SOLUTION TO PROBLEM 12406

FULVIO GESMUNDO AND TOMMASO MANNELLI MAZZOLI

Problem 12406

Proposed by Raymond Mortini, University of Luxembourg, Esch=sur-Alzette, Luxembourg, and Rudolf Rupp, Nuremberg Institute of Technology, Nuremberg, Germany For fixed $p \in \mathbb{R}$, find all functions $f: [0,1] \to \mathbb{R}$ that are continuous at 0 and 1 and satisfy $f(x^2) + 2p \cdot f(x) = (x+p)^2$ for all $x \in [0,1]$.

Solution. First, note that if p = 0, then we have f(x) = x.

If $p = -\frac{1}{2}$, no such function f satisfying the desired condition exists. Indeed the condition $f(x^2) - f(x) = (x - \frac{1}{2})^2$ yields $0 = \frac{1}{4}$ for x = 0, which is false.

Assume $p \notin \{0, -\frac{1}{2}\}$. Then $f(0) = \frac{p^2}{1+2p}$ and $f(1) = \frac{(p+1)^2}{1+2p}$.

Let r(x) be the linear function

$$r(x) := x + \frac{p^2}{1 + 2p};$$

note r(0) = f(0) and r(1) = f(1). Moreover f(x) = r(x) is a solution of the functional equation. We are going to prove that it is the only one.

Let h(x) := f(x) - r(x). Then h is continuous at 0 and 1, h(0) = h(1) = 0 and

(1)
$$h(x^2) + 2p \cdot h(x) = 0$$
 for every $x \in [0, 1]$.

If $|p| \geq \frac{1}{2}$ then

(2)
$$|h(x)| = \left| \frac{1}{2p} h(x^2) \right| = \dots = \left| \frac{1}{(2p)^n} h\left(x^{2^n}\right) \right|;$$

now, $\left|\frac{1}{(2p)^n}\right| \leq 1$ for every n and $\lim_{n\to\infty} x^{2^n} = 0$; since h is continuous at 0, we obtain $|h(x)| = \lim_{n\to\infty} \left|\frac{1}{(2p)^n}h\left(x^{2^n}\right)\right| = 0$.

If $|p| \leq 1/2$ then

$$|h(x)| = |2p \cdot h(x^{1/2})| = \dots = |(2p)^n \cdot h(x^{1/2^n})|;$$

now, $|(2p)^n| \le 1$ for every n and $\lim_{n\to\infty} x^{1/2^n} = 1$; since h is continuous at 1, we obtain $|h(x)| = \lim_{n\to\infty} |(2p)^n h(x^{1/2^n})| = 0$.

Thus, $h(x) \equiv 0$ and the only possible solution is the linear function f(x) = r(x).