AndroTotal

A Scalable Framework for Android Antimalware Testing

Andrea Valdi, Federico Maggi, Stefano Zanero
Politecnico di Milano, DEIB
fede@maggi.cc

Roadmap

- 1. Threats and protections
- 2. Limitations
- 3. Evaluating antimalware
- 4. AndroTotal
- 5. Status

1. Threats and protections

- 2. Limitations
- 3. Evaluating antimalware
 - 4. AndroTotal
 - 5. Status

Android Facts

- Android is the most popular mobile platform
- Rich marketplaces stocked with apps
- Very attractive target for attackers

Growth of Malicious Apps

http://blog.trendmicro.com/trendlabs-security-intelligence/byod-a-leap-of-faith-for-enterprise-users/

Attackers Goals

- Steal sensitive data (intercept texts or calls)
- Turn devices into bots (perform malicious actions)
- Financial gain (call or text premium numbers)

Android Security Approach

- Official apps on Google Play are vetted upon submission
- "Proprietary" JVM (Dalvik) runtime environment
- One Dalvik process per app
- Isolated processes with distinct uid, gid
- "Sensitive" operations require permissions

Android Architecture

Consequence

An app (process) cannot interfere with another app's memory or filesystem.

1. Threats and protections

2. Limitations

- 3. Evaluating antimalware
 - 4. AndroTotal
 - 5. Status

Antimalware Limitations

- Cannot observe running processes
- Workarounds:
 - Signature-based matching
 - Custom kernel (e.g., intercept syscalls)
 - Root the device and increase the antimalware's privileges

Malware Limitations

- Classic malware approaches do not apply
- Example: Memory errors cannot be exploited
- Workarounds:
 - Social engineering
 - Phishing
 - Signature evasion

Evading Signatures

repackaging, obfuscation, encryption

http://go.eset.com/us/resources/white-papers/Trends_for_2013_preview

- 1. Threats and protections
 - 2. Limitations

3. Evaluating antimalware

- 4. AndroTotal
 - 5. Status

Antimalware Products

- We count about 100 (free) antimalware products
- They are all based on signature matching
- Some provide extras if granted root privileges

How to measure their effectiveness?

- 1. Obtain M samples of known malware
- 2. Apply **T** transformations to each sample
- 3. Analyze with P x V antimalware products and versions
- 4. Repeat for each of the **A** Android versions

Numbers

- M = 1,000 (very conservative)
- T = 3 (obfuscation, encryption, repackaging)
- P = 100
- V = 2 (simple example)
- A = 3(2.3, 4.1, 4.2)

$$1,000 \times 3 \times 100 \times 2 \times 3 = 1,800,000$$

tests

Lack of Automation Tools VirusTotal.com?

- Relies on command-line, desktop-based AVs with signatures for Android
- Unclear whether the same signatures will work on the respective mobile products
- No versioning support

State of the Art

- H. Pilz, "Building a test environment for Android anti-malware tests," Virus Bulletin Conference '12
 - Human oracle is needed
- M. Zheng, P. P. C. Lee, and J. C. S. Lui, "ADAM: An Automatic and Extensible Platform to Stress Test Android Anti-Virus Systems," DIMVA'12
 - Focus on transformation, uses VirusTotal.com
- V. Rastogi, Y. Chen, and X. Jiang, "DroidChameleon: Evaluating Android Anti-malware against Transformation Attacks," AsiaCCS'13
 - Focus on transformation, uses custom scripts

Challenges

- Parallelization is required
- Android antimalware products are UI driven

- 1. Threats and protections
 - 2. Limitations
- 3. Evaluating antimalware

4. AndroTotal

5. Status

- SDK for writing UI tests/scrapers
- Pluggable adapters for each antimalware
- Parametric tests (e.g., version, platform)
- Task queues with distributed workers

Characteristics

- Web frontend for humans
- JSON/REST API for machines
- Pluggable code-transformation modules
- Works on both emulators and physical devices

