Applications of o-minimality to some problems in Diophantine Geometry

Kobi Peterzil

Department of Mathematics University of Haifa

Summer school in tame geometry
U. Konstanz July 2016

Some Bibliography

- **J. Pila and U. Zannier**, *Rational points in periodic analytic sets and the Manin-Mumford conjecture*, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), no. 2, 149-162.
- **J. Pila,** O-minimality and the André–Oort conjecture for \mathbb{C}^n . Ann. of Math. (2), 172(3), 2011, 1779–1840.

Survey papers

- **T. Scanlon**, A proof of the André-Oort conjecture via mathematical logic [after Pila, Wilkie and Zannier], Sèminaire BOURBAKI Avril 2011 63ème année, 2010–2011, no 1037.
- **T. Scanlon**, Counting special points: Logic, diophantine geometry, and transcendence theory, Bull. AMS (N.S.) 49 (2012), no. 1, 51 71.

Setting

Let C = the family of all cosets of \mathbb{C} -linear subspaces of \mathbb{C}^n .

Let $S \subseteq \mathcal{C}$ all cosets H + b, such that H has a basis in \mathbb{Q}^n and $b \in \mathbb{Q}^n$. Call these "special varieties".

Let $S_0 =$ all 0-dimensional $X \in S$ (note: $S_0 = \mathbb{Q}^n$). Call these "special points".

Problem

If $X \in \mathcal{C}$ and the special points are (Zariski) dense in X (i.e. $X \cap \mathbb{S}_0$ dense in X) then X is special (i.e. $X \in \mathbb{S}$).

Solution

An exercise. Also, find a "quantitative" assumption* on $X \cap \mathbb{Q}^n$ which ensures that X is special (e.g. # of points of height ... is ...).

Setting

Let C =the family of all cosets of C-linear subspaces of C^n .

Let $S \subseteq \mathcal{C}$ all cosets H + b, such that H has a basis in \mathbb{Q}^n and $b \in \mathbb{Q}^n$. Call these "special varieties".

Let $S_0 =$ all 0-dimensional $X \in S$ (note: $S_0 = \mathbb{Q}^n$). Call these "special points".

Problem

If $X \in \mathcal{C}$ and the special points are (Zariski) dense in X (i.e. $X \cap S_0$ dense in X) then X is special (i.e. $X \in S$).

Solution

An exercise. Also, find a "quantitative" assumption* on $X \cap \mathbb{Q}^n$ which ensures that X is special (e.g. # of points of height ... is ...).

Setting

Let C =the family of all cosets of C-linear subspaces of C^n .

Let $S \subseteq \mathcal{C}$ all cosets H + b, such that H has a basis in \mathbb{Q}^n and $b \in \mathbb{Q}^n$. Call these "special varieties".

Let $S_0 =$ all 0-dimensional $X \in S$ (note: $S_0 = \mathbb{Q}^n$). Call these "special points".

Problem

If $X \in \mathcal{C}$ and the special points are (Zariski) dense in X (i.e. $X \cap S_0$ dense in X) then X is special (i.e. $X \in S$).

Solution

An exercise. Also, find a "quantitative" assumption* on $X \cap \mathbb{Q}^n$ which ensures that X is special (e.g. # of points of height ... is ...).

Setting

Let C =the family of all cosets of C-linear subspaces of C^n .

Let $S \subseteq \mathcal{C}$ all cosets H + b, such that H has a basis in \mathbb{Q}^n and $b \in \mathbb{Q}^n$. Call these "special varieties".

Let $S_0 = \text{all } 0$ -dimensional $X \in S$ (note: $S_0 = \mathbb{Q}^n$). Call these "special points".

Problem

If $X \in \mathcal{C}$ and the special points are (Zariski) dense in X (i.e. $X \cap S_0$ dense in X) then X is special (i.e. $X \in S$).

Solution

An exercise. Also, find a "quantitative" assumption* on $X \cap \mathbb{Q}^n$ which ensures that X is special (e.g. # of points of height ... is ...).

Setting

Let C =the family of all cosets of C-linear subspaces of C^n .

Let $S \subseteq \mathcal{C}$ all cosets H + b, such that H has a basis in \mathbb{Q}^n and $b \in \mathbb{Q}^n$. Call these "special varieties".

Let $S_0 = \text{all } 0$ -dimensional $X \in S$ (note: $S_0 = \mathbb{Q}^n$). Call these "special points".

Problem

If $X \in \mathcal{C}$ and the special points are (Zariski) dense in X (i.e. $X \cap S_0$ dense in X) then X is special (i.e. $X \in S$).

Solution

An exercise. Also, find a "quantitative" assumption* on $X \cap \mathbb{Q}^n$ which ensures that X is special (e.g. # of points of height ... is ...).

Setting

Let C =the family of all cosets of C-linear subspaces of C^n .

Let $S \subseteq \mathcal{C}$ all cosets H + b, such that H has a basis in \mathbb{Q}^n and $b \in \mathbb{Q}^n$. Call these "special varieties".

Let $S_0 = \text{all } 0$ -dimensional $X \in S$ (note: $S_0 = \mathbb{Q}^n$). Call these "special points".

Problem

If $X \in \mathcal{C}$ and the special points are (Zariski) dense in X (i.e. $X \cap S_0$ dense in X) then X is special (i.e. $X \in S$).

Solution

An exercise. Also, find a "quantitative" assumption* on $X \cap \mathbb{Q}^n$ which ensures that X is special (e.g. # of points of height ... is ...).

Setting

Let C =the family of all cosets of C-linear subspaces of C^n .

Let $S \subseteq \mathcal{C}$ all cosets H + b, such that H has a basis in \mathbb{Q}^n and $b \in \mathbb{Q}^n$. Call these "special varieties".

Let $S_0 = \text{all } 0$ -dimensional $X \in S$ (note: $S_0 = \mathbb{Q}^n$). Call these "special points".

Problem

If $X \in \mathcal{C}$ and the special points are (Zariski) dense in X (i.e. $X \cap S_0$ dense in X) then X is special (i.e. $X \in S$).

Solution

An exercise. Also, find a "quantitative" assumption* on $X \cap \mathbb{Q}^n$ which ensures that X is special (e.g. # of points of height ... is ...).

Setting

- C =an underlying family of sets
- $S \subseteq C$ a marked collection of so-called "special" C-sets
- $S_0 =$ a set of so-called "special" points, often these are the S-sets of dimension zero.

The problem scheme

Start with an ambient S-set V and consider an arbitrary C-set $X \subseteq V$. Assume that X has "many" special points ($X \cap S_0$ is Zariski dense in V).

Show that X contains a special set of positive dimension. Under additional assumptions, show that X itself is a special set.

_

Setting

C =an underlying family of sets

 $S \subseteq C$ a marked collection of so-called "special" C-sets

 S_0 = a set of so-called "special" points, often these are the S-sets of dimension zero.

The problem scheme

Start with an ambient S-set V and consider an arbitrary C-set $X \subseteq V$. Assume that X has "many" special points ($X \cap S_0$ is Zariski dense in V).

Show that X contains a special set of positive dimension. Under additional assumptions, show that X itself is a special set.

Setting

C =an underlying family of sets

 $S \subseteq C$ a marked collection of so-called "special" C-sets

 S_0 = a set of so-called "special" points, often these are the S-sets of dimension zero.

The problem scheme

Start with an ambient S-set V and consider an arbitrary C-set $X \subseteq V$. Assume that X has "many" special points ($X \cap S_0$ is Zariski dense in V).

Show that X contains a special set of positive dimension. Under additional assumptions, show that X itself is a special set.

Setting

C =an underlying family of sets

 $S \subseteq C$ a marked collection of so-called "special" C-sets

 S_0 = a set of so-called "special" points, often these are the S-sets of dimension zero.

The problem scheme

Start with an ambient S-set V and consider an arbitrary C-set $X \subseteq V$. Assume that X has "many" special points ($X \cap S_0$ is Zariski dense in V).

Show that X contains a special set of positive dimension. Under additional assumptions, show that X itself is a special set.

Setting

- C =an underlying family of sets
- $S \subseteq C$ a marked collection of so-called "special" C-sets
- S_0 = a set of so-called "special" points, often these are the S-sets of dimension zero.

The problem scheme

Start with an ambient S-set V and consider an arbitrary C-set $X \subseteq V$. Assume that X has "many" special points ($X \cap S_0$ is Zariski dense in V).

Show that X contains a special set of positive dimension. Under

Setting

C =an underlying family of sets

 $S \subseteq C$ a marked collection of so-called "special" C-sets

 S_0 = a set of so-called "special" points, often these are the S-sets of dimension zero.

The problem scheme

Start with an ambient S-set V and consider an arbitrary C-set $X \subseteq V$. Assume that X has "many" special points ($X \cap S_0$ is Zariski dense in V).

Show that X contains a special set of positive dimension. Under additional assumptions, show that X itself is a special set.

- Fix $\mathcal{M} = \langle \mathbb{R}, <, +, \cdot, \rangle$ an o-minimal expansion of the real field.
- C =the family of all definable sets in \mathcal{M} .
- $\mathbb{S}=$ The family of connected semi-algebraic sets (defined over \mathbb{Q}).
- $S_0 = \text{points in } (\mathbb{Q}^{alg})^n \cap \mathbb{R}^n.$

The Pila-Wilkie theorem(s)

Assume that $X \subseteq \mathbb{R}^n$ is definable in \mathcal{M} . If $X \cap (\mathbb{Q}^{alg})^n$ is $large^*$ then X contains a connected infinite semi-algebraic set defined over \mathbb{Q} . More precisely, if one removes **all** infinite connected semi-algebraic subsets of X then a $small^*$ number of \mathbb{Q}^{alg} -points remains.

$$\mathit{limsup}_{T} rac{|\{ar{q} \in X \cap (\mathbb{Q}^{\mathit{alg}}_k)^n : \mathit{height}_k(ar{q}) \leqslant T\}|}{T^{\epsilon}} = \infty.$$

Fix $\mathcal{M} = \langle \mathbb{R}, <, +, \cdot, \dots \rangle$ an o-minimal expansion of the real field.

C = the family of all definable sets in M.

S= The family of connected semi-algebraic sets (defined over $\mathbb Q$).

 $\mathbb{S}_0 = \mathsf{points} \; \mathsf{in} \; (\mathbb{Q}^{\mathit{alg}})^n \cap \mathbb{R}^n.$

The Pila-Wilkie theorem(s)

Assume that $X \subseteq \mathbb{R}^n$ is definable in \mathcal{M} . If $X \cap (\mathbb{Q}^{alg})^n$ is $large^*$ then X contains a connected infinite semi-algebraic set defined over \mathbb{Q} . More precisely, if one removes **all** infinite connected semi-algebraic subsets of X then a $small^*$ number of \mathbb{Q}^{alg} -points remains.

$$extit{limsup}_{\mathcal{T}}rac{|\{ar{q}\in X\cap (\mathbb{Q}_k^{ extit{alg}})^n: extit{height}_k(ar{q})\leqslant T\}|}{T^\epsilon}=\infty.$$

Fix $\mathcal{M} = \langle \mathbb{R}, <, +, \cdot, \ldots \rangle$ an o-minimal expansion of the real field. $\mathcal{C} =$ the family of all definable sets in \mathcal{M} .

S= The family of connected semi-algebraic sets (defined over \mathbb{Q}). $S_0=$ points in $(\mathbb{Q}^{alg})^n\cap\mathbb{R}^n$.

The Pila-Wilkie theorem(s)

Assume that $X \subseteq \mathbb{R}^n$ is definable in \mathcal{M} . If $X \cap (\mathbb{Q}^{alg})^n$ is large* then X contains a connected infinite semi-algebraic set defined over \mathbb{Q} . More precisely, if one removes all infinite connected semi-algebraic subsets of X then a *small** number of \mathbb{Q}^{alg} -points remains.

$$extit{limsup}_{\mathcal{T}}rac{|\{ar{q}\in X\cap (\mathbb{Q}_k^{ extit{alg}})^n: extit{height}_k(ar{q})\leqslant T\}|}{T^\epsilon}=\infty.$$

Fix $\mathcal{M} = \langle \mathbb{R}, <, +, \cdot, \dots \rangle$ an o-minimal expansion of the real field.

 \mathcal{C} = the family of all definable sets in \mathcal{M} .

S = The family of connected semi-algebraic sets (defined over \mathbb{Q}).

 $S_0 = \text{points in } (\mathbb{Q}^{alg})^n \cap \mathbb{R}^n.$

The Pila-Wilkie theorem(s)

Assume that $X \subseteq \mathbb{R}^n$ is definable in \mathcal{M} . If $X \cap (\mathbb{Q}^{alg})^n$ is $large^*$ then X contains a connected infinite semi-algebraic set defined over \mathbb{Q} . More precisely, if one removes all infinite connected semi-algebraic subsets of X then a $small^*$ number of \mathbb{Q}^{alg} -points remains.

$$\mathit{limsup}_{T} rac{|\{ar{q} \in X \cap (\mathbb{Q}^{\mathit{alg}}_k)^n : \mathit{height}_k(ar{q}) \leqslant T\}|}{T^{\epsilon}} = \infty.$$

Fix $\mathcal{M} = \langle \mathbb{R}, <, +, \cdot, \dots \rangle$ an o-minimal expansion of the real field.

 \mathcal{C} = the family of all definable sets in \mathcal{M} .

S = The family of connected semi-algebraic sets (defined over \mathbb{Q}).

 $S_0 = \text{points in } (\mathbb{Q}^{alg})^n \cap \mathbb{R}^n.$

The Pila-Wilkie theorem(s)

Assume that $X \subseteq \mathbb{R}^n$ is definable in \mathcal{M} . If $X \cap (\mathbb{Q}^{alg})^n$ is $large^*$ then X contains a connected infinite semi-algebraic set defined over \mathbb{Q} . More precisely, if one removes **all** infinite connected semi-algebraic subsets of X then a $small^*$ number of \mathbb{Q}^{alg} -points remains.

$$\mathit{limsup}_{\mathcal{T}} rac{|\{ar{q} \in X \cap (\mathbb{Q}^{\mathit{alg}}_k)^n : \mathit{height}_k(ar{q}) \leqslant T\}|}{T^\epsilon} = \infty.$$

- Fix $\mathcal{M} = \langle \mathbb{R}, <, +, \cdot, \dots \rangle$ an o-minimal expansion of the real field.
- \mathcal{C} = the family of all definable sets in \mathcal{M} .
- S = The family of connected semi-algebraic sets (defined over \mathbb{Q}).
- $S_0 = \text{points in } (\mathbb{Q}^{alg})^n \cap \mathbb{R}^n.$

The Pila-Wilkie theorem(s)

Assume that $X \subseteq \mathbb{R}^n$ is definable in \mathcal{M} . If $X \cap (\mathbb{Q}^{alg})^n$ is $large^*$ then X contains a connected infinite semi-algebraic set defined over \mathbb{Q} . More precisely, if one removes all infinite connected semi-algebraic subsets of X then a $small^*$ number of \mathbb{Q}^{alg} -points remains.

$$\mathit{limsup}_{T} \frac{|\{ar{q} \in X \cap (\mathbb{Q}_{k}^{\mathit{alg}})^{n} : \mathit{height}_{k}(ar{q}) \leqslant T\}|}{T^{\epsilon}} = \infty.$$

- Fix $\mathcal{M} = \langle \mathbb{R}, <, +, \cdot, \dots \rangle$ an o-minimal expansion of the real field.
- \mathcal{C} = the family of all definable sets in \mathcal{M} .
- S = The family of connected semi-algebraic sets (defined over \mathbb{Q}).
- $S_0 = \text{points in } (\mathbb{Q}^{alg})^n \cap \mathbb{R}^n.$

The Pila-Wilkie theorem(s)

Assume that $X \subseteq \mathbb{R}^n$ is definable in \mathcal{M} . If $X \cap (\mathbb{Q}^{alg})^n$ is $large^*$ then X contains a connected infinite semi-algebraic set defined over \mathbb{Q} .

More precisely, if one removes **all** infinite connected semi-algebraic subsets of X then a *small** number of \mathbb{Q}^{alg} -points remains.

$$limsup_T rac{|\{ar{q} \in X \cap (\mathbb{Q}_k^{alg})^n : height_k(ar{q}) \leqslant T\}|}{T^\epsilon} = \infty.$$

- Fix $\mathcal{M} = \langle \mathbb{R}, <, +, \cdot, \dots \rangle$ an o-minimal expansion of the real field.
- \mathcal{C} = the family of all definable sets in \mathcal{M} .
- S = The family of connected semi-algebraic sets (defined over \mathbb{Q}).
- $S_0 = \text{points in } (\mathbb{Q}^{alg})^n \cap \mathbb{R}^n.$

The Pila-Wilkie theorem(s)

Assume that $X \subseteq \mathbb{R}^n$ is definable in \mathcal{M} . If $X \cap (\mathbb{Q}^{alg})^n$ is $large^*$ then X contains a connected infinite semi-algebraic set defined over \mathbb{Q} . More precisely, if one removes **all** infinite connected semi-algebraic subsets of X then a $small^*$ number of \mathbb{Q}^{alg} -points remains.

$$\mathit{limsup}_{\mathsf{T}} \, rac{|\{ar{q} \in X \cap (\mathbb{Q}^{\mathit{alg}}_k)^n \, : \, \mathit{height}_k(ar{q}) \leqslant T\}|}{T^\epsilon} = \infty.$$

- Fix $\mathcal{M} = \langle \mathbb{R}, <, +, \cdot, \dots \rangle$ an o-minimal expansion of the real field.
- \mathcal{C} = the family of all definable sets in \mathcal{M} .
- S = The family of connected semi-algebraic sets (defined over \mathbb{Q}).
- $S_0 = \text{points in } (\mathbb{Q}^{alg})^n \cap \mathbb{R}^n.$

The Pila-Wilkie theorem(s)

Assume that $X \subseteq \mathbb{R}^n$ is definable in \mathcal{M} . If $X \cap (\mathbb{Q}^{alg})^n$ is $large^*$ then X contains a connected infinite semi-algebraic set defined over \mathbb{Q} . More precisely, if one removes **all** infinite connected semi-algebraic subsets of X then a $small^*$ number of \mathbb{Q}^{alg} -points remains.

$$limsup_T \frac{|\{ar{q} \in X \cap (\mathbb{Q}_k^{alg})^n : height_k(ar{q}) \leqslant T\}|}{T^{\epsilon}} = \infty.$$

 $\mathcal{C}=$ a family of complex algebraic (irreducible) varieties, (quasi) affine or projective.

 $\delta = a$ specified subfamily of "special" varieties.

 $S_0 = 0$ -dimensional S-sets: special points.

V = an irreducible S-variety.

 $X \subseteq V$ an irreducible complex algebraic subvariety (so $X \in \mathcal{C}$)

Assumption

The special points $(X \cap S_0)$ are Zariski dense in X.

Goa

The variety X is special ($X \in S$)

 ${\cal C}=$ a family of complex algebraic (irreducible) varieties, (quasi) affine or projective.

S = a specified subfamily of "special" varieties.

 $S_0 = 0$ -dimensional S-sets: special points.

V = an irreducible s-variety.

 $X \subseteq V$ an irreducible complex algebraic subvariety (so $X \in C$)

Assumption

The special points $(X \cap S_0)$ are Zariski dense in X.

Goal

The variety X is special ($X \in S$).

 ${\cal C}=$ a family of complex algebraic (irreducible) varieties, (quasi) affine or projective.

S = a specified subfamily of "special" varieties.

 $S_0 = 0$ -dimensional S-sets: special points.

V = an irreducible s-variety.

 $X \subseteq V$ an irreducible complex algebraic subvariety (so $X \in C$)

Assumption

The special points $(X \cap S_0)$ are Zariski dense in X.

Goal

The variety X is special ($X \in S$).

 ${\cal C}=$ a family of complex algebraic (irreducible) varieties, (quasi) affine or projective.

S = a specified subfamily of "special" varieties.

 $S_0 = 0$ -dimensional S-sets: special points.

V = an irreducible S-variety.

 $X \subseteq V$ an irreducible complex algebraic subvariety (so $X \in \mathcal{C}$)

Assumption

The special points $(X \cap S_0)$ are Zariski dense in X.

Goal

The variety X is special ($X \in S$).

The algebraic side

Let $V = (\mathbb{C}^*)^n = (\mathbb{G}_m)^n$ (so here V admits the structure of an algebraic group, which is also a complex Lie group).

 $\mathcal{C} = \{X \subseteq (\mathbb{G}_m)^n : X \text{ an irreducible algebraic variety}\}.$

 $S = \{p * A : A \text{ a conn. algebraic subgrp of } \mathbb{G}_m^n \& p \text{ a torsion point}\}$

 $\mathbb{S}_0 = \mathsf{Torsion} \; \mathsf{points} \; \mathsf{in} \; (\mathbb{G}_m)^n$

Goal-a theorem of Laurent-1984)

If $X \subseteq (\mathbb{G}_m)^n$ an irreducible algebraic variety and $X \cap Tor(\mathbb{G}_m)^n$ is Zariski dense in X then X = p * A for some connected $A \leq (\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$.

Namely

The algebraic side

Let $V = (\mathbb{C}^*)^n = (\mathbb{G}_m)^n$ (so here V admits the structure of an algebraic group, which is also a complex Lie group).

```
C = \{X \subseteq (\mathbb{G}_m)^n : X \text{ an irreducible algebraic variety}\}
```

 $S = \{p * A : A \text{ a conn. algebraic subgrp of } \mathbb{G}_m^n \& p \text{ a torsion point}\}$

 $\mathbb{S}_0 = \mathsf{Torsion}$ points in $(\mathbb{G}_m)^n$

Goal-a theorem of Laurent-1984)

If $X \subseteq (\mathbb{G}_m)^n$ an irreducible algebraic variety and $X \cap Tor(\mathbb{G}_m)^n$ is Zariski dense in X then X = p * A for some connected $A \leqslant (\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$.

Namely

The algebraic side

Let $V = (\mathbb{C}^*)^n = (\mathbb{G}_m)^n$ (so here V admits the structure of an algebraic group, which is also a complex Lie group).

 $\mathcal{C} = \{X \subseteq (\mathbb{G}_m)^n : X \text{ an irreducible algebraic variety}\}.$

 $\mathcal{S} = \{p * A : A \text{ a conn. algebraic subgrp of } \mathbb{G}_m^n \& p \text{ a torsion point}\}$

 $\mathbb{S}_0 = \mathsf{Torsion} \; \mathsf{points} \; \mathsf{in} \; (\mathbb{G}_m)^n$

Goal-a theorem of Laurent-1984)

If $X \subseteq (\mathbb{G}_m)^n$ an irreducible algebraic variety and $X \cap Tor(\mathbb{G}_m)^n$ is Zariski dense in X then X = p * A for some connected $A \leq (\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$.

Namely

The algebraic side

Let $V = (\mathbb{C}^*)^n = (\mathbb{G}_m)^n$ (so here V admits the structure of an algebraic group, which is also a complex Lie group).

 $\mathcal{C} = \{X \subseteq (\mathbb{G}_m)^n : X \text{ an irreducible algebraic variety}\}.$

 $S = \{p * A : A \text{ a conn. algebraic subgrp of } \mathbb{G}_m^n \& p \text{ a torsion point}\}.$

 $S_0 = \text{Torsion points in } (\mathbb{G}_m)^n$

Goal-a theorem of Laurent-1984)

If $X \subseteq (\mathbb{G}_m)^n$ an irreducible algebraic variety and $X \cap Tor(\mathbb{G}_m)^n$ is Zariski dense in X then X = p * A for some connected $A \leq (\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$.

Namely

The algebraic side

Let $V = (\mathbb{C}^*)^n = (\mathbb{G}_m)^n$ (so here V admits the structure of an algebraic group, which is also a complex Lie group).

 $\mathcal{C} = \{X \subseteq (\mathbb{G}_m)^n : X \text{ an irreducible algebraic variety}\}.$

 $S = \{p * A : A \text{ a conn. algebraic subgrp of } \mathbb{G}_m^n \& p \text{ a torsion point}\}.$

 $S_0 = \text{Torsion points in } (\mathbb{G}_m)^n$

Goal-a theorem of Laurent-1984)

If $X \subseteq (\mathbb{G}_m)^n$ an irreducible algebraic variety and $X \cap Tor(\mathbb{G}_m)^n$ is Zariski dense in X then X = p * A for some connected $A \leq (\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$.

Namely

The algebraic side

Let $V = (\mathbb{C}^*)^n = (\mathbb{G}_m)^n$ (so here V admits the structure of an algebraic group, which is also a complex Lie group).

 $\mathcal{C} = \{X \subseteq (\mathbb{G}_m)^n : X \text{ an irreducible algebraic variety}\}.$

 $S = \{p * A : A \text{ a conn. algebraic subgrp of } \mathbb{G}_m^n \& p \text{ a torsion point}\}.$

 $S_0 = \text{Torsion points in } (\mathbb{G}_m)^n$

Goal-a theorem of Laurent-1984)

If $X \subseteq (\mathbb{G}_m)^n$ an irreducible algebraic variety and $X \cap Tor(\mathbb{G}_m)^n$ is Zariski dense in X then X = p * A for some connected $A \leq (\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$.

Namely,

If $X \in \mathcal{C}$ and $X \cap S_0$ is Zariski dense in X then $X \in S$.

The Pila-Zannier strategy-vague description

First note: The field $\langle \mathbb{C}, +, \cdot \rangle$ is definable in \mathbb{R} , (via $\mathbb{C} \sim \mathbb{R}^2$). Hence, every complex algebraic variety is definable in the o-minimal structure $\bar{\mathbb{R}} = \langle \mathbb{R}, <, +, \cdot \rangle$.

But the strategy will force us to move to a different o-minimal structure:

An analytic presentation of the algebraic problem

As we'll see, in all cases there is a natural analytic covering map, call it $\Theta: \widetilde{V} \to V$, from an open set $\widetilde{V} \subseteq \mathbb{C}^n$ onto the algebraic variety V.

The idea-vague description

- 1. Using Θ , translate the algebraic problem from V to a problem about sets in \widetilde{V} , definable in some o-minimal expansion \mathcal{M} of \mathbb{R} .
- 2. Apply a Pila-Wilkie theorem in \mathcal{M} .
- 3. Use it to come back to *V* and conclude the result there.

The Pila-Zannier strategy-vague description

First note: The field $\langle \mathbb{C}, +, \cdot \rangle$ is definable in \mathbb{R} , (via $\mathbb{C} \sim \mathbb{R}^2$). Hence, every complex algebraic variety is definable in the o-minimal structure $\bar{\mathbb{R}} = \langle \mathbb{R}, <, +, \cdot \rangle$.

But the strategy will force us to move to a different o-minimal structure:

An analytic presentation of the algebraic problem

As we'll see, in all cases there is a natural analytic covering map, call it $\Theta: \widetilde{V} \to V$, from an open set $\widetilde{V} \subseteq \mathbb{C}^n$ onto the algebraic variety V.

