Package 'Anaconda'

October 14, 2022

Type Package

Title Targeted Differential and Global Enrichment Analysis of Taxonomic Rank by Shared Asvs

Version 0.1.5

Author Pierre-Louis Stenger [cre, aut]

Maintainer Pierre-Louis Stenger < Pierrelouis.stenger@gmail.com>

Description

Targeted differential and global enrichment analysis of taxonomic rank by shared ASVs (Amplicon Sequence Variant), for high-throughput eDNA sequencing of fungi, bacteria, and metazoan. Actually works in two steps: I) Targeted differential analysis from QI-

IME2 data and II) Global analysis by Taxon Mann-Whitney U test analysis from targeted analysis (I)

- (I) Estimate variance-mean dependence in count/abundance ASVs data from high-throughput sequencing assays and test for differential represented ASVs based on a model using the negative binomial distribution.
- (II) NCBITaxon_MWU uses continuous measure of significance (such as fold-change or -log(p-value)) to identify NCBITaxon that are significantly enriches with either up- or down-represented ASVs. If the measure is binary (0 or 1) the script will perform a typical 'NCBITaxon enrichment' analysis based Fisher's exact test: it will show NCBITaxon over-represented among the ASVs that have 1 as their measure. On the plot, different fonts are used to indicate significance and color indicates enrichment with either up (red) or down (blue) regulated ASVs. No colors are shown for binary measure analysis. The tree on the plot is hierarchical clustering of NCBITaxon based on shared ASVs. Categories with no branch length between them are subsets of each other. The fraction next to the category name indicates the fraction of 'good' ASVs in it; 'good' ASVs are the ones exceeding the arbitrary absValue cutoff (option in taxon_mwuPlot()). For Fisher's based test, specify absValue=0.5. This value does not affect statistics and is used for plotting only. The original idea was for genes differential expression analy-

sis from Wright et al (2015) <doi:10.1186/s12864-015-1540-2>; adapted here for taxonomic analysis.

The 'Anaconda' package makes it possible to carry out these analyses by automatically creating several graphs and tables and storing them in specially created subfolders. You will need your QIIME2 pipeline output for each kingdom (eg; Fungi and/or Bacteria and/or Metazoan): i) taxonomy.tsv, ii) taxonomy_RepSeq.tsv, iii) ASV.tsv and iv) SampleSheet_comparison.txt (the latter being created by you).

License GPL (>= 2)

 ${\bf URL} \ {\tt https://github.com/PLStenger/Anaconda}$

BugReports https://github.com/PLStenger/Anaconda/issues

Imports ggrepel, pheatmap, lookup, plyr, data.table, rafalib, RColorBrewer, methods, graphics

Depends ape, DESeq2, ggplot2

Encoding UTF-8 **RoxygenNote** 7.2.1 **NeedsCompilation** no

Repository CRAN

Date/Publication 2022-10-14 08:55:29 UTC

R topics documented:

Bacteria	3
clusteringGOs	4
dasva_raw_input	4
database_bacteria_creation	5
database_fungi_creation	6
database_fungi_creation_RepSeq	6
database_metazoan_creation	7
fisherTest	8
format_input	8
Fungi	9
funguild_input_targeted	9
get_bactotraits_targeted	0
get_dasva	0
get_funguilds	1
get_funguilds_targeted	2
get_input_files	2
get_link_guilds	3
get_taxon_list_drawer	3
heatmap_condition	4
heatmap_data_dasva	4
heatmap_samples_hclust	5
heatmap_samples_matrix	5
heatmap_taxo	6
input_global_analysis	6
Metazoan	7
move_files	7
mwuTest	8
PCA_data_dasva	8
plotDispASVs	9
plotMA.dasva	0

Bacteria 3

	41
2	21
2	22
2	22
2	23
2	24
2	25
2	26
2	28

Bacteria

Bacteria

Description

This function create a new folder named Bacteria and set your working directory into this folder. Please, run setwd("Bacteria") after this function.

Usage

Bacteria(nothing)

Arguments

nothing

It's important not to write anything between the brackets, a new folder named Bacteria will be created and your working directory will be set into this folder, depending of the selected Kingdom.

