AMENDMENTS TO THE CLAIMS

- 1. (currently amended) A monocyclopentadienyl complex which comprises the structural feature of the formula (Cp)(-Z-A)_mM (I), where the variables have the following meanings:
 - Cp is a cyclopentadienyl system,
 - Z is a bridge between A and Cp of the formula,

where

L^{1B} are each, independently of one another, carbon or silicon,

- R^{1B} , R^{2B} are each, independently of one another hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}_3 , where the organic radicals R^{1B} and R^{2B} may also-be substituted by halogens, and the two radicals R^{1B} and R^{2B} -and/or, or either R^{1B} or R^{2B} and R^{2B} and R^{2B} -and/or, or either R^{1B} or R^{2B} and R^{2B} -and R^{2B} -
- R^{3B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also-be joined to form a five- or six-membered ring,
- A is an unsubstituted, substituted or fused, five-membered heteroaromatic ring system, has the formula (IIIb):

where _____

E^{1C} is nitrogen, phosphorus, sulfur or oxygen,

- R^{1C} - R^{4C} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 , where the organic radicals R^{1C} - R^{4C} may be substituted by halogens or nitrogen or further C_1 - C_{20} -alkyl groups, C_2 - C_{20} -alkenyl groups, C_6 - C_{20} -aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 and two vicinal radicals R^{1C} - R^{4C} or the two radicals R^{1C} or R^{4C} and $R^{$
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl,

 C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and

 6-20 carbon atoms in the aryl part and two radicals R^{5C} may be joined to form a

 five- or six-membered ring, and
- p is 0 when E^{1C} is sulfur or oxygen and 1 when E^{1C} is nitrogen or phosphorus,
- M is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten, and

- 2. (currently amended) A monocyclopentadienyl complex as claimed in claim 1 having the formula (Cp)- $(-Z-A)_mMX_k$ (VI), where the variables have the following meanings:
 - Cp is a cyclopentadienyl system,
 - Z is a bridge between A and Cp of the formula,

where

 L^{1B} are each, independently of one another, carbon or silicon,

 R^{1B} , R^{2B} are each, independently of one another hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}_3 , where the organic radicals R^{1B} and R^{2B} may also be substituted by halogens, and the two radicals R^{1B} and R^{2B} -and/or, or either R^{1B} or R^{2B} and R^{2B} and R^{2B} -and/or, or either R^{1B} or R^{2B} and R^{2B} -and R^{2B} -and/or, or either R^{2B} -and R^{2B}

R^{3B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

A is an unsubstituted, substituted or fused, five-membered heteroaromatic ring system,

has the formula (IIIb):

where

E^{1C} is nitrogen, phosphorus, sulfur or oxygen,

- R^{1C}-R^{4C} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl,

 C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and
 6-20 carbon atoms in the aryl part or SiR^{5C}₃, where the organic radicals R^{1C}-R^{4C}

 may be substituted by halogens or nitrogen or further C₁-C₂₀-alkyl groups, C₂-C₂₀-alkenyl groups, C₆-C₂₀-aryl groups, alkylaryl groups having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃ and two vicinal radicals R^{1C}-R^{4C} or the two radicals R^{1C} or R^{4C} and Z may be joined to form a five- or six-membered ring,
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl,

 C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and

 6-20 carbon atoms in the aryl part and two radicals R^{5C} may be joined to form a

 five- or six-membered ring, and
- p is 0 when E^{1C} is sulfur or oxygen and 1 when E^{1C} is nitrogen or phosphorus,

- M is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten,
- m is 1, 2 or 3,
- X are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR¹R², OR¹, SR¹, SO₃R¹, OC(O)R¹, CN, SCN, β-diketonate, CO, BF₄, PF₆ or a bulky noncoordinating anion,
- R¹-R² are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR³₃, where the organic radicals R¹-R² may also-be substituted by halogens and two radicals R¹-R² may also-be joined to form a five- or six-membered ring,
- R³ are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, <u>or</u> alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R³ may also-be joined to form a five- or six-membered ring and
- k is 1, 2, or 3.
- 3. (currently amended) The monocyclopentadienyl complex of claim 1, wherein the cyclopentadienyl system Cp has the formula (II):

$$R^{1A} \xrightarrow{E^{1A}} R^{2A}$$

$$R^{5A} \xrightarrow{E^{5A}} E^{5A} \xrightarrow{E^{4A}} R^{3A}$$

$$R^{4A} \qquad \qquad (II)$$

where the variables have the following meanings:

 E^{1A} - E^{5A} are each carbon or not more than one E^{1A} to E^{5A} is phosphorus,

R^{1A}-R^{5A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}₂, N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, or BR^{6A}₂, where the organic radicals R^{1A}-R^{5A} may-also be substituted by halogens, and two vicinal radicals R^{1A}-R^{5A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{5A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S, with 1, 2 or 3 substituents R^{1A}-R^{5A} each being a -Z-A group, and

R^{6A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, <u>or</u> alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also-be joined to form a five- or six-membered ring.

