Programmierparadigmen Cheat Sheet

Wintersemester 2023/24 | Linus Schöb (Vorlage von Darius Schefer, Max Schik)

Haskell

foo a b c d

Referenzielle Transparenz: Im gleichen Gültigkeitsbereich bedeuten gleiche Ausdrücke stets das gleiche. Zwei verschiedene Ausdrücke, die zum gleichen Wert auswerten, können stets durch den anderen ersetzt werden, ohne die Bedeutung des Programms zu verändern.

[0..5] == [0,1,2,3,4,5]

-- combine two functions
f :: a -> b
g :: b -> c

 $h :: a \rightarrow c$ $h = f \cdot g$

-- is the same as h x = f \$ g x

-- \$ puts parens around everything right

-- type alias

-- prefix notation takes precedence over infix notatiotype Car = (String, Int)

-- data types

```
-- pattern matching can use constructors and constantsdata Tree a = Leaf
```

 $\begin{array}{lll} \text{head } (x:x2:xs) = x & & | \text{ Node (Tree a) a (Tree a)} \\ \text{only } [x] = x & & \text{deriving (Show)} \end{array}$

first (Pair a b) = a
first (a, b) = a

((((foo a) b) c) d)

id' l = head l : tail l

General Haskell stuff

foo :: a -> b -> c -> d

foo :: (a -> (b -> (c -> d)))

response "hello" = "world"

-- type definitions are right associative

-- function applications are left associative

-- alias for pattern matching

foo l@(x:xs) = 1 == (x:xs) -- returns true

-- guards foo x y

| x > y = "bigger" | x < y = "smaller"

| x == y = "equal"
| otherwise = "love"

-- case of does pattern matching

[1] -> "apple" (420:1) -> "pear"

[foo $x \mid x \leftarrow [1..420], x \mod 2 == 0]$

-- list comprehension, first <- is outer most loop

-- defines interface class Eq t where

(==) :: t -> t -> Bool (/=) :: t -> t -> Bool

-- default implementation x /= y = not \$ x == y

class Coll c where

contains :: (Ord t) =>
(c t) -> t -> Bool

-- extends interface

class (Show t) => B t where
foo :: (B t) -> String

-- implement interface

instance Eq Bool where
 True == True = True

False == False = True True == False = False

False == True = False

Idioms

```
-- backtracking
backtrack :: Conf -> [Conf]
backtrack conf
  | solution conf = [conf]
  | otherwise = concat $ map backtrack $ filter legal $ successors conf
solutions = backtrack initial
-- accumulator
-- linear recursion = only one recursive branch per call
-- end recursion = linear recursion + nothing to do with the result after recursive call
-- end recursion makes things memory efficient
fak n = fakAcc n 1
  where fakAcc n acc = if (n==0) then acc else fakAcc (n-1) (n*acc)
-- end of where is determined by indentation!
Important functions
See extra Cheat Sheet: https://github.com/rudymatela/concise-cheat-sheets
foldr can handle infinite lists (streams) if combinator does sometimes not depend on right rest. foldl cannot.
Result is a list \Rightarrow probably want to use foldr
Additional built-ins:
-- in a list of type [(key, value)] returns first element where key matches given value
lookup :: Eq a \Rightarrow a \Rightarrow [(a, b)] \Rightarrow Maybe b
-- applies function until the predicate is true
until :: (a \rightarrow Bool) \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a
-- returns true if the predicate is true for at least one element
any :: Foldable t \Rightarrow (a \rightarrow Bool) \rightarrow t a \rightarrow Bool
-- return true if the predicate is true for all elements
all :: Foldable t \Rightarrow (a \rightarrow Bool) \rightarrow t a \rightarrow Bool
-- return sorted copy of list (task has to allow it!)
import Data.List (sort)
sort :: Ord a => [a] -> [a]
Custom implementations:
-- quicksort
                                                             reverse = foldl (flip (:)) []
qsort :: Ord a => [a] -> [a]
qsort [] = []
                                                             iter f n = foldr (.) id $ take n $ repeat f -- f \hat{n}
qsort (p:ps) = qsort (filter (<= p) ps)</pre>
           ++ p:qsort (filter (> p) ps)
                                                             oddPrimes (p:ps) =
```

-- remove consecutive duplicates (strong with sort)

uniq :: Eq a => [a] -> [a]

uniq (x:xs) = x:uniq xs

uniq $(x:y:xs) \mid x == y = x:uniq xs$

uniq [] = []

p:(oddPrimes [p' | p' <- ps, p' 'mod' p /= 0])

primes = 2:oddPrimes (tail odds)

Prolog

Generelles Zeug

delete([X|L],X,L).

delete([X|L],Y,[X|L1]) := delete(L,Y,L1).

Prolog ist nicht vollständig da die nächste Regel deterministisch gewählt wird, daher können Endlosschleifen entstehen und keine Lösung gefunden werden obwohl sie existiert.

Kleingeschriebene Wörter sind Atome. Großbuchstaben sind Variablen. _ ist Platzhalter-Variable.

