

# DIGITAL CONTROLLED STEREO AUDIO PROCESSOR WITH LOUDNESS

# 1 FEATURES

- INPUT MULTIPLEXER: 3 STEREO INPUTS
- RECORD OUTPUT FUNCTION
- LOUDNESS FUNCTION
- VOLUME CONTROL IN 1dB STEPS
- INDEPENDENT LEFT AND RIGHT VOLUME CONTROL
- SOFT MUTE FUNCTION
- ALL FUNCTIONS PROGRAMMABLE VIA SERIAL I<sup>2</sup>C BUS

### 2 DESCRIPTION

The TDA7309 is a control processor with independent left and right volume control for quality audio applications. Selectable external loudness and soft mute functions are provided.

Control is accomplished by serial I<sup>2</sup>C bus micro-processor interface.

Figure 1. Packages



**Table 1. Order Codes** 

| Part Number   | Package     |
|---------------|-------------|
| TDA7309       | DIP20       |
| TDA7309D      | SO20        |
| TDA7309D013TR | Tape & Reel |

The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers.

Thanks to the used BIPOLAR/CMOS Technology, Low Distortion, Low Noise and Low DC stepping are obtained.

Figure 2. Block Diagram



Figure 3. Pin Description



**Table 2. Absolute Maximum Ratings** 

| Symbol           | Parameter                     | Value       | Unit |
|------------------|-------------------------------|-------------|------|
| Vs               | Operating Supply Voltage      | 10.5        | V    |
| T <sub>amb</sub> | Operating Ambient Temperature | -40 to 85   | °C   |
| T <sub>stg</sub> | Storage Temperature Range     | −55 to +150 | °C   |

### **Table 3. QUICK REFERENCE DATA**

| Symbol          | Parameter                   | Test Condition      | Min. | Тур. | Max. | Unit |
|-----------------|-----------------------------|---------------------|------|------|------|------|
| Vs              | Operating Supply Voltage    |                     | 6    |      | 10   | V    |
| V <sub>CL</sub> | Max. Input Signal Handling  |                     | 2    |      |      | Vrms |
| THD             | Total Harmonic Distortion   | V = 1Vrms, f = 1KHz |      | 0.01 | 0.1  | %    |
| S/N             | Signal to Noise Ratio       |                     |      | 106  |      | dB   |
| Sc              | Channel Separation f = 1KHz |                     |      | 100  |      | dB   |
|                 | Volume Control 1.0dB step   |                     | -95  |      | 0    | dB   |
|                 | Soft Mute Attenuation       |                     |      | 60   |      | dB   |
|                 | Direct Mute Attenuation     |                     |      | 100  |      | dB   |

**Table 4. Thermal Data** 

| Symbol                 | Parameter                           | SO20 | DIP20 | Unit |
|------------------------|-------------------------------------|------|-------|------|
| R <sub>th j-pins</sub> | Thermal resistance Junction to Pins | 150  | 100   | °C/W |

Figure 4. Test Circuit

2/14



**Table 5. Electrical Characteristcs** (Refer to the test circuit,  $T_{amb}$  = 25°C,  $V_S$  = 9V,  $R_L$  = 10K $\Omega$ ,  $R_G$  = 50 $\Omega$ , all controls flat (G = 0), f = 1KHz unless otherwise specified.)

