# 第二章 广义线性模型的指数族分布

#### Generalized linear models

- Suppose we observe data {y<sub>i</sub>}, which is a realization of a set of independent RVs {Y<sub>i</sub>}.
- A generalized linear model (GLM) has the following components.
  - A random component,

$$Y_i \sim f(y_i|\theta_i,\phi),$$

where  $f(\cdot)$  is a pdf/pmf for an exponential family.

– A **link function**  $g(\cdot)$  which satisfies

$$\eta_i = g(\mu_i),$$

where  $\mu_i = E(Y_i)$ .

A systematic or linear predictor component,



### The exponential family

A family of pdfs or pmfs is called an exponential family if

$$f(y|\theta) = a(\theta)b(y) \exp\left(\sum_{i=1}^k w_i(\theta)t_i(y)\right), y \in A,$$

#### where we assume

- A does not depend on some k-dim vector,  $\theta$ .
- a(θ) > 0 is a real valued function which does not depend on
   y.
- $-w_i(\theta)(i=1,...,k)$  are real valued functions which do not depend on y.
- b(y) ≥ 0 is a real valued function which does not depend on  $\theta$ .
- $-t_i(y)(i=1,...,k)$  are real valued functions which do not depend on  $\theta$ .

#### The canonical form

• Instead of  $\theta$  being the parameters we can let  $\eta_i = w_i(\theta)(i = 1, ..., n)$  be the **canonical** or **natural** parameters and the pdf or pmf becomes

$$f(y|\eta) = a^*(\eta)b(y) exp\left(\sum_{i=1}^k \eta_i t_i(y)\right), y \in A.$$

This equational form is not unique.

# Examples of exponential families

- All these distributions are exponential families:
  - Normal
  - Gamma
  - Beta
  - Inverse Gaussian
  - Binomial
  - Poisson
  - Negative Binomial

### **Examples**

Normal distribution:

$$f(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right).$$

Binomial distribution:

$$f(y|p) = \binom{m}{y} p^{y} (1-p)^{m-y}$$

#### A counter-example

•  $f(y|\theta) = \theta^{-1} \exp(1 - (y/\theta))$ ,  $0 < \theta < y < \infty$  is not an exponential family.

# Sufficient statistics for $\eta$

- Suppose we have a set of independent RVs  $\{Y_i\}$ , with  $Y_i \sim f(y_i|\eta)$ , (in the canonical form).
- Then

$$\prod_{i=1}^{n} f(y_i|\eta)$$

$$= \prod_{i=1}^{n} \left[ a(y_i)b^*(\eta) \exp\left(\sum_{j=1}^{k} \eta_j t_j(y_i)\right) \right]$$

$$= \left(\prod_{i=1}^{n} a(y_i)\right) (b^*(\eta))^n \exp\left(\sum_{j=1}^{k} \eta_j \sum_{i=1}^{n} t_j(y_i)\right).$$

• Hence  $\{t_j(\mathbf{y}) = \sum_{i=1}^n t_j(y_i) : j = 1, ..., n\}$  is a set of sufficient statistics for  $\eta$ , where  $\mathbf{y} = (y_1, ..., y_n)$ .



### Likelihood for exponential families

From the previous slide we see that the likelihood function is

$$L(\boldsymbol{\eta}|\boldsymbol{y}) = \prod_{i=1}^{n} f(y_i|\boldsymbol{\eta})$$

$$= \left(\prod_{i=1}^{n} a(y_i)\right) (b^*(\boldsymbol{\eta}))^n \exp\left(\sum_{j=1}^{k} \eta_j t_j(\boldsymbol{y})\right).$$

and thus the log-likelihood is

$$I(\boldsymbol{\eta}|\boldsymbol{y}) = \sum_{i=1}^{n} \log a(y_i) + n \log b^*(\boldsymbol{\eta}) + \sum_{j=1}^{k} \eta_j t_j(\boldsymbol{y}).$$

#### The GLM setup

- We often use a specific notation for the exponential family due to Aitkin, et al (1989).
- Suppose  $\{Y_i : i = 1, ..., n\}$  are a set of independent RVs with pdf/pmf

$$f(y_i|\theta_i,\phi) = \exp\left(\frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i,\phi)\right).$$

- $-\theta$  is the **canonical** parameter.
- $-\phi$  is the **scale** parameter.
- Also assume there is a fixed function  $g(\cdot)$  such that  $\eta_i = g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta}$  where  $\mu_i = E(Y_i | X_i)$ .
- We will show that  $\theta_i$  and  $\mu_i$  are related.



