# MATHEMATICS-VIII MODULE-1

# <u>INDEX</u>

| S.N.       | TOPIC                                | PAGE NO.                |
|------------|--------------------------------------|-------------------------|
| 1.         | Rational Number                      | 1- 2 <b>6</b>           |
| 2.         | Square and Square Roots              | 2 <b>7</b> - 46         |
| 3.         | Cube and Cube Roots                  | 47 - 6 <b>6</b>         |
| 4.         | Algebraic Expression & Factorization | 6 <b>7</b> - 8 <b>7</b> |
| <b>5</b> . | Linear Equation in One Variable      | 88- 110                 |
| <b>6</b> . | Direct Inverse Proportion            | 111- 134                |
| <b>7</b> . | Comparing Quantities                 | 135 - 162               |



#### **DEFINITION**

A number  $\frac{a}{b}$  is a rational number if 'a' and 'b' are integers and 'b' is not equal to zero. 'b' cannot be equal to zero because division by zero is not allowed. Further, a rational number is said to be in the standard form or simplest form when the numerator and denominator have no common factor other than 1.

#### PROPERTIES OF ADDITION OF RATIONAL NUMBERS CLOSURE PROPERTY

When two rational numbers are added, the result is always a rational number, i.e., if  $\frac{a}{b}$  and  $\frac{c}{d}$  is always a rational number. For example,  $\frac{2}{5} + \frac{3}{6} = \frac{12+15}{30} = \frac{27}{30}$ , which is also a rational number.

#### **COMMUTATIVE PROPERTY**

When two rational numbers are added, the order of addition does not matter, i.e., if  $\frac{a}{b}$  and  $\frac{c}{d}$  are two rational numbers, then  $\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}$ 

For example,  $\frac{3}{4} + \frac{4}{5} = \frac{15+16}{20} = \frac{31}{20}$  and  $\frac{4}{5} + \frac{3}{4} = \frac{16+15}{20} = \frac{31}{20}$ . Both results are equal.

#### **ASSOCIATIVE PROPERTY**

If  $\frac{a}{b}$ ,  $\frac{c}{d}$ , and  $\frac{e}{f}$  three rational numbers, then  $\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right)$ . Consider the fractions

$$\frac{2}{5}$$
,  $\frac{1}{4}$ , and  $\frac{2}{3}$ .

$$\left(\frac{2}{5} + \frac{1}{4}\right) + \frac{2}{3}, \quad \frac{2}{5} + \left(\frac{1}{4} + \frac{2}{3}\right)$$

$$=\left(\frac{8+5}{20}\right)+\frac{2}{3}=\frac{2}{5}+\left(\frac{3+8}{12}\right)$$

$$= \frac{13}{20} + \frac{2}{3} = \frac{2}{5} + \frac{11}{12} = \frac{39 + 40}{60}$$

$$= \frac{24+55}{60} \qquad = \frac{79}{60} = \frac{79}{60}$$

**Additive identity** If  $\frac{a}{b}$  is a rational number, then there exists a rational number zero such that  $\frac{a}{b} + 0 = \frac{a}{b}$ . Zero is called the identity element of addition. Addition of zero does not change the value of the rational number.



#### **Additive identity**

If  $\frac{a}{b}$  is a rational number, then there exists a rational number  $\left(\frac{-a}{b}\right)$ , called the additive inverse, such that  $\frac{a}{b} + \left(\frac{-a}{b}\right) = 0$ 

The additive inverse is also referred to as 'negative' of the given number..

#### SUBTRACTION OF RATIONAL NUMBERS

When we have to subtract a rational number, say  $\frac{5}{9}$  from  $\frac{8}{9}$ , we add the additive inverse of

$$\frac{5}{9}$$
, i.e.,  $\frac{-5}{9}$  to  $\frac{8}{9}$ . Thus,  $\frac{8}{9} - \frac{5}{9} = \frac{8}{9} + \left(\frac{-5}{9}\right) = \frac{8-5}{9} = \frac{3}{9} = \frac{1}{3}$ 

#### **MULTIPLICATION OF RATIONAL NUMBERS**

Multiplication is the process of successive addition.

Like 
$$6 \times 8 = 8 + 8 + 8 + 8 + 8 + 8 = 48$$
.

Similarly, 
$$6 \times \frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{6}{3} = 2$$

Alternatively, 
$$6 \times \frac{1}{3} = \frac{6}{1} \times \frac{1}{3} = \frac{6 \times 1}{1 \times 3} = \frac{6}{3} = \frac{2}{1}$$
 2

So, when we multiply two rational numbers, we multiply the numerator with the numerator and the denominator with the denominator.

Thus, 
$$-5 \times (-7) = \frac{-5}{1} \times \left(\frac{-7}{1}\right) = \frac{(-5)(-7)}{1 \times 1} = 35$$

and 
$$\frac{-2}{11} \times \frac{3}{5} = \frac{-2 \times 3}{11 \times 5} = \frac{-6}{55}$$

#### PROPERTIES OF MULTIPLICATION OF RATIONAL NUMBER CLOSURE PROPERTY

The rational number are closed under multiplication. It means that the product of two rational numbers is always a rational number, i.e., if  $\frac{a}{b}$  and  $\frac{c}{d}$  are two rational numbers,  $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$  is always a rational number.

For example,  $\frac{-3}{7} \times \frac{5}{8} = -\frac{15}{56}$  which is rational number.

#### **COMMUTATIVE PROPERTY**

If  $\frac{a}{b}$  and  $\frac{c}{d}$  are two rational numbers, then  $\frac{a}{b} \times \frac{c}{d} = \frac{c}{d} \times \frac{a}{b}$ , i.e.,  $\frac{ac}{bd} = \frac{ca}{db}$ 

#### **ASSOCIATIVE PROPERTY**

If  $\frac{a}{b}$ ,  $\frac{c}{d}$ , and  $\frac{e}{f}$  are three rational numbers, then  $\left(\frac{a}{b} \times \frac{c}{d}\right) \times \frac{e}{f} = \frac{a}{b} \times \left(\frac{c}{d} \times \frac{e}{f}\right)$ 

**i.e.** 
$$\frac{ac}{bd} \times \frac{e}{f} = \frac{a}{b} \times \frac{ce}{df}$$
 or  $\frac{ace}{bdf} = \frac{ace}{bdf}$ 

Thus, rational numbers can be multiplied in any order.



Gurukul Nagar, Jalna Road, Beed - 431122(M.S.) Ph: 9673676726.9420488272.9022478542.9420488075

#### Multiplicative identity:

When any rational number, say  $\frac{a}{b}$ , is multiplied by the rational number 1, the product is

always 
$$\frac{a}{b}$$
.  $\frac{a}{b}$  × 1 =  $\frac{a \times 1}{b}$  =  $\frac{a}{b}$ 

or 
$$1 \times \frac{a}{b} = \frac{1 \times a}{b} = \frac{a}{b}$$

#### Multiplicative inverse, or reciprocal:

For every non-zero rational number  $\frac{a}{b}$ , there exists a rational number  $\frac{b}{a}$  such that  $\frac{a}{b} \times \frac{b}{a} = 1$ .

This is so, because 
$$\frac{a}{b} \times \frac{b}{a}$$

$$=\frac{a \times b}{b \times a} = \frac{ab}{ba} = 1$$

#### Distributive property:

$$\text{If } \frac{a}{b}, \frac{c}{d} \text{ and } \frac{e}{f} \text{ are three rational numbers, then} \frac{a}{b} \times \left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b} \times \frac{c}{d} + \frac{a}{b} \times \frac{e}{f} \,.$$

#### Multiplication of a Rational Number by Zero

When any rational number  $\frac{a}{b}$  is multiplied by 0, the product is always zero.

$$\frac{a}{b} \times 0 = \frac{a \times 0}{b} = \frac{0}{b} = 0$$

#### **DIVISION OF RATIONAL NUMBERS**

Division is the inverse process of multiplication.

If  $\frac{a}{b}$  and  $\frac{c}{d}$  are two rational numbers, then  $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$ .

#### PROPERTIES OF DIVISION OF RATIONAL NUMBERS CLOSURE PROPERTY

When a rational number is divided by another rational number, the quotient is always a rational

Thus, if  $\frac{a}{b}$  and  $\frac{c}{d}$  are two rational numbers, then  $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$ , which is again a rational number since b, c, d are non-zero integers.

#### Division is not commutative :

If  $\frac{a}{b}$  and  $\frac{c}{d}$  are two rational numbers in which b, c and d  $\neq$  0, then  $\frac{a}{b} \div \frac{c}{d} \neq \frac{c}{d} \div \frac{a}{b}$  because,

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$
 and  $\frac{c}{d} \div \frac{a}{b} = \frac{c}{d} \times \frac{b}{a} = \frac{cb}{da}$ 

So 
$$\frac{a}{b} \div \frac{c}{d} \neq \frac{c}{d} \div \frac{a}{b}$$



#### Ordering of Rational Numbers Law of Trichotomy:

Given two rational numbers  $\frac{a}{b}$  and  $\frac{c}{d}$ , then either  $\frac{a}{b} > \frac{c}{d}$ ,  $\frac{a}{b} = \frac{c}{d}$ , or  $\frac{a}{b} < \frac{c}{d}$ .

#### **LAW OF TRANSITIVITY**

If  $\frac{a}{b}$ ,  $\frac{c}{d}$ , and  $\frac{e}{f}$  are three rational numbers

(i) If 
$$\frac{a}{b} > \frac{c}{d}$$
 and  $\frac{c}{d} > \frac{e}{f}$ , then  $\frac{a}{b} > \frac{e}{f}$ .

(ii) If 
$$\frac{a}{b} < \frac{c}{d}$$
 and  $\frac{c}{d} < \frac{e}{f}$ , then  $\frac{a}{b} < \frac{e}{f}$ .

(iii) If 
$$\frac{a}{b} = \frac{c}{d}$$
 and  $\frac{c}{d} = \frac{e}{f}$ , then  $\frac{a}{b} = \frac{e}{f}$ . (all are equivalent).

#### **LAW OF ADDITION**

Given  $\frac{a}{b}$  ,  $\frac{c}{d}$  , and  $\frac{e}{f}$  are three rational numbers.

