ЛЕКЦІЯ11

Розфарбування графів. Хроматичне число

Розфарбування графів. Хроматичне число

Задачі розфарбування вершин або ребер графа займають важливе місце в теорії графів.

До задачі побудови розфарбування графа зводиться цілий ряд практичних задач.

Одна з областей – складання розкладів.

- . розкладу для освітніх закладів;
- розкладу в спорті;
- планування зустрічей, зборів, інтерв'ю;
- розкладу транспорту, у тому числі авіатранспорту;
- розкладу для комунальних служб;
- інші.

Розфарбування

Нехай $G = \begin{pmatrix} V, E \end{pmatrix}$ — скінченний граф, а k — деяке натуральне число.

Вершинне розфарбування.

Довільну функцію виду

$$f:V
ightarrow N_k$$
, де $N_k=ig\{1,2,...,kig\}$,

називають вершинним

k-розфарбуванням

Реберне розфарбування

Довільну функцію виду

$$f:E
ightarrow N_k$$
, де $N_k=ig\{1,2,...,kig\}$,

називають реберним

k-розфарбуванням

Правильне вершинне розфарбування

Розфарбування називають *правильним*, якщо кольори суміжних вершин не співпадають,

тобто
$$\forall (u,v) \in E \implies f(u) \neq f(v)$$
.

Правильне реберне розфарбування

Розфарбування називають *правильним*, якщо кольори суміжних ребер не співпадають, тобто

$$orall v \in V \implies f\!\left(v, u_i\right)$$
 мають різні кольори

де
$$u_i \in \Gamma^+(v) \cup \Gamma^-(v)$$

Розфарбований граф. Граф, для якого існує правильне k-розфарбування, називають розфарбованим графом.

Базовий принцип оптимізації розфарбування

• Якщо функція f не взаємно однозначна, то при |V| = k фактично може бути використано менше, ніж k кольорів.

Правильне розфарбування – це розбиття множини вершин

Правильне k-розфарбування можна розглядати як розбиття множини вершин V графа G на класи

$$\circ$$
 $V_1 \cup V_2 \cup ... \cup V_l = V$, де $l \leq k$,

$$V_i \neq \emptyset, i = 1, 2, ..., l.$$

Кожний клас:

 V_i — це незалежна множина,

Такі класи називають кольоровими класами.

Хроматичне число

Визначення. Мінімальне число k, при якому існує правильне k-розфарбування графа G, називають хроматичним числом цього графа і позначають $X_p(G)$.

Визначення. Якщо $X_p\left(G\right)=k$, то граф G називають k-хроматичним. Тобто його вершини можна розфарбувати k різними кольорами так, що у будь-якого ребра інцидентні вершини матимуть різний колір.

Визначення. Правильне k-розфарбування графа G при $k = X_p \left(G \right)$ називають *мінімальним*.

Визначення. Хроматичне число незв'язного графа дорівнює максимальному з хроматичних чисел його компонент зв'язності.

Приклад.

Розглянемо граф G, зображений на рисунку, на якому показано одне із правильних k-розфарбувань. Натуральними числами 1,2,3,4 позначені кольори відповідних вершин.

Хроматичні числа деяких графів

Для деяких простих графів неважко знайти хроматичні числа.

Приклади.

1. Повний граф K_n , що складається з n вершин, має хроматичне число $X_p\left(K_n\right)=n$

2. Повний граф K_n-e , який складається з n вершин з одним відсутнім ребром, має хроматичне число $X_n \left(K_n-e \right) = n-1$

3. Повні дводольні графи $K_{m,n}$, що складаються з долей |A|=m і |B|=n, мають хроматичне число $X_p\left(K_{m,n}\right)=2$

Теорема. Непустий граф є **біхроматичним** тоді й тільки тоді, коли він не має циклів непарної довжини.

1-хроматичний граф – порожній граф.

