

CS-2001 **Data Structures**

Spring 2022
Introduction to Tree

Mr. Muhammad Yousaf

National University of Computer and Emerging Sciences, Faisalabad, Pakistan.

Previously - Linear Data Structures

- Since now, we've talked about only Linear data structures i.e.
 - Arrays, linked lists, stacks and queues etc.
 - items were linked with next and previous pointers etc.

- How should I decide which data structures to use?
 - Depends what needs to be stored?
 - Minimize the cost of operations i.e. binary search.
 - Memory usage?
 - Ease of implementation?

Trees - Non-Linear Data Structures

- Hierarchical data structure
- Finite collection of Items, stored in hierarchal fashion
- A connected acyclic graph

•

- Examples:
 - ToC in a book has a tree structure
 - A family tree
 - Organizational-positions tree
 - Others?

Unix / Windows file structure tree

Decision Tree in in Healthcare

Trees - Terminologies

- Root
- Parent
- Child
- Siblings
- Ancestor (above)
- Descendents (below)
- Internal/External nodes OR
- Leave/non-leaf nodes
- Degree of a node
- Level/Depth of a node
- Height of a node

Trees

- A rooted tree data structure stores information in nodes
- Similar to lists:
 - There is a first node, or root
 - Each node has variable number of references or links to successors
 - Each node, other than the root, has exactly one node pointing to it

Terminology: Parent Child Relations

- All nodes can have zero or more child nodes or children
 - I has three children: J, K and L
- For all nodes other than the root node, there is one parent node
 - H is the parent I

Terminology: Degree

- The **degree** of a node is defined as the number of its children
 - deg(I) = 3
- Nodes with the same parent are siblings
 - J, K, and L are siblings

Terminology: Leaf And Internal Nodes

- Nodes with degree zero are also called leaf nodes
- All other nodes are said to be internal nodes, that is, they are internal to the tree

Terminology: Leaf Nodes Examples

Leaf nodes

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Internal Nodes Example

Internal nodes

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Path

- A path is a sequence of nodes (a₀, a₁, ..., a_n)
 - Where a_{k+1} is a child of a_k
- The length of this path is **n**
 - For example, the path (B, E, G) has length 2

Terminology: Path Example

Paths of length 10 (11 nodes) and 4 (5 nodes)

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Depth (or Level) of a node

- For each node in a tree, there exists a unique path from the root node to that node
- The length of this path is the depth or level of the node, e.g.,
 - E has level 2
 - L has level 3

Terminology: Depth Example

Nodes of depth up to 17

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Height

- The height of a tree is defined as the maximum depth or level of any node within the tree
- The height of a tree with one node is 0
 - Just the root node
- For convenience, we define the height of the empty tree to be −1

Terminology: Height Example

Height of this tree is 3

Terminology: Ancestors And Descendants

- If a path exists from node a to node b
 - a is an ancestor of b
 - b is a descendent of a
- Thus, a node is both an ancestor and a descendant of itself
 - We can add the adjective **strict** to exclude equality
 - a is a **strict descendent** of b if a is a descendant of b but a \neq b
- The root node is an ancestor of all nodes

Terminology: Ancestors And Descendants Example

• The descendants of node B are C, D, E, F, and G

The ancestors of node I are H and A

Terminology: Descendants Example

• All descendants (including itself) of the indicated node

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Ancestors Example

All ancestors (including itself) of the indicated node

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

Terminology: Sub-Tree

- Another approach to a tree is to define the tree recursively
 - A degree-0 node is a tree
- A node with degree n is a tree if it has n children (here n>1)
 - All of its children are disjoint trees (i.e., with no intersecting nodes)
- Given any node a within a tree with root r, the collection of a and all of its descendants is said to be a subtree of the tree with root a

Tree Properties

Property Value

Number of nodes
Height
Root Node
Leaves
Ancestors of H
Descendants of B
Siblings of E

Left subtree

Example: HTML (1)

HTML document has a tree structure

```
<html>
    <head>
        <title>Hello World!</title>
    </head>
    <body>
        <h1>This is a <u>Heading</u></h1>

        This is a paragraph with some <u>underlined</u> text.
        </body>
</html>
```

Example: HTML (2)

HTML document has a tree structure

Example: HTML (3)

The nested tags define a tree rooted at the HTML tag

```
<html>
   <head>
      <title>Hello World!</title>
   </head>
   <body>
      <h1>This is a <u>Heading</u></h1>
      This is a paragraph with some
      <u>underlined</u> text.
   </body>
                              html
</html>
               head
                                            body
                title
                           "This is a "
           "Hello World!"
                                     "Heading"
                                                                  " text."
                                    "This is a paragraph with "
                                                          "underlined"
```

Binary Tree

Binary Tree

- In a binary tree each node has at most two children
 - Allows to label the children as left and right
- Deg(tree) = 2
- Children = $\{0,1,2\}$

- Likewise, the two sub-trees are referred as
 - Left sub-tree
 - Right sub-tree

Binary Tree: Example

• Some variations on binary trees with five nodes

No. of Possible Binary Trees?

