LENDING CLUB **USE CASE ANALYSIS**

NGOC DUNG BUI

BUSINESS REQUIREMENTS

CARRY OUT AN EDA (EXPLORATORY DATA ANALYSIS) ON A DATASET OF LOAN
DATA TO IDENTIFY RISKY FACTORS THAT WOULD LEAD TO A FINANCIAL LOSS
FOR THE LENDERS. BASED ON THAT, FINANCIAL INSTITUTIONS/LENDERS
COULD TAKE ACTIONS SUCH AS DENYING THE LOAN, REDUCING THE
AMOUNT OF LOAN, LENDING (TO RISKY APPLICANTS) AT A HIGHER INTEREST
RATE, ETC

DATASET OVERVIEW

The dataset is stored in the format of a CSV file.

А	utoSave 🧿	Off)	? · 🖰 ·	▽	lo	an.csv 🗸		∫ Sea	arch (Alt+Q)					Ng	joc Dung Bui	ND [雨 —	ō	×
Fi	le Hor	ne Inser	t Page	Layout	Formulas	Data	Review	View	Add-ins	Help	Power Pi	vot					Ç	Comments	iể s	hare
L2:	l	- : ×	· /	fx 6 ye	ars															_
	-			ja o ye	uis															
		В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	
1		membe ▼ I					int_rat∈ ▼			sub_gra ▼	emp_til *		home_(*							▼_de
2	1077501		5000	5000		36 month		162.87	_	B2		10+ years			Verified		Fully Paid		ttps://l	
3	1069559		6000	6000		36 month		198.46		B3	bmg-educ	•	RENT		Not Verifi		Charged C		ttps://l	
4	1077175		2400	2400		36 month		84.33		C5		10+ years			Not Verifi		Fully Paid		ttps://l	
5	1076863		10000	10000		36 month		339.31		C1		10+ years			Source Ve		Fully Paid		ttps://l	
6	1075358		3000	3000		60 month		67.79		B5	University	1 year	RENT		Source Ve		Current		ttps://l	
7	1075269		5000	5000		36 month		156.46		A4	Veolia Tra	•	RENT		Source Ve		Fully Paid		ttps://l	
8	1069639		7000	7000		60 month		170.08		C5	Southern	•	RENT		Not Verifi		Fully Paid		ttps://l	
9	1072053		3000	3000	3000	36 month		109.43		E1	MKC Acco	9 years	RENT	48000	Source Ve	11-Dec	Fully Paid		ttps://l	
10	1069800		15000	15000		36 month		514.64		C2	nyc transi	•	RENT		Not Verifi		Charged C		ttps://l	
11	1069657	1304764	5000	5000	5000	60 month	16.77%	123.65	D	D2	Frito Lay	2 years	RENT	50004	Not Verifi	€ 11-Dec	Charged C	n h	ttps://l	er B
12	1070078	1305201	6500	6500	6500	60 month	14.65%	153.45	С	C3	Southwes		OWN	72000	Not Verifi	€ 11-Dec	Fully Paid	n h	ttps://I	er B
13	1069908	1305008	12000	12000	12000	36 month	12.69%	402.54	В	B5	UCLA	10+ years	OWN	75000	Source Ve	11-Dec	Fully Paid	n h	ttps://l	endi
14	1069248	1304123	15000	15000	15000	36 month	9.91%	483.38	В	B1	Caterpilla	r8 years	MORTGAG	80000	Not Verifi	€ 11-Dec	Charged C		ttps://I	
15	1069866	1304956	3000	3000	3000	36 month	9.91%	96.68	В	B1	Target	3 years	RENT	15000	Source Ve	11-Dec	Fully Paid	n h	ttps://l	er B
16	1069243	1304116	12000	12000	12000	36 month	15.96%	421.65	С	C5	Chemat T	4 years	RENT	50000	Not Verifi	€ 11-Dec	Charged C	n h	ttps://I	endi
17	1069759	1304871	1000	1000	1000	36 month	16.29%	35.31	D	D1	Internal re	< 1 year	RENT	28000	Not Verifi	€ 11-Dec	Fully Paid	n h	ttps://l	endi
18	1065775	1299699	10000	10000	10000	36 month	15.27%	347.98	С	C4	Chin's Res	4 years	RENT	42000	Not Verifi	€ 11-Dec	Fully Paid	n h	ttps://l	endi
19	1069971	1304884	3600	3600	3600	36 month	6.03%	109.57	Α	A1	Duracell	10+ years	MORTGAG	110000	Not Verifi	€ 11-Dec	Fully Paid	n h	ttps://l	er B
20	1062474	1294539	6000	6000	6000	36 month	11.71%	198.46	В	B3	Connectio	1 year	MORTGAG	84000	Verified	11-Dec	Fully Paid	n h	ttps://l	er B
21	1069742	1304855	9200	9200	9200	36 month	6.03%	280.01	Α	A1	Network I	6 years	RENT	77385.19	Not Verifi	€ 11-Dec	Fully Paid	n h	ttps://l	endi
22	1069740	1284848	20250	20250	19142.16	60 month	15.27%	484.63	С	C4	Archdioce	3 years	RENT	43370	Verified	11-Dec	Fully Paid	n h	ttps://l	er Af
าว	1060001	1202550	6400	6400	6400	26 manth	16 770/	227 /5	D	רח	Divorcido	Evene	DENIT	75000	Not Varifi	11 Doc	Chargad C	n h	++~~.//1	or D

