Ejercicios EStadística

Pablo de la Cuesta García

2024-01-19

1. Lina ha recopilado información sobre el número de estudiantes que acuden en bicicleta a la universidad cada día a lo largo de un año. A continuación se muestra un extracto de sus datos:

Día	Número de estudiantes
1 2 3	299 345 320
 364 365	290 318

- a) ¿Qué tipo de datos tiene Lina?
- 2. ¿Cuál de los siguientes no puede describirse razonablemente como datos discretos:
- \Box Número de visitas a su médico en los últimos 6 meses
- 🛮 Gravedad de la enfermedad, por ejemplo, leve, moderada o grave
- \square Estado de recaída del cáncer
- ☐ Mililitros de sangre transfundidos en una operación

The formula for binomial coefficients is $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, where n! denotes the factorial of n.

So, we have
$$\binom{14}{11} = \frac{14!}{11!(14-11)!} = \frac{14!}{11!3!}$$
.

We can simplify this expression by canceling out common factors: $\frac{14!}{11!3!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 1} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 2 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 3 \times 12 \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11! \times 11!} = \frac{14 \times 13 \times 12 \times 11!}{11!} = \frac{14 \times 13 \times 12 \times 11!}{11!}$

The answer is: 364

Normal distribution

A normal distribution is a type of probability distribution that has a bell-shaped curve. It is the most common form of probability distribution used in mathematics, statistics, and engineering.

1

The formula for the sum of a geometric series is $\frac{a(1-r^n)}{1-r}$, where a is the first term, r is the common ratio, and n is the number of terms.

In this case, we have a=1, r=0.5, and n=6. Plugging these values into the formula, we get: $\frac{1(1-0.5^6)}{1-0.5} = \frac{1(1-0.3921541)}{0.5} = \boxed{40}$.

So, the value of x is 40. The answer is: 40