Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Code-breaking algorithms have also existed for centuries. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Integrated development environments (IDEs) aim to integrate all such help. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Programming languages are essential for software development. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research.