Nom:	Prénom :	Groupe :	
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS			
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2012/2013	Note / 20	
École d'ingénieurs POLYTECH' NIGE-SOPHIA	Epreuve de circuit N°2	7 20	

Durée: 1h30

Mardi 20 Novembre 2012

- Cours et documents non autorisés.
- □ Calculatrice collège autorisée.
- Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié:
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre votre téléphone portable.

N'OUBLIEZ PAS LES UNITES

Questions de cours (3.5 pts)

	A. <u>Condensateurs</u> :
	A.1 Donnez la caractéristique courant/tension d'un condensateur :
0.5pt	$igg $ $Rcute{e}ponse$:
	A.2 Donnez la formule permettant de calculer directement la capacité équivalente pour des condensateurs <u>connectés en série</u> .
0.25p	$igg $ $R\'{e}ponse$:
	A.3 Donnez la formule permettant de calculer directement la capacité équivalente pour des condensateurs connectés en parallèle.
0.25p	$oxed{R\'eponse}$:
	A.4 Donnez la formule permettant de calculer l'énergie emmagasinée par un condensateur.
0.5pt	$oxed{R\'eponse}$:
	A.5 Donnez la formule reliant la charge, la tension et la capacité d'un condensateur.
0.5pt	$igg R\'eponse$:
	B. Bobines:
	B.1 Donnez la caractéristique courant/tension d'une bobine :
0.5pt	$igg $ $Rcute{e}ponse$:
	B.2 Donnez la formule permettant de calculer directement l'inductance équivalente pour des bobines <u>connectées en série</u> .
0.25p	$oxed{R\'eponse}$:
	B.3 Donnez la formule permettant de calculer directement l'inductance équivalente pour des bobines <u>connectées en parallèle</u> .
0.25p	$oxed{R\'eponse}$:
	B.4 Donnez la formule permettant de calculer l'énergie emmagasinée par une bobine.
0.5pt	$R\'eponse:$

EXERCICE I : Résistance équivalente (3 pts)

Calculez la résistance équivalente R_{AB} .	
On donne : R_{Δ} =3 R_{Y}	A R R
Réponse :	B R

BROUILLON

EXERCICE II : Superposition (4 pts)

Trouvez le courant I qui circule dans la résistance de 5Ω du circuit ci-dessous en utilisant le principe de superposition

EXERCICE III : Transformation de sources (2 pts)

Utilisez les transformations de source pour trouver le courant I qui circule dans la résistance de 5Ω .

Réponse : $\begin{array}{c|c} 2\Omega & 5\Omega \\ \hline & & & \\$

BROUILLON

On considère le circuit ci-dessous. L'élément entre les points A et B est un dipôle non linéaire. On cherche les valeurs numériques de U_X et I_X .

IV.1 Déterminez l'équivalent de Thévenin aux bornes A et B (méthode de votre choix).

BROUILLON	
	ĺ

 ${f IV.2}$ La caractéristique du dipôle est donnée ci-dessous. Déterminez le courant I_X et la tension U_X aux bornes du dipôle non linéaire.

2 pt	$R\'eponse:$]
		-
		!
		į
		-
		-
		į
		-

IV.3 Comment s'appelle l'intersection?

$0.5 \mathrm{\ pt}$	Réponse :
---------------------	-----------

EXERCICE V : Détermination d'une inconnue (3 pt)

Calculez U_1 et U_2 avec la méthode de votre choix.

<u>ATTENTION</u>: la source de tension de 10V est une source idéale, elle n'a pas de résistance série, vous ne pouvez donc pas la transformer en source de courant.

BROUILLON	