การแพร่ผ่านอากาศของไวรัสทางเดินหายใจ

กลไกการแพร่ผ่านอากาศ

การระบาดใหญ่ของโควิด 19 นำมาซึ่งการโต้แย้งและประเด็นที่ยังไม่ทราบแน่ชัดเกี่ยวกับการแพร่ระหว่างโฮสต์ ของจุลชีพก่อโรคทางเดินหายใจ เดิมทีเชื่อกันว่าจุลชีพก่อโรคทางเดินหายใจจะแพร่ระหว่างบุคคลผ่านละออง ของเหลวขนาดใหญ่ที่เกิดขึ้นเมื่อไอ และการสัมผัสกับพื้นผิวที่ปนเปื้อน (วัตถุปนเปื้อนเชื้อ) อย่างไรก็ตาม เป็นที่ ทราบกันว่าจุลชีพก่อโรคทางเดินหายใจหลายชนิดสามารถแพร่ผ่านละอองลอยขนาดเล็กจากการหายใจ ซึ่ง สามารถลอยและเคลื่อนที่ไปตามการใหลของอากาศและทำให้เกิดการติดเชื้อในผู้ที่สูดเข้าไป ไม่ว่าจะอยู่ใน ระยะใกล้หรือไกลจากผู้ที่ติดเชื้อ Wang และคณะ ได้พิจารณาความคืบหน้าล่าสุดในการทำความเข้าใจเกี่ยวกับ การแพร่ผ่านอากาศที่ได้จากการศึกษาการแพร่ระบาดของการติดเชื้อโคโรนาไวรัสโรคทางเดินหายใจเฉียบพลัน รุนแรง 2 (SARS-CoV-2) และจุลชีพก่อโรคทางเดินหายใจอื่นๆ ผู้จัดทำเสนอว่าการแพร่ผ่านอากาศอาจเป็น รูปแบบหลักของการแพร่สำหรับจุลชีพก่อโรคทางเดินหายใจหลายชนิดรวมถึง SARS-CoV-2 และการทำความ เข้าใจเพิ่มเดิมเกี่ยวกับกลไกต่างๆ ของการติดเชื้อผ่านอากาศจะเป็นข้อมูลที่เป็นประโยชน์สำหรับมาตรการ บรรเทาโรค

Science, abd9149 ฉบับนี้ หน้า eabd9149

บทคัดย่อแบบโครงสร้าง

ความเป็นมา

การได้รับละอองของเหลวที่เกิดขึ้นเมื่อผู้ติดเชื้อไอและจาม หรือการสัมผัสพื้นผิวที่ปนเปื้อนละออง (วัตถุปนเปื้อน เชื้อ) เป็นที่ยอมรับโดยกว้างขวางว่าเป็นรูปแบบการแพร่หลักสำหรับจุลชีพก่อโรคทางเดินหายใจ เดิมทีนิยาม ของการแพร่ผ่านอากาศจะเกี่ยวข้องกับการสูดละอองลอยหรือ "ละอองฝ่อยขนาดเล็ก" ที่แพร่เชื้อได้ซึ่งมีขนาด เล็กกว่า 5 µm และมักระบุระยะห่างจากผู้ติดเชื้อ >1 ถึง 2 เมตร และเคยเชื่อกันว่าการแพร่ดังกล่าวเกี่ยวข้องกับการติดโรค "กรณีที่ผิดปกติ" เท่านั้น อย่างไรก็ตาม มีหลักฐานที่น่าเชื่อถือซึ่งสนับสนุนการแพร่ผ่านอากาศของ ไวรัสทางเดินหายใจหลายขนิด เช่น โคโรนาไวรัสก่อโรคทางเดินหายใจเฉียบพลันรุนแรง (SARS-CoV) โรค ทางเดินหายใจตะวันออกกลาง (MERS)—CoV ไวรัสไข้หวัดใหญ่ ไรโนไวรัสในมนุษย์ และไวรัสซินไซเตียลทาง เดินหายใจ (RSV) ข้อจำกัดของมุมมองดั้งเดิมเกี่ยวกับการแพร่ผ่านละอองของเหลว วัตถุปนเปื้อนเชื้อ และผ่าน อากาศ ได้ถูกนำมาพิจารณาในระหว่างการระบาดใหญ่ของโควิด 19 การแพร่ของ SARS-CoV-2 ผ่านละอองของเหลวและวัตถุปนเปื้อนเชื้อเพียงอย่างเดียวไม่สามารถถือเป็นสาเหตุของเหตุการณ์ซูเปอร์สเปรดมากมาย และไม่สามารถอธิบายความแตกต่างของการแพร่ระหว่างสภาพแวดล้อมภายในและภายนอกอาคารที่พบใน ระหว่างการระบาดใหญ่ของโควิด 19 การโต้เถียงเกี่ยวกับรูปแบบการแพร่ของโควิด 19 และการแทรกแซงที่ต้อง ทำเพื่อควบคุมการระบาดใหญ่ได้เผยให้สามารถกำหนดกลยุทธ์ต่างๆ โดยใช้ข้อมูลที่ครอบคลุมยิ่งขึ้นเพื่อบรรเทา การแพร่ของเชื้อในทางเดินหายใจ

ดวามก้าวหน้า

ละอองของเหลวและละอองลอยจากทางเดินหายใจสามารถเกิดขึ้นได้จากกิจกรรมต่างๆ ที่เกี่ยวข้องกับการ หายใจออก ความก้าวหน้าของเทคนิคการตรวจวัดละอองลอย เช่น อากาศพลศาสตร์ และการสแกนระบุขนาด อนุภาคด้วยหลักการเคลื่อนตัว ได้ชี้ให้เห็นว่าละอองลอยส่วนใหญ่จากการหายใจออกมีขนาดเล็กกว่า 5 µm และ ส่วนใหญ่มีขนาด <1 µm สำหรับกิจกรรมที่เกี่ยวกับการหายใจส่วนใหญ่ ซึ่งรวมถึงส่วนที่เกิดขึ้นในระหว่างหายใจ การพูด และการไอ ละอองลอยที่หายใจออกมามีหลายขนาด ซึ่งเกี่ยวข้องกับตำแหน่งการเกิดและกลไกการเกิด ที่ต่างกันภายในทางเดินหายใจ แม้ก่อนหน้านี้จะใช้ขนาด 5 µm ในการแยกแยะระหว่างละอองของเหลวและ ละอองลอย แต่การแยกแยะขนาดระหว่างละอองและละอองลอยควรใช้ขนาด 100 µm ซึ่งเป็นตัวแทนของขนาด

อนุภาคที่ใหญ่ที่สุดที่สามารถลอยอยู่ในอากาศนิ่งเป็นเวลานานกว่า 5 วินาที จากความสูง 1.5 เมตร ซึ่งโดยปกติ จะไปได้ใกล[้] 1 ถึง 2 เมตรจากผู้ปล่^อย (ขึ้นอยู่กับความเร็วของการไหลของอากาศที่น้ำพาละอองลอยดังกล่าว) ้และสามารถสูดเข้าไปได้ ละอองลอยที่เกิดขึ้นจากผู้ติดเชื้ออาจมีไวรัสที่แพร่เชื้อได้ และการศึกษาได้ชี้ว่าพบ ไวรัสจำนวนมากในละอองลอยขนาดเล็ก (<5 µm) การเคลื่อนที่ของละอองลอยที่มีไวรัสได้รับผลกระทบจาก คุณสมบัติทางเคมีกายภาพของละอองลอยเอง และปัจจัยจากสภาพแวดล้อม เช่น อุณหภูมิ ความชื้นสัมพัทธ์ การแผ่รังสีอัลตร้าไวโอเล็ต การไหลของอากาศ และการระบายอากาศ ซึ่งเมื่อสูดเข้าไปแล้ว ละอองลอยที่มีไวรัส สามารถเกาะอยู่ในส่วนต่างๆ ของทางเดินหายใจ ละอองลอยขนาดใหญ่ขึ้นมี่แนวโน้มที่จะเกาะตัวในทางเดิน หายใจส่วนบน อย่างไรก็ตาม นอกจากละอองลอยที่มีขนาดเล็กจะสามารถเกาะที่นี่ได้ พวกมันยังสามารถเข้าไป ียังส่วนลึกในบริเวณถงลมปอดได้ ผลกระทบที่ชัดเจนของการระบายอากาศขณะที่มีการแพร่ ความแตกต่างที่ ้เด่นชัดระหว่างการแพร่เชื้อภายในและภายนอกอาคาร การแพร่ระยะไกลที่มีการบันทึกไว้อย่างชัดเจน การแพร่ ของ SARS-CoV-2 ที่พบได้แม้จะใช้หน้ากากอนามัยและอุปกรณ์ป้องกันดวงตา การเกิดเหตุการณ์ซูเปอร์สเปรด ภายในอาคารในอัตราที่สูงมากของ SARS-CoV-2 การทดลองในสัตว์ และการจำลองการไหลของอากาศ ์ทั้งหมดนี้คือหลักฐานของการแพร่ผ่านอากาศที่มีน้ำหนักและไร้ข้อสงสัย พบว่าการแพร่ของ SARS-CoV-2 ผ่าน วัตถุปนเปื้อนเชื้อเป็นรูปแบบที่มีประสิทธิภาพต่ำกว่ามาก และการแพร่ผ่านละอองของเหลวจะเป็นรูปแบบหลัก ้เมื่อบุคคลอยู่ในระยะไม่เกิน 0.2 เมตรขณะที่พูดคุยเท่านั้น แม้ละอองของเหลวและละอองลอยต่างเกิดขึ้นจากผู้ ็ติดเชื้อในระหว่างกิจกรรมที่มีการหายใจออก แต่ละอองของเหลวจะหล่นลงส่พื้นหรือบนพื้นผิวต่างๆอย่างรวดเร็ว ภายในไม่กี่วินาที ทำให้ละอองลอยมีจำนวนมากกว่าอย่างมาก การแพร่ผ่านอากาศน่าจะมีส่วนในการแพร่ของ ไวรัสทางเดินหายใจอื่นๆ ที่ก่อนหน้านี้ระบุว่ามีรูปแบบการแพร่ผ่านละอองของเหลว องค์การอนามัยโลก (WHO) และศูนย์ควบคุมและป้องกันโรคสหรัฐอเมริกา (CDC) ได้ยอมรับอย่างเป็นทางการว่าการสูดละอองลอยที่มีไวรัส ้เป็นรูปแบบการแพร่หลักในการระบาดของโควิด 19 ทั้งในระยะใกล้และระยะไกลในปี 2021

แนวโน้มในอนาคต

การแพร่ผ่านอากาศของจุลชีพก่อโรคต่างๆ ถือว่าได้รับความสำคัญน้อยมาก โดยส่วนใหญ่เนื่องจากความเข้าใจที่ ไม่เพียงพอเกี่ยวกับพฤติกรรมของละอองลอยเมื่อผ่านอากาศ และส่วนหนึ่งเนื่องจากการระบุความเกี่ยวข้องที่ไม่ ถูกต้องจากการอธิบายอย่างไม่เป็นกิจจะลักษณะ เมื่อขาดหลักฐานเกี่ยวกับการแพร่ของละอองของเหลวและวัตถุ ปนเปื้อนเชื้อ และมีหลักฐานที่ชัดเจนยิ่งขึ้นเกี่ยวกับการแพร่ผ่านละอองลอยของไวรัสทางเดินหายใจจำนวนมาก เราจะต้องตระหนักว่าการแพร่ผ่านผ่านอากาศเป็นสิ่งที่พบบ่อยกว่าที่ทราบกันก่อนหน้านี้ ข้อมูลทั้งหมดที่เราได้ ทราบเกี่ยวกับการติดเชื้อ SARS-CoV-2 ช่วยให้ทราบว่าจำเป็นจะต้องทำการประเมินการแพร่ผ่านละอองลอยของ โรคติดเชื้อในทางเดินหายใจทั้งหมดอีกครั้ง จะต้องใช้มาตรการป้องกันเพิ่มเติมเพื่อบรรเทาการแพร่ผ่านละออง ลอยทั้งระยะใกล้และระยะไกล โดยให้ความสำคัญเป็นพิเศษเกี่ยวกับการระบายอากาศ การไหลของอากาศ การ กรองอากาศ การฆ่าเชื้อด้วยรังสี UV และความพอดีของหน้ากากอนามัย การแทรกแซงเหล่านี้เป็นเครื่องมือที่ จำเป็นอย่างยิ่งเพื่อยูดิการระบาดใหญ่ในปัจจุบันรวมถึงเพื่อป้องกันการแพร่ระบาดในอนาคต

