## a) Which store has maximum sales?



```
import pandas as pd
import matplotlib.pyplot as plt

data=pd.read_csv("C:\\Users\\Sherif Tarfa\\Desktop\\Data
project\\Walmart.csv")
dFrame=pd.DataFrame(data)
df=dFrame.groupby("Store")["Weekly_Sales"].sum().to_frame().reset_ind
ex()

colors = ['r' if (bar == max(df['Weekly_Sales'])) else 'grey' for bar
in df['Weekly_Sales']]

plt.bar(x=df["Store"],height=df["Weekly_Sales"],color=colors)

maxSale=df[df["Weekly_Sales"] == max(df["Weekly_Sales"])]
plt.xlabel("Store Number")
plt.ylabel("Total weekly sales")
plt.title("The MAX\n"+maxSale.to_string(index=False))

plt.show()
```

## b) Which store has maximum standard deviation i.e., the sales vary a lot



import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

data=pd.read\_csv("C:\\Users\\Sherif Tarfa\\Desktop\\Data project\\Walmart.csv")
data\_std =
pd.DataFrame(data.groupby('Store')['Weekly\_Sales'].std().sort\_values(ascending=False))

print("The store has maximum standard deviation is
"+str(data\_std.head(1).index[0])+" with
"+str(data\_std.head(1).Weekly\_Sales[data\_std.head(1).index[0]]))

sns.distplot(data[data['Store'] == data\_std.head(1).index[0]]['Weekly\_Sales'])
plt.title('The Sales Distribution of Store with max SD is '+
str(data\_std.head(1).index[0]))
plt.ylabel("Distribution")
plt.show()

c) Some holidays have a negative impact on sales. Find out holidays that have higher sales than the mean sales in the non-holiday season for all stores together.



|     | Store | Date       | Weekly_Sales | Holiday_Flag | Temperature | Fuel_Price | CPI        | Unemployment |
|-----|-------|------------|--------------|--------------|-------------|------------|------------|--------------|
| 1   | 1     | 12-02-2010 | 1641957.44   | 1            | 38.51       | 2.548      | 211.242170 | 8.106        |
| 31  | 1     | 10-09-2010 | 1507460.69   | 1            | 78.69       | 2.565      | 211.495190 | 7.787        |
| 42  | 1     | 26-11-2010 | 1955624.11   | 1            | 64.52       | 2.735      | 211.748433 | 7.838        |
| 47  | 1     | 31-12-2010 | 1367320.01   | 1            | 48.43       | 2.943      | 211.404932 | 7.838        |
| 53  | 1     | 11-02-2011 | 1649614.93   | 1            | 36.39       | 3.022      | 212.936705 | 7.742        |
| 83  | 1     | 09-09-2011 | 1540471.24   | 1            | 76.00       | 3.546      | 215.861056 | 7.962        |
| 94  | 1     | 25-11-2011 | 2033320.66   | 1            | 60.14       | 3.236      | 218.467621 | 7.866        |
| 99  | 1     | 30-12-2011 | 1497462.72   | 1            | 44.55       | 3.129      | 219.535990 | 7.866        |
| 105 | 1     | 10-02-2012 | 1802477.43   | 1            | 48.02       | 3.409      | 220.265178 | 7.348        |
| 135 | 1     | 07-09-2012 | 1661767.33   | 1            | 83.96       | 3.730      | 222.439015 | 6.908        |
| 144 | 2     | 12-02-2010 | 2137809.50   | 1            | 38.49       | 2.548      | 210.897994 | 8.324        |
| 174 | 2     | 10-09-2010 | 1839128.83   | 1            | 79.09       | 2.565      | 211.153210 | 8.099        |
| 185 | 2     | 26-11-2010 | 2658725.29   | 1            | 62.98       | 2.735      | 211.406287 | 8.163        |
| 190 | 2     | 31-12-2010 | 1750434.55   | 1            | 47.30       | 2.943      | 211.064774 | 8.163        |
| 196 | 2     | 11-02-2011 | 2168041.61   | 1            | 33.19       | 3.022      | 212.592862 | 8.028        |
| 226 | 2     | 09-09-2011 | 1748000.65   | 1            | 77.97       | 3.546      | 215.514829 | 7.852        |
| 237 | 2     | 25-11-2011 | 2614202.30   | 1            | 56.36       | 3.236      | 218.113027 | 7.441        |
| 242 | 2     | 30-12-2011 | 1874226.52   | 1            | 44.57       | 3.129      | 219.177306 | 7.441        |
| 248 | 2     | 10-02-2012 | 2103322.68   | 1            | 46.98       | 3.409      | 219.904907 | 7.057        |
| 278 | 2     | 07-09-2012 | 1898777.07   | 1            | 87.65       | 3.730      | 222.074763 | 6.565        |
|     |       |            | ·            |              |             |            |            |              |

```
import pandas as pd
import matplotlib.pyplot as plt

data=pd.read_csv("C:\\Users\\Sherif Tarfa\\Desktop\\Data project\\Walmart.csv")
df=pd.DataFrame(data)

nonHoliDf=df[df.Holiday_Flag == 0]
mean_nonHoli = nonHoliDf["Weekly_Sales"].mean()

compa = df[(df.Holiday_Flag == 1) & (df.Weekly_Sales > mean_nonHoli)]

plt.plot(compa["Weekly_Sales"] , label="holiday hiegher than holiday mean")
plt.axhline(y = mean_nonHoli, color = 'r', linestyle = '-' , label="mean of non holiday")
plt.legend()
plt.xlabel("Week Number")
plt.ylabel("Weekly sales")

print(compa.to_string())
plt.show()
```

