Brain-like Object Manifold Separation in Deep Neural Networks

Capstone Project Presentation by **Niranjan Rajesh**Under the Supervision of **Professors Debayan Gupta and Venkat Ramaswamy**

Table of contents

Motivation

Setting the scene - solving visual intelligence

O2

Research Question

On Neural Manifolds in Deep Networks

O4

O5

O6

Methodology

Experiment Design – obstacles and solutions

Results

Analysis and Anomalies

Conclusion

Takeaways and Future Work

01

Motivation

Setting the scene - solving visual intelligence

Solving Visual Intelligence - Bridging the gap between Machine and Minds

- Draw inspiration from Neuroscience to advance Al?
- Can we adapt learnings from how the brain solves object recognition to computer vision?

Computer Vision Today – Very Deep Networks

- State-of-the-art today:
 - Convolutional Neural Networks (CNNs)
 - Vision Transformers
- Object Recognition: Image Classification and Semantic Segmentation

CNNs – Historically Inspired by Neuroscience

- Hubel and Wiesel (1959) Simple and Complex cells
- Fukushima (1980) the Neocognitron
- LeCun (1989) LeNet, the first 'convolutional' neural network
- AlexNet, ResNets, VGGs, MobileNets, ...

Hubel, D. H., & Wiesel, T. N. (1959)

Fukushima, K. (1980)

The Gap: Where CNNs fall short

Bridging the Gap by turning back to the Brain

- Understand the visual information processing of the primate visual system to build better networks
- Neural Manifolds a very helpful tool in uncovering the secrets of stimuli representations in neural networks

02

Technical Background

CNNs, Primate Visual Pathways, Intrinsic Manifolds

A Quick CNN Crash Course

CNN Crash Course - Convolutions

CNN Crash Course

Primate Visual Pathways

Neural Manifolds

Task-specific subspaces in the larger neural space

(Sadtler et al, 2014)

Manifolds in Vision

DiCarlo, J. J., & Cox, D. D. (2007)

The Goal of the Visual System - Disentanglement

The Goal of the Primate Visual System

- Transform representations from 'difficult to decode' to 'easy to decode'
- Separation of Object Manifolds over regions in the visual pathway

My Research Question

• Bridging the gap — comparing visual information processing

"Does a CNN's layer-wise Object Manifolds get more linearly separable the deeper you go?"

Title Review: Brain-like Object Manifold Separation in Deep Neural Networks

03

Methodology

Experiment Design, Obstacles and Solutions

Answering the question

"Does a CNN's layer-wise object manifolds get more linearly separable the deeper you go?"

Algorithm:

- 1. Train a CNN on an Image Classification dataset
- 2. Get layer-wise activations (manifold points) for two different objects
- 3. Verify degree of linear separability for each layer activations

First Attempt

Initial Solution:

- Custom Object-Invariant Dataset of two objects
- Obtain a pretrained-CNN to classify these objects
- Run my algorithm on it

Problem: Always linearly separable! Why?

The "Blessing" of Dimensionality

Stats Stack Exchange

6000 data points and 13,000 dimensions

New Approach

"Does a CNN's layer-wise class manifolds get more linearly separable the deeper you go?"

Algorithm:

- 1. Obtain a CNN and dataset keeping in mind the Dimension problem
- 2. Train the CNN on the Image Classification dataset
- 3. Get layer-wise activations (manifold points) for two different objects
- 4. Verify degree of linear separability for each layer activations

Architecture and Dataset

10,000 data points and <8k dimensions

MobileNet v2

CIFAR10

Architecture and Dataset

Choosing a linear classifier

Choosing binary subsets of the data

Choosing binary subsets of the data

Binary Subsets:

- 1. Dogs vs Cats (Hard)
- 2. Horse vs Ship (Easy)
- 3. Truck vs Automobile (??)

Final Approach

"Does a CNN's layer-wise class manifolds get more linearly separable the deeper you go?"

Algorithm:

- 1. Obtain a CNN and dataset keeping in mind the Dimension problem
- 2. Train the CNN on the Image Classification dataset
- 3. For the 3 binary subsets of the dataset:
 - a. Get layer-wise activations (manifold points) for two different objects
 - b. Verify degree of linear separability for each layer activations

04

Results

Analysis and Anomalies

Initial Observations – Dog vs Cat

Observation 1:

Initial improvement in linear separability from pixel space

Initial Observations – Dog vs Cat

Observation 2:

Increasing trend in degree of linear separability

Initial Observations – Dog vs Cat

Observation 3:

Uncharacteristic drop in separability towards the top of the network

Observations for different binary data subsets

Observation 4:

"Easier" datasets achieve more separability in the layers

What about Truck v Auto?

Observations for different binary data subsets

Observation 5:

Most learning has taken place for truck-auto

Observations for different binary data subsets

Learning decision boundaries is equivalent to learning to 'transform' representations into more linearly separable spaces!

The Uncharacteristic Drop

Possible reasons:

- Too many layers
- Change in Feature learning strategy

Needs to be further investigated

05

Conclusion

Takeaways and Future Work

Takeaways

- The first few layers of the CNN significantly improve linear separability
- The layers of the CNN improve linear separability with depth
- The 'difficulty' of dataset determines the degree of separability a CNN can achieve
- Learning decision boundaries == Learning to separate manifolds

Future Work to address Limitations

- Investigate the drop in separability further
- Verify results across more architectures and datasets
- Binary to 3-way, 4-way, n-way classification
- Class Manifolds vs Object Manifolds

Tying it all together – Thesis Directions

- Results suggest that CNNs process visual information in a similar manner — manifold separation
- Can we analyse behaviour of CNNs with the help of manifolds?
- Can we manipulate the manifolds of networks to design new behaviour?
- Simulating neural manifolds for tasks? Advance AI?

Thank You

Prof. Debayan Gupta, Ashoka University Prof. Venkat Ramaswamy, BITS Pilani Prof. Subhashis Banerjee, Ashoka University Prof. Raghavendra Singh, Ashoka University