Chapter 8: Applicative functors and profunctors Part 2: Their laws and structure

Sergei Winitzki

Academy by the Bay

2018-07-01

Deriving the ap operation from map2

Can we avoid having to define map n separately for each n?

- Use curried arguments, fmap₂: $(A \Rightarrow B \Rightarrow Z) \Rightarrow F^A \Rightarrow F^B \Rightarrow F^Z$
- Set $A \equiv (B \Rightarrow Z)$ and apply fmap₂ to the identity $id^{(B \Rightarrow Z) \Rightarrow (B \Rightarrow Z)}$: obtain $ap^{[B,Z]}: F^{B \Rightarrow Z} \Rightarrow F^B \Rightarrow F^Z \equiv fmap_2$ (id)
- The functions fmap2 and ap are computationally equivalent:

$$\operatorname{fmap}_2 f^{A \Rightarrow B \Rightarrow Z} = \operatorname{fmap} f \circ \operatorname{ap}$$

$$F^{A} \xrightarrow{\text{fmap } f} F^{B \Rightarrow Z} \xrightarrow{\text{ap}} \left(F^{B} \Rightarrow F^{Z}\right)$$

• The functions fmap3, fmap4 etc. can be defined similarly:

$$\operatorname{fmap}_{3} f^{A \Rightarrow B \Rightarrow C \Rightarrow Z} = \operatorname{fmap} f \circ \operatorname{ap} \circ \operatorname{fmap}_{F^{B} \Rightarrow ?} \operatorname{ap}$$

$$F^{B\Rightarrow C\Rightarrow Z} \xrightarrow{\operatorname{ap}^{[B,C\Rightarrow Z]}} (F^{B}\Rightarrow F^{C\Rightarrow Z}) \xrightarrow{\operatorname{fmap}_{F^{B}\Rightarrow ?} \operatorname{ap}^{[C,Z]}} (F^{B}\Rightarrow F^{C}\Rightarrow F^{Z})$$

- Using the infix syntax will get rid of fmap_{FB→7}ap (see example code)
 Note the pattern: a natural transformation is equivalent to a lifting
 - Note the pe

Sergei Winitzki (ABTB)

Deriving the zip operation from map2

- Note: Function types $A \Rightarrow B \Rightarrow C$ and $A \times B \Rightarrow C$ are equivalent
- Uncurry fmap₂ to fmap₂ : $(A \times B \Rightarrow C) \Rightarrow F^A \times F^B \Rightarrow F^C$
- Compute fmap2(f) with $f = id^{A \times B \Rightarrow A \times B}$, expecting to obtain a simpler natural transformation:

$$zip: F^A \times F^B \Rightarrow F^{A \times B}$$

- This is quite similar to zip for lists:
 List(1, 2).zip(List(10, 20)) = List((1, 10), (2, 20))
- The functions zip and fmap2 are computationally equivalent:

$$zip = fmap2 (id)$$

$$fmap2 (f^{A \times B \Rightarrow C}) = zip \circ fmap f$$

$$F^{A \times B} \xrightarrow{fmap f^{A \times B \Rightarrow C}} F^{C}$$

$$fmap2 (f^{A \times B \Rightarrow C})$$

- The functor F is **zippable** if such a **zip** exists (with appropriate laws)
 - ▶ The same pattern: a natural transformation is equivalent to a lifting

* Equivalence of the operations ap and zip

- Set $A \equiv B \Rightarrow C$, get $zip^{[B \Rightarrow C,B]} : F^{B \Rightarrow C} \times F^{B} \Rightarrow F^{(B \Rightarrow C) \times B}$
- Use eval : $(B \Rightarrow C) \times B \Rightarrow C$ and fmap (eval) : $F^{(B \Rightarrow C) \times B} \Rightarrow F^{C}$
- Uncurry: ${}_{\mathrm{app}}{}^{[B,C]}:F^{B\Rightarrow C}\times F^{B}\Rightarrow F^{C}\equiv {}_{\mathrm{zip}}\circ {}_{\mathrm{fmap}}$ (eval)
- The functions zip and app are computationally equivalent:
 - use pair : $(A \Rightarrow B \Rightarrow A \times B) = a^A \Rightarrow b^B \Rightarrow a \times b$
 - ▶ use fmap (pair) \equiv pair[↑] on an fa^{F^A} , get (pair[↑]fa) : $F^{B\Rightarrow A\times B}$; then

$$zip(fa \times fb) = app((pair^{\uparrow}fa) \times fb)$$
 $app^{[B\Rightarrow C,B]} = zip^{[B\Rightarrow C,B]} \circ fmap(eval)$

$$F^{B\Rightarrow C} \times F^{B} \xrightarrow{\text{zip}} F^{(B\Rightarrow C)\times B} \xrightarrow{\text{fmap(eval)}} F^{C}$$

