CAB420: Overfitting and Linear Regression

WHAT IS IT? AND WHY DO I CARE?

Overfitting and Regression

- Consider a multi-variate linear regression task
- We can (usually) make the model more accurate on the training set by adding more terms
 - Additional variables
 - Higher order terms
- For a time, it will also get more accurate on the test set
 - After a while though, it may go very wrong

Overfitting and Regression

- On the right we have:
 - A sine wave in green, which has been sampled
 - Samples have been offset by noise
 - We seek to fit a curve (in red) to the sampled data

Overfitting and Regression

- M=9 (9th order polynomial) offers the best fit to the data
 - Hits all the points almost perfectly
- M=3 actually captures the function the best
 - Some error in predictions
 - Overall shape correct however
- Consider, how would M=9 and M=3 perform on a new set of points?
 - Which one would look more correct?

Detecting Overfitting

- We cannot observe overfitting using the training set alone
 - Validation and testing sets are required
- Performance will likely always increase on the training set
 - Need to evaluate performance on other data held out of training
 - Validation data, Testing data
- Often referred to as testing if a model generalises to unseen data

Overfitting in Practice

- See CAB420_Regression_Example_2_Regularised_Regression.ipynb
- Demo Overview
 - Load traffic data from Brisbane which contains average travel times between key points on the road network
 - We'll consider
 - The first 8 data series and time of day as predictors
 - The 33rd data series as the response
 - Apply linear regression to data, increase complexity and observe results

Why the 33rd Data Series?

- We're predicting traffic travel times
- These are typically very non-Gaussian, and so don't get modelled very well
 - Lower bound on time, typically lots of values close to this
 - Very, very long tail with increasingly huge travel times due to traffic jams, etc
- The 33rd data series is simply not as bad as some of the others

Simple Linear Model

(linear terms with hour of day categorical term)

Dep. Variable:	x_	10591060	R-squared	:		0.669
Model:	OLS		Adj. R-squared:		0.668	
Method:	Least Squares		F-statistic:		504.2	
Date:	Tue, 09 Jan 2024		Prob (F-statistic):		0.00	
Time:	02:32:45		Log-Likelihood:		-41127.	
No. Observations	7760		AIC:		8.232e+04	
Df Residuals:	7728		BIC:		8.2	54e+04
Df Model:		31				
Covariance Type:		nonrobust				
		std err				
const	15.5238	4.717	3.291	0.001	6.278	24.7
x_10981056_	0.3775	0.012	31.463	0.000	0.354	0.4
x_10581059_	0.6866	0.017	39.482	0.000	0.652	0.7
x_10571056_	0.0194	0.034	0.569	0.570	-0.047	0.0
x_10171007_	-0.0002	0.010	-0.022	0.982	-0.019	0.0
x_11151015_	-0.0976	0.034	-2.835	0.005	-0.165	-0.0
x_10151115_	0.7091	0.057	12.395	0.000	0.597	0.8
x_11031061_	0.2087	0.028	7.542	0.000	0.154	0.2
x_11351231_	0.0437	0.023	1.901	0.057	-0.001	0.0
1	-6.6110	5.373	-1.230	0.219	-17.143	3.9
2	0.6483	5.517	0.118	0.906	-10.167	11.4
3	5.6162	4.561	1.231	0.218	-3.324	14.5
4	7.6226	4.217	1.807	0.071	-0.645	15.8
5	1.6447	4.184	0.393	0.694	-6.557	9.8
6	7.1633	4.290	1.670	0.095	-1.246	15.5

Simple Linear Model

(linear terms with hour of day categorical term)

Simple Linear Model

(linear terms with hour of day categorical term)

Simple Linear Model – In Summary

- R-squared not bad
- Lots of data
- Most terms significant
 - 3 of our other predictors have poor p-values
 - Could investigate co-linearity here
 - May also be predictors that are unrelated to the response
 - Hour of day significant
 - Note that if one of the categorical terms is significant, we consider the whole model significant
- Predictions not too bad
 - Some outliers, likely caused by traffic events
 - Similar performance on training and testing sets
- Residuals not normally distributed
 - Very long tail, possibly caused by traffic events?
- Some evidence of heteroscedasticity

Simple Linear Model: Is it any good?

Sort of

- No overfitting, simple model
- Some poor terms, but most are meaningful
- Predictive power is not too bad, the model seems to capture the main trends
- Residual distributions look problematic
 - Part of this is down to our very non-linear response
- End use needs to be kept in mind is the model fit for purpose? How accurate does it need to be?

