

SEQUENCE LISTING

<110> Tanox, Inc.
 LI, Kang
 WANG, Shen-Wu
 HU, Guanghui
 YAO, Zengbin

<120> Human Mast Cell Expressed Membrane Protein

<130> Case 1043

<150> 60/483,360
<151> 2003-06-27

<160> 4

<170> PatentIn version 3.2

<210> 1
<211> 1380
<212> DNA
<213> Homo sapiens

<400> 1

ggttatgggtt taactcagca gaatttggta aacaactacg acatgctggg gatcatggca	60
tggaaatgcaa cttgcaaaaaa ctggctggca gcagaggctg ccctggaaaa gtactacctt	120
tccatTTTT atgggattga gttcgTTGtg ggagtccTTg gaaataccat tggTTTAC	180
ggctacatct tctctctgaa gaactggaac agcagtaata ttatctctt taacctctct	240
gtctctgact tagCTTTCT gtgcaccCTC cccatgCTGA taaggagTTA tgccaatgga	300
aactggatat atggagacgt gctctgcata agcaaccgat atgtgCTTC tgccaacCTC	360
tataccagca ttctCTTTCT cactTTTATC agcatagATC gataCTTGTat aattaAGTat	420
cCTTCCGAG aacacCTTCT gcaAAAGAAA gagTTTGCTA tttaatCTC cttggCCATT	480
tgggTTTTAG taacCTTAGA gttactACCC atactCCCC ttataAAATCC tggTTATAACT	540
gacaatGGCA ccacCTGTaa tgatTTGCA agttCTGGAG accCCAACTA caacCTCATT	600
tacAGCATGT gtctaACACT gttggggTTc cttattCCTC ttttGTat gtgtttCTT	660
tattACAAGA ttgCTCTCTT cctAAAGCAG aggaATAGGC aggttGCTAC tgctCTGCC	720
cTTGAAAAGC ctctcaACTT ggtcatcatg gcagtggtaa tcttCTCTGT gcttttACA	780
ccCTATCACG tcATGCGGAA tgtgaggATC gCTTCACGCC tggggAGTTG gaAGCAGTAT	840
cagtgcACTC aggtCGTcat caactCCTT tacATTGTGA cacGGCCttt ggcTTTCTG	900
aacAGTGTCA tcaACCCTGT cttCTATTTT ctttgggAG atcactTCAG ggACATGCTG	960
atGAATCAAC tgAGACACAA cttCAAATCC cttACATCCT ttagcAGATG ggCTCATGAA	1020
ctcCTACTTT cattcAGAGA aaAGTgAGGG gcttGTaaa cagattGTTc tacAGATGAA	1080
tctGTAGGCC agttACAGTT tgCCCTTAact catAGACATC aatcAGAGAG tGTCACAGAT	1140
ttaACCTTGA tctAAAGACA agttGTACCC agAGTATGTG aaaAGAATGG gacGACAAGA	1200
atgtactggt ttCTTCTCT aagaATTGAA aggAGTTGAA ctgcCTTATG tttgggCATG	1260
taactccaaa atactAGGTA gtataAGGCT ttctcaATCA gtGCAAAAT ggaAGATATA	1320

taaagcaaca agttgtctgc atttgatcac tggtcagatt gtaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaa 1380

