Ćwiczenia z Sieci komputerowych Lista 1 – Rozwiązania

Cezary Świtała

21 marca 2022

Deklaruję zadania: 1, 2, 3, 4, 5, 6, 7, 9, 10

Zadanie 1 Dla każdego z podanych poniżej adresów IP w notacji CIDR określ, czy jest to adres sieci, adres rozgłoszeniowy czy też adres komputera. W każdym przypadku wyznacz odpowiadający mu adres sieci, i jakiś adres IP innego komputera w tej samej sieci.

Rozwiązanie:

• 10.1.2.3/8 – adres komputera

Adres sieci: 10.0.0.0/8

Adres rozgłoszeniowy: 10.255.255.255/8 Adres innego komputera: 10.0.0.1/8

• 156.17.0.0/16 – adres sieci

Adres rozgłoszeniowy: 156.17.255.255/16 Adres przykładowego komputera: 156.17.0.1/16

• 99.99.99.99/27 – adres komputera

Adres sieci: 99.99.99.96/27

Adres rozgłoszeniowy: 99.99.99.127/27

• 156.17.64.4/30 - adres sieci

Adres rozgłoszeniowy: 156.17.64.7/30 Adres komputera: 156.17.64.5/30

• 123.123.123.123/32 – adres jedynego komputera w sieci o takim samym adresie.

Zadanie 2 Podziel sieć 10.10.0.0/16 na 5 rozłącznych podsieci, tak aby każdy z adresów IP sieci 10.10.0.0/16 był w jednej z podsieci. Jak zmieniła się liczba adresów IP możliwych do użycia przy adresowaniu komputerów? Jaki jest minimalny rozmiar podsieci, który możesz uzyskać w ten sposób.

Rozwiązanie: Najpierw dzielimy sieć na 2 równe części. Powstałe połówki po raz kolejny dzielimy na pół. Następnie wybieramy jedną z powstałych sieci i dzielimy ją na pół. Powstaną w ten sposób następujące sieci:

- 10.10.64.0/18
- 10.10.128.0/18
- 10.10.192.0/18
- 10.10.0.0/19

Sytuację tą obrazuje poniższe drzewo:

Każdy adres z puli sieci 10.10.0.0/16 należy do jednej z powyższych, gdyż powstały one przez podział sieci początkowej.

Liczba dostępnych adresów IP zmniejszy się, gdyż na każdą podsieć potrzebujemy zarezerwować jej adres oraz adres rozgłoszeniowy, czyli 10 adresów. Sieć 10.10.0.0/16 wcześniej również potrzebowała tego typu adresów, zatem liczba zmarnowanych adresów zwiększyła się tylko o 8.

Żeby znaleźć minimalny rozmiar sieci, którą da się utworzyć w ten sposób musimy spróbować zmaksymalizować wysokość takiego drzewa jak powyżej (czyli, w którym schodzimy 1 bit maski na raz). Przykład takiego najwyższego drzewa:

Zauważmy, że nie da się utworzyć wyższego drzewa, gdyż są to pełne drzewa binarne (czyli każdy wierzchołek ma 0 albo 2 dzieci), więc jeśli wysokość byłaby większa, to oznaczałoby to, że mamy co najmniej 5 rozgałęzień po drodze od korzenia do najgłębszego liścia, a co za tym idzie – co najmniej 6 liści, gdyż każde rozgałęzienie oznacza nowego liścia (no i wliczamy początkowy korzeń).

Zatem sieci znajdujące się na głębokości 4 to najmniejsze jakie jesteśmy w stanie uzyskać, a ich rozmiar to $2^{12}-2=4094$.

Zadanie 3 Tablica routingu zawiera następujące wpisy (podsieć → dokąd wysłać):

- $0.0.0.0/0 \rightarrow \text{do routera } A.$
- 10.0.0.0/23 \rightarrow do routera B.
- 10.0.2.0/24 \rightarrow do routera B.
- 10.0.3.0/24 \rightarrow do routera B.
- 10.0.1.0/24 \rightarrow do routera C.
- 10.0.0.128/25 \rightarrow do routera B.
- 10.0.1.8/29 \rightarrow do routera B.
- 10.0.1.16/29 \rightarrow do routera B.
- 10.0.1.24/29 \rightarrow do routera B.

Napisz równoważną tablicę routingu zawierającą jak najmniej wpisów.

Rozwiązanie: Narysujmy wykres analogiczny do tych z wykładu:

Po zminimalizowaniu:

- $0.0.0.0/0 \rightarrow \text{do routera } A.$
- 10.0.0.0/22 \rightarrow do routera B.
- 10.0.1.0/24 \rightarrow do routera C.
- 10.0.1.8/29 \rightarrow do routera B.
- 10.0.1.16/28 \rightarrow do routera B.

