Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Эволюционные алгоритмы для криптоанализа генераторов ключевого потока с использованием программных средств решения задачи выполнимости

Автор: Павленко А.Л.

Научный руководитель: Ульянцев В.И.

Научный консультант: Семенов А.А.

Введение. Криптографические генераторы

Потоковые шифры, типовая схема

F – нелинейная функция

Шифр А5/1

$$\chi_{j} - функция сдвига$$
 $j - номер регистра$
 $\chi_{j}: b_{j} \equiv majority(b_{1}, b_{2}, b_{3})$

Введение. Сведение к SAT с помощью Transalg

Шифр А5/1

ТА-программа

```
__in bit regB[22];
    in bit regC[23];
    __out bit result[len];
    bit shift_rslosA() {
      bit x = regA[18];
      bit y = regA[18]^regA[17]^regA[16]^regA[13];
      for(int j = 18; j > 0; j=j-1) {
        regA[i] = regA[i-1];
      regA[0] = v;
      return x;
18 bit majority(bit A, bit B, bit C) {
        return A&B|A&C|B&C;
20 }
    void main() {
      int midA = 8;
      int midB = 10:
      int midC = 10;
      bit maj;
      for(int i = 0; i < len; i = i + 1) {
        maj = majority(regA[midA], regB[midB], regC[midC]);
        if(!(maj^regA[midA])) shift_rslosA();
        if(!(maj^regB[midB])) shift_rslosB();
        if(!(maj^regC[midC])) shift rslosC();
        result[i] = regA[18]^regB[21]^regC[22];
```

SAT-формула

```
1 p cnf 8425 38262
   c input variables 64
    c literals count 128374
    65 9 30 0
    65 9 52 0
    -65 9 -30 -52 0
    65 -9 -52 0
    -65 -9 30 52 0
   -67 17 -65 0
32 -71 14 65 0
33 -71 13 -65 0
```

Transalg: [*Отпущенников И. В., Семенов А. А.* Технология трансляции комбинаторных проблем в SAT // Прикладная дискретная математика. – 2011. – Т. 11. – No. 1. – С. 96-115]

Введение. SAT-based криптоанализ

Введение. Пример взлома криптоалгоритмов

 CPU: 2 core i5-6267U @ 2,9 GHz

 Treengeling
 PLingeling
 Guess-and-determine атака

 Volfram (128)
 7м 13с
 5м 50с

 Geffe (64)
 0.51c
 0.38c

CPU: 32 core AMD Opteron 6378 @ 2.4 GHz					
	Treengeling	PLingeling	Guess-and-determine атака		
Volfram (128)	6м 51с	4м 30с	-		
Geffe (64)	0.53c	0.88c	-		

Введение. Пример взлома криптоалгоритма

CPU: 32 core AMD Opteron 6276 @ 2.3 GHz

Криптографический алгоритм: Trivium-64

Ограничение по времени: 7 дней

	PLingeling	Treengeling	Guess-and-determine атака
задача 1	прервано	прервано	2д 6ч
задача 2	прервано	3д 2ч	3д 19ч
задача 3	прервано	4д 10ч	154
задача 4	прервано	прервано	1д 21ч
задача 5	прервано	прервано	4д 3ч

Введение. Guess-and-determine атака

Цель

 Разработать и реализовать новые автоматизированные методы построения декомпозиционных представлений трудных вариантов задачи о булевой выполнимости и применить эти методы для построения атак на ряд криптографических генераторов ключевого потока

Задачи

- Разработать и реализовать эволюционный алгоритм для автоматизированного построения guess-and-determine атак на генераторы ключевого потока
- Разработать новые эвристики для уменьшения временных затрат на их построение
- Применить полученный алгоритм к задачам криптоанализа ряда современных шифров

Эволюционный алгоритм

Особь: декомпозиционное множество, в виде битового вектора

$$X = \{x_2, x_3, x_5, x_7, \dots, x_n\}$$

Функция приспособленности. Inverse Backdoor Set (1)

$$s = |X|$$

$$P_X = \frac{\#\{i = 1...2^s : \tau_i < tl\}}{2^s}$$

Оцениваем:

$$P_X = \frac{1}{N} \cdot \sum_{i=1}^N \xi_i \text{, где } \xi_i = \begin{cases} 1, & \tau_i \leq tl \\ 0, & \tau_i > tl \end{cases}$$

