海沙·大学 物 理 实 验 报 告

实验名称:	万用表的设计		
实验桌号:	14		
指导教师:	<u>方则正</u>		

 班级:
 机械 2402

 姓名:
 叶畅飞

 学号:
 3240103132

实验日期: _2025 年 10 月 21 日 星期 三 下午

一、 预习报告(10分)

1. 实验综述(5分)

(1). 实验现象

通过改变简易万用表接入电路的方式得到电流表和电压表,通过调节不同的分流或附加电阻,能够实现多量程测量,且在不同量程档位下,表头指针能正确指示对应的电流或电压值。欧姆表档位下,短接表笔时指针满偏(调零),断开时指针指在零电流处(∞电阻);测量电阻时,指针的偏转角度与电阻大小一一对应,并可观察到欧姆刻度不均匀的现象。

(2). 实验原理

万用表的设计原理核心在于利用磁电式电流计(表头)的特性,通过配置不同的电阻网络,将其改装成多量程的电流表、电压表和欧姆表。磁电式电流计的两个关键参数:

- 量程 I_a : 允许通过的最大电流。
- 内阻 R_q : 表头的内部电阻。可用替代法或中值法获得

I). 改装多量程电流表

电流表的扩程通过将电流计与分流电阻(R_s)并联实现。当电流计与分流电阻并联时,大部分电流通过分流电阻,只有小部分电流通过电流计,从而达到扩大总电流测量范围的目的。

若改装后的电流表量程为I,则有:

$$R_s = \frac{R_g I_g}{I - I_g} \tag{1}$$

并联不同阻值的分流电阻,可实现多量程电流测量。如图 1 所示,电流计量程为1mA,改装后有5mA和10mA的量程。

图 1: 多量程电流表电路图

根据改装后的电路图,可得:

$$(R_2 + R_g)I_g = R_1(I_1 - I_g)$$

$$(R_1 + R_2)(I_2 - I_g) = R_gI_g$$
(2)

计算出 R_1 、 R_2 后,即可设计出多量程电流表。然后,用图 2 所示电路较正,并分析误差。

图 2: 电流表校正电路图

II). 改装多量程电压表

电压表的扩程通过将电流计与分压电阻(R_x)串联实现。当电流计与附加电阻串联时,增加了电压表的总内阻,从而达到扩大总电压测量范围的目的。若改装后的电压表量程为U,则有:

$$R_p = \left(\frac{U}{I_g'}\right) - R_g' \tag{3}$$

其中, R_g' 和 I_g' 分别为电流计在电压表中的等效内阻和等效量程。

串联不同阻值的分压电阻,可实现多量程电压测量。如图 3 所示,改装后有 5V和10V的量程。

图 3: 多量程电压表电路图

根据改装后的电路图,可得:

$$\begin{split} U_1 &= I_g' \big(R_3 + R_g \big) \\ U_2 &= I_g' \big(R_3 + R_4 + R_g \big) \\ R_g' &= \frac{R_g (R_1 + R_2)}{R_g + R_1 + R_2}, \qquad I_G' = 5mA \end{split} \tag{4}$$

计算出 R_1 、 R_2 、 R_3 、 R_4 后,即可设计出多量程电压表。然后,用图 4 所示电路较正,并分析误差。

图 4: 电压表校正电路图

III). 改装欧姆表

欧姆表的改装是将电流计与电池和附加电阻串联组成一个闭合回路。通过调 节附加电阻,使得在欧姆表两端短接时,电流计指针满偏(调零)。

原理图如图 5 所示:

图 5: 欧姆表电路图

首先,短接 a 和 b,调节 R_6 使得电流计指针满偏,此时有 $I_0=\frac{\varepsilon}{R'_g+R'}$,其中 R' 为电路回路中的其他电阻总和。然后,断开 a 和 b,接入 R_x ,此时有 $I_x=\frac{\varepsilon}{R'_g+R'+R_x}$ 。

当 $R_x=R_g'+R'$ 时,有 $I_x=rac{I_0}{2}$,此时 R_x 称为欧姆表的中值电阻,根据此法可以在电流计面板上标出欧姆刻度,刻度不均匀。

III). 实验方法

0. 替代法测量电流计内阻 R_a :

先将电流计与标准电流表串接在测量回路中R,调节可变电阻使回路电流为合适值I;再用电阻箱替代电流计,调节电阻箱使回路电流仍为I,此时电阻箱的阻值即为电流计的内阻 R_q 。

- 1. 多量程电流表的设计与校正
- 2. 多量程电压表的设计与校正
- 3. 欧姆表的设计与刻度曲线绘制

2. 实验重点(3分)

- (1). 通过设计万用表,深入理解其工作逻辑,并加强设计电路的能力。
- (2). 加强学生对电路中欧姆定律的认知。

3. 实验难点(2分)

- (1). 了解指针式万用表测量电流、电压以及电阻的基本原理。
- (2). 掌握多量程电流表、电压表和万用表的设计方法,并能设计出具体电路。
- (3). 记录数据并作出欧姆表刻度曲线曲线。

二、原始数据(20分)

叶畅飞	3240	63132	14		Rg = 10	218.812	
改装电	流表	R, = 55	Λ				
Izk o	1.0 Mm A	1.0 10 m A	3.0 Bm A	4.0	4.6		
I/星	1.29/	2-25 mA	3.30mA	4.35 mA	5.00 mA		
41	0.20	0.25	0.30	0.35	0.4		
. JI	- 6	R. = 956.	, A				
改装电	公衣			4.0			
Vzz	1-9	1.0 4 V	3.0 4 V	40 V	@ 4.7V		
VZ	1. 15 V	2.25V	3.30V	4.30 V	J.00 V		
ΔV							
改装的	四母长						
R×	0.0	34.4 b.	5.9 105.	7 154-1	212.6	290.1	396. 1 0.38
I	1.00	0.88 0	.80 0-79	0.62	0.54	0.46	0.30
	544.0	779.0	1197.0	2067.0	3206.0	0316.0	
	0.32	0.24	0.16	0. 10	0.06	0.0 L	> 1_
						0	01/2-
						1.	0,21

