Quiz I(Answer keys)

Introduction to Quantum Computing (AI353)

Duration: 40 minutes

Date: 18/09/2025 Total marks: 20

- 1. (c) General qubit form: $|\psi\rangle = \cos(\frac{\theta}{2})|0\rangle + e^{i\phi}\sin(\frac{\theta}{2})|1\rangle$. Here $|\alpha| = \frac{1}{\sqrt{3}}$, so $\theta = 2\arccos(\frac{1}{\sqrt{3}})$, and phase $\phi = \frac{\pi}{2}$.
- 2. (a) $\Pr(\text{first qubit} = 0) = |a|^2 + |b|^2 = \frac{1}{3}$. Normalization forces $|c|^2 + |d|^2 = \frac{2}{3}$.
- 3. (a) $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ is Hermitian and unitary, eigenvalues ± 1 .
- 4. (a) Spectral decomposition: $Z = |0\rangle\langle 0| |1\rangle\langle 1|$.
- 5. (a) $U = \begin{bmatrix} 0 & e^{-i\pi/4} \\ e^{i\pi/4} & 0 \end{bmatrix}$ is unitary; maps $|0\rangle \to e^{i\pi/4} |1\rangle, \ |1\rangle \to e^{-i\pi/4} |0\rangle.$
- 6. **(b)** For $|\beta_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$, measuring the first qubit gives 0 or 1 (prob 1/2), leaving $|00\rangle$ or $|11\rangle$.
- 7. **(b)** Tensor product: $(|0\rangle + |1\rangle) \otimes (|0\rangle |1\rangle) = |00\rangle |01\rangle + |10\rangle |11\rangle$.
- 8. (b) Eigenvalues of any unitary lie on the unit circle: $e^{i\theta}$ for some real θ .
- 9. (a) $|\psi\rangle$ can be rewritten as: $|\psi\rangle = \frac{1}{\sqrt{2}}|\beta_{00}\rangle|+\rangle + \frac{1}{\sqrt{2}}|\beta_{01}\rangle|-\rangle$. Measuring first two qubits in Bell basis gives: with prob 1/2, $|\beta_{00}\rangle$ (third qubit $|+\rangle$), with prob 1/2, $|\beta_{01}\rangle$ (third qubit $|-\rangle$).
- 10. (b) In superdense coding, Alice applies X for bits "10".
- 11. (a) Closed system evolution is unitary: $|\psi'\rangle = U|\psi\rangle$.
- 12. (c) $|\psi_1\rangle, |\psi_2\rangle$ are orthogonal in the Hadamard basis, so measure in $\{|+\rangle, |-\rangle\}$.
- 13. (b) With A = X, the circuit maps $|0\rangle|1\rangle \mapsto |0\rangle|0\rangle$. So a suitable A exists.
- 14. (d) Without the first measurement, Bob lacks the Z^{M_1} correction. One classical bit is insufficient.
- 15. (a) Matrix representations in two bases are related linearly (please check tutorial 3, question 9).
- 16. (d) False: Positive operators are Hermitian with non-negative spectrum, so they do have a spectral decomposition.
- 17. **(b)** $P \otimes P$ is a projector: $(P \otimes P)^2 = P \otimes P$.
- 18. (a) Hadamard operator: $H = \frac{1}{\sqrt{2}} \left[(|0\rangle + |1\rangle) \langle 0| + (|0\rangle |1\rangle) \langle 1| \right]$.
- 19. (a) Measurement operators: $M_0 = |0\rangle\langle 0|, M_1 = |1\rangle\langle 1|$.
- 20. (a) Suppose $|\psi\rangle$ is an eigenstate of M with eigenvalue m. Then, $M|\psi\rangle=m|\psi\rangle$
 - $\mathbb{E}[M] = \langle \psi | M | \psi \rangle = \langle \psi | m | \psi \rangle = m \text{ and } \sigma(M) = \sqrt{\langle M^2 \rangle \langle M \rangle^2} = \sqrt{m^2 m^2} = 0$
 - Therefore, $\mathbb{E}[M] = m$ and $\sigma(M) = 0$.