Active Vision Reinforcement Learning under Limited Visual Observability

운동·감각 정책 공동 학습하여 고정 시각 한계 극복 적응적 시각을 도입

- 기존 Visual RL은 사전 정의된 최적 뷰를 obs space로 제공
- agent가 스스로 적응하지 못함. (예: table-top manipulator는 overhead 고정 카메라 사용)
- Full vision 환경에서는 효과적이지만, 관측 범위가 제한되면 문제 발생.
- Active RL은 embodied agent가 스스로 시각 정보를 선택·조정하며 새로운 관찰을 얻음.
- 인간이 눈과 손을 분리된 시스템으로 가지고도 학습 과정에서 함께 조율
- 모델도 분리 설계 + 공동 학습을 통해 최적 조정 전략을 학습.
- task return 극대화 + 관측 제어를 동시에 달성하기 위해 motor policy + sensory policy를 분리해 학습.
- motor policy는 깔끔한 시각 입력을 원함
- sensory policy는 motor action을 고려해 최적의 관찰을 선택해야 함.

DQN, SAC의 변형 Sensor, Motor 분리 동시 학습의 장점 활용

- Motor Policy, Sensory Policy 분리 (π^s, π^o)
- Sensorimotor Reward 도입 r^{sugarl}
- DQN: 2종류의 Q-value 출력 Q^s,Q^o
- SAC: 확장된 Head
- Joint Learning of Motor and Sensory Polices

DQN 출력 확장 Q-value 결합 (단순 합) Reward 추가

DQN

$$\mathcal{L}_{i}^{Q}(\theta_{i}) = \mathbb{E}_{(\mathbf{o}_{t}, \mathbf{a}_{t}^{s}, \mathbf{a}_{t}^{o}) \sim \mathcal{D}} \left[\left(y_{i} - \left(Q_{\theta_{i}}^{s}(\mathbf{o}_{t}, \mathbf{a}_{t}^{s}) + Q_{\theta_{i}}^{o}(\mathbf{o}_{t}, \mathbf{a}_{t}^{o}) \right) \right)^{2} \right]$$

$$y_{i} = \mathbb{E}_{\mathbf{o}_{t+1}} \left[r_{t}^{\text{env}} + \beta r_{t}^{\text{sugarl}} + \gamma \left(\max_{\mathbf{a}_{t+1}^{s}} Q_{\theta_{i-1}}^{s}(\mathbf{o}_{t+1}, \mathbf{a}_{t+1}^{s}) + \max_{\mathbf{a}_{t+1}^{o}} Q_{\theta_{i-1}}^{o}(\mathbf{o}_{t+1}, \mathbf{a}_{t+1}^{o}) \right) \right],$$

- Network를 이용해 Q 함수를 근사
- 이 결과 값을 가지고 action을 선택
- Network update는 오차제곱합을 최소화하도록
- 학습 시 환경에서의 reward와 sensorimotor reward(가중치 곱)를 단순 합
- Q 단순 합하여 통합 학습 및 기존의 손실함수 형태를 따르도록 함

