Esercizio 1 (11 punti). Sia data una CPU con processore a 8GHz e 8 CPI (Clock per Instruction) che adoperi indirizzi da 32 bit e memoria strutturata su due livelli di cache (L1, L2), il

cui setup è come segue:

L1 è una cache set-associativa a 3 vie con 2 set e blocchi da 4 word; adopera una politica di rimpiazzo LRU. Ricordiamo che consideriamo il set come l'insieme del blocco in cache con tag e bit di validità, mentre la linea è il gruppo di set con il medesimo indice.

L2 è una cache direct-mapped con 8 linee e blocchi da 32 word.

1) Supponendo che all'inizio nessuno dei dati sia in cache, indicare quali degli accessi in memoria indicati di seguito sono HIT o MISS in ciascuna delle due cache. Per ciascuna MISS indicare se sia di tipo Cold Start (Cold), Capacità (Cap) o Conflitto (Conf). Utilizzare la tabella sottostante per fornire i risultati ed indicare la metodologia di calcolo più in basso.

	Address	8076	8080	4096	4100	2000	2040	2076	2096	8080	8084	4104	4196
L1	Block#	504	505	256	256	125	127	129	131	505	505	256	262
	Index	Q	1	0	Ð	1	1	ı	1	- 1	1	0	0
	Tag	252	252	128	128	62	63	64	65	252	252	123	131
	HIT/MISS	MISS	MISS	MIJS	HIT	MISS	MISS	MISS	WIZZ	MISS	HIT	HIT	4122
	Miss type	COLD	COLD	COLV		COLD	COLD	(Or)	COLD	CONF			COLD
	Block#	63	63	3 2		15	15	16	16	63			32
L2	Index	7	7	0		7	7	0	0	7			0
	Tag	7	7	4		ı	١	2	2	チ			4
	HIT/MISS	MISS	HIT	MISS		WI 22	HIT	M135	HIT	MISS			MISS
	Miss type	COLD		COLV		COLV		COLV		COVF			CONF

- 2) Calcolare le dimensioni in bit (compresi i bit di controllo ed assumendo che ne basti uno per la LRU) delle due cache: (a) L1 e (b) L2.
- 3) Assumendo che gli accessi in **memoria** impieghino **200 ns**, che gli **hit** nella cache **L1** impieghino **2 ns** e gli **hit** nella cache **L2** impieghino **50 ns**, calcolare (a) il **tempo totale** per la sequenza di accessi, (b) il tempo **medio** per la sequenza di accessi, e (c) **quante istruzioni** vengono svolte nel tempo medio calcolato.
- 4) Calcolare il word offset del sesto indirizzo (2040) per la cache L2 spiegando i calcoli effettuati.
- 5) Supponendo che gli indirizzi nella tabella siano virtuali e la memoria virtuale consti di 512 pagine di 4KiB ciascuna, indicarne i numeri di pagina virtuale. Si assume che la cache sia a monte della memoria virtuale.

Page#	1	1.	1			ก	0	0	1	1	1	1
Address	8076	8080	4096	4100	2000	2040	2076	2096	8080	8084	4104	4196

