Sélection OIM 2010

Deuxième examen - 9 Mai 2010

Durée: 4.5 heures

Chaque exercice vaut 7 points.

4. Les points X, Y, Z sont dans cet ordre sur une droite et $|XY| \neq |YZ|$. Soient k_1 et k_2 les cercles de diamètre XY et YZ respectivement. Les points A_1 et B_1 resp. A_2 et B_2 se situent sur k_1 resp. k_2 , de sorte que

$$\angle A_1 Y A_2 = \angle B_1 Y B_2 = 90^\circ.$$

Montrer que le point d'intersection des droites A_1A_2 et B_1B_2 est sur XY.

- 5. Soit P un ensemble fini de nombres premiers et a(P) le plus grand nombre possible de nombres naturels successifs tel que chacun de ses nombres soit divisible par un élément de P. Montrer l'inégalité $a(P) \ge |P|$ et que l'égalité se produit si et seulement si le plus petit élément de P est plus grand que |P|.
- 6. Trouver toutes les solutions (a, b, c, d) réelles positives de l'égalité

$$\frac{a^2 - bd}{b + 2c + d} + \frac{b^2 - ca}{c + 2d + a} + \frac{c^2 - db}{d + 2a + b} + \frac{d^2 - ac}{a + 2b + c} = 0.$$