Revisão de Probabilidade e Estatística

Aula 1 - Parte 2

Aishameriane Schmidt

PPGECO/UFSC

Fevereiro de 2019.

Programa

Aula 1

- Teoria dos conjuntos: Revisão dos principais resultados de teoria dos conjuntos.
- 2. Definições de probabilidade: axiomática, frequentista e subjetiva.
- 3. Probabilidade de eventos.
- 4. Independência de eventos, probabilidade condicional e teorema de Bayes. - Possivelmente fica para amanhã

Um pouco de história

▶ A probabilidade surgiu a partir da discussão de Pierre de Fermat e Blaise Pascal a respeito do problema dos pontos (no ano de 1654);

Um pouco de história

- A probabilidade surgiu a partir da discussão de Pierre de Fermat e Blaise Pascal a respeito do problema dos pontos (no ano de 1654);
- Sabemos que a matemática é uma das ciências mais antigas existentes;
 - Se a probabilidade é uma área da matemática, por que levou tanto tempo para que fosse formalizada?
- Algumas referências: https://tinyurl.com/yabd7jbg, [Bernstein, 1996] (probabilidade, atuária, estatística) e [Salsburg, 2001] (estatística)

Definições básicas [Mittelhammer, 2013]

Empírica ou Clássica

Número de ocorrências de um fenômeno em n repetições de um experimento

Axiomática

Probabilidade como uma função que satisfaz os três axiomas de Kolmogorov

Subjetiva

Representação de uma crença, pode ser atribuída a tudo que é incerto ou desconhecido

Probabilidade clássica ou por frequência relativa

Definição

Probabilidade por frequência relativa

Seja n o número de vezes que um experimento é repetido sob condições idênticas. Seja A o evento no espaço amostral Ω e defina n_A o número de vezes que o evento A ocorreu. Então, a probabilidade do evento A é igual a:

Probabilidade clássica ou por frequência relativa

Definição

Probabilidade por frequência relativa

Seja n o número de vezes que um experimento é repetido sob condições idênticas. Seja A o evento no espaço amostral Ω e defina n_A o número de vezes que o evento A ocorreu. Então, a probabilidade do evento A é igual a:

$$\mathbb{P}(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

Probabilidade subjetiva

Definição

Probabilidade subjetivista

Um número real, $\mathbb{P}(A)$, contido no intervalo [0,1] e escolhido para expressar o grau de crença pessoal na possibilidade de ocorrência de um evento A, sendo que 1 representa absoluta certeza.

Probabilidade axiomática

Definição

Probabilidade axiomática

Seja $\mathbb P$ uma função que tem como domínio uma σ -álgebra definida sobre o espaço amostral $\mathscr F$ e contradomínio em $\mathbb R$, isto é, temos $\mathbb P:\mathscr F\to\mathbb R$, onde $\mathscr F$ é uma σ -algebra em Ω . Diremos que $\mathbb P:\mathscr F\to\mathbb R$ é uma função de probabilidade (ou medida de probabilidade) se atender aos seguintes axiomas:

Probabilidade axiomática

Definição

Probabilidade axiomática

Seja $\mathbb P$ uma função que tem como domínio uma σ -álgebra definida sobre o espaço amostral $\mathscr F$ e contradomínio em $\mathbb R$, isto é, temos $\mathbb P:\mathscr F\to\mathbb R$, onde $\mathscr F$ é uma σ -algebra em Ω . Diremos que $\mathbb P:\mathscr F\to\mathbb R$ é uma função de probabilidade (ou medida de probabilidade) se atender aos seguintes axiomas:

1. $\mathbb{P}(A) \geq 0$, $\forall A \subset \Omega$ (Axioma da não-negatividade);

Probabilidade axiomática

Definição

Probabilidade axiomática

Seja $\mathbb P$ uma função que tem como domínio uma σ -álgebra definida sobre o espaço amostral $\mathscr F$ e contradomínio em $\mathbb R$, isto é, temos $\mathbb P:\mathscr F\to\mathbb R$, onde $\mathscr F$ é uma σ -algebra em Ω . Diremos que $\mathbb P:\mathscr F\to\mathbb R$ é uma função de probabilidade (ou medida de probabilidade) se atender aos seguintes axiomas:

