Лабораторая работа 6

Задача: Подготовить данные для факторного анализа

Введение

Основные понятия

Факторный анализ - это статистический метод, используемый для описания изменчивости среди наблюдаемых, коррелированных переменных в терминах меньшего числа ненаблюдаемых переменных, называемых факторами.

Факторная нагрузка — это коэффициент, который показывает степень влияния скрытого (латентного) фактора на наблюдаемую переменную.

Факторный анализ строится на предположении, что наблюдаемые переменные могут быть представлены как линейная комбинация скрытых факторов и уникальных (специфичных для каждой переменной) факторов.

Общность переменной определяется как доля вариации, объяснённая скрытыми факторами. Она может быть рассчитана как сумма квадратов факторных нагрузок, связанных с данной переменной.

Латентные переменные - факторы в модели факторного анализа являются латентными переменными, которые не измеряются напрямую. Они рассчитываются на основе наблюдаемых переменных.

Основные цели:

- 1. Сокращение данных
- 2. Структурное обнаружение
- 3. Классификация переменных

Задачи факторного анализа:

1. Определение набора факторов, объясняющих взаимосвязи между

наблюдаемыми переменными. 2. Оценка силы связи каждой переменной с каждым фактором (факторные нагрузки). 3. Интерпретация выявленных факторов. 4. Оценка доли дисперсии каждой переменной, объясняемой факторам

Описание датасета "Predict Online Gaming Behavior Dataset"

Этот набор данных фиксирует комплексные метрики и демографию, связанные с поведением игроков в онлайн-игровых средах. Он включает такие переменные, как демография игроков, детали, характерные для игры, метрики вовлеченности и целевую переменную, отражающую удержание игроков.

Переменная	Описание				
PlayerID	Уникальный идентификатор для каждого игрока.				
Age	Возраст игрока.				
Gender	Пол игрока.				
Location	Географическое местоположение игрока.				
GameGenre	Жанр игры, в которой участвует игрок.				
PlayTimeHours	Среднее количество часов, проведенных за игрой за одну сессию.				
InGamePurchases	Признак того, делает ли игрок внутриигровые покупки (0 — Нет, 1 — Да).				
GameDifficulty	Уровень сложности игры.				
SessionsPerWeek	Количество игровых сессий в неделю.				
AvgSessionDurationMinutes	Средняя продолжительность каждой игровой сессии в минутах.				
PlayerLevel	Текущий уровень игрока в игре.				
AchievementsUnlocked	Количество достижений, разблокированных игроком.				
EngagementLevel	Категоризированный уровень вовлеченности, отражающий удержание игроков ('Высокий', 'Средний', 'Низкий').				

Целевая переменная — EngagementLevel — указывает на уровень вовлеченности игрока и категоризируется как 'Высокий', 'Средний' или 'Низкий'.

Проверка применимости факторного анализа к данным

Основные критерии и тесты:

- 1. Корреляционная матрица
- 2. Мера адекватности выборки Кайзера-Мейера-Олкина (КМО)
- 3. Тест сферичности Бартлетта
- 4. Размер выборки

```
In [49]:
          import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          from factor_analyzer import FactorAnalyzer
          from factor analyzer.factor analyzer import calculate bartlett sphericity, calculate kmo
          from scipy.stats import bartlett
In [50]: df = pd.read_csv('../online_gaming_behavior_dataset.csv')
          engagement_map = {'Low': 0, 'Medium': 1, 'High': 2}
difficult_map = {'Easy': 0, 'Medium': 1, 'Hard': 2}
          df['EngagementLevel'] = df['EngagementLevel'].map(engagement map)
          df['GameDifficulty'] = df['GameDifficulty'].map(difficult_map)
          columns_to_use = ["Age", "PlayTimeHours", "InGamePurchases", "SessionsPerWeek", "AvgSessionDurationMinutes",
          data = df[columns to use].dropna()
In [51]: data.head(3)
Out[51]:
             Age PlayTimeHours InGamePurchases SessionsPerWeek AvgSessionDurationMinutes PlayerLevel AchievementsUnlocked
          0
              43
                       16.271119
                                                0
                                                                  6
                                                                                           108
                                                                                                       79
                                                                                                                              25
          1
              29
                        5.525961
                                                0
                                                                  5
                                                                                           144
                                                                                                        11
                                                                                                                              10
          2
                        8.223755
                                                0
                                                                 16
                                                                                           142
                                                                                                       35
              22
                                                                                                                              41
```

Корреляционная матрица

Описание: корреляционная матрица показывает взаимосвязи между переменными. Для успешного применения факторного анализа должны существовать значимые корреляции между переменными.