Prädikat heißt deterministisch gdw. es stets auf höchstens eine Weise erfüllt werden kann.

```
% Prolog erfüllt Teilziele von links nach rechts
foo(X) := subgoal1(X), subgoal2(X), subgoal3(X).
% ! = Cut = alles links (inklusive Prädikat links von :-) ist nicht reerfüllbar.
% Arten von Cuts:
% - Blauer Cut: beeinflusst weder Programmlaufzeit, noch -verhalten
% - Grüner Cut: beeinflusst Laufzeit, aber nicht Verhalten
% - Roter Cut: beeinflusst das Programmverhalten (häufig: letzten Wächter unnötig machen)
% Faustregel: Cut kommt, wenn wir sicher im richtigen Zweig sind, Ergebnisse danach
foo(X, Y) :- operation_where_we_only_want_the_first_result(X, Z), !, Y = Z.
% Idiom: generate and test
                                                      % Listen mit Cons:
foo(X, Y) := generator(X, Y), tester(Y).
                                                      [1,2,3] = [1|[2|[3|[]]]].
                                                      [1,2,3|[4,5,6,7]] = [1,2,3,4,5,6,7].
% z.B.:
nat(0).
                                                      % === Arithmetik
nat(X) := nat(Y), X is Y+1.
                                                      % erstmal nur Terme:
sqrt(X,Y) :- nat(Y),
                                                      2 - 1 \= 1.
    Y2 is Y*Y, Y3 is (Y+1)*(Y+1),
                                                      % Auswerten mit "is":
    Y2 = < X, X < Y3.
                                                      N1 is N - 1.
% Früher testen => effizienter
                                                      % Arithmetische Vergleiche:
                                                      % Argumente müssen instanziiert sein!
                                                      =:=, =\=, <,=<, >, >=
                                                      even/1, odd/1 % Generatoren aus VL
Wichtige Funktionen
Built-In:
% member(X, L): X ist in Liste L (alle Richtungen)
                                                      % reverse(L, R): R ist Liste L rückwerts (aR)
member(X,[X|R]).
                                                      reverse([],[]).
member(X, [Y|R]) := member(X,R).
                                                      reverse([X|R],Y) :- reverse([X,Y1), append([Y1,[X],Y).
% append(A, B, C): C = A ++ B \quad (alle Richtungen)
                                                      % N ist Länger der Liste L (alle Richtungen)
append([],L,L).
                                                      length(L, N).
append([X|R],L,[X|T]) := append(R,L,T).
% Prüft, ob Prädikat X erfüllbar ist (NICHT: findet Instanziierung, sodass X nicht erfüllt ist)
not(X) := call(X),!,fail.
not(X).
% Prüft, dass nicht gleich (alle Richtungen)
dif(X, Y) := when(?=(X,Y), X == Y)
% Meta
atom(X). % Prüft ob X ein Atom ist
integer(X). % Prüft ob X eine Zahl ist
atomic(X). % Prüft ob X ein Atom oder eine Zahl ist
Weiter:
% delete(A, X, B): B = genau 1 X aus A entfernen (aR)
% Das hier ist von VL Folien und anders als die Standardbibluithek
```

```
% Prüft ob Permutation voneinander. Iteriert durch alle Permutationen bei Reerfüllung
permute([],[]).
permute([X|R],P) :- permute(R,P1),append(A,B,P1),append(A,[X|B],P).

% lookup(N, D, A) mit A uninstanziiert: A <- D[N] nachschauen
% lookup(N, D, A) mit A instanziiert: D[N] <- A setzen (überschreiben nicht möglich)
% Vorteil ggü. member((N, A), D): nur Einträge am Anfang -> keine Reerfüllung
lookup(N,[(N,A)|_],A1) :- !,A=A1.
lookup(N,[_|T],A) :- lookup(N,T,A).

% QuickSort: qsort(L, SortedL) (nur vorwärts)
qsort([],[]).
qsort([X|R],Y) :- split(X,R,R1,R2), qsort(R1,Y1), qsort(R2,Y2), append(Y1,[X|Y2],Y).
split(X,[],[],[]).
split(X,[H|T],[H|R],Y) :- X>H, split(X,T,R,Y).
split(X,[H|T],R,[H|Y]) :- X=<H, split(X,T,R,Y).</pre>
```

Unifikation

Unifikator

- $\bullet\,$ Gegeben: Menge C von Gleichungen über Terme
- Gesucht ist eine Substitution σ , die alle Gleichungen erfüllt: Unifikator
 - $-\sigma$ unifiziert Gleichung " $\theta = \theta'$ ", falls $\sigma\theta = \sigma\theta'$
 - $-\sigma$ unifiziert C, falls $\forall c \in C$ gilt: σ unifiziert c
 - Schreibweise für Substitution: $[Y \to f(a,b), D \to b, X \to g(b), Z \to b]$
 - \rightarrow soll eigentlich outline von einem Dicken Pfeil sein.
- most general unifier ist der allgemeinste Unifikator (mit den wenigsten unnötigen Ersetzungen/Annahmen)
 - $-\sigma$ ist mgu gdw. \forall Unifikator $\gamma \exists$ Substitution $\delta : \gamma = \delta \circ \sigma$

Robinson-Unifikationsalgorithmus: unify(C) =

```
if C == \emptyset then [] else let \{\theta_l = \theta_r\} \uplus \mathtt{C}' = \mathtt{C} in if \theta_l == \theta_r then unify(C') else if \theta_l == Y and Y \notin FV(\theta_r) then unify([Y \to \theta_r]C') \circ [Y \to \theta_r] else if \theta_r == Y and Y \notin FV(\theta_l) then unify([Y \to \theta_l]C') \circ [Y \to \theta_l] else if \theta_l == f(\theta_l^1, ..., \theta_l^n) and \theta_r == f(\theta_r^1, ..., \theta_r^n) then unify(C' \cup {\theta_l^1 = \theta_r^1, ..., \theta_l^n = \theta_r^n}) else fail
```

Intuitiv: - Nimm immer irgendeine Gleichung - schon gleich \Rightarrow ignorieren - eine Seite Variable \Rightarrow substituiere sie durch andere Seite - beide Seiten gleiches, gleichstelliges Wurzelatom \Rightarrow Argumente gleichsetzen

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Resolution

Resolutionsregel:

```
\frac{(\tau_1, \tau_2, \dots, \tau_n; \gamma) \text{ Terme plus Substitution; } \quad \alpha : -\alpha_1, \dots, \alpha_k \text{ eine Regel; } \quad \sigma \text{ mgu von } \alpha \text{ und } \gamma(\tau_1)}{(\alpha_1, \dots, \alpha_k, \tau_2, \dots, \tau_n; \sigma \circ \gamma)}
```

