2020 MDA Lecture 3: Interpretation of clusters by comparing centers with grand means; Bootstrap; iK-means

- Interpretation of clusters via centers
- Center: DA perspective
- Center: CS perspective
 - Validation of center using bootstrap
 - Comparing centers using bootstrap
- K-Means: Complementary criterion and anomalous cluster;
- iK-Means
- Home work 2 & 3

Dataset-related Quiz from Text, I

Q1.2. A student took a data set of metro systems of the world and put a fragment of the data in a table. He claimed that the table was a data table with the following features:

- «System» Subway's name (Nominal)
- «City» City in which the Subway is located (Nominal)
- «State» Country in which the Subway is (Nominal)
- «Continent» Continent on which the Subway is (Nominal)
- «Opened» Year in which the Subway was opened (Nominal/Ordinal)
- «Lines» Number of lines in the system
 (Quantitative)
- «Length» Total length of lines in kilometers
 (Quantitative)
- •«Stations» Total number of stations (Quantitative)
- •Would you agree?

Dataset-related Quiz from Text, 2

- Would you agree? Not exactly.
- These two:
- •«System» Subway's name (Nominal)
- •«City» City in which the Subway is located (Nominal)

are not features: they give no information about the relations between the objects except that all of them are different

Modified feature list:

State (Russia, Other), Continent (Asia, Europe), Opened, Lines, Length, Stations

comparing centers with grand means+Bootstrap+iK-means Contents:

- Interpretation of clusters via centers
- Center: DA perspective
- Center: CS perspective
 - Validation of center using bootstrap
 - Comparing centers using bootstrap
- K-Means: Complementary criterion and anomalous cluster
- Home work 2 & 3

Interpretation of clusters, I

• Iris data 150x4:

```
wl w2 w3 w4
    5.1 3.5 1.4 0.3
  4.4 3.2 1.3 0.2
   4.4 3.0 1.3 0.2
  5.0 3.5 1.6 0.6
5
    5.1 3.8 1.6 0.2
    6.5 3.2 5.1 2.0
150
```

Interpretation of clusters, II

Iris data: 150 x 4

Taxon I: 1:50

• Taxon 2: 51:100

Taxon 3: 101:150

Interpretation of clusters, III

Means

	wl	w2	w3	w4
ΤI	5.0060	3.4280	1.4620	0.2460
T2	5.9360	2.7700	4.2600	1.3260
T3	6.5880	2.9740	5.5520	2.0260
G	5.8433	3.0573	3.7580	1.1993

Interpretation of clusters, IV

Relative Difference: I00*(CMean –GMean)/GMean

	wl	w2	w3	w4
TI	-14.3297	12.1239	-61.0963	-79.4886
T2	1.5859	-9.3982	13.3582	10.5614
T3	12.7439	-2.7257	47.7382	68.9272
G	0	0	0	0

Interpretation of clusters, V

Relative Difference: $\Delta = 100^*$ (CMean –GMean)/GMean

```
w3
        wl
                 w2
     -14.3297 12.1239 -61.0963 -79.4886
                small petal
      1.5859
               -9.3982 13.3582 10.5614
T2
                pretty average
T3
     12.7439
               -2.7257 47.7382 68.9272
```

big petal

Look at large Δ or - Δ !!!

Interpretation of clusters, VI

Relative Difference: I00*(CMean –GMean)/GMean

wl w2 w3 w4

small petal

T2 pretty average

T3 big petal

Why is interpretation important?

In the very end, clustering is accepted if related to existing domain knowledge

No sepal in interpretation – probably should be removed from clustering process

Interpretation of clusters, VII

Relative Difference: I00*(CMean –GMean)/GMean

TI small petal

T2 pretty average

T3 big petal

Are Sepal sizes relevant to the taxa at all?

comparing centers with grand means+Bootstrap+iK-means Contents:

- Interpretation of clusters via centers
- Center: DA perspective
- Center: CS perspective
 - Validation of center using bootstrap
 - Comparing centers using bootstrap
- K-Means: Complementary criterion and anomalous cluster
- Home work 2 & 3

What is center, I: Data analysis view

Consider a feature over N entities (transposed)

$$x = (x_1, x_2, ..., x_N)$$

Def. equations

Center of x is a value c satisfying

$$x_i = c + e_i$$
, for all $i = 1, 2, ..., N$
at as small residuals e_i as possible

Def.

$$L_p = [|e_1|^p + |e_2|^p + ... + |e_N|^p]/N$$

Minkowski criterion: min L_p

Minkowski distance: curve xp+yp=1 at different p

Data analysis view: Minkowski p-center ($p \ge 1$)

Minimize $L_p = [|c-x_1|^p + |c-x_2|^p + ... + |c-x_N|^p]/N$ with respect to all possible c

At different p, different solutions!