- Rewrite this using curried arguments: $fzip^{[A,B]}: F^A \Rightarrow F^B \Rightarrow F^{A\times B};$ $ap^{[B,C]}: F^{B\Rightarrow C} \Rightarrow F^B \Rightarrow F^C;$ then $ap f = fzip f \circ fmap (eval).$
- Now fzip $p^{F^A}q^{F^B} = \operatorname{ap}\left(\operatorname{pair}^{\uparrow}p\right)q$, hence we may omit the argument q: fzip = $\operatorname{pair}^{\uparrow} \circ \operatorname{ap}$. With explicit types: fzip $[A,B] = \operatorname{pair}^{\uparrow} \circ \operatorname{ap}[B,A\Rightarrow B]$.

Motivation for applicative laws. Naturality laws for map2

Treat map2 as a replacement for a monadic block with independent effects:

Main idea: Formulate the monad laws in terms of map2 and pure
 Naturality laws: Manipulate data in one of the containers

```
\begin{array}{lll} \text{for } \{ & & \text{for } \{ \\ & x \leftarrow \text{cont1.map(f)} & & x \leftarrow \text{cont1} \\ & y \leftarrow \text{cont2} & & y \leftarrow \text{cont2} \\ \} \text{ yield } g(x, y) & & \} \text{ yield } g(f(x), y) \end{array}
```

and similarly for cont2 instead of cont1; now rewrite in terms of for map2:

• Left naturality for map2:

```
 \begin{array}{l} \mathtt{map2}(\mathtt{cont1}.\mathtt{map(f)},\ \mathtt{cont2})(\mathtt{g}) \\ = \mathtt{map2}(\mathtt{cont1},\ \mathtt{cont2})\{\ (\mathtt{x},\ \mathtt{y})\ \Rightarrow\ \mathtt{g(f(x)},\ \mathtt{y})\ \} \end{array}
```

• Right naturality for map2:

```
 map2(cont1, cont2.map(f))(g) 
= map2(cont1, cont2){ (x, y) \Rightarrow g(x, f(y)) }
```

Associativity and identity laws for map2

Inline two generators out of three, in two different ways:

Write this in terms of map2 to obtain the associativity law for map2:

```
\begin{split} & \text{map2}(\text{cont1}, \ \text{map2}(\text{cont2}, \ \text{cont3})((\_,\_)) \{ \ \text{case}(x,(y,z)) \Rightarrow & g(x,y,z) \} \\ & = \text{map2}(\text{map2}(\text{cont1}, \ \text{cont2})((\_,\_)), \ \text{cont3}) \{ \ \text{case}((x,y),z)) \Rightarrow & g(x,y,z) \} \end{split}
```

Empty context preceds a generator, or follows a generator:

```
\begin{array}{lll} \text{for } \{ \ x \leftarrow \text{pure(a)} & \text{for } \{ \\ & y \leftarrow \text{cont} & y \leftarrow \text{cont} \\ \} \ \text{yield } g(x, \ y) & \} \ \text{yield } g(a, \ y) \end{array}
```

Write this in terms of map2 to obtain the identity laws for map2 and pure:

```
map2(pure(a), cont)(g) = cont.map { y \Rightarrow g(a, y) } map2(cont, pure(b))(g) = cont.map { x \Rightarrow g(x, b) }
```

