Martingales à temps discret

• Dans toute la suite, on travaille sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

1. Processus, filtrations, temps d'arrêt.

- Un processus (stochastique) est une suite $X = (X_n)_{n \ge 0}$ de variables aléatoires à valeurs dans le même espace.
- Une filtration est une suite $(\mathcal{F}_n)_{n\geq 0}$ de sous-tribus de \mathcal{F} croissante (pour l'inclusion) : pour tout $n\in \mathbb{N}$, $\mathcal{F}_n\subset \mathcal{F}_{n+1}$.
 - * On note $\mathcal{F}_{\infty} = \sigma(\mathcal{F}_n, n \in \mathbf{N})$.
- Un processus $X = (X_n)_{n\geq 0}$ est adapté par rapport à une filtration $(\mathcal{F}_n)_{n\geq 0}$ si, pour tout entier n, X_n est \mathcal{F}_n -mesurable. Il est dit prévisible par rapport à $(\mathcal{F}_n)_{n\geq 0}$ si, X_n est \mathcal{F}_{n-1} -mesurable pour tout n.
 - * Si besoin $\mathcal{F}_{-1} = \{\emptyset, \Omega\}.$
- Si X est un processus, on appelle filtration naturelle de X, la filtration définie par

$$\mathcal{F}_n^X = \sigma(X_0, \dots, X_n), \quad n \in \mathbf{N}.$$

- \star C'est la plus petite filtration qui fait de X un processus adapté.
- * Si X est adapté par rapport à $(\mathcal{F}_n)_{n\geq 0}$, alors $\mathcal{F}_n^X\subset \mathcal{F}_n$ pour tout n.

Définition. Une variable aléatoire T à valeurs dans $\overline{\mathbf{N}} = \mathbf{N} \cup \{+\infty\}$ est un temps d'arrêt de la filtration $(\mathcal{F}_n)_{n\geq 0}$ si, pour tout entier n, $\{T\leq n\}\in\mathcal{F}_n$.

• Si T est un temps d'arrêt,

$$\mathcal{F}_T = \{ A \in \mathcal{F}_{\infty} : \forall n \in \mathbb{N}, A \cap \{ T \leq n \} \in \mathcal{F}_n \}$$

est une tribu appelée tribu des événements antérieurs à T.

- * Définitions équivalentes en remplaçant $\{T \leq n\}$ par $\{T = n\}$.
- **Exemple(s).** 1. Soient S et T deux TA. Alors $S \vee T = \max(S, T)$ et $S \wedge T = \min(S, T)$ sont aussi des temps d'arrêt. En effet,

$${S \lor T \le n} = {S \le n} \cap {T \le n}, \quad {S \land T > n} = {S > n} \cap {T > n}.$$

2. Soient B un ensemble borélien et T_B le temps d'entrée dans B de $(X_n)_{n\geq 0}$ i.e.

$$T_B = \inf\{n \ge 0 : X_n \in B\}, \quad \inf \emptyset = +\infty.$$

Alors T_B est un temps d'arrêt de la filtration naturelle de X puisque

$$\{T_B = n\} = \{X_0 \notin B\} \cap \ldots \cap \{X_{n-1} \notin B\} \cap \{X_n \in B\}.$$

3. Si S et T sont deux TA avec $S \leq T$, alors $\mathcal{F}_S \subset \mathcal{F}_T$. En effet, si $A \in \mathcal{F}_S$, pour tout n,

$$A \cap \{T \le n\} = A \cap \{S \le n\} \cap \{T \le n\}$$

appartient à \mathcal{F}_n puisque $A \cap \{S \leq n\}$ et $\{T \leq n\}$ sont aussi éléments de \mathcal{F}_n .

4. Si X est un processus adapté et T un TA fini, alors la v.a., notée X_T , définie par $X_T(\omega) = X_{T(\omega)}(\omega)$ est \mathcal{F}_T -mesurable. En effet, si B est un borélien et n un entier,

$${X_T \in B} \cap {T = n} = {X_n \in B} \cap {T = n} \in \mathcal{F}_n.$$

- Soient T un TA et X une v.a. \mathcal{F}_{∞} -mesurable. X est \mathcal{F}_{T} -mesurable si et seulement si, pour tout entier n, $X\mathbf{1}_{T\leq n}$ (ou $X\mathbf{1}_{T=n}$) est \mathcal{F}_{n} -mesurable.
- Si X est intégrable, alors

$$\mathbb{E}\left[X \mid \mathcal{F}_{T}\right] = \sum_{n \geq 0} \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] \mathbf{1}_{T=n} + \mathbb{E}\left[X \mid \mathcal{F}_{\infty}\right] \mathbf{1}_{T=+\infty} = \sum_{n \in \overline{\mathbf{N}}} \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] \mathbf{1}_{T=n}.$$

En effet, si Y est \mathcal{F}_T -mesurable et bornée, $Y\mathbf{1}_{T=n}$ est \mathcal{F}_n -mesurable pour tout $n \in \overline{\mathbf{N}}$ et

$$Y \sum \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] \mathbf{1}_{T=n} = \sum \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] Y \mathbf{1}_{T=n} = \sum \mathbb{E}\left[XY \mathbf{1}_{T=n} \mid \mathcal{F}_{n}\right],$$

et prenant l'espérance

$$\mathbb{E}\left[Y \sum \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] \mathbf{1}_{T=n}\right] = \sum \mathbb{E}\left[\mathbb{E}\left[XY \mathbf{1}_{T=n} \mid \mathcal{F}_{n}\right]\right] = \sum \mathbb{E}\left[XY \mathbf{1}_{T=n}\right] = \mathbb{E}\left[XY\right].$$

