

12 Image Pattern Classification

李东晚

lidx@zju.edu.cn

Contents

- Patterns and Pattern Classes
- Pattern Classification by Prototype Matching
- Optimum (Bayes) Statistical Classifiers
- Neural Networks and Deep Learning
- Deep Convolutional Neural Networks
- Some Additional Details of Implementation

Patterns and Pattern Classes

- Pattern: a spatial arrangement of features
 - Quantitative Pattern
 - Vector
 - Structural Pattern
 - String
 - Tree
 - graph

 Pattern class: a family of patterns that share some common properties

$$\omega_1, \omega_2, \ldots, \omega_W,$$

where W is the number of classes.

Pattern Classification = Recognition

- Patterns
 - Labeled
 - Unlabeled
- Datasets
 - Training set
 - Validation set
 - Test set
- Machine learning
 - Supervised ←→ Labeled data
 - Unsupervised ←→ Unlabeled data

Example

- Iris(鸢尾花卉)数据集,由Fisher于1936年收集整 理,用于多重变量分析实验。包含150个数据,分为 3类 (Setosa, Versicolour, Virginica), 每类50 个数据,每个数据包含4个属性:花萼长度、花萼宽 度、花瓣长度、花瓣宽度。
- 其它比较流行的数据集还有Adult, Wine, Car Evaluation等。

花的构造

Pattern vector

 x_1 = Petal width

 x_2 = Petal length

 x_3 = Sepal width

 x_4 = Sepal length

- A noisy object and its signature
 - Sampling $x_1 = r(\theta_1), x_2 = r(\theta_2), ..., x_n = r(\theta_n)$
 - Statistical moments

Boundary and regional features

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$x_1$$
 = compactness

$$x_2$$
 = circularity

$$x_3$$
 = eccentricity

Texture features

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}$$

$$x_1 = \max \text{ probability}$$

 $x_2 = \text{ correlation}$
 $x_3 = \text{ contrast}$
 $x_4 = \text{ uniformity}$
 $x_5 = \text{ homogeneity}$
 $x_6 = \text{ entropy}$

Moment invariants

The ϕ 's are moment invariants

2022/6/2

11

A set of registered images

Images in spectral bands 4-6

Classification

Example of Pattern String

String of symbols

Example of Pattern Tree

Contents

- Patterns and Pattern Classes
- Pattern Classification by Prototype Matching
- Optimum (Bayes) Statistical Classifiers
- Neural Networks and Deep Learning
- Deep Convolutional Neural Networks
- Some Additional Details of Implementation

Decision-Theoretic Pattern Recognition

Find W decision (discriminant) functions

$$d_1(\mathbf{x}), d_2(\mathbf{x}), \dots, d_W(\mathbf{x})$$
 If $\mathbf{x} \in \omega_i$, then $d_i(\mathbf{x}) > d_i(\mathbf{x})$ $j = 1, 2, \dots, W; j \neq i$

Decision boundary

$$d_{ij}(\mathbf{x}) = d_i(\mathbf{x}) - d_j(\mathbf{x}) = 0$$

$$-d_{ij}(\mathbf{x}) > 0 \Rightarrow \mathbf{x} \in \omega_i$$

$$-d_{ij}(\mathbf{x}) < 0 \Rightarrow \mathbf{x} \in \omega_j$$

Pattern Classification by Prototype Matching

- Each class ← → a prototype pattern vector
- Pattern recognition ← closest class
 - Minimum distance classifier
 - -Correlation

Minimum Distance Classifier

Example prototype of each pattern class

$$\mathbf{m}_j = \frac{1}{N_j} \sum_{\mathbf{x} \in \omega_j} \mathbf{x}_j \qquad j = 1, 2, \dots, W$$

• Euclidean distance $\|\mathbf{a}\| = (\mathbf{a}^T \mathbf{a})^{1/2}$ $D_j(\mathbf{x}) = \|\mathbf{x} - \mathbf{m}_j\|$ j = 1, 2, ..., W

