Math 220A - First Homework - Due October 9

- 1. As noted in class, the matrix presentation of the quaternion group Q shows it is generated by two elements i and j subject to the relations $i^4 = j^4 = e$, $i^2 = j^2 = -1$, ij = (-1)ji. Show that the quaternion group has only one element $-1 \in Q$ of order 2, and that it commutes with all elements of Q. Deduce that Q is not isomorphic to D_4 , and that every subgroup of Q is normal.
- 2. Let $V = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\} \subset S_4$. Prove that V is a normal subgroup of S_4 , and then show that $S_4/V \cong S_3$.
- 3. Consider the elements $a, b \in GL_2(\mathbb{Z})$

$$a = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \quad \text{and} \quad b = \left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right).$$

Show that $a^4 = e$ and $b^3 = e$, but that ab has infinite order, and hence that the group generated by a and b (denoted $\langle a, b \rangle$) is infinite.

4. Let G_1 be the subgroup of $GL_3(\mathbb{Z}/2\mathbb{Z})$ defined by

$$G_1 := \left\{ \left(\begin{array}{ccc} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{array} \right) \mid a, b, c \in \mathbb{Z}/2\mathbb{Z} \right\}.$$

Show that G_1 is a group of order 8 and identify this group as one of the five possible groups of order 8.

5. Let G_2 be the subgroup of $GL_2(\mathbb{Z}/4\mathbb{Z})$ defined by

$$G_2 := \left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) \mid a = 1, 3 \in \mathbb{Z}/4\mathbb{Z}, b \in \mathbb{Z}/4\mathbb{Z} \right\}.$$

Show that G_2 is a group of order 8 and identify this group as one of the five possible groups of order 8.

- 6. Show that every finite group of even order contains an element of order 2.
- 7. Let N be a normal subgroup of G of index n. Show that if $g \in G$, then $g^n \in N$. Give an example to show that this may be false when N is not normal.
- 8. Suppose that G is a finite group with normal subgroups N_1, N_2, \ldots, N_t for which $N_i \cap \prod_{j \neq i} N_j = \{e\} \subset G$ for all i, and for which $|G| = |N_1| \cdot |N_2| \cdots |N_t|$.
- (i) Prove that is $n_i \in N_i$ and $i \neq j$ then $n_i \cdot n_j = n_j \cdot n_i$. (Hint: Think about $n_i n_j n_i^{-1} n_j^{-1}$.)
- (ii) Prove that G is isomorphic to the direct product $N_1 \times N_2 \times \cdots \times N_t$.