P2B2

Polyglot Persistence based Blockchain Analytics

https://github.com/p2b2

What is Blockchain?

- Blockchain is a distributed P2P database system
- Entries are "blocks", each chained with the previous block

What is Ethereum?

- Blockchain ≠ Bitcoin
- Ethereum uses the concept of blockchain to run "smart contracts"
- Smart contracts are pieces of code that run on every peer
- More than just a currency exchange

Ethereum Blockchain

The Blockchain is basically a database itself, so why would we populate its' data to another database?

- The ethereum blockchain is stored in the chaindata
 - Currently, depending on the implementation, the Ethereum Blockchain is about 30GB
 - Optimized for validating transactions and maintaining a valid state
 - NOT good for historical lookups or analytics

Our plan

- 1. Populate all the blocks (including transactions) to document store and Graph-DB
- 2. Conduct different analytics on the two databases
- 3. Put the results to a Key-Value Store

Scenarios

- Quick lookups of any transaction
 - What are the most used contracts?
 - How high are transaction fees in average?
 - How is the ether distributed?

- All transactions done by an account or contract
 - Given an account address, who sent transactions to that account?
 - Are there different clusters, where most of transactions are done?
 - What are the most important accounts or contracts in the network?

Technology stack

- Analytics: Document Store
 - MongoDB
 - MapReduce
- Analytics: Graph-DB
 - · Apache Giraph
 - TinkerPop Graph Computing framework

- Results: Key-Value Store
 - Caching results in Redis

Example - MapReduce

- For each ethereum address, we want to know the number of transactions submitted
 - Map a complex transaction object to its sender address
 - Reduce the addresses to the number of their occurences

 For a given ethereum address, get the total amount of currency sent to / received from other addresses

MapReduce example

Source: https://docs.mongodb.com/manual/core/map-reduce/

Example - Graph DB

- Representation of the Ethereum blockchain in a Graph DB:
 - · Vertex: Accounts
 - Edges: Transactions
- For a given account, find all accounts to which it has ever sent a transaction to:
 - Go to the vertex with the given public key and follow all the transaction edges to the vertexes
 - TinkerPop Graph Traversal: g.V().has('address', 0x151e201b90f8...').out('transaction').inV()

Questions?