Umjetna inteligencija

6. Automatsko zaključivanje

prof. dr. sc. Bojana Dalbelo Bašić izv. prof. dr. sc. Jan Šnajder

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Ak. god. 2019./2020.

Creative Commons Imenovanje-Nekomercijalno-Bez prerada 3.0

Motivacija: Svijet Wumpusa

The Wumpus World

Percepcija (činjenice):

$$\neg B_{1,1}$$

$$\neg B_{1,2}$$

$$B_{2,1}$$

$$\neg P_{1,1}$$

Znanje (pravila):

$$B_{2,1} \leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

Novo znanje (zaključci):

$$P_{2,2} \vee P_{3,1}$$

Motivacija: Carinici i diplomati

Premise

Carinici su pretražili svakoga tko je ušao u zemlju a nije diplomat. Neke krijumčare koji su ušli u zemlju pretražili su samo krijumčari. Niti jedan krijumčar nije diplomat.

Zaključak

Neki su carinici krijumčari.

Zaključak = logička posljedica?

- Zaključak (novoizvedeno znanje) zapravo nije ništa drugo nego logička posljedica premisa (postojećeg znanja)
- Dakle, izvođenje novog znanja svodi se na dokazivanje logičkih posljedica postojećeg znanja

staro znanje ⊨ novo znanje

No, u praksi tu postoji problem...

Problem s dokazivanjem semantičke posljedice

(1) Netraktabilnost:

- ▶ Moramo provjeriti 2ⁿ interpretacija
- ▶ Zamislimo da želimo dokazati $F_1, \ldots, F_{100} \models F_1$. Uz pretpostavku n=100, trebali bismo provjeriti 1.27×10^{30} interpetacija. To je nemoguće!
- Osim toga, u ovom slučaju to je nepotrebno jer je očigledno da relacija logičke posljedice vrijedi

(2) Neodlučivost:

- U predikatnoj logici broj interpretacija je beskonačan, pa nemamo šanse sve ih ispitati
- Zapravo, FOL je poluodlučiva (engl. semi-decidable): možemo dokazati valjanost onih formula koje jesu valjane, ali za formule koje nisu valjane ne možemo to uvijek dokazati
- Postoji li rješenje za ove probleme? Da, donekle
- Umjesto da se bavimo interpretacijama i modelima (semantikom), trebamo se baviti pravilima zaključivanja (teorijom dokaza)

Sadržaj

- 🕕 Teorija dokaza
- Rezolucija u propozicijskoj logici (PL)
- 3 Rezolucija opovrgavanjem u propozicijskoj logici (PL)
- 4 Rezolucija u logici prvog reda (FOL) priprema
- 5 Rezolucija u logici prvog reda (FOL) postupak i primjeri

Sadržaj

- Teorija dokaza
- 2 Rezolucija u propozicijskoj logici (PL)
- 3 Rezolucija opovrgavanjem u propozicijskoj logici (PL)
- 4 Rezolucija u logici prvog reda (FOL) priprema
- 5 Rezolucija u logici prvog reda (FOL) postupak i primjeri

Teorija dokaza (engl. proof theory)

- Ljudi ne zaključuju na način da dokazuju semantičku posljedicu (ne pokušavaju pronaći interpretaciju koja je istinita za F, a nije za G)!
- Umjesto toga, pokušavamo pokazati kako se G može izvesti iz premisa pomoću konačnog broja pravila zaključivanja (engl. inference rules)
- Svako pravilo zaključivanja treba biti opravdano i što jednostavnije
- Pravila zaključivanja omogućuju dobivanje novih formula na temelju zadanih premisa, bez eksplicitnog referenciranja na semantiku logike (istinosne vrijednosti propozicija)

Teorija dokaza (engl. *proof theory*)

Dakle, teorija dokaza nudi dvije prednosti naspram dokazivanja logičke posljedice:

- Učinkovitost: umjesto da iscrpno pretražujemo sve moguće interpretacije, deduktivnu posljedicu možemo brže dokazati (pogotovo ako koristimo pametnu strategiju dokazivanja). Primijetite, međutim, da ne možemo izbjeći neodlučivost FOL-a
- ② Interpretabilnost: možemo objasniti zašto nešto slijedi iz premisa (pozivajući se na pravila zaključivanja) ⇒ dobivamo dokaz

Deduktivna posljedica

Deduktivna posljedica

Formula G je **dedukcija** (engl. *deduction*) ili **deduktivna posljedica** (engl. *deductive consequence*) formula F_1, F_2, \ldots, F_n akko je G moguće **izvesti** (engl. *derive*) iz premisa F_1, F_2, \ldots, F_n pravilima zaključivanja.

Pišemo $F_1, F_2, \ldots, F_n \vdash G$ i čitamo " F_1, \ldots, F_n izvodi (engl. derives) ili **deduktivno povlači** (engl. deductively entails) G".

Teorem

Formula G je **teorem** akko vrijedi $\vdash G$, tj. ako je formula G deduktivno izvediva iz praznog skupa premisa.

- Dokazati $F \vdash G$ je ekvivalentno kao dokazati $\vdash F \rightarrow G$
- Zato umjesto o izvođenju dedukcije govorimo o dokazivanju teorema

Pravila zaključivanja

Primjer pravila zaključivanja:
 "Ako su dvije tvrdnje istinite, onda je istinita i njihova konjunkcija"

Pravilo konjunkcije

$$\frac{A \quad B}{A \wedge B}$$
 ili $A, B \vdash A \wedge B$

• Što je sa sljedećim pravilom?

$$A \vee B \vdash A$$

- Intuitivno, prvo pravilo je semantički ispravno, a drugo nije
- Da bi pravilo bilo ispravno, deduktivan zaključak koji njime izvodimo mora biti logička posljedica premisa

Ispravnost i potpunost pravila

Ispravnost

Pravilo zaključivanja je **ispravno** (engl. *sound*) ako, primijenjeno na skup premisa, izvodi formulu koja je **logička posljedica** tih premisa.

Formalno, pravilo zaključivanja r je ispravno ako i samo ako

ako
$$F_1, \ldots, F_n \vdash_r G$$
 onda $F_1, \ldots, F_n \models G$

Potpunost

Skup pravila R je **potpun** (engl. complete) ako i samo ako je njime moguće izvesti sve logičke posljedice:

ako
$$F_1, \ldots, F_n \models G$$
 onda $F_1, \ldots, F_n \vdash_R G$

Ispravnost i potpunost povezuju semantiku i teoriju dokaza (povezuju u oba smjera relacije \vdash i \vDash)

Ispravnost i potpunost – primjer

• Dokažimo da je pravilo $F \to G, F \vdash G$ (modus ponens) ispravno. Trebamo dokazati $F \to G, F \models G$. Izravan dokaz:

• Dokažimo da pravilo $F \to G, G \vdash F$ (abdukcija) nije ispravno. Trebamo dokazati $F \to G, G \nvDash F$. Izravan dokaz:

F	G	$F \to G$	$(F \to G) \land G$	$((F \to G) \land G) \to F$
\perp	\perp	Т	Τ	Τ
\perp	Т	Τ	Т	\perp
\top	\perp	\perp	\perp	Т
\top	T	Т	Τ	Τ

Automatsko zaključivanje

- U umjetnoj nas inteligenciji zanima kako automatizirati dokazivanje
- Time se bavi područje automatskog zaključivanja (engl. automated reasoning) ili automatskog dokazivanja teorema (engl. automated theorem proving, ATP)
- Sustav koji implementira neki postupak dokazivanja naziva se dokazivač teorema (engl. theorem prover)
- Naravno, to što dokazivači teorema izvode mora biti semantički ispravno, dakle opravdivo u semantičkom smislu

