Bookmark

Show all steps: (

A Book of Abstract Algebra (2nd Edition)

Chapter 28, Problem 1EG

 $\{T \cap U = \mathbf{d} \mid \mathbf{d} \in T \text{ and } \mathbf{d} \in U\}$

	Problem
	spaces of V . The sum of T and U , denoted by $T+U$, is the set of all vectors a
+ b , where $\mathbf{a} \in T$ a	
	and $T \cap U$ are subspaces of V .
V is said to be the C $\oplus U$.	direct sum of T and U if $V = T + U$ and $T \cap U = \{0\}$. In that case, we write $V = \{0\}$.
	Step-by-step solution
	Step 1 of 5
It is already shown	that V represents a vector space and T and U represents sub space.
Comment	
	Step 2 of 5
Given subsets are s	set of all vectors which can be expressed as
Comment	
	Step 3 of 5
$\{T + U = \mathbf{c} = \mathbf{a} + \mathbf{b} \mid$	$\mathbf{a} \in T, \mathbf{b} \in U$

Step 4 of 5

A 2 step check is needed to determine if given subset is a subspace. First determine if any linear combination of functions in subset is closed under given operation. Second, determine if 0 satisfies given conditions.

For *T+U*,

STEP 1: For any 2 vectors \mathbf{c}_1 and \mathbf{c}_2 ,

$$\mathbf{c}_1 = \mathbf{a}_1 + \mathbf{b}_1 \tag{1}$$

$$\mathbf{c}_2 = \mathbf{a}_2 + \mathbf{b}_2 \tag{2}$$

Combining above 2 equations, s(1) + t(2) gives

$$s\mathbf{c}_1 + t\mathbf{c}_2 = s(\mathbf{a}_1 + \mathbf{b}_1) + t(\mathbf{a}_2 + \mathbf{b}_2)$$

$$\Rightarrow$$
 $s\mathbf{c}_1 + t\mathbf{c}_2 = s\mathbf{a}_1 + s\mathbf{b}_1 + t\mathbf{a}_2 + t\mathbf{b}_2$

$$\Rightarrow s\mathbf{c}_1 + t\mathbf{c}_2 = s\mathbf{a}_1 + t\mathbf{a}_2 + s\mathbf{b}_1 + t\mathbf{b}_2$$

$$\Rightarrow s\mathbf{c}_1 + t\mathbf{c}_2 = \mathbf{a}' + \mathbf{b}'$$

Thus linear combination of 2 element in subset lies in subset.

STEP 2: Check if 0 element satisfies given condition,

$$0 = 0 + 0$$

Hence given set (S+T) represents a subspace

Comment

Step 5 of 5

For, $T \cap U$

STEP 1: For any 2 vectors \mathbf{c}_1 and \mathbf{c}_2 ,

$$\mathbf{d}_1 \mid \mathbf{d}_1 \in S, \ \mathbf{d}_1 \in T$$

$$\mathbf{d}, |\mathbf{d}, \in S, \mathbf{d}_1 \in T$$

Combining above 2 equations, s(1) + t(2) gives

$$s\mathbf{d}_1 + t\mathbf{d}_2 \in S$$
, $s\mathbf{d}_1 + t\mathbf{d}_2 \in T$

$$\Rightarrow$$
 $s\mathbf{d}_1 + t\mathbf{d}_2 \in S \cap T$

As S and T are vector spaces themselves, linear combinations of vectors in S and T also lies in S and T.

Thus linear combination of 2 element in subset lies in subset.

STEP 2: Check if **0** element satisfies given condition, $\mathbf{0} \in S, \mathbf{0} \in T \Rightarrow \mathbf{0} + \mathbf{0} = \mathbf{0} \in S \cap T$ Hence given set $(S \cap T)$ represents a subspace

Comment