Practical Issues of SPC Charting

Argon Chen Graduate Institute of Industrial Eng'g National Taiwan University

© Argon Chen

Concerns of Using Control Charts

- Interpretation of SPC chart:
 - within limits: in control
 - out-of-limits: out of control

HOW SIMPLE!!

- Issues of using a control chart:
 - Chart Robustness (Specificity/False alarm rate/Type I error prob.):
 How often does it give false alarms?
 - Chart Sensitivity (False negative rate/Type II error prob.): How quickly does it detect problems?
- SPC in practice
 - Charts for internal control: over-sensitive
 - Charts for external auditing: insensitive

Questions of Using Control Charts

- Why \bar{X} chart? Why not X?
- Why $\pm 3\hat{\sigma}$? Why not $2.5\hat{\sigma}$ or $3.5\hat{\sigma}$?
- Sample size n? $n \uparrow \Rightarrow \beta \downarrow \Rightarrow$ Sensitivity \uparrow (why?)
- How to group a sample?
- How often do you take the sample?
- What action should be taken when the chart signals?

© Argon Cher

An Unrealistic Solution

- Economic design of \bar{X} control chart?
 - cost of sampling
 - cost of false alarm
 - cost of out of control
 - special cause inter-arrival time
 - determine control limits, sample size and sampling interval

sounds good? NO... useless and dangerous

More Realistic Answers

- Why \bar{X} ?
 - A normal distribution?
 - central limit theorem
 - Improve control chart sensitivity (ARL₁)
 - Rational Subgrouping
- Rational subgrouping
 - revisit the chance (common) and assignable (special) causes definitions
 - what causes do you want to detect?

C Argon Cher

Heartbeat Rate/Body Weight/Body Temp.

- Example: measuring Heartbeat Rate/Weight/Temp.
 - Measurements taken after/before three meals
 - Measurements taken from right ear, left ear and forehead
- Forming a group of heartbeat observations to compute \bar{X} :
 - Group data from a day? Data after/before a meal?From the same body site
- Rational subgrouping: an effective way to detect particular special causes (ex. heartbeat rate)
 - Arrhythmia at night? influence of alcohol, caffeine, nicotine? heart diseases? COVID? sleep apnea? ...

Argon Chen

5

Rational Subgrouping

- To effectively detect special causes
 - distinguish chance (common) causes and assignable (special)
 causes
 - what special causes really concern you?
- Rational subgroups or samples: collections of individual measurements whose variation is subject only to a constant system of common causes.

Figure 7.1 Graphical Depiction of the Rational Subgroup

Argon Chen

Semiconductor Oxidation Processes

- Creating a thin layer of oxide by exposing the silicon to an oxidizing agent, such as oxygen, at high temperatures. The oxide layer serves as a critical insulating layer between different layers of the device. The thickness of the oxide layer can be controlled by adjusting the time and temperature of the oxidation process.
- The oxidation furnace is a large cylindrical chamber made of high-temperature resistant materials such as quartz, ceramic, or silicon carbide. Inside the chamber, the semiconductor material is heated to high temperatures ranging from 800°C to 1200°C.
- The furnace provides a controlled environment, including precise temperature control, the flow of the oxidizing agent, and the removal of any by-products of the reaction. The oxygen or water vapor is introduced into the furnace chamber through a gas inlet at a controlled flow rate.
- The oxidation furnace is designed to provide uniform heating of the semiconductor material to ensure that the oxide layer is created evenly across the entire surface.

© Argon

Rational Subgrouping for Oxidation Process

- Oxidation process with 3-zone furnace
- Sampling of thickness data

- Forming a group of thickness data to compute \bar{X} :
 - group data from a lot? from a wafer? from the same site on wafers
- Rational subgrouping: an effective way to detect particular special causes

© Argon Cher

Control Chart with Rational Samples

- Subgroup Selection:
 - common causes are included in a sample
 - special causes can be captured between samples
 - sampling should be economical
- Estimation of σ .
 - $-\sigma_{lot}$: run-to-run lot variation
 - σ_{wafer} : run-to-run wafer variation
 - $-\sigma_{\text{site}}$: run-to-run site variation

Monitoring Lot-to-lot Trend for Eeach Zone

• Estimating $\sigma_{top-zone}$:

$$\overline{\overline{X}} = 249.85$$

$$\hat{\sigma}_{\overline{X}} = S_{\overline{X}} = 1.35$$

$$\hat{\sigma}_{\overline{X}} = \frac{S_X}{\sqrt{n}} = \frac{1.895}{\sqrt{5}} = 0.848$$
Control limits = 240.85 + 3 × 0

Control limits = $249.85 \pm 3 \times 1.35$

Control limits = $249.85 \pm 3 \times 0.848$

Which control chart is correct?