Value

A new folder named Bacteria will be created and your working directory will be set into this folder, depending of the selected Kingdom.

```
## Not run: Bacteria()
# Please, run setwd("Bacteria") after this function.
```

4 dasva_raw_input

clusteringGOs

clusteringGOs

Description

clusteringGOs from DESeq2 analysis pipeline

Usage

```
clusteringGOs(gen2go, div, cutHeight)
```

Arguments

gen2go from DESeq2 analysis pipeline

div div

cutHeight cutHeight

Value

a clustering GO

Examples

```
## Not run: clusteringGOs()
```

dasva_raw_input

dasva_raw_input

Description

Used in heatmap_samples_hclust(), heatmap_samples_matrix(), PCA_data_dasva() and get_dasva() functions.

Usage

```
dasva_raw_input(sampleTable, directory = ".", design, ignoreRank = FALSE, ...)
```

Arguments

sampleTable Depending of the heatmap_samples_hclust(), heatmap_samples_matrix(), PCA_data_dasva()

and get_dasva() functions.

directory directory
design design
ignoreRank ignoreRank

Value

object

Examples

```
## Not run: dasva_raw <- dasva_raw_input(sampleTable = sampleTable,
    directory = targeted_analysis_dir,
    design= ~ condition)
## End(Not run)</pre>
```

database_bacteria_creation

 $database_bacteria_creation$

Description

Create a Database for Bacteria kingdom for Global analysis by Taxon_MWU analysis from targeted analysis. Please, run setwd("02_Global_analysis") after this function.

Usage

```
database_bacteria_creation(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, the database will create itself.

Value

A data frame file named database_bacteria_package_all.tab created from the taxonomy_all_bacteria_QIIME2_and_NCBI_fo file and your own taxonomy_RepSeq.tsv file. database_bacteria_creation()

```
# It is important not to write anything between the brackets, the database will create itself.
## Not run: database_bacteria_creation()
# Please, run setwd("02_Global_analysis") after this function.
```

database_fungi_creation

database_fungi_creation

Description

Create a Database for Fungi kingdom for Global analysis by Taxon_MWU analysis from targeted analysis only from rarefied ASVs. Please, run setwd("02_Global_analysis") after this function.

Usage

```
database_fungi_creation(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, the database will create itself.

Value

A data frame file named database_fungi_package_all.tab created from the taxonomy_all_bacteria_QIIME2_and_NCBI_form file and your own taxonomy.tsv file.

Examples

```
# It is important not to write anything between the brackets, the database will create itself.
## Not run: database_fungi_creation()
# Please, run setwd("02_Global_analysis") after this function.
```

Description

Create a Database for Fungi kingdom for Global analysis by Taxon_MWU analysis from targeted analysis. Please, run setwd("02_Global_analysis") after this function.

Usage

```
database_fungi_creation_RepSeq(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, the database will create itself.

Value

A data frame file named database_fungi_package_all.tab created from the taxonomy_all_bacteria_QIIME2_and_NCBI_form file and your own taxonomy_RepSeq.tsv file.

Examples

```
# It is important not to write anything between the brackets, the database will create itself.
## Not run: database_fungi_creation_RepSeq()
# Please, run setwd("02_Global_analysis") after this function.

database_metazoan_creation
```

database_metazoan_creation

Description

Create a Database for metazoan kingdom for Global analysis by Taxon_MWU analysis from targeted analysis. Please, run setwd("02_Global_analysis") after this function.

Usage

```
database_metazoan_creation(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, the database will create itself.

Value

A data frame file named database_metazoan_package_all.tab created from the taxonomy_all_metazoan_QIIME2_and_NCBI file and your own taxonomy_RepSeq.tsv file. database_metazoan_creation()

```
# It is important not to write anything between the brackets, the database will create itself.
## Not run: database_metazoan_creation()
# Please, run setwd("02_Global_analysis") after this function.
```

8 format_input

fisherTest

fisherTest

Description

Ficher Test from RBGOA

Usage

```
fisherTest(gotable)
```

Arguments

gotable

from gomwuStats from RBGOA

Value

fisherTest

Examples

```
## Not run: fisherTest()
```

format_input

format_input

Description

Apply logP on both positive and negative ASVs FC

Usage

```
format_input(x)
```

Arguments

Х

Object from the Differential ASV abundance (DASVA) analysis

Value

```
an input for the input_global_analysis() function
```

```
## Not run: format_input(x)
```

Fungi 9

Fungi Fungi

Description

This function create a new folder named Fungi and set your working directory into this folder. Please, run setwd("Fungi") after this function.

