From last time: an nxn matrix A has eigenvector $\vec{v} \in \mathbb{R}^n$ when

(i)
$$A\vec{v} = \frac{\lambda \vec{v}}{\tau}$$
 for some Scalar λ (which may be 0).

corresponding eigenvalue (λ , \vec{v}) form an eigenpair

Q1: Given
$$A = \begin{bmatrix} 7 & -6 \\ 4 & -3 \end{bmatrix}$$
, is

$$(c) \begin{bmatrix} 7 & -6 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 7 \\ 4 \end{bmatrix} + \begin{bmatrix} -6 \\ -3 \end{bmatrix} = \begin{bmatrix} 8 \\ 5 \end{bmatrix} \times$$

(6)
$$\begin{bmatrix} 7 & -6 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix} + \begin{bmatrix} -6 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\sqrt{\begin{bmatrix} 1 \\ 1 \end{bmatrix}} \text{ in an e-vector, } w/\text{ e-val } 1$$

(a)
$$\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 an e-vec of A? No

(b)
$$\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 on e-vec of A? Yes

Friday:
$$A\vec{r} = \lambda \vec{v}$$
 \iff $(A - \lambda I)\vec{v} = \vec{o}$
 $\iff \vec{v} \text{ is in Null } (A - \lambda I)$

For all choices of scalar &, O is in Nall (A-)I).

It's only special values of λ for which Null $(A-\lambda I)$ is nontrivial (i.e. has something more than just \overline{O}). Marker of those λ : $dut(A-\lambda I)=0$

(c) See if
$$dit(A-\lambda I) = 0$$
 when λ is set to Z

$$\left| \begin{bmatrix} 7 & -6 \\ 4 & -3 \end{bmatrix} - Z \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right| = \begin{vmatrix} 5 & -6 \\ 4 & -5 \end{vmatrix} = (5)(-5) - (4)(-6) = -1$$

Math 231, Mon 22-Feb-2021 -- Mon 22-Feb-2021 Differential Equations and Linear Algebra Spring 2020

Monday, February 22nd 2021

Wk 4, Mo

Topic:: Eigenvalues and eigenvectors

Read:: ODELA 1.11-1.12

- Examples: Find eigenpairs for
 - 1. $A = [7/3 \ 4/3; \ 2/3 \ 5/3]$ (from a class example)
 - 2. A = [2 1; 0 3]
 - 3. $A = \begin{bmatrix} -1 & 4; & 2 & -3 \end{bmatrix}$
 - 4. $A = [28\ 100;\ -9\ -32]$ (has repeated e-val with GM < AM) use the terms: eigenspace, basis for eigenspace
 - 5. A = [1 2; 3 4] (has irrational evals)
 - 6. $A = \begin{bmatrix} -1 & 4 & 0; & 2 & -3 & 0; & 1 & 0 & 2 \end{bmatrix}$
- Questions that do not require all the steps we've done
 Is 2 an eigenvalue of [7 -6; 4 -3]? How about 3?
 Is [2; 1] an eigenvector of [7 -6; 4 -3]? How about [1; 1]?
 Given that [1;1;0] is an e-vector of [4 -2 -5; 5 -3 -5; 2 -2 -3], find eval
- Easy to find e-values for triangular matrix
 works for [1 3 0; 0 2 -1; 0 0 5]
 doesn't work for [0 0 1; 0 2 -1; 3 0 5]

More e-vals/evecs

- Examples:

 $A = [1 \ 2; \ 3 \ 4]$ e-vals are $5/2 \pm \sqrt{33}/2$

 $A = [1 \ 3; \ 3 \ 1]$ e-vals are -2, 4

Note: here evecs form orthogonal basis of R²

 $A = [1 \ 4; -4 \ 1]$ e-vals are 1 \pm 4i

Note: evals/evecs come in complex conjugate pairs

Similarly, for
$$\lambda = 3$$

$$A - 3I = \begin{bmatrix} 7/3 - 3 & 4/3 \\ 2/3 & 5/3 - 3 \end{bmatrix} = \begin{bmatrix} -2/3 & 4/3 \\ 2/3 & -4/3 \end{bmatrix}$$
So, the significant corresp. to $\lambda = 3$ (same as Mull (A-3I))
$$Solve \begin{bmatrix} -2/3 & 4/3 \\ 2/3 & -4/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{2}{3} & 4/3 \\ 2/3 & -4/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{2}{3} & 4/3 \\ 2/3 & 4/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{2}{3} & 4/3 \\ 2/3 & 4/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{2}{3} & 4/3 \\ 2/3 & 4/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{2}{3} & 4/3 \\ 2/3 & 4/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix}$$