

Decisiones bajo incertidumbre -Optimización aplicada a Inteligencia Artificial

Objetivo del curso

Al finalizar este curso el estudiante estará en capacidad de formular y resolver problemas complejos de optimización de sistemas, como entrenamiento de herramientas de aprendizaje de máquina, entre otros, aplicando técnicas analíticas y computacionales, para la toma efectiva de decisiones.

Profesora: Patricia Jaramillo Alvarez

Oficina: M8A-213

Teléfono oficina: 4255143 E-mail: gpjarami@unal.edu.co

Fechas: 3-julio-2020 al 4 de septiembre de 2020 (No hay clases entre el 4 de julio y el 23

de julio por vacaciones)

Horario (máximo): viernes 2:00 pm - 8:00 pm

Material:

Moodle: https://minaslap.net

https://github.com/PatriciaJara/Decisiones-bajo-incertidumbre-en-IA/

Reuniones virtuales: googlemeet, previa invitación

Contenido del curso

- 1. Introducción: Qué es la optimización y su papel en IA
- 2. Principales retos de optimización en IA:
 - Entrenamiento supervisado
 - Diseño de la estructura del modelo (hiper parámetros).
 - Decisiones sobre un sistema para lograr objetivos.
- 3. Optimización para entrenamiento en IA
 - en Redes neuronales
 - En árboles de clasificación

gpjarami@unal.edu.

Facultad de Minas | Sede Medellín |

- En Clusterización
- En Asociaciones
- Otros

4. Funciones de desempeño

- Minimización de error
- Maximizacion de similaridad
- Maximización de casos acertados
- Otras

5. Dificultades en la optimización en IA

- No convexidad
- No continuidad
- Alta no linealidad
- Gran escala: alta número de variables de decisión

6. Métodos de optimización basados en gradiente

- De orden 0
- Gradiente descendente
- SGD Gradiente descendiente estocástico
- Momentum NAG
- Otros

7. Métodos de optimización Metaheurísticos

- Computación evolutiva
- PSO
- Otros

8. Conclusiones

gpjarami@unal.edu.co

Evaluación

Universidad Nacional de Colombia

Actividad	valor
Talleres en clase	25%
Diseño de modelo (parejas)	15%
Problema de entrenamiento 1 (personal)	10%
Problema de entrenamiento 2 (personal)	10%
Problema de optimización de otros sistemas (personal)	15%
Caso de aplicación encontrado en literatura técnica (personal)	10%
Desarrollo de aplicación propio (2 est.max)	15%

Nota: las actividades se entregarán vía Moodle.

Metodología

Jornadas Sincrónicas

Clases magistrales virtuales

Talleres virtuales

Jornadas Asincrónicas

Lecturas

Trabajos a realizar por los estudiantes

Foros

gpjarami@unal.edu.co

Planeación del curso

Universidad Nacional de Colombia

Semana	tema
1. 3 de Julio de 2020	Introducción
2. 24 de julio de 2020	Retos de optimización; entrenamiento
3. 31 de julio de 2020	Funciones de desempeño; Dificultades
4. 7 de Agosto de 2020	Métodos basados en gradiente
5. 14 de Agosto de 2020	Métodos basados en gradiente
6. 21 de Agosto de 2020	Métodos de optimización Metaheurísticos
7. 28 de Agosto de 2020	Métodos de optimización Metaheurísticos
8. 4 de Septiembre de 2020	Conclusiones

Bibliografía recomendada

Se recomienda repasar temas de

- Derivadas
- Vectores, Matrices
- Distribuciones de Probabilidad
- Pvhon

Existen muchos libros en estos temas pero puede consultar:

- Mathematics for machine learning. De M. P. Deisenroth, A. A. Faisal y C. S. Ong published by Cambridge University Press (2020) https://mml-book.com
- Introduction to Deep Learning. From Logical Calculus to Artificial Intelligence. S.
 Skansi. 2018 Springer. Capítulo 2

Otros libros como apoyo al curso:

- Applied Deep Learning. A Case-Based Approach to Understanding Deep Neural Networks. Umberto Michelucci. 2018. Apress, Berkeley, CA
- Mastering Machine Learning with Python in Six Steps M. Swamynathan. Apress
- Optimization for computer visión. An Introduction to Core Concepts and Methods.
 M. A. Treiber. Springer 2013
- Flinn S. (2018) Optimizing Data-to-Learning-to-Action. Apress, Berkeley, CA