Vague Preferences and Contracts

Evan Piermont
Royal Holloway, University of London
Department of Economics

Decision: Theory, Experiments, Applications, Paris, July 2023

Which of the following are green:

Which of the following are ripe:

Vagueness

The language we use is less precise than the reality it describes.

- Descriptions that appear semantically crisp are in fact nebulous
- A statement that is neither (absolutely) true nor false is vague
- Contrasted with 'uncertainty': when the truth of statements is not known

Vagueness is economically relevant—a principal function of the (tort) legal system is to determine *the degree of truth*. Consider:

- "Gilead Science's Hepatitis-C treatment, sofosbuvir, infringes on Idenix Pharmaceutical's patent."
- Essentially: Idenix claimed that the structure of sofosbuvir is based on already known molecules
- The truth of which was eventually settled by a jury to the tune of 2.5 billion dollars

This paper...

- Constructs a framework for modeling vagueness
- Provides a methodology for eliciting decision maker's subjective beliefs
- Examines how vagueness affects strategic contracting (principal-agent style)

Language is Important

- Vagueness arises from the gap between descriptions of reality and reality itself
- It's not clear what a state-space should look like, and if it would be describable in the actual language
- \diamond So, begin with a formal language, \mathscr{L}

Language is Important

The language \mathscr{L} represents payoff relevant parameters, constructed by

- ⋄ 𝒯 a set of atomic propositions
- \diamond For any $\varphi, \psi \in \mathscr{L}$ we have
 - $\diamond \neg \varphi : \mathsf{not} \ \varphi$
 - $\diamond \ \varphi \rightarrow \psi : \varphi \text{ implies } \psi$

Language is Important

It will be notationally convenient to define several other operations from implication and negation:

Valuations

To allow for partial-truth, vagueness, fuzziness, what-have-you, we value statements via $v:\mathscr{L}\to [0,1]$

- $\diamond v(\varphi) = 0$ indicates φ is absolutely false
- $\diamond v(\varphi) = 1$ indicates φ is absolutely true
- $v(\varphi) > v(\psi)$ indicates φ is **more true** than ψ

Valuations

A function $v: \mathcal{L} \to [0,1]$ is a valuation if

which implies:

$$\begin{split} \llbracket \lor \rrbracket & v(\varphi \lor \psi) = \max\{v(\varphi), v(\psi)\} \\ \llbracket \land \rrbracket & v(\varphi \land \psi) = \min\{v(\varphi), v(\psi)\} \\ \llbracket \oplus \rrbracket & v(\varphi \oplus \psi) = \min\{1, v(\varphi) + v(\psi)\} \\ \llbracket \odot \rrbracket & v(\varphi \odot \psi) = \max\{0, v(\varphi) + v(\psi) - 1\} \end{split}$$

Valuations

- If we interpret "or" as:
 - ⋄ ∨: maximum "Man is evil or man is not evil"
 - ⋄ ⊕: (truncated) summation "The rectangle is green or its yellow"
- \diamond If v sends \mathscr{P} to $\{0,1\}$ then all statements are $\{0,1\}$ -valued; this is classic logic
- For classical logic ∨ and ⊕ coincide
- ⋄ ∧ and ⊙ are dual

Decision Theory

- ♦ An **act** is a function $f: \mathcal{L} \to \mathbb{R}_+$, finite support.
- \diamond A **bet** x_{φ} is the act that maps φ to x and all other statements to 0.
- Bets are the extreme points of the set of acts
- ♦ The primitive is ≽ over acts.

Decision Theory

Interpretation: Payoffs depend on truth values but contracts can only be written using the language $\ensuremath{\mathcal{L}}$

• A bet x_{ω} is less valuable the less true x is

E.g., x_{φ} is an investment in a project, φ is the statement that the project does not infringe on intellectual property

Standard Axioms

A1 Order ≽ is a non-trivial, continuous weak order.

A2 **Payoff Monotonicity** if f point-wise dominates g then $f \geq g$.

A3 Independence $f \succcurlyeq g$ if and only if $\alpha f + (1 - \alpha)h \succcurlyeq \alpha g + (1 - \alpha)h$.

Axiom: Łukasiewicz Consistency

Call φ and ψ disjoint if $v(\varphi \odot \psi) = 0$ for any valuation v:

- \diamond Disjointness is tantamount to $\varphi \to \neg \psi$ (and vice-versa)
 - \diamond In classical logic, φ and ψ can never be true at the same time
 - \diamond Allowing for vagueness: the more true φ is, the less true ψ must be

Axiom: Łukasiewicz Consistency

A4 **Łukasiewicz Consistency** If φ and ψ are disjoint then:

$$\frac{1}{2}_{\varphi} + \frac{1}{2}_{\psi} \sim \frac{1}{2}_{\varphi \oplus \psi},$$

Theorem

 \geq satisfies A1-4 if and only if it is there exists a *vague model*, (Ω, V, μ) ,

 (\star)

- $\bullet \Omega$ is a topological state space,
- \lor $V = \{v_{\omega} : \mathscr{L} \to [0,1]\}_{\omega \in \Omega}$ is Borel measurable
 - μ a regular Borel probability measure over Ω .

such that

$$f\succcurlyeq g\iff \int_\Omega f^V\,\mathrm{d}\mu\geq \int_\Omega g^V\,\mathrm{d}\mu$$
 where $f^V\colon\Omega\to [0,1]$ is defined as

where $f^V: \Omega \to [0,1]$ is defined as

$$f^V:\omega\mapsto \sum_{arphi\in\mathscr{L}}f(arphi)v_\omega(arphi).$$

Moreover this model is unique up-to isomorphism.

Given a model (Ω, V, μ) and and act f,

$$f^V: \omega \mapsto \sum_{\varphi \in \mathscr{L}} f(\varphi) v_{\omega}(\varphi).$$

yields the 'weighted' payoff of f.

If $f = x_{\varphi}$, then $f^{V}(\omega) = xv_{\omega}(\varphi) = \text{(payoff)} \times \text{(truth value)}$

The the value for a bet x_{φ} is:

$$\int_{\Omega} x v_{\omega}(\varphi) d\mu$$

The the value for a bet x_{φ} is:

vagueness
$$\overbrace{\int_{\Omega} x v_{\omega}(\varphi)}$$
 d μ

The the value for a bet x_{φ} is:

This model assumes linearity in both probability (expected utility) and in truth value:

- \diamond This is necessary is we want $x_{\varphi} + x_{\neg \varphi} = x_{TRUE}$
- This is unfortunate

Principal Agent Model

- \diamond Let Ω denote a state-space, the states of which are associated with the various outcomes of the project.
- \diamond Agent chooses unobservable $e \in E$;
 - \diamond agent pays a utility cost $c(e) \in \mathbb{R}$,
 - induces μ_e , distribution over Ω
- ♦ The agent's continuously differentiable and strictly monotone utility index over money is $u : \mathbb{R} \to \mathbb{R}$: her ex-post utility is u(x) c(e).
- Outside option is $\bar{u} \in \mathbb{R}$.

Principal Agent Model

Departure from the standard model: Ω is not directly contactable.

- ♦ There exists a language, \mathscr{L} and a valuation $V = \{v_{\omega}\}_{w \in \Omega}$
- The Principal must write an actual (linguistic) contract
- Each contract induces a function $f: \Omega \to \mathbb{R}$,
- \diamond Not all such functions might be induceable each 'contract writing technology' is associated with $C \subseteq \mathbb{R}^{\Omega}$

Principal Agent Model

Say that a contract $f \in \mathbb{R}^{\Omega}$ implements $e \in E$ if

$$e = \operatorname*{max}_{e' \in E} \int_{\Omega} u \circ f \, \mathrm{d}\mu_{e'} - c(e') \tag{IC}$$

$$\int_{\Omega} u \circ f \, \mathrm{d}\mu_{e} \ge \bar{u} \tag{IR}$$

Let \mathcal{L} be constructed from $\mathcal{P} = \mathbf{p}_1 \dots \mathbf{p}_n$, and consider the set of contracts:

$$C^{\mathscr{P}} = \{ xv_{\omega}(\mathbf{p}) + yv_{\omega}(\neg \mathbf{p}) \mid x, y \in \mathbb{R}, \mathbf{p} \in \mathscr{P} \}.$$

- $f \in C^{\mathscr{P}}$ is predicated directly on the truth of the propositions in \mathscr{P} .
- $\diamond \ \ xv_{\omega}(\mathbf{p}) + yv_{\omega}(\neg \mathbf{p}) \ \text{induces the affine function} \ f \colon \omega \mapsto (x-y)v_{\omega}(\mathbf{p}) + y$
- \diamond $C^{\mathscr{P}}$ is the set of all affine contracts

There are outcomes implementable by direct contracts (i.e., continuous functions over Ω) not implementable by C^P . This is obvious; for example:

- Single \mathbf{p} , $\Omega = [0, 1]$ is the truth of \mathbf{p} .
- \bullet *E* = { *e*, *e'*}:
 - e induces uniform measure, less costly
 - \diamond e' concentrates probability symmetrically around $\frac{1}{2}$, more costly
- ⋄ u is linear

Distribution of Outcomes

 μ_e $\mu_{e'}$

Contracts in $C^{\mathcal{P}}$ cannot implement e'

 μ_e

Contracts not in $C^{\mathcal{P}}$ can implement e'

 $\mu_{e'}$

What about a richer set of linguistic contracts:

$$C^{\mathscr{L}} = \{ xv_{\omega}(\varphi) + yv_{\omega}(\neg \varphi) \mid x, y \in \mathbb{R}, \varphi \in \mathscr{L} \}.$$

- \diamond $f \in C^{\mathscr{L}}$ is predicated directly on compound statements.
- Still constructable contracts, but over more complex language

$$(\mathbf{p} \to \neg \mathbf{p}) \mapsto 1$$
$$\omega \mapsto \min\{1, 1 - \omega + (1 - \omega)\} = \min\{1, 2 - 2\omega\}.$$

$$(\mathbf{p} \to \neg \mathbf{p}) \land (\neg \mathbf{p} \to \mathbf{p}) \mapsto 1$$

$$\omega \mapsto \min \big\{ \min\{1, 1 - \omega + (1 - \omega)\}, \min\{1, 1 - (1 - \omega) + \omega\} \big\}$$

$$= \min\{1, 2 - 2\omega, 2\omega\}.$$

Theorem

 $C^{\mathscr{L}}$ implements the same outcomes, at arbitrarily close cost, as the set of all direct contracts (continuous maps from Ω).

- Subject to some mild regularity conditions, of course
- \diamond Even though the Principal cannot directly condition on Ω , the calculus of $\mathscr L$ is rich enough to approximate

