## 23. Pohjoismainen matematiikkakilpailu

## 2. huhtikuuta 2009 Ratkaisuja

1. Olkoon kolmio ABC ja leikatkoot P:n kautta piirretyt suorat kolmion sivut pisteissä D ja E, F ja G sekä H ja I. Kolmiot ABC, DEP, PFG ja IPH ovat kaikki yhdenmuotoisia ja BD = IP, EC = PF. Jos BC = a,  $IP = a_1$ ,  $DE = a_2$  ja  $PF = a_3$ , niin  $a_1 + a_2 + a_3 = a$ . Koska yhdenmuotoisten kuvioiden pinta-alojen suhde on vastinsivujen suhteen neliö, niin kolmioiden alat ovat  $ka^2$ ,  $ka_1^2$ ,  $ka_2^2$  ja  $ka_3^2$ , missä k on kolmioiden muodosta riippuva verrannollisuuskerroin. Mutta näin ollen



$$f = \frac{ka_1^2 + ka_2^2 + ka_3^2}{ka^2} = \frac{a_1^2 + a_2^2 + a_3^2}{(a_1 + a_2 + a_3)^2}.$$

On tunnettua, että aritmeettinen keskiarvo on pienempi tai yhtä suuri kuin kuin neliöllinen keskiarvo eli

$$\frac{(a_1 + a_2 + a_3)^2}{9} \le \frac{a_1^2 + a_2^2 + a_3^2}{3},$$

ja keskiarvot ovat samat jos ja vain jos  $a_1 = a_2 = a_3$  [Jos halutaan, todistus:  $(a-b)^2 + (b-c)^2 + (c-a)^2 \ge 0 \Rightarrow 2a^2 + 2b^2 + 2c^2 \ge 2ab + 2bc + 2ca \Rightarrow 3a^2 + 3b^2 + 3c^2 \ge a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a+b+c)^2$ ; ensimmäisessä epäyhtälössä ja kaikissa seuraavissakin on yhtäsuuruus, jos ja vain jos a = b = c.] Mutta tämä on yhtäpitävää sen kanssa, että  $f \ge \frac{1}{3}$ .

Yhtäsuuruustilanteessa on siis  $a_1 = a_2 = a_3$ . Kolme pikkukolmiota ovat yhteneviä. Silloin myös CF = FG = GA ja AH = HI = IB. Koska kolmiot AIF ja ABC ovat yhdenmuotoisia ja P on IF:n keskipiste, AP:n jatke puolittaa sivun BC. P on siis kolmion ABC A:sta piirretyn keskijanan piste. Mutta aivan samoin se on B:stä ja C:stä piirrettyjen keskijanojen piste. Se on siis ABC:n keskijanojen leikkauspiste.

2. Olkoon vasemman puolen ensimmäinen tekijä P(x), tonen tekijä Q(x) ja oikea puoli R(x). Todetaan, että P(0) = P(-1) = a ja R(0) = -90 ja R(-1) = -180 - 4 = -184. Nyt  $90 = 2 \cdot 3^2 \cdot 5$  ja  $184 = 2^3 \cdot 23$ . Koska a on sekä luvun 90 että luvun 184 tekijä, on oltava  $a = \pm 1$  tai  $a = \pm 2$ . Jos olisi a = 1, olisi P(1) = 3. Toisaalta R(1) = 4 - 180 = -176. R(1):n numeroiden summa on 14, joten R(1) ei ole jaollinen 3:lla. Siis  $a \neq 1$ . Jos a = -2, niin P(1) = 0, mutta R(1) = -176. Siis  $a \neq -2$ . On helppo huomata, että  $R(x) = (x^4 + 1)(x^{13} + x - 90)$ . Jos a = -1, niin P(2) = 5, mutta  $2^4 + 1 = 17$  ja  $2^{13} + 2 - 90 = 8 \cdot 1024 + 2 - 90$ , mistä helposti näkee, että luku ei ole jaollinen viidellä. Koska siis R(2) ei ole jaollinen viidellä,  $a \neq 1$ . Ainoaksi mahdollisuudeksi jää, että a = 2. [Voidaan osoittaa, että  $Q(x) = (x^4 + 1)(x^{11} - x^{10} - x^9 + 3x^8 - x^7 - 5x^6 + 7x^5 + 3x^4 - 17x^3 + 11x^2 + 23x - 45$ .]

- 3. Kuvatunlainen lukujen muuttaminen joko vähentää taululla olevien parittomien lukujen määrää tai pitää sen ennallaan (jos a ja b ovat parittomia, niin a+b on parillinen ja ab pariton; jos a on pariton ja b parillinen, a+b on pariton ja ab parillinen, ja jos a ja b ovat molemmat parillisia, niin myös ab ja a+b ovat). Lisäksi operaatio kasvattaa lukuja tai pitää toisen ennallaan (jos toinen luvuista a, b on 1). Jotta taululle saataisiin kolme lukua 2009, ei missään vaiheessa voida operoida kahdella parittomalla luvulla. Oletetaan, että vaadittu tilanne olisi saavutettavissa. Ensimmäiseksi taululle kirjoitetun luvun 2009 on silloin oltava a+b. Tällöin joko ab>2009 tai ab=2008. Jälkimmäisessä tapauksessa luku 1 on pyyhitty pois, ja lukua 2008 ei siten voi käyttää uuden luvun 2009 synnyttämiseen. Kummassakin tapauksessa taululla on enää kolme sellaista lukua, joista voi muodostaa uuden luvun 2009. Olkoon nyt c ja d sellaiset kaksi näistä, että c+d=2009. Jälleen joko cd>2009 tai cd=2008, ja ykkönen pyyhkiytyy pois, eikä cd ole enää käytettävissä. Koska lukuja on viisi, ja neljä niistä on sellaisia, että niistä ei halutulla tavalla voi muodostaa lukua 2009, kolmatta lukua 2009 ei voi muodostaa. Haluttuun tilanteeseen ei siis päästä.
- 4. Kultamitalisti selviää viidellä ottelukierroksella. Ensimmäisellä kierroksella on 16 ottelua, näiden voittajien kesken 8, sitten 4, 2 ja 1 eli yhteensä 31 ottelua. Nyt toiseksi paras on jollain kierroksella hävinnyt voittajalle. Olkoot  $V_1, V_2, \ldots, V_5$  voittajan vastustajat eri kierroksilla. Jos nyt  $V_1$  ja  $V_2$  ottelevat, voittaja ottelee  $V_3$ :n kanssa jne., niin neljän ottelun perusteella on saatu selville hopeamitalisti. Pronssimitalistin on ollut hävittävä vain voittajalle tai hopeamitalistille (ei hän muuten olisi kolmanneksi paras. Jos hopeamitalisti on  $V_k$ , niin tämä on voittanut k-1 kertaa ennen kuin on kohdannut voittajan kierroksella k.  $V_k$  on lisäksi voittanut hopeamitaliotteluissa 5-k vastustajaa  $V_{k+1}, \ldots, V_5$  ja jos k>1 yhden vastustajan  $V_j, j< k$ . Kolmanneksi parhaan tilalle on siis tarjolla k-1+5-k=4 tai 4+1=5 ehdokasta. Jälleen enintään neljä ottelua tarvitaan näistä parhaan selvittämiseksi. Otteluita tarvitaan siis enintään 31+4+4=39.