<210> 2
<211> 330
<212> PRT
<213> Homo sapiens

<400> 2

Met Ala Trp Asn Ala Thr Cys Lys Asn Trp Leu Ala Ala Glu Ala Ala
1 5 10 15

Leu Glu Lys Tyr Tyr Leu Ser Ile Phe Tyr Gly Ile Glu Phe Val Val
20 25 30

Gly Val Leu Gly Asn Thr Ile Val Val Tyr Gly Tyr Ile Phe Ser Leu
35 40 45

Lys Asn Trp Asn Ser Ser Asn Ile Tyr Leu Phe Asn Leu Ser Val Ser
50 55 60

Asp Leu Ala Phe Leu Cys Thr Leu Pro Met Leu Ile Arg Ser Tyr Ala
65 70 75 80

Asn Gly Asn Trp Ile Tyr Gly Asp Val Leu Cys Ile Ser Asn Arg Tyr
85 90 95

Val Leu His Ala Asn Leu Tyr Thr Ser Ile Leu Phe Leu Thr Phe Ile
100 105 110

Ser Ile Asp Arg Tyr Leu Ile Ile Lys Tyr Pro Phe Arg Glu His Leu
115 120 125

Leu Gln Lys Lys Glu Phe Ala Ile Leu Ile Ser Leu Ala Ile Trp Val
130 135 140

Leu Val Thr Leu Glu Leu Leu Pro Ile Leu Pro Leu Ile Asn Pro Val
145 150 155 160

Ile Thr Asp Asn Gly Thr Thr Cys Asn Asp Phe Ala Ser Ser Gly Asp
165 170 175

Pro Asn Tyr Asn Leu Ile Tyr Ser Met Cys Leu Thr Leu Leu Gly Phe
180 185 190

Leu Ile Pro Leu Phe Val Met Cys Phe Phe Tyr Tyr Lys Ile Ala Leu
195 200 205

Phe Leu Lys Gln Arg Asn Arg Gln Val Ala Thr Ala Leu Pro Leu Glu
210 215 220

Lys Pro Leu Asn Leu Val Ile Met Ala Val Val Ile Phe Ser Val Leu
225 230 235 240

Phe Thr Pro Tyr His Val Met Arg Asn Val Arg Ile Ala Ser Arg Leu
 245 250 255

Gly Ser Trp Lys Gln Tyr Gln Cys Thr Gln Val Val Ile Asn Ser Phe
 260 265 270

Tyr Ile Val Thr Arg Pro Leu Ala Phe Leu Asn Ser Val Ile Asn Pro
 275 280 285

Val Phe Tyr Phe Leu Leu Gly Asp His Phe Arg Asp Met Leu Met Asn
 290 295 300

Gln Leu Arg His Asn Phe Lys Ser Leu Thr Ser Phe Ser Arg Trp Ala
 305 310 315 320

His Glu Leu Leu Leu Ser Phe Arg Glu Lys
 325 330

<210> 3
<211> 1029
<212> DNA
<213> Homo sapiens

<400> 3		
atgctgggga tcatggcatg gaatgcaact tgcaaaaact ggctggcagc agaggctgcc	60	
gactacaaag acgatgacga caagctggaa aagtactacc ttccattttt ttatggattt	120	
gagttcggtt tgggagtcct tggaaatacc attgttgttt acggctacat cttctctctg	180	
aagaactggaa acagcagtaa tatttatctc tttaacctct ctgtctctga ctttagctttt	240	
ctgtgcaccc tccccatgct gataaggagt tatgccaatg gaaactggat atatggagac	300	
gtgctctgca taagcaaccg atatgtgctt catgccaacc tctataccag cattctcttt	360	
ctcacttttta tcagcataga tcgataacttg ataattaagt atcccttccg agaacacctt	420	
ctgcaaaaga aagagtttgc tattttaaatc tccttggcca tttgggtttt agtaacctta	480	
gagttactac ccatacttcc ccttataaaat cctgttataa ctgacaatgg caccacctgt	540	
aatgatttttca agagttctgg agaccccaac tacaacctca tttacagcat gtgtctaaca	600	
ctgttgggtt tccttattcc tctttttgtt atgtgtttct tttattacaa gattgctctc	660	
ttcctaaagc agaggaatag gcaggttgct actgctctgc cccttgaaaa gcctctcaac	720	
ttggtcatca tggcagtggtaatcttctct gtgctttta caccctatca cgtcatgcgg	780	
aatgtgagga tcgcttcacg cctggggagt tggaaagcagt atcagtgcac tcaggtcgac	840	
atcaactcct tttacattgt gacacggcct ttggcccttc tgaacagtgt catcaaccct	900	
gtcttctatt ttctttggg agatcaacttc agggacatgc tggatgaatca actgagacac	960	
aacttcaaatt cccttacatc cttagcaga tgggctcatg aactcctact ttcattcaga	1020	
gaaaaagtga	1029	

<211> 342
<212> PRT
<213> Homo sapiens

<400> 4

Met Leu Gly Ile Met Ala Trp Asn Ala Thr Cys Lys Asn Trp Leu Ala
1 5 10 15

Ala Glu Ala Ala Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu Lys Tyr
20 25 30

Tyr Leu Ser Ile Phe Tyr Gly Ile Glu Phe Val Val Gly Val Leu Gly
35 40 45

Asn Thr Ile Val Val Tyr Gly Tyr Ile Phe Ser Leu Lys Asn Trp Asn
50 55 60

Ser Ser Asn Ile Tyr Leu Phe Asn Leu Ser Val Ser Asp Leu Ala Phe
65 70 75 80

Leu Cys Thr Leu Pro Met Leu Ile Arg Ser Tyr Ala Asn Gly Asn Trp
85 90 95

Ile Tyr Gly Asp Val Leu Cys Ile Ser Asn Arg Tyr Val Leu His Ala
100 105 110

Asn Leu Tyr Thr Ser Ile Leu Phe Leu Thr Phe Ile Ser Ile Asp Arg
115 120 125

Tyr Leu Ile Ile Lys Tyr Pro Phe Arg Glu His Leu Leu Gln Lys Lys
130 135 140

Glu Phe Ala Ile Leu Ile Ser Leu Ala Ile Trp Val Leu Val Thr Leu
145 150 155 160

Glu Leu Leu Pro Ile Leu Pro Leu Ile Asn Pro Val Ile Thr Asp Asn
165 170 175

Gly Thr Thr Cys Asn Asp Phe Ala Ser Ser Gly Asp Pro Asn Tyr Asn
180 185 190

Leu Ile Tyr Ser Met Cys Leu Thr Leu Leu Gly Phe Leu Ile Pro Leu
195 200 205

Phe Val Met Cys Phe Phe Tyr Tyr Lys Ile Ala Leu Phe Leu Lys Gln
210 215 220

Arg Asn Arg Gln Val Ala Thr Ala Leu Pro Leu Glu Lys Pro Leu Asn
225 230 235 240

Leu Val Ile Met Ala Val Val Ile Phe Ser Val Leu Phe Thr Pro Tyr
245 250 255

His Val Met Arg Asn Val Arg Ile Ala Ser Arg Leu Gly Ser Trp Lys
260 265 270

Gln Tyr Gln Cys Thr Gln Val Val Ile Asn Ser Phe Tyr Ile Val Thr
275 280 285

Arg Pro Leu Ala Phe Leu Asn Ser Val Ile Asn Pro Val Phe Tyr Phe
290 295 300

Leu Leu Gly Asp His Phe Arg Asp Met Leu Met Asn Gln Leu Arg His
305 310 315 320

Asn Phe Lys Ser Leu Thr Ser Phe Ser Arg Trp Ala His Glu Leu Leu
325 330 335

Leu Ser Phe Arg Glu Lys
340