DERWENT-ACC-NO: 1997-304280

DERWENT-WEEK:

199730

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Connection structure of flip-chip - has dummy

bump which

does not have electric connection between flip-

chip and

circuit substrate provided at four corners of

flip-chip

PATENT-ASSIGNEE: OKI ELECTRIC IND CO LTD[OKID]

PRIORITY-DATA: 1995JP-0266662 (October 16, 1995)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES MAIN-IPC

JP 09115910 A

May 2, 1997

N/A

005

H01L 021/321

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

JP 09115910A

N/A

1995JP-0266662

October 16, 1995

INT-CL (IPC): H01L021/321, H01R033/76 , H05K001/18

ABSTRACTED-PUB-NO: JP 09115910A

BASIC-ABSTRACT:

The structure consists of a bump electrode (17) such that the distance from the

centre of a semiconductor chip to the position of the bump electrode depends

upon the chip size. A bump (11) is then formed on the bump electrode. Space

(10) between a flip-chip (21) and circuit substrate (4) is regulated.

A dummy bump (9) which does not have an electric connection between the

flip-chip and the circuit substrate provided at a minimum of three peripheral

part at equivalent positions of the flip-chip.

ADVANTAGE - Enables to prevent inclination of chip in flip-chip connection.

CHOSEN-DRAWING: Dwg.1/7

TITLE-TERMS: CONNECT STRUCTURE FLIP CHIP DUMMY BUMP ELECTRIC CONNECT

FLIP CHIP

CIRCUIT SUBSTRATE FOUR CORNER FLIP CHIP

DERWENT-CLASS: U11 V04

EPI-CODES: U11-D01A3; U11-D03B1; U11-E01C; V04-K; V04-Q02A;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1997-251837

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-115910

(43)公開日 平成9年(1997)5月2日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
HO1L 2	21/321			H01L	21/92	602N	
H01R 3	33/76			H01R	33/76		
H05K	1/18			H05K	1/18	L	

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出願番号	特顧平7-266662	(71)出願人 000000295 沖電気工業株式会社
(22)出願日	平成7年(1995)10月16日	東京都港区虎ノ門1丁目7番12号 (72)発明者 長谷川 健二
		東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内
		(74)代理人 弁理士 佐々木 宗治 (外3名)

(54) 【発明の名称】 フリップチップの接続構造

(57)【要約】

【課題】 フリップチップ接続におけるチップの傾きを 防止し、バンプ接続の長寿命化を得る。

【解決手段】 半導体チップの中心からバンプ電極17 の配置位置までの距離がチップサイズに対して比較的小 さいバンプ電極を有し、このバンプ電極上に形成された バンプ11を介して半導体チップを回路基板4に電気的 に接続するフリップチップの接続構造において、フリッ プチップ21と回路基板4との間隔10を規制すると共 に、フリップチップ及び回路基板のいずれか一方の側と は機械的な接続がなく、かつフリップチップ及び回路基 板の間に電気的接続機能を持たないダミーバンプ9をフ リップチップの四隅に4個設けたもの。

本発明によるフリップチップの控続構造

2/1/05, EAST Version: 2.0.1.4

1

【特許請求の範囲】

【請求項1】 半導体チップの中心からバンプ電極の配 置位置までの距離がチップサイズに対して比較的小さい 前記バンプ電極を有し、このバンプ電極上に形成された バンプを介して前記半導体チップを回路基板に電気的に 接続するフリップチップの接続構造において、

前記フリップチップと前記回路基板との接続間隔を規制 すると共に、前記フリップチップ及び前記回路基板のい ずれか一方の側とは機械的な接続がなく、かつ前記フリ ップチップ及び前記回路基板の間に電気的接続機能を持 10 たないダミーバンプを前記フリップチップの周辺部又は 前記回路基板の前記フリップチップの周辺部相当位置に 少なくとも3個設けたことを特徴とするフリップチップ の接続構造。

【請求項2】 前記ダミーバンプは前記フリップチップ の四隅近傍の対称位置にそれぞれ1個宛設けられている ことを特徴とする請求項1記載のフリップチップの接続 構造。