(i) If 
$$\frac{a}{b} > \frac{c}{d}$$
 then  $\frac{a}{b} + \frac{e}{f} > \frac{c}{d} + \frac{e}{f}$ .

(ii) If 
$$\frac{a}{b} = \frac{c}{d}$$
 then  $\frac{a}{b} + \frac{e}{f} = \frac{c}{d} + \frac{e}{f}$ .

(iii) If 
$$\frac{a}{b} < \frac{c}{d}$$
 then  $\frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$ .

#### PROPERTY OF MULTIPLICATION

Let  $\frac{a}{b}$ ,  $\frac{c}{d}$  and  $\frac{e}{f}$  be three rational numbers.

If  $\frac{e}{f}\,\text{is a positive number, then}$ 

(i) If 
$$\frac{a}{b} > \frac{c}{d}$$
, then  $\frac{a}{b} \times \frac{e}{f} > \frac{c}{d} \times \frac{e}{f}$ .

(ii) If 
$$\frac{a}{b} < \frac{c}{d}$$
, then  $\frac{a}{b} \times \frac{e}{f} < \frac{c}{d} \times \frac{e}{f}$ .

(iii) If 
$$\frac{a}{b} = \frac{c}{d}$$
, then  $\frac{a}{b} \times \frac{e}{f} = \frac{c}{d} \times \frac{e}{f}$ .

#### POWERS EXPONENTIAL NOTATION AND RATIONAL NUMBERS

Exponential notation can be extended to rational numbers. For example:  $\left(\frac{4}{5}\right) \times \left(\frac{4}{5}\right) \times \left(\frac{4}{5}\right) \times \left(\frac{4}{5}\right)$  can be written as

$$\left(\frac{4}{5}\right)^3$$
 which is read as  $\frac{4}{5}$  raised to the power 3.

(i) 
$$\left(\frac{3}{4}\right)^3 = \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right) \times \left(\frac{3}{4}\right) = \frac{3^3}{4^3} = \frac{27}{64}$$

(ii) 
$$\left(\frac{-5}{6}\right)^2 = \left(\frac{-5}{6}\right) \times \left(\frac{-5}{6}\right) \times \frac{(-5)^2}{6^2} = \frac{25}{36}$$



(iii) 
$$\left(\frac{-2}{3}\right)^3 = \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) = \frac{(-2)^3}{3^3} = \frac{-8}{27}$$

In general, if  $\frac{x}{y}$  is a rational number and a is a positive integer, then

$$\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a}$$

#### **Reciprocals with Positive Integral Exponents:**

The reciprocal of 2 is  $\frac{1}{2}$ , reciprocal of  $2^3$  is  $\frac{1}{2^3}$ .

Reciprocal of 
$$\left(\frac{2}{3}\right)^4 = \frac{1}{\left(\frac{2}{3}\right)^4} = \frac{1}{\frac{2^4}{3^4}} = \frac{3^4}{2^4} = \left(\frac{3}{2}\right)^4$$

Reciprocal of 
$$\left(\frac{-4}{5}\right)^4 = \left(\frac{-5}{4}\right)^6$$
 and, Reciprocal of  $\left(\frac{1}{3}\right)^5 = \left(\frac{3}{1}\right)^5 = 3^5$ 

#### **Reciprocals with Negative Integral Exponents**

Reciprocal of  $2 = \frac{1}{2} = \frac{1}{2^1}$ . Therefore, the reciprocal of 2 is  $2^{-1}$ . The reciprocal of  $3^2 = \frac{1}{3^2} = 3^{-2}$ .

Reciprocal of 
$$\left(\frac{4}{5}\right)^2 = \left(\frac{4}{5}\right)^{-2}$$
, Reciprocal of  $\left(\frac{-2}{3}\right)^3 = \left(\frac{-2}{3}\right)^{-3}$ , etc.

In general, if x is any rational number other than zero and a is any positive integer, then:

$$x^{-a} = \frac{1}{x^a}$$

#### LAWS OF EXPONENTS

- 1.
- Consider the following. (i)  $3^3 \times 3^4 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^7 = 3^{3+4}$

(ii) 
$$\left(\frac{5}{2}\right)^2 \times \left(\frac{5}{2}\right)^3 = \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2} = \left(\frac{5}{2}\right)^5 = \left(\frac{5}{2}\right)^{2+3}$$

$$\therefore \quad x^a \times x^b = x^{a+b}$$

**2.** (i)  $2^5 \div 2^2 = \frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2} = 2 \times 2 \times 2 = 2^3 = 2^{5-2}$ 

(ii) 
$$\left(\frac{2}{3}\right)^6 \div \left(\frac{2}{3}\right)^2 = \frac{\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}}{\frac{2}{3} \times \frac{2}{3}} = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \left(\frac{2}{3}\right)^4 = \left(\frac{2}{3}\right)^{6-2}$$

$$\therefore \quad \mathbf{x}^{\mathbf{a}} \div \mathbf{x}^{\mathbf{b}} = \mathbf{x}^{\mathbf{a} - \mathbf{b}}$$



**3.** (i) 
$$(2^3)^2 = (2 \times 2 \times 2)^2 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) = 2^6 = 2^3 \times 2^3$$

(ii) 
$$\left\{ \left( \frac{2}{3} \right)^3 \right\}^2 = \left( \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \right)^2 = \left( \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \right) \times \left( \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \right) = \left( \frac{2}{3} \right)^6 = \left( \frac{2}{3} \right)^{3 \times 2}$$

$$\therefore (x^a)^b = x^{ab}$$

**4.** (i) 
$$2^4 \times 3^4 = (2 \times 2 \times 2 \times 2) \times (3 \times 3 \times 3 \times 3)$$
  
=  $(2 \times 3) \times (2 \times 3) \times (2 \times 3) \times (2 \times 3) = (2 \times 3)^4$ 

(ii) 
$$\left(\frac{3}{5}\right)^4 \times \left(\frac{1}{2}\right)^4 = \left(\frac{3}{5} \times \frac{3}{5} \times \frac{3}{5} \times \frac{3}{5}\right) \times \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right) = \left(\frac{3}{5} \times \frac{1}{2}\right) \times \left(\frac{3}{5} \times \frac{1}{2}\right) \times \left(\frac{3}{5} \times \frac{1}{2}\right) \times \left(\frac{3}{5} \times \frac{1}{2}\right) = \left(\frac{3}{5} \times \frac{1}{2}\right)^4 = \left(\frac{3}{5} \times \frac{3}{5} \times \frac{3}{5} \times \frac{3}{5}\right) \times \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right) = \left(\frac{3}{5} \times \frac{1}{2}\right) \times \left(\frac{3$$

$$\therefore x^a \times y^a = (x \times y)^a$$

**5.** (i) 
$$2^4 \div 3^4 = \frac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3} = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \left(\frac{2}{3}\right)^4$$

(ii) 
$$\left(\frac{3}{5}\right)^4 \div \left(\frac{1}{2}\right)^4 = \frac{\frac{3}{5} \times \frac{3}{5} \times \frac{3}{5} \times \frac{3}{5}}{\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}} = \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right) \times \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right) \times \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right) \times \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right) \times \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right) = \left(\frac{\frac{3}{5}}{\frac{1}{2}}\right)^4$$

$$\therefore \qquad x^a \div y^a = \left(\frac{x}{y}\right)^a$$

If x is any rational number different from zero and a, b are any integers, then,

**Law I:** 
$$x^a \times x^b = x^{a+b}$$

**Law II:** 
$$x^a \div x^b = x^{a-b}$$

**Law III:** 
$$(x^a)^b = x^{ab}$$

**Law IV:** 
$$x^a \times y^a = (x \times y)^a$$
 (where y is also a non zero rational number)

**Law I:** 
$$x^a \div y^a = \left(\frac{x}{y}\right)^a$$
 (where y is also a non-zero rational number)

Ph: 9673676726,9420488272,9022478542,9420488075

#### **SOLVED EXAMPLES**

**Ex.1** Add 
$$\frac{3}{5}$$
 and  $\frac{13}{5}$ .

$$\frac{3}{5} + \frac{13}{5} = \frac{3+13}{5} = \frac{16}{5}$$
 [: 3 + 13 = 16]

**Ex.2** Add 
$$\frac{7}{9}$$
 and  $\frac{-12}{9}$ .

$$\frac{7}{9} + \frac{-12}{9} = \frac{7 + (-12)}{9} = \frac{-5}{9}$$
[: 7 + (-12) = -5]

**Ex.3** Add 
$$\frac{-5}{9}$$
 and  $\frac{-17}{9}$ .

$$\frac{-5}{9} + \frac{-17}{9} = \frac{(-5) - (17)}{9} = \frac{-22}{9}$$
[:: (-5) + (-17) = -22]

**Ex.4** Add 
$$\frac{4}{-11}$$
 and  $\frac{7}{11}$ .

**Sol.** We first express 
$$\frac{4}{-11}$$
 as a rational with positive denominator.

We have, 
$$\frac{4}{-11} = \frac{4 \times (-1)}{(-11) \times (-1)} = \frac{-4}{11}$$
  

$$\therefore \frac{4}{-11} + \frac{7}{11} = \frac{-4}{11} + \frac{7}{11} = \frac{(-4) + 7}{11}$$

$$= \frac{3}{11}$$
[:: (-4) + 7 = 3]

**Ex.5** Add 
$$\frac{5}{12}$$
 and  $\frac{3}{8}$ .

The LCM of denominators 12 and 8 is 24.

Now, we express  $\frac{5}{12}$  and  $\frac{3}{8}$  into forms in which both of them have the same denominator 24. We have,

$$\frac{5}{12} = \frac{5 \times 2}{12 \times 2} = \frac{10}{24} \text{ and, } \frac{3}{8} = \frac{3 \times 3}{8 \times 3} = \frac{9}{24}$$
$$\therefore \frac{5}{12} + \frac{3}{8} = \frac{10}{24} + \frac{9}{24} = \frac{10 + 9}{24} = \frac{19}{24}$$

**Ex.6** Add 
$$\frac{7}{9}$$
 and 4.

**Sol.** We have, 
$$4 = \frac{4}{1}$$
.

Clearly, denominators of the two rational numbers are positive. We now rewrite them so that they ahve a common denominator 3equal to the LCM of the denominators. LCM of 9 and 1 is 9.

