LEZIONE del 10/3/2020

$$y(t) = 1 - t$$
 $t \in [-4,0]$ $y(t) = -3t$ $t \in [-4,0]$

1º tratto Piu= (5,2) Ppiu= (1,0) eq.
$$t = 1-x = D$$
 [$y = \sqrt{-(1-x)} = \sqrt{x-1}$]
$$\sqrt{-(-4)} = \sqrt{4} = 2$$

La curva percone il grafico y= VX-1 olella funzione RADICE spostata a destra di 1 mel VERSO delle x decrescenti.

Altri punti: (2,1).

La curva percone il SEGNENTO VERTICALE di estremi (19) e (1,-3) nel VERSO delle y DECRESCENTI.

CURVA DERIVABILE, VETTORE DERIVATA, CURVA di CLASSE C1

Definitione (Curva derivabile, vettore DERIVATA). Sia I un INTERVALLO di IR e y: I > R² una CURVA. Se nel punto to EI le due componenti X(t) eyit) (Y(t)=(X(t),y(t)) EIR²) sono derivabili, allora diciamo che y è DERIVABILE in to e il suo VETTORE DERIVATA è

Y'(to)=(x'(to),y'(to))

Se le funcioni x(t) e y(t) sons DERIVABILI V teI, allora si dice che y è DERIVABILE e ammette vettore DERIVATA per opiniteI dato da y'(t) = (x'(t), y'(t)).

Definizione (CURVA di CLASSE C1). Una cuma y: I CR-R3
n' dice di CLASSE C1 re le due componenti X(t) e y(t) sono di
classe C1, cioè CONTINUE, DERIVABILI e con derivate X'(t) e y'(t)
CONTINUE.

ESEMPIO N°2) Consideriamo la funcione y: $[-4,1] \rightarrow \mathbb{R}^2$ definita da $\int \chi(t) = 2t$ $\{ \chi(t) = -\frac{1}{4}(2t+2)^2 + 4 \}$ $\{ \chi(t) = -\frac{1}{4}(2t+2)^2 + 4 \}$

Osserviamo dre definisce una CURVA perche [-4,1]=I è un intervallo e le due funcioni X(t) e y(t) sono continue (X(t) è un polinomio di 2 grado e y(t) un polinomio di 2 grado). Indtre y è devintoile VtEI perchè i polinomi sono derivabili (su tutto IR) e abbiamo che il

VETTORE DERIVATA = X'(t) = (X'(t), y'(t)) = (2,-1,2(2t+2).2) = (2,-2t-2)

In alternativa $y(t) = -\frac{1}{4}(4t^2 + 4 + 8t) + 4 = -t^2 - 2t + 3$ da cui di nuovo y'(t) = -2t - 2.

Poiche x'(t) = 2 costante e y'(t) = -2t-2 polinomio di 1º gira do sono continue, possiamo concludere che \(\forall \in C([-4,1]) \).

ESEMPIO n'3) Coundenamo $y: [-2,1] \rightarrow \mathbb{R}^2$ definita da (x(t)=t) $t \in [-2,1]$

Y definisce una curva perché [-2,1]=I è un intervalle e le due

funzioni X(t)=t (polinomio di 1º grado) e y(t)=It1 (funzione elemen;

tare VALORE ASSOLUTO) sono continue suR. Tuttavia y non è

derivabile perchè, nonostante x(t) sia derivabile su IR con

x'(t)=1 costante equindi continua, la funzione y(t)=It1 non è

x'(t)=1 costante equindi continua, la funzione y(t)=It1 non è

derivabile in t=0 in quanto presenta un punto ANGOLOSO (derivata destra

ino + derivata

sinistra in 0)

Riprendiamo l'esempio N°2)

$$P_{\text{fin}} = (-8, -5) \qquad P_{\text{fin}} = (2, 0)$$

$$t = -4 \qquad -\frac{1}{4}(-6)^2 + 4 = -9 + 4 \qquad -\frac{1}{4} \cdot 4^2 + 4$$

EQUAZIONE dalla 19 at=x mella 20 $y = -\frac{1}{4}(x+2)^2 + 4 = -\frac{1}{4}x^2 - x + 3$

La cura percone la parabola di equatione $y = -\frac{1}{4}x^2 - x + 3$ nel verso delle x crescenti da (-8,-5) a (2,0).

$$\nabla(-2,4)$$
 $x_{v}: y=0-\frac{1}{2}x-1=0$ $\frac{1}{2}x=-1$ $x_{v}=-2$ $y_{v}=y(x_{v})=-1+2+3=4$

ē rivolta verso l'alto Name y: (0,3) Name x: (-6,0)(2,0).
altro punto: (-4,3)

VETTORE TANGENTE = VETTORE DERIVATA = b'(t) =
= (x'(t), y'(t)) = x'(t) \(\vec{\chi} + y'(t) \) \(\vec{\chi} \)

Si tratta del vettore tangente nel generico istante t di tempo. Se Si vuole determinare il VETTORETANGENTE preciso in un dato punto Po si deve calcolarlo nell'istante di tempo to compondente al punto Po scelto.

$$P_0 = (-6,0)$$
 vettore tangente = $\chi'(t) = 2\vec{i} + (-2t-2)\vec{j}$
genevale

Vettore tangente =
$$\overrightarrow{U_p} = \gamma'(t_0) = \gamma'(-3) = 2\vec{i} + 4\vec{j}$$

Punto $P_1 = V = (-2,4)$

è necessario trovare il tempo tr comispondente a Pr (relazione TEMPO-PUNTO)

Vettore tangente in P1 = TP_ = & (t1) = & (-1) = 22 Vettore ORIZZONTALE.

