Algèbre générale

I. Groupes

I.1. Généralités

Définition. Soit G un ensemble. On dit que (G,*) est un groupe si

- (G_1) * est une loi de composition interne sur G, c'est-à-dire une application de $G \times G$ dans G;
- (G_2) * est associative: $\forall (a,b,c) \in G^3$ (a*b)*c = a*(b*c);
- $(G_3)* admet un élément neutre e: \exists e \in G \ \forall a \in G \ e*a = a*e = a;$
- (G_4) chaque élément de G admet un symétrique : $\forall a \in G \ \exists b \in G \ a * b = b * a = e$.

I.2. Sous-groupes

Définition. Soit (G,*) un groupe. Une partie H de G est appelée un sous-groupe de (G,*) si (H,*) est un groupe.

Proposition I.1. Une partie H est un sous-groupe de (G,*) si et seulement si elle vérifie les trois conditions :

- (S_1) $H \neq \emptyset$ (ou $e \in H$);
- (S_2) H est stable par *: $\forall (a,b) \in H^2$ $a*b \in H$;
- (S_3) H est stable par passage au symétrique : $\forall a \in H \ a^{-1} \in H$. Il est équivalent de dire :
 - (S_1') $H \neq \varnothing$ (ou $e \in H$);
 - $(S_2) \ \forall (a,b) \in H^2 \ a * b^{-1} \in H.$

Théorème I.2. Soit $(H_i)_{i\in I}$ une famille (éventuellement infinie) de sous-groupes de (G,*). Alors, $\bigcap_{i\in I} H_i$ est un sous-groupe de (G,*).

Théorème I.3. Les sous-groupes de $(\mathbb{Z},+)$ sont exactement les ensembles

$$a\mathbb{Z} = \{ka \; ; \; k \in \mathbb{Z}\}$$
 $où a \in \mathbb{N}$

I.3. Morphismes de groupes

Définition. Soient (G, *) et (H, \triangle) deux groupes, et φ une application de G dans H. On dit que φ est un **morphisme de groupes** de (G, *) dans (H, \triangle) si

$$\forall (a,b) \in G^2 \quad \varphi(a*b) = \varphi(a) \ \triangle \ \varphi(b)$$

On dit que φ est un **isomorphisme** de groupes si c'est un morphisme bijectif.

Proposition I.4. Si φ est un morphisme de groupes de (G, *) dans (H, \triangle) , alors

- $\circ \varphi(e_G) = e_H \; ;$
- $\circ \ \forall a \in G \quad \varphi(a^{-1}) = \varphi(a)^{-1}.$

Proposition I.5. La composée de deux morphismes de groupes est un morphisme de groupes ; la réciproque d'un isomorphisme de groupes est un isomorphisme.

Proposition I.6. Soit φ un morphisme de groupes de (G,*) dans (H, \triangle) .

- \circ Si G_1 est un sous-groupe de G, alors $\varphi(G_1)$ est un sous-groupe de H.
- \circ Si H_1 est un sous-groupe de H, alors $\varphi^{-1}(H_1)$ est un sous-groupe de G.

Définition. Soit φ un morphisme de groupes de (G,*) dans (H, \triangle) . Alors :

- $\circ \varphi(G)$, qui est un sous-groupe de H, est appelé image de φ , et noté $\operatorname{Im} \varphi$;
- $\circ \varphi^{-1}(\{e_H\})$, qui est un sous-groupe de G, est appelé **noyau** de φ , et noté $\operatorname{Ker} \varphi$.

Proposition I.7. Soit φ un morphisme de groupes de (G,*) dans (H, \triangle) .

Deux éléments a et b de G ont la même image si et seulement si $a*b^{-1} \in \operatorname{Ker} \varphi$, c'est-à-dire si et seulement si il existe $h \in \operatorname{Ker} \varphi$ tel que a = h*b.

Le morphisme φ est donc injectif si et seulement si $\operatorname{Ker} \varphi = \{e_G\}.$

I.4. Produit de groupes

Proposition I.8. Soient (G, *) et (H, \triangle) deux groupes. L'ensemble $G \times H$, muni de la loi \otimes définie par

$$\forall (a_1, a_2) \in G^2 \quad \forall (b_1, b_2) \in H^2 \quad (a_1, b_1) \otimes (a_2, b_2) = (a_1 * a_2, b_1 \triangle b_2)$$

est un groupe, appelé groupe produit des groupes G et H. Son neutre est (e_G, e_H) ; le symétrique d'un élément (a,b) est (a^{-1},b^{-1}) .

