Dimensionality Reduction and Data Visualization

Wojtek Kowalczyk

Leiden Institute of Advanced Computer Science

Exploratory Data Analysis (EDA)

- ☐ EDA the process of getting an insight into the data with help of:
 - visual inspection of the data files
 - descriptive statistics/summaries
 - plots, bar charts, histograms, ...
 - feedback from domain experts
 - thinking!

Goals of EDA:

- discover (and fix) obvious errors in data
- discover inconsistencies
- get an idea about data quality
- get a feeling of what is important and what is not
- make first discoveries
- get some feedback from domain experts
- formulate first hypotheses

Case 1: German Credit Data

https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/

- 1000 records, 300 "bad", 700 "good" clients
- 20 attributes: 7 numerical, 13 categorical
- cost matrix:
 misclassifying a bad client as a good one costs 5x
 more than misclassifying a good client as a bad one

A∖P	BAD	GOOD
BAD	0	5
GOOD	1	0

Some variables

Age

Sex

Loan duration

Amount

Credit history

Housing type: own, rented, social

AGE

```
mean=35.54
median=33
mode=27
range=56
iqr=15
std=11.37
skewness=1.01
kurtosis=3.58
```


Observations

- descriptive statistics (mean, median, ...) are not very informative
- boxplot gives a rough idea of the distribution; main advantage: may be used to visualize several variables on a single figure
- histogram: very useful, but might be misleading (when the number of bins is badly chosen)!

Observations

☐ A bar chart with frequencies of possible values is very useful: it allows us to identify 3 groups of loan duration:

- A) typical 'short term loans': shorter than 18 months
- B) typical 'long term loans': 18, 24, 30, 36, 48, 60 months
- C) 'special arrangements': all other durations

Iris Data Set: visualisation

- ☐ 150=3x50 records, 3 categories of Iris
- ☐ 4 variables

	Sepal length	Sepal width	Petal length	Petal width	Type
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versicolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	Iris virginica

15

Visualisation multi-dimensional data

- Multiple boxplots
- 3D interactive scatter plots
- Parallel Coordinates Plots:each record is plotted as a line
- ☐ Andrews Plots:
 - a tuple of numbers defines a "smooth" curve (e.g., (a, b, c) -> ax^2+bx+c), so every record can be "plotted" as a curve. [Actually, instead of polynomials, trigonometric functions are used]
- Glyphplots
- Principal Components (dimensionality reduction)

Principal Component Analysis

Principal Component Analysis

- \square **Given:** n variables $x_1, x_2, ..., x_n$
- \square PCs are linear combinations of $x_1, ..., x_n$ such that:
 - 1) they are orthogonal to each other
 - 2) they maximize the "variance of projections"
 - 3) the first PC explains most of the variance, second PC less,
- ☐ In practice the first few PCs (2-3) explain most of the variance

Example application of PCAs

- a digital camera takes several photos of a flower
- some features are extracted from images (sizes, proportions, diameters, etc): 30 numbers
- some flowers are manually labeled as "nice"; others as "ugly"

Problem:

develop a system that would automatically estimate flower quality from 30 features

More advanced dimensionality reduction methods

- ☐ Variants of PCA
- Multi Dimensional Scaling
- Locally Linear Embeddings
- □ ...
- "Latent Spaces" (Variational Autoencoders, Generative Adversarial Networks)

Figure 1: Taxonomy of dimensionality reduction techniques.

Metric Multi-Dimensional Scaling: the key idea

Given n points p_1 , ..., p_n (in a highly dimensional space) find a mapping p_i -> q_i (q_i in a low dimensional space) that preserves the original distances as much as possible:

 $dist(p_i, p_j) \approx dist(q_i, q_j)$ for all i, j;

Total error: $sum((dist(p_i,p_j) - dist(q_i,q_j)^2)$

An optimization problem! PCA does (most of) the job!

General Multi-Dimensional Scaling: the key idea

Given n <u>objects</u> p_1 , ..., p_n and a similarity measure between them find a mapping p_i -> q_i (q_i in a low dimensional space) that preserves the original distances as much as possible:

```
sim(p_i, p_j) \approx dist(q_i, q_j) for all i, j;
```

Total error: $sum((sim(p_i,p_j) - dist(q_i,q_j)^2)$

An optimization problem! Initialize at random; iterate SGD

Locally Linear Embeddings

Often, interesting data "lives" in "highly dimensional spaces" (images, word embeddings, spectra, ...)

We want to see it in low dimensions!

The key idea:

- for each object X_i find a few neighboring objects;
- measure distances between X_i and these neighbours
- find Y_i in low dimensional space that preserve all mutual distances => a very simple optimization problem!

- 1. Compute the neighbors of each data point, \vec{X}_i .
- 2. Compute the weights W_{ij} that best reconstruct each data point \vec{X}_i from its neighbors, minimizing the cost in Equation (1) by constrained linear fits.
- 3. Compute the vectors \vec{Y}_i best reconstructed by the weights W_{ij} , minimizing the quadratic form in Equation (2) by its bottom nonzero eigenvectors.

Figure 2: Summary of the LLE algorithm, mapping high dimensional inputs \vec{X}_i to low dimensional outputs \vec{Y}_i via local linear reconstruction weights W_{ij} .

References:

An overview of dimensionality reduction methods:
https://lvdmaaten.github.io/publications/papers/TR Dimensionality Reduction Review 2009.pdf

LLE https://www.jmlr.org/papers/volume4/saul03a/saul03a.pdf

□ t-SNE

https://www.youtube.com/watch?v=EMD106bB2vY https://lvdmaaten.github.io/publications/papers/JMLR 2008.pdf

☐ PCA/Dimensionality reduction
Chapter 11, MMDS book (http://www.mmds.org/)