

INTRODUCTION

- For my assignment I have chosen to talk about the greatest sport that has been played by mankind both offline and online. But for now I would like to talk about the online version of the sport 'FIFA 19' which is played by millions all over the world. I have been part of my college football team and I wanted you to know to some really interesting facts about the sport through a game based on it.
- I chose the game as it was the easiest way to obtain a clean and structed dataset of the all the players across the whole world. FIFA 19's game model is based on the real sport which has described the players attributes in the most EXACT way possible and I could not stop myself from analysing the hidden secrets of the sport using DATA SCIENCE!
- Without further intro lets EDA!

DATA

- The data was scrapped from sofifa website using a python crawling script. The website has data from the EA Sports' game FIFA and gets updated regularly with latest release. Through several research projects done on soccer analytics, it has been established in the field of academia that the use of data from the FIFA franchise has several merits that traditional datasets based on historical data do not offer.
- Each attribute has a integer from 0 to 100 to measure how good a player is at that attribute. Examples of attributes are: dribbling, aggression, vision, marking and ball control. To make the game as realistic as possible the attributes describe each player in the most detailed and accurate manner.
- The FIFA 19 dataset that has been used for this analysis provides statistics of about 19000 players on over 70 different attributes. These attributes are optimal indicators to determine the performance of a player at a particular playing position.

DATA MANUPILATION

To perform analysis, I had to refine and tailor the data according to my needs, to do this

- I dropped the unnecessary columns that would not be of any use to me.
- All wage and value of the player are in £, wage is thousands and the value of the player is in millions
- Final adjustments like clearing the missing values and duplicates using openrefine.

There are a total of **17,725 players** in the dataset after cleaning the data in jupyter notebook and openrefine.

```
In [1]: import numpy as np
               import pandas as pd
               import matplotlib.pyplot as plt
               import seaborn as sns
   In [2]: fifa=pd.read csv('fifa.csv')
   In [3]: pd.set option('display.max columns', None)
   In [4]: fifa.head()
t[4]:
                                                                                                                                                        Preferred International
                                               Photo Nationality
                                                                                                                                         Value Wage
                                                                               Flag Overall Potential
                                                                                                                            Club Logo
                       Name Age
                                                                                                              Club
                                                                                                                                                             Foot Reputation
                                   https://cdn.sofifa.org
                                                                                                                    https://cdn.sofifa.org
                                                                  https://cdn.sofifa.org
                                                                                                                          /teams/2/light €110.5M €565K
         0 158023 L. Messi 31
                                              /players
                                                                                                                                                              Left
                                                                                                                                                                            5.0
                                                        Argentina
                                                                         /flags/52.png
                                                                                                          Barcelona
                                      /4/19/158023.png
                                                                                                                              /241.png
                                                                                                                    https://cdn.sofifa.org
                                   https://cdn.sofifa.org
                                                                  https://cdn.sofifa.org
                                                                                                                          /teams/2/light
                                                                                                                                          €77M €405K
                                                                                                                                                             Right
                                                                                                                                                                            5.0
                                              /players
                                                                                                           Juventus
                                                                         /flags/38.png
                                       /4/19/20801.png
                                                                                                                               /45.png
                                   https://cdn.sofifa.org
                                                                                                                    https://cdn.sofifa.org
                                                                  https://cdn.sofifa.org
         2 190871
                                                                                                                          /teams/2/light €118.5M €290K
                                                                                                                                                                            5.0
                                              /players
                                                                                                                                                             Right
                                                                         /flags/54.png
                                      /4/19/190871.png
                                                                                                                               /73.png
                                   https://cdn.sofifa.org
                                                                                                                    https://cdn.sofifa.org
                                                                  https://cdn.sofifa.org
                                                                                                         Manchester
                     De Gea 27
                                                                                          91
                                                                                                                                          €72M €260K
                                                                                                                                                                            4.0
         3 193080
                                                                                                                          /teams/2/light
                                                                                                                                                             Right
                                              /players
                                                                         /flags/45.png
                                      /4/19/193080.png
                                                                                                                               /11.png
                                                                                                                    https://cdn.sofifa.org
                                   https://cdn.sofifa.org
                       K. De
                                                                  https://cdn.sofifa.org
```

```
In [9]: def wage_split(x):
    try:
        return int(x.split("K")[0][1:])
    except:
        return 0
    fifa_complete['Wage'] = fifa_complete['Wage'].apply(lambda x : wage_split(x))
    def value_split(x):
        try:
        if 'M' in x:
            return float(x.split("M")[0][1:])
        elif 'K' in x:
            return float(x.split("K")[0][1:])/1000
    except:
        return 0
    fifa_complete['Value'] = fifa_complete['Value'].apply(lambda x : value_split(x))
```

In [17]: fifa_complete.loc[:,['Value','Wage']].head(5)

Out[17]:

	Value	Wage
0	95.5	565
1	105.0	565
2	123.0	280
3	97.0	510
4	61.0	230

>

In [36]: fifa_complete = fifa_complete.drop(['RWB','ST'],axis = 1)
 fifa_complete.head(5)

Out[36]:

	Name	Age	Nationality	Overall	Potential	Club	Value	Wage	Acceleration	Aggression	 Reactions	Short passing
0	Cristiano Ronaldo	32	Portugal	94	94	Real Madrid CF	95.5	565	89	63	 96	83
1	L. Messi	30	Argentina	93	93	FC Barcelona	105	565	92	48	 95	88
2	Neymar	25	Brazil	92	94	Paris Saint- Germain	123	280	94	56	 88	81
3	L. Suárez	30	Uruguay	92	92	FC Barcelona	97	510	88	78	 93	83
4	M. Neuer	31	Germany	92	92	FC Bayern Munich	61	230	58	29	 85	55

5 rows × 42 columns

<

QUICK EDA

PLAYER COUNT BY COUNTRY

 In Tableau, I divided the players data into 3 clusters, with cluster 3 containing countries with the most players, and cluster 1 containing countries with the lowest count of players.

TOP 15 AVG OVERALL RATING BY COUNTRY

 In Tableau, I took the players with the top 15 overall rating and categorized them the country they were from

From the visualizations we can see that **Western Europe and South America** are the football powerhouse regions of the world.

PLAYER STATISCS

PACE	78	SHOOTING	80	PASSING	78
Acceleration	80	Positioning	88	Vision	76
Sprint Speed	76	Finishing	76	Crossing	73
		Shot Power	84	FK. Accuracy	68
		Long Shots	86	Short Passing	84
		Volleys	75	Long Passing	81
		Penalties	63	Curve	73
ORIBBLING	82	DEFENDING	81	PHYSICALITY	83
Agility	81	Interceptions	86	Jumping	76
Balance	84	Heading Acc	59	Stamina	94
Reactions	87	Marking	78	Strength	76
Ball Control	85	Standing Tac	86	Aggression	88
Dribbling	80	Sliding Tackle	88		
Composure	85				
Physical	Mental	Skill	Chem. Style	Base stats	In game stats
654	423	1164	0	482	2316

THE BEST DEFENDER

Every player has 6 core attributes which are pace, shooting, dribbling, defence, physical, passing. These are again subdivided into sub attributes which contribute to the arrtibute

I used Pearson's Correlation Coefficient Among Attributes

• This was perhaps the most intriguing insight to me as I was exploring this dataset. The first question that popped into my mind even before I downloaded the dataset was which sub attributes, if any, influence the rating of other attributes? To examine this, I will attack it by position. To find the best defender we would look at the core attribute DEFENCE and how it correlates to all the other

attributes.

It can be concluded that if a player's **STANDING TACKLE(s.t.)** attribute rating is high, then that player's other important defensive attributes are likely to be high as well

The BEST DEFENDER goes to MATT HUMMELS(s.t.-93), followed by GIORGIO CHIELLINI (s.t. 92).

Standing Tackle, Sliding Tackle Corr	0.9725
Standing Tackle, Marking Corr	0.9611
Standing Tackle, Interceptions Corr	0.9350
Standing Tackle, Aggression Corr	0.7321
Standing Tackle, Overall Corr	0.2521

THE BEST MIDFIELDER

To find the best midfielder we would look at the core attribute PASSING ,DRIBBLING and how it correlates to all the other attributes .

It can be concluded that if a player has a high **COMPOSURE RATING(c.r.)**, they are more likely to be a **BETTER MIDFIELDER** and have a **OVERALL RATING**.

The BEST MIDFIELDER goes to DAVID SILVA (c.r.-93), followed by ANDRES INIESTA (c.r. 92).

Composure	1,026,863
Overall	1,174,009
Overall, Composure Corr	0.6328

Ball Control, Short Passing Corr	0.9055
Ball Control, Crossing Corr	0.8392
Ball Control, Long Passing Corr	0.7836
Ball Control, Composure Corr	0.7637
Ball Control, Vision Corr	0.7227
Ball Control, Overall Corr	0.4544

THE BEST FORWARD

To find the best forward we would look at the core attribute SHOOTING and how it correlates to all the other attributes .

Finishing, Volleys Corr	0.8794
Finishing, Long Shots Corr	0.8666
Finishing, Shot Power Corr	0.7995
Finishing, Overall Corr	0.3222

It can be concluded that a player's **FINISHING(f)** attribute is the most important attribute to look for, as it seems to have a positive relationship with all of the underlying Finishing attributes.

Finally, The BEST FORWARD goes to LIONEL MESSI (f-95), followed by CRISTIANO RONALDO (f-94).

THANK YOU

STAY TUNED FOR MORE INTRIGUING EDA's