Deriving the laws for zip: naturality law

• The laws for map2 in a short notation; here $f \otimes g \equiv \{a \times b \Rightarrow f(a) \times g(b)\}$

$$\begin{split} \mathsf{fmap2}\left(g^{A\times B\Rightarrow \mathcal{C}}\right)\left(f^{\uparrow}q_{1}\times q_{2}\right) &= \mathsf{fmap2}\left(\left(f\otimes\mathsf{id}\right)\circ g\right)\left(q_{1}\times q_{2}\right) \\ \mathsf{fmap2}\left(g^{A\times B\Rightarrow \mathcal{C}}\right)\left(q_{1}\times f^{\uparrow}q_{2}\right) &= \mathsf{fmap2}\left(\left(\mathsf{id}\otimes f\right)\circ g\right)\left(q_{1}\times q_{2}\right) \\ \mathsf{fmap2}\left(g_{1.23}\right)\left(q_{1}\times \mathsf{fmap2}\left(\mathsf{id}\right)\left(q_{2}\times q_{3}\right)\right) &= \mathsf{fmap2}\left(g_{12.3}\right)\left(\mathsf{fmap2}\left(\mathsf{id}\right)\left(q_{1}\times q_{2}\right)\times q_{3}\right) \\ \mathsf{fmap2}\left(g^{A\times B\Rightarrow \mathcal{C}}\right)\left(\mathsf{pure}\, a^{A}\times q_{2}^{F^{B}}\right) &= \left(b\Rightarrow g\left(a\times b\right)\right)^{\uparrow}q_{2} \\ \mathsf{fmap2}\left(g^{A\times B\Rightarrow \mathcal{C}}\right)\left(q_{1}^{F^{A}}\times \mathsf{pure}\, b^{B}\right) &= \left(a\Rightarrow g\left(a\times b\right)\right)^{\uparrow}q_{1} \end{split}$$

Express map2 through zip:

$$\mathsf{fmap}_2 \, g^{A \times B \Rightarrow \mathcal{C}} \left(q_1^{F^A} \times q_2^{F^B} \right) \equiv \left(\mathsf{zip} \circ g^{\uparrow} \right) \left(q_1 \times q_2 \right)$$
 $\mathsf{fmap}_2 \, g^{A \times B \Rightarrow \mathcal{C}} \equiv \mathsf{zip} \circ g^{\uparrow}$

• Combine the two naturality laws into one by using two functions f_1 , f_2 :

$$egin{aligned} \left(f_1^{\uparrow}\otimes f_2^{\uparrow}
ight)\circ \mathsf{fmap2}\,g &= \mathsf{fmap2}\left(\left(f_1\otimes f_2
ight)^{\uparrow}\circ g
ight) \ \left(f_1^{\uparrow}\otimes f_2^{\uparrow}
ight)\circ \mathsf{zip}\circ g^{\uparrow} &= \mathsf{zip}\circ \left(f_1\otimes f_2
ight)^{\uparrow}\circ g^{\uparrow} \end{aligned}$$

• The naturality law for zip then becomes: $(f_1^{\uparrow} \otimes f_2^{\uparrow}) \circ zip = zip \circ (f_1 \otimes f_2)^{\uparrow}$

Deriving the laws for zip: associativity law

Express map2 through zip and substitute into the associativity law:

$$g_{1.23}^{\uparrow}\left(\operatorname{zip}\left(q_{1}\times\operatorname{zip}\left(q_{2}\times q_{3}\right)\right)\right)=g_{12.3}^{\uparrow}\left(\operatorname{zip}\left(\operatorname{zip}\left(q_{1}\times q_{2}\right)\times q_{3}\right)\right)$$

 \bullet The arbitrary function g is preceded by transformations of the tuples,

$$a \times (b \times c) \equiv (a \times b) \times c$$
 (type isomorphism)

 Assume that the isomorphism transformations are applied as needed, then we may formulate the associativity law for zip more concisely:

$$\mathsf{zip}\left(q_1\times\mathsf{zip}\left(q_2\times q_3\right)\right)\cong\mathsf{zip}\left(\mathsf{zip}\left(q_1\times q_2\right)\times q_3\right)$$

Deriving the laws for zip: identity laws

Identity laws seem to be complicated, e.g. the left identity:

$$g^{\uparrow}(zip(pure a \times q)) = (b \Rightarrow g(a \times b))^{\uparrow}q$$

• Replace pure by a simpler "wrapped unit" method wu: F[Unit]

$$\mathsf{wu}^{F^1} \equiv \mathsf{pure}(1); \quad \mathsf{pure}(a^A) = (1 \Rightarrow a)^{\uparrow} \mathsf{wu}$$

