UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

ECUACIONES DIFERENCIALES III

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: **0164**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Ecuaciones Diferenciales II.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): El objetivo del curso es hacer una introducción a la teoría de bifurcaciones de sistemas de ecuaciones diferenciales, centrándose principalmente en sistemas planos en los que aparece uno o dos parámetros.

NUM. HORAS	UNIDADES TEMÁTICAS
10	1. Importancia del cambio en la dinámica al cambiar los
	parámetros
	1.1 Ejemplos de bifurcaciones en el caso escalar (histéresis).
	1.2 Ejemplos relevantes de bifurcaciones de equilibrios y trayectorias
	en sistemas planos.
15	2. Estudio de las bifurcaciones elementales en el caso escalar
	2.1 El Teorema de la Función Implícita y las bifurcaciones elementa-
	les.
	2.2 El caso hiperbólico, degeneraciones uno y dos. Unos y dos paráme-
	tros.
	2.3 Obtención de diagramas de bifurcación.
	2.4 Bifurcación de soluciones periódicas.
15	3. Estabilidad Estructural de Sistemas Planos
	3.1 Equilibrios y trayectorias hiperbólicos.
	3.2 Distancia entre sistemas de ecuaciones diferenciales.
	3.3 Equivalencia topológica entre sistemas.
	3.4 El Teorema de Andronov-Pontryagin. El Teorema de Peixoto.

15	4. Bifurcaciones Locales
	4.1 Los teoremas de la variedad invariante y de la variedad central.
	4.2 Formas normales en casos de degeneración uno y dos.
	4.3 Aparición de ciclos límite a través de una bifurcación. El Teorema
	de Hopf-Andronov.
	4.4 Estabilidad de ciclos límite y el mapeo de Poincaré.
15	5. Bifurcaciones Globales
	5.1 Sobre la existencia de trayectorias heteroclínicas, homoclínicas y
	ciclos heteroclínicos.
	5.2 Bifurcación de trayectorias heteroclínicas y de ciclos heteroclíni-
	cos.
	5.3 La función de Melnikov.
10	6. Una mirada a sistemas tridimensionales
	6.1 Ejemplos que exhiben bifurcaciones (Lorenz, Fitzhugh-Nagumo,
	etc.).
	6.2 Trayectorias heteroclínicas y homoclínicas.
	6.3 Sistemas caóticos.

BIBLIOGRAFÍA BÁSICA:

- 1. Hale, J., Kocsack, H., Dynamics and Bifurcations, New York: Springer-Verlag, 1991.
- 2. Hirsch, M. W., Smale, S., Devaney, R. L., Differential Equations, Dynamical Systems and An Introduction to Chaos, Oxford: Elsevier Academic Press, 2004.
- 3. Perko, L., Differential Equations and Dynamical Systems, New York: Springer-Verlag, 1998.
- 4. Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, New York: Springer-Verlag, 1990.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Chow, S. N., Li, Ch., Wang, D., Normal Forms and Bifurcation of Planar Vector Fields, Cambridge: Cambridge University Press, 1994.
- 2. Kuznetsov, Y. A., *Elements of Applied Bifurcation Theory*, 3dr. Edition. New York: Springer-Verlag, 2004.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.