Sommes de termes d'une suite arithmétique ou géométrique

Exercice 1 ★

Calculer les sommes suivantes.

1.
$$S_n = \sum_{k=2}^{n-1} 3k - 2$$

3.
$$U_n = \sum_{k=n-2}^{n+5} 2 - k$$

2.
$$T_n = \sum_{k=-1}^{n+1} 2k - 1$$

4.
$$V_n = \sum_{k=n}^{2n} k - 1$$

Exercice 2 ★

Calculer les sommes suivantes.

1.
$$S_n = \sum_{k=2}^{n-1} 3^{k-2}$$

3.
$$U_n = \sum_{k=n-2}^{n+5} \frac{4}{2^k}$$

$$2. T_n = \sum_{k=-1}^{n+1} 2^{k-1}$$

4.
$$V_n = \sum_{k=n}^{2n} \frac{2^{k-1}}{3^{k+2}}$$

Techniques de calcul

Exercice 3 ★

Calculer, pour tout entier non nul n,

$$S_n = \sum_{k=1}^n \ln(1 + 1/k)$$

au moyen d'un telescopage.

Exercice 4

Simplifier les sommes suivantes,

1.
$$\sum_{k=p}^{q} (u_{k+1} - u_k);$$

2.
$$\sum_{k=p-3}^{q-1} (u_{k+1} - u_{k-1}).$$

Exercice 5 ★

Calculer les sommes suivantes :

1.
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

4.
$$\sum_{k=0}^{n} (k+2) 2^k$$

2.
$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$$

5.
$$\sum_{k=1}^{n} \ln(1+1/k)$$

3.
$$\sum_{k=1}^{n} k \cdot k!$$

$$6. \sum_{k=0}^{n} 2 \sin\left(\frac{x}{2}\right) \cos(kx)$$

Exercice 6 ★

Sommation par paquets

Simplifier la somme

$$\sum_{k=1}^{2n} (-1)^k k$$

en sommant par paquets.

Exercice 7 ★

Un changement d'indice

Calculer la somme
$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{n+1-k} \right)$$
.

Exercice 8 ★

Vérifier que

$$\sum_{k=1}^{n} k 2^k = \sum_{1 \leqslant j \leqslant k \le n} 2^k$$

et calculer une expression simple de cette somme en permutant l'ordre des sommations dans la somme double.

Exercice 9 ★★

Simplifier la somme

$$\sum_{k=2}^{n} \ln \left(\frac{k^2 - 1}{k^2} \right).$$

Exercice 10 ★

On utilise une décomposition de la fraction en éléments simples.

1. Montrer qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall t > 1, \quad \frac{1}{t^2 - 1} = \frac{\alpha}{t - 1} + \frac{\beta}{t + 1}.$$

2. En déduire une simplification de la somme

$$v_n = \sum_{k=2}^n \frac{1}{k^2 - 1}.$$

Exercice 11 ★★

Sommation d'Abel

Soient $(a_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ deux suites complexes. On définit deux suites $(A_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ de la manière suivante :

$$\forall n \in \mathbb{N}, \, \mathbf{A}_n = \sum_{k=0}^n a_k, \, b_n = \mathbf{B}_{n+1} - \mathbf{B}_n$$

- **1.** Montrer que $\sum_{k=0}^{n} a_k B_k = A_n B_n \sum_{k=0}^{n-1} A_k b_k$.
- **2.** Application : calcul de $\sum_{k=0}^{n} 2^k k$.

Exercice 12 **

Soit $x \in \mathbb{R}$. On pose $S_n(x) = \sum_{k=0}^n kx^k$. On cherche à calculer $S_n(x)$ de deux manières :

- 1. en introduisant $T_n(x) = \sum_{k=0}^n x^k$;
- **2.** en calculant dans un premier temps $(x-1)S_n(x)$.

Formule du binôme

Exercice 13 ★

Simplifier, pour tout n dans \mathbb{N} , la somme

$$S_n = \sum_{k=1}^{n} 2^{k-1} 3^{n-k+1} \binom{n}{k}.$$

Exercice 14 **

Pour tous n et p dans \mathbb{N} , établir que l'on a

$$\sum_{k=0}^{p} \binom{n+k}{n} = \binom{n+p+1}{n+1}.$$

Exercice 15 ★★

Calculer les sommes suivantes

1.
$$\sum_{k=0}^{n} k^2 \binom{n}{k}$$
.

2.
$$\sum_{k=0}^{n} k^2 \binom{2n}{2k}$$
.

Exercice 16 ***

Soit *n* un entier naturel non nul.

