

大数据技术与实践

李春山 哈尔滨工业大学(威海)计算学部

内容提要

概述

MapReduce体系结构

MapReduce工作流程

实例分析: WordCount

MapReduce的具体应用

概述

概述

分布式并行编程

MapReduce模型简介

Map和Reduce函数

分布式并行编程

- "摩尔定律", CPU性能大约每隔18个月翻一番
- 从2005年开始摩尔定律逐渐失效,需要处理的数据量快速增加, 人们开始借助于分布式并行编程来提高程序性能
- 分布式程序运行在大规模计算机集群上,可以并行执行大规模数据 处理任务,从而获得海量的计算能力
- 谷歌公司最先提出了分布式并行编程模型MapReduce,Hadoop MapReduce是它的开源实现,后者比前者使用门槛低很多

分布式并行编程

问题: 在MapReduce出现之前,已经有像MPI这样非常成熟的并行计算框架了,那么为什么Google还需要MapReduce? MapReduce相较于传统的并行计算框架有什么优势?

	传统并行计算框架	MapReduce	
集群架构/容错性	共享式(共享内存/共享存储), 容错性差	非共享式,容错性好	
硬件/价格/扩展性	刀片服务器、高速网、SAN, 价格贵,扩展性差	普通PC机,便宜,扩展 性好	
编程/学习难度	what-how,难	what,简单	
适用场景	实时、细粒度计算、计算密集型	批处理、非实时、数据密 集型	

- MapReduce将复杂的、运行于大规模集群上的并行计算过程高度地抽象 到了两个函数: Map和Reduce
- 编程容易,不需要掌握分布式并行编程细节,也可以很容易把自己的程序运行在分布式系统上,完成海量数据的计算

 MapReduce设计的一个理念就是"<mark>计算向数据靠拢</mark>",而不是"数据向 计算靠拢",因为,移动数据需要大量的网络传输开销

Map和Reduce函数

Map和Reduce

函数	输入	输出	说明
Map	<k<sub>1,v₁> 如: <行号,"a b c"></k<sub>	List(<k<sub>2,v₂>) 如: <"a",1> <"b",1> <"c",1></k<sub>	$1.$ 将小数据集进一步解析成一批 < key, value > 对,输入Map函数中进行 处理 $2.$ 每一个输入的 < k_1, v_1 > 会输出一批 < k_2, v_2 >。 < k_2, v_2 > 是计算的中间结果
Reduce	<k<sub>2,List(v₂)> 切: <"a",<1,1,1>></k<sub>	< <i>k</i> ₃ , <i>v</i> ₃ > <"a",3>	输入的中间结果 $< k_2$,List $(v_2)>$ 中的List (v_2) 表示是一批属于同一个 k_2 的value

MapReduce体系结构主要由四个部分组成,分别是: Client、JobTracker、TaskTracker以及Task

MapReduce主要有以下4个部分组成:

1) Client

- •用户编写的MapReduce程序通过Client提交到JobTracker端
- •用户可通过Client提供的一些接口查看作业运行状态

通过Client可以提交用户编写的应用程序用户通过它将应 用程序交到JobTracker端

Client(客户端)

通过这些Client用户也可以通过它提供的一些接口去查 看当前提交作业的运行状态

2) JobTracker

- •JobTracker负责资源监控和作业调度
- •JobTracker 监控所有TaskTracker与Job的健康状况,一旦发现失败,就将相应的任务转移到其他节点
- •JobTracker 会跟踪任务的执行进度、资源使用量等信息,并将这些信息告诉任务调度器(TaskScheduler),而调度器会在资源出现空闲时,选择合适的任务去使用这些资源

3) TaskTracker

- •TaskTracker 会周期性地通过"心跳"将本节点上资源的使用情况和任务的运行进度汇报给JobTracker,同时接收JobTracker 发送过来的命令并执行相应的操作(如启动新任务、杀死任务等)
- •TaskTracker 使用 "slot"等量划分本节点上的资源量(CPU、内存等)。 一个Task 获取到一个slot 后才有机会运行,而Hadoop调度器的作用就是 将各个TaskTracker上的空闲slot分配给Task使用。slot 分为Map slot 和 Reduce slot 两种,分别供MapTask 和Reduce Task 使用

4) Task

Task 分为Map Task 和Reduce Task 两种,均由TaskTracker 启动

MapReduce工作流程

MapReduce工作流程

- 工作流程概述
- MapReduce各个执行阶段
- Shuffle过程详解

工作流程概述

MapReduce工作流程

每一个子任务都可以独立的完成,

- •不同的Map任务之间不会进行通信如果有依赖关系就不能这样分解
- •不同的Reduce任务之间也不会发生任何信息交换
- •用户不能显式地从一台机器向另一台机器发送消息
- •所有的数据交换都是通过MapReduce框架自身去实现的

MapReduce各个执行阶段

MapReduce各个执行阶段

HDFS 以固定大小的block 为基本单位存储数据,而对于MapReduce 而言,其处理单位是split。split 是一个逻辑概念,它只包含一些元数据信息,比如数据起始位置、数据长度、数据所在节点等。它的划分方法完全由用户自己决定。