11

© Argon Chen

Monitoring Within-Wafer Variation

• Estimating σ for variation within wafer

$$\hat{\sigma}_{\scriptscriptstyle R} = s_{\scriptscriptstyle R}$$

Control limits = $\overline{R} + 3s_R (\max(0, \overline{R} - 3s_R))$

12

Monitoring Lot-to-Lot Trend for Each Site

• Estimating $\sigma_{center-site}$

sample statistic =
$$\frac{\text{site3 of wafer1} + \text{site3 of wafer2} + \text{site3 of wafer3}}{3}$$

$$\overline{\overline{X}} = 248.86$$

$$\hat{\sigma}_{\overline{X}} = S_{\overline{X}} = 1.52$$

Control limits = $248.86 \pm 3 \times 1.52$

© Argon Chen

Run-to-Run \overline{X} -R Chart

$$\overline{\overline{X}} = 249.87$$

$$\hat{\sigma}_{\overline{X}} = S_{\overline{X}} = 1.572$$

Control limits = $249.87 \pm 3 \times 1.572$

$$\hat{\sigma}_{\scriptscriptstyle R} = s_{\scriptscriptstyle R}$$

Control limits = $\overline{R} + 3s_R (\max(0, \overline{R} - 3s_R))$

Argon Chen

Sampling Size - Example

- Example: sampling body temperature
 - How many times a day?
 - How many measurements each time?
 - How often? every day? every other day? every week?
- Example: sampling thickness data
 - how many wafers from one run?
 - how many measurements from a wafer?
 - sampling from every lot? every other lot? every 3 lots?

© Argon Chen

Sample Size Considerations

- should be able to detect special causes
- should ensure a normal distribution for the sample mean
- should ensure good sensitivity to the detection of special causes
- should be small enough to be economically appealing
- Example: body-temperature control

Sampling Frequency Considerations

- General nature of process stability
 - Erratic process: more frequent
 - Stable process: less frequent
- Frequency of events:
 - events: ambient condition fluctuations, raw material changes, process adjustment, shift changes, etc
- Cost of sampling:
 - should not be overemphasized
 - considered only when sampling and testing are destructive (expensive) and time-consuming
- Example: body-temperature control

© Argon Chei

Short Run Production

• Process with high product mix:

	Target	Obs.		Target	Obs.		Target	Obs.
1	250	251.2	21	250	249	41	350	349
2	200	201.8	22	350	349.2	42	250	249.8
3	350	350	23	350	350.8	43	35	33.18
4	350	350	24	100	107.4	44	200	201.6
5	250	250.8	25	125	122.6	45	350	348.4
6	100	107.4	26	250	249.8	46	250	249.2
7	350	348.4	27	350	354.2	47	200	201.8
8	350	351.6	28	350	353.4	48	250	249
9	100	110.2	29	250	249.6	49	35	33.06
10	125	124.6	30	350	347.6	50	350	355.6
11	350	349.2	31	35	34.16			
12	200	202.2	32	250	249.6			
13	35	34.66	33	200	200.2			
14	350	347.8	34	250	250.4			
15	100	108	35	350	351.4			
16	250	250.8	36	350	348.8			
17	250	248.8	37	125	122.8			
18	250	252	38	350	348.8			
19	350	350.8	39	200	201			
20	35	34.76	40	250	248.2			

Model-based Control Chart

- $Z_i = (X_i \text{Target or Mean}) / \sigma_{\text{target}} \sim N(0, 1)$
- Control limits = 0.0 ± 3.0

© Aroon Cl

EWMA and CUSUM Control Charts

Argon Chen
Graduate Institute of Industrial Eng'g
National Taiwan University

Limitation of Shewhart Control Chart

- Without using the entire sets of data points, Shewhart chart is relatively insensitive to small shifts in the process, say on the order of about 1.5σ, or less.
- Runs rules are added to increase the sensitivity (reduce β error) but can dramatically reduce the robustness (increase α error) of the control chart.
- Two very effective alternatives to the Shewhart chart may be used for small shifts detection:
 - Cumulative-sum (CUSUM) control chart
 - Exponentially weighted moving average (EWMA) control chart

© Argon Chei

Idea of Cumulated Sum

- CUSUM: CUmulative SUM
- First 20 points, N(10, 1), last 10 points, N(11, 1)
- Cumulated Sum: $C_i = \sum_{j=1}^{i} (x_j 10) = (x_i 10) + C_{i-1}$ (where 10 is the original mean)