Zadanie 4 Wykonaj powyższe zadanie dla tablicy:

- 0.0.0.0/0 \rightarrow do routera A.
- 10.0.0.0/8 \rightarrow do routera B.
- 10.3.0.0/24 \rightarrow do routera C.
- 10.3.0.32/27 \rightarrow do routera B.
- 10.3.0.64/27 \rightarrow do routera B.
- 10.3.0.96/27 \rightarrow do routera B.

Rozwiązanie: Narysujmy wykres analogiczny do tych z wykładu:

Po zminimalizowaniu:

- $0.0.0.0/0 \rightarrow \text{do routera } A.$
- 10.0.0.0/8 \rightarrow do routera B.
- 10.3.0.0/27 \rightarrow do routera C.
- 10.3.0.128/25 \rightarrow do routera C.

Zadanie 5 Jak uporządkować wpisy w tablicy routingu, żeby zasada najlepszego dopasowania odpowiadała wyborowi "pierwszy pasujący" (tj. przeglądaniu tablicy od początku do końca aż do momentu napotkania dowolnej pasującej reguły)? Odpowiedź uzasadnij formalnie.

Rozwiązanie: Wpisy tablicy sortujemy nierosnąco względem długości maski (prefiksu).

Uzasadnienie: Niech x będzie adresem, dla którego szukamy najdłuższego dopasowania prefiksu, a x' pierwszym adresem, który się do niego dopasował w trakcie przeglądania posortowanej tablicy. Załóżmy nie wprost, że istnieje inny wpis y, który posiada dłuższy wspólny prefiks z x. Skoro jeszcze go nie przejrzeliśmy, to długość jego maski jest mniejsza lub równa tej z x'. Ponieważ oba adresy

dopasowują się do x, to y jest prefiksem x', zatem nie może posiadać większego wspólnego prefiksu z x. Sprzeczność.

Zadanie 6 W podanej niżej sieci, tablice routingu budowane są za pomocą algorytmu wektora odległości. Pokaż (krok po kroku), jak będzie się to odbywać. W ilu krokach zostanie osiągnięty stan stabilny?

Rozwiązanie: Zaczynamy od stanu, w którym każda maszyna jest świadoma swojego bezpośredniego sąsiedztwa i wykonujemy kroki protokołu.

	A	В	С	D	Е	F
do A	-	1				
do B	1	_	1			
do C		1	_		1	$\mid 1 \mid$
do D				_	1	
do E			1	1	-	$\mid 1 \mid$
do F			1		1	-
do S	1	1				

	A	В	С	D	Ε	F
do A	-	1	2 via B			
do B	1	_	1		2 via C	2 via C
do C	2 via B	1	_	2 via E	1	1
do D			2 via E	-	1	2 via E
do E		2 via C	1	1	-	1
do F		2 via C	1	2 via E	1	_
do S	1	1	2 via B			

	A	В	С	D	E	F
do A	-	1	2 via B		3 via C	3 via C
do B	1	_	1	3 via E	2 via C	2 via C
do C	2 via B	1	_	2 via E	1	1
do D		3 via C	2 via E	_	1	2 via E
do E	3 via B	2 via C	1	1	-	1
do F	3 via B	2 via C	1	2 via E	1	_
do S	1	1	2 via B		3 via C	3 via C

	A	В	С	D	E	F
do A	_	1	2 via B	4 via E	3 via C	3 via C
do B	1	-	1	3 via E	2 via C	2 via C
do C	2 via B	1	_	2 via E	1	1
do D	4 via B	3 via C	2 via E	_	1	2 via E
do E	3 via B	2 via C	1	1	_	1
do F	3 via B	2 via C	1	2 via E	1	_
do S	1	1	2 via B	4 via E	3 via C	3 via C

Po trzech krokach wektory znalazły się w stanie stabilnym.

Zadanie 7 Załóżmy, że w powyższej sieci tablice routingu zostały już zbudowane. Co będzie się działo, jeśli dodane zostanie połączenie między routerami A i D.

Rozwiązanie: Routery A i D niemal natychmiast zauważą zmianę i zaczną propagować zaktualizowane informacje o sąsiedztwie.

