ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CƠ KHÍ BỘ MÔN CƠ ĐIỆN TỬ

BÁO CÁO BÀI TẬP LỚN $$\begin{split} \mathbf{K}\tilde{\mathbf{Y}} \ \mathbf{THU}\mathbf{\hat{A}}\mathbf{T} \ \mathbf{ROBOT} \end{split}$$

GVHD: TS. PHÙNG TRÍ CÔNG

SINH VIÊN THỰC HIỆN:

Họ và tên	MSSV
Võ Anh Tuấn	2112591
Đào Trọng Chân	2210350
Trần Quang Đạo	2210647
Võ Hữu Dư	2210604
Dương Quang Duy	2210497

Mục lục

1	SETTING COORDINATE FRAMES	2
	1.1 Topic	
	1.2 Theory	
	1.3 Application	3
2	DETERMINING D-H PARAMETERS	5
	2.1 Topic	5
	2.2 Theory	5
	2.3 Application	5
3	KINEMATIC PROBLEM	6
	3.1 Topic	6
	3.2 Theory	6
	3.3 Application	6
4	INVERSE KINEMATIC PROBLEM	9
	4.1 Topic	9
	4.2 Theory	9
	4.3 Application	9
5	Workspace	12
	5.1 Topic	12
	5.2 Theory	12
	5.3 Application	12
6	JACOBIAN MATRIX	14
	6.1 Topic	14
	6.2 Theory	14
	6.3 Application	14
7	SIMULATING THE MOTION OF ROBOT	16
	7.1 Topic	16
	7.2 Theory	
	7.3 Application	17
Pł	hụ lục	20

SETTING COORDINATE FRAMES

1.1 Topic

Set coordinate frames for the first four links (link 1, link 2, link 3).

1.2 Theory

Based on "DENAVIT-HARTENBERG NOTATION" (Lecture 4: Forward Kinematics [1]): Local frame B_i to each link (i) at joint i + 1 is defined as:

- The z_i axis is aligned with the i+1 joint axis.
- The x_i axis is defined along the common normal between the $z_i 1$ and z_i axes, pointing from the $z_i 1$ to the z_i axis.
- The y_i axis is defined by the right-hand rule.
- The origin o_i of the *i* frame is located at the intersection of the joint axis i + 1 with the common normal between the $z_i 1$ and z_i axes.

1.3 Application

Hình 1.1: Setting coordinate frames for robot

Phương trình Lagrange tổng quát cho cơ hệ

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i \tag{1.1}$$

Trong đó

- L = K V: hàm Lagrange
- q_i : tọa độ suy rộng, trong phạm vi bài báo cáo ta có $q = [x \ \theta]^T$
- \dot{q}_i : đạo hàm theo thời gian của q_i
- Q_i : moment hoặc lực tổng quát (nếu có). Trong phạm vi bài báo cáo ta có $Q_i = [F_x \ \tau_\theta]$.

Hàm Lagrange

$$L = K - V = \frac{1}{2}M_{\Sigma}\dot{x}^2 + \frac{1}{2}J\dot{\theta}^2 + M_p\ell\dot{x}\dot{\theta}\cos\theta - M_pg\ell\cos\theta$$
 (1.2)

Đối với tọa độ suy rộng x:

$$\begin{split} \frac{\partial L}{\partial \dot{x}} &= M_{\Sigma} \dot{x} + M_{p} \ell \dot{\theta} \cos \theta \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) &= M_{\Sigma} \ddot{x} + M_{p} \ell \ddot{\theta} \cos \theta - M_{p} \ell \dot{\theta}^{2} \sin \theta \\ \frac{\partial L}{\partial x} &= 0 \end{split}$$

Kỹ thuật robot Trang 3/19

Do đó

$$M_{\Sigma}\ddot{x} + M_{p}\ell\ddot{\theta}\cos\theta - M_{p}\ell\dot{\theta}^{2}\sin\theta = F_{x} \tag{1.3}$$

