Algèbre - Calcul matriciel

Christophe Mouilleron

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Notations

 \mathbb{R} = ensemble des nombres réels

 \mathbb{C} = ensemble des nombres complexes

$$M_{m,n}(\mathbb{K}) = \mathbb{K}^{m \times n} = ext{ens. des matrices avec} egin{cases} m ext{ lignes} \\ n ext{ colonnes} \\ ext{des coefficients dans } \mathbb{K} \\ ext{} \mathbb{K} = \mathbb{R} ext{ ou } \mathbb{C} \end{cases}$$

 $A \in \mathbb{C}^{m \times n}$ = une matrice $m \times n$ à coefficients complexes $a_{i,j} \in \mathbb{C}$ = coefficient de A situé ligne i et colonne j

Opérations de base (1)

Addition de deux matrices

$$A \in \mathbb{C}^{m \times n}$$
, $B \in \mathbb{C}^{m \times n}$ \longrightarrow $C = A + B \in \mathbb{C}^{m \times n}$ avec $c_{i,j} = a_{i,j} + b_{i,j}$ addition point à point

Transposition

$$A \in \mathbb{C}^{m \times n} \quad \leadsto \quad C = A^t \in \mathbb{C}^{n \times m} \text{ avec } c_{i,j} = a_{j,i}$$

 $\text{lignes} \leftrightarrow \text{colonnes}$

Multiplication par un scalaire

$$\lambda \in \mathbb{C}, A \in \mathbb{C}^{m \times n} \quad \leadsto \quad C = \lambda A \in \mathbb{C}^{m \times n} \text{ avec } c_{i,j} = \lambda a_{i,j}$$

Opérations de base (2)

Multiplication de deux matrices

$$A \in \mathbb{C}^{m \times n}, \ B \in \mathbb{C}^{n \times p} \quad \leadsto \quad C = AB \in \mathbb{C}^{m \times p} \ \text{avec} \ c_{i,j} = \sum_{k=1}^n a_{i,k} \ b_{k,j}$$

$$\begin{pmatrix}
b_{1,1} & b_{1,2} & b_{1,3} \\
b_{2,1} & b_{2,2} & b_{2,3}
\end{pmatrix}$$

$$A \begin{pmatrix}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2} \\
a_{3,1} & a_{3,2}
\end{pmatrix}
\begin{pmatrix}
c_{1,1} & c_{1,2} & c_{1,3} \\
c_{2,1} & c_{2,2}
\end{pmatrix}$$

$$c_{2,1} & c_{2,2}$$

$$c_{3,1} & c_{3,2} & c_{3,3}
\end{pmatrix}$$

$$C_{2,3} = a_{2,1} b_{1,3} + a_{2,2} b_{2,3}$$

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel 4/19

Matrices et systèmes linéaires

$$\begin{cases} 3x - 5y = 4 \\ -x + 2y = -1 \end{cases} \longleftrightarrow \underbrace{\begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x \\ y \end{pmatrix}}_{V} = \underbrace{\begin{pmatrix} 4 \\ -1 \end{pmatrix}}_{D}$$

Questions:

- Combien a-t-on des solutions?
- Quelles sont les solutions?

déterminant matrice inverse

5/19

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Déterminant - Cas particuliers

•
$$n = 1 \rightsquigarrow \det(a) = a$$

•
$$n = 2 \rightsquigarrow \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

$$x = \frac{b}{a} \operatorname{si} a \neq 0$$

produit en croix

Déterminant – Cas particuliers

•
$$n = 1 \rightsquigarrow \det(a) = a$$

$$x = \frac{b}{a}$$
 si $a \neq 0$

•
$$n = 2 \rightsquigarrow \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

produit en croix

• matrice diagonale
$$\leadsto$$
 det $\begin{pmatrix} d_{1,1} & & \\ & \ddots & \\ & & d_{n,n} \end{pmatrix} = d_{1,1} \times \cdots \times d_{n,n}$

Déterminant - Cas particuliers

• $n = 1 \rightsquigarrow \det(a) = a$

$$x=\frac{b}{a}$$
 si $a\neq 0$

• $n = 2 \rightsquigarrow \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$

produit en croix

- matrice diagonale \leadsto det $\begin{pmatrix} d_{1,1} & & \\ & \ddots & \\ & & d_{n,n} \end{pmatrix} = d_{1,1} \times \cdots \times d_{n,n}$
- matrice triangulaire \leadsto det $\begin{pmatrix} t_{1,1} & \star & \star \\ & \ddots & \star \\ & & t_{n,n} \end{pmatrix} = t_{1,1} \times \cdots \times t_{n,n}$

