Glossary of Symbols

symbol	meaning
::=	is defined to be
	end of proof symbol
\neq	not equal
\wedge	and, AND
\vee	or, OR
\longrightarrow	implies, if, then \cdots , IMPLIES
\longrightarrow	state transition
$\xrightarrow{\neg P, \overline{P}}$	not P , NOT (p)
\longleftrightarrow	iff, equivalent, IFF
\oplus	xor, exclusive-or, XOR
3	exists
\forall	for all
\in	is a member of, is in
\subseteq	is a (possibly =) subset of
⊈	is not a (possibly =) subset of
€ ⊆ ⊈ ✓ ✓ ✓	is a proper (not =) subset of
$\not\subset$	is not a proper (not =) subset of
U	set union
$\bigcup_{i\in I} S_i$	union of sets S_i where i ranges over set I of indices
\cap	set intersection
$\bigcap_{i \in I} S_i$	intersection of sets S_i where i ranges over set I of indices
Ø	the empty set, {}
\overline{A}	complement of set A
_	set difference
pow(A)	powerset of set, A
$A \times B$	Cartesian product of sets A and B
S^n	Cartesian product of <i>n</i> copies of set <i>S</i>
${\mathbb Z}$	integers
$\mathbb{N},\mathbb{Z}^{\geq 0}$	nonnegative integers
$\mathbb{Z}^+, \mathbb{N}^+$	positive integers
\mathbb{Z}^-	negative integers
\mathbb{Q}	rational numbers
\mathbb{R}	real numbers
\mathbb{C}	complex numbers
$\lfloor r \rfloor$	the <i>floor</i> of r : the greatest integer $\leq r$
$\lceil r \rceil$	the <i>ceiling</i> of r : the least integer $\geq r$

900 Glossary of Symbols

symbol	meaning
R(X)	image of set X under binary relation R
R^{-1}	inverse of binary relation R
$R^{-1}(X)$	inverse image of set X under relation R
surj	A surj B iff $\exists f : A \rightarrow B$. f is a surjective function
inj	A inj B iff $\exists R : A \rightarrow B$. R is an injective total relation
bij	A bij B iff $\exists f: A \to B$. f is a bijection
$[\leq 1 \text{ in}]$	injective property of a relation
$[\geq 1 \text{ in}]$	surjective property of a relation
$[\leq 1 \text{ out}]$	function property of a relation
[≥ 1 out]	total property of a relation
[= 1 out, = 1 in]	bijection relation
0	relational composition operator
λ	the empty string/list
A^*	the finite strings over alphabet A
$A^{\boldsymbol{\omega}}$	the infinite strings over alphabet A
rev(s)	the reversal of string s
$s \cdot t$	concatenation of strings s, t ; append (s, t)
$\#_c(s)$	number of occurrences of character c in string s
$m \mid n$	integer m divides integer n ; m is a factor of n
gcd	greatest common divisor
log	the base 2 logarithm, log_2
ln	the natural logarithm, log_e
lcm	least common multiple
(kn)	$\{i \in \mathbb{Z} \mid k < i < n\}$
[kn)	$\{i \in \mathbb{Z} \mid k \le i < n\}$
(kn]	$\{i \in \mathbb{Z} \mid k < i \le n\}$
[kn]	$\{i \in \mathbb{Z} \mid k \le i \le n\}$
$\sum_{i \in I} r_i$	sum of numbers r_i where i ranges over set I of indices
$\prod_{i \in I} r_i$	product of numbers r_i where i ranges over set I of indices
qent(n, d)	quotient of n divided by d
rem(n, d)	remainder of n divided by d
$\equiv \pmod{n}$	congruence modulo n
≢	not congruent
\mathbb{Z}_n	the ring of integers modulo <i>n</i>
$+_n, \cdot_n$	addition and multiplication operations in \mathbb{Z}_n
\mathbb{Z}_n^*	the set of numbers in $[0, n)$ relatively prime to n
$\phi(n)$	Euler's totient function ::= $ \mathbb{Z}_n^* $
$\langle u \rightarrow v \rangle$	directed edge from vertex u to vertex v
Id_A	identity relation on set A: $a \operatorname{Id}_A a'$ iff $a = a'$

901 Glossary of Symbols

symbol	meaning
R^*	path relation of relation R ; reflexive transitive closure of R
R^+	positive path relation of R ; transitive closure of R
$\mathbf{f} \widehat{\mathbf{x}} \mathbf{g}$	merge of walk \mathbf{f} with end vertex x
	and walk \mathbf{g} with start vertex x
f^g	merge of walk f and walk g
	where \mathbf{f} 's end vertex equals \mathbf{g} 's start vertex
$\langle u-v \rangle$	undirected edge connecting vertices $u \neq v$
E(G)	the edges of graph G
V(G)	the vertices of graph G
C_n	the length- <i>n</i> undirected cycle
L_n	the length- <i>n</i> line graph
K_n	the <i>n</i> -vertex complete graph
H_n	the <i>n</i> -dimensional hypercube
L(G)	the "left" vertices of bipartite graph G
R(G)	the "right" vertices of bipartite graph G
$K_{n,m}$	the complete bipartite graph with n left and m right vertices
$\chi(G)$	chromatic number of simple graph G
H_n	the <i>n</i> th Harmonic number $\sum_{i=1}^{n} 1/i$
\sim	asymptotic equality
n!	$n \text{ factorial } ::= n \cdot (n-1) \cdots 2 \cdot 1$
$\binom{n}{m}$:= n!/m!((n-m)!; the binomial coefficient
o()	asymptotic notation "little oh"
O()	asymptotic notation "big oh"
$\Theta()$	asymptotic notation "Theta"
$\Omega()$	asymptotic notation "big Omega"
$\omega()$	asymptotic notation "little omega"
Pr[A]	probability of event A
$Pr[A \mid B]$	conditional probability of A given B
$\mathcal S$	sample space
I_A	indicator variable for event A
PDF	probability density function
CDF	cumulative distribution function
$\operatorname{Ex}[R]$	expectation of random variable R
$\operatorname{Ex}[R \mid A]$	conditional expectation of R given event A
$\operatorname{Ex}^2[R]$	abbreviation for $(Ex[R])^2$
Var[R]	variance of R
$\operatorname{Var}^2[R]$	the square of the variance of R
σ_R	standard deviation of R