IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE PCT NATIONAL STAGE APPLICATION OF

Art Unit: 1611

Atadja, Peter Wisdom et al.

Examiner: Rae, Charlesworth E

INTERNATIONAL APPLICATION NO: PCT/EP2004/008848

FILED: August 06, 2004

U.S. APPLICATION NO: 10/567897

35 USC §371 DATE: September 22, 2006

FOR: Combinations Comprising Staurosporines

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

NOTICE OF APPEAL

Sir:

Applicants hereby appeal to the Board of Patent Appeals and Interferences from the Office Action dated January 5, 2009 finally rejecting claims 1-14.

- Please charge Deposit Account No. 19-0134 in the name of Novartis in the amount of \$540 for payment of the appeal fee. An additional copy of this paper is here enclosed. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment, to Account No. 19-0134 in the name of Novartis.
- The appeal fee was paid in a previous appeal herein. The examiner re-opened prosecution prior to any decision by the Board of Patent Appeals and Interferences. No fee is now due.
- Enclosed is a Petition for Extension of Time.

Respectfully submitted,

Novartis Pharmaceuticals Corporation One Health Plaza, Bldg. 101 East Hanover, NJ 07936 (862) 778-7824

Date: 5/29/09

George Dohmann Attorney for Applicant Reg. No. 33,593

Response Under 37 CFR §1.116 Expedited Procedure Examining Group 1611

CASE 33310-US-PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF

Art Unit: 1611

ATADJA ET AL.

Examiner: Rae, Charlesworth E.

APPLICATION NO: 10/567,897 FILED: SEPTEMBER 22, 2006

FOR: COMBINATIONS COMPRISING STAUROSPORINES

Commissioner for Patents PO Box 1450 · Alexandria, VA 22313-1450

AMENDMENT AFTER FINAL REJECTION

Sir:

In response to the Office action dated January 5, 2009, response due April 5, 2009, here extended two months by simulaneously filed Petition for Extension of Time to be due on June 5, 2009, kiindly enter the following response.

Amendments to the Claims begin on page 2.

Remarks/Arguments begin on page 11.

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions:

Listing of Claims:

- 1. (currently amended) A method of treating myelodysplastic syndromes, lymphomas and leukemias, and solid tumors comprising cells that express constitutively active mutant FLT-3 in a mammal which comprises treating the mammal in need of such treatment simultaneously, concurrently, separately or sequentially with pharmaceutically effective amounts of (a) a FLT-3 inhibitor, or a pharmaceutically acceptable salt or a prodrug thereof.
 and (b) a histone deacetylase inhibitor (HDAI), or a pharmaceutically acceptable salt or a prodrug thereof.
- 2. (original) The method according to claim 1 for treating acute myeloid leukemia (AML).
- 3. (cancelled)
- 4. (currently amended) The method according to claim 1, wherein the <u>FLT-3 inhibitor is a</u> staurosporine derivative is-selected from the compounds of formula,

$$(R_{1})_{m} \xrightarrow{9} \begin{array}{c} 8 \\ R_{2} \\ R_{3} \end{array} \qquad (R_{2})_{n} \qquad Of \qquad (R_{1})_{m} \xrightarrow{9} \begin{array}{c} 8 \\ R_{3} \\ R_{3} \end{array} \qquad (R_{2})_{n} \\ (R_{1})_{m} \xrightarrow{9} \begin{array}{c} 8 \\ R_{3} \\ R_{3} \end{array} \qquad (R_{2})_{n} \\ (R_{1})_{m} \xrightarrow{9} \begin{array}{c} 8 \\ R_{2} \\ R_{3} \end{array} \qquad (R_{2})_{n} \\ (R_{1})_{m} \xrightarrow{9} \begin{array}{c} 8 \\ R_{2} \\ R_{3} \end{array} \qquad (R_{2})_{n} \\ (R_{2})_{n} \end{array}$$

or

wherein R₁ and R₂, are, independently of one another, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N-mono- or N,N-di-substituted aminosulfonyl;

n and m are, independently of one another, a number from and including 0 to and including 4;

n' and m' are, independently of one another, a number from and-including-1 to and-including-4;

 R_3 , R_4 , R_8 and R_{10} are, independently of one another, hydrogen, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, an acyl with up to 30 carbon atoms, wherein R_4 may also be absent;

or R₃ is acyl with up to 30 carbon atoms and R₄ not an acyl;

p is 0 if R_4 is absent, or is 1 if R_3 and R_4 are both present and in each case are one of the aforementioned radicals:

R₅ is hydrogen, an aliphatic, carbocyclic, or carbocyclic-aliphatic radical with up to 29 carbon atoms in each case, or a heterocyclic or heterocyclic-aliphatic radical with up to 20 carbon atoms in each case, and in each case up to 9 heteroatoms, or acyl with up to 30 carbon atoms;

R₇. R₆ and R₉ are acyl or –(lower alkyl) –acyl, unsubstituted or substituted alkyl, hydrogen, halogen, hydroxy, etherified or esterified hydroxy, amino, mono- or disubstituted amino, cyano, nitro, mercapto, substituted mercapto, carboxy, carbonyl, carbonyldioxy, esterified carboxy, carbamoyl, N-mono- or N,N-di-substituted carbamoyl, sulfo, substituted sulfonyl, aminosulfonyl or N-mono- or N,N-di-substituted aminosulfonyl;

X stands for 2 hydrogen atoms; for 1 hydrogen atom and hydroxy; for O; or for hydrogen and lower alkoxy;

1.

