课程总结

编译器概述

词法分析

主要内容:

- 正则表达式: 描述词素模式的重要表示方法
- 词法分析器的构造方法
 - 正则表达式→构造NFA(Thompson构造法)
 - NFA →转换DFA (子集构造法)
 - 最小化DFA状态

语法分析

- 任务
- 上下文无关文法(描述语言的语法结构的形式规则)
- 语法分析器的类型
 - 1. 自顶向下分析器(递归下降分析, LL(1))
 - 2. 自底向上分析器 (LR(K)分析法: LR(0), SLR, LR(1), LALR)

设计CFG

 $-\text{start} \longrightarrow 0$ 0 1 0 0 0 0 0 0 0 0 1

- L₁={ wcw^R | w∈(a | b)*, w^R为w的反转}
 S → aSa | bSb | c
- $L_2 = \{a^nb^mc^md^n \mid n \ge 1 \perp m \ge 1\}$ $S \rightarrow aSd \mid aAd \quad A \rightarrow bAc \mid bc$ $L_2'' = \{a^nb^nc^md^m \mid n \ge 1 \perp m \ge 1\}$ $S \rightarrow AB \quad A \rightarrow aAb \mid ab \quad B \rightarrow cBd \mid cd$
- $L_3 = \{ a^nb^n \mid n \ge 0 \}$ $S \rightarrow aSb \mid ab$

$$S \rightarrow \mathbf{aABe}$$

$$A \rightarrow A\mathbf{b} \mid \mathbf{b}$$

$$\mathbf{B} \rightarrow \mathbf{d}$$

• $L_4 = { 不包含子串011的0/1串 }$

$$A \rightarrow 0 A \mid 1 B \mid \varepsilon$$

$$B \rightarrow 0 A \mid \varepsilon$$

- 二义性
- E-moves
- 回路
- 左递归
- 左公因子

LL(1)

输入: CFG G

输出: 预测分析表M

Non-			INPUT S	SYMBOL	25	
terminal	a	b	e	i	t	\$
S						
S'	-					
E					9	

方法:

- 1. 对每个产生式 $A\rightarrow\alpha$,重复做2、3
- 2. 对所有的终结符a∈FIRST(α),将A $\rightarrow \alpha$ 加入M[A, a]
- 3. 若 $\varepsilon \in FIRST(\alpha)$: 对所有终结符 $b \in FOLLOW(A)$,将A $\rightarrow \alpha$ 加入M[A, b];若\$ $\in FOLLOW(A)$,将A $\rightarrow \alpha$ 加入M[A, \$]
- 4. 所有未定义的表项设置为错误

LL(1)	$S \rightarrow i E$	t SS' a	First(S) =	= { i, a }	Follow(S)	= { e, \$ }	
	S'→ eS ε		$First(S') = \{ e, \epsilon \}$		Follow(S') = { e, \$ }		
	$E \rightarrow b$		First(E)	= { b }	Follow(E)		
	$S \rightarrow i E$	$S \rightarrow i E t SS'$		$S \rightarrow a$		$\mathbf{E} \rightarrow \mathbf{b}$	
	First(i E	First(i E t SS')={i}		$First(a) = \{a\}$		$\mathbf{t}(\mathbf{b}) = \{\mathbf{b}\}$	
	$S' \rightarrow eS$		S'	$\rightarrow \epsilon$			
	First(eS	$)=\{e\}$	Fi	$rst(\varepsilon) = \{\varepsilon\}$	Follov	$\mathbf{v}(\mathbf{S'}) = \{ \mathbf{e}$, \$ }
	Non-			INPUT	SYMBOL	_	
	terminal	a	b	e	i	t	\$
	S	$S \rightarrow a$			S →iEtSS'		
	S'			$\begin{array}{c} S' \to \varepsilon \\ S' \to eS \end{array}$			$S' \rightarrow \varepsilon$