	(a)	(b)	(c)
Sample, i	x_i	$x_i - 10$	$C_i = (x_i - 10) + C_{i-1}$
1	9.45	-0.55	- 0.55
2	7.99	-2.01	- 2.56
3	9.29	-0.71	- 3.27
4	11.66	1.66	- 1.61
5	12.16	2.16	0.55
6	10.18	0.18	0.73
7	8.04	-1.96	- 1.23
8	11.46	1.46	0.23
9	9.20	-0.80	- 0.57
10	10.34	0.34	- 0.23
11	9.03	-0.97	-1.20
12	11.47	1.47	0.27
13	10.51	0.51	0.78
14	9.40	-0.60	0.18
15	10.08	0.08	0.26
16	9.37	-0.63	- 0.37
17	10.62	0.62	0.25
18	10.31	0.31	0.56
19	8.52	-1.48	- 0.92
20	10.84	0.84	- 0.08
21	10.90	0.90	0.82
22	9.33	-0.67	0.15
23	12.29	2.29	2.44
24	11.50	1.50	3.94
25	10.60	0.60	4.54
26	11.08	1.08	5.62
27	10.38	0.38	6.00
28	11.62	1.62	7.62
29	11.31	1.31	8,93
30	10.52	0.52	9.45

Small Shift on Shewhart Chart

• Shewhart chart is not sensitive to a small shift.

© Argon Chen

X vs. Cumulated Sum of $X-\mu_0$

Shewhart chart

• Shewhart chart is not sensitive to a small shift.

Cumulated Sum

• Cumulated Sum is more sensitive to a small shift.

Problem with Cumulated Sum

- Cumulated Sum: $\Sigma_i(x_i \mu_0)$
- To construct control limits: $E(y) \pm k \cdot \sigma_v$
- Variance of cumulated sum is required:

$$\operatorname{Var}(\Sigma_i(x_i - \mu_0)) = \operatorname{Var}(\Sigma_i x_i) = \Sigma_i \operatorname{Var}(x)$$

- $\Rightarrow \Sigma_i \operatorname{Var}(x) \uparrow \text{ as } i \uparrow$
- ⇒ variance increases as sample size increases
- \Rightarrow control limit \uparrow as $i \uparrow$

27

© Argon Cher

Sequential Likelihood Ratio Test

- CUSUM control chart is based on the sequential likelihood ratio test, where, as each new sample becomes available, a test is conducted to determine if the process mean deviates from the target value.
- Sequential probability ratio test:

$$H_0$$
: $\Theta = \Theta_0$ vs. H_1 : $\Theta = \Theta_1$

• Test statistic:
$$R = \frac{\prod_{i=1}^{t} f(x_i; \Theta_1)}{\prod_{i=1}^{t} f(x_i; \Theta_0)}$$

- Accept H_1 (Reject H_0): $R \ge \frac{1-\beta}{\alpha}$
- Accept H_0 (Reject H_1): $R \le \frac{\beta}{1-\alpha}$

where α and β are probabilities of type I and type II errors.

28

Intuition on Sequential Likelihood Ratio Test

- If x_i is from the dis. of $\Theta = \Theta_1$

 - $\prod_{i=1}^{t} f(x_i; \Theta_1) \text{ will be large} \qquad \prod_{i=1}^{t} f(x_i; \Theta_1) \text{ will be small}$ $\prod_{i=1}^{t} f(x_i; \Theta_0) \text{ will be small} \qquad \prod_{i=1}^{t} f(x_i; \Theta_0) \text{ will be large}$
 - then R will be large
 - if $R \ge \frac{1-\beta}{\alpha}$, then accept H_1 if $R \le \frac{\beta}{1-\alpha}$, then accept H_0
- If x_i is from the dis. of $\Theta = \Theta_0$

 - then R will be small

Testing Normal Mean by Sequential Likelihood Ratio Test

• Test $H_0: \mu = \mu_0 \text{ vs. } H_1: \mu = \mu_1 \quad (\mu_1 > \mu_0)$ x_i 's are assumed to be normally distributed with variance σ^2

$$R = \frac{\prod_{i=1}^{t} \sqrt{2\pi\sigma}}{\prod_{i=1}^{t} \sqrt{2\pi\sigma}} e^{-(x_{i}-\mu_{i})^{2}/2\sigma^{2}} = \frac{(\frac{1}{\sqrt{2\pi\sigma}})^{t} e^{-\frac{t}{2}(x_{i}-\mu_{i})^{2}/2\sigma^{2}}}{(\frac{1}{\sqrt{2\pi\sigma}})^{t} e^{-\frac{t}{2}(x_{i}-\mu_{i})^{2}/2\sigma^{2}}} = e^{\frac{\Delta}{\sigma^{2}} \sum_{i=1}^{t} (x_{i}-(\mu_{i}+\mu_{i})/2)} \text{ (here, } \Delta = \mu_{1} - \mu_{0})$$

