פתרון ממ"ן 11

שאלה 1

לכל אחת מהטענות הבאות קבעו אם היא נכונה או לא.

בשאלה זו בלבד אין צורך לנמק, די לרשום בכל סעיף נכון / לא נכון.

- $\emptyset \subseteq \{\emptyset\} \setminus \{\emptyset\}$. $\forall \{\{1\},\{2\}\} \in \{\{\{1\},\{2\}\}\}\}$. $\lambda \{2\} \subseteq \{\{1\},2\}$. $\exists \{1,2\} \subseteq \{\{1\},\{2\}\}\}$.
- $\{1,2\} \cap \mathcal{P}(\{1,2\}) \neq \emptyset$.n $|\{1,\mathbf{N}\}| = |\{\mathbf{N}\}|$.t $\{2\} \in \{\mathbf{N}\}$.1 $\emptyset \in \{\emptyset\} \setminus \{\{\emptyset\}\}\}$.n

תשובה

- $1 \notin \{\{1\}, \{2\}\}$ אבל $1 \in \{1, 2\}$ א. לא נכון כי למשל
- $.2 \in \{\{1\}, 2\}$ ו- $\{2\}$ הוא 2 ו- $\{2\}$ ב. נכון, כי האיבר היחיד של
- $\{\{1\},\{2\}\}$ יש רק איבר אחד והוא והוא $\{\{\{1\},\{2\}\}\}$ ג. נכון מפני לקבוצה
 - ד. נכון כי חלקית לכל קבוצה.
 - $\varnothing \notin \{\{\varnothing\}\}$ אבל אבל פני ש- $\varnothing \in \{\varnothing\}$ ה.
 - ו. איבר אחד והוא $\{N\}$ יש רק איבר אחד והוא $\{N\}$
- ז. לא נכון. לקבוצה $\{ {f N} \}$ יש רק איבר אחד לכן $\{ {f N} \} = 1 \}$. מצד שני $\{ {f N} \} = 2 \}$ כי בקבוצה הנתונה יש שני איברים וו- $\{ {f N} \} = 2 \}$
- $\{1,2\} \cap \mathcal{P}(\{1,2\}) = \emptyset$ ולכן $\{2,2\} \cap \mathcal{P}(\{1,2\}) = \{\emptyset,\{1\},\{2\},\{1,2\}\}$ ח. לא נכון כי

שאלה 2

: הבאות הטענות הריחו את קבוצות. קבוצות A,B,C

- $.(A \cup B) \setminus (C \setminus B) = B \cup (A \setminus C)$.
- $\mathcal{P}(A \setminus B) \subseteq (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\emptyset\}$.1
- $|\mathcal{P}(A)| = |\mathcal{P}(A \cap B)| \cdot |\mathcal{P}(A \setminus B)|$ ג. אם A, B קבוצות סופיות אז

תשובה

א. נוכיח את השוויון על ידי שתי הכלות.

נניח קודם ש- $(x\in B)\setminus (C\setminus B)\setminus (C\setminus B)$ וגם $x\in A\cup B$ וא $x\in A\cup B$ או $x\in A\cup B$ וגם (ניח קודם ש- $x\in A\cup B$). במצב זה נבחין בין שני מקרים :

- $x \in B \cup (A \setminus C)$ -ש ואז ברור ש $x \in B$.1
- $x \in B \cup (A \setminus C)$ ולכן $x \in A \setminus C$ וגם $x \notin C$ וגם $x \in A$ ואז בהכרח $x \notin B$.2

ולכן $x \in B \cup (A \setminus C)$ מתקיים $x \in (A \cup B) \setminus (C \setminus B)$ ולכן

 $.(A \cup B) \setminus (C \setminus B) \subseteq B \cup (A \setminus C)$

. ($x \notin C$ או $x \in A$) או $x \in B$ כלומר $x \in A \setminus C$ או $x \in B \cup (A \setminus C)$ להפך, נניח ש

 $x \in (A \cup B) \setminus (C \setminus B)$ לכן $x \notin C \setminus B$ וגם $x \in A \cup B$ אז $x \in B$ במקרה הראשון, אם

