17 septembre 2021CIR 1 et CNB 1

Quiz de Mathématiques

Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.
— Les questions peuvent présenter une ou plusieurs réponses correctes.
— Noircir les cases, ne pas faire des croix sur les cases.
— En cas d'erreur, utilisez du « blanco ».
— Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
BON COURAGE!
* * * * * * * * * * * * * * * * * * * *
1. Soit P une assertion vraie et Q une assertion fausse. Quelles sont les assertions vraies?
${}_{(1)}\square \operatorname{non}(P) \text{ ou } Q \qquad {}_{(2)}\blacksquare P \text{ ou } \operatorname{non}(Q) \qquad {}_{(3)}\square P \Rightarrow Q \qquad {}_{(4)}\blacksquare Q \Rightarrow P$
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
2. Étant données deux propositions P et Q , la proposition $P \Leftrightarrow Q$ est équivalente à
${}_{(1)}\square (P\Rightarrow Q) \text{ et } (\overline{Q}\Rightarrow \overline{P}) \qquad {}_{(2)}\blacksquare (P\Rightarrow Q) \text{ et } (\overline{P}\Rightarrow \overline{Q}) \qquad {}_{(3)}\blacksquare (P\Rightarrow Q) \text{ et } (Q\Rightarrow P)$
$ (4) \blacksquare (Q \Rightarrow P) \text{ et } (\overline{Q} \Rightarrow \overline{P}) \qquad \text{$_{(5)}$} \square \text{aucune des réponses précédentes n'est correcte.} $
3. Par quoi peut-on compléter les pointillées pour avoir les deux assertions vraies?
$x \geqslant 2 \dots x^2 \geqslant 4 \qquad y \geqslant 3 \dots 0 \leqslant y \leqslant 3$
$_{(1)}\square \iff \operatorname{et} \implies _{(2)}\square \implies \operatorname{et} \implies _{(3)}\square \iff \operatorname{et} \iff _{(4)}\blacksquare \implies \operatorname{et} \iff$
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
4. Quelle est la négation de la proposition suivante?

$$\forall n \in \mathbb{N}, \quad \exists k \in \mathbb{N}, \quad n = k^2 + 1$$

$$(1)^{\square} \qquad \forall k \in \mathbb{N}, \quad \exists n \in \mathbb{N}, \quad n \neq k^2 + 1$$

$$(2)^{\blacksquare} \qquad \exists n \in \mathbb{N}, \quad \forall k \in \mathbb{N}, \quad n \neq k^2 + 1$$

$$(3)^{\square} \qquad \forall n \notin \mathbb{N}, \quad \nexists k \in \mathbb{N}, \quad n \neq k^2 + 1$$

$$(4)^{\square} \qquad \exists k \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n \neq k^2 + 1$$
 aucune des réponses précédentes n'est correcte.

$$(1) \blacksquare \qquad \exists x > 0 \quad \sqrt{x} = x$$

$$\exists x < 0 \ e^x < 0$$

$$\exists n \in \mathbb{N} \ n^2 = 17$$

$$(4)$$
 \Box $\forall x \in \mathbb{R} \ x^2 - x \geqslant 0$

$$_{(5)}\square$$
 aucune des réponses précédentes n'est correcte.

6. Cocher, si elle existe, la traduction en langage mathématique de la proposition :

"Tout entier naturel est la somme de trois carrés d'entiers naturels ou bien est supérieur ou égal à 7".

$$\forall n \in \mathbb{N}, \exists a, b, c \in \mathbb{N}, n = a^2 + b^2 + c^2 \text{ ou } n \geqslant 7$$

$$\forall n \in \mathbb{N}, \exists (a,b,c) \in \mathbb{N}^3, n = a^2 + b^2 + c^2 \text{ ou } n \geqslant 7$$

$$n = a^2 + b^2 + c^2$$
 ou $n \ge 7$, $\forall n \in \mathbb{N}$, $\exists a, b, c \in \mathbb{N}$

$$\exists n \in \mathbb{N}, \ \forall a, b, c \in \mathbb{N}, \ n = a^2 + b^2 + c^2 \text{ ou } n \geqslant 7$$

(5) aucune des réponses précédentes n'est correcte.

7. Cocher, si elle existe, la traduction en langage mathématique de la phrase ci-dessous :

"L'ensemble des entiers naturels qui sont le produit d'une factorielle et d'un entier naturel impair".

$$\{a!(2b+1), a, b \in \mathbb{N}\}\$$

$$(2)\square \qquad \{n \in \mathbb{N}, \quad n!(2n+1)\}$$

$$(4)\square \qquad \{n!(2n+1), \quad n \in \mathbb{N}\}$$

(5)□ aucune des réponses précédentes n'est correcte.

8. Décrire en extension l'ensemble :

$$\left\{x \in \mathbb{R}, \quad \exists a, b \in [1, 3], \quad x = \frac{a}{a+b}\right\}$$

9. Soit $E = \{a, b, c\}$, quelle(s) écriture(s) est(sont) correcte(s)?

$$(1)\square \quad \{a\} \in E \qquad (2)\square \quad a \subset E \qquad (3)\square \quad \{a,b\} \in E \qquad (4)\square \quad \{a\} \subset \mathcal{P}(E)$$

 $_{(5)}\blacksquare$ aucune des réponses précédentes n'est correcte.