Đối với tọa độ suy rộng θ :

$$\begin{split} \frac{\partial L}{\partial \dot{\theta}} &= J\dot{\theta} + M_p\ell\dot{x}\cos\theta \\ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) &= J\ddot{\theta} + M_p\ell\ddot{x}\cos\theta - M_p\ell\dot{x}\dot{\theta}\sin\theta \\ \frac{\partial L}{\partial \theta} &= -M_p\ell\dot{x}\dot{\theta}\sin\theta - M_pg\ell(-\sin\theta) = -M_p\ell\dot{x}\dot{\theta}\sin\theta + M_pg\ell\sin\theta \end{split}$$

Do đó

$$J\ddot{\theta} + M_p \ell \ddot{x} \cos \theta - M_p \ell \dot{x} \dot{\theta} \sin \theta + M_p \ell \dot{x} \dot{\theta} \sin \theta - M_p g \ell \sin \theta = \tau_{\theta}$$

$$\Leftrightarrow J\ddot{\theta} + M_p \ell \ddot{x} \cos \theta - M_p g \ell \sin \theta = \tau_{\theta}$$
(1.4)

Từ phương trình (1.13) và (1.15) ta có hệ

$$\begin{cases}
M_{\Sigma}\ddot{x} + M_{p}\ell\ddot{\theta}\cos\theta - M_{p}\ell\dot{\theta}^{2}\sin\theta = F_{x} \\
J\ddot{\theta} + M_{p}\ell\ddot{x}\cos\theta - M_{p}g\ell\sin\theta = \tau_{\theta}
\end{cases}$$
(1.5)

Ta đưa về dạng tổng quát

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \tau \tag{1.6}$$

Trong đó

- $q = [x \ \theta]^T$: vector trạng thái
- $\bullet \ M(q)$: ma trận quán tính
- $C(q,\dot{q})$: ma trận Coriolis và ly tâm
- G(q): vector trọng lực
- \bullet $\tau :$ moment xoắn điều khiển từ động cơ

Ta được

$$\underbrace{\begin{bmatrix} M_{\Sigma} & M_{p}\ell\cos\theta \\ M_{p}\ell\cos\theta & J \end{bmatrix}}_{M(q)} \begin{bmatrix} \ddot{x} \\ \ddot{\theta} \end{bmatrix} + \underbrace{\begin{bmatrix} 0 & -M_{p}\ell\dot{\theta}\sin\theta \\ 0 & 0 \end{bmatrix}}_{C(q,\dot{q})} \begin{bmatrix} \dot{x} \\ \dot{\theta} \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ -M_{p}g\ell\sin\theta \end{bmatrix}}_{G(q)} = \underbrace{\begin{bmatrix} F_{x} \\ \tau \end{bmatrix}}_{G(q)}$$

Trong chương tiếp theo, ta sẽ tiến hành thiết kế và mô phỏng các bộ điều khiển dựa trên hàm truyền đã thu được.

Kỹ thuật robot Trang 4/19

DETERMINING D-H PARAMETERS

2.1 Topic

Determine the Denavit-Hartenberg parameters for the robot model.

2.2 Theory

The Denavit-Hartenberg notation is introduced as a systematic method of describing the kinematic relationship $^{i-1}T_i$ using only four parameters [1]:

α Link twist Describe the link itself		Describe the link itself			
a	Link length				
d	Link offset	Describe the link's connection to neighboring link			
θ	Joint angle				
If the joint is:					
Re	Revolute: θ joint variable The other three are fixed link parameters				
Pr	Prismatic: d joint variable				

2.3 Application

We got the D-H table:

i	a_i	α_i	d_i	θ_i
1	0	0	0	θ_1
2	0	0	d_2	0
3	ℓ_3	0	0	0
4	ℓ_4	0	0	θ_4

Limitations of the D-H notation:

 $\ell_3 = 1000 \, \mathrm{mm}$

 $\ell_4=300\,\mathrm{mm}$

 $d_2 \in [2150; 2750]$

 $\theta_1 \in [0^\circ; 360^\circ]$

 $\theta_4 \in [-90^{\circ}; 90^{\circ}]$

KINEMATIC PROBLEM

3.1 Topic

Formulate the forward kinematic problem. Then determine the coordinates of the endpoint according to the three joint variables. Make a plot for a certain case.

