upel.agh.edu.pl

SW: Instrukcja

10 — 13 minut

Tomasz Kryjak, Piotr Pawlik

Przekształcenia kontekstowe są to przekształcenia przy których dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego.

A. Filtry liniowe uśredniające (dolnoprzepustowe)

Jest to najprostsza rodzina filtrów stosowana w przetwarzaniu obrazów. Wykorzystuje się je w celu rozmazania obrazu i redukcji szumów (zakłóceń) na obrazie. Filtr określony jest przez dwa parametry: rozmiar maski (ang. kernel) oraz wartości współczynników maski.

- 1. Otwórz program Matlab. Ustal ścieżkę Current Directory na własny katalog. Utwórz nowy m-plik. Na początku wykonaj polecenia close all; clear all;
- 2. Wczytaj obraz "plansza.tif" (wcześniej ściągnij archiwum z moodla i rozpakuj w "swoim" katalogu). W dalszej części ćwiczenia sprawdzenie działania filtracji dla innych obrazów sprowadzi się do wczytania innego pliku.

- 3. Podstawowa funkcja to conv2 realizacja konwolucji. Zwróć uwagę na parametr 'shape'. Ma on związek z tzw. problemem brzegowym (na krawędziach istnieją piksele dla których nie da się wyznaczyć otoczenia). Dla potrzeb tego laboratorium dobrze jest zachować rozmiar obrazka (opcja 'same'). Przydatna jest też funkcja fspecial , która ułatwia tworzenie masek do filtracji.
- 4. Stwórz podstawowy filtr uśredniający o rozmiarze 3x3 za pomocą funkcji fspecial z parametrem 'average'. Wykonaj konwolucję na wczytanym obrazie. Wynik przekonwertuj do formatu uint8. Na wspólnym rysunku wyświetl obraz oryginalny, po filtracji oraz moduł z różnicy:
- wykorzystaj polecenie subplot
- do obliczania modułu z różnicy przydatna jest funkcja imabsdiff
- do wyświetlania różnicy wykorzystać następującą postać: imshow(...,[]);
- 5. Przeanalizuj otrzymane wyniki. Jakie elementy zawiera obraz "moduł z różnicy"? Co na tej podstawie można powiedzieć o filtracji dolnoprzepustowej? Odpowiedź wpisz w komentarzu w m-pliku.
- 6. Na wspólnym rysunku wyświetl wyniki filtracji uśredniającej z oknem o rozmiarze 3, 5, 9, 15 i 35. Wykorzystaj subplot.

 Przeanalizuj wpływ rozmiaru maski na wynik. Drobna uwaga podczas pracy staramy się nie usuwać napisanego kodu lepiej jest go zakomentować, tak aby możliwe było jego ponowne wykorzystanie.
- 7. Wczytaj obraz "lena.bmp". Zaobserwuj efekty filtracji dolnoprzepustowej dla obrazu rzeczywistego.
- 8. Niekorzystny efekt towarzyszący wykonanym filtracjom dolnoprzepustowym to utrata ostrości. Częściowo można go zniwelować efekt wykorzystując inną maskę.

121

M = 242. 121

Wprowadź maskę do Matlaba. (M = [1 2 1; 2 4 2; 1 2 1];). Przed obliczeniami należy jeszcze wykonać normalizację - podzielić każdy element maski przez sumę wszystkich elementów : M = M/sum(sum(M)); Tak przygotowaną maskę wykorzystaj w konwolucji - wyświetl wyniki tak jak w punkcie 4. Możliwe jest też wykorzystywanie innych masek - współczynniki dostosowuje się do konkretnego problemu.

- 9. Skuteczną i często wykorzystywaną maskę jest tzw. maska Gasussa. Jest to zbiór liczb, które aproksymują dwuwymiarowy rozkład Gaussa. Parametrem jest odchylenie standardowe.

 10. Wykorzystując funkcję fspecial z parametrem 'gaussian' stwórz maskę o rozmiarze 5x5 i odchyleniu standardowym 0.5.

 Wykorzystując polecenie mesh zwizualizuj filtr. Sprawdź jak parametr odchylenie standardowe wpływa na "kształt" filtru.