| Symbol                             | Parameter                            | Test Condition                                                               | Min.     | Тур.   | Max.     | Unit     |
|------------------------------------|--------------------------------------|------------------------------------------------------------------------------|----------|--------|----------|----------|
| SUPPLY                             |                                      | •                                                                            |          |        |          |          |
| Vs                                 | Supply Voltage                       |                                                                              | 5 (*)    | 9      | 10       | V        |
| Is                                 | Supply Current                       |                                                                              |          | 7      | 10       | mA       |
| SVR                                | Ripple Rejection                     |                                                                              | 60       | 85     |          | dB       |
| INPUT SEL                          | ECTORS                               | 1                                                                            |          | I.     |          | ı        |
| Rı                                 | Input Resistance                     |                                                                              | 35       | 50     | 65       | ΚΩ       |
| S <sub>in</sub>                    | Input Separation                     |                                                                              | 80       | 90     |          | dB       |
| VOLUME C                           | ONTROL                               | 1                                                                            | l        | I.     | l        |          |
| C <sub>RANGE</sub>                 | Control Range                        |                                                                              |          | 92     |          | dB       |
| A <sub>VMAX</sub>                  | Max. Attenuation                     |                                                                              | 87       | 92     | 95       | dB       |
| ASTEP                              | Step resolution                      |                                                                              | 0.5      | 1      | 1.5      | dB       |
| EA                                 | Attenuation Set Error                | $A_V = 0$ to -24dB                                                           | -1.2     |        | 1.2      | dB       |
|                                    |                                      | $A_V = -24 \text{ to } -56 \text{dB}$                                        | -3       |        | 2        | dB       |
| E <sub>T</sub>                     | Tracking Error                       |                                                                              |          |        | 2        | dB       |
| V <sub>DC</sub>                    | DC Steps                             | adjacent attenuation steps                                                   |          | 0      | 3        | mV       |
|                                    |                                      | from 0dB to A <sub>V max</sub>                                               |          | 0.5    | 5        | mV       |
| A <sub>mute</sub>                  | Output Mute Attenuation              |                                                                              | 80       | 100    |          | dB       |
| SOFT MUT                           | TE                                   | <u> </u>                                                                     | <u> </u> |        | <u> </u> | <u> </u> |
| T <sub>d</sub>                     | Delay Time                           | C <sub>smute</sub> = 22nF; 0 to -20dB                                        |          |        |          |          |
|                                    |                                      | Fast Mode                                                                    |          | 1      |          | ms       |
|                                    |                                      | Slow Mode                                                                    |          | 20     |          | ms       |
| AUDIO OU                           | TPUTS                                |                                                                              | I        | I      | I        | I        |
| V <sub>CLIP</sub>                  | Clipping Level                       | d = 0.3%                                                                     | 2        | 2.6    |          | Vrms     |
| RL                                 | Output Load Resistance               |                                                                              | 2        |        |          | ΚΩ       |
| Rout                               | Output Impedance                     |                                                                              | 100      | 200    | 300      | Ω        |
| V <sub>DC</sub>                    | DC Voltage Level                     |                                                                              |          | 3.8    |          | V        |
| GENERAL                            |                                      |                                                                              | <u> </u> | l .    | <u> </u> | l        |
| e <sub>NO</sub>                    | Output Noise                         | BW = 20-20KHz, flat; output muted                                            |          | 2.5    |          | μV       |
|                                    |                                      | all gains = 0dB                                                              |          | 5      | 15       | μV       |
|                                    |                                      | A curve all gains = 0dB                                                      |          | 3      |          | μV       |
| Et                                 | Total Tracking Error                 | $A_V = 0 \text{ to } -24 \text{dB}$<br>$A_V = -24 \text{ to } -56 \text{dB}$ |          | 0<br>0 | 1<br>2   | dB<br>dB |
| S/N                                | Signal to Noise Ratio                | all gains = 0dB; V <sub>O</sub> = 1Vrms                                      | 95       | 106    |          | dB       |
| d                                  | Distortion                           |                                                                              |          | 0.01   | 0.1      | %        |
| Sc                                 | Channel Separation                   |                                                                              | 80       | 100    |          | dB       |
| BUS INPU                           | TS                                   | 1                                                                            | 1        | ı      | 1        | <u> </u> |
|                                    | 1                                    |                                                                              |          |        | 1        | V        |
| ۷IL                                | Input Low Voltage                    |                                                                              |          |        |          |          |
|                                    | Input Low Voltage Input High Voltage |                                                                              | 3        |        |          | V        |
| V <sub>IL</sub><br>V <sub>IH</sub> |                                      | V <sub>in</sub> = 0.4V                                                       | 3 -5     |        | +5       | V<br>μA  |

<sup>(\*)</sup> Hedevice work until 5V but no guarantee about SVR



Figure 5. Noise vs. Volume Setting.



