Homework 10

Priyanka Mahendra Ghare

November 6, 2022

2. X2 testing for independence between categorical variables

Possible Gene Types:['J', 'R', 'K']

Contingency table:

	No Cancer	Has Cancer	
Gene			
J	93	37	130
K	34	5	39
R	20	1	21
Total	147	43	190

Conditional proportions table:

No Cancer Has Cancer row_marginal_per

Gene

J 71.5% 28.5% 68.4%

K 87.2% 12.8% 20.5%

71.5%	28.5%	68.4%
87.2%	12.8%	20.5%
95.2%	4.8%	11.1%
77.4%	22.6%	100.0%
	87.2% 95.2%	87.2% 12.8% 95.2% 4.8%

Expected counts table:

No Cancer Has Cancer Total Gene J 100.578947 29.421053 130.0 K 30.173684 8.826316 39.0 R 16.247368 4.752632 21.0 Total 77.4% 22.6%

 $X^2 = 8.50$ Degree of freedom = 2

P-value = 0.0143

We reject the null hypothesis that the gene and cancer are independent because the

p-value is less than 0.05. Therefore, it would seem extremely unlikely that the gene and cancer are independent.