# R para Data Science

Solução dos exercícios

To Shao Yong (邵雍), for sharing a secret joy with simple words;

月到天心处,风来水面时。 一般清意味,料得少人知。

and

To Hongzhi Zhengjue (宏智禅师), for sharing the peace of an ending life with simple words.

梦幻空华,六十七年;白鸟淹没,秋水连天。

## Conteúdo

| W  | elcome    |                                        | vii |  |  |  |
|----|-----------|----------------------------------------|-----|--|--|--|
| W  | Velcome v |                                        |     |  |  |  |
| Pr | efácio    |                                        | ix  |  |  |  |
| Pr | efácio    |                                        | ix  |  |  |  |
| I  | Explo     | orar                                   | 1   |  |  |  |
| 1  | Visual    | ização de dados com ggplot2            | 3   |  |  |  |
|    | 1.1 I     | ntrodução                              | 3   |  |  |  |
|    | 1.2 F     | Primeiros passos                       | 3   |  |  |  |
|    | 1.3 N     | Mapeamentos estéticos                  | 8   |  |  |  |
|    | 1.4 F     | Problemas comuns                       | 15  |  |  |  |
|    | 1.5 F     | acetas                                 | 15  |  |  |  |
|    | 1.6       | Objetos geométricos                    | 15  |  |  |  |
|    | 1.7       | Transformações estatísticas            | 16  |  |  |  |
|    | 1.8 A     | ajustes de posição                     | 16  |  |  |  |
|    | 1.9       | Sistemas de coordenadas                | 16  |  |  |  |
|    | 1.10 A    | A gramática em camadas de gráficos     | 16  |  |  |  |
| 2  | Fluxo     | de trabalho: o básico                  | 17  |  |  |  |
| 3  | Transi    | formação de dados com <sub>dplyr</sub> | 19  |  |  |  |
| 4  | Fluxo     | de trabalho: scripts                   | 21  |  |  |  |

| iv  |                                  | Contents |
|-----|----------------------------------|----------|
| 5   | Análise exploratória de dados    | 23       |
| 6   | Fluxo de trabalho: projetos      | 25       |
| II  | Wrangle                          | 27       |
| 7   | Tibbles com tibble               | 29       |
| 8   | Importando dados com readr       | 31       |
| 9   | Arrumando dados com tidyr        | 33       |
| 10  | Dados relacionais com dplyr      | 35       |
| 11  | Strings com stringr              | 37       |
| 12  | Fatores com forcats              | 39       |
| 13  | Datas e horas com lubridate      | 41       |
| III | Programar                        | 43       |
| 14  | Pipes com magrittr               | 45       |
| 15  | Funções                          | 47       |
| 16  | Vetores                          | 49       |
| 17  | Iteração com purrr               | 51       |
| 18  | (PART) Modelar                   | 53       |
| 19  | O básico de modelos com model r  | 55       |
| 20  | Construção de modelos            | 57       |
| 21  | Muitos modelos com purrr e broom | 59       |
| IV  | Comunicar                        | 61       |

| Contents                                 | v  |  |
|------------------------------------------|----|--|
| 22 R Markdown                            | 63 |  |
| 23 Gráficos para comunicação com ggplot2 | 65 |  |
| 24 Formatos R Markdown                   | 67 |  |
| 25 Fluxo de trabalho de R Markdown       | 69 |  |

## Welcome

## Prefácio

Esta página serviu para estudo e prática com o pacote R Bookdown e contém a solução encontrada por mim para os exercícios propostos no livro R para Data Sciente, de Hadley Wickham e Garret Grolemund, publicado no Brasil em 2019 pela Alta Books Editora [Wickham and Grolemund, 2019].

Por se tratar de um produto construído durante o processo de aprendizagem, o conteúdo pode conter erros, tanto no texto em si, como na lógica utilizada para solução dos exercícios.

Dúvidas ou sugestões de melhoria podem ser encaminhadas para o e-mail jeidsan. pereira@gmail.com¹.

<sup>&</sup>lt;sup>1</sup>mailto:jeidsan.pereira@gmail.com

Parte I

**Explorar** 

## Visualização de dados com ggplot2

Para a correta execução dos códigos desse capítulo, utilizaremos algumas configurações específicas.

Inicialmente, precisaremos carregar o pacote nycflights13, que contém os dados de todos os voos da cidade de Nova York em 2013.

library(nycflights13)

### 1.1 Introdução

Não temos exercícios nesta seção.

### 1.2 Primeiros passos

#### Exercício 1.2.1

Execute ggplot(data=mpg);. O que você vê? Solução.

ggplot(data=mpg) +
 tema

É exibido um quadro em branco. Este quadro contém o sistema de coordenadas sobre o qual serão desenhados os grpaficos que pretendemos exibir.

#### Exercício 1.2.2

Quantas linhas existem em mtcars? Quantas colunas? Solução.

```
dim(mtcars)
```

## [1] 32 11

R.: Existem 32 linhas e 11 colunas.

#### Exercício 1.2.3

O que a variável dry descreve?

Solução. Executamos o comando ?mpg no console no R e a página de ajuda foi aberta. Nela encontramos o significado de cada variável do conjunto de dados.

A varíável descreve o tipo de tração dos carros analisados, onde f significa tração dianteira, r significa tração traseira e 4 significa tração nas quatro rodas.

