Implementation of Nextstrain – Use in a State Public Health Lab

What is Nextstrain?

- Real-time tracking and evolution of pathogens
- Interactive visualization platform
- Visualization power to examine geographic, metadata, and microbial variants

Why Design a Local Build?

COMMUNICATION!! and GENOMIC EPIDEMIOLOGY

- What potential entry points and from which countries or states do we share related isolates?
- Transmission within the state, can we examine at the county and regional level?
- Do we see a spread from a hot spot to other places within the state?
- Can we overlay any metadata and get a preliminary idea of association of clusters with demographics or clinical outcomes?
- How can we visually understand the variants that are present and what genes are we see variants?

Necessary Dependents

- Python 3
- Pip
- Docker

```
# Python 3
$ python3 --version
$ sudo apt-get install python3.6
# pip3
$ sudo apt install python3-pip
# Docker
https://doc.docker.com/install
https://github.com/StaPH-B/scripts/blob/master/image-
information.md#docker-ce
```

Installation of NextStrain CLI and Docker

```
# Install Nextstrain CLI
$ pip3 install nextstrain-cli==1.16.2
$ nextstrain version
Nextstrain.cli 1.16.2
$ nextstrain check-setup
# Docker Nextstrain Environment
$ nextstrain update
```

Nextstrain Pipeline

- Two main files
 - sequences.fasta
 - metadata.tsv

General Overview of Files

Data Folder

Metadata

- Isolate name must match the same as it is in the sequencing file
- Must have a virus identified
- Include a date of collection in the format (YYYY-MM-DD)
- Include a location

	state_province	region			
hCoV-19/Canada/BC_5306970/2020	sars_cov_2	2020-03-11	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_5282984/2020	sars_cov_2	2020-03-11	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_5275718/2020	sars_cov_2	2020-03-11	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_4799711/2020	sars_cov_2	2020-03-09	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_6129127/2020	sars_cov_2	2020-03-10	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_6004567/2020	sars_cov_2	2020-03-10	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_5979789/2020	sars_cov_2	2020-03-11	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_5522039/2020	sars_cov_2	2020-03-11	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_4540462/2020	sars_cov_2	2020-03-10	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_4143868/2020	sars_cov_2	2020-03-04	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_4143842/2020	sars_cov_2	2020-03-04	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_3972884/2020	sars_cov_2	2020-03-10	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_3968175/2020	sars_cov_2	2020-03-10	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_3842755/2020	sars_cov_2	2020-03-09	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_4122951/2020	sars_cov_2	2020-03-10	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_4118226/2020	sars_cov_2	2020-03-10	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_4078583/2020	sars_cov_2	2020-03-03	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_3989992/2020	sars_cov_2	2020-03-09	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_3808524/2020	sars_cov_2	2020-03-09	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_1318414/2020	sars_cov_2	2020-03-06	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_0554880/2020	sars cov 2	2020-03-13	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 0443574/2020	sars cov 2	2020-03-11	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 8622445/2020	sars cov 2	2020-03-13	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_8606204/2020	sars_cov_2	2020-03-13	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 8897642/2020	sars cov 2	2020-03-11	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 8896915/2020	sars cov 2	2020-03-11	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_8894200/2020	sars_cov_2	2020-03-11	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 8718874/2020	sars cov 2	2020-03-07	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 9574898/2020	sars cov 2	2020-03-13	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 9446031/2020	sars cov 2	2020-03-13	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC_9345715/2020	sars_cov_2	2020-03-13	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 9345042/2020	sars cov 2	2020-03-13	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 8486790/2020	sars cov 2	2020-03-13	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 6502001/2020	sars_cov_2	2020-03-12	Canada	British Columbia	British Columbia
hCoV-19/Canada/BC 7493713/2020	sars cov 2	2020-03-12	Canada	British Columbia	British Columbia
,					

