Conditioning IOTC Albacore OMs using the ABC approach

R. Hillary¹ & I. Mosqueira²

¹CSIRO Environment & ²University of Wageningen

October 23, 2024

Outline

- Presentation of paper IOTC-2024-WPM15-08
- Conditioning of ALB OMs using ABC MCMC approach:
 - Model structure(s) & time-line
 - Input data
 - Stock status prior scenarios
 - Axes of uncertainty
 - Results
 - Next steps

OM model structure: population dynamics

- Timeline: 2000 to 2020 (covers all existing cohorts)
- Age, sex and quarterly structured population model
- Beverton-Holt with exploited equilibrium initialisation
- Designed to mimic current assessment model structure
- Reproduces all key stock status variables:
 - MSY variables: B_{msv} , H_{msv} , & C_{msv}
 - Relative biomass (eg. relative to B_0)

OM model structure: fishery dynamics

- Merge "common" seasonal LL fleets 1-4
- Retain single PS and "Other" fleet: 6 in total
- Size data from LL and PS data (aggregated across time)
- LL CPUE from a given fleet (not jointly at this time)
- Seasonal vs. annual catchability explored

Stock status prior information

- Key feature of ABC approach
- Impose status priors (eg. from assessment) on OM
- Explore 4 types:
 - Relative SSB: prior mean/SD for any range of years
 - ② B_{msy} ratio: prior mean/SD for any range of years
 - $oldsymbol{0}$ H_{msy} ratio: prior mean/SD for any range of years
 - **1** Overfishing probability: penalise *only if* $H > H_{\text{msy}}$
- Integrate status information with LF & CPUE data
- Here is where it diverges from assessment-to-OM approach

Suite of stock status priors

- Relative SSB: year 2000 mean (CI) of 0.5 (0.3-0.7)
- ullet $B_{
 m msy}$ ratio: 2019, 2020 mean 2.25, 2 with SD 0.35
- \bullet $H_{
 m msy}$ ratio: 2000, 2020 mean of 0.6 with SD 0.2
- Overfishing penalty: $\mathbb{P}(H/H_{\mathrm{msy}} > 2) \leq 0.05$
- This removes small numbers of runs with very high H

Covering previous axes of uncertainty

- Steepness & M: covariance joint prior (not discrete grid)
- ② σ_r^2 : (i) fixed at 0.3; (ii) estimated with prior CI 0.2–0.5
- LF: weight/influence (aggregating and ABC discrepancy)
- LL catchability: alternative 1% annual increasing trend
- OPUE series: seasonal q using fleet 1 and 3 separately

Constructing $\pi(h, M)$ prior

- Define marginal priors for both parameters
- h mean 0.8, CI 0.7–0.9; M mean 0.3, CI 0.27–0.33
- Process:
 - **1** Calculate $\tilde{\Delta} = B_{\rm msv}/B_0$ for mean h & M
 - 2 Simulate h and M from marginal priors
 - Define a tolerance interval ε
 - **4** Accept values of $\{h, M\}$ within ε of Δ
 - **5** Calculate correlation in retained samples of $\{h, M\}$
- For $\varepsilon = 0.05$ correlation coefficient is -0.58

OM conditioning scenarios

- Explored seven individual scenarios for conditioning:
 - **1 R1**: CPUE fleet 1, SSB but *not* H_{msy} priors
 - **2** R1a: CPUE fleet 3, SSB and $H_{\rm msy}$ priors
 - R1b: same as R1 with additional overfishing penalty
 - **4 R2**: same as **R1** but σ_r^2 estimated
 - **IDENTIFY OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE: OPERATE:**
 - **6 R2b**: same as **R1b** but σ_r^2 estimated
 - **Q** R3: same as R1 with 1% p.a. $\uparrow q$ trend
 - **8 R3a**: same as **R1a** with 1% *p.a.* $\uparrow q$ trend

Approximate Bayesian Computation (ABC)

- Relaxes idea of strict likelihood: $\ell(D \mid \theta)$
- Focus is on derived quantities: $X = f(\theta)$
- Instead define a discrepancy function: $\pi(D,X)$
- Prior $\pi(\theta)$ has a wider role in ABC format
- Now includes stock status prior information
- Approximate posterior defined as follows:

$$\tilde{\pi}(\boldsymbol{\theta} \mid D) \propto \pi(D, X)\pi(\boldsymbol{\theta})$$