2-хроматичний граф — дводольний непустий граф, 2-хроматичні графи, як правило, називають *біхроматичними*.

3-хроматичний граф — циклічний граф з непарним числом вершин у кожному з циклів.

Визначення 1. Якщо граф має n вершин, то його хроматичне число не перевищує n .

Визначення 2. Якщо граф має підграф K_m , то його хроматичне число не менше, ніж m.

Хроматичне число й стандартні характеристики

У загальному випадку хроматичне число графа не можна обчислити, знаючи тільки його стандартні числові характеристики: число вершин, ребер,

компонент зв'язності, розподіл степенів вершин.

Розглянемо графи G_1 й G_2 . Кожний з них має 12 вершин, у тому числі 4 вершини зі степенем 4 і 8 вершин зі степенем 2, 16 ребер, 1 компонент зв'язності. Але, як видно з рисунка, $X_p(G_1)=4$, а $X_p(G_2)=2$.

Оскільки G_1 містить підграф K_4 , то $X_p(G_1)=4$

Оскільки граф G_2 — дводольний, маємо $X_p(G_2)=2$.

Тому надалі мова йтиме про оцінки, а не про точні значення хроматичного числа.

Хроматичне число і щільність графа

Під нижніми оцінками хроматичного числа будемо розуміти нерівності виду $X(G) \ge c$,

де c — деяка константа, що обчислюється на графі G.

Верхня оцінка хроматичного числа — це нерівності виду $X(G) \le c$, де c має той же зміст.

Визначення. Максимальне число вершин, що утворюють повний підграф у графі G, називають **щільністю** G і позначають через $\omega(G)$.

Повний підграф деякого графа G - це підграф, що складається з попарно суміжних вершин.

Перша нижня оцінка може застосовуватися у випадку, якщо підграфом деякого графа є повний підграф.

Перша нижня оцінка

Для довільного графа G справедлива нерівність $X(G) \ge \omega(G)$. Визначення. Будь-яку множину попарно несуміжних вершин графа G називають незалежною множиною (множиною внутрішньої стійкості).

Визначення. Максимальне число вершин у незалежній множині називають *числом незалежності* (внутрішньої стійкості) графа G й позначають через $\beta(G)$.

Число незалежності графа — це поняття, протилежне за змістом поняттю щільності графа. Якщо G — звичайний граф, а \bar{G} — його доповнення, то $\beta(G) = \omega(\bar{G})$.

Друга нижня оцінка. Для довільного графа G справедлива нерівність

$$X(G) \ge \frac{n(G)}{\beta(G)}$$

Третя нижня оцінка хроматичного числа

Існують нижні оцінки хроматичного числа, які використовують тільки ті характеристики графа, що легко обчислюються. Наведемо без доведення одну з них.

Якщо G – звичайний граф і

$$n = n(G)$$
 – кількість вершин графа G ,

$$m = m(G)$$
- кількість ребер графа G ,

то хроматичне число
$$X(G) \ge \frac{n^2}{n^2 - 2m}$$
 .

Легко зрозуміти, що в повному графі(як і в будь-якому звичайному графі)

подвоєне число ребер менше квадрата числа вершин, і тому число, що стоїть в знаменнику в правій частині нерівності, завжди додатне.

Як видно з описаних вище результатів, задачі визначення хроматичного числа графа й побудови мінімального розфарбування довільного графа досить складні, а ефективні алгоритми їх розв'язування невідомі. Розглянемо простий алгоритм побудови правильного розфарбування, який у деяких випадках дає розфарбування, близькі до мінімальних.

Алгоритм послідовного розфарбування

1. Якщо вершини $v_1, v_2, ..., v_i$ розфарбовані l кольорами

 $1,2,...,l;\ l \leq i$, то новій довільно взятій вершині v_{i+1}

припишемо мінімальний колір, не використаний при

розфарбуванні суміжних з нею

вершин.

