Exercícios de Correção de 1-loop em Campo Escalar ϕ^4

Samuel Keullen Sales

October 13, 2025

Exercício 1: Correção de 1-loop de self-energy (tadpole)

Dados

• Modelo: ϕ^4 escalar real, unidades naturais $\hbar = c = 1$.

• Massa: $m = 2 \,\mathrm{eV}$

• Acoplamento: $\lambda = 0.05$

• Escala de renormalização: $\mu = 2 \,\mathrm{eV}$

Correção de 1-loop (dimensional regularization, esquema MS)

$$\Sigma_{\text{finite}} = \frac{\lambda m^2}{32\pi^2} \left(1 + \ln \frac{\mu^2}{m^2} \right)$$

Cálculos passo a passo

Primeira parte: $\lambda m^2 = 0.05 \times 2^2 = 0.2$

Segunda parte: $32\pi^2 \approx 315.82$

Terceira parte: $1 + \ln \frac{\mu^2}{m^2} = 1 + \ln \frac{2^2}{2^2} = 1 + \ln 1 = 1$

Resultado final: $\Sigma_{\text{finite}} = \frac{0.2}{315.82} \approx 0.000633 \text{ eV}$

Conversão para $J^2:(1.602\times 10^{-19})^2\times 0.000633\approx 1.624\times 10^{-41}~{\rm J}^2$

Interpretação física

 $\Sigma_{\rm finite}$ representa a correção finita de 1-loop para a massa do campo escalar. Ela garante que o parâmetro físico $m_{\rm phys}$ seja mensurável, evitando divergências artificiais do cálculo. No contexto da QFT, é a parte da autoenergia que renormaliza a massa, tornando o sistema consistente e previsível.

Exercício 2: Correção de 1-loop de self-energy (bubble) para propagador externo

Dados

• Modelo: ϕ^4 escalar real, $\hbar = c = 1$

• Massa: $m = 1.5 \,\mathrm{eV}$

• Acoplamento: $\lambda = 0.1$

• Momento externo: $p = 1 \,\text{eV}$

• Escala de renormalização: $\mu=1\,\mathrm{eV}$

Fórmula

$$\Sigma_{\text{finite}}(p^2) = \frac{\lambda}{32\pi^2} \left[m^2 \left(1 + \ln \frac{\mu^2}{m^2} + f(p^2, m^2) \right) \right]$$

Consideraremos $f(p^2, m^2) = 0$ para simplificação.

Cálculos passo a passo

$$\begin{split} \ln\frac{\mu^2}{m^2} &= \ln\frac{1^2}{1.5^2} = \ln 0.4444 \approx -0.8111\\ \lambda m^2 &= 0.1 \times (1.5)^2 = 0.1 \times 2.25 = 0.225 \end{split}$$
 Multiplicando pelo fator $(1 + \ln\frac{\mu^2}{m^2}): 0.225 \times (1 - 0.8111) = 0.225 \times 0.1889 \approx 0.0425\\ 32\pi^2 &\approx 315.827\\ \Sigma_{\mathrm{finite}} &= \frac{0.0425}{315.827} \approx 0.000134 \; (1.34 \times 10^{-4} \, \mathrm{eV}) \end{split}$ Conversão para $J^2: 1.34 \times 10^{-4} \times (1.602 \times 10^{-19})^2 \approx 3.438 \times 10^{-42} \; \mathrm{J}^2 \end{split}$

Interpretação física

 $\Sigma_{\rm finite}$ ajusta a massa efetiva do propagador do campo, garantindo consistência da teoria e evitando divergências artificiais.

Exercício 3: Beta Function e running de acoplamento

Dados

• Modelo: ϕ^4 escalar real

• Condição inicial: $\lambda(\mu_0) = 0.1$

• Escala inicial: $\mu_0 = 1 \, \text{eV}$

• Escala final: $\mu = 1 \times 10^3 \, \text{eV}$

Beta function 1-loop

$$\beta(\lambda) = \mu \frac{d\lambda}{d\mu} = \frac{3\lambda^2}{16\pi^2}$$

Solução da equação RG (separável)

$$\lambda(\mu) = \frac{\lambda(\mu_0)}{1 - \frac{3\lambda(\mu_0)}{16\pi^2} \ln \frac{\mu}{\mu_0}}$$

Cálculos passo a passo

$$\frac{3\lambda(\mu_0)}{16\pi^2} = \frac{3 \times 0.1}{157.913} \approx 0.00189$$

$$\ln \frac{\mu}{\mu_0} = \ln \frac{1000}{1} = \ln 1000 \approx 6.907$$

$$0.00189 \times 6.907 \approx 0.0130$$

$$1 - 0.0130 \approx 0.987$$

$$\lambda(\mu) = \frac{0.1}{0.987} \approx 0.1013$$

Interpretação física

O running mostra que o acoplamento λ cresce levemente com a escala de energia, refletindo que a intensidade da interação depende do momento observado e enfatizando a necessidade de renormalização.