MATHEMATICS-II (MATH F112)

Dr. Krishnendra Shekhawat

BITS PILANI
Department of Mathematics

Section 4.7

Coordinatization

An ordered basis for vector space V is an ordered n-tuple of vectors $(v_1, v_2, ..., v_n)$ such that the set $\{v_1, v_2, ..., v_n\}$ is a basis for V.

An ordered basis for vector space V is an ordered n-tuple of vectors $(v_1, v_2, ..., v_n)$ such that the set $\{v_1, v_2, ..., v_n\}$ is a basis for V.

For example,

An ordered basis for vector space V is an ordered n-tuple of vectors $(v_1, v_2, ..., v_n)$ such that the set $\{v_1, v_2, ..., v_n\}$ is a basis for V.

For example, (e_1, e_2) and (e_2, e_1) are two ordered bases for \mathbb{R}^2 .

Let $B = (v_1, v_2, ..., v_n)$ be an ordered basis for a vector space V.

Let $B = (v_1, v_2, ..., v_n)$ be an ordered basis for a vector space V. Suppose that $w = a_1v_1 + \cdots + a_nv_n \in V$

Let $B = (v_1, v_2, ..., v_n)$ be an ordered basis for a vector space V. Suppose that $w = a_1v_1 + \cdots + a_nv_n \in V$ (from Theorem 4.9, if $B = (v_1, v_2, ..., v_n)$ is an ordered basis for V, then for every $w \in V$, there are unique scalars $a_1, a_2, ..., a_n$ such that $w = a_1v_1 + \cdots + a_nv_n$).

Let $B = (v_1, v_2, ..., v_n)$ be an ordered basis for a vector space V. Suppose that $w = a_1v_1 + \cdots + a_nv_n \in V$ (from Theorem 4.9, if $B = (v_1, v_2, \dots, v_n)$ is an ordered basis for V, then for every $w \in V$, there are unique scalars a_1, a_2, \dots, a_n such that $w = a_1 v_1 + \dots + a_n v_n$. Then $[w]_B$, the coordinatization or coordinates of w with respect to **B** is the *n*-vector $[a_1, a_2, \ldots, a_n]$.

Let B = ([4,2],[1,3]) be an ordered basis for \mathbb{R}^2 .

Let B = ([4,2],[1,3]) be an ordered basis for \mathbb{R}^2 . Now, [4,2] = 1[4,2] + 0[1,3].

Let B = ([4,2],[1,3]) be an ordered basis for \mathbb{R}^2 . Now, [4,2] = 1[4,2] + 0[1,3]. Hence, $[4,2]_B = [1,0]$.

Let B = ([4,2],[1,3]) be an ordered basis for \mathbb{R}^2 . Now, [4,2] = 1[4,2] + 0[1,3]. Hence, $[4,2]_B = [1,0]$. Similarly, [11,13] = 2[4,2] + 3[1,3]. Hence, $[11,13]_B = [2,3]$.

Q:. Let

B = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace V of \mathbb{R}^5 .

Q:. Let

$$B = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3])$$
 be an ordered basis of the subspace V of \mathbb{R}^5 . Compute $[-23,30,-7,-1,-7]_B,[1,2,3,4,5]_B$.

Q:. Let

$$B = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3])$$
 be an ordered basis of the subspace V of \mathbb{R}^5 . Compute $[-23,30,-7,-1,-7]_B,[1,2,3,4,5]_B$.

Sol. To find $[-23, 30, -7, -1, -7]_B$,

Q:. Let

$$B = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3])$$
 be an ordered basis of the subspace V of \mathbb{R}^5 . Compute $[-23,30,-7,-1,-7]_B,[1,2,3,4,5]_B$.

