UK Patent Application GB GB 2 188 948 A

(43) Application published 14 Oct 1987

(21) Application No 8708585

(22) Date of filing 10 Apr 1987

(30) Priority data

(31) 8605149

(32) 10 Apr 1986

(33) FR

(71) Applicant

.

5

Z

L' Oreal

(Incorporated in France)

14 rue Royale, 75008 Paris, France

(72) Inventors

Annie Madrange

Patrick Canivat

(74) Agent and/or Address for Service

J. A. Kemp & Co.,

14 South Square, Gray's Inn, London WC1R 5EU

(51) INT CL4 A61K 7/13 7/135

(52) Domestic classification (Edition I):

D1B 2A4 2S

D1P 1107 1113 1122 1200 1203 1207 1209 1210 1235 1237 1239 1243 1263 1267 1260 1267 1272 1286 1287 1314 CBE

(56) Documents cited GB A 2165560

(58) Field of search

DIB D1P

C5D Selected US specifications from IPC sub-class A61K

(54) Cosmetic compositions for dyeing or for bleaching hair

(57) A cosmetic composition suitable for dyeing or bleaching hair when mixed with an oxidizing solution, comprising, in an aqueous medium:

(a) at least one fatty acid soap,

at least one cationic or amphoteric silicone polymer,

at least one cationic surface-active agent,

(d) at least one alkalifying agent, and

(e) at least one cationic polymer which is a quaternary polyammonium polymer, a vinylpyrrolidone/dialkylaminoalkyl acrylate or methacrylate copolymer (quaternized or not quaternized), a poly(methacrylamidopropyltrimethylammonium chloride), a cationic protein, a polyaminoamide, a crosslinked polyaminoamide, an alkylated polyaminoamide or a mixture thereof can be used to bleach hair or, if it additionally comprises an oxidation dye precursor and, if desired, a coupler and a reducing agent, can be used to dye hair.

in which x and γ, which may be identical or different, are integers such that the average 15 molecular weight of the polymer is from 5,000 to 10,000. This polymer is also called "amodimethicone".

di- 15

Other cationic silicone polymers which can be used according to the invention are those of ormula:

20 $(R_1)_a G_{3-a} - Si(-OSiG_2)_n - [OSiG_b(R_1)_{2-b}]_m - O-SiG_{3-a}(R_1)_a$ 20

in which

G is hydrogen or a phenyl, OH, or C₁-C₈ alkyl group, preferably a methyl group;

a is an integer from 0 to 3, preferably 0;

25

b is 0 or 1, preferably 1; n is a number from 0 to 1,999, preferably from 49 to 149 and m is a number from 1 to 2,000, preferably from 1 to 10, such that the sum n+m is a number from 1 to 2,000, preferably from 50 to 150;

R₁ Is a monovalent group of formula C_qH_{2q}L in which q is an integer from 2 to 8 and L is a

30 group of formula:

 $-N(R_2)CH_2-CH_2-N(R_2)_2$,

-N(R₂)₂,

–[©]N(R₂)₃A[©], 35. –[©]N(R-)H-A[©], α

35

in which R₂ is hydrogen or a phenyl, benzyl or saturated hydrocarbon group, preferably an alkyl group containing from 1 to 20 carbon atoms, and A° is a halide ion.

These compounds are described in greater detail in European Patent Application No. 95,238.

A particularly preferred polymer of this formula "trimethylsilylamodimethicone" is of formula:

wherein n has a value of from 0 to 1,999, preferably from 49 to 149, and m has a value of from 1 to 2,000, preferably from 1 to 10, such that m+n has a value of from 1 to 2,000, preferably from 50 to 150.

Other cationic silicone polymers which may be used according to the invention are of formula:

15

20

4

10 in which:
R₃ Is a monovalent hydrocarbon group containing from 1 to 18 carbon atoms, preferably an alkyl or alkenyl group such as a methyl group;

 R_4 is a hydrocarbon group optionally containing a chain oxygen atom, preferably a C_1 – C_{18} alkylene group or a C_1 – C_{18} , more preferably C_1 – C_8 , alkyleneoxy group;

15 Q⁹ is a helide ion, preferably chloride; r has a statistical mean value of from 2 to 20, preferably of from 2 to 8; and s has a statistical mean value of from 20 to 200, preferably of from 20 to 50.

These compounds are described in greater detail in US Patent 4,185,087.

A particularly preferred polymer of this class is that sold by Union Carbide under the name

20 "Ucar Silicone ALE 56".
It is also possible to use a cationic silicone polymer of formula:

о снон зо

35

H₃C-N-CH₃

CH₃

sold under the trade name Abil 9905 by Goldschmidt or an amphoteric silicone polymer of formula:

60 CH₂COO 60

sold under the trade name Abil 9950 by Goldschmidt;
wherein, in each case, p and q are such that the average molecular weight of each product is 65

15

20

25

30

35

40

from 1,000 to 8,000.

The cationic surfactants used according to the invention preferably have the formula (IV):

10 in which:

(1) R_6 and R_8 are both methyl groups, i) R7 and R8, which may be identical or different, are each a linear aliphatic group, preferably an alkyl group containing from 12 to 22 carbon atoms or an aliphatic group derived from a tallow fatty acid containing from 14 to 22 carbon atoms,

ii) R7 is a straight-chain aliphatic group, preferably an alkyl group containing from 14 to 22 carbon atoms, and R_e is a methyl or benzyl group,

iii) R_7 is an alkylamidopropyl ($C_{14}-C_{22}$ alkyl) group and R_8 is an alkylacetate ($C_{12}-C_{18}$ alkyl)

iv) R, is a y-gluconamidopropyl group, an aliphatic group derived from a tallow fatty acid or a 20 C₁₈-C₁₈ alkyl group and R₈ is a hydroxyethyl group, and

Xº is an anion such as a halide or methosulphate ion; (2) R_s is an alkylamidoethyl or alkenylamidoethyl group, wherein the alkyl or alkenyl moiety

contains from 14 to 22 carbon atoms and originates from a tallow fatty acid, R_s and R₇ form, together with the nitrogen to which they are attached, a 2-alkyl-4,5-dihydroim-25 idazole heterocyclic ring wherein the alkyl moeity is derived from a tallow fatty acid,

R_s is a methyl group, and

Xº is a methosulphate ion; or (3) R_5 , R_6 and R_7 form, together with the nitrogen to which they are attached, a six membered aromatic heterocyclic ring, R₈ is a C₁₄-C₁₈ alkyl group and Xo is a halide enion.

Preferred cationic surface-active agents are: dimethylalkyl-(C18)ammonium chloride sold under the name "Genamine DSAC" by Hoechst, trimethylalkyl-(C20-C22)ammonium chloride sold under the trade name "Genamine KDM-F" by Hoechst, cetylpyridinium chloride, dimethyldialkyl(C12-C14) ammonium chloride, dimethyl-y-gluconamidopropylhydroxyethylammonium chloride sold under the

name "Ceraphyl 60" by Van Dyk, dimethyldicetylammonium chloride sold under the trade name "Noramium M2 SH", dimethyl dilauryl ammonium chloride sold under the trade name "Noramium M2 CD", dimethylhydroxyethylaikyl(tallow)ammonium chloride, dimethyl dialkyl (hydrogenated tallow)ammonium chloride sold under the trade name ARQUAT 2H 75, dimethylhydroxyethylcetylammonium chloride and dimethylstearylbenzylammonium chloride sold under the trade names 'Ammonyx 4002" by Onyx or "Catigene CS 40" by Stepan. The cationic polymers used

40 according to the invention are preferably: 1) quaternary ammonium polymers consisting of recurring repeat units, which may be identical or different, of formula (V):

wherein:

R₁, R₂, R₃ and R₄, which may be identical or different, are each an allphatic, alicyclic or 55 arylaliphatic group containing from 1 to 20 carbon atoms or a C1-C6, preferably C1-C4, hydroxyaliphatic group, or at least one of a pair of R1 and R2 and/or R3 and R4 form, together with the nitrogen to which they are attached, a heterocyclic ring optionally containing a second heteroatom other than nitrogen, or

R₁, R₂, R₃ and R₄, which may be identical or different, are each a linear or branched C₂-C₅ alkyl group substituted by a nitrile, ester, acyl or amide group or by a group of formula:

or

10

wherein:

R'₇ is an alkylene group, and 15 D is a quaternary ammonium group:

15

D is a quaternary ammonium group;
A and B, which may be identical or different, are each an aliphatic hydrocarbon group containing from 2 to 20 carbon atoms, which is linear or branched, saturated or unsaturated and which optionally contains, inserted into the main chain, one or more aromatic rings or one or more oxygen or sulphur atoms or one or more sulphoxide, sulphone, disulphide, amine, alkylamine, quaternary ammonium, hydroxyl, ureldo, amide or ester groups; or

20

A, R₁ and R₃, together with the two nitrogen atoms to which they are attached, form a

piperazine ring;
each X°, which may be identical or different, is an anion derived from an inorganic or organic

acid; and

n is such that the molecular mass of the polymer is from 1,000 to 100,000.