Метод Монте-Карло

Inverse Backdoor Set: [Semenov A., Zaikin O., Otpuschennikov I., Kochemazov S., Ignatiev A. On cryptographic attacks using backdoors for SAT // The Thirty-Second AAAI Conference on Artificial Intelligence. – IEEE, 2018. – P. 6641-6648]

Функция приспособленности. Inverse Backdoor Set (1)

$$S = |X|$$
 $P^* = 1 - (1 - P_X)^r$
 $P^* > 0.95$ при $r \ge \frac{3}{P_X}$

Оценка времени взлома шифра:

$$F(X) = 2^s \cdot t \cdot r$$

Inverse Backdoor Set: [Semenov A., Zaikin O., Otpuschennikov I., Kochemazov S., Ignatiev A. On cryptographic attacks using backdoors for SAT // The Thirty-Second AAAI Conference on Artificial Intelligence. – IEEE, 2018. – P. 6641-6648]

Сравнение Стратегий

Сравнение Evolutionary Algorithm и Tabu Search*

^{* [}Semenov A., Zaikin O. Algorithm for Finding Partitionings of Hard Variants of Boolean Satisfiability Problem with Application to Inversion of Some Cryptographic Functions // SpringerPlus. – 2016. – Vol. 5. – P. 554-554.]

Адаптивное изменение объема выборки. Идея.

Шифр: A5/1

Стратегия: (1+1)

Адаптивное изменение объема выборки. Анализ

Адаптивное изменение объема выборки. Результат

Сравнение временных затрат на достижение граничного значения 6.7·10¹².

Адаптивное изменение объема выборки и TS

Сравнение временных затрат на достижение граничного значения 6.7·10¹².

Hoвое декомпозиционное множество для Trivium 64

Оценка времени взлома: ~317 дней*

Оценка времени взлома: ~184 дня*

Результат наших коллег из лаборатории ИДСТУ СО РАН

Результат, полученный в ходе исследования

^{*}из расчета на одно ядро процессора AMD Opteron 6378 @ 2.4 GHz

Дальнейшие задачи и пути исследования

- Рассмотреть другие потоковые шифры: E0, Grain, Trivium
- Разработать методы подбора оптимальных параметров для SATрешателей
- Исследовать переменные Цейтина на предмет возможности их включения в декомпозионное множество

Заключение

- Разработан и реализован эволюционных алгоритм для автоматизированного построения guess-and-determine атак на криптографические алгоритмы
- Разработана новая эвристика для уменьшения временных затрат на их построение
- Найдено декомпозиционное множество для шифра Trivium 64 с меньшим значением оценочной функции

Достижения

• дипломант Конгресса Молодых Ученых VII "Диплом за лучший научно-исследовательский доклад студента"

Поданные заявки

- Российский Научный Фонд. "Разработка эволюционных стратегий поиска декомпозиций трудных вариантов задачи о булевой выполнимости с применением к обращению криптографических функций" в качестве исполнителя
- Российский Фонд Фундаментальных Исследований. "Разработка методов машинного обучения для NP-трудных задач построения графовых моделей на основе SAT-решателей" в качестве исполнителя

Функция приспособленности. SAT Partitioning

Оценка времени взлома шифра:

$$s = |X|$$

$$F(X) = 2^{s} \cdot \frac{1}{N} \cdot \sum_{i=1}^{N} \tau_{i}$$

Метод Монте-Карло

SAT Partitioning: [Semenov A., Zaikin O. Algorithm for Finding Partitionings of Hard Variants of Boolean Satisfiability Problem with Application to Inversion of Some Cryptographic Functions. In SpringerPlus, 2016]

Адаптивное изменение объема выборки. Анализ

Адаптивное изменение объема выборки. Стратегия

N	V
10	до 5.5·10 ¹⁷
50	до 4.9·10 ¹⁶
100	до 8.1·10 ¹⁴
300	до 1.1·10 ¹⁴
500	до 1.7·10 ¹³
800	до 6.7·10 ¹²
1000	после 6.7·10 ¹²

Адаптивное изменение объема выборки. Пример

Наращивание выборки