3.2 Theory

The transformation matrix $i^{-1}T$ to transform coordinate frames B_i to B_i-1 is represented as a product of four basic transformations using parameters of link (i) and joint i

$$\frac{1}{i}T = \begin{bmatrix}
\cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & a_i\cos(\theta_i) \\
\sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & a_i\sin(\theta_i) \\
0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\
0 & 0 & 0 & 1
\end{bmatrix}$$
(3.1)

To find the single transformation that relates frame $\{i\}$ to frame $\{0\}$, the transformation matrices of every link are then multiplied together:

$${}_{i}^{0}T = {}_{1}^{0} T {}_{2}^{1}T \dots {}_{i}^{i-1}T \tag{3.2}$$

This transformation ${}_{i}^{0}T$ is a function of all i joint variables. If the robot's joint-position sensors are queried, the Cartesian position and orientation of the end effector could be computed by ${}_{i}^{0}T$.

3.3 Application

We have:

$${}^{0}T_{1} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & 0\\ \sin\theta_{1} & \cos\theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3.3)$$

$${}^{1}T_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3.4)$$

$${}^{2}T_{3} = \begin{bmatrix} 1 & 0 & 0 & \ell_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3.5)$$

$${}^{3}T_{4} = \begin{bmatrix} \cos\theta_{4} & -\sin\theta_{4} & 0 & \ell_{4} \cdot \cos\theta_{4} \\ \sin\theta_{4} & \cos\theta_{4} & 0 & \ell_{4} \cdot \sin\theta_{4} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.6)

Thus

$${}^{0}T_{4} = {}^{0}T_{1} \cdot {}^{1}T_{2} \cdot {}^{2}T_{3} \cdot {}^{3}T_{4} = \begin{bmatrix} \cos(\theta_{1} + \theta_{4}) & -\sin(\theta_{1} + \theta_{4}) & 0 & \ell_{4} \cdot \cos(\theta_{1} + \theta_{4}) + \ell_{3} \cdot \cos\theta_{1} \\ \sin(\theta_{1} + \theta_{4}) & \cos(\theta_{1} + \theta_{4}) & 0 & \ell_{4} \cdot \sin(\theta_{1} + \theta_{4}) + \ell_{3} \cdot \sin\theta_{1} \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In conclusion, we have the solution for the forward kinematic problem as below

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \ell_4 \cdot \cos(\theta_1 + \theta_4) + \ell_3 \cdot \cos \theta_1 \\ \ell_4 \cdot \sin(\theta_1 + \theta_4) + \ell_3 \cdot \sin \theta_1 \\ d_2 \end{bmatrix}$$
(3.7)

Make a plot for a certain case:

During the time t from 0s to 10s, the input $(\theta_1, d_2, \theta_4)$ gradually increases from $(0^{\circ}, 2200, 0^{\circ})$ to $(90^{\circ}, 2700, 90^{\circ})$. Using MATLAB, the position (x, y, z) of the end-effector can be plotted as below:

Kỹ thuật robot Trang 7/19

Hình 3.1: The position of the end-effector (x, y, z) with respect to time

Solution check:

- At time t = 0 s, the end-effector is at position (x, y, z) = (1300, 0, 2200) mm. Correct!
- At time t=10 s, the end-effector is at position (x,y,z)=(-300,1000,2700) mm. Correct!

So we can confirm the accurate of the solution.

Kỹ thuật robot Trang 8/19

INVERSE KINEMATIC PROBLEM

4.1 Topic

Formulate the inverse kinematic problem. Then determine the three joint values according to the coordinates of the end-point. Make a plot for a certain case.

4.2 Theory

Inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain which is, in this project, the position of the end effector of a robot arm [1].

