Epreuve écrite

Examen	de	fin	d'études	secondaires	1008
			a c caacs	secondarres	1990

Section: B/C

Branche: chimie

					
Nom	et	prénom	du	candidat	
		3.8			

[Th = théorie ; CT = compréhension et transfert ; An = appplication numérique]

I. Aromates et mélange tampon (19 pts.)

- 1) En présence du peroxyde de dibenzoyle, le styrène est polymérisé en polystyrène. Etudier le mécanisme de cette polymérisation. [Th:6]
- 2) a) Représenter les formules contributives à la mésomérie du nitrobenzène. [Th:2]
 - b) Expliquer la position d'un substituant Br dans le nitrobenzène. Nommer le produit. [CT:2]
- 3) a) On veut préparer une solution tampon de pH = 4,20 en mélangeant 300 cm³ d'une solution aqueuse d'acide benzoīque 0,05 M avec une solution aqueuse de benzoate de potassium 0,1 M. Calculer le volume du benzoate de potassium (aq) nécessaire. [An:3]
 - b) On dissout 0,1 g de NaOH dans le mélange tampon ainsi préparé. Calculer le pH. [An:4]
 - c) Quel serait le pH, si on dissolvait 0,1 g de NaOH dans le même volume d'eau distillée? [An:2]

II. Alcools, aldéhydes et cétones (15 pts.)

- 1) a) Nommer les composés suivants: [CT:3]
 - composé A: CH_3 - $C(CH_3)(OH)$ - CH_2 - $C(CH_3)_2$ - CH_2 - CH_3
 - composé B: CH_3 - CH_2 -CO-CH(CH_3)- CH_3
 - composé C: $CH_3-CH_2-CH_2-CH(C_2H_5)-CHO$
 - b) Lequel des composés est chiral? Justifier. Représenter les formules spatiales de ses énantiomères. [CT:3]
- 2) a) Le monochlorométhane réagit avec une solution concentrée d'hydroxyde de sodium pour donner un alcool X. Dresser l'équation qui traduit le mécanisme réactionnel. [CT:3]
 - b) L'alcool X est traité par une solution acidifiée de dichromate de potassium en défaut. On obtient un composé Y qui fait virer le réactif de SCHIFF au rouge.

Dresser le système rédox. [CT:3]

c) Le composé Y donne un test positif avec la liqueur de FEHLING. Etudier le système rédox. [CT:3]

Epreuve écrite

Examen de	fin d'études s	secondaires	1998	Nom et prénom du candidat
Section:	B/C			
Branche:	chimie			

III. Estérification et titrage (13 pts.)

- 1) On fait réagir à chaud, pendant plusieurs heures, 12,0 g d'acide acétique avec 17,6 g de pentan-1-ol. Puis on prélève 1/10^e du volume du mélange et on effectue un dosage de l'acide acétique restant avec une solution d'hydroxyde de potassium 0,5 M. Le point d'équivalence est atteint lorsqu'on a ajouté 13,3 ml de KOH(ag).
 - a) Calculer la quantité d'acide acétique restant. [An:3]
 - b) En déduire la composition en moles du mélange final et calculer le rendement de l'estérification. [An:3]
 - c) Calculer la constante d'équilibre. [An:1]
- 2) La réaction d'estérification est lente et incomplète. Pour préparer l'ester avec un meilleur rendement, il est préférable de transformer au préalable l'acide en chlorure d'acyle.
 - a) Ecrire l'équation globale de cette réaction. [Th:1]
 - b) Etudier le mécanisme réactionnel de la réaction d'estérification du chlorure d'acyle avec un alcool ROH. [Th:5]

IV. Composés azotés (13 pts.)

- Etudier la conductivité électrique ainsi que la réaction avec le chlorure de fer(III) des solutions d'ammoniac et d'amine.
 En tirer des conclusions. [Th:6]
- 2) La leucine (Leu) et l'isoleucine (Ile) sont deux acides «-aminés de formule R-CH(NH2)-COOH, dont les groupes R diffèrent.
 - a) La leucine et l'isoleucine ont la même masse molaire: M=131g/mol. En déduire la formule brute du groupe alkyle R. [An:2]
 - b) Les groupes R de Leu et R de Ile possèdent chacun une seule ramification. La leucine possède un atome de carbone asymétrique et l'isoleucine en possède deux.