Usage

```
Fungi(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, a new folder named Fungi will be created and your working directory will be set into this folder, depending of the selected Kingdom.

Value

A new folder named Fungi will be created and your working directory will be set into this folder, depending of the selected Kingdom.

Examples

```
## Not run: Fungi()
# plaese, run setwd("Fungi") after this function.
```

```
funguild_input_targeted
```

funguild_input_targeted

Description

Prepare Object for Fungi Guilds for Fungi kingdom for targeted analysis

Usage

```
funguild_input_targeted(x)
```

Arguments

x Object from the Differential ASV abundance (DASVA) analysis

10 get_dasva

Value

An Object used for Fungi Guilds informations for Fungi kingdom for targeted analysis from the Differential ASV abundance (DASVA) analysis

Examples

```
## Not run: get_funguilds_targeted(res_forest_vs_long_fallow_guilds)
```

```
{\tt get\_bactotraits\_targeted}
```

get_bactotraits_targeted

Description

Obtain Bacterial Traits for Bacteria kingdom for targeted analysis

Usage

```
get_bactotraits_targeted(x)
```

Arguments

Х

Object from the Differential ASV abundance (DASVA) analysis

Value

A data frame file with Bacterial Traits informations for Bacteria kingdom for targeted analysis from the Differential ASV abundance (DASVA) analysis

Examples

```
## Not run: get_bactotraits_targeted(res_forest_vs_long_fallow)
```

get_dasva

get_dasva

Description

Creates the DASVA object. Fit a Gamma-Poisson Generalized Linear Model, dispersion estimates for Negative Binomial distributed data, "parametric", local" or "mean"

```
get_dasva(fitType = "")
```

get_funguilds 11

Arguments

fitType

Fit a Gamma-Poisson Generalized Linear Model, dispersion estimates for Negative Binomial distributed data, "parametric", local" or "mean"

Value

DASVA object

Examples

```
## Not run: dasva <- get_dasva(fitType="parametric")
dasva <- get_dasva(fitType="local")
dasva <- get_dasva(fitType="mean")
## End(Not run)</pre>
```

get_funguilds

get_funguilds

Description

get Fungi Guilds from taxon_list_drawer Object

Usage

```
get_funguilds(taxon_list_drawer)
```

Arguments

```
taxon_list_drawer
object from get_taxon_list_drawer() function
```

Value

funguilds Object

```
## Not run: funguilds <- get_funguilds(taxon_list_drawer)</pre>
```

12 get_input_files

Description

Obtain Fungi Guilds for Fungi kingdom for targeted analysis

Usage

```
get_funguilds_targeted(x)
```

Arguments

Х

Object from the funguild_input_targeted() output.

Value

A data frame file with Fungi Guilds informations for Fungi kingdom for targeted analysis from the Differential ASV abundance (DASVA) analysis

Examples

```
## Not run: get_funguilds_targeted(res_forest_vs_long_fallow_guilds)
```

get_input_files

get_input_files

Description

Created sub directory "Targeted_analysis" if not already exist. Then, create one file by condition into it, and then upload the taxonomy file. Please, run setwd("01_Targeted_analysis") after this function.

Usage

```
get_input_files(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, all inputs will be adapted automatically.

Value

taxo

get_link_guilds 13

Examples

```
## Not run: taxo <- get_input_files()
# please, run setwd("01_Targeted_analysis") after this function.</pre>
```

get_link_guilds

get_link_guilds

Description

get link guilds from taxon_list and funguilds Objects

Usage

```
get_link_guilds(taxon_list, funguilds)
```

Arguments

taxon_list object from taxon_mwu_list() function funguilds object from get_funguilds() function

Value

link_guilds Object

Examples

```
## Not run: link_guilds <- get_link_guilds(taxon_list, funguilds)</pre>
```

```
get_taxon_list_drawer
```

