Série de TD n°2, Structure de la Matière

Principaux constituants de la matière

Exercice 1

a) Donner sous forme d'un tableau le nombre de masse, les nombres de protons, de neutrons et d'électrons des nucléides et ions suivants :

$${}^{40}_{19}K, {}^{3}_{1}H, {}^{16}_{8}O, {}^{58}_{26}Fe, {}^{24}_{12}Mg, {}^{76}_{32}Ge, {}^{76}_{34}Se, {}^{18}_{8}O^{2-}, {}^{25}_{12}Mg^{2+}, {}^{2}_{1}H, {}^{56}_{26}Fe^{2+}. \dots$$

b) Indiquer les différentes familles d'isotopes, d'isobares et d'isotones.

Exercice 2

Le fer naturel ${}_{26}Fe$ est constitué de quatre isotopes stables (n°1 à n°4) dont les abondances naturellessont indiquées ci-dessous :

Isotope	n°1	n°2	n°3	n°4
Masse atomique (u)	53,9399	55,9349	56,9350	57,9330
Abondance (%)	5,84	91,75	2,12	0,28

- 1) Donner la constitution de chacun de ces isotopes.
- 2) Trouver la masse moyenne naturelle du fer.
- 3) Calculer le défaut de masse en (u) du noyau $_{26}^{56}$ Fe.
- 4) Calculer l'énergie de liaison par nucléon de ⁵⁶₂₆Fe en J et en MeV.
- 5) Classer par ordre de stabilité croissante (ou décroissante) les noyaux ⁵⁶Fe, ¹²⁰Sn et ²³⁸U. Les situer sur la courbe d'Aston.

 $\textit{Donn\'ees}: m_{n} = 1{,}0086 \; u, \, m_{p} = 1{,}0073 \; u, \, c = 3.10^{8} \, m.s^{-1}.$

Exercice 3

La masse du noyau d'hélium ${}_{2}^{4}He$ vaut 4, 0026 u. Sachant que les masses du proton et du neutron valent : $m_n = 1,0086$ u, $m_p = 1,0073$ u.

- 1) Calculer le défaut de masse et l'énergie de liaison (en J et en MeV) du noyau d'Hélium ⁴₂He.
- 2) Calculer, en kJ/mol, l'énergie libérée au cours de la formation d'une mole de ⁴/₂He. Comparer cette valeur à celle de l'énergie d'une réaction chimique.

Remarque : l'énergie d'une réaction chimique est de l'ordre de quelques dizaines de kJ/mol.

Exercice 4

Considérant les deux atomes suivants : $^{235}_{92}U$ et $^{140}_{54}Xe$

1) Comparer la stabilité du noyau de l'uranium $\binom{235}{92}U$ à celle du noyau de Xénon $\binom{140}{54}Xe$).

Données : $m_{\rm n} = 1,0086$ u, $m_{\rm p} = 1,0073$ u, $m_U = 234,9942$ u et $m_{Xe} = 139,9252$ u

Corrigé

Exercice 1

a) Constitution des entités atomiques

Symbole	Electrons	Protons	Neutrons	Nombre de masse
$^{40}_{19}K$	19	19	21	40
$^{3}_{1}H$	1	1	2	3
¹⁶ ₈ 0	8	8	8	16
⁵⁸ Fe	26	26	32	58
$^{24}_{12}Mg$	12	12	12	24
⁷⁶ ₃₂ Ge	32	32	44	76
⁷⁶ Se	34	34	42	76
¹⁸ ₈ 0 ²⁻	10	8	10	18
$^{25}_{12}Mg^{2+}$	10	12	13	25
² ₁ H	1	1	1	2
$_{26}^{56}Fe^{2+}$	24	26	30	56

C) Les différentes familles d'isotopes sont : $\binom{3}{1}H$ et $\binom{2}{1}H$); $\binom{16}{8}O$ et $\binom{18}{8}O^{2-}$);