	A	В	С	D	Е	F
do A	-	1	2 via B	1	3 via C	3 via C
do B	1	_	1	3 via E	2 via C	2 via C
do C	2 via B	1	_	2 via E	1	1 1
do D	1	3 via C	2 via E	_	1	2 via E
do E	3 via B	2 via C	1	1	_	1 1
do F	3 via B	2 via C	1	2 via E	1	-
do S	1	1	2 via B	4 via E	3 via C	3 via C

	A	В	С	D	Ε	F
do A	_	1	2 via B	1	2 via D	3 via C
do B	1	_	1	2 via A	2 via C	2 via C
do C	2 via B	1	_	2 via E	1	1 1
do D	1	2 via A	2 via E	-	1	2 via E
do E	2 via D	2 via C	1	1	_	1 1
do F	3 via B	2 via C	1	2 via E	1	-
do S	1	1	2 via B	2 via A	3 via C	3 via C

Po jednym kroku stan się znowu ustabilizował.

Zadanie 9 Pokaż, że przy wykorzystaniu algorytmu stanu łączy też może powstać cykl w routingu. W tym celu skonstruuj topologię sieci z dwoma wyróżnionymi, bezpośrednio połączonymi routerami A i B. Załóż, że wszystkie routery znają topologię całej sieci. W pewnym momencie łącze między A i B ulega awarii, o czym A i B się od razu dowiadują. Zalewają one sieć odpowiednią aktualizacją. Pokaż, że w okresie propagowania tej aktualizacji (kiedy dotarła ona już do części routerów, a do części nie) może powstać cyk w routingu.

Rozwiązanie: Proponowana topologia:

Następuje awaria łącza między A i B. Dowiadują się one o tym i natychmiast zaczynają zalewać sieć informując o zmienionej kolejności. Załóżmy że przesłanie pakietu łączem kosztuje jedną jednostkę czasu. Po upływie jednej takiej jednostki będą routery, do których dotarła informacja o awarii (F i C) oraz routery, które wciąż widzą topologię taką jaka była przed awarią (D i E).

Przed awarią, pakiety wysyłane do A byłyby przekazywane przez router D do routera C i w tym momencie dalej tak będzie, bo nie wie on jeszcze o awarii. Natomiast C już się o niej dowiedział, zatem zacznie wysyłać pakiety kierowane do A przez D. Mamy cykl.

Zadanie 10 Załóżmy, że sieć składa się z łączy jednokierunkowych (tj. topologia sieci jest grafem skierowanym) i nie zawiera cykli. Rozważmy niekontrolowany algorytm "zalewający" sieć jakimś komunikatem: komunikat zostaje wysłany początkowo przez pewien router; każdy router, który dostanie dany komunikat przysyła go dalej wszystkimi wychodzącymi z niego krawędziami. Pokaż, że istnieją takie sieci z n routerami, w których przesyłanie informacji zakończy się po czasie $2^{\Omega(n)}$. Zakładamy, że przez jedno łącze można przesłać tylko jeden komunikat naraz, a przesłanie go trwa jednostkę czasu.

Rozwiązanie: Konstruujemy graf sieci w następujący sposób:

- Ustalamy porządek na wierzchołkach. Nazywamy je $(V_1, V_2, ..., V_n)$. V_1 to router który wysyła pierwszy pakiet.
- Każdy wierzchołek od V_1 do V_{n-2} łączymy krawędzią wychodzącą z każdym wierzchołkiem o większym indeksie.
- Dodajemy krawędź z V_{n-1} do V_n .

Przykład dla n = 5:

W takim grafie nie będzie cykli, gdyż kolejne wierzchołki w dowolnej ścieżce mają indeksy w ściśle rosnącej kolejności.

Pokażemy, że w takim grafie wierzchołek $V_i \in \{V_i,...,V_{n-1}\}, 1 \leq i \leq n-1$ będzie miał do wysłania aż 2^{i-1} pakietów, co będzie również oznaczać, że w szczególności V_{n-1} musi wysłać 2^{n-1} pakietów do V_n , zatem potrzebne jest co najmniej tyle jednostek czasu. Można to zrobić indukcyjnie po wielkości sieci składającej się z routerów $V_1, V_2, ..., V_{n-1}$. Liczność tej sieci oznaczymy w.

Dla w=1 jest w niej jeden router V_1 i jest on tym startowym, zatem wyśle dokładnie $1=2^{1-1}$ pakietów.

Załóżmy, że tak jest dla dowolnego $k \in \mathbb{N}$, $1 \le k \le w$. Pokażemy że zachodzi to też dla w+1. Zauważmy, że graf składający się z wierzchołków $V_1, V_2, ..., V_w$ to mniejszy graf dla którego zachodzi nasze założenie indukcyjne. Wierzchołek V_{w+1} ma krawędź wchodzącą od każdego wierzchołka od mniejszym indeksie, czyli otrzyma od nich (zgodnie z założeniem indukcyjnym):

$$2^0 + 2^1 + \dots + 2^{w-1} = 2^w$$

pakietów, które będzie musiał przesłać dalej. Co kończy dowód.