ECON 703, Fall 2007 Answer Key, HW5

1.

- (1)A metric on vector space X is a function $d: X \times X \to \Re$ that satisfies the following conditions for all x, y z in X:
- Posistivity: d(x, y) ≥ 0, with equality iff x=y.
- 2) Summetry: d(x,y)=d(y,x).
- 3) Triangle: Inequality: $d(x, z) \le d(x, y) + d(y, z)$.

We need to check these conditions.

For 1), we know $d(x,y) = max|x_i - y_i| \ge |x_i - y_i| \ge 0$. And $d(x,y) = 0 \Leftrightarrow max|x_i - y_i| = 0 \Leftrightarrow |x_i - y_i| = 0$ $0 \forall i \ (because \ |x_i - y_i| \ge 0 \ \forall i) \Leftrightarrow x_i = y_i \ \forall i \Leftrightarrow x = y.$

For 2), we know that $d(x, y) = max|x_i - y_i| = max|y_i - x_i| = d(y, x)$.

For 3), $d(x,y) = max|x_i - y_i| = max|x_i - z_i + z_i - y_i| \le max(|x_i - z_i| + |z_i - y_i|) \le max|x_i - z_i| + max|z_i - y_i|$.

(Another way to state: Observe that $|x_i - y_i| + |y_i - z_i| \ge |x_i - z_i| \ \forall i$, where $x = (x_1, ..., x_n), y, z \in \mathbb{R}^n$. Taking maxima on both side implies $\max_i (|x_i - y_i| + |y_i - z_i|) \ge \max_i |x_i - z_i|$. So $\max_i |x_i - y_i| + \max_i |y_i - z_i| \ge \max_i (|x_i - y_i| + |y_i - z_i|) \ge \max_i |x_i - z_i|$.

- (2) The basic open set B(x,r) of x is {y ∈ ℝⁿ : max_i |y_i − x_i| < r}. Draw a graph in ℝ², it is an 2r × 2r open square centered at x.
- (3)" \Rightarrow ": A is open in (\Re^n, d_2) means for all $x \in A$, $\exists B_{d_2}(x, r) \subset A$. So, for any $y \in B_{d_2}(x, r)$, we have $\max |x_i y_i| < r$. If we can show that there exists a $B_{d_1}(x, r') \subset B_{d_2}(x, r)$, then $x \in A$, $\exists B_{d_1}(x, r') \subset A$, that is, A is open in (\Re^n, d_1) .

Now we show that there exists a $B_{d_1}(x,r') \subset B_{d_2}(x,r)$. For any $y \in B_{d_1}(x,r')$, we have $d_1(x,y) = \sqrt{\sum (x_i - y_i)^2} < r'$, $\Longrightarrow (x_i - y_i)^2 < r'$, $\Longrightarrow |x_i - y_i| < r'$ for all i, $\Longrightarrow \max |x_i - y_i| < r'$ for all i, i.e. $d_1(x,y) < r'$, $\Longrightarrow y \in B_{d_1}(x,r')$. Now just let r'=r, we have $B_{d_1}(x,r) \subset B_{d_2}(x,r)$.

"\(\infty\)": Similarly, we need to prove that there exist a $B_{d_2}(x,r') \subset B_{d_1}(x,r)$. For any $y \in B_{d_2}(x,r')$, we have $d_2(x,y) = max|(x_i - y_i| < r'$. Then $d_1(x,y) = \sqrt{\sum (x_i - y_i)^2} \le \sqrt{\sum (max|x_i - y_i|)^2} < \sqrt{\sum r'^2} = \sqrt{nr'}$. So $y \in B(x,\sqrt(n)r')$. Now just let $r' = \frac{1}{\sqrt{n}}r$, we have $B_{d_2}(x,r') \subset B_{d_1}(x,r)$.

Note: This statement is equivalent to the statement "metric d_2 is equivalent to metric d_1 in the sense that they lead to the same topology". It is sufficient to show that for every basic open set $B_2(x,r)$ of x in (X,d_2) there exists a basic open set $B_1(x,s)$ of x in (X,d_1) s.t. $B_1(x,s) \subset B_2(x,r)$ and vice versa.