We have, 
$$\frac{4}{1} = \frac{4 \times 9}{1 \times 9} = \frac{36}{9}$$
  

$$\therefore \frac{7}{9} + 4 = \frac{7}{9} + \frac{4}{1} = \frac{7}{9} + \frac{36}{9}$$

$$= \frac{7+36}{9} = \frac{43}{9}$$



Gurukul Nagar, Jalna Road, Beed - 431122(M.S.)

Ph: 9673676726,9420488272,9022478542,9420488075

**Ex.7** Add 
$$\frac{3}{8}$$
 and  $\frac{-5}{12}$ .

Sol. The denominators of the given rational numbers are 8 and 12 respectively. The LCM of 8 and 12 is 24. Now we re-write the given ratinoal numbers into forms in which both of them have the same

$$\frac{3}{8} = \frac{3 \times 3}{8 \times 3} = \frac{9}{24} \text{ and, } \frac{-5}{12} = \frac{-5 \times 2}{12 \times 2} = \frac{-10}{24}$$
$$\frac{3}{8} + \frac{-5}{12} = \frac{9}{24} + \frac{(-10)}{24} = \frac{9-10}{24} = \frac{-1}{24}$$

**Ex.8** Simplify: 
$$\frac{8}{-15} + \frac{4}{-3}$$
.

$$\frac{8}{-15} + \frac{4}{-3} = \frac{-8}{15} + \frac{-4}{3}$$

$$\left[ \therefore \frac{8}{-15} = \frac{8 \times -1}{(-15) \times (-1)} = \frac{-8}{15} \text{ and } \frac{4}{-3} = \frac{4 \times -1}{(-3) \times (-1)} = \frac{-4}{3} \right]$$

Re-writing  $\frac{-4}{3}$  in the form in which is has denominator 15, we get

$$\frac{-4}{3} = \frac{-4 \times 5}{3+5} = \frac{-20}{15}$$

$$\therefore \frac{8}{-15} + \frac{4}{-3} = \frac{-8}{15} + \frac{-4}{3}$$

$$= \frac{-8}{15} + \frac{-20}{15} \qquad \left[\because \frac{-4}{3} = \frac{-20}{15}\right]$$

$$= \frac{-(-8) + (-20)}{15} = \frac{-28}{15}$$

Express each of the following as a rational number of the form  $\frac{p}{}$ 

(iii) 
$$\left(\frac{4}{3}\right)^{-3}$$

(iv) 
$$\left(\frac{-2}{5}\right)^{-1}$$

(v) 
$$\frac{1}{2^{-3}}$$

We know that, if a is a non-zero rational number and n is a positive integer, then Sol.

$$a^{-n} = \frac{1}{a^n}$$

(i) 
$$5^{-3} = \frac{1}{5^3} = \frac{1}{125}$$
  $\left[\because a^{-n} = \frac{1}{a^n}\right]$ 

$$\left[ \because a^{-n} = \frac{1}{a^n} \right]$$

(ii) 
$$(-2)^{-5} = \frac{1}{(-2)^5} = \frac{1}{-32} = -\frac{1}{32} \left[ \because a^{-n} = \frac{1}{a^n} \right]$$

(iii) 
$$\left(\frac{4}{3}\right)^{-3} = \frac{1}{\left(\frac{4}{3}\right)^3} = \frac{1}{\frac{4^3}{3^3}} = \frac{1}{\frac{64}{27}} = \frac{27}{64}$$

$$\left[ \because \left( \frac{a}{b} \right)^n = \frac{a^n}{b^n} \text{ when n is a whole number} \right]$$

(iv) 
$$\left(\frac{-2}{5}\right)^{-4} = \frac{1}{\left(\frac{-2}{5}\right)^4} = \frac{1}{\frac{(-2)^4}{5^4}} = \frac{1}{\frac{16}{625}} = \frac{625}{16} \left[ \because \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \text{ for } n > 0 \right]$$

(v) 
$$\frac{1}{2^{-3}} = \frac{1}{\frac{1}{2^3}} = \frac{2^3}{1} = \frac{8}{1} = 8$$
  $\left[\because a^{-n} = \frac{1}{a^n}\right]$ 



**Ex.10** Express each of the following as a rational number of the form  $\frac{p}{q}$ :

(i) 
$$\left(\frac{3}{8}\right)^{-2} \times \left(\frac{4}{5}\right)^{-3}$$
 (ii)  $\left(\frac{-2}{7}\right)^{-4} \times \left(\frac{-7}{5}\right)^{2}$  (i) We have,

$$\left(\frac{3}{8}\right)^{-2} \times \left(\frac{4}{5}\right)^{-3} = \frac{1}{\left(\frac{3}{8}\right)^{2}} \times \frac{1}{\left(\frac{4}{5}\right)^{3}}$$

$$\left[\because a^{-n} = \frac{1}{a^{n}}\right]$$

$$= \frac{1}{\frac{3^{2}}{8^{2}}} \times \frac{1}{\frac{4^{3}}{5^{3}}} \left[\because \left(\frac{a}{b}\right)^{n} = \left(\frac{a^{n}}{b^{n}}\right)\right]$$

$$= \frac{1}{\frac{9}{64}} \times \frac{1}{\frac{64}{125}} = \frac{64}{9} \times \frac{125}{64} = \frac{125}{9}$$

(ii) We have, 
$$\left(\frac{-2}{7}\right)^{-4} \times \left(\frac{-7}{5}\right)^{2}$$

$$= \frac{1}{\left(\frac{-2}{7}\right)^{4}} \times \left(\frac{-7}{5}\right)^{2} = \frac{1}{\frac{(-2)^{4}}{7^{4}}} \times \frac{(-7)^{2}}{5^{2}}$$

$$= \frac{7^{4}}{(-2)^{4}} \times \frac{(-7)^{2}}{5^{2}} = \frac{7 \times 7 \times 7 \times 7}{16} \times \frac{-7 \times -7}{25}$$

$$= \frac{7^{6}}{16 \times 25} = \frac{7^{6}}{16 \times 25} = \frac{7^{6}}{400} = \frac{117649}{400}$$

Ex.11 Express each of the following as power of a rational number with positive exponent :

(i) 
$$\left(\frac{1}{4}\right)^{-3}$$

(ii) 
$$5^{-3} \times 5^{-6}$$

(ii) 
$$5^{-3} \times 5^{-6}$$
 (iii)  $\left(\frac{-1}{4}\right)^{-5} \times \left(\frac{-1}{4}\right)^{-7}$ 

Sol.

$$\left(\frac{1}{4}\right)^{-3} = \frac{1}{\left(\frac{1}{4}\right)^3} = \frac{1}{\frac{1^3}{4^3}} = \frac{4^3}{1^3} = 4^3$$

$$= \frac{1}{5^3} \times \frac{1}{5^6} = \frac{1 \times 1}{5^3 \times 5^6} = \frac{1}{5^{3+6}} = \frac{1^9}{5^9} = \left(\frac{1}{5}\right)^9$$

(iii) We have, 
$$\left(\frac{-1}{4}\right)^{-5} \times \left(\frac{-1}{4}\right)^{-7}$$

$$= \frac{1}{\left(\frac{-1}{4}\right)^5} \times \frac{1}{\left(\frac{-1}{4}\right)^7} = \frac{1}{\frac{(-1)^5}{4^5}} \times \frac{1}{\frac{(-1)^7}{4^7}} \times \frac{1}{\frac{-1}{4^5}} \times \frac{1}{\frac{-1}{4^7}}$$

$$= \frac{4^5}{-1} \times \frac{4^7}{-1} = \frac{4^5 \times 4^7}{(-1) \times (-1)} = \frac{4^{5+7}}{1} = 4^{12}$$



Ph: 9673676726,9420488272,9022478542,9420488075

Ex.12 Simplify:

(i) 
$$(2^{-1} \div 5^{-1})^2 \times \left(\frac{-5}{8}\right)^{-1}$$
 (ii)  $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$ 

(iii) 
$$(5^{-1} \times 3^{-1})^{-1} \div 6^{-1}$$
 (iv)  $(4^{-1} + 8^{-1}) \div (\frac{2}{3})^{-1}$ 

**Sol.** (i) We have,

(i) We have, 
$$(2^{-1} \div 5^{-1})^2 \times \left(\frac{-5}{8}\right)^{-1}$$

$$= \left(\frac{1}{2} \div \frac{1}{5}\right)^2 \times \frac{1}{\left(\frac{-5}{8}\right)} = \left(\frac{1}{2} \times \frac{5}{1}\right)^2 \times \left(\frac{8}{-5}\right)$$

$$\left[ \because a^{-1} = \frac{1}{a} \right]$$

$$= \left(\frac{5}{2}\right)^2 \times \left(\frac{8}{-5}\right) = \frac{5^2}{2^2} \times \frac{8}{-5} = \frac{5}{4} \times \frac{8}{-1}$$

$$= \frac{5}{1} \times \frac{2}{-1} = -10$$
(ii) We have, 
$$(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= \left(\frac{4 - 3}{24}\right)^{-1} + \left(\frac{1}{6}\right)^{-1} = \frac{1}{\frac{1}{24}} + \frac{1}{\frac{1}{6}} - \frac{24}{1} + \frac{6}{1} = 30$$

$$\left[ \because a^{-1} = \frac{1}{a} \right]$$
(iii) We have, 
$$(5^{-1} \times 3^{-1})^{-1} \div 6^{-1}$$

$$= \left(\frac{1}{15}\right)^{-1} \div \frac{1}{6} = \frac{1}{\frac{1}{15}} \div \frac{1}{6} = 15 \div \frac{1}{6} = 15 \times \frac{6}{1} = 90$$
(iv) We have, 
$$(4^{-1} + 8^{-1}) \div \left(\frac{2}{3}\right)^{-1}$$

$$= \left(\frac{1}{4} + \frac{1}{8}\right) \div \frac{1}{2} = \left(\frac{2 + 1}{8}\right) \div \left(\frac{3}{2}\right)$$

$$= \frac{3}{9} \div \frac{3}{2} = \frac{3}{9} \times \frac{3}{2} = \frac{1}{4}$$

