Discrete Choice Methods with Simulation

SECOND EDITION

Kenneth E. Train

CAMBRIDGE

Discrete Choice Methods with Simulation Second Edition

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum simulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as antithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. This second edition adds chapters on endogeneity and expectation-maximization algorithms. No other book incorporates all these topics, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.

Professor Kenneth E. Train teaches econometrics, regulation, and industrial organization at the University of California, Berkeley. He also serves as Vice President of National Economic Research Associates (NERA), Inc., in San Francisco, California. The author of *Optimal Regulation: The Economic Theory of Natural Monopoly* (1991) and *Qualitative Choice Analysis* (1986), Dr. Train has written more than 60 articles on economic theory and regulation. He chaired the Center for Regulatory Policy at the University of California, Berkeley, from 1993 to 2000 and has testified as an expert witness in regulatory proceedings and court cases. He has received numerous awards for his teaching and research.

Additional Praise for the First Edition of *Discrete Choice Methods with Simulation*

"Ken Train's book provides outstanding coverage of the most advanced elements of the estimation and usage of discrete choice models that require simulation to take account of randomness in the population under study. His writing is clear and understandable, providing both the new and experienced reader with excellent insights into and understanding of all aspects of these new and increasingly important methods."

- Frank S. Koppelman, *Northwestern University*

"This is a masterful book, authored by one of the leading contributors to discrete choice methods and analysis. No other book covers this ground with such up-to-date detail in respect of theory and implementation. The chapters on simulation and recent developments such as mixed logit are most lucid. As a text or reference work this volume should have currency for a long time. It will appeal to the practitioner as much as to the specialist researcher who has been in this field for many years."

- David Hensher, The University of Sydney

"Simulation-based estimation is a major advance in econometrics and discrete choice modeling. The technique has revolutionized both classical and Bayesian analysis. Ken Train's many papers have made a large contribution to this literature. *Discrete Choice Methods with Simulation* collects these results in a comprehensive, up-to-date source, with chapters on behavioral foundations, theoretical and practical aspects of estimation, and a variety of applications. This book is a thoroughly enjoyable blend of theory, analysis, and case studies; it is a complete reference for developers and practitioners."

- William Greene, New York University

Discrete Choice Methods with Simulation Second Edition

Kenneth E. Train

University of California, Berkeley, and NERA

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org

Information on this title: www.cambridge.org/9780521747387

© Kenneth E. Train 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Train, Kenneth.

Discrete choice methods with simulation / Kenneth E. Train. – 2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-521-76655-5 (hardback) – ISBN 978-0-521-74738-7 (pbk.)

1. Decision making – Simulation methods. 2. Consumers' preferences – Simulation methods. I. Title.

HD30.23.T725 2009 003'.56-dc22 2009020438

ISBN 978-0-521-76655-5 hardback ISBN 978-0-521-74738-7 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work are correct at the time of first printing, but Cambridge University Press does not guarantee the accuracy of such information thereafter.

To Daniel McFadden and in memory of Kenneth Train, Sr.

Contents

1	Introd	luction	page 1
	1.1	Motivation	1
	1.2	Choice Probabilities and Integration	3
	1.3	Outline of Book	7
	1.4	A Couple of Notes	8
Par	t I B	ehavioral Models	
2	Prope	rties of Discrete Choice Models	11
	2.1	Overview	11
	2.2	The Choice Set	11
	2.3	Derivation of Choice Probabilities	14
	2.4	Specific Models	17
	2.5	Identification of Choice Models	19
	2.6	Aggregation	29
	2.7	Forecasting	32
	2.8	Recalibration of Constants	33
3	Logit		34
	3.1	Choice Probabilities	34
	3.2	The Scale Parameter	40
	3.3	Power and Limitations of Logit	42
	3.4	Nonlinear Representative Utility	52
	3.5	Consumer Surplus	55
	3.6	Derivatives and Elasticities	57
	3.7	Estimation	60
	3.8	Goodness of Fit and Hypothesis Testing	67
	3.9	Case Study: Forecasting for a New	
		Transit System	71
	3.10	Derivation of Logit Probabilities	74
4	GEV		76
	4.1	Introduction	76
	4.2	Nested Logit	77

V111	Contents

	4.3	Three-Level Nested Logit	86
	4.4	Overlapping Nests	89
	4.5	Heteroskedastic Logit	92
	4.6	The GEV Family	93
5	Prob	it	97
	5.1	Choice Probabilities	97
	5.2		100
	5.3	Taste Variation	106
	5.4	Substitution Patterns and Failure of IIA	108
	5.5	Panel Data	110
	5.6	Simulation of the Choice Probabilities	114
6	Mixe	ed Logit	134
	6.1	Choice Probabilities	134
	6.2	Random Coefficients	137
	6.3	Error Components	139
	6.4	Substitution Patterns	141
	6.5	Approximation to Any Random Utility	
		Model	141
	6.6	Simulation	144
	6.7	Panel Data	145
	6.8	Case Study	147
7	Varia	ations on a Theme	151
	7.1	Introduction	151
	7.2	Stated-Preference and Revealed-Preference	
		Data	152
	7.3	Ranked Data	156
	7.4	Ordered Responses	159
	7.5	Contingent Valuation	164
	7.6	Mixed Models	166
	7.7	Dynamic Optimization	169
Par	t II	Estimation	
8	Num	erical Maximization	185
	8.1	Motivation	185
	8.2	Notation	185
	8.3	Algorithms	187
	8.4	Convergence Criterion	198
	8.5	Local versus Global Maximum	199
	8.6	Variance of the Estimates	200
	8.7	Information Identity	202

Contents ix

9	Draw	ring from Densities	205
	9.1	Introduction	205
	9.2	Random Draws	205
	9.3	Variance Reduction	214
10	Simu	lation-Assisted Estimation	237
	10.1	Motivation	237
	10.2	Definition of Estimators	238
		The Central Limit Theorem	245
	10.4	Properties of Traditional Estimators	247
	10.5	Properties of Simulation-Based	
		Estimators	250
	10.6	Numerical Solution	257
11	Indiv	idual-Level Parameters	259
	11.1	Introduction	259
	11.2	Derivation of Conditional Distribution	262
		Implications of Estimation of θ	264
	11.4	Monte Carlo Illustration	267
	11.5	Average Conditional Distribution	269
	11.6	Case Study: Choice of Energy	
		Supplier	270
	11.7	Discussion	280
12	Baye	sian Procedures	282
		Introduction	282
	12.2	Overview of Bayesian Concepts	284
	12.3	Simulation of the Posterior Mean	291
	12.4	Drawing from the Posterior	293
	12.5		
		of a Normal Distribution	294
	12.6	3	299
	12.7	Case Study: Choice of Energy Supplier	305
	12.8	Bayesian Procedures for Probit Models	313
13	Endo	geneity	315
	13.1	Overview	315
	13.2	The BLP Approach	318
	13.3	Supply Side	328
	13.4	Control Functions	334
	13.5	Maximum Likelihood Approach	340
	13.6	Case Study: Consumers' Choice among	
		New Vehicles	342

Contents

14 EM		Algorithms	347
	14.1	Introduction	347
	14.2	General Procedure	348
	14.3	Examples of EM Algorithms	355
	14.4	Case Study: Demand for Hydrogen Cars	365
	Biblic	ography	371
	Index		385