

Oregon State University

Critical Design Review

01/27/2020

Mission Overview

- 2. Motor burnout
- 3. Separation at apogee
- 4. Drogue parachutes deploy
- 5. Main parachutes deploy
- 6. Landing
- 7. Rover deployment
- 8. Ice collection
- 9. Ice transportation

Launch Vehicle Overview

Weight: 61 lbf

Inner Diameter: 6.25 in.

Rail: 1515

Payload Overview

• Total Weight: 13 lbf

Subscale Launch

Subscale Flight: November 16th

Maximum Altitude (ft)	1798
Impact Velocity (ft/s)	8.02
Impact Kinetic Energy (ft-lbf)	31.38
Descent Time (s)	62

Subscale Flight Data - Avionics

Drift: 250 ft

Altitude: 1835 ft

Overview Slide

- Parachutes
- Recovery Hardware
- Deployment Energetics
- BEAVS 2.0

Stability Margin

With Motor

$$C_p = 81.13 \text{ in}$$

$$C_G = 62.04 \text{ in}$$

Stability: 2.98 calibers

After Motor Burnout

$$C_p = 81.13 \text{ in}$$

$$C_G = 54.971 \text{ in}$$

Stability During Flight

500

450

400

350

300

- 200

150

- 50

-50

-100

75

80

6.00 5.75

5.50

5.25

5.00

4.75

4.50 4.25 4.00 3.75

3.50 3.25

3.00

2.75

2.25

1.75

15

Huntsville Omph Custom

Time (s)

Stability margin calibers — Vertical velocity (ft/s)

Mass Statement

Mass Breakdown 16.5% Body: Payload 28.7% airframe, nosecone, couplers, fins Motor 16.5% Recovery Hardware 21.5% 16.8%

Mass Margin

Apogee Altitude Mass Margin

Weight Change	Projected Altitude	
-9.9 lbf	5,500 ft	
o lbf	4,427 ft	
+8.76 lbf	3,500 ft	

*Mass margin assumes weight change at current center of gravity

Kinetic Energy Mass Margin

Section	Current Weight (lbf)	Available Weight Increase (lbf)	Landing Kinetic Energy (ft-lbf)	
Fore	26.1	+ 10.3	75	
Aft	31.2	+ 5.2	75	
Coupler	4.75	+ 31.65	75	

*Mass margin assumes weight change at current center of gravity

Kinetic Energy Analysis

Measurement	Fore section	Coupler	Aft section
Weight (lbf)	26.10	4.75	26.21
Landing Velocity (ft/s)	8.99	3.83	9.016
Landing Kinetic Energy (ft-lbf)	36.53	1.08	36.67

Descent Times and Drift

Wind Speed (mph)	0	5	10	15	20	Descent Times (s)
Matlab Drift (ft)	0	459	1100	1682	2103	63.2
OpenRocket Drift (ft)	7	260	505	744	950	65

Recovery Harness Main

Recovery Harness Drogue

Parachutes

- 12 ft Toroidal Parachute
- $\bullet \quad \text{Cd} = 2.2$

Drogue

- 18 in. Elliptical Parachute
- $\bullet \qquad \mathrm{Cd} = 1.5$

^{*} Both purchased from Fruity Chutes

Integration

Nomex Blanket

Nomex Sleeve

Shock Cord

Fruity Chutes

- 1 in. Nylon webbing
- 3x 15 ft sections (tethers & main)
- 1x 33 ft section (drogue)

BEAVS 2.0

Passive System:

Coupled ballast bays

Active System:

• Dual blade rack & pinion

Black Powder Ejection Charges

CO₂ charges have been scrapped due to weight, length, and reliability concerns.

Black Powder Sequence

- 1. Primary drogue: ignites at apogee
- 2. Back-up drogue: ignites at one second past apogee
- 3. Primary main: ignites at 600 ft AGL
- 4. Back-up main: ignites at 500 ft AGL

Black Powder Ejection Charges

Materials

- Surgical Tubing
- Rubber Rod
- Cable Ties
- FFFFg Black Powder
- Firewire Initiator (E-match)
- Sharpie
- Quick Release Connector

Ejection Testing

Designed and built a custom ejection test bed that can be adjusted to cater to different bay sizes.