(a) First, consider that f is separately continuous in x.

For fixed $y_0 \neq 0$, $f(x, y_0)$ is a function of x. It is continuous since the nominator is continuous and its denominator is continuous and not equal to 0 for all $x \in \mathbb{R}$.

For $y_0 = 0$, $f(x, y_0) = 0$ for x=0, and $f(x, y_0) = \frac{0}{x^2} = 0$ for all $x \neq 0$, so it $f(x, y_0) = 0$ for all $x \in \mathbb{R}$. It is a constant function, so it is continuous, too.

Since f is symmetric, the above arguments also hold for any fixed x_0 .

- (b) $f(x, x) = \frac{1}{2}$ when $x \neq 0$; f(x, x) = 0 when x = 0.
- (c) Let $(x_n, y_n) = (\frac{1}{n}, \frac{1}{n})$, then

$$f(\lim_{n\to\infty}(x_n, y_n)) = f(0, 0) = 0 \neq \frac{1}{2} = \lim f(x_n, y_n).$$

So f is not continuous.

3.

Way1: Let $A_x = \{y | y = \lambda x, \lambda \in [0, 1]\}$. If $x \in A$, then $A_x \subset A$. Then $A = \bigcup_{x \in A} A_x$. Because $0 \in A_x$, then $\bigcap_{x \in A} A_x \neq \phi$. We know that A_x is connected (we need to prove this statement, as we proved in the discussion section), So A is connected too.

Way2: Suppose to the contrary that $A_1 \neq \emptyset$, $A_2 \neq \emptyset$ are a separation of A. Since $0 \in A$, then 0 belongs to either A_1 or A_2 , but not both. Without loss of generality suppose $0 \in A_1$. Let x be any point in A_2 , $\Lambda = \{\lambda \in [0,1] : \lambda x \in A_2\}$, and $\lambda_0 = \inf \{\Lambda\}$.

Claim: $\lambda_0 = 0$.

Suppose $\lambda_0 > 0$ instead. First $\lambda_0 x \in A_2$. This is because either Λ is finite or $\lambda_0 x$ is a limit point of A_2 . In the first case $\lambda_0 x \in A_2$. In the second case, since A_1 and A_2 are a separation of A, $\lambda_0 x \notin A_1$, so $\lambda_0 x \in A_2$ (since $\lambda_0 x \in A_1$). Now since $\lambda_0 x \in A_2$, it should not be a limit point of A_1 . Thus there must exist $\varepsilon > 0$ such that $\lambda \in (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$ implies $\lambda x \notin A_1$, hence $\lambda x \in A_2$. But this contradicts $\lambda_0 = \inf \{\Lambda\}$. The claim is proved.

Now we can see 0 is a limit point of A_2 , contradicting A_1 and A_2 being a separation of A.

4.

The statement is correct: Let h(x) = f(x) - g(x), then h(x) > 0 and is continuous in [0,1]. And [0,1] is compact. Then according to the Weierstrass Theorem, there exists $x_0 \in [0,1]$ such that $h(x) \ge h(x_0) > 0$ for all $x \in [0,1]$, i.e., $f(x) \ge g(x) + h(x_0)$. Let $\triangle = h(x_0)$.

It would not be true if f, g were only left continuous. Let g(x) = 0 for all $x \in [0,1]$. Let f(x) = x if $x \in (0,1]$ and $f(x) = \frac{1}{2}$ if x = 0. So f and g are both left continuous. There exists no such $\Delta > 0$ since $\inf_{x \in [0,1]} h(x) = 0$.

Note: We know from the condition that f(x) - g(x) > 0. We are asked to show there is a $\Delta s.t. f(x) - g(x) > \Delta$ for all $x \in [0,1]$. So we only need to prove that the minimum of the distance between f(x) and g(x) exists, and then let it be δ . Think about the Weierstrass theorem for the existence of minimum.