1 Аннотация

В работе рассматривается задача выбора структуры модели глубокого обучения. Модель — вычислительный граф со множеством операций на ребрах, такой что любой выбор операций порождает дифференцируемую функцию заданной сигнатуры. Структурой модели назовем набор выбранных операций с их весами. Для определения оптимальной структуры предлагается ввести вероятностную интерпретацию структуры модели и провести оптимизацию на основе вариационного вывода. В качестве внешнего критерия качества выбора структуры предлагается обобщенная функция качества, позволяющая проводить оптимизацию в нескольких режимах: add-del, полный перебор, максимизация правдоподобия модели.

2 Постановка задачи

Задана выборка

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}, i = 1, \dots, m,\tag{1}$$

состоящая из множества пар «объект-метка»

$$\mathbf{x}_i \in \mathbf{X} \subset \mathbb{R}^n, \quad y_i \in \mathbf{y} \subset \mathbb{Y}.$$

Метка y объекта \mathbf{x} принадлежит либо множеству: $y \in \mathbb{Y} = \{1, \dots, Z\}$ в случае задачи классификации, где Z — число классов, либо некоторому подмножеству вещественных чисел $y \in \mathbb{Y} \subseteq \mathbb{R}$ в случае задачи регрессии. Определим множество архитектур моделей глубокого обучения для дальнейшего выбора оптимальной.

Будем рассматривать модель как граф V, E, ребрами E которого являются функции из заданого множества функций \mathbf{O} , действующие на выборку, а вершинами V — промежуточные представления выборки под действием данных функций. Перейдем к формальному определению модели. Пусть задан граф V, E. Пусть для каждого ребра $\langle i, j \rangle \in E$ определено множество функций $\mathbf{o}(i,j)$. Граф V, E с множеством функций \mathbf{O} называется моделью, если функция, задаваемая рекурсивно как

$$f_i(\mathbf{x}) = \sum_{j \in \text{Adj}(v_i)} o(i, j)(f_j(\mathbf{x})),$$

является непрерывной дифференцируемой функцией из \mathbb{R}^n во множество \mathbb{Y} при любом o(i,j), являющемся линейной комбинацией функций из множества $\mathbf{o}(i,j)$.

Пусть для каждого ребра i,j задан нормированный положительный вектор $\gamma_{i,j} \in \mathbb{R}^{|\mathbf{o}(i,j)|}$, определяющий веса функций из множества $\mathbf{o}(i,j)$. Будем считать, что вектор $\gamma_{i,j}$ распределен по распределению Gumbel-Softmax:

$$\gamma_{i,j} \sim \mathrm{GS}(c,\mathbf{m}_{i,j}).$$

где c — вектор концентрации распределения, $\mathbf{m}_{i,j}$ — вектор средних. Обозначим за структуру модели Γ множество всех векторов γ . Заметим, что Gumbel-Softmax-распределение может быть заменено на распределение Дирихле. Однако в дальнейшем

нам понадобится проводить градиентную оптимизацию по параметрам данного распределения. Наиболее простым вариантом для подобной оптимизации является Gumbel-Softmax.

Для более адекватной оптимизации положим априорное распределение параметров модели \mathbf{w} зависящим от структуры модели $\mathbf{\Gamma}$. Пусть задано соответствие S между каждым параметром $\mathbf{w} \in \mathbf{W}$ и параметром структуры γ_i . Положим распределение параметров \mathbf{w} нормальным с нулевым средним и диагональной квариационной матрицей:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1} \cdot S).$$

Пусть также определено правдоподобие выборки $p(\mathbf{y}|\mathbf{X},\mathbf{w},\Gamma)$.

Определение Правдоподобием модели **f** назовем следующее выражение:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{A}, \mathbf{m}, c) = \int_{\mathbf{w}, \mathbf{\Gamma}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) p(\mathbf{w}|\mathbf{A}) p(\mathbf{\Gamma}|\mathbf{m}, c) d\mathbf{w} d\mathbf{\Gamma}.$$
 (2)

Пусть задано значение концентрации c. Требуется найти гиперпараметры модели A, m доставляющие максимум правдоподобия модели:

$$\arg\max_{\mathbf{A},\mathbf{m}} p(\mathbf{y}|\mathbf{X},\mathbf{A},\mathbf{m},c).$$

Утверждение (доказано). При c << 0 оптимизация (2) эквивалентна оптимизации дискретной оптимизации: $\gamma_{i,j} \in 2^{|\mathbf{o}(i,j)|}$.