II. Le groupe $\mathbb{Z}/n\mathbb{Z}$

II.1. Congruences

Définition. Soient $n \in \mathbb{N}^*$ et $(a,b) \in \mathbb{Z}^2$. On dit que a est **congru** à b modulo n si n divise b-a, c'est-à-dire s'il existe $k \in \mathbb{Z}$ tel que b=a+nk; on écrit alors $a \equiv b$ [n].

Proposition II.1. Soit $n \in \mathbb{N}^*$. La relation de congruence modulo n est une relation d'équivalence; autrement dit, elle est

- $\bullet \ \textit{r\'eflexive} : \ \forall a \in \mathbb{Z} \quad a \equiv a \ [n] \ ;$
- $sym\acute{e}trique: \forall (a,b) \in \mathbb{Z}^2 \quad a \equiv b \ [n] \Longrightarrow b \equiv a \ [n];$

• transitive: $\forall (a,b,c) \in \mathbb{Z}^3 \quad (a \equiv b \ [n] \ et \ b \equiv c \ [n]) \Longrightarrow a \equiv c \ [n].$

Définition. Soit $n \in \mathbb{N}^*$. La classe de congruence modulo n d'un entier a, est sa classe d'équivalence pour cette relation de congruence, c'est-à-dire l'ensemble

$$\left\{b \in \mathbb{Z} \mid b \equiv a \ [n]\right\} = \left\{a + nk \ ; \ k \in \mathbb{Z}\right\}$$

S'il n'y a pas d'ambiguïté sur la valeur de n, cette classe sera notée \overline{a} . Si C est la classe d'un entier a, on dit que a est un **représentant** de la classe C.

Proposition II.2. Soit $n \in \mathbb{N}^*$; chaque entier $a \in \mathbb{Z}$ appartient à une et une seule des n classes $\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}$, qui sont donc deux à deux distinctes.

Définition. Soit $n \in \mathbb{N}^*$. L'ensemble des classes de congruence modulo n est noté $\mathbb{Z}/n\mathbb{Z}$; il a pour cardinal n. Plus précisément, $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$.

II.2. Le groupe $\mathbb{Z}/n\mathbb{Z}$

Proposition II.3. Soit $n \in \mathbb{N}^*$. La relation de congruence modulo n est compatible avec l'addition et la multiplication dans \mathbb{Z} ; autrement dit, pour tout $(a, b, c) \in \mathbb{Z}^3$,

- $a \equiv b \ [n] \implies a + c \equiv b + c \ [n]$;
- $a \equiv b \ [n] \implies ac \equiv bc \ [n].$

Définition. Soient C_1 et C_2 deux classes de congruence modulo n; soient $a \in C_1$ et $b \in C_2$. La classe $\overline{a+b}$ ne dépend alors que des classes C_1 et C_2 , et pas des représentants a et b choisis; on peut donc définir la somme $C_1 + C_2$ comme étant $\overline{a+b}$. Autrement dit, on définit la loi + sur $\mathbb{Z}/n\mathbb{Z}$ par

$$\forall (a,b) \in \mathbb{Z}^2 \quad \overline{a} + \overline{b} = \overline{a+b}$$

Proposition II.4. Soit $n \in \mathbb{N}^*$. Alors, $\mathbb{Z}/n\mathbb{Z}$ muni de la loi + est un groupe commutatif. Son neutre est $\overline{0}$; le symétrique d'un élément \overline{a} est $\overline{-a} = \overline{n-a}$.

Proposition II.5. Soit $n \in \mathbb{N}^*$. L'application $a \mapsto \overline{a}$ est un morphisme de groupes de $(\mathbb{Z}, +)$ dans $(\mathbb{Z}/n\mathbb{Z}, +)$.

III. Sous-groupe engendré par une partie

III.1. Définition

Définition. Soient (G,*) un groupe, et A une partie de G. L'intersection de tous les sous-groupes contenant A est encore un sous-groupe de G; on l'appelle **sous-groupe engendré** par A.

Proposition III.1. Soient A et H deux parties d'un groupe G. Alors, H est le sous-groupe engendré par A si et seulement si il vérifie les deux conditions :

- **i.** H est un sous-groupe de G et $A \subset H$;
- ii. tout sous-groupe K de G qui contient A, contient aussi H.

Proposition III.2. Soit (G, *) un groupe; soit $(a, b) \in G^2$.