ระยะที่เกี่ยวข้องในการแพร่ผ่านอากาศของไวรัสทางเดินหายใจ

ละอองลอยที่มีไวรัส (<100 I1/4m) ก่อเกิดจากผู้ติดเชื้อผ่านกิจกรรมที่เกี่ยวข้องกับการหายใจออก ซึ่งละอองจะถูกปล่อยจาก การหายใจออกและเคลื่อนที่ในสภาพแวดล้อม ละอองเหล่านี้อาจถูกผู้ที่อาจเป็นโฮสต์สูดเข้าไป และเริ่มการติดเชื้อครั้งใหม่หาก ละอองยังคงมีสภาพแพร่เชื้อได้ เมื่อเทียบกับละอองของเหลว (>100 I1/4m) ละอองลอยสามารถลอยอยู่ในอากาศได้หลาย ชั่วโมง และเคลื่อนที่จากผู้ติดเชื้อที่ปล่อยละอองจากการหายใจออกได้ไกลกว่าระยะ 1 ถึง 2 เมตร ซึ่งทำให้เกิดการติดเชื้อราย ใหม่ได้ทั้งระยะใกล้และระยะไกล

เครดิต: N.CARY/SCIENCE

บทคัดย่อ

การระบาดใหญ่ของโควิด 19 ได้เผยให้เห็นถึงช่องโหว่ด้านความรู้ที่สำคัญในความเข้าใจของเรา และความ จำเป็นในการปรับเปลี่ยนทัศนคติแบบเดิมเกี่ยวกับรูปแบบการแพร่ของไวรัสทางเดินหายใจ คำจำกัดความที่ใช้กัน มานานสำหรับการแพร่ผ่านละอองของเหลวและผ่านอากาศไม่ได้พิจารณาถึงกลไกการเคลื่อนที่ผ่านอากาศและ ทำให้เกิดการติดเชื้อของละอองและละอองลอยจากการหายใจที่มีไวรัส ในบทวิจารณ์นี้เราจะอภิปรายถึง หลักฐานในปัจจุบันเกี่ยวกับการแพร่ของไวรัสทางเดินหายใจผ่านละอองลอย ทั้งรูปแบบการก่อเกิด การเคลื่อนที่ และการเกาะ รวมถึงปัจจัยที่ส่งผลเชิงสัมพัทธ์ต่อรูปแบบการแพร่โดยการเกาะของละอองที่พ่นออกมา เปรียบเทียบกับการสูดละอองลอย เพื่อทำความเข้าใจมากขึ้นเกี่ยวกับการแพร่ผ่านละอองลอยจากการศึกษาการ ติดเชื้อโคโรนาไวรัสก่อโรคทางเดินหายใจเฉียบพลันรุนแรง 2 (SARS-CoV-2) จะต้องมีการประเมินรูปแบบการ แพร่หลักสำหรับไวรัสทางเดินหายใจชนิดอื่นๆ อีกครั้ง ซึ่งจะช่วยให้สามารถควบคุมโรคโดยใช้ข้อมูลที่ครอบคลุม ยิ่งขึ้นเพื่อที่จะลดการแพร่ผ่านอากาศ

ดลอดศตวรรษที่ผ่านมา เป็นที่เข้าใจว่าไวรัสทางเดินหายใจมีการแพร่ส่วนใหญ่ผ่านละอองของเหลวจากการ หายใจขนาดใหญ่ที่เกิดขึ้นจากการไอและจามของผู้ติดเชื้อ ซึ่งเกาะบนเนื้อเยื่อเมือกของดวงตา จมูก หรือปาก ของผู้ที่อาจเป็นโฮสต์ (การแพร่ผ่านละอองของเหลว) หรือเกาะบนพื้นผิวที่ผู้อาจเป็นโฮสต์สัมผัสและถูกนำไปยัง เนื้อเยื่อเมือกต่อไป (การแพร่ผ่านวัตถุปนเปื้อนเชื้อ) เชื่อกันว่าละอองของเหลวดังกล่าวจะตกลงสู่พื้นภายในระยะ 1 ถึง 2 เมตรของผู้ที่แพร่เชื้อได้ ซึ่งเป็นสมมติฐานหลักที่หน่วยงานสาธารณสุขส่วนใหญ่ใช้เพื่อแนะนำในการเว้น ระยะห่างที่ปลอดภัยจากผู้ที่ดิดไวรัสทางเดินหายใจ การแพร่ผ่านอากาศซึ่งเชื่อว่าพบได้น้อยกว่า หมายถึงการสูด ละอองลอยหรือ "ละอองฝอยขนาดเล็ก" (ละอองที่ระเหยในอากาศ) ที่แพร่เชื้อได้ ซึ่งมักนิยามด้วยขนาดที่เล็ก กว่า 5 µm และมีระยะการเคลื่อนที่ >1 ถึง 2 เมตรจากผู้ติดเชื้อ ละอองลอยคืออนุภาคของเหลว ของแข็ง หรือ กึ่งแข็ง ที่มีขนาดเล็กมากจนสามารถลอยค้างในอากาศได้ ละอองลอยจากการหายใจจะเกิดขึ้นในระหว่าง กิจกรรมที่เกี่ยวข้องกับการหายใจออกทั้งหมด เช่น การหายใจ การพูด การร้องเพลง การตะโกน การไอ และการ จาม ทั้งจากผู้ที่มีสุขภาพดีและผู้ที่มีการติดเชื้อในทางเดินหายใจ (1-4)

คำนิยามดั้งเดิมของการแพร่ผ่านอากาศไม่ได้พิจารณาถึงความเป็นไปได้ที่ละอองลอยจะถูกสูดเข้าไปในระยะใกล้ กับผู้ติดเชื้อ ซึ่งมีแนวโน้มที่จะได้รับเชื้อสูงกว่าเนื่องจากละอองลอยที่หายใจออกมาจะมีความเข้มขันสูงใน ระยะใกล้ผู้ที่ปล่อยละอองลอยออกมา นอกจากนี้ เมื่อไม่นานมานี้ได้มีการเสนอให้เปลี่ยนคำจำกัดความเดิมที่ใช้ แยกแยะระหว่างขนาดอนุภาคละอองของเหลวและละอองลอย จาก 5 µm เป็น 100 µm เนื่องจากเป็นขนาดที่ สามารถแยกแยะละอองสองชนิดดังกล่าวตามพฤติกรรมทางอากาศพลศาสตร์ (5–7) โดยเฉพาะอย่างยิ่ง ขนาด 100 µm เป็นขนาดของอนุภาคขนาดใหญ่ที่สุดที่สามารถลอยอยู่ในอากาศเป็นเวลา >5 วินาที (จากความสูง 1.5 เมตร) และเคลื่อนที่จากผู้ที่แพร่เชื้อได้เป็นระยะมากกว่า 1 เมตร และสามารถสูดเข้าไปได้ แม้ละอองของเหลวที่ เกิดขึ้นเมื่อผู้ที่แพร่เชื้อได้ไอหรือจามอาจทำให้เกิดการติดเชื้อที่ระยะใกล้ (<0.5 เมตร) แต่จำนวนละอองและ ปริมาณไวรัสของละอองลอยที่เกิดขึ้นจากการพูดและกิจกรรมที่เกี่ยวข้องกับการหายใจออกอื่นๆ มีจำนวน มากกว่าละอองของเหลวเหล่านี้มาก (8–10) ละอองลอยมีขนาดเล็กเพียงพอที่จะลอยนิ่งในอากาศ สะสมใน สถานที่ที่อากาศถ่ายเทไม่สะดวก และสูดเข้าไปทั้งในระยะใกล้และระยะไกล ทำให้จำเป็นอย่างเร่งด่วนที่จะต้อง ระบุข้อควรระวังเกี่ยวกับละอองลอยไว้ในระเบียบว่าด้วยการควบคุมโรคระบบทางเดินหายใจในปัจจุบัน ในระหว่าง การระบาดใหญ่ของโควิด 19 การควบคุมต่างๆ ได้มุ่งเน้นการป้องกันการแพร่ผ่านละอองของเหลวและวัดถุ ปนเปื้อนเชื้อ ในขณะที่ยังไม่มีหลักฐานของการแพร่ผ่านอากาศเพียงพอที่ทำให้ต้องเพิ่มมาตรการควบคุมเพื่อ ป้องการการแพร่ผ่านรูปแบบดังกล่าว

ได้มีการอภิปรายเกี่ยวกับความสำคัญสัมพัทธ์ของการแพร่รูปแบบต่างๆ ในการระบาดของโรคระบบทางเดิน หายใจเป็นเวลาตลอดหลายศตวรรษ ก่อนศตวรรษที่ 20 เป็นที่เข้าใจกันว่าโรคระบบทางเดินหายใจจากเชื้อโรคมี การแพร่ผ่าน "อนุภาคนำโรคติดต่อ" ที่ผู้ติดเชื้อปล่อยออกมา (*11, 12*) แนวคิดเกี่ยวกับการแพร่ผ่านอากาศได้ ถูกปฏิเสธในช่วงต้นศตวรรษที่ 19 โดย Charles Chapin ซึ่งอ้างว่าการสัมผัสเป็นรูปแบบหลักของการแพร่ของ โรคระบบทางเดินหายใจ โดยมีการแพร่ผ่านละอองที่พ่นออกมา (ละอองของเหลว) เป็นส่วนเสริมการแพร่ผ่าน การสัมผัส (13) Chapin กังวลว่าการกล่าวถึงการแพร่ทางอากาศอาจทำให้ผู้คนหวาดกลัวที่จะทำกิจกรรมและ ละเลยหลักปฏิบัติด้านสุขศาสตร์ Chapin สรุปอย่างไม่ถูกต้องว่าการติดเชื้อในระยะใกล้คือการแพร่จากละออง ของเหลวเท่านั้น โดยละเลยข้อเท็จจริงที่ว่าการแพร่ของละอองลอยสามารถเกิดขึ้นในระยะใกล้ได้เช่นกัน สมมติฐานที่ไม่มีข้อมูลรองรับนี้ได้กลายเป็นที่แพร่หลายในการศึกษาด้านระบาดวิทยา (14) และกลยุทธ์การ บรรเทาโรคเพื่อควบคุมการแพร่ของไวรัสทางเดินหายใจก็มุ่งเน้นการจำกัดการแพร่ผ่านละอองของเหลวและวัตถุ ปนเปื้อนเชื้อนับตั้งแต่นั้นเป็นต้นมา (15) กลยุทธ์เหล่านี้บางส่วนได้ผลในระดับหนึ่งในการจำกัดการแพร่ผ่านละอองของเหลว

