数据挖掘课程作业之关联规则挖掘

计算机学院-2120151056-于畅泳

一. 实验要求

- 1. 对数据集进行处理,转换成适合关联规则挖掘的形式;
- 2. 找出频繁项集;
- 3. 导出关联规则, 计算其支持度和置信度;
- 4. 去除冗余的规则;
- 5. 对规则进行评价,可使用 Lift,也可以使用教材中所提及的其它指标;
- 6. 使用可视化技术,如散点图、平行坐标、泡泡图等,对规则进行展示。

二. 数据说明

从以下2个数据集中任选一个:

UCI 的"急性炎症"数据集

Titanic 存活数据

本次实验采用数据集"Titanic 存活数据",使用网站 https://www.kaggle.com/c/titanic/data中的 train.csv 作为原始数据。

数据包含以下内容:

survival Survival

(0 = No: 1 = Yes)

pclass Passenger Class

(1 = 1st; 2 = 2nd; 3 = 3rd)

name Name

sex Sex

age Age

sibsp Number of Siblings/Spouses Aboard

parch Number of Parents/Children Aboard

ticket Ticket Number

fare Passenger Fare

cabin Cabin

embarked Port of Embarkation

(C = Cherbourg; Q = Queenstown; S =

Southampton)

二. 分析报告及程序

实验环境: Microsoft Windows 10 家庭中文版(64位)

Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz(2592 MHz)

16.00 GB 内存

实验软件: pyCharm 5.0.2 (python 3.5.1)

SQL

实验内容:

1. 数据集的选取及处理

数据集包含部分内容如下:

Passengerld Survive	d P	class	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
1	0	3	Braund, Mr. Owen Harris	male	22	1	. (A/5 21171	7.25		S
2	1	1	L Cumings, Mrs. John Bradley (Florer	female	38	1	. (PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26	0	(STON/O2.	7.925		S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily M	female	35	1	(113803	53.1	C123	S
5	0	3	Allen, Mr. William Henry	male	35	0	(373450	8.05		S
6	0	3	Moran, Mr. James	male		0	(330877	8.4583		Q
7	0	1	McCarthy, Mr. Timothy J	male	54	0	(17463	51.8625	E46	S
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909	21.075		S
9	1	3	Johnson, Mrs. Oscar W (Elisabeth \	female	27	0	2	347742	11.1333		S
10	1	2	Nasser, Mrs. Nicholas (Adele Ache	female	14	1	(237736	30.0708		С
11	1	3	Sandstrom, Miss. Marguerite Rut	female	4	1		PP 9549	16.7	G6	S
12	1	1	Bonnell, Miss. Elizabeth	female	58	0	(113783	26.55	C103	S
13	0	3	Saundercock, Mr. William Henry	male	20	0	(A/5. 2151	8.05		S
14	0	3	Andersson, Mr. Anders Johan	male	39	1		347082	31.275		S
15	0	3	Vestrom, Miss. Hulda Amanda Ade	female	14	0	(350406	7.8542		S
16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55	0	(248706	16		S
17	0	3	Rice, Master. Eugene	male	2	4	. 1	382652	29.125		Q
18	1	2	Williams, Mr. Charles Eugene	male		0	(244373	13		S
19	0	3	Vander Planke, Mrs. Julius (Emelia	female	31	1	(345763	18		S
20	1		Masselmani, Mrs. Fatima	female		0	(2649	7,225		С
21	0	2	Fynney, Mr. Joseph J	male	35	0	(239865	26		S
22	1		Beesley, Mr. Lawrence	male	34	0	(248698	13	D56	S
23	1	3	McGowan, Miss, Anna "Annie"	female	15	0	(330923	8.0292		0
24	1	1	Sloper, Mr. William Thompson	male	28	0	(113788	35.5	A6	S
25	0	3	Palsson, Miss, Torborg Danira	female	8	3	1	349909	21.075		S
26	1	3	Asplund, Mrs. Carl Oscar (Selma A	female	38	1		347077	31.3875		S
27	0		Emir. Mr. Farred Chehab	male		0	(2631	7.225		С
28	0	1	Fortune, Mr. Charles Alexander	male	19	3	2	19950	263	C23 C25	CIS
29	1		O'Dwyer, Miss, Ellen "Nellie"	female		0	(330959	7.8792		Q
30	0	3	Todoroff, Mr. Lalio	male		0	(349216	7.8958		S
31	0		Uruchurtu, Don. Manuel E	male	40	0	(PC 17601	27.7208		C
32	1		Spencer, Mrs. William Augustus (M			1		PC 17569	146.5208	B78	C