2. Martingales and co.

Définition. Soient $X = (X_n)_{n\geq 0}$ un processus et $(\mathcal{F}_n)_{n\geq 0}$ une filtration. On dit que X est une martingale relativement à $(\mathcal{F}_n)_{n\geq 0}$ si

- 1. X est adapté par rapport à $(\mathcal{F}_n)_{n\geq 0}$: pour tout entier n, X_n est \mathcal{F}_n -mesurable;
- 2. X est intégrable : pour tout entier n, $\mathbb{E}[|X_n|] < \infty$;
- 3. Pour tout entier $n, X_n = \mathbb{E}[X_{n+1} | \mathcal{F}_n]$.
- Un processus réel, adapté par rapport à $(\mathcal{F}_n)_{n\geq 0}$ et intégrable, est une surmartingale par rapport à $(\mathcal{F}_n)_{n\geq 0}$ si

$$\forall n \in \mathbf{N}, \qquad X_n \geq \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right].$$

• Un processus réel, adapté par rapport à $(\mathcal{F}_n)_{n\geq 0}$ et intégrable, est une sous-martingale par rapport à $(\mathcal{F}_n)_{n\geq 0}$ si

$$\forall n \in \mathbf{N}, \qquad X_n \leq \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right].$$

- Remarque(s). 1. Lorsque la filtration n'est pas précisée, il est entendu qu'il s'agit de la filtration naturelle du processus considéré.
 - 2. X est une surmartingale ssi -X est une sous-martingale.
 - 3. X est une martingale ssi X est à la fois une surmartingale et une sous-martingale.
 - 4. Si X est une sous-martingale, pour tous entiers n et $p, X_n \leq \mathbb{E}[X_{n+p} \mid \mathcal{F}_n]$. En effet,

$$\mathbb{E}\left[X_{n+2} \mid \mathcal{F}_n\right] = \mathbb{E}\left[\mathbb{E}\left[X_{n+2} \mid \mathcal{F}_{n+1}\right] \mid \mathcal{F}_n\right] \ge \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] \ge X_n.$$

- \star Si X est une sous-martingale, $n \longmapsto \mathbb{E}[X_n]$ est croissante;
- \star Si X est une surmartingale, $n \longmapsto \mathbb{E}[X_n]$ est décroissante;
- \star Si X est une martingale, $n \longmapsto \mathbb{E}[X_n]$ est constante.
- **Exemple(s).** 1. Soient Z une variable aléatoire intégrable et $(\mathcal{F}_n)_{n\geq 0}$ une filtration. On pose, pour $n \in \mathbb{N}$, $X_n = \mathbb{E}[Z | \mathcal{F}_n]$. X est une martingale. Les points 1 et 2 de la définition sont évidents. Pour le 3^e ,

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = \mathbb{E}\left[\mathbb{E}\left[Z \mid \mathcal{F}_{n+1}\right] \mid \mathcal{F}_n\right] = \mathbb{E}\left[Z \mid \mathcal{F}_n\right] = X_n.$$

- * Il faut retenir que « la » martingale est $\mathbb{E}[\text{TRUC} \mid \mathcal{F}_n]$.
- \star En particulier, X est une sous-martingale si le processus est sous « la » martingale :

$$X_n < \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right].$$

2. Soit $(U_n)_{n\geq 1}$ une suite de v.a. indépendantes, intégrables et centrées. On pose $S_0=0$, $\mathcal{F}_0=\{\emptyset,\Omega\}$ et, pour tout entier $n\geq 1$,

$$S_n = U_1 + \ldots + U_n, \qquad \mathcal{F}_n = \sigma(U_1, \ldots, U_n).$$

 $S = (S_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ -martingale. Très clairement, S est adapté. S est intégrable car une somme finie de v.a. intégrables est intégrable. Finalement,

$$\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_n\right] - S_n = \mathbb{E}\left[S_{n+1} - S_n \mid \mathcal{F}_n\right] = \mathbb{E}\left[U_{n+1} \mid \mathcal{F}_n\right] \stackrel{\text{indpt.}}{=} \mathbb{E}\left[U_{n+1}\right] \stackrel{\text{centrée}}{=} 0.$$

3. Soient $0 \le p \le 1$ et $(U_n)_{n\ge 1}$ une suite de v.a. i.i.d. de loi donnée par $\mathbb{P}(U_1 = 1) = p$, $\mathbb{P}(U_1 = -1) = 1 - p$. Avec les notations de l'exemple précédent, S est adapté par rapport à $(\mathcal{F}_n)_{n\ge 0}$ et intégrable. De plus, pour $n \in \mathbb{N}$,

$$\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_n\right] - S_n = \mathbb{E}\left[S_{n+1} - S_n \mid \mathcal{F}_n\right] = \mathbb{E}\left[U_{n+1} \mid \mathcal{F}_n\right] \stackrel{\text{indpt.}}{=} \mathbb{E}\left[U_{n+1}\right] = 2p - 1.$$

S est une sous-martingale ssi $p \ge 1/2$, une surmartingale ssi $p \le 1/2$, une martingale ssi p = 1/2.