Розфарбування, до якого приводить описаний алгоритм, називають послідовним.

i=9

Рекурсивна процедура послідовного розфарбування

- 1. Фіксуємо порядок обходу вершин.
- 2. Ідемо по суміжних вершинах, використовуючи такий найменший колір, який не викличе конфліктів.
- 3. Якщо на черговому кроці колір вибрати не виходить, то «відкочуємось» до попередньої вершини й вибираємо для неї наступний колір, який не викличе конфліктів.

```
def visit(i):
    if i > n : Print
    else:
        for j in range(1,n+1):
            c=color[j]
        if (знайдено неконфліктний колір с):
            graphcolors[i]= c
             visit(i + 1)
#Виклик функції
    visit(i)
```

Евристичний алгоритм розфарбування з упорядкуванням множини вершин

- 1. Упорядкувати вершини по незростанню степеня.
- 2. Вибрати колір фарбування 1.
- 3. Розфарбувати першу вершину в колір 1.
- 4. Поки не пофарбовані всі можливі вершини,

повторювати розфарбування в обраний колір будь-яку вершину, яка не суміжна з іншою вершиною, уже пофарбованою в цей колір.

5. Повернутися до першої в списку нерозфарбованої вершини і вибрати новий колір.

Число використаних кольорів буде тоді наближеним значенням хроматичного числа графа.

Виникає проблема визначення порядку розфарбування вершин з однаковими степенями

Модифікований евристичний алгоритм розфарбування

Визначення. Степінь вершин — кількість ребер графа G , <u>інцидентних</u> вершині. Степінь вершини v позначається як $\deg(v) = \left|\Gamma(v)\right|$ або для орграфа $\deg(v) = \left|\Gamma^+(v) \cup \Gamma^-(v)\right|$.

Визначення. Двокроковий степінь — сума степенів суміжних вершин з вершиною v: $\left|\Gamma^2(v)\right|$ або для орграфа $\left|\Gamma^{2+}(v)\cup\Gamma^{2-}(v)\right|$.

Визначення. Трикроковий степінь — сума степенів суміжних вершин до суміжних вершин з вершиною $v:\left|\Gamma^{3}(v)\right|$ або для орграфа $\left|\Gamma^{3+}(v)\cup\Gamma^{3-}(v)\right|$

У даній модифікації передбачалося, що якщо дві вершини мають однакових степені, то такі вершини можна впорядкувати за двокроковими степенями.

«Жадібний» алгоритм розфарбування

Нехай дано зв'язний граф G(V,E).

- 1. Задамо множину $monochrom := \emptyset$, куди будемо записувати всі вершини, які можна розфарбувати одним кольором.
- Переглядаємо всі вершини й виконуємо наступний «жадібний» алгоритм

def Greedy():

for (для кожної незафарбованої вершини $v \in V$):

if v не суміжна з вершинами з monochrom:

$$color(v) \coloneqq$$
 колір;
 $monochrom \coloneqq monochrom \cup \{v\}$

Розфарбування графа за методом А. П. Єршова

Андрій Петрович Єршов (1931–1988 рр.), визначний учений в області теоретичного програмування, зробив великий внесок у розвиток інформатики в нашій країні. Ним створений алгоритм розфарбування графа, що вирізняється оригінальною евристичною ідеєю.

Введемо ряд визначень.

Окіл 1-го порядку. Для даної вершини $v \in V$ графа $G\left(V,E\right)$ всі суміжні з нею вершини називають околом 1-го порядку — $R_1\left(v\right)$.

Окіл 2-го порядку. Усі вершини, які перебувають на відстані два від v, називають околом 2-го порядку — $R_2 \left(v \right)$.

Графом-зіркою відносно вершини v назвемо граф $G\left(V,E\right)$, у якого для вершини $v\in V$ всі інші вершини належать околу $R_1\left(v\right)$.

