Rettelser

Fatal: inkluder simulering i figuren. Derudover ville lidt teori om frekvenskarakte- ristikken for et lukket kabinet være lækkert, inden vi kaster os ud i målinger.	
Også så vi kan sammenholde teori med praksis -AB	10
Fatal: Det er vel ikke forskudt. Det er dæmpet/Lavere - AB	11
Fatal: Vi behøver vel ikke korrigere? Vi skal bare holde 1m afstand-måling sammen med 1m afstand, og tæt afstand med tæt afstand	11
Fatal: ift hvad? - AB	11
Fatal: ref? - AB	11
Fatal: Men netop de lavere frekvenser burde vel være ligeglade, da der her ikke spiller direktivitet ind (fjederstyret område) - AB	11

Ingeniørhøjskolen Aarhus

E6Bac - Forprojekt

Forbedring af Bas-Gengivelse v. Placering af Resonans-Rør

Rapport

GRUPPE 1

Navn	${\bf Studienummer}$
Alexander Dahl Bennedsen(E)	201310498
Lasse Stenhøj Kofoed(E)	201407500
Thomas Skovgaard Rasmussen(E)	201406754

DATO: 30. MAJ 2017

Indholdsfortegnelse

Indholo	dsfortegnelse		3
Kapitel	l 1 Projektformulering		5
\mathbf{Kapite}	l 2 Teori		6
2.1	Højtaler	•	6
2.2	Kabinet	٠	6
\mathbf{Kapite}	l 3 Simuleringer		7
3.1	Højtaler	į	7
3.2	Kabinet	į	7
3.3	Rum		7
\mathbf{Kapite}	l 4 Målinger		8
4.1	CLIO Pocket	•	8
4.2	Konfigurationer af højtalerkabinettet	į	9
	Lukket kabinet		
4.3	Rummets karakteristik	ė	11
Kapitel	l 5 Konklusion		12
Littera	tur		13

Resume

Noget klogt her

Projektformulering

Noget mere klogt her

Teori 2

Kort introduktion til kapitlet...

2.1 Højtaler

Ting og sager...

2.2 Kabinet

Ting og sager...

Simuleringer 3

Kort introduktion til kapitlet...

3.1 Højtaler

Ting og sager...

3.2 Kabinet

Ting og sager...

3.3 Rum

Ting og sager...

Målinger 4

Dette kapitel omhandler brugen af CLIO Pocket til, at måle på højtalerkabinettets karakteristike samt lytteoplevelsen i et rum.

4.1 CLIO Pocket

Til selve målingerne blev der brugt en såkaldt **CLIO Pocket**. Dette er et værktøj som er i stand til, at måle både frekvenskarakteristikker og impulsresponser.

Selve modulet har en indgang som sluttes til en mikrofon og en udgang som sluttes til en højtaler. Derudover findes der en USBforbindelse til tilslutning til en computer.

Værktøjet måler en frekvenskarakteristik ved, at udsende to frekvenschirps efter hinanden gennem højtaleren som så måles igen af mikrofonen. Disse måleresultater bruges så til, at udarbejde en frekvenskarakteristik i området fra 10 Hz til 20 kHz.

Den målemetode som CLIO Pocket benytter sig af kan derfor beskrives gennem en simpel feedback-løkke svarende til det, som er vist på diagrammet nedenfor.

Figur 4.1. CLIO Pocket

Som vist på diagrammet, så vil højtalerens udformning (membran og refleks), rummets udformning og mikrofonens karakteristika alle have en betydning for det målte frekvensrespons. I de målinger der fremkommer i denne report er det dog blevet antaget, at mikrofonens karakteristika kun har en minimal betydning.

Figur 4.2. CLIO Pocket målemetode

4.2 Konfigurationer af højtalerkabinettet

I dette afsnit vil der blive set på hvordan forskellige konfigurationer af højtalerkabinettet påvirker dets frekvenskarakteristik. Idet det udelukkende er kabinettets egen karakteristik der er interessant i denne sammenhæng, så er det altså ikke ønskeligt, at rummets udformning spiller nogen større rolle i den samlede frekvenskarakteristik.

For at minimere rummets betydning for den samlede frekvenskarakteristik så blev højtaleren placeret i det lyddøde rum på IHA. Herved blev eventuelle reflektioner (ekkoer) dæmpet og det samme blev deres indvirkning på det samlede frekvensrespons.

Figur 4.3. Typisk måleopstilling i det lyddøde rum

Højtalerkabinettet er lavet til, at kunne konfigureres med forskellige længder basrefleksrør som kan placeres forskellige steder. De forskellige rørlængder der er blevet undersøgt i denne report er: 3,5 cm, 7,0 cm og 15,0 cm. De vil efterfølgende, meget naturligt, blive referet til som Kort, Medium og Lang basrefleks.