Déterminant - Cas particuliers

• $n = 1 \rightsquigarrow \det(a) = a$

$$x=\frac{b}{a}$$
 si $a\neq 0$

• $n = 2 \rightsquigarrow \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$

produit en croix

6/19

- matrice diagonale \leadsto det $\begin{pmatrix} d_{1,1} & & \\ & \ddots & \\ & & d_{n,n} \end{pmatrix} = d_{1,1} \times \cdots \times d_{n,n}$
- matrice triangulaire \leadsto det $\begin{pmatrix} t_{1,1} & \star & \star \\ & \ddots & \star \\ & & t_{n,n} \end{pmatrix} = t_{1,1} \times \cdots \times t_{n,n}$
- échange de 2 lignes $\rightsquigarrow \det(A') = -\det(A)$ idem pour 2 colonnes
- multiplier 1 ligne par $\lambda \leadsto \det(A') = \lambda \det(A)$ idem pour 1 colonne

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Déterminant – Propriétés

Formule générale :
$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1} a_{\sigma(i), i}$$

Propriété

On considère un système linéaire Ax = b.

Si $det(A) \neq 0$, alors ce système a une unique solution.

Si det(A) = 0, alors ce système a soit 0, soit une infinité de solutions (selon la valeur de b).

On a aussi:

- \bullet det(AB) = det(A) det(B)
- \bullet $det(A^t) = det(A)$

ENSIIE - 1A - Alaèbre

Déterminant - Calcul par développement

Méthode:

• choisir une ligne i

ou une colonne j

8/19

• utiliser
$$\det A = \sum_{j=1}^n (-1)^{i+j} a_{i,j} \det A_{i,j}$$
 où $A_{i,j} \in \mathbb{C}^{(n-1)\times (n-1)} = A$ privée de sa ligne i et de sa colonne j

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Déterminant – Calcul par développement

Méthode:

• choisir une ligne i

ou une colonne j

• utiliser $\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det A_{i,j}$ où $A_{i,j} \in \mathbb{C}^{(n-1)\times (n-1)} = A$ privée de sa ligne i et de sa colonne j

Exemple:

$$\begin{vmatrix} 1 & 1 & 1 \\ 4 & 4 & 3 \\ 2 & -1 & 1 \end{vmatrix} = + 2 \begin{vmatrix} 1 & 1 & 1 \\ 4 & 4 & 3 \\ 2 & -1 & 1 \end{vmatrix} - (-1) \begin{vmatrix} 1 & 1 & 1 \\ 4 & 4 & 3 \\ 2 & -1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 & 1 \\ 4 & 4 & 3 \\ 2 & -1 & 1 \end{vmatrix}$$
$$= 2 \cdot (-1) - (-1) \cdot (-1) + 1 \cdot 0 = -3$$

Déterminant – Calcul par pivot de Gauss

Méthode:

lacktriangle transformer A en matrice triangulaire supérieure T via :

élimination
$$L_i \leftarrow L_i + \alpha L_j$$
 avec $\alpha \in \mathbb{C}^*$ et $j < i$ échange $L_i \leftrightarrow L_j$ avec $i < j$

2 utiliser $det(A) = (-1)^{nb. \text{ \'echanges}} det(T)$

Exemple sur
$$\begin{pmatrix} 1 & 1 & 1 \\ 4 & 4 & 3 \\ 2 & -1 & 1 \end{pmatrix}$$
 au tableau $\rightsquigarrow \det(A) = -3$

Rq: La matrice T n'est pas unique!

Matrice inverse - Propriétés

Théorème

Si $A \in \mathbb{C}^{n \times n}$ est telle que $\det A \neq 0$, alors il existe une unique matrice, notée A^{-1} , vérifiant

$$AA^{-1} = A^{-1}A = I_n$$
.

Propriétés:

•
$$Ax = b \Leftrightarrow x = A^{-1}b$$

quand A^{-1} existe

Matrice inverse - Propriétés

Théorème

Si $A \in \mathbb{C}^{n \times n}$ est telle que $\det A \neq 0$, alors il existe une unique matrice, notée A^{-1} , vérifiant

$$AA^{-1} = A^{-1}A = I_n.$$

Propriétés :

•
$$Ax = b \Leftrightarrow x = A^{-1}b$$

quand
$$A^{-1}$$
 existe

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$B^{-1} A^{-1} (AB) = B^{-1} B = I_n$$

•
$$I_n^{-1} = I_n$$

Matrice inverse - Propriétés

Théorème

Si $A \in \mathbb{C}^{n \times n}$ est telle que $\det A \neq 0$, alors il existe une unique matrice, notée A^{-1} , vérifiant

$$AA^{-1} = A^{-1}A = I_n.$$

Propriétés :

•
$$Ax = b \Leftrightarrow x = A^{-1}b$$

quand A^{-1} existe

10/19

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$B^{-1} A^{-1} (AB) = B^{-1} B = I_n$$

•
$$I_n^{-1} = I_n$$

• si
$$D = \begin{pmatrix} d_{1,1} & & & \\ & \ddots & & \\ & & d_{n,n} \end{pmatrix}$$
, alors $D^{-1} = \begin{pmatrix} d_{1,1}^{-1} & & & \\ & \ddots & & \\ & & d_{n,n}^{-1} \end{pmatrix}$

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Matrice inverse - Calcul via comatrice

Formule:
$$A^{-1} = \frac{1}{\det A} \operatorname{Com}(A)^t$$

où $\operatorname{Com}(A) \in \mathbb{C}^{n \times n}$ avec coef. en (i,j) valant $(-1)^{i+j}$ det $A_{i,j}$

C. Mouilleron ENSIE – 1A – Algèbre Calcul matriciel

Matrice inverse - Calcul via comatrice

Formule:
$$A^{-1} = \frac{1}{\det A} \operatorname{Com}(A)^t$$

où $\operatorname{Com}(A) \in \mathbb{C}^{n \times n}$ avec coef. en (i,j) valant $(-1)^{i+j}$ det $A_{i,j}$

Exemple:
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 4 & 3 \\ 2 & -1 & 1 \end{pmatrix}$$
 $det(A) = -3$

$$A^{-1} = \frac{1}{-3} \begin{pmatrix} + \begin{vmatrix} 4 & 3 \\ -1 & 1 \end{vmatrix} & - \begin{vmatrix} 4 & 3 \\ 2 & 1 \end{vmatrix} & + \begin{vmatrix} 4 & 4 \\ 2 & -1 \end{vmatrix} \\ - \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} & + \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} & - \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} & - \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} \\ + \begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} & - \begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} & + \begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} & + \begin{vmatrix} 1 & 1 \\ 4 & 4 \end{vmatrix} \end{pmatrix}^{t} = \begin{pmatrix} -\frac{7}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\ 4 & -1 & 0 \end{pmatrix}$$

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Matrice inverse – Calcul par pivot de Gauss

Méthode:

- \bullet partir du couple (A, I_n)
- $oldsymbol{2}$ transformer A (à gauche) en matrice triangulaire supérieure T via :

élimination
$$L_i \leftarrow L_i + \alpha L_j$$
 avec $\alpha \in \mathbb{C}^*$ et $j < i$ échange $L_i \leftrightarrow L_j$ avec $i < j$

se ramener à une diagonale de 1 à gauche via :

division
$$L_i \leftarrow L_i/\alpha$$
 avec $\alpha \in \mathbb{C}^*$

4 transformer à gauche en matrice identité via :

élimination'
$$L_i \leftarrow L_i + \alpha L_i$$
 avec $\alpha \in \mathbb{C}^*$ et $i < j$

12/19

o renvoyer la matrice de droite

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Réduction d'endomorphisme

Objectif:

Trouver P inversible et D diagonale telles que $A = P \cdot D \cdot P^{-1}$

Motivation = pouvoir faire certains calculs dont :

•
$$A^k = P \cdot \begin{pmatrix} d_{1,1}^k \\ \ddots \\ d_{n,n}^k \end{pmatrix} \cdot P^{-1}$$
 of suites définies par réc. linéaire

$$\bullet \ \exp(A) = P \cdot \begin{pmatrix} \exp(d_{1,1}) & & \\ & \ddots & \\ & & \exp(d_{n,n}) \end{pmatrix} \cdot P^{-1} \qquad \text{cf équa. diff.}$$

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Valeurs propres, vecteurs propres

Définition

On dit qu'un scalaire $\lambda \in \mathbb{C}$ est une valeur propre (vp) de la matrice $A \in \mathbb{C}^{n \times n}$ lorsque qu'il existe un vecteur $v \in \mathbb{C}^n$ non nul tel que $Av = \lambda v$.

