

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И
ПРОЦЕССЫ УПРАВЛЕНИЯ
N 4, 2014
Электронный журнал,
per. Эл. N ФС77-39410 om 15.04.2010

ISSN 1817-2172
http://www.math.spbu.ru/diffjournal

e-mail: jodiff@mail.ru

Теория обыкновенных дифференциальных уравнений

## О полиномиальных двоякопериодических дифференциальных уравнениях Е. К. Ершов

Санкт-Петербургский архитектурно-строительный университет, Россия ershov@ee13858.spb.edu

## Аннотация

Рассматриваются дифференциальные уравнения первого порядка  $\frac{d\theta}{d\varphi} = h(\varphi,\theta)$ , правая часть которых  $2\pi$ -периодична по обоим аргументам и является тригонометрическим многочленом по  $\theta$  степени  $n\geqslant 1$ . Доказывается, что всякое такое уравнение с числом вращения p/q, где  $p\in\mathbb{Z}, q\in\mathbb{N}, p$  и q взаимно просты, при  $q\leqslant n$  может быть аппроксимировано грубым полиномиальным уравнением степени n. Показано также, что при n=1 существование такой аппроксимации возможно только в случае q=1.

## Abstract

In the paper first order differential equations  $\frac{d\theta}{d\varphi} = h(\varphi, \theta)$  are considered. It is assumed that the function h is  $2\pi$ -periodic in both variables and is a trigonometric polynom in  $\theta$  of degree  $n \geq 1$ . We prove that every such an equation with rotation number p/q, where  $p \in \mathbb{Z}$ ,  $q \in \mathbb{N}$ , p and q are relatively prime, can be approximated by a structurally stable polynomial equation of degree n provided  $q \leq n$ . It is also shown that in the case when n = 1 the existence of such an approximation implies q = 1.

В работе рассматриваются двоякопериодические дифференциальные уравнения вида

$$\frac{d\theta}{d\varphi} = a_0(\varphi) + \sum_{k=1}^{n} [a_k(\varphi)\cos k\theta + b_k(\varphi)\sin k\theta] \equiv h(\varphi,\theta), \tag{1}$$

где  $\varphi, \theta \in \mathbb{R}$ ,  $n \in \mathbb{N}$ ,  $a_k(\varphi)$ ,  $b_k(\varphi)$  – непрерывные,  $2\pi$ -периодические функции. Если  $a_n^2(\varphi) + a_n^2(\varphi) \not\equiv 0$ , то уравнение (1) назовем полиномиальным степени n. Уравнение (1) определяет динамическую систему на двумерном торе  $T^2 = \{(\varphi, \theta) \mod 2\pi\}$ . Обозначим через  $\mu$  число вращения Пуанкаре уравнения (1), т.е. не зависящий от  $\theta_0$  предел

$$\mu = \lim_{\varphi \to +\infty} \frac{\theta(\varphi, \theta_0)}{\varphi},$$

где  $\theta(\varphi,\theta_0)$  – решение уравнения такое, что  $\theta(0,\theta_0)=\theta_0$ . Хорошо известно [1], что если число вращения рационально ( $\mu=p/q,\,p\in\mathbb{Z},\,q\in\mathbb{N}$ , причем p и q взаимно просты), то уравнение (1) имеет решение  $\theta(\varphi,\theta_0)$  такое, что  $\theta(2\pi q,\theta_0)=\theta_0+2\pi p$ . Такому решению на торе отвечает замкнутая интегральная кривая, делающая до замыкания q оборотов по долготе и p оборотов по широте тора. Наоборот, если уравнение имеет на торе замкнутую интегральную кривую, делающую до замыкания q оборотов по долготе и p оборотов по широте тора, то его число вращения  $\mu=p/q$ . Следующее определение хорошо известно.

**Определение.** Уравнение (1) называется грубым (структурно устойчивым), если существует число  $\delta>0$  такое, что для любой  $2\pi$ -периодической, непрерывной по  $\varphi,\theta$  и непрерывно дифференцируемой по  $\theta$  функции  $g(\varphi,\theta)$ ,  $|g|<\delta, |\frac{\partial g}{\partial \theta}|<\delta$ , существует гомеоморфизм тора на себя, переводящий интегральные кривые возмущенного уравнения

$$\frac{d\theta}{d\varphi} = h(\varphi, \theta) + g(\varphi, \theta)$$

в интегральные кривые уравнения (1).

