

Dr. rer. nat. Johannes Riesterer

Angewandte Mathematik

Symmetrische Matrix

Eine Matrix A heißt symmetrisch, falls $A^t = A$ gilt.

Spektralsatz

Eine symmetrische Matrix A ist diagonalisierbar, d.h es gibt eine invertiertere Matrix B mit

$$B^{-1}AB = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

wobei $\lambda_1, \dots \lambda_n$ die Eigenwerte der Matrix A sind.

Angewandte Mathematik

Haupminoren

Für $A=(a)_{i\leq n,j\leq n}$ ist der k-te Hauptminor $M_k(A)$ definiert durch

$$M_k(A) := \det(a)_{i \le k, j \le k}$$

Angewandte Mathematik

Positiv definite Matrix

Eine Matrix A heißt positiv definit, falls $x^t Ax > 0$ und negativ definit, falls $x^t Ax < 0$ für alle $x \neq 0$ gilt.

Positiv definite und symmetrische Matrix

Für eine symmetrische Matrix A sind die folgenden Aussagen Äquivalent:

- A ist positiv (negativ) definit.
- Die Eigenwerte $\lambda_1, \dots, \lambda_n$ von A sind positiv (negativ).
- Die Hauptminoren $M_k(A) > 0$ für alle $1 \le k \le n$ von A sind positiv, bzw alternierend, also $(-1)^k M_k(A) > 0$ für alle $1 \le k \le n$