4.3 Application

We have the forward kinematic equation:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \ell_4 \cdot \cos(\theta_1 + \theta_4) + \ell_3 \cdot \cos\theta_1 \\ \ell_4 \cdot \sin(\theta_1 + \theta_4) + \ell_3 \cdot \sin\theta_1 \\ d_2 \end{bmatrix}$$

The position of the end-effector (X,Y,Z) can be extracted from the matrix as below:

$$x = \ell_4 \cdot \cos(\theta_1 + \theta_4) + \ell_3 \cdot \cos\theta_1 \tag{4.1}$$

$$y = \ell_4 \cdot \sin(\theta_1 + \theta_4) + \ell_3 \cdot \sin \theta_1 \tag{4.2}$$

$$z = d_2 \tag{4.3}$$

(4.4)

From (2.1) and (2.2) we have

$$x^{2} + y^{2} = \ell_{4}^{2} + \ell_{3}^{2} + 2\ell_{3} \cdot \ell_{4} \left[\cos(\theta_{1} + \theta_{4}) \cdot \cos \theta_{1} + \sin(\theta_{1} + \theta_{4}) \cdot \sin \theta_{1} \right]$$

$$= \ell_{4}^{2} + \ell_{3}^{2} + 2\ell_{3} \cdot \ell_{4} \cos(\theta_{1} + \theta_{4} - \theta_{1})$$

$$= \ell_{4}^{2} + \ell_{3}^{2} + 2\ell_{3} \cdot \ell_{4} \cos(\theta_{4})$$

Set

$$a = \cos(\theta_4) = \frac{x^2 + y^2 - \ell_4^2 - \ell_3^2}{2\ell_3 \cdot \ell_4}$$

Thus

$$\theta_4 = \operatorname{atan2}\left(\pm\sqrt{1-a^2}, a\right)$$

The x and y components can be expressed as:

$$x\cos\theta_1 + y\sin\theta_1 = \ell_4 \cdot \cos(\theta_1 + \theta_4)\cos\theta_1 + \ell_4 \cdot \sin(\theta_1 + \theta_4) \cdot \sin\theta_1 + \ell_3$$
$$= \ell_4 \cdot \cos(\theta_4) + \ell_3$$

We can rewrite

$$x \cos \theta_1 + y \sin \theta_1 = \sqrt{x^2 + y^2} \left(\frac{x}{\sqrt{x^2 + y^2}} \cos \theta_1 + \frac{y}{\sqrt{x^2 + y^2}} \sin \theta_1 \right)$$

Set

$$\cos \phi = \frac{x}{\sqrt{x^2 + y^2}}$$
$$\sin \phi = \frac{y}{\sqrt{x^2 + y^2}}$$
$$\phi = \operatorname{atan2}(y, x)$$

Thus we have

$$\sqrt{x^2 + y^2} \left(\cos \phi \cdot \cos \theta_1 + \sin \phi \cdot \sin \theta_1\right) = \ell_4 \cdot \cos(\theta_4) + \ell_3$$

Infer the following:

$$\cos(\theta_{1} - \phi) = \frac{\ell_{4} \cdot a + \ell_{3}}{\sqrt{x^{2} + y^{2}}}$$

$$\sin(\theta_{1} - \phi) = \pm \frac{\sqrt{x^{2} + y^{2} - (\ell_{4} \cdot a + \ell_{3})^{2}}}{\sqrt{x^{2} + y^{2}}}$$

$$\Rightarrow \theta_{1} - \phi = \operatorname{atan2}\left(\pm \sqrt{x^{2} + y^{2} - (\ell_{4} \cdot a + \ell_{3})^{2}}, \ell_{4} \cdot a + \ell_{3}\right)$$

$$\Rightarrow \theta_{1} = \phi + \operatorname{atan2}\left(\pm \sqrt{x^{2} + y^{2} - (\ell_{4} \cdot a + \ell_{3})^{2}}, \ell_{4} \cdot a + \ell_{3}\right)$$

$$= \operatorname{atan2}(y, x) + \operatorname{atan2}\left(\pm \sqrt{x^{2} + y^{2} - (\ell_{4} \cdot \cos(\theta_{4}) + \ell_{3})^{2}}, \ell_{4} \cdot \cos(\theta_{4}) + \ell_{3}\right)$$

