ATS 421/521

Climate Modeling Spring 2013

Lecture 4

- Climate Sensitivity (wrap-up)
- Stochastic Climate Models
- Meridional Energy Transport

Papers?

Homework?

Previous Lecture

Reading

• For Friday: Hargreaves et al. (2012)

For Monday: Script chapter 2.5

Climate Sensitivity

Usual definition:

Global mean temperature increase due to a doubling of CO₂: ΔT_{2xC} .

Radiative forcing due to CO₂: $\Delta Q = 5.35 W/m^2 \ln (C/C_0)$

For $2xCO_2$: $\Delta Q_{2xC}=3.7 \text{ W/m}^2$

More general:

$$\alpha = \frac{\Delta T}{\Delta \Omega}$$

global mean temperature change

radiative forcing := change in energy balance at the tropopause with everything else (T, q, ...) constant

Our EBM in equilibrium:

$$(1-a)S = A + BT_0$$

$$(1-a)S + \Delta Q = A + B(T_0 + \Delta T)$$

$$\rightarrow \alpha = \frac{1}{B} = 0.3 \text{ K} (\text{Wm}^{-2})^{-1}$$
 Climate Sensitivity

or $\Delta T_{2xC} = 1 \text{ K}$

GCMs have $\Delta T_{2xC} = 2-4.5 \text{ K}$

What's wrong?

$$B = 4g \sigma T_0^3 = \begin{cases} 3.4 \text{ Wm}^{-2} \text{K}^{-1}, T_0 = 288 \text{K} \\ 1.7 \text{Wm}^{-2} \text{K}^{-1}, T_0 = 227 \text{K} \end{cases} \text{ tropopause}$$

Determine B empirically from obs:

Implicitly includes feedbacks.

$$\frac{\partial T}{\partial t} = F(T, y_1, y_2, ..., y_n)$$
 $F_0 = F(T_0, y_{10}, ..., y_{n0}) = 0$

$$\frac{\partial (T_0 + \Delta T)}{\partial t} = F_0 + \frac{\partial F}{\partial T} \left| \Delta T + \sum_n \left(\frac{\partial F}{\partial y_n} \frac{\partial y_n}{\partial T} \right) \right|_{T_0, \overline{y_0}} \Delta T + \Delta Q = 0$$

Feedback parameter

$$\lambda = \alpha^{-1} = \frac{\Delta Q}{\Delta T} = -\frac{\partial F}{\partial T} - \sum_{n} \left(\frac{\partial F}{\partial y_{n}} \frac{\partial y_{n}}{\partial T} \right) := \lambda_{0} + \sum_{n} \lambda_{n}$$
 (2.17)

$$\lambda = \lambda_0 + \lambda_w + \lambda_L + \lambda_C + \lambda_a$$

Planck water lapse cloud sfc vapor rate cloud albedo

Tomassini et al. (2013) Clim. Dyn. Soden & Held (2006) J. Climate

Transient response of CMIP5 surface temperatures to exponential CO₂ increase at 1%/yr

What's are the reasons for this spread?

Tomassini et al. (2013) Clim. Dyn.

Two reasons have been identified:

1. climate sensitivity (feedbacks)

2. ocean heat uptake

Stochastic Climate Models

OD-EBM Solutions

are smooth

Response timescale $\Delta t = C/B = 2$ years

real world has variability

Variability last 150 years (instrumental period)

Global surface air temperature anomaly from NASA/GISS

Variability last 400,000 years (paleo)

Estimated spectrum of surface temperatures including paleoclimate proxies. From Huybers & Curry (2006, Nature 441, 329).

Auto-Regressive Process of Order One (AR1)

Hasselmann (1976) Tellus

Periodogram

see chapter 12 of the book "Statistical Analysis in Climate Research" by von Storch and Zwiers (2001, Cambridge University Press)

HW2: include variability in your 0D EBM!

Solar Insolation S (W/m^2)

Absorbed Solar Radiation (W/m²)

Outgoing Longwave Radiation (W/m²)

