DynTxRegime

An R Package for Dynamic Treatment Regimes

Shannon Holloway

DPHS, Duke University

February 6, 2025

Outline

- Background
- 2 modelObj
 - Requirements for modelObj in DynTxRegime
- Toy Dataset
- Opposition of the property of the property
 - Outcome Regression (Q-Learning)
 - Value Search
 - Classification
 - Outcome Weighted Learning
- Conclusion

Acknowledgements

Innovative Methods Program for Advancing Clinical Trials

- A joint venture of Duke, UNC-Chapel Hill, and NC State
- Supported by NCI Program Project P01 CA142538 (2010-2021)
- Statistical methods for precision cancer medicine

Goal

 $\ensuremath{\mathsf{DynTxRegime}}$ was envisioned to be a toolkit for all things related to estimating DTRs

Guiding principles:

- User-friendly straightforward and consistent inputs and post-processing
- General minimal artificial limitation of coding choices
- Expandable design task oriented design (S4 dominated structure)

Goal

 $\ensuremath{\mathsf{DynTxRegime}}$ was envisioned to be a toolkit for all things related to estimating DTRs

Guiding principles:

- User-friendly straightforward and consistent inputs and post-processing
- General minimal artificial limitation of coding choices
- Expandable design task oriented design (S4 dominated structure)
- Efficient? generalization first priority

Key Challenge

Existing DTR packages

- made limiting assumptions about the types of models
- difficult to extend to > 2 points

How to allow for general specification of multiple regression steps?

Key Challenge

Existing DTR packages

- made limiting assumptions about the types of models
- difficult to extend to > 2 points

How to allow for general specification of multiple regression steps?

Our solution – the modelObj package.

We start here

Key Challenge

Existing DTR packages

- made limiting assumptions about the types of models
- difficult to extend to > 2 points

How to allow for general specification of multiple regression steps?

Our solution – the modelObj package.

We start here

Do you have the package installed?

library(package = modelObj)

Outline

- Background
- 2 modelObj
 - Requirements for modelObj in DynTxRegime
- Toy Dataset
- DynTxRegime
 - Outcome Regression (Q-Learning)
 - Value Search
 - Classification
 - Outcome Weighted Learning
- Conclusion

What is it?

- modelObj encapsulates the regression steps as modeling object
- Allows for simple "plug and play" structure for new methods
- \bullet Shifts the regression from method implementation \to user input

What is it?

- modelObj encapsulates the regression steps as modeling object
- Allows for simple "plug and play" structure for new methods
- ullet Shifts the regression from method implementation o user input
- A Class with state variables and behaviors
 - State variables define the
 - method for obtaining parameter estimates, and
 - method for obtaining predictions
 - Behavior

model.

- · 'obtain parameter estimates'
- 'make predictions'

What is it?

- modelObj encapsulates the regression steps as modeling object
- Allows for simple "plug and play" structure for new methods
- ullet Shifts the regression from method implementation o user input
- A Class with state variables and behaviors
 - State variables define the
 - model,method for obtaining parameter estimates, and
 - method for obtaining predictions
 - Behavior
 - · 'obtain parameter estimates'
 - 'make predictions'
- Users have complete control over all modeling steps.

```
str(object = buildModelObj)
function (model, solver.method = NULL, solver.args = NULL,
    predict.method = NULL, predict.args = NULL)
```

```
str(object = buildModelObj)
function (model, solver.method = NULL, solver.args = NULL,
    predict.method = NULL, predict.args = NULL)
```

- model: "formula"; the model
 - Standard R "formula" object $y \sim x$
 - Left-hand-side variable ignored; can (should) be omitted
 - response variable is input varianle of behavior fit()

```
str(object = buildModelObj)
function (model, solver.method = NULL, solver.args = NULL,
    predict.method = NULL, predict.args = NULL)
```

- solver.method: "character"; name of the R function to be used to obtain parameter estimates
 - 'lm', 'glm', 'nls'
- solver.args: "list"; additional arguments for solver.method

solver.args = list(family = "binomial")

```
str(object = buildModelObj)
function (model, solver.method = NULL, solver.args = NULL,
    predict.method = NULL, predict.args = NULL)
```

- solver.method: "character"; name of the R function to be used to obtain parameter estimates
 - 'lm', 'glm', 'nls'
- solver.args: "list"; additional arguments for solver.method

```
str(object = glm)
function (formula, family = gaussian, data, weights,
    subset, na.action, start = NULL, etastart, mustart,
    offset, control = list(...), model = TRUE, method = "glm.fit",
    x = FALSE, y = TRUE, singular.ok = TRUE, contrasts = NULL,
    ...)
```

```
str(object = buildModelObj)
function (model, solver.method = NULL, solver.args = NULL,
    predict.method = NULL, predict.args = NULL)
```

 $\ensuremath{\mathsf{predict.method}}$: "character"; name of the R function to be used to obtain predictions

'predict.lm', 'predict.glm', 'predict'

predict.args: "list"; additional arguments for predict.method

```
str(object = buildModelObj)
function (model, solver.method = NULL, solver.args = NULL,
    predict.method = NULL, predict.args = NULL)
```

 $\operatorname{predict.method}$: "character"; name of the R function to be used to obtain predictions

• 'predict.lm', 'predict.glm', 'predict'

predict.args: "list"; additional arguments for predict.method

Assume we have covariates (x_1, x_2, x_3) and a continuous response variable y

Assume we have covariates (x_1, x_2, x_3) and a continuous response variable y

• Postulate a model $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

Assume we have covariates (x_1, x_2, x_3) and a continuous response variable y

- Postulate a model $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$
- Specify the method to obtain parameter estimate
 - Ordinary least squares ('lm')
 - Maximum likelihood estimation ('glm')
 - Elastic net regression ('glmnet')
 - ...

