### Scilab Textbook Companion for Electric Power Distribution System Engineering by T. Gonen<sup>1</sup>

Created by
Manoj A
B.Tech, Third Year
Electrical Engineering
NIT, Karnataka
College Teacher
NA
Cross-Checked by
Chaitanya Potti

June 12, 2014

<sup>&</sup>lt;sup>1</sup>Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

# **Book Description**

Title: Electric Power Distribution System Engineering

Author: T. Gonen

Publisher: McGraw Hill, New York

Edition: 1

**Year:** 1986

**ISBN:** 0-07-023707-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

**Eqn** Equation (Particular equation of the above book)

**AP** Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

## Contents

| Lis       | st of Scilab Codes                                           | 4         |
|-----------|--------------------------------------------------------------|-----------|
| 2         | Load Characteristics                                         | 9         |
| 3         | Application of Distribution Transformers                     | 32        |
| 4         | Design of Subtransmission Lines and Distribution Substations | 53        |
| 5         | Design Considerations of Primary Systems                     | 63        |
| 6         | Design Considerations of Secondary Systems                   | <b>72</b> |
| 7         | Voltage Drop and Power Loss Calculations                     | 80        |
| 8         | Application of Capacitors to Distribution Systems            | 95        |
| 9         | Distribution System Voltage Regulation                       | 102       |
| <b>10</b> | Distribution System Protection                               | 123       |
| 11        | Distribution System Reliability                              | 133       |

# List of Scilab Codes

| To find the load curve                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To determine the annual power loss                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the diversified demand                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine copper losses of the feeder                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the diversity load diversity and coinci-     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| dence factor                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the class distribution factors               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the annual average power demand              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the annual load factor on the substation     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the annual loss factor                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To calculate thirty min annual maximum demand             | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the Thirty min maximum diversified           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To find monthly load factor Rating of distribution trans- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| former monthly bill                                       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the instantaneous demands and the aver-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| age demand                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine instantaneous demands and average de-        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| mand for transformer type                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine watt VAr and VA demands                      | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To Evaluate all the required impedances of a 25kVA        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Transformer                                               | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the fault current in the distribution trans- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| former                                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the service drop and the length of the cable | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To determine the maximum load carried by the trans-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| former                                                    | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| To Determine the Transformer parameters for a 3 phase     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| load of 200kVA                                            | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                           | To determine the diversified demand To determine copper losses of the feeder To determine the diversity load diversity and coincidence factor To determine the class distribution factors To determine the annual average power demand To determine the annual load factor on the substation To determine the annual loss factor To calculate thirty min annual maximum demand To determine the Thirty min maximum diversified To find monthly load factor Rating of distribution transformer monthly bill To determine the instantaneous demands and the average demand To determine instantaneous demands and average demand for transformer type To determine watt VAr and VA demands To Evaluate all the required impedances of a 25kVA Transformer To determine the fault current in the distribution transformer To determine the service drop and the length of the cable To determine the maximum load carried by the transformer To Determine the Transformer parameters for a 3 phase |

| Exa 3.6  | To Determine the Transformer parameters for a 3 phase                         |
|----------|-------------------------------------------------------------------------------|
| _        | load of 100kVA                                                                |
| Exa 3.8  | To Determine the the voltages of a two transformer bank                       |
| Exa 3.9  | To Determine phasors and phasor diagrams when loaded                          |
|          | with a balanced resistor                                                      |
| Exa 3.10 | To Determine the Voltage Rating of the respective windings of the transformer |
| Exa 3.11 | To Determine the parameters of two single transformers                        |
| Exa 4.1  | To determine the constant K for 16kV feeder                                   |
| Exa 4.2  | To Calculate the percent voltage drop in the main for a                       |
| 211a 1.2 | lumped load                                                                   |
| Exa 4.3  | To Calculate percent voltage drop in the main for a                           |
| DAG 1.0  | uniformly distributed load                                                    |
| Exa 4.4  | To Calculate percent voltage drop in the main for a                           |
| DAW III  | uniformly increasing load                                                     |
| Exa 4.5  | To Compare the results the percent voltage drop ratio                         |
| LXa 1.0  | for different loading                                                         |
| Exa 4.6  | To determine the substation parameters for various Load                       |
| LAG 4.0  | densities                                                                     |
| Exa 4.7  | To Find feeder properties of TL and VDL                                       |
| Exa 4.8  | To determine the better substation site                                       |
| Exa 4.10 | To find the substation spacing and load on transformers                       |
| Exa 4.11 | To Compare the method of service area coverage with                           |
| 1.11     | four feeders                                                                  |
| Exa 5.1  | To determine the circuit parameters of a radial express                       |
| Lina o.i | feeder                                                                        |
| Exa 5.2  | To determine the percent voltage drops                                        |
| Exa 5.3  | To find voltge drop percents for a self supporting aerial                     |
| LXa 0.0  | messenger cable                                                               |
| Exa 5.4  | To determine the percent voltage drops using nomnial                          |
| LXa 0.4  | operating voltage as base voltage                                             |
| Exa 5.5  | To find the percent voltage drop at the ends of the most                      |
| Exa 0.0  | remote laterals                                                               |
| Exa 6.1  | To Compute the Economical Sizes of the Transformer                            |
| EAA U.1  | and its Equipment                                                             |
| Exa 6.2  | To determine the coefficient matrix for a unbalanced load                     |
| Exa 6.4  | To determine the circuit parameters of an unbalanced                          |
| ыла 0.4  | load                                                                          |
|          | 117411                                                                        |

| Exa 6.5  | To find the pu voltages and tolerable and favourable voltages |
|----------|---------------------------------------------------------------|
| Exa 7.2  | To determine the voltage drop or voltage regulation of        |
| 211a 1.2 | a 3phase system                                               |
| Exa 7.3  | To Calculate the Voltage Drop and Verify The Cable            |
| Lia 1.5  | Selected                                                      |
| Exa 7.4  | To find the voltage dip in per units for motor starting       |
| Exa 7.5  | To Find the Total Load and Total steady state voltage         |
| Zna m    | drop                                                          |
| Exa 7.7  | To determine the percent drop from the substation to          |
| 2120 111 | various points                                                |
| Exa 7.8  | To determine the percent drop from the substation to          |
|          | various points                                                |
| Exa 7.9  | To Determine the location of the substation                   |
| Exa 7.10 | To Determine the Annual Energy Loss                           |
| Exa 7.11 | To Determine the Line to Line Voltage at point a              |
| Exa 8.1  | To Determine the Capacitor Size to improve the power          |
|          | factor to a 700kVA Load                                       |
| Exa 8.2  | To determine the Capacitor bank required to correct           |
|          | power factor of induction motor                               |
| Exa 8.3  | To determine the power factors of a 2point4 kV phase          |
|          | circuit feeder                                                |
| Exa 8.4  | To determine the necessity of additional capacitors           |
| Exa 8.5  | To Determine the savings in kilowatt losses                   |
| Exa 9.1  | To Determine the parameters of the system regulation          |
| Exa 9.2  | To Determine the distance at which the regulator must         |
|          | be located                                                    |
| Exa 9.3  | To Determine the Necessary minimum kilovoltampere             |
|          | size of the regulator                                         |
| Exa 9.4  | To specify the best settings for regulation                   |
| Exa 9.5  | To determine the setting of the regulator so that the         |
|          | voltage criteria is met                                       |
| Exa 9.6  | To determine the number of steps of buck and boost the        |
|          | regulators will achieve                                       |
| Exa 9.8  | To Determine the necessary settings of Regulators             |
| Exa 9.9  | To Determine the Design Parameters of a Distributed           |
| _        | System                                                        |
| Exa 9.10 | To Determine the proper 3 phase capacitor bank                |

| Exa 9.11 | To Determine the Voltage dip due to 10hp single phase      |     |
|----------|------------------------------------------------------------|-----|
|          | motor                                                      | 120 |
| Exa 9.12 | To determine the voltage dip due to the motor start for    |     |
|          | a 100 hp 3Phase Motor                                      | 121 |
| Exa 10.1 | To Determine the necessary realy and recloser coordi-      |     |
|          | nation                                                     | 123 |
| Exa 10.2 | To Determine the Fault parameters of Rural Substation      | 124 |
| Exa 10.3 | To Determine system parameters for various stabilities     | 126 |
| Exa 10.4 | To Determine the sequence impedance values                 | 130 |
| Exa 11.1 | To Determine the Approximate value of the component        |     |
|          | reliability                                                | 133 |
| Exa 11.2 | To Determine the fault components of the system            | 133 |
| Exa 11.3 | To Determine the Annual Fault properties for A B C         |     |
|          | Customers                                                  | 135 |
| Exa 11.4 | To Determine the Equivalent System Reliability of Each     |     |
|          | configuration                                              | 136 |
| Exa 11.5 | To Design the system to meet the given Equivalent Sys-     |     |
|          | tem Reliability                                            | 138 |
| Exa 11.6 | To Find The Probability on the reliability of transformers | 140 |
| Exa 11.7 | To Determine Probabilities Using Markovian Principle       | 141 |
| Exa 11.8 | To Determine the Conditional Outage Probabilites           | 143 |
| Exa 11.9 | To Determine the vector of state probabilities at a spe-   |     |
|          | cific time                                                 | 146 |

# List of Figures

| 2.1  | To find the load curve                                           | 10  |
|------|------------------------------------------------------------------|-----|
| 2.2  | To determine the diversity load diversity and coincidence factor | 13  |
| 2.3  | To determine the annual average power demand                     | 16  |
| 2.4  | To determine the annual load factor on the substation            | 17  |
| 2.5  | To determine the Thirty min maximum diversified                  | 24  |
| 2.6  | To determine the Thirty min maximum diversified                  | 25  |
| 3.1  | To Determine the the voltages of a two transformer bank          | 43  |
| 3.2  | To Determine phasors and phasor diagrams when loaded with        |     |
|      | a balanced resistor                                              | 45  |
| 3.3  | To Determine the Voltage Rating of the respective windings       |     |
|      | of the transformer                                               | 47  |
| 9.1  | To Determine the parameters of the system regulation             | 103 |
| 9.2  | To Determine the Necessary minimum kilovoltampere size of        |     |
|      | the regulator                                                    | 108 |
| 9.3  | To specify the best settings for regulation                      | 110 |
| 9.4  | To specify the best settings for regulation                      | 111 |
| 9.5  | To determine the setting of the regulator so that the voltage    | 110 |
| 0.0  | criteria is met                                                  | 112 |
| 9.6  | To Determine the Design Parameters of a Distributed System       | 117 |
| 10.1 | To Determine system parameters for various stabilities           | 126 |
| 11.1 | To Determine Probabilities Using Markovian Principle             | 142 |
| 11.2 | To Determine the Conditional Outage Probabilites                 | 144 |

### Chapter 2

### **Load Characteristics**

#### Scilab code Exa 2.1 To find the load curve



Figure 2.1: To find the load curve

```
14 title('Example 2.1', 'fontsize',3)
15 xlabel("Time in hrs", 'fontsize',2)
16 ylabel("Load in kW", 'fontsize',2)
```

#### Scilab code Exa 2.2 To determine the annual power loss

```
//To determine the annual power loss
//Page 46
clc;
clear;

Fls=0.15;
Ppl=80*(10^3); //Power Loss at peak load.

Avgpl=Fls*Ppl; //Average Power Loss
TAELCu=Avgpl*8760; //Total annual energy loss

printf('a) The average annual power loss = %g kW\n', (Avgpl/1000))
printf('b) The total annual energy loss due to the copper losses of the feeder circuits = %g kWh\n', (TAELCu/1000))
```

#### Scilab code Exa 2.3 To determine the diversified demand

```
1 //To determine the diversified demand
2 //Page 47
3 clc;
4 clear;
5
6 TCDi=[9,9,9,9,9,9]; //Load for each house all in kilowatt
7 DFi=0.65; //Demand factor
```

```
8 Fd=1.1; // Diversity factor
9
10 Dg=sum(TCDi)*DFi/Fd;
11
12 printf('The diversified demand of the group on the distribution transformer is %g kW\n',Dg)
```

#### Scilab code Exa 2.4 To determine copper losses of the feeder

Scilab code Exa 2.5 To determine the diversity load diversity and coincidence factor



Figure 2.2: To determine the diversity load diversity and coincidence factor

```
3 \text{ clc};
4 clear;
6 Pi=2000*(10^3); //Peak for industrial load
7 Pr=2000*(10^3); //Peak for residential load
8 Dg=3000*(10^3); //System peak load as specified in
     the diagram
9 P=[Pi,Pr]; //System peaks for various loads
10
11 Fd= sum(P)/Dg; //Diversity factor
12 LD= sum(P)-Dg; //Load diversity factor
13 Fc=1/Fd; // Coincidence factor
14
15 printf('a) The diversity factor of the load is \%g\n'
     ,Fd)
16 printf('b) The load diversity of the load is \%g kW\
     n',(LD/1000))
17 printf('c) The coincidence factor of the load is %g
     \n', Fc)
```

#### Scilab code Exa 2.6 To determine the class distribution factors

```
//To determine the class distribution factors
//Page 50
//Refer diagram of the first example of this chapter
clc;
clear;

refer to the first example of this chapter
clc;
clear;

refer to the first example of this chapter
clc;
clear;

refer to the first example of this chapter
clc;
clear;

refer to the first example of this chapter
clc;
clear;

refer to the first example of this chapter
clc;
clear;

refer to the first example of this chapter
clc;
clear;
refer to the first example of this chapter
clc;
clear;
refer to the first example of this chapter
clc;
clc;
clcar;
refer to the first example of this chapter
clc;
clc;
clcar;
refer to the first example of this chapter
clc;
clcar;
refer to the first example of this chapter
clc;
clcar;
refer to the first example of this chapter
clc;
clcar;
refer to the first example of this chapter
clcar;
refer to the first example of this chapter
clc;
clcar;
refer to the first example of this chapter
clcar;
refer to the first example of this chapter
clcar;
refer to the first example of this chapter
clcar;
refer to the first example of this chapter
clcar;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc;
refer to the first example of this chapter
clc,
refer to the first example of this chapter
clc,
refer to the first example of this chapter
clc,
refer to the first example
```

```
14 Lc5=1200; //Commercial Load at 5.00 PM in kW
15
16 Cstreet=Ls5/Ps;
17 Cresidential=Lr5/Pr;
18 Ccommercial=Lc5/Pc;
19 C=[Cstreet, Cresidential, Ccommercial]; //Class
      distribution for various factors
20
21 Fd = (sum(P))/(sum(P*C'));
22 Dg = (sum(P*C'));
23 Fc=1/Fd;
24
25 printf('a) The class distribution factors factor of
      :\n')
26 printf('i) Street lighting = \%g\n ii) Residential =
       %g\n iii) Commercial =%g\n', C(1), C(2), C(3))
27 printf('b) The diversity factor for the primary
      feeder = \%g \setminus n', Fd)
28 printf('c) The diversified maximum demand of the
      load group = \%g \ kW \ n', Dg)
29 printf('d) The coincidence factor of the load group
       = \%g \setminus n', Fc
```

#### Scilab code Exa 2.7 To determine the annual average power demand

```
//To determine the annual average power demand
//Page 55
clc;
clear;
printf('Assuming a monthly load curve as shown in the figure attached to this code\n')
```



Figure 2.3: To determine the annual average power demand



Figure 2.4: To determine the annual load factor on the substation

#### Scilab code Exa 2.8 To determine the annual load factor on the substation

```
1 //To determine the annual load factor on the
      substation
\frac{2}{\text{Page }} 57
3 clc;
4 clear;
6 printf ('Assuming a monthly load curve as shown in
      the figure attached to this code\n')
8 N1=100; //100\% percent load to be supplied
9 TAE=10^7; // Total annual energy in kW
10 APL=3500; //Annual peak load in kW
11 Pav= TAE/8760; //Annual average power demand
12 Fld= (Pav+N1)/(APL+N1); //Annual load factor
13 Cr=3; // Capacity cost
14 Er=0.03; // Energy cost
15 ACC=N1*12*Cr; //Additional capacity cost per kWh
16 AEC=N1*8760*Er; //Additional energy cost per kWh
17 TAC=ACC+AEC; //Total annual cost
18
19
20 printf('a) The new annual load factor on the
      substation is \%g\n',Fld)
21 printf('b) The total annual additional costs to NL&
     NP to serve this load is $\%g\n', TAC)
```

#### Scilab code Exa 2.9 To determine the annual loss factor

```
1 //To detemine the annual loss factor 2 //Page 58
```

```
3 \text{ clc};
4 clear;
6 TAE=5.61*(10<sup>6</sup>); //Total annual energy in kW
7 APL=2000; //Annual peak load in kW
8 Lc=0.03; //Cost of energy per kWh in dollars
9 Plp=100; //Power at peak load in kW
10
11 Fld=TAE/(APL*8760);
12 Fls= (0.3*Fld)+(0.7*(Fld^2));
13 AvgEL=Fls*Plp; //Average energy loss
14 AEL=AvgEL*8760; //Annual energy loss
15 Tlc=AEL*Lc; //Cost of total annual copper loss
16
17 printf('a) The annual loss factor is %g\n',Fls)
18 printf('b) The annual copper loss energy is %g kWh
     and the cost of total annual copper loss is $\%g\n
      ', AEL, Tlc)
```

#### Scilab code Exa 2.10 To calculate thirty min annual maximum demand

```
//To calculate thirty min annual maximum demand
//Page 59
clc;
clear;

Fd=1.15;
Pi=[1800,2000,2200]; //Demands of various feeders in kW (Real Power)
FF=[0.95,0.85,0.90]; //Power factor of the respective feeders
Dg=sum(Pi)/Fd;
P=Dg;
theta=acosd(PF);
```

```
13 Q=sum(Pi*(tand(theta))')/Fd;
14 S = sqrt((P^2) + (Q^2));
15 LD = sum(Pi) - Dg;
16
17 //Transformer sizes
18 Tp = [2500, 3750, 5000, 7500];
19 Ts = [3125, 4687, 6250, 9375];
20
21 Ol=1.25; //Maximum overload condition
22 Eol=Ts*Ol; //Overload voltages of the transformer
23 Ed=abs(Eol-S); // Difference between the overload
      values of the transformers and the P value of the
       system
24
   [A,k]=gsort(Ed); // To sort the differences and
      choose the best match
26
27 T=[Tp(k(4)), Ts(k(4))]; //Suitable transformer
28
29 g=poly(0, 'g');
30 X=(1+g)-nthroot(2,10); //To find out the fans on
      rating
31 R = roots(X);
32 g=R*100;
33
34 n=poly(0, 'n');
35 Sn=9375; // Rating of the to be installed
      transformer
36 // Equation (1+g)^n * S = Sn
37 // a = (1+g)
38 // b=Sn/S
39
40 a=1+R;
41 b=Sn/S;
42 n = log(b)/log(a);
43
44 printf('a) The 30 mins annual maximum deman on the
      substation transformer are %g kW and %g kVA
```

```
respectively\n',P,S)

45 printf('b) The load diversity is %g kW\n',LD)

46 printf('c) Suitable transformer size for 25 percent short time over loads is %g/%g kVA\n',T(1),T(2))

47 printf('d) Fans on rating is %g percent and it will loaded for %g more year if a 7599/9375 kVA transformer is installed\n',g,ceil(n))
```