Postupci dokazivanja

- U teoriji dokaza razvijeni su različiti postupci dokazivanja (engl. proof methods)
- Postupak mora biti semantički ispravan, a poželjno je da je i potpun
 - sustavi prirodnog zaključivanja (engl. natural deduction systems)
 - aksiomatski (hilbertovski) sustavi
 - sekventni računi (engl. sequent calculi)
 - tableau-metoda
 - metoda rezolucije (engl. resolution method)
- Mi ćemo se usredotočiti na metodu rezolucije. Ta je metoda ispravna i potpuna te se lako implementira na računalu

Sadržaj

- Teorija dokaza
- Rezolucija u propozicijskoj logici (PL)
- 3 Rezolucija opovrgavanjem u propozicijskoj logici (PL)
- 4 Rezolucija u logici prvog reda (FOL) priprema
- 5 Rezolucija u logici prvog reda (FOL) postupak i primjeri

Metoda rezolucije

- Metoda rezolucije (metoda razrješavanja) koristi se u propozicijskoj logici i logici prvoga reda
- Metodu je predložio J. A. Robinson 1965. godine
- Metoda se sastoji od samo jednog pravila zaključivanja:

Rezolucijsko pravilo

$$\frac{A \vee F \qquad \neg A \vee G}{F \vee G} \qquad \text{ili} \qquad A \vee F, \ \neg A \vee G \ \vdash \ F \vee G$$

što je ekvivalentno s:

$$\neg F \to A, A \to G \vdash \neg F \to G$$

 Prednost je što radimo sa samo jednim pravilom, a to bitno pojednostavljuje automatsko zaključivanje

Pravilo rezolucije – ispravnost

- Uvjerimo se da je pravilo rezolucije **ispravno**
- Trebamo dokazati da je deduktivna posljedica rezolucijskog pravila također i logička posljedica, tj. trebamo dokazati:

$$A \vee F$$
, $\neg A \vee G \models F \vee G$

Npr. izravnom metodom:

			P		Q		R	
A	F	G	$\widetilde{A \vee F}$	$\neg A$	$\overbrace{\neg A \lor G}$	$P \wedge Q$	$\widetilde{F \vee G}$	$(P \wedge Q) \to R$
T	Т	Т	Т	\perp	Т	Т	Т	Т
\top	Т	\perp	Τ	\perp	\perp	\perp	Τ	Т
\top	\perp	\top	Т	\perp	Т	Т	Т	T
\top	\perp	\perp	Т	\perp	\perp	\perp	\perp	Т
\perp	Т	Т	Т	Т	Т	Т	Т	Т
\perp	Т	\perp	Т	Т	Т	Т	Т	Т
\perp	\perp	Т	\perp	Т	Т	\perp	Τ	Т
				Т	Т			Т

Klauzula

- Rezolucijsko pravilo može se primijeniti samo na disjunkcije
- Ako želimo primjenjivati isključivo rezolucijsko pravilo, premise trebaju biti u obliku disjunkcije. Takav oblik nazivamo klauzula

Klauzula (engl. clause)

Literal je atom ili njegova negacija. **Klauzula** je disjunkcija konačnog broja literala G_i :

$$G_1 \vee G_2 \vee \cdots \vee G_n, \quad n \geq 0$$

Klauzula koja sadrži samo jedan literal naziva se **jedinična klauzula** (engl. *unit clause*).

- Primjeri literala: $A, F, \neg A, \neg F, G, \neg G$
- Primjeri klauzula: $A \vee F$, $\neg A \vee G$, $A \vee \neg B \vee C \vee \neg D$, F

Rezolucija nad klauzulama

Rezolucijsko pravilo nad PL klauzulama

$$\frac{F_1 \vee \dots \vee F_i \vee \dots \vee F_n \qquad G_1 \vee \dots \vee G_j \vee \dots \vee G_m}{F_1 \vee \dots \vee F_{i-1} \vee F_{i+1} \vee \dots \vee F_n \vee G_1 \vee \dots \vee G_{j-1} \vee G_{j+1} \vee \dots \vee G_m}$$

gdje su F_i i G_j komplementarni literali (jedan je negacija drugoga).

Premise nazivamo roditeljske klauzule, a dedukciju nazivamo rezolventa.

• Primjeri:

$$A \lor B \lor \neg C, \ D \lor \neg B \lor E \vdash A \lor \neg C \lor D \lor E$$

$$\neg A \lor B, \ A \vdash B$$

$$A \lor B, \ A \lor \neg B \vdash A \lor A$$

$$A \lor B, \ \neg A \lor \neg B \vdash B \lor \neg B$$

$$A \lor B, \ \neg A \lor \neg B \vdash A \lor \neg A$$

Konjunktivna normalna forma

- Ako su premise klauzule, skup premisa je konjunkcija klauzula (premise su implicitno povezane operatorom ∧)
- Q: Ograničava li to primjenu rezolucije? A: Ne!
- Bilo koju formulu propozicijske logike moguće je prikazati kao konjunkciju klauzula pretvorbom u konjunktivnu normalnu formu

Konjunktivna normalna forma (engl. conjuctive normal form, CNF)

Formula F je u **konjunktivnoj normalnoj formi** akko je F u obliku

$$F_1 \wedge F_2 \wedge \cdots \wedge F_n$$

pri čemu je F_i oblika

$$G_{i1} \vee G_{i2} \vee \cdots \vee G_{im}$$

gdje su G_{ij} literali (atomi ili njihove negacije).

Pretvorba u CNF

Svaka se formula može pretvoriti u CNF u četiri slijedna koraka

Pretvorba formule u CNF

- (1) Uklanjanje ekvivalencije: $F \leftrightarrow G \equiv (\neg F \lor G) \land (\neg G \lor F)$
- (2) Uklanjanje implikacije: $F \to G \equiv \neg F \lor G$
- (3) Potiskivanje negacije do atoma: $\neg (F \lor G) \equiv \neg F \land \neg G$ $\neg (F \land G) \equiv \neg F \lor \neg G$
- (4) Primjena distributivnosti: $F \lor (G \land H) \equiv (F \lor G) \land (F \lor H)$

Svaki se korak ponavlja sve dok je primjenjiv.

U svim koracima, kad god je to moguće, primijenjuje se ekvivalencija za involuciju $\neg \neg F \equiv F$.

Pretvorba u CNF - primjer

$$(C \lor D) \to (\neg A \leftrightarrow B)$$

(1) Uklanjanje ekvivalencije:

$$\begin{array}{l} (C \vee D) \rightarrow (\neg A \leftrightarrow B) \\ (C \vee D) \rightarrow \left((\neg \neg A \vee B) \wedge (\neg B \vee \neg A) \right) \end{array}$$

(2) Uklanjanje implikacije:

$$(C \lor D) \to ((A \lor B) \land (\neg B \lor \neg A))$$

(3) Potiskivanje negacije:

$$\neg(C \lor D) \lor ((A \lor B) \land (\neg B \lor \neg A))$$

(4) Primjena distributivnosti:

$$\begin{array}{l} (\neg C \land \neg D) \lor \big((A \lor B) \land (\neg B \lor \neg A) \big) \\ \big((\neg C \land \neg D) \lor (A \lor B) \big) \land \big((\neg C \land \neg D) \lor (\neg B \lor \neg A) \big) \\ \big((\neg C \lor A \lor B) \land (\neg D \lor A \lor B) \big) \land \big((\neg C \land \neg D) \lor (\neg B \lor \neg A) \big) \\ \big((\neg C \lor A \lor B) \land (\neg D \lor A \lor B) \big) \land \big((\neg C \lor \neg B \lor \neg A) \land (\neg D \lor \neg B \lor \neg A) \big) \\ \big(\neg C \lor A \lor B \big) \land \big(\neg D \lor A \lor B \big) \land \big(\neg C \lor \neg B \lor \neg A \big) \land \big(\neg D \lor \neg B \lor \neg A \big) \\ \end{array}$$