Improving the model

Investigate higher order terms

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

A More Complex Model

(quartic terms with interactions, and hour of day categorical term)

- ~500 model parameters
 - Too many terms to reasonably consider p-values, etc
 - R-squared of 0.761
 - It was 0.669, it's better, but that much better

A More Complex Model

A More Complex Model

- Improved R-squared (though with room for further improvement)
- Improved accuracy on training set
- Residuals still not normally distributed
- Massive errors on the testing set
 - Model is overfitting

Complex Linear Model: Is it any good?

- Probably not
 - Unpredictable performance on test data
 - Very high number of parameters
 - Difficult to inspect or tune due to size
 - Likely large amounts of redundancy, though difficult to assess due to model size
- Improving the model
 - Removing terms:
 - Reverting to lower order (i.e. quadratic rather than quartic) would reduce complexity, but may discard useful terms
 - Manual investigation is difficult given model size
 - Regularisation!

CAB420: Regularisation

MAKING MODELS REGULAR?

Bias and Variance

- Bias and Variance are two factors in regression which we try to manipulate in order to find the "best" model.
- The **variance** of a model is the error from sensitivity to small changes in the training data. High variance can lead to overfitting.
 - Somewhat indicated by the R^2
- The **bias** of a model is the error from erroneous assumptions in the model. High bias can lead to underfitting.
 - Somewhat indicated by the RMSE
- As more terms are added to a model (i.e., it becomes more complex), the coefficients more accurately fit the given data (i.e., bias decreases).
- However, as more terms are added the model will become worse at predicting new data (i.e., variance increases) due to over-fitting

Bias and Variance

Regularises

- Reduce the magnitude and/or number of parameters in order to reduce model complexity.
- Reduction in model complexity → reduced variance and increased bias.
- Useful when applied to models with many parameters.
- Regularisation seeks to penalise complex models
 - We have an intuition that a small change in input value to a model should lead to a small change in output value
 - Model complexity often leads to overfitting, reducing parameters (complexity) makes overfitting less likely

Regularisation and Regression

- Regularises are applied by penalising slope terms, β .
- There are two types of regularization we look at in CAB420:
 - L1 regularisation (Lasso regression), and
 - L2 regularisation (ridge regression).
- Both L1 and L2 seek to
 - Penalise big coefficients
 - Favour models with small slopes for individual data points
- Why?
 - A large slope means a small change in the data gives a large change in the estimate
 - Seek to reduce the model's variance, and make estimates more stable

Regularisation and Regression

 \circ With linear regression we aim to find values for eta that minimises

$$\sum_{i=1}^{n} \left(y_i - \sum_j x_{ij} \beta_j \right)^2$$

Regularisation applies a penalty term

$$\sum_{i=1}^{n} \left(y_i - \sum_{j} x_{ij} \beta_j \right)^2 + \lambda P$$

where λ is a weight that controls the influence of our penalty

Regularisation and Regression

- Adds extra term(s) to the objective function
 - Terms don't operate over data or errors, but rather the model parameters
 - Regularisation terms are usually weighted
 - We can control how strong the regularisation is
 - How do we select the weight?
- Regularisation can also help when we have more dimensions than samples
 - Though in such situations we need to use an optimisation algorithm to find parameters

CAB420: Ridge Regression

L2 REGULARISATION

Ridge Regression

Linear Regression with L2 regularisation

Add to our loss term the sum of the coefficients squared

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_2$$

- We don't add the intercept
- Very big slopes are penalised heavily
 - Favour smaller slopes for all terms
 - Weight the L2 term by a factor, lambda
 - The ridge term

Regression Formulation: Revision

- Recall that for OLS regression:
 - Sum of squared errors term:

$$SSE(\beta) = (\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{x}'\mathbf{y} + \beta'\mathbf{x}'\mathbf{x}\beta)$$

• Derivative of SSE with respect to β :

$$\nabla SSE(\beta) = 2(\mathbf{x}'\mathbf{x}\beta - \mathbf{x}'\mathbf{y})$$

• Setting to 0 and solving for β gives the optimal vector, $\hat{\beta}$:

$$\hat{\beta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'\mathbf{y}$$

Ridge Regression Formulation

We want to minimize

$$(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{x}'\mathbf{y} + \beta'\mathbf{x}'\mathbf{x}\beta) + \lambda\beta'\beta$$

• Derivative with respect to β :

$$2(\mathbf{x}'\mathbf{x}\boldsymbol{\beta} - \mathbf{x}'\mathbf{y} + \lambda\boldsymbol{\beta})$$

• Setting to 0 and solving for β gives the optimal vector, $\hat{\beta}$:

$$0 = \beta(\mathbf{x}'\mathbf{x} + \lambda I) - \mathbf{x}'\mathbf{y}$$
$$\hat{\beta} = (\mathbf{x}'\mathbf{x} + \lambda I)^{-1}\mathbf{x}'\mathbf{y}$$

• Known as **ridge** regression because the slope penalty term is added along the diagonal of $\mathbf{x}'\mathbf{x}$ like a ridge.

