8. REGRESSION ANALYSIS

Correlation, simple linear regression, multiple linear regression

Correlation

Correlation

- We are interested in looking at the relationship between two variables.
- \square The data can be represented by ordered pairs (x, y)
 - $\blacksquare x$ is the independent (or explanatory) variable
 - y is the dependent (or response) variable
- □ We can draw a scatter plot to visually inspect the relationship

Types of correlation

Nonlinear Correlation

Correlation coefficient

- A measure of the strength and the direction of a linear relationship between two variables.
- $lue{}$ The symbol r represents the sample correlation coefficient.
- \square A formula for r is

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

- This is also called the Pearson correlation coefficient.
- $exttt{ iny}$ The population correlation coefficient is represented by ho (rho).

Correlation coefficient

 \square The range of the correlation coefficient is -1 to 1.

Correlation coefficient

Strong negative correlation

Weak positive correlation

Strong positive correlation

Introduction to regression analysis

Introduction to regression analysis

- Regression analysis is a statistical technique that is useful for studying relationship between variables.
- □ For examples:
 - Relationship between expenses and monthly income of one family.
 - Relationship between air pollution rates and the number of vehicles on the road.
 - Relationship between age and salary.
- In regression analysis, we study the relationship between 2 or more variables and predict the value of the variable of interests.

What about linear regression?

- □ The most basic type of regression, is the linear regression.
- \Box For linear regression, we assume that there is an underlying linear relationship between the dependent variable y and the independent variable x.

Basic steps in regression analysis

- 1. Plot the variables and look at the relationship between them.
- 2. Is it linear/non-linear relationship?
- 3. Predict the parameters in the model.
- 4. Check for the suitability of the model build based on the data collected. Should the model be modified or accepted?
- Prediction from the model
- □ Note: In Simple Linear Regression, only two variables are considered, y and x. In Multiple Linear Regression, there are more than one explanatory variables.

Simple linear regression

Empirical model

The equation of straight line relating two variables is

$$y = \beta_0 + \beta_1 x$$

- □ This equation represents the exact relation between x and y; where each point of (x, y) should lie on the straight line.
- Since data points do not fall exactly on a straight line, due to the error in the data we collected, so we need to modify the equation by adding the error term in the model.

Empirical model (cont)

☐ The simple linear regression model is given by

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

for an observation i with response variable y_i and explanatory variable x_i , where ε_i is the random error term.

- $\hfill\Box$ Only error on y is considered. The error on x can be ignored since x is treated as fixed/control/known.
- \square ε_i is a random variable.

Assumptions

- 1. ε_i has zero mean.
- 2. ε_i and ε_i are not correlated or independent with each other.
- 3. Variance of ε_i is constant and the same for all observations.
- 4. ε_i is normally distributed.
- □ In short,

$$\varepsilon_i \stackrel{\text{i.i.d}}{\sim} N(0, \sigma^2); \qquad i = 1, 2, ..., n$$

Example

Table 11-1 Oxygen and Hydrocarbon Levels

Observation Number	Hydrocarbon Level $x(\%)$	Purity y (%)	
1	0.99	90.01	
2	1.02	89.05	
3	1.15	91.43	
4	1.29	93.74	
5	1.46	96.73	
6	1.36	94.45	
7	0.87	87.59	
8	1.23	91.77	
9	1.55	99.42	
10	1.40	93.65	
11	1.19	93.54	
12	1.15	92.52	
13	0.98	90.56	
14	1.01	89.54	
15	1.11	89.85	
16	1.20	90.39	
17	1.26	93.25	
18	1.32	93.41	
19	1.43	94.98	
20	0.95	87.33	

Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon level from Table 11-1.

The plot suggests a linear relationship between hydrocarbon level (x) and purity (y).

Ordinary least squares

- The next step in regression analysis is to estimate the parameters based on the observed data.
- In SLR, we want to get the best straight line which all/most points lie on this line.
- The method of ordinary least squares is used to estimate the parameters, β_0 and β_1 by minimizing the sum of the squares of the vertical deviations between the points y_i and the straight line.