Figure 6. SVRR vs. Frequency.



Figure 7. THD vs. frequency



Figure 8. THD vs.  $R_{\text{LOAD}}$ .



Figure 9. Channel Separation vs. Frequency.



Figure 10. Output Clip Level vs. Supply Voltage.



57

Figure 11. Quiescen Current vs. Supply Voltage



Figure 12. Loudness vs. Volume Attenuation



Figure 13. Loudness vs. Frequency  $(C_{LOAD} = 100nF)$  vs. Volume



Figure 14. Loudness vs. External Capacitors



# 3 I<sup>2</sup>C BUS INTERFACE

Data transmission from microprocessor to the TDA7313 and viceversa takes place thru the 2 wires I<sup>2</sup>C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

#### 3.1 Data Validity

As shown in fig. 11, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

#### 3.2 Start and Stop Conditions

As shown in fig. 16 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

#### 3.3 Byte Format

Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

#### 3.4 Acknowledge

The master ( $\mu$ P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 17). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

## 3.5 Transmission without Acknowledge

Avoiding to detect the acknowledge of the audioprocessor, the  $\mu P$  can use a simplier transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data. This approach of course is less protected from misworking and decreases the noise immunity.

Figure 15. Data Validity on the I<sup>2</sup>CBUS



Figure 16. Timing Diagram of I<sup>2</sup>CBUS



6/14

Figure 17. Acknowledge on the I<sup>2</sup>CBUS



Table 6. SDA, SCL I<sup>2</sup>CBUS Timing

| Symbol              | Parameter                                                                                   | Min.  | Тур. | Max. | Unit   |
|---------------------|---------------------------------------------------------------------------------------------|-------|------|------|--------|
| f <sub>SCL</sub>    | SCL clock frequency                                                                         | 0     |      | 400  | kHz    |
| t <sub>BUF</sub>    | Bus free time between a STOP and START condition                                            | 1.3   |      |      | μs     |
| t <sub>HD:STA</sub> | Hold time (repeated) START condition. After this period, the first clock pulse is generated | 0.6   |      |      | μs     |
| t <sub>LOW</sub>    | LOW period of the SCL clock                                                                 | 1.3   |      |      | μs     |
| tHIGH               | HIGH period of the SCL clock                                                                | 0.6   |      |      | μs     |
| t <sub>SU:STA</sub> | Set-up time for a repeated START condition                                                  | 0.6   |      |      | μs     |
| t <sub>HD:DA</sub>  | Data hold time                                                                              | 0.300 |      |      | μs     |
| t <sub>SU:DAT</sub> | Data set-up time                                                                            | 100   |      |      | ns     |
| t <sub>R</sub>      | Rise time of both SDA and SCL signals                                                       | 20    |      | 300  | ns (*) |
| t <sub>F</sub>      | Fall time of both SDA and SCL signals                                                       | 20    |      | 300  | ns (*) |
| t <sub>SU:STO</sub> | Set-up time for STOP condition                                                              | 0.6   |      |      | μs     |

All values referred to VIH min. and VIL max. levels (\*) Must be guaranteed by the  $\rm I^2C$  BUS master.

Figure 18. Definition of Timing on the I<sup>2</sup>C-bus



### 4 SOFTWARE SPECIFICATION

#### 4.1 Interface Protocol

The interface protocol comprises:

- A start condition (s)
- A chip address byte, containing the TDA7309 address (the 8th bit of the byte must be 0). The TDA7309 must always acknowledge at the end of each transmitted byte.
- A sequence of data (N-bytes + acknowledge)
- A stop condition (P)

### Figure 19.



ACK = Acknowledge

S = Start

P = Stop

MAX CLOCK SPEED 400kbits/s

Table 7. Chip address

| MSB |   |   |   |   |   |   | LSB |                             |
|-----|---|---|---|---|---|---|-----|-----------------------------|
| 0   | 0 | 1 | 1 | 0 | 0 | 1 | 0   | pin address open            |
| 0   | 0 | 1 | 1 | 0 | 0 | 0 | 0   | pin address close to ground |

