Cytokinesis group

Submodels FtsZPolymerization and Cytokinesis

Ilya Kiselev, Yan Zhu, Daniel Priego, Naveen Kumar

Tutor: Wolfram Liebermeister

Tool used: BioUML

Simulated Mycoplasma genitalium proteome

Simulated proteome using Jonathan's model visualized as "proteomap" (Voronoi treemap)

(Create your own maps at www.proteomaps.net)

Simulated Mycoplasma genitalium proteome

Simulated proteome using Jonathan's model visualized as "proteomap" (Voronoi treemap)

(create your own maps at www.proteomaps.net)

A ring of FtsZ filaments assembling at the membrane enables cell division

Cell pinching in the septum region

Cycle of ring contractions

- FtsZ molecules assemble to form 9-mers ("filaments")
- Filaments assemble at the membrane to form a ring
- Iterative ring formation and contraction leads to pinching of the cell
- Cycle of binding, residual dissociation, bending, dissociation

Submodel FtsZPolymerization:

FtsZ monomers assemble into filaments (9-mers)

Submodel FtsZPolymerization:

Preliminary SBML model

ODE model for concentrations of FtsZ monomers and n-mers of different length

GDP and GTP appear as cofactors

Submodel Cytokinesis: Model structure

Stochastic model describes:

- FtsZ filament binding / unbinding at the membrane
- FtsZ filaments changing conformation (straight ↔ bent)
- Ring contracts, cell diameter decreases

Difficulties

- In each moment, there is a fixed number of places for filaments to bind ("edges");
 This number changes during the simulation
- Processes occur under certain conditions (per edge, and determined by the whole ring)
- Processes have a certain probability (in 1-second interval) instead of a stochastic rate

Submodel Cytokinesis: Preliminary SBML model