Description

get taxonomic list drawer

Usage

```
get_taxon_list_drawer(taxon_list)
```

Arguments

```
taxon_list object from taxon_mwu_list() function
```

Value

```
taxon_list_drawer Object and "taxon_list_drawer_input.txt" file
```

14 heatmap_data_dasva

Examples

```
## Not run: taxon_list_drawer <- get_taxon_list_drawer(taxon_list)
```

heatmap_condition

heatmap_condition

Description

For Clustering step. Fill directly the annotation_col variable of the pheatmap() function

Usage

```
heatmap_condition(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, all inputs will be adapted automatically.

Value

Fill directly the annotation_col variable of the pheatmap() function

heatmap_data_dasva

heatmap_data_dasva

Description

For Clustering step. Create the log2.norm.counts object.

Usage

heatmap_data_dasva(nothing)

Arguments

nothing

It's important not to write anything between the brackets, all inputs will be adapted automatically.

Value

Create the log2.norm.counts object.

heatmap_samples_hclust

heatmap_samples_hclust

Description

Adapt helust for heatmap sample to sample analysis

Usage

```
heatmap_samples_hclust(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, all inputs will be adapted automatically.

Value

hclust object for the heatmap.2() function

Examples

```
## Not run: hc <- heatmap_samples_hclust()</pre>
```

heatmap_samples_matrix

heatmap_samples_matrix

Description

Adapt samples matrix for heatmap sample to sample analysis

Usage

```
heatmap_samples_matrix(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, all inputs will be adapted automatically.

Value

samples matrix object for the heatmap.2() function

Examples

```
## Not run: mat <- heatmap_samples_matrix()</pre>
```

heatmap_taxo

heatmap_taxo

Description

Adding taxonomy in the pheatmap plot, instead of ASVs codes

Usage

```
heatmap_taxo(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, all inputs will be adapted automatically.

Value

log2.norm.counts_taxo used fro adding taxonomy in the pheatmap plot, instead of ASVs codes

Examples

```
## Not run: log2.norm.counts_taxo <- heatmap_taxo()</pre>
```

```
input_global_analysis input_global_analysis
```

Description

Input files creation for each condition for Global analysis by Taxon_MWU analysis from targeted analysis (I)

Usage

```
input_global_analysis(x)
```

Arguments

Х

Object from the Differential ASV abundance (DASVA) analysis

Value

Input Object for Global analysis by Taxon_MWU analysis from targeted analysis (I)

Metazoan 17

Examples

```
## Not run: input_global_analysis(res_forest_vs_long_fallow)
```

Metazoan

Metazoan

Description

This function create a new folder named Metazoan and set your working directory into this folder. Please, run setwd("Metazoan") after this function.

Usage

Metazoan(nothing)

Arguments

nothing

It's important not to write anything between the brackets, a new folder named Metazoan will be created and your working directory will be set into this folder, depending of the selected Kingdom.

Value

A new folder named Metazoan will be created and your working directory will be set into this folder, depending of the selected Kingdom.

Examples

```
## Not run: Metazoan()
# plaese, run setwd("Metazoan") after this function.
```

move_files

move_files

Description

Move the file in the good folders. Depending on the previous Kingdom selection (e.g., Fungi 'Fungi()', Bacteria 'Bacteria()', etc.)

Usage

```
move_files(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, files will move in the good folders, depending of the selected Kingdom before.

18 PCA_data_dasva

Value

Move the file in the good folders.

Examples

```
## Not run: move_files()
```

mwuTest

mwuTest

Description

Mann-Whitney U Test from RBGOA

Usage

```
mwuTest(gotable, Alternative)
```

Arguments

gotable from gomwuStats from RBGOA Alternative from gomwuStats from RBGOA

Value

mwuTest

Examples

```
## Not run: mwuTest()
```

PCA_data_dasva

PCA_data_dasva

Description

Compute the PCA (Pincipal Component Analysis) data.

Usage

```
PCA_data_dasva(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, all inputs will be adapted automatically.

plotDispASVs 19

Value

data. The PCA (Pincipal Component Analysis) data.

plotDispASVs

plotDispASVs

Description

Create a plot of Dispersion ASV

Usage

```
plotDispASVs(
  object,
  ymin,
  CV = FALSE,
  genecol = "black",
  fitcol = "red",
  finalcol = "dodgerblue",
  legend = TRUE,
  xlab,
  ylab,
  log = "xy",
  cex = 0.45,
  ...
)
```

