Numérique et **S**ciences **I**nformatiques

Thème :
Représentation des
données (types de base)

A. Écriture d'un entier naturel dans une base b (b est un entier supérieur ou égal à 2):

Activité 1:

- 1. Calcule le nombre entier $3\times4^3+1\times4^2+2\times4^1+0\times4^0$ (Rappel: $x^0=1$ pour tout nombre x non nul). Ce nombre est écrit comme la somme <u>de puissances de 4</u> multipliées par des entiers <u>compris entre 0 et 3</u>. On dira que ce nombre s'écrit $(3120)_4$ <u>en base 4</u>.
- **2.** A quel nombre entier est égal : **a.** $(3311)_4$. **b.** $(200)_3$. **c.** $(543210)_6$. **d.** $(708)_9$. **e.** $(8439)_{10}$.
- **3.** a. Calcule les puissances de 2 ($2^0 = ...$; $2^1 = ...$; $2^2 = ...$;; $2^7 = ...$).
 - b. Déduis en l'écriture du nombre entier 203 en base 2.
 - c. De la même manière écris 203 en base 5, puis en base 8.
- **4.** a. Quelle est l'écriture de $2\times3^2+2$ en base 3?
 - **b.** Quelle est l'écriture de $4\times3^2+2\times3+5$ en base 3?

<u>Ce qu'il faut savoir</u>: Si N est un entier naturel tel que $N = a_k \times b^k + a_{k-1} \times b^{k-1} + \dots + a_1 \times b^1 + a_0 \times b^0$, b étant un nombre entier naturel supérieur ou égal à 2 et tous les nombres a_i étant <u>des entiers compris</u> <u>entre 0 et b-1</u>, alors on dit que $(a_k a_{k-1} \dots a_1 a_0)_b$ est <u>l'écriture en base b</u> du nombre entier naturel N.

On notera
$$\mathbf{N} = (\boldsymbol{a}_{k} \boldsymbol{a}_{k-1} \dots \boldsymbol{a}_{1} \boldsymbol{a}_{0})_{k}$$
.

<u>Remarque</u>: On utilisera la notation $(\dots, b)_b$ pour préciser dans quelle base est l'écriture. On conviendra que si l'on n'écrit pas cette notation, l'écriture est en base « naturelle », c'est à dire la base 10.

B. Cas particulier de la base 2 :

Activité 2:

On veut écrire le nombre entier naturel 73 en base 2.

Pour cela on va chercher à l'écrire sous la forme $b_n \times 2^n + ... + b_1 \times 2^1 + b_0 \times 2^0$ car ainsi on obtient en base 2 le nombre $(b_n ... b_1 b_0)_2$.

- 1. Écris la division euclidienne de 73 par 2 et l'égalité euclidienne : dividende = quotient × diviseur + reste . Écris ensuite la division euclidienne du quotient obtenu par 2 et l'égalité euclidienne correspondante que tu inséreras dans l'égalité euclidienne précédente. Pour finir poursuis ainsi jusqu'à obtenir un quotient nul.
- 2. Déduis-en l'écriture de 73 sous la forme $b_n \times 2^n + ... + b_1 \times 2^1 + b_0 \times 2^0$, puis son écriture en base 2.

<u>Ce qu'il faut savoir</u>: Pour convertir un entier naturel (qui est en base 10) en base b = a avec $b \ge 2$, on divise cet entier naturel par b = a jusqu'à obtenir un quotient égal à 0.

Le résultat cherché est la juxtaposition des restes du dernier au premier.

Exemple:

1 253 = (10011100101),

Activité 3 : En utilisant la méthode ci-dessus, effectue les conversions ci-dessous.

- 1. Écris 47, puis 53 et 245 en base 2.
- 2. Écris 67, puis 231 et 2 578 en base 7.

C. Cas particulier de la base 16 :

Activité 4 :

- 1. Combien de chiffres différents utilise-t-on pour écrire un nombre en base 2 ?
- 2. Combien de chiffres différents utilise-t-on pour écrire un nombre en base 5 ?
- 3. Combien de chiffres différents utilise-t-on pour écrire un nombre en base 10 ?
- 4. Combien de chiffres différents utilise-t-on pour écrire un nombre en base 12 ? Quel est le problème ?