4. Les notations sont celles de l'exemple précédent avec p = 1/2. On considère, pour tout $n \ge 1$, $X_n = e^{S_n}$. X est une sous-martingale. Les deux premiers points sont évidents et, pour $n \ge 0$,

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = \mathbb{E}\left[e^{S_n} e^{U_{n+1}} \mid \mathcal{F}_n\right] = e^{S_n} \mathbb{E}\left[e^{U_{n+1}} \mid \mathcal{F}_n\right] \stackrel{\text{i.}}{=} e^{S_n} \mathbb{E}\left[e^{U_{n+1}}\right] = X_n \cosh(1).$$

Comme $X_n \ge 0$ et $\cosh(1) \ge 1$, X est une sous-martingale.

Inégalité de Jensen.

• Une fonction g est convexe si, pour tous réels x, y et $\lambda \in [0, 1]$,

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y).$$

- * On a alors $g(x) \ge g(x_0) + g'(x_0)(x x_0)$ (« la courbe est au dessus de la tangente »)
- \star Si g est dérivable, g est convexe ssi g' est croissante.
- La fonction $x \mapsto |x|^p$ est convexe dès que $p \ge 1$ et $x \mapsto e^{ax}$ est convexe pour tout réel a.

Proposition (Inégalité de Jensen). Soient X une v.a. intégrable et \mathcal{G} une sous-tribu de \mathcal{F} . Soit $g: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction convexe telle que $\mathbb{E}\left[|g(X)|\right] < \infty$. Alors,

$$g(\mathbb{E}[X | \mathcal{G}]) \leq \mathbb{E}[g(X) | \mathcal{G}].$$

 \bullet En particulier, lorsque g est convexe

$$g\left(\mathbb{E}\left[X\right]\right) \leq \mathbb{E}\left[g(X)\right].$$

* Par exemple,

$$\mathbb{E}\left[X\right]^2 \leq \mathbb{E}\left[X^2\right], \qquad e^{\mathbb{E}\left[X\right]} \leq \mathbb{E}\left[e^X\right].$$

Corollaire. Soient X une $(\mathcal{F}_n)_{n\geq 0}$ -martingale et $g: \mathbf{R} \longrightarrow \mathbf{R}$ une fonction convexe. On suppose que, pour tout $n\geq 0$, $g(X_n)$ est intégrable. Alors $(g(X_n))_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ -sousmartingale.

Démonstration. Pour tout $n \geq 0$, on a, d'après l'inégalité de Jensen

$$\mathbb{E}\left[g(X_{n+1}) \mid \mathcal{F}_n\right] \stackrel{\text{Jensen}}{\geq} g\left(\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right]\right) = g(X_n).$$

• Soit X est une sous-martingale; si g est convexe et **croissante** alors g(X) est une sous-martingale.

Exemple(s). Si X est une martingale ou une sous-martingale positive alors, pour $p \ge 1$, $(|X_n|^p)_{n>0}$ est une sous-martingale dès que $\mathbb{E}[|X_n|^p] < \infty$ pour tout entier n.

3. Théorème d'arrêt.

Définition. Une variable aléatoire T à valeurs dans $\overline{\mathbf{N}} = \mathbf{N} \cup \{+\infty\}$ est un temps d'arrêt de la filtration $(\mathcal{F}_n)_{n\geq 0}$ si, pour tout entier n, $\{T\leq n\}\in\mathcal{F}_n$.

• Si T est un temps d'arrêt,

$$\mathcal{F}_T = \{ A \in \mathcal{F}_{\infty} : \forall n \in \mathbb{N}, A \cap \{ T \leq n \} \in \mathcal{F}_n \}$$

est une tribu appelée tribu des événements antérieurs à T.

- * Définitions équivalentes en remplaçant $\{T \leq n\}$ par $\{T = n\}$.
- Soient T un TA et X une v.a. \mathcal{F}_{∞} -mesurable. X est \mathcal{F}_{T} -mesurable si et seulement si, pour tout entier n, $X\mathbf{1}_{T\leq n}$ (ou $X\mathbf{1}_{T=n}$) est \mathcal{F}_{n} -mesurable.
- Si X est intégrable, alors

$$\mathbb{E}\left[X \mid \mathcal{F}_{T}\right] = \sum_{n \geq 0} \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] \mathbf{1}_{T=n} + \mathbb{E}\left[X \mid \mathcal{F}_{\infty}\right] \mathbf{1}_{T=+\infty} = \sum_{n \in \overline{\mathbf{N}}} \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] \mathbf{1}_{T=n}.$$

En effet, si Y est \mathcal{F}_T -mesurable et bornée, $Y\mathbf{1}_{T=n}$ est \mathcal{F}_n -mesurable pour tout $n \in \overline{\mathbf{N}}$ et

$$Y \sum \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] \mathbf{1}_{T=n} = \sum \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] Y \mathbf{1}_{T=n} = \sum \mathbb{E}\left[XY \mathbf{1}_{T=n} \mid \mathcal{F}_{n}\right],$$

et prenant l'espérance

$$\mathbb{E}\left[Y \sum \mathbb{E}\left[X \mid \mathcal{F}_{n}\right] \mathbf{1}_{T=n}\right] = \sum \mathbb{E}\left[\mathbb{E}\left[XY \mathbf{1}_{T=n} \mid \mathcal{F}_{n}\right]\right] = \sum \mathbb{E}\left[XY \mathbf{1}_{T=n}\right] = \mathbb{E}\left[XY\right].$$

Lemme. Soient X une $(\mathcal{F}_n)_{n\geq 0}$ -martingale et $H=(H_n)_{n\geq 1}$ un processus prévisible et bornée. On pose $M_0=0$ et, pour $n\geq 1$,

$$M_n = H_1(X_1 - X_0) + \ldots + H_n(X_n - X_{n-1}).$$

Alors, M est une $(\mathcal{F}_n)_{n\geq 0}$ -martingale.