The idea-vague description

- 1. Using Θ , translate the algebraic problem from V to a problem about sets in \widetilde{V} , definable in some o-minimal expansion \mathcal{M} of \mathbb{R}
- 2. Apply a Pila-Wilkie theorem in \mathcal{M} .
- 3. Use it to come back to *V* and conclude the result there.

First note: The field $\langle \mathbb{C}, +, \cdot \rangle$ is definable in \mathbb{R} , (via $\mathbb{C} \sim \mathbb{R}^2$). Hence, every complex algebraic variety is definable in the o-minimal structure $\mathbb{R} = \langle \mathbb{R}, <, +, \cdot \rangle$.

But the strategy will force us to move to a different o-minimal structure:

An analytic presentation of the algebraic problem

As we'll see, in all cases there is a natural analytic covering map, call it $\Theta: \widetilde{V} \to V$, from an open set $\widetilde{V} \subseteq \mathbb{C}^n$ onto the algebraic variety V.

- 1. Using Θ , translate the algebraic problem from V to a problem about sets in \widetilde{V} , definable in some o-minimal expansion $\mathcal M$ of $\bar{\mathbb R}$
- 2. Apply a Pila-Wilkie theorem in \mathcal{M} .
- 3. Use it to come back to *V* and conclude the result there.

First note: The field $\langle \mathbb{C}, +, \cdot \rangle$ is definable in \mathbb{R} , (via $\mathbb{C} \sim \mathbb{R}^2$). Hence, every complex algebraic variety is definable in the o-minimal structure $\mathbb{R} = \langle \mathbb{R}, <, +, \cdot \rangle$.

But the strategy will force us to move to a different o-minimal structure:

An analytic presentation of the algebraic problem

As we'll see, in all cases there is a natural analytic covering map, call it $\Theta: \widetilde{V} \to V$, from an open set $\widetilde{V} \subseteq \mathbb{C}^n$ onto the algebraic variety V.

- 1. Using Θ , translate the algebraic problem from V to a problem about sets in \widetilde{V} , definable in some o-minimal expansion \mathcal{M} of \mathbb{R} .
- 2. Apply a Pila-Wilkie theorem in \mathcal{M} .
- 3. Use it to come back to *V* and conclude the result there.

First note: The field $\langle \mathbb{C}, +, \cdot \rangle$ is definable in \mathbb{R} , (via $\mathbb{C} \sim \mathbb{R}^2$). Hence, every complex algebraic variety is definable in the o-minimal structure $\mathbb{R} = \langle \mathbb{R}, <, +, \cdot \rangle$.

But the strategy will force us to move to a different o-minimal structure:

An analytic presentation of the algebraic problem

As we'll see, in all cases there is a natural analytic covering map, call it $\Theta: \widetilde{V} \to V$, from an open set $\widetilde{V} \subseteq \mathbb{C}^n$ onto the algebraic variety V.

- 1. Using Θ , translate the algebraic problem from V to a problem about sets in \widetilde{V} , definable in some o-minimal expansion \mathcal{M} of \mathbb{R} .
- 2. Apply a Pila-Wilkie theorem in ${\cal M}$
- 3. Use it to come back to *V* and conclude the result there.

First note: The field $\langle \mathbb{C}, +, \cdot \rangle$ is definable in \mathbb{R} , (via $\mathbb{C} \sim \mathbb{R}^2$). Hence, every complex algebraic variety is definable in the o-minimal structure $\mathbb{R} = \langle \mathbb{R}, <, +, \cdot \rangle$.

But the strategy will force us to move to a different o-minimal structure:

An analytic presentation of the algebraic problem

As we'll see, in all cases there is a natural analytic covering map, call it $\Theta: \widetilde{V} \to V$, from an open set $\widetilde{V} \subseteq \mathbb{C}^n$ onto the algebraic variety V.

- 1. Using Θ , translate the algebraic problem from V to a problem about sets in \widetilde{V} , definable in some o-minimal expansion \mathcal{M} of \mathbb{R} .
- 2. Apply a Pila-Wilkie theorem in M.
- 3. Use it to come back to *V* and conclude the result there.

First note: The field $\langle \mathbb{C}, +, \cdot \rangle$ is definable in \mathbb{R} , (via $\mathbb{C} \sim \mathbb{R}^2$). Hence, every complex algebraic variety is definable in the o-minimal structure $\mathbb{R} = \langle \mathbb{R}, <, +, \cdot \rangle$.

But the strategy will force us to move to a different o-minimal structure:

An analytic presentation of the algebraic problem

As we'll see, in all cases there is a natural analytic covering map, call it $\Theta: \widetilde{V} \to V$, from an open set $\widetilde{V} \subseteq \mathbb{C}^n$ onto the algebraic variety V.

- 1. Using Θ , translate the algebraic problem from V to a problem about sets in \widetilde{V} , definable in some o-minimal expansion \mathcal{M} of \mathbb{R} .
- 2. Apply a Pila-Wilkie theorem in *M*.
- 3. Use it to come back to V and conclude the result there.

- We have $V = (\mathbb{C}^*)^n = \mathbb{G}_m^n$.
- Take $\widetilde{V}=\mathbb{C}^n$ and $\Theta:\mathbb{C}^n o (\mathbb{C}^*)^n$ defined by

$$\Theta(\bar{z}) = exp(z_1, \dots, z_n) = (e^{z_1}, \dots, e^{z_n})$$

- So $\Theta: (\mathbb{C}^n,+) o ((\mathbb{G}_m)^n,*)$ is a holomorphic group homomorphism.
- Let $\Gamma := Ker(\Theta) = (2\pi i \mathbb{Z})^n$. So, Θ is Γ -invariant, namely:

$$\forall \gamma = (\gamma_1, ..., \gamma_n) \in \Gamma \ \Theta((z_1 + \gamma_1, ..., z_n + \gamma_n) = \Theta(z_1, ..., z_n).$$

- We have $V = (\mathbb{C}^*)^n = \mathbb{G}_m^n$.
- ullet Take $\widetilde{V}=\mathbb{C}^n$ and $\Theta:\mathbb{C}^n o (\mathbb{C}^*)^n$ defined by

$$\Theta(\bar{z}) = \exp(z_1, \ldots, z_n) = (e^{z_1}, \ldots, e^{z_n}).$$

- So $\Theta: (\mathbb{C}^n, +) \to ((\mathbb{G}_m)^n, *)$ is a holomorphic group homomorphism.
- Let $\Gamma := Ker(\Theta) = (2\pi i \mathbb{Z})^n$. So, Θ is Γ -invariant, namely:

$$\forall \gamma = (\gamma_1, ..., \gamma_n) \in \Gamma \ \Theta((z_1 + \gamma_1, ..., z_n + \gamma_n)) = \Theta(z_1, ..., z_n)$$

- We have $V = (\mathbb{C}^*)^n = \mathbb{G}_m^n$.
- Take $\widetilde{V} = \mathbb{C}^n$ and $\Theta : \mathbb{C}^n \to (\mathbb{C}^*)^n$ defined by

$$\Theta(\bar{z}) = exp(z_1, \ldots, z_n) = (e^{z_1}, \ldots, e^{z_n}).$$

- So $\Theta: (\mathbb{C}^n, +) \to ((\mathbb{G}_m)^n, *)$ is a holomorphic group homomorphism.
- Let $\Gamma := Ker(\Theta) = (2\pi i \mathbb{Z})^n$. So, Θ is Γ -invariant, namely:

$$\forall \gamma = (\gamma_1, ..., \gamma_n) \in \Gamma \ \Theta((z_1 + \gamma_1, ..., z_n + \gamma_n)) = \Theta(z_1, ..., z_n)$$

- We have $V = (\mathbb{C}^*)^n = \mathbb{G}_m^n$.
- Take $\widetilde{V} = \mathbb{C}^n$ and $\Theta : \mathbb{C}^n \to (\mathbb{C}^*)^n$ defined by

$$\Theta(\bar{z}) = \exp(z_1, \ldots, z_n) = (e^{z_1}, \ldots, e^{z_n}).$$

- So $\Theta: (\mathbb{C}^n, +) \to ((\mathbb{G}_m)^n, *)$ is a holomorphic group homomorphism.
- Let $\Gamma := Ker(\Theta) = (2\pi i \mathbb{Z})^n$. So, Θ is Γ -invariant, namely:

$$\forall \gamma = (\gamma_1, ..., \gamma_n) \in \Gamma \ \Theta((z_1 + \gamma_1, ..., z_n + \gamma_n)) = \Theta(z_1, ..., z_n)$$

Ş

- We have $V = (\mathbb{C}^*)^n = \mathbb{G}_m^n$.
- Take $\widetilde{V} = \mathbb{C}^n$ and $\Theta : \mathbb{C}^n \to (\mathbb{C}^*)^n$ defined by

$$\Theta(\bar{z}) = \exp(z_1, \ldots, z_n) = (e^{z_1}, \ldots, e^{z_n}).$$

- So $\Theta: (\mathbb{C}^n, +) \to ((\mathbb{G}_m)^n, *)$ is a holomorphic group homomorphism.
- Let $\Gamma := Ker(\Theta) = (2\pi i \mathbb{Z})^n$. So, Θ is Γ -invariant, namely:

$$\forall \gamma = (\gamma_1, ..., \gamma_n) \in \Gamma \ \Theta((z_1 + \gamma_1, ..., z_n + \gamma_n)) = \Theta(z_1, ..., z_n)$$

- We have $V = (\mathbb{C}^*)^n = \mathbb{G}_m^n$.
- Take $\widetilde{V} = \mathbb{C}^n$ and $\Theta : \mathbb{C}^n \to (\mathbb{C}^*)^n$ defined by

$$\Theta(\bar{z}) = exp(z_1, \ldots, z_n) = (e^{z_1}, \ldots, e^{z_n}).$$

- So $\Theta: (\mathbb{C}^n, +) \to ((\mathbb{G}_m)^n, *)$ is a holomorphic group homomorphism.
- Let $\Gamma := Ker(\Theta) = (2\pi i \mathbb{Z})^n$. So, Θ is Γ -invariant, namely:

$$\forall \gamma = (\gamma_1, ..., \gamma_n) \in \Gamma \ \Theta((z_1 + \gamma_1, ..., z_n + \gamma_n)) = \Theta(z_1, ..., z_n).$$

Ş

special points

Call $\bar{z} \in \mathbb{C}^n$ a special point if $\Theta(\bar{z})$ is a torsion element (namely if $\Theta(\bar{z})$ is a special point). Let $\tilde{S}_0 = \text{all special points}$.

exp is a homomorphism, so $\Theta(\bar{z})$ is a torsion point of order k iff $k\bar{z} \in \Gamma$. So, $\widetilde{S}_0 := \{\bar{z} \in \mathbb{C}^n : \exists k \ k\bar{z} \in (2\pi i \mathbb{Z})^n\} = (2\pi i \mathbb{O})^n$.

special varieties

An irreducible **analytic** $Y \subseteq \mathbb{C}^n$ is special if $\Theta(Y) = p * A$, where A is a connected algebraic subgroup of $(\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$. Namely, if $\Theta(Y) \in \mathcal{S}$.

special points

Call $\overline{z} \in \mathbb{C}^n$ a special point if $\Theta(\overline{z})$ is a torsion element (namely if $\Theta(\overline{z})$ is a special point). Let $S_0 = all$ special points.

exp is a homomorphism, so $\Theta(\bar{z})$ is a torsion point of order k iff $k\bar{z} \in \Gamma$. So, $\widetilde{S}_0 := \{\bar{z} \in \mathbb{C}^n : \exists k \ k\bar{z} \in (2\pi i \mathbb{Z})^n\} = (2\pi i \mathbb{Q})^n$.

special varieties

An irreducible **analytic** $Y \subseteq \mathbb{C}^n$ is special if $\Theta(Y) = p * A$, where A is a connected algebraic subgroup of $(\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$. Namely, if $\Theta(Y) \in \mathcal{S}$.

special points

Call $\overline{z} \in \mathbb{C}^n$ a special point **if** $\Theta(\overline{z})$ is a torsion element (namely if $\Theta(\overline{z})$ is a special point). Let $\widetilde{S_0} =$ all special points.

exp is a homomorphism, so $\Theta(\bar{z})$ is a torsion point of order k iff $k\bar{z} \in \Gamma$. So, $\widetilde{S}_0 := \{\bar{z} \in \mathbb{C}^n : \exists k \ k\bar{z} \in (2\pi i\mathbb{Z})^n\} = (2\pi i\mathbb{Q})^n$.

special varieties

An irreducible **analytic** $Y \subseteq \mathbb{C}^n$ is special if $\Theta(Y) = p * A$, where A is a connected algebraic subgroup of $(\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$. Namely, if $\Theta(Y) \in \mathcal{S}$.

special points

Call $\overline{z} \in \mathbb{C}^n$ a special point **if** $\Theta(\overline{z})$ is a torsion element (namely if $\Theta(\overline{z})$ is a special point). Let $\widetilde{S_0} =$ all special points.

exp is a homomorphism, so $\Theta(\bar{z})$ is a torsion point of order k iff $k\bar{z} \in \Gamma$.

So, $S_0 := \{\bar{z} \in \mathbb{C}^n : \exists k \ k\bar{z} \in (2\pi i \mathbb{Z})^n\} = (2\pi i \mathbb{Q})^n$

special varieties

An irreducible **analytic** $Y \subseteq \mathbb{C}^n$ is special if $\Theta(Y) = p * A$, where A is a connected algebraic subgroup of $(\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$. Namely, if $\Theta(Y) \in \mathcal{S}$.

special points

Call $\overline{z} \in \mathbb{C}^n$ a special point if $\Theta(\overline{z})$ is a torsion element (namely if $\Theta(\overline{z})$ is a special point). Let $\widetilde{S_0} = \text{all special points}$.

exp is a homomorphism, so $\Theta(\bar{z})$ is a torsion point of order k iff $k\bar{z} \in \Gamma$.

So,
$$\widetilde{S}_0 := \{ \overline{z} \in \mathbb{C}^n : \exists k \ k \overline{z} \in (2\pi i \mathbb{Z})^n \} = (2\pi i \mathbb{Q})^n.$$

special varieties

An irreducible **analytic** $Y \subseteq \mathbb{C}^n$ is special if $\Theta(Y) = p * A$, where A is a connected algebraic subgroup of $(\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$. Namely, if $\Theta(Y) \in \mathcal{S}$.

special points

Call $\overline{z} \in \mathbb{C}^n$ a special point if $\Theta(\overline{z})$ is a torsion element (namely if $\Theta(\overline{z})$ is a special point). Let $\widetilde{S_0} =$ all special points.

exp is a homomorphism, so $\Theta(\bar{z})$ is a torsion point of order k iff $k\bar{z} \in \Gamma$.

So,
$$\widetilde{S}_0 := \{ \overline{z} \in \mathbb{C}^n : \exists k \ k \overline{z} \in (2\pi i \mathbb{Z})^n \} = (2\pi i \mathbb{Q})^n.$$

special varieties

An irreducible **analytic** $Y \subseteq \mathbb{C}^n$ is special if $\Theta(Y) = p * A$, where A is a connected algebraic subgroup of $(\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$. Namely, if $\Theta(Y) \in \mathbb{S}$.

special points

Call $\overline{z} \in \mathbb{C}^n$ a special point if $\Theta(\overline{z})$ is a torsion element (namely if $\Theta(\overline{z})$ is a special point). Let $\widetilde{S_0} =$ all special points.

exp is a homomorphism, so $\Theta(\bar{z})$ is a torsion point of order k iff $k\bar{z} \in \Gamma$.

So,
$$\widetilde{\mathbb{S}}_0 := \{ \overline{z} \in \mathbb{C}^n : \exists k \ k \overline{z} \in (2\pi i \mathbb{Z})^n \} = (2\pi i \mathbb{Q})^n.$$

special varieties

An irreducible **analytic** $Y \subseteq \mathbb{C}^n$ is special if $\Theta(Y) = p * A$, where A is a connected algebraic subgroup of $(\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$. Namely, if $\Theta(Y) \in \mathcal{S}$.

special points

Call $\overline{z} \in \mathbb{C}^n$ a special point if $\Theta(\overline{z})$ is a torsion element (namely if $\Theta(\overline{z})$ is a special point). Let $\widetilde{S_0} = \text{all special points}$.

exp is a homomorphism, so $\Theta(\bar{z})$ is a torsion point of order k iff $k\bar{z} \in \Gamma$.

So,
$$\widetilde{\mathbb{S}}_0 := \{ \overline{z} \in \mathbb{C}^n : \exists k \ k \overline{z} \in (2\pi i \mathbb{Z})^n \} = (2\pi i \mathbb{Q})^n.$$

special varieties

An irreducible **analytic** $Y \subseteq \mathbb{C}^n$ is special if $\Theta(Y) = p * A$, where A is a connected algebraic subgroup of $(\mathbb{G}_m)^n$ and $p \in Tor(\mathbb{G}_m)^n$. Namely, if $\Theta(Y) \in \mathcal{S}$.

Weakly special varieties

 $Y \subseteq \mathbb{C}^n$ is called **weakly special** if $Y = \overline{z} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} (but \overline{z} arbitrary).

And $\Theta(Y) = \Theta(H) * \Theta(\overline{z}) \subseteq (\mathbb{C}^*)^n$ is called **a weakly special** subvariety. It is (an arbitrary) coset of a conn. algebraic subgroup of $(\mathbb{C}^*)^n$

Note

If $Y \subseteq \mathbb{C}^n$ is weakly special then both Y and $\Theta(Y)$ are algebraic varieties (although $\Theta = exp$ is a transcendental map).

Weakly special varieties

 $Y \subseteq \mathbb{C}^n$ is called **weakly special** if $Y = \overline{z} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} (but \overline{z} arbitrary). And $\Theta(Y) = \Theta(H) * \Theta(\overline{z}) \subseteq (\mathbb{C}^*)^n$ is called **a weakly special** subvariety. It is (an arbitrary) coset of a conn. algebraic subgroup of $(\mathbb{C}^*)^n$

Note

If $Y \subseteq \mathbb{C}^n$ is weakly special then both Y and $\Theta(Y)$ are algebraic varieties (although $\Theta = exp$ is a transcendental map).

1

Weakly special varieties

 $Y \subseteq \mathbb{C}^n$ is called **weakly special** if $Y = \overline{z} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} (but \overline{z} arbitrary). And $\Theta(Y) = \Theta(H) * \Theta(\overline{z}) \subseteq (\mathbb{C}^*)^n$ is called **a weakly special** subvariety. It is (an arbitrary) coset of a conn. algebraic subgroup of $(\mathbb{C}^*)^n$

Note

If $Y \subseteq \mathbb{C}^n$ is weakly special then both Y and $\Theta(Y)$ are algebraic varieties (although $\Theta = exp$ is a transcendental map).

1

Weakly special varieties

 $Y \subseteq \mathbb{C}^n$ is called **weakly special** if $Y = \overline{z} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} (but \overline{z} arbitrary). And $\Theta(Y) = \Theta(H) * \Theta(\overline{z}) \subseteq (\mathbb{C}^*)^n$ is called **a weakly special** subvariety. It is (an arbitrary) coset of a connucleabraic subgroup of

subvariety. It is (an arbitrary) coset of a conn. algebraic subgroup of $(\mathbb{C}^*)^n$

Note

If $Y \subseteq \mathbb{C}^n$ is weakly special then both Y and $\Theta(Y)$ are algebraic varieties (although $\Theta = exp$ is a transcendental map).

Weakly special varieties

 $Y \subseteq \mathbb{C}^n$ is called **weakly special** if $Y = \overline{z} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} (but \overline{z} arbitrary). And $\Theta(Y) = \Theta(H) * \Theta(\overline{z}) \subseteq (\mathbb{C}^*)^n$ is called **a weakly special** subvariety. It is (an arbitrary) coset of a conn. algebraic subgroup of

Note

 $(\mathbb{C}^*)^n$

If $Y \subseteq \mathbb{C}^n$ is weakly special then both Y and $\Theta(Y)$ are algebraic varieties (although $\Theta = exp$ is a transcendental map).

1

A key observation

If $Y \subseteq \mathbb{C}^n$ and $\Theta(Y) \subseteq (\mathbb{C}^*)^n$ are both algebraic varieties then necessarily Y is weakly special. (will prove it later in certain settings)

A key observation

If $Y \subseteq \mathbb{C}^n$ and $\Theta(Y) \subseteq (\mathbb{C}^*)^n$ are both algebraic varieties then necessarily Y is weakly special. (will prove it later in certain settings)

Analytic presentation of Laurent's theorem

Assume that $Y \subseteq \mathbb{C}^n$ is an irreducible **analytic** variety, and $X = \Theta(Y) \subseteq (\mathbb{C}^*)^n$ is an algebraic variety, on which the torsion points are Zariski dense. Then Y is special, namely $Y = \bar{q} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} , and $\bar{q} \in (2\pi i \mathbb{Q})^n$.

- ▶ Using the fact that $X \subseteq \mathbb{C}^n$ has many torsion points we shall conclude that $Y \subseteq (\mathbb{C}^*)^n$ has large*-number of " $2\pi i \mathbb{Q}^n$ -points"
- ▶ Using Pila-Wilkie for *Y*, we shall conclude that *Y* contains an infinite semialgebraic subset of *Y*, and then also and algebraic subset *A*.
- ▶ Using ideas such as **the key observation** we conclude that A is special, so $\Theta(A)$ a special subvariety of X.
- ▶ With slightly more work, $\Theta(A) = X$

Analytic presentation of Laurent's theorem

Assume that $Y \subseteq \mathbb{C}^n$ is an irreducible **analytic** variety, and $X = \Theta(Y) \subseteq (\mathbb{C}^*)^n$ is an algebraic variety, on which the torsion points are Zariski dense. Then Y is special, namely $Y = \overline{q} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} , and $\overline{q} \in (2\pi i \mathbb{Q})^n$.

- ▶ Using the fact that $X \subseteq \mathbb{C}^n$ has many torsion points we shall conclude that $Y \subseteq (\mathbb{C}^*)^n$ has large*-number of " $2\pi i \mathbb{Q}^n$ -points".
- ► Using Pila-Wilkie for Y, we shall conclude that Y contains an infinite semialgebraic subset of Y, and then also and algebraic subset A.
- Using ideas such as **the key observation** we conclude that A is special, so $\Theta(A)$ a special subvariety of X.
- ▶ With slightly more work, $\Theta(A) = X$.

Analytic presentation of Laurent's theorem

Assume that $Y \subseteq \mathbb{C}^n$ is an irreducible **analytic** variety, and $X = \Theta(Y) \subseteq (\mathbb{C}^*)^n$ is an algebraic variety, on which the torsion points are Zariski dense. Then Y is special, namely $Y = \overline{q} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} , and $\overline{q} \in (2\pi i \mathbb{Q})^n$.

- ▶ Using the fact that $X \subseteq \mathbb{C}^n$ has many torsion points we shall conclude that $Y \subseteq (\mathbb{C}^*)^n$ has large*-number of " $2\pi i \mathbb{Q}^n$ -points".
- ▶ Using Pila-Wilkie for *Y*, we shall conclude that *Y* contains an infinite semialgebraic subset of *Y*, and then also and algebraic subset *A*.
- ▶ Using ideas such as **the key observation** we conclude that A is special, so $\Theta(A)$ a special subvariety of X.
- ▶ With slightly more work, $\Theta(A) = X$.

Analytic presentation of Laurent's theorem

Assume that $Y \subseteq \mathbb{C}^n$ is an irreducible **analytic** variety, and $X = \Theta(Y) \subseteq (\mathbb{C}^*)^n$ is an algebraic variety, on which the torsion points are Zariski dense. Then Y is special, namely $Y = \overline{q} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} , and $\overline{q} \in (2\pi i \mathbb{Q})^n$.

- ▶ Using the fact that $X \subseteq \mathbb{C}^n$ has many torsion points we shall conclude that $Y \subseteq (\mathbb{C}^*)^n$ has large*-number of " $2\pi i \mathbb{Q}^n$ -points".
- ▶ Using Pila-Wilkie for *Y*, we shall conclude that *Y* contains an infinite semialgebraic subset of *Y*, and then also and algebraic subset *A*.
- ▶ Using ideas such as **the key observation** we conclude that A is special, so $\Theta(A)$ a special subvariety of X.
- ▶ With slightly more work, $\Theta(A) = X$.

Analytic presentation of Laurent's theorem

Assume that $Y \subseteq \mathbb{C}^n$ is an irreducible **analytic** variety, and $X = \Theta(Y) \subseteq (\mathbb{C}^*)^n$ is an algebraic variety, on which the torsion points are Zariski dense. Then Y is special, namely $Y = \overline{q} + H$, where H is a \mathbb{C} -linear subspace of \mathbb{C}^n **defined over** \mathbb{Q} , and $\overline{q} \in (2\pi i \mathbb{Q})^n$.

- ▶ Using the fact that $X \subseteq \mathbb{C}^n$ has many torsion points we shall conclude that $Y \subseteq (\mathbb{C}^*)^n$ has large*-number of " $2\pi i \mathbb{Q}^n$ -points".
- ▶ Using Pila-Wilkie for *Y*, we shall conclude that *Y* contains an infinite semialgebraic subset of *Y*, and then also and algebraic subset *A*.
- ▶ Using ideas such as **the key observation** we conclude that A is special, so $\Theta(A)$ a special subvariety of X.
- ▶ With slightly more work, $\Theta(A) = X$.

We have $\Theta: \mathbb{C}^n \to (\mathbb{C}^*)^n$ given by $\Theta(z_1, \dots, z_n) = (e^{z_1}, \dots, e^{z_n})$.

The difficulty

Because $\Gamma = \ker \Theta \subseteq \mathbb{C}^n$ is infinite and discrete, the map Θ , as well as $\Theta^{-1}(X)$ cannot be definable in any o-minimal structure.

We thus need to "truncate" Θ :

Fundamental sets

A fundamental set for Θ , is a set $\mathfrak{F} \subseteq \mathbb{C}^n$, such that (1) $\mathfrak{F} + \Gamma = \mathbb{C}^n$ ($\Rightarrow \Theta(\mathfrak{F}) = (\mathbb{C}^*)^n$.)

and (2) Only finitely many Γ -translates of \mathfrak{F} intersect $Cl(\mathfrak{F})$ (a technical requirement).

$$\mathfrak{F} = \{\bar{z} = (z_1, \dots, z_n) \in \mathbb{C}^n : 0 \leqslant |\mathit{Im}(z_i)| \leqslant \pi\}.$$

We have $\Theta : \mathbb{C}^n \to (\mathbb{C}^*)^n$ given by $\Theta(z_1, \dots, z_n) = (e^{z_1}, \dots, e^{z_n})$.

The difficulty

Because $\Gamma = \ker \Theta \subseteq \mathbb{C}^n$ is infinite and discrete, the map Θ , as well as $\Theta^{-1}(X)$ cannot be definable in any o-minimal structure.

