Final Definitions and Theorems

Monday, April 8, 2019

2:15 PM

$$\mathbb{R}^n = \{\vec{x} = \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix}, x_1, \dots x_n \in \mathbb{R}$$
 Two vectors $\vec{x} = \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}$ Are said to be equal if $x_i = y_i$ for $i \in [1, n]$

Addition:

$$\vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ \dots \\ x_n + y_n \end{bmatrix}$$

Scalar multiplication:

$$c\vec{x} = \begin{bmatrix} cx_1 \\ \dots \\ cx_n \end{bmatrix}$$

Linear combination

For $\overrightarrow{v_1}$, ..., $\overrightarrow{v_k} \in \mathbb{R}^n$ and c_1 , ..., $c_k \in \mathbb{R}$

 $c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \dots + c_k\overrightarrow{v_k}$ a linear combination in \mathbb{R}^n .

Theorem (1.1.1)

if $\vec{x}, \vec{y}, \vec{w} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$, then

- 1. $\vec{x} + \vec{y} \in \mathbb{R}^n$
- 2. $(\vec{x} + \vec{y}) + \vec{w} = \vec{x} + (\vec{y} + \vec{w})$
- 3. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 4. $\exists \vec{0} \in \mathbb{R}^n, \forall \vec{x} \in \mathbb{R}^n, such that \vec{x} + \vec{0} = \vec{x}$
- 5. for every $\vec{x} \in \mathbb{R}^n$, $\exists (-\vec{x}) \in \mathbb{R}^n$, such that $\vec{x} + (-\vec{x}) = \vec{0}$
- 6. $c\vec{x} \in \mathbb{R}^n$
- 7. $c(d\vec{x}) = (cd)\vec{x}$
- 8. $(c + d)\vec{x} = c\vec{x} + d\vec{x}$
- 9. $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- 10. $1\vec{x} = \vec{x}$

Recall for $\overrightarrow{v_1}, ..., \overrightarrow{v_k} \in \mathbb{R}^n$ and $c_1, ..., c_k \in \mathbb{R}$ we call $c_1 \overrightarrow{v_1} + \cdots + c_k \overrightarrow{v_k}$ is a <u>linear combination</u> of $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$.

Span

Let $B = \{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}\$ be a set of vectors in \mathbb{R}^n . We define Span $B = \{c_1\overrightarrow{v_1} + \cdots + c_k\overrightarrow{v_k}|c_1, ..., c_k \in \mathbb{R}\}$.

- B is a spanning set for Span B
- The set Span B is spanned by B

Theorem (1.2.1)

Let $\overrightarrow{v_1}, \dots, \overrightarrow{v_k} \in \mathbb{R}^n$. Some vector $\overrightarrow{v_i}, 1 \leq I \leq k$, can be writtn as a linear combination of $\overrightarrow{v_1}, \dots, \overrightarrow{v_{i-1}}, \overrightarrow{v_{i+1}}, \overrightarrow{v_k}$ if and only if $Span\left\{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\right\} = Span\left\{\overrightarrow{v_1}, \dots, \overrightarrow{v_{i-1}}, \overrightarrow{v_{i+1}}, \overrightarrow{v_k}\right\}$.

Simpler proof: Prove $\exists c_1, ..., c_{k-1} \in \mathbb{R}$ such that $\overrightarrow{v_k} = \sum_{i=1}^{k-1} c_i \overrightarrow{v_i}$ if and only if $Span \{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\} = Span \{\overrightarrow{v_1}, ..., \overrightarrow{v_{k-1}}\}$

Linearly (In)dependent

A set $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ in \mathbb{R}^n is called

- Linearly dependent if $\exists c_1, \dots, c_k \in \mathbb{R}$, not all zero, such that $\overrightarrow{0} = c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k}$.
- Linearly independent if the only solution to $\vec{0} = c_1 \overrightarrow{v_1} + \cdots + c_k \overrightarrow{v_k}$ is $c_1 = \cdots = c_k = 0$ ("trivial solution")

Theorem 1.2.2

A set of vectors $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ in \mathbb{R}^n is linearly dependent if and only if $\overrightarrow{v_i} \in \operatorname{Span}\{\overrightarrow{v_1}, ..., \overrightarrow{v_{i-1}}, \overrightarrow{v_{i+1}}, ..., \overrightarrow{v_k}\}$ for some $i, 1 \le i \le k$.

Theorem 1.2.3

If a set of vectors contains the zero vector, then it is linearly dependent.

Basis

Let S be a subset of \mathbb{R}^n .

If $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ is a linearly independent set of vectors in \mathbb{R}^n such that $S = Span\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$, then the set $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ is called a <u>basis</u> for S.

We define a basis for the set $\{0\}$ to be the empty set.

Standard Basis

In \mathbb{R}^n , let $\overrightarrow{e_i}$ represent the vector whose i-th component is 1 and all other component are 0. The set $\{\overrightarrow{e_1}, ..., \overrightarrow{e_n}\}$ is called the <u>standard basis</u> for \mathbb{R}^n .

Eg: the standard basis for \mathbb{R}^3 is $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$.

Theorem 1.2.4

If $\beta = \{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ is a basis for a subset S of \mathbb{R}^n , then every $\vec{x} \in S$ can be written as a unique linear combination of vectors in β .

Subspace

A subset \mathbb{S} of \mathbb{R}^n is called a <u>subspace</u> of \mathbb{R}^n if for every $\vec{x}, \vec{y}, \vec{w}, \in \mathbb{S}$ and $c, d \in \mathbb{R}$, we have

- \uparrow 1. $\vec{x} + \vec{y} \in \mathbb{S}$
 - 2. $(\vec{x} + \vec{y}) + \vec{w} = \vec{x} + (\vec{y} + \vec{w})$
 - 3. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- \bigstar 4. $\exists \vec{0} \in \mathbb{S}, \forall \vec{x} \in \mathbb{S}, such that \vec{x} + \vec{0} = \vec{x}$
- \star 5. $\forall \vec{x} \in \mathbb{S}, \exists (-\vec{x}) \in \mathbb{S}, such that \vec{x} + (-\vec{x}) = \vec{0}$
- \bigstar 6. $c\vec{x} \in \mathbb{S}$
 - 7. $c(d\vec{x}) = (cd)\vec{x}$
 - 8. $(c + d)\vec{x} = c\vec{x} + d\vec{x}$

9.
$$c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$$

10.
$$1\vec{x} = \vec{x}$$

Theorem 1.3.3 (Subspace Test)

Let \mathbb{S} be a non-empty subset of \mathbb{R}^n .

If $\vec{x} + \vec{y} \in \mathbb{S}$ and $c\vec{x} \in \mathbb{S}$ for all $\vec{x}, \vec{y} \in \mathbb{S}$ and $c \in \mathbb{R}$, then \mathbb{S} is a subspace of \mathbb{R}^n .

Theorem 1.3.2

If $\overrightarrow{v_1}, ..., \overrightarrow{v_k} \in \mathbb{R}^n$, then $\mathbb{S} = Span\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ is a subspec of \mathbb{R}^n .

This theorem says if a subset \mathbb{S} of \mathbb{R}^n has a basis, then \mathbb{S} must be a subspace of \mathbb{R}^n .