- \circ Le sous-groupe enqendré par $\{a\}$ dans G est $\{a^n : n \in \mathbb{Z}\}$.
- o Si a * b = b * a, le sous-groupe engendré par $\{a,b\}$ est $\{a^n * b^p ; (n,p) \in \mathbb{Z}^2\}$.

III.2. Groupe monogène, groupe cyclique

Définition. Un groupe (G, *) est dit **monogène** s'il existe $a \in G$ tel que le sousgroupe engendré par $\{a\}$ soit G tout entier; on dit alors que a est un **générateur** de G. Un groupe est dit **cyclique** s'il est monogène et fini.

Proposition III.3. Soit $n \in \mathbb{N}^*$. Alors, $\mathbb{Z}/n\mathbb{Z}$ est cyclique; ses générateurs sont les classes \overline{a} des entiers a premiers avec n.

Théorème III.4. Soit (G,*) un groupe monogène, et a un générateur de G. Alors, l'application $\varphi: \mathbb{Z} \longrightarrow G, n \longmapsto a^n$ est un morphisme de groupes surjectif. De plus :

- o si Ker $\varphi = \{0\}$, alors φ est un isomorphisme, et donc G est isomorphe à \mathbb{Z} ;
- o sinon, il existe un unique $n \in \mathbb{N}^*$ tel que $\operatorname{Ker} \varphi = n\mathbb{Z}$; G est alors isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Corollaire III.5. Soit $n \in \mathbb{N}^*$. Le groupe \mathbb{U}_n des racines n-ièmes de l'unité est isomorphe à $\mathbb{Z}/n\mathbb{Z}$; ses générateurs sont les $\exp(2ik\pi/n)$ vérifiant $k \wedge n = 1$.

III.3. Ordre d'un élément

Définition. Soit (G,*) un groupe, et $a \in G$. On dit que a est **d'ordre fini** s'îl existe $p \in \mathbb{N}^*$ tel que $a^p = e$. Le plus petit des éléments $p \in \mathbb{N}^*$ vérifiant $a^p = e$ est alors appelé **ordre** de a.

Proposition III.6. Soit a un élément d'ordre fini d du groupe (G, *). Alors :

- o d est le cardinal du sous-groupe engendré par a ;
- $\circ \ \textit{pour tout } p \in \mathbb{Z}, \ \textit{on } a \quad a^p = e \Longleftrightarrow d|p.$

Proposition III.7. Soit G un groupe fini. Alors, tout élément de G est d'ordre fini, et son ordre divise le cardinal de G. En particulier: $\forall a \in G$ $a^{\operatorname{Card}(G)} = e_G$.

IV. Anneaux et corps

IV.1. Généralités

Définition. On dit que (A, +, *) est un anneau si

- (A1) + et * sont deux lois de composition internes sur A;
- (A2) (A, +) est un groupe abélien;
- (A3) * est associative;
- (A4) * est distributive sur + : pour tout $(a,b,c) \in A^3$ a*(b+c) = a*b+a*c et (b+c)*a = b*a+c*a:
- $(A5) * admet un élément neutre <math>1_A$.

L'anneau est dit commutatif si la loi * est commutative.

Définition. Un élément a d'un anneau (A, +, *) est dit **inversible** s'il admet un symétrique pour la loi *; ce symétrique est alors unique.

Proposition IV.1. Soit (A, +, *) un anneau. L'ensemble A^* des inversibles de A, muni de la loi *, est un groupe.

Définition. On dit que (K, +, *) est un corps si

- (K, +, *) est un anneau commutatif;
- tout élément non nul de K est inversible.

IV.2. Anneau produit

Définition. Soient (A, +, *) et $(B, +, \triangle)$ deux anneaux. L'ensemble $A \times B$, muni des lois + et \otimes définies par $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$ et $(a_1, b_1) \otimes (a_2, b_2) = (a_1 * a_2, b_1 \triangle b_2)$, est un anneau, appelé anneau produit des anneaux A et B.

Proposition IV.2. Avec les notations précédentes, un élément (a,b) de l'anneau produit $A \times B$ est inversible si et seulement si a est inversible dans A et b est inversible dans B.

IV.3. Sous-anneaux

Soit (A, +, *) un anneau. Une partie B de A est appelée un sous-anneau si (B, +, *) est un anneau contenant 1_A .

Proposition IV.3. Soit (A, +, *) un anneau. Une partie B de A est un sousanneau si et seulement si

- B est un sous-groupe de (A, +);
- $1_A \in B$;
- B est stable pour la loi *.

