PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 10/4/2015 (Tempo a disposizione: 3 ore)

ESERCIZIO 1 (Tutti):

Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riceve in cinque istanti di tempo consecutivi due numeri a quattro bit $\alpha = \alpha_0 \alpha_1 \alpha_2 \alpha_3$ e $\beta = \beta_0 \beta_1 \beta_2 \beta_3$ sovrapposti di tre bit, quindi $\alpha_1 = \beta_0$, $\alpha_2 = \beta_1$ e $\alpha_3 = \beta_2$.

La rete restituisce in corrispondenza dell'ultimo bit di β il risultato dell'operazione: $\alpha_0 \cdot \beta_0 + \alpha_1 \cdot \beta_1 + \alpha_2 \cdot \beta_2 + \alpha_3 \cdot \beta_3$ (dove l'operatore "+" indica l'operazione logica AND) per poi riprendere il suo funzionamento da principio. Segue un esempio di possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
X:	0	1	0	1	1	0	0	0	1	0	0	0	1	0	1	1	1	0	0	0	
Z:	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	

La rete riceve a partire dall'istante t=0 i numeri α =0101 e β =1011. L'esito dell'operazione è quindi: $0\cdot1+1\cdot0+0\cdot1+1\cdot1=1$ e viene restituito all'istante t=4. A partire dall'istante t=5, riceve i numeri α =0001 e β =0010. L'esito dell'operazione è quindi: $0\cdot0+0\cdot0+0\cdot0+0\cdot1+1\cdot0=0$ e viene restituito all'istante t=9.

ESERCIZIO 2 (DM270 - dall'A. A. 2012/13):

Estendere il set di istruzioni della macchina a stack con l'operazione **CountPos**, definita come segue. Data una lista chiusa il cui puntatore di testa è memorizzato in cima allo stack, l'istruzione calcola il numero di elementi positivi o nulli contenuti nella lista ed aggiunge in fondo alla lista un nuovo elemento contenente tale conteggio. La figura sulla sinistra mostra lo stato della memoria prima (a sinistra) e dopo (a desta) l'esecuzione dell'istruzione. In particolare, il nuovo elemento è memorizzato nelle posizioni di heap 3401 e 3400.

_SP_1052	8231	SP 1052	8231
1053 :	:	1053 :	:
:	:	:	:
:	:	:	:
:	:	3400	-1
HP :	:	HP 3401	2
3401 :	:	3399 :	:
4056	-1	4056	3401
4057	4	4057	4
:	:	:	:
7500	7503	7500	7503
7501	-7	7501	-7
7502	4057	7502	4057
7503	-2	7503	-2
:	:	:	:
:	:	:	:
:	:	:	:
8230	7501	8230	7501
8231	13	8231	13

ESERCIZIO 2 (DM270 - A. A. precedenti):

Estendere il set di istruzioni della macchina a registri con l'operazione CountOpp Ri, Rj, Rk, definita come segue.

A partire dalle locazioni i cui indirizzi sono memorizzati in R_i ed R_j , sono memorizzati due array, V_i e V_j , di 32 elementi. Per ogni posizione p relativa ad array di questo tipo (p compreso tra 1 e 32), si definisce la posizione complementare p' pari (32-p+1). L'istruzione memorizza nel registro Rk il numero di posizioni p tali che l'elemento in posizione p di V_i ha segno opposto rispetto all'elemento in posizione complementare p' di V_i .

Si consideri il seguente esempio in cui Ri=947, Rj=1234 ed i vettori sono, per semplicità, di dimensione 4 anziché 32.

	947	948	949	950	 1234	1235	1236	1237	
	1	-7	-5	9	 2	7	-1	-4	

Al termine dell'esecuzione dell'istruzione, il registro Rk conterrà il valore 2 (determinato dalle posizioni p pari a 1 e 3.

ESERCIZIO 3 (DM 270 - 9CFU/6CFU):

Scrivere una procedura assembly che riceve un vettore di double word V e un vettore di word W, entrambi della stessa lunghezza n. Per ogni posizione p relativa ad array di questo tipo (p compreso tra 0 e n-1), si definisce la posizione complementare p' pari (n-p-1). La procedura restituisce il numero di posizioni p tali che l'elemento in posizione p di V ha segno opposto rispetto all'elemento in posizione complementare p' di W.

Scrivere inoltre il programma principale che invochi opportunamente la procedura descritta.