CHALLENGE PROBLEM 1

LEANDRO RIBEIRO (WORKED WITH KYLE FRANKE)

Axiom (†). There exists a subset $\mathbb{N} \subset \mathbb{Z}$ with the following properties:

- (1) If $m, n \in \mathbb{N}$, then $m + n \in \mathbb{N}$.
- (2) If $m, n \in \mathbb{N}$, then $mn \in \mathbb{N}$.
- $(3) \ 0 \notin \mathbb{N}.$
- (4) For every $m \in \mathbb{Z}$, we have $m \in \mathbb{N}$, m = 0, or $-m \in \mathbb{N}$.

Definition. The **successor function** on the integers is defined by s(x) := x + 1. For $m \ge 1$, we define $s^{m+1}(x)$ recursively by $s^{m+1}(x) := s(s^m(x))$.

Axiom(*). For all $m \ge 1$, $s^m(0) \ne 0$.

Axiom(**). For all $x \in \mathbb{Z}$, there is $m \geq 0$ such that $s^m(x) = 0$ or $s^m(0) = x$.

Definition. The set of **successors of zero** is defined to be

$$N := \{ x \in \mathbb{Z} | \exists m \ge 1 s^m(0) = x \}$$

Prove the following proposition.

Proposition. Assume that the integers satisfy (*) and (**). Then, the set N satisfies axiom (\dagger) . That is to say, N satisfies the four conditions of the axiom.

Proof. (1) Let P(n) be the statement "if $m, n \in \mathbb{N}$, then $m + n \in \mathbb{N}$ " Let's first observe P(1)

Base. n = 1. $m + 1 = s(m) = s(s^m(0))$. Thus, the proposition holds. **Successor.** Assume P(n) holds. That is, $m + n = s^m(n) \in N$. Consider m + n + 1. $m + n + 1 = s^{m+1}(n) = s(s^m(x))$ by definition. By induction, we know $s^m(n) \in N$. Thus, $s(s^m(x)) = s^m(x) + 1 = s^m(x) + s(0) \in N$ by the principal of mathematical induction.

(2) Let P(n) be the statement " If $m, n \in \mathbb{N}$, then $mn \in \mathbb{N}$." Observe P(1):

Base. n = 1. $m \cdot 1 = m \in \mathbb{N}$.

Successor. Assume P(n) holds. That is, $mn \in \mathbb{N}$. Consider m(n+1).

Date: March 24, 2017.

By our axioms for the integers, we may rewrite this as mn + m. By induction, $mn \in N$, and we already know $m \in N$. Thus, by the first part of this proposition and induction, $mn + n \in N$.

- (3) By our axiom (*), we know $0 \notin N$.
- (4) Take $m \in \mathbb{Z}$. By part 3 of this proposition, if m = -m = 0, $m \notin N$.

Now assume, $m \in N$. Suppose toward a contradiction that $-m \in N$. By our first part of this proposition, this would mean $m + (-m) = 0 \in N$, which is absurd.

Sources.