Épreuve de Mathématiques (toutes filières)

Problème I : Algèbre et Géométrie

A Étude de deux applications

La notation $\mathbb{R}_2[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 2. On identifiera dans la suite de ce problème les éléments de $\mathbb{R}_2[X]$ et leurs fonctions polynomiales associées. On note $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$. On définit les deux applications suivantes :

$$f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$P \longmapsto \frac{1}{2} \left[P\left(\frac{X}{2}\right) + P\left(\frac{X+1}{2}\right) \right]$$

et

$$\varphi: \quad \mathbb{R}_2[X] \quad \longrightarrow \quad \mathbb{R}$$

$$P \quad \longmapsto \quad P(1)$$

On rappelle aussi que l'on note $f^0 = \mathrm{Id}_{\mathbb{R}_2[X]}$, et pour tout $n \in \mathbb{N}^*$, $f^n = f \circ f^{n-1}$.

- 1. Vérifier que f est bien à valeurs dans $\mathbb{R}_2[X]$ et montrer que f est linéaire.
- 2. Montrer que φ est linéaire.
- 3. Écrire la matrice de f dans la base \mathcal{B} de $\mathbb{R}_2[X]$, en indiquant les calculs intermédiaires.
- 4. L'application f est-elle injective? surjective?
- 5. Déterminer une base de Ker φ . Quelle est la dimension de Ker φ ?
- 6. L'application φ est-elle injective? surjective?

B Calcul des puissances successives d'une matrice

On note I_3 la matrice identité de $\mathcal{M}_3(\mathbb{R})$ et A la matrice

$$A = \begin{pmatrix} 1 & \frac{1}{4} & \frac{1}{8} \\ 0 & \frac{1}{2} & \frac{1}{4} \\ 0 & 0 & \frac{1}{4} \end{pmatrix}.$$

Enfin, on note \mathcal{B}' la famille de $\mathbb{R}_2[X]$ définie par

$$\mathcal{B}' = (1, -2X + 1, 6X^2 - 6X + 1).$$

- 7. Justifier que la famille \mathcal{B}' est une base de $\mathbb{R}_2[X]$.
- 8. Écrire la matrice de passage Q de \mathcal{B} à \mathcal{B}' .
- 9. Justifier que Q est inversible et calculer son inverse.
- 10. Écrire la matrice M de f dans la base \mathcal{B}' en donnant les calculs intermédiaires.
- 11. Calculer A^n pour tout $n \in \mathbb{N}$. On explicitera les neufs coefficients de A^n .
- 12. Pour $n \in \mathbb{N}$ et $P = a + bX + cX^2$ avec $(a, b, c) \in \mathbb{R}^3$, déterminer $f^n(P)$ en fonction de a, b, c.
- 13. En déduire que

$$\forall P \in \mathbb{R}_2[X], \lim_{n \to +\infty} \varphi(f^n(P)) = \int_0^1 P(t) dt$$

C Une autre preuve du résultat précédent

14. À l'aide d'un raisonnement par récurrence, démontrer que

$$\forall P \in \mathbb{R}_2[X], \ \forall n \in \mathbb{N}^*, \ f^n(P) = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} P\left(\frac{X + k}{2^n}\right).$$

15. En déduire, en utilisant un résultat du cours d'analyse que l'on énoncera avec précision, que

$$\forall P \in \mathbb{R}_2[X], \lim_{n \to +\infty} \varphi(f^n(P)) = \int_0^1 P(t) dt.$$

Problème II: Analyse

Dans tout ce problème, on notera sh la fonction sinus hyperbolique, ch la fonction cosinus hyperbolique et th la fonction tangente hyperbolique.

A Étude d'une fonction

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = x \operatorname{sh}\left(\frac{1}{x}\right)$.

- 1. Étudier la parité de f.
- 2. (a) Rappeler un équivalent de la fonction sh en 0 et en déduire les limites de f en $+\infty$ et en $-\infty$.
 - (b) Déterminer la limite de f en 0.
- 3. Justifier que f est dérivable sur \mathbb{R}^* et montrer que pour tout $x \in \mathbb{R}^*$,

$$f'(x) = \left[\operatorname{th}\left(\frac{1}{x}\right) - \frac{1}{x} \right] \times \operatorname{ch}\left(\frac{1}{x}\right).$$

- 4. Montrer que, pour tout $X \in \mathbb{R}_+^*$, th(X) < X.
- 5. En déduire le tableau de variations de f.
- 6. Donner le développement limité à l'ordre 4 en 0 de la fonction $X \longmapsto \frac{\operatorname{sh}(X)}{X}$.
- 7. En déduire qu'au voisinage de $+\infty$ et de $-\infty$, f admet un développement de la forme

$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{a_3}{x^3} + \frac{a_4}{x^4} + o\left(\frac{1}{x^4}\right),$$

où $a_0,\ldots,\,a_4$ sont cinq réels que l'on précisera.