#### Scilab code Exa 2.11 To determine the Thirty min maximum diversified

```
1 //To determine the Thirty min maximum diversified
2 //Page 62
3 clc;
4 clear;
6 printf ('NOTE\n\n')
7 printf ('The figure 1 attached along with this code
      is the Maximum diversified 30- min demand
      characteristics of various residential loads;\n
     A = Clothes dryer; D = range; E = lighting and
     miscellaneous appliances; J = refrigerator \setminus n (
     Only the loads required for this problem have
     been mentioned)\n \n')
9 Ndt=50; //Number of distribution transformers
10 Nr=900; //Number of residences
11
12 //When the loads are six.
13 PavMax6=[1.6,0.8,0.066,0.61]; // Average Maximum
      diversified demands (in kW) per house for dryer,
     range, refrigerator, for lighting and misc
      aapliances respectively according to the figure 1
       attached with code.
14
15 Mddt= sum(6*PavMax6); //30 min maximum diversified
```

```
demand on the distribution transformer
16
17 //When the loads are 900.
18 PavMax900=[1.2,0.53,0.044,0.52]; ///Average Maximum
       diversified demands (in kW) per house for dryer,
       range, refreigerato, for lighting and misc
      aapliances respectively according to the figure 1
       attached with code.
19
20 Mdf=sum(Nr*PavMax900); //30 min maximum diversified
     demand on the feeder
21
22 //From the figure 2 attached to this code
23 Hdd4=[0.38,0.24,0.9,0.32]; //Hourly variation factor
       at time 4 PM for dryer, range, refrigerator,
      lighting and misc appliances
24 Hdd5=[0.30,0.80,0.9,0.70]; //Hourly variation factor
       at time 5 PM for dryer, range, refrigerator,
      lighting and misc appliances
25 Hdd6=[0.22,1.0,0.9,0.92]; //Hourly variation factor
      at time 6 PM for dryer, range, refrigerator,
      lighting and misc appliances
26
  Thdd4=(6*PavMax6)*Hdd4'; //Gives the total hourly
      diversified demand in kW at time 4 PM
28 Thdd5=(6*PavMax6)*Hdd5'; //Gives the total hourly
      diversified demand in kW at time 5 PM
29 Thdd6=(6*PavMax6)*Hdd6'; //Gives the total hourly
      diversified demand in kW at time 6 PM
30
31 printf('a) The 30 min maximum diversified demand on
       the distribution transformer = \%g kW\n', Mddt)
32 printf('b) The 30 min maximum diversified demand on
       the distribution transformer = \%g kW\n',Mdf)
33 printf('c) The total hourly diversified demands at
      :\n')
34 printf(' i) 4.00 \text{ PM} = \%\text{g kW} \cdot \text{n'}, Thdd4)
35 printf(' ii) 5.00 \text{ PM} = \% \text{g kW} \text{n'}, Thdd5)
```

Scilab code Exa 2.12 To find monthly load factor Rating of distribution transformer monthly bill

```
1 //To find monthly load factor Rating of distribution
       transformer monthly bill
2 //Page 72
3 \text{ clc};
4 clear;
6 T=730; //Average monthly time in hrs
7 Pla=22; //Peak Load for consumer A in kW
8 Plb=39; //Peak load for consumer B in kW
9 MEC=[0.025,0.02,0.015]; //Monthly Energy charges in
      cents/kWh according to the units consumed
10 Uc = [1000, 3000, 3000]; // Units consumption according
      to the Energy charges
11 MDC=2; // Monthly demand charge in dollars/kW
12
13 Pa=7000; //Units served to Consumer A in kWh
14 Pb=7000; //Units served to Consumer B in kWh
15
16 //Power factors
17 Pfa=0.9; // Lag
18 Pfb=0.76; //Lag
19
20 //Monthly Load factors
21 Flda=Pa/(Pla*T);
22 Fldb=Pb/(Plb*T);
23
```



Figure 2.5: To determine the Thirty min maximum diversified

|         |      |                   |      |       |                    |         |            |        | water           | Water neater?  |                   |          |
|---------|------|-------------------|------|-------|--------------------|---------|------------|--------|-----------------|----------------|-------------------|----------|
|         |      |                   |      |       |                    |         |            |        | OPW             | OPWH‡          |                   |          |
|         | 1    |                   |      |       | ă.                 | Heat    | Heat pump* |        | Both            | Only<br>bettem |                   |          |
| Hour    | a is | Refrig-<br>crator | Home | Range | condi-<br>tioning* | Cooling | Heating    | House* | re-<br>stricted | re-<br>smicred | Uncon-<br>troffed | Clothes§ |
| 12 A.M. | 0.32 | 0.93              | 0.92 | 0.00  | 0.40               | 0.42    | 15.0       | 0.11   | 0.41            | 190            | 0.51              | 0.03     |
|         | 0.12 | 0.89              | 060  | 10.0  | 0 39               | 0.35    | 0.49       | 0.07   | 0.33            | 0.45           | 0.37              | 0.02     |
|         | 0.10 | 080               | 0.87 | 0.01  | 0.36               | 0.35    | 0.51       | 000    | 0,25            | 0.34           | 0.30              | 0        |
|         | 000  | 0.76              | 0.85 | 10.0  | 0.35               | 0.28    | 0.54       | 0.08   | 0.17            | 0.24           | 0.22              | e        |
|         | 90'0 | 0.79              | 0.82 | 10.0  | 0.35               | 0.28    | 0.57       | 0.13   | 0.13            | 61.0           | 0.15              | 0        |
| s       | 0.10 | 0.72              | 0.84 | 0.02  | 0.33               | 0.26    | 0.63       | 0.15   | 0.13            | 61.0           | 9170              | ۰        |
|         | 61.0 | 0.75              | 680  | 90'0  | 0.30               | £.      | 57.0       | 0.17   | 0.17            | 0.24           | 0.16              | 0        |
| 4       | 0.41 | 6.75              | 0.85 | 0.30  | 0.41               | 0.35    | 06/1       | 92.0   | 0.77            | 0.37           | 0.46              | 0        |
|         | 0.35 | 0.70              | 98'0 | 0.47  | 0.53               | 60.0    | 16:0       | 1.00   | 0.47            | 59'0           | 0.70              | 90'0     |
|         | 0.31 | 52.0              | 98'0 | 0.28  | 0.62               | 0.58    | 0.83       | 0.97   | 0,63            | 0.87           | 1.00              | 0.20     |
|         | 0.31 | 67.0              | 0.87 | 0.22  | 0.72               | 0.70    | 0.74       | 8970   | 0.67            | 0.93           | 00/1              | 0.45     |
| _       | 0.30 | 0.85              | 06:0 | 0.22  | 0.74               | 0.73    | 09'0       | 0.57   | 29'0            | 0.93           | 66:0              | 1,00     |
| 2 noon  | 0.28 | 989               | 0.92 | 0.33  | 0.80               | 0.84    | 0.57       | 0.55   | 2970            | 0.93           | 96.0              | 350      |
| _       | 0.20 | 0.87              | 96'0 | 0.25  | 98.0               | 0.88    | 670        | 0.51   | 190             | 0.85           | 0.80              | 0.70     |
|         | 0.29 | 060               | 96:0 | 91.0  | 0.89               | 0.95    | 0.46       | 64.0   | 0.55            | 0.76           | 0.83              | 99'0     |
|         | 0.30 | 060               | 06.0 | 0.17  | 0.96               | 1.00    | 040        | 0.48   | 0.49            | 99'0           | 0.81              | 0.63     |
|         | 0.32 | 06.0              | 1.00 | 0.24  | 0.97               | 1.00    | 0.43       | 0.44   | 0.33            | 0.46           | 2 0               | 0.38     |
| 5       | 0.70 | 060               | 1.00 | 080   | 0.90               | 1.00    | 0.43       | 0.70   | 0               | 000            | 0.75              | 0.30     |
|         | 0.92 | 060               | 06'0 | 007   | 1,00               | 5       | 0.49       | 0.88   | 0               | 0.13           | 0.75              | 0.22     |
|         | 1.00 | 660               | 96'0 | 0.30  | 0.91               | ×4.0    | 0.51       | 0.76   | 0               | 610            | 0.80              | 0.26     |
| *       | 56.0 | 1.00              | 96.0 | 0.12  | 67.0               | 6.73    | 090        | 25.0   | 00              | 1,00           | 0.81              | 0.20     |
| •       | 0.85 | 96'0              | 0.97 | 60'0  | 0.71               | 0,72    | 0.54       | 0,42   | 0.84            | 0.98           | 0.73              | 0.18     |
| 0       | 0.72 | 0.88              | 96'0 | 0.05  | 0.64               | 0.53    | 0.51       | 0.27   | 1970            | 0.77           | 190               | 0.10     |
| _       | 0.50 | 0.88              | 960  | 0.04  | 0.55               | 0.49    | 0.74       | 0.23   | 0.54            | 6970           | 650               | 900      |
| 12 P.M. | 0.32 | 0.93              | 0.92 | 0.02  | 0.40               | 0,42    | 0.34       | 0.11   | 0.44            | 1970           | 0.51              | 6009     |

Figure 2.6: To determine the Thirty min maximum diversified

25

```
24 //Continous kilovoltamperes for each distribution
     transformer
25 Sa=Pla/Pfa;
26 Sb=Plb/Pfb;
27
28 //Ratings of the distribution transformers needed
29 Ta=round(Sa/5)*5;
30 \text{ Tb} = \text{round}(Sb/5)*5;
31
32 // Billing Charges
33 //For Consumer A
34 Mbda=Pla*(0.85/Pfa); // Monthly billing demand
35 Mdca=Mbda*MDC; //Monthly demand charge
36 //Since the units served are 7000 it can be split
     according to the rates as 1000, 3000, 3000
     excess units.
37 Uca=Uc; //Units consumption by A
38 Meca=MEC*Uca'; //Monthly energy charge
39 Tmba=Meca+Mdca; //Total monthly bill
40
41 //For Consumer B
42 Mbdb=Plb*(0.85/Pfb); // Monthly billing demand
43 Mdcb=Mbdb*MDC; //Monthly demand charge
44 //Since the units served are 7000 it can be split
      according to the rates as 1000, 3000, 3000
     excess units.
45 Ucb=Uc; //Units consumption by B
46 Mecb=MEC*Ucb'; //Monthly energy charge
47 Tmbb=Mecb+Mdcb; //Total monthly bill
48
49 //To find the capacitor size
50 Q1=Pb*tand(acosd(Pfb)); //For original power factor
51 Q2=Pb*tand(acosd(0.85)); //For new power factor
52
53 dQ=(Q1-Q2)/T; // Capacitor size
54
55 //For new power factor
56 //For Consumer B
```

```
57 Mbdbn=Plb*(1); // Monthly billing demand
58 Mdcbn=Mbdbn*MDC; //Monthly demand charge
59 //Since the units served are 7000 it can be split
      according to the rates as 1000, 3000, 3000
      excess units.
60 Ucbn=Uc; //Units consumption by B
61 Mecbn=MEC*Ucbn'; //Monthly energy charge
62 Tmbbn=Mecbn+Mdcbn; //Total monthly bill
63
64 Saving=abs(Tmbbn-Tmbb); //Saving due to capacitor
      installation
65 Ci=30; // Cost of capacitor in dollar per kVAr
66 Cc=Ci*dQ; //The cost of the installed capacitor
67 PP=Cc/Saving; //Payback Period
68 PPr=90/Saving; //Realistic Payback period
69
70 printf('a) Monthly load factor for :\n')
71 printf(' i) Consumer A = \%g \setminus n', Flda)
72 printf(' ii) Consumer B = \%g n', Fldb)
73 printf('b) Rating of the each of the distribution
      transformer:\n')
74 printf(' i) A = \%g \text{ kVA} \ n', Ta)
75 printf(' ii) B = \%g \text{ kVA} \cdot n', Tb)
76 printf(' c) Monthly bil for:\n')
77 printf(' i) Consumer A = \%g \ ', Tmba
78 printf(' ii) Consumer B = \%g \setminus n', Tmbb)
79 printf('d) The capacitor size required is %g kVAr\n
      ',dQ)
80 printf(' e) Payback period:\n')
81 printf(' i) Calculated : \%g months\n', ceil(PP))
82 printf(' ii) Realistic as capacitor size available
      is 3 kVAr : %g months\n', ceil(PPr))
```

Scilab code Exa 2.13 To determine the instantaneous demands and the average demand

```
1 //To determine the instantaneous demands and the
      average demand
  //Page 84
3
    clc;
4
    clear;
    Kh=7.2; //Meter constant
6
    Kr1=32; //Revolutions of the disk in the first
7
       reading
    Kr2=27; //Revolutions of the disk in the second
8
       reading
    T1=59; //Time interval for revolutions of disks for
        the first reading
    T2=40; //Time interval for revolutions of disks for
10
        the second reading
11
    // Self contained watthour meter; D = (3.6*Kr*Kh)/T
12
13
    deff('y=Id(a,b)', 'y=((3.6*Kh*a)/b)'); //Function to
14
        calculate the instaneous demand
15
16
    D1=Id(Kr1,T1);
17
    D2=Id(Kr2,T2);
    Dav = (D1 + D2)/2;
18
19
    printf ('The instantenous demands are %g kW and %g
20
      kW for reading 1 and 2 and the average demand is
        \%g kW\n',D1,D2,Dav)
```

Scilab code Exa 2.14 To determine instantaneous demands and average demand for transformer type

```
1 //To determine instantaneous demands and average
         demand for transformer type
2 //Page 84
```

```
3 \text{ clc};
4 clear;
6 //For a transformer type watthour meter; D = (3.6*Kr)
      *Kh*CTR*PTR)/T
7 \text{ CTR} = 200;
8 \text{ PTR}=1;
9 Kh=1.8;
    Kr1=32; //Revolutions of the disk in the first
10
       reading
    Kr2=27; //Revolutions of the disk in the second
11
       reading
12
    T1=59; //Time interval for revolutions of disks for
        the first reading
    T2=40; //Time interval for revolutions of disks for
13
        the second reading
    deff('y=Id(a,b)', 'y=((3.6*Kh*a*CTR*PTR)/b)'); //
14
       Function to calculate the instaneous demand
15
16
    D1=Id(Kr1,T1);
    D2=Id(Kr2,T2);
17
    Dav = (D1 + D2)/2;
18
19
    printf ('The instantenous demands are %g kW and %g
20
      kW for reading 1 and 2 and the average demand is
        \%g kW\n',D1,D2,Dav)
```

#### Scilab code Exa 2.15 To determine watt VAr and VA demands

```
1 //To determine watt VAr and VA demands
2 //Page 85
3 clc;
4 clear;
5
6 Kh=1.2;
```

```
7 CTR=80;
8 \text{ PTR} = 20;
9 //Revolutions of the disk in a watthour meter for 1
      and 2 readings respectively
10 Kr1=20;
11 Kr2=30;
12 // Revolutions of the disk in a VArhour meter for 1
      and 2 readings respectively
13 \text{ Kr3} = 10:
14 \text{ Kr4} = 20
15 //Time interval for revoltion of disks in watthour
      meter for 1 and 2 readings respectively
16 \text{ T1} = 50;
17 T2=60;
18 //Time interval for revoltion of disks in VArhour
      meter for 1 and 2 readings respectively
19 T3=50;
20 \quad T4 = 60;
21
22 deff('y=Id(a,b)', 'y=((3.6*Kh*a*CTR*PTR)/b)'); //
      Function to calculate the instaneous demand
23
24 //Instantaneous kilowatt demands for readings 1 and
      2
25 D1=Id(Kr1,T1);
26 D2=Id(Kr2,T2);
27
28 //Instantaneous kilovar deamnds for readings 1 and 2
29 D3=Id(Kr3,T3);
30 D4=Id(Kr4,T4);
31
32 Davp=(D1+D2)/2; //Average kilowatt demand
33 Davq=(D3+D4)/2; //Average kilovar demand
34
35 Dav=sqrt((Davp^2)+(Davq^2)); //Average
      kilovoltampere demand
36
37 printf('a) The instantaneous kilowatt hour demands
```

- for readings 1 and 2 are  $\%g\ kW$  and  $\%g\ kW$  respectively  $\ n$ ', D1, D2)
- 38 printf(' b) The average kilowatt demand is  $\%g\ kW\n'$ , Davp)
- 39 printf('c) The instantaneous kilovar hour demands for readings 1 and 2 are %g kVAr and %g kVAr respectively  $\ n$  ', D3 , D4)
- 40 printf('d) The average kilovar demand is %g kVAr\n', Davq)
- 41 printf('e) The average kilovoltampere demand is %g kVA\n',Dav)

### Chapter 3

### Application of Distribution Transformers

Scilab code Exa 3.1 To Evaluate all the required impedances of a 25kVA Transformer

```
1 //To Evaluate all the required impedances of a 25kVA
      Transformer
2 //Page 118
3 clc;
4 clear;
6 S=25*(10^3); //Rating of the transformer in VA
7 // Values in per unit
8 Rt=0.014; //Resistance of Transformer
9 Xt=0.012; //Reactance of transformer
10 Vh=7200; //High Voltage End in V
11 Vx=120; // Low Voltage End in V
12 Rb=(Vh^2)/S; //Base Value of Resistance
13 // Accroding to Lloyd's Formula
14
  Zhx12=(1.5*Rt)+(%i*1.2*Xt); //Impedance referred to
     HV side when the winding x2x3 is shorted
16
```

```
17 n=Vh/Vx; //Turns Ratio
18
19 Zhx13=Rt+(%i*Xt); //Use of Entire low voltage
      winding
20
21 //Impedances of the required terms in pu
22 A = (2*Zhx13) - Zhx12;
23 B=((2*Zhx12)-(2*Zhx13))/(n^2);
24 C=B:
25
26 // Angle of Impedances
27 ta=atand(imag(A)/real(A));
28 tb=atand(imag(B)/real(B));
29
30 printf('\nThe Circuit impedances on the high voltage
       side is \frac{\%g}{-\%g} ohm\n', abs(A*Rb), ta)
31 printf ('Each of the Circuit impedances on the low
      voltage side is \frac{\%g}{-\%g} ohm\n', abs(B*Rb), tb)
```

Scilab code Exa 3.2 To determine the fault current in the distribution transformer

```
13 N=Vh/Vx; //Turns Ratio
14
  //R of service drop is zero //Line to Neutral
15
     Currents
  IfLVn=Vx/(Zl+((1/(N^2))*Zh)); //Secondary Fault
      Current
  IfHVn=IfLVn/N; //Primary Fault Current
17
18
19 //R of service drop is zero //Line to Line Currents
20 Nl=Vh/(2*Vx); //New Truns Ratio
21 IfLVl=2*Vx/((2*Zl)+((1/(Nl^2))*Zh)); //Secondary
     Fault Current
22
  IfHVl=IfLVl/Nl; //Primary Fault Current
23
24 printf('\na) The Magnitude of Line to Neutral Fault
     Currentson HV and LV when R of service \ndrop is
     zero are %g A and %g A respectively \n', abs (IfHVn)
      ,abs(IfLVn))
25 printf('b) The Magnitude of Line to Line Fault
     Currentson HV and LV when R of service \ndrop is
     zero are %g A and %g A respectively \n', abs (IfHV1)
      ,abs(IfLV1))
26 printf('c) The Minimum Allowable interrupting
      capacity for circuit breaker is \nconnected to the
      LV is \%g \ A \ n', abs(IfLVn))
```

Scilab code Exa 3.3 To determine the service drop and the length of the cable

```
6 Vx=120; //Low End Voltage
7 //When Service drop is Zero
8 IfLVn=8181.7*\exp(-1*\%i*34.3*\%pi/180); //Line to
      Neutral Vault Current
  IfLV1=5649*exp(-1*\%i*40.6*\%pi/180); //Line to Line
      Fault Current
10
11 Ral4=2.58; //#4 AWG Aluminium Conductor Resistance
      per mile
  Ralinf=1.03; //\#1/0 AWG Aluminium Conductor
      Resistance per mile
13
14 //Impedances when Service drop is zero, suffix l
      denotes line to line
15 //Suffix n denotes line to neutral
16 \ Z10 = (2*Vx)/IfLV1;
17 \text{ Zn0} = (Vx)/IfLVn;
18
19 //When there is R service drop
20 //Magnitudes of Line to Line and Line to Earth fault
       currents are equal
21
22 R=poly(0, 'R'); //Variable Value
23 // Effective Impedances
24 Z1 = Z10 + (2*R);
25 \quad Zn = Zn0 + (2*R);
26 // Fault Currents
27 If1=2*Vx/Z1;
28 If n = Vx/Zn;
29 // Magnitudes of Currents
30 MIfl=abs(Ifl(2))/abs(Ifl(3));
31 MIfn=abs(Ifn(2))/abs(Ifn(3));
32 DI=MIfl-MIfn;
33 X=DI(2); //Polynomial Equation to find 'R'
35 R=roots(X); //Numerical Value
36
37 //The Magnitude of R found is Wrong in the Textbook
```

```
38
39  //Length of service drop cable
40  SDL4=R/Ral4;
41  SDLinf=R/Ralinf;
42
43  printf('\na) The Value of Service drop in the Cable
    is %g ohm\n',R)
44  printf('b) The Length of service drop cable for:\n')
45  printf('i) #4 AWG Conductor is %g miles\n',SDL4)
46  printf('ii) #1/0 AWG Conductor is %g miles\n',SDLinf
    )
47
48  //Length is printed in Miles
```