- γ : bisherige Substitution (wird am Ende ausgegeben)
- $P \vdash \dots$ heißt herleitbar/abarbeitbar durch logisches Programm P
- $P \vDash \dots$ heißt logische Konsequenz logisches Programm P
- Resolutions regel ist korrekt: $P \vdash \tau_1, \dots, \tau_n \Rightarrow P \vDash \tau_1, \dots, \tau_n$
- Resolutionsregel ist vollständig: $P \vDash \tau_1, \dots, \tau_n \Rightarrow P \vdash \tau_1, \dots, \tau_n$
- Prolog ist korrekt, aber nicht vollständig (wegen deterministischer Regelwahl)

Lambda Calculus

General stuff

- Function application is left associative λx . $f(x)y = \lambda x$. ((f(x))y)
- untyped lambda calculus is turing complete

Common Functions

- let $x = t_1$ in t_2 wird zu $(\lambda x. t_2) t_1$
- Rekursion: $Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$

Church Numbers

- $c_0 = \lambda s. \lambda z. z$
- $c_1 = \lambda s. \lambda z. s z$
- $c_2 = \lambda s. \lambda z. s (s z)$
- $c_3 = \lambda s. \lambda z. s (s (s z))$
- etc...
- Successor Function
 - $succ c_2 = c_3$
 - $succ = \lambda n. \, \lambda s. \, \lambda z. \, s \, (n \, s \, z)$
 - pred
- Arithmetic Operations
 - $plus = \lambda m. \lambda n. \lambda s. \lambda z. m \ s \ (n \ s \ z)$
 - $-minus = \lambda m. \lambda n. npredm$
 - $-times = \lambda m. \lambda n. \lambda s. n \ (m \ s)$
 - $-exp = \lambda m. \lambda n. n m$
- $isZero = \lambda n. n \ (\lambda x. c_{false}) \ c_{true}$

Boolean Values

- $c_{true} = \lambda t. \lambda f. t$
- $c_{false} = \lambda t. \ \lambda f. f$
- $not = \lambda a. a \ c_{false} \ c_{true}$
- $and = \lambda a. \lambda b. a b a$
- $or = \lambda a. \lambda b. a \ a \ b$
- $xor = \lambda a. \lambda b. a (not b) b$
- $if = \lambda a. \lambda then. \lambda else. a then else$

Equivalences

α -equivalence (Renaming)

Two terms t_1 and t_2 are α -equivalent $t_1 \stackrel{\alpha}{=} t_2$ if t_1 and t_2 can be transformed into each other just by consistent (no collision) renaming of the bound variables. Example: $\lambda x.x \stackrel{\alpha}{=} \lambda y.y$

η -equivalence (End Parameters)

Two terms $\lambda x.f$ x and f are η -equivalent $\lambda x.f$ $x \stackrel{\eta}{=} f$ if x is not a free variable of f. Example: $\lambda x.f$ a b $x \stackrel{\eta}{=} f$ a b

Reductions

β -reduction

A λ -term of the shape $(\lambda x. t_1)$ t_2 is called a Redex. The β -reduction is the evaluation of a function application on a redex. (Don't forget to add parenthesis!)

$$(\lambda x. t_1) t_2 \Rightarrow t_1 [x \mapsto t_2]$$

A term that can no longer be reduced is called **Normal Form**. The Normal Form is unique. Terms that don't get reduced to Normal Form most often diverge (grow infinitely large). Example: $(\lambda x. x. x) (\lambda x. x. x)$

Full β -Reduction: Every Redex can be reduced at any time.

Normal Order: The leftmost Redex gets reduced.

Call by Name (CBN): Reduce the leftmost Redex *if* not surrounded by a lambda. Example:

$$(\lambda y. \ (\lambda x. \ y \ (\lambda z. \ z) \ x)) \ ((\lambda x. \ x) \ (\lambda y. \ y))$$

$$\Rightarrow (\lambda x. \ ((\lambda x. \ x) \ (\lambda y. \ y)) \ (\lambda z. \ z) \ x) \Rightarrow$$

Call by Value (CBV): Reduce the leftmost Redex that is not surrounded by a lambda and whose argument is a value. A value is a term that can not be further reduced. Example:

$$(\lambda y. (\lambda x. y (\lambda z. z) x)) ((\lambda x. x) (\lambda y. y))$$

$$\Rightarrow (\lambda y. (\lambda x. y (\lambda z. z) x)) (\lambda y. y)$$

$$\Rightarrow (\lambda x. (\lambda y. y) (\lambda z. z) x) \Rightarrow$$

Call by Name and Call by Value may not reduce to the Normal Form! Call by Name terminates more often than Call by Value.

Church-Rosser

The untyped λ is confluent: If $t \stackrel{*}{\Rightarrow} t_1$ and $t \stackrel{*}{\Rightarrow} t_2$ then there exists a t' with $t_1 \stackrel{*}{\Rightarrow} t'$ and $t_2 \stackrel{*}{\Rightarrow} t'$.

Recursion

Rekursive Funktion = Fixpunkt des Funktionals

 $Y = \lambda f.(\lambda x. f(x x))(\lambda x. f(x x))$ is called the recursion operator. Y G is the fixpoint of G.

Typen

Regelsysteme

- Term ψ herleitbar: " $\vdash \psi$ "
- Frege'scher Schlussstrich: aus dem über dem Strich kann man das unter dem Strich herleiten
- Prädikatenlogik erster Stufe:

$$\text{AI} \, \frac{\vdash \psi \quad \vdash \varphi}{\vdash \psi \, \text{A} \, \varphi} \quad \text{AE}_1 \, \frac{\vdash \psi \, \text{A} \, \varphi}{\vdash \psi} \quad \text{AE}_2 \, \frac{\vdash \psi \, \text{A} \, \varphi}{\vdash \varphi}$$

$$\forall \mathsf{E} \ \frac{\vdash \forall x \,. \ \varphi}{\vdash \varphi[x \mapsto \psi]} \quad \forall \mathsf{I} \ \frac{\vdash \varphi[x \mapsto c] \qquad \mathsf{Variable} \ c \ \mathsf{kommt} \ \mathsf{nicht} \ \mathsf{in} \ \varphi \ \mathsf{vor}}{\vdash \forall x \,. \ \varphi}$$

$$\mathsf{MP} \xrightarrow{\vdash \psi \Rightarrow \varphi} \xrightarrow{\vdash \psi} \mathsf{LEM} \xrightarrow{\vdash \varphi \vee \neg \varphi}$$

