Applied Linear Algebra in Data Analysis Solution to Linear Equations

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

Orthogonality

► Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are orthogonal if $\mathbf{x}^\top \mathbf{y} = 0$.

▶ The set of non-zero vectors, $V = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_r\}$ is a set of mutually orthogonal vectors, if and only if,

$$\mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = 0, \ \ 1 \le i, j \le r \ \text{and} \ i \ne j$$

► *V* is also a linearly independent set of vectors. Why?

Orthogonality

▶ If $\|\mathbf{v}_i\| = 1$, then *V* is an **orthonormal** set of vectors.

A set of orthonormal vectors V also form an **orthonormal basis** of the subsapce span(V).

Orthogonal Subspaces

Two subspaces $V, W \subset \mathbb{R}^n$ are orthogonal if every vector in one subspace is orthogonal to every vector in the other subspace.

$$\mathbf{v}^{\top}\mathbf{w} = 0, \ \ \forall \mathbf{v} \in \mathcal{V} \ \text{and} \ \forall \mathbf{w} \in \mathcal{W} \implies \mathcal{V} \perp \mathcal{W}$$

▶ If $V + W = \mathbb{R}^n$, and $V \perp W$, then V and W are **orthogonal complements** of each other.

$$\mathcal{V}^{\perp}=\mathcal{W} ext{ or } \mathcal{W}^{\perp}=\mathcal{V}; \quad \left(\mathcal{V}^{\perp}
ight)^{\perp}=\mathcal{V}$$

 $\|e\|$ is the distance of the point b from the line along a. This distance is shortest when, $e\perp a.$

$$\mathbf{a}^{\top} (\mathbf{b} - \mathbf{p}) = \mathbf{a}^{\top} (\mathbf{b} - \alpha \mathbf{a}) = \mathbf{a}^{\top} \mathbf{b} - \alpha \mathbf{a}^{\top} \mathbf{a} = 0$$
$$\alpha = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \implies \mathbf{p} = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{a}$$
$$\mathbf{p} = \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{a} = \mathbf{a} \frac{\mathbf{a}^{\top} \mathbf{b}}{\mathbf{a}^{\top} \mathbf{a}} = \frac{\mathbf{a} \mathbf{a}^{\top}}{\mathbf{a}^{\top} \mathbf{a}} \mathbf{b} = \mathbf{P} \mathbf{b}$$

- We can project vectors onto high dimensional subspaces.
- ▶ Consider the subspace $S \subseteq \mathbb{R}^n$ spanned by the orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_r\}$.
- We want to project a vector $\mathbf{b} \in \mathbb{R}^n$ onto \mathcal{S} $\mathbf{b}_{\mathcal{S}}$ – the orthogonal projection of \mathbf{b} onto \mathcal{S} is given by the following,

$$\mathbf{b}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^{\top}\mathbf{b}; \ \mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_r \end{bmatrix}$$

Projection matrix $\mathbf{P}_{\mathcal{S}} = \mathbf{U}\mathbf{U}^{\top}$

▶ A projection matrix is **idempotent**, i.e. $P^2 = P$. What does this mean in terms of projecting a vector on to a subspace?

Consider two matrices U_1, U_2 whose columns form an orthonormal basis of the subspace $S \subseteq \mathbb{R}^m, C(U_1) = C(U_2)$.

▶ The projection matrix onto the subspace \mathcal{S} , $U_1U_1^\top = U_2U_2^\top$. We get the same projection matrix irrespective of which orthonormal basis one uses.

▶ Two subspaces $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^n$ are said to be **complementary subspaces** of \mathbb{R}^n , when

$$\mathcal{X} + \mathcal{Y} = \mathbb{R}^n$$
 and $\mathcal{X} \cap \mathcal{Y} = \{\mathbf{0}\}$

▶ For complementary subspaces $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^n$, then any vector $\mathbf{v} \in \mathbb{R}^n$ can be uniquely represented as,

$$\mathbf{v} = \mathbf{v}_{\mathcal{X}} + \mathbf{v}_{\mathcal{Y}}, \ \mathbf{v}_{\mathcal{X}} \in \mathcal{X}, \ \mathbf{v}_{\mathcal{Y}} \in \mathcal{Y}$$

 $\mathbf{v}_{\mathcal{X}}, \mathbf{v}_{\mathcal{Y}}$ are the components of \mathbf{v} in \mathcal{X} and \mathcal{Y} , respectively.

▶ When $\mathcal{X} \perp \mathcal{Y}$, then $\mathbf{v}_{\mathcal{X}}^{\top} \mathbf{v}_{\mathcal{Y}} = 0$; $\mathbf{v}_{\mathcal{X}}, \mathbf{v}_{\mathcal{Y}}$ are orthogonal components.

Relationship between the Four Fundamental Subspaces of A

 $ightharpoonup \mathcal{C}(\mathbf{A}), \mathcal{N}(\mathbf{A}^{\top}) \subseteq \mathbb{R}^n$ are orthogonal complements.

$$\mathcal{C}(\mathbf{A}) \perp \mathcal{N}(\mathbf{A}^{\top}) \implies \mathcal{C}(\mathbf{A}) + \mathcal{N}(\mathbf{A}^{\top}) = \mathbb{R}^{n}$$

 $ightharpoonup \mathcal{C}\left(\mathbf{A}^{\top}\right), \mathcal{N}\left(\mathbf{A}\right) \subseteq \mathbb{R}^{m}$ are orthogonal complements.

$$\mathcal{C}\left(\mathbf{A}^{\top}\right) \perp \mathcal{N}\left(\mathbf{A}\right) \implies \mathcal{C}\left(\mathbf{A}^{\top}\right) + \mathcal{N}\left(\mathbf{A}\right) = \mathbb{R}^{m}$$

▶ An orthogonal projection matrix P_S onto a subspace S represents a linear mapping, $P_S : \mathbb{R}^n \to \mathbb{R}^n$. What are the four fundamental subspaces of P_S ?

$$\mathcal{C}(\mathbf{P}_{\mathcal{S}}) = \mathcal{S}; \quad \mathcal{N}(\mathbf{P}_{\mathcal{S}}) = \mathcal{S}^{\perp}$$
 $\mathcal{N}(\mathbf{P}_{\mathcal{S}}^{\top}) = \mathcal{S}^{\perp}; \quad \mathcal{C}(\mathbf{P}_{\mathcal{S}}^{\top}) = \mathcal{S}$

Relationship between the Four Fundamental Spaces

12

Relationship between the Four Fundamental Spaces

- \mathbf{x}_r and \mathbf{x}_n are the components of $\mathbf{x} \in \mathbb{R}^m$ in the row space and nullspace of \mathbf{A} .
- ▶ Nullspace $\mathcal{N}(A)$ is mapped to 0.

$$\mathbf{A}\mathbf{x}_n = \mathbf{0}$$

Proof Row space $C(A^{\top})$ is mapped to the column space C(A).

$$\mathbf{A}\mathbf{x}_r = \mathbf{A}(\mathbf{x}_r + \mathbf{x}_n) = \mathbf{A}\mathbf{x} = \mathbf{b}$$

- ▶ The mapping from the **row space** to the **column space** is invertible, i.e. every \mathbf{x}_r is mapped to a unique element in $\mathcal{C}(\mathbf{A})$
- ▶ What sort of mapping does \mathbf{A}^{\top} do?