לכן $x \notin C$ (כי $x \notin C \setminus B$ ו- $x \notin C \setminus B$ ובמקרה השני, אם $x \notin C$ וגם $x \notin C$ אז $x \notin C$ אז או

לכן $x \in (A \cup B) \setminus (C \setminus B)$ מתקיים $x \in B \cup (A \setminus C)$ לכן . $x \in (A \cup B) \setminus (C \setminus B)$

ובין שוויון מבטיח שהוכנו הראשונה וביחד עם וביחד אם וביחד וביחד א $B\cup (A\setminus C)\!\subseteq\! (A\cup B)\setminus (C\setminus B)$ שתי הקבוצות.

פתרון אחר. אפשר להניח ששלוש הקבוצות חלקיות לקבוצה אוניברסלית מתאימה (למשל לאיחוד שלהן) ולכן ניתן להיעזר במשלימים ובזהיות אחרות המוכרות מהספר:

$$(A \cup B) \setminus (C \setminus B) = (A \cup B) \cap (C \setminus B)^{c} = (A \cup B) \cap (C \cap B^{c})^{c} =$$

$$= (A \cup B) \cap (C^{c} \cup B^{cc}) = (A \cup B) \cap (C^{c} \cup B) =$$

$$= (A \cap C^{c}) \cup B = B \cup (A \setminus C)$$

 $X\subseteq A$ ומכאן ש- $X\in A$ מתקיים $X\in X$ מתקיים $X\in X$ אז לכל $X\subseteq A\setminus B$ ב. $X\in \mathcal{P}(A\setminus B)$ אם $X\in X\in \mathcal{P}(A\setminus B)\cup \{\emptyset\}$

ג. כידוע $A \setminus B$ כאשר $A \cap B$ ר- באשר $A \cap B$ קבוצות סופיות זרות. לכן: $A \cap B = (A \cap B) \cup (A \setminus B)$ - מכאן ש-

$$|\mathcal{P}(A)| = 2^{|A|} = 2^{|A \cap B| + |A \setminus B|} = 2^{|A \cap B|} \cdot 2^{|A \setminus B|} = |\mathcal{P}(A \cap B)| \cdot |\mathcal{P}(A \setminus B)|$$

שאלה 3

 \cdot יהיו את הטענות הבאות הוכיחו U. הוכיחו את לקבוצה אוניברסלית קבוצות חלקיות הבאות יהיו

- $|A\Delta B| \ge 2$ אז $B \cup A^c \ne U$ ו $A \cup B^c \ne U$ אם.
 - $A \cap C \subset B \subset A \cup C$ אם $A \triangle B \subset A \triangle C$ אם .ב.
 - $A\Delta B = \{1,3\}$ אז $A\Delta \{1,2\} = B\Delta \{2,3\}$ ג.

תשובה

ואז לפי $(A\cup B^c)^{cc}=\varnothing^c$ אז $(A\cup B^c)^c=\varnothing$ ושכן אם $(A\cup B^c)^c=\varnothing$ אז $A\cup B^c\neq U$ אז $A\cup B^c\neq U$ אז אם $A\cup B^c=U$ שכן נקבל ש- $A\cup B^c=U$ בסתירה לנתון).

מאחר ש- $A\neq\varnothing$ ולכן קיים $(A\cup B^c)^c=A^c\cap(B^c)^c=A^c\cap B=B\setminus A$ ולכן קיים איבר $(A\cup B^c)^c=A^c\cap(B^c)^c=A^c\cap B=B\setminus A$ ולכן קיים איבר $(A\cup B^c)^c=A^c\cap(B^c)^c=A^c\cap B=B\setminus A$

באופן דומה (על ידי החלפת תפקידים בין A ל- B) מהנתון $B \cup A^c \neq U$ נקבל שקיים איבר באופן דומה (על ידי החלפת תפקידים בין $A \setminus B$ מאחר ש- $A \setminus B$ ו- $A \setminus B$ הן זרות, $x \in B \setminus A = A \setminus B$ מוכל לסכם ש- $A \setminus B = |A \setminus B| = |A$

