

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа №2 по дисциплине "Анализ Алгоритмов"

Тема Алгоритм Копперсмита-Винограда

Студент Ковалец К. Э.

Группа ИУ7-53Б

Преподаватель Волкова Л. Л.

Содержание

Bı	веде	ние	3			
1	Аналитическая часть					
	1.1	Стандартный алгоритм	5			
	1.2	Алгоритм Копперсмита-Винограда	5			
2	Koı	нструкторская часть	7			
	2.1	Схемы алгоритмов	7			
	2.2	Модель вычислений	13			
	2.3	Трудоемкость алгоритмов	13			
		2.3.1 Стандартный алгоритм умножения матриц	13			
		2.3.2 Алгоритм Копперсмита — Винограда	14			
		2.3.3 Оптимизированный алгоритм Копперсмита — Винограда	15			
	2.4	Классы эквивалентности	16			
	2.5	Описание используемых типов данных	17			
	2.6	Структура ПО	17			
	2.7	Вывод	17			
3	Tex	нологическая часть	18			
	3.1	Требования к программному обеспечению	18			
	3.2	Средства реализации	18			
	3.3	Листинги кода	19			
	3.4	Функциональные тесты	22			
	3.5	Вывод	22			
4	Исс	следовательская часть	23			
	4.1	Технические характеристики	23			
	4.2	Демонстрация работы программы	23			
	4.3	Время выполнения алгоритмов	25			
	4.4	Вывод	27			
38	клю	рчение	28			

Введение

Термин «матрица» применяется во множестве разных областей: от программирования до кинематографии. Матрица в математике — это таблица чисел, состоящая из определенного количества строк (m) и столбцов (n). Мы встречаемся с матрицами каждый день, так как любая числовая информация, занесенная в таблицу, уже в какой-то степени считается матрицей.

Алгоритм Копперсмита — Винограда — алгоритм умножения квадратных матриц, предложенный Д. Копперсмитом и Ш. Виноградом. Он обладает лучшей асимптотикой среди известных алгоритмов умножения матриц. На практике алгоритм Копперсмита — Винограда не используется, так как он имеет очень большую константу пропорциональности и начина- ет выигрывать в быстродействии у других известных алгоритмов только для матриц, размер которых превышает память современных компьютеров.

Целью данной лабораторной работы является изучение и реализация алгоритмов умножения матриц, вычисление трудоёмкости этих алгоритмов. В данной лабораторной работе рассматривается стандартный алгоритм умножения матриц, алгоритм Винограда и модифицированный алгоритм Винограда.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- исследовать классический алгоритм умножения матриц, алгоритм Винограда и модифицированный алгоритм Винограда;
- сравнить существующие решения;
- привести схемы рассматриваемых алгоритмов (классического алгоритма умножения матриц, алгоритма Винограда и модифицированного алгоритма Винограда);
- описать используемые структуры данных;
- оценить трудоёмкость рассматриваемых алгоритмов;
- описать структуру разрабатываемого ПО;
- определить средства программной реализации;

- провести сравнительный анализ времени работы алгоритмов;
- провести модульное тестирование;
- описать и обосновать полученные результаты в отчете о выполненной лабораторной работе, выполненном как расчётно-пояснительная записка к работе.

1 Аналитическая часть

В этом разделе будут представлены описания алгоритмов стандартного умножения матриц и алгоритм Копперсмита-Винограда. [1]

1.1 Стандартный алгоритм

Пусть даны две прямоугольные матрицы

$$A_{lm} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \dots & a_{lm} \end{pmatrix}, \quad B_{mn} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}, \quad (1.1)$$

тогда матрица C

$$C_{ln} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{l1} & c_{l2} & \dots & c_{ln} \end{pmatrix}, \tag{1.2}$$

где

$$c_{ij} = \sum_{r=1}^{m} a_{ir} b_{rj} \quad (i = \overline{1, l}; j = \overline{1, n})$$

$$(1.3)$$

будет называться произведением матриц A и B. Стандартный алгоритм реализует данную формулу.

