Example 1: Two-variable Linear Function

Function: $f(w,b) = (wx + b - y)^2$

Data: - x=2 , y=5 - Initial: w=1 , b=0 - Learning rate: $\eta=0.1$

Step-by-step Iterations:

Step 1: -
$$\hat{y}=1\cdot 2+0=2$$
 - Loss: $(2-5)^2=9$ - Gradients: - $\frac{\partial L}{\partial w}=2(-3)\cdot 2=-12$ - $\frac{\partial L}{\partial b}=2(-3)=-6$ - Updates: - $w=1+1.2=2.2$ - $b=0+0.6=0.6$

Step 2: - $\hat{y} = 2.2 \cdot 2 + 0.6 = 4.4 + 0.6 = 5$ - Loss: $(5-5)^2 = 0$ - Training converged.

Example 2: Three-variable Linear Function

Function: $f(w_1, w_2, b) = (w_1x_1 + w_2x_2 + b - y)^2$

Data: - $x_1=1, x_2=2, y=10$ - Initial: $w_1=1, w_2=1, b=0$ - $\eta=0.1$

Step 1: -
$$\hat{y}=1+2+0=3$$
 - Loss: $(3-10)^2=49$ - Gradients: - $\partial w_1=2(-7)\cdot 1=-14$ - $\partial w_2=2(-7)\cdot 2=-28$ - $\partial b=2(-7)=-14$ - Updates: - $w_1=2.4, w_2=3.8, b=1.4$

Step 2: $\hat{y}=2.4\cdot 1+3.8\cdot 2+1.4=2.4+7.6+1.4=11.4$ - Loss: $(11.4-10)^2=1.96$ - Gradients: - $\partial w_1=2(1.4)\cdot 1=2.8$ - $\partial w_2=2(1.4)\cdot 2=5.6$ - $\partial b=2(1.4)=2.8$ - Updates: - $w_1=2.12, w_2=3.24, b=1.12$

Step 3: - Continue until loss ~ 0

Example 3: Polynomial Function

Function: $f(w)=(w^2-y)^2$

Data: - $y=9, w=1, \eta=0.1$

Step 1: -
$$\hat{y}=1^2=1$$
 - Loss = $(1-9)^2=64$ - Gradient: - $\frac{dL}{dw}=4w(w^2-y)=4\cdot 1\cdot (1-9)=-32$ - Update: - $w=1+3.2=4.2$

Step 2: - $\hat{y}=4.2^2=17.64$ - Loss = $(17.64-9)^2\approx 74.5$ - Gradient: - $4\cdot 4.2\cdot (17.64-9)\approx 145$ - Update: - w=4.2-14.5=-10.3

Step 3+: Continue until convergence.

Example 4: Trigonometric Function

Function:
$$f(w) = (\sin(w) - y)^2$$

Data: -
$$y=0.5, w=0, \eta=0.1$$

Step 1: -
$$\hat{y}=\sin(0)=0$$
 , Loss = 0.25 - Gradient: $2(\sin(w)-y)\cdot\cos(w)=-1$ - Update: $w=0+0.1=0.1$

Step 2: -
$$\hat{y}=\sin(0.1)\approx0.0998$$
 , Error = -0.4002 - Gradient: $2\cdot-0.4002\cdot\cos(0.1)\approx-0.796$ - Update: $w=0.1796$

Continue till loss ~ 0.

Example 5: Logarithmic Function

Function: $f(w) = (\log(w) - y)^2$

Data: -
$$y=1, w=2, \eta=0.1$$

Step 1: -
$$\log(2) \approx 0.693$$
 , Loss = $(0.693-1)^2 = 0.094$ - Gradient: $2(\log(w)-y)/w = -0.1535$ - Update: $w = 2.015$

Step 2: - $\log(2.015) \approx 0.700$, Loss = 0.09 , Gradient ~ -0.149 - Continue updating until loss ~ 0

Conclusion: Each function required: - Defining prediction (\hat{y}) - Loss computation - Gradient derivation using chain rule - Parameter updates using gradient descent

Repeat until convergence.