Problema 1

Sejam P_1 e P_2 dois problemas tais que $P_1 \propto_n P_2$ onde n é um parâmetro que mede o tamanho de uma instância de P_1 . Suponha que $\Omega(h_1(n))$ e $\Omega(h_2(n))$ seja cotas inferiores de P_1 e P_2 , respectivamente. Indique quais afirmações abaixo são verdadeiras (V) ou falsas (F). Se não for possível chegar a uma conclusão, marque F.

- Todo algoritmo que resolve P_1 pode ser usado para resolver P_2 .
- **②** Todo algoritmo que resolve P_2 pode ser usado para resolver P_1 .
- **3** $h_2(n) \in \Omega(h_1(n))$, ou seja, P_2 tem cota inferior $\Omega(h_1(n))$.
- **1** $h_1(n) \in \Omega(h_2(n))$, ou seja, P_1 tem cota inferior $\Omega(h_2(n))$.
- **1** P₁ pode ser resolvido em tempo $O(h_2(n))$.
- **1** P₁ pode ser resolvido em tempo $O(h_1(n))$.

Solução

Sejam P_1 e P_2 dois problemas tais que $P_1 \propto_n P_2$ onde n é um parâmetro que mede o tamanho de uma instância de P_1 . Suponha que $\Omega(h_1(n))$ e $\Omega(h_2(n))$ seja cotas inferiores de P_1 e P_2 , respectivamente. Indique quais afirmações abaixo são verdadeiras (V) ou falsas (F). Se não for possível chegar a uma conclusão, marque F.

- Todo algoritmo que resolve P_1 pode ser usado para resolver P_2 . F
- ② Todo algoritmo que resolve P_2 pode ser usado para resolver P_1 . V
- **3** $h_2(n) \in \Omega(h_1(n))$, ou seja, P_2 tem cota inferior $\Omega(h_1(n))$. V
- $h_1(n) \in \Omega(h_2(n))$, ou seja, P_1 tem cota inferior $\Omega(h_2(n))$. F
- **5** P_1 pode ser resolvido em tempo $O(h_2(n))$. **F**
- **6** P_1 pode ser resolvido em tempo $O(h_1(n))$. **F**

Problema 2

Dizemos que um ponto $p=(x_p,y_p)$ do plano **domina** um outro ponto $q=(x_q,y_q)$ do plano se $(x_p,y_p)\geq (x_q,y_q)$, ou seja, $x_p\geq x_q$ e $y_p\geq y_q$. Um ponto p é **maximal** em um conjunto de pontos P se $p\in P$ e nenhum ponto de $P-\{p\}$ domina p.

Considere os seguintes problemas:

MAXIMAL: dado um conjunto $P = \{(x_i, y_i) : i = 1, ..., n\}$ de n pontos no plano, devolver todos os pontos maximais de P.

INTERVAL: dado um conjunto $I = \{[s_i, t_i] : i = 1, ..., n\}$ de n intervalos da reta, encontrar todos os intervalos de I que **não** estão contidos em outro intervalo de I. (diferente da lista)

Mostre que INTERVAL \propto_n MAXIMAL (redução de Turing).

Mostre que MAXIMAL \propto_n INTERVAL (redução de Turing). (Mais difícil)

Solução: INTERVAL \propto_n MAXIMAL

 au_I : Seja $I_V = \{[s_i, t_i] : i = 1, \ldots, n\}$ uma instância de INTERVAL. Seja $I_M = \{(-s_i, t_i) : i = 1, \ldots, n\}$ a instância correspondente de MAXIMAL.

 τ_S : Se S_M é a resposta de I_M , então devolva $S_V = \{[s_i, t_i] : (-s_i, t_i) \in S_M\}.$

Complexidade τ_I e τ_S : O(n).

Por que isto funciona?

$$[s_i, t_i] \subseteq [s_j, t_j] \Leftrightarrow s_j \le s_i \le t_i \le t_j \Leftrightarrow (-s_i, t_i) \le (-s_j, t_j)$$

Ou seja, $[s_i, t_i]$ está contido em outro intervalo $[s_j, t_j]$ se, e somente se, $(-s_i, t_i)$ é dominado por $(-s_j, t_j)$.

Solução: MAXIMAL \propto_n INTERVAL

 au_I : Seja $I_M = \{(x_i, y_i) : i = 1, \dots, n\}$ uma instância de MAXIMAL. Não é possível fazer a redução inversa $(x_i, y_i) \mapsto [-x_i, y_i]$ pois $[-x_i, y_i]$ pode não ser um intervalo.

Escolha M > 0 grande o suficiente tal que $-x_i \le y_i + M$ para todo $i = 1, \dots, n$.

Seja $I_V = \{[-x_i, y_+M] : i = 1, ..., n\}$ a instância correpondente de INTERVAL.

 τ_S : Se S_V é a resposta de I_V , então devolva $S_M = \{(x_i, y_i) : [-x_i, y_i + M] \in S_V\}.$

Complexidade τ_I e τ_S : O(n).

Por que isto funciona?

$$(x_i, y_i) \le (x_j, y_j) \Leftrightarrow -x_j \le -x_i \in y_i + M \le y_j + M$$

 $\Leftrightarrow [-x_i, y_i + M] \le [-x_j, y_j + M]$

Problema 3

Um caminho/ciclo (simples) em um grafo G é **Hamiltoniano** se passa por todos os vértices de G. Considere os problemas:

CaH: dado um grafo não-orientado G, decidir se G possui um caminho Hamiltoniano.

CiH: dado um grafo não-orientado G, decidir se G possui um ciclo Hamiltoniano.

Suponha que CaH é NP-completo. Prove que CiH é NP-completo.

Solução: CaH $\propto_{ m poli}$ CiH

 au_I : Seja G uma instância de CaH. Seja G' o grafo obtido de G acrescentando um vértice novo u adjacente a todos os vértices de G; esta é a instância correspondente de CiH.

 τ_S : devolva SIM se a resposta de G' for SIM e devolva NÃO, caso contrário (redução de Karp).

Por que isto funciona?

Se $C = (u, v_1, \dots, v_n, u)$ é um ciclo Hamiltoniano de G', então (v_1, \dots, v_n) é um caminho Hamiltoniano de G e vice-versa.