NP-Completeness, part II

Christian Wulff-Nilsen
Advanced Algorithms and Data Structures
DIKU

December 14, 2022

Overview for today

- NP-completeness and reductions
- NP-completeness of:
 - o SAT
 - o 3-CNF-SAT
 - CLIQUE
 - VERTEX-COVER
 - o (HAM-CYCLE)
 - o TSP
 - SUBSET-SUM

Languages

- *Alphabet*: finite set Σ of symbols.
- Language L over alphabet Σ : a set of strings of symbols from Σ .
- We let $\Sigma = \{0, 1\}$ so L is a set of binary strings.
- Example: $L = \{0, 10, 11001, 11101, \ldots\}$.
- Σ^* : set of all binary strings (including ϵ).

Decision problems and languages

- A decision problem Q consists of yes-instances and no-instances.
- Example, Q=HAM-CYCLE: $\langle G \rangle$ is a yes-instance if G contains a simple cycle containing all vertices of G; otherwise $\langle G \rangle$ is a no-instance.
- We can view a problem Q as a mapping of yes-instances to 1 and no-instances to 0.
- We can also view Q as a language L:

$$L = \{x \in \{0, 1\}^* | Q(x) = 1\}.$$

Verifying a language

- A *verification algorithm* is an algorithm A taking two arguments, $x,y \in \{0,1\}^*$, where y is the *certificate*.
- A verifies a string x if there is a certificate y such that A(x,y)=1.
- ullet The language verified by A is

$$L = \{x \in \{0,1\}^* | \text{there is a } y \in \{0,1\}^* \text{ such that } A(x,y) = 1\}.$$

The complexity class NP

- NP is the class of languages that can be verified in polynomial time.
- In other words, $L \in \mathsf{NP}$ if and only if there is a polynomial-time verification algorithm A and a constant c such that

$$L=\{x\in\{0,1\}^*| \text{there is a }y\in\{0,1\}^* \text{ with } \\ |y|=O(|x|^c) \text{ such that } A(x,y)=1\}.$$

- We saw that $P \subseteq NP$.
- Big open problem: is P = NP?

Reducibility

• Language L_1 is polynomial-time *reducible* to language L_2 if there is a polynomial-time computible function $f:\{0,1\}^* \to \{0,1\}^*$ such that for all $x \in \{0,1\}^*$,

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$
.

- We use the notation $L_1 \leq_P L_2$ for this.
- We saw that

$$L_1 \leq_P L_2 \land L_2 \in P \Rightarrow L_1 \in P$$
.

NP-completeness

- ullet Language L is NP-complete if
 - 1. $L \in NP$ and
 - 2. $L' \leq_P L$ for every $L' \in NP$.
- L is NP-hard if L satisfies property 2 (and possibly not property 1).
- We saw that if any language of NPC belongs to P then P = NP.
- We also showed that CIRCUIT-SAT is NP-complete.

NP-completeness of other problems via reduction

- Let L and L' be two languages with $L' \in \mathsf{NPC}$.
- If $L' \leq_P L$ then L is NP-hard.
- $\bullet \quad \text{If in addition } L \in \mathsf{NP} \text{ then } L \text{ is NP-complete.}$
- General technique to show NP-completeness of a language L:
 - \circ Show that $L \in \mathsf{NP}$.
 - \circ Pick another language L' known to be NP-complete (for instance, CIRCUIT-SAT).
 - \circ Show that $L' \leq_P L$, i.e., show that there is a polynomial-time computible function $f:\{0,1\}^* \to \{0,1\}^*$ such that for all $x \in \{0,1\}^*$,

$$x \in L' \Leftrightarrow f(x) \in L.$$

The SAT problem

- A boolean formula ϕ consists of boolean variables x_1, \ldots, x_n , boolean connectives $\wedge, \vee, \neg, \rightarrow, \leftrightarrow$, and parentheses (and).
- Example: $\phi = (x_1 \lor x_2) \land (x_2 \lor x_3 \lor \neg x_4)$.
- A satisfying assignment for a boolean formula ϕ is an assignment of 0/1-values to variables that makes ϕ evaluate to 1.
- ϕ is satisfiable if there exists a satisfying assignment for ϕ .
- We can now define the problem SAT:

SAT = $\{\langle \phi \rangle | \phi \text{ is a satisfiable boolean formula} \}$.