Scilab code Exa 3.4 To determine the maximum load carried by the transformer

```
1 //To determine the maximum load carried by the
      transformer
2 //Page 122
3 clc;
4 clear;
6 //Transformer Ratings in kVA
7 \text{ Sr1} = 250;
8 \text{ Sr2} = 500;
10 //percentage impedances
11 Zr1=2.4;
12 \text{ Zr}2=3.1;
13
14 // Ratio of Maximum Loads
15 R=Sr1*Zr2/(Sr2*Zr1);
16
17 // If 500 kVA is chosen as the full load transformer,
```

```
Transformer 1 becomes overloaded

18 SL1=Sr1; //To Avoid OverLoading of transformer 1

19

20 SL2=SL1/R; //Maximum Load on transformer 2

21

22 T1=SL1+SL2; //Total Load without overloading

23

24 printf('The Maximum Load Carried without overloading any of the transformer is %g kVA\n',T1)
```

Scilab code Exa 3.5 To Determine the Transformer parameters for a 3 phase load of  $200 \mathrm{kVA}$ 

```
1 //To Determine the Transformer parameters for a 3
      phase load of 200kVA
\frac{2}{\text{Page }} \frac{127}{2}
3 clc;
4 clear;
6 //Considering Van as reference voltage
8 SL3phi=200*(10^3); //Load to be powered
9 pf3=0.8; //Power Factor of three phase load
10 t3=acosd(pf3); //Power FActor Angle for three phase
11 pf1=0.9; //Power Factor of single phase load
12 t1=acosd(pf1); //Power Factor angle of single phase
13 SL1=80*(10^3); //Single Phase Light Load
14 V11=240; //Secondary Voltage
15 //Rating of Single Phase Transformers between
      individual lines
16 Sbc=100*(10^3);
17 Sab=75*(10^3);
18 Sca=Sab;
```

```
19 // Angles of Three phase voltages
20 \text{ ta=0};
21 \text{ tb} = -120;
22 \text{ tc} = 120;
23 // Angles of three line currents
24 tai=ta-t3;
25 \text{ tbi=tb-t3};
26 \text{ tci=tc-t3};
27
28 I=SL3phi/(sqrt(3)*V11); //Magnitude of Current
29 //3 Phase Line Currents
30 Ia3=I*exp(%i*%pi*tai/180);
31 Ib3=I*exp(%i*%pi*tbi/180);
32 \text{ Ic3=I*exp}(\%i*\%pi*tci/180);
33
34 MIbc=SL1/Vll; //Magnitude Single Phase Current
35
36 tbc=-90; //Lagging Van //Angle of Vbc
37 tbci=tbc-t1; //Angle of Current Ibc
38 Ibc=MIbc*exp(%i*%pi*tbci/180);
39
40 //Load Currents
41 Ia=Ia3;
42 Ta=atand(imag(Ia)/real(Ia));
43 Ib=Ib3+Ibc;
44 Tb=atand(imag(Ib)/real(Ib));
45 Ic=Ic3-Ibc; //Current is wrong in the textbook
46 Tc=atand(imag(Ic)/real(Ic));
47
48 //Current Flowing in the secondary winding of the
      transformers 1,2 and 3
49 Iac=((Ic/Sbc)-(Ia/Sab))/((1/Sab)+(1/Sbc)+(1/Sca));
50 T1=atand(imag(Iac)/real(Iac)); //Angle of the above
      current
51 Iba=((Ia/Sca)-(Ib/Sbc))/((1/Sab)+(1/Sbc)+(1/Sca));
52 T2=atand(imag(Iba)/real(Iba)); //Angle of the above
      current
53 Icb = ((Ib/Sab) - (Ic/Sca))/((1/Sab) + (1/Sbc) + (1/Sca));
```

```
54 T3=atand(imag(Icb)/real(Icb)); //Angle of the above
      current
55
56 //Kilovoltampere Load on each transformer
57 \text{ SLab=Vll*abs}(Iba)/1000;
58 \text{ SLbc=Vll*abs}(Icb)/1000;
59 SLca=Vll*abs(Iac)/1000;
60
61 Vlls=Vll; //Secondary Voltage
62 Vllp=7620; //Primary Voltage
63 n=Vllp/Vlls; //Turns Ratio
64
65 //Primary Currents of the transformer
66 IAC=Iac/n;
67 IBA=Iba/n;
68 \quad ICB = Icb/n;
69
70 //Primary Current in each each phase wire
71 IA = IAC - IBA;
72 TA=atand(imag(IA)/real(IA)); // Angle of the above
      current
73 IB = IBA - ICB;
74 TB=atand(imag(IB)/real(IB));//Angle of the above
      current
75 IC = ICB - IAC;
76 TC=atand(imag(IC)/real(IC)); // Angle of the above
      current
77
78 printf('\na) The Line Currents flowing in secondary
      phase wire :\n')
79 printf('A phase is \%g/_{\%g} A n', abs(Ia), Ta)
80 printf('B phase is \frac{g}{-\frac{g}{A}} A n', abs(Ib), Tb)
81 printf('C phase is \%g/_{-}\%g A\n',abs(Ic),Tc)
82 printf('b) The Current flowing in secondary winding
      of each transformer:\n')
83 printf('AC is \%g/_{-}\%g A\n',abs(Iac),T1)
84 printf('AB is \%g/_{-}\%g A\n',abs(Iba),T2)
85 printf ('BC is \%g/_{-}\%g A\n', abs(Icb), T3)
```

```
86 printf('c) The Load on Each Transformer is:\n')
87 printf('1 : \%g kVA\n', SLca)
88 printf('2 : \%g kVA\n', SLab)
89 printf ('3 : \%g kVA\n', SLbc)
90 printf('d) The Current flowing in primary winding of
       each transformer:\n')
91 printf ('AC is \%g/_{-}\%g A\n', abs (IAC), T1)
92 printf('AB is \%g/_{-}\%g A\n',abs(IBA),T2)
93 printf ('BC is \%g/_{-}\%g A\n', abs (ICB), T3)
94 printf ('e) The Line Currents flowing in primary
      phase wire :\n')
95 printf('A phase is \%g/_{\%g} A\n', abs(IA), TA)
96 printf('B phase is \%g/_{-}\%g A\n',abs(IB),TB)
97 printf('C phase is \%g/_{-}\%g A\n',abs(IC),TC)
98
99 //Ic is calculation is wrong, the author has added
      Ibc instead of subtracting, so if you change -
      into + in line 45, you get the answer as in the
      textbook
```

Scilab code Exa 3.6 To Determine the Transformer parameters for a 3 phase load of  $100 \mathrm{kVA}$ 

```
11 pf1=0.9; //Power Factor of single phase load
12 t1=acosd(pf1); //Power Factor angle of single phase
      load
13 SL1=50*(10<sup>3</sup>); //Single Phase Light Load
14 V11=240; //Secondary Voltage
15 // Angles of Three phase voltages
16 \text{ ta=0};
17 \text{ tb} = -120;
18 \text{ tc} = 120;
19 // Angles of three line currents
20 tai=ta-t3;
21 	 tbi=tb-t3;
22 \text{ tci=tc-t3};
23
24 I=SL3phi/(sqrt(3)*V11); //Magnitude of Current
25 //3 Phase Line Currents
26 Ia3=I*exp(%i*%pi*tai/180);
27 Ib3=I*exp(%i*%pi*tbi/180);
28 Ic3=I*exp(%i*%pi*tci/180);
29
30 MI1=SL1/V11; //Magnitude Single Phase Current
31
32 t1v=30; //Leading Van //Angle of Vbc
33 tli=tlv-tl; //Angle of Current Ibc
34 I1=MI1*exp(%i*%pi*t1i/180);
35
36 //Load Currents
37 Ia=Ia3+I1;
38 Ta=atand(imag(Ia)/real(Ia));
39 \text{ Ib=Ib3-I1};
40 Tb=-180+(atand(imag(Ib)/real(Ib)));
41 Ic=Ic3; //Current is wrong in the textbook
42 Tc=atand(imag(Ic)/real(Ic));
43
44 //Current flowing in the secondary of the
      transformer
45 Iba=Ia;
46 T2=atand(imag(Iba)/real(Iba)); //Angle of the above
```

```
current
47 Icb=Ic;
48 T3=180+(atand(imag(Icb)/real(Icb))); //Angle of the
      above current
49
50 //Load on Each Transformer
51 SLba=Vll*abs(Iba)/1000;
52 \text{ SLcb=Vll*abs}(\text{Icb})/1000;
53
54 Vlls=Vll; //Secondary Voltage
55 Vllp=7620; //Primary Voltage
56 n=Vllp/Vlls; //Turns Ratio
57
58 //Primary Currents of the transformer
59 IA = Iba/n;
60 TA=atand(imag(IA)/real(IA));//Angle of the above
      current
61 	 IB = Icb/n;
62 TB=T3; // Angle of the above current
63 IN=IA+IB; //Neutral Current
64 TN=atand(imag(IN)/real(IN));//Angle of the above
      current
65
66 printf('\na) The Line Currents flowing in secondary
      phase wire :\n')
67 printf('A phase is \%g/_{-}\%g A\n',abs(Ia),Ta)
68 printf('B phase is \frac{g}{-g} A n', abs(Ib), Tb)
69 printf('C phase is \%g/_{-}\%g A\n',abs(Ic),Tc)
70 printf('b) The Current flowing in secondary winding
      of each transformer:\n')
71 printf ('AB is \%g/_{-}\%g A\n', abs (Iba), T2)
72 printf ('BC is \%g/_{-}\%g A\n', abs (Icb), T3)
73 printf('c) The Load on Each Transformer is:\n')
74 printf ('1 : \%g kVA\n', SLba)
75 printf('2 : \%g kVA\n',SLcb)
76 printf ('d) The Line Currents flowing in primary
      phase wire :\n')
77 printf ('AB is \%g/_{-}\%g A\n', abs(IA), TA)
```



Figure 3.1: To Determine the voltages of a two transformer bank

Scilab code Exa 3.8 To Determine the the voltages of a two transformer bank

```
1 //To Determine the the voltages of a two transformer
       bank
\frac{2}{152}
3 clc;
4 clear;
6
7 V11=480; //Line to Line Voltage
8 Vln=277; //Line to neutral Voltage
10 //From the Phasor Diagram from the result file
11 Vab=Vll*exp(%i*0); //Vab is taken as reference
12 Vabh=50*Vab/100;
13 VAB = 4160;
14 VABh = 50 * VAB / 100;
15 VH1H2o=sqrt((VAB^2)-(VABh^2));
16 \text{ VH1H2t} = (\text{VABh});
17 Vx1x2o=1*sqrt((Vab^2)-(Vabh^2))/3;
18 Vx2x3o=2*sqrt((Vab^2)-(Vabh^2))/3;
19 VH2H3t = (VABh);
20 \quad Vx1x2t = Vabh;
21 \quad Vx2x3t=Vabh;
22
23 printf('\na) The Phasor diagram is shown in the
      result file attached to the code\n')
24 printf('b) Vab is \frac{\%g}{-\%g} V\n', abs(Vab), (imag(Vab)/
      real(Vab)))
25 printf('c) The Magnitudes of the following rated
      winding voltages \n')
26 printf('i) The Voltage VH1H2 on transformer 1 : %g V
      \n', VH1H2o)
27
  printf('ii) The Voltage Vx1x2 on transformer 1: %g
      V \setminus n', V \times 1 \times 2 \circ)
28 printf ('iii) The Voltage Vx2x3 on transformer 1 : %g
       V \setminus n', V \times 2 \times 3 \circ)
29 printf('iv) The Voltage VH1H2 on transformer 2 : %g
      V \setminus n', VH1H2t)
30 printf('v) The Voltage VH2H3 on transformer 2 : %g V
```



Figure 3.2: To Determine phasors and phasor diagrams when loaded with a balanced resistor

```
\n',VH2H3t)
31 printf('vi) The Voltage Vx1x2 on transformer 2 : %g
    V\n',Vx1x2t)
32 printf('vii) The Voltage Vx1x2 on transformer 2 : %g
    V\n',Vx2x3t)
33 printf('d) i) NO ii) NO iii) YES\n')
```

Scilab code Exa 3.9 To Determine phasors and phasor diagrams when loaded with a balanced resistor

```
1 //To Determine phasors and phasor diagrams when
    loaded with a balanced resistor
2 //Page 154
3 clc;
4 clear;
5
6 R=2.77; //Resistance of the balanced load
7 //From Phasor Diagram in Result file
```

```
8 Vab=480*exp(%i*0); //Reference Voltage
9 MVn=abs(Vab)/sqrt(3); //Magnitude of line to neutral
       voltages
10 // Angles of Three phase voltages
11 ta = -30;
12 tb = -150;
13 \text{ tc=90};
14
15 //Angles of Winding according to the Line Currents
16 tx3x2=30; //Leading
17 tx1x2=-30; //Lagging
18
19 I=MVn/R; //Magnitude of current
20
21 //Low Voltage Current Phasors
22 Ia=I*exp(%i*%pi*ta/180);
23 Ib=I*exp(%i*%pi*tb/180);
24 Ic=I*exp(%i*%pi*tc/180);
25 pfT=cosd(ta-ta); //Angle of Ia is same as phase
      voltage // Resistance load
26
27 printf('\na) The Low voltage current phasors are:\n'
28 printf ('A is \%g/_{-}\%g A\n', abs (Ia), ta)
29 printf('B is \%g/_{-}\%g A\n',abs(Ib),tb)
30 printf('C is \%g/_{-}\%g A\n',abs(Ic),tc)
31 printf('b) The Phasor Diagram is the ''b'' diagram
      of in the result file \n')
32 printf('c) The Power Factor of the Transformer is %g
      n', pfT)
33 printf('d) Power Factor as seen by winding x3x2 of
      transformer 2 is \%g \ leading \ ', cosd(tx3x2))
34 printf('e) Power Factor as seen by winding x1x2 of
      transformer 2 is \%g \, lagging \ ', cosd(tx1x2))
```



Figure 3.3: To Determine the Voltage Rating of the respective windings of the transformer

Scilab code Exa 3.10 To Determine the Voltage Rating of the respective windings of the transformer

```
1 //To Determine the Voltage Rating of the respective
      windings of the transformer
2 // Page 156
3 clc;
4 clear;
6 // 'o' and 't' represent transformer one and two
      respectively
8 //Objective is to find the Factor which has to be
      multiplied to get VA rating
9 Vll=1; //Assumption Made
10 //From the Phasor Diagram from the result file
11 Vab=Vll*exp(%i*0); //Vab is taken as reference
12 Vabh=50*Vab/100;
13 Vx1x2o=1*sqrt((Vab^2)-(Vabh^2))/3;
14 Vx2x3o=2*sqrt((Vab^2)-(Vabh^2))/3;
15 Vx1x2t=Vabh;
16 \quad Vx2x3t=Vabh;
17
18 //Let I be unity
19 I=1;
20
21 //VA Ratings of the respective windings
22 Sx1x2o=Vx1x2o*I;
23 Sx2x3o=Vx2x3o*I;
24 \quad Sx1x2t = Vx1x2t * I;
25 \quad Sx2x3t = Vx2x3t * I;
26
27 //Total VA rating of transformer
28 \quad S1 = Sx1x2o + Sx2x3o;
```

```
29 S2=Sx1x2t+Sx2x3t;
30
31 //Ratio of total rating to maximum rating
32 Rt = (S1+S2)/(sqrt(3)*V11*I);
33
34 printf('\na) The voltampere raing of x1x2 of
      transformer 1 is %g*VI VA\n', Sx1x2o)
35 printf('b) The voltampere raing of x1x2 of
      transformer 1 is %g*VI VA\n', Sx2x3o)
  printf('c) The Total Output from transformer 1 is %g
     *VI VA n', S1)
37 printf('d) The voltampere raing of x1x2 of
      transformer 2 is \%g*VI VA\n', Sx1x2t)
38 printf('e) The voltampere raing of x1x2 of
      transformer 2 is %g*VI VA\n', Sx2x3t)
39 printf('f) The Total Output from transformer 2 is %g
     *VI VA n', S2)
40 printf('g) The Total Rating to the Maximum Continous
      Output is %g\n', Rt)
```

Scilab code Exa 3.11 To Determine the parameters of two single transformers

```
//To Determine the parameters of two single
    transformers
//Page 157
clc;
clear;
//Per unit value
Zt=0.01+(%i*0.03); //Transformer impedance

// Secondary Voltage

10
11 S1=90; //Lighting Load
```

```
12 pfl=0.9;
13 tl=acosd(pfl);
14 S=25; //Balanced Load
15 pf=0.8;
16 t=acosd(pf);
17
18 deff('x=angle(y)', 'x=atand(imag(y)/real(y))') //
      Function to find the angle
19
20 tab=30; //Phase angle of Vab
21
22 Il=S1*1000/Vll; //Magnitude of Light Load
23 //Using the symmetrical - components theory
24 Ia1=Il*exp(%i*%pi*(tab-tl)/180);
25 Ta1=angle(Ia1); //Angle for the above current
26 \text{ Ib1} = -1 * \text{Ia1};
27 Ic1=0; //Neutral Wire
28 //Angles of three line to line voltages
29 \text{ ta=0};
30 \text{ tb} = -120;
31 \text{ tc} = 120;
32
33 Ib=S*1000/(sqrt(3)*Vll); //Magnitude of balanced
      load
34
35 // Currents in Three phase load
36 Ta2=ta-t;
37 Ia2=Ib*exp(%i*%pi*Ta2/180);
38 Tb2=tb-t;
39 Ib2=Ib*exp(%i*%pi*Tb2/180);
40 Tc2=tc-t;
41 Ic2=Ib*exp(%i*%pi*Tc2/180);
42
43 // Currents in phase wire
44 Ia=Ia1+Ia2;
45 Ta=angle(Ia); //Angle corresponding to the above
      angle
46 Ib=Ib1+Ib2;
```

```
47 Tb=angle(Ib); //Angle corresponding to the above
      angle
48 \quad Ic = Ic1 + Ic2;
49 Tc=angle(Ic); //Angle corresponding to the above
      angle
50
51 //Transformer Loads
52 ST1=Vll*abs(Ia)/1000;
53 T1=100; //From the above value of Load, this
      transformer is chosen to meet the specific
      characteristic
54 ST1pu=ST1/T1; //Per unit Load
55 ST2=Vll*abs(Ic)/1000;
56 T2=15; //From the above value of Load, this
      transformer is chosen to meet the specific
      characteristic
57 ST2pu=ST2/T2; //Per unit Load
58
59 //Transformer Power Factors
60 pfT1=cosd(tab-Ta);
61 pfT2=cosd(90-Tc); //Vcb makes angle of 90
62
63 Vh=7200; //High End Voltage
64 n=Vh/Vll; //Turns Ratio
65
66 // The Primary Line Currents
67 \quad IA = Ia/n;
68 IB = -1 * Ic/n;
69 IN = -1 * (IA + IB);
70
71 Ibase=T1*1000/V11; //Base Current
72 Iapu=Ia/Ibase;
73 Icpu=Ic/Ibase;
74
75 // Phase Voltages
76 Vab=Vll*exp(%i*%pi*tab/180);
77 Vbc=Vll*exp(-1*\%i*\%pi*90/180);
78 //Per Unit Voltages
```

```
79 VANpu=(Vab/Vll)+(Iapu*Zt);
80 VBNpu=(Vbc/Vll)-(Icpu*Zt);
81
82 //Actual Voltages
83 VAN = VANpu * Vh;
84 VBN = VBNpu * Vh;
85
86 printf('\na) The Phasor Currents:\n')
87 printf('Ia is \%g/_{-}\%g A\n', abs(Ia), Ta)
88 printf('Ib is \%g/_\%g A n', abs(Ib), 180+Tb)
89 printf('Ic is \%g/_{-}\%g A\n',abs(Ic),Tc)
90 printf('\nb) Suitable ratings of the transformers
      are \%g kVA and \%g kVA\n', T1, T2)
91 printf('\nc) The Per Unit kVA load on each
      transformer is %g pu and %g pu\n', ST1pu, ST2pu)
92 printf('\nd) The power factor of output of each
      transformer is %g and %g both lagging\n',pfT1,
      pfT2)
93 printf('\ne) The phasor currents at the high voltage
       leads: \n')
94 printf ('IA is \%g/_{-}\%g A\n', abs(IA), Ta)
95 printf('IB is \%g/_\%g A n', abs(IB),180+angle(IB))
96 printf('IN is \%g/_{-}\%g A\n', abs(IN), angle(IN))
97 printf('\nf) VAN is \%g/_{\%g} V and VBN is \%g/_{\%g} V\n',
      abs(VAN), angle(VAN), abs(VBN), angle(VBN))
98
99 // Highly Accuracy of Answers; Upto 5 decimal Places
```

