Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт

"Методы машинного обучения"

Лабораторная работа № 2

"Изучение библиотек обработки данных"

ИСПОЛНИТЕЛЬ:
Студент группы ИУ5-21М
Коростелёв В.М.
ПРЕПОДАВАТЕЛЬ:
Гапанюк Ю.Е.

Москва – 2019

Цель работы

Изучить библиотеки обработки данных Pandas и PandaSQL.

Задание

- 1. Требуется выполнить первое демонстрационное задание под названием «Exploratory data analysis with Pandas» со страницы курса mlcourse.ai.
- 2. Требуетсявыполнитьследующиезапросысиспользованиемдвухраз личныхбиблиотек Pandas и PandaSQL:
 - один произвольный запрос на соединение двух наборов данных,
 - один произвольный запрос на группировку набора данных с использованием функций агрегирования. Также требуется сравнить время выполнения каждого запроса в Pandas и PandaSQL.

Ход выполнения работы

Часть 1

Ниже приведён демонстрационный Jupyter-ноутбук «Exploratory data analysis with Pandas» курса mlcourse.ai (файл assignment01_pandas_uci_adult.ipynb). Все пояснения приведены на исходном языке ноутбука — на английском.

Assignment #1 (demo)

Exploratory data analysis with Pandas

In this task you should use Pandas to answer a few questions about the Adult dataset. Unique values of all features (for more information, please see the links above):

- age: continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- sex: Female, Male.
- capital-gain: continuous.

- capital-loss: continuous.
- hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
- salary: >50K,<=50K

```
In [1]: import numpy as np import pandas as pd

In [2]: data = pd.read_csv('adult.data.csv') data.head()

Out[2]: age workclass fnlwgt education education num status occupation relationship race sex capital capital hours native country salary
```

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	native- country	salary
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	<=50K
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50K
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K

1. How many men and women (sex feature) are represented in this dataset?

2. What is the average age (age feature) of women?

```
In [4]: data.loc[data['sex'] == 'Female', 'age'].mean()
Out[4]: 36.85823043357163
```

3. What is the percentage of German citizens (native-country feature)?

4-5. What are the mean and standard deviation of age for those who earn more than 50K per year (salary feature) and those who earn less than 50K per year?

```
In [8]: ages1 = data[data["salary"] == "<=50K"]["age"]
    ages2 = data[data["salary"] == ">50K"]["age"]
    print("<=50K: = {0} ± {1} years".format(ages1.mean(), ages1.std()))
    print(" >50K: = {0} ± {1} years".format(ages2.mean(), ages2.std()))

<=50K: = 36.78373786407767 ± 14.02008849082488 years
    >50K: = 44.24984058155847 ± 10.519027719851826 years
```

6. Is it true that people who earn more than 50K have at least high school education? (education – Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)

```
In [9]: high_educations = set(["Bachelors", "Prof-school", "Assoc-acdm", "Assoc-voc", "Masters", "Doctorate"])
    def high_educated(e):
        return e in high_educations
    data[data["salary"] == ">50K"]["education"].map(high_educated).all()
Out[9]: False
```