Metadata

hCoV-19/USA/MI-SC2-0005/2020	sars_cov_2	2020-03-09	USA	Michigan
hCoV-19/USA/MI-SC2-0003/2020	sars_cov_2	2020-03-11	USA	Michigan
hCoV-19/USA/MI-SC2-0007/2020	sars_cov_2	2020-03-12	USA	Michigan
hCoV-19/USA/MI-SC2-0008/2020	sars_cov_2	2020-03-12	USA	Michigan
hCoV-19/USA/MI-SC2-0001/2020	sars_cov_2	2020-03-09	USA	Michigan
hCoV-19/USA/MI-SC2-0002/2020	sars_cov_2	2020-03-10	USA	Michigan
hCoV-19/USA/MI-SC2-0006/2020	sars_cov_2	2020-03-11	USA	Michigan
hCoV-19/USA/MI-SC2-0004/2020	sars_cov_2	2020-03-10	USA	Michigan

COUNTY/ ZIP CODE

Sequencing Data

- For SARS-CoV-2 this is a concatenated fasta file
- Nextstrain can start with VCF files as the input data
- Ensure that your sequencing name here matches that with the metadata file
- Metadata information can be included in the sequencing header

∄

>hCoV-19/USA/WA-S88/2020

sequences.fasta

NNTAAAGGTTTATACCTTCCCAGGTAACAACCAACCACTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTAA ACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTTT CGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAAAACACACGTCCAACTCAGTTTGC CTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACAT CTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTTCATCAA ACGTTCGGATGCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGTC GTAGTGGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAG AACGGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGCCGATCTAAAGTCATTTGACTTAGGCGACGAGCTTGGCACTGA TCCTTATGAAGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTGTTACCCGTGAACTCATGCGTGAGCTTAACG GAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGGCCCTGATGGCTACCCTCTTGAGTGCATTAAAGACCTTCTA GCACGTGCTGGTAAAGCTTCATGCACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGTATACTGCTGCCG TGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTCTGAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAAT TGGCAAAGAATTTGACACCTTCAATGGGGAATGTCCAAATTTTGTATTTCCCTTAAATTCCATAATCAAGACTATTCAA CAACCAAATGTGCCTTTCAACTCTCATGAAGTGTGATCATTGTGGTGAAACTTCATGGCAGACGGGCGATTTTGTTAAAG GTTAAAATTTATTGTCCAGCATGTCACAATTCAGAAGTAGGACCTGAGCATAGTCTTGCCGAATACCATAATGAATCTGG AGTGTGCCTATTGGGTTCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTGTTGGAGAAGGTTCCGAAGGT CTTAATGACAACCTTCTTGAAATACTCCAAAAAGGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGA GATCGCCATTATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTTTTGGATTATAAAGCAT TCAAACAAATTGTTGAATCCTGTGGTAATTTTAAAGTTACAAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAA CAGAAATCAATACTGAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTTGTTGTACGATCAATTTTCTCCCGCACTCT TGAAACTGCTCAAAATTCTGTGCGTGTTTTTACAGAAGGCCGCTATAACAATACTAGATGGAATTTCACAGTATTCACTGA GACTCATTGATGCTATGATGTTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTGGTGTT AGAGAAGTTTAAGGAAGGTGTAGAGTTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAA TTGGCTTTGTGTGCTGACTCTATCATTATTGGTGGAGCTAAACTTAAAGCCTTGAATTTAGGTGAAACATTTGTCACGCA TTATCTTCTTAGAGGGAGAAACACTTCCCACAGAAGTGTTAACAGAGGAAGTTGTCTTGAAAAACTGGTGATTTACAACCA CACCAACAAAGGTTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATATCACTTTT GATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCCTATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGC CCTCCAGATGAGGATGAAGAAGAAGGTGATTGTGAAGAAGAAGAGTTTTGAGCCATCAACTCAATATGAGTATGGTACTGA

Config File

Colors.tsv

- The variables that you are assigning colors are the ones that were identified in the metadata
- All colors are in HEX Color Code
- There are color schemes that range up to 500 colors in a scheme on:

https://github.com/nextstrain/ncov/blob/master/config/color_schemes.tsv

Open .	-				
country Can	ada	#09E85F			
country USA		#E81409			
country Mex		#990948			
state_provi		Alaska	#5E1D9D		
state_provi		Alabama	#541EA5		
state_provi		Arkansas	5	#4D21AD	
state_provi		Arizona	#4A28B3		
state_provi		Californ	nia	#462FBA	
state_provi		Colorado)	#4235C0	
state_provi		Connecti	icut	#403DC5	
state_provi		District	t of Colu	umbia	#3F45C8
state_provi		Delaware	2	#3F4DCB	
state_provi		Florida	#3F56CE		
state_provi		Georgia	#3F5ED0		
state_provi		Hawaii	#4066CF		
state_provi			#416DCE		
state_provi		Idaho	#4375CD		
state_provi	nce	Illinois	5	#447DCC	
state_provi	nce	Indiana	#4683C8		
state_provi	nce	Kansas	#4989C5		
state_provi	nce	Kentucky	/	#4B8FC1	
state_provi	nce	Louisiar		#4E95BD	
state_provi	nce	Massachu	ısetts	#5199B7	
state_provi	nce	Maryland	d	#549EB1	
state_provi	nce	Maine	#58A2AC		
state_provi	nce	Michigar	า	#5BA6A6	
state_provi		Minnesot		#5FA9A0	
state_provi		Missouri		#64AC99	
state_provi		Mississi		#68AF93	
state_provi	nce		#6CB28C		
state_provi		North Ca		#71B486	
state_provi		North Da	akota	#76B680	
state_provi		Nebraska		#7BB87A	
state_provi			oshire	#80B973	
state_provi		New Jers	-	#86BB6E	
state_provi		New Mexi		#8CBB69	
state_provi			#91BC64		
state_provi		New York		#97BD5F	
state_provi		_	#9DBE5A		
state_provi	nce	Oklahoma	3	#A3BE57	

Lat and Long File (lat_longs.tsv)

- Identify which metadata variable the location is found
- Assign the latitude and longitude to each position that you want geographic resolution present

Reference.gb

- GenBank file for reference strain of choice
- All Michigan local builds are using reference: MN908947

Auspice_config.json

- This file will help with how to configure your auspice visualization
- Identify which coloring choices you want to include, geographical resolutions, layout of build, and filter strains highlighted

```
"title": "Michigan Nextstrain Build for SARS-CoV-2",
"maintainers":
  {"name": "Heather Blankenship"}
"colorings": [
    "key": "gt",
    "title": "Genotype",
    "type": "categorical"
    "key": "date",
    "title": "Date of Collection",
    "type": "continuous"
    "key": "county",
    "title": "County",
    "type": "categorical"
    "key": "region",
    "title": "Epidemiology Region",
    "type": "categorical"
    "key": "state_province",
    "title": "US state and Canadian provinces",
    "type": "categorical"
    "key": "country",
    "title": "North America country",
    "type": "categorical"
"qeo resolutions": [
  "state province",
  "region"
"panels": [
   "tree".
   "map",
   "entropy"
"display_defaults": {
  "map triplicate": true
"filters": [
  "state_province",
  "country",
  "region",
  "date"
```

Filter – filter out any data and subsample the data based on the grouping and number per group

```
rule all:
    input:
        auspice_json = "auspice/sars_cov_2.json",
input fasta = "data/sequences.fasta",
input metadata = "data/metadata.tsv",
dropped strains = "config/dropped strains.txt",
reference = "config/sars cov2 reference.gb",
colors = "config/colors.tsv",
lat longs = "config/lat longs.tsv",
auspice config = "config/auspice config.json"
rule filter:
    message:
        Filtering to
          - {params.sequences per group} sequence(s) per {params.group by!s}
          - from {params.min date} onwards

    excluding strains in {input.exclude}

    input:
        sequences = input fasta,
        metadata = input metadata,
        exclude = dropped strains
    output:
        sequences = "results/filtered.fasta"
    params:
        group_by = "state_province",
        sequences per group = 250,
        min date = 2019
    shell:
        augur filter \
            --sequences {input.sequences} \
            --metadata {input.metadata} \
            --exclude {input.exclude} '
            --output {output.sequences} \
            --group-by {params.group by} \
            --sequences-per-group {params.sequences per group} \
            --min-date {params.min date}
```

Align – multi-sequence analysis with mafft and fill in all gaps with N

Tree – phylogenetic analysis and tree generation with IQ-Tree, this can be changed to RAxML and FastTree as alternatives

```
rule align:
   message:
        Aligning sequences to {input.reference}
          - filling gaps with N
   input:
        sequences = rules.filter.output.sequences,
        reference = reference
   output:
        alignment = "results/aligned.fasta"
   shell:
        augur align \
            --sequences {input.sequences} \
            --reference-sequence {input.reference} \
            --output {output.alignment} \
            --fill-gaps \
            --nthreads 30
rule tree:
   message: "Building tree"
   input:
        alignment = rules.align.output.alignment
   output:
        tree = "results/tree raw.nwk"
    shell:
        augur tree \
            --alignment {input.alignment} \
            --output {output.tree}
```

