Quiz, 10 questions

✓	Congra	atulations! You passed!	Next Item	
	~	1 / 1 points		
		notation would you use to denote the 3rd layer's active out is the 7th example from the 8th minibatch?	ations when	
		$a^{[3]\{7\}(8)}$		
		$a^{[8]\{3\}(7)}$		
	0	$a^{[3]\{8\}(7)}$		
	Correct			
		$a^{[8]\{7\}(3)}$		
	~	1 / 1 points		
	2. Which agree	of these statements about mini-batch gradient descen with?	it do you	
	0	One iteration of mini-batch gradient descent (compusingle mini-batch) is faster than one iteration of batch descent.	_	
	Corr	rect		
		Training one epoch (one pass through the training se mini-batch gradient descent is faster than training or using batch gradient descent.	_	

You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the Optimization algorithms rocesses all mini-batches at the same time

Qight in \$rocesses all mini-batches at the same time 10/10 points (100%) (vectorization).

Quiz, 10 questions

~	1/1 points						
-	the best mini-batch size usually not 1 and not m, but instead ning in-between?						
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.						
Un-se	elected is correct						
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.						
Corre	ect						
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.						
Correct							
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.						
Un-se	elected is correct						
/	1/1 points						

4.

Optimization algorithms

Quiz, 10 questions

10/10 points (100%)

Which of the following do you agree with?

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

1/1 points

Suppose the temperature in Casablanca over the first three days of January are the same:

Optimization algorithms

Quiz, 10 questions

Jan 1st:
$$\theta_1 = 10^{o} C$$

10/10 points (100%)

Jan 2nd: $\theta_2 10^{\circ} C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 10, v_2^{corrected} = 10$$

$$v_2 = 10, v_2^{corrected} = 7.5$$

$$v_2 = 7.5, v_2^{corrected} = 10$$

Correct

$$v_2 = 7.5, v_2^{corrected} = 7.5$$

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

$$\bigcirc \quad \alpha = \frac{1}{1+2*t} \; \alpha_0$$

$$\alpha = 0.95^t \alpha_0$$

$$\bigcap \quad \alpha = e^t \alpha_0$$

Correct

Optimization algorithms

Quiz, 10 questions

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t.$ The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Optimization algorithms Un-selected is correct

Quiz, 10 questions

10/10 points (100%)

1/1 points

8. Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

1/1 points

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the

Optimization algorithms $[a,b^{[1]},b^{[1]},\dots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

	Try initializing all the weights to zero
Un-s	elected is correct
Corr	Try mini-batch gradient descent
Corr	Try using Adam
Corr	Try tuning the learning rate $lpha$
Corr	Try better random initialization for the weights
~	1 / 1 points
10. Which	of the following statements about Adam is False?
Corr	Adam should be used with batch gradient computations, not with mini-batches.
2011	
	Adam combines the advantages of RMSProp and momentum

Ontimizatio	n ala	The learning rate hyperparameter α in Adam usually needs to be tuned.			
Optimization algorithms				points (100)%)
Quiz, 10 questions		We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8}$)			
		~			