将数据转换成适合关联规则挖掘的形式,我们只留取 survived, Pclass, Sex, Embarked 四项数据,同时删除有缺失 Embarked 数据 的第 62 行和第 830 行。

62	1	1 Icard, Miss. Amelie female	38	0	0	113572	80 B28	
830	1	1 Stone, Mrs. George Nelson (Marth female	62	0	0	113572	80 B28	-

得到的数据如下(部分):

Survived	Pclass	Sex	Embarked	
0	3	male	S	
1	1	female	С	
1	3	female	S	
1	1	female	S	
0	3	male	S	
0	3	male	Q	
0	1	male	S	
0	3	male	S	
1	3	female	S	
1	2	female	С	
1	3	female	S	
1	1	female	S	
0	3	male	S	
0	3	male	S	
0	3	female	S	
1	2	female	S	
0	3	male	Q	
1	2	male	S	
0	3	female	S	
1	3	female	С	
0	2	male	S	
1	2	male	S	
1	3	female	Q	
1	1	male	S	
0	3	female	S	
1	3	female	S	
0	3	male	С	
0	1	male	S	
1	3	female	Q	

2. 找出频繁项集,并计算支持度

所有项集(Items): 所有项目的集合。定义为: I。

项集(Itemset):同时出现的项的集合。

支持度 (Support):

定义为 supp(X) = occur(X) / count(D) = P(X)。

置信度 (Confidence/Strength):

定义为 $conf(X \rightarrow Y) = supp(X \cup Y) / supp(X) = P(Y \mid X)$ 。

频繁集 (Frequent itemset):

支持度大于等于特定的最小支持度(Minimum Support/minsup)的项集。表示为 L[k]。注意,频繁集的子集一定是频繁集。

提升比率 (提升度 Lift):

定义为 $lift(X \rightarrow Y) = lift(Y \rightarrow X) = conf(X \rightarrow Y)/supp(Y) = conf(Y \rightarrow X)/supp(X) = P(X and Y)/(P(X)P(Y))$

通过设置支持度的大小(0.1),选择出频数满足条件的项,作为 频繁项。计算满足条件频繁项的支持度。

```
frozenset({'0'})
support:0.6175478065241845
frozenset({'1'})
support:0.38245219347581555
frozenset({'S Port'})
support:0.7244094488188977
frozenset({'1 PClass'})
support:0.2407199100112486
frozenset({'female'})
support:0.35095613048368957
frozenset({'male'})
support:0.6490438695163104
frozenset({'C Port'})
support:0.1889763779527559
frozenset({'3 PClass'})
support:0.5523059617547806
frozenset({'2 PClass'})
support:0.20697412823397077
frozenset({'1', 'female'})
support:0.25984251968503935
frozenset({'1', '1 PClass'})
support:0.15073115860517436
frozenset({'3 PClass', 'female'})
support:0.16197975253093364
frozenset({'1', 'male'})
support:0.12260967379077616
frozenset({'2 PClass', 'male'})
support:0.12148481439820022
frozenset({'S Port', '3 PClass'})
support:0.39707536557930256
```

```
frozenset({'3 PClass', 'male'})
support:0.39032620922384703
frozenset(('1 PClass', '0'))
support:0.10911136107986502
frozenset({'1', 'S Port'})
support:0.2440944881889764
frozenset(('1 PClass', '0'))
support:0.4184476940382452
frozenset(('1 PClass', 'male'))
support:0.4184476940382452
frozenset(('1', 'C Port'))
support:0.1046119235095613
frozenset(('male', '0'))
support:0.5263441957255343
frozenset(('1', '3 PClass'))
support:0.31385826771653545
frozenset(('1', '1 PClass', 'female'))
support:0.108011248593925759
frozenset(('2 PClass', 'male', '3 PClass'))
support:0.2980877390326209
frozenset(('2 PClass', 'male', '0'))
support:0.10936220472440945
frozenset(('S Port', '2 PClass', 'male'))
support:0.10911136107986502
frozenset(('1', 'S Port', 'female'))
support:0.4094488188976378
frozenset(('S Port', '3 PClass', '0'))
support:0.3217097862767154
frozenset(('S PClass', 'male', '0'))
support:0.3317097862767154
frozenset(('S PClass', 'male', '0'))
support:0.3317097862767154
frozenset(('0', 'S POrt', 'male', '0'))
support:0.3374578177727784
frozenset(('0', 'S POrt', 'male', '3 PClass'))
support:0.25984251968503935
```

