CPEN 400Q Lecture 04 More on measurement; multi-qubit states and gates

Friday 20 January 2023

Announcements

- Literacy assignment 1 due Wednesday 25 Jan at 23:59
- Technical assignment 1 released over next few days (will be due in 2 weeks)
- Short class on Monday
 - Need to leave at 16:00
 - Quiz 2 will be at the end of class

Last time

We introduced the "bra" part of the "bra-ket notation"

$$|V\rangle = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} \quad \langle V | = \langle V \rangle^{\dagger} = \langle V_1 * V_2 * \rangle$$

The inner product between two states is defined as

Inner product tells about the overlap (similarity) between states.

Last time

We introduced the concept of orthonormal bases for qubit states:

Examples:
$$|0\rangle |1\rangle$$
 computational basis

who have $|+\rangle = \frac{1}{12}(10)+(17)$ $|-\rangle = \frac{1}{12}(10)-(17)$
 $|-\rangle = \frac{1}{12}(10)+i11\rangle |m\rangle = \frac{1}{12}(10)-i117\rangle$

Last time

We discussed *projective measurement* with respect to a basis.

When we measure state $|\varphi\rangle$ with respect to basis $\{|\psi_i\rangle\}$, the probability of obtaining outcome i is

Learning outcomes

- Measure a single qubit in different bases
- Mathematically describe a system of multiple qubits
- Describe the action of common multi-qubit gates
- Make any gate a controlled gate
- Perform measurements on multiple qubits

Note: moving expectation values (originally L3) to a future lecture.

Exercise: consider the quantum state

$$|\psi
angle=rac{\sqrt{3}}{2}|0
angle-rac{1}{2}e^{irac{5}{4}}|1
angle$$

If we measure in the $\{|p\rangle, |m\rangle\}$ basis, what are the measurement probabilities of the possible outcomes?

$$|p\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle), \quad |m\rangle = \frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle)$$

Solution:

$$\langle \mathbf{P} | \psi \rangle = \frac{1}{\sqrt{2}} (\langle 0| - i \langle 1|) \left(\frac{\sqrt{3}}{2} | 0 \rangle - \frac{1}{2} e^{i \frac{5}{4}} | 1 \rangle \right)$$

$$= \frac{\sqrt{3}}{2\sqrt{2}} \langle 0| 0 \rangle + \frac{i}{2\sqrt{2}} e^{i \frac{5}{4}} \langle 1| 1 \rangle$$

$$= \frac{1}{2\sqrt{2}} \left(\sqrt{3} + i e^{i \frac{5}{4}} \right)$$

$$\Pr(p) = |\langle p|\psi \rangle|^2 = \frac{1}{8} (\sqrt{3} + i e^{i \frac{5}{4}}) (\sqrt{3} - i e^{-i \frac{5}{4}})$$

$$= \frac{1}{8} \left(3 + \sqrt{3} i \left(e^{i \frac{5}{4}} - e^{-i \frac{5}{4}} \right) + 1 \right)$$

$$= \frac{1}{8} (4 + \sqrt{3} i (2i \sin(5/4)))$$

$$= \frac{1}{8} (4 - 2\sqrt{3} \sin(5/4))$$

$$= \approx 0.089$$

Tedious... let's use software. But how?

Use a basis rotation to "trick" the quantum computer.

Unitary operations preserve length *and* angles between normalized quantum state vectors; there exists some unitary transformation that will convert between any basis and the computational basis.

Determine a quantum circuit that sends

Determine a quantum circuit that sends
$$|0\rangle \ \ \, \rightarrow \ \ \, |p\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle \right)$$

$$|0
angle \hspace{0.1in}
ightarrow \hspace{0.1in} |
ho
angle = rac{1}{\sqrt{2}} \left(|0
angle + i|1
angle
ight)$$

$$|0\rangle \rightarrow |p\rangle = \frac{1}{-}(|0\rangle$$

are in the "Y" basis.

RZ(
$$\theta$$
) = $\begin{pmatrix} e^{-i\theta} & 0 \\ 0 & e^{i\theta} & 0 \end{pmatrix}$

($|0\rangle + i|1\rangle$)

$$\sim \begin{pmatrix} 1 & 0 \\ 0 & e^{\int \theta} \end{pmatrix}$$

$$|1\rangle \rightarrow |m\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$$
 (0 e)

$$= \frac{1}{\sqrt{2}} \left(107 + (17) \right)$$

$$H: 10) \longrightarrow H \rangle = \frac{1}{\sqrt{2}} (107 + (17))$$

$$11\rangle \longrightarrow H \rangle = \frac{1}{\sqrt{2}} (107 + (17))$$

$$S: H \rangle \longrightarrow |P\rangle = \frac{1}{\sqrt{2}} (107 + i |17)$$

$$S=(10) \longrightarrow |m\rangle = \frac{1}{\sqrt{2}} (107 - i |17)$$

10 / 49

At the end of our circuit, apply the reverse (adjoint) of this transformation to rotate *back* to the computational basis.

