

Business Analytics II Methodische Ansätze

Dr. Holger Steinmetz Lehrstuhl für Unternehmensführung Universität Trier

Kategorien von Ansätzen (Wiederholung)

- **Teil der Informationsstrategie: Definition der Ziele** (→ Was ist die relevante / zu liefernde Information?):
 - Deskriptiv: Beschreibung von
 - Zielvariablen (z.B. KPIs)
 - Zeitlichen Verläufen, einfachen Zusammenhängen (z.B. Geschlechtsunterschiede)
 - Identifikation von Mustern (z.B. Clusteranalyse)
 - Kausal (Explanation):
 - Frage nach den **Ursachen** einer Target-Variable (z.B. "warum laufen die Kunden weg?")
 - Frage nach der Wirkung einer Maßnahme (z.B. "wie wirkt sich eine Preiserhöhung aus")
 - → Problem der kausalen Identifikation
 - **Vorhersage** (Prediction): Was weiß ich über Y (das Target), wenn ich Wissen über X habe?
 - Querschnittlich: Machine learning-Ansätze (ML)
 - Längsschnittlich: Forecasting (u.U. auch mit in Kombination mit ML)

Analysen mit kausalem Fokus

Hauptziel kausaler Analysen: Kausale Identifikation

Lösungen bei Interventionen:

- Experimentell: Randomized controlled trial (z.B. AB testing bei Pricing Models)
- Quasi-Experimentell:
 - Gruppenvergleich mit u.U. selbst-selektierten / nicht identischen Gruppen
 (→ Kontrollvariablen)
 - Längsschnittdaten: Vorher-Nachher-Vergleich oder Interrupted times series

Einführung eines Gesetzes gegen Alkohol am Steuer in einer chinesischen Provinz

Hauptziel kausaler Analysen: Kausale Identifikation

Lösungen bei Vorliegen von nicht-experimentellen Daten (observational data):

• Kontrollvariablen: Statistische Kontrolle von "Confoundern" (die Scheinkorrelationen verursachen)

- Instrumentalvariablen: Identifikation von Variablen W, die
 - a) mit X hoch korrelieren
 - b) keinen direkten Effekt auf Y haben und
 - c) unkorreliert mit Confoundern C (die nicht bekannt oder als Daten verfügbar sind)
 - → Two-stage-least squares regression

- Längsschnittliche Modelle: z.B. VAR-Models
 - → Adressiert reverse causation-Möglichkeit, aber nicht Confounding

Analysen mit prädiktivem Fokus: Machine learning

James et al.

- Kapitel 2 (Statistical Learning): Empfehlenswert (Video: https://shorturl.at/rsxDW)
- Nur bei Bedarf/Interesse
 - Kapitel 3: Refresher lineare Regression (https://shorturl.at/dmxGL
 - Kapitel 4: Refresher logistische Regression: https://t.ly/LBsA (nur bis 4.4 relevant)
 - → Aber: Die Szenarien/Daten in Kap. 3 und 4 verwende ich im Tidymodels-Skript
- Kap. 5 (Resampling Methods): Empfehlenswert (https://rb.gy/h4vcz)

CLASSICAL MACHINE LEARNING

Supervised machine learning: Regression

Das Regressionsmodell als einfachstes Modell

- Szenario: "Wenn ich Informationen über X habe: Sagt mir das etwas über Y"
- Modell: Beziehung wird beschrieben durch einen lineare Funktion

$$E(Y|X) = \beta 0 + \beta 1X$$

- Schätzung erfolgt mit ordinary least squares (oder kurz least squares, **LS**)
- **Ziel:** *Out-of-sample prediction* (Vermutungen über Y, wenn man keine Daten hat)
- → Predicted values

Prediction Errors (Vorhersagefehler)

• Residuen: Individuelle Abweichungen von der Regressionsgerade

- Verursacht von
 - Weiteren/nicht-einbezogenen Einflussfaktoren
 - Zufallsfehler
- Konsequenzen:
 - Faktisch (Fehlentscheidung, Kosten etc.)
 - Ethische Relevanz
 - → Zentrale Frage: Was ist die Alternative?
- Vorhersagefehler lassen sich reduzieren durch
 - Weitere Prädiktoren (die Informationen liefern)
 - Besseres Modell (z.B. nicht-linear, Interaktionen)
 - → Aber: Gefahr des Overfittings

Model Performance

• Wie gut ist das Modell als Entscheidungsgrundlage (wie ausgeprägt sind prediction errors)?

• Die wichtigsten:

- R-Squared (R²): Anteil der Varianz der abhängigen Variablen, der durch das Modell erklärt wird
- Mean Squared Error (MSE): Mittelwert der quadrierten Residuen
- Root Mean Squared Error (RMSE): Wurzel des MSE. Hebt die Quadrierung beim MSE auf
 → Interpretation in der originalen Metrik
- Mean Absolute Error (MAE): Durchschnittliche der absoluten Residuen
 → Robuster gegenüber Ausreißern (Outliern).
- Mean Absolute Percentage Error (MAPE): Durchschnittlicher prozentualer Betrag der Residuen

$$MAPE = \frac{1}{N} \times \sum \frac{|e_i|}{v_i}$$

Multiple Regression

Multiple Regression: Berücksichtigung von mehr als einem Prädiktor:

$$E(Y \mid X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... \beta_p X_p$$

- Anstatt eine Linie (Steigung) in ein Streudiagramm einzusetzen
 - → **Regressionsfläche** (regression surface) in einem p-dimensionalen "feature space".

