Lösungsvorschlag zu Aufgabenblatt 1

Aufgabe 1

Sei $A \neq \emptyset$ und sei $x \in A$. Nach Definition der *Antisymmetrie* in der Aufgabenstellung, müsste insbesondere auch $(x,x) \in R \Leftrightarrow (x,x) \notin R$, damit R antisymmetrisch ist. Dies ist offensichtlich kontradiktorisch. Somit führt die Definition aus der Aufgabenstellung für alle Mengen M mit $M \neq \emptyset$ zu einem Widerspruch.

Somit ist die Definition $\forall a, a' \in A. (a, a') \in R \land (a, a') \in R \Rightarrow a = a'$ sinnvoller, da so im Fall, dass a und a' gleich sind, die Definition nicht zu einem Widerspruch führt.

Aufgabe 2

Im Allgemeinen ist die zu beweisende Aussage falsch: Sei \mathcal{A} die leere Menge und $\mathcal{B} = \{1\}$. In dem Fall ist die leere Funktion eine Injektion von \mathcal{A} nach \mathcal{B} . Es existiert jedoch keine Surjektion von \mathcal{B} nach \mathcal{A} , da es kein Element in der Zielmenge gibt, Surjektionen unserer Definition zufolge jedoch immer (totale) Funktionen sind. Lässt man für \mathcal{A} und \mathcal{B} die leere Menge nicht zu, so gilt die Aussage jedoch:

" \Rightarrow " Sei f eine Injektion von \mathcal{A} nach \mathcal{B} . In diesem Fall gilt: $\forall a, a \in \mathcal{A} : a \neq a \rightarrow f(a) \neq f(a')$.

Zu zeigen: Es existiert eine Funktion f' von \mathcal{B} nach \mathcal{A} , sodass $\forall a \in \mathcal{A} : \exists b \in \mathcal{B} : f'(b) = a$. Da \mathcal{A} nicht die leere Menge ist, existiert ein $\dot{a} \in \mathcal{A}$. Sei f' wie folgt definiert:

$$f'(b) = \begin{cases} f^{-1}(b) & \text{falls ein } a \in \mathcal{A} \text{ existiert, sodass } f(a) = b \\ \dot{a} & \text{sonst} \end{cases}$$

Offensichtlich gilt, dass für ein $a \in \mathcal{A}$ das Objekt $f(a) \in \mathcal{B}$ existiert, sodass f'(f(a)) = a. Es bleibt lediglich noch zu zeigen, dass f' tatsächlich eine (totale) Funktion ist.

Wohldefiniertheit (Funktionalität): Beweis durch Widerspruch:

Fall 1: $f'(b) = a \land f'(b) = a' \land a \neq a'$: Also: f(a) = b und f(a') = b. In diesem Fall, gilt nach Injektivität von f: a = a'. Dies ist aber ein Widerspruch zur Annahme, dass $a \neq a'$.

Fall 2: $f'(b) = \dot{a}$: In diesem Fall ist Funktionalität klar.

"\(\infty\)" Sei f' eine Surjektion von \mathcal{B} nach \mathcal{A} . Dann gilt: $\forall a \in \mathcal{A} : \exists b \in \mathcal{B} : f'(b) = a$.

Zu zeigen: $\exists f: \forall a, a': a \neq a' \rightarrow f(a) \neq f(a')$. Sei $a \in \mathcal{A}$ beliebig. Nun existiert mindestens ein $b \in \mathcal{B}$, sodass f'(b) = a. Sei nun f(a) = b. Somit haben wir eine Funktion f gefunden. Es bleibt zu zeigen, dass sie die gewünschte Eigenschaft erfüllt. Für a, a' mit $a \neq a'$ und f(a) = b und f(a') = b' wissen wir nach Definition von f: $f'(b) = a \land f'(b') = a'$. Da f' eine Funktion ist, müsste im Fall b = b'gelten: a = a'. Dies ist jedoch falsch. Daher gilt $b \neq b'$ und die Behauptung ist gezeigt.