Démonstration. Pour $n \geq 0$, on a

$$\mathbb{E}\left[M_{n+1}-M_n\,|\,\mathcal{F}_n\right]=\mathbb{E}\left[H_{n+1}\left(X_{n+1}-X_n\right)\,|\,\mathcal{F}_n\right]\stackrel{H}{=}^{\text{prév.}}H_{n+1}\,\mathbb{E}\left[X_{n+1}-X_n\,|\,\mathcal{F}_n\right]\stackrel{X\text{ mart.}}{=}0.$$

Remarque(s). Si X est une sous-martingale (resp. une surmartingale) et H prévisible bornée et **positif**, M est une sous-martingale (resp. une surmartingale). En effet,

$$\mathbb{E}\left[M_{n+1}-M_n\,|\,\mathcal{F}_n\right]=\mathbb{E}\left[H_{n+1}\left(X_{n+1}-X_n\right)\,|\,\mathcal{F}_n\right]\stackrel{H}{=}^{\text{pr\'ev.}}H_{n+1}\,\mathbb{E}\left[X_{n+1}-X_n\,|\,\mathcal{F}_n\right]\geq 0,$$

car X est une sous-martingale et H est positif (le sens des inégalités est préservé).

• Rappelons que si X est un processus adapté et T un TA fini, alors la v.a. X_T définie par $X_T(\omega) = X_{T(\omega)}(\omega)$ est \mathcal{F}_T —mesurable

Définition (Processus arrêté au temps T). Soient X un processus adapté et T un temps d'arrêt par rapport à la filtration $(\mathcal{F}_n)_{n\geq 0}$. On appelle processus arrêté au temps T le processus X^T défini par

$$X_n^T = X_{n \wedge T}$$
, i.e. $X_n^T(\omega) = X_{n \wedge T(\omega)}(\omega)$, $n \in \mathbf{N}$.

Proposition. Soient T un temps d'arrêt et X une martingale (resp. une sous-martingale, resp. une surmartingale) par rapport à la filtration $(\mathcal{F}_n)_{n\geq 0}$. Alors, $X^T = (X_{n\wedge T})_{n\geq 0}$ est une martingale (resp. une sous-martingale, resp. une surmartingale) par rapport à $(\mathcal{F}_n)_{n\geq 0}$.

 $D\acute{e}monstration$. Remarquons que pour tous n et p entiers,

$$X_{n \wedge p} = X_0 + \sum_{k=1}^{n} \mathbf{1}_{k \le p} (X_k - X_{k-1}).$$

Par conséquent, comme pour k et T entiers, $T \ge k$ équivaut à T > k - 1, nous avons

$$X_n^T = X_0 + \sum_{k=1}^n \mathbf{1}_{k \le T} (X_k - X_{k-1}) = X_0 + \sum_{k=1}^n \mathbf{1}_{T > k-1} (X_k - X_{k-1}).$$

Le processus $(H_k = \mathbf{1}_{T>k-1})_{k\geq 1}$ étant prévisible, borné et positif le lemme précédent (ou la remarque qui suit) montrer que X^T est une martingale (resp. une sous-martingale, resp. une surmartingale) par rapport à $(\mathcal{F}_n)_{n\geq 0}$.

Théorème (Théorème d'arrêt de Doob). Soient $X = (X_n)_{n\geq 0}$ une sous-martingale, S et T deux temps d'arrêt par rapport à $(\mathcal{F}_n)_{n\geq 0}$. On suppose que $S \leq T$ et que T est borné i.e. il existe $k \in \mathbb{N}$ tel que $T \leq k$. Alors,

$$X_S \leq \mathbb{E}\left[X_T \mid \mathcal{F}_S\right].$$

Remarque(s). 1. Si X est une martingale alors $X_S = \mathbb{E}[X_T | \mathcal{F}_S]$.

2. Ce résultat s'utilise souvent avec S=0 et en prenant l'espérance, c'est à dire, dans le cas d'une martingale

$$\mathbb{E}\left[X_T\right] = \mathbb{E}\left[X_0\right]. \tag{1}$$

Démonstration. Puisque $S \leq T \leq k$, on a

$$\mathbb{E}\left[X_T \mid \mathcal{F}_S\right] = \sum_{p=0}^k \mathbb{E}\left[X_T \mid \mathcal{F}_p\right] \, \mathbf{1}_{S=p} = \sum_{p=0}^k \mathbb{E}\left[X_{T \wedge k} \mid \mathcal{F}_p\right] \, \mathbf{1}_{S=p},$$

et comme X^T est une sous-martingale,

$$\mathbb{E}\left[X_T \mid \mathcal{F}_S\right] \ge \sum_{p=0}^k X_{T \wedge p} \, \mathbf{1}_{S=p} = \sum_{p=0}^k X_{T \wedge S} \, \mathbf{1}_{S=p} = X_{T \wedge S} = X_S.$$

Remarque(s). La formule (1) est vraie dans les cas suivants :

- 1. T est borné p.s.;
- 2. T est fini p.s. et $\sup_{n>0} |X_n|$ est intégrable;
- 3. T est intégrable et il existe une constante $C \geq 0$ telle que :

$$\forall n \geq 0$$
, $\mathbb{E}[|X_{n+1} - X_n| | \mathcal{F}_n] \leq C$ p.s.

