Новое *NN*-взаимодействие JISP: описание *NN*-рассеяния и ядер *s*- и *p*-оболочек в подходе *ab initio*

НИИЯФ, 24 октября 2006

- > А. Широков (НИИЯФ)
- > J. Vary and T. Weber (Iowa State University)
- А. Мазур и С. Зайцев (Хабаровск)

Ab initio:

- Без модельных предположений (например, без введения инертного кора)
- Ab initio подходы:
- уравнения Фаддеева;
- метод гиперсферических функций;
- Green function's Monte Carlo;
- no-core shell model;
- coupled-cluster approach

Coupled cluster approach:

$$|\Psi\rangle = \exp(T)|\Phi_0\rangle \ . \tag{1}$$

Here $|\Phi_0\rangle$ is an uncorrelated reference Slater determinant which might be either the Hartree-Fock (HF) state or a naive filling of the oscillator single-particle basis. Correlations are introduced through the exponential $\exp(T)$ operating on $|\Phi_0\rangle$. The operator T is a sum of n-particlen-hole excitation operators $T = T_1 + T_2 + ...$ of the form,

$$T_n = \sum_{a_1 \dots a_n, i_1 \dots i_n} t_{i_1 \dots i_n}^{a_1 \dots a_n} a_{a_1}^{\dagger} \cdots a_{a_n}^{\dagger} a_{i_n} \cdots a_{i_1} , \qquad (2)$$

where $i_1, i_2, ...$ are summed over hole states and $a_1, a_2, ...$ are summed over particle states. One obtains the algebraic equation for the excitation amplitudes $t_{ij...}^{ab...}$ by left-projecting the similarity-transformed Hamiltonian with an n-particle-n-hole excited Slater determinant giving

$$\langle \Phi_{ij\dots}^{ab\dots} | (H_N \exp(T))_C | \Phi_0 \rangle = 0 , \qquad (3)$$

Модель оболочек.

- Две основные современные схемы:
- Monte Carlo shell model
- m-scheme + Lanczos (в том числе no-core shell model); осцилляторный базис

m-scheme + Lanczos:

- Идея: неполная диагонализация в большом базисе быстрее и проще, чем построение "правильного" базиса с определенными *J, L* и т.д.
- Translationary invariant SM (координаты Якоби, *J, L* и т.д.)
 - ⇒ no-core SM (детерминанты Слэтера с фиксированным *m*, но не *J*, *L* и т.д.); *J* приобретает определенное значение в результате диагонализации.
- Получаем сразу несколько уровней одной четности, но с разными *J.*

Lanczos itterations:

$$ilde{a}_1 = Ha_0;$$
 $ilde{a}_1 \Longrightarrow a_1 : \langle a_1 | a_0 \rangle = 0;$ $ilde{a}_2 = Ha_1;$ $ilde{a}_2 \Longrightarrow a_2 : \langle a_2 | a_0 \rangle = \langle a_2 | a_1 \rangle = 0;$ $ilde{a}_3 = Ha_2;$ $\langle a_i | H | a_j \rangle$ — трехдиагональная матрица.

• Диагонализация сравнительно небольшой трехдиагональной матрицы, дающей хорошее основное и нижайшие возбужденные состояния

Lanczos itterations:

$$a_0 = \alpha_0 x_0 + \alpha_1 x_1 + \alpha_2 x_2 + \dots$$

$$a_1 = E_0 \alpha_0 x_0 + E_1 \alpha_1 x_1 + E_2 \alpha_2 x_2 + \dots$$

$$a_2 = E_0^2 \alpha_0 x_0 + E_1^2 \alpha_1 x_1 + E_2^2 \alpha_2 x_2 + \dots$$

$$\dots$$

$$a_n = E_0^n \alpha_0 x_0 + E_1^n \alpha_1 x_1 + E_2^n \alpha_2 x_2 + \dots$$

No-core shell model:

$$H_{A} = \frac{1}{A} \sum_{i < j}^{A} \frac{(\mathbf{p}_{i} - \mathbf{p}_{j})^{2}}{2m} + \sum_{i < j}^{A} V_{NN,ij}$$
(1)
$$+ \sum_{i < j < k}^{A} V_{NNN,ijk},$$

where m is the nucleon mass, $V_{NN,ij}$ is the twonucleon interaction (including both strong and electromagnetic components), and $V_{NNN,ijk}$ is the threenucleon interaction, should be arranged as spuriousfree linear combinations of basis states.