Ecrire les formules développées des deux acides aminés. [CT:2]

- c) Donner la représentation de FISCHER de la D-Leu. [CT:1]
- d) Ecrire la formule de Leu(aq) en milieu acide et la formule de Ile(aq) en milieu basique. [CT:1]
- e) Donner la formule développée du tripeptide Leu-Ile-Leu et encadrer les liaisons peptidiques. [CT:1]

ériode	Principaux groupes	paux	•	Classification र्रहांodiqu	ificat	tior ⁽	oérioc	lique	des	e des éléments	ents (Prir	Principaux groupes	group	<i>\$</i>		
	_	=		nombre de masse de l	nombre de masse de l'isotope	Ф		Γ					=	≥	>	5	=	= >	
couche K	hydrogene 1.01			le plus a numéro	le plus abondant : A numèro atomique : Z	A :: Z ::	×					.						24 C	
2 couche L	3 Li ithium 6.94	9 Be 4 Deryllium 9.01					ل•	(g to	: masse r ·mol~¹) di pique natu	M : masse molaire atomique (g·mol⁻¹) du mélange iso- topique naturel	omique iso-		5.00 bore	12 6 carbone 12.0	14N azote 14.0	16 0 8 0xygene 16.0	19.0 19.0	20 Ne	
3 couche M	23 Na 11 Na sodium 23.0	24 Mg 12 Mg magnésium 24.3				Élér	Éléments de tran	e transit	ısition				27 AI 13 AI aluminium 27.0	28 Si 14 Si silkcium 28.1	31 P 15 phosphore 31.0	32 S 16 soufre 32.1	35CI chlore 35.5	40 Ar 18 Ar 39.9	
4 couche N	39 K 19 K polassium 39.1	40 Ca 20 Ca calcum 40.1	45 Sc 21 Sc scandium 45.0	48 Ti 22 titane 47.9	51 V 23 vanadium 50.9	52 Cr 24 Cr chrome 52,0	55 Mn 25 manganèse 54,9	56 Fe 26 Fe 1⊌ 55.8	59 Co 27 Co cobatt 58,9	58 Ni 28 nicket 58.7	63 Cu 29 Cu cuivre 63.5	64 Zn 30 zinc 65.4	69 Ga 31 gallıum 69.7	74 Ge 32 Ge germanium 72.6	75 As 33 As arsenc 74,9	80 Se 34 Se selénum 79.0	79 Br 35 Br brome 79.9	84 Kr 36 Kr krypton 83,8	
5 couche ()	85 Rb 37 rubidium 85.5	88 Sr 38 Sr strontum 87.6	89 Y 39 yttrium 88.9	90 Zr 40 Zr zirconium 91.2	93 Nb 41 Nb niobium 92,9	98 Mo 42 Mo molybdene 95,9	43 TC technetium 99.0	102 Ru 44 Ru ruthènium 101,1	103 Rh 45 rhodium 102,9	106 Pd 46 Pd palladium 106,4	107 Ag 47 Ag 8rgent 107,9	114 Cd 48 cadmium 112.4	115 In 49 In indium 114.8	120 Sn 50 Sn etain 118.7	121 Sb 51 antimorie 121.8	128 Te 52 te tellure	127 53 53 53 126,9	129 Xe 54 Xe xenon 131,3	
6 couche P	133 Cs 55 Cs cesium 132.9	138 Ba 56 Ba baryum 137.3	57 à 71 Ianthanides	180 Hf 72 Hf hafnium 178,5	181 Ta 73 Ta tantale 180.9	184 W 74 tungstène 183,9	185 Re 75 rhénium 186,2	192 Os 76 Os 0smium 190.2	193 1r 77 iridium 192,2	195 Pt 78 platine 195,1	197 Au 79 or	202 Hg 80 ^{Hg} mercure 200.6	205 T1 81 thallium 204.4	208 Pb 82 Pb plomb 207.2	209 Bi 83 Bi bismuth 209.0	210 po 84 po polonium 210	218 At 85 At 8510 210	222 Rn 86 Rn radon 222	
7 couche 0	223 F r 87 F r 17 F r 1	226 Ra 88 radium 226.1	89 à 103 actinides	104 Ku kurichatovium 260	105 Ha														

