

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

Держапольский Юрий Витальевич

МОДЕЛИРОВАНИЕ ТРОФИЧЕСКИХ СЕТЕЙ (Особенности динамики видов в трофических цепях)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по образовательной программе подготовки бакалавров по направлению 01.03.02 «Прикладная математика и информатика»

г. Владивосток

	Автор работы	
	«»	
	Консультант (если имеется)	
	(Ф.И.О.) (подпись) 2025 г.	
	Руководитель ВКР проф. д.фм.н.	ie)
Защищена с оценкой:	<u> Абакумов А. И.</u> (подпись)	
Секретарь	«»2025 г.	
(Ф.И.О.) (подпись) « 2025 г.	$\frac{4}{(\Phi.H.O.)} {(no\partial nucb)}$	

Оглавление

1	Вве	дение	4
2	Математические модели		5
3	Кач	ественная устойчивость	8
	3.1	Необходимые условия	9
	3.2	Достаточные условия	13
4	Ана	лиз незамкнутой трофической цепи	19
	4.1	Равновесные состояния	19
	4.2	Условия существования цепи фиксированной длины	22
5	Чис	ленные эксперименты незамкнутой цепи	25
6	Ана	лиз замкнутой трофической цепи	28
	6.1	Равновесные состояния	28
	6.2	Условия существования цепи фиксированной длины	31
7	Зак	лючение	35
8	Спи	ісок литературы	36

1. Введение

Есть такие структуры сообществ с переносом энергии, которые называются трофическими цепями. Незамкнутые и замкнутые. Энергия лимитируется каким-то фактором.

Исследуется поведение трофической цепи при изменении лимитирующего фактора. Обычная устойчивость и знак-устойчивость.

2. Математические модели

«Ресурс» в реальных экосистемах можно разделить на два вида:

- Энергия, например, солнечный свет. Тогда экосистема с данным ресурсом является незамкнутой, и энергия «протекает» через систему, в ходе этого рассеиваясь в виде тепла.
- Биологические вещества, например, углерод, азот, фосфор. В этом случае экосистема является замкнутой по отношению к ресурсам. Достигается это деятельностью так называемых «разлагателей», которые разлагают мёртвую органику до необходимых минеральных компонентов, необходимых первичным уровням трофической цепи.

Соответственно будем рассматривать два типа трофической цепей: незамкнутые («проточные») и замкнутые («циклы»).

Рост и развитие экосистем во многих системах лимитируется каким-либо фактором (*принцип Либаха*). Опять же, например, солнечный свет — это невозобновимый ресурс и цепь является незамкнутой, а химические вещества за счёт разлагателей снова вовлекаются в деятельность замкнутой экосистемы.

Рис. 1: Описание

а) Незамкнутая цепь:

$$\frac{dR}{dt} = Q - V_0(R)N_1,
\frac{dN_1}{dt} = -m_1N_1 + k_1V_0(R)N_1 - V_1(N_1)N_2,
\dots
\frac{dN_i}{dt} = -m_iN_i + k_iV_{i-1}(N_{i-1})N_i - V_i(N_i)N_{i+1}, \quad i = \overline{2, n-1},
\dots
\frac{dN_n}{dt} = -m_nN_n + k_nV_{n-1}(N_{n-1})N_n.$$
(1)

б) Замкнутая цепь:

$$\frac{dR}{dt} = Q - V_0(R)N_1 + \sum_{i=1}^n a_i m_i N_i,
\frac{dN_1}{dt} = -m_1 N_1 + k_1 V_0(R) N_1 - V_1(N_1) N_2,
\dots
\frac{dN_i}{dt} = -m_i N_i + k_i V_{i-1}(N_{i-1}) N_i - V_i(N_i) N_{i+1}, \quad i = \overline{2, n-1},
\dots
\frac{dN_n}{dt} = -m_n N_n + k_n V_{n-1}(N_{n-1}) N_n.$$
(2)

По биологическому смыслу параметры k_i и a_i удовлетворяют ограничениям $0 \le k_i, a_i \le 1.$

Если считать, что ни один вид не имеет в избытке трофического ресурса, т.е. трофические связи «напряжены», то в этом случае

$$V_0(R) = \alpha_0 R, \quad V_i(N_i) = \alpha_i N_i \quad (i = \overline{1, n})$$
(3)

и уравнения (1) и (2) переходят в уравнения вольтерровского типа, за исключением первых уравнений, содержащих слагаемое Q. Тогда, формально полагая $R \equiv N_0$ и $N_{n+1} \equiv 0$, получим две системы, которые описывают динамику двух трофических цепей.

а) Незамкнутая цепь:

$$\frac{dN_0}{dt} = Q - \alpha_0 N_0 N_1,
\frac{dN_i}{dt} = N_i (-m_i + k_i \alpha_{i-1} N_{i-1} - \alpha_i N_{i+1}), \quad i = \overline{1, n}.$$
(4)

б) Замкнутая цепь:

$$\frac{dN_0}{dt} = Q - \alpha_0 N_0 N_1 + \sum_{i=1}^n a_i m_i N_i,
\frac{dN_i}{dt} = N_i (-m_i + k_i \alpha_{i-1} N_{i-1} - \alpha_i N_{i+1}), \quad i = \overline{1, n}.$$
(5)

Исследуем равновесия и их устойчивость при изменении параметра Q.

3. Качественная устойчивость

Для дальнейшего анализа устойчивости трофических цепей понадобится определение такого свойства сообществ, как *качественная устойчивость*.

Вольтеррвоская модель сообществ n видов имеет систему вида

$$\frac{dN_i}{dt} = N_i \left(\varepsilon_i - \sum_{j=1}^n \gamma_{ij} N_j \right), \quad i = \overline{1, n}, \tag{6}$$

где ε_i – скорость естественного прироста или смертности i-го вида в отсутствие всех остальных видов, а знак и абсолютная величина $\gamma_{ij} (i \neq j)$ отражают соответственно характер и интенсивность влияния j-го вида на i-вид. γ_{ii} – показатель внутривидового взаимодействия для i-го вида. Матрицу $\Gamma = \|\gamma_{ij}\|$, отражающую структуру связей сообщества называют матрицей сообщества.

Для описания только характера связей введём знаковую матрицу S. Тогда она связана с матрицей сообщества соотношением

$$S = -\operatorname{sign} \Gamma = \left\| -\operatorname{sign} \gamma_{ij} \right\|$$

Определение 1. Качественная устойчивость сообщества—сохранение устойчивости при любых количественных значениях элементов матрицы $\Gamma = \|\gamma_{ij}\|$, сохраняющих лишь тип взаимодействия между каждой парой видов.

Иными словами, качественная устойчивость означает, что сообщество остаётся устойчивым при любых интенсивностях всех существующих в нем взаимодействий.