 $E \rightarrow b$

E

	Non-	INPUT SYMBOL							
9	terminal	id	+	*	()	\$		
3	E	E→TE'			E→TE'				
	Ε'		E'→+TE'			E'→ ε	E '→ ε		
-	T	T→FT'			T→FT'				
	Т'		Τ'→ ε	T'→*FT'		Τ'→ ε	Τ'→ ε		
-]	F	F→id			F→(E)				

LL(1)	STACK	INPUT	OUTPUT
	\$E	id + id * id\$	
	\$E'T	id + id * id \$	$E \rightarrow TE'$
	\$E'T'F	id + id * id\$	$T \rightarrow FT'$
	\$E'T'id	id + id * id\$	$\mathbf{F} \rightarrow \mathbf{id}$
	\$E'T'	+ id * id\$	Τ'→ε
	\$E'	+ id * id\$	$E' \rightarrow +TE'$
	\$E'T+	+ id * id\$	Σ , . ΙΣ
	\$E'T \$E'T'F	id * id\$ id * id\$	$T \rightarrow FT'$
	\$E T F \$E'T'id	id * id\$	$F \rightarrow id$
	SE'T'	* id\$	
	\$E'T'F*	* id\$	$T' \rightarrow *FT'$
	\$E'T'F	id\$.
	\$E'T'id	id\$	$\mathbf{F} \rightarrow \mathbf{id}$
	\$E'T'	\$	Τ'→ε
	\$E'	\$	$E' \rightarrow \varepsilon$
	\$	\$	E / C

LR(0)

LR(0) 项目

 $S' \rightarrow E$ · 接受项目 $E \rightarrow aA$ · 归约项目 $E \rightarrow \cdot aA$ 移进项目

- 0) $S' \rightarrow E$
- 1) $E \rightarrow aA$
- 2) $E \rightarrow bB$
- 3) $A \rightarrow cA$
- $4) A \rightarrow d$
- 5) $B \rightarrow Cb$
- 6) B \rightarrow d

SLR(1)

- ① 将文法G增广为G',同时对每一产生式进行编号
- $(0) S' \rightarrow E$
- $(4) T \rightarrow F$
- $(1) E \rightarrow E + T \qquad (5) F \rightarrow (E)$
- $(2) E \rightarrow T$
- (6) F **→**id
- $(3) T \rightarrow T * F$
- ②对G'构造文法LR(0)项目集规范族如下:

I 0:
$$S' \rightarrow \cdot E$$

 $E \rightarrow \cdot E + T$
 $E \rightarrow \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot id$
I 1: $S' \rightarrow E$
 $E \rightarrow E \cdot + T$

$$I_{8}: F \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + T$$

$$I_{9}: E \rightarrow E + T \cdot$$

$$T \rightarrow T \cdot *F$$

$$I_{10}: T \rightarrow T *F \cdot$$

$$I_{11}: F \rightarrow (E) \cdot$$

③ 取这些项目集作为各状态,并根据转换函数G0画出识别文法G′的有穷自动机,

⑤ 构造SLR(1)分析表

状态			ACTION	(动作)			GOT	O(状态	专换)
1八心	i	+	*	()	\$	E	T	F
0	S_5			S_4			1	2	3
1		S_6				acc			
2		r ₂	S_7		r ₂	r ₂			
3		r ₄	r ₄		\mathbf{r}_4	\mathbf{r}_4			
4	S_5			S_4			8	2	3
5		r ₆	r ₆		r ₆	r ₆			
6	S_5			S_4				9	3
7	S_5			S_4					10
8		S_6			S ₁₁				
9		\mathbf{r}_1	S_7		\mathbf{r}_1	\mathbf{r}_1			
10		r ₃	r ₃		\mathbf{r}_3	r ₃			
11		\mathbf{r}_{5}	r ₅		r ₅	r ₅			

输入串为id+id*id为例,分析过程:

