Report02 - Titanic: Machine Learning from Disaster

- 姓名 李晨
- 学号 2018202069

任务简介

- 1. 任务类型: 二元分类, 预测灾难中那些人可能幸存下来;
- 2. 背景介绍: 泰坦尼克号的沉没是历史上最臭名昭着的沉船之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在2224名乘客和机组人员中造成1502人死亡。这场耸人听闻的悲剧震惊了国际社会,并导致了更好的船舶安全规定。造成海难失事的原因之一是乘客和机组人员没有足够的救生艇。尽管幸存下沉有一些运气因素,但有些人比其他人更容易生存,比如妇女,儿童和上流社会。在这个挑战中,我们要求您完成对哪些人可能存活的分析。特别是,我们要求您运用机器学习工具来预测哪些乘客幸免于悲剧。
- 3. 数据介绍:
- training set (train.csv)
 训练数据包含了891名乘客的信息、信息的格式如下:

PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
乘客ID	幸存与否	船票级 别	姓名	性别	年龄	同行的兄弟 姐妹或配偶 总数	同行的父 母或孩子 总数	票号	票价	船舱 号	登船港口

将数据读入并快速了解数据

```
In [1]: import pandas as pd
import os.path as path
from matplotlib.pyplot import *
def readCsvData(fname):
    fname = path.join('data', fname + '.csv')
    table = pd.read_csv(fname, sep=',')
    return table

train = readCsvData('train')
test = readCsvData('test')
titanic = pd.concat((train, test), sort=True)
print(titanic.info())
#train.head(25)
test.head(25)
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 1309 entries, 0 to 417 Data columns (total 12 columns): Age 1046 non-null float64 295 non-null object Cabin Embarked 1307 non-null object 1308 non-null float64 Fare Name 1309 non-null object Parch 1309 non-null int64 1309 non-null int64 PassengerId Pclass 1309 non-null int64 1309 non-null object Sex SibSp 1309 non-null int64 Survived 891 non-null float64 Ticket 1309 non-null object dtypes: float64(3), int64(4), object(5)

memory usage: 132.9+ KB

None

Out[1]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Са
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	N
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	١
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	٨
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	١
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	١
5	897	3	Svensson, Mr. Johan Cervin	male	14.0	0	0	7538	9.2250	١
6	898	3	Connolly, Miss. Kate	female	30.0	0	0	330972	7.6292	١
7	899	2	Caldwell, Mr. Albert Francis	male	26.0	1	1	248738	29.0000	١
8	900	3	Abrahim, Mrs. Joseph (Sophie Halaut Easu)	female	18.0	0	0	2657	7.2292	١
9	901	3	Davies, Mr. John Samuel	male	21.0	2	0	A/4 48871	24.1500	١

10	902	3	llieff, Mr. Ylio	male	NaN	0	0	349220	7.8958	١
11	903	1	Jones, Mr. Charles Cresson	male	46.0	0	0	694	26.0000	١
12	904	1	Snyder, Mrs. John Pillsbury (Nelle Stevenson)	female	23.0	1	0	21228	82.2667	ĺ
13	905	2	Howard, Mr. Benjamin	male	63.0	1	0	24065	26.0000	١
14	906	1	Chaffee, Mrs. Herbert Fuller (Carrie Constance	female	47.0	1	0	W.E.P. 5734	61.1750	I
15	907	2	del Carlo, Mrs. Sebastiano (Argenia Genovesi)	female	24.0	1	0	SC/PARIS 2167	27.7208	٨
16	908	2	Keane, Mr. Daniel	male	35.0	0	0	233734	12.3500	١
17	909	3	Assaf, Mr. Gerios	male	21.0	0	0	2692	7.2250	١
18	910	3	Ilmakangas, Miss. Ida Livija	female	27.0	1	0	STON/O2. 3101270	7.9250	٨
19	911	3	Assaf Khalil, Mrs. Mariana (Miriam")"	female	45.0	0	0	2696	7.2250	١
20	912	1	Rothschild, Mr. Martin	male	55.0	1	0	PC 17603	59.4000	١
21	913	3	Olsen, Master. Artur Karl	male	9.0	0	1	C 17368	3.1708	١
22	914	1	Flegenheim, Mrs. Alfred (Antoinette)	female	NaN	0	0	PC 17598	31.6833	١
23	915	1	Williams, Mr. Richard Norris II	male	21.0	0	1	PC 17597	61.3792	Ν
24	916	1	Ryerson, Mrs. Arthur Larned (Emily Maria Borie)	female	48.0	1	3	PC 17608	262.3750	E E E