Conclusion, we have the following solution for the inverse kinematic problem:

$$\begin{cases} \theta_1 = \operatorname{atan2}(y, x) + \operatorname{atan2}\left(\pm\sqrt{x^2 + y^2 - (\ell_4 \cdot \cos(\theta_4) + \ell_3)^2}, \ell_4 \cdot \cos(\theta_4) + \ell_3\right) \\ d_2 = z \\ \theta_4 = \operatorname{atan2}\left(\pm\sqrt{1 - a^2}, a\right) \end{cases}$$

Kỹ thuật robot Trang 10/19

or can rewrite as:

$$\begin{bmatrix} \theta_1 \\ d_2 \\ \theta_4 \end{bmatrix} = \begin{bmatrix} \tan 2(y, x) + \tan 2\left(\pm\sqrt{x^2 + y^2 - (\ell_4 \cdot \cos(\theta_4) + \ell_3)^2}, \ell_4 \cdot \cos(\theta_4) + \ell_3\right) \\ \frac{Z}{\tan 2\left(\pm\sqrt{1 - a^2}, a\right)} \end{bmatrix}$$

with

$$a = \frac{x^2 + y^2 - \ell_4^2 - \ell_3^2}{2\ell_3 \cdot \ell_4}$$

Solution check:

As forward kinematic solution, with the input $(\theta_1, d_2, \theta_4) = (0^\circ, 2200, 0^\circ)$, the position of the end-effector is (x, y, z) = (1300, 0, 2200).

Using (x, y, z) = (1300, 0, 2200) as an input to inverse function, we got $(\theta_1, d_2, \theta_4) = (0^{\circ}, 2200, 0^{\circ})$.

Similarly, using (x, y, z) = (-300, 1000, 2700) as an input to inverse function, we got $(\theta_1, d_2, \theta_4) = (90^{\circ}, 2700, 90^{\circ})$. Correct.

So we can confirm the accurate of the solution.

Kỹ thuật robot Trang 11/19

Workspace

5.1 Topic

Give a comment on the workspace.

5.2 Theory

Existing of any solution raises the question of the manipulator's workspace, which is the volume of space that the end-effector of the manipulator can reach.

5.3 Application

We have:

$$\begin{cases} x = \ell_4 \cdot \cos(\theta_1 + \theta_4) + \ell_3 \cdot \cos \theta_1 \\ y = \ell_4 \cdot \sin(\theta_1 + \theta_4) + \ell_3 \cdot \sin \theta_1 \\ z = d_2 \end{cases}$$

With:

- $\ell_3 = 1000 \, \text{mm}$
- $\ell_4 = 300 \, \text{mm}$
- $d_2 \in [2150; 2750]$
- $\theta_1 \in [0^\circ; 360^\circ]$
- $\theta_4 \in [-90^\circ; 90^\circ]$

Next:

$$x^{2} + y^{2} = \ell_{4}^{2} + \ell_{3}^{2} + 2\ell_{3}\ell_{4}\cos(\theta_{4})$$
$$\Leftrightarrow \cos(\theta_{4}) = \frac{x^{2} + y^{2} - \ell_{4}^{2} - \ell_{3}^{2}}{2\ell_{3}\ell_{4}}$$

We also have:

$$0 \le \cos(\theta_4) \le 1$$

$$\Rightarrow 0 \le x^2 + y^2 \le (\ell_4 + \ell_3)^2$$

Trường Đại Học Bách Khoa - ĐHQG TP. Hồ Chí Minh Khoa Cơ Khí - Bộ môn Cơ điện tử

$$\Rightarrow \begin{cases} 0 \le x^2 + y^2 \le 1690000 \\ d_2 \in [2150; 2750] \\ \theta_1 \in [0^\circ; 360^\circ] \\ \theta_4 \in [-90^\circ; 90^\circ] \end{cases}$$

To simplify matters, we remove the mechanical constraint, the joints can be fully rotated. Therefore, our workspace is idealized.

Kỹ thuật robot Trang 13/19

JACOBIAN MATRIX

6.1 Topic

Formulate the Jacobian matrix for this robot. Is there any singularity?

6.2 Theory

The Jacobian is a multidimensional form of the derivative. The 6 x 6 matrix of partial derivatives is the Jacobian J, as mapping velocities in X to those in Y.