To find a basis of a S,

- Find a general form of a vector in S
- Use it to find a spanning set of S
- Use theorem 1.2.1 until we get a linearly independent spanning set for S.

Dot product

For
$$\vec{x} = \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix}$$
, $\vec{y} = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$, $\vec{x} \cdot \vec{y} = \sum_{i=1}^n x_i y_i$

If two vectors are orthogonal, then their dot product is 0.

Theorem 1.4.1

If $\vec{x}, \vec{y} \in \mathbb{R}^n$ and θ is an angle between \vec{x} and \vec{y} , then $\vec{x} \cdot \vec{y} = ||\vec{x}|| ||\vec{y}|| \cos \theta$.

Theorem 1.4.2

If \vec{x} , \vec{y} , $\vec{z} \in \mathbb{R}^n$ and s, $t \in \mathbb{R}$, then

- 1. $\vec{x} \cdot \vec{x} \ge 0$, and $\vec{x} \cdot \vec{x} = 0$ iff $\vec{x} = 0$
- 2. $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$
- 3. $\vec{x} \cdot (s\vec{y} + t\vec{z}) = s(\vec{x} \cdot \vec{y}) + t(\vec{x} \cdot \vec{z})$

Length

Let $\vec{x} \in \mathbb{R}^n$.

The <u>length</u> or <u>norm</u> of \vec{x} is define to be $||\vec{x}|| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + \dots + x_n^2}$

Unit Vector

A vector $\vec{x} \in \mathbb{R}^n$ such that $||\vec{x}|| = 1$ is called a unit vector

Theorem 1.4.3

If \vec{x} , $\vec{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then

- 1. $||\vec{x}|| \ge 0$, and $||\vec{x}|| = 0$ iff $\vec{x} = \vec{0}$
- $2. ||c\vec{x}|| = |c| ||\vec{x}||$
- 3. $\vec{x} \cdot \vec{y} \le ||\vec{x}|| ||\vec{y}||$
- 4. $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$

Orthogonal Set

A set of vectors $\{\overrightarrow{v_1}, ... \overrightarrow{v_k}\} \in \mathbb{R}^n$ is called an <u>orthogonal set</u> if $\overrightarrow{v_i} \cdot \overrightarrow{v_j} = 0$ for all $i \neq j$.

Theorem 1.4.4

The zero vector $\vec{0} = \mathbb{R}^n$ is orthogonal to every vector $\vec{x} \in \mathbb{R}^n$.

Cross Product

If $\vec{v}, \vec{w} \in \mathbb{R}^3$.

If
$$\vec{v}, \vec{w} \in \mathbb{R}^3$$
.
The cross product of $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$ is defined to be
$$\vec{v} \times \vec{w} = \begin{bmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{bmatrix}.$$

Let \vec{v} , \vec{w} , $\vec{x} \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

- 1) If $\vec{n} = \vec{v} \times \vec{w}$, then for any $\vec{v} \in \text{Span } \{\vec{v}, \vec{w}\}$, we have $\vec{v} \cdot \vec{n} = 0$
- 2) $\vec{v} \times \vec{w} = (-\vec{w}) \times \vec{v}$
- 3) $\vec{v} \times \vec{v} = \vec{0}$
- 4) $\vec{v} \times \vec{w} = \vec{0}$ iff $\vec{v} = \vec{0}$ or \vec{w} is a scalar multiple of \vec{v}
- 5) $\vec{v} \times (\vec{w} + \vec{x}) = (\vec{v} \times \vec{w}) + (\vec{v} \times \vec{x})$
- 6) $(c\vec{v}) \times \vec{w} = c(\vec{v} \times \vec{w})$
- 7) $||\vec{v} \times \vec{w}|| = ||\vec{v}|| ||\vec{w}|| |\sin \theta|$

Theorem 1.4.6

Let $\vec{v}, \vec{w}, \vec{b} \in \mathbb{R}^3$ with $\{\vec{v}, \vec{w}\}$ being linearly independent and let P be a plane in \mathbb{R}^3 with vector eqution $\vec{x} = s\vec{v} + t\vec{w} + \vec{b}$, $s, t \in \mathbb{R}$. If $\vec{n} = \vec{v} \times \vec{w}$, then an equation for the plane is $\vec{a} - \vec{b}\vec{n} = 0$

Normal Vector, Scalar Equation

Let *P* be a plane in \mathbb{R}^3 through the point $B(b_1, b_2, b_3)$.

If
$$\vec{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix} \in \mathbb{R}^3$$
 is a vector such that

$$n_1x_1 + n_2x_2 + n_3x_3 = b_1n_1 + b_2n_2 + b_3n_3$$

Is an equation for P, then \vec{n} is called for <u>normal vector</u> for P.

We call this equation a <u>scalar equation</u> of *P*.

Projection onto a Line in \mathbb{R}^n

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{v} \neq 0$. The <u>projection</u> of \vec{u} onto \vec{v} is defined by

$$proj_{\vec{v}}(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{\left| |\vec{v}| \right|^2} \vec{v}$$

Perpendicular of a Projection in \mathbb{R}^n

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{v} \neq 0$. The perpendicular of \vec{u} onto \vec{v} is defined by $perp_{\vec{v}}(\vec{u}) = \vec{u} - proj_{\vec{v}}(\vec{u})$

Projection, Perpendicular onto a Plane in \mathbb{R}^3

Let *P* be a plane in \mathbb{R}^3 that passes through the origin and has normal vector \vec{n} .

- The projection of $x \in \mathbb{R}^3$ onto P is defined by $proj_P(\vec{x}) = perp_{\vec{n}}(\vec{x})$
- The perpendicular of $x \in \mathbb{R}^3$ onto *P* is defined by $perp_P(\vec{x}) = proj_{\vec{n}}(\vec{x})$

Linear Equation

An equation with n variables (unknowns) $x_1, x_2, ..., x_n$ that can be written in the form $a_1x_1 + \cdots + a_nx_n = b$ where $a_1, ..., a_n$, b are constants is called a <u>linear equation</u>. The constant a_i are called the coefficients of th equation.

System of Linear Equations

A set of m linear equations in the same variables $x_1, ..., x_n$ is called a <u>system of m linear equations in</u> n variables.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{21}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Note a_{ij} is the coefficient of x_i in the *i*-th equation.

Solution of a System

A vector $\vec{s} = \begin{bmatrix} s_1 \\ \dots \\ s_n \end{bmatrix} \in \mathbb{R}^n$ is called a <u>solution</u> of a system of m linear equations in n variables if all m

equations are satisfied when we set $x_i = s_i$ for $1 \le i \le n$. The set of all solutions of a system of linear equations is called the <u>solution set</u> of the system.

Consistent, Inconsistent

A system of linear equations

- With at least one solution is called consistent
- With no solutions is called inconsistent

Theorem 2.1.1

If the system of linear equations

$$a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1$$

$$a_{21}x_1+a_{22}x_2+\cdots+a_{21}x_n=b_2$$
 ...
$$a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m$$
 Has two distinct solutions $\vec{s}=\begin{bmatrix} s_1\\ \dots\\ s_n \end{bmatrix}$ and $\vec{t}=\begin{bmatrix} t_1\\ \dots\\ t_n \end{bmatrix}$, then $\vec{y}=\vec{s}+c(\vec{s}-\vec{t})$ is a distinct solution for each

 $c \in \mathbb{R}$.