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel 14/19

Valeurs propres, vecteurs propres

Définition

On dit qu'un scalaire $\lambda \in \mathbb{C}$ est une valeur propre (vp) de la matrice $A \in \mathbb{C}^{n \times n}$ lorsque qu'il existe un vecteur $v \in \mathbb{C}^n$ non nul tel que $Av = \lambda v$.

Definition

On dit qu'un vecteur $v \in \mathbb{C}^n$ non nul est un vecteur propre (\vec{vp}) de la matrice $A \in \mathbb{C}^{n \times n}$ lorsque que $A v = \lambda v$ pour un certain $\lambda \in \mathbb{C}$.

On dit alors que v est un vecteur propre de A pour la valeur propre λ .

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Polynôme caractéristique

Une valeur propre λ vérifie

$$A v = \lambda v \Leftrightarrow \lambda v - A v = 0 \Leftrightarrow (\lambda I_n - A) v = 0.$$

En notant $B = \lambda I_n - A$:

• le système Bx = 0 a au moins 2 solutions

v et 0

• donc Bx = 0 a une infinité de solutions et det(B) = 0

Théorème

Les vp de A sont les solutions de l'équation $\det(\lambda I_n - A) = 0$.

La valeur $\chi_A(\lambda) = \det(\lambda I_n - A)$ est un polynôme en λ de degré n, appelé polynôme caractéristique.

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel 15/19

Valeurs propres – Exemple

Valeurs propres de
$$A = \begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix}$$
?

Polynôme caractéristique :

$$\textit{B} = \lambda \, \textit{I}_2 - \textit{A} = \begin{pmatrix} \lambda & \\ & \lambda \end{pmatrix} - \begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} \lambda - 1 & -8 \\ -2 & \lambda - 1 \end{pmatrix}$$

donc
$$\chi_A(\lambda) = (\lambda - 1)^2 - (-2) \cdot (-8) = (\lambda - 1)^2 - 4^2 = (\lambda - 5)(\lambda + 3)$$

Solutions de
$$\chi_A(\lambda) = 0$$
: $\lambda_1 = 5$ et $\lambda_2 = -3$

C. Mouilleron ENSIIE – 1A – Algèbre Calcul matriciel

Vecteurs propres – Exemple

Vecteurs propres de
$$A = \begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix}$$

• pour $\lambda_1 = 5$?

$$A \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{cases} x + 8y = 5x \\ 2x + y = 5y \end{cases} \Leftrightarrow \begin{cases} 4x = 8y \\ 2x = 4y \end{cases}$$

$$\Leftrightarrow x = 2y$$

Solutions :
$$\binom{2\alpha}{\alpha}$$
 avec $\alpha \in \mathbb{C}$

$$\text{Vect}\left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

Vecteurs propres – Exemple

Vecteurs propres de
$$A = \begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix}$$

• pour $\lambda_1 = 5$?

$$A \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix} \quad \Leftrightarrow \quad \begin{cases} x + 8y = 5x \\ 2x + y = 5y \end{cases}$$

$$\Leftrightarrow x = 2y$$

$$\begin{pmatrix} \mathbf{2} \, \alpha \\ \alpha \end{pmatrix}$$
 avec $\alpha \in \mathbb{C}$

• pour
$$\lambda_2 = -3$$
? $\begin{pmatrix} -2 \alpha \\ \alpha \end{pmatrix}$ avec $\alpha \in \mathbb{C}$

 $\Leftrightarrow \begin{cases} 4x = 8y \\ 2x = 4y \end{cases}$

$$Vect \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

$$Vect \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$$

Réduction d'endomorphisme - Méthode

Diagonalisation de $A \in \mathbb{C}^{n \times n}$:

- **1** calculer les n valeurs propres λ_i de A grâce au poly. carac.
- 2 trouver pour chaque λ_i un vecteur propre v_i
- **3** poser $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$
- remplir les colonnes de P avec les v_i dans l'ordre

Remarques:

- solution non unique
- peut ne pas marcher

ordre des vp, choix des $\vec{\mathrm{vp}}$

of TD

Réduction d'endomorphisme - Exemple

Diagonalisation de
$$A = \begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix}$$
:

- $v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ et } v_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$
- $P = \begin{pmatrix} 2 & 2 \\ 1 & -1 \end{pmatrix} \text{ donc } P^{-1} = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & -\frac{1}{2} \end{pmatrix}$

On peut vérifier que $P \cdot D \cdot P^{-1} = A$.

par exemple