Numbers

Types of Numbers:

• Natural Numbers: $\mathbb{N} = \{1, 2, 3, \ldots\}$

• Whole Numbers: $\mathbb{N} \cup \{0\} = \{0, 1, 2, 3, \ldots\}$

• Integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

• Rational Numbers: $\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} , b \neq 0 \right\}$. Rational Numbers comprise of fractions (includes all proper and improper fractions and mixed numbers). All terminating decimals (eg, 10.87) and recurring decimals (eg, 0.371 = 0.3717171...) are rational numbers because these can all be expressed as fractions. All integers are rational numbers.

• Irrational Numbers: numbers that cannot be expressed in the form $\frac{a}{b}$, where a and b are integers and $b \neq 0$. Eg. π , $\sqrt{2}$, $\sqrt{5}$, $-4\sqrt{7}$, e, 2.75e, etc. Irrational numbers are non-recurring decimals. Any non-zero rational number multiplied to an irrational number results in an irrational number. For example, $-\frac{3}{4}\pi$ is irrational.

• Perfect Squares: $\{1, 4, 9, 16, 25, \ldots\}$

• Perfect Cubes: $\{1, 8, 27, 64, \ldots\}$

• Prime Numbers: Positive integers at least 2 whose only positive divisors are 1 and itself. $\{2,3,5,7,11,13,17,19,23,\ldots\}$

Equality and Inequality Symbols

Symbol	Meaning	Example
=	is equal to	$0.1 = \frac{1}{10}$
<i>≠</i>	is not equal to	$0.11 \neq \frac{1}{10}$
>	is greater than	0.1 > 0.01
≥	is greater than or equal to	$a \geqslant 5$
<	is less than	0.05 < 5
€	is less than or equal to	$b \leqslant 5$

Prime Factorization, HCF, LCM

• Example of prime factorization:

$$\begin{array}{c|cc} 2 & 4356 \\ 2 & 2178 \\ 3 & 1089 \\ 3 & 363 \\ 11 & 121 \\ \hline & 11 \\ \end{array}$$

Hence $4356 = 2^2 \times 3^2 \times 11^2$ (in index notation).

• Example of HCF and LCM using prime factorization:

$$4800 = 2^{6} \times 3 \times 5^{2}$$
$$5544 = 2^{3} \times 3^{2} \times 7 \times 11$$
$$HCF = 2^{3} \times 3$$

[take common prime factors and lowest power of each]

$$LCM = 2^6 \times 3^2 \times 5^2 \times 7 \times 11$$

[take all prime factors and highest power of each]

• Examples of square roots and cube roots using prime factorization:

$$54756 = 2^{2} \times 3^{4} \times 13^{2}$$

$$\sqrt{54756} = 2 \times 3^{2} \times 13 = 234$$

$$1728 = 2^{6} \times 3^{3}$$

$$\sqrt[3]{1728} = 2^{2} \times 3 = 12$$

Approximation

Significant Figures

Rules of identifying number of significant digits:

- 1. All non-zero digits are significant.
- 2. Zeros between non-zero digits are significant.

Eg. 302 (3 sf) Eg. 10.2301 (6 sf)

1

3. In a whole number, zeros after the last nonzero digit may or may not be significant. It depends on the estimation being made.

Eg.

7436000 = 7000000 (1 sf)

7436000 = 7400000 (2 sf)

7436000 = 7440000 (3 sf)

7436000 = 7436000 (4 sf)

7436000 = 7436000 (5 sf)

7436000 = 7436000 (6 sf)

4. In a decimal number, zeros before the $1^{\rm st}$ non-zero digit are not significant.

Eg. 0.004 (1 sf)

Eg. 0.07008 (4 sf)

5. In a decimal number, zeros after the last non-zero digit are significant.

Eg. 6.40 (3 sf)

Eg. 12.000 (5 sf)

Eg. 20300.000 (8 sf)

Eg. 0.0700800 (6 sf)

Decimal Place Rounding

Examples:

0.7374 = 0.74 (2 dp)

58.301 = 58.30 (2 dp)

207.6296 = 207.630 (3 dp)

207.6296 = 207.63 (2 dp)

207.977 = 208.0 (1 dp)

207.977 = 207.98 (2 dp)

18.997 = 19.00 (2 dp)

Standard Form

 $\pm A \times 10^n$, where $1 \le A < 10$ and n is an integer.