1. Calculer
$$S_1 = \sum_{k=0}^{2n} {2n \choose k}$$
 et $S_2 = \sum_{k=0}^{2n} {2n \choose k} (-1)^k$.

2. En déduire
$$T_1 = \sum_{k=0}^{n} {2n \choose 2k}$$
 et $T_2 = \sum_{k=0}^{n-1} {2n \choose 2k+1}$.

- 3. Calculer $U_1 = \sum_{k=0}^{n-1} {2n-1 \choose 2k}$ et $U_2 = \sum_{k=0}^{n-1} {2n-1 \choose 2k+1}$. On pourra, si on le souhaite, s'inspirer des questions précédentes.
- **4.** A l'aide des changements d'indices $\ell = n k$ et $\ell = n 1 k$, calculer $V_1 = \sum_{k=0}^{n} k \binom{2n}{2k}$ et $V_2 = \sum_{k=0}^{n-1} k \binom{2n}{2k+1}$.
- 5. Calculer enfin $W_1 = \sum_{k=0}^{n-1} k \binom{2n-1}{2k}$ et $W_2 = \sum_{k=0}^{n-1} k \binom{2n-1}{2k+1}$.

Sommes doubles

Exercice 17 ★★

Calculer les sommes suivantes :

1.
$$U_n = \sum_{1 \le i, j \le n} \max(i, j)$$
.

$$\mathbf{4.} \ \mathbf{X}_n = \sum_{1 \leqslant i < j \leqslant n} i.$$

$$2. V_n = \sum_{1 \leqslant i, j \leqslant n} ij.$$

$$5. Y_n = \sum_{1 \leqslant i < j \leqslant n} ij$$

3.
$$W_n = \sum_{1 \le i \le j \le n} |i - j|.$$

Exercice 18 ★★

En permutant l'ordre des sommations, démontrer l'égalité

$$\sum_{n=0}^{N-1} \sum_{k=n+1}^{N} \frac{(-1)^k}{k^2} = \sum_{k=1}^{N} \frac{(-1)^k}{k}.$$

Exercice 19 ★

Sommes doubles.

1. Calculer la somme double

$$\sum_{1 \leqslant i < j \leqslant n} (i+j).$$

2. Calculer la somme double

$$\sum_{1 \leqslant i < j \leqslant n} ij.$$

Exercice 20 ★

Soit $n \in \mathbb{N}^*$. Simplifier

$$S_n = \sum_{i=1}^n \sum_{j=i}^n \frac{i}{j}.$$

Exercice 21 ★

Posons, pour tout $n \in \mathbb{N}^*$,

$$S_n = \sum_{k=1}^n \frac{1}{k}$$
 et $u_n = \sum_{k=1}^n S_k$.

Établir que

$$\forall n \geqslant 1, \ u_n = (n+1)S_n - n.$$

Exercice 22

Vérifier que

$$\sum_{k=1}^{n} k 2^k = \sum_{1 \leqslant j \leqslant k \le n} 2^k$$

et calculer une expression simple de cette somme en permutant l'ordre des sommations dans la somme double.

Exercice 23 ★★

On pose pour $(n, p) \in \mathbb{N}^2$, $S_p(n) = \sum_{k=0}^n k^p$.

$$\sum_{j=0}^{p} {p+1 \choose j} S_j(n) = (n+1)^{p+1}$$

Produits

Exercice 24

Simplifier le produit suivant :

$$P = \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$$

Exercice 25 ★★

Soient

$$\begin{aligned} \mathbf{V} &= \prod_{1 \leq i,j \leq n} ij &, \quad \mathbf{W} &= \prod_{1 \leq i \neq j \leq n} ij \,, \quad \mathbf{X} &= \prod_{1 \leq i \leq j \leq n} ij \\ \mathbf{Y} &= \prod_{1 \leq j \leq i \leq n} ij \,, \quad \mathbf{Z} &= \prod_{1 \leq i < j \leq n} ij \,. \end{aligned}$$

Calculer V. En déduire W. Exprimer W en fonction de X et Y. Montrer, sans calcul, que X = Y. En déduire X puis Z.

Exercice 26 ★

Simplifier le produit

$$\prod_{k=1}^{n} 2^{1/k(k+1)}.$$

Exercice 27 ★

Calcul d'un produit infini

Pour tout $n \ge 2$, on pose

$$u_n = \prod_{k=2}^n \frac{k^3 - 1}{k^3 + 1}.$$

1. Déterminer une suite d'entiers relatifs $(v_k)_{k \ge 1}$ telle que

$$\forall k \ge 2, \ \frac{k^3 - 1}{k^3 + 1} = \frac{k - 1}{k + 1} \times \frac{v_k}{v_{k-1}}.$$

- **2.** En déduire une simplification de u_n .
- **3.** En déduire la limite de u_n lorsque n tend vers l'infini.

Exercice 28 ***

Soit $\alpha \in]0, \pi[$. Simplifier le produit $P_n = \prod_{k=0}^n \cos \frac{\alpha}{2^k}$. En déduire la limite de P_n .

