1:市性数 ≥ 1(xi ≤ x) 表示样本中小于等于x的个数。

3程: Fn→>F 条件: n→∞.

 $\overline{VDB} : E[1(x_i \leq x)] = I P_r(x_i \leq x) + O(1 - P_r(x_i \leq x))$ $= P_r(x_i \leq x)$ $Var(1(x_i \leq x)) = (I - P_r(x_i \leq x))^2 P_r(x_i \leq x)$ $+ (O - P_r(x_i \leq x))^2 (I - P_r(x_i \leq x))$ = P(I - P)[(I - P) + P] = P(I - P) $E[\frac{1}{n} \sum_{i=1}^{n} 1(x_i \leq x)] = \frac{1}{n} n P = P = F(x)$ $Var(\frac{1}{n} \sum_{i=1}^{n} 1(x_i \leq x)) = \frac{1}{n^2} n P(I - P) = \frac{1}{n} P(I - P) \longrightarrow O$ ## For $\overline{M} : S = F$ \overline{M}

Bootstrap 思想

用样本屏绕计量,作为对真实值的估计、估计误差多大?

例: 東n=計算Xi 作品物值U份估计.

 \bar{X}_n 的误差(标(接) 是 $\mathrm{Se}(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$ 因为

 $Var(\overline{\chi}_{N}) = \frac{1}{N^{2}}(N\sigma^{2}) = \frac{\sigma^{2}}{N}$

再用 σ 的估计量,比如 $\hat{\sigma} = \frac{1}{h} = \frac{n}{h} \left(x_i - \bar{x}_i \right)^2 代入 f_n$,即可得 \bar{x}_i 的标准差.

但有时事情不这么简单

任给一统计量 $T_n = g(x_1, \dots, x_n)$, $se(T_n)$ 未必可简单写出. 也即 $\int (T_n - E(T_n))^2 dF(x) \equiv Var_F(T_n)$ 未知.

用 Var_{Fn}(Tn) 代替?

想法不错,但Varpn(Tn)就能简单皆出吗?

我们强行军吧:

o从成了,…,加中再抽样,也即再次或下的一个抽样分布(然…,从)

o it $\{x^{*}, -, x^{*}\}$ 生成 B次, $T^{*}=g(x^{*}, -, x^{*})$ 就有3

T*, ..., T*

 $Var_{Boot} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{nb}^* - \frac{1}{B} \sum_{r=1}^{B} T_{nr}^* \right)^2$

 $Var_{F}(T_{n}) \underset{\text{perf}}{\sim} Var_{F_{n}}(T_{n}) \underset{\text{perf}}{\sim} Var_{Boot}(T_{n}^{*})$