Team Notebook

Pontificia Universidad Católica de Chile - Bella y Sensual

1	Data Structures	2
	1.1 dsu	2
	1.2 fenwick tree	2
	1.3 link cut tree	2
	1.4 persistent segment tree lazy	2
	1.5 persistent segment tree	3
	1.6 rmq lineal	3
	1.7 segment tree 2d	3
	1.8 segment tree beats	4
	1.9 segment tree lazy	5
	1.10 segment tree	5
	1.11 sparse table	5
	1.12 treap implicit	5
	1.13 treap	6
2	$Geo2d \$	6
	2.1 circle	
	2.2 closest points	7
	2.3 convex hull	7
	2.4 delaunay	
	2.5 halfplane intersect	8
	2.6 line	
	2.7 minkowski	8
	2.8 point	9
	2.9 polygon	
	2.10 sweep	
	2.11 theorems	
3	Graph 1	
	3.1 artic bridge biconn	
	3.2 bellman ford	0
	3.3 blossom	
	3.4 chu liu minimum spanning arborescence 1	0

	3.5 dinic	11
	3.6 dominator tree	11
	3.7 eulerian	11
	3.8 floyd warshall	11
	3.9 gomory hu	12
	3.10 heavy light	12
	3.11 hungarian	12
	3.12 kuhn	13
	3.13 lca	13
	3.14 maxflow mincost	13
	3.15 parallel dfs	14
	3.16 push relabel	14
	3.17 strongly connected components	14
	3.18 two sat	15
4	Implementation	15
	4.1 common template and bit tricks	15
	4.2 dp convex hull trick	15
	4.3 dp divide and conquer	15
	4.4 dynamic connectivity	16
	4.5 hash container	16
	4.6 mo	16
	4.7 ordered set	16
	4.8 unordered map	16
5	Math	16
	5.1 arithmetic	16
	5.2 berlekamp massey linear recurrence	16
	5.3 crt	17
	5.4 debrujinseq	17
	5.5 discrete log	17
	5.6 fast hadamard transform	17
	5.7 fft	17

5.8 gauss	18
5.9 linear diophantine	18
5.10 matrix	18
5.11 matroidisect	18
5.12 mobius	19
5.13 multiny	19
5.14 permtree	19
5.15 polar rho	19
5.16 polynomials	20
5.17 primes	20
5.18 simplex	21
5.19 theorems and formulas	21
5.20 theorems	22
5.21 tonelli shanks	22
Strings	23
6.1 aho corasick	23
6.2 debruijn sequence	23
6.3 hash	23
6.4 manacher	23
6.5 palindromic tree	23
6.6 prefix function	24
6.7 suffix array	24
6.8 suffix automaton	24
6.9 z function	24

1 Data Structures

$1.1 \mathrm{dsu}$

```
struct Dsu {
    vector<int> p; Dsu(int N = 0) : p(N, -1) {}
    int get(int x) { return p[x] < 0 ? x : get(p[x]); }
    bool sameSet(int a, int b) { return get(a) == get(b); }
   int size(int x) { return -p[get(x)]; }
    vector<vector<int>> S;
    void unite(int x, int y) {
       if ((x = get(x)) == (y = get(y)))
            return S.push back({-1});
       if (p[x] > p[y]) swap(x, y);
       S.push_back({x, y, p[x], p[y]});
        p[x] += p[y], p[y] = x;
   }
    void rollback() {
        auto a = S.back(); S.pop back();
       if (a[0] != -1) p[a[0]] = a[2], p[a[1]] = a[3];
};
```

1.2 fenwick tree

```
int ft[MAXN+1]; // add dimension for multi-d
void upd(int i0, int v){ // add v to i0th element
    for(int i=i0+1;i<=MAXN;i+=i&-i)ft[i]+=v;//+ fors
}
int get(int i0){ // get sum of range [0,i0)
    int r=0; // add fors
    for(int i=i0;i;i-=i&-i)r+=ft[i];
    return r;
}
int get_sum(int i0,int i1){//sum of [i0,i1)
    return get(i1)-get(i0);
}</pre>
```

1.3 link cut tree

```
const int N_DEL = 0, N_VAL = 0; //delta, value
inline int mOp(int x, int y){return x+y;}//modify
inline int qOp(int lval, int rval){return lval + rval;}//
query
inline int dOnSeg(int d, int len){return d==N_DEL ? N_DEL :
d*len;}
//mostly generic
inline int joinD(int d1, int d2){
   if(d1==N_DEL)return d2;if(d2==N_DEL)return d1;return
mOp(d1, d2);}
inline int joinVD(int v, int d){return d==N_DEL ? v : mOp(v, d);}
struct Node_t{
   int sz, nVal, tVal, d; bool rev;
```

```
Node t *c[2], *p;
  Node t(int v) : sz(1), nVal(v), tVal(v), d(N DEL), rev(<math>0),
p(0){
 c[0]=c[1]=0;
 bool isRoot(){return !p || (p->c[0] != this && p->c[1] !=
this);}
  void push(){
 if(rev){
    rev=0; swap(c[0], c[1]); fore(x,0,2)if(c[x])c[x]-
>rev^=1:
 nVal=joinVD(nVal, d); tVal=joinVD(tVal, dOnSeg(d, sz));
  fore(x,0,2)if(c[x])c[x]->d=joinD(c[x]->d, d);
  d=N DEL;
 }
 void upd();
typedef Node t* Node;
int getSize(Node r){return r ? r->sz : 0;}
int getPV(Node r){
  return r ? joinVD(r->tVal, d0nSeg(r->d,r->sz)) : N_VAL;}
void Node t::upd(){
  tVal = qOp(qOp(getPV(c[0]), joinVD(nVal, d)),
getPV(c[1]));
  sz = 1 + getSize(c[0]) + getSize(c[1]);
void conn(Node c, Node p, int il){if(c)c->p=p;if(il>=0)p-
>c[!il]=c;}
void rotate(Node x){
 Node p = x->p, g = p->p;
 bool gCh=p->isRoot(), isl = x==p->c[0];
  conn(x->c[isl],p,isl); conn(p,x,!isl);
  conn(x,g,gCh?-1:(p==g->c[0])); p->upd();
void spa(Node x){//splay
  while(!x->isRoot()){
  Node p = x->p, q = p->p;
  if(!p->isRoot())g->push();
  p->push(); x->push();
  if(!p->isRoot())rotate((x==p->c[0])==(p==g->c[0])? p : x);
  rotate(x);
  x->push(); x->upd();
Node exv(Node x){//expose
 Node last=0:
  for(Node y=x; y; y=y->p)spa(y),y->c[0]=last,y-
>upd(),last=y;
  spa(x);
  return last;
void mkR(Node x){exv(x);x->rev^=1;}//makeRoot
Node getR(Node x) \{exv(x); while(x->c[1])x=x-
>c[1];spa(x);return x;}
```

```
Node lca(Node x, Node y){exv(x); return exv(y);}
bool connected(Node x, Node y){exv(x);exv(y); return x==y?
1:x->p!=0;
void link(Node x, Node y){mkR(x); x->p=y;}
void cut(Node x, Node y){mkR(x); exv(y); y -> c[1] -> p=0; y -> c[1] -> p=0
>c[1]=0;
Node father(Node x){
  exv(x); Node r=x->c[1];
  if(!r)return 0:
  while(r->c[0])r=r->c[0];
  return r:
void cut(Node x){ // cuts x from father keeping tree root
  exv(father(x));x->p=0;}
int query(Node x, Node y){mkR(x); exv(y); return getPV(y);}
void modify(Node x, Node y, int d){mkR(x);exv(y);y-
>d=joinD(y->d,d);}
Node lift rec(Node x, int t){
  if(!x)return 0;
  if(t==getSize(x->c[0])){spa(x);return x;}
  if(t<qetSize(x->c[0]))return lift rec(x->c[0],t);
  return lift_rec(x->c[1],t-getSize(x->c[0])-1);
Node lift(Node x, int t) { // t-th ancestor of x (lift(x,1)
is x's father)
  exv(x);return lift rec(x,t);}
int depth(Node x){ // distance from x to its tree root
  exv(x);return getSize(x)-1;}
```

1.4 persistent segment tree lazy

```
template <class T>
struct Node {
   T x. lz:
    int l = -1. r = -1:
template <class T>
struct Pstl {
    int N:
    vector<Node<T>> a;
    vector<int> head:
   T qneut() { return 0; }
   T merge(T l, T r) { return l + r; }
   T uneut() { return 0; }
   T accum(T u, T x) { return u + x; }
   T apply(T x, T lz, int l, int r) { return x + (r - l) *
lz: }
    int build(int vl, int vr) {
        if (vr - vl == 1) a.push_back({qneut(),
uneut()}); // node construction
        else {
            int vm = (vl + vr) / 2, l = build(vl, vm), r =
```

```
build(vm. vr):
            a.push back({merge(a[l].x, a[r].x), uneut(), l,
r}); // query merge
        return a.size() - 1;
   }
   T query(int l, int r, int v, int vl, int vr, T acc) {
       if (l >= vr || r <= vl) return</pre>
qneut();
                            // query neutral
       if (l \ll vl \& r \gg vr) return apply(a[v].x, acc,
vl, vr); // update op
        acc = accum(acc,
a[v].lz);
                                          // update merge
        int vm = (vl + vr) / 2;
        return merge(query(l, r, a[v].l, vl, vm, acc),
query(l, r, a[v].r, vm, vr, acc)); // query merge
    int update(int l, int r, T x, int v, int vl, int vr) {
       if (l >= vr || r <= vl || r <= l) return v;</pre>
       a.push_back(a[v]);
       v = a.size() - 1:
       if (l <= vl && r >= vr) {
            a[v].x = apply(a[v].x, x, vl, vr); // update op
            a[v].lz = accum(a[v].lz, x);
                                              // update
merge
       } else {
            int vm = (vl + vr) / 2;
            a[v].l = update(l, r, x, a[v].l, vl, vm);
            a[v].r = update(l, r, x, a[v].r, vm, vr);
            a[v].x = merge(a[a[v].l].x, a[a[v].r].x); //
query merge
        return v;
   }
   Pstl() {}
    Pstl(int N) : N(N) { head.push back(build(0, N)); }
   T query(int t, int l, int r) {
        return query(l, r, head[t], 0, N, uneut()); //
update neutral
   int update(int t, int l, int r, T x) {
        return head.push back(update(l, r, x, head[t], 0,
N)), head.size() - 1;
   }
```

1.5 persistent segment tree

```
// usage:
// Pst<Node<ll>> pst;
// pst = {N};
```

```
// int newtime = pst.update(time, index, value);
// Node<ll> result = pst.query(newtime, left, right);
template <class T>
struct Node {
    Tx;
    int l = -1, r = -1;
    Node(): x(0) {}
    Node(T \times) : \times(\times) {}
    Node (Node a, Node b, int l = -1, int r = -1) : x(a.x +
b.x), l(l), r(r) {}
};
template <class U>
struct Pst {
    int N:
    vector<U> a:
    vector<int> head;
    int build(int vl, int vr) {
        if (vr - vl == 1) a.push_back(U());
            int vm = (vl + vr) / 2, l = build(vl, vm),
                 r = build(vm, vr);
            a.push back(U(a[l], a[r], l, r));
         return a.size() - 1;
    }
    U query(int l, int r, int v, int vl, int vr) {
        if (l >= vr || r <= vl) return U();</pre>
        if (l <= vl && r >= vr) return a[v];
        int vm = (vl + vr) / 2;
         return U(query(l, r, a[v].l, vl, vm),
                 query(l, r, a[v].r, vm, vr));
    }
    int update(int i, U x, int v, int vl, int vr) {
        a.push back(a[v]);
        v = a.size() - 1;
        if (vr - vl == 1) a[v] = x;
        else {
            int vm = (vl + vr) / 2;
            if (i < vm) a[v].l = update(i, x, a[v].l, vl,</pre>
            else a[v].r = update(i, x, a[v].r, vm, vr);
            a[v] = U(a[a[v].l], a[a[v].r], a[v].l, a[v].r);
         return v;
    }
    Pst() {}
    Pst(int N) : N(N) { head.push back(build(0, N)); }
```

```
U query(int t, int l, int r) {
    return query(l, r, head[t], 0, N);
}
int update(int t, int i, U x) {
    return head.push_back(update(i, x, head[t], 0, N)),
head.size() - 1;
}
};
```

1.6 rmq lineal

```
typedef int tf; // O(n) construction, O(1) query
struct rma{
    int n; tf INF=1e9;//change sign of INF for MAX
    vector<unsigned int> mk; vector<tf> bk,v;
    rmq(){}
    tf op(tf a, tf b){return min(a,b);}//change for maximum
    int f(int x){return x>>5:}
    rmq(vector<tf> &vv):n(SZ(vv)),mk(n),bk(n,INF),v(vv){
        unsigned int lst=0;
        for(int i=0;i<SZ(v);i++,lst<<=1){</pre>
            bk[f(i)]=op(bk[f(i)],v[i]);
            while(lst&&v[i-__builtin_ctz(lst)]>v[i])
lst^=lst&-lst;
                      //MIN
            //while(lst&&v[i- builtin ctz(lst)]<v[i])</pre>
lst^=lst&-lst; //MAX
            mk[i]=++lst:
        for(int k=1,top=f(n);(1<<k)<=top;k+</pre>
+) fore(i,0,top)if(i+(1<<k)<=top)
            bk[top*k+i]=op(bk[top*(k-1)+i],
bk[top*(k-1)+i+(1<< k-1)]);
    tf get(int st, int en){
        return v[en-31+ builtin clz(mk[en]&((1ll<<en-
st+1)-1))];
    }
    tf query(int s, int e){ //[s,e]
        int b1=f(s),b2=f(e),top=f(n);
        if(b1==b2) return get(s,e);
        tf ans=op(get(s,(b1+1)*32-1), get(b2*32,e));
s=(b1+1)*32: e=b2*32-1:
        if(s<=e){
            int k=31-__builtin_clz(f(e-s+1));
            ans=op(ans,op(bk[top*k+f(s)],bk[top*k+f(e)-
(1 << k)+1]));
        return ans;
};
```

1.7 segment tree 2d

```
// #define MAXN 1024 #define op(a,b) (a+b) #define NEUT 0
int n,m; int a[MAXN][MAXN],st[2*MAXN][2*MAXN];
```

```
void build(){
    repx(i, 0, n) repx(j, 0, m) st[i+n][j+m] = a[i][j];
    repx(i, 0, n) for(int j = m-1; j; --j)
        st[i+n][j] = op(st[i+n][j<<1], st[i+n][j<<1|1]);
    for(int i = n-1; i; --i) repx(j, 0, 2*m)
        st[i][j] = op(st[i << 1][j], st[i << 1|1][j]);
void upd(int x, int y, int v){
    st[x+n][y+m]=v;
    for(int j = y+m; j > 1; j >>= 1)
        st[x+n][j>>1] = op(st[x+n][j], st[x+n][j^1]);
    for(int i = x+n; i > 1; i >>= 1) for(int j=y+m;j;j>>=1)
        st[i>>1][j] = op(st[i][j], st[i^1][j]);
int query(int x0, int x1, int y0, int y1){
    int r=NEUT:
    for(int i0=x0+n, i1=x1+n; i0<i1; i0>>=1, i1>>=1){
        int t[4], q = 0;
        if(i0 \& 1) t[q++] = i0++;
        if(i1 \& 1) t[q++] = --i1;
        repx(k, 0, q)
            for(int j0=y0+m, j1=y1+m; j0<j1; j0>>=1,j1>>=1){
                if(j0 \& 1) r = op(r, st[t[k]][j0++]);
                if(j1 \& 1) r = op(r, st[t[k]][--j1]);
            }
    }
    return r;
```