```
In [2]: corr_matrix = train.corr() corr_matrix["Survived"].sort_values(ascending=False) # ascending=False 降序排列
```

Out[2]: Survived 1.000000
Fare 0.257307
Parch 0.081629
PassengerId -0.005007
SibSp -0.035322
Age -0.077221
Pclass -0.338481

Name: Survived, dtype: float64

数据中 Age , Cabin , Embarked , Fare 均存在缺失值。

解决途径

数据的预处理

原始数据中有一些缺失项和无用项; PassengerId 是乘客身份编号,与 Survived 相关性很小, Cabin 缺失太多, Ticket 杂乱无章,将这些信息丢弃

```
In [3]: PsgIds = titanic.PassengerId
    titanic.drop(['Cabin', 'Ticket', 'PassengerId'], axis=1, inplace=Tr
    ue)
    titanic.head()
```

Out[3]:

	Age	Embarked	Fare	Name	Parch	Pclass	Sex	SibSp	Survived	
0	22.0	S	7.2500	Braund, Mr. Owen Harris	0	3	male	1	0.0	
1	38.0	С	71.2833	Cumings, Mrs. John Bradley (Florence Briggs Th	0	1	female	1	1.0	
2	26.0	S	7.9250	Heikkinen, Miss. Laina	0	3	female	0	1.0	
3	35.0	S	53.1000	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	1	female	1	1.0	
4	35.0	S	8.0500	Allen, Mr. William Henry	0	3	male	0	0.0	

^{*}数字化类别信息

```
In [4]: titanic.describe(include=["0"])
```

Out[4]:

In []:

	Embarked	Name	Sex
count	1307	1309	1309
unique	3	1307	2
top	S	Kelly, Mr. James	male
freq	914	2	843

Embarked 有三个值, 分配为(0,1,2) Sex 有两个值, 分配为(0,1)

Name 中有效的信息为人名的称呼,从称呼中可以提取到社会信息,我们将 Name 中的"Mr", "Mrs", "Master"等这些信息保留,然后分配类别信息

```
In [5]: titanic["Sex"] = titanic["Sex"].map({"female": 1, "male": 0}).astyp
e(int)
titanic["Embarked"] = titanic["Embarked"].map({"S": 0, "C": 1, "Q":
2})
import re
titles = set(re.findall(r', (.*?)\.', t)[0] for t in titanic.Name)
titleDict = dict(zip(titles, range(len(titles))))

# 将信息保存到 Name 列
titanic["Name"] = titanic.Name.str.extract(r', (.*?)\.')
#print(titanic["Name"])
titanic["Name"] = titanic["Name"].map(titleDict).astype(int)
```

对 Age, Embarked 和 Fare 的缺失项进行填充,首先查看每个数据的分布情况

```
In [6]: # 查看缺失项的分布情况
print(titanic.Age.describe())
print(titanic.Embarked.describe())
print(titanic.Fare.describe())
subplot(131).hist(titanic.Age)
subplot(132).hist(titanic.Fare)
subplot(133).hist(titanic.Fare)
```

