

PressCorset

Integrantes: Mara Del Aguila, Maria Liz Valdivia, Joe Ponce, Alvaro Sucaticona, Leonardo Ushiñahua

Análisis del Caso

Descripción anatomica y fisiologica:

- Escoliosis congénita cervical
- Tortícolis congénita izquierda
- Pie cavo varo

Consecuencias fisiológicas

- Restricción respiratoria por deformación torácica
- Dolor muscular y fatiga por desbalance postural
- Limitación de movilidad cervical y alteración en la marcha

Estadísticas

- Escoliosis congénita: 10–15% de los casos de escoliosis infantil a nivel mundial
- Perú: 0.5–1% de escolares presentan escoliosis (estimado)
- Tortícolis congénita: 0.3–2% de los recién nacidos

Análisis del Caso

Musculoesqueléticas:

- Corsé ortopédico adaptativo
- Plantillas ortopédicas
- Fisioterapia especializada

Cognitivas y emocionales:

- No tiene limitaciones cognitivas
- Requiere apoyo psicológico por autoestima y adaptación al corsé

Figure 13 Cervical push on the transverse process of C7 and above. Cervical push on the transverse process of C7 and above.

Sensoriales/posturales:

- Dolor cervical por presión del corsé
- Limitación de movilidad → requiere compensación con el tronco

Funcionales y sociales:

- Autonomía para colocarse el corsé
- Flexibilidad en uniforme y actividades escolares
- Dispositivo cómodo, transpirable, fácil de ajustar

Análisis del Caso

Necesidad funcional a abordar:

- Monitorear el uso del corsé sin depender de revisiones médicas presenciales .
- Reducir las molestias físicas (presión en el cuello, abdomen y calor)

Impacto en la vida diaria:

- Se lo quita para comer, bañarse y hacer educación física.
- Tiene que mover el tronco completo al no poder girar el cuello.
- Se siente observada por su apariencia, lo que afecta su autoestima.

Objetivo del proyecto:

- Integración sensores para seguimiento en tiempo rea.
- Seguimiento diario de la presión de su cuerpo sobre el corsé

Estado del Arte

ALL LINE

- Férula con correas elásticas para corrección tridimensional.
- Mejora postural significativa en 12 semanas.
- Uso en adultos sin cirugía, flexible y estético.

2. **DUALarm (Open-source)**

- Dispositivo para rehabilitación de miembros superiores.
- Monitoreo de movimiento con Arduino y sensores.
- Complementario para fortalecer el tronco en usuarios con corsé.

3. Marco + ecografía 3D

- Diseño asistido de corsés con monitoreo ecográfico.
- Sin uso de radiografías.
- Facilita ajustes antes de la fabricación definitiva.

Estado del Arte

KR20150123393A – Chaleco corrector inteligente de escoliosis

- Sensores de presión en tres zonas clave.
- Transmisión de datos vía Bluetooth a app para monitoreo.
- Seguimiento en tiempo real por el personal médico.

2. US20140330187A1 – Corsé flexible ajustable

- Cinturón ortopédico con almohadillas ajustables.
- Adaptación anatómica y mejora de la comodidad del paciente.
- Enfoque en personalización sin rigidez excesiva.

3. Marco de evaluación + ecografía 3D

- Evaluación de la columna con ecografía clínica en 3D.
- Permite diseño de ortesis personalizadas sin radiación.
- Corrección de curvatura en tiempo real antes de fabricar el corsé.

Estado del Arte

1. ScoliBrace (ScoliCare)

- Diseñado con escaneo 3D para corrección tridimensional.
- Altamente estético y personalizable.
- Compatible con terapias como el método Schroth.

2. Cut-4-Custom (Kinetec)

- Corsé modular y ligero con material 3D-Lite.
- Uso versátil, resistente al agua, varias tallas.
- Ajuste térmico para adaptación anatómica.

3. Brace 3D (Boston Orthotics)

- Corsé a medida diseñado con CAM/CAD.
- Corrige en los tres planos: coronal, sagital y transversal.
- Mejora la comodidad y la eficacia terapéutica.

Función principal

Monitorear el uso correcto del corsé ortopédico mediante sensores, evaluando el uso diario y transmitiendo información clave para el seguimiento médico.

Funciones secundarias

Recolectar:Captura datos de presión, uso del corsé (puesto/no puesto) y nivel de energía del sistema. Son datos esenciales para iniciar el monitoreo.

Medir:Convierte los datos recolectados en información útil. Determina si el corsé está bien ajustado y si la batería del sistema es suficiente para operar.

Almacenar: Guarda localmente las lecturas de presión y tiempo de uso, junto con el estado del sistema, vinculadas al paciente o dispositivo.

Procesar: Calcula horas de uso diarias/semanales y detecta patrones de adherencia al tratamiento, lo cual apoya la evaluación médica.

Notificar y visualizar: Genera alertas en tiempo real (como batería baja) y transmite los datos procesados a una base remota. La información se presenta en reportes útiles para profesionales de salud.