แม้คาดว่าการแพร่เกิดจากละอองของเหลวเป็นหลัก แต่มีหลักฐานที่น่าเชื่อถือของการแพร่ผ่านอากาศของไวรัส ทางเดินหายใจหลายชนิด เช่น ไวรัสโรคหัด (*16*–*18*) ไวรัสปิ๊ข้หวัดใหญ่ (*19–24*) ไวรัสซินไซเตียลทางเดิน หายใจ (RSV) (25) ไรโนไวรัสในมนุษย์ (hRV) (9, 26-28) อะดีโนไวรัส เอนเทอโรไวรัส (29) โคโรนาไวรัส ก่อโรคทางเดิ้นหายใจเฉียบพลันรุนแรง (SARS-CoV) (*30, 31*) โคโรนาไวรัสโรคทางเดินหายใจตะวันออกกลาง (MERS-CoV) (*32*) และ SARS-CoV-2 (*33–36*) (ตาราง 1) การศึกษาครั้งหนึ่งในสภาพครัวเรือนระบุว่าการ ์แพร่ผ่านอากาศมีสัดส่วนประมาณครึ่งหนึ่งของก**ารแพร่ของ**ไวรัสไข้หวัดใหญ่ชนิด A (*20*) การศึกษาดั่วยการ ทดสอบติดเชื้อจริงในมนษย์เพื่อศึกษาการแพร่ของไรโนไวรัสครั้งหนึ่งได้สรปว่าละอองลอยน่าจะเป็นรปแบบการ แพร่หลัก (*26*) การติดเชื้อ SARS-CoV-2 ของหนูแฮมสเตอร์และเฟร์ริตได้ชี้ให้เห็นว่ามีการแพร่ผ่าน[้]อากาศใน สภาวะทดลองที่ออกแบบมาเพื่อละเว้นปัจจัยร่วมของการแพร่เนื่องจากการสัมผัสเชื้อโดยตรงและจากละออง ของเหลว (*33, 37, 38*) การวิเคราะห์การปล่อยอนุภาคจากการหายใจในระหว่างที่ติดไวรัสไข้หวัดใหญ่ ไวรัส พาราอินฟลูเอนซา RSV เมตานิวโมไวรัสในมนุษย์ และ hRV ได้เผยให้เห็นการปรากฏของจีโนมไวรัสในละออง ็ลอยที่มีขนาดหลากหลาย ซึ่งตรวจพบมากที่สุดในละอองลอยขนาด <5 µm แทนที่จะเป็นละอองลอยขนาดใหญ่ (*39*) มีการตรวจพบ RNA ของ SARS-CoV-2 และสามารถเก็บไวรัสแพร่เชื่อได้จากละอองลอยที่มีขนาดตั้งแต่ 0.25 ถึง >4 µm (*34, 35, 40–44*) และยังตรวจพบ RNA ของไวรัสไข้หวัดใหญ่ทั้งในละอองลอยชนิดละเอียด ์ (≤5 µm) และชนิดหยาบ (>5 µm) ที่ผู้ติดเชื้อหายใจออกมา โดยมีจำนวน RNA ของไวรัสในอนุภาคละอองลอย ชนิดละเอียดมากกว่า (*23*) การศึกษาในห้องทดลองพบว่า SARS-CoV-2 ที่อย่ในละอองลอยมีค่าครึ่งชีวิต ประมาณ 1 ถึง 3 ชั่วโมง (*45–47*) องค์การอนามัยโลก (WHO) และศูนย์ควบคุมและป้องกันโรคสหรัฐอเมริกา (CDC) ได้ยอมรับอย่างเป็นทางการ์ว่าการสูดละอองลอยที่มีไวรัสเป็นรูปแบบการแพร่หลักของ SARS-CoV-2 ทั้ง ในระยะใกล้และระยะไกล เมื่อเดือนเมษาย^{ู้}นและพฤษภาคมปี 2021 ต[้]มลำดับ (*48, 49*)

ตาราง 1 การแพร่ผ่านอากาศของไวรัสทางเดินหายใจ

หลักฐานที่เป็นตัวแทนของการแพร่ผ่านอากาศสำหรับไวรัสทางเดินหายใจชนิดต่างๆ และค่าการระบาดพื้นฐานของแต่ละชนิด เซลล์ที่ขีดไว้หมายถึงไม่มี ข้อมูล

	ขอบเขตของการศึกษาและวิธีการ							
ชื่อไวรัส	การเก็บ ตัวอย่างใน อากาศและ PCR	การเก็บ ตัวอย่างใน อากาศและการ เพาะเชลล์	โมเดล สัตว์	การศึกษาใน ห้องทดลอง หรือทาง คลินิก	การวิเคราะห์ ทางระบาด วิทยา	การจำลอง และสร้าง โมเดล	ข้อมูลระบุ ขนาด	ค่าการระบาด พื้นฐาน (R0)
SARS-CoV	-31	-31	_	-30	-30	-30	_	2.0–3.0 (<i>197</i>)
MERS-CoV	-32	(32, 103)	(103, 198)	-32	_	_	_	0.50–0.92 (<i>197</i>)
SARS-CoV-2	(41–44)	(34, 35, 40)	(33, 37, 199)	(<i>34, 45,</i> <i>107</i>)	(<i>36, 64,</i> 71, 72, 186)	(<i>36, 50</i>)	(34, 41, 43)	1.4–8.9 (<i>57, 58</i>)
ไวรัสไข้หวัดใหญ่	(<i>22, 23,</i> 98, 102, 106)	(<i>23, 98,</i> <i>101</i>)	(<i>24</i> , <i>137</i> , <i>200</i> , <i>201</i>)	(24, 138, 202, 203)	-20	(20, 114, 204)	(23, 105, 106)	1.0–21 (<i>205</i>)
ไรโนไวรัส	(9, 27)	(26, 28)	_	(<i>26–28</i>)	_	-27	-9	1.2–2.7 (<i>205</i>)
ไวรัสโรคหัด	-16	-16	_	_	-17	-17	-16	12–18 (<i>206</i>)
ไวรัสซินไซเตียล ทางเดินหายใจ (RSV)	-102	-25	_	-25	_	_	-25	0.9–21.9 (<i>205</i>)

แบบจำลองทางคณิตศาสตร์ของการรับจุลชีพก่อโรคทางเดินหายใจสนับสนุนว่าการแพร่ส่วนใหญ่คือการสุด ละอองลอยในระยะใกล้ ภายในระยะไม่เกิน 2 เมตรจากผู้ที่แพร่เชื้อได้ และละอองของเหลวจะเป็นปัจจัยหลักเมื่อ บุคคลอยู่ภายในระยะ 0.2 เมตรขณะพูดคุย หรือระยะ 0.5 เมตรเมื่อไอ (50) การอธิบายอย่างไม่เป็นกิจจะลักษณะ เกี่ยวกับการติดไวรัสโรคหัด (16–18) และ *ไมโคแบคทีเรียมทูเบอร์คูโลซิส* (51, 52) ในระยะใกล้ ซึ่งก่อนหน้า นี้ระบุสาเหตุว่าเกิดจากละอองของเหลวเพียงอย่างเดียวนั้นรวมถึงการแพร่จากละอองลอยในระยะใกล้ด้วย จำเป็นต้องมีการศึกษาเพิ่มเติมเกี่ยวกับโรคระบบทางเดินหายใจที่ก่อนหน้านี้ระบุว่ามีการแพร่ในรูปแบบละอองของเหลว เนื่องจากมีความเป็นไปได้ที่การแพร่ผ่านอากาศจะมีส่วนสำคัญหรืออาจเป็นรูปแบบส่วนใหญ่ของการ แพร่ดังกล่าว

ในช่วงเริ่มแรกของการระบาดใหญ่ของโควิด 19 สันนิษฐานกันว่าละอองของเหลวและวัตถุปนเปื้อนเชื้อคือ เส้นทางการแพร่หลัก โดยพิจารณาจากค่าการระบาดพื้นฐาน (R₀) ซึ่งค่อนข้างต่ำเมื่อเปรียบเทียบกับโรคหัด (53–55) (ตาราง 1) ค่า R₀ คือจำนวนเฉลี่ยของการติดเชื้อทุติยภูมิที่เกิดขึ้นเนื่องจากผู้ติดเชื้อปฐมภูมิในกลุ่ม ประชากรที่มีโอกาสติดเชื้อเทียบเท่ากัน ข้อคิดเห็นนี้ตั้งอยู่บนข้อมูลที่เชื่อกันมานานว่าโรคที่แพร่ผ่านอากาศ ทั้งหมดจะต้องติดต่อได้ง่ายมาก อย่างไรก็ตาม สมมติฐานดังกล่าวไม่มีพื้นฐานทางวิทยาศาสตร์รองรับ เนื่องจาก โรคที่ติดต่อผ่านอากาศมีช่วงค่า R₀ ที่ไม่สามารถแสดงได้ด้วยค่าเฉลี่ยเพียงค่าเดียว แต่ขึ้นอยู่กับปัจจัยมากมาย เช่น วัณโรค (R₀, 0.26 ถึง 4.3) เป็นโรคติดเชื้อแบคทีเรียที่ติดต่อผ่านอากาศเพียงอย่างเดียว (56) แต่มีการแพร่ ต่ำกว่าโควิด 19 (R₀, 1.4 ถึง 8.9) (57–59) ปัจจัยที่ส่งผลต่อการแพร่ผ่านอากาศได้แก่ ปริมาณไวรัสที่อยู่ใน อนุภาคจากทางเดินหายใจซึ่งมีขนาดแตกต่างกัน เสถียรภาพของไวรัสในละอองลอย และความสัมพันธ์ระหว่าง ปริมาณไวรัสและการตอบสนองสำหรับไวรัสแต่ละชนิด (ความน่าจะเป็นของการติดเขื้อเมื่อได้รับไวรัสจำนวนหนึ่ง ผ่านรูปแบบการได้รับที่เฉพาะเจาะจง) นอกจากนี้ R₀ เป็นค่าเฉลี่ย และค่าการแพร่ของโควิด 19 มีลักษณะกระจัด กระจายอย่างมาก ซึ่งหมายความว่าอาจติดต่อได้ง่ายมากในบางสถานการณ์ การศึกษาด้านระบาดวิทยาพบว่า 10 ถึง 20% ของผู้ติดเชื้อจะทำให้เกิดการติดเชื้อสืบเนื่อง 80 ถึง 90% สำหรับ SARS-CoV-2 ซึ่งเน้นให้เห็นถึงความ ไม่เป็นเอกพันธ์ของอัตราโจมจับทุติยภูมิ (สัดส่วนของผู้ที่ได้รับเชื้อและติดเชื้อ) (60–63)

้ได้มีการวิจัยจำนวนมากเกี่ยวกับโควิด 19 ซึ่งทำให้พบหลักฐานมากมายเกี่ยวกับความเป็นรูปแบบหลักของการ แพร่ผ่านอากาศของ SARS-CoV-2 รูปแบบการแพร่ดังกล่าวเป็นรูปแบบหลักภายใต้ปัจจัยสภาพแวดล้อมที่เจาะจง ์ โดยเฉพาะสภาพแวดล้อมภายในอาคารซึ่งอากาศถ่ายเทไม่ส^ะดวก (*6, 34, 35, 41, 42, 45, 50, 64–68*) ้ซึ่งข้อมูลที่พบนี้หมายถึงละอองลอยเพียงอย่างเดียว เนื่องจากละอองลอยเป็นการแพร่เพียงรูปแบบเดียวที่ได้รับ ผลกระทบจากการระบายอากาศ ในขณะที่การแพร่ผ่านละอองขนาดใหญ่หรือพื้นผิววัสดุไม่ได้รับผลกระทบใดๆ ็นอกจากนี้ การแพร่ผ่านอากาศคือเหตุผลเดียวที่สามารถอธิบายสาเหตุที่อัตราการแพร่ภายในและภายนอกอาคาร ้มีความแตกต่างอย่างชัดเจน ทั้งนี้เนื่องจากละอองขนาดใหญ่ซึ่งวิถีการเคลื่อนที่ได้รับผลกระทบจากแรงโน้มถ่วง โดยที่ไม่ได้รับผลกระทบจากการระบายอากาศ มีลักษณะตรงกันในทั้งสองกรณี (*69*) การวิเคราะห์ทางระบาด วิทยารูปแบบต่างๆ ทั้งการจำลองโมเดลการไหลของอากาศ การทดลองติดตามเส้นทางอนุภาค รวมถึงการ ีวิเคราะห์และการสร้างโมเดลเหตุการณ์ซูเปอร์สเปรดในร้านอาหาร (*36*) ในโรงงานบรรจุเนื้อ (*70*) บนเรือสำราญ (*71*) ในระหว่างการซ้อมร้องเพลงของวงประสานเสียง (*64*) และการแพร่เป็นระยะไกลในโบสถ์ (*72*) ทั้งหมด ้ล้วนบ่งบอกว่าละอองลอยน่าจะเป็นรูปแบบการแพร่หลักมากกว่าวัตถุปนเปื้อนเชื้อและละอองของเหลว มีความ เป็นไปได้ยากที่ผู้คนส่วนมากในเหตุการณ์เหล่านี้จะสัมผัสพื้นผิวปนเปื้อนเดียวกันหรือได้รับละอองของเหลวจาก การไอหรือจามของผู้ที่แพร่เชื้อได้ในระยะใกล้และยังได้รับปริมาณไวรัสที่มากพอที่จะทำให้เกิดการติดเชื้อ ้อย่างไรก็ตาม ปัจจัยร่วมอย่างหนึ่งของทกคนที่อย่ในเหตุการณ์ภายในอาคารเหล่านี้ก็คือ พวกเขาหายใจใน อากาศภายในห้องเดียวกัน สิ่งที่เหมือนกันระหว่างเหตุการณ์ซูเปอร์สเปรดก็คือ เป็นสถานที่ภายในอาคาร มีคน ้จำนวนมาก ระยะเวลาการได้รับเชื้อ 1 ชั่วโมงขึ้นไป มีการระบายอากาศที่ไม่ดี มีการใช้เสียง และไม่มีการสวม หน้ากากอนามัยอย่างเหมาะสม (*36*) เมื่อการแพร่ผ่านละอองของเหลวเป็นรูปแบบหลักสำหรับผู้ที่อยู่ภายในระยะ 0.2 เมตรขณะพูดคุย (*50*) และการแพร่ของ SARS-CoV-2 ผ่านพื้นผิวที่มีการปนเปื้อนมีความเป็นไปได้น้อย (*73–75*) ดังนั้นเหตุผลเดียวที่สามารถอธิบายเหตุการณ์ซูเปอร์สเปรดได้ก็คือจะต้องมีละอองลอยเป็นหนึ่งใน รปแบบของการแพร่ด้วย

