⊘ ¡Felicitaciones! ¡Aprobaste!

Calificación recibida 100 % Para Aprobar 80 % o más

Ir al siguiente elemento

Problem Set #2

Which of the following statements is true?

The algorithm always outputs a minimum spanning tree.

 $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} The output of the algorithm will never have a cycle, but it might not be connected. \\ \hline \end{tabular}$

O The output of the algorithm will always be connected, but it might have cycles.

O The algorithm always outputs a spanning tree, but it might not be a minimum cost spanning tree.

1.	Suppose we are given a directed graph $G=(V,E)$ in which every edge has a distinct positive edge weight. A directed graph is acyclic if it has no directed cycle. Suppose that we want to compute the maximum-weight acyclic subgraph of G (where the weight of a subgraph is the sum of its edges' weights). Assume that G is weakly connected, meaning that there is no cut with no edges crossing it in either direction.		1 / 1 punto
	Here is an analog of Prim's algorithm for directed graphs. Start from an arbitrary vertex s , initialize $S=\{s\}$ and $F=\emptyset$. While $S\neq V$, find the maximum-weight edge (u,v) with one endpoint in S and one endpoint in $V-S$. Add this edge to F , and add the appropriate endpoint to S .		
	Here is an analog of Kruskal's algorithm. Sort the edges from highest to lowest weight. Initialize $F=\emptyset$. Scan through the edges; at each iteration, add the current edge i to F if and only if it does not create a directed cycle.		
	Which of the following is true?		
	O Both algorithms always compute a maximum-weight acyclic subgraph.		
	Both algorithms might fail to compute a maximum-weight acyclic subgraph.	GX	
	Only the modification of Prim's algorithm always computes a maximum-weight acyclic subgraph.		
	Only the modification of Kruskal's algorithm always computes a maximum-weight acyclic subgraph.		
	Correcto Indeed. Any ideas for a correct algorithm?		
2.	Consider a connected undirected graph G with edge costs that are <i>not necessarily distinct</i> . Suppose we replace each edge cost c_e by $-c_e$; call this new graph G' . Consider running either Kruskal's or Prim's minimum spanning tree algorithm on G' , with ties between edge costs broken arbitrarily, and possibly differently, in each algorithm. Which of the following is true?		1 / 1 punto
	igcap Kruskal's algorithm computes a maximum-cost spanning tree of G but Prim's algorithm might not.		
	igcirc Both algorithms compute the same maximum-cost spanning tree of G .	GX	
	\bigcirc Prim's algorithm computes a maximum-cost spanning tree of G but Kruskal's algorithm might not.		
	lacktriangle Both algorithms compute a maximum-cost spanning tree of G , but they might compute different ones.		
	Correcto Different tie-breaking rules generally yield different spanning trees.		
3.	Consider the following algorithm that attempts to compute a minimum spanning tree of a connected undirected graph G with distinct edge costs. First, sort the edges in decreasing cost order (i.e., the opposite of Kruskal's algorithm). Initialize T to be all edges of G . Scan through the edges (in the sorted order), and remove the current edge from T if and only if it lies on a cycle of T .		1/1 punto

	During the iteration in which an edge is removed, it was on a cycle C of T . By the sorted ordering, it must be the maximum-cost edge of C . By an exchange argument, it cannot be a member of any minimum spanning tree. Since every edge deleted by the algorithm belongs to no MST, and its output is a spanning tree (no cycles by construction, connected by the Lonely Cut Corollary), its output must be the (unique) MST.	
4.	Consider an undirected graph $G=(V,E)$ where edge $e\in E$ has $\cos c_e$. A <i>minimum bottleneck spanning tree</i> T is a spanning tree that minimizes the maximum edge $\cos \max_{e\in T} c_e$. Which of the following statements is true? Assume that the edge $\cos t$ are distinct.	G
	A minimum bottleneck spanning tree is always a minimum spanning tree and a minimum spanning tree is always a minimum bottleneck spanning tree.	
	A minimum bottleneck spanning tree is always a minimum spanning tree but a minimum spanning tree is not always a minimum bottleneck spanning tree.	
	A minimum bottleneck spanning tree is not always a minimum spanning tree, but a minimum spanning tree is always a minimum bottleneck spanning tree.	
	A minimum bottleneck spanning tree is not always a minimum spanning tree and a minimum spanning tree is not always a minimum bottleneck spanning tree.	
	Correcto For the positive statement, recall the following (from correctness of Prim's algorithm): for every edge e of the MST, there is a cut (A, B) for which e is the cheapest one crossing it. This implies that every other spanning tree has maximum edge cost at least as large. For the negative statement, use a triangle with one extra high-cost edge attached.	
5.	You are given a connected undirected graph G with distinct edge costs, in adjacency list representation. You are also given the edges of a minimum spanning tree T of G . This question asks how quickly you can recompute the MST if we change the cost of a single edge. Which of the following are true? [RECALL: It is not known how to deterministically compute an MST from scratch in $O(m)$ time, where m is the number of edges of G .] [Check all that apply.] Suppose $e \notin T$ and we increase the cost of e . Then, the new MST can be recomputed in $O(m)$ deterministic time.	
	 Correcto The MST does not change (by the Cycle Property of the previous problem), so no re-computation is needed. 	
	$lacksquare$ Suppose $e\in T$ and we increase the cost of e . Then, the new MST can be recomputed in $O(m)$ deterministic time.	
	\bigcirc Correcto Let A,B be the two connected components of $T-\{e\}$. Edge e no longer belongs to the new MST if and only if it is no longer the cheapest edge crossing the cut (A,B) (this can be checked in $O(m)$ time). If f is the new cheapest edge crossing (A,B) , then the new MST is $T-\{e\}\cup\{f\}$.	G
	\mathbb{Z} Sunnose $e \in T$ and we decrease the cost of e . Then the new MST can be recomputed in $O(m)$ deterministic time	

 $\texttt{Let } C \texttt{ be the cycle of } T \cup \{e\}. \texttt{ Edge } e \texttt{ belongs to the new MST if and only if it is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ If } f \texttt{ is no longer the most expensive edge of } C \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in } O(n) \texttt{ time)}. \texttt{ (this can be checked in }$

1/1 punto

1/1 punto

⊘ Correcto

⊘ Correcto

The MST does not change (by the Cut Property), so no re-computation is needed.

the new most expensive edge of C, then the new MST is $T \cup \{e\} - \{f\}$.

Suppose e
otin T and we decrease the cost of e. Then, the new MST can be recomputed in O(m) deterministic time.