

APB-UART

2024.08.27

一 修订

版本	日期	编辑人	内容
1.00	2024.08.27	陈家耀	创建了第一个正式版本

二 简介和特性

APB-UART 是一个带有 APB 从接口的 UART 控制器,可直接挂载在 APB 总线上充当 UART 外设。本 IP 简单易用、资源消耗少,具有以下特性:

- ·可配置的 UART 波特率
- 使用收发 FIFO 来缓存待发送的字节数据和接收到的字节数据
- · 支持 UART 收发中断

APB-UART 的组成如图 2-1 所示,它由 APB 寄存器接口、中断控制、收发 FIFO 和 UART 收发控制四部分组成。UART 发送控制从发送 FIFO 载入待发送的字节数据,根据波特率进行分频,产生起始位、数据位和停止位。UART 接收控制首先检测起始位,然后根据波特率延迟半个 UART 位以对齐到起始位中央,接着每隔一个 UART 位移入一个数据位,最后等待一个 UART 位以对齐到停止位中央。

图 2-1 APB-UART 组成框图

三 IP 功能

APB-UART 是通用的 UART 外设,能够控制 UART 收发,可启用 UART 收发中断。其功能描述如下:

- 1、**通过 UART 发送字节数据**。用户通过 APB 寄存器接口将待发送的字节数据写入发送 FIFO, UART 发送控制模块自动从发送 FIFO 取数据,并通过 UART 接口发送该数据。
- 2、**通过 UART 接收字节数据**。UART 接收控制模块自动从 UART 接口接收数据,并存入接收 FIFO。用户可通过 APB 寄存器接口从接收 FIFO 获取数据。
- 3、可启用的 UART 收发中断。APB-UART 支持 2 种发送中断(UART 发送达到规定字节数中断、UART 发送 IDLE 中断)和 3 种接收中断(UART 接收达到规定字节数中断、UART 接收 IDLE 中断、UART 接收 FIFO 溢出中断)。UART 收发中断字节数阈值和 IDLE 周期数阈值均可通过 APB 寄存器接口进行配置。
- 4、可配置的 UART 波特率。APB-UART 根据用户提供的时钟频率和波特率来进行分频,以满足 UART 时序要求。

四 IO 描述

表 4-1 APB-UART IO 表

Type -	X + 1/11 D J/11/10 X					
端口名	方向	位宽	含义			
时钟和复位						
clk	input	1	时钟			
resetn	input	1	复位,低有效			
APB 从接口						
paddr	input	32	APB 从机地址			
psel	input	1	APB 从机片选			
penable	input	1	APB 从机传输使能			
pwrite	input	1	APB 从机读写类型			
pwdata	input	32	APB 从机写数据			
pready_out	output	1	APB 从机传输完成,固定为 1			
prdata_out	output	32	APB 从机读数据			
pslverr_out	output	1	APB 从机传输错误,固定为 0			
UART 接口						
uart_tx	output	1	UART 发送			
uart_rx	input	1	UART 接收,应当连接上拉电阻			
中断信号						
uart_itr	output	1	UART 外设中断请求			

五 可配置参数描述

表 5-1 APB-GPIO 可配置参数表

配置参数名	含义	可取值
clk_frequency_MHz	时钟频率	32 位无符号整型,以 MHz
		计
baud_rate	波特率	32 位无符号整型
tx_rx_fifo_ram_type	收发的 RAM 类型	"lutram" "bram"
tx_fifo_depth	发送 fifo 深度	32 64 128 2048
rx_fifo_depth	接收 fifo 深度	32 64 128 2048
en_itr	是否使能 UART 收发中断	"true" "false"
simulation_delay	仿真延时, 可用于仿真时模	0.1f~100.0f
	拟D到Q延迟	

六 应用指南

6.1 RTL 设计指南

APB-UART 是标准的 APB 外设,请将 APB-UART 挂载在 APB 总线上使用,典型情况是挂载在 AXI-APB 桥或 AHB-APB 桥上作为一个 APB 从机,如图 6-1-1 所示。关于 AXI-APB 桥或 AHB-APB 桥,请参见 UG200。

本 IP 所提供的同步 FIFO 的顶层 RTL 文件为 ram_fifo_wrapper.v, 由于 fifo 使用到的 RAM 可能与器件类型有关,必要时请根据设计要求进行替换。

图 6-1-1 APB-UART 应用图

6.2 软件编程指南

6.2.1 软件驱动 API

1、类型定义

• ApbUART 结构体(APB-UART 外设结构体)

ApbUARTHd* hardware: APB-UART 寄存器接口结构体指针, 映射到 UART 外设的寄存器接口

uint8_t itr_en: 当前的中断使能向量

• ApbUARTHd 结构体(APB-UART 寄存器接口结构体)

uint32_t fifo_cs: 收发 fifo 控制

uint32_t itr_status_en: 中断控制

uint32_t tx_itr_th: 发送中断阈值 uint32_t rx_itr_th: 接收中断阈值

• ApbUartItrThConfig 结构体(APB-UART 中断阈值配置结构体)

uint16_t tx_bytes_n_th: UART 发送中断字节数阈值 uint16_t tx_idle_th: UART 发送中断 IDLE 周期数阈值 uint16_t rx_bytes_n_th: UART 接收中断字节数阈值 uint16 t rx idle th: UART 接收中断 IDLE 周期数阈值