Klauzalni oblik

- Formula u konjunktivnoj normalnoj formi može se prikazati kao skup klauzula između kojih se implicitno podrazumijeva konjunkcija
- Klauzule se mogu prikazati kao skup literala između kojih se implicitno podrazumijeva disjunkcija
- Dakle, formula se može prikazati kao skup skupova literala
- To nazivamo klauzalni oblik
- Npr.:

• Klauzule se također mogu pisati jedna ispod druge:

$$\neg C \vee A \vee B$$

$$\neg D \lor A \lor B$$

$$\neg C \vee \neg B$$

Rezolucija

Postupak se ponavlja sve dok:

- (1) izvedena je ciljna formula
- (2) ne može se izvesti nova formula
- (3) isrcpljeni su računalni resursi

Rezolucija - primjer

- Dokažimo rezolucijom: $A \rightarrow B, B \rightarrow C, A \vdash C$
- Premise u klauzalnom obliku:
 - (1) $\neg A \lor B$
 - (2) $\neg B \lor C$
 - (3) *A*
- Rezolucijskim postupkom izvodimo:
 - (4) $\neg A \lor C$ (iz 1 i 2)
 - (5) C (iz 3 i 4)
- Ili:
 - (4') B (iz 1 i 3)
 - (5') C (iz 2 i 4')

Nepotpunost rezolucije

- Dokazali smo da je rezolucijsko pravilo ispravno. No je li potpuno?
- Lako je pokazati da rezolucijsko pravilo nije potpuno
- Npr., razmotrimo dedukciju $F \vdash F \lor G$
- Nju ne možemo izvesti rezolucijskim pravilom (zašto?)
- Međutim, vrijedi $F \models F \lor G$ (provjerite!)
- Budući da vrijedi $F \models F \lor G$, a da rezolucijskim pravilom ne možemo deduktivno izvesti $F \vdash F \lor G$, zaključujemo da rezolucijskim pravilom ne možemo dokazati sve logičke posljedice, pa zaključujemo da **rezolucijsko pravilo nije potpuno**

Sadržaj

- Teorija dokaza
- Rezolucija u propozicijskoj logici (PL)
- 3 Rezolucija opovrgavanjem u propozicijskoj logici (PL)
- 4 Rezolucija u logici prvog reda (FOL) priprema
- 5 Rezolucija u logici prvog reda (FOL) postupak i primjeri

Izravna rezolucija vs. rezolucija opovrgavanjem

- Rezolucija koju smo do sada primjenjivali je **izravna rezolucija** (engl. *direct resolution*), koja pokušava izvesti G iz F_1, \ldots, F_n
- Postoji i **rezolucija opovrgavanjem** (engl. *refutation resolution*), koja pokušava dokazati da je $F_1 \wedge \cdots \wedge F_n \wedge \neg G$ nekonzistentno
- Izravna rezolucija je **nepotpuna**, međutim rezolucija opovrgavanjem je **potpuna**

Rezolucija opovrgavanjem (1)

- Umjesto da dokazujemo $F_1, \ldots, F_n \vdash G$, nastojimo dokazati da je $F_1 \land \cdots \land F_n \land \neg G$ proturječna formula
- Kao poseban slučaj rezolucijskog pravila imamo:

$$\frac{A \qquad \neg A}{\text{NIL}}$$

- ullet NIL označava prauznu klauzulu čija je semantička vrijednost $oldsymbol{\perp}$
- Ako rezolucijskim zaključivanjem izvedemo klauzulu NIL, onda znači da su premise proturječne (jer je rezolucijsko pravilo ispravno)

Rezolucija opovrgavanjem (2)

- Dokazano je (**ground resolution theorem**) da, uvijek kada je skup klauzula proturječan, rezolucijom možemo izvesti klauzulu NIL
- To znači da uvijek možemo dokazati nekonzistentnost skupa klauzula
- A to znači da možemo dokazati svaku logičku posljedicu. Q: Zašto?
- **A:** Zato što $F \models G$ možemo dokazati metodom opovrgavanja tako da dokažemo da je $F \land \neg G$ proturječna formula
- A to onda znači da je rezolucija opovrgavanjem potpuna, zato što njome možemo dokazati bilo koju logičku posljedicu
- Dakle, rezolucija opovrgavanjem je ispravna i potpuna!

Rezolucija opovrgavanjem - primjer 1

- Pokažimo da rezolucijom opovrgavanjem možemo dokazati $F \vdash F \lor G$:
- Negacija ciljne formule: $\neg(F \lor G) \equiv \neg F \land \neg G$
- Skup klauzula:
 - (1) F
 - (2) $\neg F$
 - $(3) \neg G$
- Iz (1) i (2) izvodimo klauzulu NIL
- Dokazali smo da je skup klauzula proturječan, odnosno da je $F \vee G$ deduktivna/logička posljedica premise F

Rezolucija opovrgavanjem – primjer 2

Diplomatski problem

Kao predstavnik protokola, zaduženi ste poslati pozivnice za diplomatski bal koji se održava u ambasadi. Međutim, postoje ograničenja:

- (1) Veleposlanik želi da, ako pozovete Tursku, svakako pozovete i UK
- (2) Pomoćnik veleposlanika želi da pozovete Tursku ili Argentinu, ili obje.
- (3) Zbog nedavnog diplomatskog incidenta, ne možete pozvati i UK i Argentinu.

Koga pozvati?

Dokažimo: "Ako pozovemo Tursku, nećemo pozvati Argentinu"

- Logički prikaz problema: $(T \to U) \land (T \lor A) \land \lnot (U \land A)$
- Trebamo dokazati $T \to \neg A$ (cilj)

Rezolucija opovrgavanjem - primjer 2

- Pretvorba u klauzalni oblik:
 - (1) $U \vee \neg T$
 - (2) $T \vee A$
 - (3) $\neg U \lor \neg A$
- Negacija cilja: $\neg(T \to \neg A) \equiv \neg(\neg T \lor \neg A) \equiv T \land A$
- Nove klauzule:
 - (4) T
 - (5) *A*
- Rezolucijski postupak:
 - (6) *U* (iz 1 i 4)
 - $(7) \neg A$ (iz 3 i 6)
 - (8) NIL (iz 5 i 7)

Faktorizacija

- Rezolucija opovrgavanjem je potpuna uz uvjet da su klauzule faktorizirane
- Faktorizacija je primjena ekvivalencije $G \vee G \equiv G$ kojom se višekratno pojavljivanje istog literala zamjenuje jednim literalom
- Primjer:

$$\neg A \lor \neg A, \ A \lor A \vdash A \lor \neg A$$

- Skup klauzula je proturječan, a izveli smo valjanu formulu
- Q: Je li to ispravno? A: Naravno da jest. Valjana formula je logička posljedica bilo koje formule. Ali od toga nemamo koristi.
- Međutim, da smo napravili faktorizaciju, dobili bismo: $\neg A, A \vdash \text{NIL}$
- Kako bismo zadržali potpunost, treba primjenjivati faktorizaciju kad god je to moguće

Algoritam rezolucije opovrgavanjem

Algoritam rezolucije opovrgavanjem (za propozicijsku logiku)

```
function plResolution(F,G)

clauses \leftarrow cnfConvert(F \land \neg G)

new \leftarrow \emptyset

loop do

for each (c_1, c_2) in selectClauses(clauses) do

resolvents \leftarrow plResolve(c_1, c_2)

if NIL ∈ resolvents then return true

new \leftarrow new \cup resolvents

if new \subseteq clauses then return false

clauses \leftarrow clauses \cup new
```

- cnfConvert pretvara formulu u konjunktivan normalan oblik
- selectClauses odabire skup parova klauzula za razrješavanje
- plResolve razrješava roditeljske klauzule i vraća skup rezolventi

