University of Ottawa

School of Electrical Engineering and Computer Science

CSI4142 Introduction to Data Science

Winter 2019

This course provides an introduction to data science, following a data driven discovery perspective. We will focus on how to create a repository for analytics and mining (a so-called data mart), and we will also cover a number of techniques and algorithms that were developed to explore large-scale data.

Formal Calendar description

Data preparation: organization, basic statistics, cleaning, and integration; Data warehousing and multi-dimensional analysis; Data mining techniques: pattern mining, classification, clustering, outlier and anomaly detection; model evaluation; Big data, analytics, and cloud computing; Data visualization and visual data analytics.

<u>Prerequisites</u>: CSI2132, (CSI3120 or SEG2106), MAT2377 or (MAT2371 and MAT2375).

Professor's details

Herna L Viktor, PhD

Email: hviktor@uottawa.ca

Office: SITE Building Room 5-100

Office Hours: Friday 11h00-12h00 (or by email appointment)

Recommended Texts

The notes are based on parts of the following books:

- 1. Data Mining, Concepts and Techniques, 3rd Edition, Jiawei Han, Micheline Kamber and Jian Pei, Morgan Kauffman Publishers, 2012, ISBN 978-0-12-381479-1.
- 2. The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, (Selected Chapters), 3rd Edition, Ralph Kimball and Margy Ross, Wiley, 2013, ISBN 978-1-11-853080-1.

 This book contains a number of useful case studies that illustrates the fundamental concepts.

Final grade

Your final grade will be calculated as follows.

Team project (3 students)	40
Midterm	25
Final Exam	35

Some important information is listed below.

- 1. The team project will involve the design and implementation of a data mart, as well as the exploration of this data mart using online analytic processing (OLAP) and data mining techniques. Complete this project in a team of 3 students. The project will be done in three phases, completed during the term:
 - a. Conceptual design: Due on 5 February 2019.
 - b. Physical design, data staging and OLAP queries: Due on 12 March 2019.
 - c. BI dashboard, data mining and information visualization: Due on 2 April 2019.
- 2. The completed final team project is due on 2 April 2019. Teams are required to demonstrate their projects in a 15-20 minute timeslot. Note that all team members are required to attend the project demonstration.
- 3. You are allowed to use any full-fledged DBMS of your choice, such as PostgreSQL (with Jason), or MySQL. You are also welcome to use Hadoop or Spark.
 - a. You are encouraged to use Scikit-Learn or R for the data mining portion of this course. Both are widely used in the data science community and will strengthen your CV.
 - b. Other options are the WEKA data mining tool, Matlab and Mathematica.

Overview of Lectures

The following topics will be covered. Please refer to the slides and the recommended texts.

Week of	Topic	Reference
07/01/2019	Introduction and course outline	Notes
14/01/2019	Store: Conceptual Modeling	Kimball 1,2, 17, 18 + CS*; Han 4, 5
21/01/2019	Store: Physical Design and Aggregation	Kimball 1, 2, 17, 18 + CS*; Han 4, 5
28/01/2019	Store: Data staging (ETL)	Kimball 19,20 + CS*
04/02/2019	Explore: Analytics via OLAP queries	Notes; Han 4, 5
11/02/2019	Explore: Data mining fundamentals	Han 1
18/02/2019	Reading week	
25/02/2019	Midterm on Friday 01/03/2019	All up to now
04/03/2019	Explore: Getting to know your data	Han 2, 3
11/03/2019	Explore: Finding frequent patterns	Han 6
18/03/2019	Explore: Finding groupings	Han 8
25/03/2019	Explore: Classification and prediction	Han 10
01/04/2019	Explore: Finding anomalies and outliers	Han 12

 ${
m CS}^*$ refers to the Case Studies that are discussed in Chapters 3 to 16 of the textbook by Kimball and Ross.

[©] All materials are copyrighted. Any sharing of this material, e.g. by posting them on external websites, will be considered as a copyright infringement.