Analytical computations of an effective lattice theory for heavy quarks

GOETHE UNIVERSITÄT

Jonas R. Glesaaen Mathias Neuman, Owe Philipsen Bielefeld University, October 27th 2015

- 1 Introduction
- 2 The Effective 3D Theory
- 3 Analytic Calculations
- 4 Results
- 5 Conclusion

• Different approaches can access different regions

Naive reach of Lattice QCD

 Lattice QCD with additional methods (analytic continuation, taylor expansions, reweighting,...)

Perturbation theory of QCD

 Region currently not accessible from first principles with traditional methods

The cold and dense

Lattice requirements

- $\Rightarrow \qquad a \ll 0.2 \text{fm}$ $\Rightarrow \qquad N_t \ge 200$ • $a \ll m_R^{-1}$
- T < 10MeV $N_t \ge 200$

The cold and dense is very numerically demanding ... and there is the sign problem

Columbia plot

Crash course in lattice theory

Quarks

$$egin{aligned} \mathcal{L}_{\textit{F}} &= ar{\psi}(x) ig(i \gamma_{\mu} \partial^{\mu} + \gamma_{\mu} \mathsf{A}^{\mu} ig) \psi(x) + m_{q} ar{\psi}(x) \psi(x) \ &\downarrow x o \mathsf{an} \ & L_{\textit{F}} \sim \sum ar{\psi}(n) U_{\mu}(n) \psi(n+\mu) + m_{q} ar{\psi}(n) \psi(n) \end{aligned}$$

Crash course in lattice theory Gauge fields

Gluons

$$\mathcal{L}_{\mathcal{G}} = rac{1}{4} \operatorname{tr} F_{\mu
u}(x) F^{\mu
u}(x)$$

$$\downarrow x o an$$

$$\mathcal{L}_{\mathsf{G}} \sim \beta \sum_{\mu,
u} \mathsf{tr} \, \mathcal{U}_{\mu}(n) \mathcal{U}_{
u}(n+\mu) \mathcal{U}_{\mu}^{\dagger}(n+
u) \mathcal{U}_{
u}^{\dagger}(n)$$

The sign problem

QCD Integration Measure

$$\det Q_{\mathrm{uark}}(\mu_B) \exp \{-S_g\}$$

For $Re\{\mu_B\} \neq 0$: $det Q_{uark} \in \mathbb{C}$

Workarounds:

- Reweighting
- Analytic continuation
- Complex Langevin

but still suffer from the need for exponential cancellations

The Effective 3D Theory

Guiding equation

Our goal

• Integrate out all spatial gauge links

$$egin{aligned} \mathcal{Z} &= \int extit{D} U_{\mu} \, ext{exp} \left\{ - extit{S}_{ ext{action}}
ight\} \ &= \int extit{D} U_{0} \, ext{exp} \left\{ - extit{S}_{ ext{effective action}}
ight\} \end{aligned}$$

Lattice expansions Strong coupling expansion

Expansion around $\beta = \frac{2N_c}{\sigma^2} = 0$

Recap
$$L_{G}\simeta\sum_{\mu,
u}{
m tr}\,U_{\mu}(n)U_{
u}(n+\mu)U_{\mu}^{\dagger}(n+
u)U_{
u}^{\dagger}(n)$$

This is an expansion in the number of plaquettes on the lattice

Put a strip of plaquettes in the time direction

Integrate over all spatial gauge links

What remains is an interaction between Polyakov Loops

Effective Gluon Interactions

$$S_{\mathrm{eff gluon}} \sim \lambda(\beta, N_t) \sum_{\langle x, y \rangle} L(x) L^*(y)$$

Higher order β corrections

Rescales λ :

$$\lambda \to \lambda \Big(1 + 4N_t u(\beta)^4 \Big)$$

Lattice expansions

Hopping parameter expansion

One can rewrite the fermion matrix Q_{uark} as

$$\det Q_{\text{uark}} = \exp \left\{ -\sum_{n=1}^{\infty} \frac{1}{n} \kappa^n \operatorname{tr} H_{\text{op}}^n \right\}$$

where $H_{\rm op}$ translates the quark one lattice spacing and $\kappa \sim 1/m_a$

Can produce a closed quark loop with multiple temporal windings

Once again integrate out spatial links

Producing an interaction between the *W* objects

Effective Quark Interactions

$$S_{ ext{eff quarks}} \sim h_2(\kappa, N_t) \sum_{(x,y)} W(x)W(y)$$

Mixed contributions

Spatially extended contributions

Spatially extended contributions

The effective lattice theory

The Effective Action

$$\mathcal{Z} = \int \prod_{x} dL(x) \exp \left\{-S_{\text{eff action}}\right\}$$

$$S_{ ext{eff action}} \sim \lambda \sum_{\langle x,y \rangle} L(x) L^*(y) + h_2 \sum_{\langle x,y \rangle} W(x) W(y)$$