#### Is *f* an exponential family?

- If  $\phi$  is fixed (known) then  $f(\cdot)$  is an exponential family.
- It may not be an exponential family if  $\phi$  is unknown.

#### Linear models as a GLM

Let

$$a(\phi)=\phi,$$
  $b( heta_i)= heta_i^2/2,$   $c(y,\phi)=-rac{1}{2}(y^2/\phi+\log(2\pi\phi)).$ 

Then

$$f(y_i|\theta_i,\phi) = \exp\left(\frac{y_i\theta_i - \theta_i^2/2}{\phi} - \frac{1}{2}\left[\frac{y^2}{\phi} + \log(2\pi\phi)\right]\right)$$
$$= (2\pi\phi)^{-1/2} \exp\left(\frac{2y_i\theta_i - \theta_i^2 - y_i^2}{2\phi}\right)$$
$$= (2\pi\phi)^{-1/2} \exp\left(\frac{-(y_i - \theta_i)^2}{2\phi}\right),$$

which is the normal density.

We obtain the linear model if we let

$$\eta_i = \theta_i = \mu_i = E(Y_i) = \mathbf{x}_i^T \boldsymbol{\beta}$$
, and  $\phi = \sigma^2$ .

# Mean and variance of $Y_i$

• Suppose that  $Y_i \sim f(y_i|\theta_i,\phi)$ . Then we will show that

$$E(Y_i) = b^{'}(\theta_i);$$
 $var(Y_i) = b^{''}(\theta_i)a(\phi),$ 

where we define

$$b^{'}(\theta_i) = \frac{\partial}{\partial \theta_i} b(\theta_i);$$

$$b^{''}(\theta_i) = \frac{\partial^2}{\partial \theta_i^2} b(\theta_i).$$

• First we check for  $Y_i \sim N(\mu_i, \sigma^2)$ :

### The likelihood function for $Y_i$

The likelihood function for Y<sub>i</sub> is

$$egin{aligned} L( heta_i|y_i) &= f(y_i| heta_i,\phi) \ &= \exp\left(rac{y_i heta_i - b( heta_i)}{a(\phi)} + c(y_i,\phi)
ight). \end{aligned}$$

The log likelihood function is thus

$$I(\theta_i|y_i) = \frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i, \phi).$$

Taking the derivative with respect to μ<sub>i</sub> we have

$$\frac{\partial}{\partial \theta_{i}}I(\theta_{i}|y_{i})=\frac{1}{a(\phi)}[y_{i}-b^{'}(\theta_{i})].$$



### The likelihood function for $Y_i$

• Using the identity  $E\left[\frac{\partial}{\partial \theta_i}I(\theta_i|y_i)\right] = 0$  if follows that

$$0 = \frac{1}{a(\phi)} [E(Y_{i}) - b^{'}(\theta_{i})].$$

and for  $a(\phi) > 0$ 

$$E(Y_i) = b'(\theta_i)$$

# The second derivative of the log-likelihood

Now

$$\frac{\partial^2}{\partial \theta_i^2} I(\theta_i | \mathbf{y}_i) = -\frac{\mathbf{b}''(\theta_i)}{\mathbf{a}(\phi)}$$

Using the identity,

$$-E\left[\frac{\partial^2}{\partial \theta_i^2}I(\theta_i|\mathbf{y}_i)\right] = E\left[\frac{\partial}{\partial \theta_i}I(\theta_i|\mathbf{y}_i)\right]^2$$

we obtain

$$\frac{b^{\prime\prime}(\theta_i)}{\mathsf{a}(\phi)} = \frac{\mathsf{E}[\mathsf{Y}_i - b^{\prime}(\theta_i)]^2}{\mathsf{a}(\phi)^2}$$

i.e., 
$$b''(\theta_i) = \frac{E[Y_i - E(Y_i)]^2}{a(\phi)}$$

i.e., 
$$var(Y_i) = b^{"}(\theta_i)a(\phi)$$

• Thus variance of  $Y_i$  depends on the canonical parameters  $\theta_i$  ('the mean'), and the scaling parameter,  $\phi$ 

### Example: Binomial

- Suppose  $Y_i (i = 1, ..., n)$  are independent binomial,  $B(n, p_i)RV_s$ .
- Then

$$f(y_i|p_i) = \binom{n}{y_i} p_i^{y_i} (1-p_i)^{n-y_i}$$

$$= \left(\frac{p_i}{1-p_i}\right)^{y_i} \binom{n}{y_i} (1-p_i)^n$$

$$= \exp\left(y_i \log\left(\frac{p_i}{1-p_i}\right) + n_i \log(1-p_i) + \log\binom{n}{y_i}\right)$$