Assume we have covariates (x_1, x_2, x_3) and a continuous response variable y

- Postulate a model $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$
- Specify the method to obtain parameter estimate
 - Ordinary least squares ('lm')
 - Maximum likelihood estimation ('glm')
 - Elastic net regression ('glmnet')
 - .
- Specify the method to obtain predictions:
 - predict.lm(), predict.glm()
 - Most tools are designed to dispatch predict()

Assume we have covariates (x_1, x_2, x_3) and a continuous response variable y

- Postulate a model $y \sim \beta_0 + \beta_1 \ x_1 + \beta_2 \ x_2 + \beta_3 \ x_3$
- Specify the method to obtain parameter estimate
 - Ordinary least squares ('lm')
 - Maximum likelihood estimation ('glm')
 - Elastic net regression ('glmnet')
 - ...
- Specify the method to obtain predictions:
 - predict.lm(), predict.glm()
 - Most tools are designed to dispatch predict()

Construct modeling object assuming OLS using 1m...

Assume we have covariates (x_1, x_2, x_3) and a continuous response variable y

- Postulate a model $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$
- Specify the method to obtain parameter estimate
 - Ordinary least squares ('lm')
 - Maximum likelihood estimation ('glm')
 - Elastic net regression ('glmnet')
 - ...
- Specify the method to obtain predictions:
 - predict.lm(), predict.glm()
 - Most tools are designed to dispatch predict()

Construct modeling object assuming OLS using 1m...

Assume we have covariates (x_1, x_2, x_3) and a continuous response variable y

- Postulate a model $y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$
- Specify the method to obtain parameter estimate
 - Ordinary least squares ('lm')
 - Maximum likelihood estimation ('glm')
 - Elastic net regression ('glmnet')
 - ...
- Specify the method to obtain predictions:
 - predict.lm(), predict.glm()
 - Most tools are designed to dispatch predict()

Construct modeling object assuming OLS using 1m...

If outcome is binary

• Postulate a logistic regression model

$$logit(y) \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

- Specify the method to obtain parameter estimate
 - Maximum likelihood estimation ('glm')
 - Elastic net regression ('glmnet')
 - ...

If we choose glm, how would this model object differ from the previous?

If outcome is binary

Postulate a logistic regression model

$$logit(y) \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

- Specify the method to obtain parameter estimate
 - Maximum likelihood estimation ('glm')
 - Elastic net regression ('glmnet')
 - ...

If we choose glm, how would this model object differ from the previous?

There's a lot more . . .

We've glossed over a few details. For the applications in this class, they are not important.

For the record:

- solver.method must have a corresponding predict.method It does not have to have coef(), residuals(), plot(), etc.
- Function specified in solver.method must take
 - A "formula" object and a "data.frame" object; OR
 - A design matrix (X) and a response vector (Y)
- Function specified by predict.method must take the regression value object and a "data.frame" object
- Can define your own regression and predictions methods.

Requirements for modelObj in DynTxRegime

Propensity Regression

"modelObj" $\frac{1}{m}$ must specify that predictions are returned on the scale of the probability, i.e., in the interval (0,1)

For glm()/predict.glm(), default is scale of linear predictors

Outcome Regression

"modelObj" $\color{red}\text{must}$ specify that predictions are returned on the scale of the response

For Im()/predict.Im(), default is scale of the response

Outcome Regression

Specified using two "modelObj" objects

$$y \sim \mu + A C$$

- ullet Specify μ as a "modelObj" object and/or C as a "modelObj" object
- Can specify different model structures for each component
 - ullet a linear model for μ and a non-linear model for C
- $m{ ilde{\mu}}$ and C are combined into a single model if possible, iterative procedure used otherwise

Responsible Model Selection

WARNING!!

DynTxRegime and **modelObj** do **NOT** check for appropriateness of models

Responsible model selection is the **responsibility** of the *user*

Outline

- Background
- 2 modelOb
 - Requirements for modelObj in DynTxRegime
- Toy Dataset
- Opposition of the property of the property
 - Outcome Regression (Q-Learning)
 - Value Search
 - Classification
 - Outcome Weighted Learning
- Conclusion

Load Data

```
df <- read.csv(file = "path/st790Data.txt", header = TRUE)</pre>
```

Summary Statistics

```
summary(object = df)
```

```
x2
                                     x3
     ×1
Min.
      :-3.40000 Min. :0.000
                               Min. : 0.640
1st Qu.:-0.67000 1st Qu.:0.000 1st Qu.: 7.997
Median :-0.04000 Median :0.000 Median :10.120
Mean
      :-0.02656
               Mean
                       :0.306
                               Mean
                                     :10.072
3rd Qu.: 0.62000 3rd Qu.:1.000
                               3rd Qu.:12.105
Max. : 3.20000 Max. :1.000
                               Max. :19.500
     Α
      :0.000
              Min. :-5.0600
Min.
1st Qu.:0.000 1st Qu.:-1.3100
Median:0.000
              Median :-0.3000
Mean
      :0.374 Mean
                    :-0.3138
              3rd Qu.: 0.7025
3rd Qu.:1.000
Max.
      :1.000
              Max.
                    : 3.9900
```

Outline

- Background
- 2 modelObj
 - Requirements for modelObj in DynTxRegime
- Toy Dataset
- OynTxRegime
 - Outcome Regression (Q-Learning)
 - Value Search
 - Classification
 - Outcome Weighted Learning
- Conclusion

Ready?

Do you have the package installed?

library(package = DynTxRegime)

Outcome Regression (Q-Learning)

Outcome Regression (Q-Learning)

Recall:

Estimator for dopt

$$\widehat{d}_{Q}^{opt}(h) = \arg\max_{a \in \mathcal{A}} Q(h, a; \widehat{\beta}),$$

where

$$E(Y|H=h, A=a)=Q(h, a)$$

and $Q(h, a; \beta)$ is the posited model for Q(h, a).