Пусть динамика сообщества n видов описывается системой уравнений общего вида

$$\frac{dN_i}{dt} = f_i(N), \quad i = \overline{1, n},\tag{7}$$

с функциями $f_i(N_i)$ допускающими существование равновесия $N^*>0$ и линеаризацию в этой точке, то структура соотношений в сообществе может быть

определена по матрице системы (7), линеаризованной в точке N^* :

$$A = \left\| \frac{\partial f_i(N)}{\partial N_j} \right|_{N^*} \right\|. \tag{8}$$

Эта матрица является матрицей сообщества. Она описывает характер и интенсивность взаимодействий между видами. Знаковая матрица S будет равна

$$S = \operatorname{sign} A = \left\| \operatorname{sign} \frac{\partial f_i(N)}{\partial N_j} \right\|. \tag{9}$$

Очевидно, что качественная устойчивость является лишь свойством знаковой структуры S матрицы сообщества A и на основании (9) может быть сформулирована на языке матриц.

Определение 2. *Качественной устойчивостью матрицы* A (или знак-устойчивостью) называется устойчивость матрицы A при любых значениях абсолютных величин её ненулевых элементов.

Иными словами, A сохраняет устойчивость при любых численных изменениях её элементов, не нарушающих знаковую структуру S = sign A.

Если A не обладает знак-устойчивостью, то в рамках заданной структуры при некотором наборе a_{ij} в спектре A обнаружатся $\operatorname{Re} \lambda_i \geq 0$, при этом может существовать такой набор, что матрица окажется устойчивой.

Знаковым матрицам S можно поставить взаимно однозначное соответствие знаковый ориентированный граф (далее для краткости ЗОГ). Этого можно добиться, если проводить ориентированные рёбра и приписывать им знаки + или - по правилу: если вид j влияет каким-либо образом на вид i, то проводится ребро $j \to i$ и ему приписывается знак этого влияния.

Таким образом, условия качественной устойчивости могут формулироваться как в терминах матриц, так и в терминах соответствующих ЗОГ.

3.1. Необходимые условия

Рассмотрим необходимые условия знак-устойчивости матрицы A [2]:

- 1. $a_{ij}a_{ji} \leq 0 \quad \forall i \neq j;$
- 2. для любой последовательности индексов $i_1 \neq i_2 \neq i_e \neq \dots i_m, m > 2$ неравенства $a_{i_1 i_2} \neq 0, a_{i_2 i_3} \neq 0, \dots, a_{i_{m-1} i_m} \neq 0$ влекут $a_{i_m i_1} = 0$;
- 3. $a_{ii} \leq 0 \quad \forall i, \quad \exists i_0 : a_{i_0 i_0} < 0;$
- 4. существует ненулевой член в разложении $\det A$.
- 5. матрица A является действительной и неразложимой;

С биологической точки зрения эти условия интерпретируются так: (1) означает, что в сообществе не должно быть отношений конкуренции или симбиоза. (3) означает, что не должно быть самовозрастающих видов и по крайней мере один вид обладает самодемпфированием. Условие (2) означает, что ЗОГ сообщества не содержит ориентированных циклов длиной более 2.

Условие (4) формально означает, что есть такая перестановка σ индексов $1,2,\ldots,n$ такая, что произведение элементов s_{ij} знаковой матрицы $S={\rm sign}\,A$ ненулевое:

$$s_{1,\sigma(1)}s_{2,\sigma(2)}\cdots s_{n,\sigma(n)} \neq 0. \tag{10}$$

Известно, что любая перестановка может быть представлена в виде композиции непересекающихся циклов

$$\sigma = c_1 \cdots c_p$$

с циклами c_i длины l_i такой, что

$$1 \le l_j \le n, \quad \sum_{j=1}^p l_j = n.$$

Каждому циклу $c=(i_1,i_2,\ldots,i_l)$ длины l соответствует группа ненулевых сомножителей произведения (10):

$$a_{i_1i_2} \neq 0, \ a_{i_2i_3} \neq 0, \dots, \ a_{i_{l-1}i_l} \neq 0, \ a_{i_li_1} \neq 0.$$

Это соответствует тому, что в $3O\Gamma$ вершины i_1, \ldots, i_l соединены в ориентированный цикл. В итоге, условие (4) означает, что существует хотя бы одно разбиение $3O\Gamma$ на непересекающиеся циклы, сумма длин которых равна n.

Можно отметить, что учитывая условие (2), запрещающее циклы длиннее 2, и (1), в ЗОГ качественно устойчивого сообщества можно выделить k $\left(0 \le k \le \frac{n}{2}\right)$ пар видов хищник-жертва так, чтобы остальные n-2k видов были самодемпфируемыми (являясь циклами длины 1).

Существенным моментом является условие (5), которое требует *неразло- жимость* матрицы.

Определение 3. Матрица A называется **разложимой**, если некоторой перестановкой её рядов (строк и соответствующих столбцов) она может быть приведена к виду

$$A = \begin{vmatrix} B & 0 \\ C & D \end{vmatrix}, \tag{11}$$

где B и D – квадратные матрицы порядков p и q (p+q=n).

Для сообщества неразложимость означает, что в нём нельзя выделить группу p $(1 \le p \le n)$ видов так, чтобы они не испытывали никакого влияния со стороны остальных n-p видов. На языке графов это означает, что невозможно выбрать p вершин так, чтобы ни одна из них не служила концом стрелок, идущих от каких-либо из остальных n-p вершин. Для матриц это условие требует, чтобы в каждой строке и каждом столбце должен быть хотя бы один ненулевой недиагональный элемент.

Для примера существенности неразложимости возьмём граф на рис. 2, который соответствует разложимой матрице

$$\begin{vmatrix} -a & b & c \\ 0 & 0 & -d \\ 0 & e & 0 \end{vmatrix}, \quad a, b, c, d, e > 0.$$
 (12)

Для этого ЗОГ выполняются условия (1)–(4), но он имеет в спектре пару мнимых чисел $\lambda_{1,2}=\pm i\sqrt{de}~(\lambda_3=-a)$, т.е. не является устойчивой.

Рис. 2: Самолимитируемый вид-комменсал 1 (питается другим видом без вреда) связан с парой хищник—жертва 3—2.

Условие неразложимости ещё более сужает разнообразие видовых соотношений. Этот факт вытекает из нижеследующей леммы. Для этого введём понятия: матрица A обладает симметричной структурой, если $\forall i \neq j: a_{ij} \neq 0 \Rightarrow a_{ji} \neq 0$, и ассиметричной структурой, если $\exists i \neq j: a_{ij} = 0, a_{ji} \neq 0$.

