la	16	lc	ld	2a	2b	2c	2d	2e	30	3h	-
				1000	N. S.	280	10000		Ju	30	2
200				A 1553		600	10000	1000	10000	2008	

ATENÇÃO: Não é permitido destacar as folhas

2ª Prova de MA327 — 22/10/2013, 08:00-10:00 hs

NOME:		
	Turma:RA:	

1. a) (1 pt) Definir transformação linear entre dois espaços vetoriais. Definir isomorfismo entre dois espaços vetoriais. Definir núcleo e imagem de uma transformação linear.

Seja $T: P_3(\mathbb{R}) \to \mathbb{R}^4$ a função dada por T(p) = (p(-1), p(0), p(1), p(2)).

b) (0,5) Mostrar que T é uma transformação linear.

c) (1,0) Encontrar a matriz de $[T]^{\beta}_{\alpha}$ onde $\alpha = \{1, x, x^2, x^3\}$ e β é a base canônica do \mathbb{R}^4 .

d) Responder (com justificativa) se T é um isomorfismo.

2. (1,5 pt) Verificar se as afirmações abaixo são verdadeiras ou falsas. (Respostas sem justificativa não serão consideradas.) Considerar $T\colon V\to V$ uma transformação linear e $\dim V<\infty$.

a) Se N(T) e Im(T) são o núcleo e a imagem de T então $V=N(T)\oplus Im(T)$.

- b) Se α e β são duas bases de V e A e B são as matrizes de T nas bases α e β , respectivamente, então det(A) = det(B).
- c) Seja $A \in M_{m \times n}$ uma matriz $m \times n$ e seja $B \in M_n$ uma matriz invertível $n \times n$. Então A e AB têm o mesmo posto, p(A) = p(AB).
 - 3. Considere as seguintes matrizes:

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 2 & 1 & 2 \\ 0 & -4 & 2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 & 2 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$

a) (0.5 pt cada matriz) Encontrar os autovalores de A e B.

b) (1 pt cada matriz) Encontrar os autoespaços de cada autovalor (i.é., os espaços $\mathcal{N}(T-\lambda I)$ onde T=A,B e λ é um autovalor) e uma base para cada autoespaço.

c) (1 pt cada matriz) Decidir qual matriz é diagonalizável. Apresentar uma base de autovetores quando possível e a matriz nessa base ou justificar por que isso não é possível.

Incluir na prova, por favor, todas as "contas" feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Boa Prova!