*【請求項3】 前記請求項2のダミーバンプの代わり

に、前記回路基板の前記フリップチップの周辺部の四隅 相当位置にそれぞれ1個宛前記ダミーバンプが設けられ ていることを特徴とする請求項1又は請求項2記載のフ リップチップの接続構造。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はフリップチップの接 続構造に関し、詳しくはフリップチップ方式により回路 基板にフリップチップを実装する場合のフリップチップ の接続構造に関するものである。

[0002]

【従来の技術】この種のフリップチップの接続構造に関 する技術すなわちフリップチップ(パッキング等をして ないままの完成 I Cチップ) を回路基板等へ直接半田接 続する接続技術に関しては、下記の文献に開示されたも のがある。

(1)特開昭55-163852号公報

…文献 1

(2)「IC·LSIの微細はんだ接続技術」、日本金属学会会報、第23巻

第12号, (1984), pp1004~.

…文献 2

(3)「フリップチップ I C接続部の信頼性設計」,標準化と品質管理, Vo

1. 44, (1991), pp8~.

… 文献 3

【0003】従来技術の中でも、当初のフリップチップ の接続構造は、上述の文献2に示されているが、図2に 示したように、フリップチップ1の周辺に沿ってその外 周近傍に電極2が配置されたものとなっていた。一例と して図2のように、長方形のチップ1に8個の電極2を 配設した場合、チップ1のチップ中心(例えば重心位 いに異なったものであり、かつ電極2相互間の距離R (横), S(縦)も異なったものであるのが一般であっ た。そして、各電極2上には、後述するように、半田に よるバンプが形成され、回路基板とのリフロー方式によ るバンプ接続がなされていた。

【0004】図2の配置構造に対して、各バンプに加わ る歪量を均一化し、かつバンプの接続寿命のバラツキを 無くす目的で考案されたのが、図3に示す現在使用され ている従来方式の電極配置構造である。この場合、長方 形状の回路基板1aは、短辺wと長辺1(エル)の寸法 40 は図2のそれと同じであるが、全ての電極2をチップ中 心3からの距離5を全て等しくするように円形に配置 し、かつ電極2間の間隔6を全て等間隔にしていた。な お、w×lはフリップチップ1aの面積を示している が、これは回路規模とプロセス設計基準から制約される 最小チップサイズであり、重要な因子となっている。 【0005】そして、図4は図3のフリップチップ1a を回路基板4にバンプ接続した状態を示す側面図であ り、電極2と回路基板4の電極4aとの間にバンプ7が

※隔10をもってバンプ接続(半田バンプ7による半田接 統)されていることが示されている。ここで、間隔10 は全面的に等しくなる (フリップチップ1 a と回路基板 4とが平行になる)ことを意図してバンプ接続がなされ ている。

【0006】なお、上述の文献3にも見られるように、 置)3から電極2までの距離O(オー), P, Qは、互 30 上述のような従来のフリップチップに対して、チップサ イズL(縦軸:チップ中心からバンプ中心の距離)と寿 命Nf(横軸:任意単位の試験サイクル数)との間に は、図5に示す関係があることが知られており、チップ サイズしが大きくなる程、寿命が小さくなることが、信 頼性設計におけるトラブル解析の結果として知られてい

> 【0007】しかしながら、実際にはバンプ電極の配置 サイズ (図3の点線円形内のサイズ) に対してチップサ イズレを大きくして、ICの単位フリップチップ当たり の集積度を高める傾向が多くなっている。例えば図6に 示すように、チップサイズw×1を図3の場合より大き くしたフリップチップが使用されている。なお、図6の 下側図は、フリップチップ1b(図6の上側図参照)を 回路基板4にバンプ接続した場合の正常な状態を示す側 面図である。ここで、フリップチップ1bの部品符号以 外は図3の符号と同じ部品符号を付して、その説明を省 略する。

[0008]

【発明が解決しようとする課題】しかしながら、上述の 形成されて、フリップチップ1aと回路基板4の間に間※50 ような従来のフリップチップの接続構造、中でもバンプ 3

電極配置では、図6の場合のように、チップ中心からバ ンプ電極までの距離に対してチップサイズが大きすぎる 場合、図7に示したように、チップ1 bが回路基板4に 対して傾いて搭載されるようになるので、間隔10の違 いが発生し、その高さの違いによってバンプの歪量がバ ラツクことにより、バンプ接続寿命にバラツキが生ずる という問題点があった。この問題点は、図5の寿命特性 説明図によっても予測されたことであるが、チップサイ ズが大きくなっても、バンプ接続寿命の大きいフリップ チップの接続構造の確立が要望されていた。

