Generative Adversarial Networks (GANs)

Quan Zhang, Ph.D.

Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2014).
 Generative Adversarial Networks. Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014). pp. 2672–2680.

Probabilistic Generative Models

Density Estimation

Synthesizing Examples From Probabilistic Generative Model

Maximum Likelihood Estimation

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathbb{E}_{x \sim p_{ ext{data}}} \log p_{ ext{model}}(oldsymbol{x} \mid oldsymbol{ heta})$$

Density function

Explicit and analytical

- e.g., Gaussian
- can sample directly from model

Explicit and approximate

- e.g., Gaussian mixture models, zero-inflated negative binomial models
- can estimate probability by running Markov chain monte carlo

Implicit

- GAN
- can't estimate probability but can draw from distribution with given probability

Generative Model

How to make it generate different samples each time it is run?

input to model is noise

Generative model as a neural network

- Generate random samples by computing a transformation of noises
- differentiable
- does not have to be invertible
- typically has very high dimensionality

Discriminative Model

Think of it as a critic

a good critic can tell real from fake

Discriminative model as a neural net

- differentiable
- computes, with value 1 if real, 0 if fake

Adversarial Networks

Generator (G) Generative **Real world** Model **Given random** noise z G(z) X

Discriminator (D)

Discriminative Model

Training Procedure: Basic Idea

G tries to fool D

D tries not to be fooled

Models are trained simultaneously

- As G gets better, D has a more challenging task
- As D gets better, G has a more challenging task

Ultimately, we don't care about the D

Its role is to force G to work harder

Loss Functions

real or fake?

Discriminative

Loss function for D: x is real data, G(z) is generated data

maximize the likelihood that model says 'real' to samples from the world and 'fake' to generated samples max log D(x) + log(1 – D(G(z)))

What should the loss function be for G? min log D(x) + log(1 - D(G(z)))

But because first term doesn't matter for G (why?), min log(1 - D(G(z)))

Known as a minimax procedure

Training Procedure

Train both models simultaneously via stochastic gradient descent using minibatches consisting of

- some generated samples
- some real-world samples

noise ()

Goodfellow (2017)

The Discriminator Has a Straightforward Task

real or fake?

D has learned when

Cherry Picked Results

Goodfellow (2017)

Problems With Counting

Goodfellow (2017)

Problems With Global Structure

Visually-Aware Fashion Recommendation and Design With GANs (Kang et al., 2017)

Recommender systems predict how much a particular user will like a particular item

- Can predict based on features of item (e.g., movie director, dress length)
- Can also predict directly from images

Twist here is that instead of predicting from a predefined set, generate images that would be liked.

Visually-Aware Fashion Recommendation and Design With GANs (Kang et al., 2017)

Use class-conditional generator and discriminator

Visually-Aware Fashion Recommendation and Design With GANs (Kang et al., 2017)

Optimize with GAN

- find latent representation that obtains the highest recommendation score
- gradient ascent search

Input Monet Van Gogh Cezanne Ukiyo-e

Photos to paintings

Paintings to photos

High resolution image synthesis

Large Scale GAN Training for High Fidelity Natural Image Synthesis

