CRYPTOGRAPHY HANDOUT 18

DIGITAL SIGNATURES (GUIDED NOTES)

1. RSA SIGNATURES

Bob has a document	or message m that	Alice agrees	to sign.
--------------------	---------------------	--------------	----------

- 1. Signing process
 - a. Alice generates two large primes p and q. She computes n = pq.
 - b. She chooses e_A where $1 < e_A < \varphi(n)$ with $gcd(e_A, \varphi(n)) = 1$.
 - c. She computes d_A such that $e_A d_A \equiv 1 \mod \varphi(n)$.
 - d. Alice publishes (e_A, n) and keeps d_A, p, q private.
 - e. Her signature is $y \equiv m^{d_A} \mod n$. (m, y) are made public.
- 2. Verification process
 - a. Bob gets Alice's (e_A, n) . He computes $z \equiv y^{e_A} \mod n$.
 - b. If z=m, then Bob accepts the signature as valid. Otherwise, the signature is not valid.

Example. m = 35

- 1. Signing process: p = 7, q = 13
 - a. $n = _{___}$
 - b. $\varphi(n) = \underline{\hspace{1cm}} e_A = \underline{\hspace{1cm}}$
 - c. $d_A =$ _____
 - d. Public info: $(e_A, n) =$ _____
 - e. Alice's Signature: y =
- 2. Verification Process: Bob sees (e_A, n) and $(m, y) = \underline{\hspace{1cm}}$
 - (a) He computes $z = \underline{\hspace{1cm}}$
 - (b) Is the signature valid or not?

Example. m = 14

1. Signing process: p = 11, q = 17

a. $n = _{----}$

- b. $\varphi(n) = \underline{\hspace{1cm}} e_A = 7$ works here because $\gcd(7, \varphi(n)) = \underline{\hspace{1cm}}$
- c. $d_A = 183$ works here because $e_A d_A \equiv 1 \mod \varphi(n)$. Check this:
- d. Public info: $(e_A, n) =$ _____
- e. Alice's Signature: y =
- 2. Verification Process: Bob sees (e_A, n) and $(m, y) = \underline{\hspace{1cm}}$.
 - (a) He computes $z = \underline{\hspace{1cm}}$
 - (b) Is the signature valid or not?

What if during the verification process, Bob had received (m, y) = (14, 158) instead? What would be conclude?

2. Blind Signatures - RSA

In some cases, a message is "blinded" or disguised before it is signed.

- 1. Alice chooses two primes p and q. Then she computes n = pq.
- 2. Alice also chooses an encryption exponent e and decryption exponent d.
- 3. (n, e) are public whereas p, q, d are private.
- 4. Bob chooses a random integer $k \mod n$ with gcd(k, n) = 1 and computes $t \equiv k^e m \mod n$. He sends t to Alice.
- 5. Alice signs t by computing $s \equiv t^d \mod n$. She gives s to Bob.
- 6. Bob computes $s/k \mod n$, which is m^d .

Example. m = 11

- 1. p = 7, q = 13, so n = pq =_____
- 2. e = 5 and d = 29 because $de \equiv 1 \mod \varphi(n)$. Verify this:
- 3. (n,e) =
- 4. $k = \underline{\hspace{1cm}}$ since gcd(k, n) = 1. He computes $t = \underline{\hspace{1cm}}$
- 5. s =_____
- 6. s/k = _____ which should match up with $m^d =$ _____

Example. m = 23

1.
$$p = 11, q = 17$$
, so $n = pq =$ _____

2.
$$e = 7$$
 and $d = 183$ because $de \equiv 1 \mod \varphi(n)$. Verify this:

$$3. (n,e) =$$

4.
$$k = \underline{\hspace{1cm}}$$
 since $gcd(k, n) = 1$. He computes $t = \underline{\hspace{1cm}}$

5.
$$s =$$

6.
$$s/k =$$
 _____ which should match up with $m^d =$ _____

Question 1. Show that s/k is actually the signed message m^d .

3. ELGAMAL SIGNATURE SCHEME

The ElGamal Encryption method can also be modified to give a signature scheme.

Before she gets started, Alice chooses a prime p and a primitive root α . She chooses a secret integer a such that $1 \le a \le p-2$ and calculates $\beta \equiv \alpha^a \mod p$. (p, α, β) are made public while a is private.

1. Signing process

- a. Alice chooses a secret random k such that gcd(k, p 1) = 1.
- b. She computes $r \equiv \alpha^k \mod p$ with 0 < r < p.
- c. She also computes $s \equiv k^{-1}(m-ar) \mod (p-1)$. The signed message is (m,r,s).

2. Verification process

- a. Bob gets Alice's public key (p, α, β) .
- b. He computes $v_1 \equiv \beta^r r^s \mod p$ and $v_2 \equiv \alpha^m \mod p$.
- c. The signature is valid if and only if $v_1 \equiv v_2 \mod p$.

Example. Before she gets started, Alice chooses a prime $p = 17$ and a primitive root
$\alpha=3$. She chooses a secret integer $a=4$ such that $1\leq a\leq p-2$ and calculates
$\beta \equiv \alpha^a \mod p = $ are made public while a is
private.
1. Signing process
a. $k = 5$ since $gcd(k, p - 1) = 1$. Verify this:
b. $r = _{___}$
c. $s = \underline{\hspace{1cm}}$. The signed message is $(m, r, s) = \underline{\hspace{1cm}}$.
2. Verification process
a. Bob gets Alice's public key (p, α, β) .
b. $v_1 = $ and $v_2 = $
c. The signature is valid if and only if $v_1 \equiv v_2 \mod p$.

Question 2. Show that the verification process works. Assume the signature is valid with the following steps:

- Since $s \equiv k^{-1}(m-ar) \mod p-1$, then $sk \equiv \underline{\hspace{1cm}} \mod (p-1)$.
- This means $m \equiv \underline{\hspace{1cm}} \mod (p-1)$.
- A congruence $\mod p-1$ in the exponent yields an overall congruence $\mod p$, so we have: