Lecture 7: Approximation by Neural Networks

Pr. Ismail Merabet

Univ. of K-M-Ouargla

December 8, 2024

Contents

- Introduction
- 2 What is an artificial neural networks?
- Some functional analysis theorems
- 4 Universal approximation theorem
- 5 Error estimate for the approximation of continuous functions

Introduction

The approximation of continuous functions is a cornerstone of mathematical analysis and computational science, with applications spanning from numerical modeling of many real problems.

Neural networks (NNs) have emerged as a powerful tool for approximating continuous functions, thanks to their flexibility, generalization capabilities, and universal approximation properties.

A foundational result is: the Universal Approximation Theorem¹, which states that a feedforward neural network with:

- a single hidden layer,
- equipped with a non-linear activation function ²,

can approximate any continuous function on a compact domain to arbitrary precision, provided the network has a sufficient number of neurons.

¹Cybenko 89

²such as the sigmoid or ReLU

What is an artificial neural networks?

Figure: Artificial Neural Networks

What is an artificial neural networks?

Figure: Natural Neuron

Figure: An artificial neuron

Definition

 σ is called the activation function.

Decision Making: Hiring based on experience

 σ is the Heaviside function

$$H(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 & \text{if } x > 0 \end{cases} \tag{1}$$

Here x = Experience (years): The condition: if the candidate has more than 3 years of experience then say yes.

$$H(x-3) = \begin{cases} 0 & \text{if } x \le 3 \quad \text{(No)} \\ 1 & \text{if } x > 3 \quad \text{(Yes)} \end{cases}$$
 (2)

Figure: artificial neural network

Hiring based on experience and education level

Now x_1 = experience and x_2 = education level.

$$\sigma(w \cdot x + b), \quad x = (x_1, x_2), \quad w = (w_1, w_2)$$

Table:

Candidate	years	degree	score	decision
1	3	Phd (4)	6	Yes
2	6	Master (2)	5	Yes
3	4	Bachelor (1)	1	Yes
4	1	Master (2)	0	No

Figure: artificial neural network. $(w_1, w_2, b) = (1, 2, -5)$

Hiring with salary based on experience and education level

$$ReLU(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$$
 (3)

Table:

Candidate	years	degree	salary
1	3	Phd (4)	120000
2	6	Master (2)	10000
3	4	Bachelor (1)	20000
4	1	Master (2)	0

Figure:
$$\sigma = ReLU$$
, $W^0 = (1, 2)$, $b^0 = -5$, $W^1 = 20000$

Some functional analysis theorems

Theorem. Han-Banach: Normed Spaces Version

Let X be a normed vector space, and $Y\subseteq X$ a subspace. If $f:Y\to\mathbb{R}$ is a bounded linear functional, then there exists an extension $F:X\to\mathbb{R}$ such that F is also a bounded linear functional and

$$||F|| = ||f||.$$

Theorem. Riesz Representation theorem

Let H be a Hilbert space, and let F be a bounded linear functional on H. Then there exists a unique vector $u \in H$ such that

$$F(v) = (u, v), \forall v \in H,$$

where (\cdot, \cdot) is the inner product on H.

Let I_n denote the *n*-dimensional unit cube, $[0,1]^n$.

- The space of continuous functions on I_n is denoted by $C(I_n)$ and we use ||f|| to denote the supremum (or uniform) norm of an $f \in C(I_n)$.
- The space of finite, signed regular Borel measures on I_n is denoted by $M(I_n)$.

The main goal of this section is to investigate conditions under which sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma \left(w_j^{\mathrm{T}} x + b_j \right)$$
 (4)

are dense in $C(I_n)$ with respect to the supremum norm.

Definition

We say that σ is discriminatory if for a measure $\mu \in M(I_n)$

$$\int_{L} \sigma\left(w^{\mathrm{T}}x + b\right) d\mu(x) = 0 \tag{5}$$

for all $w \in \mathbb{R}^n$ and $b \in \mathbb{R}$ implies that $\mu = 0$.

Definition

We say that σ is sigmoidal if

$$\sigma(x) \to \begin{cases} 1 & \text{as} \quad x \to +\infty \\ 0 & \text{as} \quad x \to -\infty \end{cases}$$
 (6)

Figure: Example of a sigmoidal function

Theorem. (Cybenko)

Let σ be any continuous discriminatory function. Then finite sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma \left(w_j^{\mathrm{T}} x + b_j \right)$$
 (7)

are dense in $C(I_n)$.

In other words, given any $f \in C(I_n)$ and $\varepsilon > 0$, there is a sum, G(x), of the above form, for which

$$|G(x) - f(x)| < \varepsilon$$
 for all $x \in I_n$. (8)

Remark

Note that this theorem is the analogue of the Weirstrass theorem seen in Lecture 1 of this cours.

Proof.

Let $S \subset C(I_n)$ be the set of functions of the form G(x) as in (7). Clearly S is a linear subspace of $C(I_n)$.

We claim that the closure of S is all of $C(I_n)$.

Assume that \bar{S} the closure of S is not all of $C(I_n)$. Then \bar{S} , is a closed proper subspace of $C(I_n)$. By the Hahn-Banach theorem, there is a bounded linear functional on $C(I_n)$, call it L, with the property that :

$$L \neq 0$$
 but $L(\bar{S}) = L(S) = 0$.

By the Riesz Representation Theorem, this bounded linear functional, L, is of the form

$$L(h) = \int_{I_n} h(x) d\mu(x) \tag{9}$$

for some $\mu \in M(I_n)$, for all $h \in C(I_n)$, where $M(I_n)$ is the space of finite, signed regular Borel measures on I_n .

In particular, since $\sigma\left(w^{\mathrm{T}}x+b\right)$ is in \bar{S} for all w and b, we must have that

$$\int_{I_n} \sigma\left(w^{\mathrm{T}} x + b\right) d\mu(x) = 0 \tag{10}$$

for all w and b.

However, we assumed that σ was discriminatory so that this condition implies that $\mu=0$ contradicting our assumption. Hence, the subspace S must be dense in $C(I_n)$.

This demonstrates that sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma \left(\mathbf{w}_j^{\top} \mathbf{x} + \mathbf{b}_j \right)$$
 (11)

are dense in $C(I_n)$ providing that σ is continuous and discriminatory.

However, we assumed that σ was discriminatory so that this condition implies that $\mu=0$ contradicting our assumption. Hence, the subspace S must be dense in $C(I_n)$.

This demonstrates that sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma \left(\mathbf{w}_j^{\top} \mathbf{x} + \mathbf{b}_j \right)$$
 (11)

are dense in $C(I_n)$ providing that σ is continuous and discriminatory.

Lemma

Any bounded, measurable sigmoidal function, σ , is discriminatory. In particular, any continuous sigmoidal function is discriminatory.

Error estimate

In this section we consider the degree of approximation of continuous functions by superpositions of a sigmoidal function. We compare these results with the classical Jackson and Bernstein theorems seen in Lecture 2 of this cours.

Let I = [0,1], σ be a sigmoidal function and $f \in C(I)$. We introduce the set of functions of the form

$$V_{\sigma}^{n} := \left\{ v(x) = \alpha_{0} + \sum_{i=1}^{n} \alpha_{i} \sigma \left(w_{i} x + b_{i} \right) : \quad w_{i}, \quad b_{i}, \quad \alpha_{i} \in \mathbb{R} \right\} \quad (12)$$

We define the error of approximation of f from V_{σ}^{n} by

$$E_{n,\sigma}(f) := \operatorname{dist}(f, V_{\sigma}^{n}) = \inf_{g \in V_{\sigma}^{n}} ||f - g||_{\infty}$$
(13)

Theorem

Let σ be a bounded sigmoidal function.

• If f is a continuous function on [0,1], then

$$E_{n,\sigma}(f) \le \|\sigma\|\omega\left(f, \frac{1}{n+1}\right)$$
 (14)

where:

- $\begin{aligned} \bullet & & \|\sigma\| = \sup_{x \in \mathbb{R}} |\sigma(x)| \\ \bullet & & \omega(f, \delta) = \sup \left\{ |f(x) f(y)| : |x y| \leq \delta, \quad x, y \in [0, 1] \right\}. \end{aligned}$
- 2 If f is continuously differentiable on [0,1], then

$$\omega\left(f,\frac{1}{n+1}\right) \leq \frac{1}{n+1} \left\|f'\right\|.$$