Algoritam rezolucije opovrgavanjem – napomene

- Primjena rezolucijskog pravila na par klauzula može dati više rezolventi, pa zato radimo sa skupom rezolventi
- Kako bi se zadržala potpunost, potrebno je uvijek faktorizirati sve dobivene rezolvente
- Broj mogućih različitih klauzula je konačan (ako se provodi faktorizacija), pa algoritam sigurno završava u konačnom broju koraka
- Treba voditi računa o tome koji su parovi već bili razriješeni i ne razrješavati ih ponovo
- Izvođenje klauzule NIL iz skupa klauzula zapravo je problem pretraživanja: u svakom koraku trebamo odabrati par klauzula koje ćemo razriješiti
- Treba nam strategija pretraživanja, koja se u kontekstu rezolucije naziva rezolucijska strategija

Rezolucijske strategije

- Dvije vrste rezolucijskih strategija:
 - strategije pojednostavljenja (engl. simplification strategies)
 - upravljačke strategije (engl. control strategies)
- Strategije pojednostavljivanja uklanjaju redundantne i nevažne klauzule generirane tijekom postupka dokazivanja čime se sprječava njihovo daljnje nepotrebno razrješavanje
- Upravljačke strategije određuju način odabira roditeljskih klauzula
- Rezolucijska strategija treba biti potpuna: mora izvesti NIL, ako je skup klauzula nekonzistentan
- To ne treba brkati s potpunošću pravila zaključivanja (općenito, da bi postupak dokazivanja bio potpun, trebamo kombinirati potpuna pravila s potpunom strategijom pretraživanja)

Strategija pojednostavljenja

Strategija brisanja

Uklanjanje redundantnih klauzula:

- Klauzula koja je pokrivena (engl. subsumed) drugom klauzulom može se obrisati
- Prema ekvivalenciji apsorpcije: $F \wedge (F \vee G) \equiv F$
- Ako se u skupu klauzula nađe par klauzula C_1 i C_2 takvih da $C_1 \subseteq C_2$, klauzula C_2 može se obrisati (klauzule su prikazane kao skupovi literala)

Uklanjanje **nevažnih** klauzula:

- Klauzula koja je valjana (tautologija) je nevažna (zašto?)
- Ako je rezolventa valjana klauzula, može ju se odmah pobrisati
- Provjera valjanosti klauzule je jednostavna: klauzula je valjana akko sadrži komplementaran par literala F_i i $\neg F_i$

Upravljačke rezolucijske strategije

Strategija zasićenja po razinama (engl. level saturation strategy)

- Rezolvente izvodimo razinu po razinu (kao kod pretraživanja u širinu): razrješavamo sve moguće parove klauzula na prvoj razini (početni skup klauzula), zatim na drugoj razini, itd.
- ullet Na i-toj razini, roditeljske klauzule uzimaju se s razina 1 do (i-1)
- Ovo je potpuna strategija, ali je vrlo neučinkovita (problem kombinatorne eksplozije)

Upravljačke rezolucijske strategije

Strategija skupa potpore (engl. set-of-support strategy, SoS)

- Temelji se na pretpostavci da je skup ulaznih premisa konzistentan
- Naime, kada premise ne bi bile konzistentne, iz njih bi logički slijedila bilo koja formula!
- Stoga, kako bismo kod rezolucije opovrgavanjem dokazali nekonzistentnost, moramo kombinirati klauzule ulaznih premisa s klauzulama negiranog cilja, ili s novoizvedenim klauzulama
- Skup potpore (SoS): klauzule dobivene negacijom cilja i sve novoizvedene klauzule
- Strategija skupa potpore: barem jedna roditeljska klauzula uvijek dolazi iz SoS
- SoS se povećava kako izvodimo nove klauzule
- Ova je strategija potpuna i u načelu učinkovitija od strategije zasićenja (pogotovo ako je SoS malen)

Sadržaj

- Teorija dokaza
- 2 Rezolucija u propozicijskoj logici (PL)
- Rezolucija opovrgavanjem u propozicijskoj logici (PL)
- 4 Rezolucija u logici prvog reda (FOL) priprema
- 5 Rezolucija u logici prvog reda (FOL) postupak i primjeri

Primjer: Carinici i diplomati

Premise

Carinici su pretražili svakoga tko je ušao u zemlju a nije diplomat. Neke krijumčare koji su ušli u zemlju pretražili su samo krijumčari. Niti jedan krijumčar nije diplomat.

Zaključak

Neki su carinici krijumčari.

Jednostavniji primjer

- (1) Svaki student pohađa predavanja.
- (2) Ivan je student.
 - ⊢ Ivan pohađa predavanja.

Zaključivanje pravilima prirodnog zaključivanja:

- (1) $\forall x (S(x) \rightarrow P(x))$
- (2) S(Ivan)
- (3) $S(Ivan) \rightarrow P(Ivan)$ (iz 1 pravilom univerzalne instancijacije)
- (4) P(Ivan) (iz 2 i 3 pravilom modus ponens)

Univerzalna instancijacija + modus ponens = generalizirani modus ponens

Kako bismo ovo mogli izvesti rezolucijskim pravilom?

Rezolucija u FOL-u – nacrt postupka

Pretvoriti formule (premisu i negirani cilj) u klauzalni oblik:

$$\forall x \big(S(x) \to P(x) \big) \quad \Rightarrow \quad \neg S(x) \lor P(x)$$

$$S(Ivan) \qquad \Rightarrow \quad S(Ivan)$$

$$P(Ivan) \qquad \Rightarrow \quad \neg P(Ivan)$$

Upariti komplementarne literale:

$$\neg S(x) \iff S(Ivan) \quad \text{ako } x \leftarrow Ivan$$

$$P(x) \iff P(Ivan) \quad \text{ako } x \leftarrow Ivan$$

- ⇒ operacija unifikacije, koja rezultira supstitucijom varijabli
- Primijeniti dobivene supstituciju i razriješiti klauzule:

$$\neg S(x) \lor P(x), S(Ivan) \vdash P(Ivan)$$

 $P(Ivan), \neg P(Ivan) \vdash \text{NIL}$

- Kao i kod PL, rezolucija u FOL iziskuje pretvaranje formule u klauzalni oblik
- Implicitno se podrazumijeva da su:
 - sve varijable u klauzuli univerzalno kvantificirane
 - između klauzula je konjunkcija
- Također, sve klauzule trebaju biti standardizirane ne postoje dvije klauzule koje sadrže iste varijable
- Pretvorba u klauzalni oblik provodi se u 10 slijednih koraka

Korak 1: Uklanjanje ekvivalencije

$$F \leftrightarrow G \equiv (\neg F \lor G) \land (\neg G \lor F)$$

Korak 2: Uklanjanje implikacije

$$F \to G \equiv \neg F \lor G$$

 Korak 3: Smanjivanje dosega operatora negacije tako da se odnosi na samo jedan atom

$$\neg (F \lor G) \equiv \neg F \land \neg G$$
$$\neg (F \land G) \equiv \neg F \lor \neg G$$
$$\neg \forall x F(x) \equiv \exists x (\neg F(x))$$
$$\neg \exists x F(x) \equiv \forall x (\neg F(x))$$

• Po potrebi, u svakom od prethodna tri koraka primjenjuje se **involutivnost** $\neg \neg F \equiv F$ za eliminaciju dvostruke negacije