We thus need to "truncate" ⊖:

Fundamental sets

A fundamental set for Θ , is a set $\mathfrak{F} \subseteq \mathbb{C}^n$, such that (1) $\mathfrak{F} + \Gamma = \mathbb{C}^n$ ($\Rightarrow \Theta(\mathfrak{F}) = (\mathbb{C}^*)^n$.)

and (2) Only finitely many Γ -translates of \mathfrak{F} intersect $Cl(\mathfrak{F})$ (a technical requirement).

$$\mathfrak{F} = \{\bar{z} = (z_1, \dots, z_n) \in \mathbb{C}^n : 0 \leqslant |Im(z_i)| \leqslant \pi\}.$$

We have $\Theta: \mathbb{C}^n \to (\mathbb{C}^*)^n$ given by $\Theta(z_1, \dots, z_n) = (e^{z_1}, \dots, e^{z_n})$.

The difficulty

Because $\Gamma = \ker \Theta \subseteq \mathbb{C}^n$ is infinite and discrete, the map Θ , as well as $\Theta^{-1}(X)$ cannot be definable in any o-minimal structure.

We thus need to "truncate" Θ :

Fundamental sets

A fundamental set for Θ , is a set $\mathfrak{F} \subseteq \mathbb{C}^n$, such that (1) $\mathfrak{F} + \Gamma = \mathbb{C}^n$ ($\Rightarrow \Theta(\mathfrak{F}) = (\mathbb{C}^*)^n$.)

and (2) Only finitely many Γ -translates of \mathfrak{F} intersect $Cl(\mathfrak{F})$ (a technical requirement).

$$\mathfrak{F} = \{\bar{z} = (z_1, \dots, z_n) \in \mathbb{C}^n : 0 \leqslant |\mathit{Im}(z_i)| \leqslant \pi\}.$$

We have $\Theta : \mathbb{C}^n \to (\mathbb{C}^*)^n$ given by $\Theta(z_1, \dots, z_n) = (e^{z_1}, \dots, e^{z_n})$.

The difficulty

Because $\Gamma = \ker \ominus \subseteq \mathbb{C}^n$ is infinite and discrete, the map \ominus , as well as $\ominus^{-1}(X)$ cannot be definable in any o-minimal structure.

We thus need to "truncate" ⊖:

Fundamental sets

A fundamental set for Θ , is a set $\mathfrak{F} \subseteq \mathbb{C}^n$, such that (1) $\mathfrak{F} + \Gamma = \mathbb{C}^n$ ($\Rightarrow \Theta(\mathfrak{F}) = (\mathbb{C}^*)^n$.)

and (2) Only finitely many Γ -translates of \mathfrak{F} intersect $Cl(\mathfrak{F})$ (a technical requirement).

$$\mathfrak{F} = \{\bar{z} = (z_1, \dots, z_n) \in \mathbb{C}^n : 0 \leqslant |\mathit{Im}(z_i)| \leqslant \pi\}.$$

We have $\Theta : \mathbb{C}^n \to (\mathbb{C}^*)^n$ given by $\Theta(z_1, \dots, z_n) = (e^{z_1}, \dots, e^{z_n})$.

The difficulty

Because $\Gamma = \ker \Theta \subseteq \mathbb{C}^n$ is infinite and discrete, the map Θ , as well as $\Theta^{-1}(X)$ cannot be definable in any o-minimal structure.

We thus need to "truncate" ⊖:

Fundamental sets

A fundamental set for Θ , is a set $\mathfrak{F} \subseteq \mathbb{C}^n$, such that (1) $\mathfrak{F} + \Gamma = \mathbb{C}^n$ ($\Rightarrow \Theta(\mathfrak{F}) = (\mathbb{C}^*)^n$.)

and (2) Only finitely many Γ -translates of \mathfrak{F} intersect $C/(\mathfrak{F})$ (a technical requirement).

$$\mathfrak{F} = \{\bar{z} = (z_1, \dots, z_n) \in \mathbb{C}'' : 0 \leqslant |\mathit{Im}(z_i)| \leqslant \pi\}.$$

The multiplicative case I. the (non)definability of ⊖

We have $\Theta: \mathbb{C}^n \to (\mathbb{C}^*)^n$ given by $\Theta(z_1, \dots, z_n) = (e^{z_1}, \dots, e^{z_n})$.

The difficulty

Because $\Gamma = \ker \Theta \subseteq \mathbb{C}^n$ is infinite and discrete, the map Θ , as well as $\Theta^{-1}(X)$ cannot be definable in any o-minimal structure.

We thus need to "truncate" ⊖:

Fundamental sets

A fundamental set for Θ , is a set $\mathfrak{F} \subseteq \mathbb{C}^n$, such that (1) $\mathfrak{F} + \Gamma = \mathbb{C}^n$ ($\Rightarrow \Theta(\mathfrak{F}) = (\mathbb{C}^*)^n$.)

and (2) Only finitely many Γ -translates of \mathfrak{F} intersect $Cl(\mathfrak{F})$ (a technical requirement).

Here is one:

$$\mathfrak{F} = \{\bar{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n : 0 \leqslant |\mathit{Im}(z_i)| \leqslant \pi\}.$$

The multiplicative case I. the (non)definability of ⊖

We have $\Theta : \mathbb{C}^n \to (\mathbb{C}^*)^n$ given by $\Theta(z_1, \dots, z_n) = (e^{z_1}, \dots, e^{z_n})$.

The difficulty

Because $\Gamma = \ker \Theta \subseteq \mathbb{C}^n$ is infinite and discrete, the map Θ , as well as $\Theta^{-1}(X)$ cannot be definable in any o-minimal structure.

We thus need to "truncate" ⊖:

Fundamental sets

A fundamental set for Θ , is a set $\mathfrak{F} \subseteq \mathbb{C}^n$, such that (1) $\mathfrak{F} + \Gamma = \mathbb{C}^n$ ($\Rightarrow \Theta(\mathfrak{F}) = (\mathbb{C}^*)^n$.)

and (2) Only finitely many Γ -translates of \mathfrak{F} intersect $Cl(\mathfrak{F})$ (a technical requirement).

Here is one:

$$\mathfrak{F} = \{\bar{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n : 0 \leqslant |\mathit{Im}(z_i)| \leqslant \pi\}.$$

The multiplicative case I. the (non)definability of ⊖

We have $\Theta: \mathbb{C}^n \to (\mathbb{C}^*)^n$ given by $\Theta(z_1, \dots, z_n) = (e^{z_1}, \dots, e^{z_n})$.

The difficulty

Because $\Gamma = \ker \Theta \subseteq \mathbb{C}^n$ is infinite and discrete, the map Θ , as well as $\Theta^{-1}(X)$ cannot be definable in any o-minimal structure.

We thus need to "truncate" ⊖:

Fundamental sets

A fundamental set for Θ , is a set $\mathfrak{F} \subseteq \mathbb{C}^n$, such that (1) $\mathfrak{F} + \Gamma = \mathbb{C}^n$ ($\Rightarrow \Theta(\mathfrak{F}) = (\mathbb{C}^*)^n$.)

and (2) Only finitely many Γ -translates of \mathfrak{F} intersect $Cl(\mathfrak{F})$ (a technical requirement).

• Here is one:

$$\mathfrak{F} = \{\bar{z} = (z_1, \ldots, z_n) \in \mathbb{C}^n : 0 \leqslant |Im(z_i)| \leqslant \pi\}.$$

$\Theta \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an.exp}$:

We have $e^z = e^{x+iy} = e^x(\cos y + i \sin y)$.

The map e^x is definable in \mathbb{R}_{exp} ; the maps cos, $sin \upharpoonright [0, 2\pi]$ are definable in \mathbb{R}_{an} , hence:

The map $e^z \upharpoonright \{0 \leqslant Im(z) \leqslant 2\pi\}$ is definable in $\mathbb{R}_{an,exp}$

It follows that $\Theta \upharpoonright \mathfrak{F} = exp \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$. In particular $\Theta^{-1}(X) \cap \mathfrak{F}$ is definable.

$\Theta \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$:

We have $e^z = e^{x+iy} = e^x(cosy + i siny)$.

The map e^x is definable in \mathbb{R}_{exp} ; the maps $\cos, \sin \upharpoonright [0, 2\pi]$ are definable in \mathbb{R}_{an} , hence:

The map $e^z \upharpoonright \{0 \leqslant lm(z) \leqslant 2\pi\}$ is definable in $\mathbb{R}_{an,exp}$.

It follows that $\Theta \upharpoonright \mathfrak{F} = exp \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$. In particular, $\Theta^{-1}(X) \cap \mathfrak{F}$ is definable.

$\Theta \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$:

We have
$$e^z = e^{x+iy} = e^x(cosy + i siny)$$
.

The map e^x is definable in \mathbb{R}_{exp} ; the maps \cos , $\sin \upharpoonright [0, 2\pi]$ are definable in \mathbb{R}_{an} , hence:

The map $e^z \upharpoonright \{0 \leqslant Im(z) \leqslant 2\pi\}$ is definable in $\mathbb{R}_{an,exp}$.

It follows that $\Theta \upharpoonright \mathfrak{F} = exp \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$. In particular, $\Theta^{-1}(X) \cap \mathfrak{F}$ is definable.

$\Theta \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$:

We have $e^z = e^{x+iy} = e^x(cosy + i siny)$.

The map e^x is definable in \mathbb{R}_{exp} ; the maps \cos , $\sin \upharpoonright [0, 2\pi]$ are definable in \mathbb{R}_{an} , hence:

The map $e^z \upharpoonright \{0 \leqslant \mathit{Im}(z) \leqslant 2\pi\}$ is definable in $\mathbb{R}_{an,exp}$. It follows that $\Theta \upharpoonright \mathfrak{F} = exp \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$. In particular, $\Theta^{-1}(X) \cap \mathfrak{F}$ is definable.

$\Theta \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$:

We have $e^z = e^{x+iy} = e^x(cosy + i siny)$.

The map e^x is definable in \mathbb{R}_{exp} ; the maps \cos , $\sin \upharpoonright [0, 2\pi]$ are definable in \mathbb{R}_{ap} , hence:

The map $e^z \upharpoonright \{0 \leqslant Im(z) \leqslant 2\pi\}$ is definable in $\mathbb{R}_{an,exp}$.

It follows that $\Theta \upharpoonright \mathfrak{F} = exp \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$. In particular, $\Theta^{-1}(X) \cap \mathfrak{F}$ is definable.

$\Theta \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$:

We have $e^z = e^{x+iy} = e^x(cosy + i siny)$.

The map e^x is definable in \mathbb{R}_{exp} ; the maps \cos , $\sin \upharpoonright [0, 2\pi]$ are definable in \mathbb{R}_{an} , hence:

The map $e^z \upharpoonright \{0 \leqslant Im(z) \leqslant 2\pi\}$ is definable in $\mathbb{R}_{an,exp}$.

It follows that $\Theta \upharpoonright \mathfrak{F} = exp \upharpoonright \mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$. In particular, $\Theta^{-1}(X) \cap \mathfrak{F}$ is definable.

We assume that $X \subseteq (\mathbb{C}^*)^n$ is an irreducible algebraic variety and that $X \cap Tor(\mathbb{C}^*)^n$ is infinite.

Claim The set $\Theta^{-1}(X) \cap 2\pi i \mathbb{Q}^n \cap \mathfrak{F}$ is large*:

- Since $X \cap Tor(\mathbb{C}^*)^n$ is infinite there are natural numbers $m_1 < m_2 < \dots$ and elements $g_i \in X$, with $ord(g_i) = m_i$.
- Assume $g=(g_1,\ldots,g_n)\in X\subseteq (\mathbb{C}^*)^n$, and ord(g)=m. Then each g_j is an d_j -th primitive root of unity, with $d_j|m$ and $l.c.m(d_j)=m$.
- (By some basic Galois theory) $[\mathbb{Q}(g):\mathbb{Q}] = \phi(m)$, where $\phi(m) = \#\{k < m : (k,m) = 1\}$ is the Fuller totion function
- So g has $\phi(m)$ conjugates over \mathbb{Q} , all lying in X
- So, for every m_i , X contains at least $\phi(m_i)$ -many torsion elements of order m_i .

We assume that $X \subseteq (\mathbb{C}^*)^n$ is an irreducible algebraic variety and that $X \cap Tor(\mathbb{C}^*)^n$ is infinite.

Claim The set $\Theta^{-1}(X) \cap 2\pi i \mathbb{Q}^n \cap \mathfrak{F}$ is large*:

- Since $X \cap Tor(\mathbb{C}^*)^n$ is infinite there are natural numbers $m_1 < m_2 < \dots$ and elements $g_i \in X$, with $ord(g_i) = m_i$.
- Assume $g=(g_1,\ldots,g_n)\in X\subseteq (\mathbb{C}^*)^n$, and ord(g)=m. Then each g_i is an d_i -th primitive root of unity, with $d_i|m$ and $l.c.m(d_i)=m$.
- (By some basic Galois theory) $[\mathbb{Q}(g):\mathbb{Q}]=\phi(m)$, where $\phi(m)=\#\{k\leqslant m:(k,m)=1\}$ is the Euler totient function
- So g has $\phi(m)$ conjugates over \mathbb{Q} , all lying in X
- So, for every m_i , X contains at least $\phi(m_i)$ -many torsion elements of order m_i .

We assume that $X \subseteq (\mathbb{C}^*)^n$ is an irreducible algebraic variety and that $X \cap Tor(\mathbb{C}^*)^n$ is infinite.

Claim The set $\Theta^{-1}(X) \cap 2\pi i \mathbb{Q}^n \cap \mathfrak{F}$ is large*:

- Since $X \cap Tor(\mathbb{C}^*)^n$ is infinite there are natural numbers $m_1 < m_2 < \dots$ and elements $g_i \in X$, with $ord(g_i) = m_i$.
- Assume $g=(g_1,\ldots,g_n)\in X\subseteq (\mathbb{C}^*)^n$, and ord(g)=m. Then each g_j is an d_j -th primitive root of unity, with $d_j|m$ and $l.c.m(d_j)=m$.
- (By some basic Galois theory) $[\mathbb{Q}(g):\mathbb{Q}]=\phi(m)$, where $\phi(m)=\#\{k\leqslant m:(k,m)=1\}$ is the Euler totient function
- So g has $\phi(m)$ conjugates over \mathbb{Q} , all lying in X
- So, for every m_i , X contains at least $\phi(m_i)$ -many torsion elements of order m_i .

We assume that $X \subseteq (\mathbb{C}^*)^n$ is an irreducible algebraic variety and that $X \cap Tor(\mathbb{C}^*)^n$ is infinite.

Claim The set $\Theta^{-1}(X) \cap 2\pi i \mathbb{Q}^n \cap \mathfrak{F}$ is large*:

- Since $X \cap Tor(\mathbb{C}^*)^n$ is infinite there are natural numbers $m_1 < m_2 < \dots$ and elements $g_i \in X$, with $ord(g_i) = m_i$.
- Assume $g=(g_1,\ldots,g_n)\in X\subseteq (\mathbb{C}^*)^n$, and ord(g)=m. Then each g_j is an d_j -th primitive root of unity, with $d_j|m$ and $l.c.m(d_j)=m$.
- (By some basic Galois theory) $[\mathbb{Q}(g):\mathbb{Q}]=\phi(m)$, where $\phi(m)=\#\{k\leqslant m:(k,m)=1\}$ is the Euler totient function.
- So g has $\phi(m)$ conjugates over \mathbb{Q} , all lying in X
- So, for every m_i , X contains at least $\phi(m_i)$ -many torsion elements of order m_i .

We assume that $X \subseteq (\mathbb{C}^*)^n$ is an irreducible algebraic variety and that $X \cap Tor(\mathbb{C}^*)^n$ is infinite.

Claim The set $\Theta^{-1}(X) \cap 2\pi i \mathbb{Q}^n \cap \mathfrak{F}$ is large*:

- Since $X \cap Tor(\mathbb{C}^*)^n$ is infinite there are natural numbers $m_1 < m_2 < \dots$ and elements $g_i \in X$, with $ord(g_i) = m_i$.
- Assume $g=(g_1,\ldots,g_n)\in X\subseteq (\mathbb{C}^*)^n$, and ord(g)=m. Then each g_j is an d_j -th primitive root of unity, with $d_j|m$ and $l.c.m(d_j)=m$.
- (By some basic Galois theory) $[\mathbb{Q}(g):\mathbb{Q}]=\phi(m)$, where $\phi(m)=\#\{k\leqslant m:(k,m)=1\}$ is the Euler totient function
- So g has $\phi(m)$ conjugates over \mathbb{Q} , all lying in X
- So, for every m_i , X contains at least $\phi(m_i)$ -many torsion elements of order m_i .

We assume that $X \subseteq (\mathbb{C}^*)^n$ is an irreducible algebraic variety and that $X \cap Tor(\mathbb{C}^*)^n$ is infinite.

Claim The set $\Theta^{-1}(X) \cap 2\pi i \mathbb{Q}^n \cap \mathfrak{F}$ is large*:

- Since $X \cap Tor(\mathbb{C}^*)^n$ is infinite there are natural numbers $m_1 < m_2 < \dots$ and elements $g_i \in X$, with $ord(g_i) = m_i$.
- Assume $g=(g_1,\ldots,g_n)\in X\subseteq (\mathbb{C}^*)^n$, and ord(g)=m. Then each g_j is an d_j -th primitive root of unity, with $d_j|m$ and $l.c.m(d_j)=m$.
- (By some basic Galois theory) $[\mathbb{Q}(g):\mathbb{Q}]=\phi(m)$, where $\phi(m)=\#\{k\leqslant m:(k,m)=1\}$ is the Euler totient function.
- So g has $\phi(m)$ conjugates over \mathbb{Q} , all lying in X
- So, for every m_i , X contains at least $\phi(m_i)$ -many torsion elements of order m_i .

We assume that $X \subseteq (\mathbb{C}^*)^n$ is an irreducible algebraic variety and that $X \cap Tor(\mathbb{C}^*)^n$ is infinite.

Claim The set $\Theta^{-1}(X) \cap 2\pi i \mathbb{Q}^n \cap \mathfrak{F}$ is large*:

- Since $X \cap Tor(\mathbb{C}^*)^n$ is infinite there are natural numbers $m_1 < m_2 < \dots$ and elements $g_i \in X$, with $ord(g_i) = m_i$.
- Assume $g=(g_1,\ldots,g_n)\in X\subseteq (\mathbb{C}^*)^n$, and ord(g)=m. Then each g_j is an d_j -th primitive root of unity, with $d_j|m$ and $l.c.m(d_j)=m$.
- (By some basic Galois theory) $[\mathbb{Q}(g):\mathbb{Q}]=\phi(m)$, where $\phi(m)=\#\{k\leqslant m:(k,m)=1\}$ is the Euler totient function.
- So g has $\phi(m)$ conjugates over \mathbb{Q} , all lying in λ
- So, for every m_i , X contains at least $\phi(m_i)$ -many torsion elements of order m_i .

We assume that $X \subseteq (\mathbb{C}^*)^n$ is an irreducible algebraic variety and that $X \cap Tor(\mathbb{C}^*)^n$ is infinite.

Claim The set $\Theta^{-1}(X) \cap 2\pi i \mathbb{Q}^n \cap \mathfrak{F}$ is large*:

- Since $X \cap Tor(\mathbb{C}^*)^n$ is infinite there are natural numbers $m_1 < m_2 < \dots$ and elements $g_i \in X$, with $ord(g_i) = m_i$.
- Assume $g=(g_1,\ldots,g_n)\in X\subseteq (\mathbb{C}^*)^n$, and ord(g)=m. Then each g_j is an d_j -th primitive root of unity, with $d_j|m$ and $l.c.m(d_j)=m$.
- (By some basic Galois theory) $[\mathbb{Q}(g):\mathbb{Q}]=\phi(m)$, where $\phi(m)=\#\{k\leqslant m:(k,m)=1\}$ is the Euler totient function.
- So g has $\phi(m)$ conjugates over \mathbb{Q} , all lying in X.
- So, for every m_i , X contains at least $\phi(m_i)$ -many torsion elements of order m_i .

We assume that $X \subseteq (\mathbb{C}^*)^n$ is an irreducible algebraic variety and that $X \cap Tor(\mathbb{C}^*)^n$ is infinite.

Claim The set $\Theta^{-1}(X) \cap 2\pi i \mathbb{Q}^n \cap \mathfrak{F}$ is large*:

- Since $X \cap Tor(\mathbb{C}^*)^n$ is infinite there are natural numbers $m_1 < m_2 < \dots$ and elements $g_i \in X$, with $ord(g_i) = m_i$.
- Assume $g=(g_1,\ldots,g_n)\in X\subseteq (\mathbb{C}^*)^n$, and ord(g)=m. Then each g_j is an d_j -th primitive root of unity, with $d_j|m$ and $l.c.m(d_j)=m$.
- (By some basic Galois theory) $[\mathbb{Q}(g):\mathbb{Q}]=\phi(m)$, where $\phi(m)=\#\{k\leqslant m:(k,m)=1\}$ is the Euler totient function.
- So g has $\phi(m)$ conjugates over \mathbb{Q} , all lying in X.
- So, for every m_i , X contains at least $\phi(m_i)$ -many torsion elements of order m_i .

Fact about Euler's function $\lim_{m} \phi(m)/m^{1/2} = \infty$.

- Hence, $\lim_i \frac{|\{g \in X : ord(g) = m_i\}|}{m_i^{1/2}} = \infty$.
- Let's move to the analytic side: recall that $\Theta(\bar{z})$ a torsion element of order m iff $\bar{z} = 2\pi i (r_1/s_1, \dots, r_n/s_n)$, with $s_1, \dots, s_n \mid m$.
- Because $\Theta^{-1}(X)$ is Γ -invariant, we can find such $ar{z}$ in $\Theta^{-1}(X)\cap \mathfrak{F},$
- hence each $r_i < 1$, so $ht(\bar{z}) \leqslant m$.
- So for each m_i there are $\phi(m_i)$ -many $\bar{z} \in \Theta^{-1}(X) \cap \mathfrak{F}$ of $ht \leqslant m_i$.

Corollary

$$\{ar{q}=(q_1,\ldots,q_n)\in\mathbb{Q}^n:2\pi iar{q}\in\Theta^{-1}(X)\cap\mathfrak{F}\}$$

Fact about Euler's function $\lim_{m} \phi(m)/m^{1/2} = \infty$.

- Hence, $\lim_i \frac{|\{g \in X : ord(g) = m_i\}|}{m_i^{1/2}} = \infty$.
- Let's move to the analytic side: recall that $\Theta(\bar{z})$ a torsion element of order m iff $\bar{z} = 2\pi i (r_1/s_1, \ldots, r_n/s_n)$, with $s_1, \ldots, s_n \mid m$.
- Because $\Theta^{-1}(X)$ is Γ -invariant, we can find such $ar{z}$ in $\Theta^{-1}(X)\cap \mathfrak{F},$
- hence each $r_i < 1$, so $ht(\bar{z}) \leqslant m$.
- So for each m_i there are $\phi(m_i)$ -many $\bar{z} \in \Theta^{-1}(X) \cap \mathfrak{F}$ of $ht \leqslant m_i$.

Corollary

$$\{ar{q}=(q_1,\ldots,q_n)\in\mathbb{Q}^n:2\pi iar{q}\in\Theta^{-1}(X)\cap\mathfrak{F}\}$$

Fact about Euler's function $\lim_{m} \phi(m)/m^{1/2} = \infty$.

- Hence, $\lim_i \frac{|\{g \in X : ord(g) = m_i\}|}{m_i^{1/2}} = \infty$.
- Let's move to the analytic side: recall that $\Theta(\bar{z})$ a torsion element of order m iff $\bar{z} = 2\pi i (r_1/s_1, \dots, r_n/s_n)$, with $s_1, \dots, s_n \mid m$.
- Because $\Theta^{-1}(X)$ is Γ -invariant, we can find such ar z in $\Theta^{-1}(X)\cap \mathfrak F,$
- hence each $r_i < 1$, so $ht(\bar{z}) \leqslant m$.
- So for each m_i there are $\phi(m_i)$ -many $\bar{z} \in \Theta^{-1}(X) \cap \mathfrak{F}$ of $ht \leqslant m_i$

Corollary

$$\{\bar{q}=(q_1,\ldots,q_n)\in\mathbb{Q}^n:2\pi i\bar{q}\in\Theta^{-1}(X)\cap\mathfrak{F}\}$$

Fact about Euler's function $\lim_{m} \phi(m)/m^{1/2} = \infty$.

- Hence, $\lim_{i} \frac{|\{g \in X : ord(g) = m_i\}|}{m_i^{1/2}} = \infty$.
- Let's move to the analytic side: recall that $\Theta(\bar{z})$ a torsion element of order m iff $\bar{z} = 2\pi i (r_1/s_1, \dots, r_n/s_n)$, with $s_1, \dots, s_n \mid m$.
- Because $\Theta^{-1}(X)$ is Γ -invariant, we can find such \bar{z} in $\Theta^{-1}(X) \cap \mathfrak{F}$,
- hence each $r_i < 1$, so $ht(\bar{z}) \leqslant m$.
- So for each m_i there are $\phi(m_i)$ -many $\bar{z} \in \Theta^{-1}(X) \cap \mathfrak{F}$ of $ht \leqslant m_i$.

Corollary

$$\{ar{q}=(q_1,\ldots,q_n)\in\mathbb{Q}^n:2\pi iar{q}\in\Theta^{-1}(X)\cap\mathfrak{F}\}$$

Fact about Euler's function $\lim_{m} \phi(m)/m^{1/2} = \infty$.

- Hence, $\lim_{i} \frac{|\{g \in X : ord(g) = m_i\}|}{m_i^{1/2}} = \infty$.
- Let's move to the analytic side: recall that $\Theta(\bar{z})$ a torsion element of order m iff $\bar{z} = 2\pi i (r_1/s_1, \dots, r_n/s_n)$, with $s_1, \dots, s_n \mid m$.
- Because $\Theta^{-1}(X)$ is Γ -invariant, we can find such \bar{z} in $\Theta^{-1}(X) \cap \mathfrak{F}$,
- hence each $r_i < 1$, so $ht(\bar{z}) \leqslant m$.
- So for each m_i there are $\phi(m_i)$ -many $\bar{z} \in \Theta^{-1}(X) \cap \mathfrak{F}$ of $ht \leqslant m_i$.

Corollary

$$\{\bar{q}=(q_1,\ldots,q_n)\in\mathbb{Q}^n:2\pi i\bar{q}\in\Theta^{-1}(X)\cap\mathfrak{F}\}$$

Fact about Euler's function $\lim_{m} \phi(m)/m^{1/2} = \infty$.

- Hence, $\lim_{i} \frac{|\{g \in X : ord(g) = m_i\}|}{m_i^{1/2}} = \infty$.
- Let's move to the analytic side: recall that $\Theta(\bar{z})$ a torsion element of order m iff $\bar{z} = 2\pi i (r_1/s_1, \dots, r_n/s_n)$, with $s_1, \dots, s_n \mid m$.
- Because $\Theta^{-1}(X)$ is Γ -invariant, we can find such \bar{z} in $\Theta^{-1}(X) \cap \mathfrak{F}$,
- hence each $r_i < 1$, so $ht(\bar{z}) \leqslant m$.
- So for each m_i there are $\phi(m_i)$ -many $\bar{z} \in \Theta^{-1}(X) \cap \mathfrak{F}$ of $ht \leqslant m_i$.

