國立臺灣大學電機資訊學院資訊工程學系碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

章瑋麟

Wei-Lin Chang

指導教授:黎士瑋博士

Advisor: Shih-Wei Li Ph.D.

中華民國 112 年 7 月 July, 2023

國立臺灣大學碩士學位論文口試委員會審定書

本論文係章瑋麟君(R09922117)在國立臺灣大學資訊工程學系完成之碩士學位論文,於民國112年7月1日承下列考試委員審查通過及口試及格,特此證明

口試委員	: _						
			(指導	教授))		
	_						
昕 長	:					-	

Acknowledgements

常到外國朋友家吃飯。當蠟燭燃起,菜肴布好,客主就位,總是主人家的小 男孩或小女孩舉起小手,低頭感謝上天的賜予,並歡迎客人的到來。

我剛到美國時,常鬧得尷尬。因為在國內養成的習慣,還沒有坐好,就開動了。

以後凡到朋友家吃飯時,總是先囑咐自己;今天不要忘了,可別太快開動啊! 幾年來,我已變得很習慣了。但我一直認為只是一種不同的風俗儀式,在我這方 面看來,忘或不忘,也沒有太大的關係。

前年有一次,我又是到一家去吃飯。而這次卻是由主人家的祖母謝飯。她雪白的頭髮,顫抖的聲音,在搖曳的燭光下,使我想起兒時的祖母。那天晚上,我 忽然覺得我平靜如水的情感翻起滔天巨浪來。

在小時候,每當冬夜,我們一大家人圍著個大圓桌吃飯。我總是坐在祖母身 旁。祖母總是摸著我的頭說:「老天爺賞我們家飽飯吃,記住,飯碗裡一粒米都不 許剩,要是蹧蹋糧食,老天爺就不給咱們飯了。」

剛上小學的我,正在念打倒偶像及破除迷信等為內容的課文,我的學校就是 從前的關帝廟,我的書桌就是供桌,我曾給周倉畫上眼鏡,給關平戴上鬍子,祖 母的話,老天爺也者,我覺得是既多餘,又落伍的。

iii

不過,我卻很尊敬我的祖父母,因為這飯確實是他們掙的,這家確實是他們立的。我感謝面前的祖父母,不必感謝渺茫的老天爺。

這種想法並未因為年紀長大而有任何改變。多少年,就在這種哲學中過去 了。

我在這個外國家庭晚飯後,由於這位外國老太太,我想起我的兒時,由於我 的兒時,我想起一串很奇怪的現象。

祖父每年在「風裡雨裡的咬牙」,祖母每年在「茶裡飯裡的自苦」,他們明明 知道要滴下眉毛上的汗珠,才能撿起田中的麥穗,而為什麼要謝天?我明明是個 小孩子,混吃混玩,而我為什麼卻不感謝老天爺?

這種奇怪的心理狀態,一直是我心中的一個謎。

一直到前年,我在普林斯頓,瀏覽愛因斯坦的我所看見的世界得到了新的領悟。

這是一本非科學性的文集,專載些愛因斯坦在紀念會上啦,在歡迎會上啦, 在朋友的喪禮中,他所發表的談話。

我在讀這本書時忽然發現愛因斯坦想盡量給聽眾一個印象:即他的貢獻不是 源於甲,就是由於乙,而與愛因斯坦本人不太相干似的。

就連那篇亙古以來嶄新獨創的狹義相對論,並無參考可引,卻在最後天外飛來一筆,「感謝同事朋友貝索的時相討論。」

其他的文章,比如奮鬥苦思了十幾年的廣義相對論,數學部份推給了昔年好 友的合作:這種謙抑,這種不居功,科學史中是少見的。

我就想,如此大功而竟不居,為什麼?像愛因斯坦之於相對論,像我祖母之

於我家。

幾年來自己的奔波,做了一些研究,寫了幾篇學術文章,真正做了一些小貢獻以後,才有了一種新的覺悟:即是無論什麼事,得之於人者太多,出之於己者太少。因為需要感謝的人太多了,就感謝天罷。無論什麼事,不是需要先人的遺愛與遺產,即是需要眾人的支持與合作,還要等候機會的到來。越是真正做過一點事,越是感覺自己的貢獻之渺小。

於是,創業的人,都會自然而然的想到上天,而敗家的人卻無時不想到自己。 己。

摘要

中文摘要

關鍵字: LaTeX、中文、論文、模板

Abstract

Abstract

Keywords: LaTeX, CJK, Thesis, Template

Contents

		Page
Verification	Letter from the Oral Examination Committee	i
Acknowled	gements	iii
摘要		vii
Abstract		ix
Contents		xi
List of Figu	res	xiii
List of Tabl	es	XV
Denotation		xvii
Chapter 1	Introduction	1
Chapter 2	Background and Related Work	3
2.1	Rust	. 3
2.2	VM Protection	. 3
Chapter 3	Evalutation	5
Chapter 4	Conclusions	9
References		11
Appendix A	— Introduction	13
A.1	Introduction	. 13

