Aula_12

RafaelaB

Aula/Desafio 12

```
Sys.time()

[1] "2025-10-09 09:43:16 -03"

getwd()

[1] "H:/Documentos/me315"

Importando bibliotecas
import polars as pl
import sqlite3

conn = sqlite3.connect('H:/Documentos/me315/disco.db')
cursor = conn.cursor()
```

Criação manual de uma tabela

• O método execute é empregado para executar comandos dentro do banco SQL.

```
cursor.execute('''CREATE TABLE IF NOT EXISTS vendas (
   id INTEGER PRIMARY KEY,
   vendedor TEXT,
   produto TEXT,
   valor REAL,
   data_venda DATE)''')
```

<sqlite3.Cursor object at 0x0000026B869CE640>

Inserção de dados em uma tabela

• Ao realizar uma inserção, deve-se executar o commit, que fará a confirmação da operação.

<sqlite3.Cursor object at 0x0000026B869CE640>

```
conn.commit()
```

Consulta simples no SQLite

```
cursor.execute("SELECT * FROM vendas")
```

<sqlite3.Cursor object at 0x0000026B869CE640>

```
rows = cursor.fetchall()
for row in rows:
  print(row)
```

```
(1, 'Ana', 'Produto A', 120.5, '2024-09-01')
(2, 'Carlos', 'Produto B', 200.0, '2024-10-02')
```

(3, 'Ana', 'Produto C', 150.0, '2024-09-03')

(4, 'Bruno', 'Produto A', 300.0, '2024-11-04')

(5, 'Carlos', 'Produto C', 100.0, '2024-10-05')

(6, 'Ana', 'Produto A', 120.5, '2024-09-01')

(7, 'Carlos', 'Produto B', 200.0, '2024-10-02')

(8, 'Ana', 'Produto C', 150.0, '2024-09-03')

(9, 'Bruno', 'Produto A', 300.0, '2024-11-04')

(10, 'Carlos', 'Produto C', 100.0, '2024-10-05')

#Estamos consultando as linhas da tabela vendas que acabamos de criar

Integração com Polars

```
dados = pl.read_database("SELECT * FROM vendas", conn)
print(dados)
```

shape: (10, 5)

id	vendedor	produto	valor	data_venda
i64	str	str	f64	str
1	Ana	Produto A	120.5	2024-09-01
2	Carlos	Produto B	200.0	2024-10-02
3	Ana	Produto C	150.0	2024-09-03
4	Bruno	Produto A	300.0	2024-11-04
5	Carlos	Produto C	100.0	2024-10-05
6	Ana	Produto A	120.5	2024-09-01
7	Carlos	Produto B	200.0	2024-10-02
8	Ana	Produto C	150.0	2024-09-03
9	Bruno	Produto A	300.0	2024-11-04
10	Carlos	Produto C	100.0	2024-10-05

Exemplos

1. Qual é o total de vendas por vendedor?

```
vendas_total = pl.read_database('''
    SELECT vendedor, SUM(valor) as total_vendas
    FROM vendas
    GROUP BY vendedor;
''', conn)
print(vendas_total)
```

```
shape: (3, 2)
```

```
vendedor total_vendas
--- str f64
Ana 541.0
```

Bruno 600.0 Carlos 600.0

2. Qual é o valor médio de venda por vendedor?

```
vendas_medias = pl.read_database('''
   SELECT vendedor, AVG(valor) as total_vendas
  FROM vendas
   GROUP BY vendedor;
''', conn)
print(vendas_medias)
shape: (3, 2)
 vendedor total_vendas
           f64
 str
           135.25
 Ana
 Bruno
            300.0
 Carlos
            150.0
#AVG -> expressão que calcula o valor médio de um conjunto de linhas
```

