TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7368P, TA7368F

AUDIO POWER AMPLIFIER

The TA7368P and TA7368F are suitable for the audio power amplifier of portable cassette tape recorder and radio.

FEATURES

• Very few external parts (Only three capacitors)

Low quiescent current : $I_{CCQ} = 6.6 \text{mA}$ (Typ.) ($V_{CC} = 6V$)

Output Power

TA7368P

: $P_{out} = 720 \text{mW} \text{ (Typ.) } (V_{CC} = 6V, R_L = 4\Omega, THD = 10\%)$

: $P_{out} = 450$ mW (Typ.) ($V_{CC} = 6V$, $R_L = 8\Omega$, THD = 10%)

Voltage gain : $G_V = 40dB \text{ (Typ.)}$

Operating supply voltage range : V_{CC} = 2~10V (Ta = 25°C)

Weight SIP9-P-2.54A

: 0.92g (Typ.) : 0.09g (Typ.) SSOP10-P-225-1.00

BLOCK DIAGRAM

2001-06-25

MAXIMUM RATINGS (Ta = 25°C)

CHARACTER	ISTIC	SYMBOL	RATING	UNIT	
Supply Voltage		Vcc	14	V	
Power Dissipation	TA7368P	D- (Noto)	900	mW	
	TA7368F	P _D (Note)	400	IIIVV	
Operating Tempera	ature	T _{opr}	− 25~75	°C	
Storage Temperatu	ire	T _{stg}	- 55∼150	°C	

(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $7.2 \text{mW}/^{\circ}C$ for TA7368P and of $3.2 \text{mW}/^{\circ}C$ for TA7368F.

ELECTRICAL CHARACTERISTICS FOR TA7368P

(Unless otherwise specified, V_{CC} = 6V, f = 1kHz, R_q = 600 Ω , R_L = 4 Ω , Ta = 25°C)

			<u> </u>								
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT				
	lccQ	_	V _{CC} = 3V, V _{in} = 0	_	5.5	_					
Quiescent Current			$V_{CC} = 6V$, $V_{in} = 0$	_	6.6	15	mA				
			$V_{CC} = 9V$, $V_{in} = 0$	_	7.5	18	1				
Output Power			$V_{CC} = 3V$, $R_L = 4\Omega$, $THD = 10\%$	_	120	_					
	Pout	_	$V_{CC} = 6V$, $R_L = 4\Omega$, $THD = 10\%$	500	720	_	mW				
			$V_{CC} = 6V$, $R_L = 8\Omega$, $THD = 10\%$	300	450	_					
			$V_{CC} = 9V$, $R_L = 8\Omega$, $THD = 10\%$	800	1100	_					
			$V_{CC} = 9V$, $R_{L} = 16\Omega$, $THD = 10\%$	450	610	_					
Total Harmonic	THD		P = 100m\W		0.3	1.0	%				
Distortion	Ind		P _{out} = 100mW	_	0.3	1.0	70				
Voltage Gain	GV	_	$V_{in} = 0.5 \text{mV}_{rms}$	37	40	43	dB				
Output Noise Voltage	V _{no}	_	$R_g = 10k\Omega$, BPF = 20Hz~20kHz	_	0.2	0.5	mV_{rms}				
Ripple Rejection Ratio	RR	_	$f_r = 100$ Hz, $V_r = 0.3$ V $_{rms}$ Without C $_{RIP}$	_	25	_	dB				
Input Resistance	R _{IN}	_	_	_	27	_	kΩ				

TERMINAL VOLTAGE FOR TA7368P

Typical terminal voltage at no signal with test circuit. ($V_{CC} = 6V$, Ta = 25°C) [Unit : V]

Terminal No.	1	2	3	4	5	6	7	8	9
DC Voltage (V)	0	2.40	0.62	0.64	0	0	2.61	NC	6.0

3 2001-06-25

ELECTRICAL CHARACTERISTICS FOR TA7368F

(Unless otherwise specified, V_{CC} = 6V, f = 1kHz, R_g = 600 Ω , R_L = 8 Ω , Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent Current	^l ccQ	_	$V_{CC} = 3V, V_{in} = 0$ $V_{CC} = 6V, V_{in} = 0$ $V_{CC} = 9V, V_{in} = 0$	_ _ _	5.5 6.6 7.5	— 15 18	mA
Output Power	Pout	_	$V_{CC} = 3V$, $R_L = 4\Omega$, THD = 10% $V_{CC} = 6V$, $R_L = 8\Omega$, THD = 10% $V_{CC} = 9V$, $R_L = 16\Omega$, THD = 10%	— 300 450	120 450 610	_ _ _	mW
Total Harmonic Distortion	THD	_	P _{out} = 100mW	_	0.3	1.0	%
Voltage Gain	GV	_	$V_{in} = 0.5 \text{mV}_{rms}$	37	40	43	dB
Output Noise Voltage	V _{no}	_	$R_g = 10k\Omega$, BPF = 20Hz~20kHz	_	0.2	0.5	mV_{rms}
Ripple Rejection Ratio	RR	_	$f_r = 100$ Hz, $V_r = 0.3V_{rms}$, Without C_{RIP}	_	25	_	dB
Input Resistance	R _{IN}	_	_	_	27	_	$\mathbf{k}\Omega$

TERMINAL VOLTAGE FOR TA7368F

Typical terminal voltage at no signal with test circuit. ($V_{CC} = 6V$, Ta = 25°C)

[Unit:V]

Terminal No.	1	2	3	4	5	6	7	8	9	10
DC Voltage (V)	NC	6.0	NC	0	2.40	0.62	0.64	0	0	2.61