### Welcome to the CSE-465 Project Presentation



Project Title: Automatic Image Caption using CNN,LSTM ,VGG-16,VGG-19,ResNet-50,Inception-V3,OFA,ViT, BLIP.

Course: CSE-465

Section: 02

Submitted to: Dr. Mohammad Ashrafuzzaman Khan(Azk)



| Name                      | Student ID |
|---------------------------|------------|
| S M Gazzali Arafat Nishan | 1831513642 |
| Rofiqul Alam Shehab       | 1831185042 |
| Shafiul Bashar            | 1831446642 |

© Templateswise.com

### What's the problem?



#### **Image Caption from an image**

Image Captioning is the process of generating a textual description for given images. And, It uses both Natural Language Processing and Computer Vision to generate the captions.

# How did we solve the problem?

Train the model **Dataset (Input Image)** Then, we have loaded **Defining CNN-RNN model** the dataset for training We have used Flickr8K 01 04 07 Then, Features from the model like dataset for training CNN model squeezed CNN,LSTM,VGGimages(8091 images). from 2048 to 256 nodes 16, ResNet-50, Inception-, LSTM sequence model, V3 Merging both models. **Performed Data Cleaning Tokenizing the vocubulary** we have done data Tokenizer class TRAINING SECTION 02 Cleaning by removing 05 vectorised text corpus 08 We have trained our punctuations, words & each integer will model by running (100 containing numbers and represent token in epochs) and loaded dataset. dictionary. generated our model. **Extracted Feature vector Creating Data generator** from the images Data generator is used **Test The Model** bymodel.fitgenerator() We tested our model Basically, we have 06 09 03 ,retrieve photo pre\_process the input to evalute the images and extracted features, encode the captions. feature vector. sequence.

# **Model Parameters**

| Dataset   | Algorithms<br>Used       | Num of Batch<br>Size | Num of Hidden<br>Layers | Activation<br>Function |
|-----------|--------------------------|----------------------|-------------------------|------------------------|
| Flickr 8k | 1. CNN                   | 256                  | 3                       | ReLU                   |
| Flickr 8k | 2. LSTM                  | 256                  | 3                       | SoftMax                |
| Flickr 8k | 3.ResNet-50              | 256                  | 5                       | ReLU                   |
| Flickr 8k | 4.VGG-16                 | 256                  | 0                       | SoftMax                |
| Flickr 8k | 5.VGG-19                 | 256                  | 0                       | SoftMax                |
| Flickr 8k | 6.Inception-V3           | 64                   | 4                       | -                      |
| Flickr 8k | 7.Custom<br>Transformers | -                    | 8                       | -                      |

# Result Analysis

| Group<br>Members             | Datasets          | Algorithms<br>Used       | Num of<br>Epochs     | Progress |
|------------------------------|-------------------|--------------------------|----------------------|----------|
| Shafiul Bashar               | Flickr 8k         | 1. CNN                   | 10                   | Done     |
|                              | Flickr 8k         | 2. LSTM                  | 10                   | Done     |
| Rofiqul Alam Shehab -        | Flickr 8k         | 3.ResNet-50              | 10                   | Done     |
|                              | Flickr 8k         | 4.VGG-16                 | 10                   | Done     |
|                              | Flickr 8k         | 5.VGG-19                 | 10                   | Done     |
| S M Gazzali<br>Arafat Nishan | Flickr 8k         | 6.Inception-V3           | 10                   | Done     |
|                              | Flickr 8k         | 7.Custom<br>Transformers | 10                   | Done     |
|                              | MS COCO           | 8.OFA                    | Pre Trained<br>Model | Done     |
|                              | Still in progress | 9. Vit,<br>Blip_Vit,     | Pre Trained<br>Model |          |

# **Image Caption from CNN-LSTM**

from PIL import Image img = Image.open('/content/drive/MyDrive/CSE-465/Flicker8k\_Dataset/3275704430\_a75828048f.jpg') img



[ ] !python3 '/content/drive/MyDrive/CSE-465/testing\_caption\_generator.py' -i '/content/drive/MyDrive/CSE-465/Flicker8k\_Dataset/3275704430\_a75828048f.jpg'
# !python3 '/content/drive/MyDrive/ML/flicker8k\_Dataset/3738685861\_8dfff28760.jpg'

2022-04-17 18:20:41.547727: W tensorflow/core/common\_runtime/gpu/gpu\_bfc\_allocator.cc:39] Overriding allow\_growth setting because the TF\_FORCE\_GPU\_ALLOW\_GROWTH environment variable i 2022-04-17 18:20:46.616605: W tensorflow/core/common\_runtime/bfc\_allocator.cc:343] Garbage collection: deallocate free memory regions (i.e., allocations) so that we can re-allocate a

start man in black shirt and black hat is sitting on the sidewalk end

# **Image Caption from VGG-16**

[ ] from PIL import Image
 img = Image.open('/content/drive/NyDrive/CSE-465/Flicker8k\_Dataset/111537222\_07e56d5a30.jpg')
 img



[]

[ ] !python3 '/content/drive/MyDrive/CSE-465/testing\_caption\_generator.py' -i '/content/drive/MyDrive/CSE-465/Flicker8k\_Dataset/111537222\_07e56d5a30.jpg' # !python3 '/content/drive/MyDrive/ML/Flicker8k\_Dataset/3738685861\_8dfff28760.jpg'

2022-04-17 17:47:38.611675: W tensorflow/core/common\_runtime/gpu/gpu\_bfc\_allocator.cc:39] Overriding allow\_growth setting because the TF\_FORCE\_GPU\_ALLOW\_GROWTH environ 2022-04-17 17:47:45.329493: W tensorflow/core/common\_runtime/bfc\_allocator.cc:343] Garbage collection: deallocate free memory regions (i.e., allocations) so that we ca

start man is climbing up rock end

#### **Image Caption From Inception-V3 & Transformers**



# Thank You