Circuit Level Verification of a High-Speed Toggle

Chao Yan & Mark Greenstreet

University of British Columbia

Overview

- Motivation
- Coho
 - Projection Based Reachability Analysis
 - Numerical Issues
- Verification Example
 - Toggle Circuit
 - Toggle Specification
 - Verification Using Coho
- Formal Verification of Digital Circuits Using SPICE-Level Models is Possible.

Design Flow

Design Flow

FMCAD 2007 — 14 Nov 2007 — Circuit Level Verification of a High-Speed Toggle – p.3/22

Design Flow

FMCAD 2007 — 14 Nov 2007 — Circuit Level Verification of a High-Speed Toggle – p.3/22

- Design Flow
- Similar Problems
 - crosstalk analysis
 - power noise problems
 - leaky transistors
 - mixed-signal design

Coho

- Reachability method for verifying real circuits
- Approximate the non-linear ordinary differential equations (ODEs) in small neighborhoods by linear differential inclusions:

$$Ax + b - u \le \dot{x} \le Ax + b + u$$

Projection based representation of reachable space

Representing the Reachable Space

- Coho: Projectagons
 - Project high dimensional polyhedron onto two-dimensional subspaces.
 - A point is in the projectagon iff its projections are contained in the corresponding polygons.
 - Projectagons are efficiently manipulated using two-dimensional geometry computation algorithms.
 - Each edge of the polygon corresponds to a face of the highdimensional polyhedron.

Representing the Reachable Space

- Coho: Projectagons
 - Project high dimensional polyhedron onto two-dimensional subspaces.
 - A point is in the projectagon iff its projections are contained in the corresponding polygons.
 - Projectagons are efficiently manipulated using two-dimensional geometry computation algorithms.
 - Each edge of the polygon corresponds to a face of the high-dimensional polyhedron.
- Other approaches:
 - symbolic hyper-rectangles (HyTech)
 - convex polyhedra (CheckMate)
 - orthogonal polyhedra (d/dt)

Reachability for Projectagons

- Extremal trajectories original from projectagon faces.
- Projectagon faces correspond to projection polygon edges.
- Coho computes time-advanced projectagons by working on one edge at a time.

Basic Step of Coho

Basic Step of Coho

Coho Linear Program Solver

Coho Linear Program

$$A_{block}^{T} = \begin{bmatrix} \alpha_{l} & \beta_{l} & & & \\ & \alpha_{2} & \beta_{2} & & \\ & & & \bullet & \\ & \beta_{2} & & \alpha_{2} \end{bmatrix}$$

- Each inequality constraint corresponds to a face of the projectagon.
- One or two non-zero elements on each row of A.
- Dual is a standard form LP: $A^T u = c$.
- Efficient linear system solver in O(n) time.

Coho Linear Program Solver

Coho Linear Program

- Each inequality constraint corresponds to a face of the projectagon.
- One or two non-zero elements on each row of A.
- Dual is a standard form LP: $A^T u = c$.
- Efficient linear system solver in O(n) time.
- Simplex-based linear program solver:
 - Reduce accumulated error by computing tableau matrix directly from input data.
 - Use Interval Arithmetic for well-conditioned problems.
 - Use Arbitrary Precision Rational Computation for ill-conditioned problems.

Summary of Coho

- Summary of Basic Algorithm:
 - The ODE model of circuit is approximated by linear differential inclusions.
 - Use projectagons to represent reachable set.
 - Coho is sound: all approximations overestimate the reachable space.
 - Extensive use of linear programming.
- Numerical Problems:
 - Ill-conditioned linear programs
 - Exploit LP structure of Coho's LPs.
 - Use hybrid approach of interval and arbitrary-precsion arithmetic.
 - Polygon intersection/union difficult with nearly-parallel edges.
 - Use hybrid approach of interval and arbitrary-precsion arithmetic already implemented for LPs.

Circuit Verification

- Circuit description
 - Use MSPICE a Matlab package that provides simple spice-like functionality.
 - Allows us to use same model for simulation and verification.
 - Simulate first:
 - Do not attempt to verify a incorrect system.
 - Have a rough idea of the reachable space to guide the verification.
 - Helps explain verification failures.
- Compute reachable set by Coho
- Verify design specification using reachable set

- Start from the state where Φ is low, x is low, y, z are high
- lacktriangle Φ rises to high, z falls to low
- lacktriangle Φ falls to low, x rises to high
- lacktriangle Φ rises to high, y falls to low, z rises to high, x falls to low
- lacktriangle Φ falls to low, y rises to high

- \longrightarrow Start from the state where Φ is low, x is low, y, z are high
 - lacktriangle Φ rises to high, z falls to low
 - lacktriangle Φ falls to low, x rises to high
 - lacktriangle Φ rises to high, y falls to low, z rises to high, x falls to low
 - lacktriangle Φ falls to low, y rises to high

- Start from the state where Φ is low, x is low, y, z are high
- \rightarrow \bullet rises to high, z falls to low
 - lacktriangledown Φ falls to low, x rises to high
 - lacktriangle Φ rises to high, y falls to low, z rises to high, x falls to low
 - lacktriangle Φ falls to low, y rises to high