Beispiel mit 2 Prädiktoren:

Ziele:

- Y mit hoher Genauigkeit vorhersagen (alle Informationen verwenden)
- Interesse an der spezifischen Rolle verschiedener Prädiktoren
- (Bei kausaler Perspektive: Verringerung des Confounding Bias)

Supervised machine learning: Klassifikation

Klassifikation

- Häufigster Fall
- Kategoriales Target, z.B.
 - **Customer churn:** Ja (Abo gekündigt) oder nein (noch Kunde)
 - Customer value: Wichtig vs. "unwichtig"
 - Fraud detection (Kreditkartenmissbrauch): Ja vs. nein
- Anzahl der Kategorien
 - **Binär** (0/1)
 - Multi-class (z.B. Wahl unter 5 Pricing-Modellen)
- → Gesucht ist ein "Classifier", der auf Basis von Prädiktoren (Features) einen Fall klassifiziert
- → Basis ist die geschätzte **Klassenwahrscheinlichkeit** (Optimal: hohes p für eine Klasse, niedriges für alle anderen

Klassifikation: Beispiel

• Beispiel aus James et al. (Kapitel 4)

- Typische Darstellung im Bereich ML
 - X und Y Achse sind Prädiktoren
 - Das Target ist stattdessen als Symbol oder Farbverlauf gekennzeichnet
- Target: Default (Überziehen der Kreditkarte):
 - ja (rot)
 - nein (blau)
- Features:
 - Einkommen
 - Monatliches Kreditkartensaldo ("Balance")

Klassifikation: Beispiel

• Standard Workhorse: Logistische Regression

• Modelliert die Wahrscheinlichkeit für Y über eine logistische Funktion

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

• Eine Umformung führt zu einer linearen Funktion, deren predicted values die **logarithmierten odds / logits** sind

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

- Auf Basis des/der jeweiligen X-Variablen bekommt man p
- Klassifikation in Y=1, wenn der p-Wert einen **manuell gewählten Threshold** überschreitet, z.B. p > .5)

Klassifikation: Performance

• Zentrale Frage: Wie akkurat ist das Modell in der positiven und negativen Klassifikation?

Confusion matrix

	Klassifikation		
Wahrheit	Y = 0	Y = 1	
Y = 0	True Negatives	False Positives	
Y = 1	False negatives	True positives	

	Klassifikation		
Wahrheit	"Gesund"	"Krebs"	
Gesund	True Negatives	False Positives	
Krebs	False negatives	True positives	

- Intuitiv: Akkuratheit (Accuracy) als primäre Metrik: Anzahl der korrekten Klassifikationen an allen.
- Wichtige Konzepte:
 - Sensitivity: Wie häufig erkenne ich Y=1 (=krank), wenn die Person krank ist (untere Zeile)?
 - **Spezifität:** Wie häufig kann ich die Krankheit ausschließen, wenn die Person gesund ist (obere Zeile)?
 - → Beide stehen in einem Spannungsverhältnis (eine zu maximieren ist leicht)

Klassifikation: Performance

• Die ROC-Kurve zeigt das Spannungsverhältnis: Wie wirkt sich ein laxerer vs. strengerer Threshold auf die True positives v.s false positives aus?

False positive rate p = .90 p = .90 p = .10Balance

- Graue Diagonale: Raten
- Alle Modelle im oberen Drittel sind besser als Raten.
- "Area under the curve" (AUC) ist ein wichtiges performance-Maß
- Die Kurve zeigt, wie ein bestimmter Klassifikations-Erfolg (TP) mit dem Anteil der Fehlalarme (FP) einhergeht.
- Durch die **Wahl des Thresholds** bestimmt man das gewünschte Verhältnis (will man eher eine Krankheit übersehen oder gesunde Patienten beunruhigen?)

Klassifikation: Performance

- UNIVERSITÄT TRIER
- Auf Basis der Confusion matrix lassen sich andere wichtige Metriken berechnen
 - **Sensitivity / Recall:** Korrektes Erkennen der positiven Fälle (TP + FN)

$$Sensititivity = \frac{TP}{TP + FN}$$

Spezifität: Korrektes Erkennen der negativen Fälle (TN + FP)

$$Specificity = \frac{TN}{TN + FP}$$

 Precision: Anteil der TP an den als positiv klassifizierten Fällen (korrekte und falsche)

$$Precision = \frac{TP}{TP + FP}$$

 F1 score: Der F1-Score betrifft das optimale Verhältnis beider und ist im Idealfall 1.0

$$F1Score = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

	Klassifikation		
Wahrheit	Y = 0	Y = 1	
Y = 0	True	False	
	Negatives	Positives	_
Y = 1	False	True	
	negatives	positives	

	Klassifikation		
Wahrheit	Y = 0	Υ:	= 1
Y = 0	True Negatives	False Positive	5
Y = 1	False negatives	True positive	S
			,