Problem 1. Suppose that X is a geometric random variable, with probability of success p. Let t, s be positive integers with t > s. Explain why P(X > t | X > s) = P(X > t - s).

Problem 2. For what values of N does the following statement hold? "If X_1, \ldots, X_N are jointly Gaussian random variables such that $\operatorname{Var}(\sum_i X_i) = \sum_i \operatorname{Var}(X_i)$, then X_1, \ldots, X_N are independent."

Problem 3. Suppose that X_1, X_2, \ldots are a sequence of random variables on the nonnegative integers, such that $E[X_n] \to \infty$ as $n \to \infty$. Does it follow that $P(X_n = 0) \to 0$ as $n \to \infty$?

Now suppose that in addition, $Var(X_n) = E[X_n]$. Does it follow that $P(X_n = 0) \to 0$ as $n \to \infty$?