SAC: Background

- SAC는 Return을 극대화하면서도 policy의 entropy를 최대화하는 모델
- Entropy $\mathcal{H}(X) = \mathbb{E}\left[-\log p(X)\right] = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$
- State Value $V = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q^{\pi}(s,a) \log \pi(a|s) \right] = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q^{\pi}(s,a) \right] + \mathcal{H}(\pi(\cdot|s))$
- Objective fun (v 학습) $J_V(\psi) = \mathbb{E}_{s_t \sim \mathcal{D}}\left[\frac{1}{2}\left(V_\psi(s_t) \mathbb{E}_{a_t \sim \pi_\phi}\left[Q_\theta(s_t, a_t) \log \pi_\phi(a_t|s_t)\right]\right)^2\right]$
- Objective fun (Q 학습) $J_Q(\theta) = \mathbb{E}_{(s_t,a_t)\sim\mathcal{D}}\left[\frac{1}{2}\left(Q_{\theta}(s_t,a_t) \hat{Q}_{\theta}(s_t,a_t)\right)^2\right]$ where $\hat{Q}_{\theta}(s_t,a_t) = r(s_t,a_t) + \gamma \, \mathbb{E}_{s_{t+1}\sim p(\cdot|s_t,a_t)}\left[V_{\bar{\psi}}(s_{t+1})\right]$
- Objective fun (policy 학습) $J_{\pi}(\phi) = \mathbb{E}_{s_t \sim \mathcal{D}}\left[\mathrm{D_{KL}}\left(\pi_{\phi}(\cdot \mid s_t) \mid\mid \frac{\exp(Q_{\theta}(s_t, \cdot))}{Z_{\theta}(s_t)}\right)
 ight]$
- KL Divergence의 정의를 사용하여 근사적으로 표현

$$\mathrm{D_{KL}}(p \parallel q) = \mathbb{E}_{X \sim p(x)} \left[\log rac{p(X)}{q(X)}
ight] \qquad J_{\pi}(\phi) pprox \mathbb{E}_{s_t \sim \mathcal{D}} \left[\mathbb{E}_{a_t \sim \pi_{\phi}(\cdot \mid s_t)} \left[\log \pi_{\phi}(a_t \mid s_t) - Q_{ heta}(s_t, a_t)
ight]
ight]$$

SAC head 확장 Q-value 결합 (단순 합) Reward 가중치 곱

SAC

$$\mathcal{L}^{V}(\psi) = \mathbb{E}_{\mathbf{o}_{t} \sim \mathcal{D}} \left[\frac{1}{2} \left(V_{\psi}^{s}(o_{t}) + V_{\psi}^{o}(o_{t}) \right. \right. -$$

$$\mathbb{E}_{\mathbf{a}_t^s \sim \pi_{\phi}^s, \mathbf{a}_t^o \sim \pi_{\phi}^o} \left[Q_{\psi}^s(\mathbf{o}_t, \mathbf{a}_t^s) + Q_{\psi}^o(\mathbf{o}_t, \mathbf{a}_t^o) - \log \pi_{\phi}^s(\mathbf{a}_t^s | o_t) - \log \pi_{\phi}^o(\mathbf{a}_t^o | o_t) \right] \right)^2 ,$$

and the actor loss \mathcal{L}^{π} is

$$\mathcal{L}^{\pi}(\phi) = \mathbb{E}_{\mathbf{o}_{t} \sim \mathcal{D}} \left[\log \pi_{\phi}^{s}(\mathbf{a}_{t}^{s}|\mathbf{o}_{t}) + \log \pi_{\phi}^{o}(\mathbf{a}_{t}^{o}|\mathbf{o}_{t}) - Q_{\psi}^{s}(\mathbf{o}_{t}, \mathbf{a}_{t}^{s}) - Q_{\psi}^{o}(\mathbf{o}_{t}, \mathbf{a}_{t}^{o}) \right],$$

- Sensor와 Motor 각각에 대한 head 존재
- 총 4개의 head이나, 학습은 2개씩 한번에 진행
- Network update 시 기존 SAC의 학습 방식을 활용
- 학습 시 환경에서의 reward와 sensorimotor reward(가중치 곱)를 단순 합
- Q 단순 합하여 기존의 손실함수 형태를 따르도록 함

Module에서 관측 평가 Reward 생성 Module은 단독 학습

Sensorimotor Reward

- Action에 대해서는 환경의 Reward가 평가
- 감각(시각인식)에 대한 적절한 피드백을 위해 Sensorimotor reward 사용
- Sensorimotor reward module에서 할당되는 reward

