

### Objectives

After completing this module, you will be able to:

- > Define the difference between data and information
- > Describe what a database is, the various types of databases, and why they are valuable assets for decision making
- > Explain the importance of database design
- > Outline the main components of the database system
- > Describe the main functions of a database management system (DBMS)



| iale of two Systems |
|---------------------|
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |
|                     |





































- > Symbols (e.g. 0,1,...,9,A,B,...,Z,!,+,-,...)
- > Data are facts, numbers, or individual entities without context or purpose.
- > 000101020305080D1522375990
  Credit Card Number? Insurance Number? Lottery?

#### What are these symbols?

> F3F4FFFFFFFFFFFFFFFFFFFFFFFFFFFF5212FFF25425324924122921 2192180156158162168176238229201191178169165163162 1621871871841781691651561551561651741811811791 40143143140135...

### Data → Information → Knowledge

- > Information is data organized into a meaningful context to aid decision-making.
- > F3F4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5212FFF254253249241229212192180156158 162168176238229201191178169165163162162187187187184178169165156 155156165174181181179140143143140135
  - **F3** Hexadecimal number (base:16)
  - **243** Decimal number (base:10)





# **Another Example**

- > 000101020305080D1522375990 (Data)
- > 0 1 1 2 3 5 8 13 21 34 55 89 144 (Information)

## **Another Example**

- > 000101020305080D1522375990 (Data)
- > 0 1 1 2 3 5 8 13 21 34 55 89 144 (Information)

$$a_n = a_{n-1} + a_{n-2}$$

$$a_0 = 0$$

$$a_1 = 1$$

### Data – Information – Knowledge

> Knowledge is clear perception/understanding of truth,

$$a_n = a_{n-1} + a_{n-2}$$
$$a_0 = 0$$
$$a_1 = 1$$

$$a_n = \frac{2}{\sqrt{5}} \left( \frac{1 + \sqrt{5}}{2} \right)^n - \frac{2}{\sqrt{5}} \left( \frac{1 - \sqrt{5}}{2} \right)^n$$

Knowledge

#### What is the difference between them?

- > At the root of information is, "to inform."
- > Data don't become information until we have successfully linked meaning to them.
- > If we fail to build common meaning and understanding, data remain just a bunch of unconnected events.



### **Information and Entropy**

- > How much information does data contain?
- > Can we measure it?
- > Fortunately, yes:

$$E = -\sum_{\text{each event}} p_i \log(p_i)$$

- > Example: Tossing a coin
  - $-P_{H}=P_{T}=0.5$
  - E=log2



# **Information and Entropy**

- > Toss a coin three times
  - -HHH

1

Probability of three successive H

 $\frac{3}{8}\log 2$ 

Less probable events contain more information

### Uncertainty

> 4 Boxes, 1 Ball



- > You ask yes/no questions to decide on in which box the ball is
- > Initially you have no idea, hence the uncertainty is maximum
- > As you ask, you get more information, hence the uncertainty decreases
- > Finally, you learn the answer in which case the uncertainty is 0
- > Information is always a measure of the decrease in uncertainty

## Uncertainty

> 4 Boxes, 1 Ball



- > How many questions are enough to learn the box that the ball is in?
  - -4?
  - -3?
  - **-2**?
  - -1!?





| Why Databases?                                                     |
|--------------------------------------------------------------------|
| > Why do we need databases?                                        |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
| Why Databases?                                                     |
| > Why do we need databases?                                        |
| <ul> <li>Applications need to store/persist their state</li> </ul> |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |

















































# Data Service

| НТТР     | SQL    |
|----------|--------|
| GET      | SELECT |
| POST/PUT | INSERT |
| PUT/POST | UPDATE |
| DELETE   | DELETE |















| NoSQL Databases |              |                  |  |
|-----------------|--------------|------------------|--|
|                 |              |                  |  |
|                 |              |                  |  |
|                 | Data Model   | Query API        |  |
| Cassandra       | Columnfamily | Thrift           |  |
| CouchDB         | Document     | map/reduce views |  |
| HBase           | Columnfamily | Thrift, REST     |  |
| MongoDB         | Document     | Cursor           |  |
| Neo4J           | Graph        | Graph            |  |
| Redis           | Collection   | Collection       |  |
| Riak            | Key/value    | REST             |  |
| Scalaris        | Key/value    | get/put          |  |
| Tokyo Cabinet   | Key/value    | get/put          |  |
| Voldemort       | Key/value    | get/put          |  |















#### Introducing the Database

- > Data management
  - A process that focuses on data collection, storage, and retrieval.
  - Common data management functions include addition, deletion, modification, and listing.

## Introducing the Database

- > Database
  - A shared, integrated computer structure that houses a collection of related data.
  - A database contains two types of data:
    - end-user data (Raw facts)
    - Metadata (Data about data)

# Introducing the Database

- > A database management system (DBMS) is a collection of programs that manages the database structure and controls access to the data stored in the database.
- > In a sense, a database resembles a well-organized electronic filing cabinet in which powerful software (the DBMS) helps manage the cabinet's contents.



