

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING END SEMESTER EXAMINATIONS – MAY 2024 CSPC41 – Formal Languages and Automata Theory

Session: January 2024
Date: 13th May 2024

Sem: IV CSE A Answer ALL Questions

Time: 3 hours Max Marks: 100

1. a. Prove that if a language is accepted by	a NFA then there exists a DI	FA.
β. Construct a DFA for the following ε-NF	$(C \cap 1)$	
NFA	(CO1)	- 41410
		(10)

δ	3	0	1
→ A	{ B }	{ A }	Ф
C	{ D }	{C}	Φ
C	Ф	Ф	{B}
* D	Φ	{ D }	Φ

Explain pumping lemma for regular languages with an example. (CO1) (4)

2. a. Prove that there exists a regular expression for a DFA. (CO1) (6) Convert the following DFA to RE using Kleene's theorem. (CO1) (8)

		0	1
	→ A	В	A
В		В	C
*C		C	В

- c. Explain any two properties of regular languages with necessary examples
 (6)
- 3. ②. Write a grammar for the "for' construct in C language and verify whether your constructed grammar is ambiguous or not. (CO5) (4) b. Convert the following grammar to GNF where 'S' is the start symbol. (CO2) (10)

S → eSe | GH

 $G \rightarrow cGb \mid \epsilon$

 $H \rightarrow JHd \mid \epsilon$

 $J \rightarrow bJ \mid f$

c. Prove that every CFL without useless symbols can be represented with an alternate grammar. (CO2) (6)

b. Construct a PDA using empty stack for the language $\{0^n1^n2 \mid n > 0\}$ and convert this PDA to a context free grammar. (CO2) (12)

5. a. Construct TM to compute the multiplication of two integers m * n, where m, n are stored in unary on the tape. (CO3) (6)

b. Define L_u . Prove that L_u is recursively enumerable but not recursive. (CO4) (6)

c. Construct a TM for the language $\{0^n1^n \mid n > 0\}$ and convert this to a MPCP instance.

--- Best Wishes ---

(8)

(CO2)

a. Construct a PDA for the following language using empty stack

 $\{a^{i}b^{j}c^{k} \mid i = j + k\}$