To achieve this, the auxiliary Hamiltonian

$$H_{\text{NCSM}} = H_A + \beta \widetilde{Q}_0 \tag{2}$$

is conventionally diagonalized within the NCSM instead of the Hamiltonian (1). Here,

$$\widetilde{Q}_0 \equiv H_{\rm CM} - \frac{3}{2}\hbar\Omega,$$
 (3)

$$H_{\rm CM} = T_{\rm CM} + U_{\rm CM} \tag{4}$$

is the harmonic oscillator CM Hamiltonian, T_{CM} is the CM kinetic energy operator, and

$$U_{\rm CM} = \frac{1}{2} A m \Omega^2 \mathbf{R}^2, \tag{5}$$

where

$$\mathbf{R} = \frac{1}{A} \sum_{i=1}^{A} \mathbf{r}_i. \tag{6}$$

Effective interactions:

- "Обычная" (с кором) модель оболочек (тяжелые ядра): *G*-матрица или просто феноменология.
- No-core SM: Lee—Suzuki transformation, т.е. *ab initio NN-*взаимодействие, полученное из исходного "голого" *NN-*взаимодействия.

Lee-Suzuki transformation:

"Кластерное" разложение:

$$H \Longrightarrow h_2 + h_3 + \dots$$

Обычно ограничиваются h_2 или $h_2 + h_3$.

Highlights

JISP = J-matrix inverse scattering potential

PETs = phase-equivalent transformations

No-core shell model: *ab initio ⇔ ab exitu* approach

No three-nucleon forces

Results for nuclei with $A \leq 16$

J-matrix formalism: scattering in the oscillator basis

PETs

ab initio ⇔ ab exitu

- JISP16: J-matrix inverse scattering $9h\Omega$ *NN* potential with $h\Omega = 40$ MeV fitted to nuclei up through ¹⁶O
- Only simplest PETs generated by 2x2 unitary matrix U are used
- Ab exitu approach:
- PETs: sd wave fitting deuteron properties (rms radius and quadrupole moment)
 - various *p* and one of *d* waves fitting few levels of ⁶Li and binding energy of ¹⁶O in relatively small model spaces
- All the rest NCSM results (other nuclei, larger model spaces) are ab initio

JISP16 properties

- 1992 *np* data base (2514 data): χ^2 /datum = 1.03
- 1999 *np* data base (3058 data): χ^2 /datum = 1.05

Table I: Deuteron properties.

Potential	E_d , MeV	d state	rms radius,	Q, fm^2	As. norm. const.	$\eta = rac{{\mathscr A}_d}{d}$
		probability, %	${ m fm}$		$\mathscr{A}_s, \mathrm{fm}^{-1/2}$	\mathscr{A}_s
JISP16	-2.224575	4.1360	1.9643	0.2886	0.8629	0.0252
Nijmegen-II	-2.224575	5.635	1.968	0.2707	0.8845	0.0252
AV18	-2.224575	5.76	1.967	0.270	0.8850	0.0250
CD-Bonn	-2.224575	4.85	1.966	0.270	0.8846	0.0256
Nature	-2.224575(9)	_	1.971(6)	0.2859(3)	0.8846(9)	0.0256(4)

Table II: The binding energies of ³H, ³He, ⁴He, ⁶He and ⁶Li nuclei.

