Contrôle dynamique stochastique : une approche à base de modèles semi-Markov

Application à l'optimisation d'un traitement médical

Orlane Rossini ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹ et Régis Sabbadín ³ •

¹IMAG, Univ Montpellier, CNRS, Montpellier, France

²John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia

³Univ Toulouse, INRAE-MIAT, Toulouse, France

13 Mars 2024

Le contexte médical

Figure: Exemple de données d'un patient^a

- Des patients ayant eu un cancer bénéficient d'un suivi régulier;
- La concentration d'immunoglobuline clonale est mesurée dans le temps;
- Le médecin doit prendre de nouvelles décisions à chaque visite.

^aIUCT Oncopole et CRCT. Toulouse. France

Le contexte médical

Figure: Exemple de données d'un patient^a

- Des patients ayant eu un cancer bénéficient d'un suivi régulier;
- La concentration d'immunoglobuline clonale est mesurée dans le temps;
- Le médecin doit prendre de nouvelles décisions à chaque visite.

 \implies Contrôle dynamique stochastique

^aIUCT Oncopole et CRCT. Toulouse. France

Sommaire

- ► Modélisation de la Trajectoire d'un Patient
- ▶ Problème Partiellement Observé et Modèle Inconnu
- ► Apprentissage par Renforcement
 - Conclusion et Perspectives

Le modèle PDMP¹ contrôlé

On passe aléatoirement d'un régime déterministe à un autre.

¹Processus Markovien Déterministe par Morceaux

Le modèle PDMP1 contrôlé

On passe aléatoirement d'un régime déterministe à un autre.

Soit l'état du patient $x = (m, k, \zeta, u)$:

- m le régime;
- k le nombre de rechute;
- ζ le biomarqueur;
- ullet u le temps depuis le dernier saut.

¹Processus Markovien Déterministe par Morceaux

Le modèle PDMP1 contrôlé

On passe aléatoirement d'un régime déterministe à un autre.

Soit l'état du patient $x = (m, k, \zeta, u)$:

- m le régime;
- k le nombre de rechute;
- ζ le biomarqueur;
- ullet u le temps depuis le dernier saut.

Soit d la décision telle que: $d = (\ell, r)$:

- ℓ le traitement;
- $\, \cdot \, r$ le temps avant la prochaine visite.

¹Processus Markovien Déterministe par Morceaux

Un PDMP se définit par trois caractéristiques locales.

Un PDMP se définit par trois caractéristiques locales.

Le flot

Description de la partie déterministe du processus.

$$\Phi^{\ell}(x,t) = (m,k,\phi^{\ell}_{m,k}(\zeta,t),u+t)$$

Un PDMP se définit par trois caractéristiques locales.

L'intensité de saut

Description des mécanismes de saut du processus.

Saut à la frontière (déterministe)

$$t^{\star}(x) = t_m^{\ell \star}(\zeta) = \inf\{t > 0 : \phi_{m,k}^{\ell}(\zeta, t) \in \{\zeta_0, D\}\}$$

Saut aléatoire

$$\mathbb{P}(T > t) = e^{-\int_0^t \lambda_m^{\ell}(\Phi^{\ell}(x,s)) \, \mathrm{d}s}$$

Un PDMP se définit par trois caractéristiques locales.

Sommaire

- ▶ Modélisation de la Trajectoire d'un Patient
- ▶ Problème Partiellement Observé et Modèle Inconnu
- ► Apprentissage par Renforcement
 - Conclusion et Perspectives

L'état de santé du patient n'est pas observé et les mesures sont bruitées. De plus, les données sont obtenues en temps discret. De plus, les données sont obtenues en temps discret.

L'état de santé du patient n'est pas observé et les mesures sont bruitées.

De plus, les données sont obtenues en temps discret.

De plus, les données sont obtenues en temps discret.

L'état de santé du patient n'est pas observé et les mesures sont bruitées. De plus, les données sont obtenues en temps discret. De plus, les données sont obtenues en temps discret.

Il y a des contraintes dans les décisions:

- Une chimiothérapie dure 45 jours au minimum;
- La date du prochain rendez-vous ne peut dépasser la date de suivi;
- · Un mort ne reçoit pas de traitement.