Scan application (advanced)

Antivirus name	Antivirus version	Android platform	Detection method 6	
Trend Micro, Mobile Security & Antivir	2.6.2	Android 4.1.2 💠	On install \$	+
AVAST Software, avast! Mobile Security	2.0.3380	Android 4.1.2	On install	×
AVAST Software, avast! Mobile Security	2.0.3380	Android 4.1.2	On demand	×
AVAST Software, avast! Mobile Security	2.0.3917	Android 4.1.2	On install	×

androto	ta (beta)	Q - Scan - Result	s Admin	Logout
Sample MD5	cbdf63b2e5666799c4b74a8cd15565dd 🚣			
Sample SHA-1	d9c2bc199769f8e1c817ccd23f1860f5125bdaf6			
Sample SHA-256	d11de9bb4d7451ffe7e4b6bd6bab529e7411e3dbe90d468	243ef87a5ed98941e		
File size	959488 Bytes			
First seen on	08 May 2013			
Malicious labels	(Android:FakeInst-EO [PUP]). AndroidOS_FakeInst.VTD not a vi	rus Adware.Startapp.origin.5		
Package name	com.issghai.thattere			
File names	com.issghai.thattere.apk			
External analysis	[VirusTotal] [SandDroid]			

Last 10 scans performed on this sample view all »

Platform	Antivirus Name	Detected name	Date	Results
Android 4.1.2	Doctor Web, Ltd, Dr.Web Anti-virus Light (free) 7.00.3	not a virus Adware.Startapp.origin.5	08/05/13	Full report »
Android 4.1.2	Trend Micro, Mobile Security & Antivirus 2.6.2	AndroidOS_FakeInst.VTD	08/05/13	Full report »
Android 4.1.2	AVAST Software, avast! Mobile Security 2.0.3917	(Android:FakeInst-EO [PUP]).	08/05/13	Full report »
Android 4.1.2	Kaspersky Lab, Kaspersky Mobile Security Lite 9.36.28	No threat detected	08/05/13	Full report »
Android 4.1.2	NortonMobile, Norton Security & Antivirus 3.3.4.970	No threat detected	08/05/13	Full report »

Trend Micro / Mobile Security & Antivirus / 2.6.2 / 2013-05-08 17:07:23 - cbdf63b2e5666799c4b74a8cd15565dd

Mobile Security & Antivirus 2.6.2 scan for cbdf63b2e5666799c4b74a8cd15565dd

Task id	131bd4fe-3bcd-4a72-a207-683ed8eb79f1
Vendor name	Trend Micro
Antivirus name	Mobile Security & Antivirus
Engine version	2.6.2
Analysis started on	08/05/2013 at 17:05
Analysis completed on	08/05/2013 at 17:07 (took 91 seconds)
Detection method	On install
Analysis result	AndroidOS_FakeInst.VTD
Sample md5	cbdf63b2e5666799c4b74a8cd15565dd 🔳

