120 Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications.

Soit $n \ge 2$ un entier.

I - L'anneau $\mathbb{Z}/n\mathbb{Z}$

1. Construction

Théorème 1 (Division euclidienne dans \mathbb{Z}).

[GOU21] p. 9

$$\forall (a,b) \in \mathbb{Z}^2$$
, $\exists ! (q,r) \in \mathbb{Z}^2$ tel que $a = bq + r$ et $r \in [0, |b|]$

Définition 2. Soient $a, b \in \mathbb{Z}$. On dit que a est **congru** à b modulo n si $n \mid b - a$. On note cela $a \equiv b \mod n$.

[**ROM21**] p. 279

Proposition 3. Soient $a, b, c, d \in \mathbb{Z}$ tels que $a \equiv b \mod n$ et $c \equiv d \mod n$. Alors :

- (i) $a + c \equiv b + d \mod n$.
- (ii) $ac \equiv bd \mod n$

Lemme 4. Tout idéal de \mathbb{Z} est principal, de la forme $(n) = n\mathbb{Z}$.

Définition 5. Le quotient de l'anneau \mathbb{Z} par son idéal $n\mathbb{Z}$ est l'anneau noté $\mathbb{Z}/n\mathbb{Z}$. On note $\overline{a} = \{a + qn \mid q \in \mathbb{Z}\}$ l'image d'un élément $a \in \mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$.

Remarque 6. Soient $a, b \in \mathbb{Z}$.

$$\overline{a} = \overline{b} \iff a \equiv b \mod n$$

Proposition 7. (i) $\mathbb{Z}/n\mathbb{Z} = {\overline{0}, ..., \overline{n-1}}.$

- (ii) La compatibilité de \equiv avec les lois + et \times sur \mathbb{Z} conjuguée à la remarque précédente transporte la structure d'anneau à $\mathbb{Z}/n\mathbb{Z}$ en posant, pour tout $\overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}$:
 - $\overline{a} + \overline{b} = \overline{a+b}.$
 - $-\overline{a}\overline{b}=\overline{ab}.$

2. Le groupe multiplicatif

a. Générateurs

Théorème 8. Soit $a \in \mathbb{Z}$. Les assertions suivantes sont équivalentes :

p. 283

- (i) $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- (ii) pgcd(a, n) = 1.
- (iii) a est un générateur de $(\mathbb{Z}/n\mathbb{Z}, +)$.

Exemple 9. $(\mathbb{Z}/4\mathbb{Z})^{\times} = \{\pm \overline{1}\}.$

p. 301

Proposition 10. (i) \mathbb{Z} est monogène, l'ensemble de ses générateurs est $\mathbb{Z}^{\times} = \{\pm 1\}$.

p. 14

(ii) $\mathbb{Z}/n\mathbb{Z}$, l'ensemble de ses générateurs est $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Corollaire 11. Soit *G* un groupe.

- (i) Si *G* est monogène infini, alors $G \cong \mathbb{Z}$.
- (ii) Si *G* est cyclique d'ordre *n*, alors $G \cong \mathbb{Z}/n\mathbb{Z}$.

Exemple 12. Le groupe des racines n-ièmes de l'unité, μ_n , est isomorphe $\mathbb{Z}/n\mathbb{Z}$ via

$$\overline{k} \mapsto e^{\frac{2ik\pi}{n}}$$

b. Sous-groupes additifs et idéaux

Théorème 13. Les sous-groupes additifs de $\mathbb{Z}/n\mathbb{Z}$ sont cycliques d'ordre divisant n. Réciproquement, pour tout diviseur d de n, il existe un unique sous-groupe de $\mathbb{Z}/n\mathbb{Z}$, c'est le groupe cyclique engendré par $\frac{n}{d}$.

p. 281

Théorème 14. (i) Les idéaux de $\mathbb{Z}/n\mathbb{Z}$ sont ses sous-groupes additifs.

p. 255

(ii) Les idéaux premiers de $\mathbb{Z}/n\mathbb{Z}$ sont les idéaux maximaux de $\mathbb{Z}/n\mathbb{Z}$: ce sont les idéaux engendrés par (\overline{p}) où p est un diviseur premier de n.

3. Indicatrice d'Euler

Définition 15. L'indicatrice d'Euler φ est la fonction qui à un entier k, associe le nombre d'entiers compris entre 1 et n qui sont premiers avec k.

p. 283

Remarque 16. D'après le Théorème 8, $\varphi(n)$ est le nombre de générateurs de $\mathbb{Z}/n\mathbb{Z}$ et est également le cardinal de $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Exemple 17. — Si n est premier, $\varphi(n) = n - 1$.