Estimator for the value $V(d^{opt}) = E\{Y^*(d^{opt})\}$

$$\widehat{\mathcal{V}}_{Q}(d^{opt}) = \frac{1}{n} \sum_{i=1}^{n} \max_{a \in \mathcal{A}} Q(H_{i}, a; \widehat{\beta})$$

Both estimators are obtained using qLearn()

```
str(object = qLearn)
```

function (..., moMain, moCont, data, response, txName, fSet = NULL, iter = OL, verbose = TRUE)

Argument	Class	Description
		Ignored. Included to require named input.
moMain	modelObj	for main effects terms (mu)
moCont	modelObj	for terms interacting with treatment (C)
data	data.frame	covariates and treatment history
response	vector	outcome of interest
txName	character	treatment variable name
fSet		not used in single stage analyses
iter	integer	if $>$ 0, iterative methods used
verbose	logical	if FALSE, screen prints suppressed

function (..., moMain, moCont, data, response, txName, fSet = NULL, iter = OL, verbose = TRUE)

Postulate a model for Q(h, a). Recall, $\sim \mu + AC$

$$Q(h, a; \beta) = \overbrace{\beta_0 + \beta_1 \ x_1 + \beta_2 \ x_2}^{\mu} + A\{ \underbrace{\beta_3 + \beta_4 \ x_2 + \beta_5 \ x_3}_{C} \}$$

Use OLS with a single model

Try to create the "modelObj".

```
str(object = qLearn)
```

function (..., moMain, moCont, data, response, txName, fSet = NULL, iter = OL, verbose = TRUE)

Postulate a model for Q(h, a). Recall, $\sim \mu + AC$

$$Q(h, a; \beta) = \overbrace{\beta_0 + \beta_1 \ x_1 + \beta_2 \ x_2}^{\mu} + A\{ \underbrace{\beta_3 + \beta_4 \ x_2 + \beta_5 \ x_3}_{C} \}$$

Use OLS with a single model

Try to create the "modelObi".

Should we specify the iterative algorithm (iter > 0)?

```
str(object = qLearn)
function (..., moMain, moCont, data, response, txName,
    fSet = NULL, iter = OL, verbose = TRUE)
```

- data is a complete dataset, (df)
- response is the "vector" outcome of interest (df\$y)
- txName is the treatment variable name, ("A")
- fSet, iter, and verbose will stay their default values

```
Dyn IxRegin
```

First step of the Q-Learning Algorithm.

Outcome regression.

Combined outcome regression model: $\sim x1+x2 + A + A:(x2+x3)$.

Regression analysis for Combined:

Call:

 $lm(formula = YinternalY \sim x1 + x2 + A + x2:A + A:x3, data = data)$

Coefficients:

(Intercept) x1 x2 A -0.29653 0.82166 0.38095 1.28550 x2:A A:x3 -0.02217 -0.13897

Recommended Treatments:

0 1 617 383

Estimated value: -0.08377312

Methods available:

Method	Description
Call(name)	retrieve the unevaluated call
<pre>coef(object)</pre>	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value object returned for regression steps
optTx(object)	retrieve recommended optimal treatments for training data
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value object returned for outcome regression
<pre>plot(x, suppress)</pre>	plot regression results
summary(object)	retrieve regression summaries

Methods available: Model Diagnostics

Method	Description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value object returned for regression steps
optTx(object)	retrieve recommended optimal treatments for training data
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value object returned for outcome regression
<pre>plot(x, suppress)</pre>	plot regression results
summary(object)	retrieve regression summaries

\$outcome

\$outcome\$Combined

(Intercept) x1 x2 A x2:A -0.29653461 0.82165693 0.38094720 1.28549787 -0.02217292 A:x3 -0.13897217

- The returned object is a list
 - The coefficient are for the 'outcome' model
 - 'Combined' = moMain + A:moCont
 - Iterative procedure returns element 'moMain' and 'moCont' individually

```
fit0bj <- fit0bject(object = q0bj)
fit0bj</pre>
```

\$outcome

\$outcome\$Combined

Call:

lm(formula = YinternalY ~ x1 + x2 + A + x2:A + A:x3, data = data)

Coefficients:

```
fit0bj <- fit0bject(object = q0bj)</pre>
fit0bj
```

\$outcome Soutcome \$Combined

Call:

 $lm(formula = YinternalY \sim x1 + x2 + A + x2:A + A:x3, data = data)$

Coefficients:

(Intercept) x1 x2 -0.29653 0.82166 0.38095 1.28550 x2:A A:x3 -0.02217 -0.13897

is(object = fitObj\$outcome\$Combined)

[1] "lm" "oldClass"

utils::methods(class = is(object = fitObj\$outcome\$Combined)[1L])[1:10]

- [1] "add1.lm" "alias.lm"
- [3] "anova.lm" "case.names.lm"
- [5] "coerce.oldClass.S3-method" "confint.lm"
- [7] "cooks.distance.lm" "deviance.lm"
- [9] "dfbeta.lm" "dfbetas.lm"

```
summary(object = q0bj)
$outcome
Soutcome Combined
Call:
lm(formula = YinternalY \sim x1 + x2 + A + x2:A + A:x3, data = data)
Residuals:
   Min
            1Q Median
                           30
-3.8193 -0.8168 0.0365 0.8045 3.2639
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.29653
                      0.06155 -4.818 1.68e-06 ***
            0.82166 0.04714 17.429 < 2e-16 ***
x1
x2
           0.38095
                     0.09932 3.836 0.000133 ***
Α
           1.28550
                     0.32231 3.988 7.14e-05 ***
x2:A
     -0.02217
                     0.16761 -0.132 0.894783
A:x3
           -0.13897
                     0.02643 -5.257 1.79e-07 ***
---
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.163 on 994 degrees of freedom
Multiple R-squared: 0.3138. Adjusted R-squared: 0.3103
F-statistic: 90.89 on 5 and 994 DF, p-value: < 2.2e-16
$optTx
 0 1
617 383
```

```
---
```

