4.4.11 Suppose g is defined on all of \mathbb{R} . Show that g is continuous if and only if $g^{-1}(O)$ is open whenever $O \subseteq \mathbb{R}$ is an open set.

- Suppose g is continuous, O is an open set. If $g^{-1}(O)$ is empty then it vacuously open, so assume $g^{-1}(O)$ is non-empty. Let $x \in g^{-1}(O)$. Therefore $f(x) \in O$. Thus by the definition of an open set there exists $\epsilon > 0$ such that $V_{\epsilon}(f(x)) \subseteq O$. Since g is continuous then there exists $\delta > 0$ such that for all $y \in V_{\delta}(x)$ implies $f(y) \in V_{\epsilon}(f(x))$. Since every f(y) is contained within O, then $V_{\delta}(x) \subset g^{-1}(O)$. Therefore $g^{-1}(O)$ is open.
- \Leftarrow Assume if $O \subseteq \mathbb{R}$ and O is open implies $g^{-1}(O)$ is open. We must show that g is continuous. Let $c \in g(O), \epsilon > 0$. Since $V_{\epsilon}(c)$ is open then by our initial assumption $g^{-1}(V_{\epsilon}(c))$ is open as well. Since c is defined to be in the image g(O) then there exists $x \in \mathbb{R}$ such that c = f(x). Since $g^{-1}(V_{\epsilon}(c))$ is open then there exists $\delta > 0$ such that $V_{\delta}(x) \subseteq g^{-1}(V_{\epsilon}(c))$. Since $V_{\delta}(x)$ is a subset of $g^{-1}(V_{\epsilon}(c))$ then by the definition of $g^{-1}(V_{\epsilon}(c)), y \in V_{\delta}(x)$ implies $f(y) \in V_{\epsilon}(c)$. Therefore g is continuous.