Decision function

$$d_j(\mathbf{x}) = \mathbf{x}^T \mathbf{m}_j - \frac{1}{2} \mathbf{m}_j^T \mathbf{m}_j \qquad j = 1, 2, \dots, W$$

Minimum Distance Classifier

Decision boundary

$$d_{ij}(\mathbf{x}) = d_i(\mathbf{x}) - d_j(\mathbf{x})$$

= $\mathbf{x}^T (\mathbf{m}_i - \mathbf{m}_j) - \frac{1}{2} (\mathbf{m}_i - \mathbf{m}_j)^T (\mathbf{m}_i + \mathbf{m}_j) = 0$

- -n = 2: line
- -n=3: plane
- -n > 3: hyperplane

Example of Minimum Distance Classifier

Mean vectors

$$\mathbf{m}_1 = (4.3, 1.3)^T$$
 and $\mathbf{m}_2 = (1.5, 0.3)^T$

Decision boundary

Example

BoA Check

- American Bankers
 Association E-13B font character set
- Horizontal scan
 - 9x7 grid
 - Magnetic ink
 - Single-slit reading head
- → signature waveforms
 - increase/decrease rate of character area
- → prototype pattern vector

Matching by correlation

Correlation

$$c(x, y) = \sum_{s} \sum_{t} w(s, t) f(x + s, y + t)$$
$$f(x, y) \Leftrightarrow w(x, y) \Leftrightarrow F^{*}(u, v) W(u, v)$$

Normalized correlation coefficient

$$\gamma(x,y) = \frac{\sum_{s} \sum_{t} \left[w(s,t) - \overline{w} \right] \times \left[f(x+s,y+t) - \overline{f}(x+s,y+t) \right]}{\left\{ \sum_{s} \sum_{t} \left[w(s,t) - \overline{w} \right]^{2} \sum_{s} \sum_{t} \left[f(x+s,y+t) - \overline{f}(x+s,y+t) \right]^{2} \right\}^{\frac{1}{2}}}$$

Mechanics of template matching

Find the maximum correlation coefficient

Example

Hurricane 913x913

Template of the eye of the storm 31x31

Correlation coefficient

Location of the best match

Matching SIFT features

L16 Image Pattern Classification

2022/6/2

26

Matching SIFT features

Matching SIFT features

Matching Structural Protypes

- Shape number: 组成最小整数的差分链码
- Degree of similarity, k

$$s_j(a) = s_j(b)$$
 for $j = 4, 6, 8, ..., k$
 $s_j(a) \neq s_j(b)$ for $j = k + 2, k + 4, ...$

Distance

$$D(a,b) = \frac{1}{k}$$

Example

Shapes

Similarity tree

Similarity matrix

ı						
	а	b	С	d	e	f
а	∞	6	6	6	6	6
b		∞	8	8	10	8
с			∞	8	8	12
d				∞	8	8
е					∞	8
f						∞

String Matching

- α : number of matches
- β: number of mismatches

$$\beta = \max(|a|, |b|) - \alpha$$

Similarity measure

$$R = \frac{\alpha}{\beta} = \frac{\alpha}{\max(|a|, |b|) - \alpha}$$

Sample boundaries

$$\alpha_1: 0^{\circ} < \theta \le 45^{\circ}; \alpha_2: 45^{\circ} < \theta \le 90^{\circ}; \dots; \alpha_8: 315^{\circ} < \theta \le 360^{\circ}$$

Polygonal approximations

R	1.a	1.b	1.c	1.d	1.e	1.f
1.a	00		Oh	vico	+ 1	
1.b	16.0	∞	OL	ojec	LI	
1.c	9.6	26.3	∞			
1.d	5.1	8.1	10.3	000		
1.e	4.7	7.2	10.3	14.2	00	
1.f	4.7	7.2	10.3	8.4	23.7	∞

R	2.a	2.b	2.c	2.d	2.e	2.f			
2.a	00			hic	ot ')			
2.b	33.5	∞	Object 2						
2.c	4.8	5.8	00						
2.d	3.6	4.2	19.3	00					
2.e	2.8	3.3	9.2	18.3	00				
2.f	2.6	3.0	7.7	13.5	27.0	∞			