• Custom MCMC algorithm to sample from $\tilde{\pi}(\theta \mid D)$

Discrepancy function & priors

- Deconstructing the discrepancy function, $\pi(D, X)$
- Data elements:
 - OPUE: single fleet quarterly biomass index
 - 2 LF: time-averaged Kullback-Leibler divergence
- Parameter and process variable prior, $\pi(\theta)$:
 - Direct parameter prior quasi-uninformative
 - Implied prior on θ via stock status priors
 - Informative prior on σ_r^2 (inverse-gamma)

Fits to data: CPUE indices

• Fleet 1 (R1, left) & fleet 3 (R1a, right):

Fits to data: Length frequency data

• Scenario R1 (left) & R1a (right):

Population dynamics

- Scenario R1 (top) & R1a (bottom):
- SSB depletion (I), B_{msy} ratio (m), recruitment (r)

Selectivity (size-based)

• Scenario R1 (top) & R1a (bottom):

Estimates of σ_r^2

• Scenario R2 (top) & R2a (bottom):

OM conditioning summary

• General summary across all OM scenarios:

OM scenario	Δ_{2000}	Δ_{2020}	$ ilde{\Delta}_{2020}$	\mathcal{H}_{2020}
Prior	0.5 (0.3-0.7)	n/a	2 (1.3-2.7)	0.6 (0.2-1)
R1	0.76 (0.61-0.97)	0.41 (0.22-0.56)	1.9 (1.02-2.58)	1.13 (0.5-3.78)
R1a	0.56 (0.4-0.72)	0.48 (0.3-0.69)	2.01 (1.42-2.61)	0.68 (0.33-1.38)
R1b	0.74 (0.61-0.9)	0.42 (0.24-0.54)	1.98 (1.16-2.49)	0.98 (0.46-2.4)
R2	0.71 (0.57-0.84)	0.41 (0.21-0.55)	1.91 (0.99-2.53)	1.22 (0.45-3.57)
R2a	0.56 (0.41-0.72)	0.47 (0.28-0.71)	2.03 (1.3-2.54)	0.65 (0.34-1.4)
R2a	0.58 (0.40-0.69)	0.46 (0.28-0.74)	1.98 (1.35-2.59)	0.72 (0.39-1.34)
R3	0.78 (0.6-0.91)	0.38 (0.15-0.52)	1.77 (0.7-2.44)	1.4 (0.58-5.06)
R3a	0.63 (0.48-0.77)	0.42 (0.25-0.59)	1.94 (1.23–2.5)	0.71 (0.35-1.45)

OM conditioning summary

- R1: CPUE inform scale, high upper CI \mathcal{H}_{ν} by 2020
- R1a: CPUE uninformative on scale requires $H_{\rm msv}$ priors
- R1b: very similar to R1, removes v. high late \mathcal{H}_{v}
- **R2**: pushes for higher σ_r^2 median 0.41 vs. 0.3
- R2a: very consistent with 0.3 just increases certainty
- **R2b**: potential reference case
- R3: similar to R1 but more pessimistic recently
- R3a: similar to R1a but more pessimistic recently

Operating model grid

Reference case: OM 2b

Reference set: OMs 1, 2 and 3

• Robustness set: low recruitment period, lower sampling area 1

Simulation design

- Tuning for 50, 60 and 70% Kobe green
- CPUE-based MP (as SWO)
- Surplus production (JABBA) with buffer HCR

Overall summary

- Successful application of ABC OM approach to IO ALB
- Focussed on 2000–2020 time-period (all living cohorts)
- Able to fit to all key data sources
- Mimics assessment model structure & status if required
- Able to cover previous uncertainty grid probabilistically
- Coherent range of plausible OMs
- Able to generate key MP data inputs

Next steps: OM

- Final checks on seasonal OM projections
- Implementing Bayesian cross-validation methods
- Future work: Possible spatial extensions (conflicting CPUE trends)

Next steps: MPs

- Testing model-free and JABBA-based MPs
- Tuning for all three objectives
- Robustness tests