□ The sum of the squares of the deviations of the observations from the true regression line is

$$L = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Ordinary least squares (cont)

 \Box The least squares point estimates, \hat{eta}_0 and \hat{eta}_1 can be estimated by

$$\hat{\beta}_{1} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}} = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_{0} = \frac{\sum y_{i} - \hat{\beta}_{1} \sum x_{i}}{n} = \bar{y} - \hat{\beta}_{1} \bar{x}$$

where

$$S_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$$

$$S_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - \frac{\sum x_i \sum y_i}{n}$$

Ordinary least squares (cont)

□ The fitted or estimated regression line is therefore

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Each pair of observations satisfies the relationship

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i; \quad i = 1, ..., n$$

where $e_i = y_i - \hat{y}_i$ is called the residual.

Figure 11-4 Scatter plot of oxygen purity y versus hydrocarbon level x and regression model $\hat{y} = 74.283 + 14.947x$.

positive hear relationship

Multiple linear regression

Multiple linear regression

- \square The dependent variable or response Y may be related to k independent or regressor variables.
- The model

$$Y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{k}x_{ik} + \varepsilon_{i}$$

$$= \beta_{0} + \sum_{j=1}^{k} \beta_{j}x_{ij} + \varepsilon_{i}$$

for i = 1, ..., n and j = 1, ..., k is called a multiple linear regression with k regressor or independent variables.

- \square The parameters β_i are called regression coefficients.
- The parameter β_j represents the expected change in response Y per unit change in x_i when all remaining regressor variables are held constant.
- □ Assumptions used are similar to SLR $(\varepsilon_i^{i.i.d} N(0, \sigma^2))$

Matrix approach

Suppose the model relating the regressors to the response is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \varepsilon_i, \qquad i = 1, \dots, n$$

In matrix notation, it can be written as

$$y = X\beta + \varepsilon$$

where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \qquad \boldsymbol{\beta} = \begin{bmatrix} eta_0 \\ eta_1 \\ \vdots \\ eta_k \end{bmatrix}, \qquad \boldsymbol{\varepsilon} = \begin{bmatrix} arepsilon_1 \\ arepsilon_2 \\ \vdots \\ arepsilon_n \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}$$

We wish to find the vector of least squares estimators that minimizes

$$L = \sum_{i=1}^{n} \varepsilon_i^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

 $lue{}$ The resulting least squares estimator is the solution for $oldsymbol{eta}$ in the equation

$$\frac{\partial L}{\partial \boldsymbol{\beta}} = 0 \Rightarrow \widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Example (wire pull strength)

An engineer at a semiconductor assembly plant is investigating the relationship between pull strength of a wire bond and two factors: wire length and die height.

Observation Number	Pull Strength y	Wire Length x_1	Die Height x_2	Observation Number	Pull Strength y	Wire Length x_1	Die Height x_2
1	9.95	2	50	14	11.66	2	360
2	24.45	8	110	15	21.65	4	205
3	31.75	11	120	16	17.89	4	400
4	35.00	10	550	17	69.00	20	600
5	25.02	8	295	18	10.30	1	585
6	16.86	4	200	19	34.93	10	540
7	14.38	2	375	20	46.59	15	250
8	9.60	2	52	21	44.88	15	290
9	24.35	9	100	22	54.12	16	510
10	27.50	8	300	23	56.63	17	590
11	17.08	4	412	24	22.13	6	100
12	37.00	11	400	25	21.15	5	400
13	41.95	12	500				

Example (wire pull strength)

Plot indicates strong linear relationship between strength and wire length.

Figure 12-4 Matrix of scatter plots (from Minitab) for the wire bond pull strength data in Table 12-2.

□ The model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

y: wire pull strength

 x_1 : wire length

 x_2 : die height

 ε : random error term

□ The estimated parameters:

$$\hat{\beta}_0 = 2.26379, \qquad \hat{\beta}_1 = 2.74427, \qquad \hat{\beta}_2 = 0.01253$$

Therefore, the fitted regression is

$$\hat{y} = 2.26379 + 2.74427x_1 + 0.01253x_2$$

Summary

- Correlation
- □ Simple linear regression
 - Model and assumption
 - Ordinary least squares method
- Multiple linear regression
 - Model and assumption
 - Parameter estimation using matrix approach