Sol. To find $[-23,30,-7,-1,-7]_B$, we solve the following equation [-23,30,-7,-1,-7] = a[-4,5,-1,0,-1] + b[1,-3,2,2,5] + c[1,-2,1,1,3]

The equivalent system is

The equivalent system is

$$-4a+b+c = -23$$

$$5a-3b-2c = 30$$

$$-a+2b+c = -7$$

$$2b+c = -1$$

$$-a+5b+3c = -7$$

The equivalent system is

$$-4a+b+c = -23$$

$$5a-3b-2c = 30$$

$$-a+2b+c = -7$$

$$2b+c = -1$$

$$-a+5b+3c = -7$$

To solve this system, we row reduce

$$\begin{bmatrix} -4 & 1 & 1 & -23 \\ 5 & -3 & -2 & 30 \\ -1 & 2 & 1 & -7 \\ 0 & 2 & 1 & -1 \\ -1 & 5 & 3 & -7 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 & -23 \\ 5 & -3 & -2 & 30 \\ -1 & 2 & 1 & -7 \\ 0 & 2 & 1 & -1 \\ -1 & 5 & 3 & -7 \end{bmatrix}$$
to obtain

$$\begin{bmatrix} -4 & 1 & 1 & -23 \ 5 & -3 & -2 & 30 \ -1 & 2 & 1 & -7 \ 0 & 2 & 1 & -1 \ -1 & 5 & 3 & -7 \ \end{bmatrix} \text{ to obtain } \begin{bmatrix} 1 & 0 & 0 & 6 \ 0 & 1 & 0 & -2 \ 0 & 0 & 1 & 3 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, the unique solution for the system is

$$\begin{bmatrix} -4 & 1 & 1 & -23 \ 5 & -3 & -2 & 30 \ -1 & 2 & 1 & -7 \ 0 & 2 & 1 & -1 \ -1 & 5 & 3 & -7 \ \end{bmatrix} \text{ to obtain } \begin{bmatrix} 1 & 0 & 0 & 6 \ 0 & 1 & 0 & -2 \ 0 & 0 & 1 & 3 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, the unique solution for the system is $a = 6, b = -2, c = 3 \implies$

$$\begin{bmatrix} -4 & 1 & 1 & | & -23 \\ 5 & -3 & -2 & | & 30 \\ -1 & 2 & 1 & | & -7 \\ 0 & 2 & 1 & | & -1 \\ -1 & 5 & 3 & | & -7 \end{bmatrix} \text{ to obtain } \begin{bmatrix} 1 & 0 & 0 & | & 6 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 3 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Hence, the unique solution for the system is $a = 6, b = -2, c = 3 \implies$ $[-23, 30, -7, -1, -7]_B = [6, -2, 3].$

To find $[1,2,3,4,5]_B$, we need solve the following system

To find $[1,2,3,4,5]_B$, we need solve the following system

$$-4a+b+c=1$$

$$5a-3b-2c=2$$

$$-a+2b+c=3$$

$$2b+c=4$$

$$-a+5b+3c=5$$

To find $[1,2,3,4,5]_B$, we need solve the following system

$$-4a+b+c=1$$

$$5a-3b-2c=2$$

$$-a+2b+c=3$$

$$2b+c=4$$

$$-a+5b+3c=5$$

To solve this system, we row reduce

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 5 & -3 & -2 & 2 \\ -1 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 5 & 3 & 5 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 5 & -3 & -2 & 2 \\ -1 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 5 & 3 & 5 \end{bmatrix}$$
 to obtain

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 5 & -3 & -2 & 2 \\ -1 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 5 & 3 & 5 \end{bmatrix} \text{ to obtain } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 5 & -3 & -2 & 2 \\ -1 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 5 & 3 & 5 \end{bmatrix} \text{ to obtain } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This system has no solutions,

$$\begin{bmatrix} -4 & 1 & 1 & 1 \\ 5 & -3 & -2 & 2 \\ -1 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \\ -1 & 5 & 3 & 5 \end{bmatrix} \text{ to obtain } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This system has no solutions, implying the vector [1,2,3,4,5] is not in span(B) = V.

Let V be a nontrivial subspace of \mathbb{R}^n , let $B = (v_1, v_2, \dots, v_k)$ be an ordered basis for V, and let $v \in \mathbb{R}^n$.

Let V be a nontrivial subspace of \mathbb{R}^n , let $B = (v_1, v_2, \dots, v_k)$ be an ordered basis for V, and let $v \in \mathbb{R}^n$. To compute $[v]_B$, we perform the following steps:

Let V be a nontrivial subspace of \mathbb{R}^n , let $B = (v_1, v_2, ..., v_k)$ be an ordered basis for V, and let $v \in \mathbb{R}^n$. To compute $[v]_B$, we perform the following steps:

• Form an augmented matrix [A|v]

Let V be a nontrivial subspace of \mathbb{R}^n , let $B = (v_1, v_2, ..., v_k)$ be an ordered basis for V, and let $v \in \mathbb{R}^n$. To compute $[v]_B$, we perform the following steps:

• Form an augmented matrix [A|v] by using the vectors in B as the columns of A, in order,

Let V be a nontrivial subspace of \mathbb{R}^n , let $B = (v_1, v_2, ..., v_k)$ be an ordered basis for V, and let $v \in \mathbb{R}^n$. To compute $[v]_B$, we perform the following steps:

• Form an augmented matrix [A|v] by using the vectors in B as the columns of A, in order, and using v as a column on the right.

