

# 학습 목표

프로그램의 성능을 비교하기 위한 방법을 배우고 예시를 통해 적용할 수 있다



# **Data Structures in Python Chapter 2 - 2**

- Performance Analysis
- Big-O Notation
- Big-O Properties
- Growth Rates
- Growth Rates Examples



그러므로 나의 사랑하는 자들아 너희가 나 있을 때 뿐 아니라 더욱 지금 나 없을 때에도 항상 복종하여 두렵고 떨림으로 너희 구원을 이루라 (Continue to work out your salvation with fear and trembling.) 빌2:12

나는 인애를 원하고 제사를 원하지 아니하며 번제보다 하나님을 아는 것을 원하노라 (호6:6) 하나님은 모든 사람이 구원을 받으며 진리를 아는데에 이르기를 원하시느니라 (딤전2:4)

그런즉 너희가 먹든지 마시든지 무엇을 하든지 다 하나님의 영광을 위하여 하라 (고전10:31)

#### Agenda & Reading

- Performance Analysis
  - Introduction
  - Step Counts Counting Operations
- References:
  - Textbook: Problem Solving with Algorithms and Data Structures
    - Chapter 3. <u>Analysis</u>
  - Textbook: <u>www.github.idebtor/DSpy</u>
    - Chapter 2.1 ~ 3

#### 1 Introduction - What Is Performance Analysis?

- How to compare programs with one another?
- When two programs solve the same problem but look different, is one program better than the other?
- What criteria are we using to compare them?
  - Readability?
  - Efficiency? Time vs. Memory
- Why do we need Performance Analysis or Complexity Analysis?
  - Writing a working program is not good enough.
  - The program may be inefficient!
  - If the program runs on a large data set, then the running time may become an issue.

#### 1 Introduction - Data Structures & Algorithm

- Data Structures:
  - A systematic way of organizing and accessing data.
  - No single data structure works well for ALL purposes.
- Algorithm
  - An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
- Program
  - A program is an algorithm that has been encoded into some programming language.
- Program = data structures + algorithms



#### 1 Introduction - Performance Analysis/Complexity

- When we analyze the performance of an algorithm, we are interested in how much of a given resource the algorithm uses to solve a problem.
- The most common resources are time (how many steps it takes to solve a problem) and space (how much memory it takes).
- We are going to be mainly interested in how long our programs take to run, as time is generally more precious resource than space.



#### 1 Introduction - Efficiency of Algorithms

 For example, the following graphs show the execution time, in milliseconds, against sample size, n of a given problem in different computers



 The actual running time of a program depends not only on the efficiency of the algorithm, but on many other variables such as Processor speed & type, Operating system, ··· etc.

#### 1 Introduction - Running-time of Algorithms

- In order to compare algorithm speeds experimentally
  - All other variables must be kept constant, i.e.
    - independent of specific implementations (C, C++ or Java),
    - independent of computers used, and,
    - independent of the data on which the program runs
  - Involved a lot of work (better to have some theoretical means of predicting algorithm speed)

#### 1 Introduction - Example 1

- Task:
  - Complete the sum\_of\_n() function which calculates the sum of the first n natural numbers.
    - Arguments: an integer
    - Returns: the sum of the first n natural numbers
- Cases:

#### 1 Introduction - Algorithm 1

sum\_of\_n

```
time_start = time.time()

sum = 0
for i in range(1,n+1):
    sum = sum + i

time_end = time.time()
time_taken = time_end - time_start
```

The timing calls embedded before and after the summation to calculate the time required for the calculation.

Set sum = 0

Add each value to sum using a for loop

Return sum

#### 1 Introduction - Algorithm 2

sum\_of\_n\_2

```
time_start = time.time()

sum = 0
sum = n * (n + 1) / 2

time_end = time.time()
time_taken = time_end - time_start
```

The timing calls embedded before and after the summation to calculate the time required for the calculation.

Set sum = 0

Use the equation (n(n + 1))/2, to calculate the total

Return sum

#### 1 Introduction - Experimental Result

Using 4 different values for n: [10000, 100000, 1000000, 10000000]

|                         | n        | sum_of_n<br>(for loop)                       | sum_of_n_2<br>(equation)                           |  |  |
|-------------------------|----------|----------------------------------------------|----------------------------------------------------|--|--|
|                         | 10000    | 0.0033                                       | 0.0000181                                          |  |  |
|                         | 100000   | 0.0291                                       | 0.00000131                                         |  |  |
|                         | 1000000  | 0.3045                                       | 0.00000107                                         |  |  |
|                         | 10000000 | 2.7145                                       | 0.00000123                                         |  |  |
| Time Consuming Process! |          | Time increase as we increase the value of n. | NO impacted by the number of integers being added. |  |  |

 We shall count the number of basic operations of an algorithm and generalize the count.

#### 2 Counting Operations - Example 2A

Example: Calculating a sum of the first 10 elements in the list

Total = 34 operations (steps)

#### 2 Counting Operations - Example 2B

Example: Calculating the sum of n elements in the list.