Lista de requerimientos

Funcionales

- Detectar la presión ejercida sobre el corsé mediante sensores estratégicamente ubicados.
- Adaptarse al crecimiento progresivo de la paciente, considerando su edad y desarrollo físico.
- Registrar el tiempo de uso diario y semanal del corsé y almacenarlo localmente para su análisis posterior.
- Transmitir los datos recolectados a una base de datos remota para seguimiento clínico.

No Funcionales

- Peso total del corsé < 500 g para mejorar la comodidad.
- Fácil colocación y ajuste del corsé sin la ayuda de terceros (menos de 3 minutos).
- Material biocompatible, sin irritaciones, que respete la piel sensible de la paciente.
- Estética amigable y discreta

Criterios técnicos y económicos	C.S 1	C.S 2	C.S 3
Facilidad de uso	2	2	3
Portabilidad	3	3	2
Costo de tecnología	2	3	0
Costo de operación	3	3	2
Viabilidad	4	4	2
Tamaño	3	3	3
Seguridad	3	3	2
Nivel de Innovación	3	2	2
Disponibilidad de repuestos	3	3	1
Posibilidad de automatización	0	0	3
Administración de datos	3	1	0
Suma total	29	27	20

- C.S 1: Sistema electrónico Arduino con tres sensores de presión adaptables.
- C.S 2: Sistema electrónico Arduino con sensores de temperatura adaptables.
- C.S 3: Corsé similar al del paciente con material menos rígido.

Bocetos:

TITULO: PressCorset

DIBUJADO POR: Alvaro Rodrigo Sucaticona Ambicho

Lista de despiece:

- 1.FlexiForce A201
- 2.Batería recargable
- 3. Arduino Nano 33 IoT
- 4 .Puerto de salida del cableado
- 5. LED RGB
- 6. Corsé

Conclusiones

- 1) 3 sensores de presión estratégicamente ubicados
- 2) Conexión a placa Arduino:
 - Procesa y guarda datos
 - Envía información a app móvil o nube
- 3) Alertas automáticas por:
 - Mal uso
 - Presión insuficiente
 - Batería baja
- 4) Diseño discreto, cómodo y recargable
- 5) Compatible con corsés existentes
 - Sin modificar estructura ortopédica

Referencias

Scoliosis Research Society, "Congenital Scoliosis," [En Iínea]. Disponible: https://www.srs.org/Patients/Conditions/Scoliosis/Congenital-Scoliosis.

American Academy of Orthopaedic Surgeons, "Congenital Muscular Torticollis (Twisted Neck)," Ortholnfo, [En línea]. Disponible: https://ortholnfo.aaos.org/en/diseases--conditions/congenital-muscular-torticollis-twisted-neck/.

Wang et al., "Effects of spinal deformities on lung development in children: a review," J. Orthop. Surg. Res., vol. 18, no. 1, p. 246, 2023. [En línea]. Disponible: https://doi.org/10.1186/s13018-023-03665-0.

- 1] Boston Orthotics & Prosthetics, Corsé de sujeción toraco-lumbo-sacro Brace 3D®, MedicalExpo. [En línea]. Disponible: https://www.medicalexpo.es/prod/boston-orthotics-prosthetics/product-74664-942365.html
- [2] Kinetec, Corsé de sujeción sacro-lumbar Cut4Custom, MedicalExpo. [En línea]. Disponible: https://www.medicalexpo.es/prod/kinetec/product-103834-1129581.html
- [3] B. Ha y S. Noh, Smart spinal scoliosis correction vest, Patente coreana KR20150123393A, 4 de noviembre de 2015. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/74/ab/21/ad3e10a2336926/KR20150123393A.pdf
- [4] J. Perez, G. Garth y S. Burke, Scoliosis Brace, U.S. Patent Application US20140330187A1, 6 de noviembre de 2014. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/b9/81/22/73367ebf59e52d/US20140330187A1.pdf
- [5] T. Dinon et al., "DUALarm: An open-source and 3D-printable device for upper limb neurorehabilitation," Journal of Rehabilitation and Assistive Technologies Engineering, vol. 5, pp. 1–12, 2018. [Online]. Available: https://doi.org/10.1177/2055668317749989
- [6] ScoliCare, "ScoliBrace® A New Era in Scoliosis Bracing," ScoliCare, [Online]. Available: https://scolicare.com/scolibrace/. [Accessed: 06-May-2025].
- [7] Spinal Technology, "Providence Nocturnal Scoliosis Orthosis," Spinal Technology Inc., [Online]. Available: https://spinaltech.com/providence-nocturnal-scoliosis-orthosis. [Accessed: 06-May-2025].
- [8] B. H. Beygi, E. Lou, S. W. Sin, W. K. Kwok, H. M. Kee, y M. S. Wong, "A feasibility study of application of purpose-design frame and 3-D clinical ultrasound in assessment and design of spinal orthoses for adolescent idiopathic scoliosis," *Prosthetics and Orthotics International*, vol. 47, no. 6, pp. 633–639, Dec. 2023, doi: 10.1097/PXR.0000000000000275.