

SINGLE-SUPPLY QUAD OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM3403A is high performance ground sensing quad operational amplifier featuring the high slew rate and no cross-over distortion.

The NJM3403A is improved version of the NJM2902.

■ FEATURES

- Single Supply
- Operating Voltage
- Low Operating Current
- Slew Rate
- Package Outline
- Bipolar Technology
- (+4V~+36V)
- (3mA typ.) (1.2V/ µs typ.)

DIP14, DMP14, SSOP14

■ PACKAGE OUTLINE

■ PIN CONFIGURATION

PIN FUNCTION

- 8.C OUTPUT 9.C-INPUT 1.A OUTPUT 2.A-INPUT 3 .A+INPUT 4 .V+ 10.C+INPUT 11. V-5.B+INPUT 12.D+INPUT
- 6.B-INPUT 13.D-INPUT 7.B OUTPUT 14.D OUTPUT

■ EQUIVALENT CIRCUIT (1/4 Shown)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*(V*/V-)	36(or ±18)	V	
Differential Input Voltage	V _{ID}	36	v	
Input Voltage	V ₁	-0.3~+36	v	
Power Dissipation		(DIP14) 500	mW	
	P _D	(DMP14) 300	mW	
		(SSOP14) 300	mW	
Operating Temperature Range	Topr	-20~+75	r	
Storage Temperature Range	Tstg	-40~+125	r	

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V^{+}/V^{-}=\pm 15V)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S=0\Omega$	_	2	5	mV
Input Offset Current	I _{IO}		_	5	50	пA
Input Bias Current	I _B		_	70	200	пA
Large Signal Voltage Gain	A_{V}	$R_L > 2k\Omega$	88	100	_	dB
Maximum Output Voltage Swing	V _{OM}	$R_L=2k\Omega$	±13	±14	l —	v
Input Common Mode Voltage Range	V _{ICM}		-15 ~+13	_	_	v
Common Mode Rejection Ratio	CMR	DC .	70	90	_	dB
Supply Voltage Rejection Ratio	SVR		-80	94		dB
Output Source Current	I _{SOURCE}	$V_{IN}^{+} = 1V, V_{IN}^{-} = 0V$	20	30	_	mA
Output Sink Current	I _{SINK}	$V_{IN}^{+} = 0V, V_{IN}^{-} = 1V$	10	20	_	mA
Channel Separation	CS	f=1k~20kHz Input Referred	_	120	l —	dB
Operating Current	Icc	R _L =∞	_	3	5	mA
Slew Rate	SR		[_ :	1.2	_	V/µS
Unity Gain Bandwidth	f _T		_ '	1.2		MHz
Total Harmonic Distortion	THD	$f=20kHz$, $V_{O}=10V_{PP}$	I _	1	_	%

■ TYPICAL CHARACTERISTICS

Open Loop Voltage Gain vs. Frequency

Maximum Output Voltage Swing vs. Frequency

Equivalent Input Noise Voltage vs. Frequency

Output Source Current Output Sink Current vs. Output Voltage Swing

Square Wave Respons

Maximum Output Voltage vs. Load Resistance

4

■ TYPICAL CHARACTERISTICS

Input offset Voltage vs. Temperature

Input Bias Current vs. Temperature

Operating Current vs. Temperature

Maximum Output Voltage Swing vs. Temperature

Output Source Current vs. Temperature

Slew Rate vs. Temperatute

■ TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage

Output Voltage Swing vs. Operating Voltage

Crossover Distortion

Photos (1) and (2) show the output waveforms of NJM3403A and operational amplifier having crossover distortion. The NJM3403A eliminates the crossover distortion through the A, B class output stage as shown in the photo. NJM3403A IC has realized a wide band and a high slew rate in addition to the low distortion.

(1) NJM3403A Output Waveform

(2) Crossover Distortion Example

f = IkHz, $R_L = 2k\Omega$, Vertical Axis: 2V/div