МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М. В. ЛОМОНОСОВА ФИЛИАЛ МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М. В. ЛОМОНОСОВА В ГОРОДЕ СЕВАСТОПОЛЕ

Факультет «Компьютерной математики» Направление подготовки «Прикладная математика и информатика» 01.03.02 (бакалавр)

ОТЧЕТ

по лабораторной работе №4

«Построение цепно-рекуррентного множества для дифференциального уравнения на примере уравнения Дуффинга»

Работу выполнил: студент группы ПМ-401 Хаметов Марк Владимирович

Руководитель: профессор кафедры прикладной математики и информатики Осипенко Георгий Сергеевич

Оглавление

Оглавление	2
Постановка задачи	
Георетическая часть	
интерфейс программы	
Результаты	
У Использованная литература	

Постановка задачи

Дано уравнение Дуффинга:

$$\ddot{x} + k\dot{x} + \alpha x + \beta x^3 = B\cos(\omega t)$$

Произведем замену у=х и получим динамическую систему уравнений:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -k\dot{x} - \alpha x - \beta x^3 + B\cos(wt) \end{cases}$$

В области [-2;-2]х[2;2] необходимо найти достаточно малую окрестность цепно-рекуррентного множества отображения этой динамической системы.

Для построения символического образа цепно-рекуррентного множества берется область. Эту область впоследствии разбивают на ячейки. Ячейки соответствующие цепно-рекуррентному множеству закрашиватся. Размер ячейки не превышает размера пикселя.

Теоретическая часть

Сильно связанные вершины графа — это подмножества таких вершин ориентированного графа, между которыми существует путь в обоих направлениях.

Разбиение области на ячейки в данной работе - это разбиение на прямоугольники одинакового размера. Длина ребер задается пользователем. Нумерация ячеек идет в порядке сначала слева направо, затем сверху вниз. Тогда обозначим ячейку M(i), где і номер вершины графа.

Тогда вершины графа это номера ячеек. Ребро исходящее из вершины соответствует отображению из соответствующей ячейки в другую ячейку. Номер полученной ячейки задает конечную точку ребра. Так как мы не можем отобразить каждую точку в области, мы отображаем к равномерно распределенных точек каждой ячейки. Это число задается пользователем.

Для реализации отображения этих точек мы используем метод Рунге-Кутта. Шаг алгоритма задается пользователем. Начальное время алгоритма равняется нулю, а конечное время равняется периоду функции в правой части уравнения. В случае уравнения Дуффинга период равен:

$$T = \frac{2*\pi}{\omega}$$

По теореме 5.1 из источника [1]: Пусть P(d) - это окрестность равная объединению всех ячеек соответствующих возвратным вершинам графа, где d - это длина стороны ячейки.

$$P(d) = \{ \cup M(i), i - возвратная \}$$

Тогда цепно-рекуррентное множество совпадает с пересечением множеств P(d) по формуле:

$$Q = \bigcap_{d>0} P(d)$$

По теореме 5.2 из источника [1]: При уменьшении размера ячейки новая окрестность оказывается вложена в старую. Из этого следует то, что уменьшение диаметра ячеек приводит к меньшему размеру окрестности. Таким образом, последовательность окрестностей монотонно убывает и сходится к цепно-рекуррентному множеству по формуле:

$$\lim_{k \to \infty} P_k = \bigcap_k P_k = Q.$$

Для подсчета номера ячейки полученного после отображения точки области применяем формулу:

$$n = [(x - x_{min}) / h_x] + 1 + [(y_{min} - y) / h_y] * [(x_{max} - x_{min}) / h_x]$$

Для нахождения сильно связанных вершин графа была использована функция strongly_connected_components из библиотеки networkx для языка программирования python.

