Исследование анормальных задач

студент 4 курса Я.А. Григорьев научный руководитель — д.ф.-м.н., проф. А.В. Арутюнов

Кафедра системного анализа

3 июня 2019 г.

Ключевые определения

Пусть даны евклидовы пространства X и Y, причём $\dim X = n$, $\dim Y = k$ для некоторых натуральных n и k.

Определение

Отображение $Q[\cdot,\cdot]: X\times X\to Y$ называется билинейным, если оно является линейным по каждому аргументу. Билинейное отображение называется симметричным, если $Q[x_1,x_2]=Q[x_2,x_1]$ для всех $x_1,x_2\in X$.

Определение

Пусть $Q[\cdot,\cdot]$ — билинейное отображение. Тогда отображение $Q:X\to Y$, определяемое как Q(x):=Q[x,x], называется квадратичным отображением из X в Y. Оно называется сюръективным, если Q(X)=Y.

Ключевые определения

Пусть даны евклидовы пространства X и Y, причём $\dim X = n$, $\dim Y = k$ для некоторых натуральных n и k.

Определение

Квадратичное отображение $Q:X \to Y$ называется *устойчиво сюръективным*, если существует такое $\varepsilon>0$, что для любого квадратичного отображения $\Delta:\|\Delta\|<\varepsilon$ следует, что квадратичное отображение $Q+\Delta$ является сюръективным.

Определение

Вектор $x\in X$, $x\neq 0$, называется нетривиальным нулём квадратичного отображения $Q:X\to Y$, если Q(x)=0. Если при этом выполнено Q[x,X]=Y, то вектор x называется регулярным нулём отображения Q.

Анормальные задачи и квадратичные отображения

Пусть дано векторное пространство X.

Рассмотрим задачу минимизации с ограничениями:

$$f_0(x) \rightarrow \min, \quad F(x) = 0.$$

Здесь $F: X \to Y = \mathbb{R}^k$ — заданное отображение.

Определение

Точка $x_0 \in X$ называется *анормальной*, если $\operatorname{im} F'(x_0) \neq Y$.

Исследование квадратичных отображений содержит наиболее типичные проблемы, присущие анормальным задачам. Поэтому далее рассматриваются вопросы, касающиеся квадратичных отображений.

Вещественные квадратичные отображения

Здесь рассматриваются квадратичные отображения $Q:\mathbb{R}^n o \mathbb{R}^k$ для некоторых натуральных n и $k,\ n\geqslant k.$

- ullet Всегда ли множество $Q(\mathbb{R}^n)$ является выпуклым конусом?
- Всегда ли сюръективное вещественное квадратичное отображение является устойчиво сюръективным?
- \bullet N(k) ?
- Существует ли нетривиальный нуль у сюръективного квадратичного отображения $Q:\mathbb{R}^n o \mathbb{R}^n$?

Комплексные квадратичные отображения

Здесь рассматриваются квадратичные отображения $Q:\mathbb{C}^n o \mathbb{C}^k$ с вещественными коэффициентами для некоторых натуральных n и k, $n\geqslant k$.

- ullet Всегда ли множество $Q(\mathbb{C}^n)$ является выпуклым конусом?
- Всегда ли сюръективное комплексное квадратичное отображение является устойчиво сюръективным?
- N(k) ?
- Существует ли нетривиальный нуль у сюръективного квадратичного отображения $Q:\mathbb{C}^n o \mathbb{C}^n$?

Основные результаты

Теорема

Пусть $Q:\mathbb{C}^2 o\mathbb{C}^2$ — сюръективное квадратичное отображение. Тогда у него нет нетривиальных нулей.

Теорема

Пусть $Q:\mathbb{C}^n o \mathbb{C}$ — квадратичное отображение с вещественными коэффициентами. Тогда его образ $Q\left(\mathbb{C}^n\right)$ является выпуклым конусом.

Контрпример

Пусть $Q:\mathbb{C}^n \to \mathbb{C}^k$ — квадратичное отображение, причём $k\geqslant 2$. Тогда его образ $Q\left(\mathbb{C}^n\right)$ является конусом, но не обязан быть выпуклым. Соответствующий пример даёт квадратичное отображение $Q:\mathbb{C}^2\to\mathbb{C}^2$, определённое формулой

$$Q(z) = (z_1^2 - z_2^2, z_1z_2 + z_2^2).$$

Список литературы

- А. В. Арутюнов, С. Е. Жуковский, "Свойства сюръективных вещественных квадратичных отображений", Матем. сборник, 207:9 (2016), 3-34.
- А. В. Арутюнов, "Гладкие анормальные задачи теории экстремума и анализа", УМН, 67:3(405) (2012), 3-62.
- Uloyd L. Dines, "On the Mapping of Quadratic Forms", Bull. Amer. Math. Soc., 47:6 (1941), 494-498.
- B. T. Polyak, "Convexity of quadratic transformations and its use in control and optimization", J. Optim. Theory Appl., 99:3 (1998), 553-583.
- A. Tret'yakov, H. Żołądek, "A remark about homogeneous polynomial maps", Topol. Methods Nonlinear Anal., 19 (2002), 257-273.