Corollary

$$\{\bar{q}=(q_1,\ldots,q_n)\in\mathbb{Q}^n:2\pi i\bar{q}\in\Theta^{-1}(X)\cap\mathfrak{F}\}$$

Fact about Euler's function $\lim_{m} \phi(m)/m^{1/2} = \infty$.

- Hence, $\lim_{j} \frac{|\{g \in X : ord(g) = m_i\}|}{m_i^{1/2}} = \infty$.
- Let's move to the analytic side: recall that $\Theta(\bar{z})$ a torsion element of order m iff $\bar{z} = 2\pi i (r_1/s_1, \dots, r_n/s_n)$, with $s_1, \dots, s_n \mid m$.
- Because $\Theta^{-1}(X)$ is Γ -invariant, we can find such \bar{z} in $\Theta^{-1}(X) \cap \mathfrak{F}$,
- hence each $r_i < 1$, so $ht(\bar{z}) \leqslant m$.
- So for each m_i there are $\phi(m_i)$ -many $\bar{z} \in \Theta^{-1}(X) \cap \mathfrak{F}$ of $ht \leqslant m_i$.

Corollary

$$\{\bar{q}=(q_1,\ldots,q_n)\in\mathbb{Q}^n:2\pi i\bar{q}\in\Theta^{-1}(X)\cap\mathfrak{F}\}$$

The Pila-Wilkie input

- ► The analytic set $\Theta^{-1}(X) \subseteq \mathbb{C}^n$ contains an infinite semi algebraic set S.
- ▶ The Zariski closure of S is a complex algebraic subset of $\Theta^{-1}(X)$ of positive dimension.
- ▶ Take a maximal such irreducible algebraic set $A \subseteq \Theta^{-1}(X)$.
- ▶ Note that $\Theta(A)$ is contained in the algebraic set X.
- We are in the realm of "key observation"

The Pila-Wilkie input

- ► The analytic set $\Theta^{-1}(X) \subseteq \mathbb{C}^n$ contains an infinite semi algebraic set S.
- ► The Zariski closure of S is a complex algebraic subset of $\Theta^{-1}(X)$, of positive dimension.
- ► Take a maximal such irreducible algebraic set $A \subseteq \Theta^{-1}(X)$.
- ▶ Note that $\Theta(A)$ is contained in the algebraic set X.
- We are in the realm of "key observation"

The Pila-Wilkie input

- ► The analytic set $\Theta^{-1}(X) \subseteq \mathbb{C}^n$ contains an infinite semi algebraic set S.
- ► The Zariski closure of S is a complex algebraic subset of $\Theta^{-1}(X)$, of positive dimension.
- ▶ Take a maximal such irreducible algebraic set $A \subseteq \Theta^{-1}(X)$.
- ▶ Note that $\Theta(A)$ is contained in the algebraic set X.
- ► We are in the realm of "key observation"

The Pila-Wilkie input

- ► The analytic set $\Theta^{-1}(X) \subseteq \mathbb{C}^n$ contains an infinite semi algebraic set S.
- ► The Zariski closure of S is a complex algebraic subset of $\Theta^{-1}(X)$, of positive dimension.
- ▶ Take a maximal such irreducible algebraic set $A \subseteq \Theta^{-1}(X)$.
- ▶ Note that $\Theta(A)$ is contained in the algebraic set X.
- ▶ We are in the realm of "key observation"

The Pila-Wilkie input

- ► The analytic set $\Theta^{-1}(X) \subseteq \mathbb{C}^n$ contains an infinite semi algebraic set S.
- ► The Zariski closure of S is a complex algebraic subset of $\Theta^{-1}(X)$, of positive dimension.
- ▶ Take a maximal such irreducible algebraic set $A \subseteq \Theta^{-1}(X)$.
- ▶ Note that $\Theta(A)$ is contained in the algebraic set X.
- We are in the realm of "key observation".

The Pila-Wilkie input

- ► The analytic set $\Theta^{-1}(X) \subseteq \mathbb{C}^n$ contains an infinite semi algebraic set S.
- ► The Zariski closure of S is a complex algebraic subset of $\Theta^{-1}(X)$, of positive dimension.
- ▶ Take a maximal such irreducible algebraic set $A \subseteq \Theta^{-1}(X)$.
- ▶ Note that $\Theta(A)$ is contained in the algebraic set X.
- We are in the realm of "key observation".

The Pila-Wilkie input

- ► The analytic set $\Theta^{-1}(X) \subseteq \mathbb{C}^n$ contains an infinite semi algebraic set S.
- ► The Zariski closure of S is a complex algebraic subset of $\Theta^{-1}(X)$, of positive dimension.
- ▶ Take a maximal such irreducible algebraic set $A \subseteq \Theta^{-1}(X)$.
- ▶ Note that $\Theta(A)$ is contained in the algebraic set X.
- ▶ We are in the realm of "key observation".

A-L Theorem

```
If \xi_1, \ldots, \xi_n \in \mathbb{C}(A) and lin.dim_{\mathbb{Q}}(\bar{\xi}/\mathbb{C}) = m then tr.deg(\mathbb{C}(e^{\xi_1}, \ldots, e^{\xi_n})/\mathbb{C}) = m.
```

- ▶ Take $H \subseteq \mathbb{C}^n$ a minimal subspace $/\mathbb{Q}$ with $A \subseteq H + p$ for $p \in \mathbb{C}^n$. Let $m = \dim H$.
- ▶ We have $\Theta(A) \subseteq \Theta(H) \star \Theta(p)$, and $\Theta(H) \leqslant (\mathbb{C}^*)^n$ algebraic.
- ▶ If $\xi_1, ..., \xi_n \in \mathbb{C}(A)$ coordinate functions then $lin.dim_{\mathbb{Q}}(\bar{\xi}/\mathbb{C}) = m$, so by Ax $tr.deg(\Theta(\bar{\xi}))/\mathbb{C}) = m = dim(\Theta(H) * \Theta(p))$.
- ▶ Hence, $\Theta(A)$ is Zariski dense in $\Theta(H) * \Theta(p)$. So, $\Theta(H) * \Theta(p) \subseteq X$ (otherwise, $\Theta(\bar{z}) \in (\Theta(H) * \Theta(p)) \cap X$ has smaller dimension).
- ▶ Hence, $H + p \subseteq \Theta^{-1}(X)$, and recall $A \subseteq H + p$.
- ▶ By maximality, A = H + p, so A is weakly special.

A-L Theorem

```
If \xi_1, \ldots, \xi_n \in \mathbb{C}(A) and lin.dim_{\mathbb{Q}}(\bar{\xi}/\mathbb{C}) = m then tr.deg(\mathbb{C}(e^{\xi_1}, \ldots, e^{\xi_n})/\mathbb{C}) = m.
```

- ► Take $H \subseteq \mathbb{C}^n$ a minimal subspace $/\mathbb{Q}$ with $A \subseteq H + p$ for $p \in \mathbb{C}^n$. Let $m = \dim H$.
- ▶ We have $\Theta(A) \subseteq \Theta(H) \star \Theta(p)$, and $\Theta(H) \leq (\mathbb{C}^*)^n$ algebraic.
- If $\xi_1, \ldots, \xi_n \in \mathbb{C}(A)$ coordinate functions then $\lim_{n \to \infty} \dim_{\mathbb{Q}}(\xi/\mathbb{C}) = m$ so by Ax $\operatorname{tr.deg}(\Theta(\bar{\xi}))/\mathbb{C}) = m = \dim(\Theta(H) * \Theta(p))$.
- ▶ Hence, $\Theta(A)$ is Zariski dense in $\Theta(H) * \Theta(p)$. So, $\Theta(H) * \Theta(p) \subseteq \lambda$ (otherwise, $\Theta(\bar{z}) \in (\Theta(H) * \Theta(p)) \cap X$ has smaller dimension).
- ▶ Hence, $H + p \subseteq \Theta^{-1}(X)$, and recall $A \subseteq H + p$.
- ▶ By maximality, A = H + p, so A is weakly special.

A-L Theorem

If $\xi_1, \ldots, \xi_n \in \mathbb{C}(A)$ and $\lim_{\mathbb{Q}} (\bar{\xi}/\mathbb{C}) = m$ then $\operatorname{tr.deg}(\mathbb{C}(e^{\xi_1}, \ldots, e^{\xi_n})/\mathbb{C}) = m$.

- ► Take $H \subseteq \mathbb{C}^n$ a minimal subspace $/\mathbb{Q}$ with $A \subseteq H + p$ for $p \in \mathbb{C}^n$. Let $m = \dim H$.
- ▶ We have $\Theta(A) \subseteq \Theta(H) \star \Theta(p)$, and $\Theta(H) \leqslant (\mathbb{C}^*)^n$ algebraic.
- ▶ If $\xi_1, ..., \xi_n \in \mathbb{C}(A)$ coordinate functions then $lin.dim_{\mathbb{Q}}(\xi/\mathbb{C}) = m$, so by Ax $tr.deg(\Theta(\bar{\xi}))/\mathbb{C}) = m = dim(\Theta(H) * \Theta(p))$.
- ▶ Hence, $\Theta(A)$ is Zariski dense in $\Theta(H) * \Theta(p)$. So, $\Theta(H) * \Theta(p) \subseteq X$ (otherwise, $\Theta(\overline{z}) \in (\Theta(H) * \Theta(p)) \cap X$ has smaller dimension).
- ▶ Hence, $H + p \subseteq \Theta^{-1}(X)$, and recall $A \subseteq H + p$.
- ▶ By maximality, A = H + p, so A is weakly special.

A-L Theorem

```
If \xi_1, \ldots, \xi_n \in \mathbb{C}(A) and lin.dim_{\mathbb{Q}}(\bar{\xi}/\mathbb{C}) = m then tr.deg(\mathbb{C}(e^{\xi_1}, \ldots, e^{\xi_n})/\mathbb{C}) = m.
```

- ► Take $H \subseteq \mathbb{C}^n$ a minimal subspace $/\mathbb{Q}$ with $A \subseteq H + p$ for $p \in \mathbb{C}^n$. Let $m = \dim H$.
- ▶ We have $\Theta(A) \subseteq \Theta(H) \star \Theta(p)$, and $\Theta(H) \leqslant (\mathbb{C}^*)^n$ algebraic.
- ▶ If $\xi_1, ..., \xi_n \in \mathbb{C}(A)$ coordinate functions then $\lim_{n \to \infty} (\bar{\xi}/\mathbb{C}) = m$, so by Ax $\operatorname{tr.deg}(\Theta(\bar{\xi}))/\mathbb{C}) = m = \dim(\Theta(H) * \Theta(p))$.
- ► Hence, $\Theta(A)$ is Zariski dense in $\Theta(H) * \Theta(p)$. So, $\Theta(H) * \Theta(p) \subseteq$ (otherwise, $\Theta(\bar{z}) \in (\Theta(H) * \Theta(p)) \cap X$ has smaller dimension).
- ▶ Hence, $H + p \subseteq \Theta^{-1}(X)$, and recall $A \subseteq H + p$.
- ightharpoonup By maximality, A = H + p, so A is weakly special.

A-L Theorem

```
If \xi_1, \ldots, \xi_n \in \mathbb{C}(A) and lin.dim_{\mathbb{Q}}(\bar{\xi}/\mathbb{C}) = m then tr.deg(\mathbb{C}(e^{\xi_1}, \ldots, e^{\xi_n})/\mathbb{C}) = m.
```

- ► Take $H \subseteq \mathbb{C}^n$ a minimal subspace $/\mathbb{Q}$ with $A \subseteq H + p$ for $p \in \mathbb{C}^n$. Let $m = \dim H$.
- ▶ We have $\Theta(A) \subseteq \Theta(H) \star \Theta(p)$, and $\Theta(H) \leqslant (\mathbb{C}^*)^n$ algebraic.
- ▶ If $\xi_1, ..., \xi_n \in \mathbb{C}(A)$ coordinate functions then $\lim_{n \to \infty} (\bar{\xi}/\mathbb{C}) = m$, so by Ax $\operatorname{tr.deg}(\Theta(\bar{\xi}))/\mathbb{C}) = m = \dim(\Theta(H) * \Theta(p))$.
- ▶ Hence, $\Theta(A)$ is Zariski dense in $\Theta(H) * \Theta(p)$. So, $\Theta(H) * \Theta(p) \subseteq$ (otherwise, $\Theta(\bar{z}) \in (\Theta(H) * \Theta(p)) \cap X$ has smaller dimension).
- ▶ Hence, $H + p \subseteq \Theta^{-1}(X)$, and recall $A \subseteq H + p$.
- ▶ By maximality, A = H + p, so A is weakly special.

A-L Theorem

```
If \xi_1, \ldots, \xi_n \in \mathbb{C}(A) and lin.dim_{\mathbb{Q}}(\bar{\xi}/\mathbb{C}) = m then tr.deg(\mathbb{C}(e^{\xi_1}, \ldots, e^{\xi_n})/\mathbb{C}) = m.
```

- ▶ Take $H \subseteq \mathbb{C}^n$ a minimal subspace $/\mathbb{Q}$ with $A \subseteq H + p$ for $p \in \mathbb{C}^n$. Let $m = \dim H$.
- ▶ We have $\Theta(A) \subseteq \Theta(H) \star \Theta(p)$, and $\Theta(H) \leqslant (\mathbb{C}^*)^n$ algebraic.
- ▶ If $\xi_1, ..., \xi_n \in \mathbb{C}(A)$ coordinate functions then $\lim_{n \to \infty} (\bar{\xi}/\mathbb{C}) = m$, so by Ax $\operatorname{tr.deg}(\Theta(\bar{\xi}))/\mathbb{C}) = m = \dim(\Theta(H) * \Theta(p))$.
- ► Hence, $\Theta(A)$ is Zariski dense in $\Theta(H) * \Theta(p)$. So, $\Theta(H) * \Theta(p) \subseteq X$ (otherwise, $\Theta(Z) \in (\Theta(H) * \Theta(p)) \cap X$ has smaller dimension).
- ▶ Hence, $H + p \subseteq \Theta^{-1}(X)$, and recall $A \subseteq H + p$.
- ▶ By maximality, A = H + p, so A is weakly special.

A-L Theorem

```
If \xi_1, \ldots, \xi_n \in \mathbb{C}(A) and lin.dim_{\mathbb{Q}}(\bar{\xi}/\mathbb{C}) = m then tr.deg(\mathbb{C}(e^{\xi_1}, \ldots, e^{\xi_n})/\mathbb{C}) = m.
```

- ► Take $H \subseteq \mathbb{C}^n$ a minimal subspace $/\mathbb{Q}$ with $A \subseteq H + p$ for $p \in \mathbb{C}^n$. Let $m = \dim H$.
- ▶ We have $\Theta(A) \subseteq \Theta(H) \star \Theta(p)$, and $\Theta(H) \leqslant (\mathbb{C}^*)^n$ algebraic.
- ▶ If $\xi_1, ..., \xi_n \in \mathbb{C}(A)$ coordinate functions then $\lim_{n \to \infty} (\bar{\xi}/\mathbb{C}) = m$, so by Ax $\operatorname{tr.deg}(\Theta(\bar{\xi}))/\mathbb{C}) = m = \dim(\Theta(H) * \Theta(p))$.
- ► Hence, $\Theta(A)$ is Zariski dense in $\Theta(H) * \Theta(p)$. So, $\Theta(H) * \Theta(p) \subseteq X$ (otherwise, $\Theta(\overline{z}) \in (\Theta(H) * \Theta(p)) \cap X$ has smaller dimension).
- ▶ Hence, $H + p \subseteq \Theta^{-1}(X)$, and recall $A \subseteq H + p$.
- ► By maximality, A = H + p, so A is weakly special.

A-L Theorem

```
If \xi_1, \ldots, \xi_n \in \mathbb{C}(A) and \lim_{\mathbb{Q}} (\bar{\xi}/\mathbb{C}) = m then \operatorname{tr.deg}(\mathbb{C}(e^{\xi_1}, \ldots, e^{\xi_n})/\mathbb{C}) = m.
```

- ► Take $H \subseteq \mathbb{C}^n$ a minimal subspace $/\mathbb{Q}$ with $A \subseteq H + p$ for $p \in \mathbb{C}^n$. Let $m = \dim H$.
- ▶ We have $\Theta(A) \subseteq \Theta(H) \star \Theta(p)$, and $\Theta(H) \leqslant (\mathbb{C}^*)^n$ algebraic.
- ▶ If $\xi_1, ..., \xi_n \in \mathbb{C}(A)$ coordinate functions then $\lim_{n \to \infty} (\bar{\xi}/\mathbb{C}) = m$, so by Ax $tr.deg(\Theta(\bar{\xi}))/\mathbb{C}) = m = dim(\Theta(H) * \Theta(p))$.
- ► Hence, $\Theta(A)$ is Zariski dense in $\Theta(H) * \Theta(p)$. So, $\Theta(H) * \Theta(p) \subseteq X$ (otherwise, $\Theta(\overline{z}) \in (\Theta(H) * \Theta(p)) \cap X$ has smaller dimension).
- ► Hence, $H + p \subseteq \Theta^{-1}(X)$, and recall $A \subseteq H + p$.
 - ► By maximality, A = H + p, so A is weakly special.

A-L Theorem

```
If \xi_1, \ldots, \xi_n \in \mathbb{C}(A) and lin.dim_{\mathbb{Q}}(\bar{\xi}/\mathbb{C}) = m then tr.deg(\mathbb{C}(e^{\xi_1}, \ldots, e^{\xi_n})/\mathbb{C}) = m.
```

- ► Take $H \subseteq \mathbb{C}^n$ a minimal subspace $/\mathbb{Q}$ with $A \subseteq H + p$ for $p \in \mathbb{C}^n$. Let $m = \dim H$.
- ▶ We have $\Theta(A) \subseteq \Theta(H) \star \Theta(p)$, and $\Theta(H) \leqslant (\mathbb{C}^*)^n$ algebraic.
- ▶ If $\xi_1, ..., \xi_n \in \mathbb{C}(A)$ coordinate functions then $\lim_{n \to \infty} (\bar{\xi}/\mathbb{C}) = m$, so by Ax $tr.deg(\Theta(\bar{\xi}))/\mathbb{C}) = m = dim(\Theta(H) * \Theta(p))$.
- ► Hence, $\Theta(A)$ is Zariski dense in $\Theta(H) * \Theta(p)$. So, $\Theta(H) * \Theta(p) \subseteq X$ (otherwise, $\Theta(\bar{z}) \in (\Theta(H) * \Theta(p)) \cap X$ has smaller dimension).
- ► Hence, $H + p \subseteq \Theta^{-1}(X)$, and recall $A \subseteq H + p$.
- ▶ By maximality, A = H + p, so A is weakly special.

- We started with $X \subseteq (\mathbb{G}^m)^n$ such that $Tor(\mathbb{G}_m)^n \cap X$ is Zariski dense in X.
- Using number theory we concluded that $\Theta^{-1}(X)$ contains large*-many rational points.
- Using Pila-Wilkie, we concluded that $\Theta^{-1}(X)$ contains a nontrivial complex algebraic set A. Furthermore we can choose it so $A \cap \widetilde{\mathbb{S}}_0$ is nonempty. Take such A maximal.
- By Ax, A is weakly special, hence special $(A \cap S_0 \neq \emptyset)$.
- It follows that X contains a nontrivial special set $\Theta(A)$.
- By using the full strength of Pila-Wilkie we could show that X is actually special.

- We started with $X \subseteq (\mathbb{G}^m)^n$ such that $Tor(\mathbb{G}_m)^n \cap X$ is Zariski dense in X.
- Using number theory we concluded that $\Theta^{-1}(X)$ contains large*-many rational points.
- Using Pila-Wilkie, we concluded that $\Theta^{-1}(X)$ contains a nontrivial complex algebraic set A. Furthermore we can choose it so $A \cap \widetilde{S}_0$ is nonempty. Take such A maximal.
- By Ax, A is weakly special, hence special $(A \cap S_0 \neq \emptyset)$
- It follows that X contains a nontrivial special set $\Theta(A)$
- By using the full strength of Pila-Wilkie we could show that X is actually special.

- We started with $X \subseteq (\mathbb{G}^m)^n$ such that $Tor(\mathbb{G}_m)^n \cap X$ is Zariski dense in X.
- Using number theory we concluded that $\Theta^{-1}(X)$ contains large*-many rational points.
- Using Pila-Wilkie, we concluded that $\Theta^{-1}(X)$ contains a nontrivial complex algebraic set A. Furthermore we can choose it so $A \cap \widetilde{S}_0$ is nonempty. Take such A maximal.
- By Ax, A is weakly special, hence special $(A \cap S_0 \neq \emptyset)$
- It follows that X contains a nontrivial special set $\Theta(A)$
- By using the full strength of Pila-Wilkie we could show that X is actually special.

- We started with $X \subseteq (\mathbb{G}^m)^n$ such that $Tor(\mathbb{G}_m)^n \cap X$ is Zariski dense in X.
- Using number theory we concluded that $\Theta^{-1}(X)$ contains large*-many rational points.
- Using Pila-Wilkie, we concluded that $\Theta^{-1}(X)$ contains a nontrivial complex algebraic set A. Furthermore we can choose it so $A \cap \bar{S}_0$ is nonempty. Take such A maximal.
- By Ax, A is weakly special, hence special $(A \cap S_0 \neq \emptyset)$
- It follows that X contains a nontrivial special set $\Theta(A)$
- By using the full strength of Pila-Wilkie we could show that X is actually special.

- We started with $X \subseteq (\mathbb{G}^m)^n$ such that $Tor(\mathbb{G}_m)^n \cap X$ is Zariski dense in X.
- Using number theory we concluded that $\Theta^{-1}(X)$ contains large*-many rational points.
- Using Pila-Wilkie, we concluded that $\Theta^{-1}(X)$ contains a nontrivial complex algebraic set A. Furthermore we can choose it so $A \cap \widetilde{S}_0$ is nonempty. Take such A maximal.
- By Ax, A is weakly special, hence special $(A \cap S_0 \neq \varnothing)$
- It follows that X contains a nontrivial special set $\Theta(A)$
- By using the full strength of Pila-Wilkie we could show that X is actually special.

- We started with $X \subseteq (\mathbb{G}^m)^n$ such that $Tor(\mathbb{G}_m)^n \cap X$ is Zariski dense in X.
- Using number theory we concluded that $\Theta^{-1}(X)$ contains large*-many rational points.
- Using Pila-Wilkie, we concluded that $\Theta^{-1}(X)$ contains a nontrivial complex algebraic set A. Furthermore we can choose it so $A \cap \widetilde{S}_0$ is nonempty. Take such A maximal.
- By Ax, A is weakly special, hence special $(A \cap \widetilde{S}_0 \neq \emptyset)$.
- It follows that X contains a nontrivial special set $\Theta(A)$
- By using the full strength of Pila-Wilkie we could show that X is actually special.

- We started with $X \subseteq (\mathbb{G}^m)^n$ such that $Tor(\mathbb{G}_m)^n \cap X$ is Zariski dense in X.
- Using number theory we concluded that $\Theta^{-1}(X)$ contains large*-many rational points.
- Using Pila-Wilkie, we concluded that $\Theta^{-1}(X)$ contains a nontrivial complex algebraic set A. Furthermore we can choose it so $A \cap \widetilde{S}_0$ is nonempty. Take such A maximal.
- By Ax, A is weakly special, hence special $(A \cap \widetilde{S}_0 \neq \varnothing)$.
- It follows that X contains a nontrivial special set $\Theta(A)$.
- By using the full strength of Pila-Wilkie we could show that X is actually special.

- We started with $X \subseteq (\mathbb{G}^m)^n$ such that $Tor(\mathbb{G}_m)^n \cap X$ is Zariski dense in X.
- Using number theory we concluded that $\Theta^{-1}(X)$ contains large*-many rational points.
- Using Pila-Wilkie, we concluded that $\Theta^{-1}(X)$ contains a nontrivial complex algebraic set A. Furthermore we can choose it so $A \cap \widetilde{S}_0$ is nonempty. Take such A maximal.
- By Ax, A is weakly special, hence special $(A \cap \widetilde{S}_0 \neq \varnothing)$.
- It follows that X contains a nontrivial special set $\Theta(A)$.
- By using the full strength of Pila-Wilkie we could show that X is actually special.

The general Pila-Zannier method

Recall the general problem scheme:

 $\mathcal{C}=$ a family of complex algebraic (irreducible) varieties, (quasi) affine or projective.

S = a specified subfamily of "special" varieties.

 $S_0 = 0$ -dimensional S-sets: special points

V = an irreducible S-variety.

 $X \subseteq V$ an irreducible complex algebraic subvariety (so $X \in \mathcal{C}$)

Assumption

The special points $(X \cap S_0)$ are Zariski dense in X.

Goal

The variety X is special ($X \in S$) (or at least contains a special variety).

The general Pila-Zannier method

Recall the general problem scheme:

 ${\cal C}=$ a family of complex algebraic (irreducible) varieties, (quasi) affine or projective.

S = a specified subfamily of "special" varieties.

 $S_0 = 0$ -dimensional S-sets: special points.

V = an irreducible S-variety.

 $X \subseteq V$ an irreducible complex algebraic subvariety (so $X \in \mathcal{C}$)

Assumption

The special points $(X \cap S_0)$ are Zariski dense in X.

Goal

The variety X is special ($X \in S$) (or at least contains a special variety).

The general Pila-Zannier method

Recall the general problem scheme:

 ${\cal C}=$ a family of complex algebraic (irreducible) varieties, (quasi) affine or projective.

S = a specified subfamily of "special" varieties.

 $S_0 = 0$ -dimensional S-sets: special points.

V = an irreducible S-variety.

 $X \subseteq V$ an irreducible complex algebraic subvariety (so $X \in C$)

Assumption

The special points $(X \cap S_0)$ are Zariski dense in X.

Goal

The variety X is special ($X \in S$) (or at least contains a special variety).

An analytic presentation

An analytic covering map

In all our settings we have $\widetilde{V}=$ a (semi-algebraic) open subset of \mathbb{C}^n (with $n=\dim V$). And $\Theta:\widetilde{V}\to V$ a **holomorphic**, **transcendental**, surjection.

General strategy

Instead of V and $X \subseteq V$ consider V and the complex analytic subvariety $\Theta^{-1}(X) \subseteq \widetilde{V}$.

Caution

In general, Θ and $\Theta^{-1}(X)$ are not definable in any "tame" structure. We will need to "truncate" it.

An analytic presentation

An analytic covering map

In all our settings we have $\widetilde{V}=$ a (semi-algebraic) open subset of \mathbb{C}^n (with $n=\dim V$). And $\Theta:\widetilde{V}\to V$ a **holomorphic**, **transcendental**, surjection.