1.2 Алгоритм Копперсмита-Винограда

Алгоритм Копперсмита-Винограда — алгоритм умножения квадратных матриц, предложенный в 1987 году Д. Копперсмитом и Ш. Виноградом. В исходной версии асимптотическая сложность алгоритма составляла $O(n^{2,3755})$, где n — размер стороны матрицы. Алгоритм Копперсмита — Винограда, с учетом серии улучшений и доработок в последующие годы, обладает лучшей асимптотикой среди известных алгоритмов умножения матриц.

Рассмотрим два вектора $V=(v_1,v_2,v_3,v_4)$ и $W=(w_1,w_2,w_3,w_4)$. Их скалярное произведение равно: $V\cdot W=v_1w_1+v_2w_2+v_3w_3+v_4w_4$, что эквивалентно (1.4):

$$V \cdot W = (v_1 + w_2)(v_2 + w_1) + (v_3 + w_4)(v_4 + w_3) - v_1 v_2 - v_3 v_4 - w_1 w_2 - w_3 w_4.$$
 (1.4)

Несмотря на то, что второе выражение требует вычисления большего количества операций, чем стандартный алгоритм: вместо четырех умножений - шесть, а вместо трех сложений - десять, выражение в правой части последнего равенства допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй, что позволит для каждого элемента выполнять лишь два умножения и пять сложений, складывая затем только лишь с 2 предварительно посчитанными суммами соседних элементов текущих строк и столбцов. Из-за того, что операция сложения быстрее операции умножения в ЭВМ, на практике алгоритм должен работать быстрее стандартного.

В случае нечетного значений размера изначальной матрицы (n), следует произвести еще одну операцию - добавление произведения последних элементов соответствующих строк и столбцов.

Вывод

Были рассмотрены алгоритмы классического умножения матриц и алгоритм Винограда, основное отличие которого от классического алгоритма — наличие предварительной обработки, а также количество операций умножения.

На вход алгоритмам будут поступать две матрицы, кол-во столбцов первой матрицы должно совпадать с кол-вом строк второй матрицы. При попытке ввести пустые матрицы будет выдано сообщение об ошибке. Реализуемое ПО будет давать возможность выбрать алгоритм и вывести для него результат вычисления, а также возможность произвести сравнение алгоритмов по затраченному времени.

2 Конструкторская часть

В данном разделе будут приведены схемы алгоритмов умножения матриц, приведено описание используемых типов данных, оценка трудоёмкости алгоритмов, а также описана структура ПО.

2.1 Схемы алгоритмов

На вход алгоритмов падаются матрицы matr1 и matr2, на выходе получаем результат перемножения двух матриц, записанный в res_matr .

На рис. 2.1 - 2.5 приведены схемы стандартного алгоритма умножения матриц, алгоритма Винограда и оптимизированного алгоритма Винограда.

Рисунок 2.1 – Схема стандартного алгоритма умножения матриц

Рисунок 2.2 – Схема умножения матриц алгоритмом Винограда

Рисунок 2.3 – Схема умножения матриц алгоритмом Винограда (продолжение)

Рисунок 2.4 — Схема умножения матриц оптимизированным алгоритмом Винограда

Рисунок 2.5 – Схема умножения матриц оптимизированным алгоритмом Винограда (продолжение)

2.2 Модель вычислений

Для последующего вычисления трудоемкости необходимо ввести модель вычислений:

1. операции из списка (2.1) имеют трудоемкость 1;

$$+, -, *, /, \%, ==, !=, <, >, <=, >=, [], ++, --$$
 (2.1)

2. трудоемкость оператора выбора if условие then A else B рассчитывается, как (2.2);

$$f_{if} = f_{\text{условия}} + \begin{cases} f_A, & \text{если условие выполняется,} \\ f_B, & \text{иначе.} \end{cases}$$
 (2.2)

3. трудоемкость цикла рассчитывается, как (2.3);

$$f_{for} = f_{\text{инициализации}} + f_{\text{сравнения}} + N(f_{\text{тела}} + f_{\text{инкремента}} + f_{\text{сравнения}})$$
 (2.3)

4. трудоемкость вызова функции равна 0.

2.3 Трудоемкость алгоритмов

В следующих частях будут расчитаны трудоемкости алгоритмов умножения матриц.