**Table 8. Function Codes** 

|           | MSB | F6 | F5 | F4 | F3 | F2 | F1 | LSB |
|-----------|-----|----|----|----|----|----|----|-----|
| VOLUME    | 0   | Х  | Х  | Х  | Х  | Х  | Х  | Х   |
| MUTE/LOUD | 1   | 0  | 0  | Х  | Х  | Х  | Х  | Х   |
| INPUTS    | 1   | 0  | 1  | Х  | Х  | Х  | Х  | Х   |
| CHANNEL   | 1   | 1  | 0  | Х  | Х  | Х  | Х  | Х   |

**Table 9. Channel Abilitation Codec** 

| MSB | F6 | F5 | F4 | F3 | F2 | F1 | LSB | FUNCTION |
|-----|----|----|----|----|----|----|-----|----------|
| 1   | 1  | 0  |    |    |    |    |     | channel  |
|     |    |    | Х  | Х  | Х  | 0  | 0   | RIGHT    |
|     |    |    | Х  | Х  | Х  | 0  | 1   | LEFT     |
|     |    |    | Х  | Х  | Х  | 1  | 0   | ВОТН     |
|     |    |    | Х  | Х  | Х  | 1  | 1   | ВОТН     |

## 4.2 Power on reset condition

11111110

**Table 10. Volume Codes** 

| MSB | F6 | F5 | F4 | F3 | F2 | F1 | LSB | FUNCTION |
|-----|----|----|----|----|----|----|-----|----------|
| 0   |    |    |    |    |    |    |     | step 1dB |
|     |    |    |    |    | 0  | 0  | 0   | 0dB      |
|     |    |    |    |    | 0  | 0  | 1   | -1dB     |
|     |    |    |    |    | 0  | 1  | 0   | -2dB     |
|     |    |    |    |    | 0  | 1  | 1   | -3dB     |
|     |    |    |    |    | 1  | 0  | 0   | -4dB     |
|     |    |    |    |    | 1  | 0  | 1   | -5dB     |
|     |    |    |    |    | 1  | 1  | 0   | -6dB     |
|     |    |    |    |    | 1  | 1  | 1   | -7dB     |
| 0   |    |    |    |    |    |    |     | step 8dB |
|     | 0  | 0  | 0  | 0  |    |    |     | 0dB      |
|     | 0  | 0  | 0  | 1  |    |    |     | -8dB     |
|     | 0  | 0  | 1  | 0  |    |    |     | -16dB    |
|     | 0  | 0  | 1  | 1  |    |    |     | -24dB    |
|     | 0  | 1  | 0  | 0  |    |    |     | -32dB    |
|     | 0  | 1  | 0  | 1  |    |    |     | -40dB    |
|     | 0  | 1  | 1  | 0  |    |    |     | -48dB    |
|     | 0  | 1  | 1  | 1  |    |    |     | -56dB    |
|     | 1  | 0  | 0  | 0  |    |    |     | -64dB    |
|     | 1  | 0  | 0  | 1  |    |    |     | -72dB    |
|     | 1  | 0  | 1  | 0  |    |    |     | -80dB    |
|     | 1  | 0  | 1  | 1  |    |    |     | -88dB    |
|     | 1  | 1  | Х  | Х  |    |    |     | MUTE     |

**Table 11. Mute Loudness Codes** 

| MSB | F6 | F5 | F4 | F3 | F2 | F1 | LSB | FUNCTION          |
|-----|----|----|----|----|----|----|-----|-------------------|
| 1   | 0  | 0  |    |    |    |    |     | mute/loud         |
|     |    |    | Х  |    |    | 0  | 0   | slow soft mute on |
|     |    |    | Х  |    |    | 0  | 1   | fast soft mute on |
|     |    |    |    |    |    | 1  |     | soft mute off     |
|     |    |    |    |    | 1  |    |     | LOUD OFF          |
|     |    |    | Х  | 0  | 0  |    |     | loud on (10dB)    |
|     |    |    | Х  | 1  | 0  |    |     | loud on (20dB)    |