Лемма 1. Если A удовлетворяет условию (2) и обладает асимметричной структурой, то A разложима. [1]

Из этой леммы и условия (1) следует, что симметричные ненулевые элементы неразложимой знак-устойчивой матрицы A должны иметь противоположные знаки, т.е. единственным типом межвидовых отношений в качественно устойчивом сообществе с неразложимой матрицей могут быть лишь отношения хищник—жертва.

Рассмотрим сообщество из 5 видов, ЗОГ которого изображён на рис. 3, а матрица выглядит так:

$$A = \begin{vmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \end{vmatrix}.$$

$$(13)$$

Как легко убедиться, матрица A удовлетворяет всем условиям (1)–(4), и, как показывает граф на рисунке 3, является неразложимой (5).

Рис. 3: ЗОГ сообщества 5 видов: i-й питается (i+1)-м $(i=\overline{1,4})$, при этом 3 вид самолимитируется.

Однако, спектр A состоит из чисел $\lambda_1 \approx -0.36, \lambda_{2,3} \approx -0.32 \pm 1.63 i, \lambda_{4,5} = \pm i$, т.е. содержит чисто мнимые числа. Этот пример показывает, что условия (1)–(5) являются лишь необходимыми, но не достаточными условиями знакустойчивости.

3.2. Достаточные условия

Для получения достаточных условий можно усилить условие (3), описывающее самолимитирующие виды.

Для этого определим понятие «хищного сообщества». В ЗОГ заданного сообщества рассмотрим какую-нибудь вершину, включенную в цикл длины 2 (2-цикл), одна из стрелок которого имеет знак +, а другая —. Объединим все вершины, которые связаны с данной вершиной такими 2-циклами. Для новых вершин повторяем процедуру объединения с вершинами, связанными с ними теми же 2-циклами. Иными словами, объединим в одно множество все виды, образующие некоторую структуру связей хищник – жертва. Максимальное множество таких видов будем называть хищным сообществом, содержащим первый вид. Если какой-то вид не связан соотношением + — ни с какими другими видами, то будем называть его *тривиальным* хищным сообществом.

 30Γ на рис. 3 содержит лишь одно хищное сообщество, включающее все виды. 30Γ на рис. 2 содержит два сообщества: тривиальное $\{1\}$ и нетривиальное $\{$

ное $\{2,3\}$.

Разбиению ЗОГ с матрицей $A = \|a_{ij}\|$ на хищные сообщества можно поставить в соответствие матрицу $\widetilde{A} = \|\widetilde{a}_{ij}\|$ по следующему правилу: $\widetilde{a}_{ij} = a_{ij}$, если ребро a_{ij} принадлежит некоторому циклу, и $\widetilde{a}_{ij} = 0$ иначе. Для ЗОГ и матриц, удовлетворяющих условиям (1) и (2), это означает стирание всех стрелок, связывающих хищные сообщества, а матрица A приобретает блочнодиагональный вид с блоками, соответствующими отдельным хищным сообществам. Например, для ЗОГ на рис. 2 это означает стирание рёбер $2 \to 1$ и $3 \to 1$, а матрица \widetilde{A} принимает вид

$$\widetilde{A} = \left| \begin{array}{c|cc} -a & 0 & 0 \\ \hline 0 & 0 & -d \\ 0 & e & 0 \end{array} \right|.$$

Лемма 2. Все собственные числа A и \widetilde{A} совпадают.

Доказательство. Пусть элементу $a_{rs} \neq 0$ соответствует стрелка графа, не принадлежащая никакому циклу (длины больше 1). Это эквивалентно тому, что любое произведение вида

$$a_{rs}a_{sr}, \quad a_{ir}a_{rs}a_{si}, \quad a_{ij}a_{jr}a_{rs}a_{si}, \quad \ldots,$$

где r,s,i,j,dots — различные индексы, обращается в 0 (следует из (2)). Рассмотрим характеристическую матрицу $\|A-\lambda I\|=\|a_{ij}-\delta_{ij}\lambda\|$. При её разложении, все члены, содержащие сомножитель $(a_{rs}-\delta_{rs}\lambda)$, исчезнут. То есть, если положить $a_{rs}=0$, то значение определителя не изменится. Таким образом,

$$\det \|A - \lambda I\| = \det \left\|\widetilde{A} - \lambda I\right\|.$$

Значит по устойчивости хищного сообщества можно судить по устойчивости исходного графа. Очевидно, что для устойчивости должно соблюдаться

14

требование

$$0 \neq \det A = \det \widetilde{A}$$
,

означающее, что все тривиальные хищные сообщества должны обладать самолимитированием.

Теорема 1. Если A удовлетворяет условиям (1)—(4), то $\operatorname{Re} \lambda(\widetilde{A}) \leq 0$, причём кратность значений с нулевой вещественной частью не превосходит 1.

Доказательство. Рассмотрим отдельное хищное сообщество, включающее m видов, и соответствующую $(m \times m)$ -матрицу \widetilde{A} . Воспользуемся методом Ляпунова для определения устойчивости линейной системы дифференциальных уравнений

$$\frac{d\mathbf{x}}{dt} = \widetilde{A}\mathbf{x}.\tag{14}$$

Нужно построить функцию Ляпунова и определить знак её производной по t. Для этого определим m положительных чисел α_i следующим образом. Положим $\alpha_1=1$. Для каждого j-го вида, связанного в \widetilde{A} с i-м определим соотношение

$$\alpha_j a_{ji} = -\alpha_i a_{ij}, \quad i \neq j, \tag{15}$$

тогда для видов, связанных с 1-м, имеем

$$\alpha_i = -\frac{a_{1i}}{a_{i1}} > 0 \tag{16}$$

по условию (1) и построению хищного сообщества. Поскольку в графе нет замкнутых петель длины больше 2, получим все числа $\alpha_1, \ldots, \alpha_m$.

Определим функцию

$$V(x_1, ..., x_m) = \sum_{i=1}^{m} \alpha_i x_i^2,$$
(17)

где действительный m-вектор х является решением системы (14). Очевидно, что данная квадратичная форма положительна определена. Найдём её производную на траекториях системы:

$$\frac{dV}{dt} = \frac{\partial V}{\partial \mathbf{x}} \frac{d\mathbf{x}}{dt} = \nabla V \cdot \widetilde{A} \mathbf{x} = (2\alpha_i x_i) \cdot \left(\sum_{j=1}^m a_{ij} x_j\right) = 2\sum_{i=1}^m \left(\alpha_i x_i \sum_{j=1}^m a_{ij} x_j\right). \tag{18}$$

Для каждого слагаемого вида $\alpha_i a_{ij} x_i x_j$ имеем симметричное $\alpha_j a_{ji} x_j x_i$ и в силу соотношения (15) они являются противоположными и исчезнут, оставляя только диагональные элементы. Поэтому получаем

$$\frac{dV}{dt} = 2\sum_{i=1}^{m} \alpha_i a_{ii} x_i^2 \le 0,\tag{19}$$

поскольку $a_{ii} \leq 0$.

