Markov Decision Processes

Reinforcement Learning

Roberto Capobianco

Recap

From Multi-Armed to Contextual Bandits

Action — Reward Multi-armed Bandit (stateless)

State — Action — Reward Contextual Bandit

Contextual bandits add back some context (state)

Contextual Bandits: Interaction

The interactive process that we deal with in CB is the following:

For
$$t = 0, ..., T-1$$
:

- 1. A new i.i.d. context x_{t} in X appears
- Select an action a_t in A based on historical information and context
- 3. Observe reward $r(x_+, a_+)$ (which is context and arm dependent)

For simplicity we assume deterministic rewards, as the context is the challenge here

Contextual Bandits: Regret

Optimal policy:
$$\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E}_{x \sim \mu} r(x, \pi(x))$$

At every iteration $a_t = \pi_t(x_t)$ is selected and a reward $r(x_t, a_t)$ is received: the regret is the **total expected reward if we always use** π^* VS the **total expected reward if we use our learned sequence of policies**

$$\mathsf{Regret}_T = \boxed{T\mathbb{E}_{x \sim \mu}[r(x, \pi^{\star}(x))]} - \boxed{\sum_{t=0}^{T-1} \mathbb{E}_{x \sim \mu}[r(x, \pi^t(x))]}$$

Note that policies are different at every iteration t

Explore & Commit Algorithm

- 1. For t = 0, ..., N-1: (explore)
 - \circ observe state $x_{+} \sim \mu$
 - o uniform-randomly sample a₊~ Unif(A)
 - o observe reward $r_{+}=r(x_{+},a_{+})$
 - o build, for \mathbf{x}_{t} , an unbiased estimate of $\mathbb{E}_{a \sim p} \hat{\mathbf{r}}[a] = r(x_{t}, a), \forall a$
- 2. Compute policy

$$\hat{\pi} = \arg\max_{\pi \in \Pi} \sum_{i=0}^{N-1} \hat{\mathbf{r}}_i[\pi(x_i)]$$

3. For $t = N, \ldots, T-1$: (commit)

- \circ observe state $x_{+} \sim \mu$
- o play arm

$$\hat{\mathbf{r}}_t[a] = \begin{cases} 0 & a \neq a_t \\ \frac{r_t}{1/|\mathcal{A}|} & a = a_t \end{cases}$$

$$\mathsf{Regret}_T = T \mathbb{E}_{x \sim \mu} [r(x, \pi^{\star}(x))] - \sum_{t=0}^{T-1} \mathbb{E}_{x \sim \mu} [r(x, \pi^t(x))] = O\left(T^{2/3} K^{1/3} \cdot \ln(\|\Pi\|)^{1/3}\right)$$

ε -Greedy

Instead of setting a threshold for exploring and then committing, we can try to interleave exploration and exploitation

- 1. For t = 0, ..., T: (interleave exploration & exploitation)
 - observe state $x_{+}^{\sim} \mu$
 - o $a_t \sim p_t = (1-\varepsilon)\delta(\pi^t(x_t)) \varepsilon Unif(A)$ o observe reward $r_t = r(x_t, a_t)$

 - build, for x_{t} , an unbiased estimate of $\mathbb{E}_{a \sim p} \hat{\mathbf{r}}[a] = r(x_{t}, a), \forall a$
- Update policy

$$\pi^{t+1} = \arg\max_{\pi \in \Pi} \sum_{i=0}^{t} \hat{\mathbf{r}}_i[\pi(x_i)]$$

$$\varepsilon = 0 \rightarrow \text{exploit}$$

$$\varepsilon = 1 \rightarrow \text{uniformly explore}$$

Bayesian Bandits

So far we have made no assumptions about the reward distribution $\nu_{\rm i}$, we only derived bounds on rewards

In Bayesian Bandits, however:

- We exploit *prior* knowledge of rewards
- Update a posterior distribution of rewards based on historical information
- Use posterior to guide exploration using:
 - upper confidence bounds (Bayesian UCB)
 - probability matching (Thompson Sampling)

Gaussian Bayesian Bandits: UCB

Now we are modelling a distribution, so we already have confidence What is confidence for Gaussians? **standard deviation**

