Construction Of Deterministic Algorithms Prabhakar Raghavan Derandomisierung randomisierter Algorithmen

Arbeitsgruppe Diskrete Optimierung Institut für Informatik Christian-Albrechts-Universität zu Kiel

Sebastian Berndt

Juni 2011

Inhalt

1 KO 1 & KO 2

Inhalt

- 1 KO 1 & KO 2
- 2 Runden

Inhalt

- 1 KO 1 & KO 2
- 2 Runden
- 3 k-Matchings in Hypergraphen

Schnelle Wiederholung

 \mathcal{NP} -vollständige Probleme sind schwer zu lösen.

- ⇒ Approximative Lösungen
- ⇒ Randomisierte Algorithmen

Definition (Lineares / Ganzzahliges Programm)

Seien $A \in \mathbb{Q}^{m \times n}, c \in \mathbb{Q}^n$ und $b \in \mathbb{Q}^m$. Dann heißt

$$\max c^{\top} x$$

$$Ax \le b$$

$$x \ge 0$$

$$(x \in \mathbb{N})$$

lineares (ganzzahliges) Programm.

Konvention: x_i sind ganzzahlige Lösungen, x_i^* sind fraktionale Lösungen. $\mathsf{OPT} = c^\top x, \mathsf{OPT}^* = c^\top x^*$

Wichtige Theoreme

Theorem (Karp 1972)

Ganzzahlige Lineare Programme sind \mathcal{NP} -vollständig.

Theorem (Karp 1972)

Ganzzahlige Lineare Programme sind \mathcal{NP} -vollständig.

Theorem (Khachiyan 1979)

Lineare Programme sind in ${\cal P}$

 $\mathsf{LP} \mapsto \mathsf{ILP}$

Ab jetzt $x_i \in \{0,1\}$ und $x_i^* \in [0,1]$

$\mathsf{LP} \mapsto \mathsf{ILP}$

Ab jetzt $x_i \in \{0, 1\}$ und $x_i^* \in [0, 1]$

Kaufmännisches Runden

$$x_i = \begin{cases} 1 & x_i^* \ge 0.5 \\ 0 & x_i^* < 0.5 \end{cases}$$

$\mathsf{LP} \mapsto \mathsf{ILP}$

Ab jetzt $x_i \in \{0,1\}$ und $x_i^* \in [0,1]$

Kaufmännisches Runden

$$x_i = \begin{cases} 1 & x_i^* \ge 0.5 \\ 0 & x_i^* < 0.5 \end{cases}$$

Randomisiertes Runden

$$\Pr[x_i = 1] = x_i^*$$

Derandomisierung

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin." (John von Neumann)

Derandomisierung

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin." (John von Neumann)

Lösung: Derandomisierung!

Entscheidungsbaum

Idee: Stelle Entscheidungen beim Runden als Baum dar!

Entscheidungsbaum

Idee: Stelle Entscheidungen beim Runden als Baum dar!

Notationen

- Entscheidungsbaum T
- Linker/Rechter Entscheidungsbaum T_L , T_R
- Teilbaum T^j , wenn x_1, \ldots, x_i schon bestimmt

Notationen

- Entscheidungsbaum T
- Linker/Rechter Entscheidungsbaum T_I , T_R
- Teilbaum T^j , wenn x_1, \ldots, x_i schon bestimmt
- Wahrscheinlichkeit für schlechtes Ereignis im Baum T^{j} , wenn die restlichen x_i per RR bestimmt werden: bad(T^j)
- bad $(T^j) \ge \min\{ \text{bad}(T^j_I), \text{bad}(T^j_R) \}$

Algorithmische Idee

Gilt 1 > bad(T), so wähle also entweder T_L^j oder T_R^j !

Algorithmische Idee

Gilt 1 > bad(T), so wähle also entweder T_{I}^{j} oder T_{R}^{j} ! Erhalte Folge T_1, \ldots, T_n mit

$$1 > \mathsf{bad}(T) \ge \mathsf{bad}(T_1) \ge \ldots \ge \mathsf{bad}(T_n)$$

Algorithmische Idee

Gilt 1 > bad(T), so wähle also entweder T_{I}^{j} oder T_{R}^{j} ! Erhalte Folge T_1, \ldots, T_n mit

$$1 > \mathsf{bad}(T) \ge \mathsf{bad}(T_1) \ge \ldots \ge \mathsf{bad}(T_n)$$

 T_n ist Blatt, also bad $(T_n) \in \{0,1\}$. Somit bad $(T_n) = 0!$

Gilt 1 > bad(T), so wähle also entweder T_I^J oder T_R^J ! Erhalte Folge T_1, \ldots, T_n mit

$$1 > \mathsf{bad}(T) \ge \mathsf{bad}(T_1) \ge \ldots \ge \mathsf{bad}(T_n)$$

 T_n ist Blatt, also bad $(T_n) \in \{0,1\}$. Somit bad $(T_n) = 0!$ Problem: T hat 2^n Blätter

Pessimistischer Schätzer

Definition (Pessimistischer Schätzer)

