ArcSoftFace

C# Demo 说明文档

目录

1.	简介	`		1	
	1.1	运行环	「境	1	
	1.2	系统要	[求	1	
	1.3	开发工		1	
	1.4	环境要求			
	1.5	支持的颜色空间格式			
	1.6	产品功	力能简介	1	
		1.6.1	人脸检测/人脸追踪	1	
		1.6.2	年龄检测	1	
		1.6.3	性别检测	1	
		1.6.4	人脸识别	2	
		1.6.5	RGB 活体检测	2	
		1.6.6	IR 活体检测	2	
		1.6.7	图像质量检测	2	
		1.6.8	口罩检测	2	
		1.6.9	额头区域检测	2	
2.	快速	5上手		2	
3.	接入指南				
	3.1 示例代码				
		3.1.1	引擎在线激活	3	
		3.1.2	引擎离线激活	3	
		3.1.3	初始化引擎	3	
		3.1.4	人脸检测	4	
		3.1.5	口罩检测	4	
		3.1.6	图像质量检测	4	
		3.1.7	提取特征	4	
		3.1.8	人脸比对	5	
		3.1.9	RGB 活体检测	5	
		3.1.10	IR 活体检测	5	
		3.1.11	额头区域检测	5	
	3.2	通用方	7法	6	
		3.2.1	从 Bitmap 中读取 BGR 数据	6	
		3.2.2	从 Bitmap 中读取 GRAY 数据	6	
4.	常见问题				
	4.1	1 2 = 7 17 = 7 17 1			
	4.2	其他帮	ß助	7	

1.简介

1.1 运行环境

Windows 平台 最低硬件配置 Intel® CoreTM i5-2300@2.80GHz 或者同级别芯片 推荐硬件配置 Intel® CoreTMi7-4600U@2.1GHz 或者同级别芯片

1.2 系统要求

Windows7 及以上

1.3 开发工具

VS2013 以上版本、USB 摄像头

1.4 环境要求

.Net Framework 4.5.1 以上 Microsoft Visual C++ 2013 Redistributable 环境包

1.5 支持的颜色空间格式

支持图像的颜色空间格式: BGR24、ASVL_PAF_GRAY

1.6 产品功能简介

1.6.1 人脸检测/人脸追踪

通过 ASFDetectFaces 或 ASFDetectFacesEx 方法从图片中检测人脸信息,获取图片中人脸框的个数、位置坐标信息和角度信息。不同的使用场景,初始化时使用不同模式:

- 1. 图片检测模式(适用于静态图片识别): ASF_DETECT_MODE_IMAGE
- 2. 视频检测模式(适用于摄像头预览,视频文件识别): ASF DETECT MODE VIDEO

1.6.2 年龄检测

对图片中对应的人脸图片信息数据进行年龄检测。对应方法:通过 ASFProcess 方法从图片中检测人脸信息,通过 ASFGetAge 方法获取年龄检测结果。

1.6.3 性别检测

对图片中对应的人脸图片信息数据进行性别检测。对应方法:通过 ASFProcess 或ASFProcessEx 方法从图片中检测人脸信息,通过 ASFGetGender 方法获取性别检测结果。

1.6.4 人脸识别

通过 ASFFaceFeatureExtract 或 ASFFaceFeatureExtractEx 方法从图片中提取人脸特征信息,通过人脸识别 SDK 中人脸比对的方法: ASFFaceFeatureCompare, 对两个特征值进行比较,通过返回的相似度判断两个人是否是一个人。

1.6.5 RGB 活体检测

对图片中对应的人脸图片信息数据进行活体检测。对应方法:通过 ASFProcess 或ASFProcessEx 方法从图片中检测人脸信息,通过 ASFGetLivenessScore 方法获取活体检测结果。

1.6.6 IR 活体检测

对图片中对应的人脸图片信息数据进行活体检测。对应方法:通过 ASFProcess_IR 或 ASFProcessEx_IR 方法从图片中检测人脸信息,通过 ASFGetLivenessScore_IR 方法获取活体检测 结果。

1.6.7 图像质量检测

对图片中相应的人脸框区域进行图像质量检测。对应方法:通过ASFImageQualityDetectEx方法获取图像质量检测结果。

1.6.8 口罩检测

对图片中对应的人脸图片信息数据进行口罩检测。对应方法:通过 ASFProcess 或 ASFProcessEx 方法从图片中检测人脸信息,通过 ASFGetMask 方法获取口罩检测结果。

1.6.9 额头区域检测

对图片中对应的人脸图片信息数据进行额头区域检测。对应方法:通过 ASFProcess 或ASFProcessEx 方法从图片中检测人脸信息,通过 ASFGetFaceLandMark 方法获取额头区域检测结果。

