Blending, Stacking Кантонистова Е.О.

CTEKИНГ (STACKING)

<u>Идея</u>: обучаем несколько разных алгоритмов и передаём их результаты на вход последнему, который принимает итоговое решение.

CTEKИНГ (STACKING)

- Пусть мы обучили N базовых алгоритмов $b_1(x), b_2(x), ..., b_N(x)$ на выборке X.
- Обучим теперь мета-алгоритм a(x) на прогнозах этих алгоритмов (т.е. прогнозы алгоритмов это по сути новые признаки):

$$\sum_{i=1}^{l} L(y_i, \mathbf{a}(b_1(x_i), b_2(x_i), \dots, b_N(x_i))) \to \min_{a}$$

• алгоритм a(x) будет больше опираться на предсказание тех алгоритмов, которые сильнее подогнались под обучающую выборку \Rightarrow будет переобучен.

CTEKИHГ (STACKING)

Решение: будем обучать базовые алгоритмы и мета-алгоритм на разных выборках.

- Разобъем выборку на K частей: $X_1, X_2, ..., X_K$.
- Пусть $b_j^{-k}(x)$ j-й алгоритм, обученный на всех блоках, кроме k-го.

Для обучения мета-алгоритма будем минимизировать функционал:

$$\sum_{k=1}^{K} \sum_{(x_i, y_i) \in X_k} L\left(y_i, a\left(b_1^{-k}(x_i), b_2^{-k}(x_i), \dots, b_N^{-k}(x_i)\right)\right) \to \min_{a}$$

• теперь алгоритм a обучается на объектах, на которых не обучались базовые алгоритмы \Rightarrow нет переобучения.

БЛЕНДИНГ (BLENDING)

Блендинг – это частный случай стекинга, в котором метаалгоритм линеен:

$$a(x) = \sum_{n=1}^{N} w_n b_n(x)$$

BLENDING I STACKING

Характеристика	Blending	Stacking
Разделение данных	Использует holdout-набор	Использует k-fold cross-validation
Использование данных	Потеря части данных (на holdout- набор)	Эффективно использует всю тренировочную выборку
Сложность реализации	Простая	Более сложная
Выбор метамодели	Простая модель (например, линейная регрессия)	Любая модель
Риск переобучения	Ниже	Выше
Точность	Обычно ниже	Обычно выше