1.8 segment tree beats

```
struct Node {
    ll s, mx1, mx2, mxc, mn1, mn2, mnc, lz = 0;
    Node(): s(0), mx1(LLONG MIN), mx2(LLONG MIN), mxc(0),
mn1(LLONG MAX), mn2(LLONG MAX), mnc(0) {}
    Node(ll x): s(x), mx1(x), mx2(LLONG MIN), mxc(1),
mn1(x), mn2(LLONG_MAX), mnc(1) {}
    Node(const Node &a, const Node &b) {
        // add
        s = a.s + b.s;
        // min
        if (a.mx1 > b.mx1) mx1 = a.mx1, mxc = a.mxc, mx2 =
max(b.mx1, a.mx2);
        if (a.mx1 < b.mx1) mx1 = b.mx1, mxc = b.mxc, mx2 =
max(a.mx1, b.mx2);
        if (a.mx1 == b.mx1) mx1 = a.mx1, mxc = a.mxc +
b.mxc, mx2 = max(a.mx2, b.mx2);
        // max
        if (a.mn1 < b.mn1) mn1 = a.mn1, mnc = a.mnc, mn2 =
min(b.mn1, a.mn2);
        if (a.mn1 > b.mn1) mn1 = b.mn1, mnc = b.mnc, mn2 =
min(a.mn1, b.mn2);
        if (a.mn1 == b.mn1) mn1 = a.mn1, mnc = a.mnc +
b.mnc, mn2 = min(a.mn2, b.mn2);
```

```
// 0 - indexed / inclusive - inclusive
template <class node>
struct STB {
    vector<node> st; int n;
    void build(int u, int i, int j, vector<node> &arr) {
        if (i == j) {
            st[u] = arr[i];
            return:
        int m = (i + j) / 2, l = u * 2 + 1, r = u * 2 + 2;
        build(l, i, m, arr), build(r, m + 1, j, arr);
        st[u] = node(st[l], st[r]);
    void push add(int u, int i, int j, ll v) {
        st[u].s += (j - i + 1) * v;
        st[u].mx1 += v, st[u].mn1 += v, st[u].lz += v;
        if (st[u].mx2 != LLONG MIN) st[u].mx2 += v;
        if (st[u].mn2 != LLONG MAX) st[u].mn2 += v;
   void push max(int u, ll v, bool l) { // for min op
        if (v >= st[u].mx1) return;
        st[u].s = st[u].mx1 * st[u].mxc;
        st[u].mx1 = v;
        st[u].s += st[u].mx1 * st[u].mxc;
        if (l) st[u].mn1 = st[u].mx1;
        else if (v <= st[u].mn1) st[u].mn1 = v;</pre>
        else if (v < st[u].mn2) st[u].mn2 = v;
    void push min(int u, ll v, bool l) { // for max op
        if (v <= st[u].mn1) return;</pre>
        st[u].s = st[u].mn1 * st[u].mnc;
        st[u].mn1 = v;
        st[u].s += st[u].mn1 * st[u].mnc;
        if (l) st[u].mx1 = st[u].mn1;
        else if (v \ge st[u].mx1) st[u].mx1 = v;
        else if (v > st[u].mx2) st[u].mx2 = v;
    void push(int u, int i, int j) {
        if (i == j) return;
        // add
        int m = (i + j) / 2, l = u * 2 + 1, r = u * 2 + 2;
        push add(l, i, m, st[u].lz);
        push add(r, m + 1, j, st[u].lz);
        st[u].lz = 0:
        // min
        push max(l, st[u].mx1, i == m);
        push_max(r, st[u].mx1, m + 1 == j);
        push min(l, st[u].mn1, i == m);
        push min(r, st[u].mn1, m + 1 == r);
    node query(int a, int b, int u, int i, int j) {
```

```
if (b < i || j < a) return node();
        if (a <= i && j <= b) return st[u];</pre>
        push(u, i, j);
        int m = (i + j) / 2, l = u * 2 + 1, r = u * 2 + 2;
        return node(query(a, b, l, i, m), query(a, b, r, m +
1, j));
   }
    void update add(int a, int b, ll v, int u, int i, int j)
        if (b < i || j < a) return;
        if (a <= i && j <= b) {
            push_add(u, i, j, v);
             return:
        push(u, i, j);
        int m = (i + j) / 2, l = u * 2 + 1, r = u * 2 + 2;
        update add(a, b, v, l, i, m);
        update add(a, b, v, r, m + 1, j);
        st[u] = node(st[l], st[r]);
    void update min(int a, int b, ll v, int u, int i, int j)
        if (b < i || j < a || v >= st[u].mx1) return;
        if (a <= i && j <= b && v > st[u].mx2) {
            push max(u, v, i == j);
            return:
        }
        push(u, i, j);
        int m = (i + j) / 2, l = u * 2 + 1, r = u * 2 + 2;
        update_min(a, b, v, l, i, m);
        update min(a, b, v, r, m + 1, j);
        st[u] = node(st[l], st[r]);
    void update_max(int a, int b, ll v, int u, int i, int j)
        if (b < i || j < a || v <= st[u].mn1) return;</pre>
        if (a <= i && j <= b && v < st[u].mn2) {</pre>
            push min(u, v, i == j);
            return:
        }
        push(u, i, j);
        int m = (i + j) / 2, l = u * 2 + 1, r = u * 2 + 2;
        update_max(a, b, v, l, i, m);
        update_max(a, b, v, r, m + 1, j);
        st[u] = node(st[l], st[r]);
    STB(vector<node> &v. int N) : n(N), st(N * 4 + 5)
{ build(0, 0, n - 1, v); }
    node query(int a, int b) { return query(a, b, 0, 0, n -
    void update add(int a, int b, ll v) { update add(a, b,
v, 0, 0, n - 1); }
    void update min(int a, int b, ll v) { update min(a, b,
v. 0. 0. n - 1): }
```

```
void update_max(int a, int b, ll v) { update_max(a, b,
v, 0, 0, n - 1); }
};
```

1.9 segment tree lazy

```
template <class T>
struct Stl {
   int n; vector<T> a, b;
   Stl(int n = 0) : n(n), a(4 * n, qneut()),
       b(4 * n, uneut()) {}
   T qneut() { return -2e9; }
   T uneut() { return 0; }
   T merge(T x, T y) { return max(x, y); }
   void upd(int v, T x, int l, int r)
       \{ a[v] += x, b[v] += x; \}
   void push(int v, int vl, int vm, int vr) {
       upd(2 * v, b[v], vl, vm);
       upd(2 * v + 1, b[v], vm, vr);
       b[v] = uneut();
   }
   T query(int l, int r, int v=1, int vl=0, int vr=1e9) {
       vr = min(vr, n):
       if (l <= vl && r >= vr) return a[v];
       if (l >= vr || r <= vl) return gneut();</pre>
       int vm = (vl + vr) / 2;
       push(v, vl, vm, vr);
       return merge(query(l, r, 2 * v, vl, vm),
           query(l, r, 2 * v + 1, vm, vr));
   void update(int l, int r, T x, int v = 1, int vl = 0,
           int vr = 1e9) {
       vr = min(vr, n);
       if (l >= vr || r <= vl || r <= l) return;</pre>
       if (l \ll vl \& r \gg vr) upd(v, x, vl, vr);
       else {
           int vm = (vl + vr) / 2;
           push(v, vl, vm, vr):
           update(l, r, x, 2 * v, vl, vm);
           update(l, r, x, 2 * v + 1, vm, vr);
           a[v] = merge(a[2 * v], a[2 * v + 1]);
       }
   }
```

1.10 segment tree

```
struct St {
    ll neut() { return 0; }
    ll merge(ll x, ll y) { return x + y; }
```

```
int n; vector<ll> a;
St(int n = 0) : n(n), a(2 * n, neut()) {}

ll query(int l, int r) {
    ll x = neut(), y = neut();
    for (l += n, r += n; l < r; l /= 2, r /= 2) {
        if (l & 1) x = merge(x, a[l++]);
        if (r & 1) y = merge(a[--r], y);
    }
    return merge(x, y);
}

void update(int i, ll x) {
    for (a[i += n] = x; i /= 2;)
        a[i] = merge(a[2 * i], a[2 * i + 1]);
};</pre>
```

1.11 sparse table

```
template <class T>
struct Sparse {
   T op(T a, T b) { return max(a, b); }
    vector<vector<T>> st:
    Sparse() {}
    Sparse(vector<T> a) : st{a} {
        int N = st[0].size();
        int npot = N <= 1 ? 1 : 32 - __builtin_clz(N);</pre>
        st.resize(npot);
        repx(i, 1, npot) rep(j, N + 1 - (1 << i))
        st[i].push back(
            op(st[i-1][j], st[i-1][j+(1 << (i-1))])
        ); // query op
   T query(int l, int r) { // range must be nonempty!
        int i = 31 - builtin clz(r - l);
        return op(st[i][l], st[i][r - (1 << i)]); // queryop</pre>
};
```

1.12 treap implicit

```
mt19937 gen(chrono::high_resolution_clock::now()
    .time_since_epoch().count());
// 101 Implicit Treap //
struct Node {
    int p, sz = 0, v, acc, l = -1, r = -1;
    Node(): v(0), acc(0) {}
    Node(int x): p(gen()), sz(1), v(x), acc(x) {}
    void recalc(const Node &a, const Node &b) {
        sz = a.sz + b.sz + 1; acc = v + a.acc + b.acc;
    }
};
```

```
template <class node>
struct Treap {
    vector<node> t;
    int n, r = -1;
    node get(int u) { return u != -1 ? t[u] : node(); }
    void recalc(int u)
{t[u].recalc(get(t[u].l),get(t[u].r));}
    int merge(int l, int r) {
        if (min(l, r) == -1) return l != -1 ? l : r;
        int ans = (t[l].p < t[r].p) ? l : r;</pre>
        if (ans == l) t[l].r = merge(t[l].r, r), recalc(l);
        if (ans == r) t[r].l = merge(l, t[r].l), recalc(r);
        return ans;
    pii split(int u, int id) {
        if (u == -1) return {-1, -1};
        int szl = get(t[u].l).sz;
        if (szl >= id) {
            pii ans = split(t[u].l, id);
            t[u].l = ans.ss;
            recalc(u);
            return {ans.ff, u};
        pii ans = split(t[u].r, id - szl - 1);
        t[u].r = ans.ff;
        recalc(u):
        return {u, ans.ss};
    Treap(vi &v) : n(sz(v)) {
        for (int i=0; i<n; i++) t.eb(v[i]), r = merge(r, i);</pre>
// Complete Implicit Treap with Lazy propagation //
struct Node {
    int p, sz = 0, v, acc, l = -1, r = -1, par = -1, lzv=0;
    bool lz = false, f = false;
    Node(): v(0), acc(0) {}
    Node(int x) : p(gen()), sz(1), v(x), acc(x) {}
    void recalc(const Node &a, const Node &b) {
        sz = a.sz + b.sz + 1; acc = v + a.acc + b.acc;
    void upd lazy(int x) { lz = 1, lzv += x; }
    void lazy() \{v+=lzv, acc += sz * lzv, lz = 0, lzv = 0; \}
    void flip() { swap(l, r), f = 0; }
template <class node> struct Treap {
    vector<node> t:
    int n. r = -1:
    node get(int u) { return u != -1 ? t[u] : node(); }
    void recalc(int u) {
        int l = t[u].l, r = t[u].r;
        push(l), push(r), flip(l), flip(r);
        t[u].recalc(get(l), get(r));
   }
    void push(int u) {
```

```
if (u == -1 || !t[u].lz) return;
    int l = t[u].l, r = t[u].r;
    if (l != -1) t[l].upd lazy(t[u].lzv);
    if (r != -1) t[r].upd_lazy(t[u].lzv);
    t[u].lazy();
}
void flip(int u) {
    if (u == -1 || !t[u].f) return;
    int l = t[u].l, r = t[u].r;
    if (l != -1) t[l].f ^= 1;
    if (r != -1) t[r].f ^= 1;
    t[u].flip();
}
int merge(int l, int r) { // (*) = only if parent needed
    if (min(l, r) == -1) return l != -1 ? l : r;
    push(l), push(r), flip(l), flip(r);
    int ans = (t[l].p < t[r].p) ? l : r;</pre>
    if (ans == l) t[l].r = merge(t[l].r, r), recalc(l);
    if (ans == r) t[r].l = merge(l, t[r].l), recalc(r);
    if (t[ans].l != -1) t[t[ans].l].par = ans; // (*)
    if (t[ans].r != -1) t[t[ans].r].par = ans; // (*)
    return ans;
pii split(int u, int id) {// (*) = only if parent needed
    if (u == -1) return {-1, -1};
    push(u);
    flip(u);
    int szl = get(t[u].l).sz;
    if (szl >= id) {
        pii ans = split(t[u].l, id);
        if (ans.ss != -1) t[ans.ss].par = u; // (*)
        if (ans.ff != -1) t[ans.ff].par = -1; // (*)
        t[u].l = ans.ss:
        recalc(u);
        return {ans.ff, u};
    pii ans = split(t[u].r, id - szl - 1);
    if (ans.ff != -1) t[ans.ff].par = u: // (*)
    if (ans.ss != -1) t[ans.ss].par = -1; // (*)
    t[u].r = ans.ff:
    recalc(u);
    return {u, ans.ss};
int update(int u, int l, int r, int v) {
    pii a = split(u, l), b = split(a.ss, r - l + 1);
    t[b.ff].upd lazy(v);
    return merge(a.ff, merge(b.ff, b.ss));
}
void print(int u) {
    if (u==-1) return; push(u), flip(u); print(t[u].l);
    cout << t[u].v << ' '; print(t[u].r);</pre>
Treap(vi &v) : n(sz(v)) {
    for (int i=0; i<n; i++) t.eb(v[i]), r = merge(r, i);</pre>
```

```
}
};
```

1.13 treap

```
typedef struct item *pitem;
struct item {
    int pr,key,cnt; pitem l,r;
    item(int key):key(key),pr(rand()),cnt(1),l(0),r(0) {}
};
int cnt(pitem t){return t?t->cnt:0;}
void upd cnt(pitem t){if(t)t->cnt=cnt(t->l)+cnt(t->r)+1;}
void split(pitem t, int key, pitem& l, pitem& r){ // l: <=</pre>
key, r: > key
    if(!t)l=r=0;
    else if(key<t->key)split(t->l,key,l,t->l),r=t;
    else split(t->r,key,t->r,r),l=t;
    upd cnt(t):
void insert(pitem& t, pitem it){
    if(!t)t=it;
    else if(it->pr>t->pr)split(t,it->key,it->l,it->r),t=it;
    else insert(it->key<t->key?t->l:t->r,it);
    upd cnt(t);
void merge(pitem& t, pitem l, pitem r){
    if(!|||||r)t=|?|:r:
    else if(l->pr>r->pr)merge(l->r,l->r,r),t=l;
    else merge(r->l,l,r->l),t=r;
    upd cnt(t);
void erase(pitem& t, int kev){
    if(t->key==key)merge(t,t->l,t->r);
    else erase(key<t->key?t->l:t->r,key);
    upd cnt(t):
```

2 Geo2d

2.1 circle

```
struct C {
   P o; T r;
   // circle-line intersection, assuming it exists
   // points are sorted along the direction of the line
   pair<P, P> line_inter(L l) const {
        P c = l.closest_to(o); T c2 = (c - o).magsq();
        P e = l.d * sqrt(max(r*r - c2, T()) / l.d.magsq());
        return {c - e, c + e};
}
// check the type of line-circle collision
// <0: 2 inters, =0: 1 inter, >0: 0 inters
T line_collide(L l) const {
        T c2 = (l.closest to(o) - o).magsq();
}
```

```
return c2 - r * r:
// calculates the two intersections between two circles
// the circles must intersect in one or two points!
pair<P, P> inter(C h) const {
   P d = h.o - o;
   T c = (r * r - h.r * h.r) / d.magsq();
    return h.line inter({(1 + c) / 2 * d, d.rot()});
// check if the given circles intersect
bool collide(C h) const {
    return (h.o - o).magsq() \le (h.r + r) * (h.r + r);
// get one of the two tangents that go through the point
// the point must not be inside the circle
// a = -1: cw (relative to the circle) tangent
// a = 1: ccw (relative to the circle) tangent
P point tangent(P p, T a) const {
   Tc = r * r / p.maqsq();
    return o + c*(p-o) - a*sgrt(c*(1-c))*(p-o).rot();
// get one of the 4 tangents between the two circles
// a = 1: exterior tangents
// a = -1: interior tangents (requires no area overlap)
// b = 1: ccw tangent
// b = -1: cw tangent
// the line origin is on this circumference, and the
// direction is a unit vector towards the other circle
L tangent(C c, T a, T b) const {
   T dr = a * r - c.r;
   P d = c.o - o:
   P n = (d*dr+b*d.rot()*sqrt(d.magsq()-dr*dr)).unit();
    return {o + n * r, -b * n.rot()};
// circumcircle of a **non-degenerate** triangle
static C thru_points(P a, P b, P c) {
   b = b - a, c = c - a;
   P p = (b*c.magsq() - c*b.magsq()).rot() / (b%c*2);
    return {a + p, p.mag()};
// find the two circles that go through the given point,
// are tangent to the given line and have radius `r`
// the point-line distance must be at most `r`!
// the circles are sorted in the direction of the line
static pair<C, C> thru point line r(P a, L t, T r) {
   P d = t.d.rot().unit():
   if (d * (a - t.o) < 0) d = -d:
    auto p = C(a, r).line inter(\{t.o + d * r, t.d\});
    return {{p.first, r}, {p.second, r}};
// find the two circles that go through the given points
// and have radius `r`
// circles sorted by angle from the first point
// the points must be at most at distance `r`!
static pair<C, C> thru points r(P a, P b, T r) {
```

```
auto p = C(a, r).line inter({(a+b)/2, (b-a).rot()});
        return {{p.first, r}, {p.second, r}};
   }
    vector<P> linecol(L l){
        vector<P> s;P p=l.closest_to(o);double d=(p-
o).norm();
        if(d-EPS>r)return s;
        if(abs(d-r)<=EPS){s.pb(p);return s;}</pre>
        d=sqrt(r*r-d*d); s.pb(p+l.pq.unit()*d); s.pb(p-
l.pq.unit()*d);
        return s:
  double intertriangle(P a,P b){ // intersection with oab
    if(abs((o-a)%(o-b))<=EPS)return 0.;</pre>
    vector<P> q={a},w=linecol(L{a,b-a});
    if(w.size()==2)for(auto p:w)if((a-p)*(b-p)<-EPS)q.pb(p);</pre>
    q.pb(b);
    if(q.size()==4&&(q[0]-q[1])*(q[2]-
q[1])>EPS)swap(q[1],q[2]);
    double s=0;
    fore(i,0,q.size()-1){
     if(!has(q[i])||!has(q[i+1]))s+=r*r*(q[i]-
o).angle(q[i+1]-o)/2;
      else s+=abs((q[i]-o)%(q[i+1]-o)/2);
   }
    return s;
 }
```

