ECONDIGO Section 8

Oct. 18, 2024

Yiwei Sun

Motivation convenient symbol for random variables and random vectors which converge in probability to zero or are stochastically bounded.

DEF Non Stochastic Orders

For nonstochastic sequence Xn and an

- (1) (small-oh) $x_n = o(a_n)$ if $\frac{x_n}{a_n} \to o$ as $n \to \infty$ 4 * as $n \to \infty$, x_n is eventually small compared to an"
- (2) (big-oh) $x_n = O(an)$ if \exists finite scalars (M, N_m) s.t. $\forall n \ge N_m, \lfloor \frac{x_n}{an} \rfloor < M$. $\forall x_n \text{ and } a_n \text{ may be of the same order, but } \frac{x_n}{a_n}$ is always bounded for sufficiently large n.

Important special case arise an= (1,.... 1), then

- (i) $\chi_n = o(1)$ if $\chi_n \to 0$ as $n \to \infty$.
- (2) $\chi_n = O(1)$ if $\limsup_{n \to \infty} \chi_n \in \infty$ χ_n is bounded uniformly in n.

DEF Stochastic Orders

For stochastic sequence In and nonstochastic sequence an,

- () (small oh-p) $x_n = o_p(a_n)$ if $\frac{x_n}{a_n} \stackrel{P}{\to} o$.
 - 5 * Xn is of smaller stochastic order than an"
- (2) (big oh-p) $\chi_n = \mathcal{O}_P(a_n)$ if $\forall \epsilon > 0$, $\exists M_{\epsilon}$, $N_{\epsilon, M}$ s.t. $P(|\frac{\chi_n}{a_n}| > M_{\epsilon}) \leq \epsilon$, $\forall n > N_{\epsilon, M}$

4 * Xn is of the same stochastic order as an".

Again, consider special case an= f1,... 13.

1)
$$\chi_n = op(1)$$
 if $\chi_n \stackrel{P}{\to} o$ \to ' $\chi_n vanishes''$

② $x_n = O_{P(1)}$ if $\forall \varepsilon > 0$, \exists constant M_{ε} s.t. $\limsup_{n \to \infty} P(|x_n| > M_{\varepsilon}) \in \varepsilon$. $y = x_n$ is stochastically bounded".

Note: If Xn is stochastically bounded, this doesn't imply a deterministic upper bound on Xn, even for large n.

What is means is Xn can't take arbitrarily high values with non-vanishing probability.

<u>Notes</u>: Op(1) is a weaker notion than op(1), in the sense that $x_n = op(1) \implies x_n = Op(1)$, not the reverse.

· A = typical" instance of xn = Op(1) is that Xn = Z, where Z is some Known random variable.

ex. If xn is a studentized test Statistic, let Z~N(0.1).

-> very large values of Z are possible but very unlikely.

- Another important use of the term is $\sqrt[2]{n}$ Consistent".
 - An estimation error $(\hat{\theta} \Theta_o)$ is said to be of stochastic order $n^{-1/2}$. If $\hat{\theta} \Theta_o = O_P(n^{-1/2}) \iff \sqrt{n}(\hat{\theta} \Theta_o) = O_P(1)$.
- By Chebyshev inequality, we can show $(\hat{\theta} \theta_{\circ}) = O_{P}(\sqrt{MSE(\hat{\theta})})$ Proof. For each E>0, Pick $M_{E} = (\frac{1}{E})^{1/2}$.

By chebyshev inequality:
$$P\left(\left|\frac{\hat{\theta}-\theta_{o}}{\sqrt{MsE(\hat{\theta})}}\right|>M_{E}\right)=P\left(\left|\hat{\theta}-\theta_{o}\right|>\sqrt{MsE(\hat{\theta})}M_{E}\right)$$

$$\leq\frac{E\left[\left(\hat{\theta}-\theta_{o}\right)^{2}\right]}{MSE(\hat{\theta})M_{E}^{2}}\frac{MSE(\hat{\theta})}{s^{2}}=E. \forall n>N_{E,M}$$