L_p is a measure of spread of the feature around center

Data analysis view: Minkowski p-center ($p \ge 1$)

Minimize
$$L_p = [|c-x_1|^p + |c-x_2|^p + ... + |c-x_N|^p]/N$$

with respect to all possible c

Take p=2. Then L_p is quadratic. First-order minimum condition can be applied, it leads to optimal

At this c,

L₂ is the square of the standard deviation!

(The minimum L_2 is referred to as the variance, and its square root, as the standard deviation.)

At Minkowski p=2, Given $x = (x_1, x_2, ..., x_N)$,

Spread Standard deviation std

Center Mean $\overline{x} = \sum_{i=1}^{N} x_i/N$

Consider definition

$$std^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}{N} = \frac{\sum_{i=1}^{N} x_{i}^{2} - N\overline{x}^{2}}{N}$$

Reformulate

$$\sum_{i=1}^{N} x_i^2 = N(\overline{x}^2 + std^2) \tag{*}$$

At Minkowski p=2, Given
$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$$
,
$$std^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N} = \frac{\sum_{i=1}^{N} x_i^2 - N\overline{x}^2}{N}$$

Data scatter= $\sum_{i=1}^{N} x_i^2$ decomposed in a Pythagorean way

Data scatter=
$$N(\overline{x}^2 + std^2)$$
 (*)
 $N\overline{x}^2$ Explained part (by the model $x_i = c + e_i$)
 std^2 Unexplained part

The greater the mean, the greater the explained part Similar decompositions hold at multivariate summarizations

What is center, 8: Minkowski's p

Center Comment

2 Mean Intuitive; Gaussian

Sensitive to removal/addition of outliers

Median Stable over removal/addition of outliers

Midrange Does not depend on the distribution shape Sensitive to change of range boundary points

Other values of p can be beneficial too, but we know very little of this

comparing centers with grand means+Bootstrap+iK-means Contents:

- Interpretation of clusters via centers
- Center: DA perspective
- Center: CS perspective
 - Validation of center using bootstrap
 - Comparing centers using bootstrap
- K-Means: Complementary criterion and anomalous cluster
- Home work 2 & 3

Week2. What is center: Probabilistic perspective

Gaussian density function

$$p(x) = C \exp[-(x-\mu)^2/2\sigma^2]$$

Week2. What is center: Probabilistic perspective Gaussian density function

What is center: Probabilistic perspective

Estimates of parameters in the Gaussian density

$$p(x) = Cexp[-(x-\mu)^2/2\sigma^2]$$

Mean, of a:

$$\mathbf{m} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Variance σ^2 (Standard deviation squared)

$$s^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
 or

$$s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - m)^2$$

Probabilistic view: observed N values of feature $x=(x_i)$ – set of N independent random variables with the same density function f(x).

Mathematical Expectation of a random variable

$$ME(f) = \int_{-\infty}^{+\infty} x f(x) dx;$$

Variance σ^2 , $ME([f(x)-ME(f)]^2)$.

[Alas, density of the summary variable $x_1 + x_2$ is not 2f(x), but rather more complex **convolution** of f(x) with itself

Mathematical Expectation of a random variable

$$ME(f) = \int_{-\infty}^{+\infty} x f(x) dx;$$

Variance σ^2 , $ME([f(x)-ME(f)]^2)$.

Relation to DA: average

 $\overline{\mathbf{x}} = \sum_{i=1}^{N} x_i / N$ is unbiased estimate of μ

0 X

Unidimensional data $x=(x_i)$ (i=1,2,...,N): N independent random variables with the same density f(x).

Central Limit Theorem:

Density function of the sum $x_1 + x_2 + ... + x_N$ converges to the Gaussian density function with mathematical expectation μ and variance σ^2 (at $N \rightarrow \infty$).

Density function of the average $\bar{x} = (x_1 + x_2 + ... + x_N)/N$ converges to a Gaussian with $ME = \mu$ and variance σ^2/N .