Potential	³ H	³ He	⁴ He	⁶ He	⁶ Li
JISP16, NCSM	8.496(20)	7.797(17)	28.374(57)	28.32(28)	31.00(31)
CD-Bonn+TM, Faddeev [1]	8.480	7.734	29.15		
AV18+TM, Faddeev [1]	8.476	7.756	28.84		
AV18+TM', Faddeev [1]	8.444	7.728	28.36		
NijmI+TM, Faddeev [1]	8.392	7.720	28.60		
NijmII+TM, Faddeev [1]	8.386	7.720	28.54		
AV18+UrbIX, Faddeev [1]	8.478	7.760	28.50		
AV18+UrbIX, GFMC [2]	8.47(1)		28.30(2)	27.64(14)	31.25(11)
AV8'+TM', NCSM [3]				28.189	31.036
Nature	8.48	7.72	28.30	29.269	31.995

- [1] A. Nogga *et al*, Phys. Rev. Lett. **85**, 944 (2000).
- [2] B. S. Pudliner *et al.*, Phys. Rev. C **56**, 1720 (1997).
- [3] P. Navrátil and E. Ormand, Phys. Rev. \mathbf{c} **68**, 034305 (2003).

⁶Li spectrum with JISP16 NN interaction, hΩ=17.5 MeV

Nucleus	Nature	Bare	Effective	$\hbar\omega$ (MeV)	Model) space	Nucle	eus Natur	e Bar	e Effective	$\hbar\omega$ (MeV	Model) space
$^3\mathrm{H}$	8.482	8.354	8.496(20)	7	$14\hbar\omega$	$^{11}\mathrm{C}$	73.440	66.1	70.1(32)	17	$6\hbar\omega$
$^3{\rm He}$	7.718	7.648	7.797(17)	7	$14\hbar\omega$	$^{12}\mathrm{B}$	79.575	71.2	75.9(48)	15	$6\hbar\omega$
$^4\mathrm{He}$	28.296	28.297	28.374(57)	10	$14\hbar\omega$	$^{12}\mathrm{C}$	92.162	87.4	91.0(49)	17.5	$6\hbar\omega$
$^6\mathrm{He}$	29.269		28.32(28)	17.5	$12\hbar\omega$	$^{12}\mathrm{N}$	74.041	64.5	70.2(48)	15	$6\hbar\omega$
$^6{ m Li}$	31.995		31.00(31)	17.5	$12\hbar\omega$	$^{13}\mathrm{B}$	84.453	73.5	82.1(67)	15	$6\hbar\omega$
$^7{ m Li}$	39.245		37.59(30)	17.5	$10\hbar\omega$	$^{13}\mathrm{C}$	97.108	93.2	96.4(59)	19	$6\hbar\omega$
$^7\mathrm{Be}$	37.600		35.91(29)	17	$10\hbar\omega$	$^{13}\mathrm{N}$	94.105	89.7	93.1(62)	18	$6\hbar\omega$
$^8\mathrm{Be}$	56.500		53.40(10)	15	$8\hbar\omega$	$^{13}\mathrm{O}$	75.558	63.0	72.9(62)	14	$6\hbar\omega$
$^9\mathrm{Be}$	58.165	53.54	54.63(26)	16	$8\hbar\omega$	$^{14}\mathrm{C}$	105.285	101.5	106.0(93)	17.5	$6\hbar\omega$
$^9\mathrm{B}$	56.314	51.31	52.53(20)	16	$8\hbar\omega$	$^{14}\mathrm{N}$	104.659	103.8	106.8(77)	20	$6\hbar\omega$
$^{10}{ m Be}$	64.977	60.55	61.39(20)	19	$8\hbar\omega$	^{14}O	98.733	93.7	99.1(92)	16	$6\hbar\omega$
$^{10}\mathrm{B}$	64.751	60.39	60.95(20)	20	$8\hbar\omega$	$^{15}{ m N}$	115.492	114.4	119.5(126)	16	$6\hbar\omega$
$^{10}\mathrm{C}$	60.321	55.26	56.36(67)	17	$8\hbar\omega$	$^{15}\mathrm{O}$	111.956	110.1	115.8(126)	16	$6\hbar\omega$
$^{11}\mathrm{B}$	76.205	69.2	73.0(31)	17	$6\hbar\omega$	$^{16}\mathrm{O}$	127.619	126.2	133.8(158)	15	$6\hbar\omega$

