Statistical Analysis with Missing Data

Module 4
Propagating Imputation
Uncertainty

Accounting for Imputation Uncertainty

- Imputation "makes up" the missing data
 - treats imputed values as the truth
- For statistical inference (standard errors, P-Values, confidence intervals) need methods that account for imputation error
 - (A) redo imputations using sample reuse methods – bootstrap, jackknife
 - (B) Multiple imputation (Rubin 1987)

Bootstrapping: with complete data

- A bootstrap sample of a complete data set
 S with n observations is a sample of size n
 drawn with replacement from S
 - Operationally, assign weight w_i to unit i equal to number of times it is included in the bootstrap sample

$$w_1,...,w_n \sim \text{MNOM}(n; \frac{1}{n},...,\frac{1}{n})$$

Bootstrap distribution

- Let $\hat{\theta}^{(b)}$ be a consistent parameter estimate from the bth bootstrap data set
- Inference can be based on the bootstrap distribution generated by values of $\hat{\theta}^{(b)}$
- In particular the bootstrap estimate is

$$\hat{\theta}_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{(b)}$$

with variance

$$\hat{V}_{\text{boot}} = \frac{1}{B-1} \sum_{b=1}^{B} (\hat{\theta}^{(b)} - \hat{\theta}_{\text{boot}})^2$$

Bootstrapping with incomplete data

- For incomplete data:
 - bootstrap the complete and incomplete cases
 - impute bootstrapped data set
 - $-\hat{\theta}^{(b)}$ = consistent estimate from bth data set, with values imputed; then as before:

$$\hat{\theta}_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{(b)}$$
 $\hat{V}_{\text{boot}} = \frac{1}{B-1} \sum_{b=1}^{B} (\hat{\theta}^{(b)} - \hat{\theta}_{\text{boot}})^2$

- * Bootstrap then impute, not
- * Impute then bootstrap

Imputing the bootstrap sample

- Impute so that the estimate $\hat{\theta}_b$ from imputed data is consistent. In particular:
 - conditional mean ok for linear statistics
 - conditional draw ok for linear or nonlinear statistics; more general, but loss of efficiency
- Computationally intensive: imputations created for each bootstrap data set

B=200, 1000 are typical numbers

Multiple Imputation

 Create *D* sets of imputations, each set a draw from the predictive distribution of the missing values

Multiple Imputation Inference

- D completed data sets (e.g. D = 5)
- Analyze each completed data set
- Combine results in easy way to produce multiple imputation inference
- Particularly useful for public use datasets
 - data provider creates imputes for multiple users, who can analyze data with completedata methods

MI Inference for a Scalar Estimand

 θ = estimand of interest

$$\hat{\theta}_d$$
 = estimate from d th dataset (d = 1,...,D)

The MI estimate of
$$\theta$$
 is $\overline{\theta}_D = \frac{1}{D} \sum_{d=1}^D \hat{\theta}_d$

 W_d = estimate of variance of $\hat{\theta}_d$ from d th dataset

The MI estimate of variance is
$$T_D = \overline{W}_D + (1+1/D)B_D$$

$$\overline{W}_D = \frac{1}{D} \sum_{d=1}^{D} W_d$$
 = Within-Imputation Variance

$$B_D = \frac{1}{D-1} \sum_{d=1}^{D} (\hat{\theta}_d - \overline{\theta}_D)^2 = \text{Between-Imputation Variance}$$

Example of Multiple Imputation

First imputed dataset

```
Estimate (se^2)
Y_1 \quad Y_2 \quad Y_3 \quad Y_4 \quad Y_5
2.1 \quad 4.5 \quad 24 \quad 1
Estimate (se^2)
1 \quad 12.6 \quad (3.6^2) \quad 4.32 \quad (1.95^2)
```

Second imputed dataset

```
Estimate (se^2)
Y_1 \quad Y_2 \quad Y_3 \quad Y_4 \quad Y_5
2.7
5.1
31 \quad 1
Estimate (se^2)
\mu_1 \quad \beta_{53\cdot1234}
1 \quad 12.6 \quad (3.6^2) \quad 4.32 \quad (1.95^2)
2 \quad 12.6 \quad (3.6^2) \quad 4.15 \quad (2.64^2)
```

• Third imputed dataset

			Estimate (se^2)		
		Dataset (d)	μ_1	$oldsymbol{eta}_{ ext{53\cdot1234}}$	
Y_1 Y_2 Y_3	Y_4 Y_5	1 12	$2.6 (3.6^2)$	$4.32(1.95^2)$	
		2 12	$2.6 (3.6^2)$	$4.15(2.64^2)$	
1.9		3 12	$2.6 (3.6^2)$	$4.86(2.09^2)$	
5.8					
32	2				