— $\varphi(4) = 2$ d'après l'Exemple 9.

Proposition 18. Pour tout *p* premier et pour tout entier *n*,

[**GOZ**] p. 4

$$\varphi(p^n) = p^n - p^{n-1}$$

[DEV]

Théorème 19 (Chinois). Soient n et m deux entiers premiers entre eux. Alors,

$$\mathbb{Z}/nm\mathbb{Z} \equiv \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

Corollaire 20. $\forall m, n \in \mathbb{Z}$ premiers entre eux,

$$\varphi(mn) = \varphi(m)\varphi(n)$$

Proposition 21 (Théorème Euler). Pour tout entier relatif a premier avec n, $a^{\varphi(n)} \equiv 1 \mod n$.

Proposition 22 (Petit théorème de Fermat). Pour tout entier relatif a, pour tout p premier, $a^{p-1} \equiv 1 \mod p$.

Proposition 23. Pour tout entier naturel n,

$$\sum_{d|n} \varphi(d) = n$$

II - Cas où n est premier

1. Structure de corps

Proposition 24. Les assertions suivantes sont équivalentes.

- (i) n est un nombre premier.
- (ii) $\mathbb{Z}/n\mathbb{Z}$ est intègre.
- (iii) $\mathbb{Z}/n\mathbb{Z}$ est un corps.

Théorème 25. Tout sous-groupe fini du groupe multiplicatif d'un corps commutatif est cyclique.

p. 83

Corollaire 26. Si p désigne un nombre premier, $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est cyclique.

Remarque 27. On a un résultat encore plus fort : $(\mathbb{Z}/n\mathbb{Z})^{\times}$ est cyclique si et seulement si $n = 2, 4, p^{\alpha}$ ou $2p^{\alpha}$ avec p premier impair et $\alpha \ge 1$.

[**ROM21**] p. 294

2. Carrés

Remarque 28. Tout élément de $\mathbb{Z}/2\mathbb{Z}$ est un carré.

p. 427

Soit *p* un nombre premier impair.

Théorème 29. (i) Il y a $\frac{p-1}{2}$ carrés et autant de non carrés dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

(ii) Les carrés de $(\mathbb{Z}/p\mathbb{Z})^{\times}$ sont les racines de $X^{\frac{p-1}{2}}-1$ et les non carrés celles de $X^{\frac{p-1}{2}}+1$.

Corollaire 30. –1 est un carré dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$ si et seulement si $p \equiv 1 \mod 4$.

III - Applications

1. Systèmes de congruences

Proposition 31. Soit *a* un entier non nul. L'équation

p. 289

 $ax \equiv 1 \mod n$

admet des solutions si et seulement si pgcd(a, n) = 1.

Corollaire 32. Soient *a* un entier non nul et *b* un entier relatif. L'équation

$$ax \equiv b \mod n$$

a des solutions si et seulement si $d = pgcd(a, n) \mid b$. Dans ce cas, l'ensemble des solutions est

$$\left\{ \frac{b}{d} x_0 + k \frac{n}{d} \mid k \in \mathbb{Z} \right\}$$

où x_0 est une solution de l'équation $\frac{a}{n}x \equiv 1 \mod n$.

Pour résoudre des systèmes de congruences, on va préciser le Théorème 19.

p. 285

Théorème 33 (Chinois). Soient $n_1, \ldots, n_r \ge 2$ des entiers. On note $n = \prod_{i=1}^r n_i$ et $\pi_k = \pi_{n_k \mathbb{Z}}$ la surjection canonique de \mathbb{Z} sur $\mathbb{Z}/k\mathbb{Z}$ pour tout $k \in [1, r]$.

Les entiers $n_1, ..., n_r$ sont premiers entre eux si et seulement si les anneaux $\mathbb{Z}/n\mathbb{Z}$ et $\prod_{i=1}^r \mathbb{Z}/n_i\mathbb{Z}$ sont isomorphes. Dans ce cas, l'isomorphisme est explicité par l'application

$$\psi: \begin{array}{ccc} \mathbb{Z}/n\mathbb{Z} & \to & \prod_{i=1}^r \mathbb{Z}/n_i\mathbb{Z} \\ \pi_n(k) & \mapsto & (\pi_i(k))_{i \in [\![1,r]\!]} \end{array}$$

Exemple 34.

p. 291

[I-P]

p. 137

$$\begin{cases} k \equiv 2 \mod 4 \\ k \equiv 3 \mod 5 \\ k \equiv 1 \mod 9 \end{cases}$$

admet pour ensemble de solutions $\{838 + 180q \mid q \in \mathbb{Z}\}.$

2. Étude d'équations diophantiennes

a. Entiers sommes de deux carrés

Notation 35. On note

$$N: \begin{array}{ccc} \mathbb{Z}[i] & \to & \mathbb{N} \\ a+ib & \mapsto & a^2+b^2 \end{array}$$

et Σ l'ensemble des entiers qui sont somme de deux carrés.