Анализ корреляций: желательно наличие высоких корреляций (например, выше 0,3), что указывает на возможность объединения переменных в факторы. Отсутствие корреляций или их слабая выраженность могут свидетельствовать о том, что выбранные переменные не подходят для факторного анализа.

```
In [52]: # 1. Корреляционная матрица
correlation_matrix = data.corr()
print("Корреляционная матрица:")
display(correlation_matrix)

# Визуализация корреляционной матрицы
plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title("Корреляционная матрица")
plt.show()
```

Корреляционная матрица:

	Age	PlayTimeHours	InGamePurchases	SessionsPerWeek	AvgSessionDurationMinutes	PlayerLevel
Age	1.000000	0.002462	-0.000186	0.008777	-0.002269	0.001353
PlayTimeHours	0.002462	1.000000	-0.006067	-0.003655	-0.001925	-0.005152
InGamePurchases	-0.000186	-0.006067	1.000000	0.005132	-0.003059	0.006524
SessionsPerWeek	0.008777	-0.003655	0.005132	1.000000	-0.000620	0.003257
AvgSessionDurationMinutes	-0.002269	-0.001925	-0.003059	-0.000620	1.000000	0.001368
PlayerLevel	0.001353	-0.005152	0.006524	0.003257	0.001368	1.000000
AchievementsUnlocked	-0.001100	0.003913	0.000098	0.003187	-0.002227	0.006343
GameDifficulty	-0.002760	0.001636	0.001410	0.005058	0.002374	0.006059
EngagementLevel	0.000824	-0.001849	0.008209	0.605996	0.476698	0.059315

Мера адекватности выборки КМО

Описание: Тест КМО измеряет, насколько хорошо корреляции между переменными подходят для факторного анализа. Он основан на соотношении частичных корреляций к полным корреляциям. Высокие значения КМО указывают на пригодность данных для анализа.

Интерпретация значений:

- КМО > 0.8: отличная адекватность
- 0.7 < KMO ≤ 0.8: хорошая адекватность
- 0.5 < KMO ≤ 0.7: приемлемая адекватность
- КМО ≤ 0.5: данные не подходят для анализа.

```
In [54]: kmo_all, kmo_model = calculate_kmo(data)
print(f"KMO = {kmo_model:.3f}")

KMO = 0.365
```

Тест сферичности Бартлетта

Описание: Тест Бартлетта проверяет гипотезу о том, что корреляционная матрица является единичной, что указывает на отсутствие значимых корреляций между переменными. Если корреляции между переменными значимы, нулевая гипотеза отвергается, и данные считаются пригодными для факторного анализа.

Интерпретация результатов:

• Если р < 0.05, то нулевая гипотеза отвергается, что указывает на

наличие значимых корреляций.

• Если р > 0.05, данные не имеют значимых корреляций, и факторный

анализ нецелесообразен.

```
In [27]: # Проведение теста Бартлетта
  chi_square_value, p_value = calculate_bartlett_sphericity(data)
print(f"Chi-square value: {chi_square_value}")
```

```
print(f"P-value: {p_value}")
Chi-square value: 36858.84298494878
P-value: 0.0
```

Размер выборки

Рекомендация: Обычно для проведения факторного анализа рекомендуется иметь не менее 5-10 наблюдений на каждую переменную. Недостаточный размер выборки может привести к нестабильным результатам.

```
In [31]: num_variables = data.shape[1]
    num_observations = data.shape[0]

print(f"Количество переменных: {num_variables}")
    print(f"Количество наблюдений: {num_observations}")
    print(f"Наблюдений на переменную: {num_observations / num_variables}")

Количество переменных: 9
    Количество наблюдений: 40034
    Наблюдений на переменную: 4448.222222222223
Bывод

In [36]: if kmo_model > 0.5 and p_value < 0.05:
```

```
print("Данные пригодны для факторного анализа.")
else:
print("Данные не соответствуют требованиям для факторного анализа.")
```

Данные не соответствуют требованиям для факторного анализа.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js