CSCI381/CSCI780

Name:

Final exam

Please write clearly. If the response is not clearly written, it will not get full credit. Please put away your cell phones, calculators, textbooks, and notebooks. Only a pen (or pencil) is allowed.

December 18, 2017

Question 1: POS tagging: 12 points	Question	1: POS	tagging:	12	points
------------------------------------	----------	---------------	----------	----	--------

• 6 points Tag the sentence below with parts-of-speech.

Karlsson lives on the roof of a perfectly ordinary house

Assume the following tags from the Penn Treebank: {NNP, NN, NNS, VB, VBD, VBG, VBZ, RB, IN, DT, JJ}

• 6 points Identify one word in the above sentence that is ambiguous with respect to part-ofspeech. Provide an example sentence that shows its ambiguity and explain why it is ambiguous.

Question 2: Syntactic parsing: 16 points

• 8 points Give an example sentence with PP attachment ambiguity. Draw syntactic trees that correspond to each interpretation.

• 8 points Give an example sentence that has coordinating conjunction ambiguity. Draw syntactic trees that correspond to each interpretation.								

Question 3: Probabilistic context-free grammars: 6 points

- 6 points Given the two sentences below assume the most likely parse trees are marked with square brackets. Name one problem that a PCFG would have when finding the most likely parse trees (as indicated) corresponding to each of the sentences:
 - 1. Workers dumped [NP sacks] [PP into a bin]
 - 2. Fishermen caught [NP tons [PP of herring]]

Question 4: Lexicalized PCFGs: 6 points

Suppose we have a PCFG with 10 non-terminals: |N| = 10 and a vocabulary of size 20: $|\Sigma| = 20$.

- 6 points How many lexicalized rules can we have s.t.:
 - $X(h) \to_1 Y_1(h) Y_2(w)$
 - $X(h) \rightarrow_2 Y_1(w) Y_2(h)$?

Question 5: Machine Translation and alignments: 14 points Suppose we have the following alignment from f to e for the sentence pair below: $a_1 = 1$, $a_2 = 2$, $a_3 = 0$, $a_4 = 3$, $a_5 = 4$, $a_6 = 5$.

 \bullet 6 points What is the value of p(a|e,m) for this alignment under IBM Model 1? Show all your work and explain.

e="The dog ate his homework"

f="Le chien a mangé son devoir"

- 8 points Which of the following alignments are valid under IBM Model 1? Explain.
 - 1. $a_1 = 1$, $a_2 = 1$, $a_3 = 0$, $a_4 = 3$, $a_5 = 4$, $a_6 = 5$
 - 2. $a_1 = 1$, $a_3 = 0$, $a_4 = 3$, $a_5 = 4$, $a_6 = 5$
 - 3. $a_1 = 1$, $a_2 = 1$, $a_3 = 0$, $a_3 = 1$, $a_4 = 3$, $a_5 = 4$, $a_6 = 5$
 - 4. $a_1 = 1$, $a_2 = 1$, $a_3 = 1$, $a_4 = 1$, $a_5 = 1$, $a_6 = 1$

Question 6: Machine Translation and IBM Model 1: 16 points

Consider the following sentence pair:

- e: This is a cat
- f: C'est un chat

Say we have an alignment a1 = 2, a2 = 3, a3 = 4

The parameters are:

$$t(c'est|this) = 0.5$$

$$t(un|this) = 0.5$$

$$t(chat|this) = 0$$

$$t(c'est|is) = 0.1$$

$$t(un|is) = 0.2$$

$$t(un|is) = 0$$

$$t(chat|is) = 0.7$$

$$t(c'est|a) = 0$$

$$t(un|a)=0.5$$

$$t(chat|a) = 0.5$$
$$t(c'est|cat) = 0$$
$$t(un|cat) = 0$$
$$t(chat|cat) = 0.9$$

• 8 points What is the value of p(f|a,e,m) for this example under IBM model 1? Please show your work and provide the final calculation.

• 8 points What is the value of p(f,a|e,m) for this example under IBM model 1? Please show your work and provide the final calculation.

Question 7: Log-linear models: 12 points

• 5 points What is the key advantage of a log-linear POS tagger over an HMM-based tagger?

• 7 points Consider the label set Y consisting of POS tags, s.t. |Y| = 20, and the set X consisting of histories of the form $< t_1, t_2, ..., t_{i-1}, w_1, ..., w_n, i >$. Let the number of words in the vocabulary be 100. Say that our features are of the form (where N maps a word/tag pair to an integer:

$$f_{N(u,t)} = \begin{cases} 1, & \text{if current word } w_i = u \text{ and } y = t. \\ 0, & \text{otherwise.} \end{cases}$$

How many possible features are there in this model?

Question 8: Computing class probabilities in log-linear models: 12 points Consider the label set Y={cat,dog,hat,cot} with three features:

$$f_1(x, y) = \begin{cases} 1, & \text{if } x = \text{the and } y \text{ ends with at} \\ 0, & \text{otherwise} \end{cases}$$

$$f_2(x, y) = \begin{cases} 1, & \text{if } x = \text{the and } y \text{ starts with c} \\ 0, & \text{otherwise} \end{cases}$$

$$f_3(x, y) = \begin{cases} 1, & \text{if } x = \text{the and } y \text{ has second letter o} \\ 0, & \text{otherwise} \end{cases}$$

The weight vector v=<3,1,1>.

Question 9: Brown clustering: 6 p • 3 points Explain what is Brown o	points clustering.		
• 3 points Give an example of a ta	sk where it might be useful	l .	

• 12 points Compute the value of p(hat|the;v). Show your work.