Impact of Climate Change on Wine Production in California:

A County Level Analysis

Cole Poppsinger, Filippo Radice,

Jack Rayner, and Suzanne Hierl

March 25, 2022

California is the largest agricultural producer and exporter in the United States, with roughly \$49.1 billion of revenue being generated in 2020

• California wineries
'experienced an increase in sales by volume in 2020,
totaling an estimated retail value of 40\$ billion'.

 Climate Change is threatening wine quality and production.

• Temperature and
Precipitation variability are
the most important climate
factors that will affect
grapes quality and quantity
in the future.

Problem Statement

Can we detect a decrease in wine production, in a scenario with greater average temperatures and lower water availability?

 Serving as members of the Wine Institute Data Science Team, we develop a multiple linear regression model that could predict wine productions under two different forward-looking emissions scenarios: i) RCP 4.5; ii) RCP 8.5

• Necessary features

- Temperature statistics
- Change in temperature
- o Precipitation
- Change in precipitation
- County
- Wine grape production
- o Value of grapes produced

Collected by domain experts

NOAA

- o 1880-Present
- o By county
- Minimum, maximum, and average temperature
- Precipitation levels

USDA Agricultural Statistics Service

- o 1980-Present
- By county
- Wine grape production by various metrics

Climate data

- Filtered to 2000-2020
- Isolated top-producing wine counties
- Renaming columns
- Correcting datatypes
- Merging to one dataframe

• Wine production data

- o Filtered to 2000-2020
- Filtering to wine grapes
- Dropping unit, crop name, and commodity code columns

Target variables:

- Harvested acres
- o Total production
- Yield (production/acre)
- o Price per unit (ton)
- o Total price

Predictive Variables:

- o Monthly precipitation
- Minimum temperature
- o Maximum temperature
- o Average temperature

Feature Engineering

- Align monthly climate observations with annual yield
- Select features based on correlation with yield, while limiting collinearity
- Generate dummy variables for each county

Seasonal Maximum Temperature

Seasonal and Annual Average Temperature

Annual Minimum Temperature

Seasonal Precipitation
County Dummies

Model Selection

Production Model

Production Model

Future Projections

Future Projections

Over a 94 year period, one acre of productive land in Napa is predicted to produce 215.59 tons of wine grapes under Scenario 4.5 vs 219.61 tons under Scenario 8.5.

Conclusion

- Evaluated relationship between wine yield and climate metrics
- Predicted wine production with cross val score of nearly 90% on existing climate data
- Found model to be insufficient in predicting a substantial drop in wine production based on climate factors
- Determined the climate trend was not a significant enough over time to detect a clear difference in wine yield between the two RCP emissions scenarios

Next steps

- Consider adaptive behavior: resilient grape varietals (cool vs warm), shift in geographic location
- Collect more granular data on geographic and temporal scale
- Map against independent climate predictions
- Add additional climate variability indicators

Sources:

https://www.cdfa.ca.gov/Statistics/

https://wineinstitute.org/press-releases/californ ia-wine-sales-hit-40-billion-in-2020-despite-pa ndemic/

58

https://www.ncdc.noaa.gov/cag/

https://www.nass.usda.gov/Statistics by State/California/Publications/AgComm/

https://www.ipcc-data.org/