線形代数の	第7回の内容の理解度チェ	・ック
$NKハン し女人 \Delta 。$	か 1 凹の13台の注所反 1 ユ	-77

2024/11/21 担当:那須

	ı	ı	l	l		1	1	
学生証番号						氏名	点数	

① (1) $f:V\to W$ をベクトル空間 V からベクトル空間 W への写像とする. f が線形写像であるため の必要充分条件を書け. (1点)

(i)

(ii)

- (2) 次の写像が線形写像かどうか調べ、解答欄に線形写像なら \bigcirc を、そうでなければ \times を記入せよ、 (答えのみで良い) (各 1 点)
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x, y) = (3x, 4y)
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}^3$, f(x,y) = (2x+3y, -x+4y, 5x-2y)
 - (c) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x+1, y-1)
 - (d) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f は原点 $\mathbf{0}$ の周りの角度 θ の回転

答え:(a) (b)

- (c)
- (d)

- $\boxed{2}$ 右の線形写像 $f: \mathbb{R}^4 \to \mathbb{R}^3$ について,
 - (1) fの核(ker f)の次元と1組の基底,
 - (2) ƒの像(im f)の次元と1組の基底

を求めよ. (各2点)

$$f(\mathbf{x}) = A\mathbf{x}, \quad A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 3 & 5 & 4 & 5 \\ -1 & 0 & -3 & 5 \end{pmatrix}$$

③ 次の線形写像 $f: \mathbb{R}^5 \to \mathbb{R}^4$ について, (1) ker f の次元と 1 組の基底, (2) im f の次元と 1 組の基底を求めよ. (各 2 点)

$$f(\mathbf{x}) = A\mathbf{x}, \quad A = \begin{pmatrix} 1 & -1 & -1 & -2 & -1 \\ 1 & -1 & -2 & 1 & -2 \\ -1 & 1 & 1 & 1 & 3 \\ 1 & -1 & -2 & 0 & 0 \end{pmatrix}$$