YAKEEN 2.0

2024 2024

- Subject Physical Chemistry
- Chapter Ionic Equilibrium

By: Amit Mahajan Sir

Lecture No.- 1

Topics to be Covered

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your home work along with DPP.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

- 5 Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- 6. Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.
- 7. Don't watch the videos in high speed if you want to understand better.

NOT TODAY !!!

Revision Of Last Class

B(g) + ((g)

he-Chartilier's Perinciple

1) effect of Conc.

if (one of reactant ine =) eq. Wift forward in Endothermic on AH=(+) ve dec - - -

forward & -Penoduct inc = -der =>

2) effect of Temp exotherenic on AH=1-1/2 A(q) Heat orelies B(q)+((q) Heat abosons Toler shift backward n'

effect of Poor Vol. PT can V J. = eq. 8hift towards PJ con V T =	less no et geseous moles Persons greater
effect of Catalyst	
effect of addition of Inent gos	
a at Constt. Volume no effect. (b) at Constt. Perussione> VT : eq. 8	it towards greaten no of goscovs
(6) at Grett Perussione - 171 eq. of	mules

Various Concept of Acids & Bases

Arhenius Concept of Acids & Bases

Agrhenius acid - substance which gives Him (Proton) on Hzot ion (Hzobronium)

in water

farex: HU, HNO3, MSOMETC.

HUHHO -> HORHSO + CI

Dielectoric Constt. High 2 80

THNO3 + 400 -> Ht ANO3

H30t

H30t

Archenius base: substance which gives OH ion (Hydroxide ion) in water for ex: NaOH, KOH, Ca(OH)2.

NaoH+40 -> Na+ +OH

Limitations of Agrhenius Concept:

Limitations of Agrhenius Concept of Acid & base when solvent is

it Cannot explain Concept of Acid & base when solvent is

not water

Bronsted Acid

Bononsted acid:

Bubstance which is Capable of giving Ht ion

Bubstance which is Capable of giving Ht ion

Bonex: HCL, HSOH, HCO3, HCO3

HSOH,

Boronsted Bose: substance which Can accept Ht ion forex: CI, NO3, HSO4)

2) Amphipotic opecies: species which (an donate as well as accept Ht ion: (it (an act as both acid as well as base)

Hoson (C.A.)

(C.B.)

(C.B.)

Bases be like:

himitations of Bronsted Concept

this Concept is applicable only when species is Capable of accept on donate Ht ion.

Questions

#Q. Conjugate base of Bronsted acids H₂O and HF are:

- A H₃O⁺ and H₂F⁺, respectively
- B OH- and H₂F+, respectively
- C H₃O⁺ and F⁻, respectively
- OH⁻ and F⁻, respectively

Questions

#Q. Which one of the following species cannot as both Bronsted acid and base?

act.

bluis acid = substance which Can accept lone pain of electron > Incomplete octet.

Types of hewis acid-

Multiple bond with d-arbital Vacant Pusetc

Cations whose octet is not complete.

for ex; al, Bot, Rt, Not, H'etc.

molecule whose octet is not Complete

Can NHA act as lewis acid?

Mannot act as Lewis acid.

Cannot act as Lewis acid.

Types

Substance which Can donate lone pain of e

> Neutral moleule -> : NH3, HaO, etc

Jerex: (i) Bar, I, NO2 etc.

H ...

Questions

#Q. Which of the following is least likely to behave as Lewis Base?

Substance which dissociate in water to give ions

Strong Electrolyte

Substance which dissociate completely into ions in water.

For Ex.:- NaCl, Na₂SO₄ etc.

strong electrolyte > ~=

Substance which do not dissociate completely in water into ions.

Formic acid acetic acid

For Ex.:- HCOOH, CH₃COOH, HCN etc.

weak electrolyte > < < 1

NH40H (Ammonium hydroscide) Weak box.

4

Ostwald Dilution Law

applicable for weak electrolytes of a

<p

(ca) 1 CH3 COOH + 1 H2 O(1) = 1 CH3 (OO + 1H con 1 H3 ot (ca) t = 0t=t at eq) oc moles of CH3COOH are dissociated. C $C-\infty$ C-Cd Kc[Hgo]=(Ra)=[CM3Coo][H⁺]
[CM3Coon] KC = [CH3600] [H+] [CH3 COOH][HO] Jonisation Consttud acid Dissociation Constt. of acid-

$$Ka = \frac{Cd \times Cd}{C - Cd}$$

$$Ka = \frac{c^2 a^2}{\chi(1-a)}$$

NHYOH + Mgo = NHY + OHI

C-X

C-CX

CA

CA

CA

H OOstwald's dilution daw

MIT @ applicable for weak electrolytes: (d<1)

weak acid con weak bases;

(3)
$$K_a = \frac{Cd^2}{1-d} \int_{-d}^{2} d > 0.05$$
 $\frac{K_a}{C} > 25 \times 10^{-4}$
 $\frac{1}{2} d < 0.05$

1-22

$$K_b = \frac{C\alpha^2}{1-\alpha} \int_{-\infty}^{\infty} |\alpha| > 0.05$$

$$\frac{K_b}{1-\alpha} > 25 \times 10^{-4}$$

$$K_b = \frac{C\alpha^2}{1-\alpha} \int_{-\infty}^{\infty} |\alpha| < 0.05$$

$$K_b = \frac{C\alpha^2}{1-\alpha} \int_{-\infty}^{\infty} |\alpha| < 0.05$$

$$K_b = \frac{C\alpha^2}{1-\alpha} \int_{-\infty}^{\infty} |\alpha| < 0.05$$

(4) 1 age dissociation = 0 × 100 (5) 2 = [Ka an 2 = 1 Kb

Questions

#Q. Find α for 0.1 M CH₃COOH if $K_a = 18 \times 10^{-9}$.

$$2 - \sqrt{\frac{18 \times 10^{-9}}{10^{-1}}} = \sqrt{\frac{18 \times 10^{-8}}{18 \times 10^{-8}}} = 3\sqrt{2} \times 10^{-4}$$

Questions

#Q. The K_a of a weak monobasic acid is 1×10^{-5} . The percentage of ionization in a decimolar acid solution is:

A 0.1%

-1. age dissociation = of × 100 = 102×100=11.

restro + 26

Lec- \$ to hec-3 = elec. Revise.

Recoorded summary hec -> &. O.M.

Home Work from Modules

Exencise-1 > 992, 995, 996, 997, 998, 999, 9100

