(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 24 October 2002 (24.10.2002)

PCT

(10) International Publication Number WO 02/083866 A2

(51)	International	Patent	Classification7:
------	---------------	---------------	------------------

- (21) International Application Number: PCT/US02/11734
- (22) International Filing Date: 12 April 2002 (12.04.2002)

(25) Filing Language:

English

C12N

(26) Publication Language:

English

(30) Priority Data:

60/284,175 60/299,380	17 April 2001 (17.04.2001) 19 June 2001 (19.06.2001)	US US
09/965,738	27 September 2001 (27.09.2001)	US
60/345,180	21 December 2001 (21.12.2001)	US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

ÜS	09/965,738 (CIP)
Filed on	27 September 2001 (27.09.2001)

(71) Applicant (for all designated States except US): THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS [US/US]; 2404 North University Avenue, Little Rock, AR 72207-3608 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): O'BRIEN, Timothy [US/US]; 2610 North Pierce, Little Rock, AR 72207 (US). BEARD, John [US/US]; 500 Green Mountain Circle, #8, Little Rock, AR 72211 (US). UNDERWOOD, Lowell [US/US]; 121 N. Jackson Street, Apt. K, Little Rock, AR 72205 (US).
- (74) Agent: FENTRESS, Susan, B.; Butler Snow O'Mara Stevens & Cannada, PLLC, 6075 Poplar Avenue, Suite 500, P.O. Box 171443, Memphis, TN 38119 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

[Continued on next page]

(54) Title: REPEAT SEQUENCES OF THE CA125 GENE AND THEIR USE FOR DIAGNOSTIC AND THERAPEUTIC INTERVENTIONS

Proposed Structure of CA125

(57) Abstract: The CA125 gene has been cloned and multiple repeat sequences including the carboxy terminus have been identified. The CA125 molecule comprises three major domains: an extracellular amino terminal domain (Domain 1); a large multiple repeat domain (Domain 2); and a carboxy terminal domain (Domain 3) which includes a transmembrane anchor with a short cytoplasmic domain. An amino terminal extension is present. The structure is dominated by a repeat domain comprising 156 amino acid repeat units, which encompass the epitope binding sites. More than 60 repeat units have been identified. The repeat units encompass the site of OC125 and M11 binding. Expression of the repeats was demonstrated. Any one of the repeat domains has the potential for use as a new gold standard for detecting and monitoring the presence of the CA125 antigen. The repeat domains and other domains also provide a basis for the development of a vaccine.

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

REPEAT SEQUENCES OF THE CA125 GENE AND THEIR USE FOR DIAGNOSTIC AND THERAPEUTIC INTERVENTIONS

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Serial No. 60/284,175 filed April 17, 2001, U.S. Provisional Application Serial No. 60/299,380 filed June 19, 2001, U.S. Non-Provisional Application Serial No. 09/965,738 filed September 27, 2001, and U.S. Provisional Application Serial No. 60/345,180 filed December 21, 2001, which are incorporated by reference in their entirety.

BACKGROUND OF THE INVENTION

The present invention relates generally to the cloning, identification, and expression of the CA125 gene's glycosylated amino terminal domain, the multiple repeat domain, and the carboxy terminal doman *in vitro* and, more specifically, to the use of recombinant CA125 with epitope binding sites for diagnostic and therapeutic purposes.

CA125 is an antigenic determinant located on the surface of ovarian carcinoma cells with essentially no expression in normal adult ovarian tissue. Elevated in the sera of patients with ovarian adenocarcinoma, CA125 has played a critical role for more than 15 years in the management of these patients relative to their response to therapy and also as an indicator of recurrent disease.

It is well established that CA125 is not uniquely expressed in ovarian carcinoma, but is also found in both normal secretory tissues and other carcinomas (i.e., pancreas, liver, colon) [Hardardottir H et al., Distribution of CA125 in embryonic tissue and adult derivatives of the fetal periderm, Am J Obstet. Gynecol. 163;6(1):1925-1931 (1990); Zurawski VR et al., Tissue distribution and characteristics of the CA125 antigen, Cancer Rev. 11-12:102-108 (1988); and O'Brien TJ et al., CA125 antigen in human amniotic fluid and fetal membranes, Am J Obstet Gynecol. 155:50-55, (1986); Nap M et al., Immunohistochemical characterization of 22 monoclonal antibodies against the CA125 antigen: 2nd report from the ISOBM TD-1 workshop, Tumor Biology 17:325-332 (1996)].

Notwithstanding, CA125 correlates directly with the disease status of affected patients (i.e., progression, regression, and no change), and has become the "gold standard" for monitoring patients with ovarian carcinoma [Bast RC et al., A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer, N Engl J Med. 309:883-887 (1983); and Bon GC et al., Serum tumor marker immunoassays in gynecologic oncology: Establishment of reference values, Am J Obstet. Gynecol. 174:107-114 (1996)]. CA125 is especially useful in post-menopausal patients where endometrial tissue has become atrophic and, as a result, is not a major source of normal circulating CA125.

During the mid 1980's, the inventor of the present invention and others developed M11, a monoclonal antibody to CA125. M11 binds to a dominant epitope on the repeat structure of the CA125 molecule [O'Brien TJ et al., New monoclonal antibodies identify the glycoprotein carrying the CA125 epitope, Am J Obstet Gynecol 165:1857-64 (1991)]. More recently, the inventor and others developed a purification and stabilization scheme for CA125, which allows for the accumulation of highly purified high molecular weight CA125 [O'Brien TJ et al., More than 15 years of CA125: What is known about the antigen, its structure and its function, Int J Biological Markers 13(4):188-195 (1998)].

Considerable progress has been made over the years to further characterize the CA125 molecule, its structure and its function. The CA125 molecule is a high molecular weight glycoprotein with a predominance of O-linked sugar side chains. The native molecule exists as a very large complex (~2-5 million daltons). The complex appears to be composed of an epitope containing CA125 molecule and binding proteins which carry no CA125 epitopes. The CA125 molecule is heterogenous in both size and charge, most likely due to continuous deglycosylation of the side chains during its life-span in bodily fluids. The core CA125 subunit is in excess of 200,000 daltons, and retains the capacity to bind both OC125 and M11 class antibodies. While the glycoprotein has been described biochemically and metabolically by the inventor of the present invention and others, no one has yet cloned the CA125 gene, which would provide the basis for understanding its structure and its physiologic role in both normal and malignant tissues.

Despite the advances in detection and quantitation of serum tumor markers like CA125, the majority of ovarian cancer patients are still diagnosed at an advanced stage of the disease—Stage III or IV. Further, the management of patients' responses to treatment and the detection of disease recurrence remain major problems. There, thus, remains a need to significantly improve and standardize current CA125 assay systems. Further, the development of an early indicator of risk of ovarian cancer will provide a useful tool for early diagnosis and improved prognosis.

SUMMARY OF THE INVENTION

The CA125 gene has been cloned and multiple repeat sequences as well as the glycosylated amino terminal and the carboxy terminus have been identified. CA125 requires a transcript of more than 35,000 bases and occupies approximately 150,000 bp on chromosome 19q 13.2. The CA125 molecule comprises three major domains: an extracellular amino terminal domain (Domain 1); a large multiple repeat domain (Domain 2); and a carboxy terminal domain (Domain 3) which includes a transmembrane anchor with a short cytoplasmic domain. The amino terminal domain is assembled by combining five genomic exons, four very short amino terminal sequences and one extraordinarily large exon. This domain is dominated by its capacity for O-glycosylation and its resultant richness in serine and threonine residues. Additionally, an amino terminal extension is present, which comprises four genomic exons. Analysis of the amino terminal extension revealed that its amino acid composition is consistent with the amino acid composition of the amino terminal domain.

The extracellular repeat domain, which characterizes the CA125 molecule, also represents a major portion of the CA125 molecular structure. It is downstream from the amino terminal domain and presents itself in a much different manner to its extracellular matrix neighbors. These repeats are characterized by many features including a highly-conserved nature and a uniformity in exon structure. But most consistently, a cysteine enclosed sequence may form a cysteine loop. Domain 2 comprises 156 amino acid repeat units of the CA125 molecule. The repeat domain constitutes the largest proportion of the

CA125 molecule. The repeat units also include the epitopes now well-described and classified for both the major class of CA125 antibodies of the OC125 group and the M11 group. More than 60 repeat units have been identified, sequenced, and contiguously placed in the CA125 domain structure. The repeat sequences demonstrated 70-85% homology to each other. The existence of the repeat sequences was confirmed by expression of the recombinant protein in *E. coli* where both OC125/M11 class antibodies were found to bind to sites on the CA125 repeat.

The CA125 molecule is anchored at its carboxy terminal through a transmembrane domain and a short cytoplasmic tail. The carboxy terminal also contains a proteolytic cleavage site approximately 50 amino acids upstream from the transmembrane domain, which allows for proteolytic cleavage and release of the CA125 molecule.

The identification and sequencing of multiple repeat domains of the CA125 antigen provides potentially new clinical and therapeutic applications for detecting, monitoring and treating patients with ovarian cancer and other carcinomas where CA125 is expressed. For example, the ability to express repeat domains of CA125 with the appropriate epitopes would provide a much needed standard reagent for research and clinical applications. Current assays for CA125 utilize as standards either CA125 produced from cultured cell lines or from patient ascites fluid. Neither source is defined with regard to the quality or purity of the CA125 molecule. The present invention overcomes the disadvantages of current assays by providing multiple repeat domains of CA125 with epitope binding sites. At least one or more of any of the more than 60 repeats shown in Table 16 can be used as a "gold standard" for testing the presence of CA125. Furthermore, new and more specific assays may be developed utilizing recombinant products for antibody production.

Perhaps even more significantly, the multiple repeat domains of CA125 or other domains could also be used for the development of a potential vaccine for patients with ovarian cancer. In order to induce cellular and humoral immunity in humans to CA125, murine antibodies specific for CA125 were utilized in anticipation of patient production of anti-ideotypic antibodies, thus indirectly allowing the induction of an immune response to the CA125 molecule. With the availability of recombinant CA125, especially domains

PCT/US02/11734

which encompass epitope binding sites for known murine antibodies, it will be feasible to more directly stimulate patients' immune systems to CA125 and, as a result, extend the life of ovarian carcinoma patients.

The recombinant CA125 of the present invention may also be used to develop therapeutic targets. Molecules like CA125, which are expressed on the surface of tumor cells, provide potential targets for immune stimulation, drug delivery, biological modifier delivery or any agent which can be specifically delivered to ultimately kill the tumor cells. Humanized or human antibodies to CA125 epitopes could be used to deliver all drug or toxic agents including radioactive agents to mediate direct killing of tumor cells. Natural ligands having a natural binding affinity for domains on the CA125 molecule could also be utilized to deliver therapeutic agents to tumor cells.

CA125 expression may further provide a survival or metastatic advantage to ovarian tumor cells. Antisense oligonucleotides derived from the CA125 repeat sequences could be used to down-regulate the expression of CA125. Further, antisense therapy could be used in association with a tumor cell delivery system of the type described above.

Recombinant domains of the CA125 molecule also have the potential to identify small molecules, which bind to individual domains of the CA125 molecule. These small molecules could also be used as delivery agents or as biological modifiers.

In one aspect of the present invention, a CA125 molecule is disclosed comprising: (a) an extracellular amino terminal domain, comprising 5 genomic exons, wherein exon 1 comprises amino acids #1-33 of SEQ ID NO: 299, exon 2 comprises amino acids #34-1593 of SEQ ID NO: 299, exon 3 comprises amino acids #1594-1605 of SEQ ID NO: 299, exon 4 comprises amino acids #1606-1617 of SEQ ID NO: 299, and exon 5 comprises amino acids #1618-1637 of SEQ ID NO: 299; (b) an amino terminal extension, comprising 4 genomic exons, wherein exon 1 comprises amino acids #1-3157 of SEQ ID NO: 310, exon 2 comprises amino acids #3158-3193 of SEQ ID NO: 310, exon 3 comprises amino acids #3194-9277 of SEQ ID NO: 310, and exon 4 comprises amino acids #9278-10,427 of SEQ ID NO: 310; (c) a multiple repeat domain, wherein each repeat unit comprises 5 genomic exons, wherein exon 1 comprises amino acids #1-42 in any of SEQ ID NOS: 164 through 194; exon 2 comprises amino acids #43-65 in any of SEQ ID NOS: 195 through 221; exon 3 comprises amino acids #66-123 in any of SEQ ID NOS: 222

through 249; exon 4 comprises amino acids #124-135 in any of SEQ ID NOS: 250 through 277; and exon 5 comprises amino acids #136-156 in any of SEQ ID NOS: 278 through 298; and (d) a carboxy terminal domain comprising a transmembrane anchor with a short cytoplasmic domain, and further comprising 9 genomic exons, wherein exon 1 comprises amino acids #1-11 of SEQ ID NO: 300; exon 2 comprises amino acids #12-33 of SEQ ID NO: 300; exon 3 comprises amino acids #34-82 of SEQ ID NO: 300; exon 4 comprises amino acids #83-133 of SEQ ID NO: 300; exon 5 comprises amino acids #134-156 of SEQ ID NO: 300; exon 6 comprises amino acids #157-212 of SEQ ID NO: 300; exon 7 comprises amino acids #213-225 of SEQ ID NO: 300; exon 8 comprises amino acids #226-253 of SEQ ID NO: 300; and exon 9 comprises amino acids #254-284 of SEQ ID NO: 300.

In another aspect of the present invention, the N-glycosylation sites of the amino terminal domain marked (x) in Figure 8B are encoded at positions #81, #271, #320, #624, #795, #834, #938, and #1,165 in SEQ ID NO: 299.

In another aspect of the present invention, the serine and threonine O-glycosylation pattern for the amino terminal domain is marked (o) in SEQ ID NO: 299 in Figure 8B.

In another aspect of the present invention, the N-glycosylation sites of the amino terminal extension marked (x) in Table 26 are encoded at positions #139, #434, #787, #930, #957, #1266, #1375, #1633, #1840, #1877, #1890, #2345, #2375, #2737, #3085, #3178, #3501, #4221, #4499, #4607, #4614, #4625, #5048, #5133, #5322, #5396, #5422, #5691, #5865, #6090, #6734, #6861, #6963, #8031, #8057, #8326, #8620, #8686, #8915, #9204, #9495, #9787, #10, 077, and #10, 175.

In another aspect, the serine and threonine O-glycosylation pattern for the amino terminal extension is marked (o) in Table 26.

In another aspect of the present invention, exon 2 in the repeat domain comprises at least 31 different copies; exon 2 comprises at least 27 different copies; exon 3 comprises at least 28 different copies; exon 4 comprises at least 28 different copies, and exon 5 comprises at least 21 different copies.

In another aspect of the present invention, the repeat domain comprises 156 amino acid repeat units which comprise epitope binding sites. The epitope binding sites are located in the C-enclosure at amino acids #59-79 (marked C-C) in SEQ ID NO: 150 in Figure 5.

In another aspect, the 156 amino acid repeat unit comprises O-glycosylation sites at positions #128, #129, #132, #133, #134, #135, #139, #145, #146, #148, #150, #151, and #156 in SEQ ID NO: 150 in Figure 5C. The 156 amino acid repeat unit further comprises N-glycosylation sites at positions #33 and #49 in SEQ ID NO: 150 in Figure 5C. The repeat unit also includes at least one conserved methionine (designated M) at position #24 in SEQ ID NO: 150 in Figure 5C.

In yet another aspect, the transmembrane domain of the carboxy terminal domain is located at positions #230-252 (underlined) in SEQ ID NO: 300 of Figure 9B. The cytoplasmic domain of the carboxy terminal domain comprises a highly basic sequence adjacent to the transmembrane at positions #256-260 in SEQ ID NO: 300 of Figure 9B, serine and threonine phosporylation sites at positions #254, #255, and #276 in SEQ ID NO: 300 in Figure 9B, and tyrosine phosphorylation sites at positions #264, #273, and #274 in SEQ ID NO: 300 of Figure 9B.

In another aspect of the present invention, an isolated nucleic acid of the CA125 gene is disclosed, which comprises a nucleotide sequence selected from the group consisting of: (a) the nucleotide sequences set forth in SEQ ID NOS: 49, 67, 81, 83-145, 147, 150, and 152; (b) a nucleotide sequence having at least 70% sequence identity to any one of the sequences in (a); (c) a degenerate variant of any one of (a) to (b); and (d)a fragment of any one of (a) to (c).

In another aspect of the present invention, an isolated nucleic acid of the CA125 gene, comprising a sequence that encodes a polypeptide with the amino acid sequence selected from the group consisting of: (a) the amino acid sequences set forth in SEQ ID NOS: 11-47, 50-80, 82, 146, 148, 149, 151, and 153-158; (b) an amino acid sequence having at least 50% sequence identity to any one of the sequences in (a); (c) a conservative variant of any one of (a) to (b); and (d) a fragment of any one of (a) to (c).

In yet another aspect, a vector comprising the nucleic acid of the CA125 gene is disclosed. The vector may be a cloning vector, a shuttle vector, or an expression vector. A cultured cell comprising the vector is also disclosed.

In yet another aspect, a method of expressing CA125 antigen in a cell is disclosed, comprising the steps of: (a) providing at least one nucleic acid comprising a nucleotide sequence selected from the group consisting of: (i) the nucleotide sequences set forth in SEQ ID NOS: 49, 67, 81, 83-145, 147, 150, and 152; (ii) a nucleotide sequence having at least 70% sequence

identity to any one of the sequences in (i); (iii) a degenerate variant of any one of (i) to (ii); and (iv) a fragment of any one of (i) to (iii); (b) providing cells comprising an mRNA encoding the CA125 antigen; and (c) introducing the nucleic acid into the cells, wherein the CA125 antigen is expressed in the cells.

In yet another aspect, a purified polypeptide of the CA125 gene, comprising an amino acid sequence selected from the group consisting of: (a) the amino acid sequences set forth in SEQ ID NOS: 11-48, 50, 68-80, 82, 146, 148, 149, 150, 151, and 153-158; (b) an amino acid sequence having at least 50% sequence identity to any one of the sequences in (a); (c) a conservative variant of any one of (a) to (b); and (d) a fragment of any one of (a) to (c).

In another aspect, a purified antibody that selectively binds to an epitope in the receptor-binding domain of CA125 protein, wherein the epitope is within the amino acid sequence selected from the group consisting of: (a) the amino acid sequences set forth in SEQ ID NOS: 11-48, 50, 68-80, 146, 151, and 153-158; (b) an amino acid sequence having at least 50% sequence identity to any one of the sequences in (a); (c) a conservative variant of any one of (a) to (b); and (d) a fragment of any one of (a) to (c).

A diagnostic for detecting and monitoring the presence of CA125 antigen is also disclosed, which comprises recombinant CA125 comprising at least one repeat unit of the CA125 repeat domain including epitope binding sites selected from the group consisting of amino acid sequences set forth in SEQ ID NOS: 11-48, 50, 68-80, 82, 146, 150, 151, 153-161, and 162 (amino acids #1,643-11,438).

A therapeutic vaccine to treat mammals with elevated CA125 antigen levels or at risk of developing a disease or disease recurrence associated with elevated CA125 antigen levels is also disclosed. The vaccine comprises recombinant CA125 repeat domains including epitope binding sites, wherein the repeat domains are selected from the group of amino acid sequences consisting of SEQ ID NOS: 11-48, 50, 68-80, 82, 146, 148, 149, 150, 151, 153161, and 162 (amino acids #1,643-11,438), and amino acids #175-284 of SEQ ID NO: 300. Mammals include animals and humans.

In another aspect of the present invention, an antisense oligonucleotide is disclosed that inhibits the expression of CA 125 encloded by: (a) the nucleotide sequences set forth in SEQ ID NOS: 49, 67, 81, 83-145, 147, 150, and 152; (b) a nucleotide sequence having at least 70%

sequence identity to any one of the sequences in (a); (c) a degenerate variant of any one of (a) to (b); and (d) a fragment of any one of (a) to (c).

The preceding and further aspects of the present invention will be apparent to those of ordinary skill in the art from the following description of the presently preferred embodiments of the invention, such description being merely illustrative of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates the cyanogen bromide digested products of CA125 on Western blot probed with M11 and OC125 antibodies. Table 1 shows the amino acid sequence derived from the amino terminal end of the 40 kDa cyanogen bromide peptide along with internal sequences obtained after protease digestion of the 40 kDa fragment (SEQ ID NOS: 14). SEQ ID NO: 1 is the amino terminal sequence derived of the 40 kDa peptide and SEQ ID NOS: 2, 3, and 4 reflect internal amino acid sequences derived from peptides after protease digestion of the 40 kDa fragment. Table 1 further provides a translation of the EST (BE005912) with homologous sequences (SEQ ID NOS: 5 and 6) either boxed or underlined. Protease cleavage sites are indicated by arrows.

Figure 2A illustrates PCR amplification of products generated from primers utilizing the EST sequence referred to in Figure 1, the amino acid sequence obtained from the 40 kDa fragment and EST sequence AA# 640762. Lane 1-2: normal; 3: serous ovarian carcinoma; 4: serous ovarian carcinoma; 5: mucinous ovarian carcinoma; 6: β -tubulin control. The anticipated size band 400 b is present in lane 3 and less abundantly in lane 4.

Figure 2B illustrates the RT-PCR that was performed to determine the presence or absence of CA125 transcripts in primary culture cells of ovarian tumors. This expression was compared to tubulin expression as an internal control. Lanes 1, 3, 5, 7, and 9 represent the primary ovarian tumor cell lines. Lanes 2, 4, 6, and 8 represent peripheral blood mononuclear cell lines derived from the corresponding patients in lanes 1, 3, 5, and 7. Lane 10 represents fibroblasts from the patient tumor in lane 9. Lanes 11 and 12 are CaOV3 and a primary tumor specimen, respectively.

Figure 3 illustrates repeat sequences determined by sequencing cloned cDNA from the 400 b band in Figure 2B. Placing of repeat sequences in a contiguous fashion was accomplished by PCR amplification and sequencing of overlap areas between two repeat sequences. A sample of the complete repeat sequences is shown in SEQ ID NOS: 158, 159, 160, and 161, which was obtained in this manner and placed next to each other based on overlap sequences. The complete list of repeat sequences that was obtained is shown in Table 21 (SEQ ID NO: 162).

Figure 4 illustrates three Western immunoblot patterns: Panel A = probed with M11, Panel B = probed with OC125 and Panel C = probed with antibody ISOBM 9.2. Each panel represents E. coli extracts as follows: lane 1 = E. coli extract from bacteria with the plasmid PQE-30 only. Lane 2 = E. coli extract from bacteria with the plasmid PQE-30 which includes the CA125 repeat unit. Lane 3 = E. coli extract from bacteria with the plasmid PQE-30 which includes the TADG-14 protease unrelated to CA125. Panel D shows a Coomassie blue stain of a PAGE gel of E. coli extract derived from either PQE-30 alone or from bacteria infected with PQE-30 - CA125 repeat (recombinant CA125 repeat).

Figure 5 represents Western blots of the CA125 repeat sequence that were generated to determine the position of the M11 epitope within the recombinant CA125 repeat. The expressed protein was bound to Ni-NTA agarose beads. The protein was left undigested or digested with Asp-N or Lys-C. The protein remaining bound to the beads was loaded into lanes 1, 2, or 3 corresponding to undigested, Asp-N digested and Lys-C digested, respectively. The supernatants from the digestions were loaded in lanes 4, 5, and 6 corresponding to undigested, Asp-N digested and Lys-C digested, respectively. The blots were probed with either anti-His tag antibody (A) or M11 antibody (B). Panel C shows a typical repeat sequence corresponding to SEQ ID NO: 150 with each exon defined by arrows. All proteolytic aspartic acid and lysine sites are marked with overhead arrow or dashes. In the lower panel, the O-glycosylation sites in exons 4 and 5 are marked with O, the N-glycosylation sites are marked with X plus the amino acid number in the repeat (#12, 33, and 49) the conserved methionine is designated with M plus the amino acid number (M#24), and the cysteine enclosure which is also present in all repeats and encompasses 19 amino acids between the cysteines is marked with C-C (amino acids #59-79). The epitopes for M11 and OC125 are located in the latter part of the C-enclosure or downstream from the C-enclosure.

Figure 6 illustrates a Northern blot analysis of RNA derived from either normal ovary (N) or ovarian carcinoma (T) probed with a P³² cDNA repeat sequence of CA125. Total RNA samples (10µg) were size separated by electrophoresis on a formaldehyde 1.2% agarose gel. After blotting to Hybond N, the lanes were probed with P³² radiolabelled 400 bp repeat (see Figure 2). Lane 1 represents RNA from normal ovarian tissue, and lane 2 represents RNA from serous ovarian tumor tissue.

Figure 7A is a schematic diagram of a typical repeat unit for CA125 showing the N-glycosylation sites at the amino end and the totally conserved methionine (M). Also shown is the proposed cysteine enclosed loop with antibody binding sites for OC125 and M11. Also noted are the highly O-glycosylated residues at the carboxy end of the repeat.

Figure 7B represents the genomic structure and exon configuration of a 156 amino acid repeat sequence of CA125 (SEQ ID NO: 163), which comprises a standard repeat unit.

Figure 7C lists the individual known sequences for each exon, which have been determined as follows: Exon 1 – SEQ ID NOS: 164-194; Exon 2 – SEQ ID NOS: 195-221; Exon 3 – SEQ ID NOS: 222-249; Exon 4 – SEQ ID NOS: 250-277; and Exon 5 – SEQ ID NOS: 278-298.

Figure 8A shows the genomic structure of the amino terminal end of the CA125 gene. It also indicates the amino composition of each exon in the extracellular domain.

Figure 8B illustrates the amino acid composition of the amino terminal domain (SEQ ID NO: 299) with each potential O-glycosylation site marked with a superscript (o) and N-glycosylation sites marked with a superscript (x). T-TALK sequences are underlined.

Figure 9A illustrates the genomic exon structure of the carboxy-terminal domain of the CA125 gene. It includes a diagram showing the extracellular portion, the potential cleavage site, the transmembrane domain and the cytoplasmic tail.

Figure 9B illustrates the amino acid composition of the carboxy terminal domain (SEQ ID NO: 300) including the exon boundaries, O-glycosylation sites (o), and N-glycosylation sites (x). The proposed transmembrane domain is underlined.

Figure 10 illustrates the proposed structure of the CA125 molecule based on the open reading frame sequence described herein. As shown, the molecule is dominated by a major repeat domain in the extracellular space along with a highly glycosylated amino terminal repeat.

The molecule is anchored by a transmembrane domain and also includes a cytoplasmic tail with potential for phosphorylation.

Figure 11 is a diagram of the CA125 gene showing the originally cloned domains of both the genomic and amino acid sequences and the extension of the glycosylated amino terminal protein sequence.

Figure 12 is a diagram of the contig alignment from overlapping chromosome 19 cosmids.

Figure 13 illustrates the genomic exon structure of the CA125 gene amino terminal extension.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, conventional molecular biology, microbiology, and recombinant DNA techniques may be used that will be apparent to those skilled in the relevant art. Such techniques are explained fully in the literature (see, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D. N. Glover ed. 1985); "Oligonucleotide Synthesis" (M. J. Gait ed. 1984); "Nucleic Acid Hybridization" (B. D. Hames & S. J. Higgins eds. (1985)); "Transcription and Translation" (B. D. Hames & S. J. Higgins eds. (1984)); "Animal Cell Culture" (R. I. Freshney, ed. (1986)); "Immobilized Cells And Enzymes" (IRL Press, (1986)); and B. Perbal, "A Practical Guide To Molecular Cloning" (1984)).

Therefore, if appearing herein, the following terms shall have the definitions set out below.

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form, or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA

found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

As used herein, the term "gene" shall mean a region of DNA encoding a polypeptide chain.

"Messenger RNA" or "mRNA" shall mean an RNA molecule that encodes for one or more polypeptides.

"DNA polymerase" shall mean an enzyme which catalyzes the polymerization of deoxyribonucleotide triphosphates to make DNA chains using a DNA template.

"Reverse transcriptase" shall mean an enzyme which catalyzes the polymerization of deoxy- or ribonucleotide triphosphates to make DNA or RNA chains using an RNA or DNA template.

"Complementary DNA" or "cDNA" shall mean the DNA molecule synthesized by polymerization of deoxyribonucleotides by an enzyme with reverse transcriptase activity.

An "isolated nucleic acid" is a nucleic acid the structure of which is not identical to that of any naturally occurring nucleic acid or to that of any fragment of a naturally occurring genomic nucleic acid spanning more than three separate genes. The term therefore covers, for example, (a) a DNA which has the sequence of part of a naturally occurring genomic DNA molecule but is not flanked by both of the coding sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (b) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene, i.e., a gene encoding a fusion protein.

"Oligonucleotide", as used herein in referring to the probes or primers of the present invention, is defined as a molecule comprised of two or more deoxy- or ribonucleotides, preferably more than ten. Its exact size will depend upon many factors which, in turn, depend upon the ultimate function and use of the oligonucleotide.

"DNA fragment" includes polynucleotides and/or oligonucleotides and refers to a plurality of joined nucleotide units formed from naturally-occurring bases and cyclofuranosyl groups joined by native phosphodiester bonds. This term effectively refers to naturally-occurring species or synthetic species formed from naturally-occurring subunits. "DNA fragment" also refers to purine and pyrimidine groups and moieties which function similarly but which have non naturally-occurring portions. Thus, DNA fragments may have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species. They may also contain altered base units or other modifications, provided that biological activity is retained. DNA fragments may also include species which include at least some modified base forms. Thus, purines and pyrimidines other than those normally found in nature may be so employed. Similarly, modifications on the cyclofuranose portions of the nucleotide subunits may also occur as long as biological function is not eliminated by such modifications.

"Primer" shall refer to an oligonucleotide, whether occurring naturally or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand, is induced, i.e., in the presence of nucleotides and an inducing agent such as a DNA polymerase and at a suitable temperature and pH. The primer may be either single-stranded or double-stranded and must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon many factors, including temperature, the source of primer and the method used. For example, for diagnostic applications, depending on the complexity of the target sequence, the oligonucleotide primer typically contains 10-25 or more nucleotides, although it may contain fewer nucleotides.

The primers herein are selected to be "substantially" complementary to different strands of a particular target DNA sequence. This means that the primers must be sufficiently complementary to hybridize with their respective strands. Therefore, the primer sequence need not reflect the exact sequence of the template. For example, a non-complementary nucleotide fragment may be attached to the 5' end of the primer, with the

remainder of the primer sequence being complementary to the strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the primer, provided that the primer sequence has sufficient complementarity with the sequence or hybridize therewith and thereby form the template for the synthesis of the extension product.

As used herein, the term "hybridization" refers generally to a technique wherein denatured RNA or DNA is combined with complementary nucleic acid sequence which is either free in solution or bound to a solid phase. As recognized by one skilled in the art, complete complementarity between the two nucleic acid sequences is not a pre-requisite for hybridization to occur. The technique is ubiquitous in molecular genetics and its use centers around the identification of particular DNA or RNA sequences within complex mixtures of nucleic acids.

As used herein, "restriction endonucleases" and "restriction enzymes" shall refer to bacterial enzymes which cut double-stranded DNA at or near a specific nucleotide sequence.

"Purified polypeptide"refers to any peptide generated from CA125 either by proteolytic cleavage or chemical cleavage.

"Degenerate variant" refers to any amino acid variation in the repeat sequence, which fulfills the homology exon structure and conserved sequences and is recognized by the M11, OC125 and ISOBM series of antibodies.

"Fragment" refers to any part of the CA125 molecule identified in a purification scheme.

"Conservative variant antibody" shall mean any antibody that fulfills the criteria of M11, OC125 or any of the ISOBM antibody series.

MATERIALS AND METHODS

A. Tissue collection, RNA Isolation and cDNA Synthesis

Both normal and ovarian tumor tissues were utilized for cDNA preparation. Tissues were routinely collected and stored at -80°C according to a tissue collection protocol.

Total RNA isolation was performed according to the manufacturer's instructions using the TriZol Reagent purchased from GibcoBRL (Catalog #15596-018). In some

instances, mRNA was isolated using oligo dT affinity chromatography. The amount of RNA recovered was quantitated by UV spectrophotometry. First strand complementary DNA (cDNA) was synthesized using 5.0 µg of RNA and random hexamer primers according to the manufacturer's protocol utilizing a first strand synthesis kit obtained from Clontech (Catalog #K1402-1). The purity of the cDNA was evaluated by PCR using primers specific for the ß-tubulin gene. These primers span an intron such that the PCR products generated from pure cDNA can be distinguished from cDNA contaminated with genomic DNA.

B. Identification and Ordering of CA125 Repeat Units

It has been demonstrated that the 2-5 million dalton CA125 glycoprotein (with repeat domains) can be chemically segmented into glycopeptide fragments using cyanogen bromide. As shown in Figure 1, several of these fragments, in particular the 40 kDa and 60 kDa fragments, still bind to the to the two classical antibody groups defined by OC 125 and M11.

To convert CA125 into a consistent glycopeptide, the CA125 parent molecule was processed by cyanogen bromide digestion. This cleavage process resulted in two main fractions on commassie blue staining following polyacrylamide gel electrophoresis. An approximately 60 kDa band and a more dominant 40 kDa band were identified as shown in Figure 1. When a Western blot of these bands was probed with either OC125 or M11 antibodies (both of which define the CA125 molecule), these bands bound both antibodies. The 40 kDa band was significantly more prominent than the 60 kDa band. These data thus established the likelihood of these bands (most especially the 40 kDa band) as being an authentic cleavage peptide of the CA125 molecule, which retained the identifying characteristic of OC125 and M11 binding.

The 40 kDa and 60 kDa bands were excised from PVDF blots and submitted to amino terminal and internal peptide amino acid sequencing as described and practiced by Harvard Sequencing, (Harvard Microchemistry Facility and The Biological Laboratories, 16 Divinity Avenue, Cambridge, Massachusetts 02138). Sequencing was successful only for the 40 kDa band where both amino terminal sequences and some internal sequences were obtained as shown in Table 1 at SEQ ID NOS: 1-4. The 40 kDa fragment of the CA125 protein was

found to have homology to two translated EST sequences (GenBank Accession Nos. BE005912 and AA640762). Visual examination of these translated sequences revealed similar amino acid regions, indicating a possible repetitive domain. The nucleotide and amino acid sequences for EST Genbank Accession No. BE005912 (corresponding to SEQ ID NO: 5 and SEQ ID NO: 6, respectively) are illustrated in Table 1. Common sequences are boxed or underlined.

In an attempt to identify other individual members of this proposed repeat family, two oligonucleotide primers were synthesized based upon regions of homology in these EST sequences. Shown in Table 2A, the primer sequences correspond to SEQ ID NOS: 7 and 8 (sense primers) and SEQ ID NOS: 9 and 10 (antisense primers). Repeat sequences were amplified in accordance with the methods disclosed in the following references: Shigemasa K et al., p21: A monitor of p53 dysfunction in ovarian neoplasia, Int. J. Gynecol. Cancer 7:296-303 (1997) and Shigemasa K et al., p16 Overexpression: A potential early indicator of transformation in ovarian carcinoma, J. Soc. Gynecol. Invest. 4:95-102 (1997). Ovarian tumor cDNA obtained from a tumor cDNA bank was used.

Amplification was accomplished in a Thermal Cycler (Perkin-Elmer Cetus). The reaction mixture consisted of 1U Taq DNA Polymerase in storage buffer A (Promega), 1X Thermophilic DNA Polymerase 10X Mg free buffer (Promega), 300mM dNTPs, 2.5mM MgCl2, and 0.25mM each of the sense and antisense primers for the target gene. A 20 μl reaction included 1 μl of cDNA synthesized from 50ng of mRNA from serous tumor mRNA as the template. PCR reactions required an initial denaturation step at 94°C/1.5 min. followed by 35 cycles of 94°C/0.5 min., 48°C/0.5 min., 72°C/0.5 min. with a final extension at 72°C/7 min. Three bands were initially identified (»400 bp, »800 bp, and »1200 bp) and isolated. After size analysis by agarose gel electrophoresis, these bands as well as any other products of interest were then ligated into a T-vector plasmid (Promega) and transformed into competent DH5α strain of *E. coli* cells. After growth on selective media, individual colonies were cultured overnight at 37°C, and plasmid DNA was extracted using the QIAprep Spin Miniprep kit (Qiagen). Positive clones were identified by restriction digests

using Apa I and Sac I. Inserts were sequenced using an ABI automatic sequencer, Model 377, T7 primers, and a Big Dye Terminator Cycle Sequencing Kit (Applied Biosystems).

Obtained sequences were analyzed using the Pileup program of the Wisconsin Genetic's Computer Group (GCG). Repeat units were ordered using primers designed against two highly conserved regions within the nucleotide sequence of these identified repeat units. Shown in Table 2B, the sense and antisense primers (5'-GTCTCTATGTCAATGGTTTCACCC-3' / 5'-TAGCTGCTCTCTGTCCAGTCC-3' SEQ ID NOS: 301 and 302, respectively) faced away from one another within any one repeat creating an overlap sequence, thus enabling amplification across the junction of any two repeat units. PCR reactions, cloning, sequencing, and analysis were performed as described above.

C. Identification and Assembly of the CA125 Amino Terminal Domain

In search of open reading frames containing sequences in addition to CA125 repeat units, database searches were performed using the BLAST program available at the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/). Using a repeat unit as the query sequence, cosmid AC008734 was identified as having multiple repeat sequences throughout the unordered (35) contiguous pieces of DNA, also known as contigs. One of these contigs, #32, was found to have exons 1 and 2 of a repeat region at its 3' end. Contig#32 was also found to contain a large open reading frame (ORF) upstream of the repeat sequence. PCR was again used to verify the existence of this ORF and confirm its connection to the repeat sequence. The specific primers recognized the 3' end of this ORF (5'-CAGCAGAGACCAGCACGAGTACTC-3')(SEQ ID NO: 51) and sequence within the repeat (5'-TCCACTGCCATGGCTGAGCT-3')(SEQ ID NO: 52). The remainder of the amino-terminal domain was assembled from this contig in a similar manner. With each PCR confirmation, a new primer (see Table 10A) was designed against the assembled sequence and used in combination with a primer designed against another upstream potential ORF (Set 1: 5'-CCAGCACAGCTCTTCCCAGGAC-3' / 5'-

GGAATGGCTGACGTCTG-3'(SEQ ID NO: 53 and SEQ ID NO: 54); Set 2: 5'-CTTCCCAGGACAACCTCAAGG-3' / 5'-GCAGGATGAGTGAGCCACGTG-3'(SEQ ID NO: 55 and SEQ ID NO: 56); Set 3: 5'-GTCAGATCTGGTGACCTCACTG-3' / 5'-GAGGCACTGGAAAGCCCAGAG-3')(SEQ ID NO: 57 and SEQ ID NO: 58). Potential

adjoining sequence (contig #7 containing EST AU133673) was also identified using contig #32 sequence as query sequence in database searches. Confirmation primers were designed and used in a typical manner (5'-CTGATGGCATTATGGAACACATCAC-3' / 5'-CCCAGAACGAGAGACCAGTGAG-3')(SEQ ID NO: 59 and SEQ ID NO: 60).

In order to identify the 5' end of the CA125 sequence, 5' Rapid Amplification of cDNA Ends (FirstChoiceTM RLM-RACE Kit, Ambion) was performed using tumor cDNA. The primary PCR reaction used a sense primer supplied by Ambion (5'-GCTGATGGCGATGAATGAACACTG-3') (SEQ ID NO: 61) and an anti-sense primer specific to confirmed contig #32 sequence (5'-CCCAGAACGAGAGACCAGTGAG-3')(SEQ ID NO: 62). The secondary PCR was then performed using nested primers, sense from Ambion (5'-CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG-3') (SEQ ID NO: 63) and the anti-sense was specific to confirmed contig #7 sequence (5'-CCTCTGTGTGCTGCTTCATTGGG-3')(SEQ ID NO: 64). The RACE PCR product (a band of approximately 300 bp) was cloned and sequenced as previously described.

D. Identification and Assembly of the CA125 Carboxy Terminal Domain

Database searches using confirmed repeat units as query also identified a cDNA sequence (GenBank AK024365) containing other repeat units, but also a potential carboxy terminal sequence. The contiguous nature of this sequence with assembled CA125 was confirmed using PCR (5'-GGACAAGGTCACCACACTCTAC-3' / 5'-GCAGATCCTCCAGGTCTAGGTGTG-3'), (SEQ ID NO: 303 and SEQ ID NO: 304, respectively) as well as contig and EST analysis.

E. Expression of 6xHis-tagged CA125 repeat in E. coli

The open reading frame of a CA125 repeat shown in Table 11 was amplified by PCR with the sense primer (5'-ACCGGATCCATGGGCCACACAGAGCCTGGCCC-3') (SEQ ID NO: 65) the antisense primer (5'-TGTAAGCTTAGGCAGGGAGGATGGAGTCC-3') (SEQ ID NO: 66) PCR was performed in a reaction mixture consisting of ovarian tumor cDNA derived from 50 ng of mRNA, 5 pmol each of sense and antisense primers for the CA125 repeat, 0.2 mmol of dNTPs, and 0.625 U of Taq polymerase in 1x buffer in a final volume of 25 ml. This mixture was subjected to 1 minute of denaturation at 95°C followed by 30 cycles of PCR consisting of the following: denaturation for 30 seconds at 95°C, 30 seconds of annealing at 62°C, and 1 minute of extension at 72°C with an additional 7 minutes of extension on the last cycle. The product was electrophoresed through a 2% agarose gel for separation. The PCR

WO 02/083866

product was purified and digested with the restriction enzymes *Bam HI* and *Hind III*. This digested PCR product was then ligated into the expression vector pQE-30, which had also been digested with *Bam HI* and *Hind III*. This clone would allow for expression of recombinant 6xHis-tagged CA125 repeat. Transformed *E. coli* (JM109) were grown to an OD600 of 1.5-2.0 at 37°C and then induced with IPTG (0.1 mM) for 4-6 hours at 25°C to produce recombinant protein. Whole *E. coli* lysate was electrophoresed through a 12% SDS polyacrylamide gel and Coomassie stained to detect highly expressed proteins.

F. Western Blot Analysis

Proteins were separated on a 12% SDS-PAGE gel and electroblotted at 100V for 40 minutes at 4°C to nitrocellulose membrane. Blots were blocked overnight in phosphate-buffered saline (PBS) pH 7.3 containing 5% non-fat milk. CA125 antibodies M11, OC125, or ISOBM 9.2 were incubated with the membrane at a dilution of 5µg/ml in 5% milk/PBS-T (PBS plus 0.1% TX-100) and incubated for 2 hours at room temperature. The blot was washed for 30 minutes with several changes of PBS and incubated with a 1:10,000 dilution of horseradish peroxidase (HRP) conjugated goat anti-mouse IgG antibody (Bio-Rad) for 1 hour at room temperature. Blots were washed for 30 minutes with several changes of PBS and incubated with a chemiluminescent substrate (ECL from Amersham Pharmacia Biotech) before a 10-second exposure to X-ray film for visualization.

Figure 4 illustrates three Western immunoblot patterns of the recombinant CA125 repeat purified from *E. coli* lysate (lane 2) compared to *E. coli* lysate with no recombinant protein (lane 1-negative control) and a recombinant protein TADG-14 which is unrelated to CA125 (lane 3). As shown, the M11 antibody, the OC125 antibody and the antibody ISOBM 9.2 (an OC125-like antibody) all recognized the CA125 recombinant repeat (lane 2), but did *not* recognize either the *E. coli* lysate (lane 1) or the unrelated TADG-14 recombinant (lane 3). These data confirm that the recombinant repeat encodes both independent epitopes for CA125, the OC125 epitope and the M11 epitope.

G. Northern Blot Analysis

Total RNA samples (approximately 10µg) were separated by electrophoresis through a 6.3% formaldehyde, 1.2% agarose gel in 0.02 M MOPS, 0.05 M sodium acetate (pH 7.0), and 0.001 M EDTA. The RNAs were then blotted to Hybond-N (Amersham) by capillary

action in 20x SSPE and fixed to the membrane by baking for 2 hours at 80°C. A PCR product representing one 400 bp repeat of the CA125 molecule was radiolabelled using the Prime-a-Gene Labeling System available from Promega (cat. #U1100). The blot was probed and stripped according to the ExpressHyb Hybridization Solution protocol available from Clontech (Catalog #8015-1).

RESULTS

In 1997, a system was described by a co-inventor of the present invention and others for purification of CA125 (primarily from patient ascites fluid), which when followed by cyanogen bromide digestion, resulted in peptide fragments of CA125 of 60 kDa and 40 kDa [O'Brien TJ et al., More than 15 years of CA125: What is known about the antigen, its structure and its function, Int J Biological Markers 13(4)188-195 (1998)]. Both fragments were identifiable by commassie blue staining on polyacrylamide gels and by Western blot. Both fragments were shown to bind both OC125 and M11 antibodies, indicating both major classes of epitopes were preserved in the released peptides (Figure 1).

Protein sequencing of the 40 kDa band yielded both amino terminal sequences and some internal sequences generated by protease digestion (Table 1 - SEQ ID NOS: 1-4). Insufficient yields of the 60 kDa band resulted in unreliable sequence information. Unfortunately, efforts to amplify PCR products utilizing redundant primers designed to these sequences were not successful. In mid 2000, an EST (#BE005912) was entered into the GCG database, which contained homology to the 40 kDa band sequence as shown in Table 1 (SEQ ID NOS: 5 and 6). The translation of this EST indicated good homology to the amino terminal sequence of the 40 kDa repeat (e.g. PGSRKFKTTE) with only one amino acid difference (i.e. an asparagine is present instead of phenylalanine in the EST sequence). Also, some of the internal sequences are partially conserved (e.g. SEQ ID NO: 2 and to a lesser extent, SEQ ID NO: 3 and SEQ ID NO: 4). More importantly, all the internal sequences are preceded by a basic amino acid (Table 1, indicated by arrows) appropriate for proteolysis by the trypsin used to create the internal peptides from the 40 kDa cyanogen bromide repeat. Utilizing the combined sequences, those obtained by amino acid sequencing and those identified in the EST (#BE005912) and a second EST (#AA640762) identified in the database, sense primers were created as follows: 5'-GGA GAG GGT TCT GCA GGG TC-3' (SEQ ID NO: 7) representing amino acids ERVLQG and anti-sense primer, 5' GTG AAT GGT ATC AGG AGA GG-3' (SEQ ID NO: 9) representing PLLIPF. Using PCR, the presence of transcripts was confirmed representing these sequences in ovarian tumors and their absence in normal ovary and either very low levels or no detectable levels in a mucinous tumor (Figure 2A). The existence of transcripts was further confirmed in cDNA derived from multiple primary ovarian carcinoma cell lines and the absence of transcripts in matched lymphocyte cultures from the same patient (Figure 2B).

After cloning and sequencing of the amplified 400 base pair PCR products, a series of sequences were identified, which had high homology to each other but which were clearly distinct repeat entities (Figure 3) (SEQ ID NOS: 158 through 161).

Examples of each category of repeats were sequenced, and the results are shown in Tables 3, 4, and 5. The sequences represent amplification and sequence data of PCR products obtained using oligonucleotide primers derived from an EST (Genbank Accession No. BE005912). Table 3 illustrates the amino acid sequence for a 400 bp repeat in the CA125 molecule, which is identified as SEQ ID NO: 11 through SEQ ID NO: 21. Table 4 illustrates the amino acid sequence for a 800 bp repeat in the CA125 molecule, which corresponds to SEQ ID NO: 22 through SEQ ID NO: 35. Table 5 illustrates the amino acid sequence for a 1200 bp repeat in the CA125 molecule, which is identified as SEQ ID NO: 36 through SEQ ID NO: 46. Assembly of these repeat sequences (which showed 75-80% homology to each other as determined by GCG Software (GCG = Genetics Computer Group) using the Pileup application) utilizing PCR amplification and sequencing of overlapping sequences allowed for the construction of a 9 repeat structure. The amino acid sequence for the 9 repeat is shown in Table 6 as SEQ ID NO: 47. The individual C-enclosures are highlighted in the table.

Using the assembled repeat sequence in Table 6 to search genebank databases, a cDNA sequence referred to as Genbank Accession No. AK024365 (entered on 9/29/00) was discovered. Table 7 shows the amino acid sequence for AK024365, which corresponds to SEQ ID NO: 48. AK024365 was found to overlap with two repeats of the assembled repeat sequence shown in Table 6. Individual C-enclosures are highlighted in Table 7.

The cDNA for AK024365 allowed alignment of four additional repeats as well as a downstream carboxy terminus sequence of the CA125 gene. Table 8 illustrates the complete

DNA sequence of 13 repeats contiguous with the carboxy terminus of the CA125 molecule, which corresponds to SEQ ID NO: 49. Table 9 illustrates the complete amino acid sequence of the 13 repeats and the carboxy terminus of the CA125 molecule, which corresponds to SEQ ID NO: 50. The carboxy terminus domain was further confirmed by the existence of two EST's (Genbank Accession Nos. AW150602 and AI923224) in the genebank database, both of which confirmed the stop-codon indicated (TGA) as well as the poly A signal sequence (AATAA) and the poly A tail (see Table 9). The presence of these repeats has been confirmed in serous ovarian tumors and their absence in normal ovarian tissue and mucinous tumors as expected (see Figure 2A). Also, the transcripts for these repeats have been shown to be present in tumor cell lines derived from ovarian tumors, but not in normal lymphocyte cell lines (Figure 2B). Moreover, Northern blot analysis of mRNA derived from normal or ovarian carcinoma and probed with a P³² labeled CA125 repeat sequence (as shown in Figure 6) confirmed the presence of an RNA transcript in excess of 20 kb in ovarian tumor extracts (see Figure 2B).

To date, 45 repeat sequences have been identified with high homology to each other. To order these repeat units, overlapping sequences were amplified using a sense primer (5' GTC TCT ATG TCA ATG GTT TCA CCC-3') (SEQ ID NO: 305) from an upstream repeat and an antisense primer from a downstream repeat sequence (antisense 5' TAG CTG CTC TCT GTC CAG TCC-3') (SEQ ID NO: 306). Attempts have been made to place these repeats in a contiguous fashion as shown in Figure 3. There is some potential redundancy. Further, there is evidence from overlapping sequences that some repeats exist in more than one location in the sequence giving a total of more than 60 repeats in the CA125 molecule (see Table 21 SEQ ID NO: 162).

Final confirmation of the relationship of the putative CA125 repeat domain to the known CA125 molecule was achieved by expressing a recombinant repeat domain in *E. coli*. In Figure 4, expression of a recombinant CA125 repeat domain is shown in lane 2 compared to the vector alone in lane 1, Panel D. A series of Western blots representing *E. coli* extracts of vector alone in lane 1; CA125 recombinant protein lane in 2 and recombinant TADG-14 (an unrelated recombinant protease), lane 3, were probed with the CA125 antibodies M11, Panel A; OC125,

Panel B; and ISOBM 9.2, Panel C. In all cases, CA125 antibodies recognized only the recombinant CA125 antigen (lane 2 of each panel).

To further characterize the epitope location of the CA125 antibodies, recombinant CA125 repeat was digested with the endoprotease Lys-C and separately with the protease Asp-N. In both cases, epitope recognition was destroyed. As shown in Figure 5, the initial cleavage site for ASP-N is at amino acid #76 (indicated by arrow in Figure 5C). This sequence (amino acids #1-76), a 17 kDa band, was detected with anti-histidine antibodies (Figure 5A,Lane 3) and found to have no capacity to bind CA125 antibodies (Figure 5B, Lane 3). The upper bands in Figures 5A and 5B represent the undigested remaining portion of the CA125 recombinant repeat. From these data, one can reasonably conclude that epitopes are either located at the site of cleavage and are destroyed by Asp-N or are downstream from this site and also destroyed by cleavage. Likewise, cleavage with Lys-C would result in a peptide, which includes amino acids #68-154 (Figure 5C) and again, no antibody binding was detected. In view of the foregoing, it seems likely that epitope binding resides in the cysteine loop region containing a possible disulfide bridge (amino acids #59-79). Final confirmation of epitope sites are being examined by mutating individual amino acids.

To determine transcript size of the CA125 molecule, Northern blot analysis was performed on mRNA extracts from both normal and tumor tissues. In agreement with the notion that CA125 may be represented by an unusually large transcript due to its known mega dalton size in tumor sera, ascites fluid, and peritoneal fluid [Nustad K et al., CA125 – epitopes and molecular size, Int. J of Biolog. Markers, 13(4)196-199 (1998)], a transcript was discovered which barely entered the gel from the holding well (Figure 6). CA125 mRNA was only present in the tumor RNA sample and while a precise designation of its true size remains difficult due to the lack of appropriate standards, its unusually large size would accommodate a protein core structure in excess of 11,000 amino acids.

Evidence demonstrates that the repeat domain of the CA125 molecule encompasses a minimum of 45 different 156 amino acid repeat units and possibly greater than 60 repeats, as individual repeats occur more than once in the sequence. This finding may well account for the extraordinary size of the observed transcript. The amino acid composition of the repeat units (Figure 7A, 7C, Table 21) indicates that the sequence is rich in serine, threonine, and proline typical of the high STP repeat regions of the mucin genes [Gum Jr., JR, Mucin genes and the

PCT/US02/11734

proteins they encode: Structure, diversity and regulation, Am J Respir. Cell Mol. Biol. 7:557-564 (1992)]. Results suggest that the downstream end of the repeat is heavily glycosylated.

WO 02/083866

ý

Also noteworthy is a totally conserved methionine at position 24 of the repeat (Figure 7A, 7C). It is this methionine which allowed cyanogen bromide digestion of the CA125 molecule, resulting in the 40 kDa glycopeptide that was identified with OC125 and M11 antibodies in Western blots of the CNBr digested peptides. These data predict that the epitopes for the CA125 antibodies are located in the repeat sequence. By production of a recombinant product representing the repeat sequence, results have confirmed this to be true. A potential disulfide bond is noted, which would encompass a C-enclosure comprising 19 amino acids enclosed by two cysteines at positions #59 and #79. The cysteines are totally conserved, which suggest a biological role for the resulting putative C-enclosure in each repeat. As mentioned above, it is likely that the OC125 and M11 epitopes are located in the C-enclosure, indicating its relative availability for immune detection. This is probably due to the C-enclosure structure and the paucity of glycosylation in the immediate surrounding areas. Domain searches also suggest some homology in the repeat domain to an SEA domain commonly found in the mucin genes [Williams SJ et al., MUC13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells, J of Biol. Chem 276(21)18327-18336 (2001)] beginning at amino acid #1 and ending at #131 of each repeat. No biological function has been described for this domain.

Based on homology of the repeat sequences to chromosome 19q 13.2 (cosmid #AC008734) and confirmed by genomic amplification, it has been established that each repeat is comprised of 5 exons (covering approximately 1900 bases of genomic DNA): exon 1 comprises 42 amino acids (#1-42); exon 2 comprises 23 amino acids (#43-65); exon 3 comprises 58 amino acids (#66-123); exon 4 comprises 12 amino acids (#124-135); and exon 5 comprises 21 amino acids (#136-156) (see Figure 7B). Homology pile-ups of individual exons have also been completed (see Figure 7C), which indicates that exon 1 has a minimum of 31 different copies of the exon; exon 2 has 27 copies; exon 3 has 28 copies, exon 4 has 28 copies and exon 5 has 21 copies. If all exons were only found in a single configuration relative to each other, one could determine that a minimum number of repeats of 31 were present in the CA125 molecule. Using the exon 2 pile-up data as an example, it has been established as mentioned above that there are 27 individual exon 2 sequences. Using exon 2, which was sequenced fully in both the repeat units and the overlaps, results established that a minimum of 45 repeat units are present when

exon 2 is combined with unique other exon combinations. However, based on overlap sequence information, 60+ repeat units are likely present in the CA125 molecule (Table 21). This larger number of repeat units can be accounted for by the presence of the same repeat unit occurring in more than one location.

Currently, the repetitive units of the repeat domain of the CA125 molecule constitute the majority of its extracellular molecular structure. These sequences have been presented in a tandem fashion based on overlap sequencing data. Some sequences may be incorrectly placed and some repeat units may not as yet be identified (Table 21). More recently, an additional repeat was identified in CA125 as shown in Tables 22 and 23 (SEQ. ID NOS: 307 and 308). The exact position has not yet been identified. Also, there is a potential that alternate splicing and/or mutation could account for some of the repeat variants that are listed. Studies are being conducted to compare both normal tissue derived CA125 repeats to individual tumor derived CA125 repeats to determine if such variation is present. Currently, the known exon configurations would easily accommodate the greater than 60 repeat units as projected. It is, therefore, unlikely that alternate splicing is a major contributor to the repetitive sequences in CA125. It should also be noted that the genomic database for chromosome 19q 13.2 only includes about 10 repeat units, thus indicating a discrepancy between the data of the present invention (more than 60 repeats) and the genomic database. A recent evaluation of the methods used for selection and assembly for genomic sequence [Marshall E, DNA Sequencing: Genome teams adjust to shotgum marriage, Science 292:1982-1983 (2001)] reports that "more research is needed on repeat blocks of almost identical DNA sequence which are more common in the human genome. Existing assembly programs can't handle them well and often delete them." The CA125 repeat units located on chromosome 19 may well be victims of deletion in the genomic database, thus accounting for most CA125 repeat units absent from the current databases.

A. Sequence Confirmation and Assembly of the Amino Terminal Domain (Domain 1) of the CA125 Molecule

As previously mentioned, homology for repeat sequences was found in the chromosome 19 cosmid AC008734 of the GCG database. This cosmid at the time consisted of 35 unordered contigs. After searching the cosmid for repeat sequences, contig #32 was found to have exons 1 and 2 of a repeat unit at its 3' end. Contig #32 also had a large open reading frame upstream

from the two repeat units, which suggested that this contig contained sequences consistent with the amino terminal end of the CA125 molecule. A sense primer was synthesized to the upstream non-repeat part of contig #32 coupled with a specific primer from within the repeat region (see Methods). PCR amplification of ovarian tumor cDNA confirmed the contiguous positioning of The PCR reaction yielded a band of approximately 980bp. The band was these two domains. sequenced and found to connect the upstream open reading frame to the repeat region of CA125. From these data, more primer sets (see Methods) were synthesized and used in PCR reactions to piece together the entire open reading frame contained in contig #32. To find the 5' most end of the sequence, an EST (AU133673) was discovered, which linked contig #32 to contig #7 of the same cosmid. Specific primers were synthesized, (5'-CTGATGGCATTATGGAACACATCAC-3' (SEQ ID NO: 59) and 5'-CCCAGAACGAGAGACCAGTGAG-3' (SEQ ID NO: 60)), to the EST and contig #32. A PCR reaction was performed to confirm that part of the EST sequence was in fact contiguous with contig #32. Confirmation of this contiguous 5' prime sequencing strategy using overlapping sequences allowed the assembly of the 5' region (Domain 1) (Figure 8A). 5' RACE PCR was performed on tumor cDNA to confirm the amino terminal sequence to CA125. The test confirmed the presence of contig #7 sequence at the amino terminal end of CA125.

The amino terminal domain comprises five genomic exons covering approximately 13,250 bp. Exon 1, a small exon, (amino acids #1-33) is derived from contig #7 (Figure 8A). The remaining exons are all derived from contig #32: Exon 2 (amino acids #34-1593), an extraordinarily large exon, Exon 3 (amino acids #1594-1605), Exon 4 (amino acids #1606-1617) and Exon 5 (amino acids #1618-1637) (see Figure 8A).

Potential N-glycosylation sites marked (x) are encoded at positions #81, #271, #320, #624, #795, #834, #938, and #1,165 (see Figure 8B). O-glycosylation sites are extraordinarily abundant and essentially cover the amino terminal domain (Figure 8B). As shown by the O-glycosylation pattern, Domain 1 is highly enriched in both threonine and serine (Figure 8B).

With additional research, an extension of the glycosylated amino terminal sequence was identified and cloned. Table 24 (SEQ ID NO: 309) illustrates the DNA sequence of the CA125 amino terminal extension. Table 25 (SEQ ID NO: 310) illustrates the protein sequence for the amino terminal extension of the CA125 gene. It should be noted that the last four amino acids,

TDGI, in SEQ ID NO: 310 belong to exon 1 of the amino terminal domain. Table 26 illustrates the serine/threonine o-glycosylation pattern for the CA125 amino terminal extension.

B. Sequence Confirmation and Assembly of the CA125 Carboxy Terminal End (Domain 3)

A search of Genbank using the repeat sequences described above uncovered a cDNA sequence referred to as Genbank accession number AK024365. This sequence was found to have 2 repeat sequences, which overlapped 2 known repeat sequences of a series of 6 repeats. As a result, the cDNA allowed the alignment of all six carboxy terminal repeats along with a unique carboxy terminal sequence. The carboxy terminus was further confirmed by the existence of two other ESTs (Genbank accession numbers AW150602 and A1923224), both of which confirmed a stop codon as well as a poly-A signal sequence and a poly-A tail (see GCG database #AF414442). The sequence of the carboxy terminal domain was confirmed using primers designed to sequence just downstream of the repeat domain (sense primer 5' GGA CAA GGT CAC CAC ACT CTA C-3') (SEQ ID NO: 303) and an antisense primer (5'-GCA GAT CCT CCA GGT CTA GGT GTG-3') (SEQ ID NO: 304) designed to carboxy terminus (Figure 9A).

The carboxy terminal domain covers more than 14,000 genomic bp. By ligation, this domain comprises nine exons as shown in Figure 9A. The carboxy-terminus is defined by a 284 amino acid sequence downstream from the repeat domains (see Figure 9B). Both N-glycosylation sites marked (x) (#31, #64, #103, #140, #194, #200) and a small number of O-glycosylation sites marked (o) are predicted for the carboxy end of the molecule (Figures 9A, 9B). Of special note is a putative transmembrane domain at positions #230-#252 followed by a cytoplasmic domain, which is characterized by a highly basic sequence adjacent to the membrane (#256-#260) as well as several potential S/T phosphorylation sites (#254, #255, #276) and tyrosine phosphorylation sites (at # 264, #273, #274) (Figures 9A, 9B).

Assembly of the CA125 molecule as validated by PCR amplification of overlap sequence provides a picture of the whole molecule (see Figure 10 and Table 21). The complete nucleotide sequence is available in Genebank, Accession #AF414442 and the amino acid sequence as currently aligned is shown in Table 21.

DISCUSSION

The CA125 molecule comprises three major domains; an extracellular amino terminal domain (Domain 1), a large multiple repeat domain (Domain 2) and a carboxy terminal domain (Domain 3), which includes a transmembrane anchor with a short cytoplasmic domain (Figure 10). The amino terminal domain is assembled by combining five genomic exons, four very short amino terminal sequences and one extraordinarily large exon, which often typifies mucin extracellular glycosylated domains [Desseyn JL et al., Human mucin gene MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. Structural evidence for a 11p15.5 gene family, *J. Biol. Chem.* 272(6):3168-3178 (1997)]. This domain is dominated by its capacity for O-glycosylation and its resultant richness in serine and threonine residues. Overall, the potential for O-glycosylation essentially covers this domain and, as such, may allow the carbohydrate superstructure to influence ECM interaction at this end of the CA125 molecule (Figure 8). There is one short area (amino acids # 74-120) where little or no glycosylation is predicted, which could allow for protein-protein interaction in the extracellular matrix.

Efforts to purify CA125 over the years were obviously complicated by the presence of this amino terminal domain, which is unlikely to have any epitope sites recognized by the OC125 or M11 class antibodies. As the CA125 molecule is degraded *in vivo*, it is likely that this highly glycosylated amino terminal end will be found associated with varying numbers of repeat units. This could very well account for both the charge and size heterogeneity of the CA125 molecule so often identified from serum and ascites fluid. Also of note are two T-TALK sequences at amino acids # 45-58 (underlined in Figure 8B), which are unique to the CA125 molecule.

The extracellular repeat domain, which characterizes the CA125 molecule, also represents a major portion of the molecular structure. It is downstream from the amino terminal domain and presents itself in a much different manner to its extracellular matrix neighbors. These repeats are characterized by many features including a highly-conserved nature (Figure 3) and a uniformity in exon structure (Figure 7). But most consistently, a cysteine enclosed sequence may form a cysteine loop (Table 21). This structure may provide extraordinary potential for interaction with neighboring matrix molecules. Domain 2 encompasses the 156 amino acid repeat units of the CA125 molecule. The repeat domain constitutes the largest proportion of the CA125 molecule (Table 21 and Figure 10). Because it has been known for more than 15 years that antibodies bind in a multivalent fashion to CA125, it has been predicted

that the CA125 molecule would include multiple repeat domains capable of binding the OC125 and M11 class of sentinel antibodies which define this molecule [O'Brien et al., New monoclonal antibodies identify the glycoprotein carrying the CA125 epitope, Am J Obstet Gynecol. 165:1857-1964 (1991); Nustad K et al., Specificity and affinity of 26 monoclonal antibodies against the CA125 antigen: First report from the ISOBM TD-1 workshop, Tumor Biology 17:196-219 (1996); and Bast RC et al., A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer, N. Engl. J. Med. 309:883-887 (1983)]. In the present invention, more than 60 repeat units have been identified, which are in tandem array in the extracellular portion of the CA125 molecule. Individual repeat units have been confirmed by sequencing and further identified by PCR amplification of the overlapping repeat sequences. Results confirm the contiguous placement of most repeats relative to its neighbor (Table 21).

Initial evidence suggests that this area is a potential site for antibody binding and also for ligand binding. The highly conserved methionine and several highly conserved sequences within the repeat domain also suggests a functional capacity for these repeat units. The extensive glycosylation of exons 4 & 5 of the repeat unit and the N-glycosylation potential in exon 1 and the 5' end of exon 2 might further point to a functional capacity for the latter part of exon 2 and exon 3 which includes the C-enclosure (see Figure 7). It should be apparent that the C-enclosure might be a prime target for protease activity and such cleavage may well explain the difficulty experienced by many investigators in obtaining an undigested CA125 parent molecule. Such activity might explain the diffuse pattern of antibody binding and the loss of antibody binding for molecules of less than 200,000 kDa. Proteolysis would destroy the epitopes and, therefore, only multiple repeats could be identified by blotting with CA125 antibodies. The repeat unit organization also suggests the potential for a multivalent interaction with extracellular entities.

The carboxy terminal domain of the CA125 molecule comprises an extracellular domain, which does not have any homology to other known domains. It encodes a typical transmembrane domain and a short cytoplasmic tail. It also contains a proteolytic cleavage site approximately 50 amino acids upstream from the transmembrane domain. This would allow for proteolytic cleavage and release of the CA125 molecule (Figure 9). As indicated by Fendrick, et al. [CA125 phosphorylation is associated with its secretion from the WISH human amnion cell line, *Tumor Biology* 18:278-289 (1997)], release of the CA125 molecule is preceded by

phosphorylation and sustained by inhibitors of phosphatases, especially inhibition of phosphatase 2B. The cytoplasmic tail which contains S/T phosphorylation sites next to the transmembrane domain and tyrosine phosphorylation sites downstream from there could accommodate such phosphorylation. A very distinguishable positively charged sequence is present upstream from the tyrosine, suggesting a signal transduction system involving negatively charged phosphate groups and positively charged lysine and arginine groups.

These features of the CA125 molecule suggest a signal transduction pathway involvement in the biological function of CA125 [Fendrick JL et al., CA125 phosphorylation is associated with its secretion from the WISH human amnion cell line, Tumor Biology 18:278-289 (1997); and Konish I et al., Epidermal growth factor enhances secretion of the ovarian tumor-associated cancer antigen CA125 from the human amnion WISH cell line, J Soc. Gynecol. Invest. 1:89-96 (1994)]. It also reinforces the prediction of phosphorylation prior to CA125 release from the membrane surface as previously proposed [Fendrick JL et al., CA125 phosphorylation is associated with its secretion from the WISH human amnion cell line, Tumor Biology 18:278-289 (1997); and Konish I et al., Epidermal growth factor enhances secretion of the ovarian tumor-associated cancer antigen CA125 from the human amnion WISH cell line, J Soc. Gynecol. Invest. 1:89-96 (1994)]. Furthermore, a putative proteolytic cleavage site on the extra-cellular side of the transmembrane domain is present at position #176-181.

How well does the CA125 structure described in the present invention compare to the previously known CA125 structure? O'Brien et al. reported that a number of questions needed to be addressed: 1) the multivalent nature of the molecule; 2) the heterogeneity of CA125; 3) the carbohydrate composition; 4) the secretory or membrane bound nature of the CA125 molecule; 5) the function of the CA125 molecule; and 6) the elusive CA125 gene [More than 15 years of CA125: What is known about the antigen, its structure and its function, Int J Biological Markers 13(4)188-195 (1998)]. Several of these questions have been addressed in the present invention including, of course, the gene and its protein core product. Perhaps, most interestingly is the question of whether an individual large transcript accounted for the whole CA125 molecule, or a number of smaller transcripts which represented subunits that specifically associated to produce the CA125 molecule. From the results produced by way of the present invention, it is now apparent that the transcript of CA125 is large - similar to some of the mucin gene transcripts e.g. MUC 5B [see Verma M et al., Mucin genes: Structure, expression and regulation,

Glycoconjugate J. 11:172-179 (1994); and Gendler SJ et al., Epithelial mucin genes, Annu. Rev. Physiol. 57:607-634 (1995)]. The protein core extracellular domains all have a high capacity for O-glycosylation and, therefore, probably accounts for the heterogeneity of charge and size encountered in the isolation of CA125. The data also confirm the O-glycosylation inhibition data, indicating CA125 to be rich in O-glycosylation [Lloyd KO et al., Synthesis and secretion of the ovarian cancer antigen CA125 by the human cancer cell line NIH: OVCAR-3, Tumor Biology 22, 77-82 (2001); Lloyd KO et al., Isolation and characterization of ovarian cancer antigen CA125 using a new monoclonal antibody (VK-8): Identification as a mucin-type molecule, Int. J. Cancer, 71:842-850 (1997); and Fendrick JL et al., Characterization of CA125 synthesized by the human epithelial amnion WISH cell line, Tumor Biology 14:310-318 (1993)].

The repeat domain which includes more than 60 repeat units accounts for the multivalent nature of the epitopes present, as each repeat unit likely contains epitope binding sites for both OC125-like antibodies and M11-like antibodies. The presence of a transmembrane domain and cleavage site confirms the membrane association of CA125, and reinforces the data which indicates a dependence of CA125 release on proteolysis. Also, the release of CA125 from the cell surface may well depend on cytoplasmic phosphorylation and be the result of EGF signaling [Nustad K et al., Specificity and affinity of 26 monoclonal antibodies against the CA125 antigen: First report from the ISOBM TD-1 workshop, Tumor Biology 17:196-219 (1996)]. As for the question of inherent capacity of CA125 for proteolytic activity, this does not appear to be the case. However, it is likely that the associated proteins isolated along with CA125 (e.g. the 50 kDa protein which has no antibody binding ability) may have proteolytic activity. In any case, proteolysis of an extracellular cleavage site is the most likely mechanism of CA125 release. Such cleavage would be responsive to cytoplasmic signaling and mediated by an associated extracellular protease activity.

In summary, the large number of tandem repeats of the CA125 molecule, which dominate its molecular structure and contain the likely epitope binding sites of the CA125 molecule, was unexpected. Also, one cannot as yet account for the proteolytic activity, which has plagued the isolation and characterization of this molecule for many years. While no protease domain per se is constituitively part of the CA125 molecule, there is a high likelihood of a direct association by an extracellular protease with the ligand binding domains of the CA125 molecule. Finally, what is the role of the dominant repeat domain of this extracellular structure? Based on the expression

data of CA125 on epithelial surfaces and in glandular ducts, it is reasonable to conclude that the unique structure of these repeat units with their cysteine loops plays a role both as glandular anti-invasive molecules (bacterial entrapment) and/or a role in anti-adhesion (maintaining patency) between epithelial surfaces and in ductal linings.

Recently, Yin and Lloyd described the partial cloning of the CA125 antigen using a completely different approach to that described in the present invention [Yin TWT et al., Molecular cloning of the CA125 ovarian cancer antigen. Identification as a new mucin (MUC16), J Biol. Chem. 276:27371-27375 (2001)]. Utilizing a polyclonal antibody to CA125 to screen an expression library of the ovarian tumor cell line OVCAR-3, these researchers identified a 5965 bp clone containing a stop codon and a poly A tail, which included nine partially conserved tandem repeats followed by a potential transmembrane region with a cytoplasmic tail. The 5965 bp sequence is almost completely homologous to the carboxy terminus region shown in Table 21. Although differing in a few bases, the sequences are homologous. As mentioned above, the cytoplasmic tail has the potential for phosphorylation and a transmembrane domain would anchor this part of the CA125 molecule to the surface of the epithelial or tumor cell. In the extracellular matrix, a relatively short transition domain connects the transmembrane anchor to a series of tandem repeats - in the case of Yin and Lloyd, nine.

By contrast, the major extracellular part of the molecule of the present invention as shown is upstream from the sequence described by Yin and includes a large series of tandem repeats. These results, of course, provide a different picture of the CA125 molecule, which suggest that CA125 is dominated by the series of extracellular repeats. Also included is a major amino terminal domain (~1638 amino acids) for the CA125 molecule, which it is believed accounts for a great deal of the O-glycosylation known to be an important structural component of CA125.

In conclusion, a CA125 molecule is disclosed which requires a transcript of more than 35,000 bases and occupies approximately 150,000 bp on chromosome 19q 13.2. It is dominated by a large series of extracellular repeat units (156 amino acids), which offer the potential for molecular interactions especially through a highly conserved unique cysteine loop. The repeat units also include the epitopes now well-described and classified for both the major class of CA125 antibodies (i.e., the OC125 and the M11 groups). The CA125 molecule is anchored at its carboxy terminal through a transmembrane domain and a short cytoplasmic tail. CA125 also

contains a highly glycosylated amino terminal domain, which includes a large extracellular exon typical of some mucins. Given the massive repeat domain presence of both epithelial surfaces and ovarian tumor cell surfaces, it might be anticipated that CA125 may play a major role in determining the extracellular environment surrounding epithelial and tumor cells.

Advantages and Uses of the CA125 Recombinant Products

- 1) Current assays to CA125 utilize as standards either CA125 produced from cultured cell lines or from patient ascites fluid. Neither source is defined with regard to the quality or purity of the CA125 molecule. Therefore arbitrary units are used to describe patient levels of CA125. Because cut-off values are important in the treatment of patients with elevated CA125 and because many different assay systems are used clinically to measure CA125, it is relevant and indeed necessary to define a standard for all CA125 assays. Recombinant CA125 containing epitope binding sites could fulfill this need for standardization. Furthermore, new and more specific assays may be developed utilizing recombinant products for antibody production.
- 2) Vaccines: Adequate data now exists [see Wagner U et al., Immunological consolidation of ovarian carcinoma recurrences with monoclonal anti-idiotype antibody ACA125: Immune responses and survival in palliative treatment, Clin. Cancer Res. 7:1112-1115 (2001)], which suggest and support the idea that CA125 could be used as a therapeutic vaccine to treat patients with ovarian carcinoma. Heretofore, in order to induce cellular and humoral immunity in humans to CA125, murine antibodies specific for CA125 were utilized in anticipation of patient production of anti-ideotypic antibodies, thus indirectly allowing the induction of an immune response to the CA125 molecule. With the availability of recombinant CA125, especially domains which encompass epitope binding sites for known murine antibodies and domains directly anchoring CA125 on the tumor cell, it will be feasible to more directly stimulate patients' immune systems to CA125 and as a result, extend the life of ovarian carcinoma patients as demonstrated by Wagner et al.

Several approaches can be utilized to achieve such a therapeutic response in the immune system by: 1) directly immunizing the patient with recombinant antigen containing the CA125 epitopes or other domains; 2) harvesting dendritic cells from the patient; 3)

expanding these cells in *in vitro* culture; 4) activating the dendritic cells with the recombinant CA125 epitope domain or other domains or with peptides derived from these domains [see Santin AD *et al.*, Induction of ovarian tumor-specific CD8+ cytotoxic T lymphocytes by acid-eluted peptide-pulsed autologous dendritic cells, *Obstetrics & Gynecology* 96(3):422-430 (2000)]; and then 5) returning these immune stem cells to the patient to achieve an immune response to CA125. This procedure can also be accomplished using specific peptides which are compatible with histocompatibility antigens of the patient. Such peptides compatible with the HLA-A2 binding motifs common in the population are indicated in Figure 12.

- 3) Therapeutic Targets: Molecules, which are expressed on the surface of tumor cells as CA125 is, offer potential targets for immune stimulation, drug delivery, biological modifier delivery or any agent which can be specifically delivered to ultimately kill the tumor cells. CA125 offers such potential as a target: 1) Antibodies to CA125 epitopes or newly described potential epitopes: Most especially humanized or human antibodies to CA125 which could directly activate the patients' immune system to attack and kill tumor cells. Antibodies could be used to deliver all drug or toxic agents including radioactive agents to mediate direct killing of tumor cells. 2) Natural ligands: Under normal circumstances, molecules are bound to the CA125 molecule e.g. a 50 k dalton protein which does not contain CA125 epitopes co-purifies with CA125. Such a molecule, which might have a natural binding affinity for domains on the CA125 molecule, could also be utilized to deliver therapeutic agents to tumor cells.
- 4) Anti-sense therapy: CA125 expression may provide a survival or metastatic advantage to ovarian tumor cells as such antisense oligonucleotide derived from the CA125 sequence could be used to down-regulate the expression of CA125. Antisense therapy could be used in association with a tumor cell delivery system such as described above.
- 5) Small Molecules: Recombinant domains of CA125 also offer the potential to identify small molecules which bind to individual domains of the molecule. Small molecules either from combinatorial chemical libraries or small peptides can also be used as delivery agents or as biological modifiers.

All references referred to herein are hereby incorporated by reference in their entirety. It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its attendant advantages.

Comparison of the Amino Acid Terminal Sequences and Several Internal Sequences for the 40kD Band for CA125 glycoprotein (SEQ ID NO: 1 through SEQ ID NO: 4) to the Nucleotide and Amino Acid Sequences for EST Genbank Accession No. AA640762

(SEQ ID NO: 5 and SEQ ID NO: 6, respectively)

40kDa Nterm - QHPGSRKFKTTEG (SEQ ID NO: 1)

Peak 68 – FLTVERVLQGL (SEQ ID NO: 2)

Peak 65 – DTYVGPLY (SEQ ID NO: 3)

Peak 30 – DGAANGVD (SEQ ID NO: 4)

(SEQ ID NO: 5 and SEQ ID NO: 6)

- 1 CGTCGACCTGGCTCTAGAAAGTTTAACACCACGGAGAGAGTCCTTCAGGGTCTGCTCAGG R R P G S R K F N T T E R V L Q G L L R
- 61 CCTGTGTTCAAGAACACCAGTGTTGGCCCTCTGTACTCTGGCTGCAGACTGACCTTGCTC
 P V F K N T S V G P L Y S G C R L T L L
- 121 AGGCCCAAGAAGGATGGGGCAGCCACCAAAGTGGATGCCATCTGCACCTACCGCCCTGAT
 R P K K D G A A T K V D A I C T Y R P D
- 181 CCCAAAAGCCCTGGACTGGACAGAGAGCAGCTATACTGGGAGCTGAGCCAGGGTGATGCA
 P K S P G L D R E Q L Y W E L S Q G D A

TABLE 2A

Nucleotide and Amino Acid Sequences for Sense Primer 5' 3' (SEQ ID NO: 7 and SEQ ID NO: 8 respectively) and Antisense Primer 5' 3' (SEQ ID NO: 9 and SEQ ID NO: 10 respectively) based upon Regions of Homology for EST Genbank Accession Nos. BE005912 and AA640762)

GGA GAG GGT TCT GCA GGG TC

(SEQ ID NO: 7)

ERVLQG

(SEQ ID NO: 8)

GTG AAT GGT ATC AGG AGA GG

(SEQ ID NO: 9)

PLLIPF

(SEQ ID NO: 10)

TABLE 2B

Sense and Anti-Sense Primers Used for Ordering Repeat Units (SEQ ID NO: 301 and SEQ ID NO: 302, respectively)

5'-GTCTCTATGTCAATGGTTTCACCC -3' 5'-TAGCTGCTCTCTGTCCAGTCC-3'

(SEQ ID NO: 301) (SEQ ID NO: 302)

TABLE 3

Amino Acid Sequence for a 400 bp Repeat in the CA125 Molecule (SEQ ID NO: 11 thru SEQ ID NO: 21)

```
50
                                                (SEQ ID NO: 11)
   ERVLQGLLRS LFKSTSVGPL YSGCRLTLLR PEKDGTATGV DAICTHHPDP
12
   ERVLQGLLMP LFKNTSVSSL YSGCRLTLLR PEKDGAATRA DAVCTHRPDP
                                                (SEQ ID NO: 12)
   ERVLQGLLGP IFKNTSVGPL YSGCRLTSLR SEKDGAATGV DAICIHRLDP
                                                (SEQ ID NO: 13)
                                                (SEQ ID NO: 14)
   ERVLQGLLGP MFKNTSVGLL YSGCRLTLLR PEKNGAATGM DAICSHRLDP
                                                (SEQ ID NO: 15)
   ERVLQGLLGP LFKNSSVGPL YSGCRLISLR SEKDGAATGV DAICTHHLNP
33
   ERVLQGLLRP LFKSTSAGPL YSGCRLTLLR PEKHGAATGV DAICTLRLDP
                                                (SEQ ID NO: 16)
15
   ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKRGAATGV DTICTHRLDP
                                                (SEQ ID NO: 17)
35
   ERVLQGLLTP LFKNTSVGPL YSGCRLTLLR PEKQEAATGV DTICTHRVDP
                                                (SEQ ID NO: 18)
111
                                                (SEQ ID NO: 19)
   ERVLQGLLKP LFKNTSVGPL YSGCRLTLLR PEKHEAATGV DTICTHRLDP
42
                                                (SEQ ID NO: 20)
   ERVLQGLLSP IFKNSSVGPL YSGCRLTSLR PEKDGAATGM DAVCLYHPNP
116
                                                (SEO ID NO: 21)
   ERVLQGLLRP LFKNTSIGPL YSSCRLTLLR PEKDKAATRV DAICTHHPDP
23
   KSPRLDREQL YWELSQLTHN ITELGPYALD NDSLFVNGFT HRSSVSTTST
12
   KSPGLDRERL YWKLSQLTHG ITELGPYTLD RHSLYVNGFT HQSSMTTTRT
   KSPGLNREQL YWELSKLTND IEELGPYTLD RNSLYVNGFT HQSSVSTTST
   KSPGLNREQL YWELSQLTHG IKELGPYTLD RNSLYVNGFT HRSSVAPTST
 46
   QSPGLDREQL YWQLSQMTNG IKELGPYTLD RNSLYVNGFT HRSSGLTTST
33
   TGPGLDRERL YWELSQLTNS VTELGPYTLD RDSLYVNGFT HRSSVPTTSI
15
   LNPGLDREQL YWELSKLTRG IIELGPYTLD RDSLYVNGFT HRSSVPTTSI
35
   IGPGLDRERL YWELSQLTNS ITELGPYTLD RDSLYVDGFN PWSSVPTTST
111
   LNPGLDREQL YWELSKLTRG IIELGPYLLD RGSLYVNGFT HRNFVPITST
 42
   KRPGLDREQL YWELSQLTHN ITELGPYSLD RDSLYVNGFT HQNSVPTTST
116
   QSPGLNREQL YWELSQLTHG ITELGPYTLD RDSLYVDGFT HWSPIPTTST
 23
    101
    12
    32
    46
    33
    15
    35
    PGTSTVHLAT SGTPSPLPGH T..APVPLLI PFT~~~~~~ ~~~~~~~
111
    42
    PGTSTVYWAT TGTPSSFPGH T..EPGPLLI PF~~~~~~ ~~~~~~
116
```

Amino Acid Sequence for a 400 bp Repeat in the CA125 Molecule (SEQ ID NO: 11 thru SEQ ID NO: 21)

	151	170
12	~~~~~~~	~~~~~~~
34	~~~~~~~	~~~~~~~
32	~~~~~~~	~~~~~~~
46	~~~~~~~	~~~~~~~
33	~~~~~~~	~~~~~~~
15	~~~~~~~	~~~~~~~
35	~~~~~~~	~~~~~~~
111	~~~~~~~	~~~~~~~
42	~~~~~~~	~~~~~~~
116	~~~~~~~	~~~~~~~~
23	~~~~~~~	~~~~~~~~

Amino Acid Sequence for a 800 bp Repeat in the CA125 Molecule (SEQ ID NO: 22 thru SEQ ID NO: 35)

```
79 ERVLQGLLKP LFRNSSLEYL YSGCRLASLR PEKDSSAMAV DAICTHRPDP
                                                              (SEQ ID NO: 22)
811 ERVLQGLLKP LFRNSSLEYL YSGCRLASLR PEKDSSAMAV DAICTHRPDP
                                                              (SEQ ID NO: 23)
    ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKRGAATGV DTICTHRLDP
                                                              (SEQ ID NO: 24)
    ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKRGAATGV DTICTHRLDP
                                                              (SEQ ID NO: 25)
    ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKRGAATGV DTICTHRLDP
                                                              (SEQ ID NO: 26)
    ERVLOGLLKP LFKSTSVGPL YSGCRLTLLR PEKRGAATGV DTICTHRLDP
                                                              (SEQ ID NO: 27)
                                                              (SEQ ID NO: 28)
    ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKHGAATGV DAICTLRLDP
    ERVLQGLLTP LFKNTSVGPL YSGCRLTLLR PEKQEAATGV DTICTHRVDP
                                                              (SEQ ID NO: 29)
    ERVLQGLLRP LFKNTSIGPL YSSCRLTLLR PEKDKAATRV DAICTHHPDP
                                                              (SEQ ID NO: 30)
                                                              (SEQ ID NO: 31)
    ERVLOGLIRP VFKNTSVGPL YSGCRLTLLR PKKDGAATKV DAICTYRPDP
    ERVLOGLIGP MFKNTSVGLL YSGCRLTLLR PKKDGAATKV DAICTYRPDP
                                                              (SEQ ID NO: 32)
    ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKDGAATGM DAVCLYHPNP
                                                              (SEQ ID NO: 33)
    ERVLQGLLSP ISKNSSVGPL YSGCRLTSLR PEKDGAATGM DAVCLYHPNP
                                                              (SEQ ID NO: 34)
    ERVLQGLLSP IFKNSSVGSL YSGCRLTLLR PEKDGAATRV DAVCTHRPDP
                                                              (SEQ ID NO: 35)
     51
    EDLGLDRERL YWELSNLTNG IQELGPYTLD RNSLYVNGFT HRSSMPTTST
811 EDLGLDRERL YWELSNLTNG IQELGPYTLD RNSLYVNGFT HRSSGLTTST
    LNPGLDREQL YWELSKLTRG IIELGPYLLD RGSLYVNGFT HRTSVPTTST
    LNPGLDREQL YWELSKLTRG IIELGPYLLD RGSLYVNGFT HRNFVPITST
    LNPGLDREQL YWELSKLTRG IIELGPYLLD RGSLYVNGFS RQSSMTTTRT
    LNPGLDREQL YWELSKLTRG IIELGPYLLD RDSLYVNGFT HRSSVPTTSI
     TGPGLDRERL YWELSQLTNS VTELGPYTLD RDSLYVNGFT HRSSVPTTSI
     IGPGLDRERL YWELSQLTNS ITELGPYTLD RDSLYVNGFN PWSSVPTTST
    QSPGLNREQL YWELSQLTHG ITELGPYTLD RDSLYVDGFT HWSPIPTTST
810
    KSPGLDREQL YWELSQLTHS ITELGPYTLD RDSLYVNGFT QRSSVPTTSI
    KSPGLDREQL YWELSQLTHS ITELGPYTLD RDSLYVNGFT QRSSVPTTSI
    KRPGLDREQL YCELSQLTHD ITELGPYSLD RDSLYVNGFT HQNSVPTTST
    KRPGLDREQL YWELSQLTHN ITELGPYSLD RDSLYVNGFT HQNSVPTTST
 76 KSPGLDRERL YWKLSQLTHG ITELGPYTLD RHSLYVNGFT HQSSMTTTRT
     101
     PGTSTVDVGT SGTPSSSPSP TTAGPLLMPF TLNFTITNLQ YEEDMRRTGS
     PWTSTVDLGT SGTPSPVPSP TTAGPLLIPF TLNFTITNLQ YEENMGHPGS
     PGTSTVDLGT SGTPFSLPSP ATAGPLLVLF TLNFTITNLK YEEDMHRPGS
     PGTSTVHLGT SETPSSLPRP IVPGPLLIPF TINFTITNLR YEENMHHPGS
     PDTSTMHLAT SRTPASLSGP TTASPLLIPF TLNFTITNLQ YEENMGHPGS
     PGTSAVHLET FGTPASLHGH TAPGPVLVPF TLNFTITNLQ YEEDMRHPGS
712
     PGTSAVHLET SGTPASLPGH TAPGPLLVPF TLNFTITNLQ YEEDMRHPGS
     PGTSTVHLAT SGTPSSLPGH TAPVPLLIPF TLNFTITNLH YEENMQHPGS
 87
     PGTSIVNLGT SGIPPSLPET TATGPLLIPF TPNFTITNLQ YEEDMRRTGS
810
 83 PGTPTVDLGT SGTPVSKPGP SAASPLLVPF TLNFTITNLQ YEEDMHRPGS
     PGTPTVDLGT SGTPVSKPGP SAASPLLIPF TINFTITNLR YEENMGHPGS
    PGTSTVYWAT TGTPSSFPGH TEPGPLLIPF TFNFTITNLH YEENMQHPGS
812 PGTSTVYWAT TGTPSSFPGH TEPGPLLIPF TVNFTITNLR YEENMHHPGS
 76 PDTSTMHLAT SRTPASLSGP TTASPLLVLF TINFTITNQR YEENMHHPGS
```

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

WO 02/083866 PCT/US02/11734

TABLE 4-continued

Amino Acid Sequence for a 800 bp Repeat in the CA125 Molecule (SEQ ID NO: 22 thru SEQ ID NO: 35)

	151				200
79	RKFNTMERVL	QGLLSPIFKN	SSVGPLYSGC	RLTSLRPEKD	GAATGMDAVC
811	RKFNIMERVL	QGLLMPLFKN	TSVSSLYSGC	RLTLLRPEKD	GAATRVDAVC
21	RKFNTTERVL	QTLLGPMFKN	TSVGLLYSGC	RLTLLRSEKD	GAATGVDAIC
89	RKFNIMERVL	QGLLGPLFKN	SSVGPLYSGC	RLISLRSEKD	GAATGVDAIC
85	RKFNIMERVL	QGLLNPIFKN	SSVGPLYSGC	RLTSLKPEKD	GAATGMDAVC
712		QGLLKPLFKS			
86	RKFNTTERVL	QGLLKPLFKS	TSVGPLYSGC	RLTLLRPEKR	GAATGVDTIC
87	RKFNTTERVL	QGLLKPLFKS	TSVGPLYSGC	RLTLLRPEKH	GAATGVDAIC
810	RKFNTMERVL	QGLLSPIFKN	SSVGPLYSGC	RLTSLRPEKD	GAATGMDAVC
83	RKFNATERVL	QGLLSPIFKN	SSVGPLYSGC	RLTSLRPEKD	GAATGMDAVC
81	RKFNIMERVL	QGLLKPLFKN	TSVGPLYSGC	RLTLLRPKKD	GAATGVDAIC
44		QGLLKPLFKN			
812		QGLLRPVFKN			
76	RKFNTTERVL	QGLLRPVFKN	TSVGPLYSGC	RLTLLRPKKD	GAATKVDAIC
	201				250
79	LYHPNPKRPG	LDREQLYWEL	SQLTHNITEL	GPYSLDRDSL	YVNGFTHQNS
811	TQRPDPKSPG	LDRERLYWKL	SQLTHGITEL	GPYTLDRHSL	YVNGLTHQSS
21	THRLDPKSPG	VDREQLYWEL	SQLTNGIKEL	GPYTLDRNSL	YVNGFTHWIP
89	THHLNPQSPG	LDREQLYWQL.	SOMTNGIKEL	GPYTLDRNSL	YVNGFTHRSS
85	LYHPNPKRPG	LDREQLYWEL	SQLTHGIKEL	GPYTLDRNSL	YVNGFTHRSS
712	THRLDPLNPG	LDREQLYWEL	SKLTRGIIEL	GPYLLDRGSL	YVNGFTHRNF
86		LDREQLYWEL			
87		VDREQLYWEL			
810	LYHPNPKRPG	LDREQLY~~~	~~~~~~~	~~~~~~~	~~~~~~
83		LDREQLYWEL			
81		LNREQLYWEL			
44		LDRERLYWEL			
812		LDREQLYWEL			
76	TYRPDPKSPG	LDREQLYWEL	SQLTHSITEL	GPYTQDRDSL	YVNGFTHRSS
	251			288	
79		TVYWATTGTP			
811		TMHLATSRTP			
21		~~~~~~~			
89		TVDLGTSGTP			
85		TVDLGTSGTP			
712		TVHLGTSETP			
86		TVHLGTSETP			
87		TVDLG.SGTP			
810		~~~~~~~			
83		TMHLATSRTP			
81		TVDLRTSGTP			
44		TVHLATSGTP			
812		TVDLRTSGTP			
76	VPTTS1PGTS	AVHLETSGTP	ASLP~~~~~	~~~~~~	

Amino Acid Sequence for a 1200 bp Repeat in the CA125 Molecule (SEQ ID NO: 36 thru SEQ ID NO: 46)

	1				50			
910	ERVIOGIJGP	MFKNTSVGLL	YSGCRLTLLR	PEKRGAATGV	DTICTHRLDP	(SEQ I	D NO:	36)
99	ERVINGLISTP	LFKNTRVGPL	YSGCRLTLLR	PEKOEAATGV	DTICTHRVDP	(SEQ I	D NO:	37)
112	~~~~~~	~~~~~GPL	YSGCRLTSLR	PEKDGAATGM	DAVCLYHPNP	(SEQ]	D NO:	38)
95	ERVLOGPLSP	IFKNSSVGPL	YSGCRLTSLR	PEKDGAATGM	DAVCLYHPNP		D NO:	
71	~~~~~~~	~~~~TSVGPL	YSGCRLTLLR	SEKDGAATGV	DAIYTHRLDP	(SEQ]	D NO:	40)
78	~~~~~~~	~~~~~~	~~~~~TLLR	PKKDGVATGV	DAICTHRLDP		D NO:	
115	ERVLOGLLKP	LFKSTSVGPL	YSGCRLTLLR	PEKDGVATRV	DAICTHRPDP		D NO:	
91	ERVLQGLLKP	LFRNSSLEYL	YSGCRLASLR	PEKDSSAMAV	DAICTHRPDP		ED NO:	
92	ERVLOGLLKP	LFKSTSVGPL	YSGCRLTLLR	PEKRGAATGV	DTICTHRLDP		ED NO:	
113	ERVLOGLLGP	MFKNTSVGLL	YSGCRLTLLR	PEKNGAATGM	DAICSHRLDP		ED NO:	
711	ERVLQGLLKP	LFKSTSVGPL	YSGCRLTLLR	PEKHGAATGV	DAICTLRLDP	(SEQ	ID NO:	46)
	51				100			
910	LNPGLDREQL	YWELSKLTRG	IIELGPYLLD	RGSLYVNGFT	HRNFVPITST			
99	IGPGLDRERL	YWELSQLTNS	ITELGPYTLD	RDSLYVNGFN	PWSSVPTTST			
112	KRPGLDREQL	YWELSQLTHN	ITELGPYSLD	RDSLYVNGFT	HQNSVPTTST			
95	KRPGLDREQL	YWELSQLTHN	ITELGPYSLD	RDSLYVNGFT	HQNSVPTTST			
71	KSPGVDREQL	YWELSQLTNG	IKELGPYTLD	RNSLYVNGFT	HQTSAPNTST			
78	KSPGLNREQL	YWELSKLIND	IEELGPYTLD	RNSLYVNGFT	HQSSVSTTST			
115	KIPGLDRQQL	YWELSQLTHS	ITELGPYTLD	RDSLYVNGFT	QRSSVPTTST			
91	EDLGLDRERL	YWELSNLTNG	IQELGPYTLD	RNSLYVNGFT	HRSSMPTTST			
92	LNPGLDREQL	YWELSKLTRG	IIELGPYLLD	RGSLYVNGFT	HRNEVPITST			
113	KSPGLNREQL	YWELSQLTHG	IKELGPYTLD	RNSLIVNGET	HRSSVAPISI			
711	TGPGLDRERL	YWELSQLTNS	VTELGPYTLD	RDSLIVNGFT	HKSSVPITSI			
	101	•			150			
910	DC464AHT'C4	SETPSSLPRP	TV. PGPLLV	PETLNETITN				
910	PGISIVILIGI PCTSTVHIAT	SGTPSSLPGH	TA. PVPLLT	PETLNETITN	LHYEENMOHP			
112	PGTSTVYWAT	TGTPSSFPGH	T. EPGPLLI	PFTLNFTITN	LQYEENMGHP			
95	PGTSTVYWAT	TGTPSSFPGH	T. EPGPLLI	PETLNETITN	LQYEENMGHP			
71	PGTSTVDLGT	SGTPSSLPSP	TSAGPLLI	PFTINFTITN	LRYEENMHHP			
78	PGTSTVDLRT	SGTPSSLSSP	TIMAAGPLLI	PFTINFTITN	LRYEENMHHP			
115	PGTFTVOPET	SETPSSLPGP	TATGPVLL	PFTLNFTIIN	LQYEEDMHRP			
91	PGTSTVDVGT	SGTPSSSPSP	TTAGPLLM	PFTLNFTITN	LQYEEDMRRT			
92	PGTSTVHLGT	SETPSSLPRP	IVPGPLLI	PFTLNFTITN	LQYEENMGHP			
113	PGTSTVDLGT	SGTPSSLPSP	TTAVPLLI	PFTLNFTITN	LKYEEDMHCP			
711	PGTSAVHLET	SGTPASLPGH	TAPGPLLI	PFTLNFTITN	LHYEENMQHP			
						:		
	151				200			
910	GSRKFNTTER	VLQGLLRPLF	KNTSVSSLYS	GCRLTLLRPE	KDGAATRVDA			
99	GSRKFNTTER	VLQGLLKPLF	KNTSVGPLYS	GCRLTLFKPE	KHEAATGVDA			
112	GSRKFNITES	VLQGLLTPLF	KNSSVGPLYS	GCRLISLRSE	KDGAATGVDA			
95	GSRKFNITER	VLQGLLNPIF	KNSSVGPLYS	GCRLTSLRPE	KDGAATGMDA			
71	GSRKFNTMER	VLQGLLKPLF	KSTSVGPLYS	GCRLTLLRPE	KDGVATRVDA			
78	GSRKFNTMER	VLQGLLMPLF	KNTSVSSLYS	GCRLTLLRPE	KDGAATRVDA			
115	GSRKFNTTER	VLQGLLMPLF	KNTSVGPLYS	GCRLTLLRPE	KQEAATGVDT			
91	GSRKFNTMES	VLQGLLKPLF	KNTSVGPLYS	GCRLTLLRPK	KDGAATGVDA			
92	GSRKFNITER	VLQGLLKPLF			KDSSTMAVDA			
			12					

Amino Acid Sequence for a 1200 bp Repeat in the CA125 Molecule (SEQ ID NO: 36 thru SEQ ID NO: 46)

113	GSRKFNTTER	VLQSLFGPMF	KNTSVGPLYS	GCRLTLFRSE	KDGAATGVDA
711		VLQGCLVPCS			XXXXXXXXX
			141111111111111111111111111111111111111	CONDIDE	
	201				250
910	ACTYRPDPKS	PGLDREQLYW	ELSQLTHSIT	ELGPYTLDRV	SLYVNGFNPR
99	ICTLRLDPTG	PGLDRERLYW	ELSQLTNSVT	ELGPYTLDRD	SLYVNGFTHR
112	ICTHHLNPQS	PGLDREOLYW	QLSOMTNGIK	ELGPYTLDRD	SLYVNGFTHR
95	VCLYHPNPKR	PGLDREQLYC	ELSOLTHNIT	ELGPYSLDRD	SLYVNGFTHO
71	ICTHRPDPKI	PGLDROOLYW	ELSQLTHSIT	ELGPYTLDRD	SLYVNGFTOR
7± 78	VCTHRPDPKS	PGLDRERLYW	KLSQLTHGIT	ELGPYTLDRN	-
115	ICTHRLDPSE	PGLDREQLYW	ELSQLINGIT	ELGPYTLDRD	SLYVNGFTHR SLYVNGFTHS
91	ICTHREDPSE	PGLNREQLYW	ELSKLINDIE		
92	ICTHREDERS	-		EVGPYTLDRN	SLYVNGFTHR
113		LGLDRERLYW	ELSNLTNGIQ	ELGPYTLDRN	SLYVNGFTHR
711	ICTHRLDPKS	PGVDREQLYW	ELSQLTNGIK	ELGPYTLDRN	SLYVNGFTHQ
111	XXXXXXXXX	********	XXXXXXXXX	XXGPYTLDRN	SLYVNGFTHR
	251				200
910	SSV.PTTSTP	CHCHTTIT THO	CMD COT DOUB	ADVIDITION	300
910		GTSTVHLATS	GTPSSLPGHT	APVPLLIPFT	LNFTITNLQY
112	SSV.PTTSIP	GTSAVHLETS	GTPASLPGHT	APGPLLIPFT	LNFTITNLQY
	SL.GLTTSTP	WTSTVDLGTS	GTPSPVPSPT	TAGPLLIPFT	LNFTITNLQY
95 31	NS.VPTTSTP	GTSTVYWATT	GTPSSFPGHT	EPGPLLIPFT	LNFTITNLQY
71	SSV.PTTSTP	GTFTVQPETS	ETPSSLPGPT	ATGPVLLPFT	LNFTIINLQY
78	SSM.PTTSTP	GTSTVDVGTS	GTPSSSPSPT	TAGPLLMPFT	LNFTITNLQY
115	GVLCPPPSIL	GIFTVQPETF	ETPSSLPGPT	ATGPVLLPFT	LNFTIINLQY
	SFVAP.TSTL	GTSTVDLGTS	GTPSSLPSPT	TGVPLLIPFT	LNFTITNLQY
92	SFM.PTTSTL	GTSTVDVGTS	GTPSSSPSPT	TAGPLLMPFT	LNFTITNLQY
113 711	TS.APNTSTP	GTSTVDLGTS	GTPSSLPSPT	SAGPLLVPFT	LNFTITNLQY
/ 11	SSVAP.TSTP	GTSTVDLGTS	GTPSSLPSPT	TV.PLLVPFT	LNFTITNLQY
	301				350
910	EEDMRHPGSR	E ENITMEDITA	GLLRPLFKNT	OT CDI VOCCD	
99	EEDMRRTGSR		GLLKPLFKST	SVGPLYSGCR	LTLLRPEKDK
112					
95	EENMGHPGSR EEDMRRTGSR		GLLRPVFKNT		LTLLRPKKDG
71			GLLKPLFKST	SVGPLYSGCR	
71 78	EEDMHRPGSR		GLLKPLFKST	SVGPLYSGCR	
115	EEDMRRTGSR EEDMHRPGSR		GLLKPLFKST		LTLLRPEKHG
91		_	GLLMPLFKNT	SVGPLYSGCR	
92	EENMGHPGSR	_	GLLMPLFKNT	SVSSLYSGCR	
	EEDMRRTGSR		GLLKPLFKNT		LTLLRPKKDG
113 711	EEDMRRTGSR	-	GLLKPLFKNT		LTLLRPEKDG
111	GEDMKHPGSK	KFNTTERVLQ	GLLGPLFKNS	SVGPLYSGCR	LISLRSEKDG
	351				400
010		HUDDDOODCT	NDEOL WHELC	OT BUCTORY	400
910			NREQLYWELS		
99			DREQLYWELS		
112			DREQLYWELS		
95 71			DRERLYWELS		
71			DRERLYWELS		
78	AATGVDALCT	TRPDLLCECT	DRERLYWELS	QLTNSVTELG	FYTLDRDSLY
			11		

Amino Acid Sequence for a 1200 bp Repeat in the CA125 Molecule (SEQ ID NO: 36 thru SEQ ID NO: 46)

115	AATGVDTICT	HRVDPIGPGL	DRERLYWELS	QLTNSITELG	
91	AATRVVAVCT	HRPDPKSPGL	DRERLYWKLS		PYTLDRHSLY
92	AATGVDAICT	HRLDPKSPGL	NREQLYWELS	KLTNDIEELG	PYTLDRNSLY
113	AATGVDAICT	HRLDPKSPGL	NREQLYWELS	KL~~~~~~	~~~~~~
711	AATGVDAICT	HHLNPQSPGL	DREQLYWQLS	QVTNGIKELG	PYTLDRNSLY
	401				447
910	~~~~~~	~~~~~~	~~~~~~	~~~~~~	~~~~~
99	VNGFTHRNFV	PITSTPGTST	VHLGTSEIHP	SLPRPIVP	
112	VNGFTORSSV	PTTSIPGTPT	VDLGTSGTPV	SKPGPSAA	SP~~~~
95	VNGFTHRSSV	PTTSIPGTSA	VHLETSGTPA	SLPGHTAP	GPLL~~~
71	VNGFNPWSSV	PTTSTPGTST	VHLATSGTPS	SLPGHTAP	VPL~~~~
78	VNGFTHRSSV	PTTSIPGTSA	VHLETSGTPA	SLPGHTAP	GPLLIPF
115	VNGFNPWSSV	PTTSTPGTST	VHLATSGTPS	SLPGHTAP	VPLLIPF
91	VNGFTHQSSM	TTTRTPDTST	MHLATSRTPA	SLSGPTTA	SPLLIPF
92	VNGFTHQSSV	STTSTPGTST	VDPRTSGTPS	SLSSPTIMAA	GPLLI~~
113	~~~~~~	~~~~~~~	~~~~~~	~~~~~~	~~~~~
711	VNGFTHRSSG	LTTSTPWTST	VDLGTSGTPS	PVPSPTTA	GPLLI~~

Amino Acid Sequence for a 9 Repeat Structure in the CA125 Molecule (SEQ ID NO: 47)

ERVLQGLLKP LFRNSSLEYL YSGCRLASLR PEKDSSAMAV DAICTHRPDP EDLGLDRERL YWELSNLTNG IQELGPYTLD RNSLYVNGFT HRSSMPTTST PGTSTVDVGT SGTPSSSPSP TTAGPLLMPF TLNFTITNLQ YEEDMRRTGS RKFNTMERVL QGPLSPIFKN SSVGPLYSGC RLTSLRPEKD GAATGM DAV CLYHPNPKRP GLDREQLYWE LSQLTHNITE LGPYSLDRDS LYVNGFTHQN SVPTTSTPGT STVYWATTGT PSSFPGHTEP GPLLIPFTLN FTITNLQYEE NMGHPGSRKF NITERVLQGL LNPIFKNSSV GPLYSGCRLT SLRPEKDGAA TGMDAVCLYH PNPKRPGLDR EQLYCELSQL THNITELGPY SLDRDSLYVN GFTHQNSVPT TSTPGTSTVY WATTGTPSSF PGHTEPGPLL IPFTLNFTIT NLQYEEDMRR TGSRKFNTME RVLQGLLKPL FKSTSVGPLY SGCRLTLLRP EKHGAATGVD AICTLRLDPT GPGLDRERLY WELSQLTNSV TELGPYTLDR DSLYVNGFTH RSSVPTTSIP GTSAVHLETS GTPASLPGHT APGPLLVPFT LNFTITNLQY EEDMRHPGSR KFNTTERVLQ GLLKPLFKST SVGPLYSGCR LTLLRPEKRG AATGVDTICT HRLDPLNPGL DREQLYWELS KLTRGIIELG PYLLDRGSLY VNGFTHRNFV PITSTPGTST VHLGTSETPS SLPRPIVPGP LLIPFTLNFT ITNLQYEENM GHPGSRKFNI TERVLQGLLK PLFRNSSLEY LYSGCRLASL RPEKDSSAMA VDAICTHRPD PEDLGLDRER LYWELSNLTN GIQELGPYTL DRNSLYVNGF THRSSMPTTS TPGTSTVDVG TSGTPSSSPS PTTAGPLLMP FTLNFTITNL QYEEDMRRTG SRKFNTMESV LQGLLKPLFK NTSVGPLYSG CRLTLLRPKK DGAATGVDAI CTHRLDPKSP GLNREOLYWE LSKLTNDIEE VGPYTLDRNS LYVNGFTHRS FVAPTSTLGT STVDLGTSGT PSSLPSPTTG VPLLIPFTLN FTITNLQYEE NMGHPGSRKF NIMERVLQGL LSPIFKNSSV GSLYSGCRLT LLRPEKDGAA TRVDAVCTHR PDPKSPGLDR ERLYWKLSQL THGIIELGPY TLDRHSFYVN GFTHQSSMTT TRTPDTSTMH LATSRTPASL SGPTTASPLL VLFTINFTIT NORYEENMHH PGSRKFNTTE RVLQGLLRPV FKNTSVGPLY SGCRLTLLRP KKDGAATKVD AICTYRPDPK SPGLDREQLY WELSQLTHSI TELGPYTQDR DSLYVNGFTH RSSVPTTSIP GTSAVHLETS GTPASLP

cDNA Genbank Accession # AKO24365 Encompasses Repeat Sequences (Repeats 1 & 2) Homologous to Two Repeats Shown in Table 6 (SEQ ID NO: 48)

MPLFKNTSVS SLYSGCRLTL LRPEKDGAAT RVDAVCTHRP DPKSPGLDRE RLYWKLSQLT HGIIELGPYT LDRHSFYVNG FTHQSSMTTT RTPDTSTMHL ATSRTPASLS GPTTASPLLV LFTINFTITN QRYEENMHHP GSRKFNTTER VLQGLLRPVF KNTSVGPLYS GCRLTLLRPK KDGAATKVDA ICTYRPDPKS PGLDREQLYW ELSQLTHSIT ELGPYTQDRD SLYVNGFTHR SSVPTTSIPG TSAVHLETSG TPASLPGPSA ASPLLVLFTL NFTITNLRYE ENMQHPGSRK FNTTERVLQG LLRSLFKSTS VGPLYSGCRL TLLRPEKDGT ATGVDAICTH HPDPKSPRLD REQLYWELSQ LTHNITELGH YALDNDSLFV NGFTHRSSVS TTSTPGTPTV YLGASKTPAS IFGPSAASHL LILFTLNFTI TNLRYEENMW PGSRKFNTTE RVLQGLLRPL FKNTSVGPLY SGSRLTLLRP EKDGEATGVD AICTHRPDPT GPGLDREQLY LELSQLTHSI TELGPYTLDR DSLYVNGFTH RSSVPTTSTG VVSEEPFTLN FTINNLRYMA DMGQPGSLKF NITDNVMKHL LSPLFQRSSL GARYTGCRVI ALRSVKNGAE TRVDLLCTYL QPLSGPGLPI KQVFHELSQQ THGITRLGPY SLDKDSLYLN GYNEPGLDEP PTTPKPATTF LPPLSEATTA MGYHLKTLTL NFTISNLQYS PDMGKGSATF NSTEGVLQHL LRPLFQKSSM GPFYLGCQLI SLRPEKDGAA TGVDTTCTYH PDPVGPGLDI QQLYWELSQL THGVTQLGFY VLDRDSLFIN GYAPQNLSIR GEYQINFHIV NWNLSNPDPT SSEYITLLRD IQDKVTTLYK GSQLHDTFRF CLVTNLTMDS VLVTVKALFS SNLDPSLVEQ VFLDKTLNAS FHWLGSTYQL VDIHVTEMES SVYQPTSSSS TQHFYLNFTI TNLPYSQDKA QPGTTNYQRN KRNIEDALNQ LFRNSSIKSY FSDCQVSTFR SVPNRHHTGV DSLCNFSPLA RRVDRVAIYE EFLRMTRNGT QLQNFTLDRS SVLVDGYSPN RNEPLTGNSD LPFWAVILIG LAGLLGLITC LICGVLVTTR RRKKEGEYNV QQQCPGYYQS HLDLEDLQ

TABLE 8

1	GAGAGGGTTC	TGCAGGGTCT	GCTCAAACCC	TTGTTCAGGA	ATAGCAGTCT
51	GGAATACCTC	TATTCAGGCT	GCAGACTAGC	CTCACTCAGG	CCAGAGAAGG
101	ATAGCTCAGC	CATGGCAGTG	GATGCCATCT	GCACACATCG	CCCTGACCCT
151	GAAGACCTCG	GACTGGACAG	AGAGCGACTG	TACTGGGAGC	TGAGCAATCT
201	GACAAATGGC	ATCCAGGAGC	TGGGCCCCTA	CACCCTGGAC	CGGAACAGTC
251	TCTATGTCAA	TGGTTTCACC	CATCGAAGCT	CTATGCCCAC	CACCAGCACT
301	CCTGGGACCT	CCACAGTGGA	TGTGGGAACC	TCAGGGACTC	CATCCTCCAG
351	CCCCAGCCCC	ACGACTGCTG	GCCCTCTCCT	GATGCCGTTC	ACCCTCAACT
401	TCACCATCAC	CAACCTGCAG	TACGAGGAGG	ACATGCGTCG	CACTGGCTCC
451	AGGAAGTTCA	ACACCATGGA	GAGGGTTCTG	CAGGGTCCGC	TTAGTCCCAT
501	ATTCAAGAAC	TCCAGTGTTG	GCCCTCTGTA	CTCTGGCTGC	AGACTGACCT
551	CTCTCAGGCC	CGAGAAGGAT	GGGGCAGCAA	CTGGAATGGA	TGCTGTCTGC
601	CTCTACCACC	CTAATCCCAA	AAGACCTGGG	CTGGACAGAG	AGCAGCTGTA
651	CTGGGAGCTA	AGCCAGCTGA	CCCACAACAT	CACTGAGCTG	GGCCCCTACA
701	GCCTGGACAG	GGACAGTCTC	TATGTCAATG	GTTTCACCCA	TCAGAACTCT
751	GTGCCCACCA	CCAGTACTCC	TGGGACCTCC	ACAGTGTACT	GGGCAACCAC
801	TGGGACTCCA	TCCTCCTTCC	CCGGCCACAC	AGAGCCTGGC	CCTCTCCTGA
851	TACCATTCAC	GCTCAACTTC	ACCATCACTA	ACCTACAGTA	TGAGGAGAAC
901	ATGGGTCACC	CTGGCTCCAG	GAAGTTCAAC	ATCACGGAGA	GGGTTCTGCA
951	GGGTCTGCTT	AATCCCATTT	TCAAGAACTC	CAGTGTTGGC	CCTCTGTACT
1001	CTGGCTGCAG	ACTGACCTCT	CTCAGGCCCG	AGAAGGATGG	GGCAGCAACT
1051	GGAATGGATG	CTGTCTGCCT	CTACCACCCT	AATCCCAAAA	GACCTGGGCT
1101	GGACAGAGAG	CAGCTGTACT	GCGAGCTAAG	CCAGCTGACC	CACAACATCA
1151	CTGAGCTGGG	CCCTACAGC	TTGGACAGGG	ACAGTCTTTA	TGTCAATGGT

1201	TTCACCCATC	AGAACTCTGT	GCCCACCACC	AGTACTCCTG	GGACCTCCAC
1251	AGTGTACTGG	GCAACCACTG	GGACTCCATC	CTCCTTCCCC	GGCCACACAG
1301	AGCCTGGCCC	TCTCCTGATA	CCATTCACCC	TCAACTTCAC	CATCACCAAC
1351	CTGCAGTACG	AGGAGGACAT	GCGTCGCACT	GGCTCCAGGA	AGTTCAACAC
1401	CATGGAGAGG	GTTCTGCAGG	GTCTGCTCAA	GCCCTTGTTC	AAGAGCACCA
1451	GCGTTGGCCC	TCTGTACTCT	GGCTGCAGAC	TGACCTTGCT	CAGACCTGAG
1501	AAACATGGGG	CAGCCACTGG	AGTGGACGCC	ATCTGCACCC	TCCGCCTTGA
1551	TCCCACTGGT	CCTGGACTGG	ACAGAGAGCG	GCTATACTGG	GAGCTGAGCC
1601	AGCTGACCAA	CAGCGTTACA	GAGCTGGGCC	CCTACACCCT	GGACAGGGAC
1651	AGTCTCTATG	TCAATGGCTT	CACCCATCGG	AGCTCTGTGC	CAACCACCAG
1701	TATTCCTGGG	ACCTCTGCAG	TGCACCTGGA	AACCTCTGGG	ACTCCAGCCT
1751	CCCTCCCTGG	CCACACAGCC	CCTGGCCCTC	TCCTGGTGCC	ATTCACCCTC
1801	AACTTCACTA	TCACCAACCT	GCAGTATGAG	GAGGACATGC	GTCACCCTGG
1851	TTCCAGGAAG	TTCAACACCA	CGGAGAGAGT	CCTGCAGGGT	CTGCTCAAGC
1901	CCTTGTTCAA	GAGCACCAGT	GTTGGCCCTC	TGTACTCTGG	CTGCAGACTG
1951	ACCTTGCTCA	GGCCTGAAAA	ACGTGGGGCA	GCCACCGGCG	TGGACACCAT
2001	CTGCACTCAC	CGCCTTGACC	CTCTAAACCC	TGGACTGGAC	AGAGAGCAGC
2051	TATACTGGGA	GCTGAGCAAA	CTGACCCGTG	GCATCATCGA	GCTGGGCCCC
2101	TACCTCCTGG	ACAGAGGCAG	TCTCTATGTC	AATGGTTTCA	CCCATCGGAA
2151	CTTTGTGCCC	ATCACCAGCA	CTCCTGGGAC	CTCCACAGTA	CACCTAGGAA
2201	CCTCTGAAAC	TCCATCCTCC	CTACCTAGAC	CCATAGTGCC	TGGCCCTCTC
2251	CTGATACCAT	TCACACTCAA	CTTCACCATC	ACTAACCTAC	AGTATGAGGA
2301	GAACATGGGT	CACCCTGGCT	CCAGGAAGTT	CAACATCACG	GAGAGGGTTC
2351	TGCAGGGTCT	GCTCAAACCC	TTGTTCAGGA	ATAGCAGTCT	GGAATACCTC

2401	TATTCAGGCT	GCAGACTAAC	CTCACTCAGG	CCAGAGAAGG	ATAGCTCAAC
2451	CATGGCAGTG	GATGCCATCT	GCACACATCG	CCCTGACCCT	GAAGACCTCG
2501	GACTGGACAG	AGAGCGACTG	TACTGGGAGC	TGAGCAATCT	GACAAATGGC
2551	ATCCAGGAGC	TGGGCCCCTA	CACCCTGGAC	CGGAACAGTC	TCTATGTCAA
2601	TGGTTTCACC	CATCGAAGCT	CTATGCCCAC	CACCAGCACT	CCTGGGACCT
2651	CCACAGTGGA	TGTGGGAACC	TCAGGGACTC	CATCCTCCAG	CCCCAGCCCC
2701	ACGACTGCTG	GCCCTCTCCT	GATGCCGTTC	ACCCTCAACT	TCACCATCAC
2751	CAACCTGCAG	TACGAGGAGG	ACATGCGTCG	CACTGGCTCC	AGGAAGTTCA
2801	ACACCATGGA	GAGTGTCCTG	CAGGGTCTGC	TCAAGCCCTT	GTTCAAGAAC
2851	ACCAGTGTTG	GCCCTCTGTA	CTCTGGCTGC	AGATTGACCT	TGCTCAGGCC
2901	CAAGAAAGAT	GGGGCAGCCA	CTGGAGTGGA	TGCCATCTGC	ACCCACCGCC
2951	TTGACCCCAA	AAGCCCTGGA	CTCAACAGGG	AGCAGCTGTA	CTGGGAGTTA
3001	AGCAAACTGA	CCAATGACAT	TGAAGAGGTG	GGCCCCTACA	CCTTGGACAG
3051	GAACAGTCTC	TATGTCAATG	GTTTCACCCA	TCGGAGCTTT	GTGGCCCCCA
3101	CCAGCACTCT	TGGGACCTCC	ACAGTGGACC	TTGGGACCTC	AGGGACTCCA
3151	TCCTCCCTCC	CCAGCCCCAC	AACAGGTGTT	CCTCTCCTGA	TACCATTCAC
3201	ACTCAACTTC	ACCATCACTA	ACCTACAGTA	TGAGGAGAAC	ATGGGTCACC
3251	CTGGCTCCAG	GAAGTTCAAC	ATCATGGAGA	GGGTTCTGCA	GGGTCTGCTT
3301	ATGCCCTTGT	TCAAGAACAC	CAGTGTCAGC	TCTCTGTACT	CTGGTTGCAG
3351	ACTGACCTTG	CTCAGGCCTG	AGAAGGATGG	GGCAGCCACC	AGAGTGGTTG
3401	CTGTCTGCAC	CCATCGTCCT	GACCCCAAAA	GCCCTGGACT	GGACAGAGAG
3451	CGGCTGTACT	GGAAGCTGAG	CCAGCTGACC	CACGGCATCA	CTGAGCTGGG
3501	CCCCTACACC	CTGGACAGGC	ACAGTCTCTA	TGTCAATGGT	TTCACCCATC
3551	AGAGCTCTAT	GACGACCACC	AGAACTCCTG	ATACCTCCAC	AATGCACCTG

3601	GCAACCTCGA	GAACTCCAGC	CTCCCTGTCT	GGACCTACGA	CCGCCAGCCC
3651	TCTCCTGATA	CCATTCACAA	TTAACTTCAC	CATCACTAAC	CTGCGGTATG
3701	AGGAGAACAT	GCATCACCCT	GGCTCTAGAA	AGTTTAACAC	CACGGAGAGA
3751	GTCCTTCAGG	GTCTGCTCAG	GCCTGTGTTC	AAGAACACCA	GTGTTGGCCC
3801	TCTGTACTCT	GGCTGCAGAC	TGACCTTGCT	CAGGCCCAAG	AAGGATGGGG
3851	CAGCCACCAA	AGTGGATGCC	ATCTGCACCT	ACCGCCCTGA	TCCCAAAAGC
3901	CCTGGACTGG	ACAGAGAGCA	GCTATACTGG	GAGCTGAGCC	AGCTAACCCA
3951	CAGCATCACT	GAGCTGGGCC	CCTACACCCT	GGACAGGGAC	AGTCTCTATG
4001	TCAATGGTTT	CACACAGCGG	AGCTCTGTGC	CCACCACTAG	CATTCCTGGG
4051	ACCCCCACAG	TGGACCTGGG	AACATCTGGG	ACTCCAGTTT	CTAAACCTGG
4101	TCCCTCGGCT	GCCAGCCCTC	TCCTGGTGCT	ATTCACTCTC	AACTTCACCA
4151	TCACCAACCT	GCGGTATGAG	GAGAACATGC	AGCACCCTGG	CTCCAGGAAG
4201	TTCAACACCA	CGGAGAGGGT	CCTTCAGGGC	CTGCTCAGGT	CCCTGTTCAA
4251	GAGCACCAGT	GTTGGCCCTC	TGTACTCTGG	CTGCAGACTG	ACTTTGCTCA
4301	GGCCTGAAAA	GGATGGGACA	GCCACTGGAG	TGGATGCCAT	CTGCACCCÁC
4351	CACCCTGACC	CCAAAAGCCC	TAGGCTGGAC	AGAGAGCAGC	TGTATTGGGA
4401	GCTGAGCCAG	CTGACCCACA	ATATCACTGA	GCTGGGCCAC	TATGCCCTGG
4451	ACAACGACAG	CCTCTTTGTC	AATGGTTTCA	CTCATCGGAG	CTCTGTGTCC
4501	ACCACCAGCA	CTCCTGGGAC	CCCCACAGTG	TATCTGGGAG	CATCTAAGAC
4551	TCCAGCCTCG	ATATTTGGCC	CTTCAGCTGC	CAGCCATCTC	CTGATACTAT
4601	TCACCCTCAA	CTTCACCATC	ACTAACCTGC	GGTATGAGGA	GAACATGTGG
4651	CCTGGCTCCA	GGAAGTTCAA	CACTACAGAG	AGGGTCCTTC	AGGGCCTGCT
4701	AAGGCCCTTG	TTCAAGAACA	CCAGTGTTGG	CCCTCTGTAC	TCTGGCTCCA
4751	GGCTGACCTT	GCTCAGGCCA	GAGAAAGATG	GGGAAGCCAC	CGGAGTGGAT

4801	GCCATCTGCA	CCCACCGCCC	TGACCCCACA	GGCCCTGGGC	TGGACAGAGA
4851	GCAGCTGTAT	TTGGAGCTGA	GCCAGCTGAC	CCACAGCATC	ACTGAGCTGG
4901	GCCCCTACAC	ACTGGACAGG	GACAGTCTCT	ATGTCAATGG	TTTCACCCAT
4951	CGGAGCTCTG	TACCCACCAC	CAGCACCGGG	GTGGTCAGCG	AGGAGCCATT
5001	CACACTGAAC	TTCACCATCA	ACAACCTGCG	CTACATGGCG	GACATGGGCC
5051	AACCCGGCTC	CCTCAAGTTC	AACATCACAG	ACAACGTCAT	GAAGCACCTG
5101	CTCAGTCCTT	TGTTCCAGAG	GAGCAGCCTG	GGTGCACGGT	ACACAGGCTG
5151	CAGGGTCATC	GCACTAAGGT	CTGTGAAGAA	CGGTGCTGAG	ACACGGGTGG
5201	ACCTCCTCTG	CACCTACCTG	CAGCCCCTCA	GCGGCCCAGG	TCTGCCTATC
5251	AAGCAGGTGT	TCCATGAGCT	GAGCCAGCAG	ACCCATGGCA	TCACCCGGCT
5301	GGGCCCCTAC	TCTCTGGACA	AAGACAGCCT	CTACCTTAAC	GGTTACAATG
5351	AACCTGGTCT	AGATGAGCCT	CCTACAACTC	CCAAGCCAGC	CACCACATTC
5401	CTGCCTCCTC	TGTCAGAAGC	CACAACAGCC	ATGGGGTACC	ACCTGAAGAC
5451	CCTCACACTC	AACTTCACCA	TCTCCAATCT	CCAGTATTCA	CCAGATATGG
5501	GCAAGGGCTC	AGCTACATTC	AACTCCACCG	AGGGGGTCCT	TCAGCACCTG
5551	CTCAGACCCT	TGTTCCAGAA	GAGCAGCATG	GGCCCCTTCT	ACTTGGGTTG
5601	CCAACTGATC	TCCCTCAGGC	CTGAGAAGGA	TGGGGCAGCC	ACTGGTGTGG
5651	ACACCACCTG	CACCTACCAC	CCTGACCCTG	TGGGCCCCGG	GCTGGACATA
5701	CAGCAGCTTT	ACTGGGAGCT	GAGTCAGCTG	ACCCATGGTG	TCACCCAACT
5751	GGGCTTCTAT	GTCCTGGACA	GGGATAGCCT	CTTCATCAAT	GGCTATGCAC
5801	CCCAGAATTT	ATCAATCCGG	GGCGAGTACC	AGATAAATTT	CCACATTGTC
5851	AACTGGAACC	TCAGTAATCC	AGACCCCACA	TCCTCAGAGT	ACATCACCCT
5901	GCTGAGGGAC	ATCCAGGACA	AGGTCACCAC	ACTCTACAAA	GGCAGTCAAC
5951	TACATGACAC	ATTCCGCTTC	TGCCTGGTCA	CCAACTTGAC	GATGGACTCC

6001	GTGTTGGTCA	CTGTCAAGGC	ATTGTTCTCC	TCCAATTTGG	ACCCCAGCCT
6051	GGTGGAGCAA	GTCTTTCTAG	ATAAGACCCT	GAATGCCTCA	TTCCATTGGC
6101	TGGGCTCCAC	CTACCAGTTG	GTGGACATCC	ATGTGACAGA	AATGGAGTCA
6151	TCAGTTTATC	AACCAACAAG	CAGCTCCAGC	ACCCAGCACT	TCTACCCGAA
6201	TTTCACCATC	ACCAACCTAC	CATATTCCCA	GGACAAAGCC	CAGCCAGGCA
6251	CCACCAATTA	CCAGAGGAAC	AAAAGGAATA	TTGAGGATGC	GCTCAACCAA
6301	CTCTTCCGAA	ACAGCAGCAT	CAAGAGTTAT	TTTTCTGACT	GTCAAGTTTC
6351	AACATTCAGG	TCTGTCCCCA	ACAGGCACCA	CACCGGGGTG	GACTCCCTGT
6401	GTAACTTCTC	GCCACTGGCT	CGGAGAGTAG	ACAGAGTTGC	CATCTATGAG
6451	GAATTTCTGC	GGATGACCCG	GAATGGTACC	CAGCTGCAGA	ACTTCACCCT
6501	GGACAGGAGC	AGTGTCCTTG	TGGATGGGTA	TTCTCCCAAC	AGAAATGAGC
6551	CCTTAACTGG	GAATTCTGAC	CTTCCCTTCT	GGGCTGTCAT	CTTCATCGGC
6601	TTGGCAGGAC	TCCTGGGACT	CATCACATGC	CTGATCTGCG	GTGTCCTGGT
6651	GACCACCCGC	CGGCGGAAGA	AGGAAGGAGA	ATACAACGTC	CAGCAACAGT
6701	GCCCAGGCTA	CTACCAGTCA	CACCTAGACC	TGGAGGATCT	GCAA TGA CTG
6751	GAACTTGCCG	GTGCCTGGGG	TGCCTTTCCC	CCAGCCAGGG	TCCAAAGAAG
6801	CTTGGCTGGG	GCAGA <u>AATAA</u>	ACCATATTGG	TCG	

TABLE 9

Complete Amino Acid Sequence for 13 Repeats Contiguous with the Carboxy Terminus of CA125 (SEQ ID NO: 50)

ERVLQGLLKP LFRNSSLEYL YSGCRLASLR PEKDSSAMAV DAICTHRPDP EDLGLDRERL YWELSNLTNG IQELGPYTLD RNSLYVNGFT HRSSMPTTST PGTSTVDVGT SGTPSSSPSP TTAGPLLMPF TLNFTITNLQ YEEDMRRTGS RKFNTMERVL QGPLSPIFKN SSVGPLYSGC RLTSLRPEKD GAATGMDAVC LYHPNPKRPG LDREQLYWEL SQLTHNITEL GPYSLDRDSL YVNGFTHQNS VPTTSTPGTS TVYWATTGTP SSFPGHTEPG PLLIPFTLNF TITNLQYEEN MGHPGSRKFN ITERVLQGLL NPIFKNSSVG PLYSGCRLTS LRPEKDGAAT GMDAVCLYHP NPKRPGLDRE QLYCELSQLT HNITELGPYS LDRDSLYVNG FTHQNSVPTT STPGTSTVYW ATTGTPSSFP GHTEPGPLLI PFTLNFTITN LQYEEDMRRT GSRKFNTMER VLQGLLKPLF KSTSVGPLYS GCRLTLLRPE KHGAATGVDA ICTLRLDPTG PGLDRERLYW ELSQLTNSVT ELGPYTLDRD SLYVNGFTHR SSVPTTSIPG TSAVHLETSG TPASLPGHTA PGPLLVPFTL NFTITNLOYE EDMRHPGSRK FNTTERVLQG LLKPLFKSTS VGPLYSGCRL TLLRPEKRGA ATGVDTICTH RLDPLNPGLD REQLYWELSK LTRGIIELGP YLLDRGSLYV NGFTHRNFVP ITSTPGTSTV HLGTSETPSS LPRPIVPGPL LIPFTLNFTI TNLQYEENMG HPGSRKFNIT ERVLQGLLKP LFRNSSLEYL YSGCRLASLR PEKDSSAMAV DAICTHRPDP EDLGLDRERL YWELSNLTNG IQELGPYTLD RNSLYVNGFT HRSSMPTTST PGTSTVDVGT SGTPSSSPSP TTAGPLLMPF TLNFTITNLQ YEEDMRRTGS RKFNTMESVL QGLLKPLFKN TSVGPLYSGC RLTLLRPKKD GAATGVDAIC THRLDPKSPG LNREQLYWEL SKLTNDIEEV GPYTLDRNSL YVNGFTHRSF VAPTSTLGTS TVDLGTSGTP SSLPSPTTGV PLLIPFTLNF TITNLQYEEN MGHPGSRKFN IMERVLQGLL SPIFKNSSVG SLYSGCRLTL LRPEKDGAAT RVDAVCTHRP DPKSPGLDRE RLYWKLSQLT HGIIELGPYT LDRHSFYVNG FTHQSSMTTT RTPDTSTMHL ATSRTPASLS GPTTASPLLV LFTINFTITN QRYEENMHHP GSRKFNTTER

Complete Amino Acid Sequence for 13 Repeats Contiguous with the Carboxy Terminus of CA125 (SEQ ID NO: 50)

9

VLQGLLRPVF KNTSVGPLYS GCRLTLLRPK KDGAATKVDA ICTYRPDPKS PGLDREQLYW ELSQLTHSIT ELGPYTQDRD SLYVNGFTHR SSVPTTSIPG TSAVHLETSG TPASLPGPSA ASPLLVLFTL NFTITNLRYE ENMQHPGSRK FNTTERVLQG LLRSLFKSTS VGPLYSGCRL TLLRPEKDGT ATGVDAICTH HPDPKSPRLD REQLYWELSQ LTHNITELGH YALDNDSLFV NGFTHRSSVS TTSTPGTPTV YLGASKTPAS IFGPSAASHL LILFTLNFTI TNLRYEENMW PGSRKFNTTE RVLQGLLRPL FKNTSVGPLY SGSRLTLLRP EKDGEATGVD AICTHRPDPT GPGLDREQLY LELSQLTHSI TELGPYTLDR DSLYVNGFTH RSSVPTTSTG VVSEEPFTLN FTINNLRYMA DMGQPGSLKF NITDNVMKHL LSPLFQRSSL GARYTGCRVI ALRSVKNGAE TRVDLLCTYL QPLSGPGLPI KQVFHELSQQ THGITRLGPY SLDKDSLYLN GYNEPGLDEP PTTPKPATTF LPPLSEATTA MGYHLKTLTL NFTISNLQYS PDMGKGSATF NSTEGVLQHL LRPLFQKSSM GPFYLGCQLI SLRPEKDGAA TGVDTTCTYH PDPVGPGLDI QQLYWELSQL THGVTQLGFY VLDRDSLFIN GYAPQNLSIR GEYQINFHIV NWNLSNPDPT SSEYITLLRD IQDKVTTLYK GSQLHDTFRF CLVTNLTMDS VLVTVKALFS SNLDPSLVEQ VFLDKTLNAS FHWLGSTYQL VDIHVTEMES SVYQPTSSSS TQHFYLNFTI TNLPYSQDKA QPGTTNYQRN KRNIEDALNQ LFRNSSIKSY FSDCQVSTFR SVPNRHHTGV DSLCNFSPLA RRVDRVAIYE EFLRMTRNGT QLQNFTLDRS SVLVDGYSPN RNEPLTGNSD LPFWAVILIG LAGLLGLITC LICGVLVTTR RRKKEGEYNV QQQCPGYYQS HLDLEDLQ

TABLE 10A

5' Primer Sequence for End of the Open Reading Frame for Contig #32 of Chromosome 19 Cosmid AC008734 (SEQ ID NO: 51), Primer Sequence from within the Repeat Region (SEQ ID NO: 52, 3 Primer Sets Synthesized to Piece Together Entire Open Reading Frame in Contig #32 (SEQ ID NOS: 53 thru 58), Primers to Cosmid No. AC008734 for Contig #32 (SEQ ID NOS: 59 and 60), Sense Primer Sequence (supplied by Ambion) (SEQ ID NO: 61), Anti-Sense Primer Sequence for CA125 (SEQ ID NO: 62), and 5'Sense Primer Sequence (from Ambion) (SEQ ID NO: 63) and Anti-Sense Primer Specific to CA125 (SEQ ID NO: 64)

(SEQ ID NO: 51)	(5'-CAGCAGAGACCAGCACGAGTACTC-3')
(SEQ ID NO: 52)	(5'-TCCACTGCCATGGCTGAGCT-3')
Primer Sets	
(SEQ ID NO: 53) (SEQ ID NO: 54)	(Set 1) 5'-CCAGCACAGCTCTTCCCAGGAC-3' 5'-GGAATGGCTGAGCTGACGTCTG-3')
(SEQ ID NO: 55) (SEQ ID NO: 56	(Set 2) 5'-CTTCCCAGGACAACCTCAAGG-3' 5'-GCAGGATGAGTGAGCCACGTG-3'
(SEQ ID NO: 57) (SEQ ID NO: 58)	(Set 3) 5'-GTCAGATCTGGTGACCTCACTG-3' 5'-GAGGCACTGGAAAGCCCAGAG-3'
(SEQ ID NO: 59) (SEQ ID NO: 60)	5'-CTGATGGCATTATGGAACACATCAC-3' 5'-CCCAGAACGAGAGACCAGTGAG-3'
(SEQ ID NO: 61)	5'-GCTGATGGCGATGAATGAACACTG-3'
(SEQ ID NO: 62)	5'-CCCAGAACGAGAGACCAGTGAG-3'
(SEQ ID NO: 63) (SEQ ID NO: 64)	5'-CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG-3' 5'-CCTCTGTGTGCTGCTTCATTGGG-3'

TABLE 10B

Sense and Anti-Sense Primers Used to Order the CA125 Carboxy Terminal Domain (SEQ. ID NO: 303 and SEQ ID NO: 304, respectively)

(SEQ ID NO: 303) 5'-GGACAAGGTCACCACACTCTAC-3' (SEQ ID NO: 304) 5'-GCAGATCCTCCAGGTCTAGGTGTG-3'

TABLE 10C

Sense and Anti-Sense Primers Used to Amplify Overlapping Sequences in the Repeat Domain (SEQ ID NO: 305 and SEQ ID NO: 306, respectively)

(SEQ ID NO: 305) 5' GTC TCT ATG TCA ATG GTT TCA CCC-3' (SEQ ID NO: 306) 5'-TAG CTG CTC TCT GTC CAG TCC-3'

5' Sense Primer 1 Sequence and 3' Antisense Primer 2
(SEQ ID NO: 65 and SEQ ID NO: 66, respectively), and
Nucleotide and Amino Acid Sequences of the CA125 Repeat Expressed in E. coli
(SEQ ID NO: 67 and SEQ ID NO: 68, respectively)

(SEQ ID NO: 65)

5'-ACCGGATCCATGGGCCACACAGAGCCTGGCCC-3'

(SEQ ID NO: 66)

5'-TGTAAGCTTAGGCAGGAGGATGGAGTCC -3'

(SEQ ID NO: 67)

151 ACGGAGAGGG TTCTGCAGGG TCTGCTCAAG CCCTTGTTCA AGAACACCAG
201 TGTTGGCCCT CTGTACTCTG GCTGCAGACT GACCTTGCTC AGACCTGAGA

251 AGCATGAGGC AGCCACTGGA GTGGACACCA TCTGTACCCA CCGCGTTGAT

301 CCCATCGGAC CTGGACTGGA CAGAGAGCGG CTATACTGGG AGCTGAGCCA

351 GCTGACCAAC AGCATCACAG AGCTGGGACC CTACACCCTG GACAGGGACA

401 GTCTCTATGT CAATGGCTTC AACCCTCGGA GCTCTGTGCC AACCACCAGC

451 ACTCCTGGGA CCTCCACAGT GCACCTGGCA ACCTCTGGGA CTCCATCCTC

501 CCTGCCT

(SEQ ID NO: 68)

M R G S H H H H H H G S M G H T E P G P L L I P F T F N F T I T N L H Y E E N M Q H P G S R K F N T T E R V L Q G L L K P L F K N T S V G P L Y S G C R L T L L R P E K H E A A T G V D T I C T H R V D P I G P G L D R E R L Y W E L S Q L T N S I T E L G P Y T L D R D S L Y V N G F N P R S S V P T T S T P G T S T V H L A T S G T P S S L P

Additional Multiple Repeat Amino Acid Sequences (SEQ ID NO: 69 thru SEQ ID NO: 80)

(SEQ ID NO: 69)

ERVLQGLLGP MFKNTSVGLL YSGCRLTLLR PKKDGAATKV DAICTYRPDP KSPGLDREQL YWELSQLTHS ITELGPYTLD RDSLYVNGFT QRSSVPTTSI PGTPTVDLGT SGTPVSKPGP SAASPLLIPF TINFTITNLR YEENMGHPGS RKFNIMERVL QGLLKPLFKN TSVGPLYSGC RLTLLRPKKD GAATGVDAIC THRLDPKSPG LNREQLYWEL SKLTNDIEEL GPYTLDRNSL YVNGFTHQSS VSTTSTPGTS TVDLRTSGTP SSLSSPTIMA AGPLLIPFTI NFTITNLRYE ENMHHPGSRK FNTMERVLQG LLMPLFKNTS VSSLYSGCRL TLLRPEKDGA ATRVDAVCTH RPDPKSPGLD RERLYWKLSQ LTHGITELGP YTLDRNSLYV NGFTHRSSMP TTSTPGTSTV DVGTSGTPSS SPSPTTAGPL LMPFTLNFTI TNLQYEEDMR RTGSRKFNTM ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKHGAATGV DAICTLRLDP TGPGLDRERL YWELSQLTNS VTELGPYTLD RDSLYVNGFT HRSSVPTTSI PGTSAVHLET SGTPASLPGH TAPGPLLIPF TLNFTITNLH YEENMOHPGS RKFNTMERVL QGCLVPCSRN TNVGLLYSGC RLTLLRXEKX XAATXVDXXC XXXXDPXXPG LDREXLYWEL SXLTXXIXEL GPYTLDRNSL YVNGFTHRSS VAPTSTPGTS TVDLGTSGTP SSLPSPTTVP LLVPFTLNFT ITNLQYGEDM RHPGSRKFNT TERVLQGLLG PLFKNSSVGP LYSGCRLISL RSEKDGAATG VDAICTHHLN PQSPGLDREQ LYWQLSQVTN GIKELGPYTL DRNSLYVNGF THRSSGLTTS TPWTSTVDLG TSGTPSPVPS PTTAGPLLI

Additional Multiple Repeat Amino Acid Sequences (SEQ ID NO: 69 through SEQ ID NO: 80)

(SEQ ID NO: 70)

QGLLGPMFKN TSVGLLYSGC RLTLLRPEKR GAATGVDTIC THRLDPLNPG
LDREQLYWEL SKLTRGIIEL GPYLLDRGSL YVNGFTHRNF VPITSTPGTS
TVHLGTSETP SSLPRPIVPG PLLVPFTLNF TITNLQYEEA MRHPGSRKFN
TTERVLQGLL RPLFKNTSVS SLYSGCRLTL LRPEKDGAAT RVDAACTYRP
DPKSPGLDRE QLYWELSQLT HSITELGPYT LDRVSLYVNG FNPRSSVPTT
STPGTSTVHL ATSGTPSSLP GHTAPVPLLI PFTLNFTITN LQYEEDMRHP
GSRKFNTMER VLQGLLRPLF KNTSIGPLYS SCRLTLLRPE KDKAATRVDA
ICTHHPDPQS PGLNREQLYW ELSQLTHGIT ELGPYTLDRD SLYVDGFTHW
SPIPTTSTPG TSIVNLGTSG IPPSLPETTA TGPLLIPFTP NFTITNLQYE
EDMRRTGSRK FNTMERVLQG LLSPIFKNSS VGPLYSGCRL TSLRPEKDGA
ATGMDAVCLY HPNPKRPGLD REQLY

(SEQ ID NO:71)

ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKDGVATRV DAICTHRPDP
KIPGLDRQQL YWELSQLTHS ITELGPYTLD RDSLYVNGFT QRSSVPTTST
PGTFTVQPET SETPSSLPGP TATGPVLLPF TLNFTIINLQ YEEDMHRPGS
RKFNTTERVL QGLLMPLFKN TSVGPLYSGC RLTLLRPEKQ EAATGVDTIC
THRLDPSEPG LDREQLYWEL SQLTNSITEL GPYTLDRDSL YVNGFTHSGV
LCPPPSILGI FTVQPETFET PSSLPGPTAT GPVLLPFTLN FTIINLQYEE
DMHRPGSRKF NTTERVLQGL LTPLFKNTSV GPLYSGCRLT LLRPEKQEAA
TGVDTICTHR VDPIGPGLDR ERLYWELSQL TNSITELGPY TLDRDSLYVN
GFNPWSSVPT TSTPGTSTVH LATSGTPSSL PGHTAPVPLL IPFTLNFTIT

Additional Multiple Repeat Amino Acid Sequences (SEQ ID NO: 69 through SEQ ID NO: 80)

NLHYEENMQH PGSRKFNTTE RVLQGLLKPL FKSTSVGPLY SGCRLTLLRP

EKHGAATGVD AICTHRLDPK SPGVDREQLY WELSQLTNGI KELGPYTLDR

NSLYVNGFTH WIPVPTSSTP GTSTVDLGSG TPSSLPSPTT AGPL

(SEQ ID NO: 72)

TSVGPLYSGC RLTLLRSEKD GAATGVDAIY THRLDPKSPG VDREQLYWEL SQLTNGIKEL GPYTLDRNSL YVNGFTHQTS APNTSTPGTS TVDLGTSGTP SSLPSPTSAG PLLIPFTINF TITNLRYEEN MHHPGSRKFN TMERVLQGLL KPLFKSTSVG PLYSGCRLTL LRPEKDGVAT RVDAICTHRP DPKIPGLDRQ QLYWELSQLT HSITELGPYT LDRDSLYVNG FTQRSSVPTT STPGTFTVQP ETSETPSSLP GPTATGPVLL PFTLNFTIIN LQYEEDMHRP GSRKFNTTER VLQGLLKPLF KSTSVGPLYS GCRLTLLRPE KHGAATGVDA ICTLRLDPTG PGLDRERLYW ELSQLTNSIT ELGPYTLDRD SLYVNGFNPW SSVPTTSTPG TSTVHLATSG TPSSLPGHTA PVPL

(SEQ ID NO:73)

ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKRGAATGV DTICTHRLDP
LNPGLDREQL YWELSKLTRG IIELGPYLLD RDSLYVNGFT HRSSVPTTSI
PGTSAVHLET SGTPASLPGH TAPGPLLVPF TLNFTITNLQ YEEDMRHPGS
RKFNTTERVL QGLLKPLFKS TSVGPLYSGC RLTLLRPEKR GAATGVDTIC
THRLDPLNPG LDREQLYWEL SKLTRGIIEL GPYLLDRGSL YVNGFTHRNF
VPITSTPGTS TVHLGTSETP SSLPRPIVPG PLLIPF