**Table 12. Input Multiplexer Codes** 

| MSB | F6 | F5 | F4 | F3 | F2 | F1 | LSB | FUNCTION |
|-----|----|----|----|----|----|----|-----|----------|
| 1   | 0  | 1  |    |    |    |    |     | inputs   |
|     |    |    | Х  | Х  | Х  | 0  | 0   | MUTE     |
|     |    |    | Х  | Х  | Х  | 0  | 1   | IN2      |
|     |    |    | Х  | Х  | Х  | 1  | 0   | IN3      |
|     |    |    | Х  | Х  | Х  | 1  | 1   | IN1      |

Purchase of I<sup>2</sup>C Components of STMicrolectronics, conveys a license under the Philips I<sup>2</sup>C Patent Rights to use these components in an I<sup>2</sup>C system, provided that the system conforms to the I<sup>2</sup>C Standard Specifications as defined by Philips.

Figure 20. DIP20 Mechanical Data & Package Dimensions

| DIM. | mm    |       |      | inch  |       |       |
|------|-------|-------|------|-------|-------|-------|
|      | MIN.  | TYP.  | MAX. | MIN.  | TYP.  | MAX.  |
| a1   | 0.254 |       |      | 0.010 |       |       |
| В    | 1.39  |       | 1.65 | 0.055 |       | 0.065 |
| b    |       | 0.45  |      |       | 0.018 |       |
| b1   |       | 0.25  |      |       | 0.010 |       |
| D    |       |       | 25.4 |       |       | 1.000 |
| Е    |       | 8.5   |      |       | 0.335 |       |
| е    |       | 2.54  |      |       | 0.100 |       |
| еЗ   |       | 22.86 |      |       | 0.900 |       |
| F    |       |       | 7.1  |       |       | 0.280 |
| 1    |       |       | 3.93 |       |       | 0.155 |
| L    |       | 3.3   |      |       | 0.130 |       |
| Z    |       |       | 1.34 |       |       | 0.053 |

# OUTLINE AND MECHANICAL DATA





Figure 21. SO20 Mechanical Data & Package Dimensions

| DIM.             | mm                   |      |       | inch  |       |       |
|------------------|----------------------|------|-------|-------|-------|-------|
|                  | MIN.                 | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |
| Α                | 2.35                 |      | 2.65  | 0.093 |       | 0.104 |
| A1               | 0.10                 |      | 0.30  | 0.004 |       | 0.012 |
| В                | 0.33                 |      | 0.51  | 0.013 |       | 0.200 |
| С                | 0.23                 |      | 0.32  | 0.009 |       | 0.013 |
| D <sup>(1)</sup> | 12.60                |      | 13.00 | 0.496 |       | 0.512 |
| Е                | 7.40                 |      | 7.60  | 0.291 |       | 0.299 |
| е                |                      | 1.27 |       |       | 0.050 |       |
| Н                | 10.0                 |      | 10.65 | 0.394 |       | 0.419 |
| h                | 0.25                 |      | 0.75  | 0.010 |       | 0.030 |
| L                | 0.40                 |      | 1.27  | 0.016 |       | 0.050 |
| k                | 0° (min.), 8° (max.) |      |       |       |       |       |
| ddd              |                      |      | 0.10  |       |       | 0.004 |

<sup>(1) &</sup>quot;D" dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15mm per side.

# OUTLINE AND MECHANICAL DATA





# **Table 13. Revision History**

| Date         | Revision | Description of Changes                                         |
|--------------|----------|----------------------------------------------------------------|
| January 2004 | 5        | First Issue in EDOCS DMS                                       |
| March 2006   | 6        | Modified on the page 8/14 the "MAX CLOCK SPEED" to 400kbits/s. |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WITHING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

47/