Résumé méthodes classification

donner moi le résumé de ce pdf expliquer bien et avec des tableaux si possible\$

plus

🚺 Objectifs des Méthodes de Classification

- But principal: Regrouper des objets ou des variables en classes homogènes.
- Types de regroupement :
 - o Individus décrits par des variables.
 - Variables observées sur des individus.
- **Résultat attendu :** Interprétation des regroupements pour identifier des structures ou tendances.

🙎 Organisation des Données

Élément	Description
Individus (n)	Objets observés (ex : I1, I2,, In).
Variables (p)	Caractéristiques des objets (ex : X1, X2,, Xp).
Tableau des données (X)	Matrice (Individus × Variables) avec les valeurs $x_{ij}.$

Types de Variables:

- Quantitatives : Mesures numériques (ex : taille, poids).
- Qualitatives : Catégories (ex : couleur, genre).
- Binaires: Présence/absence (0 ou 1).

Distances et Dissimilarités

Les distances permettent de mesurer les écarts entre individus.

A. Pour Variables Quantitatives:

Type de Distance	Formule
Euclidienne	$d^2(I_i,I_l) = \sum_{j=1}^p (x_{ij} - x_{lj})^2$
Minkowski	($d(I_i, I_l) = \left(\sum_{j=1}^{p} \right)$
L1	$(d(I_i, I_j) = \sum_{j=1}^{p}$

B. Pour Variables Qualitatives:

• **Distance Khi-Deux** (χ^2): Utilisée pour les variables catégorielles.

Similarités pour Données Binaires

Pour les variables binaires (0/1), on utilise des indices spécifiques :

Indice de Similarité	Formule	Interprétation
Jaccard	$d=rac{a}{a+b+c}$	Ignorer les absences communes.
Russel et Rao	$d=rac{a}{a+b+c+d}$	Prend en compte toutes les situations.
Dice	$d = rac{2a}{2a+b+c}$	Pondère les présences positives.
Ochiaï	$d=rac{a}{\sqrt{(a+b)(a+c)}}$	Normalise par les fréquences.

Exemple:

Individu	X1	X2	ХЗ	X4
I1	1	1	0	1
13	1	0	1	1
15	1	1	0	1

 $\begin{array}{l} \bullet \ \ a=2, b=1, c=1, d=0 \\ \bullet \ \ {\rm Jaccard:} \frac{2}{2+1+1}=0.5 \\ \bullet \ \ {\rm Russel\ et\ Rao:} \frac{2}{2+1+1+0}=0.5 \end{array}$

Méthodes de Classification

A. Classification Hiérarchique Ascendante (CHA)

Principe:

- Itérative et basée sur le regroupement successif des individus les plus proches.
- Utilise une matrice de distances entre individus.

B. Stratégies d'Agrégation:

Méthode	Formule / Description
Saut minimal	$d(h,z) = \min\{d(x,z),d(y,z)\}$
Saut maximal	$d(h,z) = \max\{d(x,z),d(y,z)\}$

Méthode	Formule / Description
Distance moyenne	$d(h,z)=rac{d(x,z)+d(y,z)}{2}$
Centroïdes	$d(h,z)=d(g_h,g_z)$
Ward	$d_w(h,z)=rac{n_hn_z}{n_h+n_z}d^2(g_h,g_z)$

🜀 Algorithme de la CHA

- 1. **Étape 1 :** Créer une matrice de distances (n × n).
- 2. Étape 2: Identifier les deux individus les plus proches.
- 3. **Étape 3 :** Fusionner ces deux individus en un groupe.
- 4. Étape 4 : Mettre à jour la matrice et répéter jusqu'à l'obtention d'une seule classe.
- 5. **Résultat final**: Un **dendrogramme** représentant les regroupements successifs.

Propriétés du Dendrogramme :

- Feuilles terminales: Les individus initiaux.
- Nœuds: Points de fusion entre deux classes.

Exemple Pratique : Classification Hiérarchique Ascendante avec Ward

Individu	X1	X2
I1	2	2
I2	7.5	4
I3	3	3
14	0.5	5
15	6	4

- 1. **Étape 1 :** Calcul des distances euclidiennes entre chaque paire.
- 2. **Étape 2 :** Regroupement basé sur la méthode de Ward.
- 3. **Étape 3 :** Représentation finale par un dendrogramme.

Conclusion

- Les méthodes de classification permettent d'analyser et d'interpréter efficacement des jeux de données complexes.
- La **classification hiérarchique ascendante** est particulièrement utile pour visualiser les relations hiérarchiques entre les objets.

Souhaitez-vous que je développe une partie spécifique ou ajoute un exemple détaillé avec les calculs?