• Reject H_0 if $R \ge \frac{1-\beta}{\alpha} \Rightarrow \ln(R) \ge \ln(\frac{1-\beta}{\alpha})$

$$\Rightarrow C_t = \sum_{i=1}^t (x_i - \frac{\mu_0 + \mu_1}{2}) \ge \frac{\sigma^2}{\Delta} \ln(\frac{1 - \beta}{\alpha}) \Rightarrow \text{CL is constant}$$
Sample statistic Control limit \Rightarrow Tabular Form

Control limit ⇒ Tabular Form

How about
$$S_t = \sum_{i=1}^t (x_i - \mu_0) \ge \frac{\sigma^2}{\Delta} \ln(\frac{1-\beta}{\alpha}) + \frac{\Delta}{2} t \implies CL \uparrow \text{ as } t \uparrow$$

(follow the same procedure for testing H_1)

Two-sided V-Sharp CUSUM Control Charts

$$S_t = \sum_{i=1}^t (x_i - \mu_0) \ge \frac{\sigma^2}{\Delta} \ln(\frac{1-\beta}{\alpha}) + \frac{\Delta}{2}t \Rightarrow \text{CL} \uparrow \text{ as } t \uparrow \Rightarrow \text{V mask CUSUM}$$

In practice, difficult to use!

© Argon Cher

Tabular Form of Sequential Likelihood Ratio Test

- Recall that $C_t = \sum_{i=1}^{t} (x_i \frac{\mu_0 + \mu_1}{2})$ (here, $\mu_1 > \mu_0$)
- Accept H_1 when $C_t \ge \frac{\sigma^2}{\Delta} \ln(\frac{1-\beta}{\alpha})$ or accept H_0 when $C_t \le \frac{\sigma^2}{\Delta} \ln(\frac{\beta}{1-\alpha})$

$$E(C_t) = \sum_{i=1}^t \frac{\mu_0 - \mu_1}{2} \text{ when } E(x_i) = \mu_0 \implies E(C_t) \text{ decreases } \implies \text{accept } H_0$$

$$= \sum_{i=1}^t \frac{\mu_1 - \mu_0}{2} \text{ when } E(x_i) = \mu_1 \implies E(C_t) \text{ increases } \implies \text{accept } H_1$$

32

Tabular Form of CUSUM Scheme

• To test the likelihood ratio for a same population:

$$C_i^+ = \max[0, x_i - (\mu_0 + K) + C_{i-1}^+]$$

where
$$K = \frac{\mu_1 - \mu_0}{2}$$
 since $x_i - (\mu_0 + K) = x_i - \frac{\mu_0 + \mu_1}{2}$

- When the process is *in-control* ($E(x_i) = \mu_0$) the cumulated sum will tend to be negative
- Reset the testing once the CUSUM statistic becomes negative.
- Only when the CUSUM statistic is positive the testing continues to cumulate.

© Argon Chei

Tabular (Algorithmic) CUSUM for Monitoring Process Mean

• Tabular CUSUM

$$\begin{split} C_i^+ &= \max[0, x_i - (\mu_0 + K) + C_{i-1}^+] \\ C_i^- &= \min[0, x_i - (\mu_0 - K) + C_{i-1}^-](C_i^- = \max[0, (\mu_0 - K) - x_i + C_{i-1}^-]) \\ \text{(the starting values } C_0^+ = C_0^- = 0) \\ (\mu_0 \text{ is the target value)} \end{split}$$

- Design parameters
 - K (or $k\sigma$) is the reference value
 - H (or $h\sigma$) is the decision interval
- Decision Rule

If $C_i^+ > H$ or $C_i^- < -H$ ($C_i^- > H$), the process is out-of-control.