6 samples

R	1.a	1.b	1.c	1.d	1.e	1.f
2.a	1.24	1.50	1.32	1.47	1.55	1.48
2.b	1.18	1.43	1.32	1.47	1.55	1.48
2.c	1.02	1.18	1.19	1.32	1.39	1.48
2.d	1.02	1.18	1.19	1.32	1.29	1.40
2.e	0.93	1.07	1.08	1 19	1.24	1.25
2.f	0.89	1.02	1.02	1.24	1.22	1.18

Object 1 vs Object 2

🛂 🗳 信息与电子工程学院

Contents

- Patterns and Pattern Classes
- Pattern Classification by Prototype Matching
- Optimum (Bayes) Statistical Classifiers
- Neural Networks and Deep Learning
- Deep Convolutional Neural Networks
- Some Additional Details of Implementation

Optimum Statistical Classifiers

Average loss of x ← ω_j

$$r_{j}(\mathbf{x}) = \sum_{k=1}^{W} L_{kj} p(\omega_{k}/\mathbf{x})$$

$$p(A/B) = [p(A)p(B/A)]/p(B)$$

$$r_{j}(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \sum_{k=1}^{W} L_{kj} p(\mathbf{x}/\omega_{k}) P(\omega_{k})$$

$$r_{j}(\mathbf{x}) = \sum_{k=1}^{W} L_{kj} p(\mathbf{x}/\omega_{k}) P(\omega_{k})$$

Optimum Statistical Classifiers

Bayes classifier

$$\mathbf{x} \leftarrow \omega_i$$
 if $r_i(\mathbf{x}) < r_j(\mathbf{x})$ for $j = 1, 2, ..., W; j \neq i$.

• Assume $L_{ij}=1-\delta_{ij}$

$$r_j(\mathbf{x}) = \sum_{k=1}^{w} (1 - \delta_{kj}) p(\mathbf{x}/\omega_k) P(\omega_k)$$

$$= p(\mathbf{x}) - p(\mathbf{x}/\omega_j)P(\omega_j)$$

$$p(\mathbf{x}/\omega_i)P(\omega_i) > p(\mathbf{x}/\omega_j)P(\omega_j)$$

$$d_j(\mathbf{x}) = p(\mathbf{x}/\omega_j)P(\omega_j)$$

2022/6/2

Bayes Classifier for Gaussian Pattern Classes

Bayes decision function

$$d_j(x) = p(x/\omega_j)P(\omega_j) = \frac{1}{\sqrt{2\pi\sigma_j}} e^{-\frac{(x-m_j)^2}{2\sigma_j^2}} P(\omega_j) \qquad j = 1, 2$$

2022/6/2

Extension to the n-dimensional case

$$p(\mathbf{x}/\boldsymbol{\omega}_j) = \frac{1}{(2\pi)^{n/2} |\mathbf{C}_j|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_j)^T \mathbf{C}_j^{-1} (\mathbf{x} - \mathbf{m}_j)}$$

$$\mathbf{m}_j = E_j\{\mathbf{x}\} = \frac{1}{N_j} \sum_{\mathbf{x} \in \omega_j} \mathbf{x}$$

$$\mathbf{C}_j = E_j\{(\mathbf{x} - \mathbf{m}_j)(\mathbf{x} - \mathbf{m}_j)^T\} = \frac{1}{N_j} \sum_{\mathbf{x} \in \omega_j} \mathbf{x} \mathbf{x}^T - \mathbf{m}_j \mathbf{m}_j^T$$

$$d_j(\mathbf{x}) = \left[\ln \left[p(\mathbf{x}/\omega_j) P(\omega_j) \right] \right]$$
$$= \ln p(\mathbf{x}/\omega_j) + \ln P(\omega_j)$$

