Практика №4 по курсу «Теория алгоритмов» «Альтернативные модели вычислений»

Группы ФТ-301, ФТ-302

Разберём упражнение с одной из первых практик: является ли множество разрешимых языков замкнутым относительно операции гомоморфизма?

Напомним, что гоморфизм языка $\mathcal{L} \subset \Sigma^*$ задается функцией $\mathbf{h} : \Sigma \mapsto \Delta^*$ таким образом, что для любого слова $w \in \mathcal{L}$ значение $\mathbf{h}(w)$ определяется как конкатенация образов букв слова $w = c_1 c_2 \cdots c_n : \mathbf{h}(w) = \mathbf{h}(c_1) \cdot \mathbf{h}(c_1) \cdots \mathbf{h}(c_n)$.

Несложно показать, что множество перечислимых языков замкнуто относительно операции гомоморфизма. Действительно, пусть есть перечислимый язык \mathcal{L} и дана МТ M, перечисляющая слова этого языка. Тогда можно построить M' для перечисления слов $\mathbf{h}(\mathcal{L})$ следующим образом: запустим МТ M и при появлении очередного слова $w \in \mathcal{L}$ запустим процедуру применения гомоморфизма $\mathbf{h}(w)$, после чего сравним получившееся слово с уже перечисленными ранее и в случае его уникальности напечатаем $\mathbf{h}(w)$ на ленте.

Заметим также, что несложно показать, что множество разрешимых языков замкнуто относительно операции **нестирающего** гомоморфизма, то есть любой разрешимый язык \mathcal{L} под действием функции $\mathbf{h}: \Sigma \mapsto \Delta^+$ переходит в разрешимый язык. Для этого достаточно заметить, что длина образа нестирающего гомоморфизма всегда не меньше, чем длина исходного слова $|w| \leq |\mathbf{h}(w)|$, а это значит, что для проверки принадлежности слова w' языку $\mathbf{h}(\mathcal{L})$ достаточно перебрать все слова $w \in \mathcal{L}$ не длиннее чем |w'| и проверить, могли ли они являться прообразами для слова w'.

Для доказательства того, что множество разрешимых языков не замкнуто относительно операции **стирающего** гомоморфизма, можно построить следующий контрпример. Рассмотрим разрешимый язык $\mathcal{L} = \{\langle M, x, t \rangle \mid \text{машина Тьюринга } M$ останавливается на входе x за t шагов $\}$. Пусть алфавит данного языка состоит из трёх непересекающихся множеств символов $\Sigma = \Sigma_M \cup \Sigma_x \cup \Sigma_t$, где каждая часть используется для кодирования конкретной компоненты кортежа. Тогда если рассмотреть гомоморфизм $\mathbf{h}(x) = \begin{cases} \varepsilon, & x \in \Sigma_t \\ x, & \text{иначе} \end{cases}$, то получим язык $\mathbf{h}(\mathcal{L}) = \{\langle M, x \rangle \mid \text{машина Тьюринга } M \text{ останавливается на входе } x\}$, который не является разрешимым.

1 Альтернативные модели вычислений

Помимо частично рекурсивных функций и машин Тьюринга есть другие модели, созданные примерно в то же время для формализации понятия алгоритм. Рассмотрим ещё пару формализмов таких как алгорифмы и грамматики.

1.1 Алгорифмы (нормальные алгоритмы Маркова)

Нормальный алгоритм Маркова задается упорядоченным списком R, состоящим из обычных правил $\mathcal{L} \to \mathcal{D}$ или же терминальных правил $\mathcal{L} \to \mathcal{D}$. Алгорифм с заданными списком правил работает итеративно, где применение одной итерации к слову w осуществляется следующим образом:

- ullet Если среди правил нет такого, что левая часть ${\mathcal L}$ входит в w как подслово, то алгорифм заканчивает свою работу и его выходом является слово w
- Иначе, находится первое правило из упорядоченного списка R такое, что его левая часть $\mathcal L$ входит в w как подслово
- Выбирается самое левое вхождение левой части в w, то есть такое разбиение $w = A \cdot \mathcal{L} \cdot B$, что |A| минимален
- Результатом данной итерации является слово $w' = A \cdot \mathcal{D} \cdot B$
- ullet Если выбранное правило было терминальным, то алгорифм заканчивает свою работу и его выходом является слово w'

