

Introduction aux techniques de base en microbiologie classique

BIO1410 Hiver 2025

Microbiologie Environnementale

Introduction

Importance de la participation / présence

Respect des règles de sécurité

- Adresses courriels:
 - <u>betti.pierre@courrier.uqam.ca</u>
 - ross.david.2@courrier.uqam.ca
- S'adresser à nous pour les questions en lien avec le labo

Microbiome

- Ensemble des microorganismes vivants dans un environnement Différentes parties du corps humain, plante, sol, eau, air, etc.
- Historiquement étudiés à l'aide de milieux de culture et d'observations
 Seulement environ 1% des microorganismes peuvent être cultivés en laboratoire (Hofer, 2018)

 Aujourd'hui beaucoup d'études réalisées à partir de l'ADN environnemental (eDNA)

Pas besoin de cultiver en laboratoire

Importance des microorganismes

- Santé générale (Human Microbiome Project 2007 2016)
- Alimentation (World Institute of Kimchi)
- Découverte de nouveaux médicaments (Streptomyces hygroscopicus)
- Restauration d'œuvres d'art (Serratia ficaria SH7)
- Origine des eucaryotes (Château de Loki et Lokiarchaeum)

Objectif du cours

Le microbiome humain

Labo 1 (21 janvier) : Introduction aux techniques de base en microbiologie classique (visualisation des microorganismes, utilisation d'un microscope, techniques d'observation, culture stérile, pipetage, ensemencement, etc.)

Labo 2 (4 février) : Introduction à l'analyse de l'ADN, échantillonnage du microbiome humaine, extraction de l'ADN d'une bactérie et électrophorèse

Labo 3 (11 mars): Introduction à la bio-informatique et à l'analyse des séquences (attention: Salle informatique PK-S1535)

Labo 4 (18 mars): Introduction à la bio-informatique et analyse des séquences par BLAST, analyses statistiques des données

Remise du rapport 1 avril

Résumé des séances

Familiarisation avec les techniques de bases Question de recherche Mise en culture sur gélose

21 janvier

Observation de vos cultures Échantillonnage Extraction et électrophorèse

4 février

Séquençage Présentation de vos résultats

11 mars

Analyses bio-info BLAST

18 mars

Objectifs du labo 1

 Se familiariser avec les milieux de culture et ensemencer des milieux de culture stérile

Apprendre à utiliser le microscope optique

Apprendre à utiliser une micropipette

Milieux de cultures

- Peuvent être liquides ou solides
 - Ajout d'agar pour les géloses

- CLOSE CHARLES THE STATE OF THE
- Permettent la culture, le transport, la conservation des microorganismes
- Différents types de milieux
 - Enrichis (gélose sang)
 - Sélectifs et différentiels (MacConkey)
 - Différentiels (gélose sang)

Gélose MacConkey

A : fermentation du lactose

B : pas de fermentation

Gélose sang

C : pas d'hémolyse

D: avec hémolyse

Isolement

- Technique ayant pour but d'obtenir une culture pure
 - Population de microorganismes provenant d'une seule cellule initiale
 - Permet de caractériser une espèce
 - Chaque sphère est une colonie

Isolement par stries

Manipulation stérile

Travail en asepsie: Technique permettant de ne pas apporter de

microorganismes à l'objet manipulé.

Zone de stérilité du bec bunsen

Nettoyage à l'éthanol 70% ou javel

Limiter la parole au-dessus des échantillons

Stérilisation des instruments à la flamme

Identification des microorganismes

- Critères morphologiques macroscopiques:
 - Certains critères sont associés à des espèces en particulier

Identification des microorganismes (exemple)

- Caractéristiques: 1mm, rondes, régulières, bombées, lisses, brillantes, couleur jaune/or.
 - Suspicion de Staphylococcus aureus.