- Beweiskontext: $\Gamma \vdash \phi$
 - $-\phi$ unter Annahme von Γ herleitbar
 - Erleichtert Herleitung von $\phi \Rightarrow \psi$
 - Assumption Introduktion $\Gamma_{\phi} \vdash \phi$

Typsysteme

- Einfache Typisierung
 - $-\vdash (\lambda x. 2): bool \rightarrow int$
 - $-\vdash (\lambda x. 2): int \rightarrow int$
 - $\vdash (\lambda f. 2) : (int \rightarrow int) \rightarrow int$
- Polymorphe Typen
 - $\vdash (\lambda x. 2) : \alpha \to int \ (\alpha \text{ ist implizit all quantifizient})$
- Nicht alle sicheren Programme sind typisierbar
 - Typisierbare λ -Terme (ohne **define**) haben Normalform \Rightarrow terminieren \Rightarrow sind nicht turing-mächtig
 - Typsystem nicht vollständig bzgl. β -Reduktion
 - * insb. Selbstapplikation im Allgemeinen nicht typisierbar
 - * damit auch nicht Y-Kombinator

Regeln

- " $\Gamma \vdash t : \tau$ ": im Typkontext Γ hat Term t den Typ τ
- Γ ordnet freien Variablen xihren Typ $\Gamma(x)$ zu

CONST
$$\frac{c \in Const}{\Gamma \vdash c : \tau_c}$$
 ABS $\frac{\Gamma, x : \tau_1 \vdash t : \tau_2}{\Gamma \vdash \lambda x . t : \tau_1 \to \tau_2}$

$$VAR \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} APP \frac{\Gamma \vdash t_1 : \tau_2 \to \tau \quad \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash t_1 t_2 : \tau}$$

Constraints:

Typschema

- " $\forall \alpha_1 \dots \forall \alpha_n \tau$ " heißt Typschema (Kürzel ϕ) – Es bindet freie Typvariablen $\alpha_1, \ldots, \alpha_n$ in τ
- Var-Regel muss angepasst werden:

VAR
$$\frac{\Gamma(x) = \phi \quad \phi \succeq \tau}{\Gamma \vdash x : \tau}$$

• Neu:

LET
$$\frac{\Gamma \vdash t_1 : \tau_1 \quad \Gamma, x : ta(\tau_1, \Gamma) \vdash t_2 : \tau_2}{\Gamma \vdash \mathbf{let} \ x = t_1 \ \mathbf{in} \ t_2 : \tau_2}$$

- $ta(\tau, \Gamma)$: Typabstraktion
 - Alle freien Typvariablen von τ , die nicht frei in Typannahmen von Γ vorkommen, werden allquantifiziert; also alle "wirklich unbekannten" (auch global)

Typinferenz

Gegeben: Term t und Typannahmen Γ Gesucht: Lösung (σ, τ) , sodass $\sigma\Gamma \vdash t : \tau$

- 1. Erstelle Herleitungsbaum anhand syntaktischer Struktur und Typisierungsregeln; dabei:
 - verwende zunächst überall rechts von : frische Typvariablen α_i
 - extrahiere Gleichungssystem C für die α_i gemäß Regeln
- 2. Bestimme mgu σ von C
- 3. Lösung: $(\sigma, \sigma(\alpha_1))$, wobei α_1 erste Typvariablen für t

Bei Let:

- 1. Sammle Gleichungen aus linkem Teilbaum in C_{let}
- 2. Berechne mgu σ_{let} von C_{let}
- 3. $\Gamma' := \sigma_{let}(\Gamma), x : ta(\sigma_{let}(\alpha_i), \sigma_{let}(\Gamma))$
- 4. Benutze Γ' im rechten Teilbaum

Parallelprogrammierung

Uniform Memory access (UMA): .

Parallelismus: Mindestens zwei Prozesse laufen gleichzeitig.

Concurrency: Mindestens zwei Prozesse machen Fortschritt.

Speedup: $S(n) = \frac{T(1)}{T(n)} = \frac{\text{execution time if processed by 1 processor execution time if processed by n processors}}{\text{execution time if processed by n processors}}$

Amdahls' Law: $S(n) = \frac{1}{(1-p)+\frac{p}{n}}$ with p = parallelizable percentage of program

Data Parallelism: Die gleiche Aufgabe wird parallel auf unterschiedlichen Daten ausgeführt.

Task Parallelism: Unterschiedliche Aufgaben werden auf den gleichen Daten ausgeführt.

Flynn's Taxonomy

Name	Beschreibung	Beispiel
SISD SIMD	a single instruction stream operates on a single memory one instruction is applied on homogeneous data (e.g. an	von Neumann Architektur vector processors of early
MIMD MISD	array) different processors operate on different data multiple instructions are executed simultaneously on the same data	supercomputer multi-core processors redundant architectures, Pipelines

C/C++

Deklaration vor Verwendung (insbesondere bei Hilfsfunktionen!). Deklaration != Definition.

```
// Arrays vs Pointers
int arr[] = { 45, 67, 89 };
int *p;
p = arr; // p is assigned the address of the first element of arr
p = &arr[0]; // same effect as above
// p and arr are almost always interchangeable, except when using with extern and lying in one declaration
int matrix[4][4];

// always fetch from main memory; no registers, no optimization
volatile int x;
```

MPI

Meta

```
// default communicator, i.e. the collection of all processes
MPI_Comm MPI_COMM_WORLD;

// get the number of processing nodes
int MPI_Comm_size(MPI_Comm comm, int *size);

// get the rank for the processing node, root node has rank 0
int MPI_Comm_rank(MPI_Comm comm, int *rank);

// initializes MPI
int MPI_Init(int *argc, char ***argv);

// usage in main:
MPI_Init(&argc, &args);

// Cleans up MPI (called in the end)
int MPI_Finalize();

// blocks until all processes have called it
int MPI_Barrier(MPI_Comm comm);
```