\$value

[1] -0.08377312

Methods available: Training Diagnostics

Method	Description
Call(name)	retrieve the unevaluated call
coef(object)	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value object returned for regression steps
optTx(object)	retrieve recommended optimal treatments for training data
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value object returned for outcome regression
<pre>plot(x, suppress)</pre>	plot regression results
summary(object)	retrieve regression summaries

```
ot \leftarrow optTx(x = q0bj)
```

A list is returned containing

- ullet optimalTx The recommended treatment \widehat{d}_{O}^{opt}
- ullet **decisionFunc*}** The $Q(h,a;\widehat{eta})$ for each $a\in\mathcal{A}$

table(ot\$optimalTx)

1 617 383

head(ot\$decisionFunc)

- [1.] -1.29073949 -2.14263362
- [2,] -0.06647067 0.39770167
- [3,] 0.59085487 0.78125203
- [4.] -2.22742839 -2.09956871
- [5,] 0.05677787 0.08179814
- [6.] 0.12251042 0.17532513

The estimated value $\widehat{\mathcal{V}}_{\mathcal{O}}(d^{opt})$ estimator(x = q0bj)

[1] -0.08377312

Methods available: Predictions

Method	Description
Call(name)	retrieve the unevaluated call
<pre>coef(object)</pre>	retrieve parameter estimates
DTRstep(object)	print description of method
estimator(x)	retrieve estimated value
fitObject(object)	retrieve value object returned for regression steps
optTx(object)	retrieve recommended optimal treatments for training data
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis
outcome(object)	retrieve value object returned for outcome regression
<pre>plot(x, suppress)</pre>	plot regression results
summary(object)	retrieve regression summaries

Suppose an individual has covariates $x_1 = 2$, $x_2 = 0$, and $x_3 = 8$.

To estimate their optimal treatment:

```
newPatient \leftarrow data.frame(x1 = 2, x2 = 0, x3 = 8)
optTx(x = q0bj, newdata = newPatient)
$optimalTx
[1] 1
```

\$decisionFunc

0 1 [1,] 1.346779 1.5205 Value Search

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{C_{d_{\eta,i}} Y_i}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} - \frac{C_{d_{\eta,i}} - \pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} Q_{d_{\eta}}(H_i; \eta, \widehat{\beta}) \right],$$

where

$$Q_{d_{\eta}}(H; \eta, \beta) = Q(H, 1; \beta) \ d(H; \eta) + Q(H, 0; \beta) \ \{1 - d(H; \eta)\}$$

$$\pi_{d_{\eta}}(H; \eta, \gamma) = \pi(H; \gamma) \ d(H; \eta) + \{1 - \pi(H; \gamma)\} \ \{1 - d(H; \eta)\}$$

- $Q(h, a; \beta)$ is a model for Q(h, a) = E(Y|H = h, A = a)
- $\pi(H; \gamma)$ is a model for the propensity score
- $d(H; \eta)$ is the restricted class of regimes

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{C_{d_{\eta,i}} Y_i}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} - \frac{C_{d_{\eta,i}} - \pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} Q_{d_{\eta}}(H_i; \eta, \widehat{\beta}) \right],$$

where

$$Q_{d_{\eta}}(H; \eta, \beta) = Q(H, 1; \beta) \ d(H; \eta) + Q(H, 0; \beta) \ \{1 - d(H; \eta)\}$$

$$\pi_{d_{\eta}}(H; \eta, \gamma) = \pi(H; \gamma) \ d(H; \eta) + \{1 - \pi(H; \gamma)\} \ \{1 - d(H; \eta)\}$$

- $Q(h, a; \beta)$ is a model for Q(h, a) = E(Y|H = h, A = a)
- $\pi(H; \gamma)$ is a model for the propensity score
- $d(H; \eta)$ is the restricted class of regimes

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{C_{d_{\eta,i}} Y_i}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} - \frac{C_{d_{\eta,i}} - \pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} Q_{d_{\eta}}(H_i; \eta, \widehat{\beta}) \right],$$

where

$$Q_{d_{\eta}}(H; \eta, \beta) = Q(H, 1; \beta) \ d(H; \eta) + Q(H, 0; \beta) \ \{1 - d(H; \eta)\}$$

$$\pi_{d_{\eta}}(H; \eta, \gamma) = \pi(H; \gamma) \ d(H; \eta) + \{1 - \pi(H; \gamma)\} \ \{1 - d(H; \eta)\}$$

- $Q(h, a; \beta)$ is a model for Q(h, a) = E(Y|H = h, A = a)
- $\pi(H; \gamma)$ is a model for the propensity score
- $d(H; \eta)$ is the restricted class of regimes

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{C_{d_{\eta,i}} Y_i}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} - \frac{C_{d_{\eta,i}} - \pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} Q_{d_{\eta}}(H_i; \eta, \widehat{\beta}) \right],$$

where

$$Q_{d_{\eta}}(H; \eta, \beta) = Q(H, 1; \beta) \ d(H; \eta) + Q(H, 0; \beta) \ \{1 - d(H; \eta)\}$$

$$\pi_{d_{\eta}}(H;\eta,\gamma) = \pi(H;\gamma) \ d(H;\eta) + \{1 - \pi(H;\gamma)\} \ \{1 - d(H;\eta)\}$$

- $Q(h, a; \beta)$ is a model for Q(h, a) = E(Y|H = h, A = a)
- $\pi(H; \gamma)$ is a model for the propensity score
- $d(H; \eta)$ is the restricted class of regimes