THE DATASET CONTAINS 111 COLUMNS AND 39713 ROWS

5 rows × 111 columns df_loan.describe() id member id loan_amnt funded_amnt funded_amnt_inv installment annual_inc delinq_2yrs inq_last_6mths ... count 3.971700e+04 3.971700e+04 39717.000000 39717.000000 39717.000000 39717.000000 3.971700e+04 39717.000000 39717.000000 39717.000000 ... 0.869200 ... 6.831319e+05 8.504636e+05 11219.443815 10947.713196 10397.448868 324.561922 6.896893e+04 13.315130 0.146512 2.106941e+05 2.656783e+05 7456.670694 7187.238670 7128.450439 208.874874 6.379377e+04 6.678594 0.491812 1.070219 ... 5.473400e+04 7.069900e+04 500.000000 500.000000 0.000000 15.690000 4.000000e+03 0.000000 0.000000 0.000000 ... 5.162210e+05 6.667800e+05 0.000000 ... 5500.000000 5400.000000 5000.000000 167.020000 4.040400e+04 8.170000 0.000000 1.000000 ... 6.656650e+05 8.508120e+05 9600.000000 8975.000000 280.220000 5.900000e+04 13.400000 0.000000 10000.000000 8.377550e+05 1.047339e+06 15000.000000 15000.000000 14400.000000 430.780000 8.230000e+04 18.600000 0.000000 1.000000 ... 8.000000 ... 1.077501e+06 1.314167e+06 35000.000000 35000.000000 35000.000000 1305.190000 6.000000e+06 29.990000 11.000000 8 rows × 87 columns • len(df loan) 39717

STEP 1: CLEANSING DATA

Extract Loan dataframe to a sub-dataframe that contains columns in which there's at least 1 null value each

```
nulls_df = df_loan.loc[:, df_loan.isna().any()]
nulls_df.isna().sum()
emp_title
                                2459
emp_length
                                1075
desc
                               12940
title
                                  11
mths_since_last_deling
                               25682
                               . . .
tax_liens
                                  39
tot_hi_cred_lim
                               39717
total_bal_ex_mort
                               39717
total_bc_limit
                               39717
total_il_high_credit_limit
                               39717
Length: 68, dtype: int64
```

Columns in blue background should be converted to Date type and columns in orange should be converted to Numeric type

: nulls_df.select_dtypes(include=["object"])

	emp_title		emp_length	desc	title	revol_util	last_pymnt_d	next_pymnt_d	last_credit_pull_d
	0 NaN 10+ years		Borrower added on 12/22/11 > I need to upgra	Computer	83.70%	Jan-15	NaN	May-16	
	1	Ryder	< 1 year	Borrower added on 12/22/11 > I plan to use t	bike	9.40%	Apr-13	NaN	Sep-13
	2	NaN	10+ years	NaN	real estate business	98.50%	Jun-14	NaN	May-16
	3	AIR RESOURCES BOARD	10+ years	Borrower added on 12/21/11 > to pay for prop	personel	21%	Jan-15	NaN	Apr-16
	4	University Medical Group	1 year	Borrower added on 12/21/11 > I plan on combi	Personal	53.90%	May-16	Jun-16	May-16
397	712	FiSite Research	4 years	Our current gutter system on our home is old a	Home Improvement	13.10%	Jul-10	NaN	Jun-10
397	713	Squarewave Solutions, Ltd.	3 years	The rate of interest and fees incurred by carr	Retiring credit card debt	26.90%	Jul-10	NaN	Jul-10

MDALOOD

```
#loop thru null df to visualize outliers of continuous variables
# remove some columns which contains only Null values
for column in nulls_df.columns:
    if df_loan[column].isna().sum() == len(df_loan.index):
        df_loan.drop(column, axis=1, inplace=True)
        continue
    if df_loan[column].dtype == 'float64':
        sns.boxplot(df_loan[pd.notna(df_loan[column])][column])
        plt.show()
          2
  0
                                   8
                   emp_length
```