Main Operations

```
// send communication modes
MPI_Send(); // standard: implementation dependent (maybe heuristic optimizing)
MPI_Bsend(); // buffered: forced buffering, no synchronization
MPI_Ssend(); // synchronous: no buffer, forced synchronization (both sides wait for each other)
MPI_Rsend(); // ready: no buffer, no synchronization -> matching receive must already be initiated
// only one receive mode -> matches all sends
// parameters are the same for all communication modes:
int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm);
                                     MPI INT, MPI LONG LONG INT, MPI CHAR // data types
int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
              int source, int tag, MPI_Comm comm, MPI_Status *status);
                                        // wildcards
         MPI_ANY_SOURCE MPI_ANY_TAG
// simultaneous send and receive
int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype, int dest, int sendtag,
                  void *recvbuf, int recvcount, MPI_Datatype recvtype, int source, int recvtag,
                  MPI_Comm comm, MPI_Status *status)
// use the same buffer for send and receive (in a OUT-IN fashion)
int MPI_Sendrecv_replace(void *buf, int count, MPI_Datatype datatype, int dest, int sendtag,
                           int source, int recvtag,
                          MPI_Comm comm, MPI_Status *status)
// blocking operations block until the buffer can be (re)used
// orthogonally, all operations have a non-blocking/immediate counterpart:
int MPI_Isend(void *buf, int count, MPI_Datatype datatype, int dest, int tag,
              MPI Comm comm, MPI Request* request);
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
              MPI_Comm comm, MPI_Request* request);
// send and receive operations can be checked for completion (flag == 1 iff completed)
int MPI_Test(MPI_Request* r, int* flag, MPI_Status* s);
// blocking check
int MPI_Wait(MPI_Request* r, MPI_Status* s);
There is no global order on communication events, but events within the same sender-receiver pair stay in order.
Collective Operations
count-Parameters are always per processor! \Rightarrow usually: sendcount = recvcount.
int MPI_Bcast(void* buffer, int count, MPI_Datatype t, int root, MPI_Comm comm);
                                     \begin{bmatrix} A_0 & A_1 & A_2 \\ & & A_1 & A_2 \end{bmatrix} \xrightarrow{Broadcast} \begin{bmatrix} A_0 & A_1 & A_2 \\ A_0 & A_1 & A_2 \\ A_0 & A_1 & A_2 \end{bmatrix}
int MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype sendtype,
                 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)
int MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype sendtype,
                void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)
```

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Scatterv(void* sendbuf, int* sendcounts, int* displacements, MPI_Datatype sendtype,

sendcounts[i] = how many elements to send to proc i

displacements[i] = first element to send to proc i (no overlap allowed, but gaps)

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ & & \\ & & \end{bmatrix} \underset{gather}{\overset{scatter}{\rightleftharpoons}} \begin{bmatrix} A_0 \\ A_1 \\ A_2 \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ B_0 \\ C_0 \end{bmatrix} \xrightarrow{Allgather} \begin{bmatrix} A_0 & B_0 & C_0 \\ A_0 & B_0 & C_0 \\ A_0 & B_0 & C_0 \end{bmatrix}$$

(like matrix transposing, sendcount = recvcount = size of one cell of the matrix = usually 1)

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ B_0 & B_1 & B_2 \\ C_0 & C_1 & C_2 \end{bmatrix} \xrightarrow{Alltoall} \begin{bmatrix} A_0 & B_0 & C_0 \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{bmatrix}$$

op can be:

- Logical: MPI LAND, MPI BAND, MPI LOR, MPI BOR, ...
- Arithmetic: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, ...
- Arg (get causing rank): MPI_MINLOC, MPI_MAXLOC

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ B_0 & B_1 & B_2 \\ C_0 & C_1 & C_2 \end{bmatrix} \xrightarrow{All reduce} \begin{bmatrix} A_0 + B_0 + C_0 & A_1 + B_1 + C_1 & A_2 + B_2 + C_2 \\ A_0 + B_0 + C_0 & A_1 + B_1 + C_1 & A_2 + B_2 + C_2 \\ A_0 + B_0 + C_0 & A_1 + B_1 + C_1 & A_2 + B_2 + C_2 \end{bmatrix}$$

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ B_0 & B_1 & B_2 \\ C_0 & C_1 & C_2 \end{bmatrix} \xrightarrow{Reduce-scatter} \begin{bmatrix} A_0 + B_0 + C_0 \\ A_1 + B_1 + C_1 \\ A_2 + B_2 + C_2 \end{bmatrix}$$

$$\begin{bmatrix} A_0 & A_1 & A_2 \\ B_0 & B_1 & B_2 \\ C_0 & C_1 & C_2 \end{bmatrix} \xrightarrow{Scan} \begin{bmatrix} A_0 & A_1 & A_2 \\ A_0 + B_0 & A_1 + B_1 & A_2 + B_2 \\ A_0 + B_0 + C_0 & A_1 + B_1 + C_1 & A_2 + B_2 + C_2 \end{bmatrix}$$

Java

Functional programming

```
@FunctionalInterface
interface Predicate {
    boolean check(int value);
}

method reference to static function
SomeClass::staticFunction;
// method reference to object function
someObject::function;
```

Streams

```
Use Collection.stream() or Collection.parallelStream() to obtain a stream.
Methods: filter, map, mapToInt, reduce, findAny, findFirst, min, max, average, limit, skip, distinct, sorted, toList
personsInAuditorum.stream().collect(
    () -> 0, // supplier of neutral value
    (currentSum, person) -> { currentSum += person.getAge(); } // accumulator of acc and elem
    (leftSum, rightSum) -> { leftSum += rightSum; } // combiner of multiple accs (for parallel)
);
```

// lambda

Multithreading

Race conditions

A race condition exists if the order in which threads execute their operations influences the result of the program. Are precluded by synchronization and by atomicity.