2.2 closest points

```
// sort by x
ll closest(vector<ii> &p) {
    int n = SZ(p):
    set<ii>> s:
    ll\ best = 1e18;
    int j = 0;
    fore(i, 0, n) {
        ll d = ceil(sqrt(best));
        while(p[i].fst - p[j].fst >= best)
            s.erase({p[j].snd, p[j].fst}), j++;
        auto itl=s.lower bound({p[i].snd-d,p[i].fst});
        auto it2=s.upper bound({p[i].snd+d,p[i].fst});
        for(auto it = it1; it != it2; ++it) {
            ll\ dx = p[i].fst - it->snd;
            ll dy = p[i].snd - it->fst;
            best = min(best, dx * dx + dy * dy);
        s.insert({p[i].snd, p[i].fst});
    return best;
```

2.3 convex hull

```
// ccw order, excludes collinear points by default
vector<P> chull(vector<P> p) {
    if (p.size() < 3) return p;</pre>
    vector<P> r; int m, k = 0;
    sort(p.begin(), p.end(), [](P a, P b) {
        return a.x != b.x ? a.x < b.x : a.y < b.y; });</pre>
    for (P q : p) { // lower hull
        while (k \ge 2 \& r[k - 1].left(r[k - 2], q) \ge 0)
            r.pop back(), k--; // >= to > to add collinears
        r.push back(q), k++;
    if (k == (int)p.size()) return r;
    r.pop back(), k--, m = k;
    for (int i = p.size() - 1; i \ge 0; --i) { // upper hull
        while (k \ge m+2 \& r[k-1].left(r[k-2], p[i]) \ge 0)
            r.pop back(), k--; // >= to > to add collinears
        r.push back(p[i]), k++;
    r.pop_back(); return r;
```

2.4 delaunay

```
typedef int128 t lll; // if on a 64-bit platform
struct 0 {
    Q *rot, *o; P p = {INF, INF}; bool mark;
    P &F() { return r()->p; }
    0 *&r() { return rot->rot; }
    0 *prev() { return rot->o->rot; }
    Q *next() { return r()->prev(); }
};
T cross(P a, P b, P c) { return (b - a) % (c - a); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
   lll p2 = p.magsq(), A = a.magsq() - p2,
        B = b.magsq() - p2, C = c.magsq() - p2;
    return cross(p, a, b) * C + cross(p, b, c) * A +
cross(p, c, a) * B > 0;
Q *makeEdge(Q *&H, P orig, P dest) {
    Q *r = H ? H : new Q{new Q{new Q{0}}};
   H = r -> 0; r -> r() -> r() = r;
    repx(i, 0, 4) r = r->rot, r->p = {INF, INF},
        r->0 = i \& 1 ? r : r->r();
    r \rightarrow p = orig; r \rightarrow F() = dest;
    return r:
void splice(0 *a, 0 *b) {
    swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
```

```
Q *connect(Q *&H, Q *a, Q *b) {
    Q *q = makeEdge(H, a->F(), b->p);
    splice(q, a->next()); splice(q->r(), b); return q;
pair<0 *, 0 *> rec(0 *&H, const vector<P> &s) {
    if (s.size() <= 3) {
        Q *a = makeEdge(H, s[0], s[1]), *b = makeEdge(H, s[0], s[1])
s[1], s.back());
        if (s.size() == 2) return \{a, a->r()\}; splice(a-
>r(), b);
        auto side = cross(s[0], s[1], s[2]);
        0 *c = side ? connect(H, b, a) : 0;
        return {side < 0 ? c->r() : a, side < 0 ? c : b-
>r()};
#define J(e) e->F(), e->p
#define valid(e) (cross(e->F(), J(base)) > 0)
    Q *A, *B, *ra, *rb; int half = s.size() / 2;
    tie(ra, A) = rec(H, \{s.begin(), s.end() - half\});
    tie(B, rb) = rec(H, \{s.begin() + s.size() - half,
    while ((cross(B->p, J(A)) < 0 \& (A = A->next()))
           (cross(A->p, J(B)) > 0 \& (B = B->r()->0));
    Q *base = connect(H, B->r(), A);
    if (A->p == ra->p) ra = base->r();
    if (B\rightarrow p == rb\rightarrow p) rb = base;
#define DEL(e, init, dir) Q *e = init->dir; \
    if (valid(e)) while (circ(e->dir->F(), J(base), e->F()))
{ \
            Q *t = e->dir; splice(e, e->prev()); \
            splice(e->r(), e->r()->prev()); e->o = H; H = e;
e = t; \
    for (;;) {
        DEL(LC, base->r(), o); DEL(RC, base, prev());
        if (!valid(LC) && !valid(RC)) break;
        if (!valid(LC) || (valid(RC) && circ(J(RC), J(LC))))
             base = connect(H, RC, base->r());
        else base = connect(H, base->r(), LC->r());
    return {ra, rb};
#undef J
#undef valid
#undef DEL
// there must be no duplicate points
// returns no triangles in the case of all collinear points
// produces counter-clockwise triangles ordered in triples
// maximizes the minimum angle across all triangulations
// the euclidean mst is a subset of these edges
// O(N log N)
```

```
vector<P> triangulate(vector<P> pts) {
    sort(pts.begin(), pts.end(), [](P a, P b) {
        return make pair(a.x, a.y) < make pair(b.x, b.y);</pre>
    assert(unique(pts.begin(), pts.end()) == pts.end());
    if (pts.size() < 2) return {};</pre>
    Q *H = 0; Q *e = rec(H, pts).first;
    vector<Q *> q = \{e\}; int qi = 0;
    while (cross(e->o->F(), e->F(), e->p) < 0) e = e->o;
#define ADD
    {
        0 *c = e:
        do {
            c->mark = 1; pts.push_back(c->p); \
            q.push_back(c->r()); c = c->next(); \
       } while (c != e):
   }
    ADD:
    pts.clear();
    while (gi < (int)g.size()) if (!(e = g[gi++])->mark)
ADD;
    return pts;
#undef ADD
```

2.5 halfplane intersect

```
// obtain the convex polygon that results from intersecting
the given list
// of halfplanes, represented as lines that allow their left
// assumes the halfplane intersection is bounded
vector<P> halfplane intersect(vector<L> &H) {
    L bb(P(-INF, -INF), P(INF, 0));
    rep(k, 4) H.push back(bb), bb.o = bb.o.rot(), bb.d =
bb.d.rot();
    sort(begin(H), end(H), [](L a, L b) { return
a.d.angcmp(b.d) < 0;  });
    deque<L> q; int n = 0;
    rep(i, H.size()) {
        while (n \ge 2 \&\& H[i].side(q[n - 1].intersection(q[n - 1]))
-2])) > 0)
            q.pop_back(), n--;
        while (n \ge 2 \&\& H[i].side(q[0].intersection(q[1]))
> 0)
            q.pop_front(), n--;
        if (n > 0 && H[i].parallel(q[n - 1])) {
            if (H[i].d * q[n - 1].d < 0) return {};</pre>
            if (H[i].side(q[n-1].o) > 0) q.pop back(),
n--;
            else continue;
        q.push_back(H[i]), n++;
```

2.6 line

```
// a segment or an infinite line
// does not handle point segments correctly!
struct L {
   Po.d:
   static L from eq(P ab, T c) {
        return L{ab.rot(), ab * -c / ab.magsq()};
   pair<P, T> line eq() { return {-d.rot(), d.rot() * o}; }
   // on which side of the line is the point
   // negative: left. positive: right
   T side(P r) const { return (r - o) % d; }
   // returns the intersection coefficient
   // in the range [0, d % r.d]
   // if d % r.d is zero, the lines are parallel
   T inter(L r) const { return (r.o - o) % r.d; }
   // get the single intersection point
    // lines must not be parallel
   P intersection(L r) const {return o+d*inter(r)/(d%r.d);}
   // check if lines are parallel
   bool parallel(L r) const { return abs(d % r.d) <= EPS; }</pre>
   // check if segments intersect
   bool seg_collide(L r) const {
       Tz = d % r.d;
       if (abs(z) \le EPS) {
           if (abs(side(r.o)) > EPS) return false;
           T s = (r.o - o) * d, e = s + r.d * d;
           if (s > e) swap(s, e):
            return s <= d * d + EPS && e >= -EPS;
       T s = inter(r), t = -r.inter(*this);
       if (z < 0) s = -s, t = -t, z = -z;
        return s>=-EPS && s<=z+EPS && t>=-EPS && t<=z+EPS;
```

```
// full seament intersection
    // makes a point segment if the intersection is a point
    // however it does not handle point segments as input!
    bool seg_inter(L r, L *out) const {
        Tz = d % r.d;
        if (abs(z) <= EPS) {
            if (abs(side(r.o)) > EPS) return false;
            if (r.d * d < 0) r = \{r.o + r.d. -r.d\}:
            P s = 0 * d < r.o * d ? r.o : o;
            P = (o+d)*d < (r.o+r.d)*d ? o+d : r.o+r.d;
            if (s * d > e * d) return false;
            return *out = {s, e - s}, true;
        T s = inter(r), t = -r.inter(*this);
        if (z < 0) s = -s, t = -t, z = -z:
        if (s>=-EPS && s<=z+EPS && t>=-EPS && t<=z+EPS)
             return *out = \{0 + d * s / z, \{0, 0\}\}, \text{ true};
        return false;
    // check if the given point is on the segment
    bool point on seg(P r) const {
        if (abs(side(r)) > EPS) return false;
        if ((r - o) * d < -EPS) return false;</pre>
        if ((r - o - d) * d > EPS) return false;
        return true;
    // point in this line that is closest to a given point
    P closest to(P r) const {
        P dr = d.rot(); return r + dr*((o-r)*dr)/d.magsq();
};
```

2.7 minkowski

```
void reorder polygon(vector<P> &ps) {
    int pos = 0;
    repx(i, 1, (int)ps.size()) {
        if (ps[i].y < ps[pos].y || (ps[i].y == ps[pos].y &&
ps[i].x < ps[pos].x)
            pos = i;
    rotate(ps.begin(), ps.begin() + pos, ps.end());
vector<P> minkowski(vector<P> ps, vector<P> qs) {
    // the first vertex must be the lowest
    reorder polygon(ps); reorder polygon(qs);
    ps.push back(ps[0]); ps.push back(ps[1]);
    qs.push_back(qs[0]); qs.push_back(qs[1]);
    vector<P> result; int i = 0, j = 0;
    while (i < ps.size() - 2 || j < qs.size() - 2) {</pre>
        result.push_back(ps[i] + qs[j]);
        auto z = (ps[i + 1] - ps[i]) % (qs[j + 1] - qs[j]);
```

```
if (z >= 0 && i < ps.size() - 2) ++i;
   if (z <= 0 && j < qs.size() - 2) ++j;
}
return result;
}</pre>
```

2.8 point

```
struct P {
   T x. v:
   P(T x, T y) : x(x), y(y) {}
    P() : P(0, 0) \{ \}
    friend ostream &operator<<(ostream &s, const P &r) {</pre>
        return s << r.x << " " << r.y;
   }
    friend istream &operator>>(istream &s, P &r) { return s
>> r.x >> r.v: }
    P operator+(P r) const { return \{x + r.x, y + r.y\}; }
    P operator-(P r) const { return {x - r.x, y - r.y}; }
    P operator*(T r) const { return {x * r, y * r}; }
    P operator/(T r) const { return {x / r, y / r}; }
    P operator-() const { return {-x, -y}; }
    friend P operator*(T l, P r) { return {l * r.x, l *
r.y}; }
    P rot() const { return {-y, x}; }
   T operator*(P r) const { return x * r.x + y * r.y; }
   T operator%(P r) const { return rot() * r; }
   T left(P a, P b) { return (b - a) % (*this - a); }
   T magsq() const { return x * x + y * y; }
   T mag() const { return sqrt(magsq()); }
    P unit() const { return *this / mag(); }
    bool half() const { return abs(y) <= EPS && x < -EPS ||</pre>
y < -EPS; }
   T angcmp(P r) const { // like strcmp(this, r)
       int h = (int)half() - r.half();
        return h ? h : r % *this:
   }
   T angcmp rel(P a, P b) { // like strcmp(a, b)
        Pz = *this;
        int h = z \% a \le 0 \&\& z * a < 0 || z % a < 0;
       h = z \% b \le 0 \& z * b < 0 | | z \% b < 0;
        return h ? h : b % a;
   }
    bool operator==(P r) const { return abs(x - r.x) \le EPS
&& abs(y - r.y) <= EPS; }
    double angle() const { return atan2(y, x); }
    static P from_angle(double a) { return {cos(a),
```

```
sin(a)); }
};
```

2.9 polygon

```
// get TWICE the area of a simple polygon in ccw order
T area2(const vector<P> &p) {
    int n = p.size(); T a = 0;
    rep(i, n) a += (p[i] - p[0]) % (p[(i + 1) % n] - p[i]);
// checks whether a point is inside a ccw simple polygon
// returns 1 if inside, 0 if on border, -1 if outside
int in poly(const vector<P> &p, P q) {
    int w = 0;
    rep(i, p.size()) {
        P = p[i], b = p[(i + 1) % p.size()];
        T k = (b - a) % (q - a);
        T u = a.y - q.y, v = b.y - q.y;
        if (k > 0 \& u < 0 \& v >= 0) w++;
        if (k < 0 \& v < 0 \& u >= 0) w--;
        if (k == 0 \&\& (q - a) * (q - b) <= 0) return 0;
    return w ? 1 : -1:
// check if point in ccw convex polygon, O(log n)
// + if inside, 0 if on border, - if outside
T in convex(const vector<P> &p, P q) {
    int l = 1, h = p.size() - 2; assert(p.size() >= 3);
    while (l != h) { // collinear points are unsupported!
        int m = (l + h + 1) / 2;
        if (q.left(p[0], p[m]) >= 0) l = m;
        else h = m - 1:
    T in = min(q.left(p[0], p[1]), q.left(p.back(), p[0]));
    return min(in, q.left(p[l], p[l + 1]));
int extremal(const vector<P> &p, P d) {
    int n = p.size(), l = 0, r = n - 1; assert(n);
    P = 0 = (p[n - 1] - p[0]).rot();
    while (l < r) { // polygon must be convex</pre>
        int m = (l + r + 1) / 2;
        P = (p[(m + n - 1) % n] - p[m]).rot();
        if (e0.angcmp_rel(d, e) < 0) r = m - 1;</pre>
        else l = m;
    return l:
// square dist of most distant points of a ccw convex
// polygon with NO COLLINEAR POINTS
T callipers(const vector<P> &p) {
```

```
int n = p.size();
    T r = 0:
    for (int i = 0, j = n < 2 ? 0 : 1; <math>i < j; i++) {
        for (;; j = (j + 1) % n) {
            r = max(r, (p[i] - p[j]).magsq());
            if ((p[(i+1) % n] - p[i]) % (p[(i+1) % n] -
p[i]) <= EPS) break;
        }
    return r;
P centroid(const vector<P> &p) { // (barycenter)
    P r(0, 0); T t = 0; int n = p.size();
    rep(i, n) {
        r += (p[i] + p[(i+1)%n]) * (p[i] % p[(i+1)%n]);
        t += p[i] % p[(i+1)%n];
    return r / t / 3;
// classify collision of a ray inside a ccw polygon vertex.
// ray is (o, d), vertex is b, previous vertex is a, next is
pair<bool, bool> inner collide(P o, P d, P a, P b, P c) {
   T p = (a - o) % d:
                            // side of previous
    T n = (c - o) % d;
                             // side of next
   T v = (c - b) % (b - a); // is vertex convex?
    return \{v > 0 ? n < 0 | | (n == 0 \&\& p < 0) : p > 0 | | n
< 0,
            v > 0 ? p > 0 || (p == 0 \&\& n > 0) : p > 0 || n
< 0};
```