Then the left identity law can be simplified using left naturality:

$$g^{\uparrow}\left(\mathsf{zip}\left(\left((1\Rightarrow a)^{\uparrow}\,\mathsf{wu}\right)\times q\right)\right)=g^{\uparrow}\left(\left((1\Rightarrow a)\times\mathsf{id}\right)^{\uparrow}\mathsf{zip}\left(\mathsf{wu}\times q\right)\right)$$

• Denote $\phi^{B\Rightarrow 1\times B}\equiv b\Rightarrow 1\times b$ and $\beta_a^{1\times B\Rightarrow A\times B}\equiv (1\Rightarrow a)\times id$; then the function $b\Rightarrow g\ (a\times b)$ can be expressed more simply as $\phi\circ\beta_a\circ g$, and the naturality law becomes

$$g^{\uparrow}(\beta_a^{\uparrow} \operatorname{zip}(\mathsf{wu} \times q)) = (\beta_a \circ g)^{\uparrow} (\operatorname{zip}(\mathsf{wu} \times q)) = (\phi \circ \beta_a \circ g)^{\uparrow} q = (\beta_a \circ g)^{\uparrow} (\phi^{\uparrow} q)$$

Omitting the common prefix $(\beta_a \circ g)^{\uparrow}$, we obtain the **left identity** law:

$$\mathsf{zip}\,(\mathsf{wu}\times q)=\phi^{\uparrow}q$$

- Note that ϕ^{\uparrow} is an isomorphism between F^B and $F^{1\times B}$
- Assume that this isomorphism is applied as needed, then we may write

$$\mathsf{zip}\,(\mathsf{wu}\times q)\cong q$$

Similarity between applicative laws and monoid laws

- Define infix syntax for zip and write zip $(p \times q) \equiv p \bowtie q$
- Then the associativity and identity laws may be written as

$$q_1 \bowtie (q_2 \bowtie q_3) \cong (q_1 \bowtie q_2) \bowtie q_3$$

 $(\mathsf{wu} \bowtie q) \cong q$
 $(q \bowtie \mathsf{wu}) \cong q$

These are the laws of a monoid (with some assumed transformations)

Naturality law for zip written in the infix syntax:

$$f_1^{\uparrow}q_1\bowtie f_2^{\uparrow}q_2=(f_1\otimes f_2)^{\uparrow}(q_1\bowtie q_2)$$

- wu has no laws; the naturality for pure follows automatically
- The laws are simplest when formulated in terms of zip and wu
 - Naturality for zip will usually follow from parametricity
 - ★ A third naturality law for map2 follows from defining map2 through zip!
- "Zippable" functors have only the associativity and naturality laws
- Applicative functors are a strict subset of monadic functors
 - ▶ There are applicative functors that cannot be monads
 - Applicative functor implementation may disagree with the monad

A third naturality law for map2

- There must be one more naturality law for map2
- Transform the result of a map2:

• Write this in terms of map2, obtain a third naturality law:

```
map2(cont1, cont2)(g).map(f)
= map2(cont1, cont2)(g andThen f)

fmap2(g) o f^\(\tau = fmap2(g \cdot f))

f^\(\tau(fmap2(g)(p \times q)) = fmap2(g \cdot f)(p \times q)
```

• This law automatically follows if we define map2 through zip:

fmap2
$$(g) \circ f^{\uparrow} = zip \circ g^{\uparrow} \circ f^{\uparrow} = zip \circ (g \circ f)^{\uparrow}$$

Applicative operation ap as a "lifting"

- Consider ap as a "lifting", of type $F^{A\Rightarrow B} \Rightarrow (F^A \Rightarrow F^B)$
- A "lifting" should obey the identity and the composition laws
 - An "identity" value of type F^{A⇒A}, mapped to id F^{A⇒FA} by ap
 ★ A good candidate for that value is id_⊙ = pure (id^{A⇒A})
 - ▶ A "composition" of an $F^{A\Rightarrow B}$ and an $F^{B\Rightarrow C}$, yielding an $F^{A\Rightarrow C}$
 - ***** We can use map2 to implement this composition, denoted $g \odot h$:

$$g^{F^{A\Rightarrow B}}\odot h^{F^{B\Rightarrow C}}\equiv \operatorname{fmap2}\left(p^{A\Rightarrow B}\times q^{B\Rightarrow C}\Rightarrow p\circ q\right)\left(g,h\right)$$

 $id_{\odot} \odot h = h$: $g \odot id_{\odot} = g$

• What are the laws that follow for $g \odot h$ from the map2 laws?

