Assignment I1

Jens Kristian Refsgaard Nielsen

12. marts 2019

Question 1.

Claim: the language of the Spanish flag $L = \{r^n w y^{2n} r^n \mid n \geq 0\}$ is not context-free **Proof:** we proceed by using the contraposition of the pumping lemma for context-free languages that states:

 $X \subseteq \Sigma^*$ is not context free if:

 $\forall k > 1 \exists z \in X : |z| > k :$

 $\forall u, v, \epsilon, x, \zeta \in \Sigma^* : z = uv\epsilon x\zeta, |v\epsilon x| \le k, |vx| > 0 :$

 $\exists i > 0 : uv^i \epsilon x^i \zeta \notin X$

So let $k \geq 1$ be given, we then choose $z = r^k w y^{2k} r^k$, and let a decomposition $u, v, \epsilon, x, \zeta \in \Sigma^*$: $z = uv\epsilon x\zeta, |v\epsilon x| \le k, |vx| > 0$ be given. Now we proceed by looking at the possible cases of how the decomposition looks.

Case 1: $u = r^l, v \in x = r^j, \zeta = r^{k-l-j}wy^{2k}r^k$ for $0 \le l \le k$ and 0 < j < k-l

The condition |vx| > 0 forces at least one of v and x to have at least one r, so if we choose to pump with i = 2 we get at least one more r in $v \in x$ so $v^2 \in x^2 = r^p$ for p > j, consider then

$$uv^2 \epsilon x^2 \zeta = r^l r^p r^{k-l-j} w y^{2k} r^k = r^{k-j+p} w y^{2k} r^k \notin L$$

Because p > j we get more r's in front of our expression than in the back, which is not allowed in L, concluding the case.

Case 2: If w is part of either v or x, simply pump i=2 and we get two w's which our language doesn't support, completing the small case.

Case 3: $u = r^{k-l}, v = r^{l}, \epsilon = w, x = y^{j}, \zeta = y^{2k-j}r^{k}$ for $0 < l+1+j \le k$

We have l and j not both zero, if

Case 4: $u = r^k w y^l, v \epsilon x = y^j, \zeta = y^{2k-j-l} r^k$ for $0 < j \le k$ and $0 \le l \le k$ Case 5: $u = r^k w y^{2k-l}, v \epsilon x = y^l r^j, \zeta = r^{k-j}$ for $0 < l + j \le k$

Case 6: $u = r^k w y^{2k} r^{k-l-j}, v \epsilon x = r^l, \zeta = r^j \text{ for } 0 < l \text{ and } l+j \leq k$

Question 2.

Question 3.

Question 4.