Solution sets of a system of m linear equations in n variables must either be empty, contain exactly one vector, or have infinitely many vectors in it.

Coefficient Matrix and Augmented Matrix

The system of equations

$$2x_1 + 3x_2 = 17$$
$$7x_1 - 2x_2 = 22$$

Has coefficient matrix

$$A = \begin{bmatrix} 2 & 3 \\ 7 & -2 \end{bmatrix}$$

And augmented matrix

$$A = \begin{bmatrix} 2 & 3 & 17 \\ 7 & -2 & 22 \end{bmatrix}$$

Elementary Row Operations

The three elementary row operations are

- 1. Multiplying a row by a non-zero scalar (eg. $3R_2$)
- 2. Adding a multiple of one row to another (eg. $3R_2 + R_1$)
- 3. Swapping two rows (eg. $R_2 \leftrightarrow R_3$)

Row Equivalent

Matrices A, B are called row equivalent, writte $A \sim B$, if there exists a sequence of elementary row operations that transform A into B

Theorem 2.2.1

If the augmented matrices $[A_1|\overrightarrow{b_1}]$ and $[A|\overrightarrow{b}]$ are row equivalent, then the systems of linear equations associated with each system are equialent.

Goal: solve a system by using EROs to find a row equivalent matrix for which we can identify the solution.

Reduced Row Echelon Form

A matrix R is said to be in reduced row echelon form (RREF) if:

- 1. Any row containing only zeros are at the bottom
- 2. The first non-zero entry in each non-zero row is 1, called a leading one
- 3. The leading one in each non-zero row is to the right of the leading one in any row above it
- 4. A leading one is the only non-zero entry in its column

If A is row equivalent to matrix R in RREF, then we say that R is the RREF of A.

Theorem 2.2.2

If A is a matrix, then A has a unique reduced row echelon form R.

Algorithm 11.1 Gauss-Jordan to reduce matrix to RREF

- 1. Use EROs to get a leading one in the top of the first non-zero column.
- 2. Use the ERO "add a multiple of one row to another" to make all entries beneath the leading one into a 0.
- 3. Consider the submatrix consisting of columns to the right of the column just modified and the rows beneath the row that just got a leading one. Use EROs to get a leading one in the top left of this submatrix.
- 4. Use the ERO "add a multiple of one row to another" to make all other entries in the column (for the whole matrix) containing the new leadings one into a 0.
- 5. Repeat steps 3 and 4 until the matrix is in RREF.

Free Variable

Let R be the RREF of a coefficient matrix for a system of linear equations. If the j-th column of R does not contain a leading one, then we call x_i a free variable.

Homogeneous System

A system of linear equations is called a homogeneous system if the right hand side only contains zeros That is, has the form $A[\vec{0}]$.

We omit writing the 0 column from a homogeneous system since all EROs give 0 in this column.

Thm 2.2.3

The solution set of a homogeneous system of m linear equations in n variables is a subspace of \mathbb{R}^n , and is called the solution space of the system.

Rank

The rank of a matrix A, denoted rank A, is the number of leading ones in the RREF of the matrix.

Theorem 2.2.4

For any $m \times n$ matrix A we have rank $A \leq \min(m, n)$

Theorem 2.2.5 (System Rank)

Let *A* be the coefficient matrix of a system of *m* linear equations in *n* unknowns $[A|\vec{b}]$.

- 1. The rank of A is less than the rank of the augmented matrix $[A|\vec{b}]$ if and only if the system is inconsistent.
- 2. If the system $[A|\vec{b}]$ is consistent, the number of free variables is $(n \operatorname{rank} A)$.
- 3. The system $[A|\vec{b}]$ is consistent for every $\vec{b} \in \mathbb{R}^n$ if and only if rank A = m.

Theorem 2.2.6 (Solution Thm)

Let $[A|\vec{b}]$ be a consistent system of m linear equations in n variables. If rank A = k < n, then a vector equation of the solution set of $[A|\vec{b}]$ has the form

$$\vec{x} = \vec{d} + t_1 \overrightarrow{v_1} + \dots + t_{n-k} \overrightarrow{v_{n-k}}, \qquad t_1, \dots, t_{n-k} \in \mathbb{R}$$

Where $\vec{d} \in \mathbb{R}$ and $\{\overrightarrow{v_1}, ..., \overrightarrow{v_{n-k}}\}$ is a linearly independent set in \mathbb{R}^n .

The solution set of $[A|\vec{b}]$ is an (n-k)-flat in \mathbb{R}^n .

Theorem 2.2.7

A set of *n* vectors in \mathbb{R}^n is linearly independent if and only if it spans \mathbb{R}^n .

Matrix, $M_{m\times n}(\mathbb{R})$

An $m \times n$ matrix A is a rectangular array

- A has *m* rows and *n* columns
- $a_{ij} = (A)_{ij}$ is the entry in the *i*-th row and *j*-th column
- Two $m \times n$ matrices A and B are equal if $a_{ij} = b_{ij}$ for all $1 \le i \le m, 1 \le j \le n$.
- The set of all $m \times n$ matrices with real entries is denoted $M_{m \times n}(\mathbb{R})$

Addition, Scalar Multiplication

Let $A, B \in M_{m \times n}(\mathbb{R})$ and $c \in \mathbb{R}$. We define (A + B) and cA by $(A + B)_{ij} = (A)_{ij} + (B)_{ij}$ $(cA)_{ij} = c(A)_{ij}$

Theorem 3.1.1

If $A, B, C \in M_{m \times n}(\mathbb{R})$ and $c, d \in \mathbb{R}$ then

- 1. $A + B \in M_{m \times n}(\mathbb{R})$
- 2. (A + B) + C = A + (B + C)
- 3. A + B = B + A
- 4. There exists a matrix $O_{m,n} \in M_{m \times n}(\mathbb{R})$ such that $A + O_{m,n} = A$ for all A. $O_{m,n}$ is the zero matrix, the $m \times n$ matrix with all entries 0.
- 5. For every $A \in M_{m \times n}(\mathbb{R})$ there exists $(-A) \in M_{m \times n}(\mathbb{R})$ such that $A + (-A) = O_{m,n}$
- 6. $cA \in M_{m \times n}(\mathbb{R})$
- 7. c(dA) = (cd)A
- 8. (c+d)A = cA + dA
- 9. c(A + B) = cA + cB
- 10. 1A = A

Transpose

The <u>transpose</u> of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose ij-th entry is the ji-th entry of A. That is,

$$(A^T)_{ij} = (A)_{ji}$$

Theorem 3.1.2

If $A, B \in M_{m \times n}(\mathbb{R})$ and $c \in \mathbb{R}$ then

- 1. $(A^T)^T = A$
- 2. $(A + B)^T = A^T + B^T$
- $3. (cA)^T = c(A^T)$

Matrix Vector Multiplication

Let A be an $m \times n$ matrix whose rows are denoted \vec{a}_i^T for $1 \le i \le m$. For any $\vec{x} \in \mathbb{R}^n$, we define $A\vec{x} = a$

$$\begin{bmatrix} \overrightarrow{a_1} \cdot \overrightarrow{x} \\ \dots \\ \overrightarrow{a_2} \cdot \overrightarrow{x} \end{bmatrix}.$$

Note: if *A* is an $m \times n$ matrix, then $A\vec{x}$ is only defined if $\vec{x} \in \mathbb{R}^n$.