We will show that SAT is NP-complete.

Showing that SAT is NP-complete

- To show SAT ∈ NPC, we follow our recipe:
 - Show that SAT \in NP.
 - Show that CIRCUIT-SAT \leq_P SAT.
- To show that SAT \in NP, we construct a verification algorithm A taking inputs x and y.
- It regards x as a boolean formula ϕ and y as an assignment of values to variables of ϕ .
- A returns 1 if y defines a satisfying assignment for ϕ ; otherwise, A returns 0.
- We can easily make A run in polynomial time.
- Thus, $SAT \in NP$.

Showing CIRCUIT-SAT \leq_P SAT

- Given a circuit C, we transform it into a boolean function ϕ as follows.
- Associate a variable x_i with each wire of C; let x_m be the output wire variable.
- We can view each gate of C as a function mapping the values on its input wires to the value on its output wire.
- Construct a sub-formula for each such function.
- Example:

Sub-formula for gate: $x_7 \leftrightarrow (x_1 \land x_2 \land x_4)$

Showing CIRCUIT-SAT \leq_P SAT

Example (see blackboard/Figure 34.10 in CLRS):

$$\phi_1 = (x_4 \leftrightarrow \neg x_3)$$

$$\phi_2 = (x_5 \leftrightarrow (x_1 \lor x_2))$$

$$\phi_3 = (x_6 \leftrightarrow \neg x_4)$$

$$\phi_4 = (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$$

$$\phi_5 = (x_8 \leftrightarrow (x_5 \lor x_6))$$

$$\phi_6 = (x_9 \leftrightarrow (x_6 \lor x_7))$$

$$\phi_7 = (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)).$$

Showing CIRCUIT-SAT \leq_P SAT

- If ϕ_1, \ldots, ϕ_k are the sub-formulas, we define ϕ to be $x_m \wedge \phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_k$.
- Example:

$$\phi = x_{10} \wedge (x_4 \leftrightarrow \neg x_3) \wedge (x_5 \leftrightarrow (x_1 \vee x_2))
\wedge (x_6 \leftrightarrow \neg x_4) \wedge (x_7 \leftrightarrow (x_1 \wedge x_2 \wedge x_4))
\wedge (x_8 \leftrightarrow (x_5 \vee x_6)) \wedge (x_9 \leftrightarrow (x_6 \vee x_7))
\wedge (x_{10} \leftrightarrow (x_7 \wedge x_8 \wedge x_9)).$$

- ullet ϕ can be constructed in polynomial time.
- In words, ϕ is stating that the output wire is 1 and that each gate behaves as it is supposed to.
- Thus, C is satisfiable if and only if ϕ is satisfiable:

$$\langle C \rangle \in \texttt{CIRCUIT-SAT} \Leftrightarrow \langle \phi \rangle \in \texttt{SAT}.$$

We have now shown that SAT is NP-complete.

3-CNF formulas

- Let ϕ be a boolean formula.
- A *literal* in ϕ is an occurrence of a variable or its negation.
- Suppose ϕ is the AND of sub-formulas, called *clauses*.
- Furthermore, suppose that each clause is the OR of exactly 3 distinct literals.
- Then we say that ϕ is in 3-conjunctive normal form, or 3-CNF.
- Example:

$$\phi = (x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4).$$

• We define the language 3-CNF-SAT by

$$3$$
-CNF-SAT = $\{\langle \phi \rangle | \phi \text{ is in 3-CNF and satisfiable} \}$.

- We will show that $3-CNF-SAT \in NPC$ in two steps:
 - \circ 3-CNF-SAT \in NP,
 - \circ SAT $\leq_P 3$ -CNF-SAT.
- Showing $3\text{-CNF-SAT} \in \mathsf{NP}$ is done using the same argument as for SAT.

- Remains to show SAT $\leq_P 3$ -CNF-SAT.
- Let $\langle \phi \rangle$ be an instance of SAT.
- We construct a *parse tree* for ϕ where leaves are literals and internal nodes are connectives.
- Parse tree for $\phi = (x_1 \lor x_3) \land \neg x_2$:

 We may assume that each node in the parse tree has at most two children. (why?)