General strategy

Instead of V and $X \subseteq V$ consider \widetilde{V} and the complex analytic subvariety $\Theta^{-1}(X) \subseteq \widetilde{V}$.

Caution

In general, Θ and $\Theta^{-1}(X)$ are not definable in any "tame" structure. We will need to "truncate" it.

An analytic presentation

An analytic covering map

In all our settings we have $\widetilde{V}=$ a (semi-algebraic) open subset of \mathbb{C}^n (with $n=\dim V$). And $\Theta:\widetilde{V}\to V$ a **holomorphic**, **transcendental**, surjection.

General strategy

Instead of V and $X \subseteq V$ consider V and the complex analytic subvariety $\Theta^{-1}(X) \subseteq \widetilde{V}$.

Caution

In general, Θ and $\Theta^{-1}(X)$ are not definable in any "tame" structure. We will need to "truncate" it.

An underlying group action

We have G = a real algebraic group acting semi-algebraically and transitively on \widetilde{V} . In some cases $\widetilde{V} = G$.

 Γ = an infinite discrete subgroup of G (not necessarily normal)

The map $\Theta:V\to V$ is Γ -invariant. Namely, $\Theta(x)=\Theta(y)$ if and only if $\Gamma x=\Gamma y$.

So, V can be identified with $\Gamma \setminus \widetilde{V}$.

If $X \subseteq V$ is a complex algebraic subvariety then $\Theta^{-1}(X) = \widetilde{X}$ is a Γ -invariant **analytic subvariety** of \widetilde{V} .

In general, \widetilde{X} might have infinitely many connected components.

An underlying group action

We have G = a real algebraic group acting semi-algebraically and transitively on \widetilde{V} . In some cases $\widetilde{V} = G$.

 Γ = an infinite discrete subgroup of G (not necessarily normal)

The map $\Theta: V \to V$ is Γ -invariant. Namely, $\Theta(x) = \Theta(y)$ if and only if $\Gamma x = \Gamma y$.

So, V can be identified with $\Gamma(\widetilde{V})$

If $X \subseteq V$ is a complex algebraic subvariety then $\Theta^{-1}(X) = \widetilde{X}$ is a Γ -invariant **analytic subvariety** of \widetilde{V} .

In general, \widetilde{X} might have infinitely many connected components.

An underlying group action

We have G = a real algebraic group acting semi-algebraically and transitively on \widetilde{V} . In some cases $\widetilde{V} = G$.

 Γ = an infinite discrete subgroup of G (not necessarily normal).

The map $\Theta: V \to V$ is Γ -invariant. Namely, $\Theta(x) = \Theta(y)$ if and only if $\Gamma x = \Gamma y$.

So, V can be identified with $\Gamma \setminus \widetilde{V}$.

If $X \subseteq V$ is a complex algebraic subvariety then $\Theta^{-1}(X) = X$ is a Γ -invariant **analytic subvariety** of \widetilde{V} .

In general, \tilde{X} might have infinitely many connected components

An underlying group action

We have G = a real algebraic group acting semi-algebraically and transitively on \widetilde{V} . In some cases $\widetilde{V} = G$.

 Γ = an infinite discrete subgroup of G (not necessarily normal).

The map $\Theta: \widetilde{V} \to V$ is Γ -invariant. Namely, $\Theta(x) = \Theta(y)$ if and only if $\Gamma x = \Gamma y$.

So, V can be identified with $\Gamma \setminus \widetilde{V}$.

If $X \subseteq V$ is a complex algebraic subvariety then $\Theta^{-1}(X) = \widetilde{X}$ is a Γ -invariant **analytic subvariety** of \widetilde{V} .

In general, \tilde{X} might have infinitely many connected components

An underlying group action

We have G = a real algebraic group acting semi-algebraically and transitively on \widetilde{V} . In some cases $\widetilde{V} = G$.

 Γ = an infinite discrete subgroup of G (not necessarily normal).

The map $\Theta: \widetilde{V} \to V$ is Γ -invariant. Namely, $\Theta(x) = \Theta(y)$ if and only if $\Gamma x = \Gamma y$.

So, V can be identified with $\Gamma \setminus \widetilde{V}$.

If $X \subseteq V$ is a complex algebraic subvariety then $\Theta^{-1}(X) = X$ is a Γ -invariant **analytic subvariety** of \widetilde{V} .

In general, \widetilde{X} might have infinitely many connected components.

An underlying group action

We have G = a real algebraic group acting semi-algebraically and transitively on \widetilde{V} . In some cases $\widetilde{V} = G$.

 Γ = an infinite discrete subgroup of G (not necessarily normal).

The map $\Theta: \widetilde{V} \to V$ is Γ -invariant. Namely, $\Theta(x) = \Theta(y)$ if and only if $\Gamma x = \Gamma y$.

So, V can be identified with $\Gamma \setminus \widetilde{V}$.

If $X \subseteq V$ is a complex algebraic subvariety then $\Theta^{-1}(X) = \widetilde{X}$ is a Γ -invariant **analytic subvariety** of \widetilde{V} .

In general, \widetilde{X} might have infinitely many connected components.

An underlying group action

We have G = a real algebraic group acting semi-algebraically and transitively on \widetilde{V} . In some cases $\widetilde{V} = G$.

 Γ = an infinite discrete subgroup of G (not necessarily normal).

The map $\Theta: \widetilde{V} \to V$ is Γ -invariant. Namely, $\Theta(x) = \Theta(y)$ if and only if $\Gamma x = \Gamma y$.

So, V can be identified with $\Gamma \setminus \widetilde{V}$.

If $X \subseteq V$ is a complex algebraic subvariety then $\Theta^{-1}(X) = \widetilde{X}$ is a Γ -invariant **analytic subvariety** of \widetilde{V} .

In general, \tilde{X} might have infinitely many connected components.

From special to special

An irreducible analytic subvariety $Y \subseteq V$ is called a special variety i $\Theta(Y)$ is a special subvariety of V. In particular, $\Theta(Y)$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety $\widetilde{X} \subseteq \widetilde{V}$ is special iff

- (i) $\Theta(X)$ is an algebraic subvariety of V.
- (ii) There exists a real algebraic subgroup $H \subseteq G$ such that X is an orbit of H. In case $\widetilde{V} = G$ it means that \widetilde{X} is a coset. (Note: it follows in either case that \widetilde{X} is real algebraic).
- (iii) $\widetilde{X} \cap \widetilde{S}_0 \neq \varnothing$
- If only (i) and (ii) hold then \tilde{X} is called **weakly special**.

From special to special

An irreducible analytic subvariety $Y \subseteq \widetilde{V}$ is called a special variety if $\Theta(Y)$ is a special subvariety of V. In particular, $\Theta(Y)$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety $X \subseteq V$ is special iff

- (i) $\Theta(X)$ is an algebraic subvariety of V.
- (ii) There exists a real algebraic subgroup $H \subseteq G$ such that X is an orbit of H. In case $\widetilde{V} = G$ it means that \widetilde{X} is a coset. (Note: it follows in either case that \widetilde{X} is real algebraic).
- (iii) $\widetilde{X} \cap S_0 \neq \emptyset$
- If only (i) and (ii) hold then X is called **weakly special**.

From special to special

An irreducible analytic subvariety $\underline{Y} \subseteq V$ is called a special variety if $\underline{\Theta}(\underline{Y})$ is a special subvariety of \underline{V} . In particular, $\underline{\Theta}(\underline{Y})$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety $X \subseteq V$ is special iff

- (i) $\Theta(X)$ is an algebraic subvariety of V.
- (ii) There exists a real algebraic subgroup $H \subseteq G$ such that X is an orbit of H. In case $\widetilde{V} = G$ it means that \widetilde{X} is a coset. (Note: it follows in either case that \widetilde{X} is real algebraic).
- (iii) $\widetilde{X} \cap S_0 \neq \emptyset$
- If only (i) and (ii) hold then X is called **weakly special**.

From special to special

An irreducible analytic subvariety $Y \subseteq V$ is called a special variety if $\Theta(Y)$ is a special subvariety of V. In particular, $\Theta(Y)$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

- An irreducible complex analytic variety $X \subseteq V$ is special iff
- (i) $\Theta(X)$ is an algebraic subvariety of V
- (ii) There exists a real algebraic subgroup $H \subseteq G$ such that X is an orbit of H. In case $\widetilde{V} = G$ it means that \widetilde{X} is a coset. (Note: it follows i either case that \widetilde{X} is real algebraic).
- (iii) $X \cap S_0 \neq \emptyset$.
- If only (i) and (ii) hold then X is called weakly special.

From special to special

An irreducible analytic subvariety $Y \subseteq \widetilde{V}$ is called a special variety if $\Theta(Y)$ is a special subvariety of V. In particular, $\Theta(Y)$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety $\widetilde{X} \subseteq V$ is special iff (i) $\Theta(\widetilde{X})$ is an algebraic subvariety of V.

(ii) There exists a real algebraic subgroup $H \subseteq G$ such that X is an orbit of H. In case $\widetilde{V} = G$ it means that \widetilde{X} is a coset. (Note: it follows either case that \widetilde{X} is real algebraic).

(iii) $X \cap S_0 \neq \emptyset$.

• If only (i) and (ii) hold then X is called weakly special.

From special to special

An irreducible analytic subvariety $\underline{Y} \subseteq V$ is called a special variety if $\underline{\Theta}(\underline{Y})$ is a special subvariety of \underline{V} . In particular, $\underline{\Theta}(\underline{Y})$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety $X \subseteq V$ is special iff

- (i) $\Theta(X)$ is an algebraic subvariety of V.
- (ii) There exists a real algebraic subgroup $H \subseteq G$ such that X is an orbit of H. In case V = G it means that X is a coset. (Note: it follows in
- (iii) $X \cap S_0 \neq \emptyset$.

• If only (i) and (ii) hold then \widetilde{X} is called weakly special.

From special to special

An irreducible analytic subvariety $Y \subseteq V$ is called a special variety if $\Theta(Y)$ is a special subvariety of V. In particular, $\Theta(Y)$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety $X \subseteq V$ is special iff

- (i) $\Theta(X)$ is an algebraic subvariety of V.
- (ii) There exists a real algebraic subgroup $H \subseteq G$ such that X is an orbit of H. In case $\widetilde{V} = G$ it means that \widetilde{X} is a coset. (Note: it follows in
- either case that X is real algebraic).
- (iii) $X \cap S_0 \neq \emptyset$.
- If only (i) and (ii) hold then X is called weakly special.

From special to special

An irreducible analytic subvariety $Y \subseteq V$ is called a special variety if $\Theta(Y)$ is a special subvariety of V. In particular, $\Theta(Y)$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety $X \subseteq V$ is special iff

- (i) $\Theta(X)$ is an algebraic subvariety of V.
- (ii) There exists a real algebraic subgroup $H \subseteq G$ such that X is an orbit of H. In case $\widetilde{V} = G$ it means that \widetilde{X} is a coset. (Note: it follows in either case that \widetilde{X} is real algebraic).

(iii) $X \cap S_0 \neq \emptyset$.

• If only (i) and (ii) hold then \widetilde{X} is called **weakly special**.

From special to special

An irreducible analytic subvariety $Y \subseteq V$ is called a special variety if $\Theta(Y)$ is a special subvariety of V. In particular, $\Theta(Y)$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety $X \subseteq V$ is special iff

- (i) $\Theta(X)$ is an algebraic subvariety of V.
- (ii) There exists a real algebraic subgroup $H\subseteq G$ such that \widetilde{X} is an orbit of H. In case $\widetilde{V}=G$ it means that \widetilde{X} is a coset. (Note: it follows in either case that \widetilde{X} is real algebraic).
- (iii) $\widetilde{X} \cap \widetilde{S}_0 \neq \emptyset$.
- If only (i) and (ii) hold then X is called weakly special.

From special to special

An irreducible analytic subvariety $Y \subseteq V$ is called a special variety if $\Theta(Y)$ is a special subvariety of V. In particular, $\Theta(Y)$ is algebraic (!).

A point $z \in V$ is **special** if $\Theta(z)$ is a special point. Namely $\Theta(z) \in S_0$.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety $X \subseteq V$ is special iff

- (i) $\Theta(X)$ is an algebraic subvariety of V.
- (ii) There exists a real algebraic subgroup $H \subseteq G$ such that X is an orbit of H. In case $\widetilde{V} = G$ it means that \widetilde{X} is a coset. (Note: it follows in either case that \widetilde{X} is real algebraic).
- (iii) $\widetilde{X} \cap \widetilde{S}_0 \neq \emptyset$.
- If only (i) and (ii) hold then X is called weakly special.

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $S_0 \subseteq V$ the set of special points.

I. Definability requirements (from algebraic to o-minimal

One needs to establish the existence of a semialgebraic fundamental set $\mathfrak{F}\subseteq\widetilde{V}$ for Γ and the definability of $\Theta\upharpoonright\mathfrak{F}$ in some o-minimal structure \mathcal{M} . In all examples, \mathcal{M} is $\mathbb{R}_{an,exp}$.

For $X \subseteq V$ algebraic, let $X \subseteq V$ be an irreducible analytic component of $\Theta^{-1}(X)$. Note that $\widetilde{X} \cap \mathfrak{F} = (\Theta \upharpoonright \mathfrak{F})^{-1}(X)$ is definable in \mathcal{M} .

- The set $\widetilde{\mathbb{S}}_0 = \Theta^{-1}(\mathbb{S}_0)$ is contained in \mathbb{Q}_k^{alg} for some k.
- ▶ If $X \cap S_0$ is Zariski dense in X then $S_0 \cap (X \cap \mathfrak{F})$ is large*. This is "the lower bound".

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $S_0 \subseteq V$ the set of special points.

I. Definability requirements (from algebraic to o-minimal

One needs to establish the existence of a semialgebraic fundamental set $\mathfrak{F}\subseteq\widetilde{V}$ for Γ and the definability of $\Theta\upharpoonright\mathfrak{F}$ in some o-minimal structure \mathcal{M} . In all examples, \mathcal{M} is $\mathbb{R}_{an,exp}$.

For $X \subseteq V$ algebraic, let $\widetilde{X} \subseteq \widetilde{V}$ be an irreducible analytic component of $\Theta^{-1}(X)$. Note that $\widetilde{X} \cap \mathfrak{F} = (\Theta \upharpoonright \mathfrak{F})^{-1}(X)$ is definable in \mathcal{M} .

- The set $\widetilde{\mathbb{S}}_0 = \Theta^{-1}(\mathbb{S}_0)$ is contained in \mathbb{Q}_k^{alg} for some k.
- ▶ If $X \cap S_0$ is Zariski dense in X then $\widetilde{S}_0 \cap (X \cap \mathfrak{F})$ is large*. This is "the lower bound".

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $S_0 \subseteq V$ the set of special points.

I. Definability requirements (from algebraic to o-minimal)

One needs to establish the existence of a semialgebraic fundamental set $\mathfrak{F}\subseteq\widetilde{V}$ for Γ and the definability of $\Theta\upharpoonright\mathfrak{F}$ in some o-minimal structure \mathcal{M} . In all examples, \mathcal{M} is $\mathbb{R}_{an,exp}$.

For $X \subseteq V$ algebraic, let $X \subseteq V$ be an irreducible analytic component of $\Theta^{-1}(X)$. Note that $\widetilde{X} \cap \mathfrak{F} = (\Theta \upharpoonright \mathfrak{F})^{-1}(X)$ is definable in \mathcal{M} .

- The set $S_0 = \Theta^{-1}(S_0)$ is contained in \mathbb{Q}_k^{avg} for some k.
- ▶ If $X \cap S_0$ is Zariski dense in X then $S_0 \cap (X \cap \mathfrak{F})$ is large*. This is "the lower bound".

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $S_0 \subseteq V$ the set of special points.

I. Definability requirements (from algebraic to o-minimal)

One needs to establish the existence of a semialgebraic fundamental set $\mathfrak{F}\subseteq \widetilde{V}$ for Γ and the definability of $\Theta\upharpoonright \mathfrak{F}$ in some o-minimal structure \mathcal{M} . In all examples, \mathcal{M} is $\mathbb{R}_{an,exp}$.

For $X \subseteq V$ algebraic, let $X \subseteq V$ be an irreducible analytic component of $\Theta^{-1}(X)$. Note that $\widetilde{X} \cap \mathfrak{F} = (\Theta \upharpoonright \mathfrak{F})^{-1}(X)$ is definable in \mathcal{M} .

- The set $S_0 = \Theta^{-1}(S_0)$ is contained in \mathbb{Q}_k^{aig} for some k.
- ▶ If $X \cap S_0$ is Zariski dense in X then $S_0 \cap (X \cap \mathfrak{F})$ is large*. This is "the lower bound".

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $S_0 \subseteq V$ the set of special points.

I. Definability requirements (from algebraic to o-minimal)

One needs to establish the existence of a semialgebraic fundamental set $\mathfrak{F}\subseteq \widetilde{V}$ for Γ and the definability of $\Theta\upharpoonright \mathfrak{F}$ in some o-minimal structure \mathcal{M} . In all examples, \mathcal{M} is $\mathbb{R}_{an,exp}$.

For $X \subseteq V$ algebraic, let $\widetilde{X} \subseteq \widetilde{V}$ be an irreducible analytic component of $\Theta^{-1}(X)$. Note that $\widetilde{X} \cap \mathfrak{F} = (\Theta \upharpoonright \mathfrak{F})^{-1}(X)$ is definable in \mathcal{M} .

- The set $S_0 = \Theta^{-1}(S_0)$ is contained in \mathbb{Q}_k^{aig} for some k.
- ▶ If $X \cap S_0$ is Zariski dense in X then $S_0 \cap (X \cap \mathfrak{F})$ is large*. This is "the lower bound".

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $S_0 \subseteq V$ the set of special points.

I. Definability requirements (from algebraic to o-minimal)

One needs to establish the existence of a semialgebraic fundamental set $\mathfrak{F}\subseteq \widetilde{V}$ for Γ and the definability of $\Theta\upharpoonright \mathfrak{F}$ in some o-minimal structure \mathcal{M} . In all examples, \mathcal{M} is $\mathbb{R}_{an,exp}$.

For $X \subseteq V$ algebraic, let $\widetilde{X} \subseteq \widetilde{V}$ be an irreducible analytic component of $\Theta^{-1}(X)$. Note that $\widetilde{X} \cap \mathfrak{F} = (\Theta \upharpoonright \mathfrak{F})^{-1}(X)$ is definable in \mathcal{M} .

- The set $\widetilde{\mathbb{S}}_0 = \Theta^{-1}(\mathbb{S}_0)$ is contained in \mathbb{Q}_k^{alg} for some k.
- ▶ If $X \cap S_0$ is Zariski dense in X then $S_0 \cap (X \cap \mathfrak{F})$ is large*. This is "the lower bound".

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $S_0 \subseteq V$ the set of special points.

I. Definability requirements (from algebraic to o-minimal)

One needs to establish the existence of a semialgebraic fundamental set $\mathfrak{F}\subseteq \widetilde{V}$ for Γ and the definability of $\Theta\upharpoonright \mathfrak{F}$ in some o-minimal structure \mathcal{M} . In all examples, \mathcal{M} is $\mathbb{R}_{an,exp}$.

For $X \subseteq V$ algebraic, let $\widetilde{X} \subseteq \widetilde{V}$ be an irreducible analytic component of $\Theta^{-1}(X)$. Note that $\widetilde{X} \cap \mathfrak{F} = (\Theta \upharpoonright \mathfrak{F})^{-1}(X)$ is definable in \mathcal{M} .

- The set $\widetilde{\mathbb{S}}_0 = \Theta^{-1}(\mathbb{S}_0)$ is contained in \mathbb{Q}_k^{alg} for some k.
- ▶ If $X \cap S_0$ is Zariski dense in X then $S_0 \cap (X \cap \mathfrak{F})$ is large*. This is "the lower bound".

- Assume that we established that $\widetilde{S}_0 \cap (\widetilde{X} \cap \mathfrak{F})$ is large*.
- By PW, There exists a connected semi-algebraic nontrivial curve $C \subseteq \widetilde{X} \cap \mathfrak{F}$.
- Let $\overline{C} \subseteq \mathbb{C}^n$ be the Zariski closure of C. It is a complex algebraic curve, and by dimension considerations $(\overline{C} \cap \widetilde{V}) \subseteq \widetilde{X}$.
- So X contains a complex algebraic curve (relative to the open semialgebraic \widehat{V}).

- Assume that we established that $\widetilde{S}_0 \cap (\widetilde{X} \cap \mathfrak{F})$ is large*.
- By PW, There exists a connected semi-algebraic nontrivial curve $C \subseteq \widetilde{X} \cap \mathfrak{F}$.
- Let $\overline{C} \subseteq \mathbb{C}^n$ be the Zariski closure of C. It is a complex algebraic curve, and by dimension considerations $(\overline{C} \cap \widetilde{V}) \subseteq \widetilde{X}$.
- So X contains a complex algebraic curve (relative to the open semialgebraic \widetilde{V}).

- Assume that we established that $\widetilde{S}_0 \cap (\widetilde{X} \cap \mathfrak{F})$ is large*.
- By PW, There exists a connected semi-algebraic nontrivial curve $C \subseteq \widetilde{X} \cap \mathfrak{F}$.
- Let $\overline{C} \subseteq \mathbb{C}^n$ be the Zariski closure of C. It is a complex algebraic curve, and by dimension considerations $(\overline{C} \cap \widetilde{V}) \subseteq \widetilde{X}$.
- So X contains a complex algebraic curve (relative to the open semialgebraic \widetilde{V}).

- Assume that we established that $\widetilde{\mathbb{S}}_0 \cap (\widetilde{X} \cap \mathfrak{F})$ is large*.
- By PW, There exists a connected semi-algebraic nontrivial curve $C \subseteq \widetilde{X} \cap \mathfrak{F}$.
- Let $\overline{C} \subseteq \mathbb{C}^n$ be the Zariski closure of C. It is a complex algebraic curve, and by dimension considerations $(\overline{C} \cap \widetilde{V}) \subseteq \widetilde{X}$.
- So \widetilde{X} contains a complex algebraic curve (relative to the open semialgebraic \widetilde{V}).

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $\widetilde{X} \subseteq \widetilde{V}$ a component of $\Theta^{-1}(X)$.

Ingredient III, the "Ax-Lindemann" goa

Assume that \widetilde{A} is a maximal irreducible algebraic (relative to \widetilde{V}) subset of \widetilde{X} .

- (i) \widetilde{A} is an orbit of a real algebraic subgroup of G (defined over \mathbb{Q}).
- (ii) $\Theta(\widetilde{A})$ is an algebraic subvariety of V.

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $\widetilde{X} \subseteq \widetilde{V}$ a component of $\Theta^{-1}(X)$.

Ingredient III, the "Ax-Lindemann" goa

Assume that \widetilde{A} is a maximal irreducible algebraic (relative to \widetilde{V}) subset of \widetilde{X} .

- (i) \widetilde{A} is an orbit of a real algebraic subgroup of G (defined over \mathbb{Q}).
- (ii) $\Theta(\widetilde{A})$ is an algebraic subvariety of V.

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $\widetilde{X} \subseteq \widetilde{V}$ a component of $\Theta^{-1}(X)$.

Ingredient III, the "Ax-Lindemann" goa

Assume that \widetilde{A} is a maximal irreducible algebraic (relative to \widetilde{V}) subset of \widetilde{X} .

- (i) \widetilde{A} is an orbit of a real algebraic subgroup of G (defined over \mathbb{Q}).
- (ii) $\Theta(A)$ is an algebraic subvariety of V.

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $\widetilde{X} \subseteq \widetilde{V}$ a component of $\Theta^{-1}(X)$.

Ingredient III, the "Ax-Lindemann" goal

Assume that A is a maximal irreducible algebraic (relative to V) subset of \widetilde{X} .

- (i) \tilde{A} is an orbit of a real algebraic subgroup of G (defined over \mathbb{Q}).
- (ii) $\Theta(\widetilde{A})$ is an algebraic subvariety of V.

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $\widetilde{X} \subseteq \widetilde{V}$ a component of $\Theta^{-1}(X)$.

Ingredient III, the "Ax-Lindemann" goal

Assume that \widetilde{A} is a maximal irreducible algebraic (relative to \widetilde{V}) subset of \widetilde{X} .

- (i) \overrightarrow{A} is an orbit of a real algebraic subgroup of G (defined over \mathbb{Q})
- (ii) $\Theta(A)$ is an algebraic subvariety of V

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $\widetilde{X} \subseteq \widetilde{V}$ a component of $\Theta^{-1}(X)$.

Ingredient III, the "Ax-Lindemann" goal

Assume that \widetilde{A} is a maximal irreducible algebraic (relative to \widetilde{V}) subset of \widetilde{X} .

- (i) $extcolor{black}{A}$ is an orbit of a real algebraic subgroup of $extcolor{black}{G}$ (defined over $\mathbb Q$).
- (ii) $\Theta(A)$ is an algebraic subvariety of V.

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $\widetilde{X} \subseteq \widetilde{V}$ a component of $\Theta^{-1}(X)$.

Ingredient III, the "Ax-Lindemann" goal

Assume that \widetilde{A} is a maximal irreducible algebraic (relative to \widetilde{V}) subset of \widetilde{X} .

- (i) \tilde{A} is an orbit of a real algebraic subgroup of G (defined over \mathbb{Q}).
- (ii) $\Theta(A)$ is an algebraic subvariety of V.

We have $\Theta: \widetilde{V} \to V \sim \Gamma \backslash \widetilde{V}$. $\widetilde{X} \subseteq \widetilde{V}$ a component of $\Theta^{-1}(X)$.

Ingredient III, the "Ax-Lindemann" goal

Assume that \widetilde{A} is a maximal irreducible algebraic (relative to \widetilde{V}) subset of \widetilde{X} .

- (i) \tilde{A} is an orbit of a real algebraic subgroup of G (defined over \mathbb{Q}).
- (ii) $\Theta(\widetilde{A})$ is an algebraic subvariety of V.

We have $X \subseteq V$, $\Theta : V \to V$ and $X \cap S_0$ Zariski dense in X.

I. Definability

 $\Theta \upharpoonright \mathfrak{F}$ is definable in an o-minimal structure.

II. Number Theory

The set $\widetilde{S_0} \cap (\Theta^{-1}(X) \cap \mathfrak{F})$ is large*.

Application of the Pila-Wilkie Theorem.

III. Ax-Lindemanr

If $\widetilde{A} \subseteq \Theta^{-1}(X)$ is maximal irreducible algebraic then it is weakly special. (So, if in addition $\widetilde{A} \cap \widetilde{S_0} \neq \emptyset$ then \widetilde{A} is special).

We have $X \subseteq V$, $\Theta : \widetilde{V} \to V$ and $X \cap S_0$ Zariski dense in X.

I. Definability

 $\Theta \upharpoonright \mathfrak{F}$ is definable in an o-minimal structure.

II. Number Theory

The set $S_0 \cap (\Theta^{-1}(X) \cap \mathfrak{F})$ is large*.

Application of the Pila-Wilkie Theorem.