```
1046.000000
        count
        mean
                    29.881138
        std
                    14.413493
        min
                     0.170000
        25%
                    21.000000
        50%
                    28.000000
        75%
                    39.000000
                    80.000000
        max
        Name: Age, dtype: float64
                  1307.000000
        count
        mean
                     0.394797
        std
                     0.653817
        min
                     0.00000
        25%
                     0.00000
        50%
                     0.00000
        75%
                     1.000000
                     2.00000
        max
        Name: Embarked, dtype: float64
                  1308.000000
                    33.295479
        mean
        std
                    51.758668
        min
                     0.00000
        25%
                     7.895800
        50%
                    14,454200
        75%
                    31.275000
                   512.329200
        max
        Name: Fare, dtype: float64
        /Users/lichen/anaconda3/lib/python3.6/site-packages/numpy/lib/hist
        ograms.py:754: RuntimeWarning: invalid value encountered in greate
        r equal
          keep = (tmp a >= first edge)
        /Users/lichen/anaconda3/lib/python3.6/site-packages/numpy/lib/hist
        ograms.py:755: RuntimeWarning: invalid value encountered in less e
        qual
          keep &= (tmp_a <= last_edge)</pre>
Out[6]: (array([1070., 154., 42.,
                                         4.,
                                               21.,
                                                       13.,
                                                                      0.,
        0.,
                    4.1),
                             51.23292, 102.46584, 153.69876, 204.93168, 256
         array([
```

307.39752, 358.63044, 409.86336, 461.09628, 512.3292]),

<a list of 10 Patch objects>)

.1646 ,

对缺失项的分布进行分析,对Age的缺失项取均值进行填充,对Embarked和Fare取众数进行填充

```
In [7]: # 取众数填充
FareMode = titanic['Fare'].mode().iloc[0]
titanic.fillna({ "Fare": FareMode}, inplace=True)
EmbMode = titanic['Embarked'].mode().iloc[0]
titanic.fillna({ "Embarked": EmbMode}, inplace=True)
AgeMean = titanic['Age'].mean()
titanic.fillna({ "Age": AgeMean}, inplace=True)
# print(titanic.info())
```

In [8]: print(titanic.Embarked.describe())

count	1309.000000
mean	0.394194
std	0.653499
min	0.000000
25%	0.00000
50%	0.000000
75%	1.000000
max	2.000000

Name: Embarked, dtype: float64

构建模型

此时处理过的信息与 Report 01 中的信息有些类似,同时这个问题也是二分类问题,使用KNN模型和随机森林模型进行预测。

1. 数据预处理

```
In [9]:

from sklearn.utils import shuffle
# 训练数据与测试数据分离

trainData = titanic[:len(train)]
# 将训练数据打乱

trainData = shuffle(trainData)
#分离标签

y_train = trainData.pop('Survived')
#trainData.drop('Survived', axis=1, inplace = True)
# 划分数据为2:8, 20%的数据用于测试
slash = int(trainData.shape[0] * 0.8)
trainTrain, y_trainTrain = trainData[:slash], y_train[:slash]
testTrain, y_testTrain = trainData[slash:], y_train[slash:]
```

1. KNN模型

```
In [10]: #训练KNN模型
         from sklearn import neighbors
         from sklearn.metrics import average precision score
         from sklearn.metrics import accuracy score
         import sklearn
         testCaseNum = testTrain.shape[0]
         # 对于给定的近邻 K 值, 计算其在分配的测试集上的效果
         def testNeighborNum(neighborNum):
             start = time.time()
             knn = neighbors.KNeighborsClassifier(n neighbors=neighborNum, n
         _jobs=-1)
             knn.fit(trainTrain, y trainTrain)
             output = knn.predict(testTrain)
             testTime = time.time() - start
             #print(output)
             # 定义判定标准为平均的正确率
             accuracy = accuracy score(y testTrain, output)
             TrainTime = time.time() - start
             avpr = average precision score(y testTrain, output)
             print(f'KNN Train time = {TrainTime:.2f}s')
             return [neighborNum,avpr,accuracy]
```

选取不同的K值进行实验、并画出K值与预测准确率的关系