 $A \cap C \subseteq B$ ב. נוכיח קודם ש-

נניח ש- $x\in A\Delta B$ - נניח ש- $x\in B$ נקבל ש- $x\in A$ וגם $x\in A$ וגם $x\in A$ נקבל ש- $x\in A\cap C$ נניח ש- $x\in A$ וזה סותר את ההנחה ש- $x\in A\cap C$ אז מהנתון נקבל ש- $x\in A\Delta C$ וזה סותר את ההנחה ש- $x\in A\cap C$ מתקיים $x\in A\cap C\subseteq B$ מתקיים $x\in A\cap C$ מתקיים $x\in A\cap C$

 $B \subseteq A \cup C$ -נראה כעת ש

 $x\in A\Delta B$ נניח ש- $x\in B\setminus A$ אז $x\notin A$ אם $x\in A\cup C$ אז ברור ש- $x\in A$ אם $x\in B$ אז אז $x\in A$ לכן $x\in A\cup C$ ולכן $x\in A\cup C$ ולכן $x\in A\Delta C$ ולכן בהכרח $x\in A\cup C$ ואז מהנתון נקבל ש- $x\in A\cup C$ מתקיים $x\in A\cup C$ כלומר $x\in A\cup C$

. $X=Z\Delta Y$ -נובע שלכל שלוש קבוצות X,Y,Z, מהשוויון $X\Delta Y=Z$ נובע ש-X,Y,Z נובע שלכל שלוש קבוסס על התכונות המוצגות בספר בשאלות 31 ו- 32):

$$X\Delta(Y\Delta Y)=Z\Delta Y$$
 לכן $X\Delta Y=Z\Delta Y$ אז $X\Delta Y=Z$

$$X=Z\Delta Y$$
 -מאחר ש- $X\Delta \varnothing=X$ ו- $X\Delta \varnothing=X$ נקבל ש-

 $A=B\Delta(\{2,3\}\Delta\{1,2\})$ לכן $A=(B\Delta\{2,3\})\Delta\{1,2\}$ אז $A\Delta\{1,2\}=B\Delta\{2,3\}$ לפיכך אם $A=(B\Delta\{2,3\})\Delta\{1,2\}$

אבל $\{1,3\}\Delta B=A$ וכפי שהראנו קודם, $A=B\Delta\{1,3\}$ לכן $\{2,3\}\Delta\{1,2\}=\{1,3\}$ מכאן ש- $\{1,3\}\Delta B=A$ מתוך השוויון הזה נובע ש- $\{1,3\}=A\Delta B$

שאלה 4

. בשאלה זו, קבוצת המספרים הטבעיים ${f N}$ היא המספרים המספרים בשאלה זו,

.
$$A_k = \left\{2^0, 2^k, 2^{2k}, 2^{3k}, \ldots \right\} = \left\{2^{nk} \mid n \in \mathbb{N} \right\}$$
 נסמן $k \in \mathbb{N}$ לכל

$$\{\,rac{x}{8}\mid x\in (A_1\setminus A_2)\cap A_3\}$$
 . $\bigcap_{k=1}^\infty A_k$. λ $\bigcap_{k=2}^5 A_k$. \square $\bigcup_{k=0}^\infty A_k$. λ

תשובה

$$A_1 \subseteq igcup_{k=0}^\infty A_k$$
 - פהגדרת האיחוד ברור ש $A_k = A_1 = 0$. מהגדרת האיחוד ברור ש

 $n{\in}\mathbf{N}$ כך שקיים A_k ומהגדרת א $x{\in}A_k$ -ע כך שקיים אז קיים הגדרת גג $x{\in}\bigcup_{k=0}^{\infty}A_k$ -ערות להפך, נניח א

כך ש- מאחר ש- nk מספר טבעי ו- A_1 היא קבוצת כל החזקות עם מעריך טבעי . $x=2^{nk}$

.
$$\bigcup_{k=0}^\infty A_k \subseteq A_1$$
 לפיכך . $x \in A_1$ מתקיים $x \in \bigcup_{k=0}^\infty A_k$ מכאן שלכל . $x \in A_1$ של 2 נובע ש

.
$$\bigcup_{k=0}^{\infty}A_{k}=A_{\mathrm{l}}$$
 -שמעי מקבלים שהוכחנו שהוכחנו מקבלים