Hands-on: adjoints

In PennyLane, we can compute adjoints of operations and entire quantum functions using qml.adjoint:

```
def some_function(x):
    qml.RZ(Z, wires=0)

def apply_adjoint(x):
    qml.adjoint(qml.S)(wires=0)
    qml.adjoint(some_function)(x)
```

qml.adjoint is a special type of function called a **transform**. We will cover transforms in more detail later in the course.

Recall this slide from lecture 1...

Quantum computing

Quantum computing is the act of manipulating the state of qubits in a way that represents solution of a computational problem:

- 1. Prepare qubits in a superposition
- Apply operations that entangle the qubits and manipulate the amplitudes
- 3. Measure qubits to extract an answer
- 4. Profit

Let's simulate this using NumPy.

How do we express the mathematical space of multiple qubits?

Tensor products

Hilbert spaces compose under the tensor product.

Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}.$$

The tensor product of A and B, $A \otimes B$ is

$$A \otimes B = \begin{pmatrix} a \begin{pmatrix} e & f \\ g & h \end{pmatrix} & b \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ c \begin{pmatrix} e & f \\ g & h \end{pmatrix} & d \begin{pmatrix} e & f \\ g & h \end{pmatrix} \end{pmatrix} = \begin{pmatrix} ae & af & be & bf \\ ag & ah & bg & bh \\ ce & cf & de & df \\ cg & ch & dg & dh \end{pmatrix}$$

np.kron

Qubit state vectors are also combined using the tensor product:

$$|01
angle = |0
angle \otimes |1
angle = egin{pmatrix} 1 \ 0 \end{pmatrix} \otimes egin{pmatrix} 0 \ 1 \end{pmatrix} = egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} \ 0 \ 0 \end{pmatrix}$$

An *n*-qubit state is therefore a vector of length 2^n .

The states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ are the computational basis vectors for 2 qubits: $|\psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \quad |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \quad |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

We can create arbitrary linear combinations of them as long as the normalization on the coefficients holds.

Same pattern for 3 qubits: $|000\rangle, |001\rangle, \dots, |111\rangle$.

The tensor product is linear and distributive, so if we have

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle, \quad |\varphi\rangle = \gamma|0\rangle + \delta|1\rangle,$$

then they tensor together to form

$$|\gamma \rangle \otimes |\varphi\rangle = (\alpha |0\rangle + \beta |1\rangle) \otimes (\gamma |0\rangle + \beta |1\rangle)$$

$$= \alpha \gamma |00\rangle + \alpha \delta |01\rangle + \beta \gamma |10\rangle + \beta \delta |1\rangle$$

$$= \begin{pmatrix} \alpha \beta \\ \beta \gamma \\ \beta \delta \end{pmatrix}$$

Single-qubit unitary operations also compose under tensor product.

For example, apply U_1 to qubit $|\psi\rangle$ and U_2 to qubit $|\varphi\rangle$:

If an *n*-qubit ket is a vector with length 2^n , then a unitary acting on *n* qubits has dimension $2^n \times 2^n$.

Qubit ordering (very important!)

In PennyLane:

$$0: |0\rangle \longrightarrow |0\rangle$$

$$1: |0\rangle \longrightarrow X \longrightarrow |1\rangle$$

$$|01100\rangle \longrightarrow 2: |0\rangle \longrightarrow X \longrightarrow |1\rangle$$

$$3: |0\rangle \longrightarrow |0\rangle$$

$$4: |0\rangle \longrightarrow |0\rangle$$

(This is different in other frameworks!)

Multi-qubit gates

The few small circuits we've seen so far only involve gates on single qubits:

Surely this isn't all we can do...

