Weekly reports are to be emailed to atbecker@uh.edu by 5:00pm on Tuesdays. The purpose of a weekly report is to: (1) give you text and images for your papers, thesis, and dissertation, (2) document progress, (3) identify if you are stuck or need resources.

Weekly report

1. My Goals from last week

- **Deliverable 1:** Begin creating a Simulink model of the control system. Two equations are used (x-axis and y-axis). I did this in order to be able to use a direct measurement (position) as a feedback state. I would like to use FULL state feedback and determine the velocity feedback state by computing the velocity from previous position change information. I could also use an estimator for that state variable. I will also compare to MPC and PID. **Model Complete, Controller Testing In Progress**
- Deliverable 3: Test interface with current control loop and Simulink. Verify Simulink can send valid current commands to control loop. - In Progress

2. My Accomplishments this week

- a. Project 1: Magnetic Coil Control for Mico robots
 - **Deliverable 1:** Refine Simulink model of the control system. See Equation (1) and (2) for the state-space equations for the ball bearing. Two equations are used (x-axis and y-axis). I did this in order to be able to use a direct measurement (position) as a feedback state. Equation (3) is the magnetic field gradient used to compute the forced induced on the sphere.
 - Figure 1 shows the current Simulink model. Figure 2 shows the path taken by the test object (small magnetic sphere weighing 1 gram in water).
 - **Deliverable 3:** Test interface with current control loop and Simulink. Verify Simulink can send valid current commands to control loop. (In Progress).

$$\begin{bmatrix} \dot{x} \\ \dot{v_x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & \frac{(-6\pi\mu r v_x)}{m_s} \end{bmatrix} \begin{bmatrix} x \\ v_x \end{bmatrix} + \begin{bmatrix} 0 \\ (F_{mx} - u_k F_N) \\ m_s \end{bmatrix} u(t)$$

Equation (1)

$$\begin{bmatrix} \dot{y} \\ \dot{v_y} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & \frac{(-6\pi\mu r v_y)}{m_s} \end{bmatrix} \begin{bmatrix} y \\ v_y \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{(F_{mx} - u_k F_N)}{m_s} \end{bmatrix} u(t)$$

Equation (2)

$$\nabla \dot{B}(x,y) = \frac{dB}{dx} \frac{dB}{dy}$$

$$\frac{dB}{dx} = \frac{((u_o N I R^2)(-3 x))}{(R^2 + x^2)^{2.5}}$$

Equation (3)
Note: Similar solution for y-plane

Figure 2 – XY Plot of ball. TGT(x,y) = (0.1,0.1)

3. My Goals for next week

- Objective 1. Build a coil with the electrical and physically properties required for a working coil control system.
- Objective 2:Start construction on a frame to hold the six coils and operating area for micro-robots.
- Objective 3: Continue system modeling and building in Simulink of the control loop.
 Compare MPC, PID, and FULL state feedback to determine which control methods performs the best.
- Objective 4: Continue to improve model for non-linear and real-world aspects of system.
- Objective 5: Improve Tracking of sphere in model to desired location (x,y).
 - a. Meeting with Dr. Becker on Friday 19 JUN15 at 1300. Request confirmation via Google Calendar. Review proposed state-space equations for object and Simulink modeling.

4. What I need Dr. Becker to do:

- a. Continue to provide daily oversight of Ademir in coil and frame construction.
- b. Discuss during next meeting additional model constraints and controls.

Figure 1