Subscale Testing

- Main Deployment: Success with 2 g of black powder
- **Drogue Deployment: Success** with 2 g of black powder

Altimeters

- User friendly
- Easy to adjust without a computer
- Easy to communicate with on a computer

Altimeter Testing

Fully Assembled 1: **Success**

Fully Assembled 2: **Success**

Without Airframe: **Success**

Avionics and BEAVS 2.0 Electronics

Overview Slide

Avionics

- Give information to track the launch vehicle and provide data for analysis
 - GPS, Altitude, Acceleration

BEAVS

 Electronics to collect altitude and acceleration data and move fins using motors

Avionics

Avionics

- MAX-M8Q and SAM-M8Q were both tested
- MAX-M8Q had better accuracy
- SAM-M8Q had a lock faster
- MAX-M8Q was chosen for accuracy

Power Supply

- Outputs 5 V
- Supports necessary 400 mA

Avionics Testing

- o BMP280 and MS5803 were tested
- BMP280 had more consistent high accuracy as compared in flight with altimeters

Acceleration

- ADXL377 was used for acceleration
- Withstood launch forces

BEAVS 2.0 Electrical

BEAVS 2.0 Electric Testing

- Test with barometric pressure sensor
- Turned on as expected

Barometric Pressure

- Tested on local level with small changes
- Results matched with Avionics testing

Overview Slide

- Contains all received information
- Formats it in real time

BEAVS

- Algorithm to control motors
- Reacts quickly

Avionics GUI

- GPS and altitude
- Saves data
 - CSV file
- Configures serial settings

BEAVS 2.0

Motor Control Activation

• Sensor Data Acquisition

• PID Control Scheme

Kalman Filter

Constraints

- The software will abide to memory constraints of physical hardware
- The software must be able to handle fast operations as it will be working with real-time data
- It must handle error correction quickly

Launch Vehicle Layout

Body Tubes

 The airframe body tubes will be manufactured by Innovative Composite Engineering

• The Aft tube will be entirely carbon fiber

• The Fore section will be partially carbon fiber and partially

fiberglass

• Fin slots cut in house by structures team, using custom fixtures

Fore Section

- Simple in over all design
- Houses payload and main parachute
- Very important to protect payload

Aft Section

- Houses drogue parachute, motor bay, and BEAVS
- Thrust plate to transfer thrust forces directly to airframe
- Commercial motor retainer

 Through-wall fin construction to increase rigidity for both fins and motor mounting

Aft Parachute Mounts

- Special consideration for the aft parachute mounts as BEAVS needs to still be accessible through the bulkhead
- Allows strong airframe-to-coupler bond
- Threaded parachute mounting points
- Two mount design simplifies manufacturing

Pressure Sealing Bulkheads

- Using plywood bulkheads and rings to compress gaskets when bolts are tightened
- Located in the coupler, and the Aft section parachute bay

Nose Cone Avionics Bay

- Has altimeter independent of recovery electronics
- Single through threaded rod for mounting
- 3D-printed mounts for electronics

Nose Cone

Overview

- Ogive nose cone roughly 3.5:1 ratio
- Deployed on the ground by rover deployment system
- Held in place by 4-inch coupler and shear pins
- Manufacturing and availability constraints

Manufacturing

- Modifying commercial 7.5 -inch nose cone
- Fiberglass construction
- Using custom fixture to modify

Coupler

- Houses deployment altimeters, mounting for parachutes and black powder ejection charges
- Removable altimeter bay
- 2-inch switch-band to enable external altimeter bay access
- Altimeter bay held in place by external fasteners
- Extends 6.5 inches into airframe

Fins

- Composite sandwich
- Core of G10 Fiberglass
- Layers of carbon fiber on either side
- Alternating orientations of 0, 45, and 90 degrees
- Tapered edges

Final Motor Choice

Motor selection as of PDR - AeroTech L2200G

• Estimated apogee: 4427 ft

• Burn Time: 2.32 seconds

• Average Thrust: 494.6 lb-s

• Total Impulse: 1147 lb-s

• Diameter: 2.95 in.