Mutual Exclusion

A code section that only one thread is allowed to execute at a time is called a critical section. If one thread executes operations of a critical section, other threads will be blocked if they want to enter it as well. \Rightarrow only one thread per monitor is allowed to be in the section, but it may be multiple times (recursion). Test using Thread.holdsLock(Object obj).

Deadlock

A deadlock can occur iff all Coffman conditions hold:

- Mutual exclusion: unshareable resources (given in Java)
- Hold and wait: a thread holds a resrouce and requests access to another one
- No preemption: resources can only be released by their holder (given in Java)
- Circular wait: circular dependency between thread that all hold and request a resource

wait and notify

```
// put this thread to sleep (always use in while loop!)
public final void wait() throws InterruptedException;
// put this thread to sleep, be ready again in timeout milliseconds
public final void wait(long timeout) throws InterruptedException;
// make ANY other sleeping thread ready (never use!)
public final void notify();
// make ALL other sleeping threads ready
public final void notifyAll();
// interrupt thread (signal is not lost, if it is not currently waiting)
Thread t;
t.interrupt();
// make sure to catch InterruptedException and cease work in that thread!
```

Happens-before Relation

If t1 "happens before" t2, it is guaranteed that potential side effects of t1 are visible to t2. This is a partial order and thus transitive!

Rules that create "happens-before"-relationship:

- same thread + data dependency
- statements in parent thread before Thread.start -> statements in the thread
- statements in the thread -> statements in the parent thread after Thread.join
- between synchronized blocks of the same monitor
- write to a volatile variable -> every subsequent read to that variable

volatile

- ensures that changes to variables are immediately visible // declare a volatile variable to all threads/processors
 volatile int c = 420;
- establishes a happens-before relationship
- values are not locally cached in a CPU cache
- no optimization by compiler

Executors

- Executors abstract from thread creation
- provide method execute that runs a Runnable in a thread according to strategy
- ExecutorService is an interface that provides further lifecycle management logic (e.g. Futures):

```
ExecutorService executor = Executors.newCachedThreadPool(); // OR
ExecutorService executor = Executors.newFixedThreadPool(4);
Callable<Integer> myCallable = () -> { return 42; };
Future<Integer> myFuture = executor.submit(myCallable);
int x = myFuture.get();
int x = myFuture.get(1, TimeUnit.SECONDS); // may throw TimeoutException
CompletableFuture<Integer> cFuture = CompletableFuture.supplyAsync(() -> ...);
CompletableFuture<...> transformed = cFuture.thenApply((Integer res) -> ...).thenApply(...);
```

Atomic

Atomic operations are either executed completely or not at all.

Atomic operations:

• reads and writes of reference variables

• reads and writes of 32-bit primitives

• reads and writes of all variables using volatile

• NOT: i++, x=y+1

• Class AtomicInteger {

int get()

int incrementAndGet()

boolean compareAndSet(int oldValue, int newValue)

// more like tryReplace, result iff successful

}

Design by Contract

Form of a Hoare triple $\{P\}$ C $\{Q\}$

- P: precondition \rightarrow specification what the supplier can expect from the client
- C: series of statements \rightarrow the method of body
- Q: postcondition → specification of what the client can expect from the supplier if the precondition is fulfilled
- Non-Redundancy-Principle: the body of a routine shall not test for the routine's precondition
- Precondition Availability: precondition should be understandable by every client
- Assertion Violation Rule: a runtime assertion violation is the manifestation of a bug in the software
- Liskov Substitution Principle
 - Along specialization: guarantees may strengthen, requirements may weaken
 - Precondition $_{Super} \Rightarrow \mathtt{Precondition}_{Sub}$, Postcondition $_{Sub} \Rightarrow \mathtt{Postcondition}_{Super}$, Invariants $_{Sub} \Rightarrow \mathtt{Invariants}_{Super}$

```
class Stack {
    //@ invariant size >= 0
    /*@ requires size > 0;
    @ ensures size == \old(size) - 1;
    @ ensures \result == \old(top());
    @ ensures (\forall int i; 0 <= i && i < size; \old(elements[i]) == elements[i]);
    @ assignable size; // redundant
    @ signals (IllegalOperationException ioEx) size == 0; // redundant
    @*/
    Object pop() { ... }

    // also: ==>, <==>, <=!=>, \exists, @ pure
    /*@ nullable @*/ /*@ pure @*/ Object top() { ... }
}
```

Compiler

- Lexikalische Analyse (Lexing)
 - Eingabe: Sequenz von Zeichen
 - Aufgaben:
 - * erkenne Tokens = bedeutungstragende Zeichengruppen
 - * überspringe unwichtige Zeichen (Whitespace, Kommentare)
 - * Bezeichner identifizieren und zusammenfassen in Stringtabelle
 - Ausgabe: Sequenz von Tokens und Stringtabelle
- Syntaktische Analyse (Parsing)
 - Eingabe: Sequenz von Tokens
 - Aufgaben:
 - * überprüfe, ob Eingabe zu kontextfreier Sprache gehört
 - * erkenne hierarchische Struktur der Eingabe
 - Ausgabe: Abstrakter Syntaxbaum (AST)

• Semantische Analyse

- Eingabe: Syntaxbaum
- Aufgaben: kontextsensitive Analyse (syntaktische Analyse ist kontextfrei)
 - * Namensanalyse: Beziehung zwischen Deklaration und Verwendung
 - * Typanalyse: Bestimme und prüfe Typen von Variablen, Funktionen, ...
 - * Konsistenzprüfung: Alle Einschränkungen der Programmiersprache eingehalten
- Ausgabe: attributierter Syntaxbaum (Pfeile von Verwendung zu Definition)
- Ungültige Programme werden spätestens in Semantischer Analyse abgelehnt