2.10 sweep

```
#include "point.cpp"
// iterate over all pairs of points
// `op` is called with all ordered pairs of different
indices `(i, i)`
// additionally, the `ps` vector is kept sorted by signed
distance
// to the line formed by `i` and `j`
// for example, if the vector from `i` to `j` is pointing
right,
// the `ps` vector is sorted from smallest `y` to largest
// note that, because the `ps` vector is sorted by signed
distance.
// ) is always equal to ) i + 1)
// this means that the amount of points to the left of the
line is always `N - i`
template <class OP>
void all pair points(vector<P> &ps, OP op) {
```

```
int N = ps.size();
sort(ps.begin(), ps.end(), [](P a, P b) {
    return make_pair(a.y, a.x) < make_pair(b.y, b.x);
});
vector<pair<int, int>> ss;
rep(i, N) rep(j, N) if (i != j) ss.push_back({i, j});
stable_sort(ss.begin(), ss.end(), [&](auto a, auto b) {
    return (ps[a.second] -
ps[a.first]).angle_lt(ps[b.second] - ps[b.first]);
});
vector<int> p(N); rep(i, N) p[i] = i;
for (auto [i, j] : ss)
    { op(p[i], p[j]); swap(ps[p[i]], ps[p[j]]);
swap(p[i], p[j]); }
}
```

2.11 theorems

```
// Pick's theorem
// Simple polygon with integer vertices:
// A = I + B / 2 - 1
// A: Area of the polygon
// I: Integer points strictly inside the polygon
// B: Integer points on the boundary of the polygon
```

3 Graph

3.1 artic bridge biconn

```
vector<int> q[MAXN];int n;
struct edge {int u,v,comp;bool bridge;};
vector<edge> e;
void add edge(int u, int v){
    g[u].pb(e.size());g[v].pb(e.size());
    e.pb((edge){u,v,-1,false});
int D[MAXN],B[MAXN],T;
int nbc; // number of biconnected components
int art[MAXN]; // articulation point iff !=0
stack<int> st; // only for biconnected
void dfs(int u,int pe){
    B[u]=D[u]=T++;
    for(int ne:g[u])if(ne!=pe){
        int v=e[ne].u^e[ne].v^u;
        if(D[v]<0){
            st.push(ne);dfs(v,ne);
            if(B[v]>D[u])e[ne].bridge = true; // bridge
            if(B[v]>=D[u]){
                art[u]++; // articulation
                int last; // start biconnected
                do{last=st.top();st.pop();e[last].comp=nbc;}
                while(last!=ne);
                nbc++; // end biconnected
```

3.2 bellman ford

```
struct Edge { int u, v: ll w: }:
// find distance from source node to all nodes.
// supports negative edge weights.
// returns true if a negative cycle is detected.
// time: 0(V E)
bool bellman ford(int N, int s, vector<Edge> &E, vector<ll>
&D, vector<int> &P) {
    P.assign(N, -1), D.assign(N, INF), D[s] = 0;
    rep(i, N - 1) {
        bool f = true;
        rep(ei, E.size()) {
            auto &e = E[ei];
           ll n = D[e.u] + e.w;
            if (D[e.u] < INF && n < D[e.v])</pre>
                D[e.v] = n, P[e.v] = ei, f = false;
        if (f) return false;
    return true:
```

3.3 blossom

```
vector<int> q[MAXN];int n,m,mt[MAXN],qh,qt,q[MAXN],ft[MAXN],
bs[MAXN];bool inq[MAXN],inb[MAXN],inp[MAXN];int lca(int root
,int x,int y){memset(inp,0,sizeof(inp));while(1){inp[x=bs[x]
]=true;if(x==root)break;x=ft[mt[x]];}while(1){if(inp[y=bs[y]
])return y;else y=ft[mt[y]];}}void mark(int z,int x){while(
bs(x)!=z){int y=mt(x);inb(bs(x))=inb(bs(y))=true;x=ft(y);if(
bs[x]!=z)ft[x]=y;}}void contr(int s,int x,int y){int z=lca(s
,x,y);memset(inb,0,sizeof(inb));mark(z,x);mark(z,y);if(bs[x]
!=z)ft[x]=y;if(bs[y]!=z)ft[y]=x;rep(x,n)if(inb[bs[x]]){bs[x]
=z;if(!ing[x])ing[q[++qt]=x]=true;}}int findp(int s){memset(
inq,0,sizeof(inq));memset(ft,-1,sizeof(ft));rep(i,n)bs[i]=i;
inq[q[qh=qt=0]=s]=true; while(qh<=qt){int x=q[qh++]; for(int y)</pre>
:g[x])if(bs[x]!=bs[y]&&mt[x]!=y){if(y==s||mt[y]>=0&&ft[mt[y])}
]>=0) contr(s,x,y); else if(ft[y]<0){ft[y]=x; if(mt[y]<0)return}
y;else if(!inq[mt[y]])inq[q[++qt]=mt[y]]=true;}}}return -1;}
int aug(int s,int t){int x=t,y,z;while(x>=0){y=ft[x];z=mt[y]}
;mt[y]=x;mt[x]=y;x=z;}return t>=0;}int edmonds(){int r=0;
```

```
memset(mt,-1,sizeof(mt));rep(x,n)if(mt[x]<0)r+=aug(x,findp(x
));return r;}</pre>
```

3.4 chu liu minimum spanning arborescence

```
//O(n*m) minimum spanning tree in directed graph
//returns -1 if not possible
//included i-th edge if take[i]!=0
typedef int tw; tw INF=111<<<30;</pre>
struct edge{int u,v,id;tw len;};
struct ChuLiu{
    int n; vector<edge> e;
    vector<int> inc,dec,take,pre,num,id,vis;
    vector<tw> inw:
    void add edge(int x, int y, tw w){
        inc.pb(0); dec.pb(0); take.pb(0);
        e.pb({x,y,SZ(e),w});
    ChuLiu(int n):n(n),pre(n),num(n),id(n),vis(n),inw(n){}
    tw doit(int root){
        auto e2=e:
        tw ans=0; int eg=SZ(e)-1,pos=SZ(e)-1;
        while(1){
            fore(i,0,n) inw[i]=INF,id[i]=vis[i]=-1;
            for(auto ed:e2) if(ed.len<inw[ed.v]){</pre>
                 inw[ed.v]=ed.len; pre[ed.v]=ed.u;
                 num[ed.v]=ed.id;
            inw[root]=0;
            fore(i,0,n) if(inw[i]==INF) return -1;
            int tot=-1:
            fore(i,0,n){
                ans+=inw[i];
                if(i!=root)take[num[i]]++;
                int j=i;
                 while(vis[j]!=i&&j!
=root&&id[j]<0)vis[j]=i,j=pre[j];
                if(j!=root&&id[j]<0){
                    id[j]=++tot;
                     for(int k=pre[i];k!=i;k=pre[k])
id[k]=tot;
                }
            }
            if(tot<0)break;</pre>
            fore(i,0,n) if(id[i]<0)id[i]=++tot;</pre>
            n=tot+1; int j=0;
            fore(i, 0, SZ(e2)){
                 int v=e2[i].v;
                 e2[j].v=id[e2[i].v];
                 e2[j].u=id[e2[i].u];
                if(e2[j].v!=e2[j].u){
                     e2[j].len=e2[i].len-inw[v];
                     inc.pb(e2[i].id);
```

```
dec.pb(num[v]);
                    take.pb(0);
                    e2[j++].id=++pos;
               }
            }
            e2.resize(j);
            root=id[root];
       }
        while(pos>eg){
            if(take[pos]>0) take[inc[pos]]++,
take[dec[pos]]--;
            pos--;
       }
        return ans;
   }
};
```

3.5 dinic

```
// time: 0(E V^2)
        O(E V^{(2/3)}) / O(E \operatorname{sgrt}(E)) unit capacities
//
        0(E sgrt(V)) (hopcroft-karp) unit networks
//unit network: c in {0,1} & forall v, indeg<=1 or outdeg<=1</pre>
//min-cut: nodes reachable from s in final residual graph
struct Dinic {
    struct Edge { int u, v; ll c, f = 0; };
    int N, s, t; vector<vector<int>>> G;
    vector<Edge> E; vector<int> lvl, ptr;
    Dinic() {}
    Dinic(int N, int s, int t) : N(N), s(s), t(t), G(N) {}
    void add edge(int u, int v, ll c) {
        G[u].push_back(E.size()); E.push_back({u, v, c});
        G[v].push back(E.size()); E.push back({v, u, 0});
    ll push(int u, ll p) {
        if (u == t || p <= 0) return p;</pre>
        while (ptr[u] < G[u].size()) {</pre>
            int ei = G[u][ptr[u]++];
            Edge &e = E[ei];
            if (lvl[e.v] != lvl[u] + 1) continue;
            ll a = push(e.v, min(e.c - e.f, p));
            if (a <= 0) continue;</pre>
            e.f += a, E[ei ^ 1].f -= a; return a;
        }
        return 0;
    }
    ll maxflow() {
        II f = 0;
        while (true) {
            lvl.assign(N, -1); queue<int> q;
            lvl[s] = 0; q.push(s);
            while (!q.empty()) {
```

```
int u = q.front(); q.pop();
                  for (int ei : G[u]) {
                      Edge &e = E[ei];
                      if (e.c-e.f<=0||lvl[e.v]!=-1) continue;</pre>
                      lvl[e.v] = lvl[u] + 1; q.push(e.v);
                 }
             if (lvl[t] == -1) break;
             ptr.assign(N,0); while(ll ff=push(s,INF))f += ff;
         return f;
};
/* Flujo con demandas (no necesariamente el maximo)
Agregar s' v t' nuevos source and sink
c'(s', v) = sum(d(u, v) \text{ for } u \text{ in } V) \setminus forall \text{ arista } (s', v)
c'(v, t') = sum(d(v, w) \text{ for w in V}) \setminus forall arista (v, t')
c'(u, v) = c(u, v) - d(u, v) \setminus forall arists antiquas
c'(t, s) = INF (el flujo por esta arista es el flujo real)*/
```

3.6 dominator tree

```
//idom[i]=parent of i in dominator tree with root=rt, or -1
if not exists
int
n,rnk[MAXN],pre[MAXN],anc[MAXN],idom[MAXN],semi[MAXN],low[MAXN];
vector<int> g[MAXN], rev[MAXN], dom[MAXN], ord;
void dfspre(int pos){
    rnk[pos]=SZ(ord); ord.pb(pos);
    for(auto x:g[pos]){
        rev[x].pb(pos);
        if(rnk[x]==n) pre[x]=pos,dfspre(x);
int eval(int v){
    if(anc[v]<n&&anc[anc[v]]<n){</pre>
        int x=eval(anc[v]);
        if(rnk[semi[low[v]]]>rnk[semi[x]]) low[v]=x;
        anc[v]=anc[anc[v]];
    return low[v];
void dominators(int rt){
    fore(i,0,n){
        dom[i].clear(); rev[i].clear();
        rnk[i]=pre[i]=anc[i]=idom[i]=n;
        semi[i]=low[i]=i;
    ord.clear(); dfspre(rt);
    for(int i=SZ(ord)-1;i;i--){
        int w=ord[i];
        for(int v:rev[w]){
            int u=eval(v);
            if(rnk[semi[w]]>rnk[semi[u]])semi[w]=semi[u];
```

```
}
dom[semi[w]].pb(w); anc[w]=pre[w];
for(int v:dom[pre[w]]){
    int u=eval(v);
    idom[v]=(rnk[pre[w]]>rnk[semi[u]]?u:pre[w]);
}
dom[pre[w]].clear();
}
for(int w:ord) if(w!=rt&&idom[w]!=semi[w])
idom[w]=idom[idom[w]];
fore(i,0,n) if(idom[i]==n)idom[i]=-1;
}
```

3.7 eulerian

```
// path/tour for directed graphs. uncomment for undirected.
struct Euler {
    struct Edge { int v. rev: }:
    vector<vector<Edge>> G; vector<Edge> P;
    Euler(int N = 0) : G(N) {}
    void add edge(int u, int v) {
        G[u].push back({v, (int)G[v].size()});
        // G[v].push_back({u, (int)G[u].size() - 1});
    }
    void go(int u) {
        while (G[u].size()) {
            Edge e = G[u].back(); G[u].pop back();
            // if (e.v == -1) continue;
            // G[e.v][e.rev].v = -1;
            go(e.v); P.push_back(e);
        }
    // works ONLY if the vertex degrees are eulerian! check!
    vector<Edge> get path(int u) {
        return P.clear(),go(u),reverse(P.begin(),P.end()),P;
};
```

3.8 floyd warshall

```
// calculate distances between every pair of nodes in O(V^3)
time.
// works with negative edges, but not negative cycles.
void floyd(const vector<vector<pair<ll, int>>> &G,
vector<vector<ll>>> &D) {
   int N = G.size();
   D.assign(N, vector<ll>(N, INF));
   rep(u, N) D[u][u] = 0;
   rep(u, N) for (auto [w, v] : G[u]) D[u][v] = w;
   rep(k, N) rep(u, N) rep(v, N)
        D[u][v] = min(D[u][v], D[u][k] + D[k][v]);
}
```

3.9 gomory hu

```
// O(N * F) (F = max flow)
vector<pair<ii,ll>> gomoryHu(int N, vector<pair<ii,ll>>&ed)
 vector<int> par(N); Dinic D(N, 0, 0);
   for(auto [e, w]: ed){
        auto [u, v] = e;
       D.G[u].push back(D.E.size());D.E.push back({u,v,w});
       D.G[v].push back(D.E.size());D.E.push back({v,u,w});
 vector<pair<ii,ll>> ans;
 repx(i,1,N){
        for(int j = 0; j < int(D.E.size()); j = j + 2){
           D.E[i].c = D.E[i^1].c = ((D.E[i].c - D.E[i].f)
               + (D.E[j^1].c - D.E[j^1].f)) / 2;
            D.E[j].f = D.E[j^1].f = 0;
       D.s = i; D.t = par[i];
       ans.push back({{i, par[i]}, D.maxflow()});
    repx(j,i+1,N)
            if (par[i] == par[i] && D.lvl[i] >= 0) par[i]=i;
 }
 return ans:
```

3.10 heavy light

```
struct Hld {
    vector<int> P, H, D, pos, top;
   Hld() {}
    void init(vector<vector<int>> &G) {
        int N = G.size();
       P.resize(N), H.resize(N), D.resize(N),
pos.resize(N).
            top.resize(N);
       D[0] = -1, dfs(G, 0); int t = 0;
        rep(i, N) if (H[P[i]] != i) {
            int j = i;
            while (j != -1)
               \{ top[j] = i, pos[j] = t++; j = H[j]; \}
       }
   }
    int dfs(vector<vector<int>>> &G, int i) {
        int w = 1, mw = 0;
       D[i] = D[P[i]] + 1, H[i] = -1;
       for (int c : G[i]) {
            if (c == P[i]) continue;
            P[c] = i; int sw = dfs(G, c); w += sw;
           if (sw > mw) H[i] = c, mw = sw;
       }
        return w;
```

```
// visit the log N segments in the path from u to v
    template <class OP>
    void path(int u, int v, OP op) {
        while (top[u] != top[v]) {
           if (D[top[u]] > D[top[v]]) swap(u, v);
            op(pos[top[v]], pos[v] + 1); v = P[top[v]];
        if (D[u] > D[v]) swap(u, v);
        op(pos[u], pos[v] + 1); // value on node
       // op(pos[u]+1, pos[v] + 1); // value on edge
   // an alternative to `path` that considers order.
   // calls `op` with an `l <= r` inclusive-exclusive</pre>
range, and a
   // boolean indicating if the query is forwards or
backwards.
    template <class OP>
   void path(int u, int v, OP op) {
        int lu = u, lv = v;
        while (top[lu] != top[lv])
           if (D[top[lu]] > D[top[lv]]) lu = P[top[lu]];
            else lv = P[top[lv]];
        int lca = D[lu] > D[lv] ? lv : lu;
        while (top[u] != top[lca])
            op(pos[top[u]], pos[u] + 1, false), u =
P[top[u]];
        if (u != lca) op(pos[lca] + 1, pos[u] + 1, false);
        vector<int> stk;
        while (top[v] != top[lca])
            stk.push_back(v), v = P[top[v]];
       // op(pos[lca], pos[v] + 1, true); // value on node
        op(pos[lca] + 1, pos[v] + 1, true); // value on edge
        reverse(stk.begin(), stk.end());
        for (int w : stk) op(pos[top[w]], pos[w] + 1, true);
   }
   // commutative segment tree
    template <class T, class S>
    void update(S &seg, int i, T val) { seg.update(pos[i],
val); }
   // commutative segment tree lazy
   template <class T, class S>
    void update(S &seq, int u, int v, T val) {
        path(u, v, [&](int l, int r) { seg.update(l, r,
val); });
   }
   // commutative (lazy) segment tree
    template <class T. class S>
```

```
T query(S &seg, int u, int v) {
        T ans =
0;
neutral element
        path(u, v, [&](int l, int r) { ans += seg.query(l,
r); }); // query op
        return ans;
}
};
```

