QUESTION BANK

UNIT- I

1 MARK

1. Explain XOR gate with truth table and logic diagram.

Ans. Exclusive OR (or) Ex-OR (or) XOR gate has two inputs with

one output.

- It produces high output when call inputs are different and low output when all inputs are same.

- It is also known as inequality detector.

Juth Jable:

Input Output

A B Y

O O O

O I I

I O I

Logie Symbol

$$A \longrightarrow Y = A \oplus B$$

Equation: Y = A & B = AB + AB

2. Convert the given binary number to octal notation (0110101011.010101011)2

Sol.

4. Why care NAND and NOR gates are called universal gates ? An. NAND and NOR gates are called universal gates because by using them, we can implement any logic gate or any logic circuit.

5. Discuss absorption law with its truth table.

dus. Absorption Law: - A + AB = A

	V			V
	A	В	AB	A + AB
	0	0	0	0
	0	1	0	0
		0	0	
4		Age to		

3 MARKS

1. Write the steps for subtracting a number using 2's complement method.

Ans. Subtraction using 2's Complement Method:

Step 1: - Keep the first number as it is

Step 2: Find the 2's complement of second number.

Step 3: - Add step 1 and step 2.

Step 4 1-

Sol.

Case (i): If carry is present, the number is a positive number. Ignore the carry. Thus, we get the final result.

Case (ii): If carry is not present, the number is negative.

Jake 2's complement of the result to get the final result. Put a negative sign to the final result.

2. Find the simplified Boolean expression for the following function Y= (A+B) (A+C)(B+C)

Y = (A+B)(A+C)(B+C)

Y = (AA + AC + AB+BC) (B+C)

= (A + AC + AB + BC)(B+C)

[: A . A = A]

= (A(1+C+B)+BC)(B+C)

= (A+BC) ((A (1)+BC) (B+C) [: 1+A=A)

$$Y = (A + BC)(B+C)$$

$$= A \cdot B + A \cdot C + BC \cdot B + BC \cdot C$$

$$= AB + AC + BC + BC \cdot C \cdot A \cdot A = A$$

$$= AB + AC + BC \cdot C \cdot BC + BC = BC$$

=> Y= AB+AC+BC

3. Explain duality theorem with example. Ans. This theorem states that with an existing Boolean relation, we can derive another relation by

- (a) changing each OR gate sign to AND gate.
- (b) changing each AND gate sign to OR gate.
- (c) complementing any o or I appearing in the expression

(i) Qual of A. A = 1 is $A + \overline{A} = 0$

(ii) Dual of AC+ BCD+(E+F) is (A+C). (B+C+D). (EF).

4. Convert (36.21),0 to binary.

Aras.

Ans

$$0.21 \times 2 = 0.42 = 0$$

$$0.42 \times 2 = 0.84 = 0$$

$$(36.21)_{10} = (100100.00110)_2$$

Prove Consensus theorem.

Ans. Statement:

Proof:

5 MARKS

a. State and prove DeMorgans Law.

Ans.

			The state of the s						
-	A	В	Ā	B	A · B	A.B	A+B		
-	0	0	1	1	0	1	1		
The second	0	1	1	0	0	1	1		
-	1	0	0	1	0	1	1		
	1	1	0	0	1	0	0		
ı			The Part of the Pa			AND DESCRIPTION OF THE PERSON			

Complement cof product = Sum of individual complements

-	A	В	Ā	B	A+B	A+B	Ā·B
-	0	0	1	414	0	841	1
-	0	1	ad A	0	301441	0	0
1	1	0	0	1		0	0
1	1	1	0	0	1100	0	0

Complement of sun = Peroduct of individual complements

b. Reduce the expression
$$f = (B + BC)(B + B'C)(B + D)$$

& Spren,

2. Obtain the complement of the following Boolean function F = A'B + A'BC' + A'BCD + A'BC'D'E

Sol. F = A'B+A'BC'+ A'BCD+ A'BC'D'E

$$= \overline{A'B(1)} \cdot \cdot \cdot (1+A=1)$$

3. Implement X-NOR using NAND gates. Step 1:- Draw ADI (AND OR INVERTOR) logic 4 = AB+ AB Step 2: - Add bubbles at the output of AND gate and input of OR gate Step 3: - When bubbles are placed, in that particular path, add a place a NOT gate Step 4: Eliminate double inversion

Step 5:- Replace NOT gate with single input NAND gate

Step 6: Replace input bubbled OR gate with NAND
gate.

.. 5 NAND gates are required for X-NOR gate implementation.

4. Simplify the following using Boolean laws. A'B(D'+C'D)+B(A+A'CD)Sol.

f = A'B(D'+C'D) +B(A+A'CD)

= A'BD'+A'BC'D+AB+A'BCD

= A'B(D'+C'D+CD)+AB

= A'B (D'+D(c'+c)) + AB

= A'B(D'+D)+AB

[: A'+A=1]

= A'B(1) + AB

= A'B + AB

B(A+A')

= B(1) [: A+A=1]

-. f= B

Sof.

5. Convert (AOC9. OEB) 16 to decimal & binary

Sol. (i) (AOC9.0EB) 16 do decimal

A O C 9 · O E B 16³ 16² 16' 16° 16⁻¹ 16⁻² 16⁻³

= $(A \times 16^{3}) + (D \times 16^{2}) + (C \times 16^{1}) + (9 \times 16^{0}) + (0 \times \frac{1}{16}) + (E \times \frac{1}{16^{2}})$

+ (B x 1/63)

 $= (10 \times 4096) + 0 + (12 \times 16) + (9 \times 1) + 0 + (14 \times 1) + (9 \times 1) + 0 + (14 \times 1) + (14 \times 1)$

+ (11 × 1/4096)

 $= 40960 + 0 + 192 + 9 + 0 + \frac{14}{256} + \frac{11}{4096}$

= 41161.057

⇒ (AOC9. OEB)₁₆ = (41161,057)₁₀

(ii) (AOC9-OEB) 16 to binary

A O C 9 . O E B

1010 0000 1100 1001, 0000 1110 1011

(AOC9. OEB)16 = (1010 0000 11001001.000011101011)2

10 MARKS

10 a. Implement EX-OR gate using NOR gates.

Ans. Step 1: - Draw ADI logic for given equation $f = \overline{AB} + A\overline{B}$

Step 2: - Add bubbles at output of OR gate and input of AND gate.

Step 3: - When bubbles are placed, in that path, place NOT gate'

Step 4:- Eliminate double inversion

Step 5:- Replace NOT gate with single input NOR gate

Step 6: - Replace input bubbled AND gate with NOR gate

:. 6 NOR gates are required for X-OR gate implementation

b. Simplify (AEC4, B93), to binary, decimal & octal

(i) To decimal Grein, (AEC4. B93) A E C 4. B 9 3 163 162 161 160 16-1 16-2 16-3 = (Ax163)+(Ex162)+(Cx16')+(4x160)+(Bx 1/6)+ $(9 \times \frac{1}{16^2}) + (3 \times \frac{1}{16^3})$ = $(0 \times 4096) + (14 \times 256) + (12 \times 16) + (4 \times 1) + \frac{11}{16} + \frac{9}{256}$ = 40960 + 3584 + 1928+4 + 11 + 9 + 3 16 256 4096 = 44740,723 (AEC4. B93)16 = (44740, 723)10

(ii) Jo binary

A E C 4 . B 9 3

1010 1110 1100 0100 . 1011 1001 0011

(AEC4-B93) = (1010111011000100.101110010011)2

(iii) To Octal

he know from (ii) that

(AEC4. B93) 10 = (1010111011000100.101110010011)2

Converting the above binary number to octal

001 010 111 011 000 100.101 110 010 011

: (AEC4. B93)10= (127304.5623)8

2. a. What is 2's complement of a number? Subtract +3 from 27 using 2's complement subtraction method.

Ans: 2's complement: - 2's complement is the result that is obtained by adding 1 in LSB position to 1's complement of a number.

Ex: 2's complement of 1011 is

1's complement $\rightarrow 0100$ 2's complement $\rightarrow 0100$ +1 0101

43-27 using 2's complement subtraction:

Step 1:- Keep the first number as it is

$$1.43 = (101011)_2$$

$$= (00101011)_2$$

Step 2: Find 2's complement of second number i-e. 27

Step 31- Add step 1 and step 2.

Step 4: Carry is present, the no. is positive. The get the final result:

b. Prove (A+C)(A'+B) = AB + A'C Sol. Consider LHS,

- = AA'+AB+A'C+BC
 - = 0 + AB + A'C +BC [: A A = 0]
 - = AB+AC+BC(A+A') [: A+A'=1]
 - AB+ A'C + ABC+ A'BC
 - AB + ABC + A'C + A'BC
- = AB(1+C) + A'C (1+B)
- AB(1) + A'C(1) [: 1+ A=1]
- AB+A'C
- RHS.

3. a. State and prove any 3 Boolean theorons

Ans (1) Absorption Property

$$= A + B$$

(iii) De Morgans Property:

a)
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

					<u> </u>	
A	В	Ā	B	AB	AB	A+B
0	0	Jaka	1	0	se I know	4
0	1	1	0	0	1	1
1	0	0	1	0		1
1	1	0	0	1	0	0

111/2				and the second				
-	A	В	Ā	B	A+B	A+B	A.B	-
	0	0	1	1	0	= 1911	A	1
	0	MA	IA	0	(8 1 A)	0	0	-
		0	0	1	1	0	0	The second second
-	1	16	0	0	1	0	0	

b. Convert Binary to Gray for (0110101001101), and

Ans. (i) Binary to Gray for (101100100101)2

: The gray code is 0101111101011

(ii) Igray to Binary for (1011001001011)2

: The briany code is (1101110001101)2