III. Ax-Lindemann

If $\widetilde{A} \subseteq \Theta^{-1}(X)$ is maximal irreducible algebraic then it is weakly special. (So, if in addition $\widetilde{A} \cap \widetilde{S_0} \neq \emptyset$ then \widetilde{A} is special).

We have $X \subseteq V$, $\Theta : \widetilde{V} \to V$ and $X \cap S_0$ Zariski dense in X.

I. Definability

 $\Theta \upharpoonright \mathfrak{F}$ is definable in an o-minimal structure.

II. Number Theory

The set $S_0 \cap (\Theta^{-1}(X) \cap \mathfrak{F})$ is large*.

Application of the Pila-Wilkie Theorem.

III. Ax-Lindemann

If $\widetilde{A} \subseteq \Theta^{-1}(X)$ is maximal irreducible algebraic then it is weakly special. (So, if in addition $\widetilde{A} \cap \widetilde{\mathcal{S}_0} \neq \emptyset$ then \widetilde{A} is special).

We have $X \subseteq V$, $\Theta : \widetilde{V} \to V$ and $X \cap S_0$ Zariski dense in X.

I. Definability

 $\Theta \upharpoonright \mathfrak{F}$ is definable in an o-minimal structure.

II. Number Theory

The set $S_0 \cap (\Theta^{-1}(X) \cap \mathfrak{F})$ is large*.

Application of the Pila-Wilkie Theorem.

III. Ax-Lindemann

If $\widetilde{A} \subseteq \Theta^{-1}(X)$ is maximal irreducible algebraic then it is weakly special. (So, if in addition $\widetilde{A} \cap \widetilde{S_0} \neq \emptyset$ then \widetilde{A} is special).

- ▶ An (complex) **abelian variety** is a smooth projective algebraic variety $V \subseteq \mathbb{P}^n(\mathbb{C})$, together with an algebraic binary operation *, which makes $\langle V, * \rangle$ an algebraic group.
- ► In complex dimension one, these are non-singular elliptic curves: $y^3 = x^2 + ax + b$ (the affine equation).
- ▶ In higher dimensions, explicit formulas are complicated.

- ▶ An (complex) **abelian variety** is a smooth projective algebraic variety $V \subseteq \mathbb{P}^n(\mathbb{C})$, together with an algebraic binary operation *, which makes $\langle V, * \rangle$ an algebraic group.
- In complex dimension one, these are non-singular elliptic curves: $y^3 = x^2 + ax + b$ (the affine equation).
- In higher dimensions, explicit formulas are complicated.

- ▶ An (complex) **abelian variety** is a smooth projective algebraic variety $V \subseteq \mathbb{P}^n(\mathbb{C})$, together with an algebraic binary operation *, which makes $\langle V, * \rangle$ an algebraic group.
- In complex dimension one, these are non-singular elliptic curves: $y^3 = x^2 + ax + b$ (the affine equation).
- In higher dimensions, explicit formulas are complicated.

- ▶ An (complex) **abelian variety** is a smooth projective algebraic variety $V \subseteq \mathbb{P}^n(\mathbb{C})$, together with an algebraic binary operation *, which makes $\langle V, * \rangle$ an algebraic group.
- In complex dimension one, these are non-singular elliptic curves: $y^3 = x^2 + ax + b$ (the affine equation).
- In higher dimensions, explicit formulas are complicated.

- ▶ The group (V, *) is (indeed) abelian, written as (V, +) from now on.
- ▶ (over \mathbb{C}) The group (V, +) admits the structure of a complex Lie group. Since $\mathbb{P}^n(\mathbb{C})$ is compact that group is compact.
- As a real Lie group, (V, +) is isomorphic to a direct product of $(S^1)^{2m}$, where m = complex dimension of V.
- ▶ For every $m \in \mathbb{N}$, the m-torsion subgroup of V is $(\mathbb{Z}/m\mathbb{Z})^{2n}$

- ► The group (V, *) is (indeed) abelian, written as (V, +) from now on.
- ▶ (over \mathbb{C}) The group (V, +) admits the structure of a complex Lie group. Since $\mathbb{P}^n(\mathbb{C})$ is compact that group is compact.
- As a real Lie group, (V, +) is isomorphic to a direct product of $(S^1)^{2m}$, where m = complex dimension of V.
- ▶ For every $m \in \mathbb{N}$, the m-torsion subgroup of V is $(\mathbb{Z}/m\mathbb{Z})^{2n}$

- ▶ The group (V, *) is (indeed) abelian, written as (V, +) from now on.
- ▶ (over \mathbb{C}) The group (V, +) admits the structure of a complex Lie group. Since $\mathbb{P}^n(\mathbb{C})$ is compact that group is compact.
- As a real Lie group, (V, +) is isomorphic to a direct product of $(S^1)^{2m}$, where m = complex dimension of V.
- ► For every $m \in \mathbb{N}$, the m-torsion subgroup of V is $(\mathbb{Z}/m\mathbb{Z})^{2n}$

- ▶ The group (V, *) is (indeed) abelian, written as (V, +) from now on.
- ▶ (over \mathbb{C}) The group (V, +) admits the structure of a complex Lie group. Since $\mathbb{P}^n(\mathbb{C})$ is compact that group is compact.
- ▶ As a real Lie group, (V, +) is isomorphic to a direct product of $(S^1)^{2m}$, where m = complex dimension of V.
- ► For every $m \in \mathbb{N}$, the m-torsion subgroup of V is $(\mathbb{Z}/m\mathbb{Z})^{2n}$

- ► The group (V, *) is (indeed) abelian, written as (V, +) from now on.
- (over \mathbb{C}) The group (V, +) admits the structure of a complex Lie group. Since $\mathbb{P}^n(\mathbb{C})$ is compact that group is compact.
- As a real Lie group, (V, +) is isomorphic to a direct product of $(S^1)^{2m}$, where m = complex dimension of V.
- ► For every $m \in \mathbb{N}$, the m-torsion subgroup of V is $(\mathbb{Z}/m\mathbb{Z})^{2n}$.

The setting

V= an abelian variety in $\mathbb{P}^n(\mathbb{C})$, written additively (V,+).

C = all irreducible algebraic subvarieties of V.

S = all cosets of the form A + p, where $p \in Tor(V)$ and A a connected algebraic subgroup (i.e. abelian subvariety) of V.

 $S_0 = Tor(V)$ the torsion elements of the group (V, +).

The Manin-Mumford conjecture (Raynaud's Theorem, 1983)

The setting

V = an abelian variety in $\mathbb{P}^n(\mathbb{C})$, written additively (V, +).

C = all irreducible algebraic subvarieties of V

S = all cosets of the form A + p, where $p \in Tor(V)$ and A a connected algebraic subgroup (i.e. abelian subvariety) of V.

 $S_0 = Tor(V)$ the torsion elements of the group (V, +).

The Manin-Mumford conjecture (Raynaud's Theorem, 1983)

The setting

V = an abelian variety in $\mathbb{P}^n(\mathbb{C})$, written additively (V, +).

 \mathcal{C} = all irreducible algebraic subvarieties of V.

S =all cosets of the form A + p, where $p \in Tor(V)$ and A a connected algebraic subgroup (i.e. abelian subvariety) of V.

 $S_0 = Tor(V)$ the torsion elements of the group (V, +).

The Manin-Mumford conjecture (Raynaud's Theorem, 1983)

The setting

- V = an abelian variety in $\mathbb{P}^n(\mathbb{C})$, written additively (V, +).
- C = all irreducible algebraic subvarieties of V.
- S = all cosets of the form A + p, where $p \in Tor(V)$ and A a connected algebraic subgroup (i.e. abelian subvariety) of V.
- $S_0 = Tor(V)$ the torsion elements of the group (V, +).

The Manin-Mumford conjecture (Raynaud's Theorem, 1983)

The Manin-Mumford conjecture

The setting

V = an abelian variety in $\mathbb{P}^n(\mathbb{C})$, written additively (V, +).

 \mathcal{C} = all irreducible algebraic subvarieties of V.

S =all cosets of the form A + p, where $p \in Tor(V)$ and A a connected algebraic subgroup (i.e. abelian subvariety) of V.

 $S_0 = Tor(V)$ the torsion elements of the group (V, +).

The Manin-Mumford conjecture (Raynaud's Theorem, 1983)

Assume that V is a complex abelian variety defined over a number field, and $X \subseteq V$ an irreducible algebraic subvariety. If $X \cap Tor(V)$ is Zariski dense in V then X = A + p as above.

- There exists a holomorphic group homomorphism $\Theta:(\mathbb{C}^n,+)\to V$.
- $\Gamma := Ker(\Theta)$ is a 2n-lattice. I.e., $\Gamma = \sum_{i=1}^{2n} \mathbb{Z}\omega_i$, where $\omega_1, \dots, \omega_{2n}$ are linearly independent over \mathbb{R} .

(Note: While every 2n-lattice gives rise to a complex torus, it might not give rise, if n > 1, to an **projective** complex torus, i.e. abelian variety.)

- special points $=\Theta^{-1}(\mathit{Tor}(V))=\mathbb{Q}\Gamma=\Sigma_{i=1}^{2n}\mathbb{Q}\omega_i.$
- special varieties are cosets of the form $\bar{z} + H$, where H a complex linear subspace defined over \mathbb{Q} and $\bar{z} \in \mathbb{Q}\Gamma$.
- Weakly special varieties are arbitrary cosets of such H.

(weakly) special varieties as orbits

- There exists a holomorphic group homomorphism $\Theta: (\mathbb{C}^n,+) \to V$.
- $\Gamma := Ker(\Theta)$ is a 2n-lattice. I.e., $\Gamma = \sum_{i=1}^{2n} \mathbb{Z}\omega_i$, where $\omega_1, \dots, \omega_{2n}$ are linearly independent over \mathbb{R} .

(Note: While every 2n-lattice gives rise to a complex torus, it might not give rise, if n > 1, to an **projective** complex torus, i.e. abelian variety.)

- special points = $\Theta^{-1}(Tor(V)) = \mathbb{Q}\Gamma = \Sigma_{i=1}^{2n} \mathbb{Q}\omega_i$.
- special varieties are cosets of the form $\bar{z} + H$, where H a complex linear subspace defined over \mathbb{Q} and $\bar{z} \in \mathbb{Q}\Gamma$.
- Weakly special varieties are arbitrary cosets of such H.

(weakly) special varieties as orbits

- There exists a holomorphic group homomorphism $\Theta:(\mathbb{C}^n,+)\to V$.
- $\Gamma := Ker(\Theta)$ is a 2n-lattice. I.e., $\Gamma = \sum_{i=1}^{2n} \mathbb{Z}\omega_i$, where $\omega_1, \dots, \omega_{2n}$ are linearly independent over \mathbb{R} .

(Note: While every 2n-lattice gives rise to a complex torus, it might not give rise, if n > 1, to an **projective** complex torus, i.e. abelian variety.)

- special points $= \Theta^{-1}(Tor(V)) = \mathbb{Q}\Gamma = \Sigma_{i=1}^{2n} \mathbb{Q}\omega_i$.
- special varieties are cosets of the form $\bar{z} + H$, where H a complex linear subspace defined over \mathbb{Q} and $\bar{z} \in \mathbb{Q}\Gamma$.
- Weakly special varieties are arbitrary cosets of such H.

(weakly) special varieties as orbits

- There exists a holomorphic group homomorphism $\Theta: (\mathbb{C}^n,+) \to V$.
- $\Gamma := Ker(\Theta)$ is a 2n-lattice. I.e., $\Gamma = \sum_{i=1}^{2n} \mathbb{Z}\omega_i$, where $\omega_1, \dots, \omega_{2n}$ are linearly independent over \mathbb{R} .

(Note: While every 2n-lattice gives rise to a complex torus, it might not give rise, if n > 1, to an **projective** complex torus, i.e. abelian variety.)

- special points = $\Theta^{-1}(Tor(V)) = \mathbb{Q}\Gamma = \Sigma_{i=1}^{2n} \mathbb{Q}\omega_i$.
- special varieties are cosets of the form $\bar{z} + H$, where H a complex linear subspace defined over \mathbb{Q} and $\bar{z} \in \mathbb{Q}\Gamma$.
- **Weakly special varieties** are arbitrary cosets of such *H*.

(weakly) special varieties as orbits

- There exists a holomorphic group homomorphism $\Theta: (\mathbb{C}^n,+) \to V$.
- $\Gamma := Ker(\Theta)$ is a 2n-lattice. I.e., $\Gamma = \sum_{i=1}^{2n} \mathbb{Z}\omega_i$, where $\omega_1, \dots, \omega_{2n}$ are linearly independent over \mathbb{R} .

(Note: While every 2n-lattice gives rise to a complex torus, it might not give rise, if n > 1, to an **projective** complex torus, i.e. abelian variety.)

- special points = $\Theta^{-1}(Tor(V)) = \mathbb{Q}\Gamma = \sum_{i=1}^{2n} \mathbb{Q}\omega_i$.
- special varieties are cosets of the form $\bar{z} + H$, where H a complex linear subspace defined over \mathbb{Q} and $\bar{z} \in \mathbb{Q}\Gamma$.
- Weakly special varieties are arbitrary cosets of such H.

(weakly) special varieties as orbits

- There exists a holomorphic group homomorphism $\Theta: (\mathbb{C}^n,+) \to V$.
- $\Gamma := Ker(\Theta)$ is a 2n-lattice. I.e., $\Gamma = \sum_{i=1}^{2n} \mathbb{Z}\omega_i$, where $\omega_1, \dots, \omega_{2n}$ are linearly independent over \mathbb{R} .

(Note: While every 2n-lattice gives rise to a complex torus, it might not give rise, if n > 1, to an **projective** complex torus, i.e. abelian variety.)

- special points = $\Theta^{-1}(Tor(V)) = \mathbb{Q}\Gamma = \sum_{i=1}^{2n} \mathbb{Q}\omega_i$.
- special varieties are cosets of the form $\bar{z} + H$, where H a complex linear subspace defined over \mathbb{Q} and $\bar{z} \in \mathbb{Q}\Gamma$.
- Weakly special varieties are arbitrary cosets of such H.

(weakly) special varieties as orbits

- There exists a holomorphic group homomorphism $\Theta:(\mathbb{C}^n,+)\to V$.
- $\Gamma := Ker(\Theta)$ is a 2n-lattice. I.e., $\Gamma = \sum_{i=1}^{2n} \mathbb{Z}\omega_i$, where $\omega_1, \dots, \omega_{2n}$ are linearly independent over \mathbb{R} .

(Note: While every 2n-lattice gives rise to a complex torus, it might not give rise, if n > 1, to an **projective** complex torus, i.e. abelian variety.)

- special points = $\Theta^{-1}(Tor(V)) = \mathbb{Q}\Gamma = \sum_{i=1}^{2n} \mathbb{Q}\omega_i$.
- special varieties are cosets of the form $\bar{z} + H$, where H a complex linear subspace defined over \mathbb{Q} and $\bar{z} \in \mathbb{Q}\Gamma$.
- Weakly special varieties are arbitrary cosets of such H.

(weakly) special varieties as orbits

- There exists a holomorphic group homomorphism $\Theta: (\mathbb{C}^n,+) \to V$.
- $\Gamma := Ker(\Theta)$ is a 2n-lattice. I.e., $\Gamma = \sum_{i=1}^{2n} \mathbb{Z}\omega_i$, where $\omega_1, \dots, \omega_{2n}$ are linearly independent over \mathbb{R} .

(Note: While every 2n-lattice gives rise to a complex torus, it might not give rise, if n > 1, to an **projective** complex torus, i.e. abelian variety.)

- special points = $\Theta^{-1}(Tor(V)) = \mathbb{Q}\Gamma = \sum_{i=1}^{2n} \mathbb{Q}\omega_i$.
- special varieties are cosets of the form $\bar{z} + H$, where H a complex linear subspace defined over \mathbb{Q} and $\bar{z} \in \mathbb{Q}\Gamma$.
- Weakly special varieties are arbitrary cosets of such H.

(weakly) special varieties as orbits

I. The fundamental set and definability of

Consider the compact semilinear parallelogram

$$\mathfrak{F} = \{\sum_{i=1}^{2n} t_i \omega_i : 0 \leqslant t_i \leqslant 1\}$$
. Then:

- (i) $\Gamma + \mathfrak{F} = \mathbb{C}^n$.
- (ii) The set $\{\gamma \in \Gamma : (\gamma + \mathfrak{F}) \cap \mathfrak{F} \neq \emptyset\}$ is finite
- \mathfrak{F} is a fundamental set for Θ .

Since Θ is analytic and \mathfrak{F} compact, $\Theta \upharpoonright \mathfrak{F}$ is definable in the o-minimal \mathbb{R}_{an} .

I. The fundamental set and definability of 😊 🛊 🐉

Consider the compact semilinear parallelogram

$$\mathfrak{F} = \{\sum_{i=1}^{2n} t_i \omega_i : 0 \leqslant t_i \leqslant 1\}$$
. Then:

- (i) $\Gamma + \mathfrak{F} = \mathbb{C}^n$.
- (ii) The set $\{\gamma \in \Gamma : (\gamma + \mathfrak{F}) \cap \mathfrak{F} \neq \emptyset\}$ is finite
- \mathfrak{F} is a fundamental set for Θ .

Since Θ is analytic and $\mathfrak F$ compact, $\Theta \upharpoonright \mathfrak F$ is definable in the o-minimal $\mathbb R_{aa}$.

I. The fundamental set and definability of 😊 🛊 🐉

Consider the compact semilinear parallelogram

$$\mathfrak{F} = \{\sum_{i=1}^{2n} t_i \omega_i : 0 \leqslant t_i \leqslant 1\}.$$
 Then:

(i)
$$\Gamma + \mathfrak{F} = \mathbb{C}^n$$
.

- (ii) The set $\{\gamma \in \Gamma : (\gamma + \mathfrak{F}) \cap \mathfrak{F} \neq \emptyset\}$ is finite
- \mathfrak{F} is a fundamental set for Θ .

Since Θ is analytic and \mathfrak{F} compact, $\Theta \upharpoonright \mathfrak{F}$ is definable in the o-minimal \mathbb{R}_{an} .

I. The fundamental set and definability of 😊 🛊 🐉

Consider the compact semilinear parallelogram

$$\mathfrak{F} = \{\sum_{i=1}^{2n} t_i \omega_i : 0 \leqslant t_i \leqslant 1\}.$$
 Then:

- (i) $\Gamma + \mathfrak{F} = \mathbb{C}^n$.
- (ii) The set $\{\gamma \in \Gamma : (\gamma + \mathfrak{F}) \cap \mathfrak{F} \neq \emptyset\}$ is finite.
- \mathfrak{F} is a fundamental set for Θ .

Since Θ is analytic and $\mathfrak F$ compact, $\Theta \upharpoonright \mathfrak F$ is definable in the o-minimal $\mathbb R_{an}$.

I. The fundamental set and definability of 😊 | 👸

Consider the compact semilinear parallelogram

$$\mathfrak{F} = \{\sum_{i=1}^{2n} t_i \omega_i : 0 \leqslant t_i \leqslant 1\}.$$
 Then:

- (i) $\Gamma + \mathfrak{F} = \mathbb{C}^n$.
- (ii) The set $\{\gamma \in \Gamma : (\gamma + \mathfrak{F}) \cap \mathfrak{F} \neq \emptyset\}$ is finite.
- \mathfrak{F} is a fundamental set for Θ .

Since Θ is analytic and \mathfrak{F} compact, $\Theta \upharpoonright \mathfrak{F}$ is definable in the o-minimal \mathbb{R}_{an} .

II. Number Theory (on the algebraic side)

- V is an abelian variety defined over a number field F.
- $X \subseteq V$ is irreducible algebraic, with $X \cap Tor(V)$ Zariski dense in X
- So, X is also defined over a number field $k \supseteq F$.

Number theoretic input (Masser)

There exists $\rho = \rho(V) > 0$ and a constant c, such that for every $p \in V$, if ord(p) = T then $[F(p) : \mathbb{Q}] \geqslant cT^{\rho}$.

By conjugating $X \cap \mathit{Tor}(V)$ over k we conclude: if $\epsilon < \rho(V)$ then

$$limsup_T rac{|\{P \in X: ord(P) \leqslant T\}|}{T^\epsilon} = \infty.$$

Conclusion: on the analytic side

The set $\{(q_1,\ldots,q_{2n})\in\mathbb{Q}^{2n}: \Sigma_{i=1}^{2n}q_i\omega_i\in\Theta^{-1}(X)\cap\mathfrak{F}\}$ is large*.

II. Number Theory (on the algebraic side)

- V is an abelian variety defined over a number field F.
- $X \subseteq V$ is irreducible algebraic, with $X \cap Tor(V)$ Zariski dense in X
- So, X is also defined over a number field $k \supseteq F$.

Number theoretic input (Masser)

There exists $\rho = \rho(V) > 0$ and a constant c, such that for every $p \in V$, if ord(p) = T then $[F(p) : \mathbb{Q}] \geqslant cT^{\rho}$.

By conjugating $X \cap Tor(V)$ over k we conclude: if $\epsilon < \rho(V)$ then

$$limsup_T \frac{|\{P \in X : ord(P) \leqslant I\}|}{T^{\epsilon}} = \infty.$$

Conclusion: on the analytic side

The set $\{(q_1,\ldots,q_{2n})\in\mathbb{Q}^{2n}:\Sigma_{i=1}^{2n}q_i\omega_i\in\Theta^{-1}(X)\cap\mathfrak{F}\}$ is large*

II. Number Theory (on the algebraic side)

- V is an abelian variety defined over a number field F.
- $X \subseteq V$ is irreducible algebraic, with $X \cap Tor(V)$ Zariski dense in X.
- So, X is also defined over a number field $k \supseteq F$.

Number theoretic input (Masser)

There exists $\rho = \rho(V) > 0$ and a constant c, such that for every $p \in V$, if ord(p) = T then $[F(p) : \mathbb{Q}] \geqslant cT^{\rho}$.

By conjugating $X \cap Tor(V)$ over k we conclude: if $\epsilon < \rho(V)$ then $\limsup_{T \in V} \frac{|\{P \in X : ord(P) \leq T\}|}{|I|} = \infty$

Conclusion: on the analytic side

The set $\{(q_1,\ldots,q_{2n})\in\mathbb{Q}^{2n}:\Sigma_{i=1}^{2n}q_i\omega_i\in\Theta^{-1}(X)\cap\mathfrak{F}\}$ is large*.

II. Number Theory (on the algebraic side)

- V is an abelian variety defined over a number field F.
- $X \subseteq V$ is irreducible algebraic, with $X \cap Tor(V)$ Zariski dense in X.
- So, X is also defined over a number field $k \supseteq F$.

Number theoretic input (Masser)

There exists $\rho = \rho(V) > 0$ and a constant c, such that for every $p \in V$, if ord(p) = T then $[F(p) : \mathbb{Q}] \geqslant cT^{\rho}$.

By conjugating $X \cap Tor(V)$ over k we conclude: if $\epsilon < \rho(V)$ then

$$limsup_T \frac{|\{P \in X : ord(P) \leqslant T\}|}{T^{\epsilon}} = \infty.$$

Conclusion: on the analytic side

The set $\{(q_1,\ldots,q_{2n})\in\mathbb{Q}^{2n}:\Sigma_{i=1}^{2n}q_i\omega_i\in\Theta^{-1}(X)\cap\mathfrak{F}\}$ is large*

II. Number Theory (on the algebraic side)

- V is an abelian variety defined over a number field F.
- $X \subseteq V$ is irreducible algebraic, with $X \cap Tor(V)$ Zariski dense in X.
- So, X is also defined over a number field $k \supseteq F$.

Number theoretic input (Masser)

There exists $\rho = \rho(V) > 0$ and a constant c, such that for every $p \in V$, if ord(p) = T then $[F(p) : \mathbb{Q}] \geqslant cT^{\rho}$.

By conjugating $X \cap Tor(V)$ over k we conclude: if $\epsilon < \rho(V)$ then

$$limsup_T \frac{|\{P \in X : ord(P) \leqslant T\}|}{T^{\epsilon}} = \infty.$$

Conclusion: on the analytic side

The set $\{(q_1,\ldots,q_{2n})\in\mathbb{Q}^{2n}:\Sigma_{i=1}^{2n}q_i\omega_i\in\Theta^{-1}(X)\cap\mathfrak{F}\}$ is large*.

II. Number Theory (on the algebraic side)

- V is an abelian variety defined over a number field F.
- $X \subseteq V$ is irreducible algebraic, with $X \cap Tor(V)$ Zariski dense in X.
- So, X is also defined over a number field $k \supseteq F$.

Number theoretic input (Masser)

There exists $\rho = \rho(V) > 0$ and a constant c, such that for every $p \in V$, if ord(p) = T then $[F(p) : \mathbb{Q}] \geqslant cT^{\rho}$.

By conjugating $X \cap Tor(V)$ over k we conclude: if $\epsilon < \rho(V)$ then

$$limsup_T \frac{|\{P \in X : ord(P) \leqslant T\}|}{T^{\epsilon}} = \infty.$$

Conclusion: on the analytic side

The set $\{(q_1,\ldots,q_{2n})\in\mathbb{Q}^{2n}:\Sigma_{i=1}^{2n}q_i\omega_i\in\Theta^{-1}(X)\cap\mathfrak{F}\}$ is large*.

II. Number Theory (on the algebraic side)

- V is an abelian variety defined over a number field F.
- $X \subseteq V$ is irreducible algebraic, with $X \cap Tor(V)$ Zariski dense in X.
- So, X is also defined over a number field $k \supseteq F$.

Number theoretic input (Masser)

There exists $\rho = \rho(V) > 0$ and a constant c, such that for every $p \in V$, if ord(p) = T then $[F(p) : \mathbb{Q}] \geqslant cT^{\rho}$.

By conjugating $X \cap Tor(V)$ over k we conclude: if $\epsilon < \rho(V)$ then

$$limsup_T \frac{|\{P \in X : ord(P) \leqslant T\}|}{T^{\epsilon}} = \infty.$$

Conclusion: on the analytic side

The set $\{(q_1,\ldots,q_{2n})\in\mathbb{Q}^{2n}: \Sigma_{i=1}^{2n}q_i\omega_i\in\Theta^{-1}(X)\cap\mathfrak{F}\}$ is large*.

III. Ax-Lindemann: an o-minimal argument

The Pila-Wilkie input

The analytic variety $\Theta^{-1}(X)$ contains an unbounded semialgebraic curve σ .

By the o-minimality of σ , when we translate it into $\mathfrak F$ by elements of Γ we get (inside $\widetilde X$) curves which are more and more "linear". Since $\widetilde X \cap \mathfrak F$ is compact, at the limit we get an affine line $\ell \subseteq \widetilde X$.

III. Ax-Lindemann: an o-minimal argument

The Pila-Wilkie input

The analytic variety $\Theta^{-1}(X)$ contains an unbounded semialgebraic curve σ .