[0009]

【課題を解決するための手段】本発明に係るフリップチ ップの接続構造は、半導体チップの中心からバンプ電極 の配置位置までの距離がチップサイズに対して比較的小 さいバンプ電極を有し、このバンプ電極上に形成された バンプを介して半導体チップを回路基板に電気的に接続 するフリップチップの接続構造において、フリップチッ プと回路基板との接続間隔を規制すると共に、フリップ チップ及び回路基板のいずれか一方の側とは機械的な接 続がなく、かつフリップチップ及び回路基板の間に電気 20 的接続機能を持たないダミーバンプをフリップチップの 周辺部又は回路基板のフリップチップの周辺部相当位置 に少なくとも3個設けたものである。この場合、ダミー バンプはフリップチップの四隅近傍の対称位置又は前記 フリップチップの周辺部の四隅相当位置にそれぞれ1個 宛設けられているものが、構造の簡易性、形成性からみ て好適である。

[0010]

【発明の実施の形態】図1は本発明によるフリップチッ プの接続構造の一実施形態を示す模式図であり、上図は 30 フリップチップのバンプ配設前の形状を示す平面図、下 図は回路基板とのバンプ接続を示す断面図である。本実 施形態においては、図1の上図の中央部に示した点線円 形内がバンプ電極の配置サイズ(前述の図6の点線円形 内のサイズに相当)であり、このバンプ電極の配置サイ ズ、チップサイズLは図6で説明した従来のフリップチ ップ1bとほぼ同じサイズのフリップチップについて説 明する。

【0011】図1の上図に示すフリップチップ21にお いて、バンプ電極の配置サイズ内に配置され、フリップ 40 チップ21と回路基板4との電気的接続を必要とするバ ンプ電極17は、チップ中心3からの距離5は全て等し く、さらに相隣るバンプ電極間の距離6が全て一定にな*

 $\Delta \varepsilon = (1 \times \Delta \alpha \times \Delta T) / h$

ここで、1(エル):チップ中心からの最大距離

Δα : 部材の熱膨張率差

ΔΤ : 熱衝撃の温度差

従って、フリップチップ21が仮に傾いて搭載された場 合バンプ高さhが変わるので、チップ中心3からバンプ

11までの距離5が同じであっても、バンプ11に加わ※50

*るように配置されている。また、フリップチップ21に

は、その四隅近傍の相互に対称な位置にチップ内の回路 とは電気的接続がされていないダミー電極8が配設され ている。そして、図1の下図に見られるように、フリッ プチップ21が所定位置に取り付けられる回路基板4の ダミー電極8に対向する位置には、ダミー電極8のよう なバンプ材が取り付け容易な電極類は形成されていない ようになっている。また、回路基板4のバンプ電極17 に対向する位置には、回路基板4の所定回路(図示せ 10 ず)と電気的に接続するバンプ用電極20が設けられて

4

いる。

【0012】図1の特に下図に見られるように、本実施 形態によるフリップチップの接続構造は、回路基板4と フリップチップ21とが、バンプ電極17とバンプ用電 極20との間に設けられたバンプ11を介して電気的に 接続されている。また同時に、ダミー電極8に設けられ たダミーバンプ9は、いま述べたバンプ11と同様であ るが、回路基板4とフリップチップ21との間隔10を 正確に保つような恰もスペーサの役目をもって形設され ている。

【0013】この場合、バンプ接続を行う前の段階で、 回路基板4とフリップチップ21とを電気的に接続する バンプ11と同じ材料(例えば、半田ペースト)を、バ ンプ11の形成と同時にダミー電極8に供給し、ダミー バンプ9を形成する。そして、ダミーバンプ9を形成す るためのバンプ材料の供給量は、バンプ11の形成のた めの供給量と同量である必要はないが、四隅のダミーバ ンプ9の各バンプ材量は、全て同量とすることが重要で ある。

