8-4. Show that the ground-state wave function for the Lagrangian of equation (8.78) can be written

$$\Phi_0 = A \exp\left(-\frac{1}{2\hbar} \sum_{\alpha=1}^{N-1} \omega_\alpha Q_\alpha^* Q_\alpha\right) \tag{8.83}$$

(8.82)

(where A is a constant) by starting with the wave function in terms of the real variables Q^c_{α} and Q^s_{α} .

Consider equations (8.67) and (8.82).

$$L = \frac{1}{2} \sum_{j=1}^{N} \dot{q}_{j}^{2} - \frac{\nu^{2}}{2} \sum_{j=1}^{N-1} (q_{j+1} - q_{j})^{2}$$

$$(8.67)$$

$$q_{j}(t) = \sqrt{\frac{2}{N}} \left(\frac{1}{2} Q_{0}^{c}(t) + \sum_{\alpha=1}^{(N-1)/2} \left(Q_{\alpha}^{c}(t) \cos \frac{2\pi\alpha j}{N} + Q_{\alpha}^{s}(t) \sin \frac{2\pi\alpha j}{N} \right) \right)$$