Raport z Symulacji Monte Carlo

Opis wyników

W ramach zadania wykorzystałem metode Monte Carlo do przybliżonego obliczenia wartości całek oznaczonych dla nastepujacych funkcji:

- $f(x) = \sin(x)$ na przedziale $[0, \pi]$,
- $g(x) = 4x(1-x)^3$ na przedziale [0, 1],
- $h(x) = x^{1/3}$ na przedziale [0, 8],
- $\pi(x,y) = \begin{cases} 1 & x^2 + y^2 < 1 \\ 0 & \text{else} \end{cases}$ w kwadracie jednostkowym (przybliżanie wartości π).

Na wykresach (pliki .png) przedstawiam wyniki pojedynczych symulacji oraz ich średnie wartości, umożliwiajac porównanie przybliżonych wyników Monte Carlo z wartościami faktycznymi.

Wnioski

1. Dokładność przybliżeń:

Metoda Monte Carlo skutecznie przybliża wartości całek dla wszystkich analizowanych funkcji. Wraz ze wzrostem liczby próbek n rośnie stabilność wyników, co pozwala uzyskać przybliżenia bliższe wartości rzeczywistej.

2. Wpływ liczby powtórzeń:

Zwiekszenie liczby powtórzeń poprawia stabilność wyników, zmniejszajac odchylenia od wartości rzeczywistej. Widać przez to, że liczba powtórzeń jest kluczowa dla dokładności wyników.

3. Charakterystyka zwiekszania ilości powtórzeń dla n:

Warto zauważyć że dla dużych wartości n wynik zaczylaja oscylować wokół wartości faktycznej w stałym zakresie co obrazuje że zwiekszanie liczby powtórzeń nie daje lepszego przybliżenia oraz że lepszym sposobem jest branie średniej z tych wyników.

4. Efektywność obliczeniowa:

Choć metoda Monte Carlo jest prosta w implementacji, wymaga dużej mocy obliczeniowej dlatego powinna być używana by w relatywnie dokładny sposób przybliżać wartości o średniej dokładności.

Podsumowanie

Symulacja Monte Carlo pozwala uzyskać wartości bliskie rzeczywistym dla wybranych funkcji, stanowiac skuteczne narzedzie w przypadkach, gdy analityczne obliczenia sa trudne. Zwiekszenie liczby próbek i powtórzeń znaczaco poprawia dokładność wyników, potwierdzajac efektywność tej metody.

Jan Ryszkiewicz