Binding energies

Ground state energy E_{gs} and excitation energies E_x (in MeV), ground state point-proton rms radius r_p (in fm) and quadrupole moment Q (in $e \cdot \text{fm}^2$) of the ⁶Li nucleus; $\hbar \omega = 17.5 \text{ MeV}$.

Interaction	N . 4	JISP6	JISP16	AV8'+TM'	AV18+UIX	$AV18{+}IL2$
Method	Nature	NCSM, $10\hbar\omega$ [6]	NCSM, $12\hbar\omega$	NCSM, $6\hbar\omega$ [2]	GFMC [8,15]	$\mathbf{GFMC}\ [10,\!15]$
$E_{gs}(1_1^+,0)$	-31.995	-31.48	-31.00	-31.04	-31.25(8)	-32.0(1)
r_p	2.32(3)	2.083	2.151	2.054	2.46(2)	2.39(1)
Q	-0.082(2)	-0.194	-0.0646	-0.025	-0.33(18)	-0.32(6)
$E_x(3^+, 0)$	2.186	2.102	2.529	2.471	2.8(1)	2.2
$E_x(0^+, 1)$	3.563	3.348	3.701	3.886	3.94(23)	3.4
$E_x(2^+,0)$	4.312	4.642	5.001	5.010	4.0(1)	4.2
$E_x(2^+, 1)$	5.366	5.820	6.266	6.482		5.5

6.573

7.621

5.1(1)

