Práctica 5: Baire y Compacidad

"Cuanto más sólido, bien definido y espléndido es el edificio erigido por el entendimiento, más imperioso es el deseo de la vida por escapar de él hacia la libertad."

HEGEL.

A. Baire

Ejercicio 1. Probar que \mathbb{R}^n no puede escribirse como unión numerable de subespacios vectoriales propios.

Ejercicio 2. Sean (X, d) un espacio métrico completo sin puntos aislados y sea D un subconjunto denso y numerable de X. Probar que D no es un G_{δ} .

Ejercicio 3. Demostrar que no existe ninguna función $f: \mathbb{R} \longrightarrow \mathbb{R}$ que sea continua sólo en los racionales.

Sugerencia: Para cada $n \in \mathbb{N}$ considerar

$$U_n = \left\{ x \in \mathbb{R} : \exists U \subseteq \mathbb{R} \text{ abierto con } x \in U \text{ y diam}(f(U)) < \frac{1}{n} \right\}.$$

Ejercicio 4. Sea $(I_n)_{n\in\mathbb{N}}$ la sucesión de intervalos de [0,1] con extremos racionales y para cada $n\in\mathbb{N}$ sea

$$E_n = \{ f \in C[0,1] : f \text{ es monótona en } I_n \}.$$

- i) Probar que para cada $n \in \mathbb{N}$, E_n es cerrado y nunca denso en $(C[0,1], d_{\infty})$.
- ii) Deducir que existen funciones continuas en el intervalo [0,1] que no son monótonas en ningún subintervalo.

Ejercicio 5. Sea (X, d) espacio métrico.

- 1. Probar que si A es nunca denso, entonces $X \setminus A$ es denso. ¿Vale el recíproco?
- 2. Probar que si A es abierto y denso, entonces $X \setminus A$ es nunca denso.

Ejercicio 6. Sea (X, d) espacio métrico y $A \subseteq X$. Probar que son equivalentes:

- 1. A es nunca denso;
- 2. toda bola B abierta contiene otra $B_1 \subseteq B$ abierta tal que $B_1 \cap A = \emptyset$;
- 3. A no es denso en ninguna bola abierta.

Ejercicio 7. Sea $Lip[a,b] = \{f \in C[a,b] : \exists k > 0, |f(x) - f(y)| \le k|x-y|\}$. Probar que $Lip[a,b]^{\circ} = \emptyset$ en C[a,b].

Ejercicio 8. Probar que, si A es el conjunto de funciones continuas que tienen algún intervalo de monotonía, entonces A tiene interior vacío en C[a,b].

B. Compacidad

Ejercicio 9.

- i) Sea $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ tal que $\lim_{n\to\infty}a_n=0$. Probar que el conjunto $\{0\}\cup\{a_n:n\in\mathbb{N}\}\subseteq\mathbb{R}$ es compacto.
- ii) Mostrar que el intervalo $(0,1] \subseteq \mathbb{R}$ no es compacto.
- iii) Sea $S = (a, b) \cap \mathbb{Q}$ con $a, b \in \mathbb{R} \setminus \mathbb{Q}$. Probar que S es un subconjunto cerrado y acotado pero no compacto de (\mathbb{Q}, d) , donde d es la métrica euclídea de \mathbb{R} .

Ejercicio 10. Probar que todo espacio métrico compacto es separable.

Ejercicio 11. Sea $A = \{a^{(n)} \in \ell^{\infty} : n \in \mathbb{N}\}$, donde cada sucesión $a^{(n)} = (a_k^{(n)})_{k \in \mathbb{N}}$ está definida por

$$a_k^{(n)} = \begin{cases} 0 & \text{si } k \neq n, \\ 1 & \text{si } k = n. \end{cases}$$

Probar que A es discreto, cerrado y acotado, pero no compacto.

Ejercicio 12. Dado un cubrimiento por abiertos $(U_i)_{i\in I}$ de un espacio métrico (X,d), un número $\varepsilon > 0$ se llama **número de Lebesgue** de $(U_i)_{i\in I}$ si para todo $x \in X$ existe $j \in I$ tal que $B(x,\varepsilon) \subseteq U_j$. Probar que todo cubrimiento por abiertos de un espacio métrico compacto tiene un número de Lebesgue.

Ejercicio 13. Sea (X, d) un espacio métrico. Probar que:

- i) Toda unión finita y toda intersección (finita o infinita) de subconjuntos compactos de X es compacta.
- ii) Si (X, d) es compacto, todo subconjunto cerrado de X es compacto.
- iii) Un subconjunto $F \subseteq X$ es cerrado si y sólo si $F \cap K$ es cerrado para todo compacto $K \subseteq X$.