```
In [11]: total, step = 50, 1
    result=[]
    for k in range(1, total+1, step):
        result.append(testNeighborNum(k))
    #result = np.array(result)
```

KNN Train time = 0.11s KNN Train time = 0.10sKNN Train time = 0.11s KNN Train time = 0.10s KNN Train time = 0.11s KNN Train time = 0.10sKNN Train time = 0.11s KNN Train time = 0.10sKNN Train time = 0.11s KNN Train time = 0.11sKNN Train time = 0.11s KNN Train time = 0.11s KNN Train time = 0.11s

```
In [12]: from matplotlib.pyplot import *
    result = np.array(result)
    figure(1)
    ax1 = subplot(121)
    plot(result[:,0],result[:,2])
    #title(r"$sin^2(x - 2) e^{-x^2}$")
    xlabel(' K')
    ylabel(' Accuracy ')
    ax2 = subplot(122)
    plot(result[:,0],result[:,1])
    xlabel(' K')
    ylabel('AUC')
```

Out[12]: Text(0, 0.5, 'AUC')

在之后的测试环节,选择 K=13进行测试

1. 随机森林算法

随机森林是一个包含多个决策树的分类器、输出的类型由输出的类别的众数而定。

```
In [13]: #trainData.head(15)
In [14]: #titanic.head(15)
```

```
In [15]: testData = titanic[len(train):]
#分离标签
testData.pop('Survived')
testData.head(15)
#trainData.drop('Survived', axis=1, inplace = True)
# 划分数据为2:8, 20%的数据用于测试
```

Out[15]:

	Age	Embarked	Fare	Name	Parch	Pclass	Sex	SibSp
0	34.500000	2.0	7.8292	3	0	3	0	0
1	47.000000	0.0	7.0000	12	0	3	1	1
2	62.000000	2.0	9.6875	3	0	2	0	0
3	27.000000	0.0	8.6625	3	0	3	0	0
4	22.000000	0.0	12.2875	12	1	3	1	1
5	14.000000	0.0	9.2250	3	0	3	0	0
6	30.000000	2.0	7.6292	0	0	3	1	0
7	26.000000	0.0	29.0000	3	1	2	0	1
8	18.000000	1.0	7.2292	12	0	3	1	0
9	21.000000	0.0	24.1500	3	0	3	0	2
10	29.881138	0.0	7.8958	3	0	3	0	0
11	46.000000	0.0	26.0000	3	0	1	0	0
12	23.000000	0.0	82.2667	12	0	1	1	1
13	63.000000	0.0	26.0000	3	0	2	0	1
14	47.000000	0.0	61.1750	12	0	1	1	1

```
In [16]: # FareMode = titanic['Fare'].mode().iloc
# titanic.fillna({ "Fare": FareMode}, inplace=True)
# print(testData.Fare.describe())
```

In [17]: #testData.info()

```
In [18]:

from sklearn.ensemble import RandomForestClassifier

# 建立随机森林模型

clf = RandomForestClassifier(n_estimators=500, random_state=0)

clf.fit(trainData, y_train)

# 预测

y_preds = clf.predict(testData)
```

```
In [19]: testPsgIds = PsgIds[len(train):].values
    submitFile = path.join('data', 'submit_probRf.csv')
    with open(submitFile, 'w+') as f:
        print('PassengerId', 'Survived', sep=',', file=f)
        for testPsgId, y_pred in zip(testPsgIds, y_preds):
            print(testPsgId, int(y_pred), sep=',', file=f)
```

随机森林准确率76.555%

总结

这次报告任务是实现对灾难中幸存人员预测,也是一个二分类问题。报告中我们使用了KNN近邻算法以及随机森林算法。这次报告的主要工作是对数据进行处理,我们将有很多缺失值的和部分无用的数据进行了舍弃,对部分缺失值进行简单的数据分析并进行补全,对所有的数据进行了数字化。在分类任务中,使用有效的分类算法很重要,对数据进行预处理分析也是十分重要的。