IV.4. Morphismes d'anneaux

Définition. Soient (A, +, *) et $(B, +, \triangle)$ deux anneaux. Une application φ de A dans B est appelée un **morphisme d'anneaux** si

- $\bullet \ \varphi(1_A) = 1_B \ ;$
- $\forall (a,b) \in A^2$ $\varphi(a+b) = \varphi(a) + \varphi(b)$ et $\varphi(a*b) = \varphi(a) \triangle \varphi(b)$.

On dit que c'est un isomorphisme si c'est un morphisme bijectif.

Proposition IV.4. La composée de deux morphismes d'anneaux est encore un morphisme d'anneaux; la réciproque d'un isomorphisme d'anneaux est encore un isomorphisme d'anneaux.

Définition. Soit φ un morphisme d'anneaux de (A, +, *) dans $(B, +, \Delta)$. On appelle **image** de φ l'ensemble $\varphi(A) \subset B$, noté $\operatorname{Im} \varphi$; on appelle **noyau** de φ l'ensemble $\varphi^{-1}(\{0_B\}) \subset A$, noté $\operatorname{Ker} \varphi$.

Proposition IV.5. Avec les hypothèses et notations précédentes,

- \circ l'image Im φ du morphisme φ est un sous-anneau de B;
- o le noyau de φ est un sous-groupe de (A, +); et le morphisme φ est injectif si et seulement si $\operatorname{Ker} \varphi = \{0_A\}.$

IV.5. Idéaux d'un anneau commutatif

Définition. Soit (A, +, *) un anneau commutatif. Une partie I de A est appelée un idéal de A si

- I n'est pas vide;
- I est stable pour la loi $+: \forall (a,b) \in I^2 \quad a+b \in I$;
- $\bullet \ \ I \ \ est \ \ absorbant \ \ pour \ la \ \ loi *: \quad \ \forall a \in I \quad \forall b \in A \quad \ a*b \in I.$

Proposition IV.6. Soient b et c deux éléments de l'anneau commutatif A. Les ensembles $bA = \{b*x \; ; \; x \in A\}$ et $bA+cA = \{b*x+c*y \; ; \; (x,y) \in A^2\}$ sont deux idéaux de A, respectivement appelés idéal engendré par b et idéal engendré par $\{b,c\}$.

Proposition IV.7. Le noyau d'un morphisme d'anneaux commutatifs est toujours un idéal.

Proposition IV.8. Soit (A, +, *) un anneau commutatif. Alors

- \circ tout idéal de A est un sous-groupe de (A, +);
- $\circ \ l'intersection \ d'une \ famille \ d'id\'eaux \ de \ A, \ est \ encore \ un \ id\'eal \ de \ A.$

IV.6. Anneaux intègres

Définition. Soit (A, +, *) un anneau commutatif. On dit qu'un élément a de A est un diviseur de zéro si $a \neq 0_A$ et $\exists b \in A \setminus \{0_A\}$ $a * b = 0_A$.

On dit que A est un anneau **intègre** s'il ne contient aucun diviseur de zéro, c'est-à-dire si

$$\forall (a,b) \in A^2$$
 $a * b = 0_A \Longrightarrow (a = 0_A \text{ ou } b = 0_A)$

Proposition IV.9. Dans un anneau intègre (A, +, *), tout élément non nul a est régulier, c'est-à-dire vérifie $\forall (b, c) \in A^2$ $a * b = a * c \Longrightarrow b = c$.

Proposition IV.10. Si (A, +, *) est un corps, alors c'est un anneau intègre.

Définition. Soient (A, +, *) un anneau intègre, et $(a, b) \in A^2$. On dit que a **divise** b, et on écrit $a \mid b$, s'il existe $c \in A$ vérifiant b = ac.

Proposition IV.11. Soient (A, +, *) un anneau intègre, et $(a, b) \in A^2$. Alors, a divise b si et seulement si l'idéal bA engendré par b, est inclus dans l'idéal aA engendré par a.

Proposition IV.12. Soit (A, +, *) un anneau intègre. Alors :

- $\circ \forall (x, y, z) \in A^3 \quad (x \mid y \text{ et } x \mid z) \Longrightarrow x \mid (y + z);$
- \circ (x | y et y | x) si et seulement si il existe $u \in A$ inversible vérifiant y = ux.