Ex.13 Simplify

(i) 
$$\left(\frac{1}{4}\right)^{-2} + \left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2}$$
 (ii)  $\left\{6^{-1}\left(\frac{3}{2}\right)^{-1}\right\}^{-1}$ 

**Sol.** (i) We have, 
$$\left(\frac{1}{4}\right)^{-2} + \left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-2}$$



$$= \frac{1}{\left(\frac{1}{4}\right)^{2}} + \frac{1}{\left(\frac{1}{2}\right)^{2}} + \frac{1}{\left(\frac{1}{3}\right)^{2}}$$

$$= \frac{1}{\frac{1^{2}}{4^{2}}} + \frac{1}{\frac{1^{2}}{2^{2}}} + \frac{1}{\frac{1^{2}}{2^{2}}} + \frac{2^{2}}{1^{2}} + \frac{3^{2}}{1^{2}}$$

$$= \frac{4^{24^{2}}}{1} + \frac{2^{2}}{1} + \frac{3^{2}}{1}$$

$$= 4^{2} + 2^{2} + 3^{2} = 16 + 4 + 9 = 29$$
(ii) We have, 
$$\left\{6^{-1} + \left(\frac{3}{2}\right)^{-1}\right\}^{-1}$$

$$= \left\{6^{-1} + \frac{1}{\frac{3}{2}}\right\}^{-1} = \left(\frac{1}{6} + \frac{2}{3}\right)^{-1} = \left(\frac{1 + 2 \times 2}{6}\right)^{-1}$$

$$= \left(\frac{5}{6}\right)^{-1} = \frac{1}{\frac{5}{6}} = \frac{6}{5}$$

**Ex.14** Express each of the following as a rational number of the form  $\frac{p}{q}$ 

(i) 
$$(2^{-1} + 3^{-1})^2$$
 (ii)  $(2^{-1} - 4^{-1})^2$  (iii)  $\left\{ \left(\frac{4}{3}\right)^{-1} - \left(\frac{1}{4}\right)^{-1} \right\}^{-1}$ 

**Sol.** We know that for any positive integer n and any rational number a,  $a^{-n} = \frac{1}{a^n}$ . Thus, we have

(i) 
$$(2^{-1} + 3^{-1})^2 = \left(\frac{1}{2} + \frac{1}{3}\right)^2 = \left(\frac{3+2}{6}\right)^2$$
  

$$= \left(\frac{5}{6}\right)^2 = \frac{5^2}{6^2} = \frac{25}{36}$$
  
(ii)  $(2^{-1} - 4^{-1})^2 = \left(\frac{1}{2} - \frac{1}{4}\right)^2 = \left(\frac{2-1}{4}\right)^2 = \left(\frac{1}{4}\right)^2$ 

(ii) 
$$(2^{-1} - 4^{-1})^2 = (\frac{1}{2} - \frac{1}{4}) = (\frac{2^{-1}}{4}) = (\frac{1}{4})$$
  
=  $\frac{1^2}{4^2} = \frac{1}{16}$ 

(iii) 
$$\left\{ \left( \frac{4}{3} \right)^{-1} - \left( \frac{1}{4} \right)^{-1} \right\}^{-1}$$

$$= \left(\frac{\frac{1}{3} - \frac{1}{1}}{\frac{1}{4}}\right)^{-1} = \left(\frac{4}{3} - \frac{4}{1}\right)^{-1}$$

$$= \left(\frac{4-3\times4}{3}\right)^{-1} \left(\frac{-8}{3}\right)^{-1} = \frac{1}{\frac{-8}{3}} = \frac{3}{-8} = -\frac{3}{8}$$



**Ex.15** By what number should  $(-8)^{-1}$  be multiplied so that the product may be equal to  $10^{-1}$ ? Let  $(-8)^{-1}$  be multiplied by x to get  $10^{-1}$ . Then, x ×  $(-8)^{-1}$  =  $10^{-1}$ 

⇒ 
$$x = 10^{-1} \div (-8)^{-1}$$
  
⇒  $x = \frac{1}{10} \div \frac{1}{-8}$   $\left[ \because a^{-1} = \frac{1}{a} \right]$   
⇒  $x = \frac{1}{10} \times \frac{-8}{1} = \frac{-8}{10} = \frac{-4}{5}$ 

Hence, the required number is  $\frac{-4}{5}$ 

Ex.16 Using the laws of exponents, simplify each of the following and express in exponential form:

(A) 
$$3^7 \times 3^{-2}$$

(B) 
$$2^{-7} \div 2^{-3}$$

(C) 
$$(5^2)^{-3}$$

(A) 
$$3^7 \times 3^{-2}$$
 (B)  $2^{-7} \div 2^{-3}$  (C)  $(5^2)^{-3}$  (D)  $2^{-3} \times (-7)^{-3}$  (E)  $\frac{3^{-3}}{4^{-5}}$ 

(E) 
$$\frac{3^{-5}}{4^{-5}}$$

Using laws of exponents, we have:

(i) 
$$3^7 \times 3^{-2} = 3^7 + (-2) = 3^5$$

$$[:: a^m \times a^n = a^{m+n}]$$

(ii) 
$$2^{-7} \div 2^{-3} = \frac{2^{-7}}{2^{-3}} = 2^{-7-(-3)} = 2^{-7+3} = 2^{-4}$$
  $\left[\because \frac{a^m}{a^n} = a^{m-n}\right]$ 

(iii) 
$$(5^2)^{-3} = 5^2 \times -3 = 5^{-6}$$

$$[::(a^m)^n=a^{mn}]$$

(iv) 
$$2^{-3} \times (-7)^{-3} = (2 \times (-7))^{-3} = (-14)^{-3} [:: a^n \times b^n = (ab)^n]$$

(v) 
$$\frac{3^{-5}}{4^{-5}} = \left(\frac{3}{4}\right)^{-5}$$

$$\left[\because \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n\right]$$

Ex.17 Using the laws of exponents simplify and express each of the following in exponential form with positive exponent:

(i) 
$$(-4)^4 \times (-4)^{-10}$$

(ii) 
$$2^{-5} \div 2^{2}$$

(iv) 
$$\left(\frac{1}{2^3}\right)^2$$

(v) 
$$(3^{-7} \div 3^{-10}) \times 3^{-5}$$

(i) 
$$(-4)^4 \times (-4)^{-10}$$
 (ii)  $2^{-5} \div 2^2$  (iii)  $3^{-4} \times 2^{-4}$  (iv)  $\left(\frac{1}{2^3}\right)^2$  (v)  $(3^{-7} \div 3^{-10}) \times 3^{-5}$  (vi)  $(-3)^4 \times \left(\frac{5}{3}\right)^4$ 

(i) We have,  $(-4)^4 \times (-4)^{-10} = (-4)^4 + (-10) [::a^m \times a^n = a^{m+n}]$ Sol.

$$= \frac{1}{(-4)^6}$$

$$\left[ \because a^{-n} = \frac{1}{a^n} \right]$$

$$= \frac{1^6}{(-4)^6}$$

$$[:: 1^6 = 1]$$

$$= \left(\frac{1}{-4}\right)^6$$

$$\left[ \because \frac{a^n}{b^n} = \left( \frac{a}{b} \right)^n \right]$$

$$=\left(\frac{-1}{4}\right)^6$$

$$\left[\because \frac{1}{-4} = \frac{-1}{4}\right]$$

(ii) We have,

$$2^{-5} \div 2^2 = \frac{2^{-5}}{2^2} = 2^{-5-2}$$

$$\left[\because \frac{a^{m}}{a^{n}} = a^{m-n}\right]$$

$$= 2^{-7} = \frac{1}{2^7}$$

$$2^{-5} \div 2^2 = \frac{2^{-5}}{2^2} = 2^{-5-2} \qquad \left[ \because \frac{a^m}{a^n} = a^{m-n} \right] \qquad = 2^{-7} = \frac{1}{2^7} \qquad \left[ \because a^{-n} = \frac{1}{a^n} \right] \qquad = \frac{1^7}{2^7} = \left( \frac{1}{2} \right)^7$$

$$=\frac{1}{2^7} = \left(\frac{1}{2}\right)^7$$

(iii) We have,  

$$3^{-4} \times 2^{-4} = (3 \times 2)^{-4}$$
  $[\because a^n \times b^n = (ab)^n]$   
 $= 6^{-4} = \frac{1}{6^4} \left[\because a^{-n} = \frac{1}{a^n}\right]$   $= \frac{1^4}{6^4} \left[\because 1^4 = 1\right]$   
 $= \left(\frac{1}{6}\right)^4$   $\left[\because \frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n\right]$ 

(iv) We have,

$$\left(\frac{1}{2^3}\right)^2 = \left(\frac{1^3}{2^3}\right)^2 \left\{ \left(\frac{1}{2}\right)^3 \right\}^2 = \left(\frac{1}{2}\right)^{3 \times 2} = \left(\frac{1}{2}\right)^6$$

(v) We have,  $(3^{-7} \div 3^{-10}) \times 3^{-5}$ 

$$= \left(\frac{3^{-7}}{3^{-10}}\right) \times 3^{-5} = 3^{-7 - (-10)} \times 3^{-5}$$

$$= 3^{-7 + 10} \times 3^{-5} = 3^3 \times 3^{-5} = 3^{3 + (-5)} = 3^{-2}$$

$$= \frac{1}{3^2} = \frac{1^2}{3^2} = \left(\frac{1}{3}\right)^2$$

(vi) We have,

$$(-3)^{4} \times \left(\frac{5}{3}\right)^{4} = (-1 \times 3)^{4} \times \left(\frac{5}{3}\right)^{4} \quad [\because -3 = -1 \times 3]$$

$$= \left\{(-1)^{4} \times 3^{4}\right\} \times \frac{5^{4}}{3^{4}}$$

$$\left[\because (ab)^{n} = a^{n}b^{n} \text{ and} \left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}\right]$$

$$= (1 \times 3^{4}) \times \frac{5^{4}}{3^{4}} \qquad [\because (-1)^{4} = 1]$$

$$= 3^{4} \times \frac{5^{4}}{3^{4}} = 3^{4-4} \times 5^{4} = 3^{0} \times 5^{4} = 1 \times 5^{4} = 5^{4}$$