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{C_{d_{\eta,i}} Y_i}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} - \frac{C_{d_{\eta,i}} - \pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})}{\pi_{d_{\eta}}(H_i; \eta, \widehat{\gamma})} Q_{d_{\eta}}(H_i; \eta, \widehat{\beta}) \right],$$

where

$$Q_{d_{\eta}}(H; \eta, \beta) = Q(H, 1; \beta) \ d(H; \eta) + Q(H, 0; \beta) \ \{1 - d(H; \eta)\}$$

and

$$\pi_{d_{\eta}}(H; \eta, \gamma) = \pi(H; \gamma) \ d(H; \eta) + \{1 - \pi(H; \gamma)\} \ \{1 - d(H; \eta)\}$$

- $Q(h, a; \beta)$ is a model for Q(h, a) = E(Y|H = h, A = a)
- $\pi(H; \gamma)$ is a model for the propensity score
- $d(H; \eta)$ is the restricted class of regimes

Estimators obtained using optionalSeq()

```
str(object = optimalSeq)
```

Argument	Class	Description
		Additional inputs for rgenoud()
moPropen	modelObj	for propensity regression
moMain	modelObj	for main effects terms (mu)
moCont	modelObj	for terms interacting with treatment (C)
data	data.frame	covariates and treatment history
response	vector	outcome of interest
txName	character	treatment variable name
regimes	function	definition of restricted class of regimes
fSet		not used in single stage analyses
refit		deprecated
iter	integer	if $>$ 0, iterative methods used
verbose	logical	if FALSE, screen prints suppressed

```
str(object = optimalSeq)
```

```
function (..., moPropen, moMain, moCont, data, response,
   txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
   verbose = TRUE)
```

Postulate a model for propensity score:

$$logit(A) \sim \gamma_1$$

Use maximum likelihood

What is the modelObj?

- What is the regression method?
 - Should we keep its default input values?

```
str(object = optimalSeq)
```

```
function (..., moPropen, moMain, moCont, data, response,
   txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
   verbose = TRUE)
```

Postulate a model for propensity score:

$$logit(A) \sim \gamma_1$$

Use maximum likelihood

What is the modelObj?

- What is the regression method?
 - Should we keep its default input values?
- What is the prediction method?
 - Should we keep its default input values?

```
str(object = optimalSeq)
```

```
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

Postulate a model for propensity score:

$$logit(A) \sim \gamma_1$$

Use maximum likelihood.

What is the modelObj?

- What is the regression method?
 - Should we keep its default input values?
- What is the prediction method?
 - Should we keep its default input values?

str(object = optimalSeq)

function (..., moPropen, moMain, moCont, data, response,
 txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
 verbose = TRUE)

We'll use the same model for Q(h,a) that we postulated for the Outcome Regression method!

$$Q(h, a; \beta) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + A \beta_3 + \beta_4 A x_2 + \beta_5 A x_3$$

str(object = optimalSeq)

function (..., moPropen, moMain, moCont, data, response, txName, regimes, fSet = NULL, refit = FALSE, iter = OL, verbose = TRUE)

We'll use the same model for Q(h, a) that we postulated for the Outcome Regression method!

$$Q(h, a; \beta) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + A \beta_3 + \beta_4 A x_2 + \beta_5 A x_3$$

moMain, moCont, data, response, and txName are the same as for qLearn()

```
str(object = optimalSeq)
```

```
function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

Define the elements of the restricted class of regimes as

$$d(h, \eta) = I(x_1 < \eta_1 \& x_3 < \eta_2)$$

```
str(object = optimalSeq)

function (..., moPropen, moMain, moCont, data, response,
    txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
    verbose = TRUE)
```

Define the elements of the restricted class of regimes as

$$d(h, \eta) = I(x_1 < \eta_1 \& x_3 < \eta_2)$$

- data must be the last input
- No limit on the length of η .
- Must return a vector of the same type as that of the treatment provided in the data

Value Search

```
str(object = optimalSeq)
function (..., moPropen, moMain, moCont, data, response,
   txName, regimes, fSet = NULL, refit = FALSE, iter = OL,
   verbose = TRUE)
```

Uses genetic algorithm implemented by genoud()

Additional inputs for genoud() passed through ellipsis. Must include

- starting.values initial estimates for regime parameters
- Domains matrix defining search space
- pop.size population size

```
starting.values \leftarrow c(0, 0)
Domains \leftarrow matrix(data = c(-10, -10, 10, 10), ncol = 2L)
pop.size <- 500 #TOO SMALL
```

```
moPropen <- buildModelObj(model = ~ 1,
                          solver.method = 'glm'.
                           solver.args = list(family = 'binomial'),
                          predict.args = list(type = 'response'))
moMain <- buildModelObj(model = ~ x1 + x2, solver.method = 'lm')
moCont <- buildModelObj(model = ~ x2 + x3, solver.method = 'lm')</pre>
regimes <- function(eta1, eta2, data) {
             d1 <- {data$x1 < eta1} & {data$x3 < eta2}</pre>
             return( as.integer(x = d1) )
vsObj <- optimalSeg(moPropen = moPropen,
                    moMain = moMain, moCont = moCont,
                    data = df. response = df$v. txName = 'A'.
                    regimes = regimes,
                    Domains = matrix(data = c(-10, -10, 10, 10), ncol = 2L),
                    starting.values = c(0, 0), pop.size = 500)
```

```
vsObj <- optimalSeq(moPropen = moPropen,
                   moMain = moMain, moCont = moCont, iter = OL,
                   data = df, response = df$y, txName = 'A',
                   regimes = regimes, Domains = matrix(data = c(-10,-10,10,10), ncol = 2L),
                   starting.values = c(0,0), pop.size = 500,
                   verbose = TRUE)
Value Search - Missing Data Perspective.
Propensity for treatment regression.
Regression analysis for moPropen:
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
   -0.5151
Degrees of Freedom: 999 Total (i.e. Null); 999 Residual
Null Deviance:
                   1322
Residual Deviance: 1322
                           ATC: 1324
Outcome regression.
Combined outcome regression model: ~ x1+x2 + A + A:(x2+x3) .
Regression analysis for Combined:
Call:
lm(formula = YinternalY ~ x1 + x2 + A + x2:A + A:x3, data = data)
Coefficients:
(Intercept)
                     x1
                                  x2
   -0 29653
                0.82166
                             0.38095
                                          1 28550
       x2:A
                   A:x3
   -0.02217
             -0 13897
Wed Feb 5 17:37:40 2025
Domains:
 -1.000000e+01 <= X1 <=
                             1.000000e+01
 -1.000000e+01 <= X2 <=
                               1.000000e+01
```