Demo

- See CAB420_Regression_Example_2_Regularised_Regression.ipynb
- Same setup as our overfitting example from before
- Fit to data using Ridge Regression

Using Ridge Regression

• Formula:

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_2$$

- We need to choose λ
- What should λ be?
 - What happens if it's 0?
 - Let's try 1

Ridge Regression: Results

- \circ λ perhaps should not be 1
- Instead, try a range of values
 - We'll use a log scale to produce a list of values to search as this is a bit more efficient

Ridge Regression: Results

- Plotting RMSE as λ changes
- $^{\circ}$ We see a drop as λ increases up to some minimum, but then the RMSE goes up again
 - After some point, we are over-regularizing

An Aside: Standardisation

- Let's visualise our data using a box plot
- We can see that different variables have very different ranges
 - First 100 dimensions only shown

Standardisation – Why?

- For a given dataset, dimensions are usually in different scales
 - i.e. Dimension 1 may range from [0..1], Dimension 2 may range from [100...100000]
 - With a regularisation penalty, Dimension 1 may be penalised much more than Dimension 2 due to its scale
- We seek to scale all dimensions equally, so that they are all considered equally when fitting a model

Standardisation – What?

- For each dimension
 - Get the mean and standard deviation
 - For that dimension, subtract the mean, divide by the standard deviation
- End result:
 - All dimensions have mean 0, standard deviation 1
 - i.e. they are all scaled to the same range
 - Outliers are preserved
 - A point that is 10 standard deviations away in the original set, is still 10 standard deviations away
- Also
 - It usually makes the model easier to visualise

Standardised Data

- All data now has a similar range
 - First 100 dimensions shown
 - Lots of outliers still visible

Ridge Regression with Standardised Data

- RMSE vs λ
 - We see an immediate drop as we increase λ
 - Remember, $\lambda = 0$ is least squares regression
 - Value which minimises the Validation RMSE is our best λ
 - For us, this is 0.00695
 - Training RMSE will gradually increase with λ
 - Variance vs Bias

Ridge Trace Plot

- Individual Coefficients vs λ
 - Increases in λ lead to smaller coefficients overall
 - Note the distorted scale when $\lambda = 0$ is inlouded
 - Coefficients gradually decrease and slowly approach 0

Ridge Results

- $^{\circ}$ Final Model, $\lambda=0.00695$
 - Similar performance to original Linear model

Ridge Results

- Final Model, $\lambda = 0.00695$
- $R^2 = 0.717$
 - Much lower \mathbb{R}^2 than our higher order linear model, yet better performance on validation data
 - Variance vs Bias
- Similar looking residual plots to previously

CAB420: LASSO Regression

L1 REGULARISATION

LASSO Regression

Linear Regression with L1 regularisation

Add to our loss the sum of absolute values of coefficients

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_1$$

- Again, we don't add the intercept
- Compared to Ridge Regression

$$\sum_{i=1}^{n} \left(y_{i} - \sum_{j} x_{ij} \beta_{j} \right)^{2} + \lambda \sum_{j=1}^{p} \left\| \beta_{j} \right\|_{2} \text{vs } \sum_{i=1}^{n} \left(y_{i} - \sum_{j} x_{ij} \beta_{j} \right)^{2} + \lambda \sum_{j=1}^{p} \left\| \beta_{j} \right\|_{1} \text{vs}$$

- Only difference is the type of norm being used
 - L1 (LASSO) vs L2 (Ridge)
- Big coefficients aren't penalised quite as badly
- Coefficients can go to 0
 - We can eliminate poor terms
- L1 norm still controlled by a scaling factor

LASSO Regression Formulation

We want to minimize

$$(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{x}'\mathbf{y} + \beta'\mathbf{x}'\mathbf{x}\beta) + \lambda\beta$$

• The following is the derivative with respect to β :

$$2x'x\beta - 2x'y + \lambda I$$

• Setting to 0 and solving for β gives the optimal vector, $\hat{\beta}$:

$$\hat{\beta} = (2\mathbf{x}'\mathbf{x})^{-1}(2\mathbf{x}'\mathbf{y} - \lambda I)$$

- Where does the name come from?
 - Acronym: Least Absolute Selection and Shrinkage Operator
- Not completely straight-forward, as the term in the first line should be $\lambda |\beta|$
 - This actually makes it a lot more complex

Demo

- See CAB420_Regression_Example_2_Regularised_Regression.ipynb
- Same setup as our overfitting and ridge regression
- Fit to data using LASSO Regression

Using LASSO Regression

• Formula:

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{n} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_{1}$$