Additional Multiple Repeat Amino Acid Sequences (SEQ ID NO: 69 through SEQ ID NO: 80)

(SEQ ID NO: 74)

ERVLQGLLRP VFKNTSVGPL YSGCRLTLLR PKKDGAATKV DAICTYRPDP
KSPGLDREQL YWELSQLTHS ITELGPYTLD RDSLYVNGFT QRSSVPTTSI
PGTPTVDLGT SGTPVSKPGP SAASPLLVPF TLNFTITNLQ YEEDMHRPGS
RKFNATERVL QGLLSPIFKN SSVGPLYSGC RLTSLRPEKD GAATGMDAVC
LYHPNPKRPG LDREQLYWEL SQLTHNITEL GPYSLDRDSL YVNGFTHQSS
MTTTRTPDTS TMHLATSRTP ASLSGPTTAS PLLIPF

(SEQ ID NO: 75)

ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKRGAATGV DTICTHRLDP LNPGLDREQL YWELSKLTRG IIELGPYLLD RGSLYVNGFS RQSSMTTTRT PDTSTMHLAT SRTPASLSGP TTASPLLIPF TLNFTITNLQ YEENMGHPGS RKFNIMERVL QGLLNPIFKN SSVGPLYSGC RLTSLKPEKD GAATGMDAVC LYHPNPKRPG LDREQLYWEL SQLTHGIKEL GPYTLDRNSL YVNGFTHRSS VAPTSTPGTS TVDLGTSGTP SSLPSPTTAV PLLIPF

(SEQ ID NO: 76)

ERVLQGLLKP LFRNSSLEYL YSGCRLASLR PEKDSSAMAV DAICTHRPDP
EDLGLDRERL YWELSNLTNG IQELGPYTLD RNSLYVNGFT HRSSGLTTST
PWTSTVDLGT SGTPSPVPSP TTAGPLLIPF TLNFTITNLQ YEENMGHPGS
RKFNIMERVL QGLLMPLFKN TSVSSLYSGC RLTLLRPEKD GAATRVDAVC
TQRPDPKSPG LDRERLYWKL SQLTHGITEL GPYTLDRHSL YVNGLTHQSS
MTTTRTPDTS TMHLATSRTP ASLSGPTTAS PLLIPF

Additional Multiple Repeat Amino Acid Sequences (SEQ ID NO: 69 through SEQ ID NO: 80)

(SEQ ID NO: 77)

ERVLQGLLSP ISKNSSVGPL YSGCRLTSLR PEKDGAATGM DAVCLYHPNP
KRPGLDREQL YWELSQLTHN ITELGPYSLD RDSLYVNGFT HQNSVPTTST
PGTSTVYWAT TGTPSSFPGH TEPGPLLIPF TVNFTITNLR YEENMHHPGS
RKFNTTERVL QGLLRPVFKN TSVGPLYSGC RLTLLRPKKD GAATKVDAIC
TYRPDPKSPG LDREQLYWEL SKLTNDIEEL GPYTLDRNSL YVNGFTHQSS
VSTTSTPGTS TVDLRTSGTP SSLSSPTIMA AGPLLIPF

(SEQ ID NO: 78)

ERVLHGLLTP LFKNTRVGPL YSGCRLTLLR PEKQEAATGV DTICTHRVDP
IGPGLDRERL YWELSQLTNS ITELGPYTLD RDSLYVNGFN PWSSVPTTST
PGTSTVHLAT SGTPSSLPGH TAPVPLLIPF TLNFTITNLH YEENMQHPGS
RKFNTTERVL QGLLKPLFKN TSVGPLYSGC RLTLFKPEKH EAATGVDAIC
TLRLDPTGPG LDRQLYWELS QLTNSVTELG PYTLDRDSLY VNGFTHRSSV
PTTSIPGTSA VHLETSGTPA SLPGHTAPGP LLIPFTLNFT ITNLQYEEDM
RRTGSRKFNT MERVLQGLLK PLFKSTSVGP LYSGCRLTLL RPEKRGAATG
VDTICTHRLD PLNPGLDREQ LYWELSKLTR GIIELGPYLL DRGSLYVNGF
THRNFVPITS TPGTSTVHLG TSETPSSLPR PIVPGPLLIP FTINFTITNL
RYEENMHHPG SRKFNIMERV LQGLLGPLFK NSSVGPLYSG CRLISLRSEK
DGAATGVDAI CTHHLNPQSP GLDREQLYWQ LSQMTNGIKE LGPYTLDRNS
LYVNGFTHRS SGLTTSTPWT STVDLGTSGT PSPVPSPTTA GPLLIPF

Additional Multiple Repeat Amino Acid Sequences (SEQ ID NO: 69 through SEQ ID NO: 80)

(SEQ ID NO: 79)

GPLYSGCRLT SLRPEKDGAA TGMDAVCLYH PNPKRPGLDR EQLYWELSQL
THNITELGPY SLDRDSLYVN GFTHQNSVPT TSTPGTSTVY WATTGTPSSF
PGHTEPGPLL IPFTLNFTIT NLQYEENMGH PGSRKFNITE SVLQGLLTPL
FKNSSVGPLY SGCRLISLRS EKDGAATGVD AICTHHLNPQ SPGLDREQLY
WQLSQMTNGI KELGPYTLDR DSLYVNGFTH RSLGLTTSTP WTSTVDLGTS
GTPSPVPSPT TAGPLLIPFT LNFTITNLQY EENMGHPGSR KFNIMERVLQ
GLLRPVFKNT SVGPLYSGCR LTLLRPKKDG AATKVDAICT YRPDPKSPGL
DREQLYWELS QLTHSITELG PYTLDRDSLY VNGFTQRSSV PTTSIPGTPT
VDLGTSGTPV SKPGPSAASP

(SEQ ID NO: 80)

QLYWELSKLT NDIEELGPYT LDRNSLYVNG FTHQSSVSTT STPGTSTVDL
RTSGTPSSLS SPTIMAAGPL LIPFTLNFTI TNLQYEENMG HPGSRKFNIM
ERVLQGLLGP MFKNTSVGLL YSGCRLTLLR PEKNGAATGM DAICSHRLDP
KSPGLNREQL YWELSQLTHG IKELGPYTLD RNSLYVNGFT HRSSVAPTST
PGTSTVDLGT SGTPSSLPSP TTAVPLLIPF TLNFTITNLK YEEDMHCPGS
RKFNTTERVL QSLFGPMFKN TSVGPLYSGC RLTLLRSEKD GAATGVDAIC
THRLDPKSLG VDREQLYWEL SQLTNGIKEL GPYTLDRNSL YVNGFTHQTS
APNTSTPGTS TVDLGTSGTP SSLPSPTSAG PLLVPFTLNF TITNLQYEED
MRRTGSRKFN TMESVLQGLL KPLFKNTSVG PLYSGCRLTL LRPEKDGAAT
GVDAICTHRL DPKSPGLNRE QLYWELSKL

1	CAGAGAGCGT	TGAGCTGGGA	ACAGTGACAA	GTGCTTATCA	AGTTCCTTCA
51	CTCTCAACAC	GGTTGACAAG	AACTGATGGC	ATTATGGAAC	ACATCACAAA
101	AATACCCAAT	GAAGCAGCAC	ACAGAGGTAC	CATAAGACCA	GTCAAAGGCC
151	CTCAGACATC	CACTTCGCCT	GCCAGTCCTA	AAGGACTACA	CACAGGAGGG
201	ACAAAAAGAA	TGGAGACCAC	CACCACAGCT	TTGAAGACCA	CCACCACAGC
251	TTTGAAGACC	ACTTCCAGAG	CCACCTTGAC	CACCAGTGTC	TATACTCCCA
301	CTTTGGGAAC	ACTGACTCCC	CTCAATGCAT	CAAGGCAAAT	GGCCAGCACA
351	ATCCTCACAG	AAATGATGAT	CACAACCCCA	TATGTTTTCC	CTGATGTTCC
401	AGAAACGACA	ȚCCTCATTGG	CTACCAGCCT	GGGAGCAGAA	ACCAGCACAG
451	CTCTTCCCAG	GACAACCCCA	TCTGTTCTCA	ATAGAGAATC	AGAGACCACA
501	GCCTCACTGG	TCTCTCGTTC	TGGGGCAGAG	AGAAGTCCGG	TTATTCAAAC
551	TCTAGATGTT	TCTTCTAGTG	AGCCAGATAC	AACAGCTTCA	TGGGTTATCC
601	ATCCTGCAGA	GACCATCCCA	ACTGTTTCCA	AGACAACCCC	CAATTTTTTC
651	CACAGTGAAT	TAGACACTGT	ATCTTCCACA	GCCACCAGTC	ATGGGGCAGA
701	CGTCAGCTCA	GCCATTCCAA	CAAATATCTC	ACCTAGTGAA	CTAGATGCAC
751	TGACCCCACT	GGTCACTATT	TCGGGGACAG	ATACTAGTAC	AACATTCCCA
801	ACACTGACTA	AGTCCCCACA	TGAAACAGAG	ACAAGAACCA	CATGGCTCAC
851	TCATCCTGCA	GAGACCAGCT	CAACTATTCC	CAGAACAATC	CCCAATTTTT
901	CTCATCATGA	ATCAGATGCC	ACACCTTCAA	TAGCCACCAG	TCCTGGGGCA
951	GAAACCAGTT	CAGCTATTCC	AATTATGACT	GTCTCACCTG	GTGCAGAAGA

				·	
1001	TCTGGTGACC	TCACAGGTCA	CTAGTTCTGG	GACAGACAGA	AATATGACTA
1051	TTCCAACTTT	GACTCTTTCT	CCTGGTGAAC	CAAAGACGAT	AGCCTCATTA
1101	GTCACCCATC	CTGAAGCACA	GACAAGTTCG	GCCATTCCAA	CTTCAACTAT
1151	CTCGCCTGCT	GTATCACGGT	TGGTGACCTC	AATGGTCACC	AGTTTGGCGG
1201	CAAAGACAAG	TACAACTAAT	CGAGCTCTGA	CAAACTCCCC	TGGTGAACCA
1251	GCTACAACAG	TTTCATTGGT	CACGCATCCT	GCACAGACCA	GCCCAACAGT
1301	TCCCTGGACA	ACTTCCATTT	TTTTCCATAG	TAAATCAGAC	ACCACACCTT
1351	CAATGACCAC	CAGTCATGGG	GCAGAATCCA	GTTCAGCTGT	TCCAACTCCA
1401	ACTGTTTCAA	CTGAGGTACC	AGGAGTAGTG	ACCCCTTTGG	TCACCAGTTC
1451	TAGGGCAGTG	ATCAGTACAA	CTATTCCAAT	TCTGACTCTT	TCTCCTGGTG
1501	AACCAGAGAC	CACACCTTCA	ATGGCCACCA	GTCATGGGGA	AGAAGCCAGT
1551	TCTGCTATTC	CAACTCCAAC	TGTTTCACCT	GGGGTACCAG	GAGTGGTGAC
1601	CTCTCTGGTC	ACTAGTTCTA	GGGCAGTGAC	TAGTACAACT	ATTCCAATTC
1651	TGACTTTTTC	TCTTGGTGAA	CCAGAGACCA	CACCTTCAAT	GGCCACCAGT
1701	CATGGGACAG	AAGCTGGCTC	AGCTGTTCCA	ACTGTTTTAC	CTGAGGTACC
1751	AGGAATGGTG	ACCTCTCTGG	TTGCTAGTTC	TAGGGCAGTA	ACCAGTACAA
1801	CTCTTCCAAC	TCTGACTCTT	TCTCCTGGTG	AACCAGAGAC	CACACCTTCA
1851	ATGGCCACCA	GTCATGGGGC	AGAAGCCAGC	TCAACTGTTC	CAACTGTTTC
1901	ACCTGAGGTA	CCAGGAGTGG	TGACCTCTCT	GGTCACTAGT	TCTAGTGGAG
1951	TAAACAGTAC	AAGTATTCCA	ACTCTGATTC	TTTCTCCTGG	TGAACTAGAA

2001	ACCACACCTT	CAATGGCCAC	CAGTCATGGG	GCAGAAGCCA	GCTCAGCTGT
2051	TCCAACTCCA	ACTGTTTCAC	CTGGGGTATC	AGGAGTGGTG	ACCCCTCTGG
2101	TCACTAGTTC	CAGGGCAGTG	ACCAGTACAA	CTATTCCAAT	TCTAACTCTT
2151	TCTTCTAGTG	AGCCAGAGAC	CACACCTTCA	ATGGCCACCA	GTCATGGGGT
2201	AGAAGCCAGC	TCAGCTGTTC	TAACTGTTTC	ACCTGAGGTA	CCAGGAATGG
2251	TGACCTCTCT	GGTCACTAGT	TCTAGAGCAG	TAACCAGTAC	AACTATTCCA
2301	ACTCTGACTA	TTTCTTCTGA	TGAACCAGAG	ACCACAACTT	CATTGGTCAC
2351	CCATTCTGAG	GCAAAGATGA	TTTCAGCCAT	TCCAACTTTA	GCTGTCTCCC
2401	CTACTGTACA	AGGGCTGGTG	ACTTCACTGG	TCACTAGTTC	TGGGTCAGAG
2451	ACCAGTGCGT	TTTCAAATCT	AACTGTTGCC	TCAAGTCAAC	CAGAGACCAT
2501	AGACTCATGG	GTCGCTCATC	CTGGGACAGA	AGCAAGTTCT	GTTGTTCCAA
2551	CTTTGACTGT	CTCCACTGGT	GAGCCGTTTA	CAAATATCTC	ATTGGTCACC
2601	CATCCTGCAG	AGAGTAGCTC	AACTCTTCCC	AGGACAACCT	CAAGGTTTTC
2651	CCACAGTGAA	TTAGACACTA	TGCCTTCTAC	AGTCACCAGT	CCTGAGGCAG
2701	AATCCAGCTC	AGCCATTTCA	ACTACTATTT	CACCTGGTAT	ACCAGGTGTG
2751	CTGACATCAC	TGGTCACTAG	CTCTGGGAGA	GACATCAGTG	CAACTTTTCC
2801	AACAGTGCCT	GAGTCCCCAC	ATGAATCAGA	GGCAACAGCC	TCATGGGTTA
2851	CTCATCCTGC	AGTCACCAGC	ACAACAGTTC	CCAGGACAAC	CCCTAATTAT
2901	TCTCATAGTG	AACCAGACAC	CACACCATCA	ATAGCCACCA	GTCCTGGGGC
2951	AGAAGCCACT	TCAGATTTTC	CAACAATAAC	TGTCTCACCT	GATGTACCAG

3001	ATATGGTAAC	CTCACAGGTC	ACTAGTTCTG	GGACAGACAC	CAGTATAACT
3051	ATTCCAACTC	TGACTCTTTC	TTCTGGTGAG	CCAGAGACCA	CAACCTCATT
3101	TATCACCTAT	TCTGAGACAC	ACACAAGTTC	AGCCATTCCA	ACTCTCCCTG
3151	TCTCCCCTGG	TGCATCAAAG	ATGCTGACCT	CACTGGTCAT	CAGTTCTGGG
3201	ACAGACAGCA	CTACAACTTT	CCCAACACTG	ACGGAGACCC	CATATGAACC
3251	AGAGACAACA	GCCATACAGC	TCATTCATCC	TGCAGAGACC	AACACAATGG
3301	TTCCCAAGAC	AACTCCCAAG	TTTTCCCATA	GTAAGTCAGA	CACCACACTC
3351	CCAGTAGCCA	TCACCAGTCC	TGGGCCAGAA	GCCAGTTCAG	CTGTTTCAAC
3401	GACAACTATC	TCACCTGATA	TGTCAGATCT	GGTGACCTCA	CTGGTCCCTA
3451	GTTCTGGGAC	AGACACCAGT	ACAACCTTCC	CAACATTGAG	TGAGACCCCA
3501	TATGAACCAG	AGACTACAGT	CACGTGGCTC	ACTCATCCTG	CAGAAACCAG
3551	CACAACGGTT	TCTGGGACAA	TTCCCAACTT	TTCCCATAGG	GGATCAGACA
3601	CTGCACCCTC	AATGGTCACC	AGTCCTGGAG	TAGACACGAG	GTCAGGTGTT
3651	CCAACTACAA	CCATCCCACC	CAGTATACCA	GGGGTAGTGA	CCTCACAGGT
3701	CACTAGTTCT	GCAACAGACA	CTAGTACAGC	TATTCCAACT	TTGACTCCTT
3751	CTCCTGGTGA	ACCAGAGACC	ACAGCCTCAT	CAGCTACCCA	TCCTGGGACA
3801	CAGACTGGCT	TCACTGTTCC	AATTCGGACT	GTTCCCTCTA	GTGAGCCAGA
3851	TACAATGGCT	TCCTGGGTCA	CTCATCCTCC	ACAGACCAGC	ACACCTGTTT
3901	CCAGAACAAC	CTCCAGTTTT	TCCCATAGTA	GTCCAGATGC	CACACCTGTA
3951	ATGGCCACCA	GTCCTAGGAC	AGAAGCCAGT	TCAGCTGTAC	TGACAACAAT

Amino Terminal Nucleotide Sequence (SEQ ID NO: 81)

4001	CTCACCTGGT	GCACCAGAGA	TGGTGACTTC	ACAGATCACT	AGTTCTGGGG
4051	CAGCAACCAG	TACAACTGTT	CCAACTTTGA	CTCATTCTCC	TGGTATGCCA
4101	GAGACCACAG	CCTTATTGAG	CACCCATCCC	AGAACAGGGA	CAAGTAAAAC
4151	ATTTCCTGCT	TCAACTGTGT	TTCCTCAAGT	ATCAGAGACC	ACAGCCTCAC
4201	TCACCATTAG	ACCTGGTGCA	GAGACTAGCA	CAGCTCTCCC	AACTCAGACA
4251	ACATCCTCTC	TCTTCACCCT	ACTTGTAACT	GGAACCAGCA	GAGTTGATCT
4301	AAGTCCAACT	GCTTCACCTG	GTGTTTCTGC	AAAAACAGCC	CCACTTTCCA
4351	CCCATCCAGG	GACAGAGACC	AGCACAATGA	TTCCAACTTC	AACTCTTTCC
4401	CTTGGTTTAC	TAGAGACTAC	AGGCTTACTG	GCCACCAGCT	CTTCAGCAGA
4451	GACCAGCACG	AGTACTCTAA	CTCTGACTGT	TTCCCCTGCT	GTCTCTGGGC
4501	TTTCCAGTGC	CTCTATAACA	ACTGATAAGC	CCCAAACTGT	GACCTCCTGG
4551	AACACAGAAA	CCTCACCATC	TGTAACTTCA	GTTGGACCCC	CAGAATTTTC
4601	CAGGACTGTC	ACAGGCACCA	CTATGACCTT	GATACCATCA	GAGATGCCAA
4651	CACCACCTAA	AACCAGTCAT	GGAGAAGGAG	TGAGTCCAAC	CACTATCTTG
4701	AGAACTACAA	TGGTTGAAGC	CACTAATTTA	GCTACCACAG	GTTCCAGTCC
4751	CACTGTGGCC	AAGACAACAA	CCACCTTCAA	TACACTGGCT	GGAAGCCTCT
4801	TTACTCCTCT	GACCACACCT	GGGATGTCCA	CCTTGGCCTC	TGAGAGTGTG
4851	ACCTCAAGAA	CAAGTTATAA	CCATCGGTCC	TGGATCTCCA	CCACCAGCAG
4901	TTATAACCGT	CGGTACTGGA	CCCCTGCCAC	CAGCACTCCA	GTGACTTCTA
4951	CATTCTCCCC	AGGGATTTCC	ACATCCTCCA	TCCCCAGCTC	CACAGCAGCC

Amino Terminal Nucleotide Sequence (SEQ ID NO: 81)

5001	ACAGTCCCAT	TCATGGTGCC	ATTCACCCTC	AACTTCACCA	TCACCAACCT
5051	GCAGTACGAG	GAGGACATGC	GGCACCCTGG	TTCCAGGAAG	TTCAACGCCA
5101	CAGAGAGAGA	ACTGCAGGGT	CTGCTCAAAC	CCTTGTTCAG	GAATAGCAGT
5151	CTGGAATACC	TCTATTCAGG	CTGCAGACTA	GCCTCACTCA	GGCCAGAGAA
5201	GGATAGCTCA	GCCATGGCAG	TGGATGCCAT	CTGCACACAT	CGCCCTGACC
5251	CTGAAGACCT	CGGACTGGAC	AGAGAGCGAC	TGTACTGGGA	GCTGAGCAAT
5301	CTGACAAATG	GCATCCAGGA	GCTGGGCCCC	TACACCCTGG	ACCGGAACAG
5351	TCTCTATGTC	AATGGTTTCA	CCCATCGAAG	CTCTATGCCC	ACCACCAGCA
5401	CTCCTGGGAC	CTCCACAGTG	GATGTGGGAA	CCTCAGGGAC	TCCATCCTCC
5451	AGCCCCAGCC	CCACG			

WO 02/083866 PCT/US02/11734

TABLE 14

Amino Terminal Protein Sequence (SEQ ID NO: 82)

ESVLEGTVTS AYQVPSLSTR LTRTDGIMEH ITKIPNEAAH RGTIRPVKGP 1 QTSTSPASPK GLHTGGTKRM ETTTTALKTT TTALKTTSRA TLTTSVYTPT LGTLTPLNAS RQMASTILTE MMITTPYVFP DVPETTSSLA TSLGAETSTA 101 LPRTTPSVLN RESETTASLV SRSGAERSPV IQTLDVSSSE PDTTASWVIH 151 PAETIPTVSK TTPNFFHSEL DTVSSTATSH GADVSSAIPT NISPSELDAL 201 TPLVTISGTD TSTTFPTLTK SPHETETRTT WLTHPAETSS TIPRTIPNFS 251 HHESDATPSI ATSPGAETSS AIPIMTVSPG AEDLVTSQVT SSGTDRNMTI 301 PTLTLSPGEP KTIASLVTHP EAQTSSAIPT STISPAVSRL VTSMVTSLAA 351 KTSTTNRALT NSPGEPATTV SLVTHPAQTS PTVPWTTSIF FHSKSDTTPS 401 MTTSHGAESS SAVPTPTVST EVPGVVTPLV TSSRAVISTT IPILTLSPGE 451 PETTPSMATS HGEEASSAIP TPTVSPGVPG VVTSLVTSSR AVTSTTIPIL 501 TFSLGEPETT PSMATSHGTE AGSAVPTVLP EVPGMVTSLV ASSRAVTSTT 551 LPTLTLSPGE PETTPSMATS HGAEASSTVP TVSPEVPGVV TSLVTSSSGV 601 NSTSIPTLIL SPGELETTPS MATSHGAEAS SAVPTPTVSP GVSGVVTPLV 651 TSSRAVTSTT IPILTLSSSE PETTPSMATS HGVEASSAVL TVSPEVPGMV 701 TSLVTSSRAV TSTTIPTLTI SSDEPETTTS LVTHSEAKMI SAIPTLAVSP 751 TVQGLVTSLV TSSGSETSAF SNLTVASSQP ETIDSWVAHP GTEASSVVPT 801 LTVSTGEPFT NISLVTHPAE SSSTLPRTTS RFSHSELDTM PSTVTSPEAE 851 SSSAISTTIS PGIPGVLTSL VTSSGRDISA TFPTVPESPH ESEATASWVT 901

Amino Terminal Protein Sequence (SEQ ID NO: 82)

			•		
951	HPAVTSTTVP	RTTPNYSHSE	PDTTPSIATS	PGAEATSDFP	TITVSPDVPD
1001	MVTSQVTSSG	TDTSITIPTL	TLSSGEPETT	TSFITYSETH	TSSAIPTLPV
1051	SPGASKMLTS	LVISSGTDST	TTFPTLTETP	YEPETTAIQL	IHPAETNTMV
1101	PRTTPKFSHS	KSDTTLPVAI	TSPGPEASSA	VSTTTISPDM	SDLVTSLVPS
1151	SGTDTSTTFP	TLSETPYEPE	TTATWLTHPA	ETSTTVSGTI	PNFSHRGSDT
1201	APSMVTSPGV	DTRSGVPTTT	IPPSIPGVVT	SQVTSSATDT	STAIPTLTPS
1251	PGEPETTASS	ATHPGTQTGF	TVPIRTVPSS	EPDTMASWVT	HPPQTSTPVS
1301	RTTSSFSHSS	PDATPVMATS	PRTEASSAVL	TTISPGAPEM	VTSQITSSGA
1351	ATSTTVPTLT	HSPGMPETTA	LLSTHPRTET	SKTFPASTVF	PQVSETTASL
1401	TIRPGAETST	ALPTQTTSSL	FTLLVTGTSR	VDLSPTASPG	VSAKTAPLST
1451	HPGTETSTMI	PTSTLSLGLL	ETTGLLATSS	SAETSTSTLT	LTVSPAVSGL
1501	SSASITTDKP	QTVTSWNTET	SPSVTSVGPP	EFSRTVTGTT	MTLIPSEMPT
1551	PPKTSHGEGV	SPTTILRTTM	VEATNLATTG	SSPTVAKTTT	TFNTLAGSLF
1601	TPLTTPGMST	LASESVTSRT	SYNHRSWIST	TSSYNRRYWT	PATSTPVTST
1651	FSPGISTSSI	PSSTAATVPF	MVPFTLNFTI	TNLQYEEDMR	HPGSRKFNAT
1701	ERELQGLLKP	LFRNSSLEYL	YSGCRLASLR	PEKDSSAMAV	DAICTHRPDP
1751	EDLGLDRERL	YWELSNLTNG	IQELGPYTLD	RNSLYVNGFT	HRSSMPTTST
1801	PGTSTVDVGT	SGTPSSSPSP	T		

TABLE 15

SEQ 1	טאש:	85)				
	1	GCCACAGTCC	CATTCATGGT	GCCATTCACC	CTCAACTTCA	CCATCACCAA
	51	CCTGCAGTAC	GAGGAGGACA	TGCGGCACCC	TGGTTCCAGG	AAGTTCAACG
	101	CCACAGAGAG	AGAACTGCAG	GGTCTGCTCA	AACCCTTGTT	CAGGAATAGC
	151	AGTCTGGAAT	ACCTCTATTC	AGGCTGCAGA	CTAGCCTCAC	TCAGGCCAGA
	201	GAAGGATAGC	TCAGCCATGG	CAGTGGATGC	CATCTGCATA	CATCGCCCTG
	251	ACCCTGAAGA	CCTCGGACTG	GACAGAGAGC	GACTGTACTG	GGAGCTGAGC
	301	AATCTGACAA	ATGGCATCCA	GGAGCTGGGC	CCCTACACCC	TGGACCGGAA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCG	AAGCTCTATG	CCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGGATGTGG	GAACCTCAGG	GACTCCATCC
	451	TCCAGCCCCA	GCCCCACG			
/ CEA	TD M	D: 84)				
(SEQ	1	GCTGCTGGCC	CTCTCCTGAT	GCCGTTCACC	CTCAACTTCA	CCATCACCAA
	51	CCTGCAGTAC	GAGGAGGACA	TGCGTCGCAC	TGGCTCCAGG	AAGTTCAACA
	101	CCATGGAGAG	TGTCCTGCAG	GGTCTGCTCA	AGCCCTTGTT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	TTGACCTTGC	TCAGGCCCAA
	201	GAAAGATGGG	GCAGCCACTG	GAGTGGATGC	CATCTGCACC	CACCGCCTTG
	251	ACCCCAAAAG	CCCTGGACTC	AACAGGGAGC	AGCTGTACTG	GGAGCTAAGC
	301	AAACTGACCA	ATGACATTGA	AGAGCTGGGC	CCCTACACCC	TGGACAGGAA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GAGCTCTGTG	TCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGGATCTCA	GAACCTCAGG	GACTCCATCC

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

451 TCCCTCTCCA GCCCCACAAT TATG

(SEQ ID NO: 85)

- 1 GCTGCTGGCC CTCTCCTGGT ACCATTCACC CTCAACTTCA CCATCACCAA
- 51 CCTGCAGTAT GGGGAGGACA TGGGTCACCC TGGCTCCAGG AAGTTCAACA
- 101 CCACAGAGAG GGTCCTGCAG GGTCTGCTTG GTCCCATATT CAAGAACACC
- 151 AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTCTC TCAGGTCTGA
- 201 GAAGGATGGA GCAGCCACTG GAGTGGATGC CATCTGCATC CATCATCTTG
- 251 ACCCCAAAAG CCCTGGACTC AACAGAGAGC GGCTGTACTG GGAGCTGAGC
- 301 CAACTGACCA ATGGCATCAA AGAGCTGGGC CCCTACACCC TGGACAGGAA
- 351 CAGTCTCTAT GTCAATGGTT TCACCCATCG GACCTCTGTG CCCACCACCA
- 401 GCACTCCTGG GACCTCCACA GTGGACCTTG GAACCTCAGG GACTCCATTC
- 451 TCCCTCCCAA GCCCCGCA

(SEQ ID NO: 86)

- 1 ACTGCTGGCC CTCTCCTGGT GCTGTTCACC CTCAACTTCA CCATCACCAA
- 51 CCTGAAGTAT GAGGAGGACA TGCATCGCCC TGGCTCCAGG AAGTTCAACA
- 101 CCACTGAGAG GGTCCTGCAG ACTCTGCTTG GTCCTATGTT CAAGAACACC
- 151 AGTGTTGGCC TTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGGTCCGA
- 201 GAAGGATGGA GCAGCCACTG GAGTGGATGC CATCTGCACC CACCGTCTTG
- 251 ACCCCAAAAG CCCTGGACTG GACAGAGAGC AGCTATACTG GGAGCTGAGC
- 301 CAGCTGACCA ATGGCATCAA AGAGCTGGGC CCCTACACCC TGGACAGGAA

	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATTG	GATCCCTGTG	CCCACCAGCA
	401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GGTCAGGGAC	TCCATCCTCC
	451	CTCCCCAGCC	CCACA			
/ CHO	TD M	o: 87)			•	
(SEQ	1	GCTGCTGGCC	CTCTCCTGGT	GCCATTCACC	CTCAACTTCA	CCATCACCAA
	51	CCTGCAGTAC	GAGGAGGACA	TGCATCACCC	AGGCTCCAGG	AAGTTCAACA
	101	CCACGGAGCG	GGTCCTGCAG	GGTCTGCTTG	GTCCCATGTT	CAAGAACACC
	151	AGTGTCGGCC	TTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGTCCGA
	201	GAAGGATGGA	GCAGCCACTG	GAGTGGATGC	CATCTGCACC	CACCGTCTTG
	251	ACCCCAAAAG	CCCTGGAGTG	GACAGGGAGC	AGCTATACTG	GGAGCTGAGC
	301	CAGCTGACCA	ATGGCATCAA	AGAGCTGGGT	CCCTACACCC	TGGACAGAAA
•	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GACCTCTGCG	CCCAACACCA
	401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GGACCTCAGG	GACTCCATCC
	451	TCCCTCCCCA	GCCCTACA			
(CEO	TO N	0: 88)				
(SEQ	1	NCNNCTGNCC	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA
	101	CCACNGAGNG	NGTNCTGCAG	GGTCTGCTNN	NNCCCNTNTT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGTCCGF
	201	GAAGGATGGA	GCAGCCACTG	GAGTGGATGC	CATCTGCACC	CACCGTCTTC
	251	ACCCCAAAAG	CCCTGGAGTG	GACAGGGAGC	AGCTATACTG	GGAGCTGAG

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

WO 02/083866 PCT/US02/11734

TABLE 15-continued

			_		_	
	301	CAGCTGACCA	ATGGCATCAA	AGAGCTGGGT	CCCTACACCC	TGGACAGAAA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GACCTCTGCG	CCCAACACCA
	401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GGACCTCAGG	GACTCCATCC
	451	TCCCTCCCCA	GCCCTACA			
/ CTO	TD NO	o: 89)				
(SEQ	1	•	CTCTCCTGGT	GCCATTCACC	CTCAACTTCA	CCATCACCAA
	51	CCTGCAGTAC	GAGGAGGACA	TGCATCACCC	AGGCTCCAGG	AAGTTCAACA
	101	CCACGGAGCG	GGTCCTGCAG	GGTCTGCTTG	GTCCCATGTT	CAAGAACACC
	151	AGTGTCGGCC	TTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGCCTGA
	201	GAAGAATGGG	GCAGCCACTG	GAATGGATGC	CATCTGCAGC	CACCGTCTTG
	251	ACCCCAAAAG	CCCTGGACTC	AACAGAGAGC	AGCTGTACTG	GGAGCTGAGC
	301	CAGCTGACCC	ATGGCATCAA	AGAGCTGGGC	CCCTACACCC	TGGACAGGAA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCG	GAGCTCTGTG	GCCCCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GGACCTCAGG	GACTCCATCC
	451	TCCCTCCCCA	GCCCCACA			
(SEQ	ID NO	o: 90)			•	
	1	•	CTCTCCTGGT	GCCGTTCACC	CTCAACTTTA	CCATCACCAA
	51	TCTGCAGTAT	GGGGAGGACA	TGCGTCACCC	TGGCTCCAGG	AAGTTCAACA
	101	CCACAGAGAG	GGTCCTGCAG	GGTCTGCTTG	GTCCCTTGTT	CAAGAACTCC
	151	AGTGTCGGCC	CTCTGTACTC	TGGCTGCAGA	CTGATCTCTC	TCAGGTCTGA
	201	GAAGGATGGG	GCAGCCACTG	GAGTGGATGC	CATCTGCACC	CACCACCTTA

	251	ACCCTCAAAG	CCCTGGACTG	GACAGGGAGC	AGCTGTACTG	GCAGCTGAGC
	301	CAGATGACCA	ATGGCATCAA	AGAGCTGGGC	CCCTACACCC	TGGACCGGAA
	351	CAGTCTCTAC	GTCAATGGTT	TCACCCATCG	GAGCTCTGGG	CTCACCACCA
	401	GCACTCCTTG	GACTTCCACA	GTTGACCTTG	GAACCTCAGG	GACTCCATCC
	451	CCCGTCCCCA	GCCCCACA	•		
/ CP/\	TD M	0: 91)				
(SEĞ	1	ACTGCTGGCC	CTCTCCTGGT	GCCATTCACC	CTCAACTTCA	CCATCACCAA
	51	CCTGCAGTAT	GAGGAGGACA	TGCATCGCCC	TGGATCTAGG	AAGTTCAACA
	101	CCACAGAGAG	GGTCCTGCAG	GGTCTGCTTA	GTCCCATTTT	CAAGAACTCC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTCTC	TCAGGCCCGA
	201	GAAGGATGGG	GCAGCAACTG	GAATGGATGC	TGTCTGCCTC	TACCACCCTA
	251	ATCCCAAAAG	ACCTGGACTG	GACAGAGAGC	AGCTGTACTG	GGAGCTAAGC
	301	CAGCTGACCC	ACAACATCAC	TGAGCTGGGC	CCCTACAGCC	TGGACAGGGA
>	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GAACTCTGTG	CCCACCACCA
	401	GTACTCCTGG	GACCTCCACA	GTGTACTGGG	CAACCACTGG	GACTCCATCC
	451	TCCTTCCCCG	GCCACACA			
(SEO	TD N	o: 92)				
(DLIZ	1	GAGCCTGGCC	CTCTCCTGAT	ACCATTCACT	TTCAACTTTA	CCATCACCA
	51	CCTGCATTAT	GAGGAAAACA	TGCAACACCC	TGGTTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	GGTTCTGCAG	GGTCTGCTCA	AGCCCTTGTT	CAAGAACAC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTCTC	TCAGGCCCGA

	201	GAAGGATGGG	GCAGCAACTG	GAATGGATGC	TGTCTGCCTC	TACCACCCTA
	251	ATCCCAAAAG	ACCTGGGCTG	GACAGAGAGC	AGCTGTACTG	GGAGCTAAGC
	301	CAGCTGACCC	ACAACATCAC	TGAGCTGGGC	CCCTACAGCC	TGGACAGGGA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GAACTCTGTG	CCCACCACCA
	401	GTACTCCTGG	GACCTCCACA	GTGTACTGGG	CAACCACTGG	GACTCCATCC
	451	TCCTTCCCCG	GCCACACA			
(SEQ	1D NO	D: 93) GAGCCTGGCC	CTCTCCTGAT	ACCATTCACT	TTCAACTTTA	CCATCACCAA
	51	CCTGCATTAT	GAGGAAAACA	TGCAACACCC	TGGTTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	GGTTCTGCAG	GGTCTGCTCA	AGCCCTTGTT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGACCTGA
	201	GAAGCATGAG	GCAGCCACTG	GAGTGGACAC	CATCTGTACC	CACCGCGTTG
	251	ATCCCATCGG	ACCTGGACTG	GACAGGGAGC	GGCTATACTG	GGAGCTGAGC
	301	CAGCTGACCA	ACAGCATTAC	CGAACTGGGA	CCCTACACCC	TGGACAGGGA
	351	CAGTCTCTAT	GTCAATGGCT	TCAACCCTCG	GAGCTCTGTG	CCAACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGCACCTGG	CAACCTCTGG	GACTCCATCC
	451	TCCCTGCCTG	GCCACACA			
(CEA	TD M	D: 94)				
(9EQ	1 N	•	CTCTCTTGAT	ACCATTCACC	CTCAACTTTA	CCATCACCAA
	51	CCTGCATTAT	GAGGAAAACA	TGCAACACCC	TGGTTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	GGTTCTGCAG	GGTCTGCTCA	AGCCCTTGTT	CAAGAACACC

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGACCTGA 151 GAAGCATGAG GCAGCCACTG GAGTGGACAC CATCTGTACC CACCGCGTTG 201 ATCCCATCGG ACCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC 251 CANCTGACCA ANNNCATCNN NGAGCTGGGN CCCTACACCC TGGACAGGNA 301 CAGTCTCTAT GTCAATGGTT TCACCCATCN GANCTCTGNG CCCACCACCA 351 GCACTCCTGG GACCTCCACA GTGNACNTNG GNACCTCNGG GACTCCATCC 401 TCCNTCCCCN GCCNCACA 451 (SEQ ID NO: 95) TCTGCTGGCC CTCTCCTGGT GCCATTCACC CTCAACTTCA CCATCACCAA CCTGCAGTAC GAGGAGGACA TGCATCACCC AGGCTCCAGG AAGTTCAACA 51 CCACGGAGCG GGTCCTGCAG GGTCTGCTTG GTCCCATGTT CAAGAACACC 101 AGTGTCGGCC TTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGGCCTGA 151 GAAGAATGGG GCAGCCACTG GAATGGATGC CATCTGCAGC CACCGTCTTG 201 ACCCCAAAAG CCCTGGACTC GACAGAGAGC AGCTGTACTG GGAGCTGAGC 251 CAGCTGACCC ATGGCATCAA AGAGCTGGGC CCCTACACCC TGGACAGGAA 301 CAGTCTCTAT GTCAATGGTT TCACCCATCG GAGCTCTGTG GCCCCCACCA 351 GCACTCCTGG GACCTCCACA GTGGACCTTG GGACCTCAGG GACTCCATCC 401 TCCCTCCCCA GCCCCACA 451

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

(SEQ ID NO: 96) ACAGCTGTTC CTCTCCTGGT GCCGTTCACC CTCAACTTTA CCATCACCAA 1 51 TCTGCAGTAT GGGGAGGACA TGCGTCACCC TGGCTCCAGG AAGTTCAACA 101 CCACAGAGAG GGTCCTGCAG GGTCTGCTTG GTCCCTTGTT CAAGAACTCC 151 AGTGTCGGCC CTCTGTACTC TGGCTGCAGA CTGATCTCTC TCAGGTCTGA GAAGGATGGG GCAGCCACTG GAGTGGATGC CATCTGCACC CACCACCTTA 201 251 ACCCTCAAAG CCCTGGACTG GACAGGGAGC AGCTGTACTG GCAGCTGAGC CAGATGACCA ATGGCATCAA AGAGCTGGGC CCCTACACCC TGGACCGGAA 301 CAGTCTCTAC GTCAATGGTT TCACCCATCG GAGCTCTGGG CTCACCACCA 351 GCACTCCTTG GACTTCCACA GTTGACCTTG GAACCTCAGG GACTCCATCC 451 CCCGTCCCCA GCCCCACA (SEQ ID NO: 97) ACTGCTGGCC CTCTCCTGGT GCCATTCACC CTAAACTTCA CCATCACCAA CCTGCAGTAT GAGGAGGACA TGCATCGCCC TGGATCTAGG AAGTTCAACG 51 101 CCACAGAGAG GGTCCTGCAG GGTCTGCTTA GTCCCATATT CAAGAACTCC AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTCTC TCAGGCCCGA 151 GAAGGATGGG GCAGCAACTG GAATGGATGC TGTCTGCCTC TACCACCCTA 201 ATCCCAAAAG ACCTGGACTG GACAGAGAGC AGCTGTACTG GGAGCTAAGC 251 301 CAGCTGACCC ACAACATCAC TGAGCTGGGC CCCTACAGCC TGGACAGGGA 351 CAGTCTCTAT GTCAATGGTT TCACCCATCA GAGCTCTATG ACGACCACCA

201

251

301

TABLE 15-continued

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

401 GAACTCCTGA TACCTCCACA ATGCACCTGG CAACCTCGAG AACTCCAGCC 451 TCCCTGTCTG GACCTACG (SEQ ID NO: 98) ACCGCCAGCC CTCTCCTGGT GCTATTCACA ATCAACTGCA CCATCACCAA CCTGCAGTAC GAGGAGGACA TGCGTCGCAC TGGCTCCAGG AAGTTCAACA 51 CCATGGAGAG TGTCCTGCAG GGTCTGCTCA AGCCCTTGTT CAAGAACACC 101 AGTGTTGGCC CTCTGTACTC TGGCTGCAGA TTGACCTTGC TCAGGCCCAA 151 GAAAGATGGG GCAGCCACTG GAGTGGATGC CATCTGCACC CACCGCCTTG 201 251 ACCCCAAAAG CCCTGGACTC AACAGGGAGC AGCTGTACTG GGAGCTAAGC AAACTGACCA ATGACATTGA AGAGCTGGGC CCCTACACCC TGGACAGGAA 301 CAGTCTCTAT GTCAATGGTT TCACCCATCA GAGCTCTGTG TCCACCACCA 351 GCACTCCTGG GACCTCCACA GTGGATCTCA GAACCTCAGG GACTCCATCC 401 TCCCTCTCCA GCCCCACAAT TATG 451 (SEQ ID NO: 99) NCNNCTGNCC CTCTCCTGNT NCCNTTCACC NTCAACTTNA CCATCACCAA CCTGCANTAN GNGGANNACA TGCNNCNCCC NGGNTCCAGG AAGTTCAACA 51 CCACNGAGAG GGTCCTACAG GGTCTGCTCA GGCCCTTGTT CAAGAACACC 101 AGTGTCAGCT CTCTGTACTC TGGTTGCAGA CTGACCTTGC TCAGGCCTGA 151

GAAGGATGGG GCAGCCACCA GAGTGGATGC TGCCTGCACC TACCGCCCTG

ATCCCAAAAG CCCTGGACTG GACAGAGAGC AACTATACTG GGAGCTGAGC

CAGCTAACCC ACAGCATCAC TGAGCTGGGA CCCTACACCC TGGACAGGGT

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru 145)

351 CAGTCTCTAT GTCAATGGCT TCAACCCTCG GAGCTCTGTG CCAACCACCA 401 GCACTCCTGG GACCTCCACA GTGCACCTGG CAACCTCTGG GACTCCATCC TCCCTGCCTG GCCACACA (SEQ ID NO: 100) 1 GCCCCTGTCC CTCTCTTGAT ACCATTCACC CTCAACTTTA CCATCACCAA CCTGCATTAT GAAGAAAACA TGCAACACCC TGGTTCCAGG AAGTTCAACA 101 CCACGGAGAG GGTTCTGCAG GGTCTGCTCA AGCCCTTGTT CAAGAGCACC 151 AGCGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGACCTGA 201 GAAACATGGG GCAGCCACTG GAGTGGACGC CATCTGCACC CTCCGCCTTG 251 ATCCCACTGG TCCTGGACTG GACAGAGAGC GGCTATACTG GGAGCTGAGC CAGCTGACCA ACAGCGTTAC AGAGCTGGGC CCCTACACCC TGGACAGGGA 301 351 CAGTCTCTAT GTCAATGGCT TCACCCAGCG GAGCTCTGTG CCAACCACCA GTATTCCTGG GACCTCTGCA GTGCACCTGG AAACCTCTGG GACTCCAGCC 401 451 TCCCTCCCTG GCCACACA (SEQ ID NO: 101) GCCCCTGGCC CTCTCCTGGT GCCATTCACC CTCAACTTCA CTATCACCAA 51 CCTGCAGTAT GAGGTGGACA TGCGTCACCC TGGTTCCAGG AAGTTCAACA 101 CCACGGAGAG AGTCCTGCAG GGTCTGCTCA AGCCCTTGTT CAAGAGCACC 151 AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGGCCTGA 201 AAAACGTGGG GCAGCCACCG GCGTGGACAC CATCTGCACT CACCGCCTTG ACCCTCTAAA CCCTGGACTG GACAGAGAGC AGCTATACTG GGAGCTGAGC 251

	301	AAACTGACCC	GTGGCATCAT	CGAGCTGGGC	CCCTACCTCC	TGGACAGAGG
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCG	GAACTTTGTG	CCCATCACCA
	401	GCACTCCTGG	GACCTCCACA	GTACACCTAG	GAACCTCTGA	AACTCCATCC
	451	TCCCTACCTA	GACCCATA			
(SEQ	ID NO	o: 102) GTGCCTGGCC	CTCTCCTGGT	GCCATTCACC	CTCAACTTCA	CCATCACCAA
	51	CTTGCAGTAT	GAGGAGGCCA	TGCGACACCC	TGGCTCCAGG	AAGTTCAATA
	101	CCACGGAGAG	GGTCCTACAG	GGTCTGCTCA	GGCCCTTGTT	CAAGAATACC
	151	AGTATCGGCC	CTCTGTACTC	CAGCTGCAGA	CTGACCTTGC	TCAGGCCAGA
	201	GAAGGACAAG	GCAGCCACCA	GAGTGGATGC	CATCTGTACC	CACCACCCTG
	251	ACCCTCAAAG	CCCTGGACTG	AACAGAGAGC	AGCTGTACTG	GGAGCTGAGC
	301	CAGCTGACCC	ACGGCATCAC	TGAGCTGGGC	CCCTACACCC	TGGACAGGGA
	351	CAGTCTCTAT	GTCGATGGTT	TCACTCATTG	GAGCCCCATA	CCGACCACCA
	401	GCACTCCTGG	GACCTCCATA	GTGAACCTGG	GAACCTCTGG	GATCCCACCT
	451	TCCCTCCCTG	AAACTACA			
/ CEO	TD N	o: 103)				
(SEQ	1	NCNNCTGNCC	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA
	101	CCACNGAGAG	GGTTCTGCAG	GGTCTGCTCA	AACCCTTGTT	CAGGAATAGC
	151	AGTCTGGAAT	ACCTCTATTC	AGGCTGCAGA	CTAGCCTCAC	TCAGGCCAGA
	201	GAAGGATAGC	TCAGCCATGG	CAGTGGATGC	CATCTGCACA	CATCGCCCTG

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru 145)

251 ACCCTGAAGA CCTCGGACTG GACAGAGAGC GACTGTACTG GGAGCTGAGC 301 AATCTGACAA ATGGCATCCA GGAGCTGGGC CCCTACACCC TGGACCGGAA 351 CAGTCTCTAC GTCAATGGTT TCACCCATCG GAGCTCTGGG CTCACCACCA 401 GCACTCCTTG GACTTCCACA GTTGACCTTG GAACCTCAGG GACTCCATCC 451 CCCGTCCCCA GCCCCACA (SEQ ID NO: 104) ACTGCTGGCC CTCTCCTGGT GCCATTCACC CTCAACTTCA CCATCACCAA 51 CCTGCAGTAT GAGGAGGACA TGCATCGCCC TGGTTCCAGG AGGTTCAACA 101 CCACGGAGAG GGTTCTGCAG GGTCTGCTCA CGCCCTTGTT CAAGAACACC 151 AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGACCTGA 201 GAAGCAAGAG GCAGCCACTG GAGTGGACAC CATCTGTACC CACCGCGTTG 251 ATCCCATCGG ACCTGGACTG GACAGAGAGC GGCTATACTG GGAGCTGAGC 301 CAGCTGACCA ACAGCATCAC AGAGCTGGGA CCCTACACCC TGGATAGGGA 351 CAGTCTCTAT GTCAATGGCT TCAACCCTTG GAGCTCTGTG CCAACCACCA 401 GCACTCCTGG GACCTCCACA GTGCACCTGG CAACCTCTGG GACTCCATCC 451 TCCCTGCCTG GCCACACA (SEQ ID NO: 105) GCCCCTGTCC CTCTCTTGAT ACCATTCACC CTCAACTTTA CCATCACCGA 51 CCTGCATTAT GAAGAAAACA TGCAACACCC TGGTTCCAGG AAGTTCAACA 101 CCACGGAGAG GGTTCTGCAG GGTCTGCTCA AGCCCTTGTT CAAGAGCACC 151 AGCGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGACCTGA

	201	GAAACATGGG	GCAGCCACTG	GAGTGGACGC	CATCTGCACC	CTCCGCCTTG
	251	ATCCCACTGG	TCCTGGACTG	GACAGAGAGC	GGCTATACTG	GGAGCTGAGC
	301	CAGCTGACCA	ACAGCGTTAC	AGAGCTGGGC	CCCTACACCC	TGGACAGGGA
	351	CAGTCTCTAT	GTCAATGGCT	TCACCCATCG	GAGCTCTGTG	CCAACCACCA
	401	GTATTCCTGG	GACCTCTGCA	GTGCACCTGG	AAACCTCTGG	GACTCCAGCC
	451	TCCCTCCCTG	GCCACACA			
SEQ	ID NO	GCCCCTGGCC	CTCTCCTGGT	GCCATTCACC	CTCAACTTCA	CTATCACCAA
	51	CCTGCAGTAT	GAGGAGGACA	TGCGTCACCC	TGGTTCCAGG	AAGTTCAGCA
	101	CCACGGAGAG	AGTCCTGCAG	GGTCTGCTCA	AGCCCTTGTT	CAAGAACACC
	151	AGTGTCAGCT	CTCTGTACTC	TGGTTGCAGA	CTGACCTTGC	TCAGGCCTGA
·	201	GAAGGATGGG	GCAGCCACCA	GAGTGGATGC	TGTCTGCACC	CATCGTCCTG
	251	ACCCCAAAAG	CCCTGGACTG	GACAGAGAGC	GGCTGTACTG	GAAGCTGAGC
	301	CAGCTGACCC	ACGGCATCAC	TGAGCTGGGC	CCCTACACCC	TGGACAGGCA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GAGCTCTATG	ACGACCACCA
	401	GAACTCCTGA	TACCTCCACA	ATGCACCTGG	CAACCTCGAG	AACTCCAGCC
	451	TCCCTGTCTG	GACCTACG			
		0. 1071				
SEQ	ID N	O: 107) ACCGCCAGCC	CTCTCCTGGT	GCTATTCACA	ATTAACTTCA	CCATCACTAA
	51	CCTGCGGTAT	GAGGAGAACA	TGCATCACCC	TGGCTCTAGA	AAGTTTAACA
	101	CCACGGAGAG	AGTCCTTCAG	GGTCTGCTCA	GGCCTGTGTT	CAAGAACACC

	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCACGC	TCAGGCCCAA
	201	GAAGGATGGG	GCAGCCACCA	AAGTGGATGC	CATCTGCACC	TACCGCCCTG
	251	ATCCCAAAAG	CCCTGGACTG	GACAGAGAGC	AGCTATACTG	GGAGCTGAGC
	301	CAGCTAACCC	ACAGCATCAC	TGAGCTGGGC	CCCTACACCC	AGGACAGGGA
	351	CAGTCTCTAT	GTCAATGGCT	TCACCCATCG	GAGCTCTGTG	CCAACCACCA
	401	GTATTCCTGG	GACCTCTGCA	GTGCACCTGG	AAACCTCTGG	GACTCCAGCC
	451	TCCCTCCCTG	GCCACACA			
OHO	TD 37	. 1001				
SEQ	1 N	CCCCTGGCC	CTCTCCTGGT	GCCATTCACC	CTCAACTTCA	CTATCACCAA
	51	CCTGCAGTAT	GAGGAGGACA	TGCGTCACCC	TGGTTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	AGTCCTGCAG	GGTCTGCTCA	AGCCCTTGTT	CAAGAGCACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGCCTGA
	201	AAAACGTGGG	GCAGCCACCG	GCGTGGACAC	CATCTGCACT	CACCGCCTTG
	251	ACCCTCTAAA	CCCAGGACTG	GACAGAGAGC	AGCTATACTG	GGAGCTGAGC
•	301	AAACTGACCC	GTGGCATCAT	CGAGCTGGGC	CCCTACCTCC	TGGACAGAGG
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCG	GACCTCTGTG	CCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GAACCTCAGG	GACTCCATTC
	451	TCCCTCCCAA	GCCCGCA			
SEC	TD NC): 109)				
~=X	1	•	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA

	101	CCACNGAGAG	GGTCCTGCAG	ACTCTGCTTG	GTCCTATGTT	CAAGAACACC
	151	AGTGTTGGCC	TTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGTCCGA
,	201	GAAGGATGGA	GCAGCCACTG	GAGTGGATGC	CATCTGCACC	CACCGTCTTG
	251	ACCCCAAAAG	CCCTGGAGTG	GACAGGGAGC	AACTATACTG	GGAGCTGAGC
	301	CAGCTGACCA	ATGGCATTAA	AGAACTGGGC	CCCTACACCC	TGGACAGGAA
	351	CAGTCTCTAT	GTCAATGGGT	TCACCCATTG	GATCCCTGTG	CCCACCAGCA
	401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GGTCAGGGAC	TCCATCCTCC
	451	CTCCCCAGCC	CCACA			
(SEO	TD N	0: 110)				
(01g	1	ACTGCTGGCC	CTCTCCTGGT	GCCGTTCACC	CTCAACTTCA	CCATCACCAA
	51	CCTGAAGTAC	GAGGAGGACA	TGCATTGCCC	TGGCTCCAGG	AAGTTCAACA
	101	CCACAGAGAG	AGTCCTGCAG	AGTCTGCTTG	GTCCCATGTT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGTCCGA
	201	GAAGGATGGA	GCAGCCACTG	GAGTGGATGC	CATCTGCACC	CACCGTCTTG
	251	ACCCCAAAAG	CCCTGGAGTG	GACAGGGAGC	AGCTATACTG	GGAGCTGAGC
	301	CAGCTGACCA	ATGGCATCAA	AGAGCTGGGT	CCCTACACCC	TGGACAGAAA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GACCTCTGCG	CCCAACACCA
	401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GGACCTCAGG	GACTCCATCC
	451	TCCCTCCCCA	GCCCTACA			

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

(SEQ ID NO: 111) NCNNCTGNCC CTCTCCTGNT NCCNTTCACC NTCAACTTNA CCATCACCAA 51 CCTGCANTAN GNGGANNACA TGCNNCNCCC NGGNTCCAGG AAGTTCAACA 101 CCACNGAGNG NGTNCTGCAG GGTCTGCTNN NNCCCNTNTT CAAGAACNCC 151 AGTGTNGGCC NTCTGTACTC TGGCTGCAGA CTGACCTNNC TCAGGNCNGA 201 GAAGNATGGN GCAGCCACTG GANTGGATGC CATCTGCANC CACCNNCNTN 251 ANCCCAAAAG NCCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC 301 CANCTGACCA ANNNCATONN NGAGCTGGGN CCCTACACCC TGGACAGGNA 351 CAGTCTCTAT GTCAATGGTT TCACCCATTG GATCCCTGTG CCCACCAGCA 401 GCACTCCTGG GACCTCCACA GTGGACCTTG GGTCAGGGAC TCCATCCTCC 451 CTCCCCAGCC CCACA (SEQ ID NO: 112) ACTGCTGGCC CTCTCCTGGT GCCGTTCACC CTCAACTTCA CCATCACCAA CCTGAAGTAC GAGGAGGACA TGCATTGCCC TGGCTCCAGG AAGTTCAACA 101 CCACAGAGAG AGTCCTGCAG AGTCTGCTTG GTCCCATGTT CAAGAACACC 151 AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTCGC TCAGGTCCGA 201 GAAGGATGGA GCAGCCACTG GAGTGGATGC CATCTGCACC CACCGTGTTG 251 ACCCCAAAAG CCCTGGAGTG GACAGGGAGC AGCTATACTG GGAGCTGAGC 301 CAGCTGACCA ATGGCATCAA AGAGCTGGGT CCCTACACCC TGGACAGAAA 351 CAGTCTCTAT GTCAATGGTT TCACCCATCA GACCTCTGCG CCCAACACCA 401 GCACTCCTGG GACCTCCACA GTGNACNTNG GNACCTCNGG GACTCCATCC

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

451 TCCNTCCCCN GCCNCACA

(SEQ ID NO: 113)

- 1 TCTGCTGGCC CTCTCCTGGT GCCATTCACC CTCAACTTCA CCATCACCAA
- 51 CCTGCAGTAC GAGGAGGACA TGCATCACCC AGGCTCCAGG AAGTTCAACA
- 101 CCACGGAGCG GGTCCTGCAG GGTCTGCTTG GTCCCATGTT CAAGAACACC
- 151 AGTGTCGGCC TTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGGCCTGA
- 201 GAAGAATGGG GCAACCACTG GAATGGATGC CATCTGCACC CACCGTCTTG
- 251 ACCCCAAAAG CCCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC
- 301 CANCTGACCA ANNNCATCNN NGAGCTGGGN CCCTACACCC TGGACAGGNA
- 351 CAGTCTCTAT GTCAATGGTT TCACCCATCN GANCTCTGNG CCCACCACCA
- 401 GCACTCCTGG GACCTCCACA GTGNACNTNG GNACCTCNGG GACTCCATCC
- 451 TCCNTCCCCN GCCNCACA

(SEQ ID NO: 114)

- 1 NCNNCTGNCC CTCTCCTGNT NCCNTTCACC NTCAACTTNA CCATCACCAA
- 51 CCTGCANTAN GNGGANNACA TGCNNCNCCC NGGNTCCAGG AAGTTCAACA
- 101 CCACNGAGAG GGTTCTGCAG GGTCTGCTCA AACCCTTGTT CAGGAATAGC
- 151 AGTCTGGAAT ACCTCTATTC AGGCTGCAGA CTAGCCTCAC TCAGGCCAGA
- 201 GAAGGATAGC TCAGCCATGG CAGTGGATGC CATCTGCACA CATCGCCCTG
- 251 ACCCTGAAGA CCTCGGACTG GACAGAGAGC GACTGTACTG GGAGCTGAGC
- 301 AATCTGACAA ATGGCATCCA GGAGCTGGGC CCCTACACCC TGGACCGGAA
- 351 CAGTCTCTAT GTCAATGGTT TCACCCATCG AAGCTCTATG CCCACCACCA

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

- 401 GCACTCCTGG GACCTCCACA GTGGATGTGG GAACCTCAGG GACTCCATCC
- 451 TCCAGCCCCA GCCCCACG

(SEQ ID NO: 115)

- 1 ACTGCTGGCC CTCTCCTGAT ACCATTCACC CTCAACTTCA CCATCACCAA
- 51 CCTGCAGTAT GGGGAGGACA TGGGTCACCC TGGCTCCAGG AAGTTCAACA
- 101 CCACAGAGAG GGTCCTGCAG GGTCTGCTTG GTCCCATATT CAAGAACACC
- 151 AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTCTC TCAGGTCTGA
- 201 GAAGGATGGA GCAGCCACTG GAGTGGATGC CATCTGCATC CATCATCTTG
- 251 ACCCCAAAAG CCCTGGACTC AACAGAGAGC GGCTGTACTG GGAGCTGAGC
- 301 CAACTGACCA ATGGCATCAA AGAGCTGGGC CCCTACACCC TGGACAGGAA
- 351 CAGTCTCTAT GTCAATGGTT TCACCCATCG GACCTCTGTG CCCACCACCA
- 401 GCACTCCTGG GACCTCCACA GTGGACCTTG GAACCTCAGG GACTCCATTC
- 451 TCCCTCCCAA GCCCCGCA

(SEQ ID NO: 116)

- 1 ACTGCTGGCC CTCTCCTGGT GCTGTTCACC CTCAACTTCA CCATCACCAA
- 51 CCTGAAGTAT GAGGAGGACA TGCATCGCCC TGGCTCCAGG AAGTTCAACA
- 101 CCACTGAGAG GGTCCTGCAG ACTCTGCTTG GTCCTATGTT CAAGAACACC
- 151 AGTGTTGGCC TTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGGTCCGA
- 201 GAAGGATGGA GCAGCCACTG GAGTGGATGC CATCTGCACC CACCGTCTTG
- 251 ACCCCAAAAG CCCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC

	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCN	GANCTCTGNG	CCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGNACNTNG	GNACCTCNGG	GACTCCATCC
	451	TCCNTCCCCN	GCCNCACA			
OTFO	TD 37/	o: 117)				
SEQ	1	ncnnctgncc	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA
	101	CCACNGAGAG	AGTCCTTCAG	GGTCTGCTCA	GGCCTGTGTT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGCCCAA
	201	GAAGGATGGG	GCAGCCACCA	AAGTGGATGC	CATCTGCACC	TACCGCCCTG
	251	ATCCCAAAAG	CCCTGGACTG	GACAGAGAGC	AGCTATACTG	GGAGCTGAGC
•	301	CAGCTAACCC	ACAGCATCAC	TGAGCTGGGC	CCCTACACCC	AGGACAGGGA
	351	CAGTCTCTAT	GTCAATGGCT	TCACCCATCG	GAGCTCTGTG	CCAACCACCA
	401	GTATTCCTGG	GACCTCTGCA	GTGCACCTGG	AAACCACTGG	GACTCCATCC
	451	TCCTTCCCCG	GCCACACA			
/ CEA	TD N	io: 118)				
(2EÅ	1	GAGCCTGGCC	CTCTCCTGAT	ACCATTCACT	TTCAACTTTA	CCATCACCAA
	51	CCTGCGTTAT	' GAGGAAAACA	TGCAACACCC	TGGTTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	GGTTCTGCAG	GGTCTGCTCA	CGCCCTTGTT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGACCTGA
	201	GAAGCAGGAG	GCAGCCACTO	GAGTGGACAC	CATCTGTACC	: CACCGCGTTG

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru 145)

ATCCCATCGG ACCTGGACTG GACAGAGAGC GGCTATACTG GGAGCTGAGC 251 301 CAGCTGACCA ACAGCATCAC AGAGCTGGGA CCCTACACCC TGGATAGGGA 351 CAGTCTCTAT GTCGATGGCT TCAACCCTTG GAGCTCTGTG CCAACCACCA GCACTCCTGG GACCTCCACA GTGCACCTGG CAACCTCTGG GACTCCATCC 401 CCCCTGCCTG GCCACACA 451 (SEQ ID NO: 119) GCCCCTGTCC CTCTCTTGAT ACCATTCACC CTCAACTTTA CCATCACCGA 51 CCTGCATTAT GAAGAAAACA TGCAACACCC TGGTTCCAGG AAGTTCAACA CCACGGAGAG GGTTCTGCAG GGTCTGCTCA AGCCCTTGTT CAAGAGCACC 101 151 AGCGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGACCTGA 201 GAAACATGGG GCAGCCACTG GAGTGGACGC CATCTGCACC CTCCGCCTTG 251 ATCCCACTGG TCCTGGACTG GACAGAGAGC GGCTATACTG GGAGCTGAGC CAGCTGACCA ACAGCATCAC AGAGCTGGGA CCCTACACCC TGGATAGGGA 301 351 CAGTCTCTAT GTCAATGGCT TCAACCCTTG GAGCTCTGTG CCAACCACCA GCACTCCTGG GACCTCCACA GTGCACCTGG CAACCTCTGG GACTCCATCC 451 TCCCTGCCTG GCCACACA (SEQ ID NO: 120) ACTGCTGGCC CTCTCCTGGT GCCGTTCACC CTCAACTTCA CCATCACCAA 51 CCTGAAGTAC GAGGAGGACA TGCATTGCCC TGGCTCCAGG AAGTTCAACA 101 CCACAGAGAG AGTCCTGCAG AGTCTGCATG GTCCCATGTT CAAGAACACC AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGGTCCGA 151

PCT/US02/11734

TABLE 15-continued

WO 02/083866

	201	GAAGGATGGA	GCAGCCACTG	GAGTGGATGC	CATCTGCACC	CACCGTCTTG
	251	ACCCCAAAAG	CCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCN	GANCTCTGNG	CCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGNACNTNG	GNACCTCNGG	GACTCCATCC
	451	TCCNTCCCCN	GCCNCACA			
/050	M	. 101)				
(SEQ	10 NO	ncnnctgncc	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51 -	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA
	101	CCACNGAGNG	NGTNCTGCAG	GGTCTGCTNN	NNCCCNTNTT	CAAGAACNCC
	151	AGTGTNGGCC	NTCTGTACTC	TGGCTGCAGA	CTGACCTNNC	TCAGGNCNGA
	201	GAAGNATGGN	GCAGCCACTG	GANTGGATGC	CATCTGCANC	CACCNNCNTN
	251	ANCCCAAAAG	NCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ACAGCATCAC	AGAGCTGGGA	CCCTACACCC	TGGATAGGGA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCG	AAGCTCTATG	CCCACCACCA
	401	GTATTCCTGG	GACCTCTGCA	GTGCACCTGG	AAACCTCTGG	GACTCCAGCC
	451	TCCCTCCCTG	GCCACACA			
/ CF O	TD N	0: 122)				
(SEQ	1	GCCCCTGGCC	CTCTCCTGGT	GCCATTCACC	CTCAACTTCA	CTATCACCA
	51	CCTGCAGTAT	GAGGAGGACA	TGCGTCACCC	TGGTTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	AGTCCTGCAG	GGTCTGCTCA	AGCCCTTGTT	CAAGAGCACC

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTTGC TCAGGCCTGA 151 201 AAAACGTGGG GCAGCCACCG GCGTGGACAC CATCTGCACT CACCGCCTTG 251 ACCCTCTAAA CCCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC 301 CANCTGACCA ANNNCATCNN NGAGCTGGGN CCCTACACCC TGGACAGGNA 351 CAGTCTCTAT GTCAATGGTT TCACCCATCN GANCTCTGNG CCCACCACCA 401 GCACTCCTGG GACCTCCACA GTGNACNTNG GNACCTCNGG GACTCCATCC 451 TCCNTCCCCN GCCNCACA (SEQ ID NO: 123) NCNNCTGNCC CTCTCCTGNT NCCNTTCACC NTCAACTTNA CCATCACCAA 51 CCTGCANTAN GNGGANNACA TGCNNCNCCC NGGNTCCAGG AAGTTCAACA 101 CCACNGAGNG NGTNCTGCAG GGTCTGCTNN NNCCCNTNTT CAAGAACNCC AGTGTNGGCC NTCTGTACTC TGGCTGCAGA CTGACCTNNC TCAGGNCNGA 151 201 GAAGNATGGN GCAGCCACTG GANTGGATGC CATCTGCANC CACCNNCNTN 251 ANCCCAAAAG NCCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC 301 CANCTGACCA ANNNCATCNN NGAGCTGGGN CCCTACACCC TGGACAGGNA 351 CAGTCTCTAT GTCAATGGTT TTCACCCTCG GAGCTCTGTG CCAACCACCA 401 GCACTCCTGG GACCTCCACA GTGCACCTGG CAACCTCTGG GACTCCATCC 451 TCCCTGCCTG GCCACACA (SEQ ID NO: 124) GCCCCTGTCC CTCTCTTGAT ACCATTCACC CTCAACTTTA CCATCACCAA

51 CCTGCATTAT GAAGAAAACA TGCAACACCC TGGTTCCAGG AAGTTCAACA

	101	CCACGGAGCG	GGTCCTGCAG	GGTCTGCTTG	GTCCCATGTT	CAAGAACACA
	151	AGTGTCGGCC	TTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGCCTGA
	201	GAAGAATGGG	GCAGCCACTG	GAATGGATGC	CATCTGCAGC	CACCGTCTTG
	251	ACCCCAAAAG	CCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATONN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCN	GANCTCTGNG	CCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGNACNTNG	GNACCTCNGG	GACTCCATCC
	451	TCCNTCCCCN	GCCNCACA			
			•			
(SEQ	ID N	O: 125) NCNNCTGNCC	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA
	101	CCACNGAGNG	NGTNCTGCAG	GGTCTGCTNN	NNCCCNTNTT	CAAGAACNCC
	151	AGTGTNGGCC	NTCTGTACTC	TGGCTGCAGA	CTGACCTNNC	TCAGGNCNGA
	201	GAAGNATGGN	GCAGCCACTG	GANTGGATGC	CATCTGCANC	CACCNNCNTN
	251	ANCCCAAAAG	NCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GAACTCTGTG	CCCACCACCA
	401	GTACTCCTGG	GACCTCCACA	GTGTACTGGG	CAACCACTGG	GACTCCATCC
	451	тссттсссс	GCCACACA			

(SEQ	ID NO	0: 126)		•		
	1	GAGCCTGGCC	CTCTCCTGAT	ACCATTCACT	TTCAACTTTA	CCATCACCAA
	51	CCTGCATTAT	GAGGAAAACA	TGCAACACCC	TGGTTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	GGTTCTGCAG	GGTCTGCTCA	CGCCCTTGTT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGACCTGA
	201	GAAGCAGGAG	GCAGCCACTG	GAGTGGACAC	CATCTGTACC	CACCGCGTTG
	251	ATCCCATCGG	ACCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCN	GANCTCTGNG	CCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGNACNTNG	GNACCTCNGG	GACTCCATCC
	451	TCCNTCCCCN	GCCNCACA			
(SEO	ID NO	D: 127)				
	1	•	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA
	101	CCACNGAGNG	NGTNCTGCAG	GGTCTGCTNN	NNCCCNTNTT	CAAGAACNCC
	151	AGTGTNGGCC	NTCTGTACTC	TGGCTGCAGA	CTGACCTNNC	TCAGGNCNGA
	201	GAAGNATGGN	GCAGCCACTG	GANTGGATGC	CATCTGCANC	CACCNNCNTN
	251	ANCCCAAAAG	NCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCG	GAGCTCTGTG	CCAACCACCA
	401	GCAGTCCTGG	GACCTCCACA	GTGCACCTGG	CAACCTCTGG	GACTCCATCC

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

451 TCCCTGCCTG GCCACACA

(SEO	ID NO	o: 128)	•			
\E			CTCTCTTGAT	ACCATTCACC	CTCAACTTTA	CCATCACCAA
	51	CCTGCATTAT	GAAGAAAACA	TGCAACACCC	TGGTTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	GGTTCTGCAG	GGTCTGCTCA	AGCCCTTGTT	CAAGAGCACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGACCTGA
	201	GAAACATGGG	GCAGCCACTG	GAGTGGACGC	CATCTGCACC	CTCCGCCTT
	251	ATCCCACTGG	TCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCN	GANCTCTGNG	CCCACCACCA

451 TCCNTCCCCN GCCNCACA

(SEQ ID NO: 129)

1 NCNNCTGNCC CTCTCCTGNT NCCNTTCACC NTCAACTTNA CCATCACCAA
51 CCTGCANTAN GNGGANNACA TGCNNCNCCC NGGNTCCAGG AAGTTCAACA
101 CCACNGAGNG NGTNCTGCAG GGTCTGCTNN NNCCCNTNTT CAAGAACNCC
151 AGTGTNGGCC NTCTGTACTC TGGCTGCAGA CTGACCTNNC TCAGGNCNGA
201 GAAGNATGGN GCAGCCACTG GANTGGATGC CATCTGCANC CACCNNCNTN
251 ANCCCAAAAG NCCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC
301 CANCTGACCA ANNNCATCNN NGAGCTGGGN CCCTACACCC TGGACAGGNA

351 CAGTCTCTAT GTCAATGGTT TCACCCATCG GACCTCTGTG CCCACCACCA

401 GCACTCCTGG GACCTCCACA GTGNACNTNG GNACCTCNGG GACTCCATCC

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

- 401 GCACTCCTGG GACCTCCACA GTGCACCTGG CAACCTCTGG GACTCCATCC
- 451 TCCCTGCCTG GCCACACA

(SEQ ID NO: 130)

- 1 GCCCCTGTCC CTCTCTTGAT ACCATTCACC CTCAACTTTA CCATCACCAA
- 51 CCTGCAGTAT GAGGAGGACA TGCATCGCCC TGGATCTAGG AAGTTCAACA
- 101 CCACAGAGAG GGTCCTGCAG GGTCTGCTTA GTCCCATTTT CAAGAACTCC
- 151 AGTGTTGGCC CTCTGTACTC TGGCTGCAGA CTGACCTCTC TCAGGCCCGA
- 201 GAAGGATGGG GCAGCAACTG GAATGGATGC TGTCTGCCTC TACCACCCTA
- 251 ATCCCAAAAG ACCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC
- 301 CANCTGACCA ANNNCATONN NGAGCTGGGN CCCTACACCC TGGACAGGNA
- 351 CAGTCTCTAT GTCAATGGTT TCACCCATCN GANCTCTGNG CCCACCACCA
- 401 GCACTCCTGG GACCTCCACA GTGNACNTNG GNACCTCNGG GACTCCATCC
- 451 TCCNTCCCCN GCCNCACA

(SEQ ID NO: 131)

- 1 NCNNCTGNCC CTCTCCTGNT NCCNTTCACC NTCAACTTNA CCATCACCAA
- 51 CCTGCANTAN GNGGANNACA TGCNNCNCCC NGGNTCCAGG AAGTTCAACA
- 101 CCACNGAGNG NGTNCTGCAG GGTCTGCTNN NNCCCNTNTT CAAGAACNCC
- 151 AGTGTNGGCC NTCTGTACTC TGGCTGCAGA CTGACCTNNC TCAGGNCNGA
- 201 GAAGNATGGN GCAGCCACTG GANTGGATGC CATCTGCANC CACCNNCNTN
- 251 ANCCCAAAAG NCCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC
- 301 CANCTGACCA ANNNCATONN NGAGCTGGGN CCCTACACCC TGGACAGGNA

	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATTG	GAGCTCTGGG	CTCACCACCA
	401	GCACTCCTTG	GACTTCCACA	GTTGACCTTG	GAACCTCAGG	GACTCCATCC
	451	CCCGTCCCCA	GCCCCACA			
(SEQ	ID NO	o: 132) ACTGCTGGCC	CTCTCCTGGT	GCCATTCACC	CTAAACTTCA	CCATCACCAA
	51	CCTGCAGTAT	GAGGAGGACA	TGCATCGCCC	TGGATCTAGG	AAGTTCAACG
	101	CCACAGAGAG	GGTCCTGCAG	GGTCTGCTTA	GTCCCATATT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGACCTGA
	201	GAAGCAGGAG	GCAGCCACTG	GAGTGGACAC	CATCTGTACC	CACCGCGTTG
	251	ATCCCATCGG	ACCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCN	GANCTCTGNG	CCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGNACNTNG	GNACCTCNGG	GACTCCATCC
	451	TCCNTCCCCN	GCCNCACA			
/ CEA	א מד	0: 133)				
(SEŽ	1	NCNNCTGNCC	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA
	101	CCACNGAGNG	NGTNCTGCAG	GGTCTGCTNN	NNCCCNTNTT	CAAGAACNCC
	151	AGTGTNGGCC	NTCTGTACTC	TGGCTGCAGA	CTGACCTNNC	TCAGGNCNGA
	201	GAAGNATGGN	GCAGCCACTG	GANTGGATGC	CATCTGCANC	CACCNNCNTN
	251	ANCCCAAAAG	NCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

301 CANCTGACCA ANNNCATONN NGAGOTGGGN CCCTACACCC TGGACAGGNA CAGTCTCTAT GTCAATGGTT TCACCCATCG GAGCTTTGGG CTCACCACCA 351 401 GCACTCCTTG GACTTCCACA GTTGACCTTG GAACCTCAGG GACTCCATCC CCCGTCCCCA GCCCCACA 451 (SEQ ID NO: 134) 1 ACTGCTGGCC CTCTCCTGGT GCCATTCACC CTAAACTTCA CCATCACCAA 51 CCTGCAGTAT GAGGAGGACA TGCATCGCCC TGGCTCCAGG AAGTTCAACA 101 CCACGGAGAG GGTCCTTCAG GGTCTGCTTA CGCCCTTGTT CAGGAACACC 151 AGTGTCAGCT CTCTGTACTC TGGTTGCAGA CTGACCTTGC TCAGGCCTGA 201 GAAGGATGGG GCAGCCACCA GAGTGGATGC TGTCTGCACC CATCGTCCTG 251 ACCCCAAAAG CCCTGGACTG NACAGNGAGC NGCTNTACTG GGAGCTNAGC 301 CANCTGACCA ANNNCATCNN NGAGCTGGGN CCCTACACCC TGGACAGGNA 351 CAGTCTCTAT GTCAATGGTT TCACCCATCN GANCTCTGNG CCCACCACCA GCACTCCTGG GACCTCCACA GTGNACNTNG GNACCTCNGG GACTCCATCC 401 451 TCCNTCCCCN GCCNCACA (SEQ ID NO: 135) 1 NCNNCTGNCC CTCTCCTGNT NCCNTTCACC NTCAACTTNA CCATCACCAA 51 CCTGCANTAN GNGGANNACA TGCNNCNCCC NGGNTCCAGG AAGTTCAACA 101 CCACNGAGNG NGTNCTGCAG GGTCTGCTNN NNCCCNTNTT CAAGAACNCC 151 AGTGTNGGCC NTCTGTACTC TGGCTGCAGA CTGACCTNNC TCAGGNCNGA 201 GAAGNATGGN GCAGCCACTG GANTGGATGC CATCTGCANC CACCNNCNTN

	251	ANCCCAAAAG	NCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATTG	GATCCCTGTG	CCCACCAGCA
	401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GGTCAGGGAC	TCCATCCTCC
	451	CTCCCCAGCC	CCACA			
		0. 126\				
(SEQ	ID No	o: 136) ACTGCTGGCC	CTCTCCTGGT	ACCATTCACC	CTCAACTTCA	CCATCACCAA
	51	CCTGCAGTAT	GGGGAGGACA	TGGGTCACCC	TGGCTCCAGG	AAGTTCAACA
	101	CCACAGAGAG	GGTCCTGCAG	GGTCTGCTTG	GTCCCATATT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTCTC	TCAGGTCCGA
	201	GAAGGATGGA	GCAGCCACTG	GAGTGGATGC	CATCTGCATC	CATCATCTTG
	251	ACCCCAAAAG	CCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCN	GANCTCTGNG	CCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGNACNTNG	GNACCTCNGG	GACTCCATCC
	451	TCCNTCCCCN	GCCNCACA			
/ CE O	TD N	o: 137)				•
(SEQ	1	NCNNCTGNCC	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA
	101	CCACNGAGNG	NGTNCTGCAG	GGTCTGCTNN	NNCCCNTNTT	CAAGAACNCC
	151	AGTGTNGGCC	NTCTGTACTC	TGGCTGCAGA	CTGACCTNNC	TCAGGNCNGA

	201	GAAGNATGGN	GCAGCCACTG	GANTGGATGC	CATCTGCANC	CACCNNCNTN
	251	ANCCCAAAAG	NCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GACCTTTGCG	CCCAACACCA
	401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GGACCTCAGG	GACTCCATCC
	451	TCCCTCCCC A	AGCCCTACA			-
(SEQ		D: 138)				
	1	TCTGCTGGCC	CTCTCCTGGT	GCCATTCACC	CTCAACTTCA	CCATCACCAA
•	51	CCTGCAGTAC	GAGGAGGACA	TGCATCACCC	AGGCTCCAGG	AAGTTCAACA
	101	CCACGGAGCG	GGTCCTGCAG	GGTCTGCTTG	GTCCCATGTT	CAAGAACACC
	151	AGTGTCGGCC	TTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGCCTGA
	201	GAAGAATGGG	GCAGCCACCA	GAGTGGATGC	TGTCTGCACC	CATCGTCCTG
	251	ACCCCAAAAG	CCCTGGACTG	NACAGNGAGC	NGCTNTACTG	GGAGCTNAGC
	301	CANCTGACCA	ANNNCATCNN	NGAGCTGGGN	CCCTACACCC	TGGACAGGNA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCN	GANCTCTGNG	CCCACCACCA
	401	GCACTCCTGG	GACCTCCACA	GTGNACNTNG	GNACCTCNGG	GACTCCATCC
	451	TCCNTCCCCN	GCCNCACA			
(SEO	TD NO	D: 139)				•
,~~X	1	•	CTCTCCTGNT	NCCNTTCACC	NTCAACTTNA	CCATCACCAA
	51	CCTGCANTAN	GNGGANNACA	TGCNNCNCCC	NGGNTCCAGG	AAGTTCAACA
	101	CCACNGAGAG	GGTTCTGCAG	GGTCTGCTCA	AGCCCTTGTT	CAAGAGCACC

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

	151	AGTGTTGGCC	CTCTGTATTC	TGGCTGCAGA	CTGACCTTGC	TCAGGCCTGA
	201	GAAGGACGGA	GTAGCCACCA	GAGTGGACGC	CATCTGCACC	CACCGCCCTG
	251	ACCCCAAAAT	CCCTGGGCTA	GACAGACAGC	AGCTATACTG	GGAGCTGAGC
	301	CAGCTGACCC	ACAGCATCAC	TGAGCTGGGA	CCCTACACCC	TGGATAGGGA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCAGCG	GAGCTCTGTG	CCCACCACCA
	401	GCACTCCTGG	GACTTTCACA	GTACAGCCGG	AAACCTCTGA	GACTCCATCA
	451	TCCCTCCCTG	GCCCCACA			
(SEQ	ID NO	GCCACTGGCC	CTGTCCTGCT	GCCATTCACC	CTCAATTTTA	CCATCACTAA
	51	CCTGCAGTAT	GAGGAGGACA	TGCATCGCCC	TGGCTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	GGTCCTTCAG	GGTCTGCTTA	TGCCCTTGTT	CAAGAACACC
•	151	AGTGTCAGCT	CTCTGTACTC	TGGTTGCAGA	CTGACCTTGC	TCAGGCCTGA
	201	GAAGGATGGG	GCAGCCACCA	GAGTGGATGC	TGTCTGCACC	CATCGTCCTG
	251	ACCCCAAAAG	CCCTGGACTG	GACAGAGAGC	GGCTGTACTG	GÄAGCTGAGC
	301	CAGCTGACCC	ACGGCATCAC	TGAGCTGGGC	CCCTACACCC	TGGACAGGCA
	351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCA	GAGCTCTATG	ACGACCACCA
	401	GAACTCCTGA	TACCTCCACA	ATGCACCTGG	CAACCTCGAG	AACTCCAGCC
	451	TCCCTGTCTG	GACCTACG			
•		- 444				
(SEQ	ID N	O: 141) ACCGCCAGCC	CTCTCCTGGT	GCTATTCACA	ATTAACTTCA	CCATCACTAA
	51	CCTGCGGTAT	GAGGAGAACA	TGCATCACCC	TGGCTCTAGA	AAGTTTAACA

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

	101	CCACGGAGAG	AGTCCTTCAG	GGTCTGCTCA	GGCCTGTGTT	CAAGAACACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTTGC	TCAGGCCCAA
	201	GAAGGATGGG	GCAGCCACCA	AAGTGGATGC	CATCTGCACC	TACCGCCCTG
	251	ATCCCAAAAG	CCCTGGACTG	GACAGAGAGC	AGCTATACTG	GGAGCTGAGC
	301	CAGCTAACCC	ACAGCATCAC	TGAGCTGGGC	CCCTACACCC	TGGACAGGGA
	351	CAGTCTCTAT	GTCAATGGTT	TCACACAGCG	GAGCTCTGTG	CCCACCACTA
	401	GCATTCCTGG	GACCCCCACA	GTGGACCTGG	GAACATCTGG	GACTCCAGTT
	451	TCTAAACCTG	GTCCCTCG		•	
•						
(SEQ	ID NO	D: 142)				
	1	GCTGCCAGCC	CTCTCCTGGT	GCTATTCACT	CTCAACTTCA	CCATCACCAA
	51	CCTGCGGTAT	GAGGAGAACA	TGCAGCACCC	TGGCTCCAGG	AAGTTCAACA
	101	CCACGGAGAG	GGTCCTTCAG	GGCCTGCTCA	GGTCCCTGTT	CAAGAGCACC
	151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACTTTGC	TCAGGCCTGA
	201	AAAGGATGGG	ACAGCCACTG	GAGTGGATGC	CATCTGCACC	CACCACCCTG
	251	ACCCCAAAAG	CCCTAGGCTG	GACAGAGAGC	AGCTGTATTG	GGAGCTGAGC
	301	CAGCTGACCC	ACAATATCAC	TGAGCTGGGC	CACTATGCCC	TGGACAACGA
	351	CAGCCTCTTT	GTCAATGGTT	TCACTCATCG	GAGCTCTGTG	TCCACCACCA
	401	GCACTCCTGG	GACCCCCACA	GTGTATCTGG	GAGCATCTAA	GACTCCAGCC
	451	TCGATATTTG	GCCCTTCA			

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

(SEQ ID NO: 143) GCTGCCAGCC ATCTCCTGAT ACTATTCACC CTCAACTTCA CCATCACTAA CCTGCGGTAT GAGGAGAACA TGTGGCCTGG CTCCAGGAAG TTCAACACTA 51 CAGAGAGGGT CCTTCAGGGC CTGCTAAGGC CCTTGTTCAA GAACACCAGT 101 GTTGGCCCTC TGTACTCTGG CTCCAGGCTG ACCTTGCTCA GGCCAGAGAA 151 AGATGGGGAA GCCACCGGAG TGGATGCCAT CTGCACCCAC CGCCCTGACC 201 CCACAGGCCC TGGGCTGGAC AGAGAGCAGC TGTATTTGGA GCTGAGCCAG 251 CTGACCCACA GCATCACTGA GCTGGGCCCC TACACACTGG ACAGGGACAG 301 TCTCTATGTC AATGGTTTCA CCCATCGGAG CTCTGTACCC ACCACCAGC 351 (SEQ ID NO: 144) 1 ACCGGGGTGG TCAGCGAGGA GCCATTCACA CTGAACTTCA CCATCAACAA CCTGCGCTAC ATGGCGGACA TGGGCCAACC CGGCTCCCTC AAGTTCAACA 51 TCACAGACAA CGTCATGAAG CACCTGCTCA GTCCTTTGTT CCAGAGGAGC 101 AGCCTGGGTG CACGGTACAC AGGCTGCAGG GTCATCGCAC TAAGGTCTGT 151 GAAGAACGGT GCTGAGACAC GGGTGGACCT CCTCTGCACC TACCTGCAGC 201 251 CAGCAGACCC ATGGCATCAC CCGGCTGGGC CCCTACTCTC TGGACAAAGA 301 CAGCCTCTAC CTTAACGGTT ACAATGAACC TGGTCTAGAT GAGCCTCCTA 351 CAACTCCCAA GCCAGCCACC ACATTCCTGC CTCCTCTGTC AGAAGCCACA 401 ACA 451

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 83 thru SEQ ID NO: 145)

(SEQ ID NO: 145)

GCCATGGGGT ACCACCTGAA GACCCTCACA CTCAACTTCA CCATCTCCAA 51 TCTCCAGTAT TCACCAGATA TGGGCAAGGG CTCAGCTACA TTCAACTCCA 101 CCGAGGGGT CCTTCAGCAC CTGCTCAGAC CCTTGTTCCA GAAGAGCAGC 151 ATGGGCCCCT TCTACTTGGG TTGCCAACTG ATCTCCCTCA GGCCTGAGAA 201 GGATGGGGCA GCCACTGGTG TGGACACCAC CTGCACCTAC CACCCTGACC 251 CTGTGGGCCC CGGGCTGGAC ATACAGCAGC TTTACTGGGA GCTGAGTCAG 301 CTGACCCATG GTGTCACCCA ACTGGGCTTC TATGTCCTGG ACAGGGATAG 351 CCTCTTCATC AATGGCTATG CACCCCAGAA TTTATCAATC CGGGGCGAGT 401 ACCAGATAAA TTTCCACATT GTCAACTGGA ACCTCAGTAA TCCAGACCCC 451 ACATCCTCAG AGTAC

5

2

20

39

25

33

TABLE 16 - continued

CA125 Repeat Domains (SEQ ID NO: 146)

XX PILLY FIT IT IT ALTEDANCISSER FOR THE ENVIOLATION OF THE CLINEAL THE SALVIANT ELECTRICAL SECTIONS OF THE STOCKNINK AND STATES OF THE STATES

45

20

22

8

TABLE 17

Carboxy Terminal Nucleotide Sequence (SEQ ID NO: 147)

1	GCCATGGGGT	ACCACCTGAA	GACCCTCACA	CTCAACTTCA	CCATCTCCAA
51	TCTCCAGTAT	TCACCAGATA	TGGGCAAGGG	CTCAGCTACA	TTCAACTCCA
101	CCGAGGGGGT	CCTTCAGCAC	CTGCTCAGAC	CCTTGTTCCA	GAAGAGCAGC
151	ATGGGCCCCT	TCTACTTGGG	TTGCCAACTG	ATCTCCCTCA	GGCCTGAGAA
201	GGATGGGGCA	GCCACTGGTG	TGGACACCAC	CTGCACCTAC	CACCCTGACC
251	CTGTGGGCCC	CGGGCTGGAC	ATACAGCAGC	TTTACTGGGA	GCTGAGTCAG
301	CTGACCCATG	GTGTCACCCA	ACTGGGCTTC	TATGTCCTGG	ACAGGGATAG
351	CCTCTTCATC	AATGGCTATG	CACCCAGAA	TTTATCAATC	CGGGGCGAGT
401	ACCAGATAAA	TTTCCACATT	GTCAACTGGA	ACCTCAGTAA	TCCAGACCCC
451	ACATCCTCAG	AGTACATCAC	CCTGCTGAGG	GACATCCAGG	ACAAGGTCAC
501	CACACTCTAC	AAAGGCAGTC	AACTACATGA	CACATTCCGC	TTCTGCCTGG
551	TCACCAACTT	GACGATGGAC	TCCGTGTTGG	TCACTGTCAA	GGCATTGTTC
601	TCCTCCAATT	TGGACCCCAG	CCTGGTGGAG	CAAGTCTTTC	TAGATAAGAC
651	CCTGAATGCC	TCATTCCATT	GGCTGGGCTC	CACCTACCAG	TTGGTGGACA
701	TCCATGTGAC	AGAAATGGAG	TCATCAGTTT	ATCAACCAAC	AAGCAGCTCC
751	AGCACCCAGC	ACTTCTACCT	GAATTTCACC	ATCACCAACC	TACCATATTC
801	CCAGGACAAA	GCCCAGCCAG	GCACCACCAA	TTACCAGAGG	AACAAAAGGA
851	ATATTGAGGA	TGCGCTCAAC	CAACTCTTCC	GAAACAGCAG	CATCAAGAGT
901	TATTTTTCTG A	ACTGTCAAGT	TTCAACATTC	AGGTCTGTC	C CCAACAGGCA

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

Carboxy Terminal Nucleotide Sequence (SEQ ID NO: 147)

951	CCACACCGGG	GTGGACTCCC	TGTGTAACTT	CTCGCCACTG	GCTCGGAGAG *
1001	TAGACAGAGT	TGCCATCTAT	GAGGAATTTC	TGCGGATGAC	CCGGAATGGT
1051	ACCCAGCTGC	AGAACTTCAC	CCTGGACAGG	AGCAGTGTCC	TTGTGGATGG
1101	GTATTCTCCC	AACAGAAATG	AGCCCTTAAC	TGGGAATTCT	GACCTTCCCT
1151	TCTGGGCTGT	CATCCTCATC	GGCTTGGCAG	GACTCCTGGG	ACTCATCACA
1201	TGCCTGATCT	GCGGTGTCCT	GGTGACCACC	CGCCGGCGGA	AGAAGGAAGG
1251	AGAATACAAC	GTCCAGCAAC	AGTGCCCAGG	CTACTACCAG	TCACACCTAG
1301	ACCTGGAGGA	TCTGCAATGA	CTGGAACTTG	CCGGTGCCTG	GGGTGCCTTT
1351	CCCCCAGCCA	GGGTCCAAAG	AAGCTTGGCT	GGGGCAGAAA	TAAACCATAT
1401	TGGTCGGAAA	ААААААААА	AA		

TABLE 18

Carboxy Terminal Amino Acid Sequence (SEQ ID NO: 148)

1	AMGYHLKTLT	LNFTISNLQY	SPDMGKGSAT	FNSTEGVLQH	LLRPLFQKSS
51	MGPFYLGCQL	ISLRPEKDGA	ATGVDTTCTY	HPDPVGPGLD	IQQLYWELSQ
101	LTHGVTQLGF	YVLDRDSLFI	NGYAPQNLSI	RGEYQINFHI	VNWNLSNPDP
151	TSSEYITLLR	DIQDKVTTLY	KGSQLHDTFR	FCLVTNLTMD	SVLVTVKALF
201	SSNLDPSLVE	QVFLDKTLNA	SFHWLGSTYQ	LVDIHVTEME	SSVYQPTSSS
251	STQHFYLNFT	ITNLPYSQDK	AQPGTTNYQR	NKRNIEDĀLN	QLFRNSSIKS
301	YFSDCQVSTF	RSVPNRHHTG	VDSLCNFSPL	ARRVDRVAIY	EEFLRMTRNG
351	TQLQNFTLDR	SSVLVDGYSP	NRNEPLTGNS	DLPF WAVILI	GLAGLLGLIT
401	CLICGVLVTT	RRRKKEGEYN	VQQQCPGYYQ	SHLDLEDLQ	

1520

TABLE 19A

Serine/Threonine O-glycosylation Pattern Predicted for the Amino Terminal End of the CA125 Molecule (SEQ ID NO: 149)

SEQ ID NO: 149 Length: 1799	
RTDGIMEHITKIPNEAAHRGTIRPVKGPQTSTSPASPKGLHTGGTKRMETTTTALKTTTTALKTTSRATLITSVYTPTLG	80
TLTPLNASROMASTILTEMMITTPYVFPDVPETTSSLATSLGAETSTALPRTTPSVLNRESETTASLVSRSGAERSPVIO	160
TLDVSSSEPDTTASWVIHPAETIPTVSKTTPNFFHSELDTVSSTATSHGADVSSAIPTNISPSELDALTPLVTISGTDTS	240
TTFPTLTKSPHETETRTTWLTHPAETSSTIPRTIPNFSHESDATPSIATSPGAETSSAIPIMTVSPGAEDLVTSOVTSS	320
GTDRNMTIPTLTLSPGEPKTIASLVTHPEAOTSSAIPTSTISPAVSRLVTSMVTSLAAKTSTTNRALTNSPGEPATTVSL	400
VTHPAOTSPTVPWTTSIF#HSKSDTTPSMTTSHGAESSSAVPTPTVSTEVPGVVTPLVTSSRAVISTTIPILTLSPGEPE	480
TTPSMATSHGEEASSAIPTPTVSPGVPGVVTSLVTSSRAVTSTTIPILTFSLGEPETTPSMATSHGTEAGSAVPTVLPEV	560
PGMVTSLVASSRAVTSTTLPTLTLSPGEPETTPSMATSHGAEASSTVPTVSPEVPGVVTSLVTSSSGVNSTSIPTLILSP	640
GELETTPSMATSHGAEASSAVPTPTVSPGVSGVVTPLVTSSRAVTSTTIPILTLSSSEPETTPSMATSHGVEASSAVLTV	720
SPEVPGMVTSLVTSSRAVTSTTIPTLTISSDEPETTTSLVTHSEAKMISAIPTLAVSPTVOGLVTSLVTSSGSETSAFSN	800
LTVASSOPETIDSWVAHPGTEASSVVPTLTVSTGEPFTNISLVTHPAESSSTLPRTTSRFSHSELDTMPSTVTSPEAESS	880
SAISTI SPGIPGVLTSLVTSSGRDISATFPTVPESPHESEATASWYTHPAVTSTTVPRTTPNYSHSEPDTTPSIATSPG	960
AEATSDFPTITVSPDVPDMVTSQVTSSGTDTSITIPTLTLSSGEPETTTSFITYSETHTSSAIPTLPVSPGASKMLTSLV	1040
ISSGTDSTTTFPTLTETPYEPETTAIOLIHPAETNTMVPRTTPKFSHSKSDTTLPVAITSPGPEASSAVSTTTISPDMSD	1120
LVTSLVPSSGTDTSTTFPTLSETPYEPETTATWLTHPAETSTTVSGTIPNFSHRGSDTAPSMVTSPGVDTRSGVPTTTIP	1200
PSIPGVVTSOVTSSATDTSTAIPTLTPSPGEPETTASSATHPGTOTGFTVPIRTVPSSEPDTMASWVTHPPQTSTPVSRT	1280
TSSFSHSSPDATPVMATSPRTEASSAVLTTISPGAPEMVTSOITSSGAATSTTVPTLTHSPGMPETTALLSTHPRTETSK	1360
TFPASTVFPOVSETTASLTIRPGAETSTALPTOTTSSLFTLLVTGTSRVDLSPTASPGVSAKTAPLSTHPGTETSTMIPT	1440
STLSLGLLETTGLLATSSSAETSTSTLTLTVSPAVSGLSSASITTDKPQTVTSWNTETSPSVTSVGPPEFSRTVTGTTMT	1520
LIPSEMPTPPKTSHGEGVSPTTILRTTMVEATNLATTGSSPTVAKTTTTFNTLAGSLFTPLTTPGMSTLASESVTSRTSY	1600
NHRSWISTTSSYNRRYWTPATSTPVTSTFSPGISTSSIPSSTAATVPFMVPFTINFTITNLOYEEDMRHPGSRKFNATER	1680
ELQGLLKPLFRNSSLEYLYSGCRLASLRPEKDSSAMAVDAICTHRPDPEDLGLDRERLYWELSNLTNGIQELGPYTLDRN	1760
SLIVNGFTHRSSMPTTSTPGTSTVDVGTSGTPSSSPSPT	
TABLE 19B	
TTT.	80
STTT	160
STT.STSSSS.TS	240
T. T.T	320
T.S. T.S. TSS. TST. TS. STT. T.S. TT.S.	400
.TTS.TTT.S	480
TT.S. T. SS. T.T.S. S. T. T.S. TS. S. T. T. S. TS. T	560
TT.STT.STSSSTT.S	640
T.STSST.T.SSSTT.SSST.STSS	720
SSSTTT.T.SSTTS	800
S	880
STT.S	960
TSTTTSTTTT.	1040
.ST.STTTT.T.TTTSS	1120
STSTTT.S.TTTSTST	1200
.STTST.TSTT.T.STT.SS.T	1280
TSS.S.SSTTST.SST.ST.STSTTT.S	1360
ST. S.TT. T. ST. T.TT.S. T.S.S. S.ST. T.ST. T	1440

Serine/Threonine O-glycosylation Pattern Predicted for the Amino Terminal End of the CA125 Molecule

		srs	1600
TST	TST.SSTSSSST		1680 1760
TTSTST			2.00

TABLE 20

Nucleotide and Amino Acid Sequences of Recombinant CA125 Repeat Showing Peptides (Underlined 1-4) which are Antigenically Matched for Immune Stimulation of Patients with the HLA-2 Histocompatibility Subtype

CA 125 Recombinant Nucleotide and Amino Acid Sequences
(SEQ ID NO: 151 and SEQ ID NO: 152, respectively)

CA 125 Recombinant Nucleotide (Anti-Sense Strand) Sequence (SEQ ID NO: 153)

Peptide 1 (SEQ ID NO: 154); Peptide 2 (SEQ ID NO: 155);

Peptide 3 (SEQ ID NO: 156) and Peptide 4 (SEQ ID NO: 157)

						2101	GGI	AG I	GG1.	WG T	300	IAG	GTA		GGT	GIG	TCT	CGG	ACC	GGGA	
]	M	R	G	s	Н	Н	Н	H	Н	H	G	s	M	G	Н	T	E ↑	P	G	P	
																				CATG	10
																				GTAC	12
	Ļ	L	I	P	F	T	F	N	F	T -	I	Т	N	L	Н	Y	E	E	N	M	-
1 .		ACA	CCC	TGG	TTC	CAG				CAC				GGT	TCT	GCA	GGG	TCT	GCT	CAAG	10
_		TGT	GGG	ACC	AAG	GTC					•			CCA	AGA	CGT	ccc	aga	cga	GTTC	18
(Q	H	P	G	s	R	K	·F	N	T	T	E	R	<u>v</u> _	L	Q	G	L	L	K	-
																				GCTC	0.4
_																				CGAG	24
1	P	L	F	K	N	T	s	V	G	P	L	Y	s	G	С	R	L	T	L	L	
	AGACCTGAGAAGCATGAGGCAGCCACTGGAGTGGACACCATCTGTACCCACCGCGTTGAT																				
							-				•			•						+ ACTA	30
1	R	P	E	ĸ	Н	E	A	A	T	G	V	D	T	I	С	T	Н	R	v	D	_
																				CAAC	
										CGC							GGT			+ GTTG	36
1	P.	I	G	P	G	L	D	R	E	R	L	Y	W	E	L	`S	4 Q	L]ī	N	_

TABLE 20 (continued)

Nucleotide and Amino Acid Sequences of Recombinant CA125 Repeat Showing Peptides (Underlined 1-4) which are Antigenically Matched for Immune Stimulation of Patients with the HLA-2 Histocompatibility Subtype

CA 125 Recombinant Nucleotide and Amino Acid Sequences
(SEQ ID NO: 151 and SEQ ID NO: 152, respectively)

CA 125 Recombinant Nucleotide (Anti-Sense Strand) Sequence (SEQ ID NO: 153)

Peptide 1 (SEQ ID NO: 154); Peptide 2 (SEQ ID NO: 155);

Peptide 3 (SEQ ID NO: 156) and Peptide 4 (SEQ ID NO: 157)

SITELGPYTLDRDSLYVNGF

AACCCTCGGAGCTCTGTGCCAACCACCAGCACTCCTGGGACCTCCACAGTGCACCTGGCA
421 -----+ 480
TTGGGAGCCTCGAGACACGGTTGGTGGTCGTGAGGACCCTGGAGGTGTCACGTGGACCGT

NPRSSVPTTSTPGTSTVHLA-

TSGTPSSLP -

(SEQ ID NO: 154)

Peptide 1 RLYWELSQL

(SEQ ID NO: 155)

Peptide 2 TLDRDSLYV

(SEQ ID NO: 156)

Peptide 3 VLQGLLKPL

(SEQ ID NO: 157)

Peptide 4 QLTNSITEL

TABLE 21

CA125 Protein Sequence

(SEQ ID NO: 162)

1	MEHITKIPNE	AAHRGTIRPV	KGPQTSTSPA	SPKGLHTGGT	KRMETTTTAL	•
51	KTTTTALKTT	SRATLTTSVY	TPTLGTLTPL	NASROMASTI	LTEMMITTPY	Α
101	VFPDVPETTS	SLATSLGAET	STALPRITES	VLNRESETTA	SLVSRSGAER	• m
151	SPVIQTLDVS	SSEPDTTASW	VIHPAETIPT	VSKTTPNFFH	SELDTVSSTA	i
201	TSHGADVSSA	IPTNISPSEL	DALTPLVTIS	GTDTSTTFPT	LTKSPHETET	• n
251	RTTWLTHPAE	TSSTIPRTIP	NFSHHESDAT	PSIATSPGAE	TSSAIPIMTV	10
301	SPGAEDLVTS	QVTSSGTDRN	MTIPTLTLSP	GEPKTIASLV	THPEAQTSSA	
351	IPTSTISPAV	SRLVTSMVTS	LAAKTSTTNR	ALTNSPGEPA	TTVSLVTHPA	
401	QTSPTVPWTT	SIFFHSKSDT	TPSMTTSHGA	ESSSAVPTPT	VSTEVPGVVT	T
451	PLVTSSRAVI	STTIPILTLS	PGEPETTPSM	ATSHGEEASS	AIPTPTVSPG	- 1
501	VPGVVTSLVT	SSRAVTSTTI	PILTFSLGEP	ETTPSMATSH	GTEAGSAVPT	е
551	VLPEVPGMVT	SLVASSRAVT	STTLPTLTLS	PGEPETTPSM	ATSHGAEASS	ľ
601	TVPTVSPEVP	GVVTSLVTSS	SGVNSTSIPT	LILSPGELET	TPSMATSHGA	m
651	EASSAVPTPT	VSPGVSGVVT	PLVTSSRAVT	STTIPILTLS	SSEPETTPSM	ļi
701	ATSHGVEASS	AVLTVSPEVP	GMVTSLVTSS	RAVTSTTIPT	LTISSDEPET	• n
751	TTSLVTHSEA	KMISAIPTLA	VSPTVQGLVT	SLVTSSGSET	SAFSNLTVAS	j a
801	SQPETIDSWV	AHPGTEASSV	VPTLTVSTGE	PFTNISLVTH	PAESSSTLPR	• 1
851	TTSRFSHSEL	DTMPSTVTSP	EAESSSAIST	TISPGIPGVL	TSLVTSSGRD	j
901	ISATFPTVPE	SPHESEATAS	WVTHPAVTST	TVPRTTPNYS	HSEPDTTPSI	•
951	ATSPGAEATS	DFPTITVSPD	VPDMVTSQVT	SSGTDTSITI	PTLTLSSGEP	I _D
1001	ETTTSFITYS	ETHTSSAIPT	LPVSPGASKM	LTSLVISSGT	DSTTTFPTLT	. 0
1051	ETPYEPETTA	IQLIHPAETN	TMVPRTTPKF	SHSKSDTTLP	VAITSPGPEA	l _m
1101	SSAVSTTTIS	PDMSDLVTSL	VPSSGTDTST	TFPTLSETPY	EPETTATWLT	a.a
1151	HPAETSTTVS	GTIPNFSHRG	SDTAPSMVTS	PGVDTRSGVP	TTTIPPSIPG	li
1201	VVTSQVTSSA	TDTSTAIPTL	TPSPGEPETT	ASSATHPGTQ	TGFTVPIRTV	•
1251	PSSEPDTMAS	WVTHPPQTST	PVSRTTSSFS	HSSPDATPVM	ATSPRTEASS	l n
1301	AVLTTISPGA	PEMVTSQITS	SGAATSTTVP	TLTHSPGMPE	TTALLSTHPR	•
1351	TETSKTFPAS	TVFPQVSETT	ASLTIRPGAE	TSTALPTQTT	SSLFTLLVTG	l
1401	TSRVDLSPTA	SPGVSAKTAP	LSTHPGTETS	TMIPTSTLSL	GLLETTGLLA	•
1451	TSSSAETSTS	TLTLTVSPAV	SGLSSASITT	DKPQTVTSWN	TETSPSVTSV	ı
1501	GPPEFSRTVT	GTTMTLIPSE	MPTPPKTSHG	EGVSPTTILR	TTMVEATNLA	•
1551	TTGSSPTVAK	TTTTFNTLAG	SLFTPLTTPG	MSTLASESVT	SRTSYNHRSW	l
1601	ISTTSSYNRR	YWTPATSTPV	TSTFSPGIST	SSIPSSTA		

1701

1751

1801

1851

1901

1951

2001

2051

2101

2151

2201

2251

2301

2351

2401

2451

2501

2551

2601

2651

2701

2751

2801

2851

2901

2951

3001

3051

3101

3151

3201

3251

3301

3351

3401

3451

3501

3551

3601

TABLE 21 - continued

CA125 Protein Sequence

(SEQ ID NO: 162)

FTITNLQYEE DMRHPGSRKF NATERELQGL LKPLFRNSSL EYLYSGCRLA SLRPEKDSSA MAVDAICTHR PDPEDLGLDR ERLYWELSNL TNGIQELGPY

					1
TLDRNSLYVN	GFTHRSSMPT	TSTPGTSTVD	VGTSGTPSSS	PSPTAAGPLL	
MPFTLNFTIT	NLQYEEDMRR	TGSRKFNTME	SVLQGLLKPL	FKNTSVGPLY	
SGCRLTLLRP	EKDGAATGVD	AICTHRLDPK	SPGLNREQLY	WELSKLTNDI	
EELGPYTLDR	NSLYVNGFTH	QSSVSTTSTP	GTSTVDLRTS	GTPSSLSSPT	
IMAAGPLLVP	FTLNFTITNL	QYGEDMGHPG	SRKFNTTERV	LQGLLGPIFK	
NTSVGPLYSG	CRLTSLRSEK	DGAATGVDAI	CIHHLDPKSP	GLNRERLYWE	İ
LSQLTNGIKE	LGPYTLDRNS	LYVNGFTHRT	SVPTSSTPGT	STVDLGTSGT	
PFSLPSPATA	GPLLVLFTLN	FTITNLKYEE	DMHRPGSRKF	NTTERVLQTL	1
LGPMFKNTSV	GLLYSGCRLT	LLRSEKDGAA	TGVDAICTHR	LDPKSPGLDR	İ
EQLYWELSQL	TNGIKELGPY	TLDRNSLYVN	GFTHWIPVPT	SSTPGTSTVD	١
LGSGTPSSLP	SPTAAGPLLV	PFTLNFTITN	LQYEEDMHHP	GSRKFNTTER	İ
VLQGLLGPMF	KNTSVGLLYS	GCRLTLLRSE	KDGAATGVDA	ICTHRLDPKS	
PGVDREQLYW	ELSQLTNGIK	ELGPYTLDRN	SLYVNGFTHQ	TSAPNTSTPG	1
TSTVDLGTSG	TPSSLPSPTS	AGPLLVPFTL	NFTITNLQYE	ED M RHPGSRK	
FNTTERVLQG	LLKPLFKSTS	VGPLYSGCRL	TLLRSEKDGA	ATGVDAICTH	R
RLDPKSPGVD	REQLYWELSQ	LTNGIKELGP	YTLDRNSLYV	NGFTHQTSAP	le
NTSTPGTSTV	DLGTSGTPSS	LPSPTSAGPL	LVPFTLNFTI	TNLQYEEDMH	p
HPGSRKFNTT	ERVLQGLLGP	MFKNTSVGLL	YSGCRLTLLR	PEKNGAATGM	e
DAICSHRLDP	KSPGLNREQL	YWELSQLTHG	IKELGPYTLD	RNSLYVNGFT	1
HRSSVAPTST	PGTSTVDLGT	SGTPSSLPSP	TTAVPLLVPF	TLNFTITNLQ	a
YGEDMRHPGS	RKFNTTERVL	OGLLGPLFKN	SSVGPLYSGC	RLISLRSEKD	t

D

0

m

a

i

n

AT VPFMVPFTLN

NTSTPGTSTV DLGTSGTPSS LPSPTSAGPL LVPFTLNFTI HPGSRKFNTT ERVLQGLLGP MFKNTSVGLL YSGCRLTLLR DAICSHRLDP KSPGLNREQL YWELSQLTHG IKELGPYTLD HRSSVAPTST PGTSTVDLGT SGTPSSLPSP TTAVPLLVPF YGEDMRHPGS RKFNTTERVL QGLLGPLFKN SSVGPLYSGC GAATGVDAIC THHLNPQSPG LDREQLYWQL SQMTNGIKEL GPYTLDRNSL YVNGFTHRSS GLTTSTPWTS TVDLGTSGTP SPVPSPTTAG PLLVPFTLNF TITNLQYEED MHRPGSRKFN ATERVLQGLL SPIFKNSSVG PLYSGCRLTS LRPEKDGAAT GMDAVCLYHP NPKRPGLDRE QLYWELSQLT HNITELGPYS LDRDSLYVNG FTHQNSVPTT STPGTSTVYW ATTGTPSSFP GHTEPGPLLI PFTFNFTITN LHYEENMOHP GSRKFNTTER VLQGLLKPLF KNTSVGPLYS GCRLTSLRPE KDGAATGMDA VCLYHPNPKR PGLDREQLYC ELSQLTHNIT ELGPYSLDRD SLYVNGFTHQ NSVPTTSTPG TSTVYWATTG TPSSFPGHTE PGPLLIPFTF NFTITNLHYE ENMQHPGSRK FNTTERVLQG LLKPLFKNTS VGPLYSGCRL TLLRPEKHEA ATGVDTICTH RVDPIGPGLD RERLYWELSQ LINSITELGP YILDRDSLYV NGFNPRSSVP TISTPGTSTV HLATSGTPSS LPGHTAPVPL LIPFTLNFTI TNLHYEENMQ HPGSRKFNTT ERVLQGLLKP LFKNTSVGPL YSGCRLTLLR PEKHEAATGV DTICTHRVDP IGPGLDREXL YWELSXLTXX IXELGPYXLD RXSLYVNGFX XXXXXXXTST PGTSXVXLXT SGTPXXXPXX TSAGPLLVPF TLNFTITNLQ YEEDMHHPGS RKFNTTERVL QGLLGPMFKN TSVGLLYSGC RLTLLRPEKN GAATGMDAIC SHRLDPKSPG LDREQLYWEL SQLTHGIKEL GPYTLDRNSL YVNGFTHRSS VAPTSTPGTS

TABLE 21 - continued

CA125 Protein Sequence

(SEQ ID NO: 162)

						ı
3651	TVDLGTSGTP	SSLPSPTTAV	PLLVPFTLNF	TITNLQYGED	MRHPGSRKFN	
3701	TTERVLQGLL	GPLFKNSSVG	PLYSGCRLIS	LRSEKDGAAT	GVDAICTHHL	
3751	NPQSPGLDRE	QLYWQLSQMT	NGIKELGPYT	LDRNSLYVNG	FTHRSSGLTT	
3801	STPWTSTVDL	GTSGTPSPVP	SPTTAGPLLV	PFTLNFTITN	LQYEEDMHRP	
3851	GSRKFNATER	VLQGLLSPIF	KNSSVGPLYS	GCRLTSLRPE	KDGAATGMDA	
3901			ELSQLTHNIT			
3951	SSMTTTRTPD	TSTMHLATSR	TPASLSGPTT	ASPLLVLFTI	NCTITNLQYE	
4001	ED M RRTGSRK	FNTMESVLQG	LLKPLFKNTS	VGPLYSGCRL	TLLRPKKDGA	
4051			REQLYWELSK			1
4101	NGFTHQSSVS	TTSTPGTSTV	DLRTSGTPSS	LSSPTIMXXX	PLLXPFTLNF	
4151	TITNLXYEEX	$\mathbf{M}\mathbf{X}\mathbf{X}\mathbf{P}\mathbf{G}\mathbf{S}\mathbf{R}\mathbf{K}\mathbf{F}\mathbf{N}$	TTERVLQGLL	RPLFKNTSVS	SLYSGCRLTL	
4201	LRPEKDGAAT	RVDAACTYRP	DPKSPGLDRE	QLYWELSQLT	HSITELGPYT	l
4251	LDRVSLYVNG	FNPRSSVPTT	${\tt STPGTSTVHL}$	${\tt ATSGTPSSLP}$	GHTXX XPLL	
4301			PGSRKFNTTE			١.
4351			AICTHRPDPE			
4401			RSSFLTTSTP			
4451			EED M HRPGSR			
4501			AATGVDTICT			1
4551			VNGFNPWSSV			
4601			ITDLHYEEN M			
4651			RPEKHGAATG			
4701			DRDSLYVNGF			
4751			FTLNFTITNL			
4801			CRLTLLRPEK			
4851			LGPYTLDRHS			R
4901			SPLLVLFTIN			е
4951	NTTERVLQGL	LRPVFKNTSV	GPLYSGCRLT	LLRPKKDGAA	TKVDAICTYR	p
5001			THSITELGPY			e
5051	TSIPGTSAVH	LETSGTPASL	PGHTAPGPLL	VPFTLNFTIT	NLQYEED M RH	a
5101	PGSRKFNTTE	RVLQGLLKPL	FKSTSVGPLY	SGCRLTLLRP	EKRGAATGVD	lt
5151			WELSKLTRGI			
5201			GTPFSLPSPA			٦
5201	EEXMXXPGSR	KFNTTERVLQ	TLLGPMFKNT	SVGLLYSGCR	LTLLRSEKDG	0
5251	AATGVDAICT	HRLDPKSPGV	DREQLYWELS	QLTNGIKELG	PYTLDRNSLY	1
5301	VNGFTHWIPV	PTSSTPGTST	VDLGSGTPSL	PSSPTTAGPL	LVPFTLNFTI	m
5351	TNLKYEEDMH	CPGSRKFNTT	ERVLQSLLGP	MFKNTSVGPL	YSGCRLTLLR	a
5401	SEKDGAATGV	DAICTHRLDP	KSPGVDREQL	YWELSQLTNG	IKELGPYTLD	ļi
5451	RNSLYVNGFT	HQTSAPNTST	PGTSTVDLGT	SGTPSSLPSP	TXXXPLLXPF	n
5501			RKFNTTERVL			1
5551	RLTLLRXEKX	XAATXVDXXC	XXXXDPXXPG	LDREXLYWEL	SXLTXXIXEL	l
5601			VPTSSTPGTS			
5651	LLVPFTLNFT	ITNLKYEEDM	HCPGSRKFNT	TERVLQSLLG	PMFKNTSVGP	1

R

p e a t

> D o m a i n

TABLE 21 - continued

CA125 Protein Sequence

(SEQ ID NO: 162)

5701	LYSGCRLTSL	RSEKDGAATG	VDAICTHRVD	PKSPGVDREQ	LYWELSQLTN
5751	GIKELGPYTL	DRNSLYVNGF	THQTSAPNTS	TPGTSTVDLG	TSGTPSSLPS
5801	PTSAGPLLVP	FTLNFTITNL	QYEEDMHHPG	SRKFNTTERV	LQGLLGPMFK
5851	NTSVGLLYSG	CRLTLLRPEK	NGAATGMDAI	<u>C</u> THRLDPKSP	GLDREXLYWE
5901	LSXLTXXIXE	LGPYXLDRXS	LYVNGFXXXX	XXXXTSTPGT	SXVXLXTSGT
5951	PXXXPXXTXX	XPLLXPFTLN	FTITNLXYEE	XMXXPGSRKF	NTTERVLQGL
6001	LKPLFRNSSL	EYLYSGCRLA	SLRPEKDSSA	MAVDAICTHR	PDPEDLGLDR
6051	ERLYWELSNL	TNGIQELGPY	TLDRNSLYVN	GFTHRSSMPT	TSTPGTSTVD
6101	VGTSGTPSSS	PSPTTAGPLL	IPFTLNFTIT	NLQYGED M GH	PGSRKFNTTE
6151	RVLQGLLGPI	FKNTSVGPLY	SGCRLTSLRS	EKDGAATGVD	AICIHHLDPK
6201	SPGLNRERLY	WELSQLTNGI	KELGPYTLDR	NSLYVNGFTH	RTSVPTTSTP
6251	GTSTVDLGTS	GTPFSLPSPA	TAGPLLVLFT	LNFTITNLKY	eed m hrpgsr
6301	KFNTTERVLQ	TLLGPMFKNT	SVGLLYSGCR	LTLLRSEKDG	AATGVDAICT
6351	HRLDPKSPGL	DREXLYWELS	XLTXXIXELG	PYXLDRXSLY	VNGFXXXXXX
6401	XXTSTPGTSX	VXLXTSGTPX	XXPXXTXXXP	LLXPFTLNFT	ITNLXYEEXM
6451	XXPGSRKFNT	TERVLQGLLR	PVFKNTSVGP	LYSGCRLTLL	RPKKDGAATK
6501	VDAICTYRPD	PKSPGLDREQ	LYWELSQLTH	SITELGPYTQ	DRDSLYVNGF
6551	THRSSVPTTS	IPGTSAVHLE	TTGTPSSFPG	HTEPGPLLIP	FTFNFTITNL
6601	RYEENMQHPG	SRKENTTERV	LQGLLTPLFK	NTSVGPLYSG	CRLTLLRPEK
6651	QEAATGVDTI	CTHRVDPIGP	GLDRERLYWE	LSQLTNSITE	LGPYTLDRDS
6701	LYVDGFNPWS	SVPTTSTPGT	STVHLATSGT	PSPLPGHTAP	VPLLIPFTLN
6751	FTITDLHYEE	NMQHPGSRKF	NTTERVLQGL	LKPLFKSTSV	GPLYSG <u>CRLT</u>
6801	LLRPEKHGAA	TGVDAICTLR	LDPTGPGLDR	ERLYWELSQL	TNSITELGPY
6851	TLDRDSLYVN	GFNPWSSVPT	TSTPGTSTVH	LATSGTPSSL	PGHTTAGPLL
6901	VPFTLNFTIT	NLKYEED M HC	PGSRKFNTTE	RVLQSLHGPM	FKNTSVGPLY
6951	SGCRLTLLRS	EKDGAATGVD	AICTHRLDPK	SPGLDREXLY	WELSXLTXXI
7001	XELGPYXLDR	XSLYVNGFXX	XXXXXXTSTP	GTSXVXLXTS	GTPXXXPXXT
7051	XXXPLLXPFT	LNFTITNLXY		KFNTTERVLQ	GLLXPXFKXT
7101	SVGXLYSGCR	LTLLRXEKXX	AATXVDXXCX	XXXDPXXPGL	DREXLYWELS
7151	XLTNSITELG	PYTLDRDSLY	VNGFTHRSSM		VHLETSGTPA
7201	SLPGHTAPGP	LLVPFTLNFT	ITNLQYEEDM	RHPGSRKFNT	TERVLQGLLK
7251	PLFKSTSVGP	LYSGCRLTLL	RPEKRGAATG		PLNPGLDREX
7301	LYWELSXLTX	XIXELGPYXL	DRXSLYVNGF	XXXXXXXTS	TPGTSXVXLX
7351	TSGTPXXXPX	XTXXXPLLXP	FTLNFTITNL		SRKFNTTERV
7401	LQGLLXPXFK	XTSVGXLYSG	CRLTLLRXEK	XXAATXVDXX	CXXXXDPXXP
7451	GLDREXLYWE	LSXLTXXIXE	LGPYXLDRXS	LYVNGFHPRS	SVPTTSTPGT
7501	STVHLATSGT	PSSLPGHTAP	VPLLIPFTLN	FTITNLHYEE	N M QHPGSRKF
7551	NTTERVLQGL	LGPMFKNTSV	GLLYSGCRLT		TGMDAICSHR
7601		EXLYWELSXL	TXXIXELGPY	XLDRXSLYVN	GFXXXXXXXX
7651	TSTPGTSXVX		PXXTXXXPLL	XPFTLNFTIT	NLXYEEX M XX
7701	PGSRKFNTTE	RVLQGLLXPX	FKXTSVGXLY		
7751		XPGLDREXLY			XSLYVNGFTH

TABLE 21 - continued

CA125 Protein Sequence

(SEQ ID NO: 162)

7801	QNSVPTTSTP		GTPSSFPGHT	EPGPLLIPFT	FNFTITNLHY
7851	EENMQHPGSR	KFNTTERVLQ	GLLTPLFKNT	SVGPLYSGCR	LTLLRPEKQE
7901	AATGVDTICT	HRVDPIGPGL	DREXLYWELS	XLTXXIXELG	PYXLDRXSLY
7951	VNGFXXXXXX	XXTSTPGTSX	VXLXTSGTPX	XXPXXTXXXP	LLXPFTLNFT
8001	ITNLXYEEXM	XXPGSRKFNT	TERVLQGLLX	PXFKXTSVGX	LYSGCRLTLL
8051	RXEKXXAATX	VDXXCXXXXD	PXXPGLDREX	LYWELSXLTX	XIXELGPYXL
8101	DRXSLYVNGF	THRSSVPTTS	SPGTSTVHLA	TSGTPSSLPG	HTAPVPLLIP
8151	FTLNFTITNL	HYEEN M QHPG	SRKFNTTERV	LQGLLKPLFK	STSVGPLYSG
8201	CRLTLLRPEK	HGAATGVDAI	CTLRLDPTGP	GLDREXLYWE	LSXLTXXIXE
8251	LGPYXLDRXS	LYVNGFXXXX	XXXXTSTPGT	SXVXLXTSGT	PXXXPXXTXX
8301	XPLLXPFTLN	FTITNLXYEE	XMXXPGSRKF	NTTERVLQGL	LXPXFKXTSV
8351	GXLYSGCRLT	LLRXEKXXAA	TXVDXXCXXX	XDPXXPGLDR	EXLYWELSXL
8401	TXXIXELGPY	XLDRXSLYVN	GFTHRTSVPT	TSTPGTSTVH	LATSGTPSSL
8451	PGHTAPVPLL	IPFTLNFTIT	NLQYEEDMHR	PGSRKFNTTE	RVLQGLLSPI
8501	FKNSSVGPLY	SGCRLTSLRP	EKDGAATGMD	AVCLYHPNPK	RPGLDREQLY
8551	CELSQLTHNI	TELGPYSLDR	DSLYVNGFTH	QNSVPTTSTP	GTSTVYWATT
8601	GTPSSFPGHT	XXXPLLXPFT	LNFTITNLXY	EEXMXXPGSR	KFNTTERVLQ
8651	GLLXPXFKXT	SVGXLYSGCR	LTLLRXEKXX		XXXDPXXPGL
8701	DREXLYWELS	XLTXXIXELG	PYXLDRXSLY	VNGFTHWSSG	LTTSTPWTST
8751	VDLGTSGTPS	PVPSPTTAGP	LLVPFTLNFT	ITNLQYEED M	HRPGSRKFNA
8801	TERVLQGLLS	PIFKNTSVGP	LYSGCRLTLL	RPEKQEAATG	VDTICTHRVD
8851	PIGPGLDREX		XIXELGPYXL	DRXSLYVNGF	XXXXXXXTS
8901	TPGTSXVXLX	TSGTPXXXPX	XTXXXPLLXP	FTLNFTITNL	XYEEX M XXPG
8951	SRKFNTTERV	LQGLLXPXFK	XTSVGXLYSG	CRLTLLRXEK	XXAATXVDXX
9001	CXXXXDPXXP	GLDREXLYWE	LSXLTXXIXE	LGPYXLDRXS	LYVNGFTHRS
9051	FGLTTSTPWT	STVDLGTSGT	PSPVPSPTTA	GPLLVPFTLN	FTITNLQYEE
9101	DMHRPGSRKF	NTTERVLQGL	LTPLFRNTSV	SSLYSGCRLT	LLRPEKDGAA
9151	TRVDAVCTHR	PDPKSPGLDR	EXLYWELSXL	TXXIXELGPY	XLDRXSLYVN
9201	GFXXXXXXXX	TSTPGTSXVX	LXTSGTPXXX	PXXTXXXPLL	XPFTLNFTIT
9251	NLXYEEXMXX	PGSRKFNTTE	RVLQGLLXPX	FKXTSVGXLY	SGCRLTLLRX
9301		XXCXXXXDPX	XPGLDREXLY	WELSXLTXXI	XELGPYXLDR
9351	XSLYVNGFTH		GTSTVDLGSG	TPSSLPSPTT	AGPLLVPFTL
9401	NFTITNLQYG	EDMGHPGSRK	FNTTERVLQG	LLGPIFKNTS	VGPLYSGCRL
9451	TSLRSEKDGA	<u>ATGVDAIC</u> IH	HLDPKSPGLD	REXLYWELSX	LTXXIXELGP
9501	YXLDRXSLYV	NGFXXXXXXX	XTSTPGTSXV		XPXXTXXXPL
9551	LXPFTLNFTI	TNLXYEEXMX	XPGSRKFNTT	ERVLQGLLXP	XFKXTSVGXL
9601		XEKXXAATXV	DXXCXXXXDP	XXPGLDREXL	YWELSXLTXX
9651	IXELGPYXLD	RXSLYVNGFT	HQTFAPNTST	PGTSTVDLGT	SGTPSSLPSP
9701	TSAGPLLVPF	TLNFTITNLQ	YEED M HHPGS	RKFNTTERVL	QGLLGPMFKN
9751	TSVGLLYSG <u>C</u>	RLTLLRPEKN	GAATRVDAVC	THRPDPKSPG	LDREXLYWEL
9801	SXLTXXIXEL	GPYXLDRXSL	YVNGFXXXXX	XXXTSTPGTS	XVXLXTSGTP
9851	XXXPXXTAPV	PLLIPFTLNF	TITNLHYEEN	MQHPGSRKFN	TTERVLQGLL

n

TABLE 21 - continued

CA125 Protein Sequence

(SEQ ID NO: 162)

```
9901 RPLFKSTSVG PLYSGCRLTL LRPEKHGAAT GVDAICTLRL DPTGPGLDRE
9951 RLYWELSQLT NSVTELGPYT LDRDSLYVNG FTQRSSVPTT SIPGTSAVHL
10001 ETSGTPASLP GHTAPGPLLV PFTLNFTITN LQYEVDMRHP GSRKFNTTER
      VLQGLLKPLF KSTSVGPLYS GCRLTLLRPE KRGAATGVDT ICTHRLDPLN
10051
      PGLDREQLYW ELSKLTRGII ELGPYLLDRG SLYVNGFTHR NFVPITSTPG
10101
      TSTVHLGTSE TPSSLPRPIV PGPLLVPFTL NFTITNLQYE EAMRHPGSRK
10151
      FNTTERVLQG LLRPLFKNTS IGPLYSSCRL TLLRPEKDKA ATRVDAICTH
10201
      HPDPQSPGLN REQLYWELSQ LTHGITELGP YTLDRDSLYV DGFTHWSPIP
10251
      TTSTPGTSIV NLGTSGIPPS LPETTXXXPL LXPFTLNFTI TNLXYEEXMX
10301
10351 XPGSRKFNTT ERVLQGLLKP LFKSTSVGPL YSGCRLTLLR PEKDGVATRV
10451 DAICTHRPDP KIPGLDRQQL YWELSQLTHS ITELGPYTLD RDSLYVNGFT
10501 QRSSVPTTST PGTFTVQPET SETPSSLPGP TATGPVLLPF TLNFTITNLQ
10551 YEEDMHRPGS RKFNTTERVL QGLLMPLFKN TSVSSLYSGC RLTLLRPEKD
      GAATRVDAVC THRPDPKSPG LDRERLYWKL SQLTHGITEL GPYTLDRHSL
10601
10651 YVNGFTHQSS MTTTRTPDTS TMHLATSRTP ASLSGPTTAS PLLVLFTINF
10701 TITNLRYEEN MHHPGSRKFN TTERVLQGLL RPVFKNTSVG PLYSGCRLTL
      LRPKKDGAAT KVDAICTYRP DPKSPGLDRE QLYWELSQLT HSITELGPYT
10751
      QDRDSLYNVG FTQRSSVPTT SVPGTPTVDL GTSGTPVSKP GPSAASPLLV
10801
10851 LFTLNGTITN LRYEENMQHP GSRKFNTTER VLQGLLRSLF KSTSVGPLYS
10901 GCRLTLLRPE KDGTATGVDA ICTHHPDPKS PRLDREQLYW ELSQLTHNIT
10951 ELGHYALDND SLFVNGFTHR SSVSTTSTPG TPTVYLGASK TPASIFGPSA
11001 ASHLLILFTL NFTITNLRYE ENMWPGSRKF NTTERVLQGL LRPLFKNTSV
      GPLYSGSRLT LLRPEKDGEA TGVDAICTHR PDPTGPGLDR EQLYLELSQL
11051
      THSITELGPY TLDRDSLYVN GFTHRSSVPT TSTGVVSEEP FTLNFTINNL
11101
      RYMADMGQPG SLKFNITDNV MKHLLSPLFQ RSSLGARYTG CRVIALRSVK
11151
      NGAETRVDLL CTYLQPLSGP GLPIKQVFHE LSQQTHGITR LGPYSLDKDS
11201
      LYLNGYNEPG LDEPPTTPKP ATTFLPPLSE ATTAMGYHLK TLTLNFTISN
11251
11301 LQYSPDMGKG SATFNSTEGV LQHLLRPLFQ KSSMGPFYLG CQLISLRPEK
      DGAATGVDTT CTYHPDPVGP GLDIQQLYWE LSQLTHGVTQ LGFYVLDRDS
11351
11401 LFINGYAPON LSIRGEYOIN FHIVNWNLSN PDPTSSEY
                                                               CTD
                                                               a e o
                                       IT LLRDIQDKVT
                                                               rrm
11451 TLYKGSQLHD TFRFCLVTNL TMDSVLVTVK ALFSSNLDPS LVEQVFLDKT
                                                               b m a
11501 LNASFHWLGS TYQLVDIHVT EMESSVYQPT SSSSTQHFYL NFTITNLPYS
                                                               oii
11551 QDKAQPGTTN YQRNKRNIED ALNQLFRNSS IKSYFSDCQV STFRSVPNRH
                                                               x n n
11601 HTGVDSLCNF SPLARRVDRV AIYEEFLRMT RNGTQLQNFT LDRSSVLVDG
                                                               У
                                                                 а
11651 YSPNRNEPLT GNSDLPFWAV ILIGLAGLLG LITCLICGVL VTTRRRKKEG
11701 EYNVQQQCPG YYQSHLDLED LQ
```

TABLE 22

CA125 Repeat Nucleotide Sequence (SEQ ID NO: 307)

1	ACTGCTGGCC	CTCTCCTGGT	GCCATTCACC	CTCAACTTCA	CCATCACCAA
51	CCTGCAGTAT	GAGGAGGACA	TGCATCGCCC	TGGATCTAGG	AAGTTCAACA
101	CCACAGAGAG	GGTCCTGCAG	GGTCTGCTTA	GTCCCATATT	CAAGAACACC
151	AGTGTTGGCC	CTCTGTACTC	TGGCTGCAGA	CTGACCTCTC	TCAGGTCTGA
201	GAAGGATGGA	GCAGCCACTG	GAGTGGATGC	CATCTGCATC	CATCATCTTG
251	ACCCCAAAAG	CCCTGGACTC	AACAGAGAGC	GGCTGTACTG	GGAGCTGAGC
301	CGACTGACCA	ATGGCATCAA	AGAGCTGGGC	CCCTACACCC	TGGACAGGAA
351	CAGTCTCTAT	GTCAATGGTT	TCACCCATCG	GACCTCTGTG	CCCACCACCA
401	GCACTCCTGG	GACCTCCACA	GTGGACCTTG	GAACCTCAGG	GACTCCATTC
451.	TCCCTCCCAA	GCCCGCA			

TABLE 23

CA125 Repeat Amino Acid Sequence (SEQ ID NO: 308)

- 1 TAGPLLVPFT LNFTITNLQY EEDMHRPGSR KFNTTERVLQ GLLSPIFKNT
- 51 SVGPLYSGCR LTSLRSEKDG AATGVDAICI HHLDPKSPGL NRERLYWELS
- 101 RLTNGIKELG PYTLDRNSLY VNGFTHRTSV PTTSTPGTST VDLGTSGTPF
- 151 SLPSPA

Table 24

1	AAGCGTTGCA	CAATTCCCCC	AACCTCCATA	CATACGGCAG	CTCTTCTAGA
51	CACAGGTTTT	CCCAGGTCAA	ATGCGGGGAC	CCCAGCCATA	TCTCCCACCC
101	TGAGAAATTT	TGGAGTTTCA	GGGAGCTCAG	AAGCTCTGCA	GAGGCCACCC
151	TCTCTGAGGG	GATTCTTCTT	AGACCTCCAT	CCAGAGGCAA	ATGTTGACCT
201	GTCC ATG CTG	AAACCCTCAG	GCCTTCCTGG	GTCATCTTCT	CCCACCCGCT
251	CCTTGATGAC	AGGGAGCAGG	AGCACTAAAG	CCACACCAGA	AATGGATTCA
301	GGACTGACAG	GAGCCACCTT	GTCACCTAAG	ACATCTACAG	GTGCAATCGT
351	GGTGACAGAA	CATACTCTGC	CCTTTACTTC	CCCAGATAAG	ACCTTGGCCA
401	GTCCTACATC	TTCGGTTGTG	GGAAGAACCA	CCCAGTCTTT	GGGGGTGATG
451	TCCTCTGCTC	TCCCTGAGTC	AACCTCTAGA	GGAATGACAC	ACTCCGAGCA
501	AAGAACCAGC	CCATCGCTGA	GTCCCCAGGT	CAATGGAACT	CCCTCTAGGA
551	ACTACCCTGC	TACAAGCATG	GTTTCAGGAT	TGAGTTCCCC	AAGGACCAGG
601	ACCAGTTCCA	CAGAAGGAAA	TTTTACCAAA	GAAGCATCTA	CATACACACT
651	CACTGTAGAG	ACCACAAGTG	GCCCAGTCAC	TGAGAAGTAC	ACAGTCCCCA
701	CTGAGACCTC	AACAACTGAA	GGTGACAGCA	CAGAGACCCC	CTGGGACACA
751	AGATATATTC	CTGTAAAAAT	CACATCTCCA	ATGAAAACAT	TTGCAGATTC
801	AACTGCATCC	AAGGAAAATG	CCCCAGTGTC	TATGACTCCA	GCTGAGACCA
851	CAGTTACTGA	CTCACATACT	CCAGGAAGGA	CAAACCCATC	ATTTGGGACA
901	CTTTATTCTT	CCTTCCTTGA	CCTATCACCT	AAAGGGACCC	CAAATTCCAG

951	AGGTGAAACA	AGCCTGGAAC	TGATTCTATC	AACCACTGGA	TATCCCTTCT
1001	CCTCTCCTGA	ACCTGGCTCT	GCAGGACACA	GCAGAATAAG	TACCAGTGCG
1051	CCTTTGTCAT	CATCTGCTTC	AGTTCTCGAT	AATAAAATAT	CAGAGACCAG
1101	CATATTCTCA	GGCCAGAGTC	TCACCTCCCC	TCTGTCTCCT	GGGGTGCCCG
1151	AGGCCAGAGC	CAGCACAATG	CCCAACTCAG	CTATCCCTTT	TTCCATGACA
1201	CTAAGCAATG	CAGAAACAAG	TGCCGAAAGG	GTCAGAAGCA	CAATTTCCTC
1251	TCTGGGGACT	CCATCAATAT	CCACAAAGCA	GACAGCAGAG	ACTATCCTTA
1301	CCTTCCATGC	CTTCGCTGAG	ACCATGGATA	TACCCAGCAC	CCACATAGCC
1351	AAGACTTTGG	CTTCAGAATG	GTTGGGAAGT	CCAGGTACCC	TTGGTGGCAC
1401	CAGCACTTCA	GCGCTGACAA	CCACATCTCC	ATCTACCACT	TTAGTCTCAG
1451	AGGAGACCAA	CACCCATCAC	TCCACGAGTG	GAAAGGAAAC	AGAAGGAACT
1501	TTGAATACAT	CTATGACTCC	ACTTGAGACC	TCTGCTCCTG	GAGAAGAGTC
1551	CGAAATGACT	GCCACCTTGG	TCCCCACTCT	AGGTTTTACA	ACTCTTGACA
1601	GCAAGATCAG	AAGTCCATCT	CAGGTCTCTT	CATCCCACCC	AACAAGAGAG
1651	CTCAGAACCA	CAGGCAGCAC	CTCTGGGAGG	CAGAGTTCCA	GCACAGCTGC
1701	CCACGGGAGC	: TCTGACATCC	TGAGGGCAAC	CACTTCCAGC	ACCTCAAAAG
1751	CATCATCAT	GACCAGTGAA	AGCACAGCTC	: AGCAATTTAG	TGAACCCCAG
1801	CACACACAGI	GGGTGGAGAC	AAGTCCTAGC	: ATGAAAACAG	AGAGACCCCC
1851	AGCATCAACO	AGTGTGGCAG	CCCCTATCAC	CACTTCTGTT	CCCTCAGTGG

	· · · · · · · · · · · · · · · · · · ·				
1901	TCTCTGGCTT	CACCACCCTG	AAGACCAGCT	CCACAAAAGG	GATTTGGCTT
1951	GÄAGAAACAT	CTGCAGACAC	ACTCATCGGA	GAATCCACAG	CTGGCCCAAC
2001	CACCCATCAG	TTTGCTGTTC	CCACTGGGAT	TTCAATGACA	GGAGGCAGCA
2051	GCACCAGGGG	AAGCCAGGGC	ACAACCCACC	TACTCACCAG	AGCCACAGCA
2101	TCATCTGAGA	CATCCGCAGA	TTTGACTCTG	GCCACGAACG	GTGTCCCAGT
2151	CTCCGTGTCT	CCAGCAGTGA	GCAAGACGGC	TGCTGGCTCA	AGTCCTCCAG
2201	GAGGGACAAA	GCCATCATAT	ACAATGGTTT	CTTCTGTCAT	CCCTGAGACA
2251	TCATCTCTAC	AGTCCTCAGC	TTTCAGGGAA	GGAACCAGCC	TGGGACTGAC
2301	TCCATTAAAC	ACTAGACATC	CCTTCTCTTC	CCCTGAACCA	GACTCTGCAG
2351	GACACACCAA	GATAAGCACC	AGCATTCCTC	TGTTGTCATC	TGCTTCAGTT
2401	CTTGAGGATA	AAGTGTCAGC	GAÇCAGCACA	TTCTCACACC	ACAAAGCCAC
2451	CTCATCTATT	ACCACAGGGA	CTCCTGAAAT	CTCAACAAAG	ACAAAGCCCA
2501	GCTCAGCCGT	TCTTTCCTCC	ATGACCCTAA	GCAATGCAGC	AACAAGTCCT
2551	GAAAGAGTCA	GAAATGCAAC	TTCCCCTCTG	ACTCATCCAT	CTCCATCAGG
2601	GGAAGAGACA	GCAGGGAGTG	TCCTCACTCT	CAGCACCTCT	GCTGAGACTA
2651	CAGACTCACC	TAACATCCAC	CCAACTGGGA	CACTGACTTC	AGAATCGTCA
2701	GAGAGTCCTA	GCACTCTCAG	CCTCCCAAGT	GTCTCTGGAG	TCAAAACCAC
2751	ATTTTCTTCA	TCTACTCCTT	CCACTCATCT	ATTTACTAGT	GGAGAAGAAA
2801	CAGAGGAAAC	TTCGAATCCA	TCTGTGTCTC	AACCTGAGAC	TTCTGTTTCC

2851	AGAGTAAGGA	CCACCTTGGC	CAGCACCTCT	GTCCCTACCC	CAGTATTCCC
2901	CACCATGGAC	ACCTGGCCTA	CACGTTCAGC	TCAGTTCTCT	TCATCCCACC
2951	TAGTGAGTGA	GCTCAGAGCT	ACGAGCAGTA	CCTCAGTTAC	AAACTCAACT
3001	GGTTCAGCTC	TTCCTAAAAT	ATCTCACCTC	ACTGGGACGG	CAACAATGTC
3051	ACAGACCAAT	AGAGACACGT	TTAATGACTC	TGCTGCACCC	CAAAGCACAA
3101	CTTGGCCAGA	GACTAGTCCC	AGATTCAAGA	CAGGGTTACC	TTCAGCAACA
3151	ACCACTGTTT	CAACCTCTGC	CACTTCTCTC	TCTGCTACTG	TAATGGTCTC
3201	TAAATTCACT	TCTCCAGCAA	CTAGTTCCAT	GGAAGCAACT	TCTATCAGGG
3251	AACCATCAAC	AACCATCCTC	ACAACAGAGA	CCACGAATGG	CCCAGGCTCT
3301	ATGGCTGTGG	CTTCTACCAA	CATCCCAATT	GGAAAGGGCT	ACATTACTGA
3351	AGGAAGATTG	GACACAAGCC	ATCTGCCCAT	TGGAACCACA	GCTTCCTCTG
3401	AGACATCTAT	GGATTTTACC	ATGGCCAAAG	AAAGTGTCTC	AATGTCAGTA
3451	TCTCCATCTC	AGTCCATGGA	TGCTGCTGGC	TCAAGCACTC	CAGGAAGGAC
3501	AAGCCAATTC	GTTGACACAT	TTTCTGATGA	TGTCTATCAT	TTAACATCCA
3551	GAGAAATTAC	AATACCTAGA	GATGGAACAA	GCTCAGCTCT	GACTCCACAA
3601	ATGACTGCAA	CTCACCCTCC	ATCTCCTGAT	CCTGGCTCTG	CTAGAAGCAC
3651	CTGGCTTGGC	ATCTTGTCCT	CATCTCCTTC	TTCTCCTACT	CCCAAAGTCA
3701	CAATGAGCTC	CACATTTTCA	ACTCAGAGAG	TCACCACAAG	CATGATAATG
3751	GACACAGTTG	AAACTAGTCG	GTGGAACATG	CCCAACTTAC	CTTCCACGAC

3801	TTCCCTGACA	CCAAGTAATA	TTCCAACAAG	TGGTGCCATA	GGAAAAAGCA
3851	CCCTGGTTCC	CTTGGACACT	CCATCTCCAG	CCACATCATT	GGAGGCATCA
3901	GAAGGGGGAC	TTCCAACCCT	CAGCACCTAC	CCTGAATCAA	CAAACACACC
3951	CAGCATCCAC	CTCGGAGCAC	ACGCTAGTTC	AGAAAGTCCA	AGCACCATCA
4001	AACTTACCAT	GGCTTCAGTA	GTAAAACCTG	GCTCTTACAC	ACCTCTCACC
4051	TTCCCCTCAA	TAGAGACCCA	CATTCATGTA	TCAACAGCCA	GAATGGCTTA
4101	CTCTTCTGGG	TCTTCACCTG	AGATGACAGC	TCCTGGAGAG	ACTAACACTG
4151	GTAGTACCTG	GGACCCCACC	ACCTACATCA	CCACTACGGA	TCCTAAGGAT
4201	ACAAGTTCAG	CTCAGGTCTC	TACACCCCAC	TCAGTGAGGA	CACTCAGAAC
4251	CACAGAAAAC	CATCCAAAGA	CAGAGTCCGC	CACCCCAGCT	GCTTACTCTG
·4301	GAAGTCCTAA	AATCTCAAGT	TCACCCAATC	TCACCAGTCC	GGCCACAAAA
4351	GCATGGACCA	TCACAGACAC	AACTGAACAC	TCCACTCAAT	TACATTACAC
4401	AAAATTGGCA	GAAAAATCAT	CTGGATTTGA	GACACAGTCA	GCTCCAGGAC
4451	CTGTCTCTGT	AGTAATCCCT	ACCTCCCCTA	CCATTGGAAG	CAGCACATTG
4501	GAACTAACTT	CTGATGTCCC	AGGGGÄACCC	CTGGTCCTTG	CTCCCAGTGA
4551	GCAGACCACA	ATCACTCTCC	CCATGGCAAC	ATGGCTGAGT	ACCAGTTTGA
4601	CAGAGGAAAT	GGCTTCAACA	GACCTTGATA	TTTCAAGTCC	AAGTTCACCC
4651	ATGAGTACAT	TTGCTATTTT	TCCACCTATG	TCCACACCTT	CTCATGAACT
4701	TTCAAAGTCA	GAGGCAGATA	CCAGTGCCAT	TAGAAATACA	GATTCAACAA