- Start from the state where Φ is low, x is low, y, z are high
- lacktriangle Φ rises to high, z falls to low
- \rightarrow Φ falls to low, x rises to high
 - lacktriangle Φ rises to high, y falls to low, z rises to high, x falls to low
 - $lack \Phi$ falls to low, y rises to high

- Start from the state where Φ is low, x is low, y, z are high
- lacktriangle Φ rises to high, z falls to low
- lacktriangledown Φ falls to low, x rises to high
- - $lack \Phi$ falls to low, y rises to high

- Start from the state where Φ is low, x is low, y, z are high
- lacktriangle Φ rises to high, z falls to low
- lacktriangle Φ falls to low, x rises to high
- lacktriangle Φ rises to high, y falls to low, z rises to high, x falls to low
- \rightarrow Φ falls to low, y rises to high

Specification

With a "well-behaved" clock input:

- The reachable space is a collection of trajectories whose period is twice that of the clock;
- The output is "well-behaved" like the clock.

- Region 1 represents a logical low signal. The signal may wander in a small interval.
 - Region 2 represents a monotonically rising signal.
 - Region 3 represents a logical high signal.
 - Region 4 represents a monotonically falling signal.
 - Brockett's annulus allows entire families of signals to be specified.

- Region 1 represents a logical low signal. The signal may wander in a small interval.
- Region 2 represents a monotonically rising signal.
 - Region 3 represents a logical high signal.
 - Region 4 represents a monotonically falling signal.
 - Brockett's annulus allows entire families of signals to be specified.

- Region 1 represents a logical low signal. The signal may wander in a small interval.
- Region 2 represents a monotonically rising signal.
- Region 3 represents a logical high signal.
 - Region 4 represents a monotonically falling signal.
 - Brockett's annulus allows entire families of signals to be specified.

- Region 1 represents a logical low signal. The signal may wander in a small interval.
- Region 2 represents a monotonically rising signal.
- Region 3 represents a logical high signal.
- Region 4 represents a monotonically falling signal.
 - Brockett's annulus allows entire families of signals to be specified.

- Region 1 represents a logical low signal. The signal may wander in a small interval.
- Region 2 represents a monotonically rising signal.
- Region 3 represents a logical high signal.
- Region 4 represents a monotonically falling signal.
- → Brockett's annulus allows entire families of signals to be specified.

Brockett Data Sheets

- The left and right boundaries of region 1 give min and max logical low level.
- The left and right boundaries of region 3 give min and max logical high level.
- The upper boundary of region 2 gives the minimum rise time.
- The lower boundary of region 2 gives the maximum rise time.
- The upper and lower boundaries of region 4 give the maximum and minimum fall times respectively.

Circuit Models

- Model MOS circuits as a collection of voltage controlled current sources
- Current function is obtained by simulating TSMC 180nm, 1.8 volt, bulk CMOS process
- Linearize the current function

$$AV + b - u \le ids(V) \le AV + b + u$$

Time derivative of voltage

$$\dot{V} = C^{-1} \cdot I_c$$

Verification Strategy

- Separate verification into four phases
 - One phase for each transition of Φ .
 - Assume bounding hyperrectangle for start of phase.
 - Establish bounding hyperrectangle at end of phase.
 - Containment establishes invariant set.
 - Allows parallel execution and parallel debugging.
- Use invariant set to show that Brockett-ring at input implies Brockett-ring at output.
- BUT overapproximation errors need to be managed
 - Slicing
 - Multiple models

Slicing

Partition the reachable space along a critical variable:

- Large range of Φ leads to large approximation error in linear model.
- ullet Partition reachable space by intervals of Φ .

Multiple Models

- Negative current from source to drain caused by overapproximation of linearization.
- Use multiple models to reduce error.
- Intersect the projectagons to eliminate non-physical states.

The Invariant Set

- Red: Hyperrectangles at beginning of each phase.
- Blue: Hyperrectangles at end of each phase.
- An invariant set with twice the period of the clock has been established.

Brockett Ring at z

- Construct the brockett annulus for z, ignoring the inverter
- Perform a separate reachability analysis for the output inverter
- Arbitrary ripple counter

Brockett Ring at q

- Construct the brockett annulus for z, ignoring the inverter
- Perform a separate reachability analysis for the output inverter
- Arbitrary ripple counter

Experience from the Toggle

- Coho works for moderate dimensional systems.
- Topological properties provide a mathematically rigorous abstraction from continuous to discrete models.
- Leakage current included in the circuit model.
 - We found that we needed to add keepers to the circuit.
- Slicing and multiple models improved accuracy of linearization to enable successful verification.
- Seven-dimensional record sets a record looks like we have headroom for more.
- Verification process currently involves substantial manual effort –
 more automation needed before useful in practice.

Conclusion and Future Work

Conclusion

- Demonstrate a new reachability method to verify a real circuit
- Model the circuit with SPICE-level, non-linear differential equations.
- Projection based representation of reachable space
- Digital behavior corresponds to topological properties of invariant sets in the continuous space

Future Work

- Improve performance
- Exploit parallelism
- Develop more accurate circuit model
- Verify more circuits
- Apply Coho to hybrid systems
- Compare with other tools