Arguments

```
object
                  Corresponding to the DASVA (Differential ASV abundance) object
ymin
                  ymin
                  CV
\mathsf{CV}
genecol
                  genecol
fitcol
                  fitcol
finalcol
                  finalcol
legend
                  legend
xlab
                  xlab
ylab
                  ylab
log
                  log
cex
                  cex
```

20 plotMA.dasva

Value

A plot of Dispersion ASV

Examples

```
## Not run: plotDispASVs(dasva)
```

plotMA.dasva

plotMA.dasva

Description

Custom MA plots for the Differential ASV abundance (DASVA) analysis. defining a new function to plot all ASVs and not only log2FoldChange > 2

Usage

```
plotMA.dasva(
  object,
  alpha,
  main = "",
  xlab = "mean of normalized counts",
  ylim,
  MLE = FALSE,
  verbose = TRUE,
  ...
)
```

Arguments

```
object Object from the Differential ASV abundance (DASVA) analysis alpha main main wlab ylim ylim MLE MLE verbose verbose ... ...
```

Value

A MA plot

```
## Not run: plotMA.dasva(rXXX, main="XXX", ylim=c(-20,20))
```

plotPCA.san 21

plotPCA.san plotPCA.san

Description

Custom plotPCA function to plot PC1 et PC3

Usage

```
plotPCA.san(object, intgroup = "condition", ntop = 500, returnData = FALSE)
```

Arguments

object An object use for the PCA

intgroup
ntop
ntop
returnData
intgroup
ntop

Value

A PCA

Examples

```
## Not run: plotPCA.san(object)
```

plotSparsityASV

plotSparsityASV

Description

Create a plot of Sparsity ASV

Usage

```
plotSparsityASV(x, normalized = TRUE, ...)
```

Arguments

x Corresponding to the DASVA (Differential ASV abundance) object

normalized normalized

... ...

22 target_file

Value

A plot of Sparsity ASV

Examples

```
## Not run: plotSparsityASV(dasva)
```

samplesInfo

samplesInfo

Description

Imports conditions information from your SampleSheet_comparison.txt file, with focus on samplesInfo.

Usage

```
samplesInfo(nothing)
```

Arguments

nothing

It's important not to write anything between the brackets, comparisons will create themselves.

Value

a data.frame with conditions information from your SampleSheet_comparison.txt file, with focus on samplesInfo.

Examples

```
## Not run: samplesInfo <- samplesInfo()</pre>
```

target_file

target_file

Description

Imports conditions information from your SampleSheet_comparison.txt file, with focus on iput files.

```
target_file(nothing)
```

taxon_mwuPlot 23

Arguments

nothing It's important not to write anything between the brackets, comparisons will cre-

ate themselves.

Value

a data.frame with conditions information from your SampleSheet_comparison.txt file

Examples

```
## Not run: target_file <- target_file()</pre>
```

taxon_mwuPlot

taxon_mwuPlot

Description

taxon mwuPlot for taxonomic analysis

Usage

```
taxon_mwuPlot(
  inFile,
  goAnnotations,
  goDivision,
  level1 = 0.1,
  level2 = 0.05,
  level3 = 0.01,
  absValue = -log(0.05, 10),
  adjusted = TRUE,
  txtsize = 1,
  font.family = "sans",
  treeHeight = 0.5,
  colors = NULL,
  verbose = TRUE
)
```

Arguments

inFile inFile - results object from the DASVA analysis

goAnnotations parallel to goAnnotations from gomwuStats from RBGOA. Here, "database_bacteria_package_all.tab" if Bacteria, "database_fungi_package_all.tab" if Fungi

goDivision parallel to goAnnotations from gomwuStats from RBGOA. Here, "TR" = taxo-

nomic Rank, don't change this

level1 level1 level2

```
level3
                 level3
                 absValue
absValue
adjusted
                 adjusted
                 txtsize
txtsize
font.family
                 font.family
treeHeight
                 treeHeight
colors
                 colors
verbose
                 verbose
```

Value

taxon mwuPlot and goods "Table_02_taxon_mwuPlot.txt"

Examples

```
## Not run: taxon_mwuPlot(input,...)
```

```
taxon_mwuPlot_guilds taxon_mwuPlot_guilds
```