• Fourth imputed dataset

	Estimate (se^2)		
	Dataset (d) μ_1	$eta_{ ext{53\cdot1234}}$	
Y_1 Y_2 Y_3 Y_4 Y_5 2.5 3.9		4.32 (1.95 ²) 4.15 (2.64 ²) 4.86 (2.09 ²) 3.98 (2.14 ²)	
18 1			

• Fifth imputed dataset

	Estimate (se^2)		
	Dataset (d) μ_1	$oldsymbol{eta}_{ ext{53\cdot1234}}$
Y_1 Y_2 Y_3 Y_4 Y_5	1	$12.6 (3.6^2)$	$4.32(1.95^2)$
	2	$12.6 (3.6^2)$	$4.15(2.64^2)$
2.3	3	$12.6 (3.6^2)$	$4.86(2.09^2)$
4.2	4	$12.6 (3.6^2)$	$3.98(2.14^2)$
25 2	5	$12.6 (3.6^2)$	$4.50(2.47^2)$
	Mean Var	12.6 (3.6 ²)	4.36 (2.27 ²) 0.339

Summary of MI Inferences

$$\hat{\gamma}_D = \frac{(1+1/D)B_D}{(1+1/D)B_D + \overline{W}_D} = \text{ estimated fraction of missing information}$$

Creating Multiple Imputations

- Multiple Imputations created within a single model take into account withinmodel uncertainty
- Multiple Imputations can also be created under alternative models, to account for imputation model uncertainty
- Imputations can be based on implicit or explicit models, as for single imputation

Examples of draws for dth set of MI's

Hot Deck: create D candidate donors that are close to incomplete case, and draw dth value from this set with replacement

• Regression: add normal draws $r_i^{(d)}$ to regression predictions

 $\begin{cases} y_{i}^{(d)} = \hat{E}(y_{i2} \mid y_{i1}) + r_{i}^{(d)} \\ r_{i}^{(d)} \sim N(0, \hat{\sigma}^{2}) \end{cases}$ $\begin{cases} y_{r+1}^{(d)} \\ y_{r+2}^{(d)} \\ y_{r+3}^{(d)} \end{cases}$

These methods are simple but *improper* – do not account for parameter uncertainty

Later consider *proper* methods that take into account uncertainty in regression coefficients

Improper MI

- (1) Estimate parameters (e.g. using complete cases)
- (2) Impute missing values given estimated parameters
- (3) Repeat (2) for MI data sets
- (4) Use MI formula for variance
- Note: only works for small amounts of missing data

Example: 2x2 Table

Estimands:

Cell (1,1) proportion

Odds ratio

Multiple Imputation (D=5): Draw 5 sets of independent Binomial random variables

A~Bin(30,100/150)

B~Bin(60,75/150)

C~Bin(28,100/175)

D~Bin(60,50/125)

Improper!

$$\frac{1}{1} \frac{1}{2} \frac{2}{2}$$

Between-variance

20

$$\operatorname{var}_{MI}(\hat{\theta}_{11}) = 0.000425 + \frac{5+1}{5}1.62 \times 10^{-5} = 0.000445$$

$$r_m = \frac{\frac{5+1}{5}1.62 \times 10^{-5}}{0.000425 + \frac{5+1}{5}1.62 \times 10^{-5}} = 0.044 \leftarrow \frac{\text{Fraction of Missing information}}{\frac{5+1}{5}1.62 \times 10^{-5}}$$

$$df = (5-1)/(0.044)^2 \approx 2066$$

95% confidence interval:

$$0.28 \pm 1.96 \times \sqrt{0.000445} = (0.24, 0.32)$$

Complete – case:

$$0.33 \pm 1.96 \times \sqrt{\frac{0.33 \times 0.67}{300}} = (0.28, 0.38)$$

$$var_{MI}(\log(OR)) = 0.0351 + \frac{5+1}{5}0.014 = 0.0519$$

$$r_M = \frac{\frac{5+1}{5}0.014}{0.0351 + \frac{5+1}{5}0.014} = 0.325$$

$$df = (5-1)/(0.325)^2 \approx 38$$

95% Confidence interval:

$$0.71 \pm 2.024 \times \sqrt{0.0519} = (0.25, 1.17)$$

Complete – case:

$$0.69 \pm 1.96 \times \sqrt{\frac{1}{100} + \frac{1}{75} + \frac{1}{50} + \frac{1}{75}} = (0.22, 1.16)$$

- The proper imputation approach should reflect uncertainty in the estimated proportions used in the binomial distribution.
- Using software that creates proper multiple imputation (CAT [discussed later]) on the same data set, we get

$$\hat{\theta}_{11} = 0.2812, SE = 0.02088$$

 $\log(OR) = 0.7364, SE = 0.2276$

Creating proper MI's via bootstrap

- (1) Take Bootstrap sample
- (2) Estimate parameters (e.g. using complete cases) on BS sample
- (3) Impute missing values given estimated parameters
- (4) Repeat (1)-(3) for MI data sets
- (5) Use MI formula for variance
- Note: estimating parameters on BS sample propagates imputation uncertainty