25

Polymers of this type are described, in particular, in French Patents 2,320,330, 2,270,846 and 2,316,271 and in US Patents 2,273,780, 2,375,853, 2,388,614, 2,454,547, 3,206,462, 2,261,002 and 2,271,378.

Other polymers of this type are described in US Patents 3,874,870, 4,001,432, 3,929,990,

30 3,966,904 and 4,005,193.

30

40

50

55

Other preferred polymers are those which contain one of the following repeat units:

35 $\begin{array}{c|c} & & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

40 $\frac{CR_3}{N} - (CR_2)_3 - \frac{CR_3}{N} - (CR_2)_6 - \frac{CR_3}{N} - (CR_2)_6$

in which n is approximaely 6 and which is sold nder the name "Mirapol A 15" by Miranol; and poly(dimethylbutenylammonium chloride)- α , ω -bis-(triethanolammonium chloride) sold under the trade name "Onamer M" by Onyx Chemical.

2) Quaternary ammonium polymers consisting of repeat units, which may be identical or 55 different, of formula (VI):

 $60 = \begin{bmatrix} R_4 \\ N - (CH_2)_x - NE - C - (CH_2)_x \\ R_5 \end{bmatrix} = \begin{bmatrix} C - NE - (CH_2)_y - \frac{R_5}{R_7} \end{bmatrix} = \begin{bmatrix} R_4 \\ N - A \end{bmatrix}$

wherein: R_a , R_b , R_b and R_7 , which may be identical or different, are each hydrogen, a methyl, ethyl,

10

15

20

25

30

40

45

50

55

65

propyl, 2-hydroxyethyl or 2-hydroxypropyl group or a group of formula $-CH_2-CH_2-(O-CH_2-CH_2))_p-OH$ in which p is an integer from 0 to 6;

with the proviso that R_4 , R_5 , R_6 and R_7 are not all simultaneously hydrogen; x and y, which may be identical or different, are each integers from 1 to 6;

m is an Integer from 0 to 34; each X^a, which may be identical or different, is a halogen anion; and

A is a divalent hydrocarbon group optionally containing a chain oxygen atom, preferably a group of formula:

These compounds are described in European Patent 122,324.

The quaternary ammonium polymers which are particularly preferred are those which contain either of the following repeat units:

wherein each X, which may be identical or different, is a halogen, sold under the trade name 25 "Mirapol AD1" by Miranol, or:

35 wherein each X, which may be identical or different, is a halogen, sold under the trade name "Mirapol AZ1" by Miranol.

 Poly(methacrylamidopropyltrimethylammonium chloride) sold under the trade name "Polymaptae" by Texaco Chemicals.

4) Vinylpyrrolidonedialkylaminoalkyl acrylate or methacrylate copolymers (quaternized or otherwise), such as those sold under the trade names "Gafquat" by GAF Corporation, such as, for example, "copolymer 845" and "Gafquat 734 or 755" which are described in French Patents 2,077,143 and 2,393,573.

5) Cationic proteins which are chemically modified polypeptides which contain, either at the end of the chain or grafted onto the chain, at least one amine or quaternary ammonium group.
45 Preferred proteins are:

collagen hydrolysates containing triethylammonium groups, such as the products sold under the trade name "Quat-Pro E" by Maybrook and called "Triethonium Hydrolyzed Collagen Ethosulphate" in the CTFA dictionary (CTFA is the abbreviation for The Cosmetic, Toiletry and Fragrance Association Inc., 1110 Vermont Avenue N.W. Washington DC 20005 U.S.A., who publish the "Cosmetic Ingredient Dictionary" 3rd edition);

collagen hydrolysates containing trimethylammonium or trimethylatearylammonium chloride groups sold under the trade name "Quat-Pro S" by Maybrook and called "Steartrimonium Hydrolyzed Collagen" in the CTFA dictionary;

animal protein hydrolysates containing trimethylbenzylammonium groups, such as the products sold under the trade name "Crotein BTA" by Croda and called "Benzyltrimonium hydrolyzed animal protein" in the CTFA dictionary;

protein hydrolysates containing, on the polypeptide chain, quaternary ammonium groups containing at least one alkyl group containing from 1 to 18 carbon atoms, such as:

Croquat L, the polypeptide chain of which has an average molecular weight of approximately

60 2,500 and the quaternary ammonium group of which contains a C₁₂ alkyl group; 60 Croquat M, the polypeptide chain of which has an average molecular weight of approximately 2,500 and the quaternary ammonium group of which contains a C₁₀–C₁₈ alkyl group; Croquat S, the polypeptide chain of which has an average molecular weight of approximately

Croquat S, the polypeptide chain of which has an average molecular weight of approximately 2,700 and the quaternary ammonium group of which contains a C_{18} alkyl group;

Crotein Q, the polypeptide chain of which has an average molecular weight of the order of

15

20

25

30

35

40

55

60

65

12,000 and the quaternary ammonium group of which contains at least one alkyl group containing from 1 to 18 carbon atoms.

These different products are sold by Croda.

Other preferred quaternized proteins are those of formula:

CH₃

R₅

CH₃

R₆

NH

A

10

CH₃

10

in which

A is a protein residue derived from a collagen protein hydrolysate, 15 R_5 is a lipophilic group containing up to 30 carbon atoms, R_5 is an alkylene group containing from 1 to 6 carbon atoms, and

 R_a is an alkylene group containing from 1 to 6 carbon atoms, and X^e is an anion;

the protein having a molecular weight of from 1,500 to 10,000, preferably from 2,000 to 5,000. The preferred product is that sold under the trade name "Lexein QX 3000" by Inolex 20 and is called "Cocotrimonium Collagen Hydrolysate" in the CTFA dictionary.

Other preferred proteins are hydrolysates of animal proteins, which contain dimethylamine groups, which are sold under the trade name "Lexein CP 125" by Inolex and referred to under the name "Oleamidopropyl dimethylamine hydrolyzed animal protein" in the CTFA dictionary.

6) Water soluble polyaminoamides, prepared by the polycondensation of an acid compound 25 with a polyamine. These polyaminoamides may be crosslinked and alkylated. Such polymers are described in French Patents 2,252,840 and 2,368,508.

Other polyaminoamides resulting from the condensation of polyalkylenepolyamines with polycarboxylic acids and which are alkylated with difunctional agents may be used, for example, adipic acid/dialkylaminohydroxyalkyl/dialkylenetriamine polymers in which the alkyl moiety contains from 1 to 4 carbon atoms. Such polymers are described in French Patent 1,583,363.

Examples of such derivatives are adipic acid/dimethylaminohydroxypropyl/diethylenetriamine polymers, sold under the trade names "Cartaretine F, F4 or F8" by Sandoz.

Further examples of polyaminoamides are those obtained by the reaction of a polyalkylenepolyamine comprising two primary amine groups and at least one secondary amine group with a dicarboxylic acid, the molar ratio between the polyalkylenepolyamine and the dicarboxylic acid being from 0.8:1 to 1.4:1, the resulting polyaminoamide subsequently being reacted with epichlorohydrin, the molar ratio of epichlorohydrin to the secondary amine groups of the polyamide being from 0.5:1 to 1.8:1. Such polymers are described in US Patents 3,227,615 and

2,961,347.

A group of polymers which may be used advantageously in the dye compositions comprising oxidation dye precursors and a reducing agent are cyclopolymers with a molecular weight of from 20,000 to 3,000,000, comprising units of formula (VII) or (VIII):

55 in which:

1 and t are each 7 or 1 and the sum I+t is 1;

each R", which may be identical or different, is hydrogen or a methyl group;

R and R', which may be identical or different, are each an alkyl group containing from 1 to 22 carbon atoms, a hydroxyalkyl group in which the alkyl group preferably contains from 1 to 5 carbon atoms, or a lower amidoalkyl group, or R and R' may form, together with the nitrogen to which they are attached, a heterocylic group such as piperidyl or morpholinyl;

or copolymers comprising units of formula (VII) or (VIII) and units derived from acrylamide or diacetoneacrylamide,

and Ye is an anion, such as bromide, chloride, acetate, borate, citrate, tartrate, bisulphate, 65 bisulphite, sulphate or phosphate.

10

15

20

35

40

45

50

55

Preferred cyclopolymers are a hompolymer of dimethyldiallylammonium chloride sold by Merck under the trade name "Merquat 100", which has a molecular weight of less than 100,000, and a copolymer of dimethyldiallylammonium chloride with acrylamide which has a molecular weight of more than 500,000 and which is sold under the trade name "Merquat 550" by Merck.