Description

taxon Mann-Whitney U Plot with Fungi Guilds added

```
taxon_mwuPlot_guilds(
   inFile,
   goAnnotations,
   goDivision,
   level1 = 0.1,
   level2 = 0.05,
   level3 = 0.01,
   absValue = -log(0.05, 10),
   adjusted = TRUE,
   txtsize = 1,
   font.family = "sans",
   treeHeight = 0.5,
   colors = NULL,
   verbose = TRUE
)
```

taxon_mwuStats 25

Arguments

inFile inFile - results object from the DASVA analysis parallel to goAnnotations from gomwuStats from RBGOA. Here, "database_bacteria_package_all.tab" goAnnotations if Bacteria, "database_fungi_package_all.tab" if Fungi parallel to goAnnotations from gomwuStats from RBGOA. Here, "TR" = taxogoDivision nomic Rank, don't change this level1 level1 level2 level2 level3 level3 absValue absValue adjusted adjusted txtsize txtsize font.family font.family treeHeight treeHeight colors colors verbose verbose

Value

List for the statistical analysis for taxonomic rank

Examples

Description

mwuStats from RBGOA adapted for taxonomic analysis

```
taxon_mwuStats(
  input,
  goDatabase,
  goAnnotations,
  goDivision,
  Alternative = "t",
  adjust.multcomp = "BH",
  clusterCutHeight = 0.25,
  largest = 0.1,
```

26 taxon_mwu_list

```
smallest = 5,
perlPath = "perl",
verbose = TRUE
)
```

Arguments

input input goDatabase goDatabase goAnnotations goAnnotations goDivision goDivision Alternative Alternative adjust.multcomp adjust.multcomp clusterCutHeight cluster Cut Heightlargest largest smallest smallest perlPath perlPath verbose verbose

Value

Statistical analysis for taxonomic rank

Examples

```
## Not run: taxon_mwuStats(input, ...)
```

taxon_mwu_list

taxon_mwu_list

Description

taxon Mann-Whitney U list for taxonomic analysis

```
taxon_mwu_list(
  inFile,
  goAnnotations,
  goDivision,
  level1 = 0.1,
  level2 = 0.05,
  level3 = 0.01,
```

taxon_mwu_list 27

```
absValue = -log(0.05, 10),
adjusted = TRUE,
txtsize = 1,
font.family = "sans",
treeHeight = 0.5,
colors = NULL
)
```

Arguments

inFile inFile - results object from the DASVA analysis

goAnnotations parallel to goAnnotations from gomwuStats from RBGOA. Here, "database_bacteria_package_all.tab"

if Bacteria, "database_fungi_package_all.tab" if Fungi

goDivision parallel to goAnnotations from gomwuStats from RBGOA. Here, "TR" = taxo-

nomic Rank, don't change this

level1 level1 level2 level2 level3 level3 absValue absValue adjusted adjusted txtsize txtsize font.family font.family treeHeight treeHeight colors colors

Value

List for the statistical analysis for taxonomic rank

```
## Not run: taxon_list <- taxon_mwu_list(input, ...)</pre>
```

Index

```
Bacteria, 3
clusteringGOs, 4
dasva_raw_input, 4
database_bacteria_creation, 5
database_fungi_creation, 6
{\tt database\_fungi\_creation\_RepSeq, 6}
{\tt database\_metazoan\_creation}, {\tt 7}
fisherTest, 8
format_input, 8
Fungi, 9
funguild_input_targeted, 9
get_bactotraits_targeted, 10
get_dasva, 10
get_funguilds, 11
get_funguilds_targeted, 12
get_input_files, 12
get_link_guilds, 13
get_taxon_list_drawer, 13
\verb|heatmap_condition|, 14|
heatmap_data_dasva, 14
heatmap_samples_hclust, 15
heatmap_samples_matrix, 15
heatmap_taxo, 16
input_global_analysis, 16
Metazoan, 17
move_files, 17
\textit{mwuTest}, \, \textcolor{red}{18}
PCA_data_dasva, 18
plotDispASVs, 19
plotMA.dasva, 20
plotPCA.san, 21
plotSparsityASV, 21
samplesInfo, 22
```

target_file, 22
taxon_mwu_list, 26
taxon_mwuPlot, 23
taxon_mwuPlot_guilds, 24
taxon_mwuStats, 25