Un modèle partiellement connu

On ne connaît pas le paramètre de pente v_1 de la maladie.

Hypothèse: $v_1 \sim \log - \text{normale } (\mu, \sigma^{-2}).$

Un modèle partiellement connu

On ne connaît pas le paramètre de pente v_1 de la maladie.

 $\begin{array}{c} & \text{Hypoth\`ese:}\\ v_1 \sim \text{log-normale}\; (\mu,\sigma^{-2}).\\ & \text{Inf\'erence bay\'esienne:}\\ (\mu,\sigma^{-2}) \sim \text{gamma-log-normale}(\alpha,\beta,\kappa,\nu). \end{array}$

Un modèle partiellement connu

On ne connaît pas le paramètre de pente v_1 de la maladie.

 $\begin{array}{c} \frac{\text{Hypoth\`ese:}}{v_1 \sim \text{log-normale}} (\mu, \sigma^{-2}). \\ \text{Inf\'erence bay\'esienne:} \\ (\mu, \sigma^{-2}) \sim \text{gamma-log-normale}(\alpha, \beta, \kappa, \nu). \end{array}$

Mise à jour des hyperparamètres

•
$$\alpha_{n+1} = \frac{\beta_n \alpha_n + \log(\hat{v_1})}{\beta_n + 1}$$

• $\beta_{n+1} = \beta_n + 1$

•
$$\beta_{n+1} = \beta_n + 1$$

• $\kappa_{n+1} = \kappa_n + \frac{1}{2}$

•
$$\nu_{n+1} = \nu_n + \frac{\beta_n (\log(\hat{v_1} - \alpha_n)^2)}{2(\beta_n + 1)}$$

Agent

Environnement

BAMDP PO

Un BAMDP-PO se définit par un tuple $(S^+, \mathcal{D}, \mathcal{K}, \mathcal{P}^+, \Omega^+, \mathcal{Z}^+, C)$.

- L'hyper-état du patient $s^+ = (m, k, \zeta, u, \tau, t, \alpha, \beta, \kappa, \nu);$
- · Les décisions restent inchangées;
- * $\mathcal{K}(\omega) \subseteq D$ l'espace des décisions admissibles selon l'observation ω ;
- La probabilité de transition $\mathcal{P}(s^+,d)(s')$;
- Les observations $\omega^+ = (z, F(\zeta), \tau, t, \tilde{\alpha}, \tilde{\beta}, \tilde{\kappa}, \tilde{\nu});$
- La fonction d'observations $\mathcal{Z}(s^+)(\omega^+)$;
- La fonction de coût $C: \mathcal{D} \times \mathcal{S} \rightarrow \mathbb{R}$.

²Processus de décision Markovien Baves adaptatif

BAMDP PO

Un BAMDP-PO se définit par un tuple $(\mathcal{S}^+, \mathcal{D}, \mathcal{K}, \mathcal{P}^+, \Omega^+, \mathcal{Z}^+, C)$.

- L'hyper-état du patient $s^+ = (m,k,\zeta,u,\tau,t,\alpha,\beta,\kappa,\nu)$;
- · Les décisions restent inchangées;
- * $\mathcal{K}(\omega) \subseteq D$ l'espace des décisions admissibles selon l'observation ω ;
- La probabilité de transition $\mathcal{P}(s^+,d)(s')$;
- Les observations $\omega^+=(z,F(\zeta), au,t, ilde{lpha}, ilde{eta}, ilde{\kappa}, ilde{
 u})$;
- La fonction d'observations $\mathcal{Z}(s^+)(\omega^+)$;
- La fonction de coût $C: \mathcal{D} \times \mathcal{S} \to \mathbb{R}$.

La fonction d'observation est:

$$Z(s_n) = \omega_n = (\mathbb{1}_{m=3}, F(\zeta), \tau, t),$$

avec $F(\zeta) = \zeta e^{\epsilon}$ et où $\epsilon \sim \mathcal{N}(0,1)$.

10èmes Rencontre des Jeunes Statisticien.ne.s

²Processus de décision Markovien Bayes adaptatif

BAMDP PO

Un BAMDP-PO se définit par un tuple $(S^+, \mathcal{D}, \mathcal{K}, \mathcal{P}^+, \Omega^+, \mathcal{Z}^+, C)$.