Let's do UCB by selecting the action with highest standard deviation ${\bf a_t} = {\rm argmax_i}_{\rm in~K}~\mu_{\rm t}({\rm i}) + {\rm c}\sigma_{\rm t}({\rm i})/\sqrt{\rm N_t}({\rm i})$

Gaussian Bayesian Bandits: Thompson Sampling

```
For t = 0, ..., T:

This is an estimation of the reward, in more generic MDPs this can be replaced with the Q function: we estimate a distribution of Q

1. for each arm i = 1, \ldots, K:

o sample \hat{\mathbf{r}}_i independently from N(\mu_{t-1}(i), \sigma^2_{t-1}(i))

2. pull arm

I_t = \arg\max_{i \in [K]} \hat{\mathbf{r}}_i

3. observe reward \mathbf{r}_t

4. update posterior distribution p(\mu_t(i), \sigma^2_t(i) | \mathbf{r}_t)
```

This can be done with different distributions as well

End Recap

Sequential Decision Making

Observation o_t Reward r_t

Agent

The agent interacts with the environment:

- at discrete timesteps;
- by receiving observations o₊ and reward r₊ from the environment;
- by taking actions a₊;

Sequential Decision Making

Such discrete interaction generates a trajectory, or history at each timestep t, that is used by the agent to take action:

$$h_t = (o_0, a_0, r_1, o_1, a_1, \dots r_t, o_t, a_t)$$

Sequential Decision Making

Observation o_t Reward r_t

Agent

The state is a function of the history:

$$s_{t} = f(h_{t})$$

and it is typically hidden or unknown

Markov Assumption

A state st is Markovian iff future is independent of the past given the present

$$p(s_{t+1}|s_t,a_t) = p(s_{t+1}|h_{t,a_t})$$

Markov Assumption

A state \mathbf{s}_{t} is Markovian iff future is independent of the past given the present

$$p(s_{t+1}|s_t,a_t) = p(s_{t+1}|h_{t,a_t})$$

Is this problem Markovian?

Markov Assumption

 A state can always be made markovian by setting it to be equal to the history

$$s_t = h_t$$

• The best case (used in practice) is: current state corresponds to (or is a sufficient statistic of) latest observation

$$s_t = o_t$$

• In this case the state is said to be fully observable

Markov Decision Process (MDP)

- Set of states S
- Set of actions A

Sequential Decision Making under Markov Assumption

- Markovian transition dynamics
- Full Observability
- The transition dynamics T is (generally) stochastic $p(s_{t+1}|s_t,a_t)$

Markov Decision Process (MDP)

- - Set of states S
 - Set of actions A

Alternative notation

 $s' \sim p(.|s,a)$

Sequential Decision Making under Markov Assumption $s_{t+1}^p p(.|s_t,a_t)$ or

- Markovian transition dynamics
- Full Observability
- The transition dynamics T is (generally) stochastic $p(s_{+1}|s_{+},a_{+})$

Reward

A reward r_{t} is a:

- scalar signal representing a feedback
- indicates how well an agent is doing at step t
- the reward is a function of state and action (often indicated as R(s,a) and sometimes R(s',a,s))
- cost is the inverse of the reward

Reward hypothesis: can all goals be achieved through the maximization of a numerical reward?

It's an open question

Deterministic MDP Example

Stochastic MDP Example

Recycling robot

s	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	rsearch
high	search	low	$1 - \alpha$	rsearch
low	search	high	$1 - \beta$	-3
low	search	low	β	rsearch
high	wait	high	1	$r_{\mathtt{wait}}$
high	wait	low	0	-
low	wait	high	0	=
low	wait	low	1	rwait
low	recharge	high	1	0
low	recharge	low	0	-

Policy

A policy π :

- is a mapping from (all) states to actions;
- determines how agents select actions;
- can be deterministic (a = π (s)) or stochastic (π (a|s) or p(a|s) or a ~ π (.|s))

Trajectory Probability

What's the probability of seeing a trajectory at time t according to π starting at s₀?

$$(s_0, a_0, s_1, a_1, \dots s_t, a_t)$$

$$\mathbb{P}^{\pi}(s_{0}, a_{0}, \dots s_{+}, a_{+}) = \pi(a_{0}|s_{0})p(s_{1}|s_{0}, a_{0})\pi(a_{1}|s_{1})p(s_{2}|s_{1}, a_{1})\dots p(s_{+}|s_{+-1}, a_{+-1})\pi(a_{+}|s_{+})$$