ในการกำหนดคำแนะนำและนโยบายที่ได้ผลในการป้องกันการแพร่ผ่านอากาศของไวรัสทางเดินหายใจ เป็นเรื่อง สำคัญที่จะต้องทำความเข้าใจเกี่ยวกับกลไกที่เกี่ยวข้องให้มากยิ่งขึ้น การแพร่ผ่านอากาศจะเกิดขึ้นได้ก็ต่อเมื่อมี ละอองลอยเกิดขึ้น มีการเคลื่อนที่ผ่านอากาศ โฮสต์ที่มีโอกาสติดเชื้อสูดเข้าไป และมีการเกาะตัวในทางเดิน หายใจเพื่อเริ่มต้นกระบวนการติดเชื้อ ไวรัสจะต้องยังคงอยู่ในสภาพแพร่เชื้อได้ตลอดกระบวนการเหล่านี้ ในบท ้วิจารณ์นี้เราได้อภิปรายถึงกระบวนการต่างๆ ที่เกี่ยวข้องในการก่อเกิด การเคลื่อนที่ และการเกาะตัวของละออง ลอยที่มีไวรัส เช่นเดียวกับพารามิเตอร์ที่สำคัญซึ่งมีอิทธิพลต่อกระบวนการเหล่านี้ ซึ่งเป็นข้อมูลที่จำเป็นสำหรับ การกำหนดมาตรการควบคุมการติดเชื้ออย่างได้ผล (ภาพประกอบ **1**)

ระยะที่เกี่ยวข้องในการแพร่ผ่านอากาศของละอองลอยที่มีไวรัสได้แก่ (i) การก่อเกิดและการหายใจออก (ii) การ

เคลื่อนที่ และ (iii) การสูดละออง การเกาะตัว และการติดเชื้อ แต่ละระยะได้รับผลกระทบจากปัจจัยทางอากาศ พลศาสตร์ กายวิภาคศาสตร์ และสภาพแวดล้อมต่างๆ (ขนาดของละอองลอยที่มีไวรัสไม่ตรงตามมาตราส่วน)

การก่อเกิดละอองลอยที่มีไวรัส

้กิจกรรมที่มีการหายใจออกก่อให้เกิดละอองลอยจากส่วนต่างๆ ภายในทางเดินหายใจ โดยมีกลไกที่แตกต่างกัน ไป ละอองลอยที่เกิดขึ้นจากกิจกรรมต่างๆ เช่น การหายใจ การพูด และการไอ มีสัดส่วนของขนาดละอองลอย ี และความเร็วของการไหลของอากาศแตกต่างกันไป (*76, 77*) ซึ่งเป็นสิ่งที่ควบคุมประเภทและปริมาณของไวรัส ้ที่มีอยู่ในละอองลอยแต่ละอนุภาค ระยะเวลาที่อยู่ในอากาศ ระยะทางที่เคลื่อนที่ และยังส่งผลถึงตำแหน่งการ ้ เกาะตัวภายในทางเดินหายใจของผู้ที่สูดละอองเหล่านี้เข้าไปในที่สุด (*78*) ละอองลอยที่ผู้ติดเชื้อปล่อยออกมา อาจมีไวรัส (*39, 79*–*81*) เช่นเดียวกับอิเล็กโทรไลต์ โปรตีน สารลดแรงตึงผิว และองค์ประกอบอื่นๆ ภายใน ของเหลวซึ่งปกคลุมอยู่บนพื้นผิวของทางเดินหายใจ (*82, 83*) (<u>ภาพประกอบ 2</u>)

คุณสมบัติทางเคมีกายภาพของละอองลอยที่มีไวรัส:

- ขนาด
- ปริมาณไวรัสและความสามารถในการแพร่
- องค์ประกอบทางเคมีอื่น ๆ:
 อิเล็กโทรไลต์ โปรตีน สารลดแรงตึงผิว
- ค่า pH
- ประจุไฟฟ้า
- คุณสมบัติส่วนสัมผัสอากาศ/ของเหลว

ภาพประกอบ 2 คุณสมบัติทางเคมีกายภาพของละอองลอยที่มีไวรัส

พฤติกรรมและสิ่งที่เกิดขึ้นกับละอองลอยที่มีไวรัสจะไดู้รับผลกระทบโดยปกติจาุกคุณสมบัติเฉพาะ เช่น ขนาด ทางกายภาพ ปริมาณไวรัส ความสามารถในการแพร่เชื้อ องค์ประกอบทางเคมีอื่นๆ ในละอองลอย ประจุไฟฟ้า สถิต pH และคณสมบัติของส่วนสัมผัสระหว่างอากาศ-ของเหลว

ตำแหน่งก่อเกิดละอองลอย

ละอองลอยจากทางเดินหายใจสามารถแบ่งออกเป็นละอองลอยจากถุงลมปอด หลอดลมฝอย หลอดลม กล่อง เสียง และปาก ขึ้นอยู่กับตำแหน่งที่ก่อเกิดละอองลอยเหล่านี้ (*3, 84, 85*) ละอองลอยจากหลอดลมฝอยจะก่อ ตัวขึ้นในระหว่างการหายใจตามปกติ (*3*) ในระหว่างที่หายใจออก ฟิล์ม*้*ของเหลวที่เคลือบพื้นผิวภายในท่อ หลอดลมฝอยจะขาดออกและทำให้เกิดละ้อองลอยขนาดเล็ก ละอองลอยดังกล่าวจะเกิดขึ้นเนื่องจากแรงเฉือน ้ซึ่งทำให้ส่วนสัมผัสระหว่างอากาศ-ของเหลวหรืออากาศ-เมือกไม่เสถียร การไหลของอากาศจากการหายใจมักมี ลักษณะปั่นป่วนเมื่ออากาศไหลด้วยความเร็วสูง โดยเฉพาะในท่อขนาดใหญ่ของทางเดินหายใจส่วนบน ในขณะ ์ ที่ภายในหลอดลมและหลอดลมฝอยจะมีการไหลแบบราบเรียบ (*76, 86*–*88*) ละอองลอยจากกล่องเสียงจะ ้เกิดขึ้นจากการสั่นสะเทือนของเส้นเสียงในระหว่างที่ใช้เสียง (3) เส้นเสียงอยู่ในตำแหน่งเคียงข้างกันซึ่งทำให้ ้เกิดของเหลวที่เชื่อมถึงกัน และจะระเบิดออกกลายเป็นละอองลอยในระหว่างการหายใจออก เมื่อเทียบกันแล้ว ละอองของเหลว (>100 µm) โดยส่วนใหญ่จะเกิดขึ้นจากน้ำลายภายในช่องปาก (*3*) อัตราการปล่อยละออง ้ลอยจะเพิ่มขึ้นตามความเร็วข**้องการไหลของอากาศและความดังของเสียงในก**ิจกรร[ิ]มต่างๆ เช่น การร้องเพลง และการตะโกน (*9*, *89*, *90*)

จำนวนและการแจกแจงขนาด

ขนาดของละอองลอยที่หายใจออกมาเป็นหนึ่งในคุณสมบัติที่ส่งผลมากที่สุดต่อสิ่งที่จะเกิดขึ้นกับละอองเหล่านี้ เนื่องจากไม่เพียงขนาดจะส่งผลต่อลักษณะทางอากาศพลศาสตร์เท่านั้น แต่ยังส่งผลถึงพลวัตในการเกาะตัว รวม ไปถึงตำแหน่งที่เกิดการติดเชื้อด้วย ได้มีการสังเกตการแจกแจงของขนาดละอองลอยจากทางเดินหายใจ ้นับตั้งแต่ทศวรรษที่ 1890 ด้วยวิธีการต่างๆ เช่น กล้องจุลทรรศน์แบบใช้แสง การถ่ายภาพความเร็วสูง และต่อมา คือเทคนิคการตรวจจับด้วยเลเซอร์ (*1, 2, 91*) การศึกษาในช่วงเริ่มแรกจะใช้เทคนิคการตรวจวั๊ดและวิธีการ วิเคราะห์ที่ไม่สามารถตรวจจับละออง[ิ]ลอย[์]ที่มีข*้*นาด <5 µm ได้ (*1, 92*) แต่อุปกรณ์ในปัจจุบัน เช่น ระบบการ วิเคราะห์ทางอากาศพลศาสตร์และการสแกนระบุขนาดอนุภาคด้วยหลักการเคลื่อนตัว ได้ช่วยให้สามารถตรวจจับ ละอองลอยที่มีขนาดเล็กกว่านั้นได้ ละอองลอยจากทางเดินหายใจทำให้เกิดการกระจายตัวของขนาดเป็นกลุ่มๆ ซึ่งมีจำนวนสูงสุดที่ขนาดประมาณ 0.1 µm, 0.2 ถึง 0.8 µm, 1.5 ถึง 1.8 µm และ 3.5 ถึง 5.0 µm ซึ่งแต่ละกลุ่ม มาจากตำแหน่งก่อเกิด กระบวนการก่อเกิด และกิจกรรมการหายใจออกที่แตกต่างกันไป (2, 8, 9, 85, 91, 93) กลุ่มที่มีขนาดเล็กคือละอองลอยที่ก่อเกิดในส่วนลึกของทางเดินหายใจ กลุ่มละอองขนาดใหญ่โดยส่วนใหญ่ก่อ เกิดจากช่องปากและริมฝีปาก โดยมีขนาดปานกลาง 145 µm ซึ่งเกิดจากการพูด และขนาด 123 µm ซึ่งเกิดจากการไอ (3) ในแง่จำนวนละออง ละอองลอยจากการหายใจออกส่วนใหญ่จะมีขนาด <5 µm และกิจกรรมเกี่ยวกับ การหายใจส่วนใหญ่จะเกิดละอองขนาด <1 µm จำนวนมาก ซึ่งรวมถึงที่เกิดขึ้นในระหว่างการหายใจ พูด และไอ (8, 9) โดยรวมแล้วการพูดทำให้เกิดละอองลอยขนาด <100 µm มากกว่าละอองของเหลวที่มีขนาด >100 µm ระหว่าง 100 ถึง 1000 เท่า (3)