$$g^{F^{A\Rightarrow B}} \odot (h^{F^{B\Rightarrow C}} \odot k^{F^{C\Rightarrow D}}) = (g \odot h) \odot k$$

$$\left((x^{B\Rightarrow C} \Rightarrow f^{A\Rightarrow B} \circ x)^{\uparrow} g^{F^{B\Rightarrow C}} \right) \odot h^{F^{C\Rightarrow D}} = (x^{B\Rightarrow D} \Rightarrow f^{A\Rightarrow B} \circ x)^{\uparrow} (g \odot h)$$

$$g^{F^{A\Rightarrow B}} \odot \left((x^{B\Rightarrow C} \Rightarrow x \circ f^{C\Rightarrow D})^{\uparrow} h^{F^{B\Rightarrow C}} \right) = (x^{A\Rightarrow C} \Rightarrow x \circ f^{C\Rightarrow D})^{\uparrow} (g \odot h)$$

- ► The first 3 laws are the identity & associativity laws of a *category** The morphism type is $A \rightsquigarrow B \equiv F^{A \Rightarrow B}$, the composition is \odot
- ► The last 2 laws are naturality laws, connecting fmap and ⊙
- Therefore ap is a functor's "lifting" of morphisms from two categories

Deriving the category laws for (id_{\odot}, \odot)

The five laws for id_{\odot} and \odot follow from the five map2 laws

- Consider $id_{\odot} \odot h$ and substitute the definition of \odot via map2, cf. slide 7: $id_{\odot} \odot h = \text{fmap2}(p \times q \Rightarrow p \circ q) (\text{pure}(id) \times h) = (b \Rightarrow id \circ b)^{\uparrow} h = h$
- The law $g \odot id_{\odot} = g$ is derived similarly
- Associativity law: $g \odot (h \odot k) = \text{fmap2}(\circ) (g \times \text{fmap2}(\circ) (h \times k))$ The 3rd naturality law gives: $\text{fmap2}(\circ) (h \times k) = (\circ)^{\uparrow} (\text{fmap2}(\text{id}) (h \times k))$, and then:

$$g \odot (h \odot k) = \operatorname{fmap2}(x \times (y \times z) \Rightarrow x \circ y \circ z) (g \times \operatorname{fmap2}(\operatorname{id})(h \times k))$$
$$(g \odot h) \odot k = \operatorname{fmap2}((x \times y) \times z \Rightarrow x \circ y \circ z) (\operatorname{fmap2}(\operatorname{id})(g \times h) \times k)$$

Now the associativity law for fmap2 yields $g \odot (h \odot k) = (g \odot h) \odot k$

- Derive naturality laws for \odot from the three map₂ naturality laws: $((x \Rightarrow f \circ x)^{\uparrow}g) \odot h = \text{fmap2}(\circ) ((x \Rightarrow f \circ x)^{\uparrow}g \times h) = \text{fmap2}(x \times y \Rightarrow f \circ x \circ y) (g \times h) = (x \Rightarrow f \circ x)^{\uparrow} (\text{fmap2}(\circ) (g \times h)) = (x \Rightarrow f \circ x)^{\uparrow} (g \odot h)$
- The law is $g \odot (x \Rightarrow x \circ f)^{\uparrow} h = (x \Rightarrow x \circ f)^{\uparrow} (g \odot h)$ is derived similarly

Deriving the functor laws for ap

Now that we established the laws for \odot , we have ap laws:

$$\mathsf{ap}^{[B,Z]}: F^{B\Rightarrow Z} \Rightarrow F^B \Rightarrow F^Z = \mathsf{fmap}_2\left(\mathsf{id}^{(B\Rightarrow Z)\Rightarrow (B\Rightarrow Z)}\right)$$