• Zwischencodegenerierung, Optimierung

• Codegenerierung

- Eingabe: Attributierter Syntaxbaum oder Zwischen-
- Aufgaben: Erzeuge Code für Zielmaschine (Maschinenbefehle wählen, Scheduling, Registerallokation, Nachoptimierung)
- Ausgabe: Program in Assembler oder Maschinencode

Grammatiken

Eigenschaften

Links- / Rechtsableitung: linkestes / rechtestes Nichtterminal wird zuerst weiterverarbeitet

Links- / rechtsrekursiv: Rekursion nur am linken / rechten Ende von rechter Seite von Produktionen

Eindeutig: für jedes Wort existiert nur eine Ableitungsbaum

Konkreter Syntaxbaum (CST) = Ableitungsbaum (jedes Zeichen ein eigener Knoten, alle Terminale sind Blätter)

Konstruktion

- Operator precedence: Ein Nichtterminal pro Level, schwächer bindende bilden auf stärker bindende ab, Klammern am Ende Bsp: $P = \{E \to T, T \to F, T \to T * F, E \to E + T, F \to id, F \to (E)\}$
- Linksassoziativ durch Linksrekursion: $E \to E + T$, Rechtsassoziativ durch Rechtsrekursion: $E \to T + E$
- Nicht zweimal das gleiche Nichtterminal in einem Ersetzungsstring
- Linksfaktorisierung: gleiche Präfixe von auslagern ⇒ rechte Seiten zu einem Nichtterminal präfixfrei

Parsing

- LL: Parser liest einmal von Links nach rechts und baut Linksableitung auf (top-down, recursive decent)
- LR: Parser liest einmal von Links nach rechts und baut Rinksableitung auf (bottom-up)
- SLL(k) / SLR(k): vorherige Zeichen nicht relevant, k langer Lookahead

```
Für \chi \in (\Sigma \cup V)^*:
```

First_k(χ) = { $\beta \mid \exists \tau \in \Sigma^* : \chi \Rightarrow^* \tau \land \beta = \tau[..k]$ } = k-Anfänge der Strings, die aus χ generiert werden können Follow_k = { $\beta \mid \exists \alpha, \omega \in (\Sigma \cup V)^*$ mit $S \Rightarrow^* \alpha \chi \omega \land \beta \in \text{First}_k(\omega)$ } = k-Anfänge der Strings, die **hinter** χ generiert werden können

- Kontextfreie Grammatik ist $\mathrm{SLL}(k)$ gdw. für alle Produktionen eines Nichtterminals $A \to \alpha$ die Mengen $\mathrm{First}_k(\alpha\mathrm{Follow}_k(A))$ (Indizmengen) unterschiedlich sind.
 - $-k = 1, \alpha \not\Rightarrow^* \varepsilon, \beta \not\Rightarrow^* \varepsilon$: genügt, wenn $\operatorname{First}(\alpha) \cap \operatorname{First}(\beta) = \emptyset$ $-k = 1, \alpha \Rightarrow^* \varepsilon, \beta \not\Rightarrow^* \varepsilon$: genügt, wenn $\operatorname{Follow}(A) \cap \operatorname{First}(\beta) = \emptyset$
- Linksrekursive kontextfreie Grammatiken sind für kein k SLL(k).
- Für jede kontextfreie Grammatik G mit linksrekursiven Produktionen gibt es eine kontextfreie Grammatik G' ohne Linksrekursion mit L(G) = L(G')
- Nutze $\{T \to F \mid T * F\} \leadsto \{T \to F \; TList, \; TList \to \varepsilon \mid * \; F \; TList\}$ und Linksfaktorisierung

Recursive Decent

Eine parse-Funktion pro Nichtterminal, konsumieren ihren Teil Expr parseTList(Expr left) { $// T \rightarrow F([*/]F)*$ der Eingabe. Erzeugt automatisch Linksableitung.

```
void main() {
  lexer.lex(); // lexer.current ist nun das 1. Token
  Expr ast = parseE(); // E ist das Startsymbol
void expect(TokenType e) {
  if (lexer.current == e) lexer.lex();
  else error("Expected ", e,
             " but got ", lexer.current);
}
Expr parseF() {
  if (lexer.current==TokenType.ID) { // F -> id
    expect(TokenType.ID) // only consume if in grammar
  } else { // F \rightarrow (E)
    expect(TokenType.LP);
    Expr res = parseE();
                                                          }
    expect(TokenType.RP);
    return res
  }
}
```

Java Bytecode

return new Test();

Examples Arithmetic

}

```
void calc(int x, int y) {
  int z = 4;
  z = y * z + x;
}
Object Creation

class Test {
  Test foo() {
```

```
Expr res = left;
  switch (lexer.current) {
   case STAR: // TLIST -> * F TList
      expect(TokenType.STAR);
     res = new Mult(res, parseF());
     return parseTList(res);
   case SLASH: // TList -> / F TList
      expect(TokenType.SLASH);
     res = new Div(res, parseF());
     return parseTList(res);
   case PLUS: case MINUS: case R PAREN: case EOF:
      // TList -> epsilon
     return res;
   default:
      error("Expected one of */+-)# but got ",
            lexer.current);
      return null;
// Endrekursion kann man zu while-Schleife ausrollen
// Rest analog
```

```
iload_2
iload_3
imul
iload_1
iadd
istore_1

Test();
    aload_0
    invokespecial #1;
    return

Test foo();
    new #2;
    dup
    invokespecial #3;
    areturn
```