3.11 hungarian

```
// find a maximum gain perfect matching in the given
bipartite complete graph.
// input: gain matrix (G {xy} = benefit of joining vertex x
in set X with vertex
// v in set Y).
// output: maximum gain matching in members `xy[x]` and
 `yx[y]`.
// runtime: 0(N^3)
struct Hungarian {
    int N, gi, root;
    vector<vector<ll>>> gain;
    vector<int> xy, yx, p, q, slackx;
    vector<ll> lx, ly, slack;
    vector<bool> S, T;
    void add(int x, int px) {
        S[x] = true, p[x] = px;
        rep(y, N) if (lx[x] + ly[y] - gain[x][y] < slack[y])
            slack[y] = lx[x] + ly[y] - gain[x][y], slackx[y]
= x;
    void augment(int x, int y) {
        while (x != -2) {
            yx[y] = x; swap(xy[x], y); x = p[x];
    }
    void improve() {
        S.assign(N, false), T.assign(N, false), p.assign(N,
-1);
        qi = 0, q.clear();
        rep(x, N) if (xy[x] == -1) {
            q.push back(root = x), p[x] = -2, S[x] = true;
            break:
        rep(y, N) slack[y] = lx[root] + ly[y] - gain[root]
[y], slackx[y] = root;
        while (true) {
            while (qi < q.size()) {</pre>
```

```
int x = q[qi++];
                rep(y, N) if (lx[x] + ly[y] == gain[x][y]
{\text{T[y]} }
                    if (yx[y] == -1) return augment(x, y);
                   T[y] = true, q.push_back(yx[y]),
add(yx[y], x);
               }
            ll d = INF:
            rep(y, N) if (!T[y]) d = min(d, slack[y]);
            rep(x, N) if (S[x]) lx[x] -= d;
            rep(y, N) if (T[y]) ly[y] += d;
            rep(y, N) if (!T[y]) slack[y] -= d;
            rep(y, N) if (!T[y] && slack[y] == 0) {
                if (yx[y] == -1) return augment(slackx[y],
y);
               T[v] = true;
                if (!S[yx[y]]) q.push_back(yx[y]),
add(yx[y], slackx[y]);
           }
       }
   }
   Hungarian(vector<vector<ll>>> g)
       : N(g.size()), gain(g), xy(N, -1), yx(N, -1), lx(N, -1)
-INF),
       ly(N), slack(N), slackx(N) {
        rep(x, N) rep(y, N) lx[x] = max(lx[x], ly[y]);
        rep(i, N) improve();
   }
```

3.12 kuhn

```
// get a maximum cardinality matching in a bipartite graph.
// input: adjacency lists.
// output: matching (in `mt` member).
// runtime: O(V E)
struct Kuhn {
    vector<vector<int>> G:
    int N, size;
    vector<bool> seen;
    vector<int> mt;
    bool visit(int i) {
       if (seen[i]) return false;
        seen[i] = true;
        for (int to : G[i])
            if (mt[to] == -1 || visit(mt[to])) {
                mt[to] = i;
                return true;
        return false;
```

```
}
    Kuhn(vector<vector<int>>> adj) : G(adj), N(G.size()),
mt(N, -1) {
        rep(i, N) {
            seen.assign(N, false);
            size += visit(i);
        }
    }
};
```

3.13 lca

```
// calculates the lowest common ancestor for any two nodes
in O(log N) time,
// with O(N log N) preprocessing
struct Lca {
    int N. K. t = 0:
    vector<vector<int>> U;
    vector<int> L, R;
    Lca() {}
    Lca(vector<vector<int>>> &G) : N(G.size()), L(N), R(N) {
        K = N \le 1 ? 0 : 32 - \underline{builtin_clz(N - 1)};
        U.resize(K + 1, vector<int>(N));
        visit(G, 0, 0);
         rep(k, K) rep(u, N) U[k + 1][u] = U[k][U[k][u]];
    void visit(vector<vector<int>> &G, int u, int p) {
        L[u] = t++, U[0][u] = p;
        for (int v : G[u]) if (v != p) visit(G, v, u);
        R[u] = t++;
    bool is anc(int up, int dn) {
         return L[up] <= L[dn] && R[dn] <= R[up];</pre>
    int find(int u, int v) {
        if (is anc(u, v)) return u;
        if (is anc(v, u)) return v;
        for (int k = K; k \ge 0;)
            if (is_anc(U[k][u], v)) k--;
            else u = U[k][u];
        return U[0][u];
```

3.14 maxflow mincost

```
struct Edge {
        int u. v:
        ll c, w, f = 0;
    };
    int N, s, t;
    vector<vector<int>> G;
    vector<Edge> E;
    vector<ll> d. b:
    vector<int> p;
    Flow() {}
    Flow(int N, int s, int t) : N(N), s(s), t(t), G(N) {}
    void add_edge(int u, int v, ll c, ll w) {
        G[u].push back(E.size());
        E.push back({u, v, c, w});
        G[v].push back(E.size());
        E.push_back({v, u, 0, -w});
    // naive distances with bellman-ford: O(V E)
    void calcdists() {
        p.assign(N, -1), d.assign(N, INF), d[s] = 0;
        rep(i, N - 1) rep(ei, E.size()) {
            Edge &e = E[ei];
            ll n = d[e.u] + e.w;
            if (d[e.u] < INF \&\& e.c - e.f > 0 \&\& n < d[e.v])
d[e.v] = n, p[e.v] = ei;
    }
    // johnsons potentials: 0(E log V)
    void calcdists() {
        if (b.empty()) {
            b.assign(N, 0);
            // code below only necessary if there are
negative costs
            rep(i, N - 1) rep(ei, E.size()) {
                Edge &e = E[ei]:
                if (e.f < e.c) b[e.v] = min(b[e.v], b[e.u] +
e.w);
            }
        p.assign(N, -1), d.assign(N, INF), d[s] = 0;
        priority queue<pair<ll, int>> q;
        q.push({0, s});
        while (!q.empty()) {
            auto [w, u] = q.top();
            q.pop();
            if (d[u] < -w + b[u]) continue;</pre>
            for (int ei : G[u]) {
                auto e = E[ei];
                ll n = d[u] + e.w;
                if (e.f < e.c && n < d[e.v]) {</pre>
```

```
d[e.v] = n, p[e.v] = ei;
                    q.push({b[e.v] - n, e.v});
        b = d;
   }
   ll solve() {
        b.clear();
        II ff = 0:
        while (true) {
            calcdists();
            if (p[t] == -1) break;
            ll f = INF:
            for (int cur = t; p[cur] != -1; cur =
E[p[cur]].u)
                f = min(f, E[p[cur]].c - E[p[cur]].f);
            for (int cur = t; p[cur] != -1; cur =
E[p[cur]].u)
                E[p[cur]].f += f, E[p[cur] ^ 1].f -= f;
        return ff;
   }
};
```

3.15 parallel dfs

```
struct Tree {
    int n.z[2]:
    vector<vector<int>> g;
    vector<int> ex,ey,p,w,f,v[2];
    Tree(int n):g(n),w(n),f(n){}
    void add edge(int x, int y){
        p.pb(g[x].size());g[x].pb(ex.size());
        ex.pb(x);ey.pb(y);
        p.pb(g[y].size());g[y].pb(ex.size());
        ex.pb(y);ey.pb(x);
    bool go(int k){//returns 1 if it finds new node
       int& x=z[k];
        while (x \ge 0 \& \&
            (w[x]==g[x].size()||w[x]==g[x].size()-1
            &&(g[x].back()^1)==f[x])
            x=f[x] >= 0?ex[f[x]]:-1;
       if(x<0)return false;</pre>
        if((g[x][w[x]]^1)==f[x])w[x]++;
       int e=g[x][w[x]],y=ey[e]; f[y]=e;
        w[x]++; w[y]=0; x=y; v[k].pb(x);
        return true;
    vector<int> erase_edge(int e){
        e*=2;//erases eth edge, returns smaller comp
```

```
int x=ex[e],y=ey[e]; p[g[x].back()]=p[e];
    g[x][p[e]]=g[x].back(); g[x].pop_back();
    p[g[y].back()]=p[e^1]; g[y][p[e^1]]=g[y].back();
    g[y].pop_back();
    f[x]=f[y]=-1; w[x]=w[y]=0; z[0]=x;z[1]=y;
    v[0]={x};v[1]={y};
    bool d0=true,d1=true;while(d0&&d1)d0=go(0),d1=go(1);
    return v[1-d1];
};
```

3.16 push relabel

```
#include "../common.h"
const ll INF = 1e18;
// maximum flow algorithm.
// to run, use `maxflow()`.
// \text{ time: } O(V^2 \text{ sqrt}(E)) \le O(V^3)
// memory: 0(V^2)
struct PushRelabel {
    vector<vector<ll>>> cap, flow;
    vector<ll> excess:
    vector<int> height;
    PushRelabel() {}
    void resize(int N) { cap.assign(N, vector<ll>(N)); }
    // push as much excess flow as possible from u to v.
    void push(int u. int v) {
        ll f = min(excess[u], cap[u][v] - flow[u][v]);
        flow[u][v] += f:
        flow[v][u] = f;
        excess[v] += f;
        excess[u] -= f;
    // relabel the height of a vertex so that excess flow
may be pushed.
    void relabel(int u) {
        int d = INT32 MAX;
        rep(v, cap.size()) if (cap[u][v] - flow[u][v] > 0) d
            min(d, height[v]);
        if (d < INF) height[u] = d + 1;
    // get the maximum flow on the network specified by
`cap` with source `s`
   // and sink `t`.
   // node-to-node flows are output to the `flow` member.
   ll maxflow(int s, int t) {
        int N = cap.size(), M;
```

```
flow.assign(N, vector<ll>(N));
        height.assign(N, 0), height[s] = N;
         excess.assign(N, 0), excess[s] = INF;
         rep(i, N) if (i != s) push(s, i);
        vector<int> q;
        while (true) {
            // find the highest vertices with excess
            q.clear(), M = 0;
            rep(i, N) {
                 if (excess[i] <= 0 || i == s || i == t)</pre>
continue:
                 if (height[i] > M) q.clear(), M = height[i];
                 if (height[i] >= M) q.push_back(i);
            }
            if (q.empty()) break;
            // process vertices
             for (int u : q) {
                 bool relab = true;
                 rep(v, N) {
                     if (excess[u] <= 0) break;</pre>
                     if (cap[u][v] - flow[u][v] > 0 &&
height[u] > height[v])
                         push(u, v), relab = false;
                 if (relab) {
                     relabel(u);
                     break;
        }
        ll f = 0; rep(i, N) f += flow[i][t]; return f;
};
```

3.17 strongly connected components

```
/* time: O(V + E), memory: O(V)
after building:
    comp = map from vertex to component
          (components are toposorted, root first, leaf last)
    N = number of components
    G = condensation graph (component DAG)
byproducts:
    vgi = transposed graph
    order = reverse topological sort (leaf first, root last)
others:
    vn = number of vertices
    vg = original vertex graph
                                         */
struct Scc {
    int vn, N;
    vector<int> order, comp;
    vector<vector<int>>> vg, vgi, G;
    void toposort(int u) {
```

```
if (comp[u]) return;
    comp[u] = -1:
    for (int v : vg[u]) toposort(v);
    order.push_back(u);
bool carve(int u) {
    if (comp[u] != -1) return false;
    comp[u] = N;
    for (int v : vgi[u]) {
        carve(v);
        if (comp[v] != N) G[comp[v]].push back(N);
   }
    return true;
}
Scc() {}
Scc(vector<vector<int>> &a)
: vn(g.size()), vg(g), comp(vn), vgi(vn), G(vn), N(0) {
    rep(u, vn) toposort(u);
    rep(u, vn) for (int v : vg[u]) vgi[v].push_back(u);
    invrep(i, vn) N += carve(order[i]);
}
```

3.18 two sat

```
// calculate the solvability of a system of logical
equations, where every equation is of the form `a or b`.
// `neg`: get negation of `u`
// `then`: `u` implies `v`
// `any`: `u` or `v`
// `set`: `u` is true
// after `solve` (O(V+E)) returns true, `sol` contains one
possible solution.
// determining all solutions is O(V*E) hard (requires
computing reachability in a DAG).
struct TwoSat {
    int N; vector<vector<int>>> G;
    Scc scc; vector<bool> sol;
    TwoSat(int n) : N(n), G(2 * n), sol(n) {}
    TwoSat() {}
    int neg(int u) { return (u + N) % (2 * N); }
    void then(int u, int v) { G[u].push_back(v),
G[neg(v)].push back(neg(u)); }
    void any(int u, int v) { then(neg(u), v); }
    void set(int u) { G[neg(u)].push_back(u); }
    bool solve() {
        scc = Scc(G);
        rep(u, N) if (scc.comp[u] == scc.comp[neg(u)])
        rep(u, N) sol[u] = (scc.comp[u] > scc.comp[neg(u)]);
        return true:
```

```
}
};
```

4 Implementation

4.1 common template and bit tricks

```
#pragma GCC optimize("Ofast")
#pragma GCC target("bmi,bmi2,lzcnt,popcnt")
#pragma GCC
target("avx.avx2.f16c.fma.sse3.ssse3.sse4.1.sse4.2")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define repx(i, a, b) for (int i = a; i < b; i++)
#define rep(i, n) repx(i, 0, n)
#define invrepx(i, a, b) for (int i = b - 1; i \ge a; i - -)
#define invrep(i, n) invrepx(i, 0, n)
// Command to check time and memory usage:
        /usr/bin/time -v ./tmp
// See "Maximum resident set size" for max memory used
// Commands for interactive checker:
11
        mkfifo fifo
        (./solution < fifo) | (./interactor > fifo)
// Does not work on the Windows file system, i.e., /mnt/c/
// The special fifo file must be used, otherwise the
// solution will not wait for input and will read EOF
y = x & (x-1) // Turn off rightmost 1bit
y = x & (-x) // Isolate rightmost 1bit
y = x | (x-1) // Right propagate rightmost 1bit(fill in 1s)
y = x \mid (x+1) // Turn on rightmost 0bit
y = ~x & (x+1) // Isolate rightmost 0bit
// If x is of long type, use builtin popcountl(x)
// If x is of long long type, use builtin popcountl(x)
// 1. Counts the number of one's(set bits) in an integer.
 builtin popcount(x)
// 2. Checks the Parity of a number. Returns true(1) if the
// number has odd number of set bits, else it returns
// false(0) for even number of set bits.
 builtin parity(x)
// 3. Counts the leading number of zeros of the integer.
 builtin clz(x)
// 4. Counts the trailing number of zeros of the integer.
 builtin ctz(x)
// 5. Returns 1 + the index of the least significant 1-bit.
 builtin ffs(x) // If x == 0, returns 0.
// Iterate over non empty subsets of bitmask
for(int s=m;s;s=(s-1)&m) // Decreasing order
for(int s=0;s=s-m&m;) // Increasing order
```

$4.2~\mathrm{dp}$ convex hull trick

```
struct Line {
   mutable ll a, b, c;
```

```
bool operator<(Line r) const { return a < r.a; }</pre>
    bool operator<(ll x) const { return c < x; }</pre>
// dynamically insert `a*x + b` lines and guery for maximum
// at any x all operations have complexity O(log N)
struct LineContainer : multiset<Line, less<>>> {
    ll div(ll a, ll b) {
        return a / b - ((a ^ b) < 0 && a % b);
    bool isect(iterator x, iterator y) {
        if (y == end()) return x -> c = INF, 0;
        if (x->a == y->a) x->c = x->b > y->b ? INF : -INF;
        else x->c = div(y->b - x->b, x->a - y->a);
        return x->c >= v->c:
    void add(ll a, ll b) {
        // a *= -1, b *= -1 // for min
        auto z = insert({a, b, 0}), y = z++, x = y;
        while (isect(y, z)) z = erase(z);
        if (x != begin() \&\& isect(--x, y)) isect(x, y =
erase(y));
        while ((y = x) != begin() \&\& (--x)->c >= y->c)
isect(x. erase(v)):
    ll query(ll x) {
        if (empty()) return -INF; // INF for min
        auto l = *lower bound(x);
        return l.a * x + l.b;
        // return -l.a * x - l.b; // for min
};
```

4.3 dp divide and conquer

```
// for every index i assign an optimal index j, such that
// cost(i, j) is minimal for every i. the property that if
// i2 >= i1 then j2 >= j1 is exploited (monotonic condition)
// calculate optimal index for all indices in range [l, r)
// knowing that the optimal index for every index in this
// range is within [optl, optr).
// time: O(N log N)
void calc(vector<int> &opt, int l, int r,int optl,int optr){
    if (l == r) return;
    int i = (l + r) / 2:
    ll optc = INF;
    int optj;
    repx(j, optl, optr) {
        ll c = i + j; // cost(i, j)
        if (c < optc) optc = c, optj = j;</pre>
    opt[i] = optj;
```

```
calc(opt, l, i, optl, optj + 1);
calc(opt, i + 1, r, optj, optr);
}
```

4.4 dynamic connectivity

```
struct DC {
   int n; Dsu D;
   vector<vector<pair<int, int>>> t;
   DC(int N) : n(N), D(N), t(2 * N) {}
   // add edge p to all times in interval [l, r]
   void upd(int l, int r, pair<int, int> p) {
       for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
           if (l & 1) t[l++].push back(p);
           if (r & 1) t[--r].push back(p);
       }
   }
   void process(int u = 1) { // process all queries
       for (auto &e : t[u]) D.unite(e.first, e.second);
       if (u >= n) {
           // do stuff with D at time u - n
       } else process(2 * u), process(2 * u + 1);
       for (auto &e : t[u]) D.rollback();
   }
```

