0.1 2001 数学専門

 $\boxed{1}$ $A \in GL_2(\mathbb{F}_2)$ について $\det A \in \mathbb{F}^{\times} = 1$ であるから $GL_2(\mathbb{F}_2) = SL_2(\mathbb{F}_2)$ である.

 $GL_2(\mathbb{F}_2) = \operatorname{Aut}(\mathbb{F}_2^2)$ である. $\varphi \in \operatorname{Hom}(\mathbb{F}_2^2)$ は基底 (1,0),(0,1) で定まる. \mathbb{F}_2^2 の元 v で生成される部分空間 $\operatorname{Span}(v) = \{0,v\}$ であるから、非零なベクトルは各対ごとに 1 次独立. よって $(0,0) \neq \varphi(0,1) \neq \varphi(1,0) \neq (0,0)$ なら $\varphi \in \operatorname{Aut}(\mathbb{F}_2^2)$ である. したがって φ は $\mathbb{F}_2^2 \setminus \{0,0\}$ の置換である. 集合 X の置換群を $\mathfrak{S}(X)$ で表すと、 $f \colon \operatorname{Aut}(\mathbb{F}_2^2) \to \mathfrak{S}(\mathbb{F}_2^2 \setminus \{0,0\})$ が定まり、これが全単射準同型であることは明らか. したがって $SL_2(\mathbb{F}_2) \cong \mathfrak{S}_3$ である.

- 2 A は x(x-1) を 0 でないべき零元としてもつ.
- (a) 中国剰余定理から $\mathbb{R}[x]/(x(x-1))\cong \mathbb{R}[x]/(x)\times \mathbb{R}[x]/(x-1)\cong \mathbb{R}^2$ より零でないべき零元をもたない. よって同型でない.

 $(b)x^2(-x^2+2)+(x-1)^2(x+1)^2=1$ であるから $(x^2)+((x-1)^2)=\mathbb{R}[x]$ である。 $\varphi\colon\mathbb{R}[x]/(x^2(x-1)^2)\to\mathbb{R}[x]/(x^2)\times\mathbb{R}[x]/((x-1)^2)$; $f+(x^2(x-1)^2)\mapsto (f+(x^2),f+(x-1)^2)$ と定める。 φ が well-defined であるのは明らか。 $\varphi(f+(x^2(x-1)^2))=0$ とすると, $f\in(x^2),f\in(x-1)^2$ である。 $f=f\cdot(x^2(-x^2+2)+(x-1)^2(x+1)^2)=(-x^2+2)f\cdot x^2+(x+1)^2f\cdot (x-1)^2\in (x^2(x-1)^2)$ である。よって φ は単射。 $g+(x^2),h+(x-1)^2$ に対して $f=g\cdot(x-1)^2(x+1)^2+h\cdot(-x^2+2)x^2$ とすれば $f+(x^2)=g+(h-g)\cdot(-x^2+2)x^2+(x^2)=g+(x^2),f+((x-1)^2)=h+(g-h)\cdot(x-1)^2(x+1)^2=h+(x-1)^2$ である。よって φ は全射。よって φ は

 $(c)\mathbb{R}[x]/(x(x-1))\times\mathbb{R}[x]/(x(x-1))\cong\mathbb{R}^4$ より零でないべき零元をもたない. よって同型でない.

4 (1) $\{1,\zeta,\cdots,\zeta^5\}$ が基底となる.一次独立であることは $\sum\limits_{i=0}^5 c_i\zeta_i=0$ であるについて $c_i\neq 0$ なら ζ の最小多項式が 4 次以下であるとわかる. ζ は 1 の原始 7 乗根であるから $x^7-1=(x-1)(x^6+x^5+\cdots+1)$ より $p(x)=x^6+x^5+\cdots+1$ が ζ を根にもつ. $p(x+1)=\frac{(x+1)^7-1}{x}$ であり 7 は素数であるから $(x+1)^7$ の x^2 から x^6 までの係数は全て 7 の倍数である.よって p(x+1) も最高次の係数は 1 でそれ以外は 7 の倍数であるから アイゼンシュタインの既約判定法から $\mathbb{Z}[x]$ 上既約である.p(x) はモニックであるから $\mathbb{Q}[x]$ 上既約であるため,p(x) も $\mathbb{Q}[x]$ 上既約.よって p(x) が ζ の最小多項式である. $\deg p=6$ 矛盾.よって一次独立.

 $\mathbb{Q}(\zeta)$ は $\mathbb{Q}[\zeta]$ の商体であるが, $\mathbb{Q}[\zeta]\cong\mathbb{Q}[x]/(p(x))$ で p(x) は既約であり, $\mathbb{Q}[x]$ は PID であるから (p(x)) は極大イデアル.よって $\mathbb{Q}[\zeta]$ は体であるから $\mathbb{Q}[\zeta]=\mathbb{Q}(\zeta)$ である. $\mathbb{Q}[\zeta]$ の任意の元が $\{1,\zeta,\cdots,\zeta^5\}$ で生成されることは明らか.よって基底.

(2)p(x) の根は ζ^i $(i=1,\cdots,6)$ である. よって p(x) は $\mathbb{Q}(\zeta)$ で分解するから Galois 拡大.

 $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ を $\sigma(\zeta) = \zeta^3$ とすれば $\sigma^i(\zeta) = \zeta^{3^i}$ であり、 $3^i \equiv 1 \mod (7)$ なる最小の i は 6 であるから σ の位数は 6 である. $|\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})| = [\mathbb{Q}(\zeta):\mathbb{Q}] = 6$ より $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong \mathbb{Z}/6\mathbb{Z}$ である.

 $(3)\mathbb{Z}/6\mathbb{Z}$ の真部分群は $3\mathbb{Z}/6\mathbb{Z}, 2\mathbb{Z}/6\mathbb{Z}$ である. 対応する中間体は σ^3 で固定される体と σ^2 で固定される体である. $\sigma^3(\zeta+\zeta^6)=\zeta+\zeta^6=2\cos\frac{2\pi}{7}$ であるから, $\mathbb{Q}(\cos\frac{2\pi}{7})$ である.

 $\sigma^2(\zeta+\zeta^2+\zeta^4)=\zeta^2+\zeta^4+\zeta$ であるから $\mathbb{Q}(\zeta+\zeta^2+\zeta^4)$ である.

よって求める中間体は \mathbb{Q} , $\mathbb{Q}(\zeta + \zeta^2 + \zeta^4)$, $\mathbb{Q}(\zeta + \zeta^6)$, $\mathbb{Q}(\zeta)$ である.