iconst_4 istore_3

```
Fields
                                                       setNull();
                                                         aload 0; Parameter 0 (this) auf Stack
class Foo {
                                                         aconst null ; null auf den Stack
  public Bar field;
                                                         putfield Foo.field:LBar; ; Schreibe Wert (null)
 public void setNull() {
                                                         ; in Feld Foo.field von Objekt (this)
    field = null;
                                                         return
}
Loops
while-Loop: loop:, condition, conditional jump to afterLoop, body, goto loop, afterLoop:
if-Loop: condition, conditional jump to them, goto else, then, goto afterIf, else, afterIf: (shortcircuiting!)
Method Call
                                                       aload_0 ; load this
                                                       bipush 42 ; load aruments
                                                       invokevirtual #2
foo(42)
                                                       ; return value is on stack
General
; types are labeled by their first letter
int, long, short, byte=boolean, char, float, double, a -> reference
; always push left argument first and then right argument!
; load constants on the stack
                                                       ; Arithmetic
aconst_null ; null object
                                                       iinc i const ; increment int variable i by const
dconst_0, donst_1; double value 0/1
                                                       iadd; Integer addition
fconst_0, fconst_1, fconst_2; float value 0/1/2
                                                       isub ; Integer subtraction (secondtop - top)
iconst_0 ... iconst_5 ; integer values 0 .. 5
                                                       imul ; Integer multiplication
iconst_m1; integer value -1
                                                       idiv ; Integer division (secondtop / top)
                                                       irem ; Integer modulo (secondtop % top)
; push immediates
                                                       ineg; negate int
bipush i ; push signed byte i on the stack
                                                       ishl ; shift left (secondtop >> top)
sipush i ; push signed short i on the stack
                                                       ishr ; shift right (secondtop << top)</pre>
; load/store variable with index i of type X
                                                       ; Logic (i in [i, l])
Xload_i ; for i in [0, 3] to save a few bytes
                                                       iand ; Bitwise and
Xload i ; load local variable i (is a number)
                                                       ior ; Bitwise or
Xstore i ; store local variable i
                                                       ixor ; Bitwise or
; Methods
                                                       ; Method calls. Stack: [objref, arg1, arg2] <-
invokevirtual #2; call function, #2 -> Konstantenpool invokevirtual #desc ; call method specified in desc
                                                       invokespecial #desc ; call constructor
return ; return void
                                                       invokeinterface #desc ; call method on interface
Xreturn; return value of type X
                                                       invokestatic #desc ; call static method (no objref)
; Jumps
goto label; unconditionally jump to label
                                                       ; Misc
                                                       nop ; No operation
; 2-conditional: pop and look (secondtop ? top)
; for ints:
                                                       ; Arrays
if_icmpeq, if_icmpne
                                                       newarray T ; new array of type T
                                                       Xaload ; load type X from array [arr, index] -> [value]
if_icmpge, if_icmpgt, if_icmple, if_icmplt
                                                       Xastore ; store type X in array [arr, index, val] -> []
if_acmpeq label ; jump if refs are equal
if\_acmpne label ; jump if refs are different
                                                       arraylength; length of array
; 1-conditional: pop and look at top
: ints:
ifeq, ifge, ifgt, iflt, ifle, ifne
ifnull label; jump if reference is null
ifnonnull label; jump if reference is not null
```

Learnings aus Altklausuren

- Allgemein
 - Beispiele anschauen, insbesondere für Edgecases/Ausgabeformate
 - Haskell fehleranfällig und zeitaufwändig -> zuletzt machen
 - Laberaufgabe -> auf jeden Fall mal in CheatSheet schauen!
 - Am Ende
 - * schauen, dass alle Teilaufgaben bearbeitet
 - * Alle gegebenen Funktionen benutzt? (kann schon passieren, dass nicht benötigt, aber dann sei dir sicher)

Haskell

- Vorsicht bei unendlichen Listen: length divergiert
- Enums: Typ vs Variante beachten (Variante ist meist nett kurz benannt)
- Maybe: Just und Nothing nicht vergessen!
- nicht first, sondern fst oder head
- case ... of ... ist häufig schöner als guard oder helper
- Lieber mehr Klammern als weniger oder \$
- List comprehension loopt über letzten Generator zuinnerst
- Bei Strings in Array auf genug Schachtelung achten
- schneller check: alle Eingaben der Funktion verwendet?

Prolog

- Pattern Matching vollständig?
- Reihenfolge der Teilziele am besten in der Reihenfolge, in der du es berechnen würdest (sicherer)
- es gibt viel, das sich einfach mit member oder append ausdrücken lässt

• Lamda-Kalkül

- Betareduktionen: abwechselnd einsetzen und ableiten, Klammern in extra Schritt erst weglassen (zeigen, dass keine Stringsubstitution)
- Variablen in Typen sind implizit all quantifizeirt (insb. in "allgemeinster Typ"), Quantoren sind in Typschemata und die sind nur in Γ
- Bei VAR oben keine neue Variable einführen sondern wirklich auswerten

Parallelismus

- Wenn Synchronisationsbedarf gefordert ist, dann schreib Synchronisationsbedarf hin!
- Wenn du Begriffe verwenden "kannst", dann verwende Begriffe (z.B. Ursprungsindex)

• MPI

- counts sind immer pro Prozessor
- Java Multithreading
 - Synchronization verhindert Race Conditions
 - Race Condition ist dann wenn wirklich "gleichzeitig" auf einen Resource zugegriffen wird
 - * Für Beispielablauf: Lasse A bis nach einem Check laufen, Lasse B durchlaufen, Lasse A fertig laufen -> Sideeffekt von A überschreibt B
 - Gucken: wann wird get auf Futuers aufgerufen?
 - Meist reicht eine volatile variable, da happens-before transitiv ist

• Parser

- gegebene Funktionen nur in ihrem Definitionsbereich aufrufen
- Indizmenge = First(alpha Follow)
- Beim übernehmen von EOF in Indizmengen aufpassen!
- in case muss nicht immer das gematchte Token konsumiert werden. Nur wenn es in dieser Produktion selbst vorkommt
- Grammatik-Ableitungsschritte angeben = \Rightarrow -Kette

• Java Bytecode

- iload i statt iload_i verwenden
- Bei Java angeben
 - * Am Bytecode Abschnitte markieren, Variablennamen überall hinschreiben, Terme zusammenfassen
 - * Klasse drumrum packen
 - * wir können eigentlich nur while-Schleifen und keine for-Schleifen