การหายใจตามปกติจะพบการปล่อยละอองลอย 7200 อนุภาคต่ออากาศที่หายใจออกมาหนึ่งลิตร (9, 93) จำนวนละอองลอยที่มีไวรัสที่บุคคลหายใจออกมาจะแตกต่างกันอย่างมากในแต่ละบุคคล และยังขึ้นอยู่กับสถานะ ของโรค อายุ ดัชนีมวลกาย และภาวะทางสุขภาพที่มีอยู่เดิม (94, 95) เด็กๆ มักปล่อยละอองลอยที่มีไวรัสน้อย กว่าผู้ใหญ่ เนื่องจากปอดของเด็กยังคงอยู่ระหว่างการพัฒนา และมีหลอดลมฝอยและถุงลมปอดที่ก่อเกิดละออง ลอยได้น้อยกว่า (96) กระบวนการที่เกี่ยวข้องในการก่อเกิดละอองลอย โดยเฉพาะคุณสมบัติของของเหลวที่ เคลือบอยู่ในทางเดินหายใจซึ่งส่งผลต่อแนวโน้มที่จะแตกออกและก่อให้เกิดละอองลอย มีบทบาทสำคัญต่อ จำนวนละอองลอยที่หายใจออกมา (94) การศึกษาครั้งหนึ่งชี้ให้เห็นว่าการพูดเป็นเวลา 1 นาทีอาจทำให้เกิด ละอองลอยอย่างน้อย 1000 อนุภาค (97) แม้การไอสามารถทำให้เกิดละอองลอยจำนวนมากในระยะเวลาเพียง สั้นๆ แต่ทำให้เกิดการกระจายของละอองมากกว่าการหายใจหรือพูดอย่างต่อเนื่องอย่างมาก โดยเฉพาะสำหรับผู้ ติดเชื้อที่ไม่แสดงอาการทางคลินิก ดังนั้น การหายใจ การพูด และการใช้เสียงในรูปแบบอื่นๆ อย่างต่อเนื่องโดยผู้ ติดเชื้อ มีแนวโน้มที่จะเกิดละอองลอยที่มีไวรัสรวมเป็นจำนวนน้อยกว่าการไอที่มีความถี่น้อยกว่า

ปริมาณไวรัสของละอองลอย

ปริมาณไวรัสของละอองลอยคือปัจจัยสำคัญในการระบุว่าการแพร่ผ่านอากาศมีส่วนร่วมสัมพัทธ์ในการระบาด เพียงใด อย่างไรก็ตาม การเก็บตัวอย่างและการตรวจจับไวรัสที่เดินทางผ่านอากาศเป็นเรื่องที่ทำได้ยาก เนื่องจากความเข้มข้นของไวรัสในอากาศที่ต่ำ และยังเสียหายหรือเสื่อมสภาพได้ง่ายในระหว่างการเก็บตัวอย่าง ตัวอย่างอากาศมักถูกนำไปวิเคราะห์เพื่อหาการปรากฏของจีโนมไวรัสด้วยวิธีปฏิกิริยาลูกโซ่พอลิเมอเรสเชิง ปริมาณ (qPCR) หรือวิธี PCR ถอดรหัสย้อนกลับเชิงปริมาณ (qRT-PCR) ซึ่งมีความไวสูงมาก อย่างไรก็ตาม การ ปรากฏของสารพันธุกรรมเพียงอย่างเดียวไม่ได้บ่งบอกว่าไวรัสที่พบสามารถแพร่เชื้อได้ ความอยู่รอดของไวรัส ขึ้นอยู่กับความสมบูรณ์และการทำงานของสารจีโนม นิวคลีโอโปรตีน แคปซิด และเปลือกหุ้ม แม้มีบางการศึกษา ที่ได้ทดลองเพาะเลี้ยงไวรัสจากอากาศโดยไม่ประสบความสำเร็จ แต่การใช้วิธีการที่นุ่มนวลยิ่งขึ้น เช่น อุปกรณ์ เก็บโดยการควบแน่นของเหลว ช่วยให้สามารถตรวจจับไวรัสทางเดินหายใจที่อยู่รอดได้เป็นจำนวนมาก ซึ่ง รวมถึงไวรัสไข้หวัดใหญ่และ SARS-CoV-2 ในละอองลอย (35, 40, 98)

มีการคัดแยกไวรัสหลายชนิดจากตัวอย่างอากาศจากการหายใจและอากาศภายในอาคารได้สำเร็จ เช่น อะดีโน ไวรัส (29, 99) คอกแซกกีไวรัส (100) ไวรัสไข้หวัดใหญ่ (22, 23, 98, 101) ไรโนไวรัส (9, 26–28) ไวรัส โรคหัด (16, 17) RSV (25, 102) SARS-CoV (31) MERS-CoV (32, 103) และ SARS-CoV-2 (34, 35, 40–44) (ตาราง 1) ความเข้มข้นของ SARS-CoV-2 ในอากาศภายในห้องของโรงพยาบาลที่มีผู้ป่วยโควิด 19 สอง คนจะอยู่ระหว่าง 6 ถึง 74 TCID₅๑ ต่อลิตร (ปริมาณเชื้อที่ทำให้เกิดโรคต่อลิตรมัธยฐานในการเพาะเลี้ยงเนื้อเยื่อ) (35) การแจกแจงของอนุภาคไวรัสครบส่วนในอนุภาคละอองลอยขนาดต่างๆ เกี่ยวข้องกับตำแหน่งก่อเกิด กลไก การเกิด และความรุนแรงของการติดเชื้อที่ตำแหน่งก่อเกิด ซึ่งแตกต่างกันไปในไวรัสแต่ละชนิด (104) โดยทั่วไปจะถือว่าความเข้มขันของไวรัสในตัวอย่างทางคลินิก (เช่น เสมหะหรือน้ำลาย) สัมพันธ์โดยตรงกับ ความเข้มขันในละอองของเหลวและละอองลอยที่เกิดจากของเหลวในทางเดินหายใจ กล่าวคือ ปริมาณไวรัสจะ แปรผันตามปริมาณเริ่มแรกของละอองของเหลวและละอองลอย (50, 55, 71) อย่างไรก็ตาม ตัวอย่างละออง ลอยที่แยกแยะขนาดที่รวบรวมได้จากลมหายใจออกของผู้ที่ดิดเชื้อไวรัสไข้หวัดใหญ่ A หรือ B ไวรัสพาราอินฟลู เอนซา โคโรนาไวรัส hRV หรือ RSV และอากาศที่รวบรวมได้ในสภาพแวดล้อมต่างๆ ชี้ให้เห็นว่าพบไวรัสจำนวน มากในละอองลอยขนาดเล็ก (10) ในตัวอย่างที่รวบรวมจากผู้ป่วยไข้หวัดใหญ่ขณะหายใจ พูด หรือไอ พบ RNA ไวรัสกว่าครึ่งหนึ่งในละอองลอยที่มีขนาด <4 ถึง 5 μm (23, 104, 105) การศึกษาไวรัสทางเดินหายใจหลาย

ครั้งพบ RNA ของไวรัสในละอองลอยขนาดเล็ก (<5 µm) ร่วมกันมากกว่าขนาดใหญ่ (*39*) การแจกแจงของ ละอองลอยที่มีไวรัสไข้หวัดใหญ่และ RSV ในสภาพแวดล้อมที่วัดได้ในคลินิกการแพทย์แห่งหนึ่งมี RNA ไวรัส ไข้หวัดใหญ่ชนิด A ในละอองลอยขนาด ≤4 µm จำนวน 42% แต่มี RNA ของ RSV เพียง 9% เท่านั้น (*102*) ในการศึกษาครั้งหนึ่งซึ่งทำการรวบรวมละอองลอยในคลินิกสุขภาพ ศูนย์ดูแลเด็ก และเครื่องบิน พบว่ากว่า ครึ่งหนึ่งของ RNA ไวรัสไข้หวัดใหญ่ชนิด A อยู่ในละอองลอยขนาด <2.5 µm (*106*) การศึกษาหนึ่งพบกลุ่ม ย่อยของผู้ป่วยโควิด 19 ที่มีการปล่อยจีโนมของ SARS-CoV-2 จำนวน 10⁵ ถึง 10⁵ สำเนาต่อชั่วโมงจากการ หายใจออก ในขณะที่ผู้ป่วยอื่นๆ ไม่มีการปล่อยไวรัสที่ตรวจพบได้จากการหายใจ (*107*) จำนวนการเกิดละออง ลอยและปริมาณไวรัสที่แตกต่างกันอย่างมากระหว่างบุคคลอาจมีส่วนทำให้ค่าการแพร่ของโควิด 19 มีลักษณะ กระจัดกระจายอย่างมาก ซึ่งเป็นองค์ประกอบสำคัญของเหตุการณ์ซูเปอร์สเปรด (*108*)

แม้จะพบไวรัสที่สามารถแพร่เชื้อได้จำนวนมากในละอองลอยขนาดเล็ก แต่ยังไม่ทราบแน่ชัดเกี่ยวกับ ความสัมพันธ์ระหว่างปริมาณไวรัสและการตอบสนอง ซึ่งเป็นสิ่งที่กำหนดความเป็นไปได้ในการติดเชื้อเมื่อได้รับ อนุภาคไวรัสครบส่วนเป็นจำนวนหนึ่ง ปริมาณเชื้อต่ำสุดที่ทำให้เกิดโรคในโฮสต์ที่มีโอกาสติดเชื้อจะขึ้นอยู่กับ ชนิดของไวรัสและตำแหน่งการเกาะตัวภายในทางเดินหายใจ ซึ่งการสูดละอองลอยขนาดเล็กซึ่งเกาะตัวในส่วน ลึกภายในปอด อาจต้องการจำนวนไวรัสเพียงเล็กน้อยเพื่อทำให้เกิดการติดเชื้อ การศึกษาเกี่ยวกับไวรัสไข้หวัด ใหญ่ได้ชี้ให้เห็นว่าปริมาณหน่วยก่อพลัค (PFU) ที่จำเป็นสำหรับเริ่มตันการติดเชื้อในมนุษย์จากการสูดละออง ลอยคือประมาณหนึ่งในร้อยของปริมาณที่ใช้ในการปลูกเชื้อด้วยการพ่นจมูก (101) การระบุลักษณะได้อย่าง ชัดเจนยิ่งเกี่ยวกับปริมาณไวรัสและการแจกแจงของอนุภาคไวรัสครบส่วนที่แพร่เชื้อได้ในละอองลอยแต่ละชนิด โดยสัมพันธ์กับขนาดอนุภาค สำหรับแต่ละบุคคลและในการดำเนินโรคแต่ละลำดับ จะเป็นประโยชน์อย่างยิ่ง สำหรับเราในการทำความเข้าใจเกี่ยวกับการแพร่ผ่านอากาศของไวรัสทางเดินหายใจ

ละอองลอยที่มีไวรัสในสภาพแวดล้อม

ลักษณะทางกายภาพของละอองลอยที่ส่งผลต่อการเคลื่อนที่ในอากาศ ความเร็วเริ่มแรกของละอองลอยจาก ทางเดินหายใจจะขึ้นอยู่กับลักษณะการก่อเกิดภายในทางเดินหายใจและการปล่อยออกมา เช่น การไอทำให้เกิด ละอองของเหลวและละอองลอยซึ่งปล่อยออกมาด้วยความเร็วสูงกว่าการพูด (109) การเคลื่อนที่ของละออง ลอยจะถูกควบคุมโดยปัจจัยร่วมระหว่างการไหลของอากาศและคุณสมบัติของสภาพแวดล้อม รวมถึงลักษณะ ทางกายภาพของละอองลอยเอง ละอองลอยอาจแยกตัวออกจากกระแสการไหลหลัก ซึ่งเป็นผลเนื่องมาจาก ความเฉื่อย การเคลื่อนที่แบบบราวน์ และแรงจากภายนอก ได้แก่ แรงโน้มถ่วง แรงอิเล็กโตรโฟรีติก และแรงเทอร์ โมโฟรีติก การเคลื่อนที่ดังกล่าวยังสามารถทำให้เกิดการแยกตัวจากอากาศเมื่อเกาะตัวบนพื้นผิวต่างๆ ได้อีกด้วย อายุขัยของไวรัสในอากาศจะสัมพันธ์กับการเคลื่อนที่ทางกายภาพและการทำให้หมดฤทธิ์ทางชีววิทยา ซึ่งได้รับ ผลกระทบจากปัจจัยจากสภาพแวดล้อม เช่น อุณหภูมิ ความชื้น และการแผ่รังสีอัลตร้าไวโอเล็ต (UV)