7. Display age statistics for each race (race feature) and each gender (sex feature). Use groupby() and describe(). Find the maximum age of men of Amer-Indian-Eskimo race.

```
In [10]: data.groupby(["race", "sex"])["age"].describe()
Out[10]:
                                       count
                                                 mean
                                                                 min 25%
                                                                           50%
                                                                                  75%
                        race
                                 sex
           Amer-Indian-Eskimo Female
                                       119.0 37.117647 13.114991
                                                                                 46.00
                                                                                       80.0
                                                                 17.0
                                                                      27.0
                                                                            36.0
                                       192.0 37.208333 12.049563
                                Male
                                                                17.0
                                                                      28.0
                                                                            35.0
                                                                                 45.00
                                                                                       82.0
            Asian-Pac-Islander
                             Female
                                       346.0 35.089595 12.300845
                                                                 17.0
                                                                      25.0
                                                                            33.0
                                                                                 43.75
                                Male
                                       693.0 39.073593 12.883944
                                                                 18.0
                                                                      29.0
                                                                            37.0
                                                                                 46.00
                                      1555.0 37.854019 12.637197 17.0 28.0
                                                                            37.0
                                                                                 46.00
                                                                                       90.0
                       Black Female
                                      1569.0 37.682600 12.882612 17.0 27.0
                                                                            36.0
                                                                                 46.00
                                                                                       90.0
                                Male
                       Other Female
                                       109.0 31.678899 11.631599 17.0 23.0
                                                                            29.0
                                                                                 39.00
                                                                                       74.0
                                       162.0 34.654321
                                                       11.355531
                                                                 17.0
                                                                      26.0
                                                                            32.0
                                                                                 42.00
                                Male
                       White
                             Female
                                      8642.0
                                            36.811618
                                                      14.329093
                                                                 17.0
                                                                      25.0
                                                                            35.0
                                                                                 46.00
                                                                                       90.0
                                     19174.0 39.652498 13.436029 17.0 29.0 38.0 49.00 90.0
                                Male
                          data[(data["race"] == "Amer-Indian-Eskimo")
             In [11]:
                                  & (data["sex"] == "Male")]["age"].max()
             Out[11]: 82
```

8. Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (marital-status feature)? Consider as married those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

9. What is the maximum number of hours a person works per week (hours-per-week feature)? How many people work such a number of hours, and what is the percentage of those who earn a lot (>50K) among them?

```
In [15]: m = data["hours-per-week"].max()
    print("Maximum is {} hours/week.".format(m))
    people = data[data["hours-per-week"] == m]
    c = people.shape[0]
    print("{} people work this time at week.".format(c))
    s = people[people["salary"] == ">50K"].shape[0]
    print("{0:%} get >50K salary.".format(s / c))

Maximum is 99 hours/week.
    85 people work this time at week.
    29.411765% get >50K salary.
```

10. Count the average time of work (hours-per-week) for those who earn a little and a lot (salary) for each country (native-country). What will these be for Japan?

salary	<=50K	>50K
native-country		
?	40.164760	45.547945
Cambodia	41.416667	40.000000
Canada	37.914634	45.641026
China	37.381818	38.900000
Columbia	38.684211	50.000000
Cuba	37.985714	42.440000
Dominican-Republic	42.338235	47.000000
Ecuador	38.041667	48.750000
El-Salvador	36.030928	45.000000
England	40.483333	44.533333
France	41.058824	50.750000
Germany	39.139785	44.977273
Greece	41.809524	50.625000
Guatemala	39.360656	36.666667
Haiti	36.325000	42.750000
Holand-Netherlands	40.000000	NaN
Honduras	34.333333	60.000000
Hong	39.142857	45.000000
Hungary	31.300000	50.000000
India	38.233333	46.475000
Iran	41.440000	47.500000
Ireland	40.947368	48.000000
Italy	39.625000	45.400000
Jamaica	38.239437	41.100000
Japan	41.000000	47.958333
Laos	40.375000	40.000000
Mexico	40.003279	46.575758
Nicaragua	36.093750	37.500000
Outlying-US(Guam-USVI-etc)	41.857143	NaN
Peru	35.068966	40.000000
Philippines	38.065693	43.032787
Poland	38.166667	39.000000
Poland	38.166667	39.000000
Portugal	41.939394	41.500000
Puerto-Rico	38.470588	39.416667
Scotland	39.444444	46.666667
South	40.156250	51.437500
Taiwan	33.774194	46.800000
Thailand	42.866667	58.333333
Trinadad&Tobago	37.058824	40.000000
United-States	38.799127	45.505369
Vietnam	37.193548	39.200000
Yugoslavia	41.600000	49.500000

Часть 2 Импортируем pandasql:

```
In [2]: from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())
```