2、宏定义

• 中断类型掩码

APB_UART_TX_BYTES_N_ITR_MASK: UART 发送达到规定字节数中断 APB_UART_TX_IDLE_ITR_MASK: UART 发送 IDLE 中断 APB_UART_RX_BYTES_N_ITR_MASK: UART 接收达到规定字节数中断 APB_UART_RX_IDLE_ITR_MASK: UART 接收 IDLE 中断 APB_UART_RX_ERR_ITR_MASK: UART 接收 FIFO 溢出中断

3、函数

void apb_uart_init(ApbUART* uart, uint32_t base_addr);

简介:初始化 APB-UART

参数: uart APB-UART (结构体指针)

base addr APB-UART 外设基地址

返回值:无

• int apb_uart_send_byte(ApbUART* uart, uint8_t byte);

简介: APB-UART 发送一个字节

参数: uart APB-UART (结构体指针)

byte 待发送的字节数据

返回值: 是否成功

• int apb_uart_rev_byte(ApbUART* uart, uint8_t* byte);

简介: APB-UART 获取一个接收字节

参数: uart APB-UART (结构体指针)

byte 接收字节数据缓冲区(首地址)

返回值: 是否成功

 void apb_uart_enable_itr(ApbUART* uart, uint8_t itr_mask, const ApbUartItrThConfig* config);

简介: APB-UART 使能中断

参数: uart APB-UART (结构体指针)

itr_mask 中断使能向量

config 收发中断阈值配置(结构体指针)

返回值:无

void apb_uart_disable_itr(ApbUART* uart);

简介: APB-UART 除能中断

参数: uart APB-UART (结构体指针)

返回值:无

uint8_t apb_uart_get_itr_status(ApbUART* uart);

简介: APB-UART 获取中断状态

参数: uart APB-UART (结构体指针)

返回值:中断状态

void apb_uart_clear_itr_flag(ApbUART* uart);

简介: APB-UART 清除中断标志

参数: uart APB-UART (结构体指针)

返回值:无

void uart printf(ApbUART* uart, char *fmt, ...);

简介: APB-UART 格式化发送字符串

参数: uart APB-UART (结构体指针)

fmt 格式化字符串

... 字符串附加参数

返回值:无

6.2.2 软件编程示例

1、UART 发送

本示例基于 APB-UART 发送了字符串"hello, world!\n\r"。

1.	/**************************************		

2.	APB-UART 示例代码		
3.	@brief UART 发送示例		
4.	@date 2024/08/28		
5.	@author 陈家耀		
6.	@eidt 2024/08/28 1.00 创建了第一个正式版本		
7.	******************************		
*************************/			
8.			
9.	#include "/apb_uart.h"		
10.			
11.			
12.			
13.	#define APB_UART_BASEADDR 0x40000000 // APB-UART 外设基地址		
14.			

```
15.
    16.
17.
    static ApbUART uart; // APB-UART 外设结构体
18.
19.
    20.
21.
    void apb_uart_tx_example(void){
22.
      apb_uart_init(&uart, APB_UART_BASEADDR); // 初始化 APB-UART
23.
24.
     // 发送字符串
25.
      uart_printf(&uart, "hello, world!\n\r");
26.
27.
     while(1);
28.
   }
```

2、UART接收中断

本示例启用了 UART 接收 IDLE 中断,在中断服务函数中收集每个 UART 数据包并按原样发回。

```
1.
   ***********
2.
   APB-UART 示例代码
3.
   @brief UART接收IDLE中断示例
4.
   @attention 请根据硬件平台更换与全局中断控制器相关的 API
5.
  @date 2024/08/28
6.
   @author 陈家耀
7.
   @eidt 2024/08/28 1.00 创建了第一个正式版本
8.
   **************************************
9.
10.
   #include "../apb_uart.h"
11.
12.
   #include "CMSDK_CM0.h"
13.
14.
   15.
16.
   #define APB_UART_BASEADDR 0x40000000 // APB-UART 外设基地址
17.
18.
   19.
20.
   static ApbUART uart; // APB-UART 外设结构体
21.
22.
   23.
```

```
24.
       /***************
25.
       @itr_handler
26.
       @private
27.
       @brief APB-UART 收发中断服务程序(示例)
28.
       @param none
29.
       @return none
30.
       31.
       void USER_UART_Handler(void){
32.
         uint8_t byte;
33.
34.
         while(apb_uart_rev_byte(&uart, &byte)){ // 收集 UART 数据包
35.
           apb_uart_send_byte(&uart, byte); // 按原样发回
36.
         }
37.
38.
         apb_uart_clear_itr_flag(&uart); // 清零中断标志
39.
       }
40.
41.
       42.
43.
       void apb_uart_rx_itr_example(void){
44.
         apb_uart_init(&uart, APB_UART_BASEADDR); // 初始化 APB-UART
45.
46.
        // 配置 UART 接收 IDLE 中断
47.
         const ApbUartItrThConfig uart_config = {10, 100, 10, 100}; // UART 接收中断 IDLE 周期数阈值 = 100
48.
49.
         apb_uart_enable_itr(&uart, APB_UART_RX_IDLE_ITR_MASK, &uart_config); // 使能 UART 接收 IDLE 中断
50.
51.
         NVIC_SetPriority((IRQn_Type)4, 0x03); // NVIC 设置 4 号中断优先级
52.
         NVIC_EnableIRQ((IRQn_Type)4); // NVIC 使能 4 号中断
53.
54.
         while(1);
55.
       }
```