The alkalifying agents used in accordance with the Invention may, for example, be sodium or potassium hydroxide, aqueous ammonia, or alkanolamines such as those used to form the soap. These alkalifying agents are generally used in a sufficient quantity for the pH of the substrate to be higher than 7, preferably higher than 8. Aqueous ammonia is preferred.

When the substrate is employed in a dye composition, it additionally contains at least one oxidation dye precursor and at least one reducing agent. The reducing agent is preferably thioglycolic acid, thiolactic acid, ammonium thiolactate or sodium metablsulphite. It is preferably used in an amount of from 0.5 to 2% by weight relative to the total weight of the composition.

The oxidation dye precursors are preferably aromatic compounds of the diamine, aminophenol or phenol type.

Among these oxidation dyes there may be distinguished bases which are para or ortho

Among these exidation dives there may be distinguished bases which are para or ortio derivatives such as diamines and mono- or diamino- phenols and compounds R5 which are known as modifiers or couplers which are meta derivatives chosen form meta-diamines, meta-aminophenols, phenols and polyphenols.

Examples of para-phenylenediamines which can be used in the compositions according to the 20 invention, are primary, secondary and tertiary para-phenylenediamines, optionally substituted on the benzene ring, preferably those of formula:

in which:

R₇ and R₈, which may be identical or different, are each hydrogen or a straight or branched chain lower alkyl group, mono- or polyhydroxylated alkyl, plperidinoalkyl, carbamylalkyl, dialkyl-carbamylalkyl, aminoalkyl, monoalkylaminoalkyl, dialkylaminoalkyl, omega-aminosulphonylalkyl, carboxyalkyl, alkylsulphonamidoalkyl, arylsulphonamidoalkyl, morpholinoalkyl, acylaminoalkyl, sulphoalkyl or alkoxyalkyl group, in which groups the alkyl moeity preferably contains from 1 to 4 carbon atoms;

or R_7 and R_8 form, together with the nitrogen to which they are attached, a heterocyclic group, preferably containing 5 or 6 ring members, such as morpholine or piperidine; and

R₅, R₈, R₉ and R₁₀, which may be identical or different, are each hydrogen, a halogen or a lower alkyl group, preferably containing 1 to 4 carbon atoms, or a group of formula —OZ wherein Z is a hydroxyalkyl, alkoxyalkyl, acylaminoalkyl, carbalkoxyaminoalkyl, mesylaminoalkyl, ureidoalkyl, aminoalkyl or mono- or dialkylaminoalkyl group.

In the above definition, halogen may mean fluorine bromine or, preferably, chlorine.

These p-phenylenediamines may be introduced into the dye composition in the form of free base or in salt form, for example in the form of their hydrochloride, hydrobromide, sulphate or

tartrate salts.

Other oxidation bases are p-aminophenol or a homologue thereof whose aromatic nucleus is substituted by at least one methyl group or by chlorine; N-methyl-p-aminophenol, a heterocyclic derivative of piperidine or of benzomorpholine, 5-amino-indole, ortho-aminophenol, p-aminodiphenylamine or an ortho-phenylenediamine or a substituted derivative thereof. The oxidation bases are generally used in an amount of from 0.01 to 5% by weight relative to the total weight of the composition.

The dyeing compositions may contain at least one coupler, in addition to one or more oxidation bases. A preferred coupler has the formula:

65 wherein:

R₁₁ and R₁₂, which may be identical or different, are each a hydroxyl group or a group of formula -NHR, wherein R is hydrogen or an acyl, ureido, carbalkoxy., carbamylalkyl, alkyl, dialkylcarbarnylalkyl, hydroxyalkyl or mesylaminoalkyl group; one of R11 and R12 also being able to be hydrogen or an alkoxy or alkyl group, provided that the other is a hydroxyl group; 5 R₁₃ and R₁₄, which may be identical or different, are each hydrogen or a halogen, an amino, alkylamino, acylamino, ureido, a branched or linear alkyl group or a group of formula OZ Wherein Z is a hydroxyalkyl, polyhydroxyalkyl, alkoxyalkyl, mesylaminoalkyl, acylaminoalkyl, ureidoalkyl or carbalkoxvalkyl group. Other couplers which may be used in the compositions according to the invention are, for 10 10 example, alpha-naphthol, and heterocyclic compounds derived from benzomorpholine, pyridine, pyrazolones or diketone compounds. The couplers are generally used in an amount of from 0.001 to 5% by weight relative to the total weight of the composition. Direct dyes may be added to these oxidation dyes in order to impart highlights to the final colour. The fatty acid soaps used in the compositions according to the invention are preferably 15 present in an amount of from 1 to 25%, more preferably from 2 to 20%, by weight relative to 15 the weight of the composition. The cationic silicone polymers defined above are preferably present in an amount of from 0.05 to 5%, more preferably from 0.1 to 3%, by weight relative to the total weight of the compo-The cationic surface-active agents are preferably used in an amount of from 0.05 to 5% by 20 20 weight relative to the total weight of the composition. The cationic polymers are preferably used in an amount of from 0.05 to 5% by weight relative to the total weight of the composition. The cationic silicone polymers which are particularly preferred may be introduced into the 25 compositions according to the invention in the form of emulsions containing the silicone polymer 25 as well as nonionic and cationic surface-active agents. An emulsion of this type which is particularly preferred is a composition sold under the trade name of cationic emulsion "Dow Corning 929" (DC 929) by Dow Coming and which is a combination of: 30 a) "amodimethicone" as hereinbefore defined; 30 b) trimethyalkyl(tallow)ammonium chloride of formula: 35 c19 40 wherein R4 is a mixture of alkenyl and/or alkyl groups containing from 14 to 22 carbon atoms, 40 derived from a tallow fatty acid; and c) polyoxyethylenated nonylphenol of formula: $C_9H_{19}-C_6H_4-\{OC_2H_4\}_{10}-OH.$ 45 45 Another emulsion based on cationic silicone polymers which can be used in the present invention is a composition sold under the trade name "Dow Corning Q2 7224" by Dow Corning and which is a combination of: a) trimethylsilylamodimethicone as hereinbefore defined; 50 50 b) polyoxyethylenated octylphenol of formula: $C_8H_{17}-C_6H_4-(OCH_2CH_2)_{\eta}OH$ 55 c) polyoxyethylenated lauryl alcohol of formula: 55 C₁₂H₂₅-(OCH₂CH₂),OH wherein n is 6; and 60 d) glycol. 60 The dye or bleaching agent substrates according to the invention may additionally contain various conventional adjuvants. These adjuvants may, for example, be solvents, fatty amides, natural or synthetic fatty alcohols, nonionic or amphoteric surfactants, sequestering agents, antioxidants or perfumes. The substrates or compositions according to the invention generally 65 comprise from 0 to 20% of solvents, from 0 to 15% of fatty amides, from 0 to 25% of fatty 65

	alcohols, and from 0 to 25% of nonionic or amphoteric sur of the composition.	factants, relative to the total weight		
	The solvents are generally lower aliphatic elcohols such a	s ethanol, propanol and isopropanol;		
_	glycols such as ethylene glycol, propylene glycol, diethylene hexylene glycol; glycol ethers such as methylglycol, ethylgly	e glycol, dipropylene glycol and	5	
5	monoethyl ether; or aromatic alcohols, especially benzyl alc	ohol or phenoxyethanol.	J	
	Examples of fatty amides are lauric, oleic or copra mono-	or diethanolamides and stearic		
	monoethanolamide.	E to 150/ proformbly from 1 to 100/		
10	These amides are generally used in an amount of from 0 by weight relative to the total weight of the composition.	The natural or synthetic fatty alcohols	10	
10	generally contain from 10 to 18 carbon atoms and are pref	ferably used in an amount of from 1		
	to 25%, more preferably from 5 to 15%, by weight relative	e to the total weight of the compo-		
	sition. Examples of nonionic surfactants are C ₈ -C ₁₈ fatty alcohol:	s oxyethylenated with 5 to 30 moles		
15	of ethylene oxide, alkylphenois oxyethylenated with 2 to 30	O moles of ethylene oxide, alcohols,	15	
	1.2-alkanediols and amides polyglycerolated with 1 to 10 r	noles of glycerol.		
	Throughout this text, the concentrations of various const before dilution with the oxidizing agent. By a "lower" grou	n or mostly is meant one which		
	generally contains from 1 to 6 or 1 to 4 carbon atoms.	p of mostly is meant one which		
20	Another subject of the invention is a hair-dyeing composi-	ition obtained by mixing the substrate	20	
	specified above, containing the oxidation dye precursors an ing solution, which generally consists of hydrogen peroxide	nd the reducing agent, with an oxidiz-		
	The present invention elso provides a process for bleach	ing hair which comprises applying to		
	the hair a composition as defined above and 0.5 to 3 parts	s per part of the composition by		
25	weight of an oxidizing agent or solution which is hydrogen	peroxide or a persalt or a mixture	25	
	thereof, leaving them in contact with the hair for a sufficient time to bleach it, after which the hair is rinsed with water and the hair is dried.			
	The present invention further provides a process for dye	ing hair which comprises applying to		
20	the hair a dyeing composition as defined above and 0.5 to by weight of an oxidizing agent or solution which is hydrogen	3 parts per part of the composition	30	
30	thereof, leaving them in contact with the hair for a sufficien	nt time to produce the desired colour	30	
	and rinsing and drying the hair.			
	Preferred persalts are alkali metal persulphates, perborate The composition may be mixed with the oxidizing agent	es and urea peroxide.		
35	hair.	of solution before application to the	35	
-	The hair-dyeing or bleaching compositions are applied to	hair in sufficient quantity to produce		
	the desired shade or bleaching.	vermiles. The parts are expressed on		
	The invention is now further explained in the following E a weight basis.	xamples. The parts are expressed on		
40	a moight basis.		40	
	EXAMPLE 1			
	Oleic acid	0.4		
45	98% triethanolamine	5.44	45	
	Mirapol A15).1		