2.3.1 Стандартный алгоритм умножения матриц

Во всех последующих алгоритмах не будем учитывать инициализацию матрицы, в которую записывается результат, потому что данное действие есть во всех алгоритмах и при этом не является самым трудоёмким.

Трудоёмкость стандартного алгоритма умножения матриц состоит из:

- внешнего цикла по $i \in [1..M]$, трудоёмкость которого: $f = 2 + M \cdot (2 + f_{body})$;
- цикла по $j \in [1..N]$, трудоёмкость которого: $f = 2 + N \cdot (2 + f_{body})$;
- цикла по $k \in [1..K]$, трудоёмкость которого: f = 2 + 10K;

Учитывая, что трудоёмкость стандартного алгоритма равна трудоёмкости внешнего цикла, можно вычислить ее, подставив циклы тела (2.4):

$$f_{standard} = 2 + M \cdot (4 + N \cdot (4 + 10K)) = 2 + 4M + 4MN + 10MNK \approx 10MNK$$
(2.4)

2.3.2 Алгоритм Копперсмита — Винограда

Трудоёмкость алгоритма Копперсмита — Винограда состоит из:

• создания и инициализации массивов МН и MV, трудоёмкость которого (2.5):

$$f_{init} = M + N; (2.5)$$

• заполнения массива МН, трудоёмкость которого (2.6):

$$f_{MH} = 2 + K(2 + \frac{M}{2} \cdot 11);$$
 (2.6)

• заполнения массива MV, трудоёмкость которого (2.7):

$$f_{MV} = 2 + K(2 + \frac{N}{2} \cdot 11);$$
 (2.7)

 \bullet цикла заполнения для чётных размеров, трудоёмкость которого (2.8):

$$f_{cycle} = 2 + M \cdot (4 + N \cdot (11 + \frac{K}{2} \cdot 23));$$
 (2.8)

• цикла, для дополнения умножения суммой последних нечётных строки

и столбца, если общий размер нечётный, трудоемкость которого (2.9):

$$f_{last} = \begin{cases} 2, & \text{чётная,} \\ 4 + M \cdot (4 + 14N), & \text{иначе.} \end{cases}$$
 (2.9)

Итого, для худшего случая (нечётный общий размер матриц) имеем (2.10):

$$f = f_{MH} + f_{MV} + f_{cycle} + f_{last} \approx 11.5 \cdot MNK \tag{2.10}$$

Для лучшего случая (чётный общий размер матриц) имеем (2.11):

$$f = f_{MH} + f_{MV} + f_{cycle} + f_{last} \approx 11.5 \cdot MNK \tag{2.11}$$

2.3.3 Оптимизированный алгоритм Копперсмита — Винограда

Оптимизированный алгоритм Винограда представляет собой обычный алгоритм Винограда, за исключением следующих оптимизаций:

- вычисление происходит заранее;
- используется битовый сдвиг, вместо деления на 2;
- последний цикл для нечётных элементов включён в основной цикл, используя дополнительные операции в случае нечётности N.

Трудоёмкость улучшенного алгоритма Копперсмита — Винограда состоит из:

• создания и инициализации массивов МН и MV, трудоёмкость которого (2.12):

$$f_{init} = M + N; (2.12)$$

• заполнения массива МН, трудоёмкость которого (2.13):

$$f_{MH} = 2 + K(2 + \frac{M}{2} \cdot 8);$$
 (2.13)

• заполнения массива MV, трудоёмкость которого (2.14):

$$f_{MV} = 2 + K(2 + \frac{M}{2} \cdot 8);$$
 (2.14)

• цикла заполнения для чётных размеров, трудоёмкость которого (2.15):

$$f_{cycle} = 2 + M \cdot (4 + N \cdot (11 + \frac{K}{2} \cdot 18));$$
 (2.15)

• условие, для дополнения умножения суммой последних нечётных строки и столбца, если общий размер нечётный, трудоемкость которого (2.16):

$$f_{last} = \begin{cases} 1, & \text{чётная,} \\ 4 + M \cdot (4 + 10N), & \text{иначе.} \end{cases}$$
 (2.16)