2.快速上手

- 1. 安装 VS2013 环境安装包(vcredist x86 vs2013.exe),确认本地.NET Framework 版本
- 2. 从虹软开发者中心官网(https://ai.arcsoft.com.cn/ucenter/user/user/userlogin)下载 ArcFace 4.0 SDK 包(x86 或 x64,平台请根据项目编译环境选择)并解压
- 3. 将 libs 中的文件拷贝到工程 bin 目录的对应平台的 Debug 或 Release 目录下
- 4. 将对应 APP ID、SDK KEY、ACTIVE KEY 替换 App.config 文件中对应内容
- 5. 在 Debug 或者 Release 中选择配置管理器,选择对应的平台
- 6. 按 F5 启动程序
- 7. 点击"注册人脸"按钮增加人脸库图片
- 8. 点击"选择识别图"按钮增加人脸图片
- 9. 点击"开始匹配"按钮进行比较
- 10. 根据下面文本框查看相关信息

3.接入指南

3.1 示例代码

3.1.1 引擎在线激活

```
retCode = FaceEngine. ASFOnlineActivation(appId, is64CPU ? sdkKey64 : sdkKey32, is64CPU ?
activeCode64 : activeCode32);
```

3.1.2 引擎离线激活

```
string deviceInfo;

//获取设备信息

retCode = imageEngine.ASFGetActiveDeviceInfo(out deviceInfo);

if (retCode != 0)

{
    MessageBox.Show("获取设备信息失败,错误码:" + retCode);
}
else
{
    File.WriteAllText("ActiveDeviceInfo.txt", deviceInfo);
}
//官网执行离线激活操作,将生成的离线授权文件,再执行以下操作

string offlineActiveFilePath = "离线激活文件路径";
//离线激活
retCode = imageEngine.ASFOfflineActivation(offlineActiveFilePath);
```

3.1.3 初始化引擎

图片模式引擎初始化

```
DetectionMode detectMode = DetectionMode.ASF_DETECT_MODE_IMAGE;

//Video 模式下检测脸部的角度优先值

ASF_OrientPriority videoDetectFaceOrientPriority = ASF_OrientPriority.ASF_OP_ALL_OUT;

//Image 模式下检测脸部的角度优先值

ASF_OrientPriority imageDetectFaceOrientPriority = ASF_OrientPriority.ASF_OP_ALL_OUT;

//人脸在图片中所占比例,如果需要调整检测人脸尺寸请修改此值,有效数值为 2-32

int detectFaceScaleVal = 16;

//最大需要检测的人脸个数

int detectFaceMaxNum = 5;

//引擎初始化时需要初始化的检测功能组合

int combinedMask = FaceEngineMask.ASF_FACE_DETECT | FaceEngineMask.ASF_FACERECOGNITION | FaceEngineMask.ASF_AGE | FaceEngineMask.ASF_GENDER | FaceEngineMask.ASF_FACE3DANGLE;

//初始化引擎,正常返回值为 0

retCode = imageEngine.ASFInitEngine(detectMode, imageDetectFaceOrientPriority, detectFaceScaleVal, detectFaceMaxNum, combinedMask);
```

视频模式初始化

```
DetectionMode detectModeVideo = DetectionMode.ASF_DETECT_MODE_VIDEO;
int combinedMaskVideo = FaceEngineMask.ASF_FACE_DETECT | FaceEngineMask.ASF_FACERECOGNITION;
retCode = videoEngine.ASFInitEngine(detectModeVideo, videoDetectFaceOrientPriority,
```


detectFaceScaleVal, detectFaceMaxNum, combinedMaskVideo);

初始化时要设置需要用的算法功能。

3.1.4 人脸检测

使用人脸检测功能需要在初始化引擎时将人脸检测方法类型(FaceEngineMask.ASF_FACE_DETECT 做初始化,将图片文件(图片文件一般为 RGB 格式图像数据)作为参数传入FaceEngine. ASFDetectFaces()或 FaceEngine. ASFDetectFacesEx()的人脸检测方法即可,示例代码如下:

```
//人脸检测
MultiFaceInfo multiFaceInfo = new MultiFaceInfo();
faceEngine.ASFDetectFacesEx(image, out multiFaceInfo);
```