139 La 57 La lanthane 138.9	140 Ce 58 Ce cerum 140.1	141 Pr 59 Pr praseodyme 140.9	144 Nd 60 Nd neodyme 144.2	61 Pm prométhium 145	152 Sm 62 Sm samarium 150,4	153 Eu 63 Eu europium 152.0	158 Gd 64 Gd gadolinium 157,3	159 Tb 65 Tb terbium 158.9	162 Dy 66 Dy dysprosium 162.5	165 Ho 67 holmium 164.9	166 Er 68 erbium 167.3	169 Tm 69 thulium 168.9	174 Yb 70 Yb ytterbum 173.0	175 Lu 71 Lu lutetrum 175.0
227 A C 89 A C actinium 227	232 Th 90 thorwm 232.0	231 Pa 91 protactinium 231	238 U 92 U uranium 238.0	237 Np 93 Np neptunum 237	239 pu 94 bu plutonium 242	95 Am américium 243	96Cm curium 247	97 BK berkelium 249	98 Cf californium 249	99ES einsteinium 254	100 Fm lermum 255	101 Md mendelevium 256	102 No nobelium 253	103 LW lawrencium 257

anthanides

vetinides

Couples acide-faible - base faible

NOM (acide,ion)	acide	base	Nom	pKa
hydronium	H₃O ⁺	H ₂ O	eau	-1,74
chlorique	HClO ₃	ClO ₃	chlorate	-1
trichloroéthanoïque	CCI ₃ COOH	CCl ₃ COO ⁻	trichloroéthanoate	0,70
hexaqua thallium(III)	$TI(H_2O)_6^{3+}$	TI(OH)H ₂ O) ₅ ²⁺	pentaqua hydroxo thallium(III)	1,14
dichloroéthanoïque	HCCl₂COOH	HCCl₂COO ⁻	dichloroethanoate	1,30
oxalique	НООССООН	HOOCCOO	hydrogénooxalate	1,30
sulfureux	H_2SO_3	HSO₃⁻	hydrogénosulfite	1,80
hydrogénosulfate	HSO ₄	SO ₄ ²	sulfate	2,0
chloreux	HClO ₂	ClO ₂	chlorite	2,0
phosphorique	H ₃ PO ₄	H_2PO_4	dihydrogénophosphate	2,12
fluoréthanoīque	CH ₂ FCOOH	CH ₂ FCOO ⁻	fluoréthanoate	2,57
hexaqua gallium(III)	Ga(H ₂ O) ₆ ³⁺	Ga(OH)H ₂ O) ₅ ²⁺	pentaqua hydroxo gallium(III)	2,62
chloroéthanoïque	CH ₂ ClCOOH	CH ₂ ClCOO ⁻	chloroéthanoate	2,86
bromoéthanoïque	CH₂BrCOOH	CH ₂ BrCOO-	bromoéthanoate	2,90
hexaqua vanadium(III)	$V(H_2O)_6^{3+}$	$V(OH)H_2O)_5^{2+}$	pentaqua hydroxo vanadium(III)	2,92
hexaqua fer(III)	$Fe(H_2O)_6^{3+}$	Fe(OH)H ₂ O) ₅ ²⁺	pentaqua hydroxo fer(III)	3,0
iodoéthanoïque	CH ₂ ICOOH	CH₂ICOO ⁻	iodoéthanoate	3,16
fluorhydrique	HF	F-	fluorure	3,17
nitreux	HNO ₂	NO ₂	nitrite	3,30
cyanique	HCNO	CNO-	cyanate	3,66
hexaqua indium(III)	$ln(H_2O)_6^{3+}$	$In(OH)H_2O)_5^{2+}$	pentaqua hydroxo indium(III)	3,7
formique	НСООН	HCOO-	formiate	3,75
lactique	СН₃СНОНСООН	СН₃СНОНСОО	lactate	3,86
benzoīque	C ₆ H ₅ COOH	C ₆ H ₅ COO	benzoate	4,20
anilinium	$C_6H_5NH_3^+$	$C_6H_5NH_2$	aniline	4,62
éthanoïque	CH₃COOH	CH3COO	éthanoate	4,75
propanoïque	C ₂ H ₅ COOH	C ₂ H ₅ COO ⁻	propanoate	4,87
hexaqua scandium(III)	$Sc(H_2O)_6^{3+}$	Sc(OH)H ₂ O) ₅ ²⁺	pentaqua hydroxo scandiumIII)	4,93
hexaqua aluminum(III)	$A!(H_2O)_6^{3+}$	$Al(OH)H_2O)_5^{2+}$	pentaqua hydroxo aluminium(III)	4,95
pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ NH ₂	pyridine	5,16
hydroxylammonium	NH ₃ OH ⁺	NH ₂ OH	hydroxylamine	6,00