4.5 hash container

```
namespace{//add (#define tmpl template)(#define ty typename)
  tmpl<ty T> size_t mk_h(const T& v){return hash<T>()(v);}
  void h_cmb(size_t& h, const size_t& v)
  { h ^= v + 0x9e3779b9 + (h << 6) + (h >> 2); }
  tmpl<ty T> struct h_ct{size_t operator()(const T& v)const{
  size_t h=0;for(const auto& e:v){h_cmb(h,mk_h(e));}return h;
  }};
}namespace std{//support for pair<T,U>, vector<T> & map<T,U>
  tmpl<ty T, ty U> struct hash<pair<T, U>>{
    size_t operator()(const pair<T,U>& v) const
  {size_t h=mk_h(v.first);h_cmb(h, mk_h(v.second));return h;}
  };
tmpl<ty... T>struct hash<vector<T...>>:h_ct<vector<T...>>{};
tmpl<ty... T>struct hash<map<T...>>:h_ct<map<T...>>{};
}
```

4.6 mo

```
struct Query { int l, r, idx; };

// answer segment queries using only `add(i)`, `remove(i)`
and `get()`
// functions.

//

// complexity: O((N + Q) * sqrt(N) * F)

// N = length of the full segment
// Q = amount of queries
// F = complexity of the `add`, `remove` functions
```

```
template <class A, class R, class G, class T>
void mo(vector<Query> &queries, vector<T> &ans, A add, R
remove, G get) {
    int Q = queries.size(), B = (int)sqrt(Q);
    sort(queries.begin(), queries.end(), [&](Query &a, Query
} (d3
        return make_pair(a.l / B, a.r) < make_pair(b.l / B,</pre>
b.r):
   ans.resize(Q);
    int l = 0, r = 0;
    for (auto &g : gueries) {
        while (r < q.r) add(r), r++;
        while (l > q.l) l--, add(l);
        while (r > q.r) r--, remove(r);
        while (l < q.l) remove(l), l++;
        ans[q.idx] = get();
```

4.7 ordered set

4.8 unordered map

5 Math

5.1 arithmetic

```
inline int floor_log2(int n)
{ return n <= 1 ? 0 : 31 - __builtin_clz(n); }
inline int ceil_log2(int n)
{ return n <= 1 ? 0 : 32 - __builtin_clz(n - 1); }
inline ll floordiv(ll a, ll b) {return a/b-((a^b)<0&&a\b);}
inline ll ceildiv(ll a, ll b) {return a/b+((a^b)>=0&&a\b);}
```

5.2 berlekamp massey linear

recurrence

```
vector<int> BM(vector<int> x) {
    vector<int> ls, cur;
    int lf, ld;
    rep(i, x.size()) {
        ll t = 0;
        rep(j, cur.size()) t = (t+x[i-j-1]*(ll)cur[j])%MOD;
        if ((t - x[i]) % MOD == 0) continue;
        if (!cur.size()) {
            cur.resize(i + 1); lf = i; ld = (t-x[i]) % MOD;
            continue:
        ll k = -(x[i] - t) * bin exp(ld, MOD - 2) % MOD:
        vector<int> c(i - lf - 1); c.push back(k);
        rep(j, ls.size()) c.push back(-ls[j] * k % MOD);
        if (c.size() < cur.size()) c.resize(cur.size());</pre>
        rep(j, cur.size()) c[j] = (c[j] + cur[j]) % MOD;
        if (i - lf + ls.size() >= cur.size())
            ls = cur, lf = i, ld = (t - x[i]) % MOD;
        cur = c:
    rep(i, cur.size()) cur[i] = (cur[i] % MOD + MOD) % MOD;
    return cur;
// Linear Recurrence
11 \text{ MOD} = 998244353;
11 LOG = 60:
struct LinearRec{
  typedef vector<int> vi;
  int n; vi terms, trans; vector<vi> bin;
  vi add(vi &a, vi &b){
    vi res(n*2+1);
    rep(i,n+1) rep(j,n+1)
        res[i+j]=(res[i+j]*1LL+(ll)a[i]*b[j])%MOD;
    for(int i=2*n; i>n; --i){
      rep(j,n)
        res[i-1-j]=(res[i-1-j]*1LL+(ll)res[i]*trans[j])%MOD;
      res[i]=0;
    res.erase(res.begin()+n+1,res.end());
    return res;
  LinearRec(vi &terms, vi &trans):terms(terms),trans(trans){
```

```
n=trans.size();vi a(n+1);a[1]=1;
bin.push_back(a);
repx(i,1,LOG)bin.push_back(add(bin[i-1],bin[i-1]));
}
int calc(ll k){
    vi a(n+1);a[0]=1;
    rep(i,LOG)if((k>>i)&1)a=add(a,bin[i]);
    int ret=0;
    rep(i,n)ret=((ll)ret+(ll)a[i+1]*terms[i])%MOD;
    ret = ret%MOD + MOD;
    return ret%MOD;
}
```

5.3 crt

```
pair<ll, ll> solve_crt(const vector<pair<ll, ll>> &eqs) {
    ll a0 = eqs[0].first, p0 = eqs[0].second;
    repx(i, 1, eqs.size()) {
        ll a1 = eqs[i].first, p1 = eqs[i].second;
        ll k1, k0;
        ll d = ext_gcd(p1, p0, k1, k0);
        a0 -= a1;
        if (a0 % d != 0) return {-1, -1};
        p0 = p0 / d * p1;
        a0 = a0 / d * k1 % p0 * p1 % p0 + a1;
        a0 = (a0 % p0 + p0) % p0;
    }
    return {a0, p0};
}
```

5.4 debrujinseq

```
vector<int> deBruijnSeq(int k, int n) { /// Recursive FKM
   if (k == 1) return {0};
   vector<int> seq, aux(n+1);
   function<void(int,int)> gen = [&](int t, int p) {
      if (t > n) { // +lyndon word of len p
        if (n%p == 0)repx(i,1,p+1)seq.push_back(aux[i]);
      } else {
      aux[t] = aux[t-p]; gen(t+1,p);
      while (++aux[t] < k) gen(t+1,t);
      }
   };
   gen(1,1); return seq;
}</pre>
```

5.5 discrete log

```
// discrete logarithm log_a(b).
// solve b ^ x = a (mod M) for the smallest x.
// returns -1 if no solution is found.
//
// time: O(sqrt(M))
ll dlog(ll a, ll b, ll M) {
```

```
ll k = 1, s = 0;
while (true) {
   ll g = gcd(b, M);
    if (q <= 1) break;
   if (a == k) return s;
    if (a % q != 0) return -1;
    a /= g, M /= g, s += 1, k = b / g * k % M;
ll N = sqrt(M) + 1;
umap<ll. ll> r:
rep(q, N + 1) {
    r[a] = q;
    a = a * b % M;
ll\ bN = binexp(b, N, M), bNp = k;
repx(p, 1, N + 1) {
    bNp = bNp * bN % M;
    if (r.count(bNp)) return N * p - r[bNp] + s;
return -1;
```

5.6 fast hadamard transform

```
ll c1[MAXN+9].c2[MAXN+9]://MAXN must be power of 2!
void fht(ll* p. int n. bool inv){
    for(int l=1;2*l<=n;l*=2)for(int</pre>
i=0;i<n;i+=2*l)fore(j,0,l){
        ll u=p[i+j],v=p[i+l+j];
        if(!inv)p[i+j]=u+v,p[i+l+j]=u-v; // XOR
        else p[i+j]=(u+v)/2, p[i+l+j]=(u-v)/2;
        //if(!inv)p[i+j]=v,p[i+l+j]=u+v; // AND
        //else p[i+j]=-u+v,p[i+l+j]=u;
        //if(!inv)p[i+j]=u+v,p[i+l+j]=u; // OR
        //else p[i+j]=v,p[i+l+j]=u-v;
// like polynomial multiplication, but XORing exponents
// instead of adding them (also ANDing, ORing)
vector<ll> multiply(vector<ll> p1, vector<ll> p2){
    int n=1<<(32- builtin clz(max(SZ(p1),SZ(p2))-1));</pre>
    fore(i,0,n)c1[i]=0,c2[i]=0;
    fore(i, 0, SZ(p1))c1[i]=p1[i];
    fore(i,0,SZ(p2))c2[i]=p2[i];
    fht(c1,n,false);fht(c2,n,false);
    fore(i,0,n)cl[i]*=c2[i];
    fht(c1.n.true):
    return vector<ll>(c1,c1+n);
```

5.7 fft

```
using cd = complex<double>;
const double PI = acos(-1):
// compute the DFT of a power-of-two-length sequence.
// if `inv` is true, computes the inverse DFT.
void fft(vector<cd> &a, bool inv) {
    int N = a.size(), k = 0, b;
    assert(N == 1 << __builtin_ctz(N));</pre>
    repx(i, 1, N) {
        for (b = N >> 1; k \& b;) k ^= b, b >>= 1;
        if (i < (k ^= b)) swap(a[i], a[k]);</pre>
    for (int l = 2; l <= N; l <<= 1) {</pre>
        double ang = 2 * PI / l * (inv ? -1 : 1);
        cd wl(cos(ang), sin(ang));
        for (int i = 0; i < N; i += l) {
            cd w = 1:
            rep(j, l / 2) {
                 cd u = a[i + j], v = a[i + j + l / 2] * w;
                a[i + j] = u + v;
                a[i + j + l / 2] = u - v;
                w *= wl;
        }
    if (inv) rep(i, N) a[i] /= N;
const ll MOD = 998244353, ROOT = 15311432;
// const ll MOD = 2130706433, ROOT = 1791270792;
// const ll MOD = 922337203673733529711, ROOT =
532077456549635698311;
void find root of unity(ll M) {
    ll\ c = M - 1, k = 0;
    while (c \% 2 == 0) c /= 2, k += 1;
    // find proper divisors of M - 1
    vector<ll> divs;
    for (ll d = 1; d < c; d++) {</pre>
        if (d * d > c) break;
        if (c % d == 0) rep(i, k + 1) divs.push back(d <<
i);
    rep(i, k) divs.push_back(c << i);</pre>
    // find any primitive root of M
    ll G = -1;
    repx(q, 2, M) {
        bool ok = true;
        for (ll d : divs) ok \&= (binexp(q, d, M) != 1);
        if (ok) {
            G = a:
            break;
        }
    assert(G != -1);
    ll w = binexp(G, c, M);
    cerr << "M = c * 2^k + 1" << endl;
    cerr << " M = " << M << endl:
```

```
cerr << " c = " << c << endl:
    cerr << " k = " << k << endl:
    cerr << " w^(2^k) == 1" << endl;
                w = g^{(M-1)/2}k) = g^c \ll endl;
    cerr << "
               q = " << G << endl;
                w = " \ll w \ll endl;
    cerr << "
// compute the DFT of a power-of-two-length sequence, modulo
a special prime
// number with an Nth root of unity, where N is the length
of the sequence.
void ntt(vector<ll> &a, bool inv) {
    vector<ll> wn;
    for (ll p = ROOT; p != 1; p = p * p % MOD)
wn.push_back(p);
    int N = a.size(), k = 0, b:
    assert(N == 1 << builtin ctz(N) && N <= 1 <<
    rep(i, N) a[i] = (a[i] % MOD + MOD) % MOD;
    repx(i, 1, N) {
        for (b = N >> 1; k \& b;) k ^= b, b >>= 1;
        if (i < (k ^= b)) swap(a[i], a[k]);</pre>
    for (int l = 2; l <= N; l <<= 1) {
       ll wl = wn[wn.size() - builtin ctz(l)];
       if (inv) wl = multinv(wl, MOD);
        for (int i = 0; i < N; i += l) {
            ll w = 1;
            repx(j, 0, l / 2) {
               ll u = a[i + j], v = a[i + j + l / 2] * w %
MOD;
                a[i + j] = (u + v) % MOD;
                a[i + j + l / 2] = (u - v + MOD) % MOD;
                w = w * wl % MOD;
            }
       }
   ll a = multinv(N, MOD):
    if (inv) rep(i, N) a[i] = a[i] * q % MOD;
void convolve(vector<cd> &a, vector<cd> b, int n) {
    n = 1 << (32 - __builtin_clz(2 * n - 1));</pre>
    a.resize(n), b.resize(n);
    fft(a, false), fft(b, false);
    rep(i, n) a[i] *= b[i];
    fft(a, true);
```

5.8 gauss

```
const double EPS = 1e-9;
// solve a system of equations.
// complexity: O(min(N, M) * N * M)
// `a` is a list of rows
// the last value in each row is the result of the equation
```

```
// return values:
// 0 -> no solutions
// 1 -> unique solution, stored in `ans`
// -1 -> infinitely many solutions, one of which is stored
in `ans`
// UNTESTED
int gauss(vector<vector<double>> a, vector<double> &ans) {
    int N = a.size(), M = a[0].size() - 1;
    vector<int> where(M, -1);
    for (int j = 0, i = 0; j < M && i < N; j++) {
        int sel = i:
        repx(k, i, N) if (abs(a[k][j]) > abs(a[sel][j])) sel
= k;
        if (abs(a[sel][j]) < EPS) continue;</pre>
        repx(k, j, M + 1) swap(a[sel][k], a[i][k]);
        where[j] = i;
        rep(k, N) if (k != i) {
            double c = a[k][j] / a[i][j];
            repx(l, j, M + 1) a[k][l] -= a[i][l] * c;
        }
        1++;
    ans.assign(M. 0):
    rep(i, M) if (where[i] != -1) ans[i] = a[where[i]][M] /
a[where[i]][i];
    rep(i, N) {
        double sum = 0;
        rep(i, M) sum += ans[i] * a[i][i];
        if (abs(sum - a[i][M]) > EPS) return 0;
    rep(i, M) if (where[i] == -1) return -1;
    return 1:
```

5.9 linear diophantine

```
ii extendedEuclid(ll a, ll b){
   ll x, y; //a*x + b*y = qcd(a,b)
    if (b == 0) return {1, 0};
    auto p = extendedEuclid(b, a%b);
   x = p.second;
   y = p.first - (a/b)*x;
    if(a*x + b*y == - gcd(a,b)) x=-x, y=-y;
    return {x, y};
pair<ii, ii> diophantine(ll a, ll b, ll r){
    //a*x+b*y=r where r is multiple of gcd(a,b);
    ll d = gcd(a, b);
    a/=d: b/=d: r/=d:
    auto p = extendedEuclid(a, b);
    p.first*=r; p.second*=r;
    assert(a*p.first + b*p.second == r);
    return {p, {-b, a}}; //solutions: p+t*ans.second
```

5.10 matrix

```
typedef vector<vector<double>> Mat:
Mat matmul(Mat l, Mat r) {
    int n = l.N, m = r.M, p = l.M; assert(l.M == r.N);
    Mat a(n, vector<double>(m)); // neutral
    rep(i, n) rep(i, m)
        rep(k, p) a[i][j] = a[i][j] + l[i][k] * r[k][j];
    return a;
double reduce(vector<vector<double>> &A) {
    int n = A.size(), m = A[0].size();
    int i = 0, j = 0; double r = 1.;
    while (i < n \&\& j < m) {
        int l = i;
        repx(k, i+1, n) if(abs(A[k][j]) > abs(A[l][j])) l=k;
        if (abs(A[l][j]) < EPS) { j++; r = 0.; continue; }</pre>
        if (l != i) { r = -r; swap(A[i], A[l]); }
        r *= A[i][j];
        for (int k = m - 1; k >= j; k--) A[i][k] /= A[i][j];
        repx(k, 0, n) {
            if (k == i) continue;
            for(int l=m-1;l>=j;l--)A[k][l]-=A[k][j]*A[i][l];
        i++, j++;
    return r; // returns determinant
```

5.11 matroidisect

```
//0(G*I^{1.5}) calls to oracle
//G ground set, I independent set
//MatroidIsect<Gmat,Cmat> M(ed.size(),Gmat(ed),Cmat(col));
struct Gmat { // graphic matroid
  int V = 0; vector<ii> ed; Dsu D;
  Gmat(vector<ii> _ed):ed(_ed){
    map<int,int> m;
    for(auto &t: ed) m[t.first] = m[t.second] = 0;
    for(auto &t: m) t.second = V++;
    for(auto &t: ed)
      t.first = m[t.first], t.second = m[t.second];
  void clear() { D.p = vector<int>(V, -1); }
  void ins(int i) { D.unite(ed[i].first, ed[i].second); }
  bool indep(int i)
  { return !D.sameSet(ed[i].first, ed[i].second); }
};
struct Cmat { // colorful matroid
  int C = 0; vector<int> col; vector<bool> used;
  Cmat(vector<int> col):col(col)
  {for(auto &t: col) C = max(C, t+1);}
```

```
void clear() { used.assign(C, 0); }
 void ins(int i) { used[col[i]] = 1; }
 bool indep(int i) { return !used[col[i]]; }
};
template<class M1, class M2> struct MatroidIsect {
 int n; vector<bool> iset; M1 m1; M2 m2;
 bool augment() {
    vector<int> pre(n+1,-1); queue<int> q({n});
    while(q.size()){
      int x = q.front(); q.pop();
      if (iset[x]) {
       m1.clear();
        rep(i,n) if (iset[i] && i != x) ml.ins(i);
        rep(i,n)
          if(!iset[i]&& pre[i]==-1 && m1.indep(i))
            pre[i] = x, q.push(i);
     } else {
        auto backE = [\&]() { // back edge
          m2.clear();
          rep(c,2)rep(i,n)if((x==i||
iset[i])&&(pre[i]==-1)==c){}
            if (!m2.indep(i))return c?
pre[i]=x,q.push(i),i:-1;
            m2.ins(i); }
          return n:
        };
        for (int y; (y = backE()) != -1;)if(y==n) {
          for(;x != n;x = pre[x])iset[x]=!iset[x];
          return 1; }
     }
    }
    return 0;
  MatroidIsect(int n, M1 m1, M2 m2):n(n), m1(m1), m2(m2) {
    iset.assign(n+1,0); iset[n] = 1;
    m1.clear(); m2.clear(); // greedily add to basis
    invrep(i,n) if (m1.indep(i) && m2.indep(i))
     iset[i] = 1, ml.ins(i), m2.ins(i);
    while (augment());
 }
};
```