If $\vec{x} \in \mathbb{R}^n$, then $A\vec{x} \in \mathbb{R}^m$

Matrix times Vector, Coefficient format

Let
$$A = [\overrightarrow{a_1}, \dots, \overrightarrow{a_n}]$$
 be an $m \times n$ matrix. For any $\vec{x} = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^n$, we define $A\vec{x} = x_1 \overrightarrow{a_1} + \dots + x_n \overrightarrow{a_n}$.

Theorem 3.1.3 If $\vec{e_i}$ is the *i*-th standard basis vector and $A = [\vec{a_1}, ..., \vec{a_n}]$, then $A\vec{e_i} = \vec{a_i}$.

Theorem 3.1.4

If $A \in M_{m \times n}(\mathbb{R})$, \vec{x} , $\vec{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$

1.
$$A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}$$

- 2. $c(A\vec{x}) = (cA)\vec{x} = A(c\vec{x})$
- 3. If \vec{x} , $\vec{y} \in \mathbb{R}^n$ then

$$\vec{x}^T \vec{y} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 y_1 + \dots + x_n y_n \end{bmatrix} = \vec{x} \cdot \vec{y}$$

4. We represent a system of linear equations

$$[A|\vec{b}]$$
 as $A\vec{x} = \vec{b}$

Matrix Multiplication

For an $m \times n$ matrix A and an $n \times p$ matrix $B = [\overrightarrow{b_1} \dots \overrightarrow{b_2}]$ we define AB to be the $m \times p$ matrix $AB = A[\overrightarrow{b_1} \dots \overrightarrow{b_2}] = [A\overrightarrow{b_1} \dots A\overrightarrow{b_2}]$.

That is $(AB)_{ij} = \overrightarrow{a_i} \cdot \overrightarrow{b_j}$.

If A = B then DA = DB and AD = BD.

Do not assume AD = DB or DA = BD.

Do not assume that if AC = BC then A = B, that is do not cancel out the C.

Theorem 3.1.5

If A, B, C are matrices of the correct size so that the required products are defined, and $t \in \mathbb{R}$, then

- 1. A(B+C) = AB + AC
- 2. t(AB) = (tA)B = A(tB)
- 3. $(AB)^T = B^T A^T$

Matrices Equal (Theorem 3.1.6)

If A, B are $m \times n$ matrices such that $A\vec{x} = B\vec{x}$ for every $x \in \mathbb{R}$, then A = B.

Theorem 3.1.7

If $I = [\overrightarrow{e_1} ... \overrightarrow{e_n}]$, then for any $n \times n$ matrix A we have AI = A = IA.

Theorem 3.1.8

The multiplicative identity for $M_{n\times n}(\mathbb{R})$ is unique.

Identity Matrix

The $n \times n$ identity matrix denoted I or I_n is the matrix such that $(I)_{jj} = 1$, for $1 \le j \le n$ And $(I)_{ij} = 0$ whenever $i \ne j$

Equivalently, $I = [\overrightarrow{e_1} \quad ... \quad \overrightarrow{e_n}].$

If A is an $m \times n$ matrix, we can define a function $f: \mathbb{R}^n \to \mathbb{R}^m$ by $f(\vec{x}) = A\vec{x}$, called a **matrix mapping**. Sometimes we write \vec{x} as a row vector.

Linear Mappings

A function $L: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear mapping if it has the property that

$$L(s\vec{x} + t\vec{y}) = sL(\vec{x}) + tL(\vec{y})$$

For every \vec{x} , $\vec{y} \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$.

Notes

- 1. Linear transformation and linear mapping mean the same thing
- 2. A linear mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ is sometimes called a linear operator

3. If
$$L: \mathbb{R}^n \to \mathbb{R}^m$$
 is a linear mapping, then
$$L(t_1\overrightarrow{v_1} + \dots + t_k\overrightarrow{v_k}) = t_1L(\overrightarrow{v_1}) + \dots + t_kL(\overrightarrow{v_k})$$
 For all $\overrightarrow{v_i} \in \mathbb{R}$ and $t_1, \dots, t_k \in \mathbb{R}$.

Theorem 3.2.2

If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping, then L can be represented as a matrix mapping with the corresponding $m \times n$ matrix [L] given by

$$[L] = [L(\overrightarrow{e_1}) \quad L(\overrightarrow{e_2}) \quad \dots \quad L(\overrightarrow{e_k})]$$

Standard Matrix

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. The matrix $[L] = [L(\overrightarrow{e_1}) \quad L(\overrightarrow{e_2}) \quad \dots \quad L(\overrightarrow{e_k})]$ is called the standard matrix of L and has the property that $L(\vec{x}) = [L]\vec{x}$

Rotations in \mathbb{R}^2

Let $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ denote the function that rotates a vector $\vec{x} \in \mathbb{R}^2$ about the origin through an angle θ .

The standard matrix of R_{θ} is

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Theorem 3.2.3

If $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ is a rotation with rotation matrix $A = [R_{\theta}]$, then the columns of A are orthogonal unit vectors.

Reflections

Let $\operatorname{refl}_P : \mathbb{R}^n \to \mathbb{R}^n$ denote the mapping that sends a vector $\vec{x} \in \mathbb{R}^n$ to its mirror image in the hyperplane P with normal vectors \vec{n} .

The reflection is given by

$$\operatorname{refl}_{P}(\vec{x}) = \vec{x} - 2\operatorname{proj}_{\vec{n}}(\vec{x}).$$

Range

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. The range of L is defined by $\operatorname{Range}(L) = \{L(\vec{x}) \in \mathbb{R}^m | x \in \mathbb{R}^n \}$

Lemma (Theorem 3.3.1)

If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping, then $\vec{D} = \vec{0}$.

Theorem 3.3.2

If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping, then Range(L) is a subspace of \mathbb{R}^m .

Kernel

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping. The kernel (nullspace) of L is the set of all vectors in the domain which are mapped to the zero vector in the codomain. That is,

$$Ker(L) = \{ \vec{x} \in \mathbb{R}^n | L(\vec{x}) = \vec{0} \}.$$

Theorem 3.3.3

If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping, then Ker(L) is a subspace of \mathbb{R}^n .

Theorem 3.3.4

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping with standard matrix [L]. Then $\vec{x} \in \text{Ker}(L)$ if and only if $[L]\vec{x} = \vec{0}$.

Corollary 3.3.5

Let $A \in M_{m \times n}(\mathbb{R})$. The set $\{\vec{x} \in \mathbb{R}^n | A\vec{x} = \vec{0}\}$ is a subspace of \mathbb{R}^n .

Nullspace

Let A be an $m \times n$ matrix. The nullspace (kernel) of A is defined by Null $(A) = {\vec{x} \in \mathbb{R}^n | A\vec{x} = \vec{0}}$

Theorem 3.3.6

If $L: \mathbb{R}^n \to \mathbb{R}^m$ is a linear mapping with standard matrix $[L] = A = [\overrightarrow{a_1} \quad \dots \quad \overrightarrow{a_n}]$, then Range $(L) = Span\{\overrightarrow{a_1}, \dots, \overrightarrow{a_n}\}$.