Examples:

 $1350000 = 1.35 \times 10^6$

 $0.000375 = 3.75 \times 10^{-4}$

Common Prefixes

10^{12}	trillion	tera	T
10^{9}	billion	giga	G
10^{6}	million	mega	M
10^{3}	thousand	kilo	k
10^{-3}	thousandth	milli	m
10^{-6}	millionth	micro	μ
10^{-9}	billionth	nano	n
10^{-12}	trillionth	pico	р

Indices

Rules of Indices: $a^0 = 1$

 $a^m \times a^n = a^{m+n}$

 $a^m \div a^n = a^{m-n}$

 $(ab)^n = a^n b^n$

 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

 $(a^n)^m = a^{nm}$

 $a^{-n} = \frac{1}{a^n}$

 $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$

 $a^{\frac{1}{n}} = \sqrt[n]{a}$

 $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

Caution:

1. For indices (powers) that are not integers, then the above rules of indices hold only for $a,b \geq 0$, or only for a,b>0 if some of the indices are negative or there is division by either a or b. The rule $a^0=1$ holds only for non-zero values of a.

2. $\sqrt{(-8)^2} = \sqrt{64} = 8$, NOT -8.

3. $\sqrt[3]{-27} = -3$.

Equalities of Indices:

1. If $a^m = a''$, then m = n.

2. If $a^m = b^m$, then a = b.

Direct and Inverse Proportion

If y is directly proportional to x, then y = kx, where k is a constant and $k \neq 0$. The ratios $\frac{x}{y}$ and $\frac{y}{x}$ are

constant. Furthermore, the graph on y against x (or of x against y) is a straight line through the origin. Graph showing that y is directly proportional to x:

If y is inversely proportional to x, then $y = \frac{k}{x}$, where k is a constant and $k \neq 0$. The product xy is constant.

Graph showing that y is inversely proportional to x:

Map Scales

• Linear scale:

1:n means 1 unit length on map represents n units length on ground.

Eg. 1:5000 means

 $1~\mathrm{cm}$ represents 5000 cm which implies $1~\mathrm{cm}$ represents 50 m which implies $1~\mathrm{cm}$ represents 0.05 km

Representative Fraction (RF):
 If the linear scale is 1: n, the RF is expressed as

Eg, if 3 cm represents 6 m, then RF is $\frac{1}{200}$.

• Area Scale:

If linear scale is 1:200000, then it means 1 cm represents 200000 cm which implies 1 cm represents 0.2 km which implies 1^2 cm^2 represents $(0.2)^2 \text{ km}^2$ which implies 1 cm^2 represents 0.04 km^2

Percentage, Ratio, Rate

• To express a percentage as a fraction or decimal, divide by 100:

$$x\% = \frac{x}{100}$$

Eg, $23.5\% = \frac{23.5}{100} = \frac{235}{1000} = \frac{47}{200}$
Eg, $401\% = \frac{401}{100} = 4.01$

• To express any number as a percentage, multiply it by 100%.

Eg,
$$0.165 = 0.165 \times 100\% = 16.5\%$$
.

ullet Expressing a quantity A as a percentage of a quantity B

$$\frac{A}{B} \times 100\%$$

Eg, Express 63.7 as a percentage of 98.

Answer:
$$\frac{63.7}{98} \times 100\% = 65\%$$

In words, we say that 63.7 is 65% of 98.

• Increase or decrease a quantity by a given percentage:

Eg, Increase 45 by 2.4%:

Answer:
$$45 \times \left(1 + \frac{2.4}{100}\right) = 45 \times 1.024 = 46.08$$

Eg, Decrease 45 by 90%:

Answer:
$$45 \times \left(1 - \frac{90}{100}\right) = 45 \times 0.1 = 4.5$$

• Percentage Increase and Percentage Decrease:

When a quantity increases, the percentage increase is

 $\frac{\rm final\ value\ -\ initial\ value}{\rm initial\ value} \times 100\%$

When a quantity dereases, the percentage decrease is

 $\frac{\text{initial (bigger) value - final (smaller) value}}{\text{initial value}} \times 100\%$

Percentage increase will always be > 0 if the quantity has increased.

Percentage decrease will always be > 0 if the quantity has decreased.

Percentage change is

 $\frac{\text{final value} - \text{initial value}}{\text{initial value}} \times 100\%$

regardless of whether the quantity has increased or decreased. Percentage change can be either positive or negative depending on whether the quantity has increased or decreased.