1.1.1 Пример. Удаление повторящихся букв

Рассмотрим следующий алгоритм, удаляющий повторяющиеся буквы для слов над бинарным алфавитом $\{a,b\}$:

$$R = \begin{cases} aa \to a \\ bb \to b \end{cases}$$

Последовательное применение алгорифма к слову aabbba породит следующую цепочку промежуточных результатов:

где aba является результатом работы алгорифма

1.1.2 Пример. Перевод числа из бинарной системы в унарную

Рассмотрим более содержательный пример перевода числа из бинарной системы в унарную. Поставим задачу следующим образом: дано двоичное число $w \in \{0,1\}^+$ по которому необходимо построить слово $w' \in \{x\}^+$ такое, что |w'| = int(w, base: 2). Например, для w = 101 необходимо построить w' = xxxxx.

Одна из возможных структур алгорифма может выглядеть следующим образом:

- Заменим все 1 на подстроки 0x
- Каждую пару x0 можно преобразовать в подстроку 0xx, соответствующую переносу слагаемого 2^i в предыдущий разряд i-1
- Удалить все нули

Если записывать данное описание в виде правил алгорифма получится следующий список:

$$R_1 = \begin{cases} 1 \to 0x \\ x0 \to 0xx \\ 0 \to \varepsilon \end{cases}$$

Ход вычислений для строки 101 будет выглядеть следующим образом:

Несложно доказать корректность работы алгорифма:

- Ясно, что сначала будет применено первое правило, после чего в строке не останется единиц и первое правило больше никогда не будет применяться
- Для каждого x-а из строки $w' \in \{0, x\}^+$ определим его «вес» как 2^z , где z это количество нулей после этого x-а. Например, в строке 000x0xx0x получатся следующие веса соответственно: [4, 2, 2, 1]
- Ясно, что после применения первого правила суммарный вес x-ов в строке будет равен значению int(w, base: 2)
- Легко показать, что применение второго правила не меняет вес строки, так как однин x с весом 2^z заменяется на два с весом 2^{z-1}
- Так как третее правило будет применятся к строке вида $0^n x^m$ (иначе было бы применимо второе правило), то удаление нулей из неё также не меняет веса строки, а значит в конце концов получится строка x^k , где $k = \text{int}(\mathbf{w}, \text{base}: 2)$

1.1.3 Небольшое усложнение

Немного усложним себе задачу и постараемся перевести число в унарную систему таким образом, чтобы финальная строка содержала символы 1, а не вспомогательные символы x. То есть результатом работы алгорифма на строке 101 должна быть строка 11111.

Заметим, что данную модификацию задачи нельзя решить простым добавлением ко множеству правил трансформации $x \to 1$:

$$R_1' = \begin{cases} 1 \to 0x \\ x0 \to 0xx \\ 0 \to \varepsilon \\ x \to 1 \end{cases}$$

так как в результате алгорифм зациклится на любой строке, содержащей хотя бы одну единицу:

$$1 \to \mathbf{0x} \to x \to 1 \to \cdots$$

Для того, чтобы решить данную задачу построим алгорифм следующим образом:

- Запустим алгоритм, решающий исходную формулировку задачи
- После его работы добавим в начало строки символ 🗆
- Произведем замену пары символов $\Box x$ на $1\Box$
- Удалим символ 🗆

Таким образом получится следующий набор правил:

$$R_{2} = \begin{cases} \Box x \to 1 \Box \\ \Box \to \cdot \varepsilon \\ 1 \to 0x \\ x0 \to 0xx \\ 0 \to \varepsilon \\ \varepsilon \to \Box \end{cases}$$

Такой алгорифм будет работать следующим образом:

1.1.4 Теорема о сочетании алгорифмов (не было на практике)