Let V be a nontrivial subspace of \mathbb{R}^n , let $B = (v_1, v_2, ..., v_k)$ be an ordered basis for V, and let $v \in \mathbb{R}^n$. To compute $[v]_B$, we perform the following steps:

- Form an augmented matrix [A|v] by using the vectors in B as the columns of A, in order, and using v as a column on the right.
- Row reduce [A|v] to obtain RREF[C|w].

• If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right,

• If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right, then $v \notin \text{span}(B) = V$,

• If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right, then $v \notin \text{span}(B) = V$, i.e., coordinatization is not possible.

• If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right, then $v \notin \text{span}(B) = V$, i.e., coordinatization is not possible. Otherwise, $v \in \text{span}(B) = V$.

- If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right, then $v \notin \text{span}(B) = V$, i.e., coordinatization is not possible. Otherwise, $v \in \text{span}(B) = V$.
- Eliminate all rows consisting entirely of zeros in [C|w] to obtain $[I_k|y]$.

- If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right, then $v \notin \text{span}(B) = V$, i.e., coordinatization is not possible. Otherwise, $v \in \text{span}(B) = V$.
- Eliminate all rows consisting entirely of zeros in [C|w] to obtain $[I_k|y]$. Then, $[v]_B = y$,

- If there is a row of [C|w] that contains all zeros on the left and has a nonzero entry on the right, then $v \notin \text{span}(B) = V$, i.e., coordinatization is not possible. Otherwise, $v \in \text{span}(B) = V$.
- Eliminate all rows consisting entirely of zeros in [C|w] to obtain $[I_k|y]$. Then, $[v]_B = y$, the last column of $[I_k|y]$.

Q:. Let
$$B = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 3 & 1 \end{bmatrix}$$
 be an ordered basis of the subspace V of M_{22} .

Q:. Let
$$B = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 3 & 1 \end{bmatrix}$$
 be an ordered basis of the subspace V of M_{22} . Compute $[v]_B$ if exists, where $v = \begin{bmatrix} -3 & -2 \\ 0 & 3 \end{bmatrix}$.

Q:. Let
$$B = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 3 & 1 \end{bmatrix}$$
 be an ordered basis of the subspace V of M_{22} . Compute $[v]_B$ if exists, where $v = \begin{bmatrix} -3 & -2 \\ 0 & 3 \end{bmatrix}$.

Sol. Now

$$[A|v] = \begin{bmatrix} 1 & 2 & 1 & -3 \\ -2 & -1 & -1 & -2 \\ 0 & 1 & 3 & 0 \\ 1 & 0 & 1 & 3 \end{bmatrix} \Longrightarrow$$

$$RREF[A|v] = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$RREF[A|v] = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The row reduced matrix contains no rows with all zero entries on the left and a nonzero entry on the right, so $[v]_B$ exists,

$$RREF[A|v] = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The row reduced matrix contains no rows with all zero entries on the left and a nonzero entry on the right, so $[v]_B$ exists, and $[v]_B = [2, -3, 1]$.

Let $B = (v_1, v_2, ..., v_k)$ be an ordered basis for a vector space V. Suppose $w_1, w_2, ..., w_k \in V$ and $a_1, a_2, ..., a_k$ are scalars. Then

Let $B = (v_1, v_2, ..., v_k)$ be an ordered basis for a vector space V. Suppose $w_1, w_2, ..., w_k \in V$ and $a_1, a_2, ..., a_k$ are scalars. Then

• $[w_1 + w_2]_B = [w_1]_B + [w_2]_B$

Let $B = (v_1, v_2, ..., v_k)$ be an ordered basis for a vector space V. Suppose $w_1, w_2, ..., w_k \in V$ and $a_1, a_2, ..., a_k$ are scalars. Then