Column Space

Let $A = [\overrightarrow{a_1} \quad ... \quad \overrightarrow{a_n}]$. The column space of A is the subspace of R^m defined by $Col(A) = Span\{\overrightarrow{a_1}, ..., \overrightarrow{a_n}\} = \{A\vec{x} \in \mathbb{R}^m | \vec{x} \in \mathbb{R}^n\}$.

Row Space

Let A be an $m \times n$ matrix. The row space of A is the subspace of \mathbb{R}^n defined by $\text{Row}(A) = \{A^T \vec{x} \in \mathbb{R}^n | \vec{x} \in \mathbb{R}^m\}.$

Left Nullspace

Let A be an $m \times n$ matrix. The left nullspace of A is the subspace of \mathbb{R}^m defined by $\operatorname{Null}(A^T) = \{\vec{x} \in \mathbb{R}^m | A^T \vec{x} = \vec{0}\}.$ Note: $A^T \vec{x} = \vec{0} \Leftrightarrow \vec{x}^T A = \vec{0}$.

Fundamental Subspaces

For any $m \times n$ matrix A, we call the nullspace, column space, row space, and left nullspace the four fundamental subspaces of A.

Addition and Scalar Multiplication

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ and $M: \mathbb{R}^n \to \mathbb{R}^m$ be linear mappings. We define $L + M: \mathbb{R}^n \to \mathbb{R}^m$ and $cL: \mathbb{R}^n \to \mathbb{R}^m$ by

$$(L+M)(\vec{x}) = L(\vec{x}) + M(\vec{x})$$

And

$$(cL)(\vec{x}) = cL(\vec{x}).$$

Theorem 3.4.1

If $L, M: \mathbb{R}^n \to \mathbb{R}^m$ are linear mappings and $c \in \mathbb{R}$, then $L + M: \mathbb{R}^n \to \mathbb{R}^m$ and $cL: \mathbb{R}^n \to \mathbb{R}^m$ are linear

mappings.

Moreover, we have

$$[L + M] = [L] + [m]$$
 and $[cL] = c[L]$.

Composition

Let $L: \mathbb{R}^n \to \mathbb{R}^m$ and $M: \mathbb{R}^m \to \mathbb{R}^p$ be linear mappings. The composition of M and L is the function $(M \circ L): \mathbb{R}^n \to \mathbb{R}^p$ defined by

$$(M \circ L)(\vec{x}) = M(\vec{x})$$

Theorem 3.4.3

If $L: \mathbb{R}^n \to \mathbb{R}^m$ and $M: \mathbb{R}^m \to \mathbb{R}^p$ are linear mappings, then $(M \circ L): \mathbb{R}^n \to \mathbb{R}^p$ is a linear mapping and $[M \circ L] = [M][L]$.

Vector Space

A set \mathbb{V} with an operation of addition denoted $\vec{x} + \vec{y}$ and an operation of scalar multiplication denoted $c\vec{x}$ is called a vector space over \mathbb{R} if for every $\vec{v}, \vec{x}, \vec{y} \in \mathbb{V}$ and $c, d \in \mathbb{R}$,

- 1. $\vec{x} + \vec{y} \in \mathbb{V}$
- 2. $(\vec{x} + \vec{y}) + \vec{v} = \vec{x} + (\vec{y} + \vec{v})$
- 3. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 4. $\exists \vec{0} \in \mathbb{V}, \forall \vec{x} \in \mathbb{V}, such that \vec{x} + \vec{0} = \vec{x}$
- 5. $\forall \vec{x} \in \mathbb{V}, \exists (-\vec{x}) \in \mathbb{V}, such that \vec{x} + (-\vec{x}) = \vec{0}$
- 6. $c\vec{x} \in \mathbb{V}$
- 7. $c(d\vec{x}) = (cd)\vec{x}$
- 8. $(c + d)\vec{x} = c\vec{x} + d\vec{x}$
- 9. $c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- 10. $1\vec{x} = \vec{x}$

We call elements of V vectors (even if they are matrices or polynomials).

Theorem 4.1.1

If \mathbb{V} is a vector space, then

- 1. $0\vec{x} = \vec{0}$ for all $\vec{x} \in \mathbb{V}$
- 2. $(-\vec{x}) = (-1)\vec{x}$ for all $\vec{x} \in \mathbb{V}$

Proof:

1.
$$0\vec{x} = 0\vec{x} + \vec{0}$$
 (V4)
 $0\vec{x} = 0\vec{x} + [\vec{x} + (-\vec{x})]$ (V5)
 $0\vec{x} = 0\vec{x} + [1\vec{x} + (-\vec{x})]$ (V10)
 $0\vec{x} = [0\vec{x} + 1\vec{x}] + (-\vec{x})$ (V2)
 $0\vec{x} = (0 + 1)\vec{x} + (-\vec{x})$ (V8)
 $0\vec{x} = 1\vec{x} + (-\vec{x})$
 $0\vec{x} = \vec{x} + (-\vec{x})$ (V10)
 $0\vec{x} = \vec{0}$ (V5)

Subspace of **V**

Let $\mathbb V$ be a vector space. If $\mathbb S$ is a subset of $\mathbb V$ and $\mathbb S$ is a vector space under the same operations as $\mathbb V$, then $\mathbb S$ is called a <u>subspace</u> of $\mathbb V$.

Subspace Test (Theorem 4.1.2)

If $\mathbb S$ is a non-empty subset of $\mathbb V$ such that $\vec x + \vec y \in \mathbb S$ and $c\vec x \in \mathbb S$ for all $\vec x, \vec y \in \mathbb S$ and $c \in \mathbb R$ under the operations of $\mathbb V$, then $\mathbb S$ is a subspace of $\mathbb V$.

Span

Let $B = \{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_k}\}$ be a set of "vectors" in a vector space \mathbb{V} . We define the span of B by $Span B = \{c_1\overrightarrow{v_1} + \cdots + c_k\overrightarrow{v_k}|c_1, ..., c_k \in \mathbb{R}\}$

Theorem 4.1.3

If $B = \{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ is a set of "vectors" in a vector space \mathbb{V} , then $Span\ B$ is a subspace of \mathbb{V} .

Theorem 4.1.4

Let \mathbb{V} be a vector space and $\overrightarrow{v_1}$, ..., $\overrightarrow{v_k} \in \mathbb{V}$.

Then $\overrightarrow{v_i} \in Span \{\overrightarrow{v_1}, \dots, \overrightarrow{v_{i-1}}, \overrightarrow{v_{i+1}}, \dots, \overrightarrow{v_k}\}$ if and only if $Span \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\} = Span \{\overrightarrow{v_1}, \dots, \overrightarrow{v_{i-1}}, \overrightarrow{v_{i+1}}, \dots, \overrightarrow{v_k}\}$.

Linearly (In)dependent

A set of vectors $\{\overrightarrow{v_1}, ..., \overrightarrow{v_k}\}$ in a vector space $\mathbb V$ is said to be

- Linearly dependent if $\exists c_1, ..., c_k$ not all zero such that
 - $\vec{0} = c_1 \vec{v_1} + \dots + c_k \vec{v_k}$
- Linearly independent if the only solution to

 $\vec{0} = c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k}$ is the trivial solution $c_1 = \dots = c_k = 0$.