6

Si on ne peut pas appliquer l'un de ces résultats, on essaie de passer à la limite, quand $n \to +\infty$, dans la relation $\mathbb{E}[X_{T \wedge n}] = \mathbb{E}[X_0]$.

Exemple(s) (Ruine du joueur). Deux joueurs s'affrontent dans une partie de pile ou face. La fortune initiale du 1^{er} joueur est de a euros, celle du second b euros. Le jeu s'arrête lorsque l'un des deux joueurs est ruiné. La fortune du 1^{er} joueur est donnée par

$$S_n = a + \sum_{i=1}^n U_i$$
, avec $(U_i)_{i \ge 1}$ i.i.d. et $\mathbb{P}(U_1 = 1) = \mathbb{P}(U_1 = -1) = 1/2$.

La fin de la partie est donnée par le temps d'arrêt

$$T = \inf\{n \ge 1 : S_n = 0 \text{ ou } S_n = a + b\} = \inf\{n \ge 1 : S_n(a + b - S_n) = 0\}.$$

 $(S_n)_{n\geq 0}$ et $(S_n^2-n)_{n\geq 0}$ sont des martingales; il vient

$$\mathbb{E}\left[S_{n\wedge T}^2 - n \wedge T\right] = a^2, \qquad \mathbb{E}\left[S_{n\wedge T}\right] = a.$$

Comme $0 \le S_{n \wedge T} \le a + b$, on obtient par convergence monotone,

$$\mathbb{E}\left[T\right] = \lim_{n \to \infty} \mathbb{E}\left[T \wedge n\right] = \lim_{n \to \infty} \mathbb{E}\left[S_{n \wedge T}^2\right] - a^2 \le (a+b)^2 - a^2.$$

T est intégrable et donc fini p.s.; en particulier, $S_{n \wedge T} \longrightarrow S_T$ et comme $0 \leq S_{n \wedge T} \leq a + b$, on obtient facilement par passage à la limite,

$$\mathbb{E}\left[S_T\right] = a, \qquad \mathbb{E}\left[S_T^2 - T\right] = a^2.$$

Comme S_T est à valeurs dans $\{0, a+b\}$,

$$\mathbb{E}[S_T] = (a+b)\mathbb{P}(S_T = a+b), \qquad \mathbb{E}[T] = (a+b)^2\mathbb{P}(S_T = a+b) - a^2.$$

Finalement,

$$\mathbb{P}(S_T = a + b) = \frac{a}{a+b}, \quad \mathbb{P}(S_T = 0) = \frac{b}{a+b}, \quad \mathbb{E}[T] = ab.$$

4. Inégalités maximales.

Proposition. Soit $(X_n)_{n\geq 0}$ une sous-martingale. Pour tout $a\geq 0$,

$$a \mathbb{P}\left(\max_{0 \le k \le n} X_k \ge a\right) \le \mathbb{E}\left[X_n^+\right].$$

Remarque(s). 1. Rappelons que $x^+ = \max(x, 0) \le |x|$.

2. Cette inégalité généralise l'inégalité de Markov : si $X \ge 0$ et $a \ge 0$, $a\mathbb{P}(X \ge a) \le \mathbb{E}[X]$.

Démonstration. Soit a > 0. On considère le temps d'arrêt $S = \inf\{0 \le k \le n : X_k \ge a\} \land n$ et on note $X_n^* = \max_{0 \le k \le n} X_k$. Comme S est borné par n, on a d'après le théorème d'arrêt,

$$\mathbb{E}\left[X_{n}\right] \geq \mathbb{E}\left[X_{S}\right] = \mathbb{E}\left[X_{S}\mathbf{1}_{X_{n}^{*} \geq a}\right] + \mathbb{E}\left[X_{S}\mathbf{1}_{X_{n}^{*} < a}\right].$$

Par définition de S, lorsque $X_n^* \ge a$, $X_S \ge a$ et quand $X_n^* < a$, S = n. Par conséquent,

$$\mathbb{E}\left[X_{n}\right] \geq a\mathbb{P}\left(X_{n}^{*} \geq a\right) + \mathbb{E}\left[X_{n}\mathbf{1}_{X_{n}^{*} < a}\right]$$

et l'on déduit que

$$a\mathbb{P}\left(X_{n}^{*} \geq a\right) \leq \mathbb{E}\left[X_{n} \, \mathbf{1}_{X_{n}^{*} \geq a}\right] \leq \mathbb{E}\left[X_{n}^{+}\right].$$

Remarque(s). En fait, on a montré que

$$a \mathbb{P}(X_n^* \ge a) \le \mathbb{E}\left[X_n \mathbf{1}_{X_n^* \ge a}\right], \quad \text{où} \quad X_n^* = \max_{0 \le k \le n} X_k.$$
 (2)

Corollaire. Soit $(X_n)_{n\geq 0}$ une sous-martingale. Pour tout $a\geq 0$,

$$a \mathbb{P}\left(\sup_{k\geq 0} X_k \geq a\right) \leq \sup_{n\geq 0} \mathbb{E}\left[X_n^+\right].$$

Démonstration. Soit a>0. Comme $\{\sup_{k\geq 0}X_k>a\}=\bigcup_{n\geq 0}\{\max_{0\leq k\leq n}X_k>a\}$ et que les ensembles $\{\max_{0\leq k\leq n}X_k>a\}$ sont croissants

$$\mathbb{P}\left(\sup_{k\geq 0} X_k > a\right) = \lim_{n\to\infty} \mathbb{P}\left(\max_{0\leq k\leq n} X_k > a\right) \leq a^{-1} \sup_{n\geq 0} \mathbb{E}\left[X_n^+\right].$$

