

DEPARTAMENTO ECONOMÍA FUNDAMENTOS DE ECONOMETRÍA 1ECO11 – HORARIO 0723

Sesión 4 Inferencia Estadística

Docente: Juan Palomino

Indice

- 1 Normalidad de los errores
- 2 Intervalos de Confianza
- 3 Prueba de Hipótesis
- 4 El Estadístico t
- 5 El p-value

1. Normalidad de los Errores

Normalidad de los errores

Supuesto 5: Normalidad de los errores

 ε_i distribuye normal con media cero y varianza σ^2 condicional a X:

$$\varepsilon_i | X \sim N(0, \sigma^2), \qquad i = 1, 2, \dots, n$$

Dado el supuesto de que *X* es fija en muestras repetidas.

Normalidad de los errores

Si ε_i sigue una distribución normal, entonces Y_i también seguirá una distribución normal con una media igual a $\beta_1 + \beta_2 X_i$ y varianza σ^2 .

Combinación lineal de Normales

Dado que los estimadores de MCO son combinaciones lineales de la variable endógena Y_i , entonces estos estimadores también seguirán esta distribución, de manera que:

$$\hat{\beta}_1 \sim N(\beta_1, \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum x^2} \right))$$

$$\hat{\beta}_2 \sim N(\beta_2, \frac{\sigma^2}{\sum x^2})$$

$$\hat{\beta}_2 \sim N(\beta_2, \frac{\sigma^2}{\sum x^2})$$

Un intervalo de confianza es un rango de valores sobre el cual tenemos la confianza de que el parámetro poblacional posiblemente se encuentre en ese intervalo.

Se construye un intervalo para el parámetro β_2 , el cual se estandariza como:

$$\frac{\hat{\beta}_2 - \beta_2}{\sqrt{\frac{\sigma^2}{\sum x^2}}} \sim N(0,1)$$

Definamos un nivel de confianza de $(1 - \alpha) \times 100\%$, en donde ocurrirá que:

$$\Pr\left(-z_{1-\frac{\alpha}{2}} < \frac{\hat{\beta}_{2} - \beta_{2}}{\sqrt{\frac{\sigma^{2}}{\sum x^{2}}}} < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

Donde $z_{1-\frac{\alpha}{2}}$ es el percentil $1-\frac{\alpha}{2}$ de la distribución normal estándar

Función de densidad de la normal estándar

Despejando a β_2 se obtiene:

$$\Pr\left(\hat{\beta}_2 - z_{1 - \frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma^2}{\sum x^2}} < \beta_2 < \hat{\beta}_2 + z_{1 - \frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma^2}{\sum x^2}}\right) = 1 - \alpha$$

Donde α define los intervalos.

Por ejemplo, para $\alpha = 0.05$, los intervalos de confianza son:

$$\hat{\beta}_2 + z_{0.975} \cdot \sqrt{\frac{\sigma^2}{\sum x^2}} \qquad z_{0.975} = 1.96$$

Sin embargo, el parámetro poblacional σ^2 no es un valor conocido. Si usamos en su reemplazo $\hat{\sigma}^2$, el intervalo se construye como t-student con (n-K) grados de libertad.

Entonces, ya que la distribución t es simétrica alrededor de 0:

$$\Pr(-t_{1-\frac{\alpha}{2}(N-K)} < t < t_{1-\frac{\alpha}{2}(N-K)}) = 1 - \alpha$$

Teniendo el valor del estadístico t, se acepta la H_0 cuando:

$$-t_{1-\frac{\alpha}{2}(N-K)} < \frac{\hat{\beta}_K - \beta_K}{SE(\hat{\beta}_K)} < t_{1-\frac{\alpha}{2}(N-K)}$$

O:

$$\hat{\beta}_K - SE(\hat{\beta}_K) \cdot t_{1 - \frac{\alpha}{2}(N - K)} < \beta_K < \hat{\beta}_K + SE(\hat{\beta}_K) \cdot t_{1 - \frac{\alpha}{2}(N - K)}$$

3. Pruebas de Hipótesis

Pruebas de Hipótesis

Supongamos que alguna teoría económica nos dice que tal parámetro debería ser igual a cierto valor, digamos a:

Hipótesis nula
$$H_0$$
: $\beta = a$

Hipótesis alternativa
$$H_1$$
: $\beta \neq a$

Prueba de Hipótesis

Rechazo de la hipótesis nula

El parámetro poblacional β está dentro del intervalo.

No Rechazo de la hipótesis nula

El parámetro poblacional β y a podrían caer en un mismo intervalo.

Prueba de Hipótesis

El Error Tipo I

Se rechaza una hipótesis que es cierta.

El Error Tipo II

Se acepta una hipótesis que es falsa.

4. El Estadístico t

El Estadístico t

Distribución del Estadístico t

Asumiendo Linealidad, Exogeneidad estricta, rango completo y normalidad de los errores y bajo la hipótesis nula H_0 : $\beta_k = \bar{\beta}_k$, el estadístico t se define como:

$$t_k = \frac{\hat{\beta}_k - \bar{\beta}_k}{SE(\hat{\beta}_k)}$$

Y se distribuye como t_{n-k} , es decir, distribución t con (n-K) grados de libertad.

5. El p-value

El p-value

En vez de hallar el valor crítico $t_{\frac{\alpha}{2}(n-K)}$, se calcula el p-value:

$$p = \Pr(t > |t_k|) \cdot 2$$

- Ya que la distribución t es simétrica alrededor de 0
- Aceptar H_0 si $p > \alpha$. Rechazar en otros casos.

El *p*-value

Niveles de Significancia

Nivel de Significancia	Significado
p-value > 0.10	No es significativo
$0.10 \ge p - value > 0.05$	El parámetro es significativo al 10%
$0.05 \ge p - value > 0.01$	El parámetro es significativo al 5%
$p-value \leq 0.01$	El parámetro es significativo al 1%

Referencias

Capítulo 4 y 5 - Gujarati, D., & Porter, D. (2010). Econometría (Quinta edición ed.). & P. Carril Villareal, Trad.) México: Mc Graw Hill educación.