- Density function of the average is approximately Gaussian $N(\mu, \sigma/\sqrt{N})$
- Thus, central interval to account for 95% of the area:

$$[\mu - 1.96\sigma/\sqrt{N}, \mu + 1.96\sigma/\sqrt{N}]$$

comparing centers with grand means+Bootstrap+iK-means Contents:

- Interpretation of clusters via centers
- Center: DA perspective
- Comparing Centers: CS perspective
 - Validation of center using bootstrap
 - Comparing centers using bootstrap
- K-Means: Complementary criterion and anomalous cluster
- Home work 2 & 3

Classic Statistics: Comparing Centers

Given: average μ_1 of sample of N_1 entities and average μ_2 of an independent sample of N_2 entities.

Hypothesis: $\mu_1 = \mu_2$ or $\mu = 0$ where $\mu = \mu_1 - \mu_2$. Test is based on: μ has density $N(0,\sigma)$ where $\sigma = \sigma_1 / \sqrt{N_1} + \sigma_2 / \sqrt{N_2}$.

Central interval for 95% area:

$$A = [\mu - 1.96\sigma, \mu + 1.96\sigma].$$

If 0 does not belong to A, the hypothesis is rejected at 95% confidence level

comparing centers with grand means+Bootstrap+iK-means Contents:

- nterpretation of clusters via centers
- Center: DA perspective
- Center: CS perspective
 - Validation of center using bootstrap

 Comparing centers using bootstrap
 - Comparing centers using bootstrap
- K-Means: Complementary criterion and anomalous cluster
- Home work 2 & 3

Classical statistics: Bootstrap

- Bootstrap: Computational estimate of density function and its central 95% confidence interval A
- In the case of hypothesis $\mu = \mu_1 \mu_2 = 0$, the density of μ is estimated.
- If 0 ∉ A, the hypothesis is rejected at 95% confidence level.

Bootstrapping for comparing means

Bootstrap

Week 2. ID: Part5 Computational validation of Mean using bootstrap I

Consider a feature, say x=iris(:, I) % Ist column of Iris

data

Its histogram hist(x, 15):

rather far from Gaussian

Its mean m = 5.8433

std = 0.8253

Computational validation of Mean using bootstrap

Plausible boundaries for mean?

One way to go: using classical math statistics

According to the Central Limit Theorem applied to random independent samples, the density function of \overline{x} approximates Gaussian distribution with $\mu=5.8433$ and $\sigma=0.8253/\sqrt{N}$.

Computational validation of Mean using bootstrap 2

Consider a feature, say x=iris(:,1)

Its mean m = 5.8433, std=0.8253

Plausible boundaries for m? 95%

One way to go: using classical math statistics

Assume x is a random independent sample from a Gaussian distribution with μ =5.8433 and σ =0.8253:

m is Gaussian too, with $\mu = m$ and $\sigma = std/N^{1/2}$ (N=150)

Therefore, with 95% confidence

Lb= μ - 1.96*std $/N^{\frac{1}{2}}$ = 5.7108

Rb= μ + 1.96*std $/N^{\frac{1}{2}}$ = 5.9759

Conclusion:

μ within [5.7108, 5.9759] with confidence 95% (as approximately Gaussian)

Plausible boundaries for m?

Another way to go: using computing power

Bootstrap

Multiple entity samples of same size N (with replacement)

Meaning: indices are sampled to form a try

MatLab:

Consider a feature, say x=iris(:, I)

Its mean = 5.8433, std=0.8253

Plausible boundaries for m?

Bootstrap

MatLab:

>> N=150;K=5000; r=ceil(N*rand(N,K));

>> xr=x(r);

>> mx=mean(xr);

This gives K=5000 means of random samples of

X

Plausible boundaries for m?

Bootstrap

- >> N=150;K=5000; r=ceil(N*rand(N,K));
- >> xr=x(r); mr=mean(xr);

Histogram of K=5000 means

Quite Gaussian, n'est ce pas?

Feature x=iris(:,1); m=5.8433, std=0.8253

Plausible boundaries for m?

Bootstrap Histogram of K=5000 means mr

A. Pivotal method

(95% confidence)

Assume mr be Gaussian

- >> mmr=mean(mr); % 5.8444
- >> smr=std(mr); % 0.0675
- >> lbp=mmr-1.96*smr; % 5.7121
- >> rbp=mmr+1.96*smr; % 5.9767

Feature x=iris(:,I); = 5.8433, std=0.8253

Plausible boundaries for m?