• Parse tree for $\phi = (x_1 \lor x_3) \land \neg x_2$:

- Regard the tree as a circuit with internal nodes as gates.
- We can construct formulas ϕ_1', \ldots, ϕ_k' for each of these gates, as before.
- Let $\phi' = y_1 \wedge \phi'_1 \wedge \phi'_2 \wedge \ldots \wedge \phi'_k$, where y_1 is the output wire.
- ϕ' is satisfiable iff ϕ is satisfiable.
- Each clause of ϕ' has at most 3 literals.

- Consider one clause ϕ'_i .
- Example: $\phi_i' = y_1 \leftrightarrow (y_2 \land \neg x_2)$.

y_1	y_2	x_2	ϕ_i'	$\phi_i'' \equiv \neg \phi_i'$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

$$\neg \phi_i' \equiv \phi_i'' = (\neg y_1 \land y_2 \land \neg x_2) \lor (y_1 \land \neg y_2 \land \neg x_2) \lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land y_2 \land x_2).$$

• ϕ_i'' is in *disjunctive normal form*:

$$\phi_i'' = (\neg y_1 \land y_2 \land \neg x_2) \lor (y_1 \land \neg y_2 \land \neg x_2)$$
$$\lor (y_1 \land \neg y_2 \land x_2) \lor (y_1 \land y_2 \land x_2).$$

• Negating and applying De Morgan's laws converts ϕ_i'' into conjunctive normal form:

$$\neg \phi_i'' \equiv (y_1 \lor \neg y_2 \lor x_2) \land (\neg y_1 \lor y_2 \lor x_2)$$
$$\land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor \neg y_2 \lor \neg x_2).$$

- Recall that $\phi_i'' \equiv \neg \phi_i'$.
- It follows that $\neg \phi_i'' \equiv \neg (\neg \phi_i') \equiv \phi_i'$.
- In words, $\neg \phi_i''$ is equivalent to the original ϕ_i' .

- Applying this technique to each clause converts ϕ' into an equivalent formula which is almost in 3-CNF:
 - each clause has at most 3 literals.
- We can extend this to exactly 3 (distinct) literals by introducing dummy variables p and q:

$$\ell_1 \vee \ell_2 \equiv (\ell_1 \vee \ell_2 \vee p) \wedge (\ell_1 \vee \ell_2 \vee \neg p)$$

$$\ell \equiv (\ell \vee p \vee q) \wedge (\ell \vee p \vee \neg q) \wedge (\ell \vee \neg p \vee q) \wedge (\ell \vee \neg p \vee \neg q)$$

- In polynomial time, we convert ϕ' into a formula ϕ''' in 3-CNF.
- We have

$$\langle \phi \rangle \in \mathtt{SAT} \Leftrightarrow \langle \phi''' \rangle \in 3\mathtt{-CNF-SAT}.$$

• Thus, SAT $\leq_P 3$ -CNF-SAT so 3-CNF-SAT is NP-complete.

The subset-sum problem

- Given a set S of positive integers and given integer target t > 0.
- Is there a subset S' of S summing to t?
- As a language:

$${\tt SUBSET-SUM} = \{\langle S, t \rangle | \exists S' \subseteq S \text{ so that } t = \sum_{s \in S'} s \}.$$

- We will show that SUBSET-SUM is NP-complete.
- Clearly, SUBSET-SUM ∈ NP.
- To show NP-hardness, we reduce from 3-CNF-SAT:

$$3$$
-CNF-SAT \leq_P SUBSET-SUM.

Showing 3-CNF-SAT \leq_P SUBSET-SUM

- Consider a 3-CNF-formula ϕ with n variables x_1, \ldots, x_n and k clauses C_1, \ldots, C_k .
- We will construct an instance $\langle S, t \rangle$ such that:

$$\langle \phi \rangle \in 3$$
-CNF-SAT $\Leftrightarrow \langle S, t \rangle \in \text{SUBSET-SUM}$.

• In other words, we want that ϕ is satisfiable if and only if S has a subset summing to t.

Constructing S and t (see blackboard/Figure 34.19 in CLRS)

- For each variable x_i , create two decimal numbers v_i and v'_i .
- For each clause C_j , create two decimal numbers s_j and s'_j .
- Finally, create a decimal number t.
- Each number has n+k digits.
- The n most significant digits are associated with x_1, \ldots, x_n .
- The k least significant digits are associated with C_1, \ldots, C_k .
- S consists of numbers $v_1, v_1', v_2, v_2', \ldots, v_n, v_n'$ and $s_1, s_1', s_2, s_2', \ldots, s_k, s_k'$.