Ідея алгоритму

Розфарбування у колір lpha вершини v утворює навколо неї в «мертву зону» для кольору lpha. Очевидно, при мінімальному розфарбуванні на кожний колір має припадати найбільше число вершин графа. Для цього необхідно, щоб мертві зони хоча б частково перекривалися між собою. Перекриття мертвих зон двох несуміжних вершин v_1 і v_2 досягається тільки тоді, коли одна з них перебуває в околі $R_{2}\left(v_{1}\right)$ іншої, $v_{2}\in R_{2}\left(v_{1}\right)$.

Таким чином, суть алгоритму полягає в тому, щоб на черговому кроці вибрати для розфарбування у колір lpha вершину $v_{2} \in R_{2}\left(v_{1}\right)$. Цей процес повторювати доти, поки у колір lpha не будуть пофарбовані всі можливі вершини графа.

Графічно фарбування вершин v_1 і v_2 у один v_3 колір можна відобразити як «склеювання» цих вершин.

Приклад об'єднання двох вершин: $v_1' \coloneqq v_1 \cup v_2$

Отже, «склеювання» зменшує на одиницю кількість вершин у графі G і зменшує кількість ребер.

Алгоритм

- **1**.Встановити i := 0.
- 2. Вибрати в графі G довільну нерозфарбовану вершину v.
- 3.Встановити i := i + 1 .
- 4.Розфарбувати вершину v у колір i.
- 5.Розфарбовувати у колір i нерозфарбовані вершини графа G, вибираючи їх з $R_2 \left(v \right)$, та склеїти їх поки граф не перетвориться в граф-зірку відносно v.
- 6.Перевірити, чи залишилися нерозфарбовані вершини в графі G. Якщо так, то перейти до п. 2, інакше до п. 7.
- 7. Отриманий повний граф K_i . Хроматичне число графа $X\left(K_i\right)=i$.

Кінець алгоритму.

Висновок з алгоритму Єршова

Суть алгоритму полягає у тому що

- 1. Вибравши довільну вершину, намагаємось стягнути у неї всі можливі інші вершини. В результаті стягування граф перетворюється в граф-зірку.
- 2. Якщо не всі вершини розфарбовані, то вибираємо іншу початкову вершини і знову стягуємо граф у зірку.
- 3. Дії повторюємо, поки не отримаємо повний граф, хроматичне число якого дорівнює хроматичному числу початкового графа.

Приклад розфарбування методом А. П. Єршова

На рисунку зображено граф G, на прикладі якого будемо розглядати роботу евристичного алгоритму Єршова.

Початковий граф G

Виберемо довільну вершину, наприклад, v_1 . Окіл 2-го порядку $R_2\left(v_1\right) = \left\{v_3, v_5, v_7, v_8\right\}$. Склеїмо вершину v_1 , наприклад, з вершиною v_3 : $v_1' = v_1 \cup v_3$. Одержимо граф G_1 , зображений на рисунку.

v₄ v₅ v₆ v₈

Граф $G_{\!\scriptscriptstyle 1}$. Склеєні вершини $v_{\!\scriptscriptstyle 1}$ і $v_{\!\scriptscriptstyle 3}$

Розглянемо тепер граф G_1 . Окіл другого порядку вершини v_1' визначається множиною $R_2\left(v_1'\right) = \left\{v_5.v_7,v_8\right\}$. Склеїмо вершину v_1' , наприклад, з вершиною v_5 : $v_1'' \coloneqq v_1' \cup v_5$. Одержимо граф G_2 , зображений на рисунку.

Граф G_2 . Склеєні вершини v_1^\prime й v_5

У графі G_2 визначимо окіл другого порядку для вершини v_1'' : $R_2\left(v_1''\right) = \left\{v_7\right\}$. Склеїмо вершину v_1'' з вершиною v_7 : $v_1''' = v_1'' \cup v_7$. Одержимо граф G_3 , зображений на наступному слайді — граф, який є зіркою відносно вершини v_1''' .

