

Dual N-Ch 60V Fast Switching MOSFETs

Applications

- Load Switching
- Battery Protection.
- Lighting.
- Bridge Topologies.

V- -

Product Summary

V _{DS}	60	V
R _{DS(ON),max}	15	mΩ
lo	22	Α

- 100% EAS Guaranteed
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

PRPAK3*3 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	60	V
V _G s	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	22	А
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	15	А
I _{DM}	Pulsed Drain Current ²	32	А
EAS	Single Pulse Avalanche Energy ³	31	mJ
las	Avalanche Current	11	А
P _D @T _A =25°C	Total Power Dissipation ⁴	25	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-Ambient ¹		70	°C/W
$R_{\theta JL}$	Thermal Resistance Junction-Case ¹		9	°C/W

Dual N-Ch 60V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60			V
△BV _{DSS} /△T _J	BVDSS Temperature Coefficient	S Temperature Coefficient Reference to 25°C , I _D =1mA		0.023		V/°C
D	Static Drain Source On Begintones ²	V _{GS} =10V , I _D =4A		12	15	0
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =3A		16	21	mΩ
V _{GS(th)}	Gate Threshold Voltage	V V I- 2500A	1.2	1.7	2.2	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} =V _{DS} , I _D =250uA		-5.08		mV/°C
	Drain Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =55°C			30	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.3		Ω
Qg	Total Gate Charge (10V)			13		
Q_{gs}	Gate-Source Charge	V _{DS} =30V , V _{GS} =10V , I _D =4A		3.88		nC
Q _{gd}	Gate-Drain Charge			2.2		
T _{d(on)}	Turn-On Delay Time			7		
Tr	Rise Time	V_{DD} =30 V , V_{GS} =10 V , R_{G} =3 Ω		18.2		
T _{d(off)}	Turn-Off Delay Time	I _D =1A		19		ns
T _f	Fall Time			3.4		
Ciss	Input Capacitance			1016		
Coss	Output Capacitance	V _{DS} =30V , V _{GS} =0V , f=1MHz		231		pF
Crss	Reverse Transfer Capacitance			39		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			5	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C	-		1.3	V

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300 us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.5mH, I_{AS} =11A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forword Characteristics

Fig.5 Normalized V_{GS(th)} vs. T_J

Dual N-Ch 60V Fast Switching MOSFETs

Fig.2 On-Resistance vs. Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs. T_J

Fig.7 Capacitance

Dual N-Ch 60V Fast Switching MOSFETs

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

Dual N-Ch 60V Fast Switching MOSFETs

PRPAK3X3 Package Outline Dimensions

DIMENSIONAL REOMTS				
SYMBOL	MIN	NOM	MAX	
A	0.70	0.75	0.80	
b	0.25	0.30	0.35	
С	0.10	0.15	0.25	
D	3.25	3.35	3.45	
D1	3.00	3.10	3.20	
D2	1.78	1.88	1.98	
D3		0.13		
E	3.20	3.30	3.40	
E1	3.00	3.15	3.20	
E2	2.39	2.49	2.59	
e		0.65BSC		
Н	0.30	0.39	0.50	
L	0.30	0.40	0.50	
<i>L1</i>		0.13		
K	0.30			
θ		10°	12°	
M	*	*	0.15	
* Not specified				