Remarque 36. $n \in \Sigma \iff \exists z \in \mathbb{Z}[i]$ tel que N(z) = n.

Théorème 37 (Deux carrés de Fermat). Soit $n \in \mathbb{N}^*$. Alors $n \in \Sigma$ si et seulement si $v_p(n)$ est pair pour tout p premier tel que $p \equiv 3 \mod 4$ (où $v_p(n)$ désigne la valuation p-adique de

n).

b. Premiers congrus à 1 modulo n

Notation 38. On note Φ_n le n-ième polynôme cyclotomique.

[GOU21] p. 99

Lemme 39. Soient $a \in \mathbb{N}$ et p premier tels que $p \mid \Phi_n(a)$ mais $p \nmid \Phi_d(a)$ pour tout diviseur strict d de n. Alors $p \equiv 1 \mod n$.

[DEV]

Théorème 40 (Dirichlet faible). Pour tout entier n, il existe une infinité de nombres premiers congrus à 1 modulo n.

3. Irréductibilité de polynômes

Lemme 41 (Gauss). (i) Le produit de deux polynômes primitifs est primitif (ie. dont le PGCD des coefficients est égal à 1).

[**GOZ**] p. 10

(ii) $\forall P, Q \in \mathbb{Z}[X] \setminus \{0\}, \gamma(PQ) = \gamma(P)\gamma(Q)$ (où $\gamma(P)$ est le contenu du polynôme P).

Théorème 42 (Critère d'Eisenstein). Soit $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ de degré $n \ge 1$. On suppose qu'il existe p premier tel que :

- (i) $p \mid a_i, \forall i \in [0, n-1].$
- (ii) $p \nmid a_n$.
- (iii) $p^2 \nmid a_0$.

Alors P est irréductible dans $\mathbb{Q}[X]$.

Application 43. Soit $n \in \mathbb{N}^*$. Il existe des polynômes irréductibles de degré n sur \mathbb{Z} .

[**PER**] p. 67

Théorème 44 (Critère d'irréductibilité modulo p). Soit $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ de degré $n \ge 1$. Soit p un premier. On suppose $p \nmid a_n$.

[**GOZ**] p. 12

Si \overline{P} est irréductible dans $(\mathbb{Z}/p\mathbb{Z})[X]$, alors P est irréductible dans $\mathbb{Q}[X]$.

Exemple 45. Le polynôme $X^3 - 127X^2 + 3608X + 19$ est irréductible dans $\mathbb{Z}[X]$.

4. Chiffrement RSA

Définition 46. Afin de chiffrer un **message** (tout entier découpé en séquence d'entiers de taille bornée) en utilisant RSA, on doit a besoin de deux clés :

[**ULM18**] p. 62

- Une **clé privée**, qui est un couple de nombres premiers (p, q).
- La **clé publique** correspondante, qui est le couple (n, e) où n = pq et e est l'inverse de d modulo $\phi(n)$ où d désigne un nombre premier à $\phi(n)$.

Nous conserverons ces notations pour la suite.

Théorème 47 (Chiffrement RSA). Soit $m = (m_i)_{i \in [\![1,r]\![\!]}$ un message où pour tout $i, m_i < n$.

(i) Possédant la clé publique, on peut *chiffrer* ce message en un message m':

$$m' = (m_i^e)_{i \in [1,r]}$$

(ii) Possédant la clé privée, on peut déchiffrer le message m' pour reconstituer m:

$$\forall i \in [1, r], (m_i^e)^d \equiv d \mod n$$

Remarque 48. — L'intérêt vient pour des premiers p et q très grands : il devient alors très compliqué de factoriser n et d'obtenir la clé privée.

— Les inverses peuvent se calculer à l'aide de l'algorithme de Bézout.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2^e éd. Ellipses, 1^{er} avr. 2009.

https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-l3-m1-2e-edition-9782729842772.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

 $\verb|https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529. \\ \verb|html.||$

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.

Anneaux, corps, résultants

[ULM18]

Felix ULMER. *Anneaux*, *corps*, *résultants*. *Algèbre pour L3/M1/agrégation*. Ellipses, 28 août 2018. https://www.editions-ellipses.fr/accueil/9852-20186-anneaux-corps-resultants-algebre-pour-13-m1-agregation-9782340025752.html.