Für einen Entscheidungsbaum T und alle seine Teilbäume T^j heißt Upessimistischer Schätzer (Pessimistic Estimator), wenn:

- **1** > U(T)
- $U(T^j) \geq \mathsf{bad}(T^j)$
- **3** $U(T^j) \ge \min\{U(T_I^j), U(T_P^j)\}$
- $U(T^j)$ ist polynomiell berechenbar

Pessimistischer Schätzer

Definition (Pessimistischer Schätzer)

Für einen Entscheidungsbaum T und alle seine Teilbäume T^j heißt Upessimistischer Schätzer (Pessimistic Estimator), wenn:

- **1** > U(T)
- $U(T^j) \geq \mathsf{bad}(T^j)$
- **3** $U(T^j) \ge \min\{U(T_I^j), U(T_P^j)\}$
- $U(T^j)$ ist polynomiell berechenbar

Theorem (Hauptsatz)

Erhält man zu einem Problem Π via RR einen randomisierten Algorithmus mit Güte A und gibt es einen pessimistischen Schätzer für Π , so gibt es für Π einen deterministischen, polynomiellen Algorithmus mit Güte A.

Allgemeines Vorgehen

- Löse LP
- Zeige, dass es mit Randomisiertem Runden eine Lösung mit Güte A gibt
- Bestimme einen pessimistischen Schätzer (durch Umbau des obigen Beweises)
- Erhalte deterministischen Algorithmus mit Güte A

Problemstellung

Gegeben: Hypergraph H mit r Kanten und n Knoten

Gesucht: maximale Anzahl an Kanten, so dass jeder Knoten mit maximal k

Kanten inzidiert.

Problemstellung

Gegeben: Hypergraph H mit r Kanten und n Knoten

Gesucht: maximale Anzahl an Kanten, so dass jeder Knoten mit maximal k Kanten inzidiert.

Problemstellung

Gegeben: Hypergraph H mit r Kanten und n Knoten

Gesucht: maximale Anzahl an Kanten, so dass jeder Knoten mit maximal k Kanten inzidiert.

Formulierung als IP

- $A \in \{0,1\}^{n \times r}$ Inzidenzmatrix $(a_{ij} = 1 \Leftrightarrow v_i \in e_j)$
- $b = \vec{k}$
- $c = \vec{1}$
- x_j für Kante e_j

Formulierung als IP

- $A \in \{0,1\}^{n \times r}$ Inzidenzmatrix $(a_{ij} = 1 \Leftrightarrow v_i \in e_j)$
- $b = \vec{k}$
- $c = \vec{1}$
- x_j für Kante e_j

IP für k-Matching

$$\max c^{\top} x$$
 $s.t. \sum_{j=1}^{r} a_{ij} x_j \le k$
 $\forall i \in \{1, \dots, n\}$
 $x_i \in \{0, 1\}$
 $\forall j \in \{1, \dots, r\}$

Randomisiertes Runden

•
$$\Rightarrow \mathbb{E}[\sum_{j=1}^r x_j] = \sum_{i=j}^r x_i^* = \mathsf{OPT}^* \ge \mathsf{OPT}$$

•
$$\Rightarrow \mathbb{E}[\sum_{j=1}^r a_{ij}x_j] = \sum_{j=1}^r a_{ij}x_j^* \le k$$

Randomisiertes Runden

•
$$\Rightarrow \mathbb{E}[\sum_{i=1}^r x_i] = \sum_{i=1}^r x_i^* = \mathsf{OPT}^* \ge \mathsf{OPT}$$

$$ullet$$
 $\Rightarrow \mathbb{E}[\sum_{j=1}^r a_{ij}x_j] = \sum_{j=1}^r a_{ij}x_j^* \le k$

Problem: $Pr[\sum_{j=1}^{r} a_{ij}x_j > k]$ ist sehr hoch!

Lemma (Lemma 1)

 X_i binäre Zufallsvariablen, $a_i \in [0,1]$, $\delta > 0, \gamma \in (0,1]$ und $X = \sum_i a_i X_i$. Dann gilt:

$$\Pr[X > (1+\delta)\mathbb{E}[X]] < (\frac{\exp(\delta)}{(1+\delta)^{(1+\delta)}})^{\mathbb{E}[X]} =: \mathcal{B}(\mathbb{E}[X], \delta)$$

$$\Pr[X < (1-\gamma)\mathbb{E}[X]] < \mathcal{B}(\mathbb{E}[X], \gamma)$$

Einschub

Lemma (Lemma 1)

 X_i binäre Zufallsvariablen, $a_i \in [0,1]$, $\delta > 0, \gamma \in (0,1]$ und $X = \sum_i a_i X_i$. Dann gilt:

$$\Pr[X > (1+\delta)\mathbb{E}[X]] < (\frac{\exp(\delta)}{(1+\delta)^{(1+\delta)}})^{\mathbb{E}[X]} =: B(\mathbb{E}[X], \delta)$$

$$\Pr[X < (1-\gamma)\mathbb{E}[X]] < B(\mathbb{E}[X], \gamma)$$

Proof.