Pour tout $\varepsilon > 0$, comme $\{\sup_{k \geq 0} X_k \geq a\} \subset \{\sup_{k \geq 0} X_k > a - \varepsilon\}$, on a

$$\mathbb{P}\left(\sup_{k\geq 0} X_k \geq a\right) \leq \mathbb{P}\left(\sup_{k\geq 0} X_k > a - \varepsilon\right) \leq (a - \varepsilon)^{-1} \sup_{n\geq 0} \mathbb{E}\left[X_n^+\right],$$

et on obtient quand $\varepsilon \to 0^+$

$$\mathbb{P}\left(\sup_{k\geq 0} X_k \geq a\right) \leq a^{-1} \sup_{n\geq 0} \mathbb{E}\left[X_n^+\right].$$

Corollaire. Soient $p \ge 1$ et $(X_n)_{n\ge 0}$ une martingale ou une sous-martingale positive telle que $X_n \in L^p$ pour tout n. Alors, pour tout $a \ge 0$,

$$a^p \mathbb{P}\left(\max_{0 \le k \le n} |X_k| \ge a\right) \le \mathbb{E}\left[|X_n|^p\right].$$

Démonstration. Si X est une martingale ou une sous-martingale positive, alors $|X|^p$ est une sous-martingale. Comme, pour $p \ge 1$, $\{\max_{0 \le k \le n} |X_k| \ge a\} = \{\max_{0 \le k \le n} |X_k|^p \ge a^p\}$, on a

$$a^p \mathbb{P}\left(\max_{0 \le k \le n} |X_k| \ge a\right) = a^p \mathbb{P}\left(\max_{0 \le k \le n} |X_k|^p \ge a^p\right) \le \mathbb{E}\left[|X_n|^p\right].$$

• Ce dernier corollaire permet de retrouver une inégalité classique :

Inégalité de Kolmogorov. Soient Y_1, \ldots, Y_n des variables aléatoires indépendantes de carré intégrable et centrées. Pour a > 0,

$$\mathbb{P}\left(\max_{0\leq k\leq n}|Y_1+\ldots+Y_k|\geq a\right)\leq a^{-2}\sum_{k=1}^n\mathbb{E}\left[Y_k^2\right].$$

Théorème. Soient p > 1 et $(X_n)_{n \ge 0}$ une martingale ou une sous-martingale positive telle que $X_n \in L^p$ pour tout n. Alors,

$$\mathbb{E}\left[\max_{0 \le k \le n} |X_k|^p\right] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}\left[|X_n|^p\right].$$

- Le résultat n'est pas vrai pour p = 1.
- Par convergence monotone, on obtient

$$\mathbb{E}\left[\sup_{n\geq 0}|X_n|^p\right] \leq \left(\frac{p}{p-1}\right)^p \sup_{n\geq 0} \mathbb{E}\left[|X_n|^p\right].$$

- * Pour une martingale (ou une sous-martingale positive) bornée dans L^p, la variable aléatoire $\sup_{n>0} |X_n| \in L^p$.
- La preuve utilise le résultat suivant : si X est une va positive, pour p > 0,

$$\mathbb{E}\left[X^p\right] = p \, \int_0^\infty t^{p-1} \, \mathbb{P}(X > t) \, dt.$$

 \star En particulier, si X est entière

$$\mathbb{E}[X] = \sum_{i \ge 0} \mathbb{P}(X > i) = \sum_{k \ge 1} \mathbb{P}(X \ge k).$$

Démonstration. Remarquons que, comme X est une martingale ou une sous-martingale positive, |X| est une sous-martingale. Soit $\in \mathbb{N}$. Notons $Y_n = \max_{0 \le k \le n} |X_k|$. D'après la formule précédente et la majoration (2)

$$\mathbb{E}[Y_n^p] = p \int_0^\infty t^{p-1} \mathbb{P}(Y_n > t) \, dt \le p \int_0^\infty t^{p-2} \mathbb{E}\left[|X_n| \mathbf{1}_{Y_n > t}\right] \, dt,$$
$$= p \, \mathbb{E}\left[|X_n| \int_0^\infty t^{p-2} \mathbf{1}_{Y_n > t} \, dt\right] = \frac{p}{p-1} \, \mathbb{E}\left[|X_n| \, Y_n^{p-1}\right].$$

D'après l'inégalité de Hölder, on a

$$\mathbb{E}\left[\left|X_{n}\right|Y_{n}^{p-1}\right] \leq \left(\mathbb{E}\left[\left|X_{n}\right|^{p}\right]\right)^{1/p} \left(\mathbb{E}\left[Y_{n}^{p}\right]\right)^{(p-1)/p},$$

et par conséquent,

$$\mathbb{E}[Y_n^p] \le \frac{p}{p-1} \left(\mathbb{E}\left[|X_n|^p \right] \right)^{1/p} \left(\mathbb{E}\left[Y_n^p \right] \right)^{(p-1)/p}.$$

On en déduit alors que

$$\left(\mathbb{E}[Y_n^p]\right)^{1/p} \le \frac{p}{p-1} \left(\mathbb{E}\left[|X_n|^p\right]\right)^{1/p}$$

ce qui donne le résultat annoncé.

5. Convergence.

• Il s'agit de déterminer si $\lim_{n\to\infty} X_n$ existe et dans ce cas de préciser en quel sens.