4751	CGTTGGATCA	GCACCTAGGA	ATCAGGAGTT	TGGGCAGAAC	TGGGGACTTA
4801	ACAACTGTTC	CTATCACCCC	ACTGACAACC	ACGTGGACCA	GTGTGATTGA
4851	ACACTCAACA	CAAGCACAGG	ACACCCTTTC	TGCAACGATG	AGTCCTACTC
4901	ACGTGACACA	GTCACTCAAA	GATCAAACAT	CTATACCAGC	CTCAGCATCC
4951	CCTTCCCATC	TTACTGAAGT	CTACCCTGAG	CTCGGGACAC	AAGGGAGAAG
5001	CTCCTCTGAG	GCAACCACTT	TTTGGAAACC	ATCTACAGAC	ACACTGTCCA
5051	GAGAGATTGA	GACTGGCCCA	ACAAACATTC	AATCCACTCC	ACCCATGGAC
5101	AACACAACAA	CAGGGAGCAG	TAGTAGTGGA	GTCACCCTGG	GCATAGCCCA
5151	CCTTCCCATA	GGAACATCCT	CCCCAGCTGA	GACATCCACA	AACATGGCAC
5201	TGGAAAGAAG	AAGTTCTACA	GCCACTGTCT	CTATGGCTGG	GACAATGGGA
5251	CTCCTTGTTA	CTAGTGCTCC	AGGAAGAAGC	ATCAGCCAGT	CATTAGGAAG
5301	AGTTTCCTCT	GTCCTTTCTG	AGTCAACTAC	TGAAGGAGTC	ACAGATTCTA
5351	GTAAGGGAAG	CAGCCCAAGG	CTGAACACAC	AGGGAAATAC	AGCTCTCTCC
5401	TCCTCTCTTG	AACCCAGCTA	TGCTGAAGGA	AGCCAGATGA	GCACAAGCAT
5451	CCCTCTAACC	TCATCTCCTA	CAACTCCTGA	TGTGGAATTC	ATAGGGGCA
5501	GCACATTTTG	GACCAAGGAG	GTCACCACAG	TTATGACCTC	AGACATCTCC
5551	AAGTCTTCAG	CAAGGACAGA	GTCCAGCTCA	GCTACCCTTA	TGTCCACAGC
5601	TTTGGGAAGC	ACTGAAAATA	CAGGAAAAGA	AAAACTCAGA	ACTGCCTCTA
5651	TGGATCTTCC	ATCTCCAACT	CCATCAATGG	AGGTGACACC	ATGGATTTCT

5701	CTCACTCTCA	GTAATGCCCC	CAATACCACA	GATTCACTTG	ACCTCAGCCA
5751	TGGGGTGCAC	ACCAGCTCTG	CAGGGACTTT	GGCCACTGAC	AGGTCATTGA
5801	ATACTGGTGT	CACTAGAGCC	TCCAGATTGG	AAAACGGCTC	TGATACCTCT
5851	TCTAAGTCCC	TGTCTATGGG	AAACAGCACT	CACACTTCCA	TGACTGACAC
5901	AGAGAAGAGT	GAAGTGTCTT	CTTCAATCCA	TCCCCGACCT	GAGACCTCAG
5951	CTCCTGGAGC	AGAGACCACT	TTGACTTCCA	CTCCTGGAAA	CAGGGCCATA
6001	AGCTTAACAT	TGCCTTTTTC	ATCCATTCCA	GTGGAAGAAG	TCATTTCTAC
6051	AGGCATAACC	TCAGGACCAG	ACATCAACTC	AGCACCCATG	ACACATTCTC
6101	CCATCACCCC	ACCAACAATT	GTATGGACCA	GTACAGGCAC	AATTGAACAG
6151	TCCACTCAAC	CACTACATGC	AGTTTCTTCA	GAAAAAGTTT	CTGTGCAGAC
6201	ACAGTCAACT	CCATATGTCA	ACTCTGTGGC	AGTGTCTGCT	TCCCCTACCC
6251	ATGAGAATTC	AGTCTCTTCT	GGAAGCAGCA	CATCCTCTCC	ATATTCCTCA
6301	GCCTCACTTG	AATCCTTGGA	TTCCACAATC	AGTAGGAGGA	ATGCAATCAC
6351	TTCCTĠGCTA	TGGGACCTCA	CTACATCTCT	CCCCACTACA	ACTTGGCCAA
6401	GTACTAGTTT	ATCTGAGGCA	CTGTCCTCAG	GCCATTC T GG	GGTTTCAAAC
6451	CCAAGTTCAA	CTACGACTGA	ATTTCCACTC	TTTTCAGCTG	CATCCACATC
6501	TGCTGCTAAG	CAAAGAAATC	CAGAAACAGA	GACCCATGGT	CCCCAGAATA
6551	CAGCCGCGAG	TACTTTGAAC	ACTGATGCAT	CCTCGGTCAC	AGGTCTTTCT
6601	GAGACTCCTG	TGGGGGCAAG	TATCAGCTCT	GAAGTCCCTC	TTCCAATGGC

6651	CATAACTTCT	AGATCAGATG	TTTCTGGCCT	TACATCTGAG	AGTACTGCTA
6701	ACCCGAGTTT	AGGCACAGCC	TCTTCAGCAG	GGACCAAATT	AACTAGGACA
6751	ATATCCCTGC	CCACTTCAGA	GTCTTTGGTT	TCCTTTAGAA	TGAACAAGGA
6801	TCCATGGACA	GTGTCAATCC	CTTTGGGGTC	CCATCCAACT	ACTAATACAG
6851	AAACAAGCAT	CCCAGTAAAC	AGCGCAGGTC	CACCTGGCTT	GTCCACAGTA
6901	GCATCAGATG	TAATTGACAC	ACCTTCAGAT	GGGGCTGAGA	GTATTCCCAC
6951	TGTCTCCTTT	TCCCCCTCCC	ÇTGATACTGA	AGTGACAACT	ATCTCACATT
7001	TCCCAGAAAA	GACAACTCAT	TCATTTAGAA	CCATTTCATC	TCTCACTCAT
7051	GAGTTGACTT	CAAGAGTGAC	ACCTATTCCT	GGGGATTGGA	TGAGTTCAGC
7101	TATGTCTACA	AAGCCCACAG	GAGCCAGTCC	CTCCATTACA	CTGGGAGAGA
7151	GAAGGACAAT	CACCTCTGCT	GCTCCAACCA	CTTCCCCCAT	AGTTCTCACT
7201	GCTAGTTTCA	CAGAGACCAG	CACAGTTTCA	CTGGATAATG	AAACTACAGT
7251	AAAAACCTCA	GATATCCTTG	ACGCACGGAA	AACAAATGAG	CTCCCCTCAG
7301	ATAGCAGTTC	TTCTTCTGAT	CTGATCAACA	CCTCCATAGC	TTCTTCAACT
7351	ATGGATGTCA	CTAAAACAGC	CTCCATCAGT	CCCACTAGCA	TCTCAGGAAT
7401	GACAGCAAGT	TCCTCCCCAT	СТСТСТТСТС	TTCAGATAGA	CCCCAGGTTC
7451	CCACATCTAC	: AACAGAGACA	AATACAGCCA	CCTCTCCATC	TGTTTCCAGT
7501	AACACCTATI	CTCTTGATGG	GGGCTCCAAT	GTGGGTGGCA	CTCCATCCAC
7551	TTTACCACCC	TTTACAATCA	CCCACCCTGT	CGAGACAAGC	TCGGCCCTAT

7601	TAGCCTGGTC	TAGACCAGTA	AGAACTTTCA	GCACCATGGT	CAGCACTGAC
7651	ACTGCCTCCG	GAGAAAATCC	TACCTCTAGC	AATTCTGTGG	TGACTTCTGT
7701	TCCAGCACCA	GGTACATGGA	CCAGTGTAGG	CAGTACTACT	GACTTACCTG
7751	CCATGGGCTT	TCTCAAGACA	AGTCCTGCAG	GAGAGGCACA	CTCACTTCTA
7801	GCATCAACTA	TTGAACCAGC	CACTGCCTTC	ACTCCCCATC	TCTCAGCAGC
7851	AGTGGTCACT	GGATCCAGTG	CTACATCAGA	AGCCAGTCTT	CTCACTACGA
7901	GTGAAAGCAA	AGCCATTCAT	TCTTCACCAC	AGACCCCAAC	TACACCCACC
7951	TCTGGAGCAA	ACTGGGAAAC	TTCAGCTACT	CCTGAGAGCC	TTTTGGTAGT
8001	CACTGAGACT	TCAGACACAA	CACTTACCTC	AAAGATTTTG	GTCACAGATA
8051	CCATCTTGTT	TTCAACTGTG	TCCACGCCAC	CTTCTAAATT	TCCAAGTACG
8101	GGGACTCTGT	CTGGAGCTTC	CTTCCCTACT	TTACTCCCGG	ACACTCCAGC
8151	CATCCCTCTC	ACTGCCACTG	AGCCAACAAG	TTCATTAGCT	ACATCCTTTG
8201	ATTCCACCCC	ACTGGTGACT	ATAGCTTCGG	ATAGTCTTGG	CACAGTCCCA
8251	GAGACTACCC	TGACCATGTC	AGAGACCTCA	AATGGTGATG	CACTGGTTCT
8301	TAAGACAGTA	AGTAACCCAG	ATAGGAGCAT	CCCTGGAATC	ACTATCCAAG
8351	GAGTAACAGA	AAGTCCACTC	CATCCTTCTT	CCACTTCCCC	CTCTAAGATT
8401	GTTGCTCCAC	GGAATACAAC	CTATGAAGGT	TCGATCACAG	TGGCACTTTC
8451	TACTTTGCCT	GCGGGAACTA	CTGGTTCCCT	TGTATTCAGT	CAGAGTTCTG
8501	AAAACTCAGA	GACAACGGCT	TTGGTAGACT	CATCAGCTGG	GCTTGAGAGG

8551	GCATCTGTGA	TGCCACTAAC	CACAGGAAGC	CAGGGTATGG	CTAGCTCTGG
8601	AGGAATCAGA	AGTGGGTCCA	CTCACTCAAC	TGGAACCAAA	ACATTTTCTT
8651	CTCTCCCTCT	GACCATGAAC	CCAGGTGAGG	TTACAGCCAT	GTCTGAAATC
8701	ACCACGAACA	GACTGACAGC	TACTCAATCA	ACAGCACCCA	AAGGGATACC
8751	TGTGAAGCCC	ACCAGTGCTG	AGTCAGGCCT	CCTAACACCT	GTCTCTGCCT
8801	CCTCAAGCCC	ATCAAAGGCC	TTTGCCTCAC	TGACTACAGC	TCCCCCAACT
8851	TGGGGGATCC	CACAGTCTAC	CTTGACATTT	GAGTTTTCTG	AGGTCCCAAG
8901	TTTGGATACT	AAGTCCGCTT	CTTTACCAAC	TCCTGGACAG	TCCCTGAACA
8951	CCATTCCAGA	CTCAGATGCA	AGCACAGCAT	CTTCCTCACT	GTCCAAGTCT
9001	CCAGAAAAA	ACCCAAGGGC	AAGGATGATG	ACTTCCACAA	AGGCCATAAG
9051	TGCAAGCTCA	TTTCAATCAA	CAGGTTTTAC	TGAAACCCCT	GAGGGATCTG
9101	CCTCCCCTTC	TATGGCAGGG	CATGAACCCA	GAGTCCCCAC	TTCAGGAACA
9151	GGGGACCCTA	GATATGCCTC	AGAGAGCATG	TCTTATCCAG	ACCCAAGCAA
9201	GGCATCATCA	GCTATGACAT	CGACCTCTCT	TGCATCAAAA	CTCACAACTC
9251	TCTTCAGCAC	AGGTCAAGCA	GCAAGGTCTG	GTTCTAGTTC	CTCTCCCATA
9301	AGCCTATCCA	CTGAGAAAGA	AACAAGCTTC	CTTTCCCCCA	CTGCATCCAC
9351	CTCCAGAAAG	ACTTCACTAT	TTCTTGGGCC	TTCCATGGCA	AGGCAGCCCA
9401	ACATATTGGT	GCATCTTCAG	ACTTCAGCTC	TGACACTTTC	TCCAACATCC
9451	ACTCTAAATA	TGTCCCAGGA	GGAGCCTCCT	' GAGTTAACCT	CAAGCCAGAC

9501	CATTGCAGAA	GAAGAGGGAA	CAACAGCTGA	AACACAGACG	TTAACCTTCA
9551	CACCATCTGA	GACCCCAACA	TCCTTGTTAC	CTGTCTCTTC	TCCCACAGAA
9601	CCCACAGCCA	GAAGAAAGAG	TTCTCCAGAA	ACATGGGCAA	GCTCTATTTC
9651	AGTTCCTGCC	AAGACCTCCT	TGGTTGAAAC	AACTGATGGA	ACGCTAGTGA
9701	CCACCATAAA	GATGTCAAGC	CAGGCAGCAC	AAGGAAATTC	CACGTGGCCT
9751	GCCCCAGCAG	AGGAGACGGG	GACCAGTCCA	GCAGGCACAT	CCCCAGGAAG
9801	CCCAGAAATG	TCTACCACTC	TCAAAATCAT	GAGCTCCAAG	GAACCCAGCA
9851	TCAGCCCAGA	GATCAGGTCC	ACTGTGCGAA	ATTCTCCTTG	GAAGACTCCA
9901	GAAACAACTG	TTCCCATGGA	GACCACAGTG	GAACCAGTCA	CCCTTCAGTC
9951	CACAGCCCTA	GGAAGTGGCA	GCACCAGCAT	CTCTCACCTG	CCCACAGGAA.
10001	CCACATCACC	AACCAAGTCA	CCAACAGAAA	ATATGTTGGC	TACAGAAAGG
10051	GTCTCCCTCT	CCCCATCCCC	ACCTGAGGCT	TGGACCAACC	TTTATTCTGG
10101	AACTCCAGGA	GGGACCAGGC	AGTCACTGGC	CACAATGTCC	TCTGTCTCCC
10151	TAGAGTCACC	AACTGCTAGA	AGCATCACAG	GGACTGGTCA	GCAAAGCAGT
10201	CCAGAACTGG	TTTCAAAGAC	AACTGGAATG	GAATTCTCTA	TGTGGCATGG
10251	CTCTACTGGA	GGGACCACAG	GGGACACACA	TGTCTCTCTG	AGCACATCTT
10301	CCAATATCCT	TGAAGACCCT	GTAACCAGCC	CAAACTCTGT	GAGCTCATTG
10351	ACAGATAAAT	CCAAACATAA	AACCGAGACA	TGGGTAAGCA	CCACAGCCAT
10401	TCCCTCCACT	GTCCTGAATA	ATAAGATAAT	GGCAGCTGAA	CAACAGACAA

10451	GTCGATCTGT	GGATGAGGCT	TATTCATCAA	CTAGTTCTTG	GTCAGATCAG
10501	ACATCTGGGA	GTGACATCAC	CCTTGGTGCA	TCTCCTGATG	TCACAAACAC
10551	ATTATACATC	ACCTCCACAG	CACAAACCAC	CTCACTAGTG	TCTCTGCCCT
10601	CTGGAGACCA	AGGCATTACA	AGCCTCACCA	ATCCCTCAGG	AGGAAAAACA
10651	AGCTCTGCGT	CATCTGTCAC	ATCTCCTTCA	ATAGGGCTTG	AGACTCTGAG
10701	GGCCAATGTA	AGTGCAGTGA	AAAGTGACAT	TGCCCCTACT	GCTGGGCATC
10751	TATCTCAGAC	TTCATCTCCT	GCGGAAGTGA	GCATCCTGGA	CGTAACCACA
10801	GCTCCTACTC	CAGGTATCTC	CACCACCATC	ACCACCATGG	GAACCAACTC
10851	AATCTCAACT	ACCACACCCA	ACCCAGAAGT	GGGTATGAGT	ACCATGGACA
10901	GCACCCGGC	CACAGAGAGG	CGCACAACTT	CTACAGAACA	CCCTTCCACC
10951	TGGTCTTCCA	CAGCTGCATC	AGATTCCTGG	ACTGTCACAG	ACATGACTTC
11001	AAACTTGAAA	GTTGCAAGAT	CTCCTGGAAC	AATTTCCACA	ATGCATACAA
11051	CTTCATTCTT	AGCCTCAAGC	ACTGAATTAG	ACTCCATGTC	TACTCCCCAT
11101	GGCCGTATAA	CTGTCATTGG	AACCAGCCTG	GTCACTCCAT	CCTCTGATGC
11151	TTCAGCTGTA	AAGACAGAGA	CCAGTACAAG	TGAAAGAACA	TTGAGTCCTT
11201	CAGACACAAC	TGCATCTACT	CCCATCTCAA	CTTTTTCTCG	TGTCCAGAGG
11251	ATGAGCATCT	CAGTTCCTGA	CATTTTAAGT	ACAAGTTGGA	CTCCCAGTAG
11301	TACAGAAGCA	GAAGATGTGC	CTGTTTCAAT	GGTTTCTACA	GATCATGCTA
11351	GTACAAAGAC	TGACCCAAAT	ACGCCCCTGT	CCACTTTTCI	GTTTGATTCT

11401	CTGTCCACTC	TTGACTGGGA	CACTGGGAGA	TCTCTGTCAT	CAGCCACAGC
11451	CACTACCTCA	GCTCCTCAGG	GGGCCACAAC	TCCCCAGGAA	CTCACTTTGG
11501	AAACCATGAT	CAGCCCAGCT	ACCTCACAGT	TGCCCTTCTC	TATAGGGCAC
11551	ATTACAAGTG	CAGTCACACC	AGCTGCAATG	GCAAGGAGCT	CTGGAGTTAC
11601	TTTTTCAAGA	CCAGATCCCA	CAAGCAAAAA	GGCAGAGCAG	ACTTCCACTC
11651	AGCTTCCCAC	CACCACTTCT	GCACATCCAG	GGCAGGTGCC	CAGATCAGCA
11701	GCAACAACTC	TGGATGTGAT	CCCACACACA	GCAAAAACTC	CAGATGCAAC
11751	TTTTCAGAGA	CAAGGGCAGA	CAGCTCTTAC	AACAGAGGCA	AGAGCTACAT
11801	CTGACTCCTG	GAATGAGAAA	GAAAAATCAA	CCCCAAGTGC	ACCTTGGATC
11851	ACTGAGATGA	TGAATTCTGT	CTCAGAAGAT	ACCATCAAGG	AGGTTACCAG
11901	CTCCTCCAGT	GTATTAAAGG	ACCCTGAATA	CGCTGGACAT	AAACTTGGAA
11951	TCTGGGACGA	CTTCATCCCC	AAGTTTGGAA	AAGCAGCCCA	TATGAGAGAG
12001	TTGCCCCTTC	TGAGTCCACC	ACAGGACAAA	GAGGCAATTC	ACCCTTCTAC
12051	AAACACAGTA	GAGACCACAG	GCTGGGTCAC	AAGTTCCGAA	CATGCTTCTC
12101	ATTCCACTAT	CCCAGCCCAC	TCAGCGTCAT	CCAAACTCAC	ATCTCCAGTG
12151	GTTACAACCT	CCACCAGGGA	ACAAGCAATA	GTTTCTATGT	CAACAACCAC
12201	ATGGCCAGAG	TCTACAAGGG	CTAGAACAGA	GCCTAATTCC	TTCTTGACTA
12251	TTGAACTGAG	GGACGTCAGC	CCTTACATGG	ACACCAGCTC	AACCACACAA
12301	ACAAGTATTA	TCTCTTCCCC	AGGTTCCACT	GCGATCACCA	AGGGGCCTAG

12351	AACAGAAATT	ACCTCCTCTA	AGAGAATATC	CAGCTCATTC	CTTGCCCAGT
12401	CTATGAGGTC	GTCAGACAGC	CCCTCAGAAG	CCATCACCAG	GCTGTCTAAC
12451	TTTCCTGCCA	TGACAGAATC	TGGAGGAATG	ATCCTTGCTA	TGCAAACAAG
12501	TCCACCTGGC	GCTACATCAC	TAAGTGCACC	TACTTTGGAT	ACATCAGCCA
12551	CAGCCTCCTG	GACAGGGACT	CCACTGGCTA	CGACTCAGAG	ATTTACATAC
12601	TCAGAGAAGA	CCACTCTCTT	TAGCAAAGGT	CCTGAGGATA	CATCACAGCC
12651	AAGCCCTCCC	TCTGTGGAAG	AAACCAGCTC	TTCCTCTTCC	CTGGTACCTA
12701	TCCATGCTAC	AACCTCGCCT	TCCAATATTT	TGTTGACATC	ACAAGGGCAC
12751	AGTCCCTCCT	CTACTCCACC	TGTGACCTCA	GTTTTCTTGT	CTGAGACCTC
12801	TGGCCTGGGG	AAGACCACAG	ACATGTCGAG	GATAAGCTTG	GAACCTGGCA
12851	CAAGTTTACC	TCCCAATTTG	AGCAGTACAG	CAGGTGAGGC	GTTATCCACT
12901	TATGAAGCC	r ccagagata	C AAAGGCAAT	r catcattct	G CAGACACAG
12951	AGTGACGAAT	ATGGAGGCAA	CCAGTTCTGA	ATATTCTCCT	ATCCCAGGCC
13001	ATACAAAGCC	ATCCAAAGCC	ACATCTCCAT	TGGTTACCTC	CCACATCATG
13051	GGGGACATCA	CTTCTTCCAC	ATCAGTATTT	GGCTCCTCCG	AGACCACAGA
13101	GATTGAGACA	GTGTCCTCTG	TGAACCAGGG	ACTTCAGGAG	AGAAGCACAT
13151	CCCAGGTGGC	CAGCTCTGCT	ACAGAGACAA	GCACTGTCAT	TACCCATGTG
13201	TCTAGTGGTG	ATGCTACTAC	TCATGTCACC	AAGACACAAG	CCACTTTCTC
13251	TAGCGGAACA	TCCATCTCAA	GCCCTCATCA	GTTTATAACT	TCTACCAACA

13301	CATTTACAGA	TGTGAGCACC	AACCCCTCCA	CCTCTCTGAT	AATGACAGAA
13351	TCTTCAGGAG	TGACCATCAC	CACCCAAACA	GGTCCTACTG	GAGCTGCAAC
13401	ACAGGGTCCA	TATCTCTTGG	ACACATCAAC	CATGCCTTAC	TTGACAGAGA
13451	CTCCATTAGC	TGTGACTCCA	GATTTTATGC	AATCAGAGAA	GACCACTCTC
13501	ATAAGCAAAG	GTCCCAAGGA	TGTGACCTGG	ACAAGCCCTC	CCTCTGTGGC
13551	AGAAACCAGC	TATCCCTCTT	CCCTGACACC	TTTCTTGGTC	ACAACCATAC
13601	CTCCTGCCAC	TTCCACGTTA	CAAGGGCAAC	ATACATCCTC	TCCTGTTTCT
13651	GCGACTTCAG	TTCTTACCTC	TGGACTGGTG	AAGACCACAG	ATATGTTGAA
13701	CACAAGCATG	GAACCTGTGA	CCAATTCACC	TCAAAATTTG	AACAATCCAT
13751	CAAATGAGAT	ACTGGCCACT	TTGGCAGCCA	CCACAGATAT	AGAGACTATT
13801	CATCCTTCCA	TAAACAAAGC	AGTGACCAAT	ATGGGGACTG	CCAGTTCAGC
13851	ACATGTACTG	CATTCCACTC	TCCCAGTCAG	CTCAGAACCA	TCTACAGCCA
13901	CATCTCCAAT	GGTTCCTGCC	TCCAGCATGG	GGGACGCTCT	TGCTTCTATA
13951	TCAATACCTC	G GTTCTGAGA	C CACAGACAT	r gagggagag	C CAACATCCTC
14001	CCTGACTGCT	GGACGAAAAG	AGAACAGCAC	CCTCCAGGAG	ATGAACTCAA
14051	CTACAGAGTC	AAACATCATC	CTCTCCAATG	TGTCTGTGGG	GGCTATTACT
14101	GAAGCCACAA	AAATGGAAGT	CCCCTCTTTT	GATGCAACAT	TCATACCAAC
14151	TCCTGCTCAG	TCAACAAAGT	TCCCAGATAT	TTTCTCAGTA	GCCAGCAGTA
14201	GACTTTCAAA	CTCTCCTCCC	ATGACAATAT	CTACCCACAT	GACCACCACC

14251	CAGACAGGGT	CTTCTGGAGC	TACATCAAAG	ATTCCACTTG	CCTTAGACAC
14301	ATCAACCTTG	GAAACCTCAG	CAGGGACTCC	ATCAGTGGTG	ACTGAGGGGT
14351	TTGCCCACTC	АААААТААСС	ACTGCAATGA	ACAATGATGT	CAAGGACGTG
14401	TCACAGACAA	ACCCTCCCTT	TCAGGATGAA	GCCAGCTCTC	CCTCTTCTCA
14451	AGCACCTGTC	CTTGTCACAA	CCTTACCTTC	TTCTGTTGCT	TTCACACCGC
14501	AATGGCACAG	TACCTCCTCT	CCTGTTTCTA	TGTCCTCAGT	TCTTACTTCT
14551	TCACTGGTAA	AGACCGCAGG	CAAGGTGGAT	ACAAGCTTAG	AAACAGTGAC
14601	CAGTTCACCT	CAAAGTATGA	GCAACACTTT	GGATGACATA	TCGGTCACTT
14651	CAGCAGCCAC	CACAGATATA	GAGACAACGC	ATCCTTCCAT	AAACACAGTA
14701	GTTACCAATG	TGGGGACCAC	CGGTTCAGCA	TTTGAATCAC	ATTCTACTGT
14751	CTCAGCTTAC	CCAGAGCCAT	CTAAAAGTCA	CATTCTCCCA	ATGTTACCAC
14801	CTCCACCATG	GAAGACACCA	CAATTTCCAC	GATCAATACC	TAAATCCTCT
14851	AAGACTACAA	GAACTGAGAC	TGAGACAACT	TCCTCCCTGA	CTCCTAAACT
14901	GAGGGAGACC	AGCATCTCCC	AGGAGATCAC	CTCGTCCACA	GAGACAAGCA
14951	CTGTTCCTTA	CAAAGAGCTC	ACTGGTGCCA	CTACCGAGGT	ATCCAGGACA
15001	GATGTCACTT	CCTCTAGCAG	TACATCCTTC	CCTGGCCCTG	ATCAGTCCAC
15051	AGTGTCACTA	GACATCTCCA	CAGAAACCAA	CACCAGGCTG	TCTACCTCCC
15101	CAATAATGAC	AGAATCTGCA	GAAATAACCA	TCACCACCCA	AACAGGTCCT
15151	CATGGGGCTA	CATCACAGGA	TACTTTTACC	ATGGACCCAT	CAAATACAAC

15201	CCCCCAGGCA	GGGATCCACT	CAGCTATGAC	TCATGGATTT	TCACAATTGG
15251	ATGTGACCAC	TCTTATGAGC	AGAATTCCAC	AGGATGTATC	ATGGACAAGT
15301	CCTCCCTCTG	TGGATAAAAC	CAGCTCCCCC	TCTTCCTTTC	TGTCCTCACC
15351	TGCAATGACC	ACACCTTCCC	TGATTTCTTC	TACCTTACCA	GAGGATAAGC
15401	TCTCCTCTCC	TATGACTTCA	CTTCTCACCT	CTGGCCTAGT	GAAGATTACA
15451	GACATATTAC	GTACACGCTT	GGAACCTGTG	ACCAGCTCAC	TTCCAAATTT
15501	CAGCAGCACC	TCAGATAAGA	TACTGGCCAC	TTCTAAAGAC	AGTAAAGACA
15551	CAAAGGAAAT	TTTTCCTTCT	ATAAACACAG	AAGAGACCAA	TGTGAAAGCC
15601	AACAACTCTG	GACATGAATC	CCATTCCCCT	GCACTGGCTG	ACTCAGAGAC
15651	ACCCAAAGCC	ACAACTCAAA	TGGTTATCAC	CACCACTGTG	GGAGATCCAG
15701	CTCCTTCCAC	ATCAATGCCA	GTGCATGGTT	CCTCTGAGAC	TACAAACATT
15751	AAGAGAGAGC	CAACATATTT	CTTGACTCCT	AGACTGAGAG	AGACCAGTAC
15801	CTCTCAGGAG	TCCAGCTTTC	CCACGGACAC	AAGTTTTCTA	CTTTCCAAAG
15851	TCCCCACTGG	TACTATTACT	GAGGTCTCCA	GTACAGGGGT	CAACTCTTCT
15901	AGCAAAATTT	CCACCCAGA	CCATGATAAG	TCCACAGTGC	CACCTGACAC
15951	CTTCACAGGA	GAGATCCCCA	GGGTCTTCAC	CTCCTCTATT	AAGACAAAAT
16001	CTGCAGAAAT	GACGATCACC	ACCCAAGCAA	GTCCTCCTGA	GTCTGCATCG
16051	CACAGTACCC	TTCCCTTGGA	CACATCAACC	ACACTTTCCC	AGGGAGGAC
16101	TCATTCAACT	GTGACTCAGG	GATTCCCATA	CTCAGAGGTG	ACCACTCTCA

16151	TGGGCATGGG	TCCTGGGAAT	GTGTCATGGA	TGACAACTCC	CCCTGTGGAA
16201	GAAACCAGCT	CTGTGTCTTC	CCTGATGTCT	TCACCTGCCA	TGACATCCCC
16251	TTCTCCTGTT	TCCTCCACAT	CACCACAGAG	CATCCCCTCC	TCTCCTCTTC
16301	CTGTGACTGC	ACTTCCTACT	TCTGTTCTGG	TGACAACCAC	AGATGTGTTG
16351	GGCACAACAA	GCCCAGAGTC	TGTAACCAGT	TCACCTCCAA	ATTTGAGCAG
16401	CATCACTCAT	GAGAGACCGG	CCACTTACAA	AGACACTGCA	CACACAGAAG
16451	CCGCCATGCA	TCATTCCACA	AACACCGCAG	TGACCAATGT	AGGGACTTCC
16501	GGGTCTGGAC	ATAAATCACA	ATCCTCTGTC	CTAGCTGACT	CAGAGACATC
16551	GAAAGCCACA	CCTCTGATGA	GTACCACCTC	CACCCTGGGG	GACACAAGTG
16601	TTTCCACATC	AACTCCTAAT	ATCTCTCAGA	CTAACCAAAT	TCAAACAGAG
16651	CCAACAGCAT	CCCTGAGCCC	TAGACTGAGG	GAGAGCAGCA	CGTCTGAGAA
16701	GACCAGCTCA	ACAACAGAGA	CAAATACTGC	CTTTTCTTAT	GTGCCCACAG
16751	GTGCTATTAC	TCAGGCCTCC	AGAACAGAAA	TCTCCTCTAG	CAGAACATCC
16801	ATCTCAGACC	TTGATCGGCC	CACAATAGCA	CCCGACATCT	CCACAGGAAT
16851	GATCACCAGG	CTCTTCACCT	CCCCCATCAT	GACAAAATCT	GCAGAAATGA
16901	CCGTCACCAC	TCAAACAACT	ACTCCTGGGG	CTACATCACA	GGGTATCCTT
16951	CCTTGGGACA	CATCAACCAC	ACTTTTCCAG	GGAGGGACTC	ATTCAACCGT
17001	GTCTCAGGGA	TTCCCACACT	CAGAGATAAC	CACTCTTCGG	AGCAGAACCC
17051	CTGGAGATGT	GTCATGGATG	ACAACTCCCC	CTGTGGAAGA	AACCAGCTCT

17101	GGGTTTTCCC	TGATGTCACC	TTCCATGACA	TCCCCTTCTC	CTGTTTCCTC
17151	CACATCACCA	GAGAGCATCC	CCTCCTCTCC	TCTCCCTGTG	ACTGCACTTC
17201	TTACTTCTGT	TCTGGTGACA	ACCACCAATG	TATTGGGCAC	AACAAGCCCA
17251	GAGACCGTAA	CGAGTTCACC	TCCAAATTTA	AGCAGCCCCA	CACAGGAGAG
17301	ACTGACCACT	TACAAAGACA	CTGCGCACAC	AGAAGCCATG	CATGCTTCCA
17351	TGCATACAAA	CACTGCAGTG	GCCAACGTCG	GGACCTCCAT	TTCTGGACAT
17401	GAATCACAAT	CTTCTGTCCC	AGCTGATTCA	CACACATCCA	AAGCCACATC
17451	TCCAATGGGT	ATCACCTTCG	CCATGGGGGA	TACAAGTGTT	TCTACATCAA
17501	CTCCTGCCTT	CTTTGAGACT	AGAATTCAGA	CTGAATCAAC	ATCCTCTTTG
17551	ATTCCTGGAT	TAAGGGACAC	CAGGACGTCT	GAGGAGATCA	ACACTGTGAC
17601	AGAGACCAGC	ACTGTCCTTT	CAGAAGTGCC	CACTACTACT	ACTACTGAGG
17651	TCTCCAGGAC	AGAAGTTATC	ACTTCCAGCA	GAACAACCAT	CTCAGGGCCT
17701	GATCATTCCA	AAATGTCACC	CTACATCTCC	ACAGAAACCA	TCACCAGGCT
17751	CTCCACTTTT	CCTTTTGTAA	CAGGATCCAC	AGAAATGGCC	ATCACCAACC
17801	AAACAGGTCC	TATAGGGACT	ATCTCACAGG	CTACCCTTAC	CCTGGACACA
17851	TCAAGCACAG	CTTCCTGGGA	AGGGACTCAC	TCACCTGTGA	CTCAGAGATT
17901	TCCACACTCA	GAGGAGACCA	CTACTATGAG	CAGAAGTACT	AAGGGCGTGT
17951	CATGGCAAAG	CCCTCCCTCT	GTGGAAGAAA	CCAGTTCTCC	TTCTTCCCCA
18001	GTGCCTTTAC	CTGCAATAAC	CTCACATTCA	TCTCTTTATT	CCGCAGTATC

18051	AGGAAGTAGC	CCCACTTCTG	CTCTCCCTGT	GACTTCCCTT	CTCACCTCTG
18101	GCAGGAGGAA	GACCATAGAC	ATGTTGGACA	CACACTCAGA	ACTTGTGACC
18151	AGCTCCTTAC	CAAGTGCAAG	TAGCTTCTCA	GGTGAGATAC	TCACTTCTGA
18201	AGCCTCCACA	AATACAGAGA	CAATTCACTT	TTCAGAGAAC	ACAGCAGAAA
18251	CCAATATGGG	GACCACCAAT	TCTATGCATA	AACTACATTC	CTCTGTCTCA
18301	ATCCACTCCC	AGCCATCCGG	ACACACACCT	CCAAAGGTTA	CTGGATCTAT
18351	GATGGAGGAC	GCTATTGTTT	CCACATCAAC	ACCTGGTTCT	CCTGAGACTA
18401	AAAATGTTGA	CAGAGACTCA	ACATCCCCTC	TGACTCCTGA	ACTGAAAGAG
18451	GACAGCACCG	CCCTGGTGAT	GAACTCAACT	ACAGAGTCAA	ACACTGTTTT
18501	CTCCAGTGTG	TCCCTGGATG	CTGCTACTGA	GGTCTCCAGG	GCAGAAGTCA
18551	CCTACTATGA	TCCTACATTC	ATGCCAGCTT	CTGCTCAGTC	AACAAAGTCC
18601	CCAGACATTT	CACCTGAAGC	CAGCAGCAGT	CATTCTAACT	CTCCTCCCTT
18651	GACAATATCT	ACACACAAGA	CCATCGCCAC	ACAAACAGGT	CCTTCTGGGG
18701	TGACATCTCT	TGGCCAACTG	ACCCTGGACA	CATCAACCAT	AGCCACCTCA
18751	GCAGGAACTC	CATCAGCCAG	AACTCAGGAT	TTTGTAGATT	CAGAAACAAC
18801	CAGTGTCATG	AACAATGATC	TCAATGATGT	GTTGAAGACA	AGCCCTTTCT
18851	CTGCAGAAGA	AGCCAACTCT	CTCTCTTCTC	AGGCACCTCT	CCTTGTGACA
18901	ACCTCACCTT	CTCCTGTAAC	TTCCACATTG	CAAGAGCACA	GTACCTCCTC
18951	TCTTGTTTCT	GTGACCTCAG	TACCCACCCC	TACACTGGCG	AAGATCACAG

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

40004					
19001	ACATGGACAC	AAACTTAGAA	CCTGTGACTC	GTTCACCTCA	AAATTTAAGG
19051	AACACCTTGG	CCACTTCAGA	AGCCACCACA	GATACACACA	CAATGCATCC
19101	TTCTATAAAC	ACAGCAATGG	CCAATGTGGG	GACCACCAGT	TCACCAAATG
19151	AATTCTATTT	TACTGTCTCA	CCTGACTCAG	ACCCATATAA	AGCCACATCC
19201	GCAGTAGTTA	TCACTTCCAC	CTCGGGGGAC	TCAATAGTTT	CCACATCAAT
19251	GCCTAGATCC	TCTGCGATGA	AAAAGATTGA	GTCTGAGACA	ACTTTCTCCC
19301	TGATATTTAG	ACTGAGGGAG	ACTAGCACCT	CCCAGAAAAT	TGGCTCATCC
19351	TCAGACACAA	GCACGGTCTT	TGACAAAGCA	TTCACTGCTG	CTACTACTGA
19401	GGTCTCCAGA	ACAGAACTCA	CCTCCTCTAG	CAGAACATCC	ATCCAAGGCA
19451	CTGAAAAGCC	CACAATGTCA	CCGGACACCT	CCACAAGATC	TGTCACCATG
19501	CTTTCTACTT	TTGCTGGCCT	GACAAAATCC	GAAGAAAGGA	CCATTGCCAC
19551	CCAAACAGGT	CCTCATAGGG	CGACATCACA	GGGTACCCTT	ACCTGGGACA
19601	CATCAATCAC	AACCTCACAG	GCAGGGACCC	ACTCAGCTAT	GACTCATGGA
19651	TTTTCACAAT	TAGATTTGTC	CACTCTTACG	AGTAGAGTTC	CTGAGTACAT
19701	ATCAGGGACA	AGCCCACCCT	CTGTGGAAAA	AACCAGCTCT	TCCTCTTCCC
19751	TTCTGTCTTT	ACCAGCAATA	ACCTCACCGT	CCCCTGTACC	TACTACATTA
19801	CCAGAAAGTA	GGCCGTCTTC	TCCTGTTCAT	CTGACTTCAC	TCCCCACCTC
19851	TGGCCTAGTG	AAGACCACAG	ATATGCTGGC	ATCTGTGGCC	AGTTTACCTC
19901	CAAACTTGGG	CAGCACCTCA	CATAAGATAC	CGACTACTTC	AGAAGACATT

19951	AAAGATACAG	AGAAAATGTA	TCCTTCCACA	AACATAGCAG	TAACCAATGT
20001	GGGGACCACC	ACTTCTGAAA	AGGAATCTTA	TTCGTCTGTC	CCAGCCTACT
20051	CAGAACCACC	CAAAGTCACC	TCTCCAATGG	TTACCTCTTT	CAACATAAGG
20101	GACACCATTG	TTTCCACATC	CATGCCTGGC	TCCTCTGAGA	TTACAAGGAT
20151	TGAGATGGAG	TCAACATTCT	CCGTGGCTCA	TGGGCTGAAG	GGAACCAGCA
20201	CCTCCCAGGA	CCCCATCGTA	TCCACAGAGA	AAAGTGCTGT	CCTTCACAAG
20251	TTGACCACTG	GTGCTACTGA	GACCTCTAGG	ACAGAAGTTG	CCTCTTCTAG
20301	AAGAACATCC	ATTCCAGGCC	CTGATCATTC	CACAGAGTCA	CCAGACATCT
20351	CCACTGAAGT	GATCCCCAGC	CTGCCTATCT	CCCTTGGCAT	TACAGAATCT
20401	TCAAATATGA	CCATCATCAC	TCGAACAGGT	CCTCCTCTTG	GCTCTACATC
20451	ACAGGGCACA	TTTACCTTGG	ACACACCAAC	TACATCCTCC	AGGGCAGGAA
20501	CACACTCGAT	GGCGACTCAG	GAATTTCCAC	ACTCAGAAAT	GACCACTGTC
20551	ATGAACAAGG	ACCCTGAGAT	TCTATCATGG	ACAATCCCTC	CTTCTATAGA
20601	GAAAACCAGC	TTCTCCTCTT	CCCTGATGCC	TTCACCAGCC	ATGACTTCAC
20651	CTCCTGTTTC	CTCAACATTA	CCAAAGACCA	TTCACACCAC	TCCTTCTCCT
20701	ATGACCTCAC	TGCTCACCCC	TAGCCTAGTG	ATGACCACAG	ACACATTGGG
20751	CACAAGCCCA	GAACCTACAA	CCAGTTCACC	TCCAAATTTG	AGCAGTACCT
20801	CACATGAGAT	ACTGACAACA	GATGAAGACA	CCACAGCTAT	AGAAGCCATG
20851	CATCCTTCCA	CAAGCACAGC	AGCGACTAAT	GTGGAAACCA	CCAGTTCTGG

20901	ACATGGGTCA	CAATCCTCTG	TCCTAGCTGA	CTCAGAAAAA	ACCAAGGCCA
20951	CAGCTCCAAT	GGATACCACC	TCCACCATGG	GGCATACAAC	TGTTTCCACA
21001	TCAATGTCTG	TTTCCTCTGA	GACTACAAAA	ATTAAGAGAG	AGTCAACATA
21051	TTCCTTGACT	CCTGGACTGA	GAGAGACCAG	CATTTCCCAA	AATGCCAGCT
21101	TTTCCACTGA	CACAAGTATT	GTTCTTTCAG	AAGTCCCCAC	TGGTACTACT
21151	GCTGAGGTCT	CCAGGACAGA	AGTCACCTCC	TCTGGTAGAA	CATCCATCCC
21201	TGGCCCTTCT	CAGTCCACAG	TTTTGCCAGA	AATATCCACA	AGAACAATGA
21251	CAAGGCTCTT	TGCCTCGCCC	ACCATGACAG	AATCAGCAGA	AATGACCATC
21301	CCCACTCAAA	CAGGTCCTTC	TGGGTCTACC	TCACAGGATA	CCCTTACCTT
21351	GGACACATCC	ACCACAAAGT	CCCAGGCAAA	GACTCATTCA	ACTTTGACTC
21401	AGAGATTTCC	ACACTCAGAG	ATGACCACTC	TCATGAGCAG	AGGTCCTGGA
21451	GATATGTCAT	GGCAAAGCTC	TCCCTCTCTG	GAAAATCCCA	GCTCTCTCCC
21501	TTCCCTGCTG	TCTTTACCTG	CCACAACCTC	ACCTCCTCCC	ATTTCCTCCA
21551	CATTACCAGT	GACTATCTCC	TCCTCTCCTC	TTCCTGTGAC	TTCACTTCTC
21601	ACCTCTAGCC	CGGTAACGAC	CACAGACATG	TTACACACAA	GCCCAGAACT
21651	TGTAACCAGT	TCACCTCCAA	AGCTGAGCCA	CACTTCAGAT	GAGAGACTGA
21701	CCACTGGCAA	GGACACCACA	AATACAGAAG	CTGTGCATCC	TTCCACAAAC
21751	ACAGCAGCGT	CCAATGTGGA	GATTCCCAGC	TCTGGACATG	AATCCCCTTC
21801	CTCTGCCTTA	GCTGACTCAG	AGACATCCAA	AGCCACATCA	CCAATGTTTA

21851	TTACCTCCAC	CCAGGAGGAT	ACAACTGTTG	CCATATCAAC	CCCTCACTTC
21901	TTGGAGACTA	GCAGAATTCA	GAAAGAGTCA	ATTTCCTCCC	TGAGCCCTAA
21951	ATTGAGGGAG	ACAGGCAGTT	CTGTGGAGAC	AAGCTCAGCC	ATAGAGACAA
22001	GTGCTGTCCT	TTCTGAAGTG	TCCGTTGGTG	CTACTACTGA	GATCTCCAGG
22051	ACAGAAGTCA	CCTCCTCTAG	CAGAACATCC	ATCTCTGGTT	CTGCTGAGTC
22101	CACAATGTTG	CCAGAAATAT	CCACCACAAG	AAAAATCATT	AAGTTCCCTA
22151	CTTCCCCCAT	CCTGGCAGAA	TCATCAGAAA	TGACCATCAA	GACCCAAACA
22201	AGTCCTCCTG	GGTCTACATC	AGAGAGTACC	TTTACATTAG	ACACATCAAC
22251	CACTCCCTCC	TTGGTAATAA	CCCATTCGAC	TATGACTCAG	AGATTGCCAC
22301	ACTCAGAGAT	AACCACTCTT	GTGAGTAGAG	GTGCTGGGGA	TGTGCCACGG
22351	CCCAGCTCTC	TCCCTGTGGA	AGAAACAAGC	CCTCCATCTT	CCCAGCTGTC
22401	TTTATCTGCC	ATGATCTCAC	CTTCTCCTGT	TTCTTCCACA	TTACCAGCAA
22451	GTAGCCACTC	CTCTTCTGCT	TCTGTGACTT	CACTTCTCAC	ACCAGGCCAA
22501	GTGAAGACTA	CTGAGGTGTT	GGACGCAAGT	GCAGAACCTG	AAACCAGTTC
22551	ACCTCCAAGT	TTGAGCAGCA	CCTCAGTTGA	AATACTGGCC	ACCTCTGAAG
22601	TCACCACAGA	TACGGAGAAA	ATTCATCCTT	TCTCAAACAC	GGCAGTAACC
22651	AAAGTTGGAA	CTTCCAGTTC	: TGGACATGAA	TCCCCTTCCT	CTGTCCTACC
22701	TGACTCAGAG	ACAACCAAAG	CCACATCGGC	: AATGGGTACC	ATCTCCATTA
22751	TGGGGGATAC	: AAGTGTTTCT	ACATTAACTO	CTGCCTTATO	TAACACTAGG

22801	AAAATTCAGT	CAGAGCCAGC	TTCCTCACTG	ACCACCAGAT	TGAGGGAGAC
22851	CAGCACCTCT	GAAGAGACCA	GCTTAGCCAC	AGAAGCAAAC	ACTGTTCTTT
22901	CTAAAGTGTC	CACTGGTGCT	ACTACTGAGG	TCTCCAGGAC	AGAAGCCATC
22951	TCCTTTAGCA	GAACATCCAT	GTCAGGCCCT	GAGCAGTCCA	CAATGTCACA
23001	AGACATCTCC	ATAGGAACCA	TCCCCAGGAT	TTCTGCCTCC	TCTGTCCTGA
23051	CAGAATCTGC	AAAAATGACC	ATCACAACCC	AAACAGGTCC	TTCGGAGTCT
23101	ACACTAGAAA	GTACCCTTAA	TTTGAACACA	GCAACCACAC	CCTCTTGGGT
23151	GGAAACCCAC	TCTATAGTAA	TTCAGGGATT	TCCACACCCA	GAGATGACCA
23201	CTTCCATGGG	CAGAGGTCCT	GGAGGTGTGT	CATGGCCTAG	CCCTCCCTTT
23251	GTGAAAGAAA	CCAGCCCTCC	ATCCTCCCCG	CTGTCTTTAC	CTGCCGTGAC
23301	CTCACCTCAT	CCTGTTTCCA	CCACATTCCT	AGCACATATC	CCCCCTCTC
23351	CCCTTCCTGT	GACTTCACTT	CTCACCTCTG	GCCCGGCGAC	AACCACAGAT
23401	ATCTTGGGTA	CAAGCACAGA	ACCTGGAACC	AGTTCATCTT	CAAGTTTGAG
23451	CACCACCTCC	CATGAGAGAC	TGACCACTTA	CAAAGACACT	GCACATACAG
23501	AAGCCGTGCA	TCCTTCCACA	AACACAGGAG	GGACCAATGT	GGCAACCACC
23551	AGCTCTGGAT	ATAAATCACA	GTCCTCTGTC	CTAGCTGACT	CATCTCCAAT
23601	GTGTACCACC	TCCACCATGG	GGGATACAAG	TGTTCTCACA	TCAACTCCTG
23651	CCTTCCTTGA	GACTAGGAGG	ATTCAGACAG	AGCTAGCTTC	CTCCCTGACC
23701	CCTGGATTGA	GGGAGTCCAG	TGGCTCTGAA	GGGACCAGCT	CAGGCACCAA

23751	GATGAGCACT	GTCCTCTCTA	AAGTGCCCAC	TGGTGCTACT	ACTGAGATCT
23801	CCAAGGAAGA	CGTCACCTCC	ATCCCAGGTC	CCGCTCAATC	CACAATATCA
23851	CCAGACATCT	CCACAAGAAC	CGTCAGCTGG	TTCTCTACAT	CCCCTGTCAT
23901	GACAGAATCA	GCAGAAATAA	CCATGAACAC	CCATACAAGT	CCTTTAGGGG
23951	CCACAACACA	AGGCACCAGT	ACTTTGGCCA	CGTCAAGCAC	AACCTCTTTG
24001	ACAATGACAC	ACTCAACTAT	ATCTCAAGGA	TTTTCACACT	CACAGATGAG
24051	CACTCTTATG	AGGAGGGGTC	CTGAGGATGT	ATCATGGATG	AGCCCTCCCC
24101	TTCTGGAAAA	AACTAGACCT	TCCTTTTCTC	TGATGTCTTC	ACCAGCCACA
24151	ACTTCACCTT	CTCCTGTTTC	CTCCACATTA	CCAGAGAGCA	TCTCTTCCTC
24201	TCCTCTTCCT	GTGACTTCAC	TCCTCACGTC	TGGCTTGGCA	AAAACTACAG
24251	ATATGTTGCA	CAAAAGCTCA	GAACCTGTAA	CCAACTCACC	TGCAAATTTG
24301	AGCAGCACCT	CAGTTGAAAT	ACTGGCCACC	TCTGAAGTCA	CCACAGATAC
24351	AGAGAAAACT	CATCCTTCTT	CAAACAGAAC	AGTGACCGAT	GTGGGGACCT
24401	CCAGTTCTGG	ACATGAATCC	ACTTCCTTTG	TCCTAGCTGA	CTCACAGACA
24451	TCCAAAGTCA	CATCTCCAAT	GGTTATTACC	TCCACCATGG	AGGATACGAG
24501	TGTCTCCACA	TCAACTCCTG	GCTTTTTGA	GACTAGCAGA	ATTCAGACAG
24551	AACCAACATC	CTCCCTGACC	CTTGGACTGA	GAAAGACCAG	CAGCTCTGAG
24601	GGGACCAGCT	TAGCCACAGA	GATGAGCACT	GTCCTTTCTG	GAGTGCCCAC
24651	TGGTGCCACT	GCTGAAGTCT	CCAGGACAGA	AGTCACCTCC	TCTAGCAGAA
	23801 23851 23901 23951 24001 24051 24101 24151 24201 24251 24301 24351 24401 24451 24501 24551 24601	23801 CCAAGGAAGA 23851 CCAGACATCT 23901 GACAGAATCA 23951 CCACAACACA 24001 ACAATGACAC 24051 CACTCTTATG 24101 TTCTGGAAAA 24151 ACTTCACCTT 24201 TCCTCTTCCT 24251 ATATGTTGCA 24301 AGCAGCACCT 24351 AGAGAAAACT 24401 CCAGTTCTGG 24451 TCCAAAGTCA 24551 AACCAACATC 24551 AACCAACATC	23801 CCAAGGAAGA CGTCACCTCC 23851 CCAGACATCT CCACAAGAAC 23901 GACAGAATCA GCAGAAATAA 23951 CCACAACACA AGGCACCAGT 24001 ACAATGACAC ACTCAACTAT 24051 CACTCTTATG AGGAGGGGTC 24101 TTCTGGAAAA AACTAGACCT 24151 ACTTCACCTT CTCCTGTTTC 24201 TCCTCTTCCT GTGACTTCAC 24251 ATATGTTGCA CAAAAGCTCA 24301 AGCAGCACCT CAGTTGAAAT 24351 AGAGAAAACT CATCCTTCTT 24401 CCAGTTCTGG ACATGAATCC 24451 TCCAAAGTCA CATCTCCAAT 24501 TGTCTCCACA TCAACTCCTG 24551 AACCAACATC CTCCCTGACC	23801 CCAAGGAAGA CGTCACCTCC ATCCCAGGTC 23851 CCAGACATCT CCACAAGAAC CGTCAGCTGG 23901 GACAGAATCA GCAGAAATAA CCATGAACAC 23951 CCACAACACA AGGCACCAGT ACTTTGGCCA 24001 ACAATGACAC ACTCAACTAT ATCTCAAGGA 24051 CACTCTTATG AGGAGGGGTC CTGAGGATGT 24101 TTCTGGAAAA AACTAGACCT TCCTTTTCTC 24151 ACTTCACCTT CTCCTGTTTC CTCCACATTA 24201 TCCTCTTCCT GTGACTTCAC TCCTCACGTC 24251 ATATGTTGCA CAAAAGCTCA GAACCTGTAA 24301 AGCAGCACCT CAGTTGAAAT ACTGGCCACC 24351 AGAGAAAACT CATCCTTCTT CAAACAGAAC 24401 CCAGTTCTGG ACATGAATCC ACTTCCTTTG 24451 TCCAAAGTCA CATCTCCAAT GGTTATTACC 24501 TGTCTCCACA TCAACTCCTG GCTTTTTTGA 24501 GGGACCAGCT TAGCCACAGA GATGAGCACT	23801 CCAAGGAAGA CGTCACCTCC ATCCCAGGTC CCGCTCAATC 23851 CCAGACATCT CCACAAGAAC CGTCAGCTGG TTCTCTACAT 23901 GACAGAATCA GCAGAAATAA CCATGAACAC CCATACAAGT 23951 CCACAACACA AGGCACCAGT ACTTTGGCCA CGTCAAGCAC 24001 ACAATGACAC ACTCAACTAT ATCTCAAGGA TTTTCACACT 24051 CACTCTTATG AGGAGGGGTC CTGAGGATGT ATCATGGATG 24101 TTCTGGAAAA AACTAGACCT TCCTTTTCTC TGATGTCTTC 24151 ACTTCACCTT CTCCTGTTTC CTCCACATTA CCAGAGAGCA 24201 TCCTCTTCCT GTGACTTCAC TCCTCACGTC TGGCTTGGCA 24251 ATATGTTGCA CAAAAGCTCA GAACCTGTAA CCAACTCACC 24301 AGCAGCACCT CAGTTGAAAT ACTGGCCACC TCTGAAGTCA 24351 AGAGAAAACT CATCCTTCTT CAAACAGAAC AGTGACCGAT 24401 CCAGTTCTGG ACATGAATCC ACTTCCTTTG TCCTAGCTGA 24451 TCCAAAGTCA CATCCCTAAT GGTTATTACC TCCACCATGG 24551 AGCCAACATC CTCCCTGACC CTTGGACTGA GACTAGCAGA 24551 AACCAACATC CTCCCTGACC CTTGGACTGA GAAAGACCAG

24701	CATCCATCTC	AGGCTTTGCT	CAGCTCACAG	TGTCACCAGA	GACTTCCACA
24751	GAAACCATCA	CCAGACTCCC	TACCTCCAGC	ATAATGACAG	AATCAGCAGA
24801	AATGATGATC	AAGACACAAA	CAGATCCTCC	TGGGTCTACA	CCAGAGAGTA
24851	CTCATACTGT	GGACATATCA	ACAACACCCA	ACTGGGTAGA	AACCCACTCG
24901	ACTGTGACTC	AGAGATTTTC	ACACTCAGAG	ATGACCACTC	TTGTGAGCAG
24951	AAGCCCTGGT	GATATGTTAT	GGCCTAGTCA	ATCCTCTGTG	GAAGAAACCA
25001	GCTCTGCCTC	TTCCCTGCTG	TCTCTGCCTG	CCACGACCTC	ACCTTCTCCT
25051	GTTTCCTCTA	CATTAGTAGA	GGATTTCCCT	TCCGCTTCTC	TTCCTGTGAC
25101	TTCTCTTCTC	ACCCCTGGCC	TGGTGATAAC	CACAGACAGG	ATGGGCATAA
25151	GCAGAGAACC	TGGAACCAGT	TCCACTTCAA	ATTTGAGCAG	CACCTCCCAT
25201	GAGAGACTGA	CCACTTTGGA	AGACACTGTA	GATACAGAAG	ACATGCAGCC
25251	TTCCACACAC	ACAGCAGTGA	CCAACGTGAG	GACCTCCATT	TCTGGACATG
25301	AATCACAATC	TTCTGTCCTA	TCTGACTCAG	AGACACCCAA	AGCCACATCT
25351	CCAATGGGTA	CCACCTACAC	CATGGGGGAA	ACGAGTGTTT	CCATATCCAC
25401	TTCTGACTTC	TTTGAGACCA	GCAGAATTCA	GATAGAACCA	ACATCCTCCC
25451	TGACTTCTGG	ATTGAGGGAG	ACCAGCAGCT	CTGAGAGGAT	CAGCTCAGCC
25501	ACAGAGGGAA	GCACTGTCCT	TTCTGAAGTG	CCCAGTGGTG	CTACCACTGA
25551	GGTCTCCAGG	ACAGAAGTGA	TATCCTCTAG	GGGAACATCC	ATGTCAGGGC
25601	CTGATCAGTT	CACCATATCA	CCAGACATCT	CTACTGAAGC	GATCACCAGG

25651	CTTTCTACTT	CCCCCATTAT	GACAGAATCA	GCAGAAAGTG	CCATCACTAT
25701	TGAGACAGGT	TCTCCTGGGG	CTACATCAGA	GGGTACCCTC	ACCTTGGACA
25751	CCTCAACAAC	AACCTTTTGG	TCAGGGACCC	ACTCAACTGC	ATCTCCAGGA
25801	TTTTCACACT	CAGAGATGAC	CACTCTTATG	AGTAGAACTC	CTGGAGATGT
25851	GCCATGGCCG	AGCCTTCCCT	CTGTGGAAGA	AGCCAGCTCT	GTCTCTTCCT
25901	CACTGTCTTC	ACCTGCCATG	ACCTCAACTT	CTTTTTTCTC	CACATTACCA
25951	GAGAGCATCT	CCTCCTCTCC	TCATCCTGTG	ACTGCACTTC	TCACCCTTGG
26001	CCCAGTGAAG	ACCACAGACA	TGTTGCGCAC	AAGCTCAGAA	CCTGAAACCA
26051	GTTCACCTCC	AAATTTGAGC	AGCACCTCAG	CTGAAATATT	AGCCACGTCT
26101	GAAGTCACCA	AAGATAGAGA	GAAAATTCAT	CCCTCCTCAA	ACACACCTGT
26151	AGTCAATGTA	GGGACTGTGA	TTTATAAACA	TCTATCCCCT	TCCTCTGTTT
26201	TGGCTGACTT	AGTGACAACA	AAACCCACAT	CTCCAATGGC	TACCACCTCC
26251	ACTCTGGGGA	ATACAAGTGT	TTCCACATCA	ACTCCTGCCT	TCCCAGAAAC
26301	TATGATGACA	CAGCCAACTT	CCTCCCTGAC	TTCTGGATTA	AGGGAGATCA
26351	GTACCTCTCA	AGAGACCAGC	TCAGCAACAG	AGAGAAGTGC	TTCTCTTTCT
26401	GGAATGCCCA	CTGGTGCTAC	TACTAAGGTC	TCCAGAACAG	AAGCCCTCTC
26451	CTTAGGCAGA	ACATCCACCC	CAGGTCCTGC	TCAATCCACA	ATATCACCAG
26501	AAATCTCCAC	GGAAACCATC	ACTAGAATTT	CTACTCCCCT	CACCACGACA
26551	GGATCAGCAG	AAATGACCAT	CACCCCAAA	ACAGGTCATT	CTGGGGCATC

26601	CTCACAAGGT	ACCTTTACCT	TGGACACATC	AAGCAGAGCC	TCCTGGCCAG
26651	GAACTCACTC	AGCTGCAACT	CACAGATCTC	CACACTCAGG	GATGACCACT
26701	CCTATGAGCA	GAGGTCCTGA	GGATGTGTCA	TGGCCAAGCC	GCCCATCAGT
26751	GGAAAAAACT	AGCCCTCCAT	CTTCCCTGGT	GTCTTTATCT	GCAGTAACCT
26801	CACCTTCGCC	ACTTTATTCC	ACACCATCTG	AGAGTAGCCA	CTCATCTCCT
26851	CTCCGGGTGA	CTTCTCTTTT	CACCCTGTC	ATGATGAAGA	CCACAGACAT
26901	GTTGGACACA	AGCTTGGAAC	CTGTGACCAC	TTCACCTCCC	AGTATGAATA
26951	TCACCTCAGA	TGAGAGTCTG	GCCACTTCTA	AAGCCACCAT	GGAGACAGAG
27001	GCAATTCAGC	TTTCAGAAAA	CACAGCTGTG	ACTCAGATGG	GCACCATCAG
27051	CGCTAGACAA	GAATTCTATT	CCTCTTATCC	AGGCCTCCCA	GAGCCATCCA
27101	AAGTGACATC	TCCAGTGGTC	ACCTCTTCCA	CCATAAAAGA	CATTGTTTCT
27151	ACAACCATAC	CTGCTTCCTC	TGAGATAACA	AGAATTGAGA	TGGAGTCAAC
27201	ATCCACCCTG	ACCCCCACAC	CAAGGGAGAC	CAGCACCTCC	CAGGAGATCC
27251	ACTCAGCCAC	AAAGCCAAGC	ACTGTTCCTT	ACAAGGCACT	CACTAGTGCC
27301	ACGATTGAGG	ACTCCATGAC	ACAAGTCATG	TCCTCTAGCA	GAGGACCTAG
27351	CCCTGATCAG	TCCACAATGT	CACAAGACAT	ATCCAGTGAA	GTGATCACCA
27401	GGCTCTCTAC	CTCCCCCATC	AAGGCAGAAT	CTACAGAAAT	GACCATTACC
27451	ACCCAAACAG	GTTCTCCTGG	GGCTACATCA	AGGGGTACCC	TTACCTTGGA
27501	CACTTCAACA	ACTTTTATGT	CAGGGACCCA	CTCAACTGCA	TCTCAAGGAT

27551	TTTCACACTC	ACAGATGACC	GCTCTTATGA	GTAGAACTCC	TGGAGATGTG
27601	CCATGGCTAA	GCCATCCCTC	TGTGGAAGAA	GCCAGCTCTG	CCTCTTTCTC
27651	ACTGTCTTCA	CCTGTCATGA	CCTCATCTTC	TCCCGTTTCT	TCCACATTAC
27701	CAGACAGCAT	CCACTCTTCT	TCGCTTCCTG	TGACATCACT	TCTCACCTCA
27751	GGGCTGGTGA	AGACCACAGA	GCTGTTGGGC	ACAAGCTCAG	AACCTGAAAC
27801	CAGTTCACCC	CCAAATTTGA	GCAGCACCTC	AGCTGAAATA	CTGGCCACCA
27851	CTGAAGTCAC	TACAGATACA	GAGAAACTGG	AGATGACCAA	TGTGGTAACC
27901	TCAGGTTATA	CACATGAATC	TCCTTCCTCT	GTCCTAGCTG	ACTCAGTGAC
27951	AACAAAGGCC	ACATCTTCAA	TGGGTATCAC	CTACCCCACA	GGAGATACAA
28001	ATGTTCTCAC	ATCAACCCCT	GCCTTCTCTG	ACACCAGTAG	GATTCAAACA
28051	AAGTCAAAGC	TCTCACTGAC	TCCTGGGTTG	ATGGAGACCA	GCATCTCTGA
28101	AGAGACCAGC	TCTGCCACAG	AAAAAAGCAC	TGTCCTTTCT	AGTGTGCCCA
28151	CTGGTGCTAC	TACTGAGGTC	TCCAGGACAG	AAGCCATCTC	TTCTAGCAGA
28201	ACATCCATCC	CAGGCCCTGC	TCAATCCACA	ATGTCATCAG	ACACCTCCAT
28251	GGAAACCATC	ACTAGAATTT	CTACCCCCT	CACAAGGAAA	GAATCAACAG
28301	ACATGGCCAT	CACCCCAAA	ACAGGTCCTT	CTGGGGCTAC	CTCGCAGGGT
28351	ACCTTTACCT	TGGACTCATC	AAGCACAGCC	TCCTGGCCAG	GAACTCACTC
28401	AGCTACAACT	CAGAGATTTC	CACAGTCAGT	GGTGACAACT	CCTATGAGCA
28451	GAGGTCCTGA	GGATGTGTCA	TGGCCAAGCC	CGCTGTCTGT	GGAAAAAAAC

28501	AGCCCTCCAT	CTTCCCTGGT	ATCTTCATCT	TCAGTAACCT	CACCTTCGCC
28551	ACTTTATTCC	ACACCATCTG	GGAGTAGCCA	CTCCTCTCCT	GTCCCTGTCA
28601	CTTCTCTTTT	CACCTCTATC	ATGATGAAGG	CCACAGACAT	GTTGGATGCA
28651	AGTTTGGAAC	CTGAGACCAC	TTCAGCTCCC	AATATGAATA	TCACCTCAGA
28701	TGAGAGTCTG	GCCGCTTCTA	AAGCCACCAC	GGAGACAGAG	GCAATTCACG
28751	TTTTTGAAAA	TACAGCAGCG	TCCCATGTGG	AAACCACCAG	TGCTACAGAG
28801	GAACTCTATT	CCTCTTCCCC	AGGCTTCTCA	GAGCCAACAA	AAGTGATATC
28851	TCCAGTGGTC	ACCTCTTCCT	CTATAAGAGA	CAACATGGTT	TCCACAACAA
28901	TGCCTGGCTC	CTCTGGCATT	ACAAGGATTG	AGATAGAGTC	AATGTCATCT
28951	CTGACCCCTG	GACTGAGGGA	GACCAGAACC	TCCCAGGACA	TCACCTCATC
29001	CACAGAGACA	AGCACTGTCC	TTTACAAGAT	GCCCTCTGGT	GCCACTCCTG
29051	AGGTCTCCAG	GACAGAAGTT	ATGCCCTCTA	GCAGAACATC	CATTCCTGGC
29101	CCTGCTCAGT	CCACAATGTC	ACTAGACATC	TCCGATGAAG	TTGTCACCAG
29151	GCTGTCTACC	TCTCCCATCA	TGACAGAATC	TGCAGAAATA	ACCATCACCA
29201	CCCAAACAGG	TTATTCTCTG	GCTACATCCC	AGGTTACCCT	TCCCTTGGGC
29251	ACCTCAATGA	CCTTTTTGTC	AGGGACCCAC	TCAACTATGT	CTCAAGGACT
29301	TTCACACTCA	GAGATGACCA	ATCTTATGAG	CAGGGGTCCT	GAAAGTCTGT
29351	CATGGACGAG	CCCTCGCTTT	GTGGAAACAA	CTAGATCTTC	CTCTTCTCTG
29401	ACATCATTAC	CTCTCACGAC	CTCACTTTCT	CCTGTGTCCT	CCACATTACT

29451	AGACAGTAGC	CCCTCCTCTC	CTCTTCCTGT	GACTTCACTT	ATCCTCCCAG
29501	GCCTGGTGAA	GACTACAGAA	GTGTTGGATA	CAAGCTCAGA	GCCTAAAACC
29551	AGTTCATCTC	CAAATTTGAG	CAGCACCTCA	GTTGAAATAC	CGGCCACCTC
29601	TGAAATCATG	ACAGATACAG	AGAAAATTCA	TCCTTCCTCA	AACACAGCGG
29651	TGGCCAAAGT	GAGGACCTCC	AGTTCTGTTC	ATGAATCTCA	TTCCTCTGTC
29701	CTAGCTGACT	CAGAAACAAC	CATAACCATA	CCTTCAATGG	GTATCACCTC
29751	CGCTGTGGAC	GATACCACTG	TTTTCACATC	AAATCCTGCC	TTCTCTGAGA
29801	CTAGGAGGAT	TCCGACAGAG	CCAACATTCT	CATTGACTCC	TGGATTCAGG
29851	GAGACTAGCA	CCTCTGAAGA	GACCACCTCA	ATCACAGAAA	CAAGTGCAGT
29901	CCTTTATGGA	GTGCCCACTA	GTGCTACTAC	TGAAGTCTCC	ATGACAGAAA
29951	TCATGTCCTC	TAATAGAACA	CACATCCCTG	ACTCTGATCA	GTCCACGATG
30001	TCTCCAGACA	TCATCACTGA	AGTGATCACC	AGGCTCTCTT	CCTCATCCAT
30051	GATGTCAGAA	TCAACACAAA	TGACCATCAC	CACCCAAAAA	AGTTCTCCTG
30101	GGGCTACAGC	ACAGAGTACT	CTTACCTTGG	CCACAACAAC	AGCCCCCTTG
30151	GCAAGGACCC	ACTCAACTGT	TCCTCCTAGA	TTTTTACACT	CAGAGATGAC
30201	AACTCTTATG	AGTAGGAGTC	CTGAAAATCC	ATCATGGAAG	AGCTCTCCCT
30251	TTGTGGAAAA	AACTAGCTCT	TCATCTTCTC	TGTTGTCCTT	ACCTGTCACG
30301	ACCTCACCTT	CTGTTTCTTC	CACATTACCG	CAGAGTATCC	CTTCCTCCTC
30351	TTTTTCTGTG	ACTTCACTCC	: TCACCCCAGG	CATGGTGAAG	; ACTACAGACA

30401	CAAGCACAGA	ACCTGGAACC	AGTTTATCTC	CAAATCTGAG	TGGCACCTCA
30451	GTTGAAATAC	TGGCTGCCTC	TGAAGTCACC	ACAGATACAG	AGAAAATTCA
30501	TCCTTCTTCA	AGCATGGCAG	TGACCAATGT	GGGAACCACC	AGTTCTGGAC
30551	ATGAACTATA	TTCCTCTGTT	TCAATCCACT	CGGAGCCATC	CAAGGCTACA
30601	TACCCAGTGG	GTACTCCCTC	TTCCATGGCT	GAAACCTCTA	TTTCCACATC
30651	AATGCCTGCT	AATTTTGAGA	CCACAGGATT	TGAGGCTGAG	CCATTTTCTC
30701	ATTTGACTTC	TGGATTTAGG	AAGACAAACA	TGTCCCTGGA	CACCAGCTCA
30751	GTCACACCAA	CAAATACACC	TTCTTCTCCT	GGGTCCACTC	ACCTTTTACA
30801	GAGTTCCAAG	ACTGATTTCA	CCTCTTCTGC	AAAAACATCA	TCCCCAGACT
30851	GGCCTCCAGC	CTCACAGTAT	ACTGAAATTC	CAGTGGACAT	AATCACCCCC
30901	TTTAATGCTT	CTCCATCTAT	TACGGAGTCC	ACTGGGATAA	CCTCCTTCCC
30951	AGAATCCAGG	TTTACTATGT	CTGTAACAGA	AAGTACTCAT	CATCTGAGTA
31001	CAGATTTGCT	GCCTTCAGCT	GAGACTATTT	CCACTGGCAC	AGTGATGCCT
31051	TCTCTATCAG	AGGCCATGAC	TTCATȚTGCC	ACCACTGGAG	TTCCACGAGC
31101	CATCTCAGGT	TCAGGTAGTC	CATTCTCTAG	GACAGAGTCA	GGCCCTGGGG
31151	ATGCTACTCT	GTCCACCATT	GCAGAGAGCC	TGCCTTCATC	CACTCCTGTG
31201	CCATTCTCCT	CTTCAACCTT	CACTACCACT	GATTCTTCAA	CCATCCCAGC
31251	CCTCCATGAG	ATAACTTCCT	CTTCAGCTAC	CCCATATAGA	GTGGACACCA
31301	GTCTTGGGAC	AGAGAGCAGC	ACTACTGAAG	GACGCTTGGT	TATGGTCAGT

31351	ACTTTGGACA	CTTCAAGCCA	ACCAGGCAGG	ACATCTTCAA	CACCCATTTT
31401	GGATACCAGA	ATGACAGAGA	GCGTTGAGCT	GGGAACAGTG	ACAAGTGCTT
31451	ATCAAGTTCC	TTCACTCTCA	ACACGGTTGA	CAAGAACTGA	TGGCATT

Table 25

Amino Terminal Extension of the CA125 Gene (Protein Sequence) (SEQ ID NO: 310)

1 MLKPSGLPGS SSPTRSLMTG SRSTKATPEM DSGLTGATLS PKTSTGAIVV TEHTLPFTSP DKTLASPTSS VVGRTTQSLG VMSSALPEST SRGMTHSEQR 101 TSPSLSPQVN GTPSRNYPAT SMVSGLSSPR TRTSSTEGNF TKEASTYTLT 151 VETTSGPVTE KYTVPTETST TEGDSTETPW DTRYIPVKIT SPMKTFADST ASKENAPVSM TPAETTVTDS HTPGRTNPSF GTLYSSFLDL SPKGTPNSRG 251 ETSLELILST TGYPFSSPEP GSAGHSRIST SAPLSSSASV LDNKISETSI 301 FSGQSLTSPL SPGVPEARAS TMPNSAIPFS MTLSNAETSA ERVRSTISSL 351 GTPSISTKQT AETILTFHAF AETMDIPSTH IAKTLASEWL GSPGTLGGTS 401 TSALTTTSPS TTLVSEETNT HHSTSGKETE GTLNTSMTPL ETSAPGEESE MTATLVPTLG FTTLDSKIRS PSQVSSSHPT RELRTTGSTS GRQSSSTAAH 501 GSSDILRATT SSTSKASSWT SESTAQQFSE PQHTQWVETS PSMKTERPPA 551 STSVAAPITT SVPSVVSGFT TLKTSSTKGI WLEETSADTL IGESTAGPTT 601 HQFAVPTGIS MTGGSSTRGS QGTTHLLTRA TASSETSADL TLATNGVPVS VSPAVSKTAA GSSPPGGTKP SYTMVSSVIP ETSSLQSSAF REGTSLGLTP 701 LNTRHPFSSP EPDSAGHTKI STSIPLLSSA SVLEDKVSAT STFSHKATS 751 SITTGTPEIS TKTKPSSAVL SSMTLSNAAT SPERVRNATS PLTHPSPSGE 801 ETAGSVLTLS TSAETTDSPN IHPTGTLTSE SSESPSTLSL PSVSGVKTTF 851 SSSTPSTHLF TSGEETEETS NPSVSQPETS VSRVRTTLAS TSVPTPVFPT

901	MDTWPTRSAQ	FSSSHLVSEL	RATSSTSVTN	STGSALPKIS	HLTGTATMSQ
951	TNRDTFNDSA	APQSTTWPET	SPRFKTGLPS	ATTTVSTSAT	SLSATVMVSK
1001	FTSPATSSME	ATSIREPSTT	ILTTETTNGP	GSMAVASTNI	PIGKGYITEG
1051	RLDTSHLPIG	TTASSETSMD	FTMAKESVSM	SVSPSQSMDA	AGSSTPGRTS
1101	QFVDTFSDDV	YHLTSREITI	PRDGTSSALT	PQMTATHPPS	PDPGSARSTW
1151	LGILSSSPSS	PTPKVTMSST	FSTQRVTTSM	IMDTVETSRW	NMPNLPSTTS
1201	LTPSNIPTSG	AIGKSTLVPL	DTPSPATSLE	ASEGGLPTLS	TYPESTNTPS
1251	IHLGAHASSE	SPSTINLTMA	SVVKPGSYTP	LTFPSIETHI	HVSTARMAYS
1301	SGSSPEMTAP	GETNTGSTWD	PTTYITTTDP	KDTSSAQVST	PHSVRTLRTT
1351	ENHPKTESAT	PAAYSGSPKI	SSSPNLTSPA	TKAWTITDTT	EHSTQLHYTK
1401	LAEKSSGFET	QSAPGPVSVV	IPTSPTIGSS	TLELTSDVPG	EPLVLAPSEQ
1451	TTITLPMATW	LSTSLTEEMA	STDLDISSPS	SPMSTFAIFP	PMSTPSHELS
1501	KSEADTSAIR	NTDSTTLDQH	LGIRSLGRTG	DLTTVPITPL	TTTWTSVIEH
1551	STQAQDTLSA	TMSPTHVTQS	LKDQTSIPAS	ASPSHLTEVY	PELGTQGRSS
1601	SEATTFWKPS	TDTLSREIET	GPTNIQSTPP	MDNTTTGSSS	SGVTLGIAHL
1651	PIGTSSPAET	STNMALERRS	STATVSMAGT	MGLLVTSAPG	RSISQSLGRV
1701	SSVLSESTTE	GVTDSSKGSS	PRLNTQGNTA	LSSSLEPSYA	LEGSQMSTSIP
1751	LTSSPTTPDV	EFIGGSTFWT	KEVTTVMTSD	ISKSSARTES	SSATLMSTAL

WO 02/083866 PCT/US02/11734

Table 25 (continued)

1801	GSTENTGKEK	LRTASMDLPS	PTPSMEVTPW	ISLTLSNAPN	TTDSLDLSHG
1851	VHTSSAGTLA	TDRSLNTGVT	RASRLENGSD	TSSKSLSMGN	STHTSMTDTE
1901	KSEVSSSIHP	RPETSAPGAE	TTLTSTPGNR	AISLTLPFSS	IPVEEVISTG
1951	ITSGPDINSA	PMTHSPITPP	TIVWTSTGTI	EQSTQPLHAV	SSEKVSVQTQ
2001	STPYVNSVAV	SASPTHENSV	SSGSSTSSPY	SSASLESLDS	TISRRNAITS
2051	WLWDLTTSLP	TTTWPSTSLS	EALSSGHSGV	SNPSSTTTEF	PLFSAASTSA
2101	AKQRNPETET	HGPQNTAAST	LNTDASSVTG	LSETPVGASI	SSEVPLPMAI
2151	TSRSDVSGLT	SESTANPSLG	TASSAGTKLT	RTISLPTSES	LVSFRMNKDP
2201	WTVSIPLGSH	PTTNTETSIP	VNSAGPPGLS	TVASDVIDTP	SDGAESIPTV
2251	SFSPSPDTEV	TTISHFPEKT	THSFRTISSL	THELTSRVTP	IPGDWMSSAM
2301	STKPTGASPS	ITLGERRTIT	SAAPTTSPIV	LTASFTETST	VSLDNETTVK
2351	TSDILDARKT	NELPSDSSSS	SDLINTSIAS	STMDVTKTAS	ISPTSISGMT
2401	ASSSPSLFSS	DRPQVPTSTT	ETNTATSPSV	SSNTYSLDGG	SNVGGTPSTL
2451	PPFTITHPVE	TSSALLAWSR	PVRTFSTMVS	TDTASGENPT	SSNSVVTSVP
2501	APGTWTSVGS	TTDLPAMGFL	KTSPAGEAHS	LLASTIEPAT	AFTPHLSAAV
2551	VTGSSATSEA	SLLTTSESKA	IHSSPQTPTT	PTSGANWETS	ATPESLLVVT
2601	ETSDTTLTSK	ILVTDTILFS	TVSTPPSKFP	STGTLSGASF	PTLLPDTPAI
2651	PLTATEPTSS	LATSFDSTPL	VTIASDSLGT	VPETTLTMSE	TSNGDALVLK

2701	TVSNPDRSIP	GITIQGVTES	PLHPSSTSPS	KIVAPRNTTY	EGSITVALST
2751	LPAGTTGSLV	FSQSSENSET	TALVDSSAGL	ERASVMPLTT	GSQGMASSGG
2801	IRSGSTHSTG	TKTFSSLPLT	MNPGEVTAMS	EITTNRLTAT	QSTAPKGIPV
2851	KPTSAESGLL	TPVSASSSPS	KAFASLTTAP	PTWGIPQSTL	TFEFSEVPSL
2901	DTKSASLPTP	GQSLNTIPDS	DASTASSSLS	KSPEKNPRAR	MMTSTKAISA
2951	SSFQSTGFTE	TPEGSASPSM	AGHEPRVPTS	GTGDPRYASE	SMSYPDPSKA
3001	SSAMTSTSLA	SKLTTLFSTG	QAARSGSSSS	PISLSTEKET	SFLSPTASTS
3051	RKTSLFLGPS	MARQPNILVH	LQTSALTLSP	TSTLNMSQEE	PPELTSSQTI
3101	AEEEGTTAET	QTLTFTPSET	PTSLLPVSSP	TEPTARRKSS	PETWASSISV Contig 27
3151	PAKTSLVETT	DGTLVTTIKM	SSQAAQGNST	QPAPAEETGT	SPAGTSPGSP
3201	EMSTTLKIMS	SKEPSISPEI	RSTVRNSPWK	TPETTVPMET	TVEPVTLQST
3251	ALGSGSTSIS	HLPTGTTSPT	KSPTENMLAT	ERVSLSPSPP	EAWTNLYSGT
3301	PGGTRQSLAT	MSSVSLESPT	ARSITGTGQQ	SSPELVSKTT	GMEFSMWHGS
3351	TGGTTGDTHV	SLSTSSNILE	DPVTSPNSVS	SLTDKSKHKT	ETWVSTTAIP
3401	STVLNNKIMA	AEQQTSRSVD	EAYSSTSSWS	DQTSGSDITL	GASPDVTNTL
3451	YITSTAQTTS	LVSLPSGDQG	ITSLTNPSGG	KTSSASSVTS	PSIGLETLRA
3501	NVSAVKSDIA	PTAGHLSQTS	SPAEVSILDV	TTAPTPGIST	TITTMGTNSI
3551	STTTPNPEVG	MSTMDSTPAT	ERRTTSTEHP	STWSSTAASD	SWTVTDMTSN

3601	LKVARSPGTI	STMHTTSFLA	SSTELDSMST	PHGRITVIGT	SLVTPSSDAS
3651	AVKTETSTSE	RTLSPSDTTA	STPISTFSRV	QRMSISVPDI	LSTSWTPSST
3701	EAEDVPVSMV	PTDHASTKTD	PNTPLSTFLF	DSLSTLDWDT	GRSLSSATAT
3751	TSAPQGATTP	QELTLETMIS	PATSQLPFSI	GHITSAVTPA	AMARSSGVTF
3801	SRPDPTSKKA	EQTSTQLPTT	TSAHPGQVPR	SAATTLDVIP	HTAKTPDATF
3851	QRQGQTALTT	EARATSDSWN	EKEKSTPSAP	WITEMMNSVS	EDTIKEVTSS
3901	SSVLKDPEYA	GHKLGIWDDF	IPKFGKAAHM	RELPLLSPPQ	DKEAIHPSTN
3951	TVETTGWVTS	SEHASHSTIP	AHSASSKLTS	PVVTTSTREQ	AIVSMSTTTW
4001	PESTRARTEP	NSFLTIELRD	VSPYMDTSST	TQTSIISSPG	STAITKGHRT
4051	EITSYKRISS	SFLAQSMRSS	DSPSEAITRL	SNFPAMTESG	GMILAMQTSP
4101	PGATSISAPT	LDTSATASWT	GTPLATTQRF	TYSEKTTLFS	KGREDTSQPS
4151	PPCVEETSSS	SSVVPIHATT	SPSNILLTSQ	GHSPSSTPPV	TSVFLSETSG
4201	LGKTTDMSRI	SLEPGTSLPP	NLSSTAGEAL	STYEASRDTK	AIHHSADTAV
4251	TNMEATSSEY	SPIPGHTKPS	KATSPLVTSH	IMGDITSSTS	VFGSSETTEI
4301	ETVSSVNQGL	QERSTSQVAS	SATETSTVIT	HVSSGDATTH	VTKTQATFSS
4351	GTSISSPHQF	ITSTNTFTDV	STNPSTSLIM	TESSGVTITT	QTGPTGAATQ
4401	GPYLLDTSTM	PYLTETPLAV	TPDFMQSEKT	TLISKGPKDV	TWTSPPSVAE
4451	TSYPSSLTPF	LVTTIPPATS	TLQGQHTSSP	VSATSVLTSG	LVKTTDMLNT

4501	SMEPVTNSPQ	NLNNPSNEIL	ATLAATTDIE	TIHPSINKAV	TNMGTASSAH
4551	VLHSTLPVSS	EPSTATSPMV	PASSMGDALA	SISIPGSETT	DIEGEPTSSL
4601	TAGRKENSTL	QEMNSTTESN	IILSNVSVGA	ITEATKMEVP	SFDATFIPTP
4651	AQSTKFPDIF	SVASSRLSNS	PPMTISTHMT	TTQTGSSGAT	SKIPLALDTS
4701	TLETSAGTPS	VVTEGFAHSK	ITTAMNNDVK	DVSQTNPPFQ	DEASSPSSQA
4751	PVLVTTLPSS	VAFTPQWHST	SSPVSMSSVL	TSSLVKTAGK	VDTSLETVTS
4801	SPQSMSNTLD	DISVTSAATT	DIETTHPSIN	TVVTNVGTTG	SAFESHSTVS
4851	AYPEPSKSHI	LPMLPPPPWK	TPQFPRSIPK	SSKTTRTETE	TTSSLTPKLR
4901	ETSISQEITS	STETSTVPYK	ELTGATTEVS	RTDVTSSSST	SFPGPDQSTV
4951	SLDISTETNT	RLSTSPIMTE	SAEITITTQT	GPHGATSQDT	FTMDPSNTTP
5001	QAGIHSAMTH	GFSQLDVTTL	MSRIPQDVSW	TSPPSVDKTS	SPSSFLSSPA
5051	MTTPSLISST	LPEDKLSSPM	TSLLTSGLVK	ITDILRTRLE	PVTSSLPNFS
5101	STSDKILATS	KDSKDTKEIF	PSINTEETNV	KANNSGHESH	SPALADSETP
5151	KATTQMVITT	TVGDPAPSTS	MPVHGSSETT	NIKREPTYFL	TPRLRETSTS
5201	QESSFPTDTS	FLLSKVPTGT	ITEVSSTGVI	SSSKISTPDH	DKSTVPPDTF
5251	TGEIPRVFTS	SIKTKSAEMT	ITTQASPPES	ASHSTLPLDT	STTLSQGGTH
5301	STVSQGFPYS	EVTTLMGMGP	GNVSWMTTPP	VEETSSVSSL	MSSPAMTSPS
5351	PVSSTSPQSI	PSSPLPVTAL	PTSVLVTTTD	VLGTTSPESV	TSSPPNLSSI

5401	THERPATYKD	ТАНТЕААМНН	STNTAVTNVG	TSGSGHKSQS	SVLADSETSK
5451	ATPLMSTAST	LGDTSVSTST	PNISQTNQIQ	TEPTASLSPR	LRESSTSEKT
5501	SSTTETNTAF	SYVPTGAITQ	ASRTEISSSR	TSISDLDRST	IAPDISTGMI
5551	TRLFTSPIMT	KSAEMTVTTQ	TTTPGATSQG	ILPWDTSTTL	FQGGTHSTVS
5601	QGFPHSEITT	LRSRTPGDVS	WMTTPPVEET	SSGFSLMSPS	MTSPSPVSST
5651	SPESIPSSPL	PVTALLTSVL	VTTTNVLGTT	SPEPVTSSPP	NLSSPTQERL
5701	TTYKDTAHTE	AMHASMHTNT	AVANVGTSIS	GHESQSSVPA	DSHTSKATSP
5751	MGITFAMGDT	SVYTSTPAFF	ETRIQSESTS	SLIPGLRDTR	TSEEINTVTE
5801	TSTVLSEVPT	TTTTEVSRTE	VITSSRTTIS	GPDHSKMSPY	ISTETITRLS
5851	TFPFVTGSTE	MAITNQTGPI	GTISQATLTL	DTSSTASWEG	THSPVTQRFP
5901	HSEETTTMSR	STKGVSWQSP	PSVEETSSPS	SPVPLPAITS	HSSLYSAVSG
5951	SSPTSALPVT	SLLTSGRRKT	IDMLDTHSEL	VTSSLPSASS	FSGEILTSEA
6001	STNTETIHFS	ENTAETNMGT	TNSMHKLHSS	VSIHSQPSGH	TPPKVTGSMM
6051	EDAIVSTSTP	GSPETKNVDR	DSTSPLTPEL	KEDSTALVMN	STTESNTVFS
6101	SVSLDAATEV	SRAEVTYYDP	ŢFMPASAQST	KSPDISPEAS	SSHSNSPPLT
6151	ISTHKTIATQ	TGPSGVTSLG	QLTLDTSTIA	TSAGTPSART	QDFVDSETTS
6201	VMNNDLNDVL	KTSPFSAEEA	NSLSSQAPLL	VTTSPSPVTS	TLQEHSTSSL
6251	VSVTSVPTPT	LAKITDMDTN	LEPVTRSPQN	LRNTLATSEA	TTDTHTMHPS

6301	INTAMANVGT	TSSPNEFYFT	VSPDSDPYKA	TSAVVITSTS	GDSIVSTSMP
6351	RSSAMKKIES	ETTFSLIFRL	RETSTSQKIG	SSSDTSTVFD	KAFTAATTEV
6401	Contig16 SRTELTSSSR	TSIQGTEKPT	MSPDTSTRSV	TMLSTFAGLT	KSEERTIATQ
6451	TGPHRATSQG	TLTWDTSITT	SQAGTHSAMT	HGFSQLDLST	LTSRVPEYIS .
6501	GTSPPSVEKT	SSSSSLLSLP	AITSPSPVPT	TLPESRPSSP	VHLTSLPTSG
6551	LVKTTDMLAS	VASLPPNLGS	TSHKIPTTSE	DIKDTEKMYP	STNIAVTNVG
6601	TTTSEKESYS	SVPAYSEPPK	VTSPMVTSFN	IRDTIVSTSM	PGSSEITRIE
6651	MESTFSLAHG	LKGTSTSQDP	IVSTEKSAVL	HKLTTGATET	SRTEVASSRR
6701	TSIPGPDHST	ESPDISTEVI	PSLPISLGIT	ESSNMTIITR	TGPPLGSTSQ
6751	GTFTLDTPTT	SSRAGTHSMA	TQEFPHSEMT	TVMNKDPEIL	SWTIPPSIEK
6801	TSFSSSLMPS	PAMTSPPVSS	TLPKTIHTTP	SPMTSLLTPS	LVMTTDTLGT
6851	SPEPTTSSPP	NLSSTSHEIL	TTDEDTTALE	AMHPSTSTAA	TNVETTSSGH
6901	GSQSSVLADS	EKTKATAPMD	TTSTMGHTTV	STSMSVSSET	TKIKRESTYS
6951	LTPGLRETSI	SQNASFSTDT	SIVLSEVPTG	TTAEVSRTEV	TSSGRTSIPG
7001	PSQSTVLPEI	STRTMTRLFA	SPTMTESAEM	TIPTQTGPSG	STSQDTLTLD
7051	TSTTKSQAKT	HSTLTQRFPH	SEMTTLMSRG	PGDMSWQSSP	SLENPSSLPS
7101	LLSLPATTSP	PPISSTLPVT	ISSSPLPVTS	LLTSSPVTTT	DMLHTSPELV
7151	TSSPPKLSHT	SDERLTTGKD	TTNTEAVHPS	TNTAASNVEI	PSSGHESPSS

7201	717DGHM2***				
7201	Cont	. TSPMFITSTÇ ia10) EDTTVAISTP	HFLETSRIQK	ESISSLSPKL
7251		SAIETSAVLS	EVSVGATTEI	SRTEVTSSSR	TSISGSAIST
7301	MLPEISTTRK	IIKFPTSPII	AISSEMTIKT	QTSPPGSTSE	STFTLDTSTT
7351	PSLVITHSTM	TQRLPHSEIT	TLVSRGAGDV	PRPSSLPVEE	TSPPSSQLSL
7401	SAMISPSPVS	STLPASSHSS	SASVTSLLTP	GQVKTTEVLD	ASAEPETSSP
7451	PSLSSTSVEI	LATSEVTTDT	EKIHPFSNTA	VTKVGTSSSG	HESPSSVLPD
7501	SETTKATSAM	GTISIMGDTS	VSTLTPALSM	TRKIQSEPAS	SLTTRLRETS
7551	TSEETSLATE	ANTVLSKVST	GATTEVSRTE	AISFSRTSMS	GPEQSTMSQD
7601	ISIGTIPRIS	ASSVLTESAK	MTITTQTGPS	ESTLESTLNL	NTATTPSWVE
7651	THSIVIQGFP	HPEMTTSMGR Contig22	GPGGVSWPSP	PFVKETSPPS	SPLSLPAVTS
7701	PHPVSTTFLA	HIPPSPLPVT	SLLTSGPATT	TDILGTSTEP	GTSSSSSLST
7751	TSHERLTTYK	DTAHTEAVHP	STNTGGTNVA	TTSSGYKSQS	SVLADSSPMC
7801	TTSTMGDTSV	LTSTPAFLET	RRIQTELASS	LTPGLRESSG	SEGTSSGTKM
7851	STVLSKVPTG	ATTEISKEDV	TSIPGPAQST	ISPDTSTRTV	SWFSTSPVMT
7901	ESAEITMNTH	TSPLGATTQG	TSTLDTSSTT	SLTMTHSTIS	QGFSHSQMST
7951	LMRRGPEDVS	WMSPPLLEKT	RPSFSLMSSP	ATTSPSPVSS	TLPESISSSP
8001	LPVTSLLTSG	LAKTTOMLHK	SSEPVTNSPA	NLSSTSVEIL	ATSEVTTDTE
8051	KTHPSSNRTV	TDVGTSSSGH	ESTSFVLADS	QTSKVTSPMV	ITSTMEDTSV

8101	STSTPGFFET	SRIQTEPTSS	LTLGLRKTSS	SEGTSLATEM	STVLSGVPTG
8151	ATAEVSRTEV	TSSSRTSISG	FAQLTVSPET	STETITRLPT	SSIMTESAEM
8201	MIKTQTDPPG	STPESTHTVD	ISTTPNWVET	HSTVTQRFSH	SEMTTLVSRS
8251	PGDMLWPSQS	SVEETSSASS	LLSLPATTSP	SPVSSTLVED	FPSASLPVTS
8301	LLTPGLVITT	DRMGISREPG	TSSTSNLSST	SHERLTTLED	TVDTEAMQPS
8351	THTAVTNVRT	SISGHESQSS	VLSDSETPKA	TSSMGTTYTM	GETSVSISTS
8401	DFFETSRVQI	EPTSSLTSGL	RETSSSERIS	SATEGSTVLS	EVPSGATTEV
8451	SRTEVISSRG	TSMSGPDQFT	ISPDISTEAI	TRLSTSPIMT	ESAESAITIE
8501	TGSPGATSEG	TLTLDTSTTT	FWSGTHSTAS	PGFSHSEMTT	LMSRTPGDVP
8551	WPSLPSVEEA	SSVSSSLSSP	AMTSTSFFST	LPESISSSPH	PVTALLTLGP
8601	VKTTDMLRTS	SEPETSSPPN	LSSTSAEILA	TSEVTKDREK	IHPSSNTPVV
8651	NVGTVIYKHL	SPSSVLADLV	TTKPTSPMAT	TSTLGNTSVS	TSTPAFPETM
8701	MTQPTSSLTS	GLREISTSQE	TSSATERSAS	LSGMPTGATT	KVSRTEALSL
8751	GRTSTPGPAQ	STISPEISTE	TITRISTPLT	TTGSAEMTIT	PKTGHSGASS
8801	QGTFTLDTSS	RASWPGTHSA	ATHRSPHSGM	TTPMSRGPED	VSWPSRPSVE
8851	KTSPPSSLVS	LSAVTSPSPL	YSTPSESSHS	SPLRVTSLFT	PVMMKTTDML
8901	DTSLEPVTTS	PPSMNITSDE	SLATSKATME	TEAIQLSENT	AVTQMGTISA
8951	RQEFYSSYPG	LPEPSKVTSP	VVTSSTIKDI	VSTTIPASSE	ITRIEMESTS

9001	TLTPTPRETS	TSQEIHSATK	PSTVPYKALT	SATIEDSMTQ	VMSSSRGPSP
9051	DQSTMSQDIS	TEVITRLSTS	PIKAESTEMT	ITTQTGSPGA	TSRGTLTLDT
9101	STTFMSGTHS	TASQGFSHSQ	MTALMSRTPG	DVPWLSHPSV	EEASSASFSL
9151	SSPVMTSSSP	VSSTLPDSIH	SSSLPVTSLL	TSGLVKTTEL	LGTSSEPETS
9201	SPPNLSSTSA	EILATTEVTT	DTEKLEMTNV	VTSGYTHESP	SSVLADSVTT
9251	KATSSMGITY	PTGDTNVLTS		QTKSKLSLTP	GLMETSISEE
9301	TSSATEKSTV	Contig LSSVPTGATT	EVSRTEAISS	SRTSIPGPAQ	STMSSDTSME
9351	TITRISTPLT	RKESTDMAIT	PKTGPSGATS	QGTFTLDSSS	TASWPGTHSA
9401	TTQRFPQSVV	TTPMSRGPED	VSWPSPLSVE	KNSPPSSLVS	SSSVTSPSPL
9451	YSTPSGSSHS	SPVPVTSLFT	SIMMKATDML	DASLEPETTS	APNMNITSDE
9501	SLAASKATTE	TEAIHVFENT	AASHVETTSA	TEELYSSSPG	FSEPTKVISP
9551	VVTSSSIRDN	MVSTTMPGSS	GITRIEIESM	SSLTPGLRET	RTSQDITSST
9601	ETSTVLYKMP	SGATPEVSRT	EVMPSSRTSI	PGPAQSTMSL	DISDEVVTRL
9651	STSPIMTESA	EITITTQTGY	SLATSQVTLP	LGTSMTFLSG	THSTMSQGLS
9701	HSEMTNLMSR	GPESLSWTSP	RFVETTRSSS	SLTSLPLTTS	LSPVSSTLLD
9751	SSPSSPLPVT	SLILPGLVKT	TEVLDTSSEP	KTSSSPNLSS	TSVEIPATSE
9801	IMTOTEKIHP	SSNTAVAKVR	TSSSVHESHS	SVLADSETTI	TIPSMGITSA
9851	VDDTTVFTSN	PAFSETRRIP	TEPTFSLTPG	FRETSTSEET	TSITETSAVL

9901	YGVPTSATTE	VSMTEIMSSN	RIHIPDSDQS	TMSPDIITEV	ITRLSSSSMM
9951	SESTOMTITT	QKSSPGATAQ	STLTWPQQQP	PWQGPTQLFL	LDFYTSEMTT
10001	LMSRSPENPS	WKSSLFVEKT	SSSSSLLSLP	VTTSPSVSST	LPQSIPSSSF
10051	SVTSLLTPGM	VKTTDTSTEP	GTSLSPNLSG	TSVEILAASE	VTTDTEKIHP
10101	SSSMAVTNVG	TTSSGHELYS	SVSIHSEPSK	ATYPVGTPSS	MAETSISTSM
10151	PANFETTGFE	AEPFSHLTSG	FRKTNMSLDT	SSVTPTNTPS	SPGSTHLLQS
10201	SKTDFTSSAK	TSSPDWPPAS	QYTEIPVDII	TPFNASPSIT	ESTGITSFPE
10251	SRFTMSVTES	THHLSTDLLP	SAETISTGTV	MPSLSEAMTS	FATTGVPRAI
10301	SGSGSPFSRT	ESGPGDATLS	TIAESLPSST	PVPFSSSTFT	TTDSSTIPAL
10351	HEITSSSATP	YRVDTSLGTE	SSTTEGRLVM	VSTLDTSSQP	GRTSSTPILD
10401	TRMTESVELG	TVTSAYQVPS	LSTRLTRTDG	I	

Table 26

Serine/Threonine O-Glycosylation Pattern for the CA125 Amino Terminal Extension

contig62					
	0	00	0	0	
1	MLKPSGLPGS	SSPTRSLMTG	SRSTKATPEM	DSGLTGATLS	PKTSTGAIVV
	0	0	· ·	0 0	0
51	TEHTLPFTSP	DKTLASPTSS	VVGRTTQSLG		SRGMTHSEQR
	0 0	0	00	00 X	0
101	TSPSLSPQVN	GTPSRNYPAT	SMVSGLSSPR	TRTSSTEGNF	TKEASTYTLT
	00 0	0 000		0	
151	VETTSGPVTE	KYTVPTETST	TEGDSTETPW	DTRYIPVKIT	SPMKTFADST
	0	00 0	0 0		
201	ASKENAPVSM	TPAETTVTDS	HTPGRTNPSF	GTLYSSFLDL	SPKGTPNSRG
		0 0	0 00		
251	ETSLELILST	TGYPFSSPEP	GSAGHSRIST	SAPLSSSASV	LDNKISETSI
	0 0	0			0 0
301	FSGQSLTSPL	SPGVPEARAS	TMPNSAIPFS	MTLSNAETSA	ERVRSTISSL
•	0 0				0
351	GTPSISTKQT	AETILTFHAF	AETMDIPSTH	IAKTLASEWL	GSPGTLGGTS
	00 0000 0		0	x	00
401	TSALTTTSPS	TTLVSEETNT	HHSTSGKETE	GTLNTSMTPL	ETSAPGEESE
	0		0 0 0	0 0	0 00
451	MTATLVPTLG	FTTLDSKIRS	PSQVSSSHPT	RELRTTGSTS	GRQSSSTAAH
	0	000 00 0	0 0	0 0	0 0
501	GSSDILRATT	SSTSKASSWT	SESTAQQFSE	PQHTQWVETS	PSMKTERPPA
	000 00				00 0
551	STSVAAPITT	SVPSVVSGFT	TLKTSSTKGI	WLEETSADTL	IGESTAGPTT
		00		0	0
601	HQFAVPTGIS	MTGGSSTRGS	QGTTHLLTRA	TASSETSADL	TLATNGVPVS
	0 0	00	0 0 0		
651	VSPAVSKTAA	GSSPPGGTKP	SYTMVSSVIP	ETSSLQSSAF	REGTSLGLTP
	0 00		00		00
701		EPDSAGHTKI	${\tt STSIPLLSSA}$	SVLEDKVSAT	STFSHHKATS
	•	0 0		хо	0 0 0
751	SITTGTPEIS	TKTKPSSAVL	SSMTLSNAAT	SPERVRNATS	PLTHPSPSGE
		0 00	0 0	00 0 00	0 0
801		TSAETTDSPN	IHPTGTLTSE	SSESPSTLSL	PSVSGVKTTF
	0000 00	0 00	0		00 0 0
851	SSSTPSTHLF	TSGEETEETS	NPSVSQPETS	VSRVRTTLAS	TSVPTPVFPT

	0 0			00 0	
901	MDTWPTRSAQ	FSSSHLVSEL	RATSSTSVTN	STGSALPKIS	HLTGTATMSQ
	x	00	0 0 0	000 000	0
951	TNRDTFNDSA	APQSTTWPET	SPRFKTGLPS	ATTTVSTSAT	SLSATVMVSK
	0 0	0 00		0	
1001	FTSPATSSME	ATSIREPSTT	ILTTETTNGP	GSMAVASTNI	PIGKGYITEG
		00		0 0 0	000
1051	RLDTSHLPIG	TTASSETSMD	FTMAKESVSM	SVSPSQSMDA	AGSSTPGRTS
			00 0	000	
1101	QFVDTFSDDV	YHLTSREITI	PRDGTSSALT	PQMTATHPPS	
	000 00		0 0		00 0
1151	LGILSSSPSS	PTPKVTMSST	FSTQRVTTSM	IMDTVETSRW	
	0 0	00	0 0 0	0 0	00 0
1201	LTPSNIPTSG		DTPSPATSLE	ASEGGLPTLS	TYPESTNTPS
	0	00 X			***************
1251				LTFPSIETHI	HVSTARMAIS
	0 0		00 00	0 0 0	DITCY/DMT DMM
1301				KDTSSAQVST	PHSVKTLKTT
1051	0 0 0	0 0	O X	o o TKAWTITDTT	συςπ∩τ υνπκ
1351	ENHPRIESAT			IVAMITIDII	EUSIÖRLIK
1401	TARROCCERM	0 0	0 0 0	TLELTSDVPG	EDI.VI.APSEO
1401	LAEKSSGFET		00 0	00	00 0
1451	መመደመ፤ ውልስመል	O Temetatema		SPMSTFAIFP	
1471	IIIIIDEMAIN	DOIODIEDIM	DIDEDIDELE	0 0	211011011011
1501	KSEADTSATE	итреттърон	LCTRSLCRTG	DLTTVPITPL	TTTWTSVIEH
1001	NODE ID I DITEIN	0 0 0 0	00 0		
1551	STOAODTLSA			ASPSHLTEVY	PELGTQGRSS
	0	200	0 00	х оо о	_
1601	_	TDTLSREIET		MDNTTTGSSS	SGVTLGIAHL
	0	0	_	0	
1651	PIGTSSPAET	STNMALERRS	STATVSMAGT	MGLLVTSAPG	RSISQSLGRV
	0	0 0		0	00
1701	0		PRLNTQGNTA		
1701	o SSVLSESTTE ooo oo	GVTDSSKGSS		LSSSLEPSYA o o o	EGSQMSTSIP o o
1701 1751	o SSVLSESTTE ooo oo	GVTDSSKGSS		LSSSLEPSYA	EGSQMSTSIP o o

Table 26 (continued)

		0	000	o x	
1801	GSTENTGKEK	LRTASMDLPS	PTPSMEVTPW	ISLTLSNAPN	TTDSLDLSHG
		0	x	х	0
1851	VHTSSAGTLA	TDRSLNTGVT	RASRLENGSD	TSSKSLSMGN	STHTSMTDTE
	0 00	00	0 00		0
1901	KSEVSSSIHP	RPETSAPGAE	TTLTSTPGNR	ATSUTUPESS	
	0	0 0 0	0 0	00	0
1951			TIVWTSTGTI		
	0 0	0	00 00 0	00	SOFWADAĞIĞ
2001			SSGSSTSSPY		MTODONATMO
2001					TISKRNAITS
2051	OO OO TOO TO	000 0 0 0	0 0	0 00000	
2031			EALSSGHSGV		PLFSAASTSA
0101	0	0	0	0	00
2101	AKORNPETET	HGPQNTAAST	LNTDASSVTG	LSETPVGASI	SSEVPLPMAI
		00 0	0	0 0	
2151	TSRSDVSGLT	SESTANPSLG	TASSAGTKLT	RTISLPTSES	LVSFRMNKDP
		0 0	0 0	0	0 0
2201	WTVSIPLGSH	PTTNTETSIP	VNSAGPPGLS	TVASDVIDTP	SDGAESIPTV
	0000	00 0	0	0 0	00
2251	SFSPSPDTEV	TTISHFPEKT	THSFRTISSL	THELTSRVTP	IPGDWMSSAM
	00 0 0	0 0	0 000	0 0	x
2301	CHINDWCACDG	TTT.CEDDTTT	CA A DODOC DEST	THACEMEMON	VSLDNETTVK
	SIVEIGHSES	TITIGELLYITI	SWALLISLIA	DIADLIFIDI	AMMINITIAN
	SINFIGASES	IIIGERRIII	X	0 00	0 0 0
2351			x	0 00	0 0 0
2351			x SDLINTSIAS	0 00	o o o ISPTSISGMT
2351	TSDILDARKT	NELPSDSSSS 0 00	x SDLINTSIAS O O OO O	o o o STMDVTKTAS	O O O ISPTSISGMT
	TSDILDARKT 000 00 ASSSPSLFSS	NELPSDSSSS 0 00	x SDLINTSIAS O O OO O ETNTATSPSV	O O O STMDVTKTAS	O O O ISPTSISGMT O OO SNVGGTPSTL
	TSDILDARKT 000 00 ASSSPSLFSS 0	NELPSDSSSS o oo DRPQVPTSTT	X SDLINTSIAS O O OO O ETNTATSPSV O	O O O STMDVTKTAS SSNTYSLDGG O O O	O O O ISPTSISGMT O OO SNVGGTPSTL O OO
2401	TSDILDARKT 000 00 ASSSPSLFSS 0	NELPSDSSSS o oo DRPQVPTSTT	x SDLINTSIAS O O OO O ETNTATSPSV	O O O STMDVTKTAS SSNTYSLDGG O O O TDTASGENPT	O O O ISPTSISGMT O OO SNVGGTPSTL O OO
2401 2451	TSDILDARKT OOO OO ASSSPSLFSS O PPFTITHPVE	NELPSDSSSS O OO DRPQVPTSTT TSSALLAWSR	X SDLINTSIAS O O OO O ETNTATSPSV O PVRTFSTMVS	O O O STMDVTKTAS SSNTYSLDGG O O O TDTASGENPT O	O O O ISPTSISGMT O OO SNVGGTPSTL O OO SSNSVVTSVP
2401	TSDILDARKT OOO OO ASSSPSLFSS O PPFTITHPVE APGTWTSVGS	NELPSDSSSS o oo DRPQVPTSTT TSSALLAWSR TTDLPAMGFL	X SDLINTSIAS O O OO O ETNTATSPSV O PVRTFSTMVS KTSPAGEAHS	O O O STMDVTKTAS SSNTYSLDGG O O O TDTASGENPT O LLASTIEPAT	O O O ISPTSISGMT O OO SNVGGTPSTL O OO SSNSVVTSVP
2401 2451 2501	TSDILDARKT OOO OO ASSSPSLFSS O PPFTITHPVE APGTWTSVGS O O	NELPSDSSSS OOO DRPQVPTSTT TSSALLAWSR TTDLPAMGFL O	X SDLINTSIAS O O OO O ETNTATSPSV O PVRTFSTMVS KTSPAGEAHS OO O OO	O O O STMDVTKTAS SSNTYSLDGG O O O TDTASGENPT O LLASTIEPAT OO	O O O ISPTSISGMT O OO SNVGGTPSTL O OO SSNSVVTSVP AFTPHLSAAV O
2401 2451	TSDILDARKT OOO OO ASSSPSLFSS O PPFTITHPVE APGTWTSVGS O O	NELPSDSSSS o oo DRPQVPTSTT TSSALLAWSR TTDLPAMGFL	X SDLINTSIAS O O OO O ETNTATSPSV O PVRTFSTMVS KTSPAGEAHS OO O OO IHSSPQTPTT	O O O STMDVTKTAS SSNTYSLDGG O O O TDTASGENPT O LLASTIEPAT	O O O O ISPTSISGMT O OO SNVGGTPSTL O OO SSNSVVTSVP AFTPHLSAAV O ATPESLLVVT
2401 2451 2501 2551	TSDILDARKT OOO OO ASSSPSLFSS O PPFTITHPVE APGTWTSVGS O O VTGSSATSEA	NELPSDSSSS O OO DRPQVPTSTT TSSALLAWSR TTDLPAMGFL O SLLTTSESKA	X SDLINTSIAS O O OO O ETNTATSPSV O PVRTFSTMVS KTSPAGEAHS OO O OO IHSSPQTPTT O OO O	O O O STMDVTKTAS SSNTYSLDGG O O O TDTASGENPT O LLASTIEPAT OO PTSGANWETS O O	O O O ISPTSISGMT O OO SNVGGTPSTL O OO SSNSVVTSVP AFTPHLSAAV O ATPESLLVVT
2401 2451 2501	TSDILDARKT OOO OO ASSSPSLFSS O PPFTITHPVE APGTWTSVGS O O VTGSSATSEA	NELPSDSSSS O OO DRPQVPTSTT TSSALLAWSR TTDLPAMGFL O SLLTTSESKA	X SDLINTSIAS O O OO O ETNTATSPSV O PVRTFSTMVS KTSPAGEAHS OO O OO IHSSPQTPTT	O O O STMDVTKTAS SSNTYSLDGG O O O TDTASGENPT O LLASTIEPAT OO PTSGANWETS O O	O O O ISPTSISGMT O OO SNVGGTPSTL O OO SSNSVVTSVP AFTPHLSAAV O ATPESLLVVT
2401 2451 2501 2551	TSDILDARKT OOO OO ASSSPSLFSS O PPFTITHPVE APGTWTSVGS O O VTGSSATSEA ETSDTTLTSK O O O	NELPSDSSSS O OO DRPQVPTSTT TSSALLAWSR TTDLPAMGFL O SLLTTSESKA ILVTDTILFS O	X SDLINTSIAS O O OO O ETNTATSPSV O PVRTFSTMVS KTSPAGEAHS OO O OO IHSSPQTPTT O OO O	O O O STMDVTKTAS SSNTYSLDGG O O O TDTASGENPT O LLASTIEPAT OO PTSGANWETS O O STGTLSGASF	O O O ISPTSISGMT O OO SNVGGTPSTL O OO SSNSVVTSVP AFTPHLSAAV O ATPESLLVVT O O PTLLPDTPAI

		0	000 0	x .	0 0
2701	TVSNPDRSIP	GITIQGVTES	PLHPSSTSPS	KIVAPRNTTY	EGSITVALST
2751		FSQSSENSET	TALVDSSAGL	ERASVMPLTT	GSQGMASSGG
	0	0	0	0 0	0
2801	IRSGSTHSTG	TKTFSSLPLT	MNPGEVTAMS	EITTNRLTAT	QSTAPKGIPV
		0000	00	0	0
2851	KPTSAESGLL	TPVSASSSPS	KAFASLTTAP	PTWGIPQSTL	TFEFSEVPSL
	000		000		
2901	DTKSASLPTP	GQSLNTIPDS	DASTASSSLS	KSPEKNPRAR	MMTSTKAISA
	0 0	0 0			
2951	SSFQSTGFTE	TPEGSASPSM	AGHEPRVPTS	GTGDPRYASE	SMSYPDPSKA
	000		00		0 0
3001	SSAMTSTSLA	SKLTTLFSTG	QAARSGSSSS	PISLSTEKET	SFLSPTASTS
			0	00 X	0 0
3051	RKTSLFLGPS	MARQPNILVH	LQTSALTLSP	TSTLNMSQEE	PPELTSSQTI
		00000	. 00 00	0 0	00
3101	AEEEGTTAET	QTLTFTPSET	PTSLLPVSSP	TEPTARRKSS	PETWASSISV
	0	0	xoo	0 0	0 00 0
3151	PAKTSLVETT	DGTLVTTIKM	SSQAAQGNST	QPAPAEETGT	SPAGTSPGSP
	. 0	0	o .	00	0
3201	EMSTTLKIMS	SKEPSISPEI	RSTVRNSPWK	TPETTVPMET	TVEPVTLQST
	00 0	0 00 0	00 0	0 0	
3251	ALGSGSTSIS	HLPTGTTSPT	KSPTENMLAT	ERVSLSPSPP	EAWTNLYSGT
	0	. 0			
3301	PGGTRQSLAT	MSSVSLESPT	ARSITGTGQQ	SSPELVSKTT	GMEFSMWHGS
		0			0 0
3351	TGGTTGDTHV	SLSTSSNILE	DPVTSPNSVS	SLTDKSKHKT	ETWVSTTAIP
	0		0 0		
3401	STVLNNKIMA	AEQQTSRSVD	EAYSSTSSWS	DQTSGSDITL	GASPDVTNTL
	0 0			0 0 0	
3451	YITSTAQTTS	LVSLPSGDQG	ITSLTNPSGG	KTSSASSVTS	PSIGLETLRA
	x	0 0		00 0 00	0 0 0 0
3501	NVSAVKSDIA	PTAGHLSQTS	SPAEVSILDV	TTAPTPGIST	TITTMGTNSI
	0000	00 00 0	0000	00 00	0
3551	STTTPNPEVG	MSTMDSTPAT	ERRTTSTEHP	STWSSTAASD	SWTVTDMTSN

					*
		0 00	0 0		0 0
3601	LKVARSPGTI	STMHTTSFLA	SSTELDSMST	PHGRITVIGT	SLVTPSSDAS
	0 0	0 0 0 00	00 0		000 0 000
3651	AVKTETSTSE	RTLSPSDTTA	STPISTFSRV	QRMSISVPDI	LSTSWTPSST
	0	0			0 0
3701	EAEDVPVSMV	PTDHASTKTD	PNTPLSTFLF	DSLSTLDWDT	GRSLSSATAT
	00 00			0 0	
3751	TSAPQGATTP	QELTLETMIS	PATSQLPFSI	GHITSAVTPA	AMARSSGVTF
	0 00	000 00			0 .
3801	SRPDPTSKKA	EQTSTQLPTT	TSAHPGQVPR	SAATTLDVIP	HTAKTPDATF
	0		00		o
3851	QRQGQTALTT	EARATSDSWN	EKEKSTPSAP	WITEMMNSVS	EDTIKEVTSS
	•				00
3901	SSVLKDPEYA	GHKLGIWDDF	IPKFGKAAHM	RELPLLSPPQ	DKEAIHPSTN
	0 0	00	0 0	0	0
3951	TVETTGWVTS	SEHASHSTIP	AHSASSKLTS	PVVTTSTREQ	AIVSMSTTTW
	0		0	0 0 00	
4001	PESTRARTEP	NSFLTIELRD	VSPYMDTSST	TQTSIISSPG	STAITKGHRT
		0			00
4051	EITSYKRISS	SFLAQSMRSS	DSPSEAITRL	SNFPAMTESG	GMILAMQTSP
	00 0 0	0000	0	•	0
4101	PGATSISAPT	LDTSATASWT	GTPLATTQRF	TYSEKTTLFS	KGREDTSQPS
C	000		0	0 000	0 0
4151	PPCVEETSSS	SSVVPIHATT	SPSNILLTSQ	GHSPSSTPPV	TSVFLSETSG
		0	x o		
4201	LGKTTDMSRI	SLEPGTSLPP	NLSSTAGEAL	STYEASRDTK	AIHHSADTAV
	ooò	0 0	0	0	0
4251	TNMEATSSEY	SPIPGHTKPS	KATSPLVTSH	IMGDITSSTS	VFGSSETTEI
		0	0	0 0	0 0
4301	ETVSSVNQGL	QERSTSQVAS	SATETSTVIT	HVSSGDATTH	VTKTQATFSS
	00 0		00 0 0	0 00 0 00	0 0 0
4351	GTSISSPHQF	ITSTNTFTDV	STNPSTSLIM	TESSGVTITT	QTGPTGAATQ
	000	0		0	0
4401	GPYLLDTSTM	PYLTETPLAV	TPDFMQSEKT	TLISKGPKDV	TWTSPPSVAE
	00 0	00 00	000	0	x
4451	TSYPSSLTPF	LVTTIPPATS	${\tt TLQGQHTSSP}$	VSATSVLTSG	LVKTTDMLNT

	0		o	0	
4501	SMEPVTNSPQ	NLNNPSNEIL	ATLAATTDIE	TIHPSINKAV	TNMGTASSAH
	00	00 00	00		0
4551	VLHSTLPVSS	EPSTATSPMV	${\tt PASSMGDALA}$	SISIPGSETT	DIEGEPTSSL
	x	x	x		0
4601	TAGRKENSTL	QEMNSTTESN	IILSNVSVGA	ITEATKMEVP	SFDATFIPTP
	0	. 0	0 00	00 0 0	0 0
4651	AQSTKFPDIF	SVASSRLSNS	PPMTISTHMT	TTQTGSSGAT	SKIPLALDTS
	0 0	0		0	00 0
4701	TLETSAGTPS	VVTEGFAHSK	ITTAMNNDVK	DVSQTNPPFQ	DEASSPSSQA
	0	00			0
4751	PVLVTTLPSS	VAFTPQWHST	${\tt SSPVSMSSVL}$	TSSLVKTAGK	VDTSLETVTS
		0 0	00	0	00 0
4801	SPQSMSNTLD	DISVTSAATT	DIETTHPSIN	TVVTNVGTTG	SAFESHSTVS
				0 0 0	0000 0
4851	AYPEPSKSHI	LPMLPPPPWK	TPQFPRSIPK		
		00 00		000000	
4901	ETSISQEITS	STETSTVPYK	ELTGATTEVS	RTDVTSSSST	
	0	000	00	0	0 0 0
4951	SLDISTETNT	RLSTSPIMTE	SAEITITTQT		
				0 00	
5001	QAGIHSAMTH	GĘSQLDVTTL	MSRIPQDVSW	TSPPSVDKTS	SPSSFLSSPA
	00 0 0.				0 X 0
5051	MTTPSLISST	LPEDKLSSPM	TSLLTSGLVK		
				X	0 0
5101			PSINTEETNV	KANNSGRESH	
	0 00		00	NTUDEDOVET	000 סיים אים אים אים אים אים אים אים אים אים
5151			MPVHGSSETT	NIKKEPTIEL	
	0 0	0	00	CCCVTCMDDU	00 DESTREDEDTE
5201	QESSFPTDTS		ITEVSSTGVI		O O
		0	oo o ITTQASPPES	0 00 nananan	-
5251	TGEIPRVETS	SIKTKSAEMT			00 00 0
5001	0	TOTAL MARKET	Х ОО	00 00 VERTONICSI.	_
5301			GNVSWMTTPP		000 X 00
5054	0000 0	00 0	0 0	000 177 CTT CTT CTT	
5351	PVSSTSPQSI	PSSPLPVTAL	PTSVLVTTTD	ATRITOTOA	TODELMDOOT

	0				0
5401	THERPATYKD	ТАНТЕААМНН	STNTAVTNVG	TSGSGHKSQS	
	0 0	00 0000	х о	0 0	000 0
5451	ATPLMSTAST	LGDTSVSTST	PNISQTNQIQ	TEPTASLSPR	LRESSTSEKT
	0000	0 0	0	00	0
5501	SSTTETNTAF	SYVPTGAITQ	ASRTEISSSR	TSISDLDRST	IAPDISTGMI
	0	0 00	000 0		
5551	TRLFTSPIMT	KSAEMTVTTQ	TTTPGATSQG	ILPWDTSTTL	FQGGTHSTVS
			00	00 0 0 0	0 0 000
5601		LRSRTPGDVS	WMTTPPVEET	SSGFSLMSPS	MTSPSPVSST
F 6 F 1	0 0 00	·	00		x 00
5651	SPESIPSSPL	PVTALLTSVL	VTTTNVLGTT	SPEPVTSSPP	NLSSPTQERL
E701	MM1440M3 11M5	71417 01417		0	00 0
5701	TTYKDTAHTE			GHESQSSVPA	
5751	MCTTENMCDT	0	O	07 TD0T DD0D	0
2/21		O OO O		SLIPGLRDTR	
5801	TSTVLSEVPT		0 0	O GPDHSKMSPY	0
3001	TOTVIDENTT	OX	0	0 0 0	
5851	TEPEVTGSTE			DTSSTASWEG	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
••••		0	000 0		· O
5901	HSEETTTMSR	-		SPVPLPAITS	
	00 00	~ ~ ~ ~ ~ ~		0	
5951	SSPTSALPVT	SLLTSGRRKT	IDMLDTHSEL	VTSSLPSASS	FSGEILTSEA
				0	0
6001	STNTETIHFS	ENTAETNMGT	TNSMHKLHSS	VSIHSQPSGH	TPPKVTGSMM
	0000			x	00
6051	EDAIVSTSTP	GSPETKNVDR	DSTSPLTPEL	KEDSTALVMN	STTESNTVFS
	0		00	0 0	00 0 0
6101	SVSLDAATEV	SRAEVTYYDP	TFMPASAQST	KSPDISPEAS	SSHSNSPPLT
		0 0	0	00 0 0	
6151	ISTHKTIATQ	TGPSGVTSLG	QLTLDTSTIA		QDFVDSETTS
6001			0	000 0 00	000
6201		KTSPFSAEEA	NSLSSQAPLL	VTTSPSPVTS	TLQEHSTSSL
C051	0 00 0 0	T 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0	0	00 0
6251	VSVTSVPTPT	LAKITDMDTN	LEPVTRSPQN	LRNTLATSEA	TTDTHTMHPS

		0		000	00
6301	INTAMANVGT	TSSPNEFYFT	VSPDSDPYKA	TSAVVITSTS	GDSIVSTSMP
6351	RSSAMKKIES	ETTFSLIFRL	RETSTSQKIG	SSSDTSTVFD	_
6401	oo SRTELTSSSR	o o o TSIQGTEKPT	oo MSPDTSTRSV	TMLSTFAGLT	KSEERTIATQ
	0		O	HORON DI CE	0 0
6451	TGPHRATSQG	TLTWDTSITT		O O OO	0 0
6501		SSSSSLLSLP		-	
6551		VASLPPNLGS O		DIKDTEKMYP	STNIAVTNVG
6601	O TTTSEKESYS	SVPAYSEPPK			PGSSEITRIE o o
6,651		LKGTSTSQDP	IVSTEKSAVL		
6701	oo oo TSIPGPDHST	oo ESPDISTEVI	PSLPISLGIT	x ESSNMTIITR	TGPPLGSTSQ
	0 00		0		0
6751		SSRAGTHSMA		TVMNKDPEIL o oo	SWTIPPSIEK
6801	O OOO O	oo oo PAMTSPPVSS		SPMTSLLTPS	LVMTTDTLGT
	0 0000	х ооо	0	0 00	0 000
6851	SPEPTTSSPP	NLSSTSHEIL	TTDEDTTALE	AMHPSTSTAA	TNVETTSSGH
6901	GSOSSVLADS	EKTKATAPMD			TKIKRESTYS
	0	x	0	0	0 0
6951	LTPGLRETSI	SQNASFSTDT	SIVLSEVPTG	TTAEVSRTEV	TSSGRTSIPG
	00	00	0 0	0 0	
7001	-	STRTMTRLFA		TIPTQTGPSG	STSQDTLTLD
7051	O OO TSTTKSOAKT	HSTLTQRFPH	o SEMTTLMSRG	PGDMSWQSSP	-
	0 000	000 0		00 0	
7101	LLSLPATTSP	PPISSTLPVT	ISSSPLPVTS	LLTSSPVTTT	
	000		0 0		0 0
7151	TSSPPKLSHT	SDERLTTGKD	TTNTEAVHPS	TNTAASNVEI	PSSGHESPSS

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

	0	0 0	0 0		
7201	ALADSETSKA	TSPMFITSTQ		HFLETSRIQK	ESISSLSPKL
		0		0 0 0	00 0 0 00
7251	RETGSSVETS	SAIETSAVLS	EVSVGATTEI	SRTEVTSSSR	TSISGSAIST
	0		0 0	0 000	00 000
7301	MLPEISTTRK	IIKFPTSPIL	AISSEMTIKT	QTSPPGSTSE	STFTLDTSTT
	0 0				00 0
7351	PSLVITHSTM	TQRLPHSEIT	TLVSRGAGDV	PRPSSLPVEE	TSPPSSQLSL
			0 0 0		0 000
7401		STLPASSHSS	SASVTSLLTP	GQVKTTEVLD	ASAEPETSSP
D 454	0 00 0	0 0		00	00
7451				VTKVGTSSSG	HESPSSVLPD
7501	O	00	00		0
7501		GTISIMGDTS		TRKIQSEPAS	SLTTRLRETS
7551	00 0 0 Terretare	A MIDITE CRITCH	O CAMMENTODES	AISFSRTSMS	CDTC CTV (CC)
7551	O	O			
7601			00 0 0 MTTTTOTOTO	O O ESTLESTLNL	ОО
, , ,	10101111110	O THURST	MITITUTES	00 0	
7651	THSIVIOGEP	HPEMTTSMGR	GPGGVSWPSP	PFVKETSPPS	
	0	0	0 00 0	00	000000 00
7701	PHPVSTTFLA	HIPPSPLPVT		TDILGTSTEP	
		0	0	00	
7751	TSHERLTTYK	DTAHTEAVHP	STNTGGTNVA	TTSSGYKSQS	SVLADSSPMC
	0 0 00	0 0			0 0
7801	TTSTMGDTSV	LTSTPAFLET	RRIQTELASS	LTPGLRESSG	SEGTSSGTKM
	0 0 0	0	00 00	00 0	0 0
7851	STVLSKVPTG	ATTEISKEDV		ISPDTSTRTV	SWFSTSPVMT
7001		0	0 00000		
7901	ESAEITMNTH	TSPLGATTQG		SLTMTHSTIS	QGFSHSQMST
7951	TARREDERM	MACORT FORM	0 0 00	000 0 00	0 0
1931	TMKKGPEDV2	WMSPPLLEKT			TLPESISSSP
8001	· T.DV/TST.T.TSC	T. A POTONT UP	0 0 0	x o NLSSTSVEIL	00 0
3001	O X	DAKIIDMLIK	SSERVINSPA		
8051			ECTION TO	o o QTSKVTSPMV	00 00
3031	MINICOLINITY	TOAGTOOOGU	POTOL ATHIO	OT2VA125WA	TISTMEDISV

	0000	0	0	0	00 0
8101	STSTPGFFET	SRIQTEPTSS	LTLGLRKTSS	SEGTSLATEM	STVLSGVPTG
	0 0	0 0	0	0 0 0	0 0
8151	ATAEVSRTEV	TSSSRTSISG	FAQLTVSPET	STETITRLPT	SSIMTESAEM
	0	00 00 0	000	0	
8201	MIKTQTDPPG	STPESTHTVD	ISTTPNWVET	HSTVTQRFSH	SEMTTLVSRS
		0 00	0 000	0 0	
8251	PGDMLWPSQS	SVEETSSASS	LLSLPATTSP	SPVSSTLVED	FPSASLPVTS
		0	000 X 0		0 0
8301	LLTPGLVITT	DRMGISREPG	TSSTSNLSST	SHERLTTLED	TVDTEAMQPS
		0	0	0 0	0 00
8351	THTAVTNVRT	SISGHESQSS	VLSDSETPKA	TSSMGTTYTM	GETSVSISTS
		0		0 0	0
8401	DFFETSRVQI	EPTSSLTSGL	RETSSSERIS	SATEGSTVLS	EVPSGATTEV
	0	00 0	0	0 0 0	. 0
8451	SRTEVISSRG	TSMSGPDQFT	ISPDISTEAL	TRLSTSPIMT	ESAESAITIE
	0 0	00 0	00 0		0 0
8501	TGSPGATSEG	TLTLDTSTTT	FWSGTHSTAS	PGFSHSEMTT	LMSRTPGDVP
		0 0 0 00	000 0	0 0	
8551	WPSLPSVEEA	SSVSSSLSSP	AMTSTSFFST	LPESISSSPH	PVTALLTLGP
	00			0	
8601	VKTTDMLRTS	SEPETSSPPN	LSSTSAEILA		
				00 X00 0	
8651	NVGTVIYKHL	SPSSVLADLV	TTKPTSPMAT	TSTLGNTSVS	TSTPAFPETM
	0 00 0	00	0 0 0 0		
8701	MTQPTSSLTS	GLREISTSQE			
	000	00 0 0	0 00	00 0 0 0	
8751	GRTSTPGPAQ	STISPEISTE	TITRISTPLT		PKTGHSGASS
		0	0	0	MOMBODDOME
8801	QGTFTLDTSS	RASWPGTHSA			VSWPSRPSVE
	00 0 0	-	00 0 0	0	DID CACCOMDIAT
8851		LSAVTSPSPL		SPLRVTSLFT	PVMMKTTDML
	0 000		0 0		ATTOMOREGE
8901	DTSLEPVTTS	PPSMNITSDE			AVTQMGTISA
•		0 0	0 0	000 0	TMDTHWECTO
8951	RQEFYSSYPG	LPEPSKVTSP	VVTSSTIKDI	VSTTIPASSE	ITRIEMESTS

	0 0 0 00	00 00	00		00
9001	TLTPTPRETS	TSQEIHSATK	PSTVPYKALT	SATIEDSMTQ	VMSSSRGPSP
	00	0 0	0	00 0 0	0
9051	DQSTMSQDIS	TEVITRLSTS	PIKAESTEMT	ITTQTGSPGA	TSRGTLTLDT
	0	0			0
9101	STTFMSGTHS	TASQGFSHSQ	MTALMSRTPG	DVPWLSHPSV	EEASSASFSL
	000	000	0		00 00
9151	SSPVMTSSSP	VSSTLPDSIH	SSSLPVTSLL	TSGLVKTTEL	LGTSSEPETS
	O X 0000	00 0			0 0
9201	SPPNLSSTSA	EILATTEVTT	DTEKLEMTNV	VTSGYTHESP	SSVLADSVTT
	0 0	0	0		0 0
9251	KATSSMGITY	PTGDTNVLTS	TPAFSDTSRI	QTKSKLSLTP	GLMETSISEE
	00 0 00	00 0 00	0 00	00	00 0
9301	TSSATEKSTV	LSSVPTGATT	EVSRTEAISS	SRTSIPGPAQ	STMSSDTSME
		0	0 0	0	0 0 0
9351	TITRISTPLT	RKESTDMAIT	PKTGPSGATS	QGTFTLDSSS	TASWPGTHSA
	0	0 0		0 0	000 00 0
9401	TTQRFPQSVV	TTPMSRGPED	VSWPSPLSVE	KNSPPSSLVS	SSSVTSPSPL
	00 0 00 0			00	x
9451	OO O OO O		SIMMKATDML		x APNMNITSDE
	YSTPSGSSHS o	SPVPVTSLFT	0		
9451 9501	YSTPSGSSHS	SPVPVTSLFT		DASLEPETTS	APNMNITSDE
9501	YSTPSGSSHS O SLAASKATTE O O	SPVPVTSLFT TEAIHVFENT OO O	o AASHVETTSA	DASLEPETTS O OOO TEELYSSSPG O	APNMNITSDE o
	YSTPSGSSHS O SLAASKATTE O O	SPVPVTSLFT TEAIHVFENT OO O	0	DASLEPETTS O OOO TEELYSSSPG O	APNMNITSDE o FSEPTKVISP
9501 9551	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O	O AASHVETTSA GITRIEIESM O OO	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O	APNMNITSDE o FSEPTKVISP o oo RTSQDITSST
9501	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN	SPVPVTSLFT TEAIHVFENT oo o MVSTTMPGSS	O AASHVETTSA GITRIEIESM O OO	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET	APNMNITSDE o FSEPTKVISP o oo RTSQDITSST
9501 9551 9601	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O ETSTVLYKMP	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O SGATPEVSRT	O AASHVETTSA GITRIEIESM O OO EVMPSSRTSI O	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O PGPAQSTMSL	APNMNITSDE o FSEPTKVISP o oo RTSQDITSST
9501 9551	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O ETSTVLYKMP	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O SGATPEVSRT	O AASHVETTSA GITRIEIESM O OO EVMPSSRTSI	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O PGPAQSTMSL	APNMNITSDE O FSEPTKVISP O OO RTSQDITSST DISDEVVTRL
9501 9551 9601 9651	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O ETSTVLYKMP O STSPIMTESA	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O SGATPEVSRT EITITTQTGY	O AASHVETTSA GITRIEIESM O OO EVMPSSRTSI O SLATSQVTLP O O	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O PGPAQSTMSL LGTSMTFLSG O OO O	APNMNITSDE O FSEPTKVISP O OO RTSQDITSST DISDEVVTRL O
9501 9551 9601	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O ETSTVLYKMP	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O SGATPEVSRT EITITTQTGY	O AASHVETTSA GITRIEIESM O OO EVMPSSRTSI O SLATSQVTLP O O	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O PGPAQSTMSL LGTSMTFLSG	APNMNITSDE O FSEPTKVISP O OO RTSQDITSST DISDEVVTRL O THSTMSQGLS
9501 9551 9601 9651 9701	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O ETSTVLYKMP O STSPIMTESA HSEMTNLMSR O O	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O SGATPEVSRT EITITTQTGY GPESLSWTSP O	O AASHVETTSA GITRIEIESM O OO EVMPSSRTSI O SLATSQVTLP O O RFVETTRSSS	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O PGPAQSTMSL LGTSMTFLSG O OO O SLTSLPLTTS OOO X OO	APNMNITSDE O FSEPTKVISP O OO RTSQDITSST DISDEVVTRL O THSTMSQGLS O O
9501 9551 9601 9651	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O ETSTVLYKMP O STSPIMTESA HSEMTNLMSR	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O SGATPEVSRT EITITTQTGY GPESLSWTSP	O AASHVETTSA GITRIEIESM O OO EVMPSSRTSI O SLATSQVTLP O O RFVETTRSSS	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O PGPAQSTMSL LGTSMTFLSG O OO O SLTSLPLTTS	APNMNITSDE O FSEPTKVISP O OO RTSQDITSST DISDEVVTRL O THSTMSQGLS O LSPVSSTLLD
9501 9551 9601 9651 9701 9751	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O ETSTVLYKMP O STSPIMTESA HSEMTNLMSR O O SSPSSPLPVT	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O SGATPEVSRT EITITTQTGY GPESLSWTSP O SLILPGLVKT	AASHVETTSA GITRIEIESM OOO EVMPSSRTSI O SLATSQVTLP OO RFVETTRSSS OO TEVLDTSSEP OO	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O PGPAQSTMSL LGTSMTFLSG O OO O SLTSLPLTTS OOO X OO KTSSSPNLSS	APNMNITSDE O FSEPTKVISP O OO RTSQDITSST DISDEVVTRL O THSTMSQGLS O O LSPVSSTLLD OO OO
9501 9551 9601 9651 9701	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O ETSTVLYKMP O STSPIMTESA HSEMTNLMSR O O	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O SGATPEVSRT EITITTQTGY GPESLSWTSP O	AASHVETTSA GITRIEIESM OOO EVMPSSRTSI O SLATSQVTLP OO RFVETTRSSS OO TEVLDTSSEP OO	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O PGPAQSTMSL LGTSMTFLSG O OO O SLTSLPLTTS OOO X OO	APNMNITSDE O FSEPTKVISP O OO RTSQDITSST DISDEVVTRL O THSTMSQGLS O O LSPVSSTLLD OO OO TSVEIPATSE
9501 9551 9601 9651 9701 9751	YSTPSGSSHS O SLAASKATTE O O VVTSSSIRDN O ETSTVLYKMP O STSPIMTESA HSEMTNLMSR O SSPSSPLPVT IMTDTEKIHP O	SPVPVTSLFT TEAIHVFENT OO O MVSTTMPGSS O O SGATPEVSRT EITITTQTGY GPESLSWTSP O SLILPGLVKT SSNTAVAKVR	AASHVETTSA GITRIEIESM OOO EVMPSSRTSI O SLATSQVTLP OO RFVETTRSSS OO TEVLDTSSEP OO	DASLEPETTS O OOO TEELYSSSPG O SSLTPGLRET O PGPAQSTMSL LGTSMTFLSG O OO O SLTSLPLTTS OOO X OO KTSSSPNLSS SVLADSETTI	APNMNITSDE O FSEPTKVISP O OO RTSQDITSST DISDEVVTRL O THSTMSQGLS O O LSPVSSTLLD OO OO TSVEIPATSE O OO

	00 00		0	0 0	
9901		VSMTEIMSSN	RIHIPDSDQS	TMSPDIITEV	ITRLSSSSMM
	0 00 0	00 0	0		
9951	SESTOMTITT	QKSSPGATAQ	STLTWPQQQP	PWQGPTQLFL	LDFYTSEMTT
			0 0	000 0 000	00
10001	LMSRSPENPS	WKSSLFVEKT	SSSSSLLSLP	VTTSPSVSST	LPQSIPSSSF
	0	00	оох		0
10051	SVTSLLTPGM	VKTTDTSTEP	GTSLSPNLSG	TSVEILAASE	VTTDTEKIHP
		0	0	0 0 0	0 000
10101	SSSMAVTNVG	TTSSGHELYS	SVSIHSEPSK	ATYPVGTPSS	MAETSISTSM
			x o	00 0 0 0 0	0 0 0
10151	PANFETTGFE	AEPFSHLTSG	FRKTNMSLDT	SSVTPTNTPS	SPGSTHLLQS
	0 0	0 0 0	0	0	0 0
10201	SKTDFTSSAK	TSSPDWPPAS	QYTEIPVDII	TPFNASPSIT	ESTGITSFPE
	0 0 0		0 0 0 0	0 0	00
10251	SRFTMSVTES	THHLSTDLLP	SAETISTGTV	MPSLSEAMTS	FATTGVPRAI
	0	0 0		0000 0	
10301	SGSGSPFSRT	ESGPGDATLS	TIAESLPSST	PVPFSSSTFT	TTDSSTIPAL
	0000	0 0		0	000
10351	HEITSSSATP	YRVDTSLGTE	SSTTEGRLVM	VSTLDTSSQP	GRTSSTPILD
	0	0		•	
10401	TRMTESVELG	TVTSAYQVPS	LSTRLTRTDG	I	

WE CLAIM:

- 1. A CA125 molecule, comprising:
- (a) an extracellular amino terminal domain, comprising 5 genomic exons, wherein exon 1 comprises amino acids #1-33 of SEQ ID NO: 299, exon 2 comprises amino acids #34-1593 of SEQ ID NO: 299, exon 3 comprises amino acids #1594-1605 of SEQ ID NO: 299, exon 4 comprises amino acids #1606-1617 of SEQ ID NO: 299, and exon 5 comprises amino acids #1618-1637 of SEQ ID NO: 299;
- (b) an amino terminal extension, comprising 4 genomic exons, wherein exon 1 comprises amino acids #1-3157 of SEQ ID NO: 310, exon 2 comprises amino acids #3158-3193 of SEQ ID NO: 310, exon 3 comprises amino acids #3194-9277 of SEQ ID NO: 310, and exon 4 comprises amino acids #9278-10,427 of SEQ ID NO: 310;
- a multiple repeat domain, wherein each repeat unit comprises 5 genomic exons, wherein exon 1 comprises amino acids #1-42 in any of SEQ ID NOS: 164 through 194; exon 2 comprises amino acids #43-65 in any of SEQ ID NOS: 195 through 221; exon 3 comprises amino acids #66-123 in any of SEQ ID NOS: 222 through 249; exon 4 comprises amino acids #124-135 in any of SEQ ID NOS: 250 through 277; and exon 5 comprises amino acids #136-156 in any of SEQ ID NOS: 278 through 298; and
- (d) a carboxy terminal domain comprising a transmembrane anchor with a short cytoplasmic domain, and further comprising 9 genomic exons, wherein exon 1 comprises amino acids #1-11 of SEQ ID NO: 300; exon 2 comprises amino acids #12-33 of SEQ ID NO: 300; exon 3 comprises amino acids #34-82 of SEQ ID NO: 300; exon 4 comprises amino acids #83-133 of SEQ ID NO: 300; exon 5 comprises amino acids #134-156 of SEQ ID NO: 300; exon 6 comprises amino acids #157-212 of SEQ ID NO: 300; exon 7 comprises amino acids #213-225 of SEQ ID NO: 300; exon 8 comprises amino acids #226-253 of SEQ ID NO: 300; and exon 9 comprises amino acids #254-284 of SEQ ID NO: 300.

- 2. The CA125 molecule according to claim 1, wherein the N-glycosylation sites of the amino terminal domain marked (x) in Figure 8B are encoded at positions #81, #271, #320, #624, #795, #834, #938, and #1,165 in SEQ ID NO: 299.
- 3. The CA125 molecule according to claim 1, wherein the serine and threonine O-glycosylation pattern for the amino terminal domain is marked (o) in SEQ ID NO: 299 in Figure 8B.
- 4. The CA125 molecule according to claim 1, wherein the N-glycosylation sites of the amino terminal extension marked (x) in Table 26 are encoded at positions #139, #434, #787, #930, #957, #1266, #1375, #1633, #1840, #1877, #1890, #2345, #2375, #2737, #3085, #3178, #3501, #4221, #4499, #4607, #4614, #4625, #5048, #5133, #5322, #5396, #5422, #5691, #5865, #6090, #6734, #6861, #6963, #8031, #8057, #8326, #8620, #8686, #8915, #9204, #9495, #9787, #10, 077, and #10, 175.
- 5. The CA125 molecule according to claim 1, wherein the serine and threonine O-glycosylation pattern for the amino terminal extension is marked (o) in Table 26.
- 6. The CA125 molecule according to claim 1, wherein exon 2 in the repeat domain comprises at least 31 different copies; exon 2 comprises at least 27 different copies; exon 3 comprises at least 28 different copies; exon 4 comprises at least 28 different copies, and exon 5 comprises at least 21 different copies.
- 7. The CA125 molecule according to claim 1, wherein the repeat domain comprises 156 amino acid repeat units which comprise epitope binding sites.
- 8. The CA125 molecule according to claim 7, wherein the epitope binding sites are located in the C-enclosure at amino acids #59-79 (marked C-C) in SEQ ID NO: 150 in Figure 5.

- 9. The CA125 molecule according to claim 7, wherein the 156 amino acid repeat unit comprises O-glycosylation sites at positions #128, #129, #132, #133, #134, #135, #139, #145, #146, #148, #150, #151, and #156 in SEQ ID NO: 150 in Figure 5C.
- 10. The CA125 molecule according to claim 7, wherein the 156 amino acid repeat unit comprises N-glycosylation sites at positions #33 and #49 in SEQ ID NO: 150 in Figure 5C.
- 11. The CA125 molecule according to claim 7, wherein the 156 amino acid repeat unit comprises at least one conserved methionine (designated M) at position #24 in SEQ ID NO: 150 in Figure 5C.
- 12. The CA125 molecule according to claim 1, wherein the transmembrane domain of the carboxy terminal domain is located at positions #230-252 (underlined) in SEQ ID NO: 300 of Figure 9B.
- 13. The CA125 molecule according to claim 1, wherein the cytoplasmic domain of the carboxy terminal domain comprises a highly basic sequence adjacent to the transmembrane at positions #256-260 in SEQ ID NO: 300 of Figure 9B, serine and threonine phosporylation sites at positions #254, #255, and #276 in SEQ ID NO: 300 in Figure 9B, and tyrosine phosphorylation sites at positions #264, #273, and #274 in SEQ ID NO: 300 of Figure 9B.
- 14. The CA125 molecule according to claim 7, wherein at least 45 repeat units are present in the repeat domain of the CA125 molecule.
- 15. A CA125 molecule, comprising an amino terminal domain comprising amino acids #1-1,638 in SEQ ID NO: 162, a repeat domain comprising amino acids #1,643-11,438 in SEQ ID NO: 162, and a carboxy terminal domain comprising amino acids #11,439-11,722 in SEQ ID NO: 162.

