4 Classes of sets

We say that property ... is **closed under** certain property if ...

Definition 4.1. A subset \mathcal{C} of 2^E is called a π -system if it is closed under intersection.

Definition 4.2. A subset \mathcal{C} of 2^E is called a **semi-ring** if it is a π -system such that $A \setminus B$ could be expressed as a finite union of disjoint elements of \mathcal{C} for every A and B in \mathcal{C} .

Definition 4.3. A subset \mathcal{C} of 2^E is called a **semi-algebra** over E if it is a π -system such that E is in \mathcal{C} and $E \setminus A$ could be expressed as a finite union of disjoint elements of \mathcal{C} for every A in \mathcal{C} .

Semi-algebras could be characterized as those semi-rings that have the universe set. Notice that we talk about a semi-algebra over some universal set, in contrast with π -systems and semi-rings. Every semi-algebra contains the empty set and the **trivial** semi-algebra over E: $\{\emptyset, E\}$ is the smallest semi-algebra over E.

Definition 4.4. A subset \mathcal{C} of 2^E is called an **algebra** over E if it is a π -system such that E is in \mathcal{C} and $E \setminus A$ is in \mathcal{C} for every A in \mathcal{C} .

Every algebra contains the empty set. For one thing, the **trivial algebra** over E: $\{\emptyset, E\}$ is the least element between the algebras over E. For the other, the **discrete algebra** over E: 2^E is the greatest element between the algebras over E. Algebras over E could be characterized as those subsets of 2^E that contains E and are closed under complements and unions. Moreover, every algebra is closed under all the set operations over the universal set.

Property 4.5. Let \mathcal{C} be a semi-algebra over E. Let \mathcal{C}_1 be the subset of 2^E whose elements are the finite union of elements of \mathcal{E} . Let \mathcal{C}_2 be the subset of 2^E whose elements are the finite and disjoint unions of elements of \mathcal{C} . Then \mathcal{C}_1 is the least element between the the algebras over E that contains \mathcal{C} and $\mathcal{C}_1 = \mathcal{C}_2$.

Definition 4.6. A subset C of 2^E is called a λ -system over E if E is in C and is closed under proper differences and unions of nondecreasing sequences.

 λ -systems over E are closed under disjoint unions. λ -systems over E could be characterized as those subsets of 2^E that contains E and are closed under proper differences and unions of disjoint sequences.

Definition 4.7. A subset \mathcal{C} of 2^E is called a σ -algebra over E if E is in \mathcal{C} and is closed under complements and unions of sequences.

 σ -algebras could be characterized as those λ -systems that are π -systems. Moreover, σ -algebras over E could be characterized as those subsets of 2^E that contains E and are closed under complements and intersections of sequences or those π -systems that contain E and are closed under complements and unions of increasing sequences.

Since, the intersection of an arbitrary family of λ -systems and σ -systems over E is still a λ -system and σ -system over E, respectively, giving a subset \mathcal{C} of 2^E we can talk about the smallest λ -system and the smallest σ -system over E that contains \mathcal{C} .

Definition 4.8. Let \mathcal{C} be a subset of 2^E . The smallest λ -system (σ -system) over E that contains \mathcal{C} is called the λ -system generated (σ -algebra generated) by \mathcal{C} and are denoted by $\sigma \mathcal{C}$ and $\lambda \mathcal{C}$, respectively.

The following theorem links... The proof of this follows from the two lemmas bellow.

Theorem 4.9 (Dynkin's lemma). Let $\mathcal{C} \subset 2^E$ be a π -system and \mathcal{E} be a λ -system over E that contains \mathcal{C} . Then $\sigma \mathcal{C}$ is contained in \mathcal{E} .

Lemma 4.10. If $\mathcal{C} \subset 2^E$ is a π -system, then $\lambda \mathcal{C}$ is still a π -system.

Proof. Fisrt, let B be in C. Then $C_1 := \{A \in \lambda C ; A \cap B \in \lambda C\}$ is a λ -system that contains C. Second, let B be in λC . Then $C_2 := \{A \in \lambda C ; A \cap B \in \lambda C\}$ is a λ -system that contains C.

Lemma 4.11. If $\mathcal{C} \subset 2^E$ is a π -system, then $\lambda \mathcal{C} = \sigma \mathcal{C}$.