Не самым тривиальным образом контруируется алгорифм, являющийся результатом последовательного применения пары алгорифмов R_1 и R_2 , то есть такой набор правил R_0 , что $R_0(w) = R_2(R_1(w))$. Для упрощения доказательства будем считать, что алгорифмы R_1 и R_2 содержат только обычные правила и оперируют символами общего алфавита Σ . Один из возможных подходов для комбинации алгорфимов выглядит следующим образом:

- Сконвертируем все символы алфавита Σ в соответствующие символы алфавита $\Sigma' = \{x' \mid x \in \Sigma\}$
- \bullet Запустим модифицированный алгорифм R_1 для полученной строки
- Сконвертируем все символы алфавита Σ' в соответствующие символы алфавита $\Sigma'' = \{x'' \mid x \in \Sigma\}$
- ullet Запустим модифицированный алгорифм R_2 для полученной строки

Чтобы добиться такой последовательности выполнения породим в начале строки три вспомогательных символа \Box_1, \Box_2, \Box_3 и добавим правила конвертации символов между алфавитами следующим. Итоговый набор правил будет выглядеть следующим образом:

$$R_0 = \begin{cases} \Box_1 x \to x' \Box_1 & \text{для всех } x \in \Sigma \\ \Box_1 \to \varepsilon \\ \mathcal{L}' \to \mathcal{D}' & \text{для всех } \mathcal{L} \to \mathcal{D} \in R_1 \\ \Box_2 x' \to x'' \Box_2 & \text{для всех } x \in \Sigma \end{cases}$$
$$\Box_2 \to \varepsilon \\ \mathcal{L}'' \to \mathcal{D}'' & \text{для всех } \mathcal{L} \to \mathcal{D} \in R_2 \\ \Box_3 x'' \to x \Box_3 & \text{для всех } x \in \Sigma \\ \Box_3 \to \cdot \varepsilon \\ \varepsilon \to \Box_3 \Box_2 \Box_1 \end{cases}$$

1.2 Грамматики (не было на практике)

Вершиной иерархии грамматик Хомского являются неограниченные грамматики, которые представляют из себя набор правил $p \to q$, где $p \in (\Sigma \cup N)^*N(\Sigma \cup N)^*, q \in (\Sigma \cup N)^*$ (то есть в левой части должен быть хотя бы один нетерминал), где Σ — это алфавит терминальных символов, а N — алфавит нетерминальных символов. Формально, грамматика задается четвёркой $G = \langle N, \Sigma, P, S \rangle$, где P — это множество правил $p \to q$, а $S \in N$ — это стартовый нетерминал. Для конкретной грамматики G и пары слова x будем говорить, что из x непосредственно выводится слово y ($x \Rightarrow_G y$), если $\exists u, v, p, q \in (\Sigma \cup N)^* : (x = upv) \land (p \to q \in P) \land (y = uqv)$. Определим отношение \Rightarrow_G^* как транзитивное замыкание отношения \Rightarrow_G . Тогда грамматика G задает язык всех слов из терминальных символов, которые выводятся из стратового нетерминала S за конечное число шагов, то есть $\mathcal{L}(G) = \{w \in \Sigma^* \mid S \Rightarrow_G^* w\}$.

Множество языков, задаваемых неограниченными грамматиками совпадает с перечислимыми языками.

1.2.1 Пример. Язык всех составных чисел

Построим грамматику, задающую следующий язык $\mathcal{L} = \{1^c \mid c$ - составное число $\}$.

Воспользуемся для построения грамматики тем, что для любого составного числа c существует пара чисел a,b>1 такие, что $c=a\cdot b$. Используя этот факт построим грамматику, которая сгенерирует строку вида A^aB^b , после чего перенесёт все нетерминалы B в левую часть, где при каждом переносе через A будет добавляться новая единица в строку. Таким образом правила грамматики будут выглядеть следующим образом:

ку. Таким образом правинальн
$$B$$
 в эквуличу. Таким образом правинальн B в эквуличу. Таким образом правинальн B в эквуличу. B в эквулич