19-9-2021

Contador de 0 a 9

Martínez Coronel Brayan Yosafat

3CM17 Introducción a los microcontroladores FERNANDO AGUILAR SÁNCHEZ

Objetivo

Al término de la sesión, los integrantes del equipo contaran con la habilidad de realizar un contador de 0 a 9 mostrado en un display activado con un Push Button..

Introducción teórica

Este contador de 0 a 9 en sencillo de ensamblar, básico para poder emplear para otros más complejos en los que hagamos usos de circuitos integrados de manera didáctica pues podrían ser remplazados estos circuitos complejos por otros más sencillos con aplicación de microcontroladores.

Materiales y Equipo empleado

- CodeVision AVR
- AVR Studio 4
- Microcontrolador ATmega 8535
- 1 Display ánodo o cátodo común
- 7 Resistores de 330 Ω a 1/4 W
- 1 Push Button

Desarrollo experimental

Diseñe un programa colocando en el Puerto B un Display. Coloque un Push Button en la terminal 0 del Puerto D para incrementar su cuenta del 0 al 9.

Estructura del programa

```
/***************
This program was created by the CodeWizardAVR V3.45
Automatic Program Generator
© Copyright 1998-2021 Pavel Haiduc, HP InfoTech S.R.L.
http://www.hpinfotech.ro
Project:
Version:
Date : 09/09/2021
Author:
Company:
Comments:
Chip type
          : ATmega8535
Program type
                : Application
AVR Core Clock frequency: 1.000000 MHz
                  : Small
Memory model
External RAM size : 0
Data Stack size : 128
#include <mega8535.h>
#define boton PIND.0
// Declare your global variables here
const char mem[10] = \{0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F\};
unsigned char var1;
void main(void)
// Declare your local variables here
// Input/Output Ports initialization
// Port A initialization
```

```
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | (0<<DDA2) |
(0 < DDA1) \mid (0 < DDA0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T
PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) |
(0 < PORTA2) \mid (0 < PORTA1) \mid (0 < PORTA0);
// Port B initialization
// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out Bit0=Out
DDRB=(1<<DDB7) | (1<<DDB6) | (1<<DDB5) | (1<<DDB4) | (1<<DDB3) | (1<<DDB2) |
(1<<DDB1) | (1<<DDB0);
// State: Bit7=0 Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0
PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (0<<PORTB3) |
(0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0);
// Port C initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRC=(0<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | (0<<DDC2) |
(0<<DDC1) | (0<<DDC0);
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T
PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) |
(0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);
// Port D initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD2) | (0<<DDD3) | (0<<DDD2) |
(0 < < DDD1) \mid (0 < < DDD0);
// State: Bit7=P Bit6=P Bit5=P Bit4=P Bit3=P Bit2=P Bit1=P Bit0=P
PORTD=(1<<PORTD7) | (1<<PORTD6) | (1<<PORTD5) | (1<<PORTD4) | (1<<PORTD3) |
(1<<PORTD2) | (1<<PORTD1) | (1<<PORTD0);
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
```

```
TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<CS02) | (0<<CS01)
| (0 < < CS00);
TCNT0=0x00;
OCR0 = 0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Disconnected
// OC1B output: Disconnected
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) |
(0<<WGM10);
TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (0<<CS11) |
(0 < < CS10);
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH = 0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0<<AS2;
```

```
TCCR2=(0<<WGM20) | (0<<COM21) | (0<<COM20) | (0<<WGM21) | (0<<CS21)
(0<<CS20);
TCNT2=0x00;
OCR2 = 0x00;
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | (0<<OCIE1B) | (0<<TOIE1) |
(0 < < OCIE0) \mid (0 < < TOIE0);
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR = (0 < |SC11) | (0 < |SC10) | (0 < |SC01) | (0 < |SC00);
MCUCSR = (0 < < ISC2);
// USART initialization
// USART disabled
UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | (0<<UCSZ2) |
(0 < < RXB8) \mid (0 < < TXB8);
// Analog Comparator initialization
// Analog Comparator: Off
// The Analog Comparator's positive input is
// connected to the AINO pin
// The Analog Comparator's negative input is
// connected to the AIN1 pin
ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIC) | (0<<ACIS1) |
(0 < < ACISO);
SFIOR=(0<<ACME);
// ADC initialization
// ADC disabled
ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (0<<ADPS2) |
(0 < ADPS1) \mid (0 < ADPS0);
// SPI initialization
```

```
// SPI disabled

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) |
(0<<SPR1) | (0<<SPR0);

// TWI initialization

// TWI disabled

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);

while (1)
{
    if (boton == 0)
        var1++;

    if (var1 == 10)
        var1 = 0;

    PORTB = mem[var1];
    }
}
```

Observaciones y Conclusiones

Comparado con los circuitos de sistemas digitales en hacer un contador de este estilo, es mucho más sencillo de esta forma, supongo el precio a pagar es justamente que cueste más que los otros.

Bibliografía

Contador de 0 a 9: https://mikitronic.blogspot.com/2012/01/contador-digital-de-0-9.html