- 16. A repeat domain of the CA125 molecule comprising SEQ ID NO: 146 in Table16.
- 17. The repeat domain according to claim 16, further comprising 63 individual repeat units.
- 18. The repeat domain according to claim 17, wherein each repeat unit comprises at least 156 amino acids.
- 19. The repeat domain according to claim 18, wherein each repeat unit comprises epitope binding sites located in the C-enclosure at amino acids #59-79 (underlined) in SEQ ID NO: 146.
- 20. The repeat domain according to claim 18, wherein each repeat unit comprises O-glycosylation sites at positions #128, #129, #132, #133, #134, #135, #139, #145, #146, #148, #150, #151, and #156 in SEQ ID NO: 146.
- 21. The repeat domain according to claim 18, wherein each repeat unit comprises N-glycosylation sites at positions #33 and #49 in SEQ ID NO: 146.
- 22. An isolated nucleic acid of the CA125 gene, comprising a nucleotide sequence selected from the group consisting of:
 - (a) the nucleotide sequences set forth in SEQ ID NOS: 49, 67, 81, 83-145, 147, 150, and 152;
 - (b) a nucleotide sequence having at least 70% sequence identity to any one of the sequences in (a);
 - (c) a degenerate variant of any one of (a) to (b); and
 - (d) a fragment of any one of (a) to (c).
- 23. An isolated nucleic acid of the CA125 gene, comprising a sequence that encodes a polypeptide with the amino acid sequence selected from the group consisting of:

- (a) the amino acid sequences set forth in SEQ ID NOS: 11-47, 50-80, 82, 146, 148, 149, 151, and 153-158;
- (b) an amino acid sequence having at least 50% sequence identity to any one of the sequences in (a);
- (c) a conservative variant of any one of (a) to (b); and
- (d) a fragment of any one of (a) to (c).
- 24. A vector comprising the nucleic acid of claim 22.
- 25. The vector according to claim 24, wherein the vector is a cloning vector, a shuttle vector, or an expression vector.
 - 26. A cultured cell comprising the vector of claim 24.
- 27. A cultured cell transfected with the vector of claim 24, or a progeny of the cell, wherein the cell expresses the polypeptide.
 - 28. A method of expressing CA125 antigen in a cell, comprising the steps of:
 - (a) providing at least one nucleic acid comprising a nucleotide sequence selected from the group consisting of:
 - (i) the nucleotide sequences set forth in SEQ ID NOS: 49, 67, 81, 83-145, 147, 150, and 152;
 - (ii) a nucleotide sequence having at least 70% sequence identity to any one of the sequences in (i);
 - (iii) a degenerate variant of any one of (i) to (ii); and
 - (iv) a fragment of any one of (i) to (iii).
 - (b) providing cells comprising an mRNA encoding the CA125 antigen; and
 - (c) introducing the nucleic acid into the cells, wherein the CA125 antigen is expressed in the cells.

- 29. A purified polypeptide of the CA125 gene, comprising an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequences set forth in SEQ ID NOS: 11-48, 50, 68-80, 82, 146, 148, 149, 150, 151, and 153-158;
 - (b) an amino acid sequence having at least 50% sequence identity to any one of the sequences in (a);
 - (c) a conservative variant of any one of (a) to (b); and
 - (d) a fragment of any one of (a) to (c).
- 30. A purified antibody that selectively binds to an epitope in the receptor-binding domain of CA125 protein, wherein the epitope is within the amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequences set forth in SEQ ID NOS: 11-48, 50, 68-80, 146, 151, and 153-158;
 - (b) an amino acid sequence having at least 50% sequence identity to any one of the sequences in (a);
 - (c) a conservative variant of any one of (a) to (b); and
 - (d) a fragment of any one of (a) to (c).
- 31. The antibody according to claim 30 that binds selectively to carcinoma cells selected from the group consisting of the ovaries, colon, liver, and pancreas.
- 32. A diagnostic for detecting and monitoring the presence of CA125 antigen, comprising recombinant CA125 comprising at least one repeat unit of the CA125 repeat domain including epitope binding sites selected from the group consisting of amino acid sequences set forth in SEQ ID NOS: 11-48, 50, 68-80, 82, 146, 150, 151, 153-161, and 162 (amino acids #1,643-11,438).

- 33. The diagnostic according to claim 32, wherein the epitope binding sites are located in the C-enclosure at amino acids #59-79 in SEQ ID NO: 150, and comprise the underlined amino acids in SEQ ID NO: 146 and SEQ ID NO: 162.
- 34. A therapeutic vaccine to treat mammals with elevated CA125 antigen levels or at risk of developing a disease or disease recurrence associated with elevated CA125 antigen levels, comprising recombinant CA125 repeat domains including epitope binding sites, wherein the repeat domains are selected from the group of amino acid sequences consisting of SEQ ID NOS: 11-48, 50, 68-80, 82, 146, 148, 149, 150, 151, 153-161, and 162 (amino acids #1,643-11,438), and amino acids #175-284 of SEQ ID NO: 300.
- 35. The therapeutic vaccine according to claim 34, wherein the mammals include animals and humans.
 - 36. An antisense oligonucleotide that inhibits the expression of CA 125 encloded by:
 - (a) the nucleotide sequences set forth in SEQ ID NOS: 49, 67, 81, 83-145, 147, 150 and 152;
 - (b) a nucleotide sequence having at least 70% sequence identity to any one of the sequences in (a);
 - (c) a degenerate variant of any one of (a) to (b); and
 - (d) a fragment of any one of (a) to (c).

Cyanogen Bromide (CNBr) Cleavage

0

Figure 2

A Strategy for Placing Repeat Sequences in Contiguous Order Using Overlap Sequence Allignment

156 314 470 625 781 PAGPILMPFTLNFTTINLQYEEDMRRTGSRKFNTMESVZGGLLKPLFKNTSVGPLYSGCRLTLLAPEKDGAATGVDALCTHRLDPKSPGLNREDYWGLSKLTNDIEELGFYTLDRNBLYVNGFTHQSSVSTTSTPGTSTVDLATSGTPSSLSSPTIM AAGPILVPFTLNFTITNLQYGEDMGHPGSRKENTTERVLGGLLGPLFKNTSVGPLYSGCRLTSLRSEKDGAATGVDALCTHHLDPKSPGLNRERLYWELSQLTNGIKELGPYTLDRNBLYVNGFTHNTSVPTSSTPGTSTVDLGTSGTPSSLPSPT TAGPILVLFTLNFTITNLXYEEDWHRPGSRKENTTERVLGGLLGPWFKNTSVGLLYSGCRLTLLRSEKDGAATGVDALCTHRLDPKSPGLNREDKYRELGPYTLDRNBLYVNGFTHUTSAPVTSTPGTSTVDLGTSGTPSSLPSPT AAGPILVPFTLNFTITNLQYEEDWHHPGSRKENTTERVLGGLLGPWFKNTSVGLLYSGCRLTLLRSEKDGAATGVDALCTHRLDPKSPGVDRRQLYWGLKGIKELGFYTLDRNBLYVNGFTHQTSAPNTSTPGTSTVDLGTSGFPSSLPSPT atvpemvpftlnfitnloyeedmrhpgsrkenterelogilkplfrnbsleylybgcrlaslrpekdssamavdaicthrpdpedlgldrerlyhgelgpytldrnslyvkgfthrsbyptffrgypogfsgtpssspspt ion di (SEQ 315 471 626

156 312 468 624 156 312 468 APVPLLIPFTLNFTITDLHYEENMQHFGSRKENTTERVLQGLLKFLFKSTSVGPLYSGCRLTLLRPEKHGAATGVDALCTRLDPTGPGLDRERLYWELSQLTNSYTELGPYTLDRDSLYVNGFTHRSSVPTTSIPGTSANHLETSGTTASLEGPT APGPLLVPFTLNFTITNLQYEEDRRHPGSRKESTTERVLQGLLKPLFKNTSVSLYSGCRLTLLRPEKDGAATRVDAVCTHRPDPKSPGLDRERLYWKISQLTHGITELGPYTLDRHSLYVNGFTHRSSVPTTSIPGTSAVHLETSGTFASLPGHT TASPLLVLFTINGTYENHHHPGSRKENTTERVLQGLLRPVFKNTSVGPLYSGCRLTLLRPKKDGAATKVDALCTYRPDPKSPGLDREQLYWELSQLTHSITELGPYTLDRDSLYVNGFTHRSSVPTTSIPGTSAVHLETSGTFASLPGHT tagellvpftlnftitnløygedmhrpgsrrfnttervløglltretknterqeatgvdticthrvdpigpgldrerlywelsqltnsttelgrytldrdslyvngenemssvpttstpfgtstvhlatsgtpsblpght (SEQ ID NO: 161 313

ATGEVILPETLINIQYEEDHIREGSRKENTTERVLQGLIAPLEKNTSVSBLYSGCRLTLILREKDGAATRVDAVCTHRPDEKSPGLDRERLYWKLSQLTHGITELGPYTLDRHSLYVNGFTHGSSWTTRTPDTSTHHLATSRTEASLSGPT TASPLIVLETINTIPLEKEENHHPGSRKENTTERVLQGLIAPVFKNTSVGPLYSGCRLTLIRPEKDGTATKVDAICTYHPDPKSPRLDREQLYWELSQLTHSITELGPYTQDRDSLYNNGFTHRSSVSTTSTPGTPTVLGASKTFPASIFGPS AASPLLVLETLNGITHLIXEENHQHPGSRKENTTERVLQGLIRSLFKSTSVGPLYSGCRLTLIRPEKDGTATGVDAICTHHPDPKSPRLDREQLYWELSQLTHITELGHYALDNDSLFVNGFTHRSSVSTTSTPGTPTVLGASKTFPASIFGPP 157

Figure 3 (SEQ ID NOS: 158, 159, 160, and 161)

Figure 5 (SEQ ID NO: 150)

Figure 6

Figure 7A

Figure 7B (SEQ ID NO: 163)

Exon 1

1 42	
${\tt ATVPFMVPFTLNFTITNLQYEEDMRHPGSRKFNATERELQGL}$	(SEQ ID NO: 164)
${\tt TAVPLLVPFTLNFTITNLQYGEDMRHPGSRKFNTTERVLQGL}$	(SEQ ID NO: 165)
VPGPLLVPFTLNFTITNLQYEEAMRHPGSRKFNTTERVLQGL	(SEQ ID NO: 166)
${\tt APGPLLVPFTLNFTITNLQYEEDMRHPGSRKFSTTERVLQGL}$	(SEQ ID NO: 167)
${\tt APGPLLVPFTLNFTITNLQYEEDMRHPGSRKFNTTERVLQGL}$	(SEQ ID NO: 168)
APGPLLVPFTLNFTITNLQYEVDMRHPGSRKFNTTERVLQGL	(SEQ ID NO: 169)
${\tt SAGPLLVPFTLNFTITNLQYEEDMRHPGSRKFNTTERVLQGL}$	(SEQ ID NO: 170)
AAGPLLMPFTLNFTITNLQYEEDMRRTGSRKFNTMESVLQGL	(SEQ ID NO: 171)
TASPLLVLFTINCTITNLQYEEDMRRTGSRKFNTMESVLQGL	(SEQ ID NO: 172)
${\tt AAGPLLVPFTLNFTITNLQYGEDMGHPGSRKFNTTERVLQGL}$	(SEQ ID NO: 173)
TAGPLLIPFTLNFTITNLQYGEDMGHPGSRKFNTTERVLQGL	(SEQ ID NO: 174)
TAGPLLVPFTLNFTITNLQYGEDMGHPGSRKFNTTERVLQGL	(SEQ ID NO: 175)
TAGPLLVLFTLNFTITNLKYEEDMHRPGSRKFNTTERVLQTL	(SEQ ID NO: 176)
TAGPLLVPFTLNFTITNLQYEEDMHRPGSRKFNATERVLQGL	(SEQ ID NO: 177)
TAGPLLVPFTLNFTITNLQYEEDMHRPGSRRFNTTERVLQGL	(SEQ ID NO: 178)
TAGPLLVPFTLNFTITNLQYEEDMHRPGSRKFNTTERVLQGL	(SEQ ID NO: 179)
APVPLLIPFTLNFTITNLQYEEDMHRPGSRKFNTTERVLQGL	(SEQ ID NO: 180)
ATGPVLLPFTLNFTITNLQYEEDMHRPGSRKFNTTERVLQGL	(SEQ ID NO: 181)
AAGPLLVPFTLNFTITNLQYEEDMHHPGSRKFNTTERVLQGL	(SEQ ID NO: 182)
SAGPLLVPFTLNFTITNLQYEEDMHHPGSRKFNTTERVLQGL	(SEQ ID NO: 183)
TASPLLVLFTINFTITNQRYEENMHHPGSRKFNTTERVLQGL	(SEQ ID NO: 184)
TASPLLVLFTINFTITNLRYEENMHHPGSRKFNTTERVLQGL	(SEQ ID NO: 185)
EPGPLLIPFTFNFTITNLHYEENMQHPGSRKFNTTERVLQGL	(SEQ ID NO: 186)
EPGPLLIPFTFNFTITNLRYEENMQHPGSRKFNTTERVLQGL	(SEQ ID NO: 187)
APVPLLIPFTLNFTITNLHYEENMQHPGSRKFNTTERVLQGL	(SEQ ID NO: 188)
APVPLLIPFTLNFTITDLHYEENMQHPGSRKFNTTERVLQGL	(SEQ ID NO: 189)
AASPLLVLFTLNGTITNLRYEENMQHPGSRKFNTTERVLQGL	(SEQ ID NO: 190)
TAGPLLVPFTLNFTITNLKYEEDMHCPGSRKFNTTERVLQSL	(SEQ ID NO: 191)
AASHLLILFTLNFTITNLRYEENMW.PGSRKFNTTERVLQGI	(SEQ ID NO: 192)
TGVVSEEPFTLNFTINNLRYMADMGQPGSLKFNITDNVMKHI	(SEQ ID NO: 193)
AMGYHLKTLTLNFTISNLQYSPDMGKGSATFNSTEGVLQHLI	(SEQ ID NO: 194)

Exon 2

43	65				
LKPLFRNSSLEYL	YSGCRLASLR	(SEQ	ID	NO:	195)
lkplfknts v ssi	YSGCRLTLLR	(SEQ	ID	NO:	196)
LKPLFKNTSVGPI	YSGCRLTLLR	(SEQ	ID	NO:	197)
LKPLFKSTSVGP I	YSGCRLTLLR	(SEQ	ID	NO:	198)
LKPLFKSTSVGPI	YSSCRLTLLR	(SEQ	ID	NO:	199)
LKPLFKNTSVGPI	YSGCRLTSLR	(SEQ	ID	NO:	200)
LGP1 FKNTSVGP1	YSGCRLTSLR	(SEQ	ID	NO:	201)
LGPMFKNTSVGLI	YSGCRLTLLR	(SEQ	ID	NO:	202)
LGPMFKNTSVGPI	YSGCRLTLLR	(SEQ	ID	No:	203)
LGPMFKNTSVGPI	LYSGCRLTSLR	(SEQ	ID	NO:	204)
LGPLFKN SSVGPI	YSGCRLISLR	(SEQ	ID	NO:	205)
LGPLFKNSSVDPI	YSGCRLTSLR	(SEQ	ID	No:	206)
LSPIFKNSSVGPI	LYSGCRLTSLR	(SEQ	ID	NO:	207)
LSPI FKNTSVGPI	LYSGCRLTLLR	(SEQ	ID	NO:	208)
LSPLFQRSSLGA	RYTGCRVIALR	(SEQ	ID	NO:	209)
LRPLFKNTSVSSI	LYSGCRLTLLR	(SEQ	ID	NO:	210)
LRPLFKNTSVGPI	LYSGSRLTLLR	(SEQ	ID	NO:	211)
LRPLFKNTSIGPI	LYSSCRLTLLR	(SEQ	ID	NO:	212)
LRPLFKSTSVGPI	LYSGCRLTLLR	(SEQ	ID	NO:	213)
LRPVFKNTSVGLI	LYSGCRLTLLR	(SEQ	ID	NO:	214)
LRPVFKNTSVGPI	LYSGCRLTLLR	(SEQ	ID	NO:	215)
LRSLFKSTSVGPI	Lysgcrltllr	(SEQ	ID	NO:	216)
LRSLFKSTSVGPI	LYSGCRLTSLR	(SEQ	ID	NO:	217)
LTPLFKNTSVGP	LYSGCRLTLLR	(SEQ	ID	NO:	218)
LTPLFRNTSVSS	LYSGCRLTLLR	(SEQ	ID	NO:	219)
LMPLFKNTSVSS	LYSGCRLTLLR	(SEQ	ID	NO:	220)
RPLFQKSSM.GP	FYLGCQLISLR	(SEQ	ID	NO:	221)

Exon 3

66 123					
PEKDSSAMAVDAICTHRPDPEDLGLDRERLYWELSNLTNGIQELGPYTLDRNSLYVNG					
PEKDGAATGVDAICTHRLDPKSPGLNREQLYWELSKLTNDIEELGPYTLDRNSLYVNG					
PKKDGAATGVDAICTHRLDPKSPGLNREQLYWELSKLTNDIEELGPYTLDRNSLYVNG					
PEKDGTATGVDAICTHHPDPKSPRLDREQLYWELSQLTHNITELGHYALDNDSLFVNG					
PEKDGEATGVDAICTHRPDPTGPGLDREQLYLELSQLTHSITELGPYTLDRDSLYVNG	(SEQ	ID	NO:	226)	
PEKDGAATGMDAVCLYHPNPKRPGLDREQLYWELSQLTHNITELGPYSLDRDSLYVNG	(SEQ	ID	NO:	227)	
PEKDGAATGMDAVCLYHPNPKRPGLDREQLYCELSQLTHNITELGPYSLDRDSLYVNG	(SEQ	ID	NO:	228)	
PEKDGAATRVDAACTYRPDPKSPGLDREQLYWELSQLTHSITELGPYTLDRVSLYVNG					
PKKDGAATKVDAICTYRPDPKSPGLDREQLYWELSQLTHSITELGPYTQDRDSLYVNG					
PKKDGAATKVDAICTYRPDPKSPGLDREQLYWELSQLTHSITELGPYTQDRDSLYNVG					
PEKDGAATRVDAVCTHRPDPKSPGLDRERLYWKLSQLTHGITELGPYTLDRHSLYVNG					
PEKDGVATRVDAICTHRPDPKIPGLDRQQLYWELSQLTHSITELGPYTLDRDSLYVNG					
SEKDGAATGVDAICIHHLDPKSPGLNRERLYWELSQLTNGIKELGPYTLDRNSLYVNG	(SEQ	ID	NO:	234)	
SEKDGAATGVDAICTHRLDPKSPGLDREQLYWELSQLTNGIKELGPYTLDRNSLYVNG	(SEQ	ID	NO:	235)	
SEKDGAATGVDAICTHRLDPKSPGVDREQLYWELSQLTNGIKELGPYTLDRNSLYVNG	(SEQ	ID	NO:	236)	
SEKDGAATGVDAICTHRVDPKSPGVDREQLYWELSQLTNGIKELGPYTLDRNSLYVNG	(SEQ	ID	NO:	237)	
SEKDGAATGVDAICTHHLNPQSPGLDREQLYWQLSQMTNGIKELGPYTLDRNSLYVNG	(SEQ	ID	NO:	238)	
PEKRGAATGVDTICTHRLDPLNPGLDREQLYWELSKLTRGIIELGPYLLDRGSLYVNG	(SEQ	! ID	NO:	239)	
PEKNGAATGMDAICSHRLDPKSPGLNREQLYWELSQLTHGIKELGPYTLDRNSLYVNG					
PEKNGAATGMDAICSHRLDPKSPGLDREQLYWELSQLTHGIKELGPYTLDRNSLYVNG					
PEKHGAATGVDAICTLRLDPTGPGLDRERLYWELSQLTNSVTELGPYTLDRDSLYVNG					
PEKHGAATGVDAICTLRLDPTGPGLDRERLYWELSQLTNSITELGPYTLDRDSLYVNG					
PEKHEAATGVDTICTHRVDPIGPGLDRERLYWELSQLTNSITELGPYTLDRDSLYVNG					
PEKQEAATGVDTICTHRVDPIGPGLDRERLYWELSQLTNSITELGPYTLDRDSLYVNG					
PEKQEAATGVDTICTHRVDPIGPGLDRERLYWELSQLTNSITELGPYTLDRDSLYVDC					
PEKDKAATRVDAICTHHPDPQSPGLNREQLYWELSQLTHGITELGPYTLDRDSLYVDC	; (SEC) II	ON	: 247))
SVKNGAETRVDLLCTYLQPLSGPGLPIKQVFHELSQQTHGITRLGPYSLDKDSLYLNC					
PEKDGAATGVDTTCTYHPDPVGPGLDIQQLYWELSQLTHGVTQLGFYVLDRDSLFING	; (SEC) II	ои с	: 249)

Exon 4		Exon 5	
124 135		136 156	
FTHRSSMPTTST	(SEQ ID NO: 250)	PGTSTVDVGTSGTPSSSPSPT	(SEQ ID NO: 278)
FTHRSSMPTTSI	(SEQ ID NO: 251)	PGTSTVDLRTSGTPSSLSSPTIM	(SEQ ID NO: 279)
FTHRTSVPTSST	(SEQ ID NO: 252)	PGTSTVDLGTSGTPFSLPSPA	(SEQ ID NO: 280)
FTHRTSVPTTST	(SEQ ID NO: 253)	PGTSTVDLG.SGTPSSLPSPT	(SEQ ID NO: 281)
FTHRSSVPTTSS	(SEQ ID NO: 254)	PGTSTVDLG.SGTPSLPSSPT	(SEQ ID NO: 282)
FTHRSSVSTTST	(SEQ ID NO: 255)	PGTSTVDLGTSGTPSSLPSPT	(SEQ ID NO: 283)
FTHRSSVAPTST	(SEQ ID NO: 256)	PGTPTVDLGTSGTPVSKPGPS	(SEQ ID NO: 284)
FTHRSSGLTTST	(SEQ ID NO: 257)	PWTSTVDLGTSGTPSPVPSPT	(SEQ ID NO: 285)
FTHRSFGLTTST	(SEQ ID NO: 258)	PGTSTVYWATTGTPSSFPGHT	(SEQ ID NO: 286)
FTHRSSFLTTST	(SEQ ID NO: 259)	PGTSTVHLATSGTPSSLPGHT	(SEQ ID NO: 287)
FTHRNEVPITST	(SEQ ID NO: 260)	PGTSTVHLATSGTPSPLPGHT	(SEQ ID NO: 288)
FTHRSSVPTTSI	(SEQ ID NO: 261)	PDTSTMHLATSRTPASLSGPT	(SEQ ID NO: 289)
FTHQSSVSTTST	(SEQ ID NO: 262)	PGTSAVHLETSGTPASLPGHT	(SEQ ID NO: 290)
FTHQTSAPNTST	(SEQ ID NO: 263)	PGTSAVHLETTGTPSSFPGHT	(SEQ ID NO: 291)
FTHQTFAPNTST	(SEQ ID NO: 264)	PGTSTVHLGTSETPSSLPRPI	(SEQ ID NO: 292)
FTHQNSVPTTST	(SEQ ID NO: 265)	PGTSIVNLGTSGIPPSLPETT	(SEQ ID NO: 293)
FTHQSSMTTTRT	(SEQ ID NO: 266)	PGTFTVQPETSETPSSLPGPT	(SEQ ID NO: 294)
FTHWIPVPTSST	(SEQ ID NO: 267)	PGTPTVDLGTSGTPVSKPGPS	(SEQ ID NO: 295)
FTHWSPIPTTST	(SEQ ID NO: 268)	PGTPTVYLGASKTPASIFGPS	(SEQ ID NO: 296)
FTHWSSGLTTST	(SEQ ID NO: 269)	PKPATTFLPPLSEATT	(SEQ ID NO: 297)
FHPRSSVPTTST	(SEQ ID NO: 270)	QINFHIVNWNLSNPDPTSSEY	(SEQ ID NO: 298)
FNPRSSVPTTST	(SEQ ID NO: 271)		
FNPWSSVPTTST	(SEQ ID NO: 272)		ţ
FTQRSSVPTTSI	(SEQ ID NO: 273)		
FTORSSVPTTST	(SEQ ID NO: 274)		
FTQRSSVPTTSV	(SEQ ID NO: 275)		
YNEPGLDEPPTT	(SEQ ID NO: 276)		
YAPQNLSIRGEY	(SEQ ID NO: 277)		

Figure 8A

Structure of Amino Terminal Domain

Figure 8B (SEQ ID NO: 299)

17/20

Proposed Structure of CA125

Figure 10

CA125 Gene: Contig Alignment from Overlapping Chromosome 19 Cosmids

Figure 12

20/20

. 1

SEQUENCE LISTING

<110> The Board of Trustees of the University of Arkansas

<120> Repeat Sequences of the CA125 Gene and Their Use for Diagnostic and Therapeutic Interventions

<130> 40715-268163

<150> US 60/284,175

<151> 2001-04-17

<150> US 60/299,380

<151> 2001-06-19

<150> US 09/965,738

<151> 2001-09-27

<150> US 60/345,180

<151> 2001-12-21

<160> 310

<170> PatentIn version 3.1

<210> 1

<211> 13

<212> PRT

<213> Homo sapiens

<400> 1

Gln His Pro Gly Ser Arg Lys Phe Lys Thr Thr Glu Gly
1 5 10

<210> 2

<211> 11

<212> PRT

<213> Homo sapiens

<400> 2

Phe Leu Thr Val Glu Arg Val Leu Gln Gly Leu 1 5 10

<210> 3

<211> 8

<212> PRT

<213> Homo sapiens

<400> 3

Asp Thr Tyr Val Gly Pro Leu Tyr 1 5

<210> 4

<211> 8

<212> PRT

<213> Homo sapiens

<400> 4

Asp Gly Ala Ala Asn Gly Val Asp 1 5

<210> 5

<211> 240

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(240)

<223>

<400> 5 cgt cga cct ggc tct aga aag ttt aac acc acg gag aga gtc ctt cag 48																
cgt Arg 1	cga Arg	cct Pro	ggc Gly	tct Ser 5	aga Arg	aag Lys	ttt Phe	aac Asn	acc Thr 10	acg Thr	gag Glu	aga Arg	gtc Val	Leu 15	Gln	48
ggt Gly	ctg Leu	ctc Leu	agg Arg 20	cct Pro	gtg Val	ttc Phe	aag Lys	aac Asn 25	acc Thr	agt Ser	gtt Val	ggc Gly	cct Pro 30	ctg Leu	tac Tyr	96
tct Ser	ggc Gly	tgc Cys 35	aga Arg	ctg Leu	acc Thr	ttg Leu	ctc Leu 40	agg Arg	ccc Pro	aag Lys	aag Lys	gat Asp 45	Gly ggg	gca Ala	gcc Ala	144
acc Thr	aaa Lys 50	gtg Val	gat Asp	gcc Ala	atc Ile	tgc Cys 55	acc Thr	tac Tyr	cgc Arg	cct Pro	gat Asp 60	ccc Pro	aaa Lys	agc Ser	cct Pro	192
gga Gly 65	ctg Leu	gac Asp	aga Arg	gag Glu	cag Gln 70	cta Leu	tac Tyr	tgg Trp	gag Glu	ctg Leu 75	agc Ser	cag Gln	ggt Gly	gat Asp	gca Ala 80	240

<210> 6

<211> 80

<212> PRT

<213> Homo sapiens

<400> 6

Arg Arg Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln 1 5 10 15

Gly Leu Leu Arg Pro Val Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr 20 25 30

Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala Ala 35 40

Thr Lys Val Asp Ala Ile Cys Thr Tyr Arg Pro Asp Pro Lys Ser Pro 50 55

Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Gly Asp Ala 65 70 75 80

<210> 7

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 7

ggagaggtt ctgcagggtc

<210> 8

<211> 6

<212> PRT

<213> Artificial Sequence

20

<220>

<223> Synthetic Primer

<400> 8

Glu Arg Val Leu Gln Gly 1 5

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 9

gtgaatggta tcaggagagg

<210> 10

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 10

Pro Leu Leu Ile Pro Phe 1 .5

<210> 11

<211> 131

<212> PRT

<213> Homo sapiens

<400> 11

Glu Arg Val Leu Gln Gly Leu Leu Arg Ser Leu Phe Lys Ser Thr Ser $1 \hspace{1cm} 1 \hspace{1cm} 15$

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Asp Gly Thr Ala Thr Gly Val Asp Ala Ile Cys Thr His His Pro 35 40 45

Asp Pro Lys Ser Pro Arg Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ala Leu Asp 65 70 75 80

Asn Asp Ser Leu Phe Val Asn Gly Phe Thr His Arg Ser Ser Val Ser 85 90 95

Thr Thr Ser Thr Pro Gly Thr Pro Thr Val Tyr Leu Gly Ala Ser Lys 100 105 110

Thr Pro Ala Ser Ile Phe Gly Pro Ser Ala Ala Ser Pro Leu Ile 115 120 125

Pro Phe Thr 130

<210> 12

<211> 130

<212> PRT

<213> Homo sapiens

<400> 12

Glu Arg Val Leu Gln Gly Leu Leu Met Pro Leu Phe Lys Asn Thr Ser 1 5 10 15

Val Ser Ser Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Asp Gly Ala Ala Thr Arg Ala Asp Ala Val Cys Thr His Arg Pro 35 40 45

Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Lys Leu 50 55 60

Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg His Ser Leu Tyr Val Asn Gly Phe Thr His Gln Ser Ser Met Thr 85 90 95

Thr Thr Arg Thr Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg 100 105 110

Thr Pro Ala Ser Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Ile 115 120 125

Pro Phe 130

<210> 13

<211> 132

<212> PRT

<213> Homo sapiens

<400> 13

Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Ile Phe Lys Asn Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Ser Glu 20 25 30

Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Ile His Arg Leu 35 40 45

Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Asn Asp Ile Glu Glu Leu Gly Pro Tyr Thr Leu Asp 65 70 75 80

Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln Ser Ser Val Ser 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Arg Thr Ser Gly 100 105 110

Thr Pro Ser Ser Leu Ser Ser Pro Thr Ile Met Ala Ala Gly Pro Leu 115 120 125

Leu Ile Pro Phe 130

<210> 14

<211> 130

<212> PRT

<213> Homo sapiens

<400> 14

Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe Lys Asn Thr Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Asn Gly Ala Ala Thr Gly Met Asp Ala Ile Cys Ser His Arg Leu 35 40 45

Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Ala 85 90 95

Pro Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly 100 105 110

Thr Pro Ser Ser Leu Pro Ser Pro Thr Thr Ala Val Pro Leu Leu Ile 115 120 125

Pro Phe 130

<210> 15

<211> 130

<212> PRT

<213> Homo sapiens

<400> 15

Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Leu Phe Lys Asn Ser Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Ile Ser Leu Arg Ser Glu 20 25 30

Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His His Leu 35 40 45

Asn Pro Gln Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Gln Leu 50 55 60

Ser Gln Met Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Gly Leu 85 90 95

Thr Thr Ser Thr Pro Trp Thr Ser Thr Val Asp Leu Gly Thr Ser Gly
100 105 110

Thr Pro Ser Pro Val Pro Ser Pro Thr Thr Ala Gly Pro Phe Leu Ile 115 120 125

Pro Phe 130

<210> 16

<211> 130

<212> PRT

<213> Homo sapiens

<400> 16

Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Ala Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr Leu Arg Leu 35 40 45

Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr Asn Ser Val Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro 85 90 95

Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu Glu Thr Ser Gly 100 105 110

Thr Pro Ala Ser Leu Pro Gly His Thr Ala Pro Gly Pro Leu Leu Ile 115 120 125

Pro Phe 130

<210> 17

<211> 130

<212> PRT

<213> Homo sapiens

<400> 17

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 35 40 45

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro 85 90 95

Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu Glu Thr Ser Gly 100 105 110

Thr Pro Ala Ser Leu Pro Gly His Ile Val Pro Gly Pro Leu Leu Ile 115 120 125

Pro Phe 130

<210> 18

<211> 131

<212> PRT

<213> Homo sapiens

<400> 18

Glu Arg Val Leu Gln Gly Leu Leu Thr Pro Leu Phe Lys Asn Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Gln Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Val 35 40 45

Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 65 70 75 80

Arg Asp Ser Leu Tyr Val Asp Gly Phe Asn Pro Trp Ser Ser Val Pro
85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Ala Thr Ser Gly 100 105 110

Thr Pro Ser Pro Leu Pro Gly His Thr Ala Pro Val Pro Leu Leu Ile 115 120 125

Pro Phe Thr 130

<210> 19

<211> 131

<212> PRT

<213> Homo sapiens

<400> 19

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys His Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 35 40 45

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 70 75 80

Arg Gly Ser Leu Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro 85 90 95

Ile Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu 100 105 110

Thr Pro Ser Ser Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Val. 115 120 125

Pro Phe Thr 130

<210> 20

<211> 130

<212> PRT

<213> Homo sapiens

<400> 20

Glu Arg Val Leu Gln Gly Leu Leu Ser Pro Ile Phe Lys Asn Ser Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu 20 25 30

Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro 35 40 45

Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp 65 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly 100 105 110

Thr Pro Ser Ser Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile 115 120 125

Pro Phe 130

<210> 21

<211> 131

<212> PRT

<213> Homo sapiens

<400> 21

Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Leu Phe Lys Asn Thr Ser 1 5 10 15

Ile Gly Pro Leu Tyr Ser Ser Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Asp Lys Ala Ala Thr Arg Val Asp Ala Ile Cys Thr His His Pro 35 40 45

Asp Pro Gln Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asp Gly Phe Thr His Trp Ser Pro Ile Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Ile Val Asn Leu Gly Thr Ser Gly
100 105 110

Ile Pro Pro Ser Leu Pro Glu Thr Thr Ala Thr Gly Pro Leu Leu Ile 115 120 125

Pro Phe Thr 130

<210> 22

<211> 282

<212> PRT

<213> Homo sapiens

<400> 22

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser 1 5 10 15

Leu Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu

Lys	Asp	Ser 35	Ser	Ala	Met	Ala	Val 40	Asp	Ala	Ile	Суз	Thr 45	His	Arg	Pro
Asp	Pro 50	Glu	Asp	Leu	Gly	Leu 55	Asp	Arg	Glu	Arg	Leu 60	Туг	Trp	Glu	Lev
Ser 65	Asn	Leu	Thr	Asn	Gly 70	Ile	Gln	Glu	Leu	Gly 75	Pro	Tyr	Thr	Leu	Asp 80
Arg	Asn	Ser	Leu	Tyr 85	Val	Asn	Gly	Phe	Thr 90	His	Arg	Ser	Ser	Met 95	Pro
Thr	Thr	Ser	Thr 100	Pro	Gly	Thr	Ser	Thr 105	Val	Asp	Val	Gly	Thr 110	Ser	Gly
Thr	Pro	Ser 115	Ser	Ser	Pro	Ser	Pro 120	Thr	Thr	Ala	Gly	Pro 125	Leu	Leu	Met
Pro	Phe 130	Thr	Leu	Asn	Phe	Thr 135	Ile	Thr	Asn	Leu	Gln 140	Tyr	Glu	Glu	Asp
Met 145	Arg	Arg	Thr	Gly	Ser 150	Arg	Lys	Phe	Asn	Thr 155	Met	Glu	Arg	Val	Leu 160
Gln	Gly	Leu	Leu	Ser 165	Pro	Ile	Phe	Lys	Asn 170	Ser	Ser	Val	Gly	Pro 175	Leu
Tyr	Ser	Gly	Cys 180	Arg	Leu	Thr	Ser	Leu 185	Arg	Pro	Glu	Lys	Asp 190	Gly	Ala
Ala	Thr	Gly 195	Met	Asp	Ala	Val	Cys 200	Leu	Tyr	His	Pro	Asn 205	Pro	Lys	Arg
Pro	Gly 210	Leu	Asp	Arg	Glu	Gln 215	Leu	Tyr	Trp	Glu	Leu 220	Ser	Gln	Leu	Thr

His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu 225 230 240

. 17

Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro Thr Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly Thr Pro Ser Ser 260 265 270

Phe Pro Gly His Thr Glu Pro Gly Pro Leu 275 280

<210> 23

<211> 286

<212> PRT

<213> Homo sapiens

<400> 23

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu 20 25 30

Lys Asp Ser Ser Ala Met Ala Val Asp Ala Ile Cys Thr His Arg Pro 35 40 45

Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Asn Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp 65 70 75 80

Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Gly Leu 85 90 95

Thr Thr Ser Thr Pro Trp Thr Ser Thr Val Asp Leu Gly Thr Ser Gly 100 105 110

Thr Pro Ser Pro Val Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Ile 115 120 125 Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn 130 135 140

Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Met Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala 180 185 190

Ala Thr Arg Val Asp Ala Val Cys Thr Gln Arg Pro Asp Pro Lys Ser 195 200 205

Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln Leu Thr 210 215 220

His Gly Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg His Ser Leu 225 230 235 240

Tyr Val Asn Gly Leu Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr 245 250 255

Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser 260 265 270

Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Ile Pro Phe 275 280 285

<210> 24

<211> 250

<212> PRT

<213> Homo sapiens

<400> 24

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 35 40 45

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 70 75 80

Arg Gly Ser Leu Tyr Val Asn Gly Phe Thr His Arg Thr Ser Val Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly 100 105 110

Thr Pro Phe Ser Leu Pro Ser Pro Ala Thr Ala Gly Pro Leu Leu Val

Leu Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Lys Tyr Glu Glu Asp 130 135 140

Met His Arg Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Thr Leu Leu Gly Pro Met Phe Lys Asn Thr Ser Val Gly Leu Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Ser Glu Lys Asp Gly Ala 180 185 190

Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser 195 200 205

Pro Gly Val Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 210 225 220

Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Trp Ile Pro 245 250

<210> 25

<211> 286

<212> PRT

<213> Homo sapiens

<400> 25

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 35 40 45

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp
70 75 80

Arg Gly Ser Leu Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro 85 90 95

Ile Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu
100 105 110

Thr Pro Ser Ser Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Ile 115 120 125

Pro Phe Thr Ile Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn 135 130 Met His His Pro Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu 155 145 Gln Gly Leu Leu Gly Pro Leu Phe Lys Asn Ser Ser Val Gly Pro Leu 170 Tyr Ser Gly Cys Arg Leu Ile Ser Leu Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His His Leu Asn Pro Gln Ser 200 195 Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Gln Leu Ser Gln Met Thr 215 210 Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 225 Tyr Val Asn Gly Phe Thr His Arg Ser Ser Gly Leu Thr Thr Ser Thr 245 Pro Trp Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Pro 265 260

<210> 26

<211> 286

<212> PRT

<213> Homo sapiens

275

<400> 26

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 5

Val Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Ile Pro Phe 280

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 35 40 45

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 65 70 75 80

Arg Gly Ser Leu Tyr Val Asn Gly Phe Ser Arg Gln Ser Ser Met Thr 85 90 95

Thr Thr Arg Thr Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg
100 105 110

Thr Pro Ala Ser Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Ile 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn 130 135

Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Asn Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Ser Leu Lys Pro Glu Lys Asp Gly Ala 180 185 190

Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg 195 200 205

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 210 215 220

His Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Ala Pro Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser 260 265 270

Leu Pro Ser Pro Thr Thr Ala Val Pro Leu Leu Ile Pro Phe 275 280 285

<210> 27

<211> 286

<212> PRT

<213> Homo sapiens

<400> 27

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 65 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro 85 90 95

Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu Glu Thr Phe Gly 100 105 110

Thr Pro Ala Ser Leu His Gly His Thr Ala Pro Gly Pro Val Leu Val 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 130 135 140

Met Arg His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Arg Gly Ala 180 185 190

Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu Asp Pro Leu Asn 195 200 205

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr 210 220

Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp Arg Gly Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro Ile Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu Thr Pro Ser Ser 260 265 270

Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Ile Pro Phe 275 280 285

<210> 28

<211> 286

<212> PRT

<213> Homo sapiens

<400> 28

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr Leu Arg Leu 35 40 45

Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr Asn Ser Val Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro 85 90 95

Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu Glu Thr Ser Gly 100 105 110

Thr Pro Ala Ser Leu Pro Gly His Thr Ala Pro Gly Pro Leu Leu Val 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 130 135 140

Met Arg His Pro Gly Ser Arg Lys Phe Asn, Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Arg Gly Ala 180 185 190

Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu Asp Pro Leu Asn 195 200 205

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr 210 215 220

Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp Arg Gly Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro Ile Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu Thr Pro Ser Ser 260 265 270

Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Ile Pro Phe 275 280 285

<210> 29

<211> 281

<212> PRT

<213> Homo sapiens

<400> 29

Glu Arg Val Leu Gln Gly Leu Leu Thr Pro Leu Phe Lys Asn Thr Ser
1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Gln Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Val 35 40 45

Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Asn Pro Trp Ser Ser Val Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Ala Thr Ser Gly 100 105 110

Thr Pro Ser Ser Leu Pro Gly His Thr Ala Pro Val Pro Leu Leu Ile 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu His Tyr Glu Glu Asn 130 135 140

Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 .160

Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys His Gly Ala 180 185 190

Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser 195 200 205

Pro Gly Val Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 210 215 220

Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Trp Ile Pro Val Pro Thr Ser Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val Asp Leu Gly Ser Gly Thr Pro Ser Ser Leu 260 265 270

Pro Ser Pro Thr Thr Ala Gly Pro Leu 275 280

<210> 30

<211> 217

<212> PRT

<213> Homo sapiens

<400> 30

Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Leu Phe Lys Asn Thr Ser 1 5 10 15

Ile Gly Pro Leu Tyr Ser Ser Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Asp Lys Ala Ala Thr Arg Val Asp Ala Ile Cys Thr His His Pro 35 40 45

Asp Pro Gln Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asp Gly Phe Thr His Trp Ser Pro Ile Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Ile Val Asn Leu Gly Thr Ser Gly
100 105 110

Ile Pro Pro Ser Leu Pro Glu Thr Thr Ala Thr Gly Pro Leu Leu Ile 115 120 . 125

Pro Phe Thr Pro Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 130 135 140

Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Ser Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys Asp Gly Ala 180 185 190

Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg 195 200 205

Pro Gly Leu Asp Arg Glu Gln Leu Tyr 210 215

<210> 31

<211> 286

<212> PRT

<213> Homo sapiens

<400> 31

Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Val Phe Lys Asn Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys 20 25 30

Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr Arg Pro 35 40 45

Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg Ser Ser Val Pro 85 90 95

Thr Thr Ser Ile Pro Gly Thr Pro Thr Val Asp Leu Gly Thr Ser Gly 100 105 110

Thr Pro Val Ser Lys Pro Gly Pro Ser Ala Ala Ser Pro Leu Leu Val 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 130 135 140

Met His Arg Pro Gly Ser Arg Lys Phe Asn Ala Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Ser Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys Asp Gly Ala 180 185 190

Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg 195 200 205

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 210 215 220

His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Gln Ser Ser Met Thr Thr Arg Thr
245 250 255

Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser 260 265 270

Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Ile Pro Phe 275 280 285

<210> 32

<211> 288

<212> PRT

<213> Homo sapiens

<400> 32

Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe Lys Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 65 Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg Ser Ser Val Pro 85 Thr Thr Ser Ile Pro Gly Thr Pro Thr Val Asp Leu Gly Thr Ser Gly 105 100 Thr Pro Val Ser Lys Pro Gly Pro Ser Ala Ala Ser Pro Leu Leu Ile 120 115 Pro Phe Thr Ile Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn 135 130 Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu 150 Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu 165 Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala · Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser 200

Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr

215

Asn Asp Ile Glu Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Gln Ser Ser Val Ser Thr Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser 260 265 270

Leu Ser Ser Pro Thr Ile Met Ala Ala Gly Pro Leu Leu Ile Pro Phe 275 280 285

<210> 33

<211> 284

<212> PRT

<213> Homo sapiens

<400> 33

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro 35 40 45

Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Cys Glu Leu 50 55 60

Ser Gln Leu Thr His Asp Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp 65 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly 100 105 110

Thr Pro Ser Ser Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile 115 120 125

Pro Phe Thr Phe Asn Phe Thr Ile Thr Asn Leu His Tyr Glu Glu Asn 130 135 140

Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys His Glu Ala 180 185 190

Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Val Asp Pro Ile Gly
195 200 205

Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr 210 215 220

Asn Ser Ile His Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Asn Pro Arg Ser Ser Val Pro Thr Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val His Leu Ala Thr Ser Gly Thr Pro Ser Ser 260 265 270

Leu Pro Gly His Thr Ala Pro Val Pro Leu Leu Ile 275 280

<210> 34

<211> 288

<212> PRT

<213> Homo sapiens

<400> 34

Glu Arg Val Leu Gln Gly Leu Leu Ser Pro Ile Ser Lys Asn Ser Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu 20 25 30

Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro 35 40 45

Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly
100 105 110

Thr Pro Ser Ser Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile 115 120 125

Pro Phe Thr Val Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn 130 135 140

Met His His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Arg Pro Val Phe Lys Asn Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala 180 185 190

Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr Arg Pro Asp Pro Lys Ser 195 200 205

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr 210 215 220

Asn Asp Ile Glu Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Gln Ser Ser Val Ser Thr Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser 260 265 270

Leu Ser Ser Pro Thr Ile Met Ala Ala Gly Pro Leu Leu Ile Pro Phe 275 280 285

<210> 35

<211> 274

<212> PRT

<213> Homo sapiens

<400> 35

Glu Arg Val Leu Gln Gly Leu Leu Ser Pro Ile Phe Lys Asn Ser Ser 1 5 10 15

Val Gly Ser Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Asp Gly Ala Ala Thr Arg Val Asp Ala Val Cys Thr His Arg Pro 35 40 45

Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Lys Leu 50 55 60

Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg His Ser Leu Tyr Val Asn Gly Phe Thr His Gln Ser Ser Met Thr 85 90 95

Thr Thr Arg Thr Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg
100 105 110

Thr Pro Ala Ser Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Val 115 120 125

Leu Phe Thr Ile Asn Phe Thr Ile Thr Asn Gln Arg Tyr Glu Glu Asn 130 135 140

Met His His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Arg Pro Val Phe Lys Asn Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala 180 185 190

Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr Arg Pro Asp Pro Lys Ser 195 200 205

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 210 215 220

His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Gln Asp Arg Asp Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro Thr Thr Ser Ile 245 250 255

Pro Gly Thr Ser Ala Val His Leu Glu Thr Ser Gly Thr Pro Ala Ser 260 265 270

Leu Pro

<210> 36

<211> 386

<212> PRT

<213> Homo sapiens

<400> 36

Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe Lys Asn Thr Ser 1 5 10 15

Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 35 40 45

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 70 75 80

Arg Gly Ser Leu Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro 85 90 95

Ile Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu
100 105 110

Thr Pro Ser Ser Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Val 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Ala 130 135 140

Met Arg His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Arg Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu 165 170 175

Tyr	Ser	Gly	Cys 180	Arg	Leu	Thr	Leu	Leu 185	Arg	Pro	Glu	Lys	Asp 190	Gly	Ala
Ala	Thr	Arg 195	Val	Asp	Ala	Ala	Cys 200	Thr	Tyr	Arg	Pro	Asp 205	Pro	Lys	Ser
Pro	Gly 210	Leu	Asp	Arg	Glu	Gln 215	Leu	Tyr	Trp	Glu	Leu 220	Ser	Gln	Leu	Thr
His 225	Ser	Ile	Thr	Glu	Leu 230	Gly	Pro	Tyr	Thr	Leu 235	Asp	Arg	Val	Ser	Leu 240
Tyr	Val	Asn	Gly	Phe 245	Asn	Pro	Arg	Ser	Ser 250	Val	Pro	Thr	Thr	Ser 255	Thr
Pro	Gly	Thr	Ser 260	Thr	Val	His	Leu	Ala 265	Thr	Ser	Gly	Thr	Pro 270	Ser	Ser
Leu	Pro	Gly 275	His '.	Thr	Ala	Pro	Val 280	Pro	Leu	Leu	Ile	Pro 285		Thr	Leu
Asn	Phe 290	Thr	Ile	Thr	Asn	Leu 295	Gln	Tyr	Glu	Glu	Asp 300	Met	Arg	His	Pro
Gly 305	Ser	Arg	Lys	Phe	Asn 310	Thr	Met	Glu	Arg	Val 315	Leu	Gln	Gly	Leu	Leu 320
Arg	Pro	Leu	Phe	Lys 325	Asn	Thr	Ser	Ile	Gly 330	Pro	Leu	Туг	Ser	Ser 335	Cys
Arg	Leu	Thr	Leu 340		Arg			Lys 345		Lys	Ala	Ala	Thr 350		Val
Asp	Ala	Ile 355	Cys	Thr	His	His	Pro 360	Asp	Pro	Gln	Ser	Pro 365	Gly	Leu	Asn
Arg	Glu 370	Gln	Leu	Tyr	Trp	Glu 375	Leu	Ser	Gln	Leu	Thr 380	His	Gly	Ile	Thr

Glu Leu 385

<210> 37

<211> 438

<212> PRT

<213> Homo sapiens

<400> 37

Glu Arg Val Leu His Gly Leu Leu Thr Pro Leu Phe Lys Asn Thr Arg 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Gln Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Val 35 40 45

Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Asn Pro Trp Ser Ser Val Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Ala Thr Ser Gly 100 105 110

Thr Pro Ser Ser Leu Pro Gly His Thr Ala Pro Val Pro Leu Leu Ile 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu His Tyr Glu Glu Asn 130 135 140

Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Phe Lys Pro Glu Lys His Glu Ala Ala Thr Gly Val Asp Ala Ile Cys Thr Leu Arg Leu Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser Val Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu Glu Thr Ser Gly Thr Pro Ala Ser Leu Pro Gly His Thr Ala Pro Gly Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu Asp Pro Leu Asn Pro Gly Leu Asp

Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr Arg Gly Ile Ile 370 375 380

Glu Leu Gly Pro Tyr Leu Leu Asp Arg Gly Ser Leu Tyr Val Asn Gly 385 390 395 400

Phe Thr His Arg Asn Phe Val Pro Ile Thr Ser Thr Pro Gly Thr Ser 405 410 415

Thr Val His Leu Gly Thr Ser Glu Ile His Pro Ser Leu Pro Arg Pro 420 425 430

Ile Val Pro Gly Pro Leu 435

<210> 38

<211> 420

<212> PRT

<213> Homo sapiens

<400> 38

Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys 1 5 10 15

Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn 20 25 30

Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser 35 40 45

Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg 50 55 60

Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro Thr 65 70 75 80

Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly Thr 85 90 95

Pro	Ser	Ser	Phe 100	Pro	Gly	His	Thr	Glu 105	Pro	Gly	Pro	Leu	Leu 110	Ile	Pro
Phe	Thr	Leu 115	Asn	Phe	Thr	Ile	Thr 120	Asn	Leu	Gln	Tyr	Glu 125	Glu	Asn	Met
Gly	His 130	Pro	Gly	Ser	Arg	Lys 135	Phe	Asn	Ile	Thr	Glu 140	Ser	Val	Leu	Gln
Gly 145	Leu	Leu	Thr	Pro	Leu 150	Phe	Lys	Asn	Ser	Ser 155	Val	Gly	Pro	Leu	Tyr 160
Ser	Gly	Суз	Arg	Leu 165	Ile	Ser	Leu	Arg	Ser 170	Glu	Lys	Asp	Gly	Ala 175	Ala
Thr	Gly	Val	Asp 180	Ala	Ile	Cys	Thr	His 185	His	Leu	Asn	Pro	Gln 190	Ser	Pro
Gly	Leu	Asp 195	Arg	Glu	Gln	Leu	Tyr 200	Trp	Gln	Leu		Gln 205		Thr	Asn
Gly	Ile 210	Lys	Glu	Leu	Gly	Pro 215	Tyr	Thr	Leu	Asp	Arg 220	Asp	Ser	Leu	Tyr
Val 225	Asn	Gly	Phe	Thr	His 230	Arg	Ser	Leu	Gly	Leu 235	Thr	Thr	Ser	Thr	Pro 240
Trp	Thr	Ser	Thr	Val 245	Asp	Leu	Gly	Thr	Ser 250	Gly	Thr	Pro	Ser	Pro 255	Val
Pro	Ser	Pro	Thr 260	Thr	Ala	Gly	Pro	Leu 265	Leu	Ile	Pro	Phe	Thr 270	Leu	Asn
Phe	Thr	Ile 275	Thr	Asn	Leu	Gln	Tyr 280	Glu	Glu	Asn	Met	Gly 285	His	Pro	Gly
Ser	Arg 290	Lys	Phe	Asn	Ile	Met 295	Glu	Arg	Val	Leu	Gln 300	Gly	Leu	Leu	Arg

Pro Val Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg 305 310 315 320

Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp 325 330 335

Ala Ile Cys Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg 340 345 350

Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu 355 360 365

Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe 370 375 380

Thr Gln Arg Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Pro Thr 385 390 395 400

Val Asp Leu Gly Thr Ser Gly Thr Pro Val Ser Lys Pro Gly Pro Ser 405 410 415

Ala Ala Ser Pro 420

<210> 39

<211> 439

<212> PRT

<213> Homo sapiens

<400> 39

Glu Arg Val Leu Gln Gly Pro Leu Ser Pro Ile Phe Lys Asn Ser Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu 20 25 30

Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro 35 40 45

Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly Thr Pro Ser Ser Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Thr Glu Arg Val Leu Gln Gly Leu Leu Asn Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Cys Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro Thr Thr Ser Thr

Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly Thr Pro Ser Ser 260 265 270

Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Leu 275 280 285

Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr 290 295 300

Gly Ser Arg Lys Phe Asn Thr Met Glu Arg Val Leu Gln Gly Leu Leu 305 310 315 320

Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys 325 330 335

Arg Leu Thr Leu Leu Arg Pro Glu Lys His Gly Ala Ala Thr Gly Val 340 345 350

Asp Ala Ile Cys Thr Leu Arg Leu Asp Pro Thr Gly Pro Gly Leu Asp 355 360 365

Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser Val Thr 370 375 380

Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 385 390 395 400

Phe Thr His Arg Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Ser 405 410 415

Ala Val His Leu Glu Thr Ser Gly Thr Pro Ala Ser Leu Pro Gly His
420 425 430

Thr Ala Pro Gly Pro Leu Leu
435

<210> 40

<211> 424

<212> PRT

<213> Homo sapiens

<400> 40

Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg
1 5 10 15

Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Tyr Thr His 20 25 30

Arg Leu Asp Pro Lys Ser Pro Gly Val Asp Arg Glu Gln Leu Tyr Trp 35 40 45

Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr 50 55 60

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln Thr Ser 65 70 75 80

Ala Pro Asn Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr 85 90 95

Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Ser Ala Gly Pro Leu 100 105 110

Leu Ile Pro Phe Thr Ile Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu 115 120 125

Glu Asn Met His His Pro Gly Ser Arg Lys Phe Asn Thr Met Glu Arg 130 135 140

Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly 145 150 155 160

Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp 165 170 175

Gly Val Ala Thr Arg Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro 180 185 190

Lys Ile Pro Gly Leu Asp Arg Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg Ser Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Phe Thr Val Gln Pro Glu Thr Ser Glu Thr Pro Ser Ser Leu Pro Gly Pro Thr Ala Thr Gly Pro Val Leu Leu Pro Phe Thr Leu Asn Phe Thr Ile Ile Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr Leu Arg Leu Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Asn Pro Trp Ser Ser Val Pro Thr Thr Ser Thr Pro Gly

Thr Ser Thr Val His Leu Ala Thr Ser Gly Thr Pro Ser Ser Leu Pro

Gly His Thr Ala Pro Val Pro Leu
420

<210> 41

<211> 418

<212> PRT

<213> Homo sapiens

<400> 41

Thr Leu Leu Arg Pro Lys Lys Asp Gly Val Ala Thr Gly Val Asp Ala
1 5 10 15

Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu 20 25 30

Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr Asn Asp Ile Glu Glu Leu 35 40 45

Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr 50 55 60

His Gln Ser Ser Val Ser Thr Thr Ser Thr Pro Gly Thr Ser Thr Val 70 75 80

Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser Leu Ser Ser Pro Thr Ile 85 90 95

Met Ala Ala Gly Pro Leu Leu Ile Pro Phe Thr Ile Asn Phe Thr Ile
100 105 110

Thr Asn Leu Arg Tyr Glu Glu Asn Met His His Pro Gly Ser Arg Lys 115 120 125

Phe Asn Thr Met Glu Arg Val Leu Gln Gly Leu Leu Met Pro Leu Phe 130 135 140 Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly Cys Arg Leu Thr Leu 155 150 Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Arg Val Asp Ala Val Cys 170 Thr His Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro 200 195 Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg 215 Ser Ser Met Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Val 230 Gly Thr Ser Gly Thr Pro Ser Ser Pro Ser Pro Thr Thr Ala Gly 250 245 Pro Leu Leu Met Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln 265 Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met 280 Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 295 Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 315 305 Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr Leu Arg Leu 325 Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 345 340 Ser Gln Leu Thr Asn Ser Val Thr Glu Leu Gly Pro Tyr Thr Leu Asp 355 360

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro 370 380

Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu Glu Thr Ser Gly 385 390 395 400

Thr Pro Ala Ser Leu Pro Gly His Thr Ala Pro Gly Pro Leu Leu Ile 405 410 415

Pro Phe

<210> 42

<211> 443

<212> PRT

<213> Homo sapiens

<400> 42

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Asp Gly Val Ala Thr Arg Val Asp Ala Ile Cys Thr His Arg Pro 35 40 45

Asp Pro Lys Ile Pro Gly Leu Asp Arg Gln Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp
65 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg Ser Ser Val Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Phe Thr Val Gln Pro Glu Thr Ser Glu 105 100 Thr Pro Ser Ser Leu Pro Gly Pro Thr Ala Thr Gly Pro Val Leu Leu 120 Pro The Thr Leu Asn Phe Thr Ile Ile Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 150 155 Gln Gly Leu Leu Met Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu 165 Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Gln Glu Ala 185 180 Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu Asp Pro Ser Glu 200 Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 215 Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu 235 230 Tyr Val Asn Gly Phe Thr His Ser Gly Val Leu Cys Pro Pro Pro Ser 250 245 Ile Leu Gly Ile Phe Thr Val Gln Pro Glu Thr Phe Glu Thr Pro Ser 265 Ser Leu Pro Gly Pro Thr Ala Thr Gly Pro Val Leu Leu Pro Phe Thr 285 Leu Asn Phe Thr Ile Ile Asn Leu Gln Tyr Glu Glu Asp Met His Arg 295 290 Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 315 310 305

Leu Met Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly 325 330 335

Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Gln Glu Ala Ala Thr Gly 340 345 350

Val Asp Thr Ile Cys Thr His Arg Val Asp Pro Ile Gly Pro Gly Leu 355 360 365

Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser Ile 370 375 380

Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn 385 390 395 400

Gly Phe Asn Pro Trp Ser Ser Val Pro Thr Thr Ser Thr Pro Gly Thr 405 410 415

Ser Thr Val His Leu Ala Thr Ser Gly Thr Pro Ser Ser Leu Pro Gly 420 425 430

His Thr Ala Pro Val Pro Leu Leu Ile Pro Phe
435
440

<210> 43

<211> 442

<212> PRT

<213> Homo sapiens

<400> 43

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser 1 5 10 15

Leu Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu 20 25 30 Lys Asp Ser Ser Ala Met Ala Val Asp Ala Ile Cys Thr His Arg Pro 35 40 45

Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Asn Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp 65 70 75 80

Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Met Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Val Gly Thr Ser Gly 100 105 110

Thr Pro Ser Ser Ser Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Met 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 130 135 140

Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met Glu Ser Val Leu 145 150 155 160

Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala 180 185 · 190

Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser 195 200 205

Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr 210 215 220

Asn Asp Ile Glu Glu Val Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Arg Ser Phe Val Ala Pro Thr Ser Thr 245 250 255

Leu Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser 260 265 270

Leu Pro Ser Pro Thr Thr Gly Val Pro Leu Leu Ile Pro Phe Thr Leu 275 280 285

Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn Met Gly His Pro 290 295 300

Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu Gln Gly Leu Leu 305 310 315 320

Met Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly Cys 325 330 335

Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Arg Val\$340\$ \$350\$

Val Ala Val Cys Thr His Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp 355 360 365

Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln Leu Thr His Gly Ile Thr 370 375 380

Glu Leu Gly Pro Tyr Thr Leu Asp Arg His Ser Leu Tyr Val Asn Gly 385 390 395

Phe Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr Pro Asp Thr Ser 405 410 415

Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser Leu Ser Gly Pro 420 425 430

Thr Thr Ala Ser Pro Leu Leu Ile Pro Phe 435 440

<210> 44

<211> 442

<212> PRT

<213> Homo sapiens

<400> 44

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 35 40 45

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 65 70 75 . 80

Arg Gly Ser Leu Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro 85 90 95

Ile Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu 100 105 110

Thr Pro Ser Ser Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Ile 115 120 ° 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn 130 135 140

Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser Leu Glu Tyr Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys Asp Ser Ser 180 185 190

Thr Met Ala Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Glu Asp 195 Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Asn Leu Thr 215 Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 235 Tyr Val Asn Gly Phe Thr His Arg Ser Phe Met Pro Thr Thr Ser Thr 245 250 Leu Gly Thr Ser Thr Val Asp Val Gly Thr Ser Gly Thr Pro Ser Ser 265 Ser Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Met Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr 295 Gly Ser Arg Lys Phe Asn Thr Met Glu Ser Val Leu Gln Gly Leu Leu 315 Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys 330 Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr Asn Asp Ile Glu 375 Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly

395

390

Phe Thr His Gln Ser Ser Val Ser Thr Thr Ser Thr Pro Gly Thr Ser 405 410 415

Thr Val Asp Pro Arg Thr Ser Gly Thr Pro Ser Ser Leu Ser Ser Pro 420 425 430

Thr Ile Met Ala Ala Gly Pro Leu Leu Ile 435 440

<210> 45

<211> 379

<212> PRT

<213> Homo sapiens

<400> 45

Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe Lys Asn Thr Ser 1 5 10 15

Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu

Lys Asn Gly Ala Ala Thr Gly Met Asp Ala Ile Cys Ser His Arg Leu 35 40 45

Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp 65 70 ~ 75 80

Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Ala

Pro Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly 100 105 110

Thr Pro Ser Ser Leu Pro Ser Pro Thr Thr Ala Val Pro Leu Leu Ile 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Lys Tyr Glu Glu Asp 130 135 Met His Cys Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 155 Gln Ser Leu Phe Gly Pro Met Phe Lys Asn Thr Ser Val Gly Pro Leu 170 Tyr Ser Gly Cys Arg Leu Thr Leu Phe Arg Ser Glu Lys Asp Gly Ala 185 Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Val Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 215 Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 235 Tyr Val Asn Gly Phe Thr His Gln Thr Ser Ala Pro Asn Thr Ser Thr 245 250 Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser 260 Leu Pro Ser Pro Thr Ser Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met Glu Ser Val Leu Gln Gly Leu Leu 310 315 Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys 330

Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Val 340 345 350

Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn 355 360 365

Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu 370 375

<210> 46

<211> 439

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (1)..(439)

<223> Any "X" = any amino acid

<400> 46

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr Leu Arg Leu 35 40 45

Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr Asn Ser Val Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro 85 90 95

Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu Glu Thr Ser Gly
100 105 110

Thr Pro Ala Ser Leu Pro Gly His Thr Ala Pro Gly Pro Leu Leu Ile 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu His Tyr Glu Glu Asn 130 135 140

Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Met Glu Arg Val Leu 145 150 155 160

Gln Gly Cys Leu Val Pro Cys Ser Arg Asn Thr Asn Val Gly Leu Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 180 185 190

Xaa Xaa Xaa Xaa Xaa Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Ala Pro Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser 260 265 270

Leu Pro Ser Pro Thr Thr Val Pro Leu Leu Val Pro Phe Thr Leu Asn 275 280 285

Phe Thr Ile Thr Asn Leu Gln Tyr Gly Glu Asp Met Arg His Pro Gly 290 295 300 *

Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Gly 310 Pro Leu Phe Lys Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg 330 Leu Ile Ser Leu Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His His Leu Asn Pro Gln Ser Pro Gly Leu Asp Arg 360 Glu Gln Leu Tyr Trp Gln Leu Ser Gln Val Thr Asn Gly Ile Lys Glu 375 Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe 390 Thr His Arg Ser Ser Gly Leu Thr Thr Ser Thr Pro Trp Thr Ser Thr 410 405 Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Pro Val Pro Ser Pro Thr 425 420 Thr Ala Gly Pro Leu Leu Ile 435 <210> 47 <211> 1366 <212> PRT <213> Homo sapiens <400> 47 Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser

10

62

Leu Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu 25 Lys Asp Ser Ser Ala Met Ala Val Asp Ala Ile Cys Thr His Arg Pro 40 Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 55 Ser Asn Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp 75 Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Met Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Val Gly Thr Ser Gly Thr Pro Ser Ser Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Met 120 Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 135 Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met Glu Arg Val Leu 145 150 155 Gln Gly Pro Leu Ser Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu 165 170 Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys Asp Gly Ala 180 185 Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg 195 200 Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 215 220 His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu

230

235

Tyr	Val	Asn	Gly	Phe 245	Thr	His	Gln	Asn	Ser 250	Val	Pro	Thr	Thr	Ser 255	Thr
Pro	Gly	Thr	Ser 260	Thr	Val	Tyr	Trp	Ala 265	Thr	Thr	Gly	Thr	Pro 270	Ser	Ser
Phe	Pro	Gly 275	His	Thr	Glu	Pro	Gly 280	Pro	Leu	Leu	Ile	Pro 285	Phe	Thr	Leu
Asn	Phe 290	Thr		Thr	Asn	Leu 295	Gln	Tyr	Glu	Glu	Asn 300	Met	Gly	His	Pro
Gly 305	Ser	Arg	rys,	Phe	Asn 310	Ile	Thr	Glu	Arg	Val 315	Leu	Gln	Gly	Leu	Leu 320
Asn	Pro	Ile	Phe	Lys 325	Asn	Ser	Ser	Val	Gly 330	Pro	Leu	Tyr	Ser	Gly 335	Cys
Arg	Leu	Thr	Ser 340	Leu	Arg	Pro	Glu	Lys 345	Asp	Gly	Ala	Ala	Thr 350	Gly	Met
Asp	Ala	Val 355	Cys	Leu	Tyr	His	Pro 360	Asn	Pro	Lys	Arg	Pro 365	Gly	Leu	Asp
Arg	Glu 370	Gln	Leu	Tyr	Cys	Glu 375	Leu	Ser	Gln	Leu	Thr 380	His	Asn	Ile	Thr
Glu 385	Leu	Gly	Pro	Tyr	Ser 390	Leu	Asp	Arg	Asp	Ser 395	Leu	Tyr	Val	Asn	Gly 400
Phe	Thr	His	Gln	Asn 405	Ser	Val	Pro	Thr	Thr 410	Ser	Thr	Pro	Gly	Thr 415	Ser
Thr	Val	Tyr	Trp 420		Thr	Thr	Gly	Thr 425		Ser	Ser	Phe	Pro 430	Gly	His
Thr	Glu	Pro 435		Pro	Leu	Leu	Ile 440		Phe	Thr	Leu	Asn 445	Phe	Thr	Ile

Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys
450 460

Phe Asn Thr Met Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe 465 470 475 480

Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu 485 490 495

Leu Arg Pro Glu Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile Cys 500 505 510

Thr Leu Arg Leu Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu 515 520 525

Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser Val Thr Glu Leu Gly Pro 530 535 540

Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg 545 550 555 560

Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu 565 570 575

Glu Thr Ser Gly Thr Pro Ala Ser Leu Pro Gly His Thr Ala Pro Gly 580 585 590

Pro Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln 595 600 605

Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe Asn Thr Thr 610 620

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 625 630 635 640

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 645 650 655

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 660 665 670

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 680 675 Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 695 Arg Gly Ser Leu Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro 715 Ile Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu 730 Thr Pro Ser Ser Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Ile 745 Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn 760 Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Thr Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser Leu Glu Tyr Leu 795 Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu Lys Asp Ser Ser 805 Ala Met Ala Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Glu Asp 820 825 Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Asn Leu Thr 840 835 Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 850 855 Tyr Val Asn Gly Phe Thr His Arg Ser Ser Met Pro Thr Thr Ser Thr

870

865

875

Pro Gly Thr Ser Thr Val Asp Val Gly Thr Ser Gly Thr Pro Ser Ser 885 890 895

Ser Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Met Pro Phe Thr Leu 900 905 910

Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr 915 920 925

Gly Ser Arg Lys Phe Asn Thr Met Glu Ser Val Leu Gln Gly Leu Leu 930 935 940

Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys 945 950 955 960

Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Gly Val 965 970 975

Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn 980 985 990

Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr Asn Asp Ile Glu 995 1000 1005

Glu Val Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn 1010 1015 1020

Gly Phe Thr His Arg Ser Phe Val Ala Pro Thr Ser Thr Leu Gly 1025 1030 1035

Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser Leu 1040 1045 1050

Pro Ser Pro Thr Thr Gly Val Pro Leu Leu Ile Pro Phe Thr Leu 1055 $$ 1060 $$ 1065

Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn Met Gly His 1070 1080

Pro Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu Gln Gly 1085 1090 1095

Leu	Leu 1100	Ser	Pro	Ile	Phe	Lys 1105	Asn	Ser	Ser	Val	Gly 1110	Ser	Leu	Tyr
Ser	Gly 1115	Cys	Arg	Leu	Thr	Leu 1120	Leu	Arg	Pro	Glu	Lys 1125	Asp	Gly	Ala
Ala	Thr 1130	Arg	Val	Asp	Ala	Val 1135	Суз	Thr	His	Arg	Pro 1140	Asp	Pro	Lys
Ser	Pro 1145	Gly	Leu	Asp	Arg	Glu 1150	Arg	Leu	Tyr	Trp	Lys 1155	Leu	Ser	Gln
Leu	Thr 1160	His	Gly	Ile	Ile	Glu 1165	Leu	Gly	Pro	Tyr	Thr 1170	Leu	Asp	Arg
His	Ser 1175	Phe	Tyr	Val	Asn	Gly 1180	Phe	Thr	His	Gln	Ser 1185	Ser	Met	Thr
Thr	Thr 1190	Arg	Thr	Pro	Asp	Thr 1195	Ser	Thr	Met	His	Leu 1200	Ala	Thr	Ser
Arg	Thr 1205	Pro	Ala	Ser	Leu	Ser 1210	Gly	Pro	Thr	Thr	Ala 1215	Ser	Pro	Leu
Leu	Val 1220		Phe	Thr		Asn 1225		Thr	Ile	Thr	Asn 1230	Gln	Arg	Tyr
Glu	Glu 1235		Met	His	His	Pro 1240	Gly	Ser	Arg	Lys	Phe 1245	Asn	Thr	Thr
Glu	Arg 1250		Leu	Gln	Gly	Leu 1255		Arg	Pro	Val	Phe 1260	Lys	Asn	Thr
Ser	Val 1265		Pro	Leu	Tyr	Ser 1270		Cys	Arg	Leu	Thr 1275	Leu	Leu	Arg
Pro	Lys 1280		Asp	Gly	Ala	Ala 1285		Lys	Val	Asp	Ala 1290		Cys	Thr

Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu 1295 1300 1305

Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly 1310 1315 1320

Pro Tyr Thr Gln Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr 1325 1330 1335

His Arg Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Ser Ala 1340 1345 1350

Val His Leu Glu Thr Ser Gly Thr Pro Ala Ser Leu Pro 1355 1360 1365

<210> 48

<211> 1148

<212> PRT

<213> Homo sapiens

<400> 48

Met Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly Cys 1 5 10 15

Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Arg Val 20 25 30

Asp Ala Val Cys Thr His Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp 35 40 45

Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln Leu Thr His Gly Ile Ile 50 55 60

Glu Leu Gly Pro Tyr Thr Leu Asp Arg His Ser Phe Tyr Val Asn Gly 65 70 75 80

Phe Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr Pro Asp Thr Ser 85 90 95

Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser Leu Ser Gly Pro
100 105 110

Thr Thr Ala Ser Pro Leu Leu Val Leu Phe Thr Ile Asn Phe Thr Ile 115 120 125

Thr Asn Gln Arg Tyr Glu Glu Asn Met His His Pro Gly Ser Arg Lys 130 135 140

Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Val Phe 145 150 155 160

Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu 165 170 175

Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys
180 185 190

Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu 195 200 205

Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro 210 215 220

Tyr Thr Gln Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg 225 230 235 240

Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu 245 250 255

Glu Thr Ser Gly Thr Pro Ala Ser Leu Pro Gly Pro Ser Ala Ala Ser 260 265 270

Pro Leu Leu Val Leu Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Arg 275 280 285

Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr 290 295 300

Glu Arg Val Leu Gln Gly Leu Leu Arg Ser Leu Phe Lys Ser Thr Ser 305 310 Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Thr Ala Thr Gly Val Asp Ala Ile Cys Thr His His Pro 345 Asp Pro Lys Ser Pro Arg Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly His Tyr Ala Leu Asp 375 Asn Asp Ser Leu Phe Val Asn Gly Phe Thr His Arg Ser Ser Val Ser Thr Thr Ser Thr Pro Gly Thr Pro Thr Val Tyr Leu Gly Ala Ser Lys 410 Thr Pro Ala Ser Ile Phe Gly Pro Ser Ala Ala Ser His Leu Leu Ile Leu Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn 435 Met Trp Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln 450 455 Gly Leu Leu Arg Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr 465 470 Ser Gly Ser Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Glu Ala 485 490 Thr Gly Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Thr Gly Pro 500 505 510 Gly Leu Asp Arg Glu Gln Leu Tyr Leu Glu Leu Ser Gln Leu Thr His 515 520 525

Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr 540 Val Asn Gly Phe Thr His Arg Ser Ser Val Pro Thr Thr Ser Thr Gly 550 Val Val Ser Glu Glu Pro Phe Thr Leu Asn Phe Thr Ile Asn Asn Leu 570 565 Arg Tyr Met Ala Asp Met Gly Gln Pro Gly Ser Leu Lys Phe Asn Ile 585 Thr Asp Asn Val Met Lys His Leu Leu Ser Pro Leu Phe Gln Arg Ser 600 Ser Leu Gly Ala Arg Tyr Thr Gly Cys Arg Val Ile Ala Leu Arg Ser Val Lys Asn Gly Ala Glu Thr Arg Val Asp Leu Leu Cys Thr Tyr Leu Gln Pro Leu Ser Gly Pro Gly Leu Pro Ile Lys Gln Val Phe His Glu 650 Leu Ser Gln Gln Thr His Gly Ile Thr Arg Leu Gly Pro Tyr Ser Leu 660 665 Asp Lys Asp Ser Leu Tyr Leu Asn Gly Tyr Asn Glu Pro Gly Leu Asp 675 Glu Pro Pro Thr Thr Pro Lys Pro Ala Thr Thr Phe Leu Pro Pro Leu 690 Ser Glu Ala Thr Thr Ala Met Gly Tyr His Leu Lys Thr Leu Thr Leu 715 710 705 Asn Phe Thr Ile Ser Asn Leu Gln Tyr Ser Pro Asp Met Gly Lys Gly 730 725

Ser Ala Thr Phe Asn Ser Thr Glu Gly Val Leu Gln His Leu Leu Arg 740 745 750

Pro Leu Phe Gln Lys Ser Ser Met Gly Pro Phe Tyr Leu Gly Cys Gln
755 760 765

Leu Ile Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp 770 775 780

Thr Thr Cys Thr Tyr His Pro Asp Pro Val Gly Pro Gly Leu Asp Ile 785 790 795 - 800

Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Gly Val Thr Gln 805 810 815

Leu Gly Phe Tyr Val Leu Asp Arg Asp Ser Leu Phe Ile Asn Gly Tyr 820 825 830

Ala Pro Gln Asn Leu Ser Ile Arg Gly Glu Tyr Gln Ile Asn Phe His 835 840 845

Ile Val Asn Trp Asn Leu Ser Asn Pro Asp Pro Thr Ser Ser Glu Tyr 850 855 860

Ile Thr Leu Leu Arg Asp Ile Gln Asp Lys Val Thr Thr Leu Tyr Lys 865 870 875 880

Gly Ser Gln Leu His Asp Thr Phe Arg Phe Cys Leu Val Thr Asn Leu 885 890 895

Thr Met Asp Ser Val Leu Val Thr Val Lys Ala Leu Phe Ser Ser Asn 900 905 910

Leu Asp Pro Ser Leu Val Glu Gln Val Phe Leu Asp Lys Thr Leu Asn 915 920 925

Ala Ser Phe His Trp Leu Gly Ser Thr Tyr Gln Leu Val Asp Ile His 930 935 940

Val Thr Glu Met Glu Ser Ser Val Tyr Gln Pro Thr Ser Ser Ser 945 950 955 960

Thr Gln His Phe Tyr Leu Asn Phe Thr Ile Thr Asn Leu Pro Tyr Ser 965 970 975

Gln Asp Lys Ala Gln Pro Gly Thr Thr Asn Tyr Gln Arg Asn Lys Arg 980 985 990

Asn Ile Glu Asp Ala Leu Asn Gln Leu Phe Arg Asn Ser Ser Ile Lys 995 1000 1005

Ser Tyr Phe Ser Asp Cys Gln Val Ser Thr Phe Arg Ser Val Pro 1010 1015 1020

Asn Arg His His Thr Gly Val Asp Ser Leu Cys Asn Phe Ser Pro 1025 1030 1035

Leu Ala Arg Arg Val Asp Arg Val Ala Ile Tyr Glu Glu Phe Leu 1040 1045 1050

Arg Met Thr Arg Asn Gly Thr Gln Leu Gln Asn Phe Thr Leu Asp 1055 1060 1065

Arg Ser Ser Val Leu Val Asp Gly Tyr Ser Pro Asn Arg Asn Glu 1070 1075 1080

Pro Leu Thr Gly Asn Ser Asp Leu Pro Phe Trp Ala Val Ile Leu 1085 1090 1095

Ile Gly Leu Ala Gly Leu Leu Gly Leu Ile Thr Cys Leu Ile Cys 1100 1105 1110

Gly Val Leu Val Thr Thr Arg Arg Arg Lys Lys Glu Gly Glu Tyr 1115 1120 1125

Asn Val Gln Gln Gln Cys Pro Gly Tyr Tyr Gln Ser His Leu Asp 1130 1135 1140

Leu Glu Asp Leu Gln 1145 <210> 49

<211> 6833

<212> DNA

<213> Homo sapiens

60	ggaatacctc	atagcagtct	ttgttcagga	gctcaaaccc	tgcagggtct	<400> 49 gagagggttc
120	catggcagtg	atagctcagc	ccagagaagg	ctcactcagg	gcagactagc	tattcaggct
180	agagcgactg	gactggacag	gaagacctcg	ccctgaccct	gcacacatcg	gatgccatct
240	caccctggac	tgggccccta	atccaggagc	gacaaatggc	tgagcaatct	tactgggagc
300	caccagcact	ctatgcccac	catcgaagct	tggtttcacc	tctatgtcaa	cggaacagtc
360	ccccagcccc	catcctccag	tcagggactc	tgtgggaacc	ccacagtgga	cctgggacct
420	caacctgcag	tcaccatcac	acceteaact	gatgccgttc	gccctctcct	acgactgctg
480	gagggttctg	acaccatgga	aggaagttca	cactggctcc	acatgcgtcg	tacgaggagg
540	ctctggctgc	gccctctgta	tccagtgttg	attcaagaac	ttagtcccat	cagggtccgc
600 '	tgctgtctgc	ctggaatgga	ggggcagcaa	cgagaaggat	ctctcaggcc	agactgacct
660	ctgggagcta	agcagctgta	ctggacagag	aagacctggg	ctaatcccaa	ctctaccacc
720	ggacagtctc	gcctggacag	ggcccctaca	cactgagctg	cccacaacat	agccagctga
780	tgggacctcc	ccagtactcc	gtgcccacca	tcagaactct	gtttcaccca	tatgtcaatg
840	agagcctggc	ccggccacac	tcctccttcc	tgggactcca	gggcaaccac	acagtgtact
900	tgaggagaac	acctacagta	accatcacta	gctcaacttc	taccattcac	cctctcctga
960	gggtctgctt	gggttctgca	atcacggaga	gaagttcaac	ctggctccag	atgggtcacc
1020	actgacctct	ctggctgcag	cctctgtact	cagtgttggc	tcaagaactc	aatcccattt
1080	ctaccaccct	ctgtctgcct	ggaatggatg	ggcagcaact	agaaggatgg	ctcaggcccg
1140	ccagctgacc	gcgagctaag	cagctgtact	ggacagagag	gacctgggct	aatcccaaaa
1200	tgtcaatggt	acagtcttta	ttggacaggg	cccctacagc	ctgagctggg	cacaacatca
1260	agtgtactgg	ggacctccac	agtactcctg	gcccaccacc	agaactctgt	ttcacccatc
1320	tctcctgata	agcctggccc	ggccacacag	ctccttcccc	ggactccatc	gcaaccactg

ccattcaccc tcaacttcac catcaccaac ctgcagtacg aggaggacat gcgtcgcact 1380 ggctccagga agttcaacac catggagagg gttctgcagg gtctgctcaa gcccttgttc 1440 aagagcacca gcgttggccc tctgtactct ggctgcagac tgaccttgct cagacctgag 1500 aaacatgggg cagccactgg agtggacgcc atctgcaccc tccgccttga tcccactggt 1560 cctggactgg acagagagcg gctatactgg gagctgagcc agctgaccaa cagcgttaca 1620 gagetgggee cetacaccet ggacagggae agtetetatg teaatggett cacecategg 1680 agctctgtgc caaccaccag tattcctggg acctctgcag tgcacctgga aacctctggg 1740 acticagent coetectigg coacacaged detiggedete teetiggtiged atteacecte 1800 aacttcacta tcaccaacct gcagtatgag gaggacatgc gtcaccctgg ttccaggaag 1860 ttcaacacca cggagagagt cctgcagggt ctgctcaagc ccttgttcaa gagcaccagt 1920 1980 gttggccctc tgtactctgg ctgcagactg accttgctca ggcctgaaaa acgtggggca 2040 agagagcagc tatactggga gctgagcaaa ctgacccgtg gcatcatcga gctgggcccc 2100 tacctcctgg acagaggcag tctctatgtc aatggtttca cccatcggaa ctttgtgccc 2160 2220 atcaccagca ctcctgggac ctccacagta cacctaggaa cctctgaaac tccatcctcc ctacctagac ccatagtgcc tggccctctc ctgataccat tcacactcaa cttcaccatc 2280 2340 actaacctac agtatgagga gaacatgggt caccetggct ccaggaagtt caacatcacg 2400 gagagggttc tgcagggtct gctcaaaccc ttgttcagga atagcagtct ggaatacctc 2460 tattcaggct gcagactaac ctcactcagg ccagagaagg atagctcaac catggcagtg 2520 gatgecatet geacacateg ecetgaceet gaagaceteg gaetggacag agagegaetg 2580 tactgggagc tgagcaatct gacaaatggc atccaggagc tgggccccta caccctggac 2640 cggaacagtc tctatgtcaa tggtttcacc catcgaagct ctatgcccac caccagcact cctgggacct ccacagtgga tgtgggaacc tcagggactc catcctccag ccccagcccc 2700 acgactgctg gccctctcct gatgccgttc accctcaact tcaccatcac caacctgcag 2760 2820 tacgaggagg acatgcgtcg cactggctcc aggaagttca acaccatgga gagtgtcctg cagggtctgc tcaagccctt gttcaagaac accagtgttg gccctctgta ctctggctgc 2880 2940 agattgacct tgctcaggcc caagaaagat ggggcagcca ctggagtgga tgccatctgc

3000 acccaccgcc ttgaccccaa aagccctgga ctcaacaggg agcagctgta ctgggagtta agcaaactga ccaatgacat tgaagaggtg ggcccctaca ccttggacag gaacagtctc 3060 tatgtcaatg gtttcaccca tcggagcttt gtggccccca ccagcactct tgggacctcc 3120 acagtggacc ttgggacctc agggactcca tcctccctcc ccagccccac aacaggtgtt 3180 cctctcctga taccattcac actcaacttc accatcacta acctacagta tgaggagaac 3240 atgggtcacc ctggctccag gaagttcaac atcatggaga gggttctgca gggtctgctt 3300 atgcccttgt tcaagaacac cagtgtcagc tctctgtact ctggttgcag actgaccttg 3360 3420 ctcaggcctg agaaggatgg ggcagccacc agagtggttg ctgtctgcac ccatcgtcct gaccccaaaa gccctggact ggacagagag cggctgtact ggaagctgag ccagctgacc 3480 3540 cacggcatca ctgagctggg cccctacacc ctggacaggc acagtctcta tgtcaatggt ttcacccatc agagetetat gacgaccacc agaactectg atacetecac aatgeacetg 3600 gcaacctcga gaactccagc ctccctgtct ggacctacga ccgccagccc tctcctgata 3660 ccattcacaa ttaacttcac catcactaac ctgcggtatg aggagaacat gcatcaccct 3720 ggctctagaa agtttaacac cacggagaga gtccttcagg gtctgctcag gcctgtgttc 3780 aagaacacca gtgttggccc tctgtactct ggctgcagac tgaccttgct caggcccaag 3840 aaggatgggg cagccaccaa agtggatgcc atctgcacct accgccctga tcccaaaagc 3900 cctggactgg acagagagca gctatactgg gagctgagcc agctaaccca cagcatcact 3960 gagetgggee ectacaceet ggaeagggae agtetetatg teaatggttt cacacagegg 4020 agctctgtgc ccaccactag cattcctggg acccccacag tggacctggg aacatctggg 4080 actocagttt ctaaacctgg tooctoggot gocagoooto tootggtgot attoactoto 4140 aacttcacca tcaccaacct gcggtatgag gagaacatgc agcaccctgg ctccaggaag 4200 ttcaacacca cggagagggt ccttcagggc ctgctcaggt ccctgttcaa gagcaccagt 4260 gttggccctc tgtactctgg ctgcagactg actttgctca ggcctgaaaa ggatgggaca 4320 gccactggag tggatgccat ctgcacccac caccctgacc ccaaaagccc taggctggac 4380 agagagcagc tgtattggga gctgagccag ctgacccaca atatcactga gctgggccac 4440 tatgccctgg acaacgacag cctctttgtc aatggtttca ctcatcggag ctctgtgtcc 4500 accaccagca ctcctgggac ccccacagtg tatctgggag catctaagac tccagcctcg 4560

atatttggcc	cttcagctgc	cagccatctc	ctgatactat	tcaccctcaa	cttcaccatc	4620
actaacctgc	ggtatgagga	gaacatgtgg	cctggctcca	ggaagttcaa	cactacagag	4680
agggtccttc	agggcctgct	aaggcccttg	ttcaagaaca	ccagtgttgg	ccctctgtac	4740
tctggctcca	ggctgacctt	gctcaggcca	gagaaagatg	gggaagccac	cggagtggat	4800
gccatctgca	cccaccgccc	tgaccccaca	ggccctgggc	tggacagaga	gcagctgtat	4860
ttggagctga	gccagctgac	ccacagcatc	actgagctgg	gcccctacac	actggacagg	4920
gacagtctct	atgtcaatgg	tttcacccat	cggagctctg	tacccaccac	cagcaccggg	4980
gtggtcagcg	aggagccatt	cacactgaac	ttcaccatca	acaacctgcg	ctacatggcg	5040
gacatgggcc	aacccggctc	cctcaagttc	aacatcacag	acaacgtcat	gaagcacctg	5100
ctcagtcctt	tgttccagag	gagcagcctg	ggtgcacggt	acacaggctg	cagggtcatc	5160
gcactaaggt	ctgtgaagaa	cggtgctgag	acacgggtgg	acctcctctg	cacctacctg	5220
cagcccctca	gcggcccagg	tctgcctatc	aagcaggtgt	tccatgagct	gagccagcag	5280
acccatggca	tcacccggct	gggcccctac	tctctggaca	aagacagcct	ctaccttaac	5340
ggttacaatg	aacctggtct	agatgagcct	cctacaactc	ccaagccagc	caccacattc	5400
ctgcctcctc	tgtcagaagc	cacaacagcc	atggggtacc	acctgaagac	cctcacactc	5460
aacttcacca	tctccaatct	ccagtattca	ccagatatgg	gcaagggctc	agctacattc	5520
aactccaccg	agggggtcct	tcagcacctg	ctcagaccct	tgttccagaa	gagcagcatg	5580
ggccccttct	acttgggttg	ccaactgatc	teceteagge	ctgagaagga	tggggcagcc	5640
actggtgtgg	acaccacctg	cacctaccac	cctgaccctg	tgggccccgg	gctggacata	5700
cagcagcttt	actgggagct	gagtcagctg	acccatggtg	tcacccaact	gggcttctat	5760
gtcctggaca	gggatagcct	cttcatcaat	ggctatgcac	cccagaattt	atcaatccgg	5820
ggcgagtacc	agataaattt	ccacattgtc	aactggaacc	tcagtaatcc	agaccccaca	5880
tcctcagagt	acatcaccct	gctgagggac	atccaggaca	aggtcaccac	actctacaaa	5940
ggcagtcaac	tacatgacac	attccgcttc	tgcctggtca	ccaacttgac	gatggactcc	6000
gtgttggtca	ctgtcaaggc	attgttctcc	tccaatttgg	accccagcct	ggtggagcaa	6060
gtctttctag	ataagaccct	gaatgcctca	ttccattggc	tgggctccac	ctaccagttg	6120
gtggacatco	: atgtgacaga	aatggagtca	tcagtttatc	aaccaacaag	cagctccagc	6180

acccagcact	tctacccgaa	tttcaccatc	accaacctac	catarticca	ggacaaagcc	6240
cagccaggca	ccaccaatta	ccagaggaac	aaaaggaata	ttgaggatgc	gctcaaccaa	6300
ctcttccgaa	acagcagcat	caagagttat	ttttctgact	gtcaagtttc	aacattcagg	6360
tctgtcccca	acaggcacca	caccggggtg	gactccctgt	gtaacttctc	gccactggct	6420
cggagagtag	acagagttgc	catctatgag	gaatttctgc	ggatgacccg	gaatggtacc	6480
cagctgcaga	acttcaccct	ggacaggagc	agtgtccttg	tggatgggta	ttctcccaac	6540
agaaatgagc	ccttaactgg	gaattctgac	cttcccttct	gggctgtcat	cttcatcggc	6600
ttggcaggac	tcctgggact	catcacatgc	ctgatctgcg	gtgtcctggt	gaccacccgc	6660
cggcggaaga	aggaaggaga	atacaacgtc	cagcaacagt	gcccaggcta	ctaccagtca	6720
cacctagacc	tggaggatct	gcaatgactg	gaacttgccg	gtgcctgggg	tgcctttccc	6780
ccagccaggg	tccaaagaag	cttggctggg	gcagaaataa	accatattgg	tcg	6833

<210> 50

<211> 2248

<212> PRT

<213> Homo sapiens

<400> 50

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser 1 5 10 15

Leu Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu 20 25 30

Lys Asp Ser Ser Ala Met Ala Val Asp Ala Ile Cys Thr His Arg Pro 35 40 45

Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Asn Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Met Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Val Gly Thr Ser Gly Thr Pro Ser Ser Ser Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Met Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met Glu Arg Val Leu Gln Gly Pro Leu Ser Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly Thr Pro Ser Ser Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Leu

Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn Met Gly His Pro 290 295 300

Gly Ser Arg Lys Phe Asn Ile Thr Glu Arg Val Leu Gln Gly Leu Leu 305 310 315 320

Asn Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly Cys 325 330 335

Arg Leu Thr Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Met 340 345 350

Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg Pro Gly Leu Asp 355 360 365

Arg Glu Gln Leu Tyr Cys Glu Leu Ser Gln Leu Thr His Asn Ile Thr 370 375 380

Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 385 390 395 400

Phe Thr His Gln Asn Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser 405 410 415

Thr Val Tyr Trp Ala Thr Thr Gly Thr Pro Ser Ser Phe Pro Gly His 420 425 430

Thr Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile 435 440 445

Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys
450 460

Phe Asn Thr Met Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe 465 470 475 480

Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu 485 490 495

Leu Arg Pro Glu Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile Cys 500 505 510

Thr Leu Arg Leu Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu 515 Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser Val Thr Glu Leu Gly Pro 535 530 Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg 550 Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu 565 570 Glu Thr Ser Gly Thr Pro Ala Ser Leu Pro Gly His Thr Ala Pro Gly 585 Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln 600 Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe Asn Thr Thr 620 615 Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 635 630 Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 650 Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 660 Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 675 Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 695 Arg Gly Ser Leu Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro 715

Ile Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu
725 730 735

Thr Pro Ser Ser Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Ile 740 745 750

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn 755 760 765

Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Thr Glu Arg Val Leu 770 775 780

Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser Leu Glu Tyr Leu 785 790 795 800

Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu Lys Asp Ser Ser 805 810 815

Ala Met Ala Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Glu Asp 820 825 830

Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Asn Leu Thr 835 840 845

Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 850 855 860

Tyr Val Asn Gly Phe Thr His Arg Ser Ser Met Pro Thr Thr Ser Thr 865 870 875 880

Pro Gly Thr Ser Thr Val Asp Val Gly Thr Ser Gly Thr Pro Ser Ser 885 890 895

Ser Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Met Pro Phe Thr Leu 900 905 910

Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr 915 920 925

Gly Ser Arg Lys Phe Asn Thr Met Glu Ser Val Leu Gln Gly Leu Leu 930 935 940

Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys 945 950 955 960

Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Gly Val 965 970 975

Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn 980 985 990

Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr Asn Asp Ile Glu 995 1000 1005

Glu Val Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn 1010 1015 1020

Gly Phe Thr His Arg Ser Phe Val Ala Pro Thr Ser Thr Leu Gly 1025 1030 1035

Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser Leu 1040 1045 1050

Pro Ser Pro Thr Thr Gly Val Pro Leu Leu Ile Pro Phe Thr Leu 1055 1060 1065

Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn Met Gly His 1070 1075 1080

Pro Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu Gln Gly 1085 1090 1095

Leu Leu Ser Pro Ile Phe Lys Asn Ser Ser Val Gly Ser Leu Tyr 1100 1105 1110

Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala 1115 1120 1125

Ala Thr Arg Val Asp Ala Val Cys Thr His Arg Pro Asp Pro Lys 1130 1135 1140

Ser Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln 1145 1150 Leu Thr His Gly Ile Ile Glu Leu Gly Pro Tyr Thr Leu Asp Arg 1165 1170 His Ser Phe Tyr Val Asn Gly Phe Thr His Gln Ser Ser Met Thr 1180 1185 Thr Thr Arg Thr Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser 1195 1200 Arg Thr Pro Ala Ser Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu 1210 1215 Leu Val Leu Phe Thr Ile Asn Phe Thr Ile Thr Asn Gln Arg Tyr 1225 Glu Glu Asn Met His His Pro Gly Ser Arg Lys Phe Asn Thr Thr 1240 1245 Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Val Phe Lys Asn Thr 1255 Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg 1270 Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys Thr 1285 Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu 1300 Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly 1315 1320 Pro Tyr Thr Gln Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr 1330 1335 His Arg Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Ser Ala 1345 1350

	His 1355	Leu	Glu	Thr	Ser	Gly 1360	Thr	Pro	Ala	Ser	Leu 1365	Pro	Gly	Pro
Ser	Ala 1370	Ala	Ser	Pro	Leu	Leu 1375	Val	Leu	Phe	Thr	Leu 1380	Asn	Phe	Thr
Ile	Thr 1385		Leu	Arg	Tyr	Glu 1390	Glu	Asn	Met	Gln	His 1395	Pro	Gly	Ser
Arg	Lys 1400		Asn	Thr	Thr	Glu 1405	Arg	Val	Leu	Gln	Gly 1410	Leu	Leu	Arg
Ser	Leu 1415		Lys	Ser	Thr	Ser 1420	Val	Gly	Pro	Leu	Tyr 1425	Ser	Gly	Суз
Arg	Leu 1430		Leu	Leu	Arg	Pro 1435	Glu	Lys	Asp	Gly	Thr 1440	Ala	Thr	Gly
Val	Asp 1445		Ile	Cys		His 1450		Pro	Asp	Pro	Lys 1455	Ser	Pro	Arg
	1460					1465					Gln 1470			
	1475					1480					Asn 1485			
	1490					1495					Ser 1500			
Thr	Pro 1505					1510					Ser 1515			
Ala	Ser 1520					1525					Leu 1530			
Phe	Thr 1535		Asn	Phe	Thr	Ile 1540		Asn	Leu	Arg	Tyr 1545	Glu	Glu	Asn

Met	Trp 1550	Pro	Gly	Ser	Arg	Lys 1555	Phe	Asn	Thr	Thr	Glu 1560	_	Val	Leu
Gln	Gly 1565	Leu	Leu	Arg	Pro	Leu 1570		Lys	Asn	Thr	Ser 1575		Gly	Pro
Leu	Tyr 1580	Ser	Gly	Ser	Arg	Leu 1585		Leu	Leu	Arg	Pro 1590		Lys	Asp
Gly	Glu 1595	Ala	Thr	Glу	Val	Asp 1600	Ala	Ile	Суѕ	Thr	His 1605	Arg	Pro	Asp
Pro	Thr 1610	Gly	Pro	Gly	Leu	Asp 1615	Arg	Glu	Gln	Leu	Tyr 1620	Leu	Glu	Leu
	Gln 1625					1630				-	1635	-		
	Arg 1640					1645					1650			
Val	Pro 1655	Thr	Thr	Ser	Thr	Gly 1660	Val	Val	Ser	Glu	Glu 1665	Pro	Phe	Thr
	Asn 1670					1675		_			1680			_
	Pro 1685					1690				_	1695			_
	Leu 1700					1705					1710	_		
	Thr 1715	-	-			1720					1725	-		Ī
	Glu 1730					1735		_		-	1740			
ser	Gly 1745	Pro	GLY	Leu	Pro	11e 1750	гàг	G1n	Val	Phe	His 1755	Glu	Leu	Ser

Gln	Gln 1760	Thr	His	Gly	Ile	Thr 1765	Arg	Leu	Gly	Pro	Tyr 1770	Ser	Leu	Asp
Lys	Asp 1775	Ser	Leu	Tyr	Leu	Asn 1780	Gly	Tyr	Asn	Glu	Pro 1785	Gly	Leu	Asp
Glu	Pro 1790	Pro	Thr	Thr	Pro	Lys 1795	Pro	Ala	Thr	Thr	Phe 1800	Leu	Pro	Pro
Leu	Ser 1805	Glu	Ala	Thr	Thr	Ala 1810		Gly	Tyr	His	Leu 1815	Lys	Thr	Leu
Thr	Leu 1820	Asn	Phe	Thr	Ile	Ser 1825		Leu	Gln	Tyr	Ser 1830	Pro	Asp	Met
Gly	Lys 1835	Gly	Ser	Ala	Thr	Phe 1840	Asn	Ser	Thr	Glu	Gly 1845	Val	Leu	Gln
His	Leu 1850	Leu	Arg	Pro	Leu	Phe 1855	Gln	Lys	Ser	Ser	Met 1860	Gly	Pro	Phe
Tyr	Leu 1865	Gly	Cys	Gln	Leu	Ile 1870	Ser	Leu	Arg	Pro	Glu 1875	Lys	Asp	Gly
Ala	Ala 1880		Gly	Val	Asp	Thr 1885	Thr	Cys	Thr	Tyr	His 1890	Pro	Asp	Pro
Val	Gly 1895		Gly	Leu	Asp	Ile 1900		Gln	Leu	Tyr	Trp 1905	Glu	Leu	Ser
Gln	Leu 1910		His	Gly	Val	Thr 1915		Leu	Gly	Phe	Tyr 1920	Val	Leu	Asp
Arg	Asp 1925		Leu	Phe	Ile	Asn 1930		Tyr	Ala	Pro	Gln 1935	Asn	Leu	Ser
Ile	Arg 1940		Glu	Tyr	Gln	Ile 1945		Phe	His	Ile	Val 1950	Asn	Trp	Asn

Leu	Ser 1955	Asn	Pro	Asp	Pro	Thr 1960		Ser	Glu	Tyr	Ile 1965		Ļeu	Leu
Arg	Asp 1970	Ile	Gln	Asp	Lys	Val 1975	Thr	Thr	Leu	Tyr	Lys 1980	Gly	Ser	Gln
Leu	His 1985		Thr	Phe	Arg	Phe 1990		Leu	Val	Thr	Asn 1995		Thr	Met
Asp	Ser 2000	Val	Leu	Val	Thr	Val 2005		Ala	Leu		Ser 2010		Asn	Leu
Asp	Pro 2015	Ser	Leu	Val	Glu	Gln 2020	Val	Phe	Leu	Asp	Lys 2025	Thr	Leu	Asn
Ala	Ser 2030	Phe	His	Trp		Gly 2035	Ser	Thr	Tyr	Gln	Leu 2040	Val	Asp	Ile
His	Val 2045	Thr	Glu	Met		Ser 2050	Ser	Val	Tyr	Gln	Pro 2055	Thr	Ser	Ser
Ser	Ser 2060	Thr	Gln	His		Tyr 2065	Leu	Asn	Phe	Thr	Ile 2070	Thr	Asn	Leu
Pro	Tyr 2075	Ser	Gln	Asp	Lys	Ala 2080	Gln	Pro	Gly	Thr	Thr 2085	Asn	Tyr	Gln
Arg	Asn 2090		Arg	Asn		Glu 2095	Asp	Ala	Leu	Asn	Gln 2100	Leu	Phe	Arg
	Ser 2105					2110				_	2115			
Phe	Arg 2120	Ser	Val	Pro	Asn	Arg 2125	His	His	Thr	Gly	Val 2130	Asp	Ser	Leu
Cys	Asn 2135	Phe	Ser	Pro	Leu	Ala 2140	Arg	Arg	Val	Asp	Arg 2145	Val	Ala	Ile
Tyr	Glu 2150		Phe	Leu	Arg	Met 2155	Thr	Arg	Asn	Gly	Thr 2160	Gln	Leu	Gln

Asn Phe Thr Leu Asp Arg Ser Ser Val Leu Val Asp Gly Tyr Ser 2170 2165

Pro Asn Arg Asn Glu Pro Leu Thr Gly Asn Ser Asp Leu Pro Phe 2185 2180

Trp Ala Val Ile Leu Ile Gly Leu Ala Gly Leu Leu Gly Leu Ile 2195

Thr Cys Leu Ile Cys Gly Val Leu Val Thr Thr Arg Arg Arg Lys 2215 2210

Lys Glu Gly Glu Tyr Asn Val Gln Gln Gln Cys Pro Gly Tyr Tyr 2235 2230 2225

Gln Ser His Leu Asp Leu Glu Asp Leu Gln 2245 2240

<210> 51

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Primer

<400> 51

cagcagagac cagcacgagt actc

<210> 52

<211> 20

<212> DNA

<213> Artificial Sequence

WO 02/083866

<220>		
<223>	Synthetic Primer	
<400> tccact	52 gcca tggctgagct	20
<210>	53	
<211>	22	
<212>	DNA .	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Primer	
<400> ccagca	53 cago tottoccagg ac	22
<210>	54	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Primer	
<400> ggaatg	54 gctg agctgacgtc tg	22
<210>	55	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<223>	Synthetic Primer	
<400> cttccc	55 agga caacctcaag g	21
<210>	56	
<211>	21	
<212>	DNA .	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Primer	
<400> gcagga	56 tgag tgagccacgt g	21
<210>	57	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Primer	
<400> gtcaga	57 tctg gtgacctcac tg	22
<210>	58	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	

WO 02/083866

<220>		
<223>	Synthetic Primer	
<400> gaggca	58 ctgg aaagcccaga g	21
<210>	59	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	• •
<220>		
<223>	Synthetic Primer	
<400> ctgatg	59 gcat tatggaacac atcac	25
<210>	60	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Primer	
<400> cccaga	60 acga gagaccagtg ag	22
<210>	61	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	

PCT/US02/11734

<220>		
<223>	Synthetic Primer	
<400> gctgate	61 ggcg atgaatgaac actg	24
<210>	62	
<211>	22	
<212>	DNA.	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Primer	
<400> cccaga	62 acga gagaccagtg ag	22
<210>	63	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Primer	
<400> cgcgga	63 tccg aacactgcgt ttgctggctt tgatg	35
<210>	64	
<211>	23	
<212>	DNA	
Z213N	Artificial Sequence	

⁻ <220>		
<223>	Synthetic Primer	
<400> cctct	64 gtgtg ctgcttcatt ggg	23
<210>	65	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Primer	
<400> accgga	65 ateca tgggeeacae agageetgge ee	32
<210>	66	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
	, ,	
<220>		
<223>	Synthetic Primer	
<400> tgtaag	octta ggcagggagg atggagtcc	29
<210>	67	
<211>	507	
<212>	DNA	
<213>	Homo sanion	

.400> 67												
<400> 67 atgagagga	t cgcat	cacca t	cacca	tcac	gga	tcca	tgg	gcca	caca	ga g	cctg	gccct
ctcctgata	c catto	acttt c	aactt	tacc	atc	acca	acc	tgca	ttat	ga g	gaaa	acatg
caacaccct	g gttcc	aggaa g	rttcaa	cacc	acg	gaga	ggg	ttct	gcag	gg t	ctgc	tcaag
cccttgttc	a agaac	accag t	gttgg	ccct	ctg	tact	ctg	gctg	caga	ct g	acct	tgctc
agacctgag	a agcat	gaggc a	gccac	tgga	gtg	gaca	cca	tctg	tacc	ca c	cgcg	ttgat
cccatcgga	c ctgga	ctgga c	agaga	gcgg	cta	tact	ggg	agct	gagc	ca g	ctga	ccaac
agcatcacag agctgggacc ctacaccctg gacagggaca gtctctatgt caatggcttc												
aaccetegga getetgtgee aaccaceage acteetggga cetecaeagt geacetggea												
acctetggga etecatecte cetgeet												
<210> 68	:					-						
<211> 16	. .											
<212> PF	T											
<213> Homo sapiens												
<400> 68	3											
Met Arg (Sly Ser	His His	s His	His	His	His 10	Gly	Ser	Met	Gly	His 15	Thr
Glu Pro (Sly Pro 20	Leu Le	u Ile	Pro	Phe 25	Thr	Phe	Asn	Phe	Thr 30	Ile	Thr
Asn Leu i	lis Tyr 35	Glu Gl	u Asn	Met 40	Gln	His	Pro	Gly	Ser 45	Arg	Lys	Phe
Asn Thr	Thr Glu	Arg Va	l Leu 55	Gln	Gly	Leu	Leu	Lys 60	Pro	Leu	Phe	Lys

Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu

Arg Pro Glu Lys His Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr 85 90 95

His Arg Val Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr 100 105 110

Trp Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr 115 120 125

Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Asn Pro Arg Ser 130 135 140

Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Ala 145 150 155 160

Thr Ser Gly Thr Pro Ser Ser Leu Pro 165

<210> 69

<211> 909

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (1)..(909)

<223> Any "X" = any amino acid

<400> 69

Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe Lys Asn Thr Ser 1 5 10 15

Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys 20 25 30

Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr Arg Pro 35 40 45

Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 55 Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 . 75 Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg Ser Ser Val Pro 85 Thr Thr Ser Ile Pro Gly Thr Pro Thr Val Asp Leu Gly Thr Ser Gly 105 Thr Pro Val Ser Lys Pro Gly Pro Ser Ala Ala Ser Pro Leu Leu Ile 120 Pro Phe Thr Ile Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn 135 Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu 155 150 Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu 170 165 Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala 185 180 Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser 200 Pro Gly Leu Asn Arg Glu Gln Leu. Tyr Trp Glu Leu Ser Lys Leu Thr 210 Asn Asp Ile Glu Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 230 225

Tyr Val Asn Gly Phe Thr His Gln Ser Ser Val Ser Thr Thr Ser Thr

245

Pro Gly Thr Ser Thr Val Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser 260 265 270

Leu Ser Ser Pro Thr Ile Met Ala Ala Gly Pro Leu Leu Ile Pro Phe 275 280 285

Thr Ile Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn Met His 290 295 300

His Pro Gly Ser Arg Lys Phe Asn Thr Met Glu Arg Val Leu Gln Gly 305 310 315 - 320

Leu Leu Met Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser 325 330 335

Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr 340 345 350

Arg Val Asp Ala Val Cys Thr His Arg Pro Asp Pro Lys Ser Pro Gly 355 360 365

Leu Asp Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln Leu Thr His Gly 370 375 380

Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val 385 390 395 400

Asn Gly Phe Thr His Arg Ser Ser Met Pro Thr Thr Ser Thr Pro Gly 405 410 415

Thr Ser Thr Val Asp Val Gly Thr Ser Gly Thr Pro Ser Ser Ser Pro 420 425 430

Ser Pro Thr Thr Ala Gly Pro Leu Leu Met Pro Phe Thr Leu Asn Phe 435 440 445

Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser 450 460

Arg Lys Phe Asn Thr Met Glu Arg Val Leu Gln Gly Leu Leu Lys Pro 465 470 475 480

Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu 485 490 495

Thr Leu Leu Arg Pro Glu Lys His Gly Ala Ala Thr Gly Val Asp Ala 500 505 510

Ile Cys Thr Leu Arg Leu Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu 515 520 525

Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser Val Thr Glu Leu 530 535 540

Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr 545 550 550 560

His Arg Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Ser Ala Val 565 570 575

His Leu Glu Thr Ser Gly Thr Pro Ala Ser Leu Pro Gly His Thr Ala 580 585 590

Pro Gly Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn 595 600 605

Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe Asn 610 615 620

Thr Met Glu Arg Val Leu Gln Gly Cys Leu Val Pro Cys Ser Arg Asn 625 630 635 640

Thr Asn Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg 645 650 655

Xaa Glu Lys Xaa Xaa Ala Ala Thr Xaa Val Asp Xaa Xaa Cys Xaa Xaa 660 665 670

Xaa Xaa Asp Pro Xaa Xaa Pro Gly Leu Asp Arg Glu Xaa Leu Tyr Trp 675 680 685

Glu Leu Ser Xaa Leu Thr Xaa Xaa Ile Xaa Glu Leu Gly Pro Tyr Thr 690 695 700

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser 705 710 715 720

Val Ala Pro Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr
725 730 735

Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Thr Val Pro Leu Leu 740 745 . 750

Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Gly Glu 755 760 765

Asp Met Arg His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val 770 775 780

Leu Gln Gly Leu Leu Gly Pro Leu Phe Lys Asn Ser Ser Val Gly Pro
785 790 795 800

Leu Tyr Ser Gly Cys Arg Leu Ile Ser Leu Arg Ser Glu Lys Asp Gly 805 810 815

Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His His Leu Asn Pro Gln 820 825 830

Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Gln Leu Ser Gln Val 835 840 845

Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser 850 855 860

Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Gly Leu Thr Thr Ser 865 870 875 880

Thr Pro Trp Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser 885 890 895

Pro Val Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Ile 900 905

<210> 70

<211> 525

<212> PRT

<213> Homo sapiens

<400> 70

Gln Gly Leu Leu Gly Pro Met Phe Lys Asn Thr Ser Val Gly Leu Leu 1 5 10 15

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Arg Gly Ala 20 25 30

Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu Asp Pro Leu Asn 35 40 45

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr 50, 60

Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp Arg Gly Ser Leu 65 70 75 80

Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro Ile Thr Ser Thr 85 90 95

Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu Thr Pro Ser Ser 100 105 110

Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Val Pro Phe Thr Leu 115 120 125

Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Ala Met Arg His Pro 130 135 140

Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu 145 150 155 160

Arg Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly Cys 165 170 175

Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Arg Val 180 185 190

Asp Ala Ala Cys Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp 195 200 205

Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr 210 215 220

Glu Leu Gly Pro Tyr Thr Leu Asp Arg Val Ser Leu Tyr Val Asn Gly 225 230 235 240

Phe Asn Pro Arg Ser Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser 245 250 255

Thr Val His Leu Ala Thr Ser Gly Thr Pro Ser Ser Leu Pro Gly His 260 265 270

Thr Ala Pro Val Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile 275 280 285

Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys 290 295 300

Phe Asn Thr Met Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Leu Phe 305 310 315 320

Lys Asn Thr Ser Ile Gly Pro Leu Tyr Ser Ser Cys Arg Leu Thr Leu 325 330 335

Leu Arg Pro Glu Lys Asp Lys Ala Ala Thr Arg Val Asp Ala Ile Cys 340 345 350

Thr His His Pro Asp Pro Gln Ser Pro Gly Leu Asn Arg Glu Gln Leu 355 360 365

Tyr Trp Glu Leu Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro 370 380

Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asp Gly Phe Thr His Trp 390 385 Ser Pro Ile Pro Thr Thr Ser Thr Pro Gly Thr Ser Ile Val Asn Leu 410 Gly Thr Ser Gly Ile Pro Pro Ser Leu Pro Glu Thr Thr Ala Thr Gly Pro Leu Leu Ile Pro Phe Thr Pro Asn Phe Thr Ile Thr Asn Leu Gln 440 435 Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met 455 Glu Arg Val Leu Gln Gly Leu Leu Ser Pro Ile Phe Lys Asn Ser Ser 470 Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu 490 485 Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro 500 Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr 520 <210> 71 <211> 594 <212> PRT <213> Homo sapiens <400> 71 Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 10

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 25 Lys Asp Gly Val Ala Thr Arg Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Lys Ile Pro Gly Leu Asp Arg Gln Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 75 ⁻ 70 Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg Ser Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Phe Thr Val Gln Pro Glu Thr Ser Glu 105 Thr Pro Ser Ser Leu Pro Gly Pro Thr Ala Thr Gly Pro Val Leu Leu 120 Pro Phe Thr Leu Asn Phe Thr Ile Ile Asn Leu Gln Tyr Glu Glu Asp 135 Met His Arg Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 Gln Gly Leu Leu Met Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu 170 165 Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Gln Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu Asp Pro Ser Glu 195 200 Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 220 210 215 Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu 225 230 235

Tyr Val Asn Gly Phe Thr His Ser Gly Val Leu Cys Pro Pro Pro Ser 250 245 Ile Leu Gly Ile Phe Thr Val Gln Pro Glu Thr Phe Glu Thr Pro Ser 265 Ser Leu Pro Gly Pro Thr Ala Thr Gly Pro Val Leu Leu Pro Phe Thr 280 Leu Asn Phe Thr Ile Ile Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 315 310 Leu Thr Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly 325 Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Gln Glu Ala Ala Thr Gly 340 Val Asp Thr Ile Cys Thr His Arg Val Asp Pro Ile Gly Pro Gly Leu 360 365 Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser Ile 375 Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn 390 Gly Phe Asn Pro Trp Ser Ser Val Pro Thr Thr Ser Thr Pro Gly Thr 410 Ser Thr Val His Leu Ala Thr Ser Gly Thr Pro Ser Ser Leu Pro Gly 425 420 His Thr Ala Pro Val Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr 440 435

Ile Thr Asn Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg
450 455 460

Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu 465 470 475 480

Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr 485 490 495

Leu Leu Arg Pro Glu Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile
500 505 510

Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Val Asp Arg Glu Gln 515 520 525

Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly 530 535 540

Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His 545 550 555 560

Trp Tle Pro Val Pro Thr Ser Ser Thr Pro Gly Thr Ser Thr Val Asp 565 570 575

Leu Gly Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Thr Ala Gly
580 585 590

Pro Leu

. <210> 72

<211> 424

<212> PRT

<213> Homo sapiens

<400> 72

Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg
1 5 10 15

Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Tyr Thr His 20 25 Arg Leu Asp Pro Lys Ser Pro Gly Val Asp Arg Glu Gln Leu Tyr Trp 40 Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln Thr Ser Ala Pro Asn Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Ser Ala Gly Pro Leu 105 Leu Ile Pro Phe Thr Ile Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu 120 Glu Asn Met His His Pro Gly Ser Arg Lys Phe Asn Thr Met Glu Arg 135 Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly 155 150 Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp 170 Gly Val Ala Thr Arg Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Lys Ile Pro Gly Leu Asp Arg Gln Gln Leu Tyr Trp Glu Leu Ser Gln 200

Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp

215

Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg Ser Ser Val Pro Thr Thr 225 230 235 240

Ser Thr Pro Gly Thr Phe Thr Val Gln Pro Glu Thr Ser Glu Thr Pro 245 250 255

Ser Ser Leu Pro Gly Pro Thr Ala Thr Gly Pro Val Leu Leu Pro Phe 260 265 270

Thr Leu Asn Phe Thr Ile Ile Asn Leu Gln Tyr Glu Glu Asp Met His 275 280 285

Arg Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly 290 295 300

Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser 305 310 315 320

Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys His Gly Ala Ala Thr 325 330 335

Gly Val Asp Ala Ile Cys Thr Leu Arg Leu Asp Pro Thr Gly Pro Gly 340 345 350

Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Ser 355 360 365

Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val 370 375 380

Asn Gly Phe Asn Pro Trp Ser Ser Val Pro Thr Thr Ser Thr Pro Gly 385 390 395 400

Thr Ser Thr Val His Leu Ala Thr Ser Gly Thr Pro Ser Ser Leu Pro 405 410 415

Gly His Thr Ala Pro Val Pro Leu

<210> 73

<211> 286

<212> PRT

<213> Homo sapiens

<400> 73

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 35 40 45

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 65 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Pro 85 90 95

Thr Thr Ser Ile Pro Gly Thr Ser Ala Val His Leu Glu Thr Ser Gly 100 105 110

Thr Pro Ala Ser Leu Pro Gly His Thr Ala Pro Gly Pro Leu Leu Val 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 130 135 140

Met Arg His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Arg Gly Ala 180 185 190

Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu Asp Pro Leu Asn 195 200 205

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr 210 215 220

Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp Arg Gly Ser Leu 225 230 235 - 240

Tyr Val Asn Gly Phe Thr His Arg Asn Phe Val Pro Ile Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu Thr Pro Ser Ser 260 265 270

Leu Pro Arg Pro Ile Val Pro Gly Pro Leu Leu Ile Pro Phe 275 280 285

<210> 74

<211> 286

<212> PRT

<213> Homo sapiens

<400> 74

Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Val Phe Lys Asn Thr Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys , 20 25 30

Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr Arg Pro 35 40 45

Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr Gln Arg Ser Ser Val Pro 85 Thr Thr Ser Ile Pro Gly Thr Pro Thr Val Asp Leu Gly Thr Ser Gly 105 Thr Pro Val Ser Lys Pro Gly Pro Ser Ala Ala Ser Pro Leu Leu Val 120 Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 135 Met His Arg Pro Gly Ser Arg Lys Phe Asn Ala Thr Glu Arg Val Leu 155 150 Gln Gly Leu Leu Ser Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu 170 Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys Asp Gly Ala 185 Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg 200 Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr 210 His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu 235 230 Tyr Val Asn Gly Phe Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr 250 245 Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser

265

Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Ile Pro Phe 275 280 285

<210> 75

<211> 286

<212> PRT

<213> Homo sapiens

<400> 75

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 1 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Leu 35 40 45

Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu Leu Asp 70 75 80

Arg Gly Ser Leu Tyr Val Asn Gly Phe Ser Arg Gln Ser Ser Met Thr 85 90 95

Thr Thr Arg Thr Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg 100 105 110

Thr Pro Ala Ser Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Ile 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn 130 135 140

Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Asn Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu 170 175 165

Tyr Ser Gly Cys Arg Leu Thr Ser Leu Lys Pro Glu Lys Asp Gly Ala 185 180

Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg 200

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr

His Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 235 230

Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Ala Pro Thr Ser Thr 245 250

Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser

Leu Pro Ser Pro Thr Thr Ala Val Pro Leu Leu Ile Pro Phe

<210> 76

<211> 286

<212> PRT

<213> Homo sapiens

<400> 76

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser 10

Leu Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu 25

Lys Asp Ser Ser Ala Met Ala Val Asp Ala Ile Cys Thr His Arg Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Asn Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Gly Leu 85 90 95

Thr Thr Ser Thr Pro Trp Thr Ser Thr Val Asp Leu Gly Thr Ser Gly 100 105 110

Thr Pro Ser Pro Val Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Ile 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn 130 135 140

Met Gly His Pro Gly Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu 145 150 150 160

Gln Gly Leu Leu Met Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala 180 185 190

Ala Thr Arg Val Asp Ala Val Cys Thr Gln Arg Pro Asp Pro Lys Ser 195 200 205

Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Lys Leu Ser Gln Leu Thr 210 215 220

His Gly Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg His Ser Leu 225 230 235 240

Tyr Val Asn Gly Leu Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr 245 250 255

Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser 260 265 270

Leu Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Ile Pro Phe 275 280 285

<210> 77

<211> 288

<212> PRT

<213> Homo sapiens

<400> 77

Glu Arg Val Leu Gln Gly Leu Leu Ser Pro Ile Ser Lys Asn Ser Ser 1 5 10 15

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu 20 25 30

Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro 35 40 45

Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly 100 105 110

Thr Pro Ser Ser Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile . 115 120 125

Pro Phe Thr Val Asn Phe Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn 130 135 140

Met His His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Arg Pro Val Phe Lys Asn Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala 180 185 - 190

Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr Arg Pro Asp Pro Lys Ser 195 200 205

Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr 210 215 220

Asn Asp Ile Glu Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 225 230 235 240

Tyr Val Asn Gly Phe Thr His Gln Ser Ser Val Ser Thr Thr Ser Thr 245 250 255

Pro Gly Thr Ser Thr Val Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser 260 265 270

Leu Ser Ser Pro Thr Ile Met Ala Ala Gly Pro Leu Leu Ile Pro Phe 275 280 285

<210> 78

<211> 597

<212> PRT

<213> Homo sapiens

<400> 78

Glu Arg Val Leu His Gly Leu Leu Thr Pro Leu Phe Lys Asn Thr Arg
1 5 10 15

117

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu 20 25 30

Lys Gln Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His Arg Val 35 40 45

Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp Glu Leu 50 55 60

Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp 70 75 80

Arg Asp Ser Leu Tyr Val Asn Gly Phe Asn Pro Trp Ser Ser Val Pro 85 90 95

Thr Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Ala Thr Ser Gly 100 105 110

Thr Pro Ser Ser Leu Pro Gly His Thr Ala Pro Val Pro Leu Leu Ile 115 120 125

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu His Tyr Glu Glu Asn 130 135 140

Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 145 150 155 160

Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu 165 170 175

Tyr Ser Gly Cys Arg Leu Thr Leu Phe Lys Pro Glu Lys His Glu Ala 180 185 190

Ala Thr Gly Val Asp Ala Ile Cys Thr Leu Arg Leu Asp Pro Thr Gly 195 200 205

Pro Gly Leu Asp Arg Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn 210 215 220

Ser 225	Val	Thr	Glu	Leu	Gly 230	Pro	Tyr	Thr	Leu	Asp 235	Arg	Asp	Ser	Leu	Ty: 240
Val	Asn	Gly	Phe	Thr 245	His	Arg	Ser	Ser	Val 250	Pro	Thr	Thr	Ser	Ile 255	Pro
Gly	Thr	Ser	Ala 260	Val	His	Leu	Glu	Thr 265	Ser	Gly	Thr	Pro	Ala 270	Ser	Let
Pro	Gly	His 275	Thr	Ala	Pro	Gly	Pro 280	Leu	Leu	Ile	Pro	Phe 285	Thr	Leu	Asr
Phe	Thr 290	Ile	Thr	Asn	Leu	Gln 295	Tyr	Glu	Glu	Asp	Met 300	Arg	Arg	Thr	Gly
Ser 305	Arg	Lys	Phe	Asn	Thr 310	Met	Glu	Arg	Val	Leu 315	Gln	Gly	Leu	Leu	Lys 320
Pro	Leu	Phe	Lys	Ser 325	Thr	Ser	Val	Gly	Pro 330	Leu	Tyr	Ser	Gly	Cys 335	Arg
Leu	Thr	Leu	Leu 340	Arg	Pro	Glu	Lys	Arg 345	Gly	Ala	Ala	Thr	Gly 350	Val	Asp
Thr	Ile	Cys 355	Thr	His	Arg	Leu	Asp 360	Pro	Leu	Asn	Pro	Gly 365	Leu	Asp	Arg
Glu	Gln 370	Leu	Tyr	Trp	Glu	Leu 375	Ser	Lys	Leu	Thr	Arg 380	Gly	Ile	Ile	Glu
Leu 385	Gly	Pro	Tyr		Leu 390	Asp	Arg	Gly	Ser	Leu 395	Tyr	Val	Asn	Gly	Phe 400
Thr	His	Arg	Asn	Phe 405	Val	Pro	Ile	Thr	Ser 410	Thr	Pro	Gly	Thr	Ser 415	Thr
Val	His	Leu	Gly 420	Thr	Ser	Glu	Thr	Pro 425	Ser	Ser	Leu	Pro	Arg 430	Pro	Ile
Val	Pro	Gly 435	Pro	Leu	Leu	Ile	Pro	Phe	Thr	Ile	Asn	Phe	Thr	Ile	Thr

Asn Leu Arg Tyr Glu Glu Asn Met His His Pro Gly Ser Arg Lys Phe 450 455 460

Asn Ile Met Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Leu Phe Lys 465 470 475 480

Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Ile Ser Leu 485 490 495

Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr 500 505 510

His His Leu Asn Pro Gln Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr 515 520 525

Trp Gln Leu Ser Gln Met Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr 530 535 540

Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser 545 550 560

Ser Gly Leu Thr Thr Ser Thr Pro Trp Thr Ser Thr Val Asp Leu Gly 565 570 575

Thr Ser Gly Thr Pro Ser Pro Val Pro Ser Pro Thr Thr Ala Gly Pro 580 585 590

Leu Leu Ile Pro Phe 595

<210> 79

<211> 420

<212> PRT

<213> Homo sapiens

<400> 79

Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Pro Glu Lys
1 10 15

Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn 20 25 30

Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser 35 40 45

Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg
50 55 60

Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro Thr 65 70 75 80

Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly Thr 85 90 95

Pro Ser Ser Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile Pro 100 105 110

Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn Met 115 120 125

Gly His Pro Gly Ser Arg Lys Phe Asn Ile Thr Glu Ser Val Leu Gln 130 135 140

Gly Leu Leu Thr Pro Leu Phe Lys Asn Ser Ser Val Gly Pro Leu Tyr 145 150 155 160

Ser Gly Cys Arg Leu Ile Ser Leu Arg Ser Glu Lys Asp Gly Ala Ala 165 170 175

Thr Gly Val Asp Ala Ile Cys Thr His His Leu Asn Pro Gln Ser Pro 180 185 190

Gly Leu Asp Arg Glu Gln Leu Tyr Trp Gln Leu Ser Gln Met Thr Asn 195 200 205

Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr 210 215 220

Ala Ala Ser Pro

420

121

Val Asn Gly Phe Thr His Arg Ser Leu Gly Leu Thr Thr Ser Thr Pro 230 Trp Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Pro Val 250 Pro Ser Pro Thr Thr Ala Gly Pro Leu Leu Ile Pro Phe Thr Leu Asn 265 260 Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asn Met Gly His Pro Gly 280 Ser Arg Lys Phe Asn Ile Met Glu Arg Val Leu Gln Gly Leu Leu Arg 300 295 290 Pro Val Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg 315 Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp 330 325 Ala Ile Cys Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg 345 Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu 360 Leu Gly Pro Tyr Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe 375 Thr Gln Arg Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Pro Thr 395 Val Asp Leu Gly Thr Ser Gly Thr Pro Val Ser Lys Pro Gly Pro Ser 410 405

<210> 80

<211> 479

<212> PRT

<213> Homo sapiens

<400> 80

Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr 20 25 30

His Gln Ser Ser Val Ser Thr Thr Ser Thr Pro Gly Thr Ser Thr Val 35 40 45

Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser Leu Ser Ser Pro Thr Ile 50 55 60

Met Ala Ala Gly Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile 65 70 75 80

Thr Asn Leu Gln Tyr Glu Glu Asn Met Gly His Pro Gly Ser Arg Lys 85 90 95

Phe Asn Ile Met Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe 100 105 110

Lys Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu 115 120 125

Leu Arg Pro Glu Lys Asn Gly Ala Ala Thr Gly Met Asp Ala Ile Cys 130 135 140

Ser His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu 145 150 155 160

Tyr Trp Glu Leu Ser Gln Leu Thr His Gly Ile Lys Glu Leu Gly Pro 165 170 175

Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Ala Pro Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Thr Ala Val Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Lys Tyr Glu Glu Asp Met His Cys Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Ser Leu Phe Gly Pro Met Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Leu Gly Val Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln Thr Ser Ala Pro Asn Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Ser Ala Gly Pro Leu Leu Val

Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 385 390 395 400

Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met Glu Ser Val Leu 405 . 410 415

Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu 420 425 430

Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala 435 440 - 445

Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser 450 460

Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu 465 470 475

<210> 81

<211> 5465

<212> DNA

<213> Homo sapiens

<400> 81 cagagagcgt tgagctggga acagtgacaa gtgcttatca agttccttca ctctcaacac 60 ggttgacaag aactgatggc attatggaac acatcacaaa aatacccaat gaagcagcac 120 acagaggtac cataagacca gtcaaaggcc ctcagacatc cacttcgcct gccagtccta 180 aaggactaca cacaggaggg acaaaaagaa tggagaccac caccacagct ttgaagacca 240 ccaccacage tttgaagace acttecagag ccaccttgac caccagtgte tatactecca 300 ctttgggaac actgactccc ctcaatgcat caaggcaaat ggccagcaca atcctcacag 360 aaatgatgat cacaacccca tatgttttcc ctgatgttcc agaaacgaca tcctcattgg 420 ctaccagcct gggagcagaa accagcacag ctcttcccag gacaacccca tctgttctca 480 atagagaatc agagaccaca gcctcactgg tctctcgttc tggggcagag agaagtccgg 540 ttattcaaac tctagatgtt tcttctagtg agccagatac aacagcttca tgggttatcc 600

atcctgcaga	gaccatccca	actgtttcca	agacaacccc	caatttttc	cacagtgaat	660
tagacactgt	atcttccaca	gccaccagtc	atggggcaga	cgtcagctca	gccattccaa	720
caaatatctc	acctagtgaa	ctagatgcac	tgaccccact	ggtcactatt	tcggggacag	780
atactagtac	aacattccca	acactgacta	agtccccaca	tgaaacagag	acaagaacca	840
catggctcac	tcatcctgca	gagaccagct	caactattcc	cagaacaatc	cccaatttt	900
ctcatcatga	atcagatgcc	acaccttcaa	tagccaccag	tcctggggca	gaaaccagtt	960
cagctattcc	aattatgact	gtctcacctg	gtgcagaaga	tctggtgacc	tcacaggtca	1020
ctagttctgg	gacagacaga	aatatgacta	ttccaacttt	gactctttct	cctggtgaac	1080
caaagacgat	agcctcatta	gtcacccatc	ctgaagcaca	gacaagttcg	gccattccaa	1140
cttcaactat	ctcgcctgct	gtatcacggt	tggtgacctc	aatggtcacc	agtttggcgg	1200
caaagacaag	tacaactaat	cgagctctga	caaactcccc	tggtgaacca	gctacaacag	1260
tttcattggt	cacgcatcct	gcacagacca	gcccaacagt	tccctggaca	acttccattt	1320
ttttccatag	taaatcagac	accacacctt	caatgaccac	cagtcatggg	gcagaatcca	1380
gttcagctgt	tccaactcca	actgtttcaa	ctgaggtacc	aggagtagtg	acccctttgg	1440
tcaccagttc	tagggcagtg	atcagtacaa	ctattccaat	tctgactctt	tctcctggtg	1500
aaccagagac	cacaccttca	atggccacca	gtcatgggga	agaagccagt	tctgctattc	1560
caactccaac	tgtttcacct	ggggtaccag	gagtggtgac	ctctctggtc	actagttcta	1620
gggcagtgac	tagtacaact	attccaattc	tgactttttc	tcttggtgaa	ccagagacca	1680
caccttcaat	ggccaccagt	catgggacag	aagctggctc	agctgttcca	actgttttac	1740
ctgaggtacc	aggaatggtg	acctctctgg	ttgctagttc	tagggcagta	accagtacaa	1800
ctcttccaac	tctgactctt	tctcctggtg	aaccagagac	cacaccttca	atggccacca	1860
gtcatggggc	agaagccagc	tcaactgttc	caactgtttc	acctgaggta	ccaggagtgg	1920
tgacctctct	ggtcactagt	tctagtggag	taaacagtac	aagtattcca	actctgattc	1980
tttctcctgg	tgaactagaa	accacacctt	caatggccac	cagtcatggg	gcagaagcca	2040
gctcagctgt	tccaactcca	actgtttcac	ctggggtatc	aggagtggtg	acccctctgg	2100
tcactagttc	cagggcagtg	accagtacaa	ctattccaat	tctaactctt	tcttctagtg	2160
agccagagac	cacaccttca	atggccacca	gtcatggggt	agaagccagc	tcagctgttc .	2220

taactgtttc acctgaggta ccaggaatgg tgacctctct ggtcactant tctagagcag 2280 taaccagtac aactattcca actctgacta tttcttctga tgaaccagag accacaactt 2340 cattggtcac ccattctgag gcaaagatga tttcagccat tccaacttta gctgtctccc 2400 ctactgtaca agggctggtg acttcactgg tcactagttc tgggtcagag accagtgcgt 2460 tttcaaatct aactgttgcc tcaagtcaac cagagaccat agactcatgg gtcgctcatc 2520 ctgggacaga agcaagttct gttgttccaa ctttgactgt ctccactggt gagccgttta 2580 caaatatctc attggtcacc catcctgcag agagtagctc aactcttccc aggacaacct 2640 caaggttttc ccacagtgaa ttagacacta tgccttctac agtcaccagt cctqaggcag 2700 aatccagctc agccatttca actactattt cacctggtat accaggtgtg ctgacatcac 2760 tggtcactag ctctgggaga gacatcagtg caacttttcc aacagtgcct gagtccccac 2820 atgaatcaga ggcaacagcc tcatgggtta ctcatcctqc agtcaccaqc acaacaqttc 2880 ccaggacaac ccctaattat tctcatagtg aaccagacac cacaccatca atagccacca 2940 gtcctggggc agaagccact tcagattttc caacaataac tgtctcacct gatgtaccag 3000 atatggtaac ctcacaggtc actagttctg ggacagacac cagtataact attccaactc 3060 tgactettte ttetggtgag ecagagacea caaceteatt tateacetat tetgagacae 3120 acacaagttc agccattcca actetecetg teteceetgg tgcatcaaag atgetgacet 3180 cactggtcat cagttctggg acagacagca ctacaacttt cccaacactg acggagaccc 3240 catatgaacc agagacaaca gccatacagc tcattcatcc tgcagagacc aacacaatgg 3300 ttcccaagac aactcccaag ttttcccata gtaagtcaga caccacactc ccagtagcca 3360 tcaccagtcc tgggccagaa gccagttcag ctgtttcaac gacaactatc tcacctgata 3420 tgtcagatct ggtgacctca ctggtcccta gttctgggac agacaccagt acaaccttcc 3480 caacattgag tgagacccca tatgaaccag agactacagt cacgtggctc actcatcctg 3540 cagaaaccag cacaacggtt tctgggacaa ttcccaactt ttcccatagg ggatcagaca 3600 ctgcaccctc aatggtcacc agtcctggag tagacacgaq gtcaggtgtt ccaactacaa 3660 ccatcccacc cagtatacca ggggtagtga cctcacaggt cactagttct gcaacagaca 3720 ctagtacage tattecaact ttgacteett eteetggtga accagagace acageeteat 3780 cagctaccca tcctgggaca cagactggct tcactgttcc aattcggact gttccctcta 3840

gtgagccaga tacaatggct teetgggtea eteateetee acagaccage acacetgttt	3900
ccagaacaac ctccagtttt tcccatagta gtccagatgc cacacctgta atggccacca	3960
gtcctaggac agaagccagt tcagctgtac tgacaacaat ctcacctggt gcaccagaga	4020
tggtgacttc acagatcact agttctgggg cagcaaccag tacaactgtt ccaactttga	4080
ctcattctcc tggtatgcca gagaccacag ccttattgag cacccatccc agaacaggga	4140
caagtaaaac atttcctgct tcaactgtgt ttcctcaagt atcagagacc acagcctcac	4200
tcaccattag acctggtgca gagactagca cagctctccc aactcagaca acatcctctc	4260
tetteaccet actigitaact ggaaccagca gagtigatet aagteeaact getteaccig	4320
gtgtttctgc aaaaacagcc ccactttcca cccatccagg gacagagacc agcacaatga	4380
ttccaacttc aactctttcc cttggtttac tagagactac aggcttactg gccaccagct	4440
cttcagcaga gaccagcacg agtactctaa ctctgactgt ttcccctgct gtctctgggc	4500
tttccagtgc ctctataaca actgataagc cccaaactgt gacctcctgg aacacagaaa	4560
cctcaccatc tgtaacttca gttggacccc cagaattttc caggactgtc acaggcacca	4620
ctatgacett gataceatea gagatgeeaa caceacetaa aaceagteat ggagaaggag	4680
tgagtccaac cactatcttg agaactacaa tggttgaagc cactaattta gctaccacag	4740
gttccagtcc cactgtggcc aagacaacaa ccaccttcaa tacactggct ggaagcctct	4800
ttactcctct gaccacacct gggatgtcca ccttggcctc tgagagtgtg acctcaagaa	4860
caagttataa ccatcggtcc tggatctcca ccaccagcag ttataaccgt cggtactgga	4920
cccctgccac cagcactcca gtgacttcta cattctcccc agggatttcc acatcctcca	4980
tocccagete cacageagee acagteceat teatggtgee atteaceete aactteacea	5040
tcaccaacct gcagtacgag gaggacatgc ggcaccctgg ttccaggaag ttcaacgcca	5100
cagagagaga actgcagggt ctgctcaaac ccttgttcag gaatagcagt ctggaatacc	5160
tctattcagg ctgcagacta gcctcactca ggccagagaa ggatagctca gccatggcag	5220
tggatgccat ctgcacacat cgccctgacc ctgaagacct cggactggac agagagcgac	5280
tgtactggga gctgagcaat ctgacaaatg gcatccagga gctgggcccc tacaccctgg	5340
accggaacag tototatgto aatggtttoa cocatcgaag ototatgcoc accaccagca	5400
ctcctgggac ctccacagtg gatgtgggaa cctcagggac tccatcctcc agccccagcc	5460

 ccacg
 5465

 <210> 82
 1821

 <211> 1821
 PRT

 <213> Homo sapiens
 400> 82

 Glu Ser Val Leu Glu Gly Thr Val Thr Ser Ala Tyr Gln Val Pro Ser 15
 5 Gly Thr Arg Leu Thr Arg Thr Asp Gly Ile Met Glu His Ile Thr 20

Lys Ile Pro Asn Glu Ala Ala His Arg Gly Thr Ile Arg Pro Val Lys 35 40 45

Gly Pro Gln Thr Ser Thr Ser Pro Ala Ser Pro Lys Gly Leu His Thr 50 60

Gly Gly Thr Lys Arg Met Glu Thr Thr Thr Thr Ala Leu Lys Thr Thr 65 70 75 80

Thr Thr Ala Leu Lys Thr Thr Ser Arg Ala Thr Leu Thr Thr Ser Val 85 90 95

Tyr Thr Pro Thr Leu Gly Thr Leu Thr Pro Leu Asn Ala Ser Arg Gln
100 105 110

Met Ala Ser Thr Ile Leu Thr Glu Met Met Ile Thr Thr Pro Tyr Val 115 120 125

Phe Pro Asp Val Pro Glu Thr Thr Ser Ser Leu Ala Thr Ser Leu Gly
130 135 140

Ala Glu Thr Ser Thr Ala Leu Pro Arg Thr Thr Pro Ser Val Leu Asn 145 150 155 160

Arg Glu Ser Glu Thr Thr Ala Ser Leu Val Ser Arg Ser Gly Ala Glu Arg Ser Pro Val Ile Gln Thr Leu Asp Val Ser Ser Ser Glu Pro Asp Thr Thr Ala Ser Trp Val Ile His Pro Ala Glu Thr Ile Pro Thr Val Ser Lys Thr Thr Pro Asn Phe Phe His Ser Glu Leu Asp Thr Val Ser Ser Thr Ala Thr Ser His Gly Ala Asp Val Ser Ser Ala Ile Pro Thr Asn Ile Ser Pro Ser Glu Leu Asp Ala Leu Thr Pro Leu Val Thr Ile Ser Gly Thr Asp Thr Ser Thr Thr Phe Pro Thr Leu Thr Lys Ser Pro His Glu Thr Glu Thr Arg Thr Thr Trp Leu Thr His Pro Ala Glu Thr Ser Ser Thr Ile Pro Arg Thr Ile Pro Asn Phe Ser His His Glu Ser Asp Ala Thr Pro Ser Ile Ala Thr Ser Pro Gly Ala Glu Thr Ser Ser Ala Ile Pro Ile Met Thr Val Ser Pro Gly Ala Glu Asp Leu Val Thr Ser Gln Val Thr Ser Ser Gly Thr Asp Arg Asn Met Thr Ile Pro Thr Leu Thr Leu Ser Pro Gly Glu Pro Lys Thr Ile Ala Ser Leu Val Thr

His Pro Glu Ala Gln Thr Ser Ser Ala Ile Pro Thr Ser Thr Ile Ser 370 380

Pro Ala Val Ser Arg Leu Val Thr Ser Met Val Thr Ser Leu Ala Ala 385 390 395 400

Lys Thr Ser Thr Thr Asn Arg Ala Leu Thr Asn Ser Pro Gly Glu Pro 405 410 415

Val Pro Trp Thr Thr Ser Ile Phe Phe His Ser Lys Ser Asp Thr Thr 435 440 445

Pro Ser Met Thr Thr Ser His Gly Ala Glu Ser Ser Ser Ala Val Pro 450 455 460

Thr Pro Thr Val Ser Thr Glu Val Pro Gly Val Val Thr Pro Leu Val 465 470 475 480

Thr Ser Ser Arg Ala Val Ile Ser Thr Thr Ile Pro Ile Leu Thr Leu 485 490 495

Ser Pro Gly Glu Pro Glu Thr Thr Pro Ser Met Ala Thr Ser His Gly 500 505 510

Glu Glu Ala Ser Ser Ala Ile Pro Thr Pro Thr Val Ser Pro Gly Val 515 520 525

Pro Gly Val Val Thr Ser Leu Val Thr Ser Ser Arg Ala Val Thr Ser 530 540

Thr Thr Ile Pro Ile Leu Thr Phe Ser Leu Gly Glu Pro Glu Thr Thr 545 550 555 560

Pro Ser Met Ala Thr Ser His Gly Thr Glu Ala Gly Ser Ala Val Pro 565 570 575

Thr Val Leu Pro Glu Val Pro Gly Met Val Thr Ser Leu Val Ala Ser 580 585 590

Ser	Arg	Ala 595	Val	Thr	Ser	Thr	Thr 600	Leu	Pro	Thr	Leu	Thr 605	Leu	Ser	Pro
Gly	Glu 610	Pro	Glu	Thr	Thr	Pro 615	Ser	Met	Ala	Thr	Ser 620	His	Gly	Ala	Glu
Ala 625	Ser	Ser	Thr	Val	Pro 630	Thr	Val	Ser	Pro	Glu 635	Val	Pro	Gly	Val	Val 640
Thr	Ser	Leu	Val	Thr 645	Ser	Ser	Ser	Gly	Val 650	Asn	Ser	Thr	Ser	Ile 655	Pro
Thr	Leu	Ile	Leu 660	Ser	Pro	Gly	Glu	Leu 665	Glu	Thr	Thr	Pro	Ser 670	Met	Ala
Thr	Ser	His 675	Gly	Ala	Glu	Ala	Ser 680	Ser	Ala	Val	Pro	Thr 685	Pro	Thr	Val
Ser	Pro 690	Gly	Val	Ser	Gly	Val 695	Val	Thr	Pro	Leu	Val 700	Thr	Ser	Ser	Arg
Ala 705	Val	Thr	Ser	Thr	Thr 710	Ile	Pro	Ile	Leu	Thr 715	Leu	Ser	Ser	Ser	Glu 720
Pro	Glu	Thr	Thr	Pro 725	Ser	Met	Ala	Thr	Ser 730	His	Gly	Val	Glu	Ala 735	Ser
Ser	Ala	Val	Leu 740	Thr	Val	Ser	Pro	Glu 745	Val	Pro	Gly	Met	Val 750	Thr	Ser
Leu	Val	Thr 755	Ser	Ser	Arg	Ala	Val 760	Thr	Ser	Thr	Thr	Ile 765	Pro	Thr	Leu
Thr	Ile 770		Ser	Asp	Glu	Pro 775		Thr	Thr	Thr	Ser 780	Leu	Val	Thr	His
Ser 785		Ala	Lys	Met	Ile 790		Ala	Ile	Pro	Thr 795	Leu	Ala	Val	Ser	Pro 800

Thr Val Gln Gly Leu Val Thr Ser Leu Val Thr Ser Ser Gly Ser Glu 805 810 815

Thr Ser Ala Phe Ser Asn Leu Thr Val Ala Ser Ser Gln Pro Glu Thr 820 825 830

Ile Asp Ser Trp Val Ala His Pro Gly Thr Glu Ala Ser Ser Val Val 835 840 845

Pro Thr Leu Thr Val Ser Thr Gly Glu Pro Phe Thr Asn Ile Ser Leu 850 860

Val Thr His Pro Ala Glu Ser Ser Ser Thr Leu Pro Arg Thr Thr Ser 865 870 875 880

Arg Phe Ser His Ser Glu Leu Asp Thr Met Pro Ser Thr Val Thr Ser 885 890 895

Pro Glu Ala Glu Ser Ser Ser Ala Ile Ser Thr Thr Ile Ser Pro Gly 900 905 910

Ile Pro Gly Val Leu Thr Ser Leu Val Thr Ser Ser Gly Arg Asp Ile 915 920 925

Ser Ala Thr Phe Pro Thr Val Pro Glu Ser Pro His Glu Ser Glu Ala 930 935 940

Thr Ala Ser Trp Val Thr His Pro Ala Val Thr Ser Thr Thr Val Pro 945 950 955 960

Arg Thr Thr Pro Asn Tyr Ser His Ser Glu Pro Asp Thr Thr Pro Ser 965 970 975

Ile Ala Thr Ser Pro Gly Ala Glu Ala Thr Ser Asp Phe Pro Thr Ile 980 985 990

Thr Val Ser Pro Asp Val Pro Asp Met Val Thr Ser Gln Val Thr Ser 995 1000 1005

Ser Gly Thr Asp Thr Ser Ile Thr Ile Pro Thr Leu Thr Leu Ser 1010 1015 1020

Ser	Gly 1025		Pro	Glu	Thr	Thr 1030	Thr	Ser	Phe	Ile	Thr 1035	Tyr	Ser	Glu
Thr	His 1040	Thr	Ser	Ser	Ala	Ile 1045	Pro	Thr	Leu	Pro	Val 1050	Ser	Pro	Gly
Ala	Ser 1055	_	Met	Leu		Ser 1060	Leu	Val	Ile	Ser	Ser 1065	Gly	Thr	Asp
Ser	Thr 1070	Thr	Thr	Phe	Pro	Thr 1075	Leu	Thr	Glu	Thr	Pro 1080	Tyr	Glu	Pro
Glu	Thr 1085	Thr	Ala	Ile	Gln	Leu 1090	Ile	His	Pro	Ala	Glu 1095	Thr	Asn	Thr
Met	Val 1100	Pro	Arg	Thr	Thr	Pro 1105	Lys	Phe	Ser	His	Ser 1110	Lys	Ser	A sp
Thr	Thr 1115		Pro	Val	Ala	Ile 1120	Thr	Ser	Pro	Gly	Pro 1125	Glu	Ala	Ser
Ser	Ala 1130	Val	Ser	Thr	Thr	Thr 1135	Ile	Ser	Pro	Asp	Met 1140	Ser	Asp	Leu
Val	Thr 1145	Ser	Leu	Val	Pro	Ser 1150		Gly	Thr	Asp	Thr 1155	Ser	Thr	Thr
Phe	Pro 1160		Leu	Ser	Glu	Thr 1165	Pro	Tyr	Glu	Pro	Glu 1170	Thr	Thr	Ala
Thr	Trp 1175		Thr			Ala 1180		Thr			Thr 1185	Val	Ser	Gly
Thr	Ile 1190		Asn	Phe	Ser	His 1195		Gly	Ser	Asp	Thr 1200	Ala	Pro	Ser
Met	Val 1205		Ser	Pro	Gly	Val 1210		Thr	Arg	Ser	Gly 1215	Val	Pro	Thr

