Economics 701

Problem Set 2

- 1. Determine whether or not the following functions are quasi-concave. Explain.
- a) e^a
- b) $2x_1^{\frac{1}{2}} + 4x_2^{\frac{1}{2}}$, where $x_1, x_2 > 0$ (hint: is this function concave?)
- 2. Use the Method of Lagrange to solve for x_1^* and x_2^* in the following problem: maximize $f(x_1, x_2) = x_1x_2$ subject to $x_1 + 4x_2 = 16$.

What is f^* , the maximized value (subject to the constraint) of $f(x_1, x_2)$?

3. Solve for x_1^* and x_2^* in the dual to the problem in question 2. Here, the dual problem is: minimze $x_1 + 4x_2$ subject to $f(x_1, x_2) = f^*$

where you will substitute for f^* the maximized value (subject to the constraint) of $f(x_1, x_2)$ from question 2. Are x_1^* and x_2^* here the same as in question 2?

- 4. If x thousand dollars is spent on labor and y thousand dollars is spent on equipment, a certain factory produces $Q(x, y) = 50x^{\frac{1}{2}}y^{\frac{1}{2}}$ units of output.
- a. How should \$80,000 be allocated between labor and equipment to yield the largest possible output?
- b. Use the critical value of the Lagrange multiplier, λ , to estimate the change in maximum output if this allocation DEcreased by \$1,000.
- c. Compute the exact change in part b).
- 5. Write down the dual problem to that in question 4 part a) and solve for x^* and y^* .
- 6. Show that the following functions are homogeneous (specify of what degree) and verify that Euler's theorem holds:

a.
$$f(x_1, x_2) = x_1 x_2^2$$

b. $f(x_1, x_2) = x_1 x_2 + x_2^2$

7. Show that the following functions are homothetic by demonstrating that the derivatives of the level curves are constant along a ray from the origin:

$$a. y = ln(x_1) + ln(x_2)$$

b.
$$y = (x_1 x_2)^2 - x_1 x_2$$