• Thrust to weight: 11.4:1

• Rail exit velocity: 90.1 ft/s

Structural/Pressure Testing

- Ensure sealing capabilities for deployment
- Not Complete Waiting on airframe materials
- Testing of altimeter bay strength
 - Ensure connection between Fore and Aft
 - Verify stress analysis
 - Not Complete Waiting on airframe materials

Payload

Final Payload Design

- 2. Collection
- 3. Structure
- 4. Ejection System

Ejection System

- 2. Lead Screw
- 3. Retention System

Retention System

- 2. Coupler
- 3. Motor Retainer
- 4. Worm Gear Motor
- 5. Bulkhead (Fore Section)

Rover Design

- 2. Chassis
- 3. Collection

Chassis Design

- 2. Aluminum Supports
- 3. Mounting Surface
- 4. Motor

Drivetrain

2. Spring Hinges

3. Motor Coupler

4. Hub

Rover Stabilizing Tail

2. Carbon Fiber Tail

Collection System

- 1. 6V Lead Screw Motor
- 2. Lead Screw Bracket
- 3. Sliding Rod
- 4. Scoop

Testing Plans

Test/System	Number/Type	Status	Results
Payload Testing	CES Chassis Material Analysis	Complete	Successful
	Chassis FEA	Complete	Successful
	Chassis Prototyping	Complete	Successful
	Wheel Prototyping	Complete	Successful
	Collection Prototype Testing	Complete	Successful
	Drop Testing	In Progress	N/A
	Drive Testing	In Progress	N/A
	Battery Life Testing	In Progress	N/A
	Ejection System Testing	In Progress	N/A
	Retention Strength Testing	In Progress	N/A
	Retention Robustness Testing	In Progress	N/A

Payload Electronics

Overview Slide

- Test bed was constructed for motors
- Successful activation of motors

GPS testing as mentioned in Avionics

Top Level Diagram

Movement

Remote Control

- Controls the movement of rover
- Controlled by a team member

Movement

- 2 motors
- Controlled from a dual H-bridge

Navigation

- Provide information to driver
- Help locate rover

Accelerometer

• Provide information to driver

Ice Collection Components

- 6V motor
- Triggered by a remote
- Single H-bridge

Overview Slide

Payload GUI is written in C#. The GUI will display GPS and position data that it receives via serial port, along with the coordinates of collections sites. The GUI also displays a video stream from the rover.

Payload Control System is written in Arduino programming language using Firmata and Processing to allow the Xbox One controller to remotely control the movements of the rover.

Constraints

The software is subject to several constraints throughout development:

- The software will abide to memory constraints of physical hardware
- The software must be able to handle fast operations as it will be working with real-time data
- It must handle error correction quickly
- It must relay data over a network

Payload Teensy 3.6

- Will be written in C
- Controls motors based on user input
- Collects data from sensors
- Quick response from stimuli

Requirement Verifications

Status of NASA Requirement Verifications

Status of Team Derived Requirement Verifications

STEM Engagement

Overview Slide

- OSRT has had multiple displays about the team since PDR
- There have also been multiple events where the team has completed an entire lesson plan.
 - Baking soda and vinegar rockets with Franklin K-8 School
 - Direct current motors with Saint Thomas More Catholic School

Event Picture

Completed Events

- 2 football tables
- 1 basketball table
- Franklin K-8 School
- Saint Thomas More Catholic School
- Presentation at Monte Vista High School in California
- Students reached: 1,428

Safety

Overview Slide

Voltaire

Equipment

People take responsibility

Prevention is the best strategy

Equipment

- Contains gloves, face shields, and other protective gear
- First aid kit with an emphasis on burns
- Equipment to disarm black powder

New equipment so everyone can be protected

- Face shields
- Gloves
- Burn bucket

People are Responsible

- Wears orange vest
- Must be entirely focused on safety
- Has "Go-Bag"
- Everyone should be on watch
 - Checklists include safety watch items

Prevention

- Assembly order is optimized so dangerous materials are less likely to impact launch vehicle and operators
- Motor and ignition system is installed last
- Attendance to integration
 - If an individual does not attend they cannot assemble the rocket
 - Ensures all individuals are familiar with proper safety procedures

Questions?