Oplossingen Mechanics 2013 TODO October 16, 2013

$\boldsymbol{\alpha}$	1	
	ontei	nts

K3

Gegeven

F=100N, m1=1kg, m2=9kg, l0=1m k = 20 n/m

Gevraagd

1

0.1 Oplossing

De kracht op het geheel:

$$\vec{F}=m_t*\vec{a}$$
 met m_t het totaal gewicht van het systeem $\vec{a}=\frac{100}{9+1}=10m/s^2\vec{e}_x$

De krachten in m_1 zijn dan:

- \rightarrow Normaal kracht + Zwaartekracht, maar deze heffen elkaar op
- \rightarrow De veerkracht \vec{F}_v

De veerkracht is de enige kracht en zorgt dus integraal voor de versnelling:

$$F_v = m_1 * a$$

 $F_v = 1 * 10 = 10N$

Omdat \vec{F}_v constant is kan de lengte van de veer gehaald worden uit:

$$F_v = k * (l_0 - l)$$

 $10 = 20 * (1 - l)$
 $\Rightarrow l = 0.5m$

B4

We kunnen het tweede postulaat van Newton op beide blokken toepassen, in beide dimensies:

Blok m_1 :

$$\begin{array}{ll} x: & F - F_{w_{m_1,m_2}} - F_{w_{m_1,grond}} = ma_{m_1x} \\ y: & F_{n_{m_1}} - F_{m_1,m_2} - F_{z_{m_1}} = ma_{m_1y} \end{array}$$

Blok m_2 :

$$\begin{array}{ll} x: & F_{w_{m_1,m_2}} - \cos(\theta) F_{trek} = m a_{m_2 x} \\ y: & \sin(\theta) F_{trek} + F_{m_1,m_2} - F_{z_{m_2}} = m a_{m_2 y} \end{array}$$

Dit lijkt een monster van een stelsel - (Dat is het ook!) - maar er zijn een aantal dingen die we weten.

$$\begin{split} a_{m_1y} &= 0 \ , \, ma_{m_2x} = 0 \ , \, ma_{m_2y} = 0 \\ F_{w_{m_1,m_2}} &= f_2 F_{m_1,m_2} \ , \, F_{w_{m_1,grond}} = f_1 F_{n_{m_1}} \\ F_{z_{m_1}} &= m_1 g \ , \, F_{z_{m_2}} = m_2 g \end{split}$$

Als we dit allemaal invullen krijgen we:

$$\begin{cases} F - f_2 F_{m_1, m_2} - f_1 F_{n_{m_1}} = m a_{m_1 x} \\ F_{n_{m_1}} - F_{m_1, m_2} - m_1 g = 0 \\ f_2 F_{m_1, m_2} - \cos(\theta) F_{trek} = 0 \\ \sin(\theta) F_{trek} + F_{m_1, m_2} - m_2 g = 0 \end{cases}$$

Dit kunnen we omvormen tot een stelsel dat makkelijk op te lossen is.

$$\left\{ \begin{array}{llll} f_2F_{m_1,m_2} & +f_1F_{n_{m_1}} & +0 & ma_{m_1x} & =F \\ -F_{m_1,m_2} & +F_{n_{m_1}} & +0 & +0 & =m_1g \\ f_2F_{m_1,m_2} & +0 & -\cos(\theta)F_{trek} & +0 & =0 \\ F_{m_1,m_2} & +0 & +\sin(\theta)F_{trek} & +0 & =m_2g \end{array} \right.$$

Als we dit uitrekenen zien we dat het fout is. FTS.