${\bf Aufgabe~3}$

1. "<" ist transitiv:

Seien A, B, C Mengen mit $|A| \leq |B|$ und $|B| \leq |C|$. Per Definition gibt es also zwei Injektionen $f: A \to B$ und $g: B \to C$. Wir müssen nun eine Injektion $h: A \to C$ finden. Wähle $h:= g \circ f$, d.h. h(a):= g(f(a)). h ist injektiv:

Seien $a_1, a_2 \in A$ beliebig mit $a_1 \neq a_2$. Dann gilt $f(a_1) \neq f(a_2)$, da f injektiv ist. $f(a_1)$ und $f(a_2)$ sind Elemente von B, daher folgt $g(f(a_1)) \neq g(f(a_2))$ aus der Injektivität von g. Per Definition von h ist also $h(a_1) \neq h(a_2)$, was die Injektivität von h beweist, und damit $|A| \leq |C|$ zeigt. Also ist " \leq " auf Mächtigkeiten von Mengen transitiv.

2. " \geq " ist transitiv:

Seien A, B, C Mengen mit $|A| \ge |B|$ und $|B| \ge |C|$. Per Definition gibt es also zwei Surjektionen $f: A \to B$ und $g: B \to C$. Wir müssen nun eine Surjektion $h: A \to C$ finden. Wähle $h:= g \circ f$, d.h. h(a):= g(f(a)). h ist surjektiv:

Lösungsvorschlag zu Aufgabenblatt 1

Sei $c \in C$ beliebig. Dann gibt es ein $b \in B$ mit g(b) = c, da g surjektiv ist. Für ein solches b gibt es wiederum ein $a \in A$ mit f(a) = b, da f surjektiv ist. Für ein solches a gilt dann also h(a) = g(f(a)) = g(b) = c. Also ist h surjektiv und somit $|A| \ge |C|$. Also ist " \ge " auf Mächtigkeiten von Mengen transitiv.

Bemerkung: Alternativ kann man die Transitivität von nur einer Relation beweisen, und die der jeweils anderen mithilfe von $|A| \leq |B| \iff |B| \geq |A|$ (Aufgabe 1.2) folgern.

Aufgabe 4

Zu zeigen ist: "=" auf Mächtigkeiten von Mengen ist reflexiv, transitiv und symmetrisch.

1. Reflexivität:

Sei A eine Menge. Wir müssen eine Bijektion $f:A\to A$ angeben: Wähle f=id die Identität. Diese ist offensichtlich bijektiv. Also gilt |A|=|A|.

2. Transitivität:

Seien A, B, C Mengen mit |A| = |B| und |B| = |C|. Per Definition gibt es also zwei Bijektionen $f: A \to B$ und $g: B \to C$. Wir müssen nun eine Bijektion $h: A \to C$ finden. Wähle $h:= g \circ f$. Da f und g injektiv und surjektiv sind, folgt mit den Beweisen aus Aufgabe 1.3, dass auch h injektiv und surjektiv ist, also bijektiv. Also gilt |A| = |C|.

3. Symmetrie:

Seien A, B Mengen mit |A| = |B|. Per Definition gibt es also eine Bijektion $f: A \to B$. Bijektionen sind umkehrbar, d.h. die Funktion $f^{-1}: B \to A$ ist wohldefiniert und ebenfalls eine Bijektion. Somit gilt |B| = |A|.

Aufgabe 5

Für endliche Mengen A und B gilt laut Vorlesung, dass $|B^A| = |B|^{|A|}$. Wir müssen jedoch auch unendliche Mengen betrachten. Fallunterscheidung über die Kardinalitäten von A und B:

1. |A| = 0: Dann gilt $A = \emptyset$ und somit

$$|B^A| = |\{f \mid f : A \to B \text{ ist eine Funktion}\}|$$

$$= |\{f \mid f : \emptyset \to B \text{ ist eine Funktion}\}|$$

$$= |\{f \mid f = \emptyset\}|$$

$$= |\{\emptyset\}|$$

$$= 1$$

$$> |A|$$

2. $|A|>0 \land |B|=0$: Dann gilt $A\neq \emptyset$ und $B=\emptyset$ und somit

$$|B^A| = |\{f \mid f : A \to B \text{ ist eine Funktion}\}|$$

$$= |\{f \mid f : A \to \emptyset \text{ ist eine Funktion}\}|$$

$$= |\emptyset|$$

$$= 0$$

$$\leq |A|$$

Lösungsvorschlag zu Aufgabenblatt 1

3. $|A| > 0 \land |B| = 1$: Dann gilt $A \neq \emptyset$ und $B = \{b\}$ ist einelementig. Somit folgt