三、 结果与分析(60分)

1. 数据处理与结果(30分)

(0). 预实验: 测量检流计内阻

采用中值法测得 $R_q = 216.8\Omega$

(1). 改装 5mA 量程的电流表并校准

经计算,分流电阻 $R_1=54.2\Omega$ 。由于改装后每一小格表示 $\frac{5\text{mA}}{5\times5}=0.2\text{mA}$,因此估读到0.1mA。数据如下表所示:

	Igy (mA)	I准 (mA)	$\Delta I (\mathrm{mA})$
1	1.0	1.20	0.20
2	2.0	2.25	0.25
3	3.0	3.30	0.30
4	4.0	4.35	0.35
5	4.6	5.00	0.40

表 1 改装 5mA 量程的电流表

图 6 改装电流表数据

由
$$\gamma = \frac{\Delta I_{\text{max}}}{I_{\text{BR}}} = \frac{0.40}{5.00} = 8\%$$
,可知改装电流表等级为 10 级。

(2). 改装 5V 量程的电压表并校准

经计算,分压电阻 $R_2=956.2\Omega$ 。由于改装后每一小格表示 $\frac{5\mathrm{V}}{5\times5}=0.2\mathrm{V}$,因此估读到 $0.1\mathrm{V}$ 。数据如下表所示:

	V 改 $\left(\mathrm{V} ight)$	$V_{ eta}$ $({ m V})$	ΔV (V)
1	1.0	1.15	0.15
2	2.0	2.25	0.25
3	3.0	3.30	0.30
4	4.0	4.30	0.30
5	4.7	5.00	0.30

表 2 改装 5V 量程的电压表

图 7 改装电压表数据

由
$$\gamma = \frac{\Delta V_{\text{max}}}{V_{\text{量程}}} = \frac{0.30}{5.00} = 6\%$$
,可知改装电压表等级为 10 级。

(3). 改装欧姆表并绘制刻度曲线

表 3 改装欧姆表的刻度对应关系

	$R_x \ (\Omega)$	I_x (mA)
1	0.0	1.00
2	34.4	0.88
3	65.9	0.80
4	105. 7	0.70
5	154. 1	0.62
6	212.6	0.54
7	290. 1	0.46
8	396. 1	0.38
9	544.0	0.32
10	779.0	0.24
11	1197.0	0.16
12	2067.0	0.10
13	3206.0	0.06
14	6316.0	0.02

图 8 改装欧姆表数据

欧姆表电阻分布特征:

欧姆刻度与电流计的偏转方向相反,即当待测电阻 $R_x=0$ 时,电流达到最大值 $1.00 \, \mathrm{mA}$,对应欧姆刻度的 $0 \, \Omega$ 在最右端(满偏);随着 R_x 增大,电流迅速减小,欧姆刻度的 $\infty \, \Omega$ 在最左端(零偏)。

刻度分布是左密右疏的。在小电阻区(刻度右侧),刻度间隔较大,读数精度高;而在大电阻区(刻度左侧),刻度急剧压缩,例如从 $779.0~\Omega$ 增加到 $6316.0~\Omega$,电流变化微小(从 0.24mA 降至 0.02mA),这使得大电阻区域的读数精度极低。

2. 误差分析(20分)

- (1). 在计算出分流电阻 R_s 或分压电阻 R_x 的理论值后,实际选用的电阻(或电阻箱)的阻值往往不完全等于理论值,甚至电阻箱本身也存在标称误差。
- (2). 实验中测得的电流计内阻 R_g 和量程 I_g 本身就有误差(例如使用中值法测量 R_g 时,对回路电流 I_0 的读数不可能完全精确相等),导致后续计算的分流/分压电阻值不准确。
- (3). 欧姆表使用的电池(电源 E)在长时间使用过程中,其电动势和内阻会发生变化,导致欧姆表零点漂移或刻度失准。
- (4). 实验仪器多为指针式,对电流计、标准表的读数都存在估计误差。

3. 实验探讨(10分)

该实验通过中值法确定电流计内阻,然后利用分流和分压原理,设计并组装了电流表和 电压表,并进行校准。同时,实验设计了欧姆表,观察到其刻度是反向且不均匀的。

四、思考题(10分)

(1). 为什么不能用万用表欧姆档测量电源内阻?

用万用表欧姆档测量电源内阻时,万用表会向电源施加一个较大的电流,可能导致 电源过载或损坏。此外,测量过程中电源的电动势会影响读数的准确性,因此不适合使 用万用表欧姆档测量电源内阻。

(2). 为什么不能用欧姆表测量另一表头内阻?

欧姆表测量电阻时会向被测电阻施加电流,如果用欧姆表测量另一表头内阻,可能会导致表头损坏或读数不准确。此外,表头内阻通常较小,欧姆表的测量范围可能无法覆盖,从而影响测量结果的准确性。

(3). 为什么 I_x 与 R_x 为非线性关系?

因为欧姆表的设计使得电流计的读数与被测电阻成反比关系,即 $I_x=\frac{\varepsilon}{R_g'+R'+R_x}$ 。随着 R_x 的增加, I_x 会迅速减小,导致刻度分布不均匀,尤其是在大电阻区域,电流变化非常微小,从而形成非线性关系。