VERSORE TANGENTE =
$$\overrightarrow{T}(t)$$
 = $(x'(t))^2 + (y'(t))^2$ $(x'(t))^2 + (y'(t))^2$ in P_0 | $||\overrightarrow{v}_{P_0}|| = \sqrt{(2)^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$ coincide con il modulo del vettore in quel punto

$$\overrightarrow{T}_{P_0} = (2)^2 + (4)^2 = \sqrt{20} = 2\sqrt{5}$$
in P_1 | $||\overrightarrow{v}_{P_0}|| = 2$ $||\overrightarrow{T}_{P_0}|| = 2$ $||\overrightarrow{T}_{P_0}|| = 2$

Riassumendo:

Versore: vettore lungo 1

Versore tangente: stessa direzione e verso del vettore tangente ma con modulo pari 1

RETTA TANGENTE

E la retta per Po con direzione il vettore tangente vi = (x'(to), y'(to)) Il coefficiente angolare della vetta tampente è mtan = 1/2 = y'(to) a conditione che X'(to) \$0.

EQUAZIONE CARTESIANA

se x (to) =0

(cioè il vettore tangente è ovitzoutale o indinato)

m = y'(to)

"ttan: y=yp+mtan (x-xp)

Se x'(to)=0

(cioè il vettore tangente è Verticale

mtan NON ESISTE

Itan è VERTICALE

Mtan: X=Xp

in Po=(-6,0) Fp= 21+43 mtan= 4=2

Mtau: y=0+2(x+6) y=2x+12

in $P_1 = (-2/4)$ $\overrightarrow{UP_1} = 2\overrightarrow{c}$ $m + cu = \frac{0}{2} = 0$ $\pi + cu$: y = 4 retta ovizzoutale

EQUAZIONI PARAMETRICHE della Retta Tangente

P=Po+top teR egne vettoriale della retta tangente

P=(x,y) P=(xp,yp) Up=(x'(to),y'(to))

EQNI PARAMETRICHE

| X = Xp + t x'(to) | tell
| y = yp + t y'(to)

in Po retain $\begin{cases} x = -6 + 2t \\ y = 4t \end{cases}$ tell in Po $\begin{cases} x = -2 + 2t \\ y = 4 \end{cases}$

VETTORI NORMALI

Nor = vettore ottenuto dal vettore tangente tramite una votazione di 90° in verso ORARIO

Nant = vettore ottenuto dal vettore tampente tramite una votazione di 90° in verso ANTIORARIO.

Fine lezione 1013120.

lzione 12/3/2020

OSSERVAZIONE L'equazione cartesiana della retta tanpente si può determinare l'utilizzando un vettore normale e l'eq. ne vettoniale (dato il vettore normale)

$$(P-P_0) \cdot N_{0y} = 0$$
 $4(x+6)-2.y=0$ $2y=4(x+6)$ $y=2(x+6)$

7=5×+15

$$\lim_{n \to \infty} P_1 = (-2,4) \quad \overrightarrow{N}_{or} = -2\overrightarrow{J} \quad P_2 = (x+2,y-4)$$

$$(P_2 = P_1) \cdot \overrightarrow{N}_{or} = 0 \quad 0 \quad (x+2) - 2(y-4) = 0 \quad y-4 = 0 \quad y=4.$$

RETTA NORMALE

EQUAZIONE CARTESIANA

Morm!

$$m_{morm} = -\frac{1}{2}$$

$$y = 0 - \frac{1}{2}(x+6)$$

$$y = -\frac{1}{2}x - 3$$

in Po
$$\vec{v}_{p_0} = (2,4)$$
 P-Po=(X+6,y) (P-Po)· $\vec{v}_{p_0} = 0$

$$2(x+6)+4y=0$$
 $4y=-2(x+6)$ $y=-\frac{1}{2}(x+6)$ $y=-\frac{1}{2}x-3$

$$=0$$
 $4y=-2(X+6)$

in
$$P_1$$
 $\vec{y}_{p_1} = (2,0)$ $P_1 = (x+2,y-4)$ $(P_1 - P_1) \cdot \vec{y}_{p_1} = 0$

$$2(x+2)+o(y-4)=0$$
 $x+2=0$ $x=-2$

3º modo morm = N2 trovo morm da un VETTORE NORTIALE

che e un vettore direttore della retta hormale

se mtan=0

MMORM NON ESISTE

la netta normale è VERTICALE

$$(mnorm = -\frac{1}{2} IMBSSIBILE)$$

EQUAZIONI PARAMETRICHE della RETTA NORMALE

egre vettoriale della retta normale P=Po+tN tell

$$\int_{y=-2t}^{x=-6+4t} t \in \mathbb{R}$$

(si può usare anche Nant o un qualunque altro vettore normale)

in
$$P_{x}$$
 can $\overrightarrow{N}_{ov} = -2\overrightarrow{J}$
$$\begin{cases} x = -2 \\ y = 4 - 2t \end{cases}$$
 tell

VETTORE VELOCITÀ - VELOCITÀ SCALARE

Interpretando una cura consela legge del moto di un punto che

si musire mel piano e possibile sviluppare tutta la teoria della

CINEMATICA Nel PIANO.

Eposibile definire i sepuenti vettori:

POSIZIONE S(t) = X(t)] + y(t)]

VELOCITA J(t) = X'(t) Z+y'(t)]

ACCELERAZIONE alt)=X"(t) 1"+y"(t)]"

In particulare il VETTORE TANGENTE COINCIDE esattamente con

la reboita del punto in movimento: VETTORE TANGENTE

Il modulo del vettore vebcità

VETTORE VELOCITA

|| vtt) ||= VELOCITA' SCALARE! E un n° che dice a quale velocità si stamusvendo il punto in un dato istante di tempo. Ad es. 30 Km/R

ESERCIZI

Svolgete le schede di esercizi N2 e N2-bis.