Итого, для худшего случая (нечётный общий размер матриц) имеем (2.17):

$$f = f_{MH} + f_{MV} + f_{cycle} + f_{last} \approx 9MNK \tag{2.17}$$

Для лучшего случая (чётный общий размер матриц) имеем (2.18):

$$f = f_{MH} + f_{MV} + f_{cycle} + f_{last} \approx 9MNK \tag{2.18}$$

2.4 Классы эквивалентности

Выделенные классы эквивалентности для тестирования:

- ввод пустых матриц;
- одна из матриц пустая;
- кол-во столбцов первой матрицы не равно кол-ву строк второй матрицы;
- перемножение квадратных матриц;
- перемножение матриц разных размеров (кол-во столбцов первой матрицы равно кол-ву строк второй матрицы).

2.5 Описание используемых типов данных

При реализации алгоритмов будут использованы следующие структуры данных:

- \bullet кол-во строк в матрице целое число типа int;
- кол-во столбцов в матрице целое число типа int;
- ullet матрица двумерный массив типа int.

2.6 Структура ΠO

ПО будет состоять из следующих модулей:

- *main.py* файл, содержащий функцию *main*;
- *matrix_mult.py* файл, содержащий код всех алгоритмов умножения матриц и функций, отвечающих за умножение;
- *compare_time.py* файл, в котором содержатся функции для замера времени работы алгоритмов;
- $in_out_matrix.py$ файл, в котором содержатся функции ввода-вывода матриц;
- \bullet color.py файл, который содержит переменные типа string для цветного вывода результата работы программы в консоль.

2.7 Вывод

В данном разделе на основе теоретических данных были построены схемы требуемых алгоритмов умножения матриц, выбраны используемые типы данных, выделены классы эквивалентности для тестирования, а также была проведена оценка трудоёмкости алгоритмов и описана структура ПО.

3 Технологическая часть

В данном разделе будут приведены требования к программному обеспечению, средства реализации, листинги кода, а также функциональные тесты.

3.1 Требования к программному обеспечению

- входные данные две матрицы matr1 и matr2, кол-во столбцов матрицы matr1 должно совпадать с кол-вом строк матрицы matr2;
- ullet выходные данные резульат умножения входных матриц ($res\ matr$).

3.2 Средства реализации

В данной работе для реализации был выбран язык программирования *Python* [2]. Выбор обсуловлен наличием опыта работы с ним. Время работы было замерено с помощью функции *process_time* из библиотеки *time* [3].

3.3 Листинги кода

В листингах 3.1 - 3.3 представлены реализации алгоритмов умножения матриц.

Листинг 3.1 – Функция стандартного алгоритма умножения матриц

```
def classical alg(matr1, matr2):
2
3
      n = len(matr1)
      m = len(matr1[0])
4
      k = len(matr2[0])
5
6
7
      res matr = [[0] * k for in range(n)]
8
      for i in range(n):
9
           for j in range(k):
10
               for u in range(m):
11
                   res_matr[i][j] += matr1[i][u] * matr2[u][j]
12
13
14
      return res matr
```

Листинг 3.2 – Функция умножения матриц алгоритмом Винограда

```
def winograd alg(matr1, matr2):
2
3
      n = len(matr1)
      m = len(matr1[0])
4
      k = len(matr2[0])
5
6
7
      res matr = [[0] * k for in range(n)]
8
9
      tmp r = [0] * n
10
      for i in range(n):
           for j in range (0, m // 2, 1):
11
12
               tmp r[i] += matr1[i][2 * j] * matr1[i][2 * j + 1]
13
      tpm c = [0] * k
14
      for i in range(k):
15
16
           for j in range (0, m // 2, 1):
17
               tpm c[i] += matr2[2 * j][i] * matr2[2 * j + 1][i]
18
      for i in range(n):
19
           for j in range(k):
20
21
               res_matr[i][j] = -tmp_r[i] - tpm_c[j]
22
               for u in range (0, m // 2, 1):
23
24
                   res matr[i][j] += (matr1[i][2 * u + 1] + matr2[2 *
                           ][j]) * \
                                      (matr1[i][2 * u ] + matr2[2 *
25
                                         u + 1][j]
26
      if m \% 2 == 1:
27
           for i in range(n):
28
29
               for j in range(k):
                   res matr[i][j] += matr1[i][m-1] * matr2[m-1][j]
30
31
32
      return res matr
```