Функция V является функцией Ляпунова для нулевого решения системы (14) поскольку она:

- 1. непрерывная вместе с частными производными на \mathbb{R}^m .
- 2. $V(0,\ldots,0)=0$;
- 3. $V(x) > 0, x \neq 0$.

Следовательно, по теореме Ляпунова об устойчивости точки равновесия, нулевое решение локально устойчиво. Поэтому $\operatorname{Re} \lambda(\widetilde{A}) \leq 0$.

Таким образом, теорема 1 оставляет лишь два возможности для спектра \widetilde{A} : либо все $\operatorname{Re}\lambda(\widetilde{A})<0$, и нулевое решение асимптотически устойчиво, либо некоторые собственные числа кратности не более 1 имеют нулевые вещественные части — такую ситуацию иногда называют *нейтральной устойчивостью*. Определим условия, которые отделят эти две ситуации.

При $det \widetilde{A} \neq 0$ в ситуации нейтральной устойчивости спектр \widetilde{A} содержит пары чисто мнимых чисел, которым соответствуют синусоидальные (с постоянной амплитудой) слагаемые в общем решении системы (14). Будем называть компоненты решения $x_i(t)$, содержащие такие слагаемые, *осциллирующими*.

В структуре хищного сообщества \widetilde{A} осциллирующие и неосциллирующие виды должны быть расположены специальным образом.

- Виды x_k с самолимитированием ($a_{kk} < 0$) не могут быть осциллирующими. Это вытекает из того, что периодическому решению системы (14) соответствует конечная замкнутая траектория в фазовом пространстве и на ней $\frac{dV}{dt} \equiv 0$. С учётом (16) и (19) имеем, что $x_k \equiv 0$ всюду вдоль периодического решения.
- Рассмотрим какой-либо осциллирующий вид x_i . Строка системы (14) этого вида имеет вид

$$\frac{dx_i}{dt} = \sum_{j=1}^{m} a_{ij} x_j.$$

В этой строке есть хотя бы один недиагональный ненулевой элемент, который соответствует влиянию другого осциллирующего вида x_j . То есть, осциллирующий вид должен быть связан хотя бы с одним другим осциллирующим видом.

• Если неосциллирующий вид связан с некоторым осциллирующим видом, то он с необходимостью имеет связь и с каким-либо другим осциллирующим видом. (?)

Эти требования к структуре нейтрально устойчивого сообщества могут быть формализированы с помощью понятия «чёрно-белого теста». Будем говорить, что хищное сообщество удовлетворяет чёрно-белому тесту, если каждая вершина его графа может окрашена в чёрный или белый цвет, что:

- а) все вершины с самолимитированием чёрные;
- б) найдётся хотя бы одна белая вершина;
- в) каждая белая вершина связана по крайней мере с одной другой белой вершиной;

г) каждая чёрная вершина, связанная с белой, связана хотя бы с одной другой белой вершиной.

Например, хищное сообщество $\{1\}$ 3ОГ рис. 2 нарушает требование (б), а $\{2,3\}$ полностью удовлетворяет тесту. ЗОГ рис. 3 удовлетворяет тесту, но если переместить самолимитирование в любую другую вершину, тест перестанет выполняться.

Если хищное сообщество нарушает чёрно-белый тест, то оно не может быть нейтрально устойчивым, и, следовательно, по теореме 1, оно асимптотически устойчиво. Таким образом, если все хищные сообщества исходного 30Γ с матрицей A не удовлетворяют чёрно-белому тесту, то все $\operatorname{Re}\lambda(\widetilde{A})<0$ и по лемме 2 матрица A устойчива.

В итоге получаем, что для знак-устойчивости любой действительной матрицы A достаточно выполнения совокупности условий (1), (2), (3'), (4), (5), где (3') требует, чтобы виды с самолимитированием были расположены таким образом, что все его хищные сообщества нарушают чёрно-белый тест (а)–(г).

4. Анализ незамкнутой трофической цепи

4.1. Равновесные состояния

Поскольку единственное положительное слагаемое, которое описывает вносимое количество биомассы, в каждой строке зависит от количества биомассы предыдущего вида, то можно сделать вывод, что если в каком-то состоянии равновесия будет вид с нулевой биомассой, то и все последующие виды так же окажутся вымершими.

Поэтому в системе (4) при Q>0 могут существовать n равновесных состояний типа $\left[N_0,N_1,\dots,N_q,0,\dots,0\right]$, которые можно определить из уравнений

$$\frac{dN}{dt} = 0 \Rightarrow \begin{cases}
N_1 = \frac{Q}{\alpha_0 N_0}, \\
\alpha_i N_{i+1} = k_i \alpha_{i-1} N_{i-1} - m_i, \quad i = \overline{1, q}
\end{cases}$$
(20)

Из условия $N_{q+1}=0$ вытекает, что

$$N_{q-1} = \frac{m_q}{\alpha_{q-1}k_q}. (21)$$

Отметим, что в уравнениях (20) есть связь только между (i+1) и (i-1) уравнениями (кроме 0 и 1), поэтому формулы вычисления будут зависеть от чётности q.

Введём обозначения:

$$g_{i} = \frac{k_{i}\alpha_{i-1}}{\alpha_{i}}, \quad \mu_{i} = \frac{m_{i}}{\alpha_{i}}, \quad H_{2s-1} = g_{1}g_{3}\cdots g_{2s-1}, \quad H_{2s} = g_{2}g_{4}\cdots g_{2s},$$

$$f_{2s-1} = \frac{\mu_{1}}{H_{1}} + \frac{\mu_{3}}{H_{3}} + \cdots + \frac{\mu_{2s-1}}{H_{2s-1}}, \quad f_{2s} = \frac{\mu_{2}}{H_{2}} + \frac{\mu_{4}}{H_{4}} + \cdots + \frac{\mu_{2s}}{H_{2s}}.$$

$$(22)$$

Последовательно выражая значения N_i имеем

$$N_{i} = \frac{k_{i-1}\alpha_{i-2}}{\alpha_{i-1}}N_{i-2} - \frac{m_{i-1}}{\alpha_{i-1}} = g_{i-1}N_{i-2} - \mu_{i-1} =$$

$$= g_{i-1}(g_{i-3}N_{i-4} - \mu_{i-3}) - \mu_{i-1} = g_{i-1}g_{i-3}N_{i-4} - g_{i-1}\mu_{i-3} - \mu_{i-1} = \dots;$$

Пусть i=2s, тогда

$$N_{2s} = (g_{2s-1}g_{2s-3}\cdots g_1)N_0 - (g_{2s-1}\cdots g_3)\mu_1 - (g_{2s-1}\cdots g_5)\mu_3 - \cdots - g_{2s-1}\mu_{2s-3} - \mu_{2s-1} = g_{2s-1}\cdots g_1\left(N_0 - \frac{\mu_1}{g_1} - \cdots - \frac{\mu_{2s-1}}{g_1\cdots g_{2s-1}}\right) = (23)$$

$$= H_{2s-1}\left(N_0 - \frac{\mu_1}{H_1} - \cdots - \frac{\mu_{2s-1}}{H_{2s-1}}\right) = H_{2s-1}\left(N_0 - f_{2s-1}\right).$$

Аналогично получаются значения при i = 2s + 1:

$$N_{2s+1} = H_{2s}(N_1 - f_{2s}). (24)$$

3десь $s=1,2,\ldots$

Для вычисления всех значений не хватает формулы для N_0 или N_1 . Отдельно рассмотрим два случая чётности.