 Korak 4: Preimenovanje varijabli tako da svaki kvantifikator veže jedinstvenu varijablu

$$(\forall x F(x) \lor \forall x G(x)) \equiv (\forall x F(x) \lor \forall y G(y))$$

$$(\forall x F(x) \lor \exists x G(x)) \equiv (\forall x F(x) \lor \exists y G(y))$$

$$(\exists x F(x) \lor \forall x G(x)) \equiv (\exists x F(x) \lor \forall y G(y))$$

$$(\exists x F(x) \lor \exists x G(x)) \equiv (\exists x F(x) \lor \exists y G(y))$$

$$(\forall x F(x) \land \forall x G(x)) \equiv (\forall x F(x) \land \forall y G(y))$$

$$(\forall x F(x) \land \exists x G(x)) \equiv (\forall x F(x) \land \exists y G(y))$$

$$(\exists x F(x) \land \forall x G(x)) \equiv (\exists x F(x) \land \forall y G(y))$$

$$(\exists x F(x) \land \exists x G(x)) \equiv (\exists x F(x) \land \exists y G(y))$$

Pretvaranje u klauzalni oblik – skolemizacija

- Korak 5: Skolemizacija zamjena svih egzistencijalno kvantificiranih varijabli Skolem-izrazima
- Ako egzistencijalna varijabla <u>ne ovisi</u> o drugim varijablama: zamjena Skolem-konstantom

$$\exists x SESTRA(x, Ivan)$$

$$\Rightarrow SESTRA(\underbrace{Ana}_{Skolem-konstanta}, Ivan)$$

 Ako egzistencijalna varijabla ovisi o drugim <u>univerzalno</u> kvantificiranim varijablama: zamjena <u>Skolem-funkcijom</u>

$$\forall x \exists y \text{MAJKA}(y, x)$$

$$\Rightarrow \forall x \text{MAJKA}(\underbrace{f(x)}_{\text{Skolem-funkcija}}, x)$$

Pretvaranje u klauzalni oblik – skolemizacija

 Argumenti Skolem-funkcije su sve one univerzalno kvantificirane varijable čiji doseg uključuje doseg egzistencijalno kvanitificirane varijable koja se zamjenjuje

$$\exists u \forall v \forall w \exists x \forall y \exists z F(u, v, w, x, y, z)$$

$$\Rightarrow \forall v \forall w \forall y F(\mathbf{a}, v, w, \mathbf{f}(v, w), y, \mathbf{g}(v, w, y))$$

Niti jedan od simbola $a,\ f$ i g ne smije se pojavljivati u izvornoj formuli

Thoraf Albert Skolem (1887–1963)

Norveški matematičar i logičar, jedan od utemeljitelja teorije modela.

Pretvaranje u klauzalni oblik – skolemizacija

• Što je opravdanje za skolemizaciju? Zašto bismo egzistencijalno kvantificiranu varijablu smjeli zamijeniti proizvoljnom konstantom?

$$\exists x \text{SESTRA}(x, Ivan) \stackrel{???}{\equiv} \text{SESTRA}(Ana, Ivan)$$

- Gornja ekvivalencija općenito ne vrijedi, ali to nije bitno
- Bitno je da skolemizacija ne utječe na svojstvo nezadovoljivosti formule!

Ako
$$\exists x \text{SESTRA}(x, Ivan) \equiv \bot$$
 onda $\text{SESTRA}(Ana, Ivan) \equiv \bot$

- To znači: ako su premise i negirani cilj proturječni, bit će takvi i nakon skolemizacije
- U kontekstu rezolucije opovrgavanjem to je sve što nam treba

 Korak 6: Preneks-normalan oblik – premještanje svih univerzalnih kvantifikatora na lijevu stranu fomule, zadržavajući pritom izvorni redoslijed kvantifikatora

$$\forall x F(x) \lor \forall y G(y) \equiv \forall x \forall y (F(x) \lor G(y))$$
$$\forall x F(x) \land \forall y G(y) \equiv \forall x \forall y (F(x) \land G(y))$$
$$\forall x F(x) \lor H\{x\} \equiv \forall x (F(x) \lor H\{x\})$$
$$\forall x F(x) \land H\{x\} \equiv \forall x (F(x) \land H\{x\})$$

- Niz kvantifikatora na lijevoj strani naziva se prefiks
- Desna strana formule, koja je oslobođena od kvantifikatora, naziva se matrica

- Korak 7: Uklanjanje prefiksa. Preostaje samo matrice, za koju se implicitno podrazumijeva da su sve varijable univerzalno kvantificirane
- Korak 8: Pretvorba matrice u CNF korištenjem distributivnost

$$(F \lor (G \land H)) \equiv ((F \lor G) \land (F \lor H))$$
$$((F \land G) \lor H) \equiv ((F \lor H) \land (G \lor H))$$

- Korak 9: Pretvorba u skup klauzula uklanjanjem operatora ∧, koji se implicitno podrazumijeva između klauzula
- Korak 10: Standardizacija klauzula preimenovanjem varijabli tako da ne postoje klauzule s identičnim varijablama, pomoću:

$$\forall x (F(x) \land G(x)) \equiv \forall x \forall y (F(x) \land G(y))$$

NB: Ne rade se preminovanja iste varijable unutar iste klauzule! Naime, općenito ne vrijedi:

$$\forall x P(x, x) \not\equiv \forall x \forall y P(x, y)$$
$$\forall x (P(x) \lor Q(x)) \not\equiv \forall x \forall y (P(x) \lor Q(y))$$

Pretvaranje u klauzalni oblik – primjer

$$\forall y \forall z \Big(\exists u \big(P(y, u) \lor P(z, u) \big) \to \exists u \forall Q(y, z, u) \Big)$$

- Korak 1: Uklanjanje ekvivalencije ⇒ OK
- Korak 2: Uklanjanje implikacije

$$\forall y \forall z \big(\neg (\exists u (P(y, u) \lor P(z, u))) \lor \exists u Q(y, z, u) \big)$$

Korak 3: Smanjivanje dosega operatora negacije

$$\forall y \forall z \big(\forall u (\neg P(y, u) \land \neg P(z, u)) \lor \exists u Q(y, z, u) \big)$$

Korak 4: Preimenovanje varijabli

$$\forall y \forall z \big(\forall u (\neg P(y, u) \land \neg P(z, u)) \lor \exists v Q(y, z, v) \big)$$

Pretvaranje u klauzalni oblik - primjer

Korak 5: Skolemizacija

$$\forall y \forall z \big(\forall u (\neg P(y, u) \land \neg P(z, u)) \lor Q(y, z, f(y, z)) \big)$$

Korak 6: Preneks-normalan oblik

$$\forall y \forall z \forall u \big((\neg P(y, u) \land \neg P(z, u)) \lor Q(y, z, f(y, z)) \big)$$

• Korak 7: Uklanjanje prefiksa

$$(\neg P(y,u) \land \neg P(z,u)) \lor Q(y,z,f(y,z))$$

Korak 8: Pretvorba matrice u CNF

$$(\neg P(y,u) \lor Q(y,z,f(y,z))) \land (\neg P(z,u) \lor Q(y,z,f(y,z)))$$

Pretvaranje u klauzalni oblik – primjer

• Korak 9: Pretvorba u skup klauzula

$$\left\{ \neg P(y,u) \lor Q(y,z,f(y,z)), \neg P(z,u) \lor Q(y,z,f(y,z)) \right\}$$

• Korak 10: Standardizacija (uz $u \to v$, $y \to w$, $z \to x$)

$$\left\{ \neg P(y,u) \lor Q(y,z,f(y,z)), \neg P(x,v) \lor Q(w,x,f(w,x)) \right\}$$

Unifikacija

- Operacija svođenje dva izraza na isti oblik
- Sve varijable u klauzuli univerzalno su kvantificirane, pa vrijedi pravilo univerzalne instancijacije (eliminacije kvantifikatora ∀): ako se varijabla zamijeni bilo kojim izrazom, dobivena formula je logička posljedica izvorne formule

Primjeri

- $ightharpoonup S(x) \Rightarrow S(Ivan) \Leftarrow S(Ivan)$, uz supstituciju varijable x izrazom Ivan, što označavamo s $\{Ivan/x\}$
- $S(x) \Rightarrow S(z) \Leftarrow S(y)$, uz $\{z/x, z/y\}$
- $\blacktriangleright \ Q(x,a) \Rightarrow Q(f(y),a) \Leftarrow Q(f(y),z) \text{, uz } \{f(y)/x,a/z\}$
- ▶ $Q(f(x),x)\Rightarrow Q(f(a),a)\Leftarrow Q(y,a)$, uz $\{f(a)/y,a/x\}$ kao kompoziciju supstitucija, $\{f(x)/y\}\circ\{a/x\}=\{f(a)/y,a/x\}$
- Unifikacija ne mora uvijek uspijeti! Npr. izraze P(a) i P(f(x)) nije moguće unificirati

Supstitucija

Supstitucija

Neka su x_i varijable a t_i izrazi FOL-a. Skup uređenih parova

$$\alpha = \{t_1/x_1, t_2/x_2, \dots, t_n/x_n\}$$

čini supstituciju (zamjenu) varijabli x_i izrazima t_i , uz uvjet $x_i \neq x_j$ za $i \neq j$ te $t_i \neq x_i$ za $i = 1, \ldots, n$.

