ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN (Đề gồm 4 câu/4 trang)

ĐỀ KIỂM TRA GIỮA KỲ Môn: Toán rời rạc (MAT3500 1, 2023-2024) Thời gian: 50 phút

- Điền các thông tin về Họ Tên, Mã Sinh Viên, Lớp trước khi bắt đầu làm bài.
- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- \bullet Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.
- Điểm bài kiểm tra này chiếm 20% tổng số điểm của môn học. Tổng điểm nhỏ hơn hoặc bằng 10 thì giữ nguyên, còn ngược lại thì tính là 10 điểm.

Họ và Tên:	
·	
Mã Sinh Viên:	_ Lớp:

Câu:	1	2	3	4	Tổng
Điểm tối đa:	3	3	3	3	12
Điểm:					

1. (3 điểm) Giả thuyết Goldbach "Mọi số chẵn lớn hơn hoặc bằng 4 là tổng của hai số nguyên tố" có thể được biểu diễn thông qua các vị từ, lượng từ, và mệnh đề lôgic theo một trong hai cách sau:

$$\forall n \in \mathbb{Z} \left[n > 2 \land 2 \mid n \to \left(\exists p \in \mathbb{Z} \ \exists q \in \mathbb{Z} \ \left[isPrime(p) \land isPrime(q) \land n = p + q \right] \right) \right]$$
 (1)

$$\forall n \in \mathbb{Z} \ \exists p \in \mathbb{Z} \ \exists q \in \mathbb{Z} \ \left[n \le 2 \lor 2 \nmid n \lor \left[isPrime(p) \land isPrime(q) \land n = p + q \right] \right]$$
 (2)

trong đó $2 \mid n$ nghĩa là "n chia hết cho 2"; $2 \nmid n$ nghĩa là "n không chia hết cho 2"; và isPrime(p) nghĩa là "p là một số nguyên tố". Hãy chứng minh các mệnh đề (1) và (2) là tương đương lôgic.

Lời giải: Ta có $\forall n \in \mathbb{Z} \left[n > 2 \land 2 \mid n \to \left(\exists p \in \mathbb{Z} \ \exists q \in \mathbb{Z} \ \big[isPrime(p) \land isPrime(q) \land n = p + q \big] \right) \right]$ $\equiv \forall n \in \mathbb{Z} \left[\neg (n > 2 \land 2 \mid n) \lor \left(\exists p \in \mathbb{Z} \ \exists q \in \mathbb{Z} \ \big[isPrime(p) \land isPrime(q) \land n = p + q \big] \right) \right]$ $p \to q \equiv \neg p \lor q$ $\equiv \forall n \in \mathbb{Z} \left[\neg (n > 2) \lor \neg (2 \mid n) \lor \left(\exists p \in \mathbb{Z} \ \exists q \in \mathbb{Z} \ \big[isPrime(p) \land isPrime(q) \land n = p + q \big] \right) \right]$ $\equiv \forall n \in \mathbb{Z} \left[n \le 2 \lor 2 \nmid n \lor \left(\exists p \in \mathbb{Z} \ \exists q \in \mathbb{Z} \ \big[isPrime(p) \land isPrime(q) \land n = p + q \big] \right) \right]$ $\equiv \forall n \in \mathbb{Z} \ \exists p \in \mathbb{Z} \ \exists q \in \mathbb{Z} \ \Big[n \le 2 \lor 2 \nmid n \lor \big[isPrime(p) \land isPrime(q) \land n = p + q \big] \Big]$

2. (3 điểm) Sử dụng phương pháp quy nạp, hãy chứng minh 8^n-1 chia hết cho 7 với mọi $n\geq 0$.

Lời giải: Gọi P(n) là vị từ " $8^n - 1$ chia hết cho 7". Ta chứng minh $\forall n \geq 0$ P(n).

- Bước cơ sở: Với n=0, ta có $8^0-1=0$ chia hết cho 7. Do đó P(0) đúng.
- Bước quy nạp: Giả sử P(k) đúng với số nguyên $k \geq 0$ nào đó, nghĩa là, 8^k-1 chia hết cho 7. Ta chứng minh P(k+1) đúng, nghĩa là chứng minh $8^{k+1}-1$ cũng chia hết cho 7. Thật vậy, ta có $8^{k+1}-1=8(8^k-1)+7$. Theo giả thiết quy nạp, 8^k-1 chia hết cho 7, nghĩa là tồn tại $\ell \in \mathbb{N}$ thỏa mãn điều kiện $8^k-1=7\ell$. Do đó, $8^{k+1}-1=8(8^k-1)+7=8\cdot(7\ell)+7=7(8\ell+1)$. Do $8\ell+1\in\mathbb{N}$, ta có $8^{k+1}-1$ chia hết cho 7, hay P(k+1) đúng.

Theo nguyên lý quy nạp, ta có $\forall n \geq 0 \ P(n)$.