GB 2 188 948A

12		GB 2 188 948A	12	
	Ceraphyl 60	0.1		
	ABIL 9950	0.1		
5	35% strength solution of		5	
	sodium metabisulphite	1.3		
10	Pentasodium salt of diethyl	ene~	10	
	triaminopentaacetic acid	2.4		
15	Oxidation dyes:		15	
10	p-phenylenediamine	0.03		
	m-aminophenol	0.03	00	
20	Hydroquinone	0.15	20	
	20% aqueous ammonia	10		
25	Water q.s.	100	25	
30	Shade (on blond hair)	very light blond	30	
35	EXAMPLE 3 The procedure is the same as in Example 1. 100 g of composition are diluted with 100 g of 6% weight strength (20-volume) hydrogen peroxide and applied to blond hair for 30 minutes.			
	Oleic acid	6.94		
	98% triethanolamine	3.63	40	
40	Lexein CP 125	0.1	40	
	Alkyldimethylhydroxyethyl-			
45	ammonium chloride	0.1	45	
	Cationic emulsion			
50	Q.2 7224	0.5	50	
	35% strength solution of			
	•			

•

	Hydroqu	inone	•	0.15			
	20% aqu	eous ammonia		10			
5	Water	q.s.		100			5
10	peroxide.	ime of use, 100 g of this comp The composition is applied to b dyed to a chestnut brown sha	olond hair for	luted with 70 30 minutes.	g of 30-vol After rinsing	ume hydrogen and washing,	10
15	EXAMPLE The pro 6% weigh	S 5 TO 8 cedure is the same as in Exam; t strength (20-volume) hydroge:	ole 1. 100 g o n peroxide and	of composition of applied to	on are diluted blond hair fo	with 100 g of 30 minutes.	15
	•	EXAMPLES	5	6	7	8	
20	Lauric	acid	9.12	9.12	9.12	9.12	20
20	98% tr	iethanolamine	6.8	6.8	6.8	6.8	
	Mirapol	. A15	0.1	0.1	-	-	
25	Lexein	CP 125	-	-	0.1	-	25
	Cartare	etine F8	-	-	-	0.1	
30	Ammony	4002	0.1	-	-	-	30
	Alkyld	imethylhydroxyethyl-			·		
35	ammoniu	ım chloride	-	0.1	-	-	35
	Noramiu	um M2 CD (dimethyl-					
40	dilaury	(lammonium chloride)	-	-	0.1	- ·	. 40
	Arquad	2 HT 75	-	-	-	0.1	
	ABIL 99	705	0.5	0.5	0.5	0.5	
45	35% sti	ength solution of					45

15					GB 2 188 948A	15
	sodium metabisulphite	1.3	1.3	1.3	1.3	
	Pentasodium salt of					
5	diethylenetriaminopenta-					5
	acetic acid	2.4	2.4	2.4	2.4	
10	Oxidation dyes:					10
	p-phenylenediamine	0-44	0.48	0.03	0.03	
15	p-aminophenot	0.6	0.06	-	-	15
	o-aminophenol	-	0.13	-	-	
	resorcinol	0.55	0.25	0.03	0.03	20
20	m-aminophenol	0.12	0.08	0.03	0.03	
	1-methyl-2-hydroxy-4-6-			•		
25	hydroxyethylaminobenzene	0.04	-	-	-	25
	2,4-diaminophenoxyethanol	0.05	0.06	-	- .	
30	Hydroquinone	0.15	0.15	0.15	0.15	30
	20% aqueous ammonia	10	10	10	10	
35	Water q.s.	100	100	100	100	35
	Shade (on blond hair)	golden	light	Light	very	40
40		chestnut	chestnut	blond	light	40
		•			blond	45
45	EXAMPLES 9 TO 12 The procedure is the same as in Exame 6% weight strength (20-volume) hydrog	nple 1. 100 g en peroxide ai	of composition	n are dilute lond hair t	ed with 100 g of for 30 minutes.	45
50	EXAMPLES	9	10	11	12	50
	Oleic acid	1_6	1 - 6	1.58	1.58	