- We need to choose λ
- As per Ridge, we'll use a range
 - Again, we'll use a log-scale
 - Lasso typically uses a smaller λ than ridge
- We'll use standarised data from the start

LASSO: Selecting Lambda

- Best $\lambda = 0.00162$
- Same trend as ridge
 - \circ Training data always increases with λ
 - Validation data decreases to a minimum, then increases
 - There is a tiny drop at first there

LASSO Trace Plot

- Terms decrease in value as λ increases
 - Terms can go to 0 and be eliminated
 - At the far end of the plot, all terms are 0 (constant model)

LASSO Results

- $^{\circ}$ Final Model, $\lambda=0.00162$
 - Similar to Ridge and Linear Model
 - Final model contains 93 terms (the other 400+ are all 0)

LASSO Results

- Final Model, $\lambda = 0.00162$
- $R^2 = 0.700$
- Less accurate, and a worse fit, than the ridge model
- Similar looking residual plots to previously

ElasticNet Regression

- Bonus Regression Method!
- StatsModels regression implementation also does ElasticNet Regression
 - L1 and L2 terms added to the least squares loss
- Does this mean it's twice as good?
 - Not really, though it's not bad either
 - It does mean that we now have another hyper-parameter to tune
 - We need to select the relative weight of the two terms

A Note on Comparing Models

- We have three datasets
 - Training
 - We're training all our models on this data
 - All residual plots are using this data
 - Validation
 - We're using this to evaluate our regularized models at each value of λ
 - We're plotting validation RMSE to select λ
 - Test
 - We're looking at our prediction accuracy (RMSE) on the test data
- Ridge regression wins here
 - Best RMSE on the test set

Is Ridge Best?

- It is in this case. Maybe.
 - We could do a more fine-grained search for λ that might change the result. Or it might not.
- In general, Ridge is not better than LASSO or vice versa. They have their own pros and cons
 - Ridge is typically faster to train
 - LASSO allows you to eliminate terms and thus simplify models
 - Faster at test time as you have fewer terms
 - But this doesn't always make it more accurate
- Unless you have other design considerations that make one impractical, try both.

CAB420: Ridge vs LASSO

WHICH ONE?

Ridge vs Lasso

$$\sum_{i=1}^{n} \left(y_i - \sum_{j} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_2$$

- We have a two coefficients
 - The "best solution" according to least squares is $\hat{\beta}$
 - The blue area is the constraint region for a given λ
- Ridge uses an L_2 norm
 - Circular constraint region
 - Closest point on the constraint region to $\hat{\beta}$ is our ridge solution

Ridge vs Lasso

$$\sum_{i=1}^{n} \left(y_i - \sum_{j} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \|\beta_j\|_1$$

- We have a two coefficients
 - The "best solution" according to least squares is $\hat{\beta}$
 - The blue area is the constraint region for a given λ
- Lasso uses an L_1 norm
 - Diamond shaped constraint region
 - Closest point on the constraint region to $\hat{\beta}$ is our ridge solution

Ridge vs Lasso

- Due to the shape of the constraint region
 - Lasso can pull terms to 0
 - Ridge can make terms very small, but not 0

Impact of λ

ANOTHER LOOK AT WHAT IT DOES

A Simple Example

- See CAB420_Regression_Additional_Example_Regularisation_Impact.ipynb
- Predict traffic times again
 - Standardised data
 - 18 predictors
 - Linear, Ridge and Lasso models
 - Training, validation and testing set all taken from different time periods
 - Split in chronological order

Linear Model

- Excellent fit to training data
- Fit gets worse for validation and testing data
- Coefficients vary in value

Ridge Model

- Larger λ leads to
 - Smaller coefficients
 - Flatter prediction curves
 - Coefficents can change sign
- Largest λ is least accurate on training data, most accurate on testing data

Lasso Model

- Larger λ leads to
 - Smaller coefficients
 - Flatter prediction curves
 - Coefficents can change sign
- Coefficients can go to 0
 - Can happen at very small lambda
- Large λ will push all coefficients to

Regularised Regression and Small Datasets

Regression Data Requirements

- Usually, we would like to have more data points than parameters
- If we don't have this, direct solutions to fit a regression function will fail
- However, gradient descent can be used to find a solution
 - Allows us to fit high dimensional models to small datasets
 - Increases the danger of overfitting
- In general, extrapolation with linear regression can be risky

MY HOBBY: EXTRAPOLATING

Cartoon from XKCD

Demo

- See CAB420_Regression_Example_3_Regression_with_Less_Data.ipynb
- Traffic time prediction again, but with very limited data
 - 50 samples total
 - 30 training, 10 validation, 10 testing
 - ~150 variables
- Linear model will overfit
- Lasso and Ridge can be used to get a better fit to the data
- Review this example in your own time
 - Covered in more detail in the interactive session