Bootstrap Histogram of K=5000 means mr

B. Non-pivotal method

(95% confidence)

Take 2.5% and 97.5% percentiles

as the boundaries

1% of 5000 is 50;

2.5% is 125; 97.5% is 4875

- >> smr=sort(mr); % sorting
- >> lbn=somr(126); % 5.7120
- >> rbn=somr(4875); % 5.9773

Consider a feature, say x=iris(:,1)

Its mean = 5.8433, std=0.8253

Plausible boundaries for m with confidence 95%?

Three different methods - m must be within:

- [5.7108, 5.9759] (under Gaussian assumption)
- [5.7121, 5.9767] (Bootstrap pivotal)
- [5.7120, 5.9773] (Bootstrap non-pivotal) with 95% confidence

Very much similar...

Comparing means using Bootstrap, I

Compare mean Sepal lengths in Taxa 2 and 3:

- Bootstrap distributions of K trial means in T2 and in T3
- Differences D=Mean(T2)–Mean(T3) over all K trials
- 95% confidence interval A for D
- Checking whether zero is in A or not. If not, one Mean is greater than the other.

Comparing means using Bootstrap, II

- Compare mean Sepal length in Taxa 2, 3, All set:
- >> n=150; m=5000; r=ceil(n*rand(n,m));
- >> x=iris(:, I); xr=x(r); mr=mean(xr);%All set
- In Taxa $t\{2\}$ and $t\{3\}$:
- >> for $k=1:5000; y=r(:,k); p=ismember(y,t{2});$
- n2=sum(p);y2=sum(p.*x(y));m2(k)=y2/n2;end
- >> for k=1:5000; y=r(:,k); $p=ismember(y,t{3})$;
- n3=sum(p); y3=sum(p.*x(y)); m3(k)=y3/n3; end
- mr, m2, m3 5000-strong bootstrap means

Comparing means using Bootstrap, III

Compare mean Sepal length in Taxa 2, 3, All set: m2-mr m2-m3

bootstrap means

comparing centers with grand means+Bootstrap+iK-means Contents:

- nterpretation of clusters via centers
- Center: DA perspective
- Center: CS perspective
 - Validation of center using bootstrap
 - Comparing centers using bootstrap
- K-Means: Complementary criterion and anomalous cluster
- Home work 2 & 3

K-Means criterion:

Find partition S and centers c to minimize:

Criterion: Sum of distances between entities and centers of their clusters Distance d(.,.) (squared Euclidean):

$$X = [1, 2, -2]$$

 $Y = [1, -1, -1]$
 $X - Y = [1-1, 2-(-1), -2-(-1)] = [0, 3, -1]$
 $d(X,Y) = \langle X - Y, X - Y \rangle = 0^2 + 3^2 + (-1)^2 = 10$

Pythagorean decomposition, I

K-Means criterion:

$$D(S,c) = \sum_{k=1}^{K} \sum_{i \in S_k} \sum_{v=1}^{V} (y_{iv} - c_{kv})^2 =$$

$$= \sum_{k=1}^{K} \sum_{i \in S_k} \sum_{v=1}^{V} (y_{iv}^2 - 2y_{iv}c_{kv} + c_{kv}^2) =$$

$$= \sum_{i=1}^{K} \sum_{v=1}^{V} \sum_{v=1}^{V} (y_{iv}^2 - \sum_{k=1}^{K} N_k < c_k, c_k > T - F(S,c))$$

$$T = F(S,c) + D(S,c)$$

Data_Scatter = "Explained Part"+"Unexplained Part"

Pythagorean decomposition,2

K-Means criterion:

$$D(S,c) = \sum_{k=1}^{K} \sum_{i \in S_k} \sum_{v=1}^{V} (y_{iv} - c_{kv})^2 = \sum_{i=1}^{N} \sum_{v=1}^{V} y_{iv}^2 - \sum_{k=1}^{K} N_k < c_k, c_k > T - F(S,c)$$

For proof and more, see Sections 4.3.1 and 4.3.2,
 pp. 323-326 in Textbook by Mirkin (2019)

K-Means computation converges

Minimize D(S,c) alternatingly:

$Min_s D(S, c)$:

- Clusters update
- $Min_c D(S, c)$:
- Centers update

D(S,c) decreases at each step:

Convergence – why? (QUIZ)

$$D(S,c) = \sum_{k=1}^{K} \sum_{i \in S_k} d(i,c_k)$$

over S and c.