Известно [2], что для грубости двоякопериодического дифференциального уравнения необходимо и достаточно выполнения двух условий:

- 1) уравнение имеет рациональное число вращения  $\mu = p/q$ ;
- 2) все замкнутые интегральные кривые уравнения гиперболические, т.е. для любого решения  $\theta(\varphi, \theta_0)$  такого, что  $\theta(2\pi q, \theta_0) = \theta_0 + 2\pi p$ , выполняется

неравенство

$$\frac{\partial \theta}{\partial \theta_0}(2\pi q, \theta_0) \neq 1.$$

Обозначим через  $H^n$  пространство непрерывных,  $2\pi$ -периодических вектор-функций  $h=(a_0,a_1,b_1,\ldots,a_n,b_n):\mathbb{R}\to\mathbb{R}^{2n+1}$  с метрикой

$$\operatorname{dist}(h_1, h_2) = \max_{\varphi \in \mathbb{R}} ||h_1(\varphi) - h_2(\varphi)||,$$

где ||.|| – евклидова норма в  $\mathbb{R}^{2n+1}$ . В дальнейшем будем отождествлять уравнение (1) с элементом h пространства  $H^n$ . Из результатов работы [1] следует, что число вращения уравнения (1) определяет на  $H^n$  непрерывную функцию  $\mu: H^n \to \mathbb{R}$ , где  $\mu(h)$  – число вращения уравнения (1).

Для рационального числа r обозначим через  $A_r^n = \mu^{-1}(r)$  – множество уравнений (1) с числом вращения r. Очевидно, что для любого рационального r множество  $A_r^n$  не пусто и замкнуто. Положим

$$A^n = \bigcup_{r \in \mathbb{Q}} A_r^n.$$

Нетрудно проверить (см. [1]), что множество  $A^n$  плотно в пространстве  $H^n$ .

Рассмотрим вопрос о плотности в  $A^n$  грубых полиномиальных уравнений. Обозначим через  $B^n_r$  множество грубых уравнений с числом вращения r.

**Теорема 1.** Пусть число  $r=p/q,\,p\in Z,\,q\in N,$  – рационально, прчем p и q взаимно просты. Тогда если  $q\leqslant n,$  то множество  $B^n_r$  плотно в  $A^n_r.$ 

**Доказательство.** Пусть  $h \in A_r^n$ . Возьмем произвольное число  $\varepsilon > 0$  и покажем, что найдется уравнение

$$\frac{d\theta}{d\varphi} = f(\varphi, \theta) \tag{2}$$

такое, что  $f \in B_r^n$  и  $\mathrm{dist}(h,f) < \varepsilon$ . Обозначим через  $F_h(\theta_0)$  функцию последования уравнения (1):  $F_h(\theta_0) = \theta(2\pi q,\theta_0) - \theta_0 - 2\pi p$ . Хорошо известно, что функция  $F_h(\theta_0)$  является  $2\pi$ -периодической:  $F_h(\theta_0+2\pi) = F_h(\theta_0)$ . Так как уравнение (1) имеет рациональное число вращения r = p/q, то функция  $F_h$  имеет по крайней мере один нуль. Из аналитичности правой части уравнения (1) по  $\theta$  вытекает, что либо  $F_h \equiv 0$ , либо на промежутке  $[0,2\pi)$  функция  $F_h$  имеет конечное число нулей, причем каждый из них имеет конечную кратность.

Рассмотрим первую возможность. Покажем, что для любого числа  $\delta>0$  найдется уравнение

$$\frac{d\theta}{d\varphi} = g(\varphi, \theta),\tag{3}$$

 $g \in A_r^n$ ,  $\operatorname{dist}(h,g) < \delta$  такое, что его функция последования  $F_g$  не равна нулю тождественно. Пусть  $\theta(\varphi,\theta_*)$  – решение уравнения (1), отвечающее замкнутой интегральной кривой на торе. Рассмотрим функцию

$$d(\varphi, \theta) = \prod_{i=0}^{q-1} \sin \frac{\theta - \theta(\varphi, \theta_*)}{2},$$