State Visitation Probability

What's the probability of visiting state s, a at time t according to π starting at s₀?

$$\mathbb{P}^{\pi}_{t}(s,a;s_{0}) = \sum_{a_{0},s_{1},a_{1},...,s_{t-1},a_{t-1}} \mathbb{P}^{\pi}(s_{0},a_{0},...s_{t}=s,a_{t}=a)$$

Another Example MDP

- **state:** robot configuration (joint states) and ball position
- action: torque on arm and finger joints
- transition: stochastic, physics plus noise
- **policy:** mapping from robot state and ball position to torque
- **cost:** magnitude of the torque and distance to the goal

Infinite Horizon Discounted Setting

So far in our MDP we have (S, A, T, R)

Now we add the discount factor γ to reason on the policy's long term effects

- γ is in [0, 1]
- $\gamma = 0$ means: I only care about immediate rewards
- \bullet γ = 1 means: Immediate and future rewards are equally important

How so?

Value Function

- We estimate the goodness of states and actions based on their value
- It's also a measure to compare policies

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \dots | s_{t}] = \mathbb{E}[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | s_{0} = s_{t}, a_{h} = \pi (s_{h}), s_{h+1} \sim p(. | s_{h}, a_{h})]$$

Value Function/Q-Function

- We estimate the goodness of states and actions based on their value
- It's also a measure to compare policies

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \dots | s_{t}] = \mathbb{E}[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | s_{0} = s_{t}, a_{h} = \pi (s_{h}), s_{h+1} \sim p(.|s_{h}, a_{h})]$$

$$Q^{\pi}(s_{t}, a_{t}) = \mathbb{E}[\sum_{h=0}^{\infty} \gamma^{h} r_{h} | (s_{0}, a_{0}) = (s_{t}, a_{t}), a_{h+1} = \pi(s_{h}), s_{h+1} \sim p(.|s_{h}, a_{h})]$$

Back to Discount Factor

Setting $\gamma = 1$ for infinite tasks is a bad idea!

Note that $\sum_{h=0}^{\infty} \gamma^h$ is a geometric series and for γ in [0,1] this is equivalent to $1/(1-\gamma)$

So, the value of $\boldsymbol{\gamma}$ approximately determines how many steps ahead we are considering

E.g., $\gamma=0.99 \rightarrow 99$ timesteps ahead

Bellman Equation

The value of a certain state is expanded in terms of the current reward and the value of the next states according to the policy

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \dots | s_{t}] = r_{t} + \gamma \mathbb{E}_{s, \sim p(.|s, \pi(s))}[V^{\pi}(s')]$$

Bellman Equation also for Q

The value of a certain state is expanded in terms of the current reward and the value of the next states according to the policy

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \dots | s_{t}] = r_{t} + \gamma \mathbb{E}_{s, \sim p(.|s, \pi(s))}[V^{\pi}(s')]$$

$$Q^{\pi}(s_{t}, a) = r_{t} + \gamma \mathbb{E}_{s, \sim p(.|s, a)}[V^{\pi}(s')]$$

Bellman Equation also for Q

The value of a certain state is expanded in terms of the current reward and the value of the next states according to the policy

r here is function of s and $\pi(s)$

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \dots | s_{t}] = r_{t} + \gamma \mathbb{E}_{s, \sim p(.|s, \pi(s))}[V^{\pi}(s')]$$

$$Q^{\pi}(s_{t}, a) = r_{t} + \gamma \mathbb{E}_{s, \sim p(.|s, a)}[V^{\pi}(s')]$$

r here is function of s and a

Bellman Equation also for Q

The value of a certain state is expanded in terms of the current reward and the value of the next states according to the policy

r here is function of s and $\pi(s)$

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi}[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \dots | s_{t}] = r_{t} + \gamma \mathbb{E}_{s, \sim p(.|s, \pi(s))}[V^{\pi}(s')]$$

$$Q^{\pi}(s_{t}, a) = r_{t} + \gamma \mathbb{E}_{s, \sim p(.|s, a)}[V^{\pi}(s')]$$

r here is function of s and a

As a result $V(s) = Q(s, \pi(s))$

Discounted State-Action Distribution

$$d^{\pi}_{s0}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^{hp\pi}_{h}(s,a;s_{0})$$