Bayes decision functions for Gaussian pattern classes with 0-1 loss function

$$p(\mathbf{x}/\omega_{j}) = \frac{1}{(2\pi)^{n/2} |\mathbf{C}_{j}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_{j})^{T} \mathbf{C}_{j}^{-1}(\mathbf{x} - \mathbf{m}_{j})}$$

$$d_{j}(\mathbf{x}) = \ln P(\omega_{j}) \left[-\frac{n}{2} \ln 2\pi \right] - \frac{1}{2} \ln |\mathbf{C}_{j}| - \frac{1}{2} \left[(\mathbf{x} - \mathbf{m}_{j})^{T} \mathbf{C}_{j}^{-1}(\mathbf{x} - \mathbf{m}_{j}) \right]$$

$$d_{j}(\mathbf{x}) = \ln P(\omega_{j}) - \frac{1}{2} \ln |\mathbf{C}_{j}| - \frac{1}{2} \left[(\mathbf{x} - \mathbf{m}_{j})^{T} \mathbf{C}_{j}^{-1}(\mathbf{x} - \mathbf{m}_{j}) \right]$$

$$\mathbf{C}_{j} = \mathbf{C}, \text{ for } j = 1, 2, \dots, W$$

$$d_j(\mathbf{x}) = \ln P(\omega_j) + \mathbf{x}^T \mathbf{C}^{-1} \mathbf{m}_j - \frac{1}{2} \mathbf{m}_j^T \mathbf{C}^{-1} \mathbf{m}_j$$

38

Bayes decision functions for Gaussian pattern classes with 0-1 loss function

$$\mathbf{C} = \mathbf{I} \qquad P(\omega_j) = 1/W$$

$$d_j(\mathbf{x}) = \mathbf{x}^T \mathbf{m}_j - \frac{1}{2} \mathbf{m}_j^T \mathbf{m}_j \qquad j = 1, 2, \dots, W$$

- Bayes → Minimum distance classifier
 - Pattern classes are Gaussian
 - All covariance matrices are Identity matrices
 - All classes are equally likely to occur

39

Example of Bayes Classifier

$$d_1(\mathbf{x}) - d_2(\mathbf{x}) = 8x_1 - 8x_2 - 8x_3 + 4 = 0$$

L16 Image Pattern Classification

 $\circ \epsilon \omega_2$

Example: Bayes Classification of Multispectral Data

Pattern vector formation

Example: Bayes Classification of Multispectral Data

Visible blue Visible green Visible red

Classification result

Water

Urban development

Vegetation

L16 Image Pattern
Classification

Near

infrared

2022/6/2

淅ジナップ 信息与电子工程学院

Sample regions:

half for training, and half for testing

TABLE 12.

Bayes classification of multispectral image data. Classes 1, 2, and 3 are water, urban, and vegetation, respectively.

Training Patterns						Test Patterns					
	No. of	Classified into Class			%	No. of	Classified into Class			%	
Class	Samples	1	2	3	Correct	Class	Samples	1	2	3	Correct
1	484	482	2	0	99.6	1	483	478	3	2	98.9
2	933	0	885	48	94.9	2	932	0	880	52	94.4
3	483	0	19	464	96.1	3	482	0	16	466	96.7

 Thresholding in segmentation may be viewed as a Bayes classification problem

Black dots denote incorrect classification

Assignments

12.2, 12.9, 12.16, 12.30

课后作业题目请对照参考第4版英文原版

• 第7次编程作业

在华为昇腾社区

https://www.hiascend.com/edu/experiment,

自选一个感兴趣的在线实验,独立完成.

Assignments

每个编程作业要求递交1份实验报告,命名"学号姓名_prjX.pdf",内容提纲包括:

- 实验任务: 描述本次实验的任务。
- 算法设计: 理论上描述所设计的算法。
- 代码实现: 描述编程环境, 给出自己编写的核心代码
- 实验结果: 描述具体的实验过程,给出每个小实验的输入数据、算法参数和实验结果,并对结果做简要的讨论。
- 总结: 简要总结本次实验的技术内容, 以及心得体会