АиСД дз9

CovarianceMomentum

1term

1

Храним массивы:

- arr[n], собственно, наша последовательность.
- lastPosition[n], для которого lastPosition[i] это индекс последнего вхождения элемента i в последовательность. Изначально все его члены равны -1;
- seq[n], который будет пересчитываться динамически. В элементе seq[i] хранится количество последовательностей, заканчивающихся в этом элементе.
- ullet pref[n], который будет пересчитываться динамически. В элементе $\displaystyle \operatorname{pref}[i]$ хранится $\displaystyle \sum_{k=0}^{i} seq[k]$.

Опишем пересчёт динамики при переходе $i \to i+1$. Посмотрим, что лежит в lastPosition [arr[j+1]-1]:

- Если там -1, значит, такое число никогда ещё не встречалось, следовательно, к любой из существующих последовательностей можно дописать его в конец, а также взять его само как отдельную последовательность из одного символа—присваиваем seq[j+1] значение pref[j]+1.
- Если там индекс k, значит, такое число уже встречалось, следовательно, ко всем последовательностям, которые мы посчитали ДО его предыдущего вхождения, мы уже приписывали это число. Однако к последовательностям, которые заканчивались в элементах с индексами больше или равными k и меньшими j+1, мы не приписывали этого числа. Их количество будет равно pref[j]-pref[k-1]. Присвоим его pref[j+1].

После подсчёта seq[j+1] посчитаем pref[j+1] = pref[j] + seq[j+1]. Таким образом, переместились в следующее положение динамики. Ответом будет значение в pref[n-1].

Так как алгоритм делает всего $\mathcal{O}(n)$ шагов, то и арифметических и других действий тоже будет $\mathcal{O}(n)$.

Пойдём от противного — предположим, что у a и a^r наибольшая общая подпоследовательность s, не равная по размеру наибольшему подпалиндрому p строки a. Тогда есть два варианта:

- |s| < |p|. На самом деле такого быть не может, так как если развернуть p, то он останется самим собой, а значит, будет являться общей подпоследовательностью a и a^r , значит, её длина не меньше |p|.
- |s| > |p|. Значит, есть какая-то подпоследовательность в a, такая, что она же есть в a^r . хммммм кажецца мы нашли подпалиндром. А если точнее, то это значит, что существует такие две последовательности индексов $i_1, i_2, \ldots, i_|s|$ и $j_1, j_2, \ldots, j_|s|$, что $\forall k: a_{i_k} = a_{j_k}^r$. Тогда рассмотрим минимальное l такое, что $i_{l+1} \geq |a| j_{l+1} + 1$. Заметим, что если в строке a рассмотреть последовательность с индексами $i_{1,2}, \ldots, i_l, |a| j_l + 1, |a| j_{l-1} + 1, \ldots, |a| j_1 + 1$, то она очевидно будет определять подпалиндром строки a. По аналогичным причинам, последовательность $|a| j_|s| + 1, |a| = j_{|s|-1}, \ldots, |a| j_{l+1} + 1, i_{l+1}, i_l, \ldots, i_{|s|}$ тоже определяет подпалиндром. Заметим, что хоть одна из них содержит в себе не меньше |s| членов. А по предыдущей части доказательства их оказывается ровно |s|.