Sprint 2 - Accuracy Design Document April 11th, 2024

Table of Contents

1. EX	KECUTIVE SUMMARY	
1.1	Project Overview	3
1.2	Purpose and Scope of this Specification	
2. PR	RODUCT/SERVICE DESCRIPTION	3
2.1	PRODUCT CONTEXT	3
2.2	User Characteristics	3
2.3	Assumptions	3
2.4	Constraints	4
2.5	Dependencies	4
3. RE	EQUIREMENTS	4
3.1	Functional Requirements	4
3.2	Security	
3.2	2.1 Protection	5
3.2	2.2 Authorization and Authentication	5
3.3	PORTABILITY	5
4. RE	EQUIREMENTS CONFIRMATION/STAKEHOLDER SIGN-OFF	5
5. SY	YSTEM DESIGN	6
5.1	Algorithm	6
5.2	System Flow	7
5.3	Software	8
5.4	Hardware	8
5.5	Test Plan	9
5.6	Task List/Gantt Chart	11
5.7	Staffing Plan	11

Sprint 2 - Accuracy Design Document

1. Executive Summary

1.1 Project Overview

In this project, we are testing our group's and our individual ability to problem solve, quantify, organize, document, code, test, and present a software system. This process is called 'software engineering'. We will display this ability through the programming of a robot to perform the task of traveling around a figure eight path which is laid on the classroom floor. The intended audience for this project is Professor Eckert, and our classmates.

1.2 Purpose and Scope of this Specification

In Scope

This document addresses requirements related to Sprint 2 of the Robotics Project:

- Modification of code to travel in a figure 8 motion to meet requirements.
- Modification of Performance optimization for this sprint
- Use of code to ensure speed and accuracy align with project requirements

Out of Scope

The following items in sprint 1 and 3 of the robotics project are out of scope:

- Modification of code to travel around an obstacle course.
- Modification of code for robot to travel in the square of the classroom

2. Product/Service Description

2.1 Product Context

This product is a robot which can be controlled by the user. This sets it apart from other robots that can function without the user programming the function, as this one cannot. This robot allows for the user to program things such as color, sound, speed and direction at which it travels. It is also an independent product and does not interact with many related systems.

2.2 User Characteristics

- Students, professors, and staff will use this product.
- Must have a computer or a phone that is compatible with the Sphero Edu application.
- Must have some coding experience to program the product.
- Needs some technical expertise.

2.3 Assumptions

- Assumed that a member of the group has access to the sphero application, if not the group must be changed, or the requirement must change.
- Assumed user has access to the test room, if not they will be unable to complete tests.
- Assumed user must understand and know how to use the features of the Sphero application, if not they must learn before testing begins.

April 11, 2024 Page 3 o f 11

Sprint 2 - Accuracy Design Document

- Assumed user has access to specific project requirements, these are needed to complete the project properly.
- Assumed the user has internet connection

2.4 Constraints

- If the robot is damaged.
- Old software being used to try run the code.
- Different software being used to try run the code.
- The device that has the code doesn't have Bluetooth.
- If the language is not Sphero Edu block code.

2.5 Dependencies

- A MacOS or iPhone is needed to conduct the code.
- Application must be downloaded to the device.
- The code must be current.
- Bluetooth must be on and connected to the device.
- Robot must be working and properly charged.

3. Requirements

3.1 Functional Requirements

Req#	Requirement	Comments	Priority	Date Rvwd	SME Reviewed / Approved
ENDUR_01	Robot travels around the figure eight course 5 times	Required for full credit	1	04/11	Approved
ENDUR_02	Robot will start in the square provided	Required for full credit	1	04/09	Approved
ENDUR_03	Robot travels around the right circle first with a circumference of 5'2", traveling in a clockwise direction		1	04/09	Approved
ENDUR_04	Robot travels past the starting box		1	04/09	Approved
ENDUR_05	Robot travels around the left circle with a circumference of 5'2", traveling in an anti-clockwise direction		1	4/10	Approved
ENDUR_06	Robot travels past the starting box and repeats requirements 03, 04 and 05 four more times.		1	4/10	Approved
ENDUR_07	Robot will finish and say "I am the winner"	Required for full credit	1	4/11	Approved
ENDUR_08	Robot will finish and flash multicolored lights for 5 seconds	Required for full credit	1	4/11	Approved

