find the PDE by Eliminaling arbitrary function $f(x+y+z, x^2+y^2+z^2) = 0$ $f(x+y+z, x^2+y^2+z^2) = 0$ resp. we get Diff partially w.r.t. x & y f (2+4+2, x2+y2+22). S: Find PDE by Eleming arbitrary cut in $f(x+y+z, x^2+y^2+z^2)$ Solin $f(x+y+z, x^2+y^2+z^2) = 0$ (i) f(u, v) = 0where u=x+y+z, $v=x^2+y^2+z^2--(ii)$ Diff. w.r.t. x, partially (i) we get- $\frac{\partial f}{\partial u} \left(\frac{\partial u}{\partial x} + p \frac{\partial u}{\partial z} \right) + \frac{\partial f}{\partial v} \left(\frac{\partial u}{\partial x} + p \frac{\partial v}{\partial z} \right) = 0 - - (iii)$ From (ii), we get: $\frac{\partial u}{\partial x} = 1$, $\frac{\partial u}{\partial z} = 1$, $\frac{\partial u}{\partial x} = 2x$, $\frac{\partial u}{\partial y} = 2y$, $\frac{\partial u}{\partial z} = -2z$, $\frac{\partial u}{\partial y} = 1$ All say putting thease values in agr (iii), we $\frac{\partial f}{\partial u}(1+p) + \frac{\partial f}{\partial v}(2x+2pz) = 0$ (V) or of (1+p) + 2 of (x+pz) = 0 or $\frac{\partial f}{\partial u} (1+p) = -2 \frac{\partial f}{\partial v} (x+pz)$ or $(\frac{\partial f}{\partial u}) = -2 \frac{(x+pz)}{(1+p)}$

2)
$$(24/3a)$$
 = $-2(x+pz)$ | -- (2) Again Diff (i) w.r.t. y' partially, we get 24 ($3u$ + 24) = 0

Pulting all the values of proof of derivaling $2f$ ($1+2$) + 24 ($1+2$) = 0

Diff (i) w.r.t. y' partially, we get $2u$ + $2u$ ($1+2$) = 0

Pulting all the values of proof of derivaling $2f$ ($1+2$) + 24 ($1+2$) = 0

Diff (i) w.r.t. y' partially, we get $2u$ + $2u$ ($1+2$) = 0

Diff (i) w.r.t. y' partially, we get $2u$ + $2u$ ($1+2$) = 0

Diff (i) w.r.t. y' partially, we get $2u$ + $2u$ +

3)
$$(34)^{20}$$
 = $-2(x+pz)$... (31) $-2(x+pz$