我们设置的最小支持度为 0.1,以最后一个四项集为例,可以看出,在 S 港口登船坐三等舱的男性很大概率没能从灾难中存活下来。

3. 利用 Lift 指标评价关联规则,并计算置信度

由于置信度的缺陷在于该度量忽略了规则后续中项集的支持度, 高置信度的规则有时可能出现误导。为解决这个问题的一种办法是使 用称作提升度的 Lift 度量来评价关联规则。

```
**************输出关联规则及其置信度***********
************用Lift指标对规则进行评价**********
[frozenset({'male'})]--->('S Port',)
confidence: 0.7642980935875217
lift: 1.055063672669731
[frozenset({'2 PClass'})]---->('S Port',)
confidence: 0.8913043478260869
lift: 1.2303875236294894
[frozenset({'0'})]---->('S Port',)
confidence: 0.777777777777777
lift: 1.073671497584541
[frozenset({'3 PClass'})]---->('0',)
confidence: 0.7576374745417516
lift: 1.2268482966623262
[frozenset({'0'})]---->('male',)
confidence: 0.8524590163934426
lift: 1.313407392675512
[frozenset({'male'})]---->('0',)
confidence: 0.8110918544194108
lift: 1.313407392675512
[frozenset({'1 PClass', 'female'})]--->('1',)
confidence: 0.9673913043478259
lift: 2.5294437340153446
[frozenset({'3 PClass', 'male'})]---->('S Port',)
confidence: 0.7636887608069164
lift: 1.0542225285051998
[frozenset({'S Port', '3 PClass'})]--->('male',)
confidence: 0.7507082152974505
lift: 1.1566370942797808
[frozenset({'2 PClass', '0'})]--->('male',)
confidence: 0.9381443298969072
lift: 1.4454251460629992
[frozenset({'2 PClass', 'male'})]--->('0',)
confidence: 0.8425925925925927
lift: 1.3644167847264388
[frozenset({'2 PClass', 'male'})]--->('S Port',)
confidence: 0.8981481481481483
lift: 1.2398349436392915
```

可以得到各关联规则的置信度以及用Lift指标评价的结果。

4. 使用可视化技术规则进行展示

散点图展示:

横坐标为船舱等级,纵坐标为是否存活。从中可以看出,男性(或女性)在S港口(或C,Q港口)登船坐一等(或二,三等)舱的存活(或死亡)人数。

气泡图展示:

如图,气泡越大,则乘坐该等级船舱(Pclass)的人数越多,颜色越深,则存活人数(survived)越多。

平行坐标展示:

从图中可以清晰地看出,分别依照每个属性的值进行展示的平行 坐标图。首先,按着性别分类展示,再按船舱等级细分,接下来按着 乘船港口分类展示。

5. 总结

通过完成数据关联规则分析的作业,我学习了 python 的使用,对于数据分析有了进一步的了解,掌握了频繁项集,支持度,置信度等概念,熟知了 Lift 评价指标,学习了散点图,平行坐标,气泡图等可视化技术,为今后进行更深层的数据挖掘工作做了准备。

附:实验结果保存在"挖掘结果及评价.txt"中,数据分析程序为data_mining.py,可视化结果图保存在文件夹"可视化关联规则结果"中。