5.12 mobius

```
short mu[MAXN] = {0,1};
void mobius(){
   repx(i,1,MAXN)if(mu[i])for(int j=i+i;j<MAXN;j+=i)mu[j]-
=mu[i];
}</pre>
```

5.13 multinv

```
// a * x + b * y == gcd(a, b)

ll ext_gcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) { x = 1, y = 0; return a; }
```

```
ll d = ext_gcd(b, a % b, y, x); y -= a / b * x;return d;
}

// inverse exists if and only if a and M are coprime
// if M is prime: multinv(a, M) = (a**(M-2)) % M
ll multinv(ll a, ll M)
{ ll x, y; ext_gcd(a, M, x, y); return x; }

// all modular inverses from 1 to inv.size()-1
void multinv_all(vector<ll> &inv) {
   inv[1] = 1;
   repx(i, 2, inv.size())
        inv[i] = MOD - (MOD / i) * inv[MOD % i] % MOD;
}
```

5.14 permtree

```
struct PermTree {
 vector<int> P; int n; // N = number of nodes in perm tree
 int N = 0, root; vector<vector<int>> child;
 vector<ii> inter, range; vector<int> typ, loc; // inter =
index range in perm
 void init(vector<int> _P) {
   P = P; n = P.size(); Stl L(n);
   vector<int> mn{-1}, mx{-1}, st;
   rep(i, n){
     if(i) L.update(0, i, -1);
     while (mn.back() != -1 && P[mn.back()] > P[i]) {
       int t = mn.back(); mn.pop_back();
       L.update(mn.back()+1,t+1,P[t]);
     L.update(mn.back()+1,i+1,-P[i]); mn.push back(i);
     while (mx.back() != -1 && P[mx.back()] < P[i]) {</pre>
       int t = mx.back(); mx.pop back();
       L.update(mx.back()+1,t+1,-P[t]);
     L.update(mx.back()+1,i+1,P[i]); mx.push back(i);
     int cur = N++; loc.push back(cur);
     inter.push back({i,i}); range.push back({P[i],P[i]});
typ.push back(0); child.emplace back();
     auto add = [](ii a, ii b) -> ii { return {min(a.first,
b.first), max(a.second,b.second)};};
     auto adj = [\&](int x, int y) { ii a = range[x], b =
range[y];
       return a.second+1 == b.first || b.second+1 ==
a.first;};
     while(st.size()){
       if(adj(st.back(), cur)){
         if(child[st.back()].size() &&
adj(child[st.back()].back(),cur)){
           inter[st.back()] =
add(inter[st.back()],inter[cur]);
```

```
range[st.back()] =
add(range[st.back()],range[cur]);
             child[st.back()].push back(cur); cur =
st.back(); st.pop_back();
          } else { // make new join node
            int CUR = N++;
inter.push back(add(inter[cur],inter[st.back()]));
range.push back(add(range[cur],range[st.back()]));
            typ.push_back(range[st.back()] < range[cur] ?</pre>
1:2);
            child.push_back({st.back(),cur}); cur = CUR;
st.pop_back();
          continue:
        if (L.query(0, inter[cur].first) != 0) break;
        int CUR = N++;
        inter.push back(inter[cur]);
range.push back(range[cur]); typ.push back(0);
child.push_back({cur});
        auto len = [](ii p) { return p.second-p.first;};
          inter[CUR] = add(inter[CUR],inter[st.back()]);
          range[CUR] = add(range[CUR],range[st.back()]);
          child[CUR].push back(st.back()); st.pop back();
        } while (len(inter.back()) != len(range.back()));
        reverse(child[CUR].begin(), child[CUR].end()); cur =
CUR;
      st.push back(cur);
    root = st.back();
};
```

5.15 polar rho

```
ll mulmod(ll a, ll b, ll m) {
    ll r=a*b-(ll)((long double)a*b/m+.5)*m;
    return r<0?r+m:r;
}
bool is_prime_prob(ll n, int a){
    if(n=a)return true;
    ll s=0,d=n-1;
    while(d%2==0)s++,d/=2;
    ll x=expmod(a,d,n);
    if((x==1)||(x+l==n))return true;
    fore(_,0,s-1){
        x=mulmod(x,x,n);
        if(x==1)return false;
        if(x+l==n)return true;
}
return false;</pre>
```

```
bool rabin(ll n){ // true iff n is prime
    if(n==1)return false;
    int ar[]={2,3,5,7,11,13,17,19,23};
    fore(i,0,9)if(!is_prime_prob(n,ar[i]))return false;
    return true;
ll rho(ll n){
    if(!(n&1))return 2;
    11 x=2, y=2, d=1;
    ll c=rand()%n+1;
    while(d==1){
        x=(mulmod(x,x,n)+c)%n;
        fore(it,0,2) y=(mulmod(y,y,n)+c)%n;
        if(x>=y)d=__gcd(x-y,n);
        else d=__gcd(y-x,n);
    }
    return d==n?rho(n):d;
void fact(ll n, map<ll,int>& f){ //0 (lq n)^3
    if(n==1)return;
    if(rabin(n)){f[n]++;return;}
    ll q=rho(n); fact(q,f); fact(n/q,f);
// optimized version: replace rho and fact with the
following:
const int MAXP=1e6+1; // sieve size
int sv[MAXP]; // sieve
ll add(ll a, ll b, ll m){return (a+=b)<m?a:a-m;}</pre>
ll rho(ll n){
    static ll s[MAXP];
    while(1){
        ll x=rand()%n,y=x,c=rand()%n;
        ll *px=s,*py=s,v=0,p=1;
        while(1){
            *py++=y=add(mulmod(y,y,n),c,n);
            *py++=y=add(mulmod(y,y,n),c,n);
            if((x=*px++)==y)break;
            ll t=p; p=mulmod(p,abs(y-x),n);
            if(!p)return __gcd(t,n);
            if(++v==26){
                if((p=\gcd(p,n))>1&&p<n)return p;
                v=0;
            }
        if(v\&\&(p=gcd(p,n))>1\&\&p<n) return p;
void init sv(){ fore(i,2,MAXP)if(!sv[i])for(ll
j=i;j<MAXP;j+=i)sv[j]=i; }</pre>
void fact(ll n,map<ll,int>&f){//call init_sv first!
    for(auto&& p:f)while(n%p.fst==0)p.snd++,n/=p.fst;
    if(n<MAXP)while(n>1)f[sv[n]]++,n/=sv[n];
    else if(rabin(n))f[n]++;
```

```
else {ll q=rho(n);fact(q,f);fact(n/q,f);}
}
```

5.16 polynomials

```
typedef int tp; // type of polynomial
template<class T=tp>
struct poly { // poly<> : 1 variable, poly<poly<>>>: 2
variables, etc.
    vector<T> c:
    T& operator[](int k){return c[k];}
    poly(vector<T>& c):c(c){}
    poly(initializer list<T> c):c(c){}
    poly(int k):c(k){}
    poly(){}
    poly operator+(poly<T> 0);
    poly operator*(tp k);
    poly operator*(poly o);
    poly operator-(poly<T> 0){return *this+(0*-1);}
   T operator()(tp v){
       T sum(0);
        for(int i=c.size()-1;i>=0;--i)sum=sum*v+c[i];
        return sum;
   }
// example: p(x,y)=2*x^2+3*x*y-y+4
// poly<poly<>> p={{4,-1},{0,3},{2}}
// printf("%d\n",p(2)(3)) // 27 (p(2,3))
set<tp> roots(poly<> p){ // only for integer polynomials
    set<tp> r;
    while(!p.c.empty()&&!p.c.back())p.c.pop_back();
    if(!p(0))r.insert(0);
    if(p.c.empty())return r;
    tp a0=0, an=abs(p[p.c.size()-1]);
    for(int k=0;!a0;a0=abs(p[k++]));
    vector<tp> ps,qs;
    fore(i,1,sqrt(a0)+1)if(a0\%i==0)ps.pb(i),ps.pb(a0/i);
    fore(i,1,sqrt(an)+1)if(an%i==0)qs.pb(i),qs.pb(an/i);
    for(auto pt:ps)for(auto gt:gs)if(pt%gt==0){
        tp x=pt/qt;
        if(!p(x))r.insert(x);
        if(!p(-x))r.insert(-x);
   }
    return r;
pair<poly<>,tp> ruffini(poly<> p, tp r){ // returns pair
(result, rem)
    int n=p.c.size()-1;
    vector<tp> b(n);
   b[n-1]=p[n];
    for(int k=n-2; k>=0; --k)b[k]=p[k+1]+r*b[k+1];
    return {poly<>(b),p[0]+r*b[0]};
// only for double polynomials
pair<poly<>,poly<> > polydiv(poly<> p, poly<> q){ // returns
```

```
pair (result.rem)
    int n=p.c.size()-q.c.size()+1;
    vector<tp> b(n);
    for(int k=n-1; k>=0; -- k){
        b[k]=p.c.back()/q.c.back();
        fore(i,0,q.c.size())p[i+k]-=b[k]*q[i];
        p.c.pop_back();
    while(!p.c.empty()&&abs(p.c.back())<EPS)p.c.pop back();</pre>
    return {poly<>(b),p};
// only for double polynomials
poly<> interpolate(vector<tp> x, vector<tp> y){
    poly<> q={1},S={0};
    for(tp a:x)q=poly<>({-a,1})*q;
    fore(i,0,x.size()){
        poly<> Li=ruffini(q,x[i]).fst;
        Li=Li*(1.0/Li(x[i])); // change for int polynomials
        S=S+Li*v[i];
    }
    return S;
```

5.17 primes

```
// counts the divisors of a positive integer in O(sqrt(n))
ll count divisors(ll x) {
    ll divs = 1. i = 2:
    for (ll divs = 1, i = 2; x > 1; i++) {
        if (i * i > x) { divs *= 2; break; }
        for (ll d = divs; x \% i == 0; x \neq i) divs += d;
    }
    return divs:
// gets the prime factorization of a number in O(sqrt(n))
vector<pair<ll, int>> factorize(ll x) {
    vector<pair<ll, int>> f;
    for (ll k = 2; x > 1; k++) {
        if (k * k > x) { f.push back({x, 1}); break; }
        int n = 0:
        while (x \% k == 0) x /= k, n++;
        if (n > 0) f.push back({k, n});
    return f;
// iterate over all divisors of a number.
// divisor count upper bound: n^(1.07 / ln ln n)
template <class OP>
void divisors(ll x, OP op) {
    auto facts = factorize(x);
    vector<int> f(facts.size());
    while (true) {
        ll y = 1;
        rep(i, f.size()) rep(j, f[i]) y *= facts[i].first;
        op(y);
```

```
int i:
        for (i = 0; i < f.size(); i++) {</pre>
            f[i] += 1;
            if (f[i] <= facts[i].second) break;</pre>
            f[i] = 0;
       }
        if (i == f.size()) break;
// computes euler totative function phi(x), counting the
// amount of integers in [1, x] that are coprime with x.
// time: 0(sqrt(x))
ll phi(ll x) {
    ll phi = 1, k = 2;
    for (: x > 1: k++) {
        if (k * k > x) { phi *= x - 1; break; }
        11 k1 = 1. k0 = 0:
        while (x \% k == 0) x /= k, k0 = k1, k1 *= k;
        phi *= k1 - k0;
   }
    return phi;
// test-prime.cpp
// change to int128 if checking numbers over 10^9
bool isprime(ll n) {
    if (n < 2 | | n % 6 % 4 != 1) return n - 2 < 2;
    [1] = \{2,325,9375,28178,450775,9780504,1795265022\};
    ll s = __builtin_ctzll(n - 1), d = n >> s;
    for (int a : A) {
        ll p = binexp(a, d, n), i = s;
        while (p != 1 && p != n - 1 && a % n && i--) p = p *
p % n;
        if (p != n - 1 && i != s) return 0;
    }
    return 1;
```

5.18 simplex

```
/* Solves a general linear maximization problem: maximize $c^T x$ subject to $Ax \le b$, $x \ge 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of $c^T x$ otherwise. The input vector is set to an optimal $x$ (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that $x = 0$ is viable. Usage:
vvd A = {{1,-1}, {-1,1}, {-1,-2}};
vd b = {1,1,-4}, c = {-1,-1}, x;
T val = LPSolver(A, b, c).solve(x);
Time: 0(NM * \#pivots), where a pivot may be e.g. an edge relaxation. 0(2^n) in the general case.*/
typedef double T;//long double, Rational, double + mod<P>...
```

```
tvpedef vector<T> vd:
typedef vector<vd> vvd:
const T eps = 1e-8, inf = 1 / .0;
#define MP make pair
#define ltj(X) \
    if (s == -1 || MP(X[j], N[j]) < MP(X[s], N[s])) s = j
struct LPSolver {
    int m, n; vector<int> N, B; vvd D;
    LPSolver(const vvd &A.const vd &b.const vd &c) :
m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, vd(n+2))
        rep(i, m) rep(j, n) D[i][j] = A[i][j];
        rep(i, m) {
            B[i] = n + i; D[i][n] = -1; D[i][n + 1] = b[i];
        rep(j, n) \{ N[j] = j; D[m][j] = -c[j]; \}
        N[n] = -1: D[m + 1][n] = 1:
    void pivot(int r, int s) {
        T *a = D[r].data(), inv = 1 / a[s];
        rep(i, m + 2) if (i != r && abs(D[i][s]) > eps) {
            T *b = D[i].data(), inv2 = b[s] * inv;
            repx(j, 0, n + 2) b[j] -= a[j] * inv2;
            b[s] = a[s] * inv2:
        rep(j, n + 2) if (j != s) D[r][j] *= inv;
        rep(i, m + 2) if (i != r) D[i][s] *= -inv;
        D[r][s] = inv;
        swap(B[r], N[s]);
    bool simplex(int phase) {
        int x = m + phase - 1;
        for (;;) {
            int s = -1:
            rep(j, n + 1) if (N[j] != -phase) ltj(D[x]);
            if (D[x][s] >= -eps) return true;
            int r = -1;
            rep(i, m) {
                if (D[i][s] <= eps) continue:</pre>
                if (r == -1 || MP(D[i][n + 1] / D[i][s],
B[i]) < MP(D[r][n + 1] / D[r][s], B[r])) r = i;
            if (r == -1) return false;
            pivot(r, s);
        }
   T solve(vd &x) {
        int r = 0:
        repx(i, 1, m) if (D[i][n + 1] < D[r][n + 1]) r = i;
        if (D[r][n + 1] < -eps) {
            pivot(r, n);
            if (!simplex(2) || D[m + 1][n + 1] < -eps)
return -inf;
            rep(i, m) if (B[i] == -1) {
                int s = 0:
                repx(j, 1, n + 1) ltj(D[i]);
```

```
pivot(i, s);
}
bool ok = simplex(1);
x = vd(n);
rep(i, m) if (B[i] < n) x[B[i]] = D[i][n + 1];
return ok ? D[m][n + 1] : inf;
}
};</pre>
```

5.19 theorems and formulas

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
$$\sum_{i=0}^k \binom{n+i}{i} = \binom{n+k+1}{k}$$

 $\begin{bmatrix} n \\ k \end{bmatrix}$ = perm of *n* elements with *k* cycles

$${\binom{n+1}{k}} = n {\binom{n}{k}} + {\binom{n}{k-1}}$$

 $\binom{n}{k}$ = partitions of an *n*-element set into *k* parts

Integers $d_1 \geq \cdots \geq d_n \geq 0$ can be the degree sequence of a finite simple graph on n vertices \Leftrightarrow $d_1 + \cdots + d_n$ is even and for every k in $1 \leq k \leq n$

$$\begin{array}{l} \sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k) \\ a^n = a^{\varphi(m) + n \bmod \varphi(m)} (\bmod m) \text{ if } n > \lg(m) \end{array}$$

 $a^* \equiv a^{r(m)} \pmod{m} \text{ if } n > \lg(m)$

Misere Nim: if $\exists a_i > 1$ then normal nim; else the condition is reversed.

