Licence 2^{ème} année, Physique Mécanique Semestre 1

Anthony LOUVAT-SEGURA, Vigrile CHEMINOT

November 2022

Table des matières

Ι	Ma	at-304 : Calcul matriciel et fonctions de plusieurs variables	5		
1	Rep	pérage dans \mathbb{R}^3	7		
2	Fon	ctions de plusieurs variables	9		
3	Dér	ivation en plusieurs variables	11		
	3.1	Définition et premières propriétés	11		
	3.2	Différentiabilité et formes différentielles	11		
4	Opé	érateurs différentielles	13		
5	Inté	egration en plusieurs variables	15		
6	Cal	Calcul matriciel			
	6.1	Matrices particulières	17		
	6.2	Déterminants	17		
7	Dia	gonalisation	19		
	7.1	Éléments propres	19		
	7.2	Polynôme caractéristique et calcul des éléments propres	20		
	7.3	Diagonalisation	23		
	7.4	Matrices symétriques et formes quadratiques	24		
8	Ext	remums en plusieurs variables	25		

II Mat-307 : Courbes paramétrées et équations différentielles pour

la p	ohysique	27
III	Mec-301 : Mécanique du solide indéformable	29
IV	Phy-301 : Électromagnétisme 1	31
\mathbf{V}	Phy302: Thermodynamique	33
VI	Annexes	35

Première partie

Mat-304 : Calcul matriciel et fonctions de plusieurs variables

Chapitre 1 $\label{eq:Repérage dans} \textbf{Repérage dans} \ \mathbb{R}^3$

Fonctions de plusieurs variables

Dérivation en plusieurs variables

3.1 Définition et premières propriétés

En dimension 1, la dérivée ne peut être approchée par uniquement 2 directions (par la gauche et par la droite). A partir de la dimension 2, il y a infinité de directions par lesquelles approchée la dérivée.

Définition

Soient $f: \mathbb{R}^n \to \mathbb{R}$, $\overrightarrow{a} \in \mathcal{D}_f$ et $\overrightarrow{h} \in \mathbb{R}^n$. La dérivée directionnelle de f en \overrightarrow{a} suivant la direction \overrightarrow{h} est, si elle existe, la limite $\lim_{\epsilon \to 0} \frac{f(\overrightarrow{a} + \epsilon \overrightarrow{h}) - f(\overrightarrow{a})}{\epsilon}$ et on la note $\frac{\partial f}{\partial \overrightarrow{h}}(\overrightarrow{a})$

3.2 Différentiabilité et formes différentielles

Opérateurs différentielles

Intégration en plusieurs variables

Calcul matriciel

- 6.1 Matrices particulières
- 6.2 Déterminants

Diagonalisation

La diagonalisation est le second "problème principal" d'algèbre, le premier étant la résolution de systèmes linéaires. Diagonaliser une matrice revient à la "simplifier".

L'intérêt d'un tel procédé est qu'il simplifie certains calculs tel que la multiplication ou l'exponentiation.

La diagonalisation consiste à chercher une base \mathcal{B} de l'espace, dans laquelle la matrice A est diagonale.

Dans la suite de ce chapitre nous ne considérerons que des matrices carrées.

Une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^n$ est dite diagonalisable si et seulement si $\exists \mathscr{B}$ une base de \mathbb{R}^n tel que sa matrice représentative $A_{\mathscr{R},\mathscr{B}}(f)$ est diagonale.

7.1 Éléments propres

Il convient dans un premier temps de définir les différents objets qui servirons à la diagonnalisation, ces objets sont appelés éléments propres.

Définition

Soit A une matrice $n \times n$.

- On dit que $\lambda \in \mathbb{C}$ est une valeur propre de A s'il existe $x \in \mathbb{C}^n$ avec $x \neq 0$ tel que $Ax = \lambda x$.
- On appelle alors le vecteur x le vecteur propre de A associé à la valeur propre λ .
- On appelle spectre de A l'ensemble des valeurs propres de A.
- On appelle sous espace propre de A (associé à la valeur propre λ), noté E_{λ} , l'ensemble de tous les vecteurs x tel que $Ax = \lambda x \Leftrightarrow (A \lambda I_n)x = 0$. Autrement dit, $E_{\lambda} = \ker(A - \lambda I_n) = \{x \in E | Ax = \lambda x\}$

Exemple

Soit la matrice $A = \begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}$

Par définition d'une valeur propre λ , nous cherchons un vecteur x tel que $Ax = \lambda x$. Dans le cas présent, on a :

$$\begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \lambda \times \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Il nous faut donc résoudre le système suivant :

$$\begin{cases} 5x_1 + 2x_2 = \lambda x_1 \\ 4x_1 + 3x_2 = \lambda x_2 \end{cases}$$

Sa résolution nous renvoie notamment le vecteur x=(7,7) et il se trouve que $Ax=7\times x$. On a donc que $\lambda=7$ une valeur propre de la matrice A et x=(1,1) est vecteur un propre de la matrice A associé à la valeur propre $\lambda=7$.

