EDEXCEL STATISTICS S1 (6683) – NOVEMBER 2002 PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks		
1.	(a)	Statistical models allow problems to be solved without the need to construct a full-scale physical model, saving time/expense. They allow parameters to be changed and refinements to be made quickly.		1, 0	(2)
	(1)		ĺ	•	` /
	(<i>b</i>)	(i) Normal; (ii) Discrete uniform	B1,	BI	(2)
			(4 marks)		
2.	(a)	60A, 40S, 2M	B1		
		P(all only arts) = $\frac{60}{125} \times \frac{59}{124} \times \frac{58}{123} = \frac{3422}{31775} = 0.10769$	M1	A1 A1	(4)
	(<i>b</i>)	P(exactly one only science) = $3 \times \frac{40}{125} \times \frac{85}{124} \times \frac{84}{123}$	B1		
		$=\frac{2856}{6355}=0.44940$	M1	A1	(3)
			(7 marks)		
3.	(a)	$P(A \cap B) = P(A)P(B) = 0.25 \times 0.30 = 0.075$	M1	A1	(2)
	(<i>b</i>)	$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.25 + 0.30 - 0.075$	M1		
		= 0.475	A 1		(2)
	(c)	$P(A \mid B') = \frac{P(A \cap B')}{P(B')} = \frac{P(A) - P(A \cap B)}{1 - P(B)}$	M1		
		$=\frac{0.25-0.075}{1-0.3}$	M1	Alft	
		= 0.25	A1		(4)
			(8 marks)		

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	
4. (a)	P(L > 50.98) = 0.025	B1	
	$P\left(Z > \frac{50.98 - \mu}{0.5}\right) = 0.025$	M1 A1	
	$\frac{0.025}{50.98} \qquad \therefore \frac{50.98 - \mu}{0.5} = 1.96$	M1 A1	(5)
	$\therefore \mu = 50 (*)$		
	49.25 50.75 $L \sim N (50, 0.5^2)$		
(b)	$P(49.25 < L < 50.75) = P\left(\frac{49.25 - 50}{0.5} < Z < \frac{50.75 - 50}{0.5}\right)$	M1	
	= P(-1.5 < Z < 1.5) -1.5 & +1.5	A1	
	$=2\Phi(1.5)-1$	M1	
	= 0.8664	A1	(4)
(c)	$P(Both) = (1 - 0.8664)^2$	M1	
	= 0.01784	A1	(2)
		(11 marks)	
5. (a)	$S_{ss} = 108.07875$; $S_{st} = 129.1675$	B1; B1	
	$q = \frac{S_{st}}{S_{ss}} = \frac{129.1675}{108.07875} = 1.1951239$	M1, A1	
	$p = \frac{65.0}{8} - (1.951239) \times \frac{48.5}{8} = 0.879561$	M1, A1	
	$\therefore t = 0.879561 + 1.1951259S$	A1 ft	(7)
(b)	y - 20 = 0.879561 + 1.1951239(x - 6)	M1, A1 ft	
	$\therefore y = 13.709 + 1.195x$	A1	(3)
(c)		B1; B1	(2)
	transformations of either/both variables	(12 marks)	

Question Number	Scheme	Marks
6 . (a)	$\alpha + \beta = 0.5$	B1
	$-2\alpha + 2\beta = -0.2$	M1
	$\therefore \alpha = 0.3, \beta = 0.2$	M1 A1; A1 (6)
(b)	F(0.8) = 0.6	B1 ft (1)
(c)	$E(X^2) = (4 \times 0.3) + + (4 \times 0.2), = 2.4$	M1, A1
	$\therefore \text{Var}(X) = 2.4 - (-0.2)^2, = 2.36$	M1, A1 (4)
(<i>d</i>)	E(3X-2) = 3E(X) - 2, = -2.6	M1, A1 ft (2)
(e)	Var(2X+6) = 4 Var(X), = 9.44	M1, A1 ft (2)
		(15 marks)
7. (a)	Mode = 78	B1 (1)
(b)	$Q_1 = 56; Q_2 = 70; Q_3 = 78$	B1; B1; B1 (3)
(c)	$(Q_3 - Q_1) = 22$	
	$Q_1 - 1.0(Q_3 - Q_1) = 34 \Rightarrow 31 & 31 \text{ are outliers}$	M1 A1
	$Q_3 + 1.0 (Q_3 - Q_1) = 100 \Rightarrow \text{no outliers}$	A1 (3)
(<i>d</i>)	(accurate sketch on graph paper required) boxplot	M1
	scales and labels	B1
	Q_1, Q_2, Q_3	A1
	30 40 50 60 70 80 90 100 Aptitude score 31, 32, 34 (39), 92	A1 (4)
(e)	$\mu = \frac{3363}{50} = 67.26$	B1
	$\mu = \frac{3363}{50} = 67.26$ $\sigma^2 = \frac{238305}{50} - (67.26)^2 = 242.1924$	M1
	$\therefore \ \sigma = \sqrt{242.1924} = 15.56253$	A1 (3)
(f)	$(Q_3 - Q_2) < (Q_2 - Q_1)$, i.e. $8 < 14 \implies$ negative skew	M1, A1
	Mean < Median < Mode, i.e. $67.26 < 70 < 78 \Rightarrow$ negative skew	M1, A1 (4)
		(18 marks)