Tabular CUSU	JM Examı	ple
--------------	----------	-----

•	Target	value	$\mu_0 =$	10

• Shifted value $\mu_l = 11$

•
$$K = (\mu_l - \mu_0) / 2 = 0.5$$

•
$$H = 5\sigma = 5$$

•
$$C_i^+ = \max[0, x_i - 10.5 + C_{i-1}^+]$$

•
$$C_i^- = \max[0, 9.5 - x_i + C_{i-1}^-]$$

Period							
i	x_i	$x_i - 10.5$	C_i^+	N^+	$9.5 - x_i$	C_i^-	N^{-}
1	9.45	- 1.05	0	0	0.05	0.05	1
2	7.99	-2.51	0	0	1.51	1.56	2
3	9.29	-1.21	0	0	0.21	1.77	3
4	11.66	1.16	1.16	1	-2.16	0	0
5	12.16	1.66	2.82	2	-2.66	0	0
6	10.18	-0.32	2.50	3	-0.68	0	0
7	8.04	-2.46	0.04	4	1.46	1.46	1
8	11.46	0.96	1.00	5	-1.96	0	0
9	9.20	-1.3	0	0	0.30	0.30	1
10	10.34	-0.16	0	0	-0.84	0	0
11	9.03	-1.47	0	0	0.47	0.47	1
12	11.47	0.97	0.97	1	-1.97	0	0
13	10.51	0.01	0.98	2	-1.01	0	0
14	9.40	-1.10	0	0	0.10	0.10	1
15	10.08	-0.42	0	0	-0.58	0	0
16	9.37	-1.13	0	0	0.13	0.13	1
17	10.62	0.12	0.12	1	-1.12	0	0
18	10.31	-0.19	0	0	-0.81	0	0
19	8.52	-1.98	0	0	0.98	0.98	1
20	10.84	0.34	0.34	1	-1.34	0	0
21	10.90	0.40	0.74	2	-1.40	0	0
22	9.33	-1.17	0	0	0.17	0.17	1
23	12.29	1.79	1.79	1	-2.79	0	0
24	11.50	1.00	2.79	2	-2.00	0	0
25	10.60	0.10	2.89	3	-1.10	0	0
26	11.08	0.58	3.47	4	-1.58	0	0
27	10.38	-0.12	3.35	5	-0.88	0	0
28	11.62	1.12	4.47	6	-2.12	0	0
29	11.31	0.81	5.28	7	-1.81	0	0
30	10.52	0.02	5.30	8	-1.02	0	0

Estimate of the New Process Mean

- Change Point Estimate: when out-of-control is signaled, the point the accumulation starts is said to be the point where the change approximately begins.
- New process mean is: $\frac{\sum x_i}{N^+} = \mu_0 + K + \frac{C_i^+}{N^+}$ if $C_i^+ > H$ $\frac{\sum x_i}{N^+} = \mu_0 - K - \frac{C_i^-}{N^-}$ if $C_i^- > H$
- For example, $\overline{\mu} = \mu_0 + K + \frac{C_{29}^+}{N^+}$ = $10 + 0.5 + \frac{5.28}{7}$ = 11.25

37

C Argon Cher

CUSUM Design Based on ARL

- Define $K = k\sigma$, $H = h\sigma$
- Choose $k = 0.5 \delta$ ($\delta = \Delta/\sigma$ is the size of the shift in standard deviation units)
- Choose h to minimize ARL₁ for fixed ARL₀

$$\frac{\text{ARL performance}}{(k = 0.5, h = 4 \text{ or } h = 5)}$$

$$ARL_0 = 370$$

Shift in Mean (multiple of σ)	h = 4	h = 5		1_	1.
0	168	465	$\square ARL_0$	K	n
0.25	74.2	139	-111120	0.25	8.01
0.50	26.6	38.0		0.5	4.77
0.75	13.3	17.0			
1.00	8.38	10.4	ADI	0.75	3.34
1.50	4.75	5.75	ARL_1	1.0	2.52
2.00	3.34	4.01		1.25	
2.50	2.62	3.11		1.23	1.99
3.00	2.19	2.57		1.5	1.61
4.00	1.71	2.01		-	

38

CUSUM Chart ARL Calculation

$$ARL_{1|\mu_1 = \mu_0 + \delta\sigma} = \left[\frac{2(\delta - k)^2}{e^{-2(\delta - k)h'} - 1 + 2(\delta - k)h'} + \frac{2(\delta + k)^2}{e^{2(\delta + k)h'} - 1 - 2(\delta + k)h'} \right]^{-1}$$

where h' = h + 1.166

$$ARL_0 = ARL_{1|\delta=0} = \frac{e^{2kh'} - 1 - 2kh'}{(2k)^2}$$

Srivastava and Wu, "Evaluation of Optimum Weights and Average Run Lengths in EWMA Control Schemes," *Commun. Statist. – Theory Meth.* 26(5), 1253-1267 (1997)

© Argon Cher

Optimal CUSUM Chart Design

Given δ^* and ARL_0

$$k^* = \delta^*/2$$

Find
$$h^*$$
 from $ARL_0 = \frac{e^{2k^*h'} - 1 - 2k^*h'}{(2k^*)^2}$

where h' = h * +1.166

$$ARL_{1|\delta^*}^* = \left[\frac{\delta^{*2}/2}{e^{-\delta^*h'} - 1 + \delta^*h'} + \frac{(3\delta^*)^2/2}{e^{3\delta^*h'} - 1 - 3\delta^*h'}\right]^{-1}$$

Srivastava and Wu, "Evaluation of Optimum Weights and Average Run Lengths in EWMA Control Schemes," Commun. Statist. – Theory Meth. 26(5), 1253-1267 (1997)