Derangements: Num of permutations of n = 0, 1, 2, ... elements without fixed points is 1, 0, 1, 2, 9, 44, 265, 1854, 14833, ... Recurrence: $D_n = (n-1)(D_{n-1} + D_{n-2}) = n * D_{n-1} + (-1)^n$

Collary: number of permutations with exactly k fixed points $\binom{n}{k}D_{n-k}$

Eulerian numbers: E(n, k) is the number of permutations with exactly k descents $(i : \pi_i <$

$$\begin{split} \pi_{i+1}), & \text{ ascents } (\pi_i > \pi_{i+1}) \text{ / excedances } (\pi > i) \text{ /} \\ & k+1 \text{ weak excedances } (\pi \geq i). \end{split}$$

$$E_{n,k} = (k+1)E_{n-1,k} + (n-k)E_{n-1,k-1} \label{eq:enk}$$

Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d) g\left(\frac{n}{d}\right)$$

Other useful formulas/forms

$$\sum_{d|n} \mu(d) = [n=1]$$
 (very useful)

$$\begin{split} g(n) &= \sum_{1 \leq m \leq n} f\left(\left\lfloor \frac{n}{m} \right\rfloor\right) \Leftrightarrow f(n) = \sum_{1 \leq m \leq n} \mu(m) g\left(\left\lfloor \frac{n}{m} \right\rfloor\right) \\ g(n) &= \sum_{n \mid d} f(d) \Leftrightarrow f(n) = \sum_{n \mid d} \mu\left(\frac{d}{n}\right) g(d) \end{split}$$

Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0)=1, \quad p(n)=\sum_{k\in \mathbb{Z}\backslash \{0\}} \left(-1\right)^{k+1} p\!\left(n-\frac{k(3k-1)}{2}\right)$$

$$p(n) pprox rac{0.145}{n} \cdot e^{2.56\sqrt{n}}$$

											20		100
p(n)	1	1	2	3	5	7	11	15	22	30	627	$\approx 2e5$	$\approx 2e8$

Bell numbers

Total number of partitions of n distinct elements. $B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, \dots$

For p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

Labeled unrooted trees

on n vertices: n^{n-2}

on k existing trees of size n_i : $n_1 n_2 \cdots n_k n^{k-2}$ # with degrees d_i : $\frac{(n-2)!}{(d_1-1)!\cdots(d_n-1)!}$

Catalan numbers

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$\label{eq:continuous} \left| \ C_0 = 1, \quad C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \quad C_{n+1} = \sum C_i C_{n-i} \right|$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- permutations of [n] with no 3-term increasing subseq.

Narayana Numbers

$$N(n,k) = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}$$

5.20 theorems

Burnside lemma

Tomemos imagenes x en X y operaciones (g: $X \rightarrow X$) en G. Si #g es la cantidad de imagenes que son puntos fijos de g, entonces la cantidad de objetos es `(sum {g in G} #g) / |G|` Es requisito que G tenga la operacion identidad, que toda operacion tenga inversa y que todo par de operaciones tenga su combinacion.

Rational root theorem

Las raices racionales de un polinomio de orden n con coeficientes enteros A[i] son de la forma p / q, donde p y q son coprimos, p es divisor de A[0] y q es divisor de A[n]. Notar que si A[0] = 0, cero es raiz, se puede dividir el

```
polinomio por x y aplica nuevamente el teorema.
Petersens theorem
Every cubic and bridgeless graph has a perfect matching.
Number of divisors for powers of 10
(0,1) (1,4) (2,12) (3,32) (4,64) (5,128) (6,240) (7,448)
(8,768) (9,1344) (10,2304) (11,4032) (12,6720) (13,10752)
(14.17280) (15.26880) (16.41472) (17.64512) (18.103680)
Kirchoff Theorem: Sea A la matriz de adyacencia del multi-
grafo (A[u][v] indica la cantidad de aristas entre u y v)
Sea D una matriz diagonal tal que D[v][v] es igual al grado
de v (considerando auto aristas y multi aristas). Sea
L = A - D. Todos los cofactores de L son iguales y equivalen
a la cantidad de Spanning Trees del grafo. Un cofactor (i.i)
de L es la multiplicación de (-1)^{i + j} con el determinant
de la matriz al quitar la fila i v la columna i
Prufer Code: Dado un árbol con los nodos indexados: busca la
hoja de menor índice, bórrala y anota el índice del nodo al
que estaba conectado. Repite el paso anterior n-2 veces. Lo
anterior muestra una bivección entre los arreglos de tamaño
n-2 con elementos en [1, n] y los árboles de n nodos, por lo
que hay n^{n-2} spanning trees en un grafo completo.
Corolario: Si tenemos k componentes de tamaños s1,s2,...,sk
entonces podemos hacerlos conexos agregando k-1 aristas
entre nodos de s1*s2*...*sk*n^{k-2} formas
Combinatoria
Catalan: C \{n+1\} = sum(C i*C \{n-i\} for i \setminus [0, n])
```

5.21 tonelli shanks

carácteres), se tiene que

Catalan: C $n = \frac{1}{n+1}*\frac{2n}{n}$

 $C n^k = (2n+k-1)*(2n+k)/(n*(n+k+1)) * C {n-1}^k$

 $D n = (n-1)*(D \{n-1\} + D \{n-2\}), D 0 = 1, D 1 = 0$

```
ll legendre(ll a, ll p) {
    if (a % p == 0) return 0; if (p == 2) return 1;
    return binexp(a, (p - 1) / 2, p);
// sgrt(n) mod p (p must be a prime)
// rnd(a, b) return a random number in [a, b]
ll tonelli shanks(ll n, ll p) {
    if (n == 0) return 0:
    if (legendre(n, p) != 1) return -1; // no existe
    if (p == 2) return 1;
    ll s = builtin ctzll(p - 1);
    ll q = (p - 1LL) >> s, z = rnd(1, p - 1);
    if (s == 1) return binexp(n, (p + 1) / 4LL, p);
    while (legendre(z, p) != p - 1) z = rnd(1, p - 1);
```

Sea C n^k las formas de poner n+k pares de paréntesis, con

Sea D n el número de permutaciones sin puntos fijos, entoces

los primeros k paréntesis abiertos (esto es, hay 2n + 2k

6 Strings

6.1 aho corasick

```
struct Vertex {
    int next[26], go[26];
    int p, link = -1, exit = -1, cnt = -1;
    vector<int> leaf;
    char pch;
    Vertex(int p=-1, char ch='$') : p(p), pch(ch) {
        rep(i, 26) next[i] = -1, go[i] = -1;
    }
};
vector<Vertex> t(1);
void add(string &s, int id) {
    int v = 0;
    for (char ch : s) {
        int c = ch - 'a';
        if (t[v].next[c] == -1) {
            t[v].next[c] = t.size();
            t.emplace back(v, ch);
        }
        v = t[v].next[c];
    t[v].leaf.push back(id);
int go(int v, char ch);
int get link(int v) {
    if (t[v].link == -1) {
        if (v == 0 || t[v].p == 0) t[v].link = 0;
        else t[v].link = go(get_link(t[v].p), t[v].pch);
    return t[v].link;
int go(int v. char ch) {
    int c = ch - 'a';
    if (t[v].go[c] == -1) {
        if (t[v].next[c] != -1) t[v].qo[c] = t[v].next[c];
        else t[v].qo[c] = v == 0 ? 0 : qo(qet link(v), ch);
    }
    return t[v].go[c];
```

```
int next_match(int v){ // Optional
    if(t[v].exit == -1){
        if(t[get_link(v)].leaf.size())t[v].exit=get_link(v);
        else t[v].exit = v==0 ? 0 : next_match(get_link(v));
    }
    return t[v].exit;
}
int cnt_matches(int v){ // Optional
    if(t[v].cnt == -1)
        t[v].cnt = v == 0 ? 0 : t[v].leaf.size() +
cnt_matches(get_link(v));
    return t[v].cnt;
}
```

6.2 debruijn sequence

```
// Given alphabet [0,k) constructs a cyclic string of length
// k^n that contains every length n string as substr.
vector<int> deBruijnSeq(int k, int n) { // Recursive FKM
    if (k == 1) return {0};
    vector<int> seq, aux(n+1);
    function<void(int,int)> gen = [&](int t, int p) {
        if (t > n) { // +lyndon word of len p
            if (n%p == 0) repx(i,1,p+1) seq.pb(aux[i]);
        } else {
            aux[t] = aux[t-p]; gen(t+1,p);
            while (++aux[t] < k) gen(t+1,t);
        }
    };
    gen(1,1); return seq;
}</pre>
```

6.3 hash

```
const int K = 2:
struct Hash{
   const ll MOD[K] = {999727999, 1070777777};
    const ll P = 1777771;
   vector<ll> h[K], p[K];
   Hash(string &s){
        int n = s.size();
        rep(k, K){
           h[k].resize(n+1, 0);
           p[k].resize(n+1, 1);
            repx(i, 1, n+1){
               h[k][i] = (h[k][i-1]*P + s[i-1]) % MOD[k];
               p[k][i] = (p[k][i-1]*P) % MOD[k];
           }
       }
   vector<ll> get(int i, int j){
        vector<ll> r(K);
        rep(k, K){
            r[k] = (h[k][j] - h[k][i]*p[k][j-i]) % MOD[k];
            r[k] = (r[k] + MOD[k]) % MOD[k];
```

```
} return r;
}
};
```

6.4 manacher

```
// odd[i]: length of longest palindrome centered at i
// even[i]: ...longest palindrome centered between i and i+1
void manacher(string &s, vector<int> &odd, vector<int> &even){
    string t = "$\#":
    for(char c: s) t += c + string("#");
    t += "^":
    int n = t.size():
    vector<int> p(n);
    int l = 1, r = 1;
    repx(i, 1, n-1) {
        p[i] = max(0, min(r - i, p[l + (r - i)]));
        while(t[i - p[i]] == t[i + p[i]]) p[i]++;
        if(i + p[i] > r) l = i - p[i], r = i + p[i];
    repx(i, 2, n-2) {
        if(i%2) even.push back(p[i]-1);
        else odd.push_back(p[i]-1);
   }
```

6.5 palindromic tree

```
struct Node {
                // (*) = Optional
    int len:
                // length of substring
    int to[26]; // insertion edge for all characters a-z
    int link; // maximun palindromic suffix
    int i;
                // (*) start index of current Node
                // (*) # of occurrences of this substring
    int cnt:
    Node(int len, int link=0, int i=0, int cnt=1): len(len),
   link(link), i(i), cnt(cnt) {memset(to, 0, sizeof(to));}
}; struct EerTree { // Palindromic Tree
    vector<Node> t; // tree (max size of tree is n+2)
    int last;
                   // current node
    EerTree(string &s) : last(0) {
        t.emplace_back(-1); t.emplace_back(0); // root 1 & 2
        rep(i, s.size()) add(i, s); // construct tree
        for(int i = t.size()-1; i > 1; i--)
            t[t[i].link].cnt += t[i].cnt;
   }
    void add(int i, string &s){
                                       // vangrind warning:
        int p=last, c=s[i]-'a';
                                       // i-t[p].len-1 = -1
        while (s[i-t[p].len-1] != s[i]) p = t[p].link;
       if(t[p].to[c]){ last = t[p].to[c]; t[last].cnt++; }
        else{
            int q = t[p].link;
            while(s[i-t[q].len-1] != s[i]) q = t[q].link;
            q = max(1, t[q].to[c]);
           last = t[p].to[c] = t.size();
            t.emplace back(t[p].len + 2, q, i-t[p].len-1);
```

```
}
}

provid main(){
    string s = "abcbab"; EerTree pt(s); // build EerTree
    repx(i, 2, pt.t.size()){// list all distinct palindromes
        repx(j,pt.t[i].i,pt.t[i].i+pt.t[i].len)cout << s[j];
        cout << " " << pt.t[i].cnt << endl;
}
</pre>
```

6.6 prefix function

```
vector<int> prefix function(string s) {
    int n = s.size();
    vector<int> pi(n);
    repx(i, 1, n) {
        int j = pi[i-1];
       while (j > 0 \&\& s[i] != s[j])
           j = pi[j-1];
       if (s[i] == s[j])
           j++;
        pi[i] = j;
   }
    return pi;
vector<vector<int>> aut:
void compute automaton(string s) {
   s += '#';
   int n = s.size();
    vector<int> pi = prefix_function(s);
    aut.assign(n, vector<int>(26));
    rep(i, n) {
       rep(c, 26) {
            int i = i:
            while (j > 0 \&\& 'a' + c != s[j])
               j = pi[j-1];
            if ('a' + c == s[j])
               1++;
            aut[i][c] = j;
   }
// k = n - pi[n - 1]; if k divides n, then the string can be
// aprtitioned into blocks of length k otherwise there is no
// effective compression and the answer is n.
```

6.7 suffix array

```
// build the suffix array
// suffixes are sorted, with each suffix represented by its
// starting position
vector<int> suffixarray(const string &s) {
   int N = s.size() + 1;//optional: include terminating NUL
   vector<int> p(N), p2(N), c(N), c2(N), cnt(256);
```

```
rep(i, N) cnt[s[i]] += 1;
     repx(b, 1, 256) cnt[b] += cnt[b - 1];
     rep(i, N) p[--cnt[s[i]]] = i;
     repx(i, 1, N) c[p[i]] = c[p[i - 1]] + (s[p[i]] != s[p[i
     for (int k = 1; k < N; k <<= 1) {
         int C = c[p[N - 1]] + 1;
         cnt.assign(C + 1, 0);
         for (int &pi : p) pi = (pi - k + N) % N;
         for (int cl : c) cnt[cl + 1] += 1;
         rep(i, C) cnt[i + 1] += cnt[i];
         rep(i, N) p2[cnt[c[p[i]]]++] = p[i];
         c2[p2[0]] = 0;
         repx(i, 1, N) c2[p2[i]] =
             c2[p2[i-1]] + (c[p2[i]] != c[p2[i-1]] ||
                              c[(p2[i] + k) % N] != c[(p2[i -
 1] + k) % N]);
         swap(c, c2), swap(p, p2);
     p.erase(p.begin()); // optional: erase terminating NUL
 // build the lcp
 // `lcp[i]` represents the length of the longest common
 // prefix between suffix i and suffix i+1 in the suffix
 //array `p`. the last element of `lcp` is zero by convention
 vector<int> makelcp(const string &s, const vector<int> &p) {
     int N = p.size(), k = 0;
     vector<int> r(N), lcp(N);
     rep(i, N) r[p[i]] = i;
     rep(i, N) {
         if (r[i] + 1 >= N) \{ k = 0; continue; \}
         int j = p[r[i] + 1];
         while (i + k < N \& i + k < N \& s[i + k] == s[i + k]
 k]) k += 1;
        lcp[r[i]] = k;
         if (k) k -= 1;
     return lcp;
 // lexicographically compare the suffixes starting from `i`
 // and `j`, considering only up to `K` characters.
 // `r` is the inverse suffix array, mapping suffix offsets
// to indices. requires an LCP sparse table.
int lcp cmp(vector<int> &r, Sparse<int> &lcp, int i, int j,
 int K) {
     if (i == j) return 0;
     int ii = r[i], jj = r[j];
     int l = lcp.query(min(ii, jj), max(ii, jj));
     if (l >= K) return 0;
     return ii < jj ? -1 : 1;
```

6.8 suffix automaton

```
struct State {int len, link; map<char,int> next; };
State st[2*MAXN]; int sz, last;
                                             // clear next!!
void sa init(){ last=st[0].len=0; sz=1; st[0].link=-1; }
void sa_extend(char c){// total build 0(n log alphabet_size)
    int k = sz++, p; st[k].len = st[last].len + 1;
    for(p=last; p!=-1 && !st[p].next.count(c); p=st[p].link)
        st[p].next[c] = k;
    if(p == -1) st[k].link = 0;
    else {
        int q = st[p].next[c];
        if(st[p].len + 1 == st[q].len) st[k].link = q;
            int w = sz++; st[w].len = st[p].len + 1;
            st[w].next=st[q].next; st[w].link=st[q].link;
            for(; p!=-1 && st[p].next[c]==q; p=st[p].link)
                st[p].next[c] = w;
            st[q].link=st[k].link = w;
    last = k;
} // # states <= 2n-1 && transitions <= 3n-4 (for n > 2)
// Follow link from `last` to 0, nodes on path are terminal
// # matches = # paths from state to a terminal node
// # substrings = # paths from 0 to any node
// # substrings = sum of (len - len(link)) for all nodes
```

6.9 z function

```
// i-th element is equal to the greatest number of
// characters starting from the position i that coincide
// with the first characters of s
vector<int> z function(string s) {
    int n = s.size():
    vector<int> z(n):
    int l = 0, r = 0;
    for(int i = 1; i < n; i++) {
        if(i < r) z[i] = min(r - i, z[i - l]);
        while(i + z[i] < n && s[z[i]] == s[i + z[i]])z[i]++;
        if(i + z[i] > r) {
            l = i;
            r = i + z[i];
        }
    }
    return z;
```