Sensorimotor Reward Module _____

- Transition이 주어졌을 때 obs만 가지고 action을 추론하는 Module (o_t, a_t^s, o_{t+1})
- Module이 잘 학습되었다면, 높은 Prediction error는 잘못된 시각 조정을 뜻함

$$r_t^{sugarl} = -(1-p(a_t^s|o_t,o_{t+1};u_{\xi}))$$

$$\mathcal{L}^u(\xi) = \mathbb{E}_{o_t,o_{t+1},a_t^s \sim \mathcal{D}}\left[\mathrm{Error}(a_t^s - u_{\xi}(o_t,o_{t+1}))
ight]$$

가중치는 Env Reward를 참조하여 구성됨 영향력 조정

Sensorimotor Reward Weight

- Reward combine 시 sensorimotor reward에 가중치가 곱해짐
- 환경에서 나오는 reward와 유사한 scale을 가지도록
- 예) Env Reward: 500, Sensorimotor Reward: 5
- 가중치는 Env Reward의 산술 평균으로 사전에 정의된 값
- 모든 관측 가능한 환경에서 baseline agent 활용 or 환경 정보

$$r_t = r_t^{env} + eta r_t^{sugarl}$$

$$eta = E_{ au}[\sum_{t=1}^{T} r_t^{env}/T]$$

PVM을 사용하여 부분 관측 영역 확장 인간 눈의 잔상 효과 반영

Persistence-of-Vision Memory

- 인간 눈의 잔상에서 영감을 받음
- 효과적으로 관측 가능한 영역을 확장함

$$PVM(o_t) = f(o_{t-B+1}, ..., o_t)$$

- 이전 B step만큼 buffer에 저장
- 이것들을 하나의 PVM obs로 통합하여 기존의 obs를대체함
- Stitching PVM에서는 부분 관찰들(partial observations)을 퍼즐처럼 결합
- Neural Representation PVM 등 을 결합함수로 사용할 수 있음

능동적 시각 선택 중요성 동시 학습의 중요성 PVM 종류에 따른 차이

Approach	Wipe	Door	NutAssemblySquare	Lift	Stack
SUGARL-DrQ (Stacking PVM)	56.0	274.8	78.0	79.2	12.7
SUGARL-DrQ (LSTM PVM)	58.5	266.9	108.6	88.8	31.5
SUGARL-DrQ (3D Transformation+LSTM PVM)	74.1	291.0	65.2	87.5	32.4
SUGARL-DrQ w/o Joint Learning	43.6	175.4	58.0	107.2	12.0
SUGARL-DrQ w/o PVM	52.8	243.3	37.9	55.6	7.7
Single Policy	12.4	22.8	8.42	10.7	0.53
DrQ w/ Object Detection (DETR)	15.2	43.1	54.8	15.4	7.5
DrQ w/ End-to-End Attention	14.2	141.4	28.5	33.0	13.6
Eye-in-hand View (hand-coded, moving camera)	16.1	114.6	102.9	233.9	73.0
Front View (hand-coded, fixed camera)	49.4	240.6	39.6	69.0	13.8
Agent View (hand-coded, fixed camera)	12.7	190.3	49.9	122.6	14.7
Side View (hand-coded, fixed camera)	25.9	136.2	34.5	56.6	12.8

- 5가지 과제: Lift, Stack, NutAssemblySquare, Door, Wipe.
- SUGARLOI 항상 베이스라인보다 우수함
- 특히 난이도 높은 과제(Wipe, Door, NutAssemblySquare)에서 최고의 성능을 달성.
- Hand-coded views 보다도 대부분 상황에서 더 나은 결과.
- Persistence-of-Vision Memory (PVM) 디자인 비교
 - 3D Transformation + LSTM > LSTM > Stacking 순으로 성능이 좋음.
 - 공간 정렬 + 시간 결합을 모두 고려하는 방식이 가장 효과적임.