3 Вариационная постановка задачи

В общем виде вычисление значения интеграла (2) является вычислительно сложной процедурой. В качестве приближенного значения интеграла будем использовать вариационную верхнюю оценку правдоподобия модели. Пусть заданы непрерывные параметрические распределения q_w, q_γ , аппроксимирующие апостериорные распределения $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c)$, $p(\mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c)$. Тогда верно следующее выражение:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{A}, \mathbf{m}, c) \le \mathsf{E}_{q_w, q_\gamma} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{A}, \mathbf{m}, c) - D_{KL}(q_\gamma || p(\mathbf{\Gamma})) - D_{KL}(q_w || p(\mathbf{w})). \tag{3}$$

Разница между верхней оценкой (3) и правдоподобием модели (2) определяется дивергенцией между апостериорными распределениями $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c)$, $p(\mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c)$. и вариационными распределениями q_w, q_γ .

Сформулируем основные требования к оптимизационной задаче и оптимизируемым функционалам:

- 1. Оптимизируемые функции должны быть дифференцируемы.
- 2. Степень регуляризации структуры и параметров должна быть контролируемой.
- 3. Оптимизация должна приводить к максимуму вариационной оценки.

- 4. Оптимизация должна позволять калибровать количество эффектинвых параметров
- 5. Оптимизация должна позволять калибровать количество эффекитвных ребер.
- 6. Оптимизация должна позволять проводить полный перебор структуры.

Положим $\boldsymbol{\theta}$ равным параметрам распределений q_w, q_γ . Положим $\mathbf{h} = [\mathbf{A}, \mathbf{m}]$. Пусть L — приближенное значение вариационной оценки правдоподобия:

$$L = \beta \log p(\mathbf{y}|\hat{\mathbf{w}}, \hat{\mathbf{\Gamma}}) - D_{KL}(q_{\gamma}||p(\mathbf{\Gamma})) - D_{KL}(q_{w}||p(\mathbf{w})),$$

где $\hat{\mathbf{w}} \sim q_w$, $\hat{\mathbf{\Gamma}} \sim q_\gamma$, β — коэффициент, контролирующий степень регуляризации структуры и параметров.

Утверждение (доказано). Пусть β выражается как $\frac{m_0}{m}$, где m_0 — натуральное число. Тогда оптимизация функции L эквивалентна оптимизации вариационной нижней оценки правдоподобия для подвыборки $\mathfrak D$ мощностью m_0 .

Пусть Q — валидационная функция:

$$Q(c, c_1, c_2, c_3, \mathbf{p}) = c_1 \log p(\mathbf{y}||\hat{\mathbf{w}}, \hat{\boldsymbol{\Gamma}}) + c_2 [-D_{KL}(q_{\gamma}||p(\boldsymbol{\Gamma})) - D_{KL}(q_w||p(\mathbf{w}))] + c_3 \sum_{p_k \in \mathbf{p}} D_{KL}(q_{\gamma}||p_k),$$

где ${f p}$ — заданные распределения на структурах, c_1,c_2,c_3 — коэффициенты.

Сформулируем задачу поиска оптимальной модели как двухуровневую задачу.

$$\hat{\mathbf{h}} = \arg\max_{\mathbf{h} \in \mathbb{R}^h} Q(T^{\eta}(\boldsymbol{\theta}_0, \mathbf{h})), \tag{4}$$

где T — оператор оптимизации, решающий задачу оптимизации:

$$L(T^{\eta}(\boldsymbol{\theta}_0, \mathbf{h})) \to \max.$$

Утверждение. Пусть $D_{KL}(q_w|p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{A},\mathbf{m},c)) = 0, D_{KL}(q_\gamma|p(\mathbf{\Gamma}|\mathbf{y},\mathbf{X},\mathbf{A},\mathbf{m},c)) = 0$, пусть $c_1 = 1, c_2 = 1, c_3 = 0$. Тогда оптимизация (4) эквивалентна оптимизации (2).