Image credit: Xanadu Quantum Codebook I.11

SWAP

We can swap the state of two qubits using the SWAP operation. First define what it does to the basis states...

$$SWAP|00\rangle = |00\rangle$$

 $SWAP|01\rangle = |10\rangle$
 $SWAP|10\rangle = |01\rangle$
 $SWAP|11\rangle = |11\rangle$

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Circuit element:

PennyLane: qml.SWAP

More generally,

$$SWAP(|\psi\rangle\otimes|\phi\rangle) = |\phi\rangle\otimes|\psi\rangle$$

Let's show this. Start by writing

$$|\psi\rangle \otimes |\phi\rangle = (\alpha|0\rangle + \beta|1\rangle) \otimes (\gamma|0\rangle + \delta|1\rangle)$$
$$= \alpha\gamma|00\rangle + \alpha\delta|01\rangle + \beta\gamma|10\rangle + \beta\delta|11\rangle$$

Now apply the SWAP:

$$SWAP(|\psi\rangle \otimes |\phi\rangle) = \alpha\gamma|00\rangle + \alpha\delta|10\rangle + \beta\gamma|01\rangle + \beta\delta|11\rangle$$

$$= \gamma\alpha|00\rangle + \gamma\beta|01\rangle + \delta\alpha|10\rangle + \delta\beta|11\rangle$$

$$= \gamma|0\rangle(\alpha|0\rangle + \beta|1\rangle) + \delta|1\rangle(\alpha|0\rangle + \beta|1\rangle$$

$$= (\gamma|0\rangle + \delta|1\rangle) \otimes (\alpha|0\rangle + \beta|1\rangle)$$

$$= |\phi\rangle \otimes |\psi\rangle$$

CNOT

Consider a two-qubit operation $\it U$ with the following action on the basis states:

$$U|00\rangle = |00\rangle$$
 $U|01\rangle = |01\rangle$
 $U|10\rangle = |11\rangle$
 $U|11\rangle = |10\rangle$

CNOT

CNOT = "controlled-NOT". A NOT (X) is applied to second qubit only if first qubit is in state $|1\rangle$.

$$CNOT |00\rangle = |00\rangle$$
 $CNOT |01\rangle = |01\rangle$
 $CNOT |10\rangle = |11\rangle$
 $CNOT |11\rangle = |10\rangle$
 $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

PennyLane: qml.CNOT

CNOT hands-on

What does CNOT do with qubits in a superposition?

$$|0\rangle \frac{\partial}{\partial t} = \frac{1}{\sqrt{2}} (|0\rangle + |0\rangle)$$

$$|0\rangle \frac{\partial}{\partial t} = \frac{1}{\sqrt{2}} (|0\rangle + |0\rangle)$$

$$= \frac{1}{\sqrt{2}} (|0\rangle + |0\rangle)$$

$$= \frac{1}{\sqrt{2}} (|0\rangle + |0\rangle)$$

$$= \frac{1}{\sqrt{2}} (|0\rangle + |0\rangle)$$

CNOT hands-on

The output state of this circuit is:

This state is **entangled**!

Entanglement

We cannot express

$$rac{1}{\sqrt{2}}\left(\ket{00}+\ket{11}
ight)$$

as a tensor product of two single-qubit states.

Entanglement

Entanglement generalizes to more than two qubits:

Exercise: Express the output state of this circuit in the computational basis.

Reversibility

Consider the AND of two bits a and b:

a	b	ab
0	0	0
0	1	0
1	0	0
1	1	1

This gate is *not* reversible: we cannot recover inputs from outputs.

But, we can make it reversible by adding one extra bit...

Toffoli

The **Toffoli** implements a reversible AND gate. (It is universal for classical reversible computing).

Controlled-CNOT, or controlled-controlled-NOT.

PennyLane: qml.Toffoli

Toffoli

What does it do to the basis states?

$$TOF|000\rangle = |000\rangle$$
 $TOF|001\rangle = |001\rangle$
 $TOF|010\rangle = |040\rangle$
 $TOF|011\rangle = |011\rangle$
 $TOF|100\rangle = |100\rangle$
 $TOF|101\rangle = |101\rangle$
 $TOF|110\rangle = |111\rangle$
 $TOF|111\rangle = |111\rangle$

Toffoli

What is actually going on here?

$$TOF|000\rangle = |000\rangle$$

 $TOF|001\rangle = |001\rangle$
 $TOF|010\rangle = |010\rangle$
 $TOF|011\rangle = |011\rangle$
 $TOF|100\rangle = |100\rangle$
 $TOF|101\rangle = |101\rangle$
 $TOF|110\rangle = |111\rangle$
 $TOF|111\rangle = |110\rangle$

Hands-on: the half-adder

We can interpret CNOT in a similar way.

X, CNOT, TOF can be used to create Boolean arithmetic circuits.

Controlled unitary operations

Any unitary operation can be turned into a controlled operation, controlled on any state.

Most common controls are controlled-on- $|1\rangle$ (filled circle), and controlled-on- $|0\rangle$ (empty circle).