Листинг 3.3 – Функция умножения матриц оптимизированным алгоритмом Винограда

```
def optimized winograd alg(matr1, matr2):
2
3
      n = len(matr1)
      m = len(matr1[0])
      k = len(matr2[0])
5
6
7
      res matr = [[0] * k for in range(n)]
8
9
      tmp r = [0] * n
      for i in range(n):
10
           for j in range(1, m, 2):
11
               tmp r[i] += matr1[i][j] * matr1[i][j - 1]
12
13
14
      tpm c = [0] * k
      for i in range(k):
15
           for j in range(1, m, 2):
16
               tpm c[i] += matr2[j][i] * matr2[j - 1][i]
17
18
      flag = n \% 2
19
20
      for i in range(n):
           for j in range(k):
21
22
               res matr[i][j] = -(tmp r[i] + tpm c[j])
23
               for u in range(1, m, 2):
24
                   res matr[i][j] += (matr1[i][u - 1] + matr2[u]
25
                      ][j]) * \
                                      (matr1[i][u ] + matr2[u -
26
                                         1][j])
               if flag:
27
                   res matr[i][j] += matr1[i][m-1] * matr2[m-1][j]
28
29
30
      return res_matr
```

3.4 Функциональные тесты

В таблице 3.1 приведены функциональные тесты для алгоритмов умнжения матриц (стандартного алгоритма, алгоритма Винограда и оптимизированного алгоритма Винограда). Все тесты пройдены успешно.

Таблица 3.1 – Функциональные тесты

1-ая матрица	2-ая матрица	Ожидаемый результат
	()	Сообщение об ошибке
()	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	Сообщение об ошибке
$\begin{pmatrix} 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	Сообщение об ошибке
(5)	(5)	(25)
$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $	$ \begin{pmatrix} 30 & 36 & 42 \\ 66 & 81 & 96 \\ 102 & 126 & 150 \end{pmatrix} $
(1 2 3)	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$	(14)
$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $	$\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$	$\begin{pmatrix} 14 & 32 \\ 32 & 77 \\ 50 & 122 \end{pmatrix}$

3.5 Вывод

В данном разделе были разработаны алгоритмы умножения матриц (стандартный, Винограда и оптимизированный Винограда), проведено тестирование, описаны средства реализации и требования к ПО.

4 Исследовательская часть

4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялось тестирование представлены далее.

- Операционная система: macOS 11.5.2. [4]
- Память: 8 GiB.
- Процессор: 2,3 GHz 4-ядерный процессор Intel Core i5. [5]

При тестировании ноутбук был включен в сеть электропитания. Во время тестирования ноутбук был нагружен только встроенными приложениями окружения, а также системой тестирования.

4.2 Демонстрация работы программы

```
Меню
        1. Умножение матриц классическим алгоритмом
        2. Умножение матриц алгоритмом Винограда
        3. Умножение матриц оптимизированным алгоритмом Винограда
        4. Замеры времени
        0. Выход
        Выбор: 3
        Матрица 1
Введите количество строк: 3
Введите количество столбцов: 3
Заполните матрицу, разделяя элементы одной строки пробелом:
1 2 3
4 5 6
7 8 9
        Матрица 2
Введите количество строк: 3
Введите количество столбцов: 3
Заполните матрицу, разделяя элементы одной строки пробелом:
1 2 3
4 5 6
7 8 9
        Результат умножения матриц
  30 36 42
  66 81 96
 102 126 150
```

Рисунок 4.1 – Пример работы программы

4.3 Время выполнения алгоритмов

Результаты замеров времени работы алгоритмов умножения матриц (стандартного, Винограда и оптимизированного Винограда) приведены на рисунках 4.2 - 4.5. Замеры времени проводились на квадратных матрицах чётного и нечётного размеров (в секундах) и усреднялись для каждого набора одинаковых экспериментов.

