GÉOMÉTRIE ET ARITHMÉTIQUE Planche : Polynômes 1

1 Généralités, degré, opérations avec les polynômes

Exercice 1. Soient $P(X) = 3X^3 - 2$, $Q(X) = X^2 + X - 1$ et R(X) = aX + b. Calculer P + Q, PQ, $Q \circ R$, $R \circ Q$. Trouver a et b afin que le degré de P - QR soit le plus petit possible.

Exercice 2. Trouver le polynôme P de degré inférieur ou égal à 3 tel que :

$$P(0) = -3$$
, $P(1) = 0$, $P(-1) = -4$ et $P(2) = 5$.

Exercice 3. Déterminer les couples de réels (λ, μ) tels que $X^4 + \lambda X^3 + \mu X^2 + 12X + 4$ est le carré d'un polynôme de $\mathbb{R}[X]$.

Exercice 4. Soient $U, V \in \mathbb{K}[X]$. Montrer que U + V et U - V sont constants si et seulement si U et V le sont. On suppose $U^2 - V^2$ constant et non nul. Montrer que U et V sont constants. Dire pourquoi $U^2 - V^2 = 0$ n'implique pas que U et V sont constants.

Exercice 5. Soient $P,Q \in \mathbb{K}[X]$ deux polynômes de degré n et m respectivement $(n,m \ge 0)$. Déterminer le degré et le coefficient dominant de $P \circ Q$ et de $Q \circ P$. Répondre à la même question lorsque P = 0.

Exercice 6. Résoudre les équations suivantes :

- 1. $Q^2 = XP^2$ d'inconnues $P, Q \in \mathbb{K}[X]$,
- 2. $P \circ P = P$ d'inconnue $P \in \mathbb{K}[X]$,
- 3. $P(X^2) = (X^2 + 1)P(X)$ d'inconnue $P \in \mathbb{K}[X]$.

Exercice 7. Soient $P \in \mathbb{R}[X]$ et $a \in \mathbb{R}$. Montrer qu'il existe un unique $Q_a \in \mathbb{R}[X]$ tel que $Q_a(X-a) = P(X)$. Déterminer Q_a lorsque $P(X) = X^3 + 2X + 1$ et a = 1.

Exercice 8. Soient $(\alpha, \beta) \in \mathbb{C}^{*2}$ tels que $\alpha \neq \beta$, soit $A \in \mathbb{C}[X]$. Montrer qu'il existe un unique $P \in \mathbb{C}[X]$ tel que $P(X - \alpha) + P(X - \beta) = A(X)$.

2 Division euclidienne, pgcd, polynômes de Bézout

Exercice 9. Dans $\mathbb{C}[X]$, faire la division euclidienne de A par B où :

1.
$$A = 3X^5 + 4X^2 + 1$$
, $B = X^2 + 2X + 3$,

2.
$$A = 8X^4 + 3X^2 + 5X - 6$$
, $B = X + 1$,

3.
$$A = X^3 + 27$$
, $B = X^2 - 3X + 9$,

4.
$$A = X^4 + 1$$
, $B = X^2 - i$,

5.
$$A = 4X^3 + X^2$$
, $B = X + 1 + i$.

Exercice 10. Calculer le reste de la division euclidienne du polynôme $X^n + X + 1$ par le polynôme $(X - 1)^2$.

Exercice 11. Pour $n \in \mathbb{N}$, quel est le reste de la division de $X^n + X + b$ par $(X - a)^2$?

Exercice 12. Soit P un polynôme. Sachant que le reste de la division euclidienne de P par X-a est 1 et celui de la division de P par X-b est -1, $(a \neq b)$, quel est le reste de la division euclidienne de P par (X-a)(X-b)?

Exercice 13. Soit $P \in \mathbb{K}[X]$ tel que les restes des divisions de P par $X^2 + 1$ et $X^2 - 1$ valent respectivement 2X - 2 et -4X. Quel est le reste de la division de P par $X^4 - 1$?

Exercice 14. Calculer pgcd(P,Q) et trouver les polynômes de Bézout correspondants lorsque :

1.
$$P = X^3 + 1$$
 et $Q = X^2 + X + 1$,

2.
$$P = X^3 - X^2 - X - 2$$
 et $Q = X^5 - 2X^4 + X^2 - X - 2$,

3.
$$P = X^4 + X^3 - 2X + 1$$
 et $Q = X^3 + X + 1$,

Exercice 15. Soient $A, B \in \mathbb{K}[X]$.

- 1. A-t-on $\operatorname{pgcd}(A, B) = 1 \iff \operatorname{pgcd}(A + B, AB) = 1$?
- 2. A-t-on $\operatorname{pgcd}(A, B) = \operatorname{pgcd}(A + B, AB)$?

Exercice 16. Soit n un entier positif.

- 1. Déterminer le pgcd des polynômes (X^n-1) et $(X-1)^n$.
- 2. Déterminer les polynômes de Bézout lorsque n=3.

Exercice 17. Soient $A = X^4 - 2X^3 - 2X^2 + 10X - 7$ et $B = X^4 - 2X^3 - 3X^2 + 13X - 10$. Trouver tous les polynômes $U, V \in \mathbb{R}[X]$ tels que $AU + BV = \operatorname{pgcd}(A, B)$.

Exercice 18. Déterminer tous les polynômes P et $Q \in \mathbb{R}[X]$, premiers entre eux, tels que $P^2 + Q^2 = (X^2 + 1)^2$. En déduire que l'équation $x^2 + y^2 = z^2$ a une infinité de solutions (non proportionnelles) dans \mathbb{Z} .