How many binary trees can be formed for a given set of nodes n?

•
$$T(3) = 5$$

•
$$T(4) = 14$$

•
$$T(5) = ?$$

•

•

• T(n) =
$$\frac{2n!}{(n+1)! * n!}$$

Sum of Internal and External nodes

- Sum of all the internal and external nodes is always equal to total no. of nodes in a binary tree
 - deg(0) = 8
 - $\deg(1) = 0$
 - deg(2) = 7
 - total nodes = 8 + 0 + 7 = 15

Binary Tree: Full **Node**

- A full node is a node where both the left and right sub-trees are non-empty trees
- (OR) if it has exactly two child nodes

Full/Proper/Strict Binary Tree

- A full binary tree is where each node has { 0 or 2 } childrens
 - A full node, or
 - A leaf node
- Full binary tree is also called proper binary tree, strictly binary tree or 2-tree

Complete/Perfect Binary Tree (CBT)

- A perfect binary tree of height h is a binary tree where:
 - All leaf nodes have the same depth or level L
 - All other nodes are full-nodes
- Each level must be completely filled i.e. 2^h nodes

Is it a Full binary tree as well?

Perfect Binary Tree: Recursive Definition

- A binary tree of height h = 0 is perfect
- A binary tree with height h > 0 is perfect
 - If both sub-trees are prefect binary trees of height h 1

Perfect Binary Tree: Example

Perfect binary trees of height h = 0, 1, 2, 3 and 4

No of leaf nodes? Any relation with the height of the tree?

Binary Tree: Properties (1)

• A perfect binary tree with height h has 2^h leaf nodes

Binary Tree: Properties (2)

- A perfect binary tree with height h has 2h leaf nodes
- A perfect binary tree of height h has 2^{h + 1} 1 nodes

$$n = 2^{0} + 2^{1} + 2^{2} + \ldots + 2^{h} = \sum_{j=0}^{h} 2^{j} = 2^{h+1} - 1$$

Binary Tree: Properties (3)

- A perfect binary tree with height h has 2^h leaf nodes
- A perfect binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$

Binary Tree: Properties (4)

- A perfect binary tree with height h has 2^h leaf nodes
- A perfect binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A perfect binary tree with n nodes has height log₂(n + 1) 1

$$n = 2^{h+1} - 1$$

 $2^{h+1} = n + 1$
 $h + 1 = \log_2(n + 1)$
 $\Rightarrow h = \log_2(n + 1) - 1$

Binary Tree: Properties (4)

- A perfect binary tree with height h has 2^h leaf nodes
- A perfect binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A perfect binary tree with n nodes has height log₂(n + 1) 1
- Number n of nodes in a binary tree of height h is at least h+1 and at most 2^{h+1} - 1

Height vs No. of Nodes?

- If you know 'height' then what will be the no. of nodes?
 - minimum no. of nodes = h+1
 - maximum no. of nodes = 2^{h+1} 1

- If you know the 'no. of nodes' then what will be the height?
 - minimum height = $log_2(n + 1) 1$
 - maximum height = n-1

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - 1. There are 2^d nodes at depth d for d = 1, 2, ..., h-1 \Box Each leaf in the tree is either at level h or at level h- 1
 - 2. The nodes at depth hare as far left as possible

Missing node towards the right

Almost (or Nearly) Complete Binary Tree

- Almost complete binary tree of height h is a binary tree in which
 - 1. There are 2^d nodes at depth d for d = 1, 2, ..., h-1 \Box Each leaf in the tree is either at level h or at level h- 1
 - 2. The nodes at depth h are as far left as possible (Formal?)

Missing node towards the right

Almost (or Nearly) Complete Binary Tree

Condition 2: The nodes at depth h are as far left as possible

- If a node p at depth h−1 has a left child
 - Every node at depth h-1 to the left of p has 2 children
- If a node at depth h−1 has a right child
 - It also has a left child

Full vs. Almost Complete Binary Tree

Almost Complete Binary Tree: Properties

- Total number of nodes n are between
 - perfect binary tree of height h-1 + 1(1 in the next level), i.e., $2^h 1 + 1 = 2^h \text{ nodes}$
 - perfect binary tree of height h, i.e., 2^{h+1} -1 nodes
- Height h is the largest integer less than or equal to Log₂(n)

(Completely) Balanced Binary Tree

Balanced binary tree

 For each node, the difference in height of the right and left sub-trees is no more than one

Completely balance binary tree

Left and right sub-trees of every node have the same height

Any Question So Far?