Methods available:

Method	Description	
Call(name)	retrieve the unevaluated call	
coef(object)	retrieve parameter estimates	
DTRstep(object)	print description of method	
estimator(x)	retrieve estimated value	
fitObject(object)	retrieve value object returned for regression steps	
genetic(object)	retrieve value returned by genoud()	
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis	
optTx(object)	retrieve recommended optimal treatments for training data	
outcome(object)	retrieve value object returned for outcome regression	
<pre>plot(x, suppress)</pre>	plot regression results	
propen(object)	retrieve value returned by propensity regression analysis	
regimeCoef(object)	retrieve estimated regime parameters	
<pre>summary(object)</pre>	retrieve regression summaries	

Methods available: New Model Diagnostics

Method	Description	
Call(name)	retrieve the unevaluated call	
coef(object)	retrieve parameter estimates	
DTRstep(object)	print description of method	
estimator(x)	retrieve estimated value	
fitObject(object)	retrieve value object returned for regression steps	
genetic(object)	retrieve value returned by genoud()	
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis	
optTx(object)	retrieve recommended optimal treatments for training data	
outcome(object)	retrieve value object returned for outcome regression	
<pre>plot(x, suppress)</pre>	plot regression results	
propen(object)	retrieve value returned by propensity regression analysis	
regimeCoef(object)	retrieve estimated regime parameters	
<pre>summary(object)</pre>	retrieve regression summaries	

Value Search

```
coef(object = vsObj)
$propensity
(Intercept)
 -0.5150946
$out.come
$out.come$Combined
(Intercept)
                      x1
                                   x2
                                                           x2:A
-0.29653461 0.82165693 0.38094720 1.28549787 -0.02217292
       A:x3
-0.13897217
fit0bj <- fit0bject(object = vs0bj)
print(x = fit0bj)
$propensity
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
   -0.5151
Degrees of Freedom: 999 Total (i.e. Null); 999 Residual
Null Deviance:
                  1322
Residual Deviance: 1322 AIC: 1324
$outcome
```

```
genetic(object = vs0bj)
```

\$value

[1] -0.1847581

\$par

[1] 1.182027 8.479420

\$gradients

[1] NA NA

\$generations

[1] 13

\$peakgeneration

[1] 2

\$popsize

[1] 500

\$operators

[1] 65 62 62 62 62 62 62 62 0

Methods available: New Training Diagnostics

Method	Description	
Call(name)	retrieve the unevaluated call	
coef(object)	retrieve parameter estimates	
DTRstep(object)	print description of method	
estimator(x)	retrieve estimated value	
<pre>fitObject(object)</pre>	retrieve value object returned for regression steps	
<pre>genetic(object)</pre>	retrieve value returned by genoud()	
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis	
optTx(object)	retrieve recommended optimal treatments for training data	
outcome(object)	retrieve value object returned for outcome regression	
<pre>plot(x, suppress)</pre>	plot regression results	
propen(object)	retrieve value returned by propensity regression analysis	
regimeCoef(object)	retrieve estimated regime parameters	
<pre>summary(object)</pre>	retrieve regression summaries	

```
The estimated optimal treatment for all training data:
```

```
ot <- optTx(x = vs0bj)
table(ot$optimalTx)</pre>
```

0 1 733 267

ot\$decisionFunc

Γ17 NA

The estimated value $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$

estimator(x = vsObj)

[1] -0.1847581

The estimated parameters of $d(h; \eta)$

```
regimeCoef(object = vsObj)
```

eta1 eta2 1.182027 8.479420

Methods available: Predictions

Method	Description	
Call(name)	retrieve the unevaluated call	
coef(object)	retrieve parameter estimates	
DTRstep(object)	print description of method	
estimator(x)	retrieve estimated value	
fitObject(object)	retrieve value object returned for regression steps	
<pre>genetic(object)</pre>	retrieve value returned by genoud()	
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis	
optTx(object)	retrieve recommended optimal treatments for training data	
outcome(object)	retrieve value object returned for outcome regression	
<pre>plot(x, suppress)</pre>	plot regression results	
<pre>propen(object)</pre>	retrieve value returned by propensity regression analysis	
regimeCoef(object)	retrieve estimated regime parameters	
<pre>summary(object)</pre>	retrieve regression summaries	

For the same individual we considered previously ($x_1 = 2$, $x_2 = 0$, and $x_3 = 8$), the estimated optimal treatment is:

```
optTx(x = vsObj, newdata = newPatient)
```