5.6

5.65

 $E_x(1_2^+,0)$

6.86

Same as in Table 4 but for the $^{10}{\rm B}$ nucleus; $\hbar\omega=15$ MeV.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Interaction	N- 4	JISP16	AV8'+TM'	AV18+IL2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Method	Nature	NCSM, $8\hbar\omega$	NCSM, $4\hbar\omega$ [2]	GFMC [16]
Q +8.472(56) 6.484 +5.682 +9.5(2) $E_x(1_1^+,0)$ 0.718 0.555 0.340 0.9 $E_x(0^+,1)$ 1.740 1.202 1.259 $E_x(1_2^+,0)$ 2.154 2.379 1.216 $E_x(2_1^+,0)$ 3.587 3.721 2.775 3.9 $E_x(3_2^+,0)$ 4.774 6.162 5.971 $E_x(2_1^+,1)$ 5.164 5.049 5.182 $E_x(2_2^+,0)$ 5.92 5.548 3.987 $E_x(4_1^+,0)$ 6.025 5.775 5.229 5.6	$E_{gs}(3_1^+,0)$	-64.751	-60.14	-60.57	-65.6(5)
$E_x(1_1^+,0)$ 0.718 0.555 0.340 0.9 $E_x(0^+,1)$ 1.740 1.202 1.259 $E_x(1_2^+,0)$ 2.154 2.379 1.216 $E_x(2_1^+,0)$ 3.587 3.721 2.775 3.9 $E_x(3_2^+,0)$ 4.774 6.162 5.971 $E_x(2_1^+,1)$ 5.164 5.049 5.182 $E_x(2_2^+,0)$ 5.92 5.548 3.987 $E_x(4^+,0)$ 6.025 5.775 5.229 5.6	r_p	2.30(12)	2.168	2.168	2.33(1)
$E_x(0^+,1)$ 1.740 1.202 1.259 $E_x(1_2^+,0)$ 2.154 2.379 1.216 $E_x(2_1^+,0)$ 3.587 3.721 2.775 3.9 $E_x(3_2^+,0)$ 4.774 6.162 5.971 $E_x(2_1^+,1)$ 5.164 5.049 5.182 $E_x(2_2^+,0)$ 5.92 5.548 3.987 $E_x(4^+,0)$ 6.025 5.775 5.229 5.6	Q	+8.472(56)	6.484	+5.682	+9.5(2)
$E_x(1_2^+,0)$ 2.154 2.379 1.216 $E_x(2_1^+,0)$ 3.587 3.721 2.775 3.9 $E_x(3_2^+,0)$ 4.774 6.162 5.971 $E_x(2_1^+,1)$ 5.164 5.049 5.182 $E_x(2_2^+,0)$ 5.92 5.548 3.987 $E_x(4^+,0)$ 6.025 5.775 5.229 5.6	$E_x(1_1^+,0)$	0.718	0.555	0.340	0.9
$E_x(2_1^+,0)$ 3.587 3.721 2.775 3.9 $E_x(3_2^+,0)$ 4.774 6.162 5.971 $E_x(2_1^+,1)$ 5.164 5.049 5.182 $E_x(2_2^+,0)$ 5.92 5.548 3.987 $E_x(4^+,0)$ 6.025 5.775 5.229 5.6	$E_x(0^+,1)$	1.740	1.202	1.259	
$E_x(3_2^+,0)$ 4.774 6.162 5.971 $E_x(2_1^+,1)$ 5.164 5.049 5.182 $E_x(2_2^+,0)$ 5.92 5.548 3.987 $E_x(4^+,0)$ 6.025 5.775 5.229 5.6	$E_x(1_2^+,0)$	2.154	2.379	1.216	
$E_x(2_1^+,1)$ 5.164 5.049 5.182 $E_x(2_2^+,0)$ 5.92 5.548 3.987 $E_x(4^+,0)$ 6.025 5.775 5.229 5.6	$E_x(2_1^+,0)$	3.587	3.721	2.775	3.9
$E_x(2_2^+,0)$ 5.92 5.548 3.987 $E_x(4^+,0)$ 6.025 5.775 5.229 5.6	$E_x(3_2^+,0)$	4.774	6.162	5.971	
$E_x(4^+,0)$ 6.025 5.775 5.229 5.6	$E_x(2_1^+,1)$	5.164	5.049	5.182	
	$E_x(2_2^+,0)$	5.92	5.548	3.987	
$E_x(2_2^+, 1)$ 7.478 7.776 7.491	$E_x(4^+,0)$	6.025	5.775	5.229	5.6
	$E_x(2_2^+,1)$	7.478	7.776	7.491	