 11. Wykonaj filtrację dla wybranych (2-3) wartości odchylenia standardowego.
- 12. Jak wartość odchylenia standardowego wpływa na efekt filtracji? Wyniki zaprezentuj prowadzącemu.

B.Filtry nieliniowe - mediana

Filtry rozmywające redukują szum ale niekorzystnie wpływają na ostrość obrazu. Dlatego często wykorzystuje się filtry nieliniowe - np. filtr medianowy (mediana - środkowa wartość w posortowanym ciągu liczb).

Podstawowa różnica pomiędzy filtrami liniowymi, a nieliniowymi polega na tym, że przy filtracji liniowej na nową wartość piksela ma wpływ wartość wszystkich pikseli z otoczenia (uśrednianie),

natomiast w przypadku filtracji nieliniowej jako nowy piksel wybierana jest któraś z wartości otoczenia - według jakiegoś wskaźnika.

- 1. Utwórz nowy m-plik. Na początku wykonaj polecenia close all; clear all; Wczytaj obraz "lenaSzum.bmp" (losowe 10% pikseli białych lub czarnych tzw. zakłócenia impulsowe). Przeprowadź filtrację uśredniającą z rozmiarem maski 3x3. Wyświetl, podobnie jak wcześniej, oryginał, wynik filtracji i moduł z różnicy. Wykorzystując funkcję medfilt2 wykonaj filtrację medianową 'lenaSzum.bmp' (z domyślnym rozmiarem maski 3x3). Wyświetl, podobnie jak wcześniej, oryginał, wynik filtracji i moduł z różnicy. Odpowiedz czy filtracja medianowa dobrze usuwa zakłócenia impulsowe (przypadkowe piksele o wartości 0 lub 255) ?

 2. Przeprowadź filtrację uśredniającą i medianową obrazu "lena.bmp". Wyniki porównaj dla obu wyświetl: oryginał, wynik filtracji i moduł z różnicy. Szczególną uwagę zwróć na ostrość i krawędzie. Kolejna ważna cecha filtracji medianowej położenie krawędzi zostaje zachowane.
- 4. Wyniki zaprezentuj prowadzącemu.

Inne filtry nieliniowe

- filtr modowy moda (dominanta) zamiast mediany
- filtr olimpijski średnia z podzbioru otoczenia (bez wartości ekstremalnych)
- hybrydowy filtr medianowy mediana obliczana osobno w różnych podzbiorach otoczenia ("x","+"), a jako wynik brana jest mediana ze zbioru wartość elementu centralnego, mediana z "x" i mediana z "+"
- filtr minimalny i maksymalny (będą omówione przy okazji operacji

morfologicznych)

Warto zdawać sobie sprawę, z szerokich możliwości dopasowywania rodzaju filtracji do konkretnego rozważanego problemu.

C. Filtry liniowe górnoprzepustowe

Zadaniem filtrów górnoprzepustowych jest wydobywanie z obrazu składników odpowiedzialnych za szybkie zmiany jasności - konturów, krawędzi, drobnych elementów faktury.

Laplasjan (wykorzystanie drugiej pochodnej obrazu)

- 1. Utwórz nowy m-plik. Na początku wykonaj polecenia close all; clear all; Wczytaj obraz "moon.bmp".
- 2. Wprowadź podstawową maskę laplasjanu:

 $M = [0 \ 1 \ 0; \ 1 \ -4 \ 1; \ 0 \ 1 \ 0];$

- 3. Przed rozpoczęciem obliczeń należy dokonać normalizacji maski
- dla rozmiaru 3x3 podzielić każdy element przez 9.
- 4. Wykonaj konwolucję obrazu z maską (conv2). Pamiętaj o parametrze 'same'. Przed wyświetleniem, wynikowy obraz należy poddać normalizacji (ujemne wartości). Najczęściej wykonuje się jedną z dwóch operacji:
- skalowanie (np. poprzez dodatnie 128 do każdego z pikseli)
- moduł (wartość bezwzględna)