A.2	Further Introduction	43
Appendix I	3 — Introduction	15.
B.1	Introduction	
B.2	Further Introduction	15

List of Figures

г. эл	A 1' .' D 1 1 D C	7
Figure 3.1	Application Benchmark Performance	/

List of Tables

Table 3.1 Application Benchmarks	Table 3.1	Application Benchmarks																						6
----------------------------------	-----------	-------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Denotation

HPC 高性能計算 (High Performance Computing)

cluster 集群

Itanium 安騰

SMP 對稱多處理

API 應用程序編程接口

Chapter 1 Introduction

Chapter 2 Background and Related Work

- **2.1** Rust
- 2.2 VM Protection

Chapter 3 Evalutation

We evaluated the performance of various application benchmarks on a VM running on KrustVM and mainline KVM. We also tested the same benchmarks on bare metal environment performances to establish a baseline reference of the benchmark results. We ran the workloads on the Raspberry Pi 4 model B development board, with a Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit SoC at 1.5GHz, 4GB of RAM, and a 1 GbE NIC device.

KrustVM and the mainline KVM are based on Linux 5.15. QEMU v4.0.0 was used to start the virtual machines on Ubuntu 20.04. The guest kernels also used Linux 5.15, and all kernels tested employed the same configuration. We extended QEMU v4.0.0 based on the artifact from [2] to support secure VM boot on KrustVM. We requested the authors of [4] and got a patch for the Linux guest kernel to enable virtio. rustc version 1.68.0-nightly was used to compile Rcore, while clang 15.0.0 was used to compile the remaining components of KrustVM and the mainline KVM.

We configured the hardware with 2 physical CPUs and 1 GB of RAM for the bare metal setup. Each VM that equips with 2 virtual CPUs for the VM setup, and 1 GB of RAM runs on the full hardware available.

We ran the benchmarks listed in Table 3.1 in the VMs on both KrustVM and the

5

Name	Description
Kernbench	Compilation of the Linux 6.0 kernel using tinyconfig for Arm with
	GCC 9.4.0.
Hackbench	hackbench [6] using Unix domain sockets and 50 process groups
	running in 50 loops.
Netperf	netperf [3] v2.6.0 running the netserver on the server and the client
	with its default parameters in three modes: TCP_STREAM (through-
	put), TCP_MAERTS (throughput), and TCP_RR (latency).
Apache	Apache v2.4.41 Web server running ApacheBench [7] v2.3 on the
	remote client, which measures the number of handled requests per
	second when serving the 41 KB index.html file of the GCC 4.4 man-
	ual using 100 concurrent requests.
Memcached	memcached v1.5.22 using the memtier [5] benchmark v1.2.3 with
	its default parameters.
YCSB-Redis	redis v7.0.11 using the YCSB [1] benchmark v0.17.0 with its default
	parameters.

Table 3.1: Application Benchmarks

mainline KVM. Figure 3.1 shows the normalized results. We normalized the results to bare-metal performance. 1.00 refers to no virtualization overhead. A higher value means higher overhead. The performance on real application workloads show modest overhead overall for KrustVM compared to mainline KVM.

Figure 3.1: Application Benchmark Performance

Chapter 4 Conclusions

References

- [1] Brian Cooper. Yahoo! Cloud Serving Benchmark. https://github.com/brianfrankcooper/YCSB, Feb. 2021.
- [2] Columbia University. SOSP 21: Artifact Evaluation: Verifying a Multiprocessor Hypervisor on Arm Relaxed Memory Hardware. https://github.com/VeriGu/sosp-paper211-ae, Sept. 2021.
- [3] R. Jones. Netperf. https://github.com/HewlettPackard/netperf, June 2018.
- [4] S.-W. Li, J. S. Koh, and J. Nieh. Protecting cloud virtual machines from commodity hypervisor and host operating system exploits. In <u>Proceedings of the 28th USENIX</u> <u>Conference on Security Symposium</u>, SEC'19, page 1357–1374, USA, 2019. USENIX Association.
- [5] Redis Labs. memtier_benchmark. https://github.com/RedisLabs/memtier_benchmark, Apr. 2015.
- [6] R. Russell. Hackbench. http://people.redhat.com/mingo/cfs-scheduler/ tools/hackbench.c, Jan. 2008.
- [7] The Apache Software Foundation. ab Apache HTTP server benchmarking tool. http://httpd.apache.org/docs/2.4/programs/ab.html, Apr. 2015.

Appendix A — Introduction

- A.1 Introduction
- **A.2** Further Introduction

Appendix B — Introduction

- **B.1** Introduction
- **B.2** Further Introduction