date monday, march 11, 2024

Ideals in $F[\alpha]$

Recall: An ideal I in R is principal if there exists an aeR such that I={ra|reR}=(a)

eq If R=Z, every ideal of Z is principal.

eq. If R = F[x] with F a field, then similar result holds.

for R commutative.

Theorem: Every ideal I of F[x] is principal.

Proof If $I = \{0\}$, then $I = \langle 0 \rangle$, ie. its principal.

So assume $I \neq \{0\}$. Let $p(x) \neq 0$ be in I such that

 $deg p(x) \leq deg q(x)$ for all $q(x) \in I$. If deg p(x) = 0, then p(x) = c for some $c \in F$. So $c \in I$. But $c \in F \subseteq F[x]$, so $c \in C = 1 \in I$. Then $I = F[x] = \langle 1 \rangle$. So, suppose deg p(x) > 0.

Claim: $I' = \langle D(\alpha) \rangle$ ">" Since $p(x) \in I$, $\langle p(x) \rangle \subseteq I$.

"≤"Let t(x)∈I. By division algorithm, t(x) = p(x)q(x) + r(x)

with r(x)=0 or deg r(x) < deg p(x). If $r(x) \neq 0$, we have

 $r(x) = t(x) - p(x)q(x) \in I$

But deg r(x) < deg p(x), and p(x) is supposed to have smallest degree in I. This is a contradiction. So $t(x) = p(x)q(x) \in \langle p(x) \rangle.$

eg. False in F[x,y]. Consider $\langle x^2,y \rangle = \{ fx^2 + gy | f,g \in F[x,y] \}$. Claim: $\langle x^2, y \rangle$ is not principal. Suppose $\langle x^2, y \rangle = \langle p(x,y) \rangle$. So $\chi^2 \in \langle p(x,y) \rangle = \rangle p(x,y) | \chi^2$ and So p(x,y)=c for some cef. But then $\langle \chi^2,y\rangle=\langle 1\rangle$. But $1\notin\langle \chi^2,y\rangle$. Contradiction. In \mathbb{Z} , $\langle a \rangle$ is a maximal ideal $\langle = \rangle$ a is prime. Theorem: In F[x], $\langle f(x) \rangle$ is a maximal ideal $\langle = \rangle f(x)$ is irreducible. Proof "=>"Suppose $I = \langle f(x) \rangle$ is maximal and f(x) = p(x)q(x). So $f(x) \in \langle p(x) \rangle$. Thus, $I = \langle p(x) \rangle$. Because I is maximal, $I = \langle p(x) \rangle$ or $\langle p(x) \rangle = F[x]$. If $I = \langle p(x) \rangle$, then $p(x) \in \langle f(x) \rangle$. So $deg f(x) \leq deg p(x) \leq deg f(x)$. So f(x) = p(x) If $\langle p(x) \rangle \in F[x]$, then $1 \in \langle p(x) \rangle$. So p(x) | 1. Thus, deg p(x) = 0. So f(x) is irreducible. "<="Let I= $\langle f(x) \rangle$ and suppose I $\subseteq J \subseteq F[x]$. Since $J = \langle q(x) \rangle$, we have $f(x) \in \langle q(x) \rangle$, so f(x) = p(x)q(x). Since f(x) irreducible, deg q(x) = 0 or deg $q(x) = \deg f(x)$. If deg q(x) = 0, q(x) = c. So J = F[x]. If deg $q(x) = \deg f(x)$, then f(x) = cq(x) so $\langle f(x) \rangle = \langle q(x) \rangle$. Practice Problems A. Apply division algorithm to $a(x) = 4x^5 - x^3 + x^2 + 4$ in $\mathbb{Z}_{5}[x]$ $b(x) = x^3 - 2$ $\chi^3 - 2 / 4\chi^5 - \chi^3 + \chi^2 + 4$ $-(4\chi^{5} - 8\chi^{2})$ $-\chi^{3} + 9\chi^{2} + 4$ $-(-\chi^3 + 2)$ $9x^2 + 2 = 4x^2 + 2 \pmod{5}$ $4\chi^5 - \chi^3 + \chi^2 + 4 = (4\chi^2 - 1)(\chi^3 - 2) + 4\chi^2 + 2 \pmod{5}$

B. For any polynomial $p(x) \in \mathbb{R}[x]$, we know p(x) has at most deg p(x) noots. Show this is false in $\mathbb{Z}_{10}[x]$. Consider p(x) = 5x which has deg p(x) = 1. But $x = 0, 2, 4, 6, 8 \in \mathbb{Z}_{10}$ are all roots.

C. Rational Root Test Suppose $p(x) = a_n x^n + \cdots + a_n x + a_n \in \mathbb{Z}[x]$. If $f \in \mathbb{Q}$ is a root, then ria. and $s|a_n$ (gcd(r,s)=1).

ria. and $S[a_n]$ (gcd(r,s) = 1). $\frac{r}{s} \in \mathbb{Q}$ a root => $a_n (\frac{r}{s})^n + a_{n-1} (\frac{r}{s})^{n-1} + \cdots + a_n (\frac{r}{s}) + a_n = 0$. $\Leftrightarrow \frac{a_n r^n + a_{n-1} r^{n-1} s + \cdots + a_n r s^{n-1} + a_n s^n}{s^n} = 0$

Then, $a_n r^n = s(-a_{n-1}r^{n-1} - \cdots - a_n s^{n-1})$. We have that gcd(r,s) = 1, so $s[a_n r^n]$ implies $s[a_n]$.

Also, $a_n r^n + \cdots + a_n r s^{n-1} = -a_n s^n$. So $r(a_n r^{n-1} + \cdots + a_n s^{n-1}) = -a_n s^n$. So $r[a_n r^n]$

but since gcd(r,s)=1, we have that rla. Show $7x^2+2$ has no rational roots.

Suppose r12 and s17. Then $r=\pm 1,\pm 2$ and $s=\pm 1,\pm 7$. So distinct possible roots are $\pm 1,\pm 2,\pm \frac{1}{7},\pm \frac{2}{7}$ from

By plugging these into 12, hone of them are room

D. Prove x^p+a is reducible for any $a\in \mathbb{Z}_p$ in $\mathbb{Z}_p[x]$ (p prime). If a=0, $\chi^{P}+0=\chi\chi^{P-1}$ <-reducible. If $a\neq 0$, $a\in \mathbb{Z}_{P}^{(*)}$. So $|a|=p-1=>a^{P-1}=1 \pmod{p}$ $=>a^{P}=a$. In particular, $(-a)^P = -a$. So -a is a root of $x^P + a$ since $(-a)^P + a = -a + a = 0$. So $x^P + a = (x + a)(x)$.