d) Provide a monthly and semester view of sales in units and give insights.



```
plt.bar(df2010ByMonth.index , height=df2010ByMonth["Monthly_Sales_for2010"] )
plt.xlabel("Month")
plt.ylabel("Sales per month")
plt.title("Sales per month 2010")
```



```
plt.bar(df2011ByMonth.index , height=df2012ByMonth["Monthly_Sales_for2011"] )
plt.xlabel("Month")
plt.ylabel("Sales per month")
plt.title("Sales per month 2011")
```



```
plt.bar(df2012ByMonth.index , height=df2012ByMonth["Monthly_Sales_for2012"] )
plt.xlabel("Month")
plt.ylabel("Sales per month")
plt.title("Sales per month 2012")
```



```
df=pd.DataFrame(data)
df['Date'] = pd.to datetime(df['Date'], format='%d-%m-%Y')
df2010=df.loc[(df['Date'] >= '2010-01-01')
df2011=df.loc[(df['Date'] >= '2011-01-01')
df2012=df.loc[(df['Date'] >= '2012-01-01')
df2010ByMonth=pd.DataFrame(df2010ByMonth)
df2010ByMonth.columns=["Monthly Sales for2010"]
df2011ByMonth=df2011.groupby(df2011.Date.dt.month)['Weekly Sales'].sum()
df2011ByMonth=pd.DataFrame(df2011ByMonth)
df2011ByMonth.columns=["Monthly Sales for2011"]
df2012ByMonth=df2012.groupby(df2012.Date.dt.month)['Weekly Sales'].sum()
df2012ByMonth=pd.DataFrame(df2012ByMonth)
df2 = df2011ByMonth.join(df2010ByMonth)
ax = df3.plot.bar(rot=0)
```



```
import pandas as pd
import matplotlib.pyplot as plt
import datetime as datetime
import numpy as np

data=pd.read_csv("C:\\Users\\Sherif Tarfa\\Desktop\\Data project\\Walmart.csv")
df=pd.DataFrame(data)

df['Date'] = pd.to_datetime(df['Date'], format='%d-%m-%Y')

df["Date"]=pd.to_datetime(df["Date"])
df["quarter"]=df["Date"].dt.quarter
df["semster"]=np.where(df["quarter"].isin([1,2]),1,2)

plt.title("Sales of semester in all years")
plt.xlabel("Semester")
plt.ylabel("Total Sales/$")
plt.text(1,3500000,"l = First half of the year \n2 = Second half of the
year",color="r")

plt.bar(df["semster"],height=df["Weekly_Sales"],width=0.1 , align='center')
plt.show()
```

e) Plot the relations between weekly sales vs. other numeric features and give insights.



```
import pandas as pd
import matplotlib.pyplot as plt

data=pd.read_csv("C:\\Users\\Sherif Tarfa\\Desktop\\Data project\\Walmart.csv")
df=pd.DataFrame(data)

fig, axis = plt.subplots(nrows=2 , ncols=2 )

ax=df.plot("Weekly_Sales", "Temperature", ax=axis[0,0])
#ax.set (title="weekly sales vs temp.")
ax.set xlabel("Weekly_Sales vs temp.")
ax.set_ylabel("Temperature")
ax.set_plegend().remove()

ax=df.plot("Weekly_Sales", "Fuel_Price", ax=axis[0,1])
#ax.set_title("weekly sales vs fuel price")
ax.set_ylabel("fuel price")
ax.set_ylabel("fuel price")
ax.set_plabel("fuel price")
ax.set_title("weekly_Sales", "CPI", ax=axis[1,0])
#ax.set_title("weekly_sales vs cpi")
ax.set_title("weekly_sales")
ax.set_title("weekly_sales")
ax.set_plabel("CPI")
ax.set_title("weekly_Sales", "Unemployment", ax=axis[1,1])
#ax.set_title("weekly_sales vs unemployment")
ax.set_title("weekly_sales vs unemployment")
ax.set_ylabel("unemployment")
ax.set_ylabel("unemployment")
ax.set_ylabel("unemployment")
ax.set_ylabel("unemployment")
ax.set_ylabel("unemployment")
ax.set_ylabel("unemployment")
ax.set_ylabel("unemployment")
ax.set_ylabel("remove())
```