## Chapter 4

# Design of Subtransmission Lines and Distribution Substations

Scilab code Exa 4.1 To determine the constant K for 16kV feeder

```
1 //To determine the constant K for 16kV feeder
2 //Page 201
3 clc;
4 clear;
6 // Conductor Pararmeters
7 r=1.503;
8 \text{ xa} = 0.609;
9 \text{ xd} = 0.1366;
10 pf = 0.9;
11 Vb = 2400;
12 \text{ Vr=Vb};
13 x=xa+xd;
14 Kc=0.01; //From the Curve
15
16 K = ((r*pf) + (x+sind(acosd(pf))))*(1000/3)*100/(Vr*Vb);
       // In Percent
```

Scilab code Exa 4.2 To Calculate the percent voltage drop in the main for a lumped load

Scilab code Exa 4.3 To Calculate percent voltage drop in the main for a uniformly distributed load

```
4 clear;
5
6 K=0.01; //Percentage Value
7 Sn=500; //Load in kVA
8 pf=0.9; //Lagging
9 l=1; //Total Length of the feeder
10 s=1/2; //effective Length of the feeder
11 VD=s*K*Sn; //Voltage drop in percent
12
13 printf('The Percent Voltage drop in the Main is %g percent\n', VD)
```

Scilab code Exa 4.4 To Calculate percent voltage drop in the main for a uniformly increasing load

```
//To Calculate percent voltage drop in the main for
    a uniformly increasing load
//Page 203
clc;
clear;

K=0.01; //Percentage Value
Sn=500; //Load in kVA
pf=0.9; //Lagging
1=1; //Total Length of the feeder
s=1*2/3; //effective Length of the feeder
VD=s*K*Sn; //Voltage drop in percent

printf('The Percent Voltage drop in the Main is %g percent\n', VD)
```

Scilab code Exa 4.5 To Compare the results the percent voltage drop ratio for different loading

```
1 //To Compare the results the percent voltage drop
      ratio for different loading
\frac{2}{\text{Page }} 204
3 clc;
4 clear;
6 // Voltage Drops in Percentage
7 VDlumped=5;
8 VDuniform=2.5;
9 VDincreasing=3.333;
10
11 //Ratio of the percent voltage drops
12 Rlu=VDlumped/VDuniform;
13 Rli=VDlumped/VDincreasing;
14 Riu=VDincreasing/VDuniform;
15
16 printf('\na) Percent VDlumped = \%g Percent VDuniform
     \n', Rlu)
17 printf('b) Percent VDlumped = %g Percent
      VDincreasing\n',Rli)
18 printf('c) Percent VDincreasing = %g Percent
      VDuniform\n',Riu)
```

Scilab code Exa 4.6 To determine the substation parameters for various Load densities

```
miles
8 VD=[3,6,3,6,3,6,3,6]; //Maximum Total Primary Feeder
       Voltage drops in percentage
  Vll=[4.16,4.16,4.16,4.16,4.16,4.16,13.2,13.2]; //
     Base Feeder Voltage in kV
10
11 TSn=D.*TAn; //Susbstation Load
12 //From the Graphs of feeders vs load desity in the
     textbook; The Number of feeders are found to be
13
14 n=[4,2,5,3,5,4,6,5]; //No of feeders
16 // Also from the graph, The characteristic or the
      feeder is determined
17 / 1-5, 7 are VDL feeders
18 / 6 and 8 are TL feeders
19
20 Sn=TSn./n; //Load Per Feeder
21 //To Determine the Load Current
22 I1=Sn./(sqrt(3).*V11);
23
24 printf('\na)')
25 printf('\nThe Substation Size is\n')
26 disp(TSn)
27 printf('\nThe Number of Feeders from the Curve is\n'
28 \text{ disp(n)}
29 printf('\nAlso From the Curve, 1,2,3,4,5,7 cases are
      VDL but 6 and 8 case are TL\n')
30 printf('\na)')
31 printf('\nThe Load Current for 6th Case is \%g A,
     which is less than the ampacities of the main but
      \nmore than that of the lateral, Hence it is
      thermally limited but not the main feeder\n', Il
32 printf('\nThe Load Current for 8th Case is \%g A,
     which is less than the ampacities of the main but
      nmore than that of the lateral, Hence it is
```

thermally limited but not the main feeder $\n'$ , I1 (8))

### Scilab code Exa 4.7 To Find feeder properties of TL and VDL

```
1 //To Find feeder properties of TL and VDL
2 //Page 211
3 \text{ clc};
4 clear;
6 D=1000; //Load Density in kVA per sq miles
7 V11=4.16; //Line to Lien voltage in kV
8 //From The Tables and Curves from the Theory
9 K = 0.007;
10 //For TL
11 TLImax = 230; //Maximum Feeder Current
12 TLSn=sqrt(3)*V11*TLImax; //Maximum Load Per Feeder
13 TLn=4; //No of Feeders
14 TLTSn=TLn*TLSn; //Substation Load
15 TL14=sqrt(TLSn/D); //Feeder Length
16 TLS=2*TL14; // Total Spacing
17
18 TLVDn=2*K*D*(TL14^3)/3; //TotalVoltageDrop in the
     main
19
20 //For VDL
21 VDLVDn=3; //Percent Voltage Drop
22 VDL14=nthroot((3*VDLVDn/(2*K*D)),3); //Feeder Length
23 VDLS=2*VDL14; //Station size
24 VDLSn=D*(VDL14^2); //Maximum Load Per Feeder
25 VDLn=TLn; //Number Of Feeders
26 VDLTSn=VDLn*VDLSn; //Susbtation Load
27 VDLImax=VDLSn/(sqrt(3)*V11); //Ampere Rating of the
28 R=VDLImax/TLImax; //Ampere Loading
```

```
29
30 printf('\na) For Thermally Limited \n')
31 printf('i) The Substation Size = \%g kVA \ ', TLTSn)
32 printf('ii) Substation Spacing = \%g miles\n', TLS)
33 printf('iii) Maximum Load Per Feeder = %g kVA\n',
     TLSn)
34 printf('iv) The Voltage Drop is %g percent\n', TLVDn)
35
36 printf('\nb) For Voltage Drop Limited \n')
37 printf('i) The Substation Size = \%g kVA\n', VDLTSn)
38 printf('ii) Substation Spacing = \%g miles\n', VDLS)
39 printf('iii) Maximum Load Per Feeder = %g kVA\n',
     VDLSn)
40 printf('iv) Ampere Loading of the Main is %g pu\n', R
41
42 //Note The Approximation to 750 kVA
```

#### Scilab code Exa 4.8 To determine the better susbstation site

```
//To determine the better susbstation site
//Page 213
clc;
clear;
DivF=1.2; //Diversity Factor
DemF=0.6; //Demand Factor
CL=2000; //Connected Load Density in kVA per sq. miles

DD=DemF*CL/DivF; //Diversified Demand
A=4; //Area of the Substation

TSn=DD*A; //Peak Loads of A and B
Sm=TSn; //Peak Loads
```

```
15 //Constants for different conductors
16 \text{ Km} = 0.0004;
17 Kl = 0.00095;
18 //Number of Laterals
19 Na=16; //Site A
20 Nb=32; //Site B
21
22 //Length of the Main
23 \text{ La=2};
24 \text{ Lb=3};
25 //length of laterals
26 Lla=2;
27 \text{ Llb=1};
28 //Length of expres Load
29 Le=1;
30 Leffb=Le+((Lb-Le)/2); //Effective Length of the
      feeder in site B
31 //Voltage drops
32 VDa = (La*Km*Sm/2) + (Lla*Kl*Sm/(Na*2));
33 VDb = (Leffb*Km*Sm) + (Llb*Kl*Sm/(Nb*2));
34
35 printf('\nThe Voltage drop in Site A is \%g percent\n
      ', VDa)
36 printf('The Voltage drop in Site B is \%g percent\n',
      VDb)
37
  printf ('Comparing the results we find Site A
      suitable due to its less percent voltage drop\n')
38 VDb = (La*Km*Sm/2) + (Lla*Kl*Sm/Na);
```

Scilab code Exa 4.10 To find the substation spacing and load on transformers

```
1 //To find the substation spacing and load on transformers2 //Page 217
```

```
3 \text{ clc};
4 clear;
6 D=500; //Load Density in kVA per sq.miles
7 V1=12.47; //Line Voltage in kV
8 N=2; //Feeders per substation
9 //From Table A-5 Appendix A it Current Ampacity can
     be found
10
11 Imax = 340;
12
13 S2=sqrt(3)*V1*Imax; //Load Per Feeder
14
15 12=sqrt(S2/D); //Length of the feeder
16 S=2*12; //Substation Spacing
17 TS2=S2*N; //Total Load on substation
18
19 printf('\nThe Parts a,b and c of thhis question
      cannot be coded\n')
20 printf('d) The substation size and spacing is %g kVA
       and \%g miles \n', TS2,S)
```

Scilab code Exa 4.11 To Compare the method of service area coverage with four feeders

```
//To Compare the method of service area coverage
    with four feeders
//Page 221
clc;
clear;

Ts=1; //Assumed Load on station
K=1; //Assumption Constant
K2=K;
K4=K;
```

```
10 D=1; // Assumption Load Density
11 //Number of feeders
12 N2=2;
13 N4=4;
14 S2=Ts/N2; //Load per feeder //Two feeders
15 S4=Ts/N4; //Load per feeder //4 feeders
16 l=poly(0, 'l'); // Variable Value of length
17 L2eff=1*1/3;
18 L4eff=2*1/3;
19
20 deff('x=VD(y)', 'x=D*(1^2)*K*y') // Function to find
     VD
21
22 VD2=VD(L2eff);
23 VD4=VD(L4eff);
24 \text{ RVD=VD2/VD4};
25 \quad X = 1 - RVD;
26 RVD=1/roots(X(2)); //To find the ratio of (12^3)/(14
      ^3)
27
28 Rl=nthroot(RVD,3); //Ratio of length of feeder for 2
       feeders two by length of feeder for 4 feeders
29
30 //A is directly proportional to 1^2
31 RA = (R1^2);
32
33 //TSn is directly proportional to n and l^2
34 RTS=(N2/N4)*(R1^2);
35
36 printf('\na) Ratio of substation spacings = 212/214
      = \%g \setminus n', R1)
37 printf('b) Ratio of areas covered per feeder main =
      A2/A4 = \%g \ n', RA)
38 printf('c) Ratio of substation loads = TS2/TS4 = %g\
      n', RTS)
```

## Chapter 5

# Design Considerations of Primary Systems

Scilab code Exa 5.1 To determine the circuit parameters of a radial express feeder

```
1 //To determine the circuit parameters of a radial
      express feeder
\frac{2}{\text{Page }} 254
3 clc;
4 clear;
6 Z=0.1+(0.1*%i); //Feeder Impedance per unit
7 R=real(Z); //Resistance
8 X=imag(Z); //Reactance
9 Vs=1; //Sending End Voltage
10 Pr=1; //Constant Power Load
11 pfr=0.8; //Power Factor at recieving end
12 tr=acosd(pfr); //Power FActor angle
13 deff('x=angle(y)', 'x=atand(imag(y)/real(y))') //
     Function to Determine the Angle of a phasor
14
15 K = (Vs^2) - (2*Pr*(R+(X*tand(tr))));
```

```
17 Vr = sqrt((K/2)*(1+sqrt(1-((2*abs(Z)*Pr/(K*pfr))^2))))
      ; //Recieving End Voltage
18 C=Pr*(X-(R*tand(tr)))/((Vr^2)+(Pr*(R+(X*tand(tr)))))
19
20 del=atand(C);
21
22 Ir=(Pr/(abs(Vr)*pfr))*exp(-1*%pi*%i*tr/180) //
      Recieving End Current
23 Is=Ir; //Sending End Current
24 Tir=angle(Ir);
25
26 \text{ Vr1=Vs-}(Z*Ir);
27
28 printf('\na) Vr is %g/_%g pu, del is %g degrees, Ir
      = Is = \frac{\%g}{-\%g} pu n', abs(Vr), angle(Vr), del, abs(Ir)
      ,Tir)
29 printf('b) Vr is \%g/_\%g pu, which is almost equal to
       the previous case.\n', Vr1, angle(Vr1))
```

#### Scilab code Exa 5.2 To determine the percent voltage drops

```
//To determine the percent voltage drops
//Page 259
clc;
clear;

S=518; //Total Load on Lateral
S=1036; //Total Load on Main
Vll=4.16; //Line to Line voltage
//Currents in the respective current
Ilateral=S1/(sqrt(3)*Vll);
Imain=Sm/(sqrt(3)*Vll);
```

```
14 C=5280; //Length Constant
15 Ll=5760/C; //Lateral Length
16 Lm = 3300/C; //Main Length
17
18 //Constant for the cables
19 K1=0.015;
20 \text{ Km} = 0.01;
21
22 //Voltage Drop Percents for 3 phase
23 VDlateral3=L1*K1*S1/2;
24 \quad VDmain3=Lm*Km*Sm;
25 TVD3=VDmain3+VDlateral3;
26 //Voltage Drop Percents for 1 phase according to
      Morrisoncfor laterals
27 VDlateral1=VDlateral3*4;
28 VDmain1=VDmain3;
29 TVD1=VDlateral1+VDmain1;
30
31
32 //CASE B
33 //To meet the maximum primary voltage drop criterion
       of 4.00 percent
34 //Conductors with ampacities of 480A and 270A for
      Main and laterals
35
36 //Constants from the table
37 \text{ Klb} = 0.006;
38 \text{ Kmb} = 0.003;
39
40 // Voltage Drop Percents
41 VDlateralb=L1*Klb*S1/2;
42 VDmainb=Lm*Kmb*Sm;
43 TVDb=VDmainb+VDlateralb;
44
45 printf('\na) The percent voltage drops at :\n')
46 printf('i) 3Phase\n')
47 printf('Lateral End is \%g percent\n', VDlateral3)
48 printf('Main End is \%g percent\n', VDmain3)
```

Scilab code Exa 5.3 To find voltge drop percents for a self supporting aerial messenger cable

```
1 //To find voltge drop percents for a self supporting
       aerial messenger cable
\frac{2}{\text{Page }} 263
3 clc:
4 clear;
6 //Terms taken from Example two
7 I1 = 72;
8 \text{ Im} = 144;
9 C=5280; //Length Constant
10 Ll=5760/C; //Lateral Length
11 Lm=3300/C; //Main Length
12
13 //From Tables
14 / Lateral
15 rl=4.13; //Resistance per mile
16 xL1=0.258; //Reactance per mile
17 // Main
18 rm=1.29; //Resistance per mile
19 xLm=0.211; // Reactance per mile
20 pf=0.9; //Power Factor
21
```

```
22 Vb=2400; //Base Voltage
23 // Voltage Drops
24 VDlateral=Il*((rl*pf)+(xLl*sind(acosd(pf))))*L1/2;
25 VDmain=Im*((rm*pf)+(xLm*sind(acosd(pf))))*Lm;
26
27 // Percent Voltage Drop
28 perVDlateral=VDlateral*100/Vb;
29 perVDmain=VDmain*100/Vb;
30
31 TVD=perVDlateral+perVDmain; //Total Percent Voltage
     drop
32
33 // Case B
34 //Conductors With Ampacities of 268A and 174A for
     Main and Laterals
35 //From Tables
36 //Lateral
37 rlb=1.03; //Resistance per mile
38 xLlb=0.207; //Reactance per mile
39 // Main
40 rmb=0.518; //Resistance per mile
41 xLmb=0.191; // Reactance per mile
42
43 Vb = 2400; //Base Voltage
44 //Voltage Drops
45 VDlateralb=Il*((rlb*pf)+(xLlb*sind(acosd(pf))))*Ll
46 VDmainb=Im*((rmb*pf)+(xLmb*sind(acosd(pf))))*Lm;
47
48 // Percent Voltage Drop
49 perVDlateralb=VDlateralb*100/Vb;
50 perVDmainb=VDmainb*100/Vb;
51
52 TVDb=perVDlateralb+perVDmainb; //Total Percent
      Voltage drop
53
54 printf('\na) The percent voltage drops at :\n')
55 printf('Lateral End is \%g percent\n',perVDlateral)
```

Scilab code Exa 5.4 To determine the percent voltage drops using nomnial operating voltage as base voltage

```
1 //To determine the percent voltage drops using
     nomnial operating voltage as base voltage
2 // Page 265
3 clc;
4 clear;
6 S1=518; //Total Load on Lateral
7 Sm=5180; //Total Load on Main
8 Vll=12.47; //Line to Line voltage
10 // Currents in the respective current
11 Ilateral=S1/(sqrt(3)*V11);
12 Imain=Sm/(sqrt(3)*V11);
13
14 C=5280; //Length Constant
15 Ll=5760/C; //Lateral Length
16 Lm=3300/C; //Main Length
17
18 //Constant for the cables
19 Km = 0.0008;
20 Kl=0.00175;
21
22 //Voltage Drop Percents for 3 phase
```

```
23 VDlateral=Ll*Kl*S1/2;
24
25 //Due to peculiarity of this new problem, one half
      of the main has to considered as express feeder
      and the other connected to a uniformly
      distributed load of 5180kVA
26 VDmain=Lm*Km*Sm*3/4;
27 TVD=VDmain+VDlateral;
28
29 //Since the inductive reactance of the line is
30 Cd=12; //Constant to find the distance in terms of
      feet
31
32 // Diameters of the Conductors
33 Dmi = 37;
34 \, \text{Dmn} = 53;
35
36 //Drops per mile
37 \text{ xdi} = 0.1213 * \log(Dmi/Cd);
38 \text{ xdn} = 0.1213 * \log (Dmn/Cd);
39
40 Dxd=xdn-xdi; // Difference in Drops
41
42 printf('\na) The percent voltage drops at :\n')
43 printf ('Lateral End is \%g percent \n', VDlateral)
44 printf('Main End is %g percent\n', VDmain)
45
46 printf('\nb) The Above Drops meet the required
      criterion of 4 percent voltage drop \ ')
47 printf('\nc) The Difference in Voltage drop is \%g
      ohm/mile, which is a smaller VD valuue that it
      really is.\n',Dxd)
```

Scilab code Exa 5.5 To find the percent voltage drop at the ends of the most remote laterals

```
1 //To find the percent voltage drop at the ends of
      the most remote laterals
\frac{2}{\text{Page }} 268
3 clc;
4 clear;
6 Vb=7200; //Base Voltage in V
7 pf=0.9; //Power Factor
8 Sm=10360; //Load on Main Feeder in kVA
9 V11=12.47; //Line to Line voltage in kV
10 Imain=Sm/(sqrt(3)*V11); //Current in Main Feeder
11
12 //Note Suffix I means lateral and m means main
13
14 Vph=7.2; //Phase Voltage in kV
15 Sl=2*518; //Load on Lateral Feeder in kVA
16 Ilateral=S1/Vph; //Current in Laterals
17
18 //Length of the Feeder
19 //Length Constant
20 Cm = 5280; //Main
21 Cl=1000; //Lateral
22 L1=5760/C1; //Lateral Length
23 Lm=3300/Cm; //Main Length
24
25 //Constants for the particular cables from the
      tables
26 rl=0.331;
27 \text{ xL1} = 0.0300;
28 \text{ rm} = 0.342;
29 \text{ xam} = 0.458;
30 \text{ xdm} = 0.1802;
31 	 xLm = xam + xdm;
32
33 //Voltage Drops for Normal Condition
34 VDmainn=(Imain/2)*((rm*pf)+(xLm*sind(acosd(pf))))*Lm
35 VDlateraln=(Ilateral/2)*((rl*pf)+(xLl*sind(acosd(pf)
```

```
)))*L1/2;
36
37 perVDmainn=VDmainn*100/Vb;
38 perVDlateraln=VDlateraln*100/Vb;
39
40 TVDn=perVDmainn+perVDlateraln;
41
42 //Voltage Drops for Worst Conditions
43 VDmainw=(Imain)*((rm*pf)+(xLm*sind(acosd(pf))))*Lm
     /2;
44 VDlateralw=(Ilateral)*((rl*pf)+(xLl*sind(acosd(pf)))
     )*Ll;
45
46 perVDmainw=VDmainw*100/Vb;
47 perVDlateralw=VDlateralw*100/Vb;
48
49 TVDw=perVDmainw+perVDlateralw;
50
51 printf('\na) From Table A5, 300-kcmilACSR conductors,
      with 500A Ampacity is used for main\nand AWG #2
     XLPE Al URD cable with 168A Ampacity\n')
52 printf('b) The Total Voltage Drop in Percent for
     Normal Operation is %g percent \n', TVDn)
53 printf('c) The Total Voltage Drop in Percent for
     Worst Condition is %g percent \n', TVDw)
54 printf('d) The Voltage drop is met for Normal
      operation and NOT for emergency operation\n')
```