Identity law: $ap(id_{\odot}) = id^{F^A \Rightarrow F^A}$

- Derivation: $\operatorname{ap}(\operatorname{id}^{F^{A\Rightarrow A}})(q^{F^A}) = \operatorname{fmap}_2(\operatorname{id}^{(A\Rightarrow A)\Rightarrow A\Rightarrow A})(\operatorname{pure}(\operatorname{id}^{A\Rightarrow A}))(q^{F^A}) = \operatorname{fmap}_2(f \times x \Rightarrow f(x))(\operatorname{pure}(\operatorname{id}) \times q) = (x \Rightarrow \operatorname{id}(x))^{\uparrow} q = \operatorname{id}^{\uparrow} q = q$
- Easier derivation: first, express ap via ⊙ using the isomorphisms

$$A \cong 1 \rightarrow A$$
; $F^A \cong F^{1 \rightarrow A}$

Then $\operatorname{ap}(p^{F^{B\Rightarrow Z}})(q^{F^B}) \cong q^{F^{1\to B}} \odot p^{F^{B\to Z}}$ and so $\operatorname{ap}(\operatorname{id}_{\odot})(q) \cong q \odot \operatorname{id}_{\odot} = q$

Composition law: $ap(g \odot h) = ap(g) \circ ap(h)$

• Derivation: $\operatorname{ap}(g \odot h)(q) \cong q \odot (g \odot h)$ while $(\operatorname{ap}(g) \circ \operatorname{ap}(h)) q = \operatorname{ap}(h)(\operatorname{ap}(g)(q)) \cong \operatorname{ap}(h)(q \odot g) \cong (q \odot g) \odot h$

Constructions of applicative functors

- All monadic constructions still hold for applicative functors
- Additionally, there are some non-monadic constructions
- $F^A \equiv 1$ (constant functor) and $F^A \equiv A$ (identity functor)
- ② $F^A \equiv G^A \times H^A$ for any applicative G^A and H^A • but $G^A + H^A$ is in general *not* applicative
- **3** $F^A \equiv A + G^A$ for any applicative G^A (free pointed over G)
- $F^A \equiv A + G^{F^A}$ (recursive) for any functor G^A (free monad over G)
- **5** $F^A \equiv H^A \Rightarrow A$ for any contrafunctor H^A Constructions that are not monadic:
- $m{O} \ F^A \equiv Z + G^A \ ext{for any applicative} \ G^A \ ext{and monoid} \ Z$
- **3** $F^A \equiv G^{H^A}$ when both G and H are applicative

All non-parameterized exp-poly types are monoids

- Using known monoid constructions (Chapter 7), we can implement X + Y, $X \times Y$, $X \Rightarrow Y$ as monoids when X and Y are monoids
- All primitive types have at least one monoid instance:
 - ▶ Int, Float, Double, Char, Boolean are "numeric" monoids
 - ► Seq[A], Set[A], Map[K,V] are set-like monoids
 - String is equivalent to a sequence of integers; Unit is a trivial monoid
- Therefore, all exponential-polynomial types without type parameters are monoids in at least one way
- Example of an exponential-polynomial type without type parameters: $lnt + String \times String \times (Int \Rightarrow Bool) + (Bool \times String \Rightarrow 1 + String)$
- ullet Example of a non-monoid type with type parameters: $A\Rightarrow B$

By constructions 1, 3, and 7, all polynomial F^A with monoidal coefficients are applicative: write $F^A = Z_1 + A \times (Z_2 + A \times ...)$ with some monoids Z_i

- $F^A = 1 + A \times A$ (this F^A is not a monad!)
- $F^A = A + A \times A \times Z$ where Z is a monoid (this F^A is a monad)

Examples of non-polynomial functors that are not applicative:

•
$$F^A \equiv (A \Rightarrow R) \Rightarrow S$$
; $F^A \equiv (R \Rightarrow A) + (S \Rightarrow A)$
Sergei Winitzki (ABTB) Chapter 8: Applicative functors

Definition and constructions of applicative contrafunctors

- The applicative functor laws, if formulated via zip and wu, do not use map and therefore can be used for contrafunctors
- Define an applicative contrafunctor C^A as having zip and wu:

$$zip: C^A \times C^B \Rightarrow C^{A \times B}; wu: C^1$$

- Identity and associativity laws must hold for zip and wu
 - Note: applying contramap to the function $a \times b \Rightarrow a$ will yield some $C^A \Rightarrow C^{A \times B}$, but this will *not* give a valid implementation of zip!
- Naturality must hold for zip, but with contramap instead of map
 - ▶ The corresponding contraap has type signature $F^{B\Rightarrow A} \Rightarrow (F^A \Rightarrow F^B)$

Applicative contrafunctor constructions:

- ② $C^A \equiv G^A \times H^A$ for any applicative contrafunctors G^A and H^A
- **3** $C^A \equiv G^A + H^A$ for any applicative contrafunctors G^A and H^A
- $C^A \equiv H^A \Rightarrow G^A$ for any functor H^A and applicative contrafunctor G^A
- **5** $C^A \equiv H^{G^A}$ for any functor H^A and applicative contrafunctor G^A
 - All exponential-polynomial contrafunctors with monoidal coefficients are applicative! (These constructions cover all exp-poly cases.)

