得分

第四题(20分)

分析32位的Y86 ISA中新加入的条件内存传送指令: crmmovqXX和cmrmovqXX。crmmovqXX和cmrmovqXX指令在条件码满足所需要的约束时,分别执行和rmmovq以及mrmovq同样的语义。其格式如下:

rmmovq	4	0	rA	rB	D(8字节)
crmmovqXX	4	fn	rA	rB	D (8字节)
mrmovq	5	0	rA	rB	D (8字节)
$\operatorname{cmrmovqXX}$	5	fn	rA	rB	D (8字节)

1. 请按下表补全每个阶段的操作。需说明的信号可能会包括:icode, ifun, rA, rB, valA, valB, valC, valE, valP, Cnd; 寄存器堆R[],存储器M[],程序计数器PC,条件码CC。其中对存储器的引用必须标明字节数。

阶段	rmmovq rA,D(rB)	cmrmovqXX D(rB),rA
取指		
译码	valA 🗲	R[rA]
	valB ←	R[rB]
执行		
访存		
写回	none	
更新PC	PC ←	valP

2.为了执行上述新增指令,我们需要改进教材所描述的PIPE处理器,在回写(W: Write Back)阶段引入寄存器以保持流水线信号______(请参考教材对信号的命名规则书写),以便有条件地更新寄存器内容。在如此改进的PIPE处理器上,请写出如下信号的HCL代码。

信号	HCL代码	
F_stall	(E_icode in {IMRMOVQ, IPOPQ} ()) &&
E_bubble	()) &&
M_bubble	m_stat in	

附HCL描述中的常数值编码表如下:

IHALT	halt指令的代码	INOP	nop指令的代码
IRRMOVQ	rrmovq指令的代码	IIRMOVQ	irmovq指令的代码
IRMMOVQ	rmmovq指令的代码	IMRMOVQ	mrmovq指令的代码
ICRMMOVQ	crmmovqXX指令的代码	ICMRMOVQ	cmrmovqXX指令的代码
IOPL	整数运算指令的代码	IJXX	跳转指令的代码
ICALL	call指令的代码	IRET	ret指令的代码
IPUSHQ	pushq指令的代码	IPOPQ	popg指令的代码
FNONE	默认功能码	RNONE	表示没有寄存器文件访问
ALUADD	表示加法运算	RRSP	表示%rsp寄存器ID
SAOK	正常地址操作状态码	SADR	地址异常状态码
SINS	非法指令异常状态码	SHLT	halt状态码

3.对于下面的Y86汇编代码,请使用上述条件内存传送指令将其修改为不带跳转的汇编代码序列。假设下面的代码片段在教材所描述的PIPE处理器上运行,不考虑该片段前后代码的影响以及高速缓存(cache)失效的情况,假设%rsi初值为0,处理器设计使用总是选择(always taken)的预测策略。原始代码片段预计运行________周期,改进代码片段预计执行________周期。

原始代码	改进代码
andq %rsi %rsi	
jne L1	
mrmovq 8(%rdx), %rax	
j L2	
L1:	
mrmovq 8(%rdx), %rbx	
L2:	
addq %rax, %rbx	