Z stands for hydrogen or lower alkyl;

and either the two bonds characterised by wavy lines are absent in ring A and replaced by 4 hydrogen atoms, and the two wavy lines in ring B each, together with the respective parallel bond, signify a double bond;

or the two bonds characterised by wavy lines are absent in ring B and replaced by a total of 4 hydrogen atoms, and the two wavy lines in ring A each, together with the respective parallel bond, signify a double bond;

or both in ring A and in ring B all of the 4 wavy bonds are absent and are replaced by a total of 8 hydrogen atoms;

or a salt thereof, if at least one salt-forming group is present.

5. (currently amended) The method according to claim 4 3, wherein the staurosporine derivative is a staurosporin derivative of formula I,

$$(R_1)_m \xrightarrow{g} \begin{pmatrix} B \\ H_3C \end{pmatrix} \begin{pmatrix} A \\ I \end{pmatrix} \begin{pmatrix} A \\ I$$

wherein

m and n are each 0:

 R_{3} and R_{4} are independently of each other

hydrogen,

lower alkyl unsubstituted or mono- or disubstituted, especially monosubstituted, by radicals selected independently of one another from carboxy; lower alkoxycarbonyl; and cyano; or

. R₄ is hydrogen or -CH₃, and

R₃ is acyl of the subformula R°-CO, wherein R° is lower alkyl; amino-lower alkyl, wherein the amino group is present in unprotected form or is protected by lower alkoxycarbonyl; tetrahydropyranyloxy-lower alkyl; phenyl; imidazolyl-lower alkoxyphenyl; carboxyphenyl; lower alkoxycarbonylphenyl; halogen-lower alkylphenyl; imidazol-1-ylphenyl; pyrrolidino-lower alkylphenyl; piperazino-lower alkylphenyl; (4-lower alkylpiperazinomethyl)phenyl; morpholino-lower alkylphenyl; piperazinocarbonylphenyl; or (4-lower alkylpiperazino)phenyl;

or is acyl of the subformula R°-O-CO-, wherein R° is lower alkyl;

or is acyl of the subformula R°HN-C(=W)-, wherein W is oxygen and R° has the following meanings: morpholino-lower alkyl, phenyl, lower alkoxyphenyl, carboxyphenyl, or lower alkoxycarbonylphenyl:

or R₃ is lower alkylphenylsulfonyl, typically 4-toluenesulfonyl;

R₅ is hydrogen or lower alkyl,

X stands for 2 hydrogen atoms or for O;

Z is methyl or hydrogen;

or a salt thereof, if at least one salt-forming group is present.

6. (currently amended) The method according to claim 4 3, wherein the staurosporine derivative is N-[(9S,10R,11R,13R)-2,3,10,11,12,13-hexahydro-10-methoxy-9-methyl-1-oxo-9,13-

epoxy-1*H*,9*H*-diindolo[1,2,3-gh:3',2',1'-lm]pyrrolo[3,4-j][1,7]benzodiazonin-11-yl]-*N*-methylbenzamide of the formula (VII):

or a salt thereof.

7. (original) The method according to claim 1, wherein the HDAI compound is a histone deacetylase inhibitor of formula (X)

HO
$$R_1$$
 R_2 R_3 R_4 R_5 R_5 R_4 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_5

wherein

R₁ is H, halo, or a straight chain C₁-C₆ alkyl;

R₂ is selected from H, C₁-C₁₀ alkyl, C₄ – C₉ cycloalkyl, C₄ – C₉ heterocycloalkyl, C₄ – C₉ heterocycloalkylalkyl, cycloalkylalkyl, aryl. heteroaryl, arylalkyl, heteroarylalkyl, -(CH₂)_nC(O)R₆, -(CH₂)_nOC(O)R₆, amino acyl, HON-C(O)-CH=C(R₁)-aryl-alkyl- and -(CH₂)_nR₇;

R₃ and R₄ are the same or different and independently H, C₁-C₆ alkyl, acyl or acylamino, or R₃ and R₄ together with the carbon to which they are bound represent C=O, C=S, or C=NR₈, or R₂ together with the nitrogen to which it is bound and R₃ together with the carbon to which it is bound can form a C₄ - C₉ heterocycloalkyl, a heteroaryl, a