In the field of robotics, Jacobians are used to relate joint velocities to Cartesian velocities of the tip of the arm.

$${}^{0}\mathbf{V} = {}^{0}J(\theta)\,\dot{\theta}$$

All manipulators have singularities at:

- The boundary of their workspace.
- Most have loci of singularities inside their workspace.

6.3 Application

Vector of joint variables:

$$\mathbf{Q} = \begin{bmatrix} \theta_1 & d_2 & \theta_4 \end{bmatrix}^T$$

Position vector **X**:

$$\mathbf{X} = \begin{bmatrix} p_x & p_y & d_2 & 0 & 0 & \theta_1 + \theta_4 \end{bmatrix}^T$$

$$= \begin{bmatrix} \ell_4 \cos(\theta_1 + \theta_4) + \ell_3 \cos \theta_1 & \ell_4 \sin(\theta_1 + \theta_4) + \ell_3 \sin \theta_1 & d_2 & 0 & 0 & \theta_1 + \theta_4 \end{bmatrix}^T$$

The Jacobian matrix J is the partial derivative of the position vector \mathbf{X} with respect to the joint variable vector \mathbf{q} :

$$J = \frac{\partial \mathbf{X}}{\partial \mathbf{q}} = \begin{bmatrix} \frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial d_2} & \frac{\partial p_x}{\partial \theta_4} \\ \frac{\partial p_y}{\partial \theta_1} & \frac{\partial p_y}{\partial d_2} & \frac{\partial p_y}{\partial \theta_4} \\ \frac{\partial d_2}{\partial \theta_1} & \frac{\partial d_2}{\partial d_2} & \frac{\partial d_2}{\partial \theta_4} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{\partial (\theta_1 + \theta_4)}{\partial \theta_1} & \frac{\partial (\theta_1 + \theta_4)}{\partial d_2} & \frac{\partial (\theta_1 + \theta_4)}{\partial \theta_4} \end{bmatrix}$$

$$= \begin{bmatrix} -\ell_4 \sin(\theta_1 + \theta_4) - \ell_3 \sin \theta_1 & 0 & -\ell_4 \sin(\theta_1 + \theta_4) \\ \ell_4 \cos(\theta_1 + \theta_4) + \ell_3 \cos \theta_1 & 0 & \ell_4 \cos(\theta_1 + \theta_4) \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\Rightarrow \text{ Ma trận điều khiển } \mathbf{J} = \begin{bmatrix} -\ell_4 \sin(\theta_1 + \theta_4) - \ell_3 \sin\theta_1 & 0 & -\ell_4 \sin(\theta_1 + \theta_4) \\ \ell_4 \cos(\theta_1 + \theta_4) + \ell_3 \cos\theta_1 & 0 & \ell_4 \cos(\theta_1 + \theta_4) \\ 0 & 1 & 0 \end{bmatrix}$

Kỹ thuật robot Trang 15/19

SIMULATING THE MOTION OF ROBOT

7.1 Topic

Simulate the motion of this robot to plot initial letters from the first names of your team members on a certain plane that is perpendicular to axis z_0 .

7.2 Theory

Simulate robot in simscape $(\theta_1, d_2, \theta_4)$ change from (0, 2200, 0) to $(90^\circ, 2700, 90^\circ)$.

Hình 7.1: Simulation of the robot

Apply to forward, get position of end-effector (x, y, z) with respect to time t

Hình 7.2: Simulation of the robot

7.3 Application

Modeling robot by Solidworks then convert to step file, this is suitable for Simscape Multibody Link.

Hình 7.3: Robot model in Solidworks

Model in Simscape Multibody Link

Kỹ thuật robot Trang 17/19

Hình 7.4: Robot model in Simscape Multibody Link

Block diagrams of Matlab Simulink is as the follow:

Hình 7.5: Block diagram of Matlab Simulink

Results of simulation:

Position (x,y,z) of robot from transsform sensor

Kỹ thuật robot Trang 18/19

Hình 7.6: Position of robot

Result on YZ plane

Hình 7.7: Result on YZ plane

Kỹ thuật robot Trang 19/19

Appendices