- Primjena supstitucije α na neki općeniti izraz K: svako pojavljivanje varijable x_i u K zamjenuje se izrazom t_i
- Dobiveni općeniti izraz označavamo sa $K\alpha$ i kažemo da je $K\alpha$ instanca općenitog izraza K Npr. $K=P(x,f(y)),\ \alpha=\{a/x,b/y\}:\ K\alpha=P(a,f(b))$
- Za praznu supstituciju ε vrijedi $K\varepsilon=K$
- NB: Samo se varijable mogu supstituirati!

Kompozicija supstitucija

• Kompozicija supstitucija α i β , označena sa $\alpha \circ \beta$, je supstitucija za koju vrijedi $K(\alpha \circ \beta) = (K\alpha)\beta$ za svaki K

Izračun kompozicije supstitucija

Dane su supstitucije:

$$\alpha = \{t_1/x_1, t_2/x_2, \dots, t_n/x_n\} \ \mathsf{i} \ \beta = \{s_1/y_1, s_2/y_2, \dots, s_m/y_m\}.$$

Konstruiraj skupove:

$$S_{1} = \{t_{1}\beta/x_{1}, t_{2}\beta/x_{2}, \dots, t_{n}\beta/x_{n}, \underbrace{s_{1}/y_{2}, s_{2}, y_{2}, \dots, s_{m}/y_{m}}_{\beta}\}$$

$$S_{2} = \{t_{i}\beta/x_{i} \mid t_{i}\beta/x_{i} \in S_{1}, t_{i}\beta = x_{i}\}$$

$$S_{3} = \{s_{i}/y_{i} \mid s_{i}/y_{i} \in S_{1}, y_{i} \in \{x_{1}, \dots, x_{n}\}\}$$

Kompozicija supstitucija je:

$$\alpha \circ \beta = S_1 \setminus S_2 \setminus S_3$$

Kompozicija supstitucija – primjer

• Neka su zadane supstitucije:

$$\alpha = \{z/u, h(u)/w\}$$
$$\beta = \{a/u, z/w, u/z\}$$

• Izvedimo kompoziciju $\alpha \circ \beta$:

$$S_{1} = \{ \frac{z\beta/u, h(u)\beta/w, a/u, z/w, u/z \}}{= \{ u/u, h(a)/w, a/u, z/w, u/z \}}$$

$$S_{2} = \{ u/u \}$$

$$S_{3} = \{ a/u, z/w \}$$

$$\alpha \circ \beta = S_{1} \setminus S_{2} \setminus S_{3} = \{ h(a)/w, u/z \}$$

• Pokažimo da za K = P(u, w, f(z)) vrijedi $K(\alpha \circ \beta) = (K\alpha)\beta$:

$$P(u, w, f(z))(\boldsymbol{\alpha} \circ \boldsymbol{\beta}) = P(u, h(a), f(u))$$
$$(P(u, w, f(z))\boldsymbol{\alpha})\boldsymbol{\beta} = P(z, h(u), f(z))\boldsymbol{\beta} = P(u, h(a), f(u))$$

Unifikacija

• Općeniti izrazi K_1 i K_2 mogu se svesti na isti oblik akko postoji supstitucija γ takva da:

$$K_1 \gamma = K_2 \gamma$$

- Supstitucija γ naziva se unifikator (engl. *unifier*), odnosno kaže se da su K_1 i K_2 unificirani pomoću γ
- ullet Izraz $K_1 \gamma$ odnosno $K_2 \gamma$ naziva se zajednička instanca
- Dva izraza mogu imati više unifikatora

Primjer

Atomi P(x) i P(y) imaju unifikatore:

- $\gamma_1 = \{b/x, b/y\}$, koji daje zajedničku instancu P(b)
- $\gamma_2 = \{z/x, z/y\}$, koji daje zajedničku instancu P(z)

Instanca P(z) je općenitija zajednička instanca nego P(b). Zašto?

Najopćenitiji unifikator (MGU)

 Zanimaju nas unifikatori koji daju što je moguće općenitiju zajedničku instancu, jer tako osiguravamo općenitost zaključka, a time i potpunost postupka zaključivanja

Najopćenitiji unifikator (engl. most general unifier, MGU)

Supstitucija δ je najopćenitiji unifikator (MGU) akko za svaki unifikator γ od K_1 i K_2 postoji supstitucija θ za koju vrijedi $\gamma = \delta \circ \theta$.

• Intuitivno, γ je manje općenit unifikator koji se iz najopćenitijeg unifikatora δ može dobiti dodatnom supstitucijom θ

Primjer

Unifikatori za P(x) i P(y):

- $\delta = \{y/x\}$ (MGU)
- $\gamma = \{b/x, b/y\} = \delta \circ \theta$, gdje $\theta = \{b/y\}$

Algoritam MGU - primjer

Nađi MGU izraza

$$K_1 = P(g(u), z, f(z))$$
 $K_2 = P(x, y, f(b))$

- Korak 1:
 - $\{g(u)/x\}$ unificira prve podizraze od K_1 i K_2 koji se ne slažu
 - $K_1\{g(u)/x\} = P(g(u), z, f(z))$
 - $K_2\{g(u)/x\} = P(g(u), y, f(b))$
- Korak 2:
 - $lackbox \{y/z\}$ unificira sljedeće podizraze koji se ne slažu
 - ▶ kompozicija $\{g(u)/x\} \circ \{y/z\} = \{g(u)/x, y/z\}$
 - $K_1\{g(u)/x, y/z\} = P(g(u), y, f(y))$
 - $K_2\{g(u)/x, y/z\} = P(g(u), y, f(b))$
- Korak 3:
 - $lackbox\{b/y\}$ unificira posljednje podizraze koji se ne slažu
 - kompozicija $\{g(u)/x, y/z\} \circ \{b/y\} = \{g(u)/x, b/z, b/y\} = \delta$
 - $K_1 \delta = P(g(u), b, f(b))$
 - $K_2 \delta = P(g(u), b, f(b))$

Algoritam MGU

- ullet Ulaz: dva općenita izraza, K_1 i K_2
- ullet Izlaz: najopćenitiji unifikator, ako se K_1 i K_2 mogu unificirati, inače pogreška
- Razmotrit ćemo rekurzivni algoritam MGUNIFIER (Luger, Stubblefield, 1993; Shinghal, 1992)
- Algoritam izraze zapisuje u obliku ugniježđenih listi:

$$\begin{split} P(a,b) &\Rightarrow [P,a,b] \\ P(f(a),g(x,y)) &\Rightarrow [P,[f,a],[g,x,y]] \end{split}$$