L'utilisation de la définition d'une valeur propre pour son calcul est une opération assez fastidieuse, c'est pour cela que l'on passe par d'autres moyens pour les déterminer. On utilise pour cela le polynôme caractéristique de la matrice A.

Propriété

Deux matrices semblables ont les même valeurs propres.

Ceci implique notamment qu'un changement de base ne modifie pas les valeurs propres d'une matrice.

7.2 Polynôme caractéristique et calcul des éléments propres

Le calcul des éléments propres est plus facile en passant par le polynôme caractéristique.

🔁 Définition

Soit une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^n$ et sa matrice représentative dans la base \mathbb{B} $A_{\mathbb{B}}(f)$. On appelle polynôme caractéristique de l'application f, le polynôme défini de la façon suivante :

$$P_f(\lambda) = P_A(\lambda) = \det(A - \lambda I_n) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} - \lambda \end{vmatrix}$$

⁴Proposition

Les valeurs propres λ de A sont les racines du polynôme caractéristique.

 λ est une valeur propre de la matrice $A \Leftrightarrow P_A(\lambda) = 0$

Exemple

Soit la matrice A définie comme $A = \begin{pmatrix} 7 & 4 \\ 3 & 6 \end{pmatrix}$.

On commence par chercher les valeurs propres de A.

Par la proposition précédente, on a :

$$P_A(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 7 - \lambda & 4 \\ 3 & 6 - \lambda \end{vmatrix} = (7 - \lambda)(6 - \lambda) - 12$$

On cherche donc les racines de $P_A(\lambda)$.

$$P_A(\lambda) = 0$$

$$\Leftrightarrow \lambda^2 - 13\lambda + 30 = 0$$

$$\Leftrightarrow \lambda_1 = 3 \text{ et } \lambda_2 = 10$$

Les valeurs propres de la matrice A sont donc $\lambda_1 = 3$ et $\lambda_2 = 10$

On constate, assez aisément, que la détermination des valeurs propres à l'aide du polynôme caractéristique est beaucoup plus facile et rapide.

Propriétés

Soit la matrice A et son polynôme caractéristique $P_A(\lambda)$.

— Si l'on injecte 0 dans le polynôme caractéristique il nous renverra la valeur du déterminant de cette matrice :

$$P_A(0) = \det(A)$$

— Le polynôme caractéristique possède n racines dans l'ensemble $\mathbb C$

Le polynôme caractéristique nous donne un moyen simple de déterminer les valeurs propres. De ces valeurs propres, on peut déduire le reste des éléments propres de la matrice.

Afin de pouvoir continuer sereinement, nous allons introduire les multiplicités algébriques et géométriques, qui seront utiles pour la suite.

Définition

- On appelle multiplicité géométrique d'une valeur propre λ la dimension du sous espace propre associé à la valeur propre λ .
- On appelle multiplicité algébrique d'une valeur propre λ la multiplicité de λ en

tant que racine du polynôme caractéristique.

Méthode: Détermination des éléments propres

- 1. Déterminer le polynôme caractéristique
- 2. Trouver les valeurs propres de A, en déduire le spectre de A
- 3. Rechercher les vecteurs propres associés au valeurs propres λ
- 4. Déterminer les sous espaces propres E_{λ} associés aux valeurs propres λ . Pour ce faire, il suffit de trouver le noyau de la matrice $A - \lambda I_n \Leftrightarrow \ker(A - \lambda I_n)$.