1. Пусть q = 2s -чётное. Тогда

$$N_{q-1} = N_{2s-1} = \frac{m_{2s}}{\alpha_{2s-1}k_{2s}} \frac{\alpha_{2s}}{\alpha_{2s}} = \frac{\mu_{2s}}{g_{2s}}, \quad N_{2s-1} = H_{2s-2}(N_1 - f_{2s-2}).$$

Откуда получаем

$$N_1 = \frac{\mu_{2s}}{g_{2s}H_{2s-2}} + f_{2s-2} = \frac{\mu_{2s}}{H_{2s}} + f_{2s-2} = f_{2s}.$$

Используя первое уравнение в (20), будем иметь

$$N_0 = \frac{Q}{\alpha_0 N_1} = \frac{Q}{\alpha_0 f_{2s}}.$$

2. Пусть q=2s+1 – нечётное. Аналогично предыдущему получаем

$$N_{q-1} = N_{2s} = \frac{m_{2s+1}}{\alpha_{2s}k_{2s+1}} \frac{\alpha_{2s+1}}{\alpha_{2s+1}} = \frac{\mu_{2s+1}}{g_{2s+1}}, \quad N_{2s} = H_{2s-1}(N_0 - f_{2s-1}).$$

откуда

$$N_0 = \frac{\mu_{2s+1}}{g_{2s+1}H_{2s-1}} + f_{2s-1} = f_{2s+1}, \quad N_1 = \frac{Q}{\alpha_0 f_{2s+1}}.$$

Теперь легко можно получить явные выражения N_i , подставив N_0 и N_1 в (23) и (24).

Очевидно, что стационарные значения численностей N_i имеют смысл, только когда они положительные.

Утверждение 1. Если в **незамкнутой** трофической цепи длины q численность $N_q>0$, то $N_i>0$ $(i=\overline{1,q-1}).$

Доказательство. Для начала заметим, что f_{2s} и f_{2s+1} положительны и монотонно возрастают с увеличением s. Величины N_0 и N_1 также положительны и зависят от параметра q — длины трофической цепи. Поскольку все параметры положительные, то численность $N_{q-1}>0$.

Из условия $N_q>0$ и (23, 24) получим неравенство

$$Q > \alpha_0 f_{q-1} f_q \tag{25}$$

Предположим противное: $\exists p < q : N_p \leq 0$. Возможны 4 варианта: p и q одинаковой чётности и разной чётности.

1. Пусть
$$q=2s$$
 и $N_0=rac{Q}{lpha_0 f_{2s}}, N_1=f_{2s}.$

(a) $p=2u\,(u< s)$, тогда из (23) следует, что $N_p=N_{2u}\leq 0$, если $N_0\leq f_{2u-1}.$ Значит $Q\leq \alpha_0f_{2u-1}f_{2s}.$ Сравнивая с (25) получаем

$$\alpha_0 f_{2s-1} f_{2s} < Q \le \alpha_0 f_{2u-1} f_{2s} \Rightarrow f_{2s-1} < f_{2u-1}.$$

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

(b) p=2u+1 (2u<2s-1), тогда из (24) следует, что $N_p=N_{2u+1}\leq 0$ при $N_1\leq f_{2u}$, т.е. $f_{2s}\leq f_{2u}$. Что также невозможно из-за монотонного возрастания f_{2s} с ростом s.

2. Пусть
$$q=2s+1$$
 и $N_0=f_{2s+1}, N_1=rac{Q}{lpha_0 f_{2s+1}}.$

(a) $p=2u\,(2u-1<2s)$, тогда $N_p=N_{2u}\leq 0$ при $N_0\leq f_{2u-1}$. Значит $f_{2s+1}< f_{2u-1}$.

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

(b) p=2u+1 (u< s), тогда $N_p=N_{2u+1}\leq 0$ при $N_1\leq f_{2u}$, т.е. $Q\leq \alpha f_{2u}f_{2s+1}$. Сравнивая с (25) получаем

$$\alpha_0 f_{2s} f_{2s+1} < Q \le \alpha f_{2u} f_{2s+1} \Rightarrow f_{2s} < f_{2u}.$$

Что также невозможно из-за монотонного возрастания f_{2s} с ростом s.

Следствие 1. Из (25) следует, что если длина трофической цепи равна q, то скорость поступления ресурса Q должна превосходить критическое значение

$$Q^*(q) = \alpha_0 f_{q-1} f_q.$$

4.2. Условия существования цепи фиксированной длины

Для определения устойчивости равновесного состояния трофической цепи длины $q: N^* = [N_0, N_1, \dots, N_q, 0, \dots, 0]$ будем исследовать собственные значения матрицы системы (4), линеаризованной в окрестности этого состояния.

Найдём матрицу якоби этой системы и подставим равновесную точку: $\left. \frac{\partial f}{\partial N} \right|_{N^*} (f$ — правая часть системы). Получим матрицу

$$J = \begin{vmatrix} A_q & 0 \\ 0 & D_{n-q} \end{vmatrix}, \tag{26}$$

где $D_{n-q}={
m diag}\left\{-m_{q+1}+k_{q+1}lpha_qN_q,-m_{q+2},\ldots,-m_n
ight\}$ и A_q матрица вида:

$$A_{q} = \begin{vmatrix} -b_{0} & -d_{0} & 0 \\ b_{1} & -h_{1} & -d_{1} \\ & \ddots & \ddots & \ddots \\ & b_{q-1} & -h_{q-1} & -d_{q-1} \\ 0 & b_{q} & -h_{q} \end{vmatrix}$$

$$(27)$$

В нашем случае

$$b_{0} = \alpha_{0} N_{1}, \quad d_{0} = \alpha_{0},$$

$$b_{i} = k_{i} \alpha_{i-1} N_{i}, \quad d_{i} = \alpha_{i} N_{i}, \quad h_{i} = 0, \quad i = \overline{1, q}.$$
(28)

Значения h_i следуют из уравнений (20).

