Practice Exercise Week #2 (part 1)

The even-numbered problems are selected from the required textbook. The answers to these problems are given in a separate file. The link to the answers to next to the link to this file.

Section 1.4.

Complete the following parts for each given function

- a) Graph the function.
- b) Draw lines tangent to the graph at the points with x-coordinates −2, 0, and 1.
- c) Find f'(x) by determining $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.
- **d)** Find f'(-2), f'(0), and f'(1). These slopes should match those of the lines you drew in part (b).

14.
$$f(x) = 5x^2 - 2x + 7$$

16.
$$f(x) = \frac{1}{x}$$

Find the equation of the tangent line based on given conditions

20. Find an equation of the line tangent to the graph of f(x) = -1/x at (a) (-1, 1); (b) $(2, -\frac{1}{2})$; (c) $(-5, \frac{1}{5})$.

20. (a)
$$y = x + 2$$
; (b) $y = \frac{1}{4}x - 1$; (c) $y = \frac{1}{25}x + \frac{2}{5}$

22. Find an equation of the line tangent to the graph of $f(x) = 4 - x^2$ at **(a)** (-1, 3); **(b)** (0, 4); **(c)** (5, -21).

22. (a)
$$y = 2x + 5$$
; (b) $y = 4$; (c) $y = -10x + 29$

Find the derivative of the following functions

46.
$$f(x) = x^5$$
 46. $f'(x) = 5x^4$

48.
$$f(x) = \sqrt{x}$$
 48. $f'(x) = \frac{1}{2\sqrt{x}}$

50.
$$f(x) = \frac{1}{\sqrt{x}}$$
 50. $f'(x) = -\frac{1}{2x\sqrt{x}}$

58. Let *F* be a function given by

$$F(x) = \begin{cases} x^2 + 1, & \text{for } x \le 2, \\ 2x + 1, & \text{for } x > 2. \end{cases}$$

- **a)** Verify that *F* is continuous at x = 2.
- **b)** Is *F* differentiable at x = 2? Why or why not?

58. (a) Limit is 5 and F(2) = 5, so F is continuous at x = 2.

(b) No, there is a corner at x = 2.

60. Let *H* be a function given by

$$H(x) = \begin{cases} 2x^2 - x, & \text{for } x \le 3, \\ mx + b, & \text{for } x > 3. \end{cases}$$

Determine the values of m and b that make H differentiable at x = 3.

60.
$$m = 11, b = -18$$

- **62.** Let $f(x) = -x^3$ over [0, 5]. Find c such that 0 < c < 5, where $f'(c) = \frac{f(5) f(0)}{5 0}$.
- **62.** $\frac{5}{\sqrt{3}}$