5.1. Martingales de carré intégrable.

Proposition (Décomposition de Doob). Soient $(\mathcal{F}_n)_{n\geq 0}$ une filtration et $X=(X_n)_{n\geq 0}$ une processus adapté et intégrable i.e. $X_n\in L^1$ pour tout n. Alors, il existe une martingale $(M_n)_{n\geq 0}$ et un processus prévisible $(V_n)_{n\geq 0}$ tels que : $M_0=V_0=0$ et

$$\forall n \in \mathbf{N}, \quad X_n = X_0 + M_n + V_n.$$

De plus, cette décomposition est unique.

 $D\acute{e}monstration$. Commençons par l'existence. Supposons que cette décomposition existe. Alors, V étant prévisible, comme M est une martingale,

$$V_{n} - V_{n-1} = \mathbb{E} \left[V_{n} - V_{n-1} \, | \, \mathcal{F}_{n-1} \right],$$

= $\mathbb{E} \left[X_{n} - X_{n-1} \, | \, \mathcal{F}_{n-1} \right] - \mathbb{E} \left[M_{n} - M_{n-1} \, | \, \mathcal{F}_{n-1} \right] = \mathbb{E} \left[X_{n} - X_{n-1} \, | \, \mathcal{F}_{n-1} \right].$

On pose donc $M_0 = V_0 = 0$ et, pour $n \ge 1$,

$$V_n = \sum_{k=1}^n (V_k - V_{k-1}) = \sum_{k=1}^n \mathbb{E} [X_k - X_{k-1} \mid \mathcal{F}_{k-1}], \qquad M_n = X_n - X_0 - V_n.$$

De manière évidente, V a toutes les propriétés requises. Pour voir que M est une martingale, il suffit de remarquer que

$$M_n - M_{n-1} = X_n - X_{n-1} - \mathbb{E}[X_n - X_{n-1} | \mathcal{F}_{n-1}], \text{ et donc } \mathbb{E}[M_n - M_{n-1} | \mathcal{F}_{n-1}] = 0.$$

Supposons que deux décompositions existent : $X_n = X_0 + M_n + V_n = X_0 + M'_n + V'_n$, $n \in \mathbb{N}$. Pour tout n, $M_n - M'_n = V'_n - V_n$ et M - M' est une martingale prévisible. Par suite, pour tout n,

$$M_n - M_n' \stackrel{\text{mart.}}{=} \mathbb{E}\left[M_{n+1} - M_{n+1}' \mid \mathcal{F}_n\right] \stackrel{\text{pr\'ev.}}{=} M_{n+1} - M_{n+1}'.$$

Donc, pour tout $n, M_n - M_n' = M_0 - M_0' = 0$ dont on déduit que $V_n = V_n'$.

- Remarquons que
 - * X est une martingale ssi V = 0 i.e. pour tout $n, V_n = 0$ p.s.
 - * X est une sous-martingale ssi V est croissant i.e. pour tout $n, V_n \leq V_{n+1}$ p.s.
 - $\star~X$ est une sur martingale ssi V est décroissant i.e. pour tout $n,\,V_n \geq V_{n+1}$ p.s.
- Lorsque X est une martingale de carré intégrable, X^2 est une sous-martingale
 - * La décomposition de Doob de X^2 s'écrit $X_n^2 = X_0^2 + M_n + A_n$ avec M martingale et A prévisible croissant

* On a, pour tout $n \ge 1$,

$$A_n = \sum_{k=1}^n \mathbb{E}\left[X_k^2 - X_{k-1}^2 \mid \mathcal{F}_{k-1}\right] = \sum_{k=1}^n \mathbb{E}\left[\left(X_k - X_{k-1}\right)^2 \mid \mathcal{F}_{k-1}\right].$$

- * Le processus A s'appelle le crochet prévisible de X : il est noté $A_n = \langle X \rangle_n$
- * Le processus A est souvent plus simple que X^2
- * Si $X_n = U_1 + \ldots + U_n$ avec $(U_n)_{n \ge 1}$ i.i.d. de loi $\mathbb{P}(U_1 = \pm 1) = 1/2$, alors $A_n = n$.

Théorème. Soit $(X_n)_{n\geq 0}$ une martingale bornée dans L^2 i.e. $\sup_{n\geq 0} \mathbb{E}\left[|X_n|^2\right] < +\infty$. Alors $(X_n)_{n\geq 0}$ converge p.s. et dans L^2 vers une v.a. X_∞ de carré intégrable.

• Ceci signifie qu'il existe $N \in \mathcal{F}$ tel que $\mathbb{P}(N) = 0$ et

$$\forall \omega \in N^c, \quad \lim_{n \to \infty} X_n(\omega) = X_\infty(\omega), \quad \text{ et } \quad \lim_{n \to \infty} \mathbb{E}\left[|X_n - X_\infty|^2\right] = 0.$$

• Les accroissements d'une martingale de L² sont orthogonaux : pour $i \leq j \leq k \leq l$, $\mathbb{E}\left[(X_l - X_k)(X_j - X_i)\right] = 0$. En effet,

$$\mathbb{E}\left[(X_l - X_k)(X_j - X_i)\right] = \mathbb{E}\left[\mathbb{E}\left[(X_l - X_k)(X_j - X_i) \mid \mathcal{F}_k\right]\right]$$
$$= \mathbb{E}\left[(X_j - X_i)\mathbb{E}\left[(X_l - X_k) \mid \mathcal{F}_k\right]\right] = 0.$$