Theorem 4.1.5

A set of vectors $\{\overrightarrow{v_1},...,\overrightarrow{v_k}\}\in\mathbb{V}$ is linealy dependent if and only if $\overrightarrow{v_i}\in Span\ \{v_1,...,\overrightarrow{v_{i-1}},\overrightarrow{v_{i+1}},...,\overrightarrow{v_k}\}$ For some $i,1\leq i\leq k$.

Theorem 4.1.6

Any set of vectors in a vector space V which contains the zero vector is linearly dependent.

Basis

Let V be a vector space.

- The set B is called a basis for \mathbb{V} if B is a linearly independent spanning set for \mathbb{V} .
- We define a basis for $\{\vec{0}_{\mathbb{V}}\}$ to be the empty set.

Theorem 4.2.1

Let $B = \{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\}$ be a basis for a vector space \mathbb{V} and let $C = \{\overrightarrow{w_1}, ..., \overrightarrow{w_k}\}$ be a set in \mathbb{V} . If k > n then C is linearly dependent.

Theorem 4.2.2

If $B = \{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\}$ and $C = \{\overrightarrow{w_1}, ..., \overrightarrow{w_k}\}$ are bases for a vector space \mathbb{V} then k = n.

Dimension

If $B = \{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\}$ is a basis for a vector space \mathbb{V} , then dim $\mathbb{V} = n$.

- If \mathbb{V} is the trivial vector space, then dim $\mathbb{V} = 0$.
- If V does not have a basis with a finite number of vectors in it, then V is said to be infinite dimensional.

Theorem 4.2.3

If \mathbb{V} is an *n*-dimensional vector space with n > 0 then

- 1. A set of more than n vectors in \mathbb{V} must be linearly dependent
- 2. A set of fewer than n vectors in \mathbb{V} cannot span \mathbb{V} .
- 3. A set of n vectors in \mathbb{V} is linearly independent if and only if it spans \mathbb{V} .

Theorem 4.2.4

If $\mathbb V$ is an n-dimensional vector space and $\{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ is a linearly independent set in $\mathbb V$ with k < n, then there exists $\overrightarrow{w_{k+1}}, \dots, \overrightarrow{w_n}$ in $\mathbb V$ such that $\{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}, \overrightarrow{w_{k+1}}, \dots, \overrightarrow{w_n}\}$ is a basis for $\mathbb V$.

Corollary 4.2.5

If $\mathbb S$ is a subspace of a finite dimensional vector space $\mathbb V$, then dim $\mathbb S \leq \dim \mathbb V$.

Theorem 4.3.1

If $B = \{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\}$ is a basis for a vector space \mathbb{V} , then every $\overrightarrow{v} \in \mathbb{V}$ can be written as a unique linear combination of the vectors in B.

B-coordinates

Let $B = \{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\}$ be a basis for a vector space \mathbb{V} . If $\overrightarrow{v} = b_1 \overrightarrow{v_1} + \cdots + b_n \overrightarrow{v_n}$, then $b_1, ..., b_n$ are called the B-coordinates of \overrightarrow{v} , and we define the B-coordinate vector by

$$[\vec{v}]_B = \begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix}.$$

Theorem 4.3.2

If \mathbb{V} is a vector space with basis $B = \{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\}$, then for any $\vec{v}, \vec{w} \in \mathbb{V}$ and $s, t \in \mathbb{R}$ we have $[s\vec{v} + t\vec{w}]_B = s[\vec{v}]_B + t[\vec{w}]_B$.

Change of Coordinates Matrix

Let $B = \{\overrightarrow{v_1}, ..., \overrightarrow{v_n}\}$ and C be bases for vector space $\mathbb V$. The change of coordinates matrix from B-coordinates to C-coordinates is defined by ${}_CP_B = [[\overrightarrow{v_1}]_C \quad ... \quad [\overrightarrow{v_n}]_C]$. For any $\vec{x} \in \mathbb V$ we have $[\vec{x}]_C = {}_CP_B[\vec{x}]_B$

Theorem 4.3.3

If B and C are bases for an n-dimensional vector space \mathbb{V} , then the change of coordinate matrices satisfy

$$_{C}P_{BB}P_{C}=I={_{B}P_{CC}P_{B}}$$

Left and Right Inverse

Let *A* be an $m \times n$ matrix.

- If *B* is an $n \times m$ matrix such that $AB = I_m$, then *B* is called a **right inverse** of *A*.
- If C is an $n \times m$ matrix such that $CA = I_n$, then C is called a **left inverse** of A.

Theorem 5.1.1

If A is an $m \times n$ matrix with m > n, then A cannot have a right inverse.

Corollary 5.1.2

If *A* is an $m \times n$ matrix with m < n, then *A* cannot have a left inverse.

Square Matrix

An $n \times n$ matrix is called a **square matrix**.

Theorem 5.1.3

If A, B, C are $n \times n$ matrices such that AB = I = CA, then B = CProof: B = IB = (CA)B = C(AB) = CI = C

Matrix Inverse, Invertible

Let *A* be an $n \times n$ matrix. If *B* is a matrix such that AB = I = BA, then *B* is called the inverse of *A*. We write $B = A^{-1}$ and we say that A is **invertible**.

Theorem 5.1.4

If A and B are $n \times n$ matrices such that AB = I, then A and B are invertible and rank A = rank B = n.

Theorem 5.1.5

If *A* and *B* are invertible matrices and $c \in \mathbb{R}$ with $c \neq 0$, then:

1.
$$(cA)^{-1} = \frac{1}{c}A^{-1}$$

2. $(A^T)^{-1} = (A^{-1})^T$

2.
$$(A^T)^{-1} = (A^{-1})^T$$

3.
$$(AB)^{-1} = B^{-1}A^{-1}$$

Theorem 5.1.6

If *A* is an $n \times n$ matrix such that rank A = n, then *A* is invertible.

Inverse of $M_{2\times \mathbb{R}}$

- $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad - bc \neq 0$

- If A is invertible then $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Invertible Matrix Theorem

For any $n \times n$ matrix A, the following are equivalent:

- 1. *A* is invertible
- 2. The RREF of *A* is *I*
- 3. rank A = n
- 4. For all $\vec{b} \in \mathbb{R}^n$, the system of equtions $A\vec{x} = \vec{b}$ is consistent with a unique solution.
- 5. The nullspace of *A* is $\{\vec{0}\}$.
- 6. The columns of A form a basis for \mathbb{R}^n .
- 7. The rows of *A* form a basis for \mathbb{R}^n .
- 8. A^T is invertible.

If *A* is invertible, the solution to $A\vec{x} = \vec{b}$ comes from

$$A^{-1}A\vec{x} = A^{-1}\vec{b}$$

$$I\vec{x} = A^{-1}\vec{b}$$

$$\vec{x} = A^{-1}\vec{b}$$

Elementary Matrix

An $n \times n$ matrix E is called an elementary matrix if it can be obtained from the $n \times n$ identity matrix by performing exactly one elementary row operation.