• Prvi element liste je glava liste, a ostatak je rep liste

$$K = [\textcolor{red}{P}, [f, a], [g, x, y]]$$

$$\operatorname{head}(K) = \textcolor{red}{P}$$

$$\operatorname{tail}(K) = [[f, a,], [g, x, y]]$$

Algoritam MGUNIFIER

```
function \operatorname{mgUnifier}(K_1, K_2)
   if var(K_1) or fun(K_1) or pred(K_1) or K_1 = [] or
      var(K_2) or fun(K_2) or pred(K_2) or K_2 = [] then
      if K_1 = K_2 then return \varnothing
      if K_1 = [] or K_2 = [] then return fail
      if var(K_1) then
         if K_1 \in K_2 then return fail else return \{K_2/K_1\}
      if var(K_2) then
         if K_2 \in K_1 then return fail else return \{K_1/K_2\}
      return fail -- niti K_1 niti K_2 nisu varijable
   else
      \alpha \leftarrow \operatorname{mgUnifier}(\operatorname{head}(K_1), \operatorname{head}(K_2))
      if \alpha = fail then return fail
      \beta \leftarrow \operatorname{mgUnifier}(\operatorname{tail}(K_1)\alpha, \operatorname{tail}(K_2)\alpha)
      if \beta = fail then return fail
      return \alpha \circ \beta
```

Neuspješna unifikacija

- MGUNIFIER vraća pogrešku u slučajevima kada unifikacija nije moguća
- Npr.:

$\overline{K_1}$	K_2	Pogreška kod unifikacije
P(a)	P(b)	Neslaganje u simbolima konstanti
P(f(x))	P(g(b))	Neslaganje u sibolima funkcijama
P(x)	Q(y)	Neslaganje u simbolima predikata
P(a)	P(x,b)	Neslaganje u broju argumenata
P(x)	P(f(x))	Supstitucija varijable izrazom koji ju sadržava

Provjera pojavljivanja

- MGUNIFIER radi **provjeru pojavljivanja** (engl. *occurs check*): pojavljuje li se varijabla u izrazu kojim se zamjenjuje $(K_1 \in K_2 \text{ odnosno } K_2 \in K_1 \text{ u pseudokodu})$
- Bez ove provjere unifikacija može dati cirkularnu supstituciju koja daje beskonačno ugniježđen izraz
- Npr. $K_1 = P(x, x)$ i $K_2 = P(f(y), y)$

$$\alpha = \{f(y)/x\} \Rightarrow K_1 \alpha = P(f(y), f(y))$$

$$K_2 \alpha = P(f(y), y)$$

$$\alpha = \{f(y)/y\} \Rightarrow K_1 \alpha = P(f(f(\cdots f(y) \cdots)), f(f(\cdots f(y) \cdots)))$$

$$K_2 \alpha = P(f(f(\cdots f(y) \cdots)), f(\cdots f(y) \cdots))$$

- Unifikacijom bez provjere pojavljivanja rezolucija gubi ispravnost
- Npr. moguće je dokazati $\forall x \exists y P(x,y) \vdash \exists y \forall x P(x,y)$, premda $\forall x \exists y P(x,y) \nvDash \exists y \forall x P(x,y)$

Unifikacija literala

Za rezoluciju će nam trebati unifikacija literala

Unifikacija literala

Dva literala mogu se **unificirati** akko

- oba su negirani atomi ili oba su afirmativni atomi
- ▶ ti atomi se mogu unificirati
- Npr. $K_1 = P(x)$ i $K_2 = P(y)$ ili $K_1 = \neg P(x)$ i $K_2 = \neg P(y)$

Komplementarna unifikacija literala

Dva literala mogu se komplementarno unificirati akko

- jedan od njih je negirani atom a drugi je afirmativni atom
- ▶ ti atomi se mogu unificirati
- Npr. $K_1 = P(x)$ i $K_2 = \neg P(y)$ ili $K_1 = \neg P(x)$ i $K_2 = P(y)$

Sadržaj

- Teorija dokaza
- 2 Rezolucija u propozicijskoj logici (PL)
- Rezolucija opovrgavanjem u propozicijskoj logici (PL)
- 4 Rezolucija u logici prvog reda (FOL) priprema
- 5 Rezolucija u logici prvog reda (FOL) postupak i primjeri

Rezolucijsko pravilo za FOL

- Vrlo slično rezoluciji u PL, uz dodatak mehanizma unifikacije
- Rezolucija opovrgavanjem funkcionira na isti način kao u PL
- Roditeljske klauzule trebaju biti standardizirane

Rezolucijsko pravilo nad FOL klauzulama

$$\frac{F_1 \vee \cdots \vee F_i \vee \cdots \vee F_n \qquad G_1 \vee \cdots \vee G_j \vee \cdots \vee G_m}{F_1 \delta \vee \cdots \vee F_{i-1} \delta \vee F_{i+1} \delta \vee \cdots \vee F_n \delta \vee G_1 \delta \vee \cdots \vee G_{j-1} \delta \vee G_{j+1} \delta \vee \cdots \vee G_m \delta}$$

gdje su F_i i G_j literali koji se mogu **komplementarno unificirati** a δ je njihov najopćenitiji unifikator (MGU).

Rezolventa je disjunkcija svih preostalih literala roditeljskih klauzula uz **primjenu supstitucije** δ na svaki literal.

Razrješavanjem dviju jediničnih klauzula izvodi se prazna klauzula NIL.

Primjer 1

- Nađi rezolventu klauzula:
 - (1) $P(g(y), x, f(z)) \vee Q(z, b) \vee R(x)$
 - (2) $S(x,y) \vee \neg P(x,y,f(a))$
- Klauzule nisu standardizirane: preimenujmo varijable u prvoj klauzuli supstitucijom $\{w/x, u/y\}$
- Standardizirane klauzule:
 - (1) $P(g(u), w, f(z)) \vee Q(z, b) \vee R(w)$
 - (2) $S(x,y) \vee \neg P(x,y,f(a))$
- Razrješavanjem po komplementarnim literalima uz MGU $\delta = \{g(u)/x, y/w, a/z\}$ dobivamo:
 - (3) $S(g(u), y) \vee Q(a, b) \vee R(y)$

Primjer 2

- (1) Svaki student pohađa predavanja.
- (2) Ivan je student.
 - ⊢ Ivan pohađa predavanja.

Pretvorba u klauzalni oblik i rezolucija opovrgavanjem:

- (1) $\neg S(x) \lor P(x)$
- (2) S(Ivan)
- (3) $\neg P(Ivan)$ (negacija cilja)
- (4) $\neg S(Ivan)$ (iz 1 i 3 uz $\delta = \{Ivan/x\}$)
- (5) NIL (iz 2 i 4 uz $\delta = \emptyset$)

Faktorizacija FOL klauzula

- Kao i u PL, klauzule u FOL moraju biti faktorizirane kako bi se sačuvala potpunost rezolucije opovrgavanjem
- Primjer gubitka potpunosti zbog neprovođenja faktorizacije:
 - (1) $P(u) \vee P(w)$ (2) $\neg P(x) \lor \neg P(y)$
 - (3) $P(w) \vee \neg P(y)$ (iz 1 i 2 uz $\delta = \{u/x\}$)

(slično dobivamo razrješavanjem po drugim literalima)

- Klauzula se može faktorizirati akko ima literale koji se mogu unificirati
- Tako faktorizirana klauzula naziva se faktor-klauzula
 - (1) $P(u) \vee P(w)$
 - (2) $\neg P(x) \lor \neg P(y)$

 - $\begin{array}{ll} \text{(1')} \ \ P(w) & \text{(faktor-klauzula od 1 uz } \delta = \{w/u\}\text{)} \\ \text{(2')} \ \ \neg P(y) & \text{(faktor-klauzula od 2 uz } \delta = \{y/x\}\text{)} \end{array}$
 - (iz 1' i 2' uz $\delta = \{w/y\}$) (3) NIL

Faktorizacija FOL klauzula

Faktor-klauzula

Neka klauzula

$$F_1 \vee \cdots \vee F_i \vee \cdots \vee F_j \vee \cdots \vee F_n$$

sadržava literale F_i i F_j čiji je najopćenitiji unifikator $\pmb{\delta}$. Faktor-klauzula ove klauzule je klauzula

$$F_1 \delta \vee \cdots \vee F_i \delta \vee \cdots \vee F_n \delta$$

Npr. za klauzulu

$$P(x, y, f(b)) \vee S(x, y) \vee P(g(u), w, f(z))$$

faktor-klauzula je

$$P(g(u),y,f(b))\vee S(g(u),y) \qquad \text{(uz } \delta=\{g(u)/x,y/w,b/z\}\text{)}$$

• NB: Jedna klauzula može imati više faktor-klauzula

Rezolucijsko pravilo u FOL – dorada

 Kako bismo sačuvali potpunost rezolucije opovrgavanjem, rezoluciju treba provoditi nad faktoriziranim i nad nefaktoriziranim roditeljskim klauzulama (sve kombinacije!)

