Homework 3

Due: Wednesday, 22. Sept. 2021

Exercise 1. We say that a functor $G: \mathsf{C} \to \mathsf{D}$ preserves limits if, for any diagram $\phi: \mathsf{I} \to \mathsf{C}$, G sends limit cones over ϕ to limit cones over $G \circ \phi$. Equivalently, we say that G preserves limits if, for any I , there is a isomorphism

$$\operatorname{Nat}(\operatorname{const}_d, G \circ \phi) \cong \operatorname{Hom}_{\mathsf{D}}(d, G(\lim_{\mathsf{L}} \phi)).$$

natural in $\phi \in \mathsf{C}^\mathsf{I}$ and $d \in \mathsf{D}$.

Let (F, G, ϵ, η) be an adjunction between categories C and D.

- 1. Show that G preserves limits. (Hint: You can use the fact from HW2 that $\operatorname{Hom}_{\mathsf{C}}(c,-)$ preserves limits)
- 2. Give the dual definition to the above (preservation of colimits). Conclude by duality that F preserves colimits.

Exercise 2. Let $\phi: I \to J$ be a fully faithful functor, and let C be a cocomplete category. Denote by

$$\phi^* : \operatorname{Fun}(J, \mathsf{C}) \longrightarrow \operatorname{Fun}(I, \mathsf{C})$$

$$F \longmapsto F \circ \phi$$

the restriction functor. Denote by

$$\phi_! : \operatorname{Fun}(I, \mathsf{C}) \longrightarrow \operatorname{Fun}(J, \mathsf{C})$$

the left adjoint of ϕ^* , i.e. the functor which sends each $F:I\to\mathsf{C}$ to the left Kan extension of F along ϕ . Prove that the unit

$$\eta: \mathrm{id}_{\mathrm{Fun}(I,\mathsf{C})} \longrightarrow \phi^* \circ \phi_!$$

is an isomorphism.

Exercise 3. Let C be a category, and denote by $\mathcal{Y}: C \to \mathsf{Set}_C$ the Yoneda embedding.

- 1. Show that $\mathrm{Id}_{\mathsf{Set}_{\mathsf{C}}} : \mathsf{Set}_{\mathsf{C}} \to \mathsf{Set}_{\mathsf{C}}$ is a left Kan extension of \mathcal{Y} along \mathcal{Y} . (Hint: Use the colimit characterization of the LKE, and analyze the representable functor $\mathrm{Hom}_{\mathsf{Set}_{\mathsf{C}}}(\mathcal{Y}_!\mathcal{Y}(X), -).$)
- 2. Use part 1 to give an explicit formula for X as a colimit of representable functors h_c .

Exercise 4. Let C be a category, and denote by $\mathcal{Y}: C \to \mathsf{Set}_C$ the Yoneda embedding. Suppose given a cocomplete category D and a functor $F: C \to D$. Denote by $\mathcal{Y}_!F: \mathsf{Set}_C \to D$ the left Kan extension of F along \mathcal{Y} .

1. Show that $\mathcal{Y}_!F$ has a right adjoint, given on objects by

$$R: \mathsf{D} \longrightarrow \mathsf{Set}_{\mathsf{C}}$$

$$d \longmapsto \mathsf{Hom}_{\mathsf{D}}(F(-), d)$$

- 2. For a functor $G : \mathsf{Set}_\mathsf{C} \to \mathsf{D}$, show that the counit $\mathcal{Y}_!(\mathcal{Y}^*(G)) \Rightarrow G$ is an isomorphism if and only if G sends colimit cones in Set_C to colimit cones in D .
- 3. Denote by $\operatorname{Fun}^{\operatorname{colim}}(\operatorname{\mathsf{Set}}_{\mathsf{C}},\mathsf{D})$ the full subcategory of $\operatorname{Fun}(\operatorname{\mathsf{Set}}_{\mathsf{C}},\mathsf{D})$ on the functors which preserve colimit cones. Conclude that

$$\mathcal{Y}_!: \mathrm{Fun}(C,D) \, \longrightarrow \, \mathrm{Fun}^{\mathrm{colim}}(\mathsf{Set}_C,D)$$

is an equivalence of categories.