Ex.18 Simplify and write the answer in the exponetial form:

(i) 
$$(2^5 \div 2^8)^5 \times 2^{-5}$$
 (ii)  $(-4)^3 \times (5)^{-3} \times (-5)^{-3}$  (iii)  $\frac{1}{8} \times 3^{-3}$ 

**Sol.** (i) We have, 
$$(2^5 \div 2^8)^5 \times 2^{-5}$$

$$= \left(\frac{2^5}{2^8}\right)^3 \times 2^{-5} = (2^{5-8})^5 \times 2^{-5}$$

$$= (2^{-3})^5 \times 2^{-5} = 2^{-3\times5} \times 2^{-5}$$

$$= 2^{-15} \times 2^{-5} = 2^{-15-5} = 2^{-20}$$
(ii) We have,  $(-4)^{-3} \times 5^{-3} \times (-5)^{-3}$ 

$$= \{-4 \times 5 \times (-5)\}^{-3} \qquad \left[ : a^n \times b^n \times c^n = (abc)^n \right]$$

$$= (100)^{-3} = \left(10^2\right)^{-3} = 10^2 \times -3 = 10^{-6}$$



(iii) We have

$$\frac{1}{8} \times 3^{-3} = \frac{1}{2^3} \times 3^{-3} = 2^{-3} \times 3^{-3} = (2 \times 3)^{-3} = 6^{-3}$$

Ex.19 Simplify each of the following:

(i) 
$$\left[ \left\{ \left( \frac{-1}{5} \right)^{-2} \right\}^2 \right]^{-1}$$

(ii) 
$$\left\{ \left( \frac{1}{3} \right)^{-2} - \left( \frac{1}{2} \right)^{-3} \right\} \div \left( \frac{1}{4} \right)^{-2}$$

Sol. We have

(i) 
$$\left[ \left\{ \left( \frac{-1}{5} \right)^{-2} \right\}^{2} \right]^{-1} = \left\{ \left( \frac{-1}{5} \right)^{-2} \right\}^{2 \times -1}$$

$$= \left\{ \left( \frac{-1}{5} \right)^{-2} \right\}^{-2} = \left( \frac{-1}{5} \right)^{(-2) \times (-2)}$$

$$= \left( \frac{-1}{5} \right)^{4} = \frac{(-1)^{4}}{5^{4}} = \frac{1}{625}$$

$$\left\{ \left(\frac{1}{3}\right)^{-2} - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-2} \quad \left\{ \left(\frac{3}{1}\right)^2 - \left(\frac{2}{1}\right)^3 \right\} \div \left(\frac{4}{1}\right)^2 \\
= \left\{ \frac{3^2}{1^2} - \frac{2^3}{1^3} \right\} \div \frac{4^2}{1^2} = (9 - 8) \div 16 \\
= 1 \div 16 = \frac{1}{16}$$

Ex.20 Simplify:

(i) 
$$\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-5}$$
 (ii)  $\left(\frac{-2}{3}\right)^{-2} \times \left(\frac{4}{5}\right)^{-3}$  (iii)  $\left(\frac{3}{4}\right)^{-4} \div \left(\frac{3}{2}\right)^{-3}$  (iv)  $\left(\frac{3}{7}\right)^{-2} \times \left(\frac{7}{6}\right)^{-3}$ 

(ii) 
$$\left(\frac{-2}{3}\right)^{-2} \times \left(\frac{4}{5}\right)^{-2}$$

(iii) 
$$\left(\frac{3}{4}\right)^{-4} \div \left(\frac{3}{2}\right)^{-1}$$

(iv) 
$$\left(\frac{3}{7}\right)^{-2} \times \left(\frac{7}{6}\right)^{-2}$$

 $\therefore (a^m)^n = a^{mn}$ 

Sol.

$$\left(\frac{5}{8}\right)^{-7} \times \left(\frac{8}{5}\right)^{-5} = \frac{5^{-7}}{8^{-7}} \times \frac{8^{-5}}{5^{-5}} = \frac{5^{-7}}{5^{-5}} \times \frac{8^{-5}}{8^{-7}}$$

$$= 5^{-7-(-5)} \times 8^{-5-(-7)}$$

$$= 5^{-7+5} \times 8^{-5+7} = 5^{-2} \times 8^2 = \frac{8^2}{5^2} = \frac{64}{25}$$

(ii) We have, 
$$\left(\frac{-2}{3}\right)^{-2} \times \left(\frac{4}{5}\right)^{-3} = \frac{(-2)^{-2}}{3^{-2}} \times \frac{4^{-3}}{5^{-3}}$$
$$= \frac{3^2}{(-2)^2} \times \frac{5^3}{4^3} = \frac{9}{4} \times \frac{125}{64} = \frac{9 \times 125}{4 \times 64} = \frac{1125}{256}$$



Ph: 9673676726,9420488272,9022478542,9420488075

(iii) We have,

$$\left(\frac{3}{4}\right)^{-4} \div \left(\frac{3}{2}\right)^{-3} = \left(\frac{3}{4}\right)^{-4} \times \frac{1}{\left(\frac{3}{2}\right)^{-3}} = \left(\frac{3}{4}\right)^{-4} \times \left(\frac{3}{2}\right)^{3}$$

$$= \frac{3^{-4}}{4^{-4}} \times \frac{3^{3}}{2^{3}}$$

$$= \frac{3^{-4} \times 3^{3}}{(2^{2})^{-4} \times 2^{3}} = \frac{3^{-4} \times 3^{3}}{2^{-8} \times 2^{3}} = \frac{3^{-4+3}}{2^{-8+3}} = \frac{3^{-1}}{2^{-5}} = \frac{2^{5}}{3^{1}} = \frac{32}{3}$$

(iv) We have, 
$$\left(\frac{3}{7}\right)^{-2} \times \left(\frac{7}{6}\right)^{-3} = \frac{3^{-2}}{7^{-2}} \times \frac{7^{-3}}{6^{-3}}$$
  $\left[\because \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}\right]$ 

$$= \frac{3^{-2}}{7^{-2}} \times \frac{7^{-3}}{(2 \times 3)^{-3}}$$

$$= \frac{3^{-2}}{7^{-2}} \times \frac{7^{-3}}{2^{-3} \times 3^{-3}}$$

$$= \frac{3^{-2}}{3^{-3}} \times \frac{7^{-3}}{7^{-2}} \times \frac{1}{2^{-3}}$$

$$= 3^{-2+3} \times 7^{-3+2} \times 2^3$$

$$= 3 \times 7^{-1} \times 2^3 = 3 \times \frac{1}{7} \times 8 = \frac{24}{7}$$

**Ex.21** Evaluate: 
$$\frac{8^{-1} \times 5^3}{2^{-4}}$$

Sol. We have,

$$\frac{8^{-1} \times 5^{3}}{2^{-4}} = \frac{(2^{3})^{-1} \times 5^{3}}{2^{-4}} = \frac{2^{3 \times -1} \times 5^{3}}{2^{-4}} = \frac{2^{-3} \times 5^{3}}{2^{-4}}$$
$$= 2^{-3+4} \times 5^{3} 2^{1} \times 5^{3} = 2 \times 125 = 250$$

Ex.22 Simplify:

(i) 
$$\frac{25\times a^{-4}}{5^{-3}\times 10\times a^{-8}}$$
 (ii)  $\frac{3^{-5}\times 10^{-5}\times 125}{5^{-7}\times 6^{-5}}$ 

Sol. (i) We have,

$$\frac{25 \times a^{-4}}{5^{-3} \times 10 \times a^{-8}} = \frac{5^2 \times a^{-4}}{5^{-3} \times (2 \times 5) \times a^{-8}} = \frac{5^2 \times a^{-4}}{5^{-3+1} \times 2 \times a^{-8}}$$
$$= \frac{5^2 \times a^{-4}}{5^{-2} \times 2 \times a^{-8}} = \frac{5^{2-(-2)} \times a^{-4+8}}{2} = \frac{5^4 \times a^4}{2} = \frac{5^4}{2} \times a^4 = \frac{625}{2} a^4$$

(ii) We have,

$$\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}} = \frac{3^{-5} \times (2 \times 5)^{-5} \times 5^{3}}{5^{-7} \times (2 \times 3)^{-5}}$$

$$= \frac{3^{-5} \times 2^{-5} \times 5^{-5} \times 5^{3}}{5^{-7} \times 2^{-5} \times 3^{-5}}$$

$$= 3^{-5 - (-5)} \times 2^{-5 - (-5)} \times 5^{-5 + 3 - (-7)}$$

$$= 3^{0} \times 2^{0} \times 5^{-5 + 3 + 7} = 1 \times 1 \times 5^{5} = 5^{5}$$



**Ex.23** By what number should  $(-4)^{-2}$  be multiplied so that the product may be equal to  $10^{-2}$  ? **Sol.** Let  $(-4)^{-2}$  = be multiplied by x to get  $10^{-2}$ . Then, x ×  $(-4)^{-2}$  =  $10^{-2}$ 

Then, 
$$x \times (-4)^{-2} = 10^{-2}$$

$$\Rightarrow$$
 x = 10<sup>-2</sup> ÷ (-4)<sup>-2</sup>

$$\Rightarrow x = 10^{-2} \times \frac{1}{(-4)^{-2}}$$

$$\Rightarrow x = \frac{10^{-2}}{(-4)^{-2}}$$

$$\Rightarrow$$
  $x = \frac{(-4)^2}{10^2} = \frac{16}{100} = \frac{4}{25}$ 

Hence, required number is  $\frac{4}{25}$ 

**Ex.24** By what number should  $(-12)^{-1}$  be divided so that the quotient may be  $\left(\frac{2}{3}\right)^{-1}$ ?

Let the required number be x. Then,

$$(-12)^{-1} \div x = \left(\frac{2}{3}\right)^{-1}$$

$$\Rightarrow \frac{(-12)^{-1}}{x} = \left(\frac{2}{3}\right)^{-1} \Rightarrow x = (-12)^{-1} \div \left(\frac{2}{3}\right)^{-1}$$

$$\Rightarrow \qquad x = (-12)^{-1} \div \left(\frac{2}{3}\right)^{-1}$$

$$\Rightarrow \quad x = \frac{1}{-12} \div \left(\frac{3}{2}\right)$$

$$x = \frac{1}{-12} \times \frac{2}{3} = \frac{1}{-18} = \frac{-1}{18}$$

$$\Rightarrow \qquad x = \frac{1}{-12} \times \frac{2}{3} = \frac{1}{-18} = \frac{-1}{18} \qquad \qquad \left[ \because a^{-1} = \frac{1}{a} \text{ and } \left( \frac{a}{b} \right)^{-1} = \frac{b}{a} \right]$$

**Ex.25** By what number should  $\left(\frac{-3}{2}\right)^{-3}$  be divided so that the quotient may be  $\left(\frac{4}{27}\right)^{-2}$ ?