Acides et bases dioxyde de carbone	CO ₂ + H ₂ O	HCO ₃	hydrogénocarbonate	6,35
sulfhydrique	H ₂ S	HS-	hydrogénosulfure	7,0
dihydrogénophosphate	H ₂ PO ₄	HPO ₄ ²⁻	hydrogénophosphate	7,20
hypochloreux	HClO	C10 ⁻	hypochlonte	7,30
hexaqua zinc(II)	$Zn(H_2O)_6^{2-}$	$Zn(OH)H_2O)_5^+$	pentaqua hydroxo zinc(III)	8,96
hexaqua cadmium(II)	$Cd(H_2O)_6^{2+}$	$Cd(OH)H_2O)_5^+$	pentaqua hydroxo cadmium(II)	9,0
ammonium	NH4 ⁺	NH ₃	ammoniac	9,20
borique	H ₃ BO ₃	H ₂ BO ₃	borate	9,23
cyanhydrique	HCN	CN-	cyamire	9,31
	•			
triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,90
phénol	C ₆ H ₅ OH	C ₆ H ₅ O	phénolate	10
hvdrogénocarbonate	HCO3	CO ₃ ²⁻	carbonate	10,32
enylammonium .	$C_2H_5NH_3$	$C_2H_5NH_2$	éthylamine	10,67
méthylammonium	CH ₃ NH ₃ ⁺	CH3NH2	méthylamine	10,72
diéthylammonium	$(C_2H_5)_2NH_2^+$	$(C_2H_5)_2NH$	diéthylamine	11,00
diméthylammonium	$(CH_3)_2NH_2^+$	(CH ₃) ₂ NH	diméthylamine	11,02
hydrogénophosphate	HPO42.	PO ₄ ³⁻	phosphate	12,3
hydrogénosulfure	HS.	S ²⁻	sulfure	15,0
cau	H ₂ O	OH	hydroxyde	15,74

indicateurs de pH

Indicateur	Couleur forme acide	Domaine de virage	pK _g	Couleur forme basique
Violet de crystal	jaune	0,0 à 1,8		bleue
Vert Malachite	jaume	0,2 à 1,8		vert- bleuâtre
Vert de methyle	jaune	0,2 à 1,8		bleu
Bleu de thymol	rouge	1,2 à 2,8	1,7	jaume
2,4-Dimitrophénel	incolore	2,8 à 4,0		jaune
Méthylorange	rouge	3,2 à 4,4	3,4	jaune
Bleu de bromophénoi	jaime	3,0 à 4,6	3,9	bleue
Rouge Congo	bleue	3,0 à 5,0		rouge
Vert de bromocresol	jaume	3,8 à 5,4		bleue
Vert de bromocresol	jaume	4,0 à 5,6	4,7	bleue
Rouge de médiyle	rouge	4,8 à 6,0	5,0	jaume
Blee de bromothymol	jaume	6.0 à 7.6	7,1	bleue
Townsesol	rouge	5,0 à 8,0	6,5	blace
Rouge phénol	jaune	6,6 à 8,0	7,9	rouge
Rouge sentro	rouge	6,8 à 8,0		ambre
Blen de flrymol	jaume	8,0 à 9,6	8,9	blene
Phenolphysicine	incolore	8,2 à 10,0	9,4	rose foncée
Thymolphralene:	incolore	9,4 à 10,6		bleue
Isune d'alizareno	jaume	10,1 à 12,0	11,2	rouge
Alizatine	rouge	11,0 à 12,4	11,7	рошрге