	L.	
	!!	
	Lj	10
	1	11
INS		12
. (13
	Ű.	
	<u>ļu</u>	
	Ū	

Ф

3

4

5

6

1	1.	A	system	for	automat	cically	producing	an
2	embroidery	7 6	design,	the	system	compris	sing:	

- means for inputting an embroidery pattern a) into an image data file, the image data file comprising a plurality of pixels, each pixel comprising a bitmap representing a color;
- processing means operatively connected to b) said inputting means for storing said image data file; and
- C) an embroidery data generating mechanism operatively connected to said processing means for generating a complex embroidery pattern directly from a scanned, color image.

	Τ.	4	ine sy	ystem of claim 1, wherein said embroidery
	2	data q	generating	g mechanism comprises:
	3		i)	segmenting means for characterizing each
	4			pixel within the image data file into an
	5			object;
	6		ii)	means for classifying each of said
	7	~		objects as a thin object or a thick
	8			object;
=				
	9	•	iii)	means for locating and interpreting a
	10			set of regular and singular regions for
	11			embroidery data point generation.
H H				
=	12		iv)	path generation means for computing an
ű 4	13			optimum sew order for at least one
	14		•	extracted column; and
j				
	15		v)	embroidery output means for generating
	16			an embroidery output file.

2

3

1

2

- 3. The system of claim 1, further comprising
 line-fitting means for line-fitting each object,
 wherein an object comprises an outer contour, a
 predetermined number of inner contours, and a skeleton
 contour, said line-fitting means comprising a gallus-neurath triangular filter.
- 4. The system of claim 3 further comprising
 stitch angle determination means for determining a
 stitch angle that produces a minimal plurality of
 fragments.
 - 5. The system of claim 4, further comprising generate path means for determining an optimal order for the plurality of fragments to be sewn.
 - 6. The system of claim 1, further comprising labelling means for labelling a plurality of points on the skeleton and edge contours.
- 7. The system of claim 6, further comprising
 merging means for merging a series of points from the
 plurality of points on the skeleton contour.

1	8. The	system of claim 7,	further comprising
2	coding means	for evaluating a p	lurality of singular
3	regions.		

- 9. The system of claim 8, further comprising
 smoothing means for evaluating a sequence of stroke
 normals.
- 1 10. The system of Claim 1, wherein means for 2 inputting comprises a scanner.
 - 11. The system of claim 1, wherein said object comprises a plurality of connected or contiguous pixels having a uniform color.

1	12.	A method for automatically producing an
2	embroider	y design, the method comprising the steps of:
3	a)	inputting an embroidery pattern into an image
4		data file, the image data file comprising a
5		plurality of pixels, each pixel comprising a
6		bitmap representing a color;
7	b)	classifying and line-fitting each object in
8		said bitmap as a thin object or a thick
9		object, each of said objects comprising an
10		outer contour, any number of inner contours,
11		and a skeleton contour;
12	c)	computing an optimum sew order; and
13	d)	generating an image output file.
1	13.	The method of claim 12, further comprising
2	the step	of generating the plurality of fragments.

14. The method of claim 13, further comprising the step of determining an optimal order for the plurality of fragments to be sewn.

- 1 15. The method of claim 14, further comprising
 2 the step of merging a series of points from the
 3 plurality of points on the skeleton contour.
- 16. The method of claim 15, further comprising
 the step of extracting at least one column.
 - 17. The method of claim 16, wherein said step (b) of classifying each pixel within the image data file comprises the step of associating each connected pixel having a similar color with a unique object identity.
 - 18. The method of claim 17, wherein said step (b) of classifying additionally comprises the step of traversing a plurality of chain codes associated with one of the group of skeleton contour, inner contour(s), and outer contour.
 - 19. The method of claim 14, wherein said step of determining an optimal order for the plurality of fragments to be sewn comprises the step of identifying a point and recursively identifying a plurality of fragments touching said point.

1	20.	A method for automatically producing an
1	embroidery	design, the method comprising the steps of:
2	a)	inputting an embroidery pattern into an image
3	·	data file, the image data file comprising a
4		plurality of pixels, each pixel comprising a
5		
5		bitmap representing a color;
6	b)	locating a set of regular and singular
7		regions disposed in said image data file;
8	c)	interpreting said set of regular and singular
9		regions;
10	d)	computing an optimum sew order; and
11	e)	generating an image output file dependent on
12		said interpreted set of regular and singular
13		regions.