Replace missing values in numeric columns with Median

```
: for col in float_cols:
     if col in df_loan.columns:
          median = df_loan[col].median
          df_loan[col].fillna(median, inplace=True)
: df_loan.isna().sum()
: id
  member id
  loan_amnt
  funded amnt
  funded_amnt_inv
  term
  int_rate
  installment
  grade
  sub_grade
  emp_title
                              2459
  emp_length
  home_ownership
  annual_inc
  verification_status
  issue_d
  loan_status
  pymnt_plan
```

Null values in some columns like emp_title, title, desc should be filled with a Description text like "Missing"

```
df loan.emp title.value counts()
41]: US Army
                                           134
     Bank of America
                                           109
     IBM
                                            66
     AT&T
                                            59
     Kaiser Permanente
                                            56
     Community College of Philadelphia
     AMEC
     lee county sheriff
     Bacon County Board of Education
     Evergreen Center
     Name: emp_title, Length: 28820, dtype: int64
42]: #replace Null values in emp_title with "missing"
     df_loan.emp_title.fillna("Missing", inplace=True)
43]: df loan.emp title.isna().sum()
43]: 0
```

Some constant features which contain only constants should be removed

Remove constant features, which contain a single value and do not bring a meaningful interpretation

```
print("Contant fields to be removed:")
for column in list(df_loan.columns):
    if df_loan[column].unique().size < 2:
        print(column)
        df_loan.drop(column, axis=1, inplace=True)

Contant fields to be removed:
pymnt_plan
initial_list_status
policy_code
application_type</pre>
```

Next step: Remove outliers which could be defined as a value that < (Q1 - 1.5 IQR) or > (Q3 + 1.5 IQR)

As the rule of thumb for outliers detection, any values that are not in the range (Q1 - 1.5 IQR) and (Q3 + 1.5 IQR) are considered as outliers and should be removed

```
Q1 = df_loan.quantile(0.25)
Q3 = df_loan.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
id
                            321534.00000
member id
                            380559.00000
loan amnt
                              9500.00000
funded_amnt
                             9600.00000
funded amnt inv
                             9400.00000
int_rate
                                 5.34000
installment
                               263.76000
emp_length
                                 7.00000
annual inc
                             41896.00000
dti
                                10.43000
delinq_2yrs
                                 0.00000
ing last 6mths
                                 1.00000
open_acc
                                 6.00000
pub_rec
                                 0.00000
revol bal
                             13355.00000
```

```
df_loan = df_loan[~((df_loan < (Q1 - 1.5 * IQR)) |(df_loan > (Q3 + 1.5 * IQR))).any(axis=1)]
```

Extract Charged off data into a separate DF for further analysis

Because the company wants to understand the driving factors (or driver variables) behind loan default, extract Charged off data into a separate DF for further analysis

```
grouped_df = df_loan.groupby('loan_status')
charged_off_df = grouped_df.get_group('Charged Off')
```

Extract verified/verified source data only

```
veri_grp_df = charged_off_df.groupby('verification_status')
source_verified = veri_grp_df.get_group('Source Verified')
verified = veri_grp_df.get_group('Verified')
```

default_df = pd.concat([source_verified, verified])

default_df

	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade	 total_acc	out_prncp	out_prncp_in [,]
204	1066835	1301027	10500	10500	10500.000000	36 months	16.29	370.66	D	D1	 8	0.0	0.0
220	1066798	1300982	9500	9500	9500.000000	36 months	12.69	318.68	В	B5	 42	0.0	0.0
239	1066344	1300716	15600	15600	15600.000000	60 months	12.69	352.48	В	B5	 11	0.0	0.0
324	1065348	1299443	5000	5000	5000.000000	36	12.42	167.08	В	B4	 40	0.0	0.1

STEP 2: EDA

The current dataset showing that borrowers with 10+ years employments are the most who have a bad loan.

It's more likely to have a bad Loan if a borrower is a renter or having a mortgage instead of being the owner a home

The median of annual income is almost the same among different loan grades at about 50k, except that the median of grade G is greater than the rest, at about 85k, and the term of loan is 60 months

There's a strong relationship between Loan amount and monthly payment (installment) for bad Loans

The relationship between Annual income and Loan amount is weak. However, the density of the Loan amount is higher, if the term is shorter (36 months) and the loan amount is smaller (less than 15k)

The overall correlation among the dataset attributes showing that there're high correlations among some attributes of "loan amount", "funded amount", "installment"