Gafquat 734	18					GB 2 188 948A	16
### Mirapol AZI		2-Amino-2-methyl-1-propand	0.5	0.5	~ ·	-	
Gafquat 734		N-methylaminoethanol	-	. -	0.42	0.42	
10 Ceraphyl 60	5	Mirapol AZI	0.1	-	-	-	5
Alkyldimethylhydroxy- ethylammonium chloride		Gafquat 734	-	0.1	0.1	0.1	
### Hethylammonium chloride	10	Ceraphyl 60	-	-	0.1	-	10
Genamine KDMF		Alkyldimethylhydroxy-					
Ucar Silicone ALE 56 0.5 - 2 Cationic emulsion DC 929 2 2 2 ABIL 9905 2 2 55% strength solution of Na metabisulphite 1.3 1.3 1.3 1.3 1.3 Pentasodium salt of diethylenetriaminopenta- acetic acid 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 0xidation dyes: p-phenylenediamine 0.1 0.1 0.1 0.1 0.1 p-aminophenol 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05	15	ethylammonium chloride	0.1	0.1	-	-	15
20 Cationic emulsion DC 929 2 2 2 ABIL 9905 2 25 35% strength solution of Na metabisuiphite 1.3 1.3 1.3 1.3 1.3 30 Pentasodium salt of diethylenetriaminopenta- 35 acetic acid 2.4 2.4 2.4 2.4 2.4 2.4 Oxidation dyes: p-phenylenediamine 0.1 0.1 0.1 0.1 0.1 p-aminophenol 0.04 0.04 0.04 0.04 resorcinol 0.05 0.05 0.05 0.05 M-aminophenol 0.05 0.05 0.05 0.05 2,4-diaminophenoxyethanol 0.01 0.01 0.01 0.01 50 Hydroquinone 0.15 0.15 0.15 0.15 20% aqueous ammonia 10 10 10 10 10 55 Distilled water q.s. 100 100 100 100 100 Light ash pearly light 60 ash blond light ash blond		Genamine KDMF	-	-	- .	0.1	
Cationic emulsion DC 929 2 2 2 ABIL 9905 2 25 35% strength solution of Na metabisulphite 1.3 1.3 1.3 1.3 1.3 30 Pentasodium salt of diethylenetriaminopenta- 35 acetic acid 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4		Ucar Silicone ALE 56	-	-	0.5	-	
25 35% strength solution of Na metabisuiphite 1.3 1.3 1.3 1.3 1.3 1.3 30 Pentasodium salt of diethylenetriaminopenta- 35 acetic acid 2.4 2.4 2.4 2.4 2.4 2.4 30 0xidation dyes: p-phenylenediamine 0.1 0.1 0.1 0.1 0.1 p-aminophenol 0.04 0.04 0.04 0.04 0.04 resorcinol 0.05 0.05 0.05 0.05 0.05 45 m-aminophenol 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	20	Cationic emulsion DC 929	2	2	-	-	20
metabisulphite 1.3 1.3 1.3 1.3 1.3 30 Pentasodium salt of diethylenetriaminopenta- 35 acetic acid 2.4 2.4 2.4 2.4 2.4 30 0xidation dyes: p-phenylenediamine 0.1 0.1 0.1 0.1 0.1 p-aminophenol 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05		ABIL 9905	-	-		2	
30 Pentasodium salt of diethylenetriaminopenta- 35 acetic acid	25	35% strength solution of 1	N a				25
diethylenetriaminopenta- 35 acetic acid 2.4 2.4 2.4 2.4 2.4 3.5 Oxidation dyes: p-phenylenediamine 0.1 0.1 0.1 0.1 p-aminophenol 0.04 0.04 0.04 0.04 resorcinol 0.05 0.05 0.05 0.05 45 m-aminophenol 0.05 0.05 0.05 0.05 2,4-diaminophenoxyethanol 0.01 0.01 0.01 0.01 50 Hydroquinone 0.15 0.15 0.15 0.15 20% aqueous ammonia 10 10 10 10 10 55 Distilled water q.s. 100 100 100 100 85 light ash pearly light 60 blond ash blond		metabisuiphite	1.3	1.3	1.3	1.3	
35 acetic acid 2.4 2.4 2.4 2.4 2.4 3.4 3.4 0xidation dyes: 40 p-phenylenediamine 0.1 0.1 0.1 0.1 0.1 p-aminophenol 0.04 0.04 0.05 0.05 0.05 0.05 45 m-aminophenol 0.05 0.05 0.05 0.05 0.05 2,4-diaminophenoxyethanol 0.01 0.01 0.01 0.01 0.01 50 Hydroquinone 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	30	Pentasodium salt of					30
Oxidation dyes: p-phenylenediamine		diethylenetriaminopenta-					
p-phenylenediamine 0.1 0.1 0.1 0.1 p-aminophenol 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05	35	acetic acid	2.4	2.4	2.4	2.4	35
p-aminophenol 0.04 0.04 0.04 0.04 0.04 resorcinol 0.05 0.05 0.05 0.05 m-aminophenol 0.05 0.05 0.05 0.05 2,4-diaminophenoxyethanol 0.01 0.01 0.01 0.01 50 Hydroquinone 0.15 0.15 0.15 0.15 20% aqueous ammonia 10 10 10 10 10 55 Distilled water q.s. 100 100 100 100 100 Light ash pearly light ash blond light ash blond blond		Oxidation dyes:					
p-aminophenol 0.04 0.04 0.04 0.04 cesorcinol 0.05 0.05 0.05 0.05 0.05 described 0.05 0.05 0.05 0.05 described 0.05 0.05 0.05 0.05 described 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	40	p-phenylenediamine	0.1	0.1	0.1	0.1	40
## m-aminophenol	40	p-aminophenol	0.04	0.04	0.04	0.04	40
2,4-diaminophenoxyethanol 0.01 0.01 0.01 0.01 50 Hydroquinone 0.15 0.15 0.15 0.15 5 20% aqueous ammonia 10 10 10 10 10 55 Distilled water q.s. 100 100 100 100 100 E Light ash pearly light 60 blond ash blond blond		resorcinol	0.05	0.05	0.05	0.05	
50 Hydroquinone 0.15 0.15 0.15 0.15 5 20% aqueous ammonia 10 10 10 10 10 55 Distilled water q.s. 100 100 100 100 100 E light ash pearly light ash blond light ash blond blond	45	m-aminophenol	0.05	0.05	0.05	0.05	45
20% aqueous ammonia 10 10 10 10 10 55 Distilled water q.s. 100 100 100 100 100 E light ash pearly light ash blond light ash blond blond		2,4-diaminophenoxyethanol	0.01	0.01	0.01	0.01	
20% aqueous ammonia 10 10 10 10 10 55 Distilled water q.s. 100 100 100 100 100 E light ash pearly light ash blond light ash blond blond blond		Hydroquinone	0.15	0.15	0.15	0.15	50
light ash pearly light ash blond light ash blond ash blond blond	Î	20% aqueous ammonia	10	10	10	10	
ash blond light ash blond blond blond	55	Distilled water q.s.	100	100	100	100	55
blond ash blond blond			light	ash	pearly	light	
blond ash blond · blond	60		ash	blond	light	ash	60
			blond		ash	blond	
	65	EXAMPLES 13 TO 15 .			blond		6 5

5	EXAMPLES	13	14	15	5
· La	euric acid	10.1	10.1	11.04	
10 98	3% triethanolamine	8.51	8.51	-	10
2-	-Amino-2-methyl-1-propanol	-	-	4.94	
M €	erquat 100	2	-	-	15
	onene G1	-	0.1	0.1	
	lkyldimethylhydroxyethyl-				20
20 a r	nmonium chloride	3	3	0.1	20
E	thanol	11	11	•	
25 p	ropylene glycol	. 5	2	-	25
A	BIL 9905	2.1	2.1	0.5	
30 3	5% strength solution of				30
N a	a metabisulphite	1.3	-	1.3	
35 Pe	entasodium salt of				35
d ·	iethylenetriaminopenta-				
	cetic acid	2.4	2.4	2.4	40
40	xidation dyes:				40

18			GB 2 188 948A	18
p-phenylenediamine	0.56	-	1.7	
p-aminophenol	0.3	-	- .	
⁵ resorcinol	0.31	-	0.6	5
m-aminophenol	0.13	-	0.15	
₁₀ o-aminophenol	0.18	-	0.35	10
2-methylresorcinol	0.06	-	-	
2,4-diaminophenoxyeth	anol -	-	0.6	15
1-methyl-2-hydroxy-4-	N-B-			
hydroxyethylaminobenz	ene 0.03	-	-	
20 Hydroquinone	0.15	-	0.15	20
20% aqueous ammonia	10	10.6	10 '	
²⁵ Distilled water q.s	. 100	100	100	25
Shade	golden	Lightenin	g black	
30	chestnut			30
EXAMPLE 16	•			
35 Oleic acid			6.02	35
2-Amino-2-methyl-1,3-	2-Amino-2-methyl-1,3-propanediol			
Lexein QX 3000 40	Lexein QX 3000			40
Ceraphyl 60			0.1	40
Cationic emulsion Q 2	27224		0.5	
45 35% strength sodium m	netabisulphite		1.3	45
Pentasodium salt of o	diethylenetriam	ino-		
50 pentaacetic acid			2.4	50
55 Oxidation dyes:				55
p-Phenylenediamine			0.44	
p-Aminophenol			0.6	

21	<u>.</u>
	Resorcinol
	m-Aminophenol
5	1-Methyl-2-hydroxy-4-β-hy
	ethylaminobenzene
10	2,4-Diaminophenoxyethanol

0.55

0.12

-hydroxy-4-B-hydroxy-

0.04

0.05

10

15

20

5

Hydroquinone

0.15

15

10

20% aqueous ammonia

100

Water q.s.

100 g of this composition are diluted at the time of use with 100 g of hydrogen peroxide at a concentration of 6% by weight. A sufficient quantity to impregnate the hair properly is applied to 90% white hair for 30 minutes and, after rinsing and washing, the hair is of a golden chestnut shade.

25

45

25 Correspondence between trademarks and chemical composition:

ABIL 9905

40

30
$$CH_3 - Si - O \begin{bmatrix} CH_3 \\ -Si - CH_3 \end{bmatrix} = \begin{bmatrix} CH_3 \\ Si \\ CH_3 \end{bmatrix} = \begin{bmatrix} CH_3 \\ Si \\ CH_2 \end{bmatrix}_3$$
30 $CH_3 - Si - CH_3 \end{bmatrix} = \begin{bmatrix} CH_3 \\ Si \\ CH_3 \end{bmatrix} = \begin{bmatrix} CH_3 \\ CH_3 \end{bmatrix}$
35

40

45

ABIL 9950 Amphoteric silicone polymer of formula:

	AMMONYX 4002 ARQUAT 2 HT 75	Dimethylstearylbenzylammonium chloride Dimethyldialkyl(hydrogenated tallow)- ammonium chloride	
5	CATIGENE CS 40	(Stepan company) Dimethylstearylbenzyl- ammoniun chloride	5
	CARTARETINE F8 (Sandoz)	Adipic acid/dimethylaminohydroxypropyl/ diethylenetriamine polymer	
	CERAPHYL 60 (Van Dik)	Dimethyl-gamma-gluconamidopropyl- hydroxyethylammonium chloride	40
10	CATIONIC EMULSION DC 92 Combination of:	(cationic surface agent). 9 (Dow Corning company)	10
	(i) amodimethicone, (ii) tallowtrimonium chlorid	e of formula:	
15	CH_		15
_	R ₁₁ - ⊕N - CH ₃	c1⊖	
20	сн ₃		20
		of C ₁₄₋₂₂ alkenyl and/or alkyl radicals derived from tallow fatty	
25	acids; (iii) NONOXYL 10 of formu	ıla:	25
25	C ₉ H ₁₉ -C ₆ H ₄ -(OC ₂ H ₄) ₁₀ -OH		25
	CATIONIC EMULSION Q2 72 Combination of		
30	(a) trimethylsilylamodimeth(b) octoxynol 40 of formula		30
	C_8H_{17} – C_6H_4 – $\langle OCH_2CH_2 \rangle_n$ – OH	where n=40	
35	(c) isolaureth-6 of formula:		35
	$C_{12}H_{25}(OCH_2CH_2)_n$ —OH where	n=6	
40	(d) glycol GAFQUAT 734 (GAF Corpor	ration)	40
	Quaternized copolymer of approximately one million)	vinylpyrrolidone and of another copolymerizable monomer (M.W.	
	GENAMINE KDMF (Hoechst): IONENE G1 Quaternary polyr	trimethylalkyl(C _{20–220})ammonium chloride ner of formula	
45	1	٠	45
	—————————————————————————————————————	(CH_).	
50	CH, C163 CH,		50
		any) substituted by an oleamidopropyldimethylamine radical.	
рÞ		chloride homopolymer (M.W. approximately 100,000)	55
	MIRAPOL A 15 (Miranol con Cationic polymer of formul		•

where n is approximately 6 10 MIRAPOL AZ1 (Miranol company) Quaternary polyammonium polymer of formula:

15

20 20 NORAMIUM M2 CD

Dimethyldilaurylammonium chloride UCAR SILICONE ALE 56 (Union Carbide)

Cationic silicone polymer with a flash point of 60°C according to the ASTM standard D-93, and, at a concentration of 35% of active substance, a viscosity of 11 centipoises at 25°C and a 25 basicity index of 0.24 milliequivalent/gram.

23

1. A cosmetic composition suitable for dyeing or bleaching hair when mixed with an oxidizing solution, comprising, in an aqueous medium:

(a) at least one fatty acid soap, (b) at least one cationic or amphoteric silicone polymer,

(c) at least one cationic surface-active agent,

(d) at least one alkalifying agent, and

(e) at least one cationic polymer which is a quaternary polyammonium polymer, a vinylpyrroli-35 done/dialkylaminoalkyl acrylate or methacrylate copolymer (quaternizedf or not quaternized), a poly(methacrylamidopropyltrimethylammonium chloride), a cationic protein, a polyaminoamide, a crosslinked polyaminoamide, an alkylated polyaminoamide or a mixture thereof.

2. A cosmetic composition suitable for dyeing hair when mixed with an oxidizing agent, comprising, in an aqueous medium:

(a) at least one fatty acid soap,

(b) at least one cationic or amphoteric silicone polymer,

(c) at least one cationic surface-active agent,

(d) at least one alkalifying agent, and

(e) at least one cationic polymer which is a quaternary polyammonium polymer, a vinylpyrroli-45 done/dialkylaminoalkyl acrylate or methacrylate copolymer (quaternize or not quaternized), a poly(methacrylamidopropyltrimethylammonium chloride), a cationic protein, a polyaminoamide, a crosslinked polyaminoamide, an alkylated polyaminoamide, a cationic cyclopolymer or a mixture thereof,

f) at least one oxidation dye precursor, and

g) at least one reducing agent. 50

3. A composition according to claim 1 or 2 wherein the fatty acid soap is an alkali metal salt or alkanolamine salt of a C_{12} – \bar{C}_{18} fatty acid containing a saturated or unsaturated fatty chain, or a mixture thereof.

4. A composition according to any one of claims 1 to 3 wherein the fatty acid soap is 55 present in an amount of from 1 to 25% by weight relative to the total weight of the compo-

5. A composition according to claim 4 wherein the fatty acid soap is present in an amount of from 2 to 20% by weight.

6. A composition according to any one of claims 1 to 5 wherein the cationic or amphoteric 60 silicone polymer is a polysiloxane in which one or more of the silicon atoms in the chain carries an aliphatic amino group whose amine group is primary, secondary, tertiary or quaternary or is betainized, or a mixture thereof.

7. A composition according to claim 6 wherein the cationic silicone polymer is

(i) a polymer known as "amodimethicone" of formula:

10

25

30

40

35

45

50

55

in which x and y, which may be identical or different, are integers such that the average
15 molecular weight of the polymer is from 5,000 to 10,000;
16 (ii) a polymer of formula:

$$(R_1)_aG_{3-a}$$
-Si(-OSiG₂)_n-[OSiG_b(R₁)_{2-b}]_m-O-SiG_{3-a}(R₁)_a

20 in which:
G is hydrogen or a phenyl, OH, or C₁-C₈ alkyl group;

a is an integer from 0 to 3;

b is 0 or 1;

n is a number from 0 to 1,999 and m is a number from 1 to 2,000 such that the sum n+m 25 is a number from 1 to 2,000; $R_1 \text{ is a monovalent group of formula } C_q H_{2q} L \text{ in which q is an integer from 2 to 8 and L is a}$

group of formula: $-N(R_2)CH_2-CH_2-N(R_2)_2,$ 30 $-N(R_2)_2,$ 30 $-N^{\circ}(R_2)_3A^{\circ},$

-N®(R₂)H₂A®, or -N(R₂)CH₂-CH₂-N®R₂H₂ A®

35 in which R₂ is hydrogen or a phenyl, benzyl, or saturated hydrocarbon group and A^o is a halide 35 ion;
(iii) a polymer of formula:

40 $R_{4}-CH_{2}-CHOH-CH_{2}-N^{2}(R_{3})_{3} \Theta$ $(R_{3})_{3}-Si-0 - \begin{cases} R_{3} \\ Si-0 \\ R_{3} \end{cases} Si-0 - \begin{cases} R_{3} \\ Si-0 \\ Si-1 \end{cases} Si-0 - \begin{cases} R_{3} \\ Si-1 \end{cases} Si-1$ $(R_{3})_{3}-Si-1 = \begin{cases} R_{3} \\ R_{3} \end{cases} Si-1 = \begin{cases} R_{3} \\ R_{3} \end{cases} S$

in which: R_3 is a monovalent hydrocarbon group containing from 1 to 18 carbon atoms;

R₄ is a hydrocarbon group optionally containing a chain oxygen atom;

Qo is a halide ion;

50

r has a statistical average value of from 2 to 20; and

s has a statistical average value of from 20 to 200;

55 (iv) a polymer of formula: 55

20 wherein p and q are such that the average molecular weight is from 1,000 to 8,000, sold under the trade name "ABIL 9905" by Goldschmidt; or 20 (v) an amphoteric silicone polymer of formula:

40 40 wherein p and q are such that the average molecular weight is from 1,000 to 8,000, sold under the trade name ABIL 9950 by Goldschmidt.

8. A composition according to claim 7 wherein the cationic silicone polymer is as defined in section (ii) wherein:

G is a methyl group;

a is O;

b is 1;

n is a number from 49 to 149 and m is a number from 1 to 10 such that the sum n+m is a number from 50 to 150; and

 ${\sf R}_{\sf 2}$ is an alkyl group containing from 1 to 20 carbon atoms. 50 9. A composition according to claim 7 wherein the cationic silicone polymer is as defined in section (iii) wherein:

R₃ is an alkyl or alkenyl group;

 R_4 is a $C_1 - C_{18}$ alkylene group or a $C_1 - C_{18}$ alkyleneoxy group;

Q- is a chloride lon;

r has a statistical average value of from 2 to B; and

s has a statistical average value of from 20 to 50. 10. A composition according to claim 9 wherein R₃ is a methyl group and R₄ is a C₁-C₈

alkyleneoxy group. 11. A composition according to claim 7 wherein the cationic silicone polymer is:

(i) the polymer known as "trimethylsilylamodimethicone" of formula:

55

60

45

wherein n has a value of from 0 to 1,999 and m has a value of from 1 to 2,000 such that 15 m+n has a value of from 1 to 2,000, or 15 (ii) a polymer sold by Union Carbide under the name "Ucar Silicone ALE 56". 12. A composition according to any one of claims 1 to 11 wherein the cationic or amphoteric silicone polymer is present in an amount of from 0.05 to 5% by weight relative to the total weight of the composition. 20 13. A composition according to claim 12 wherein the cationic or amphoteric silicone polymer is present in an amount of from 0.1 to 3% by weight. 14. A composition according to any one of claims 1 to 13 wherein the cationic surfaceactive agent is a compound of formula: 25 (IV) 30 30 (1) R_s and R₆ are both methyl groups, i) R7 and R8, which may be identical or different, are each a linear aliphatic group, ii) R, is a linear aliphatic group and R, is a methyl or benzyl group, or 35 iii) R₇ is an alkylamidopropyl group and R₈ is an alkylacetate group, or iv) R, is a gamma-gluconamidopropyl group, an aliphatic group derived from a tallow fatty acid or a C₁₆-C₁₈ alkyl group, and R₈ is a hydroxyethyl group, and Xe is an anion; or (2) R_s is an alkylamidoethyl or alkenylamidoethyl group, wherein the alkyl or alkenyl moiety 40 contains from 14 to 22 carbon atoms and originates from a tallow fatty acid, Re and R. form, 40 together with the nitrogen to which they are attached, a 2-alkyl-4,5-dihydroimidazole heterocyclic ring wherein the alkyl molety is derived from a tallow fatty acid, Ra is a methyl group and Xo is a methosulphate ion; or (3) R₅, R₆ and R₇ form, together with the nitrogen to which they are attached, a six membered 45 aromatic heterocyclic ring, R₈ is a C₁₄-C₁₈ alkyl group and X⁶ is a hallde anion; 45 or a mixture thereof.