Discounted State-Action Distribution

$$d^{\pi}_{s0}(s,a) = (1-\gamma) \sum_{h=0}^{\infty} \gamma^{h} \gamma_{h}^{\pi}(s,a;s_{0})$$

This gives us a probability distribution (remember $\sum_{h=0}^{\infty} \gamma^h$ equals $1/(1-\gamma)$)

Optimal Policy

For infinite horizon MDPs there always exists a deterministic policy π^* such that

$$V^{\pi^{\star}}(s) \geq V^{\pi}(s) \forall s, \pi$$

meaning that π^* dominates all other policies π in each state

Optimal Policy

For infinite horizon MDPs there always exists a deterministic policy π^* such that it returns optimal actions a* and

$$V^{\pi^*}(s) \ge V^{\pi}(s) \ \forall \ s, \pi$$
 Alternative notation $V^{\pi^*} = V^* \text{ and } Q^{\pi^*} = Q^*$

meaning that π^* dominates all other policies π in each state

Bellman Optimality

$$V^*(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, p(.|s,a)} V^*(s')]$$

Bellman Optimality

$$V^{*}(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, p(.|s,a)} V^{*}(s')]$$

$$Q^{*}(s,a)$$

Bellman Optimality Example

$$V^*(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, p(.|s,a)} V^*(s')]$$

Assume we know V^* at s' and s''

Bellman Optimality Example

$$V^*(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, p(.|s,a)} V^*(s')]$$

- Try a', get r(s,a'),
 compute
 Q*(s,a')=r(s,a')+γV*(s')
- Try a'', get r(s,a''),
 compute
 Q*(s,a'')=r(s,a'')+γV*(s'')

Assume we know V* at s' and s''

Bellman Optimality Example

$$V^*(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, p(.|s,a)} V^*(s')]$$

- Try a', get r(s,a'),
 compute
 Q*(s,a')=r(s,a')+γV*(s')
- Try a'', get r(s,a''),
 compute
 Q*(s,a'')=r(s,a'')+γV*(s'')

Assume we know V* at s' and s''

$$V^{*}(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, p(.|s,a)} V^{*}(s')]$$

given $\hat{\pi}$ =argmax_aQ*(s,a), we can show $\hat{V}^{\pi}=V^*$

$$\begin{split} & V^{*}\left(s\right) = \max_{a} \left[r\left(s,a\right) + \gamma \mathbb{E}_{s' \sim p\left(.\mid s,a\right)} V^{*}\left(s'\right)\right] \\ & \text{given } \hat{\pi} = \operatorname{argmax}_{a} Q^{*}\left(s,a\right), \text{ we can show } \hat{V}^{\pi} = V^{*} \\ & V^{*}(s) = r(s,\pi^{*}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\pi^{*}(s))} V^{*}(s') \\ & \leq \max_{a} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim P(s,a)} V^{*}(s')\right] = r(s,\hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\hat{\pi}(s))} V^{*}(s') \\ & = r(s,\hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\hat{\pi}(s))} \left[r(s',\pi^{*}(s')) + \gamma \mathbb{E}_{s'' \sim P(s',\pi^{*}(s'))} V^{*}(s'')\right] \\ & \leq r(s,\hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\hat{\pi}(s))} \left[r(s',\hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s',\hat{\pi}(s'))} V^{*}(s'')\right] \\ & \leq r(s,\hat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s,\hat{\pi}(s))} \left[r(s',\hat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s',\hat{\pi}(s'))} \left[r(s'',\hat{\pi}(s'')) + \gamma \mathbb{E}_{s'' \sim P(s',\hat{\pi}(s''))} V^{*}(s''')\right] \\ & \leq \mathbb{E}\left[r(s,\hat{\pi}(s)) + \gamma r(s',\hat{\pi}(s')) + \ldots\right] = V^{\hat{\pi}}(s) \end{split}$$

