

Háromfázisú aszinkron gép mezőorientált szabályozása

Készítette: Arnóczy László Vince YKQEYD

Mérnökinformatikus BSC 2024

Belső konzulens: Lovas István

Külső konzulens: Sipos Gergő

Tartalomjegyzék

- I. Mezőorientált szabályozás bemutatása
- II. Rendszerterv
- III. Komponensek
- IV. Mérések
- V. Összegzés és továbbfejlesztési lehetőségek

I. Mezőorientált szabályozás elterjedése

- Cél: Háromfázisú motorok hatékonyabb szabályozása (1970)
- Zárt kör szabályozásán alapul
- Vektor kontrollok közé tartozik
- Előtte skalár kontrollok
- Nyomatékszabályozás
- Sebességszabályozás

Elterjedésének okai

Inverterek megjelenése

Mikrokontrollerek számítási teljesítményének növekedése

Szabályozási kör visszacsatolt értékei

- Stator áram fluxusképző komponense (D irányú áram)
- 2. Stator áram nyomatékképző komponense (Q –irányú áram)
- 3. Rotorfluxus szög meghatározása

Ehhez szükséges:

Koordináta-transzformációk, melyek egyszerűsítik a háromfázisú rendszert

Clarke – transzformáció (időfüggő)

Park – transzformáció (időfüggetlen)

III. Komponensek

Nyomatékszabályozás (FOC)

- 1. MTPA stratégia
- 2. Áramszabályzók
- 3. Invertervezérlés
- 4. Rotorfluxus becslő

Sebességszabályozás és open loop tesztelés

- 1. U/f control
- Aluláteresztő IIR szűrő tervezése
 (PWM feszültség → Fázisfeszültség)

Maximum nyomaték per amper stratégia

Cél: A legkisebb D – Q áramok megtalálása adott nyomaték referenciához

Iteratív megvalósítás

Áramszabályzók

Cél: A motor fázisáramainak szabályozása D és Q-irányban

Diszkrét idejű PI szabályzók "anti-windup" technikával

Invertervezérlés

Cél: Referencia feszültségeknek megfelelő fázisfeszültségek előállítása

• Megvalósítása Space Vector Modulation (SVPWM) implementációjával

(harmadik harmonikus hozzákeveréssel)

Rotorfluxus becslő

Cél: Rotorfluxus szög meghatározása

Szabályozási körben visszacsatolt értékek

Inverter oldal implementációja

Motor oldal implementációja

IV. Mérések

A szimuláció helyességét egy munkapontban szeretném bemutatni mérésekkel.

• Főmező induktivitás szaturációja nincs beleszámolva (MTPA)

Munkapont referenciái:

• **Te** = 50 → Nyomaték referencia [Nm]

ω_M = 1000 → Mechanikai szögsebesség [RPM]

A munkaponthoz tartozó MTPA által számolt referencia áram, feszültség és nyomaték értékei:

Te_{calc} = 49.7562 → Számolt nyomaték referencia [Nm]

• I_{ds} = 23.6193 → D-irányú áramszabályzó referencia jele [A]

• I_{qs} = 22.9028 → Q-irányú áramszabalyzó referencia jele [A]

U

ds = -11.7981 → D-irányú beavatkozó jel [V]

U_{gs} = 202.025 → Q-irányú beavatkozó jel [V]

Áramszabályzók mért és referencia jelei

22.6

Visszacsatolt és mért D – irányú stator áram [A]

Visszacsatolt és mért Q – irányú stator áram [A]

Áramszabályzók beavatkozó jelei (kimenetek)

D – irányú stator feszültség [V]

Q – irányú stator feszültség [V]

Rotorfluxus és nyomaték mérése

Rotorfluxus amplitúdó [Wb]

Motor forgatónyomatéka [Nm]

V. Összegzés és továbbfejlesztési lehetőségek

- A szimulációt elemzve statikus főmező induktivitással a szabályozás pontosan működik
- Mágneses szaturációval a nyomaték szintén beáll, de a referenciához képest 5-20%-os eltéréssel
- Nyomatékszabályozás mellett U/f sebességszabályozást is megvalósítottam

Továbbfejlesztés

- Mágnesező áram számítás újragondolása
- Mezőgyengítés (field-weakening) implementálása

Főcél: Hardveres implementáció a generált kódból

- Mikrokontroller konfigurálása (pl: ADC-k)
- Inverter PWM jeleinek holtidő kompenzációja
- Áramszabályzók kalibrálása motor modell alapján

Köszönöm a figyelmet!