MSE 6110 – Transmission Electron Microscopy

Spring SEMESTER 2018

Instructor: Josh Kacher

Office: 282 Love Building Telephone: 404-894-2781

E-mail: josh.kacher@mse.gatech.edu

Office hours: Monday 11-12 am (directly after class)

Thursday 9-10 am

Or email and set up a time

Textbook: Primary textbook will be Transmission Electron Microscopy, by D. B. Williams and C.B. Carter Additional textbooks that may be useful:

Physical Principles of Electron Microscopy, R.F. Egerton, Springer, 2010

Transmission Electron Microscopy and Diffractometry of Materials, B. Fultz and J.M. Howe,

Springer 2008

(free electronic copies available through GT from www.springer.com)

Useful websites:

http://emaps.mrl.uiuc.edu/ - for generating simulated diffraction patterns

Final Exam: Wednesday, May 2 8-10:50 AM

Grading: The following components will make up your final grade.

Weekly quiz 15% Homework 15% Class project 30% Midterm exam 20% Final exam 20%

Assignments/quizzes:

Problem sets will be assigned periodically over the course of the semester. Assignments will be made at least one week prior to the due date. Quizzes will be held weekly at the beginning of class on Wednesdays. The quizzes will be projected on the overhead and completed on paper. Each student is required to bring paper and a writing utensil to class on Wednesdays. Lowest quiz score will be dropped. Any missed quizzes will count as a zero on your grade unless excused ahead of time.

Grading Scheme (Grading will be no tougher than this):

A 90-100 B 80-89.9 C 70-79.9 D 60-69.9

Learning Outcomes:

By the end of the course, the student should have an understanding of the basic components which make up a transmission electron microscope as well as a fundamental understanding of the theory behind electron scattering and different imaging modes. The student will have a theoretical knowledge of how to conduct basic characterization of materials, including their atomic structure and defect state, with some hands on experience.

Topics Covered:

- 1. Basic principles of electron interactions with atoms
- 2. TEM hardware
- 3. Specimen preparation
- 4. Electron diffraction
- 5. TEM imaging (bright-field, dark-field, phase contrast, STEM)
- 6. Contrast analysis of defects

Tentative lecture schedule (dates will almost definitely change!!!)

Lecture	Date	Topic	Reading (W&C)	Assignment due
1	1/8	Introduction	1	
2	1/10	Scattering and	2,3,4	
		diffraction basics		
3	1/12	Scattering and	2,3,4	
		diffraction basics		
MLK Day	1/15			
4	1/17	Scattering and	2,3,4	
		diffraction basics		
5	1/19	Sample preparation	10	
		and beam damage		
6	1/22	The TEM	5-9	
7	1/24	The TEM	5-9	
8	1/26	The TEM	5-9	Project proposal
9	1/29	The TEM	5-9	
10	1/31	The TEM	5-9	
11	2/2	The TEM	5-9	
12	2/5	Electron diffraction	11-12	
13	2/7	Electron diffraction	11-12	
14	2/9	Electron diffraction	13, 16	
15	2/12	Electron diffraction	17-19	
16	2/14	Electron diffraction	17-19	
17	2/16	Electron diffraction	20-21	
18	2/19	BF/DF/WBDF	22, 23, 26	
		imaging + Exam		
		review		
19	2/21			Midterm Exam
20	2/23	BF/DF/WBDF	22, 23, 26	
		imaging		
21	2/26	BF/DF/WBDF	22, 23, 26	
		imaging		
22	2/28	BF/DF/WBDF	22, 23, 26	
		imaging		
23	3/2	Contrast analysis of	24-26	
		defects		
24	3/5	Contrast analysis of	24-26	Midterm report
		defects		
25	3/7	Contrast analysis of	24-26	
		defects		

26	3/9		24-26	
27	3/12	STEM/ Aberration	24-26	Jane Howe guest
		correction		lecture
28	3/14	STEM/ Aberration	24-26	Jane Howe guest
		correction		lecture
29	3/16	STEM/ Aberration	27-28	Jane Howe guest
		correction		lecture
Spring Break	3/19			
Spring Break	3/21			
Spring Break	3/23			
30	3/26	Phase contrast	27-28	
31	3/28	Phase contrast	27-28	
32	3/30	Phase contrast	27-28	
33	4/2	Image simulation	30	
34	4/4	Image simulation	30	
35	4/6	Image analysis	31	
36	4/9	X-ray analysis	32-36	
37	4/11	X-ray analysis	32-36	
38	4/13	EELS	37-39	
39	4/16	EELS	37-39	
40	4/18	Special topics		
41	4/20	Special topics		
42	4/23	Review		Final Project due

Missed Tests: Unexcused – A grade of zero will be given for all unexcused missed tests.

Excused – Student must contact instructor *before* a test is missed.

Exceptions may be made in special circumstances.

T-square: T-Square will be used in this class for providing you course information

(see Resources).

Homework will be assigned in class and posted on T-square.

Homework: Homework can be done in groups but each student must submit her/his

own work.

Tests and Exams: All guizzes and exams will be closed book and notes, but some equations

and tables will be provided as needed. However, basic equations will not

be provided. This will be clarified as material is covered.

Academic Honor Code:

Compliance with Georgia Tech's Academic Honor Code is required.

Please read and understand this document (if you have not already done

so). Per the Georgia Tech Honor Code Website http://honor.gatech.edu/content/2/the-honor-code

Plagiarizing is defined by Webster's as "to steal and pass off (the ideas or words of another) as one's own: use (another's production) without crediting the source." If caught plagiarizing, you will be dealt with

according to the GT Academic Honor Code.

For appointments, please come by during office hours or email to arrange a different time.