3. Crie uma tabela contendo o nome do vendedor, o número de vendas realizadas, o total vendido e o valor médio por venda.

```
shape: (3, 4)

vendedor numero_vendas total_vendas media_vendas
--- --- ---
```

str	i64	f64	f64
Ana	4	541.0	135.25
Bruno	2	600.0	300.0
Carlos	4	600.0	150.0

4. Quais foram as vendas de pelo menos 200,00?

```
ticket_alto = pl.read_database("""
SELECT * FROM vendas WHERE valor >= 200
""", conn)
print(ticket_alto)
```

shape: (4, 5)

id	vendedor	produto	valor	data_venda
i64	str	str	f64	str
2	Carlos	Produto B	200.0	2024-10-02
4	Bruno	Produto A	300.0	2024-11-04
7	Carlos	Produto B	200.0	2024-10-02
9	Bruno	Produto A	300.0	2024-11-04

Operações com Datas em SQLite

1. Qual foi o volume total de vendas?

```
vendas_mensais = pl.read_database("""
SELECT strftime('%Y-%m', data_venda) AS mes, SUM(valor) AS total_vendas
FROM vendas GROUP BY mes ORDER BY mes
""", conn)
print(vendas_mensais)
```

shape: (3, 2)

mes total_vendas --- --str f64 2024-09 541.0

```
2024-10 600.0
2024-11 600.0
```

```
#Ele apenas "seleciona" o ano e o mês e chama a coluna de "mês"
```

Criando a tabela de produtos

```
cursor.execute('''
CREATE TABLE IF NOT EXISTS produtos (
   id INTEGER PRIMARY KEY,
   nome TEXT NOT NULL,
   categoria TEXT NOT NULL,
   preco REAL NOT NULL,
   estoque INTEGER NOT NULL
);
'''')
```

<sqlite3.Cursor object at 0x0000026B869CE640>

<sqlite3.Cursor object at 0x0000026B869CE640>

```
conn.commit()
```

Consultando a tabela de produtos

```
prods = pl.read_database("SELECT * FROM produtos", conn)
print(prods)
```

shape: (10, 5)

id	nome	categoria	preco	estoque
i64	str	str	f64	i64
1	Produto A	Catamaria 1	100.0	50
_		Categoria 1		
2	Produto B	Categoria 2	150.0	30
3	Produto C	Categoria 1	200.0	20
4	Produto D	Categoria 2	250.0	10
5	Produto E	Categoria 3	300.0	0
6	Produto A	Categoria 1	100.0	50
7	Produto B	Categoria 2	150.0	30
8	Produto C	Categoria 1	200.0	20
9	Produto D	Categoria 2	250.0	10
10	Produto E	Categoria 3	300.0	0

• Apresente uma tabela com o nome do produto, seu valor de compra e venda, além do lucro no momento da venda.

```
lucros = pl.read_database("""
SELECT produto, valor AS compra, preco AS venda, preco-valor AS lucro
FROM vendas
INNER JOIN produtos ON vendas.produto = produtos.nome
""", conn)
print(lucros)
```

shape: (20, 4)

produto	compra	venda	lucro
str	f64	f64	f64
Produto A	120.5	100.0	-20.5
Produto A	120.5	100.0	-20.5
Produto B	200.0	150.0	-50.0
Produto B	200.0	150.0	-50.0
Produto C	150.0	200.0	50.0
•••	•••	•••	•••
Produto C	150.0	200.0	50.0
Produto A	300.0	100.0	-200.0
Produto A	300.0	100.0	-200.0
Produto C	100.0	200.0	100.0

Exemplos

1. Qual foi o valor médio por vendedor?7

```
lucro_medio = pl.read_database("""
SELECT vendedor, produto, AVG(preco-valor) AS lucro_medio
FROM vendas
INNER JOIN produtos ON vendas.produto = produtos.nome
GROUP BY vendedor
""", conn)
print(lucro_medio)
```

shape: (3, 3)

vendedor	produto	lucro_medio
str	str	f64
Ana	Produto A	14.75
Bruno	Produto A	-200.0
Carlos	Produto B	25.0

Disconectando banco de dados

```
conn.close()
```