Wykonaj obie normalizacje. Na wspólnym wykresie wyświetl obraz oryginalny oraz przefiltrowany po obu normalizacjach. Uwaga: przy

wyświetlaniu wykorzystaj opcję skalowania zakresu: imshow(obraz,[]);

5. Do tworzenia masek laplasjanu można wykorzystać polecenie fspecial z parametrem 'laplacian' . Zapoznaj się z dokumentacją (szczególnie z algorytmem wyznaczania współczynników). Wykonaj filtrację z maską stworzoną za pomocą funkcji fspecial.6. Efekt wyostrzenia uzyskuje się po odjęciu/dodaniu (zależy do maski) rezultatu filtracji laplasjanowej (przed normalizacją) i oryginalnego obrazu. Do wykresu dodaj czwarty obraz: różnicę/sumę oryginału i filtracji (może zajść konieczność konwersji typów). Wykorzystaj opcję skalowania zakresu.

7. Technika "unsharp masking" - przez wiele lat wykorzystywana przez wydawnictwa w celu wyostrzenia obrazów. Etapy: rozmycie obrazka oryginalnego, odjęcie rozmytego obrazka od oryginalnego - utworzenie tzw. maski, dodatnie maski do obrazu oryginalnego. Jeżeli przez $f_r(x,y)$ oznaczmy obraz rozmyty, to maskę można opisać jako:

 $g_{\text{mask}}(x,y) = f(x,y) - f_{r}(x,y)$

Następnie nowy obraz możemy opisać jako:

$$g(x,y) = f(x.y) + k * g_{mask}(x,y)$$

gdzie k ($k \ge 0$)oznacza wagę. Dla k = 1 otrzymujemy klasyczne "unsharp masking". Dla k > 1 algorytm określa się jako "highboost filtering".

8. Wczytaj obraz "dipxe.jpg". Zaimplementuj opisany w punkcie 7 algorytm. Do rozmycia wykorzystaj filtr Gaussa o rozmiarze co najmniej 5x5. Za pomocą polecenia subplot wyświetl: obraz oryginalny, obraz po rozmyciu, otrzymaną maskę (trzeba wykorzystać przeskalowanie przy wyświetlaniu []), rezultat operacji "unsharp mask" oraz rezultat "highboost filtring" (np. z k=4.5).

9. Wyniki zaprezentuj prowadzącemu.

Gradienty (wykorzystanie pierwszej pochodnej obrazu)

1. Utwórz nowy m-plik. Na początku wykonaj polecenia close all; clear all; Wczytaj obraz "kw.bmp". Wczytaj maski za pomocą polecania load maskiPP - zostaną wczytam zaprezentowane poniżej maski R!, R2, P1, P2, S1, S2. Wykorzystując gradient Robertsa przeprowadź detekcję krawędzi - poprzez wykonanie konwolucji obrazu z daną maską:

Wykorzystaj stworzony wcześniej kod (przy laplasjanie) - dwie metody normalizacji oraz sposób wyświetlania.

2. Analogicznie przeprowadź detekcję krawędzi z pomocą gradientu Prewitta (pionowy i poziomy)

$$-1 - 1 - 1$$

3. Podobnie skonstruowany jest gradient Sobela (występuje osiem masek, zaprezentowane są dwie)

Przeprowadź detekcję krawędzi z pomocą gradientu Sobela.

- 4. Na podstawie wyniku dwóch filtracji ortogonalnymi maskami Sobela można stworzyć tzw. filtr kombinowany pierwiastek kwadratowy z sumy kwadratów obrazów po filtracji gradientowej. Zaimplementuj filtr kombinowany (Uwaga przy podnoszeniu wyniku do kwadratu należy użyć operatora .^2 zapewni to podniesienie każdego z elementów macierzy do kwadratu).
- 5. Istnieje alternatywna wersja filtra kombinowanego, która zamiast pierwiastka z sumy kwadratów wykorzystuje sumę modułów (prostsze obliczenia). Zaimplementuj tę wersję. Obraz oryginalny oraz wyniki filtracji przedstaw na wspólnym wykresie.
- 6. Wczytaj plik "jet.bmp" (zamiast "kw.bmp"). Sprawdź działanie filtracji.
- 7. Wyniki zaprezentuj prowadzącemu.