квадрат которой  $d^2(\varphi,\theta)$  имеет период  $2\pi$  по  $\varphi$  и  $\theta$ . Нетрудно видеть, что функция  $d^2(\varphi,\theta)$  является тригонометрическим полиномом по  $\theta$  степени не выше q. Положим

$$e(\varphi, \theta) = \frac{\partial}{\partial \theta} \left( d^2(\varphi, \theta) \right) = 2d(\varphi, \theta) \cdot \frac{\partial d}{\partial \theta} (\varphi, \theta).$$

Понятно, что функция  $e(\varphi,\theta)$  также является тригонометрическим многочленом по  $\theta$  степени не выше q и  $e(\varphi,\theta(\varphi,\theta_*)\equiv 0$ . Рассмотрим уравнение (3) с правой частью g=h+ce, где  $c\neq 0$  – постоянная такая, что  $\mathrm{dist}(h,g)<\delta$ . Пусть  $F_g(\theta_0)$  – функция последования уравнения (3). Очевидно, что  $F_g(\theta_*)=0$  и, следовательно,  $g\in A_r^n$ . Найдем характеристический показатель  $\varkappa$  решения  $\theta(\varphi,\theta_*)$  уравнения (3). По определению характеристического показателя имеем

$$\varkappa = \frac{1}{2\pi q} \int_{0}^{2\pi q} \left[ \frac{\partial h}{\partial \theta} (\varphi, \theta(\varphi, \theta_*)) + c \frac{\partial e}{\partial \theta} (\varphi, \theta(\varphi, \theta_*)) \right] d\varphi = 
= \frac{2c}{2\pi q} \int_{0}^{2\pi q} \left[ \frac{\partial e}{\partial \theta} (\varphi, \theta(\varphi, \theta_*)) \right] d\varphi = 
= \frac{2c}{2\pi q} \int_{0}^{2\pi q} \prod_{i=0}^{q-1} \sin^2 \frac{\theta(\varphi, \theta_*) - \theta(\varphi + 2\pi i, \theta_*)}{2} d\varphi.$$

Из последнего равенства следует, что  $\varkappa \neq 0$ . Действительно, в противном случае при некотором целом  $j, 1 \leq j \leq q-1$ , и целом k выполнялось бы равенство  $\theta(\varphi+2\pi j,\theta_*)=\theta(\varphi,\theta_*)+2\pi k$  при всех  $\varphi$ , т.е. интегральная кривая

на торе, отвечающая решению  $\theta(\varphi, \theta_*)$  делает до своего замыкания  $j, 1 \leq j < q$ , оборотов по долготе тора. Последнее противоречит тому, что числа p и q взаимно просты. Поскольку

$$\frac{dF_g}{d\theta_0}(\theta_*) = \exp(2\pi q\varkappa) - 1 \neq 0,$$

то  $\theta_*$  является нулем функции  $F_g$  кратности 1 и, следовательно,  $F_g(\theta_0) \not\equiv 0$ . Поэтому, не ограничивая общности, можем считать, что  $F_h(\theta_0) \not\equiv 0$ . Пусть  $\theta(\varphi,\theta_j),\ j=1,\ldots,s$ , решения уравнения (1), отвечающие различным замкнутым на торе интегральным кривым. Без ограничения общности можно считать, что  $\theta_j \in [0,2\pi)$  при  $j=1,\ldots,s$ . Любой нуль фукции  $F_h$ , располагающийся на промежутке  $[0,2\pi)$ , имеет вид  $\theta(2\pi k,\theta_j) \mod 2\pi,\ j=1,\ldots,s$ ,  $0 \leqslant k \leqslant q-1$ . Положим

$$O_j = \{\theta_j, \theta(2\pi, \theta_j), \dots, \theta(2\pi(q-1), \theta_j) \mod 2\pi\}.$$

Обозначим через  $\nu_j \geqslant 1$  кратность нуля  $\theta_j$  функции последования  $F_h$ . Легко видеть, что все точки множества  $O_j$  имеют одну и туже кратность  $\nu_j$ . Пусть l точек  $\theta_1, \ldots, \theta_l$  имеют кратность 1, а m=s-l точек  $\theta_{l+1}, \ldots, \theta_s$  кратности большие 1. Если l=s, т.е. все замкнутые интегральные кривые гиперболические, то уравнение (1) грубое, поэтому в рассмотрении нуждается лишь случай l < s. Положим  $\nu = \nu_{l+1} + \cdots + \nu_s$ . Выберем окрестности  $U_j$  точек  $\theta_j$  так, чтобы множества

$$V_j = \bigcup_{k=0}^{q-1} \theta(2\pi k, U_j) \mod 2\pi$$

не пересекались при различных  $j,\,j=1,\ldots,s$ . Ясно, что  $O_j\in V_j$ .

