MUSIC COLLAB: An IoT and ML Based Solution for Remote Music Collaboration

Nishtha Nayar, Divya Lohani Shiv Nadar University, Greater Noida, India

Abstract

- Communication using mediums like **video and audio** are essential for various professions.
- This project looks into the interaction with **real-time audio transmission** using the tools in the domains of IoT and machine learning.
- Transport layer protocols, **TCP** and **UDP** are examined for audio transmission quality.
- RNN models are examined for their efficiency in predicting music and being used as a substitute in case of loss of packets during transmission.

Introduction

- The **entertainment industry** is growing at a rapid rate, so is the need for collaboration.
- There are a lot of **financial and logistical challenges** for artists and musicians who're seeking to collaborate across geographical boundaries.
- **The motivation** is to make use of the advancements in IoT and ML to help the creative process of musicians across the globe.
- There have been applications like Jacktrip [1] which aim to enable audio collaboration. Researchers at CCRMA have also tried to analyze and test audio transmission over physical distances [2]. Further, researchers at Stanford have studied various ways of music composition using Naive Bayes and neural network models [3].
- This use case can further be applied to areas like real-time video game streaming and similar multimedia applications.

Methodology

Transport Layer

For the transport layer, five different server-client cases using TCP and UDP for audio transmission were coded using **Java** socket programming. These cases were then run on several machines and the packets were captured by **Wireshark.**

Machine Learning

• Three RNNs – Basic, Lookback and Attention were trained on Google environment Magenta. The flow of the models is depicted in Figure 1. These models were then used to predict 3 bars of a MIDI primer – 'River Flows in You' and then evaluated as a substitute for music produced by humans.

Results

- The two protocols were compared using parameters: RTT, Throughput, Latency and Packet-Loss from the graphs obtained (Figure 2 & 3).
- As per Table 1, it was easier to capture and analyze packets for TCP than for UDP. We were not able to study UDP properly with the given tools.
- TCP hence seems as a better fit on the basis of the analysis and metrics.
- Performance over TCP can be further improved for seamless transmission.
- The three models were evaluated using **TensorBoard** (Figure 4 & 5). As per Table 2, the numerical metrics are almost the same.
- Basic RNN gave gaps, repetitive melodies. **Attention and Lookback** RNNs gave better sounding and more consistent melodies.

Table 1.				
	Case 1	Case 2	Case 5	
Max Latency	Q	7000	290	
(packets/s)	O	(sudden increase)	(fluctuates)	
Max RTT (ms)	55	0.09 (fluctuate initially)	0.06	
Max Throughput (bits/s)	2100	900	8000	

	Basic RNN	Lookback RNN	Attention RNN
Min Loss	0.77	0.91	0.99
Max Accuracy	0.7315	0.7321	0.7131
Min Perplexity	2.5	2.55	2.71
Range of log- likelihood	-260.5 to -171.3	-274.2 to -186.1	-280.4 to -232.9

Discussion

- TCP preferred over UDP.
- Machine learning through RNN provides decent generated melodies which can be used as substitute.
- Numerically, the training accuracy for basic RNN is maximum and it's loss is minimum. However, the difference is miniscule.
- According to experimental data and evaluation of the generated music by real musicians, Attention and Lookback RNN are better than Basic RNN.

Contact

Nishtha Nayar Shiv Nadar University Email: nn469@snu.edu.in Phone: +91-8286242688

References

- 1. Cáceres, J., and Chafe, C. 2010. Jacktrip:Under The Hood of An Engine for Network Audio. Journal of New Music Research, 39:3, 183-187.
- doi.org/10.1080/09298215.2010.481361.

 2. Chafe, C. 2003. Distributed Internet Reverberation for Audio Collaboration. In *Proceedings of Twenty Fourth Conference on Advances in*
- Engineering Software. Banff.
 Kang, D; Kim, J.; and Ringdahl, S. 2018. Project Milestone: Generating Music with Machine Learning. Technical Report, Department of Computer Science, Stanford University, CA.