April 11, 2024 Page 4 o f 11

Sprint 2 - Accuracy Design Document

Req#	Requirement	Comments	Priority	Date Rvwd	SME Reviewed / Approved
ENDUR_09	Robot will stay on the path laid out on the floor		1	4/11	Approved
ENDUR_10	Robot will finish in the square provided/ the same place it started	Required for full credit	1	4/11	Approved
ENDUR_11	Robot doesn't collide with anything		2	4/11	Approved
ENDUR_12	The speed of the robot is tbc	We cannot confirm the exact speed as different floor surfaces change the speed the robot goes. For example, the robot would go faster on a smooth concrete floor, compared to a rough one.	3	4/11	Approved

3.2 Security

3.2.1 Protection

- Encryption
- Password login
- Log of user activity
- Data integrity checks
- Private server

3.2.2 Authorization and Authentication

Only members of our group (Lucy, Callan and Alexander) and Professor Eckert will have access/ be responsible for creating the code, and will have access through a link provided by one group member. GitHub has strict authorization protocols which means our link is protected. This precaution ensures that the code is not changed by anyone.

3.3 Portability

- The robot is 100% host dependant
- The environment must have a flat and smooth surface for the robot to travel on
- The device that is writing the code must have Sphero Edu
- The language used is block code
- GitHub and Sphero Edu are very portable programs and allow for use on multiple devices so all group members can have access.

4. Requirements Confirmation/Stakeholder sign-off

Meeting Date	Attendees (name and role)	Comments
04/05/2024	Lucy and Callan	Started SDD, and planned Gantt Chart

Sprint 2 - Accuracy Design Document

04/09/2024	Lucy, Callan, and Alexander	Confirmed requirements 1, 2, 3, and 4
04/10/2024	Lucy and Callan	Confirmed requirements 5 and 6
04/11/20204	Lucy and Callan	Confirmed remaining requirements and passed tests
04/11/2024	Lucy, Callan, and Alexander	Finished SDD

5. System Design

5.1 Algorithm

- 1. Place Robot in the starting box
- 2. Set Robot to travel around the right circle first with a circumference of 5'2" to travel in a clockwise direction
- 3. Set Robot to travel past the starting box
- 4. Set Robot to travel around the left circle with a circumference of 5'2", to travel in an anticlockwise direction
- 5. Set Robot to repeat steps 2, 3 and 4, four more times
- 6. Set Robot to finish in the square provided/ the same place it started
- 7. Set Robot to say "I am the winner"
- 8. Set Robot to flash multicolored lights for 5 seconds
- 9. Set Robot to exit program

April 11, 2024 Page 6 o f 11

5.2 System Flow

April 11, 2024 Page 7 o f 11

5.3 Software

The software use used for this task was Sphero Edu, which is a user-friendly platform designed for educational programming. The programming language utilized within Sphero Edu was block code. Block code offers a visual and intuitive programming approach, which uses interlocking puzzle-like pieces to construct code sequences. This method simplifies programming, and is accessible for beginners by providing a straightforward way to create coding.

5.4 Hardware

The hardware that we used for this sprint was a computer. We used the computer in a variety of different ways, the first being downloading the programming application Sphero Edu. We continued to use the computer for development tasks. For testing purposes, we used the Spark Plus Robot to access the functionality of our application. Furthermore, to showcase the application's capabilities, we used an iPhone to record a video that we will upload online.