Thr Thr Ile Pro Pro Ser Ile Pro Gly Val Val Thr Ser Gln Val Thr Ser Ser Ala Thr Asp Thr Ser Thr Ala Ile Pro Thr Leu Thr Pro Ser Pro Gly Glu Pro Glu Thr Thr Ala Ser Ser Ala Thr His Pro Gly Thr Gln Thr Gly Phe Thr Val Pro Ile Arg Thr Val Pro - 1275 Ser Ser Glu Pro Asp Thr Met Ala Ser Trp Val Thr His Pro Pro Gln Thr Ser Thr Pro Val Ser Arg Thr Thr Ser Ser Phe Ser His Ser Ser Pro Asp Ala Thr Pro Val Met Ala Thr Ser Pro Arg Thr Glu Ala Ser Ser Ala Val Leu Thr Thr Ile Ser Pro Gly Ala Pro Glu Met Val Thr Ser Gln Ile Thr Ser Ser Gly Ala Ala Thr Ser Thr Thr Val Pro Thr Leu Thr His Ser Pro Gly Met Pro Glu Thr Thr Ala Leu Leu Ser Thr His Pro Arg Thr Glu Thr Ser Lys Thr Phe Pro Ala Ser Thr Val Phe Pro Gln Val Ser Glu Thr Thr Ala Ser Leu Thr Ile Arg Pro Gly Ala Glu Thr Ser Thr Ala Leu Pro Thr Gln Thr Thr Ser Ser Leu Phe Thr Leu Leu Val Thr Gly Thr

Ser	Arg 1430		Asp	Leu	Ser	Pro 1435		Ala	Ser	Pro	Gly 1440	Val	Ser	Ala
Lys	Thr 1445	Ala	Pro	Leu		Thr 1450	His	Pro	Gly	Thr	Glu 1455	Thr	Ser	Thr
Met	Ile 1460			Ser	Thr	Leu 1465	Ser	Leu	Gly	Leu	Leu 1470	Glu	Thr	Thr
Gly	Leu 1475	Leu	Ala	Thr	Ser	Ser 1480	Ser	Ala	Glu	Thr	Ser 1485	Thr	Ser	Thr
Leu	Thr 1490	Leu	Thr	Val	Ser	Pro 1495	Ala	Val	Ser	Gly	Leu 1500	Ser	Ser	Ala
Ser	Ile 1505	Thr	Thr	Asp	Lys	Pro 1510	Gln	Thr	Val	Thr	Ser 1515	Trp	Asn	Thr
Glu	Thr 1520		Pro	Ser	Val	Thr 1525	Ser	Val	Gly	Pro	Pro 1530		Phe	Ser
Arg	Thr 1535	Val	Thr	Gly	Thr	Thr 1540	Met	Thr	Leu	Ile	Pro 1545	Ser	Glu	Met
Pro	Thr 1550	Pro	Pro	Lys	Thr	Ser 1555	His	Gly	Glu	Gly	Val 1560	Ser	Pro	Thr
Thr	Ile 1565	Leu	Arg	Thr	Thr	Met 1570	Val	Glu	Ala	Thr	Asn 1575	Leu	Ala	Thr
Thr	Gly 1580			Pro		Val 1585			Thr		Thr 1590	Thr	Phe	Asn
Thr	Leu 1595		Gly	Ser	Leu	Phe 1600		Pro	Leu	Thr	Thr 1605	Pro	Gly	Met
Ser	Thr 1610		Ala	Ser	Glu	Ser 1615		Thr	Ser	Arg	Thr 1620		Tyr	Asn

His Arg Ser Trp Ile Ser Thr Thr Ser Ser Tyr Asn Arg Arg Tyr Trp Thr Pro Ala Thr Ser Thr Pro Val Thr Ser Thr Phe Ser Pro Gly Ile Ser Thr Ser Ser Ile Pro Ser Ser Thr Ala Ala Thr Val Pro Phe Met Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu - 1680 Gln Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe Asn Ala Thr Glu Arg Glu Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg Asn Ser Ser Leu Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu Arg Pro Glu Lys Asp Ser Ser Ala Met Ala Val Asp Ala Ile Cys Thr His Arg Pro Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu 1745 1750 Arg Leu Tyr Trp Glu Leu Ser Asn Leu Thr Asn Gly Ile Gln Glu 1765 1770 Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly 1780 1785 Phe Thr His Arg Ser Ser Met Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Val Gly Thr Ser Gly Thr Pro Ser Ser Pro Ser Pro Thr

<210>	83	
<211>	468	
<212>	DNA	
<213>	Homo	sapiens

<400> 83 60 gccacagtcc cattcatggt gccattcacc ctcaacttca ccatcaccaa cctgcagtac 120 gaggaggaca tgcggcaccc tggttccagg aagttcaacg ccacagagag agaactgcag ggtctgctca aacccttgtt caggaatagc agtctggaat acctctattc aggctgcaga 180 ctagcctcac tcaggccaga gaaggatagc tcagccatgg cagtggatgc catctgcata 240 catcgccctg accctgaaga cctcggactg gacagagagc gactgtactg ggagctgagc 300 aatctgacaa atggcatcca ggagctgggc ccctacaccc tggaccggaa cagtctctat 360 420 gtcaatggtt tcacccatcg aagctctatg cccaccacca gcactcctgg gacctccaca 468 gtggatgtgg gaacctcagg gactccatcc tccagcccca gccccacg

<210> 84 <211> 474 <212> DNA <213> Homo sapiens

<400> 84 gctgctggcc ctctcctgat gccgttcacc ctcaacttca ccatcaccaa cctgcagtac 60 gaggaggaca tgcgtcgcac tggctccagg aagttcaaca ccatggagag tgtcctgcag 120 180 ggtctgctca agcccttgtt caagaacacc agtgttggcc ctctgtactc tggctgcaga 240 ttgacettgc tcaggcccaa gaaagatggg gcagccactg gagtggatgc catctgcacc caccgccttg accccaaaag ccctggactc aacagggagc agctgtactg ggagctaagc 300 360 aaactgacca atgacattga agagctgggc ccctacaccc tggacaggaa cagtctctat 420 gtcaatggtt tcacccatca gagetetgtg tccaccacca geactectgg gacetecaca

gtggatctca	gaacctcagg	gactccatcc	tccctctcca	gccccacaat	tatg	474
<210> 85						
<211> 468						
<212> DNA						
<213> Home	o sapiens					
<400> 85 gctgctggcc	ctctcctggt	accattcacc	ctcaacttca	ccatcaccaa	cctgcagtat	60
ggggaggaca	tgggtcaccc	tggctccagg	aagttcaaca	ccacagagag	ggtcctgcag	120
ggtctgcttg	gtcccatatt	caagaacacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgacctctc	tcaggtctga	gaaggatgga	gcagccactg	gagtggatgc	catctgcatc	240
catcatcttg	accccaaaag	ccctggactc	aacagagagc	ggctgtactg	ggagctgagc	300
caactgacca	atggcatcaa	agagctgggc	ccctacaccc	tggacaggaa	cagtctctat	360
gtcaatggtt	tcacccatcg	gacctctgtg	cccaccacca	gcactcctgg	gacctccaca	420
gtggaccttg	gaacctcagg	gactccattc	tccctcccaa	gccccgca		468
<210> 86						
<211> 465						
<212> DNA						
<213> Homo	sapiens					
•						
<400> 86 actgctggcc	ctctcctggt	gctgttcacc	ctcaacttca	ccatcaccaa	cctgaagtat	60
gaggaggaca	tgcatcgccc	tggctccagg	aagttcaaca	ccactgagag	ggtcctgcag	120
actctgcttg	gtcctatgtt	caagaacacc	agtgttggcc	ttctgtactc	tggctgcaga	180
ctgaccttgc	tcaggtccga	gaaggatgga	gcagccactg	gagtggatgc	catctgcacc	240
caccgtcttg	accccaaaag	ccctggactg	gacagagagc	agctatactg	ggagctgagc	300
cagctgacca	atggcatcaa	agagctgggc	ccctacaccc	tggacaggaa	cagtctctat	360

gtcaatggtt	tcacccattg	gatccctgtg	cccaccagca	gcactcctgg	gacctccaca	420
gtggaccttg	ggtcagggac	tccatcctcc	ctccccagcc	ccaca		465
<210> 87						
<211> 468						
<212> DNA				•		
<213> Homo	o sapiens					·
<400> 87 gctgctggcc	ctctcctggt	gccattcacc	ctcaacttca	ccatcaccaa	cctgcagtac	60
gaggaggaca	tgcatcaccc	aggctccagg	aagttcaaca	ccacggagcg	ggtcctgcag	120
ggtctgcttg	gtcccatgtt	caagaacacc	agtgtcggcc	ttctgtactc	tggctgcaga	180
ctgaccttgc	tcaggtccga	gaaggatgga	gcagccactg	gagtggatgc	catctgcacc	240
caccgtcttg	accccaaaag	ccctggagtg	gacagggagc	agctatactg	ggagctgagc	300
cagctgacca	atggcatcaa	agagctgggt	ccctacaccc	tggacagaaa	cagtctctat	360
gtcaatggtt	tcacccatca	gacctctgcg	cccaacacca	gcactcctgg	gacctccaca	420
gtggaccttg	ggacctcagg	gactccatcc	tecetececa	gccctaca		468
<210> 88						
<211> 468						
<212> DNA						
<213> Hom	o sapiens					
<220>						
<221> mis	c_feature					
<222> (1)	(468)					
<223> All	N's = any	nucleotide				

<213> Homo sapiens

<400> 8	88						
		ctctcctgnt	nccnttcacc	ntcaacttna	ccatcaccaa	cctgcantan	60
gngganna	aca	tgcnncnccc	nggntccagg	aagttcaaca	ccacngagng	ngtnctgcag	120
ggtctgct	tnn	nncccntntt	caagaacacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgacctt	tgc	tcaggtccga	gaaggatgga	gcagccactg	gagtggatgc	catctgcacc	240
caccgtct	ttg	accccaaaag	ccctggagtg	gacagggagc	agctatactg	ggagctgagc	300
cagetgad	cca	atggcatcaa	agagctgggt	ccctacaccc	tggacagaaa	cagtctctat	360
gtcaatgo	gtt	tcacccatca	gacctctgcg	cccaacacca	gcactcctgg	gacctccaca	420
gtggacct	ttg	ggacctcagg	gactccatcc	tccctcccca	gccctaca		468
<210> 8	89						
<211> 4	468	•					
<212> 0	DNA						
<213> H	Homo	sapiens		9	1		
<400> 8	39						
		ctctcctggt	gccattcacc	ctcaacttca	ccatcaccaa	cctgcagtac	60
gaggagga	aca	tgcatcaccc	aggctccagg	aagttcaaca	ccacggagcg	ggtcctgcag	120
ggtctgct	ttg	gtcccatgtt	caagaacacc	agtgtcggcc	ttctgtactc	tggctgcaga	180
ctgacctt	tgc	tcaggcctga	gaagaatggg	gcagccactg	gaatggatgc	catctgcagc	240
caccgtct	ttg	accccaaaag	ccctggactc	aacagagagc	agctgtactg	ggagctgagc	300
cagctgac	ccc	atggcatcaa.	agagctgggc	ccctacaccc	tggacaggaa	cagtctctat	360
gtcaatgg	gtt	tcacccatcg	gagctctgtg	gccccacca	gcactcctgg	gacctccaca	420
gtggacct	ttg	ggacctcagg	gactccatcc	tccctccca	gcccaca		468
<210> 9	90						
<211> 4	468						
<212> [DNA						

<400> acagcto	90 jttc	ctctcctggt	gccgttcacc	ctcaacttta	ccatcaccaa	tctgcagtat	60
ggggagg	jaca	tgcgtcaccc	tggctccagg	aagttcaaca	ccacagagag	ggtcctgcag	120
ggtctgc	ttg	gtcccttgtt	caagaactcc	agtgtcggcc	ctctgtactc	tggctgcaga	180
ctgatct	ctc	tcaggtctga	gaaggatggg	gcagccactg	gagtggatgc	catctgcacc	240
caccacc	tta	accctcaaag	ccctggactg	gacagggagc	agctgtactg	gcagctgagc	300
cagatga	cca	atggcatcaa	agagctgggc	ccctacaccc	tggaccggaa	cagtctctac	360
gtcaato	gtt	tcacccatcg	gagctctggg	ctcaccacca	gcactccttg	gacttccaca	420
gttgaco	ttg	gaacctcagg	gactccatcc	cccgtcccca	gececaea		468
<210>	91						
<211>	468						
<212>	DNA						
<213>	Homo	sapiens					
<400>	91						

actgetggcc ctctcctggt gccattcacc ctcaacttca ccatcaccaa cctgcagtat 60 gaggaggaca tgcatcgccc tggatctagg aagttcaaca ccacagagag ggtcctgcag 120 ggtctgctta gtcccatttt caagaactcc agtgttggcc ctctgtactc tggctgcaga 180 240 ctgacctctc tcaggcccga gaaggatggg gcagcaactg gaatggatgc tgtctgcctc taccacccta atcccaaaag acctggactg gacagagagc agctgtactg ggagctaagc 300 360 cagctgaccc acaacatcac tgagctgggc ccctacagcc tggacaggga cagtctctat 420 gtcaatggtt tcacccatca gaactctgtg cccaccacca gtactcctgg gacctccaca 468 gtgtactggg caaccactgg gactccatcc tecttececg gecacaca

<210> 92

<211> 468

<212> DNA

<213> Homo sapiens

<400>	92						
gagcctg	gcc	ctctcctgat	accattcact	ttcaacttta	ccatcaccaa	cctgcattat	60
gaggaaa	aca	tgcaacaccc	tggttccagg	aagttcaaca	ccacggagag	ggttctgcag	120
ggtctgc	tca	agcccttgtt	caagaacacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgacct	ctc	tcaggcccga	gaaggatggg	gcagcaactg	gaatggatgc	tgtctgcctc	240
taccacc	cta	atcccaaaag	acctgggctg	gacagagagc	agctgtactg	ggagctaagc	300
cagctga	ccc	acaacatcac	tgagctgggc	ccctacagcc	tggacaggga	cagtctctat	360
gtcaatg	gtt	tcacccatca	gaactctgtg	cccaccacca	gtactcctgg	gacctccaca	420
gtgtact	ggg	caaccactgg	gactccatcc	tccttccccg	gccacaca		. 468
<210>	93			•			
<211>	468						

<213> Homo sapiens

<212> DNA

<400> 93 gagcctggcc ctctcctgat accattcact ttcaacttta ccatcaccaa cctgcattat 60 gaggaaaaca tgcaacaccc tggttccagg aagttcaaca ccacggagag ggttctgcag 120 ggtctgctca agcccttgtt caagaacacc agtgttggcc ctctgtactc tggctgcaga 180 ctgaccttgc tcagacctga gaagcatgag gcagccactg gagtggacac catctgtacc 240 caccgcgttg atcccatcgg acctggactg gacagggagc ggctatactg ggagctgagc 300 cagctgacca acagcattac cgaactggga ccctacaccc tggacaggga cagtctctat 360 gtcaatggct tcaaccctcg gagctctgtg ccaaccacca gcactcctgg gacctccaca 420 gtgcacctgg caacctctgg gactccatcc tccctgcctg gccacaca 468

<210> 94

<211> 468

<212>	DNA						
<213>	Homo	sapiens					
<220>							
<221>	misc	_feature					
<222>	(1).	. (468)					
<223>	All	N's = any n	ucleotide				
							. •
<400>	94	ctctcttgat	accattcacc	ctcaacttta	ccatcaccaa	cctgcattat	60
					ccacggagag		120
					ctctgtactc		180
					gagtggacac		240
					ngctntactg		300
•.					tggacaggna		360
_			•		gcactcctgg		420
		gnacctcngg					468
3.3		•	•				
<210>	95					•	
<211>	468						
<212>	DNA						
<213>	Homo	sapiens		•			
<400>	95	ctctcctggt	gccattcacc	ctcaacttca	ccatcaccaa	cctgcagtac	60
					ccacggagcg		120
					ttctgtactc		180
					gaatggatgc		24
LLUGUL							

caccettttg accccaaaag ccctggactc gacagagagc agctgtactg ggagctgagc 300

cagctgaccc	atggcatcaa	agagetggge	ccctacaccc	tggacaggaa	cagtctctat	360
gtcaatggtt	tcacccatcg	gagctctgtg	gccccacca	gcactcctgg	gacctccaca	420
gtggaccttg	ggacctcagg	gactccatcc	tccctcccca	gccccaca		468
<210> 96						
<211> 468						
<212> DNA						
<213> Homo	sapiens			~		
						•
<400> 96						
acagctgttc	ctctcctggt	gccgttcacc	ctcaacttta	ccatcaccaa	tctgcagtat	60
ggggaggaca	tgcgtcaccc	tggctccagg	aagttcaaca	ccacagagag	ggtcctgcag	120
ggtctgcttg	gtcccttgtt	caagaactcc	agtgtcggcc	ctctgtactc	tggctgcaga	180
ctgatctctc	tcaggtctga	gaaggatggg	gcagccactg	gagtggatgc	catctgcacc	240
caccacctta	accctcaaag	ccctggactg	gacagggagc	agctgtactg	gcagctgagc	300
cagatgacca	atggcatcaa	agagctgggc	ccctacaccc	tggaccggaa	cagtctctac	360
gtcaatggtt	tcacccatcg	gagctctggg	ctcaccacca	gcactccttg	gacttccaca	420
gttgaccttg	gaacctcagg	gactccatcc	cccgtcccca	gccccaca		468
<210> 97						
<211> 468		·				
<212> DNA				·		
(213> Homo	sapiens		•			
<400> 97						
-	ctctcctggt	gccattcacc	ctaaacttca	ccatcaccaa	cctgcagtat	60
gaggaggaca	tgcatcgccc	tggatctagg	aagttcaacg	ccacagagag	ggtcctgcag	120
ggtctgctta	gtcccatatt	caagaactcc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgacctctc	tcaggcccga	gaaggatggg	gcagcaactg	gaatggatgc	tgtctgcctc	240

taccacc	cta	atcccaaaag	acctggactg	gacagagagc	agctgtactg	ggagctaagc	300
cagctga	ccc	acaacatcac	tgagctgggc	ccctacagcc	tggacaggga	cagtctctat	360
gtcaatg	gtt	tcacccatca	gagetetatg	acgaccacca	gaactcctga	tacctccaca	420
atgcacc	tgg	caacctcgag	aactccagcc	tccctgtctg	gacctacg		468
<210>	98						
<211>	474				•		
<212>	DNA			·			. •
<213>	Homo	sapiens					
<400>	98						
accgcca		ctctcctggt	gctattcaca	atcaactgca	ccatcaccaa	cctgcagtac	60
gaggagg	jaca	tgcgtcgcac	tggctccagg	aagttcaaca	ccatggagag	tgtcctgcag	120
ggtctgc	tca	agcccttgtt	caagaacacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ttgacct	tgc	tcaggcccaa	gaaagatggg	gcagccactg	gagtggatgc	catctgcacc	240
caccgco	ettg	accccaaaag	ccctggactc	aacagggagc	agctgtactg	ggagctaagc	300
aaactga	acca	atgacattga	agagctgggc	ccctacaccc	tggacaggaa	cagtctctat	360
gtcaato	gtt	tcacccatca	gagctctgtg	tccaccacca	gcactcctgg	gacctccaca	420
gtggato	ctca	gaacctcagg	gactccatcc	teceteteca	gececacaat	tatg	474
	••						
<210>	99						
<211>	468						
<212>	DNA						
<213>	Home	o sapiens					
<220>							
<221>	mis	c_feature					
<222>	(1)	(468)					

<223> All N's = any nucleotide ·

						•	
<400>		ctctcctant	nconttcacc	ntcaacttna	ccatcaccaa	cctgcantan	60
						_	
				aagttcaaca			120
ggtctgc	ctca	ggcccttgtt	caagaacacc	agtgtcagct	ctctgtactc	tggttgcaga	180
ctgacct	tgc	tcaggcctga	gaaggatggg	gcagccacca	gagtggatgc	tgcctgcacc	240
taccgco	ctg	atcccaaaag	ccctggactg	gacagagagc	aactatactg	ggagctgagc	300
cagctaa	ccc	acagcatcac	tgagctggga	ccctacaccc	tggacagggt	cagtctctat	360
gtcaato	ggct	tcaaccctcg	gagctctgtg	ccaaccacca	gcactcctgg	gacctccaca	420
gtgcacc	etgg	caacctctgg	gactccatcc	tccctgcctg	gccacaca		468
			•				
<210>	100						
<211>	468						
<212>	DNA						
<213>	Homo	sapiens			,		

<400> 100 gecectgice etetetigat accatteace eteaactita ecateaceaa ectgeatiat 60 gaagaaaaca tgcaacaccc tggttccagg aagttcaaca ccacggagag ggttctgcag 120 ggtctgctca agcccttgtt caagagcacc agcgttggcc ctctgtactc tggctgcaga 180 ctgaccttgc tcagacctga gaaacatggg gcagccactg gagtggacgc catctgcacc 240 ctccgccttg atcccactgg tcctggactg gacagagagc ggctatactg ggagctgagc 300 cagctgacca acagcgttac agagctgggc ccctacaccc tggacaggga cagtctctat 360 gtcaatggct tcacccagcg gagctctgtg ccaaccacca gtattcctgg gacctctgca 420 gtgcacctgg aaacctctgg gactccagcc tccctccctg gccacaca 468

<210> 101

<211> 468

<212> DNA

<213> Homo sapiens

<400> 101 gcccctggcc	ctctcctggt	gccattcacc	ctcaacttca	ctatcaccaa	cctgcagtat	60
		tggttccagg				120
ggtctgctca	agcccttgtt	caagagcacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgaccttgc	tcaggcctga	aaaacgtggg	gcagccaccg	gcgtggacac	catctgcact	240
caccgccttg	accctctaaa	ccctggactg	gacagagagc	agctatactg	ggagctgagc	300
aaactgaccc	gtggcatcat	cgagctgggc	ccctacctcc	tggacagagg	cagtctctat	360
gtcaatggtt	tcacccatcg	gaactttgtg	cccatcacca	gcactcctgg	gacctccaca	420
gtacacctag	gaacctctga	aactccatcc	tccctaccta	gacccata		468

<210> 102

<211> 468

<212> DNA

<213> Homo sapiens

<400> 102 gtgcctggcc ctctcctggt gccattcacc ctcaacttca ccatcaccaa cttgcagtat 60 gaggaggcca tgcgacaccc tggctccagg aagttcaata ccacggagag ggtcctacag 120 ggtctgctca ggcccttgtt caagaatacc agtatcggcc ctctgtactc cagctgcaga 180 ctgaccttgc tcaggccaga gaaggacaag gcagccacca gagtggatgc catctgtacc 240 caccaccetg accetcaaag ceetggactg aacagagage agetgtactg ggagetgage 300 cagetgacce aeggeateae tgagetggge cectacacce tggaeaggga cagtetetat 360 gtcgatggtt tcactcattg gagccccata ccgaccacca gcactcctgg gacctccata 420 gtgaacctgg gaacctctgg gatcccacct tccctccctg aaactaca 468

<211> 468					
<212> DNA					
<213> Homo sap	iens				
<220>					
<221> misc_feat	ture				
<222> (1)(468	3)		_		
<223> All N's =	any nucleotide				
ì					
<400> 103	astant nametra				
	ectgnt necnttcacc			_	60
	nenece nggntecagg				120
	cttgtt caggaatagc				180
ctagootoac toago	gccaga gaaggatagc	tcagccatgg	cagtggatgc	catctgcaca	240
catcgccctg accct	gaaga cctcggactg	gacagagagc	gactgtactg	ggagctgagc	300
aatctgacaa atggo	catcca ggagctgggc	ccctacaccc	tggaccggaa	cagtctctac	360
gtcaatggtt tcacc	ccatcg gagctctggg	ctcaccacca	gcactccttg	gacttccaca	420
gttgaccttg gaacc	ctcagg gactccatcc	cccgtcccca	gccccaca		468
<210> 104		•			
<211> 468		•			
<212> DNA					
<213> Homo sapi	ens				
•					
<400> 104				•	
	ctggt gccattcacc	ctcaacttca	ccatcaccaa	cctgcagtat	60
gaggaggaca tgcat	cgccc tggttccagg	aggttcaaca	ccacggagag	ggttctgcag	120
ggtctgctca cgccc	cttgtt caagaacacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgaccttgc tcaga	acctga gaagcaagag	gcagccactg	gagtggacac	catctgtacc	240

caccgcgttg	atcccatcgg	acctggactg	gacagagagc	ggctatactg	ggagctgagc	300
cagctgacca	acagcatcac	agagctggga	ccctacaccc	tggataggga	cagtctctat	360
gtcaatggct	tcaacccttg	gagctctgtg	ccaaccacca	gcactcctgg	gacctccaca	420
gtgcacctgg	caacctctgg	gactccatcc	tccctgcctg	gccacaca		468
<210> 105						
<211> 163 <211> 468						
<212> DNA						
	o sapiens					
	.		•	·		
<400> 105						
gcccctgtcc	ctctcttgat	accattcacc	ctcaacttta	ccatcaccga	cctgcattat	60
gaagaaaaca	tgcaacaccc	tggttccagg	aagttcaaca	ccacggagag	ggttctgcag	120
ggtctgctca	agcccttgtt	caagagcacc	agcgttgģcc	ctctgtactc	tggctgcaga	180
ctgaccttgc	tcagacctga	gaaacatggg	gcagccactg	gagtggacgc	catctgcacc	240
ctccgccttg	atcccactgg	tcctggactg	gacagagagc	ggctatactg	ggagctgagc	300
cagctgacca	acagcgttac	agagctgggc	ccctacaccc	tggacaggga	cagtctctat	360
gtcaatggct	tcacccatcg	gagctctgtg	ccaaccacca	gtattcctgg	gacctctgca	420
gtgcacctgg	aaacctctgg	gactccagcc	tccctccctg	gccacaca		468
<210> 106						
	_			•		
<213> Ηοπ	o sapiens					
<400> 106	ctctcctggt	gccattcacc	ctcaacttca	ctatcaccaa	cctgcagtat	60
gaggaggaca	tgcgtcaccc	tggttccagg	aagttcagca	ccacggagag	agtcctgcag	120
ggtctgctca	agcccttgtt	caagaacacc	agtgtcagct	ctctgtactc	tggttgcaga	180

ctgaccttgc tc	aggcctga	gaaggatggg	gcagccacca	gagtggatgc	tgtctgcacc	240
catcgtcctg ac	cccaaaag	ccctggactg	gacagagagc	ggctgtactg	gaagctgagc	300
cagctgaccc ac	ggcatcac	tgagctgggc	ccctacaccc	tggacaggca	cagtctctat	360
gtcaatggtt tc	acccatca	gagctctatg	acgaccacca	gaactcctga	tacctccaca	420
atgcacctgg ca	acctcgag	aactccagcc	tccctgtctg	gacctacg		468
<210> 107						
<211> 468						
<212> DNA						
<213> Homo sa	apiens					
<400> 107				•		
accgccagcc cto						60
gaggagaaca tgo	catcaccc	tggctctaga	aagtttaaca	ccacggagag	agtccttcag	120
ggtctgctca ggo	cctgtgtt	caagaacacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgaccacgc tca	aggcccaa	gaaggatggg	gcagccacca	aagtggatgc	catctgcacc	240
taccgccctg ato	cccaaaag	ccctggactg	gacagagagc	agctatactg	ggagctgagc	300
cagetaacee aca	agcatcac	tgagctgggc	ccctacaccc	aggacaggga	cagtctctat	360
gtcaatggct tca	acccatcg	gagctctgtg	ccaaccacca	gtattcctgg	gacctctgca	420
gtgcacctgg aaa	acctctgg	gactccagcc	tccctccctg	gccacaca		468
(210> 100						
(210> 108						
(211> 468						
(212> DNA				•		
(213> Homo sa	apiens					
400> 108						
recetggee etc	tcctggt o	gccattcacc	ctcaacttca	ctatcaccaa	cctgcagtat	60
aggaggaca tgc	gtcaccc (tggttccagg	aagttcaaca	ccacggagag	agtcctgcag	120

ggtctgc	ctca	agcccttgtt	caagagcacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgacct	tgc	tcaggcctga	aaaacgtggg	gcagccaccg	gcgtggacac	catctgcact	240
caccgc	ttg	accctctaaa	cccaggactg	gacagagagc	agctatactg	ggagctgagc	300
aaactga	accc	gtggcatcat	cgagctgggc	ccctacctcc	tggacagagg	cagtctctat	360
gtcaatq	ggtt	tcacccatcg	gacctctgtg	cccaccacca	gcactcctgg	gacctccaca	420
gtggaco	cttg	gaacctcagg	gactccattc	teceteceaa	gccccgca		4 68
<210>	109						, ,
<211>	465						
<212>	DNA						
<213>	Homo	sapiens					

<220>

<221> misc_feature

<222> (1)..(465)

<223> All N's = any nucleotide

<400> 109 nonnetgnee etetectgnt neentteace nteaacttna ceateaceaa eetgeantan 60 gnggannaca tgcnncnccc nggntccagg aagttcaaca ccacngagag ggtcctgcag 120 actotgcttg gtoctatgtt caagaacacc agtgttggcc ttctgtactc tggctgcaga 180 ctgaccttgc tcaggtccga gaaggatgga gcagccactg gagtggatgc catctgcacc 240 caccgtcttg accccaaaag ccctggagtg gacagggagc aactatactg ggagctgagc 300 cagctgacca atggcattaa agaactgggc ccctacaccc tggacaggaa cagtctctat 360 gtcaatgggt tcacccattg gatccctgtg cccaccagca gcactcctgg gacctccaca 420 465 gtggaccttg ggtcagggac tccatcctcc ctccccagcc ccaca

<211> 468	
<212> DNA	
<213> Homo sapiens	
<400> 110	
actgctggcc ctctcctggt gccgttcacc ctcaacttca ccatcaccaa cctgaagtac	60
gaggaggaca tgcattgccc tggctccagg aagttcaaca ccacagagag agtcctgcag	120
agtetgettg gteceatgtt caagaacace agtgttggee etetgtaete tggetgeaga	180
ctgaccttgc tcaggtccga gaaggatgga gcagccactg gagtggatgc catctgcacc	240
cacegtettg acceeaaag eeetggagtg gacagggage agetatactg ggagetgage	300
cagetgacca atggcatcaa agagetgggt eectacaeee tggacagaaa cagtetetat	360
gtcaatggtt teacceatea gacetetgeg eccaacacea geacteetgg gaceteeaca	420
gtggacettg ggaceteagg gaetecatee teceteeca geeetaca	468
<210> 111	
<211> 465	
<212> DNA	
<213> Homo sapiens	
1000	
<220>	
<pre><221> misc_feature</pre>	
<222> (1)(465)	
<pre><223> All N's = any nucleotide</pre>	
·	
<400> 111 nonnotgnee etetectgnt neentteace nteaacttna ceateaceaa cetgeantan	60
gnggannaca tgcnncnccc nggntccagg aagttcaaca ccacngagng ngtnctgcag	120
gtctgctnn nncccntntt caagaacncc agtgtnggcc ntctgtactc tggctgcaga	180
rtgacctnnc tcaggncnga gaagnatgan googcoogta gantagataa aatabaasa	700

<211> 468

<212> DNA

caccnnentn aneceaaaag neetggacte	nacagngagc	ngctntactg	ggagctnagc	300
canctgacca annncatenn ngagetgggr	ccctacaccc	tggacaggna	cagtctctat	360
gtcaatggtt tcacccattg gatccctgtg	g cccaccagca	gcactcctgg	gacctccaca	420
gtggaccttg ggtcagggac tccatcctcc	ctcccagcc	ccaca		465
<210> 112				
<211> 468				
	•			
<212> DNA				
<213> Homo sapiens	,			
<220>				
<221> misc_feature				
<222> (1)(468)				
<223> All N's = any nucleotide				
		•		
<400> 112				
actgctggcc ctctcctggt gccgttcac	c ctcaacttca	ccatcaccaa	cctgaagtac	60
gaggaggaca tgcattgccc tggctccag	g aagttcaaca	ccacagagag	agtcctgcag	120
agtctgcttg gtcccatgtt caagaacac	c agtgttggcc	ctctgtactc	tggctgcaga	180
ctgacctcgc tcaggtccga gaaggatgg	a gcagccactg	gagtggatgc	catctgcacc	240
caccgtgttg accccaaaag ccctggagt	g gacagggagc	agctatactg	ggagctgagc	300
cagctgacca atggcatcaa agagctggg	t ccctacaccc	tggacagaaa	cagtctctat	360
gtcaatggtt tcacccatca gacctctgc	g cccaacacca	gcactcctgg	gacctccaca	420
gtgnacntng gnacctengg gactecate	c teenteecen	gcencaca		468
<210> 113				

<213> Homo sapiens

<220>						
<221> misc_	feature					
<222> (1)	(468)					
<223> All N	's = any r	nucleotide				
<400> 113						
tetgetggee e						60
gaggaggaca t		•				120
ggtctgcttg g	tcccatgtt	caagaacacc	agtgtcggcc	ttctgtactc	tggctgcaga	180
ctgaccttgc t	caggcctga	gaagaatggg	gcaaccactg	gaatggatgc	catctgcacc	240
caccgtcttg a	ccccaaaag	ccctggactg	nacagngagc	ngctntactg	ggagctnagc	300
canctgacca a	nnncatcnn	ngagctgggn	ccctacaccc	tggacaggna	cagtctctat	360
gtcaatggtt t	cacccatcn	ganctctgng	cccaccacca	gcactcctgg	gacctccaca	420
gtgnacntng g	nacctcngg	gactccatcc	tccntccccn	gccncaca		468
<210> 114						
<211> 468						
<212> DNA			,			
<213> Homo	sapiens					
<220>						
<221> misc_:	feature					
<222> (1)	(468)					
<223> All N	's = any n	ucleotide				
<400> 114				•		
ncnnctgncc ct	ctcctgnt	nccnttcacc	ntcaacttna	ccatcaccaa	cctgcantan	60

468

155

gnggannaca	tgennencee	nggntccagg	aagttcaaca	ccacngagag	ggttctgcag	120
ggtctgctca	aacccttgtt	caggaatagc	agtctggaat	acctctattc	aggctgcaga	180
ctagcctcac	tcaggccaga	gaaggatagc	tcagccatgg	cagtggatgc	catctgcaca	240
catcgccctg	accctgaaga	cctcggactg	gacagagagc	gactgtactg	ggagctgagc	300
aatctgacaa	atggcatcca	ggagctgggc	ccctacaccc	tggaccggaa	cagtctctat	360
gtcaatggtt	tcacccatcg	aagctctatg	cccaccacca	gcactcctgg	gacctccaca	420
gtggatgtgg	gaacctcagg	gactccatcc	tccagcccca	gccccacg		468
<210> 115						
<211> 468		•				
<212> DNA		,				
<213> Hom	o sapiens	•				
<400> 115			•			
	ctctcctgat	accattcacc	ctcaacttca	ccatcaccaa	cctgcagtat	. 60
ggggaggaca	tgggtcaccc	tggctccagg	aagttcaaca	ccacagagag	ggtcctgcag	120
ggtctgcttg	gtcccatatt	caagaacacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgäcctctc	tcaggtctga	gaaggatgga	gcagccactg	gagtggatgc	catctgcatc	240
catcatcttg	accccaaaag	ccctggactc	aacagagagc	ggctgtactg	ggagctgagc	300
caactgacca	atogcatcaa	agagetggge	ccctacacce	tggacaggaa	cagtctctat	360

gtcaatggtt tcacccatcg gacctctgtg cccaccacca gcactcctgg gacctccaca

gtggaccttg gaacctcagg gactccattc tccctcccaa gccccgca

<210> 116

<211> 468

<212> DNA

<213> Homo sapiens

<220>					•		
<221>	mis	c_feature					
<222>	(1)	(468)					
<223>	All	N's = any n	nucleotide			•	
<400>	116	ctctcctggt	actatteace	ctcaacttca	ccatcaccaa	actanactat	60
							60
		tgcatcgccc					120
		gtcctatgtt			•		180
ctgacc [.]	ttgc	tcaggtccga	gaaggatgga	gcagccactg	gagtggatgc	catctgcacc	240
caccgt	cttg	accccaaaag	ccctggactg	nacagngagc	ngctntactg	ggagctnagc	300
canctg	acca	annncatcnn	ngagctgggn	ccctacaccc	tggacaggna	cagtctctat	360
gtcaat	ggtt	tcacccatcn	ganctctgng	cccaccacca	gcactcctgg	gacctccaca	420
gtgnacı	ntng	gnacctcngg	gactccatcc	tccntccccn	gccncaca		468
<210>	117						
<210> <211>	117 468						
<211>	468 DNA	o sapiens					
<211> <212>	468 DNA	o sapiens					
<211> <212>	468 DNA) sapiens					
<211> <212> <213>	468 DNA Homo	sapiens _feature					
<211> <212> <213> <220>	468 DNA Homo		,				
<211> <212> <213> <220> <221> <222>	468 DNA Homo	_feature	ucleotide				
<211> <212> <213> <220> <221> <222>	468 DNA Homo	_feature .(468)	ucleotide				
<211> <212> <213> <220> <221> <222> <222> <223>	468 DNA Homo misc (1). All	c_feature .(468) N's = any n		nt anacttus			
<211> <212> <213> <220> <221> <222> <222> <223>	Misc (1). All	c_feature .(468) N's = any n	ncentteace				60
<211> <212> <213> <220> <221> <222> <223> <400> ncmetco	Misc (1). All	c_feature .(468) N's = any n	ncentteace	aagttcaaca	ccacngagag	agtccttcag	60 120

ctgaccttgc	tcaggcccaa	gaaggatggg	gcagccacca	aagtggatgc	catctgcacc	240
taccgccctg	atcccaaaag	ccctggactg	gacagagagc	agctatactg	ggagctgagc	300
cagctaaccc	acagcatcac	tgagctgggc	ccctacaccc	aggacaggga	cagtctctat	360
gtcaatggct	tcacccatcg	gagctctgtg	ccaaccacca	gtattcctgg	gacctctgca	420
gtgcacctgg	aaaccactgg	gactccatcc	teetteeeg	gccacaca		468
<210> 118				•		
<211> 468						
<212> DNA						
<213> Homo	sapiens					
<400> 118	ctctcctgat	accattcact	ttcaacttta	ccatcaccaa	cctgcgttat	60
		•		ccacggagag		120
				ctctgtactc		180
				gagtggacac		240
•				ggctatactg		300
				tggataggga		360
				gcactcctgg		420
	caacctctgg				-	468
,		,		. •		
<210> 119						
<211> 468		•				
<212> DNA						,
<213> Hom	o sapiens					
<400> 119						
-				ccatcaccga		60
gaagaaaaca	tgcaacaccc	tggttccagg	aagttcaaca	ccacggagag	ggttctgcag	120

ggtctg	ctca	agcccttgtt	caagagcacc	agcgttggcc	ctctgtactc	tggctgcaga	180
ctgacc	ttgc	tcagacctga	gaaacatggg	gcagccactg	gagtggacgc	catctgcacc	240
ctccgc	cttg	atcccactgg	tcctggactg	gacagagagc	ggctatactg	ggagctgagc	300
cagctg	acca	acagcatcac	agagctggga	ccctacaccc	tggataggga	cagtctctat	360
gtcaat	ggct	tcaacccttg	gagctctgtg	ccaaccacca	gcactcctgg	gacctccaca	420
gtgcac	ctgg	caacctctgg	gactccatcc	tccctgcctg	gccacaca		468
<210>	120						
<211>	468						
<212>	DNA			·		•	
<213>	Homo	sapiens					
<220>							
<221>	misc	_feature					
<222>	(1).	. (468)			•		
<223>	All	N's = any n	nucleotide				

<400> 120 actgctggcc ctctcctggt gccgttcacc ctcaacttca ccatcaccaa cctgaagtac 60 gaggaggaca tgcattgccc tggctccagg aagttcaaca ccacagagag agtcctgcag 120 agtctgcatg gtcccatgtt caagaacacc agtgttggcc ctctgtactc tggctgcaga 180 ctgaccttgc tcaggtccga gaaggatgga gcagccactg gagtggatgc catctgcacc 240 caccgtcttg accccaaaag ccctggactg nacagngagc ngctntactg ggagctnagc 300 canctgacca annneatenn ngagetgggn ceetacacce tggacaggna cagtetetat 360 gtcaatggtt tcacccatcn ganctctgng cccaccacca gcactcctgg gacctccaca 420 gtgnacning gnacciongg gactocatco tecnicocon geoneaca 468

<210> 121

```
<211> 468
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(468)
<223> All N's = any nucleotide
<400> 121
                                                                     60
nennetgnee eteteetgnt neentteace nteaacttna ceatcaceaa eetgeantan
gnggannaca tgcnncnccc nggntccagg aagttcaaca ccacngagng ngtnctgcag
                                                                     120
ggtctgctnn nncccntntt caagaacncc agtgtnggcc ntctgtactc tggctgcaga
                                                                     180
ctgacctnnc tcaggncnga gaagnatggn gcagccactg gantggatgc catctgcanc
                                                                     240
cacennentn aneceaaaag neetggaetg nacagngage ngetntaetg ggagetnage
                                                                     300
canctgacca acagcatcac agagctggga ccctacaccc tggataggga cagtctctat
                                                                     360
gtcaatggtt tcacccatcg aagctctatg cccaccacca gtattcctgg gacctctgca
                                                                     420
                                                                     468
gtgcacetgg aaacctetgg gactecagee teeeteectg gecacaca
<210> 122
<211> 468
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)..(468)
<223> All N's = any nucleotide
```

<400> 122	
gcccctggcc ctctcctggt gccattcacc ctcaacttca ctatcaccaa cctgcagtat	60
gaggaggaca tgcgtcaccc tggttccagg aagttcaaca ccacggagag agtcctgcag	120
ggtctgctca agcccttgtt caagagcacc agtgttggcc ctctgtactc tggctgcaga	180
ctgacettge teaggeetga aaaacgtggg geageeaceg gegtggaeae catetgeaet	240
caccgccttg accctctaaa ccctggactg nacagngagc ngctntactg ggagctnagc	300
canctgacca annncatenn ngagetgggn ceetacaeee tggacaggna cagtetetat	360
gtcaatggtt tcacccaten ganctetgng cccaccacca gcactcctgg gacctccaca	420
gtgnacntng gnacctongg gactocatoc toontocoon gooncaca	468
<210> 123	
<211> 468	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)(468)	
<pre><223> All N's = any nucleotide</pre>	
<400> 123	
nennetgnee eteteetgnt neentteace nteaaettna ecateaceaa eetgeantan	60
nggannaca tgcnncnccc nggntccagg aagttcaaca ccacngagng ngtnctgcag	120
gtctgctnn nncccntntt caagaacnee agtgtnggee ntetgtaete tggetgeaga	180
ctgacctnnc tcaggncnga gaagnatggn gcagccactg gantggatgc catctgcanc	240
caccnnentn aneceaaaag neetggaetg nacagngage ngetntaetg ggagetnage	300
canctgacca annncatcnn ngagetgggn cectacacce tggacaggna cagtetetat	360
stcaatggtt ttcaccctcg gagctctgtg ccaaccacca gcactcctgg gacctccaca	420

<220>

gtgcacctgg caacctctgg gactccatcc tccctgcctg gccacaca	468
<210> 124	
<211> 468	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)(468)	
<223> All N's = any nucleotide	
<400> 124 gcccctgtcc ctctcttgat accattcacc ctcaacttta ccatcaccaa cctgcattat	60
gaagaaaaca tgcaacaccc tggttccagg aagttcaaca ccacggagcg ggtcctgcag	120
ggtctgcttg gtcccatgtt caagaacaca agtgtcggcc ttctgtactc tggctgcaga	180
ctgaccttgc tcaggcctga gaagaatggg gcagccactg gaatggatgc catctgcagc	240
caccgtcttg accccaaaag ccctggactg nacagngagc ngctntactg ggagctnagc	300
canctgacca annncatenn ngagetgggn ceetacacce tggacaggna cagtetetat	360
gtcaatggtt tcacccatcn ganctctgng cccaccacca gcactcctgg gacctccaca	420
gtgnacntng gnacctongg gactocatco tcontoccon gconcaca	468
<210> 125	
<211> 468	
<212> DNA	
<213> Homo sapiens	

<221> misc_feature	
<222> (1)(468)	
<223> All N's = any nucleotide	
<400> 125 ncnnctgncc ctctcctgnt nccnttcacc ntcaacttna ccatcaccaa cctgcantan	60
gnggannaca tgcnncnccc nggntccagg aagttcaaca ccacngagng ngtnctgcag	120
ggtctgctnn nncccntntt caagaacncc agtgtnggcc ntctgtactc tggctgcaga	180
ctgacctnnc tcaggncnga gaagnatggn gcagccactg gantggatgc catctgcanc	240
caccnnentn ancecaaaag neetggaetg nacagngage ngetntaetg ggagetnage	300
canctgacca annncatenn ngagetgggn cectacacce tggacaggna cagtetetat	360
gtcaatggtt tcacccatca gaactctgtg cccaccacca gtactcctgg gacctccaca	420
gtgtactggg caaccactgg gactccatcc tccttccccg gccacaca	468
<210> 126	
<211> 468	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)(468)	
<223> All N's = any nucleotide	
<400> 126 gagectggec ctctcctgat accattcact ttcaacttta ccatcaccaa cctgcattat	60
gaggaaaaca tgcaacaccc tggttccagg aagttcaaca ccacggagag ggttctgcag	120
ggtctgctca cgcccttgtt caagaacacc agtgttggcc ctctgtactc tggctgcaga	180
ctgaccttgc tcagacctga gaagcaggag gcagccactg gagtggacac catctgtacc	240

<211> 468

<212> DNA

caccgcgttg	atcccatcgg	acctggactg	nacagngagc	ngctntactg	ggagctnagc	300
canctgacca	annncatcnn	ngagctgggn	ccctacaccc	tggacaggna	cagtctctat	360
gtcaatggtt	tcacccatcn	ganctctgng	cccaccacca	gcactcctgg	gacctccaca	420
gtgnacntng	gnacctengg	gactccatcc	tccntccccn	gccncaca		468
<210> 127						
<211> 468		•				
<212> DNA		•	·			. •
<213> Home	o sapiens	•				
<220>		•				
<221> mis	c_feature		•			
<222> (1)	(468)	•				
<223> All	N's = any r	nucleotide				
				•		
<400> 127	ctctcctgnt	ncentteace	ntcaacttna	ccatcaccaa	cctgcantan	60
gnggannaca	tgcnncnccc	nggntccagg	aagttcaaca	ccacngagng	ngtnctgcag	120
ggtctgctnn	nncccntntt	caagaacncc	agtgtnggcc	ntctgtactc	tggctgcaga	180
ctgacctnnc	tcaggncnga	gaagnatggn	gcagccactg	gantggatgc	catctgcanc	240
caccnncntn	ancccaaaag	ncctggactg	nacagngagc	ngctntactg	ggagctnagc	300
canctgacca	annncatcnn	ngagctgggn	ccctacaccc	tggacaggna	cagtctctat	360
gtcaatggtt	tcacccatcg	gagctctgtg	ccaaccacca	gcagtcctgg	gacctccaca	420
	caacctctgg					468
grgcacergg	caacccccigg	gactecated	coordects	goodoucu		
<210> 128						

<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)(468)	
<223> All N's = any nucleotide	
<400> 128	
goccotgtoc ototottgat accattcaco otoaacttta coatcaccaa cotgoattat	60
gaagaaaaca tgcaacaccc tggttccagg aagttcaaca ccacggagag ggttctgcag	120
ggtctgctca agcccttgtt caagagcacc agtgttggcc ctctgtactc tggctgcaga	180
ctgaccttgc tcagacctga gaaacatggg gcagccactg gagtggacgc catctgcacc	240
ctccgccttg atcccactgg tcctggactg nacagngage ngctntactg ggagctnagc	300
canctgacca annncatenn ngagetgggn ecetacaeee tggacaggna cagtetetat	360
gtcaatggtt tcacccaten ganctetgng cccaccacca gcactcctgg gacctccaca	420
gtgnacntng gnacctengg gactecatec tecnteceen geencaea	468
<210> 129	
<211> 468	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)(468)	
<223> All N's = any nucleotide	
	•
<400> 129 ncnnctgncc ctctcctgnt nccnttcacc ntcaacttna ccatcaccaa cctgcantan	60

468

165

gnggannaca tgcnncnccc nggntcca	gg aagttcaaca	ccacngagng	ngtnctgcag	120
ggtctgctnn nncccntntt caagaacn	cc agtgtnggcc	ntctgtactc	tggctgcaga	180
ctgacctnnc tcaggncnga gaagnatg	gn gcagccactg	gantggatgc	catctgcanc	240
caccnnentn ancecaaaag neetggae	tg nacagngagc	ngctntactg	ggagctnagc	300
canctgacca annncatenn ngagetgg	gn ccctacaccc	tggacaggna	cagtctctat	360
gtcaatggtt tcacccatcg gacctctg	tg cccaccacca	gcactcctgg	gacctccaca	420
gtgcacctgg caacctctgg gactccat	cc tccctgcctg	gccacaca		468
<210> 130				
<211> 468				
<212> DNA				
<213> Homo sapiens				
<220>				
<221> misc_feature		·		
<222> (1)(468)				
<223> All N's = any nucleotic	le			
<400> 130				
gcccctgtcc ctctcttgat accattca	icc ctcaacttta	ccatcaccaa	cctgcagtat	60
gaggaggaca tgcatcgccc tggatcta	ngg aagttcaaca	ccacagagag	ggtcctgcag	120
ggtctgctta gtcccatttt caagaact	cc agtgttggc	ctctgtactc	tggctgcaga	180
ctgacctctc tcaggcccga gaaggato	gg gcagcaacto	gaatggatgc	tgtctgcctc	240
taccacccta atcccaaaag acctggad	ctg nacagngage	ngctntactg	ggagctnagc	300
canctgacca annncatenn ngagetge	ggn ccctacacco	tggacaggna	cagtctctat	360

gtcaatggtt tcacccatcn ganctctgng cccaccacca gcactcctgg gacctccaca

gtgnacntng gnacctcngg gactccatcc tecnteccen gcencaca

<222> (1)..(468)

<210>	131	
<211>	468	
<212>	DNA	
<213>	Homo sapiens	
<220>		
<221>	misc_feature	
<222>	(1)(468)	
<223>	All N's = any nucleotide	
. •		
<400>		
	gncc ctctcctgnt nccnttcacc ntcaacttna ccatcaccaa cctgcantan	60
gnggan	maca tgcnncnccc nggntccagg aagttcaaca ccacngagng ngtnctgcag	120
ggtctg	ctnn nncccntntt caagaacnee agtgtnggee ntetgtaete tggetgeaga	180
ctgacc	tnnc tcaggncnga gaagnatggn gcagccactg gantggatgc catctgcanc	240
caccnn	cntn ancecaaaag neetggaetg nacagngage ngetntactg ggagetnage	300
canctg	acca annncatenn ngagetgggn ceetacaeee tggacaggna cagtetetat	360
gtcaat	ggtt tcacccattg gagctctggg ctcaccacca gcactccttg gacttccaca	420
gttgac	cttg gaacctcagg gactccatcc cccgtcccca gccccaca	468
<210>	132	
<211>	468	
<212>	DNA	
<213>	Homo sapiens	
<220>	·	
<221>	misc feature	
	<u> </u>	

<223> All N's = any nucleotide

Z4005 130						
<400> 132 actgctggcc	ctctcctggt	gccattcacc	ctaaacttca	ccatcaccaa	cctgcagtat	60
gaggaggaca	tgcatcgccc	tggatctagg	aagttcaacg	ccacagagag	ggtcctgcag	120
ggtctgctta	gtcccatatt	caagaacacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgaccttgc	tcagacctga	gaagcaggag	gcagccactg	gagtggacac	catctgtacc	240
caccgcgttg	atcccatcgg	acctggactg	nacagngagc	ngctntactg	ggagctnagc	300
canctgacca	annncatcnn	ngagctgggn	ccctacaccc	tggacaggna	cagtctctat	360
gtcaatggtt	tcacccatcn	ganctctgng	cccaccacca	gcactcctgg	gacctccaca	420
gtgnacntng	gnacctcngg	gactccatcc	tccntccccn	gccncaca	•	468

<210> 133

<211> 468

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (1)..(468)

<223> All N's = any nucleotide

<400> 133
nennetgnee eteteetgnt neentteace nteaacttna ecateaceaa eetgeantan 60
gnggannaca tgenneneee nggnteeagg aagtteaaca ecaengagng ngtnetgeag 120
ggtetgetnn nnecentntt eaagaaenee agtgtnggee ntetgtaete tggetgeaga 180
etgacetnne teaggnenga gaagnatggn geageeactg gantggatge eatetgeane 240
eacennentn aneceaaaag neetggaetg nacagngage ngetntaetg ggagetnage 300
eanetgacea annneatenn ngagetgggn ecetaeaeee tggaeaggna eagtetetat 360

gtcaat	ggtt	tcacccatcg	gagctttggg	ctcaccacca	gcactccttg	gacttccaca	420
gttgac	cttg	gaacctcagg	gactccatcc	cccgtcccca	gccccaca		468
<210>	134						
<211>	468						
<212>	DNA						
<213>	Home	o sapiens					
<220>							
<221>	misc	c_feature					
<222>	(1)	(468)					
<223>	All	N's = any r	nucleotide				
					•		
<400>	134						
actgct	ggcc	ctctcctggt	gccattcacc	ctaaacttca	ccatcaccaa	cctgcagtat	60
gaggagg	gaca	tgcatcgccc	tggctccagg	aagttcaaca	ccacggagag	ggtccttcag	120
ggtctgd	ctta	cgcccttgtt	caggaacacc	agtgtcagct	ctctgtactc	tggttgcaga	180
ctgacct	tgc	tcaggcctga	gaaggatggg	gcagccacca	gagtggatgc	tgtctgcacc	240
catcgto	cctg	accccaaaag	ccctggactg	nacagngagc	ngctntactg	ggagctnagc	300
canctga	acca	annncatenn	ngagctgggn	ccctacaccc	tggacaggna	cagtctctat	360
gtcaato	gtt	tcacccatcn	ganctctgng	cccaccacca	gcactcctgg	gacctccaca	420
gtgnacn	ntng	gnacetengg	gactccatcc	tccntccccn	gccncaca		468
1010:							
<210>	135						
<211>	465						
<212>	DNA						•
<213>	Homo	sapiens					

<220>

<pre><221> misc_feature <222> (1)(465) <223> All N's = any nucleotide <400> 135 nennetgnee eteteetgnt neentteace nteaacttna ceateaceaa eetgeantan gnggannaca tgenneneee nggnteeagg aagtteaaca ceaengagng ngtnetgeag ggtetgetnn nneeentntt caagaaenee agtgtnggee ntetgtaete tggetgeaga etgaeetnne teaggnenga gaagnatggn geageeactg gantggatge catetgeane cacennentn aneceaaaag neetggaetg nacagngage ngetntaetg ggagetnage canetgaeea annneatenn ngagetgggn ceetacaeee tggaeaggna cagtetetat 360</pre>	
<223> All N's = any nucleotide <400> 135 nennetgace eteteetgat meentteace actacetta ceateacea cetgeantan gaggannaca tgennencee aggateeagg aagtteaaca ceaengagag agtacetgetan anceentatt caagaacae agtgtagee atetgtaete tggetgeaga 120 ggtetgetan naceentatt caagaacae agtgtaggee atetgtaete tggetgeaga ctgaeetane teaggaenga gaagaatgga geageeaetg gantggatge catetgeane 240 cacennenta anceeaaaag neetggaetg nacagagage agetataetg ggagetaage 300	
<400> 135 ncnnctgncc ctctcctgnt nccnttcacc ntcaacttna ccatcaccaa cctgcantan gnggannaca tgcnncnccc nggntccagg aagttcaaca ccacngagng ngtnctgcag 120 ggtctgctnn nncccntntt caagaacncc agtgtnggcc ntctgtactc tggctgcaga ctgacctnnc tcaggncnga gaagnatggn gcagccactg gantggatgc catctgcanc 240 caccnncntn ancccaaaag ncctggactg nacagngagc ngctntactg ggagctnagc 300	
ncnnctgncc ctctcctgnt nccnttcacc ntcaacttna ccatcaccaa cctgcantan gnggannaca tgcnncnccc nggntccagg aagttcaaca ccacngagng ngtnctgcag ggtctgctnn nncccntntt caagaacncc agtgtnggcc ntctgtactc tggctgcaga ctgacctnnc tcaggncnga gaagnatggn gcagccactg gantggatgc catctgcanc caccnncntn ancccaaaag ncctggactg nacagngagc ngctntactg ggagctnagc 300	
ncnnctgncc ctctcctgnt nccnttcacc ntcaacttna ccatcaccaa cctgcantan gnggannaca tgcnncnccc nggntccagg aagttcaaca ccacngagng ngtnctgcag ggtctgctnn nncccntntt caagaacncc agtgtnggcc ntctgtactc tggctgcaga ctgacctnnc tcaggncnga gaagnatggn gcagccactg gantggatgc catctgcanc caccnncntn ancccaaaag ncctggactg nacagngagc ngctntactg ggagctnagc 300	
ggtctgctnn nncccntntt caagaacnee agtgtnggee ntetgtaete tggctgcaga 180 ctgacctnnc teaggnenga gaagnatggn geageeactg gantggatge catetgeane 240 caccnnentn ancecaaaag neetggaetg nacagngage ngetntaetg ggagetnage 300)
ctgacctnnc tcaggncnga gaagnatggn gcagccactg gantggatgc catctgcanc caccnncntn ancccaaaag ncctggactg nacagngagc ngctntactg ggagctnagc 300) .
caccnnentn aneccaaaag neetggaetg nacagngage ngetntaetg ggagetnage 300)
)
canctgacca annncatenn ngagetgggn eectacaeee tggacaggna eagtetetat 360)
)
gtcaatggtt tcacccattg gatccctgtg cccaccagca gcactcctgg gacctccaca 420)
gtggaccttg ggtcagggac tccatcctcc ctccccagcc ccaca 465	j
<210> 136	
<211> 468	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (1)(468)	
<223> All N's = any nucleotide	
<400> 136 actgctggcc ctctcctggt accattcacc ctcaacttca ccatcaccaa cctgcagtat 60	
ggggaggaca tgggtcaccc tggctccagg aagttcaaca ccacagagag ggtcctgcag 120)
ggtctgcttg gtcccatatt caagaacacc agtgttggcc ctctgtactc tggctgcaga 180	

ctgacc	tctc	tcaggtccga	gaaggatgga	gcagccactg	gagtggatgc	catctgcatc	240
catcat	cttg	accccaaaag	ccctggactg	nacagngagc	ngctntactg	ggagctnagc	300
canctg	acca	annncatcnn	ngagctgggn	ccctacaccc	tggacaggna	cagtctctat	360
gtcaat	ggtt	tcacccatcn	ganctctgng	cccaccacca	gcactcctgg	gacctccaca	420
gtgnac	ntng	gnacctcngg	gactccatcc	tccntccccn	gccncaca		468
<210>	137						
<211>	468						
<212>	DNA						
<213>	Homo	sapiens		•			
				•			
<220>			`				
<221>	misc	_feature					
<222>	(1).	. (468)					
<223>	All	N's = any n	nucleotide	•			

<400> 137 nennetgnee eteteetgnt neentteace nteaacttna ceateaceaa eetgeantan 60 gnggannaca tgcnncnccc nggntccagg aagttcaaca ccacngagng ngtnctgcag 120 ggtctgctnn nncccntntt caagaacnee agtgtnggee ntetgtaete tggctgeaga 180 ctgacctnnc tcaggncnga gaagnatggn gcagccactg gantggatgc catctgcanc 240 caccnnentn ancecaaaag neetggaetg nacagngage ngetntaetg ggagetnage 300 canctgacca annncatcnn ngagctgggn ccctacaccc tggacaggna cagtctctat 360 gtcaatggtt tcacccatca gacctttgcg cccaacacca gcactcctgg gacctccaca 420 gtggaccttg ggacctcagg gactccatcc tccctcccca gccctaca 468

<210> 138

<211> 468

<212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)..(468) <223> All N's = any nucleotide <400> 138 tetgetggee eteteetggt gecatteace eteaacttea ceateaceaa cetgeagtae 60 gaggaggaca tgcatcaccc aggctccagg aagttcaaca ccacggagcg ggtcctgcag 120 ggtctgcttg gtcccatgtt caagaacacc agtgtcggcc ttctgtactc tggctgcaga 180 ctgaccttgc tcaggcctga gaagaatggg gcagccacca gagtggatgc tgtctgcacc 240 categicetg accecaaaag ceetggactg nacagngage ngcintactg ggageinage 300 canctgacca annncatenn ngagetgggn cectacacce tggacaggna cagtetetat 360 gtcaatggtt tcacccatcn ganctctgng cccaccacca gcactcctgg gacctccaca 420 gtgnacntng gnacctcngg gactccatcc tccntccccn gccncaca 468 <210> 139 <211> 468 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)..(468)

<223> All N's = any nucleotide

<400> 139						
ncnnctgncc	ctctcctgnt	ncentteace	ntcaacttna	ccatcaccaa	cctgcantan	60
gnggannaca	tgcnncnccc	nggntccagg	aagttcaaca	ccacngagag	ggttctgcag	120
ggtctgctca	agcccttgtt	caagagcacc	agtgttggcc	ctctgtattc	tggctgcaga	180
ctgaccttgc	tcaggcctga	gaaggacgga	gtagccacca	gagtggacgc	catctgcacc	240
caccgccctg	accccaaaat	ccctgggcta	gacagacagc	agctatactg	ggagctgagc	300
cagctgaccc	acagcatcac	tgagctggga	ccctacaccc	tggataggga	cagtctctat	360
gtcaatggtt	tcacccagcg	gagctctgtg	cccaccacca	gcactcctgg	gactttcaca	420
gtacagccgg	aaacctctga	gactccatca	tccctccctg	gccccaca		468
<210> 140						
<211> 468	•					
<212> DNA						
<213> Homo	sapiens					
<400> 140						
gccactggcc	ctgtcctgct	gccattcacc	ctcaatttta	ccatcactaa	cctgcagtat	60
gaggaggaca	tgcatcgccc	tggctccagg	aagttcaaca	ccacggagag	ggtccttcag	120
ggtctgctta	tgcccttgtt	caagaacacc	agtgtcagct	ctctgtactc	tggttgcaga	180
ctgaccttgc	tcaggcctga	gaaggatggg	gcagccacca	gagtggatgc	tgtctgcacc	240
categteetg	accccaaaag	ccctggactg	gacagagagc	ggctgtactg	gaagctgagc ,	300
cagetgaeee	acggcatcac	tgagctgggc	ccctacaccc	tggacaggca	cagtctctat	360
gtcaatggtt	tcacccatca	gagctctatg	acgaccacca	gaactcctga	tacctccaca	420
atgcacctgg	caacctcgag	aactccagcc	tccctgtctg	gacctacg		468
<210> 141	•					
<211> 468						
<212> DNA	•					
<213> Homo	caniene					

<212> DNA

<400> 141 accgccagcc	ctctcctggt	getattcaca	attaacttca	ccatcactaa	cctgcggtat	60
gaggagaaca	tgcatcaccc	tggctctaga	aagtttaaca	ccacggagag	agtccttcag	120
ggtctgctca	ggcctgtgtt	caagaacacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgaccttgc	tcaggcccaa	gaaggatggg	gcagccacca	aagtggatgc	catctgcacc	240
taccgccctg	atcccaaaag	ccctggactg	gacagagagc	agctatactg	ggagctgagc	300
cagctaaccc	acagcatcac	tgagctgggc	ccctacaccc	tggacaggga	cagtctctat	360
gtcaatggtt	tcacacagcg	gagctctgtg	cccaccacta	gcattcctgg	gacccccaca	420
gtggacctgg	gaacatctgg	gactccagtt	tctaaacctg	gtccctcg		468
		,				
<210> 142						
<211> 468						
<212> DNA						
<213> Home	o sapiens					
•						
<400> 142						
gctgccagcc	ctctcctggt	gctattcact	ctcaacttca	ccatcaccaa	cctgcggtat	60
gaggagaaca	tgcagcaccc	tggctccagg	aagttcaaca	ccacggagag	ggtccttcag	120
ggcctgctca	ggtccctgtt	caagagcacc	agtgttggcc	ctctgtactc	tggctgcaga	180
ctgactttgc	tcaggcctga	aaaggatggg	acagccactg	gagtggatgc	catctgcacc	240
caccaccctg	accccaaaag	ccctaggctg	gacagagagc	agctgtattg	ggagctgagc	300
cagctgaccc	acaatatcac	tgagctgggc	cactatgccc	tggacaacga	cagcctcttt	360
gtcaatggtt	tcactcatcg	gagctctgtg	tccaccacca	gcactcctgg	gacccccaca	420
gtgtatctgg	gagcatctaa	gactccagcc	tcgatatttg	gcccttca		468
<210> 143						
<211> 399						

360

420

453

174

<213> Homo sapiens

<400> 143 gctgccagcc atctcctg	at actattcacc	ctcaacttca	ccatcactaa	cctgcggtat	60
gaggagaaca tgtggcct	gg ctccaggaag	ttcaacacta	cagagagggt	ccttcagggc	120
ctgctaaggc ccttgttc	aa gaacaccagt	gttggccctc	tgtactctgg	ctccaggctg	180
accttgctca ggccagag	aa agatggggaa	gccaccggag	tggatgccat	ctgcacccac	240
cgccctgacc ccacaggc	cc tgggctggac	agagagcagc	tgtatttgga	gctgagccag	300
ctgacccaca gcatcact	ga gctgggcccc	tacacactgg	acagggacag	tctctatgtc	360
aatggtttca cccatcgg	ag ctctgtaccc	accaccage			399
<210> 144					
<211> 453					
<212> DNA					
<213> Homo sapiens					
•			•		
<400> 144 accggggtgg tcagcgagg	ga gccattcaca	ctgaacttca	ccatcaacaa	cctgcgctac	60
atggcggaca tgggccaad	cc cggctccctc	aagttcaaca	tcacagacaa	cgtcatgaag	120
cacctgctca gtcctttg	tt ccagaggage	agcctgggtg	cacggtacac	aggctgcagg	180
gtcatcgcac taaggtctq	gt gaagaacggt	gctgagacac	gggtggacct	cctctgcacc	240

cagcagaccc atggcatcac ccggctgggc ccctactctc tggacaaaga cagcctctac

cttaacggtt acaatgaacc tggtctagat gagcctccta caactcccaa gccagccacc

<210> 145

acattcctgc ctcctctgtc agaagccaca aca

<211> 465

<212> DNA

<213> Homo sapiens

<400> 145						
	accacctgaa	gaccctcaca	ctcaacttca	ccatctccaa	tctccagtat	60
tcaccagata	tgggcaaggg	ctcagctaca	ttcaactcca	ccgagggggt	ccttcagcac	120
ctgctcagac	ccttgttcca	gaagagcagc	atgggccct	tctacttggg	ttgccaactg	180
atctccctca	ggcctgagaa	ggatggggca	gccactggtg	tggacaccac	ctgcacctac	240
caccctgacc	ctgtgggccc	cgggctggac	atacagcagc	tttactggga	gctgagtcag	300
ctgacccatg	gtgtcaccca	actgggcttc	tatgtcctgg	acagggatag	cctcttcatc	360
aatggctatg	caccccagaa	tttatcaatc	cggggcgagt	accagataaa	tttccacatt	420
gtcaactgga	acctcagtaa	tccagacccc	acatcctcag	agtac		465

<210> 146

<211> 9799

<212> PRT

<213> Homo sapiens

<220>

<221> MISC FEATURE

<222> (1)..(9799)

<223> Any "X" = any amino acid

<400> 146

Ala Thr Val Pro Phe Met Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 $$ 5 $$ 10 $$ 15

Asn Leu Gln Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Ala Thr Glu Arg Glu Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg 35 40 45

Asn Ser Ser Leu Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu 50 60

Arg Pro Glu Lys Asp Ser Ser Ala Met Ala Val Asp Ala Ile Cys Thr 65 70 75 80

His Arg Pro Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr 85 90 95

Trp Glu Leu Ser Asn Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr 100 105 110

Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser 115 120 125

Ser Met Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Val Gly 130 135 140

Thr Ser Gly Thr Pro Ser Ser Ser Pro Ser Pro Thr Ala Ala Gly Pro 145 150 150

Leu Leu Met Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr 165 170 175

Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met Glu 180 185 190

Ser Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val 195 200 205

Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys 210 220

Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp 225 230 235 240

Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu Ser 245 250 255

Lys Leu Thr Asn Asp Ile Glu Glu Leu Gly Pro Tyr Thr Leu Asp Arg 260 265 270

Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln Ser Ser Val Ser Thr 275 280 285

Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Arg Thr Ser Gly Thr 290 295 300

Pro Ser Ser Leu Ser Ser Pro Thr Ile Met Ala Ala Gly Pro Leu Leu 305 310 315 320

Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Gly Glu 325 330 335

Asp Met Gly His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val 340 345 350

Leu Gln Gly Leu Leu Gly Pro Ile Phe Lys Asn Thr Ser Val Gly Pro 355 360 365

Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Ser Glu Lys Asp Gly 370 375 380

Ala Ala Thr Gly Val Asp Ala Ile Cys Ile His His Leu Asp Pro Lys 385 390 395 400

Ser Pro Gly Leu Asn Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu 405 410 415

Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser 420 425 430

Leu Tyr Val Asn Gly Phe Thr His Arg Thr Ser Val Pro Thr Ser Ser 435 440 445

Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Phe 450 455 460

Ser Leu Pro Ser Pro Ala Thr Ala Gly Pro Leu Leu Val Leu Phe Thr 465 470 475 480

Leu Asn Phe Thr Ile Thr Asn Leu Lys Tyr Glu Glu Asp Met His Arg
485 490 495

Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Thr Leu 500 505 510

Leu Gly Pro Met Phe Lys Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly 515 520 525

Cys Arg Leu Thr Leu Leu Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly 530 540

Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Leu 545 550 555 560

Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Gly Ile 565 570 575

Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn 580 585 590

Gly Phe Thr His Trp Ile Pro Val Pro Thr Ser Ser Thr Pro Gly Thr 595 600 605

Ser Thr Val Asp Leu Gly Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro 610 615 620

Thr Ala Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile 625 630 635 640

Thr Asn Leu Gln Tyr Glu Glu Asp Met His His Pro Gly Ser Arg Lys 645 650 655

Phe Asn Thr Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe 660 665 670

Lys Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu 675 680 685

Leu Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys 690 695 700

Thr His Arg Leu Asp Pro Lys Ser Pro Gly Val Asp Arg Glu Gln Leu 705 710 715 720

Tyr Trp Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro
725 730 735

Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln 740 745 750

Thr Ser Ala Pro Asn Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu 755 760 765

Gly Thr Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Ser Ala Gly 770 775 780

Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln 785 790 795 800

Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe Asn Thr Thr 805 810 815

Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser 820 825 830

Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Ser Glu 835 840 845

Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu 850 855 860

Asp Pro Lys Ser Pro Gly Val Asp Arg Glu Gln Leu Tyr Trp Glu Leu 865 870 875 880

Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp 885 890 895

Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln Thr Ser Ala Pro 900 905 910

- Asn Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly 915 920 925
- Thr Pro Ser Ser Leu Pro Ser Pro Thr Ser Ala Gly Pro Leu Leu Val 930 935 940
- Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp 955 960
- Met His His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu 965 970 975
- Gln Gly Leu Gly Pro Met Phe Lys Asn Thr Ser Val Gly Leu Leu 980 985 990
- Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asn Gly Ala 995 1000 1005
- Ala Thr Gly Met Asp Ala Ile Cys Ser His Arg Leu Asp Pro Lys 1010 1015 1020
- Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln 1025 1030 1035
- Leu Thr His Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg 1040 1045 1045 1050
- Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser Ser Val Ala 1055 1060 1065
- Pro Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser 1070 1075 1080
- Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Thr Ala Val Pro Leu 1085 1090 1095
- Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr 1100 1105 1110

Gly	Glu 1115		Met	Arg	His	Pro 1120	Gly	Ser	Arg	Lys	Phe 1125	Asn	Thr	Thr
Glu	Arg 1130	Val	Leu	Gln		Leu 1135		Gly	Pro	Leu	Phe 1140	Lys	Asn	Ser
Ser	Val 1145	Gly	Pro	Leu	Tyr	Ser 1150		Cys	Arg	Leu	Ile 1155	Ser	Leu	Arg
Ser	Glu 1160	Lys	Asp	Gly	Ala	Ala 1165	Thr	Gly	Val	Asp	Ala 1170	Ile	Cys	Thr
His	H i s 1175	Leu	Asn	Pro	Gln	Ser 1180	Pro	Gly	Leu	Asp	Arg 1185	Glu	Gln	Leu
Tyr	Trp 1190		Leu	Ser	Gln	Met 1195	Thr	Asn	Gly	Ile	Lys 1200	Glu	Leu	Gly
Pro	Tyr 1205		Leu	Asp	Arg	Asn 1210		Leu	Tyr	Val	Asn 1215	Gly	Phe	Thr
His	Arg 1220		Ser	Gly	Leu	Thr 1225		Ser	Thr	Pro	Trp 1230	Thr	Ser	Thr
Val	Asp 1235		Gly	Thr	Ser	Gly 1240		Pro	Ser	Pro	Val 1245	Pro	Ser	Pro
Thr	Thr 1250		Gly	Pro	Leu	Leu 1255		Pro	Phe	Thr	Leu 1260	Asn	Phe	Thr
Ile	Thr 1265		Leu	Gln	Tyr	Glu 1270			Met		Arg 1275	Pro	Gly	Ser
Arg	Lys 1280		Asn	Ala	Thr	Glu 1285		Val	Leu	Gln	Gly 1290		Leu	Ser
Pro	Ile 1295		Lys	Asn	Ser	Ser 1300		Gly	Pro	Ĺeu	Tyr 1305		Gly	Cys
Arg	Leu 1310		Ser	Leu	Arg	Pro 1315		Lys	Asp	Gly	Ala 1320		Thr	Gly

Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly Thr Pro Ser Ser Phe Pro Gly His Thr Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Phe Asn Phe Thr Ile Thr Asn Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu'Thr Ser Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr His Pro Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Cys Glu 1490 . 1495 Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser

Leu	Asp 1520		Asp	Ser	Leu	Tyr 1525	Val	Asn	Gly	Phe	Thr 1530	His	Gln	Asn
Ser	Val 1535	Pro	Thr	Thr	Ser	Thr 1540	Pro	Gly	Thr	Ser	Thr 1545	Val	Tyr	Trp
Ala	Thr 1550	Thr	Gly	Thr	Pro	Ser 1555		Phe	Pro	Gly	His 1560		Glu	Pro
Gly	Pro 1565		Leu	Ile	Pro	Phe 1570		Phe	Asn	Phe	Thr 1575		Thr	Asn
Leu	His 1580	Tyr	Glu	Glu	Asn	Met 1585		His	Pro	Gly	Ser 1590	Arg	Lys	Phe
Asn	Thr 1595	Thr	Glu	Arg	Val	Leu 1600		Gly	Leu	Leu	Lys 1605	Pro	Leu	Phe
Lys	Asn 1610	Thr	Ser	Val	Gly	Pro 1615	Leu	Tyr	Ser	Gly	Cys 1620	Arg	Leu	Thr
Leu	Leu 1625	-	Pro	Glu	Lys	His 1630		Ala	Ala	Thr	Gly 1635		Asp	Thr
Ile	Cys 1640	Thr	His	Arg	Val	Asp 1645	Pro	Ile	Gly	Pro	Gly 1650	Leu	Asp	Arg
Glu	Arg 1655		Tyr	Trp	Glu	Leu 1660		Gln	Leu	Thr	Asn 1665		Ile	Thr
	Leu 1670		Pro	Tyr	Thr	Leu 1675	Asp	Arg	Asp	Ser	Leu 1680	Tyr	Val	Asn
Gly	Phe 1685		Pro	Arg	Ser	Ser 1690		Pro	Thr	Thr	Ser 1695	Thr	Pro	Gly
Ţhr	Ser 1700		Val	His	Leu	Ala 1705		Ser	Gly	Thr	Pro 1710		Ser	Leu
Pro	Gly 17 1 5		Thr	Ala	Pro	Val 1720		Leu	Leu	Ile	Pro 1725		Thr	Leu

Asn	Phe 1730	Thr	Ile	Thr	Asn	Leu 1735	His	Tyr	Glu	Glu	Asn 1740	Met	Gln	His
Pro	Gly 1745	Ser	Arg	Lys	Phe	Asn 1750	Thr	Thr	Glu	Arg	Val 1755	Leu	Gln	Gly
Leu	Leu 1760	Lys	Pro	Leu	Phe	Lys 1765	Asn	Thr	Ser	Val	Gly 1770	Pro	Leu	Tyr
Ser	Gly 1775	Cys	Arg	Leu	Thr	Leu 1780	Leu	Arg	Pro	Glu	Lys 1785	His	Glu	Ala
Ala	Thr 1790	Gly	Val	Asp	Thr	Ile 1795		Thr	His	Arg	Val 1800	Asp	Pro	Ile
Gly	Pro 1805	Gly	Leu	Asp	Arg	Glu 1810	Xaa	Leu	Tyr	Trp	Glu 1815	Leu	Ser	Xaa
Leu	Thr 1820	Xaa	Xaa	Ile	Xaa	Glu 1825	Leu	Gly	Pro	Tyr	Xaa 1830		Asp	Arg
Xaa	Ser 1835	Leu	Tyr	Val	Asn	Gly 1840	Phe	Xaa	Xaa	Xaa	Xaa 1845	Xaa	Xaa	Xaa
Xaa	Thr 1850	Ser	Thr	Pro	Gly	Thr 1855	Ser	Xaa	Val	Xaa	Leu 1860	Xaa	Thr	Ser
Gly	Thr 1865	Pro	Xaa	Xaa	Xaa	Pro 1870	Xaa	Xaa	Thr	Ser	Ala · 1875	Gly	Pro	Leu
Leu	Val 1880	Pro	Phe	Thr	Leu	Asn 1885	Phe	Thr	Ile	Thr	Asn 1890	Leu	Gln	Tyr
Glu	Glu 1895	Asp	Met	His	His	Pro 1900	Gly	Ser	Arg	Lys	Phe 1905	Asn	Thr	Thr
Glu	Arg 1910	Val	Leu	Gln	Gly	Leu 1915	Leu	Gly	Pro	Met	Phe 1920	Lys	Asn	Thr

Ser	Val 1925	Gly	Leu	Leu	Tyr	Ser 1930	Gly	Cys	Arg	Leu	Thr 1935	Leu	Leu	Arg
Pro	Glu 1940		Asn	Gly	Ala	Ala 1945		Gly	Met	Asp	Ala 1950	Ile	Cys	Ser
His	Arg 1955	Leu	Asp	Pro	Lys	Ser 1960	Pro	Gly	Leu	Asp	Arg 1965	Glu	Gln	Leu
Tyr	Trp 1970	Glu	Leu	Ser	Gln	Leu 1975		His	Gly	Ile	Lys 1980		Leu	Gly
Pro	Tyr 1985	Thr	Leu	Asp	Arg	Asn 1990	Ser	Leu	Tyr	Val	Asn 1995	Gly	Phe	Thr
His	Arg 2000	Ser	Ser	Val		Pro 2005		Ser	Thr	Pro	Gly 2010	Thr	Ser	Thr
Val	Asp 2015	Leu	Gly	Thr	Ser	Gly 2020	Thr	Pro	Ser	Ser	Leu 2025	Pro	Ser	Pro
Thr	Thr 2030		Val	Pro	Leu	Leu 2035	Val	Pro	Phe	Thr	Leu 2040	Asn	Phe	Thr
Ile	Thr 2045	Asn	Leu	Gln	Tyr	Gly 2050	Glu	Asp	Met	Arg	His 2055	Pro	Gly	Ser
Arg	Lys 2060		Asn	Thr	Thr	Glu 2065		Val	Leu	Gln	Gly 2070	Leu	Leu	Gly
	Leu 2075		Lys	Asn	Ser	Ser 2080	Val	Gly	Pro	Leu	Tyr 2085	Ser	Gly	Cys
Arg	Leu 2090		Ser	Leu	Arg	Ser 2095		Lys	Asp	Gly	Ala 2100	Ala	Thr	Gly
Val	Asp 2105		Ile	Cys	Thr	His 2110		Leu	Asn	Pro	Gln 2115		Pro	Gly
Leu	Asp 2120		Glu	Gln	Leu	Tyr 2125		Gln	Leu	Ser	Gln 2130	Met	Thr	Asn

Gly	Ile 2135		Glu	Leu		Pro 2140		Thr	Leu	Asp	Arg 2145	Asn	Ser	Leu
Tyr	Val 2150		Gly	Phe		His 2155		Ser	Ser	Gly	Leu 2160	Thr	Thr	Ser
Thr	Pro 2165		Thr	Ser	Thr	Val 2170		Leu	Gly	Thr	Ser 2175	Gly	Thr	Pro
Ser	Pro 2180		Pro	Ser	Pro	Thr 2185	Thr	Ala	Gly	Pro	Leu 2190	Leu	Val	Pro
Phe	Thr 2195	Leu	Asn	Phe	Thr	Ile 2200	Thr	Asn	Leu	Gln	Tyr 2205	Glu	Glu	Asp
Met	His 2210		Pro	Gly		Arg 2215		Phe	Asn	Ala	Thr 2220	Glu	Arg	Val
	2225	¥				2230					Ser 2235	•		
	2240					2245					Arg 2250			
	2255					2260				_	Leu 2265	-		
	2270					2275		_			Leu 2280	_	-	
	2285					2290					Gly 2295		•	
	2300	•				2305					Thr. 2310			
ser	Met 2315	Thr	Thr	Thr	Arg	Thr 2320	Pro	Asp	Thr	Ser	Thr 2325	Met	His	Leu

Ala	Thr 2330	Ser	Arg	Thr	Pro	Ala 2335	Ser	Leu	Ser	Gly	Pro 2340	Thr	Thr	Ala
Ser	Pro 2345	Leu	Leu	Val	Leu	Phe 2350	Thr	Ile	Asn		Thr 2355	Ile	Thr	Asn
Leu	Gln 2360	Tyr	Glu	Glu	Asp	Met 2365	Arg	Arg	Thr	Gly	Ser 2370	Arg	Lys	Phe
Asn	Thr 2375	Met	Glu	Ser	Val	Leu 2380	Gln	Gly	Leu		Lys 2385	Pro	Leu	Phe
Lys	Asn 2390	Thr	Ser	Val	Gly	Pro 2395	Leu	Tyr	Ser	Gly	Cys 2400	Arg	Leu	Thr
Leu	Leu 2405	Arg	Pro	Lys	Lys	Asp 2410		Ala	Ala	Thr	Gly 2415	Val	Asp	Ala
Ile	Cys 2420		His	Arg	Leu	Asp 2425	Pro	Lys	Ser	Pro	Gly 2430	Leu	Asn	Arg
Glu	Gln 2435		Tyr	Trp	Glu	Leu 2440		Lys	Leu	Thr	Asn 2445	Asp	Ile	Glu
Glu	Leu 2450		Pro	Tyr	Thr	Leu 2455		Arg	Asn	Ser	Leu 2460	Tyr	Val	Asn
Gly	Phe 2465			Gln		Ser 2470		Ser	Thr	Thr	Ser 2475		Pro	Gly
Thr	Ser 2480	Thr	Val	Asp	Ļeu	Arg 2485	Thr	Ser	Gly	Thr	Pro 2490	Ser	Ser	Leu
Ser	Ser 2495		Thr	Ile	Met	Xaa 2500		Xaa	Pro	Leu	Leu 2505		Pro	Phe
Thr	Leu 2510		Phe	Thr	Ile	Thr 2515		Leu	Xaa	Tyr	Glu 2520	Glu	Xaa	Met
Xaa	Xaa 2525		Gly	Ser	Arg	Lys 2530		Asn	Thr	Thr	Glu 2535	Arg	Val	Leu

Gln	Gly 2540	Leu	Leu	Arg	Pro	Leu 2545		Lys	Asn	Thr	Ser 2550	Val	Ser	Ser
Leu	Tyr 2555	Ser	Gly	Суз	Arg	Leu 2560	Thr	Leu	Leu	Arg	Pro 2565	Glu	Lys	Asp
Gly	Ala 2570		Thr	Arg	Val	Asp 2575	Ala	Ala	Cys	Thr	Tyr 2580	Arg	Pro	Asp
Pro	Lys 2585	Ser	Pro	Gly	Leu	Asp 2590	Arg	Glu	Gln	Leu	Tyr 2595	Trp	Glu	Leu
Ser	Gln 2600	Leu	Thr	His	Ser	Ile 2605	Thr	Glu	Leu	Glу	Pro 2610		Thr	Leu
Asp	Arg 2615	Val	Ser	Leu	Tyr	Val 2620	Asn	Gly	Phe	Ásn	Pro 2625	Arg	Ser	Ser
Val	Pro 2630	Thr	Thr	Ser	Thr	Pro 2635	Gly	Thr	Ser	Thr	Val 2640		Leu	Ala
Thr	Ser 2645	Gly	Thr	Pro	Ser	Ser 2650	Leu	Pro	Ġlу	His	Thr 2655	Ala	Pro	Val
Pro	Leu 2660	Leu	Ile	Pro	Phe	Thr 2665	Leu	Asn	Phe	Thr	Ile 2670	Thr	Asn	Leu
His	Tyr 2675	Glu	Glu	Asn	Met	Gln 2680	His	Pro	Gly	Ser	Arg 2685	Lys	Phe	Asn
Thr	Thr 2690	Glu	Arg	Val	Leu	Gln 2695		Leu			Pro 2700	Leu	Phe	Lys
Ser	Thr 2705	Ser	Val	Gly	Pro	Leu 2710	Tyr	Ser	Gly	Cys	Arg 2715	Leu	Thr	Leu
Leu	Arg 2720	Pro	Glu	Lys	His	Gly 2725	Ala	Ala	Thr	Gly	Val 2730	Asp	Ala	Ile

Cys	Thr 2735	Leu	Arg	Leu		Pro 2740	Thr	Gly	Pro		Leu 2745	Asp	Arg	Glu
Arg	Leu 2750	Tyr	Trp	Glu	Leu	Ser 2755	Gln	Leu	Thr	Asn	Ser 2760	Val	Thr	Glu
Leu	Gly 2765	Pro	Tyr	Thr		Asp 2770	Arg	Asp	Ser	Leu	Tyr 2775	Val	Asn	Gly
Phe	Thr 2780	Gln	Arg	Ser	Ser	Val 2785	Pro	Thr	Thr	Ser	Ile 2790	Pro	Gly	Thr
Ser	Ala 2795	Val	His	Leu	Glu	Thr 2800	Ser	Gly	Thr		Ala 2805	Ser	Leu	Pro
Gly	His 2810	Thr	Ala	Pro	Gly	Pro 2815	Leu	Leu	Val	Pro	Phe 2820	Thr	Leu	Asn
	Thr 2825					2830					2835			
Gly	Ser 2840	Arg	Lys	Phe	Asn	Thr 2845	Thr	Glu	Arg	Val	Leu 2850	Gln	Gly	Leu
	Lys 2855					2860				٠	2865			
_	Cys 2870					2875					2880			
	Gly 2885					2890					2895			
	Gly 2900					2905					2910			
	Arg 2915					2920					2925			
Ser	Leu 2930	_	Val	Asn	Gly	Phe 2935	Thr	His	Arg	Asn	Phe 2940	Val	Pro	Ile

Thr	Ser 2945	Thr	Pro	Gly	Thr	Ser 2950		Val	His	Leu	Gly 2955		Ser	Glu
Thr	Pro 2960	Ser	Ser	Leu	Pro	Arg 2965		Ile	Val	Pro	Gly 2970		Leu	Leu
Val	Pro 2975	Phe	Thr	Leu	Asn	Phe 2980		Ile	Thr	Asn	Leu 2985		Tyr	Glu
Glu	Ala 2990	Met	Arg	His	Pro	Gly 2995	Ser	Arg	Lys	Phe	Asn 3000		Thr	Glu
Arg	Val 3005	Leu	Gln	Gly	Leu	Leu 3010	Arg	Pro	Leu	Phe	Lys 3015		Thr	Ser
Ile	Gly 3020	Pro	Leu	Tyr	Ser	Ser 3025	Cys	Arg	Leu	Thr	Leu 3030		Arg	Pro
Glu	Lys 3035	Asp	Lys	Ala	Ala	Thr 3040	Arg	Val	Asp	Ala	Ile 3045		Thr	His
His	Pro 3050	Asp	Pro	Gln	Ser	Pro 3055	Gly	Leu	Asn	Arg	Glu 3060	Gln	Leu	Tyr
Trp	Glu 3065	Leu	Ser	Gln _	Leu	Thr 3070	His	Gly	Ile	Thr	Glu 3075	Leu	Gly	Pro
Tyr	Thr 3080	Leu	Asp	Arg	Asp	Ser 3085	Leu	Tyr	Val	Asp	Gly 3090	Phe	Thr	His
Trp	Ser 3095	Pro	Ile	Pro	Thr	Thr 3100	Ser	Thr	Pro	Gly	Thr 3105	Ser	Ile	Val
Asn	Leu 3110	Gly	Thr	Ser	Gly	Ile 3115	Pro	Pro	Ser	Leu	Pro 3120	Glu	Thr	Thr
Xaa	Xaa 3125	Xaa	Pro	Leu	Leu	Xaa 3130	Pro	Phe	Thr	Leu	Asn 3135	Phe	Thr	Ile

Thr	Asn 3140	Leu	Xaa	Tyr	Glu	Glu 3145	Xaa	Met	Xaa		Pro 3150	Gly	Ser	Arg
Lys	Phe 3155	Asn	Thr	Thr	Glu	Arg 3160		Leu	Gln	Gly	Leu 3165	Leu	Lys	Pro
Leu	Phe 3170	Arg	Asn	Ser	Ser	Leu 3175	Glu	Tyr	Leu	Tyr	Ser 3180	Gly	Суз	Arg
Leu	Ala 3185	Ser	Leu	Arg	Pro	Glu 3190		Asp	Ser	Ser	Ala 3195	Met	Ala	Val
Asp	Ala 3200	Ile	Cys	Thr	His	Arg 3205	Pro	Asp	Pro	Glu	Asp 3210	Leu	Gly	Leu
Asp	Arg 3215		Arg	Leu	Tyr	Trp 3220		Leu	Ser	Asn	Leu 3225	Thr	Asn	Gly
Ile	Gln 3230	Glu	Leu	Gly	Pro	Tyr 3235	Thr	Leu	Asp	Arg	Asn 3240	Ser	Leu	Tyr
Val	Asn 3245	·Gly	Phe	Thr	His	Arg 3250		Ser	Phe		Thr 3255	Thr	Ser	Thr
Pro	Trp 3260		Ser	Thr	Val	Asp 3265		Gly	Thr	Ser	Gly 3270	Thr	Pro	Ser
Pro	Val 3275		Ser	Pro	Thr	Thr 3280		Gly	Pro	Leu	Leu 3285	Val	Pro	Phe
	Leu 3290	Asn	Phe	Thr	Ile	Thr 3295	Asn	Leu	Gln	Tyr	Glu 3300	Glu	Asp	Met
His	Arg 3305		Gly	Ser	Arg	Arg 3310		Asn	Thr	Thr	Glu 3315	Arg	Val	Leu
Gln	Gly 3320		Leu	Thr	Pro	Leu 3325		Lys	Asn	Thr	Ser 3330		Gly	Pro
Leu	Tyr 3335		Gly	Cys	Arg	Leu 3340		Leu	Leu	Arg	Pro 3345		Lys	Gln

Glu	Ala 3350		Thr	Gly		Asp 3355		Ile	Cys	Thr	His 3360		Val	Asp
Pro	Ile 3365		Pro	Gly	Leu	Asp 3370		Glu	Arg	Leu	Tyr 3375	_	Glu	Leu
Ser	Gln 3380	Leu	Thr	Asn	Ser	Ile 3385		Glu	Leu	Gly	Pro 3390		Thr	Leu
Asp	Arg 3395	Asp	Ser	Leu	Tyr	Val 3400	Asn	Gly	Phe	Asn	Pro 3405		Ser	Ser
Val	Pro 3410	Thr	Thr	Ser	Thr	Pro 3415		Thr	Ser	Thr	Val 3420		Leu	Ala
Thr	Ser 3425	Gly	Thr	Pro	Ser	Ser 3430	Leu	Pro	Gly	His	Thr 3435	Ala	Pro	Val
Pro	Leu 3440	Leu	Ile	Pro	Phe	Thr 3445	Leu	Asn	Phe	Thr	Ile 3450		Asp	Leu
His	Tyr 3455	Glu	Glu	Asn	Met	Gln 3460	His	Pro	Gly	Ser	Arg 3465	Lys	Phe	Asn
Thr	Thr 3470	Glu	Arg	Val		Gln 3475	Gly	Leu	Leu	Lys	Pro 3480	Leu	Phe	Lys
Ser	Thr 3485	Ser	Val	Gly	Pro	Leu 3490	Tyr	Ser	Gly	Cys	Arg 3495	Leu	Thr	Leu
Leu	Arg 3500	Pro	Glu	ГÀЗ		Gly 3505	Ala	Ala	Thr	Gly	Val 3510	Asp	Ala	Ile
Cys	Thr 3515	Leu	Arg	Leu	Asp	Pro 3520	Thr	Gly	Pro	Gly	Leu 3525	Asp	Arg	Glu
Arg	Leu 3530	Tyr	Trp	Glu	Leu	Ser 3535	Gln	Leu	Thr	Asn	Ser 3540	Val	Thr	Glu

Leu	Gly 3545	Pro	Tyr	Thr	Leu	Asp 3550	Arg	Asp	Ser	Leu	Tyr 3555	Val	Asn	Gly
Phe	Thr 3560	His	Arg	Ser	Ser	Val 3565	Pro	Thr	Thr	Ser	Ile 3570	Pro	Gly	Thr
Ser	Ala 3575	Val	His	Leu	Glu	Thr 3580	Ser	Gly	Thr	Pro	Ala 3585	Ser	Leu	Pro
Gly	His 3590	Thr	Ala	Pro		Pro 3595	Leu	Leu	Val	Pro	Phe 3600	Thr	Leu	Asn
Phe	Thr 3605	Ile	Thr	Asn	Leu	Gln 3610	Tyr	Glu	Glu	Asp	Met 3615	Arg	His	Pro
Gly	Ser 3620	Arg	Lys	Phe	Ser	Thr 3625		Glu	Arg	Val	Leu 3630	Gln	Gly	Leu
	3635					3640					Ser 3645			
	3650					3655					Asp 3660			
	3665					3670					Asp 3675			
	3680	٠				3685					Leu 3690			
	3695					3700					Leu 3705			
	3710					3715					Ser 3720			
	3725					3730					Ala 3735			
Thr	Pro 3740	Ala	Ser	Leu	Ser	Gly 3745	Pro	Thr	Thr	Ala	Ser 3750	Pro	ьeu	ьeu

Val	Leu 3755	Phe	Thr	Ile	Asn	Phe 3760	Thr	Ile	Thr	Asn	Gln 3765	Arg	Tyr	Glu
Glu	Asn 3770	Met	His	His	Pro	Gly 3775	Ser	Arg	Lys	Phe	Asn 3780	Thr	Thr	Glu
Arg	Val 3785	Leu	Gln	Gly	Leu	Leu 3790	Arg	Pro	Val	Phe	Lys 3795		Thr	Ser
Val	Gly 3800	Pro	Leu	Tyr	Ser	Gly 3805	Cys	Arg	Leu	Thr	Leu 3810	Leu	Arg	Pro
Lys	Lys 3815	Asp	Gly	Ala	Ala	Thr 3820	Lys	Val	Asp	Ala	Ile 3825	Cys	Thr	Tyr
Arg	Pro 3830	Asp	Pro	Lys	Ser	Pro 3835	Gly	Leu	Asp	Arg	Glu 3840	Gln	Leu	Tyr
Trp	Glu - 3845	Leu	Ser	Gln	Leu	Thr 3850	His	Ser	Ile	Thr	Glu 3855	Leu	Gly	Pro
Tyr	Thr 3860	Gln	Asp	Arg	Asp	Ser 3865	Leu	Tyr	Val	Asn	Gly 3870	Phe	Thr	His
Arg	Ser 3875	Ser	Val	Pro	Thr	Thr 3880	Ser	Ile	Pro	Gly	Thr 3885	Ser	Ala	Val
His	Leu 3890	Glu	Thr	Ser	Gly	Thr 3895	Pro	Ala	Ser	Leu	Pro 3900	Gly	His	Thr
Ala	Pro 3905	Gly	Pro	Leu	Leu	Val 3910	Pro	Phe	Thr	Leu	Asn 3915	Phe	Thr	Ile
Thr	Asn 3920	Leu	Gln	Tyr	Glu	Glu 3925	Asp	Met	Arg	His	Pro 3930	Gly	Ser	Arg
ГÀЗ	Phe 3935	Asn	Thr	Thr	Glu	Arg 3940	Val	Leu	Gln	Gly	Leu 3945	Leu	Lys	Pro

Leu	Phe 3950	Lys	Ser	Thr	Ser	Val 3955	Gly	Pro	Leu	Tyr	Ser 3960	Gly	Суз	Arg
Leu	Thr 3965	Leu	Leu	Arg	Pro	Glu 3970	Lys	Arg	Gly	Ala	Ala 3975	Thr	Gly	Val
Asp	Thr 3980	Ile	Суз	Thr	His	Arg 3985	Leu	Asp	Pro	Leu	Asn 3990	Pro	Gly	Leu
Asp	Arg 3995	Glu	Gln	Leu	Tyr	Trp 4000	Glu	Leu	Ser	Lys	Leu 4005	Thr	Arg	Gly
Ile	Ile 4010	Glu	Leu	Gly		Tyr 4015	Leu	Leu	Asp	Arg	Gly 4020	Ser	Leu	Tyr
Val	Asn 4025		Phe	Thr		Arg 4030		Ser	Val	Pro	Thr 4035	Thr	Ser	Thr
Pro	Gly 4040		Ser	Thr	Val	Asp 4045		Gly	Thr	Ser	Gly 4050	Thr	Pro	Phe
Ser	Leu 4055		Ser	Pro	Ala	Xaa 4060	Xaa	Xaa	Pro	Leu	Leu 4065	Xaa	Pro	Phe
Thr	Leu 4070		Phe	Thr	Ile	Thr 4075	Asn	Leu	Xaa	Tyr	Glu 4080		Xaa	Met
Xaa	Xaa 4085		Gly	Ser	Arg	Lys 4090		Asn	Thr	Thr	Glu 4095	Arg	Val	Leu
Gln	Thr 4100												Gly	Leu
Leu	Tyr 4115		Gly	Cys	Arg	Leu 4120	Thr	Leu	Leu	Arg	Ser 4125	Glu	Lys	Asp
Gly	Ala 4130		Thr	Gly	Val	Asp 4135		Ile	Cys	Thr	His 4140		Leu	Asp
Pro	Lys 4145		Pro	Gly	Val	Asp 4150		Glu	Gln	Leu	Tyr 4155		Glu	Leu

Ser	Gln 4160		Thr	Asn	Gly	Ile 4165		Glu	Leu	Gly	Pro 4170	Tyr	Thr	Leu
Asp	Arg 4175	Asn	Ser	Leu	Tyr	Val 4180	Asn	Gly	Phe	Thr	His 4185	Trp	Ile	Pro
Val	Pro 4190	Thr	Ser	Ser	Thr	Pro 4195		Thr	Ser	Thr	Val 4200	Asp	Leu	Gly
Ser	Gly 4205	Thr	Pro	Ser	Leu	Pro 4210		Ser	Pro	Thr	Thr 4215	Ala	Gly	Pro
Leu	Leu 4220	Val	Pro	Phe	Thr	Leu 4225		Phe	Thr	Ile	Thr 4230	Asn	Leu	Lys
Tyr	Glu 4235	Glu	Asp	Met	His	Cys 4240	Pro	Gly	Ser	Arg	Lys 4245	Phe	Asn	Thr
Thr	Glu 4250	Arg	Val	Leu	Gln	Ser 4255	Leu	Leu	Gly	Pro	Met 4260	Phe	Lys	Asn
Thr	Ser 4265	Val	Gly	Pro	Leu	Tyr 4270	Ser	Gly	Cys	Arg	Leu 4275	Thr	Leu	Leu
Arg	Ser 4280	Glu	Lys	Asp		Ala 4285	Ala	Thr	Gly		Asp 4290	Ala	Ile	Cys
Thr	His 4295	Arg	Leu	Asp	Pro	Lys 4300	Ser	Pro	Gly	Val	Asp 4305	Arg	Glu	Gln
Leu	Tyr 4310	Trp	Glu	Leu	Ser	Gln 4315	Leu	Thr	Asn	Gly	Ile 4320	Lys	Glu	Leu
Gly	Pro 4325	Tyr	Thr	Leu	Asp	Arg 4330	Asn	Ser	Leu	Tyr	Val 4335	Asn	Gly	Phe
Thr	His 4340	Gln	Thr	Ser	Ala	Pro 4345	Asn	Thr	Ser	Thr	Pro 4350	Gly	Thr	Ser

Thr	Val 4355	Asp	Leu	Gly		Ser 4360	Gly	Thr	Pro	Ser	Ser 4365	Leu	Pro	Ser
Pro	Thr 4370	Xaa	Xaa	Xaa		Leu 4375	Leu	Xaa	Pro	Phe	Thr 4380	Leu	Asn	Phe
Thr	Ile 4385	Thr	Asn	Leu	Xaa	Tyr 4390	Glu	Glu	Xaa	Met	Xaa 4395	Xaa	Pro	Gly
Ser	Arg 4400	Lys	Phe	Asn	Thr	Thr 4405	Glu	Arg	Val	Leu	Gln 4410	Gly	Leu	Leu
Xaa	Pro 4415		Phe	Lys	Xaa	Thr 4420	Ser	Val	Gly	Xaa	Leu 4 4 25	Tyr	Ser	Gly
Cys	Arg 4430		Thr	Leu	Leu	Arg 4435	Xaa	Glu	Lys	Xaa	Xaa 4440	Ala	Ala	Thr
Xaa	Val 4445		Xaa	Xaa	Cys	Xaa 4450	Xaa	Xaa	Xaa	Asp	Pro 4455	Xaa	Xaa	Pro
Gly	Leu 4460		Arg	Glu	Xaa	Leu 4465		Trp	Glu	Leu	Ser 4470	Xaa	Leu	Thr
Xaa	Xaa 4475		Xaa	Glu	Leu	Gly 4480	Pro	Tyr	Xaa	Leu	Asp 4485	Arg	Xaa	Ser
Leu	Tyr 4490		Asn	Gly	Phe	Thr 4495		Trp	Ile	Pro	Val 4500	Pro	Thr	Ser
Ser	Thr 4505		Gly	Thr	Ser	Thr 4510	Val	Asp	Leu	Gly	Ser 4515	Gly	Thr	Pro
Ser	Ser 4520		Pro	Ser	Pro	Thr 4525	Thr	Ala	Gly	Pro	Leu 4530	Leu	Val	Pro
Phe	Thr 4535		Asn	Phe	Thr	Ile 4540		Asn	Leu	Lys	Tyr 4545	Glu	Glu	Asp
Met	His 4550		Pro	Gly	Ser	Arg 4555		Phe	Asn	Thr	Thr 4560	Glu	Arg	Val

Leu	Gln 4565	Ser	Leu	Leu	Gly	Pro 4570		Phe	Lys	Asn	Thr 4575		Val	Gly
Pro	Leu 4580	Tyr	Ser	Gly	Cys	Arg 4585		Thr	Ser	Leu	Arg 4590		Glu	Lys
Asp	Gly 4595	Ala	Ala	Thr	Gly	Val 4600		Ala	Ile	Суз	Thr 4605		Arg	Val
Asp	Pro 4610	Lys	Ser	Pro	Gly	Val 4615		Arg	Glu	Gln	Leu 4620	-	Trp	Glu
Leu	Ser 4625	Gln	Leu	Thr		Gly 4630		Lys	Glu	Leu	Gly 4635	Pro	Tyr	Thr
Leu	Asp 4640	Arg	Asn	Ser	Leu	Tyr 4645	Val	Asn	Gly	Phe	Thr 4650	His	Gln	Thr
Ser	Ala 4655	Pro	Asn	Thr	Ser	Thr 4660	Pro	Gly	Thr	Ser	Thr 4665		Asp	Leu
Gly	Thr 4670	Ser	Gly	Thr	Pro	Ser 4675	Ser	Leu	Pro	Ser	Pro 4680	Thr	Ser	Ala
Gly	Pro 4685	Leu	Leu	Val		Phe 4690	Thr	Leu	Asn		Thr 4695	Ile	Thr	Asn
Leu	Gln 4700	Tyr	Glu	Glu		Met 4705	His	His	Pro		Ser 4710	Arg	Lys	Phe
Asn	Thr 4715	Thr	Glu	Arg	Val	Leu 4720	Gln	Gly	Leu	Leu	Gly 4725	Pro	Met	Phe
Lys	Asn 4730	Thr	Ser	Val	Gly	Leu 4735	Leu	Tyr	Ser	Gly	Cys 4740	Arg	Leu	Thr
Leu	Leu 4745	Arg	Pro	Glu	Lys	Asn 4750	Gly	Ala	Ala	Thr	Gly 4755	Met	Asp	Ala

Ile	Cys 4760	Thr	His	Arg		Asp 4765	Pro	Lys	Ser		Gly 4770	Leu	Asp	Arg
Glu	Xaa 4775	Leu	Tyr	Trp		Leu 4780		Xaa	Leu	Thr	Xaa 4785	Xaa	Ile	Xaa
Glu	Leu 4790	Gly	Pro	Tyr	Xaa	Leu 4795	Asp	Arg	Xaa	Ser	Leu 4800	Tyr	Val	Asn
Gly	Phe 4805	Xaa	Xaa	Xaa	Xaa	Xaa 4810	Xaa	Xaa	Xaa		Ser 4815		Pro	Gly
Thr	Ser 4820	Xaa	Val	Xaa	Leu	Xaa 4825	Thr	Ser	Gly	Thr	Pro 4830	Xaa	Xaa	Xaa
Pro	Xaa 4835		Thr	Xaa	Хаа	Xaa 4840	Pro	Leu	Leu	Xaa	Pro 4845	Phe	Thr	Leu
Asn	Phe 4850		Ile	Thr	Asn	Leu 4855	Xaa	Tyr	Glu	Glu	Xaa 4860	Met	Xaa	Xaa
Pro	Gly 4865		Arg	ГÀЗ	Phe	Asn 4870		Thr	Glu	Arg	Val 4875	Leu	Gln	Gly
Leu	Leu 4880		Pro	Leu	Phe	Arg 4885		Ser	Ser	Leu	Glu 4890	Tyr	Leu	Tyr
	Gly 4895	_				4900					4905			
Ala	Met 4910	Ala	Val	Asp	Ala	Ile 4915	Суѕ	Thr	His	Arg	Pro 4920	Asp	Pro	Glu
Asp	Leu 4925		Leu	Asp	Arg	Glu 4930		Leu	Tyr	Trp	Glu 4935		Ser	Asn
Leu	Thr 4940		Gly	Ile	Gln	Glu 4945		Gly	Pro	Tyr	Thr 4950		Asp	Arg
Asn	Ser 4955		Tyr	Val	Asn	Gly 4960		Thr	His	Arg	Ser 4965		Met	Pro

Thr	Thr 4970		Thr	Pro		Thr 4975		Thr	Val	Asp	Val 4980	Gly	Thr	Ser
Gly	Thr 4985	Pro	Ser	Ser	Ser	Pro 4990	Ser	Pro	Thr	Thr	Ala 4995	Gly	Pro	Leu
Leu	Ile 5000	Pro	Phe	Thr	Leu	Asn 5005		Thr	Ile	Thr	Asn 5010	Leu	Gln	Tyr
Gly	Glu 5015	Asp	Met			Pro 5020	Gly	Ser	Arg	Lys	Phe 5025	Asn	Thr	Thr
Glu	Arg 5030	Val	Leu	Gln		Leu 5035		Gly	Pro	Ile	Phe 5040	Lys	Asn	Thr
Ser	Val 5045	Gly	Pro	Leu	Tyr	Ser 5050	Gly	Cys	Arg	Leu	Thr 5055	Ser	Leu	Arg
Ser	Glu 5060	Lys	Asp	Gly		Ala 5065	Thr	Gly	Val	Asp	Ala 5070		Cys	Ile
His	His 5075	Leu	Asp	Pro	ГÀЗ	Ser 5080	Pro	Gly	Leu	Asn	Arg 5085	Glu	Arg	Leu
Tyr	Trp 5090	Glu	Leu	Ser	Gln	Leu 5095	Thr	Asn	Gly		Lys 5100	Glu	Leu	Gly
Pro	Tyr 5105	Thr	Leu	Asp	Arg	Asn 5110	Ser	Leu	Tyr	Val	Asn 5115	Gly	Phe	Thr
His	Arg 5120	Thr	Ser	Val	Pro	Thr 5125	Thr	Ser	Thr		Gly 5130	Thr	Ser	Thr
Val	Asp 5135	Leu	Gly	Thr	Ser	Gly 5140	Thr	Pro	Phe	Ser	Leu 5145	Pro	Ser	Pro
Ala	Thr 5150	Ala	Gly	Pro	Leu	Leu 5155	Val	Leu	Phe	Thr	Leu 5160	Asn	Phe	Thr

Ile	Thr 5165	Asn	Leu	Lys	Tyr	Glu 5170	Glu	Asp	Met	His	Arg 5175	Pro	Gly	Ser
Arg	Lys 5180	Phe	Asn	Thr	Thr	Glu 5185	Arg	Val	Leu	Gln	Thr 5190	Leu	Leu	Gly
Pro	Met 5195		Lys	Asn	Thr	Ser 5200	Val	Gly	Leu	Leu	Tyr 5205	Ser	Gly	Cys
Arg	Leu 5210		Leu	Leu	Arg	Ser 5215		Lys	Asp	Gly	Ala 5220	Ala	Thr	Gly
Val	Asp 5225		Ile	Cys	Thr	His 5230		Leu	Asp	Pro	Lys 5235	Ser	Pro	Gly
Leu	Asp 5240		Glu	Xaa	Leu	Tyr 5245		Glu	Leu	Ser	Xaa 5250	Leu	Thr	Xaa
Xaa	Ile 5255		Glu	Leu	Gly	Pro 5260	Tyr	Xaa	Leu	Asp	Arg 5265	Xaa	Ser	Leu
Tyr	Val 5270		Gly	Phe	Xaa	Xaa 5275		Xaa	Xaa	Xaa	Xaa 5280	Xaa	Thr	Ser
	5285					5290					Ser 5295			
	5300					5305					Leu 5310			
	5315					5320					Tyr 5325			
	5330					5335					Thr 5340			
	5345	,				5350					Thr 5355			
Pro	Leu 5360	_	Ser	Gly	Суз	Arg 5365		Thr	Leu	Leu	Arg 5370	Pro	ГÀЗ	гÀз

Asp	Gly 5375		Ala	Thr	Lys	Val 5380		Ala	Ile	Cys	Thr 5385		Arg	Pro
Asp	Pro 5390	Lys	Ser	Pro	Gly	Leu 5395	Asp	Arg	Glu	Gln	Leu 5400	_	Trp	Glu
Leu	Ser 5405		Leu	Thr	His	Ser 5410		Thr	Glu	Leu	Gly 5415		Tyr	Thr
Gln	Asp 5420		Asp	Ser	Leu	Tyr 5425		Asn	Gly	Phe	Thr 5430		Arg	Ser
Ser	Val 5435	Pro	Thr	Thr	Ser	Ile 5440	Pro	Gly	Thr	Ser	Ala 5445	Val	His	Leu
Glu	Thr 5450	Thr	Gly	Thr	Pro	Ser 5455	Ser	Phe	Pro	Gly	His 5460	Thr	Glu	Pro
Gly	Pro 5465	Leu	Leu	Ile	Pro	Phe 5470	Thr	Phe	Asn	Phe	Thr 5475	Ile	Thr	Asn
Leu	Arg 5480	Tyr	Glu	Glu	Asn	Met 5485	Gln	His	Pro	Glý	Ser 5490	Arg	Lys	Phe
Asn	Thr 5495	Thr	Glu	Arg	Val	Leu 5500	Gln	Gly	Leu	Leu	Thr 5505	Pro	Leu	Phe
Lys	Asn 5510	Thr	Ser	Val	Gly	Pro 5515	Leu	Tyr	Ser		Cys 5520	Arg	Leu	Thr
Leu	Leu 5525	Arg	Pro	Glu	Lys	Gln 5530					Gly 5535	Val	Asp	Thr
Ile	Cys 5540	Thr	His	Arg	Val	Asp 5545	Pro	Ile	Gly	Pro	Gly 5550	Leu	Asp	Arg
G1u	Arg 5555	Leu	Tyr	Trp	Glu	Leu 5560	Ser	Gln	Leu	Thr	Asn 5565	Ser	Ile	Thr

Glu	Leu 5570	Gly	Pro	Tyr	Thr	Leu 5575	Asp	Arg	Asp	Ser	Leu 5580	Tyr	Val	Asp
Gly	Phe 5585	Asn	Pro	Trp	Ser	Ser 5590	Val	Pro	Thr		Ser 5595	Thr	Pro	Gly
Thr	Ser 5600	Thr	Val	His		Ala 5605		Ser	Gly	Thr	Pro 5610	Ser	Pro	Leu
Pro	Gly 5615	His	Thr	Ala	Pro	Val 5620	Pro	Leu	Leu	Ile	Pro 5625	Phe	Thr	Leu
Asn	Phe 5630	Thr	Ile	Thr	Asp	Leu 5635		Tyr	Ğlu	Glu	Asn 5640	Met	Gln	His
Pro	Gly 5645	Ser	Arg	Lys	Phe	Asn 5650	Thr	Thr	Glu	Arg	Val 5655	Leu	Gln	Gly
Leu	Leu 5660		Pro	Leu	Phe	Lys 5665	Ser	Thr	Ser	Val	Gly 5670	Pro	Leu	Tyr
Ser	Gly 5675	Cys	Arg	Leu	Thr	Leu 5680	Leu	Arg	Pro	Glu	Lys 5685	His	Gly	Ala
Ala	Thr 5690		Val	Asp		Ile 5695		Thr	Leu	Arg	Leu 5700	Asp	Pro	Thr
Gly	Pro 5705		Leu	Asp	Arg	Glu 5710		Leu	Tyr	Trp	Glu 5715	Leu	Ser	Gln
Leu	Thr 5720		Ser	Ile		Glu 5725		Gly	Pro	Tyr	Thr 5730	Leu	Asp	Arg
Asp	Ser 5735		Tyr	Val	Asn	Gly 5740		Asn	Pro	Trp	Ser 5745		Val	Pro
Thr	Thr 5750		Thr	Pro	Gly	Thr 5755		Thr	Val	His	Leu 5760		Thr	Ser
Gly	Thr 5765		Ser	Ser	Leu	Pro 5770		His	Thr	Thr	Ala 5775	Gly	Pro	Leu

I	eu	Val 5780	Pro	Phe	Thr	Leu	Asn 5785	Phe	Thr	Ile	Thr	Asn 5790		Lys	Tyr
G	lu	Glu 5795	Asp	Met	His	Cys	Pro 5800	Gly	Ser	Arg	Lys	Phe 5805		Thr	Thr
G	lu	Arg 5810	Val	Leu	Gln	Ser	Leu 5815	His	Gly	Pro	Met	Phe 5820		Asn	Thr
s	er	Val 5825	Gly	Pro	Leu	Tyr	Ser 5830	Gly	Cys	Arg	Leu	Thr 5835	Leu	Leu	Arg
S	er	Glu 5840	Lys	Asp	Gly	Ala	Ala 5845		Gly	Val	Asp	Ala 5850	Ile	Cys	Thr
н	is	Arg 5855	Leu	Asp	Pro	Lys	Ser 5860	Pro	Gly	Leu	Asp	Arg 5865	Glu	Xaa	Leu
T	yr	Trp 5870	Ġlu	Leu	Ser		Leu 5875	Thr	Xaa	Xaa	Ile	Xaa 5880		Leu	Gly
P	ro	Tyr 5885	Xaa	Leu	Asp	Arg	Xaa 5890	Ser	Leu	Týr	Val	Asn 5895	Gly	Phe	Xaa
X	aa	Xaa 5900	Xaa	Xaa	Xaa		Xaa 5905	Thr	Ser	Thr	Pro	Gly 5910	Thr	Ser	Xaa
V	al	Xaa 5915	Leu	Xaa	Thr		Gly 5920	Thr	Pro	Xaa	Xaa	Xaa 5925	Pro	Xaa	Xaa
T!	hr	Xaa 5930	Xaa	Xaa	Pro		Leu 5935	Xaa	Pro	Phe	Thr	Leu 5940	Asn	Phe	Thr
I	le	Thr 5945	Asn	Leu	Xaa		Glu 5950	Glu	Xaa	Met	Xaa	Xaa 5955	Pro	Gly	Ser
A	rg	Lys 5960	Phe	Asn	Thr	Thr	Glu 5965	Arg	Val	Leu	Gln	Gly 5970	Leu	Leu	Xaa

Pro	Xaa 5975	Phe	Lys	Xaa	Thr	Ser 5980	Val	Gly	Xaa	Leu	Tyr 5985	Ser	Gly	Cys
Arg	Leu 5990	Thr	Leu	Leu		Xaa 5995	Glu	Lys	Xaa	Xaa	Ala 6000	Ala	Thr	Xaa
Val	Asp 6005	Xaa	Xaa	Cys	Xaa	Xaa 6010	Xaa	Xaa	Asp	Pro	Xaa 6015	Xaa	Pro	Gly
Leu	Asp 6020	Arg	Glu	Xaa	Leu	Tyr 6025	Trp	Glu	Leu	Ser	Xaa 6030	Leu	Thr	Asn
Ser	Ile 6035	Thr	Glu	Leu	Gly	Pro 6040	Tyr	Thr	Leu	Asp	Arg 6045	Asp	Ser	Leu
Tyr	Val 6050		Gly	Phe	Thr	His 6055		Ser	Ser	Met	Pro 6060	Thr	Thr	Ser
	6065	_				6070					Ser 6075	•		
	6080					6085					Leu 6090			
	6095					6100					Tyr 6105			
	6110					6115					Thr 6120			
	6125					6130					Thr 6135			
	6140					6145					Arg 6150			
_	6155					6160					Thr 6165			
Asp	Pro 6170		Asn	Pro	Gly	Leu 6175		Arg	Glu	Xaa	Leu 6180	Tyr	Trp	GLU

Leu	Ser 6185		Leu	Thr	Xaa	Xaa 6190		Xaa	Glu	Leu	Gly 6195		Tyr	Xaa
Leu	Asp 6200		Xaa	Ser	Leu	Tyr 6205		Asn	Gly	Phe	Xaa 6210		Xaa	Xaa
Xaa	Xaa 6215		Xaa	Thr	Ser	Thr 6220	Pro	Gly	Thr	Ser	Xaa 6225	Val	Xaa	Leu
Xaa	Thr 6230		Gly	Thr	Pro	Xaa 6235		Xaa	Pro	Xaa	Xaa 6240	Thr	Xaa	Xaa
Xaa	Pro 6245		Leu	Xaa	Pro	Phe 6250	Thr	Leu	Asn	Phe	Thr 6255	Ile	Thr	Asn
Leu	Xaa 6260	Tyr	Glu	Glu	Xaa	Met 6265	Xaa	Xaa	Pro	Gly	Ser 6270	Arg	Lys	Phe
Asn	6275	Thr	Glu	Arg	Val	Leu 6280	Gln	Gly	Leu	Leu	Xaa 6285	Pro	Xaa	Phe
Lys	Xaa 6290	Thr	Ser	Val		Xaa 6295	Leu	Tyr	Ser	Gly	Cys 6300	Arg	Leu	Thr
Ļeu	Leu 6305	Arg	Xaa	Glu	Lys	Xaa 6310	Xaa	Ala	Ala	Thr	Xaa 6315	Val	Asp	Xaa
Xaa	Cys 6320	Xaa	Xaa	Xaa		Asp 6325	Pro	Xaa	Xaa	Pro	Gly 6330	Leu	Asp	Arg
						Leu 6340							Ile	Xaa
Glu	Leu 6350	Gly	Pro	Tyr	Xaa	Leu 6355	Asp	Arg	Xaa	Ser	Leu 6360	Tyr	Val	Asn
Gly	Phe 6365	His	Pro	Arg	Ser	Ser 6370	Val	Pro	Thr	Thr	Ser 6375	Thr	Pro	Gly

Thr	Ser 6380	Thr	Val	His	Leu	Ala 6385	Thr	Ser	Gly	Thr	Pro 6390	Ser	Ser	Leu
Pro	Gly 6395	His	Thr	Ala		Val 6400	Pro	Leu	Leu	Ile	Pro 6405	Phe	Thr	Leu
Asn	Phe 6410	Thr	Ile	Thr		Leu 6415		Tyr	Glu		Asn 6420	Met	Gln	His
Pro	Gly 6425	Ser	Arg	Lys		Asn 6430		Thr	Glu	Arg	Val 6435	Leu	Gln	Gly
Leu	Leu 6440	Gly	Pro	Met	Phe	Lys 6445	Asn	Thr	Ser		Gly 6450	Leu	Leu	Tyr
Ser	Gly 6455		Arg	Leu		Leu 6460		Arg	Pro	Glu	Lys 6465	Asn	Gly	Ala
Ala	Thr 6470	Gly	Met	Asp	Ala	Ile 6475		Ser	His	Arg	Leu 6480	Asp	Pro	Lys
Ser	Pro 6485		Leu	Asp		Glu 6490		Leu	Tyr	Trp	Glu 6495	Leu	Ser	Xaa
	Thr 6500	-				6505					6510			
	Ser 6515		-			6520					6525			
	Thr 6530					6535					6540			
	Thr 6545					6550					6555		,	
Leu	Xaa 6560		Phe	Thr	Leu	Asn 6565		Thr	Ile	Thr	Asn 6570		Xaa	Tyr
Glu	Glu 6575		Met	Xaa	Xaa	Pro 6580		Ser	Arg	Lys	Phe 6585		Thr	Thr

Glu	Arg 6590		Leu	Gln		Leu 6595		Xaa	Pro	Xaa	Phe 6600		Xaa	Thr
Ser	Val 6605		Xaa	Leu	Tyr	Ser 6610	Gly	Cys	Arg	Leu	Thr 6615	Leu	Leu	Arg
Xaa	Glu 6620	Lys	Xaa	Xaa		Ala 6625		Xaa	Val	Asp	Xaa 6630	Xaa	Cys	Xaa
Xaa	Xaa 6635	Xaa	Asp	Pro	Xaa	Xaa 6640	Pro	Gly	Leu	Asp	Arg 6645	Glu	Xaa	Leu
Tyr	Trp 6650		Leu	Ser		Leu 6655		Xaa	Xaa		Xaa 6660	Glu	Leu	Gly
Pro	Tyr 6665	Xaa	Leu	Asp	Arg	Xaa 6670	Ser	Leu	Tyr	Val	Asn 6675	Gly	Phe	Thr
His	Gln 6680	Asn	Ser	Val	Pro	Thr 6685	Thr	Ser	Thr		Gly 6690		Ser	Thr
Val	Tyr 6695	Trp	Ala	Thr	Thr	Gly 6700	Thr	Pro	Ser	Ser	Phe 6705	Pro	Gly	His
Thr	Glu 6710	Pro	Gly	Pro		Leu 6715	Ile		Phe		Phe 6720	Asn	Phe	Thr
Ile	Thr 6725	Asn	Leu	His	Tyr	Glu 6730	Glu	Asn	Met	Gln	His 6735	Pro	Gly	Ser
Arg	Lys 6740	Phe	Asn	Thr	Thr	Glu 6745			Leu		Gly 6750	Leu	Leu	Thr
Pro	Leu 6755	Phe	Lys	Asn	Thr	Ser 6760	Val	Gly	Pro	Leu	Tyr 6765	Ser	Gly	Cys
Arg	Leu 6770	Thr	Leu	Leu	Arg	Pro 6775	Glu	Lys	Gln	Glu	Ala 6780	Ala	Thr	Gly

Val	Asp 6785		Ile	Cys		His 6790	Val	Asp	Pro	Ile 6795	Gly	Pro	Gly
Leu	Asp 6800	-	Glu	Xaa		Tyr 6805	Glu	Leu	Ser	Xaa 6810		Thr	Xaa
Xaa	Ile 6815	Xaa	Glu	Leu		Pro 6820	Xaa	Leu	Asp	Arg 6825	Xaa	Ser	Leu
Tyr	Val 6830		Gly	Phe	Xaa	Xaa 6835	Xaa	Xaa	Xaa	Xaa 6840		Thr	Ser
Thr	Pro 6845	Gly	Thr	Ser	Xaa	Val 6850	Leu	Xaa		Ser 6855		Thr	Pro
Xaa	Xaa 6860		Pro	Xaa	Xaa	Thr 6865	Xaa	Xaa	Pro	Leu 6870		Xaa	Pro
	Thr 6875					6880				6885			
	Xaa 6890					6895				6900			
	Gln 6905					6910				6915			
	Leu 6920					6925				6930			
	Xaa 6935					6940				6945			•
Asp	Pro 6950					6955				6960			
	Ser 6965					Xaa 6970				6975			
Leu	Asp 6980		Xaa	Ser	Leu	Tyr 6985	Asn	Gly	Phe	Thr 6990		Arg	ser

Ser	Val 6995	Pro	Thr	Thr	Ser	Ser 7000		Gly	Thr	Ser	Thr 7005		His	Leu	
Ala	Thr 7010	Ser	Gly	Thr	Pro	Ser 7015	Ser	Leu	Pro	Gly	His 7020	Thr	Ala	Pro	
Val	Pro 7025	Leu	Leu	Ile	Pro	Phe 7030	Thr	Leu	Asn	Phe	Thr 7035	Ile	Thr	Asn	
Leu	His 7040	Tyr	Glu	Glu	Asn	Met 7045	Gln	His	Pro	Gly	Ser 7050	Arg	Lys	Phe	
Asn	Thr 7055	Thr	Glu	Arg	Val	Leu 7060		Gly	Leu	Leu	Lys 7065	Pro	Leu	Phe	
Lys	Ser 7070	Thr	Ser	Val	Gly	Pro 7075	Leu	Tyr	Ser	Gly	Cys 7080	Arg	Leu	Thr	
Leu	Leu 7085	Arg	Pro	Glu		His 7090	Gly	Ala	Ala	Thr	Gly 7095		Asp	Ala	
Ile	Cys 7100	Thr	Leu	Arg	Leu	Asp 7105	Pro	Thr	Gly	Pro	Gly 7110	Leu	Asp	Arg	
Glu	Xaa 7115	Leu	Tyr	Trp	Glu	Leu 7120	Ser	Xaa	Leu	Thr	Xaa 7125	Xaa	Ile	Xaa •	
Glu	Leu 7130	Gly	Pro	Tyr	Xaa	Leu 7135	Asp	Arg	Xaa	Ser	Leu 7140	Tyr	Val	Asn	
Gly	Phe 7145	Xaa	Xaa	Xaa	Xaa	Xaa 7150		Xaa		Thr	Ser 7155	Thr	Pro	Gly	
Thr	Ser 7160	Xaa	Val	Xaa	Leu	Xaa 7165	Thr	Ser	Gly	Thr	Pro 7170	Xaa	Xaa	Xaa	
Pro	Xaa 7175	Xaa	Thr	Xaa	Xaa	Xaa 7180	Pro	Leu	Leu	Xaa	Pro 7185	Phe	Thr	Leu	

Asn	Phe 7190	Thr	Ile	Thr	Asn	Leu 7195	Xaa	Tyr	Glu	Glu	Xaa 7200	Met	Xaa	Xaa
Pro	Gly 7205	Ser	Arg	Lys	Phe	Asn 7210	Thr	Thr	Glu	Arg	Val 7215	Leu	Gln	Gly
Leu	Leu 7220	Xaa	Pro	Xaa		Lys 7225		Thr	Ser	Val	Gly 7230	Xaa	Leu	Tyr
Ser	Gly 7235	Суз	Arg	Leu	Thr	Leu 7240	Leu	Arg	Xaa	Glu	Lys 7245	Xaa	Xaa	Ala
Ala	Thr 7250		Val	Asp	Xaa	Xaa 7255		Xaa [*]	Xaa		Xaa 7260	Asp	Pro	Xaa
Xaa	Pro 7265		Leu	Asp	Arg	Glu 7270	Xaa	Leu	Tyr	Trp	Glu 7275	Leu	Ser	Xaa
Leu	Thr 7280		Xaa	Ile	Xaa	Glu 7285		Gly	Pro	Tyr	Xaa 7290	Leu	Asp	Arg
Xaa	Ser 7295		Tyr	Val	Asn	Gly 7300		Thr	His	Arg	Thr 7305		Val	Pro
Thr	Thr 7310	Ser	Thr	Pro	Gly	Thr 7315		Thr	Val	His	Leu 7320	Ala	Thr	Ser
Gly	Thr 7325		Ser	Ser		Pro 7330		His	Thr	Ala	Pro 7335		Pro	Leu
	Ile 7340					Asn 7345		Thr	Ile	Thr	Asn 7350		Gln	Tyr
Glu	Glu 7355		Met	His	Arg	Pro 7360	Gly	Ser	Arg	Lys	Phe 7365	Asn	Thr	Thr
Glu	Arg 7370		Leu	Gln	Gly	Leu 7375		Ser	Pro	Ile	Phe 7380	Lys	Asn	Ser
Ser	Val 7385		Pro	Leu	Tyr	Ser 7390		Cys	Arg	Leu	Thr 7395	Ser	Leu	Arg

Pro	Glu 7400		Asp	Gly		Ala 7405		Gly	Met	Asp	Ala 7410		Суз	Leu
Tyr	His 7415		Asn	Pro	Lys	Arg 7420		Gly	Leu	Asp	Arg 7425		Gln	Leu
Tyr	Cys 7430		Leu	Ser	Gln	Leu 7435		His	Asn	Ile	Thr 7440		Leu	Gly
Pro	Tyr 7445	Ser	Leu	Asp	Arg	Asp 7450	Ser	Leu	Tyr	Val	Asn 7455	Gly	Phe	Thr
His	Gln 7460	Asn	Ser	Val	Pro	Thr 7465	Thr	Ser	Thr	Pro	Gly 7470	Thr	Ser	Thr
Val	Tyr 7475	Trp	Ala	Thr	Thr	Gly 7480	Thr	Pro	Ser	Ser	Phe 7485	Pro	Gly	His
Thr	Xaa 7490	Xaa	Xaa	Pro	Leu	Leu 7495	Xaa	Pro	Phe	Thr	Leu 7500	Asn	Phe	Thr
Ile	Thr 7505	Asn	Leu	Xaa	Tyr	Glu 7510	Glu	Xaa	Met	Xaa	Xaa 7515	Pro	Gly	Ser
Arg	Lys 7520	Phe	Asn	Thr	Thr	Glu 7525	Arg	Val	Leu	Gln	Gly 7530	Leu	Leu	Xaa
Pro	Xaa 7535	Phe	Lys	Xaa	Thr	Ser 7540	Val	Gly	Xaa	Leu	Tyr 7545	Ser	Gly	Cys
Arg	Leu 7550	Thr	Leu	Leu	Arg	Xaa 7555	Glu	Lys	Xaa	Xaa	Ala 7560	Ala	Thr	Xaa
Val	Asp 7565	Xaa	Xaa	Cys	Xaa	Xaa 7570	Xaa	Xaa	Asp	Pro	Xaa 7575	Xaa	Pro	Gly
Leu	Asp 7580	Arg	Glu	Xaa	Leu	Tyr 7585	Trp	Glu	Leu	Ser	Xaa 7590	Leu	Thr	Xaa

Xaa	Ile 7595	Xaa	Glu	Leu	Gly	Pro 7600	Tyr	Xaa	Leu	Asp	Arg 7605	Xaa	Ser	Leu
Tyr	Val 7610	Asn	Gly	Phe	Thr	His 7615		Ser	Ser	Gly	Leu 7620	Thr	Thr	Ser
Thr	Pro 7625	Trp	Thr	Ser	Thr	Val 7630	Asp	Leu	Gly	Thr	Ser 7635	Gly	Thr	Pro
Ser	Pro 7640	Val	Pro	Ser	Pro	Thr 7645		Ala	Gly ·	Pro	Leu 7650	Leu	Val	Pro
Phe	Thr 7655		Asn	Phe	Thr	Ile 7660	Thr	Asn	Leu	Gln	Tyr 7665	Glu	Glu	Asp
Met	His 7670		Pro	Gly	Ser	Arg 7675		Phe	Asn	Ala	Thr 7680	Glu	Arg	Val
Leu	Gln 7685		Leu	Leu	Ser	Pro 7690		Phe	Lys	Asn	Thr 7695	Ser	Val	Gly
Pro	Leu 7700		Ser	Gly	Cys	Arg 7705		Thr	Leu	Leu	Arg 7710	Pro	Glu	Lys
Gln	Glu 7715		Ala	Thr		Val 7720		Thr	Ile	Сув	Thr 7725		Arg	Val
Asp	Pro _. 7730		Gly	Pro	Gly	Leu 7735		Arg	Glu	Xaa	Leu 7740		Trp	Glu
Leu	Ser 7745		Leu	Thr	Xaa	Xaa 7750		Xaa	Glu	Leu	Gly 7755	Pro	Tyr	Xaa
Leu	Asp 7760	-	Xaa ;	Ser	Leu	Tyr 7765		Asn	Gly	Phe	Xaa 7770	Xaa	Xaa	Xaa
Xaa	Xaa 77 7 5		Xaa	Thr	Ser	Thr 7780	Pro	Gly	Thr	Ser	Xaa 7785	Val	Xaa	Leu
Xaa	Thr 7790		Gly	Thr	Pro	Xaa 7795		Xaa	Pro	Xaa	Xaa 7800	Thr	Xaa	Xaa

Xaa	Pro 7805	Leu	Leu	Xaa	Pro	Phe 7810	Thr	Leu	Asn	Phe	Thr 7815		Thr	Asn
Leu	Xaa 7820	Tyr	Glu	Glu	Xaa	Met 7825		Xaa '		Gly	Ser 7830		Lys	Phe
Asn	Thr 7835	Thr	Glu	Arg	Val	Leu 7840	Gln	Gly	Leu	Leu	Xaa 7845		Xaa	Phe
Lys	Xaa 7850	Thr	Ser	Val	Gly	Xaa 7855	Leu	Tyr	Ser	Gly	Cys 7860	Arg	Leu	Thr
Leu	Leu 7865	Arg	Xaa	Glu	Lys	Xaa 7870	Xaa	Ala	Ala	Thr	Xaa 7875	Val	Asp	Xaa
Xaa	Cys 7880	Xaa	Xaa	Xaa	Xaa	Asp 7885	Pro	Xaa	Xaa	Pro	Gly 7890	Leu	Asp	Arg
Glu	Xaa 7895	Leu	Tyr	Trp	Glu	Leu 7900	Ser	Xaa	Leu	Thr	Xaa 7905	Xaa	Ile	Xaa
	Leu 7910					7915					7920	_		
Gly	Phe 7925					7930					7935			
	Ser 7940					7945					Pro 7950		Pro	Val
	Ser 7955					7960					7965			
	Phe 7970					7975					7980			
Pro	Gly 7985	Ser	Arg	Lys	Phe	Asn 7990	Thr	Thr	Glu	Arg	Val 7995	Leu	Gln	Gly

Leu	Leu 8000	Thr	Pro	Leu	Phe	Arg 8005		Thr	Ser	Val	Ser 8010	Ser	Leu	Tyr
Ser	Gly 8015	Cys	Arg	Leu	Thr	Leu 8020	Leu	Arg	Pro	Glu	Lys 8025	Asp	Gly	Ala
Ala	Thr 8030		Val	Asp	Ala	Val 8035	Cys	Thr	His	Arg	Pro 8040	Asp	Pro	Lys
Ser	Pro 8045		Leu	Asp		Glu 8050		Leu	Tyr	Trp	Glu 8055	Leu	Ser	Xaa
Leu	Thr 8060	Xaa	Xaa	Ile		Glu 8065		Gly	Pro		Xaa 8070	Leu	Asp	Arg
Xaa	Ser 8075	Leu	Tyr	Val		Gly 8080		Xaa	Xaa	Xaa	Xaa 8085		Xaa	Xaa
Xaa	Thr 8090	Ser	Thr	Pro	Gly	Thr 8095		Xaa	Val	Xaa	Leu 8100	Xaa	Thr	Ser
Gly	Thr 8105		Xaa	Xaa	Xaa	Pro 8110			Thr	Xaa	Xaa 8115	Xaa	Pro	Leu
Leu	Xaa 8120		Phe	Thr	Leu	Asn 8125		Thr	Ile		Asn 8130		Xaa	Tyr
	8135					Pro 8140					8145			
	8150					Leu 8155					8160			
Ser	Val 8165		Хаа	Leu	Tyr	Ser 8170		Cys	Arg	Leu	Thr 8175	Leu	Leu	Arg
Xaa	Glu 8180	_	Xaa	Xaa	Ala	Ala 8185		Xaa	Val	Asp	Xaa 8190		Суз	Xaa
Xaa	Xaa 8195		Asp	Pro	Xaa	Xaa 8200		Gly	Leu	Asp	Arg 8205		Xaa	Leu

Tyr	Trp 8210	Glu	Leu	Ser	Xaa	Leu 8215		Xaa	Xaa	Ile	Xaa 8220		Leu	Gly
Pro	Tyr 8225	Xaa	Leu	Asp	Arg	Xaa 8230		Leu	Tyr	Val	Asn 8235	-	Phe	Thr
His	Trp 8240	Ile	Pro	Val	Pro	Thr 8245		Ser	Thr	Pro	Gly 8250		Ser	Thr
Val	Asp 8255	Leu	Gly	Ser	Gly	Thr 8260		Ser	Ser	Leu	Pro 8265	Ser	Pro	Thr
Thr	Ala 8270	Gly	Pro	Leu	Leu	Val 8275		Phe	Thr	Leu	Asn 8280	Phe	Thr	Ile
Thr	Asn 8285	Leu	Gln	Tyr	Gly	Glu 8290	Asp	Met	Gly	His	Pro 8295	Gly	Ser	Arg
Lys	Phe 8300	Asn	Thr	Thr	Glu	Arg 8305	Val	Leu	Gln	Gly	Leu 8310		Gly	Pro
Ile	Phe 8315		Asn	Thr	Ser	Val 8320	Gly	Pro	Leu	Tyr	Ser 8325	Gly	Cys	Arg
Leu	Thr 8330	Ser	Leu	Arg	Ser	Glu 8335	Lys	Asp	Gly		Ala 8340	Thr	Gly	Val
Asp	Ala 8345	Ile	Суз	Ile	His	His 8350	Leu	Asp	Pro	Lys	Ser 8355	Pro	Gly	Leu
Asp	Arg 8360		Xaa	Leu	Tyr	Trp 8365	Glu	Leu	Ser	Xaa	Leu 8370	Thr	Xaa	Xaa
Ile	Xaa 8375	Glu	Leu	Gly	Pro	Tyr 8380	Xaa	Leu	Asp	Arg	Xaa 8385	Ser	Leu	Tyr
Val	Asn 8390	Gly	Phe	Xaa	Xaa	Xaa 8395	Xaa	Xaa	Xaa	Xaa	Xaa 8400	Thr	Ser	Thr

Pro	Gly 8405	Thr	Ser	Xaa	Val	Xaa 8410	Leu	Xaa	Thr	Ser	Gly 8415	Thr	Pro	Xaa
Xaa	Xaa 8420	Pro	Xaa	Xaa	Thr	Xaa 8425	Xaa	Xaa	Pro	Leu	Leu 8430	Xaa	Pro	Phe
Thr	Leu 8435	Asn	Phe	Thr	Ile	Thr 8440	Asn	Leu	Xaa	Tyr	Glu 8445	Glu	Xaa	Met
Xaa	Xaa 8450	Pro	Gly	Ser		Lys 8455	Phe	Asn	Thr	Thr	Glu 8460	Arg	Val	Leu
Gln	Gly 8465		Leu	Xaa	Pro	Xaa 8470	Phe	Lys	Xaa	Thr	Ser 8475	Val	Gly	Xaa
Leu	Tyr 8480		Gly	Cys		Leu 8485	Thr	Leu	Leu	Arg	Xaa 8490	Glu	Lys	Xaa
Xaa	Ala 8495		Thr	Xaa		Asp 8500		Xaa	Cys	Xaa	Xaa 8505 '	Xaa	Xaa	Asp
Pro	Xaa 8510		Pro	Gly	Leu	Asp 8515	Arg	Glu	Xaa	Leu	Tyr 8520	Trp	Glu	Leu
Ser	Xaa 8525		Thr	Xaa		Ile 8530		Glu	Leu	Gly	Pro 8535		Xaa	Leu
Asp	Arg 8540		Ser	Leu		Val 8545		Gly	Phe	Thr	His 8550	Gln	Thr	Phe
	Pro 8555					8560					8565			
	Ser 8570					8575					8580			
Pro	Leu 8585		Val	Pro	Phe	Thr 8590		Asn	Phe	Thr	Ile 8595		Asn	Leu
Gln	Tyr 8600		Glu	Asp	Met	His 8605		Pro	Gly	Ser	Arg 8610	Lys	Phe	Asn

Thr	Thr 8615	Glu	Arg	Val	Leu	Gln 8620	Gly	Leu	Leu	Gly	Pro 8625		Phe	Lys
Asn	Thr 8630	Ser	Val	Gly	Leu	Leu 8635	Tyr	Ser	Gly	Cys	Arg 8640	Leu	Thr	Leu
Leu	Arg 8645	Pro	Glu	Lys	Asn	Gly 8650	Ala	Ala	Thr		Val 8655	_	Ala	Val
Cys	Thr 8660	His	Arg	Pro	Asp	Pro 8665	Lys	Ser	Pro	Gly	Leu 8670	Asp	Arg	Glu
Xaa	Leu 8675	Tyr	Trp	Glu	Leu	Ser 8680	Xaa	Leu	Thr	Xaa	Xaa 8685	Ile	Xaa	Glu
Leu	Gly 8690	Pro	Tyr	Xaa	Leu	Asp 8695	Arg	Xaa	Ser	Leu	Туг 8700	Val	Asn	Gly
Phe	8705	Xaa	Xaa	Xaa	Xaa	Xaa 8710	Xaa	Xaa	Thr		Thr 8715	Pro	Gly	Thr
Ser	Xaa 8720	Val	Xaa	Leu	Xaa	Thr 8725	Ser	Gly	Thr	Pro	Xaa 8730	Xaa	Xaa	Pro
Xaa	Xaa 8735	Thr	Xaa	Xaa		Pro 8740	Leu	Leu	Xaa		Phe 8745	Thr	Leu	Asn
Phe	Thr 8750	Ile	Thr	Asn	Leu	Xaa 8755	Tyr	Glu	Glu	Xaa	Met 8760	Xaa	Xaa	Pro
Gly	Ser 8765	Arg	Lys	Phe	Asn	Thr 8770	Thr	Glu	Arg	Val	Leu 8775	Gln	Gly	Leu
Leu	Lys 8780	Pro	Leu	Phe	Lys	Ser 8785	Thr	Ser	Val	Gly	Pro 8790	Leu	Tyr	Ser
Gly	Cys 8795	Arg	Leu	Thr	Leu	Leu 8800	Arg	Pro	Glu	Lys	Asp 8805	Gly	Val	Ala

Thr	Arg 8810	Val	Asp	Ala	Ile	Cys 8815	Thr	His	Arg	Pro	Asp 8820	Pro	Lys	Ile
Pro	Gly 8825	Leu	Asp	Arg	Gln	Gln 8830	Leu	Tyr	Trp	Glu	Leu 8835	Ser	Gln	Leu
Thr	His 8840	Ser	Ile	Thr		Leu 8845	Gly	Pro	Tyr	Thr	Leu 8850	Asp	Arg	Asp
Ser	Leu 8855	Tyr	Val	Asn	Gly	Phe 8860	Thr	Gln	Arg	Ser	Ser 8865	Val	Pro	Thr
Thr	Ser 8870	Thr	Pro	Gly	Thr	Phe 8875	Thr	Val	Gln	Pro	Glu 8880	Thr	Ser	Glu
Thr	Pro 8885		Ser	Leu	Pro	Gly 8890		Thr	Ala	Thr	Gly 8895	Pro	Val	Leu
	8900					Phe 8905					8910			
	8915					Gly 8920				,	8925			
_	8930					Leu 8935					8940			
	8945					Gly 8950					8955			
	8960										8970			
-	8975	Ţ				Pro 8980					8985			
	8990					Thr 8995					9000			
Tyr	Thr 9005		Asp	Arg	His	Ser 9010		Tyr	Val	Asn	Gly 9015	Phe	Thr	His

Gln	Ser 9020		Met	Thr	Thr	Thr 9025		Thr	Pro	Asp	Thr 9030		Thr	Met
His	Leu 9035		Thr	Ser	Arg	Thr 9040		Ala	Ser	Leu	Ser 9045		Pro	Thr
Thr	Ala 9050		Pro	Leu	Leu	Val 9055		Phe	Thr	Ile	Asn 9060	Phe	Thr	Ile
Thr	Asn 9065	Leu	Arg	Tyr	Glu	Glu 9070	Asn	Met	His	His	Pro 9075	Gly	Ser	Arg
Lys	Phe 9080		Thr	Thr		Arg 9085		Leu	Gln	Gly	Leu 9090	Leu	Arg	Pro
Val	Phe 9095	Lys	Asn	Thr	Ser	Val 9100	Gly	Pro	Leu	Tyr	Ser 9105	Gly	Cys	Arg
Leu	Thr 9110	Leu	Leu	Arg	Pro	Lys 9115	Lys	Asp	Gly		Ala 9120		Lys	Val
Asp	Ala 9125	Ile	Cys	Thr	Tyr	Arg 9130	Pro	Asp	Pro	Lys	Ser 9135	Pro	Gly	Leu
Asp	Arg 9140	Glu	Gln	Leu		Trp 9145	Glu	Leu	Ser	Gln	Leu 9150	Thr	His	Ser
Ile	Thr 9155	Glu	Leu	Gly	Pro	Tyr 9160	Thr	Gln	Asp	Arg	Asp 9165	Ser	Leu	Туг
Asn	Val 9170	Gly	Phe	Thr	Gln	Arg 9175	Ser	Ser	Val	Pro	Thr 9180	Thr	Ser	Val
Pro	Gly 9185	Thr	Pro	Thr	Val	Asp 9190	Leu	Gly	Thr	Ser	Gly 9195	Thr	Pro	Val
Ser	Lys 9200	Pro	Gly	Pro	Ser	Ala 9205	Ala	Ser	Pro	Leu	Leu 9210	Val	Leu	Phe