.(2,3,4,5 בכל המספרים בכל המספר הקטן ביותר המתחלק בכל המספרים .(2,3,4,5 בניתר
$$\sum_{k=2}^5 A_k = A_{60}$$
 בנית $x=2^{60k}$ כך ש- $x=2^{60k}$ כך ש- $x\in \mathbf{N}$ בנית $x\in A_{60}$

 $x=2^{2(30k)}=2^{3(20k)}=2^{4(15k)}=2^{5(12k)}$ - שלכן נוכל לרשום ש $x=2^{5}$ - מכאן ש $x=2^{5}$ מתחלק בכל אחד מהמספרים 2,3,4,5 אבל אז בהכרח $x=2^{5}$

. $\bigcap_{k=2}^{5} A_k = A_{60}$ -שמעי מקבלים שהוכחנו שהוכחנו משתי ההכלות

$$\bigcap_{k=1}^{\infty}A_k=A_0$$
 ג. נוכיח ש-

. $A_0\subseteq\bigcap_{k=1}^\infty A_k$ ולכן $1\in\bigcap_{k=1}^\infty A_k$ לכן $k\in\mathbf{N}$ לכן עבור כל $1\in A_k$ ו- $A_0=\{1\}$

 $x=2^m$ -כך ש- $m\in {f N}$ כלומר קיים $k\in {f N}$ כלו $x\in A_k$ אז אז $x\in \bigcap_{k=1}^\infty A_k$ כך שני, אם $k\in {f N}$ אז אז $x\in A_k$ אז אז $x\in \bigcap_{k=1}^\infty A_k$ כאשר m מתחלק בכל מספר טבעי. המספר הטבעי היחיד שהוא כפולה של כל טבעי הוא $x\in A_k$ משתי $x\in A_k$ לכן $x\in A_k$ ולכן $x\in A_k$ משתי $x\in A_k$ משתי $x\in A_k$

. $\bigcap_{k=1}^{\infty} A_k = A_0$ -ההכלות שהוכחנו נובע

 $y=rac{x}{8}$ כך ש- $x\in (A_1\setminus A_2)\cap A_3$ כניח ש- $x\in (A_1\setminus A_2)\cap A_3$ כדים $x\in (A_1\setminus A_2)\cap A_3$ כניח ש- $x\in (A_1\setminus A_2)\cap A_3$ כאשר $x\in (A_1\setminus A_2)\cap A_3$ נשים לב שאם עב $x\in (A_1\setminus A_2)\cap A_3$ כאשר $x\in (A_1\setminus A_2)\cap A_3$ אז $y=rac{x}{8}=2^{6k}$ עבור איזשהו מספר טבעי $x\in (A_1\setminus A_2)\cap A_3$ ולכן $x=(A_1\setminus A_2)\cap A_3$ עבור איזשהו מספר טבעי $x\in (A_1\setminus A_2)\cap A_3$

 $\{rac{x}{8}\mid x\in (A_1\setminus A_2)\cap A_3\}\subseteq A_6$ - הוכחנו אם כן הוכחנו אם כן הוכמאן איז . $y\in A_6$ - הוכחנו אם כן איז איז איז $y=8\cdot 2^{6k}=2^{3(2k+1)}$. לכן $k\in \mathbf{N}$. לכן עבור איזשהו $y=2^{6k}$ אז $y\in A_6$ מעריך אי-זוגי שמתחלק ב- 3). מכאן שx=4 מעריך אי-זוגי שמתחלק ב- 3). מכאן שx=4 מעריך אי-זוגי שמתחלק ב- 3). מכאן שx=4

. $y \in \{\frac{x}{8} \mid x \in (A_1 \setminus A_2) \cap A_3\}$ במילים אחרות במילים . $x \in (A_1 \setminus A_2) \cap A_3\}$

 $A_6\subseteq\{\,rac{x}{8}\mid x\in(A_1\setminus A_2)\cap A_3\}$ -ובכן מצאנו ש

. $\{\frac{x}{8} \mid x \in (A_1 \setminus A_2) \cap A_3\} = A_6$ משתי ההכלות שהוכחנו נובע ש