Seminar 6 - ML / MPE criteria

- 1. Consider detection between two signals: $s_0(t) = -2, \forall t \text{ and } s_1(t) = 3\sin(2\pi \frac{1}{4}t)$ The signal is affected by gaussian noise $\mathcal{N}(\mu = 0, \sigma^2 = 2)$. The receiver takes a single sample at time $t_0 = 1$, and it has the value $r(t_0) = 2.4$. The probabilities of the two hypotheses are $P(H_0) = \frac{1}{4}$ and $P(H_1) = \frac{3}{4}$.
 - a. Sketch the two conditional distributions
 - b. What decision is taken according to ML criterion and to the MPE criterion?
 - c. Find the decision regions for both criteria
 - d. Compute the probabilities of correct rejection, false alarm, miss and correct detection for ML and MPE criteria
 - e. Re-compute the probabilities in case the sampling time changes to $t_0 = 1.1$
 - f. What are the possible values of $P(H_0)$ that make the false alarm probability smaller than 1%, for each criterion?
 - g. If we could change the value of $s_0(t) = A$, what is the maximum value of A such that the probability of false alarm is smaller than 0.1%?
- 2. Consider the decision between two constant signals: $s_0(t) = -5$ and $s_1(t) = 5$. The signals are affected by gaussian noise $\mathcal{N}(0, \sigma^2 = 3)$ The receiver takes one sample r.
 - a. Find the decision regions R_0 and R_1 according to the MPE criterion
 - b. What are the probabilities of false alarm and of miss?
 - c. Repeat a) and b) considering that $s_1(t)$ is affected by uniform noise $\mathcal{U}[-4,4]$