ขนาดของละอองลอยที่หายใจออกมาซึ่งยังคงเคลื่อนที่ผ่านอากาศจะเกิดความเปลี่ยนแปลงในระยะยาวอันเป็น ผลเนื่องมาจากการระเหย การจับเป็นก้อน และการเกาะตัว การระเหยของน้ำจากละอองลอยที่มีน้ำเป็น ส่วนประกอบ โดยปกติจะอธิบายได้ด้วยสมการของเฮิรตซ์-นุดเซน (110) อย่างไรก็ตาม เนื่องจากละอองลอย จากทางเดินหายใจประกอบด้วยองค์ประกอบที่ไม่สูญสลาย เช่น โปรตีน อิเล็กโทรไลต์ และสารทางชีววิทยาอื่นๆ อัตราการระเหยจึงข้ากว่าน้ำบริสุทธิ์ (111) ในระหว่างการระเหย ละอองลอยอาจมีการเปลี่ยนแปลงทั้งทาง สถานะ สัณฐานวิทยา ความหนืด และค่า pH ซึ่งทั้งหมดนี้ได้มีการศึกษาด้วยการจำลองซึ่งไม่ใช่ละอองลอยจาก ทางเดินหายใจจริง (83, 112) การเปลี่ยนแปลงของลักษณะทางกายภาพของละอองลอยจะส่งผลต่อการ เคลื่อนที่และสิ่งที่เกิดขึ้นกับไวรัสซึ่งอยู่ภายใน และความเปลี่ยนแปลงที่เกี่ยวข้องของลักษณะทางเคมีของ ละอองลอยอาจส่งผลต่อความอยู่รอดของไวรัส (113) การแจกแจงโดยรวมของขนาดละอองลอยที่มีไวรัสใน อากาศยังเปลี่ยนแปลงในระยะยาวเช่นกัน เนื่องจากละอองลอยขนาดใหญ่มักถูกนำออกเนื่องจากตกลงสู่พื้นหรือ บนพื้นผิวอื่นๆ ทำให้ค่ามัธยฐานของการแจกแจงปรับเข้าหาละอองที่มีขนาดเล็กกว่า (114)

เวลาการคงอยู่ของละอองลอยที่มีไวรัสในอากาศเป็นปัจจัยที่สำคัญอย่างยิ่งในการระบุระยะของการแพร่ ในกรณีที่ไม่มีแรง กระทำอื่นๆ เวลาการคงอยู่ของละอองลอยที่มีขนาดค่าหนึ่งจะสัมพันธ์กับความเร็วสุดท้ายเมื่อตกถึงพื้นผิว u_{ρ} ซึ่งเป็นผลมา จากสมดุลระหว่างแรงต้านจากความหนืดและแรงโน้มถ่วง ดังที่อธิบายไว้ในกฎของสโตกส์สำหรับวัตถุอนุภาคขนาดเล็กใน การไหลแบบราบเรียบ (*115*, *116*)

$$u_{
m p}=rac{d_{
m p}^2g
ho_{
m p}C_{
m c}}{18\eta}$$

เมื่อ Pคือความน่าจะเป็นของการติดเชื้อ Nคือจำนวนเคสติดเชื้อที่ยืนยันแล้ว Sคือจำนวนเคสที่มีโอกาสติดเชื้อ Iคือจำนวนผู้แพร่เชื้อ qคืออัตราการก่อเกิดควอนตา (ปริมาณเชื้อที่ทำให้เกิดโรค) (ควอนตาต่อชั่วโมง) pคือ อัตราการถ่ายเทอากาศของปอดของผู้ที่มีโอกาสติดเชื้อ (ลูกบาศก์เมตรต่อวินาที) tคือเวลาการได้รับเชื้อ (ชั่วโมง) และ Qคืออัตราการระบายอากาศของห้อง (ลูกบาศก์เมตรต่อวินาที) ได้มีการนำโมเดลที่ใช้วิธีเวลส์-ไรลีย์มาใช้กับการแพร่ระบาดของของโควิด 19 ในชุมชนขนาดใหญ่ ในการซ้อมร้องเพลงของวงประสานเสียงโดยมีผู้ป่วยรายแรกหนึ่งรายซึ่งทราบว่าแสดงอาการ และนำไปสู่การติดเชื้อ 53 เคสจากสมาชิก 61 คนที่เข้าร่วม (อัตราโจมจับทุติยภูมิ 87%) ซึ่งสรุปได้ว่าการระบายอากาศที่ไม่ดีในสถานที่ที่มีคนจำนวนมาก มีการใช้เสียงที่ดัง และใช้เวลานาน ทั้งหมดล้วนมีส่วนที่ทำให้เกิดอัตราโจมจับทุติยภูมิที่สูงดังกล่าว (64) การฝึกซ้อมของวงประสานเสียงนี้มีการสื่อสารแบบเผชิญหน้าไม่มากนัก และมีการกำจัดเชื้อที่มืออย่างจริงจัง จึงไม่จำเป็นต้องให้ความสำคัญกับการแพร่เนื่องจากวัตถุปนเปื้อนเชื้อและละอองของเหลว (64) จำเป็นต้องมีการวิจัยเพื่อกำหนดอัตราการระบายอากาศขั้นต่ำที่ยอมรับได้ภายใต้สภาวะต่างๆ และผลของรูปแบบการระบายอากาศที่มีต่อความเสียงของการแพร่เชื้อ

การเกาะตัวของละอองลอยที่มีไวรัส

เมื่อสูดเข้าไปแล้ว ละอองลอยที่มีไวรัสสามารถเกาะอยู่ในส่วนต่างๆ ของทางเดินหายใจของผู้มีโอกาสเป็นโฮสต์ ขนาดของละอองลอยคือปัจจัยหลักในการกำหนดตำแหน่งการเกาะตัว แม้จะมีปัจจัยทางกายวิภาคศาสตร์ ทาง สรีรวิทยา และทางอากาศพลศาสตร์มากมาย (รวมถึงโครงสร้างทางกายวิภาคศาสตร์ของทางเดินหายใจ รูปแบบ การหายใจ ลักษณะทางแอโรไดนามิกส์ในการนำพาละอองลอยภายในทางเดินหายใจ และคุณสมบัติทางเคมี กายภาพของละอองลอยที่สูดเข้าไป) ที่ส่งผลต่อลักษณะของการเกาะตัวเช่นกัน การติดเชื้ออาจเริ่มต้นที่ ตำแหน่งเกาะตัว หากไวรัสยังคงอยู่ในสภาพแพร่เชื้อได้และมีตัวรับที่เหมาะสมอยู่

ละอองลอยที่สามารถสูดเข้าไปได้มีขนาดใหญ่ที่สุด 100 µm ละอองเหล่านี้จะเกาะตัวในบริเวณที่แตกต่างกัน ของทางเดินหายใจขึ้นอยู่กับขนาดของละออง ซึ่งเป็นไปตามหนึ่งในกลไกหลักหลายประการ ได้แก่ การกระทบ ด้วยแรงเฉื่อย การนอนกันด้วยแรงโน้มถ่วง การกระจายแบบบราวน์ การตกตะกอนจากไฟฟ้าสถิต และการสกัดกั้น (154, 155) (ภาพประกอบ 5A) เมื่อสูดเข้าไป ขนาดของละอองลอยที่สูดเข้าไปอาจเพิ่มขึ้น ซึ่งเป็นผล เนื่องมาจากการเดิบโตเนื่องจากการดูดความขึ้นภายในทางเดินหายใจซึ่งมีความขึ้นเกือบถึงระดับอิ่มตัว (156) คณะกรรมาธิการระหว่างประเทศด้านการป้องกันรังสี (ICRP) ได้พัฒนาโมเดลขึ้นจากลักษณะของปอดของมนุษย์ ซึ่งช่วยให้สามารถระบุประสิทธิภาพในการเกาะตัวโดยสัมพันธ์กับขนาดของละอองลอยได้ (157) (ภาพประกอบ 5B) ละอองลอยที่มีขนาด >5 µm จะเกาะตัวภายในบริเวณหลังโพรงจมูกเป็นหลัก (87 ถึง 95%) ซึ่งโดยส่วนใหญ่เนื่องจากการกระทบด้วยแรงเฉื่อยและการนอนกันด้วยแรงโน้มถ่วง (115) แม้ละอองลอย ที่มีขนาด <5 µm สามารถเกาะตัวที่นี่ได้เช่นกัน แต่ละอองเหล่านี้สามารถเข้าไปยังส่วนที่ลึกกว่านั้นภายในปอด และเกาะตัวภายในช่องว่างภายในถุงลมปอดได้ด้วย (115, 157, 158) การกระจายแบบบราวน์เป็นกลไกหลัก ในการเกาะตัวในบริเวณหลอดลมฝอยและถุงลมปอดของอนุภาคที่สูดเข้าไปซึ่งมีขนาด <0.1 µm (78, 116, 159) ละอองลอยที่นำพาประจุไฟฟ้าสถิตตามธรรมชาติอาจถูกดึงดูดเข้าหาผนังของทางเดินหายใจ (160) หากมีตัวรับบนเซลล์ในตำแหน่งที่เกาะตัว อาจทำให้เริ่มเกิดการติดเชื้อขึ้น ประสิทธิภาพของการทำให้ติด เชื้อยังถูกควบคุมโดยการแจกแจงของตัวรับบนเซลล์ตามทางเดินหายใจและอันตริเสรร์

ภาพประกอบ 5 กลไกการเกาะตัวของละอองลอยซึ่งขึ้นอยู่กับขนาด ที่บริเวณต่างๆ ภายในทางเดิน หายใจ

(A) กลไกการเกาะตัวที่สำคัญและแบบแผนการไหลของอากาศในกรณีนั้นๆ ที่บริเวณต่างๆ ในทางเดินหายใจของมนุษย์ ละอองลอยขนาดใหญ่มีแนวโน้มที่จะเกาะตัวในบริเวณหลังโพรงจมูกซึ่งเป็นผลเนื่องมาจากการ กระทบด้วยแรงเฉื่อย ในขณะที่ละอองลอยขนาดเล็กมีแนวโน้มที่จะเกาะตัวในบริเวณหลอดลมใหญ่และหลอดลม ฝอยรวมถึงถุงลมปอด ตามกลไกการนอนกันด้วยแรงโน้มถ่วงและการกระจายแบบบราวน์ ภาพขยายของบริเวณ หลอดลมใหญ่และหลอดลมฝอยและถุงลมปอดแสดงถึงกลไกการเกาะตัว (B) ประสิทธิภาพในการเกาะตัวของ ละอองลอยในบริเวณต่างๆ ของทางเดินหายใจ โดยสัมพันธ์กับเส้นผ่านศูนย์กลางของละอองลอยตามโมเดลการ เกาะตัวในปอดของ ICRP แสดงอยู่ที่ (116) ละอองลอยขนาดใหญ่ส่วนมากจะเกาะตัวในบริเวณหลังโพรงจมูก มีเพียงละอองลอยที่เล็กพอเท่านั้นที่จะสามารถเข้าไปยังบริเวณถุงลมปอดและเกาะตัวได้