## Chapter 6

# Design Considerations of Secondary Systems

Scilab code Exa 6.1 To Compute the Economical Sizes of the Transformer and its Equipment

```
1 //To Compute the Economical Sizes of the Transformer
       and its Equipment
2 //Page 296
3 clc;
4 clear;
6 NC=24; //Number Of Customers Per Block
  //We get the Total Annual Cost from the releveant
      equations as
  // \text{TAC} = 239.32 + (3.1805*\text{ST}) + (3492/\text{ST}) + (28170/\text{ST})
      ST^2) + (0.405*ASL) + (17018/ASL) + (1.134*ASD) +
       (8273/ASD)
10
11 //We know split the above equation into 3 different
      parts according to factors ST, ASD, ASL
12
13 // Variable Values of the Factors
```

```
14 ST=poly(0, 'ST');
15 ASD = poly(0, 'ASD');
16 ASL=poly(0, 'ASL');
17
18 //Functions to Find the TAC corresponding to the
      Respective Factors
19
20 deff('x=TransSize(y)', 'x=239.52 + (3.1805*y) +
      (3492/y) + (28170/(y^2))
21 deff('x=SDwire(y)', 'x=(1.134*y)+(8273/y)')
22 deff('x=SLwire(y)', 'x=(0.405*y)+(17018/y)')
23
24 //Total Annual Costs of the respective Factors
25 TACST = TransSize(ST);
26 \text{ TACASD} = \text{SDwire(ASD)};
27 TACASL = SLwire(ASL);
28
29 // Partially Differentiating wrt ASD we get
30 Y1=derivat(TACASD);
31 X1=roots(Y1(2));
32 ASD=X1(1); //Calculated Value
33 \text{ ASDstd} = 105.500;
34 \text{ ASDstd1} = 133.1;
35
36 // Partially Differentiating wrt ASL we get
37 Y2=derivat(TACASL);
38 \text{ X2=roots}(Y2(2));
39 ASL=X2(1); // Calculated Value
40 \text{ ASLstd} = 211.600;
41 \quad ASLstd1 = 250;
42
43 // Partially Differentiating wrt ST we get
44 Y3=derivat(TACST);
45 \text{ X3=roots}(Y3(2));
46 ST=round(X3(1)); //Calculated Value
47 STstd = 50;
48
49 //Total Annual Cost of the Calculated parameters
```

```
50 TAC=TransSize(ST)+SDwire(ASD)+SLwire(ASL);
51 // Calculation Mistake in The Text Book
52
53 //Total Annual Cost of the First Higher Standard
      Parameters
54 TACstd=TransSize(STstd)+SDwire(ASDstd)+SLwire(ASLstd
  //Total Annual Cost of the Second Higher Standard
      Parameters
  TACstd1=TransSize(STstd)+SDwire(ASDstd1)+SLwire(
56
      ASLstd1);
57
58 //Total Fixed Charges per Year
59 \text{ TACFC} = ((75+(2.178*STstd))+(5.4+(0.405*ASLstd))
      +(15.12+(1.134*ASD))+(144));
60 //Total Operating Charges per Year
61 TACOC=((0.0225*STstd)+(0.98*STstd)+(28170/(STstd^2))
      +(3492/STstd)+(17018/ASLstd)+(8273/ASDstd));
62
63 //Values Might Vary from those in the text due to
     high precision
64
65 //Fixed Charges Per Customer Per Month
66 \text{ FC=TACFC/(NC*12)};
67
68 // Variable Costs Per Customer per month
69 VOC = TACOC/(NC*12);
70
71 printf('\na) The Most Economical SD Size is %g kmil
     and the nearest larger standard AWG wire size is
     \%g kmiln', ASD, ASDstd)
72 printf('b) The Most Economical SL Size is %g kmil
      and the nearest larger standard AWG wire size is
     \%g kmil\n', ASL, ASLstd)
73 printf('c) The Most Economical Distribution
      Transformer Size is %g kmil and the nearest
      larger standard transformer size is %g kVA\n',ST,
     STstd)
```

- 74 printf('d) The Total Annual Cost Per Block for the theoretically most economical sizes of equipment is %g dollars\n', TAC)
- 75 printf('e) The Total Annual Cost Per Block for the nearest larger standard comercial sizes of equipment is %g dollars\n', TACstd)
- 76 printf('f) The Total Annual Cost Per Block for the
   nearest larger transformer size and for the
   second larger sizes of ASD and ASL is %g dollars\
   n', TACstd1)
- 77 printf('g) Fixed Charges per Customer per Month is %g dollars\n',FC)

Scilab code Exa 6.2 To determine the coeffcient matrix for a unbalanced load

```
1 //To determine the co-effcient matrix for a
      unbalanced load
\frac{2}{\text{Page }} 304
3 clc;
4 clear;
6 Dab=12;
7 Dan=12;
8 \text{ Dbn} = 24;
9 Daa=12*0.01577;
10 Dbb=Daa;
11 Dnn=Daa;
12
13 deff('x=Coeff(y,z)', 'x=(2*(10^-7))*\log(y/z)') //
      function to find the elements of the co-efficient
       matrix
14
```

Scilab code Exa 6.4 To determine the circuit parameters of an unbalanced load

```
1 //To determine the circuit parameters of an
      unbalanced load
2 //Page 308
3 clc;
4 clear;
5 //Primary Voltage
6 V1=7272*(%i*\%pi*0/180);
8 //Secondary Voltages
9 Ea=120*(%i*%pi*0/180);
10 Eb=120*(%i*\%pi*0/180);
11
12 //Impedances
13 Za=0.8+(\%i*0.6);
14 Zb=0.8+(\%i*0.6);
15
16 n=60; //Turns Ratio
17
```

```
18 deff('x=angle(y)', 'x=atand(imag(y)/real(y))') //To
      Determine the Angle
19
20 //Substituting the values we get the following
      equations
  //121.2 = Ia*(0.8857 + j0.6846) + Ib*(0.03279 + j0.6846)
21
      .03899)
22 / 121.2 = Ia*(-0.03279 - j0.03899) + Ib*(-0.88574 + j0.03899)
      j0.50267)
23
24 //For Convenience We segregate them as
25 Z1 = (0.8857 + (\%i * 0.6846));
26 \quad Z2 = (0.03279 + (\%i * .03899))
27 \quad Z3 = (-0.03279 - (\%i * .03899))
28 \quad Z4 = (-0.88574 + (\%i * .50267))
29
30 Z=[Z1,Z2;Z3,Z4]; //Impedance matrix
31 V=[121.2;121.2]; //Voltage Matrix
32 I=inv(Z)*V; //Current Matrix
33
34 // Secondary Currents
35 Ia=I(1);
36 \text{ Ib=I}(2);
37
38 In=-Ia-Ib; //Secondary neutral Currents
39
40 // Secondary Voltages
41 Va=Za*Ia;
42 Vb = -1 * Zb * Ib;
43
44 //Secondary Voltage Resultant
45 \quad Vab = Va + Vb;
46
47 printf('\na) The Secondary Currents are:\n')
48 printf('Ia = \%g/_{-}\%g A\n',abs(Ia),angle(Ia))
49 printf('Ib = \frac{\%g}{-\%g} A\n', abs(Ib), 180+angle(Ib))
50 printf('b) The Secondary Neutral Current = \%g/_\%g A\
      n', abs(In), angle(In))
```

Scilab code Exa 6.5 To find the pu voltages and tolerable and favourable voltages

```
1 //To find the pu voltages and tolerable and
      favourable voltages
\frac{2}{\text{Page }} 310
3 clc;
4 clear;
6 N=19; //Number Transformers
7 St=500; //Load on each transformer in kVA
8 L=5096+(%i*3158); //Load
9 Vlf=114; //Favourable Voltage
10 Vlt=111; //Tolerable Volatage
11 Vb=125; //Base Voltage
12
13 //Per Unit Tolerable and favourable voltages
14 puVlf=Vlf/Vb;
15 puVlt=Vlt/Vb;
16
  ZM=0.181+(%i*0.115); //The Positive Sequence
17
     Impedance
18
  ZTi=0.0086+(\%i*0.0492); // Transformer Impedance for
      500 \text{kVA}
  ZT=2*ZTi; //Transformer Impedance for 1000kVA
19
20
```

```
21 AAF=N*St/abs(L); //Actual Application Factor
22
23 printf('\na) The Lowest favourable Voltage is %g pu
     and The Lowest tolerable voltage is \%g pu\n',
     puVlf , puVlt)
24 printf('b) There Are No buses in Table 6-5, for the
      first contingency outage which satisfy the
      necessary condition\n')
25 printf('c) For Second Contingency Outage\n')
26 printf('1) Less than Favourable Voltage are B,C,J,K,
     R and S \setminus n')
27 printf('2) Less than Tolerable Voltage are B,C,J,K.\setminus
28 printf('d) ZM/ZT = \%g and (1/2)*ZM/ZT = \%g
      respectively.\n',(abs(ZM)/abs(ZT)),(1/2)*(abs(ZM)
     /abs(ZT))
29 printf ('The Actual Application Factor is \%g\n', AAF)
30 printf('Therefore the Design of this network is
      sufficient \n')
```

#### Chapter 7

## Voltage Drop and Power Loss Calculations

Scilab code Exa 7.2 To determine the voltage drop or voltage regulation of a 3phase system

```
1 //To determine the voltage drop or voltage
      regulation of a 3phase system
2 //Page 327
3 clc;
4 clear;
6 Vll=416; //Voltage Line to Line
7 Vph=Vll/(sqrt(3)); //Phase Voltage and Base Voltage
8 //Load Currents
9 Ia = 30;
10 Ib = 20;
11 Ic=50;
12
13 //Power Factors of the load
14 pfa=1;
15 \text{ pfb=0.5};
16 \text{ pfc=0.9};
17
```

```
18 //Impedances of the Sections
19 ZA = 0.05 + (\%i * 0.01);
20 \quad ZAB = 0.1 + (\%i * 0.02);
21 \quad ZBC=0.05+(\%i*0.05);
22 //Impedance upto the point of load
23 ZB = ZA + ZAB;
24 \quad ZC = ZB + ZBC;
25
26 //Function to Calculate Voltage Drop
27 deff('x=VD(a,b,c)', 'x=a*((real(b)*c)+(imag(b)*sind(
      acosd(c))))')
28
29 // Voltage Drops at A,B and C
30 VDA=VD(Ia,ZA,pfa);
31 VDB=VD(Ib,ZB,pfb);
32 VDC=VD(Ic,ZC,pfc);
33
34 TVD=VDA+VDB+VDC; //Total Voltage Drop
35
36 TVDpu=TVD/Vph; // In Per Unit
37
38 deff('x=Real(y,z)', 'x=Vph*y*z') // Function to
      Calculate Real Power
  deff('x=Reactive(y,z)', 'x=Vph*y*sind(acosd(z))')
      Funtion to Calculate the Reactive power
40
41 //Real Powers
42 Pa=Real(Ia,pfa);
43 Pb=Real(Ib,pfb);
44 Pc=Real(Ic,pfc);
45 P=Pa+Pb+Pc; //Total Real Power
46
47
48 //Reactive Powers
49 Qa=Reactive(Ia,pfa);
50 Qb=Reactive(Ib,pfb);
51 Qc=Reactive(Ic,pfc);
52 Q=Qa+Qb+Qc; //Total Reactive Power
```

Scilab code Exa 7.3 To Calculate the Voltage Drop and Verify The Cable Selected

```
1 //To Calculate the Voltage Drop and Verify The Cable
      Selected
2 //Page 329
3 clc;
4 clear;
5 pf=0.9; //Power Factor
6 Vb=120; //Base Voltage
7 //From The Tables
8 r=0.334; //Resistance per thousand feet
9 x=0.0299; //Reactance per thousand feet
10 K1=0.02613; //Voltage Drop
11
12 //Assumed Cable
13 I=100; //Secodary line Current
14 Ls=100; //Length of Secondary line in feet
15
16 R=r*Ls/1000; // Resistance Value for a 100 feet Line
17 X=x*Ls/1000; // Reactance Value for a 100 feet Line
```

Scilab code Exa 7.4 To find the voltage dip in per units for motor starting

```
1 //To find the voltage dip in per units for motor
      starting
2 //Page 333
3 clc;
4 clear;
6 Sts = (10 + (11 * 4.4)); //Load Selected on the
      transformer
7 V=240; // Voltage
8 Sta=50; // Available Unit
9 pf=0.9; //Load Power Factor
10 I=(Sts/V)/(Sta/V);
11
12 VDT=I*((0.0107*pf)+(0.0139*sind(acosd(pf))));
13
14 SLload=10+(3*6);
15
16 deff('x=VD(a,b,c)', 'x=a*b*c/(10^4)') //Function to
      find Voltage Drop Per unit
17
18 VDSL=VD(0.0088,116.7,150);
19
  VDSD=VD(0.01683,41.76,70);
20
```

```
21 \text{ TVD=VDT+VDSL+VDSD};
22
23 Is=80;
24 Smotor=Is*V/1000;
25 \text{ pf1=0.5};
26 \text{ VDIPT} = ((0.0107*pf1) + (0.0139*sind(acosd(pf1))))*(
      Smotor/Sta);
27
28 VDIPSL=VD(0.00636,80,150);
29 VDIPSD=VD(0.01089,80,70);
30 TVDIP=VDIPT+VDIPSL+VDIPSD;
31
32 VDSL1=VD(0.00769,116.7,150);
33 VDSD1 = VD(0.0136, 41.6, 70);
34 TVD1=VDT+VDSL1+VDSD1;
35
36 printf('\na) The Voltage drops are:\n')
37 printf ('Transformer is \%g pu V \setminus n', VDT)
38 printf ('Secondary Lines is %g pu V\n', VDSL)
39 printf('Service Drops is %g pu V\n', VDSD)
40 printf ('Total is \%g pu V \setminus n', TVD)
41 printf ('The Above Value doesn''t meet the required
      criterion \n')
42 printf('\nb) The Voltage dip for motor starting are
43 printf('Transformer is \%g pu V \setminus n', VDIPT)
44 printf ('Secondary Lines is %g pu V\n', VDIPSL)
45 printf ('Service Drops is %g pu V\n', VDIPSD)
46 printf('Total is \%g pu V \setminus n', TVDIP)
47 printf('The Above Value does meet the required
      criterion \n')
48 printf('\nC) The Voltage drops after changing the
      conductors are:\n')
49 printf('Transformer is \%g pu V \setminus n', VDT)
50 printf ('Secondary Lines is %g pu V\n', VDSL1)
51 printf('Service Drops is %g pu V\n', VDSD1)
52 printf('Total is %g pu V\n', TVD1)
53 printf ('The Above Value doesn''t meet the required
```

```
criterion \n')
54 printf('Thus 350 kcmilcable size for the secondary lines and #2/0 AWG cable size for service drops to meet the criteria \n')
```

Scilab code Exa 7.5 To Find the Total Load and Total steady state voltage drop

```
1 //To Find the Total Load and Total steady state
      voltage drop
2 //Page 336
3 clc;
4 clear;
6 //Length in feet
7 Lsd=100; //Service Drop Line
8 Ls1=200; //Secondary Line
10 SB=75; //Transformer Capacity in kVA
11 pf=0.9; //Load Power Factor
12
13 //From the Tables
14 ISL=129.17; //Secondary Line Current
15 ISD=41.67; //Service Drop Current
16 KSD=0.01683; //Service Drop Cable Constant
17 KSL=0.0136; //Secondary Cable Constant
18
19 //for Transformer
20 R=0.0101; //Resistance in per unit
21 X=0.0143; //Reatance in per unit
22
23 //From the Diagram
24 ST=(3+2+8+6)+(5+6+7+4)+(6+7+8+10); //Total Load on
      transformer
25
```

```
26 STpu=ST/SB; //In Per unit;
27
28 //The Above value also corresponds to the Current as
      Well
29
30 I=STpu; //Current in Per Unit
31
32 VDT=I*((R*pf)+(X*sind(acosd(pf)))); //Voltage Drop
     in the Transformer
33 VDSL=KSL*(Lsl*ISL/(10^4)); //Secondary Line
34 VDSD=KSD*(Lsd*ISD/(10^4)); //Service Drop Line
35
36 VD=VDT+VDSD+VDSL; //Total Voltage Drop
37
38 printf('\na)The Load in transformer is %g kVA or %g
     pu \ n', ST, STpu)
39 printf('b) The Total Voltage Drop is \%g pu V\n', VD)
```

Scilab code Exa 7.7 To determine the percent drop from the substation to various points

```
//To determine the percent drop from the substation
to various points
//Page 340
clc;
clear;

An=4; //Service Area
l=1; //Length of 0a
//Voltages in kV
Voltages in kV
Vln=7.62; //Line to line
//Peak Loading
Jp=1000; //Peak Loading Intensity per sq.miles
```

```
14 S1=2000; //Lumped Load in kVA
15
16 //Off Peak Loading
17 Dop=333; //Loading intensity
18
19 VB=7620; //Base Voltage
20
21 Vs=1.025; //Substation Voltages
22
23 Sn=Dp*An; //Load Connected to the square shaped
      service area
24 Sm=Sn+S1; //Total Load
25
26 K=0.0003; //Cable Constant
27
28 VDOa=K*Sm*1; //Voltage Drop between substation and a
29 lab=2; //Distance from a to b
30 VDab = (K*Sn*lab/2) + (K*Sl*lab); // Voltage drop from b
31 lbc=2; //Distance from b to c
32 VDbc=3*K*Sl*lbc; // Voltage drop from b to c // Change
       in Constant
33
34 I=S1/(sqrt(3)*(0.947*V11));
35 Ib=S1/(sqrt(3)*(V11));//BAse Current
36
37 MIpu=I/Ib; //Per Unit Current
38
39 Ztpu=complex(0,0.05);
40 pf=0.9; //Load Power Factor
41
42 Ipu=MIpu*exp(%i*%pi*acosd(pf)/180);
43
44 //The Voltage has been tapped up 5 percent
45
46 puVDcd=(abs(Ipu)*((real(Ztpu)*pf)+(imag(Ztpu)*sind(
     acosd(pf)))))-0.05;
47 VDcd=puVDcd*100;
```

```
48 deff('x=volt(a,b)', 'x=(a-(b/100))') //funtion to
      find out voltages
49
50 //per unit Voltages
51 puVa=volt(Vs, VDOa);
52 puVb=volt(puVa, VDab);
53 puVc=volt(puVb, VDbc);
54 puVd=volt(puVc, VDcd);
55
56 //Voltages in V
57 Va=puVa*VB;
58 Vb = puVb * VB;
59 \text{ Vc=puVc*VB};
60 \text{ Vd=puVd*VB};
61
62 printf('\na) The Percentage drops are\n')
63 printf(' Substation to a is \%g percent\n', VDOa);
64 printf(' a to b is \%g percent\n', VDab);
65 printf(' b to c is \%g percent\n', VDbc);
66 printf(' c to d is \%g percent\n', VDcd);
67 printf('b) The Per unit voltages are:\n')
68 printf(' Point a is %g pu V\n',puVa)
69 printf(' Point b is \%g pu V \setminus n', puVb)
70 printf(' Point c is \%g pu V \setminus n', puVc)
71 printf(' Point d is \%g pu V \ ', puVd)
72 printf('c) The Line to Neutral voltages are:\n')
73 printf(' Point a is \%g V \setminus n', Va)
74 printf ('Point b is \%g V \setminus n', Vb)
75 printf (' Point c is \%g V\n', Vc)
76 printf(' Point d is \%g V \setminus n', Vd)
```