Для выполнения данного задания возьмём два набора данных:

```
In [8]: wind = (pd.read_csv('wind speed.csv', header=None,
                           temp = (pd.read_csv('temperature.csv', header=None,
                           In [14]: wind.head()
Out[14]:
             row
                      UNIX
                                 date
                                         time
                                              speed
                            2016-09-30 23:55:18
               1 1475315718
                                               7.87
          1
               2 1475315423 2016-09-30 23:50:23
                                               7.87
          2
               3 1475315124 2016-09-30 23:45:24
                                               9.00
          3
                 1475314821 2016-09-30 23:40:21
                                               13.50
               5 1475314522 2016-09-30 23:35:22
                                               15.75
In [15]: wind.dtypes
Out[15]: row
                     int64
          UNIX
                     int64
          date
                    object
          time
                    object
          speed
                   float64
          dtype: object
 In [17]: temp.head()
Out[17]:
                       UNIX
                                 date
                                        time temperature
                 1475315718 2016-09-30 23:55:18
           0
                                                    48
               2 1475315423 2016-09-30 23:50:23
                                                    48
           1
           2
               3 1475315124 2016-09-30
                                     23:45:24
                                                    48
               4 1475314821 2016-09-30
           3
                                     23:40:21
                                                    48
               5 1475314522 2016-09-30
                                                    48
                                     23:35:22
 In [18]: temp.dtypes
Out[18]: row
                          int64
          UNIX
                          int64
          date
                         object
          time
                         object
          temperature
                          int64
          dtype: object
```

Объединим эти наборы и проверим время выполнения: Pandas:

```
In [19]: wind.merge(temp[["UNIX", "temperature"]], on="UNIX").head()
Out[19]:
              row
                       UNIX
                                  date
                                          time
                                               speed
                                                     temperature
                1 1475315718 2016-09-30 23:55:18
                                                7.87
                                                             48
                2 1475315423 2016-09-30 23:50:23
           1
                                                7.87
                                                             48
                3 1475315124 2016-09-30 23:45:24
                                                9.00
                                                             48
                4 1475314821 2016-09-30 23:40:21
                                                             48
           3
                                                13 50
                5 1475314522 2016-09-30 23:35:22
                                                             48
 In [20]:
          %%timeit
          wind.merge(temp[["UNIX", "temperature"]], on="UNIX")
          19.5 ms ± 890 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Pandasql:
In [22]: pysqldf("""SELECT w.row, w.UNIX, w.date, w.time,
                   w.speed, t.temperature
                   FROM wind AS w JOIN temp AS t
                   ON w.UNIX = t.UNIX """).head()
Out[22]:
                        UNIX
              row
                                    date
                                            time speed temperature
           0
                1 1475315718 2016-09-30 23:55:18
                                                   7.87
                                                                 48
                2 1475315423 2016-09-30 23:50:23
                                                   7.87
           1
                                                                 48
                3 1475315124 2016-09-30 23:45:24
                                                   9.00
                                                                 48
                4 1475314821 2016-09-30 23:40:21
           3
                                                  13.50
                                                                 48
                5 1475314522 2016-09-30 23:35:22
                                                  15.75
                                                                 48
          %%timeit
In [23]:
          pysqldf("""SELECT w.row, w.UNIX, w.date, w.time,
                   w.speed, t.temperature
                   FROM wind AS w JOIN temp AS t
                   ON w.UNIX = t.UNIX """).head()
          809 ms ± 46 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

Pandas в 40 раз быстрее, чем pandasql.

Сгруппируем набор данных с использованием функций агрегирования: Pandas:

```
In [24]:
         wind.groupby("date")["speed"].mean().head()
Out[24]: date
         2016-09-01
                       6.396560
         2016-09-02
                       5.804086
         2016-09-03
                       4.960248
         2016-09-04
                       5.184571
         2016-09-05
                       5.830676
         Name: speed, dtype: float64
         %%timeit
In [25]:
         wind.groupby("date")["speed"].mean().head()
         3.47 ms ± 146 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```

Pandasql:

```
In [26]: pysqldf("""SELECT date, AVG(speed) FROM wind GROUP BY date """).head()
Out[26]:
                  date AVG(speed)
          0 2016-09-01
                          6.396560
           1 2016-09-02
                          5.804086
           2 2016-09-03
                          4.960248
           3 2016-09-04
                          5.184571
           4 2016-09-05
                          5.830676
In [27]: %%timeit
          pysqldf("""SELECT date, AVG(speed) FROM wind GROUP BY date """).head()
          322 ms ± 55.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

Pandas быстрее в 93 раза.