Basreflekserne kan som sagt placeres forskellige steder på højtalerkabinettet: Foran under membranen, på siden i samme højde som basrefleksen foran og under bunden. De vil på de efterfølgende sider blive refereret til som Forside, Side og Bund.

I undersøgelserne vil der kun blive placeret et basrefleksrør i kabinettet ad gangen og alle andre huller vil blive forseglet med en lufttæt prop. Disse propper kan også bruges til, at lave et helt forseglet kabinet - som også vil blive undersøgt på de følgende sider.

Lukket kabinet

Der blev først og fremmest set på karakteristikken for et helt lukket kabinet. Det vil altså sige, at alle propper blev sat over basreflekshullerne. Frekvenskarakteristikken blev herefter målt med CLIO Pocket lige foran membranen og i 1 m afstand foran membranen. Resultatet af disse målinger ses på figuren nedenfor.

Figur 4.4. Målinger på et lukket kabinet

Disse måleresultater udtaler sig som sagt ikke om hvordan basrefleksen påvirker frekvenskarakteristikken - men de vil blive brugt som referencemålinger i mange af de følgende måleopstillinger og resultater.

På figuren ovenfor optræder nogenlunde den type karakteristik vi forventer. Det er især resonansfrekvensen f_s ved 70 Hz som er meget interessant idet denne frekvens adskiller det **fjederstyrede område** fra det **massestyrede område**. Derudover er der blevet målt en hældning på kurven svarende til omkring +18 dB/oktav i det fjederstyrede område - altså en smule mere end den teoretiske stigning.

Figur 4.5. Teoretisk frekvenskarakteristik

¹FiXme Fatal: inkluder simulering i figuren. Derudover ville lidt teori om frekvenskarakteristikken for et lukket kabinet være lækkert, inden vi kaster os ud i målinger. Også så vi kan sammenholde teori med praksis -AB

Hvis det, som omtalt i teorien, også antages at frekvensen f_1 ligger en dekade over f_s , så svarer denne frekvens altså til 700 Hz. Herefter vil direktiviteten begynde at spille en stor rolle på frekvenskarakteristikken.

På grafen ses det også, at når CLIO-mikrofonen flyttes længere væk fra membranen, så bevarer karakteristikken nogenlunde sin form i det massestyrede område og et godt stykke ind i både området over og under i frekvensspektret. Den største forskel er dog, at karakteristikken er blevet dæmpet med omkring -30 dB. Derfor er den ovenstående kurve målt i 1 meters afstand også blevet korrigeret med +30 dB for at vise dette. ²

For at eftervise at dette er korrekt, så ses der på den nedenstående formel der giver en sammenhæng mellem lydtryk og afstand fra lydgiveren:

$$L_2 = L_1 - \left| 20 \cdot \log \left(\frac{r_1}{r_2} \right) \right| \tag{4.1}$$

Hvor værdierne L_1 og L_2 er lydtryksniveauet målt i afstandene r_1 og r_2 . Hvis der ses peaken omkring den første resonansfrekvens f_s , så ligger denne ved omkring $-34\,\mathrm{dB}$ når der måles tæt på højtaleren og $-62,5\,\mathrm{dB}$, når der måles i 1 meters afstand. Hvis disse værdier indsættes i den førnævnte formel, så findes der følgende:

$$-62.5 \, \mathrm{dB} = -34 \, \mathrm{dB} - \left| 20 \cdot \log \left(\frac{r_1}{1.00 \,\mathrm{m}} \right) \right| \quad \Rightarrow \quad r_1 \approxeq 3 \,\mathrm{cm}$$
 (4.2)

Hvilket altså vil sige, at CLIO-mikrofonen har været placeret omkring 3 cm fra højtaleren. Dette virker også meget sandsynligt.

Grunden til afvigelsen i det fjederstyrede område³ kan skyldes, at dæmpningsfaktoren i luft er meget anderledes ved lave frekvenser⁴. Afvigelsen ved de højere frekvenser skyldes at direktiviten spiller ind. Det kan derfor sagtens tænkes, at CLIO-mikrofonen ikke har stået præcist vinkelret ind på højtalerens midte. ⁵

4.3 Rummets karakteristik

²FiXme Fatal: Vi behøver vel ikke korrigere? Vi skal bare holde 1m afstand-måling sammen med 1m afstand, og tæt afstand med tæt afstand

³FiXme Fatal: ift hvad? - AB

⁴FiXme Fatal: ref? - AB

 $^{^5\}mathsf{FiXme}$ Fatal: Men netop de lavere frekvenser burde vel være ligeglade, da der her ikke spiller direktivitet ind (fjederstyret område) - AB

Konklusion 5

Her skal der stå noget meget klogt

Litteratur