Spatio-temporal analysis of night light data

Spatio-temporal analysis of Urban sprawl of North East India using DMSP-OLS and VIIRS-DNB night-light data from 1992 to 2017

BY-PRANJAL DAVE RACHIT AGRAWAL KUMAR ANANT RAJ

- Night-time lights are a good indicator of various socio-economic studies e.g.; Urban expansion, GDP estimation and so on.
- Sources are the images taken by the VIIRS and DMSP satellites.
- Data from these images are needed to be calibrated and scaled to study electrification dynamics of surface through time..

OBJECTIVES

- Generation of yearly composite VIIRS image.
- Extraction of Pseudo Invariant Features (PIFs) from DMSP and VIIRS data.
- Calibration between PIF(s) of VIIRS and DMSP/OLS images.
- Spatio-temporal quantification of electrification of North East India.

RELEVANCE

 Generated simulated DMSP image can be used with real DMSP images for time series analysis/change detection.

 Night-time images are used to find the degree of electrification over last 25 years in North East India.

CHALLENGES

- The acquisition period of DMSP-OLS and VIIRS-DNB are non-identical.
- VIIRS-DNB data are provided in radiance values whereas DMSP-OLS data are provided in DNs.
- Spatial, Temporal and Radiometric resolution of DMSP-OLS and VIIRS-DNB are completely different from each other.
- Ground coverage of OLS sensors are provided with varying DMSP satellites(F10, F11, F12, F13, F14, F15,F16, F17, F18)through time;thus, Relative Radiometric Normalization is required.

STUDY AREA

DATASETS USED

Specification	DMSP-OLS	VIIRS-DNB
Spectral Band	0.5-0.9 μm	0.5-0.9 μm
Number of bits	6 bits	14 bits
Saturation	Urban areas	No saturation problem
Dynamic range(DN)	0 to 63	0 to 16384
Additional spectral bands	Thermal infrared	21 bands spanning 0.4 to 12 um
Calibration	No on-board calibration	Solar Diffuser
Spatial Resolution	1 km	500 m
Swath	3000 km	3040 km
Local night-time overpass	~19:30	~01:30

DN distribution of DMSP image of India, 2013

DATA	MIN.	MEDIAN	MEAN	MAX
DMSP 2013	0	0	5.097	63
VIIRS Jan 2013	-0.58	0.2167	0.4106	2736

Dissimilarities of VIIRS-DNB & DMSP-OLS

Type of resolution	VIIRS-DNB	DMSP-OLS	Normalization method
Spatial	500 m	1 km	Spatial-smoothing
Temporal	Available on monthly basis	Available on yearly basis	Annual composite for VIIRS data by averaging
Radiometric	14bit	6 bit	Regression

PRE-PROCESSING OF DATA

FOR DMSP-OLS

- All pixels with Digital Number(DN) value 63 were removed because of oversaturation of DMSP data for DN values greater than 63.
- All pixels with DN value < 5 were removed to remove overflow around city region.

FOR VIIRS

- Outliers were removed by using median absolute deviation(MAD)
- Faint and vague light features (including pixels of negative radiance values) were removed by using a process of local averaging.
- The data was also brought to the same spatial resolution(spatial smoothing to the resolution of DMSP-OLS data)
- Annual composites are generated as the average of monthly data.

Data	Mean	Standard Deviation
Before MAD and GFR	0.524	3.597
After MAD and GFR	0.529	2.266

Relationship between 2013 and 2015 composite VIIRS Image of India

RESULT

GENERATING PIFS

- PIFs are identified as regions with low local spatial variability (CV) and spatial homogeneity (Gi*).
- Common Pixel with low CV (<15%) and high GI*(>1.645) are identified as the PIFs.