Собственные значения J равны

$$\lambda_{i} = \begin{cases} \lambda_{i}(A_{q}), & i = \overline{1, q}, \\ k_{q+1}\alpha_{q}N_{q} - m_{q+1}, & i = q+1, \\ -m_{i}, & i = \overline{q+2, n}. \end{cases}$$

$$(29)$$

Очевидно, что при $i=\overline{q+2,n}$ выполняется условие $\lambda=-m_i<0$. Для λ_{q+1} все переменные положительные и достаточно выполнения неравенства

$$N_q < \frac{m_{q+1}}{\alpha_q k_{q+1}}. (30)$$

Это условие становится излишним, при q=n, поскольку тогда устойчивость определяется собственными значениями матрицы A_q .

 30Γ , соответствующий A_q , имеет вид, изображённый на рис. 4. Для определения устойчивости матрицы A_q проверим выполнение достаточных условий знак-устойчивости (3.2):

- 1. все противоположно направленные рёбра имеют противоположные знаки $(a_{ij}a_{ji}<0);$
- 2. отсутствуют ориентированные циклы длиной более 2;
- 3. все вершины составляют одно хищное сообщество, нарушающее чёрнобелый тест.
- 4. разбиение на циклы, соответствующее ненулевому члену $\det A_q$ задаётся вершинами:
 - $\{0\}; \{1,2\}; \dots; \{q-1,q\}$, когда q чётное;
 - $\{0,1\};\{2,3\};\ldots;\{q-1,q\}$, когда q нечётное;
- 5. никакие вершины не являются концами стрелок, что значит матрица A_q является неразложимой.

Рис. 4: 3ОГ, соответствующий матрице A_q со значениями (28).

Таким образом матрица A_q удовлетворяет достаточным условием знакустойчивости и поэтому устойчива при любых значениях заданных параметров. А это значит, что равновесие N^* асимптотически устойчиво.

Находя явное значение N_q для чётного и нечётного q и используя (30) получим:

1. При q = 2s:

$$N_{2s} = H_{2s-1} \left(\frac{Q}{\alpha_0 f_{2s}} - f_{2s-1} \right) < \frac{m_{2s+1}}{\alpha_{2s} k_{2s+1}} \Rightarrow$$

$$\Rightarrow \frac{Q}{\alpha_0 f_{2s}} - f_{2s-1} < \frac{m_{2s+1}}{\alpha_{2s} k_{2s+1}} \frac{\alpha_{2s+1}}{\alpha_{2s+1}} \frac{1}{H_{2s-1}} = \frac{\mu_{2s+1}}{g_{2s+1} H_{2s-1}} = \frac{\mu_{2s+1}}{H_{2s+1}} \Rightarrow (31)$$

$$Q < \alpha_0 f_{2s} \left(f_{2s-1} + \frac{\mu_{2s+1}}{H_{2s+1}} \right) = \alpha_0 f_{2s} f_{2s+1},$$

2. При q = 2s + 1:

$$N_{2s+1} = H_{2s} \left(\frac{Q}{\alpha_0 f_{2s+1}} - f_{2s+1} \right) < \frac{m_{2s+2}}{\alpha_{2s+1} k_{2s+2}} \Rightarrow$$

$$\Rightarrow \frac{Q}{\alpha_0 f_{2s+1}} - f_{2s} < \frac{m_{2s+2}}{\alpha_{2s+1} k_{2s+2}} \frac{\alpha_{2s+2}}{\alpha_{2s+2}} \frac{1}{H_{2s}} = \frac{\mu_{2s+2}}{g_{2s+2} H_{2s}} = \frac{\mu_{2s+2}}{H_{2s+2}} \Rightarrow (32)$$

$$Q < \alpha_0 f_{2s+1} \left(f_{2s} + \frac{\mu_{2s+2}}{H_{2s+2}} \right) = \alpha_0 f_{2s+1} f_{2s+2},$$

объединяя получим

$$Q < \alpha_0 f_q f_{q+1} = Q^*(q+1). \tag{33}$$

Следствие 2. Необходимым и достаточным условием существования устойчивой незамкнутой трофической цепи длины q является ограничение (сверху и снизу) скорости поступления внешнего ресурса в экосистему:

$$Q^*(q) < Q < Q^*(q+1). (34)$$

5. Численные эксперименты незамкнутой цепи

Рассмотрим систему (4) при n=3 со следующими коэффициентами:

$$\alpha_0 = 20, \quad \alpha_1 = 16, \quad \alpha_2 = 12, \quad \alpha_3 = 8;$$
 $k_1 = 0.3, \quad k_1 = 0.2, \quad k_1 = 0.1;$
 $m_1 = 4, \quad m_1 = 3, \quad m_1 = 2.$

Имеем трофические цепи длиной от q=1 до q=3. При заданных значениях параметров имеем данные интервалы, ограничивающие поступление внешнего ресурса Q:

- 1. 0 < Q < 12.5;
- 2. 12.5 < Q < 95.83...;
- 3. $95.83 \dots < Q$.

Варьируем значение Q и получаем графики численностей в равновесии.

Для численного решения используем метод Рунге-Кутты 4-порядка с шагом h=0.01. Начальные значения численностей равно 2.

Обозначения: «Равн $\{i\}$ » — значение точки равновесия, которой соответствует «Вид $\{i\}$ ».

Рис. 5: Численности видов системы, при Q близко к концам первого интервала.

Рис. 6: Численности видов системы, при Q близко к концам второго интервала.

Рис. 7: Численности видов системы, при Q близко к началу третьего интервала и на некотором отдалении.

Для сравнения поведения системы при «напряжённых» трофических связях, возьмём систему (1) при трофических функциях $V_i(x)=\alpha_i \arctan x$. Т.е. виды могут насыщаться и не все его жертвы будут становиться добычей.

Рис. 8: Численности видов системы.

Рис. 9: Численности видов системы.

Рис. 10: Численности видов системы.

6. Анализ замкнутой трофической цепи

6.1. Равновесные состояния

Аналогично незамкнутой системе, в системе с частичным восстановлением ресурса (5) при Q>0 могут существовать n равновесных состояний типа $[N_0,N_1,\ldots,N_q,0,\ldots,0]$, которые могут быть найдены из уравнений

$$\frac{dN}{dt} = 0 \Rightarrow
\begin{cases}
Q + \sum_{i=1}^{q} a_i m_i N_i = \alpha_0 N_0 N_1, \\
\alpha_i N_{i+1} = k_i \alpha_{i-1} N_{i-1} - m_i, \quad i = \overline{1, q}
\end{cases}$$
(35)

Поскольку связь N_{i-1} и N_{i+1} точно такая же, что и у незамкнутой модели, то значения N_i также могут быть определены по формулам (23, 24). Остаётся найти явные выражения для N_0 и N_1 .