Algebra of stochastic orders

(1) If $x_n = O_P(a_n)$, $Y_n = O_P(b_n)$, then

•
$$X_nY_n = O_P(a_nb_n)$$

- 2 Replace O with o everywhere in 1), Still holds
- 3 If $x_n = O_p(a_n)$, $Y_n = O_p(b_n)$, then $x_n Y_n = O_p(a_n b_n)$
- 4) If $X_n = \mathcal{O}_p(a_n)$, and $\frac{a_n}{b_n} \to 0$, then $X_n = o_p(b_n)$

$$op(i) + op(i) = op(i)$$

$$op(i) + Op(i) = Op(i)$$

$$Op(i) + Op(i) = Op(i)$$

$$op(i) Op(i) = op(i)$$

$$Op(i) Op(i) = Op(i)$$

- 8* Let $\{X_1 \dots X_n\}$ and $\{Y_1 \dots Y_n\}$ be <u>mutually independent</u> sequences of <u>iid</u> random variables, such that $\mathbb{E}(X_i) = 0$, $\text{var}(X_i) = 1$, $\mathbb{E}(Y_i) = 3$, $\text{var}(Y_i) = 2$. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $\bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$, $\overline{XY} = \frac{1}{n} \sum_{i=1}^n X_i Y_i$. Find the orders in probability (the sharpest results possible) of:
 - (a) \bar{X} ,
 - (b) \bar{Y} ,
 - (c) $(\bar{X})^2$,
 - (d) $(\bar{Y})^3$,
 - (e) \overline{XY} ,
 - (f) $\bar{X} + 2$.

(a) Since
$$E[x_i] = 0 < \infty$$
, iid, by WLLN, $\bar{X} \stackrel{P}{\rightarrow} E[x_i] = 0$
 $\Rightarrow \bar{X} = op(1)$ convergence

To find the sharpest stochastic order, want to find the rate of

$$\bar{x} - 0 = \bar{x} = O_P(\sqrt{MSE(\bar{x})})$$

$$= O_P(\sqrt{(bias(\bar{x}))^2 + var(\bar{x})})$$

$$= 0 bic \bar{x}$$
is unbiased
$$= O_P(\sqrt{\frac{\sigma^2}{N}})$$

$$= O_P(\sqrt{\frac{\sigma}{N}}) = O_P(\sqrt{\frac{1}{N}})$$

$$(\vec{x})_{qO} = \vec{x} = 0$$

(b)
$$\vec{Y} = \vec{E}[Y_i] = 3$$
, $var(Y_i) = 2$.
By WILN, $\vec{Y} \xrightarrow{P} \vec{E}[Y_i] = 3 \neq 0$
 $=b \quad \vec{Y} = \mathcal{O}_P(1)$
or equivalently, $\vec{Y} \xrightarrow{P} 3 \Rightarrow \vec{Y} = 3 + op(1)$
 $= \mathcal{O}_P(1) + op(1)$
 $= \mathcal{O}_P(1)$

(c)
$$(\bar{X})^2$$

From (a), $\bar{X} = O_P(\frac{1}{\sqrt{n}})$
 $(\bar{X})^2 = \bar{X} \cdot \bar{X} = O_P(\frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}}) = O_P(\frac{1}{n})$

by O_P algebra

(d)
$$(\bar{Y})^3$$

From (b), $\bar{Y} = O_P(1)$
 $(\bar{Y})^3 = \bar{Y} \cdot \bar{Y} \cdot \bar{Y} = O_P(1 \cdot 1 \cdot 1) = O_P(1)$

Since Xi, Yi mutually independent,
$$E[xY] = E[x]E[Y] = 0$$

 $Var(xY) = E[(xY)^2] - (E[xY])^2$
 $= E[x^2Y^2]$
 $= E[x^2]E[Y^2]$
 $= (Var(x) + (E[x])^2) (Var(Y) + (E[Y])^2) < \infty$
By chebyshev inequality, $\rightarrow xY - E[xY] = O(xE(xY))$
 $xY - E[xY] = O(xE(xY))$
 $\Rightarrow xY = O(xE(xY))$

(f)
$$\bar{x} + z$$

From (a), $\bar{x} = O_P(\sqrt{n})$
 $\bar{x} + z = O_P(\sqrt{n}) + O_P(1) = O_P(max {\sqrt{n}, 1}) = O_P(1)$.