•

Shewhart Scheme with Runs Rules

- Runs Rule T(k, m, a, b): Signal out-of-control when k out of m points are in the interval $(a\sigma_x, b\sigma_x)$.
- Example 1: T(1, 1, 3, ∞) signals when one data point are above the 3 σ_x
 limit
- Example 2: T(2, 3, 2, 3) signals when two out of three points fall in the interval $(2\sigma_x, 3\sigma_x)$.
- Common runs rules:
 - $C_1 = \{T(1, 1, -\infty, -3), T(1, 1, 3, \infty)\}$
 - $C_2 = \{T(2, 3, -3, -2), T(2, 3, 2, 3)\}$
 - $C_3 = \{T(4, 5, -3, -1), T(4, 5, 1, 3)\}$
 - $C_4 = \{T(8, 8, -3, 0), T(8, 8, 0, 3)\}$
- Joint Rules:

$$C_{1234} = C_1 \cup C_2 \cup C_3 \cup C_4$$

41

© Argon Che

ARL's for Shewhart Scheme with Runs Rules

Control chart																	
Shift d	C,	С,	C ₁₂	C78	C,,	C ₁₃	C14	C19	C ₁₆	C123	C ₁₃₆	C ₁₂₄	C789	C ₁₃₄	C ₁₄₅₆	C ₁₂₃₄	RL_0
.0	370.40	499.62	225.44	239.75	278.03	166.05	152.73	170.41	349.38	132.89	266.82	122.05	126.17	105.78	133.21	91.75	1
.2	308.43	412.01	177.56	185.48	222.59	120.70	110.52	120.87	279.53	97.86	208.44	89.14	91.19	76.01	96.37	66.80	•
.4	200.08	262.19	104.46	106.15	134.17	63.88	59.76	63.80	165.48	52.93	119.47	48.71	49.19	40.95	51.94	36.61	
.6	119.67	153.86	57.92	57.80	75.27	33.99	33.64	35.46	89.07	28.70	63.70	27.49	27.57	23.15	29.01	20.90	
.8	71.55	90.41	33.12	32.75	42.96	19.78	21.07	22.09	48.40	16.93	34.96	17.14	17.14	14.62	17.94	13.25	
1.0	43.89	54.55	20.01	19.70	25.61	12.66	14.58	15.26	27.74	10.95	20.43	11.73	11.71	10.19	12.19	9.22	
1.2	27.82	34.03	12.81	12.62	16.06	8.84	10.90	11.42	17.05	7.68	12.83	8.61	8.59	7.66	8.90	6.89	
1.4	18.25	21.97	8.69	8.58	10.60	6.62	8.60	9.05	11.28	5.76	8.65	6.63	6.62	6.08	6.84	5.41	
1.6	12.38	14.68	6.21	6.16	7.36	5.24	7.03	7.44	7.98	4.54	6.22	5.27	5.27	5.01	5.42	4.41	A D I
1.8	8.69	10.15	4.66	4.64	5.36	4.33	5.85	6.24	5.97	3.73	4.71	4.27	4.27	4.24	4.39	3.68	1VL
2.0	6.30	7.25	3.65	3.65	4.07	3.68	4.89	5.25	4.67	3.14	3.72	3.50	3.52	3.65	3.61	3.13	
2.2	4.72	5.36	2.96	2.98	3.22	3.18	4.08	4.41	3.78	2.70	3.04	2.91	2.94	3.17	3.01	2.70	
2.4	3.65	4.08	2.48	2.51	2.64	2.78	3.38	3.67	3.14	2.35	2.55	2,47	2.50	2.77	2.54	2.35	
2.6	2.90	3.20	2.13	2.17	2.22	2.43	2.81	3.05	2.64	2.07	2.19	2.13	2.16	2.43	2.19	2.07	
2.8	2.38	2.59	1.87	1.91	1.93	2.14	2.35	2.54	2.26	1.85	1.91	1.87	. 1.91	2.14	1.91	1.85	
3.0	2.00	2.15	1.68	1.71	1.70	1.89	1.99	2.14	1.95	1.67	1.70	1.68	1.71	1.89	1.70	1.67	

42

Shewhart and CUSUM Comparison

Ratios of ARL: CUSUM Chart to the corresponding Shewhart chart with supplementary runs rules (shown in parentheses):

ARL(CUSUM)/ARL(Shewhart)