Используем обозначения (22) и введём новые:

$$\varphi_{s} = \sum_{j=1}^{s} a_{2j} m_{2j} H_{2s-1}, \quad \psi_{s} = \sum_{j=1}^{s} a_{2j-1} m_{2j-1} H_{2s-2},$$

$$\sigma_{i} = \sum_{j=1}^{s} a_{j} m_{j} f_{j-1} H_{j-1} \quad (H_{0} = 1, f_{0} = 0).$$
(36)

1. Пусть q=2s – чётное. Тогда аналогично шагам для незамкнутой цепи

получаем $N_1=f_{2s}$. Используя первое уравнение в (35), будем иметь

$$Q + \sum_{i=1}^{s} a_{2i-1} m_{2i-1} H_{2i-2}(N_1 - f_{2i-2}) + \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1}(N_0 - f_{2i-1}) = \alpha_0 N_0 N_1,$$

$$Q + \sum_{i=1}^{s} a_{2i-1} m_{2i-1} H_{2i-2}(f_{2s} - f_{2i-2}) = \alpha_0 N_0 N_1 - \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1}(N_0 - f_{2i-1}),$$

$$Q + f_{2s} \sum_{i=1}^{s} a_{2i-1} m_{2i-1} H_{2i-2} - \sum_{i=1}^{s} a_{2i-1} m_{2i-1} H_{2i-2} f_{2i-2} =$$

$$= N_0 \left(\alpha_0 f_{2s} - \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1} \right) + \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1} f_{2i-1},$$

$$Q + f_{2s} \psi_s - \sigma_{2s} = N_0 \left(\alpha_0 f_{2s} - \varphi_s \right),$$

$$N_0 = \frac{Q + f_{2s} \psi_s - \sigma_{2s}}{\alpha_0 f_{2s} - \varphi_s}.$$

2. Пусть q=2s+1 – нечётное. Тогда $N_1=f_{2s+1}$ и

$$\begin{split} Q + \sum_{i=1}^{s+1} a_{2i-1} m_{2i-1} H_{2i-2}(N_1 - f_{2i-2}) + \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1}(N_0 - f_{2i-1}) &= \alpha_0 N_0 N_1, \\ Q + \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1}(f_{2s+1} - f_{2i-1}) &= \alpha_0 N_0 N_1 - \sum_{i=1}^{s+1} a_{2i-1} m_{2i-1} H_{2i-2}(N_1 - f_{2i-2}), \\ Q + f_{2s+1} \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1} - \sum_{i=1}^{s} a_{2i} m_{2i} H_{2i-1} f_{2i-1} &= \\ &= N_1 \left(\alpha_0 f_{2s+1} - \sum_{i=1}^{s+1} a_{2i-1} m_{2i-1} H_{2i-2} \right) + \sum_{i=1}^{s+1} a_{2i-1} m_{2i-1} H_{2i-2} f_{2i-2}, \\ Q + f_{2s+1} \varphi_s - \sigma_{2s+1} &= N_1 \left(\alpha_0 f_{2s+1} - \psi_{s+1} \right), \\ N_0 &= \frac{Q + f_{2s+1} \varphi_s - \sigma_{2s+1}}{\alpha_0 f_{2s+1} - \psi_{s+1}}. \end{split}$$

В итоге имеем:

1. q = 2s:

$$N_1 = f_{2s}, \quad N_0 = \frac{Q + f_{2s}\psi_s - \sigma_{2s}}{\alpha_0 f_{2s} - \varphi_s}$$
 (37)

2. q = 2s + 1:

$$N_0 = f_{2s+1}, \quad N_1 = \frac{Q + f_{2s+1}\varphi_s - \sigma_{2s+1}}{\alpha_0 f_{2s+1} - \psi_{s+1}}$$
(38)

Утверждение 2. Если в **замкнутой** трофической цепи длины q численность $N_q>0$, то $N_i>0$ $(i=\overline{1,q-1}).$

Доказательство. Из условия $N_q>0$ и (37, 38) получим неравенства, ограничивающие скорость поступления внешнего ресурса в систему.

1.
$$q = 2s$$

$$N_{q} = N_{2s} = H_{2s-1}(N_{0} - f_{2s-1}) > 0, \quad \frac{Q + f_{2s}\psi_{s} - \sigma_{2s}}{\alpha_{0}f_{2s} - \varphi_{s}} > f_{2s-1},$$

$$Q > \alpha_{0}f_{2s-1}f_{2s} - (\varphi_{s}f_{2s-1} + f_{2s}\psi_{s} - \sigma_{2s}) = \widetilde{Q}^{*}(q).$$
(39)

2.
$$q = 2s + 1$$

$$N_{q} = N_{2s+1} = H_{2s}(N_{1} - f_{2s}) > 0, \quad \frac{Q + f_{2s+1}\varphi_{s} - \sigma_{2s+1}}{\alpha_{0}f_{2s+1} - \psi_{s+1}} > f_{2s},$$

$$Q > \alpha_{0}f_{2s+1}f_{2s} - (\psi_{s+1}f_{2s} + f_{2s+1}\varphi_{s} - \sigma_{2s+1}) = \widetilde{Q}^{*}(q).$$
(40)

Предположим противное: $\exists p < q : N_p \leq 0$. Возможны 4 варианта: p и q одинаковой чётности и разной чётности.

1. Пусть
$$q=2s$$
 и $N_0=rac{Q+f_{2s}\psi_s-\sigma_{2s}}{lpha_0f_{2s}-arphi_s}, N_1=f_{2s}.$

(a) $p=2u\,(u< s)$, тогда из (23) следует, что $N_p=N_{2u}\leq 0$, если $N_0\leq f_{2u-1}.$ Значит

$$Q \le f_{2u-1}(\alpha_0 f_{2s} - \varphi_s) - (f_{2s}\psi_s - \sigma_{2s}).$$

Сравнивая с (39) получаем

$$f_{2s-1}(\alpha_0 f_{2s} - \varphi_s) - f_{2s}\psi_s + \sigma_{2s} < Q \le f_{2u-1}(\alpha_0 f_{2s} - \varphi_s) - f_{2s}\psi_s + \sigma_{2s},$$

$$f_{2s-1} < f_{2u-1}$$

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

(b) p=2u+1 (2u<2s-1), тогда из (24) следует, что $N_p=N_{2u+1}\leq 0$ при $N_1\leq f_{2u}$, т.е. $f_{2s}\leq f_{2u}$. Что также невозможно из-за монотонного возрастания f_{2s} с ростом s.