Thr	Leu 9215	Asn	Gly	Thr	Ile	Thr 9220	Asn	Leu	Arg	Tyr	Glu 9225	Glu	Asn	Met
Gln	His 9230	Pro	Gly	Ser	Arg	Lys 9235	Phe	Asn	Thr	Thr -	Glu 9240	Arg	Val	Leu
Gln	Gly 9245		Leu	Arg	Ser	Leu 9250	Phe	Lys	Ser	Thr	Ser 9255	Val	Gly	Pro
Leu	Tyr 9260		Gly	Суз	Arg	Leu 9265	Thr	Leu	Leu	Arg	Pro 9270	Glu	Lys	Asp
Gly	Thr 9275		Thr	Gly		Asp 9280		Ile	Cys	Thr	His 9285	His	Pro	Asp
Pro	Lys 9290		Pro	Arg		Asp 9295		Glu	Gln	Leu	Tyr 9300	Trp	Glu	Leu
Ser	Gln 9305		Thr	His		Ile 9310		Glu	Leu	Gly	His 9315	Tyr	Ala	Leu
Asp	Asn 9320		Ser	Leu		Val 9325		Gly	Phe	Thr	His 9330	Arg	Ser	Ser
Val	Ser 9335		Thr	Ser	Thr	Pro 9340	Gly	Thr	Pro	Thr	Val 9345	Tyr	Leu	Gly
Ala	Ser 9350		Thr	Pro		Ser 9355		Phe	Gly	Pro	Ser 9360	Ala	Ala	Ser
	9365					9370	•				Ile 9375			
Arg	Tyr 9380		Glu	. Asn	Met	Trp 9385		Gly	Ser	Arg	Lys 9390	Phe	Asn	Thr
	9395	•				9400)				Leu 9405	i		
Thr	Ser 9410		. Gly	Pro	Leu	Tyr 9415		Gly	Ser	Arg	Leu 9420	Thr	Leu	Leu

Arg	Pro 9425		Lys	Asp	Gly	Glu 9430		Thr	Gly	Val	Asp 9435		Ile	Cys
Thr	His 9440		Pro	Asp	Pro	Thr 9445		Pro	Gly	Leu	Asp 9450	Arg	Glu	Gln
Leu	Tyr 9455	Leu	Glu	Leu	Ser	Gln 9460		Thr	His	Ser	Ile 9465	Thr	Glu	Leu
Gly	Pro 9470		Thr	Leu	Asp	Arg 9475	Asp	Ser	Leu	Tyr	Val 9480	Asn	Gly	Phe
Thr	Hi <i>s</i> 9485	Arg	Ser	Ser		Pro 9490	Thr	Thr	Ser	Thr	Gly 9495	Val	Val	Ser
	9500					Asn 9505					9510			_
	9515		,			Pro 9520					9525			
	9530					Leu 9535					9540			
	9545					Thr 9550					9555	•		
	9560					Glu 9565					9570			
	9575					Gly 9580					9585			
	9590					Gln 9595					9600			
FEO	9605	ser	₽en	азр	тÀЗ	Asp 9610	ser	ьеи	Tyr	Leu	9615	GTÀ	Tyr	Asn

Glu Pro Gly Leu Asp Glu Pro Pro Thr Thr Pro Lys Pro Ala Thr 9625 9620 Thr Phe Leu Pro Pro Leu Ser Glu Ala Thr Thr Ala Met Gly Tyr 9645 9635 9640 His Leu Lys Thr Leu Thr Leu Asn Phe Thr Ile Ser Asn Leu Gln 9660 9650 9655 Tyr Ser Pro Asp Met Gly Lys Gly Ser Ala Thr Phe Asn Ser Thr 9670 9675 9665 Glu Gly Val Leu Gln His Leu Leu Arg Pro Leu Phe Gln Lys Ser 9680 9685 9690 Ser Met Gly Pro Phe Tyr Leu Gly Cys Gln Leu Ile Ser Leu Arg 9705 9695 9700 Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Thr Thr Cys Thr 9710 9715 Tyr His Pro Asp Pro Val Gly Pro Gly Leu Asp Ile Gln Gln Leu 9725 9730 Tyr Trp Glu Leu Ser Gln Leu Thr His Gly Val Thr Gln Leu Gly 9740 9745 Phe Tyr Val Leu Asp Arg Asp Ser Leu Phe Ile Asn Gly Tyr Ala 9755 9760 Pro Gln Asn Leu Ser Ile Arg Gly Glu Tyr Gln Ile Asn Phe His 9775 9780 9770 Ile Val Asn Trp Asn Leu Ser Asn Pro Asp Pro Thr Ser Ser Glu 9790 9795 9785

Tyr

<210> 147

<211> 1422

<212> DNA

<213> Homo sapiens

<400> 147 gccatggggt accacctgaa gaccctcaca ctcaacttca ccatctccaa tctccagtat 60 tcaccagata tgggcaaggg ctcagctaca ttcaactcca ccgagggggt ccttcagcac 120 ctgctcagac ccttgttcca gaagagcagc atgggcccct tctacttggg ttgccaactg 180 atctccctca ggcctgagaa ggatggggca gccactggtg tggacaccac ctgcacctac 240 caccctgacc ctgtgggccc cgggctggac atacagcagc tttactggga gctgagtcag 300 ctgacccatg gtgtcaccca actgggcttc tatgtcctgg acagggatag cctcttcatc 360 aatggctatg caccccagaa tttatcaatc cggggcgagt accagataaa tttccacatt 420 gtcaactgga acctcagtaa tccagacccc acatcctcaq agtacatcac cctgctgagg 480 gacatccagg acaaggtcac cacactctac aaaggcagtc aactacatga cacattccqc 540 ttctgcctgg tcaccaactt gacgatggac tccgtgttgg tcactgtcaa ggcattgttc 600 tectecaatt tggaccccag cetggtggag caagtettte tagataagae cetgaatgee 660 tcattccatt ggctgggctc cacctaccag ttggtggaca tccatgtgac agaaatggag 720 tcatcagttt atcaaccaac aagcagctcc agcacccage acttctacct gaatttcacc 780 atcaccaacc taccatattc ccaggacaaa gcccagccag gcaccaccaa ttaccagagg 840 aacaaaagga atattgagga tgcgctcaac caactcttcc gaaacagcag catcaagagt 900 tatttttctg actgtcaagt ttcaacattc aggtctgtcc ccaacaggca ccacacggg 960 gtggactccc tgtgtaactt ctcgccactg gctcggagag tagacagagt tgccatctat 1020 gaggaatttc tgcggatgac ccggaatggt acccagctgc agaacttcac cctggacagg 1080 agcagtgtcc ttgtggatgg gtattctccc aacagaaatg agcccttaac tgggaattct 1140 gacetteect tetgggetgt catecteate ggettggeag gacteetggg acteateaea 1200 tgcctgatct gcggtgtcct ggtgaccacc cgccggcgga agaaggaagg agaatacaac 1260 gtccagcaac agtgcccagg ctactaccag tcacacctag acctggagga tctgcaatga 1320 ctggaacttg ccggtgcctg gggtgccttt cccccagcca gggtccaaag aagcttggct 1380

225

<210> 148 <211> 439 <212> PRT <213> Homo sapiens <400> 148 Ala Met Gly Tyr His Leu Lys Thr Leu Thr Leu Asn Phe Thr Ile Ser Asn Leu Gln Tyr Ser Pro Asp Met Gly Lys Gly Ser Ala Thr Phe Asn 20 Ser Thr Glu Gly Val Leu Gln His Leu Leu Arg Pro Leu Phe Gln Lys 35 Ser Ser Met Gly Pro Phe Tyr Leu Gly Cys Gln Leu Ile Ser Leu Arg 55 50 Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Thr Thr Cys Thr Tyr His Pro Asp Pro Val Gly Pro Gly Leu Asp Ile Gln Gln Leu Tyr Trp 85 Glu Leu Ser Gln Leu Thr His Gly Val Thr Gln Leu Gly Phe Tyr Val 100 Leu Asp Arg Asp Ser Leu Phe Ile Asn Gly Tyr Ala Pro Gln Asn Leu 115 Ser Ile Arg Gly Glu Tyr Gln Ile Asn Phe His Ile Val Asn Trp Asn 130 135 Leu Ser Asn Pro Asp Pro Thr Ser Ser Glu Tyr Ile Thr Leu Leu Arg 155 150

Asp	Ile	Gln	Asp	Lys 165	Val	Thr	Thr	Leu	Tyr 170	Lys	Gly	Ser	Gln	Leu 175	His
Asp	Thr	Phe	Arg 180	Phe	Cys	Leu	Val	Thr 185	Asn	Leu	Thr	Met	Asp 190	Ser	Va.
Leu	Val	Thr 195	Val	Lys	Ala	Leu	Phe 200	Ser	Ser	Asn	Leu	Asp 205	Pro	Ser	Lei
Val	Glu 210	Gln	Val	Phe	Leu	Asp 215	Lys	Thr	Leu	Asn	Ala 220	Ser	Phe	His	Tr
Leu 225	Gly	Ser	Thr	Tyr	Gln 230	Leu	Val	Asp	Ile	His 235	Val	Thr	Glu	Met	Glu 240
Ser	Ser	Val	Tyr	Gln 245	Pro	Thr	Ser	Ser	Ser 250	Ser	Thr	Gln	His	Phe 255	Туз
Leu	Asn	Phe	Thr 260	Ile	Thr	Asn	Leu	Pro 265	Tyr	Ser	Gln	Asp	Lys 270	Ala	Glr
Pro	Gly	Thr 275	Thr	Asn	Tyr	Gln	Arg 280	Asn	Lys	Arg	Asn	Ile 285	Glu	Asp	Ala
Leu	Asn 290	Gln	Leu	Phe	Arg	Asn 295	Ser	Ser	Ile	Lys	Ser 300	Tyr	Phe	Ser	Asp
Cys 305	Gln	Val	Ser	Thr	Phe 310	Arg	Ser	Val	Pro	Asn 315	Arg	His	His	Thr	Gl ₃ 320
Val	Asp	Ser	Leu	Cys 325		Phe	Ser		Leu 330		Arg	Arg	Val	Asp 335	Arç
Val	Ala	Ile	Tyr 340	Glu	Glu	Phe	Leu	Arg 345	Met	Thr	Arg	Asn	Gly 350	Thr	Gln
Leu	Gln	Asn 355	Phe	Thr	Leu	Asp	Arg 360	Ser	Ser	Val	Leu	Val 365	Asp	Gly	Туг

Ser Pro Asn Arg Asn Glu Pro Leu Thr Gly Asn Ser Asp Leu Pro Phe 370 375 380

Trp Ala Val Ile Leu Ile Gly Leu Ala Gly Leu Leu Gly Leu Ile Thr 385 390 395 400

Cys Leu Ile Cys Gly Val Leu Val Thr Thr Arg Arg Arg Lys Lys Glu 405 410 415

Gly Glu Tyr Asn Val Gln Gln Gln Cys Pro Gly Tyr Tyr Gln Ser His 420 425 430

Leu Asp Leu Glu Asp Leu Gln 435

<210> 149

<211> 1799

<212> PRT

<213> Homo sapiens

<400> 149

Arg Thr Asp Gly Ile Met Glu His Ile Thr Lys Ile Pro Asn Glu Ala 1 5 10 15

Ala His Arg Gly Thr Ile Arg Pro Val Lys Gly Pro Gln Thr Ser Thr 20 25 30

Ser Pro Ala Ser Pro Lys Gly Leu His Thr Gly Gly Thr Lys Arg Met 35 40 45

Glu Thr Thr Thr Thr Ala Leu Lys Thr Thr Thr Thr Ala Leu Lys Thr 50 55 60

Thr Ser Arg Ala Thr Leu Thr Thr Ser Val Tyr Thr Pro Thr Leu Gly 70 75 80

Thr Leu Thr Pro Leu Asn Ala Ser Arg Gln Met Ala Ser Thr Ile Leu 85 90 95

Thr	Glu	Met	Met 100		Thr	Thr	Pro	Tyr 105		. Phe	Pro	Asp	Val 110		Glu
Thr	Thr	Ser 115	Ser	Leu	Ala	Thr	Ser 120	Leu	Gly	Ala	Glu	Thr 125		Thr	Ala
Leu	Pro 130	Arg	Thr	Thr	Pro	Ser 135		Leu	Asn	Arg	Glu 140	Ser	Glu	Thr	Thr
Ala 145	Ser	Leu	Val	Ser	Arg 150	Ser	Gly	Ala	Glu	Arg 155	Ser	Pro	Val	Ile	Gln 160
Thr	Leu	Asp	Val	Ser 165	Ser	Ser	Glu	Pro	Asp 170	Thr	Thr	Ala	Ser	Trp 175	Val
Ile	His	Pro	Ala 180	Glu	Thr	Ile	Pro	Thr 185	Val	Ser	Lys	Thr	Thr 190	Pro	Asn
Phe	Phe	His 195	Ser	Glu	Leu	Asp	Thr 200	Val	Ser	Ser	Thr	Ala 205	Thr	Ser	His
Gly	Ala 210	Asp	Val	Ser	Ser	Ala 215	Ile	Pro	Thr		Ile 220	Ser	Pro	Ser	Glu
Leu 225	Asp	Ala	Leu	Thr	Pro 230	Leu	Val	Thr	Ile	Ser 235	Gly ·	Thr	Asp	Thr	Ser 240
Thr	Thr	Phe	Pro	Thr 245	Leu	Thr	Lys	Ser	Pro 250	His	Glu	Thr	Glu	Thr 255	Arg
Thr	Thr	Trp	Leu 260	Thr	His	Pro	Ala	Glu 265	Thr	Ser	Ser	Thr	Ile 270	Pro	Arg
Thr	Ile	Pro 275	Asn	Phe	Ser	His	His 280	Glu	Ser	Asp	Ala	Thr 285	Pro	Ser	Ile
Ala	Thr 290	Ser	Pro	Сlу	Ala	Glu 295	Thr	Ser	Ser	Ala	Ile 300	Pro	Ile	Met	Thr

Val 305	Ser	Pro	Gly	Ala	Glu 310	Asp	Leu	Val	Thr	Ser 315	Gln	Val	Thr	Ser	Ser 320
Gly	Thr	Asp	Arg	Asn 325	Met	Thr	Ile	Pro	Thr 330	Leu	Thr	Leu	Ser	Pro 335	Gly
Glu	Pro	Lys	Thr 340	Ile	Ala	Ser	Leu	Val 345	Thr	His	Pro	Glu	Ala 350	Gln	Thr
Ser	Ser	Ala 355	Ile	Pro	Thr	Ser	Thr 360	Ile	Ser	Pro	Ala	Val 365	Ser	Arg	Leu
Val	Thr 370	Ser	Met	Val	Thr	Ser 375	Leu	Ala	Ala	Lys	Thr 380	Ser	Thr	Thr	Asn
Arg 385	Ala	Leu	Thr	Asn	Ser 390	Pro	Gly	Glu	Pro	Ala 395	Thr	Thr	Val	Ser	Leu 400
.Val	Thr	His	Pro	Ala 405	Gln	Thr	Ser	Pro	Thr 410	Val	Pro	Trp	Thr	Thr 415	Ser
Ile	Phe	Phe	His 420	Ser	Lys	Ser	Asp	Thr 425	Thr	Pro	Ser	Met	Thr 430	Thr	Ser
His	Gly	Ala 435	Glu	Ser	Ser	Ser	Ala 440	Val	Pro	Thr	Pro	Thr 445	Val	Ser	Thr
Glu	Val 450	Pro	Gly	Val	Val	Thr 455	Pro	Leu	Val	Thr	Ser 460	Ser	Arg	Ala	Val
Ile 465		Thr	Thr	Ile	Pro 470	Ile	Leu	Thr	Leu	Ser 475	Pro	Gly	Glu	Pro	Glu 480
Thr	Thr	Pro	Ser	Met 485	Ala	Thr	Ser	His	Gly 490	Glu	Glu	Ala	Ser	Ser 495	Ala
Ile	Pro		Pro . 500		Val	Ser	Pro	Gly 505		Pro	Gly	Val	Val 510	Thr	Ser
Leu	Val	Thr 515		Ser	Arg	Ala	Val 520	Thr	Ser	Thr	Thr	Ile 525	Pro	Ile	Leu

Thr	Phe 530	Ser	Leu	Gly	Glu	Pro 535	Glu	Thr	Thr	Pro	Ser 540	Met	Ala	Thr	Sei
His 545	Gly	Thr	Glu	Ala	Gly 550	Ser	Ala	Val	Pro	Th <i>r</i> 555	Val	Leu	Pro	Glu	Va.] 560
Pro	Gly	Met	Val	Thr 565	Ser	Leu	Val	Ala	Ser 570	Ser	Arg	Ala	Val	Thr 575	Ser
Thr	Thr	Leu	Pro 580	Thr	Leu	Thr	Leu	Ser 585	Pro	Gly	Glu	Pro	Glu 590	Thr	Thi
Pro	Ser	Met 595	Ala	Thr	Ser	His	Gly 600	Ala	Glu	Ala	Ser	Ser 605	Thr	Val	Pro
Thr	Val 610	Ser	Pro	Glu	Val	Pro 615	Gly	Val	Val	Thr	Ser 620	Leu	Val	Thr	Ser
Ser 625	Ser	Gly	Val	Asn	Ser 630	Thr	Ser	Ile	Pro	Thr 635	Leu	Ile	Leu	Ser	Pro 640
Gly	Glu	Leu	Glu	Thr 645	Thr	Pro	Ser	Met	Ala 650	Thr	Ser	His	Gly	Ala 655	Glu
Ala	Ser	Ser	Ala 660	Val	Pro	Thr	Pro	Thr 665	Val	Ser	Pro	Gly	Val 670	Ser	Gly
/al	Val	Thr 675	Pro	Leu	Val	Thr	Ser 680	Ser	Arg	Ala	Val	Thr 685	Ser	Thr	Thr
[le	Pro 690	Ile	Leu	Thr	Leu	Ser 695	Ser	Ser	Glu	Pro	Glu 700	Thr	Thr	Pro	Ser
1et 705	Ala	Thr	Ser	His	Gly 710	Val	Glu	Ala	Ser	Ser 715	Ala	Val	Leu	Thr	Val 720
3er	Pro	Glu	Val	Pro 725	Gly	Met	Val	Thr	Ser 730	Leu	Val	Thr	Ser	Ser 735	Arg

Ala Val Thr Ser Thr Thr Ile Pro Thr Leu Thr Ile Ser Ser Asp Glu Pro Glu Thr Thr Thr Ser Leu Val Thr His Ser Glu Ala Lys Met Ile Ser Ala Ile Pro Thr Leu Ala Val Ser Pro Thr Val Gln Gly Leu Val Thr Ser Leu Val Thr Ser Ser Gly Ser Glu Thr Ser Ala Phe Ser Asn . Leu Thr Val Ala Ser Ser Gln Pro Glu Thr Ile Asp Ser Trp Val Ala His Pro Gly Thr Glu Ala Ser Ser Val Val Pro Thr Leu Thr Val Ser Thr Gly Glu Pro Phe Thr Asn Ile Ser Leu Val Thr His Pro Ala Glu 840 . 845 Ser Ser Ser Thr Leu Pro Arg Thr Thr Ser Arg Phe Ser His Ser Glu Leu Asp Thr Met Pro Ser Thr Val Thr Ser Pro Glu Ala Glu Ser Ser Ser Ala Ile Ser Thr Thr Ile Ser Pro Gly Ile Pro Gly Val Leu Thr Ser Leu Val Thr Ser Ser Gly Arg Asp Ile Ser Ala Thr Phe Pro Thr Val Pro Glu Ser Pro His Glu Ser Glu Ala Thr Ala Ser Trp Val Thr His Pro Ala Val Thr Ser Thr Thr Val Pro Arg Thr Thr Pro Asn Tyr Ser His Ser Glu Pro Asp Thr Thr Pro Ser Ile Ala Thr Ser Pro Gly

- Ala Glu Ala Thr Ser Asp Phe Pro Thr Ile Thr Val Ser Pro Asp Val 965 970 975
- Pro Asp Met Val Thr Ser Gln Val Thr Ser Ser Gly Thr Asp Thr Ser 980 985 990
- Ile Thr Ile Pro Thr Leu Thr Leu Ser Ser Gly Glu Pro Glu Thr Thr 995 1000 1005
- Thr Ser Phe Ile Thr Tyr Ser Glu Thr His Thr Ser Ser Ala Ile 1010 1015 1020
- Pro Thr Leu Pro Val Ser Pro Gly Ala Ser Lys Met Leu Thr Ser 1025 1030 1035
- Leu Thr Glu Thr Pro Tyr Glu Pro Glu Thr Thr Ala Ile Gln Leu 1055 1060 1065
- Ile His Pro Ala Glu Thr Asn Thr Met Val Pro Arg Thr Thr Pro
 1070 1075 1080
- Lys Phe Ser His Ser Lys Ser Asp Thr Thr Leu Pro Val Ala Ile 1085 1090 1095
- Thr Ser Pro Gly Pro Glu Ala Ser Ser Ala Val Ser Thr Thr Thr 1100 1105 1110
- Ile Ser Pro Asp Met Ser Asp Leu Val Thr Ser Leu Val Pro Ser 1115 1120 1125
- Ser Gly Thr Asp Thr Ser Thr Thr Phe Pro Thr Leu Ser Glu Thr 1130 1135 1140
- Pro Tyr Glu Pro Glu Thr Thr Ala Thr Trp Leu Thr His Pro Ala 1145 1150 1155

Glu	Thr 1160	Ser	Thr	Thr	Val	Ser 1165		Thr	Ile	Pro	Asn 1170	Phe	Ser	His
Arg	Gly 1175	Ser	Asp	Thr	Ala	Pro 1180		Met	Val	Thr	Ser 1185	Pro	Gly	Val
Asp	Thr 1190	Arg	Ser	Gly	Val	Pro 1195	Thr	Thr	Thr	Ile	Pro 1200	Pro	Ser	Ile
Pro	Gly 1205		Val	Thr		Gln 1210	Val	Thr	Ser	Ser	Ala 1215	Thr	Asp	Thr
Ser	Thr 1220	Ala	Ile	Pro	Thr	Leu 1225	Thr	Pro	Ser	Pro	Gly 1230	Glu	Pro	Glu
Thr	Thr 1235	Ala	Ser	Ser		Thr 1240		Pro	Gly	Thr	Gln 1245	Thr	Gly	Phe
Thr	Val 1250	Pro	Ile	Arg	Thr	Val 1255	Pro	Ser	Ser	Glu	Pro 1260	Asp	Thr	Met
Ala	Ser 1265		Val	Thr		Pro 1270		Gln	Thr	Ser	Thr 1275	Pro	Val	Ser
Arg	Thr 1280		Ser	Ser	Phe	Ser 1285	His	Ser	Ser	Pro	Asp 1290	Ala	Thr	Pro
Val	Met 1295		Thr	Ser	Pro	Arg 1300		Glu	Ala	Ser	Ser 1305	Ala	Val	Leu
Thr	Thr 1310	Ile	Ser	Pro	Gly	Ala 1315	Pro	Glu	Met	Val	Thr 1320	Ser	Gln	Ile
Thr	Ser 1325		Gly	Ala	Ala	Thr 1330		Thr	Thr	Val	Pro 1335	Thr	Leu	Thr
His	Ser 1340	Pro	Gly	Met	Pro	Glu 1345	Thr	Thr	Ala	Leu	Leu 1350	Ser	Thr	His
Pro	Arg 1355		Glu	Thr	Ser	Lys 1360		Phe	Pro	Ala	Ser 1365	Thr	Val	Phe

Pro	Gln 1370	Val	Ser	Glu	Thr	Thr 1375		Ser	Leu	Thr	Ile 1380		Pro	Gly
Ala	Glu 1385		Ser	Thr	Ala	Leu 1390		Thr	Gln	Thr	Thr 1395		Ser	Leu
Phe	Thr 1400	Leu	Leu	Val	Thr	Gly 1405		Ser	Arg	Val	Asp 1410	Leu	Ser	Pro
Thr	Ala 1415	Ser	Pro	Gly	Val	Ser 1420		Lys	Thr	Ala	Pro 1425	Leu	Ser	Thr
His	Pro 1430	Gly	Thr	Glu	Thr	Ser 1435		Met	Ile	Pro	Thr 1440	Ser	Thr	Leu
Ser	Leu 1445		Leu	Leu	Glu	Thr 1450	Thr	Gly	Leu	Leu	Ala 1455	Thr	Ser	Ser
Ser	Ala 1460	Glu	Thr	Ser	Thr	Ser 1465	Thr	Leu	Thr	Leu	Thr 1470	Val	Ser	Pro
Ala	Val 1475	Ser	Gly	Leu	Ser	Ser 1480	Ala	Ser	Ile	Thr	Thr 1485	Asp	Lys	Pro
Gln	Thr 1490	Val	Thr	Ser	Trp	Asn 1495	Thr	Glu	Thr	Ser	Pro 1500	Ser	Val	Thr
Ser	Val 1505	Gly	Pro	Pro	Glu	Phe 1510	Ser	Arg	Thr	Val	Thr 1515	Gly	Thr	Thr
Met	Thr 1520	Leu	Ile	Pro	Ser	Glu 1525	Met	Pro	Thr	Pro	Pro 1530	Lys	Thr	Ser
His	Gly 1535	Glu	Gly	Val	Ser	Pro 1540	Thr	Thr	Ile	Leu	Arg 1545	Thr	Thr	Met
Val	Glu 1550	Ala	Thr	Asn	Leu	Ala 1555	Thr	Thr	Gly	Ser	Ser 1560	Pro	Thr	Val

Ala	Lys 1565	Thr	Thr	Thr	Thr	Phe 1570	Asn	Thr	Leu	Ala	Gly 1575	Ser	Leu	Phe
Thr	Pro 1580	Leu	Thr	Thr	Pro	Gly 1585	Met	Ser	Thr	Leu	Ala 1590	Ser	Glu	Ser
Val	Thr 1595	Ser	Arg	Thr	Ser	Tyr 1600	Asn	His	Arg	Ser	Trp 1605	Ile	Ser	Thr
Thr	Ser 1610	Ser	Tyr	Asn	Arg	Arg 1615	Tyr	Trp	Thr	Pro	Ala 1620	Thr	Ser	Thr
Pro	Val 1625	Thr	Ser	Thr	Phe	Ser 1630		Gly	Ile	Ser	Thr 1635	Ser	Ser	Ile
Pro	Ser 1640	Ser	Thr	Ala	Ala	Thr 1645	Val	Pro	Phe	Met	Val 1650	Pro	Phe	Thr
Leu	Asn 1655		Thr	Ile	Thr	Asn 1660		Gln	Tyr	Glu	Glu 1665	Asp	Met	Arg
	Pro 1670					1675					1680			
	Leu 1685					1690					1695			
-	Ser 1700					1705					1710			
	Ala 1715					1720					1725			
	Asp 1730					1735					1740			
	Leu 1745					1750					1755			
Arg	Asn 1760		Leu	Tyr	Val	Asn 1765		Phe	Thr	His	Arg 1770	Ser	Ser	Met

Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Val Gly Thr 1775 1780 1785

Ser Gly Thr Pro Ser Ser Ser Pro Ser Pro Thr 1790 1795

<210> 150

<211> 156

<212> PRT

<213> Homo sapiens

<400> 150

Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Phe Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys 35 40 45

Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu 50 55 60

Arg Pro Glu Lys His Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr 65 70 75 80

His Arg Val Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr 85 90 95

Trp Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr 100 105 110

Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Asn Pro Arg Ser 115 120 125

Ser Val Pro 130	Thr Thr	Ser Thr 135	Pro Gly	Thr Ser	Thr Val	His L	eu Ala	
Thr Ser Gly 145	Thr Pro	Ser Ser 150	Leu Pro	Lys Leu 155	Thr			
<210> 151								
<211> 507								
<212> DNA								
<213> Homo	sapiens							. • •
<220>								
<221> CDS								
<222> (1).	. (507)							
<223>								
								•
<400> 151 atg aga gga	tcg cat	cac cat	cac cat	cac gga	tcc atg	ggc c	ac aca	48
	tcg cat Ser His 5	cac cat His His	cac cat His His	cac gga His Gly 10	tcc atg Ser Met	Gly H	cac aca His Thr	48
atg aga gga Met Arg Gly 1	Ser His 5 cct ctc	His His	His His	His Gly 10 act ttc	Ser Met	Gly H	lis Thr	48 96
atg aga gga Met Arg Gly 1	Ser His 5 cct ctc	His His	His His	His Gly 10 act ttc	Ser Met	Gly H	lis Thr	
atg aga gga Met Arg Gly 1 gag cct ggc Glu Pro Gly aac ctg cat	Ser His 5 cct ctc Pro Leu 20 tat gag	His His ctg ata Leu Ile gaa aac	His His cca ttc Pro Phe 25 atg caa	His Gly 10 act ttc Thr Phe cac cct	ser Met aac ttt Asn Phe ggt tcc	acc a Thr I 30	is Thr 5 atc acc lle Thr	
atg aga gga Met Arg Gly 1 gag cct ggo Glu Pro Gly	Ser His 5 cct ctc Pro Leu 20 tat gag	His His ctg ata Leu Ile gaa aac	His His cca ttc Pro Phe 25 atg caa	His Gly 10 act ttc Thr Phe cac cct	ser Met aac ttt Asn Phe ggt tcc	acc a Thr I 30	is Thr 5 atc acc lle Thr	96
atg aga gga Met Arg Gly 1 gag cct ggc Glu Pro Gly aac ctg cat Asn Leu His 35	Ser His 5 cct ctc Pro Leu 20 tat gag Tyr Glu	His His ctg ata Leu Ile gaa aac Glu Asn gtt ctg	His His cca ttc Pro Phe 25 atg caa Met Gln 40 cag ggt	His Gly 10 act ttc Thr Phe cac cct His Pro	aac ttt Asn Phe ggt tcc Gly Ser 45 aag ccc	acc a Thr I 30 agg a Arg I	is Thr 5 atc acc le Thr aag ttc Lys Phe	96
atg aga gga Met Arg Gly 1 gag cct ggc Glu Pro Gly aac ctg cat Asn Leu His	Ser His 5 cct ctc Pro Leu 20 tat gag Tyr Glu	His His ctg ata Leu Ile gaa aac Glu Asn gtt ctg	His His cca ttc Pro Phe 25 atg caa Met Gln 40 cag ggt	His Gly 10 act ttc Thr Phe cac cct His Pro	aac ttt Asn Phe ggt tcc Gly Ser 45 aag ccc	acc a Thr I 30 agg a Arg I	is Thr 5 atc acc le Thr aag ttc Lys Phe	96 144
atg aga gga Met Arg Gly 1 gag cct ggc Glu Pro Gly aac ctg cat Asn Leu His 35 aac acc acc Asn Thr Thr 50	Ser His 5 cct ctc Pro Leu 20 tat gag Tyr Glu gag agg	ctg ata Leu Ile gaa aac Glu Asn gtt ctg Val Leu 55 cct ctg	His His cca ttc Pro Phe 25 atg caa Met Gln 40 cag ggt Gln Gly tac tct	His Gly 10 act ttc Thr Phe cac cct His Pro ctg ctc Leu Leu ggc tgc	aac ttt Asn Phe ggt tcc Gly Ser 45 aag ccc Lys Pro 60 aga ctg	acc at the state of the state o	dis Thr tc acc le Thr ag ttc Lys Phe tc aag he Lys	96 144
atg aga gga Met Arg Gly 1 gag cct ggc Glu Pro Gly aac ctg cat Asn Leu His 35 aac acc acc Asn Thr Thr 50	Ser His 5 cct ctc Pro Leu 20 tat gag Tyr Glu gag agg	ctg ata Leu Ile gaa aac Glu Asn gtt ctg Val Leu 55 cct ctg	His His cca ttc Pro Phe 25 atg caa Met Gln 40 cag ggt Gln Gly tac tct	His Gly 10 act ttc Thr Phe cac cct His Pro ctg ctc Leu Leu ggc tgc	aac ttt Asn Phe ggt tcc Gly Ser 45 aag ccc Lys Pro 60 aga ctg	acc at the state of the state o	dis Thr tc acc le Thr ag ttc Lys Phe tc aag he Lys	96 144 192
atg aga gga Met Arg Gly 1 gag cct ggc Glu Pro Gly aac ctg cat Asn Leu His 35 aac acc acc Asn Thr Thr 50 aac acc agt Asn Thr Ser 65	Ser His 5 cct ctc Pro Leu 20 tat gag Tyr Glu gag agg Glu Arg gtt ggc Val Gly	tis His Ctg ata Leu Ile gaa aac Glu Asn gtt ctg Val Leu 55 cct ctg Pro Leu 70 gag gca	His His cca ttc Pro Phe 25 atg caa Met Gln 40 cag ggt Gln Gly tac tct Tyr Ser gcc act	His Gly 10 act ttc Thr Phe cac cct His Pro ctg ctc Leu Leu ggc tgc Gly Cys 75 gga gtg	aac ttt Asn Phe ggt tcc Gly Ser 45 aag ccc Lys Pro 60 aga ctg Arg Leu gac acc	acc a Thr I 30 agg a Arg I ttg t Leu E acc t Thr I	dis Thr atc acc le Thr agg ttc Lys Phe ttc aag Phe Lys ttg ctc Leu 80 cgt acc	96 144 192
atg aga gga Met Arg Gly 1 gag cct ggc Glu Pro Gly aac ctg cat Asn Leu His 35 aac acc acc Asn Thr Thr 50 aac acc agt Asn Thr Ser 65	Ser His 5 cct ctc Pro Leu 20 tat gag Tyr Glu gag agg Glu Arg gtt ggc Val Gly	tis His Ctg ata Leu Ile gaa aac Glu Asn gtt ctg Val Leu 55 cct ctg Pro Leu 70 gag gca	His His cca ttc Pro Phe 25 atg caa Met Gln 40 cag ggt Gln Gly tac tct Tyr Ser gcc act	His Gly 10 act ttc Thr Phe cac cct His Pro ctg ctc Leu Leu ggc tgc Gly Cys 75 gga gtg	aac ttt Asn Phe ggt tcc Gly Ser 45 aag ccc Lys Pro 60 aga ctg Arg Leu gac acc	acc a Thr I 30 agg a Arg I ttg t Leu E acc t Thr I	dis Thr atc acc le Thr agg ttc Lys Phe ttc aag Phe Lys ttg ctc Leu 80 cgt acc	96 144 192 240

His	Arg	Val	Asp 100	Pro	Ile	Gly	Pro	Gly 105	Leu	Asp	Arg	Glu	Arg 110	Leu	Tyr	
tgg Trp	gag Glu	ctg Leu 115	agc Ser	cag Gln	ctg Leu	acc Thr	aac Asn 120	agc Ser	atc Ile	aca Thr	gag Glu	ctg Leu 125	gga Gly	ccc Pro	tac Tyr	384
acc Thr	ctg Leu 130	gac Asp	agg Arg	gac Asp	agt Ser	ctc Leu 135	tat Tyr	gtc Val	aat Asn	ggc Gly	ttc Phe 140	aac Asn	cct Pro	cgg Arg	agc Ser	432
tct Ser 145	gtg Val	cca Pro	acc Thr	acc Thr	agc Ser 150	act Thr	cct Pro	ggg Gly	acc Thr	tcc Ser 155	aca Thr	gtg Val	cac His	ctg Leu	gca Ala 160	480
acc Thr	tct Ser	ggg	act Thr	cca Pro 165	tcc Ser	tcc Ser	ctg Leu	cct Pro								507
<21	0> :	152														
<21	i> 1	L69														
<21	2> I	PRT														
<213	3> I	lomo	sapi	ens						•						
<400		L 52	•					•								
		152			His	His	His	His	His 10	Gly	Ser	Met	Gly	His 15	Thr	
Met 1)> 1	l52 Gly	Ser	His 5			Pro		10			Phe		15		
Met 1 Glu)> 1 Arg	Gly Gly	Ser Pro 20	His 5 Leu Glu	Leu	Ile Asn	Pro Met	Phe 25 Gln	10 Thr	Phe Pro	Asn	Phe Ser	Thr 30	15 Ile	Thr	
Met 1 Glu Asn)> 1 Arg Pro	Gly Gly His 35	Ser Pro 20	His 5 Leu Glu	Leu Glu Val	Ile Asn	Pro Met 40	Phe 25 Gln	10 Thr	Phe Pro	Asn Gly	Phe Ser 45	Thr 30 Arg	15 Ile Lys	Thr Phe	
Met 1 Glu Asn Asn)> 1 Arg Pro Leu	Gly Gly His 35	Ser Pro 20 Tyr Glu	His 5 Leu Glu Arg	Leu Glu Val	Ile Asn Leu 55	Pro Met 40 Gln	Phe 25 Gln Gly	Thr His Leu	Phe Pro Leu	Asn Gly Lys 60	Phe Ser 45	Thr 30 Arg	15 Ile Lys Phe	Thr Phe Lys	

His Arg Val Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr 100 105 110

Trp Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr 115 120 125

Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Asn Pro Arg Ser 130 135 140

Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Ala 145 150 155 160

Thr Ser Gly Thr Pro Ser Ser Leu Pro 165

<210> 153

<211> 507

<212> DNA

<213> Homo sapiens

<400> 153 aggcagggag gatggagtcc cagaggttgc caggtgcact gtggaggtcc caggagtgct 60 ggtggttggc acagagctcc gagggttgaa gccattgaca tagagactgt ccctgtccag 120 ggtgtagggt cccagctctg tgatgctgtt ggtcagctgg ctcagctccc agtatagccg 180 240 ctctctgtcc agtccaggtc cgatgggatc aacgcggtgg gtacagatgg tgtccactcc agtggctgcc tcatgcttct caggtctgag caaggtcagt ctgcagccag agtacagagg 300 360 gccaacactg gtgttcttga acaagggctt gagcagaccc tgcagaaccc tctccgtggt gttgaacttc ctggaaccag ggtgttgcat gttttcctca taatgcaggt tggtgatggt 420 480 aaagttgaaa gtgaatggta tcaggagagg gccaggctct gtgtggccca tggatccgtg 507 atggtgatgg tgatgcgatc ctctcat

<211> 9

<212> PRT

<213> Homo sapiens

<400> 154

Arg Leu Tyr Trp Glu Leu Ser Gln Leu 1 5

<210> 155

<211> 9

<212> PRT

<213> Homo sapiens

<400> 155

Thr Leu Asp Arg Asp Ser Leu Tyr Val 1

<210> 156

<211> 9

<212> PRT

<213> Homo sapiens

<400> 156

Val Leu Gln Gly Leu Leu Lys Pro Leu 1 5

<210> 157

<211> 9

<212> PRT

<213> Homo sapiens

<400> 157

Gln Leu Thr Asn Ser Ile Thr Glu Leu

<210> 158

<211> 780

<212> PRT

<213> Homo sapiens

<400> 158

Ala Thr Val Pro Phe Met Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 10 5

Asn Leu Gln Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe

Asn Ala Thr Glu Arg Glu Leu Gln Gly Leu Leu Lys Pro Leu Phe Arg 40 45 35

Asn Ser Ser Leu Glu Tyr Leu Tyr Ser Gly Cys Arg Leu Ala Ser Leu 50

Arg Pro Glu Lys Asp Ser Ser Ala Met Ala Val Asp Ala Ile Cys Thr 65

His Arg Pro Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr

Trp Glu Leu Ser Asn Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr 100

Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser 120

Ser Met Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Val Gly 140

Thr Ser Gly Thr Pro Ser Ser Ser Pro Ser Pro Thr Ala Ala Gly Pro Leu Leu Met Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe Asn Thr Met Glu Ser Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp Glu Leu Ser Lys Leu Thr Asn Asp Ile Glu Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln Ser Ser Val Ser Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser Leu Ser Ser Pro Thr Ile Met Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr Gly Glu Asp Met Gly His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu

Gln Gly Leu Leu Gly Pro Ile Phe Lys Asn Thr Ser Val Gly Pro Leu 360 355 Tyr Ser Gly Cys Arg Leu Thr Ser Leu Arg Ser Glu Lys Asp Gly Ala 380 375 370 Ala Thr Gly Val Asp Ala Ile Cys Ile His His Leu Asp Pro Lys Ser 390 Pro Gly Leu Asn Arg Glu Arg Leu Tyr Trp Glu Leu Ser Gln Leu Thr 410 Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu 425 : 420 Tyr Val Asn Gly Phe Thr His Arg Thr Ser Val Pro Thr Ser Ser Thr 435 Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Phe Ser 460 450 455 Leu Pro Ser Pro Ala Thr Ala Gly Pro Leu Leu Val Leu Phe Thr Leu 465 Asn Phe Thr Ile Thr Asn Leu Lys Tyr Glu Glu Asp Met His Arg Pro 495 485 Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Thr Leu Leu 500 Gly Pro Met Phe Lys Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly Cys 520 515 Arg Leu Thr Leu Leu Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly Val 535 530 Asp Ala Ile Cys Thr His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asp 550 555 545 Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys 565

Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly
580 585 590

Phe Thr His Trp Ile Pro Val Pro Thr Ser Ser Thr Pro Gly Thr Ser 595 600 605

Thr Val Asp Leu Gly Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr 610 615 620

Ala Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 625 630 635 640

Asn Leu Gln Tyr Glu Glu Asp Met His His Pro Gly Ser Arg Lys Phe 645 650 655

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe Lys 660 665 670

Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu 675 680 685

Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr 690 695 700

His Arg Leu Asp Pro Lys Ser Pro Gly Val Asp Arg Glu Gln Leu Tyr 705 710 715 720

Trp Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr
725 730 735

Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Gln Thr 740 745 750

Ser Ala Pro Asn Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly 755 760 765

Thr Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr 770 780

<210> 159 <211> 780 <212> PRT <213> Homo sapiens <400> 159 Ser Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 5 Asn Leu Gln Tyr Glu Glu Asp Met His His Pro Gly Ser Arg Lys Phe 25 20 Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Gly Pro Met Phe Lys 40 35 Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu 55 50 Arg Pro Glu Lys Asn Gly Ala Ala Thr Gly Met Asp Ala Ile Cys Ser 65 70 His Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr 85 Trp Glu Leu Ser Gln Leu Thr His Gly Ile Lys Glu Leu Gly Pro Tyr 110 105 100 Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Ser 125 115 120 Ser Val Ala Pro Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly 135 140 130 Thr Ser Gly Thr Pro Ser Ser Leu Pro Ser Pro Thr Thr Ala Val Pro 150 155

Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr Asn Leu Gln Tyr

Gly	Glu	Asp	Met 180	Arg	His	Pro	Gly	Ser 185	Arg	Lys	Phe	Asn	Thr 190	Thr	Glu
Arg	Val	Leu 195	Gln	Gly	Leu	Leu	Gly 200	Pro	Leu	Phe	Lys	Asn 205	Ser	Ser	Val
Gly	Pro 210	Leu	Tyr	Ser	Gly	Cys 215	Arg	Leu	Ile	Ser	Leu 220	Arg	Ser	Glu	Lys
Asp 225	Gly	Ala	Ala	Thr	Gly 230	Val	Asp	Ala	Ile	Суз 235	Thr	His	His	Leu	Asn 240
Pro	Gln	Ser	Pro	Gly 245	Leu	Asp	Arg	Glu	Gln 250	Leu	Tyr	Trp	Gln	Leu 255	Ser
Gln	Met	Thr	Asn 260	Gly	Ile	Lys	Glu	Leu 265	Gly	Pro	Tyr	Thr	Leu 270	Asp	Arg
Asn	Ser	Leu 275	Tyr	Val	Asn	Gly	Phe 280	Thr	His	Arg	Ser	Ser 285	Gly	Leu	Thr
Thr	Ser 290	Thr	Pro	Trp	Thr	Ser 295	Thr	Val	Asp	Leu	Gly 300	Thr	Ser	Gly	Thr
Pro 305	Ser	Pro	Val	Pro	Ser 310	Pro	Thr	Thr	Ala	Gly 315	Pro	Leu	Leu	Val	Pro 320
Phe	Thr	Leu	Asn	Phe 325	Thr	Ile	Thr	Asn	Leu 330	Gln	Tyr	Glu	Glu	Asp 335	Met
His	Arg	Pro	Gly 340	Ser	Arg	Lys		Asn 345	Ala	Thr	Glu	Arg	Val 350	Leu	Gln
Gly	Leu	Leu 355	Ser	Pro	Ile	Phe	Lys 360	Asn	Ser	Ser	Val	Gly 365	Pro	Leu	Tyr
Ser	Gly 370		Arg	Leu	Thr	Ser		Arg	Pro	Glu	Lys	Asp	Gly	Ala	Ala

Thr 385	Gly	Met	Asp	Ala	Val 390	Cys	Leu	Tyr	His	Pro 395	Asn	Pro	Lys	Arg	Pro 400
Gly	Leu	Asp	Arg	Glu 405	Gln	Leu	Tyr	Trp	Glu 410	Leu	Ser	Gln	Leu	Thr 415	His
Asn •	Ile	Thr	Glu 420	Leu	Gly	Pro	Tyr	Ser 425	Leu	Asp	Arg	Asp	Ser 430	Leu	Tyr
Val	Asn	Gly 435	Phe	Thr	His	Gln	Asn 440	Ser	Val	Pro	Thr	Thr 445	Ser	Thr	Pro
Gly	Thr 450	Ser	Thr	Val	Tyr	Trp 455	Ala	Thr	Thr	Gly	Thr 460	Pro	Ser	Ser	Phe
Pro 465	Gly	His	Thr	Glu	Pro 470	Gly	Pro	Leu	Leu	Ile 475	Pro	Phe	Thr	Phe	Asn 480
Phe	Thr	Ile	Thr	Asn 485	Leu	His	Tyr	Glu	Glu 490	Asn	Met	Gln	His	Pro 495	Gly
Ser	Arg	Lys	Phe 500	Asn	Thr	Thr	Glu	Arg 505	Val	Leu	Gln	Gly	Leu 510	Leu	L y s
Pro	Leu	Phe 515	Lys	Asn	Thr	Ser	Val 520	Gly	Pro	Leu	Tyr	Ser 525	Gly	Cys	Arg
Leu	Thr 530	Ser	Leu	Arg	Pro	Glu 535	Lys	Asp	Gly	Ala	Ala 540	Thr	Gly	Met	Asp
Ala 545	Val	Cys	Leu	Tyr	His 550	Pro	Asn	Pro	Lys	Arg 555	Pro	Gly	Leu	Asp	Arg 560
Glu	Gln	Leu	Tyr	Суs 565	Glu	Leu	Ser	Gln	Leu 570	Thr	.His	Asn	Ile	Thr 575	Glu
Leu	Gly	Pro	Tyr 580	Ser	Leu	Asp	Arg	Asp 585	Ser	Leu	Tyr	Val	Asn 590	Gly	Phe
Thr	His	Gln 595	Asn	Ser	Val	Pro	Thr 600	Thr	Ser	Thr	Pro	Gly 605	Thr	Ser	Thr

Val Tyr Trp Ala Thr Thr Gly Thr Pro Ser Ser Phe Pro Gly His Thr 610 615 620

Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Phe Asn Phe Thr Ile Thr 625 630 635 640

Asn Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe 645 650 655

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys 660 665 670

Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu 675 680 685

Arg Pro Glu Lys His Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr 690 695 700

His Arg Val Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr 705 710 715 720

Trp Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr
725 730 735

Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Asn Pro Arg Ser 740 745 750

Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Ala 755 760 765

Thr Ser Gly Thr Pro Ser Ser Leu Pro Gly His Thr 770 775 780

<210> 160

<211> 624

<212> PRT

<213> Homo sapiens

<400>	1	60
-------	---	----

Thr Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Arg Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Thr Pro Leu Phe Lys 35 40 45

Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu 50 55 60

Arg Pro Glu Lys Gln Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr 65 70 75 80

His Arg Val Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr 85 90 95

Trp Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr

Thr Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Asn Pro Trp Ser 115 120 125

Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val His Leu Ala 130 135 140

Thr Ser Gly Thr Pro Ser Ser Leu Pro Gly His Thr Ala Pro Val Pro 145 150 155 160

Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile Thr Asp Leu His Tyr 165 170 175

Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu 180 185 190

Arg Val Leu Gln Gly Leu Leu Lys Pro Leu Phe Lys Ser Thr Ser Val 195 200 205

Gly	Pro 210	Leu	Tyr	Ser	Gly	Cys 215		Leu	Thr	Leu	Leu 220	Arg	Pro	Glu	Lys
His 225	Gly	Ala	Ala	Thr	Gly 230	Val	Asp	Άla	Ile	Cys 235	Thr	Leu	Arg	Leu	Asp 240
Pro	Thr	Gly	Pro	Gly 245	Leu	Asp	Arg	Glu	Arg 250	Leu	Tyr	Trp	Glu	Leu 255	Ser
Gln	Leu	Thr	Asn 260	Ser	Val	Thr	Glu	Leu 265	Gly	Pro	Tyr	Thr	Leu 270	Asp	Arg
Asp	Ser	Leu 275	Tyr	Val	Asn	Gly	Phe 280	Thr	His	Arg	Ser	Ser 285	Val	Pro	Thr
Thr	Ser 290	Ile	Pro	Gly	Thr	Ser 295	Ala	Val	His	Leu	Glu 300	Thr	Ser	Gly _.	Thr
Pro 305	Ala	Ser	Leu	Pro	Gly 310	His	Thr	Ala	Pro	Gly 315	Pro	Leu	Leu	Val	Pro 320
Phe	Thr	Leu	Asn	Phe 325	Thr	Ile	Thr	Asn	Leu 330	Gln	Tyr	Glu	Glu	Asp 335	Met
Arg	His	Pro	Gly 340	Ser	Arg	Lys	Phe	Ser 345	Thr	Thr	Glu	Arg	Val 350	Leu	Gln
Gly	Leu	Leu 355	Lys	Pro	Leu	Phe	Lys 360	Asn	Thr	Ser	Val	Ser 365	Ser	Leu	Tyr
Ser	Gly 370	Cys	Arg	Leu		Leu 375		Arg	Pro		Lys 380		Gly	Ala	Ala
Thr 385	Arg	Val	Asp	Ala	Val 390	Cys	Thr	His	Arg	Pro 395	Asp	Pro	Lys	Ser	Pro 400
Gly	Leu	Asp	Arg	Glu 405	Arg	Leu	Tyr	Trp	Lys 410	Leu	Ser	Gln	Leu	Thr 415	His

Gly Ile Thr Glu Leu Gly Pro Tyr Thr Leu Asp Arg His Ser Leu Tyr 420 425 430

Val Asn Gly Phe Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr Pro 435 440 445

Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser Leu 450 455 460

Ser Gly Pro Thr Thr Ala Ser Pro Leu Leu Val Leu Phe Thr Ile Asn 465 470 475 480

Phe Thr Ile Thr Asn Gln Arg Tyr Glu Glu Asn Met His His Pro Gly 485 490 495

Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Arg 500 505 510

Pro Val Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg 515 520 525

Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp 530 535 540

Ala Ile Cys Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg 545 550 555 560

Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu 565 570 575

Leu Gly Pro Tyr Thr Gln Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe 580 585 590

Thr His Arg Ser Ser Val Pro Thr Thr Ser Ile Pro Gly Thr Ser Ala 595 600 605

Val His Leu Glu Thr Ser Gly Thr Pro Ala Ser Leu Pro Gly His Thr 610 615 620

<210> 161

<211> 468

<212> PRT

<213> Homo sapiens

<400> 161

Ala Thr Gly Pro Val Leu Leu Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Met Pro Leu Phe Lys 35 40 45

Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu 50 55 60

Arg Pro Glu Lys Asp Gly Ala Ala Thr Arg Val Asp Ala Val Cys Thr 65 70 75 80

His Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Arg Leu Tyr 85 90 95

Trp Lys Leu Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro Tyr 100 105 110

Thr Leu Asp Arg His Ser Leu Tyr Val Asn Gly Phe Thr His Gln Ser 115 120 125

Ser Met Thr Thr Thr Arg Thr Pro Asp Thr Ser Thr Met His Leu Ala 130 135 140

Thr Ser Arg Thr Pro Ala Ser Leu Ser Gly Pro Thr Thr Ala Ser Pro 145 155 160

Leu Leu Val Leu Phe Thr Ile Asn Phe Thr Ile Thr Asn Leu Arg Tyr
165 170 175

Glu Glu Asn Met His His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Arg Pro Val Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr Gln Asp Arg Asp Ser Leu Tyr Asn Val Gly Phe Thr Gln Arg Ser Ser Val Pro Thr Thr Ser Val Pro Gly Thr Pro Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Val Ser Lys Pro Gly Pro Ser Ala Ala Ser Pro Leu Leu Val Leu Phe Thr Leu Asn Gly Thr Ile Thr Asn Leu Arg Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Arg Ser Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Leu Leu Arg Pro Glu Lys Asp Gly Thr Ala Thr Gly Val Asp Ala Ile Cys Thr His His Pro Asp Pro Lys Ser Pro

Arg Leu Asp Arg Glu Gln Leu Tyr Trp Glu Leu Ser Gln Leu Thr His 405 410 415

Asn Ile Thr Glu Leu Gly His Tyr Ala Leu Asp Asn Asp Ser Leu Phe 420 425 430

Val Asn Gly Phe Thr His Arg Ser Ser Val Ser Thr Thr Ser Thr Pro $\frac{435}{440}$ 445

Gly Thr Pro Thr Val Tyr Leu Gly Ala Ser Lys Thr Pro Ala Ser Ile 450 455 460

Phe Gly Pro Ser 465

<210> 162

<211> 11721

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(11721)

<223> Any "X" = any amino acid

<400> 162

Met Glu His Ile Thr Lys Ile Pro Asn Glu Ala Ala His Arg Gly Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Arg Pro Val Lys Gly Pro Gln Thr Ser Thr Ser Pro Ala Ser Pro 20 25 30

Lys Gly Leu His Thr Gly Gly Thr Lys Arg Met Glu Thr Thr Thr Thr 35 40 45

Ala Leu Lys Thr Thr Thr Ala Leu Lys Thr Thr Ser Arg Ala Thr Leu Thr Thr Ser Val Tyr Thr Pro Thr Leu Gly Thr Leu Thr Pro Leu Asn Ala Ser Arg Gln Met Ala Ser Thr Ile Leu Thr Glu Met Met Ile Thr Thr Pro Tyr Val Phe Pro Asp Val Pro Glu Thr Thr Ser Ser Leu Ala Thr Ser Leu Gly Ala Glu Thr Ser Thr Ala Leu Pro Arg Thr Thr Pro Ser Val Leu Asn Arg Glu Ser Glu Thr Thr Ala Ser Leu Val Ser Arg Ser Gly Ala Glu Arg Ser Pro Val Ile Gln Thr Leu Asp Val Ser Ser Ser Glu Pro Asp Thr Thr Ala Ser Trp Val Ile His Pro Ala Glu Thr Ile Pro Thr Val Ser Lys Thr Thr Pro Asn Phe Phe His Ser Glu Leu Asp Thr Val Ser Ser Thr Ala Thr Ser His Gly Ala Asp Val Ser Ser Ala Ile Pro Thr Asn Ile Ser Pro Ser Glu Leu Asp Ala Leu Thr Pro Leu Val Thr Ile Ser Gly Thr Asp Thr Ser Thr Thr Phe Pro Thr Leu Thr Lys Ser Pro His Glu Thr Glu Thr Arg Thr Thr Trp Leu Thr

His Pro Ala Glu Thr Ser Ser Thr Ile Pro Arg Thr Ile Pro Asn Phe 260 265 270

Ser His His Glu Ser Asp Ala Thr Pro Ser Ile Ala Thr Ser Pro Gly 275 280 285

Ala Glu Thr Ser Ser Ala Ile Pro Ile Met Thr Val Ser Pro Gly Ala 290 295 300

Glu Asp Leu Val Thr Ser Gln Val Thr Ser Ser Gly Thr Asp Arg Asn 315 310 315 320

Met Thr Ile Pro Thr Leu Thr Leu Ser Pro Gly Glu Pro Lys Thr Ile 325 330 335

Ala Ser Leu Val Thr His Pro Glu Ala Gln Thr Ser Ser Ala Ile Pro 340 345 350

Thr Ser Thr Ile Ser Pro Ala Val Ser Arg Leu Val Thr Ser Met Val 355 360 365

Thr Ser Leu Ala Ala Lys Thr Ser Thr Thr Asn Arg Ala Leu Thr Asn 370 380

Ser Pro Gly Glu Pro Ala Thr Thr Val Ser Leu Val Thr His Pro Ala 385 390 395 400

Gln Thr Ser Pro Thr Val Pro Trp Thr Thr Ser Ile Phe Phe His Ser 405 410 415

Lys Ser Asp Thr Thr Pro Ser Met Thr Thr Ser His Gly Ala Glu Ser 420 425 430

Ser Ser Ala Val Pro Thr Pro Thr Val Ser Thr Glu Val Pro Gly Val 435 440 445

Val Thr Pro Leu Val Thr Ser Ser Arg Ala Val Ile Ser Thr Thr Ile 450 455 460

Pro Ile Leu Thr Leu Ser Pro Gly Glu Pro Glu Thr Thr Pro Ser Met 465 470 475 480

Ala	Thr	Ser	His	Gly 485	Glu	Glu	Ala	Ser	Ser 490	Ala	Ile	Pro	Thr	Pro 495	Thr
Val	Ser	Pro	Gly 500	Val	Pro	Gly	Val	Val 505	Thr	Ser	Leu	Val	Thr 510	Ser _.	Ser
Arg	Ala	Val 515	Thr	Ser	Thr	Thr	Ile 520	Pro	Ile	Leu	Thr	Phe 525	Ser	Leu	Gly
Glu	Pro 530	Glu	Thr	Thr	Pro	Ser 535	Met	Ala	Thr	Ser	His 540	Gly	Thr	Glu	Ala
Gly 545	Ser	Ala	Val	Pro	Thr 550	Val	Leu	Pro	Glu	Val 555	Pro	Gly	Met	Val	Thr 560
Ser	Leu	Val	Ala	Ser 565	Ser	Arg	Ala	Val	Thr 570	Ser	Thr	Thr	Leu	Pro 575	Thr
Leu	Thr	Leu	Ser 580	Pro	Gly	Glu	Pro	Glu 585	Thr	Thr	Pro	Ser	Met 590	Ala	Thr
Ser	His	Gly 595	Ala	Glu	Ala	Ser	Ser 600	Thr	Val	Pro	Thr	Val 605	Ser	Pro	Glu
Val	Pro 610	Gly	Val	Val	Thr	Ser 615	Leu	Val	Thr	Ser	Ser 620	Ser	Gly	Val	Asn
Ser 625	Thr	Ser	Ile	Pro	Thr 630	Leu	Ile	Leu	Ser	Pro 635	Gly	Glu	Leu	Glu	Thr 640
Thr	Pro	Ser	Met	Ala 645	Thr	Ser	His	Gly	Ala 650	Glu	Ala	Ser	Ser	Ala 655	Val
Pro	Thr	Pro	Thr 660		Ser	Pro	Gly	Val 665	Ser	Gly	Val	Val	Thr 670	Pro	Leu
Val	Thr	Ser 675		Arg	Ala	Val	Thr 680	Ser	Thr	Thr	Ile	Pro 685	Ile	Leu	Thr

Leu	Ser 690	Ser	Ser	Glu	Pro	Glu 695	Thr	Thr	Pro	Ser	Met 700	Ala	Thr	Ser	His
Gly 705	Val	Glu	Ala	Ser	Ser 710	Ala	Val	Leu	Thr	Val 715	Ser	Pro	Glu	Val	Pro 720
Gly	Met	Val	Thr	Ser 725	Leu	Val	Thr	Ser	Ser 730	Arg	Ala	Val	Thr	Ser 735	Thi
Thr	Ile	Pro	Thr 740	Leu	Thr	Ile	Ser	Ser 745	Asp	Glu	Pro	Glu	Thr 750	Thr	Thr
Ser	Leu	Val 755	Thr	His	Ser	Glu	Ala 760	Lys	Met	Ile	Ser	Ala 765	Ile	Pro	Thr
Leu	Ala 770	Val	Ser	Pro	Thr	Val 775	Gln	Gly	Leu	Val	Thr 780	Ser	Leu	Val	Thr
Ser 785	Ser	Gly	Ser	Glu	Thr 790	Ser	Ala	Phe	Ser	Asn 795	Leu	Thr	Val	Ala	Ser 800
Ser	Gln	Pro	Glu	Thr 805	Ile	Asp	Ser	Trp	Val 810	Ala	His	Pro	Gly	Thr 815	Glu
Ala	Ser	Ser	Val 820	Val	Pro	Thr	Leu	Thr 825	Val	Ser	Thr	Gly	Glu 830	Pro	Phe
Thr	Asn	Ile 835	Ser	Leu	Val	Thr	His 840	Pro	Ala	Glu	Ser	Ser 845	Ser	Thr	Leu
Pro	Arg 850		Thr	Ser		Phe 855		His	Ser	Glu	Leu 860	Asp	Thr	Met	Pro
Ser 865	Thr	Val	Thr	Ser	Pro 870	Glu	Ala	Glu	Ser	Ser 875	Ser	Ala	Ile	Ser	Thr 880
Thr	Ile	Ser	Pro	Gly 885	Ile	Pro	Gly	Val	Leu 890	Thr	Ser	Leu	Val	Thr 895	Ser

Ser Gly Arg Asp Ile Ser Ala Thr Phe Pro Thr Val Pro Glu Ser Pro 900 905 910

His Glu Ser Glu Ala Thr Ala Ser Trp Val Thr His Pro Ala Val Thr 915 920 925

Ser Thr Thr Val Pro Arg Thr Thr Pro Asn Tyr Ser His Ser Glu Pro 930 935 940

Asp Thr Thr Pro Ser Ile Ala Thr Ser Pro Gly Ala Glu Ala Thr Ser 945 950 955 960

Asp Phe Pro Thr Ile Thr Val Ser Pro Asp Val Pro Asp Met Val Thr 965 970 975

Ser Gln Val Thr Ser Ser Gly Thr Asp Thr Ser Ile Thr Ile Pro Thr 980 985 990

Leu Thr Leu Ser Ser Gly Glu Pro Glu Thr Thr Thr Ser Phe Ile Thr 995 1000 1005

Tyr Ser Glu Thr His Thr Ser Ser Ala Ile Pro Thr Leu Pro Val 1010 1015 1020

Ser Pro Gly Ala Ser Lys Met Leu Thr Ser Leu Val Ile Ser Ser 1025 1030 1035

Gly Thr Asp Ser Thr Thr Thr Phe Pro Thr Leu Thr Glu Thr Pro 1040 1045 1050

Tyr Glu Pro Glu Thr Thr Ala Ile Gln Leu Ile His Pro Ala Glu 1055 1060 1065

Thr Asn Thr Met Val Pro Arg Thr Thr Pro Lys Phe Ser His Ser 1070 1075 1080

Lys Ser Asp Thr Thr Leu Pro Val Ala Ile Thr Ser Pro Gly Pro 1085 1090 1095

Glu Ala Ser Ser Ala Val Ser Thr Thr Thr Ile Ser Pro Asp Met 1100 1105 1110

Ser	Asp 1115		Val	Thr	Ser	Leu 1120		Pro	Ser	Ser	Gly 1125		Asp	Thr
Ser	Thr 1130	Thr	Phe	Pro	Thr	Leu 1135		Glu	Thr	Pro	Tyr 1140		Pro	Glu
Thr	Thr 1145	Ala	Thr	Trp	Leu	Thr 1150		Pro	Ala	Glu	Thr 1155		Thr	Thr
Val	Ser 1160	Gly	Thr	Ile	Pro	Asn 1165		Ser	His	Arg	Gly 1170	Ser	Asp	Thr
Ala	Pro 1175	Ser	Met	Val	Thr	Ser 1180		Gly	Val	Asp	Thr 1185		Ser	Gly
Val	Pro 1190	Thr	Thr	Thr	Ile	Pro 1195		Ser	Ile	Pro	Gly 1200	Val	Val	Thr
Ser	Gln 1205	Val	Thr	Ser	Ser	Ala 1210		Asp	Thr	Ser	Thr 1215	Ala	Ile	Pro
Thr	Leu 1220	Thr	Pro	Ser	Pro	Gly 1225		Pro	Glu	Thr	Thr 1230	Ala	Ser	Ser
Ala	Thr 1235	His	Pro	Gly	Thr	Gln 1240		Gly	Phe	Thr	Val 1245	Pro	Ile	Arg
Thr	Val 1250	Pro	Ser	Ser	Glu	Pro 1255	Asp	Thr	Met	Ala	Ser 1260	Trp	Val	Thr
His	Pro 1265		Gln	Thr	Ser	Thr 1270	Pro	Val	Ser	Arg	Thr 1275	Thr	Ser	Ser
Phe	Ser 1280	His	Ser	Ser	Pro	Asp 1285	Ala	Thr	Pro	Val	Met 1290	Ala	Thr	Ser
Pro	Arg 1295	Thr	Glu	Ala	Ser	Ser 1300	Ala	Val	Leu	Thr	Thr 1305	Ile	Ser	Pro
Gly	Ala 1310	Pro	Glu	Met	Val	Thr 1315	Ser	Gln	Ile	Thr	Ser 1320	Ser	Gly	Ala

Ala	Thr 1325	Ser	Thr	Thr	Val	Pro 1330	Thr	Leu	Thr		Ser 1335	Pro	Gly	Met
Pro	Glu 1340	Thr	Thr	Ala	Leu	Leu 1345	Ser	Thr	His	Pro	Arg 1350	Thr	Glu	Thr
Ser	Lys 1355	Thr	Phe	Pro	Ala	Ser 1360	Thr	Val	Phe	Pro	Gln 1365	Val	Ser	Glu
Thr	Thr 1370	Ala	Ser	Leu	Thr	Ile 1375	Arg	Pro	Gly	Ala	Glu 1380	Thr	Ser	Thr
Ala	Leu 1385	Pro	Thr	Gln	Thr	Thr 1390	Ser	Ser	Leu	Phe	Thr 1395	Leu	Leu	Val
Thr	Gly 1400		Ser	Arg	Val	Asp 1405	Leu	Ser	Pro	Thr	Ala 1410	Ser	Pro	Gly
Val	Ser 1415	Ala	Lys	Thr	Ala	Pro 1420		Ser	Thr	His	Pro 1425	Gly	Thr	Glu
Thr	Ser 1430		Met	Ile	Pro	Thr 1435	Ser	Thr	Leu	Ser	Leu 1440	Gly	Leu	Leu
Glu	Thr 1445		Gly	Leu	Leu	Ala 1450		Ser	Ser	Ser	Ala 1455	Glu	Thr	Ser
Thr	Ser 1460		Leu	Thr	Leu	Thr 1465		Ser	Pro	Ala	Val 1470	Ser	Gly	Leu
	Ser 1475								Pro		Thr 1485	Val	Thr	Ser
Trp	Asn 1490	Thr	Glu	Thr	Ser	Pro 1495	Ser	Val	Thr	Ser	Val 1500	Gly	Pro	Pro
Glu	Phe 1505		Arg	Thr	Val	Thr 1510		Thr	Thr	Met	Thr 1515	Leu	Ile	Pro

	Ser	Glu 1520	Met	Pro	Thr	Pro	Pro 1525		Thr	Ser	His	Gly 1530		Gly	Val
	Ser	Pro 1535	Thr	Thr	Ile	Leu	Arg 1540		Thr	Met	Val	Glu 1545		Thr	Asn
	Leu	Ala 1550	Thr	Thr	Gly	Ser	Ser 1555	Pro	Thr	Val	Ala	Lys 1560		Thr	Thr
	Thr	Phe 1565	Asn	Thr	Leu	Ala	Gly 1570		Leu	Phe	Thr	Pro 1575		Thr	Thr
	Pro	Gly 1580	Met	Ser	Thr	Leu	Ala 1585		Glu	Ser	Val	Thr 1590	Ser	Arg	Thr
	Ser	Tyr 1595	Asn	His	Arg	Ser	Trp 1600	Ile	Ser	Thr	Thr	Ser 1605	Ser	Tyr	Asn
	Arg	Arg 1610	Tyr	Trp	Thr	Pro	Ala 1 61 5	Thr	Ser	Thr	Pro	Val 1620	Thr	Ser	Thr
•	Phe	Ser 1625	Pro	Gly	Ile	Ser	Thr 1630	Ser	Ser	Ile	Pro	Ser 1635	Ser	Thr	Ala
	Ala	Thr 1640	Val	Pro	Phe	Met	Val 1645	Pro	Phe	Thr	Leu	Asn 1650	Phe	Thr	Ile
	Thr	Asn 1655	Leu	Gln	Tyr	Glu	Glu 1660	Asp	Met	Arg	His	Pro 1665	Gly	Ser	Arg
]	Lys	Phe 1670										Leu 1680		Lys	Pro
]	Leu	Phe 1685	Arg	Asn	Ser	Ser	Leu 1690	Glu	Tyr	Leu	Tyr	Ser 1695	Gly	Cys	Arg
1	ieu	Ala 1700	Ser	Leu	Arg	Pro	Glu 1705	Lys	Asp	Ser	Ser	Ala 1710	Met	Ala	Val
1	Asp	Ala 1715	Ile	Cys	Thr	His	Arg 1720	Pro	Asp	Pro	Glu	Asp 1725	Leu	Gly	Leu

Asp	Arg 1730	Glu	Arg	Leu		Trp 1735	Glu	Leu	Ser	Asn	Leu 1740	Thr	Asn	Gly
Ile	Gln 1745	Glu	Leu	Gly	Pro	Tyr 1750	Thr	Leu	Asp	Arg	Asn 1755	Ser	Leu	Tyr
Val	Asn 1760	_	Phe	Thr	His	Arg 1765		Ser	Met	Pro	Thr 1770	Thr	Ser	Thr
Pro	Gly 1775		Ser	Thr	Val	Asp 1780	Val	Gly	Thr	Ser	Gly 1785	Thr	Pro	Ser
Ser	Ser 1790		Ser	Pro	Thr	Ala 1795		Gly	Pro	Leu	Leu 1800	Met	Pro	Phe
Thr	Leu 1805		Phe	Thr	Ile	Thr 1810		Leu	Gln	Tyr	Glu 1815	Glu	Asp	Met
Arg	Arg 1820		Gly	Ser	Arg	Lys 1825		Asn	Thr	Met	Glu 1830	Ser	Val	Leu
Gln	Gly 1835		Leu	Lys	Pro	Leu 1840		Lys	Asn	Thr	Ser 1845	Val	Gly	Pro
Leu	Tyr 1850		Gly	Cys	Arg	Leu 1855		Leu	Leu	Arg	Pro 1860	Glu	Lys	Asp
Gly	Ala 1865		Thr	Gly		Asp 1870		Ile	Cys	Thr	His 1875	Arg	Leu	Asp
Pro	Lys 1880	Ser	Pro	Gly	Leu	Asn 1885	Arg	Glu	Gln	Leu	Tyr 1890	Trp	Glu	Leu
Ser	Lys 1895		Thr	Asn	Asp	Ile 1900		Glu	Leu	Gly	Pro 1905	Tyr	Thr	Leu
Asp	Arg 1910		Ser	Leu	Tyr	Val 1915		Gly	Phe	Thr	His 1920	Gln	Ser	Ser

Val	Ser 1925	Thr	Thr	Ser	Thr	Pro 1930		Thr	Ser	Thr	Val 1935		Leu	Arg
Thr	Ser 1940	Gly	Thr	Pro	Ser	Ser 1945		Ser	Ser	Pro	Thr 1950		Met	Ala
Ala	Gly 1955	Pro	Leu	Leu	Val	Pro 1960		Thr	Leu	Asn	Phe 1965		Ile	Thr
Asn	Leu 1970	Gln	Tyr	Gly	Glu	Asp 1975	Met	Gly	His	Pro	Gly 1980	Ser	Arg	Lys
Phe	Asn 1985		Thr	Glu	Arg	Val 1990	Leu	Gln	Gly	Leu	Leu 1995	Gly	Pro	Ile
Phe	Lys 2000	Asn	Thr	Ser	Val	Gly 2005	Pro	Leu	Tyr	Ser	Gly 2010	Суѕ	Arg	Leu
	2015					Lys 2020					2025			_
	2030					Leu 2035					2040			
	2045					Glu 2050					2055			
	2060					Thr 2065					2070			
	2075					Thr 2080					2085			
	2090					Leu 2095					2100			
	2105					Ala 2110					2115			
Leu	Asn 2120	Phe	Thr	Ile	Thr	Asn 2125	Leu	Lys	Tyr	Glu	Glu 2130	Asp	Met	His

Arg	Pro 2135	Gly	Ser	Arg	Lys	Phe 2140		Thr	Thr	Glu	Arg 2145	Val	Leu	Gln
Thr	Leu 2150	Leu	Gly	Pro	Met	Phe 2155	Lys	Asn	Thr	Ser	Val 2160	Gly	Leu	Leu
Tyr	Ser 2165	Gly	Cys	Arg	Leu	Thr 2170		Leu	Arg	Ser	Glu 2175	Lys	Asp	Gly
Ala	Ala 2180		Gly	Val		Ala 2185		Cys	Thr		Arg 2190		Asp	Pro
Lys	Ser 2195	Pro	Gly	Leu	Asp	Arg 2200		Gln	Leu	Tyr	Trp 2205	Glu	Leu	Ser
Gln	Leu 2210	Thr	Asn	Gly	Ile	Lys 2215		Leu	Gly	Pro	Tyr 2220		Leu	Asp
Arg	Asn 2225	Ser	Leu	Tyr	Val	Asn 2230		Phe	Thr	His	Trp 2235		Pro	Val
Pro	Thr 2240	Ser	Ser	Thr		Gly 2245	Thr	Ser	Thr	Val	Asp 2250	Leu	Gly	Ser
Gly	Thr 2255	Pro	Ser	Ser	Leu	Pro 2260	Ser	Pro	Thr	Ala	Ala 2265	Gly	Pro	Leu
Leu	Val 2270	Pro	Phe	Thr		Asn 2275		Thr	Ile	Thr	Asn 2280	Leu	Gln	Tyr
Glu	Glu 2285	Asp	Met	His	His	Pro 2290	Gly	Ser	Arg	Lys	Phe 2295	Asn	Thr	Thr
Glu	Arg 2300	Val	Leu	Gln	Gly	Leu 2305	Leu	Gly	Pro	Met	Phe 2310	Ьуз	Asn	Thr
Ser	Val 2315	Gly	Leu	Leu	Tyr	Ser 2320		Cys	Arg	Leu	Thr 2325	Leu	Leu	Arg

Ser	Glu 2330	Lys	Asp	Gly	Ala	Ala 2335		Gly	Val	Asp	Ala 2340	Ile	Суз	Thr
His	Arg 2345	Leu	Asp	Pro	Lys	Ser 2350	Pro	Gly	Val	Asp	Arg 2355		Gln	Leu
Tyr	Trp 2360	Glu	Leu	Ser	Gln	Leu 2365		Asn	Gly	Ile	Lys 2370	Glu	Leu	Gly
Pro	Tyr 2375	Thr	Leu	Asp		Asn 2380		Leu	Tyr	Val	Asn 2385	Gly	Phe	Thr
His	Gln 2390	Thr	Ser	Ala	Pro	Asn 2395	Thr	Ser	Thr	Pro	Gly 2400	Thr	Ser	Thr
Val	Asp 2405	Leu	Gly	Thr	Ser	Gly 2410	Thr	Pro	Ser	Ser	Leu 2415	Pro	Ser	Pro
Thr	Ser 2420	Ala	Gly	Pro	Leu	Leu 2425	Val	Pro	Phe	Thr	Leu 2430	Asn	Phe	Thr
Ile	Thr 2435	Asn	Leu	Gln	Tyr	Glu 2440	Glu	Asp	Met	-	His 2445	Pro	Gly	Ser
Arg	Lys 2450	Phe	Asn	Thr	Thr	Glu 2455	Arg	Val	Leu	Gln	Gly 2460	Leu	Leu	Lys
Pro	Leu 2465	Phe	Lys	Ser	Thr	Ser 2470	Val	Gly	Pro	Leu	Tyr 2475	Ser	Gly	Cys
Arg	Leu 2480	Thr	Leu	Leu							Ala 2490		Thr	Gly
Val	Asp 2495	Ala	Ile	Cys	Thr	His 2500	Arg	Leu	Asp	Pro	Lys 2505	Ser	Pro	Gly
Val	Asp 2510	Arg	Glu	Gln	Leu	Tyr 2515	Trp	Glu	Leu	Ser	Gln 2520	Leu	Thr	Asn
Gly	Ile 2525	Lys	Glu	Leu	Gly	Pro 2530	Tyr	Thr	Leu	Asp	Arg 2535	Asn	Ser	Leu

Tyr	Val 2540	Asn	Gly	Phe	Thr	His 2545		Thr	Ser		Pro 2550	Asn	Thr	Ser
Thr	Pro 2555	Gly	Thr	Ser	Thr	Val 2560	Asp	Leu	Gly	Thr	Ser 2565	Gly	Thr	Pro
Ser	Ser 2570		Pro	Ser	Pro	Thr 2575		Ala	Gly	Pro	Leu 2580	Leu	Val	Pro
Phe	Thr 2585	Leu	Asn	Phe	Thr	Ile 2590	Thr	Asn	Leu	Gln	Tyr 2595	Glu	Glu	Asp
Met	His 2600		Pro	Gly	Ser	Arg 2605		Phe	Asn	Thr	Thr 2610	Glu	Arg	Val
Leu	Gln 2615		Leu	Leu	Gly	Pro 2620	Met	Phe	Lуs	Asn	Thr 2625	Ser	Val	Gly
Leu	Leu 2630		Ser	Gly		Arg 2635		Thr	Leu	Leu	Arg 2640	Pro	Glu	Lys
Asn	Gly 2645		Ala	Thr	Gly	Met 2650		Ala	Ile	Cys	Ser 2655	His	Arg	Leu
Asp	Pro 2660		Ser	Pro		Leu 2665		Arg	Glu	Gln	Leu 2670	Tyr	Trp	Glu
Leu	Ser 2675		Leu	Thr		Gly 2680		Lys	Glu	Leu	Gly 2685	Pro	Tyr	Thr
	Asp 2690							Asn			Thr 2700	His	Arg	Ser
Ser	Val 2705		Pro	Thr	Ser	Thr 2710		Gly	Thr	Ser	Thr 2715		Asp	Leu
Gly	Thr 2720		Gly	Thr	Pro	Ser 2725		Leu	Pro	Ser	Pro 2730	Thr	Thr	Ala

Val	Pro 2735	Leu	Leu	Val	Pro	Phe 2740		Leu	Asn	Phe	Thr 2745		Thr	Asn
Leu	Gln 2750	Tyr	Gly	Glu	Asp	Met 2755		His	Pro	Gly	Ser 2760	_	Lys	Phe
Asn	Thr 2765	Thr	Glu	Arg	Val	Leu 2770		Gly	Leu	Leu	Gly 2775	Pro	Leu	Phe
Lys	Asn 2780		Ser	Val	Gly	Pro 2785		Tyr	Ser	Gly	Cys 2790	_	Leu	Ile
Ser	Leu 2795	Arg	Ser	Glu	Lys	Asp 2800		Ala	Ala	Thr	Gly 2805	Val	Asp	Ala
Ile	Cys 2810	Thr	His	His	Leu	Asn 2815	Pro	Gln	Ser	Pro	Gly 2820	Leu	Asp	Arg
Glu	Gln 2825	Leu	Tyr	Trp	Gln	Leu 2830	Ser	Gln	Met	Thr	Asn 2835	Gly	Ile	Lys
Glu	Leu 2840	Gly	Pro	Tyr	Thr	Leu 2845	Asp	Arg	Asn	Ser	Leu 2850	Tyr	Val	Asn
Gly	Phe 2855	Thr	His	Arg	Ser	Ser 2860	Gly	Leu	Thr	Thr	Ser 2865	Thr	Pro	Trp
Thr	Ser 2870	Thr	Val	Asp	Leu	Gly 2875	Thr	Ser	Gly	Thr	Pro 2880	Ser	Pro	Val
Pro	Ser 2885	Pro	Thr	Thr	Ala	Gly 2890					Pro 2895	Phe	Thr	Leu
Asn	Phe 2900	Thr	Ile	Thr	Asn	Leu 2905	Gln	Tyr	Glu	Glu	Asp 2910	Met	His	Arg
Pro	Gly 2915	Ser	Arg	Lys	Phe	Asn 2920	Ala	Thr	Glu	Arg	Val 2925	Leu	Gln	Gly
Leu	Leu 2930	Ser	Pro	Ile	Phe	Lys 2935	Asn	Ser	Ser	Val	Gly 2940	Pro	Leu	Tyr

Ser	Gly 2945	Суз	Arg	Leu	Thr	Ser 2950	Leu	Arg	Pro	Glu	Lys 2955	Asp	Gly	Ala
Ala	Thr 2960	Gly	Met	Asp	Ala	Val 2965	Cys	Leu	Tyr	His	Pro 2970	Asn	Pro	Lys
Arg	Pro 2975		Leu	Asp	Arg	Glu 2980	Gln	Leu	Tyr	Trp	Glu 2985	Leu	Ser	Gln
Leu	Thr 2990	His	Asn	Ile		Glu 2995	Leu	Gly	Pro	Tyr	Ser 3000	Leu	Asp	Arg
Asp	Ser 3005		Tyr	Val	Asn	Gly 3010		Thr	His	Gln	Asn 3015	Ser	Val	Pro
Thr	Thr 3020		Thr	Pro		Thr 3025		Thr	Val	Tyr	Trp 3030	Ala	Thr	Thr
Gly	Thr 3035		Ser	Ser		Pro 3040		His	Thr	Glu	Pro 3045		Pro	Leu
Leu	Ile 3050		Phe	Thr	Phe	Asn 3055		Thr	Ile	Thr	Asn 3060		His	Tyr
Glu	Glu 3065		Met	Gln	His	Pro 3070	Gly	Ser	Arg	Lys	Phe 3075	Asn	Thr	Thr
Glu	Arg 3080		Leu	Gln		Leu 3085		Lys	Pro	Leu	Phe 3090	Lys	Asn	Thr
	Val 3095										Thr 3105		Leu	Arg
Pro	Glu 3110		Asp	Gly	Ala	Ala 3115		Gly	Met	Asp	Ala 3120	Val	Cys	Leu
Tyr	His 3125		Asn	Pro	Lys	Arg 3130		Gly	Leu	Asp	Arg 3135	Glu	Gln	Leu

Tyr	Cys 3140		Leu	Ser	Gln	Leu 3145		His	Asn	Ile	Thr 3150		Leu	Gly
Pro	Tyr 3155	Ser	Leu	Asp	Arg	Asp 3160		Leu	Tyr	Val	Asn 3165		Phe	Thr
His	Gln 3170	Asn	Ser	Val	Pro	Thr 3175	Thr	Ser	Thr	Pro	Gly 3180	Thr	Ser	Thr
Val	Tyr 3185	Trp	Ala	Thr	Thr	Gly 3190		Pro	Ser	Ser	Phe 3195		Gly	His
Thr	Glu 3200	Pro	Gly	Pro	Leu	Leu 3205	Ile	Pro	Phe	Thr	Phe 3210	Asn	Phe	Thr
Ile	Thr 3215	Asn	Leu	His		Glu 3220		Asn	Met	Gln	His 3225		Gly	Ser
Arg	Lys 3230	Phe	Asn	Thr	Thr	Glu 3235	Arg	Val	Leu	Gln	Gly 3240	Leu	Leu	Lys
Pro	Leu 3245	Phe	Lys	Asn	Thr	Ser 3250	Val	Gly	Pro	Leu	Tyr 3255	Ser	Gly	Cys
Arg	Leu 3260	Thr	Leu	Leu	Arg	Pro 3265	Glu	Lys	His	Glu	Ala 3270	Ala	Thr	Gly
Val	Asp 3275	Thr	Ile	Cys	Thr	His 3280	Arg	Val	Asp	Pro	Ile 3285	Gly	Pro	Gly
Leu	Asp 3290	Arg	Glu	Arg	Leu	Tyr 3295	Trp	Glu	Leu	Ser	Gln 3300	Leu	Thr	Asn
Ser	Ile 3305	Thr	Glu	Leu	Gly	Pro 3310	Tyr	Thr	Leu	Asp	Arg 3315	Asp	Ser	Leu
Tyr	Val 3320	Asn	Gly	Phe	Asn	Pro 3325	Arg	Ser	Ser	Val	Pro 3330	Thr	Thr	Ser
Thr	Pro 3335	Gly	Thr	Ser	Thr	Val 3340	His	Leu	Ala	Thr	Ser 3345	Gly	Thr	Pro

Ser	Ser 3350		Pro	Gly		Thr 3355		Pro	Val	Pro	Leu 3360	Leu	Ile	Pro
Phe	Thr 3365	Leu	Asn	Phe	Thr	Ile 3370	Thr	Asn	Leu	His	Tyr 3375	Glu	Glu	Asn
Met	Gln 3380	His	Pro	Gly		Arg 3385		Phe	Asn	Thr	Thr 3390	Glu	Arg	Val
Leu	Gln 3395	Gly	Leu	Leu	Lys	Pro 3400	Leu	Phe	Lys	Asn	Thr 3405	Ser	Val	Gly
Pro	Leu 3410		Ser	Gly		Arg 3415		Thr	Leu	Leu	Arg 3420	Pro	Glu	Lys
His	Glu 3425		Ala	Thr	Gly	Val 3430	Asp	Thr	Ile	Cys	Thr 3435	His	Arg	Val
Asp	Pro 3440		Gly	Pro		Leu 3445		Arg	Glu	Xaa	Leu 3450	Tyr	Trp	Glu
Leu	Ser 3455		Leu	Thr	Xaa	Xaa 3460		Xaa	Glu	Leu	Gly 3465	Pro	Tyr	Xaa
Leu	Asp 3470		Xaa	Ser	Leu	Tyr 3475	Val	Asn	Gly	Phe	Xaa 3480	Xaa	Xaa	Xaa
Xaa	Xaa 3485		Xaa	Thr	Ser	Thr 3490		Gly	Thr	Ser	Xaa 3495	Val	Xaa	Leu
Xaa	Thr 3500		Gly	Thr	Pro	Xaa 3505			Pro		Xaa 3510	Thr	Ser	Ala
Gly	Pro 3515		Leu	Val	Pro	Phe 3520		Leu	Asn	Phe	Thr 3525		Thr	Asn
Leu	Gln 3530		Glu	Glu	Asp	Met 3535		His	Pro	Gly	Ser 3540		Lys	Phe

Asn	Thr 3545	Thr	Glu	Arg	Val	Leu 3550	Gln	Gly	Leu	Leu	Gly 3555	Pro	Met	Phe
Lys	Asn 3560	Thr	Ser	Val	Gly	Leu 3565		Tyr	Ser	Gly	Cys 3570		Leu	Thr
Leu	Leu 3575		Pro	Glu		Asn 3580		Ala	Ala	Thr	Gly 3585	Met	Asp	Ala
Ile	Су з 3590		His	Arg		Asp 3595		Lys	Ser	Pro	Gly 3600		Asp	Arg
Glu	Gln 3605		Tyr	Trp	Glu	Leu 3610		Gln	Leu	Thr	His 3615	Gly	Ile	Lys
Glu	Leu 3620	Gly	Pro	Tyr	Thr	Leu 3625		Arg	Asn	Ser	Leu 3630	Tyr	Val	Asn
Gly	Phe 3635	Thr	His	Arg	Ser	Ser 3640	Val	Ala	Pro	Thr	Ser 3645	Thr	Pro	Gly
Thr	Ser 3650	Thr	Val	Asp		Gly 3655	Thr	Ser	Gly	Thr	Pro 3660	Ser	Ser	Leu
Pro	Ser 3665	Pro	Thr	Thr		Val 3670	Pro	Leu	Leu	Val	Pro 3675	Phe	Thr	Leu
Asn	Phe 3680	Thr	Ile	Thr		Leu 3685	Gln	Tyr	Gly	Glu	Asp 3690	Met	Arg	His
Pro	Gly 3695	Ser	Arg	Lys	Phe	Asn 3700						Leu	Gln	Gly
Leu	Leu 3710	Gly	Pro	Leu	Phe	Lys 3715	Asn	Ser	Ser	Val	Gly 3720	Pro	Leu	Tyr
Ser	Gly 3725	Суз	Arg	Leu	Ile	Ser 3730	Leu	Arg	Ser	Glu	Lys 3735	Asp	Gly	Ala
Ala	Thr 3740	Gly	Val	Asp	Ala	Ile 3745	Суз	Thr	His	His	Leu 3750	Asn	Pro	Gln

Ser	Pro 3755	Gly	Leu	Asp	Arg	Glu 3760	Gln	Leu	Tyr	Trp	Gln 3765	Leu	Ser	Gln
Met	Thr 3770	Asn	Gly	Ile	Lys	Glu 3775	Leu	Gly	Pro	Tyr	Thr 3780	Leu	Asp	Arg
Asn	Ser 3785	Leu	Tyr	Val	Asn	Gly 3790		Thr	His	Arg	Ser 3795	Ser	Gly	Leu
Thr	Thr 3800		Thr	Pro	Trp	Thr 3805	Ser	Thr	Val	Asp	Leu 3810	Gly	Thr	Ser
Gly	Thr 3815		Ser	Pro	Val	Pro 3820		Pro	Thr	Thr	Ala 3825	Gly	Pro	Leu
Leu	Val 3830		Phe	Thr	Leu	Asn 3835		Thr	Ile	Thr	Asn 3840		Gln	Tyr
Glu	Glu 3845	_	Met	His	Arg	Pro 3850		Ser	Arg	Lys	Phe 3855		Ala	Thr
Glu	Arg 3860		Leu	Gln		Leu 3865		Ser	Pro	Ile	Phe 3870		Asn	Ser
Ser	Val 3875		Pro	Leu	Tyr	Ser 3880		Cys	Arg	Leu	Thr 3885	Ser	Leu	Arg
Pro	Glu 3890		Asp	Gly		Ala 3895		Gly	Met	Asp	Ala 3900	Val	Cys	Leu
	His 3905					Arg 3910					Arg 3915	Glu	Gln	Leu
Tyr	Trp 3920		Leu	Ser	Gln	Leu 3925		His	Asn	Ile	Thr 3930	Glu	Leu	Gly
Pro	Tyr 3935		Leu	Asp	Arg	Asp 3940		Leu	Tyr	Val	Asn 3945	Gly	Phe	Thr

His	Gln 3950	Ser	Ser	Met	Thr	Thr 3955		Arg	Thr	Pro	Asp 3960		Ser	Thr
Met	His •3965	Leu	Ala	Thr	Ser	Arg 3970		Pro	Ala	Ser	Leu 3975		Gly	Pro
Thr	Thr 3980	Ala	Ser	Pro	Leu	Leu 3985		Leu	Phe	Thr	Ile 3990		Cys	Thr
Ile	Thr 3995	Asn	Leu	Gln	Tyr	Glu 4000	Glu	Asp	Met	Arg	Arg 4005		Gly	Ser
Arg	Lys 4010	Phe	Asn	Thr	Met	Glu 4015	Ser	Val	Leu	Gln	Gly 4020		Leu	Lys
Pro	Leu 4025	Phe	Lys	Asn	Thr	Ser 4030		Gly	Pro	Leu	4035		Gly	Cys
Arg	Leu 4040	Thr	Leu	Lėu	Arg	Pro 4045	Lys	Lys	Asp				Thr	Gly
Val	Asp 4055	Ala	Ile	Суз	Thr	His 4060	Arg	Leu	Asp		Lys 4065		Pro	Gly
Leu	Asn 4070	Arg	Glu	Gln	Leu	Tyr 4075	Trp	Glu	Leu	Ser	Lys 4080		Thr	Asn
Asp	Ile 4085	Glu	Glu	Leu	Gly	Pro 4090	Tyr	Thr	Leu		Arg 4095	Asn	Ser	Leu
Tyr	Val 4100	Asn	Gly	Phe	Thr	His 4105	Gln	Ser	Ser		Ser 4110		Thr	Ser
Thr	Pro 4115	Gly	Thr	Ser	Thr	Val 4120	Asp	Leu	Arg	Thr	Ser 4125	Gly	Thr	Pro
Ser	Ser 4130	Leu	Ser	Ser	Pro	Thr 4135	Ile	Met	Xaa	Xaa	Xaa 4140	Pro	Leu	Leu
Xaa	Pro 4145	Phe	Thr	Leu	Asn	Phe 4150	Thr	Ile	Thr	Asn	Leu 4155	Xaa	Tyr	Glu

Glu	Xaa 4160	Met	Xaa	Xaa	Pro	Gly 4165	Ser	Arg	Lys	Phe	Asn 4170	Thr	Thr	Glu
Arg	Val 4175	Leu	Gln	Gly	Leu	Leu 4180	Arg	Pro	Leu	Phe	Lys 4185	Asn	Thr	Ser
Val	Ser 4190		Leu	Tyr	Ser	Gly 4195	Суз	Arg	Leu	Thr	Leu 4200	Leu	Arg	Pro
Glu	Lys 4205		Gly	Ala	Ala	Thr 4210	Arg	Val	Asp	Ala	Ala 4215	Cys	Thr	Tyr
Arg	Pro 4220		Pro	Lys	Ser	Pro 4225	Gly	Leu	Asp	Arg	Glu 4230	Gln	Leu	Tyr
Trp	Glu 4235		Ser	Gln	Leu	Thr 4240	His	Ser	İle	Thr	Glu 4245	Leu	Gly	Pro
Tyr	Thr 4250		Asp	Arg	Val	Ser 4255		Tyr	Val	Asn	Gly 4260	Phe	Asn	Pro
Arg	Ser 4265		Val	Pro	Thr	Thr 4270		Thr	Pro	Gly	Thr 4275	Ser	Thr	Val
His	Leu 4280		Thr	Ser		Thr 4285		Ser	Ser	Leu	Pro 4290		His	Thr
Xaa	Xaa 4295		Pro	Leu		Xaa 4300		Phe	Thr	Leu	Asn 4305		Thr	Ile
	Asn 4310			Tyr		4315		Met	Xaa	Xaa	Pro 4320	Gly	Ser	Arg
Lys	Phe 4325		Thr	Thr	Glu	Arg 4330		Leu	Gln	Gly	Leu 4335		Lys	Pro
Leu	Phe 4340		Asn	Ser	Ser	Leu 4345		Tyr	Leu	Tyr	Ser 4350	Gly	Cys	Arg

Leu	Ala	Ser	Leu	Ara	Pro	Glu	Lvs	Asr	Ser	Son	Δla	Mat	70.7 %	Wa I
	4355			3		4360		1101		001	4365		· Ala	. vai
Asp	Ala 4370	Ile	Суз	Thr	His	Arg 4375	Pro	Asp	Pro	Glu	Asp 4380		Gly	Leu
Asp	Arg 4385	Glu	Arg	Leu	Tyr	Trp 4390	Glu	Leu	Ser	Asn	Leu 4395		Asn	Gly
Ile	Gln 4400	Glu	Leu	Gly	Pro	Tyr 4405	Thr	Leu	Asp	Arg	Asn 4410		Leu	Tyr
Val	Asn 4415	Gly	Phe	Thr	His	Arg 4420		Ser	Phe	Leu	Thr 4425	Thr	Ser	Thr
Pro	Trp 4430	Thr	Ser	Thr	Val	Asp 4435		Gly	Thr	Ser	Gly 4440	Thr	Pro	Ser
Pro	Val 4445	Pro	Ser	Pro	Thr	Thr 4450		Gly	Pro	Leu	Leu 4455	Val	Pro	Phe
Thr	Leu 4460	Asn	Phe	Thr	Ile	Thr 4465		Leu	Gln	Tyr	Glu 4470	Glu	Asp	Met
	Arg 4475				-	4480					4485			
Gln	Gly 4490	Leu	Leu	Thr	Pro	Leu 4495	Phe	Lys	Asn	Thr	Ser 4500	Val	Gly	Pro
	Tyr 4505					4510					4515			
Glu	Ala 4520	Ala	Thr	Gly	Val	Asp 4525	Thr	Ile	Cys	Thr	His 4530	Arg	Val	Asp
Pro	Ile 4535	Gly	Pro	Gly	Leu	Asp 4540	Arg	Glu	Arg	Leu	Tyr 4545	Trp	Glu	Leu
Ser	Gln 4550	Leu	Thr	Asn		Ile 4555	Thr	Glu	Leu	Gly	Pro 4560	Tyr	Thr	Leu

As	p	Arg 4565	Ser	Leu		Val 4570		Gly	Phe		Pro 4575	Trp	Ser	Ser
Va		Pro 4580	Thr	Ser		Pro 4585		Thr	Ser	Thr	Val 4590	His	Leu	Ala
Tì	ır	Ser 4595	Thr	Pro	Ser	Ser 4600	Leu	Pro	Gly	His	Thr 4605	Ala	Pro	Val
Pı	0:0	Leu 4610	Ile	Pro		Thr 4615		Asn	Phe	Thr	Ile 4620	Thr	Asp	Leu
Hi	İs	Tyr 4625	Glu	Asn	Met	Gln 4630	His	Pro	Gly	Ser	Arg 4635	Lys	Phe	Asn
Tì	ır	Thr 4640	Arg	Val	Leu	Gln 4645		Leu	Leu	Lys	Pro 4650	Leu	Phe	Lys
Se	er	Thr 4655	Val	Gly	Pro	Leu 4660	Tyr	Ser	Gly	Cys	Arg 4665	Leu	Thr	Leu
L	eu	Arg 4670	Glu	Lys	His	Gly 4675		Ala	Thr	Gly	Val 4680	Asp	Ala	Ile
C	ys	Thr 4685	Arg	Leu	Asp	Pro 4690		Gly	Pro	Gly	Leu 4695	Asp	Arg	Glu
A	rg	Leu 4700	Trp	Glu	Leu	Ser 4705		Leu	Thr	Asn	Ser 4710	Val	Thr	Glu
L	eu	Gly 4715	Tyr	Thr	Leu	Asp 4720	Arg	Asp	Ser	Leu	Tyr 4725	Val	Asn	Gly
P	he	Thr 4730	Arg	Ser	Ser	Val 4735		Thr	Thr	Ser	Ile 4740	Pro	Gly	Thr
s	er	Ala 4745	His	Leu	Glu	Thr 4750		Gly	Thr	Pro	Ala 4755		Leu	Pro

Gly	His 4760	Thr	Ala	Pro	Gly	Pro 4765		Leu	Val	Pro	Phe 4770		Leu	Asn
Phe	Thr 4775	Ile	Thr	Asn	Leu	Gln 4780	Tyr	Glu	Glu	Asp	Met 4785		His	Pro
Gly	Ser 4790	Arg	Lys	Phe	Ser	Thr 4795		Glu	Arg	Val	Leu 4800		Gly	Leu
Leu	Lys 4805	Pro	Leu	Phe	Lys	Asn 4810		Ser	Val	Ser	Ser 4815		Tyr	Ser
Gly	Cys 4820	Arg	Leu	Thr	Leu	Leu 4825	Arg	Pro	Glu	Lys	Asp 4830	Gly	Ala	Ala
Thr	Arg 4835	Val	Asp	Ala	Val	Cys 4840		His	Arg	Pro	Asp 4845	Pro	Lys	Ser
	Gly 4850					4855					4860			
	His 4865				,	4870					4875			
	Leu 4880					4885					4890			
	Arg 4895					4900					4905			
	Pro 4910					4915					4920			
	Leu 4925					4930					4935			
	Asn 4940					4945					4950			
Arg	Val 4955	теп	GID	Ϋ́ТĀ	ьeu	Leu 4960	Arg	Pro	Val		Lys 4965	Asn	Thr	Ser

Val	Gly 4970	Pro	Leu	Tyr	Ser	Gly 4975	Cys	Arg	Leu	Thr	Leu 4980	Leu	Arg	Pro
Lys	Lys 4985	Asp	Gly	Ala	Ala	Thr 4990	Lys	Val	Asp	Ala	Ile 4995	Cys	Thr	Tyr
Arg	Pro 5000	Asp	Pro	Lys	Ser	Pro 5005	Gly	Leu	Asp	Arg	Glu 5010	Gln	Leu	Tyr
Trp	Glu 5015	Leu	Ser	Gln	Leu	Thr 5020	His	Ser	Ile	Thr	Glu 5025	Leu	Gly	Pro
Tyr	Thr 5030	Gln	Asp	Arg	Asp	Ser 5035	Leu	Tyr	Val	Asn	Gly 5040	Phe	Thr	His
Arg	Ser 5045		Val	Pro		Thr 5050	Ser	Ile	Pro	Gly	Thr 5055	Ser	Ala	Val
His	Leu 5060	Glu	Thr	Ser	Gly	Thr 5065		Ala	Ser	Leu	Pro 5070	Gly	His	Thr
Ala	Pro 5075		Pro	Leu	Leu	Val 5080	Pro	Phe	Thr	Leu	Asn 5085	Phe	Thr	Ile
Thr	Asn 5090	Leu	Gln	Tyr	Glu	Glu 5095		Met	Arg	His	Pro 5100	Gly	Ser	Arg
Lys	Phe 5105	Asn	Thr	Thr	Glu	Arg 5110		Leu	Gln	Gly	Leu 5115	Leu	Lys	Pro
Leu	Phe 5120						Gly	Pro	Leu	Tyr•	Ser 5130	Gly	Суз	Arg
Leu	Thr 5135	Leu	Leu	Arg	Pro	Glu 5140		Arg	Gly	Ala	Ala 5145	Thr	Gly	Val
Asp	Thr 5150		Cys	Thr	His	Arg 5155		Asp	Pro	Leu	Asn 5160		Gly	Leu

Asp	Arg 5165		Gln	Leu	Tyr	Trp 5170		Leu	Ser	Lys	Leu 5175		Arg	Gly
Ile	Ile 5180	Glu	Leu	Gly	Pro	Tyr 5185		Leu	Asp	Arg	Gly 5190		Leu	Tyr
Val	Asn 5195		Phe	Thr	His	Arg 5200		Ser	Val	Pro	Thr 5205		Ser	Thr
Pro	Gly 5210		Ser	Thr	Val	Asp 5215		Gly	Thr	Ser	Gly 5220	Thr	Pro	Phe
Ser	Leu 5225		Ser	Pro	Ala	Xaa 5230	Xaa	Xaa	Pro	Leu	Leu 5235	Xaa	Pro	Phe
Thr	Leu 5240	Asn	Phe	Thr	Ile	Thr 5245		Leu	Xaa	Tyr	Glu 5250	Glu	Xaa	Met
Xaa	Xaa 5255	Pro	Gly	Ser	Arg	Lys 5260	Phe	Asn	Thr	Thr	Glu 5265	Arg	Val	Leu
Gln	Thr 5270	Leu	Leu	Gly	Pro	Met 5275	Phe	Lys	Asn	Thr	Ser 5280	Val	Gly	Leu
Leu	Tyr 5285	Ser	Gly	Cys		Leu 5290	Thr	Leu	Leu		Ser 5295	Glu	Lys	Asp
Gly	Ala 5300	Ala	Thr	Gly		Asp 5305	Ala	Ile	Суз	Thr	His 5310	Arg	Leu	Asp
Pro	Lys 5315	Ser	Pro	Gly	Val	Asp 5320					Tyr 5325	Trp	Glu	Leu
Ser	Gln 5330	Leu	Thr	Asn	Gly	Ile 5335	Lys	Glu	Leu	Gly	Pro 5340	Tyr	Thr	Leu
Asp	Arg 5345	Asn	Ser	Leu	Tyr	Val 5350	Asn	Gly	Phe	Thr	His 5355	Trp	Ile	Pro
Val	Pro 5360	Thr	Ser	Ser	Thr	Pro 5365	Gly	Thr	Ser	Thr	Val 5370	Asp	Leu	Gly

Ser	Gly 5375	Thr	Pro	Ser	Leu	Pro 5380	Ser	Ser	Pro	Thr	Thr 5385	Ala	Gly	Pro
Leu	Leu 5390	Val	Pro	Phe	Thr	Leu 5395	Asn	Phe	Thr	Ile	Thr 5400	Asn	Leu	Lys
Tyr	Glu 5405	Glu	Asp	Met	His	Cys 5410	Pro	Gly	Ser	Arg	Lys 5415	Phe	Asn	Thr
Thr	Glu 5420		Val	Leu	Gln	Ser 5425	Leu	Leu	Gly	Pro	Met 5430	Phe	Lys	Asn
Thr	Ser 5435		Gly	Pro	Leu	Tyr 5440		Gl'y	Cys	Arg	Leu 5445	Thr	Leu	Leu
Arg	Ser 5450	Glu	Lys	Asp	Gly	Ala 5455	Ala	Thr	Gly	Val	Asp 5460	Ala	Ile	Cys
Thr	His 5465		Leu	Asp	Pro	Lys 5470		Pro	Gly	Val	Asp 5475	Arg	Glu	Gln
Leu	Tyr 5480	_	Glu	Leu	Ser	Gln 5485		Thr	Asn	Gly	Ile 5490	Lys	Glu	Leu
Gly	Pro 5495	_	Thr	Leu		Arg 5500		Ser	Leu	Tyr	Val 5505	Asn	Gly	Phe
Thr	His 5510		Thr	Ser	Ala	Pro 5515		Thr	Ser	Thr	Pro 5520	Gly	Thr	Ser
Thr	Val 5525		Leu	Gly	Thr	Ser 5530		Thr	Pro	Ser	Ser 5535	Leu	Pro	Ser
Pro	Thr 5540		Xaa	Xaa	Pro	Leu 5545		Xaa	Pro	Phe	Thr 5550		Asn	Phe
Thr	Ile 5555		Asn	Leu	Xaa	Tyr 5560		Glu	Xaa	Met	Xaa 5565	Xaa	Pro	Gly

Ser	Arg 5570	Lys	Phe	Asn	Thr	Thr 5575	Glu	Arg	Val	Leu	Gln 5580		Leu	Leu
Xaa	Pro 5585	Xaa	Phe	Lys	Xaa	Thr 5590	Ser	Val	Gly	Xaa	Leu 5595		Ser	Gly
Cys	Arg 5600	Leu	Thr	Leu	Leu	Arg 5605		Glu	Lys	Xaa	Xaa 5610		Ala	Thr
Xaa	Val 5615	Asp	Xaa	Xaa	Cys	Xaa 5620	Xaa	Xaa	Xaa	Asp	Pro 5625	Xaa	Xaa	Pro
Gly	Leu 5630	Asp	Arg	Glu	Xaa	Leu 5635		Trp	Glu	Leu	Ser 5640	Xaa	Leu	Thr
Xaa	Xaa 5645	Ile	Xaa	Glu	Leu	Gly 5650	Pro	Tyr	Xaa	Leu	Asp 5655	Arg	Xaa	Ser
Leu	Tyr 5660	Val	Asn	Gly	Phe	Thr 5665	His	Trp	Ile	Pro	Val 5670	Pro	Thr	Ser
Ser	Thr 5675	Pro	Gly	Thr	Ser	Thr 5680	Val	Asp	Leu	Gly	Ser 5685	Gly	Thr	Pro
Ser	Ser 5690	Leu	Pro	Ser	Pro	Thr 5695	Thr	Ala	Gly	Pro	Leu 5700	Leu	Val	Pro
	5705					5710					Tyr 5715			
	5720					5725					Thr 5730			
Leu	5735					5740					Thr 5745			
	5750					5755					Arg 5760			
Asp	Gly 5765	Ala	Ala	Thr	Gly	Val 5770	Asp	Ala	Ile	Суз	Thr 5775	His	Arg	Val

Asp	Pro 5780	Lys	Ser	Pro	Gly	Val 5785	Asp	Arg	Glu	Gln	Leu 5790	Tyr	Trp	Glu
Leu	Ser 5795	Gln	Leu	Thr	Asn	Gly 5800		Lys	Glu		Gly 5805	Pro	Tyr	Thr
Leu	Asp 5810	Arg	Asn	Ser		Tyr 5815	Val	Asn	Gly	Phe	Thr 5820	His	Gln	Thr
Ser	Ala 5825	Pro	Asn	Thr	Ser	Thr 5830	Pro	Gly	Thr	Ser	Thr 5835	Val	Asp	Leu
Gly	Thr 5840	Ser	Gly	Thr	Pro	Ser 5845	Ser	Leu	Pro	Ser	Pro 5850	Thr	Ser	Ala
Gly	Pro 5855	Leu	Leu	Val	Pro	Phe 5860	Thr	Leu	Asn	Phe	Thr 5865	Ile	Thr	Asn
Leu	Gln 5870	_	Glu	Glu	Asp	Met 5875		His	Pro	Gly	Ser 5880	Arg	Lys	Phe
Asn	Thr 5885	Thr	Glu	Arg	Val	Leu 5890		Gly	Leu	Leu	Gly 5895	Pro	Met	Phe
Lys	Asn 5900		Ser	Val	Gly	Leu 5905		Tyr	Ser	Gly	Cys 5910	Arg	Leu	Thr
Leu	Leu 5915		Pro	Glu	Lys	Asn 5920		Ala	Ala	Thr	Gly 5925	Met	Asp	Ala
Ile	Cys 5930	Thr	His	Arg	Leu	Asp 5935		Lys	Ser	Pro	Gly 5940	Leu	Asp	Arg
Glu	Xaa 5945		Tyr	Trp	Glu	Leu 5950		Xaa	Leu	Thr	Xaa 5955		Ile	Xaa
Glu	Leu 5960		Pro	Tyr	Xaa	Leu 5965		Arg	Xaa	Ser	Leu 5970		Val	Asn

Gly	Phe 5975	Xaa	Xaa	Xaa	Xaa	Xaa 5980		Xaa	Xaa	Thr	Ser 5985		Pro	Gly
Thr	Ser 5990	Xaa	Val	Xaa	Leu	Xaa 5995		Ser	Gly	Thr	Pro 6000		Xaa	Xaa
Pro	Xaa 6005		Thr	Xaa	Xaa	Xaa 6010		Leu	Leu	Xaa	Pro 6015		Thr	Leu
Asn	Phe 6020		Ile	Thr	Asn	Leu 6025		Tyr	Glu	Glu	Xaa 6030		Xaa	Xaa
Pro	Gly 6035	Ser	Arg	Lys	Phe	Asn 6040	Thr	Thr	Glu		Val 6045		Gln	Gly
Leu	Leu 6050	Lys	Pro	Leu	Phe	Arg 6055	Asn	Ser	Ser	Leu	Glu 6060		Leu	Tyr
Ser	Gly 6065	Cys	Arg	Leu	Ala	Ser 6070	Leu	Arg	Pro	Glu	Lys 6075	Asp	Ser	Ser
Ala	Met 6080	Ala	Val	Asp	Ala	Ile 6085	Cys	Thr	His	Arg	Pro 6090	Asp	Pro	Glu
Asp	Leu 6095	Gly	Leu	Asp		Glu 6100	Arg	Leu	Tyr		Glu 6105	Leu	Ser	Asn
	6110					6115					Thr 6120		-	
	6125					6130					Ser 6135			
	6140					6145					Val 6150			
	6155					6160					Ala 6165	_		
Leu	Ile 6170	Pro	Phe	Thr	Leu	Asn 6175	Phe	Thr	Ile	Thr	Asn 6180	Leu	Gln	Tyr

Gly	Glu 6185	Asp	Met	Gly	His	Pro 6190	Gly	Ser	Arg		Phe 6195	Asn	Thr	Thr
Glu	Arg 6200	Val	Leu	Gln		Leu 6205	Leu	Gly	Pro	Ile	Phe 6210	Lys	Asn	Thr
Ser	Val 6215	Gly	Pro	Leu	Tyr	Ser 6220	Gly	Cys	Arg	Leu	Thr 6225	Ser	Leu	Arg
Ser	Glu 6230		Asp	Gly	Ala	Ala 6235	Thr	Gly	Val	Asp	Ala 6240	Ile	Cys	Ile
His	His 6245		Asp	Pro	Lys	Ser 6250	Pro	Gly	Leu	Asn	Arg 6255	Glu	Arg	Leu
Tyr	Trp 6260		Leu	Ser	Gln	Leu 6265	Thr	Asn	Gly	Ile	Lys 6270	Glu	Leu	Gly
Pro	Tyr 6275		Leu	Asp	Arg	Asn 6280	Ser	Leu	Tyr	Val	Asn 6285	Gly	Phe	Thr
His	Arg 6290		Ser	Val	Pro	Thr 6295	Thr	Ser	Thr	Pro	Gly 6300	Thr	Ser	Thr
Val	Asp 6305		Gly	Thr	Ser	Gly 6310	Thr	Pro	Phe	Ser	Leu 6315	Pro	Ser	Pro
Ala	Thr 6320		Gly	Pro	Leu	Leu 6325		Leu	Phe		Leu 6330	Asn	Phe	Thr
Ile	Thr 6335		Leu	Lys	Tyr	Glu 6340	Glu	Asp	Met	His	Arg 6345	Pro	Gly	Ser
Arg	Lys 6350		Asn	Thr	Thr	Glu 6355		Val	Leu	Gln	Thr 6360	Leu	Leu	Gly
Pro	Met 6365		Lys	Asn	Thr	Ser 6370		Gly	Leu	Leu	Tyr 6375	Ser	Gly	Cys

Arg	Leu 6380	Thr	Leu	Leu	Arg	Ser 6385	Glu	Lys	Asp	Gly	Ala 6390		Thr	Gly
Val	Asp 6395	Ala	Ile	Cys	Thr	His 6400	Arg	Leu	Asp	Pro	Lys 6405	Ser	Pro	Gly
Leu	Asp 6410	Arg	Glu	Xaa	Leu	Tyr 6415	Trp	Glu	Leu	Ser	Xaa 6420	Leu	Thr	Xaa
Xaa	Ile 6425	Xaa	Glu	Leu	Gly	Pro 6430	Tyr	Xaa	Leu	Asp	Arg 6435	Xaa	Ser	Leu
Tyr	Val 6440	Asn	Gly	Phe		Xaa 6445		Xaa	Xaa	Xaa	Xaa 6450	Xaa	Thr	Ser
Thr	Pro 6455	Gly	Thr	Ser	Xaa	Val 6460	Xaa	Leu	Xaa	Thr	Ser 6465	Gly	Thr	Pro
Xaa	Xaa 6470	Xaa	Pro	Xaa	Xaa	Thr 6475	Xaa	Xaa	Xaa	Pro	Leu 6480	Leu	Xaa	Pro
Phe	Thr 6485	Leu	Asn	Phe	Thr	Ile 6490	Thr	Asn	Leu	Xaa	Tyr 6495	Glu	Glu	Xaa
	6500					Arg 6505					6510		_	
	6515					Pro 6520					6525			-
	6530					Arg 6535					6540			
	6545					Val 6550					6555			
	6560					Leu 6565					6570			
Leu	Ser 6575	Gln	Leu	Thr	His	Ser 6580	Ile	Thr	Glu		Gly 6585	Pro	Tyr	Thr

Gln	Asp 6590	Arg	Asp	Ser	Leu	Tyr 6595	Val	Asn	Gly	Phe	Thr 6600	His	Arg	Ser
Ser	Val 6605	Pro	Thr	Thr	Ser	Ile 6610	Pro	Gly	Thr		Ala 6615	Val	His	Leu
Glu	Thr 6620		Gly	Thr		Ser 6625		Phe	Pro	Gly	His 6630	Thr	Glu	Pro
Gly	Pro 6635	Leu	Leu	Ile		Phe 6640	Thr	Phe	Asn	Phe	Thr 6645	Ile	Thr	Asn
Leu	Arg 6650	Tyr	Glu	Glu		Met 6655		His	Pro		Ser 6660		Lys	Phe
Asn	Thr 6665	Thr	Glu	Arg	Val	Leu 6670	Gln	Gly	Leu	Leu	Thr 6675	Pro	Leu	Phe
Lys	Asn 6680		Ser	Val	Gly	Pro 6685	Leu	Tyr	Ser	Gly	Cys 6690	Arg	Leu	Thr
Leu	Leu 6695		Pro	Glu	Lys	Gln 6700		Ala	Ala	Thr	Gly 6705	Val	Asp	Thr
Ile	Cys 6710		His	Arg	Val	Asp 6715	Pro	Ile	Gly	Pro	Gly 6720	Leu	Asp	Arg
Glu	Arg 6725		Tyr	Trp	Glu	Leu 6730		Gln	Leu	Thr	Asn 6735		Ile	Thr
Glu	Leu 6740		Pro	Tyr	Thr	Leu 6745		Arg	Asp	Ser	Leu 6750	Tyr	Val	Asp
Gly	Phe 6755		Pro	Trp	Ser	Ser 6760		Pro	Thr	Thr	Ser 6765	Thr	Pro	Gly
Thr	Ser 6770		Val	His	Leu	Ala 6775		Ser	Gly	Thr	Pro 6780		Pro	Leu

Pro	Gly 6785	His	Thr	Ala	Pro	Val 6790		Leu	Leu	Ile	Pro 6795		Thr	Let
Asn	Phe 6800	Thr	Ile	Thr	Asp	Leu 6805		Tyr	Glu	Glu	Asn 6810		Gln	His
Pro	Gly 6815	Ser	Arg	Lys	Phe	Asn 6820		Thr	Glu	Arg	Val 6825		Gln	Gly
Leu	Leu 6830	Lys	Pro	Leu	Phe	Lys 6835		Thr	Ser	Val	Gly 6840	Pro	Leu	Туг
Ser	Gly 6845	Cys	Arg	Leu	Thr	Leu 6850		Arg	Pro	Glu	Lys 6855	His	Gly	Ala
Ala	Thr 6860	Gly	Val	Asp	Ala	Ile 6865	Cys	Thr	Leu	Arg	Leu 6870	Asp	Pro	Thr
	Pro 6875					6880					6885	*		
	Thr 6890					6895					6900		_	
	Ser 6905					6910					6915			
	Thr 6920					6925					6930			
	Thr 6935					6940					6945	Gly	Pro	Leu
	Val 6950					6955					6960		Lys	•
	Glu 6965					6970					6975			
GIU	Arg 6980	Val	Leu	Gln	Ser	Leu 6985	His	Gly	Pro	Met	Phe 6990	Lys	Asn	Thr

Ser	Val 6995	Gly	Pro	Leu	Tyr	Ser 7000	Gly	Суз	Arg	Leu	Thr 7005	Leu	Leu	Arg
Ser	Glu 7010	Lys	Asp	Gly	Ala	Ala 7015	Thr	Gly	Val	Asp	Ala 7020	Ile	Суз	Thr
His	Arg 7025	Leu	Asp	Pro	Lys	Ser 7030	Pro	Gly	Leu	Asp	Arg 7035	Glu	Xaa	Leu
Tyr	Trp 7040	Glu	Leu	Ser	Xaa	Leu 7045	Thr	Xaa	Xaa	Ile	Xaa 7050	Glu	Leu	Gly
Pro	Tyr 7055		Leu	Asp	Arg	Xaa 7060	Ser	Leu	Tyr	Val	Asn 7065	Gly	Phe	Xaa
Xaa	Xaa 7070	Xaa	Xaa	Xaa	Xaa	Xaa 7075	Thr	Ser	Thr	Pro	Gly 7080	Thr	Ser	Xaa
Val	Xaa 7085		Xaa	Thr	Ser	Gly 7090	Thr	Pro	Xaa	Xaa	Xaa 7095	Pro	Xaa	Xaa
Thr	Xaa 7100		Xaa	Pro	Leu	Leu 7105	Xaa	Pro	Phe	Thr	Leu 7110	Asn	Phe	Thr
Ile	Thr 7115		Leu	Xaa	Tyr	Glu 7120		Xaa	Met	Xaa	Xaa 7125	Pro	Gly	Ser
Arg	Lys 7130		Asn	Thr	Thr	Glu 7135		Val	Leu	Gln	Gly 7140	Leu	Leu	Xaa
Pro	Xaa 7145	Phe	Lys	Xaa	Thr	Ser 7150	Val	Gly	Xaa	Leu	Tyr 7 1 55		Gly	Cys
Arg	Leu 7160		Leu	Leu	Arg	Xaa 7165		Lys	Xaa	Xaa	Ala 7170		Thr	Xaa
Val	Asp 7175		Xaa	Cys	Xaa	Xaa 7180		Xaa	Asp	Pro	Xaa 7185		Pro	Gly

Leu	Asp 7190	Arg	Glu	Xaa	Leu	Tyr 7195	Trp	Glu	Leu	Ser	Xaa 7200		Thr	Asn
Ser	Ile 7205	Thr	Glu	Leu	Gly	Pro 7210	Tyr	Thr	Leu	Asp	Arg 7215		Ser	Leu
Tyr	Val 7220	Asn	Gly	Phe	Thr	His 7225	Arg	Ser	Ser	Met	Pro 7230		Thr	Ser
Ile	Pro 7235	Gly	Thr	Ser	Ala	Val 7240		Leu	Glu	Thr	Ser 7245	_	Thr	Pro
Ala	Ser 7250	Leu	Pro	Gly	His	Thr 7255	Ala	Pro	Gly	Pro	Leu 7260	Leu	Val	Pro
Phe	Thr 7265	Leu	Asn	Phe	Thr	Ile 7270		Asn	Leu	Gln	Tyr 7275	Glu	Glu	Asp
	Arg 7280					7285					7290			
	Gln 7295					7300					7305			
	Leu 7310					7315					7320			
	Gly 7325					7330					7335			
	Pro 7340					7345					7350			
	7355					Xaa 7360					7365			
	7370					Tyr 7375					7380			
Xaa :	Xaa 7385	Xaa :	Xaa	Thr	Ser	Thr 7390	Pro	Gly	Thr		Xaa 7395	Val	Xaa	Leu

Xaa	Thr 7400	Ser	Gly	Thr		Xaa 7405	Xaa	Xaa	Pro	Xaa	Xaa 7410	Thr	Xaa	Xaa
Xaa	Pro 7415	Leu	Leu	Xaa		Phe 7420		Leu	Asn		Thr 7425	Ile	Thr	Asn
Leu	Xaa 7430	Tyr	Glu	Glu	Xaa	Met 7435	Xaa	Xaa	Pro	Gly	Ser 7440	Arg	Lys	Phe
Asn	Thr 7445	Thr	Glu	Arg		Leu 7450		Gly	Leu	Leu	Xaa 7455	Pro	Xaa	Phe
Lys	Xaa 7460	Thr	Ser	Val	Gly	Xaa 7465	Leu	Tyr	Ser	Gly	Cys 7470	Arg	Leu	Thr
Leu	Leu 7475		Xaa	Glu		Xaa 7480	Xaa	Ala	Ala	Thr	Xaa 7485	Val	Asp	Xaa
Xaa	Cys 7490	Xaa	Xaa	Xaa	Xaa	Asp 7495	Pro	Xaa	Xaa	Pro	Gly 7500	Leu	Asp	Arg
Glu	Xaa 7505		Tyr	Trp	Glu	Leu 7510		Xaa	Leu	Thr	Xaa 7515	Xaa	Ile	Xaa
Glu	Leu 7520		Pro	Tyr	Xaa	Leu 7525	Asp	Arg	Xaa	Ser	Leu 7530	Tyr	Val	Asn
Gly	Phe 7535		Pro	Arg	Ser	Ser 7540		Pro	Thr	Thr	Ser 7545	Thr	Pro	Gly
Thr	Ser 7550	Thr	Val	His	Leu	Ala 7555	Thr	Ser	Gly	Thr	Pro 7560	Ser	Ser	Leu
Pro	Gly 7565		Thr	Ala	Pro	Val 7570	Pro	Leu	Leu	Ile	Pro 7575	Phe	Thr	Leu
Asn	Phe 7580		Ile	Thr	Asn	Leu 7585	His	Tyr	Glu	Glu	Asn 7590	Met	Gln	His

Pro	Gly 7595	Ser	Arg	Lys	Phe	Asn 7600		Thr	Glu	Arg	Val 7605		Gln	Gly
Leu	Leu 7610	Gly	Pro	Met	Phe	Lys 7615		Thr	Ser	Val	Gly 7620		Leu	Tyr
Ser	Gly 7625	Cys	Arg	Leu	Thr	Leu 7630		Arg	Pro	Glu	Lys 7635		Gly	Ala
Ala	Thr 7640	Gly	Met	Asp	Ala	Ile 7645	Cys	Ser	His	Arg	Leu 7650		Pro	Lys
Ser	Pro 7655	Gly	Leu	Asp	Arg	Glu 7660		Leu	Tyr	Trp	Glu 7665		Ser	Xaa
Leu	Thr 7670	Xaa	Xaa	Ile	Xaa	Glu 7675		Gly	Pro	Tyr	Xaa 7680	Leu	Asp	Arg
Xaa	Ser 7685	Leu	Tyr	Val	Asn	Gly 7690	Phe	Xaa	Xaa	Xaa	Xaa 7695	Xaa	Xaa	Xaa
Xaa	Thr 7700	Ser	Thr	Pro	Gly	Thr 7705	Ser	Xaa	Val	Xaa	Leu 7710	Xaa	Thr	Ser
Gly	Thr 7715	Pro	Xaa	Xaa	Xaa	Pro 7720	Xaa	Xaa	Thr	Xaa	Xaa 7725	Xaa	Pro	Leu
	Xaa 7730					7735					7740			
	Glu 7745					7750					7755			
	Arg 7760					7765					7770			
	Val 7775					7780					7785			
Xaa	Glu 7790	Lys	Xaa	Xaa	Ala	Ala 7795	Thr	Xaa	Val	Asp	Xaa 7800	Xaa	Cys	Xaa

Xaa	Xaa 7805	Xaa	Asp	Pro	Xaa	Xaa 7810	Pro	Gly	Leu	Asp	Arg 7815	Glu	Xaa	Leu
Tyr	Trp 7820	Glu	Leu	Ser	Xaa	Leu 7825	Thr	Xaa	Xaa	Ile	Xaa 7830	Glu	Leu	Gly
Pro	Tyr 7835	Xaa	Leu	Asp	Arg	Xaa 7840	Ser	Leu	Tyr	Val	Asn 7845	Gly	Phe	Thr
His	Gln 7850	Asn	Ser	Val	Pro	Thr 7855	Thr	Ser	Thr	Pro	Gly 7860	Thr	Ser	Thr
Val	Tyr 7865	Trp	Ala	Thr	Thr	Gly 7870	Thr	Pro	Ser	Ser	Phe 7875	Pro	Gly	His
Thr	Glu 7880		Gly	Pro	Leu	Leu 7885	Ile	Pro	Phe	Thr	Phe 7890	Asn	Phe	Thr
Ile	Thr 7895	Asn	Leu	His	Tyr	Glu 7900	Glu	Asn	Met	Gln	His 7905	Pro	Gly	Ser
Arg	Lys 7910		Asn	Thr	Thr	Glu 7915	Arg	Val	Leu	Gln	Gly 7920	Leu	Leu	Thr
Pro	Leu 7925		Lys	Asn	Thr	Ser 7930	Val	Gly	Pro	Leu	Tyr 7935	Ser	Gly	Cys
Arg	Leu 7940		Leu	Leu	Arg	Pro 7945	Glu	Lys	Gln	Glu	Ala 7950	Ala	Thr	Gly
Val	Asp 7955		Ile	Cys	Thr	His 7960		Val	Asp	Pro	Ile 7965	Gly	Pro	Gly
Leu	Asp 7970		Glu	Xaa	Leu	Tyr 7975		Glu	Leu	Ser	Xaa 7980	Leu	Thr	Xaa
Xaa	Ile 7985		Glu	Leu	Gly	Pro 7990		Xaa	Leu	Asp	Arg 7995		Ser	Leu

Tyr	Val 8000	Asn	Gly	Phe	Xaa	Xaa 8005	Xaa	Xaa	Xaa	Xaa	Xaa 8010	Xaa	Thr	Ser
Thr	Pro 8015	Gly	Thr	Ser	Xaa	Val 8020	Xaa	Leu	Xaa	Thr	Ser 8025	_	Thr	Pro
Xaa	Xaa 8030		Pro	Xaa		Thr 8035	Xaa	Xaa	Xaa	Pro	Leu 8040	Leu	Xaa	Pro
Phe	Thr 8045		Asn	Phe	Thr	Ile 8050		Asn	Leu	Xaa	Tyr 8055	Glu	Glu	Xaa
Met	Xaa 8060		Pro	Gly	Ser	Arg 8065	Lys	Phe	Asn	Thr	Thr 8070	Glu	Arg	Val
Leu	Gln 8075	Gly	Leu	Leu	Xaa	Pro 8080		Phe	Lys	Xaa	Thr 8085	Ser	Val	Gly
Xaa	Leu 8090	Tyr	Ser	Gly	Cys	Arg 8095	Leu	Thr	Leu	Leu	Arg 8100	Xaa	Glu	Lys
	8105					Val 8110					8115			
	8120					Leu 8125					8130	_	-	
	8135					Xaa 8140					8145			
	8150										8160		_	
Ser	8165					Ser 8170					8175			
	8180					Ser 8185					8190			
Val	Pro 8195	Leu	Leu	Ile	Pro	Phe 8200	Thr	Leu	Asn	Phe	Thr 8205	Ile	Thr	Asn

Leu	His 8210		Glu	Glu		Met 8215		His	Pro	Gly	Ser 8220	Arg	Lys	Phe
Asn	Thr 8225	Thr	Glu	Arg		Leu 8230	Gln	Gly	Leu	Leu	Lys 8235	Pro	Leu	Phe
Lys	Ser 8240		Ser	Val		Pro 8245	Leu	Tyr	Ser	Gly	Cys 8250	Arg	Leu	Thr
Leu	Leu 8255		Pro	Glu		His 8260		Ala	Ala		Gly 8265		Asp	Ala
Ile	Cys 8270	Thr	Leu	Arg		Asp 8275		Thr	Gly		Gly 8280	Leu	Asp	Arg
Glu	Xaa 8285	Leu	Tyr	Trp		Leu 8290		Xaa	Leu		Xaa 8295		Ile	Xaa
Glu	Leu 8300	Gly	Pro	Tyr	Xaa	Leu 8305		Arg	Xaa	Ser	Leu 8310		Val	Asn
Gly	Phe 8315		Xaa	Xaa		Xaa 8320		Xaa	Xaa	Thr	Ser 8325		Pro	Gly
Thr	Ser 8330	Xaa	Val	Xaa	Leu	Xaa 8335		Ser	Gly	Thr	Pro 8340	Xaa	Xaa	Xaa
Pro	Xaa 8345		Thr	Xaa		Xaa 8350		Leu	Leu	Xaa	Pro 8355		Thr	Leu
Asn	Phe 8360	Thr	Ile	Thr	Asn	Leu 8365	Xaa	Tyr	Glu	Glu	Xaa 8370	Met	Xaa	Xaa
Pro	Gly 8375		Arg	Lys	Phe	Asn 8380		Thr	Glu	Arg	Val 8385	Leu	Gln	Gly
Leu	Leu 8390		Pro	Xaa	Phe	Lys 8395		Thr	Ser	Val	Gly 8400		Leu	Tyr

Ser	Gly 8405	Cys	Arg	Leu	Thr	Leu 8410		Arg	Xaa	Glu	Lys 8415	Xaa	Xaa	Ala
Ala	Thr 8420	Xaa	Val	Asp	Xaa	Xaa 8425	Суз	Xaa	Xaa	Xaa	Xaa 8430	Asp	Pro	Xaa
Xaa	Pro 8435	Gly	Leu	Asp	Arg	Glu 8440		Leu	Tyr		Glu 8445	Leu	Ser	Xaa
Leu	Thr 8450	Xaa	Xaa	Ile	Xaa	Glu 8455	Leu	Gly	Pro	Tyr	Xaa 8460	Leu	Asp	Arg
Xaa	Ser 8465	Leu	Tyr	Val		Gly 8470	Phe	Thr	His	Arg	Thr 8475	Ser	Val	Pro
Thr	Thr 8480	Ser	Thr	Pro	Gly	Thr 8485	Ser	Thr	Val	His	Leu 8490	Ala	Thr	Ser
	Thr 8495					8500	-				8505			
	Ile 8510					8515					8520			
	Glu 8525					8530					8535			
	Arg 8540					8545					8550	-		
	Val ' 8555					8560					8565			
	8570					Ala 8575					8580		_	
	His 8585					8590					8595			
туr	Cys 8600	GIU	теп	ser	Gln	Leu 8605	Thr	His	Asn	Ile	Thr 8610	Glu	Leu	Gly

Pro	Tyr 8615	Ser	Leu	Asp		Asp 8620	Ser	Leu	Tyr	Val	Asn 8625	Gly	Phe	Thr
His	Gln 8630	Asn	Ser	Val	Pro	Thr 8635	Thr	Ser	Thr		Gly 8640	Thr	Ser	Thr
Val	Tyr 8645	Trp	Ala	Thr	Thr	Gly 8650	Thr	Pro	Ser	Ser	Phe 8655	Pro	Gly	His
Thr	Xaa 8660	Xaa	Xaa	Pro	Leu	Leu 8665	Xaa	Pro	Phe	Thr	Leu 8670	Asn	Phe	Thr
Ile	Thr 8675	Asn	Leu	Xaa	Tyr	Glu 8680	Glu	Xaa	Met	Xaa	Xaa 8685	Pro	Gly	Ser
Arg	Lys 8690	Phe	Asn	Thr	Thr	Glu 8695	Arg	Val	Leu	Gln	Gly 8700	Leu	Leu	Xaa
	Xaa 8705	Phe	Lys	Xaa	Thr	Ser 8710	Val	Gly	Xaa	Leu	Tyr 8715	Ser	Gly	Cys
Arg	Leu 8720		Leu	Leu	Arg	Xaa 8725	Glu	Lys	Xaa	Xaa	Ala 8730	Ala	Thr	Xaa
Val	Asp 8735		Xaa	Cys	Xaa	Xaa 8740	Xaa	Xaa	Asp	Pro	Xaa 8745	Xaa	Pro	Gly
Leu	Asp 8750	_	Glu	Xaa	Leu	Tyr 8755		Glu	Leu	Ser	Xaa 8760	Leu	Thr	Xaa
Xaa	Ile 8765		Glu			8770		Xaa	Leu	Asp	Arg 8775	Xaa	Ser	Leu
Tyr	Val 8780		Gly	Phe	Thr	His 8785		Ser	Ser	Gly	Leu 8790	Thr	Thr	Ser
Thr	Pro 8795		Thr	Ser	Thr	Val 8800		Leu	Gly	Thr	Ser 8805	Gly	Thr	Pro

Ser	Pro 8810	Val	Pro	Ser	Pro	Thr 8815		Ala	Gly	Pro	Leu 8820		Val	Pro
Phe	Thr 8825	Leu	Asn	Phe	Thr	Ile 8830		Asn	Leu	Gln	Tyr 8835	Glu	Glu	Asp
Met	His 8840	Arg	Pro	Gly	Ser	Arg 8845		Phe	Asn	Ala	Thr 8850	Glu	Arg	Val
Leu	Gln 8855	Gly	Leu	Leu	Ser	Pro 8860		Phe	Lys	Asn	Thr 8865	Ser	Val	Gly
Pro	Leu 8870	Tyr	Ser	Gly	Суз	Arg 8875		Thr	Leu	Leu	Arg 8880	Pro	Glu	Lys
Gln	Glu 8885	Ala	Ala	Thr	Gly	Val 8890		Thr	Ile	Cys	Thr 8895	His	Arg	Val
Asp	Pro 8900	Ile	Gly	Pro	Gly	Leu 8905		Arg	Glu	Xaa	Leu 8910	Tyr	Trp	Glu
Leu	Ser 8915	Xaa	Leu	Thr	Xaa	Xaa 8920	Ile	Xaa	Glu	Leu	Gly 8925	Pro	Tyr	Xaa
Leu	Asp 8930	Arg	Xaa	Ser	Leu	Tyr 8935	Val	Asn	Gly	Phe	Xaa 8940	Xaa	Xaa	Xaa
Xaa	Xaa 8945	Xaa	Xaa	Thr	Ser	Thr 8950	Pro	Gly	Thr	Ser	Xaa 8955	Val	Xaa	Leu
Xaa	Thr 8960	Ser	Gly	Thr	Pro	Xaa 8965	Xaa	Xaa	Pro	Xaa	Xaa 8970	Thr	Xaa	Xaa
Xaa	Pro 8975	Leu	Leu	Xaa	Pro	Phe 8980	Thr	Leu	Asn	Phe	Thr 8985	Ile	Thr	Asn
Leu	Xaa 8990	Tyr	Glu	Glu	Xaa	Met 8995	Xaa	Xaa	Pro	Gly	Ser 9000	Arg	Lys	Phe
Asn	Thr 9005	Thr	Glu	Arg	Val	Leu 9010	Gln	Gly	Leu	Leu	Xaa 9015	Pro	Xaa	Phe

Lys	Xaa 9020	Thr	Ser	Val	Gly	Xaa 9025	Leu	Tyr	Ser	Gly	Cys 9030	Arg	Leu	Thr
Leu	Leu 9035	Arg	Xaa	Glu	Lys	Xaa 9040		Ala	Ala	Thr	Xaa 9045	Val	Asp	Xaa
Xaa	Cys 9050	Xaa	Xaa	Xaa		Asp 9055		Xaa	Xaa	Pro	Gly 9060	Leu	Asp	Arg
Glu	Xaa 9065	Leu	Tyr	Trp	Glu	Leu 9070		Xaa	Leu	Thr	Xaa 9075	Xaa	Ile	Xaa
Glu	Leu 9080	Gly	Pro	Tyr		Leu 9085		Arg	Xaa	Ser	Leu 9090	Tyr	Val	Asn
Gly	Phe 9095	Thr	His	Arg	Ser	Phe 9100		Leu	Thr	Thr	Ser 9105	Thr	Pro	Trp
Thr	Ser 9110	Thr	Val	Asp		Gly 9115		Ser	Gly	Thr	Pro 9120		Pro	Val
Pro	Ser 9125	Pro	Thr	Thr	Ala	Gly 9130	Pro	Leu	Leu	Val	Pro 9135	Phe	Thr	Leu
	9140					9145					Asp 9150			
	9155					9160					Val 9165			
	9170					9175					Ser 9180			
Ser	Gly 9185		Arg	Leu	Thr	Leu 9190		Arg	Pro	Glu	Lys 9195		Gly	Ala
Ala	Thr 9200	-	Val	Asp	Ala	Val 9205		Thr	His	Arg	Pro 9210		Pro	Lys

Ser	Pro 9215	Gly	Leu	Asp	Arg	Glu 9220		Leu	Tyr	Trp	Glu 9225		Ser	Xaa
Leu	Thr 9230	Xaa	Xaa	Ile	Xaa	Glu 9235	Leu	Gly	Pro	Tyr	Xaa 9240		Asp	Arg
Xaʻa	Ser 9245	Leu	Tyr	Val	Asn	Gly 9250	Phe	Xaa	Xaa	Xaa	Xaa 9255		Xaa	Xaa
Xaa	Thr 9260	Ser	Thr	Pro	Gly	Thr 9265	Ser	Xaa	Val	Xaa	Leu 9270		Thr	Ser
Gly	Thr 9275	Pro	Xaa	Xaa	Xaa	Pro 9280		Xaa	Thr	Xaa	Xaa 9285	Xaa	Pro	Leu
Leu	Xaa 9290	Pro	Phe	Thr	Leu	Asn 9295		Thr	Ile	Thr	Asn 9300	Leu	Xaa	Tyr
Glu	Glu 9305	Xaa	Met	Xaa	Xaa	Pro 9310	Gly	Ser	Arg	Lys	Phe 9315	Asn	Thr	Thr
Glu	Arg 9320	Val	Leu	Gln	Gly	Leu 9325	Leu	Xaa	Pro	Xaa	Phe 9330	Lys	Xaa	Thr
	9335				•	Ser 9340					9345			-
	9350					Ala 9355					9360			
	9365					Xaa 9370					9375			
	9380					Leu 9385					9390			
	9395					Xaa 9400					9405			
His	Trp 9410	Ile	Pro	Val	Pro	Thr 9415	Ser	Ser	Thr		Gly 9420	Thr	Ser	Thr

Val	Asp 9425		Gly	Ser	Gly	Thr 9430	Pro	Ser	Ser	Leu	Pro 9435	Ser	Pro	Thr
Thr	Ala 9440	Gly	Pro	Leu	Leu	Val 9445	Pro	Phe	Thr	Leu	Asn 9450	Phe	Thr	Ile
Thr	Asn 9455	Leu	Gln	Tyr	Gly	Glu 9460	Asp	Met	Gly	His	Pro 9465	Gly	Ser	Arg
Lys	Phe 9470	Asn	Thr	Thr	Glu	Arg 9475	Val	Leu	Gln	Gly	Leu 9480	Leu	Gly	Pro
Ile	Phe 9485	_	Asn	Thr	Ser	Val 9490	Gly	Pro	Leu	Туг	Ser 9495	Gly	Cys	Arg
Leu	Thr 9500	Ser	Leu	Arg	Ser	Glu 9505	Lys	Asp	Gly	Ala	Ala 9510	Thr	Gly	Val
Asp	Ala 9515		Cys	Ile		His 9520	Leu	Asp	Pro	Lys	Ser 9525		Gly	Leu
Asp	Arg 9530		Xaa	Leu	Tyr	Trp 9535	Glu	Leu	Ser	Xaa	Leu 9540	Thr	Xaa	Xaa
Ile	Xaa 9545		Leu	Gly	Pro	Tyr 9550	Xaa	Leu	Asp	Arg	Xaa 9555	Ser	Leu	Tyr
Val	Asn 9560		Phe	Xaa	Xaa	Xaa 9565	Xaa	Xaa	Xaa	Xaa	Xaa 9570	Thr	Ser	Thr
Pro	Gly 9575	Thr	Ser	Xaa	Val	Xaa 9580	Leu	Xaa	Thr	Ser	Gly 9585	Thr	Pro	Xaa
Xaa	Xaa 9590	Pro	Xaa	Xaa	Thr	Xaa 9595	Xaa	Xaa	Pro	Leu	Leu 9600	Xaa	Pro	Phe
Thr	Leu 9605	Asn	Phe	Thr	Ile	Thr 9610	Asn	Leu	Xaa	Tyr	Glu 9615	Glu	Xaa	Met

Xaa	Xaa 9620		Gly	Ser	Arg	Lys 9625		Asn	Thr	Thr	Glu 9630		Val	Leu
Gln	Gly 9635	Leu	Leu	Xaa	Pro	Xaa 9640	Phe	Lys	Xaa	Thr	Ser 9645		Gly	Xaa
Leu	Tyr 9650		Gly	Суз	Arg	Leu 9655		Leu	Leu	Arg	Xaa 9660		Lys	Xaa
Xaa	Ala 9665	Ala	Thr	Xaa	Val	Asp 9670		Xaa	Суз	Xaa	Xaa 9675		Xaa	Asp
Pro	Xaa 9680	Xaa	Pro	Gly	Leu	Asp 9685	Arg	Glu	Xaa	Leu	Туг 9690	-	Glu	Leu
Ser	Xaa 9695	Leu	Thr	Xaa	Xaa	Ile 9700	Xaa	Glu	Leu	Gly	Pro 9705		Xaa	Leu
Asp	Arg 9710	Xaa	Ser	Leu	Tyr	Val 9715	Asn	Gly	Phe	Thr	His 9720	Gln	Thr	Phe
Ala	Pro 9725	Asn	Thr	Ser	Thr	Pro 9730	Gly	Thr	Ser	Thr	Val 9735	Asp	Leu	Gly
Thr	Ser 9740	Gly	Thr	Pro	Ser	Ser 9745	Leu	Pro	Ser	Pro	Thr 9750	Ser	Ala	Gly
Pro	Leu 975 5	Leu	Val	Pro	Phe	Thr 9760	Leu	Asn	Phe	Thr	Ile 9765	Thr	Asn	Leu
	Tyr 9770	Glu	Glu	Asp	Met	His 9775	His	Pro	Gly	Ser	Arg 9780	Lys	Phe	Asn
Thr	Thr 9785	Glu	Arg	Val	Leu	Gln 9790	Gly	Leu	Leu	Gly	Pro 9795	Met	Phe	Lys
Asn	Thr 9800	Ser	Val	Gly	Leu	Leu 9805	Tyr	Ser	Gly	Cys	Arg 9810	Leu	Thr	Leu
Leu	Arg 9815	Pro	Glu	Lys	Asn	Gly 9820	Ala	Ala	Thr	Arg	Val 9825	Asp	Ala	Val

Cys	Thr 9830	His	Arg	Pro	Asp	Pro 9835	_	Ser	Pro		Leu 9840		Arg	Glu
Xaa	Leu 9845	Tyr	Trp	Glu	Leu	Ser 9850	Xaa	Leu	Thr	Xaa	Xaa 9855	Ile	Xaa	Glu
Leu	Gly 9860	Pro	Tyr	Xaa	Leu	Asp 9865	Arg	Xaa	Ser	Leu	Tyr 9870	Val	Asn	Gly
Phe	Xaa 9875	Xaa	Xaa	Xaa	Xaa	Xaa 9880	Xaa	Xaa	Thr	Ser	Thr 9885	Pro	Gly	Thr
Ser	Xaa 9890	Val	Xaa	Leu	Xaa	Thr 9895	Ser	Gly	Thr	Pro	Xaa 9900	Xaa	Xaa	Pro
Xaa	Xaa 9905	Thr	Ala	Pro	Val	Pro 9910	Leu	Leu	Ile	Pro	Phe 9915	Thr	Leu	Asn
Phe	Thr 9920	Ile	Thr	Asn	Leu	His 9925	Tyr	Glu	Glu	Asn	Met 9930		His	Pro
Gly	Ser 9935	Arg	Lys	Phe	Asn	Thr 9940	Thr	Glu	Arg	Val	Leu 9945	Gln	Gly	Leu
Leu	Arg 9950	Pro	Leu	Phe	Lys	Ser 9955	Thr	Ser	Val	Gly	Pro 9960	Leu	Tyr	Ser
Gly	Cys 9965	Arg	Leu	Thr	Leu	Leu 9970	Arg	Pro	Glu	Lys	His 9975	Gly	Ala	Ala
Thr	Gly 9980	Val	Asp	Ala	Ile	Cys 9985	Thr	Leu	Arg	Leu	Asp 9990	Pro	Thr	Gly
Pro	Gly 9995	Leu	Asp	Arg	Glu	Arg 10000		1 Туі	r Tr	Glı	1000		er Gl	in Leu
Thr	Asn 1001		r Val	L Thi	r Glı	1003		Ly Pi	το Τχ	yr Tl		ı <i>1</i> 020	Asp A	Arg Asp

