5

SÈRIES DE POTÈNCIES I DE TAYLOR

(Resum teòric)

Índex

5.1.	Sèries de potències		1
	5.1.1.	Convergència d'una sèrie de potències	1
	5.1.2.	Derivació i integració d'una sèrie de potències	3
5.2.	Sèries	de Taylor	3
	5.2.1.	Sèries de Taylor d'algunes funcions	4

5.1. Sèries de potències

Sigui $a \in \mathbb{R}$ i $(a_n)_{n \geq 0}$ és una successió de nombres reals. La funció que fa correspondre a cada nombre real x la sèrie numèrica

$$\sum_{n=0}^{+\infty} a_n (x-a)^n$$

s'anomena sèrie de potències centrada en a (o sèrie de potències en x-a).

5.1.1. Convergència d'una sèrie de potències

Considerem la funció:

$$f(x) = \sum_{n=0}^{+\infty} a_n (x - a)^n.$$

El domini de la funció f és el conjunt de tots els valors de x per als quals s'obté una sèrie numèrica convergent, que s'anomena domini (o camp) de convergència de la sèrie de potències, i per a qualsevol d'aquests x, el valor de f(x) és la suma de la sèrie.

És evident que tota sèrie de potències centrada en a és convergent per a x = a:

$$f(a) = \sum_{n=0}^{+\infty} a_n (a-a)^n = a_0.$$

Per tant el domini de convergència d'una sèrie de potències en cap cas és un conjunt buit.

Teorema. Sigui $\sum_{n=0}^{+\infty} a_n (x-a)^n$ una sèrie de potències. Aleshores es compleix una i només una de les afirmacions següents:

- a) La sèrie convergeix només en el punt x=a.
- b) Existeix un nombre r>0 tal que la sèrie convergeix per a |x-a|< r i no convergeix per a |x-a|>r.
- c) La sèrie convergeix per a tot x real.

Per tant, una sèrie de potències centrada en a convergeix sempre en un interval de la forma (a-r,a+r), considerant que en el cas a) el valor de r és zero i en el cas c) el valor de r és infinit. Aquest nombre $r \in \mathbb{R} \cup \{0\}$ s'anomena radi de convergència i l'interval (a-r,a+r) és l'interval de convergència de la sèrie de potències.

Cal observar que el teorema no diu res sobre la convergència en els extrems de l'interval de convergència, podent-se donar el cas que la sèrie convergeixi en ambdós extrems, en un de sol o en cap. Per determinar la convergència en els extrems s'ha d'analitzar la convergència de les sèries numèriques corresponents. A conseqüència del teorema anterior, el camp de convergència és o bé únicament el punt a (si r=0), o bé tota la recta real (si $r=+\infty$) o bé un interval finit centrat en a (si $0 < r < +\infty$) d'una de les formes: (a-r,a+r), (a-r,a+r), (a-r,a+r), o [a-r,a+r].

Proposició Donada una sèrie de potències $\sum_{n=0}^{+\infty} a_n(x-a)^n$, si existeix algun dels límits:

$$r = \lim_{n \to +\infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 o $r = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$

llavors el seu valor és el del radi de convergència.

La funció suma és especialment fàcil d'obtenir en els casos en què la sèrie de potències és, per a cada valor de x, una sèrie geomètrica. Per exemple, si considerem la sèrie de potències $\sum_{n\geq 0} x^n$, el seu radi de convergència és $r=\lim_{n\to +\infty} \left|\frac{a_n}{a_{n+1}}\right|=1$, i la seva funció

suma és, per a tot
$$x \in (-1,1)$$
, $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$.

5.1.2. Derivació i integració d'una sèrie de potències

Teorema Sigui $f(x)=\sum_{n=0}^{+\infty}a_n(x-a)^n$ una funció donada per una sèrie de potències en el seu interval de convergència (a-r,a+r), amb $r\neq 0$. Aleshores

- a) f(x) és contínua en (a-r,a+r).
- b) f(x) és derivable en (a-r,a+r) i $\forall x \in (a-r,a+r)$ $f'(x) = \sum_{n=1}^{+\infty} na_n(x-a)^{n-1}$.
- c) f(x) és integrable en (a-r,a+r) i $\forall x \in (a-r,a+r) \int_a^x f(t)dt = \sum_{n=1}^{+\infty} \frac{a_n}{n+1} (x-a)^{n+1}$.

Amb l'ajuda d'aquestes propietats poden trobar-se les expressions de les funcions suma de sèries de potències que estiguin relacionades, mitjançant integració o derivació, amb altres sèries de potències les funcions suma de les qual siguin conegudes. Això permet, a més, ampliar el conjunt de sèries numèriques per a les quals, quan són convergents, és possible calcular la suma.

5.2. Sèries de Taylor

Sigui $a \in \mathbb{R}$ i $f : \mathbb{R} \to \mathbb{R}$ una funció de classe $C^{\infty}(a)$. La Sèrie de Taylor de f en a o centrada en a és la sèrie de potències

$$\sum_{n=0}^{+\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

I es té el resultat següent:

Teorema Sigui $a \in \mathbb{R}$, $f: \mathbb{R} \to \mathbb{R}$ una funció de classe $C^{\infty}(a)$, s(x) la funció suma de la sèrie de Taylor de f centrada en a i I l'interval de convergència d'aquesta sèrie. Aleshores s(x) = f(x) per a tot $x \in I$ si, i només si, es compleixen les dues condicions següents

- i) la funció f és de classe $C^{\infty}(I)$;
- ii) per a tot $x \in I$, $\lim_{n \to \infty} R_n(f, a, x) = 0$.

En aquest cas, tenim

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

expressió que s'anomena el desenvolupament de f(x) en sèrie de Taylor centrada en a.

Una condició suficient perquè es compleixi la propietat ii) anterior és que existeixi K tal que $|f^{(n)}(x)| < K$ per a tot n i tot $x \in I$.

5.2.1. Sèries de Taylor d'algunes funcions

Els següents són desenvolupaments en sèries de Taylor centrades en l'origen d'algunes funcions:

•
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n>0} \frac{x^n}{n!}$$
 per a tot $x \in \mathbb{R}$.

■
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n \ge 1} \frac{(-1)^{n+1} x^n}{n}$$
 per a tot $x \in (-1,1]$.

$$\bullet \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n \ge 0} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \quad \text{per a tot } x \in \mathbb{R}.$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n \ge 0} (-1)^n \frac{x^{2n}}{(2n)!}$$
 per a tot $x \in \mathbb{R}$.

$$\bullet \sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots = \sum_{n \ge 0} \frac{x^{2n+1}}{(2n+1)!} \quad \text{per a tot } x \in \mathbb{R}.$$

•
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots = \sum_{n \ge 0} \frac{x^{2n}}{(2n)!}$$
 per a tot $x \in \mathbb{R}$.

$$\bullet (1+x)^{\alpha} = {\alpha \choose 0} + {\alpha \choose 1}x + {\alpha \choose 2}x^2 + \dots = \sum_{n \ge 0} {\alpha \choose n}x^n \quad \text{per a tot } x \in (-1,1]$$

on α és un nombre real i, per a tot nombre enter $k \geq 0$,

$$\binom{\alpha}{k} = \frac{\alpha(\alpha - 1) \cdots (\alpha - k + 1)}{k!}.$$