Example -- Dose-Titration Study of Tacrine for Alzheimer's Disease

 Randomized, double-blind dose-escalation study (Knapp et al. 1994). Outcome - ADAS-COG

Treatment	Treatment		T	ime			
	1	2	3	4	5	[6]	[7]
Placebo	0	0	0	0	0	0	0
80mg	40	80	80	80	80	120	120
120mg	40	80	120	120	120	160	160

The Drop-Out Problem

- Titration to higher dosages to avoid sideeffects on liver function
- Patients with side effects removed from double-blind study
- Other drop-outs from lack of compliance, dose-related adverse events
- Substantial differential drop-out rate at t=5:
 - Placebo 44/184 (24%)
 - -80mg 31/61 (51%)
 - 120mg244/418 (57%)

MI model

- Missing values of ADAS-COG multiply imputed using a regression on dose, previous ADAS-COG values and baseline covariates. Two models:
 - Continuing dose model: assumes same dose after dropout as last dose before dropout
 - Zero-dose model: dose goes to zero after drop-out
- Contrast Intent-to-treat, where dose is based on original randomization

Ex. 1 contd. Tacrine Dataset

IT Analysis, Continuing Dose	MI Model: 80mg vs Placebo
------------------------------	---------------------------

MI number	Treat.diff (s.e.)	p-value	95 %C.I.
1	-3.486 (0.951)	0.0003	(-5.35, -1.62)
2	-3.682 (0.876)	0.0000	(-5.40, -1.97)
3	-3.142 (0.944)	0.0009	(-4.99, -1.29)
4	-4.889 (0.908)	0.0000	(-6.67, -3.11)
5	-4.633 (0.910)	0.0000	(-6.42, -2.85)
6	-4.146 (0.920)	0.0000	(-5.95, -2.34)
7	-5.239 (0.925)	0.0000	(-7.05, -3.43)
8	-4.463 (0.933)	0.0000	(-6.29, -2.63)
9	-4.511 (0.953)	0.0000	(-6.38, -2.64)
10	-3.497 (0.899)	0.0001	(-5.26, -1.73)
MI Inferenc	ce -4.169 (1.173)	0.0039	(-6.72, -1.62)

Uncongeniality in Multiple Imputation

- Multiple imputation is designed to handle missing data once for multiple analysts
- Uncongeniality occurs when the assumptions made by the imputer and analysts are different
- Two broad categories:
 - Model assumptions are different
 - Model assumptions are the same but the estimation strategies are different

Examples

- Situation 1
- Imputer model:

$$y \mid x \sim N(\beta_0 + \beta_1 x, \sigma^2)$$

 $Pr(\beta_0, \beta_1, \sigma) \propto \sigma^{-1}$

• Analyst model:

$$y \sim N(\theta, \tau^2)$$

- Repeated analysis calculations under the analyst model
 - MI estimates less efficient
 - Wider confidence intervals (conservative)

- Situation 2
- Imputer model: $y \mid x \sim N(\beta_0 + \beta_1 x, \sigma^2)$ $\Pr(\beta_0, \beta_1, \sigma) \propto \sigma^{-1}$
- Analyst model:

$$y \mid x \sim N(\alpha_0 + \alpha_1 x, \tau^2 x^2)$$

- Repeated analysis calculations under the analyst model
 - Bias

Examples (Contd.)

Imputer and Analysts use the same model

$$y \sim N(\alpha, \tau^2)$$

Analysts goal to estimate

$$\theta = \Pr(y \le 1)$$

Analyst-1 estimate (uncongenial, conservative inferences)

$$\hat{\theta}_1 = \sum_{i=1}^n I_{\{y_i \le 1\}} / n$$

Analyst-2 estimate (Congenial)

$$\hat{\theta}_2 = \Phi[(1 - \hat{\alpha}) / \hat{\tau}]$$

General Conclusions

- Generally not an issue if the imputation models are carefully developed and capture important features in the data
- Large imputation model is preferred over a parsimonious model to accommodate multiple analysts
- Analyst should try to use the best method under his/her stated model assumption
- Using inefficient estimates may lead to conservative inferences

Summary of Multiple Imputation

- Retains advantages of single imputation
 - Consistent analyses
 - Data collectors knowledge
 - Rectangular data sets
- Corrects disadvantages of single imputation
 - Reflects uncertainty in imputed values
 - Corrects inefficiency from imputing draws
 - estimates have high efficiency for modest *M*, e.g. 10