10. Cocher si c'est correct.

$$(1) \blacksquare \quad \{2\} \subset \mathbb{N} \qquad (2) \square \quad 3 \subset \mathbb{R} \qquad (3) \square \quad \mathbb{N} \subset \mathcal{P}(\mathbb{R}) \qquad (4) \square \quad 1 \in \mathcal{P}(\mathbb{N}) \qquad (5) \blacksquare \quad -1 \in \mathbb{Z}$$

11. Soit E un ensemble à n éléments et a un élément de E. On note $\mathcal{P}_a(E)$ l'ensemble des parties de E qui contiennent a. Quel est le cardinal de $\mathcal{P}_a(E)$?

$$_{(1)}\square$$
 $\operatorname{Card}(\mathcal{P}_a(E)) = n - 1$ $_{(2)}\square$ $\operatorname{Card}(\mathcal{P}_a(E)) = n$ $_{(3)}\blacksquare$ $\operatorname{Card}(\mathcal{P}_a(E)) = 2^{n-1}$

$${}_{(4)}\square \quad \operatorname{Card}(\mathcal{P}_a(E)) = 2^n \qquad {}_{(5)}\square \quad \text{aucune des réponses précédentes n'est correcte}.$$

	 f est injective. f est surjective. f est bijective. f n'est ni injective ni surjective. aucune des réponses précédentes n'est correcte.
13. O	On note f la fonction $x \mapsto e^x + x$ sur \mathbb{R} . Cocher la(les) affirmation(s) correcte(s), si il y en a.
	f est injective. (2) \Box f est surjective. (3) \Box f est bijective. (4) \Box f n'est pas une fonction. (5) \Box aucune des réponses précédentes n'est correcte.
	Cocher la(les) bonne(s) affirmation(s), si il y en a. 'image de
	$ (1)^{\square} x \mapsto \ln x \text{ est } \mathbb{R}^* \qquad (2)^{\square} x \mapsto \sin x \text{ est } \mathbb{R} \qquad (3)^{\square} x \mapsto \frac{1}{x} \text{ est } \mathbb{R}_+ $ $ (4)^{\blacksquare} x \mapsto \tan([0, \frac{\pi}{4}]) \text{ est } [0, 1] \qquad (5)^{\square} \text{aucune des réponses précédentes n'est correcte.} $
15. O	On considère l'application $f:\mathbb{R} \to \mathbb{R}$ définie par
Q	$\forall x \in \mathbb{R}, \ f(x) = x^2 + 1$ Quelle(s) est(sont) la(les) bonne(s) réponse(s)?
	$f(\mathbb{R}) = \mathbb{R}$ $f(\mathbb{R}) = [0, +\infty[$ $f(\mathbb{R}) = [1, +\infty[$ $f(\mathbb{R}) = [1, +\infty[$ $f(\mathbb{R}) = [1, +\infty[$ aucune des réponses précédentes n'est correcte.
16. O	On considère la fonction de la question précédente. Quelle(s) est(sont) la(les) bonne(s) réponse(s)?
	$f^{-1}([1,5]) = [-2,2] \qquad {}_{(2)}\blacksquare f^{-1}([0,5]) = [-2,2] \qquad {}_{(3)}\square f^{-1}([1,5]) = [0,2]$ ${}_{(4)}\square f^{-1}([0,5]) = [0,2] \qquad {}_{(5)}\square \text{aucune des réponses précédentes n'est correcte.}$
17. L	a somme $\sum_{i=n+1}^{2n} \frac{1}{i}$ est équivalente à
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	i on simplifie la somme suivante $\sum_{k=0}^{n-1} \left(\frac{k+1}{2^{k+1}} - \frac{k}{2^k}\right)$
Ol	n obtient $n + 1 $
	$(1)^{\blacksquare}$ $\frac{n}{2^n}$ $(2)^{\square}$ $\frac{n+1}{2^{n+1}}$ $(3)^{\square}$ $\frac{n}{2^{n+1}}$ $(4)^{\square}$ 1 $(5)^{\square}$ aucune des réponses précédentes n'est correcte.

12. On note f la fonction $x \mapsto \frac{x}{x-1}$ sur $\mathbb{R} \setminus \{1\}$. Cocher la(les) affirmation(s) correcte(s), si il y en a.

19. On considère pour tout $n \in \mathbb{N}$:

$$\binom{2n+2}{n+1}$$

Cocher la(les) bonne(s) équivalence(s), s'il y en a.

20. Soit deux entiers naturels n et p tels que $p \leq n$, on considère le produit :

$$\prod_{k=p}^{n} 5$$

Cocher la(les) bonne(s) équivalence(s), s'il y en a.

$$(1)$$
 \blacksquare 5^{n-p+1} (2) \square 5^{n-p} (3) \square $(n-p+1)$ (4) \square $(n-p)$ (4)

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.