2. Пусть
$$q=2s+1$$
 и $N_0=f_{2s+1}, N_1=rac{Q+f_{2s+1}\varphi_s-\sigma_{2s+1}}{\alpha_0f_{2s+1}-\psi_{s+1}}.$

(a) $p=2u\,(2u-1<2s)$, тогда $N_p=N_{2u}\leq 0$ при $N_0\leq f_{2u-1}$. Значит $f_{2s+1}< f_{2u-1}$.

Это невозможно, поскольку f_{2s-1} монотонно возрастает с ростом s.

(b)
$$p = 2u + 1$$
 ($u < s$), тогда $N_p = N_{2u+1} \le 0$ при $N_1 \le f_{2u}$, т.е.

$$Q \le f_{2u}(\alpha_0 f_{2s+1} - \psi_{s+1}) - f_{2s+1} \varphi_s + \sigma_{2s+1}$$

Сравнивая с (40) получаем

$$\begin{cases} f_{2s}(\alpha_0 f_{2s+1} - \psi_{s+1}) - f_{2s+1} \varphi_s + \sigma_{2s+1} < Q, \\ Q \le f_{2u}(\alpha_0 f_{2s+1} - \psi_{s+1}) - f_{2s+1} \varphi_s + \sigma_{2s+1}, \\ f_{2s} < f_{2u}. \end{cases}$$

Что также невозможно.

6.2. Условия существования цепи фиксированной длины

Линеаризуем систему (5) для определения устойчивости в окрестности состояния $N^* = [N_0, N_1, \dots, N_q, 0, \dots, 0]$.

Получим матрицу, похожую на (26), вида

$$J = \begin{vmatrix} A_q^1 & C \\ 0 & D_{n-q} \end{vmatrix}, \tag{41}$$

где

$$A_{q}^{1} = \begin{vmatrix} -b_{0} & c_{1} - d_{0} & c_{2} & \dots & c_{q} \\ b_{1} & 0 & -d_{1} & & 0 \\ & \ddots & \ddots & \ddots & \\ & & b_{q-1} & 0 & -d_{q-1} \\ & 0 & & b_{q} & 0 \end{vmatrix}, C = \begin{vmatrix} c_{q+1} & c_{q+2} & \dots & c_{n} \\ & 0 & & \end{vmatrix},$$
(42)

 $c_i = a_i m_i, i = \overline{1, n}$, а остальные обозначения соответствуют (28).

Аналогично из (29) имеем асимптотическую устойчивость системы при

$$N_q < \frac{m_{q+1}}{\alpha_q k_{q+1}}. (43)$$

и устойчивости матрицы A_1^q .

Матрица A_q^1 не является якобиевой (трёхдиагональной), поэтому определять её устойчивость нужно определять методами обычной устойчивости, например с помощью характеристического многочлена.

$$P_{q}(\lambda) = \det(A_{q}^{1} - \lambda I) = \begin{vmatrix} -b_{0} - \lambda & c_{1} - d_{0} & c_{2} & \dots & c_{q} \\ b_{1} & -\lambda & -d_{1} & 0 \\ & \ddots & \ddots & \ddots \\ & & b_{q-1} & -\lambda & -d_{q-1} \\ & 0 & b_{q} & -\lambda \end{vmatrix}$$

Раскладывая определитель сначала по нижней строке, а потом по последнему

столбцу получим:

$$P_{q}(\lambda) = -\lambda P_{q-1}(\lambda) - b_{q} \begin{vmatrix} -b_{0} - \lambda & c_{1} - d_{0} & c_{2} & \dots & c_{q-2} & c_{q} \\ b_{1} & -\lambda & -d_{1} & & 0 \\ & \ddots & \ddots & \ddots \\ & & b_{q-3} & -\lambda & -d_{q-3} \\ & & b_{q-2} & -\lambda \\ & & 0 & b_{q-1} & -d_{q-1} \end{vmatrix} = \\ = -\lambda P_{q-1}(\lambda) - b_{q}(-d_{q-1})P_{q-2}(\lambda) - b_{q}(-1)^{q}c_{q} \begin{vmatrix} b_{1} & -\lambda & -d_{1} & 0 \\ & \ddots & \ddots & \ddots \\ & & b_{q-3} & -\lambda & -d_{q-3} \\ & & & b_{q-2} & -\lambda \\ & & & & b_{q-1} \end{vmatrix} = \\ = -\lambda P_{q-1}(\lambda) + b_{q}d_{q-1}P_{q-2}(\lambda) - (-1)^{q}c_{q} \prod_{i=1}^{q} b_{i}.$$

Учитывая начальные значения характеристического многочлена получаем рекуррентную формулу:

$$P_{q}(\lambda) = -\lambda P_{q-1}(\lambda) + b_{q}d_{q-1}P_{q-2}(\lambda) - (-1)^{q}c_{q}b_{1} \cdots b_{q},$$

$$P_{0}(\lambda) = -b_{0} - \lambda,$$

$$P_{1}(\lambda) = \lambda^{2} + b_{0}\lambda + b_{1}(d_{0} - c_{1}).$$
(44)

Если характеристическое уравнение $P_q(\lambda)=0$ записано в виде

$$\lambda^{q+1} + e_q(\lambda)\lambda^q + e_{q-1}(\lambda)\lambda^{q-1} + \dots + e_1(\lambda)\lambda + e_0(q) = 0,$$

тогда, используя (44), можно выписать рекуррентные соотношения для коэф-

фициентов $e_i(q)$:

ментов
$$e_i(q)$$
:
$$e_i(q) = \begin{cases} b_q d_{q-1} e_0(q-2) - (-1)^q c_q b_1 \cdots b_q, & i = 0, \\ e_{i-1}(q-1) + b_q d_{q-1} e_i(q-1), & i = \overline{1,q}, \\ 1, & i = q+1, \\ 0, & i = q+2, \dots, \end{cases}$$

$$e_1(1) = b_0,$$

$$e_0(0) = b_0,$$

$$e_0(1) = b_1(d_0 - c_1).$$

$$(45)$$

Всё с примерами и только 1-замкнутой?

Следствие 3. Необходимым условием существования замкнутой трофической цепи длины д является ограничение (сверху и снизу) скорости поступления внешнего ресурса в экосистему:

$$\widetilde{Q}^*(q) < Q < \widetilde{Q}^*(q+1). \tag{46}$$

7. Заключение

Вот так влияет изменение Q на модель.

8. Список литературы

- [1] Свирежев, Ю. М. Устойчивость биологических сообществ // Ю. М. Свирежев, Д. О. Логофет М.: Наука, 1978.
- [2] Quirk J. P., Rupert. R Qualitative Economics and the Stability of Equilibrium. Rev. Econ. Studies, 1965, 32, №92, p.311-326