【0014】バンプ11及びダミーバンプ9は、電気的 接続に必要なバンプ11とフリップチップ21の傾きを 防止するために設けたダミーバンプ9とを形成するため のバンプ材料を、フリップチップ21のそれぞれバンプ 電極17とダミー電極8とに供給し、回路基板4の所定 位置に載置した後、溶融した後冷却して硬化させる等の 方法によって形成される。この時、ダミーバンプ9によ って、フリップチップ21と回路基板4との間の間隔1 0が一定かつ平行に保たれるから、バンプ11が全て等 しい高さになるよう形成される。

【0015】ここで、前述の文献3にも記載されている ように、バンプ高さhと歪量 $\Delta \varepsilon$ との間には、次式に示 す関係があることが知られている。

…(1)式

※る歪量Δεが異なってくることが分かる。上述の実施形 態においては、フリップチップ21が、図7に示したよ うに傾くことはなく、回路基板4と平行に搭載できるか ら、式(1)からも分かるように、バンプ11に加わる **歪量を全て等しくすることができる。**

【0016】また、ダミーバンプ9に接触する位置の回

路基板4にはバンプ用電極が設けられていないから、ダ ミーバンプ9と回路基板4とは固定されていないので、 ダミーバンプ9には熱歪が加わらないようになってい る。従って、熱衝撃によるダミーバンプ9の接続寿命は なくなり、電気的接続を必要とするバンプ11の歪の前 述のような均衡を阻害することなく、ダミーバンプ9は 間隔10を一定にすることにだけ有効に作用する。

【0017】なお、上述の実施形態では、フリップチッ プ側にのみその四隅にダミーバンプ用のダミー電極を設 けて4個のダミーバンプを形成している場合について説 10 を示す模式説明図である。 明したが、逆に、対向する回路基板側にダミー電極を設 けて4個のダミーバンプを形成し、フリップチップ側に ダミー電極を設けないような構造の場合でも、同様の作 用・効果が得られる。また、ダミーバンプの設置位置及 び数は、上述のフリップチップの四隅に各1個の合計4 個に限定されない。すなわち、フリップチップの周辺部 近傍の可能な限り任意対称位置に、少なくとも3個のダ ミーバンプを形成したものであればよい。

[0018]

【発明の効果】以上のように本発明によれば、フリップ 20 チップと回路基板との接続間隔を規制すると共に、フリ ップチップ及び回路基板のいずれか一方の側とは機械的 な接続がなく、かつフリップチップ及び回路基板の間に 電気的接続機能を持たないダミーバンプをフリップチッ プの周辺部に少なくとも3個設けたフリップチップの接 続構造としたので、本発明によるダミーバンプの存在に より、フリップチップが回路基板に対して傾くことがな くなり、平行に搭載できるため、バンプに加わる歪量を 全て等しくする効果がある。また、ダミーバンプは回路 基板又はフリップチップのいずれかにしか固定されない 30 17 バンプ電極 ので、ダミーバンプには熱歪が加わらず、熱衝撃による ダミーバンプの接続寿命はなくなり、電気的接続を必要

とするバンプの歪の均衡を阻害することはなく、回路基 板とフリップチップとの間隔を一定にして、傾くことが なくなる効果が得られる。

【図面の簡単な説明】

【図1】本発明によるフリップチップの接続構造の一実 施形態を示す模式図である。

【図2】従来のフリップチップの電極配置と形状を示す 模式説明図である。

【図3】従来の改良型フリップチップの電極配置と形状

【図4】図3のフリップチップの接続状態を示す側面図 である。

【図5】一般のフリップチップのチップサイズと寿命N f 関係を示す特性線図である。

【図6】図3の場合よりチップサイズを大きくしたフリ ップチップの形状と接続状態を示す模式説明図である。 【図7】図6のフリップチップの接続の不都合状態を示

【符号の説明】

す模式説明図である。

- 1, 1a, 1b, 21 フリップチップ
 - 2,4a 電極
 - 3 チップ中心
 - 4 回路基板
 - 5 距離
 - 6 間隔
 - 7,11 バンプ
 - 8 ダミー電極
 - 9 ダミーバンプ
 - 10 間隔
 - - 20 バンプ用電極

【図2】

従来のフリップチップの電極配置と形状

【図3】

図2の改良型フリップチップの電極構造

図3の場合よりチップサイズが大きいフリップチップ

2/1/05, EAST Version: 2.0.1.4