Markov-Ungleichung, $e^x \ge x + 1$, Bernoulli-Ungleichung

Einschub

Lemma (Lemma 1)

 X_i binäre Zufallsvariablen, $a_i \in [0,1]$, $\delta > 0, \gamma \in (0,1]$ und $X = \sum_i a_i X_i$. Dann gilt:

$$\Pr[X > (1+\delta)\mathbb{E}[X]] < (\frac{\exp(\delta)}{(1+\delta)^{(1+\delta)}})^{\mathbb{E}[X]} =: B(\mathbb{E}[X], \delta)$$

$$\Pr[X < (1-\gamma)\mathbb{E}[X]] < B(\mathbb{E}[X], \gamma)$$

Proof.

Markov-Ungleichung, $e^x \ge x + 1$, Bernoulli-Ungleichung

Zur Abkürzung: $D(\mathbb{E}[X], x)$ mit $B(\mathbb{E}[X], D(\mathbb{E}[X], x)) = x$.

Lösung

Skalierung

Skaliere $\Pr[x_i = 1]$ mit $\alpha \in (0, 1)$, so dass $B(\alpha k, \frac{1-\alpha}{\alpha}) \leq \frac{1}{n+1}$ Erhalte dann x_j^S mit $\Pr[x_j^S = 1] = \alpha x_j^*$.

Lösung

Skalierung

Skaliere $\Pr[x_i = 1] \text{ mit } \alpha \in (0, 1), \text{ so dass } B(\alpha k, \frac{1-\alpha}{\alpha}) \leq \frac{1}{n+1}$ Erhalte dann x_j^S mit $\Pr[x_j^S = 1] = \alpha x_j^*$.

Lemma (Lemma 2)

Falls $k > \ln(n)$, so ist α konstant.

Falls $k \leq \ln(n)$, so ist α abhängig von n.

Lösung

Skalierung

Skaliere $\Pr[x_i = 1]$ mit $\alpha \in (0, 1)$, so dass $B(\alpha k, \frac{1-\alpha}{\alpha}) \leq \frac{1}{n+1}$ Erhalte dann x_j^S mit $\Pr[x_j^S = 1] = \alpha x_j^*$.

Lemma (Lemma 2)

Falls $k > \ln(n)$, so ist α konstant. Falls $k < \ln(n)$, so ist α abhängig von n.

Theorem

Es gibt ein k-Matching mit Kardinalität K mit

$$K \ge \alpha \operatorname{OPT}^* \cdot (1 - D(\alpha \operatorname{OPT}^*, 1/(n+1)))$$

Ab hier:

Ein konkreter pessimistischer Schätzer für k-Matchings.

Warnung

Here be dragons! $(e^x, \ln(x), \ldots)$

Einschub 2

Lemma (Lemma 3)

Es gilt mit $t = \ln(1 + D(\alpha k, \frac{1-\alpha}{\alpha})), t' = \ln(1 + D(\alpha \mathsf{OPT}^*, 1/(n+1)))$ und $\mu = \alpha \mathsf{OPT}^*$:

$$\begin{split} & \Pr[\sum_{j=1}^r a_{ij} x_j^S > k] \leq \exp(-tk) \prod_{j=1}^r [x_j^* \exp(ta_{ij}) + 1 - x_j^*] \\ & \Pr[\sum_{j=1}^r x_j^S < \mu(1 - D(\mu, 1/(n+1)))] \leq \\ & \exp(t'\mu(1 - D(\mu, 1/(n+1))) \prod_{j=1}^r [x_j^* \exp(-t') + 1 - x_j^*] \end{split}$$

Proof.

Zwischenergebnis Lemma 1

Der gesuchte Schätzer

Theorem (Pessimistischer Schätzer für k-Matching)

Das folgende U ist ein pessimistischer Schätzer für k-Matching mit $\mu = \alpha \, \mathsf{OPT}^*$:

$$U(T) = \sum_{i=1}^{n} e^{-tk} \prod_{j=1}^{r} [x_{j}^{*} e^{a_{ij}t} + 1 - x_{j}^{*}]$$

$$+ e^{t'\mu(1 - D(\mu, 1/n + 1))} \prod_{j=1}^{r} [x_{j}^{*} e^{-t'} + 1 - x_{j}^{*}]$$

$$mit \ t = \ln(1 + D(\alpha k, \frac{1-\alpha}{\alpha})), t' = \ln(1 + D(\mu, 1/n + 1))$$

Ziellinie

Theorem

Für einen Hypergraphen lässt sich deterministisch in polynomieller Zeit ein k-Matching der Kardinalität K mit

$$\mathcal{K} \geq \alpha \operatorname{\mathsf{OPT}}^* \cdot (1 - D(\alpha \operatorname{\mathsf{OPT}}^*, 1/(n+1))) = \mu(1 - D(\mu, 1/(n+1)))$$

bestimmen.

Allgemeines Vorgehen

- Löse LP
- Zeige, dass es mit Randomisiertem Runden eine Lösung mit Güte A gibt
- Bestimme einen pessimistischen Schätzer (durch Umbau des obigen Beweises)
- Erhalte deterministischen Algorithmus mit Güte A