15. A composition according to claim 14 in which:

(1) Rs and R6 are both methyl groups,

i) R, and Re, which may be identical or different, are each an alkyl group containing from 12 to 50 50 22 carbon atoms or an aliphatic group derived from at least one tallow fatty acid containing from 14 to 22 carbon atoms,

ii) R₇ is a linear alkyl group containing from 14 to 22 carbon atoms and R₈ is a methyl or benzyl group, or

iii) R, is an alkylamidopropyl group wherein the alkyl moiety contains from 14 to 22 carbon 55 55 atoms and R_a is an alkylacetate group wherein the alkyl moiety contains from 12 to 16 carbon atoms, and

Xºis a halide or methosulphate anion, or a mixture thereof. 16. A composition according to any one of claims 1 to 13 wherein the cationic surfaceactive agent is dimethyl dialkylammonium chloride sold under the name "Noramium M2 CD:, 60 dimethyl dialkyl (hydrogenated tallow) ammonium chloride sold under the name "Arquat 2H 75", 60 dimethyldialkyl(C18)ammonium chloride sold under the name "Genamine DSAC" by Hoechst, trimethylalkyl(C20-C22)-ammonium chloride sold under the trade name "Genamine KDM-F" by Hoechst, cetylpyridinium chloride, dimethyldialkyl-(C12-C14)ammonium chloride, dimethyl-gammaglyconamidopropylhydroxyethylammonium chloride sold under the trade name "Ceraphyl 60" by 65 van Dyk, dimethyldicetylammonlum chloride sold under the trade name "Noranium M2 SH", 65

10

15

25

40

50

dimethylhydroxyethylalkyl(tallow)ammonium chloride, dimethylhydroxyethylacetylammonium chloride, or dimethylstearylbenzylammonium chloride sold under the trade names "Ammonyx 4002" by Onyx or "Catigene CS 40" by Stepan, or a mixture thereof.

17. A composition according to any one of claims 1 to 16 wherein the cationic surface-5 active agent is present in an amount of from 0.05 to 5% by weight relative to the total weight of the composition.

18. A composition according to any one of claims 1 to 17 wherein the alkalifying agent is sodium hydroxide, potassium hydroxide, aqueous ammonia or an alkanolamine.

19. A composition according to claim 18 wherein the alkalifying agent is mono-, di- or triethanolamine, 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol or triisopropanolamine.

20. A composition according to any one of claims 1 to 19 wherein the cationic polymer comprises a quaternary polyammonium polymer which is:

a polymer consisting of recurrent repeat units, which may be identical or different, of
 formula (V):

wherein R_1 , R_2 , R_3 and R_4 , which may be identical or different, each are an aliphatic, alicyclic or arylaliphatic group containing from 1 to 20 carbon atoms or a C_1 – C_8 hydroxyaliphatic group,

arylaliphatic group containing from 1 to 20 carbon atoms of a C_1 - C_8 hydroxyaliphatic group, or at least one of a pair of R_1 and R_2 and/or R_3 and R_4 , form, together with the nitrogen to which they are attached, a heterocyclic ring optionally containing a second heteroatom other than nitrogen,

or R₁, R₂, R₃ and R₄, which may be identical or different, are each branched C₂-C₅ alkyl group 30 substituted by a nitrile, ester, acyl or amide group or by a group of formula

$$35 - 0 - 0 - R_7 - D$$

40 o

O

) 0 - C - NH - R' - D

45 wherein R₂' is an alkylene group, and

D is a quaternary ammonium group;

A and B, which may be identical or different, are each an aliphatic hydrocarbon group containing from 2 to 20 carbon atoms, which is linear or branched, saturated or unsaturated and 50 which optionally contains, in the main chain, one or more aromatic rings or one or more oxygen or sulphur atoms or one or more sulphoxide, sulphone, disulphide, amine, alkylamine, quaternary ammonium, hydroxyl, ureido, amide or ester groups,

or A, R_1 and R_3 , together with the two nitrogen atoms to which they are attached, form a piperazine ring;

be each X°, which may be identical or different, is an anion derived from an inorganic or organic

n is such that the molecular weight of the polymer is from 1,000 to 100,000;

(2) a polymer consisting of repeat units, which may be identical or different, of formula (VI):

10

15

40

55

60

65

 R_4 , R_6 , R_8 and R_7 , which may be identical or different, are each hydrogen, a methyl, ethyl, propyl, 2-hydroxyethyl or 2-hydroxypropyl group or a group of formula -CH2-CH2-(O-CH2-CH2)p-OH wherein p is an integer from 0 to 6;

with the proviso that R_4 , R_5 , R_8 and R_7 are not all simultaneously hydrogen; x and y, which may be identical or different, are each integers from 1 to 6; m is an integer 0 to 34;

each Xo, which may be identical or different, is a halogen anion, and

A is a divalent hydrocarbon group optionally containing a chain oxygen atom. 21. A composition according to claim 20 wherein A is a group of formula: 10

-CH2-CH2-O-CH3-CH2-

22. A composition according to claim 20 or 21 wherein the quaternary polyammonium 15 polymer consists of one of the repeat units:

N - (CH₂)₆ - N - (CH₂)₃ (G1) 20 20

wherein n is equal to approximately 6,

40 wherein each X, which may be identical or different, is a halogen,

wherein each X, which may be identical or different, is a halogen, or poly(dimethylbutenylammonium chloride) α, ω -bis(triethanolammonium chloride).

23. A composition according to any one of claims 1 to 22 wherein the cationic polymer is 50 50 present in an amount of from 0.05 to 3% relative to the total weight of the composition.

24. A composition according to any one of claims 1 to 23 wherein the cationic polymer comprises a cationic protein which is a chemically modified polypeptide bearing at least one amine or quaternary ammonium group at the end of, or grafted onto, the chain.

25. A composition according to claim 24 wherein the cationic protein is: a collagen hydrolysate containing triethylammonium groups, such as the products sold under the trade name "Quat-Pro E" by Maybrook and called "Triethonium Hydrolyzed Collegen Ethosulfate" in the CTFA dictionary;

a collagen hydrolsate containing trimethylammonium or trimethylstearylammonium chloride 60 groups, sold under the trade name "Quat-Pro S" by Maybrook and called "Steartrimonium Hydrolyzed Collagen" in the CTFA dictionary;

an animal protein hydrolysate containing trimethylbenzylammonium groups, such as the products sold under the trade name "Crotein BTA" by Croda and called "Benzyltrimonium hydrolyzed animal protein" in the CTFA dictionary;

a protein hydrolysate containing, on the polypeptide chain, quaternary ammonium groups

10

20

25

40

45

50

comprising at least one alkyl group containing from 1 to 18 carbon atoms, such as Croquat L, whose polypeptide chain has an average molecular weight of approximately 2,500 and whose quaternary ammonium group contains a C₁₂ alkyl group;

Croquat M, whose polypeptide chain has an average molecular weight of approximately 2,500 and whose quaternary ammonium group contains a C_{10} - C_{18} alkyl group;

Croquat S, whose polypeptide chain has an average molecular weight of approximately 2,700

and whose quaternary ammonium group contains a C₁₈ alkyl group;

Crotein Q, whose polypeptide chain has an average molecular weight of the order of 12,000

and whose quaternary ammonium group contains at least one alkyl group containing from 1 to 18 carbon atoms;

a protein of formula:

in which

20 A is a protein residue derived from a collagen protein hydrolysate,

R₅ is a lipophilic group containing up to 30 carbon atoms,

R_a is an alkylene group containing from 1 to 6 carbon atoms; and

Xe is an anion, the protein having a molecular weight of from 1,500 and 10,000; or an animal protein hydrolysate bearing dimethylamine groups, sold under the name of "Lexein an animal protein hydrolysate bearing dimethylamine groups, sold under the name of "Lexein animal protein hydrolysate".

25 CP 125" by Inolex and referred to by the name "Oleamidopropyl dimethylamine hydrolyzed animal protein" in the CTFA dictionary.

26. A composition according to claim 25 wherein the cationic protein is a protein of formula:

wherein A, $R_{\rm s}$ and $R_{\rm s}$ are as defined in claim 25, having a molecular weight of from 2,000 to 5,000 and is a product sold under the trade name "Lexein QX 3000" by Inolex and called "Cocotrimonium Collagen Hydrolysate" in the CTFA dictionary.