Where k=0.5 and h is adjusted to match the ARL_0 of Shewhart Charts

hift d	4.78 (C ₁)	5.07 (C ₇)	4.29 (C ₁₂)	4.35 (C ₇₈)	4.50 (C ₁₅)	4.00 (C ₁₃)	3.91 (C ₁₄)	4.02 (C ₇₉)	4.72 (C ₁₆)	3.78 (C ₁₂₃)	4.46 (C ₁₅₆)	3.70 (C ₁₂₄)	3.73 (C ₇₈₉)	3.56 (C ₁₃₄)	3.78 (C ₁₄₅₆)	3.42 (C ₁₂₃
.0	1.01	1.00	1.00	1.00	1.01	1.01	1.00	1.00	1.00	1.01	1.01	1.01	1.01	1.00	1.00	1.00
.2	.53	.49	.65	.65	.61	.77	.79	.78	.56	.81	.63	.83	.83	.88	.82	.89
.4	.27	.24	.42	.43	.36	.60	.62	.61	.32	.66	.40	.68	.69	.81	.67	.79
.6	.21	.17	.37	.38	.30	.57	.56	.55	.27	.63	.35	.64	.64	.72	.62	.76
.8	.20	.17	.39	.40	.32	.60	.55	.54	.29	.66	.38	.64	.65	.72	.63	.76
٥.١	.23	.19	.45	.46	.37	.66	.56	.55	.35	.73	.46	.66	.67	.74	.65	.78
1.2	.27	.23	.53	.55	.44	.73	.58	.56	.44	.79	.55	.70	.70	.76	.69	81
1.4	.33	.29	.64	.65	.54	.79	.59	.58	.53	.86	.66	.73	.74	.77	.72	.84
1.6	.41	.36	.75	.76	.66	.83	.61	.59	.63	.92	.77	78	.78	.79	.77	.87
8.1	51	.45	.86	.87	.78	.87	.63	.61	.73	.97	.88	.83	.84	.81	.82	.91
2.0	.61	.56	.97	.98	.90	.91	.67	.64	.82	1.02	.98	.90	.90	.84	.89	.95
2.2	.73	.68	1.07	1.08	1.02	.94	.72	.68	.90	1.06	1.08	.97	.97	.87	.95	.99
2.4	.86	.81	1.16	1.16	1.13	.98	.80	.75	.99	1.11	1.16	1.04	1.04	.91	1.03	1.03
2.6	.99	.94	1.24	1.24	1.24	1.04	.88	.83	1.08	1.17	1.25	1.12	1.11	.95	1.11	1.09
2.8	1.12	1.08	1.32	1.30	1.32	1.09	.98	.93	1.17	1.22	1.32	1.19	1.17	1.01	1.18	1.14
3.0	1.25	1.22	1.41	1.39	1.44	1.18	1.11	1.08	1.29	1.29	1.40	1.27	1.26	1.10	1.27	1.24

EWMA Control Chart

- The performance of the EWMA chart is approximately equivalent to that of CUSUM chart.
- The exponentially weighted moving average is defined as:

$$Z_i = \lambda x_i + (1 - \lambda) Z_{i-1}$$
$$0 < \lambda \le 1$$

• EWMA Z_i is a weighted average of all previous sample means:

$$\begin{split} Z_i &= \lambda x_i + (1 - \lambda) Z_{i-1} \\ &= \lambda x_i + (1 - \lambda) [\lambda x_{i-1} + (1 - \lambda) Z_{i-2}] \\ &= \sum_{j=0}^{i-1} \lambda (1 - \lambda)^j x_{i-j} + (1 - \lambda)^i Z_0 \end{split}$$

• $Z_0 = \mu_0$: zero state; $Z_0 = \overline{X}$: steady state.

Effect of λ on EWMA Weighting Scheme

- A higher λ assigns higher weights to the latest data points.
 - If $\lambda = 1$, then EWMA is like a Shewhart scheme (roughly speaking).
- A lower λ assigns equal weights to all data points.
 - If λ approaches 0, then EWMA is like a CUSUM scheme (roughly speaking).

15 © Argon Chen

The EWMA Control Chart

- If the observations x_i are iid with μ_0 and variance σ^2 , $E(Z_i) = \mu_0$
- If the observations x_i are iid with variance σ^2 , then variance of Z_i is

$$\sigma_{Z_i}^2 = \sigma^2 \left(\frac{\lambda}{2 - \lambda} \right) [1 - (1 - \lambda)^{2i}]$$

• The control limits are

UCL =
$$\mu_0 + L\sigma \sqrt{\frac{\lambda}{(2-\lambda)} [1-(1-\lambda)^{2i}]}$$

$$LCL = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)} [1 - (1-\lambda)^{2i}]}$$

• If i gets larger, then control limits become

$$UCL = \mu_0 + L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

$$LCL = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

EWM	0.10, L = 2	_	
Subgroup, i	* = Beyond Limits	EWMA, z_i	
	9.45	9.945	
2	7.99	9.7495	
3	9.29	9.70355	
4	11.66	9.8992	
5	12.16	10.1253	
6	10.18	10.1307	
7	8.04	9.92167	
8	11.46	10.0755	
9	9.2	9.98796	
10	10.34	10.0232	
11	9.03	9.92384	
12	11.47	10.0785	
13	10.51	10.1216	
14	9.4	10.0495	
15	10.08	10.0525	
16	9.37	9.98426	
17	10.62	10.0478	
18	10.31	10.074	
19	8.52	9.91864	
20	10.84	10.0108	
21	10.9	10.0997	
22	9.33	10.0227	
23 24	12.29 11.5	10.2495 10.3745	
	11.5 10.6	10.3745	
25 26	11.08	10.3971	
26 27	10.38	10.4568	
27	10.38	10.4568	
28	11.31	10.5751	
30	10.52	10.6341*	

EWMA Design Based on ARL

- Design parameters: λ and L
- Choose λ and L to minimize ARL₁ for fixed ARL₀
- In general, L = 3 and λ between 0.05 and 0.25 work well.