By the o-minimality of σ , when we translate it into \mathfrak{F} by elements of Γ we get (inside \widetilde{X}) curves which are more and more "linear". Since $\widetilde{X} \cap \mathfrak{F}$ is compact, at the limit we get an affine line $\ell \subseteq \widetilde{X}$.

III. Ax-Lindemann: an o-minimal argument

The Pila-Wilkie input

The analytic variety $\Theta^{-1}(X)$ contains an unbounded semialgebraic curve σ .

By the o-minimality of σ , when we translate it into \mathfrak{F} by elements of Γ we get (inside \widetilde{X}) curves which are more and more "linear". Since $\widetilde{X} \cap \mathfrak{F}$ is compact, at the limit we get an affine line $\ell \subseteq \widetilde{X}$.

On the analytic side

We saw that $\Theta^{-1}(X)$ contains a real affine line $\ell \subseteq \mathbb{C}^n$.

Back to the algebraic side

The variety $X \subseteq V$ contains a coset of a subgroup $\Theta(\ell)$.

The Zariski closure of $\Theta(\ell)$ is a coset of an algebraic subgroup of V, that is contained in X.

Hence, *X* contains a (weakly) special variety z + A, for $A \leq X$.

By using the full strength of Pila-Wilkie, we can show that X itself is a special variety.

On the analytic side

We saw that $\Theta^{-1}(X)$ contains a real affine line $\ell \subseteq \mathbb{C}^n$.

Back to the algebraic side

The variety $X \subseteq V$ contains a coset of a subgroup $\Theta(\ell)$

The Zariski closure of $\Theta(\ell)$ is a coset of an algebraic subgroup of V, that is contained in X.

Hence, X contains a (weakly) special variety z + A, for $A \leq X$.

By using the full strength of Pila-Wilkie, we can show that *X* itself is a special variety.

On the analytic side

We saw that $\Theta^{-1}(X)$ contains a real affine line $\ell \subseteq \mathbb{C}^n$.

Back to the algebraic side

The variety $X \subseteq V$ contains a coset of a subgroup $\Theta(\ell)$

The Zariski closure of $\Theta(\ell)$ is a coset of an algebraic subgroup of V, that is contained in X.

Hence, X contains a (weakly) special variety z + A, for $A \leq X$.

By using the full strength of Pila-Wilkie, we can show that *X* itself is a special variety.

On the analytic side

We saw that $\Theta^{-1}(X)$ contains a real affine line $\ell \subseteq \mathbb{C}^n$.

Back to the algebraic side

The variety $X \subseteq V$ contains a coset of a subgroup $\Theta(\ell)$.

The Zariski closure of $\Theta(\ell)$ is a coset of an algebraic subgroup of V, that is contained in X.

Hence, X contains a (weakly) special variety z + A, for $A \le X$.

By using the full strength of Pila-Wilkie, we can show that *X* itself is a special variety.

On the analytic side

We saw that $\Theta^{-1}(X)$ contains a real affine line $\ell \subseteq \mathbb{C}^n$.

Back to the algebraic side

The variety $X \subseteq V$ contains a coset of a subgroup $\Theta(\ell)$.

The Zariski closure of $\Theta(\ell)$ is a coset of an algebraic subgroup of V, that is contained in X.

Hence, X contains a (weakly) special variety z + A, for $A \leq X$.

By using the full strength of Pila-Wilkie, we can show that X itself is a special variety.

On the analytic side

We saw that $\Theta^{-1}(X)$ contains a real affine line $\ell \subseteq \mathbb{C}^n$.

Back to the algebraic side

The variety $X \subseteq V$ contains a coset of a subgroup $\Theta(\ell)$.

The Zariski closure of $\Theta(\ell)$ is a coset of an algebraic subgroup of V, that is contained in X.

Hence, X contains a (weakly) special variety z + A, for $A \leq X$.

By using the full strength of Pila-Wilkie, we can show that X itself is a special variety.

On the analytic side

We saw that $\Theta^{-1}(X)$ contains a real affine line $\ell \subseteq \mathbb{C}^n$.

Back to the algebraic side

The variety $X \subseteq V$ contains a coset of a subgroup $\Theta(\ell)$.

The Zariski closure of $\Theta(\ell)$ is a coset of an algebraic subgroup of V, that is contained in X.

Hence, X contains a (weakly) special variety z + A, for $A \le X$.

By using the full strength of Pila-Wilkie, we can show that X itself is a special variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leqslant G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our \widetilde{V} .
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R}), g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \backslash \widetilde{V}$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma\backslash \widetilde{V} \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leqslant G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our \widetilde{V} .
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R})$, $g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \backslash V$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma \backslash V \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leqslant G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our \widetilde{V} .
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R})$, $g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \backslash V$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma \backslash V \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leqslant G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our V.
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R})$, $g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \backslash \widetilde{V}$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma \backslash \widetilde{V} \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leqslant G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our \widetilde{V} .
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R})$, $g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \backslash V$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma \backslash V \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leqslant G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our \widetilde{V} .
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R}), g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \setminus \widetilde{V}$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma \backslash \widetilde{V} \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leqslant G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our \widetilde{V} .
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R}), g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \setminus \widetilde{V}$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma \backslash \widetilde{V} \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leqslant G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our \widetilde{V} .
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R}), g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \setminus \widetilde{V}$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma \backslash \widetilde{V} \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leq G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our \widetilde{V} .
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R}), g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \setminus \widetilde{V}$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma \backslash \widetilde{V} \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

The general analytic setting for Shimura varieties (simplified)

- $G(\mathbb{R})$ is the \mathbb{R} -points of an algebraic semisimple group G over \mathbb{R} .
- $K \leq G(\mathbb{R})$ a maximal compact subgroup of $G(\mathbb{R})$.
- (with additional assumptions) the quotient space $G(\mathbb{R})/K$ admits the structure of an open semi-algebraic subset of \mathbb{C}^n . This is our \widetilde{V} .
- $G(\mathbb{R})$ acts on V. Actually, for every $g \in G(\mathbb{R}), g : V \to V$ is a biholomorphism.
- Let $\Gamma = G(\mathbb{Z})$, and consider the quotient $V = \Gamma \setminus \widetilde{V}$.

The Baily-Borel Theorem

There exists a holomorphic embedding $\Theta: \Gamma \backslash \widetilde{V} \to \mathbb{P}^m(\mathbb{C})$ whose image is a quasi-projective variety.

We start with the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}.$

The group $SL(2,\mathbb{R})$ acts on \mathbb{H} (transitively) as follows

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\tau \in \mathbb{H}$ then $A \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

Connection to elliptic curves

 \mathbb{H} is a parameter space for elliptic curves, namely, every τ represents the elliptic curve $\mathbf{E}_{\tau} = \mathbb{C}/\Lambda_{\tau}$ where Λ_{τ} the lattice $\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \tau$.

 $E_{\tau_1} \cong E_{\tau_2} \Leftrightarrow \tau_1, \tau_2$ are in the same $SL(2, \mathbb{Z})$ -orbit. So, $SL(2, \mathbb{Z}) \backslash \mathbb{H}$ is the moduli space of elliptic curves.

The -invariant

There exists a holomorphic, transcendental surjection $J: \mathbb{H} \to \mathbb{C}$ such that $J(\tau_1) = J(\tau_2) \Leftrightarrow SL(2, \mathbb{Z})\tau_1 = SL(2, \mathbb{Z})\tau_2$.

We start with the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}.$

The group $SL(2,\mathbb{R})$ acts on \mathbb{H} (transitively) as follows:

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\tau \in \mathbb{H}$ then $A \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

Connection to elliptic curves

 \mathbb{H} is a parameter space for elliptic curves, namely, every τ represents the elliptic curve $\mathbf{E}_{\tau} = \mathbb{C}/\Lambda_{\tau}$ where Λ_{τ} the lattice $\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \tau$.

 $E_{\tau_1} \cong E_{\tau_2} \Leftrightarrow \tau_1, \tau_2$ are in the same $SL(2,\mathbb{Z})$ -orbit. So, $SL(2,\mathbb{Z})\backslash \mathbb{H}$ is the moduli space of elliptic curves.

The -invariant

There exists a holomorphic, transcendental surjection $J: \mathbb{H} \to \mathbb{C}$ such that $J(\tau_1) = J(\tau_2) \Leftrightarrow SL(2, \mathbb{Z})\tau_1 = SL(2, \mathbb{Z})\tau_2$.

We start with the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}.$

The group $SL(2,\mathbb{R})$ acts on \mathbb{H} (transitively) as follows:

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\tau \in \mathbb{H}$ then $A \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

Connection to elliptic curves

 \mathbb{H} is a parameter space for elliptic curves, namely, every τ represents the elliptic curve $\mathbf{E}_{\tau} = \mathbb{C}/\Lambda_{\tau}$ where Λ_{τ} the lattice $\mathbb{Z} \cdot \mathbf{1} + \mathbb{Z} \cdot \tau$.

 $E_{\tau_1} \cong E_{\tau_2} \Leftrightarrow \tau_1, \tau_2$ are in the same $SL(2,\mathbb{Z})$ -orbit. So, $SL(2,\mathbb{Z}) \backslash \mathbb{H}$ is the moduli space of elliptic curves.

The **J**-invariant

There exists a holomorphic, transcendental surjection $J: \mathbb{H} \to \mathbb{C}$ such that $J(\tau_1) = J(\tau_2) \Leftrightarrow SL(2,\mathbb{Z})\tau_1 = SL(2,\mathbb{Z})\tau_2$.

We start with the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}.$

The group $SL(2,\mathbb{R})$ acts on \mathbb{H} (transitively) as follows:

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\tau \in \mathbb{H}$ then $A \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

Connection to elliptic curves

 \mathbb{H} is a parameter space for elliptic curves, namely, every τ represents the elliptic curve $\mathbf{E}_{\tau} = \mathbb{C}/\Lambda_{\tau}$ where Λ_{τ} the lattice $\mathbb{Z} \cdot \mathbf{1} + \mathbb{Z} \cdot \tau$.

 $E_{\tau_1} \cong E_{\tau_2} \Leftrightarrow \tau_1, \tau_2$ are in the same $SL(2, \mathbb{Z})$ -orbit. So, $SL(2, \mathbb{Z}) \mathbb{H}$ is the moduli space of elliptic curves.

The **J**-invariant

There exists a holomorphic, transcendental surjection $J: \mathbb{H} \to \mathbb{C}$ such that $J(\tau_1) = J(\tau_2) \Leftrightarrow SL(2,\mathbb{Z})\tau_1 = SL(2,\mathbb{Z})\tau_2$.

We start with the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}.$

The group $SL(2,\mathbb{R})$ acts on \mathbb{H} (transitively) as follows:

If
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $\tau \in \mathbb{H}$ then $A \cdot \tau = \frac{a\tau + b}{c\tau + d}$.

Connection to elliptic curves

 \mathbb{H} is a parameter space for elliptic curves, namely, every τ represents the elliptic curve $\mathbf{E}_{\tau} = \mathbb{C}/\Lambda_{\tau}$ where Λ_{τ} the lattice $\mathbb{Z} \cdot \mathbf{1} + \mathbb{Z} \cdot \tau$.

 $E_{\tau_1} \cong E_{\tau_2} \Leftrightarrow \tau_1, \tau_2$ are in the same $SL(2, \mathbb{Z})$ -orbit. So, $SL(2, \mathbb{Z}) \mathbb{H}$ is the moduli space of elliptic curves.

The J-invariant

There exists a holomorphic, transcendental surjection $J: \mathbb{H} \to \mathbb{C}$ such that $J(\tau_1) = J(\tau_2) \Leftrightarrow SL(2, \mathbb{Z})\tau_1 = SL(2, \mathbb{Z})\tau_2$.

We now begin on the analytic side

- $\bullet \widetilde{V} = \mathbb{H}^n$.
- $G(\mathbb{R}) = SL(2, \mathbb{R})^n$ acting on \mathbb{H}^n in coordinates.
- The action is transitive so $\mathbb{H}^n = G(\mathbb{R})/stab_G(\bar{z})$ for any $\bar{z} \in \mathbb{H}^n$.
- Since $O(2,\mathbb{R})^n = stab(i,\ldots,i)$, we have $\mathbb{H}^n = SL(2,\mathbb{R})^n/O(2,\mathbb{R})^n$ (namely, $K = O(2,\mathbb{R})^n$).

Note: \hat{V} is not a group anymore. It is a semialgebraic homogenous space.

• Let $\Gamma = SL(2,\mathbb{Z})^n$ and $\Theta := (J,\ldots,J): \mathbb{H}^n \to \mathbb{C}^n$. Θ is a Γ -invariant surjection.

On the algebraic side

We let $V=\mathbb{C}^n\sim \Gamma\backslash\mathbb{H}^n$, via Θ

We now begin on the analytic side

- $\widetilde{V} = \mathbb{H}^n$.
- $G(\mathbb{R}) = SL(2,\mathbb{R})^n$ acting on \mathbb{H}^n in coordinates.
- The action is transitive so $\mathbb{H}^n = G(\mathbb{R})/stab_G(\bar{z})$ for any $\bar{z} \in \mathbb{H}^n$.
- Since $O(2,\mathbb{R})^n = stab(i,\ldots,i)$, we have $\mathbb{H}^n = SL(2,\mathbb{R})^n/O(2,\mathbb{R})^n$ (namely, $K = O(2,\mathbb{R})^n$).

Note: \tilde{V} is not a group anymore. It is a semialgebraic homogenous space.

• Let $\Gamma = SL(2,\mathbb{Z})^n$ and $\Theta := (J,\ldots,J): \mathbb{H}^n \to \mathbb{C}^n$. Θ is a Γ -invariant surjection.

On the algebraic side

We let $V = \mathbb{C}^n \sim \Gamma \backslash \mathbb{H}^n$, via Θ

We now begin on the analytic side

- $\widetilde{V} = \mathbb{H}^n$.
- $G(\mathbb{R}) = SL(2,\mathbb{R})^n$ acting on \mathbb{H}^n in coordinates.
- The action is transitive so $\mathbb{H}^n = G(\mathbb{R})/stab_G(\bar{z})$ for any $\bar{z} \in \mathbb{H}^n$.
- Since $O(2,\mathbb{R})^n = stab(i,\ldots,i)$, we have $\mathbb{H}^n = SL(2,\mathbb{R})^n/O(2,\mathbb{R})^n$ (namely, $K = O(2,\mathbb{R})^n$).

Note: \widetilde{V} is not a group anymore. It is a semialgebraic homogenous space.

• Let $\Gamma = SL(2,\mathbb{Z})^n$ and $\Theta := (J,\ldots,J): \mathbb{H}^n \to \mathbb{C}^n$. Θ is a Γ -invariant surjection.

On the algebraic side

We let $V = \mathbb{C}^n \sim \Gamma \backslash \mathbb{H}^n$, via Θ

We now begin on the analytic side

- $\widetilde{V} = \mathbb{H}^n$.
- $G(\mathbb{R}) = SL(2,\mathbb{R})^n$ acting on \mathbb{H}^n in coordinates.
- The action is transitive so $\mathbb{H}^n = G(\mathbb{R})/stab_G(\bar{z})$ for any $\bar{z} \in \mathbb{H}^n$.
- Since $O(2,\mathbb{R})^n = stab(i,\ldots,i)$, we have $\mathbb{H}^n = SL(2,\mathbb{R})^n/O(2,\mathbb{R})^n$ (namely, $K = O(2,\mathbb{R})^n$).

Note: \widetilde{V} is not a group anymore. It is a semialgebraic homogenous space.

• Let $\Gamma = SL(2,\mathbb{Z})^n$ and $\Theta := (J,\ldots,J): \mathbb{H}^n \to \mathbb{C}^n$. Θ is a Γ -invariant surjection.

On the algebraic side

We let $V = \mathbb{C}^n \sim \Gamma \backslash \mathbb{H}^n$, via Θ

We now begin on the analytic side

- $\widetilde{V} = \mathbb{H}^n$
- $G(\mathbb{R}) = SL(2,\mathbb{R})^n$ acting on \mathbb{H}^n in coordinates.
- The action is transitive so $\mathbb{H}^n = G(\mathbb{R})/stab_G(\bar{z})$ for any $\bar{z} \in \mathbb{H}^n$.
- Since $O(2,\mathbb{R})^n = stab(i,\ldots,i)$, we have $\mathbb{H}^n = SL(2,\mathbb{R})^n/O(2,\mathbb{R})^n$ (namely, $K = O(2,\mathbb{R})^n$).

Note: \widetilde{V} is not a group anymore. It is a semialgebraic homogenous space.

• Let $\Gamma = SL(2,\mathbb{Z})^n$ and $\Theta := (J,\ldots,J) : \mathbb{H}^n \to \mathbb{C}^n$. Θ is a Γ -invariant surjection.

On the algebraic side

We now begin on the analytic side

- $\widetilde{V} = \mathbb{H}^n$.
- $G(\mathbb{R}) = SL(2,\mathbb{R})^n$ acting on \mathbb{H}^n in coordinates.
- The action is transitive so $\mathbb{H}^n = G(\mathbb{R})/stab_G(\bar{z})$ for any $\bar{z} \in \mathbb{H}^n$.
- Since $O(2,\mathbb{R})^n = stab(i,\ldots,i)$, we have $\mathbb{H}^n = SL(2,\mathbb{R})^n/O(2,\mathbb{R})^n$ (namely, $K = O(2,\mathbb{R})^n$).

Note: \widetilde{V} is not a group anymore. It is a semialgebraic homogenous space.

• Let $\Gamma = SL(2,\mathbb{Z})^n$ and $\Theta := (J, ..., J) : \mathbb{H}^n \to \mathbb{C}^n$. Θ is a Γ -invariant surjection.

On the algebraic side

We let $V = \mathbb{C}^n \sim \Gamma \backslash \mathbb{H}^n$, via Θ .

We now begin on the analytic side

- $\widetilde{V} = \mathbb{H}^n$.
- $G(\mathbb{R}) = SL(2,\mathbb{R})^n$ acting on \mathbb{H}^n in coordinates.
- The action is transitive so $\mathbb{H}^n = G(\mathbb{R})/stab_G(\bar{z})$ for any $\bar{z} \in \mathbb{H}^n$.
- Since $O(2,\mathbb{R})^n = stab(i,\ldots,i)$, we have $\mathbb{H}^n = SL(2,\mathbb{R})^n/O(2,\mathbb{R})^n$ (namely, $K = O(2,\mathbb{R})^n$).

Note: \widetilde{V} is not a group anymore. It is a semialgebraic homogenous space.

• Let $\Gamma = SL(2,\mathbb{Z})^n$ and $\Theta := (J, ..., J) : \mathbb{H}^n \to \mathbb{C}^n$. Θ is a Γ -invariant surjection.

On the algebraic side

We let $V = \mathbb{C}^n \sim \Gamma \backslash \mathbb{H}^n$, via Θ .

Special varieties and points

Again, the definition begins on the analytic side.

Definition of special points: The set S_0

 $(\tau_1, \ldots, \tau_n) \in \mathbb{H}^n$ is **special**, if for every i, the elliptic curve E_{τ_i} has complex multiplication $(End(E_{\tau}) \neq \mathbb{Z})$.

Equivalently, au_i belongs to an imaginary quadratic extension of \mathbb{Q} .

(abstract definition of special points in Shimura varieties-omitted here)

Definition of special varieties

Recall: An irreducible analytic variety $Y \subseteq \mathbb{H}^n$ is **special** if

- (i) Y is an orbit of a real algebraic group $H \leq SL(2,\mathbb{R})^n$.
- (ii) $\Theta(Y) \subseteq \mathbb{C}^n$ is an algebraic variety.
- (iii) $Y \cap \widetilde{\mathbb{S}}_0 \neq \emptyset$

Special varieties and points

Again, the definition begins on the analytic side.

Definition of special points: The set S_0

 $(\tau_1, \ldots, \tau_n) \in \mathbb{H}^n$ is **special**, if for every i, the elliptic curve E_{τ_i} has complex multiplication $(End(E_{\tau}) \neq \mathbb{Z})$.

Equivalently, τ_i belongs to an imaginary quadratic extension of \mathbb{Q} .

(abstract definition of special points in Shimura varieties-omitted here).

Definition of special varieties

Recall: An irreducible analytic variety $Y \subseteq \mathbb{H}^n$ is **special** if

- (i) Y is an orbit of a real algebraic group $H \leqslant SL(2,\mathbb{R})^n$.
- (ii) $\Theta(Y) \subseteq \mathbb{C}^n$ is an algebraic variety.
- (iii) $Y \cap \widetilde{S}_0 \neq \emptyset$

Special varieties and points

Again, the definition begins on the analytic side.

Definition of special points: The set \mathfrak{S}_0

 $(\tau_1, \ldots, \tau_n) \in \mathbb{H}^n$ is **special**, if for every i, the elliptic curve E_{τ_i} has complex multiplication $(End(E_{\tau}) \neq \mathbb{Z})$.

Equivalently, τ_i belongs to an imaginary quadratic extension of \mathbb{Q} . (abstract definition of special points in Shimura varieties-omitted here).

Definition of special varieties

Recall: An irreducible analytic variety $Y \subseteq \mathbb{H}^n$ is **special** if

- (i) Y is an orbit of a real algebraic group $H \leqslant SL(2,\mathbb{R})^n$.
- (ii) $\Theta(Y) \subseteq \mathbb{C}^n$ is an algebraic variety.
- (iii) $Y \cap \widetilde{S}_0 \neq \emptyset$.

The image under Θ of a special point is **special** in \mathbb{C}^n . $\mathbb{S}_0 := \Theta(\widetilde{\mathbb{S}}_0)$. The Image under Θ of special variety is **special** in \mathbb{C}^n .

Examples of special varieties

- $X = \{\tau\} \times \mathbb{H}^{n-1}$, with $\tau \in S_0$; it is an orbit of $H = \{1\} \times SL(2, \mathbb{R})^{n-1}$.
- $\Theta(X) = \{p\} \times \mathbb{C}^{n-1}$ is a special variety.
- $\widetilde{X} = \{(\tau, N\tau) : \tau \in \mathbb{H}\} \times \mathbb{H}^{n-2}$, for some $N \in \mathbb{N}$. It is an orbit of $H_1 \times SL(2, \mathbb{R})^{n-2}$, with $H_1 = \{(g, hgh^{-1}) : g \in SL(2, \mathbb{R})\}$ and

$$h = \left(\begin{array}{cc} 1 & 0 \\ 0 & N \end{array}\right)$$

 $\Theta(X) = Z(\Phi_N) \times \mathbb{C}^{n-2}$ where Φ_N is the zero set of a modular polynomial.

Moonen's work

The image under Θ of a special point is **special** in \mathbb{C}^n . $\mathcal{S}_0 := \Theta(\widetilde{\mathcal{S}}_0)$.

The Image under Θ of special variety is **special** in \mathbb{C}^n .

Examples of special varieties

- $\widetilde{X} = {\tau} \times \mathbb{H}^{n-1}$, with $\tau \in \widetilde{S}_0$; it is an orbit of $H = {1} \times SL(2, \mathbb{R})^{n-1}$.
- $\Theta(X) = \{p\} \times \mathbb{C}^{n-1}$ is a special variety.
- $X = \{(\tau, N\tau) : \tau \in \mathbb{H}\} \times \mathbb{H}^{n-2}$, for some $N \in \mathbb{N}$. It is an orbit of
- $H_1 \times SL(2,\mathbb{R})^{n-2}$, with $H_1 = \{(g, ngn^{-1}) : g \in SL(2,\mathbb{R})\}$ and
- $h = \begin{pmatrix} 1 & 0 \\ 0 & N \end{pmatrix}$
- $\Theta(X) = Z(\Phi_N) \times \mathbb{C}^{n-2}$ where Φ_N is the zero set of a modular polynomial.

Moonen's work

The image under Θ of a special point is **special** in \mathbb{C}^n . $\mathcal{S}_0 := \Theta(\widetilde{\mathcal{S}}_0)$.

The Image under Θ of special variety is **special** in \mathbb{C}^n .

Examples of special varieties

- $\widetilde{X} = \{\tau\} \times \mathbb{H}^{n-1}$, with $\tau \in \widetilde{\mathbb{S}}_0$; it is an orbit of $H = \{1\} \times SL(2,\mathbb{R})^{n-1}$.
- $\Theta(X) = \{p\} \times \mathbb{C}^{n-1}$ is a special variety.
- $X = \{(\tau, N\tau) : \tau \in \mathbb{H}\} \times \mathbb{H}^{n-2}$, for some $N \in \mathbb{N}$. It is an orbit o $H_1 \times SL(2, \mathbb{R})^{n-2}$, with $H_1 = \{(g, hgh^{-1}) : g \in SL(2, \mathbb{R})\}$ and
- $h = \begin{pmatrix} 1 & 0 \\ 0 & N \end{pmatrix}$
- $\Theta(X) = Z(\Phi_N) \times \mathbb{C}^{n-2}$ where Φ_N is the zero set of a modular polynomial.

Moonen's work

The image under Θ of a special point is **special** in \mathbb{C}^n . $\mathcal{S}_0 := \Theta(\widetilde{\mathcal{S}}_0)$.

The Image under Θ of special variety is **special** in \mathbb{C}^n .

Examples of special varieties

- $\widetilde{X} = \{\tau\} \times \mathbb{H}^{n-1}$, with $\tau \in \widetilde{\mathbb{S}}_0$; it is an orbit of $H = \{1\} \times SL(2, \mathbb{R})^{n-1}$. $\Theta(\widetilde{X}) = \{p\} \times \mathbb{C}^{n-1}$ is a special variety.
- $X = \{(\tau, N\tau) : \tau \in \mathbb{H}\} \times \mathbb{H}^{n-2}$, for some $N \in \mathbb{N}$. It is an orbit of $H_1 \times SL(2, \mathbb{R})^{n-2}$, with $H_1 = \{(g, hgh^{-1}) : g \in SL(2, \mathbb{R})\}$ and

$$h = \left(\begin{array}{cc} 1 & 0 \\ 0 & N \end{array}\right)$$

 $\Theta(X) = Z(\Phi_N) \times \mathbb{C}^{n-2}$ where Φ_N is the zero set of a modular polynomial.

Moonen's work

The image under Θ of a special point is **special** in \mathbb{C}^n . $\mathcal{S}_0 := \Theta(\widetilde{\mathcal{S}}_0)$.

The Image under Θ of special variety is **special** in \mathbb{C}^n .

Examples of special varieties

- $\widetilde{X} = \{\tau\} \times \mathbb{H}^{n-1}$, with $\tau \in \widetilde{\mathbb{S}}_0$; it is an orbit of $H = \{1\} \times SL(2,\mathbb{R})^{n-1}$. $\Theta(\widetilde{X}) = \{p\} \times \mathbb{C}^{n-1}$ is a special variety.
- $\widetilde{X} = \{(\tau, N\tau) : \tau \in \mathbb{H}\} \times \mathbb{H}^{n-2}$, for some $N \in \mathbb{N}$. It is an orbit of $H_1 \times SL(2, \mathbb{R})^{n-2}$, with $H_1 = \{(g, hgh^{-1}) : g \in SL(2, \mathbb{R})\}$ and $h = \begin{pmatrix} 1 & 0 \\ 0 & N \end{pmatrix}$
- $\Theta(X) = Z(\Phi_N) \times \mathbb{C}^{n-2}$ where Φ_N is the zero set of a modular polynomial.