Так как разбиение на необходимое количество ячеек сразу приводит к применению сложного алгоритма к огромному количеству ячеек, мы используем алгоритм локализации цепно-рекуррентного множества. Для этого мы разбиваем область на малое количество ячеек и ищем сильно связанные вершины графа. Затем мы отбрасываем остальные вершины, для этого мы создаем список ячеек с которыми необходимо продолжить работу. Мы разбиваем область на ячейки размером меньше. Далее мы применяем алгоритм только для ячеек из списка. Алгоритм продолжает работу до момента достижения желаемого размера ячеек.

Интерфейс программы

Построение цепно-рекурентного множества	-
еню	
Система уравнений	Значения параметров
У	a,b,d,B,w -1 ,1 ,0.25 ,0.3 ,1
- a*x - b*x**3 - d*y + B * cos(w*t)	
Точки задающие область	Коэфициент переразбиения и количество точек
-2,-2	
Построить итераций и Достроить итераций Построить график для итераций:	Отчистить старые данные и занести новые
Проитерировать существующий: 2	

■ Построение цепно-рекурентного множества	_	×
Меню		
1 итерация. Занято времени 0.016015052795410156 Количество ячеех 256.0 2 итерация. Занято времени 0.04601025581359863 Количество ячеек 1024.0 3 итерация. Занято времени 0.17910289764404297 Количество ячеек 1096.0 4 итерация. Занято времени 0.7141475677490234 Количество ячеек 16384.0 5 итерация. Занято времени 2.876002788543701 Количество ячеек 65536.0 6 итерация. Занято времени 11.95172905921936 Количество ячеек 62144.0 На этой итерации также был нарисован график 7 итерация. Занято времени 48.47069954872131 Количество ячеек 1048576.0 8 итерация. Занято времени 210.70473718643188 Количество ячеек 4194304.0 На этой итерации также был нарисован график		

Результаты

Программа написана на языке Python. Для создания интерфейса использовалась библиотека PySide6. Для расчетов использовались библиотеки networkx, math, time.

Для измерений результатов область задавалась [-2, -2]x[2, 2] и на каждой итерации длина ребра ячейки делилась на два, изначальная длина ребра была равна 0.5.

Для параметров $\infty = -1$, $\beta = 1$, k = 0.25, B = 0.3, w = 1. Для 4 отображаемых точек в виде сетки 2 на 2 из ячейки. Для 62 шагов алгоритма Рунге-Кутта каждой точки. Восьмая итерация заняла 3,5 минуты. Всего программа исполнялась 4,5 минуты. Количество ячеек на финальном изображении равнялось 4194304.

Использованная литература

- 1. "Введение в символический анализ динамических систем" Г.С.Осипенко, Н.Б.Ампилова.
- 2. https://ru.wikipedia.org/wiki/Компонента_сильной_связности
- 3. https://cyberleninka.ru/article/n/otsenka-pokazateley-lyapunova-metodamisimvolic heskogo-analiza
- 4. https://zetcode.com/gui/pysidetutorial/drawing/
- 5. https://github.com/Zenoro/ODU-solutions
- 6. https://www.freecodecamp.org/news/lambda-expressions-in-python/
- 7. https://www.geeksforgeeks.org/topological-sorting/
- 8. https://stackoverflow.com/questions/17200117/how-to-get-the-object-name-from-within-the-class
- 9. https://srinikom.github.io/pyside-docs/PySide/QtCore/QRectF.html
- 10. https://en.wikipedia.org/wiki/Coordinate system
- 11. https://stackoverflow.com/questions/60918473/how-do-i-convert-pixel-screen-coordinates-to-cartesian-coordinates
- 12. https://www.pythonguis.com/tutorials/pyside6-plotting-pyqtgraph/
- 13. https://stackoverflow.com/questions/17200117/how-to-get-the-object-name-from-within-the-class
- 14. https://eltehhelp.xyz/wp-content/uploads/2021/09/image-2.png
- 15. https://eltehhelp.xyz/wp-content/uploads/2021/09/image-1.png