Combinational Logic

Sekhar Mandal

September 9, 2020

Definition of Combinational Circuit

- A combinational circuit consists of logic gate. The outputs of a combinational circuit depend on the present combination of the inputs only.
- A combinational circuit is used for a specific information processing task which is logically specified by a set of Boolean functions.
- Examples of Combinational circuits are
 - (i) Adder/Subtractor
 - (ii) Multiplexer
 - (iii)De-multiplexer/Decoder

Design Procedure

The design of a combinational circuit starts from the verbal (written) specification of the problem and ends in a logic diagram or a set of Boolean functions from which the logic diagram can be easily obtained. We have to follow the steps given below for designing a combinational circuit.

- ▶ Identify the numbers of input and output variables.
- denote each of the variable with a letter symbol.
- Obtain the truth table which defines the relationships between input and output variables.
- ► Simply the Boolean expression for each of the output variable.
- Draw the logic diagram.

Addition of Two binary digits

A combinational circuit that performs addition of two binary bits is called *half-adder*.

- 1 According to the problem, there are two inputs and they are denoted by x and y. There are two outputs, they are sum and carry. The sum is denoted by S and carry is represented by C.
- 2 The truth table of the half-adder is as follows:

	Inp	out	Output		
	Х	у	S	С	
	0 0		0	0	
ĺ	0	1	1	0	
	1	0	1	0	
	1	1	0	1	

3 Directly from truth table, the expressions for S and C are:

$$S = \overline{x}y + x\overline{y} = x \oplus y$$
$$C = xy$$

Full Adder

- A full adder is a combinational circuit that performs addition of three input bits. This circuit has three inputs and two outputs (sum → S and carry → C).
- ► The truth table of the full-adder is given below.

I	npu	t	Output		
Х	у	z	С	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Full Adder

- The input-output relationships of the full adder may be express by two Boolean expression, one for each output variable.
- Directly from the truth table sum and carry can be expressed as:

$$S = \overline{x} \ \overline{y}z + \overline{x}y \ \overline{z} + x \ \overline{x} \ \overline{z} + xyz$$

$$S = x \oplus y \oplus z$$

$$C = \overline{x}yz + x\overline{y}z + xy\overline{z} + xyz$$

$$C = xy + yz + zx$$

Full Adder

Figure: Implementation of Full-adder using two half-adder and an OR gate.

Half Subtractor

- ► A half subtractor is a combinational circuit that performs subtraction operation of two bits and produces their difference.
- This circuit has two outputs; (i) one is difference and, other one is borrow.
- ▶ To perform x y, we have to check the relative magnitude of x and y. If $x \ge y$, there are three possibilities 0 0 = 0, 1 0 = 1 and, 1 1 = 0. The result is called the difference.
- ▶ If x < y, the situation is 0-1 and we have to borrow 1 from higher stage. Borrowed 1 from higher stage means add 2 with the minuend. Hence, the difference is 2-1=1 and borrow is 1.

Half Subtractor

► The truth table of a half-subtractor can be derived as:

	np	out	Output		
	х у		В	D	
()	0	0	0	
()	1	1	1	
	1	0	0	1	
	1	1	0	0	

► The Boolean functions for two outputs of the half-subtarctor are directly obtained from the truth table

$$D = \overline{x}y + x\overline{y}$$

$$B = \overline{x}y$$

It is to be noted that the Boolean expression for D is same as the Boolean expression for S of a half-adder.

Full Subtractor

- ▶ A full subtractor is a combinational circuit that performs subtraction of two bits, taking into consideration that a 1 may have been borrowed by the lower significant stage.
- ► The circuit have three inputs and two outputs, difference (D) and, borrow (B). The truth table for this circuit is as follows.

l	npu	Output			
Х	у	Z	В	D	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

▶ The Boolean functions for two outputs are as follows:

$$D = \overline{x} \ \overline{y}z + \overline{x}y \ \overline{z} + x\overline{y} \ \overline{z} + xyz$$
$$B = \overline{x} \ \overline{y}z + \overline{x}y \ \overline{z} + \overline{x}yz + xyz$$

Code Conversion

- It is sometimes required to use the output of a digital system to the input of another system. If the two systems use different code then, it is necessary to insert a code converter between the two systems.
- ▶ Suppose we want to design a BCD to excess-3 code converter.
- ▶ The truth table of the converter is given below.

Input in BCD				Ou	tpu	t in	Excess-3
Α	В	С	D	W	Х	у	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Simplification of the Output Functions

Figure: Maps for BCD to Excess-3 code converter.

Exclusive-OR Function

The following identities are applicable to XOR operation:

- Multi-input XOR gates are difficult to fabricate. Even two input XOR gate is constructed from other gates.
- ► The implementation of XOR function using NAND gate is shown below.

Figure: XOR implementation using NAND gates.

Exclusive-OR Function

- ▶ The first NAND produces the following term $\overline{(xy)} = (\overline{x} + \overline{y})$
- The rest of two-level NAND circuit produces the sum-of the product term.

$$(\overline{x} + \overline{y})x + (\overline{x} + \overline{y})y = x\overline{y} + \overline{x}y = x \oplus y$$

- Only limited number of Boolean functions can be expressed in terms of XOR operation.
 - It is useful in arithmetic operation, error detection and error correction circuits.

Parity Generation and Checking