代理重加密 (Proxy Re-Encryption)

Sammy Li

2020-11-18

目录

1	符号定义	1
2	流程	1
	2.1 A 和 B 本地生成密钥	2
	2.2 A 加密消息并上传到 S	2
	2.3 A 基于 B 的公钥生成重加密密钥并上传到 S	2
	2.4 S 加工生成重加密消息	2
	2.5 B 执行重解密还原消息	2
3	证明	2
	3.1 预备知识	2
	3.1.1 双线性映射	2
	3.2 解密过程正确性推导	3
参	考文献	3

1 符号定义

表 1: 符号定义

符号	说明
$\mathbb{G} = \langle G \rangle$	椭圆曲线群,生成元记为 G
$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$	椭圆曲线群 $\mathbb{G}_1=\langle G_1 \rangle$ 和 $\mathbb{G}_2=\langle G_2 \rangle$ 到 $\mathbb{G}_T=\langle G_T \rangle$ 的双线性映射
$s \in_R S$	表示从集合 S 随机选取一个元素 s
p	群 \mathbb{G}_1 和 \mathbb{G}_2 的阶,即元素个数

往后部分使用的具体椭圆曲线群为 bn256 [1,2]。

2 流程

流程涉及角色如下

- 发送方 A: 负责本地加密消息, 然后上传到代理服务器, 为接收方分配重加密的解密密钥
- 代理服务器 S: 存储 A 的密文, 基于 A 的重加密密钥执行重加密
- 接收方 B: 基于重加密密钥解密密文

2.1 A 和 B 本地生成密钥

- A 本地基于 \mathbb{G}_1 生成公私钥对 $(x_A, X_A = x_A \cdot G_1)$
- B 本地基于 \mathbb{G}_2 生成公私钥对 $(x_B, X_B = x_B \cdot G_2)$

2.2 A 加密消息并上传到 S

- 1. 将 m 映射为 \mathbb{G}_T 的元素 M
 - 通常情况下,m 用作加密数据的对称密钥,可先随机生成 M 然后转化为 m,再用 m 对数据进行对称加密
- 2. 随机生成 $r \in_R \mathbb{Z}_p$
- 3. 计算密文分片
 - $C_1 = r \cdot G_T + M \in \mathbb{G}_T$
 - $C_2 = r \cdot X_A \in \mathbb{G}_1$
- 4. 将 (C₁, C₂) 上传到 S

2.3 A 基于 B 的公钥生成重加密密钥并上传到 S

- 1. A 计算重加密密钥 $X' = x_A'^{-1} \cdot X_B \in \mathbb{G}_2$
- 2. 将 X' 上传到 S

2.4 S 加工生成重加密消息

S 计算并保存 $C'_2 = e(X', C_2)$

2.5 B 执行重解密还原消息

- 1. B 从 S 下载 (C₁, C'₂)
- 2. 计算 $R = x_B^{\prime 1} \cdot C_2^{\prime}$
- 3. 计算 $M' = C_1 R$
- 4. 将 M' 转化为 m', 即得消息原文 m=m'

3 证明

3.1 预备知识

3.1.1 双线性映射

设 \mathbb{G}_1 、 \mathbb{G}_2 和 \mathbb{G}_T 都是阶为 p 的循环群,p 是素数。如果映射 $e:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_T$ 满足以下性质:

- 1. **双线性性**: 对于任意 $a,b \in \mathbb{Z}_p$ 和 $X \in \mathbb{G}_1, Y \in \mathbb{G}_2$,有 $e(a \cdot X, b \cdot Y) = a \cdot b \cdot e(X,Y)$
- 2. **非退化性**:存在 $X \in \mathbb{G}_1, Y \in \mathbb{G}_2$,使得 $e(X,Y) \neq G_T$ 。这里 G_T 代表 G_T 群的单位元
- 3. **可计算性**:存在有效的算法对任意的 $X \in \mathbb{G}_1, Y \in \mathbb{G}_2$, 计算 e(X,Y) 的值

那么称 e 是一个双线性映射。

双线性映射可以通过有线域上的超椭圆曲线上的 Tate 对或 Weil 对来构造。

注:
$$e(X,Y) = e(Y,X)$$
。

3.2 解密过程正确性推导

$$\begin{split} M' &= C_1 - R \\ &= r \cdot G_T + M - x_B'^{-1} \cdot C_2' \\ &= r \cdot G_T + M - x_B'^{-1} \cdot e(X', C_2) \\ &= r \cdot G_T + M - x_B'^{-1} \cdot e(x_A'^{-1} \cdot X_B, C_2) \\ &= r \cdot G_T + M - x_B'^{-1} \cdot e(x_A'^{-1} \cdot X_B, r \cdot X_A) \\ &= r \cdot G_T + M - x_B'^{-1} \cdot e(x_A'^{-1} \cdot x_B \cdot G_2, r \cdot x_A \cdot G_1) \\ &= r \cdot G_T + M - e(x_B'^{-1} \cdot x_B \cdot G_2, x_A'^{-1} \cdot r \cdot x_A \cdot G_1) \\ &= r \cdot G_T + M - e(G_2, r \cdot G_1) \\ &= r \cdot G_T + M - r \cdot e(G_2, G_1) \\ &= r \cdot G_T + M - r \cdot G_T \\ &= M \end{split}$$

参考文献

- [1] Barreto, Paulo S. L. M., and M. Naehrig. "Pairing-Friendly Elliptic Curves of Prime Order." (2005).
- [2] Naehrig, Michael , R. Niederhagen , and P. Schwabe . "New Software Speed Records for Cryptographic Pairings." International Conference on Progress in Cryptology-latincrypt Springer-Verlag, 2010.