Logcat dump (download)

```
99.
      I/tmms-vsapi-jni( 674): VSReadVirusPattern OK. Action successful.
L00.
      I/tmms-vsapi-ini( 674): OK. VSSetProcessAllFileInArcFlag. oldValue = ret = 0.
L01.
      I/tmms-vsapi-jni( 674): OK. VSSetExpandLiteFlag. oldValue = ret = 1.
      I/tmms-vsapi-jni( 674): OK. VSSetProcessAllFileFlag. oldValue = ret = 0.
L02.
      I/tmms-vsapi-jni( 674): OK. VSSetCleanZipFlag. oldValue = ret = 0.
L03.
      I/tmms-vsapi-jni( 674): OK. VSSetCleanBackupFlag. oldValue = ret = 0.
L04.
L05.
      I/tmms-vsapi-jni( 674): VSGetDetectableVirusNumber virus in patter num = 3283
      I/tmms-vsapi-jni( 674): filename = /data/data/com.trendmicro.tmmspersonal/Library/pattern/msvpnaos.457
L06.
      I/tmms-vsapi-jni( 674): InternalVer = 145700, PtnVer = 457.
L07.
      D/PrepareVSAPI4RTScan( 674): before tmmsAntiMalwareJni4RTScan.init()!
L08.
L09.
      I/tmms-vsapi-ini( 674): VSInit OK!
      D/PrepareVSAPI4RTScan( 674): after tmmsAntiMalwareJni4RTScan.init()!
L10.
      I/tmms-vsapi-jni( 674): in vsSetPatternPath, vc = 711579352
L11.
112.
      I/tmms-vsapi-jni( 674): Current pattern path is : /etc/iscan
      I/tmms-vsapi-jni( 674): Pattern path is set to : /data/data/com.trendmicro.tmmspersonal/Library/pattern
L13.
      I/tmms-vsapi-jni( 674): Pattern file(s) successfully deleted.
L14.
      I/tmms-vsapi-jni( 674): in vsLoadPattern, vc = 711579352, sharedVC = 708085592, scanType =
L15.
      I/tmms-vsapi-ini( 674): vsLoadPattern patternPath = /data/data/com.trendmicro.tmmspersonal/Library/pattern.
L16.
```

Writing tests is was tedious

We have abstracted away the low level details, so that we can focus on the important things: extracting the results.

Test Recipe (on-install detection)

```
#andrototal-adapters/ComZonerAndroidAntivirus.py
class TestSuite(base.BaseTestSuite):
    def on_install_detection(self, sample_path):
        self.pilot.install_package(sample_path)

    if self.pilot.wait_for_activity(
        "com.zoner.android.antivirus_common.ActScanResults", 10):

        result = self.pilot.get_view_by_id("scaninfected_row_virus")
        else:
        result = False
```

Test Recipe (on-demand detection)

```
def on demand detection(self, sample path):
  self.pilot.install package(sample path)
 self.pilot.start activity("com.zoner.android.antivirus", ".ActMain")
 self.pilot.wait for activity("com.zoner.android.antivirus.ActMain")
 self.pilot.tap on coordinates(120, 130)
  self.pilot.wait for activity("com.zoner.android.antivirus.ActMalware"
 # start scan
 self.pilot.tap on coordinates(120, 80)
  self.pilot.wait for activity(
    "com.zoner.android.antivirus common.ActScanResults")
 self.pilot.refre dsh()
```

Workflow

- 1. Retrieve a suspicious APK
- 2. Choose parameters
 - Android version(s)
 - List of antimalware product and versions
- 3. Pull clean image(s) from repository
- 4. Instantiate one test per combination of
 - Android version
 - Product version
- 5. Enqueue test instances

Architecture

- Web frontend
- Repository of clean Android images
- Asynchronous task dispatcher
- Distributed workers

Scalability

- 1. Threats and protections
 - 2. Limitations
- 3. Evaluating antimalware
 - 4. AndroTotal

5. Status

Numbers

- 455 users subscribed in less than a month
- 13 antimalware vendors supported (not all public)
- 16 products overall (not all public)
- 1,465 distinct samples submitted so far

Future Work

- Write a paper :)
- Compare labels and detection results with VirusTotal.com
- Incorporate code-mutation modules
- Add more cores and scale
- Finish the API (only sample sharing is supported as of now)
- Deploy on ARM boards and monitor power consumption

7 hours ago...

Other Ongoing Work on Android Malware Analysis

- PLASMA Android framework instrumented for malware dynamic analysis
- PuppetDroid increasing code coverage of "corner cases" in dynamic analysis through semi-automatic UI stimulation
- MoBucket (Mobile Malware Bucket) consolidated dataset of mobile malware

Thank you!

Questions?

Try it now at andrototal.org!

fede@maggi.cc

Extra Slides

Android Popularity