The theory is contained in the set of coupling constants

$$\lambda_1(\beta, N_t, \kappa), \lambda_2, \dots \quad h_1(\beta, N_t, \kappa), h_2, \dots$$

Simulating the effective theory

The effective theory is numerically cheap to simulate

- No fermion determinant to calculate
- One dimension less
- Polyakov loop as only degree of freedom per site
- N_t is only a parameter

Sign problem is mild ⇒ Reweighting works well

Analytic Calculations

Motivation

SCALING LAWS AND TRIVIALITY BOUNDS IN THE LATTICE ϕ^4 THEORY

(I). One-component model in the symmetric phase

M. LÜSCHER

Deutsches Elektronen-Synchrotron DESY, Hamburg, FR Germany

P. WEISZ*

II. Institut für Theoretische Physik, Universität Hamburg, FR Germany

Received 12 March 1987

The lattice ϕ^4 theory in four space-time dimensions is most likely "trivial", i.e. its continuum limit is a free field theory. However, for small but positive lattice spacing a and at energies well below the cutoff mass $\Lambda = 1/a$, the theory effectively behaves like a continuum theory with particle interactions, which may be appreciable. By a combination of known analytical methods, we here determine the maximal value of the renormalized coupling at zero momentum as a function of Λ/m , where m denotes the mass of the scalar particle in the theory. Moreover, a complete solution of the model is obtained in the sense that all low energy amplitudes can be computed with reasonable estimated accuracy for arbitrarily chosen bare coupling and mass in the symmetric phase region.

Similarity to the LCE

Effective Theory

$$\int \prod d\phi(x) \exp\left\{-S_0[\phi] - \kappa \sum_{\langle x,y \rangle} \phi(x)\phi(y)\right\}$$

$$\int \prod dL(x) \det Q^{\text{stat}} \exp \left\{ -\lambda \sum_{\langle x,y \rangle} L(x)L^*(y) + \ldots \right\}$$

Effective action as graphs

The theory contains interactions at all distances

$$S_{I}[L] = \sum_{i=1}^{n} \sum_{j=1}^{n} v_{i}(1,2,...,n_{i})\phi_{1}[L]\phi_{2}[L]\cdots\phi_{n_{i}}[L]$$

In our theory:

- $v_i(1,2,...n_i) \rightarrow \{\lambda_i,h_i\} \times \text{geometry}$
- $\phi_i \rightarrow \{L_i, L_i^*, W_i\}$

Graphs and embeddings The N-point Linked Cluster Expansion

Classical Linked Cluster Expansion

The action consists of two-point interactions which can be expanded in a set of connected graphs.

Our Problem

The action contains n-point interactions that we can embed on a set of connected graphs.

Graphs and embeddings Two step embedding process

Effective Action Term Skeleton Graph embedding

Continuum comparison

Two-step expansion

First expansion

Strong coupling expansion

Hopping parameter expansion

$$\mathcal{Z} \approx \int \prod_{\mathbf{x}} \mathrm{d}L(\mathbf{x}) \exp\left\{-S_{\mathrm{eff\ action}}\right\}$$

$$S_{\text{eff action}} = \sum_{n=1}^{N} \sum_{m=1}^{M} \kappa^{n} \beta^{m} S_{n,m}$$

Two-step expansion

Second expansion

Linked cluster expansion

$$\mathcal{W} = -\frac{1}{\Omega} \log \mathcal{Z}$$

$$\approx \sum_{i,j} \sum_{n=0}^{N} \sum_{m=0}^{M} h_i^n \lambda_j^m W_{i,j,n,m}$$

$$\equiv \sum_{n=0}^{N_{\kappa}} \sum_{m=0}^{M_{\beta}} \kappa^n \beta^m W_{n,m}$$

Analytic resummations

Extending the theory

Using the resummed Linked Cluster Expansion as motivation

We can do the same resummation for the effective action itself, incorporating long-range effects

Convergence

Convergence

Convergence

Attempts at the binding energy

Towards lighter quarks

Towards lighter quarks

Equation of state

Summary

Summary

- Introduced the effective dimensionally reduced lattice theory
- Looked at how a consistent analytic calculation could be carried out
- Demonstrated convergence and comparisons with numerics

Outlook

Outlook

- Use the analytic results as a tool to study the characteristics of the effective theory
- Find analytic resummation schemes to incorporate long-range effects