

CCS/ITALY

ITALIAN REGIONAL
CONFERENCE ON
COMPLEX SYSTEMS

Classification of Genome Wide Association data by Belief Propagation Neural network

Daniele Dall'Olio¹, Nico Curti^{1,2}, Armando Bazzani^{1,2}, Daniel Remondini^{1,2}, Gastone Castellani^{1,2}

¹Department of Physics and Astronomy, University of Bologna ²INFN Bologna

Presented by: Daniele Dall'Olio

Trento, Italy July 1-3, 2019

Overview

Horizon 2020 European Union funding for Research & Innovation

Objective: Identification, containment and mitigation of emerging infectious diseases and foodborne outbreaks.

Source Attribution

Data

Horizon 2020 European Union funding for Research & Innovation

Salmonella Enterica

1	
A	

SNPs

Reference: CCGTTAGAGTTACAATTCGA

Sample : CGGTTAGAGTAACTATTCCA

Binary SNPs: 0100000001001000010

Samples	210
Pigs	159
no-Pigs	51
Filtered Bases	8189

Filtered Bases

Classifiers

European Commission Horizon 2020 European Union funding for Research & Innovation

replicated focusing Belief Propagation¹

Derived from a out-of-equilibrium distribution

Entropy-maximization based learning rule

 Parameterized and reinforced Belief Propagation equations

New implementation:

- C++ library
- Python wrapper
- Optimized for parallel computing
- Integrated with scorer library

Binary Perceptron ← Perceptron graph

Link: https://github.com/Nico-Curti/rFBP

¹C. Baldassi et al. *Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes, 2016.*

Workflow

Horizon 2020 European Union funding for Research & Innovation

Performances mpare

Horizon 2020 European Union funding Commission for Research & Innovation

Performances mpare

Horizon 2020 European European Union funding Commission for Research & Innovation

Classifier

Classifier

Classifier

European Union funding

Classifier

Conclusion

- Classification of binary SNPs for Source Attribution is optimally performed by Entropy-maximization based algorithm called rfBP
- SNPs binary nature seems to favour rfBP binary properties
- rfBP significant bases are much better to classify than test association significant bases \rightarrow can be actively used for Features Selection
- New C++ and Python (scikit-learn format) implementations are user-friendly and can be efficiently run on real data

Link: https://github.com/Nico-Curti/rFBP

Acknowledgement ** Compare

European European Union funding Commission for Research & Innovation