\$optimalTx

[1] 0

\$decisionFunc

[1] NA

Classification

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ d(H_{i}, \eta) \widehat{C}(H_{i}, A_{i}, Y_{i}) + \widehat{\psi}_{0}(H_{i}, A_{i}, Y_{i}) \right\}$$

where

$$\widehat{\psi}_{1}(H, A, Y) = \frac{AY}{\pi(H; \widehat{\gamma})} - \frac{A - \pi(H; \widehat{\gamma})}{\pi(H; \widehat{\gamma})} Q(H, 1; \widehat{\beta}),$$

$$\widehat{\psi}_{0}(H, A, Y) = \frac{(1 - A)Y}{1 - \pi(H; \widehat{\gamma})} + \frac{A - \pi(H; \widehat{\gamma})}{1 - \pi(H; \widehat{\gamma})} Q(H, 0; \widehat{\beta}),$$

$$\widehat{C}(H_{i}, A_{i}, Y_{i}) = \widehat{\psi}_{1}(H_{i}, A_{i}, Y_{i}) - \widehat{\psi}_{0}(H_{i}, A_{i}, Y_{i})$$

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ d(H_{i}, \eta) \widehat{C}(H_{i}, A_{i}, Y_{i}) + \widehat{\psi}_{0}(H_{i}, A_{i}, Y_{i}) \right\}$$

where

$$\widehat{\psi}_{1}(H,A,Y) = \frac{AY}{\pi(H;\widehat{\gamma})} - \frac{A - \pi(H;\widehat{\gamma})}{\pi(H;\widehat{\gamma})} Q(H,1;\widehat{\beta}),$$

$$\widehat{\psi}_{0}(H,A,Y) = \frac{(1-A)Y}{1-\pi(H;\widehat{\gamma})} + \frac{A - \pi(H;\widehat{\gamma})}{1-\pi(H;\widehat{\gamma})} Q(H,0;\widehat{\beta}),$$

$$\widehat{C}(H_i, A_i, Y_i) = \widehat{\psi}_1(H_i, A_i, Y_i) - \widehat{\psi}_0(H_i, A_i, Y_i)$$

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ d(H_{i}, \eta) \widehat{C}(H_{i}, A_{i}, Y_{i}) + \widehat{\psi}_{0}(H_{i}, A_{i}, Y_{i}) \right\}$$

where

$$\widehat{\psi}_{1}(H,A,Y) = \frac{AY}{\pi(H;\widehat{\gamma})} - \frac{A - \pi(H;\widehat{\gamma})}{\pi(H;\widehat{\gamma})} Q(H,1;\widehat{\beta}),$$

$$\widehat{\psi}_{0}(H,A,Y) = \frac{(1-A)Y}{1-\pi(H;\widehat{\gamma})} + \frac{A - \pi(H;\widehat{\gamma})}{1-\pi(H;\widehat{\gamma})} Q(H,0;\widehat{\beta}),$$

$$\widehat{C}(H_{i},A_{i},Y_{i}) = \widehat{\psi}_{1}(H_{i},A_{i},Y_{i}) - \widehat{\psi}_{0}(H_{i},A_{i},Y_{i})$$

Estimator implemented as optionalClass().

str(object = optimalClass)

function (..., moPropen, moMain, moCont, moClass, data,
 response, txName, iter = OL, fSet = NULL, verbose = TRUE)

Argument	Class	Description
		Ignored. Included to require named input.
moPropen	modelObj	for propensity regression
moMain	modelObj	for main effects terms (mu)
moCont	modelObj	for terms interacting with treatment (C)
moClass	mode10bj	for classification regression
data	data.frame	covariates and treatment history
response	vector	outcome of interest
txName	character	treatment variable name
iter	integer	if $>$ 0, iterative methods used
fSet		not used in single stage analyses
verbose	logical	if FALSE, screen prints suppressed

```
str(object = optimalClass)
```

```
function (..., moPropen, moMain, moCont, moClass, data,
    response, txName, iter = OL, fSet = NULL, verbose = TRUE)
```

We'll use the same "modelObj" previously defined for $Q(H,A;\beta)$ and $\pi(H;\gamma)$.

Classification

```
str(object = optimalClass)
function (..., moPropen, moMain, moCont, moClass, data,
   response, txName, iter = OL, fSet = NULL, verbose = TRUE)
```

We'll use the same "modelObj" previously defined for $Q(H, A; \beta)$ and $\pi(H; \gamma)$.

Need to define the classification method.

Method must use input weights and return predictions as the class.

```
library(rpart)
moClass <- buildModelObj(model = ~x1 + x2 + x3,
                         solver.method = 'rpart',
                         predict.args = list(type = "class"))
```

Classification

```
str(object = optimalClass)
function (..., moPropen, moMain, moCont, moClass, data,
   response, txName, iter = OL, fSet = NULL, verbose = TRUE)
```

We'll use the same "modelObj" previously defined for $Q(H, A; \beta)$ and $\pi(H; \gamma)$.

Need to define the classification method

Method must use input weights and return predictions as the class.

```
library(rpart)
moClass <- buildModelObj(model = ~x1 + x2 + x3,
                         solver.method = 'rpart',
                         predict.args = list(type = "class"))
```

All other inputs are the same!

```
moPropen <- buildModelObj(model = ~ 1,
                           solver.method = 'glm',
                           solver.args = list(family = 'binomial'),
                           predict.args = list(type = 'response'))
moMain <- buildModelObj(model = ~ x1 + x2, solver.method = 'lm')
moCont <- buildModelObj(model = ~ x2 + x3, solver.method = 'lm')</pre>
moClass <- buildModelObj(model = ~x1 + x2 + x3,
                          solver.method = 'rpart'.
                          predict.args = list(type = "class"))
clObj <- optimalClass(moPropen = moPropen,</pre>
                      moMain = moMain, moCont = moCont,
                      moClass = moClass.
                      data = df, response = df$y, txName = 'A')
```

```
Call: glm(formula = YinternalY - 1, family = "binomial", data = data)
Coefficients:
```

Degrees of Freedom: 999 Total (i.e. Null); 999 Residual Null Deviance: 1322

Outcome regression.