능동적 시각 선택 중요성 주변시 여부에 따른 차이 제한된 시야에서 우수성

- (a) Without peripheral observation
- (b) With peripheral observation
- (c) Static policies comparison

- Peripheral observation 없음 vs 있음.
- foveal resolution: 20×20, 30×30, 50×50.
- 2D 환경에서 능동적 시각 선택과 기타 선택 사이의 비교.
- Peripheral observation이 있을 때는 full observation baseline보다 우수
- Static policies와 비교

큰 관측 영역(50×50)에서는 격차가 작으나, 작은 영역에서는 SUGARL이 큰 폭으로 우수. 능동적 정책이 제한된 시야에서 특히 유리함.

Action 분리 필요성 SAC 성능 평가 2D 연속 행동공간에서 우수함 증명

Table 2: Evaluation results on different conditions and algorithm backbones

(a) Action modeling

Model	20	30	50
SUGARL (abs)	0.475	0.810	0.805
SUGARL (rel)	0.367	0.745	0.945
Single Policy	0.132	0.222	0.171

(b) Train more steps

Steps	Model	20	30	50
1M	SUGARL Single Policy			
5M	SUGARL Single Policy			

(c) SUGARL with SAC

Model	20	30	50
SUGARL	0.424	0.730	0.785
SUGARL w/o r ^{sugarl}	0.300	0.307	0.504
SAC-raster scanning	0.117	0.195	0.136
SAC-random view	0.155	0.104	0.134

(d) Different PVMs

Model	20	30	50
Stitching PVM	0.475	0.815	0.810
LSTM PVM	0.397	0.448	0.470

Table 3: SUGARL on DMC

Model	20	30	50
SUGARL-DrQ DrQ-Single Policy DrQ-Raster Scanning DrQ-Random View	$0.540 \\ 0.609$	0.717 0.570 0.566 0.591	$0.776 \\ 0.913$
SUGARL-DrQ w/o PVM SUGARL w/o Joint Learning	0.672 0.377	0.620 0.446	0.930 0.355

Table 4: Varing α of SUGARL-SAC.

Model	20	30	50
autotune α fixed- $\alpha = 0.2$		0.358 0.730	

- 단일 정책은 액션 공간이 너무 커져 학습 실패.
- 작은 관측 영역에서는 절대 제어(abs)가 빠른 탐색에 유리.
- 큰 영역에서는 상대 제어(rel)가 더 안정적이라 성능 우수.
- 1 M → 5M step으로 늘리면 SUGARL은 성능이 계속 향상.
- 단, max-entropy 기반 SAC에서는 sensory policy가 균일하게 분포되지 않아, entropy weight를 줄여야 안정적임.
- exploration 특성 제어
- SUGARL-DrQ가 Single Policy, Raster Scanning, Random View보다 성능 우수. (2D)

Sensory Policy 환경별 적응 특정 부분에 집중하는 경향성

rixation			Wovement			
Model		$r^{ m sugarl}$	Joint Learning	PVM	Reward Balance (β)	IQM
Random View			✓			0.367
$\mathbf{SUGARL} = \begin{bmatrix} \\ \\ \end{bmatrix}$	Base RL algorithm $+$ Naive positive intrinsic reward $+$ Joint learning $+$ Positive \rightarrow negative r^{sugarl} $+$ PVM $+$ Reward Balance	positive positive negative negative negative	<i>* * *</i>	<i>' '</i>	✓	0.281 0.322 0.360 0.423 0.805
	RL w/o $r^{ m sugarl}$ RL w/o $r^{ m sugarl}$ and w/o PVM		1	✓		0.421 0.231

- 학습된 Sensory Policy가 Task에 따라 고정된 영역을 더 많이 보고 동적인 환경은 전반적으로 보는 경향이 있음
- KL-divergence 분석: 학습된 정책은 항상 uniform distribution과 차이를 보이며 특정 영역을 선호.
- 관측 크기가 커질수록 분포는 균등에 가까워지지만, 여전히 집중 영역 유지.
- Ablation Study 결과 PVM, Negative Reward, Reward Balance, Joint Learning 유효성 입증