

Model Optimization and Tuning Phase Template

Date	10 July 2024
Team ID	SWTID1720110768
Project Title	CovidVision: Advanced Covid-19 Detection From Lung X-rays with Deep Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
CNN	<pre># Define the CNN model cnn = models.Sequential([layers.Conv2D(filters=32, kernel_size=(3, 3), input_shape=(128, 128, 3), activation='relu'), layers.MaxPool2D((2, 2)), layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu'),</pre>	Fitting 5 folds for each of 15 candidates, totalling 75 fits Best Score:0.6356404077730116 Best Parameters: {'Cs': 6, 'max_iter': 60}
	<pre>layers.MaxPool2D((2, 2)), layers.Flatten(), layers.Dense(512, activation='relu'), layers.Dense(2, activation='softmax')]) cnn.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) cnn.fit(training, epochs=15) # Save the model cnn.save('covid_cnn_model.h5')</pre>	

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric
MODELS	Metric Training Validation Accuracy 0.9875 0.9420 Loss 0.0234 0.0856

Final Model Selection Justification (2 Marks):

Final Model	Reasoning

The Convolutional Neural Network (CNN) was selected for its exceptional ability to process and classify image data. During hyperparameter tuning, the CNN demonstrated high accuracy and robustness. Its capacity to automatically and adaptively learn spatial hierarchies of features through backpropagation makes it ideal for image recognition tasks. The CNN's performance in minimizing overfitting and optimizing predictive accuracy aligns with the project objectives, justifying its selection as the final model.

CNN