Размер	Стандартный алгоритм	Алгоритм Винограда	Оптим. алгоритм Винограда
 50	 2.63e-02	 3 . 15e-02	 2.31e-02
100	1.86e-01	2.22e-01	1.71e-01
150	5.81e-01	7.16e-01	5.75e-01
200	1.34e+00	1.66e+00	1.33e+00
250	2.57e+00	3.22e+00	2.56e+00
300	4.54e+00	5.70e+00	4.42e+00
350	7.21e+00	9.22e+00	7.17e+00

Рисунок 4.2 – Сравнение алгоритмов по времени при чётных размерах квадратных матриц в таблице

Рисунок 4.3 – Сравнение алгоритмов по времени при чётных размерах квадратных матриц

Размер	Стандартный алгоритм	Алгоритм Винограда	Оптим. алгоритм Винограда
49	2.98e-02	 2.74e-02	
99 j	1.60e-01	2.04e-01	1.62e-01
149	5.43e-01	6.91e-01	5.48e-01
199 j	1.30e+00	1.63e+00	1.29e+00
249	2.53e+00	3.18e+00	2.52e+00
299	4.46e+00	5.90e+00	4.44e+00
349	7.10e+00	9.12e+00	7.17e+00
		•	•

Рисунок 4.4 — Сравнение алгоритмов по времени при нечётных размерах квадратных матриц в таблице

Рисунок 4.5 — Сравнение алгоритмов по времени при нечётных размерах квадратных матриц

4.4 Вывод

В этом разделе были указаны технические характеристики машины, на которой происходило сравнение времени работы алгоритмов умножения матриц, а также приведены результаты исследования.

Сравнения проводились на квадратных матрицах чётного и нечётного размеров. В обоих случаях алгоритм Винограда показал наихудший результат. На матрицах размером 200х200 он работал на 24.8% времени дольше, чем оптимизированный алгоритм Винограда и на 23.8% дольше стандартного алгоритма. На матрицах 199х199 на 26.3% и 25.3% соответственно. На матрицах большего размера разница оставалась похожей (28.5% и 27.8% на матрицах 350х350 и 27.2% и 28.5% на матрицах 349х349). Стандартный алгоритм умножения матриц и оптимизированный алгоритм Винограда показали схожие результаты при чётных и нечётных размерах матриц. На матрицах размером 350х350 оптимизированный алгоритм Винограда работает на 0.6% быстрее стандартного алгоритма, а на матрицах 349х349 на 1.0% медленее его.

Заключение

Было экспериментально подтверждено различие во временной эффективности стандартного алгоритма умножения матриц, алгоритма Винограда и оптимизированного алгоритма Винограда.

В результате исследований можно сделать вывод о том, что алгоритм Винограда неэффективен по времени на матрицах малого размера (350х350 и меньше).

В ходе выполнения данной лабораторной работы были решены следующие задачи:

- изучены стандартный алгоритма умножения матриц, алгоритм Винограда и оптимизированный алгоритм Винограда;
- реализованы указанные алгоритмы;
- проведен сравнительный анализ трудоёмкости алгоритмов на основе теоретических расчетов и выбранной модели вычислений;
- экспериментально подтверждено различие во временной эффективности алгоритмов умножения матриц при помощи разработанного программного обеспечения на материале замеров процессорного времени;
- описаны и обоснованы полученные результаты в отчете о выполненной лабораторной работе, выполненного как расчётно-пояснительная записка к работе.

Поставленная цель была достигнута.

Литература

- [1] Умножение матриц [Электронный ресурс], howpublished="Режим доступа: http://algolib.narod.ru/Math/Matrix.html (дата обращения: 18.10.2021).
- [2] Welcome to Python [Электронный ресурс]. Режим доступа: https://www.python.org (дата обращения: 18.10.2021).
- [3] time Time access and conversions [Электронный ресурс]. Режим доступа: https://docs.python.org/3/library/time.html#functions (дата обращения: 18.10.2021).
- [4] macOS Monterey Apple(RU) [Электронный ресурс]. Режим доступа: https://www.apple.com/ru/macos/monterey/ (дата обращения: 18.10.2021).
- [5] Intel [Электронный ресурс]. Режим доступа: https://www.intel.ru/content/www/ru/ru/products/details/processors/core/i5.html (дата обращения: 18.10.2021).