Так как близость в метрике пространства  $H^n$  означает, в частности, близость функций последования уравнений вместе с их производными до порядка  $\nu$  включительно, то существует такое  $\delta_1 > 0$ , что функция последования любого уравнения (2),  $\operatorname{dist}(h,f) < \delta_1$ , обладает следующими свойствами:

- 1) все нули  $F_f$  содержатся в  $\bigcup_{j=1}^s V_j$ ;
- 2) в каждой из окрестностей  $U_j, j = 1, \dots, l$  функция  $F_f$  имеет по одному нулю кратности 1;
- 3) в каждой из окрестностей  $U_j, j = l+1, \ldots, s$  функция  $F_f$  имеет не более  $\nu_j$  нулей, причем их суммарная кратность не превосходит  $\nu_j$ , так что суммарная кратность нулей  $F_f$  в  $\bigcup_{j=l+1}^s U_j$  не превосходит  $\nu$ .

Аналогично изложенному выше построим полиномиальное уравнение степени n

$$\frac{d\theta}{d\varphi} = h_1(\varphi, \theta),\tag{4}$$

 $h_1 \in A_r^n$ ,  $\operatorname{dist}(h,h_1) < \min(\delta_1,\frac{\varepsilon}{\nu-1})$ , функция последования  $F_{h_1}$  которого имеет в окрестностях  $U_j, j=1,\ldots,l$ , по одному простому нулю и еще один простой нуль  $\tilde{\theta}_{l+1} \in U_{l+1}$ . Суммарная кратность нулей  $F_{h_1}$ , не являющихся простыми, не превосходит  $\nu-1$ . Если все нули  $F_{h_1}$  простые, то в качестве f возьмем  $h_1$ . В противном случае, возмущая  $h_1$  аналогично изложенному выше, построим уравнение

$$\frac{d\theta}{d\varphi} = h_2(\varphi, \theta),\tag{5}$$

 $h_2 \in A_r^n$ ,  $\operatorname{dist}(h_1,h_2) < \min(\delta_2,\frac{\varepsilon}{\nu-1})$ , функция последования  $F_{h_2}$  которого имеет в окрестностях  $\tilde{U}_j,\ j=1,\ldots,l+1$ , по одному простому нулю и еще один простой нуль в окрестности  $\tilde{U}_{l+2}$ , причем суммарная кратность нулей функции  $F_{h_2}$ , не являющихся простыми, не превосходит  $\nu-2$  и т.д. Через m ( $m \leqslant \nu-1$ ) шагов построим грубое уравнение (2), где  $f=h_m \in B_r^n$ , при этом

$$\operatorname{dist}(h, f) = \operatorname{dist}(h, h_m) \leqslant \operatorname{dist}(h, h_1) + \dots + \operatorname{dist}(h_{m-1}, h_m) < m \frac{\varepsilon}{\nu - 1} \leqslant \varepsilon.$$

**Замечание 1.** Результат, аналогичный теореме 1, для полиномиальных диффеоморфизмов окружности был получен в [3].

Замечание 2. Из доказательства теоремы видно, что любое уравнение (1), где  $h \in A_r^n$ , r = p/q, при q < n может быть приближено грубым полиномиальным уравнением (2) степени n, причем h и f совпадают в членах порядка выше q, а при q > n может быть приближено грубым полиномиальным уравнением степени q.

В связи со сделанным замечанием возникает вопрос: можно ли уравнение (1),  $h \in A_r^n$ , r = p/q, при q > n приблизить грубым полиномиальным уравнением степени n? Следующая теорема показывает, что при n = 1 ответ на поставленный вопрос отрицательный.