Ser	Leu 10025	Tyr	Val	Asn	Gly	Phe 10030		Gln	Arg	Ser	Ser 10035		Pro	Thr
Thr	Ser 10040	Ile	Pro	Gly	Thr	Ser 10045	Ala	Val	His	Leu	Glu, 10050		Ser	Gly
Thr	Pro 10055	Ala	Ser	Leu		Gly 10060		Thr	Ala	Pro	Gly 10065		Leu	Leu
Val	Pro 10070	Phe	Thr	Leu	Asn	Phe 10075	Thr	Ile	Thr	Asn	Leu 10080		Tyr	Glu
Val	Asp 10085	Met	Arg	His	Pro	Gly 10090	Ser	Arg	Lys		Asn 10095		Thr	Glu
Arg	Val 10100	Leu	Gln	Gly	Leu	Leu 10105	Lys	Pro	Leu		Lys 10110		Thr	Ser
Val	Gly 10115	Pro	Leu	Tyr	Ser	Gly 10120	Суз	Arg	Leu		Leu 10125		Arg	Pro
Glu	Lys 10130	Arg	Gly	Ala	Ala	Thr 10135		Val	Asp	Thr	Ile 10140		Thr	His
	10145					10150					Glu 10155			
	10160					10165					Glu 10170			
	10175					10180					Gly 10185			
	10190					10195					Thr 10200			
	10205					10210					Pro 10215			
Val	Pro 10220	Gly	Pro	Leu	Leu		Pro	Phe	Thr		Asn 10230	Phe	Thr	Ile

	Asn 10235		Gln	Tyr		Glu 10240		Met	Arg		Pro 10245	Gly	Ser	Arg
Lys	Phe 10250	Asn	Thr	Thr		Arg 10255	Val	Leu	Gln	Gly	Leu 10260	Ļeu	Arg	Pro
Leu	Phe 10265	Lys	Asn	Thr		Ile 10270		Pro	Leu	Tyr	Ser 10275	Ser	Cys	Arg
Leu	Thr 10280	Leu	Leu	Arg	Pro	Glu 10285	Lys	Asp	Lys		Ala 10290	Thr	Arg	Val
Asp	Ala 10295		Cys	Thr	His	His 10300	Pro	Asp	Pro		Ser 10305	Pro	Gly	Leu
Asn	Arg 10310		Gln	Leu	Tyr	Trp 10315	Glu	Leu	Ser		Leu 10320	Thr	His	Gly
Ile	Thr 10325	Glu	Leu			Tyr 10330		Leu	Asp		Asp 10335	Ser	Leu	Tyr
Val	Asp 10340	_	Phe	Thr		Trp 10345		Pro	Ile		Thr 10350	Thr	Ser	Thr
Pro	Gly 10355	Thr	Ser			Asn 10360		Gly	Thr		Gly 10365	Ile	Pro	Pro
Ser	Leu 10370	Pro	Glu	Thr		Xaa 10375		Xaa			Leu 10380	Xaa	Pro	Phe
	Leu 10385												Xaa	Met
Xaa	Xaa 10400	Pro	Gly	Ser	Arg	Lys 10405	Phe	Asn	Thr	Thr	Glu 10410	Arg	Val	Leu
Gln	Gly 10415	Leu	Leu	Lys	Pro	Leu 10420	Phe	Lys	Ser	Thr	Ser 10425	Val	Gly	Pro

Leu	Tyr 10430	Ser	Gly	Cys	Arg	Leu 10435	Thr	Leu	Leu	Arg	Pro 10440		Lys	Asp
Gly	Val 10445	Ala	Thr	Arg	Val	Asp 10450	Ala	Ile	Cys	Thr	His 10455		Pro	Asp
Pro	Lys 10460	Ile	Pro	Gly	Leu	Asp 10465	Arg	Gln	Gln		Tyr 10470		Glu	Leu
Ser	Gln 10475	Leu	Thr	His	Ser	Ile 10480		Glu	Leu		Pro 10485		Thr	Leu
Asp	Arg 10490	Asp	Ser	Leu	Tyr	Val 10495	Asn	Gly	Phe		Gln 10500	_	Ser	Ser
Val	Pro 10505	Thr	Thr	Ser	Thr	Pro 10510	Gly	Thr	Phe		Val 10515		Pro	Glu
Thr	Ser 10520	Glu	Thr	Pro	Ser	Ser 10525	Leu	Pro	Gly		Thr 10530	Ala	Thr	Gly
	Val 10535					10540					10545			
	Tyr 10550					10555					10560			
	Thr 10565					10570					1057.5			_
	Thr 10580					10585					10590			
	Arg 10595					10600					10605			
	Thr 10610					10615					10620			
Arg	Leu 10625	Tyr	Trp	Lys	Leu	Ser 10630	Gln	Leu	Thr		Gly 10635	Ile	Thr	Glu

Leu	Gly 10640		Tyr	Thr	Leu	Asp 10645	Arg	His	Ser	Leu	Tyr 10650	Val	Asn	Gly
Phe	Thr 10655	His	Gln	Ser	Ser	Met 10660	Thr	Thr	Thr	Arg	Thr 10665	Pro	Asp	Thr
Ser	Thr 10670	Met	His	Leu	Ala	Thr 10675	Ser	Arg	Thr	Pro	Ala 10680	Ser	Leu	Ser
Gly	Pro 10685		Thr	Ala	Ser	Pro 10690	Leu	Leu	Val	Leu	Phe 10695	Thr	Ile	Asn
Phe	Thr 10700		Thr	Asn	Leu	Arg 10705	Tyr	Glu	Glu	Asn	Met 10710	His	His	Pro
Gly	Ser 10715		Lys	Phe	Asn	Thr 10720	Thr	Glu	Arg	Val	Leu 10725	Gln	Gly	Leu
Leu	Arg 10730		Val	Phe		Asn 10735		Ser	Val	Gly	Pro 10740	Leu	Tyr	Ser
Gly	Cys 10745		Leu			Leu 10750		Pro	Lys	Lys	Asp 10755	Gly	Ala	Ala
Thr	Lys 10760	Val	Asp	Ala	Ile	Cys 10765	Thr	Tyr	Arg	Pro	Asp 10770	Pro	Lys	Ser
Pro	Gly 10775		Asp	Arg	Glu	Gln 10780	Leu	Tyr	Trp	Glu	Leu 10785	Ser	Gln	Leu
Thr	His 10790		Ile	Thr	Glu	Leu 10795	Gly	Pro	Tyr	Thr	Gln 10800	Asp	Arg	Asp
Ser	Leu 10805		Asn	Val	Gly	Phe 10810		Gln	Arg	Ser	Ser 10815		Pro	Thr
Thr	Ser 10820		Pro	Gly	Thr	Pro 10825		Val	Asp	Leu	Gly 10830	Thr	Ser	Gly

Thr	Pro 10835	Val	Ser	Lys		Gly 10840		Ser	Ala		Ser 10845		Leu	Leu
Val	Leu 10850	Phe	Thr	Leu	Asn	Gly 10855		Ile	Thr	Asn	Leu 10860		Tyr	Glu
Glu	Asn 10865	Met	Gln	His		Gly 10870		Arg	Гуз		Asn 10875		Thr	Glu
Arg	Val 10880	Leu	Gln	Gly		Leu 10885		Ser	Leu	Phe	Lys 10890		Thr	Ser
Val	Gly 10895	Pro	Leu	Tyr		Gly 10900		Arg	Leu		Leu 10905		Arg	Pro
Glu	Lys 10910	Asp	Gly	Thr	Ala	Thr 10915	Gly	Val	Asp		Ile 10920		Thr	His
His	Pro 10925	Asp	Pro	Lys	Ser	Pro 10930	Arg	Leu	Asp		Glu 10935		Leu	Tyr
Trp	Glu 10940	Leu	Ser	Gln		Thr 10945		Asn	Ile		Glu 10950		Gly	His
Tyr	Ala 10955	Leu	Asp	Asn		Ser 10960		Phe	Val		Gly 10965	Phe	Thr	His
Arg	Ser 10970	Ser	Val	Ser	Thr	Thr 10975	Ser	Thr	Pro	Gly	Thr 10980	Pro	Thr	Val
Tyr	Leu 10985	Gly	Ala	Ser	Lys	Thr 10990		Ala			Phe 10995	Gly	Pro	Ser
Ala	Ala 11000	Ser	His	Leu		Ile 11005	Leu	Phe	Thr	Leu	Asn 11010	Phe	Thr	Ile
Thr	Asn 11015	Leu	Arg	Tyr		Glu 11020	Asn	Met	Trp	Pro	Gly 11025	Ser	Arg	Lys
Phe	Asn 11030	Thr	Thr	Glu		Val 11035	Leu	Gln	Gly	Leu	Leu 11040	Arg	Pro	Leu

Phe	Lys 11045		Thr	Ser	Val	Gly 11050	Pro	Leu	Tyr	Ser	Gly 11055	Ser	Arg	Leu
Thr	Leu 11060		Arg	Pro	Glu	Lys 11065	Asp	Gly	Glu	Ala	Thr 11070	Gly	Val	Asp
Ala	Ile 11075					Pro 11080			Thr	Gly	Pro 11085	Gly	Leu	Asp
Arg	Glu 11090		Leu	Tyr	Leu	Glu 11095	Leu	Ser	Gln	Leu	Thr 11100	His	Ser	Ile
Thr	Glu 11105		Gly	Pro		Thr 11110		Asp	Arg	Asp	Ser 11115	Leu	Tyr	Val
Asn	Gly 11120		Thr	His	Arg	Ser 11125	Ser	Val	Pro	Thr	Thr 11130	Ser	Thr	Gly
	Val 11135		Glu			Phe 11140		Leu			Thr 11145		Asn	Asn
	Arg 11150		Met	Ala	Asp ,	Met 11155	Gly	Gln	Pro	Gly	Ser 11160	Leu	Lys	Phe
Asn	Ile 11165	Thr	Asp	Asn	Val	Met 11170		His			Ser 11175		Leu	Phe
	Arg 11180		Ser	Leu	Gly	Ala 11185	Arg	Tyr	Thr	Gly	Cys 11190	Arg	Val	Ile
Ala	Leu 11195	Arg	Ser	Val	Lys	Asn 11200	Gly	Ala	Glu	Thr	Arg 11205	۷al	Asp	Leu
Leu	Cys 11210		Tyr	Leu	Gln	Pro 11215		Ser	Gly	Pro	Gly 11220	Leu	Pro	Ile
Lys	Gln 11225		Phe	His	Glu	Leu 11230		Gln	Gl'n	Thr	His 11235	Gly	Ile	Thr

Arg	Leu 11240	Gly	Pro	Tyr	Ser	Leu 11245	Asp	Lys	Asp		Leu 11250		Leu	Asn
Gly	Туг 11255		Glu	Pro		Leu 11260		Glu			Thr 11265		Pro	Lys
Pro	Ala 11270	Thr	Thr	Phe		Pro 11275		Leu	Ser		Ala 11280		Thr	Ala
Met	Gly 11285	Tyr	His	Leu		Thr 11290		Thr			Phe 11295		Ile	Ser
Asn	Leu 11300	Gln	Tyr			Asp 11305	Met	Gly	Lys		Ser 11310	Ala	Thr	Phe
Asn	Ser 11315		Glu	Gly		Leu 11320					Arg 11325	Pro	Leu	Phe
Gln	Lys 11330		Ser	Met	Gly	Pro 11335	Phe	Tyr	Leu	_	Cys 11340	Gln	Leu	Ile
Ser	Leu 11345	Arg	Pro	Glu		Asp 11350		Ala			Gly 11355	Val	Asp	Thr
Thr	Cys 11360	Thr	Tyr	His		Asp 11365	Pro	Val	Gly	Pro	Gly 11370	Leu	Asp	Ile
Gln	Gln 11375	Leu	Tyr	Trp	Glu	Leu 11380	Ser	Gln	Leu		His 11385	Gly	Val	Thr
Gln	Leu 11390	Gly	Phe	Tyr	Val	Leu 11395	Asp	Arg	Asp	Ser	Leu 11400	Phe	Ile	Asn
Gly	Tyr 11405	Ala	Pro	Gln	Asn	Leu 11410	Ser	Ile	Arg	Gly	Glu 11415	Tyr	Gln	Ile
Asn	Phe 11420	His	Ile	Val	Asn	Trp 11425	Asn	Leu	Ser	Asn	Pro 11430	Asp	Pro	Thr
Ser	Ser 11435	Glu	Tyr	Ile	Thr	Leu 11440	Leu	Arg	Asp	Ile	Gln 11445	Asp	Lys	Val

	Thr 11450		Tyr	Lys	Gly	Ser 11455	Gln	Leu	His	Asp	Thr 11460	Phe	Arg	Phe
Cys	Leu 11465	Val	Thr	Asn	Leu	Thr 11470	Met	Asp	Ser	Val	Leu 11475	Val	Thr	Val
Lys	Ala 11480		Phe	Ser		Asn 11485		Asp	Pro	Ser	Leu 11490	Val	Glu	Gln
Val	Phe 11495		Asp	Lys	Thr	Leu 11500		Ala	Ser	Phe	His 11505	Trp	Leu	Gly
Ser	Thr 11510		Gln	Leu	Val	Asp 11515	Ile	His	Val	Thr	Glu 11520	Met	Glu	Ser
Ser	Val 11525		Gln	Pro	Thr	Ser 11530	Ser	Ser	Ser	Thr	Gln 11535	His	Phe	Tyr
	Asn 11540		Thr	Ile	Thr	Asn 11545	Leu	Pro	Tyr	Ser	Gln 11550	Asp	Lys	Ala
Gln	Pro 11555			Thr	Asn	Туг 11560	Gln	Arg	Asn	Lys	Arg 11565	Asn	Ile	Glu
Asp	Ala 11570		Asn	Gln	Leu	Phe 11575	Arg	Asn	Ser	Ser	Ile 11580	Lys	Ser	Tyr
Phe	Ser 11585		Cys	Gln	Val	Ser 11590		Phe	Arg	Ser	Val 11595	Pro	Asn	Arg
His	His 11600	Thr	Gly	Val	Asp	Ser 11605	Leu	Cys	Asn	Phe	Ser 11610	Pro	Leu	Ala
Arg	Arg 11615		Asp	Arg	Val	Ala 11620		Tyr	Glu	Glu	Phe 11625	Leu	Arg	Met
Thr	Arg 11630		Gly	Thr	Gln	Leu 11635		Asn	Phe	Thr	Leu 11640	Asp	Arg	Ser

Ser Val Leu Val Asp Gly Tyr Ser Pro Asn Arg Asn Glu Pro Leu 11645 11650 11655

Thr Gly Asn Ser Asp Leu Pro Phe Trp Ala Val Ile Leu Ile Gly 11660 11670

Leu Ala Gly Leu Leu Gly Leu Ile Thr Cys Leu Ile Cys Gly Val 11675 11680 11685

Leu Val Thr Thr Arg Arg Arg Lys Glu Gly Glu Tyr Asn Val 11690 11695 11700

Gln Gln Cys Pro Gly Tyr Tyr Gln Ser His Leu Asp Leu Glu 11705 11710 11715

Asp Leu Gln 11720

<210> 163

<211> 156

<212> PRT

<213> Homo sapiens

<400> 163

Thr Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe 20 25 30

Asn Ala Thr Glu Arg Val Leu Gln Gly Leu Leu Ser Pro Ile Phe Lys 35 40 45

Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu 50 60

Arg Pro Glu Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu 65 70 75 80

Tyr His Pro Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr 85 90 95

Trp Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr 100 105 110

Ser Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly Phe Thr His Gln Asn 115 120 125

Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Tyr Trp Ala 130 135 140

Thr Thr Gly Thr Pro Ser Ser Phe Pro Gly His Thr 145 150 155

<210> 164

<211> 42

<212> PRT

<213> Homo sapiens

<400> 164

Ala Thr Val Pro Phe Met Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Ala Thr Glu Arg Glu Leu Gln Gly Leu 35

<210> 165

<211> 42

<212> PRT

<213> Homo sapiens

<400> 165

Thr Ala Val Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Gly Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 166

<211> 42

<212> PRT

<213> Homo sapiens

<400> 166

Val Pro Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Ala Met Arg His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 167

<211> 42

<212> PRT

<213> Homo sapiens

<400> 167

Ala Pro Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe 20 25 30

Ser Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 168

<211> 42

<212> PRT

<213> Homo sapiens

<400> 168

Ala Pro Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 169

<211> 42

<212> PRT

<213> Homo sapiens

<400> 169

Ala Pro Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Val Asp Met Arg His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35 40

<210> 170

<211> 42

<212> PRT

<213> Homo sapiens

<400> 170

Asn Leu Gln Tyr Glu Glu Asp Met Arg His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 171

<211> 42

<212> PRT

<213> Homo sapiens

<400> 171

Ala Ala Gly Pro Leu Leu Met Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe
20 25 30

Asn Thr Met Glu Ser Val Leu Gln Gly Leu 35

<210> 172

<211> 42

<212> PRT

<213> Homo sapiens

<400> 172

Thr Ala Ser Pro Leu Leu Val Leu Phe Thr Ile Asn Cys Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met Arg Arg Thr Gly Ser Arg Lys Phe 20 25 30

Asn Thr Met Glu Ser Val Leu Gln Gly Leu 35 40

<210> 173

<211> 42

<212> PRT

<213> Homo sapiens

<400> 173

Ala Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Gly Glu Asp Met Gly His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35 40

<210> 174

<211> 42

<212> PRT

<213> Homo sapiens

<400> 174

Thr Ala Gly Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Gly Glu Asp Met Gly His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 175

<211> 42

<212> PRT

<213> Homo sapiens

<400> 175

Thr Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Gly Glu Asp Met Gly His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 176

<211> 42

<212> PRT

<213> Homo sapiens

<400> 176

Thr Ala Gly Pro Leu Leu Val Leu Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Lys Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Thr Leu 35

<210> 177

<211> 42

<212> PRT

<213> Homo sapiens

<400> 177

Thr Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe 20 25 30

Asn Ala Thr Glu Arg Val Leu Gln Gly Leu 35 40

<210> 178

<211> 42

<212> PRT

<213> Homo sapiens

<400> 178

Thr Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Arg Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 179

<211> 42

<212> PRT

<213> Homo sapiens

<400> 179

Thr Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 180

<211> 42

<212> PRT

<213> Homo sapiens

<400> 180

Ala Pro Val Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 181

<211> 42

<212> PRT

<213> Homo sapiens

<400> 181

Ala Thr Gly Pro Val Leu Leu Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 182

<211> 42

<212> PRT

<213> Homo sapiens

<400> 182

Ala Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 183

<211> · 42

<212> PRT

<213> Homo sapiens

<400> 183

Ser Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Gln Tyr Glu Glu Asp Met His His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 184

<211> 42

<212> PRT

<213> Homo sapiens

<400> 184

Thr Ala Ser Pro Leu Leu Val Leu Phe Thr Ile Asn Phe Thr Ile Thr 1 5 10 15

Asn Gln Arg Tyr Glu Glu Asn Met His His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 185

<211> 42

<212> PRT

<213> Homo sapiens

<400> 185

Thr Ala Ser Pro Leu Leu Val Leu Phe Thr Ile Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Arg Tyr Glu Glu Asn Met His His Pro Gly Ser Arg Lys Phe 25 20

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu

<210> 186

<211> 42

<212> PRT

<213> Homo sapiens

<400> 186

Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Phe Asn Phe Thr Ile Thr 5

Asn Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe 20

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35

<210> 187

<211> 42

<212> PRT

<213> Homo sapiens

<400> 187

Glu Pro Gly Pro Leu Leu Ile Pro Phe Thr Phe Asn Phe Thr Ile Thr

Asn Leu Arg Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35 40

<210> 188

<211> 42

<212> PRT

<213> Homo sapiens

<400> 188

Ala Pro Val Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35 40

<210> 189

<211> 42

<212> PRT

<213> Homo sapiens

<400> 189

Ala Pro Val Pro Leu Leu Ile Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asp Leu His Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35 40

<210> 190

<211> 42

<212> PRT

<213> Homo sapiens

<400> 190

Ala Ala Ser Pro Leu Leu Val Leu Phe Thr Leu Asn Gly Thr Ile Thr 1 5 10 15

Asn Leu Arg Tyr Glu Glu Asn Met Gln His Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Gly Leu 35 40

<210> 191

<211> 42

<212> PRT

<213> Homo sapiens

<400> 191

Thr Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Lys Tyr Glu Glu Asp Met His Cys Pro Gly Ser Arg Lys Phe 20 25 30

Asn Thr Thr Glu Arg Val Leu Gln Ser Leu 35 40

<210> 192

<211> 41

<212> PRT

<213> Homo sapiens

<400> 192

Ala Ala Ser His Leu Leu Ile Leu Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15

Asn Leu Arg Tyr Glu Glu Asn Met Trp Pro Gly Ser Arg Lys Phe Asn 20 25 30

Thr Thr Glu Arg Val Leu Gln Gly Leu 35 40

<210> 193

<211> 42

<212> PRT

<213> Homo sapiens

<400> 193

Thr Gly Val Val Ser Glu Glu Pro Phe Thr Leu Asn Phe Thr Ile Asn 1 5 10 15

Asn Leu Arg Tyr Met Ala Asp Met Gly Gln Pro Gly Ser Leu Lys Phe 20 25 30

Asn Ile Thr Asp Asn Val Met Lys His Leu 35

<210> 194

<211> 42

<212> PRT

<213> Homo sapiens

<400> 194

Ala Met Gly Tyr His Leu Lys Thr Leu Thr Leu Asn Phe Thr Ile Ser 1 5 10 15

Asn Leu Gln Tyr Ser Pro Asp Met Gly Lys Gly Ser Ala Thr Phe Asn 20 25 30

Ser Thr Glu Gly Val Leu Gln His Leu Leu 35 40

<210> 195

<211> 23

<212> PRT

<213> Homo sapiens

<400> 195

Leu Lys Pro Leu Phe Arg Asn Ser Ser Leu Glu Tyr Leu Tyr Ser Gly 1 5 10 15

Cys Arg Leu Ala Ser Leu Arg 20

<210> 196

<211> 23

<212> PRT

<213> Homo sapiens

<400> 196

Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly
1 10 15

Cys Arg Leu Thr Leu Leu Arg 20

<210> 197

<211> 23

<212> PRT

<213> Homo sapiens

<400> 197

Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly 1 5 10 15

Cys Arg Leu Thr Leu Leu Arg

<210> 198

<211> 23

<212> PRT

<213> Homo sapiens

<400> 198

Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly 1 5 10

Cys Arg Leu Thr Leu Leu Arg 20

<210> 199

<211> 23

<212> PRT

<213> Homo sapiens

. <400> 199

Leu Lys Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Ser 1 5 10 15

Cys Arg Leu Thr Leu Leu Arg

```
<210> 200
<211> 23
<212> PRT
<213> Homo sapiens
<400> 200
Leu Lys Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly
               5
Cys Arg Leu Thr Ser Leu Arg
            20
<210> 201
<211> 23
<212> PRT
<213> Homo sapiens
<400> 201
Leu Gly Pro Ile Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly
                                   10
                5
Cys Arg Leu Thr Ser Leu Arg
            20
<210> 202
<211> 23
<212> PRT
<213> Homo sapiens
<400> 202
```

Leu Gly Pro Met Phe Lys Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly 1 5 10 15

Cys Arg Leu Thr Leu Leu Arg 20

<210> 203

<211> 23

<212> PRT

<213> Homo sapiens

<400> 203

Leu Gly Pro Met Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly 1 5 15

Cys Arg Leu Thr Leu Leu Arg 20

<210> 204

<211> 23

<212> PRT

<213> Homo sapiens

<400> 204

Leu Gly Pro Met Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly 1 5 10 15

Cys Arg Leu Thr Ser Leu Arg 20

<210> 205

<211> 23

<212> PRT

<213> Homo sapiens

<400> 205

Leu Gly Pro Leu Phe Lys Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly 1 5 10 15

Cys Arg Leu Ile Ser Leu Arg

<210> 206

<211> 23

<212> PRT

<213> Homo sapiens

<400> 206

Leu Gly Pro Leu Phe Lys Asn Ser Ser Val Asp Pro Leu Tyr Ser Gly
1 5 10 15

Cys Arg Leu Thr Ser Leu Arg 20

<210> 207

<211> 23

<212> PRT

<213> Homo sapiens

<400> 207

Leu Ser Pro Ile Phe Lys Asn Ser Ser Val Gly Pro Leu Tyr Ser Gly 1 5 10

Cys Arg Leu Thr Ser Leu Arg 20

```
<210> 208
```

<211> 23

<212> PRT

<213> Homo sapiens

<400> 208

Leu Ser Pro Ile Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly 1 5 10 15

Cys Arg Leu Thr Leu Leu Arg 20

<210> 209

<211> 23

<212> PRT

<213> Homo sapiens

<400> 209

Leu Ser Pro Leu Phe Gln Arg Ser Ser Leu Gly Ala Arg Tyr Thr Gly 1 5 10 15

Cys Arg Val Ile Ala Leu Arg 20

<210> 210

<211> 23

<212> PRT

<213> Homo sapiens

<400> 210

Leu Arg Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly
1 10 15

<211> 23

<212> PRT

<213> Homo sapiens

333

```
Cys Arg Leu Thr Leu Leu Arg
           20
<210> 211
<211> 23
<212> PRT
<213> Homo sapiens
<400> 211
Leu Arg Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly
Ser Arg Leu Thr Leu Leu Arg
           20
<210> 212
<211> 23
<212> PRT
<213> Homo sapiens
<400> 212
Leu Arg Pro Leu Phe Lys Asn Thr Ser Ile Gly Pro Leu Tyr Ser Ser
                5
Cys Arg Leu Thr Leu Leu Arg
           20
<210> 213
```

<400> 213

Leu Arg Pro Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly 1 5 10 15

Cys Arg Leu Thr Leu Leu Arg 20

<210> 214

<211> 23

<212> PRT

<213> Homo sapiens

<400> 214

Leu Arg Pro Val Phe Lys Asn Thr Ser Val Gly Leu Leu Tyr Ser Gly 1 10 15

Cys Arg Leu Thr Leu Leu Arg 20

<210> 215

<211> 23

<212> PRT

<213> Homo sapiens

<400> 215

Leu Arg Pro Val Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly
1 5 10 15

Cys Arg Leu Thr Leu Leu Arg 20

<210> 216

```
<211> 23
<212> PRT
<213> Homo sapiens
<400> 216
Leu Arg Ser Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly
Cys Arg Leu Thr Leu Leu Arg
           20
<210> 217
<211> 23
<212> PRT
<213> Homo sapiens
<400> 217
Leu Arg Ser Leu Phe Lys Ser Thr Ser Val Gly Pro Leu Tyr Ser Gly
Cys Arg Leu Thr Ser Leu Arg
           20
<210> 218
<211> 23
<212> PRT
<213> Homo sapiens
<400> 218
Leu Thr Pro Leu Phe Lys Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly
```

Cys Arg Leu Thr Leu Leu Arg 20

<210> 219

<211> 23

<212> PRT

<213> Homo sapiens

<400> 219

Leu Thr Pro Leu Phe Arg Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly
1 10 15

Cys Arg Leu Thr Leu Leu Arg 20

<210> 220

<211> 23

<212> PRT

<213> Homo sapiens

<400> 220

Leu Met Pro Leu Phe Lys Asn Thr Ser Val Ser Ser Leu Tyr Ser Gly
1 10 15

Cys Arg Leu Thr Leu Leu Arg 20

<210> 221

<211> 22

<212> PRT

<213> Homo sapiens

<400> 221

Arg Pro Leu Phe Gln Lys Ser Ser Met Gly Pro Phe Tyr Leu Gly Cys
1 5 10 15

Gln Leu Ile Ser Leu Arg 20

<210> 222

<211> 58

<212> PRT

<213> Homo sapiens

<400> 222

Pro Glu Lys Asp Ser Ser Ala Met Ala Val Asp Ala Ile Cys Thr His 1 5 10 15

Arg Pro Asp Pro Glu Asp Leu Gly Leu Asp Arg Glu Arg Leu Tyr Trp 20 25 30

Glu Leu Ser Asn Leu Thr Asn Gly Ile Gln Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly 50 55

<210> 223

<211> 58

<212> PRT

<213> Homo sapiens

<400> 223

Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His 1 5 10 15

Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Lys Leu Thr Asn Asp Ile Glu Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly 50 55

<210> 224

<211> 58

<212> PRT

<213> Homo sapiens

<400> 224

Pro Lys Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His 1 5 10 15

Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Lys Leu Thr Asn Asp Ile Glu Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly 50

<210> 225

<211> 58

<212> PRT

<213> Homo sapiens

<400> 225

Pro Glu Lys Asp Gly Thr Ala Thr Gly Val Asp Ala Ile Cys Thr His 1 5 10 15

His Pro Asp Pro Lys Ser Pro Arg Leu Asp Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly His Tyr Ala 35 40 45

Leu Asp Asn Asp Ser Leu Phe Val Asn Gly 50 55

<210> 226

<211> 58

<212> PRT

<213> Homo sapiens

<400> 226

Pro Glu Lys Asp Gly Glu Ala Thr Gly Val Asp Ala Ile Cys Thr His 1 5 10 15

Arg Pro Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Gln Leu Tyr Leu 20 25 30

Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 50 55

<210> 227

<211> 58

<212> PRT

<213> Homo sapiens

<400> 227

Pro Glu Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr 1 5 10 15

His Pro Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 50 55

<210> 228

<211> 58

<212> PRT

<213> Homo sapiens

<400> 228

Pro Glu Lys Asp Gly Ala Ala Thr Gly Met Asp Ala Val Cys Leu Tyr 1 5 10 15

His Pro Asn Pro Lys Arg Pro Gly Leu Asp Arg Glu Gln Leu Tyr Cys 20 25 30

Glu Leu Ser Gln Leu Thr His Asn Ile Thr Glu Leu Gly Pro Tyr Ser 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 50 55

<210> 229

<211> 58

<212> PRT

<213> Homo sapiens

<400> 229

Pro Glu Lys Asp Gly Ala Ala Thr Arg Val Asp Ala Ala Cys Thr Tyr 1 5 10 15

Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Val Ser Leu Tyr Val Asn Gly 50 55

<210> 230

<211> 58

<212> PRT

<213> Homo sapiens

<400> 230

Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr 1 5 10 15

Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Gln Asp Arg Asp Ser Leu Tyr Val Asn Gly 50 55

<210> 231

<211> 58

<212> PRT

<213> Homo sapiens

<400> 231

Pro Lys Lys Asp Gly Ala Ala Thr Lys Val Asp Ala Ile Cys Thr Tyr 1 5 10 15

Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp
20 25 30

Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Gln Asp Arg Asp Ser Leu Tyr Asn Val Gly 50

<210> 232

<211> 58

<212> PRT

<213> Homo sapiens

<400> 232

Pro Glu Lys Asp Gly Ala Ala Thr Arg Val Asp Ala Val Cys Thr His 1 5 10 15

Arg Pro Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp
20 25 30

Lys Leu Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg His Ser Leu Tyr Val Asn Gly 50 55

<210> 233

<211> 58

<212> PRT

<213> Homo sapiens

<400> 233

Pro Glu Lys Asp Gly Val Ala Thr Arg Val Asp Ala Ile Cys Thr His 1 5 10 15

Arg Pro Asp Pro Lys Ile Pro Gly Leu Asp Arg Gln Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr His Ser Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 50 55

<210> 234

<211> 58

<212> PRT

<213> Homo sapiens

<400> 234

Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Ile His 1 5 10 15

His Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Arg Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly 50

<210> 235

<211> 58

<212> PRT

<213> Homo sapiens

<400> 235

Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His 1 10 15

Arg Leu Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp
20 25 30

Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly 50

<210> 236

<211> 58

<212> PRT

<213> Homo sapiens

<400> 236

Arg Leu Asp Pro Lys Ser Pro Gly Val Asp Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly 50

<210> 237

<211> 58

<212> PRT

<213> Homo sapiens

<400> 237

Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His 1 5 10 15

Arg Val Asp Pro Lys Ser Pro Gly Val Asp Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly 50 55

<210> 238

<211> 58

<212> PRT

<213> Homo sapiens

<400> 238

Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr His 1 5 10 15

His Leu Asn Pro Gln Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp 20 25 30

Gln Leu Ser Gln Met Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly
50 55

<210> 239

<211> 58

<212> PRT

<213> Homo sapiens

<400> 239

Pro Glu Lys Arg Gly Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His 1 5 10 15

Arg Leu Asp Pro Leu Asn Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Lys Leu Thr Arg Gly Ile Ile Glu Leu Gly Pro Tyr Leu 35 40 45

Leu Asp Arg Gly Ser Leu Tyr Val Asn Gly 50

<210> 240

<211> 58

<212> PRT

<213> Homo sapiens

<400> 240

Pro Glu Lys Asn Gly Ala Ala Thr Gly Met Asp Ala Ile Cys Ser His 1 5 10 15

Arg Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr His Gly Ile Lys Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly
50 55

<210> 241

<211> 58

<212> PRT

<213> Homo sapiens

<400> 241

Pro Glu Lys Asn Gly Ala Ala Thr Gly Met Asp Ala Ile Cys Ser His 1 5 10 15

Arg Leu Asp Pro Lys Ser Pro Gly Leu Asp Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr His Gly Ile Lys Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly 50 55

<210> 242

<211> 58

<212> PRT

<213> Homo sapiens

<400> 242

Pro Glu Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr Leu 1 5 10 15

Arg Leu Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp
20 25 30

Glu Leu Ser Gln Leu Thr Asn Ser Val Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 50 55

<210> 243

<211> 58

<212> PRT

<213> Homo sapiens

<400> 243

Pro Glu Lys His Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Thr Leu 1 5 10 15

Arg Leu Asp Pro Thr Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 50 55

<210> 244

<211> 58

<212> PRT

<213> Homo sapiens

<400> 244

Pro Glu Lys His Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His 1 5 10 15

Arg Val Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 50

<210> 245

<211> 58

<212> PRT

<213> Homo sapiens

<400> 245

Pro Glu Lys Gln Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His 1 5 10 15

Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asn Gly 50 55

<210> 246

<211> 58

<212> PRT

<213> Homo sapiens

<400> 246

Pro Glu Lys Gln Glu Ala Ala Thr Gly Val Asp Thr Ile Cys Thr His 1 5 10 15

Arg Val Asp Pro Ile Gly Pro Gly Leu Asp Arg Glu Arg Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr Asn Ser Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asp Gly 50 55

<210> 247

<211> 58

<212> PRT

<213> Homo sapiens

<400> 247

Pro Glu Lys Asp Lys Ala Ala Thr Arg Val Asp Ala Ile Cys Thr His 1 5 10 15

His Pro Asp Pro Gln Ser Pro Gly Leu Asn Arg Glu Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr His Gly Ile Thr Glu Leu Gly Pro Tyr Thr 35 40 45

Leu Asp Arg Asp Ser Leu Tyr Val Asp Gly 50

<210> 248

<211> 58

<212> PRT

<213> Homo sapiens

<400> 248

Ser Val Lys Asn Gly Ala Glu Thr Arg Val Asp Leu Leu Cys Thr Tyr 1 5 10 15

Leu Gln Pro Leu Ser Gly Pro Gly Leu Pro Ile Lys Gln Val Phe His 20 25 30 Glu Leu Ser Gln Gln Thr His Gly Ile Thr Arg Leu Gly Pro Tyr Ser 35 40 45

Leu Asp Lys Asp Ser Leu Tyr Leu Asn Gly 50 55

<210> 249

<211> 58

<212> PRT

<213> Homo sapiens

<400> 249

Pro Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Thr Thr Cys Thr Tyr 1 5 10 15

His Pro Asp Pro Val Gly Pro Gly Leu Asp Ile Gln Gln Leu Tyr Trp 20 25 30

Glu Leu Ser Gln Leu Thr His Gly Val Thr Gln Leu Gly Phe Tyr Val 35 40 45

Leu Asp Arg Asp Ser Leu Phe Ile Asn Gly 50 55

<210> 250

<211> 12

<212> PRT

<213> Homo sapiens

<400> 250

Phe Thr His Arg Ser Ser Met Pro Thr Thr Ser Thr 1 5 10

<210> 251

<211> 12

<212> PRT

<213> Homo sapiens

<400> 251

Phe Thr His Arg Ser Ser Met Pro Thr Thr Ser Ile
1 5 10

<210> 252

<211> 12

<212> PRT

<213> Homo sapiens

<400> 252

Phe Thr His Arg Thr Ser Val Pro Thr Ser Ser Thr 1 5 10

<210> 253

<211> 12

<212> PRT

<213> Homo sapiens

<400> 253

Phe Thr His Arg Thr Ser Val Pro Thr Thr Ser Thr 1 10

<210> 254

<211> 12

<212> PRT

<400> 257

353

```
<213> Homo sapiens
<400> 254
Phe Thr His Arg Ser Ser Val Pro Thr Thr Ser Ser
               5
<210> 255
<211> 12
<212> PRT
<213> Homo sapiens
<400> 255
Phe Thr His Arg Ser Ser Val Ser Thr Thr Ser Thr
               5
<210> 256
<211> 12
<212> PRT
<213> Homo sapiens
<400> 256
Phe Thr His Arg Ser Ser Val Ala Pro Thr Ser Thr
               5
<210> 257
<211> 12
<212> PRT
<213> Homo sapiens
```

Phe Thr His Arg Ser Ser Gly Leu Thr Thr Ser Thr 1 5 10

<210> 258

<211> 12

<212> PRT

<213> Homo sapiens

<400> 258

Phe Thr His Arg Ser Phe Gly Leu Thr Thr Ser Thr 1 5 10

<210> 259

<211> 12

<212> PRT

<213> Homo sapiens

<400> 259

Phe Thr His Arg Ser Ser Phe Leu Thr Thr Ser Thr 1 5 10

<210> 260

<211> 12

<212> PRT

<213> Homo sapiens

<400> 260

Phe Thr His Arg Asn Phe Val Pro Ile Thr Ser Thr 1 5 10

<210> 261

```
<211> 12
<212> PRT
<213> Homo sapiens
<400> 261
Phe Thr His Arg Ser Ser Val Pro Thr Thr Ser Ile
              5
<210> 262
<211> 12
<212> PRT
<213> Homo sapiens
<400> 262
Phe Thr His Gln Ser Ser Val Ser Thr Thr Ser Thr
1 , 5
<210> 263
<211> 12
<212> PRT
<213> Homo sapiens
<400> 263
Phe Thr His Gln Thr Ser Ala Pro Asn Thr Ser Thr
               5
<210> 264
<211> 12
<212> PRT
<213> Homo sapiens
```

<400> 264

Phe Thr His Gln Thr Phe Ala Pro Asn Thr Ser Thr $1 \hspace{1cm} 5 \hspace{1cm} 10$

<210> 265

<211> 12

<212> PRT

<213> Homo sapiens

<400> 265

Phe Thr His Gln Asn Ser Val Pro Thr Thr Ser Thr $1 \hspace{1cm} 5 \hspace{1cm} 10$

<210> 266

<211> 12

<212> PRT

<213> Homo sapiens

<400> 266

Phe Thr His Gln Ser Ser Met Thr Thr Thr Arg Thr 1 5 10

<210> 267

<211> 12

<212> PRT

<213> Homo sapiens

<400> 267

Phe Thr His Trp Ile Pro Val Pro Thr Ser Ser Thr 1 5 10

```
<210> 268
  <211> 12
  <212> PRT
  <213> Homo sapiens
  <400> 268
  Phe Thr His Trp Ser Pro Ile Pro Thr Thr Ser Thr
                 5
  <210> 269
 <211> 12
   <212> PRT
   <213> Homo sapiens
   <400> 269
   Phe Thr His Trp Ser Ser Gly Leu Thr Thr Ser Thr
              5
   <210> 270
   <211> 12
   <212> PRT
   <213> Homo sapiens
   <400> 270
   Phe His Pro Arg Ser Ser Val Pro Thr Thr Ser Thr
                  5
   <210> 271
   <211> 12
```

<212> PRT

<213> Homo sapiens

<400> 271

Phe Asn Pro Arg Ser Ser Val Pro Thr Thr Ser Thr 1 5 10

<210> 272

<211> 12

<212> PRT

<213> Homo sapiens

<400> 272

Phe Asn Pro Trp Ser Ser Val Pro Thr Thr Ser Thr 1 5 10

<210> 273

<211> 12

<212> PRT

<213> Homo sapiens

<400> 273

<210> 274

<211> 12

<212> PRT

<213> Homo sapiens

```
<400> 274
```

Phe Thr Gln Arg Ser Ser Val Pro Thr Thr Ser Thr 1 5 10

<210> 275

<211> 12

<212> PRT

<213> Homo sapiens

<400> 275

Phe Thr Gln Arg Ser Ser Val Pro Thr Thr Ser Val 1 5 10

<210> 276

<211> 12

<212> PRT

<213> Homo sapiens

<400> 276

Tyr Asn Glu Pro Gly Leu Asp Glu Pro Pro Thr Thr 1 5 10

<210> 277

<211> 12

<212> PRT

<213> Homo sapiens

<400> 277

Tyr Ala Pro Gln Asn Leu Ser Ile Arg Gly Glu Tyr 1 5 10

```
<210> 278
<211> 21
<212> PRT
<213> Homo sapiens
<400> 278
Pro Gly Thr Ser Thr Val Asp Val Gly Thr Ser Gly Thr Pro Ser Ser
Ser Pro Ser Pro Thr
            20
<210> 279
<211> 23
<212> PRT
<213> Homo sapiens
<400> 279
Pro Gly Thr Ser Thr Val Asp Leu Arg Thr Ser Gly Thr Pro Ser Ser
               5
Leu Ser Ser Pro Thr Ile Met
           20
<210> 280
<211> 21
<212> PRT
<213> Homo sapiens
<400> 280
```

Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Phe Ser

```
Leu Pro Ser Pro Ala
<210> 281
<211> 20
<212> PRT
<213> Homo sapiens
<400> 281
Pro Gly Thr Ser Thr Val Asp Leu Gly Ser Gly Thr Pro Ser Ser Leu
Pro Ser Pro Thr
<210> 282
<211> 20
<212> PRT
<213> Homo sapiens
<400> 282
Pro Gly Thr Ser Thr Val Asp Leu Gly Ser Gly Thr Pro Ser Leu Pro
               5
Ser Ser Pro Thr
            20
<210> 283
<211> 21
<212> PRT
<213> Homo sapiens
```

<400> 283

Pro Gly Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Ser 1 5 10 15

Leu Pro Ser Pro Thr 20

<210> 284

<211> 21

<212> PRT

<213> Homo sapiens

<400> 284

Pro Gly Thr Pro Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Val Ser 1 10 15

Lys Pro Gly Pro Ser 20

<210> 285

<211> 21

<212> PRT

<213> Homo sapiens

<400> 285

Pro Trp Thr Ser Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Ser Pro 1 10 15

Val Pro Ser Pro Thr 20

<210> 286

<211> 21 <212> PRT <213> Homo sapiens <400> 286 Pro Gly Thr Ser Thr Val Tyr Trp Ala Thr Thr Gly Thr Pro Ser Ser Phe Pro Gly His Thr <210> 287 <211> 21 <212> PRT <213> Homo sapiens <400> 287 Pro Gly Thr Ser Thr Val His Leu Ala Thr Ser Gly Thr Pro Ser Ser 5 Leu Pro Gly His Thr 20 <210> 288 <211> 21 <212> PRT <213> Homo sapiens <400> 288 Pro Gly Thr Ser Thr Val His Leu Ala Thr Ser Gly Thr Pro Ser Pro

Leu Pro Gly His Thr 20

<210> 289

<211> 21

<212> PRT

<213> Homo sapiens

<400> 289

Pro Asp Thr Ser Thr Met His Leu Ala Thr Ser Arg Thr Pro Ala Ser 1 5 10 15

Leu Ser Gly Pro Thr 20

<210> 290

<211> 21

<212> PRT

<213> Homo sapiens

<400> 290

Pro Gly Thr Ser Ala Val His Leu Glu Thr Ser Gly Thr Pro Ala Ser 1 5 10 15

Leu Pro Gly His Thr 20

<210> 291

<211> 21

<212> PRT

<213> Homo sapiens

<400> 291

Pro Gly Thr Ser Ala Val His Leu Glu Thr Thr Gly Thr Pro Ser Ser 1 5 10 15

Phe Pro Gly His Thr 20

<210> 292

<211> 21

<212> PRT

<213> Homo sapiens

<400> 292

Pro Gly Thr Ser Thr Val His Leu Gly Thr Ser Glu Thr Pro Ser Ser 1 10 15

Leu Pro Arg Pro Ile 20

<210> 293

<211> 21

<212> PRT

<213> Homo sapiens

<400> 293

Pro Gly Thr Ser Ile Val Asn Leu Gly Thr Ser Gly Ile Pro Pro Ser 1 5 10 15

Leu Pro Glu Thr Thr 20

<210> 294

<211> 21

<212> PRT

<213> Homo sapiens

<400> 294

Pro Gly Thr Phe Thr Val Gln Pro Glu Thr Ser Glu Thr Pro Ser Ser 1 5 10 15

Leu Pro Gly Pro Thr 20

<210> 295

<211> 21

<212> PRT

<213> Homo sapiens

<400> 295

Pro Gly Thr Pro Thr Val Asp Leu Gly Thr Ser Gly Thr Pro Val Ser 1 5 10 15

Lys Pro Gly Pro Ser 20

<210> 296

<211> 21

<212> PRT

<213> Homo sapiens

<400> 296

Pro Gly Thr Pro Thr Val Tyr Leu Gly Ala Ser Lys Thr Pro Ala Ser 1 5 10 15

Ile Phe Gly Pro Ser 20

```
<210> 297
<211> 16
<212> PRT
<213> Homo sapiens
<400> 297
Pro Lys Pro Ala Thr Thr Phe Leu Pro Pro Leu Ser Glu Ala Thr Thr
                                   10
<210> 298
<211> 21
<212> PRT
<213> Homo sapiens
<400> 298
Gln Ile Asn Phe His Ile Val Asn Trp Asn Leu Ser Asn Pro Asp Pro
                                   10
Thr Ser Ser Glu Tyr
            20
<210> 299
<211> 1794
<212> PRT
<213> Homo sapiens
<400> 299
Met Glu His Ile Thr Lys Ile Pro Asn Glu Ala Ala His Arg Gly Thr
```

Ile Arg Pro Val Lys Gly Pro Gln Thr Ser Thr Ser Pro Ala Ser Pro 20 25 30

Lys Gly Leu His Thr Gly Gly Thr Lys Arg Met Glu Thr Thr Thr Thr 35 40 45

Ala Leu Lys Thr Thr Thr Thr Ala Leu Lys Thr Thr Ser Arg Ala Thr 50 55 60

Leu Thr Thr Ser Val Tyr Thr Pro Thr Leu Gly Thr Leu Thr Pro Leu 65 70 75 80

Asn Ala Ser Arg Gln Met Ala Ser Thr Ile Leu Thr Glu Met Met Ile 85 90 95

Thr Thr Pro Tyr Val Phe Pro Asp Val Pro Glu Thr Thr Ser Ser Leu 100 105 110

Ala Thr Ser Leu Gly Ala Glu Thr Ser Thr Ala Leu Pro Arg Thr Thr 115 120 125

Pro Ser Val Leu Asn Arg Glu Ser Glu Thr Thr Ala Ser Leu Val Ser 130 135 140

Arg Ser Gly Ala Glu Arg Ser Pro Val Ile Gln Thr Leu Asp Val Ser 145 150 155 160

Ser Ser Glu Pro Asp Thr Thr Ala Ser Trp Val Ile His Pro Ala Glu 165 170 175

Thr Ile Pro Thr Val Ser Lys Thr Thr Pro Asn Phe Phe His Ser Glu 180 185 190

Leu Asp Thr Val Ser Ser Thr Ala Thr Ser His Gly Ala Asp Val Ser 195 200 205

Ser Ala Ile Pro Thr Asn Ile Ser Pro Ser Glu Leu Asp Ala Leu Thr 210 215 220

Pro Leu Val Thr Ile Ser Gly Thr Asp Thr Ser Thr Thr Phe Pro Thr 225 230 235 240

Leu Thr Lys Ser Pro His Glu Thr Glu Thr Arg Thr Thr Trp Leu Thr 250 His Pro Ala Glu Thr Ser Ser Thr Ile Pro Arg Thr Ile Pro Asn Phe 265 Ser His His Glu Ser Asp Ala Thr Pro Ser Ile Ala Thr Ser Pro Gly 275 280 Ala Glu Thr Ser Ser Ala Ile Pro Ile Met Thr Val Ser Pro Gly Ala 290 Glu Asp Leu Val Thr Ser Gln Val Thr Ser Ser Gly Thr Asp Arg Asn 310 305 Met Thr Ile Pro Thr Leu Thr Leu Ser Pro Gly Glu Pro Lys Thr Ile 325 Ala Ser Leu Val Thr His Pro Glu Ala Gln Thr Ser Ser Ala Ile Pro 340 Thr Ser Thr Ile Ser Pro Ala Val Ser Arg Leu Val Thr Ser Met Val 360 355 Thr Ser Leu Ala Ala Lys Thr Ser Thr Thr Asn Arg Ala Leu Thr Asn 375 370 Ser Pro Gly Glu Pro Ala Thr Thr Val Ser Leu Val Thr His Pro Ala 390 395 385 Gln Thr Ser Pro Thr Val Pro Trp Thr Thr Ser Ile Phe Phe His Ser 410 405 Lys Ser Asp Thr Thr Pro Ser Met Thr Thr Ser His Gly Ala Glu Ser 430 425 Ser Ser Ala Val Pro Thr Pro Thr Val Ser Thr Glu Val Pro Gly Val · 440

Val Thr Pro Leu Val Thr Ser Ser Arg Ala Val Ile Ser Thr Thr Ile 450 455 460

Pro Ile Leu Thr Leu Ser Pro Gly Glu Pro Glu Thr Thr Pro Ser Met 465 470 475 480

Ala Thr Ser His Gly Glu Glu Ala Ser Ser Ala Ile Pro Thr Pro Thr 485 490 495

Val Ser Pro Gly Val Pro Gly Val Val Thr Ser Leu Val Thr Ser Ser 500 505 510

Arg Ala Val Thr Ser Thr Thr Ile Pro Ile Leu Thr Phe Ser Leu Gly 515 520 525

Glu Pro Glu Thr Thr Pro Ser Met Ala Thr Ser His Gly Thr Glu Ala 530 535 540

Gly Ser Ala Val Pro Thr Val Leu Pro Glu Val Pro Gly Met Val Thr 545 550 555 560

Ser Leu Val Ala Ser Ser Arg Ala Val Thr Ser Thr Thr Leu Pro Thr 565 570 575

Leu Thr Leu Ser Pro Gly Glu Pro Glu Thr Thr Pro Ser Met Ala Thr 580 585 590

Ser His Gly Ala Glu Ala Ser Ser Thr Val Pro Thr Val Ser Pro Glu 595 600 605

Val Pro Gly Val Val Thr Ser Leu Val Thr Ser Ser Ser Gly Val Asn 610 615 620

Ser Thr Ser Ile Pro Thr Leu Ile Leu Ser Pro Gly Glu Leu Glu Thr 625 630 635 640

Thr Pro Ser Met Ala Thr Ser His Gly Ala Glu Ala Ser Ser Ala Val 645 650 655

Pro Thr Pro Thr Val Ser Pro Gly Val Ser Gly Val Val Thr Pro Leu 660 665 670

Val Thr Ser Ser Arg Ala Val Thr Ser Thr Thr Ile Pro Ile Leu Thr Leu Ser Ser Ser Glu Pro Glu Thr Thr Pro Ser Met Ala Thr Ser His Gly Val Glu Ala Ser Ser Ala Val Leu Thr Val Ser Pro Glu Val Pro Gly Met Val Thr Ser Leu Val Thr Ser Ser Arg Ala Val Thr Ser Thr Thr Ile Pro Thr Leu Thr Ile Ser Ser Asp Glu Pro Glu Thr Thr Thr Ser Leu Val Thr His Ser Glu Ala Lys Met Ile Ser Ala Ile Pro Thr Leu Ala Val Ser Pro Thr Val Gln Gly Leu Val Thr Ser Leu Val Thr Ser Ser Gly Ser Glu Thr Ser Ala Phe Ser Asn Leu Thr Val Ala Ser Ser Gln Pro Glu Thr Ile Asp Ser Trp Val Ala His Pro Gly Thr Glu Ala Ser Ser Val Val Pro Thr Leu Thr Val Ser Thr Gly Glu Pro Phe Thr Asn Ile Ser Leu Val Thr His Pro Ala Glu Ser Ser Ser Thr Leu Pro Arg Thr Thr Ser Arg Phe Ser His Ser Glu Leu Asp Thr Met Pro Ser Thr Val Thr Ser Pro Glu Ala Glu Ser Ser Ser Ala Ile Ser Thr

Thr Ile Ser Pro Gly Ile Pro Gly Val Leu Thr Ser Leu Val Thr Ser 885 890 895

Ser Gly Arg Asp Ile Ser Ala Thr Phe Pro Thr Val Pro Glu Ser Pro 900 905 910

His Glu Ser Glu Ala Thr Ala Ser Trp Val Thr His Pro Ala Val Thr 915 920 925

Ser Thr Thr Val Pro Arg Thr Thr Pro Asn Tyr Ser His Ser Glu Pro 930 935 940

Asp Thr Thr Pro Ser Ile Ala Thr Ser Pro Gly Ala Glu Ala Thr Ser 945 955 960

Asp Phe Pro Thr Ile Thr Val Ser Pro Asp Val Pro Asp Met Val Thr 965 970 975

Ser Gln Val Thr Ser Ser Gly Thr Asp Thr Ser Ile Thr Ile Pro Thr 980 985 990

Leu Thr Leu Ser Ser Gly Glu Pro Glu Thr Thr Thr Ser Phe Ile Thr 995 1000 1005

Tyr Ser Glu Thr His Thr Ser Ser Ala Ile Pro Thr Leu Pro Val 1010 1015 1020

Ser Pro Gly Ala Ser Lys Met Leu Thr Ser Leu Val Ile Ser Ser 1025 1030 1035

Gly Thr Asp Ser Thr Thr Thr Phe Pro Thr Leu Thr Glu Thr Pro 1040 1045 1050

Tyr Glu Pro Glu Thr Thr Ala Ile Gln Leu Ile His Pro Ala Glu 1055 1060 1065

Thr Asn Thr Met Val Pro Arg Thr Thr Pro Lys Phe Ser His Ser 1070 1075 1080

Lys Ser Asp Thr Thr Leu Pro Val Ala Ile Thr Ser Pro Gly Pro 1085

Glu	Ala 1100	Ser	Ser	Ala	Val	Ser 1105	Thr	Thr	Thr	Ile	Ser 1110	Pro	Asp	Met
Ser	Asp 1115	Leu	Val	Thr	Ser	Leu 1120	Val	Pro	Ser	Ser	Gly 1125	Thr	Asp	Thr
Ser	Thr 1130	Thr	Phe	Pro	Thr	Leu 1135	Ser	Glu	Thr	Pro	Tyr 1140	Glu	Pro	Glu
Thr	Thr 1145		Thr	Trp		Thr 1150		Pro	Ala		Thr 1155	Ser	Thr	Thr
Val	Ser 1160	Gly	Thr	Ile	Pro	Asn 1165	Phe	Ser	His	Arg	Gly 1170	Ser	Asp	Thr
	1175					1180					Thr 1185			
	1190					1195					Gly 1200			
	1205					1210					Thr 1215			
	1220					1225					Thr 1230			
	1235					1240					Val 1245			
	1250					1255					Ser 1260			
	1265					1270					Thr 1275			
Phe	Ser 1280		Ser	Ser	Pro	Asp 1285		Thr	Pro	Val	Met 1290		rnr	ser

Pro	Arg 1295		Glu	Ala	Ser	Ser 1300		Val	Leu	Thr	Thr 1305		Ser	Pro
Gly	Ala 1310	Pro	Glu	Met	Val	Thr 1315		Gln	Ile	Thr	Ser 1320	Ser	Gly	Ala
Ala	Thr 1325		Thr	Thr	Val	Pro 1330	Thr	Leu	Thr	His	Ser 1335	Pro	Gly	Met
Pro	Glu 1340	Thr	Thr	Ala	Leu	Leu 1345		Thr	His	Pro	Arg 1350	Thr	Glu	Thr
Ser	Lys 1355		Phe	Pro	Ala	Ser 1360	Thr	Val	Phe	Pro	Gln 1365	Val	Ser	Glu
Thr	Thr 1370	Ala	Ser	Leu	Thr	Ile 1375		Pro	Gly	Ala	Glu 1380	Thr	Ser	Thr
Ala	Leu 1385	Pro	Thr	Gln	Thr	Thr 1390	Ser	Ser	Leu	Phe	Thr 1395	Leu	Leu	Val
Thr	Gly 1400	Thr	Ser	Arg	Val	Asp 1405	Leu	Ser	Pro		Ala 1410	Ser	Pro	Gly
Val	Ser 1415	Ala	Lys	Thr	Ala	Pro 1420	Leu	Ser	Thr	His	Pro 1425	Gly	Thr	Glu
Thr	Ser 1430	Thr	Met	Ile	Pro	Thr 1435	Ser	Thr	Leu		Leu 1440	Gly	Leu	Leu
Glu						Ala 1450							Thr	Ser
Thr	Ser 1460	Thr	Leu	Thr	Leu	Thr 1465	Val	Ser	Pro	Ala	Val 1470	Ser	Gly	Leu
Ser	Ser 1475	Ala	Ser	Ile	Thr	Thr 1480	Asp	Lys	Pro	Gln	Thr 1485	Val	Thr	Ser
Trp	Asn 1490	Thr	Glu	Thr	Ser	Pro 1495	Ser	Val	Thr	Ser	Val 1500	Gly	Pro	Pro

ς

375

also be employed in the present invention.

water and water abserbing, and the like! S Collifications of falsh polyments than synthetic hydrophobic polymers modified by making these polymers insoluble in no lating the Lating polyecter, and sodium polyaciviate, natural or set. Bin BLA Lating the Lating polyamide, polyagrejamide, polyethylene igrige, polyvinyl pyridyliugrejaslide, ςz casein, cation starch, natural resins such as gum arabic and sodium alginate, Ser Pro Thr Thr Ile Leu Arg Thr Thr Met Val Glu Ala Thr Asn Brombs sncp se program or carpoxy, cellulose polymers, starch, gelating and second starch, gelating and second polyvinyl alcohol, acrylic polymers, copolymers which possess hydrophilic be क्षिमाण्डी कर्म हार्या कार्य मार्था पट मित्र कार्य मार्थ पट में कार्य कार् at least one cationic resin, or a combination thereof. Hydrophilic polymers may 70 The diese coating dayer comprises at beset one hydrophilic polyment 1565 wound rod, or any conventional coating method. can the application the substrate by freange of a feller coalet, a senifercater, with substantially non-porous layer. Coating compositions of the first coating layer sudyor dye or pignated to substantial to substantia ۶ĭ may not be particularly limited if they function to absorb and capturge the ink properties compatible to the ink. The polymers comprising the first coating layer gnillaws our trib the bro yrs the set the bro Ars the set the set the bro Ard Liberth and bro Bris and bro Bris and Bris comprise a light-transmissive polymer or resin capable of absorbing the ink beather the against the state of the special of the special sp 10 be view through the substrate, both the substrate and the first coating layer should absorptivitasedempleyed in the trendoching layer. PM contine printed in ter dye or pigment in the ink. Organic polymers with good water and solvent

Asoinalicated above, the firstscoating layer is substantially non-porous and comprises at least one hydrophilic polymer. Accordingly, the first coating layer has the state one hydrophilic polymer. Accordingly, the first coating layer has the state of the state of the first coating layer has the state of the first coating layer has the state of the first coating layer has the state of the first coating layer has the state of the first coating layer has the state of the first coating layer has the state of the first coating layer has the state of the first coating layer has the state of the first coating layer has the state of the state of the first coating layer has the state of the first coating layer has the state of the s

commonly employed in backlin printing, and avoid in minimize bleeding or the

FIRST COATING LAYER

Leu Phe Arg Asn Ser Ser Leu Glu Tyr Leu Tyr Ser Gly Cys Arg

Leu Ala Ser Leu Arg Pro Glu Lys Asp Ser Ser Ala Met Ala Val 1700 1705 1710

Asp Ala Ile Cys Thr His Arg Pro Asp Pro Glu Asp Leu Gly Leu 1715 1720 1725

Asp Arg Glu Arg Leu Tyr Trp Glu Leu Ser Asn Leu Thr Asn Gly 1730 1735 1740

Ile Gln Glu Leu Gly Pro Tyr Thr Leu Asp Arg Asn Ser Leu Tyr 1745 1750 1755

Val Asn Gly Phe Thr His Arg Ser Ser Met Pro Thr Thr Ser Thr 1760 1765 1770

Pro Gly Thr Ser Thr Val Asp Val Gly Thr Ser Gly Thr Pro Ser 1775 1780 1785

Ser Ser Pro Ser Pro Thr 1790

<210> 300

<211> 284

<212> PRT

<213> Homo sapiens

<400> 300

Ile Thr Leu Leu Arg Asp Ile Gln Asp Lys Val Thr Thr Leu Tyr Lys 1 5 10 15

Gly Ser Gln Leu His Asp Thr Phe Arg Phe Cys Leu Val Thr Asn Leu 20 25 30

Thr Met Asp Ser Val Leu Val Thr Val Lys Ala Leu Phe Ser Ser Asn 35 40 45

Leu Asp Pro Ser Leu Val Glu Gln Val Phe Leu Asp Lys Thr Leu Asn 50 55 60

Ala 65	Ser	Phe	His	Trp	Leu 70	Gly	Ser	Thr	Tyr	Gln 75	Leu	Val	Asp	Ile	His 80
Val	Thr	Glu	Met	Glu 85	Ser	Ser	Val	Tyr	Gln 90	Pro	Thr	Ser	Ser	Ser 95	Ser
Thr	Gln	His	Phe 100	Tyr	Leu	Asn	Phe	Thr 105	Ile	Thr	Asn	Leu	Pro 110	Tyr	Ser
Gln	Asp	Lys 115	Ala	Gln	Pro	Gly	Thr 120	Thr	Asn	Tyr	Gln	Arg 125	Asn	Lys	Arg
Asn	Ile 130	Glu	Asp	Ala	Leu	Asn 135	Gln	Leu	Phe	Arg	Asn 140	Ser	Ser	Ile	Lys
Ser 145	Tyr	Phe	Ser	Asp	Cys 150	Gln	Val	Ser	Thr	Phe 155	Arg	Ser	Val	Pro	Asn 160
Arg	His	His	Tḥr	Gly 165	Val	Asp	Ser	Leu	Cys 170	Asn	Phe	Ser	Pro	Leu 175	Ala
Arg	Arg	Val	Asp 180	Arg	Val	Ala	Ile	Tyr 185	Glu	Glu	Phe	Leu	Arg 190	Met	Thr
Arg	Asn	Gly 195	Thr	Gln	Leu	Gln	Asn 200	Phe	Thr	Leu	Asp	Arg 205	Ser	Ser	Val
Leu	Val 210	Asp	Gly	Tyr	Ser	Pro 215	Asn	Arg	Asn	Glu	Pro 220	Leu	Thr	Gly	Asn
Ser 225	Asp	Leu	Pro	Phe	Trp 230	Ala	Val	Ile	Leu	Ile 235	Gly	Leu	Ala	Gly	Leu 240
Leu	Gly	Leu	Ile	Thr 245	Суз	Leu	Ile	Cys	Gly 250	Val	Leu	Val	Thr	Thr 255	Arg
Arg	Arg	Lys	Lys 260	Glu	Gly	Glu	Tyr	Asn 265	Val	Gln	Gln	Gln	Cys 270	Pro	Gly

Tyr Tyr Gln Ser His Leu Asp Leu Glu Asp Leu Gln 275 280

<210> 301

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic primer

<400> 301

gtctctatgt caatggtttc accc

24

<210> 302

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic primer

<400> 302

tagctgctct ctgtccagtc c

21

<210> 303

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic primer

	303 ggtc accacactct ac	22
<210>	304	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400> gcagato	304 cete caggtetagg tgtg	24
<210>	305	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	
<400> gtctcta	305 atgt caatggtttc accc	24
<210>	306	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic primer	

WO 02/083866

<400> 306 tagetgetet etgtecagte e	21
<210> 307	
<211> 468	
<212> DNA	
<213> Homo sapiens	
<400> 307 actgctggcc ctctcctggt gccattcacc ctcaacttca ccatcaccaa cctgcagtat	60
gaggaggaca tgcatcgccc tggatctagg aagttcaaca ccacagagag ggtcctgcag	120
ggtctgctta gtcccatatt caagaacacc agtgttggcc ctctgtactc tggctgcaga	180
ctgacctctc tcaggtctga gaaggatgga gcagccactg gagtggatgc catctgcatc	240
catcatcttg accccaaaag ccctggactc aacagagagc ggctgtactg ggagctgagc	300
cgactgacca atggcatcaa agagctgggc ccctacaccc tggacaggaa cagtctctat	360
gtcaatggtt tcacccatcg gacctctgtg cccaccacca gcactcctgg gacctccaca	420
gtggaccttg gaacctcagg gactccattc tccctcccaa gccccgca	468
<210> 308	
<211> 156	
<212> PRT	
<213> Homo sapiens	
<400> 308	
Thr Ala Gly Pro Leu Leu Val Pro Phe Thr Leu Asn Phe Thr Ile Thr 1 5 10 15	
Asn Leu Gln Tyr Glu Glu Asp Met His Arg Pro Gly Ser Arg Lys Phe 20 25 30	
Asn Thr Thr Glu Arg Val Leu Gln Gly Leu Leu Ser Pro Ile Phe Lys 35 40 45	

Asn Thr Ser Val Gly Pro Leu Tyr Ser Gly Cys Arg Leu Thr Ser Leu 50 55 60

Arg Ser Glu Lys Asp Gly Ala Ala Thr Gly Val Asp Ala Ile Cys Ile 65 70 75 80

His His Leu Asp Pro Lys Ser Pro Gly Leu Asn Arg Glu Arg Leu Tyr 85 90 95

Trp Glu Leu Ser Arg Leu Thr Asn Gly Ile Lys Glu Leu Gly Pro Tyr 100 105 110

Thr Leu Asp Arg Asn Ser Leu Tyr Val Asn Gly Phe Thr His Arg Thr 115 120 125

Ser Val Pro Thr Thr Ser Thr Pro Gly Thr Ser Thr Val Asp Leu Gly 130 140

Thr Ser Gly Thr Pro Phe Ser Leu Pro Ser Pro Ala 145 150 155

<210> 309

<211> 31497

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (205)..(31497)

<223>

<400> 309
aagcgttgca caattccccc aacctccata catacggcag ctcttctaga cacaggtttt 60
cccaggtcaa atgcggggac cccagccata tctcccaccc tgagaaattt tggagtttca 120

ggga	agct	cag	aagc	tctg	ca g	aggc	caco	c to	tctg	aggg	gat	tctt	ctt	agac	ctcca	t	180
cca	gagg	caa	atgt	tgac	ct g			ctg Leu									231
tca Ser 10	tct Ser	tct Ser	ccc Pro	acc Thr	cgc Arg 15	tcc Ser	ttg Leu	atg Met	aca Thr	ggg Gly 20	g ago Ser	agg Arg	ago Ser	act Thr	aaa Lys 25		279
gcc Ala	aca Thr	cca Pro	gaa Glu	atg Met 30	gat Asp	tca Ser	gga Gly	ctg Leu	aca Thr 35	gga Gly	gco Ala	acc Thr	Leu	tca Ser 40	cct Pro		327
aag Lys	aca Thr	tct Ser	aca Thr 45	ggt Gly	gca Ala	atc Ile	gtg Val	gtg Val 50	aca Thr	gaa Glu	cat His	act Thr	ctg Leu 55	ccc Pro	ttt Phe		375
act Thr	tcc Ser	cca Pro 60	gat Asp	aag Lys	acc Thr	ttg Leu	gcc Ala 65	agt Ser	cct Pro	aca Thr	tct Ser	tcg Ser 70	gtt Val	gtg Val	gga Gly		423
aga Arg	acc Thr 75	acc Thr	cag Gln	tct Ser	ttg Leu	80 GJA aaa	gtg Val	atg Met	tcc Ser	tct Ser	gct Ala 85	ctc Leu	cct Pro	gag Glu	tca Ser		471
acc Thr 90	tct Ser	aga Arg	gga Gly	atg Met	aca Thr 95	cac His	tcc Ser	gag Glu	caa Gln	aga Arg 100	Thr	agc Ser	cca Pro	tcg Ser	ctg Leu 105		519
agt Ser	ccc Pro	cag Gln	gtc Val	aat Asn 110	gga Gly	act Thr	ccc Pro	tct Ser	agg Arg 115	Asn	tac Tyr	cct Pro	gct Ala	aca Thr 120		•	567
atg Met	gtt Val	tca Ser	gga Gly 125	ttg Leu	agt Ser	tcc Ser	cca Pro	agg Arg 130	acc Thr	agg Arg	acc Thr	agt Ser	tcc Ser 135	Thr	gaa Glu		615
gga Gly	aat Asn	ttt Phe 140	acc Thr	aaa Lys	gaa Glu	gca Ala	tct Ser 145	aca Thr	tac Tyr	aca Thr	ctc Leu	act Thr 150	gta Val	gag Glu	acc Thr		663
aca Thr	agt Ser 155	ggc Gly	cca Pro	gtc Val	act Thr	gag Glu 160	aag Lys	tac Tyr	aca Thr	gtc Val	ccc Pro 165	Thr	gag Glu	acc Thr	tca Ser		711
aca Thr 170	act Thr	gaa Glu	ggt Gly	gac Asp	agc Ser 175	aca Thr	gag Glu	acc Thr	ccc Pro	tgg Trp 180	gac Asp	aca Thr	aga Arg	tat Tyr	att Ile 185		759
cct Pro	gta Val	aaa Lys	atc Ile	aca Thr 190	tct Ser	cca Pro	atg Met	aaa Lys	aca Thr 195	ttt Phe	gca Ala	gat Asp	tca Ser	act Thr 200	gca Ala		807

tcc Ser	aag Lys	gaa Glu	aat Asn 205	gcc Ala	cca Pro	gtg Val	tct Ser	atg Met 210	act Thr	cca Pro	gct Ala	gag Glu	acc Thr 215	aca Thr	gtt Val	855
act Thr	gac Asp	tca Ser 220	cat His	act Thr	cca Pro	gga Gly	agg Arg 225	aca Thr	aac Asn	cca Pro	tca Ser	ttt Phe 230	ggg Gly	aca Thr	ctt Leu	903
tat Tyr	tct Ser 235	tcc Ser	ttc Phe	ctt Leu	gac Asp	cta Leu 240	tca Ser	cct Pro	aaa Lys	ggg ggg	acc Thr 245	cca Pro	aat Asn	tcc Ser	aga Arg	951
ggt Gly 250	gaa Glu	aca Thr	agc Ser	ctg Leu	gaa Glu 255	ctg Leu	att Ile	cta Leu	tca Ser	acc Thr 260	act Thr	gga Gly	tat Tyr	ccc Pro	ttc Phe 265	999
tcc Ser	tct Ser	cct Pro	gaa Glu	cct Pro 270	ggc Gly	tct Ser	gca Ala	gga Gly	cac His 275	agc Ser	aga Arg	ata Ile	agt Ser	acc Thr 280	agt Ser	1047
gcg Ala	cct Pro	ttg Leu	tca Ser 285	tca Ser	tct Ser	gct Ala	tca Ser	gtt Val 290	ctc Leu	gat Asp	aat Asn	aaa Lys	ata Ile 295	tca Ser	gag Glu	1095
acc Thr	agc Ser	ata Ile 300	ttc Phe	tca Ser	ggc Gly	cag Gln	agt Ser 305	ctc Leu	acc Thr	tcc Ser	cct Pro	ctg Leu 310	tct Ser	cct Pro	GJ y ggg	1143
gtg Val	ccc Pro 315	gag Glu	gcc Ala	aga Arg	gcc Ala	agc Ser 320	aca Thr	atg Met	ccc Pro	aac Asn	tca Ser 325	gct Ala	atc Ile	cct Pro	ttt Phe	1191
tcc Ser 330	atg Met	aca Thr	cta Leu	agc Ser	aat Asn 335	gca Ala	gaa Glu	aca Thr	agt Ser	gcc Ala 340	gaa Glu	agg Arg	gtc Val	aga Arg	agc Ser 345	1239
aca Thr	att	tcc Ser	tct Ser	ctg Leu 350	Gly	act Thr	cca Pro	tca Ser	ata Ile 355	tcc Ser	aca Thr	aag Lys	cag Gln	aca Thr 360	gca Ala	1287
gag Glu	act Thr	atc Ile	ctt Leu 365	acc Thr	ttc Phe	cat His	gcc Ala	ttc Phe 370	Ala	gag Glu	acc Thr	atg Met	gat Asp 375	ata Ile	ccc Pro	1335
agc Ser	acc Thr	cac His 380	ata Ile	gcc Ala	aag Lys	act Thr	ttg Leu 385	gct Ala	tca Ser	gaa Glu	tgg Trp	ttg Leu 390	gga Gly	agt Ser	cca Pro	1383
ggt Gly	acc Thr 395	Leu	ggt Gly	ggc Gly	acc Thr	agc Ser 400	act Thr	tca Ser	gcg Ala	ctg Leu	aca Thr 405	acc Thr	aca Thr	tct Ser	cca Pro	1431
tct	acc	act	tta	gtc	tca	gag	gag	acc	aac	acc	cat	cac	tcc	acg	agt	1479

Ser 410	Thr	Thr	Leu	Val	Ser 415	Glu	Glu	Thr	Asn	Thr 420	His	His	Ser	Thr	Ser 425	
gga Gly	aag Lys	gaa Glu	aca Thr	gaa Glu 430	gga Gly	act Thr	ttg Leu	aat Asn	aca Thr 435	tct Ser	atg Met	act Thr	cca Pro	ctt Leu 440	gag Glu	1527
acc Thr	tct Ser	gct Ala	cct Pro 445	gga Gly	gaa Glu	gag Glu	tcc Ser	gaa Glu 450	atg Met	act Thr	gcc Ala	acc Thr	ttg Leu 455	gtc Val	ccc Pro	1575
act Thr	cta Leu	ggt Gly 460	ttt Phe	aca Thr	act Thr	ctt Leu	gac Asp 465	agc Ser	aag Lys	atc Ile	aga Arg	agt Ser 470	cca Pro	tct Ser	cag Gln	1623
gtc Val	tct Ser 475	tca Ser	tcc Ser	cac His	cca Pro	aca Thr 480	aga Arg	gag Glu	ctc Leu	aga Arg	acc Thr 485	aca Thr	ggc Gly	agc Ser	acc Thr	1671
tct Ser 490	ggg Gly	agg Arg	cag Gln	agt Ser	tcc Ser 495	agc Ser	aca Thr	gct Ala	gcc Ala	cac His 500	ej A aaa	agc Ser	tct Ser	gac Asp	atc Ile 505	1719
ctg Leu	agg Arg	gca Ala	acc Thr	act Thr 510	tcc Ser	agc Ser	acc Thr	tca Ser	aaa Lys 515	gca Ala	tca Ser	tca Ser	tgg Trp	acc Thr 520	agt Ser	1767
gaa Glu	agc Ser	aca Thr	gct Ala 525	cag Gln	caa Gln	ttt Phe	agt Ser	gaa Glu 530	ccc Pro	cag Gln	cac His	aca Thr	cag Gln 535	tgg Trp	gtg Val	1815
gag Glu	aca Thr	agt Ser 540	cct Pro	agc Ser	atg Met	aaa Lys	aca Thr 545	gag Glu	aga Arg	ccc Pro	cca Pro	gca Ala 550	tca Ser	acc Thr	agt Ser	1863
gtg Val	gca Ala 555	gcc Ala	cct Pro	atc Ile	acc Thr	act Thr 560	tct Ser	gtt Val	ccc Pro	tca Ser	gtg Val 565	gtc Val	tct Ser	Gly ggc	ttc Phe	1911
acc Thr 570	acc Thr	ctg Leu	aag Lys	acc Thr	agc Ser 575	tcc Ser	aca Thr	aaa Lys	ggg Gly	att Ile 580	tgg Trp	ctt Leu	gaa Glu	gaa Glu	aca Thr 585	1959
tct Ser	gca Ala	gac Asp	aca Thr	ctc Leu 590	atc Ile	gga Gly	gaa Glu	tcc Ser	aca Thr 595	gct Ala	ggc Gly	cca Pro	acc Thr	acc Thr 600	cat His	2007
cag Gln	ttt Phe	gct Ala	gtt Val 605	ccc Pro	act Thr	G1 y ggg	att Ile	tca Ser 610	atg Met	aca Thr	gga Gly	ggc Gly	agc Ser 615	agc Ser	acc Thr	2055
agg Arg	gga Gly	agc Ser 620	cag Gln	ggc Gly	aca Thr	acc Thr	cac His 625	cta Leu	ctc Leu	acc Thr	aga Arg	gcc Ala 630	aca Thr	gca Ala	tca Ser	2103

tct Ser	gag Glu 635	aca Thr	tcc Ser	gca Ala	gat Asp	ttg Leu 640	act Thr	ctg Leu	gcc Ala	acg Thr	aac Asn 645	ggt Gly	gtc Val	cca Pro	gtc Val	2151
tcc Ser 650	gtg Val	tct Ser	cca Pro	gca Ala	gtg Val 655	agc Ser	aag Lys	acg Thr	gct Ala	gct Ala 660	ggc Gly	tca Ser	agt Ser	cct Pro	cca Pro 665	2199
gga Gly	ggg Gly	aca Thr	aag Lys	cca Pro 670	tca Ser	tat Tyr	aca Thr	atg Met	gtt [°] Val 675	tct Ser	tct Ser	gtc Val	atc Ile	cct Pro 680	gag Glu	2247
aca Thr	tca Ser	tct Ser	cta Leu 685	cag Gln	tcc Ser	tca Ser	gct Ala	ttc Phe 690	agg Arg	gaa Glu	gga Gly	acc Thr	agc Ser 695	ctg Leu	gga Gly	2295
ctg Leu	act Thr	cca Pro 700	tta Leu	aac Asn	act Thr	aga Arg	cat His 705	ccc Pro	ttc Phe	tct Ser	tcc Ser	cct Pro 710	gaa Glu	cca Pro	gac Asp	2343
tct Ser	gca Ala 715	gga Gly	cac His	acc Thr	aag Lys	ata Ile 720	agc Ser	acc Thr	agc Ser	att Ile	cct Pro 725	ctg Leu	ttg Leu	tca Ser	tct Ser	2391
gct Ala 730	tca Ser	gtt Val	ctt Leu	gag Glu	gat Asp 735	aaa Lys	gtg Val	tca Ser	gcg Ala	acc Thr 740	agc Ser	aca Thr	ttc Phe	tca Ser	cac His 745	2439
cac His	aaa Lys	gcc Ala	acc Thr	tca Ser 750	tct Ser	att Ile	acc Thr	aca Thr	ggg Gly 755	act Thr	cct. Pro	gaa Glu	atc Ile	tca Ser 760	aca Thr	2487
aag Lys	aca Thr	aag Lys	ccc Pro 765	agc Ser	tca Ser	gcc Ala	gtt Val	ctt Leu 770	tcc Ser	tcc Ser	atg Met	acc Thr	cta Leu 775	agc Ser	aat Asn	2535
gca Ala	gca Ala	aca Thr 780	agt Ser	cct Pro	gaa Glu	aga Arg	gtc Val 785	aga Arg	aat Asn	gca Ala	act Thr	tcc Ser 790	cct Pro	ctg Leu	act Thr	2583
cat His	cca Pro 795	tct Ser	cca Pro	tca Ser	ggg Gly	gaa Glu 800	gag Glu	aca Thr	gca Ala	Gly	agt Ser 805	gtc Val	ctc Leu	act Thr	ctc Leu	2631
agc Ser 810	acc Thr	tct Ser	gct Ala	gag Glu	act Thr 815	aca Thr	gac Asp	tca Ser	cct Pro	aac Asn 820	atc Ile	cac His	cca Pro	act Thr	ggg Gly 825	2679
aca Thr	ctg Leu	act Thr	tca Ser	gaa Glu 830	tcg Ser	tca Ser	gag Glu	agt Ser	cct Pro 835	agc Ser	act Thr	ctc Leu	agc Ser	ctc Leu 840	cca Pro	2727
agt	gtc	tct	gga	gtc	aaa	acc	aca	ttt	tct	tca	tct	act	cct	tcc	act	2775

Ser	Val	Ser	Gly 845	Val	Lys	Thr	Thr	Phe 850	Ser	Ser	Ser	Thr	Pro 855	Ser	Thr	
cat His	cta Leu	ttt Phe 860	act Thr	agt Ser	gga Gly	gaa Glu	gaa Glu 865	aca Thr	gag Glu	gaa Glu	act Thr	tcg Ser 870	aat Asn	cca Pro	tct Ser	2823
gtg Val	tct Ser 875	caa Gln	cct Pro	gag Glu	act Thr	tct Ser 880	gtt Val	tcc Ser	aga Arg	gta Val	agg Arg 885	acc Thr	acc Thr	ttg Leu	gcc Ala	2871
agc Ser 890	acc Thr	tct Ser	gtc Val	cct Pro	acc Thr 895	cca Pro	gta Val	ttc Phe	ccc Pro	acc Thr 900	atg Met	gac Asp	acc Thr	tgg Trp	cct Pro 905	2919
aca Thr	cgt Arg	tca Ser	gct Ala	cag Gln 910	ttc Phe	tct Ser	tca Ser	tcc Ser	cac His 915	cta Leu	gtg Val	agt Ser	gag Glu	ctc Leu 920	aga Arg	2967
gct Ala	acg Thr	agc Ser	agt Ser 925	acc Thr	tca Ser	gtt Val	aca Thr	aac Asn 930	tca Ser	act Thr	ggt Gly	tca Ser	gct Ala 935	ctt Leu	cct Pro	3015
aaa Lys	ata Ile	tct Ser 940	cac His	ctc Leu	act Thr	ggg Gly	acg Thr 945	gca Ala	aca Thr	atg Met	tca Ser	cag Gln 950	acc Thr	aat Asn	aga Arg	3063
gac Asp	acg Thr 955	ttt Phe	aat Asn	gac Asp	tct Ser	gct Ala 960	gca Ala	ccc Pro	caa Gln	agc Ser	aca Thr 965	act Thr	tgg Trp	cca Pro	gag Glu :	3111
act Thr 970	agt Ser	ccc Pro	aga Arg	ttc Phe	aag Lys 975	aca Thr	ggg ggg	tta Leu	cct Pro	tca Ser 980	gca Ala	aca Thr	acc Thr	act Thr	gtt Val 985	3159
tca Ser	acc Thr	tct Ser	gcc Ala	act Thr 990	tct Ser	ctc Leu	tct Ser	gct Ala	act Thr 995	gta Val	atg Met	gtc Val	tct Ser	aaa Lys 1000		3207
act Thr	tct Ser	cca Pro	gca Ala 1005	Thr	agt Ser	tcc Ser	atg Met	gaa Glu 101	ı Al	a ac .a Th	et to ir Se	t at	e Ar	g g g G	gaa Slu	3252
cca Pro	tca Ser	aca Thr	acc Thr 1020	Ile	ctc Leu	aca Thr	aca Thr	gag Glu 102	Th	c ac	g aa ır As	t gg n Gl	y Pr	a g o G 30	gc Igc	3297
tct Ser	atg Met	gct Ala	gtg Val 1035	Ala	tct Ser	acc Thr	aac Asn	atc Ile 104	Pr	a at o Il	t gg .e Gl	a aa y Ly	s Gl	c t y T 45	ac 'yr	3342
att Ilė̇̃	act Thr	gaa Glu	gga Gly 1050	Arg	ttg Leu	gac Asp	aca Thr	agc Ser 105	Hi	t ct s Le	g cc u Pr	c at o Il	e Gl	а а у Т 60	cc hr	3387

aca Thr	gct Ala	tcc Ser	tct Ser 1065	gag Glu	aca Thr	tct Ser	atg Met	gat Asp 1070	ttt Phe	acc Thr	atg Met	gcc Ala	aaa Lys 1075	gaa Glu	3432
agt Ser	gtc Val	tca Ser	atg Met 1080	tca Ser	gta Val	tct Ser	cca Pro	tct Ser 1085	cag Gln	tcc Ser	atg Met	gat Asp	gct Ala 1090	gct Ala	3477
ggc Gly	tca Ser	agc Ser	act Thr 1095	cca Pro	gga Gly	agg Arg	aca Thr	agc Ser 1100	caa Gln	ttc Phe	gtt Val	gac Asp	aca Thr 1105	ttt Phe	3522
tct Ser	gat Asp	gat Asp	gtc Val 1110	tat Tyr	cat His	tta Leu	aca Thr	tcc Ser 1115	aga Arg	gaa Glu	att Ile	aca Thr	ata Ile 1120	cct Pro	3567
aga Arg	gat Asp	gga Gly	aca Thr 1125	agc Ser	tca Ser	gct Ala	ctg Leu	act Thr 1130	cca Pro	caa Gln	atg Met	act Thr	gca Ala 1135	act Thr	3612
cac His	cct Pro	cca Pro	tct Ser 1140	cct Pro	gat Asp	cct Pro	ggc	tct Ser 1145	gct Ala	aga Arg	agc Ser	acc Thr	tgg Trp 1150	ctt Leu	3657
			tcc Ser 1155		tct Ser	cct Pro	tct Ser	tct Ser 1160	cct Pro	act Thr	ccc Pro	aaa Lys	gtç Val 1165	aca Thr	3702
			aca Thr 1170		tca Ser	act Thr	cag Gln	aga Arg 1175	gtc Val	acc Thr	aca Thr	agc Ser	atg Met 1180	ata Ile	3747
atg Met	gac Asp	aca Thr	gtt Val 1185	gaa Glu	act Thr	agt Ser	cgg Arg	tgg Trp 1190	aac Asn	atg Met	ccc Pro	aac Asn	tta Leu 1195	cct Pro	3792
	_		tcc Ser 1200	ctg Leu	aca Thr	cca Pro	agt Ser	aat Asn 1205	att Ile	cca Pro	aca Thr	agt Ser	ggt Gly 1210	gcc Ala	3837
ata Ile	gga Gly	aaa Lys	agc Ser 1215	Thr	ctg Leu	gtt Val	ccc Pro	ttg Leu 1220	Asp	act Thr	cca Pro	tct Ser	cca Pro 1225	gcc Ala	3882
aca Thr	tca Ser	ttg Leu	gag Glu 1230	Ala	tca Ser	gaa Glu	GJ A GGG	gga Gly 1235	Leu	cca Pro	acc Thr	ctc Leu	agc Ser 1240	Thr	3927
tac Tyr	cct Pro	gaa Glu	tca Ser 1245	Thr	aac Asn	aca Thr	ccc Pro	agc Ser 1250	Ile	cac His	ctc Leu	gga Gly	gca Ala 1255	Hls	3972
gct	agt	tca	gaa	agt	cca	agc	acc	atc	aaa	ctt	acc	atg	gct	tca	4017

Ala	Ser	Ser	Glu 1260	Ser	Pro	Ser	Thr	Ile 1265		Leu	Thr	Met	Ala 1270	Ser	
gta Val	gta Val	aaa Lys	cct Pro 1275	ggc	tct Ser	tac Tyr	aca Thr	cct Pro 1280	ctc Leu	acc Thr	ttc Phe	ccc Pro	tca Ser 1285	Ile	4062
gag Glu	acc Thr	cac His	att Ile 1290	cat His	gta Val	tca Ser	aca Thr	gcc Ala 1295	aga Arg	atg Met	gct Ala	tac Tyr	tct Ser 1300	tct Ser	4107
Gly	tct Ser	tca Ser	cct Pro 1305	gag Glu	atg Met	aca Thr	gct Ala	cct Pro 1310	gga Gly	gag Glu	act Thr	aac Asn	act Thr 1315	ggt Gly	4152
agt Ser	acc Thr	tgg Trp	gac Asp 1320	ccc Pro	acc Thr	acc Thr	tac Tyr	atc Ile 1325					cct Pro 1330		4197
gat Asp	aca Thr	agt Ser	tca Ser 1335	gct Ala	cag Gln	gtc Val	tct Ser	aca Thr 1340					agg Arg 1345		4242
ctc Leu	aga Arg	acc Thr	aca Thr 1350	gaa Glu	aac Asn	cat His	cca Pro	aag Lys 1355	aca Thr	gag Glu	tcc Ser	gcc Ala	acc Thr 1360	cca Pro	4287
gct Ala	gct Ala	tac Tyr	tct Ser 1365	gga Gly	agt Ser	cct Pro	aaa Lys	atc Ile 1370	tca Ser	agt Ser	tca Ser	ccc Pro	aat Asn 1375	ctc Leu	4332
acc Thr	agt Ser	ccg Pro	gcc Ala 1380	aca Thr	aaa Lys	gca Ala	tgg Trp	acc Thr 1385	atc Ile	aca Thr	gac Asp	aca Thr	act Thr 1390	gaa Glu	4377
cac His	tcc Ser	act Thr	caa Gln 1395	tta Leu	cat His	tac Tyr	aca Thr	aaa Lys 1400	ttg Leu	gca Ala	gaa Glu	aaa Lys	tca Ser 1405	tct Ser	4422
gga Gly	ttt Phe	gag Glu	aca Thr 1410	cag Gln	tca Ser	gct Ala	Pro	gga Gly 1415	cct Pro	gtc Val	tct S'er	gta Val	gta Val 1420	atc Ile	4467
cct Pro	acc Thr	Ser	cct Pro 1425	acc Thr	att Ile	gga Gly	agc Ser	agc Ser 1430	aca Thr	ttg Leu	gaa Glu	cta Leu	act Thr 1435	tct Ser	4512
gat Asp	gtc Val	cca Pro	ggg Gly 1440	gaa Glu	ccc Pro	ctg Leu	Val	ctt Leu 1445	gct Ala	ccc Pro	agt Ser	gag Glu	cag Gln 1450	acc Thr	4557
aca Thr	atc Ile	Thr	ctc Leu 1455	ccc Pro	atg Met	gca Ala	Thr	tgg Trp 1460	ctg Leu	agt Ser	acc Thr	agt Ser	ttg Leu 1465	aca Thr	4602

gag Glu	gaa Glu	atg Met	gct Ala 1470	tca Ser	aca Thr	gac Asp	ctt Leu	gat Asp 1475	att Ile	tca Ser	agt Ser	cca Pro	agt Ser 1480	tca Ser	4647
ccc Pro	atg Met	agt Ser	aca Thr 1485	ttt Phe	gct Ala	att Ile	ttt Phe	cca Pro 1490	cct Pro	atg Met	tcc Ser	aca Thr	cct Pro 1495	tct Ser	4692
cat His	gaa Glu	ctt Leu	tca Ser 1500	aag Lys	tca Ser	gag Glu	gca Ala	gat Asp 1505	acc Thr	agt Ser	gcc Ala	att Ile	aga Arg 1510	aat Asn	4737
aca Thr	gat Asp	tca Ser	aca Thr 1515	acg Thr	ttg Leu	gat Asp	cag Gln	cac His 1520	cta Leu	gga Gly	atc Ile	agg Arg	agt Ser 1525	ttg Leu	4782
ggc Gly	aga Arg	act Thr	ggg Gly 1530	gac Asp	tta Leu	aca Thr	act Thr	gtt Val 1535	cct Pro	atc Ile	acc Thr	cca Pro	ctg Leu 1540	aca Thr	4827
acc Thr	acg Thr	tgg Trp	acc Thr 1545	agt Ser	gtg Val	att Ile	gaa Glu	cac His 1550	tca Ser	aca Thr	caa Gln	gca Ala	cag Gln 1555	gac Asp	4872
			gca Ala 1560	acg Thr	atg Met	agt Ser	cct Pro	act Thr 1565	cac His	gtg Val	aca Thr	cag Gln	tca Ser 1570	ctc Leu	4917
aaa Lys	gat Asp	caa Gln	aca Thr 1575	tct Ser	ata Ile	cca Pro	gcc Ala	tca Ser 1580	gca Ala	tcc Ser	cct Pro	tcc Ser	cat His 1585	ctt Leu	4962
								aca Thr 1595		ggg Gly	aga Arg	agc Ser	tcc Ser 1600	Ser	5007
gag Glu	gca Ala	acc Thr	act Thr 1605	ttt Phe	tgg Trp	aaa Lys	cca Pro	tct Ser 1610	aca Thr	gac Asp	aca Thr	ctg Leu	tcc Ser 1615	aga Arg	5052
gag Glu	att Ile	gag Glu	act Thr 1620	ggc Gly	cca Pro	aca Thr	aac Asn	att Ile 1625	Gln	tcc Ser	act Thr	cca Pro	ccc Pro 1630	Met	5097
gac Asp	aac Asn	aca Thr	aca Thr 1635	aca Thr	ggg Gly	agc Ser	agt Ser	agt Ser 1640	Ser	gga Gly	gtc Val	acc Thr	ctg Leu 1645	Gly	5142
ata Ile	gcc Ala	cac His	ctt Leu 1650	ccc Pro	ata Ile	gga Gly	aca Thr	tcc Ser 1655	Ser	cca Pro	gct Ala	gag Glu	aca Thr 1660	Ser	5187
aca	aac	atg	gca	ctg	gaa	aga	aga	agt	tct	aca	gcc	act	gtc	tct	5232

Thr	Asn	Met	Ala 1665		Glu	Arg	Arg	Ser 1670		Thr	Ala	Thr	Val 1675	Ser	
atg Met	gct Ala	Gly	aca Thr 1680	atg Met	gga Gly	ctc Leu	ctt Leu	gtt Val 1685	act Thr	agt Ser	gct Ala	cca Pro	gga Gly 1690	aga Arg	5277
agc Ser	atc Ile	agc Ser	cag Gln 1695	tca Ser	tta Leu	gga Gly	aga Arg	gtt Val 1700	Ser	tct Ser	gtc Val	ctt Leu	tct Ser 1705	gag Glu	5322
tca Ser	act Thr	act Thr	gaa Glu 1710	gga Gly	gtc Val	aca Thr	gat Asp	tct Ser 1715	agt Ser				agc Ser 1720		5367
agg Arg	ctg Leu	aac Asn	aca Thr 1725	cag Gln	gga Gly	aat Asn	aca Thr	gct Ala 1730	ctc Leu	tcc Ser	tcc Ser	tct Ser	ctt Leu 1735	gaa Glu	5412
ccc Pro	agc Ser	tat Tyr	gct Ala 1740	gaa Glu	gga Gly	agc Ser	cag Gln	atg Met 1745	agc Ser	aca Thr	agc Ser	atc Ile	cct Pro 1750	cta Leu	5457
			cct Pro 1755	aca Thr	act Thr	cct Pro	gat Asp	gtg Val 1760	gaa Glu	ttc Phe	ata Ile	G17 ggg	ggc Gly 1765	agc Ser	5502
aca Thr	ttt Phe	tgg Trp	acc Thr 1770	aag Lys	gag Glu	gtc Val	acc Thr	aca Thr 1775	gtt Val	atg Met	acc Thr	tca Ser	gac Asp 1780	atc Ile	5547
tcc Ser	aag Lys	tct Ser	tca Ser 1785	gca Ala	agg Arg	aca Thr	gag Glu	tcc Ser 1790					ctt Leu 1795	atg Met	5592
tcc Ser	aca Thr	gct Ala	ttg Leu 1800	gga Gly	agc Ser	act Thr	gaa Glu	aat Asn 1805					aaa Lys 1810	ctc Leu	5637
aga Arg	act Thr	gcc Ala						tct Ser 1820	cca Pro				atg Met 1825	gag Glu	5682
gtg Val	aca Thr	cca Pro	tgg Trp 1830	att Ile	tct Ser	ctc Leu	act Thr	ctc Leu 1835	agt Ser	aat Asn	gcc Ala	ccc Pro	aat Asn 1840	acc Thr	5727
aca Thr	gat Asp	tca Ser	ctt Leu 1845	gac Asp	ctc Leu	agc Ser	cat His	ggg Gly 1850	gtg Val	cac His	acc Thr	agc Ser	tct Ser 1855	gca Ala	5772
G] À ààà	act Thr	ttg Leu	gcc Ala 1860	act Thr	gac Asp	agg Arg	tca Ser	ttg Leu 1865	aat Asn	act Thr	ggt Gly	gtc Val	act Thr 1870	aga Arg	5817

gcc Ala	tcc Ser	aga Arg	ttg Leu 1875	gaa Glu	aac Asn	ggc Gly	tct Ser	gat Asp 1880	acc Thr	tct Ser	tct Ser	aag Lys	tcc Ser 1885	ctg Leu	5862
tct Ser	atg Met	gga Gly	aac Asn 1890	agc Ser	act Thr	cac His	act Thr	tcc Ser 1895	atg Met	act Thr	gac Asp	aca Thr	gag Glu 1900	aag Lys	5907
agt Ser	gaa Glu	gtg Val	tct Ser 1905	tct Ser	tca Ser	atc Ile	cat His	ccc Pro 1910	cga Arg	cct Pro	gag Glu	acc Thr	tca Ser 1915	gct Ala	5952
cct Pro	gga Gly	gca Ala	gag Glu 1920	acc Thr	act Thr	ttg Leu	act Thr	tcc Ser 1925	act Thr	cct Pro	gga Gly	aac Asn	agg Arg 1930	gcc Ala	5997
ata Ile	agc Ser	tta Leu	aca Thr 1935	ttg Leu	cct Pro	ttt Phe	tca Ser	tcc Ser 1940	att Ile	cca Pro	gtg Val	gaa Glu	gaa Glu 1945	gtc Val	6042
att Ile	tct Ser	aca Thr	ggc Gly 1950	ata Ile	acc Thr	tca Ser	gga Gly	cca Pro 1955	gac Asp	atc Ile	aac Asn	tca Ser	gca Ala 1960	ccc Pro	6087
atg Met	aca Thr	cat His	tct Ser 1965	ccc Pro	atc Ile	acc Thr	cca Pro	cca Pro 1970	aca Thr	att Ile	gta Val	tgg Trp	acc Thr 1975	agt Ser	6132
aca Thr	ggc	aca Thr	att Ile 1980	gaa Glu	cag Gln	tcc Ser	act Thr	caa Gln 1985	cca Pro	cta Leu	cat His	gca Ala	gtt Val 1990	tct Ser	6177
	_		gtt Val 1995	tct Ser	gtg Val	cag Gln	aca Thr	cag Gln 2000	tca Ser	act Thr	cca Pro	tat Tyr	gtc Val 2005	aac Asn	6222
			gtg Val 2010											tct Ser	6267
			agc Ser 2025										ctt Leu 2035		6312
			tcc Ser 2040						Asn				tcc Ser 2050		6357
			ctc Leu 2055						Thr				cca Pro 2065		6402
act	agt	tta	tct	gag	gca	ctg	tcc	tca	ggc	cat	tct	ggg	gtt	tca	6447

Thr	Ser	Leu	Ser 2070	Glu	Ala	Leu	Ser	Ser 2075		His	Ser	Gly	Val 2080	Ser	
aac Asn	cca Pro	agt Ser	tca Ser 2085	act Thr	acg Thr	act Thr	gaa Glu	ttt Phe 2090	cca Pro	ctc Leu	ttt Phe	tca Ser	gct Ala 2095	gca Ala	6492
tcc Ser	aca Thr	tct Ser	gct Ala 2100	gct Ala	aag Lys	caa Gln	aga Arg	aat Asn 2105	cca Pro	gaa Glu	aca Thr	gag Glu	acc Thr 2110	cat His	6537
ggt Gly	ccc Pro	cag Gln	aat Asn 2115	aca Thr	gcc Ala	gcg Ala	agt Ser	act Thr 2120	ttg Leu	aac Asn	act Thr	gat Asp	gca Ala 2125	tcc Ser	6582
tcg Ser	gtc Val	aca Thr	ggt Gly 2130	ctt Leu	tct Ser	gag Glu	act Thr	cct Pro 2135	gtg Val	ggg Gly	gca Ala	agt Ser	atc Ile 2140	agc Ser	6627
tct Ser	gaa Glu	gtc Val	cct Pro 2145	ctt Leu	cca Pro	atg Met	gcc Ala	ata Ile 2150	act Thr	tct Ser	aga Arg	tca Ser	gat Asp 2155	gtt Val	6672
tct Ser	ggc Gly	ctt Leu	aca Thr 2160	tct Ser	gag Glu	agt Ser	act Thr	gct Ala 2165	aac Asn	ccg Pro	agt Ser	tta Leu	ggc Gly 2170	aca Thr	6717
gcc Ala	tct Ser	tca Ser	gca Ala 2175	Gl À aaa	acc Thr	aaa Lys	tta Leu	act Thr 2180	agg Arg	aca Thr	ata Ile	tcc Ser	ctg Leu 2185	ccc Pro	6762
act Thr	tca Ser	gag Glu	tct Ser 2190	ttg Leu	gtt Val	tcc Ser	ttt Phe	aga Arg 2195	atg Met	aac Asn	aag Lys	gat Asp	cca Pro 2200	tgg Trp	6807
aca Thr	gtg Val	tca Ser	atc Ile 2205	cct Pro	ttg Leu	ggg Gly	tcc Ser	cat His 2210	cca Pro	act Thr	act Thr	aat Asn	aca Thr 2215	gaa Glu	6852
aca Thr	agc Ser	atc Ile	cca Pro 2220	gta Val	aac Asn	agc Ser	gca Ala	ggt Gly 2225	cca Pro	cct Pro	ggc Gly	ttg Leu	tcc Ser 2230	aca Thr	6897
gta Val	gca Ala	tca Ser	gat Asp 2235	gta Val	att Ile	gac Asp	aca Thr	cct Pro 2240	tca Ser	gat Asp	ggg Gly	gct Ala	gag Glu 2245	agt Ser	6942
att Ile	ccc Pro	act Thr	gtc Val 2250	tcc Ser	ttt Phe	tcc Ser	ccc Pro	tcc Ser 2255	cct Pro	gat Asp	act Thr	gaa Glu	gtg Val 2260	aca Thr	6987
act Thr	atc Ile	tca Ser	cat His 2265	ttc Phe	cca Pro	gaa Glu	Lys	aca Thr 2270	act Thr	cat His	tca Ser	Phe	aga Arg 2275	acc Thr	7032

att Ile	tca Ser	tct Ser	ctc Leu 2280	act Thr	cat His	gag Glu	ttg Leu	act Thr 2285	tca Ser	aga Arg	gtg Val	aca Thr	cct Pro 2290	att Ile	7077
			tgg Trp 2295	Met	agt Ser	tca Ser	gct Ala	atg Met 2300	tct Ser	aca Thr	aag Lys	ccc Pro	aca Thr 2305	gga Gly	7122
gcc Ala	agt Ser	ccc Pro	tcc Ser 2310	att Ile	aca Thr	ctg Leu	gga Gly	gag Glu 2315	aga Arg	agg Arg	aca Thr	atc Ile	acc Thr 2320	tct Ser	7167
gct Ala	gct Ala	cca Pro	acc Thr 2325	act Thr	tcc Ser	ccc Pro	ata Ile	gtt Val 2330	Leu	act Thr	gct Ala	agt Ser	ttc Phe 2335	aca Thr	7212
gag Glu	acc Thr	agc Ser	aca Thr 2340	gtt Val	tca Ser	ctg Leu	gat Asp	aat Asn 2345	gaa Glu	act Thr	aca Thr	gta Val	aaa Lys 2350	acc Thr	7257
tca Ser	gat Asp	atc Ile	ctt Leu 2355	gac Asp	gca Ala	cgg Arg	aaa Lys	aca Thr 2360	Asn	gag Glu	ctc Leu	ccc Pro	tca Ser 2365	gat Asp	7302
agc Ser	agt Ser	tct Ser	tct Ser 2370	tct Ser	gat Asp	ctg Leu	atc Ile	aac Asn 2375	acc Thr	tcc Ser	ata Ile	gct Ala	tct Ser 2380	tca Ser	7347
act Thr	atg Met	gat Asp	gtc Val 2385	act Thr	aaa Lys	aca Thr	gcc Ala	tcc Ser 2390	atc Ile	agt Ser	ccc Pro	act Thr	agc Ser 2395	atc Ile	7392
tca Ser	gga Gly	atg Met	aca Thr 2400	gca Ala	agt Ser	tcc Ser	tcc Ser	cca Pro 2405	tct Ser	ctc Leu	ttc Phe	tct Ser	tca Ser 2410	gat Asp	7437
aga Arg	ccc Pro	cag Gln	gtt Val 2415	ccc Pro	aca Thr	tct Ser	aca Thr	aca Thr 2420	gag Glu	aca Thr	aat Asn	aca Thr	gcc Ala 2425	acc Thr	7482
tct Ser	cca Pro	tct Ser	gtt Val 2430	tcc Ser	agt Ser	aac Asn	acc Thr	tat Tyr 2435	Ser	ctt Leu	gat Asp	ggg Gly	ggc Gly 2440	tcc Ser	7527
aat Asn	gtg Val	ggt Gly	ggc Gly 2445	act Thr	cca Pro	tcc Ser	act Thr	tta Leu 2450	Pro	ccc Pro	ttt Phe	aca Thr	atc Ile 2455	acc Thr	7572
cac His	cct Pro	gtc Val	gag Glu 2460	aca Thr	agc Ser	tcg Ser	gcc Ala	cta Leu 2465	Leu	gcc Ala	tgg Trp	tct Ser	aga Arg 2470	cca Pro	7617
gta	aga	act	ttc	agc	acc	atg	gtc	agc	act	gac	act	gcc	tcc	gga	7662

Val	Arg	Thr	Phe 2475		Thr	Met	Val	Ser 2480		Asp	Thr	Ala	Ser 2485	_	
gaa Glu	aat Asn	cct Pro	acc Thr 2490	tct Ser	agc Ser	aat Asn	tct Ser	gtg Val 2495	Val	act Thr	tct Ser	gtt Val	cca Pro 2500	Ala	7707
cca Pro	ggt Gly	aca Thr	tgg Trp 2505	acc Thr	agt Ser	gta Val	ggc Gly	agt Ser 2510	Thr	act Thr	gac Asp	tta Leu	cct Pro 2515	Āla	7752
atg Met	ggc Gly	ttt Phe	ctc Leu 2520	aag Lys	aca Thr	agt Ser	cct Pro	gca Ala 2525	Gly	gag Glu	gca Ala	cac His	tca Ser 2530	Leu	7797
cta Leu	gca Ala	tca Ser	act Thr 2535	att Ile	gaa Glu	cca Pro	gcc Ala	act Thr 2540	gcc Ala	ttc Phe	act Thr	ccc Pro	cat His 2545	ctc Leu	7842
tca Ser	gca Ala	gca Ala	gtg Val 2550	gtc Val	act Thr	gga Gly	tcc Ser	agt Ser 2555	gct Ala	aca Thr	tca Ser	gaa Glu	gcc Ala 2560	agt Ser	7887
ctt Leu	ctc Leu	act Thr	acg Thr 2565	agt Ser	gaa Glu	agc Ser	aaa Lys	gcc Ala 2570	att Ile	cat His	tct Ser	tca Ser	cca Pro 2575	cag Gln	7932
acc Thr	cca Pro	act Thr	aca Thr 2580	ccc Pro	acc Thr	tct Ser	gga Gly	gca Ala 2585	aac Asn	tgg Trp	gaa Glu	act Thr	tca Ser 2590	gct Ala	7977
act Thr	cct Pro	gag Glu	agc Ser 2595	ctt Leu	ttg Leu	gta Val	gtc Val	act Thr 2600	gag Glu	act Thr	tca Ser	gac Asp	aca Thr 2605	aca Thr	8022
ctt Leu	acc Thr	tca Ser	aag Lys 2610	att Ile	ttg Leu	gtc Val	aca Thr	gat Asp 2615	acc Thr	atc Ile	ttg Leu	ttt Phe	tca Ser 2620	act Thr	8067
gtg Val	tcc Ser	acg Thr	cca Pro 2625	cct Pro	Ser	aaa Lys	Phe	cca Pro 2630	Ser	acg Thr	gly ggg	act Thr	ctg Leu 2635	Ser	8112
gga Gly	gct Ala	tcc Ser	ttc Phe 2640	cct Pro	act Thr	tta Leu	ctc Leu	ccg Pro 2645	gac Asp	act Thr	cca Pro	gcc Ala	atc Ile 2650	cct Pro	8157
ctc Leu	act Thr	gcc Ala	act Thr 2655	gag Glu	cca Pro	aca Thr	agt Ser	tca Ser 2660	tta Leu	gct Ala	aca Thr	tcc Ser	ttt Phe 2665	gat Asp	8202
tcc Ser	acc Thr	Pro	ctg Leu 2670	gtg Val	act Thr	ata Ile	gct Ala	tcg Ser 2675	gat Asp	agt Ser	ctt Leu	ggc Gly	aca Thr 2680	gtc Val	8247

															•
			acc Thr 2685	ctg Leu	acc Thr	atg Met	tca Ser	gag Glu 2690	acc Thr	tca Ser	aat Asn	ggt Gly	gat Asp 2695	gca Ala	8292
			aag Lys 2700	aca Thr	gta Val	agt Ser	aac Asn	cca Pro 2705	gat Asp	agg Arg	agc Ser	atc Ile	cct Pro 2710	gga Gly	8337
atc Ile	act Thr	atc Ile	caa Gln 2715	gga Gly	gta Val	aca Thr	gaa Glu	agt Ser 2720	cca Pro	ctc Leu	cat His	cct Pro	tct Ser 2725	tcc Ser	8382
act Thr	tcc Ser	ecc Pro	tct Ser 2730	aag Lys	att Ile	gtt Val	gct Ala	cca Pro 2735	cgg Arg	aat Asn	aca Thr	acc Thr	tat Tyr 2740	gaa Glu	8427
ggt Gly	tcg Ser	atc Ile	aca Thr 2745	gtg Val	gca Ala	ctt Leu	tct Ser	act Thr 2750	ttg Leu	cct Pro	gcg Ala	gga Gly	act Thr 2755	act Thr	8472
ggt Gly	tcc Ser	ctt Leu	gta Val 2760	ttc Phe	agt Ser	cag Gln	agt Ser	tct Ser 2765	gaa Glu	aac Asn	tca Ser	gag Glu	aca Thr 2770	acg Thr	8517
gct Ala	ttg Leu	gta Val	gac Asp 2775	tca Ser	tca Ser	gct Ala	ggg Gly	ctt Leu 2780	gag Glu	agg Arg	gca Ala	tct Ser	gtg Val 2785	atg Met	8562
cca Pro	cta Leu	acc Thr	aca Thr 2790	gga Gly	agc Ser	cag Gln	ggt Gly	atg Met 2795	gct Ala	agc Ser	tct Ser	gga Gly	gga Gly 2800	atc Ile	8607
_	_		tcc Ser 2805					gga Gly 2810					tct Ser 2815	tct Ser	8652
			acc Thr 2820	atg Met	aac Asn	cca Pro	ggt Gly	gag Glu 2825	gtt Val	aca Thr	gcc Ala	atg Met	tct Ser 2830	gaa Glu	8697
													ccc Pro 2845		8742
Gly	ata Ile	cct Pro	gtg Val 2850	Lys	ccc Pro	acc Thr	agt Ser	gct Ala 2855	gag Glu	tca Ser	ggc Gly	ctc Leu	cta Leu 2860	aca Thr	8787
cct Pro	gtc Val	tct Ser	gcc Ala 2865	tcc Ser	tca Ser	agc Ser	cca Pro	tca Ser 2870	aag Lys	gcc Ala	ttt Phe	gcc Ala	tca Ser 2875	ctg Leu	8832
act	aca	gct	ccc	cca	act	tgg	ggg	atc	cca	cag	tct	acc	ttg	aca	8877

Thr	Thr	Ala	Pro 2880		Thr	Trp	Gly	Ile 2885		Gln	Ser	Thr	Leu 2890		
ttt Phe	gag Glu	ttt Phe	tct Ser 2895	Glu	gtc Val	cca Pro	agt Ser	ttg Leu 2900	Asp	act Thr	aag Lys	tcc Ser	gct Ala 2905	Ser	8922
			cct Pro 2910	Gly	cag Gln	tcc Ser	ctg Leu	aac Asn 2915	Thr	att Ile	cca Pro	gac Asp	tca Ser 2920	Asp	8967
gca Ala	agc Ser	aca Thr	gca Ala 2925	tct Ser	tcc Ser	tca Ser	ctg Leu	tcc Ser 2930	Lys				aaa Lys 2935	Asn	9012
cca Pro	agg Arg	gca Ala	agg Arg 2940	atg Met	atg Met	act Thr	tcc Ser	aca Thr 2945	Lys	gcc Ala	ata Ile	agt Ser	gca Ala 2950	agc Ser	9057
tca Ser	ttt Phe	caa Gln	tca Ser 2955	aca Thr	ggt Gly	ttt Phe	act Thr	gaa Glu 2960					tct Ser 2965		9102
tcc Ser	cct Pro	tct Ser	atg Met 2970	gca Ala	Gly	cat His	gaa Glu	ccc Pro 2975	aga Arg	gtc Val	ccc Pro	act Thr	tca Ser 2980	gga Gly	9147
aca Thr	GJÀ āāā	gac Asp	cct Pro 2985	aga Arg	tat Tyr	gcc Ala	tca Ser	gag Glu 2990					cca Pro 2995		9192
cca Pro	agc Ser	aag Lys	gca Ala 3000	tca Ser	tca Ser	gct Ala	atg Met	aca Thr 3005					gca Ala 3010		9237
aaa Lys	ctc Leu	aca Thr	act Thr 3015	ctc Leu	ttc Phe	agc Ser	aca Thr	ggt Gly 3020	caa Gln	gca Ala	gca Ala	agg Arg	tct Ser 3025	ggt Gly	9282
tct Ser	agt Ser	tcc Ser	tct Ser 3030	ccc Pro	ata Ile	agc Ser	cta Leu	tcc Ser 3035		gag Glu				agc Ser	9327
ttc Phe	ctt Leu	tcc Ser	ccc Pro 3045	act Thr	gca Ala	tcc Ser	acc Thr	tcc Ser 3050	aga Arg	aag Lys	act Thr	tca Ser	cta Leu 3055	ttt Phe	9372
ctt Leu	GJ À āđā	cct Pro	tcc Ser 3060	atg Met	gca Ala	agg Arg	cag Gln	ccc Pro 3065	aac Asn	ata Ile	ttg Leu	gtg Val	cat His 3070	ctt Leu	9417
cag Gln	act Thr	Ser	gct Ala 3075	ctg Leu	aca Thr	ctt Leu	tct Ser	cca Pro 3080	aca Thr	tcc Ser	act Thr	Leu	aat Asn 3085	atg Met	9462

tcc Ser	cag Gln	gag Glu	gag Glu 3090	cct Pro	cct Pro	gag Glu	tta Leu	acc Thr 3095	tca Ser	agc Ser	cag Gln	acc Thr	att Ile 3100	gca Ala	9507
gaa Glu	gaa Glu	gag Glu	gga Gly 3105	aca Thr	aca Thr	gct Ala	gaa Glu	aca Thr 3110	cag Gln	acg Thr	tta Leu	acc Thr	ttc Phe 3115	aca Thr	9552
cca Pro	tct Ser	gag Glu	acc Thr 3120	cca Pro	aca Thr	tcc Ser	ttg Leu	tta Leu 3125	cct Pro	gtc Val	tct Ser	tct Ser	ccc Pro 3130	aca Thr	9597
gaa Glu	ccc Pro	aca Thr	gcc Ala 3135	aga Arg	aga Arg	aag Lys	agt Ser	tct Ser 3140	cca Pro	gaa Glu	aca Thr	tgg Trp	gca Ala 3145	Ser	9642
tct Ser	att Ile	tca Ser	gtt Val 3150	cct Pro	gcc Ala	aag Lys	acc Thr	tcc Ser 3155	ttg Leu	gtt Val	gaa Glu	aca Thr	act Thr 3160	gat Asp	9687
			gtg Val 3165		acc Thr	ata Ile	aag Lys	atg Met 3170	tca Ser	agc Ser	cag Gln	gca Ala	gca Ala 3175	caa Gln	9732
gga Gly	aat Asn	tcc Ser	acg Thr 3180	tgg Trp	cct Pro	gcc Ala	cca Pro	gca Ala 3185	gag Glu	gag Glu	acg Thr	ggg Gly	acc Thr 3190	agt Ser	9777
			aca Thr 3195		cca Pro	gga Gly	agc Ser	cca Pro 3200	gaa Glu	atg Met	tct Ser	acc Thr	act Thr 3205	ctc Leu	9822
			agc Ser 3210		aag Lys	gaa Glu	ccc Pro	agc Ser 3215	atc Ile	agc Ser	cca Pro	gag Glu	atc Ile 3220	agg Arg	9867
			cga Arg 3225	aat Asn	tct Ser	cct Pro	tgg Trp	aag Lys 3230	Thr	cca Pro	gaa Glu	aca Thr	act Thr 3235	gtt Val	9912
ccc Pro	atg Met	gag Glu	acc Thr 3240	aca Thr	gtg Val	gaa Glu	cca Pro	gtc Val 3245	acc Thr	ctt Leu	cag Gln	tcc Ser	aca Thr 3250	gcc Ala	9957
cta Leu	gga Gly	agt Ser	ggc Gly 3255	agc Ser	acc Thr	agc Ser	atc Ile	tct Ser 3260	His	ctg Leu	ccc Pro	aca Thr	gga Gly 3265		10002
aca Thr	tca Ser	cca Pro	acc Thr 3270	Lys	tca Ser	cca Pro	aca Thr	gaa Glu 3275	Asn	atg Met	ttg Leu	gct Ala	aca Thr 3280	Glu	10047
agg	gtc	tcc	ctc	tcc	cca	tcc	cca	cct	gag	gct	tgg	acc	aac	ctt	10092

Arg	Val	Ser	Leu 3285	Ser	Pro	Ser	Pro	Pro 3290		Ala	Trp	Thr	Asn 3295		
tat Tyr	tct Ser	gga Gly	act Thr 3300	cca Pro	gga Gly	G] y	acc Thr	agg Arg 3305	cag Gln	tca Ser	ctg Leu	gcc Ala	aca Thr 3310	Met	10137
tcc Ser	tct Ser	gtc Val	tcc Ser 3315	cta Leu	gag Glu	tca Ser	cca Pro	act Thr 3320	gct Ala	aga Arg	agc Ser	atc Ile	aca Thr 3325	Gly	10182
act Thr	ggt Gly	cag Gln	caa Gln 3330	agc Ser	agt Ser	cca Pro	gaa Glu	ctg Leu 3335	gtt Val	tca Ser	aag Lys	aca Thr	act Thr 3340	gga Gly	10227
atg Met	gaa Glu	ttc Phe	tct Ser 3345	atg Met	tgg Trp	cat His	ggc Gly	tct Ser 3350	act Thr	gga Gly	ggg	acc Thr	aca Thr 3355	gly ggg	10272
gac Asp	aca Thr	cat His	gtc Val 3360	tct Ser	ctg Leu	agc Ser	aca Thr	tct Ser 3365					gaa Glu 3370		10317
cct Pro	gta Val	acc Thr	agc Ser 3375	cca Pro	aac Asn	tct Ser	gtg Val	agc Ser 3380					aaa Lys 3385	tcc Ser	10362
aaa Lys	cat His	aaa Lys	acc Thr 3390	gag Glu	aca Thr	tgg Trp	gta Val	agc Ser 3395					ccc Pro 3400		10407
act Thr	gtc Val	ctg Leu	aat Asn 3405	aat Asn	aag Lys	ata Ile	atg Met	gca Ala 3410					aca Thr 3415	agt Ser	10452
cga Arg	tct Ser	gtg Val	gat Asp 3420	gag Glu	gct Ala	tat Tyr	tca Ser	tca Ser 3425					tca Ser 3430	gat Asp	10497
cag Gln	aca Thr	tct Ser	ggg Gly 3435	agt Ser	gac Asp	atc Ile	acc Thr	ctt Leu 3440	ggt Gly	gca Ala	tct Ser	cct Pro	gat Asp 3445	gtc Val	10542
aca Thr	aac Asn	aca Thr	tta Leu 3450	tac Tyr	atc Ile	acc Thr	tcc Ser	aca Thr 3455	gca Ala	caa Gln	acc Thr	acc Thr	tca Ser 3460	cta Leu	10587
gtg Val	tct Ser	ctg Leu	ccc Pro 3465	tct Ser	gga Gly	gac Asp	caa Gln	ggc Gly 3470	att Ile	aca Thr	agc Ser	ctc Leu	acc Thr 3475	aat Asn	10632
ccc Pro	tca Ser	gga Gly	gga Gly 3480	aaa Lys	aca Thr	agc Ser	Ser	gcg Ala 3485	tca Ser	tct Ser	gtc Val	aca Thr	tct Ser 3490	cct Pro	10677

tca Ser	ata Ile	ggg Gly	ctt Leu 3495	gag Glu	act Thr	ctg Leu	agg Arg	gcc Ala 3500	aat Asn	gta Val	agt Ser	gca Ala	gtg Val 3505	aaa Lys	10722
agt Ser	gac Asp	att Ile	gcc Ala 3510	cct Pro	act Thr	gct Ala	ggg Gly	cat His 3515	cta Leu	tct Ser	cag Gln	act Thr	tca Ser 3520	tct Ser	10767
cct Pro	gcg Ala	gaa Glu	gtg Val 3525	agc Ser	atc Ile	ctg Leu	gac Asp	gta Val 3530	acc Thr	aca Thr	gct Ala	cct Pro	act Thr 3535	cca Pro	10812
ggt Gly	atc Ile	tcc Ser	acc Thr 3540	acc Thr	atc Ile	acc Thr	acc Thr	atg Met 3545	gga Gly	acc Thr	aac Asn	tca Ser	atc Ile 3550	tca Ser	10857
act Thr	acc Thr	aca Thr	ccc Pro 3555	aac Asn	cca Pro	gaa Glu	gtg Val	ggt Gly 3560	atg Met	agt Ser	acc Thr	atg Met	gac Asp 3565	agc Ser	10902
acc Thr	ccg Pro	gcc Ala	aca Thr 3570	gag Glu	agg Arg	cgc Arg	aca Thr	act Thr 3575	tct Ser	aca Thr	gaa Glu	cac His	cct Pro 3580	tcc Ser	10947
acc Thr	tgg Trp	tct Ser	tcc Ser 3585	aca Thr	gct Ala	gca Ala	tca Ser	gat Asp 3590	tcc Ser	tgg Trp	act Thr	gtc Val	aca Thr 3595	gac Asp	10992
atg Met	act Thr	tca Ser	aac Asn 3600	ttg Leu	aaa Lys	gtt Val	gca Ala	aga Arg 3605	tct Ser	cct Pro	gga Gly	aca Thr	att Ile 3610	tcc Ser	11037
			aca Thr 3615	act Thr	tca Ser	ttc Phe	tta Leu	gcc Ala 3620	tca Ser	agc Ser	act Thr	gaa Glu	tta Leu 3625	gac Asp	11082
tcc Ser	atg Met	tct Ser	act Thr 3630	Pro	cat His	ggc Gly	cgt Arg	ata Ile 3635	\mathtt{Thr}	gtc Val	att Ile	gga Gly	acc Thr 3640	agc Ser	11127
			cca Pro 3645	Ser					Ala					Thr	11172
agt Ser	aca Thr	agt Ser	gaa Glu 3660	Arg	aca Thr	ttg Leu	agt Ser	cct Pro 3665	Ser	gac Asp	aca Thr	act Thr	gca Ala 3670	Ser	11217
			tca Ser 3675	Thr	ttt Phe	tct Ser	cgt Arg	gtc Val 3680	Gln	agg Arg	atg Met	agc Ser	atc Ile 3685	Ser	11262
gtt	cct	gac	att	tta	agt	aca	agt	tgg	act	ccc	agt	agt	aca	gaa	11307

Val	Pro	Asp	Ile 3690	Leu	Ser	Thr	Ser	Trp 3695		Pro	Ser	Ser	Thr 3700		
gca Ala	gaa Glu	gat Asp	gtg Val 3705	cct Pro	gtt Val	tca Ser	atg Met	gtt Val 3710	tct Ser	aca Thr	gat Asp	cat His	gct Ala 3715	Ser	11352
aca Thr	aag Lys	act Thr	gac Asp 3720	cca Pro	aat Asn	acg Thr	ccc Pro	ctg Leu 3725	tcc Ser	act Thr	ttt Phe	ctg Leu	ttt Phe 3730	gat Asp	11397
tct Ser	ctg Leu	tcc Ser	act Thr 3735	ctt Leu	gac Asp	tgg Trp	gac Asp	act Thr 3740	ggg Gly	aga Arg	tct Ser	ctg Leu	tca Ser 3745	tca Ser	11442
gcc Ala	aca Thr	gcc Ala	act Thr 3750	acc Thr	tca Ser	gct Ala	cct Pro	cag Gln 3755	ggg Gly	gcc Ala	aca Thr	act Thr	ccc Pro 3760	cag Gln	11487
gaa Glu	ctc Leu	act Thr	ttg Leu 3765	gaa Glu	acc Thr	atg Met	atc Ile	agc Ser 3770	cca Pro	gct Ala	acc Thr	tca Ser	cag Gln 3775	ttg Leu	11532
ccc Pro	ttc Phe	tct Ser	ata Ile 3780	GJ A GG A	cac His	att Ile	aca Thr	agt Ser 3785	gca Ala	gtc Val	aca Thr	cca Pro	gct Ala 3790	gca Ala	11577
atg Met	gca Ala	agg Arg	agc Ser 3795					ttt Phe 3800		aga Arg		-		aca Thr	11622
agc Ser	aaa Lys	aag Lys	gca Ala 3810	gag Glu	cag Gln	act Thr	tcc Ser			ctt Leu				act Thr	11667
tct Ser	gca Ala	cat His	cca Pro 3825	ggg Gly	cag Gln	gtg Val	ccc Pro	aga Arg 3830	tca Ser	gca Ala	gca Ala	aca Thr	act Thr 3835	ctg Leu	11712
gat Asp	gtg Val	atc Ile	cca Pro 3840	cac His	aca Thr	gca Ala	aaa Lys	act Thr 3845	cca Pro	gat Asp	gca Ala	act Thr	ttt Phe 3850	cag Gln	11757
aga Arg	caa Gln	ggg Gly	cag Gln 3855	aca Thr	gct Ala	ctt Leu	aca Thr	aca Thr 3860	gag Glu	gca Ala	aga Arg	gct Ala	aca Thr 3865	tct Ser	11802
gac Asp	tcc Ser	tgg Trp	aat Asn 3870	gag Glu	aaa Lys	gaa Glu	Lys	tca Ser 3875	acc Thr	cca Pro	agt Ser	gca Ala	cct Pro 3880	tgg Trp	11847
atc Ile	act Thr	Glu	atg Met 3885	atg Met	aat Asn	tct Ser	gtc Val	tca Ser 3890	gaa Glu	gat Asp	acc Thr	atc Ile	aag Lys 3895	gag Glu	11892

gtt Val	acc Thr	agc Ser	tcc Ser 3900	tcc Ser	agt Ser	gta Val	tta Leu	aag Lys 3905	gac Asp	cct Pro	gaa Glu	tac Tyr	gct Ala 3910	gga Gly	11937
cat His	aaa Lys	ctt Leu	gga Gly 3915	atc Ile	tgg Trp	gac Asp	gac Asp	ttc Phe 3920	atc Ile	ccc Pro	aag Lys	ttt Phe	gga Gly 3925	aaa Lys	11982
gca Ala	gcc Ala	cat His	atg Met 3930	aga Arg	gag Glu	ttg Leu	ccc Pro	ctt Leu 3935	ctg Leu	agt Ser	cca Pro	cca Pro	cag Gln 3940	gac Asp	12027
aaa Lys	gag Glu	gca Ala	att Ile 3945	cac His	cct Pro	tct Ser	aca Thr	aac Asn 3950	aca Thr	gta Val	gag Glu	acc Thr	aca Thr 3955	ggc Gly	12072
tgg Trp	gtc Val	aca Thr	agt Ser 3960	tcc Ser	gaa Glu	cat His	gct Ala	tct Ser 3965	cat His	tcc Ser	act Thr	atc Ile	cca Pro 3970	gcc Ala	12117
cac His	tca Ser	gcg Ala	tca Ser 3975	Ser	aaa Lys	ctc Leu	aca Thr	tct Ser 3980	cca Pro	gtg Val	gtt Val	aca Thr	acc Thr 3985	tcc Ser	12162
acc Thr	agg Arg	gaa Glu	caa Gln 3990	gca Ala	ata Ile	gtt Val	tct Ser	atg Met 3995	tca Ser	aca Thr	acc Thr	aca Thr	tgg Trp 4000	cca Pro	12207
gag Glu	tct Ser	aca Thr	agg Arg 4005	gct Ala	aga Arg	aca Thr	gag Glu	cct Pro 4010	aat Asn	tcc Ser	ttc Phe	ttg Leu	act Thr 4015	att Ile	12252
gaa Glu	ctg Leu	agg Arg	gac Asp 4020	gtc Val	agc Ser	cct Pro	tac Tyr	atg Met 4025	gac Asp	acc Thr	agc Ser	tca Ser	acc Thr 4030	aca Thr	12297
caa Gln	aca Thr	agt Ser	att Ile 4035	atc Ile	tct Ser	tcc Ser	cca Pro	ggt Gly 4040	tcc Ser	act Thr	gcg Ala	atc Ile	acc Thr 4045	aag Lys	12342
ggg Gly	cct Pro	aga Arg	aca Thr 4050	Glu	att Ile	acc Thr	tcc Ser	tct Ser 4055	Lys	aga Arg	ata Ile	tcc Ser	agc Ser 4060	tca Ser	12387
ttc Phe	ctt Leu	gcc Ala	cag Gln 4065	Ser	atg Met	agg Arg	tcg Ser	tca Ser 4070	Asp	agc Ser	ccc Pro	tca Ser	gaa Glu 4075	gcc Ala	12432
atc Ile	acc Thr	agg Arg	ctg Leu 4080	Ser	aac Asn	ttt Phe	cct Pro	gcc Ala 4085	Met	aca Thr	gaa Glu	tct Ser	gga Gly 4090	Gly	12477
atg	atc	ctt	gct	atg	caa	aca	agt	cca	cct	ggc	gct	aca	tca	cta	12522

Met	Ile	Leu	Ala 4095	Met	Gln	Thr	Ser	Pro 4100	Pro	Gly	Ala	Thr	Ser 4105	Leu	
agt Ser	gca Ala	cct Pro	act Thr 4110	ttg Leu	gat Asp	aca Thr	tca Ser	gcc Ala 4115	aca Thr	gcc Ala	tcc Ser	tgg Trp	aca Thr 4120	G] À GGA	12567
act Thr	cca Pro	ctg Leu	gct Ala 4125	acg Thr	act Thr	cag Gln	aga Arg	ttt Phe 4130	aca Thr	tac Tyr	tca Ser	gag Glu	aag Lys 4135	acc Thr	12612
act Thr	ctc Leu	ttt Phe	agc Ser 4140	aaa Lys	ggt Gly	cct Pro	gag Glu	gat Asp 4145	aca Thr	tca Ser	cag Gln	cca Pro	agc Ser 4150	cct Pro	12657
ccc Pro	tct Ser	gtg Val	gaa Glu 4155	gaa Glu	acc Thr	agc Ser	tct Ser	tcc Ser 4160	tct Ser	tcc Ser	ctg Leu	gta Val	cct Pro 4165	atc Ile	12702
cat His	gct Ala	aca Thr	acc Thr 4170	tcg Ser	cct Pro	tcc Ser	aat Asn	att Ile 4175					caa Gln 4180	Gly	12747
cac His	agt Ser	ccc Pro	tcc Ser 4185	tct Ser	act Thr	cca Pro	cct Pro	gtg Val 4190	acc Thr	tca Ser	gtt Val	ttc Phe	ttg Leu 4195	tct Ser	12792
gag Glu	acc Thr	tct Ser	ggc Gly 4200	ctg Leu	ggg Gly	aag Lys	acc Thr	aca Thr 4205					ata Ile 4210		12837
ttg Leu	gaa Glu	cct Pro	ggc Gly 4215	aca Thr	agt Ser	tta Leu	cct Pro	ccc Pro 4220					aca Thr 4225	gca Ala	12882
Gly	gag Glu	gcg Ala	tta Leu 4230	tcc Ser	act Thr	tat Tyr	gaa Glu	gcc Ala 4235					aag Lys 4240	gca Ala	12927
			tct Ser 4245	-				gtg Val 4250		aat. Asn				acc Thr	12972
agt Ser	tct Ser	gaa Glu	tat Tyr 4260	tct Ser	cct Pro	atc Ile	cca Pro	ggc Gly 4265	cat His	aca Thr	aag Lys	cca Pro	tcc Ser 4270	aaa Lys	13017
gcc Ala	aca Thr	tct Ser	cca Pro 4275	ttg Leu	gtt Val	acc Thr	tcc Ser	cac His 4280	atc Ile	atg Met	ggg Gly	gac Asp	atc Ile 4285	act Thr	13062
tct Ser	tcc Ser	aca Thr	tca Ser 4290	gta Val	ttt Phe	ggc Gly	tcc Ser	tcc Ser 4295	gag Glu	acc Thr	aca Thr	gag Glu	att Ile 4300	gag Glu	13107

a T	ca hr	gtg Val	tcc Ser	tct Ser 4305	gtg Val	aac Asn	cag Gln	gga Gly	ctt Leu 4310	cag Gln	gag Glu	aga Arg	agc Ser	aca Thr 4315	tcc Ser	13152
C G	ag ln	gtg Val	gcc Ala	agc Ser 4320	tct Ser	gct Ala	aca Thr	gag Glu	aca Thr 4325	agc Ser	act Thr	gtc Val	att Ile	acc Thr 4330	cat His	13197
g V	tg al	tct Ser	agt Ser	ggt Gly 4335	gat Asp	gct Ala	act Thr	act Thr	cat His 4340	gtc Val	acc Thr	aag Lys	aca Thr	caa Gln 4345	gcc Ala	13242
a T	ct hr	ttc Phe	tct Ser	agc Ser 4350	gga Gly	aca Thr	tcc Ser	atc Ile	tca Ser 4355	agc Ser	cct Pro	cat His	cag Gln	ttt Phe 4360	ata Ile	13287
a T	ct hr	tct Ser	acc Thr	aac Asn 4365	aca Thr	ttt Phe	aca Thr	gat Asp	gtg Val 4370	agc Ser	acc Thr	aac Asn	ccc Pro	tcc Ser 4375	acc Thr	13332
s	ct	ctg Leu	ata Ile	atg Met 4380	aca Thr	gaa Glu	tct Ser	tca Ser	gga Gly 4385	gtg Val	acc Thr	atc Ile	acc Thr	acc Thr 4390	caa Gln	13377
a	ca hr	ggt Gly	cct Pro	act Thr 4395	gga Gly	gct Ala	gca Ala	aca Thr	cag Gln 4400	ggt Gly	cca Pro	tat Tyr	ctc Leu	ttg Leu 4405	gac Asp	13422
T	ica 'hr	tca Ser	acc Thr	atg Met 4410	cct Pro	tac Tyr	ttg Leu	aca Thr	gag Glu 4415	act Thr	cca Pro	tta Leu	gct Ala	gtg Val 4420	act Thr	13467
P	ca ro	gat Asp	ttt Phe	atg Met 4425	caa Gln	tca Ser	gag Glu	aag Lys	acc Thr 4430	act Thr	ctc Leu	ata Ile	agc Ser	aaa Lys 4435	ggt Gly	13512
E	ro	aag Lys	gat Asp	gtg Val 4440	acc Thr	tgg Trp	aca Thr	agc Ser	cct Pro 4445	ccc Pro	tct Ser	gtg Val	gca Ala	gaa Glu 4450	acc Thr	13557
S	igc Ser	tat Tyr	ccc Pro	tct Ser 4455	tcc Ser	ctg Leu	aca Thr	cct Pro	ttc Phe 4460	ttg Leu	gtc Val	aca Thr	acc Thr	ata Ile 4465	cct Pro	13602
				tcc Ser 4470	acg Thr	tta Leu	caa Gln	ggg Gly	caa Gln 4475	cat His	aca Thr	tcc Ser	tct Ser	cct Pro 4480	gtt Val	13647
ţ	ct Ser	gcg Ala	act Thr	tca Ser 4485	Val	ctt Leu	acc Thr	tct Ser	gga Gly 4490	Leu	gtg Val	aag Lys	acc Thr	aca Thr 4495	gat Asp	13692
ě	atg	ttg	aac	aca	agc	atg	gaa	cct	gtg	acc	aat	tca	cct	caa	aat	13737

Met	Leu	Asn	Thr 4500	Ser	Met	Glu	Pro	Val 4505	Thr	Asn	Ser	Pro	Gln 4510	Asn	
ttg Leu	aac Asn	aat Asn	cca Pro 4515	tca Ser	aat Asn	gag Glu	ata Ile	ctg Leu 4520	gcc Ala	act Thr	ttg Leu	gca Ala	gcc Ala 4525	acc Thr	13782
			gag Glu 4530	act Thr	att Ile	cat His	cct Pro	tcc Ser 4535	ata Ile	aac Asn	aaa Lys	gca Ala	gtg Val 4540	acc Thr	13827
aat Asn	atg Met	GJ Å āāā	act Thr 4545	gcc Ala	agt Ser	tca Ser	gca Ala	cat His 4550	gta Val	ctg Leu	cat His	tcc Ser	act Thr 4555	ctc Leu	13872
cca Pro	gtc Val	agc Ser	tca Ser 4560	gaa Glu	cca Pro	tct Ser	aca Thr	gcc Ala 4565	aca Thr	tct Ser	cca Pro	atg Met	gtt Val 4570	cct Pro	13917
gcc Ala	tcc Ser	agc Ser	atg Met 4575	gly ggg	gac Asp	gct Ala	ctt Leu	gct Ala 4580	tct Ser	ata Ile	tca Ser	ata Ile	cct Pro 4585	ggt Gly	13962
tct Ser	gag Glu	acc Th <i>r</i>	aca Thr 4590	gac Asp	att Ile	gag Glu	gga Gly	gag Glu 4595	cca Pro	aca Thr	tcc Ser	tcc Ser	ctg Leu 4600	act Thr	14007
gct Ala	gga Gly	cga Arg	aaa Lys 4605	gag Glu	aac Asn	agc Ser	acc Thr	ctc Leu 4610	cag Gln	gag Glu	atg Met	aac Asn	tca Ser 4615	act Thr	14052
aca Thr	gag Glu	tca Ser	aac Asn 4620	atc Ile	atc Ile	ctc Leu	tcc Ser	aat Asn 4625	gtg Val	tct Ser	gtg Val	ggg	gct Ala 4630	att Ile	14097
act Thr	gaa Glu	gcc Ala	aca Thr 4635				Val	CCC Pro 4640			gat Asp			ttc Phe	14142
	cca Pro							aag Lys 4655						tca Ser	14187
gta Val	gcc Ala	agc Ser	agt Ser 4665	aga Arg	ctt Leu	tca Ser	aac Asn	tct Ser 4670	cct Pro	ccc Pro	atg Met	aca Thr	ata Ile 4675	tct Ser	14232
			acc Thr 4680	acc Thr	acc Thr	cag Gln	aca Thr	ggg Gly 4685	tct Ser	tct Ser	gga Gly	gct Ala	aca Thr 4690	tca Ser	14277
aag Lys	att Ile	Pro	ctt Leu 4695	gcc Ala	tta Leu	gac Asp	aca Thr	tca Ser 4700	acc Thr	ttg Leu	gaa Glu	acc Thr	tca Ser 4705	gca Ala	14322

	ggg	act Thr	cca Pro	tca Ser 4710	gtg Val	gtg Val	act Thr	gag Glu	ggg Gly 47 1 5	ttt Phe	gcc Ala	cac His	tca Ser	aaa Lys 4720	ata Ile	14367
	acc Thr	act Thr	gca Ala	atg Met 4725	aac Asn	aat Asn	gat Asp	gtc Val	aag Lys 4730	gac Asp	gtg Val	tca Ser	cag Gln	aca Thr 4735	aac Asn	14412
	cct Pro	ccc Pro	ttt Phe	cag Gln 4740	gat Asp	gaa Glu	gcc Ala	agc Ser	tct Ser 4745	ccc Pro	tct Ser	tct Ser	caa Gln	gca Ala 4750	cct Pro	14457
	gtc Val	ctt Leu	gtc Val	aca Thr 4755	acc Thr	tta Leu	cct Pro	tct Ser	tct Ser 4760	gtt Val	gct Ala	ttc Phe	aca Thr	ccg Pro 4765	caa Gln	14502
•	tgg Trp	cac His	agt Ser	acc Thr 4770	tcc Ser	tct Ser	cct Pro	gtt Val	tct Ser 4775	atg Met	tcc Ser	tca Ser	gtt Val	ctt Leu 4780	act Thr	14547
	tct Ser	tca Ser	ctg Leu	gta Val 4785	aag Lys	acc Thr	gca Ala	ggc Gly	aag Lys 4790	gtg Val	gat Asp	aca Thr	agc Ser	tta Leu 4795	gaa Glu	14592
	aca Thr	gtg Val	acc Thr	agt Ser 4800	tca Ser	cct Pro	caa Gln	agt Ser	atg Met 4805	agc Ser	aac Asn	act Thr	ttg Leu	gat Asp 4810	gac Asp	14637
	ata Ile	tcg Ser	gtc Val	act Thr 4815	tca Ser	gca Ala	gcc Ala	acc Thr	aca Thr 4820	Asp	ata Ile	gag Glu	aca Thr	acg Thr 4825	cat His	14682
	cct Pro	tcc Ser	ata Ile	aac Asn 4830	aca Thr	gta Val	gtt Val	acc Thr	aat Asn 4835	gtg Val	ggg Gly	acc Thr	acc Thr	ggt Gly 4840	Ser	14727
	gca Ala	ttt Phe	gaa Glu	tca Ser 4845	His	tct Ser	act Thr	gtc Val	tca Ser 4850	Ala	tac Tyr	cca Pro	gag Glu	cca Pro 4855	tct Ser	14772
	aaa Lys	agt Ser	cac His	att Ile 4860	Leu	cca Pro	atg Met	tta Leu	cca Pro 4865	Pro	cca Pro	cca Pro	tgg Trp	aag Lys 4870	Thr	14817
	cca Pro	caa Gln	ttt Phe	cca Pro 4875	Arg	tca Ser	ata Ile	cct	aaa Lys 4880	Ser	tct Ser	aag Lys	act Thr	aca Thr 4885	Arg	14862
	act Thr	gag Glu	act Thr	gag Glu 4890	Thr	act Thr	tcc Ser	tcc Ser	ctg Leu 4895	Thr	cct Pro	aaa Lys	ctg Leu	agg Arg 4900	Glu	14907
	acc	agc	ato	tcc	cag	gag	atc	acc	tcg	tcc	aca	gag	aca	agc	act	14952

Thr	Ser	Ile	Ser 4905	Gln	Glu	Ile	Thr	Ser 4910		Thr	Glu	Thr	Ser 4915	Thr	
gtt Val	cct Pro	tac Tyr	aaa Lys 4920	gag Glu	ctc Leu	act Thr	ggt Gly	gcc Ala 4925	Thr	acc Thr	gag Glu	gta Val	tcc Ser 4930	agg Arg	14997
aca Thr	gat Asp	gtc Val	act Thr 4935	tcc Ser	tct Ser	agc Ser	agt Ser	aca Thr 4940	Ser	ttc Phe	cct Pro	Gly	cct Pro 4945	Asp	15042
cag Gln	tcc Ser	aca Thr	gtg Val 4950	tca Ser	cta Leu	gac Asp	atc Ile	tcc Ser 4955	Thr	gaa Glu	acc Thr	aac Asn	acc Thr 4960	agg Arg	15087
ctg Leu	tct Ser	acc Thr	tcc Ser 4965	cca Pro	ata Ile	atg Met	aca Thr	gaa Glu 4970	tct Ser	gca Ala	gaa Glu	ata Ile	acc Thr 4975	atc Ile	15132
		caa Gln	aca Thr 4980	ggt Gly	cct Pro	cat His	ggg	gct Ala 4985	aca Thr	tca Ser	cag Gln	gat Asp	act Thr 4990	ttt Phe	15177
acc Thr	atg Met	gac Asp	cca Pro 4995	tca Ser	aat Asn	aca Thr	acc Thr	ccc Pro 5000					cac His 5005	tca Ser	15222
gct Ala	atg Met	act Thr	cat His 5010	gga Gly	ttt Phe	tca Ser	caa Gln	ttg Leu 5015	gat Asp	gtg Val	acc Thr	act Thr	ctt Leu 5020	atg Met	15267
agc Ser	aga Arg	att Ile	cca Pro 5025	cag Gln	gat Asp	gta Val	tca Ser	tgg Trp 5030	aca Thr	agt Ser	cct Pro	ccc Pro	tct Ser 5035	gtg Val	15312
gat Asp	aaa Lys	acc Thr	agc Ser 5040	tcc Ser	ccc Pro	tct Ser	tcc Ser	ttt Phe 5045	ctg Leu	tcc Ser	tca Ser	cct Pro	gca Ala 5050	Met	15357
acc Thr	aca Thr	\mathtt{Pro}	tcc Ser 5055	ctg Leu	att Ile	tct Ser	tct Ser	acc Thr 5060	tta Leu	cca Pro	gag Glu	gat Asp	aag Lys 5065	ctc Leu	15402
tcc Ser	tct Ser	Pro	atg Met 5070	act Thr	tca Ser	ctt Leu	ctc Leu	acc Thr 5075	tct Ser	ggc Gly	cta Leu	gtg Val	aag Lys 5080	att Ile	15447
aca Thr	gac Asp	ata Ile	tta Leu 5085	cgt Arg	aca Thr	cgc Arg	ttg Leu	gaa Glu 5090	cct Pro	gtg Val	acc Thr	agc Ser	tca Ser 5095	ctt Leu	15492
cca Pro	aat Asn	Phe	agc Ser 5100	agc Ser	acc Thr	tca Ser	gat Asp	aag Lys 5105	ata Ile	ctg Leu	gcc Ala	act Thr		aaa Lys	15537

gac Asp	agt Ser	aaa Lys	gac Asp 5115	aca Thr	aag Lys	gaa Glu	att Ile	ttt Phe 5120	cct Pro	tct Ser	ata Ile	aac Asn	aca Thr 5125	gaa Glu	15582
gag Glu	acc Thr	aat Asn	gtg Val 5130	aaa Lys	gcc Ala	aac Asn	aac Asn	tct Ser 5135	gga Gly	cat His	gaa Glu	tcc Ser	cat His 5140	tcc Ser	15627
cct Pro	gca Ala	ctg Leu	gct Ala 5145	gac Asp	tca Ser	gag Glu	aca Thr	ccc Pro 5150	aaa Lys	gcc Ala	aca Thr	act Thr	caa Gln 5155	atg Met	15672
gtt Val	atc Ile	acc Thr	acc Thr 5160	act Thr	gtg Val	gga Gly	gat Asp	cca Pro 5165	gct Ala	cct Pro	tcc Ser	aca Thr	tca Ser 5170	atg Met	15717
cca Pro	gtg Val	cat His	ggt Gly 5175	Ser	tct Ser	gag Glu	act Thr	aca Thr 5180	aac Asn	att Ile	aag Lys	aga Arg	gag Glu 5185	cca Pro	15762
aca Thr	tat Tyr	ttc Phe	ttg Leu 5190	act Thr	cct Pro	aga Arg	ctg Leu	aga Arg 5195	gag Glu	acc Thr	agt Ser	acc Thr	tct Ser 5200	cag Gln	15807
			ttt Phe 5205	ccc Pro	acg Thr	gac Asp	aca Thr	agt Ser 5210	ttt Phe	cta Leu	ctt Leu	tcc Ser	aaa Lys 5215	gtc Val	15852
ccc Pro	act Thr	ggt Gly	act Thr 5220	att Ile	act Thr	gag Glu	gtc Val	tcc Ser 5225	agt Ser	aca Thr	Gly ggg	gtc Val	aac Asn 5230	tct Ser	15897
tct Ser	agc Ser	aaa Lys	att Ile 5235	tcc Ser	acc Thr	cca Pro	gac Asp	cat His 5240	gat Asp	aag Lys	tcc Ser	aca Thr	gtg Val 5245	cca Pro	15942
cct Pro	gac Asp	acc Thr	ttc Phe 5250	aca Thr	gga Gly	gag Glu	atc Ile	ccc Pro 5255	agg Arg	gtc Val	ttc Phe	acc Thr	tcc Ser 5260	tct Ser	15987
	_		aaa Lys 5265	tct Ser	gca Ala	gaa Glu	atg Met	acg Thr 5270	atc Ile	acc Thr	acc Thr	caa Gln	gca Ala 5275	agt Ser	16032
cct Pro	cct Pro	gag Glu	tct Ser 5280	gca Ala	tcg Ser	cac His	agt Ser	acc Thr 5285	ctt Leu	ccc	ttg Leu	gac Asp	aca Thr 5290	tca Ser	16077
acc Thr	aca Thr	ctt Leu	tcc Ser 5295	Gln	gga Gly	Gly	act Thr	cat His 5300	tca Ser	act Thr	gtg Val	act Thr	cag Gln 5305	gga Gly	16122
ttc	cca	tac	tca	gag	gtg	acc	act	ctc	atg	ggc	atg	ggt	cct	ggg	16167