MapReduce各个执行阶段

Map任务的数量

•Hadoop为每个split创建一个Map任务,split 的多少决定了Map任务的数目。大多数情况下,理想的分片大小是一个HDFS块

Reduce任务的数量

- •最优的Reduce任务个数取决于集群中可用的reduce任务槽(slot)的数目
- •通常设置比reduce任务槽数目稍微小一些的Reduce任务个数(这样可以预留一些系统资源处理可能发生的错误)

Shuffle过程原理

Shuffle过程详解

1. Shuffle过程简介

Shuffle过程

Shuffle过程详解

2. Map端的Shuffle过程

- •每个Map任务分配一个缓存
- •MapReduce默认100MB缓存
- •设置溢写比例0.8
- •分区默认采用哈希函数
- •排序是默认的操作
- •排序后可以合并(Combine)
- •合并不能改变最终结果
- •在Map任务全部结束之前进行归并
- •归并得到一个大的文件,放在本地磁盘
- •文件归并时,如果溢写文件数量大于预定值(默认是3)则可以再次启动Combiner,少于3不需要
- •JobTracker会一直监测Map任务的执行,并通知Reduce任务来领取数据

自己执行

合并(Combine)和归并(Merge)的区别:

两个键值对<"a",1>和<"a",1>,如果<mark>合并</mark>,会得到<"a",2>,如果<mark>归并</mark>,会得到<"a",<1,1>>

Shuffle过程详解

3. Reduce端的Shuffle过程

- •Reduce任务通过RPC向JobTracker询问Map任务是否已经完成,若完成,则领取数据
- •Reduce领取数据先放入缓存,来自不同Map机器,先归并,再合并,写入磁盘
- •多个溢写文件归并成一个或多个大文件,文件中的键值对是排序的
- •当数据很少时,不需要溢写到磁盘,直接在缓存中归并,然后输出给Reduce

MapReduce应用程序执行过程

MapReduce应用程序执行过程

实例分析: WordCount

实例分析: WordCount

- WordCount程序任务
- WordCount设计思路
- 一个WordCount执行过程的实例

WordCount程序任务

WordCount程序任务

程序	WordCount
输入	一个包含大量单词的文本文件
输出	文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔

一个WordCount的输入和输出实例

输入	输出
Hello World Hello Hadoop Hello MapReduce	Hadoop 1 Hello 3 MapReduce 1 World 1

WordCount设计思路

- 首先,需要检查WordCount程序任务是否可以采用MapReduce来实现
- 其次,确定MapReduce程序的设计思路
- 最后,确定MapReduce程序的执行过程

一个WordCount执行过程的实例

Map过程示意图

一个WordCount执行过程的实例

用户没有定义Combiner时的Reduce过程示意图

一个WordCount执行过程的实例

用户有定义Combiner时的Reduce过程示意图

MapReduce可以很好地应用于各种计算问题

- 关系代数运算(选择、投影、并、交、差、连接)
- 分组与聚合运算
- 矩阵-向量乘法
- 矩阵乘法

用MapReduce实现关系的自然连接

雇员

Name	Empld	DeptName
Harry	3415	财务
Sally	2241	销售
George	3401	财务
Harriet	2202	销售

部门

** * * *				
DeptName	Manager			
财务	George			
销售	Harriet			
生产	Charles			

雇员 ⋈ 部门

Name	Empld	DeptName	Manager
Harry	3415	财务	George
Sally	2241	销售	Harriet
George	3401	财务	George
Harriet	2202	销售	Harriet

- 假设有关系R(A, B)和S(B,C),对二者进行自然连接操作
- 使用Map过程,把来自R的每个元组<a,b>转换成一个键值对<b, < R,a>>,其中的键就是属性B的值。把关系R包含到值中,这样做使得我们可以在Reduce阶段,只把那些来自R的元组和来自S的元组进行匹配。类似地,使用Map过程,把来自S的每个元组<b, c>,转换成一个键值对<b, < S, c>>
- 所有具有相同B值的元组被发送到同一个Reduce进程中,Reduce进程的任务是,把来自关系R和S的、具有相同属性B值的元组进行合并
- Reduce进程的输出则是连接后的元组<a,b,c>,输出被写到一个单独的输出文件中

用MapReduce实现关系的自然连接

Order

Orderid	Account	Date	K	Key Val	lue
1	a	d1	1	"Order"	',(a,d1)
2	a	d2	Map 2	2 "Order'	',(a,d2)
3	b	d3	3	"Order"	',(b,d3)

Key

3

Value

"Item",(10,1)

"Item",(20,3)

"Item",(10,5)

"Item" ,(50,100)

"Item",(20,1)

_				
1	+	\sim	n	n
		С.	ш	

100111			_
Orderid	Itemid	Num	
1	10	1	
1	20	3	Map
2	10	5	
2	50	100	
3	20	1	

Reduce

(1,a,d1,10,1)

(1,a,d1,20,3)

(2,a,d2,10,5)

(2,a,d2,50,100)

(3,b,d3,20,1)

致谢

部分图表、文字来自互联网,在此表示感谢!如有版权要求请联系: lics@hit.edu.cn,谢谢