Residual Deviance: 1322 AIC: 1324

(Intercept) -0.5151

Combined outcome regression model: \sim x1+x2 + A + A:(x2+x3) . Regression analysis for Combined:

Call:

lm(formula = YinternalY ~ x1 + x2 + A + x2:A + A:x3, data = data)

Coefficients:

(Intercept) x1 x2 A -0.29653 0.82166 0.38095 1.28550 x2:A A:x3 -0.02217 -0.13897

Classification Analysis
Regression analysis for moClass:
n= 1000

Methods available:

Method	Description		
Call(name)	retrieve the unevaluated call		
classif(object)	retrieve value returned by classification method		
coef(object)	retrieve parameter estimates		
DTRstep(object)	print description of method		
estimator(x)	retrieve estimated value		
fitObject(object)	retrieve value object returned for regression steps		
<pre>optTx(object, newdata)</pre>	estimate optimal treatments based on a prior analysis		
optTx(object)	retrieve recommended optimal treatments for training data		
outcome(object)	retrieve value object returned for outcome regression		
<pre>plot(x, suppress)</pre>	plot regression results		
propen(object)	retrieve value returned by propensity regression analysis		
summary(object)	retrieve regression summaries		

```
classObj <- classif(object = clObj)</pre>
is(object = classObj)
[1] "rpart"
utils::methods(class = is(object = classObj)[1L])
 [1] labels
                  meanvar
```

- model.frame plot
- [5] post predict print prune
- [9] residuals summary text
- see '?methods' for accessing help and source code

Training Diagnostics

```
ot \leftarrow optTx(x = clObj)
names(ot)
[1] "optimalTx"
                    "decisionFunc"
table(ot$optimalTx)
  0 1
590 410
ot$decisionFunc
[1] NA
estimator(x = cl0bj)
[1] 0.08087631
```

Predictions

```
newPatient <- data.frame(x1 = 2, x2 = 0, x3 = 8)
optTx(x = cl0bj, newdata = newPatient)

$optimalTx
[1] 0

$decisionFunc
[1] NA</pre>
```

Outcome Weighted Learning

The decision function

$$f(X;\eta) = \sum_{i=1}^{n} \widehat{\alpha}_i A_i k(X,X_i) + \widehat{\beta}_0$$

is estimated by minimizing

$$\frac{1}{n}\sum_{i=1}^{n}\frac{Y_{i}}{A_{i}\pi(H;\gamma)+(1-A_{i})/2}\ell_{0-1}\left\{A_{i}f(H_{i};\eta)\right\}+\lambda_{n}||f||^{2}$$

The decision function

$$f(X;\eta) = \sum_{i=1}^{n} \widehat{\alpha}_{i} A_{i} k(X, X_{i}) + \widehat{\beta}_{0}$$

is estimated by minimizing

$$\frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}}{A_{i}\pi(H;\gamma) + (1-A_{i})/2} \ell_{0-1} \left\{ A_{i}f(H_{i};\eta) \right\} + \lambda_{n} ||f||^{2}$$

```
str(object = owl)
```

```
function (..., moPropen, data, reward, txName, regime,
   response, lambdas = 2, cvFolds = OL, kernel = "linear",
   kparam = NULL, surrogate = "hinge", verbose = 2L)
```

Argument	Class	Description		
		Ignored. Included to require named input.		
moPropen	modelObj	for propensity regression		
data	data.frame	covariates and treatment history		
reward	vector	outcome of interest		
txName	character	treatment variable name		
regime	formula	covariates of the decision function		
response	vector	outcome of interest		
lambdas	numeric	one or more tuning parameters		
cvFolds	integer	number of cross-validation steps to select lambda and/or kparam		
kernel	character	one of linear, poly, radial		
kparam	numeric	kernel parameter		
surrogate	character	surrogate 0-1 loss function logit, exp, hinge, sqhinge, huber		
verbose	integer or logical	level of screen printing		

```
owlObj <- owl(moPropen = moPropen, data = df, reward = df$y,
              txName = "A", regime = -x1 + x2 + x3,
              lambdas = 0.01, kernel = "linear", surrogate = "sqhinge")
```

```
DynTxRegime
owlObj <- owl(moPropen = moPropen, data = df, reward = df$y,
             txName = "A", regime = ~ x1,
             lambdas = 0.01, kernel = "linear", surrogate = "sqhinge")
Outcome Weighted Learning
Propensity for treatment regression.
Regression analysis for moPropen:
Call: glm(formula = YinternalY ~ 1, family = "binomial", data = data)
Coefficients:
(Intercept)
   -0.5151
Degrees of Freedom: 999 Total (i.e. Null); 999 Residual
Null Deviance:
                   1322
Residual Deviance: 1322
                            ATC: 1324
Outcome regression.
No outcome regression performed.
Final optimization step.
initial value 2,281378
final value 1.934095
converged
Results returned by optimization method
$par
[1] 0.332536 -0.200740
$value
Γ11 1.934095
$counts
function gradient
      14
$convergence
```

```
methods(class = "OWL")
```

[1]	Call	coef	cvInfo	DTRstep	${\tt estimator}$
[6]	fitObject	optimObj	optTx	outcome	plot
[11]	print	propen	regimeCoef	show	summary
see	'?methods'	for accessing	ng help and	source code	e

Outline

- Background
- 2 modelOb
 - Requirements for modelObj in DynTxRegime
- Toy Dataset
- OynTxRegime
 - Outcome Regression (Q-Learning)
 - Value Search
 - Classification
 - Outcome Weighted Learning
- Conclusion

These slides are available from https://github.com/sth1402/ST790/

If you have ANY questions or encounter any problems, please do not hesitate to contact me

Shannon Holloway shannon.t.holloway@gmail.com

Happy Coding!