Definition and constructions of applicative profunctors

- Profunctors have the type parameter in both contravariant and covariant positions; they can have neither map nor contramap
 - ▶ They have dimap of type $(A \Rightarrow B) \times (B \Rightarrow A) \Rightarrow (F^A \Rightarrow F^B)$
- Examples of profunctors: $P^A \equiv \operatorname{Int} \times A \Rightarrow A$; $P^A \equiv A + (A \Rightarrow R)$
- All exp-poly type constructors are profunctors since the type parameter is always in either a covariant or a contravariant position
- Definition of applicative profunctor: has zip and wu with the laws
 - ▶ The corresponding diap is of type $F^{(A\Rightarrow B)\times(B\Rightarrow A)}\Rightarrow (F^A\Rightarrow F^B)$

Applicative profunctors have all previous constructions, and additionally:

- ② $P^A \equiv Z + G^A$ for any applicative profunctor G^A and monoid Z
- $P^A \equiv A + G^A for any applicative profunctor G^A$
- \bullet $P^A \equiv G^A + H^{G^A}$ for any functor H^A and applicative profunctor G^A
- $P^A \equiv H^{G^A}$ and G^{H^A} for any functor H^A and applicative profunctor G^A Examples of non-applicative profunctors:

•
$$P^A \equiv (A \Rightarrow A) + (R \Rightarrow A); \quad P^A \equiv (A \Rightarrow A) \Rightarrow 1 + A$$

Categorical overview of standard functor classes

The "liftings" characterize the types of category's morphisms

name	category morphism	lifting name and type signature
functor	$A \Rightarrow B$	$fmap : (A \Rightarrow B) \Rightarrow F^A \Rightarrow F^B$
filterable	$A \Rightarrow 1 + B$	$fmapOpt : (A \Rightarrow 1 + B) \Rightarrow F^A \Rightarrow F^B$
monad	$A \Rightarrow F^B$	$flm: (A \Rightarrow F^B) \Rightarrow F^A \Rightarrow F^B$
applicative	$F^{A\Rightarrow B}$	$ap: F^{A\Rightarrow B} \Rightarrow F^A \Rightarrow F^B$
contrafunctor	$B \Rightarrow A$	contrafmap : $(B\Rightarrow A)\Rightarrow F^A\Rightarrow F^B$
profunctor	$(A \Rightarrow B) \times (B \Rightarrow A)$	$dimap: (A \Rightarrow B) \times (B \Rightarrow A) \Rightarrow F^A \Rightarrow F^B$
contra-filterable	$B \Rightarrow 1 + A$	$contrafmapOpt : (B \Rightarrow 1 + A) \Rightarrow F^A \Rightarrow F^B$
contra-applicative	$F^{B\Rightarrow A}$	contraap : $F^{B\Rightarrow A}\Rightarrow F^{A}\Rightarrow F^{B}$
pro-applicative	$F^{(A\Rightarrow B)\times(B\Rightarrow A)}$	$proap: F^{(A\Rightarrow B)\times (B\Rightarrow A)}\Rightarrow F^A\Rightarrow F^B$
	Not yet considered:	
comonad	$F^A \Rightarrow B$	$cofIm: \left(F^A \Rightarrow B \right) \Rightarrow F^A \Rightarrow F^B$
contra-monad	$B \Rightarrow F^A$	contraflm : $(B \Rightarrow F^A) \Rightarrow F^A \Rightarrow F^B$

The laws are always just the category laws and the naturality laws

The category's identity morphism needs to be defined specially in each case

Exercises

- Show that pure will be automatically a natural transformation when it is defined using wu as shown.
- ② Show that $F^A \equiv (A \Rightarrow Z) \Rightarrow (1 + A)$ is a functor but not applicative.
- **3** Show that P^S is a monoid if S is a monoid and P is any applicative functor, contrafunctor, or profunctor.
- Use naturality of pure to show that pure $f \odot \text{pure } g = \text{pure } (f \odot g)$