Scilab code Exa 7.8 To determine the percent drop from the substation to various points

```
1 //To determine the percent drop from the substation
      to various points
\frac{2}{\text{Page }} 340
3 clc;
4 clear;
6 VOop=1; //At off Peak
7 An=4; //Service Area
8 1=1; //Length of 0a
9 // Voltages in kV
10 Vll=13.2; //Line to line
11 Vln=7.62; //Line to neutral
12
13 //Peak Loading
14 Dp=1000; //Peak Loading Intensity per sq.miles
15 S1=2000; //Lumped Load in kVA
16
17 // Off Peak Loading
18 Dop=333; //Loading intensity
19
20 VB=7620; //Base Voltage
21
22 Vs=1.025; //Substation Voltages
23
24 Sn=Dop*An; //Load Connected to the square shaped
      service area
25 Sm=Sn+S1; //Total Load
26
27 K=0.0003; //Cable Constant
28
29 VDOa=K*Sm*1; //Voltage Drop between substation and a
          //Distance from a to b
31 VDab = (K*Sn*lab/2) + (K*Sl*lab); // Voltage drop from b
      to c
32 lbc=2; //Distance from b to c
33 VDbc=3*K*S1*lbc; // Voltage drop from b to c // Change
       in Constant
34
```

```
35 I=S1/(sqrt(3)*(0.947*V11));
36 Ib=S1/(sqrt(3)*(V11));//BAse Current
37
38 MIpu=I/Ib; //Per Unit Current
39
40 Ztpu=complex(0,0.05);
41 pf=0.9; //Load Power Factor
42
43 Ipu=MIpu*exp(%i*%pi*acosd(pf)/180);
44
45 //The Voltage has been tapped up 5 percent
46
47 puVDcd=(abs(Ipu)*((real(Ztpu)*pf)+(imag(Ztpu)*sind(
      acosd(pf)))))-0.05;
48 VDcd=puVDcd*100;
49 deff ('x=volt(a,b)', 'x=(a-(b/100))') //funtion to
      find out voltages
50
51 //per unit Voltages
52 puVa=volt(V0op, VD0a);
53 puVb=volt(puVa, VDab);
54 puVc=volt(puVb, VDbc);
55 puVd=volt(puVc, VDcd);
56
57 // Voltages in V
58 Va=puVa*VB;
59 Vb = puVb * VB;
60 \text{ Vc=puVc*VB};
61 \text{ Vd=puVd*VB};
62
63 printf('\na) The Percentage drops are\n')
64 printf(' Substation to a is %g percent\n', VDOa);
65 printf(' a to b is %g percent\n', VDab);
66 printf(' b to c is %g percent\n', VDbc);
67 printf(' c to d is \%g percent\n', VDcd);
68 printf('b) The Per unit voltages are:\n')
69 printf(' Point a is \%g pu V \setminus n', puVa)
70 printf(' Point b is \%g pu V \setminus n', puVb)
```

```
71 printf(' Point c is %g pu V\n',puVc)
72 printf(' Point d is %g pu V\n',puVd)
73 printf('c) The Line to Neutral voltages are:\n')
74 printf(' Point a is %g V\n',Va)
75 printf(' Point b is %g V\n',Vb)
76 printf(' Point c is %g V\n',Vc)
77 printf(' Point d is %g V\n',Vd)
```

#### Scilab code Exa 7.9 To Determine the location of the substation

```
1 //To Determine the location of the substation
\frac{2}{\text{Page }} 344
3 clc;
4 clear;
6 Vll=13.2; //Voltage in kV (Line voltage)
7 TCDi=0.45; //Load Density in kVA per feet
8 FD=1.08; //Diversity Factor for all loads
9 FLS=0.2; //Annual Loss Factor
10 DFi=0.6; //30 min Annual Demand Factor
11
12 Dg=TCDi*DFi/FD; // Divesified Maximum Demand of the
     Group
13
14 L=30000; //Length of the Whole Feeder in Feet
15
16 //To Achieve Minimum Voltage Drop, The Substation
     must be located at the centre of the line
17 Ln=15000; //NEW Length of the Feeder
18
19 SPK=Dg*Ln; //Peak Load on each main of the
     substation trnasformer
20 I=(SPK/(sqrt(3)*V11)); //Current in the Line
21
22 K=0.0009; //For the Assumed Conductor
```

#### Scilab code Exa 7.10 To Determine the Annual Energy Loss

```
1 //To Determine the Annual Enery Loss
\frac{2}{\text{Page }} 346
3 clc;
4 clear;
6 Vll=13.2; //Voltage in kV (Line voltage)
7 TCDi=0.45; //Load Density in kVA per feet
8 FD=1.08; // Diversity Factor for all loads
9 FLS=0.2; //Annual Loss Factor
10 DFi=0.6; //30 min Annual Demand Factor
11
12 Dg=TCDi*DFi/FD; // Divesified Maximum Demand of the
     Group
13 L=30000; //Length of the Whole Feeder in Feet
14 I=164.2; //Current
15
16 r=0.592; //Resistance Per Mile
17 R=r*L/(3*5280); //Total Resistance
18
19 CL=3*(I^2)*R; //Total Power Loss in entire length
```

```
20
21 TAEL=CL*FLS*8760/(10^3); //Total Annual Energy Loss
22
23 printf('\nThe Total Annual Eddy Current Loss is %g
kWhr\n', TAEL)
```

Scilab code Exa 7.11 To Determine the Line to Line Voltage at point a

```
1 //To Determine the Line to Line Voltage at point a
2 //Page 347
3 clc;
4 clear;
6 //Loads in kVA
7 Sbc=3000; //Load Along bc
8 Sd=2000; //Load At Point d
9 SOa=Sbc+Sd; //Total Load
10 Sab=Sbc/2; //Load along ab
11
12 //Cable Constants
13 K0a=0.0005; //For 0 to a
14 Kab=0.0010; //For a to b
15 Kac=0.0010; //For a to c
16 Kad=0.0010; //For a to d
17
18 //Length
19 10a=1.0; //From 0 to a
20 lab=2; //From a to b
21 lad=2; //From a to d
22
23 // Voltage Drops At Specific Points
24 VDa=K0a*S0a*10a;
25 \text{ VDb} = (Kab*Sab*lab/2) + VDa;
26 \text{ VDc=VDb};
27 VDd=(Kad*Sd*lad)+VDa;
```

## Chapter 8

# Application of Capacitors to Distribution Systems

Scilab code Exa 8.1 To Determine the Capacitor Size to improve the power factor to a 700kVA Load

```
1 //To Determine the Capacitor Size to improve the
     power factor to a 700kVA Load
\frac{2}{\text{Page }} 390
3 clc;
4 clear;
6 SL=700; //Load in kVA
7 pf1=65/100; //Power Factor
8 PL=SL*pf1; //Real Power
9 //From the Table of Power Factor Correction
10 CR=0.74; //Co-relation factor
11 CS=PL*CR; // Capacitor Size
12
13 CSr=360; //Next Higher Standard Capacitor Size
14
15 CRn=CSr/PL; //New Co-Relation Factor
16
17 //From the table by linear interpolation
```

```
18 pfr=93; //In Percentage
19 pfn=pfr+(172/320);
20
21 printf('\a) The Correction Factor is %g\n',CR)
22 printf('b) The Capacitor Size Required is %g kVAr\n',CS)
23 printf('c) Resulting power factor if the next higher standard capacitor size is used is %g percent\n',pfn)
```

Scilab code Exa 8.2 To determine the Capacitor bank required to correct power factor of induction motor

```
1 //To determine the Capacitor bank required to
      correct power factor of induction motor
\frac{2}{\text{Page }} 393
3 clc;
4 clear;
6 V11=4.16; //Line to Line Voltage in kV
7 Pr=(500*0.7457); //Rating of motor in kW
8 pf1=0.75; //Initial Power Factor
9 pfn=0.9; //Improved Power Factor
10 eff=0.88; // Efficiency
11 P=Pr/eff; //Input Power of Induction Motor
12 Q1=P*tand(acosd(pf1)); //Reactive Power
13 Q2=P*tand(acosd(pfn)); //REactive power of motor
      after power factor improvement
14 f=60; //Frequency of supply
15 w=2*%pi*f; //Angular Frequency
16 Qc=Q1-Q2; //Reactive Power of Capacitor
17 Il=Qc/(sqrt(3)*V11);
18
19 // Capacitor Connectd in Delta
20 Ic1=Il/(sqrt(3));
```

```
21 Xc1=Vll*1000/Ic1; //Reactance of each capacitor
22 C1=(10^6)/(w*Xc1); //Capacitance in Micro Farad
23
24 //Capacitor Connected in Wye
25 Ic2=I1;
26 Xc2=Vll*1000/(sqrt(3)*Ic2); //Reactance of each capacitor
27 C2=(10^6)/(w*Xc2); //Capacitance in Micro Farad
28
29 printf('\na) Rating of Capacitor Bank is %g kVAr\n',
Qc)
30 printf('b) The Value of Capacitance if there are connected in delta is %g micro F\n',C1)
31 printf('c) The Value of Capacitance if there are connected in wye is %g micro F\n',C2)
```

Scilab code Exa 8.3 To determine the power factors of a 2point4 kV phase circuit feeder

```
//To determine the power factors of a 2.4 kV phase
    circuit feeder
//Page 396
clc;
clear;

V=2.4; //Voltage in kV
I=200; //Load Current
P=360; //Real Load in kW
S1=V*I; //Total Load in kVA
pf1=P/S1; //Power Factor
Q1=S1*sind(acosd(pf1)); //Reactive Load

Qc=300; //Capacitor Size

U=2-Q1-Qc; //The New Reactive Load
```

#### Scilab code Exa 8.4 To determine the necessity of additional capacitors

```
1 //To determine the necessity of additional
      capacitors
2 // Page 398
3 clc;
4 clear;
6 S1=7800; //Peak Load in kVA
7 T=3*2000; //Total Rating of the Transformer
8 pf1=0.89; //Load Power Factor
9 TC=120/100; //Thermal Capability
10 Qc=1000; //Size of capacitor
11
12 P=S1*pf1; //Real Load
13 Q1=S1*sind(acosd(pf1)); //Reactive Load
14
15 Q2=Q1-Qc; //The New Reactive Load
16 pf2=P/sqrt((P^2)+((Q1-Qc)^2)); //Improved Power
     Factor
17
18 S2=P/pf2; //Corrected Apprarent power
19
20 ST=T*TC; //Transformer Capabilty
21
22 pf3=P/ST; //New Corrected Power factor required
23
```

```
Q2new=P*tand(acosd(pf3)); //Required Reactive Power
Qcadd=Q2-Q2new; //Additional Rating of the Capacitor
printf('\na) Since the Apparent Power(%g kVAr) is
more than Transformer Capability (%g kVAr), \
nHence Additional Capacitors are required\n',S2,
ST)
printf('b) The Rating of the Additional capacitor is
%g kVAr\n',Qcadd)
```

#### Scilab code Exa 8.5 To Determine the savings in kilowatt losses

```
1 //To Determine the savings in kilowatt losses
2 //Page 411
3 clc;
4 clear;
  // 1 is Total Loss Reduction due to Capacitors
  // 2 is Additional Loss Reduction due to Capacitor
8 // 3 is Total Demand Reduction due to capacitor
9 // 4 is Total required capacitor additions
10
11 C90 = [495165,85771,22506007,9810141]; //
      Characteristics at 90% Power Factor
12 C98 = [491738,75343,21172616,4213297]; //
      Characteristics at 98% Power Factor
13
14 // Responsibility Factors
15 RF90=1;
16 RF98=0.9;
17
18 SLF=0.17; //System Loss Factor
19 FCR=0.2; //Fixed Charge Rate
20 DC=250; //Demand Cost
21 ACC=4.75; //Average Capacitor Cost
```

```
22 EC=0.045; //Energy Cost
23 Cd=C90-C98; // Difference in Characteristics
24
25 TAS=Cd(1)+Cd(2); //Total Additional Kilowatt Savings
26
27 \text{ ASDR1} = \text{Cd}(1) * \text{RF90} * \text{DC} * \text{FCR};
28 ASDR2=Cd(2)*RF98*DC*FCR;
29 TASDR=ASDR1+ASDR2; //Total Annual Savings due to
      demand
30 x=27; // Cost for Per kVA of the capacity
31 TASTC=Cd(3)*FCR*x; //Annual Savings due to
      Transmission Capacity
32
  TASEL=TAS*SLF*EC*8760; //Savings due to energy loss
      reduction
  TACAC=Cd(4)*FCR*ACC; //Annual Cost of Additional
      Capacitors
34 Savings=TASEL+TASDR+TASTC; //Total Savings
35
36 printf('\na) The Resulting additional savings in
      kilowatt losses due to power factor improvement
      at the substation buses is \%g kW\n', Cd(1))
37 printf('b) The Resulting assitional savings in
      kilowatt losses due to the power factor
      improvement for feeders is \%g \text{ kW} \cdot n', Cd(2))
38 printf('c) The Additional Kilowatt Savings is \%g kW\
     n',TAS)
39 printf('d) The Additional savings in the system
      kilovoltampere capacity is %g kVA\n',Cd(3))
  printf('e) The Additional Capacitors required are %g
      kVAr \setminus n, Cd (4))
41 printf('f) The Annual Savings in demand reduction
      due to capacitors applied to distribution
      substation buses is approximately is %g dollars/
      year \ n', TASDR)
42 printf('g) The Annual Savings due to the additional
      released transmission capacity is %g dollars/year
      \n', TASTC)
43 printf('h) The Total Anuual Savings due to the
```

- energy loss reduction is %g dollars/year n', TASEL
- 44 printf('i) The Total Annual Cost of the additional capacitors is %g dollars/year\n', TACAC)
- 45 printf('j) The Total Annual Savings is %g dollars/year\n',Savings)
- 46 printf('k) No, Since the total net annual savings is not zero  $\setminus n$ ')

## Chapter 9

# Distribution System Voltage Regulation

Scilab code Exa 9.1 To Determine the parameters of the system regulation

```
//To Determine the parameters of the system
    regulation
//Page 468
clc;
clear;

//Base Value
Saphib=15; //in MVA
Vllst=69; //in kV
Vllp=13.2; //in kV
Vrrb=120;

Ztpu=%i*0.08; //Transformer impedance per unit length
VSTpuop=1.05*exp(%i*0); //Per Unit Maximum
    Subtransmission Voltage Off Peak
```



Figure 9.1: To Determine the parameters of the system regulation  ${\cal P}$ 

```
14 VSTpup=1.00*exp(%i*0); //Per Unit Maximum
      Subtransmission Voltage Peak
15 pftop=0.95; //Off Peak kilovoltageamperage power
      factor
16 Sop=0.25; //Off Peak kilovoltageamperage
17 pftp=0.85; //Off Peak kilovoltageamperage power
      factor
18 Sp=1.0; //Off Peak kilovoltageamperage
19 Regpu=5/(8*100); //Regulated percent volts for 32
      steps
20 K=3.88*(10^-6); //Drop Constant
21 S=4000; // Peak Load in kVA
22 l=10; //Length of the feeder
23 // Case A
24 \text{ Rset=0};
25 \text{ Xset=0};
26 \text{ Vpmax} = 1.0417;
27 \quad BW = 0.0083;
28 VRRpu = (Vpmax - BW); // Setting of VRR
29 VRR=(Vpmax-BW)*Vrrb;
30 // Case B
31 IPpuop=(Sop/VSTpuop)*exp(%i*acosd(pftop)*%pi/180);
      //No Load Primary Current at substation Off Peak
32 VPpuop = VSTpuop - (IPpuop * Ztpu); // Highest Allowable
      Primary Voltage Off Peak
33
  IPpup=(Sp/VSTpup)*exp(-1*%i*acosd(pftp)*%pi/180); //
      No Load Primary Current at substation Peak
34 VPpup = VSTpup - (IPpup * Ztpu); // Highest Allowable
      Primary Voltage Peak
35
   Step1=(abs(VPpuop)-VRRpu)/Regpu; //Off Peak Number
      Steps
  //To find the positive step value
37
   Step2=-1*(abs(VPpup)-VRRpu)/Regpu; // Peak Number
      Steps
39
40
41 // Case C
```

```
42 //At Peak Load Primary Voltages
43 MaxVpp=1.075; //Max
44 MinVpp=1.000; //Min
45
46 TVDpu=K*S*1/2; //Total Voltage Drop
47 MinVPpu=VRRpu-TVDpu;
48
49 //At Annual Peak Load Primary Voltages
50 APMaxVPpu=MaxVpp-BW; //Max
51 APMinVPpu=MinVpp+BW; //Min
52
53 //At no load Load Primary Voltages
54 NLMaxVPpu=Vpmax-BW; //Max
55 NLMinVPpu=APMinVPpu; //Min
56
57 printf('\na) The Setting of the VRR for the highest
      allowable primary voltage is %g V\n', VRR)
  printf('b) The Maximum Number of Steps of buck and
      boost for:\n')
59 printf('Off Peak : %g steps\n',ceil(Step1))
60 printf('Peak : \%g steps\n', ceil(Step2))
61 printf('c) At Annual Load, Significant Values on
      Voltage Curve\n')
62 printf('The Total Voltage Drop is %g pu V\n',TVDpu)
63 printf ('The Minimum Feeder Voltage at the end of the
       feeder is %g\n', MinVPpu)
64 printf ('The Minimum and Maximum Primary Voltages at
     Peak Load is \%g pu V and \%g pu V \setminus n', APMaxVPpu,
     APMinVPpu)
65 printf ('The Minimum and Maximum Primary Voltages at
     Peak Load is %g pu V and %g pu V\n', NLMaxVPpu,
     NLMinVPpu)
```

Scilab code Exa 9.2 To Determine the distance at which the regulator must be located

```
1 //To Determine the distance at which the regulator
      must be located
2 // Page 472
3 clc;
4 clear;
6 //Terms from previous example
7 TVDpu=0.0776; //Total Voltage Drop
8 VRRpu=1.035; //Setting Voltage of Regulator
9 l=10; //Length of the Feeder
10
11 //Primary voltages for various cases
12 VPpua=1.01;
13 VPpub=1.00;
14
15 s1=poly(0, 's1'); // Variable Value of Regulator
      length
16 //Function to find the equation for the regulator
      distance
17 deff('x=dist(y)', 'x=(s1*(2-(s1/1))/1)-((VRRpu-y)/
     TVDpu)')
18
19 // Different Cases
20 Xa=dist(VPpua);
21 Xb=dist(VPpub);
22
23 \text{ s1a=roots}(Xa);
24 if ((abs(1-s1a(1))+(1-s1a(1)))==0)
25
       s1a = s1a(2);
26 else
27
       s1a = s1a(1);
28 end
29
30 s1b=roots(Xb);
31 if ((abs(1-s1b(1))+(1-s1b(1)))==0)
32
       s1b = s1b(2);
33 else
       s1b = s1b(1);
34
```

```
35 end
36
37 printf('\na) The Regulator must be placed at %g
    miles from the start of the feeder\n',s1a)
38 printf('b) The Regulator must be placed at %g miles
    from the start of the feeder\n',s1b)
39 printf('c) The Advantage of a over b is that it can
    compensate for future growth\n')
```

Scilab code Exa 9.3 To Determine the Necessary minimum kilovoltampere size of the regulator

```
1 //To Determine the Necessary minimum kilovoltampere
     size of the regulator
2 // Page 473
3 clc;
4 clear;
6 l=10; //Length of the feeder
7 S3phi=4000; //Annual Peak Load in kVA
8 VPpu=1.01; //Primary Feeder Voltage
9 s1=1.75; // Distance of the Regulator
10 Rmax=10/100; //Regulation Percent
11
12 S=S3phi*(1-(s1/1)); //Uniformly Distributed three
     phase load
13 Sph=S/3; //Single Phase Load
14
15 Sreg=Rmax*Sph; //Regulated Size
16
17 printf('\nThe Calculated Circuit Kilovoltampere Size
      is %g kVA, \nAnd The corresponding Minimum
     kilovoltampere size of the regulator size can be
```

Table 9-3 Some typical single-phase regulator sizes

| Single-phase |       |      |          |                  |
|--------------|-------|------|----------|------------------|
| kVA<br>——    | Volts | Amps | $CT_P^*$ | $PT_N^{\dagger}$ |
| 25           | 2500  | 100  | 100      | 20               |
| •            | (3)   | :    | :        | :                |
| 125          | 2500  | 500  | 500      | 20               |
| 38.1         | 7620  | 50   | 50       | 63.5             |
| 57.2         | 7620  | 75   | 75       | 63.5             |
| 76.2         | 7620  | 100  | 100      | 63.5             |
| 114.3        | 7620  | 150  | 150      | 63.5             |
| 167          | 7620  | 219  | 250      | 63,5             |
| 250          | 7620  | 328  | 400      | 63.5             |

<sup>\*</sup> Ratio of the current transformer contained within the regulator. (Here, the ratio is the high-voltage-side ampere rating because the low-voltage rating is 1.0 A.)

Figure 9.2: To Determine the Necessary minimum kilovoltampere size of the regulator

<sup>†</sup> Ratio of the potential transformer contained within the regulator. (All potential transformer secondaries are 120 V.)

