多分类-对数几率回归

171860659 吴紫航

算法思路

- 1.数据是一个 26 分类问题,用 OvR 转化为 26 个二分类器
- 2.每个二分类过程(采用 Logistic Regression)如下:
- 1) 设定初始参数 β^0 : $(\omega_1; \omega_2; ...; \omega_{16}; b)$ 为全 0
- 2) 读取训练集,计算损失函数 $l(\beta)$ 的梯度 $\nabla l(\beta) = -\sum_{i=1}^{14000} \hat{x}_i (y_i \frac{e^{\omega^T x + b}}{1 + e^{\omega^T x + b}})$,其中 $\hat{x}_i = (x_i; 1)$; $y_i = 1$ if 二分类器号和样本点类号一致, $else\ y_i = 0$
- 3) 设定超参数-迭代次数 t,用方程 $\boldsymbol{\beta^{t+1}} = \boldsymbol{\beta^t} \gamma \nabla l(\boldsymbol{\beta})$ 进行 t 次迭代,其中 γ 为超参数-学习速度,每次迭代需要重新计算 $\nabla l(\boldsymbol{\beta})$
- 4) 对于测试集的 6000 个样本,都用 $p = \frac{e^{\omega^T x + b}}{1 + e^{\omega^T x + b}}$ 进行预测
- 3. 所有二分类过程都完成后,对于每个样本,选取 26 个二分类器中, p 值最大的分类器结果作为最终预测结果
- 4.最后根据每个测试样本的预测结果和真实结果,计算 performances 表格

运行方式和输出文件

运行 LR_main.py,输出三个 csv 文件

输出文件	说明
result.csv	6000x26 的矩阵 对应 6000 个测试样本的 26 个二分类结果的 p 值
out.csv	6000x2 的矩阵 对应 6000 个测试样本的预测和真实类别

performance.csv	从上到下依次为 accuracy、microPrecision、microRecall、	
	microF1、macroPrecision、macroRecall、macroF1	

超参数

学习速度γ设定为 1e-6

迭代次数 t 设定为 500

性能分析

Performance Metric	Value (%)
accuracy	63.4667
micro Precision	63.4667
micro Recall	63.4667
micro F1	63.4667
macro Precision	63.4286
macro Recall	63.6776
macro F1	61.6450