

# Rajshahi University of Engineering & Technology

#### **MTE 1101**

### **Mechatronic Systems**

Prepared By:

Prangon Das

Lecturer, Department of Mechatronics Engineering,

Rajshahi University of Engineering & Technology.

### **Outlines**



- Advantages and Disadvantages of Mechatronics
- Control System
- General Control System
- Control System Classification
- Open Loop Vs Closed Loop CS
- Control System Examples
- Control System Design Process

References: Slide, Internet, Recommended Books (Rajput/Bolton: Chapter 1)

### Advantages and Disadvantages of Mechatronics



#### Advantages:

- 1. The products produced are cost effective and of very good quality.
- 2. The performance characteristics of mechatronics products are such which are otherwise very difficult to achieve without the synergistic combination.
- 3. High degree of flexibility.
- 4. A mechatronics product can be better than just sum of its parts.
- 5. Greater extent of machine utilization.
- 6. Due to the integration of sensors and control systems in a complex system, capital expenses are reduced
- 7. Owing to the incorporation of intelligent, self correcting sensory and feedback systems, the mechatronic approach results in :
- greater productivity;
- higher quantity and producing reliability.

#### Disadvantages:

- 1. High initial cost of the system.
- 2. Imperative to have knowledge of different engineering fields for design and implementation.

- 3. Specific problems for various systems will have to be addressed separately and properly.
- 4. It is expensive to incorporate mechatronics approach to an existing/old system.

### **Control System**



A control system is an arrangement of physical components corrected or related in such a manner as to command, direct or regulate itself or another system.

#### Elements of a control system:

The elements of a control system are enumerated and defined below:

|    | Element                        | Definition Designation                                                                                                                      |
|----|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Controlled variable            | The quantitly or condition of the controlled system which can be directly measured and controlled is called <i>controlled varibale</i> .    |
| 2. | Indirectly controlled variable | The quantity or condition related to controlled variable, but cannot be directly measured is called <i>indirectly controlled variable</i> . |
| 3. | Command                        | The input which can be independently varied is called <i>command</i> .                                                                      |
| 4. | Reference input                | A standard signal used for comparison in the close-loop system.                                                                             |
| 5, | Actuating signal               | The difference between the feedback signal and reference signal is called actuating signal.                                                 |
| 6. | Disturbance                    | Any signal other than the reference which affects the system performance is called <i>disturbance</i> .                                     |
| 7. | System error                   | The difference between the actual value and ideal value is called <i>system error</i> .                                                     |

#### Examples of control system **applications**:

- 1. Steering control of automobile.
- 2. Print wheel control system.
- 3. Industrial sewing machine.
- 4. Sun-tracking control of solar collectors.
- 5. Speed control system.
- 6. Temperature control of an electric furnace.

### **General Control System**





### **Control System Classification**



Control systems can be classified into two categories:

- i. Open-loop control system
- ii. Closed-loop/ feedback control system
  - An open-loop control system utilizes an actuating device to control the process directly without using feedback.



• A closed-loop/ feedback control system uses a measurement of the output and feedback of the output signal to compare it with the desired output or reference.



## Open Loop Vs Closed Loop CS



| Open loop                                                                                                    | Closed loop                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Simple in construction and ease of maintenance                                                            | 1. Complex and difficulty in maintenance                                                                                                                            |
| 2. Used when input is known previously, and no disturbances are present                                      | 2. Used only when unpredictable disturbances and/or unpredictable variations in system components are present                                                       |
| 3. Since there is no feedback, system needs accurate controller, which implies costly equipment.             | 3. feedback makes the system response relatively insensitive to external disturbances and internal variations in system parameters. Thus the system is inexpensive. |
| 4. No stability problem                                                                                      | 4. Stability is a major problem                                                                                                                                     |
| 5. Less components are necessary                                                                             | 5. Needs more components                                                                                                                                            |
| 6. Convenient when output is hard to measure or measuring the output precisely is economically not feasible. | 6. Convenient when output is easy to measure.                                                                                                                       |
| 7. Recalibration is necessary for good quality output.                                                       | 7. No calibration is necessary. Feedback signal helps to maintain stable output.                                                                                    |



#### **Print wheel control system:**



#### **Idle-speed control system**





#### **Missile Launcher System**



Open-Loop Control System



Closed-Loop Feedback Control System

### **Control System Examples**



#### Turntable Speed Control

- Application: CD player, computer disk drive
- Requirement: Constant speed of rotation
- Physical system:



• Block diagram representation: Open loop control system





#### Turntable Speed Control

• Physical system:



• Block diagram representation: Closed-Loop Feedback Control System





#### **Vehicle Control System**



Closed-Loop Feedback Control System



#### **Autopilot Control System**



Closed-Loop Feedback Control System

Home Task: Temperature Control System, Humidity Control System, Maglev Control System

### **Control System Design Process**



- 1. Establish control goals
- 2. Identify the variables to control
- 3. Write the specifications for the variables
- 4. Establish the system configuration and identify the actuator
- 5. Obtain a model of the process, the actuator and the sensor
- 6. Describe a controller and select key parameters to be adjusted
  - 7. Optimize the parameters and analyze the performance

If the performance meet the specifications, then finalize design

MTE 1101: Mechatronic Systems

If the performance does not meet specifications, then iterate the configuration and actuator



### To Be Continued.....



# THANK YOU