UNICAMP IMECC

ALUNO

UNIVERSIDADE ESTADUAL DE CAMPINAS

Instituto de Matemática, Estatística e Computação Científica

RA

~	• •	
1a. Prova – MA-211 – Sexta-feira (MANHA), 10/10/2014	ANHÃ), 10/10/2014	

0/2014	Q2	
Turma	Q3	
	Q4	
ì		

Q1

 $\frac{\mathsf{Q5}}{\sum}$

1a. Prova – MA-211 – Sexta-feira (MANHÃ), 10/10/2014

INSTRUÇÕES

NÃO É PERMITIDO DESTACAR AS FOLHAS DA PROVA É PROIBIDO O USO DE CALCULADORAS SERÃO CONSIDERADAS SOMENTE AS QUESTÕES ESCRITAS DE FORMA CLARA E DEVIDAMENTE JUSTIFICADAS

Questão 1. Considere a função

$$f(x,y) = \begin{cases} x+y, & xy = 0, \\ \kappa, & \text{caso contrário,} \end{cases}$$

em que κ é um número real.

- (a) Determine as derivadas parciais de primeira ordem de f em (0,0). (0.4)
- (b) É possível escolher κ de modo que f seja contínua em (0,0)? No caso afirmativo, qual deve ser o valor de κ ? (0.6)
- (c) Mostre que f, com $\kappa = 1$, não possui derivada direcional em (0,0) na direção de um vetor $\mathbf{v} = (a,b)$ com $a^2 + b^2 = 1$ e $ab \neq 0$. (0.6)
- (d) f é diferenciável em (0,0) quando $\kappa=1$? Justifique sua resposta. (0.4) Questão 2.
- (a) Sejam $f, g : \mathbb{R} \to \mathbb{R}$ funções diferenciáveis. Mostre que u(x,t) = f(x+at) + g(x-at), em que $a \neq 0$, satisfaz a equação da onda $u_{tt} = a^2 u_{xx}$. (0.6)
- (b) Seja h uma função de duas variáveis com derivadas parciais de segunda ordem contínuas. Se z = h(x, y), em que $x = r^2 + s^2$ e y = 2rs, determine $\frac{\partial^2 z}{\partial r \partial s}$. (1.4)

Questão 3. Determine a equação dos planos tangentes ao gráfico de $f(x,y) = 7 - x^2 - y^2$ que passam por ambos os pontos (1,0,7) e (3,0,3). (2.0)

Questão 4. Três alelos (versões alternativas de um gene) A, B e O determinam os quatro tipos de sangue: A (AA ou AO), B (BB ou BO), O (OO) e AB. A Lei de Hardy-Weinberg afirma que a proporção de indivíduos em uma população que carregam dois alelos diferentes é P = 2pq + 2pr + 2rq, em que p, q e r são as proporções de A, B e O na população. Sabendo que p + q + r = 1, determine a proporção máxima de indivíduos que carregam dois alelos em uma população. (2.0)

Questão 5. Determine o plano tangente à superfície $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} = 1$, com x > 0, y > 0 e z > 0, que forma com os planos coordenados um tetraedro de volume mínimo. (2.0) **Dica:** O volume do tetraedro formado pelos planos coordenados e o plano ax+by+cz=d no primeiro octante é dado por $V = d^3/(6abc)$.