## Role and Advantages of the DBMS

- > The DBMS serves as the intermediary between the user and the database.
- > The database structure itself is stored as a collection of files, and the only way to access the data in those files is through the DBMS
- > The DBMS presents the end user (or application program) with a single, integrated view of the data in the database.
- > The DBMS receives all application requests and translates them into the complex operations required to fulfill those requests.
- > The DBMS hides much of the database's internal complexity from the application programs and users.

## Role and Advantages of the DBMS

- > A DBMS provides the following advantages:
  - Improved data sharing
  - Improved data security
  - Better data integration
  - Minimized data inconsistency
  - Improved data access
  - Improved decision making
  - Increased end-user productivity

#### Types of Databases

- > single-user database
  - A database that supports only one user at a time
- > desktop database
  - A single-user database that runs on a personal computer
- > multiuser database
  - A database that supports multiple concurrent users.
- > workgroup database
  - A multiuser database usually supports fewer than 50 users or is used for a specific department in an organization.

## Types of Databases

- > enterprise database
  - The overall company data representation, which provides support for present and expected future needs.
- > centralized database
  - A database located at a single site.
- > distributed database
  - A logically related database that is stored in two or more physically independent sites.
- > cloud database
  - A database that is created and maintained using cloud services, such as Microsoft Azure or Amazon AWS.

#### Types of Databases

- > General-purpose database
  - A database that contains a wide variety of data used in multiple disciplines.
- > Discipline-specific database
  - A database that contains data focused on specific subject areas.
- > Operational/Production/OLTP database
  - A database designed primarily to support a company's day-to-day operations. Also known as a transactional database,
- > Analytical database
  - A database focused primarily on storing historical data and business metrics used for tactical or strategic decision-making.

## Types of Databases

- > data warehouse
  - A specialized database that stores historical and aggregated data in a format optimized for decision support.
- > online analytical processing (OLAP)
  - A set of tools that provide advanced data analysis for retrieving, processing, and modeling data from the data warehouse.
- > business intelligence
  - A set of tools and processes used to capture, collect, integrate, store, and analyze data to support business decision-making.



#### Data mart and Data warehouse

- > A data mart is a subset of a data warehouse oriented to a specific business line.
  - Data marts contain repositories of summarized data collected for analysis on a specific section or unit within an organization, for example, the sales department.
- > A data warehouse is a large centralized repository of data that contains information from many sources within an organization.
  - The collated data guides business decisions through analysis, reporting, and data mining tools.



|                            | Data warehouses                                                                          | Data lakes                                                                           | Data marts                                                                |
|----------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| al.                        |                                                                                          |                                                                                      | 2000 000 000 000                                                          |
| Usage                      | The data analysis and reporting needs of an entire organization                          | The reporting needs of<br>different kinds and<br>difficulty, predictive<br>analytics | The reporting needs of a<br>specific operational<br>department or subject |
| Data stored<br>(typically) | Larger volumes of<br>structured data;<br>processed                                       | Huge volumes of<br>structured and<br>unstructured data; raw                          | A limited amount of<br>structured data;<br>processed                      |
| Data<br>sources            | An array of external and<br>internal sources, covering<br>different areas of<br>business | Any external or internal sources                                                     | Few sources linked to one business area                                   |
| Size                       | Larger than 100 GB                                                                       | Larger than 100 GB                                                                   | Smaller than 100 GB                                                       |
| Ease of creation           | Difficult to set up                                                                      | Difficult to set up                                                                  | Easy to set up                                                            |



| TYPES OF DATABASES |                 |                    |             |               |             |             |            |     |  |  |  |
|--------------------|-----------------|--------------------|-------------|---------------|-------------|-------------|------------|-----|--|--|--|
| PRODUCT            | NUMBER OF USERS |                    |             | DATA LOCATION |             | DATA USAGE  |            | XML |  |  |  |
|                    | SINGLE<br>USER  | MULTI<br>WORKGROUP |             | CENTRALIZED   | DISTRIBUTED | OPERATIONAL | ANALYTICAL |     |  |  |  |
| MS Access          | X               | X                  | EITTER RISE | X             | DISTRIBUTED | X           | ANALITICAL |     |  |  |  |
| MS SQL Server      | X*              | Х                  | Χ           | Х             | Х           | X           | X          | Х   |  |  |  |
| IBM DB2            | X*              | Х                  | Χ           | Х             | Х           | Х           | Х          | Х   |  |  |  |
| MySQL              | Х               | X                  | Х           | Х             | Х           | X           | Х          | Х   |  |  |  |
| Oracle RDBMS       | X*              | Х                  | X           | Х             | Х           | X           | X          | Χ   |  |  |  |

#### Data Types

- > unstructured data
  - Data exists in its original, raw state; that is, in the format in which it was collected.
- > structured data
  - Data formatted to facilitate storage, use, and information generation.
- > semi structured data
  - Data that has already been processed to some extent.

