Justyna Pluta

Grupa: 6- środa 11:15-12:00

Samolot ultralekki jednomiejscowy górnopłat

Prowadzący: mgr inż. Bogdan Hernik

Politechnika Warszawska Wydział Mechaniczny Energetyki i Lotnictwa Zakład Samolotów i Śmigłowców

Budowa i Projektowanie Obiektów Latających Projekty

WARSZAWA 2020/21

Justyna Pluta

Grupa: 6- środa 11:15-12:00

Prowadzący: mgr inż. Bogdan Hernik

Projekt 6 Obwiednia obciążeń

Data oddania projektu: 23.12.2020 Ocena:......

Określanie obwiedni obciążeń dopuszczalnych wykonano w oparciu o przepisy: "Certification Specifications for Very Light Aeroplanes CS-VLA; Amendment 1 5 March 2009".

M	Masa projektowa	315 <i>kg</i>
g	Przyspieszenie ziemskie	9,81 $\frac{m}{s^2}$
S	Powierzchnia płata	$8,54 m^2$
b	Rozpiętość	7,69 m
V_H	Prędkość maksymalna lotu poziomego dla h=0 m (z Projektu 5)	212,4 km/h
V_{s}	Prędkość przeciągnięcia (bez klap, dla ciężaru projektowego)	$\sqrt{\frac{2\cdot315\cdot9,81}{1,225\cdot8,54\cdot1,54}} = 70,5 \frac{km}{h}$

1. Współczynniki obciążeń manewrowych [CS-337 (a) (b)]

- (a) Obciążenia dodatnie nie mogą być mniejsze od 3,8 $n_{+} \geq 3,8$
- (b)Obciążenia ujemne nie mogą być mniejsze od -1,5 $n_- \le -1,5$ Nie ma potrzeby zakładania większych obciążeń, w związku z tym przyjęto:

$$n_{+} = 3.8$$
 $n_{-} = -1.5$

2.Prędkości projektowe [CS-VLA 335 (a) (b) (c)]

(a) Design cruising speed V_C :

(1) nie może być mniejsza od 2,4 ·
$$\sqrt{\frac{Mg}{s}} = 2,4 \cdot \sqrt{\frac{315 \cdot 9,81}{8,54}} = 45,7 \frac{m}{s} = 164,4 \frac{km}{h}$$

(2) nie musi być większe od $0.9 \cdot V_H = 0.9 \cdot 212.4 = 191.2 \frac{km}{h}$ (na poziomie morza)

Przyjęto
$$V_C = 180 \frac{km}{h}$$

(b) Desgin dive speed V_D

(1) nie może być mniejsza od 1,25 ·
$$V_C = 1,25 \cdot 180 = 225 \frac{km}{h}$$

(2) nie może być mniejsza od 1,4 ·
$$V_{Cmin} = 1,4 \cdot 164,4 = 230,2 \frac{km}{h}$$

Przyjęto
$$V_D = 240 \frac{km}{h}$$

(c) Design manoeuvring speed V_A

(1) nie może być mniejsza od $V_S \sqrt{n} = 70.5 \cdot \sqrt{3.8} = 137.4 \frac{km}{h}$

(2) nie musi być wyższa od wartości V_C

Przyjęto
$$V_A = 137, 4\frac{km}{h}$$

Przyjęte wielkości zgodnie z wytycznymi zawartymi w przepisach:

n_+	Obciążenie dodatnie	3,8 [-]
n_	Obciążenie ujemne	-1,5 [-]
V_C	Projektowa prędkość przelotowa	$180 \frac{km}{h}$
V_D	Projektowa prędkość nurkowania	$240 \frac{km}{h}$
V_A	Projektowa prędkość manewrowa	$137,4\frac{km}{h}$

Obwiednia obciążeń od manewrów

3. Współczynniki obciążenia od podmuchu [CS-VLA 341 (a)]

(a) współczynnik obciążeń dany jest wzorem $n=1\pm\frac{\frac{1}{2}\rho_0VaK_gU_{de}}{Mg/S}$ gdzie:

$ ho_0$	Gęstość powietrza	$1,225 \frac{kg}{m^3}$
а	Nachylenie krzywej współczynnika siły nośnej	$6,044\frac{1}{rad}$
\overline{C}	Cięciwa geometryczna	$\frac{S}{b} = \frac{8,54}{7,69} = 1,11 \ m$
μ_g	Masa względna samolotu	$\frac{\frac{2M/S}{\rho \overline{C} a}}{\frac{2.315}{6.54}} = \frac{2.\frac{315}{8.54}}{1,225\cdot1,11\cdot6,044} = 8,97$
K_g	Współczynnik złagodzenia podmuchu	$\frac{0.88 \cdot \mu_g}{5.3 + \mu_g} = \frac{0.88 \cdot 8.97}{5.3 + 8.97} 0.553$

4. Obwiednia obciążeń od podmuchów [CS-VLA 333 (c)]

(1)(i) dla prędkości przelotowej
$$V_C = 50 \frac{m}{s}$$

> prędkości podmuchu
$$U_{de} = \pm 15,24 \frac{m}{s}$$
:

$$n_{+} = 1 + \frac{0.5 \cdot 1.225 \cdot 50 \cdot 6.044 \cdot 0.553 \cdot 15.24}{315 \cdot \frac{9.81}{8.54}} = 5.31$$

$$n_{-} = 1 + \frac{0.5 \cdot 1.225 \cdot 50 \cdot 6.044 \cdot 0.553 \cdot (-15.24)}{315 \cdot \frac{9.81}{8.54}} = -3.31$$

(1)(ii) dla prędkości nurkowej
$$V_D = 66,67 \frac{m}{s}$$

> prędkości podmuchu
$$U_{de} = \pm 7,62 \frac{m}{s}$$

$$n_{+} = 1 + \frac{0.5 \cdot 1.225 \cdot 66.67 \cdot 6.044 \cdot 0.553 \cdot 7.62}{315 \cdot \frac{9.81}{8.54}} = 3.87$$

$$n_{-} = 1 + \frac{0.5 \cdot 1.225 \cdot 66.67 \cdot 6.044 \cdot 0.553 \cdot (-7.62)}{315 \cdot \frac{9.81}{8.54}} = -1.87$$

5. Mechanizacja płata [CS-VLA 345 (a) (b)]

V_{SF}	Prędkość przeciągnięcia z klapami	$\sqrt{\frac{2\cdot315\cdot9,81}{1,225\cdot8,54\cdot1,94}} = 62,8\frac{km}{h}$
$V_{\scriptscriptstyle S}$	Prędkość przeciągnięcia (bez klap, dla ciężaru projektowego)	70,5 $\frac{km}{h}$
Cz_{max}	Maksymalny współczynnik siły nośnej bez klap	1,54 [-]
Cz_{maxk}	Maksymalny współczynnik siły nośnej z klapami	1,94 [-]

- (a) Urządzenia do uzyskiwania wysokiej siły nośnej- klapy
 - (1) manewrowanie aż do dodatniego współczynnika obciążenia dopuszczalnego:

$$n_{+} = 2$$

- (2) dodatni i ujemny podmuch o wielkości 7,62 $\frac{m}{s}$ działający prostopadle do toru lotu
- (b) Wartość V_F musi być nie mniejsza od 1,4 V_S lub 1,8 V_{SF} (obowiązuje większa z powyższych)

$$V_F \ge 1.4V_S = 98.7 \frac{km}{h}$$

 $V_F \ge 1.8V_{SF} = 113.04 \frac{km}{h}$

Zatem przyjmuję:

$$V_F = 113,04\frac{km}{h}$$

Tabela najważniejszych punktów obwiednii

Punkt	Obwiednia	Prędkość	n
A	Od manewrów	$V_A = 137, 4\frac{km}{h}$	3,8
С	Od podmuchów	$V_C = 180 \frac{km}{h}$	5,31
D'	Od podmuchów	$V_{D'}=240\;\frac{km}{h}$	3,87
Е	Od podmuchów	$V_E = 240 \; \frac{km}{h}$	-1,87
F'	Od podmuchów	$V_{F'}=180\frac{km}{h}$	-3,31
Н	Od manewrów	$V_H=112,93~\frac{km}{h}$	-1,5
Mechanizacja płata		$V_F=113,04\frac{km}{h}$	2,35
		$V_{SF}=62.8\frac{km}{h}$	1