- 3. Cho S là tập các số nguyên dương được định nghĩa theo đệ quy như sau:
 - Bước cơ sở: $1 \in S$.
 - Bước đệ quy: Nếu $n \in S$ thì $3n + 2 \in S$ và $n^2 \in S$.
 - (a) (2 điểm) Chứng minh rằng với mọi $n \in S$, n = 4a + 1 với a là số nguyên không âm nào đó.
 - (b) (1 điểm) Chứng minh rằng tồn tại một số nguyên dương m thỏa mãn điều kiện $m \notin S$ và m = 4a + 1 với a là số nguyên không âm nào đó

Lời giải:

- (a) Ta chứng minh bằng quy nạp theo cấu trúc.
 - **Bước cơ sở:** Do $n = 1 \in S$ được định nghĩa ở bước cơ sở của định nghĩa của S, ta cần chỉ ra phát biểu đúng với n = 1. Thật vậy, ta có $1 = 4 \cdot 0 + 1$.
 - Bước quy nạp: Giả sử phát biểu đúng với số nguyên $n \in S$ nào đó, nghĩa là, n = 4a + 1 với a là số nguyên không âm nào đó. Ta chứng minh phát biểu đúng với $3n + 2 \in S$ và $n^2 \in S$, nghĩa là chứng minh tồn tại các số nguyên không âm c và d thỏa mãn 3n + 2 = 4c + 1 và $n^2 = 4d + 1$. Ta có 3n + 2 = 3(4a + 1) + 2 = 4(3a + 1) + 1 và $n^2 = (4a + 1)^2 = 4a(4a + 2) + 1$. Do đó, ta chọn c = 3a + 1 và d = a(4a + 2).

Theo nguyên lý quy nạp theo cấu trúc, ta có điều phải chứng minh.

(b) Theo định nghĩa, chú ý rằng mọi số nguyên $n \in S$ thỏa mãn $n \ge 1$. Lấy $m = 9 = 4 \cdot 2 + 1$. Ta chứng minh $9 \notin S$ bằng phương pháp phản chứng. Giả sử $9 \in S$. Do đó, tồn tại số nguyên $n \in S$ thỏa mãn 3n + 2 = 9 hoặc $n^2 = 9$. Suy ra $n = 3 \in S$, do không tồn tại số nguyên n thỏa mãn điều kiện thứ nhất và n = 3 là số nguyên dương duy nhất thỏa mãn điều kiện thứ hai. Tương tự, do $3 \in S$, tồn tại số nguyên $n' \in S$ thỏa mãn 3n' + 2 = 3 hoặc $n'^2 = 3$. Đây là một mâu thuẫn vì không tồn tại số nguyên dương nào thỏa mãn ít nhất một trong hai điều kiện trên. Do đó, $9 \notin S$.

- 4. Hãy tìm ví dụ một hàm f từ $\mathbb N$ đến $\mathbb N$ thỏa mãn:
 - (a) (1 điểm) f là đơn ánh nhưng không là toàn ánh
 - (b) (1 diểm) f là toàn ánh nhưng không là đơn ánh
 - (c) (1 điểm) f là song ánh và f khác hàm đồng nhất trên $\mathbb N$

 $\mathring{\mathrm{O}}$ mỗi phần, sau khi đưa ra ví dụ tương ứng, bạn cần chứng minh ví dụ của bạn thỏa mãn điều kiện đề ra.

Lời giải:

- (a) f(n) = n + 1
 - Hàm f là đơn ánh, do với mọi $n_1, n_2 \in \mathbb{N}$, nếu $n_1 \neq n_2$ thì $f(n_1) = n_1 + 1 \neq n_2 + 1 = f(n_2)$.
 - Hàm f không là toàn ánh, do tồn tại $b = 0 \in \mathbb{N}$ thỏa mãn $f(n) \neq b$ với mọi $n \in \mathbb{N}$.

(b)
$$f(n) = \begin{cases} n & \text{n\'eu } n = 0\\ n - 1 & \text{n\'eu } n \neq 0 \end{cases}$$

- Hàm f không là đơn ánh, do tồn tại hai số $0, 1 \in \mathbb{N}$ thỏa mãn $0 \neq 1$ và f(0) = f(1) = 1.
- Hàm f là toàn ánh, do với mọi $n \in \mathbb{N}$, tồn tại $n' = n + 1 \in \mathbb{N}$ thỏa mãn điều kiện f(n') = n' 1 = (n+1) 1 = n. (Chú ý rằng $n' \ge 1$.)

(c)
$$f(n) = \begin{cases} n+1 & \text{n\'eu } n \text{ ch\'an} \\ n-1 & \text{n\'eu } n \text{ l\'e} \end{cases}$$

- Hàm f rõ ràng là khác hàm đồng nhất.
- Hàm f là đơn ánh do với mọi $n, n' \in \mathbb{N}$ thỏa mãn $n \neq n'$, ta có
 - Nếu n, n' đều chẵn, $f(n) = n + 1 \neq n' + 1 = f(n')$.
 - Nếu n, n' đều lẻ, $f(n) = n 1 \neq n' 1 = f(n')$.
 - Một trong hai số n,n' là chẵn và số còn lại là lẻ. Không mất tổng quát, giả sử n chẵn và n' lẻ. Theo định nghĩa, tồn tại các số nguyên không âm k và ℓ thỏa mãn n=2k và $n'=2\ell+1$.

Ta chứng minh bằng phương pháp phản chứng rằng f là đơn ánh. Thật vây, nếu f không là đơn ánh, ta có f(n) = f(n'), hay n+1=n'-1, nghĩa là n'-n=2. Do đó, $2\ell+1-2k=2$, suy ra $2(\ell-k)=1$. Do k và ℓ là các số nguyên, đẳng thức này luôn sai. Do đó, f là đơn ánh.

• Hàm f là toàn ánh, do với mọi $n \in \mathbb{N}$, tồn tại n' = n + 1 nếu n chẵn và n' = n - 1 nếu n lẻ thỏa mãn f(n') = n.