Exemple

On se donne la matrice $A = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$

On commence par poser $A - \lambda I_3$

$$A - \lambda I_n = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & -1 & 1 \\ 0 & 2 - \lambda & 0 \\ 1 & -1 & 3 - \lambda \end{pmatrix} = B$$

Le polynôme caractéristique nous est donné par le déterminant de cette nouvelle matrice В.

$$P_A(\lambda) = \det(A - \lambda I_3) = \det(B) = \begin{vmatrix} 3 - \lambda & -1 & 1 \\ 0 & 2 - \lambda & 0 \\ 1 & -1 & 3 - \lambda \end{vmatrix}$$

On choisi de développer le déterminant selon la deuxième ligne, en effet celui-ci nous serra plus facile a calculer. On a donc:

$$P_A(\lambda) = \det(A - \lambda I_3) = (2 - \lambda)((3 - \lambda)^2 - 1)$$

On sait que les racines du polynôme caractéristique, sont les valeurs propres de A, donc :

$$\Leftrightarrow P_A(\lambda) = 0$$

$$\Leftrightarrow (2 - \lambda)((3 - \lambda)^2 - 1) = 0$$

$$\Leftrightarrow (2 - \lambda)(\lambda^2 - 6\lambda + 8) = 0$$

Le premier facteur nous renvoie $\lambda = 2$ et le deuxième facteur nous donne $\lambda_1 = 2$ et $\lambda_2 = 4$. On a donc les valeurs propres de A qui sont : $\lambda_1 = 2$ valeur propre de multiplicité algébrique 2, $\lambda_2 = 4$ valeur propre de A de multiplicité algébrique 1.

On en déduit le spectre de $A: Spec(A) = \{2, 4\}$

On souhaite maintenant déterminer les vecteurs propres x associées aux valeurs propres

Pour une valeur propre λ donnée, la recherche du vecteur propre associée passe par la

résolution de l'égalité $(A - \lambda I_3)x = 0$.

Pour la valeur propre $\lambda_1 = 2$ on a $(A - 2I_3)x = 0$.On commence par poser $A - 2I_3$:

$$A - 2I_3 = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} = C$$

Il nous faut donc résoudre :

$$\Leftrightarrow (A - 2I_3)x = 0$$

$$\Leftrightarrow Cx = 0$$

$$\Leftrightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \overrightarrow{0}$$

$$\Leftrightarrow \begin{cases} x_1 - x_2 + x_3 = 0 \\ 0 = 0 \\ x_1 - x_2 + x_3 = 0 \end{cases}$$

$$\Leftrightarrow x_1 - x_2 + x_3 = 0$$

On peut décomposer le vecteur :

$$\begin{pmatrix} x_2 - x_3 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_2 \\ 0 \end{pmatrix} + \begin{pmatrix} -x_3 \\ 0 \\ x_3 \end{pmatrix} = x_2 \times \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_2 \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Il y a donc deux vecteurs propres $v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $v_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ associées a la valeur propre

 $\lambda_1 = 2$

Pour la valeur propre $\lambda_2 = 4$ on a $(A-4I_3)x = 0$. Par le même raisonnement que ci-dessus, on obtient :

7.3 Diagonalisation

Revenons sur la définition d'une matrice diagonalisable, pour en donner une définition plus mathématique.

Tout l'enjeu sera de déterminer la matrice P.

- Méthode: Diagonalisation d'une matrice

- 1. Déterminer le polynôme caractéristique
- 2. Trouver les valeurs propres de A. \rightarrow Si $\lambda_i \in \mathbb{R}$ alors A est diagonalisable sinon elle ne l'est pas, on peut s'arrêter.
- 3. Factoriser le polynôme caractéristique.
- 4. Rechercher les sous espaces propres et leurs dimensions (multiplicité géométrique)
- 5. Trouver les bases \mathcal{B}_i de tous les sous espaces propres.
- 6. Déduire la base \mathcal{B} à partir des bases \mathcal{B}_i , ainsi que la matrice de passage a cette

$$\mathscr{B} = \bigcup_{i}^{k} \mathscr{B}_{i}$$

Matrices symétriques et formes quadratiques 7.4

^Critère de Silvester

Une matrice A est semi-définie (définie) positive si et seulement si toutes ses mineures principales sont positifs, c'est à dire:

$$a_{11} \ge 0, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \ge 0, \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \ge 0, \dots$$

Extremums en plusieurs variables

Deuxième partie

Mat-307 : Courbes paramétrées et équations différentielles pour la physique

Troisième partie

Mec-301 : Mécanique du solide indéformable

Quatrième partie

Phy-301 : Électromagnétisme 1

Cinquième partie

Phy302: Thermodynamique

Sixième partie Annexes