<u>Ce qu'il faut savoir</u>: Pour convertir un nombre entier naturel N en base 16, il faut l'écrire sous la forme $N = a_k \times 16^k + a_{k-1} \times 16^{k-1} + \dots + a_1 \times 16^1 + a_0 \times 16^0$, les a_i étant <u>des entiers compris entre 0 et 15</u>.

On pose alors $c_i = a_i$ si $0 \le a_i \le 9$ et $c_i = A$, B, C, D, E ou F si $a_i = 10$, 11, 12, 13, 14 ou 15.

Et on dit que $(c_k c_{k-1} \dots c_1 c_0)_{16}$ est <u>l'écriture en base 16</u> ou <u>en hexadécimal</u> du nombre entier naturel N .

On notera
$$N = (c_k c_{k-1} \dots c_1 c_0)_{16}$$
.

Exemple:
$$(A5E)_{16} = 10 \times 16^2 + 5 \times 16^1 + 14 \times 16^0 = 2654.$$

Activité 5 :

- **1.** A quel nombre entier est égal : **a.** $(7DD)_{16}$. **b.** $(2A)_{16}$. **c.** $(4F2C)_{16}$.
- **2.** Écris chaque nombre entier en base 16 : **a.** 62. **b.** 1455. **c.** 8675.

D. Exercices d'application :

Exercice 1:

1. A quel entier est égal : **a.** $(101010101)_2$. **b.** $(111000)_2$. **c.** $(00110011)_2$. **d.** $(101000001)_2$.

2. Convertis en binaire : **a.** 458. **b.** 133. **c.** 47. **d.** 1 024. **e.** 65

Exercice 2:

1. A quel entier est égal : **a.** $(A320)_{16}$. **b.** $(FABE51)_{16}$.

2. Convertis en hexadécimal : a. 2 020. b. 1 234. c. 56 026. d. 64 218.

Exercice 3 : Convertis en binaire les nombres écrits en hexadécimal suivants (On commencera par les convertir en base 10). **a.** $(101010)_{16}$. **b.** $(59A75)_{16}$

Exercice 4:

1. On veut convertir en hexadécimal (1001101)₂. Pour cela, il suffit de compléter le tableau ci-dessous.

Écriture binaire « par paquets de 4 »	0 100	1101			
Écriture décimal « des paquets de 4 »					
Écriture hexadécimale					

On ajoute des « 0 » pour avoir un paquet de 4 chiffres.

Complète ce tableau et convertis $(1001101)_2$ en hexadécimal.

2. En utilisant la même méthode, convertis en hexadécimal les nombres ci-dessous.

a. (1000000011001)₂ . b. (10001000010001)₂ . c. (100110000111)₂ . d. (101110101100)₂ .

Exercice 5:

1. Pose et effectue chacune des opérations ci-dessous en base 2. Pour vérifier, convertis chaque terme des opérations en base 10, refais les opérations en base 10 et compare le résultat avec celui obtenu en base 2. <u>Important :</u> On utilisera le fait que en base 2 on a $(1)_2 + (1)_2 = (10)_2$ pour bien gérer les retenues.

<u>Important</u>: On utilisera le fait que en base 2 on a $(1)_2 + (1)_2 = (10)_2$ pour bien gérer les retenues.

a. $(100011)_2 + (110100)_2$. **b.** $(100101)_2 + (110000)_2$. **c.** $(100011)_2 + (111)_2$. **d.** $(10000000)_2 - (100)_2$.

2. Pose et effectue : **a.** $(98)_{16} + (B9)_{16}$. **b.** $(D23)_{16} + (46 \text{ A})_{16}$. **c.** $(150 \text{ F6})_{16} - (7 \text{ E3 A})_{16}$.

Exercice 6 : Considérons le programme écris ci-dessous en Python.

n = int(input("Entrez un nombre entier"))
b = ""
while n!= 0:
 q = int(n/2)
 b = str(n-q*2)+b
 n = q
print(b)

1. Recopie et complète ce tableau jusqu'à ce que le programme se termine lorsqu'on a choisi n=71 :

q		35	etc
n-q*2		1	etc
b	" "	" 1 "	etc
n	71	35	etc
n!=0	VRAI	VRAI	etc

2. Explique le rôle de ce programme.

3. Tape ce programme sur Python et teste le sur certains résultats de cette fiche d'exercices.