Contents

This notebook investigates Breast Cancer prediction data derived from Ming et al. (Gail model) [1].

Mondrian Conformal Prediction is applied to the Nonconformity Measure: InverseProbability.

Nonconformity Measure InverseProbability is applied to the underlying classifier: LogisticRegression .

Using MCP, conditional on the category Race, we investigate the relationship between sample size and the equitable representation of individuals belonging to a given race that fall within the low-confidence region of predictions. The low-confidence region is defined as the Lower-Decile Region (LDR) of predictions, ranked by confidence and credibility, respectively.

1. Ming C, Viassolo V, Probst-Hensch N, Chappuis PO, Dinov ID, Katapodi MC. Machine learning techniques for personalized breast cancer risk prediction: comparison with the BCRAT and BOADICEA models. Breast Cancer Research 2019;21(1):75 doi: 10.1186/s13058-019-1158-4[published Online First: Epub Date]].

```
import s
import os

# set pwd to root of repository
repo_root = 'C:/Users/Bob/CHPC/conformal_prediction/vigilant-computing-machine/'
os.chdir(repo_root)

# 'vigilant-computing-machine/source/util.py'
import source.util as util
import matplotlib.pyplot as plt
```

define plot function

```
In [5]:

def plot_rep_6exp(exp_df_list):
    col = 2
    row = 3
    fig, axs = plt.subplots(row, col)
    fig.set_figheight(32)
    fig.set_figwidth(24)
    for i in range(row * col):
        row_idx = i // col
        col_idx = i % col
        util.plot_race_representation_from_experiment(exp_df_list[i], ax=axs[row_idx, col_idx])
    plt.show()
```

read in experiment results

util.read_experiment('./results/logistic_regression_12000_race-unique-inverted_balanced_race-conditional_experiment.csv')

plot experiment results

Data

- Ming et al.
 - o n=1200
 - o n=12000
- Race-Unique Risk
 - o n=1200
 - o n=12000
- Race-Unique Risk Inverted
 - o n=1200
 - o n=12000

	n=1200	n=12000
Ming et al.	1xM	10xM
Race-Unique Risk	1xRUR	10xRUR
R-U Risk Inverted	1xRURI	10xRURI

In [8]: plot_rep_6exp(experiments_rcic)

Race Representation - Population Sample vs Low Confidence
RaceConditionalInductiveClassifier (InverseProbability (logistic regression))
Ming et al. - 1:1 - healthy:cancer

Race Representation - Population Sample vs Low Confidence RaceConditionalInductiveClassifier (InverseProbability (logistic regression)) Race-Unique Risk - 1:1 - healthy:cancer

Race Representation - Population Sample vs Low Confidence RaceConditionalInductiveClassifier (InverseProbability (logistic regression)) 10x Ming et al. - 1:1 - healthy:cancer n=12000

Race Representation - Population Sample vs Low Confidence RaceConditionalInductiveClassifier (InverseProbability (logistic regression)) 10x Race-Unique Risk - 1:1 - healthy:cancer

0.0 0 1 2 3 4 5 6

Race Representation - Population Sample vs Low Confidence RaceConditionalInductiveClassifier (InverseProbability (logistic regression)) Race-Unique Risk Inverted - 1:1 - healthy:cancer

Cursory Observation:

Blind sample supplementation tends to either:

- drive equity of Race representation in the low-confidence region
- highlight Race group(s) where **reduced monetary expense** may result from **targeted** sample supplementation

Preliminary Conclusions:

CP methods may provide a means to determine the **minimum-viable sample** size of individual groups that may otherwise be under-represented, or systematically excluded, helping **ensure equity** in the results of **clinical biomedical research** and **clinical predictive tools**.