V. L'anneau $\mathbb{Z}/n\mathbb{Z}$

V.1. Généralités

Définition. Soit $n \in \mathbb{N}^*$. De même que pour l'addition, on peut définir une multiplication dans $\mathbb{Z}/n\mathbb{Z}$ par $\forall (a,b) \in \mathbb{Z}^2$ $\overline{a}.\overline{b} = \overline{(a.b)}$, la classe produit ne dépendant pas des représentants a et b choisis.

Proposition V.1. Soit $n \in \mathbb{N}^*$. Alors, $(\mathbb{Z}/n\mathbb{Z}, +, .)$ est un anneau commutatif; ses éléments inversibles sont les classes des entiers premiers avec n.

Corollaire V.2. Soit $n \in \mathbb{N}^*$; $(\mathbb{Z}/n\mathbb{Z}, +, .)$ est un corps si et seulement si n est un nombre premier.

V.2. Le théorème chinois

Théorème V.3. Soit $(p,q) \in (\mathbb{N}^*)^2$. Si $p \wedge q = 1$, alors $\mathbb{Z}/pq\mathbb{Z}$ est isomorphe à l'anneau produit $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$.

Corollaire V.4. Soient $(p,q) \in (\mathbb{N}^*)^2$, et $(a,b) \in \mathbb{Z}^2$. Si $p \land q = 1$, alors le système de congruences

$$x \equiv a \ [p], \quad x \equiv b \ [q]$$

admet une et une seule solution x_0 dans [0, pq - 1]; les autres solutions sont les entiers x congrus à x_0 modulo pq.

V.3. L'indicateur d'Euler

Définition. On appelle fonction indicatrice d'Euler, ou indicateur d'Euler, la fonction φ qui, à tout $n \in \mathbb{N}^*$, associe le nombre $\varphi(n)$ d'inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$; c'est aussi le nombre d'entiers premiers avec n dans [0, n-1].

Théorème V.5 (Théorème d'Euler). Soit $n \in \mathbb{N}^*$. Si $a \in \mathbb{Z}$ est premier avec n, alors $a^{\varphi(n)} \equiv 1$ [n].

Proposition V.6. \circ *Si* $(p,q) \in \mathbb{Z}^2$ *et* $p \wedge q = 1$, *alors* $\varphi(pq) = \varphi(p)\varphi(q)$.

- \circ Si p est un nombre premier et $n \in \mathbb{N}^*$, alors $\varphi(p^n) = p^n p^{n-1}$.
- $\circ \ Si \ n \in \mathbb{N}^*, \ alors \quad \varphi(n) = n \prod_{p \in P_n} \left(1 \frac{1}{p}\right) \quad \text{où } P_n \ est \ l'ensemble \ des \ diviseurs \\ premiers \ de \ n.$

VI. Arithmétique dans \mathbb{Z} et $\mathbb{K}[X]$

VI.1. Arithmétique dans \mathbb{Z}

Théorème VI.1. Soit $(a,b) \in \mathbb{Z}^2$. Alors $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$ où $d = a \wedge b$. En particulier.

- \circ il existe $(u, v) \in \mathbb{Z}^2$ tel que $a \wedge b = au + bv$;
- $\circ \ a \wedge b = 1 \ si \ et \ seulement \ s \ iil \ existe \ (u,v) \in \mathbb{Z}^2 \ tel \ que \quad au+bv = 1.$

Proposition VI.2. Soit $(a,b,c) \in \mathbb{Z}^3$. Si $a \mid bc$ et a est premier avec b, alors $a \mid c$.

VI.2. Arithmétique dans $\mathbb{K}[X]$

Théorème VI.3. Si I est un idéal de $\mathbb{K}[X]$ non réduit à $\{0\}$, alors il existe un unique polynôme unitaire A vérifiant $I = A\mathbb{K}[X] = \{AQ ; Q \in \mathbb{K}[X]\}$.

Théorème VI.4. Soit $(A, B) \in \mathbb{K}[X]^2$. Alors $A\mathbb{K}[X] + B\mathbb{K}[X] = D\mathbb{K}[X]$ où $D = A \wedge B$. En particulier,

- \circ il existe $(U, V) \in \mathbb{K}[X]^2$ tel que $A \wedge B = AU + BV$;
- $\circ A \wedge B = 1$ si et seulement s'il existe $(U, V) \in \mathbb{K}[X]^2$ tel que AU + BV = 1.

Proposition VI.5. Soit $(A, B, C) \in \mathbb{K}[X]^3$. Si $A \mid BC$ et A est premier avec B, alors $A \mid C$.