Граф G_3 . Склеєні вершини $v_1^{\prime\prime}$ й v_7

У графі G_3 виберемо, наприклад, вершину v_2 для фарбування другою фарбою. Окіл 2-го порядку $R_2\left(v_2\right) = \left\{v_6, v_8\right\}$. Склеїмо вершину v_2 , наприклад, з вершиною v_6 : $v_2' = v_2 \cup v_6$. Одержимо граф G_4 , зображений на рисунку.

Граф G_4 еквівалентний K_4 . Склеєні вершини v_2 й v_6

Граф G_4 є повним чотирьохвершинним графом K_4 . Отже, граф G_4 розфарбовується в чотири кольори.

У перший (червоний) колір розфарбовується вершина v_1 й склеєні з нею вершини: v_3, v_5 і v_7 . У другий (жовтий) колір розфарбовується вершина

 v_2 й склеєна з нею вершина v_6 . У третій (зелений) колір розфарбовується вершина v_4 й у четвертий (білий) колір розфарбовується вершина v_8

У підсумку одержуємо правильно розфарбований граф, показаний на рисунку.

Граф G, розфарбований за допомогою алгоритму розфарбування А.П.Єршова

Результати роботи алгоритмів послідовного розфарбування

Отримане розфарбування завжди правильне, але не завжди оптимальне навіть для простих графів.

Розфарбування суттєво залежить від порядку немерації вершини.

Приклад1. Евристичний алгоритм

На першому рисунку вийшов оптимальний результат (2 фарби), а на другому рисунку використано більше кольорів.

Приклад 2. Жадібний алгоритм

"Жадібний" алгоритм, ґрунтуючись на нумерації вершин,

зафарбує в синій колір вершини 1 і 2. Для розфарбування графа 1

тепер потрібно 4 кольори.

Тому актуальна верхня оцінка хроматичного числа.

Теорема 2. Для будь-якого графа G має місце нерівність $X_p\left(G\right) \leq r+1$, де $r=\max_{v \in V}\left(\deg(v)\right)$.

Наслідок. Будь-який кубічний граф розфарбовується за допомогою чотирьох кольорів.

Для спеціальних видів графів застосовують теорему: **Теорема Брукса.** Якщо G — зв'язний неповний граф і $r \geq 3$, де $r = \max_{v \in V} (\deg(v))$, то $X_p(G) \leq r$.

Хоча обидві теореми й дають певну інформацію про хроматичне число графа, але їх оцінки досить неточні.

Дійсно, граф-зірка K_{1n} , який згідно з теоремою Брукса розфарбовується у n кольорів, насправді є біхроматичним.

Ця ситуація значно спрощується, якщо обмежитися **планарними графами**. У цьому випадку легко довести такий досить загальний і важливий факт.

Історично послідовно доведені теореми

Теорема про шість фарб. Для будь-якого планарного (ізоморфного плоскому (у якому ребра перетинаються лише у вершинах)) графа G має місце нерівність $X_n\left(G\right) \leq 6$.

Більш детальний аналіз шляхів зниження верхньої границі хроматичного числа приводить до так званої теореми про п'ять фарб.

Теорема про п'ять фарб. Для всякого планарного графа G має місце нерівність $X_p\left(G\right) \leq 5$.

Теорема про чотири фарби. Кожний планарный граф без петель і кратних ребер є не більш ніж 4-хроматичним. Проблема чотирьох фарб залишалася невирішеною протягом багатьох років. Стверджується, що ця теорема була доведена за допомогою певних міркувань і комп'ютерної програми в 1976 році (Kenneth Appel and Wolfgang Haken. Every Planar Map is Four Colorable. Contemporary Mathematics 98, American Mathematical Society, 1980).