Let

$$\theta_i = \log\left(\frac{p_i}{1 - p_i}\right),$$

so that

$$p_i = \frac{e^{\theta_i}}{1 + e^{\theta_i}}.$$



# Example: Binomial

Since

$$\log(1-p_i) = \log\left(\frac{1}{1+e^{\theta_i}}\right),\,$$

we have

$$f(y_i|p_i,\phi) = \exp\left(\frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i,\phi)\right).$$

where we let

$$egin{aligned} a(\phi) &= \phi, \ \phi &= 1, \ b( heta_i) &= n ext{log}(1 + ext{e}^{ heta_i}), \ c(y_i, \phi) &= ext{log}inom{n}{y_i}. \end{aligned}$$

# Example: Checking the moments

• The two derivatives of  $b(\theta_i)$  are

$$\begin{aligned} b^{'}(\theta_i) &= \frac{ne^{\theta_i}}{1 + e^{\theta_i}} = np_i \\ b^{''}(\theta_i) &= \frac{n\left[e^{\theta_i}(1 + e^{\theta_i}) - e^{2\theta_i}\right]\right]}{(1 + e^{\theta_i})^2} \\ &= \frac{ne^{\theta_i}}{(1 + e^{\theta_i})^2} \\ &= np_i(1 - p_i) \end{aligned}$$

Check:

$$E(Y_i) = b^{'}(\theta_i) = np_i$$
$$var(Y_i) = b^{''}(\theta_i)a(\phi) = np_i(1 - p_i)$$

• In this case the variance function,  $V(\mu_i)$ , is

$$V(\mu_i) = \frac{\mu_i(n - \mu_i)}{n}$$

#### Example: Poisson

- Suppose  $Y_i (i = 1, ..., n)$  are independent Poisson,  $Po(\lambda_i)RV_s$ .
- Then

$$f(y_i|\lambda_i,\phi) = \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!}$$
  
=  $\exp(y_i \log(\lambda_i) - \lambda_i - \log(y_i!)),$ 

• Let  $\theta_i = \log(\lambda_i)$ . Then  $\lambda_i = e^{\theta_i}$  and

$$f(y_i|\lambda_i,\phi) = \exp(y_i\theta_i - e^{\theta_i} - \log(y_i!)),$$
  
=  $\exp(\frac{y_i\theta_i - b(\theta_i)}{a(\phi)} + c(y_i,\phi)),$ 

where we let

$$a(\phi) = \phi,$$
 $\phi = 1,$ 
 $b(\theta_i) = e^{\theta_i},$ 
 $c(v_i, \phi) = \log(v_i)$ 

#### Example: Poisson

• The two derivative of  $b(\theta_i)$  are

$$b^{'}(\theta_i) = e^{\theta_i},$$
 $b^{''}(\theta_i) = e^{\theta_i},$ 

• The variance function,  $V(\mu_i) = \mu_i$ .

#### Other distributions

Gamma, Inverse Gaussian etc.

#### The link function

• The **link function** is a function  $g(\cdot)$  such that

$$\eta_i = g(\mu_i),$$

where  $\mu_i = E(Y_i)$ .

- We have already showed that  $\mu_i = b'(\theta_i)$ .
- Thus,  $g(\cdot)$  links the mean,  $\mu_i$  or the canonical parameter,  $\theta_i$ , to  $\eta_i$ .
- We normally assume that  $g(\cdot)$  is a bijective, continuous and differentiable function.

-Why?



#### The canonical link

- Definition: The **canonical link** is the function  $g(\cdot)$  such that  $\eta_i = \theta_i$ .
- This implies that

$$\eta_{i} = g(b^{'}(\theta_{i})) = \theta_{i}.$$

Thus  $g(b'(\cdot))$  must be the identity function.

- Example:
  - 1.Normal: $\eta_i = \theta_i = \mu_i$ .

This is the identity link function.

2.**Binominal**, $B(m_i, p_i)$  divided by  $m_i$ :

$$\eta_i = \theta_i = \ln(\frac{p_i}{1-p_i}) = \ln(\frac{\mu_i}{1-\mu_i}).$$

This is the **logit link** function (log odds ratio).

3.**Possion**:
$$\eta_i = \theta_i = \ln(\lambda_i) = \ln(\mu_i)$$
.

This is the log link function.