#### Exercício 1.2.4

Faça um gráfico de dispersão de hwy *versus* cyl. *Solução*.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = hwy, y = cyl)) +
  tema
```



#### Exercício 1.2.5

O que acontece se você fizer um gráfico de dispersão de class *versus* drv? Por que esse gráfico não é útil?

Solução.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = drv, y = class)) +
   tema
```



Apesar de serem exibidos dados no gráfico, nenhuma informação substancial é extraída, uma vez que o tipo de tração não está (a princípio) relacionado com a categoria do carro. Outro fator que torno o gráfico pouco informativo é que há, por exemplo, diversas SUVs com tração nas 4 rodas, contudo os valores ficam sobrepostos no gráfico, não dando dimensão do quanto de dados temos.

Abaixo seguem duas opções de como trazer mais informação ao gráfico:

• a primeira opção adiciona um ruído aos dados (position = jitter ou geom\_jitter()) de modo que não haja sobreposição;

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = drv, y = class), position = "jitter") +
   tema
```



• a segunda opção, bem mais avançada, adiciona uma estética de size considerando a quantidade de registros.

```
mpg %>%
  group_by(class, drv) %>%
  summarize(count = n()) %>%
  ggplot(mapping = aes(x = drv, y = class, size = count)) +
      geom_point() +
      tema
```

```
## `summarise()` has grouped output by 'class'. You can override using the
## `.groups` argument.
```



## 1.3 Mapeamentos estéticos

### Exercício 1.3.1

O que há de errado com este código? Por que os pontos não estão azuis?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, color = "blue")) +
  tema
```



Solução. Ao invés de atribuir uma cor aos elementos de geom\_point, o atributo color foi passado como uma estética. O gráfico deveria ser construído da seguinte maneira:

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy), color = "blue") +
  tema
```



#### Exercício 1.3.2

Quais variáveis em  $_{mpg}$  são categóricas? Quais variáveis são contínuas? Como você pode ver essa informação quando executa  $_{mpg}$ ?

Solução. Usando ?mpg vemos que as variáveis categóricas são: manufacturer, model, trans, drv, fl e class. As variáveis contínuas são: displ, cty, hwy.

#### Exercício 1.3.3

Mapeie uma variável contínua para color, size e shape. Como essas estéticas se comportam de maneira diferente para variáveis categóricas e contínuas? *Solução*.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, color = displ)) +
   tema
```



```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, size = displ)) +
   tema
```



```
ggplot(data = mpg) +
    geom_point(mapping = aes(x = displ, y = hwy, shape = displ)) +
    tema

## Error in `geom_point()`:
## ! Problem while computing aesthetics.
## i Error occurred in the 1st layer.
## Caused by error in `scale_f()`:
## ! A continuous variable cannot be mapped to the shape aesthetic
## i choose a different aesthetic or use `scale_shape_binned()`
```

Quando possível, a biblioteca *ggplot* apesenta a estética em um gradiente, como em color e size. Porém, nem sempre isso é possível, como vemos em shape, que só pode ser utilizada com variáveis discretas ou categóricas.

#### Exercício 1.3.4

O que acontece se você mapear a mesma variável a várias estéticas? *Solução*.

```
ggplot(data = mpg) +
    geom_point(mapping = aes(x = displ, y = hwy, size = class, color = class, shape = class)) +
    tema

## Warning: Using size for a discrete variable is not advised.

## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 7. Consider
## specifying shapes manually if you must have them.

## Warning: Removed 62 rows containing missing values (`geom_point()`).
```



Os valores da variável serão representados de modo a atender todas as estéticas simultaneamente, por exemplo, no gráfico acima é dada uma cor, um formato e um tamanho específicos para cada classe de veículo. Os veículos de dois lugares são exibidos como um disco rosa pequeno.

#### Exercício 1.3.5

O que a estética stroke faz? com que formas ela trabalha? Solução.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, stroke = displ)) +
  tema
```



A estética stroke controla a espessura do ponto ou elemento a ser representado.

#### Exercício 1.3.6

O que acontece se você mapear uma estética a algo diferente de um nome de variável, como aes(color = displ < 5)?

Solução.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, color = displ < 5)) +
   tema</pre>
```

1.7 Problemas comuns

15



A expressão é avaliada para cada um dos valores da variável e o resultado é utilizado para plotagem da estética no gráfico.

### 1.4 Problemas comuns

X

#### 1.5 Facetas

X

## 1.6 Objetos geométricos

|     | - ·      | • ~       | / .*         |
|-----|----------|-----------|--------------|
| 1.7 | Tranct   | nrmacnes  | estatísticas |
| 1.1 | II alioi | or macoco | Cotatioticas |

X

## 1.8 Ajustes de posição

X

### 1.9 Sistemas de coordenadas

X

## 1.10 A gramática em camadas de gráficos

### Exercício

X

Solução. x

Fluxo de trabalho: o básico

Transformação de dados com aplyr

Fluxo de trabalho: scripts

# Análise exploratória de dados

Fluxo de trabalho: projetos

Parte II

Wrangle

## Tibbles com tibble

Importando dados com readr

Arrumando dados com tidyr

Dados relacionais com aplyr

Strings com stringr

#### Fatores com forcats

Datas e horas com lubridate

Parte III

Programar

Pipes com magrittr

## Funções

Vetores

Iteração com purrr

(PART) Modelar

O básico de modelos com model r

Construção de modelos

Muitos modelos com purrr e broom

### Parte IV

# Comunicar

#### R Markdown

Gráficos para comunicação com ggplot2

## Formatos R Markdown

Fluxo de trabalho de R Markdown

## Bibliografia

Hadley Wickham and Garrett Grolemund. *R para Data Science*. Alta Books, Rio de Janeiro, 2019.