Ejercicio 14. Sea $c_0 = \{(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} : \lim_{n \to \infty} x_n = 0\}$. Se define en c_0 la métrica

$$d(x,y) = \sup\{|x_n - y_n| : n \in \mathbb{N}\}.$$

- i) Demostrar que la bola cerrada $\overline{B}(x,1) = \{y \in C_0 : d(x,y) \leq 1\}$ no es compacta.
- ii) Probar que (c_0, d) es separable.

Ejercicio 15. Sean (X,d) e (Y,d') espacios métricos. Se considera $(X\times Y,d_{\infty})$, donde

$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{d(x_1, x_2), d'(y_1, y_2)\}.$$

Probar que $(X \times Y, d_{\infty})$ es compacto si y sólo si (X, d) e (Y, d') son compactos.

Ejercicio 16. Sea (X, d) un espacio métrico.

- i) Sean $K\subseteq X$ un compacto y sea $x\in X\setminus K$. Probar que existe $y\in K$ tal que d(x,K)=d(x,y); es decir, la distancia entre x y K se realiza.
- ii) Sean $F, K \subseteq X$ dos subconjuntos disjuntos de X tales que F es cerrado y K es compacto. Probar que la distancia d(F, K) entre F y K es positiva.
- iii) Sean $K_1, K_2 \subseteq X$ dos subconjuntos compactos de X tales que $K_1 \cap K_2 = \emptyset$. Probar que existen $x_1 \in K_1$ y $x_2 \in K_2$ tales que $d(K_1, K_2) = d(x_1, x_2)$; es decir, la distancia entre K_1 y K_2 «se realiza».

Ejercicio 17. Sea (X,d) un espacio métrico completo. Se define

$$\mathcal{K}(X) = \{ K \subseteq X : K \text{ es compacto y no vacío} \}.$$

- i) Sea $\tilde{d}(A,B) = \sup_{a \in A} \{d(a,B)\}$. Verificar que \tilde{d} no es una métrica en $\mathcal{K}(X)$.
- ii) Se define $\delta: \mathcal{K}(X) \times \mathcal{K}(X) \to \mathbb{R}$ como $\delta(A,B) = \max\{\tilde{d}(A,B), \tilde{d}(B,A)\}$. Probar que para todo $\varepsilon > 0$ vale

$$\delta(A, B) < \varepsilon \iff A \subseteq N(B, \varepsilon) \vee B \subseteq N(A, \varepsilon),$$

donde $N(C,\varepsilon) = \{x \in X : d(x,C) < \varepsilon\}$ para cada $C \subseteq X$.

iii) Probar que δ es una métrica en $\mathcal{K}(X)$.

Ejercicio 18. Sean (X, d) e (Y, d') espacios métricos y $f: X \longrightarrow Y$ continua. Probar que:

- i) Si (X, d) es compacto, entonces f(X) también lo es.
- ii) Si además f es biyectiva, entonces f resulta un homeomorfismo.

Ejercicio 19. Sea (X, d) un espacio métrico compacto. Probar que para cada espacio métrico (Y, d'), la proyección $\pi: X \times Y \to Y$ definida por $\pi(x, y) = y$ es cerrada.

Ejercicio 20. Sean (X, d) e (Y, d') espacios métricos, y sea $f: X \longrightarrow Y$ una función. Probar que si Y es compacto y el gráfico de f es cerrado en $X \times Y$, entonces f es continua.

Ejercicio 21.

- i) Sea $f: \mathbb{R}_{\geq a} \longrightarrow \mathbb{R}$ una función que es uniformemente continua en [a,b] y también en $[b,+\infty)$. Probar que f es uniformemente continua en $\mathbb{R}_{\geq a}$.
- ii) Deducir que \sqrt{x} es uniformemente continua en $\mathbb{R}_{\geq 0}$.
- iii) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ continua y tal que $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$. Probar que f es uniformemente continua en \mathbb{R} .

Ejercicio 22. Sea (X,d) un espacio métrico y sea $A \subseteq X$ compacto. Probar que si $f:A \longrightarrow \mathbb{R}$ es continua y f(x) > 0 para todo $x \in A$, entonces existe K > 0 tal que $f(x) \ge K$ para todo $x \in A$.

Ejercicio 23. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función continua y abierta.

- i) Probar que f no tiene extremos locales; es decir, no existen $x_0 \in \mathbb{R}$ y $\varepsilon > 0$ tales que $f(x_0) \le f(x)$ (resp. $f(x_0) \ge f(x)$) para todo $x \in (x_0 \varepsilon, x_0 + \varepsilon)$.
- ii) Comprobar que existen $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ tales que $f(\mathbb{R}) = (a, b)$.
- iii) Mostrar que $f: \mathbb{R} \longrightarrow (a, b)$ es un homeomorfismo y que ella y su inversa son funciones monótonas.

Ejercicio 24. Sea (X, d) un espacio métrico compacto y sea $f: X \longrightarrow \mathbb{R}$ una función semicontinua superiormente. Probar que f está acotada superiormente en X y que f alcanza máximo en X.