### Scilab code Exa 9.4 To specify the best settings for regulation

```
1 //To specify the best settings for regulation
\frac{2}{\text{Page }} 474
3 clc;
4 clear;
6 s1=1.75; //As Found in Example 2
7 VRRpu=1.035; //As R and X are zero, the Settings
      turn out to produce this
9 //Parameters of Distribution
10 K=3.88*(10^-6);
11 S = 3300;
12 l=10; //length of the line
13
14 VDpu=K*S*(1-s1)/2; //Per unit voltage drop
15
16 VP=VRRpu-VDpu; //Primary Feeder Voltage
17
18 //We Obtain VDs = K*(S3-((S3*s)/1))s+K(S*s/1)s/2;
19 //We take various values of s and carry out the
      computation and hence form the table 9-4 given
      given in the result file
20
21
  //We Obtain from the voltage drop value for any give
       point s between the substation and the regulator
        station as
22
  //VDs=I(r.cos(theta)+del sin(theta))s*(1-(s/(2*1)))
23
24 //We finally Get VDs = 3.88 * (10^{\circ}-6) * (3300-(3300 s))
      /8.25) s + 3.88*(10^-6) *(3300 s /8.25) *s/2
25
```

| Table | 9-5 | For | annual | peak |
|-------|-----|-----|--------|------|
| load  |     |     |        |      |

| s,   | VD,    | $V_{P, pu}$ . |
|------|--------|---------------|
| mi   | pu V   | pu V          |
| 0.00 | 0.00   | 1.0337        |
| 0.75 | 0.0092 | 1.0245        |
| 2.25 | 0.0157 | 1.0088        |
| 4.25 | 0.0155 | 0.9933        |
| 6.25 | 0.0093 | 0.9840        |
| 8.25 | 0.0031 | 0.9809        |

27

Table 9-4 For annual peak load

| s,<br>mi | VD <sub>s</sub> ,<br>pu V | $V_{P, pu}$ , pu V |
|----------|---------------------------|--------------------|
| 0.0      | 0.0                       | 1.035              |
| 0.5      | 0.0076                    | 1.0274             |
| 0.1      | 0.0071                    | 1.0203             |
| 1.5      | 0.0068                    | 1.0135             |
| 1.75     | 0.025                     | 1.010              |

Figure 9.3: To specify the best settings for regulation

- 26 //Again for different values of s we get the table 9-5
- 28 printf('a)The Best Settings for LDC''s R and X, and for the  $VRR\n$ ')
- 29 printf('The best settings for LDC of the regulator are when settings for both R and X are zero and VRRpu = %g pu V\n', VRRpu)
- 30 printf('b) The Voltage Drop occuring in the feeder portion between the regulating point and the end of the feeder is %g pu V\n', VDpu)
- 31 printf('The Result Files give the Profiles and relevant information about the solution\n')



Figure 9-14 Feeder voltage profiles for zero load and for the annual peak load.

Figure 9.4: To specify the best settings for regulation



Figure 9-15 Voltage profiles.

Figure 9.5: To determine the setting of the regulator so that the voltage criteria is met

Scilab code Exa 9.5 To determine the setting of the regulator so that the voltage criteria is met

```
1 //To determine the setting of the regulator so that
      the voltage criteria is met
2 //Page 478
3 clc;
4 clear;
5 l=10; //Length of the feeder
6 \text{ s1=1.75};
7 \text{ ra} = 0.386;
8 \text{ xa} = 0.4809;
9 \text{ xd} = 0.1802;
10 xL=xa+xd;
11 Vb=120;
12 pf = 0.85; //Power Factor
13 S=1100; //Load in kVA
14 Vln=7.62; //line to neutral voltage in kV
15 Reff=ra*(1-s1)/2;
16 Xeff = xL*(1-s1)/2;
17
18 // Primary Ratings
19 CTp=150; //Current Tranformer
20 PTn=63.5; // POtential Transformer
21
22 //R Value of the dial
23 Rset=(CTp/PTn)*Reff;
24 Rsetpu=Rset/Vb;
25
26 //X value of the dial
27 Xset=(CTp/PTn)*Xeff;
28 Xsetpu=Xset/Vb;
29
30 VRP=1.0138; //Assumption Made on the Regulating
```

Scilab code Exa 9.6 To determine the number of steps of buck and boost the regulators will achieve

```
1 //To determine the number of steps of buck and boost
       the regulators will achieve
2 //Page 480
3 clc;
4 clear;
  //From Problems 4 and 5 the co-effcients are
      obtained
7 VRRpu=1.035;
8 Vreg4=1.0337;
9 Vreg5=1.0666;
10 VRP4=1.0337;
11 VRP5=1.0138;
12 Vmin=1.010; //For s= 1.75
13
14 //Steps
15 Buck4=(VRRpu-VRP4)/(0.00625);
16 Buck5 = (VRRpu - VRP5) / (0.00625);
```

```
17 Boost4=(Vreg4-Vmin)/(0.00625);
18 Boost5=(Vreg5-Vmin)/(0.00625);
19
20 printf('\na) The Number of steps of buck and number
    is steps of boost in example 9-4 is %g and %g
    respectively\n', Buck4, Boost4)
21 printf('\nb) The Number of steps of buck and number
    is steps of boost in example 9-5 is %g and %g
    respectively\n', Buck5, Boost5)
```

Scilab code Exa 9.8 To Determine the necessary settings of Regulators

```
1 //To Determine the necessary settings of Regulators
\frac{2}{\text{Page }} 482
3 clc;
4 clear;
6 1=3; //Length of the line
7 Vlc=2450; //Regulated Voltage
8 Vcp=12800; //Primary of customer transformer
9 //Base Values
10 Vlbp=2400; //Primary Bus Voltage of Customer's Bus(
     Low Voltage)
11 Vlbs=4160; //Secondary Bus Voltage of Customer's Bus
12 Sb=5000; //Power in kVA
13 r=0.3; //Line Resistance per mile
14 x=0.8; //Line Reactance per mile
15 Vhbp=7390; //Primary Bus Voltage of High Voltage Bus
16 Vhbs=12800; //Secondary Bus Voltage of High Voltage
     Bus
17 PTn=63.5; //Potential Transformer Turns Ratio
18 CTp=250; // Current Transformer Turns Ratio
19 VRP=Vlc/Vlbp; // Voltage at RP
20 Vll=Vhbs/1000; //Line Voltage
21 VBsec=Vcp/(sqrt(3)*PTn); //Secondary Reading of the
```

#### Customer Transformer

```
22
23 VRRset=VRP*VBsec; //Setting of the voltage-setting
      dial of VRR
24
25 Zb=(Vll^2)*1000/Sb; //Applicable Impedance Base
26 Ztpu=0.05*%i; // Transformer Impedance per unit
27 Zt=Ztpu*Zb; //Transformer Impedance
28
29 // Effective Resistances and Reactances
30 Reff=(r*1)+real(Zt);
31 Xeff = (x*1) + imag(Zt);
32
33 Rset=CTp*Reff/PTn; //X Dial Setting of LDCs
34 Xset=CTp*Xeff/PTn; //X Dial Setting of LDCs
35
36 printf('\na) The Necessary Setting of the voltage-
      setting dial of the VRR of each single phase
      regulator in use is \%g V n', VRRset)
37 printf('b) R and X dial settings of LDS is %g ohm
     and \%g ohm respectively \n', Rset, Xset)
```

Scilab code Exa 9.9 To Determine the Design Parameters of a Distributed System

```
1 //To Determine the Design Parameters of a
        Distributed System
2 //Page 484
3 clc;
4 clear;
5
6 VPpu=1.035; //Primary Feeder Voltage per unit
7 TVDpu=0.0776; //Total Voltage Drop of Feeder
```



Figure 9.6: To Determine the Design Parameters of a Distributed System

```
8 V11=13.2; //Line Voltage in kV
  Vlpuqsw=1; //New Voltage at the End of the Feeder due
      to Qsw at annual peak load
10 XL=0.661; //Inductive Reactance per mile
11 Pl=3400; //Real Power
12 Q1=2100; //Reactive Power
13 l=10; //Length of the Feeder in Miles
14 Lf = 0.4; //Load Factor
15 CR=0.27; //Total Capacitor Compensation Ratio For
      the Above Load Factor
16
  QNSW=CR*Q1; //Required Size of the Nonswitched
      capacitor bank
  s=2*1/3; //Loacation of Nonswitched capacitor bank
17
     for Optimum Result
  VRpu=QNSW*(2*XL*1/3)/(1000*(V11^2)); //Per Unit
18
      Voltage Rise
  VDspu=TVDpu*s*(2-(s/1))/1; //Voltage drop for the
      uniformaly distributed load
20
```

```
21 VSpu=VPpu-VDspu;//Feeder Voltage at 21/3 distance
22
23 nVSpu=VSpu+VRpu; //New Voltage Rise when there is a
      fixed capacitor bank
24
25
  Vlpu=VPpu-TVDpu; //When No Capcacitor bank is there,
      the voltage at the end of the feeder
26
27 nVlpu=Vlpu+VRpu; //When Capcacitor bank is there,
      the voltage at the end of the feeder
28 VRpuqsw=Vlpuqsw-nVlpu; //Required Voltage Rise
29
30 Q3phisw=1000*(V11^2)*VRpuqsw/(XL*1); //Required Size
      of the Capacitor Bank
31
32
  //Let us assume the 15 single phase standard 50 kVAr
      Capacitor Units = 750 kVAr
33
34 SQ3phisw=750; //Selected Capacitor Bank
35
36 RVRlpu=VRpuqsw*SQ3phisw/Q3phisw; //Resultant Voltage
      Rises at distance 1
  RVRspu=RVRlpu*s/1; //Resultant Voltage Rises at
37
      distance s
38
39 //At Peak Load when both the Non-Switched and
     Switched Capacitor Banks are on
40
41 PVspu=nVSpu+RVRspu; //Voltage at s
42 PVlpu=nVlpu+RVRlpu; //Voltage at 1
44 printf('\na) The NSW Capacitor Rating is %g kVAr,
     Which means 2 100kVAr Capacitor Banks per phase\n
      ', QNSW)
45 printf('\nb) Voltage Rise per unit is \%g pu V\n',
     VRpu)
46 printf('i) When the No Capacitor Bank is Installed \
     n ')
```

### Scilab code Exa 9.10 To Determine the proper 3 phase capacitor bank

```
1 //To Determine the proper 3 phase capacitor bank
2 //Page 488
3 \text{ clc};
4 clear;
6 V=12.8; // Voltage in kV
7 x1=0.8; //Reactance per unit length
8 1=3; //Distance of the line
9 Xl=xl*l; //Effective Reactance of the the Line
10 pf=0.8; //Initial Power Factor
11 pfn=0.88; //New Improved Power Factor
12 Qcu=150; //Capacity of each unit available
13 XT=1.6384; //Reactance of the transformer
14
15 S3phi=5000*\exp(\%i*\%pi*acosd(pf)/180); //Presently
      existing Load
16
  //For New Load Real part of the Load doesn't Change
17
18
```

```
19 QLnew=real(S3phi)*tand(acosd(pfn)); //The Required
     VAr
20
21 S3phinew = sqrt((real(S3phi)^2)+(QLnew^2)); /New
     Apparent Power
22
23 Qc=imag(S3phi)-QLnew; //Minimum Size of capacitor
     bank;
24
25 N=ceil(Qc/Qcu); //Number of Units Required
26 Qcn=N*Qcu; //Required VAr
27
28 XL=X1+XT; //Total Reactance
29
30 VRpu=Qcn*XL/(1000*(V^2)); //Voltage Rise Per unit
31
32 printf('\nThe The Voltage Rise found out is \%g pu V,
      which is greater than the voltage rise criterion
      .\nHence %g Capacitor units of %g kVAr must be
     installed \n', VRpu, N, Qcu)
```

Scilab code Exa $9.11\,$  To Determine the Voltage dip due to 10hp single phase motor

```
//To Determine the Voltage dip due to 10hp single
    phase motor
//Page 493
clc;
clear;

Skva=6.3*(10^3); //Starting kVA per HP of the Motor
HPmotor=10; //Power Rating
Vll=7.2*(10^3); //Line Voltage
J3phi=1438; //Fault Current
```

```
11 Sstart=Skva*HPmotor; //Starting kVA
12
13 VDIP=120*Sstart/(I3phi*V11); //Voltage Dip
14
15 printf('\na) The Voltage dip due to the motor start
    is %g V\n', VDIP)
16 printf('b) From the Permissible voltage flicker
    limit curve, The Voltage dip of 0.73 V\nwith a
    frequency of 15 times per hour is in the
    satisfactory flicker zone\n and therefore is not
    objectionable to the immediate customers\n')
```

Scilab code Exa 9.12 To determine the voltage dip due to the motor start for a 100 hp 3Phase Motor

```
1 //To determine the voltage dip due to the motor
      start for a 100 hp 3Phase Motor
2 //Page 495
3 clc;
4 clear;
6 Skva=5.6*(10<sup>3</sup>); //Starting kVA per HP of the Motor
7 HPmotor=100; //Power Rating
8 Vll=12.47*(10^3); //Line Voltage
9 I3phi=1765; //Fault Current
10
11 Sstart=Skva*HPmotor; //Starting kVA
12
13 VDIP=69.36*Sstart/(I3phi*Vll); //Voltage Dip
14
15 printf('\na) The Voltage dip due to the motor start
      is \%g\ V\n', VDIP)
16 printf('b) From the Permissible voltage flicker
     limit curve, The Voltage dip of 1.72 V\nwith a
     frequency of three times per hour is in the
```

satisfactory flicker zone\n and therefore is not objectionable to the immediate customers \n')

### Chapter 10

## Distribution System Protection

Scilab code Exa 10.1 To Determine the necessary realy and recloser coordination

```
1 //To Determine the necessary realy and recloser
     coordination
2 //Page 542
3 clc;
4 clear;
6 //For Recloser
7 InstT=0.03; //From Curve A //Instaneous Time
8 TimeD=0.17; //From Curve B //Time Delay
9 //For Relay
10 PickU=0.42; //From Curve C //Pick Up
11 Reset=(1/10)*60; //Assuming a 60 s reset time for
     the relay with number 10 time dial setting
12 RecloserOT=1; //Assumed Recloser Open Time
13
14 RelayCTI=InstT/PickU; //Relay Closing Travel during
     instantaneous operation
15 RelayRTI=(-1)*RecloserOT/Reset; //Relay Reset Travel
      during instantaneuos
16
```

```
17 RelayCTD=TimeD/PickU;
18 RelayRTD=(-1)*RecloserOT/Reset; //Relay Reset Travel
       during trip
19 NetRelayTravel=RelayCTD-RelayRTD;
20
21 printf('\nDuring Instantaneous Operation\n')
22 printf('|Relay Closing Travel| < |Relay Rest Travel
      |\n')
23 printf('|\%g percent| < |\%g percent| \setminus n', RelayCTI*100,
     RelayRTI*100)
24
25 printf('\nDuring the Delayed Tripping Operations\n')
26 printf('Total Relay Travel is from:\n')
27 printf('%g percent to %g percent to %g percent\n',
      RelayCTD *100, RelayRTD *100, RelayCTD *100)
28 printf('Since this Net Total Relay Travel is less
      than 100 percent, \nthe desired recloser to relay
       coordination is accomplished\n')
```

 $\bf Scilab\ code\ Exa\ 10.2\ To\ Determine\ the\ Fault\ parameters\ of\ Rural\ Substation$ 

```
//To Determine the Fault parameters of Rural
Substation
//Page 555
clc;
clear;

Vln=7200; //Line to Neutral Voltage
Vll=12470; //Line to Line Voltage
Zlsys=0.7199+(%i*3.4619); //system impedance to the regulated 12.47kV bus
Ground
Claim Company of the Fault from the substation
```

```
11 //From Table 10-7; Various Paramters Can Be found
     out
12 z0a=0.1122+(\%i*0.4789);
13 z011 = (-0.0385 - (\%i * 0.0996));
14 z1=0.0580+(\%i*0.1208);
15 C=5.28; //Cable constant
16
17 ZOckt=2*(z0a+z011)*C; //Zero Sequence Impedance
18 Z1ckt=2*z1*C; //Positive Sequence Impedance
19 ZGckt=((2*Z1ckt)+Z0ckt)/3; //Impedance to ground of
      line
20 //Note That the calculation of the above term is
     wrong in the text book
21
22 Z1=Z1sys+Z1ckt; //Total Positive Sequence
23 ZG=ZGsys+ZGckt; //Total impedance to ground
24
25 If3phi=Vln/abs(Z1); //Three Phase Fault at point 10
26 IfLL=0.866*If3phi; //Line to Line Fault at point 10
27 IfLG=Vln/(abs(ZG)); //Single Line to Ground Fault
28
29 printf('\na) The Zero and Postive sequence impedance
       of the line to point 10 are:\n')
30 disp(ZOckt)
31 disp(Z1ckt)
32 printf('b) The impedance to ground of the line to
     point 10 \ n')
33 disp(ZGckt)
34 printf('c) The Total positive sequence impedance
      including system impedance is \n')
35 disp(Z1)
36 printf('d) The Total Impedance to ground to point 10
       including system impedance is \n')
37 disp(ZG)
38 printf('All the Above impedances are in ohm\n')
39 printf('e) The Three phase fault current at point 10
       is \%g A \ n', If3phi)
40 printf('f) The line to line fault current at point
```

**Table 10-13** 

| Bus | Fault   | Maximum generation |       | Minimum generation |       |
|-----|---------|--------------------|-------|--------------------|-------|
|     |         | A                  | MVA   | A                  | MVA   |
| 1   | $3\phi$ | 4922               | 588.2 | 3012.3             | 360   |
|     | L - L   | 4266.5             | 294.1 | 2608.7             | 180.2 |
|     | L-G     | 7383               | 294.1 | 4482.5             | 178.6 |
| 2   | $3\phi$ | 3149.6             | 68.0  | 2930.3             | 63.29 |
|     | L - L   | 2727.6             | 34.0  | 2537.7             | 36.6  |
|     | L-G     | 3275.9             | 23.6  | 3114.3             | 23.42 |

Figure 10.1: To Determine system parameters for various stabilities

```
10 is %g A\n', IfLL)
41 printf('g) The Line to Ground Current at point 10 is %g A\n', IfLG)
```