$$|B^A| = |\{f \mid f : A \to \text{ ist eine Funktion}\}|$$

$$= |\{f \mid f : A \to \{b\} \text{ ist eine Funktion}\}|$$

$$= |\{b\}|$$

$$= 1$$

$$\leq |A|$$

- 4. A und B endlich und |B| > 1: Dann gilt $|B^A| = |B|^{|A|} > |A|$.
- 5. A endlich, |A| > 0 und B unendlich: Offensichtlich gilt $|B^A| > |A|$.
- 6. A unendlich und |B| > 1: Falls $|B^A| \le |A|$ gilt, gibt es eine Surjektion von A nach B^A . Sei $f: A \to B^A$ eine beliebige Funktion. Wir müssen zeigen, dass f nicht surjektiv ist. Da |B| > 1 nach Annahme, können wir eine Funktion $g: B \to B$ definieren, sodass $\forall b \in B.g(b) \neq b$. Sei $h: A \to B$ definiert als h(a) = g((f(a))(a)). Dies ist möglich, da f(a) nach Konstruktion eine Funktion von A nach B ist. Da $g((f(a))(a)) \neq (f(a))(a)$ nach Konstruktion von g, gilt $h \neq f(a)$ für alle $a \in A$. Somit ist f nicht surjektiv.

Aufgabe 6

Die Aussage trifft genau für alle endlichen Mengen A zu: Es ist

$$\bigcup_{k\in\mathbb{N}} \binom{A}{k} = \bigcup_{k\in\mathbb{N}} \left\{ X \subseteq A \mid |X| = k \right\} = \left\{ X \subseteq A \mid X \text{ ist endlich} \right\}$$

die Menge aller endlichen Teilmengen von A. Hingegen ist

$$2^A = \{X \mid X \subseteq A\}$$

die Potenzmenge, also die Menge aller Teilmengen von A.

Falls A endlich ist, sind auch alle Teilmengen von A endlich, die Gleichheit gilt also. Falls A jedoch unendlich ist, enthält 2^A auch unendliche Teilmengen von A (z.B. A selbst), die Gleichheit gilt also nicht. Formal:

1. A endlich:

"⊆" Sei
$$T \in \bigcup_{k \in \mathbb{N}} \binom{A}{k}$$
. Dann gibt es ein $k \in \mathbb{N}$ mit $T \in \binom{A}{k} = \{X \subseteq A \mid |X| = k\}$. Also ist $T \subseteq A$ und damit $T \in \{X \mid X \subseteq A\} = 2^A$.

"

Sei $T \in 2^A$, also $T \subseteq A$. Da A endlich ist, ist auch jede Teilmenge von A endlich. Also auch T: Es gibt ein $k \in \mathbb{N}$, so dass |T| = k. Damit ist $T \in \binom{A}{k}$ per Definition. Insbesondere ist dann $T \in \bigcup_{k \in \mathbb{N}} \binom{A}{k}$.

$$\Rightarrow \bigcup_{k \in \mathbb{N}} \binom{A}{k} = 2^A$$
.

2. A unendlich: Es ist $A \subseteq A$, also $A \in 2^A$. Wäre $A \in \bigcup_{k \in \mathbb{N}} \binom{A}{k} = \bigcup_{k \in \mathbb{N}} \{X \subseteq A \mid |X| = k\}$, dann gäbe es ein $k \in \mathbb{N}$ mit $|\mathbb{N}| = k$. Das ist aber offensichtlich nicht der Fall. Daher ist $A \notin \bigcup_{k \in \mathbb{N}} \binom{A}{k}$.

$$\Rightarrow \bigcup_{k \in \mathbb{N}} \binom{A}{k} \neq 2^A$$
.

