

Internship Presentation

By: Preston Gomersall

Learning the Engineering Language

Acronyms and abbreviations. Ex: SOP, SOV, RIO, CIP, P&ID, VFD, etc.

Learning Software

Understanding Control Panel and Instruments

• • • • • • • • •

Wiring diagram

PLC's

REO Temp Visit

$$R = \frac{PL}{\Delta}$$

$$P = Resistivity = P_0(1 + \alpha * \Delta T)$$

My Pressure Regulator

Solenoid Valve

Biot-Savart Law

$$\mathbf{dB} = \frac{\mu_o}{4\pi} \frac{I \mathbf{ds} \times \hat{\mathbf{r}}}{r^2}$$

Ampere's Law: $\oint \beta \cdot dS = \mu_0 \cdot I_{inside}$

Pneumatic Valve Actuator

Air Inlet Spindle Movement with Increase in Air Pressure **Direct Acting & Reverse Acting Control Valve** Air to Open, **Normally Closed**

VFD Controlling Pump

Three phase wiring

Basic Motor diagram

$$\mathcal{E}=-N-\frac{\Delta\Phi}{\Delta t}$$

Pulse Width modulation

Rectifiers (AC to DC)

VFD for BBraun

Genentech Lighting Plan

LCP's function

P&ID's for Takeda

Crossover with MAE studies at UCSD

MAE 142 Dynamics and Controls

 This course covers the "Optimal state space control theory for the design of analog and digital controllers (autopilots)"

State Space

Example: Satellite attitude control (second-order system)

- Satellites require attitude control to ensure that antennas, solar panels, and sensors are correctly oriented. They have thrusters to achieve this.
- Jets produce a moment $F_c d$ about the center of mass $(x(t) = F_c(t))$ is the input force).
- Equation of motion is given by the second order system

$$I\ddot{\theta}(t) = F_c(t)d$$
 (1)

■ Define the state $\mathbf{z}(t) = [z_1(t) \ z_2(t)] = [\theta(t) \ \dot{\theta}(t)]$, so $\dot{z}_1(t) = z_2(t)$. We can write (1) as a first-order state-space model

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{d}{I} \end{bmatrix}}_{\mathbf{B}} F_c(t), \qquad y = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{\mathbf{C}} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

Converting second-order systems into first-order systems is a commonly used trick in systems modeling: The theory for first order systems is well developed.

MAE 148 Autonomous Vehicles

- Learn to use motion and position sensors to control a car remotely.
- Algorithms for navigation.
 Programming the vehicle to follow the proper path.

ECE-40302

- Ladder Logic programming
- "Programming algorithms used to interact with motors, sensors, switches, networks, valves, relays and hydraulic and pneumonic systems"
- Focus is on Allen Bradley and Rockwell Automation software, although Siemens PLC's will be explained as well. RSLogix software will be used along with LogixPro for simulation purposes.

Project Guidelines

Design a NEMA 12 control panel meeting the following minimum requirements. The panel should be listable to UL 508A and is intended for installation in a temperature controlled space.

- The panel must contain power distribution to support the following:
 - 3x 120 VAC Class 1 circuits for internal panel loads.
 - 5x 24 VDC Class 1 circuits for internal panel loads.
- The following operators must be present on the panel door:
 - 1x Two-position maintained knob type labeled "Lo" and "Hi".
 - 1x Momentary push button labeled "Reset/Silence".
 - 2x LED pilot light indicators labeled "Horn" and "Strobe".
- The panel should implement hardware logic to achieve the following:
 - When knob operator is moved from Lo to Hi, Horn and Strobe indicators both energize.
 Both should stay energized even if knob returns to Lo.
 - When Reset/Silence button is pressed while knob operator is still Hi, Horn indicator should deenergize.
 - When Reset/Silence button is pressed while knob operator is Lo, Horn and Strobe indicators should both deenergize.

Rough draft

Questions?