¹⁰ B	Exp	JISP16	JISP16	$N3LO + NNN_B$	$N3LO + NNN_A$	N3LO
Basis space	-	$8\hbar\Omega$	$6\hbar\Omega$	$6\hbar\Omega$	$6\hbar\Omega$	$6\hbar\Omega$
$ E(3^+, 0) \text{ [MeV]}$	64.751	60.138	60.800	60.167	64.027	55.613
r_p [fm]	2.30(12)	2.167	2.173	2.248	2.168	2.224
$Q(3_1^+, 0) [e \text{ fm}^2]$	+8.472(56)	6.483	6.239	6.101	6.104	6.665
$\mu(3_1^+,0)[\mu_N]$	+1.8006	N/A	N/A	N/A	N/A	N/A
$\mu(1_1^+,0)[\mu_N]$	+0.63(12)	N/A	N/A	N/A	N/A	N/A
$E_{\rm x}(3_1^+0) \; [{\rm MeV}]$	0.0	0.0	0.0	0.0	0.0	0.0
$E_{\rm x}(1_1^+0) \; [{\rm MeV}]$	0.718	0.555	0.345	0.728	1.131	-0.877
$E_x(0_1^+1) \text{ [MeV]}$	1.740	1.202	1.000	1.662	1.704	1.049
$E_{\rm x}(1_2^+0)~{\rm [MeV]}$	2.154	2.379	2.189	2.077	1.529	1.706
$E_{\rm x}(2_1^+0) \; [{\rm MeV}]$	3.587	3.721	3.323	2.762	3.498	1.797
$E_x(3_2^+0) \text{ [MeV]}$	4.774	6.162	5.896	5.093	6.785	4.406
$E_{\rm x}(2_1^+1) \; [{\rm MeV}]$	5.164	5.049	4.863	4.982	5.518	4.530
$E_{\rm x}(2_2^+0) \; [{\rm MeV}]$	5.92	5.548	4.992	3.675	4.900	3.732
$E_x(4_1^+0) \text{ [MeV]}$	6.025	5.775	5.428	4.398	5.699	4.763
$E_{\rm x}(2_2^+1) \; [{\rm MeV}]?$	7.478	7.776	7.586	7.998	8.480	5.848
rms(Exp - Th) [MeV]	-	0.539	0.609	0.988	0.875	1.333
$B(E2;1_1^+0 \rightarrow 3_1^+0)$	4.13(6)	3.317	3.151	0.227	0.356	4.003
$B(E2;1_2^+0 \to 3_1^+0)$	1.71(0.26)	0.627	0.540	2.514	2.771	N/A
$B(M1; 2_1^+0 \rightarrow 3_1^+0)$	0.0015(3)	0.0022	0.0022	0.0048	0.0008	N/A
$B(M1; 2_1^+1 \rightarrow 3_1^+0)$	0.041(4)	0.086	0.097	0.002	0.091	N/A
$B(M1; 2_2^+0 \rightarrow 3_1^+0)$	0.050(12)	0.056	0.044	0.031	0.044	N/A
$B(M1; 4_1^+0 \rightarrow 3_1^+0)$	0.043(7)	0.005	0.002	0.002	0.003	N/A
$B(M1; 2_2^+1 \rightarrow 3_1^+0)$	-	3.899	4.113	2.635	3.580	N/A
$B(GT; 2_1^+1 \rightarrow 3_1^+0)$	0.083(3)	0.042	0.041	0.010	0.061	N/A
$B(GT; 2_2^+1 \to 3_1^+0)$	0.95(13)	1.652	1.745	1.212	1.559	N/A

¹²C Spectral Convergence for hΩ = 15 MeV

 $^8\text{Be g.s.}$ convergence with $N_{\text{max}}h\Omega$ $h\Omega = 15 \text{ MeV}$ -53 -54 -55 -56

⁸Be spectrum

NCSM, $8h\Omega$ model space

Role of NNN force?

W. Polyzou and W. Glöckle theorem (Few-body Syst. <u>9</u>, 97 (1990)):

$$H=T+V_{ij} \Longrightarrow H'=T+V'_{ij}+V_{ijk}$$

where V_{ii} and V'_{ii} are phase-equivalent, H and H' are isospectral.

Hope:

$$H'=T+V'_{ij}+V_{jjk} \Longrightarrow H=T+V_{ij}$$

with (approximately) isospectral H and H'.

JISP16 seems to be NN interaction minimizing NNN force.

Without *NNN* force calculations are simpler, calculations are faster, larger model spaces become available.

Conclusions

- JISP16 provides a realistic description of two-body and many-body properties, comparable with modern realistic NN + NNN forces
- Convergence of NCSM calculations with JISP16 is faster, even the bare JISP16 calculation convergence is reasonable, I.e. the results are more reliable. A confidence region of the binding energy predictions can be obtained for many nuclei by comparing the bare and effective interaction results

Plans

- JISP16 improvement by the fit to the same nuclei
- Charge-dependent JISP16
- Extending the calculations to the sd shell
- Scattering calculations: NCSM + J-matrix