klasyfikacja

May 22, 2025

```
[1]: import sklearn
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import pandas as pd
```

0.1 Wczytywanie danych

```
[2]: column_names = [
         'Class',
         'Alcohol',
         'Malic acid',
         'Ash',
         'Alcalinity of ash',
         'Magnesium',
         'Total phenols',
         'Flavanoids',
         'Nonflavanoid phenols',
         'Proanthocyanins',
         'Color intensity',
         'Hue',
         'OD280/OD315 of diluted wines',
         'Proline'
     ]
     data = pd.read_csv('Dane/wine.data')
     data.columns = column_names
     display(data.head(10))
```

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium \
0	1	13.20	1.78	2.14	11.2	100
1	1	13.16	2.36	2.67	18.6	101
2	1	14.37	1.95	2.50	16.8	113
3	1	13.24	2.59	2.87	21.0	118
4	1	14.20	1.76	2.45	15.2	112
5	1	14.39	1.87	2.45	14.6	96
6	1	14.06	2.15	2.61	17.6	121
7	1	14.83	1.64	2.17	14.0	97
8	1	13.86	1.35	2.27	16.0	98

```
9
       1
            14.10
                          2.16 2.30
                                                     18.0
                                                                  105
   Total phenols Flavanoids
                               Nonflavanoid phenols Proanthocyanins
0
            2.65
                         2.76
                                                 0.26
            2.80
                         3.24
                                                 0.30
                                                                   2.81
1
2
            3.85
                         3.49
                                                 0.24
                                                                   2.18
3
            2.80
                         2.69
                                                 0.39
                                                                   1.82
4
            3.27
                         3.39
                                                 0.34
                                                                   1.97
5
            2.50
                         2.52
                                                 0.30
                                                                   1.98
6
            2.60
                         2.51
                                                 0.31
                                                                   1.25
7
            2.80
                         2.98
                                                 0.29
                                                                   1.98
            2.98
8
                         3.15
                                                 0.22
                                                                   1.85
9
                                                                   2.38
            2.95
                         3.32
                                                 0.22
   Color intensity
                     Hue
                           OD280/OD315 of diluted wines
                                                           Proline
0
              4.38
                    1.05
                                                     3.40
                                                               1050
1
              5.68
                    1.03
                                                     3.17
                                                               1185
2
              7.80 0.86
                                                     3.45
                                                               1480
3
              4.32 1.04
                                                     2.93
                                                               735
4
              6.75 1.05
                                                     2.85
                                                               1450
5
              5.25 1.02
                                                     3.58
                                                               1290
              5.05 1.06
6
                                                     3.58
                                                               1295
7
              5.20 1.08
                                                     2.85
                                                               1045
8
              7.22 1.01
                                                     3.55
                                                               1045
9
              5.75 1.25
                                                     3.17
                                                               1510
```

0.2 Podział na zbiór treningowy i testowy

```
[3]: train_data, test_data = train_test_split(data, test_size=0.3, random_state=42)

X_train = train_data.drop('Class', axis=1)
Y_train = train_data['Class']

X_test = test_data.drop('Class', axis=1)
Y_test = test_data['Class']
```

0.3 Normalizacja danych

```
[4]: scaler = StandardScaler()

scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
```

0.3.1 Normalizuje się po to aby:

- dane miały porównywalną skalę
- niektóre algorytmy są wrażliwe na skalę (np. K-NN) ### Wpływ na algorytmy

- **k-NN** musi być normalizacja, gdyż algorytm działa na podstawie odległości między punktami
- Random Forest nie jest wymagana normalizacja bo drzewa decyzyjne porównują wartość do liczby niezależnie od skali

0.4 Trening dla algorytmów KNeighborsClassifier oraz RandomForestClassifier

```
[5]: from sklearn.neighbors import KNeighborsClassifier
  from sklearn.ensemble import RandomForestClassifier

knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, Y_train)

rfc = RandomForestClassifier()
rfc.fit(X_train, Y_train)
```

[5]: RandomForestClassifier()

0.5 Predykcja

```
[6]: y_pred_knn = knn.predict(X_test)
y_pred_rfc = rfc.predict(X_test)
```

0.6 Metryki

- Accuracy stosunek liczby poprawnych klasyfikacji do wszystkich przewidzianych, najlepiej działa, gdy klasy są w miarę zrównoważone liczebnie
- Precision ile z przewidzianych jako dana klasa rzeczywiście do niej należy
 - przydatne, gdy ważne jest ograniczenie liczby fałszywych pozytywów
- Recall ile z rzeczywistych przypadków danej klasy model wykrył
 - przydatne aby nie przeoczyć fałszywych negatywów
- F-measure średnia harmoniczna precision i recall
 - dobry wskaźnik ogólnej jakości modelu, szczególnie przy niezrównoważonych klasach
- Macierz konfuzji pokazuje, które klasy są najczęściej ze sobą mylone
 - Dobra do szybkiego wglądu w błędy modelu
- Classification report zestawienie wszystkich powyższych metryk w tabeli, osobno dla każdej klasy

0.7 Analiza predykcji poszczególnych modeli

```
[7]: from sklearn.metrics import accuracy_score, precision_score, recall_score,

-f1_score, classification_report, confusion_matrix

print("KNeighborsClassifier")
print("Accuracy = ", accuracy_score(Y_test, y_pred_knn))
print("Classification Report:\n", classification_report(Y_test, y_pred_knn))
print("Confusion Matrix:\n", confusion_matrix(Y_test, y_pred_knn))
```

KNeighborsClassifier

Classification Report:

	precision	recall	f1-score	support
1 2	1.00	1.00 0.86	1.00 0.92	19 21
3	0.82	1.00	0.90	14
accuracy			0.94	54
macro avg	0.94	0.95	0.94	54
weighted avg	0.95	0.94	0.94	54

Confusion Matrix:

[[19 0 0] [0 18 3] [0 0 14]]

```
[8]: print("\nRandomForestClassifier")
    print("Accuracy = ", accuracy_score(Y_test, y_pred_rfc))
    print("Classification Report:\n", classification_report(Y_test, y_pred_rfc))
    print("Confusion Matrix:\n", confusion_matrix(Y_test, y_pred_rfc))
```

RandomForestClassifier

Accuracy = 0.9629629629629

Classification Report:

	precision	recall	f1-score	support
1	1.00	1.00	1.00	19
2	1.00	0.90	0.95	21
3	0.88	1.00	0.93	14
accuracy			0.96	54
macro avg	0.96	0.97	0.96	54
weighted avg	0.97	0.96	0.96	54

Confusion Matrix:

[[19 0 0] [0 19 2] [0 0 14]]

0.8 Interpretacja analizy

Oba modele osiągnęły bardzo zbliżone wyniki. Analiza macierzy pomyłek pokazuje, że oba klasyfikatory miały trudności jedynie z poprawnym rozpoznaniem drugiego rodzaju wina. Klasyfikator oparty na drzewie decyzyjnym poradził sobie z tym nieco lepiej. Możliwe, że różnica ta wynika z różnych rozmiarów modeli, tzn. po zwiększeniu liczby

sąsiadów w K Neighbors oba modele osiągnęły tak
ą samą skuteczność.