Constructing S and t (see blackboard/Figure 34.19 in CLRS)

- Digit x_i of v_i and digit x_i of v_i' is 1.
- Digit C_j of v_i is 1 if $x_i \in C_j$.
- Digit C_j of v_i' is 1 if $\neg x_i \in C_j$.
- Digit C_i of s_i is 1 and digit C_i of s'_i is 2.
- Target t is defined to be:

$$t = \overbrace{11 \dots 1}^{n} \underbrace{44 \dots 4}_{k}$$

- All digits not specified above are 0.
- Simplifying assumptions: no clause contains both a variable and its negation and each variable appears somewhere. This ensures unique numbers (otherwise, *S* might be a multiset).

Showing $\langle \phi \rangle \in 3$ -CNF-SAT $\Rightarrow \langle S, t \rangle \in \text{SUBSET-SUM}$

- Assume $\langle \phi \rangle \in 3$ -CNF-SAT.
- In other words, assume that ϕ is in 3-CNF and satisfiable.
- We will find a subset S' of S with $\sum_{s \in S'} s = t$.
- Assign values to x_1, \ldots, x_n that satisfy ϕ .
- For $i=1,\ldots,n$, if $x_i=1$ then include v_i in S'; otherwise include v_i' .
- Include additional numbers from $\{s_1, s_1', s_2, s_2', \dots, s_k, s_k'\}$ to reach target t.
- Why is this possible?

Showing $\langle S,t \rangle \in \mathtt{SUBSET-SUM} \Rightarrow \langle \phi \rangle \in \mathtt{3-CNF-SAT}$

- Let S' be a subset of S summing to t.
- We need to find a satisfying assignment for ϕ .
- We set x_i to 1 if and only if $v_i \in S'$.
- Why is this a satisfying assignment?

The CLIQUE-problem

- Let G = (V, E) be an undirected graph.
- A *clique* in G is a subset $V' \subseteq V$ such that $(u,v) \in E$ for all distinct $u,v \in V'$.
- The size of the clique is |V'|.
- Example of a clique of size 5:

• The CLIQUE problem is the problem of determining if G contains a clique of a given size k:

$${\tt CLIQUE} = \{\langle G, k \rangle | G \text{ is a graph containing a clique of size } k \}.$$

NP-completeness of CLIQUE

- We will show that CLIQUE is NP-complete as follows:
 - \circ CLIQUE \in NP,
 - \circ 3-CNF-SAT \leq_P CLIQUE.
- To show CLIQUE \in NP, consider an algorithm A taking two inputs, $\langle G, k \rangle$ and a certificate y.
- y specifies a subset V' of vertices of G.
- A checks that |V'| = k and that V' is a clique in G.
- This can easily be done in polynomial time.
- Thus, $CLIQUE \in NP$.

- Given a formula $\phi = C_1 \wedge C_2 \wedge \ldots \wedge C_k$ in 3-CNF.
- We will construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k.
- For each $C_r=\ell_1^r\vee\ell_2^r\vee\ell_3^r$, we include three vertices v_1^r , v_2^r , and v_3^r to G.
- There is an edge (v_i^r, v_j^s) in G if and only if $r \neq s$ and ℓ_i^r is not the negation of ℓ_j^s .
- Example with $\phi = C_1 \wedge C_2 \wedge C_3$:

$$C_1 = x_1 \lor \neg x_2 \lor \neg x_3$$

$$G \qquad x_1 \qquad x_2 \qquad x_3$$

$$C_2 = \neg x_1 \lor x_2 \lor x_3 \qquad x_2 \qquad x_2 \lor x_3$$

- ullet G can be constructed in polynomial time from ϕ .
- ullet We will show $\langle \phi
 angle \in 3 ext{-CNF-SAT} \Leftrightarrow \langle G,k
 angle \in ext{CLIQUE.}$

- Need to show that ϕ is satisfiable if and only if G has a clique of size k.
- Assume first that $\langle \phi \rangle \in 3$ -CNF-SAT.
- In a satisfying assignment for ϕ , each clause C_i of ϕ has at least one true literal.
- Pick the corresponding vertex in *G*.
- This gives a total of *k* vertices.
- Example with satisfying assignment $x_1 = 1$, $x_2 = 1$, $x_3 = 0$:

Why is this a clique in G of size k?

