1. 设
$$z = xy \cdot f\left(\frac{y}{x}\right)$$
 , 其中 $f(u)$ 可导,则 $\frac{\partial z}{\partial x} =$ []

A.
$$x \cdot f\left(\frac{y}{x}\right) - \frac{y^2}{x} \cdot f'\left(\frac{y}{x}\right)$$
; B. $y \cdot f\left(\frac{y}{x}\right) - \frac{y^2}{x} \cdot f'\left(\frac{y}{x}\right)$;

C.
$$y \cdot f\left(\frac{y}{x}\right) + \frac{y^2}{x} \cdot f'\left(\frac{y}{x}\right)$$
; D. $yf\left(\frac{y}{x}\right) - \frac{y^2}{x} \cdot f\left(\frac{y}{x}\right)$

2. 设
$$z = (x+y)^x$$
,则 $\frac{\partial z}{\partial x}\Big|_{(1,2)} =$

A.
$$3\ln 3 + 1$$
; B. 3; C. $3\ln 3$; D. $3\ln 3 + 3$.

3. 若函数
$$f(x,y)=2x^2+ax+xy^2+2y$$
 在点 $(1,-1)$ 取得极值,则常数 $a=[$] A. -5 ; B. 5 ; C. -3 ; D. 3 .

4. 已知
$$\frac{(x+ay)dx+ydy}{(x+y)^2}$$
 为某个二元函数的全微分,则 $a=$ []

A.
$$-1$$
; B. 0 ; C. 1 ; D. 2 \circ

5. 设函数
$$z = z(x, y)$$
 由方程 $\sin x + 2y - z = e^z$ 所确定,则 $\frac{\partial z}{\partial x} =$ []

A.
$$\frac{\cos x}{1 - e^z}$$
; B. $\frac{\cos x}{1 + e^z}$; C. $\frac{\sin x}{1 + e^z}$; D. $\frac{\sin x}{1 + e^z}$
6. 函数 $z = x^2 + 4xy - y^2 + 6x - 8y + 12$ 的驻点是

A.
$$(-1,2)$$
; B. $(-1,-2)$; C. $(1,2)$; D. $(1,-2)$.

7. 函数
$$z = z(x, y)$$
 由方程 $F(x + yz, y + xz) = 1$ 所确定,其中 F 具有一阶连续偏导数,则

$$\frac{\partial z}{\partial x} = \qquad [\qquad]$$

$$\text{A.} \quad -\frac{F_1' + F_2' z}{F_1' y + F_2' x} \;\; ; \quad \text{B.} \quad \frac{F_1' + F_2' z}{F_1' y + F_2' x} \;\; ; \quad \text{C.} \quad -\frac{F_1' z + F_2'}{F_1' y + F_2' x} \;\; ; \quad \text{D.} \quad \frac{F_1' + F_2' z}{F_1' y + F_2' x}$$

8. 设
$$z = f(x, xy)$$
, $f(x, xy)$ 具有连续二阶偏导数,则 $\frac{\partial^2 z}{\partial x^2}$ = []

A.
$$f_{11}'' + y f_{12}'' + y^2 f_{22}''$$
; B. $f_{11}'' - 2y f_{12}'' + y^2 f_{22}''$;

C.
$$f_{11}'' + 2yf_{12}'' + yf_{22}''$$
; D. $f_{11}'' + 2yf_{12}'' + y^2f_{22}''$

9. 由方程
$$xy = \ln(x+y)$$
所确定的隐函数 $y = y(x)$ 的导数 $\frac{dy}{dx} =$ []

A.
$$-\frac{1-xy-y^2}{1-xy-x^2}$$
; B. $\frac{1-xy-y^2}{1-xy-x^2}$; C. $-\frac{1-xy-x^2}{1-xy-y^2}$; D. $\frac{1-xy-x^2}{1-xy-y^2}$

10. 设
$$z = e^u \sin v$$
, 其中 $u = xy$, $v = x + y$, 则 $\frac{\partial z}{\partial x} =$

A.
$$e^{xy}(y\sin(x+y)-\cos(x+y))$$
; B. $e^{xy}(y\sin(x+y)+\cos(x+y))$;

C.
$$e^{xy}(-y\sin(x+y)+\cos(x+y))$$
; D. $e^{xy}(\sin(x+y)-\cos(x+y))$

A.
$$\frac{y^2 - e^x}{\cos y + 2xy}$$
; B. $\frac{y^2 + e^x}{\cos y - 2xy}$; C. $\frac{y^2 - e^x}{\cos y - 2xy}$; D. $\frac{y^2 + e^x}{\cos y + 2xy}$

12. 设函数
$$z = z(x, y)$$
 由方程 $x^2 + 2y^2 + xy - z - 9 = 0$ 确定,则其驻点是[]

A.
$$(1, 0)$$
; B. $(1, 2)$; C. $(0, 0)$; D. $(0, 1)$.

13. 设
$$z = x f\left(\frac{y}{x}\right) + (x-1)y \ln x$$
, 其中 $f(u)$ 二阶可微,则 $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = [$

A.
$$xy + y$$
; B. $xy - y$; C. $x + y$; D. $x - y$

14. 己知
$$z = z(x, y)$$
 由方程 $x = \ln \frac{z}{y}$ 所确定,则 $\frac{\partial z}{\partial y} =$ []

A.
$$\frac{z}{x}$$
; B. z ; C. yz ; D. $\frac{z}{y}$

15. 斜边长为l的一切直角三角形中,周长最大的直角三角形两直角边长分别为 []

A.
$$\frac{1}{2}l, \frac{1}{2}l$$
; B. $\frac{\sqrt{2}}{2}l, \frac{1}{2}l$; C. $\frac{\sqrt{2}}{2}l, \frac{\sqrt{2}}{2}l$; D. $\frac{\sqrt{2}}{2}l, l$

16. 函数
$$f(x, y) = x^2 + y^2 + xy + x - y + 1$$
, 在 [] 取得极小值。

A.
$$(1,0)$$
; B. $(-1,1)$; C. $(0,0)$; D. $(1,-1)$

17. 已知
$$z = z(x, y)$$
 由方程 $y = \ln(x + z)$ 所确定,则 $\frac{\partial z}{\partial y} =$ []

A.
$$-1$$
; B. $x + z$; C. $x - z$; D. 1

- 18. 曲线 x=t, $y=-t^2$, $z=t^3$ 的所有切线中,与平面 x+2y+z=4 平行的切线
- A. 只有一条 B. 只有 2 条 C. 至少有 3 条 D. 不存在.
- 19. 曲面 $z = x^2 + y^2$ 与平面 2x + 4y z = 0 平行的切平面的方程是 []
 - A. 2x + 4y z = 0; B. 2x + 4y + z = 0;
 - C. 2x + 4y + z = 5; D. 2x + 4y z = 5
- 20. 设 z=z(x,y)是由 $x^2-6xy+10y^2-2yz-z^2+18=0$ 确定的函数,则 z=z(x,y) 的极大 值为 []
 - A. -3; B. 0;
- C. -1; D. 2 \circ

答案: BAACBDADABCCADCBBBDA