Distance (Squared Euclidean):

$$X = [1, 2, -2]$$

 $Y = [1, -1, -1]$
 $X - Y = [0, 3, -1]$

$$d(X,Y)=\langle X-Y, X-Y\rangle=0^2+3^2+(-1)^2=10$$

Complementary clustering criterion

K-Means minimizes:

$$D(S,c) = \sum_{k=1}^{K} \sum_{i \in S_k} d(i,c_k)$$
 Maximize $F(S,c) = \sum_{i \in S_k} c$

Data scatter
$$\sum_{i,v} y_{iv}^2 =$$

= $D(S,c) + F(S,c)$

Data scatter is constant while partitioning

Complementary criterion:

$$F(S,c) = \sum_{k=1}^{K} N_k < c_k, c_k >$$

 N_{k} is the number of entities in S_{k}

K-Means complementary criterion

Maximize
$$F(S,c) = \sum_{k=1}^{K} |S_k| < c_k, c_k >$$

Pre-center data: 0 is grand mean

 $\langle c_k, c_k \rangle$ - Euclidean squared distance 0 to c_k

Look for anomalous & populated

clusters!!! Further away from the origin!

Determining the Number of clusters: Two approaches

A) Extract clusters one-by-one: find an anomalous cluster, then remove it; etc.

 B) Determine centers/objects, both most distant and representative, in parallel (affinity propagation?); then K-means

One-by-One Approach

Finding an ANOMALOUS Cluster (Mirkin 1998, Chiang&Mirkin 2010)

Anomalous cluster S with center c:

 $\max |S| < c, c >$

0 is Reference point (grand mean). Build

Anomalous cluster S with center c Reference point

Finding an Anomalous cluster

1. Initial center c is object, farthest away from 0.

2. Cluster update: If $d(y_i, c) < d(y_i, 0)$, assign y_i to S.

3. Centroid update: Within-S mean c' if $c' \neq c$. Go to 2 with $c \leftarrow c'$. Otherwise, halt.

Anomalous cluster and K-Means

Anomalous Cluster is (almost) K-Means up to:

(i) the number of clusters K=2: the "anomalous" one and the "main body" of entities around 0;

(ii) center of the "main body" cluster is forcibly always at 0;

(iii) natural initialization: c⁰ is at entity which is the farthest away from 0.

ik-means

- Pre-center the data matrix to grand-mean, set threshold for minimal cluster size t = 1 by default).
- Find Anomalous cluster and store its center and size.
- 3. Remove the Anomalous cluster from data set. Halt if the dataset gets empty, else: go to 2.
- 4. Initialize k-means with centers of those anomalous clusters whose size ≥ t

Extensive experimentation by Chiang and Mirkin (J of Cl, 2010) demonstrated superiority of iK-Means over competition

Anomalous cluster

Anomalous Cluster applied to Iris dataset just centered (no further normalization):

Initial center: the furthest away entity 132

- 27 entities are closer to c0 than to 0; their center c1=(1.1641 0.0390 2.1716 0.9377)
- 47 entities are closer to c1 than to 0; their center c2=(0.8865 -0.0361 1.8399 0.8156)
- 58 entities are closer to c2 than to 0; their center c3=(0.7618 -0.0729 1.7023 0.7593)
- 60 entities are closer to c3 than to 0; their center c4=(0.7600 -0.0773 | 1.6737 | 0.7407)

Anomalous cluster iterated

Iris dataset just centered (no further normalization)

AC ITERATIVELY to those yet unclustered:

AnomClus I			-	W	hat are these	e?
60 entities	c=(0.7600	-0.0773	1.6737	0.7407)	34.6%	
AnomClus 2	`			,		
50 entities	c=(-0.8373	0.3707	-2.2960	-0.9533)	51.5%	
AnomClus 3	•			ŕ		
31 entities	c=(-0.1853	-0.4122	0.3872	0.0684)	1.6%	
AnomClus 4	{67} singleton				0.2%	
AnomClus 5	5 entities				0.6%	
AnomClus 6	{98} singleton				Less 0.1%	
AnomClus 7	{99} singleton				Less 0.1%	
AnomClus 8	{55} sing	leton			Less 0.1%	