* En particulier, en écrivant $X_n = X_0 + \sum_{k=1}^n (X_k - X_{k-1})$, on obtient

$$\mathbb{E}\left[|X_n|^2\right] = \mathbb{E}\left[|X_0|^2\right] + \sum_{k=1}^n \mathbb{E}\left[\left(X_k - X_{k-1}\right)^2\right],$$

$$\sup_{n \ge 0} \mathbb{E}\left[|X_n|^2\right] = \mathbb{E}\left[|X_0|^2\right] + \sum_{k>1} \mathbb{E}\left[\left(X_k - X_{k-1}\right)^2\right].$$

• Finalement, pour tous entiers $r \geq n$, $\mathbb{E}[(X_r - X_n)^2] = \mathbb{E}[|X_r|^2] - \mathbb{E}[|X_n|^2]$. En effet,

$$\mathbb{E}\left[(X_r - X_n)^2 \,|\, \mathcal{F}_n \right] = \mathbb{E}\left[|X_r|^2 \,|\, \mathcal{F}_n \right] - 2X_n \,\mathbb{E}\left[X_r \,|\, \mathcal{F}_n \right] + |X_n|^2,$$

$$= \mathbb{E}\left[|X_r|^2 \,|\, \mathcal{F}_n \right] - 2X_n \,X_n + |X_n|^2 = \mathbb{E}\left[|X_r|^2 \,|\, \mathcal{F}_n \right] - |X_n|^2.$$

 $D\acute{e}monstration$. Comme $(X_n^2)_{n\geq 0}$ est une sous-martingale, la suite $(\mathbb{E}\left[X_n^2\right])_{n\geq 0}$ est croissante. Puisque $\sup_{n\geq 0}\mathbb{E}\left[|X_n|^2\right]<+\infty$, cette suite est également bornée. Par conséquent, elle converge dans \mathbf{R} , disons vers $x_\infty^2:\lim_{n\to\infty}\mathbb{E}\left[X_n^2\right]=x_\infty^2$.

• Pour $r \ge n$,

$$\mathbb{E}\left[(X_r - X_n)^2\right] = \mathbb{E}\left[|X_r|^2\right] - \mathbb{E}\left[|X_n|^2\right] \le x_\infty^2 - \mathbb{E}\left[|X_n|^2\right].$$

Donc $(X_n)_{n\geq 0}$ est une suite de Cauchy dans L². Elle converge vers X_{∞} dans L².

• Pour tout $\omega \in \Omega$, $V_n = \sup_{p \geq n, q \geq n} |X_p(\omega) - X_q(\omega)|$ est décroissante et minorée par 0. Elle converge vers $V(\omega) \geq 0$. On a, pour tout $n \geq 0$, comme $V_n \leq 2 \sup_{r \geq n} |X_r - X_n|$,

$$\mathbb{E}\left[V^2\right] \leq \mathbb{E}\left[V_n^2\right] \leq 4 \,\mathbb{E}\left[\sup_{r \geq n} |X_r - X_n|^2\right] \leq 16 \,\sup_{r \geq n} \mathbb{E}\left[|X_r - X_n|^2\right]$$

d'après l'inégalité maximale de Doob. Par suite, pour tout $n \geq 0$,

$$\mathbb{E}\left[V^2\right] \le 16 \left(\sup_{r \ge n} \mathbb{E}\left[|X_r|^2\right] - \mathbb{E}\left[|X_n|^2\right]\right) = 16 \left(x_\infty^2 - \mathbb{E}\left[|X_n|^2\right]\right).$$

D'où V=0 p.s. : p.s. la suite $(X_n)_{n\geq 0}$ est de Cauchy dans ${\bf R}$ et donc convergente.

• La suite $(X_n)_{n\geq 0}$ converge donc presque sûrement et dans L² vers X_{∞} .

5.2. Cas général.

Théorème. Soit $(X_n)_{n\geq 0}$ une sous-martingale bornée dans L^1 i.e. $\sup_{n\geq 0} \mathbb{E}\left[|X_n|\right] < +\infty$. Alors, $(X_n)_{n\geq 0}$ converge presque sûrement vers une v.a. X_∞ intégrable.

Corollaire. Soit $(X_n)_{n\geq 0}$ une surmartingale positive. Alors, $(X_n)_{n\geq 0}$ converge presque sûrement vers une v.a. X_{∞} intégrable et

$$\forall n \geq 0, \qquad \mathbb{E}\left[X_{\infty} \mid \mathcal{F}_n\right] \leq X_n.$$

• Ce corollaire s'applique en particulier pour une martingale positive. On a dans ce cas

$$\forall n \geq 0, \qquad \mathbb{E}\left[X_{\infty} \mid \mathcal{F}_n\right] \leq X_n.$$

* L'inégalité ne devient pas une égalité en général.

Théorème. Soient $p \geq 1$, $(\mathcal{F}_n)_{n\geq 0}$ une filtration et X une v.a. dans L^p . Alors $(\mathbb{E}[X \mid \mathcal{F}_n])_{n\geq 0}$ converge presque sûrement et dans L^p vers $\mathbb{E}[X \mid \mathcal{F}_\infty]$.

Théorème. Soit $(X_n)_{n\geq 0}$ une $(\mathcal{F}_n)_{n\geq 0}$ -martingale bornée dans L^1 . On a équivalence entre :

- 1. $(X_n)_{n\geq 0}$ converge vers X_{∞} dans L^1 ;
- 2. Pour tout $n \geq 0$, $X_n = \mathbb{E}[X_\infty | \mathcal{F}_n]$;
- 3. Il existe $X \in L^1$ telle que, pour tout $n, X_n = \mathbb{E}[X \mid \mathcal{F}_n]$.