ARL for several EWMA schemes

Shift or Mean (multiple of 5)	$L = 3.054$ $\lambda = 0.40$	2.998 0.25	2.962 0.20	2.814 0.10	2.615 0.05	
0	500	500	500	500	500	ARL_0
0.25	224	170	150	106	84.1	U
0.50	71.2	48.2	41.8	31.3	28.8	
0.75	28.4	20.1	18.2	15.9	16.4	
1.00	14.3	11.1	10.5	10.3	11.4	
1.50	5.9	5.5	5.5	6.1	7.1	ADI
2.00	3.5	3.6	3.7	4.4	5.2	AKL_1
2.50	2.5	2.7	2.9	3.4	4.2	
3.00	2.0	2.3	2.4	2.9	3.5	
4.00	1.4	1.7	1.9	2.2	2.7	

 Smaller λ works better for smaller shifts while larger λ works better for larger shifts

49

© Argon Cher

EWMA Chart ARL Calculation

Let
$$g = L(\frac{\lambda}{2\delta^2})^{\frac{1}{2}}$$
 and $w = L + 1.166(\delta\lambda)^{\frac{1}{2}} - (\frac{2\delta^2}{\lambda})^{\frac{1}{2}}$. Then,

(a) For g < 1 and $0 < \lambda \le 0.75$

$$ARL_{1|\delta} \approx -\left(\frac{1}{\lambda}\right)\ln(1-g) - \frac{g}{4(1-g)\delta^{2}} + \frac{3}{4}$$

(b) For g > 1, $0 < \lambda \le 0.75$ and $\delta \le 1$ (e.g. ARL_0)

$$ARL_{1|\delta} \approx \frac{1}{\lambda w} [\phi(w)]^{-1} \Phi(w)$$

where $\phi(\cdot)$ and $\Phi(\cdot)$ are N(0,1) p.d.f. and c.d.f., respectively Relationship among ARL_0 , L and λ :

$$L \approx [a - \ln(a - 1)]^{\frac{1}{2}} + \frac{1}{2}(1 - \lambda)$$
 where $a = 2\ln[(\frac{2}{\pi})^{\frac{1}{2}}ARL_0\lambda]$

Srivastava and Wu, "Evaluation of Optimum Weights and Average Run Lengths in EWMA Control Schemes," *Commun. Statist. – Theory Meth.* 26(5), 1253-1267 (1997)

© Argon Chen

50

Optimal EWMA Chart Design

Given δ^* and ARL_0

$$\lambda^* \approx \frac{1.0234\delta^{*2}}{b - \ln b}$$

where
$$b = 2 \ln[1.0234(\frac{2}{\pi})^{\frac{1}{2}} \delta^{*2} ARL_0]$$

$$L^* \approx (b - \ln b)^{\frac{1}{2}} - \lambda^*$$

Then ARL_1^* can be found:

$$ARL_{\parallel\delta^*}^* \approx \frac{1}{\delta^{*2}} [1.2277(L^*)^2 - 2.835 + 9.740(L^*)^{-2}] + \frac{1}{2} (1 - \lambda^*)$$

Srivastava and Wu, "Evaluation of Optimum Weights and Average Run Lengths in EWMA Control Schemes," *Commun. Statist. – Theory Meth.* 26(5), 1253-1267 (1997)

1 © Argon Chen

ARL Comparisons between EWMA and CUSUM Charts

EWMA₁: L=2.856, λ =0.133 EWMA₂: L=2.866, λ =0.139

CUSUM: k=0.5, h=5

		ARL		
Shift	$EWMA_1$	$EWMA_2$	CUSUM	
.00	465	465	465	ARL_0
.25	116	118	139	<u>i</u> _
.50	33.3	33.8	38.0	
.75	16.0	16.1	17.0	
1.00	10.1	10.0	10.4	
1.50	5.71	5.67	5.75	ARL_1
2.00	4.04	3.99	4.01	
2.50	3.16	3.12	3.11	
3.00	2.62	2.59	2.57	
4.00	2.05	2.03	2.01	
5.00	1.77	1.74	1.69	<u> </u>