4. (currently amended) The monocyclopentadienyl complex of claim 1, wherein the cyclopentadienyl system Cp together with -Z-A has the formula (IV):

$$A \longrightarrow Z \longrightarrow E^{5A} \longrightarrow E^{2A} \longrightarrow E^{3A} \longrightarrow E^{3A} \longrightarrow E^{3A} \longrightarrow E^{4A} \longrightarrow E^{4A} \longrightarrow E^{3A} \longrightarrow E^{3A} \longrightarrow E^{3A} \longrightarrow E^{3A} \longrightarrow E^{4A} \longrightarrow E^$$

where the variables have the following meanings:

 E^{1A} - E^{5A} are each carbon or not more than one E^{1A} to E^{5A} is phosphorus,

- R^{1A} - R^{4A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}_2 , $N(SiR^{6A}_3)_2$, OR^{6A} , $OSiR^{6A}_3$, or SiR^{6A}_3 , where the organic radicals R^{1A} - R^{4A} may also be substituted by halogens, and two vicinal radicals R^{1A} - R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A} - R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,
- R^{6A} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, <u>or</u> alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also-be joined to form a five- or six-membered ring,
- Z is a bridge between A and Cp of the formula,

where

L^{1B} are each, independently of one another, carbon or silicon,

R^{1B},R^{2B} are each, independently of one another hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}₃, where the organic radicals R^{1B} and R^{2B} may also be substituted by halogens, and the

two radicals R^{1B} and R^{2B}-and/or, or either R^{1B} or R^{2B} and A may also-be joined to form a five- or six-membered ring,

- R^{3B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also-be joined to form a five- or six-membered ring and
- A is an unsubstituted, substituted or fused, five membered heteroaromatic ring system

has the formula (IIIb):

where

E^{1C} is nitrogen, phosphorus, sulfur or oxygen,

R^{1C}-R^{4C} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl,

C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and

6-20 carbon atoms in the aryl part or SiR^{5C}₃, where the organic radicals R^{1C}-R^{4C}

may be substituted by halogens or nitrogen or further C₁-C₂₀-alkyl groups, C₂-C₂₀
alkenyl groups, C₆-C₂₀-aryl groups, alkylaryl groups having from 1 to 10 carbon

atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃ and two

vicinal radicals R^{1C}-R^{4C} or the two radicals R^{1C} or R^{4C} and Z may be joined to

form a five- or six-membered ring,

- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl,

 C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and

 6-20 carbon atoms in the aryl part and two radicals R^{5C} may be joined to form a five- or six-membered ring, and
- p is 0 when E^{1C} is sulfur or oxygen and 1 when E^{1C} is nitrogen or phosphorus.
- 5. (canceled)
- 6. (previously presented) The monocyclopentadienyl complex of claim 1, wherein L^{1B} is carbon.
- (previously presented) The monocyclopentadienyl complex of claim 1, wherein Z is -CH₂-, -C(CH₃)₂-, -CH(C₆H₅)- or -C(C₆H₅)₂-.
- -8. (previously presented) A catalyst system for olefin polymerization comprising
 - A) at least one monocyclopentadienyl complex as defined in claim 1,
 - B) optionally an organic or inorganic support,
 - C) optionally one or more activating compounds,
 - D) optionally one or more catalysts suitable for olefin polymerization and
 - E) optionally one or more metal compounds containing a metal of group 1, 2 or 13 of the Periodic Table.

- 9. (original) A prepolymerized catalyst system comprising a catalyst system as claimed in claim 8 and one or more linear C₂-C₁₀-1-alkenes polymerized onto it in a mass ratio of from 1:0.1 to 1:1 000, based on the catalyst system.
- 10. (previously presented) The use of a catalyst system as claimed in claim 8 for the polymerization or copolymerization of olefins.
- 11. (previously presented) A process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of a catalyst system as claimed in claim 8.
- 12. (canceled)
- 13. (canceled).