27. A composition according to any one of claims 1 to 26 wherein the cationic polymer 40 comprises a polyaminoamide which is:

(i) a water-soluble polyaminoamide obtained by condensation of an acidic compound with a polyamine, which is optionally crosslinked or alkylated,

(ii) a polyaminoamide resulting from the condensation of a polyalkylenepolyamine with a polycarboxylic acid and alkylated with a difunctional agent, or

(Iii) a polyaminoamide obtained by reaction of a polyalkylenepolyamine comprising two primary amine groups and at least one secondary amine group with a dicarboxylic acid, the molar ratio between the polyalkylenepolyamine and the dicarboxylic acid being from 0.8:1 to 1.4:1, the resultant polyaminoamide subsequently being reacted with epichlorohydrin, the molar ratio of epichlorohydrin to the secondary amine groups of the polyaminoamide being from 0.5:1 to 50 1.8:1.

28. A composition according to claim 2, or any one of claims 3 to 27 when appendent to claim 2, wherein the cationic polymer comprises a cationic cyclopolymer which is a polymer consisting of repeat units, which may be identical or different, of formula (VII) or a polymer consisting of repeat units, which may be identical or different, of formula (VIII)

15

20

25

30

35

40

60

65

in which:

I and t are each 0 or 1 such that the sum I+t is 1,

each R", which may be identical or different, is hydrogen or a methyl group;

R and R', which may be identical or different, are each an alkyl group containing from 1 to 22 carbon atoms, a hydroxyalkyl group or a lower amidoalkyl group, or R and R' form, together with the nitrogen to which they are attached, a heterocyclic group;

or a copolymer comprising units of formula (ViI) or (VIII) and units derived from acrylamide or 20 diacetoneacrylamide;

and Ye is an anion.

29. A composition according to claim 28 wherein at least one of R and R', which may be identical or different, is a hydroxyalkyl group wherein the alkyl moiety contains from 1 to 5 carbon atoms or form, together with the nitrogen to which they are attached, a piperidyl or morpholinyl group.

3. A composition according to claim 28 or 29 wherein the cationic cyclopolymer is a homopolymer of dimethyldiallylammonium chloride having a molecular weight of less than 100,000 and sold by Merck under the trade name "Merquat 100" or a copolymer of dimethyldiallylammonium chloride and an acrylamide having a molecular weight of more than 500,000 and 30 sold under the trade name of "Merquat 550" by Merck.

31. A composition according to any one of claims 1 to 30 wherein the cationic polymer is present in an amount of from 0.05 to 5% by weight relative to the total weight of the composition.

32. A composition according to claim 2, or any one of claims 3 to 31 when appendent to claim 2, wherein the reducing agent is thioglycolic acid, thiolactic acid, ammonium thiolactate or sodium metabisulphite and is present in an amount of from 0.5 to 2% by weight relative to the total weight of the composition.

33. A composition according to claim 2, or any one of claims 3 to 32 when appendent to claim 2, wherein the oxidation dye precursor is an oxidation base which is a diamine, monoaminophenol or diaminophenol, a modifier which is a meta-diamine, meta-aminophenol, phenol or polyphenol or a coupler.

34. A composition according to claim 33 wherein the oxidation base is a compound of formula:

55 in which: 55

R₇ and R₈, which may be identical or different, are each hydrogen or a straight or branched chain lower alkyl, mono- or polyhydroxylated alkyl, piperidinoalkyl, carbamylalkyl, dialkylcarbamylalkyl, aminoalkyl, monoalkylaminoalkyl, dialkylaminoalkyl, omega-amino-sulphonylalkyl, carboxyalkyl, alkylsulphonamidoalkyl, arylsulphonamidoalkyl, morpholinoalkyl, acylaminoalkyl, sulphoalkyl or alkoxyalkyl group, in which groups the alkyl moiety contains from 1 to 4 carbon atoms;

or R₇ and R₈ form, together with the nitrogen to which they are attached, a morpholine or piperidine heterocyclic group; and

R₅, R₆, R₉ and R₁₀, which may be identical or different, are each hydrogen, a halogen, a lower alkyl group, or a group of formula –OZ wherein Z is a hydroxyalkyl, alkoxyalkyl, acylaminoalkyl, carbalkoxyaminoalkyl, mesylaminoalkyl, ureidoalkyl, aminoalkyl, or mono- or dialkylaminoalkyl

group; or their hydrochloride, hydrobromide, sulphate or tartrate salts; p-aminophenol or a homologue thereof whose aromatic nucleus is substituted by at least one methyl group or by chlorine; or N-methyl-p-aminophenol, a heterocyclic derivative of pyridine or of benzomorpholine, 5-amino-5 indole, orthoaminophenol, p-aminodiphenylamine or an ortho-phenylenediamine or a substituted derivative thereof; the oxidation base being present in an amount of from 0.01 to 5% by weight relative to the total weight of the composition. 10 35. A composition according to claim 34 wherein at least one of R₅, R₈, R₉ and R₁₀, which may each be identical or different, is a lower alkyl group containing from 1 to 4 carbon atoms. 36. A composition according to any one of claims 33 to 35 which also comprises at least one coupler which is: a compound of formula: 15 15 20 20 wherein: R₁₁ and R₁₂, which may be identical or different, are each a hydroxyl group or a group of 25 formula -NHR, wherein R is hydrogen or an acyl, ureido, carbalkoxy, carbamylalkyl, alkyl, dialkyl-25 carbamylalkyl, hydroxyalkyl or mesylaminoalkyl group, one of R11 and R12 also being able to be hydrogen or an alkoxy or alkyl group, provided that the other is a hydroxyl group; R₁₃ and R₁₄, which may be identical or different, are each hydrogen or a halogen, an amino, alkylamino, acylamino, ureido or branched or linear alkyl group or a group of formula OZ wherein 30 Z is a hydroxyalkyl polyhydroxyalkyl, alkoxyalkyl, mesylaminoalkyl, acylaminoalkyl, ureidoalkyl or 30 carbalkoxyalkyl group; alpha-naphthol; or a heterocyclic compound derived from benzomorpholine, pyridine, a pyrazolone or a diketone compound; the coupler being present in an amount of from 0.001 to 5% by weight relative to the total 35 weight of the composition. 37. A composition according to any one of claims 1 to 36 wherein the cationic silicone polymer used is in the form of an emulsion containing the silicone polymer and at least one nonionic or cationic surface agent which is: the cationic emulsion "Dow Corning 929" sold by Dow Corning and which is a combination of a) "amodimethicone" as defined in claim 7; 40 b) trimethylalkyl(tallow)ammonium chloride of formula: 45 45 50 wherein R_4 is a mixture of alkenyl and/or alkyl groups containing from 14 to 22 carbon atoms, 50 derived from a tallow fatty acid; and c) polyoxyethylenated nonylphenol of formula: $C_9H_{19}-C_6H_4-(OC_2H_4)_{10}-OH$; or 55 55 the emulsion sold under the trade name "Dow Corning Q2 7224" by Dow Corning, and which is a combination of: a) trimethylsilylamodimethicone as hereinbefore defined, b) polyoxyethylenated octylphenyl of formula: 60 60

wherein n is 40:

C₈H₁₇—C₈H₄—(OCH₂CH₂)_n—OH

c) polyoxyethylenated lauryl alcohol of formula:

C12H25-(OCH2-CH2)n-OH

wherein n is 6; and

d) glycol.

38. A composition according to any one of claims 1 to 37 which additionally comprises at least one adjuvant which is a solvent, fatty amide, fatty alcohol, nonionic or amphoteric surface agent, sequestering agent, antioxidant or perfume.

39. A composition according to claim 1 or 2 substantially as hereinbefore described with

reference to any one of Examples 1 to 18.

40. A process for bleaching hair which comprises applying to the hair a composition as defined in any one of claims 1, or 3 to 29, 31 or 37 to 39 when appendant to claim 1, and 0.5 to 3 parts per part of the composition by weight of an oxidizing agent or solution which is hydrogen peroxide, or a persalt or a mixture thereof, leaving them in contact with the hair for a sufficient time to bleach it, after which the hair is rinsed with water and the hair is dried.

41. A process for dyeing hair which comprises applying to the hair a composition as defined in any one of claims 2, or 3 to 39 when appendent to claim 2, and 0.5 to 3 parts per part of the composition by weight of an oxidizing agent or solution which is hydrogen peroxide or a persalt or a mixture thereof, leaving them in contact with the hair for a sufficient time to produce the desired colour and rinsing and drying the hair.

Printed for Her Majesty's Stationery Office by Burgess & Son (Abingdon) Ltd, Dd 8991685, 1987.
Published at The Parent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

10

5