Let the required number be x. Then,

$$\left(\frac{-3}{2}\right)^{-3} \div \mathbf{x} = \left(\frac{4}{27}\right)^{-2}$$

$$\Rightarrow \left(\frac{-3}{2}\right)^{-3} \times \frac{1}{x} = \left(\frac{4}{27}\right)^{-2}$$

$$\Rightarrow \qquad x = \left(\frac{-3}{2}\right)^{-3} \div \left(\frac{4}{27}\right)^{-2}$$

$$\Rightarrow x = \left(\frac{2}{-3}\right)^3 \div \left(\frac{27}{4}\right)^2 \qquad \left[\because \left(\frac{a}{b}\right)^n = \left(\frac{b}{a}\right)^n\right] \qquad \Rightarrow \qquad x = \left(\frac{2}{-3}\right)^3 \times \frac{1}{\left(\frac{27}{4}\right)^2}$$

$$\mathbf{x} = \left(\frac{2}{-3}\right)^3 \times \frac{1}{\left(\frac{27}{4}\right)^2}$$

$$\Rightarrow x = \frac{2^3}{(-3)^3} \times \frac{1}{\frac{27^2}{4^2}}$$

$$\Rightarrow \qquad x = \frac{8}{-27} \times \frac{4^2}{27^2} = \frac{-8}{27} \times \frac{4^2}{27^2} = \frac{-2 \times 4^3}{27^3}$$

$$=-2\times\left(\frac{4}{27}\right)^3$$



## **EXERCISE - I**

## **UNSOLVED PROBLEMS**

- What number should be added to  $\frac{-5}{11}$  so as Q.1 to get  $\frac{26}{33}$ ?
- What number should be added to  $\frac{-5}{7}$  to get **Q.11** Multiply: Q.2
- What number should be subtracted from  $\frac{-5}{3}$ Q.3 to get  $\frac{5}{6}$ ?
- What number should be subtracted from  $\frac{3}{7}$ Q.4 to get  $\frac{5}{4}$ ?
- What should be added to  $\left(\frac{2}{3} + \frac{3}{5}\right)$  to get
- What should be added to  $\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{5}\right)$  to get
- What should be subtracted from  $\left(\frac{3}{4} \frac{2}{3}\right)$  to Q.7
- Simply each of the following and write as a **Q.8** rational number of the from  $\frac{p}{q}$ :

  - (i)  $\frac{3}{4} + \frac{5}{6} + \frac{-7}{8}$  (ii)  $\frac{2}{3} + \frac{-5}{6} + \frac{-7}{9}$
- Express each of the following as a rational Q.9 number of the form  $\frac{p}{q}$ :
  - (i)  $\frac{-8}{3} + \frac{-1}{4} + \frac{-11}{6} + \frac{3}{8} 3$
  - (ii)  $\frac{6}{7} + 1 + \frac{-7}{9} + \frac{19}{21} + \frac{-12}{7}$

- (i)  $\frac{-3}{2} + \frac{5}{4} \frac{7}{4}$  (ii)  $\frac{5}{3} \frac{7}{6} + \frac{-2}{3}$

**Q.12** Multiply:

- Multiply: (i)  $\frac{7}{11}$  by  $\frac{5}{4}$  (ii)  $\frac{5}{7}$  by  $\frac{-3}{4}$ Multiply: (i)  $\frac{-5}{17}$  by  $\frac{51}{-60}$  (ii)  $\frac{-6}{11}$  by  $\frac{-55}{36}$
- **Q.13** Simplify each of the following and express the result as a rational number in standard

(i) 
$$\frac{-16}{21} \times \frac{14}{5}$$
 (ii)  $\frac{7}{6} \times \frac{-3}{28}$ 
**Q.14** Simplify:

(i)  $\left(\frac{25}{8} \times \frac{2}{5}\right) - \left(\frac{3}{5} \times \frac{-10}{9}\right)$  (ii)  $\left(\frac{1}{2} \times \frac{1}{4}\right) + \left(\frac{1}{2} \times 6\right)$ 

(i) 
$$\left(\frac{3}{2} \times \frac{1}{6}\right) + \left(\frac{5}{3} \times \frac{7}{2}\right) - \left(\frac{13}{8} \times \frac{4}{3}\right)$$

(ii) 
$$\left(\frac{1}{4} \times \frac{2}{7}\right) - \left(\frac{5}{14} \times \frac{-2}{3}\right) + \left(\frac{3}{7} \times \frac{9}{2}\right)$$

- Q.16 Express each of the following as a rational number in the form  $\frac{p}{q}$ : (i)  $6^{-1}$  (ii)

- (iii)  $\left(\frac{1}{4}\right)^{-1}$  (iv)  $(-4)^{-1} \times \left(\frac{-3}{2}\right)^{-1}$

Q.17 Simplify

- (i)  $\{4^{-1} \times 3^{-1}\}^2$  (ii)  $\{5^{-1} \div 6^{-1}\}^3$
- Q.18 Express each of the following rational numbers with a negative exponent:
- **Q.19** Express each of the following rational numbers with a positive exponent:



Q.20 Simplify

(i) 
$$\left\{ \left( \frac{3}{2} \right)^{-3} - \left( \frac{1}{2} \right)^{-3} \right\} \div \left( \frac{1}{4} \right)^{-3}$$

(ii) 
$$(3^2-2^2)\times\left(\frac{2}{3}\right)^{-3}$$

- **Q.21** By what number should  $5^{-1}$  be multiplied so that the product may be equal to  $(-7)^{-1}$ ?
- **Q.22** By what number should  $\left(\frac{1}{2}\right)^{-1}$  be multiplied so that the product may be equal to
- **Q.23** By what number should  $(-15)^{-1}$  be divided so that the quotient may be equal to  $(-5)^{-1}$ ?
- **Q.24** By what number should  $\left(\frac{5}{3}\right)^{-2}$  be multiplied so that the product may be  $\left(\frac{7}{3}\right)^{-1}$ ?
- **Q.25** Find x, if

(i) 
$$\left(\frac{1}{4}\right)^{-4} \times \left(\frac{1}{4}\right)^{-8} = \left(\frac{1}{4}\right)^{-4x}$$

(ii) 
$$\left(\frac{-1}{2}\right)^{-19} \div \left(\frac{-1}{2}\right)^8 = \left(\frac{-1}{2}\right)^{-2x+1}$$

- **Q.26** If  $x = \left(\frac{3}{2}\right)^2 \times \left(\frac{2}{3}\right)^{-4}$ , find the value of  $x^{-2}$ .
- **Q.27** Find the value of x for which  $5^{2x} \div 5^{-3} = 5^{5}$
- Q.28 Express the following numbers in standard form:
  - (i) 6020000000000000
  - (ii) 0.0000000000942
- Q.29 Write the following numbers in the usual
  - (i)  $4.83 \times 10^7$
- (ii)  $3.02 \times 10^{-6}$  (iv)  $3 \times 10^{-8}$
- (iii)  $4.5 \times 10^4$

- $\frac{41}{33}$  **2.**  $\frac{1}{21}$  **3.**  $\frac{-5}{2}$  **4.**

- - $\frac{-7}{5}$  6.  $\frac{59}{30}$  7.  $\frac{1}{4}$
- (i)  $\frac{17}{24}$  (ii)  $\frac{-17}{18}$
- **9.** (i)  $-7\frac{3}{8}$  (ii)  $\frac{17}{63}$
- **10.** (i) -2 (ii)  $\frac{-1}{6}$
- **11.** (i)  $\frac{35}{44}$  (ii)  $\frac{-15}{28}$
- **13.** (i)  $-2\frac{2}{15}$  (ii)  $\frac{-1}{8}$
- **14.** (i)  $1\frac{11}{12}$  (ii)  $3\frac{1}{8}$
- **15.** (i)  $3\frac{11}{12}$  (ii)  $2\frac{5}{21}$
- **16.** (i)  $\frac{1}{6}$  (ii)  $\frac{-1}{7}$  (iii) 4 (iv)  $\frac{1}{6}$
- **17.** (i)  $\frac{1}{144}$  (ii)  $\frac{216}{125}$
- **18.** (i)  $4^{-3}$  (ii)  $\left(\frac{1}{3}\right)^{-5}$
- **20** (i)  $\frac{-13}{108}$  (ii)  $\frac{135}{8}$
- **21.**  $\frac{-5}{7}$  **22.**  $(-56)^{-1}$  **23.**  $(3)^{-1}$
- **25.** (i) 3 (ii) 14

- **28** (i) 6.02 ×10<sup>15</sup> (ii)  $9.42 \times 10^{-12}$
- (i) 48300000 (ii)0.00000302 (iv) 0.0000003

