Real-Time Communication

Sathish Gopalakrishnan

Electrical and Computer Engineering
The University of British Columbia

Outline

- Real-time communications
 - Traffic and network models
 - Properties of networks
 - Throughput, delay and jitter
 - Congestion and loss

Examples

- Controller area networks
- Ethernet

Real-Time Communications

Digital data communications

- One would like fast delivery, but not at the expense of reliability
 - E.g. web browsing, e-mail, file transfer, twitter, etc.
- These applications are often referred to as elastic applications
 - i.e. time can be "dilated"

Real-time data communications

- Timely delivery may deemed to be more desirable than reliable delivery
- Different levels of priority may be associated with applications
- Examples:
 - Anti-lock braking in a car
 - "Fly-by-wire" systems in a modern aircraft
 - Skype internet telephony and IPTV (TV using the Internet Protocol)
 - drop delayed packets

Real-Time Traffic Categories

- Packet-switched traffic falls into two categories:
 - Synchronous periodic messages
 - Produced and consumed in a continual basis, according to some schedule
 - Generally require some performance guarantee
 - Can be generated by periodic tasks
 - Fixed rate ("isochronous") flows (e.g. sensor data, speech)
 - Characterize by inter-packet spacing, message length, reception deadline
 - Can be generated by sporadic tasks
 - Variable rate flows (e.g. MPEG-2 video, control traffic)
 - Characterize by average throughput + maximum burst size
 - Aperiodic (asynchronous) messages
 - No deadline, best-effort delivery, but want to keep delays small
 - Characterize by average delivery time

Sources of Message Delays

- Message delays on networks comprise the following components:
 - 1. Queuing delay at sender
 - Network not always ready to accept a packet when it becomes available
 - Data may be queued if produced faster than the network can deliver it
 - 2. Queuing delay in the network
 - Due to cross-traffic or bottleneck links
 - 3. Network transit time
 - Fixed propagation delay
 - 4. Queuing delay at receiver
 - Application not always ready to accept packets arriving from network
 - Network may deliver data in bursts

Network Message Delay

Performance Metrics

- **Throughput**: a measure of the number of packets that the network can deliver per unit time
- Delay (latency): time taken to deliver a packet
 - Fixed minimum propagation delay due to speed of light
 - Variation due to queuing on path
- Jitter: Variance of the delay
- Buffer requirements: amount of storage required so as not to drop packets
- Packet Miss rate: ratio of packets that miss their timing constraints
- Packet Loss Rate: ratio of packets that are not delivered
- Packet Error Rate: ratio of packets that have an error in them

Throughput, Delay and Jitter

Throughput, delay and jitter vary according to router scheduling techniques.

 Possible to derive bounds for delay/jitter for some policies (e.g. RMA, Round-Robin, Weighted Round-Robin techniques)

Jitter and Miss-Rate

- - Hope for something approximating a Gaussian distribution \Rightarrow simple statistics to derive the miss rate
 - Fraction of packets lost due to jitter
 - Actual distribution is more complex

VW Passat Network Architecture

Often we find many different physical / MAC layers within a system...

Congestion and Loss

- Both flow characteristics and cross-traffic can cause overloads and congestion, so might the cross traffic
 - Temporary congestion will cause queuing delays
 - Persistent congestion will result in queues that stay full, hence packets may be lost
- How to avoid this?
 - Control the amount of traffic at a bottleneck link
 - Applications need to signal their requirements
 - Network performs admission control
 - Or prioritize traffic to give preference to important flows
 - What scheduling algorithm to use?
 - Fixed-priority schemes are much easier to implement than dynamic priority schemes
 - Weighted round-robin techniques are also available
 - May allow real-time traffic, but discard best-effort data traffic when the network is overloaded

Controller Area Networks (CANbus)

- Shared serial bus, send at 1Mbps, maximum bus length is 50m
- All stations hear transmissions within a fraction of a bit time
- Connections wired AND logic (zero will dominate) logic
- Packets start with an ID, then control and data
- Widely used in automotive
 - Finding its way to other areas

CAN bus: Wiring

CAN Bus

Courtesy of TI sloa101 application note...

CAN bus: Data Rate vs Distance

Distributed Priority-based Arbitration

- Wait until start of slot, then begin to send with the ID field, but:
- Stop if you hear a 0 on the bus when you are sending a 1
- Packet with the smallest ID is transmitted first
 - Priority-based network access

CAN bus: Packets

Real-Time Analysis of CAN

Remember our CPU task model $\tau_i = \{C_i, T_i\}$

- In a communication system:
 - C_i is the message transmission time
 - T_i is the period of the message
- What is different as compared to a CPU?

$$C_{1}+B_{1} + ... + C_{n+} B_{n} + ... + C_{n+} C_{n+} B_{n} \le U(n) = n(2^{1/n} - 1)$$

CAN bus Timing Analysis

- Treat messages like priority-based tasks on a processor
 - Perform RMA analysis
- Messages have non-preemptible regions
 - Adjust by adding blocking factors
- Davis, et al "Controller Area Network (CAN)
 schedulability analysis: Refuted, revisited and revised"
 RTSJ, 2007

Example: Ethernet

- Recall that Ethernet uses CSMA/CD with exponential back off
 - Before transmitting, check for active link
 - If not active, try to transmit, listening for collision
 - If a collision occurs, stop sending, wait before retry
 - Random binary exponential back-off
 - After i collisions, back-off by up to 2i slots, randomly chosen
- Potentially unbounded delay on busy network
 - Cannot schedule transmissions to avoid collision
- No prioritization of messages
- Implications:
 - Throughput actually drops at high loads
 - Cannot easily reason about timing properties
 - Difficult to schedule messages to ensure timely delivery

Real-Time Ethernet?

- If you have control over ALL nodes in the system
- Coordinate using Time Diversity Multiple Access (TDMA)
- Synchronize each node (somehow) and assigned a time slot to transmit

Polling TDMA

Synchronized TDMA

Priorities in non-Logical AND networks?

- Use transmission delay to act like a priority
- Low priority waits longer before it transmits

Conclusions

- What is real-time communications?
- Factors that affect real-time communication
 - Throughput, delay and jitter
 - Clock skew
 - Congestion and loss
- Examples of networks and their timing properties
 - Some networks (like CANbus) provide timing guarantees, others (like the ethernet) do not