Scilab code Exa 10.3 To Determine system parameters for various stabilities

```
5 St=5*(10<sup>6</sup>); //Capacity of Transformer
6 Zt=%i*0.065; //Transformer Reactance
7 SB3phi=1*(10^6); //3 Phase Power Base
8 VBLL=69*(10^3); //Line to line voltage
9 VBLLn=12.47*(10^3); //Line To line voltage
10 Vf=1; //Per Unit Value of Voltage
11 Zb=(VBLL^2)/SB3phi; //Base Impedance
12
13 //Zckt and Zf and Zt are Zero for Bus 1
14 //Zckt and Zf are Zero for Bus 2
15 //Power Generation of the system
16 SMax = 600*(10^6); //Maximum
17 SMin=360*(10^6); //Minimum
18
19 Xt=0.065; //Transformer Reactance in per unit
20 MZsysmax=(VBLL^2)/SMax; //System Impedance at
     Maximum Power Generation
21 Ib=SB3phi/(sqrt(3)*VBLL); //Base Current
22 Zsysmaxpu=MZsysmax*\exp(\%i*\%pi*90/180)/Zb; //System
     Impedance Phasor
23 //Three Phase Fault Current
24 If3phimaxpu1=abs(Vf/(Zsysmaxpu));
25 If3phimax1=If3phimaxpu1*Ib;
26 Sf3phimax1=sqrt(3)*VBLL*If3phimax1/1000000;
27
28 //Line to Line Fault Current
29 IfLLmax1=0.866*If3phimax1;
30 SfLLmax1=VBLL*IfLLmax1/1000000;
31
32 //Line to Ground Fault
33 IfLGmaxpu1=abs(3*Vf/((2*Zsysmaxpu)));
34 IfLGmax1=IfLGmaxpu1*Ib;
35 SfLGmax1=VBLL*IfLGmax1/(1000000*sqrt(3));
36
37 Stn=SB3phi; //Numreical Value is Equal
38 Ztn=Zt*(Stn/St); //New Per Unit Transformer
     Reactance
39 //New Base Values
```

```
40 Zbn=(VBLLn^2)/SB3phi;
41 Ibn=Stn/(sqrt(3)*VBLLn);
42
43 //Three Phase Fault Current
44 If3phimaxpu2=abs(Vf/(Zsysmaxpu+Ztn));
45 If3phimax2=If3phimaxpu2*Ibn;
46 Sf3phimax2=sqrt(3)*VBLLn*If3phimax2/1000000;
47
48 //Line to Line Fault Current
49 IfLLmax2=0.866*If3phimax2;
50 SfLLmax2=VBLLn*IfLLmax2/1000000;
51
52 //Line to Ground Fault
If LGmaxpu2=abs(3*Vf/((2*Zsysmaxpu)+(3*Ztn)));
54 IfLGmax2=IfLGmaxpu2*Ibn;
55 SfLGmax2=VBLLn*IfLGmax2/(1000000*sqrt(3));
56
57 //Minimum Power Generation
58 MZsysmin=(VBLL^2)/SMin; //System Impedance at
     Maximum Power Generation
59 Ib=SB3phi/(sqrt(3)*VBLL); //Base Current
60 Zsysminpu=MZsysmin*exp(%i*%pi*90/180)/Zb; //System
     Impedance Phasor
61 //Three Phase Fault Current
62 If3phiminpu1=abs(Vf/(Zsysminpu));
63 If3phimin1=If3phiminpu1*Ib;
64 Sf3phimin1=sqrt(3)*VBLL*If3phimin1/1000000;
65
66 //Line to Line Fault Current
68 SfLLmin1=VBLL*IfLLmin1/1000000;
69
70 //Line to Ground Fault
71 IfLGminpu1=abs(3*Vf/((2*Zsysminpu)));
72 IfLGmin1=IfLGminpu1*Ib;
73 SfLGmin1=VBLL*IfLGmin1/(1000000*sqrt(3));
74
75 Stn=SB3phi; //Numreical Value is Equal
```

```
76 Ztn=Zt*(Stn/St); //New Per Unit Transformer
      Reactance
77 //New Base Values
78 Zbn=(VBLLn^2)/SB3phi;
79 Ibn=Stn/(sqrt(3)*VBLLn);
80
81 //Three Phase Fault Current
82 If3phiminpu2=abs(Vf/(Zsysminpu+Ztn));
83 If3phimin2=If3phiminpu2*Ibn;
84 Sf3phimin2=sqrt(3)*VBLLn*If3phimin2/1000000;
85
86 //Line to Line Fault Current
87 IfLLmin2=0.866*If3phimin2;
88 SfLLmin2=VBLLn*IfLLmin2/1000000;
89
90 //Line to Ground Fault
91 IfLGminpu2=abs(3*Vf/((2*Zsysminpu)+(3*Ztn)));
92 IfLGmin2=IfLGminpu2*Ibn;
93 SfLGmin2=VBLLn*IfLGmin2/(1000000*sqrt(3));
94
95 printf('\na) For Maximum Power Generation:\n')
96 printf ('Bus 1 n')
97 printf('3 phase fault current is \%g A and \%g MVA\n',
      If3phimax1,Sf3phimax1)
98 printf ('Line to Line fault current is %g A and %g
      MVA\n', IfLLmax1, SfLLmax1)
   printf ('Line to ground fault current is %g A and %g
      MVA\n', IfLGmax1, SfLGmax1)
100 printf ('Bus 2 n')
101 printf('3 phase fault current is %g A and %g MVA\n',
      If3phimax2,Sf3phimax2)
102 printf ('Line to Line fault current is %g A and %g
      MVA \ n', IfLLmax2, SfLLmax2)
103 printf ('Line to ground fault current is \%g A and \%g
      MVA\n', IfLGmax2, SfLGmax2)
104 printf('\nb) For Minimum Power Generation:\n')
105 printf ('Bus 1 \setminus n')
106 printf('3 phase fault current is %g A and %g MVA\n',
```

```
If 3phimin 1, Sf 3phimin 1)

107 printf ('Line to Line fault current is %g A and %g MVA\n', If LLmin 1, Sf LLmin 1)

108 printf ('Line to ground fault current is %g A and %g MVA\n', If LGmin 1, Sf LGmin 1)

109 printf ('Bus 2\n')

110 printf ('3 phase fault current is %g A and %g MVA\n', If 3phimin 2, Sf 3phimin 2)

111 printf ('Line to Line fault current is %g A and %g MVA\n', If LLmin 2, Sf LLmin 2)

112 printf ('Line to ground fault current is %g A and %g MVA\n', If LGmin 2, Sf LGmin 2)

113

114 // Note that 0.0016666666666 is not rounded as 0.0017

115 // Hence you find all the answers close by
```

### Scilab code Exa 10.4 To Determine the sequence impedance values

```
1 //To Determine the sequence impedance values
2 //Page 572
3 clc;
4 clear;
6 // Percent Impedances of the substation transformer
7 Rtp=1;
8 \text{ Ztp=7};
9 Xtp=sqrt((Ztp^2)-(Rtp^2));
10 Ztpu=Rtp+(%i*Xtp); //Transformer Impedance
11 Vll=12.47; //Line to Line voltage in kV
12 Vln=7.2; //Line to Neutral Voltage
13 V=240; //Secondary Voltage
14 St=7500; //Rating of the transformer in kVA
15 Sts=100; //Rating of Secondary Transformer
16 Ztp=Ztpu*((Vll^2)*10/St);
17 SSC = complex(.466, 0.0293);
```

```
18 //From Table 10-7
19 Z1=0.0870+(\%i*0.1812);
20 \quad Z0 = complex(0.1653, 0.4878);
21
22 \quad ZG = ((2*Z1)+Z0)/3; //Impedance to Ground
23
24 Zsys=0; //Assumption Made
25 Zeq=Zsys+Ztp+ZG; //Equivalent Impedance of the
      Primary
26
27 PZ2=Zeq*((V/(Vln*1000))^2); //Primary Impedance
      reffered to secondary
28
29 // Distribution Tranformer Parameters
30 \text{ Rts} = 1;
31 \text{ Zts} = 1.9;
32 Xts=sqrt((Zts^2)-(Rts^2));
33 Ztspu=complex(Rts, Xts);
34
35 Zts=Ztspu*((V/1000)^2)*10/Sts; // Distribution
      Transformer Reactance
36
37 Z1SL=(60/1000)*SSC; //Impedance for 60 feet
38
39 Zeq1=PZ2+Zts+Z1SL; //Total Impedance to the fault in
       secondary
40
  IfLL=V/abs(Zeq1); //Fault Current At the secondary
41
      fault point F
42
43
44
45 printf('\na) The Impedance of the substation in ohms
      \n')
46 disp(Ztp)
47 printf('b) The Positive And Zero Sequence Impedances
           ohms\n')
       in
48 disp(Z1)
```

```
49 disp(Z0)
50 printf('c) The Line to Ground impedance in the
      primary system in ohms\n')
51 \text{ disp}(ZG)
52 printf('d) The Total Impedance through the primary
      in ohms\n')
53 disp(Zeq)
54 printf('e) The Total Primary Impedance referred to
      the secondary in ohms\n')
55 disp(PZ2)
56 printf('f) The Distribution transformer impedance in
      ohms\n')
57 disp(Zts)
58 printf('g) the Impedance of the secondary cable in
     ohms n'
59 disp(Z1SL)
60 printf('h) The Total Impedance to the fault in ohms\
     n ')
61 disp(Zeq1)
62 printf('i) The Single Phase line to line fault for
      the 120/240 V three-wire service in amperes is \%g
      A \setminus n', IfLL)
```

### Chapter 11

## Distribution System Reliability

Scilab code Exa 11.1 To Determine the Approximate value of the component reliability

Scilab code Exa 11.2 To Determine the fault components of the system

```
1 //To Determine the fault components of the system
```

```
\frac{2}{\text{Page }} 606
3 clc;
4 clear;
5 L=4; //Total Length of the cable
6 Lov=3; //Length of Overhead Cable
7 Lu=L-Lov; //Length of Underground Cable
8 Nct=2; //Number of circuit terminations
9 T=10; //No of years for which the record is shown
10
11 Fov=2; // Faults Per Mile of the Over Head Cable
12 Fu=1; //Faults Per Mile of The Underground cable
14 Ct=0.3/100// Cable Termination Fault Rate
15
16 //Repair Time
17 Tov=3; //Over Head
18 Tu=28; //Underground
19 Tct=3; //Cable Termination
20
21 lamdaFDR= (Lov*Fov/T)+(Lu*Fu/T)+(2*Ct); //Total
     Annual Fault Rate
22
23 rFDR=((Tov*Lov*Fov/T)+(Tu*Lu*Fu/T)+(2*Ct*Tct))/
     lamdaFDR; //Annual Fault Restoration Time
24
25 mFDR=8760-rFDR; //Annual Mean Time of Failure
26
27 UFDR=rFDR*100/(rFDR+mFDR); //Unavailability of
     Feeder
28 AFDR=100-UFDR; // Availability of Feeder
29
30 printf('a) The Total Annual Fault Rate is %g faults
     per year\n',lamdaFDR)
31 printf('b) The Annual Fault Restoration Time is %g
     hours per fault per year\n',rFDR)
32 printf('c) Unavailability of the feeder is %g
      percent \n', UFDR)
33 printf('d) Availability of the feeder is %g percent\
```

Scilab code Exa 11.3 To Determine the Annual Fault properties for A B C Customers

```
1 //To Determine the Annual Fault properties for A B C
       Customers
2 // Page 608
3 clc;
4 clear;
6 //Annual average Fault rates
7 \text{ Fm} = 0.08;
8 F1=0.2;
9
10
11 //Average Repair Times
12 Rm = 3.5; //Main
13 Rl=1.5; //Lateral
14 Rs=0.75; // Manual Sections
15
16 // Distances of the Lateral Feeders of A,B, and C
      respectively
17 Lla=2;
18 Llb=1.5;
19 Llc=1.5;
20
21
  // Distances of the Main Feeders of A,B, and C
      respectively
22 \quad Lma=1;
23 Lmb=1;
24 \text{ Lmc}=1;
25
  TFm=(Lma*Fm)+(Lmc*Fm)+(Lmb*Fm); //Annual Fault of
      the Main Sections
```

```
27
28 deff('x=SusInt(y)', 'x=TFm+(Fl*y)') //Function to
      find the Total Annual Sustained Interruption
      rates
29
30 //Sustained Interruption Rates for A,B and C
31 IrA=SusInt(Lla);
32 IrB=SusInt(Llb);
33 IrC=SusInt(Llc);
34
35 //Annual Repair time for A,B and C
36 \text{ rA} = ((\text{Lma*Fm*Rm}) + (\text{Lmb*Fm*Rs}) + (\text{Lmc*Fm*Rs}) + (\text{Lla*F1*R1}))
      /IrA;
37 \text{ rB}=((Lma*Fm*Rm)+(Lmb*Fm*Rm)+(Lmc*Fm*Rs)+(Llb*F1*R1))
38 \text{ rC} = ((\text{Lma*Fm*Rm}) + (\text{Lmb*Fm*Rm}) + (\text{Lmc*Fm*Rm}) + (\text{Llc*F1*R1}))
      /IrC;
39
40 printf('\ni) The Annual Sustained Interruption Rates
       for: \n')
41 printf('Customer A : %g faults per year\n', IrA)
42 printf ('Customer B : \%g faults per year \n', IrB)
43 printf ('Customer C: %g faults per year\n', IrC)
44 printf('\nii) The Average Annual Repair Time (
      Restoration Time) for:\n')
45 printf('Customer A: %g hours per fault per year\n',
46 printf('Customer A: %g hours per fault per year\n',
47 printf('Customer A: %g hours per fault per year\n',
      rC)
```

Scilab code Exa 11.4 To Determine the Equivalent System Reliability of Each configuration

```
1 //To Determine the Equivalent System Reliability of
      Each configuration
2 // Page 612
3 clc;
4 clear;
6 Ri = 0.85;
  deff('x=relp(y,z)', 'x=1-((1-(Ri^y))^z)')/Equal
      Parallel Combination
9
10 deff('x=rels(y,z)','x=(1-((1-Ri)^y))^z') //Equal
      Series Combination
11
12 //Case 1: 4 elements in series
13
14 Req1= rels(1,4);
15
  //Case 2: Two Comination of 4 elements in series,
16
      parallel to each other
17
18 Req2=relp(4,2);
19
20 //Case 3 : ((two elements in series)//(two elements
      in series)) in series with ((two elements in
      series)//(two elements in series))
21
22 //Two Segments
23 R1 = relp(2,2);
24 R2 = relp(2,2);
25 \text{ Req3} = \text{R1} * \text{R2};
26
27 //Case 4: (two elements in parallel) in series with
      ((three elements in series)//(three elements in
      series))
28
29 //Two Segments
30 R1 = relp(1,2);
```

```
R2=relp(3,2);
Req4=R1*R2;

// Case 5, 4 groups of (2 elements in parallel)
connected in series to each other

Req5=rels(2,4);

rintf('The Equivalent System reliability for:\n')

rintf('a) Configuration A: %g\n', Req1)

rintf('b) Configuration B: %g\n', Req2)

rintf('c) Configuration C: %g\n', Req3)

rintf('d) Configuration D: %g\n', Req4)

rintf('e) Configuration E: %g\n', Req5)
```

Scilab code Exa 11.5 To Design the system to meet the given Equivalent System Reliability

```
1 //To Design the system to meet the given Equivalent
      System Reliability
2 //Page 614
3 clc;
4 clear;
6 //Individual System Reliabilities
7 \text{ Ra} = 0.8;
8 \text{ Rb} = 0.95;
9 \text{ Rc} = 0.99;
10 \text{ Rd} = 0.90;
11 Re=0.65;
12
13 //When All Are Connected in Series
14
15 Req=Ra*Rb*Rc*Rd*Re; // Equivalent System Reliability
16
17 Rr=0.8; //Required
```

```
18
19 Rae=Rr/(Rb*Rc*Rd);
20
  //Since Connecting the elements in parallel will
21
      increase their reliability
22 deff('x=rel(Ri,y,)', 'x=(1-((1-Ri)^y))') //Equal Only
       Parallel Combination
23
  //Since Connecting the elements in parallel will
      increase their reliability
  // Conditions to Find The Number of Elements to be
      used
26
  for i= 1:10
27
       L=i; //Number of Time Element A is used
28
       R1=rel(Ra,i);
29
       X=R1-Rae;
30
       if(abs(X)+X==0)
31
           continue;
32
       else
33
           break;
34
       end
35 end
36
37
  for i= 1:10
38
       M=i; // Number of Time Element E is used
39
       R2=rel(Re,i);
40
       X=R2-Rae;
       if(abs(X)+X==0)
41
42
            continue;
43
       else
44
           break;
45
       end
46
  end
47
  printf('a) The Equivalent system Reliability is %g\n
      ', Req)
49 printf('b) One Each of B,C and D all connected in
      series are connected in series\nwith the series
```

combination of X(Comination of %g elements of A, All Connected in Parallel)\nand Y(Comination of %g elements of E, All Connected in Parallel) to achieve \n%g Equivalent System Realibility\n',L,M,Rr)

Scilab code Exa 11.6 To Find The Probability on the reliability of transformers

```
1 //To Find The Probability on the reliability of
      transformers
\frac{2}{\text{Page }} 614
3 clc;
4 clear;
6 // Reliabilities of The Three Transformers
7 \text{ Pa} = 0.9;
8 \text{ Pb=0.95};
9 \text{ Pc} = 0.99;
10
11 // Faliures of Three Transformers
12 \quad Qa=1-Pa;
13 Qb=1-Pb;
14 Qc=1-Pc;
15
16 // Probability of NO Transformer Failing
17 Pnf=Pa*Pb*Pc;
18
19 PfA=Qa*Pb*Pc//Probability of Transformer A Failing
20 PfB=Pa*Qb*Pc//Probability of Transformer B Failing
21 PfC=Pa*Pb*Qc//Probability of Transformer C Failing
22
23 PfAB=Qa*Qb*Pc//Probability of Transformer A and B
      Failing
24 PfBC=Pa*Qb*Qc//Probability of Transformer B and C
```

```
Failing
25 PfCA=Qa*Pb*Qc//Probability of Transformer C and A
      Failing
26
27 Pf=Qa*Qb*Qc; //Probability of All Transformers
      failing
28
  printf('\na) Probability of No Transformer Failing
      is \%g \setminus n', Pnf)
30 printf(' \ nb) \ n')
31 printf ('Probability of Transformer A Failing is %g\n
      ', PfA)
32 printf ('Probability of Transformer B Failing is \%g\n
      ', PfB)
33 printf('Probability of Transformer C Failing is %g\n
      ',PfC)
34 printf(' \setminus nc) \setminus n')
35 printf ('Probability of Transformers A and B Failing
      is \%g \setminus n', PfAB)
36 printf ('Probability of Transformers B and C Failing
      is \%g \setminus n', PfBC)
37 printf ('Probability of Transformers C and A Failing
      is \%g \setminus n, PfCA)
38 printf('\nd) Probability of All Three Transformers
      Failing is %g\n',Pf)
```

Scilab code Exa 11.7 To Determine Probabilities Using Markovian Principle

```
1 //To Determine Probabilities Using Markovian
        Principle
2 //Page 619
3 clc;
```

# Transition diagram.



Figure 11.1: To Determine Probabilities Using Markovian Principle

```
4 clear;
6 // Conditional Probabilites Present Future
7 Pdd=2/100; //Down Down
8 Pud=5/100; //Up Down
9 Pdu=1-Pdd; //Down up
10 Puu=1-Pud; //\text{Up} Up
11
12 P=[Pdd, Pdu; Pud, Puu]; //Transition Matrix
14 printf('\na) The Conditional Probabilites for \n')
15 printf('Transformers Down in Present and Down in
      Future is \%g\n', Pdd)
16 printf ('Transformers Down in Present and Up in
      Future is \%g\n', Pdd)
17 printf ('Transformers Up in Present and Down in
      Future is \%g\n', Pdd)
18 printf('Transformers Up in Present and Up in Future
      is \%g \ n', Pdd)
19 printf('\nb) The Transition Matrix is\n')
20 disp(P)
21 printf('\nc) The Transition Diagram can be viewed
      with the result file attached to this code\n')
```

#### Scilab code Exa 11.8 To Determine the Conditional Outage Probabilities

```
1 //To Determine the Conditional Outage Probabilites
2 //Page 620
3 clc;
4 clear;
5
6 //Conditional Outage Probabilites From The Table
    Given
```

## Transition diagram.



Figure 11.2: To Determine the Conditional Outage Probabilites

```
7 P11=40/100;
8 P12=30/100;
9 P13=30/100;
10 P21 = 20/100;
11 P22=50/100;
12 P23 = 30/100;
13 P31=25/100;
14 \quad P32 = 25/100;
15 P33=50/100;
16
17 // Transition Matrix
18 P=[P11,P12,P13;P21,P22,P23;P31,P32,P33];
19
20 printf("\na) The Conditional Outage Probabilites for
      :\n")
21 printf("Presently Outaged Feeder is 1, Next Outaged
      Feeder is 1 is %g\n", P11)
22 printf ("Presently Outaged Feeder is 1, Next Outaged
      Feeder is 2 is \%g\n", P12)
23 printf ("Presently Outaged Feeder is 1, Next Outaged
      Feeder is 3 is \%g\n",P13)
24 printf ("Presently Outaged Feeder is 2, Next Outaged
      Feeder is 1 is \%g\n", P21)
25 printf("Presently Outaged Feeder is 2, Next Outaged
      Feeder is 2 is %g\n", P22)
  printf("Presently Outaged Feeder is 2, Next Outaged
      Feeder is 3 is \%g\n", P23)
27 printf ("Presently Outaged Feeder is 3, Next Outaged
      Feeder is 1 is %g\n",P31)
28 printf("Presently Outaged Feeder is 3, Next Outaged
      Feeder is 2 is \%g\n", P32)
  printf ("Presently Outaged Feeder is 3, Next Outaged
      Feeder is 3 is %g\n", P33)
30 printf("\nb) Transition Matrix is \n")
32 printf("\nc) The Transition figure is displayed in
      the result file attached to this code\n")
```

Scilab code Exa 11.9 To Determine the vector of state probabilities at a specific time

```
1 //To Determine the vector of state probabilities at
     a specific time
\frac{2}{\text{Page }} 624
3 clc;
4 clear;
6 P=[0.6,0.4;0.3,0.7]; //One Step Transition Matrix
8 Po=[0.8,0.2]; //Initial State Probability Vector
10 //Funtion to determine the Vector of State
      Probability
11 deff('x=VSP(y)', 'x=(Po*(P^y))')
12
13 P1=VSP(1); //Vector of State Probability at Time t1
14 P4=VSP(4); //Vector of State Probability at Time t4
15 P8=VSP(8); //Vector of State Probability at Time t8
16
  printf('\na) The Vector of State Probability at time
      t1 is n'
18 disp(P1)
19 printf('\na) The Vector of State Probability at time
       t4 is n'
20 disp(P4)
21 printf('\na) The Vector of State Probability at time
      t8 is\n')
22 disp(P8)
```