3.1.5 口罩检测

口罩检测需要在初始化引擎时设置口罩检测算法功能。使用 FaceEngine. ASFProcessEx()或者 FaceEngine. ASFProcess()方法检测人脸信息,然后通过 FaceEngine. ASFGetMask()方法获取口罩检测结果,示例代码如下:

```
MaskInfo maskInfo = new MaskInfo();

//人脸信息处理

retCode = faceEngine.ASFProcessEx(image, multiFaceInfo, FaceEngineMask.ASF_MASKDETECT);

if (retCode == 0)

{

    //获取 IR 活体检测结果

    retCode = faceEngine.ASFGetMask(out maskInfo);
}
```

3.1.6 图像质量检测

图像质量检测需要在初始化引擎时设置图像质量检测算法功能,当人脸检测完成后,将图像和人脸检测结果、口罩检测结果传入 FaceEngine. ASFImageQualityDetectEx()方法来提取人脸的图像质量,示例代码如下:

```
//图像质量检测
float confidenceLevel;
retCode = faceEngine.ASFImageQualityDetectEx(image, multiFaceInfo, out confidenceLevel, faceIndex, isMask);
```

3.1.7 提取特征

提取特征功能需要在初始化引擎时将人脸识别功能类型初始化(FaceEngineMask.ASF_FACERECOG NITION),将图像、人脸检测结果、口罩检测结果作为参数传入FaceEngine.ASFFaceFeatureExtract()或FaceEngine.ASFFaceFeatureExtractEx()方法来提取人脸特征信息,示例代码如下:

```
//特征提取
FaceFeature faceFeature = new FaceFeature();
retCode = faceEngine.ASFFaceFeatureExtractEx(image, multiFaceInfo, registerOrNot, out faceFeature, faceIndex, isMask);
```


3.1.8 人脸比对

人脸比对功能是通过对比两个人脸特征信息,返回两者的相似程度。通过人脸检测,提取特征后,通过FaceEngine. ASFFaceFeatureCompare()的人脸比对方法对比两个人脸特征信息,获取它们的相似度,示例代码如下:

3.1.9 RGB 活体检测

RGB 活体检测功能是通过 RGB 图像检测图像中的人是否为活体。使用 FaceEngine. ASF ProcessEx()或者 FaceEngine. ASFProcess()方法检测 RGB 图像的人脸信息,然后通过 FaceEngine. ASFGetLivenessScore()方法获取 RGB 活体检测结果,示例代码如下:

```
LivenessInfo livenessInfo = new LivenessInfo();

//人脸信息检测

retCode = faceEngine.ASFProcessEx(image, multiFaceInfo, FaceEngineMask.ASF_LIVENESS);

if (retCode == 0)

{

    //获取活体检测结果

    retCode = faceEngine.ASFGetLivenessScore(out livenessInfo);
}

return livenessInfo;
```

3.1.10 IR 活体检测

IR 活体检测功能是通过红外摄像头获取人脸检测数据,根据检测数据判断图片中是否有活体。使用 FaceEngine.ASFProcess_IR()或 FaceEngine.ASFProcessEx_IR()方法检测 IR 图像的人脸信息,然后通过 FaceEngine. ASFGetLivenessScore_IR()方法来获取 IR 活体检测结果,示例代码如下:

```
LivenessInfo livenessInfo = new LivenessInfo();

//人脸信息处理

retCode = faceEngine.ASFProcessEx_IR(image, multiFaceInfo, FaceEngineMask.ASF_IR_LIVENESS);

if (retCode == 0)

{

    //获取 IR 活体检测结果

    retCode = faceEngine.ASFGetLivenessScore_IR(out livenessInfo);
}

return livenessInfo;
```

3.1.11 额头区域检测

额头区域检测需要在初始化引擎时设置额头区域检测算法功能,当人脸检测完成后,使用 FaceEngine. ASFProcess_IR()或 FaceEngine. ASFProcessEx_IR()方法检测图像的人脸信息,然后通过 FaceEngine. ASFGetFaceLandMark()方法来获取 IR 活体检测结果,示例代码如下:

```
LandMarkInfo landMarkInfo = new LandMarkInfo();
//人脸信息检测
```



```
retCode = faceEngine.ASFProcessEx(image, multiFaceInfo, FaceEngineMask.ASF_FACELANDMARK);
if (retCode == 0)
{
    //获取额头区域检测结果
    retCode = faceEngine.ASFGetFaceLandMark(out landMarkInfo);
}
```