 Nécessite toujours une vérification par biochimie

Agar art

Compétition officielle par

Préparation de cultures bactériennes

Vous disposez de:

- Écouvillons stériles
- Gélose sang
- Crayon gras et ruban adhésif

Méthode d'ensemencement:

- Séparer votre gélose en deux puis identifier votre gélose et chacune des moitiés (initiale – # d'équipe – Date)
- Prendre l'écouvillon stérile et le tremper dans l'eau physiologique
- Enlever l'excès de liquide, pour que l'écouvillon soit humide
- Frotter l'écouvillon humide sur la région à l'étude afin d'y prélever des microbes
- Ouvrir la gélose et strier doucement avec l'écouvillon la moitié de la surface de la gélose
- Répéter pour la deuxième région sur la seconde moitié de la gélose

Microscope – Première méthode

- Microscope simple 1590 par Zacharias Janssen (1585-1632)
- Observation des premiers microorganismes par Antonie van Leeuwenhoek (1632-1723)
- Nécessaire à l'observation de microorganismes
 La limite de résolution de l'œil est de 0.2mm à 25cm
- La taille d'une bactérie varie de 1 à 10μm

Microscope de van Leeuwenhoek

Grossissement

Image observée

Différentes tailles d'objectifs

Tourelle porte objectifs

100 Oculaire 10 Objectif Échantillon Condenseur Lampe

Occulaires

Objectif à immersion

Différentes tailles d'objectifs

L'huile à immersion permet une réfraction des rayons, similaire au verre

Dépôt d'une goutte d'huile à immersion sur la lame

AJUSTEMENT AVEC VIS MICROSCOPIQUE SEULEMENT!

Types de préparation

État frais

Permet d'observer la mobilité

Vidéo vie sous microscope

Frottis

Permet d'appliquer des colorations

Coloration de GRAM

Permet de classifier les bactéries en fonction des caractéristiques de leur paroi

GRAM+
GRAM-

Morphologie de la paroi des GRAM- et GRAM+

Coloration de GRAM

- 1. Fixer les microorganismes contenus dans le liquide sur la lame
- 2. Colorer l'intégralité des microorganismes avec le cristal violet
- 3. Fixer le cristal violet avec l'iode
- 4. Décolorer uniquement les GRAM- avec l'alcool
- 5. Recolorer les GRAM— avec la safranine

Coloration bleu de méthylène

- Discriminer les cellules mortes des cellules vivantes
- Colorer les microorganismes pour une meilleure observation
- Colore l'ADN d'un bleu plus intense, donc meilleur vision du noyau

Bactéries

Cellule de l'épithélium buccale

Morphologie

 Morphologie et arrangement des microorganismes entre eux

- Noms issus de ces caractéristiques:
 - Diplocoque: coques par deux
 - Strepto- : en chaines
 - Staphylo- : en amas

Observations

Escherichia coli (GRAM–) et Staphylococcus aureus (GRAM+) X1000

Spirillum volutans avec flagelles (Coloration de Gray) x1000

Observations

Endospores colorés en vert chez *Bacillus subtilis* X1000

Streptocoques (coloration de Gram) x1000

Exercice de pipetage

Vous disposez de :

- Spectrophotomètre et cuvette
- Kimwipes
- Micropipette (P20 P200 P1000)
- Embouts de pipettes
- DCPIP
- Parafilm

Calibration du spectrophotomètre

- 1. Brancher et allumer le spectrophotomètre (bouton derrière)
- 2. Attendre que l'appareil se réchauffe
- Sélectionner SPEC 200
- 4. Régler absorbance à 600 nm
- 5. Utiliser la P1000 et un bécher pour mettre 1 ml d'eau distillée dans la cuvette
- 6. Nettoyer avec un kimwipe les côtés de la cuvette (le gras des doigts peu affecter la lecture)
- 7. Placer la cuvette dans le sens du faisceau et fermer le couvercle
- 8. Appuyer sur GO
- 9. Une valeur clignotera, lorsque stable, appuyer sur Enter
- 10. Appuyer sur le bouton 0.00 pour calibrer
- 11. Vous pouvez maintenant lire vos autres cuvettes en les insérant puis en appuyant Enter lorsque la valeur est stable (ne réappuyer pas sur 0.00 une fois la calibration faite)

Utilisation du spectrophotomètre

	Cuvette # 1 (P200)	Cuvette # 2 (P200)	Cuvette # 3 (P20)	Cuvette # 4 (P10)
Eau distillée (P1000)	900 μΙ	950 μΙ	980 μΙ	995 μΙ
Pipette	P200	P200	P20	P10
DCPIP	100 μΙ	50 μΙ	20 μΙ	5 μΙ
Valeur obtenue # 1				
Valeur obtenue # 2				
Valeur obtenue # 3				
Moyenne				27