Aufgabe 7

Ohne Beschränkung der Allgemeinheit können wir annehmen, dass die Mengen S_i abzählbar unendlich sind. In diesem Fall gibt es eine Bijektion $S_i(n): \mathbb{N} \to S_i$. Wenn wir nun für jedes $S_i(n)$ den Wert x=i+n betrachten ist dieser endlich. Insbesondere gibt es deswegen auch nur endlich viele Kombinationen aus i und n, die zum

Lösungsvorschlag zu Aufgabenblatt 1

selben Wert von x führen. Diese endlichen Mengen lassen sich nun nach der Größe von x ordnen. Innerhalb von gleichen x-Werten kann man nach der lexikalischen Ordnung von (i,j) ordnen. Insgesamt ergibt sich die lexikalische Ordnung von (x,i,n). Die explizite Surjektion von \mathbb{N} nach $\bigcup_{i\in\mathbb{N}} S_i$ sieht wie folgt aus:

$$f(0) = S_0(0)$$

$$f(n) = \begin{cases} S_0(i+1) & \text{wenn } f(n-1) = S_i(0) \\ S_{i+1}(j-1) & \text{sonst, mit } f(n-1) = S_i(j) \end{cases} \qquad n \neq 0$$

Der Beweis, dass f tatsächlich surjektiv ist, erfolgt mittels wohlfundierter Induktion über der lexikalischen Ordnung auf (x,i,j) mit x=i+j. Diese Ordnung ist wohlfundiert, da für jede Teilmenge \mathcal{X} von $\{(x,i,j)\in\mathbb{N}^3\mid x=i+j\}$ ein minimales Element bezüglich dieser Ordnung existiert. Da \mathbb{N} wohlfundiert ist, existiert ein minimales $x\in\{x\mid\exists i,j\in\mathbb{N}:(x,i,j)\in\mathcal{X}\}$. Ebenso existiert aufgrund der Wohlfundiertheit von \mathbb{N} ein minimales $i\in\{i\mid\exists j\in\mathbb{N}:(x,i,j)\in\mathcal{X}\}$. Daher ist (x,i,x-i) ein minimales Element von \mathcal{X}

Zu zeigen: $\forall i, j : \exists n : f(n) = S_i(j)$. Seien $i, j \in \mathbb{N}$ beliebig.

Induktionsannahme: $\forall i', j' \in \mathbb{N} : (i' + j', i', j')$ lexikalisch kleiner als $(i + j, i, j) \to \exists n \in \mathbb{N} : f(n) = S_{i'}(j')$ Beweis durch Fallunterscheidung über i, j.

Fall 1: i, j = 0. In diesem Fall ist n = 0, denn $f(0) = S_0(0)$.

Fall 2: i = 0 und j > 0. In diesem Fall existiert nach Induktionsannahme ein $n \in \mathbb{N}$, sodass $f(n) = S_{j-1}(0)$. Nach der Definition von f, folgt, dass $f(n+1) = S_0(j)$

Fall 3: i > 0. In diesem Fall existiert nach Induktionsannahme ein $n \in \mathbb{N}$, sodass $f(n) = S_{i-1}(j+1)$. Nach Definition von f folgt in diesem Fall, dass $f(n+1) = S_i(j)$.

Aufgabe 8

Sei M die Menge aller Teilmengen von \mathbb{N} , die nicht im Bild von f sind, sei also $M = \{A \mid \forall n \in \mathbb{N}. f(n) \neq A\}$. Wir wollen zeigen, dass M überabzählbar ist. Beweis durch Widerspruch. Annahme: M ist abzählbar.

Offensichtlich gilt: $2^{\mathbb{N}} = Im(f) \cup M$. Da Im(f) und M abzählbar sind, gilt nach Aufgabe 1.7, dass auch $Im(f) \cup M$ abzählbar ist. Wir wissen aber, dass $2^{\mathbb{N}}$ nicht abzählbar ist. Dies ist ein Widerspruch und daher ist M überabzählbar.