Определение (предварительно) Параметрической δ -сложностью модели назовем матожидание следующей величины:

$$C_{\mathbf{p}}(\delta, \mathbf{w}) = \mathsf{E} \sum_{w \in \mathbf{w}} I(|w| > \delta).$$

Определение (**предварительно**) Структурной δ -сложностью модели назовем матожидание следующей величины:

$$C_{\mathrm{s}}(\delta, \mathbf{\Gamma}) = \mathsf{E} \sum_{oldsymbol{\gamma} \in \mathbf{\Gamma}} \sum_{\gamma_i \in oldsymbol{\gamma}} I(\gamma_i > \delta).$$

Утверждение (предварительно). Пусть $c_1 = 1, c_3 = 0, c_2 > 0, c'_2 < c_2$. Пусть \mathbf{w}, \mathbf{w}' — параметры, полученные в результате соответствющих оптимизаций. Тогда $C_p(\delta, \mathbf{w}') \leq C_p(\delta, \mathbf{w})$.

Утверждение (доказано). Пусть $c_1=1, c_3=0$. Тогда $C_{\rm p}(\delta, {\bf w}(c_2)) \to_{c_2 \to \infty} 0$.

Утверждение (предварительно). Пусть $c_1 = 1, c_3 = 0$. Максимум величины $C_{\mathbb{D}}(\delta, \mathbf{w}(c_2))$ достигается при $c_2 = 0$.

Утверждение (доказано). Пусть $c_1 = c_2 = 1$. $C_{\rm s}(\delta, {\bf w}') \to \min$ при $c \to 0$.

Утверждение (предварительно). Пусть $c_1=c_2=1.$ $C_{\rm s}(\delta,{\bf w}')\to \max$ при $c\to\infty.$

Утверждение (предварительно, нужно развить). Пусть $c_3 > 0, c << 0$ и все $p_k \in \mathbf{p}$ отражают распределения на вершинах симплекса. Тогда оптимизация приведет к q_{γ} , сконцентрированному на одной из остальных вершин симплекса.

Утверждение (очень предварительно). Изменение c позволяет избежать ухода в локальный минимум.

Утверждение (очень предварительно). Изменение c_2 позволяет избежать ухода в локальный минимум.

Утверждение (очень предварительно). Взаимосвязь структуры и параметров в prior позволяет получить «хорошие» модели.

Утверждение (предварительно). Пусть $c_1=c_2=c_3=0$. Пусть $q_w\sim \mathcal{N}(\mathbf{0},\sigma), \sigma\sim 0$. Тогда оптимизация эквивалентна обычной оптимизации параметров с l_2 - регуляризацией.

Далее будем рассматривать $q_w \sim \mathcal{N}(\mathbf{0}, \mathbf{A}_q^{-1}), \quad q_\gamma \sim \text{Gumbel-Softmax}(\mathbf{g}, \tau).$

4 Вычислительный эксперимент

В качестве модельного эксперимента рассматривалась задача выбора модели линейной регрессии. Множество объектов ${\bf X}$ было сгенерировано из трехмерного стандартного распределения:

$$\mathbf{X} \sim \mathcal{N}(0, \mathbf{I}), n = 3.$$

Множество меток было определено следующим правилом:

$$\mathbf{y} = \underset{0,1}{\operatorname{arg\,max}} (\mathbf{X}_1 + \mathbf{X}_2),$$

третья компонента не участвовала в генерации ответа.

Рассматривались четыре возможные структуры:

- 1. $f_1 = \mathbf{w}_1 \mathbf{X}_1$ (модель регрессия только по первому признаку),
- 2. $f_2 = \mathbf{w}_2 \mathbf{X}_2$ (модель регрессия только по первому признаку),
- 3. $f_3 = \mathbf{w}_3 \mathbf{X}_3$ (модель регрессия только по шумовому признаку),
- 4. $f_4 = \mathbf{w}_4 \mathbf{X}(---)$.

Figure 1: Evidence с низкой температурой

Figure 2: Evidence с высокой температурой

Ожидаемое поведение оптимизации:

- 1. При $c_1=c_2=1c\sim 0$ (Evidence с низкой температурой) будет произведен выбор структуры f_4 .
- 2. При $c_1 = c_2 = 1, c >> 0$ (Evidence с высокой температурой) будет произведен выбор двух структур с одинаковым весом: f_1, f_2 .
- 3. При $c_1 = c_2 = 0, c_3 = 1, \mathbf{p} = [[0.0, 0.0, 1.0, 0.0]], c \sim 0$ (Поощряется выбор структуры с шумовой компонентой) будет произведен выбор структуры f_4 , при снижении параметра β выбор будет меняться в сторону f_3 .

Результаты

Figure 3: Evidence с высокой температурой, $\beta=0.01$

Figure 4: Поощрение выбора шумовой компоненты

Figure 5: Поощрение выбора шумовой компоненты, $\beta=0.01$