MA2003 Complex Analysis Exercise Sheet 4

- 1. Express each of the following complex numbers in Cartesian form a + ib:
 - (a) Log(i), (b) Log(ie) (c) $Log(-1 i\sqrt{3})$.
- 2. Express each of the following complex numbers in Cartesian form a + ib:

(a)
$$(1+i)^i$$
, (b) $(ie)^{i\pi}$, (c) $(-1-i\sqrt{3})^{1+i}$.

- 3. (a) Use the definition $z^{\alpha} = \exp(\alpha \operatorname{Log}(z))$ to show that $z^{3} = zzz$.
 - (b) Show that $Log(i^3) \neq 3 Log(i)$
 - (c) Define $\sqrt{z} = z^{1/2} (= \exp(\frac{1}{2} \operatorname{Log}(z)))$ for $z \in \mathbb{C} \setminus \{0\}$. Where is the mistake in

$$-1 = i^2 = ii = \sqrt{-1}\sqrt{-1} = \sqrt{-1 \times -1} = \sqrt{1} = 1$$
?

- (d) Show that for all $\alpha, \beta \in \mathbb{C}$ and $z \in \mathbb{C} \setminus \{0\}$ we have $z^{\alpha}z^{\beta} = z^{\alpha+\beta}$. Is it true that $\text{Log}(\alpha\beta) = \text{Log}(\alpha) + \text{Log}(\beta)$?
- 4. Recall that the Principal Logarithm function Log is holomorphic on the region \mathbb{C}_{π} , where $\mathbb{C}_{\pi} = \{z \in \mathbb{C} : z \neq 0 \text{ and } \operatorname{Arg}(z) \neq \pi\}$. Let F be the function defined by

$$F(z) = \frac{1}{2i} \left(\text{Log}(z+i) - \text{Log}(z-i) \right).$$

- (a) Describe (or sketch) the region \mathcal{R} on which the function F is holomorphic.
- (b) Show that F is an antiderivative for the function $f: \mathbb{R} \to \mathbb{C}$ defined by

$$f(z) = \frac{1}{z^2 + 1}$$
 for all $z \in \mathcal{R}$.

- 5. Let U be a starlit region with star centre $z_* \in U$ and let $g: U \to \mathbb{C}$ be a holomorphic function.
 - (a) Prove that if $g(z) \neq 0$ for all $z \in U$, then the function $\frac{g'}{g}$ has an antiderivative on U, stating any results used (you may assume that g holomorphic on U implies g' holomorphic on U).
 - (b) Prove that if in addition $g(z) \in \mathbb{C}_{\pi}$ for all $z \in U$ then

$$\int_{[z_*,z]} \frac{g'(\zeta)}{g(\zeta)} \ d\zeta = \text{Log}(g(z)) + \alpha$$

for some constant α .

6. Evaluate the integral

$$\int_{\mathcal{C}} \frac{\exp(2z)}{4z + i\pi} \ dz$$

where C is (i) the anticlockwise contour whose points lie on the circle $\{z : |z| = 1\}$, and (ii) when C is the anticlockwise contour whose points lie on the circle $\{z : |z - 2i| = 2\}$. The use of any Theorems made to obtain the value of these integrals should be justified.

1

7. Evaluate the integral

$$\int_{\mathcal{C}} \frac{\cos(z^2)}{3i + 2z} \ dz,$$

where (i) \mathcal{C} is the anticlockwise contour whose points lie on the circle $\{z:|z|=1\}$, and (ii) \mathcal{C} is the anticlockwise contour whose points lie on the circle $\{z:|z|=5\}$. The use of any Theorems made to obtain the value of these integrals should be justified.

8. Evaluate the integral

$$\int_{-\infty}^{+\infty} \frac{1}{x^2 + 6x + 25} \ dx$$

in the following way (compare Example 5.8 in the notes):

- (a) Define the complex function f by $f(z) = \frac{1}{z^2 + 6z + 25}$ and find z_0 and z_1 so that $f(z) = \frac{1}{(z z_0)(z z_1)}$ (where z_0 lies in the upper half-plane and z_1 in the lower half-plane).
- (b) Choose a suitable function g, holomorphic on the simply connected region $\mathcal{R} = \{z \in \mathbb{C} : \operatorname{Im}(z) > \frac{1}{2}\operatorname{Im}(z_1)\}$, so that

$$f(z) = \frac{g(z)}{(z - z_0)}.$$

(c) Justify the use of Cauchy's Integral Formula to find

$$\int_{\mathcal{C}_R} f = \int_{\mathcal{C}_R} \frac{g(z)}{(z - z_0)} \ dz,$$

where $C_R = L_R + S_R$ with L_R the straight line path from -R to R and S_R a suitable semicircular contour from R to -R, with R sufficiently large to apply the Theorem.

- (d) Show that for large R and $z \in S_R$, we have $|z^2 + 6z + 25| \ge R^2 6R 25$.
- (e) Use the Estimation Lemma to show that

$$\left| \int_{S_R} f \right| \to 0 \text{ as } R \to \infty.$$

(f) Deduce the value of

$$\int_{-\infty}^{+\infty} \frac{1}{x^2 + 6x + 25} \ dx.$$

- 9. (Liouville's Theorem) Let $f: \mathbb{C} \to \mathbb{C}$ be holomorphic everywhere, and suppose that f is bounded, i.e. there exists M > 0 with $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Show that f is constant on \mathbb{C} , in the following way:
 - (a) Let $z_1, z_2 \in \mathbb{C}$, and let R > 0 be sufficiently large so that z_1 and z_2 are enclosed by the countour \mathcal{C}_R consisting of the anticlockwise circle with centre 0 and radius R. Use Cauchy's Integral Formula to write $f(z_1) f(z_2)$ as a single integral along \mathcal{C}_R .
 - (b) Use the Estimation Lemma (and the backwards triangle inequality) to show that

$$|f(z_1) - f(z_2)| \le M \frac{|z_1 - z_2|}{(R - |z_1|)(R - |z_2|)} \cdot 2\pi R$$

2

for all (sufficiently large) R.

(c) Deduce that $f(z_1) = f(z_2)$.