Acids and Bases

Electrolytes

Strong

Weak

Non-electrolyte

Acids and Bases are Electrolytes

Acids

Bases

Arrhenius Model

Acid

Base

$$\label{eq:hcl} \begin{split} HCl(aq) + NaOH(aq) &\leftrightarrows H_2O(l) + NaCl~(aq) \end{split}$$

Bronsted-Lowry Theory

Acid

Base

$$HCl(aq) + NaOH(aq) \Longrightarrow H_2O(l) + NaCl (aq)$$

Lewis Acid/Base Theory

Acid

Base

	Conj	ugate	Acid	and	Bases
--	------	-------	------	-----	-------

Acid

Example

Base

Example

Write the dissociation equations when the following electrolytes react with water:

- 1) HNO₃
- 2) HC₂H₃O₂
- 3) HCN
- 4) HOCl
- 5) CH₃NH₂
- 6) F⁻
- 7) NH₃
- 8) HC1
- 9) HBr
- 10) HI

Δ	mathematical	treatment of	acide	and	hacec
$\overline{}$	mamemancai	treatment of	acius	and	Dases

How do hydrogen and hydroxide relate to each other in a solution? We base everything on Kw.

Acids

Bases

Some Background from math class

Logarithms

pH is a measure of a substances acidity!

Are pH and pOH related to each other?

How about Ka and Kb?

A square roadmap

Can you do significant digits with logs?

	T	<u> </u>	
рН	рОН	$\mathrm{H}^{\scriptscriptstyle{+}}$	OH
7			
	10		
		1.00×10^{-5}	
			1.00×10^{-3}
		2.00 x 10 ⁻⁹	
	7.65		
1.23			
	0.05		
		1.00×10^{-14}	
			7.98 x 10 ⁻⁵

Weak Acids

1. What is the pH of a 0.20 M HCN solution? The Ka for HCN is 6.5×10^{-10} .

2. The Ka for acetic acid is 1.75×10^{-5} . What is the H⁺ and pH of a 0.10M solution of acetic acid in water?

3. What is the pH of some formic acid (HCOOH) whose original concentration was 0.50M? The Ka for formic acid is 1.772×10^{-4} .

4. What is the pH of a solution of HOCl whose original concentration was 0.25M if the Ka is 3.5×10^{-8} ?

5. What is the pH of a 0.10M HF solution. Ka is 6.5×10^{-4} ?

Weak Bases

We have the same basic problems here with pH exchanged for pOH!

6. Dimethyl amine is a weak base whose formula is $(CH_3)_2NH$. Kb for it is 5.9 x 10^{-4} . What is the pH of some 0.750 M dimethyl amine?

Salts

When HCl dissociates in water the two remaining ions have no affinity to react with water. What if the remaining ions DO react with water? What would determine this?

NaF

NH₄Cl

Acid Dissociation Constants

HClO ₄	large	H_2CO_3	4.5×10^{-7}
HBr	large	NH_4^+	6.3×10^{-10}
HF	6.5×10^{-4}	HCN	6.3×10^{-10}
CH ₃ COOH	1.8×10^{-5}	H_2O	10^{-14}

Using the above hierarchy of acid/base strength determine if solutions of the following salts are acidic, basic, or neutral.

	Parent Acid/Strength	Parent Base/ Strength	Salt
VC1			

KCl

KF

NH₄Br

KClO₄

KCN

NH₄CN

KCH₃COO

NH₄CH₃COO

 NH_4F

7. What is the pH of some LiCN in water if it is 0.10 M and Ka for HCN is 6.3 x 10^{-10} ?

8. What is the pH of some NH_4Cl in water? The solution is 0.250 M and Kb for ammonia is 1.8 $\times 10^{-5}$?

9. What is the pH of a NaF solution that is 0.10M? Ka is 6.5×10^{-4}

10. What is the pH of a KF solution that is 0.10M?

11. What is the pH of a 0.10~M solution of KCH $_3$ COO?

Polyprotic Acids

Write the two dissociations for H_2SO_4

Ka Values

	H_2SO_4	H_2CO_3	H ₃ PO ₄
K _{al}	Large	4.3×10^{-7}	7.5×10^{-3}
K _{a2}	1.2×10^{-2}	5.6 x 10 ⁻¹¹	6.2×10^{-8}
K _{a3}	none	none	4.8×10^{-13}

Size Matters

What is the pH of some $0.10 \text{ M H}_2\text{CO}_3$?

First Dissociation

Second Dissociation

What is the pH of some 0.10 M H₂SO₄?

First Dissociation

Second Dissociation

Determining the strengths of Acids and Bases

What makes a halogen acid stronger then another halogen acid? Why is HF a weak acid?

What happens in an oxyacid?

Table 14.3 Correlation of acid strength and oxidation number

Acid	Structure*	Oxidation number of chlorine atom	p <i>K</i> a
hypochlorous acid, HClO	:Ċį−Ö-H	+1	7.52
chlorous acid, HClO ₂	:ू: <mark>t</mark> :сі-о-н	+3	2.00
chloric acid, HClO3	:○:• :Cl-Ö-H :Ö:•	+5	strong
perchloric acid, HClO4	∷C:+ C=Cl-O-H :O:•	+7	strong

^{*} The red arrows indicate the direction of the shift of electron density away from the O—H bond.

Table 14.4 Correlation of acid strength and electronegativity

Acid, HXO	Structure*	Electronegativity of atom X	pK_a
hypochlorous acid, HClO	:аЁ-ё-н	3.2	7.53
hypobromous acid, HBrO	: <mark>Br</mark> −Ö-H	3.0	8.69
hypoiodous acid, HIO	: <u>Ï</u> −Ö-H	2.7	10.64

^{*} The red arrows indicate the direction and magnitude of the shift of electron density away from the O—H bond.