1 矩阵的运算 1

1 矩阵的运算

1.1 矩阵的加法, 数乘和乘法

定义 1.1 矩阵的加法 设 $\mathbf{A} = (a_{ij})_{m \times n}, \mathbf{B} = (b_{ij})_{m \times n},$ 令

$$\mathbf{C} = (a_{ij} + b_{ij})_{m \times n}$$

则称 $C \in A \to B$ 的和, 记作 C = A + B.

定义 1.2 矩阵的数乘 设 $\mathbf{A} = (a_{ij})_{m \times n}$, 对于 $k \in K$, 令

$$\boldsymbol{A} = (k_i j)_{m \times n}$$

则称 $M \in k$ 与矩阵 A 的数量积, 记作 M = kA.

定义 1.3 矩阵的乘法 设 $\mathbf{A} = (a_{ij})_{s \times n}, \mathbf{B} = (b_{ij})_{n \times m},$ 令

$$\mathbf{C} = (c_{ij})_{m \times n}$$

其中

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

则称 $C \in A$ 与 B 的积, 记作 C = AB.

矩阵乘法满足结合律, 但不满足交换律.

定义 1.4 恒等矩阵 对角线元素为 1, 其余元素均为 0 的 $n \times n$ 级矩阵称作 n 阶恒等矩阵, 记作 I_n .

定义 1.5 可交换矩阵 如果 n 级方阵 A 和 B 满足

$$AB = BA$$

则称 A 和 B 是可交换的.

- 1.2 特殊矩阵
- 1.2.1 对角矩阵

1 矩阵的运算 2

定义 1.6 对角矩阵 除主对角线上的元素以外, 其它元素均为 0 的矩阵称作对角矩阵, 记作 $\mathrm{diag}\{a_1,\cdots,a_n\}$, 其中 a_1,\cdots,a_n 为对角线上的元素.