Theorem 5.2.1

If *E* is an elementary matrix, then *E* is invertible and E^{-1} is also an elementary matrix.

Theorem 5.2.2

If A is an $m \times n$ matrix and E is the $m \times m$ elementary matrix corresponding to the row operation $R_i + cR_j$

for $i \neq j$, then *EA* is the matrix obtained from *A* by performing the row operation $R_i + cR_i$ on *A*.

Theorem 5.2.3

If *A* is an $m \times n$ matrix and *E* is the $m \times m$ elementary matrix for the row operation cR_i , then *EA* is the matrix obtained from *A* by performing the row operation cR_i on *A*.

Theorem 5.2.4

If *A* is an $m \times n$ matrix and *E* is the $m \times m$ elementary matrix for the row operation $R_i \leftrightarrow R_j$, for $i \neq j$, then *EA* is the matrix obtained from *A* by performing the row operation $R_i \leftrightarrow R_j$ on *A*.

Corollary 5.2.5

If *A* is an $m \times n$ matrix and *E* is an $m \times m$ elementary matrix, then $rank \ EA = rank \ A$.

Theorem 5.2.6

If A is an $m \times n$ matrix with reduced row echelon form R, then there exists a sequence $E_1, \dots E_k$ of $m \times m$ elementary matrices such that $E_k \dots E_2 E_1 A = R$. In particular, $A = E_1^{-1} E_2^{-1} \dots E_k^{-1} R$.

Theorem 5.2.7

If A is an $n \times n$ invertible matrix, then A and A^{-1} can be written as a product of elementary matrices.

2×2 Determinant

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

The determinant of *A* is

$$\det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Cofactor

Let A be an $n \times n$ matrix with $n \ge 2$. let A(i,j) be the $(n-1) \times (n-1)$ matrix obtained from A by deleting the i-th row and the j-th column. The cofactor of a_{ij} is $C_{ij} = (-1)^{i+j} \det A(i,j)$.

$n \times n$ Determinant

Let *A* be an $n \times n$ matrix with $n \ge 2$. The determinant of *A* is

$$\det A = \sum_{i=1}^{n} a_{i1} C_{i1}$$

Where the determinant of a 1×1 matrix is defined by det[c] = c.

Theorem 5.3.1

Let *A* be an $n \times n$ matrix. For any *i* with $1 \le i \le n$,

$$\det A = \sum_{k=1}^{n} a_{ik} C_{ik}$$

(the cofactor expansion across the *i*-th row), OR for any *j* with $1 \le j \le n$,

$$\det A = \sum_{k=1}^{n} a_{kj} C_{kj}$$

(the cofactor expansion across the *j*-th column).

Upper Triangular, Lower Triangular

An $m \times n$ matrix U is said to be upper triangular if $u_{ij} = 0$ whenever i > j. An $m \times n$ matrix L is said to be lower triangular if $l_{ij} = 0$ whenever i < j.

Theorem 5.3.2

If an $n \times n$ matrix A is upper triangular or lower triangular, then $\det A = a_{11}a_{22} \dots a_{nn}$.

Theorem 5.3.3

If *A* is an $n \times n$ matrix and *B* is the matrix obtained from *A* by multiplying one row of *A* by $c \in \mathbb{R}$, then det $B = c \det A$.

Theorem 5.3.4

If *A* is an $n \times n$ matrix and *B* is the matrix obtained from *A* by swapping two rows of *A*, then det $B = -\det A$

Corollary 5.3.5

If an $n \times n$ matrix A has two identical rows, then det A = 0

Theorem 5.3.6

If *A* is an $n \times n$ matrix and *B* is the matrix obtained from *A* by adding a multiple of one row of *A* to another row, then det $B = \det A$.

Corollary 5.3.7

If *A* is an $n \times n$ matrix and *E* is an $n \times n$ elementary matrix, then $\det EA = \det E \det A$

Addition to the Invertible Matrix Theorem (5.3.8)

An $n \times n$ matrix A is invertible if and only if $\det A \neq 0$

Theorem 5.3.9

If A and B are $n \times n$ matrices, then $\det(AB) = \det A \det B$.

<u>Proof</u>: by theorem 5.2.6, there exists a sequence of elementary matrices $E_1, E_2, ..., E_k$ such that $A = E_1 E_2 ... E_k R$ where R is the RREF of A.

- If $\det A \neq 0$:

Then *A* is invertible, and R = I. Using Corollary 5.3.7, $det(AB) = det(E_1 \dots E_k B) = det(E_1 \dots E_k) det B = det A det B$

- If $\det A = 0$:

 $R \neq I$ and R contains at least one row of zeros.

 $\det(AB) = \det(E_1 \dots E_k RB) = \det E_1 \dots \det E_k \det(RB)$

Since *R* contains a row of zeros, so does *RB*.

Thus det(RB) = 0 and det(AB) = 0 = 0 det B = det A det B

Corollary 5.3.10

If *A* is an invertible matrix, then

$$\det(A^{-1}) = \frac{1}{\det A}$$

Theorem 5.3.11

If *A* is an $n \times n$ matrix, then $\det A = \det A^T$.

Since $\det A = \det A^T$, we can do elementary column operations as well as EROS when evaluating a determinant.

Lemma 5.4.1

If *A* is an $n \times n$ matrix with cofactors C_{ij} and $i \neq j$, then

$$\sum_{k=1}^{n} (A)_{ik} C_{jk} = 0$$

Proof:

Let B be the matrix obtained from A by replacing the j-th row of A by the i-th row of A

That is,

$$b_{lk} = a_{lk}$$
 for all $l \neq j$

And $b_{jk} = a_{ik}$.

Then B has two identical rows, thus $\det B = 0$.

Since the cofactors of the j-th row of the B are the same as the cofactors of the j-th row of A.

$$0 = \det B = \sum_{k=1}^{n} b_{jk} C_{jk} = \sum_{k=1}^{n} a_{ik} C_{jk}$$

Theorem 5.4.2

If *A* is an invertible $n \times n$ matrix, then

$$(A^{-1})_{ij} = \frac{1}{\det A} C_{ji}$$

Proof:

Let the cofactors of a_{ij} be C_{ij} .

Let *B* be the $n \times n$ matrix defined by $(B)_{ij} = \frac{1}{\det A} C_{ji}$

Then for $1 \le j \le n$,

$$(AB)_{ii} = \sum_{k=1}^{n} (A)_{ik} \cdot (B)_{ki} = \frac{1}{\det A} \sum_{k=1}^{n} (A)_{ik} C_{ik} = \frac{1}{\det A} \det A = 1$$

For $(AB)_{ij}$ with $i \neq j$ we have

$$(AB)_{ij} = \sum_{k=1}^{n} (A)_{ik} \cdot (B)_{kj} = \frac{1}{\det A} \sum_{k=1}^{n} (A)_{ik} C_{jk} = 0$$
 (Lemma 5.4.1)

Thus AB = I so $B = A^{-1}$

Cofactor Matrix of A

Let A be an $n \times n$ matrix. Then $(\operatorname{cof} A)_{ij} = C_{ij}$.

Adjugate of A

Let A be an $n \times n$ matrix. Then $(adj A)_{ij} = C_{ji}$. In particular, $adj A = (cof A)^T$.

