

معسكر علم البيانات و تعلم الآلة

21 -11 - 2022

نبذة عن المدرب

محتوى المعسكر

الأسبوع السادس Final Project	الأسبوع الخامس Modeling Interpretation in Action	الأسبوع الرابع EDA & FE in Action	الأسبوع الثالث Machine Learning	الأسبوع الثاني Data Analysis and Visualization	الأسبوع الأول Getting Started	اليوم
Final Project	Models Families: Distance & Time Series	DS Knowledge Catalog	Intro to ML	NumPy	Intro to DS	الأدد
Final Project	Models Evaluation: Regression & Classification	EDA1: Univariate & Multivariate Analysis	Supervised ML	Pandas	Git & Github	الإثنين
Final Project	Optimization Techniques	EDA2: Association Analysis & Hypothesis Construction	Supervised ML	Matplotlib	Python Review	الثلاثاء
Final Project	NLP and Text Mining Basics	Features Engineering: Scaling, Merging & Discretization	Unsupervised ML	Seaborn	Python Review	الأربعاء
Presentation	Neural Networks Basics	Models Families: Continuous & Categorical	Unsupervised ML	Plotly	Python Review	الخميس

**ملاحظة: قد تتغير المواضيع أو أوقات طرحها بناء على تقدم الطلاب.

تقييم النماذج

مرحلة نهدف فيها قياس فاعلية، قوة، وضعف النماذج التي تم بناؤها في مرحلة التطوير

تساعدنا في اتخاذ القرار باعتماد نسخة النموذج أو إعادة تطويره/تحسينه

أنواع تقييم النماذج

تقييم نماذج الانحدار Regression

- Relative Error *
- Absolute Error *
 - Correlation *

تقييم نماذج التصنيف Classification

* Accuracy

تقييم نماذج الانحدار Regression

Absolute Error

المعادلة:

$$|y-Y|$$

- هو قياس الفرق **المطلق** بين القيم الفعلية إلى القيم المتوقعة

Relative Error

المعادلة:

$$\frac{|y-Y|}{Y}$$

- هو قياس الفرق **النسبي** بين القيم الفعلية إلى القيم المتوقعة

```
مثلًا: توقع سعر منتج س = 400 والقيمة الفعلية للمنتج = 380،
فما هو الخطأ المطلق هنا؟
0.053 = 280 / 20 = |400 - 380|/380
والنسبة المئوية 0.053 * 5.3 = 5.3%
```


Mean Absolute Error - MAE

المعادلة:

$$\frac{1}{n} \sum_{i=1}^{n} \left| y_i - Y_i \right|$$

- هو قياس الفرق **النسبي** بين القيم الفعلية إلى القيم المتوقعة

- كلما قلت قيمة MAE كلما كان النموذج أفضل

Root Mean Squared Error - RMSE

المعادلة:

$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - Y_i)^2$$

- هو قياس متوسط الخطأ لتنبؤات النموذج
- كلما قلت قيمة RMSE كلما كان النموذج أفضل

```
مثلًا: مجموع الخطأ التربيعي لتوقعات أسعار المنتجات = 8100
وعدد التوقعات = 10، فما هي قيمة RMSE هنا؟
28.46 = sqrt(810) = sqrt(8100/10)
```


تقييم نماذ و النصنيف Classification

Precision

المعادلة:

$$\frac{TP}{TP + FP}$$

- قيمة تساعدنا بمعرفة نسبة عدد الحالات التي تم التنبؤ بها بشكل صحيح وتبيّن أنها إيجابية فعلًا

– تُعد مقياس مفيد في الحالات التي يكون فيها FP مثير للاهتمام أكثر من FN

Recall

المعادلة:

$$\frac{TP}{TP + FN}$$

- قيمة تساعدنا بمعرفة نسبة عدد الحالات الإيجابية الفعلية التي تمكن النموذج من التنبؤ بها بشكل صحيح
 - يُعَد مقياسًا مفيدًا في الحالات التي تتطلب اهتمامًا أكبر بالحالات FN عن FP

حالات يُرجِّح فيها اعتماد Recall عن Precision ؟

Accuracy

المعادلة:

$$\frac{TP + TN}{TP + TN + FP + FN}$$

- هي دقة التوقعات مقارنة بالقيم الفعلية

F1 Score

المعادلة:

$$\frac{2TP}{2TP+FP+FN} \qquad \mathbf{OR} \qquad 2*\frac{Precision \cdot Recall}{Precision + Recall}$$

- هي قيمة تجمع بين أهمية القيمتين Precision والـاRecall
 - تكون بقيمتها الأمثل إذا كان Recall = Precision
- لتفسيرها بالطريقة الأفضل لمعرفة الأكثر تأثيرًا يُنصح بحساب الـPrecision المعرفة الأكثر تأثيرًا يُنصح بحساب الـRecall والـRecall أولًا لمعرفة القيمة المؤثرة على نتيجة الدقة

AUC

المعادلات:

$$TPR = Sensitivity = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

OR

$$Specificity = \frac{TN}{TN + FP} \implies FPR = 1 - Specificity$$

https://en.wikipedia.org/wiki/Receiver_operating_characteristic : المصدر

في الجدول المقابل يظهر لنا نوعين من التوقع، تصنيف ورقم متوقع، والمطلوب التالي:

1. وضع قيم أخرى آخر خيالي كأداء نموذج آخر

3. حساب جميع معاملات الخطأ للنموذجين في للقيم في الجدول المقابل مرة، والقيم الجديدة مرة أخرى

5. المقارنة بين آداء النموذجين بالنظر إلى النسب المحسوبة

Hours Studied	Exam Score	Predicted Score - M1	Predicted Score - M2	Actual Pass?	Predicted Pass? - M3	Predicted Pass? - M4
1	68	79.03	?	N	Υ	?
1	78	79.03	?	N	Υ	?
1	75	79.03	?	N	Υ	?
2	83	82.11	?	Υ	Υ	?
2	80	82.11	?	Υ	Υ	?
2	78	82.11	?	N	Υ	?
2	89	82.11	?	Υ	Υ	?
2	93	82.11	?	Υ	Υ	?
3	90	85.19	?	Υ	Υ	?
3	91	85.19	?	Υ	Υ	?
4	94	88.27	?	Υ	Υ	?
5	88	91.35	?	Υ	Υ	?
5	84	91.35	?	Υ	Υ	?
5	90	91.35	?	Υ	Υ	?
6	94	94.43	?	Υ	Υ	?

Spadily Lucius