Introducción a la computación cuántica

Por: Luis Daniel Benavides Navarro, 11-5-2018

Motivación

Los fundamentos de las Matemáticas

- Crisis y debate por los fundamentos: ¿Qué es una prueba?, ¿Cuáles métodos son válidos?, ¿Cuáles son los métodos que garantizan la certeza?.
 - Frege usa teoría de conjuntos y lógica
 - Rusell intenta eliminar contradicciones en el sistema de Frege
 - Hilbert intenta que los métodos de las matemáticas no llevan a contradicciones
- David Hilbert en 1900 propone el programa de Hilbert para formalizar las matemáticas:
 - Reglas de inferencia finitas
 - Reglas de inferencia "evidentes"
 - Completitud: Demostración de que toda verdad matemática se puede demostrar.
 - Consistencia: Demostración de que si una sentencia es verdadera no se puede probar una con conclusión opuesta.
 - Algoritmo: Debe existir un algoritmo para validar que una demostración es válida en el formalismo.

David Hilbert. Extraído de wikipedia foto, se asume que los derechos son de dominio público

Destrucción del programa de Hilbert

- Gödel y Turing destruyen el programa de Hilbert (1931-1936)
 - Gödel prueba que si un sistema es consistente no puede ser completo
 - Gödel prueba que un sistema tiene una prueba de su propia consistencia solo si es inconsistente.
 - Turing: Crea una definición clara de algoritmo y además prueba que no existe una algoritmo que pueda decidir si una demostración es falsa o verdadero.

Gödel y Alan Turing. Extraído de wikipedia foto, se asume que los derechos son de dominio público

Universalidad de la computación clásica

- Hipótesis de Turing-Church
- Después de la segunda guerra mundial solo el Eniac se le permitió saltar a la universalidad
- 1937-1946 computadores basados en relays (switches electromecánicos)
 - el "Bombe" construidos por Alan Turing y Harold Keen para descifrar los mensajes cifrados del ejercito Nazi.
 - 1943-1946 ENIAC. John Mauchly, J. Presper Eckert. Primer C. electrónico (sin relays) 1000 veces más rápido.
 - 1948 primer programa de computador en la Universidad de Manchester. Frederic Williams, Tom Kilburn, y Geoff Toothill.
 - Sistemas operativos (1960s),
 - Computadores personales (1970s),
 - Internet (1990s),
 - Teléfonos inteligentes (2000s), la nube (2000s), la web 2.0 (2000s), y el internet de las cosas (2010s) entre otros.

La Universalidad de la computación

- Relatividad General y física cuántica, nuestras mejores teorías
- Influyen todo, nueva filosofía, nuevos modelos de computación: explicaciones y computación cuántica
- 1982 -1989 Deutsch, Feynman y Benioff. Trabajos Seminales de Computación cuántica
- En este curso tomamos en serio nuestras mejores teorías.
- Una teoría del Universo, teoría del todo
 - Física Cuántica
 - Evolución
 - Epistemología
 - Computación

Qbit

¿Qué es un Qubit?

- Es un objeto matemático, con una ciertas propiedades.
 - Puede representar diferentes estados
 - ▶ Al igual que el bit tiene estados de 0 y 1, que se representan como $|0\rangle y |1\rangle$ (estados base).
 - A diferencia de los bits, los Qubits tienen otros estados que se representan como una combinación lineal de los estados bases.

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Donde $\alpha y \beta$ son números completos.

- ightharpoonup Al medir el valor del estado actual del Qubit siempre se obtiene $|0\rangle$ o $|1\rangle$
 - $| 0 \rangle$ una probabilidad de $|\alpha|^2$
 - $|1\rangle$ una probabilidad de $|\beta|^2$
- Por lo tanto, $|\alpha|^2 + |\beta|^2 = 1$

¿Cómo implementar un Qbit?

Implementación básica - Fotón

Supongamos que tenemos un dispositivo, con la siguiente configuración:

Experimento sencillo - Fotón

Experimento Modificado - Fotón

Modifiquemos un poco el experimento sencillo

Experimento Modificado

Modifiquemos un poco el experimento sencillo

¿Por qué pasa esto?

Por el fenómeno de

Experimento Modificado - Fotón

Modifiquemos un poco el experimento

Experimento de Young

Presentación de proyecto de grado 1 vitrina académica 2017-1

Representación circuito cuántico

¿Cómo podemos construir esto?

De esta forma construimos un circuito cuántico, usando compuertas lógicas cuánticas

Experimento en IBM

Implementando un Qubit - IBM

- Se debe implementar usando fuertes campos magnéticos de un laser óptico para atrapar iones en el espacio. Estas trampas evitan que los iones interactúen con el medio ambiente.
- Se eligen un par de estados de energía en el ion para que actúen como los estados bases del Qubit $|0\rangle y |1\rangle$. El par de estados se seleccionan para tener una baja coherencia, es decir, una baja tasa de pasar de un estado de energía mas bajo.
- En cuanto a las compuertas lógicas cuánticas se hacen con impulsos laser que provocan cambios en el estado de los iones.
- El sistema debe tener una temperatura extremadamente baja para evitar que se mezclen los Qubits.

¿Cómo estudiar QC?

Clase Invertida

Antes:

• Estudiantes se preparan para participar en actividades del curso

En clase:

• Estudiante practica aplicando conceptos clave con retroalimentación del profesor (Ejercicios y Demos).

Después

• Estudiante verifica su entendimiento y extiende su aprendizaje.

Guía de aprendizaje de QC desde la perspectiva de un ingeniero de sistemas

Fundamentos

- Números complejos
- Espacios vectoriales complejos
- Clásico vs. Cuántico

- Introducción a QC
 - Teoría cuántica básica
 - Arquitectura
 - Algoritmos
- Temas seleccionados por alumnos

Proyecto integrador

- Los estudiantes construirán una librería para el manejo números complejos, matrices complejas y con está se realizarán simulaciones de circuitos cuánticos.
- Se realizarán experimentos cuánticos en el computador cuántico de IBM.

Presentaciones finales

• Los estudiantes seleccionarán un tema interesante en grupo y realizarán una presentación de estos temas.

Referencias

- Yanofsky, N. and Mannucci, M. (2013). Quantum computing for computer scientists. 1st ed. New York: Cambridge
 University Press.
- Deutsch, D. (1985, July). Quantum theory, the Church-Turing principle and the universal quantum computer. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engi-neering Sciences (Vol. 400, No. 1818, pp. 97-117). The Royal Society.
- Research.ibm.com. (2017). IBM Q US. [online] Available at: http://research.ibm.com/ibm-q/ [Accessed 13 Mar. 2017].
- Anon, (2017). [online] Available at: http://users.df.uba.ar/paz/pag_comp_cuant/resumenes/clase10.pdf [Accessed 2 Dec. 2017].
- Grover, L. (2017). A fast quantum mechanical algorithm for database search. [online] Arxiv.org. Available at: https://arxiv.org/abs/quant-ph/9605043 [Accessed 2 Dec. 2017].
- Research, I. (2017). IBM Q experience. [online] Quantum experience.ng.bluemix.net. Available at: https://
 quantum experience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&page=004-Quantum_Algorithms~2F070-Grover%27s_Algorithm [Accessed 2 Dec. 2017].