April 11, 2024 Page 8 o f 11

Sprint 2 - Accuracy Design Document

5.5 Test Plan

Reason for Test Case	Test Date	Expected Output	Observed Output	Staff Name	Pass/Fail
To make the Robot travel around the first semi-circle	04/09	The Robot successfully travels around the taped out semi-circle and returns to the original starting position	The Robot travelled in a straight line	Lucy	Fail
To make the Robot travel around the first semi-circle	04/09	The Robot successfully travels around the taped out semi-circle and returns to the original starting position	The Robot travelled in a circle, but the it was too small and didn't travel along the tape	Lucy	Fail
To make the Robot travel around the first semi-circle	04/09	The Robot successfully travels around the taped out semi-circle and returns to the original starting position	The Robot travelled in a circle that was too big	Lucy	Fail
To make the Robot travel around the first semi-circle	04/09	The Robot successfully travels around the taped out semi-circle and returns to the original starting position	The Robot successfully travels around the taped out semi-circle and returns to the original starting position	Lucy	Pass
To make the Robot travel around the second semi- circle	4/10	The Robot successfully travels around the taped out semi-circle and returns to the original starting position	The Robot travelled in a circle that was too big	Lucy	Fail
To make the Robot travel around the second semi- circle	4/10	The Robot successfully travels around the taped out semi-circle and returns to the original starting position	The Robot started following the tape, but then went off to the right	Lucy	Fail
To make the Robot travel around the second semi- circle	4/10	The Robot successfully travels around the taped out semi-circle and returns to the original starting position	The Robot successfully travels around the taped out semi-circle and returns to the original starting position	Lucy	Pass

Sprint 2 - Accuracy Design Document

Reason for Test Case	Test Date	Expected Output	Observed Output	Staff Name	Pass/Fail
To loop the Robot to make it repeat the 2 semi- circles four more times	4/10	The Robot successfully travels around the taped figure eight course five times and returns to the original starting position	The Robot successfully travelled around the tape for three loops, but then travelled off right	Lucy	Fail
To loop the Robot to make it repeat the 2 semi- circles four more times	4/10	The Robot successfully travels around the taped figure eight course five times and returns to the original starting position	The Robot successfully travelled for two loops, but then the loops became too small	Lucy	Fail
To loop the Robot to make it repeat the 2 semi- circles four more times	4/10	The Robot successfully travels around the taped figure eight course five times and returns to the original starting position	The Robot successfully travelled around for three loops, but travelled to wide on the fourth and crashed	Lucy	Fail
To loop the Robot to make it repeat the 2 semi- circles four more times	4/10	The Robot successfully travels around the taped figure eight course five times and returns to the original starting position	The Robot successfully travelled all five loops, but didn't stop in the original location	Lucy	Fail
To loop the Robot to make it repeat the 2 semi- circles four more times	4/10	The Robot successfully travels around the taped figure eight course five times and returns to the original starting position	The Robot successfully travels around the taped figure eight course five times and returns to the original starting position	Lucy	Pass
Make the Robot stop and speak "I am the winner"	04/11	When the Robot stops it speaks "I am the winner"	The Robot spoke and said "I am the winner" after it had stopped	Callan	Pass
Make the Robot flash multi- colored lights for five seconds	04/11	The Robots LED light changed color for 5 seconds	The Robots LED light changed color for 7 seconds	Callan	Fail

Sprint 2 - Accuracy Design Document

Reason for Test Case	Test Date	Expected Output	Observed Output	Staff Name	Pass/Fail
Make the Robot flash multi- colored lights for five seconds	04/11	The Robots LED light changed color for 5 seconds	The Robots LED light changed color for 7 seconds	Callan	Pass
Make the Robot exit the program	04/11	The Robot exits the program	The Robot exits the program	Callan	Pass

5.6 Task List/Gantt Chart

5.7 Staffing Plan

Name	Role	Responsibility	Reports To
Lucy	Problem Solver	Leader for writing the algorithm, checks the SSD, and films the robot	Callan
Callan	Recorder	Records the information and fills it out onto the SDD	Lucy
Alexander	Coder	Writes the flowchart and the code	Lucy and Callan

April 11, 2024 Page 11 o f 11