Refine – infer a time tree and adjustment of branch lengths and assigns confidence values to the tree using Treetime

```
rule refine:
    message:
        Refining tree

    estimate timetree

          - use {params.coalescent} coalescent timescale
          estimate {params.date_inference} node dates
          - filter tips more than {params.clock filter iqd} IQDs from clock expectation
   input:
        tree = rules.tree.output.tree,
        alignment = rules.align.output,
        metadata = input metadata
   output:
        tree = "results/tree.nwk",
       node data = "results/branch lengths.json"
   params:
        coalescent = "opt",
        date_inference = "marginal",
        clock filter iqd = 4
    snell:
        augur refine \
            --tree {input.tree} \
            --alignment {input.alignment} \
            --metadata {input.metadata} \
            --output-tree {output.tree} \
            --output-node-data {output.node data} \
            --timetree \
            --coalescent {params.coalescent} \
            --date-confidence \
            --date-inference {params.date inference} \
            --clock-filter-iqd {params.clock filter iqd}
```

Traits – Infer ancestral traits

Ancestral – Infer ancestral sequences at each node

Translate – used to identify amino acid mutations

Export – export all of the data that is needed to visualize the build into the FILE.json file

```
rule traits:
    message: "Inferring ancestral traits for {params.columns!s}"
    input:
        tree = rules.refine.output.tree,
        metadata = input metadata
    output:
        node data = "results/traits.ison"
    params:
        columns = "state_province region country"
    snett:
        augur traits \
            --tree {input.tree} \
            --metadata {input.metadata} \
            --output-node-data {output.node data} \
            --columns {params.columns} \
            --confidence
```

Running the Docker Image

```
mdhhs-bol@mdhhsbol-HP-Z8-G4-Workstation: ~/sars-cov-2-northAmerica-nextstrain/auspice
File Edit View Search Terminal Help
mdhhs-bol@mdhhsbol-HP-Z8-G4-Workstation:~$ conda activate artic-ncov2019
(artic-ncov2019) mdhhs-bol@mdhhsbol-HP-Z8-G4-Workstation:~$ cd sars-cov-2-northAmerica-nextstrain/
(artic-ncov2019) mdhhs-bol@mdhhsbol-HP-Z8-G4-Workstation:~/sars-cov-2-northAmerica-nextstrain$ nextstrain build .
Building DAG of jobs...
Nothing to be done.
Complete log: /nextstrain/build/.snakemake/log/2020-04-22T212251.192086.snakemake.log
(artic-ncov2019) mdhhs-bol@mdhhsbol-HP-Z8-G4-Workstation:~/sars-cov-2-northAmerica-nextstrain$ cd auspice/
(artic-ncov2019) mdhhs-bol@mdhhsbol-HP-Z8-G4-Workstation:~/sars-cov-2-northAmerica-nextstrain/auspice$ nextstrain view .
   Open <http://127.0.0.1:4000/> in your browser.
    Warning: No datasets detected.
[verbose]
                Serving index / favicon etc from "/nextstrain/auspice"
                Serving built javascript from
                                                    "/nextstrain/auspice/dist"
[verbose]
Auspice server now running at <a href="http://0.0.0.0:4000">http://0.0.0.0:4000</a>
Serving auspice version 2.12.0
Looking for datasets in /nextstrain/auspice/data
Looking for narratives in /nextstrain/auspice/narratives
```

Auspice

Results

Turn it into a local build you can share!

- Website to visualize json file https://auspice-us.herokuapp.com/
- Any json files that are created from nextstrain can now be password protected and shared with state epidemiologists and laboratorians

Additional Considerations

- Additional metadata can be added into a build
 - Demographic information
 - Higher geographic resolution (zip code)
 - Submitter information (which hospital or long-term care facility)
 - Clinical outcomes (hospitalized, death, asymptomatic)

To-Do

- Automate the updates of sequence data file and the metadate file for Michigan only build
 - A large amount of this work is pulling together the metadata for each isolate

Discussion