Mclauren Series

f(x)
$$x = f(k)(k) = f(k)($$

Examples (A)
$$f(x) = e^{x}$$

Step 1 Find $f^{(k)}(x)$
 $f'(x) = (e^{x})' = e^{x}$
 $f''(x) = e^{x}$
 $f''(x) = e^{x}$

$$f^{(k)}(x) = e^{x}$$

$$Step 2 \quad find \quad f^{(k)}(0)$$

$$f^{(k)}(x) = e^{0} = 1$$

$$Step 3 \quad Plug \quad into \quad the \quad formula$$

$$\sum_{k=0}^{\infty} f^{(k)}(0) \frac{x^{k}}{k!} = \sum_{k=0}^{\infty} 1 \cdot \frac{x^{k}}{k!} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

(B)
$$f(x) = e^{-x}$$

Step I Find $f^{(k)}(x)$
 $f(x) = e^{-x} (-x)' = e^{-x} (-1) = -e^{x}$
Chain rule (on $g(x) = -x$ and $e^{g} = e^{-x}$)
 $f''(x) = (-e^{-x})' = (-1)(e^{-x})' = (-1)(-e^{-x}) = e^{-x}$
 $f'''(x) = (e^{-x})''' = (e^{-x})' = -e^{-x}$

previous step previous step $f^{(4)}(x) = e^{-x}$ $f^{(5)}(x) = -e^{-x}$ \vdots $f^{(k)}(x) = (-1)^k e^{-x}$ (you can check $(-1)^0 = 1$, $(-1)^1 = -1$, $(-1)^2 = 1$, $(-1)^3 = -1$, ...)

Step 2 Find $f^{(k)}(0)$ $f^{(k)}(0) = (-1)^k e^{-0} = (-1)^k$ Step 3. Plug into the formula $x \in f^{(k)}(0)$ $x \in f^{(k)}($

Step 1 Find $f^{(k)}(x)$ $f(x) = \frac{1}{1-x} = (1-x)^{-1}$ $f'(x) = ((1-x)^{-1})' = (-1)(1-x)^{-2}(0-1)$ $= (1-x)^{-2}$ (chain rule on a(x) = 1-x, $b(x) = x^{-1}$ So b(a(x))' = b'(a(x)) a'(x) $= (-1) a(x)^{-2}(0-1)$ $= (-1) (1-x)^{-2}(-1)$ $= (1-x)^{-2}$ $f''(x) = ((1-x)^{-2})'$ $= (2(1-x)^{-3})'$ $= (2(1-x)^{-3})'$ $= (2(1-x)^{-3})'$

$$f^{(4)}(x) = (6(1-x)^{-4})^{-4}$$

$$= 6 \cdot (-4) \cdot (1-x)^{-5} \cdot (-1)$$

$$= 24 \cdot (1-x)^{-5}$$

$$f^{(5)}(x) = |20(1-x)^{-6}$$

$$f^{(6)}(x) = 720 \cdot (1-x)^{-7}$$

$$\vdots$$

$$f^{(6)}(x) = k! \cdot (1-x)^{-k-1}$$
Step 2 Find $f^{(6)}(0)$

$$f^{(6)}(0) = k! \cdot (1-0)^{-k-1} = k! \cdot (1)^{-k-1} = k!$$
Step 3
$$k! \quad \frac{x^{k}}{k!} = \sum_{k=0}^{\infty} x^{k}$$

$$k = 0 \quad \frac{x^{k}}{k!} = \sum_{k=0}^{\infty} x^{k}$$

$$k = 0 \quad \frac{x^{k}}{k!} = \sum_{k=0}^{\infty} x^{k}$$

$$k! \quad x^{k} = \sum_{k=0}^{\infty} x^{k}$$

$$f^{(6)}(x) = \sin(x)$$

$$f^{(6)}(x) = \cos(x)$$

$$\vdots$$

$$f^{(k)}(0) = \begin{cases} 0 & k = 0, 2, 4, \cdots \\ 1 & k = 1, 5, 9, \cdots \\ -1 & k = 3, 7, 11, \cdots \end{cases}$$

$$f'(x) = (x+1)^{-1}$$

 $f''(x) = -(x+1)^{-2}$ (compute
 $f'''(x) = 2(x+1)^{-3}$ similar to C)
 $f^{(4)}(x) = -6(x+1)^{-4}$
 $f^{(5)}(x) = 24(x+1)^{-5}$
 $f^{(6)}(x) = -120(x+1)^{-6}$

$$f^{(k)}(x) = \begin{cases} \lfloor n(x+1) & k=0 \\ (-1)^{k-1}(k-1)! (x+1)^{-k} & k \geqslant 1 \end{cases}$$

$$5+ep 2 \qquad f^{(k)}(0) = \begin{cases} \lfloor n(1) & k=0 \\ (-1)^{k-1}(k-1)! (1)^{-k} & k \geqslant 1 \end{cases}$$

$$= \begin{cases} 0 & k=0 \\ (-1)^{k-1}(k-1)! & k \geqslant 1 \end{cases}$$

Alternate way $\ln(x+1) = \sum_{k=0}^{\infty} f(k) \frac{x^k}{k!}$ $= f(0) \frac{x^0}{0!} + \sum_{k=1}^{\infty} f(k) (0) \frac{x^k}{k!}$ $= 0 + \sum_{k=1}^{\infty} (-1)^{k-1} (|x-1|) \frac{x^k}{|x|!}$ $= \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k!}$ $= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$