Рассмотрим уравнение (1) при n = 1, т.е. уравнение вида

$$\frac{d\theta}{d\varphi} = a_0(\varphi) + a_1(\varphi)\cos\theta + b_1(\varphi)\sin\theta. \tag{6}$$

**Теорема 2.** Если число вращения уравнения (6) рационально  $\mu = p/q$  ( $p \in \mathbb{Z}$  и  $q \in \mathbb{N}$  взаимно просты) и  $q \geqslant 2$ , то все интегральные кривые

уравнения замкнуты на торе, в частности, не существует грубых уравнений (6) с таким числом вращения.

Доказательство. Обозначим через  $F(\theta_0) = \theta(2\pi q, \theta_0) - \theta_0 - 2\pi p$  функцию последования уравнения (6). Теорема утверждает, что  $F(\theta_0)$  тождественный нуль. Допустим, вопреки утверждению теоремы, что  $F(\theta_0) \not\equiv 0$ . Тогда суммарная кратность нулей функции  $F(\theta_0)$ , располагающихся на  $[0, 2\pi)$  не менее 2q. Действительно, если  $F(\theta_0)$  принимает значения одного знака, то уравнение (6) имеет на торе полуустойчивую замкнутую интегральную кривую и, следовательно,  $F(\theta_0)$  имеет на  $[0, 2\pi)$  не менее q нулей кратности  $\geqslant 2$ . Если же  $F(\theta_0)$  принимает значения разных знаков, то уравнение имеетна торе не менее двух различных замкнутых интегральных кривых. В этом случае  $F(\theta_0)$  на  $[0, 2\pi)$  имеет не менее 2q нулей кратности  $\geqslant 1$ .

Совершая в уравнении (6) замену переменных  $\theta = \eta + \theta(\varphi, \theta_0)$ , где  $\theta(\varphi, \theta_0)$  – решение уравнения, отвечающее замкнутой интегральной кривой, получим  $2\pi q$ -периодическое по  $\varphi$  уравнение

$$\frac{d\eta}{d\varphi} = \alpha(\varphi)(\cos \eta - 1) + \beta(\varphi)\sin \eta,\tag{7}$$

имеющее в полосе  $0 \leqslant \eta < 2\pi$  конечное число  $2\pi q$ -периодических решений, суммарная кратность которых  $\geqslant 2q$ . Так как  $q \geqslant 2$ , то это противоречит тому, что как показано в [4] уравнение (7) не может иметь в полосе  $0 \leqslant \eta < 2\pi$  более двух периодических решений с учетом кратности.

Замечание 3. О.Г. Галкиным ([5], стр. 51, см. также [6]) для семейства уравнений вида

$$\frac{d\theta}{d\varphi} = a + \varepsilon T(\varphi, \theta), \tag{8}$$

где  $a, \varepsilon$  — параметры,  $T(\varphi,\theta)$  — тригонометрический многочлен по  $\theta$  степени n, доказано, что ширина области резонанса (так называется множество тех  $(a,\varepsilon)$ , для которых уравнение (8) имеет число вращения p/q при малых  $\varepsilon$  не превосходит  $C\varepsilon^s$ , где s=-[-q/n], C — постоянная, не зависящая от  $\varepsilon$ . Из теоремы 2 вытекает, что при n=1 этот результат допускает следующее уточнение: если  $q\geqslant 2$ , то ширина области резонанса p/q равна нулю.

## Список литературы

[1] Плисс В. А. Нелокальные проблемы теории колебаний. - М. Л.: Главная редакция физико-математической литературы издательства "Наука". — 1964. — 368 с.

- [2] Плисс В. А. О грубости дифференциальных уравнений, заданных на торе. Вестник ЛГУ, сер. матем., 13, № 3. 1960. 15–23.
- [3] Ершов Е. К. О грубых полиномиальных диффеоморфизмах окружности. Дифференциальные уравнения, 24, № 4. 1988. 687–689.
- [4] Ершов Е. К. О числе циклов некоторых дифференциальных уравнений на двумерном торе. Дифференциальные уравнения, 27, № 12. 1991. 2167-2169.
- [5] Арнольд В. И., Ильяшенко Ю. С. Обыкновенные дифференциальные уравнения. І. "Современные проблемы математики. Фундаментальные направления. Т. 1 (Итоги науки и техн. ВИНИТИ АН СССР)". М. 1985. 7–149.
- [6] Арнольд В. И. Замечание о теории возмущений для задач типа Матье. -Успехи мат. наук., 38, № 4, — 1983. 189—203.