigma: R \to R'$ — гомоморфизм колец, $\mathcal{P}' \subset R'$ — простой идеал в R'. Тогда $\sigma^{-1}(\mathcal{P}')$ — простой идеал в R.

 \mathcal{D} оказательство. $\mathcal{P}\coloneqq\sigma^{-1}(\mathcal{P}')$. Докажем от противного: пусть \mathcal{P} — не простой. $\forall x,y\in R: xy\in\mathcal{P}, x\notin\mathcal{P}, y\notin\mathcal{P}$

$$\sigma(xy) = \underbrace{\sigma(x)}_{\notin \mathcal{P}'} \underbrace{\sigma(y)}_{\notin \mathcal{P}'} \in \mathcal{P}'$$

Противоречие.

Определение. Спектром кольца называется множество его простых идеалов.

Обозначение. $\operatorname{spec}(R)$

Определение. Идеал $\mathcal M$ называется максимальным в R, если $\mathcal M$ — идеал в R и $\mathcal M$ не содержится ни в каком другом идеале.

Примечание. R — целостное, если $\{0\}$ — простой идеал.

Лемма 36. Всякий максимальный идеал — простой.

Доказательство. $\triangleleft \mathcal{M}$ — максимальный идеал.

$$\langle x, y \in R : x \cdot y \in \mathcal{M}, x \notin \mathcal{M} \rangle$$

По максимальности идеала $Rx + \mathcal{M} = R$, тогда $\exists r \in R, m \in \mathcal{M} : rx + m = 1$

$$rx + m = 1$$

$$r\underbrace{xy}_{\stackrel{(r)}{\in}\mathcal{M}} + \underbrace{my}_{\stackrel{(r)}{\in}\mathcal{M}} = y$$

Тогда $y \in \mathcal{M}$.

Лемма 37. Всякий идеал I кольца R содержится в некотором максимальном идеале \mathcal{M} .

Доказательство. $\triangleleft I_1 \subset I_2 \subset \cdots \subset I_m \subset R$

В любой такой цепочке есть максимальный элемент $I = \bigcup\limits_{j=1}^m I_j$

Лемма 38.

- $\sigma:R\to R'$ сюръективный
- \mathcal{M}' максимальный идеал в R'

Тогда $\sigma^{-1}(\mathcal{M}') = \mathcal{M}$ — максимальный идеал.

Доказательство. Очевидно.

Определение. Полем K называется кольцо R, множество ненулевых элементов которого образует мультипликативную абелеву группу.

Лемма 39. R/M – поле.

Доказательство. $\triangleleft[x] \neq [0] \in {}^{R}\!\!/_{\mathcal{M}}$. Мы хотим показать, что $\exists [x]^{-1} : [x][x]^{-1} = [1]$ $\triangleleft x \in R, x \notin \mathcal{M} \Rightarrow Rx + \mathcal{M} = R \Rightarrow \exists r \in R, m \in \mathcal{M} : rx + m = 1$

$$rx + m = 1$$
$$[rx + m] = [1]$$
$$[rx] = [1]$$
$$[r][x] = [1]$$

??: по условию $xy \in \mathcal{M}$

^{??}: т.к. $m \in \mathcal{M}$ и \mathcal{M} — идеал

Лемма 40.

- $\mathcal{M} \subset R$
- $R_{\mathcal{M}}$ поле

Тогда \mathcal{M} — максимальный.

Доказательство. Самостоятельно.