# EXERCISE - II

# SCHOOL EXAM/BOARD

- Simplify:  $\frac{4}{3} + \frac{3}{5} + \frac{-2}{3} + -\frac{11}{5}$ Q.1
- Is 0.3 the multiplicative inverse of  $3\frac{1}{3}$ ? Why Q.2 or why not?
- Q.3 Represent these numbers on the number line: (ii)  $\frac{-5}{6}$
- Represent  $\frac{-2}{11}$ ,  $\frac{-5}{11}$ ,  $\frac{-9}{11}$  on the number line. Q.4
- **Q.5** Write five rational numbers which are smaller
- Find ten rational numbers between  $\frac{-2}{5}$  and Q.6  $\frac{1}{2}$ .
- Q.7 Find five rational numbers between (i)  $\frac{2}{3}$  and  $\frac{4}{5}$  (ii)  $\frac{-3}{2}$  and  $\frac{5}{3}$  (iii)  $\frac{1}{4}$  and  $\frac{1}{2}$
- Write five rational numbers greater than -2. Q.8
- Simplify:  $\frac{-3}{10} + \frac{7}{15} + \frac{3}{-20} \frac{9}{10} + \frac{13}{15} + \frac{13}{-20}$ Q.9
- Q.10 The sum of two rational numbers is 6 and one of them is  $\frac{-7}{2}$ . Find the other.
- **Q.11** Subtract the sum of the two numbers is  $\frac{-8}{5}$ and  $\frac{-5}{3}$  from the sum of  $\frac{3}{2}$  and  $\frac{-31}{28}$ .
- **Q.12** Rimmi bought  $4\frac{3}{4}$  litres milk and used  $3\frac{7}{8}$  litres to prepare a sweet dish. How much milk is left?
- Q.13 A train goes 80 km in one hour. How much distance will it cover in 45 minutes?
- **Q.14** A man has Rs. 100 with him. He bought  $3\frac{1}{2}$ litres of milk at Rs.  $16\frac{1}{2}$  per litre. How much money is left with him.

- **Q.15** Praneeta bought  $3\frac{1}{2}$  m ribbon at Rs.  $5\frac{3}{7}$  per metre, 4  $\frac{3}{4}$  m cloth at Rs. 27  $\frac{1}{2}$  per metre. How much money did she spend?
- **Q.16** By taking  $x = \frac{-3}{4}$ ,  $y = \frac{2}{3}$  and  $z = \frac{-5}{6}$ , verify (i)  $x \times (y + z) = x \times y + x \times z$ (ii)  $x(y - z) = x \times y - x \times z$
- **Q.17** The product of two numbers is  $-17\frac{1}{2}$ . If one of them is  $1\frac{1}{6}$ , find the other.
- **Q.18** Divide the sum of  $\frac{-3}{4}$  and  $\frac{-5}{12}$  by their product.
- **Q.19** A shirt needs  $2\frac{1}{4}$  m cloth. How many shirts can be made from  $31\frac{1}{2}$  m cloth?
- **Q.20** The length of 21 skipping ropes is  $36\frac{3}{4}$  m. Find the length of 1 rope.

- Yes, because the product is 1
- $1, -\frac{1}{2}, 0, -1, -\frac{1}{2},$  **9.**  $-\frac{2}{3}$
- 10.

- $42\frac{1}{4}$
- Rs. 149 $\frac{5}{8}$ 15.
- 17.
- 19. 14 shirts



# **EXERCISE - III**

## **MULTIPLE CHOICE QUESTIONS**

- **Q.1** If  $x = 0.1\overline{6}$ , then 3x is -
  - (A)  $0.4\overline{8}$
- (B)  $0.4\overline{9}$
- (C)  $0.\overline{5}$
- (D) 0.5
- Find the value of x when  $\left(\frac{3}{5}\right)^{2x-3} = \left(\frac{5}{3}\right)^{x-3}$ Q.2
  - (A) x = 2
- (C) x = 1
- (D) x = -1
- If  $2^x 2^{x-1} = 4$ , then  $x^x$  is equal to Q.3
  - (A) 1
- (B) 27
- (D) None of these (C) 3
- The value of  $\frac{(0.6)^0 (0.1)^{-1}}{\left(3/2^3\right)^{-1} \left(3/2\right)^3 + \left(-\frac{1}{2}\right)^{-1}} \text{ is }$ Q.4
  - (A) 3/2
- (B) 3/2
- (C) 2/3
- (D) -1/2
- What must be added to the sum of **Q.5**  $4x^2 + 3x - 7$  and  $3x^2 + 6x + 5$  to get :
  - (A)  $7x^2 + 9x 3$  (B)  $3 9x 7x^2$
  - (C)  $7x^2 + 9x 2$  (D) None of these
- Q.6  $1.\overline{3}$  is equal to -
  - (A) 3/4
- (B) 2/3
- (C) 4/3
- (D) 2/5
- $0.\overline{585}$  is equal to -Q.7
  - (A)  $\frac{585}{99}$  (B)  $\frac{585}{999}$
  - (C)  $\frac{999}{585}$
- (D) none of these
- $5.\overline{2}$  is equal to -Q.8
  - (A) 45/9
- (B) 46/9
- (C) 47/9
- (D) None of these
- Q.9 from others ?
  - (A)  $\sqrt{2}$
- (B)  $\sqrt{3}$
- (C)  $\sqrt{4}$  (D)  $\sqrt{5}$

- Q.10 Which of the following numbers is different from others ?
  - (A)  $\sqrt{7}$
- (B)  $\sqrt{8}$
- (C)  $\sqrt{13}$  (D)  $\sqrt{16}$
- **Q.11** If  $x = 0.\overline{7}$ , then 2x is -
  - (A)  $1.\overline{4}$
- (B)  $1.\overline{5}$
- (C)  $1.\overline{54}$
- (D)  $1.\overline{45}$
- **Q.12** Evaluate  $\sqrt[3]{\left(\frac{1}{64}\right)^{-2}}$ 
  - (A) 4
- (B) 16
- (C) 32
- (D) 64
- **Q.13** The value of  $(256)^{0.16} \times (256)^{0.09}$  is -
  - (A) 64 (C) 16
- (B) 256.25 (D) 4
- **Q.14** If  $a = 2 + \sqrt{3}$  and  $b = 2 \sqrt{3}$ , then  $\frac{1}{a} + \frac{1}{b}$  is equal to -
  - (A)  $2\sqrt{3}$
- (B)  $2\sqrt{3}$
- (C) 4
- (D) 4
- **Q.15** If  $a = 2 + \sqrt{3}$  and  $b = 2 \sqrt{3}$ , then  $\frac{1}{a^2} \frac{1}{b^2}$ is equal to
  - (A) 14
- (B) 14
- (C)  $8\sqrt{3}$  (D)  $-8\sqrt{3}$
- **Q.16** If  $a = \frac{2+\sqrt{3}}{2-\sqrt{3}}$ ,  $b = \frac{2-\sqrt{3}}{2+\sqrt{3}}$ , then the value
  - of a + b is -
  - (A) 14
- (B) 14
- (C)  $8\sqrt{3}$  (D)  $-\sqrt{3}$
- Which of the following numbers is different **Q.17** If  $x = 3 + \sqrt{8}$  and  $y = 3 \sqrt{8}$ , then  $\frac{1}{x^2} + \frac{1}{v^2}$ 
  - is equal to -
  - (A) 34
- (B) 34
- (C)  $12\sqrt{8}$  (D)  $-12\sqrt{8}$



Ph: 9673676726,9420488272,9022478542,9420488075

$$\textbf{Q.18} \quad \frac{2^{n+3}-2 \left(\!2^n\right)}{2 (2^{n+2})} \quad \text{when simplified is -}$$

- (A)  $1 2 (2^n)$  (B)  $2^{n+3} \frac{1}{4}$
- (C)  $1 \frac{1}{4}$  (D)  $1 \frac{1}{2}$

**Q.19** 
$$\left(\frac{1}{64}\right)^0$$
 +  $64^{-1/2}$  -  $(-32)^{4/5}$  is equal to

- (A)  $-15\frac{7}{8}$  (B)  $16\frac{1}{8}$
- (C)  $-14\frac{7}{8}$  (D)  $17\frac{1}{8}$

**Q.20** A rational number between  $\sqrt{2}$  and  $\sqrt{3}$  is

- (A)  $\frac{\sqrt{2} \sqrt{3}}{2}$  (B)  $\frac{\sqrt{2}\sqrt{3}}{2}$
- (C) 1.4
- (D) 1.5

**Q.21** If 
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 and  $y = 1$ , the value of **Q.27** If  $a = \frac{1}{3 - 2\sqrt{2}}$ ,  $b = \frac{1}{3 + 2\sqrt{2}}$  then the value

$$\frac{x-y}{x-3y}$$
 is -

- (A)  $\frac{\sqrt{6}+4}{5}$  (B)  $\frac{5}{\sqrt{6}-4}$
- (C)  $\frac{5}{\sqrt{6}+4}$  (D)  $\frac{\sqrt{6}-4}{5}$

**Q.22** If A = x - 
$$\frac{1}{x}$$
, then the value of  $\left(A + \frac{1}{A}\right)$ 

- (A)  $\frac{x^4 x^2 + 1}{x(x^2 1)}$  (B)  $\frac{x^4 + x^2 + 1}{x(x^2 1)}$
- (C)  $\frac{x^4+1}{x^3-x^2}$  (D) 1

**Q.23** The value of 
$$\frac{1+x}{1-x} - \frac{1-x}{1+x} + \frac{4x}{1+x^2}$$
 is -

- (A)  $\frac{8x}{1-x^4}$  (B)  $\frac{8x}{1-x^4}$
- (C)  $\frac{8}{1-x^4}$  (D)  $\frac{-8}{1-x^4}$

**Q.24** The expression to be added to 
$$(5x^2 - 7x + 2)$$
 to produce  $(7x^2 - 1)$  is -

- (A)  $2x^2 + 7x + 3$  (B)  $2x^2 + 7x 3$
- (C)  $12x^2 7x + 1(D) 2x^2 3$

**Q.25** What must be added to 
$$1 - x + x^2 - 2x^3$$
 to obtain  $x^3$  ?

- (A)  $x^3 x^2 + x 1$
- (B)  $-1 + x + x^2 3x^3$
- (C)  $3x^3 x^2 + x 1$
- (D) None of these

