Definition: Let V be a vector space. A (finite) set of vectors $S = \{v_1, v_2, \dots, v_n\}$ is called a [basis] set $[v_1, v_2, \dots, v_n]$ be a vector space. A (finite) set of vectors $[v_1, v_2, \dots, v_n]$ is called a [basis] set $[v_1, v_2, \dots, v_n]$ be a vector space.

- Span(S) = V
- ullet S is Linearly Independent

A (finite dimensional) linear space V has many bases. All bases of a linear space have the same number of elements. This number is called the dimension of the linear space.

Example: $V = \mathbb{R}^2$, consider the two base s:

$$S_1 = \left\{ egin{bmatrix} 0 \ 1 \end{bmatrix}, egin{bmatrix} 1 \ 0 \end{bmatrix}
ight\}$$

- 1. S_1 is linearly independent set since $c_1\begin{bmatrix}0\\1\end{bmatrix}+c_2\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}$ implies $c_1=c_2=0$, $\forall c_1,c_2\in\mathbb{R}(F)$.
- 2. $Span(S_1) = V = \mathbb{R}^2$ Hence S_1 is a basis for V.

$$S_2 = \left\{ egin{bmatrix} 1 \ 1 \end{bmatrix}, egin{bmatrix} 2 \ 3 \end{bmatrix}
ight\}$$

- 1. S_2 is linearly independent set since $c_1\begin{bmatrix}1\\1\end{bmatrix}+c_2\begin{bmatrix}2\\3\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}$ implies $c_1=c_2=0$, $\forall c_1,c_2\in\mathbb{R}(F)$.
- 2. $Span(S_2) = V = \mathbb{R}^2$

Example: $V = \mathbb{R}^2$, and $F = \mathbb{R}$, consider the base:

$$\overline{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} y = \begin{bmatrix} 2 \\ 3 \end{bmatrix} [y]_B = ?$$

Solution:

- 1. B is linearly independent set since $c_1\begin{bmatrix}1\\0\end{bmatrix}+c_2\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}$ implies $c_1=c_2=0$, $\forall c_1,c_2\in\mathbb{R}(F)$.
- 2. $Span(B) = V = \mathbb{R}^2$

3.
$$[y]_B = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

4.
$$y=c_1egin{bmatrix}1\\1\\0\end{bmatrix}+c_2\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}c_1+c_2\\c_2\end{bmatrix}$$

5.
$$c_1 + c_2 = 2$$
 and $c_2 = 3$

6.
$$c_1 = -1$$
 and $c_2 = 3$

7.
$$[y]_B = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Example: $V = Span\{cos(t), sin(t)\}$, and $F = \mathbb{R}$, consider the base:

$$B = \left\{cos(t), sin(t)\right\} y = cos(t - \frac{\pi}{3}) [y]_B$$
=?

Solution:

- 1. B is linearly independent set since $c_1cos(t)+c_2sin(t)=0$ implies $c_1=c_2=0$, $\forall c_1,c_2\in\mathbb{R}(F)$.
- 2. $Span(B) = V = Span\{cos(t), sin(t)\}$

3.
$$[y]_B = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

4.
$$y = c_1 cos(t) + c_2 sin(t) = cos(t - \frac{\pi}{3}) = cos(t) cos(\frac{\pi}{3}) + sin(t) sin(\frac{\pi}{3}) = \frac{1}{2} cos(t) + \frac{\sqrt{3}}{2} sin(t)$$

5.
$$c_1 = \frac{1}{2}$$
 and $c_2 = \frac{\sqrt{3}}{2}$

6.
$$[y]_B = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$$

Claim: For a given basis B, the representation $[y]_B$ of a vector y is unique.

Proof: By contradiction.

Assume
$$[y]_B = egin{bmatrix} c_1 \ c_2 \end{bmatrix}$$
 and $[y]_B = egin{bmatrix} d_1 \ d_2 \end{bmatrix}$

Then $y = c_1b_1 + c_2b_2 = d_1b_1 + d_2b_2$

$$c_1b_1 + c_2b_2 - d_1b_1 - d_2b_2 = 0$$

$$(c_1-d_1)b_1+(c_2-d_2)b_2=0$$

Since B is linearly independent, $c_1-d_1=0$ and $c_2-d_2=0$

Hence $c_1 = d_1$ and $c_2 = d_2$

Remark: The representation of a vector y in a basis B is unique. The representation of a vector y in a basis B is called the coordinate vector of y with respect to B.

Ordered Basis

Definition: Let V be a vector space. An ordered set of basis vectors $S=\{v_1,v_2,\ldots,v_n\}$ is called an ordered basis for V. If $y=(x_1,x_2,...,x_n)$ is an ordered basis for V, then every vector $x\in V$ can be written as a linear combination of the basis vectors as follows:

Theorem: Let V be an n-dimensional vector space over \mathbb{R} . Let B_1 and B_2 be two bases for V. Then there exists a unique $n \times n$ real invertible matrix P such that $[x]_{B_2} = P[x]_{B_1}$ for all $x \in V$.

Proof: By construction.

<u>Example</u>: Consider $V = \text{polynomials of degree} \le 2$ with coefficients in \mathbb{R} and the bases:

$$B_1 = \{1, t-1, (t-1)^2\}$$

$$B_2 = \{1, t, t^2\}$$

Find the matrix P such that $[x]_{B_1} = P[x]_{B_2}$ for all $x \in V$.

Solution:

1.
$$[x]_{B_1}=egin{bmatrix} c_1\ c_2\ c_3 \end{bmatrix}$$
 and $[x]_{B_2}=egin{bmatrix} d_1\ d_2\ d_3 \end{bmatrix}$

2.
$$x = c_1 + c_2(t-1) + c_3(t-1)^2 = c_1 + c_2t - c_2 + c_3t^2 - 2c_3t + c_3$$

3.
$$x = (c_1 - c_2 + c_3) + (c_2 - 2c_3)t + c_3t^2$$

4.
$$d_1 = c_1 - c_2 + c_3$$

5.
$$d_2 = c_2 - 2c_3$$

6.
$$d_3 = c_3$$

7.
$$c_1 = d_1 + d_2 + d_3$$

8.
$$c_2 = d_2 + 2d_3$$

9.
$$c_3 = d_3$$

$$9. \ c_3 = d_3$$
 $10. \ [x]_{B_1} = egin{bmatrix} d_1 + d_2 + d_3 \ d_2 + 2d_3 \ d_3 \end{bmatrix} = egin{bmatrix} 1 & 1 & 1 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} d_1 \ d_2 \ d_3 \end{bmatrix} = P[x]_{B_2}$
 $11. \ P = egin{bmatrix} 1 & 1 & 1 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{bmatrix}$

11.
$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Example: Show that Matrix P is invertible.

<u>Proof</u>: Let V be an n-dimensional vector space over $\mathbb{R}^{n\times n}$. B_1 and B_2 are bases for V. A vector v holds,

- $\bullet \quad [v]_{B_1} = P[v]_{B_2}$
- $\exists \ Q \in \mathbb{R}^{n \times n}$ s.t.

$$\circ \quad [v]_{B_2} = Q[v]_{B_1}$$

$$\circ [v]_{B_1} = P[v]_{B_2} = P(Q[v]_{B_1}) = (PQ)[v]_{B_1}$$
 implies $PQ = I$

- \circ similarly QP = I
- P is invertible and $P^{-1} = Q$