การเกาะตัวของละอองลอยในปอดที่มีโรคอาจแตกต่างจากปอดปกติ เนื่องจากโครงสร้างของพื้นผิวทางเดิน หายใจมีการเปลี่ยนแปลงและมีเมือกกีดขวาง (161) การเปลี่ยนแปลงทางคุณสมบัติของพื้นผิวของเนื้อเยื่อบุผิว ทางเดินหายใจของผู้ที่เป็นโรคหืดและทางเดินหายใจที่ตีบแคบอันเป็นผลเนื่องมาจากโรคปอดอุดกั้นเรื้อรัง (COPD) ทำให้การไหลของอากาศและพฤติกรรมทางอากาศพลศาสตร์ของละอองลอยที่สูดเข้าไปมีการ เปลี่ยนแปลง จึงส่งผลให้พลวัตและตำแหน่งของการเกาะตัวเปลี่ยนแปลงไปด้วย (162, 163) โดยปกติผู้ป่วย โรคปอดอุดกั้นเรื้อรังจะมีการเกาะตัวมากกว่าผู้ที่มีสุขภาพดี การเกาะตัวที่หลอดลมจะพบได้มากขึ้นในผู้ป่วยโรค หอบหืดและโรคหลอดลมอักเสบเรื้อรัง (154)

เนื่องจากละอองลอยที่มีขนาดเล็ก (<5 µm) มีไวรัสปริมาณมาก ไวรัสเหล่านี้จึงสามารถเข้าไปยังส่วนลึกและ เกาะตัวภายในทางเดินหายใจส่วนล่างได้ มีการรายงานว่าในทางเดินหายใจส่วนล่างพบไวรัส SARS-CoV-2 เป็น จำนวนมากกว่าและไวรัสคงอยู่ได้นานกว่าเมื่อเทียบกับทางเดินหายใจส่วนบน (*164, 165*) การเริ่มต้นการติด เชื้อในทางเดินหายใจส่วนล่างเป็นความทำทายทางเทคนิคเพิ่มเติมในการวินิจฉัยผู้ป่วย เนื่องจากตรวจคัดกรอง ในปัจจุบันมักจะเก็บตัวอย่างจากบริเวณหลังโพรงจมูกหรือช่องปากโดยใช้ไม้ป่ายตัวอย่าง

การอภิปราย

เป็นเวลานานแล้วที่การแพร่ผ่านอากาศเป็นเส้นทางการแพร่ที่ได้รับความสำคัญน้อยมากในฐานะรูปแบบการแพร่ ที่มีส่วนในโรคจากไวรัสในทางเดินหายใจ ส่วนใหญ่แล้วเนื่องจากความเข้าใจที่ไม่เพียงพอเกี่ยวกับกระบวนการ ก่อเกิดและเคลื่อนที่ของละอองลอยที่มีไวรัส รวมถึงการระบุความเกี่ยวข้องที่ไม่ถูกต้องจากการอธิบายอย่างไม่ เป็นกิจจะลักษณะ พบหลักฐานทางระบาดวิทยาว่าการแพร่ผ่านอากาศเป็นรูปแบบหลักของ SARS-CoV-2 มาก ขึ้นตลอดเวลาที่ผ่านมา ซึ่งมีความน่าเชื่อถืออย่างยิ่ง ประการแรกคือ ความแตกต่างที่เด่นชัดระหว่างการแพร่ ภายในและภายนอกอาคารไม่สามารถอธิบายได้ด้วยการแพร่จากละอองของเหลว เนื่องจากละอองของเหลวซึ่ง ได้รับผลกระทบจากแรงโน้มถ่วงจะมีพฤติกรรมแบบเดียวกันไม่ว่าภายในหรือภายนอกอาคาร การพบเหตุการณ์ ซูเปอร์สเปรดภายในอาคารบ่อยครั้งมากเมื่อเทียบกับกิจกรรมกลางแจ้ง ชี้ให้เห็นถึงความสำคัญของการแพร่ผ่าน อากาศ (63) การแสดงให้เห็นว่าการระบายอากาศที่ไม่ดีมีบทบาทต่อการแพร่และการเกิดคลัสเตอร์ระดับ ซูเปอร์สเปรด ยังสอดคล้องกับการแพร่ผ่านละอองลอยเพียงรูปแบบเดียวเท่านั้น เนื่องจากการแพร่ผ่านละอองของเหลวและวัดถุปนเปื้อนเชื้อไม่ได้รับผลกระทบจากการระบายอากาศ การแพร่ต่ามาก (166) และในโบสถ์ขนาดใหญ่ (72)

ในระหว่างการเริ่มต้นแพร่ระบาดของไวรัสทางเดินหายใจชนิดใหม่ จำเป็นต้องมีวิธีการที่ครอบคลุมยิ่งขึ้นและให้ ความสำคัญกับการแพร่ทุกรูปแบบ (ผ่านอากาศ ละอองของเหลว และวัตถุปนเปื้อนเชื้อ) เพื่อที่จะประสบ ความสำเร็จในการบรรเทาความเสี่ยงและป้องกันการระบาด การเฝ้ารอหลักฐานทางตรงเกี่ยวกับความสามารถใน การแพร่เชื้อของละอองลอยที่รวบรวมได้ ก่อนที่จะยอมรับและเพิ่มลงในมาตรการควบคุมเพื่อรับมือการแพร่ผ่าน อากาศ จะทำให้ชีวิตของผู้คนตกอยู่ในความเสี่ยง (69) หากไม่พิจารณาถึงคำจำกัดความเดิมของรูปแบบการ แพร่ จะพบว่าหลักฐานที่มีอยู่สำหรับ SARS-CoV-2 ไวรัสไข้หวัดใหญ่ และไวรัสทางเดินหายใจอื่นๆ จะมีความ สอดคล้องกับการแพร่ผ่านละอองลอยขนาด <100 µm มากกว่าละอองของเหลวขนาดใหญ่ที่เกิดขึ้นน้อยซึ่งถูก พ่นลงสู่เนื้อเยื่อเมือกของผู้ที่อยู่ในระยะใกล้ การที่ WHO (48) และ CDC ของ สหรัฐอเมริกา (49) ยอมรับ รูปแบบการแพร่ของ SARS-CoV-2 ผ่านอากาศ ยิ่งเน้นย้ำถึงความจำเป็นในการเพิ่มมาตรการป้องกันให้ครอบคลุม

ถึงรูปแบบการแพร่ดังกล่าวทั้งระยะใกล้และระยะไกล

เมื่อเข้าใจถึงกลไกที่ทำให้เกิดการแพร่ผ่านอากาศอย่างถ่องแท้ และยอมรับว่าการแพร่โดยละอองลอยมีสัดส่วน มากที่สุดในระยะใกล้ จะเห็นได้อย่างชัดเจนว่าข้อควรระวังและมาตรการบรรเทาการระบาดจากละอองของเหลว และจากละอองลอยมีความสอดคล้องกัน (เช่น การเว้นระยะห่างและการสวมหน้ากาก) แต่ยังมีสิ่งที่ควรพิจารณา เพิ่มเติมเพื่อบรรเทาการแพร่จากละอองลอยทั้งในระยะใกล้และระยะไกล ซึ่งรวมถึงการให้ความสำคัญเกี่ยวกับ การระบายอากาศ การใหลของอากาศ ความพอดีและชนิดของหน้ากาก การกรองอากาศ และการฆ่าเชื้อด้วยรังสี UV รวมไปถึงการแยกแยะมาตรการต่างๆ ระหว่างสภาพแวดล้อมภายในและภายนอกอาคาร แม้เราจะได้ทราบ ข้อมูลเพิ่มเติมเรื่อยๆ แต่ขณะนี้เรามีข้อมูลอย่างเพียงพอแล้วว่าควรเพิ่มมาตรการที่ดียิ่งขึ้นเพื่อป้องกันการแพร่ ผ่านอากาศของไวรัสทางเดินหายใจ ซึ่งไม่ได้เป็นการแทนที่ "ข้อควรระวังเกี่ยวกับละอองของเหลว" แต่เป็นการขยายขอบเขตของข้อควรระวังเหล่านั้น

ผู้ที่ติดเชื้อ SARS-CoV-2 จำนวนมากไม่มีอาการขณะที่ทำการทดสอบ (167, 168) ผู้ที่ติดเชื้อ SARS-CoV-2 ประมาณ 20 ถึง 45% ไม่แสดงอาการตลอดทุกระยะของการติดเชื้อ ในขณะที่ผู้ติดเชื้อบางรายอยู่ในระยะก่อน แสดงอาการ และเริ่มมีอาการหลังจากติดเชื้อเป็นเวลาหลายวัน (168, 169) ความสามารถในการแพร่เชื้อของ SARS-CoV-2 จะถึงระดับสูงสุดในช่วงสองวันก่อนเริ่มปรากฏอาการ และคงอยู่ต่อไปอีกหนึ่งวันหลังจากช่วง ดังกล่าว (170) มีการรายงานถึงการติดเชื้อโดยไม่แสดงอาการในอัตราสูงสำหรับการติดเชื้อไวรัสไข้หวัดใหญ่ และไวรัสทางเดินหายใจชนิดอื่นๆ เช่นกัน (171–173) แม้มีการศึกษาบางส่วนที่เสนอว่าการแพร่ผ่านอากาศ ไม่ใช่รูปแบบที่มีประสิทธิภาพ โดยเฉพาะผู้ที่ไม่แสดงอาการและแสดงอาการเพียงเล็กน้อยซึ่งมีแนวโน้มที่จะมี ปริมาณไวรัสต่ำในน้ำลาย (55) แต่ผู้ที่อยู่ในระยะก่อนแสดงอาการจะมีปริมาณไวรัสใกล้เคียงกับผู้ป่วยที่แสดง อาการ (174, 175) เป็นเรื่องสำคัญที่จะต้องดำเนินมาตรการควบคุมเพื่อป้องกันการได้รับละอองลอยที่มีไวรัสที่ แพร่เชื้อได้ ซึ่งเกิดจากการพูด ร้องเพลง หรือแม้แต่การหายใจของผู้ที่ติดเชื้อโดยไม่แสดงอาการ เนื่องจาก บุคคลเหล่านี้ไม่ทราบว่าตนเองติดเชื้อแล้ว พวกเขาจึงมักเข้าร่วมกิจกรรมทางสังคมต่อไป และนำไปสู่การแพร่ ผ่านอากาศ

การให้ทุกคนสวมหน้ากากอนามัยเป็นวิธีป้องกันละอองลอยที่มีไวรัสที่มีประสิทธิภาพและมีค่าใช้จ่ายต่ำ (67) การจำลองโดยใช้โมเดลได้ชี้ให้เห็นว่าหน้ากากอนามัยมีประสิทธิภาพในการป้องกันการแพร่โดยไม่แสดงอาการ ี และลดจำนวนรวมของผู้ติดเชื้อ รวมถึงลดอัตราการเสียชีวิตเนื่องจากโควิด 19 (*176*) การจัดสรรหน้ากากอย่าง ้ เหมาะสมเป็นสิ่งที่สำคัญอย่างยิ่ง (*177*) หน้ากากอนามัยทางการแพทย์ได้แสดงถึงประสิทธิภาพในการลดการ ปล่อยไวรัสไข้หวัดใหญ่ โคโรนาไวรัสในมนุษย์ตามฤดูกาล และไรโนไวรัสในละอองลอยขนาด <5 µm สู่อากาศ ของผู้ติดเชื้อได้สูงสุดถึง 100% (*104, 178*) แม้จะไม่มีการลดลงในบางราย และหน้ากากเป็น²วิธีที่มี ี่ประสิทธิภาพสูงกว่าในการจำกัดละอองของเหลว (*179*) หน้ากากผลิตจากสิ่งทอหลายชนิดหรือหลายชั้น ซึ่ง เมื่อสวมอย่างถูกต้องโดยไม่มีการรั่วจะสามารถป้องกันอนุภาคที่มีขนาด 0.5 ถึง 10 µm ได้สูงสุดถึง 90% (*179*) ช่องว่างขนาดเล็กระหว่างวัสดุของหน้ากากกับผิวหนังอาจทำให้ประสิทธิภาพในการกรองโดยรวมลดลงอย่างมาก ี่สำหรับละอองลอยขนาด <2.5 µm ประสิทธิภาพในการกรองจะลดลง 50% เมื่อมีการรั่วที่มีขนาดพื้นที่สัมพันธ์ 1% (*180*) การศึกษาหนึ่งได้ทำการเปรียบเทียบประสิทธิภาพในการกรองไวรัสของหน้ากากชนิด N95 หน้ากาก ทางก^ารแพ[']ทย์ และหน้ากากผ้า โดยใช้ไวรัสต้นแบบ และพบว่าหน้ากากชนิด N95 และหน้ากากทางการแพทย์ บางส่วนมีประสิทธิภาพสูงถึง 99% หน้ากากผ้าทั้งหมดที่ทำการทดสอบมีประสิทธิภาพอย่างน้อย 50% (*181*) ได้มีการทดสอบประสิทธิภาพในการป้องกันละอองลอยที่มี SARS-CoV-2 ของหน้ากากชนิด N95 หน้ากากทาง การแพทย์ และหน้ากากผ้าฝ้าย โดยใช้หุ่นจำลองวางหันหน้าเข้าหากัน อุปกรณ์ป้องกันระบบทางเดินหายใจชนิด N95 ได้แสดงถึงประสิทธิภาพสูงสุดในการสกัดกั้น SARS-CoV-2 ที่แพร่เชื้อได้ (*182*) หน้ากากเกือบทั้งหมดให้ การป้องกันได้บ้าง แต่ไม่ได้มีประสิทธิภาพ 100% การแพร่ของ SARS-CoV-2 ได้เกิดขึ้นในสถานพยาบาลหลาย แห่ง แม้จะมีการสวมหน้ากากทางการแพทย์ (ออกแบบมาสำหรับป้องกันละอองของเหลว ไม่ใช่ละอองลอย) ี และอุปกรณ์ป้องกันดวงตา (*183–185*) ซึ่งแสดงให้เห็นถึงความจำเป็นในการใช้อุปกรณ์ป้องกันส่วนบุคคล (PPE) อย่างเหมาะสม และใช้มาตรการห[ุ]ลายระดับเพื่อป้องกันการแพร่ผ่านอากาศ โด[้]ยเฉพาะในสถานที่ภ^ายใน อาคารที่มีความเสี่ยงสูง

