

1. NumPy

2. Pandas

3. Matplotlib

NUMPY

Pacote fundamental para computação científica em Python

NUMPY

- Operações com vetores e matrizes de N dimensões
- É essencial para a computação científica com Python
- É baseado na linguagem C
- Ferramentas para álgebra linear
- Diversas operações algébricas básicas
 - Métricas estatísticas
 - Auto-decomposição

EXEMPLOS DE APLICAÇÃO

Uma **matriz** contendo:

- valores de um experimento/simulação em tempos discretos;
- sinal gravado por um equipamento de medição, por exemplo, ondas sonoras;
- pixels de uma imagem, escala de cinza ou coloridos;
- dados tridimensionais;

Por que é muito útil: é eficiente na questão da memória e provê operações numéricas rápidas.

NUMPY OBJECT

ndarray (array) - matriz n-dimensional homogênea

- o É uma tabela de elementos do **mesmo tipo**
- Indexados por uma tupla de números inteiros positivos
- As dimensões são chamadas de axes
- O tamanho dos axes é o shape
- o O número de *axes* é *rank*

Easy-to-use data structures and data analysis tools

PANDAS

- Estruturas de dados **rápidas**, **flexíveis** e **expressivas**
- Trabalhar com dados relacionais ou labeled de forma fácil e intuitiva
- Manipular e analisar dados de forma eficiente
- É bem adequado para diferentes **tipos de dados**:
 - dados tabulares com colunas heterogêneas (SQL table ou .xlsx)
 - o séries temporais ordenadas e não ordenadas
 - o matrizes com rótulos nas linhas e colunas **pandas**

DATA STRUCTURES

- Estruturas primárias: **Series** (1-d) e **DataFrame** (2-d)
- É construído sob o NumPy
- Funcionalidades para manipular e analisar dados de forma eficiente
- Coisas que o pandas **faz bem**:
 - o manipulação fácil de *missing data*
 - o **size mutability** colunas podem ser inseridas e excluídas
 - o **group** funcionalidade de agrupamento poderosa e flexível
 - o *converter* conversão de dados irregulares
 - label-based slicing
 - merging / joining
 - o ferramentas robusta de IO

DE VOLTA AO JUPYTER!

3. MATPLOTLIB

2D ploting library

MATPLOTLIB

- Biblioteca para geração de figuras 2D;
- Integração com Jupyter Notebook
- API Matlab-like chamada pyplot

MATPLOTLIB

- Diversos gráficos já implementados:
 - o plot(X,Y) gráfico de linha
 - scatter(X,Y,[c],[s]) gráfico de dispersão
 - o bar(names, values) gráfico de barras
 - hist(values, beans)- histograma

INTEGRAÇÃO COM PANDAS

- O pandas já traz métodos para gerar gráficos dos dataframes!
 - Gera para todas as colunas (ou subconjunto)
 - o Decide o gráfico adequado para o tipo do dado
 - o Gráfico pode ser personalizado pela API do Matplotlib

Ņμ	W

	BandName	WavelengthMax	WavelengthMin
0	CoastalAerosol	450	430
1	Blue	510	450
2	Green	590	530
3	Red	670	640
4	NearInfrared	880	850
5	ShortWaveInfrared_1	1650	1570
6	ShortWaveInfrared_2	2290	2110
7	Cirrus	1380	1360

PARA O JUPYTER E AVANTE!

ALLONS-5!