- $[w_1 + w_2]_B = [w_1]_B + [w_2]_B$
- $[a_1w_1]_B = a_1[w_1]_B$

Let $B = (v_1, v_2, ..., v_k)$ be an ordered basis for a vector space V. Suppose $w_1, w_2, ..., w_k \in V$ and $a_1, a_2, ..., a_k$ are scalars. Then

- $[w_1 + w_2]_B = [w_1]_B + [w_2]_B$
- $[a_1w_1]_B = a_1[w_1]_B$
- $[a_1w_1 + a_2w_2 + \dots a_kw_k]_B =$ $a_1[w_1]_B + a_2[w_2]_B + \dots + a_k[w_k]_B$

Q: Let $B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$ be an ordered basis of the subspace V of P_2 .

Q:. Let $B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$ be an ordered basis of the subspace V of P_2 . Compute $[v]_B$ if exists, where $v = 13x^2 - 5x + 20$.

Q:. Let $B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$ be an ordered basis of the subspace V of P_2 . Compute $[v]_B$ if exists, where $v = 13x^2 - 5x + 20$.

Sol. $[v]_B = [4, -5, 3].$

Q:. Let $B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$ be an ordered basis of the subspace V of P_2 . Compute $[v]_B$ if exists, where $v = 13x^2 - 5x + 20$.

Sol. $[v]_B = [4, -5, 3].$

Q:. Let

B = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace V of \mathbb{R}^5 .

Q:. Let $B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$ be an ordered basis of the subspace V of P_2 . Compute $[v]_B$ if exists, where $v = 13x^2 - 5x + 20$.

Sol. $[v]_B = [4, -5, 3].$

Q:. Let

B = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace V of \mathbb{R}^5 . Consider x = [1,0,-1,0,4], y = [0,1,-1,0,3], z = [0,0,0,1,5].

Q:. Let $B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$ be an ordered basis of the subspace V of P_2 . Compute $[v]_B$ if exists, where $v = 13x^2 - 5x + 20$.

Sol. $[v]_B = [4, -5, 3].$

Q:. Let

B = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace V of \mathbb{R}^5 . Consider x = [1,0,-1,0,4], y = [0,1,-1,0,3], z = [0,0,0,1,5]. Compute $[2x-7y+3z]_B$.

Q:. Let $B = (3x^2 - x + 2, x^2 + 2x - 3, 2x^2 + 3x - 1)$ be an ordered basis of the subspace V of P_2 . Compute $[v]_B$ if exists, where $v = 13x^2 - 5x + 20$.

Sol. $[v]_B = [4, -5, 3].$

Q:. Let

B = ([-4, 5, -1, 0, -1], [1, -3, 2, 2, 5], [1, -2, 1, 1, 3]) be an ordered basis of the subspace V of \mathbb{R}^5 . Consider x = [1, 0, -1, 0, 4], y = [0, 1, -1, 0, 3], z = [0, 0, 0, 1, 5]. Compute $[2x - 7y + 3z]_B$.

Sol. $[2x-7y+3z]_B = [-2, 9, -15].$

Q:. Let

C = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace V of \mathbb{R}^5 .

Q:. Let

C = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace V of \mathbb{R}^5 . Using simplified span method on C, compute an ordered basis B = (x,y,z) for V.

Q:. Let

C = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace V of \mathbb{R}^5 . Using simplified span method on C, compute an ordered basis B = (x,y,z) for V. Also, compute $[x]_C,[y]_C,[z]_C$.

Q:. Let

C = ([-4,5,-1,0,-1],[1,-3,2,2,5],[1,-2,1,1,3]) be an ordered basis of the subspace V of \mathbb{R}^5 . Using simplified span method on C, compute an ordered basis B = (x,y,z) for V. Also, compute $[x]_C,[y]_C,[z]_C$.

Sol. Using simplified span method, we have B = ([1,0,-1,0,4],[0,1,-1,0,3],[0,0,0,1,5]).