- Total = 3n + 5 operations (steps)
- We need to measure an algorithm's time requirement as a function of the problem size, e.g., in the example above the problem size is the number of elements in the list.

#### 2 Counting Operations - Problem size

- Performance is usually measured by the rate at which the running time increases as the problem size gets bigger,
  - i.e., we are interested in the relationship between the running time and the problem size.
  - It is very important that we identify what the problem size is.
    - For example, if we are analyzing an algorithm that processes a list, the problem size is the size
      of the list.
- In many cases, the problem size will be the **value** of a variable, where the running time of the program depends on how big that value is.

#### 2 Counting Operations - Exercise 1

- How many operations are required to do the following tasks?
  - Adding an element to the end of a list
  - Printing each element of a list containing n elements

#### 2 Counting Operations - Exercise 1 solution

- How many operations are required to do the following tasks?
  - Adding an element to the end of a list one operation, a constant time, or O(1)
  - Printing each element of a list containing n elements n operation, or O(n)

#### 2 Counting Operations - Example 3

- Consider the following two algorithms:
  - Algorithm A:
    - Outer Loop: n operations
    - Inner Loop:  $\frac{n}{5}$  operations
    - Total =  $(n * \frac{n}{5}) = \frac{n^2}{5}$  operations

```
for i in range(0, n):
   for j in range(0, n, 5):
     print(i, j)
```

- Algorithm B:
  - Outer Loop: n operations
  - Inner Loop: 5 operations
  - Total = (n \* 5) = 5 \* n operations

```
for i in range(0, n):
   for j in range(0, 5):
     print(i, j)
```

#### 2 Counting Operations - Growth Rate Function - A or B?

- Consider the following two algorithms:
  - Algorithm A:  $\frac{n^2}{5}$
  - Algorithm B: 5 \* n

| n | 5  | 10 | 15 | 20  | 24  | 25  | 26  | 30  |
|---|----|----|----|-----|-----|-----|-----|-----|
| Α | 5  | 20 | 45 | 80  | 115 | 125 | 135 | 180 |
| В | 25 | 50 | 75 | 100 | 120 | 125 | 130 | 150 |

- If n is 10<sup>6</sup>,
  - Algorithm A's time requirement is

$$\frac{n^2}{5} = \frac{10^{12}}{5} = 2 \times 10^{11}$$

Algorithm B's time requirement is

$$5 * n = 5 * 10^6$$

• What does the growth rate tell us about the running time of the program?



#### 2 Counting Operations - Growth Rate Function - A or B?

- For smaller values of n, the differences between algorithm A  $(n^2/5)$  and algorithm B (5n) are not very big. But the differences are very evident for larger problem sizes such as for n > 1,000,000
- $2 * 10^{11}$  vs.  $2 * 10^6$
- Bigger problem size, produces bigger differences
- Algorithm efficiency is a concern for large problem sizes

## **Step Count Exercise 1:**

#### • What is the exact number of times sum++ executed?

```
def sum(n):
    total = 0
    for i in range(n*n):
        for j in range(i+1):
            total += 1
    return total

if __name__ == '__main__':
    print(sum(10))
```

#### **Useful formulas:**

$$1 + 2 + 3 + ... + N = N(N+1)/2$$
  
 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$ 

## **Step Count Exercise 2:**

• What is the exact number of times sum++ executed?

```
def sum(n):
    total = 0
    while n > 1:
        total += 1
        n /= 2
    return total

if __name__ == '__main__':
    print(sum(128))
```

## **Step Count Exercise 2:**

#### What is the exact number of times sum++ executed?

```
def sum(n):
    total = 0
    while n > 1:
        total += 1
        n /= 2
    return total

if __name__ == '__main__':
    print(sum(128))
```

We have to find the smallest k such that  $n / 2^k = 1$ 

# **Step Count Exercise 3:**

Compute the following series:

$$a)1 + 2 + 3 + ... + 9 + 10 =$$

b)1 + 2 + 3 + ... + 
$$(N - 1) + N =$$

c) 
$$1 + 2 + 4 + ... + 16 =$$

Compute the following series and express the result in term of N but without log expression. (Hint:  $N = 2^{logN}$ )

Then use the result and to compute the series shown above in c):

d) 
$$1 + 2 + 4 + ... + N =$$

#### **Useful formulas:**

$$1 + 2 + 3 + ... + N = N(N+1)/2$$
  
 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$ 

#### Summary

- Performance Analysis measure an algorithm's time requirement as a function of the problem size n by using a growth-rate function.
- It is an implementation-independent (including hardware and coded language)
  way of measuring an algorithm.
- Performance(Complexity) analysis focuses on large problems.

# 학습 정리

1) 프로그램 및 알고리즘의 성능 평가는 시간(time)과 공간(memory, storage)의 측면에서 성능을 비교할 수 있다

2) 문제 크기에 따른 변화율(growth rate)로 알고리즘의 성능을 비교할 수 있다

