Name and Title: Car Sales Data Processing

Introduction:

Car dealers maintain records of sales of various models of passenger cars sold by them for data analytics purposes. A CPP program can be used to analyze this data by loading data records into an STL container such as an array or a Map.

This problem statement in C++ language focuses on data of car models and the analysis and computations that can be performed on this data.

This program stores data values in a Map with the following string keys:

Struct Member Name	Description	
SaleUnits	It indicates the number of units sold for the particular vehicle model.	
Price	It indicates the price for the particular vehicle model.	
Efficiency	It indicates the efficiency(miles per litre of fuel) for the particular vehicle model.	
Horsepower	It indicates the horsepower for the particular vehicle model's engine.	

Problem Description:

The following LoanApplication structure records can be considered for your reference. Update these record entries in the bitmap.c file as per instructions (comments) given.

Record No.	SaleUnits	Price	Efficiency	Horsepower
1	17000	45000	10	140
2	10000	65000	12	160
3	20000	35000	14	155
4	38	45000	10	140
5	27	21000	-1	145

Store these values in map objects of string keys and int values. Then, add these to a standard vector which accepts values of this map definition.

Note:

- -1 indicates invalid or missing value.
- Price will always be less than 100000.
- Efficiency will always be less than 100.

In this problem statement, you are expected to complete the following functions, using the LoanApplication structure and data records given above for reference.

Function Name	Arguments	Return Type	Description
AverageCarPrice	Reference to a standard vector of map objects with string keys and int values.	float	It Calculates the average price of a car record(excluding invalid price values) and returns the answer rounded off to the nearest integer.
MaxHorsepower	Reference to a standard vector of map objects with string keys and int values.	int	It returns the maximum Horsepower observed in the records(excluding invalid values).
LowestEfficiency	Reference to a standard vector of map objects with string keys and int values.	int	It returns the lowest efficiency observed in the records(excluding invalid values).

Test cases:

**PLEASE DO NOT EDIT THE TEST CASES

The above-mentioned requirements have been considered for creating test cases. The below table gives details of test cases to be used for validating written code.

Test Case No.	Test Case Description	Input Values	Expected Output	Explanation
1	To validate AverageCarPrice functionality	Standard vector containing the above mentioned record values.	41250	This is the average price in the above mentioned car sales records.
2	To validate <i>MaxHorsepower</i> functionality	Standard vector containing the above mentioned record values.	154	This is the maximum horsepower observed excluding missing data values.
3	To validate the FindLowestEfficiency functionality.	Standard vector containing the above mentioned record values.	8	8 is the lowest efficiency in the data. Note, -1 is considered as invalid value here too.