We have the following augmented matrix

$$\begin{bmatrix} A \mid x \mid y \mid z \end{bmatrix} = \begin{bmatrix} -4 & 1 & 1 & 1 & 0 & 0 \\ 5 & -3 & -2 & 0 & 1 & 0 \\ -1 & 2 & 1 & -1 & -1 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \\ -1 & 5 & 3 & 4 & 3 & 5 \end{bmatrix}$$

We have the following augmented matrix

$$\begin{bmatrix} A \mid x \mid y \mid z \end{bmatrix} = \begin{bmatrix} -4 & 1 & 1 & 1 & 0 & 0 \\ 5 & -3 & -2 & 0 & 1 & 0 \\ -1 & 2 & 1 & -1 & -1 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \\ -1 & 5 & 3 & 4 & 3 & 5 \end{bmatrix}$$

Row reduce above augmented matrix to obtain

We have the following augmented matrix

$$\begin{bmatrix} A \mid x \mid y \mid z \end{bmatrix} = \begin{bmatrix} -4 & 1 & 1 & 1 & 0 & 0 \\ 5 & -3 & -2 & 0 & 1 & 0 \\ -1 & 2 & 1 & -1 & -1 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \\ -1 & 5 & 3 & 4 & 3 & 5 \end{bmatrix}$$

Row reduce above augmented matrix to obtain

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & -5 & -4 & -3 \\
0 & 0 & 1 & 10 & 8 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Clearly,
$$[x]_C = [1, -5, 10]$$
, $[y]_C = [1, -4, 8]$ and $[z]_C = [1, -3, 7]$.

Clearly,
$$[x]_C = [1, -5, 10]$$
, $[y]_C = [1, -4, 8]$ and $[z]_C = [1, -3, 7]$.

Here,
$$P = \begin{bmatrix} 1 & 1 & 1 \\ -5 & -4 & -3 \\ 10 & 8 & 7 \end{bmatrix}$$

Clearly,
$$[x]_C = [1, -5, 10]$$
, $[y]_C = [1, -4, 8]$ and $[z]_C = [1, -3, 7]$.

Here,
$$P = \begin{bmatrix} 1 & 1 & 1 \\ -5 & -4 & -3 \\ 10 & 8 & 7 \end{bmatrix}$$
 is called transition matrix from

B-coordinates to **C**-coordinates.

Suppose that V is a nontrivial n-dimensional vector space with ordered bases B and C.

Suppose that V is a nontrivial n-dimensional vector space with ordered bases B and C. Let P be the $n \times n$ matrix whose i^{th} column, for $1 \le i \le n$, equals $[b_i]_C$, where b_i is the i^{th} basis vector in B.

Suppose that V is a nontrivial n-dimensional vector space with ordered bases B and C. Let P be the $n \times n$ matrix whose i^{th} column, for $1 \le i \le n$, equals $[b_i]_C$, where b_i is the i^{th} basis vector in B. Then P is called the transition matrix from B-coordinates to C-coordinates

Suppose that V is a nontrivial n-dimensional vector space with ordered bases B and C. Let P be the $n \times n$ matrix whose i^{th} column, for $1 \le i \le n$, equals $[b_i]_C$, where b_i is the i^{th} basis vector in B. Then P is called the transition matrix from B-coordinates to C-coordinates (or transition matrix from B to C).

To find the transition matrix P from B to C,

To find the transition matrix P from B to C, we use row reduction on

1^{st}	2^{nd}		k^{th}	1^{st}	2^{nd}		k^{th}
vector	vector	• • •	vector	vector	vector	• • •	vector
in	in		in	in	in		in
C	C		C	B	B		B

To find the transition matrix P from B to C, we use row reduction on

to produce

$$\begin{array}{|c|c|c|c|}
\hline I_k & P \\
\hline rowsof & zeroes \\
\hline \end{array}$$

Q:. For the ordered bases
$$B = \begin{pmatrix} \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$$

Q:. For the ordered bases
$$B = \begin{pmatrix} \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$$
 and $C = \begin{pmatrix} \begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix} \end{pmatrix}$ of U_2 (set of 2×2 upper triangular matrices),

Q:. For the ordered bases
$$B = \begin{pmatrix} \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$$
 and $C = \begin{pmatrix} \begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix}$ of U_2 (set of 2×2 upper triangular matrices), find the transition matrix P from B to C .

Q: For the ordered bases
$$B = \begin{pmatrix} \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$$

and $C = \begin{pmatrix} \begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix}$ of U_2 (set of 2×2)

upper triangular matrices), find the transition matrix P from B to C.