ЗАДАЧА РОЗПОДІЛУ УСТАТКУВАННЯ

На підприємстві планують виконати 8 робіт $v_1, v_2, ..., v_8$. Для виконання цих робіт необхідно 6 механізмів $a_1, a_2, ..., a_6$. Використання механізмів для кожної з робіт визначається наступною таблицею:

Механізм	Робота							
	$ v_1 $	$ v_2 $	v_3	v_4	v_5	v_6	$ v_7 $	v_8
a_1	+		+				+	+
a_2		+		+				
a_3			+			+	+	
a_4	+	+		+	+			
a_5			+		+			+
a_6					+	+		+

Жоден з механізмів не може бути використаний одночасно на двох роботах. Виконання кожної роботи займає 1 годину. Як розподілити механізми, щоб сумарний час виконання всіх робіт був мінімальним і який цей час?

Розв'язок. Розглянемо граф G, вершинами якого є плановані роботи $v_1, v_2, ..., v_8$, а ребра з'єднують роботи, у яких бере участь хоча б один спільний механізм (і які, із цієї причини, не можна проводити одночасно).

Вершини v_1,v_2,v_4,v_5 породжують підграф графа G , ізоморфний K_4 . Отже, $X\{G\} \ge 4$. Отже, X(G) .

Таким чином, усі роботи можна виконати за 4 години.

Для цього, відповідно до знайденого розфарбування графа G, потрібно за 1-у годину виконувати роботи v_1 і v_6 , за 2-у годину — роботи v_2 і v_3 , за 3-ю годину — роботи v_4 і v_8 , за 4-у годину — роботи v_5 й v_7 .

Механізм	Робота							
	$ v_1 $	$ v_2 $	v_3	$ v_4 $	v_5	v_6	$ v_7 $	v_8
a_1	+		+				+	+
a_2		+		+				
a_3			+			+	+	
a_4	+	<u>+</u>		+	+			
a_5			•		+			±
a_6					+	+		+

Задача складання розкладу

Умова задачі

Потрібно прочитати лекції з чотирьох предметів двом групам студентів. Деякі з лекцій не можуть бути прочитані одночасно.

Існує ряд причин, з яких це неможливо:

- 1. Лекцію з даного предмету в різних групах читає той самий лектор.
- 2. Дві лекції одній й тій же групі одночасно не можуть бути прочитані.
- 3. Різні лекції повинні проходити в тому самому приміщенні.

Потрібно скласти розклад так, щоб всі лекції були прочитані за мінімально можливий час (за «одиницю часу» у даній задачі природно розглядати одну пару).

Конкретизуємо постановку задачі

1. Будемо розглядати дві групи студентів: 1 і 2.

2. Предмети:

- обчислювальні методи читає викладач Х,
- дискретна математика читає викладач X,
- математичний аналіз читає викладач Ү,
- українська мова читає викладач Z.

Знайти мінімальне число пар, у які можна «укласти» усі заняття, і скласти відповідний розклад.

Тобто створити максимально щільний розклад

Розв'язок. Побудуємо граф з вершинами О1, О2, Д1, Д2, М1, М2, У1 і У2 (буква відповідає предмету, а цифра — номеру групи).

З'єднаємо ребрами вершини, які відповідають парам, що не можна проводити одночасно.

Одержимо граф, показаний на рисунку:

Вершини О1, О2, Д1 і Д2 цього графа породжують у ньому підграф, ізоморфний графу K_4 . Отже, хроматичне число нашого графа не менше 4. На рисунку зазначено правильне розфарбування нашого графа в 4 кольори.

Отже, хроматичне число графа дорівнює 4, тобто всі заняття можна провести за 4 пари. Відповідний розклад зазначений у таблиці на наступному слайді.

	Група 1	Група 2
1 пара	Обчислювальні методи	Математичний аналіз
2 пара	Математичний аналіз	Обчислювальні методи
3 пара	Українська мова	Дискретна математика
4 пара	Дискретна математика	Українська мова