 $V^*(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, p(.|s,a)} V^*(s')]$ given $\hat{\pi}$ =argmax_aQ*(s,a), we can show $\hat{V}^{\pi}=V^{*}$ $\hat{V}^{\hat{\pi}}\geq V^{*}$ and $\hat{V}^{*}\geq \hat{V}^{\pi}$ $V^{\star}(s) = r(s, \pi^{\star}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \pi^{\star}(s))} V^{\star}(s')$ $\leq \max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim P(s, a)} V^{\star}(s') \right] = r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} V^{\star}(s')$ $= r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \pi^{\star}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \pi^{\star}(s'))} V^{\star}(s'') \right]$ $\leq r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \widehat{\pi}(s'))} V^{\star}(s'') \right]$ $\leq r(s, \widehat{\pi}(s)) + \gamma \mathbb{E}_{s' \sim P(s, \widehat{\pi}(s))} \left[r(s', \widehat{\pi}(s')) + \gamma \mathbb{E}_{s'' \sim P(s', \widehat{\pi}(s'))} \left[r(s'', \widehat{\pi}(s'')) + \gamma \mathbb{E}_{s''' \sim P(s'', \widehat{\pi}(s''))} V^{\star}(s''') \right] \right]$ $\leq \mathbb{E}\left[r(s,\,\widehat{\pi}(s)) + \gamma r(s',\,\widehat{\pi}(s')) + \ldots\right] = V^{\widehat{\pi}}(s)$

$$V^{*}(s) = \max_{a} [r(s,a) + \gamma \mathbb{E}_{s, p(.|s,a)} V^{*}(s')]$$

given $\hat{\pi}$ =argmax_aQ*(s,a), we can show \hat{V}^{π} =V*

This implies π^* =argmax_aQ*(s,a) is an optimal policy

For any V if V(s)=max[r(s,a)+vF]

For any V, if
$$V(s)=\max_a[r(s,a)+\gamma\mathbb{E}_{s,\sim p(.|s,a)}V(s')]$$
 for all s, then $V(s)=V^*(s)$

```
For any V, if V(s)=\max_a[r(s,a)+\gamma\mathbb{E}_{s,\sim p(.|s,a)}V(s')] for all s, then V(s)=V^*(s)
```

We need to check if $|V(s)-V^*(s)|=0$


```
For any V, if V(s)=\max_{a}[r(s,a)+\gamma\mathbb{E}_{s,\sim p(.|s,a)}V(s')] for all s,
                                                                         then V(s)=V^*(s)
We need to check if |V(s) - V^*(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^*(s')) \right|
                                                                                 \leq \max_{a} \left| (r(s,a) + \gamma \mathbb{E}_{s \sim P(s,a)} V(s')) - (r(s,a) + \gamma \mathbb{E}_{s \sim P(s,a)} V^{\star}(s')) \right|
                                                                                 \leq \max \gamma \mathbb{E}_{s' \sim P(s,a)} \left| V(s') - V^{\star}(s') \right|
                                                                                 \leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s,a)} \left( \max_{a'} \gamma \mathbb{E}_{s'' \sim P(s',a')} \left| V(s'') - V^{\star}(s'') \right| \right)
                                                                                 \leq \max \gamma^k \mathbb{E}_{s_k} |V(s_k) - V^*(s_k)|
```

For any V, if $V(s)=\max_{a}[r(s,a)+\gamma\mathbb{E}_{s,\sim p(.|s,a)}V(s')]$ for all s, then $V(s)=V^*(s)$ We need to check if $|V(s) - V^*(s)| = \left| \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - \max_{a} (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^*(s')) \right|$ $\leq \max_{s} \left| (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V(s')) - (r(s, a) + \gamma \mathbb{E}_{s \sim P(s, a)} V^{\star}(s')) \right|$ $\leq \max \gamma \mathbb{E}_{s' \sim P(s,a)} \left| V(s') - V^{\star}(s') \right|$ $\leq \max_{a} \gamma \mathbb{E}_{s' \sim P(s,a)} \left(\max_{a'} \gamma \mathbb{E}_{s'' \sim P(s',a')} \left| V(s'') - V^{\star}(s'') \right| \right)$ $\leq \max \gamma^k \mathbb{E}_{s_k} |V(s_k) - V^*(s_k)|$ At infinity, this goes to zero

For any V, if $V(s)=\max_a[r(s,a)+\gamma\mathbb{E}_{s,p(.|s,a)}V(s')]$ for all s, then $V(s)=V^*(s)$

This means we can focus on one step at each time (leaving the remaining "problem" to V(s'), and any V that satisfies this formula is in fact V^*