Sol. Row reduce

Q: For the ordered bases
$$B = \begin{pmatrix} \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$$

and
$$C = \begin{pmatrix} \begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix}$$
 of U_2 (set of 2×2)

upper triangular matrices), find the transition matrix P from B to C.

Sol. Row reduce

$$\begin{bmatrix}
22 & 12 & 33 & 7 & 1 & 1 \\
7 & 4 & 12 & 3 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 2 & 0 & -1 & 1
\end{bmatrix}$$

to obtain

$$\begin{bmatrix}
1 & 0 & 0 & 1 & -2 & 1 \\
0 & 1 & 0 & -4 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

to obtain

$$\begin{bmatrix}
1 & 0 & 0 & 1 & -2 & 1 \\
0 & 1 & 0 & -4 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

The transition matrix P from B to C is

to obtain

$$\begin{bmatrix}
1 & 0 & 0 & 1 & -2 & 1 \\
0 & 1 & 0 & -4 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

The transition matrix P from B to C is

$$\begin{bmatrix} 1 & -2 & 1 \\ -4 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

Q:. Let
$$C = (a, b, c) = ([1, 0, 1], [1, 1, 0], [0, 0, 1])$$
 and

B = (x, y, z) are ordered bases of \mathbb{R}^3 .

Q:. Let
$$C = (a, b, c) = ([1, 0, 1], [1, 1, 0], [0, 0, 1])$$
 and

$$B = (x, y, z)$$
 are ordered bases of \mathbb{R}^3 . Let $P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$ be the transition matrix from B to C

be the transition matrix from **B** to **C**.

Q: Let C = (a, b, c) = ([1, 0, 1], [1, 1, 0], [0, 0, 1]) and

$$B = (x, y, z)$$
 are ordered bases of \mathbb{R}^3 . Let $P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$ be the transition matrix from B to C . Find the basis B

be the transition matrix from B to C. Find the basis B.

Q:. Let C = (a, b, c) = ([1, 0, 1], [1, 1, 0], [0, 0, 1]) and

$$B = (x, y, z)$$
 are ordered bases of \mathbb{R}^3 . Let $P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$

be the transition matrix from B to C. Find the basis B.

Sol.
$$x = 1.a + 2.b - 1.c = [3, 2, 0].$$

Q:. Let C = (a, b, c) = ([1, 0, 1], [1, 1, 0], [0, 0, 1]) and

$$B = (x, y, z)$$
 are ordered bases of \mathbb{R}^3 . Let $P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$

be the transition matrix from B to C. Find the basis B.

Sol.
$$x = 1.a + 2.b - 1.c = [3, 2, 0].$$

Similarly,
$$y = 1.a + 1.b - 1.c = [2, 1, 0]$$
 and

$$z = 2.a + 1.b + 1.c = [3, 1, 3].$$

Q:. Let C = (a, b, c) = ([1, 0, 1], [1, 1, 0], [0, 0, 1]) and

$$B = (x, y, z)$$
 are ordered bases of \mathbb{R}^3 . Let $P = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$ be the transition matrix from P to C . Find the basis P

be the transition matrix from B to C. Find the basis B.

Sol.
$$x = 1.a + 2.b - 1.c = [3, 2, 0].$$

Similarly,
$$y = 1.a + 1.b - 1.c = [2, 1, 0]$$
 and $z = 2.a + 1.b + 1.c = [3, 1, 3]$.

Hence, B = ([3,2,0],[2,1,0],[3,1,3]).

Example 6 can be solved by considering the augmented matrix $[I_3|P]$ and reduce it to [C|B],

Also, it should be noted that

Also, it should be noted that CP = B,

Also, it should be noted that CP = B, where matrix C is obtained by considering vectors of basis C as columns of the matrix.

Change of Coordinates Using the Transition Matrix

Change of Coordinates Using the Transition Matrix

Theorem: Suppose that V is a nontrivial n-dimensional vector space with ordered bases B and C.

Change of Coordinates Using the Transition Matrix

Theorem: Suppose that V is a nontrivial n-dimensional vector space with ordered bases B and C. Let P be an $n \times n$ matrix.

Change of Coordinates Using the Transition Matrix

Theorem: Suppose that V is a nontrivial n-dimensional vector space with ordered bases B and C. Let P be an $n \times n$ matrix. Then P is the transition matrix from B to C if and only if for every $v \in V$, $P[v]_B = [v]_C$.