DMSP PIFs = Gi* AND CV

VIIRS PIFs = Gi* AND CV

Total PIFs = DMSP PIFs AND VIIRS PIFs

REGRESSION

COEFFICIENTS OF LOGARITHMIC MODEL					
Year	2013	2014	2015	2016	2017
а	11.0556	11.4623	12.2764	11.9637	12.7412
b	30.6120	27.8722	23.7286	25.8012	23.4470
RMSE	9.86	9.913	9.787	9.832	9.991
R ²	0.81	0.69	0.72	0.73	0.62

Equation is:

$$y(DMSP) = a*log(x(VIIRS)) + b$$

 $y(DMSP_i) = a*log(x(VIIRS)) + b -(Residual of mean of mode_i)$

Relationship between actual and predicted DMSP-2013 Image of India

$$R^2 = 0.86$$

INTERCALIBRATION OF DMSP-OLS DATA

Satellite	Year	C _o	C ₁	C ₂	R ²
F10	1992	-2.0570	1.5903	-0.0090	0.9075
F12	1996	-0.0959	1.2727	-0.0040	0.9319
F12	1999(Ref.)	0.0000	1.0000	0.0000	1.0000
F14	2003	0.7390	1.2416	-0.0040	0.9432
F16	2007	0.6394	0.9114	0.0014	0.9511
F18	2011	1.8956	0.7345	0.0030	0.9095

Equation of intercalibration is:

$$Y = C_0 + C_1 X + C_2 X^2$$

THANK YOU

MEDIAN ABSOLUTE DEVIATION (MAD)

It involves finding median of the absolute deviation around the median of the data

$$MAD = b*M_i (|x_i - M_j(x_j)|)$$

where M_i denotes median of x_i

- The multiplication by b is crucial, as otherwise the formula for the MAD would only estimate the scale up to a multiplicative constant. The b = 1.4826 assuming normality of data.
- This method is used because it is not affected by presence of outliers in data. It
 has a breakdown point of 0.5 whereas the breakdown point of the classical
 interquartile range is 0.25
- Data points outside the range of (M 2.5* MAD, M + 2.5*MAD) were removed as outliers.

- Gas flaring is widely used to dispose of dissolved natural gas present in petroleum in production and processing facilities where there is no infrastructure to make use of the gas
- Most gas flaring occurs at remote petroleum production or processing facilities, many of which are offshore
- Flaring sites are indicated for grid cells with average temperature exceeding
 1200 K and per cent detection frequencies of 1% or more.
- Currently no precise algorithm is there. A gas flaring vector set is available, with more than 12,000 flaring sites identified in 2015
- The site present in India were identified and were successfully removed from the yearly composites.

SPATIAL SMOOTHING OF VIIRS DATA

 The spatial resolution of VIIRS composites is 0.004167°, while that of the DMSP/OLS is 0.008333°. Therefore, the VIIRS composites were aggregated to a spatial resolution of 0.008333°.

 This was done using the concept of local averaging where a 2X2 sub-matrix of VIIRS data was aggregated and the result was put into a single pixel of matrix of dimension equal to that of DMSP/OLS.

 This process was necessary to bring the area corresponding to same geographical location to the same indexed pixel in both DMSP/OLS and VIIRS data.

Getis-ord GI* statistic

$$G_i^*(d) = \frac{\sum w_{ij}(d)x_j - W_i^* \overline{x}}{s[W_i^*(n - W_i^*)/(n - 1)]^{1/2}}$$

Where,

$$W_i^* = \sum_{j} w_{ij}(d)$$

$$\overline{x} = \frac{\sum_{j} x_{j}}{n}$$

- The getis statistic gives a measure of clustering and it is used to identify clusters of comparatively higher values (GI*>0; hotspot) and cluster of comparatively lower values (GI*<0; cold spot) than the global mean of the image attribute.
- We applied GI* statistics to each annual composite and then thresholded them to values greater than 1.645.
- It does ensure the maximum probability of random cluster formation is limited by only 10% of all the clusters have formed and a 90% probability of the formed cluster to have high spatial autocorrelation.

Coefficient of Variability(CV)

$$CV = \frac{S}{\overline{x}}$$

Where, S is the measure of standard deviation of luminosity measurements, is the mean of luminosity measurements in a pre-defined window.

- Coefficient of variability(CV) is used to select local spatially stable regions in the study area. The areas with a low CV over different years are considered as regions with stable and low spatial variability.
- We did CV analysis on all the annual composites and thresholded them for values less than 5%, 10% and 15%.
- Due to less no. of points available after thresholding for 5% and 10%, we pushed the percentage to 15 for better regression.

COMPOSITE GENERATION

- The VIIRS data are available for each month.
- The pre -processing steps are applied to each months' data.
- Then the average of the monthly composites is taken to find the VIIRS data for the whole year.
- The averaging process takes care of the 'No data' values to ensure they don't interfere in the process of finding the composite.