步骤	状态栈	符号栈	输入串	分析动作	下一状态
1	0	\$	id+id*id\$	S_5	5
2	05	\$id	+id*id\$	r_6	GOTO[0, F] = 3
3	03	\$ F	+id*id\$	r_4	GOTO[0, T]=2
4	02	\$ T	+id*id\$	r_2	GOTO[0, E]=1
5	01	\$ E	+id*id\$	S_6	6
6	016	\$ E+	id*id\$	S_5	5
7	0165	\$E+id	*id\$	r_6	GOTO[6, F] = 3
8	0163	\$ E+F	*id\$	r_4	GOTO[6, T]=9
9	0169	\$ E+T	*id\$	S_7	7
10	01657	\$ E+T*	id\$	S_5	5
11	016575	\$E+T*id	\$	r_6	GOTO[7, F]=10
12	01657 <u>10</u>	\$ E+T*F	\$	r_3	GOTO[6, T]=9
13	0169	\$ E+T	\$	\mathbf{r}_1	GOTO[0, E]=1
14	01	\$ E	\$	acc	
		<u> </u>			

状态			ACTION	(动作)			GOT	o(状态转	長換)
	id	+	*	()	\$	E	Т	F
0	S ₅			S ₄			1	2	3
1		S ₆				acc			
2		r ₂	S ₇		r ₂	r ₂			
3		r ₄	r ₄		r ₄	r ₄			
4	S_5			S ₄			8	2	3
5		r ₆	r ₆		r ₆	r ₆			
6	S_5			S ₄				9	3
7	S_5			S ₄					10
8		S ₆			S ₁₁)		
9		\mathbf{r}_{1}	S ₇		r ₁	rı			
10		r ₃	r ₃		r ₃	r ₃			
11		r ₅	r ₅		r ₅	r ₅			

语法制导翻译

产生式	语义规则
$E \rightarrow E_1 + T$	$E.nptr = mknode("+", E_1.nptr, T.nptr)$
$E \rightarrow E_1 - T$	$E.nptr = mknode("-", E_1.nptr, T.nptr)$
$E \rightarrow T$	E.nptr = T.nptr
$T \rightarrow (E)$	T.nptr = E.nptr
$T \rightarrow id$	T.nptr = mkleaf(id, id.lexval)
$T \rightarrow \mathbf{num}$	T.nptr = mkleaf(num, num.val)

- 语法制导定义(SDD): 每个文法产生式有一组基于文法符号的属性的语义规则。属 性:综合属性与继承属性
- 语法制导的翻译方案(SDT): 是SDD的实现。在文法中嵌入语义动作,当归约时, 执行语义动作
- S-属性的SDT,L-属性的SDT

功能 输出
$$L \to E \mathbf{n}$$

$$E \to E_1 + \{print(`+`)\} T$$

$$E \to T$$

$$T \to T_1 * \{print(`*`)\} F$$

$$T \to F$$

$$F \to (E)$$

$$F \to \mathbf{digit} \{print(\mathbf{digit}.lexval)\}$$

中间代码生成

```
int i;
int a[10];
int value;
i = 0;
while (i<10)
{ value = 10; a[i] = value *i; i=i+1; }
i=0;</pre>
```

```
100: i=0

101: if i<10 goto 104

102: goto 109

103: value=10

104: t1 = value * i
```

105: t2 = i*4

106: a[t2]=t1

107: i=i+1

108: goto 102

109: i=0

主要内容:

- 任务
- 中间表示(语法树和三地址码)
- 类型和声明
- 表达式、控制语句、布尔表达式的SDT

运行时刻环境

主要内容:

• 存储管理: 静态分配、栈分配、堆管理

先进后出 先进先出

• 过程运行(调用代码序列,返回代码序列)

代码生成与优化 寄存器选择信息 活跃信息

常量合并

活跃信息 下次引用信息

公共子表达式消除

复制传播

代码移动

死代码消除

归纳变量和强度消减

符号表 + 错误处理器

记录与每个标识符相关的各种属性信息

各阶段均会遇到错误 处理方式:报告错误,继续编译

考试题型

- 一、单项选择题 40
- 二、综合题 60

谢谢助教

谢谢大家!