Aufgabe 9

" \Rightarrow " Seien $f:A\to B$ und $g:B\to A$ injektiv. Wir wollen eine bijektive Funktion $h:A\to B$ konstruieren. Zunächst konstruieren wir (potentiell unendliche) Sequenzen von Elementen aus A und B, die mit f und g verbunden werden können:

$$\dots a_1 \xrightarrow{f} b_1 \xrightarrow{g} a_2 \xrightarrow{f} b_2 \xrightarrow{g} a_3 \xrightarrow{f} b_3 \dots$$

Wir können nun folgende Varianten von Sequenzen S haben:

- S ist beidseitig unendlich, d.h. für alle a_i und b_j , die in S vorkommen, gilt $a_i \in Im(g)$ und $b_j \in Im(f)$
- S beginnt in einem Element $a_i \in A$, d.h. $\not\equiv b_i \in B$. $g(b_i) = a_i$ und somit gilt $a_i \in A \setminus Im(g)$
- S beginnt in einem Element $b_i \in B$, d.h. $\not\equiv a_j \in A$. $f(a_j) = b_i$ und somit gilt $b_j \in B \setminus Im(f)$

Wir definieren die folgenden Mengen:

$$\tilde{A}_0 := A \setminus Im(g), \qquad \tilde{A} = \bigcup_{i \in \mathbb{N}} \left((g \circ f)^i \tilde{A}_0 \right)$$

 \tilde{A} enthält nun alle Elemente aus A, die in einer Sequenz enthalten sind, die in einem Element aus A beginnt. Wir konstruieren die Funktion h nun wie folgt:

$$h(a) = \begin{cases} f(a) & \text{falls } a \in \tilde{A} \\ g^{-1}(a) & \text{falls } a \notin \tilde{A} \end{cases}$$

Lösungsvorschlag zu Aufgabenblatt 1

h ist wohldefiniert, weil im Fall $a \notin \tilde{A}$ gilt, dass $a \in Im(g)$ und somit ein $b \in B$ existiert, sodass g(b) = a. Wir zeigen nun die Bijektivität von h:

Injektivität: Seien $a, a' \in A$ und es gelte $a \neq a'$. Wir müssen nun zeigen, dass $h(a) \neq h(a')$ gilt. Wir unterscheiden vier Fälle:

- (a) $a, a' \in \tilde{A}$: Dann gilt h(a) = f(a) und h(a') = f(a'). Da f nach Annahme injektiv ist, gilt $f(a) \neq f(a')$ und somit auch $h(a) \neq h(a')$.
- (b) $a \in \tilde{A} \land a' \notin \tilde{A}$: Dann gilt h(a) = f(a) und $h(a') = g^{-1}(a')$. Annahme: $f(a) = g^{-1}(a')$. Da g nach Annahme injektiv ist, muss dann gelten, dass $g(f(a)) = g(g^{-1}(a'))$ und somit dass $(g \circ f)(a) = a'$. Da nach Annahme $a' \notin \tilde{A}$, muss nach Konstruktion von \tilde{A} aber auch $a \notin \tilde{A}$ gelten. Dies ist ein Widerspruch zur Annahme. Somit gilt $h(a) \neq h(a')$.
- (c) $a \notin \tilde{A} \wedge a' \in \tilde{A}$: Symmetrisch zu Fall 2.
- (d) $a, a' \notin A$: Dann gilt $h(a) = g^{-1}(a)$ und $h(a') = g^{-1}(a')$. Annahme: $g^{-1}(a) = g^{-1}(a')$. Da g nach Annahme injektiv ist, muss dann gelten, dass $g(g^{-1}(a)) = g(g^{-1}(a'))$ und somit dass a = a'. Dies ist ein Widerspruch zur Annahme. Somit gilt $h(a) \neq h(a')$.

Surjektivität: Sei $b \in B$. Wir müssen zeigen, dass $\exists a \in A.h(a) = b$. Wir unterscheiden zwei Fälle:

- (a) b ist in einer Sequenz enthalten, die mit einem Element aus A beginnt. Dann gibt es ein a in dieser Sequenz mit f(a) = b. Nach Konstruktion von \tilde{A} muss $a \in \tilde{A}$ gelten. Somit gibt es auch ein $a \in A$ mit h(a) = b
- (b) b ist in einer Sequenz enthalten, die nicht in einem Element aus A beginnt. Dann gibt es ein a in dieser Sequenz mit g(a) = b und somit ein $a \in A$ mit h(a) = b.

"⇐":

Sei $h:A\to B$ eine Bijektion. Insbesondere ist h also auch injektiv. Da h surjektiv und eine Funktion ist, ist h^{-1} nach Aufgabe 1.2 eine Injektion. Für den Fall, dass A und B die leere Menge sind, gilt, dass die leere Funktion die gesuchte Injektion ist.