3.2 通用方法

3.2.1 从 Bitmap 中读取 BGR 数据

从 Bitmap 中读取 BGR 数据的方法比较复杂,可以参考 ImageUtil. ReadBMP(Image image)方法。

3.2.2 从 Bitmap 中读取 GRAY 数据

从 Bitmap 中读取 GRAY 数据的方法比较复杂,可以参考 ImageUtil. ReadBMP_IR(Image image)方法。

4.常见问题

4.1 常见问题问答

问题	参考回复
启动后引擎初始化失败	1. 请选择对应的平台,如 x64, x86
	▼ Debug ▼ x64 ▼ ▶ 启动 ▼
	2. 删除 bin 下面对应的 asf install.dat;
	_
	3. 请确保 App. config 下的 APPID、SDKKEY 与当前 SDK 的平台、
	版本保持一致。
SDK 支持那些格式的图片	目前 SDK 支持的图片格式有 Jpg、Jpeg、Png、Bmp 等。
人脸检测?	
使用人脸检测功能对图片	推荐的图片大小最大不要超过 2M, 因为图片过大会使人脸检测
大小有要求吗?	的效率不理想,当然图片也不宜过小,否则会导致无法检测到人
	脸。
使用人脸识别引擎提取到	人脸特征信息是从图片中的人脸上提取的人脸特征点,是
的人脸特征信息是什么?	byte[]数组格式。
SDK 人脸比对的阈值设为	推荐值为 0.8, 用户可根据不同场景适当调整阈值。
多少合适?	
可不可以将人脸特征信息	可以,当人脸个数比较多时推荐先存储起来,在使用时直接进行
保存起来,等需要进行人	比对,这样可以大大提高比对效率。存入数据库时,请以 Blob
脸比对的时候直接拿保存	的格式进行存储,不能以 string 或其他格式存储。
好的人脸特征进行比对?	

	V-742411				
VS 中调试激活时,返回	1、调试环境下: 当前 VS 没有权限,请使用管理员身份运行				
90113 SDK 激活失败,请	2、IIS 环境部署下的 Web 服务: 请将 SDK 文件夹添加 IUSR 和				
打开读写权限	IIS_USRS、NETWORK_SERVICE 用户的写入、修改权限,并在 IIS				
	应用程序池中将高级设置中的标识设为 Local System				
在. Net 项目中出现堆栈	. Net 平台设置的默认堆栈大小为 256KB, SDK 中需要的大小为				
溢出问题	512KB 以上,推荐调整堆栈的方法为:				
	<pre>new Thread(new ThreadStart(delegate {</pre>				
	ASF_MultiFaceInfo multiFaceInfo =				
	FaceUtil.DetectFace(pEngine,				
	<pre>imageInfo);</pre>				
	<pre>}), 1024 * 512).Start();</pre>				
在. Net 项目中出现 x64 不	首先使用 bool is64 = Environment.Is64BitProcess; 查看当				
能加载 SDK 的问题	前是否是 x64 位编译器,如果不是则按在 Visual Studio 中选择				
	菜单"工具〉选项〉项目和解决方案〉Web项目",在对话框中勾选				
	"对网站和项目使用 IIS Express 的 64 位版本"。				
X86 模式下批量注册人脸	请增加虚拟内存或每次批量注册人脸控制在20张图片范围内				
有内存溢出或图片空指针					
图片中有人脸, 但是检测	1. 请调整 detectFaceScaleVal 的值;				
时未检测到人脸	2. 请确认图片的宽度是否为 4 的倍数;				
	3. 请确认图片是否通过 ImageUtil.ReadBMP 方法进行数据调				
	整。				
尝试读取或写入受保护的	尝试读取或写入受保护的内存是内存操作不当导致,请查看您程				
内存	序中是否有内存使用后未释放,或者使用了已经释放的内存!				
销毁引擎时程序报错	请先确认销毁引擎的时候,引擎是否处于被占用的状态。				
多人脸活体检测,调用	错误码 9 表示缓冲上溢。建议在活体检测引擎初始化时,将				
ASFProcess()接口,返回	detectFaceMaxNum 值设置为不小于实际要检测人脸的值。				
值为9					
多线程调用注意事项	1. 同一个引擎可以使用多线程调用不同算法;				
	2. 多线程调用同一个算法接口需要启用不同的引擎				
更多常见问题请访问 https://ai.arcsoft.com.cn/manual/fags.html					

更多常见问题请访问 https://ai.arcsoft.com.cn/manual/fags.html。

4.2 其他帮助

如您想要了解更多虹软的产品,请访问虹软官网 http://www.arcsoft.com.cn/, 或者您在 开发的过程中遇到了问题,或者对我们的人脸识别 SDK 有什么意见或建议,欢迎在虹软官 方论坛 https://ai.arcsoft.com.cn/, 或者您在 方论坛 https://ai.arcsoft.com.cn/, 或者您在 方论坛 https://ai.arcsoft.com.cn//bbs/portal.php 上发帖提问,我们的工作人员会竭力为您解答。