Iterated Anomalous cluster

1.6%

0.2%

0.6%

Less 0.1%

Less 0.1%

Less 0.1%

algorithm is local

Anomalous Cluster ITERATED:

AnomClus I

60 entities 34.6%

AnomClus 2

50 entities

AnomClus 3

31 entities

AnomClus 4

AnomClus 5

AnomClus 6

AnomClus 7

AnomClus 8

Maximize total contribution to data scatter

$$F(S,c) = \sum_{k=1}^{K} N_k < c_k, c_k >$$

$$N_k = |S_k|$$

51.5% Because the $\langle c_k, c_k \rangle$ - squared distance

between 0, c,

Contribution of a cluster to the data scatter (WHY?)

$$100*N_k < c_k, c_k > /\sum_{v} x_{vk}^2$$
MagDataAnalysis 2020 3

Anomalous cluster and iK-Means

Anomalous Clusters ITERATIVELY:

AnomClus I

60 entities 34.6%

AnomClus 2

50 entities **51.5**%

AnomClus 3

31 entities 1.6%

AnomClus 4 0.2%

AnomClus 5 0.6%

AnomClus 6 Less 0.1%

AnomClus 7 Less 0.1%

AnomClus 8 Less 0.1%

Intelligent K-Means

- 0. Standardize data by centering and, if needed, normalization
- I. Iteratively find all Anomalous clusters
- 2. Choose the largest K among them or, if K is difficult to specify, apply threshold on the minimum cardinality of a cluster (say N_k <10 for Iris).
- 3. Apply K-Means initialized at centers of largest Anomalous

Clusters

Clustering with K-Means at IRIS

I.Anomalous Cluster applied to Iris dataset just centered (no further normalization) ITERATIVELY to those unclustered:

```
AnomClus I 60 entities c1=(0.7600 -0.0773  1.6737  0.7407) 34.6% AnomClus 2 50 entities c2=(-0.8373  0.3707 -2.2960 -0.9533) 51.5% AnomClus 3 31 entities c3=(-0.1853 -0.4122  0.3872  0.0684) 1.6% Etc. 2. Leave those N_k > 10: then K=3 and initial centers
```

3.Apply K-Means: Taxa: T1 T2 T3 Total
Cl3 0 47 14 61
14+3=17 errors Cl2 50 0 0 50
Cl1 0 3 36 39

above.

Quiz for the courageous:

- Give an algorithm for finding Minkowski's center at any p>1.
- Prove that the median is a Minkowski's center at p=1.
- Consider a zero-one feature f; given a cluster partition of the object set, put down a formula for cluster centers.
- Can you explain the meaning of a confidence interval to a user at large?
- I recommend comparing within-cluster centers with grand mean

comparing centers with grand means+Bootstrap+iK-means Contents:

- Interpretation of clusters via centers
- Center: DA perspective
- Center: CS perspective
 - Validation of center using bootstrap
 - Comparing centers using bootstrap
- K-Means: Complementary criterion and anomalous cluster
- Home work 2 & 3

HomeWork 2: K-Means

- 1. Choose 3-6 features, Explain the choice, Apply K-means:
 - At K=5
 - At K=9
 - In both cases: 10 or more random initializations, chose the best over the K-means criterion
 - 2. Interpret each of the two selected partitions by using features from the data table.
 - Make a judgement of which of the partitions is better for interpretation. Explain why.

HomeWork 3: Bootstrap

- 3. Take one of the partitions
 - 3.1. Compare one of the features between two clusters with using bootstrap
 - 3.2. Take a feature, find the 95% confidence interval for its grand mean by using bootstrap
 - 3.3. Take a cluster, and compare the grand mean with the within-cluster mean for the feature by using bootstrap
 - Note: each application of bootstrap should be done in both, pivotal and non-pivotal, versions

Iterated Anomalous clusters (size and contribution, %) at RIN data

```
[lxl2 double]
                  [26.3441]
                  [32.9832]
[lxl5 double]
                  [ 1.8794]
      91]
                  [ 2.3953]
[lx8 double]
[lx2l double]
                  [5.1476]
                  [3.1340]
[IxI8 double]
[lx8 double]
                   [ 0.4613]
               [ 0.0958]
       51
[lx2 double]
                 [ 0.1175]
[lx2 double]
                 [ 0.0610]
               [0.0418]
      811
               [0.0132]
       60]
               [0.0020]
       69]
```