- **1.** $\mathbb{P}(A) \geq 0$, $\forall A \subset \Omega$ (Axioma da não-negatividade);
- **2.** $\mathbb{P}(\Omega) = 1$ (Axioma da normalização);

Probabilidade axiomática

Definição

Probabilidade axiomática

Seja $\mathbb P$ uma função que tem como domínio uma σ -álgebra definida sobre o espaço amostral $\mathscr F$ e contradomínio em $\mathbb R$, isto é, temos $\mathbb P:\mathscr F\to\mathbb R$, onde $\mathscr F$ é uma σ -algebra em Ω . Diremos que $\mathbb P:\mathscr F\to\mathbb R$ é uma função de probabilidade (ou medida de probabilidade) se atender aos seguintes axiomas:

- **1.** $\mathbb{P}(A) \geq 0$, $\forall A \subset \Omega$ (Axioma da não-negatividade);
- **2.** $\mathbb{P}(\Omega) = 1$ (Axioma da normalização);
- **3.** Se $(A_n)_{n\in\mathbb{N}}$ é uma sequência de conjuntos disjuntos em Ω , $\mathbb{P}(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mathbb{P}(A_i)$ (Axioma da aditividade enumerável).

Probabilidade axiomática

Definição

Probabilidade axiomática

Seja $\mathbb P$ uma função que tem como domínio uma σ -álgebra definida sobre o espaço amostral $\mathscr F$ e contradomínio em $\mathbb R$, isto é, temos $\mathbb P:\mathscr F\to\mathbb R$, onde $\mathscr F$ é uma σ -algebra em Ω . Diremos que $\mathbb P:\mathscr F\to\mathbb R$ é uma função de probabilidade (ou medida de probabilidade) se atender aos seguintes axiomas:

- **1.** $\mathbb{P}(A) \geq 0$, $\forall A \subset \Omega$ (Axioma da não-negatividade);
- **2.** $\mathbb{P}(\Omega) = 1$ (Axioma da normalização);
- **3.** Se $(A_n)_{n\in\mathbb{N}}$ é uma sequência de conjuntos disjuntos em Ω , $\mathbb{P}(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mathbb{P}(A_i)$ (Axioma da aditividade enumerável).

Iremos diferenciar a função de probabilidade da probabilidade, sendo que esta última é a imagem de um evento através da função \mathbb{P} (cont.)

Axiomas de Kolmogorov

Qualquer função cujo domínio é uma emph σ -álgebra sobre espaço amostral com contradomínio em $\mathbb R$ que atende os axiomas 1, 2 e 3 será chamada de *medida de probabilidade*.

Axiomas de Kolmogorov

Qualquer função cujo domínio é uma emph σ -álgebra sobre espaço amostral com contradomínio em $\mathbb R$ que atende os axiomas 1, 2 e 3 será chamada de *medida de probabilidade*.

Observe que a imagem da função é o intervalo [0,1] como decorrência dos axiomas. A imagem de um evento $A\subset\Omega$ gerada pela medida de probabilidade $\mathbb{P}(\cdot)$ é chamada de **probabilidade do evento** A.

Axiomas de Kolmogorov

Qualquer função cujo domínio é uma emph σ -álgebra sobre espaço amostral com contradomínio em $\mathbb R$ que atende os axiomas 1, 2 e 3 será chamada de *medida de probabilidade*.

Observe que a imagem da função é o intervalo [0,1] como decorrência dos axiomas. A imagem de um evento $A\subset\Omega$ gerada pela medida de probabilidade $\mathbb{P}(\cdot)$ é chamada de **probabilidade do evento** A.

A tripla $(\Omega, \mathscr{F}, \mathbb{P}(\cdot))$ é chamada de *espaço de probabilidade* e contém toda a informação necessária para associar probabilidade aos eventos do experimento.

Referências I

Bernstein, P. (1996).

Against the gods: The remarkable story of risk. Wiley New York.

Mittelhammer, R. (2013).

Mathematical statistics for economics and business. Springer.

Salsburg, D. (2001).

The lady tasting tea: How statistics revolutionized science in the twentieth century. Macmillan.