Example: controlled-Z (CZ)

What does this operation do?

PennyLane: qml.CZ

We stopped roughly here Friday; will start here next time!

Image credit: Codebook node I.13

Example: controlled rotations (RX, RY, RZ)

Or this one?

$$CRY(heta) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & \cosrac{ heta}{2} & -\sinrac{ heta}{2} \ 0 & 0 & \sinrac{ heta}{2} & \cosrac{ heta}{2} \end{pmatrix}$$

Circuit elements:

PennyLane: qml.CRX, qml.CRY, qml.CRZ

Controlled-U

There is a pattern here:

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad CRY(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ 0 & 0 & \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

More generally,

$$CU = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & U_{00} & U_{01} \\ 0 & 0 & U_{10} & U_{11} \end{pmatrix} = \begin{pmatrix} I_2 & \mathbf{0}_2 \\ \mathbf{0}_2 & U \end{pmatrix}$$

... we don't want to be writing these matrices all the time.

Hands-on: qml.ctrl

Remember from earlier, qml.adjoint:

```
@qml.qnode(dev)
def my_circuit():
    qml.S(wires=0)
    qml.adjoint(qml.S)(wires=0)
    return qml.sample()
```

There is a similar *transform* that allows us to perform arbitrary controlled operations (or entire quantum functions)!

```
@qml.qnode(dev)
def my_circuit():
    qml.S(wires=0)
    qml.ctrl(qml.S, control=1)(wires=0)
    return qml.sample()
```

Hands-on: qml.ctrl

Let's go implement this circuit:

Universal gate sets

Last class, we learned that with just

- \blacksquare H and T
- any two of RX, RY, and RZ,

we can implement *any* single-qubit unitary operation up to arbitrary precision.

What about for two qubits?

Universal gate sets

What about for two qubits?

- H, T, and CNOT
- any two of RX, RY, RZ, and CNOT
- H and TOF

With just 2-3 gates, we can implement *any* two-qubit unitary operation up to arbitrary precision.

What about three or more qubits? (Same thing!)

Universal gate sets

In general, finding such an implementation (quantum circuit synthesis, part of the quantum compilation pipeline) is computationally hard.

- sometimes we can do so for small cases (PennyLane has many decompositions pre-programmed)
- sometimes having auxiliary qubits around can simplify the decomposition

Auxiliary qubits

Auxiliary qubits are like "scratch", or "work" qubits. They start in state $|0\rangle,$ and must be returned to state $|0\rangle,$ but can be used to store intermediate results in a computation.

Review: single-qubit measurements

Given a state

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

- the probability of measuring and observing the qubit in state $|0\rangle$ is $|\alpha|^2 = \alpha \alpha^* = |\langle 0|\psi\rangle|^2$
- the probability of measuring and observing the qubit in state $|1\rangle$ is $|\beta|^2 = |\langle 1|\psi\rangle|^2$
- we can measure in different bases by "remapping" those basis states to the computational basis

We can do all this in the multi-qubit case as well.

Multi-qubit measurement outcome probabilities

Let

$$|\psi\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

If we measure in the computational basis, the outcome probabilities are:

- $|\alpha|^2 = |\langle 00|\psi\rangle|^2$ for $|00\rangle$
- $|\beta|^2 = |\langle 01|\psi\rangle|^2$ for $|01\rangle$
- **...**

Multi-qubit measurement outcome probabilities

Let

$$|\psi\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

We can also measure just one qubit:

- The probability of the first qubit being in state $|0\rangle$ is $|\alpha|^2 + |\beta|^2$
- The probability of the second qubit being in state $|1\rangle$ is $|\beta|^2 + |\delta|^2$

Multi-qubit measurement outcome probabilities

Let

$$|\psi\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

We can also measure just one qubit:

- The probability of the first qubit being in state $|0\rangle$ is $|\alpha|^2 + |\beta|^2$
- The probability of the second qubit being in state $|1\rangle$ is $|\beta|^2 + |\delta|^2$

Recap

- Measure a single qubit in different bases
- Mathematically describe a system of multiple qubits
- Describe the action of common multi-qubit gates
- Make any gate a controlled gate
- Perform measurements on multiple qubits

Next time

Content:

- Superdense coding
- The no-cloning theorem
- Quantum teleportation

Action items:

- 1. Literacy assignment 1 due Wednesday
- 2. Technical assignment 1 posted soon
- 3. Quiz 2 Monday end of class on contents from this week

Recommended reading:

- From this class: Codebook nodes I.9, I.11-I.14
- For next class: Codebook nodes I.15