- L'hyper-état du patient $s^+ = (m, k, \zeta, u, \tau, t, \alpha, \beta, \kappa, \nu)$;
- · Les décisions restent inchangées;
- * $\mathcal{K}(\omega) \subseteq D$ l'espace des décisions admissibles selon l'observation ω ;
- La probabilité de transition $\mathcal{P}(s^+,d)(s')$;
- Les observations $\omega^+ = (z, F(\zeta), \tau, t, \tilde{\alpha}, \tilde{\beta}, \tilde{\kappa}, \tilde{\nu});$
- La fonction d'observations $\mathcal{Z}(s^+)(\omega^+)$;
- La fonction de coût $C: \mathcal{D} \times \mathcal{S} \rightarrow \mathbb{R}$.

²Processus de décision Markovien Baves adaptatif

BAMDP PO

Un BAMDP-PO se définit par un tuple $(\mathcal{S}^+, \mathcal{D}, \mathcal{K}, \mathcal{P}^+, \Omega^+, \mathcal{Z}^+, C)$.

- * L'hyper-état du patient $s^+ = (m,k,\zeta,u,\tau,t,\alpha,\beta,\kappa,\nu);$
- · Les décisions restent inchangées;
- * $\mathcal{K}(\omega) \subseteq D$ l'espace des décisions admissibles selon l'observation ω ;
- La probabilité de transition $\mathcal{P}(s^+,d)(s')$;
- Les observations $\omega^+ = (z, F(\zeta), \tau, t, \tilde{\alpha}, \tilde{\beta}, \tilde{\kappa}, \tilde{\nu})$;
- La fonction d'observations $\mathcal{Z}(s^+)(\omega^+)$;
- La fonction de coût $C:\mathcal{D}\times\mathcal{S}\to\mathbb{R}$.

$$c(s_n) = r \times \frac{1}{2} |\zeta_{n+r} - \zeta_0| (+...)$$

Sommaire

- ▶ Modélisation de la Trajectoire d'un Patient
- ▶ Problème Partiellement Observé et Modèle Inconnu
- ► Apprentissage par Renforcement
 - Conclusion et Perspectives

Objectif:

Identifier une politique $\pi:S\to A$ qui minimise les coûts le long d'une trajectoire

Objectif:

Identifier une politique $\pi: S \to A$ qui minimise les coûts le long d'une trajectoire

Critère d'optimisation

$$V(\pi, s) = \mathbb{E}_{s}^{\pi} \left[\sum_{n=0}^{N-1} c(S_{n}, d_{n}, S_{n+1}) \right]$$

Objectif:

Identifier une politique $\pi: S \to A$ qui minimise les coûts le long d'une trajectoire

Critère d'optimisation

$$V(\pi, s) = \mathbb{E}_{s}^{\pi} \left[\sum_{n=0}^{N-1} c(S_{n}, d_{n}, S_{n+1}) \right]$$

Le problème d'optimisation

Soit π^* la politique optimale tel que : $V^*(s) = \min_{\pi \in \Pi} V(\pi, s)$

L'objectif est d'apprendre les actions à mener en fonction des expériences passées et des coûts perçus.

L'objectif est d'apprendre les actions à mener en fonction des expériences passées et des coûts perçus.

L'objectif est d'apprendre les actions à mener en fonction des expériences passées et des coûts perçus.

L'objectif est d'apprendre les actions à mener en fonction des expériences passées et des coûts percus.

Pour un MDP partiellement observé

Le problème d'optimisation

Soit
$$h_t = (\omega_0, d_0, \omega_1, d_1, \cdots, \omega_t)$$
 l'historique des observations passées: $V^{\star}(h_t) = \min_{\pi \in \Pi} V(\pi, h_t)$

Problème : on a besoin de beaucoup d'intéractions avec l'environnement

Idée : à partir du modèle on simule un environnement pour interagir avec lui.

Une suggestion de résolution

Une suggestion de résolution

Une suggestion de résolution

Sommaire

- ▶ Modélisation de la Trajectoire d'un Patient
- ▶ Problème Partiellement Observé et Modèle Inconnu
- ► Apprentissage par Renforcement
- ► Conclusion et Perspectives

Merci pour votre attention!

16 / 16