Rezolucija nad FOL klauzulama

Neka su F i G roditeljske klauzule (klauzule koje sadrže literale koji se mogu komplementarno unificirati). **Rezolventa** ovih klauzula je svaka ona klazula dobivena:

- (1) razrješavanjem F i G
- (2) razrješavanjem F i faktor-klauzule od G
- (3) razrješavanjem faktor-klauzule od F i G
- (4) razrješavanjem faktor-klauzule od ${\cal F}$ i faktor-klauzule od ${\cal G}$
 - NB: Ako roditeljska klauzula ima više faktor-klauzula, sve kombinacije treba uzeti u obzir

Potpunost rezolucije opovrgavanjem i neodlučivost FOL

- Kao i kod PL, rezolucija opovrgavanjem je ispravna i potpuna
 - ▶ Ispravna: ako iz $F \land \neg G$ izvede NIL, onda je G logička posljedica od F
 - ▶ Potpuna: ako je G logička posljedica od F, onda iz $F \land \neg G$ izvodi NIL
- Dakle, logička posljedica i deduktivna posljedica su jedno te isto
- Potpunost je dokazao je J.A. Robinson (1965.), ali je K. Gödel već ranije dokazao postojanje takvog postupka (1929.)
- Međutim, za razliku od PL, FOL nije odlučiva!

Neodlučivost (engl. undecidability) problema valjanosti u FOL

Ne postoji algoritam koji za svaku formulu F daje "da" ako je F valjana ili "ne" ako F nije valjana.

- Neodlučivost u FOL dokazali su A. Church i A. Turing (1935.)
- ⇒ ne postoji algoritam dokazivanja svake logičke posljedice
 - ightharpoonup naime, prema **teoremu semantičke dedukcije**, $F \vDash G$ akko $\vDash F \to G$

Poluodlučivost FOL

- Preciznije, FOL je poluodlučiva:
 - postoje algoritmi koji daju "da" ako je F valjana, ali ako F nije valjana, algoritam može nikada ne završiti
- Rezolucija opovrgavanjem jedan je takav algoritam
- Zbog poluodlučivosti, moć rezolucije opovrgavanjem je ograničena:
 - ▶ Ako G jest logička posljedica od F, postupak će uvijek izvesti NIL
 - ► Ako G nije logička posljedica F, postupak može nikada ne završiti

Primjer

Vrijedi

$$\forall x (\forall y P(y) \to P(x)) \nvDash \forall x P(x)$$

no rezolucija opovrgavanjem to ne može dokazati (postupak ne završava).

Primjer: Robot i paketi

- Robot dostavlja pakete. Robot zna da su svi paketi u sobi 27 manji od svakog paketa u sobi 28. A i B su paketi. Paket A je u sobi 27 ili u sobi 28, ali robot ne zna u kojoj. Paket B je u sobi 27 i nije manji od paketa A.
- Rezolucije opovrgavanjem pokažimo kako robot može zaključiti da je paket A u sobi 27.
- Prikazivanje znanja:

(1)
$$\forall x \forall y \Big(\big(P(x) \land P(y) \land U(x, 27) \land U(y, 28) \big) \rightarrow M(x, y) \Big)$$

- (2) $P(A) \wedge P(B)$
- (3) $U(A, 27) \vee U(A, 28)$
- (4) $U(B, 27) \land \neg M(B, A)$
 - $\vdash U(A, 27)$

Primjer: Robot i paketi

• Premise i negacija cilja u klauzalnom obliku:

(1)
$$\neg P(x) \lor \neg P(y) \lor \neg U(x,27) \lor \neg U(y,28) \lor M(x,y)$$

- (2) P(A)
- (3) P(B)
- (4) $U(A, 27) \vee U(A, 28)$
- (5) U(B, 27)
- (6) $\neg M(B, A)$
- (7) $\neg U(A, 27)$ (negacija cilja)

Primjer: Robot i paketi

Primjer: Carinici i diplomati

Premise

Carinici su pretražili svakoga tko je ušao u zemlju a nije diplomat. Neke krijumčare koji su ušli u zemlju pretražili su samo krijumčari. Niti jedan krijumčar nije diplomat.

Zaključak

Neki su carinici krijumčari.

Primjer: Carinici i diplomati

(1)
$$\forall x \Big((U(x) \land \neg D(x)) \to \exists y \Big(C(y) \land P(y,x) \Big) \Big)$$

(2)
$$\exists x \Big(K(x) \land U(x) \land \forall y \Big(P(y, x) \to K(y) \Big) \Big)$$

(3)
$$\forall x (K(x) \rightarrow \neg D(x))$$

$$\vdash \exists x (C(x) \land K(x))$$

- $(1) \neg U(x) \lor D(x) \lor C(f(x))$
- (2) $\neg U(z) \lor D(z) \lor P(f(z), z)$)
- (3) K(a)
- (4) U(a)
- (5) $\neg P(y, a) \lor K(y)$
- (6) $\neg K(v) \lor \neg D(v)$
- (7) $\neg C(w) \lor \neg K(w)$

Primjer: Carinici i diplomati

(8) $\neg U(x) \lor D(x) \lor \neg K(f(x))$	(iz 1 i 7 uz $\delta = \{f(x)/w\}$)
(9) $D(a) \vee \neg K(f(a))$	(iz 4 i 8 uz $\delta=\{a/x\}$)
$(10) \neg P(f(a), a) \lor D(a)$	(iz 5 i 9 uz $\delta = \{f(a)/y\}$)
(11) $\neg U(a) \lor D(a) \lor D(a)$	(iz 2 i 10 uz $\delta = \{a/z\}$)
(12) $D(a)$	(iz 4 i 11 uz $\delta=arnothing$)
$(13) \ \neg K(a)$	(iz 6 i 12 uz $\delta = \{a/v\}$)
(14) NIL	(iz 3 i 13 uz $\delta = \varnothing$)

Sažetak

- Teorija dokaza koristi pravila zaključivanja da bi izvela deduktivnu posljedicu, bez eksplicitnog pozivanja na semantiku logike
- Pravila zaključivanja moraju biti ispravna i poželjno je da su potpuna
- Rezolucijsko pravilo je jednostavno pravilo koje je ispravno
- Prije primjene rezolucije, formule treba pretvoriti u klauzalni oblik
- Za razrješavanje FOL literala koristimo unifikaciju, koja nalazi supstituciju varijabli za svođenje dvaju izraza na isti oblik
- Rezolucijske strategija pojednostavljuje ili upravlja postupkom dokazivanja (npr. strategija skupa potpore)
- Rezolucija opovrgavanjem (uz standardizaciju, faktorizaciju i potpunu strategiju) je ispravna i potpuna u PL i FOL
- Zbog poluodlučivosti moć rezolucije u FOL je ograničena

Sljedeća tema: Logičko programiranje