8. Montrer que la fonction $x \in \mathbb{R}^* \mapsto f\left(\frac{1}{x}\right) \in \mathbb{R}$ se prolonge sur \mathbb{R} en une fonction continue notée F, puis prouver que F est dérivable sur \mathbb{R} .

B Tracé d'une courbe paramétrée (au programme de PC, ne touchez pas, on va le faire ensemble)

On s'intéresse à l'arc paramétré défini pour $t \neq 0$ par les équations

$$\begin{cases} x(t) = t \operatorname{sh}\left(\frac{1}{t}\right) \\ y(t) = t \exp\left(\frac{1}{t}\right). \end{cases}$$

On note Γ son support. On donne la valeur approchée sh(1) ≈ 1.18 à 10^{-2} près.

- 9. Dresser le tableau des variations des fonctions x et y sur \mathbb{R}^* , en précisant les limites.
- 10. Tracer l'allure de Γ et la tangente à Γ au point M de paramètre t=1. On prendra 2 cm comme unité en abscisses et en ordonnées.

C Une équation différentielle

On considère l'équation différentielle (E) suivante, que l'on va résoudre sur différents intervalles

$$xy' + y = \operatorname{ch}(x). \tag{E}$$

- 11. Résoudre sur l'intervalle \mathbb{R}_{+}^{*} l'équation différentielle (E).
- 12. Donner sans justification les solutions de l'équation différentielle (E) sur l'intervalle \mathbb{R}_{-}^* .
- 13. Justifier que la fonction F (définie dans la question A.8) est l'unique fonction définie et dérivable sur \mathbb{R} qui soit solution de l'équation différentielle (E) sur \mathbb{R} .

D Étude d'une suite

14. Montrer que pour $n \in \mathbb{N}^*$, l'équation

$$f(x) = \frac{n+1}{n}$$

admet une unique solution dans \mathbb{R}_{+}^{*} . On la note u_{n} .

On définit ainsi une suite $(u_n)_{n\in\mathbb{N}^*}$ que l'on va étudier dans les questions qui suivent.

- 15. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante.
- 16. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ tend vers $+\infty$ quand n tend vers $+\infty$.
- 17. En utilisant la question A.7, déterminer un équivalent de u_n quand n tend vers $+\infty$.

E Une fonction définie par une intégrale

Pour $x \in \mathbb{R}_+^*$, on pose $J(x) = \int_{\frac{x}{2}}^x f(t) dt$.

- 18. Montrer que pour tout $x \in \mathbb{R}$, sh(2x) = 2 ch(x) sh(x).
- 19. Justifier que J est dérivable sur \mathbb{R}_+^* et que pour tout $x \in \mathbb{R}_+^*$,

$$J'(x) = f(x) \left[1 - \frac{1}{2} \operatorname{ch} \left(\frac{1}{x} \right) \right].$$

- 20. En déduire le signe de J' sur \mathbb{R}_+^* ; on exprimera le (ou les) zéro(s) de J' à l'aide de la fonction ln.
- 21. On <u>admet</u> les résultats suivants :
 - $\binom{*}{x} \lim_{x \to 0^+} J(x) = +\infty,$
 - (*) $\lim_{x \to +\infty} J(x) = +\infty$ et J admet au voisinage de $+\infty$ une asymptote d'équation $y = \frac{x}{2}$,
 - (*) la courbe représentatiqe de J est toujours "au dessus" de l'asymptote précédente.

Donner le tableau de variations de J sur \mathbb{R}_{+}^{*} .

22. Tracer l'allure de la courbe représentative de J.

On donne pour le tracé :
$$\frac{1}{\ln(2+\sqrt{3})}\approx 0.76 \text{ et } J\left(\frac{1}{\ln(2+\sqrt{3})}\right)\approx 0.65 \text{ à } 10^{-2} \text{ près.}$$

FIN DU SUJET