Note:
$$A^{-1} = \frac{1}{\det A}$$
 adj A .

Cramer's Rule (Theorem 5.4.3)

If *A* is an $n \times n$ invertible matrix, then the solution \vec{x} of $A\vec{x} = \vec{b}$ is given by

$$x_i = \frac{\det A_i}{\det A}, \qquad 1 \le i \le n$$

Where A_i is the matrix obtained from A by replacing the i-th column of A by \vec{b} .

Formula

The area of the parallelogram induced by \vec{u} and \vec{v} is $Area(\vec{u}, \vec{v}) = |det[\vec{u} \ \vec{v}]|$

Formula

The volume of a parallelepiped induced by \vec{u} , \vec{v} , \vec{w} is

$$Volume(\vec{u}, \vec{v}, \vec{w}) = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix}$$

B-matrix

Let $B = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ be a basis for \mathbb{R}^n and let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. The B-matrix of L is defined to be $[L]_B = [[L(\overrightarrow{v_1})]_B \dots [L(\overrightarrow{v_n})]_B]$. If satisfies $[L(\vec{x})]_B = [L]_B[\vec{x}]_B$.

Diagonal Matrix

An $n \times n$ matrix D is said to be a diagonal matrix if $d_{ij} = 0$ for all $i \neq j$. We denote a diagonal matrix by diag $(d_{11}, d_{22}, ..., d_{nn})$.

Theorem 6.1.1

If A and B are $n \times n$ matrices such that $P^{-1}AP = B$ for some invertible matrix P, then

- 1. $\operatorname{rank} A = \operatorname{rank} B$
- 2. $\det A = \det B$
- 3. $\operatorname{tr} A = \operatorname{tr} B$ where $\operatorname{tr} A$ is defined by

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$$

Similar matrices

If *A* and *B* are $n \times n$ matrices such that $P^{-1}AP = B$ for some invertible matrix *P*, then *A* is said to be similar to *B*.

Eigenvalues, Eigenvectors, Eigenpair

Let A be an $n \times n$ matrix. If there exists a vector $\vec{v} \neq \vec{0}$ such that $A\vec{v} = \lambda \vec{v}$, then λ is called an eigenvalue of A and \vec{v} is called an eigenvector of A corresponding to λ . The pair (λ, \vec{v}) is called an eigenpair.

Eigenvalues, Eigenvectors

Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. If there exists a vector $\vec{v} \neq \vec{0}$ such that $L(\vec{v}) = \lambda \vec{v}$, then λ is called an eigenvalue of L and \vec{v} is called an eigenvector of L corresponding to λ .

Characteristic Polynomial

Let A be an $n \times n$ matrix. The characteristic polynomial of A is the n-th degree polynomial $C(\lambda) = \det(A - \lambda I)$.

Theorem 6.2.1

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if $C(\lambda) = 0$.

Eigenspace

Let A be an $n \times n$ matrix with eigenvalue λ . We call the nullspace of $A - \lambda I$ the eigenspace of λ . The eigenspace is denoted E_{λ} .

The set S of eigenvectors with eigenvalue λ is

$$S = E_{\lambda} - \{\vec{0}\}.$$

Theorem 6.2.2

If A is an $n \times n$ upper or lower triangular matrix, then the eigenvalues of A are the diagonal entries of A.

Algebraic/Geometric Multiplicity

Let *A* be an $n \times n$ matrix with eigenvalue λ_1 .

The algebraic multiplicity of λ_1 , denoted a_{λ_1} , is the number of times that λ_1 is a root of the characteric polynomial $C(\lambda)$. That is, if

$$C(\lambda) = (\lambda - \lambda_1)^k C_1(\lambda)$$
, where $C_1(\lambda_1) \neq 0$, then $a_{\lambda_1} = k$.

The geometric multiplicity of λ_1 , denoted g_{λ_1} , is the dimension of its eigenspace.

So
$$g_{\lambda_1} = \dim E_{\lambda_1}$$

Lemma 6.2.3

If *A* and *B* are similar matrices, then *A* and *B* have the same characteristic polynomial and hence the same eigenvalues.

Theorem 6.2.4

If *A* is an $n \times n$ matrix with eigenvalue λ_1 , then $1 \le g_{\lambda_1} \le a_{\lambda_1}$.

Diagonalizable

An $n \times n$ matrix A is said to be diagonalizable if A is similar to a diagonal matrix D. If $P^{-1}AP = D$, then we say that P diagonalizes A.

Theorem 6.3.1

An $n \times n$ matrix A is diagonalizable if and only if there exists a basis $\{\vec{v}_1, ..., \vec{v}_n\}$ for \mathbb{R}^n consisting of eigenvectors of A.

Theorem 6.3.2

If A is n $n \times n$ matrix with eigenpairs $(\lambda_1, \vec{v}_1), (\lambda_2, \vec{v}_2), \dots, (\lambda_k, \vec{v}_k)$ where $\lambda_i \neq \lambda_j$ for $i \neq j$, Then $\{\vec{v}_1, \dots, \vec{v}_k\}$ is linearly independent.

Theorem 6.3.3

If A is an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \dots, \lambda_k$ and $B_i = \{\vec{v}_{i,1}, \dots, \vec{v}_{i,g_{\lambda_i}}\}$ is a basis for the eigenspace of

 λ_i for $1 \le i \le k$, then

 $B_1 \cup B_2 \cup \cdots \cup B_k$ is a linearly independent set.

Corollary 6.3.4

If *A* is an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \dots, \lambda_k$, then *A* is diagonalizable if and only if $g_{\lambda_i} = a_{\lambda_i}$ for $1 \le i \le k$.

Corollary 6.3.5

If *A* is an $n \times n$ matrix with *n* distinct eigenvalues then *A* is diagonalizable.

Theorem 6.3.6

If $\lambda_1, \dots, \lambda_n$ are all the eigenvalues of an $n \times n$ matrix A, then tr $A = \lambda_1 + \dots + \lambda_n$.

Algorithm 35.2

To diagonalize an $n \times n$ matrix A, or show that A is not diagonalizable.

- 1. Find and factor the characteristic polynomial $C(\lambda) = \det(A \lambda I)$
- 2. Let $\lambda_1, ..., \lambda_n$ denote the n-roots of $C(\lambda)$ (repeated according to multiplicity). If any of the eigenvalues λ_i are not real, then A is not diagonalizable over \mathbb{R} .
- 3. Find a basis for the eigenspace of each λ_i by finding a basis for the nullspace of $A \lambda_i I$.
- 4. If $g_{\lambda_i} < a_{\lambda_i}$ for any λ_i , then A is not diagonalizable.

Otherwise, form a basis $\{\vec{v}_1, ..., \vec{v}_n\}$ for \mathbb{R}^n of eigenvectors of A by using theorem 3.

Let $P = [\vec{v}_1 \quad \dots \quad \vec{v}_n]$.

Then $P^{-1}AP = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ where λ_i is an eigenvalue corresponding to the eigenvector \vec{v}_i for $1 \le i \le n$.

Theorem 6.4.1

Let A be an $n \times n$ matrix. If there exists a matrix P and diagonal matrix D such that $P^{-1}AP = D$, then

 $A^k = PD^kP^{-1}.$