**Q.26** The product of 
$$4\sqrt{6}$$
 and  $3\sqrt{24}$  is -

- (A) 124
- (B) 134
- (C) 144
- (D) 154

**Q.27** If 
$$a = \frac{1}{3 - 2\sqrt{2}}$$
,  $b = \frac{1}{3 + 2\sqrt{2}}$  then the value

- of  $a^2 + b^2$  is -

- (A) 34 (B) 35 (C) 36 (D) 37

**Q.28** If 
$$a = \frac{1}{3 - 2\sqrt{2}}$$
,  $b = \frac{1}{3 + 2\sqrt{2}}$  then the value

- of  $a^3 + b^3$  is (A) 194 (B) 196
  (C) 198 (D) 200

**Q.29** If 
$$x = (7 + 4\sqrt{3})$$
, then the value of  $x^2 + 4\sqrt{3}$ 

- $\frac{1}{2}$  is -
  - (A) 193
- (B) 194
- (C) 195
- (D) 196



**Q.30** If  $\sqrt{5}$  = 2.236 and  $\sqrt{10}$  = 3.162, the value

of 
$$\frac{\sqrt{10}-\sqrt{5}}{\sqrt{2}}$$
 on simplifying is -

- (A) 0.455
- (B) 0.855
- (C) 0.655
- (D) 0.755
- **Q.31** The value of  $5\sqrt{3} 3\sqrt{12} + 2\sqrt{75}$  on simplifying is -
  - (A)  $5\sqrt{3}$
- (B)  $6\sqrt{3}$
- (C)  $\sqrt{3}$
- (D)  $9\sqrt{3}$
- **Q.32** If  $\frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b \sqrt{3}$ , then the value of a
  - and b is-
  - (A) a = 2, b = -1
  - (B) a = 2, b = 1
  - (C) a = -2, b = 1
  - (D) a = -2, b = -1
- **Q.33** The rational form of  $2.74\overline{35}$  is -
  - (A)  $\frac{27161}{9999}$
- (B)  $\frac{27}{99}$
- (C)  $\frac{27161}{9900}$
- (D)  $\frac{27161}{9000}$
- **Q.34** The sum of a number and its reciprocal is 125/22. The number is
  - (A) 2/11
- (B) 1/11
- (C) 3/11
- (D) None of these
- **Q.35** What must be added to x/y to make it y/x?
  - (A)  $\frac{y-x}{y^2x^2}$
- (B)  $\frac{y^2 x^2}{xy}$
- (C)  $\frac{xy}{x+y}$
- (D)  $\frac{x^2y^2}{x^2+y^2}$

#### **ANSWER KEY**

- **1.** D **2.** A **3.** B **4.** B
- **5.** B **6.** C **7.** B **8.** C
- **9.** C **10.** D **11.** B **12.** B
- **13.** D **14.** C **15.** D **16.** A
- **17.** A **18.** C **19.** C **20.** D
- **21.** A **22.** A **23.** B **24.** B
- **25.** C **26.** C **27.** A **28.** C
- **29.** B **30.** C **31.** D **32.** A
- **33.** C **34.** A **35.** B

## **EXERCISE - I**V

# OLYMPIAD / NTSE QUESTIONS

#### **CHOOSE THE CORRECT ONE**

- 1. Which of the following statement is true?
  - (A) Every whole number is a natural number
  - (B) Every natural number is a whole number
  - (C) '1' is the lest whole number
  - (D) None of these
- A student was asked to multiply a number by 2.  $\frac{3}{2}$ . Instead he divided the number by  $\frac{3}{2}$  and obtained a number smaller by  $\frac{3}{2}$ ; the number is
  - (A)  $\frac{2}{3}$

- The two missing numbers shown with asterisk in the equation  $5\frac{3}{*} \times *\frac{1}{2} = 19$  are :-

- 4. Which of the following statements is true?
  - (A)  $\frac{-2}{3} < \frac{4}{-9} < \frac{-5}{12} < \frac{7}{-18}$
  - (B)  $\frac{7}{-18} < \frac{-5}{12} < \frac{4}{-9} < \frac{-2}{3}$
  - (C)  $\frac{4}{-9} < \frac{7}{-18} < \frac{-5}{12} < \frac{-2}{3}$
  - (D)  $\frac{-2}{3} < \frac{-5}{12} < \frac{4}{-9} < \frac{7}{-18}$
- Which of the following rational numbers lie between  $\frac{-3}{7}$  and  $\frac{-9}{8}$ ?
  - (A)  $\frac{-1}{2}$
- (C)  $\frac{12}{15}$
- (D) None of these
- 6.  $0.\overline{018}$  can be expressed in the rational form as:
  - (A)  $\frac{18}{1000}$
- (B)  $\frac{18}{990}$

- 7. The value of  $4 \frac{5}{1 + \frac{1}{3 + \frac{1}{2}}}$  is :

- (A)  $\frac{40}{31}$
- (C)  $\frac{1}{8}$
- (D)  $\frac{31}{40}$
- Choose the rational number which does not lie between rational numbers –  $\frac{2}{5}$  and –  $\frac{1}{5}$ :
- (B)  $-\frac{3}{20}$

- Which of the following has fractions in ascending
  - (A)  $\frac{2}{3}$ ,  $\frac{3}{5}$ ,  $\frac{7}{9}$ ,  $\frac{9}{11}$ ,  $\frac{8}{9}$
  - (B)  $\frac{3}{5}$ ,  $\frac{2}{3}$ ,  $\frac{9}{11}$ ,  $\frac{7}{9}$ ,  $\frac{8}{9}$
  - (C)  $\frac{3}{5}$ ,  $\frac{2}{3}$ ,  $\frac{7}{9}$ ,  $\frac{9}{11}$ ,  $\frac{8}{9}$ (D)  $\frac{8}{9}$ ,  $\frac{9}{11}$ ,  $\frac{7}{9}$ ,  $\frac{2}{3}$ ,  $\frac{3}{5}$
- **10.** Which of the following fractions is less than  $\frac{1}{8}$ and greater than  $\frac{1}{3}$ ?

- (C)  $\frac{11}{12}$  (D)  $\frac{17}{24}$
- **11.** 5  $\left[ \frac{3}{4} + \left\{ 2\frac{1}{2} \left(0.5 + \frac{1}{6} \frac{1}{7}\right) \right\} \right]$  :-
  - (A)  $2\frac{23}{84}$  (B)  $3\frac{1}{6}$
  - (C)  $3\frac{3}{10}$
- (D)  $5\frac{1}{10}$
- **12.** If  $2805 \div 2.55 = 1100$ , then  $280.5 \div 25.5 =$ 
  - (A) 1.1
- (B) 1.01
- (C) 0.11
- **13.** Evaluate :  $\frac{8 [5 (-3 + 2)] \div 2}{|5 3| |5 8| \div 3}$
- (C) 4
- (D) 5
- **14.** The value of  $0.\overline{4}$  is :-
  - [NTSE-2008]
  - (A)  $\frac{4}{10}$  (B)  $\frac{4}{9}$



Gurukul Nagar, Jalna Road, Beed - 431122(M.S.) Ph: 9673676726,9420488272,9022478542,9420488075

- (C)  $\frac{4}{100}$
- **15.** If a and b are natural numbers such that  $\left(\frac{1}{a}\right)^{\frac{1}{b}} = 0.\overline{3}$ , then the value of ab is :
  - (A) 81
- (B)24
- (C) 192
- (D) 375
- **16.** If x < -2, then |1 |1 + x|| equals :

#### [NTSE-2008]

- (A) 2 + x
- (B) x
- (D) (2 + x)
- **17.** The the expresion  $\frac{0.777...\times0.33...\times0.222}{0.777...+0.333...+0.222...}$  is equal to :
  - (A)  $\frac{7}{162}$

- **18.** The expression  $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)}$  for any natural number n, is:
  - (A) Always greater than 1
  - (B) Always less than 1
  - (C) Always equal to 1
  - (D) Not definite
- **19.** When simplified product  $\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{n}\right)$  equals:

- (A)  $\frac{1}{n}$  (B)  $\frac{2}{n}$  (C)  $\frac{2(n-1)}{n}$  (D)  $\frac{2}{n(n+1)}$
- **20.** The value of  $\left(\frac{X^b}{x^c}\right)^{\frac{1}{bc}} \times \left(\frac{X^c}{v^a}\right)^{\frac{1}{ca}} \times \left(\frac{X^a}{v^b}\right)^{\frac{1}{ab}}$  is :
- (C) 1
- equal to:

- (B) x<sup>a+b+c</sup>

- **22.**  $\left(\frac{a^{-1}b^{-1}}{a^{-1}+b^{-1}}-\frac{a^{-1}b^{-1}}{a^{-1}-b^{-1}}\right)$  equal to:

- **23.** The decimal representation of  $\frac{27}{400}$  is :
  - (A) Terminating
  - (B) Non-terminating recurring
  - (C) Non-terminating non recuring
  - (D) None of these
- **24.** 2.2 $\overline{34}$  =

- 25. Which of the following number are rational?
  - (A)  $\sqrt{19}$
- (B)  $\sqrt{16}$
- (D)  $\sqrt{18}$
- **26.** The rational form of  $2.74\overline{35}$  is :
- (B)  $\frac{27}{99}$

- **27.** The value of  $0.4\overline{23}$  is :
- (B)  $\frac{419}{1000}$

- **28.** If  $x = 3 + \sqrt{8}$  and  $y = 3 \sqrt{8}$  then  $\frac{1}{x^2} + \frac{1}{y^2} =$

- **29.**  $1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3}}}$  is equal to

- is **30.**  $\frac{(x^{a+b})^2 (x^{b+c})^2 (x^{c+a})^2}{(x^a \times x^b \times x^c)^4} = ?$



| ANSWER KEY |    |    |    |    |    |    |    |    |     |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|
| Que.       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9   | 10 | 11 | 12 | 13 | 14 | 15 |
| Ans.       | В  | С  | В  | Α  | Α  | D  | С  | В  | С   | D  | Α  | D  | D  | В  | А  |
| Que.       | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 2 4 | 25 | 26 | 27 | 28 | 29 | 30 |
| Ans.       | D  | Α  | С  | В  | D  | D  | D  | Α  | С   | В  | С  | D  | В  | В  | С  |