Moonen's work

The image under Θ of a special point is **special** in \mathbb{C}^n . $\mathbb{S}_0 := \Theta(\widetilde{\mathbb{S}}_0)$.

The Image under Θ of special variety is **special** in \mathbb{C}^n .

Examples of special varieties

- $\widetilde{X} = \{\tau\} \times \mathbb{H}^{n-1}$, with $\tau \in \widetilde{\mathbb{S}}_0$; it is an orbit of $H = \{1\} \times SL(2, \mathbb{R})^{n-1}$. $\Theta(\widetilde{X}) = \{p\} \times \mathbb{C}^{n-1}$ is a special variety.
- $\widetilde{X} = \{(\tau, N\tau) : \tau \in \mathbb{H}\} \times \mathbb{H}^{n-2}$, for some $N \in \mathbb{N}$. It is an orbit of $H_1 \times SL(2, \mathbb{R})^{n-2}$, with $H_1 = \{(g, hgh^{-1}) : g \in SL(2, \mathbb{R})\}$ and $h = \begin{pmatrix} 1 & 0 \\ 0 & N \end{pmatrix}$

 $\Theta(X) = Z(\Phi_N) \times \mathbb{C}^{n-2}$ where Φ_N is the zero set of a modular polynomial.

Moonen's work

The image under Θ of a special point is **special** in \mathbb{C}^n . $\mathbb{S}_0 := \Theta(\widetilde{\mathbb{S}}_0)$.

The Image under Θ of special variety is **special** in \mathbb{C}^n .

Examples of special varieties

- $\widetilde{X} = \{\tau\} \times \mathbb{H}^{n-1}$, with $\tau \in \widetilde{S}_0$; it is an orbit of $H = \{1\} \times SL(2, \mathbb{R})^{n-1}$.
- $\Theta(\widetilde{X}) = \{p\} \times \mathbb{C}^{n-1}$ is a special variety.
- $\widetilde{X} = \{(\tau, N\tau) : \tau \in \mathbb{H}\} \times \mathbb{H}^{n-2}$, for some $N \in \mathbb{N}$. It is an orbit of $H_1 \times SL(2, \mathbb{R})^{n-2}$, with $H_1 = \{(g, hgh^{-1}) : g \in SL(2, \mathbb{R})\}$ and

$$h = \left(\begin{array}{cc} 1 & 0 \\ 0 & N \end{array}\right)$$

 $\Theta(\widetilde{X}) = Z(\Phi_N) \times \mathbb{C}^{n-2}$ where Φ_N is the zero set of a modular polynomial.

Moonen's work

The image under Θ of a special point is **special** in \mathbb{C}^n . $\mathcal{S}_0 := \Theta(\widetilde{\mathcal{S}}_0)$.

The Image under Θ of special variety is **special** in \mathbb{C}^n .

Examples of special varieties

- $\widetilde{X} = \{\tau\} \times \mathbb{H}^{n-1}$, with $\tau \in \widetilde{S}_0$; it is an orbit of $H = \{1\} \times SL(2, \mathbb{R})^{n-1}$.
- $\Theta(\widetilde{X}) = \{p\} \times \mathbb{C}^{n-1}$ is a special variety.
- $\widetilde{X} = \{(\tau, N\tau) : \tau \in \mathbb{H}\} \times \mathbb{H}^{n-2}$, for some $N \in \mathbb{N}$. It is an orbit of $H_1 \times SL(2, \mathbb{R})^{n-2}$, with $H_1 = \{(g, hgh^{-1}) : g \in SL(2, \mathbb{R})\}$ and

$$h = \left(\begin{array}{cc} 1 & 0 \\ 0 & N \end{array}\right)$$

 $\Theta(\widetilde{X}) = Z(\Phi_N) \times \mathbb{C}^{n-2}$ where Φ_N is the zero set of a modular polynomial.

Moonen's work

The statement of theorem

The André-Oort Conjecture for Cⁿ (a theorem of Pila)

If $X \subseteq \mathbb{C}^n$ is an irreducible algebraic variety and $X \cap S_0$ is Zariski dense in X then X is special.

Notice that by the nature of the definitions, we immediately have an analytic presentation of the problem:

- We have $\Theta: \mathbb{H}^n \to \mathbb{C}^n$ given by the J function in each coordinate.
- We have notions of special points and varieties in Hⁿ

The statement of theorem

The André-Oort Conjecture for Cⁿ (a theorem of Pila)

If $X \subseteq \mathbb{C}^n$ is an irreducible algebraic variety and $X \cap S_0$ is Zariski dense in X then X is special.

Notice that by the nature of the definitions, we immediately have an analytic presentation of the problem:

- We have $\Theta: \mathbb{H}^n \to \mathbb{C}^n$ given by the J function in each coordinate.
- We have notions of special points and varieties in \mathbb{H}^n .

The Pila Zannier method: I. The fundamental set

By the basic theory of elliptic curves, the following is a fundamental set for $SL(2,\mathbb{Z})$ (for every $0 < a < \sqrt{3}/2$):

$$\mathfrak{F}=\{z\in\mathbb{H}; -1/2\leqslant \textit{Re}(z)\leqslant 1/2\,\&\,\textit{Im}(z)>a\}.$$

So \mathfrak{F}^n is a fundamental set for $SL(2,\mathbb{Z})^n$.

The Pila Zannier method: I. The fundamental set

By the basic theory of elliptic curves, the following is a fundamental set for $SL(2,\mathbb{Z})$ (for every $0 < a < \sqrt{3}/2$):

$$\mathfrak{F}=\{z\in\mathbb{H}; -1/2\leqslant \textit{Re}(z)\leqslant 1/2\,\&\,\textit{Im}(z)>a\}.$$

So \mathfrak{F}^n is a fundamental set for $SL(2,\mathbb{Z})^n$.

Pila-zanner method I: Definability of $J \upharpoonright \mathfrak{F}$

Theorem

The restriction of J to \mathfrak{F} is definable in $\mathbb{R}_{an,exp}$.

Proof Consider first the map $z \mapsto e^{2\pi l z}$. It sends \mathfrak{F} onto a punctured disc D^* . The "point" $Im(z) = \infty$ is sent to 0.

Pila-zanner method I: Definability of $J \upharpoonright \mathfrak{F}$

Theorem

The restriction of J to \mathfrak{F} is definable in $\mathbb{R}_{an,exp}$.

Proof Consider first the map $z \mapsto e^{2\pi iz}$. It sends \mathfrak{F} onto a punctured disc D^* . The "point" $Im(z) = \infty$ is sent to 0.

The proof continues

Because J is \mathbb{Z} -periodic ($z \mapsto z + 1 \in SL(2,\mathbb{Z})$) it factors through $e^{2\pi i z}$.

As before, the restriction of

$$e^{2\pi i z} = e^{2\pi i (x+iy)} = e^{-2\pi y} (\cos x + i \sin x)$$

to \mathfrak{F} is definable in $\mathbb{R}_{an,exp}$.

It is known that as $Im(z) \to +\infty$, $J(z) \to +\infty$. Hence, J(q) tends to ∞ as $q \to 0$ in D^* , so \widetilde{J} is meromorphic on the punctured disc. Hence, \widetilde{J} is definable in \mathbb{R}_{an} .

It follows that $J|\mathfrak{F}$ is definable in $\mathbb{R}_{an.exp}$.

The proof continues

Because J is \mathbb{Z} -periodic ($z \mapsto z + 1 \in SL(2,\mathbb{Z})$) it factors through $e^{2\pi i z}$.

As before, the restriction of

$$e^{2\pi iz}=e^{2\pi i(x+iy)}=e^{-2\pi y}(cosx+isinx)$$

to \mathfrak{F} is definable in $\mathbb{R}_{an,exp}$.

It is known that as $Im(z) \to +\infty$, $J(z) \to +\infty$. Hence, J(q) tends to ∞ as $q \to 0$ in D^* , so \widetilde{J} is meromorphic on the punctured disc. Hence, \widetilde{J} is definable in \mathbb{R}_{an} .

It follows that $J|\mathfrak{F}$ is definable in $\mathbb{R}_{an.exp}$.

The proof continues

Because J is \mathbb{Z} -periodic ($z \mapsto z + 1 \in SL(2,\mathbb{Z})$) it factors through $e^{2\pi i z}$.

As before, the restriction of

$$e^{2\pi iz} = e^{2\pi i(x+iy)} = e^{-2\pi y}(\cos x + i\sin x)$$

to \mathfrak{F} is definable in $\mathbb{R}_{an,exp}$.

It is known that as $Im(z) \to +\infty$, $J(z) \to +\infty$. Hence, $\widetilde{J}(q)$ tends to ∞ as $q \to 0$ in D^* , so \widetilde{J} is meromorphic on the punctured disc. Hence, \widetilde{J} is definable in \mathbb{R}_{an} .

It follows that $J|\mathfrak{F}$ is definable in $\mathbb{R}_{an.exp}$.

The proof continues

Because J is \mathbb{Z} -periodic ($z \mapsto z + 1 \in SL(2,\mathbb{Z})$) it factors through $e^{2\pi i z}$.

As before, the restriction of

$$e^{2\pi iz} = e^{2\pi i(x+iy)} = e^{-2\pi y}(\cos x + i\sin x)$$

to \mathfrak{F} is definable in $\mathbb{R}_{an,exp}$.

It is known that as $Im(z) \to +\infty$, $J(z) \to +\infty$. Hence, $\widetilde{J}(q)$ tends to ∞ as $q \to 0$ in D^* , so \widetilde{J} is meromorphic on the punctured disc. Hence, \widetilde{J} is definable in \mathbb{R}_{an} .

It follows that $J|\mathfrak{F}$ is definable in $\mathbb{R}_{an \text{ exp}}$

The proof continues

Because J is \mathbb{Z} -periodic ($z \mapsto z + 1 \in SL(2,\mathbb{Z})$) it factors through $e^{2\pi i z}$.

As before, the restriction of

$$e^{2\pi iz} = e^{2\pi i(x+iy)} = e^{-2\pi y}(\cos x + i\sin x)$$

to \mathfrak{F} is definable in $\mathbb{R}_{an,exp}$.

It is known that as $Im(z) \to +\infty$, $J(z) \to +\infty$. Hence, J(q) tends to ∞ as $q \to 0$ in D^* , so \widetilde{J} is meromorphic on the punctured disc. Hence, \widetilde{J} is definable in \mathbb{R}_{qn} .

It follows that $J|\mathfrak{F}$ is definable in $\mathbb{R}_{an,exp}$.

II. Number Theory

We have $\Theta: \mathbb{H}^n \to \mathbb{C}^n$, and $X \subseteq \mathbb{C}^n$ algebraic, with $X \cap S_0$ Zariski dense in X. We use \mathfrak{F} for the fundamental set for $\Theta : \mathbb{F}^n$.

On the analytic side

Let $\widetilde{X} \subseteq \mathbb{H}^n$ be an irreducible **analytic** component of $\Theta^{-1}(X)$

We already saw that if $\tau = (\tau_1, \dots, \tau_n) \in \mathbb{H}^n$ is special then each τ_i is imaginary quadratic.

Using a theorem of Siegel on imaginary quadratic fields, Pila proves:

Largness of special points

The set $\widetilde{S}_0 \cap \widetilde{X} \cap \mathfrak{F}$ is large*.

II. Number Theory

We have $\Theta: \mathbb{H}^n \to \mathbb{C}^n$, and $X \subseteq \mathbb{C}^n$ algebraic, with $X \cap S_0$ Zariski dense in X. We use \mathfrak{F} for the fundamental set for $\Theta : \mathbb{F}^n$.

On the analytic side

Let $\widetilde{X} \subseteq \mathbb{H}^n$ be an irreducible **analytic** component of $\Theta^{-1}(X)$.

We already saw that if $\tau = (\tau_1, \dots, \tau_n) \in \mathbb{H}^n$ is special then each τ_i is imaginary quadratic.

Using a theorem of Siegel on imaginary quadratic fields, Pila proves:

Largness of special points

The set $\widetilde{\mathbb{S}}_0 \cap \widetilde{X} \cap \mathfrak{F}$ is large*.

II. Number Theory

We have $\Theta: \mathbb{H}^n \to \mathbb{C}^n$, and $X \subseteq \mathbb{C}^n$ algebraic, with $X \cap S_0$ Zariski dense in X. We use \mathfrak{F} for the fundamental set for $\Theta : \mathbb{F}^n$.

On the analytic side

Let $\widetilde{X} \subseteq \mathbb{H}^n$ be an irreducible **analytic** component of $\Theta^{-1}(X)$.

We already saw that if $\tau = (\tau_1, \dots, \tau_n) \in \mathbb{H}^n$ is special then each τ_i is imaginary quadratic.

Using a theorem of Siegel on imaginary quadratic fields, Pila proves:

Largness of special points

The set $\widetilde{S}_0 \cap \widetilde{X} \cap \mathfrak{F}$ is large*.

III. The Ax-Lindemann statement

The Pila-Wilkie input

 \widetilde{X} contains an algebraic set of positive dimension (relative to \mathbb{H}^n). Let A be maximal irreducible such set.

Goal

A is weakly special. Namely

- (i) it is the orbit of a real algebraic subgroup of $SL(2,\mathbb{R})^n$, and
- (ii) $\Theta(A)$ is algebraic.

Ax-Lindemann for \mathbb{H}^n (third type of proof)

We have $\widetilde{X} \subseteq \mathbb{H}^n$ an analytic irreducible component of $\Theta^{-1}(X)$ and $A \subseteq \widetilde{X}$ is a maximal, relatively algebraic subset, of positive dimension. Namely, there exists an algebraic $\overline{A} \subseteq \mathbb{C}^n$ such that $A = \overline{A} \cap \mathbb{H}^n$.

Write $G := SL(2, \mathbb{R})^n$, and $\Gamma = SL(2, \mathbb{Z})^n$.

Without loss of generality $\dim(A \cap \mathfrak{F}) = \dim A$ (if not, replace \widetilde{X} and A by $\gamma \widetilde{X}$ and γA , for some $\gamma \in \Gamma$).

Fact A is not contained in finitely many Γ -translates of \mathfrak{F} .

WHY?

Otherwise $A \subseteq \bigcup_{i=1}^{k} \gamma_i \mathfrak{F}$. Because the real part of \mathfrak{F} is bounded, it follows that Re(z) is bounded for $z \in \overline{A} \cap \mathbb{H}^n$. This would imply (?) that A must be compact. But a compact complex analytic subset of \mathbb{H}^n is finite. Contradiction.

Ax-Lindemann for \mathbb{H}^n (third type of proof)

We have $\widetilde{X} \subseteq \mathbb{H}^n$ an analytic irreducible component of $\Theta^{-1}(X)$ and $A \subseteq \widetilde{X}$ is a maximal, relatively algebraic subset, of positive dimension. Namely, there exists an algebraic $\overline{A} \subseteq \mathbb{C}^n$ such that $A = \overline{A} \cap \mathbb{H}^n$.

Write $G := SL(2, \mathbb{R})^n$, and $\Gamma = SL(2, \mathbb{Z})^n$.

Without loss of generality $\dim(A \cap \mathfrak{F}) = \dim A$ (if not, replace \widetilde{X} and A by $\gamma \widetilde{X}$ and γA , for some $\gamma \in \Gamma$).

Fact A is not contained in finitely many Γ -translates of \mathfrak{F} .

WHY?

Otherwise $A \subseteq \bigcup_{i=1}^K \gamma_i \mathfrak{F}$. Because the real part of \mathfrak{F} is bounded, it follows that Re(z) is bounded for $z \in \bar{A} \cap \mathbb{H}^n$. This would imply (?) that A must be compact. But a compact complex analytic subset of \mathbb{H}^n is finite. Contradiction.

Ax-Lindemann for \mathbb{H}^n (third type of proof)

We have $\widetilde{X} \subseteq \mathbb{H}^n$ an analytic irreducible component of $\Theta^{-1}(X)$ and $A \subseteq \widetilde{X}$ is a maximal, relatively algebraic subset, of positive dimension. Namely, there exists an algebraic $\overline{A} \subseteq \mathbb{C}^n$ such that $A = \overline{A} \cap \mathbb{H}^n$.

Write $G := SL(2,\mathbb{R})^n$, and $\Gamma = SL(2,\mathbb{Z})^n$.

Without loss of generality $\dim(A \cap \mathfrak{F}) = \dim A$ (if not, replace \widetilde{X} and A by $\gamma \widetilde{X}$ and γA , for some $\gamma \in \Gamma$).

Fact A is not contained in finitely many Γ -translates of \mathfrak{F} .

WHY?

Otherwise $A \subseteq \bigcup_{i=1}^k \gamma_i \mathfrak{F}$. Because the real part of \mathfrak{F} is bounded, it follows that Re(z) is bounded for $z \in \bar{A} \cap \mathbb{H}^n$. This would imply (?) that A must be compact. But a compact complex analytic subset of \mathbb{H}^n is finite. Contradiction.

Proof of A-L (cont)

We showed that A is not contained in finitely many Γ-translates of ₹

Hence, there are infinitely many $\gamma \in \Gamma$ such that $\dim(\gamma A \cap \mathfrak{F}) = \dim A$.

Proof of A-L (cont)

We showed that A is not contained in finitely many Γ-translates of ₹

Hence, there are infinitely many $\gamma \in \Gamma$ such that $\dim(\gamma A \cap \mathfrak{F}) = \dim A$.

Let
$$G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$$

- As we showed, $\Gamma \cap G(A)$ is infinite.
- By analyticity of $\Theta^{-1}(X)$ and irreducibility of A, if $g \in G(A)$ then $gA \subseteq \Theta^{-1}(X)$.
- ullet The set G(A) is definable in $\mathbb{R}_{an,exp}.$

A counting Lemma (proof omitted)

The $\{\gamma \in SL(2,\mathbb{Z})^n : \gamma \in G(A) \text{ is large}^*.$

A second use of Pila-Wilkie

Let
$$G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$$

- As we showed, $\Gamma \cap G(A)$ is infinite.
- By analyticity of $\Theta^{-1}(X)$ and irreducibility of A, if $g \in G(A)$ then $gA \subseteq \Theta^{-1}(X)$.
- ullet The set G(A) is definable in $\mathbb{R}_{an,exp}.$

A counting Lemma (proof omitted)

The $\{\gamma \in SL(2,\mathbb{Z})^n : \gamma \in G(A) \text{ is large}^*.$

A second use of Pila-Wilkie

Let
$$G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$$

- As we showed, $\Gamma \cap G(A)$ is infinite.
- By analyticity of $\Theta^{-1}(X)$ and irreducibility of A, if $g \in G(A)$ then $gA \subseteq \Theta^{-1}(X)$.
- The set G(A) is definable in $\mathbb{R}_{an,exp}$.

A counting Lemma (proof omitted)

The $\{\gamma \in SL(2,\mathbb{Z})^n : \gamma \in G(A) \text{ is large}^*.$

A second use of Pila-Wilkie

Let
$$G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$$

- As we showed, $\Gamma \cap G(A)$ is infinite.
- By analyticity of $\Theta^{-1}(X)$ and irreducibility of A, if $g \in G(A)$ then $gA \subseteq \Theta^{-1}(X)$.
- The set G(A) is definable in $\mathbb{R}_{an,exp}$.

A counting Lemma (proof omitted)

The $\{\gamma \in SL(2,\mathbb{Z})^n : \gamma \in G(A) \text{ is large}^*.$

A second use of Pila-Wilkie

Let
$$G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$$

- As we showed, $\Gamma \cap G(A)$ is infinite.
- By analyticity of $\Theta^{-1}(X)$ and irreducibility of A, if $g \in G(A)$ then $gA \subseteq \Theta^{-1}(X)$.
- The set G(A) is definable in $\mathbb{R}_{an,exp}$.

A counting Lemma (proof omitted)

The $\{\gamma \in SL(2,\mathbb{Z})^n : \gamma \in G(A) \text{ is large}^*.$

A second use of Pila-Wilkie

Let
$$G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$$

- As we showed, $\Gamma \cap G(A)$ is infinite.
- By analyticity of $\Theta^{-1}(X)$ and irreducibility of A, if $g \in G(A)$ then $gA \subseteq \Theta^{-1}(X)$.
- The set G(A) is definable in $\mathbb{R}_{an,exp}$.

A counting Lemma (proof omitted)

The $\{\gamma \in SL(2,\mathbb{Z})^n : \gamma \in G(A) \text{ is large}^*.$

A second use of Pila-Wilkie

Let
$$G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$$

- As we showed, $\Gamma \cap G(A)$ is infinite.
- By analyticity of $\Theta^{-1}(X)$ and irreducibility of A, if $g \in G(A)$ then $gA \subseteq \Theta^{-1}(X)$.
- The set G(A) is definable in $\mathbb{R}_{an,exp}$.

A counting Lemma (proof omitted)

The $\{\gamma \in SL(2,\mathbb{Z})^n : \gamma \in G(A) \text{ is large}^*.$

A second use of Pila-Wilkie

We have $G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$

A s semi-algebraic curve $\sigma \subseteq G(A)$. Without loss $e \in \sigma$.

So, $\sigma \cdot A \subseteq \Theta^{-1}(X)$ is a semi-algebraic set containing (a translate of) A. By the maximality of A, $\sigma \cdot A = A$, hence the group $Stab_G(A)$ is infinite.

Consider the real algebraic group $Stab_G(A) \subseteq G$. It is thus infinite and contains infinitely many Γ points (by a finer use of Pila-Wilkie).

Let H be the Zariski closure of $G(A) \cap \Gamma$. It is a real algebraic group defined over $\mathbb Q$ which stabilizes A. Using induction and decomposition of Shimura varieties, one can show that A is an orbit of H and that $\Theta(A)$ is algebraic, hence A is weakly special.

We have $G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$

A s semi-algebraic curve $\sigma \subseteq G(A)$. Without loss $e \in \sigma$.

So, $\sigma \cdot A \subseteq \Theta^{-1}(X)$ is a semi-algebraic set containing (a translate of) A. By the maximality of A, $\sigma \cdot A = A$, hence the group $Stab_G(A)$ is infinite.

Consider the real algebraic group $Stab_G(A) \subseteq G$. It is thus infinite and contains infinitely many Γ points (by a finer use of Pila-Wilkie).

Let H be the Zariski closure of $G(A) \cap \Gamma$. It is a real algebraic group defined over $\mathbb Q$ which stabilizes A. Using induction and decomposition of Shimura varieties, one can show that A is an orbit of H and that $\Theta(A)$ is algebraic, hence A is weakly special.

We have $G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$

A s semi-algebraic curve $\sigma \subseteq G(A)$. Without loss $e \in \sigma$.

So, $\sigma \cdot A \subseteq \Theta^{-1}(X)$ is a semi-algebraic set containing (a translate of) A. By the maximality of A, $\sigma \cdot A = A$, hence the group $Stab_G(A)$ is infinite.

Consider the real algebraic group $Stab_G(A) \subseteq G$. It is thus infinite and contains infinitely many Γ points (by a finer use of Pila-Wilkie).

Let H be the Zariski closure of $G(A) \cap \Gamma$. It is a real algebraic group defined over \mathbb{Q} which stabilizes A. Using induction and decomposition of Shimura varieties, one can show that A is an orbit of H and that $\Theta(A)$ is algebraic, hence A is weakly special.

We have $G(A) = \{g \in G : \dim(gA \cap (\Theta^{-1}(X) \cap \mathfrak{F})) = \dim A\}.$

A s semi-algebraic curve $\sigma \subseteq G(A)$. Without loss $e \in \sigma$.

So, $\sigma \cdot A \subseteq \Theta^{-1}(X)$ is a semi-algebraic set containing (a translate of) A. By the maximality of A, $\sigma \cdot A = A$, hence the group $Stab_G(A)$ is infinite.

Consider the real algebraic group $Stab_G(A) \subseteq G$. It is thus infinite and contains infinitely many Γ points (by a finer use of Pila-Wilkie).

Let H be the Zariski closure of $G(A) \cap \Gamma$. It is a real algebraic group defined over \mathbb{Q} which stabilizes A. Using induction and decomposition of Shimura varieties, one can show that A is an orbit of H and that $\Theta(A)$ is algebraic, hence A is weakly special.

André Oort for A_g for g = 2 (Pila Tsimerman)

Theorem The André- Oort conjecture holds for A_2 , the moduli space of abelian surfaces.

- I. Definability: P-Starchenko.
- II. Number Theory: Uses results of Tsimerman
- III. A-L: using strongly the low dimension of A_2 (dim $A_2 = 3$)

Status of General André-Oort

Recent work of Klingler, Yafaev and Ullmo (2013)

- I. The restriction of the Baily-Borel embedding of Shimura varieties to Siegel fundamental sets is definable in $\mathbb{R}_{an,exp}$ (!).
- III. Ax-Lindemann holds for arbitrary Shimura varieties.

what is missing?

André Oort for A_g for g = 2 (Pila Tsimerman)

Theorem The André- Oort conjecture holds for A_2 , the moduli space of abelian surfaces.

- I. Definability: P-Starchenko.
- II. Number Theory: Uses results of Tsimerman.
- III. A-L: using strongly the low dimension of A_2 (dim $A_2 = 3$).

Status of General André-Oort

Recent work of Klingler, Yafaev and Ullmo (2013)

- I. The restriction of the Baily-Borel embedding of Shimura varieties to Siegel fundamental sets is definable in $\mathbb{R}_{an,exp}$ (!).
- III. Ax-Lindemann holds for arbitrary Shimura varieties.

what is missing?

André Oort for A_g for g = 2 (Pila Tsimerman)

Theorem The André- Oort conjecture holds for A_2 , the moduli space of abelian surfaces.

- I. Definability: P-Starchenko.
- II. Number Theory: Uses results of Tsimerman.
- III. A-L: using strongly the low dimension of A_2 (dim $A_2 = 3$).

Status of General André-Oort

Recent work of Klingler, Yafaev and Ullmo (2013)

- I. The restriction of the Baily-Borel embedding of Shimura varieties to Siegel fundamental sets is definable in $\mathbb{R}_{an,exp}$ (!).
- III. Ax-Lindemann holds for arbitrary Shimura varieties.

what is missing?

André Oort for A_g for g = 2 (Pila Tsimerman)

Theorem The André- Oort conjecture holds for A_2 , the moduli space of abelian surfaces.

- I. Definability: P-Starchenko.
- II. Number Theory: Uses results of Tsimerman.
- III. A-L: using strongly the low dimension of A_2 (dim $A_2 = 3$).

Status of General André-Oort

Recent work of Klingler, Yafaev and Ullmo (2013)

- I. The restriction of the Baily-Borel embedding of Shimura varieties to Siegel fundamental sets is definable in $\mathbb{R}_{an,exp}$ (!).
- III. Ax-Lindemann holds for arbitrary Shimura varieties.

what is missing?