สถานพยาบาลมีแนวโน้มที่จะเป็นสถานที่ดูแลผู้ป่วยที่ติดเชื้อไวรัสทางเดินหายใจ ดังนั้น เจ้าหน้าที่พยาบาลจึง ควรได้รับ PPE ที่เหมาะสมเพื่อลดการได้รับเชื้อผ่านอากาศ ผู้ที่เข้าทำกิจกรรมภายในอาคารมีความเสี่ยงเพิ่มขึ้น ในการได้รับละอองลอยที่มีไวรัสความเข้มข้นสูง โดยเฉพาะในอาคารที่มีอากาศถ่ายเทไม่สะดวกหรือมีคนจำนวน มาก ซึ่งเอื้อต่อการสะสมของละอองลอยที่มีไวรัส (93) ควรดำเนินมาตรการป้องกันต่างๆ เสมอเมื่อเดินทางด้วย เครื่องบิน รถไฟ รถบัส เรือ และเรือสำราญ ซึ่งมีพื้นที่ของอากาศค่อนข้างเล็กและทึบ ซึ่งการระบายอาจไม่ เหมาะสมในบางกรณี การศึกษาจำนวนมากได้ระบุว่าความเสี่ยงของการแพร่ผ่านอากาศในสภาพแวดล้อม กลางแจ้งต่ำกว่าสภาพแวดล้อมภายในอาคารอย่างมาก (186) อย่างไรก็ตาม ความเสี่ยงของการแพร่ภายนอก อาคารยังคงมีอยู่ในกรณีระยะใกล้ โดยเฉพาะเมื่อมีการพูด ร้องเพลง หรือตะโกนเป็นเวลานาน ความเสี่ยงของการ แพร่ภายนอกอาคารอาจเพิ่มขึ้นเมื่อไวรัสมีอายุขัยยาวนานขึ้นและความสามารถในการแพร่สูงขึ้น เช่น SARS-CoV-2 บางสายพันธุ์ (187, 188) การเกิดละอองลอยของน้ำเสียและอุจจาระที่ระบายจากโรงพยาบาลซึ่งมีไวรัส ยังเป็นความเสี่ยงของการได้รับเชื้อภายนอกอาคาร ซึ่งเป็นสิ่งที่ไม่ควรประมาท (189)

การใช้ระบบระบายอากาศที่มีประสิทธิภาพจะช่วยลดการแพร่ผ่านอากาศของละอองลอยที่มีไวรัสที่แพร่เชื้อได้ และควรใช้กลยุทธ์ต่างๆ เช่น ดำเนินการเพื่อให้มั่นใจว่ามีอัตราการระบายอากาศที่เพียงพอ และการหลีกเลี่ยงการ หมุนเวียนอากาศ (190, 191) เซ็นเซอร์คาร์บอนไดออกไซด์สามารถใช้เป็นอุปกรณ์บ่งชี้ว่ามีการสะสมของ อากาศจากการหายใจออก และเป็นวิธีที่ง่ายในการเฝ้าสังเกตและปรับปรุงการระบายอากาศ (192, 193) เซนเซอร์ละอองลอยเป็นอุปกรณ์ที่สามารถใช้เพื่อประเมินประสิทธิภาพการกรองละอองลอยของอุปกรณ์ HEPA และ HVAC ซึ่งเป็นบัจจัยสำคัญในการลดการติดเชื้ออันเนื่องมาจากละอองลอยที่มีไวรัส ควรดำเนินการให้มั่นใจได้ถึงอัตราการระบายอากาศอย่างน้อย 4 ถึง 6 ปริมาตรห้องต่อชั่วโมง (ACH) และรักษาระดับ คาร์บอนไดออกไซด์ให้ต่ำกว่า 700 ถึง 800 ppm และควรพิจารณาถึงประเภทของการระบายอากาศรวมถึง ทิศทางและรูปแบบการไหลของอากาศเช่นกัน (148, 194) การเพิ่มประสิทธิภาพกรองอากาศในระบบปรับ อากาศ อุปกรณ์กรอง HEPA แบบแยกเดี่ยว หรือการใช้ระบบกำจัดเชื้อด้วยรังสี UV ในอากาศส่วนบนของห้อง สามารถช่วยลดความเข้มขันของละอองลอยที่มีไวรัสได้ (47, 127, 140, 141, 195)

การเว้นระยะห่างทางกายภาพซึ่งเป็นมาตรการที่ใช้เพื่อบรรเทาการแพร่เนื่องจากละอองของเหลวยังมี ประสิทธิภาพในการลดโอกาสของการสูดละอองลอยเช่นกัน เนื่องจากความเข้มขันของละอองลอยในระยะใกล้ กับผู้ติดเชื้อจะสูงเป็นพิเศษ (50) WHO และหน่วยงานสาธารณสุขระดับประเทศหลายแห่งได้แนะนำให้รักษา ระยะห่างทางกายภาพ 1 หรือ 2 เมตร อย่างไรก็ตาม ระยะห่างนี้ไม่เพียงพอในการป้องกันจากละอองลอยซึ่ง สามารถเคลื่อนที่ได้ไกลกว่าระยะดังกล่าว หากละอองขนาดใหญ่เป็นรูปแบบการแพร่หลัก การเว้นระยะห่างเพียง อย่างเดียวก็น่าจะช่วยยับยั้งการแพร่ของ SARS-CoV-2 ได้อย่างมีประสิทธิภาพ การแพร่ผ่านอากาศเกิดขึ้นใน ห้องที่อากาศถ่ายเทไม่สะดวก ดังที่เห็นได้จากเหตุการณ์ซูเปอร์สเปรดที่พบบ่อยครั้ง เมื่อผู้ร่วมกิจกรรมสูดเอา อากาศในห้องที่มีเชื้อเข้าไป (18, 36, 62, 64, 71) นอกจากนี้ แม้การเว้นระยะห่างจะมีส่วนช่วยโดยการนำ ผู้คนออกห่างจากบริเวณที่มีความเข้มขันของกลุ่มละอองจากการหายใจสูงที่สุด แต่การเว้นระยะห่างเพียงอย่าง เดียวไม่สามารถหยุดยั้งการแพร่ได้ และไม่ใช่วิธีที่เพียงพอหากไม่คำนึงถึงมาตรการอื่นๆ เช่น การระบายและการ กรองอากาศ จำนวนผู้ที่ปล่อยละอองลอยที่แพร่เชื้อได้ และระยะเวลาที่ใช้ภายในพื้นที่ปิดทึบ (196) สถานที่ที่มี สภาวะบางรูปแบบอาจไม่สามารถทราบจำนวนผู้ดิดเชื้อโดยไม่แสดงอาการ (รวมถึงผู้ที่อยู่ในระยะก่อนแสดง อาการ) ซึ่งเป็นความทำทายเพิ่มเดิมในการควบคุมโรคระบบทางเดินหายใจ มาตรการทางวิศวกรรมเพื่อลดความ เข้มขันของละอองลอยด้วยการระบายอากาศ การกรองอากาศ และการใช้ระบบกำจัดเชื้อด้วยรังสี UV ในอากาศ ส่วนบนของห้อง ยังคงเป็นกลยุทธ์ที่สำคัญในการลดความเสี่ยงของการแพร่ผ่านอากาศ

แม้จะมีการตระหนักมากขึ้นเกี่ยวกับการแพร่ผ่านอากาศของไวรัสทางเดินหายใจ แต่ยังคงต้องมีการศึกษา เพิ่มเติมในหลายๆ เรื่อง เช่น จำเป็นต้องมีการวัดโดยตรงเพื่อระบุความเข้มข้นของไวรัสในละอองลอยและละออง ของเหลวโดยสัมพันธ์กับขนาดและศักยภาพในการก่อให้เกิดการติดเชื้อรายใหม่ ต้องมีการศึกษาอย่างเป็นระบบ เกี่ยวกับอายุขัยของไวรัสในละอองลอยที่มีขนาดต่างๆ จำเป็นต้องมีการศึกษาเพิ่มเติมเพื่อประเมินระดับ ความสัมพันธ์ระหว่างปริมาณไวรัสที่มาพร้อมกับละอองลอยและละอองของเหลวเทียบกับความรุนแรงของการติด เชื้อ ความสัมพันธ์ดังกล่าวสำหรับไวรัสแต่ละชนิดน่าจะแตกต่างกันค่อนข้างมาก และเป็นสิ่งสำคัญที่จะต้องศึกษา ว่าความรุนแรงของโรคมีความสัมพันธ์กับขนาดและจำนวนของละอองลอยรวมถึงบริเวณที่เกาะตัวภายในทางเดิน หายใจหรือไม่ แม้จำเป็นต้องมีการศึกษาเพิ่มเติมต่อไป แต่มีหลักฐานที่ไร้ข้อสงสัยที่ระบุว่าการแพร่ผ่านอากาศ เป็นรูปแบบหลักสำหรับการระบาดของ SARS-CoV-2 และไวรัสทางเดินหายใจอีกหลายชนิด จะต้องใช้มาตรการ ป้องกันเพิ่มเติมเพื่อบรรเทาการแพร่ผ่านละอองลอยทั้งระยะใกล้และระยะไกล โดยให้ความสำคัญเป็นพิเศษ เกี่ยวกับการระบายอากาศ การใหลของอากาศ การกรองอากาศ การฆ่าเชื้อด้วยรังสี UV และความพอดีของ หน้ากากอนามัย การแทรกแซงเหล่านี้เป็นกลยุทธ์ที่จำเป็นอย่างยิ่งเพื่อช่วยยุติการระบาดใหญ่ในปัจจุบันรวมถึง เพื่อป้องกันการแพร่ระบาดในอนาคต พึงระลึกว่ามาตรการเพื่อปรับปรุงคุณภาพอากาศภายในอาคารที่เสนอ

เหล่านี้จะนำไปสู่การพัฒนาที่สมควรจะเกิดขึ้นนานแล้ว ระบาดใหญ่ของโควิด 19	ชึ่งจะเป็นประโยชน์ในด้านสุขภาพต่อไปแม้ภายหลังการ