- There must be an edge between each pair of these vertices since no picked literal can be the negation of another picked literal (we only picked true literals).
- Hence, G has a clique of size k so $\langle G, k \rangle \in \mathtt{CLIQUE}$.

- It remains to show that if G has a clique of size k then ϕ is satisfiable.
- Let V' be a clique of G of size k.

- Each vertex triple of G has exactly one vertex in V'.
- We assign 1 to the literal of ϕ corresponding to that vertex.
- In the example above, $x_1 = 1$ and $x_2 = 1$.

- It remains to show that if G has a clique of size k then ϕ is satisfiable.
- Let V' be a clique of G of size k.

- No variable of ϕ is assigned both 0 and 1 in this way since there is no edge between a variable and its negation in G.
- This gives a legal assignment of values to some of the variables.
- ullet This assignment satisfies ϕ as it makes each clause true.
- What about variables that have not been assigned a value? (x_3 in the example) Pick an arbitrary value for each of them.

The VERTEX-COVER problem

- A *vertex cover* of G = (V, E) is a subset $V' \subseteq V$ such that every edge of E has at least one endpoint in V'.
- Vertex cover problem: find a minimum-size vertex cover of G.

- Restating as a decision problem: does G have a vertex cover of a given size k?
- Stated as a language:

 $\mbox{VERTEX-COVER} = \{\langle G, k \rangle | G \mbox{ has a vertex cover} \\ \mbox{of size } k \}.$

We will show that VERTEX-COVER is NP-complete.

Showing that $VERTEX-COVER \in NP$

- The verification algorithm takes an instance $\langle G, k \rangle$ and a certificate denoting a subset V' of vertices of G.
- It checks that V' has size k and that every edge of G is incident to at least one vertex of V'.
- This can easily be done in polynomial time.
- Hence, $VERTEX-COVER \in NP$.

Showing that VERTEX-COVER is NP-hard

- We show CLIQUE \leq_P VERTEX-COVER.
- Given an instance $\langle G, k \rangle$ of the clique problem.
- Let *n* denote the number of vertices of *G*.
- We transform $\langle G,k\rangle$ in polynomial time to the instance $\langle \overline{G},n-k\rangle$ of the vertex cover problem.
- Here, \overline{G} is the *complement* of G which has the same vertex set as G and has an edge between two vertices u and v if and only if there is no edge between u and v in G.

Showing that VERTEX-COVER is NP-hard

Need to show:

$$\langle G, k \rangle \in \mathtt{CLIQUE} \Leftrightarrow \langle \overline{G}, n-k \rangle \in \mathtt{VERTEX-COVER}.$$

• Observe that any vertex set C is a clique in G if and only if C contains no edges in \overline{G} .

- Hence, C is a clique of size k in G if and only if $V(G) \setminus C$ is a vertex cover of size n-k in \overline{G} .
- We have shown that VERTEX-COVER is NP-hard.

The travelling-salesman problem

- Let G = (V, E) be a complete undirected graph and let c be a non-negative integer cost function on the edge set of G.
- A *tour* of *G* is a Hamilton cycle of *G*.
- The travelling salesman problem is that of finding a minimum-cost tour of *G*.
- Stated as a decision problem/language:

$$\mathsf{TSP} = \{ \langle G, c, k \rangle | G \text{ has a tour of cost at most } k \}.$$

- Clearly, $TSP \in NP$.
- Since HAM-CYCLE is NP-complete, we show that TSP is NP-hard by:

HAM-CYCLE
$$\leq_P$$
 TSP.

This will imply that TSP is NP-complete.

$\mathsf{HAM}\mathsf{-CYCLE} \leq_P \mathsf{TSP}$

- Let G = (V, E) be an instance of the Hamilton-cycle problem.
- We construct a complete graph G' = (V, E') on vertex set V.
- Define a cost function c on E' by

$$c(u,v) = \left\{ \begin{array}{ll} 0 & \text{if } (u,v) \in E, \\ 1 & \text{if } (u,v) \notin E. \end{array} \right.$$

• Show that: $\langle G \rangle \in \texttt{HAM-CYCLE} \Leftrightarrow \langle G', c, 0 \rangle \in \texttt{TSP}$.