Q:. For the ordered bases
$$B = \begin{pmatrix} \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$$

Q:. For the ordered bases
$$B = \begin{pmatrix} \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$$
 and $C = \begin{pmatrix} \begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix} \end{pmatrix}$ of U_2 (set of 2×2 upper triangular matrices),

Q:. For the ordered bases
$$B = \begin{pmatrix} \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$$
 and $C = \begin{pmatrix} \begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix} \end{pmatrix}$ of U_2 (set of 2×2 upper triangular matrices), find $[v]_B$ and $[v]_C$ where $v = \begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix}$.

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Hence,
$$[v]_B = [4, 3, -6]^T$$
.

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Hence, $[v]_B = [4, 3, -6]^T$.

$$\operatorname{Now} P = \begin{bmatrix} 1 & -2 & 1 \\ -4 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \Longrightarrow$$

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Hence, $[v]_B = [4, 3, -6]^T$.

Now
$$P = \begin{bmatrix} 1 & -2 & 1 \\ -4 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \Longrightarrow$$

$$[v]_C = P[v]_B = [-8, -19, 13]^T$$
.

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = 4 \begin{bmatrix} 7 & 3 \\ 0 & 0 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} - 6 \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Hence, $[v]_B = [4, 3, -6]^T$.

$$\operatorname{Now} P = \begin{vmatrix} 1 & -2 & 1 \\ -4 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix} \Longrightarrow$$

 $[v]_C = P[v]_B = [-8, -19, 13]^T$. Clearly,

$$\begin{bmatrix} 25 & 24 \\ 0 & -9 \end{bmatrix} = -8 \begin{bmatrix} 22 & 7 \\ 0 & 2 \end{bmatrix} - 19 \begin{bmatrix} 12 & 4 \\ 0 & 1 \end{bmatrix} + 13 \begin{bmatrix} 33 & 12 \\ 0 & 2 \end{bmatrix}$$

Theorem: Let B and C be be ordered bases for a nontrivial finite dimensional vector space V, and let P be the transition matrix from B to C. Then P is nonsingular, and P^{-1} is the transition matrix from C to B.

Q: For an ordered basis

$$B = ([1, -4, 1, 2, 1], [6, -24, 5, 8, 3], [3, -12, 3, 6, 2])$$
 of a subspace V of \mathbb{R}^5 ,

Q: For an ordered basis

$$B = ([1, -4, 1, 2, 1], [6, -24, 5, 8, 3], [3, -12, 3, 6, 2])$$
 of a subspace V of \mathbb{R}^5 , perform the following steps:

Q: For an ordered basis

B = ([1, -4, 1, 2, 1], [6, -24, 5, 8, 3], [3, -12, 3, 6, 2]) of a subspace V of \mathbb{R}^5 , perform the following steps:

• Use the Simplified Span Method to find a second ordered basis C.

Q:. For an ordered basis

B = ([1, -4, 1, 2, 1], [6, -24, 5, 8, 3], [3, -12, 3, 6, 2]) of a subspace V of \mathbb{R}^5 , perform the following steps:

- Use the Simplified Span Method to find a second ordered basis C.
- Find the transition matrix *P* from *B* to *C*.

Q:. For an ordered basis

B = ([1, -4, 1, 2, 1], [6, -24, 5, 8, 3], [3, -12, 3, 6, 2]) of a subspace V of \mathbb{R}^5 , perform the following steps:

- Use the Simplified Span Method to find a second ordered basis C.
- Find the transition matrix P from B to C.
- Find the transition matrix Q from C to B.

Q: For an ordered basis

B = ([1, -4, 1, 2, 1], [6, -24, 5, 8, 3], [3, -12, 3, 6, 2]) of a subspace V of \mathbb{R}^5 , perform the following steps:

- Use the Simplified Span Method to find a second ordered basis C.
- Find the transition matrix *P* from *B* to *C*.
- Find the transition matrix Q from C to B.
- For the given vector $v = [2, -8, -2, -12, 3] \in V$, calculate $[v]_B$ and $[v]_C$.