Systèmes linéaires

Exercice 29

Résoudre

$$\begin{cases} x - y + z + t = 0 \\ x - 2y + z - t = 1 \\ x + y + 2z + t = -1 \end{cases}$$

Exercice 30 ★

Résoudre

$$\begin{cases}
-3x_1 + 9x_2 - 2x_3 + 3x_4 + 5x_5 = 4 \\
x_1 - 3x_2 + x_3 - x_4 - 2x_5 = 0 \\
8x_1 - 24x_2 + 4x_3 - 12x_4 - 4x_5 = -8 \\
-x_1 + 3x_2 - 2x_4 + 7x_5 = 10
\end{cases}$$

Exercice 31 ★

Résoudre selon les valeurs des paramètres $a, b, c \in \mathbb{R}$.

$$\begin{cases} x + 2y - z = a \\ -2x - 3y + 3z = b \\ x + y - 2z = c \end{cases}$$

Exercice 32 ★★

Pour tout $a \in \mathbb{R}$ on note E_a l'ensemble de solutions du système suivant.

$$\begin{cases} -x + 2y - z = 2\\ ax + 3y - z = 3\\ 5x - 8y + z = -9 \end{cases}$$

Pour quels $a \in \mathbb{R}$ est-ce que E_a est vide? contient un unique élément? contient une infinité d'éléments?

Exercice 33 ★

Résoudre le système

$$\begin{cases} x - y = 2 \\ 2x + 2y - z = -2 \\ -x - y + 2z = 4 \end{cases}$$

Exercice 34

Résoudre le système

$$\begin{cases} x - y & = 2 \\ 2x + 2y - z & = -2 \\ -x - y + \frac{1}{2}z & = 4 \end{cases}$$

Exercice 35 ★★

Déterminer les valeurs de a pour lesqelles le système

$$\begin{cases} x + y - z = 1 \\ x + 2y + az = 2 \\ 2x + ay + 2z = 3. \end{cases}$$

- 1. possède une seule solution,
- 2. ne possède pas de solution,
- 3. possède une infinité de solutions.

Exercice 36 ★

Résoudre les systèmes

$$\begin{cases} 2x - y + 4z = -4 \\ 3x + 2y - 3z = 17 \\ 5x - 3y + 8z = -10 \end{cases} \begin{cases} x - y + 2z = 1 \\ 3x + 2y - 3z = 2 \\ -x + 6y - 11z = -3 \end{cases}$$

$$\begin{cases} 2y - z = -2 \\ x + y + z = 2 \\ -2x + 4y - 5z = -10. \end{cases} \begin{cases} 2x + y - 5z = 3 \\ 3x + 2y - 3z = 0 \\ x + y - 7z = 2 \\ 2x - 3y + 8z = 5. \end{cases}$$

Trigonométrie

Exercice 37 ★

Simplifier le produit $p = \sin\left(\frac{\pi}{14}\right)\sin\left(\frac{3}{14}\pi\right)\sin\left(\frac{5}{14}\pi\right)$ en le multipliant par $\cos\left(\frac{\pi}{14}\right)$.

Exercice 38 ★

On cherche à calculer $\cos(\pi/5)$ et $\sin(\pi/5)$.

- **1.** Résoudre dans \mathbb{R} l'équation $\cos(3x) = \sin(2x)$.
- **2.** En déduire les valeurs de sin(x) et cos(x) pour $x = \pi/5$.

Exercice 39 ★

Calculer

$$\alpha = \frac{1}{\sin(\pi/18)} - \frac{\sqrt{3}}{\cos(\pi/18)}.$$

Exercice 40 ★★

On pose

$$p = \cos(\pi/7)\cos(2\pi/7)\cos(4\pi/7),$$

et

$$s = \cos(2\pi/7) + \cos(4\pi/7) + \cos(6\pi/7).$$

- **1.** Simplifier $p \sin(\pi/7)$. En déduire la valeur de p.
- **2.** Calculer *s* à l'aide de la première question.

Exercice 41 ★

Démontrer les identités suivantes, en précisant à chaque fois leur domaine de validité :

1.
$$\frac{1-\cos(x)}{\sin(x)} = \tan(x/2);$$

2.
$$\sin(x - 2\pi/3) + \sin(x) + \sin(x + 2\pi/3) = 0$$
;

3.
$$\tan(\pi/4 + x) + \tan(\pi/4 - x) = \frac{2}{\cos(2x)}$$
;

4.
$$\frac{1}{\tan(x)} - \tan(x) = \frac{2}{\tan(2x)}$$
.

Exercice 42 ★

Résoudre dans $\mathbb R$ les équations suivantes :

1.
$$\sin(x) + \sin(5x) = \sqrt{3}\cos(2x)$$
;

4.
$$cos(x) + cos(2x) + cos(3x) = 0$$
;

2.
$$\cos(x) - \cos(2x) = \sin(3x)$$
;

5.
$$\sin(2x) + \sin(x) = 0$$
;

3.
$$2\sin^2(x) + \sin^2(2x) = 2$$
;

6.
$$12\cos^2(x) - 8\sin^2(x) = 2$$
.

Exercice 43 ★★

Résoudre sur \mathbb{R} l'inéquation $\sin 5x \le \sin x$.