- polyheteroaryl, a non-aromatic polyheterocycle, or a mixed aryl and non-aryl polyheterocycle ring;
- R₅ is selected from H, C₁-C₆ alkyl, C₄ C₉ cycloalkyl, C₄ C₉ heterocycloalkyl, acyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, aromatic polycycle, non-aromatic polycycle, mixed aryl and non-aryl polycycle, polyheteroaryl, non-aromatic polyheterocycle, and mixed aryl and non-aryl polyheterocycle;
- n_1 , n_2 and n_3 are the same or different and independently selected from 0-6, when n_1 is 1-6, each carbon atom can be optionally and independently substituted with R_3 and/or R_4 ;
- X and Y are the same or different and independently selected from H, halo, C₁-C₄ alkyl. NO₂, C(O)R₁, OR₉, SR₉, CN, and NR₁₀R₁₁;
- R₆ is selected from H, C₁-C₆ alkyl, C₄ C₉ cycloalkyl, C₄ C₉ heterocycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, OR₁₂, and NR₁₃R₁₄;
- R_7 is selected from OR₁₅, SR₁₅, S(O)R₁₈, SO₂R₁₇, NR₁₃R₁₄, and NR₁₂SO₂R₆;
- R₈ is selected from H, OR₁₅, NR₁₃R₁₄, C₁-C₆ alkyl, C₄ C₉ cycloalkyl, C₄ C₉ heterocycloalkyl, aryl, heteroaryl, arylalkyl, and heteroarylalkyl;
- R_9 is selected from $C_1 C_4$ alkyl and C(O)-alkyl;
- R₁₀ and R₁₁ are the same or different and independently selected from H, C₁-C₄ alkyl, and C(O)-alkyl;
- R₁₂ is selected from H, C₁-C₈ alkyl, C₄ C₉ cycloalkyl, C₄ C₉ heterocycloalkyl, C₄ C₉ heterocycloalkylalkyl, aryl, mixed aryl and non-aryl polycycle, heteroaryl, arylalkyl, and heteroarylalkyl;
- R₁₃ and R₁₄ are the same or different and independently selected from H, C₁-C₆ alkyl, C₄ C₉ cycloalkyl, C₄ C₉ heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, amino acyl, or R₁₃ and R₁₄ together with the nitrogen to which they are bound are C₄ C₉ heterocycloalkyl, heteroaryl, polyheteroaryl, non-aromatic polyheterocycle or mixed aryl and non-aryl polyheterocycle;
- R₁₅ is selected from H, C₁-C₆ alkyl, C₄ C₉ cycloalkyl, C₄ C₉ heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and $(CH_2)_m ZR_{12}$:
- R_{18} is selected from C_1 - C_6 alkyl, C_4 C_9 cycloalkyl, C_4 C_9 heterocycloalkyl, aryl, heteroaryl, polyheteroaryl, arylalkyl, heteroarylalkyl and $(CH_2)_m ZR_{12}$;
- R_{17} is selected from C_1 - C_6 alkyl, C_4 C_9 cycloalkyl, C_4 C_9 heterocycloalkyl, aryl. aromatic polycycle, heteroaryl, arylalkyl, heteroarylalkyl, polyheteroaryl and $NR_{13}R_{14}$;
- m is an integer selected from 0 to 6; and
- Z is selected from O, NR₁₃, S and S(O);
- or a pharmaceutically acceptable salt thereof.
- 8. (original) The method according to claim 7, wherein each of R₁, X, Y, R₃, and R₄ is H.

- 9. (original) The method according to claim 8, wherein one of n_2 and n_3 is zero and the other is 1.
- 10. (original) The method according to claim 9, wherein one of n_2 and n_3 is zero and the other is 1.
- 11. (original) The method according to claim 1, wherein the histone deacetylase inhibitor is a compound of the formula (Xa)

HO
$$R_2$$
 R_5 (Xa)

wherein

n₄ is 0-3.

 R_2 is selected from H, C_1 - C_8 alkyl, C_4 – C_9 cycloalkyl, C_4 – C_9 heterocycloalkyl, alkylcycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, -(CH_2) $_n$ C(O) R_6 , amino acyl and -(CH_2) $_n$ R $_7$;

R₅' is heteroaryl, heteroarylalkyl, an aromatic polycycle, a non-aromatic polycycle, a mixed aryl and non-aryl polycycle, polyheteroaryl, or a mixed aryl and non-aryl polyheterocycle or a pharmaceutically acceptable salt thereof.

12. (original) The method according to claim 1, wherein the histone deacetylase inhibitor is a compound of the formula (Xb):

wherein

 R_2 ' is selected from H, C_1 - C_6 alkyl, C_4 - C_6 cycloalkyl, alkylcycloalkyl, and $(CH_2)_{2.4}OR_{21}$ where R_{21} is H, methyl, ethyl, propyl, or isopropyl, and

R₅" is unsubstituted or substituted 1*H*-indol-3-yl, benzofuran-3-yl or quinolin-3-yl or a pharmaceutically acceptable salt thereof.