9강. 자료진단

◈ 담당교수 : 김성수 교수

■ 주요용어

용어	해설
잔차벡터	간차벡터 $e = \mathbf{y} - \hat{\mathbf{y}}$ 이다.
	$\widehat{Y} = Xb$
	여기서 = $\mathbf{X}(\mathbf{X}^{X}\mathbf{X})^{-1}\mathbf{X}^{Y}\mathbf{Y}$
	= HY
	이므로, e는 다음과 같다.
	$e = Y - \overline{Y}$
	= Y - HY
	=(I-H)Y
스튜던트화 잔차 (studentized residual)	$Var\left(m{e}\right)=\sigma^{2}\left(m{I}\!\!-m{H}\right)$ 에서 i 번째 잔차인 e_{i} 의 분산 $Var\left(e_{i}\right)=\sigma^{2}(1-h_{ii})$ 이 된다. e_{i} 를 잔차의 표준오차인 $\sigma\sqrt{1-h_{ii}}$ 로 나누어 표준화 시킨 잔차
	$r_i = rac{e_i}{\sqrt{MSE(1-h_{ii})}}$ 를 표준화잔차(standardized residual)라 한다. 여기서
	$t_i = rac{e_i}{\sqrt{\mathit{MSE}_{(i)}(1-h_{ii})}}$ 를 스튜던트화 잔차(studentized residuals)라 한다.
영향력 있는 관측	회귀모형에서 관측값이 제거될 때 중요한 변화를 가져오는 관측값을 영향력있는 관측값이라고 부른다. 대표적인 통계량이 Cook의 통계량 D_{ℓ} 이다.
값 (influential observations)	$D_{i} = \frac{\left(\boldsymbol{b}_{(i)} - \boldsymbol{b}\right)'\left(\boldsymbol{X}\boldsymbol{X}\right)\left(\boldsymbol{b}_{(i)} - \boldsymbol{b}\right)}{\left(k + 1\right)MSE}$
특이점(outlier)	다른 관측값들과는 달리 주어진 모형을 따르지 않는 관측값을 특이점(outlier) 또는 이상점이라 부른다.
	특이점 검정에 이용되는 검정통계량은 스튜던트화 잔차 t_i 로
	서, 일반적으로 $ t_i $ 의 값이 2 또는 3 보다 큰 경우를 특이점
	으로 판단한다.

■ 연습문제

1. 표준화잔차(standardized residual)를 구하는 식은 ?

$$r_i = \frac{e_i}{\sqrt{MSE(1 - h_{ii})}}$$

정답 및 해설:

2. 스튜던트화 잔차(studentized residuals)를 구하는 식은 ?

$$t_i = \frac{e_i}{\sqrt{MSE_{(i)}(1 - h_{ii})}}$$

정답 및 해설:

3. 잔차분석을 하고자 한다. 함수(a)는 ?

- > forbes.res = (a)(forbes.lm)
- > names(forbes.res)
- [1] "std.dev" "hat" "std.res" "stud.res" "cooks"
- [6] "dfits" "correlation" "std.err" "cov.scaled" "cov.unscaled"

정답 및 해설 : ls.diag

■ 참고사이트

- 강명욱,김영일,안철환,이용구,『회귀분석』, 율곡출판사, 1996.
- 박성현, 『회귀분석』(제3판), 민영사, 2007.
- Faraway, J.J. (2002), Practical Regression and Anova Using R, (www.google.com에서 검색 후, pdf 파일로 다운받을 수 있음)
- Peter Dalgaard (2005), Introductory Statistics with R, Springer, (www.google.com에서 검색 후, pdf 파일로 다운받을 수 있음)

- R 사이트 <u>http://www.r-project.org/</u>
- R Studio 사이트 <u>https://www.rstudio.com/</u>