CE 5364 Groundwater Transport Phenomena Exercise Set 3

Exercises

1. A fuel mixture of benzene, toluene, ethylbenzene at mole fractions 0.075, 0.065, and 0.035 respectively equilibrates with the atmosphere at $25^{\circ}C$

Name	Structure	Molecular Weight	Solubility In Water	Soil-Water Partition Coefficient
Benzano		78.11	1780 mg/L	97
Toluene	СНЗ	92.1	500 mg/L	242
Xylene, ortho	Сна сна	106.17	170 mg/L	363
Xytene, meta	CH3	106.17	173 mg/L	182
Xylene, para	CH ₃	106.17	200 mg/L	331
Ethyl benzene	О—сн ₂ сн ₃	106.17	150 mg/L	622

Figure 4.13 Benzene related compounds.

Figure 1: Benzene Compounds - Structural diagrams and physical properties

ES3 Page 1 of 4

TABLE 7.1 Properties for Selected Organic Compounds

Compound/ Family	Formula	Specific Gravity	Solubility (mg/L)	Kow	Vapor Pressure (mm Hg)	Henry's Law (unitless)
		Fuels and	derivatives			
Benzene	C _e H _e	0.879	1750	130	ao	0.22
Ethylbenzene	C ₆ H _{sp}	0.867	152	1400	7	0.32
Phenoi	C,H,O	1.071	93,000	29	0.2	1,89 x 10 ⁻⁶
Toluene	C ₆ H ₅ OH ₃	0.866	535	130	22	0.26
o-Xylene	C6H4(CH2)2	0.880	175	890	5	0.22
		P	AHs			
Acenaphthene	C ₁₂ H ₁₀	1.069	3.42	10,000	0.01	0.321
Benzopyrene	C ₂₀ H ₁₂	1.35	0.0012	1.15×10^{9}	-	5.8 × 10*
Benzoperylena	C22H12	-	0.0007	3.24×10^{6}	-	5.8 × 10 ⁻⁴
Naphthalene	C ₁₀ H ₈	1.145	32	2900	0.23	4.9 × 10 ⁻²
Methyl naphthalene	C ₁₀ H ₃ CH ₃	1.025	25.4	13,000	-	0.0164
		Ket	ones			
Acetone	сн,сосн,	0.791	inf	0.6	89	0.00104
Methyl sthyl ketone	сн,сосн,сн,	0.805	2.68 × 10 ⁸	1.8	77.5	0.00181
	н	alogenate	ed aromatics			
Chlorobenzene	C _a H _a Ct	1.106	466	690	9	0.165
2-Chicrophenol	C4H4CIOH	1.241	29,000	15	1.42	7.4 × 10 ⁻⁴
ρ-Dichlorobenzene (1,4)	C ₆ H ₄ Cl ₂	1.458	79	3900	0.6	0.067
Hexachlorobenzene	C ₆ CI ₈	2044	0.008	1.7 x 10 ⁵	1 × 10 ⁻⁶	0.062
Pentachiorophenol	C _E OHCI ₃	1.978	14	1.0 x 10 ⁵	1 × 10 ⁻⁴	1.5 x 10 ⁻⁴
1,2,4-Trichlorobenzene	C,H,CI,	1,448	30	20,000	0.42	0.059
2,4,6-Trichlorophenol	C _e H _a Cl _a OH	1.490	800	74	0.012	_

Specific gravity at various temperatures; refer to Nyer and others (1991) for details; inf is infinite solubility Vapor pressure about 20 °C; 1 atm = 750 mm Hg. Modified from Nyer and others (1991). Reprinted by permission of Ground Water Monitoring Review Copyright © 1991. All rights reserved.

Figure 2: Physical properties for some organic compounds

Determine:

- (a) Concentration in the gas (air) phase of the three components in $\frac{mg}{L}$
- (b) Concentration in the gas (air) phase of the three components in $\frac{\mu g}{m^3}$

ES3 Page 2 of 4

2. (Modified from 6.22 pg. 592)

A well with effective diameter of 0.5 m fully penetrates an aquifer that has a uniform saturated thickness of 10 m. One hundred grams of benzene are spilled into the well, immediately dissolve, and mix into the water in the well. The seepage velocity is 30 m/yr in the x-direction, the longitudinal dispersivity is 1.0 m, and the transverse dispersivity is 0.1 m.

The aquifer has the following characteristics:

- Bulk density = 1.8 g/cc
- porosity = 0.30
- $f_{oc} = 1$ percent
- $K_{ow} = 135 \text{ L/kg}$

Determine:

- (a) The retardation factor R for benzene in this aquifer.
- (b) The maximum benzene concentration at t = 1 yr.
- (c) The location of this maximum.

ES3 Page 3 of 4

3. The following data for concentration of TCE were taken at a single monitoring well. Use the Mann-Kendall test (pp. 458-460) to determine whether the concentration has an upward or downward trend.

Table 1: TCE Observations in an Aquifer

Date	TCE (ppb)
9/92	8
12/92	19
3/93	21
6/93	13
9/93	39
12/93	24
3/94	28
6/94	25

Determine:

(a) The upward or downward concentration trend, using a Mann-Kendall test.

ES3 Page 4 of 4