Sol. Here

$$B = \begin{bmatrix} 1 & -4 & 1 & 2 & 1 \\ 6 & -24 & 5 & 8 & 3 \\ 3 & -12 & 3 & 6 & 2 \end{bmatrix} \Longrightarrow$$

Sol. Here

$$B = \begin{bmatrix} 1 & -4 & 1 & 2 & 1 \\ 6 & -24 & 5 & 8 & 3 \\ 3 & -12 & 3 & 6 & 2 \end{bmatrix} \Longrightarrow$$

$$REF(B) = \begin{bmatrix} 1 & -4 & 0 & -2 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow$$

Sol. Here

$$B = \begin{bmatrix} 1 & -4 & 1 & 2 & 1 \\ 6 & -24 & 5 & 8 & 3 \\ 3 & -12 & 3 & 6 & 2 \end{bmatrix} \Longrightarrow$$

$$REF(B) = \begin{bmatrix} 1 & -4 & 0 & -2 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Longrightarrow$$

$$C = ([1, -4, 0, -2, 0], [0, 0, 1, 4, 0], [0, 0, 0, 0, 1])$$

• Find the transition matrix P from B to C.

• Find the transition matrix *P* from *B* to *C*.

The transition matrix P from B to C is

• Find the transition matrix *P* from *B* to *C*.

The transition matrix P from B to C is

$$P = \begin{bmatrix} 1 & 6 & 3 \\ 1 & 5 & 3 \\ 1 & 3 & 2 \end{bmatrix}$$

• Find the transition matrix Q from C to B.

• Find the transition matrix Q from C to B.

The transition matrix Q from C to B is

• Find the transition matrix Q from C to B.

The transition matrix Q from C to B is

$$Q = P^{-1} = \begin{bmatrix} 1 & -3 & 3 \\ 1 & -1 & 0 \\ -2 & 3 & -1 \end{bmatrix}$$

• For the given vector $v = [2, -8, -2, -12, 3] \in V$, calculate $[v]_B$ and $[v]_C$.

• For the given vector $v = [2, -8, -2, -12, 3] \in V$, calculate $[v]_B$ and $[v]_C$.

$$[B|v] = \begin{bmatrix} 1 & 6 & 3 & 2 \\ -4 & -24 & -12 & -8 \\ 1 & 5 & 3 & -2 \\ 2 & 8 & 6 & -12 \\ 1 & 3 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 17 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & -13 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Longrightarrow$$

$$[v]_B = [17, 4, -13]$$

$$[v]_B = [17, 4, -13]$$

Now $P[v]_B = [v]_C \Longrightarrow$

$$[v]_B = [17, 4, -13]$$

Now $P[v]_B = [v]_C \implies [v]_C = [2, -2, 3]$

Exercises

Q:. For the ordered bases

$$B = (2x^2 + 3x - 1, 8x^2 + x + 1, x^2 + 6)$$
 and $C = (x^2 + 3x + 1, 3x^2 + 4x + 1, 10x^2 + 17x + 5)$ of P_2 , find the transition matrix P from P_2 to P_3 .

Exercises

Q:. For the ordered bases

$$B = (2x^2 + 3x - 1, 8x^2 + x + 1, x^2 + 6)$$
 and $C = (x^2 + 3x + 1, 3x^2 + 4x + 1, 10x^2 + 17x + 5)$ of P_2 , find the transition matrix P from B to C .

Sol.
$$P = \begin{bmatrix} 20 & -30 & -69 \\ 24 & -24 & -80 \\ -9 & 11 & 31 \end{bmatrix}$$

Q:. Let
$$P = \begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
 be the transition matrix from B to C . If $C = \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$, find the basis B .

Q:. Let
$$P = \begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
 be the transition matrix from B

to
$$C$$
. If $C = \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$, find the basis B .

Sol.
$$B = \left\{ \begin{pmatrix} 6 \\ 3 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 5 \\ 2 \end{pmatrix} \right\}$$

Q: For an ordered basis

$$B = ([3, -1, 4, 6], [6, 7, -3, -2], [-4, -3, 3, 4], [-2, 0, 1, 2])$$
 of a subspace V of \mathbb{R}^4 , perform the following steps:

- Use the Simplified Span Method to find a second ordered basis C.
- Find the transition matrix *P* from *B* to *C*.
- Find the transition matrix Q from C to B.
- For the given vector $v = [10, 14, 3, 12] \in V$, calculate $[v]_B$ and $[v]_C$.