 $((_{26}^{58}Fe\ et\ _{26}^{56}Fe^{2+})\ ;(_{12}^{24}Mg\ et\ _{12}^{25}Mg^{2+})\ ;$ Familles d'isobares : $(_{32}^{76}Ge\ et\ _{34}^{76}Se\)$

Familles d'isotones : Aucune

Exercice 2

1. Constitution des isotopes

Z=26						
Isotpoe	n°1	n°2	n°3	n°4		
A	54	56	57	58		
N	28	30	31	32		

2. Masse moyenne naturelle de Fe : A(Fenat)

$$\begin{split} A(Fe) &= 0,0584.\ 53,9399 + 0,9175.\ 55,9349 + 0,0212.\ 56,9350 + 0,0028.\ 57,9330 \\ A(Fe_{nat}) &= 55,8396g.\ mol^{-1}. \end{split}$$

3. Calcul du défaut de masse (Δm)

$$\Delta m = 26 \times m_p + 30 \times m_n - 55,9349$$

 $\Delta m = 0.5129 u$

4. Calcul de l'énergie de liaison par nucléon

$$\frac{E_L}{A}({}_{26}^{56}Fe) = \frac{\Delta m \times c^2}{A} = \frac{0,5129 \times 931,5}{56} = 8,53 \, MeV = 13,65 \times 10^{-13} J$$

5. Classement par ordre de stabilité croissante des nucléides

$$^{56}Fe > ^{120}Sn > ^{238}U$$

Le nucléide $^{56}_{26}Fe$ ainsi que ses voisins ($A \approx 60$) sont connus pour leur grande stabilité et sont placés

2

selon Aston sur le minimum (ou le maximum si les valeurs de E_i sont comptées positivement) de la courbe $\frac{E_L}{A} = f(A)$. Les noyaux lourds sont à l'extrémité droite de la courbe d'Aston induisant une forte instabilité et entrainant des réactions de fission par désintégration neutronique.

Exercice n°3:

Comparaison de la stabilité des deux noyaux :

L'énergie de liaison par nucléon $(\frac{E_l}{A})$ d'un noyau est donnée par la relation :

$$\frac{E_l}{\Delta} = \frac{\Delta m. c^2}{\Delta} \ avec \ \Delta m = (Z.m_p + N.m_n) - m(noyau)$$

- Pour l'uranium: $\Delta m = 1,9139 \ u \ \text{et} \frac{E_l}{A} = 1,22. \ 10^{-12} J$
- Pour le Xénon: $\Delta m = 1,2127 u$ et $\frac{E_l}{A} = 1,3019. 10^{-12} J$

 $\left(\frac{E_l}{A}\right)_{Xe} > \left(\frac{E_l}{A}\right)_{II}$, le noyau de Xénon est donc plus stable que le noyau d'uranium

Exercice 4

1) Calcul du défaut de masse du noyau ⁴/₂He et de l'énergie correspondante en MeV.

$$\Delta m = 2m_p + 2m_n - m({}_{2}^{4}He) = 0.02986 u$$

D'après la relation d'Einstein : $\Delta E = \Delta m. c^2$

$$\Delta E = 0.02986.1,66.10^{-27}.(3.10^8)^2 = 4.46.10^{-12}J$$

Par ailleurs, 1eV=1,6. 10⁻¹⁹J

D'où:
$$\Delta E = \frac{4,46.10^{-12}}{1,6.10^{-19}} = 27,8 \text{ MeV}$$

2) L'énergie ΔE libérée au cours de la formation d'une mole de ${}_{2}^{4}He$ est de :

$$\Delta E = 4,46.10^{-12}.6,023.10^{23} = 2,6.10^9 kJ. mol^{-1}$$

Conclusion : pour une réaction chimique, ΔE est de l'ordre de quelques dizaines de kJ/mol ; soit une énergie 10^8 fois plus faible. Cet exemple illustre tout l'intérêt, du point de vue énergétique, des réactions nucléaires.