Phe	Pro	Tyr	Ser 5310	Glu	Val	Thr	Thr	Leu 5315		Gly	Met	Gly	Pro 5320		
aat Asn	gtg Val	tca Ser	tgg Trp 5325	Met	aca Thr	act Thr	ccc Pro	cct Pro 5330	Val	gaa Glu	gaa Glu	acc Thr	agc Ser 5335	tct Ser	16212
gtg Val	tct Ser	tcc Ser	ctg Leu 5340	Met	tct Ser	tca Ser	cct Pro	gcc Ala 5345	Met	aca Thr	tcc Ser	cct Pro	tct Ser 5350	Pro	16257
gtt Val	tcc Ser	tcc Ser	aca Thr 5355	Ser	cca Pro	cag Gln	agc Ser	atc Ile 5360	ccc Pro	tcc Ser	tct Ser	cct Pro	ctt Leu 5365	cct Pro	16302
gtg Val	act Thr	gca Ala	ctt Leu 5370	cct Pro	act Thr	tct Ser	gtt Val	ctg Leu 5375	gtg Val	aca Thr	acc Thr	aca Thr	gat Asp 5380	Val	16347
ttg Leu	ggc Gly	aca Thr	aca Thr 5385	agc Ser	cca Pro	gag Glu	tct Ser	gta Val 5390	acc Thr	agt Ser	tca Ser	Pro	cca Pro 5395	aat Asn	16392
ttg Leu	agc Ser	agc Ser	atc Ile 5400	act Thr	cat His	gag Glu	aga Arg	ccg Pro 5405	gcc Ala	act Thr	tac Tyr	aaa Lys	gac Asp 5410	act Thr	16437
gca Ala	cac His	aca Thr	gaa Glu 5415	gcc Ala	gcc Ala	atg Met	cat His	cat His 5420	tcc Ser	aca Thr	aac Asn	acc Thr	gca Ala 5425	gtg Val	16482
acc Thr	aat Asn	gta Val	ggg Gly 5430	act Thr	tcc Ser	GJ À GGA	tct Ser	gga Gly 5435	cat His	aaa Lys	tca Ser	caa Gln	tcc Ser 5440	tct Ser	16527
gtc Val	cta Leu	gct Ala	gac Asp 5445	tca Ser	gag Glu	aca Thr	tcg Ser	aaa Lys 5450	gcc Ala	aca Thr	cct Pro	ctg Leu	atg Met 5455	agt Ser	16572
Thr	Thr	Ser	acc Thr 5460	Leu	Gly	Asp	Thr	Ser 5465	Val	Ser	Thr	Ser	Thr 5470	Pro	16617
Asn	Ile	Ser	cag Gln 5475	Thr	Asn	Gln	Ile	Gln 5480	Thr	Glu	Pro	Thr	Ala 5485	tcc Ser	16662
ьeu	Ser	Pro	aga Arg 5490	Leu	Arg	Glu	Ser	Ser 5495	Thr	Ser	Glu	Lys	Thr 5500	agc Ser	16707
tca Ser	aca Thr	Thr	gag Glu 5505	aca Thr	aat Asn	act Thr	Ala	ttt Phe 5510	tct Ser	tat Tyr	gtg Val	Pro	aca Thr 5515	ggt Gly	16752

gct Ala	att Ile	act Thr	cag Gln 5520	gcc Ala	tcc Ser	aga Arg	aca Thr	gaa Glu 5525	atc Ile	tcc Ser	tct Ser	agc Ser	aga Arg 5530	aca Thr	16797
tcc Ser	atc Ile	tca Ser	gac Asp 5535	ctt Leu	gat Asp	cgg Arg	ccc Pro	aca Thr 5540	ata Ile	gca Ala	ccc Pro	gac Asp	atc Ile 5545	tcc Ser	16842
aca Thr	gga Gly	atg Met	atc Ile 5550	acc Thr	agg Arg	ctc Leu	ttc Phe	acc Thr 5555	tcc Ser	ccc Pro	atc Ile	atg Met	aca Thr 5560	aaa Lys	16887
tct Ser	gca Ala	gaa Glu	atg Met 5565	acc Thr	gtc Val	acc Thr	act Thr	caa Gln 5570	aca Thr	act Thr	act Thr	cct Pro	ggg Gly 5575	gct Ala	16932
aca Thr	tca Ser	cag Gln	ggt Gly 5580	atc Ile	ctt Leu	cct Pro	tgg Trp	gac Asp 5585	aca Thr	tca Ser	acc Thr	aca Thr	ctt Leu 5590	ttc Phe	16977
cag Gln	gga Gly	Gly ggg	act Thr 5595	cat His	tca Ser	acc Thr	gtg Val	tct Ser 5600	cag Gln	gga Gly	ttc Phe	cca Pro	cac His 5605	tca Ser	17022
gag Glu	ata Ile	acc Thr	act Thr 5610	ctt Leu	cgg Arg	agc Ser	aga Arg	acc Thr 5615	cct Pro	gga Gly	gat Asp	gtg Val	tca Ser 5620	tgg Trp	17067
atg Met	aca Thr	act Thr	ccc Pro 5625	cct Pro	gtg Val	gaa Glu	gaa Glu	acc Thr 5630	agc Ser	tct Ser	ggg Gly	ttt Phe	tcc Ser 5635	ctg Leu	17112
atg Met	tca Ser	cct Pro	tcc Ser 5640	atg Met	aca Thr	tcc Ser	cct Pro	tct Ser 5645	cct Pro	gtt Val	tcc Ser	tcc Ser	aca Thr 5650	tca Ser	17157
cca Pro	gag Glu	agc Ser	atc Ile 5655	ccc Pro	tcc Ser	tct Ser	cct Pro	ctc Leu 5660	cct Pro	gtg Val	act Thr	gca Ala	ctt Leu 5665	ctt Leu	17202
		_	ctg Leu 5670	gtg Val	aca Thr	acc Thr	acc Thr	aat Asn 5675	gta Val	ttg Leu	ggc Gly	aca Thr	aca Thr 5680	agc Ser	17247
cca Pro	gag Glu	acc Thr	gta Val 5685	acg Thr	agt Ser	tca Ser	cct Pro	cca Pro 5690	aat Asn	tta Leu	agc Ser	agc Ser	ccc Pro 5695	aca Thr	17292
cag Gln	gag Glu	aga Arg	ctg Leu 5700	acc Thr	act Thr	tac Tyr	aaa Lys	gac Asp 5705	act Thr	gcg Ala	cac His	aca Thr	gaa Glu 5710	gcc Ala	17337
atg	cat	gct	tcc	atg	cat	aca	aac	act	gca	gtg	gcc	aac	gtc	ggg	17382

Met	His	Ala	Ser 5715		His	Thr	Asn	Thr 5720		Val	Ala	Asn	Val 5725	_	
			tct Ser 5730	Gly	cat His	gaa Glu	tca Ser	caa Gln 5735	Ser				gct Ala 5740	Asp	17427
			tcc Ser 5745	Lys	gcc Ala	aca Thr	tct Ser	cca Pro 5750	Met				ttc Phe 5755		17472
atg Met	ggg Gly	gat Asp	aca Thr 5760	Ser	gtt Val	tct Ser	aca Thr	tca Ser 5765	act Thr				ttt Phe 5770		17517
act Thr	aga Arg	att Ile	cag Gln 5775	act Thr	gaa Glu	tca Ser	aca Thr	tcc Ser 5780					gga Gly 5785		17562
agg Arg	gac Asp	acc Thr	agg Arg 5790	acg Thr	tct Ser	gag Glu	gag Glu	atc Ile 5795	aac Asn	act Thr	gtg Val	aca Thr	gag Glu 5800	acc Thr	17607
agc Ser	act Thr	gtc Val	ctt Leu 5805	tca Ser	gaa Glu	gtg Val	ccc Pro	act Thr 5810	act Thr				gag Glu 5815		17652
tcc Ser	agg Arg	aca Thr	gaa Glu 5820	gtt Val	atc Ile	act Thr	tcc Ser	agc Ser 5825	aga Arg	aca Thr	acc Thr	atc Ile	tca Ser 5830	ggg Gly	17697
cct Pro	gat Asp	cat His	tcc Ser 5835					tac Tyr 5840				gaa Glu		atc Ile	17742
acc Thr	agg Arg	ctc Leu	tcc Ser 5850	act Thr	ttt Phe	cct Pro	ttt Phe	gta Val 5855					gaa Glu 5860		17787
gcc Ala	atc Ile	acc Thr	aac Asn 5865	Gln	aca Thr	ggt Gly	cct Pro	ata Ile 5870	Gly				cag Gln 5875		17832
acc Thr	ctt Leu	acc Thr	ctg Leu 5880	gac Asp	aca Thr	tca Ser	agc Ser	aca Thr 5885	gct Ala	tcc Ser	tgg Trp	gaa Glu	ggg Gly 5890	act Thr	17877
cac His	tca Ser	cct Pro	gtg Val 5895	act Thr	cag Gln	aga Arg	Phe	cca Pro 5900	cac His	tça Ser	gag Glu	gag Glu	acc Thr 5905	act Thr	17922
act Thr	atg Met	Ser	aga Arg 5910	agt Ser	act Thr	aag Lys	Gly	gtg Val 5915	tca Ser	tgg Trp	caa Gln	agc Ser	cct Pro 5920	ccc Pro	17967

				•											
tct Ser	gtg Val	gaa Glu	gaa Glu 5925	acc Thr	agt Ser	tct Ser	cct Pro	tct Ser 5930	tcc Ser	cca Pro	gtg Val	cct Pro	tta Leu 5935	cct Pro	18012
gca Ala	ata Ile	acc Thr	tca Ser 5940	cat His	tca Ser	tct Ser	ctt Leu	tat Tyr 5945	tcc Ser	gca Ala	gta Val	tca Ser	gga Gly 5950	agt Ser	18057
agc Ser	ccc Pro	act Thr	tct Ser 5955	gct Ala	ctc Leu	cct Pro	gtg Val	act Thr 5960	tcc Ser	ctt Leu	ctc Leu	acc Thr	tct Ser 5965	ggc Gly	18102
agg Arg	agg Arg	aag Lys	acc Thr 5970	ata Ile	gac Asp	atg Met	ttg Leu	gac Asp 5975	aca Thr	cac His	tca Ser	gaa Glu	ctt Leu 5980	gtg Val	18147
acc Thr	agc Ser	tcc Ser	tta Leu 5985	cca Pro	agt Ser	gca Ala	agt Ser	agc Ser 5990	ttc Phe	tca Ser	ggt Gly	gag Glu	ata Ile 5995	ctc Leu	18192
act Thr	tct Ser	gaa Glu	gcc Ala 6000	tcc Ser	aca Thr	aat Asn	aca Thr	gag Glu 6005	aca Thr	att Ile	cac Hìs	ttt Phe	tca Ser 6010	gag Glu	18237
aac Asn	aca Thr	gca Ala	gaa Glu 6015	acc Thr	aat Asn	atg Met	G] À āāā	acc Thr 6020	acc Thr	aat Asn	tct Ser	atg Met	cat Hi <i>s</i> 6025	aaa Lys	18282
cta Leu	cat His	tcc Ser	tct Ser 6030	gtc .Val	tca Ser	atc Ile	cac His	tcc Ser 6035	cag Gln	cca Pro	tcc Ser	gga Gly	cac His 6040	aca Thr	18327
			gtt Val 6045	act Thr	gga Gly	tct Ser	atg Met	atg Met 6050	gag Glu	gac Asp	gct Ala	att Ile	gtt Val 6055	tcc Ser	18372
aca Thr	tca Ser	aca Thr	cct Pro 6060	Gly	tct Ser	cct Pro	gag Glu	act Thr 6065	Lys	aat Asn	gtt Val	Asp	aga Arg 6070	gac Asp	18417
tca Ser	aca Thr	tcc Ser	cct Pro 6075	Leu	act Thr	cct Pro	gaa Glu	ctg Leu 6080	Lys	gag Glu	gac Asp	agc Ser	acc Thr 6085	gcc Ala	18462
ctg Leu	gtg Val	atg Met	aac Asn 6090	Ser	act Thr	aca Thr	gag Glu	tca Ser 6095	Asn	act Thr	gtt Val	ttc Phe	tcc Ser 6100	agt Ser	18507
gtg Val	tcc Ser	ctg Leu	gat Asp 6105	Ala	gct Ala	act Thr	gag Glu	gtc Val 6110	Ser	agg Arg	gca Ala	gaa Glu	gtc Val 6115	acc Thr	18552
tac	tat	gat	cct	aca	ttc	atg	cca	gct	tct	gct	cag	tca	aca	aag	18597

Tyr	Tyr	Asp	Pro 6120	Thr	Phe	Met	Pro	Ala 6125		Ala	Gln	Ser	Thr 6130	_	
tcc Ser	cca Pro	gac Asp	att Ile 6135	tca Ser	cct Pro	gaa Glu	gcc Ala	agc Ser 6140	agc Ser	agt Ser	cat His	tct Ser	aac Asn 6145	Ser	18642
cct Pro	ccc Pro	ttg Leu	aca Thr 6150	ata Ile	tct Ser	aca Thr	cac His	aag Lys 6155	acc Thr	atc Ile	gcc Ala	aca Thr	caa Gln 6160	aca Thr	18687
ggt Gly	cct Pro	tct Ser	ggg Gly 6165	gtg Val	aca Thr	tct Ser	ctt Leu	ggc Gly 6170	caa Gln	ctg Leu	acc Thr	ctg Leu	gac Asp 6175	aca Thr	18732
tca Ser	acc Thr	ata Ile	gcc Ala 6180	acc Thr	tca Ser	gca Ala	gga Gly	act Thr 6185	cca Pro	tca Ser	gcc Ala	aga Arg	act Thr 6190	cag Gln	18777
gat Asp	ttt Phe	gta Val	gat Asp 6195	tca Ser	gaa Glu	aca Thr	acc Thr	agt Ser 6200	gtc Val	atg Met	aac Asn	aat Asn	gat Asp 6205	ctc Leu	18822
aat Asn	gat Asp	gtg Val	ttg Leu 6210	aag Lys	aca Thr	agc Ser	cct Pro	ttc Phe 6215	tct Ser	gca Ala	gaa Glu	gaa Glu	gcc Ala 6220	aac Asn	18867
tct Ser	ctc Leu	tct Ser	tct Ser 6225	cag Gln	gca Ala	cct Pro	ctc Leu	ctt Leu 6230	gtg Val	aca Thr	acc Thr	tca Ser	cct Pro 6235	tct Ser	18912
cct Pro	gta Val	act Thr	tcc Ser 6240	aca Thr	ttg Leu	caa Gln	gag Glu	cac His 6245	agt Ser	acc Thr	tcc Ser	tct Ser	ctt Leu 6250	gtt Val	18957
tct Ser	gtg Val	acc Thr	tca Ser 6255	gta Val	ccc Pro	acc Thr	cct Pro	aca Thr 6260	ctg Leu	gcg Ala	aag Lys	atc Ile	aca Thr 6265	gac Asp	19002
atg Met	gac Asp	aca Thr	aac Asn 6270	tta Leu	gaa Glu	cct Pro	gtg Val	act Thr 6275	cgt Arg	tca Ser	cct Pro	caa Gln	aat Asn 6280	tta Leu	19047
agg Arg	aac Asn	Thr	ttg Leù 6285	gcc Ala	act Thr	tca Ser	gaa Glu	gcc Ala 6290	acc Thr	aca Thr	gat Asp	aca Thr	cac Hi <i>s</i> 6295	aca Thr	19092
atg Met	cat His	cct Pro	tct Ser 6300	ata Ile	aac Asn	aca Thr	gca Ala	atg Met 6305	gcc Ala	aat Asn	gtg Val	G] À aàà	acc Thr 6310	acc Thr	19137
agt Ser	tca Ser	Pro	aat Asn 6315	gaa Glu	ttc Phe	tat Tyr	ttt Phe	act Thr 6320	gtc Val	tca Ser	cct Pro	gac Asp	tca Ser 6325	gac Asp	19182

cca Pro	tat Tyr	aaa Lys	gcc Ala 6330	aca Thr	tcc Ser	gca Ala	gta Val	gtt Val 6335	atc Ile	act Thr	tcc Ser	acc Thr	tcg Ser 6340	Gly ggg	19227
gac Asp	tca Ser	ata Ile	gtt Val 6345	tcc Ser	aca Thr	tca Ser	atg Met	cct Pro 6350	aga Arg	tcc Ser	tct Ser	gcg Ala	atg Met 6355	aaa Lys	19272
aag Lys	att Ile	gag Glu	tct Ser 6360	gag Glu	aca Thr	act Thr	ttc Phe	tcc Ser 6365	ctg Leu	ata Ile	ttt Phe	aga Arg	ctg Leu 6370	agg Arg	19317
gag Glu	act Thr	agc Ser	acc Thr 6375	tcc Ser	cag Gln	aaa Lys	att Ile	ggc Gly 6380	tca Ser	tcc Ser	tca Ser	gac Asp	aca Thr 6385	agc Ser	19362
acg Thr	gtc Val	ttt Phe	gac Asp 6390	aaa Lys	gca Ala	ttc Phe	act Thr	gct Ala 6395	gct Ala	act Thr	act Thr	gag Glu	gtc Val 6400	tcc Ser	19407
aga Arg	aca Thr	gaa Glu	ctc Leu 6405	acc Thr	tcc Ser	tct Ser	agc Ser	aga Arg 6410	aca Thr	tcc Ser	atc Ile	caa Gln	ggc Gly 6415	act Thr	19452
gaa Glu	aag Lys	ccc Pro	aca Thr 6420	atg Met	tca Ser	ccg Pro	gac Asp	acc Thr 6425	tcc Ser	aca Thr	aga Arg	tct Ser	gtc Val 6430	acc Thr	19497
atg Met	ctt Leu	tct Ser	act Thr 6435	ttt Phe	gct Ala	ggc Gly	ctg Leu	aca Thr 6440	aaa Lys	tcc Ser	gaa Glu	gaa Glu	agg Arg 6445	acc Thr	19542
			caa Gln 6450	aca Thr	ggt Gly	cct Pro	cat His	agg Arg 6455	gcg Ala	aca Thr	tca Ser	cag Gln	ggt Gly 6460	acc Thr	19587
			gac Asp 6465	aca Thr	tca Ser	atc Ile	aca Thr	acc Thr 6470	tca Ser	cag Gln	gca Ala	GJ À āđā	acc Thr 6475	cac His	19632
tca Ser	gct Ala	atg Met	act Thr 6480	cat His	gga Gly	ttt Phe	tca Ser	caa Gln 6485	Leu	gat Asp	ttg Leu	tcc Ser	act Thr 6490	ctt Leu	19677
acg Thr	agt Ser	aga Arg	gtt Val 6495	cct Pro	gag Glu	tac Tyr	ata Ile	tca Ser 6500	ggg Gly	aca Thr	agc Ser	cca Pro	ccc Pro 6505	tct Ser	19722
gtg Val	gaa Glu	aaa Lys	acc Thr 6510	agc Ser	tct Ser	tcc Ser	tct Ser	tcc Ser 6515	ctt Leu	ctg Leu	tct Ser	tta Leu	cca Pro 6520	gca Ala	19767
ata	acc	tca	ccg	tcc	cct	gta	cct	act	aca	tta	cca	gaa	agt	agg	19812

Ile	Thr	Ser	Pro 6525		Pro	Val	Pro	Thr 6530		Leu	Pro	Glu	Ser 6535	-	
ccg Pro	tct Ser	tct Ser	cct Pro 6540	Val	cat His	ctg Leu	act Thr	tca Ser 6545	Leu	ccc Pro	acc Thr	tct Ser	ggc Gly 6550	Leu	19857
gtg Val	aag Lys	acc Thr	aca Thr 6555	gat Asp	atg Met	ctg Leu	gca Ala	tct Ser 6560	Val	gcc Ala	agt Ser	tta Leu	cct Pro 6565	Pro	19902
aac Asn	ttg Leu	ggc Gly	agc Ser 6570	acc Thr	tca Ser	cat His	aag Lys	ata Ile 6575	Pro	act Thr	act Thr	tca Ser	gaa Glu 6580	Asp	19947
att Ile	aaa Lys	gat Asp	aca Thr 6585	gag Glu	aaa Lys	atg Met	tat Tyr	cct Pro 6590	tcc Ser	aca Thr	aac Asn	ata Ile	gca Ala 6595	gta Val	19992
acc Thr	aat Asn	gtg Val	ggg Gly 6600	acc Thr	acc Thr	act Thr	tct Ser	gaa Glu 6605	Lys	gaa Glu	tct Ser	tat Tyr	tcg Ser 6610	tct Ser	20037
gtc Val	cca Pro	gcc Ala	tac Tyr 6615	tca Ser	gaa Glu	cca Pro	ccc Pro	aaa Lys 6620	gtc Val	acc Thr	tct Ser	cca Pro	atg Met 6625	gtt Val	20082
acc Thr	tct Ser	ttc Phe	aac Asn 6630	ata Ile	agg Arg	gac Asp	acc Thr	att Ile 6635	gtt Val	tcc Ser	aca Thr	tcc Ser	atg Met 6640	cct Pro	20127
ggc Gly	tcc Ser	tct Ser	gag Glu 6645	att Ile	aca Thr	agg Arg	att Ile	gag Glu 6650	atg Met	gag Glu	tca Ser	aca Thr	ttc Phe 6655	tcc Ser	20172
gtg Val	gct Ala	cat His	6660 GJA ggg	ctg Leu	aag Lys	gga Gly	acc Thr	agc Ser 6665	acc Thr	tcc Ser	cag Gln	gac Asp	ccc Pro 6670	atc Ile	20217
gta Val	tcc Ser	Thr	Glu	Lys	Ser	Ala	Val	ctt Leu 6680	His	Lys	Leu	Thr	Thr	Gly	20262
gct Ala	act Thr	Glu	acc Thr 6690	tct Ser	agg Arg	aca Thr	gaa Glu	gtt Val 6695	gcc Ala	tct Ser	tct Ser	aga Arg	aga Arg 6700	aca Thr	20307
tcc Ser	att Ile	Pro	ggc Gly 6705	cct Pro	gat Asp	cat His	tcc Ser	aca Thr 6710	gag Glu	tca Ser	cca Pro	gac Asp	atc Ile 6715	tcc Ser	20352
act Thr	gaa Glu	Val	atc Ile 6720	ccc Pro	agc Ser	ctg Leu	cct Pro	atc Ile 6725	tcc Ser	ctt Leu	ggc Gly	att Ile	aca Thr 6730	gaa Glu	20397

tct Ser	tca Ser	aat Asn	atg Met 6735	acc Thr	atc Ile	atc Ile	act Thr	cga Arg 6740	aca Thr	ggt Gly	cct Pro	cct Pro	ctt Leu 6745	ggc Gly	20442
tct Ser	aca Thr	tca Ser	cag Gln 6750	ggc Gly	aca Thr	ttt Phe	acc Thr	ttg Leu 6755	gac Asp	aca Thr	cca Pro	act Thr	aca Thr 6760	tcc Ser	20487
tcc Ser	agg Arg	gca Ala	gga Gly 6765	aca Thr	cac His	tcg Ser	atg Met	gcg Ala 6770	act Thr	cag Gln	gaa Glu	ttt Phe	cca Pro 6775	cac His	20532
			acc Thr 6780	act Thr	gtc Val	atg Met	aac Asn	aag Lys 6785	gac Asp	cct Pro	gag Glu	att Ile	cta Leu 6790	tca Ser	20577
tgg Trp	aca Thr	atc Ile	cct Pro 6795	cct Pro	tct Ser	ata Ile	gag Glu	aaa Lys 6800	acc Thr	agc Ser	ttc Phe	tcc Ser	tct Ser 6805	tcc Ser	20622
ctg Leu	atg Met	cct Pro	tca Ser 6810	cca Pro	gcc Ala	atg Met	act Thr	tca Ser 6815	cct Pro	cct Pro	gtt Val	tcc Ser	tca Ser 6820	aca Thr	20667
tta Leu	cca Pro	aag Lys	acc Thr 6825	att Ile	cac His	acc Thr	act Thr	cct Pro 6830	tct Ser	cct Pro	atg Met	acc Thr	tca Ser 6835	ctg Leu	20712
ctc Leu	acc Thr	cct Pro	agc Ser 6840	cta Leu	gtg Val	atg Met	acc Thr	aca Thr 6845	gac Asp	aca Thr	ttg Leu	ggc Gly	aca Thr 6850	agc Ser	20757
	-		aca Thr 6855	acc Thr	agt Ser	tca Ser	cct Pro	cca Pro 6860	aat Asn	ttg Leu	agc Ser	agt Ser	acc Thr 6865	tca Ser	20802
His	gag Glu	ata Ile	ctg Leu 6870	aca Thr	aca Thr	gat Asp	gaa Glu	gac Asp 6875	acc Thr	aca Thr	gct Ala	ata Ile	gaa Glu 6880	gcc Ala	20847
atg Met	cat His	cct Pro	tcc Ser 6885	aca Thr	agc Ser	aca Thr	gca Ala	gcg Ala 6890	act Thr	aat Asn	gtg Val	gaa Glu	acc Thr 6895	acc Thr	20892
agt Ser	tct Ser	gga Gly	cat His 6900	ggg Gly	tca Ser	caa Gln	tcc Ser	tct Ser 6905	gtc Val	cta Leu	gct Ala	gac Asp	tca Ser 6910	gaa Glu	20937
			gcc Ala 6915						Thr	acc Thr	tcc Ser	acc Thr	atg Met 6925	GJ A aaa	20982
cat	aca	act	gtt	tcc	aca	tca	atg	tct	gtt	tcc	tct	gag	act	aca	21027

His	Thr	Thr	Val 6930	Ser	Thr	Ser	Met	Ser 6935	Val	Ser	Ser	Glu	Thr 6940		
aaa Lys	att Ile	aag Lys	aga Arg 6945	gag Glu	tca Ser	aca Thr	tat Tyr	tcc Ser 6950	ttg Leu	act Thr	cct Pro	gga Gly	ctg Leu 6955	aga Arg	21072
gag Glu	acc Thr	agc Ser	att Ile 6960	tcc Ser	caa Gln	aat Asn	gcc Ala	agc Ser 6965	ttt Phe	tcc Ser	act Thr	gac Asp	aca Thr 6970	agt Ser	21117
att Ile	gtt Val	ctt Leu	tca Ser 6975	gaa Glu	gtc Val	ccc Pro	act Thr	ggt Gly 6980	act Thr	act Thr	gct Ala	gag Glu	gtc Val 6985	tcc Ser	21162
agg Arg	aca Thr	gaa Glu	gtc Val 6990	acc Thr	tcc Ser	tct Ser	ggt Gly	aga Arg 6995	aca Thr	tcc Ser	atc Ile	cct Pro	ggc Gly 7000	cct Pro	21207
tct Ser	cag Gln	tcc Ser	aca Thr 7005	gtt Val	ttg Leu	cca Pro	gaa Glu	ata Ile 7010	tcc Ser				atg Met 7015	aca Thr	21252
agg Arg	ctc Leu	ttt Phe	gcc Ala 7020	tcg Ser	ccc Pro	acc Thr	atg Met	aca Thr 7025	gaa Glu	tca Ser	gca Ala	gaa Glu	atg Met 7030	acc Thr	21297
			caa Gln 7035		ggt Gly	cct Pro	tct Ser	ggg Gly 7040	tct Ser	acc Thr	tca Ser	cag Gln	gat Asp 7045	acc Thr	21342
ctt Leu	acc Thr	ttg Leu	gac Asp 7050	aca Thr	tcc Ser	acc Thr	aca Thr	aag Lys 7055	tcc Ser	cag Gln	gca Ala	aag Lys	act Thr 7060	cat His	21387
tca Ser	act Thr	ttg Leu	act Thr 7065	cag Gln	aga Arg	ttt Phe	cca Pro	cac His 7070	tca Ser	gag Glu	atg Met	acc Thr	act Thr 7075	ctc Leu	21432
atg Met	agc Ser	aga Arg	ggt Gly 7080	cct Pro	gga Gly	gat Asp	atg Met	tca` Ser 7085	tgg Trp	caa Gln	agc Ser	tct Ser	ccc Pro 7090	tct Ser	21477
ctg Leu	gaa Glu	aat Asn	ccc Pro 7095	agc Ser	tct Ser	ctc Leu	Pro	tcc Ser 7100	ctg Leu	ctg Leu	tct Ser	tta Leu	cct Pro 7105	gcc Ala	21522
aca Thr	acc Thr	Ser	cct Pro 7110	cct Pro	ccc Pro	att Ile	tcc Ser	tcc Ser 7115	aca Thr	tta Leu	cca Pro	gtg Val	act Thr 7120	atc Ile	21567
tcc Ser	tcc Ser	Ser	cct Pro 7125	ctt Leu	cct Pro	gtg Val	act Thr	tca Ser 7130	ctt Leu	ctc Leu	acc Thr	tct Ser	agc Ser 7135	ccg Pro	21612

g. V	ta al	acg Thr	acc Thr	aca Thr 7140	gac Asp	atg Met	tta Leu	cac His	aca Thr 7145	agc Ser	cca Pro	gaa Glu	ctt Leu	gta Val 7150	acc Thr	21657
a S	gt er	tca Ser	cct Pro	cca Pro 7155	aag Lys	ctg Leu	agc Ser	cac His	act Thr 7160	tca Ser	gat Asp	gag Glu	aga Arg	ctg Leu 7165	acc Thr	21702
a T	ct hr	ggc Gly	aag Lys	gac Asp 7170	acc Thr	aca Thr	aat Asn	aca Thr	gaa Glu 7175	gct Ala	gtg Val	cat His	cct Pro	tcc Ser 7180	aca Thr	21747
a A	ac sn	aca Thr	gca Ala	gcg Ala 7185	tcc Ser	aat Asn	gtg Val	gag Glu	att Ile 7190	ccc Pro	agc Ser	tct Ser	gga Gly	cat His 7195	gaa Glu	21792
t s	cc	cct Pro	tcc Ser	tct Ser 7200	gcc Ala	tta Leu	gct Ala	gac Asp	tca Ser 7205	gag Glu	aca Thr	tcc Ser	aaa Lys	gcc Ala 7210	aca Thr	21837
				ttt Phe 7215	att Ile	acc Thr	tcc Ser	acc Thr	cag Gln 7220	gag Glu	gat Asp	aca Thr	act Thr	gtt Val 7225	gcc Ala	21882
a I	ta le	tca Ser	acc Thr	cct Pro 7230	cac His	ttc Phe	ttg Leu	gag Glu	act Thr 7235	agc Ser	aga Arg	att Ile	cag Gln	aaa Lys 7240	gag Glu	21927
				tcc Ser 7245	ctg Leu	agc Ser	cct Pro	aaa Lys	ttg Leu 7250	agg Arg	gag Glu	aca Thr	ggc Gly	agt Ser 7255	tct Ser	21972
g V	tg al	gag Glu	aca Thr	agc Ser 7260	tca Ser	gcc Ala	ata Ile	gag Glu	aca Thr 7265	agt Ser	gct Ala	gtc Val	ctt Leu	tct Ser 7270	gaa Glu	22017
g V	tg al	tcc Ser	gtt Val	ggt Gly 7275	Ala	act Thr	act Thr	gag Glu	atc Ile 7280	tcc Ser	agg Arg	aca Thr	gaa Glu	gtc Val 7285	acc Thr	22062
t	cc	tct Ser	agc Ser	aga Arg 7290	Thr	tcc Ser	atc Ile	tct Ser	ggt Gly 7295	tct Ser	gct Ala	gag Glu	tcc Ser	aca Thr 7300	atg Met	22107
t	tg	cca Pro	gaa Glu	ata Ile 7305	Ser	acc Thr	aca Thr	aga Arg	aaa Lys 7310	Ile	att Ile	aag Lys	ttc Phe	cct Pro 7315	act Thr	22152
t	cc	ccc Pro	atc Ile	ctg Leu 7320	Ala	gaa Glu	tca Ser	tca Ser	gaa Glu 7325	Met	acc Thr	atc Ile	aag Lys	acc Thr 7330	caa Gln	22197
а	ca	agt	cct	cct	ggg	tct	aca	tca	gag	agt	acc	ttt	aca	tta	gac	22242

Thr	Ser	Pro	Pro 7335	Gly 5	Ser	Thr	: Ser	Glu 7340	Ser	Thr	Phe	Thr	Leu 7345		
aca	tca Ser	acc	act Thr 7350	Pro	tcc Ser	ttg Leu	gta Val	ata Ile 7355	Thr	cat His	tcç Ser	act Thr	atg Met 7360	act Thr	22287
			cca Pro 7365	His	tca Ser	gag Glu	ata Ile	acc Thr 7370	Thr	ctt Leu	gtg Val	agt Ser	aga Arg 7375	Gly	22332
gct Ala	GJ À aaa	gat Asp	gtg Val 7380	Pro	cgg Arg	ccc	agc Ser	tct Ser 7385	Leu	cct Pro	gtg Val	gaa Glu	gaa Glu 7390	Thr	22377
agc Ser	cct Pro	cca Pro	tct Ser 7395	Ser	cag Gln	ctg Leu	tct Ser	tta Leu 7400	tct Ser	gcc Ala	atg Met	atc Ile	tca Ser 7405	Pro	22422
Ser	Pro	Val	Ser 7410	Ser	Thr	Leu	Pro	gca Ala 7415	Ser	agc Ser	cac His	tcc Ser	tct Ser 7420	Ser	22467
Ala	Ser	Val	Thr 7425	Ser	Leu	Leu	Thr	cca Pro 7430	Gly	Gln	Val	Lys	7435	Thr	22512
GLU	AaT	Leu	Asp 7440	Ala	Ser	Ala	Glu	cct Pro 7445	Glu	Thr	Ser	Ser	Pro 7450	Pro	22557
ser	ьеи	Ser	Ser 7455	Thr	Ser	Val	Glu	ata Ile 7460	Leu	Ala	Thr	Ser	Glu 7465	Val	22602
THE	TŅT	Asp	7470	Glu	Lуs	Ile	His	cet Pro 7475	Phe	Ser	Asn	Thr	Ala 7480	gta Val	22647
Tnr	гуѕ	Val	Gly 7485	Thr	Ser	Ser	Ser	gga Gly 7490	His	Glu	Ser	Pro	Ser 7495	tct Ser	22692
gtc Val	cta Leu	Pro	gac Asp 7500	tca Ser	gag Glu	aca Thr	acc Thr	aaa Lys 7505	gcc Ala	aca Thr	tcg Ser	gca Ala	atg Met 7510	ggt Gly	22737
Thr	Ile	Ser	11e 7515	Met	Gly	Asp	Thr	agt Ser 7520	Val	Ser	Thr	Leu	Thr 7525	cct Pro	22782
gcc Ala	tta Leu	Ser	aac Asn 7530	act Thr	agg Arg	aaa Lys	Ile	cag Gln 7535	tca Ser	gag Glu	cca Pro	gct Ala	tcc Ser 7540	tca Ser	22827

ctg Leu	acc Thr	acc Thr	aga Arg 7545	ttg Leu	agg Arg	gag Glu	acc Thr	agc Ser 7550	acc Thr	tct Ser	gaa Glu	gag Glu	acc Thr 7555	agc Ser	22872
tta Leu	gcc Ala	aca Thr	gaa Glu 7560	gca Ala	aac Asn	act Thr	gtt Val	ctt Leu 7565	tct Ser	aaa Lys	gtg Val	tcc Ser	act Thr 7570	ggt Gly	22917
gct Ala	act Thr	act Thr	gag Glu 7575	gtc Val	tcc Ser	agg Arg	aca Thr	gaa Glu 7580	gcc Ala	atc Ile	tcc Ser	ttt Phe	agc Ser 7585	aga Arg	22962
aca Thr	tcc Ser	atg Met	tca Ser 7590	ggc Gly	cct Pro	gag Glu	cag Gln	tcc Ser 7595	aca Thr	atg Met	tca Ser	caa Gln	gac Asp 7600	atc Ile	230,07
			acc Thr 7605	atc Ile	ccc Pro	agg Arg	att Ile	tct Ser 7610	gcc Ala	tcc Ser	tct Ser	gtc Val	ctg Leu 7615	aca Thr	23052
gaa Glu	tct Ser	gca Ala	aaa Lys 7620	atg Met	acc Thr	atc Ile	aca Thr	acc Thr 7625	caa Gln	aca Thr	ggt Gly	cct Pro	tcg Ser 7630	gag Glu	23097
			gaa Glu 7635	agt Ser	acc Thr	ctt Leu	aat Asn	ttg Leu 7640	aac Asn	aca Thr	gca Ala	acc Thr	aca Thr 7645	ccc Pro	23142
			gaa Glu 7650	acc Thr	cac His	tct Ser	ata Ile	gta Val 7655	att Ile	cag Gln	gga Gly	ttt Phe	cca Pro 7660	cac His	23187
			acc Thr 7665		tcc Ser	atg Met	ggc Gly	aga Arg 7670	ggt Gly	cct Pro	gga Gly	ggt Gly	gtg Val 7675	tca Ser	23232
tgg Trp	cct Pro	agc Ser	cct Pro 7680	ccc Pro	ttt Phe	gtg Val	.aaa Lys	gaa Glu 7685	acc Thr	agc Ser	cct Pro	cca Pro	tcc Ser 7690	tcc Ser	23277
ccg Pro	ctg Leu	tct Ser	tta Leu 7695	cct Pro	gcc Ala	gtg Val	acc Thr	tca Ser 7700	cct Pro	cat His	cct Pro	gtt Val	tcc Ser 7705	acc Thr	23322
aca Thr	ttc Phe	cta Leu	gca Ala 7710	His	atc Ile	ccc Pro	ccc Pro	tct Ser 7715	ccc	ctt Leu	cct Pro	gtg Val	act Thr 7720	Ser .	23367
ctt Leu	ctc Leu	acc Thr	tct Ser 7725	Gly	ccg Pro	gcg Ala	aca Thr	acc Thr 7730	Thr	gat Asp	atc Ile	ttg Leu	ggt Gly 7735	Thr	23412
agc	aca	gaa	cct	gga	acc	agt	tca	tct	tca	agt	ttg	agc	acc	acc	23457

Ser	Thr	Glu	Pro 7740	Gly	Thr	Ser	Ser	Ser 7745	Ser	Ser	: Leu	ser	Thr 7750	Thr	
tcc Ser	cat His	gag Glu	aga Arg 7755	Leu	acc Thr	act Thr	tac Tyr	aaa Lys 7760	Asp	act Thr	gca Ala	cat His	aca Thr 7765	gaa Glu	23502
gcc Ala	gtg Val	cat His	cct Pro 7770	Ser	aca Thr	aac Asn	aca Thr	gga Gly 7775	Gly	acc Thr	aat Asn	gtg Val	gca Ala 7780	acc Thr	23547
acc Thr	agc Ser	tct	gga Gly 7785	Tyr	aaa Lys	tca Ser	cag Gln	tcc Ser 7790	Ser	gtc Val	cta Leu	gct Ala	gac Asp 7795	Ser	23592
tct Ser	cca Pro	atg Met	tgt Cys 7800	Thr	acc Thr	tcc Ser	acc Thr	atg Met 7805	Gly	gat Asp	aca Thr	agt Ser	gtt Val' 7810	ctc Leu	23637
aca Thr	tca Ser	act Thr	cct Pro 7815	gcc Ala	ttc Phe	ctt Leu	gag Glu	act Thr 7820	agg Arg	agg Arg	att Ile	cag Gln	aca Thr 7825	gag Glu	23682
cta Leu	gct Ala	tcc Ser	tcc Ser 7830	ctg Leu	acc Thr	cct Pro	gga Gly	ttg Leu 7835	agg Arg	gag Glu	tcc Ser	agt Ser	ggc Gly 7840	tct Ser	23727
gaa Glu	gly ggg	acc Thr	agc Ser 7845	tca Ser	ggc Gly	acc Thr	aag Lys	atg Met 7850	agc Ser	act Thr	gtc Val	ctc Leu	tct Ser 7855	aaa Lys	23772
gtg Val	ccc Pro	act Thr	ggt Gly 7860	gct Ala	act Thr	act Thr	gag Glu	atc Ile 7865	tcc Ser	aag Lys	gaa Glu	gac Asp	gtc Val 7870	acc Thr	23817
tcc Ser	atc Ile	cca Pro	ggt Gly 7875		gct Ala	caa Gln	tcc Ser	aca Thr 7880	ata Ile	tca Ser	cca Pro	gac Asp	atc Ile 7885	tcc Ser	23862
aca Thr	aga Arg	Thr	gtc Val 7890		tgg Trp	ttc Phe	tct Ser	aca Thr 7895	tcc Ser	cct Pro	gtc Val	atg Met	aca Thr 7900	gaa Glu	23907
tca Ser	gca Ala	GIU	ata Ile 7905	acc Thr	atg Met	aac Asn	acc Thr	cat His 7910	aca Thr	agt Ser	cct Pro	tta Leu	ggg Gly 7915	gcc Ala	23952
aca Thr	aca Thr	Gln	ggc Gly 7920	acc Thr	agt Ser	act Thr	ttg Leu	gcc Ala 7925	acg Thr	tca Ser	agc Ser	aca Thr	acc Thr 7930	tct Ser	23997
ttg Leu	aca Thr	Met	aca Thr 7935	cac His	tca Ser	act Thr	Ile	tct Ser 7940	caa Gln	gga Gly	ttt Phe	Ser	cac His 7945	tca Ser	24042

cag Gln	atg Met	agc Ser	act Thr 7950	ctt Leu	atg Met	agg Arg	agg Arg	ggt Gly 7955	cct Pro	gag Glu	gat Asp	gta Val	tca Ser 7960	tgg Trp	24087
atg Met	agc Ser	cct Pro	ccc Pro 7965	ctt Leu	ctg Leu	gaa Glu	aaa Lys	act Thr 7970	aga Arg	cct Pro	tcc Ser	ttt Phe	tct Ser 7975	ctg Leu	24132
atg Met	tct Ser	tca Ser	cca Pro 7980	gcc Ala	aca Thr	act Thr	tca Ser	cct Pro 7985	tct Ser	cct Pro	gtt Val	tcc Ser	tcc Ser 7990	aca Thr	24177
tta Leu	cca Pro	gag Glu	agc Ser 7995	atc Ile	tct Ser	tcc Ser	tct Ser	cct Pro 8000	ctt Leu	cct Pro	gtg Val	act Thr	tca Ser 8005	ctc Leu	24222
ctc Leu	acg Thr	tct Ser	ggc Gly 8010	ttg Leu	gca Ala	aaa Lys	act Thr	aca Thr 8015	gat Asp	atg Met	ttg Leu	cac His	aaa Lys 8020	agc Ser	24267
tca Ser	gaa Glu	cct Pro	gta Val 8025	acc Thr	aac Asn	tca Ser	cct Pro	gca Ala 8030	aat Asn	ttg Leu	agc Ser	agc Ser	acc Thr 8035	tca Ser	24312
gtt Val	gaa Glu	ata Ile	ctg Leu 8040	gcc Ala	acc Thr	tct Ser	gaa Glu	gtc Val 8045	acc Thr	aca Thr	gat Asp	aca Thr	gag Glu 8050	aaa Lys	24357
			tct Ser 8055	tca Ser	aac Asn	aga Arg	aca Thr	gtg Val 8060	acc Thr	gat Asp	gtg Val	ggg Gly	acc Thr 8065	tcc Ser	24402
agt Ser	tct Ser	gga Gly	cat His 8070	gaa Glu	tcc Ser	act Thr	tcc Ser	ttt Phe 8075	gtc Val	cta Leu	gct Ala	gac Asp	tca Ser 8080	cag Gln	24447
aca Thr	tcc Ser	aaa Lys	gtc Val 8085	aca Thr	tct Ser	cca Pro	atg Met	gtt Val 8090	att Ile	acc Thr	tcc Ser	acc Thr	atg Met 8095	gag Glu	24492
gat Asp	acg Thr	agt Ser	gtc Val 8100	Ser	aca Thr	tca Ser	act Thr	cct Pro 8105	ggc Gly	ttt Phe	ttt Phe	gag Glu	act Thr 8110	agc Ser	24537
aga Arg	att Ile	cag Gln	aca Thr 8115	Glu	cca Pro	aca Thr	tcc Ser	tcc Ser 8120	ctg Leu	acc Thr	ctt Leu	gga Gly	ctg Leu 8125	aga Arg	24582
aag Lys	acc Thr	agc Ser	agc Ser 8130	Ser	gag Glu	Gly	acc Thr	agc Ser 8135	Leu	gcc Ala	aca Thr	gag Glu	atg Met 8140	Ser	24627
act	gtc	ctt	tct	gga	gtg	ccc	act	ggt	gcc	act	gct	gaa	gtc	tcc	24672

Thr	Val	Leu	Ser 8145	Gly	Val	Pro	Thr	Gly 8150		Thr	: Ala	Glu	Val 8155		
agg Arg	aca Thr	gaa Glu	gtc Val 8160	Thr	tcc	tct Ser	agc Ser	aga Arg 8165	Thr	tcc Ser	ato Ile	tca Ser	ggc Gly 8170	Phe	24717
gct Ala	cag Gln	ctc Leu	aca Thr 8175	Val	tca Ser	cca Pro	gag Glu	act Thr 8180	Ser	aca Thr	gaa Glu	acc Thr	atc Ile 8185	Thr	24762
aga Arg	ctc Leu	cct Pro	acc Thr 8190	tcc Ser	agc Ser	ata Ile	atg Met	aca Thr 8195	Glu	tca Ser	gca Ala	gaa Glu	atg Met 8200	Met	24807
atc Ile	aag Lys	aca Thr	caa Gln 8205	Thr	gat Asp	cct Pro	cct Pro	ggg Gly 8210	tct Ser	aca Thr	cca Pro	gag Glu	agt Ser 8215	act Thr	24852
cat His	act Thr	gtg Val	gac Asp 8220	ata Ile	tca Ser	aca Thr	aca Thr	ccc Pro 8225	Asn	tgg Trp	gta Val	gaa Glu	acc Thr 8230	His	24897
tcg Ser	act Thr	gtg Val	act Thr 8235	cag Gln	aga Arg	ttt Phe	tca Ser	cac His 8240	tca Ser	gag Glu	atg Met	acc Thr	act Thr 8245	ctt Leu	24942
gtg Val	agc Ser	aga Arg	agc Ser 8250	cct Pro	ggt Gly	gat Asp	atg Met	tta Leu 8255					tcc Ser 8260	tct Ser	24987
gtg Val	gaa Glu	gaa Glu	acc Thr 8265	agc Ser	tct Ser	gcc Ala	tct Ser	tcc Ser 8270	ctg Leu	ctg Leu	tct Ser	ctg Leu	cct Pro 8275	gcc Ala	25032
Thr	Thr	Ser	Pro 8280	Ser	Pro	Val	Ser	tct Ser 8285	Thr	Leu	Val	Glu	Asp 8290	Phe	25077
cct Pro	tcc Ser	gct Ala	tct Ser 8295	ctt Leu	cct Pro	gtg Val	act Thr	tct Ser 8300	ctt Leu	ctc Leu	acc Thr	cct Pro	ggc Gly 8305	ctg Leu	25122
gtg Val	ata Ile	Thr	aca Thr 8310	gac Asp	agg Arg	atg Met	ggc Gly	ata Ile 8315	agc Ser	aga Arg	gaa Glu	cct Pro	gga Gly 8320	acc Thr	25167
agt Ser	tcc Ser	Thr	tca Ser 8325	aat Asn	ttg Leu	agc Ser	Ser	acc Thr 8330	tcc Ser	cat His	gag Glu	Arg	ctg Leu 8335	acc Thr	25212
act Thr	ttg Leu	GLu	gac Asp 8340	act Thr	gta Val	gat Asp	Thr	gaa Glu 8345	gac Asp	atg Met	cag Gln	Pro	tcc Ser 8350	aca Thr	25257

cac His	aca Thr	gca Ala	gtg Val 8355	acc Thr	aac Asn	gtg Val	agg Arg	acc Thr 8360	tcc Ser	att Ile	tct Ser	gga Gly	cat His 8365	gaa Glu	25302
tca Ser	caa Gln	tct Ser	tct Ser 8370	gtc Val	cta Leu	tct Ser	gac Asp	tca Ser 8375	gag Glu	aca Thr	ccc Pro	aaa Lys	gcc Ala 8380	aca Thr	25347
tct Ser	cca Pro	atg Met	ggt Gly 8385	acc Thr	acc Thr	tac Tyr	acc Thr	atg Met 8390	gly ggg	gaa Glu	acg Thr	agt Ser	gtt Val 8395	tcc Ser	25392
ata Ile	tcc Ser	act Thr	tct Ser 8400	gac Asp	ttc Phe	ttt Phe	gag Glu	acc Thr 8405	agc Ser	aga Arg	att Ile	cag Gln	ata Ile 8410	gaa Glu	25437
cca Pro	aca Thr	tcc Ser	tcc Ser 8415	ctg Leu	act Thr	tct Ser	gga Gly	ttg Leu 8420	agg Arg	gag Glu	acc Thr	agc Ser	agc Ser 8425	tct Ser	25482
gag Glu	agg Arg	atc Ile	agc Ser 8430	tca Ser	gcc Ala	aca Thr	gag Glu	gga Gly 8435	agc Ser	act Thr	gtc Val	ctt Leu	tct Ser 8440	gaa Glu	25527
gtg Val	ccc Pro	Ser	ggt Gly 8445	gct Ala	acc Thr	act Thr	gag Glu	gtc Val 8450	tcc Ser	agg Arg	aca Thr	gaa Glu	gtg Val 8455	ata Ile	25572
tcc Ser	tct Ser	agg Arg	gga Gly 8460	aca Thr	tcc Ser	atg Met	tca Ser	ggg Gly 8465	cct Pro	gat Asp	cag Gln	ttc Phe	acc Thr 8470	ata Ile	25617
tca Ser	cca Pro	gac Asp	atc Ile 8475	tct Ser	act Thr	gaa Glu	gcg Ala	atc Ile 8480	acc Thr	agg Arg	ctt Leu	tct Ser	act Thr 8485	tcc Ser	25662
ccc	att Ile	atg Met	aca Thr 8490	Glu	tca Ser	gca Ala	gaa Glu	agt Ser 8495	gcc Ala	atc Ile	act Thr	att Ile	gag Glu 8500	aca Thr	25707
				Ala				ggt Gly 8510						acc Thr	25752
tca Ser	aca Thr	aca Thr	acc Thr 8520	Phe	tgg Trp	tca Ser	ggg	acc Thr. 8525	cac His	tca Ser	act Thr	gca Ala	tct Ser 8530	cca Pro	25797
gga Gly	ttt Phe	tca Ser	cac His 8535	Ser	gag Glu	atg Met	acc Thr	act Thr 8540	Leu	atg Met	agt Ser	aga Arg	act Thr 8545	cct Pro	25842
gga	gat	ġtg	cca	tgg	ccg	agc	ctt	ccc	tct	gtg	gaa	gaa	gcc	agc	25887

Gly	Asp	Val	Pro 8550		Pro	Ser	Leu	Pro 8555		Val	Glu	Glu	Ala 8560		
tct Ser	gtc Val	tct Ser	tcc Ser 8565	tca Ser	ctg Leu	tct Ser	tca Ser	cct Pro 8570	gcc Ala	atg Met	acc Thr	tca Ser	act Thr 8575	tct Ser	25932
ttt Phe	ttc Phe	tcc Ser	aca Thr 8580	tta Leu	cca Pro	gag Glu	agc Ser	atc Ile 8585	tcc Ser	tcc Ser	tct Ser	cct Pro	cat His 8590	cct Pro	- 25977
gtg Val	act Thr	gca Ala	ctt Leu 8595	ctc Leu	acc Thr	ctt Leu	ggc Gly	cca Pro 8600	gtg Val	aag Lys	acc Thr	aca Thr	gac Asp 8605	atg Met	26022
ttg Leu	cgc Arg	aca Thr	agc Ser 8610	tca Ser	gaa Glu	cct Pro	gaa Glu	acc Thr 8615	agt Ser	tca Ser	cct Pro	cca Pro	aat Asn 8620	ttg Leu	26067
			tca Ser 8625	gct Ala	gaa Glu	ata Ile	tta Leu	gcc Ala 8630	acg Thr	tct Ser	gaa Glu	gtc Val	acc Thr 8635	aaa Lys	26112
gat Asp	aga Arg	gag Glu	aaa Lys 8640	att Ile	cat His	ccc Pro	tcc Ser	tca Ser 8645	aac Asn	aca Thr	cct Pro	gta Val	gtc Val 8650	aat Asn	26157
gta Val	GJÀ āāā	act Thr	gtg Val 8655	att Ile	tat Tyr	aaa Lys	cat His	cta Leu 8660	tcc Ser			tct Ser		ttg Leu	26202
gct Ala	gac Asp	tta Leu	gtg Val 8670	aca Thr	aca Thr	aaa Lys _,	ccc Pro	aca Thr 8675	tct Ser	cca Pro	atg Met	gct Ala	acc Thr 8680	acc Thr	26247
tcc Ser	act Thr	ctg Leu	ggg Gly 8685	aat Asn	aca Thr	agt Ser	gtt Val	tcc Ser 8690	aca Thr	tca Ser	act Thr	cct Pro	gcc Ala 8695	ttc Phe	26292
cca Pro	gaa Glu	act Thr	atg Met 8700	atg Met	aca Thr	cag Gln	cca Pro	act Thr 8705				act Thr		gga Gly	26337
tta Leu	agg Arg	gag Glu	atc Ile 8715	agt Ser	acc Thr	tct Ser	Gln	gag Glu 8720	acc Thr	agc Ser	tca Ser	gca Ala	aca Thr 8725	gag Glu	26382
		gct Ala	_				Met	ccc Pro 8735				act Thr		aag Lys	26427
gtc Val	tcc Ser	Arg	aca Thr 8745	gaa Glu	gcc Ala	ctc Leu	Ser	tta Leu 8750	ggc Gly	aga Arg	aca Thr	tcc Ser	acc Thr 8755	cca Pro	26472

ggt Gly	cct Pro	gct Ala	caa Gln 8760	tcc Ser	aca Thr	ata Ile	tca Ser	cca Pro 8765	gaa Glu	atc Ile	tcc Ser	acg Thr	gaa Glu 8770	acc Thr	26517
atc Ile	act Thr	aga Arg	att Ile 8775	tct Ser	act Thr	ccc Pro	ctc Leu	acc Thr 8780	acg Thr	aca Thr	gga Gly	tca Ser	gca Ala 8785	gaa Glu	26562
atg Met	acc Thr	atc Ile	acc Thr 8790	ccc Pro	aaa Lys	aca Thr	ggt Gly	cat His 8795	tct Ser	Gly ggg	gca Ala	tcc Ser	tca Ser 8800	caa Gln	26607
ggt Gly	acc Thr	ttt Phe	acc Thr 8805	ttg Leu	gac Asp	aca Thr	tca Ser	agc Ser 8810	Arg	gcc Ala	tcc Ser	tgg Trp	cca Pro 8815	gga Gly	26652
act Thr	cac His	tca Ser	gct Ala 8820	gca Ala	act Thr	cac His	aga Arg	tct Ser 8825	cca Pro	cac His	tca Ser	Gly	atg Met 8830	acc Thr	26697
act Thr	cct Pro	atg Met	agc Ser 8835	aga Arg	ggt Gly	cct Pro	gag Glu	gat Asp 8840	gtg Val	tca Ser	tgg Trp	cca Pro	agc Ser 8845	cgc Arg	26742
cca Pro	tca Ser	gtg Val	gaa Glu 8850	aaa Lys	act Thr	agc Ser	cct Pro	cca Pro 8855	tct Ser	tcc Ser	ctg Leu	gtg Val	tct Ser 8860	tta Leu	26787
tct Ser	gca Ala	gta Val	acc Thr 8865	Ser	cct Pro	tcg Ser	cca Pro	ctt Leu 8870	Tyr	tcc Ser	aca Thr	cca Pro	tct Ser 8875	gag Glu	26832
agt Ser	agc Ser	cac His	tca Ser 8880	Ser	cct Pro	ctc Leu	cgg Arg	gtg Val 8885	Thr	tct Ser	ctt Leu	ttc Phe	acc Thr 8890	cct Pro	26877
gtc Val	atg Met	atg Met	aag Lys 8895	Thr	aca Thr	gac Asp	atg Met	ttg Leu 8900	Asp	aca Thr	agc Ser	ttg Leu	gaa Glu 8905	Pro	26922
gtg Val	acc Thr	act Thr	tca Ser 8910	Pro	ccc Pro	agt Ser	atg Met	aat Asn 8915	Ile	acc Thr	tca Ser	gat Asp	gag Glu 8920	Ser	26967
ctg Leu	gcc Ala	act Thr	tct Ser 8925	Lys	gcc Ala	acc Thr	atg Met	gag Glu 8930	Thr	gag Glu	gca Ala	att Ile	cag Gln 8935	Leu	27012
tca Ser	gaa Glu	aac Asn	aca Thr 8940	Ala	gtg Val	act Thr	cag Gln	atg Met 8945	Gly	acc	atc Ile	agc Ser	gct Ala 8950	Arg	27057
caa	gaa	ttc	tat	tco	tct	tat	сса	ggc	ctc	сса	gag	cca	tcc	aaa	27102

Gln	Glu	Phe	Tyr 8955	Ser	Ser	Tyr	Pro	Gly 8960	Leu	Pro	Glu	Pro	Ser 8965		
gtg Val	aca Thr	tct Ser	cca Pro 8970	Val	gtc Val	acc Thr	tct Ser	tcc Ser 8975	Thr	ata	aaa Lys	gac Asp	att Ile 8980	Val	27147
tct Ser	aca Thr	acc Thr	ata Ile 8985	Pro	gct Ala	tcc Ser	tct Ser	gag Glu 8990	Ile	aca Thr	aga Arg	att	gag Glu 8995	Met	27192
gag Glu	tca Ser	aca Thr	tcc Ser 9000	Thr	ctg Leu	acc Thr	ccc Pro	aca Thr 9005					agc Ser 9010	Thr	27237
tcc Ser	cag Gln	gag Glu	atc Ile 9015	cac His	tca Ser	gcc Ala	aca Thr	aag Lys 9020	cca Pro	agc Ser	act Thr	gtt Val	cct Pro 9025	Tyr	27282
aag Lys	gca Ala	ctc Leu	act Thr 9030	agt Ser	gcc Ala	acg Thr	att Ile	gag Glu 9035	gac Asp	tcc Ser	atg Met	aca Thr	caa Gln 9040	gtc Val	27327
atg Met	tcc Ser	tct Ser	agc Ser 9045	aga Arg	gga Gly	cct Pro	agc Ser	cct Pro 9050	gat Asp	cag Gln	tcc Ser	aca Thr	atg Met 9055	tca Ser	27372
GIn	Asp	Ile	tcc Ser 9060	Ser	Glu	Val	Ile	Thr 9065	Arg	Leu	Ser	Thr	Ser 9070	ccc Pro	27417
Ile	Lys	Ala	gaa Glu 9075	Ser	Thr	Glu	Met	Thr 9080	Ile	Thr	Thr	Gln	Thr 9085	ggt Gly	27462
ser	Pro	GTÀ	gct Ala 9090	Thr	Ser	Arg	Gly	Thr 9095	Leu	Thr	Leu	Asp	Thr 9100	tca Ser	27507
aca Thr	act Thr	ttt Phe	atg Met 9105	tca Ser	ggg Gly	acc Thr	cac His	tca. Ser 9110	act Thr	gca Ala	tct Ser	caa Gln	gga Gly 9115	ttt Phe	27552
tca Ser	HIS	Ser	cag Gln 9120	atg Met	acc Thr	gct Ala	ctt Leu	atg Met 9125	agt Ser	aga Arg	act Thr	cct Pro	gga Gly 9130	gat Asp	27597
gtg Val	cca Pro	Trp	cta Leu 9135	agc Ser	cat His	ccc Pro	tct Ser	gtg Val 9140	gaa Glu	gaa Glu	gcc Ala	agc Ser	tct Ser 9145	gcc Ala	27642
tct Ser	ttc Phe	Ser	ctg Leu 9150	tct Ser	tca Ser	cct Pro	Val	atg Met 9155	acc Thr	tca Ser	tct Ser	tct Ser	ccc Pro 9160	gtt Val	27687

tct Ser	tcc Ser	aca Thr	tta Leu 9165	cca Pro	gac Asp	agc Ser	atc Ile	cac His 9170	tct Ser	tct Ser	tcg Ser	ctt Leu	cct Pro 9175	gtg Val	27732
aca Thr	tca Ser	ctt Leu	ctc Leu 9180	acc Thr	tca Ser	ggg Gly	ctg Leu	gtg Val 9185	aag Lys	acc Thr	aca Thr	gag Glu	ctg Leu 9190	ttg Leu	27777
ggc Gly	aca Thr	agc Ser	tca Ser 9195	gaa Glu	cct Pro	gaa Glu	acc Thr	agt Ser 9200	tca Ser	ccc Pro	cca Pro	aat Asn	ttg Leu 9205	agc Ser	27822
agc Ser	acc Thr	tca Ser	gct Ala 9210	gaa Glu	ata Ile	ctg Leu	gcc Ala	acc Thr 9215	act Thr	gaa Glu	gtc Val	act Thr	aca Thr 9220	gat Asp	27867
aca Thr	gag Glu	aaa Lys	ctg Leu 9225	gag Glu	atg Met	acc Thr	aat Asn	gtg Val 9230	gta Val	acc Thr	tca Ser	ggt Gly	tat Tyr 9235	aca Thr	27912
cat His	gaa Glu	tct Ser	cct Pro 9240	tcc Ser	tct Ser	gtc Val	cta Leu	gct Ala 9245	gac Asp	tca Ser	gtg Val	aca Thr	aca Thr 9250	aag Lys	27957
gcc Ala	aca Thr	tct Ser	tca Ser 9255	atg Met	ggt Gly	atc Ile	acc Thr	tac Tyr 9260	ccc Pro	aca Thr	gga Gly	gat Asp	aca Thr 9265	aat Asn	28002
			tca Ser 9270	acc Thr	cct Pro	gcc Ala	ttc Phe	tct Ser 9275	gac Asp	acc Thr	agt Ser	agg Arg	att Ile 9280	caa Gln	28047
aca Thr	aag Lys	tca Ser	aag Lys 9285	ctc Leu	tca Ser	ctg Leu	act Thr	cct Pro 9290	ggg Gly	ttg Leu	atg Met	gag Glu	acc Thr 9295	agc Ser	28092
			gag Glu 9300	acc Thr	agc Ser	tct Ser	gcc Ala	aca Thr 9305	gaa Glu	aaa Lys	agc Ser	act Thr	gtc Val 9310	ctt Leu	28137
tct Ser	agt Ser	gtg Val	ccc Pro 9315	act Thr	ggt Gly	gct Ala	act Thr	act Thr 9320	gag Glu	gtc Val	tcc Ser	agg Arg	aca Thr 9325	gaa Glu	28182
gcc Ala	atc Ile	tct Ser	tct Ser 9330	agc Ser	aga Arg	aca Thr	tcc Ser	atc Ile 9335	cca Pro	ggc Gly	cct Pro	gct Ala	caa Gln 9340	tcc Ser	28227
aca Thr	atg Met	tca Ser	tca Ser 9345	Asp	acc Thr	tcc Ser	atg Met	gaa Glu 9350	acc Thr	atc Ile	act Thr	aga Arg	att Ile 9355	tct Ser	28272
acc	ccc	ctc	aca	agg	aaa	gaa	tca	aca	gac	atg	gcc	atc	acc	ccc	28317

Thr	Pro	Leu	Thr 9360	Arg	Lys	Glu	Ser	Thr 9365	Asp) Met	: Ala	Ile	Thr 9370		
aaa Lys	aca Thr	ggt Gly	cct Pro 9375	Ser	Gly	gct Ala	acc Thr	tcg Ser 9380	Gln	ggt	acc Thr	ttt Phe	acc Thr 9385	Leu	28362
gac Asp	tca Ser	tca Ser	agc Ser 9390	Thr	gcc	tcc Ser	tgg Trp	cca Pro 9395	Gly	act Thr	cac His	tca Ser	gct Ala 9400	aca Thr	28407
act Thr	cag Gln	aga Arg	ttt Phe 9405	Pro	cag Gln	tca Ser	gtg Val	gtg Val 9410	Thr	act Thr	cct	atg Met	agc Ser 9415	aga Arg	28452
ggt Gly	cct Pro	gag Glu	gat Asp 9420	gtg Val	tca Ser	tgg Trp	cca Pro	agc Ser 9425	ccg Pro	ctg Leu	tct Ser	gtg Val	gaa Glu 9430	aaa Lys	28497
aac Asn	agc Ser	cct Pro	cca Pro 9435	tct Ser	tcc Ser	ctg Leu	gta Val	tct Ser 9440	tca Ser	tct Ser	tca Ser	gta Val	acc Thr 9445	Ser	28542
cct Pro	tcg Ser	cca Pro	ctt Leu 9450	tat Tyr	tcc Ser	aca Thr	cca Pro	tct Ser 9455			agc Ser			tct Ser	28587
cct Pro	gtc Val	cct Pro	gtc Val 9465	act Thr	tct Ser	ctt Leu	ttc Phe	acc Thr 9470	tct Ser	atc Ile	atg Met	atg Met	aag Lys 9475	gcc Ala	28632
aca Thr	gac Asp	atg Met	ttg Leu 9480	gat Asp	gca Ala	agt Ser	ttg Leu	gaa Glu 9485	cct Pro	gag Glu	acc Thr	act Thr	tca Ser 9490	gct Ala	28677
ccc Pro	aat Asn	atg Met	aat Asn 9495	atc Ile	acc Thr	tca Ser	Asp	gag Glu 9500	agt Ser	ctg Leu	gcc Ala	gct Ala	tct Ser 9505	aaa Lys	28722
gcc Ala	acc Thr	acg Thr	gag Glu 9510	Thr	gag Glu	Ala	Ile	cac His 9515	Val	ttt Phe	gaa Glu	aat Asn	aca Thr 9520	gca Ala	28767
gcg Ala	tcc Ser	HlS	gtg Val 9525	gaa Glu	acc Thr	acc Thr	Ser	gct Ala 9530	aca Thr	gag Glu	gaa Glu	ctc Leu	tat Tyr 9535	tcc Ser	28812
tct Ser	tcc Ser	Pro	ggc Gly 9540	ttc Phe	tca Ser	gag Glu	Pro	aca Thr 9545	aaa Lys	gtg Val	ata Ile	tct Ser	cca Pro 9550	gtg Val	28857
gtc Val	acc Thr	ser	tcc Ser 9555	tct Ser	ata Ile	aga Arg	Asp .	aac Asn 9560	atg Met	gtt Val	tcc Ser	Thr	aca Thr 9565	atg Met	28902

cct Pro	ggc Gly	tcc Ser	tct Ser 9570	ggc Gly	att Ile	aca Thr	agg Arg	att Ile 9575	gag Glu	ata Ile	gag Glu	tca Ser	atg Met 9580	tca Ser	28947
tct Ser	ctg Leu	acc Thr	cct Pro 9585	gga Gly	ctg Leu	agg Arg	gag Glu	acc Thr 9590	aga Arg	acc Thr	tcc Ser	cag Gln	gac Asp 9595	atc Ile	28992
acc Thr	tca Ser	tcc Ser	aca Thr 9600	gag Glu	aca Thr	agc Ser	act Thr	gtc Val 9605	ctt Leu	tac Tyr	aag Lys	atg Met	ccc Pro 9610	tct Ser	29037
ggt Gly	gcc Ala	act Thr	cct Pro 9615	gag Glu	gtc Val	tcc Ser	agg Arg	aca Thr 9620	gaa Glu	gtt Val	atg Met	ccc Pro	tct Ser 9625	agc Ser	29082
aga Arg	aca Thr	tcc Ser	att Ile 9630	cct Pro	ggc Gly	cct Pro	gct Ala	cag Gln 9635	tcc Ser	aca Thr	atg Met	tca Ser	cta Leu 9640	gac Asp	29127
atc Ile	tcc Ser	gat Asp	gaa Glu 9645	gtt Val	gtc Val	acc Thr	agg Arg	ctg Leu 9 <u>6</u> 50	tct Ser	acc Thr	tct Ser	ccc Pro	atc Ile 9655	atg Met	29172
aca Thr	gaa Glu	tct Ser	gca Ala 9660	gaa Glu	ata Ile	acc Thr	atc Ile	acc Thr 9665	acc Thr	caa Gln	aca Thr	ggt Gly	tat Tyr 9670	tct Ser	29217
			tcc Ser 9675		gtt Val	acc Thr	ctt Leu	ccc Pro 9680	ttg Leu	ggc Gly	acc Thr	tca Ser	atg Met 9685	acc Thr	29262
	_		ggg Gly 9690	acc Thr	cac His	tca Ser	act Thr	atg Met 9695	tct Ser	caa Gln	gga Gly	ctt Leu	tca Ser 9700	cac His	29307
tca Ser	gag Glu	atg Met	acc Thr 9705	aat Asn	ctt Leu	atg Met	agc Ser	agg Arg 9710	ggt Gly	cct Pro	gaa Glu	agt Ser	ctg Leu 9715	tca Ser	29352
tgg Trp	acg Thr	agc Ser	cct Pro 9720	Arg	ttt Phe	gtg Val	gaa Glu	aca Thr 9725	act Thr	aga Arg	tçt Ser	tcc Ser	tct Ser 9730	Ser .	29397
ctg Leu	aca Thr	tca Ser	tta Leu 9735	Pro	ctc Leu	acg Thr	acc Thr	tca Ser 9740	Leu	tct Ser	cct Pro	gtg Val	tcc Ser 9745	Ser	29442
aca Thr	tta Leu	cta Leu	gac Asp 9750	Ser	agc Ser	ccc Pro	tcc Ser	tct Ser 9755	Pro	ctt Leu	cct Pro	gtg Val	act Thr 9760	Ser	29487
ctt	atc	ctc	cca	ggc	ctg	gtg	aag	act	aca	gaa	gtg	ttg	gat	aca	29532

Leu	Ile	Leu	Pro 9765	Gly	Leu	Val	Lys	Thr 9770	Thr	Glu	Val	Leu	Asp 9775	Thr	
agc Ser	tca Ser	gag Glu	cct Pro 9780	Lys	acc Thr	agt Ser	tca Ser	tct Ser 9785	Pro	aat Asn	ttg Leu	agc Ser	agc Ser 9790	acc Thr	29577
tca Ser	gtt Val	gaa Glu	ata Ile 9795	Pro	gcc Ala	acc Thr	tct Ser	gaa Glu 9800	Ile	atg Met	aca Thr	gat Asp	aca Thr 9805	gag Glu	29622
aaa Lys	att Ile	cat His	cct Pro 9810	Ser	tca Ser	aac Asn	aca Thr	gcg Ala 9815	Va1	gcc Ala	aaa Lys	gtg Val	agg Arg 9820	Thr	29667
tcc Ser	agt Ser	tct Ser	gtt Val 9825	His	gaa Glu	tct Ser	cat His	tcc Ser 9830	Ser	gtc Val	cta Leu	gct Ala	gac Asp 9835	tca Ser	29712
gaa Glu	aca Thr	acc Thr	ata Ile 9840	acc Thr	ata Ile	cct Pro	tca Ser	atg Met 9845	ggt Gly	atc Ile	acc Thr	tcc Ser	gct Ala 9850	gtg Val	29757
gac Asp	gat Asp	acc Thr	act Thr 9855	gtt Val	ttc Phe	aca Thr	tca Ser	aat Asn 9860	cct Pro	gcc Ala	ttc Phe	tct Ser	gag Glu 9865	act Thr	29802
agg Arg	agg Arg	att Ile	ccg Pro 9870	aca Thr	Glu	cca Pro	aca Thr	ttc Phe 9875	tca Ser	ttg Leu	act Thr	cct Pro	gga Gly 9880	ttc Phe	29847
agg Arg	gag Glu	act Thr	agc Ser 9885	acc Thr	tct Ser	gaa Glu	gag Glu	acc Thr 9890				aca Thr		aca Thr	29892
agt Ser	gca Ala	gtc Val	ctt Leu 9900	tat Tyr	gga Gly	gtg Val	ccc Pro	act Thr 9905	agt Ser	gct Ala	act Thr	act Thr	gaa Glu 9910	gtc Val	29937
tcc Ser	atg Met	aca Thr	gaa Glu 9915	atc Ile	atg Met	tcc Ser	tct Ser	aat Asn 9920	aga Arg	aca Thr	cac His	atc Ile	cct Pro 9925	gac Asp	29982
tct Ser	gat Asp	cag Gln	tcc Ser 9930	acg Thr	atg Met	tct Ser	cca Pro	gac Asp 9935	atc Ile	atc Ile	act Thr	gaa Glu	gtg Val 9940	atc Ile	30027
acc Thr	agg Arg	ctc Leu	tct Ser 9945	tcc Ser	tca Ser	tcc Ser	atg Met	atg Met 9950	tca Ser	gaa Glu	tca Ser	aca Thr	caa Gln 9955	atg Met	30072
		Thr	acc Thr 9960	caa Gln	aaa Lys	agt Ser	tct Ser	cct Pro 9965	Gly ggg	gct Ala	aca Thr	Ala	cag Gln 9970	agt Ser	30117

act Thr	ctt Leu	acc Thr	ttg Leu 9975	gcc Ala	aca Thr	aca a Thr '	Chr A	jcc c Ala P 1980	cc tt ro Le	g go u Al	a ag .a Ar	g Th	c cac r His 985	: :	30162
tca Ser	act Thr	gtt Val	cct Pro 9990	cct Pro	aga Arg	ttt t Phe l	Leu F	cac t His S 1995	ca ga er Gl	ig at .u Me	g ac et Th	r Th	et et ar Le 0000		30207
atg Met	agt Ser	agg Arg	agt Ser 10005	Pro	gaa Glu	aat Asn	cca Pro	tca Ser 10010	\mathtt{Trp}	aag Lys	agc Ser	tct Ser	ccc Pro 10015	ttt Phe	30252
		aaa Lys		Ser	tct Ser	tca Ser	tct Ser	tct Ser 10025	Leu	ttg Leu	tcc Ser	tta Leu	cct Pro 10030	gtc Val	30297
acg Thr	acc Thr	tca Ser	cct Pro 10035	Ser	gtt Val	tct Ser	tcc Ser	aca Thr 10040	Leu	ccg Pro	cag Gln	agt Ser	atc Ile 10045	cct Pro	30342
			ttt Phe 10050	Ser	gtg Val	act Thr	tca Ser	ctc Leu 10055	Leu	acc Thr	cca Pro	ggc Gly	atg Met 10060	gtg Val	30387
aag Lys	act Thr	aca Thr	gac Asp 10065	Thr	ago Ser	aca Thr	gaa Glu	cct Pro 10070	GTĀ	acc Thr	agt Ser	tta Leu	tct Ser 10075	cca Pro	30432
aat Asn	ctg Leu	agt Ser	ggc Gly 10080	Thr	tca Ser	gtt Val	gaa Glu	ata Ile 10085	Leu	gct Ala	gcc Ala	tct Ser	gaa Glu 10090	gtc Val	30477
acc Thr	aca Thr	gat Asp	aca Thr 10095	GIU	aaa Lys	att Ile	cat His	cct Pro 10100	Ser	tca Ser	agc Ser	atg Met	gca Ala 10105	gtg Val	30522
acc Thr	aat Asn	gtg Val	gga Gly 10110	Thr	acc Thr	agt Ser	tct Ser	gga Gly 10115	HIS	gaa Glu	cta Leu	tat Tyr	tcc Ser 10120	tct Ser	30567
gtt Val	tca Ser	atc Ile	cac His 10125	Ser	gag Glu	g cca 1 Pro	tcc Ser	aag Lys 10130	Ala	aca Thr	tac Tyr	cca Pro	gtg Val 10135		30612
act Thr	ccc Pro	tct Ser	tcc Ser 10140	Met	gct Ala	gaa Glu	acc Thr	tct Ser 10145	Ile	tcc Ser	aca Thr	tca Ser	atg Met 10150	cct Pro	30657
gct Ala	aat Asn	ttt Phe	gag Glu 10155	Thi	aca Thr	a gga Gly	ttt Phe	gag Glu 10160	Ala	gag Glu	cca Pro	ttt Phe	tct Ser 10165	cat His	30702
ttg	act	tct	gga	ttt	: agg	g aag	aca	aac	atg	tcc	ctg	gac	acc	agc	30747

Leu	Thr	Ser	Gly 10170	Phe	Arg	Lys	Thr	Asn 10175		Ser	Leu	Asp	Thr 10180	Ser	
tca Ser	gtc Val	aca Thr	cca Pro 10185	aca Thr	aat Asn	aca Thr	cct Pro	tct Ser 10190			Gly		act Thr 10195	cac His	30792
		cag Gln		tcc Ser	aag Lys	act Thr	gat Asp	ttc Phe 10205			tct Ser			aca Thr	30837
		cca Pro	gac Asp 10215	tgg Trp	cct Pro	cca Pro	gcc Ala	tca Ser 10220			act Thr			cca Pro	30882
		ata Ile		acc Thr	ccc Pro	ttt Phe	aat Asn	gct Ala 10235			tct Ser			gag Glu	30927
		Gly ggg	ata Ile 10245		tcc Ser			gaa Glu 10250			ttt Phe			tct Ser	30972
		gaa Glu		act Thr	cat His	cat His	ctg Leu	agt Ser 10265			ttg Leu			tca Ser	31017
		act Thr		tcc Ser	act Thr	ggc Gly	aca Thr	gtg Val 10280			tct Ser			gag Glu	31062
	_	act Thr		ttt Phe	gcc Ala	acc Thr	act Thr	gga Gly 10295	gtt Val	cca Pro	cga Arg	gcc Ala	atc Ile 10300	tca Ser	31107
		ggt Gly		cca Pro	ttc Phe	tct Ser	agg Arg	aca Thr 10310			ggc Gly			gat Asp	31152
Ala	Thr		Ser 10320	Thr	Ile	Ala	Glu	10325	Leu	Pro	Ser	Ser	Thr 10330	cct Pro	31197
gtg Val	cca Pro	Phe	tcc Ser 10335	tct Ser	tca Ser	acc Thr	Phe	act Thr 10340	acc Thr	act Thr	gat Asp	tct Ser	tca Ser 10345	acc Thr	31242
atc Ile		Āla		cat His	gag Glu	ata Ile	Thr	tec Ser 10355	t <i>c</i> t Ser	tca Ser	gct Ala	acc Thr	cca Pro 10360	tat Tyr	31287
aga Arg	gtg Val	Asp	acc Thr 10365	agt Ser	ctt Leu	GJ À aaa	Thr	gag Glu 10370	agc Ser	agc Ser	act Thr	Thr	gaa Glu 10375	gga Gly	31332

											21 227
cgc ttg gtt Arg Leu Val	atg g Met V 10380	tc agt al Ser	act tt Thr Le	g gac u Asp 10385	Thr S	ser	agc Ser	Caa Gln	cca Pro 10390	Gly	313//
agg aca tct Arg Thr Ser		ca ccc hr Pro	att tt Ile Le	g gat u Asp 10400	acc a	aga Arg 1	atg Met	aca Thr	gag Glu 10405	agc Ser	31422
gtt gag ctg Val Glu Leu			aca ag Thr Se	-	tat (Tyr (ctc Leu	31467
tca aca cgg Ser Thr Arg	ttg a Leu T 10425	ca aga hr Arg	act ga Thr As	t ggc p Gly 10430	att Ile						31497
<210> 310											
<211> 1043	1										
<212> PRT											
<213> Homo	sapiens	•									
<400> 310											
<400> 310 Met Leu Lys 1	Pro Ser 5	: Gly Le	eu Pro	Gly Ser 10	Ser	Ser	Pro	Thr	Arg S 15	Ser	
Met Leu Lys	5			10					15		
Met Leu Lys 1	Gly Ser 20	Arg So	er Thr	10 Lys Ala 25	Thr	Pro	Glu	Met 30	15 Asp S	Ser	
Met Leu Lys 1 Leu Met Thr	Gly Ser 20 Gly Ala	Arg So	er Thr eu Ser 40	Lys Ala 25 Pro Lys	Thr Thr	Pro Ser	Glu Thr 45	Met 30 Gly	Asp S	Ser Ele	
Met Leu Lys 1 Leu Met Thr Gly Leu Thr 35 Val Val Thr	Gly Ser 20 Gly Ala Glu His	Thr Lo	er Thr eu Ser 40 eu Pro 5	Lys Ala 25 Pro Lys	Thr Thr Ser	Pro Ser Pro 60	Glu Thr 45 Asp	Met 30 Gly Lys	Asp S Ala I Thr I	Ger He	

Ser Glu Gln Arg Thr Ser Pro Ser Leu Ser Pro Gln Val Asn Gly Thr 100 105 110

Pro Ser Arg Asn Tyr Pro Ala Thr Ser Met Val Ser Gly Leu Ser Ser 115 120 125

Pro Arg Thr Arg Thr Ser Ser Thr Glu Gly Asn Phe Thr Lys Glu Ala 130 135 140

Ser Thr Tyr Thr Leu Thr Val Glu Thr Thr Ser Gly Pro Val Thr Glu 145 150 155 160

Lys Tyr Thr Val Pro Thr Glu Thr Ser Thr Thr Glu Gly Asp Ser Thr 165 170 175

Glu Thr Pro Trp Asp Thr Arg Tyr Ile Pro Val Lys Ile Thr Ser Pro 180 185 190

Met Lys Thr Phe Ala Asp Ser Thr Ala Ser Lys Glu Asn Ala Pro Val 195 200 205

Ser Met Thr Pro Ala Glu Thr Thr Val Thr Asp Ser His Thr Pro Gly 210 215 220

Arg Thr Asn Pro Ser Phe Gly Thr Leu Tyr Ser Ser Phe Leu Asp Leu 225 230 235 240

Ser Pro Lys Gly Thr Pro Asn Ser Arg Gly Glu Thr Ser Leu Glu Leu 245 250 255

Ile Leu Ser Thr Thr Gly Tyr Pro Phe Ser Ser Pro Glu Pro Gly Ser 260 265 270

Ala Gly His Ser Arg Ile Ser Thr Ser Ala Pro Leu Ser Ser Ser Ala 275 280 285

Ser Val Leu Asp Asn Lys Ile Ser Glu Thr Ser Ile Phe Ser Gly Gln 290 295 300

Ser Leu Thr Ser Pro Leu Ser Pro Gly Val Pro Glu Ala Arg Ala Ser 305 310 315 320

Thr Met Pro Asn Ser Ala Ile Pro Phe Ser Met Thr Leu Ser Asn Ala Glu Thr Ser Ala Glu Arg Val Arg Ser Thr Ile Ser Ser Leu Gly Thr Pro Ser Ile Ser Thr Lys Gln Thr Ala Glu Thr Ile Leu Thr Phe His Ala Phe Ala Glu Thr Met Asp Ile Pro Ser Thr His Ile Ala Lys Thr Leu Ala Ser Glu Trp Leu Gly Ser Pro Gly Thr Leu Gly Gly Thr Ser Thr Ser Ala Leu Thr Thr Thr Ser Pro Ser Thr Thr Leu Val Ser Glu Glu Thr Asn Thr His His Ser Thr Ser Gly Lys Glu Thr Glu Gly Thr Leu Asn Thr Ser Met Thr Pro Leu Glu Thr Ser Ala Pro Gly Glu Glu Ser Glu Met Thr Ala Thr Leu Val Pro Thr Leu Gly Phe Thr Thr Leu Asp Ser Lys Ile Arg Ser Pro Ser Gln Val Ser Ser Ser His Pro Thr Arg Glu Leu Arg Thr Thr Gly Ser Thr Ser Gly Arg Gln Ser Ser Ser Thr Ala Ala His Gly Ser Ser Asp Ile Leu Arg Ala Thr Thr Ser Ser Thr Ser Lys Ala Ser Ser Trp Thr Ser Glu Ser Thr Ala Gln Gln Phe

Ser Glu Pro Gln His Thr Gln Trp Val Glu Thr Ser Pro Ser Met Lys 530 535 540

Thr Glu Arg Pro Pro Ala Ser Thr Ser Val Ala Ala Pro Ile Thr Thr 545 550 555 560

Ser Val Pro Ser Val Val Ser Gly Phe Thr Thr Leu Lys Thr Ser Ser 565 570 575

Thr Lys Gly Ile Trp Leu Glu Glu Thr Ser Ala Asp Thr Leu Ile Gly 580 585 590

Glu Ser Thr Ala Gly Pro Thr Thr His Gln Phe Ala Val Pro Thr Gly 595 600 605

Ile Ser Met Thr Gly Gly Ser Ser Thr Arg Gly Ser Gln Gly Thr Thr 610 615 620

His Leu Leu Thr Arg Ala Thr Ala Ser Ser Glu Thr Ser Ala Asp Leu 625 630 635 640

Thr Leu Ala Thr Asn Gly Val Pro Val Ser Val Ser Pro Ala Val Ser 645 650 655

Lys Thr Ala Ala Gly Ser Ser Pro Pro Gly Gly Thr Lys Pro Ser Tyr
660 665 670

Thr Met Val Ser Ser Val Ile Pro Glu Thr Ser Ser Leu Gln Ser Ser 675 680 685

Ala Phe Arg Glu Gly Thr Ser Leu Gly Leu Thr Pro Leu Asn Thr Arg
690 695 700

His Pro Phe Ser Ser Pro Glu Pro Asp Ser Ala Gly His Thr Lys Ile 705 710 715 720

Ser Thr Ser Ile Pro Leu Leu Ser Ser Ala Ser Val Leu Glu Asp Lys 725 730 735

Val Ser Ala Thr Ser Thr Phe Ser His His Lys Ala Thr Ser Ser Ile 740 745 750

Thr Thr Gly Thr Pro Glu Ile Ser Thr Lys Thr Lys Pro Ser Ser Ala 760 Val Leu Ser Ser Met Thr Leu Ser Asn Ala Ala Thr Ser Pro Glu Arg 770 775 780 Val Arg Asn Ala Thr Ser Pro Leu Thr His Pro Ser Pro Ser Gly Glu 790 785 Glu Thr Ala Gly Ser Val Leu Thr Leu Ser Thr Ser Ala Glu Thr Thr 810 · 805 Asp Ser Pro Asn Ile His Pro Thr Gly Thr Leu Thr Ser Glu Ser Ser 825 820 Glu Ser Pro Ser Thr Leu Ser Leu Pro Ser Val Ser Gly Val Lys Thr 835 840 Thr Phe Ser Ser Ser Thr Pro Ser Thr His Leu Phe Thr Ser Gly Glu 850 855 Glu Thr Glu Glu Thr Ser Asn Pro Ser Val Ser Gln Pro Glu Thr Ser 875 . 880 870 865 Val Ser Arg Val Arg Thr Thr Leu Ala Ser Thr Ser Val Pro Thr Pro 895 885 890 Val Phe Pro Thr Met Asp Thr Trp Pro Thr Arg Ser Ala Gln Phe Ser 905 910 900 Ser Ser His Leu Val Ser Glu Leu Arg Ala Thr Ser Ser Thr Ser Val 915 920 Thr Asn Ser Thr Gly Ser Ala Leu Pro Lys Ile Ser His Leu Thr Gly 935 940 930 Thr Ala Thr Met Ser Gln Thr Asn Arg Asp Thr Phe Asn Asp Ser Ala 950 955

- Ala Pro Gln Ser Thr Thr Trp Pro Glu Thr Ser Pro Arg Phe Lys Thr 965 970 975
- Gly Leu Pro Ser Ala Thr Thr Thr Val Ser Thr Ser Ala Thr Ser Leu 980 985 990
- Ser Ala Thr Val Met Val Ser Lys Phe Thr Ser Pro Ala Thr Ser Ser 995 1000 1005
- Met Glu Ala Thr Ser Ile Arg Glu Pro Ser Thr Thr Ile Leu Thr 1010 1015 1020
- Thr Glu Thr Thr Asn Gly Pro Gly Ser Met Ala Val Ala Ser Thr 1025 1030 1035
- Asn Ile Pro Ile Gly Lys Gly Tyr Ile Thr Glu Gly Arg Leu Asp 1040 1045 1050
- Thr Ser His Leu Pro Ile Gly Thr Thr Ala Ser Ser Glu Thr Ser 1055 1060 1065
- Met Asp Phe Thr Met Ala Lys Glu Ser Val Ser Met Ser Val Ser 1070 1075 1080
- Pro Ser Gln Ser Met Asp Ala Ala Gly Ser Ser Thr Pro Gly Arg 1085 1090 1095
- Thr Ser Gln Phe Val Asp Thr Phe Ser Asp Asp Val Tyr His Leu 1100 1105 1110
- Thr Ser Arg Glu Ile Thr Ile Pro Arg Asp Gly Thr Ser Ser Ala 1115 1120 1125
- Leu Thr Pro Gln Met Thr Ala Thr His Pro Pro Ser Pro Asp Pro 1130 1135 1140
- Gly Ser Ala Arg Ser Thr Trp Leu Gly Ile Leu Ser Ser Ser Pro 1145 1150 1155
- Ser Ser Pro Thr Pro Lys Val Thr Met Ser Ser Thr Phe Ser Thr 1160 1165 1170

Gln	Arg 1175	Val	Thr	Thr	Ser	Met 1180	Ile	Met	Asp	Thr	Val 1185	Glu	Thr	Ser
Arg	Trp 1190		Met	Pro	Asn	Leu 1195	Pro	Ser	Thr	Thr	Ser 1200	Leu	Thr	Pro
Ser	Asn 1205		Pro	Thr	Ser	Gly 1210		Ile	Gly	Lys	Ser 1215		Ĺeu	Val
Pro	Leu 1220		Thr	Pro	Ser	Pro 1225		Thr	Ser	Leu	Glu 1230		Ser	Glu
Gly	Gly 1235	Leu	Pro	Thr	Leu	Ser 1240		Tyr	Pro		Ser 1245	Thr	Asn	Thr
Pro	Ser 1250	Ile	His	Leu		Ala 1255		Ala	Ser	Ser	Glu 1260	Ser	Pro	Ser
Thr	Ile 1265	Lys	Leu	Thr	Met	Ala 1270	Ser	Val	Val	Lys	Pro 1275	Gly	Ser	Tyr
Thr	Pro 1280	Leu	Thr	Phe		Ser 1285	Ile	Glu	Thr	His	Ile 1290	His	Val	Ser
Thr	Ala 1295	Arg	Met	Ala	Tyr	Ser 1300	Ser	Gly	Ser		Pro 1305	Glu	Met	Thr
Ala	Pro 1310	_	Glu	Thr	Asn	Thr 1315		Ser	Thr	Trp	Asp 1320	Pro	Thr	Thr
	Ile 1325		Thr	Thr	Asp	Pro 1330	Lys	Asp	Thr	Ser	Ser 1335	Ala	Gln	Val
Ser	Thr 1340		His	Ser	Val	Arg . 1345	Thr	Leu	Arg	Thr	Thr 1350	Glu	Asn	His
Pro	Lys 1355		Glu	Ser	Ala	Thr 1360		Ala	Ala	Tyr	Ser 1365		Ser	Pro

Lys	: Ile 1370	Ser	Ser	Ser	Pro	Asn 1375	Leu	Thr	Ser	Pro	Ala 1380		Lys	Ala
Trp	Thr 1385	Ile	Thr	Asp	Thr	Thr 1390	Glu	His	Ser	Thr	Gln 1395		ı H i s	Tyr
Thr	Lys 1400	Leu	Ala	Glu	Lys	Ser 1405		Gly	Phe	Glu	Thr 1410		Ser	Ala
Pro	Gly 1415	Pro	Val	Ser	Val	Val 1420	Ile	Pro	Thr	Ser	Pro 1425		Ile	Gly
Ser	Ser 1430	Thr	Leu	Glu	Leu	Thr 1435		Asp	Val	Pro	Gly 1440		Pro	Leu
Val	Leu 1445	Ala	Pro	Ser	Glu	Gln 1450	Thr	Thr	Ile	Thr	Leu 1455		Met	Ala
Thr	Trp 1460	Leu	Ser	Thr	Ser	Leu 1465	Thr	Glu	Glu	Met	Ala 1470	Ser	Thr	Asp
Leu	Asp 1475	Ile	Ser	Ser	Pro	Ser 1480	Ser	Pro	Met	Ser	Thr 1485	Phe	Ala	Ile
Phe	Pro 1490	Pro	Met	Ser	Thr	Pro 1495	Ser	His	G1u	Leu	Ser 1500	Lys	Ser	Glu
Ala	Asp 1505	Thr	Ser	Ala	Ile	Arg 1510	Asn	Thr	Asp	Ser	Thr 1515	Thr	Leu	Asp
Gln	His 1520	Leu	Gly	Ile	Arg	Ser 1525	Leu	Gly	Arg	Thr	Gly 1530	Asp	Leu	Thr
Thr	Val 1535	Pro	Ile	Thr	Pro	Leu 1540	Thr	Thr	Thr	Trp	Thr 1545	Ser	Val	Ile
Glu	His 1550	Ser	Thr	Gln	Ala	Gln 1555	Asp	Thr	Leu	Ser	Ala 1560	Thr	Met	Ser
Pro	Thr 1565	His	Val	Thr	Gln	Ser 1570	Leu	Lys	Asp		Thr 1575	Ser	Ile	Pro

Ala	Ser 1580	Ala	Ser	Pro	Ser	His 1585		Thr	Glu	Val	Tyr 1590	Pro	Glu	Leu
Gly	Thr 1595	Gln	Gly	Arg	Ser	Ser 1600		Glu	Ala	Thr	Thr 1605	Phe	Trp	Lys
Pro	Ser 1610		Asp	Thr	Leu	Ser 1615		Glu	Ile	Glu	Thr 1620	Gly	Pro	Thr
Asn	Ile 1625	Gln	Ser	Thr	Pro	Pro 1630		Asp	Asn	Thr	Thr 1635		Gly	Ser
Ser	Ser 1640	Ser	Gly	Val	Thr	Leu 1645		Ile	Ala	His	Leu 1650	Pro	Ile	Gly
Thr	Ser 1655	Ser	Pro	Ala		Thr .1660		Thr	Asn	Met	Ala 1665	Leu	Glu	Arg
Arg	Ser 1670	Ser	Thr	Ala	Thr	Val 1675		Met	Ala	Gly	Thr 1680	Met	Gly	Leu
Leu	Val 1685		Ser	Ala	Pro	Gly 1690		Ser	Ile	Ser	Gln 1695		Leu	Gly
Arg	Val 1700		Ser	Val	Leu	Ser 1705		Ser	Thr	Thr	Glu 1710		Val	Thr
Asp	Ser 1715		Lys	Gly	Ser	Ser 1720		Arg			Thr 1725		Gly	Asn
Thr	Ala 1730	Leu	Ser	Ser	Ser	Leu 1735	Glu	Pro.	Ser	Туг	Ala 1740	Glu	Gly	Ser
Gln	Met 1745		Thr	Ser	Ile	Pro 1750		Thr	Ser	Ser	Pro 1755		Thr	Pro
Asp	Val 1760		Phe	Ile	Gly	Gly 1765		Thr	Phe	Trp	Thr 1770	Lys	Glu	Val

Thr	Thr 1775	Val	Met	Thr	Ser	Asp 1780	Ile	Ser	. Lys	Ser	Ser 1785		a Arç	Thr
Glu	Ser 1790	Ser	Ser	Ala	Thr	Leu 1795	Met	Ser	Thr	Ala	Leu 1800		/ Ser	Thr
Glu	Asn 1805	Thr	Gly	. Lys	Glu	Lys 1810	Leu	Arg	Thr	Ala	Ser 1815		: Asp	Leu
Pro	Ser 1820	Pro	Thr	Pro	Ser	Met 1825	Glu	Val	Thr	Pro	Trp 1830		e Ser	Leu
Thr	Leu 1835	Ser	Asn	Ala	Pro	Asn 1840	Thr	Thr	Asp	Ser	Leu 1845		Leu	Ser
His	Gly 1850	Val	His	Thr	Ser	Ser 1855	Ala	Gly	Thr	Leu	Ala 1860		Asp	Arg
Ser	Leu 1865	Asn	Thr	Gly	Val	Thr 1870	Arg	Ala	Ser	Arg	Leu 1875		Asn	Gly
Ser	Asp 1880	Thr	Ser	Ser	Lys	Ser 1885	Leu	Ser	Met	Gly	Asn 1890	Ser	Thr	His
Thr	Ser 1895	Met	Thr	Asp	Thr	Glu 1900	Lys	Ser	Glu	Val	Ser 1905	Ser	Ser	Ile
His	Pro 1910	Arg	Pro	Glu	Thr	Ser 1915	Ala	Pro	Gly	Ala	Glu 1920	Thr	Thr	Leu
Thr	Ser 1925	Thr	Pro	Gly	Asn	Arg 1930	Ala	Ile	Ser	Leu	Thr 1935	Leu	Pro	Phe
Ser	Ser 1940	Ile	Pro	Val	Glu	Glu 1945	Val	Ile	Ser	Thr	Gly 1950	Ile	Thr	Ser
Gly	Pro 1955	Asp	Ile	Asn	Ser	Ala 1960	Pro	Met	Thr	His	Ser 1965	Pro	Ile	Thr
Pro	Pro 1970	Thr	Ile	Val	Trp	Thr 1975	Ser	Thr	Gly		Ile 1980	Glu	Gln	Ser

Thr	Gln 1985	Pro	Leu	His	Ala	Val 1990		Ser	Glu	Lys	Val 1995	Ser	Val	Gln
Thr	Gln 2000	Ser	Thr	Pro		Val 2005		Ser	Val	Ala	Val 2010	Ser	Ala	Ser
Pro	Thr 2015	His	Glu	Asn		Val 2020		Ser	Gly	Ser	Ser 2025	Thr	Ser	Ser
Pro	Tyr 2030	Ser	Ser	Ala		Leu 2035		Ser	Leu	Asp	Ser 2040	Thr	Ile	Ser
Arg	Arg 2045	Asn	Ala	Ile		Ser 2050		Leu	Trp	Asp	Leu 2055	Thr	Thr	Ser
Leu	Pro 2060		Thr	Thr		Pro 2065		Thr	Ser	Leu	Ser 2070	Glu	Ala	Leu
Ser	Ser 2075	Gly	His	Ser	Gly	Val 2080		Asn	Pro	Ser	Ser 2085	Thr	Thr	Thr
Glu	Phe 2090		Leu	Phe		Ala 2095		Ser	Thr	Ser	Ala 2100	Ala	Lys	Gln
Arg	Asn 2105		Glu	Thr	Glu	Thr 2110		Gly	Pro	Gln	Asn 2115	Thr	Ala	Ala
Ser	Thr 2120		Asn	Thr	Asp	Ala 2125	Ser	Ser	Val	Thr	Gly 2130	Leu	Ser	Glu
Thr	Pro 2135	Val	Gly	Ala	Ser	Ile 2140	Ser	Ser	Glu	Val	Pro 2145	Leu	Pro	Met
Ala	Ile 2150		Ser	Arg	Ser	Asp 2155		Ser	Gly	Leu	Thr 2160	Ser	Glu	Ser
Thr	Ala 2165		Pro	Ser	Leu	Gly 2170		Ala	Ser	Ser	Ala 2175	Gly	Thr	Lys

Leu	Thr 2180	Arg	Thr	: Ile	e Ser	Leu 2185	Pro	Th:	r Se	c Gl	u Ser 219		ı Val	Ser
Phe	Arg 2195	Met	Asn	Lys	Asp	Pro 2200	Trp	Thi	r Val	l Se	r Ile 2205	Pro	Leu	ı Gly
Ser	His 2210	Pro	Thr	Thr	Asn	Thr 2215	Glu i	Thr	Ser	: Ile	Pro 2220		. Asn	Ser
Ala	Gly 2225	Pro	Pro	Gly	Leu	Ser 2230	Thr	' Val	Ala	Ser	Asp 2235		Ile	Asp
Thr	Pro 2240	Ser	Asp	Gly	Ala	Glu 2245	Ser	Ile	Pro	Thr	Val 2250		Phe	Ser
Pro	Ser 2255	Pro	Asp	Thr	Glu	Val 2260	Thr	Thr	lle	Ser	His 2265	Phe	Pro	Glu
Lys	Thr 2270	Thr	His	Ser	Phe	Arg 2275	Thr	Ile	Ser	Ser	Leu 2280		His	Glu
Leu	Thr 2285	Ser	Arg	Val	Thr	Pro 2290	Ile	Pro	Gly	Asp	Trp 2295		Ser	Ser
Ala	Met 2300	Ser	Thr	Lys	Pro	Thr 2305	Gly	Ala	Ser	Pro	Ser 2310		Thr	Leu
Gly	Glu 2315	Arg	Arg	Thr	Ile	Thr 2320	Ser	Ala	Ala	Pro	Thr 2325		Ser	Pro
Ile	Val 2330	Leu	Thr	Ala	Ser	Phe 2335	Thr	Glu	Thr	Ser	Thr 2340	Val	Ser	Leu
Asp	Asn 2345	Glu	Thr	Thr	Val :	Lys 2350	Thr	Ser	Asp	Ile	Leu 2355	Asp	Ala	Arg
_	Thr 2360	Asn (Glu :	Leu	Pro	Ser 2365	Asp	Ser	Ser	Ser	Ser 2370	Ser	Asp	Leu
	Asn ' 2375	Thr :	Ser :	Ile i	Ala :	Ser 2380	Ser	Ţhr	Met	Asp	Val 2385	Thr :	Lys	Thr

Ala	Ser 2390	Ile	Ser	Pro	Thr	Ser 2395	Ile	Ser	Gly	Met	Thr 2400	Ala	Ser	Ser
Ser	Pro 2405	Ser	Leu	Phe	Ser	Ser 2410	Asp	Arg	Pro	Gln	Val 2415	Pro	Thr	Ser
Thr	Thr 2420		Thr	Asn		Ala 2425	Thr	Ser	Pro	Ser	Val 2430	Ser	Ser	Asn
	Tyr 2435		Leu	Asp	Gly	Gly 2440	Ser	Asn	Val	Gly	Gly 2445	Thr	Pro	Ser
Thr	Leu 2450		Pro	Phe		Ile 2455		His	Pro	Val	Glu 2460	Thr	Ser	Ser
Ala	Leu 2465		Ala	Trp	Ser	Arg 2470		Val	Arg	Thr	Phe 2475	Ser	Thr	Met
	Ser 2480	Thr	Asp	Thr		Ser 2485		Glu	Asn	Pro	Thr 2490	Ser	Ser	Asn
Ser	Val 2495	Val	Thr	Ser	Val	Pro 2500	Ala	Pro	Gly	Thr	Trp 2505		Ser	Val
Gly	Ser 2510		Thr	Asp		Pro 2515			Gly	Phe	Leu 2520	Lys	Thr	Ser
Pro	Ala 2525		Glu	Ala	His	Ser 2530	Leu	Leu	Ala	Ser	Thr 2535		Glu	Pro
Ala	Thr 2540		Phe	Thr		His 2545		Ser		Ala	Val 2550	Val	Thr	Gly
Ser	Ser 2555		Thr	Ser	Glu	Ala 2560		Leu	Leu	Thr	Thr 2565		Glu	Ser
Lys	Ala 2570		His	Ser	Ser	Pro 2575		Thr	Pro	Thr	Thr 2580		Thr	Ser

Gly	Ala 2585	Asr	Trp	Glu	Thr	Ser 2590	Ala	Thr	Pro	Glu	Ser 2595		ı Let	val
Val	Thr 2600	Glu	Thr	Ser	Asp	Thr 2605	Thr	Leu	Thr	Ser	Lys 2610		: Leu	val
Thr	Asp 2615	Thr	Ile	Leu	Phe	Ser 2620	Thr	Val	Ser	Thr	Pro 2625		Ser	Lys
Phe	Pro 2630	Ser	Thr	Gly	Thr	Leu 2635	Ser	Gly	Ala	Ser	Phe 2640		Thr	Leu
Leu	Pro 2645	Asp	Thr	Pro	Ala	Ile 2650	Pro	Leu	Thr	Ala	Thr 2655		Pro	Thr
	2660			•		Phe 2665					2670			
	26/5	٠.				Thr 2680					2685			
·	2690					Asp 2695					2700.	•		
	2705					Pro 2710					2715			
	2720					Ser 2725					2730			
	2/35					Tyr 2740				-	2745			
	2750					Thr 2755					2760			
	2/65					Thr 2770					2775			
	2780	31.ft	ura .	urq	oer	Val 2785	met :	rro :	ьeu '		Thr 2790	Gly	Ser	Gln

Gly	Met 2795	Ala	Ser	Ser	Gly	Gly 2800	Ile	Arg	Ser	Gly	Ser 2805	Thr	His	Ser
Thr	Gly 2810		Lys	Thr	Phe	Ser 2815	Ser	Leu	Pro	Leu	Thr 2820	Met	Asn	Pro
Gly	Glu 2825		Thr	Ala	Met	Ser 2830	Glu	Ile	Thr	Thr	Asn 2835	Arg	Leu	Thr
Ala	Thr 2840		Ser	Thr		Pro 2845		Gly	Ile	Pro	Val 2850	Lys	Pro	Thr
Ser	Ala 2855		Ser	Gly	Leu	Leu 2860	Thr	Pro	Val		Ala 2865	Ser	Ser	Ser
Pro	Ser 2870		Ala	Phe		Ser 2875		Thr	Thr	Ala	Pro 2880	Pro	Thr	Trp
Gly	Ile 2885		Gln	Ser	Thr	Leu 2890	Thr	Phe	Glu		Ser 2895	Glu	Val	Pro
Ser	Leu 2900		Thr	Lys	Ser	Ala 2905		Leu	Pro	Thr	Pro 2910	Gly	Gln	Ser
Leu	Asn 2915		Ile	Pro	Asp	Ser 2920	Asp	Ala	Ser	Thr	Ala 2925		Ser	Ser
Leu	Ser 2930		Ser	Pro	Glu	Lys 2935	Asn	Pro	Arg	Ala	Arg 2940	Met	Met	Thr
Ser	Thr 2945	Lys	Ala	Ile	Ser	Ala 2950	Ser	Ser	Phe	Gln	Ser 2955	Thr	Gly	Phe
Thr	Glu 2960		Pro	Glu	Gly	Ser 2965		Ser	Pro	Ser	Met 2970		Gly	His
Glu	Pro 2975		Val	Pro	Thr	Ser 2980		Thr	Gly	Asp	Pro 2985	Arg	Tyr	Ala

Ser	Glu 2990	Ser	Met	Ser	Tyr	Pro 2995	Asp	Pro	Ser	: Lys	3000		: Sei	Ala
Met	Thr 3005	Ser	Thr	Ser	Leu	Ala 3010	Ser	Lys	Leu	Thr	Thr 3015	Leu	Phe	e Ser
Thr	Gly 3020	Gln	Ala	Ala	Arg	Ser 3025	Gly	Ser	Ser	Ser	Ser 3030		Ile	e Ser
Leu	Ser 3035	Thr	Glu	Lys	Glu	Thr 3040	Ser	Phe	Leu	Ser	Pro 3045		Ala	Ser
Thr	Ser 3050	Arg	Lys	Thr	Ser	Leu 3055	Phe	Leu	Gly	Pro	Ser 3060	Met	Ala	Arg
Gln	Pro 3065	Asn	Ile	Leu	Val	His 3070	Leu	Gln	Thr	Ser	Ala 3075		Thr	Leu
Ser	Pro 3080	Thr	Ser	Thr	Leu	Asn 3085	Met	Ser	Gln	Glu	Glu 3090	Pro	Pro	Glu
Leu	Thr 3095	Ser	Ser	Gln	Thr	Ile 3100	Ala	Glu	Glu	Glu	Gly 3105	Thr	Thr	Ala
	3110	•				3115					Thr 3120			
	3123					3130	•				Ala 3135			
	3140					3145					Val 3150	Pro	Ala	Lys
	3155					Thr 3160					3165	Thr		
	3170					3175					Thr 3180			
Pro :	Ala 3185	Glu	Glu	Thr	Gly	Thr 3190	Ser	Pro	Ala	Gly	Thr 3195	Ser	Pro	Gly

Ser	Pro 3200	Met	Ser	Thr	Thr 3205		Lys	Ile	Met	Ser 3210	Ser	Lys	Glu
Pro	Ser 3215	Ser	Pro	Glu	Ile 3220	Arg	Ser	Thr	Val	Arg 3225	Asn	Ser	Pro
Trp	Lys 3230	Pro	Glu	Thr	Thr 3235	Val	Pro	Met	Glu	Thr 3240	Thr	Val	Glu
Pro	Val 3245	Leu	Gln	Ser	Thr 3250	Ala	Leu	Gly	Ser	Gly 3255	Ser	Thr	Ser
Ile	Ser 3260	Leu	Pro	Thr	Gly 3265	Thr	Thr	Ser	Pro	Thr 3270	Lys	Ser	Pro
Thr	Glu 3275	Met	Leu	Ala	Thr 3280	Glu	Arg	Val	Ser	Leu 3285	Ser	Pro	Ser
Pro	Pro 3290	Ala	Trp	Thr	Asn 3295		Tyr	Ser	Gly	Thr 3300	Pro	Gly	Gly
Thr	Arg 3305	Ser	Leu	Ala	Thr 3310		Ser	Ser	Val	Ser 3315	Leu	Glu	Ser
Pro	Thr 3320	Arg	Ser		Thr 3325		Thr	Gly	Gln	Gln 3330	Ser	Ser	Pro
Glu	Leu 3335	Ser	Lys	Thr	Thr 3340			Glu	Phe	Ser 3345	Met	Trp	His
Gly	Ser 3350	Gly	Gly	Thr	Thr 3355		Asp	Thr	His	Val 3360	Ser	Leu	Ser
Thr	Ser 3365	Asn	Ile	Leu	Glu 3370		Pro	Val	Thr	Ser 3375		Asn	Ser
Val	Ser 3380	Leu	Thr	Asp	Lys 3385		Lys	His	Lys	Thr 3390	Glu	Thr	Trp

Val	Ser- 3395	Thr	Thr	: Ala	ılle	Pro 3400	Ser	Thr	. Val	. Lev	3405		n Ly	s Ile
Met	Ala 3410	Ala	Glu	Gln	Gln	Thr 3415	Ser	Arg		Val	Asp 3420	Glı	ı Ala	a Tyr
Ser	Ser 3425	Thr	Ser	Ser	Trp	Ser 3430	Asp	Gln	Thr	Ser	Gly 3435		: Ası) Ile
Thr	Leu 3440	Gly	Ala	Ser	Pro	Asp 3445	Val	Thr	Asn	Thr	Leu 3450		: Ile	Thr
Ser	Thr 3455	Ala	Gln	Thr	Thr	Ser 3460	Leu	Val	Ser	Leu	Pro 3465		. GJ?	/ Asp
Gln	Gly 3470	Ile	Thr	Ser	Leu	Thr 3475	Asn	Pro	Ser	Gly	Gly 3480	Lys	Thr	Ser
Ser	Ala 3485	Ser	Ser	Val	Thr	Ser 3490	Pro	Ser	Ile	Gly	Leu 3495		Thr	Leu
Arg .	Ala 3500	Asn	Val	Ser	Ala	Val 3505	Lys	Ser	Asp	Ile	Ala 3510	Pro	Thr	Ala
Gly	His 3515	Leu	Ser	Gln	Thr	Ser 3520	Ser	Pro	Ala	Glu	Val 3525	Ser	Ile	Leu
Asp 1	Val 3530	Thr	Thr	Ala	Pro	Thr 3535	Pro	Gly	Ile	Ser	Thr 3540	Thr	Ile	Thr
Thr i	Met 3545	Gly	Thr	Asn	Ser	Ile 3550	Ser	Thr	Thr		Pro 3555	Asn	Pro	Glu
Val (Gly 3560	Met	Ser	Thr	Met	Asp 3565	Ser	Thr	Pro		Thr 3570	Glu	Arg	Arg
Thr 1	fhr 3575	Ser	Thr	Glu	His	Pro 3580	Ser	Thr	Trp		Ser 3585	Thr	Ala	Ala
Ser A	Asp 3590	Ser	Trp	Thr	Val	Thr 3595	Asp i	Met	Thr		Asn 3600	Leu	Lys	Val

Ala	Arg 3605	Ser	Pro	Gly	Thr	Ile 3610		Thr	Met	His	Thr 3615	Thr	Ser	Phe
Leu	Ala 3620	Ser	Ser	Thr	Glu	Leu 3625	Asp	Ser	Met	Ser	Thr 3630	Pro	His	Gly
Arg	Ile 3635	Thr	Val	Ile		Thr 3640	Ser	Leu	Val	Thr	Pro 3645	Ser	Ser	Asp
Ala	Ser 3650	Ala	Val	Lys	Thr	Glu 3655	Thr	Ser	Thr	Ser	Glu 3660	Arg	Thr	Leu
Ser	Pro 3665	Ser	Asp	Thr	Thr	Ala 3670		Thr	Pro	Ile	Ser 3675	Thr	Phe	Ser
Arg	Val 3680		Arg	Met	Ser	Ile 3685		Val	Pro	Asp	Ile 3690	Leu	Ser	Thr
Ser	Trp 3695		Pro	Ser	Ser	Thr 3700	Glu	Ala	Glu	Asp	Val 3705	Pro	Val	Ser
Met	Val 3710		Thr	Asp		Ala 3715		Thr	Lys	Thr	Asp 3720	Pro	Asn	Thr
Pro	Leu 3725		Thr	Phe	Leu	Phe 3730		Ser	Leu	Ser	Thr 3735	Leu	Asp	Trp
Asp	Thr 3740		Arg	Ser		Ser 3745		Ala	Thr	Ala	Thr 3750	Thr	Ser	Ala
	Gln 3755								Leu		3765		Thr	Met
Ile	Ser 3770		Ala	Thr	Ser	Gln 3775		Pro	Phe	Ser	Ile 3780		His	Ile
Thr	Ser 3785		Val	Thr	Pro	Ala 3790		Met	Ala	Arg	Ser 3795		Gly	Val

Thr	Phe 3800	Ser	Arg	Pro	Asp	Pro 3805	Thr	Ser	Lys	Lys	Ala 3810		ı Glr	Thr
Ser	Thr 3815	Gln	Leu	Pro	Thr	Thr 3820	Thr	Ser	Ala	His	Pro 3825		gln	Val
Pro	Arg 3830	Ser	Ala	Ala	Thr	Thr 3835	Leu	Asp	Val	Ile	Pro 3840		Thr	Ala
Lys	Thr 3845	Pro	Asp	Ala	Thr	Phe 3850	Gln	Arg	Gln	Gly	Gln 3855		Ala	Leu
Thr	Thr 3860	Glu	Ala	Arg	Ala	Thr 3865	Ser	Asp	Ser	Trp	Asn 3870		Lys	Glu
Lys	Ser 3875	Thr	Pro	Ser	Ala	Pro 3880	Trp	Ile	Thr	Glu	Met 3885		Asn	Ser
·Val	Ser 3890	Glu	Asp	Thr	Ile	Lys 3895	Glu	Val	Thr	Ser	Ser 3900		Ser	Val
Leu	Lys 3905	Asp	Pro	Glu	Tyr	Ala 3910	Gly	His	Lys	Leu	Gly 3915	Ile	Trp	Asp
	Phe 3920					3925					3930			
Pro	Leu 3935	Leu	Ser	Pro	Pro	Gln 3940	Asp	Lys	Glu		Ile 3945	His	Pro	Ser
	3950					3955					Ser 3960			
Ala	Ser 3965	His	Ser	Thr	Ile	Pro 3970	Ala	His	Ser	Ala	Ser 3975	Ser	Lys	Leu
Thr	Ser 3980	Pro	Val	Val	Thr	Thr 3985	Ser	Thr	Arg		Gln 3990	Ala	Ile	Val
	Met 3995	Ser	Thr	Thr	Thr	Trp 4000	Pro	Glu	Ser		Arg 4005	Ala	Arg	Thr

. . .

453

Glu Pro Asn Ser Phe Leu Thr Ile Glu Leu Arg Asp Val Ser Pro 4020 4015 4010 Tyr Met Asp Thr Ser Ser Thr Thr Gln Thr Ser Ile Ile Ser Ser 4030 4025 Pro Gly Ser Thr Ala Ile Thr Lys Gly Pro Arg Thr Glu Ile Thr 4045 4040 Ser Ser Lys Arg Ile Ser Ser Ser Phe Leu Ala Gln Ser Met Arg 4065 4055 4060 Ser Ser Asp Ser Pro Ser Glu Ala Ile Thr Arg Leu Ser Asn Phe 4075 4070 Pro Ala Met Thr Glu Ser Gly Gly Met Ile Leu Ala Met Gln Thr .4090 4085 Ser Pro Pro Gly Ala Thr Ser Leu Ser Ala Pro Thr Leu Asp Thr 4100 4105 4110 Ser Ala Thr Ala Ser Trp Thr Gly Thr Pro Leu Ala Thr Thr Gln 4120 4125 4115 Arg Phe Thr Tyr Ser Glu Lys Thr Thr Leu Phe Ser Lys Gly Pro 4130 4135 4140 Glu Asp Thr Ser Gln Pro Ser Pro Pro Ser Val Glu Glu Thr Ser 4155 4150 4145 Ser Ser Ser Ser Leu Val Pro Ile His Ala Thr Thr Ser Pro Ser 4170 4160 4165 Asn Ile Leu Leu Thr Ser Gln Gly His Ser Pro Ser Ser Thr Pro 4180 4185 4175 Pro Val Thr Ser Val Phe Leu Ser Glu Thr Ser Gly Leu Gly Lys 4195

- Thr Thr Asp Met Ser Arg Ile Ser Leu Glu Pro Gly Thr Ser Leu 4205 4210 4215
- Pro Pro Asn Leu Ser Ser Thr Ala Gly Glu Ala Leu Ser Thr Tyr 4220 4225 4230
- Glu Ala Ser Arg Asp Thr Lys Ala Ile His His Ser Ala Asp Thr 4235 4240 4245
- Ala Val Thr Asn Met Glu Ala Thr Ser Ser Glu Tyr Ser Pro Ile 4250 4255 4260
- Pro Gly His Thr Lys Pro Ser Lys Ala Thr Ser Pro Leu Val Thr 4265 4270 4275
- Ser His Ile Met Gly Asp Ile Thr Ser Ser Thr Ser Val Phe Gly 4280 4285 4290
- Ser Ser Glu Thr Thr Glu Ile Glu Thr Val Ser Ser Val Asn Gln 4295 4300 4305
- Gly Leu Gln Glu Arg Ser Thr Ser Gln Val Ala Ser Ser Ala Thr 4310 4315 4320
- Glu Thr Ser Thr Val Ile Thr His Val Ser Ser Gly Asp Ala Thr 4325 4330 4335
- Thr His Val Thr Lys Thr Gln Ala Thr Phe Ser Ser Gly Thr Ser 4340 4350
- Ile Ser Ser Pro His Gln Phe Ile Thr Ser Thr Asn Thr Phe Thr 4355 4360 4365
- Asp Val Ser Thr Asn Pro Ser Thr Ser Leu Ile Met Thr Glu Ser 4370 4380
- Ser Gly Val Thr Ile Thr Thr Gln Thr Gly Pro Thr Gly Ala Ala 4385 4390 4395

Thr Glu Thr Pro Leu Ala Val Thr Pro Asp Phe Met Gln Ser Glu Lys Thr Thr Leu Ile Ser Lys Gly Pro Lys Asp Val Thr Trp Thr Ser Pro Pro Ser Val Ala Glu Thr Ser Tyr Pro Ser Ser Leu Thr Pro Phe Leu Val Thr Thr Ile Pro Pro Ala Thr Ser Thr Leu Gln Gly Gln His Thr Ser Ser Pro Val Ser Ala Thr Ser Val Leu Thr Ser Gly Leu Val Lys Thr Thr Asp Met Leu Asn Thr Ser Met Glu Pro Val Thr Asn Ser Pro Gln Asn Leu Asn Asn Pro Ser Asn Glu 4505 4510 Ile Leu Ala Thr Leu Ala Ala Thr Thr Asp Ile Glu Thr Ile His Pro Ser Ile Asn Lys Ala Val Thr Asn Met Gly Thr Ala Ser Ser 4535. Ala His Val Leu His Ser Thr Leu Pro Val Ser Ser Glu Pro Ser 4555 4560 Thr Ala Thr Ser Pro Met Val Pro Ala Ser Ser Met Gly Asp Ala Leu Ala Ser Ile Ser Ile Pro Gly Ser Glu Thr Thr Asp Ile Glu Gly Glu Pro Thr Ser Ser Leu Thr Ala Gly Arg Lys Glu Asn Ser

Thr Leu Gln Glu Met Asn Ser Thr Thr Glu Ser Asn Ile Ile Leu 4610 Ser Asn Val Ser Val Gly Ala Ile Thr Glu Ala Thr Lys Met Glu 4625 Val Pro Ser Phe Asp Ala Thr Phe Ile Pro Thr Pro Ala Gln Ser Thr Lys Phe Pro Asp Ile Phe Ser Val Ala Ser Ser Arg Leu Ser 4660 Asn Ser Pro Pro Met Thr Ile Ser Thr His Met Thr Thr Gln 4670 4675 Thr Gly Ser Ser Gly Ala Thr Ser Lys Ile Pro Leu Ala Leu Asp 4685 4690 Thr Ser Thr Leu Glu Thr Ser Ala Gly Thr Pro Ser Val Val Thr 4700 Glu Gly Phe Ala His Ser Lys Ile Thr Thr Ala Met Asn Asn Asp 4715 4720 Val Lys Asp Val Ser Gln Thr Asn Pro Pro Phe Gln Asp Glu Ala 4730 4735 Ser Ser Pro Ser Ser Gln Ala Pro Val Leu Val Thr Thr Leu Pro 4745 4750 4755 Ser Ser Val Ala Phe Thr Pro Gln Trp His Ser Thr Ser Ser Pro 4760 4765 Val Ser Met Ser Ser Val Leu Thr Ser Ser Leu Val Lys Thr Ala 4775 4780 Gly Lys Val Asp Thr Ser Leu Glu Thr Val Thr Ser Ser Pro Gln 4790 4795 Ser Met Ser Asn Thr Leu Asp Asp Ile Ser Val Thr Ser Ala Ala 4805 4810

Thr	Thr 4820	Asp	Ile	Glu	Thr	Thr 4825	His	Pro	Ser	Ile	Asn 4830	Thr	Val	Val
Thr	Asn 4835	Val	Gly	Thr		Gly 4840		Ala	Phe	Glu	Ser 4845	His	Ser	Thr
Val	Ser 4850	Ala	Tyr	Pro		Pro 4855	Ser	Lys	Ser	His	Ile 4860	Leu	Pro	Met
Leu	Pro 4865	Pro	Pro	Pro		Lys 4870		Pro	Gln	Phe	Pro 4875	Arg	Ser	Ile
Pro	Lys 4880		Ser	Lys	Thr	Thr 4885		Thr	Glu	Thr	Glu 4890	Thr	Thr	Ser
Ser	Leu 4895		Pro	Lys	Leu	Arg 4900		Thr	Ser	Ile	Ser 4905	Gln	Glu	Ile
	Ser ,4910	Ser	Thr	Glu		Ser 4915		Val	Pro	Tyr	Lys 4920	Glu	Leu	Thr
	Ala 4925			·		4930					4935			
	Thr 4940					4945					4950			
	Ser 4955					4960					4965			
	Glu 4970					4975					4980			
Gly	Ala 4985					4990					4995			
Thr	Pro 5000		Ala	Gly	Ile	His 5005		Ala	Met	Thr	His 5010		Phe	Ser

Glı	5015	Asp 5	Va.	l Thi	Th:	Leu 5020	Met	: Ser	Arg	, Ile	Pro 5025	Gl _i	n Ası	o Val
Se	Trp 503(Thi	: Sei	r Pro	Pro	Ser 5035	Val	. Asp	Lys	Thr	Ser 5040		r Pro	Ser
Ser	Phe 5045	Leu	ı Seı	Ser	Pro	Ala 5050	Met	Thr	Thr	Pro	Ser 5055		ı Ile	e Ser
Ser	Thr 5060	Leu)	Pro	Glu	Asp	Lys 5065	Leu	Ser	Ser	Pro	Met 5070		Ser	Leu
Leu	Thr 5075	Ser	Gly	Leu	Val	Lys 5080	Ile	Thr	Asp	Ile	Leu 5085		Thr	Arg
Leu	Glu 5090	Pro	Val	Thr	Ser	Ser 5095	Leu		Asn	Phe	Ser 5100	Ser	Thr	Ser
Asp	Lys 5105	Ile	Leu	Ala	Thr	Ser 5110	Lys	Asp	Ser	Lys	Asp 5115		Lys	Glu
Ile	Phe 5120	Pro	Ser	Ile	Asn	Thr 5125	Glu	Glu	Thr	Asn	Val 5130	Lys	Ala	Asn
Asn	Ser 5135	Gly	His	Glu	Ser	His 5140	Ser	Pro	Ala	Leu	Ala 5145	Asp	Ser	Glu
Thr	Pro 5150	Lys	Ala	Thr	Thr	Gln 5155	Met	Val	Ile	Thr	Thr 5160	Thr	Val	Gly
Asp	Pro 5165	Ala	Pro	Ser	Thr	Ser 5170	Met	Pro	Val	His	Gly 5175	Ser	Ser	Glu
Thr	Thr 5180	Asn	Ile	Lys	Arg	Glu 5185	Pro	Thr	Tyr	Phe	Leu 5190	Thr	Pro	Arg
Leu	Arg 5195	Glu	Thr	Ser	Thr	Ser 5200	Gln	Glu	Ser		Phe 5205	Pro	Thr	Asp
Thr	Ser 5210	Phe	Leu	Leu	Ser	Lys 5215	Val :	Pro	Thr		Thr 5220	Ile	Thr	Glu

Val	Ser 5225	Ser	Thr	Gly		Asn 5230		Ser	Ser		Ile 5235	Ser	Thr	Pro
Asp	His 5240	Asp	Lys	Ser	Thr	Val 5245	Pro	Pro	Asp	Thr	Phe 5250	Thr	Gly	Glu
Ile	Pro 5255	Arg	Val	Phe	Thr	Ser 5260	Ser	Ile	Lys	Thr	Lys 5265	Ser	Ala	Glu
Met	Thr 5270	Ile	Thr	Thr	Gln	Ala 5275	Ser	Pro	Pro	Glu	Ser 5280	Ala	Ser	His
Ser	Thr 5285	Leu	Pro	Leu	Asp	Thr 5290	Ser	Thr	Thr	Leu	Ser 5295	Gln	Gly	Gly
Thr	His 5300	Ser	Thr	Val	Thr	Gln 5305	Gly	Phe	Pro	Tyr	Ser 5310	Glu	Val	Thr
Thr	Leu 5315		Gly	Met	Gly	Pro 5320	Gly	Asn	Val	Ser	Trp 5325	Met	Thr	Thr
Pro	Pro 5330		Glu	Glu	Thr	Ser 5335	Ser	Val	Ser	Ser	Leu 5340	Met	Ser	Ser
Pro	Ala 5345		Thr	Ser	Pro	Ser 5350		Val	Ser	Ser	Thr 5355	Ser	Pro	Gln
Ser	Ile 5360		Ser	Ser	Pro	Leu 5365		Val	Thr	Ala	Leu 5370	Pro	Thr	Ser
	Leu 5375				Thr	5380	Val		Gly		Thr 5385	Ser	Pro	Glu
Ser	Val 5390		Ser	Ser	Pro	Pro 5395		Leu	Ser	Ser	Ile 5400		His	Glu
Arg	Pro 5405		Thr	Tyr	Lys	Asp 5410		Ala	His	Thr	Glu 5415		Ala	Met

His	His 5420	Ser	Thr	Asn	Thr	Ala 5425	Val	Thr	Asn		Gly 5430		: Ser	Gly
Ser	Gly 5435	His	Lys	Ser	Gln	Ser 5440	Ser	Val	Leu	Ala	Asp 5 4 45		: Glu	Thr
Ser	Lys 5450	Ala	Thr	Pro	Leu	Met 5455	Ser	Thr	Thr	Ser	Thr 5460		Gly	Asp
Thr	Ser 5465	Val	Seŗ	Thr	Ser	Thr 5470	Pro	Asn	Ile	Ser	Gln 5475		Asn	Gln
Ile	Gln 5480	Thr	Glu	Pro	Thr	Ala 5485	Ser	Leu	Ser	Pro	Arg 5490		Arg	Glu
Ser	Ser 5495	Thr	Ser	Glu	Lys	Thr 5500	Ser	Ser	Thr		Glu 5505		Asn	Thr
Ala	Phe 5510	Ser	Tyr	Val	Pro	Thr 5515	Gly	Ala	Ile	Thr	Gln 5520	Ala	Ser	Arg
Thr	Glu 5525	Ile	Ser	Ser	Ser	Arg 5530	Thr	Ser	Ile	Ser	Asp 5535	Leu	Asp	Arg
	Thr 5540					5545					5550		,	
	Thr 5555					5560					5565			
	5570					Gly 5575					5580			
	Asp 5585					5590					5595			
	Ser 5600					5605					5610			
Arg	Thr 5615	Pro	Gly	Asp	Val	Ser 5620	Trp	Met	Thr		Pro 5625	Pro	Val	Glu

	Thr 5630	Ser	Ser	Gly	Phe	Ser 5635	Leu		Ser	Pro	Ser 5640	Met	Thr	Ser
Pro	Ser 5645	Pro	Val	Ser	Ser	Thr 5650	Ser	Pro	Glu	Ser	Ile 5655	Pro	Ser	Ser
Pro	Leu 5660	Pro	Val	Thr	Ala	Leu 5665	Leu	Thr	Ser	Val	Leu 5670	Val	Thr	Thr
Thr	Asn 5675	Val	Leu	Gly	Thr	Thr 5680	Ser	Pro	Glu	Thr	Val 5685	Thr	Ser	Ser
Pro	Pro 5690	Asn	Leu	Ser	Ser	Pro 5695	Thr	Gln	Glu	Arg	Leu 5700	Thr	Thr	Tyr
ГÀЗ	Asp 5705	Thr	Ala	His	Thr	Glu 5710	Ala	Met	His	Ala	Ser 5715	Met	His	Thr
Asn	Thr 5720	Ala	Val	Ala	Asn	Val 5725		Thr	Ser	Ile	Ser 5730	Gly	His	Glu
Ser	Gln 5735	Ser	Ser	Val	Pro	Ala 5740		Ser	His	Thr	Ser 5745		Ala	Thr
Ser	Pro 5750		Gly	Ile	Thr	Phe 5755	Ala	Met	Gly	Asp	Thr 5760	Ser	Val	Ser
Thr	Ser 5765		Pro	Ala	Phe	Phe 5770		Thr	Arg	Ile	Gln 5775	Thr	Glu	Ser
Thr	Ser 5780		Leu	Ile	Pro	Gly 5785		Arg	Asp	Thr	Arg 5790	Thr	Ser	Glu
Glu	ile 5795		Thr	Val	Thr	Glu 5800		Ser	Thr	Val	Leu 5805		Glu	Val
Pro	Thr 5810		Thr	Thr	Thr	Glu 5815		Ser	Arg	Thr	Glu 5820	Val	Ile	Thr

Ser	Ser 5825	Arg	Thr	Thr	Ile	Ser 5830	Gly	Pro	Asp	His	Ser 5835		s Met	Ser
Pro	Tyr 5840	Ile	Ser	Thr	Glu	Thr 5845	Ile	Thr	Arg	Leu	Ser 5850		Phe	e Pro
Phe	Val 5855	Thr	Gly	Ser	Thr	Glu 5860	Met	Ala	Ile	Thr	Asn 5865		Thr	Gly
Pro	Ile 5870	Gly	Thr	Ile	Ser	Gln 5875	Ala	Thr	Leu	Thr	Leu 5880		Thr	Ser
Ser	Thr 5885	Ala	Ser	Trp	Glu	Gly 5890	Thr	His	Ser	Pro	Val 5895		Gln	Arg
Phe	Pro 5900	His	Ser	Glu	Glu	Thr 5905	Thr	Thr	Met	Ser	Arg 5910		Thr	Lys
Gly	Val 5915	Ser	Trp	Gln	Ser	Pro 5920	Pro	Ser	Val	Glu	Glu 5925		Ser	Ser
Pro	Ser 5930	Ser	Pro	Val	Pro	Leu 5935	Pŗo	Ala	Ile	Thr	Ser 5940	His	Ser	Ser
Leu	Tyr 5945	Ser	Ala	Val	Ser	Gly 5950	Ser	Ser	Pro	Thr	Ser 5955	Ala	Leu	Pro
Val	Thr 5960	Ser	Leu	Leu	Thr	Ser 5965	Gly	Arg	Arg	Lys	Thr 5970	Ile	Asp	Met
Leu .	Asp 5975	Thr	His	Ser	Glu	Leu 5980	Val	Thr	Ser	Ser	Leu 5985	Pro	Ser	Ala
Ser	Ser 5990	Phe	Ser	Gly	Glu	Ile 5995	Leu	Thr	Ser		Ala 6000	Ser	Thr	Asn
	Glu 6005	Thr	Ile	His	Phe	Ser 6010	Glu .	Asn	Thr		Glu 6015	Thr	Asn	Met
Gly	Thr 6020	Thr	Asn	Ser	Met	His 6025	Lys :	Leu :	His		Ser 6030	Val	Ser	Ile

His	Ser 6035	Gln	Pro	Ser	Gly	His 6040	Thr	Pro	Pro	Lys	Val 6045	Thr	Gly	Ser
Met	Met 6050	Glu	Asp	Ala	Ile	Val 6055		Thr	Ser	Thr	Pro 6060	Gly	Ser	Pro
Glu	Thr 6065	Lys	Asn	Val		Arg 6070		Ser	Thr	Ser	Pro 6075	Leu	Thr	Pro
Glu	Leu 6080	Lys	Glu	Asp	Ser	Thr 6085	Ala	Leu	Val		Asn 6090	Ser	Thr	Thr
Glu	Ser 6095	Asn	Thr	Val		Ser 6100		Val	Ser	Leu	Asp 6105	Ala	Ala	Thr
Glu	Val 6110	Ser	Arg	Ala	Glu	Val 6115	Thr	Tyr	Tyr	Asp	Pro 6120	Thr	Phe	Met
	Ala 6125		Ala	Gln		Thr 6130		Ser	Pro	Asp	Ile 6135	Ser	Pro	
Ala	Ser 6140	Ser	Ser	His	Ser	Asn 6145	Ser	Pro	Pro	Leu	Thr 6150	Ile	Ser	Thr
His	Lys 6155		Ile	Ala		Gln 6160		Gly	Pro	Ser	Gly 6165	Val	Thr	Ser
Leu	Gly 6170		Leu	Thr	Leu	Asp 6175		Ser	Thr	Ile	Ala 6180	Thr	Ser	Ala
Gly	Thr 6185		Ser	Ala		Thr 6190		Asp	Phe	Val	<i>As</i> p 6195	Ser	Glu	Thr
Thr	Ser 6200		Met	Asn	Asn	Asp 6205		Asn	Asp	Val	Leu 6210	Lys	Thr	Ser
Pro	Phe 6215		Ala	Glu	Glu	Ala 6220		Ser	Leu	Ser	Ser 6225		Ala	Pro

Leu	Leu 6230	Val	Th	r Thi	: Ser	Pro 6235	Ser	Pro	Val	. Thi	Ser 6240		r Le	u Gln
Glu	His 6245	Ser	Thi	: Ser	Ser	Leu 6250	Val	Ser	: Val	. Thr	Ser 6255	Va]	L Pro	o Thr
Pro	Thr 6260	Leu	Ala	Lys	Ile	Thr 6265	Asp	Met	Asp	Thr	Asn 6270		ı Glı	ı Pro
Val	Thr 6275	Arg	Ser	Pro	Gln	Asn 6280	Leu	Arg	Asn	Thr	Leu 6285	Ala	Thr	Ser
Glu	Ala 6290	Thr	Thr	Asp	Thr	His 6295	Thr	Met	His		Ser 6300		Asn	Thr
Ala	Met 6305	Ala	Asn	Val	Gly	Thr 6310	Thr	Ser	Ser	Pro	Asn 6315		Phe	Tyr
Phe	Thr 6320	Val	Ser	Pro	Asp	Ser 6325	Asp	Pro	Tyr	Lys	Ala 6330		Ser	Ala
Val	Val 6335	Ile	Thr	Ser	Thr	Ser 6340	Gly	Asp	Ser	Ile	Val 6345	Ser	Thr	Ser
	6330					Met 6355					6360			
	0303					Leu 6370					6375			
	6380					Thr 6385					6390			
	0393					Val 6400					6405			
	6410					Gly 6415					6420			
Asp	Thr 6425	Ser	Thr	Arg	Ser	Val 6430	Thr 1	Met	Leu		Thr 6435	Phe	Ala	Gly

Leu	Thr 6440		Ser	Glu		Arg 6445		Ile	Ala		Gln 6450	Thr	Gly	Pro
His	Arg 6455	Ala	Thr	Ser	Gln	Gly 6460	Thr	Leu	Thr		Asp 6465	Thr	Ser	Ile
Thr	Thr 6470	Ser	Gln	Ala	Gly	Thr 6475		Ser	Ala	Met	Thr 6480	His	Gly	Phe
Ser	Gln 6485	Leu	Asp	Leu	Ser	Thr 6490	Leu	Thr	Ser	Arg	Val 6495	Pro	Glu	Tyr
Ile	Ser 6500	Gly	Thr	Ser	Pro	Pro 6505	Ser	Val	Glu	Lys	Thr 6510	Ser	Ser	Ser
Ser	Ser 6515	Leu	Leu	Ser		Pro 6520	Ala	Ile	Thr	Ser	Pro 6525	Ser	Pro	Val
Pro	Thr 6530		Leu	Pro		Ser 6535		Pro	Ser	Ser	Pro 6540	Val	His	Leu
Thr	Ser 6545		Pro	Thr	Ser	Gly 6550	Leu	Val	Lys	Thr	Thr 6555	Asp	Met	Leu
Ala	Ser 6560		Ala	Ser		Pro 6565		Asn	Leu	Gly	Ser 6570	Thr	Ser	His
Lys	Ile 6575		Thr	Thr		Glu 6580		Ile	Lys	Asp	Thr 6585	Glu	Lys	Met
Tyr	Pro 6590		Thr			Ala 6595		Thr			Gly 6600	Thr	Thr	Thr
Ser	Glu 6605	_	Glu	Ser	Tyr	Ser 6610		Val	Pro	Ala	Tyr 6615	Ser	Glu	Pro
Pro	Lys 6620		Thr	Ser	Pro	Met 6625		Thr	Ser	Phe	Asn 6630	Ile	Arg	Asp

Thr	Ile 6635	Val	Ser	Thr	Ser	Met 6640	Pro	Gly	Ser	Ser	Glu 6645		Thr	Arg
Ile	Glu 6650	Met	Glu	Ser	Thr	Phe 6655	Ser	Val	Ala	His	Gly 6660		Lys	Gly
Thr	Ser 6665	Thr	Ser	Gln	Asp	Pro 6670	Ile	Val	Ser	Thr	Glu 6675		Ser	Ala
Val	Leu 6680	His	Lys	Leu	Thr	Thr 6685	Gly	Ala	Thr	Glu	Thr 6690		Arg	Thr
Glu	Val 6695	Ala	Ser	Ser	Arg	Arg 6700	Thr	Ser	Ile		Gly 6705		Asp	His
Ser	Thr 6710	Glu	Ser	Pro	Asp	Ile 6715	Ser	Thr	Glu	Val	Ile 6720		Ser	Leu
Pro	Ile 6725	Ser	Leu	Gly	Ile	Thr 6730	Glu	Ser	Ser	Asn	Met 6735		Ile	Ile
Thr	Arg 6740	Thr	Gly	Pro	Pro	Leu 6745	Gly	Ser	Thr	Ser	Gln 6750	Gly	Thr	Phe
Thr	Leu 6755	Asp	Thr	Pro	Thr	Thr 6760	Ser	Ser	Arg	Ala	Gly 6765	Thr	His	Ser
Met	Ala 6770	Thr	Gln	Glu	Phe	Pro 6775	His	Ser	Glu	Met	Thr 6780	Thr	Val	Met
Asn	Lys 6785	Asp	Pro	Glu	Ile	Leu 6790	Ser	Trp	Thr	Ile	Pro 6795	Pro	Ser	Ile
Glu	Lys 6800	Thr	Ser	Phe	Ser	Ser 6805	Ser	Leu	Met	Pro	Ser 6810	Pro	Ala	Met
Thr	Ser 6815	Pro	Pro	Val	Ser	Ser 6820	Thr	Leu	Pro	Lys	Thr 6825	Ile	His	Thr
Thr	Pro 6830	Ser	Pro	Met	Thr	Ser 6835	Leu	Leu	Thr		Ser 6840	Leu	Val	Met

	Thr 6845		Thr	Leu	Gly	Thr 6850	Ser	Pro	Glu	Pro	Thr 6855	Thr	Ser	Ser
Pro	Pro 6860	Asn	Leu	Ser	Ser	Thr 6865	Ser	His	Glu	Ile	Leu 6870	Thr	Thr	Asp
Glu	Asp 6875	Thr	Thr	Ala	Ile	Glu 6880	Ala	Met	His		Ser 6885		Ser	Thr
Ala	Ala 6890	Thr	Asn	Val		Thr 6895	Thr	Ser	Ser	Gly	His 6900	Gly	Ser	Gln
Ser	Ser 6905		Leu	Ala		Ser 6910		Lys	Thr	Lys	Ala 6915	Thr	Ala	Pro
Met	Asp 6920		Thr	Ser		Met 6925	Gly	His	Thr	Thr	Val 6930	Ser	Thr	Ser
Met	Ser 6935		Ser	Ser		Thr 6940		Lys	Ile	Lys	Arg 6945	Glu	Ser	Thr
Tyr	Ser 6950		Thr	Pro	Gly	Leu 6955		Glu	Thr	Ser	Ile 6960	Ser	Gln	Asn
Ala	Ser 6965		Ser	Thr		Thr 6970		Ile	Val	Leu	Ser 6975	Glu	Val	Pro
Thr	Gly 6980		Thr	Ala		Val 6985		Arg	Thr	Glu	Val 6990	Thr	Ser	Ser
Gly	Arg 6995				Pro	7000		Ser			Thr 7005	Val	Leu	Pro
Glu	Ile 7010		Thr	Arg	Thr	Met 7015		Arg	Leu	Phe	Ala 7020		Pro	Thr
Met	Thr 7025		Ser	Ala	Glu	Met 7030		Ile	Pro	Thr	Gln 7035		Gly	Pro

Ser	Gly 7040	Se:	Thi	Ser	: Glr	1 Asp 7045	Thr	Leu	Thr	Leu	1 Asp 7050	Thr	Ser	Thr
Thr	Lys 7055	Se ₁	Glr	a Ala	Lys	Thr 7060	His	Ser	Thr	: Leu	Thr 7065		Arg	Phe
Pro	His 7070	Ser	: Glu	ı Met	Thr	Thr 7075	Leu	Met	Ser	Arg	Gly 7080		Gly	Asp
Met	Ser 7085	Trp	Gln	Ser	Ser	Pro 7090	Ser	Leu	Glu	Asn	Pro 7095		Ser	Leu
Pro	Ser 7100	Leu	. Leu	Ser	Leu	Pro 7105	Ala	Thr	Thr		Pro 7110		Pro	Ile
Ser	Ser 7115	Thr	Leu	Pro	Val	Thr 7120	Ile	Ser	Ser	Ser	Pro 7125		Pro	Val
Thr	Ser 7130	Leu	Leu	Thr	Ser	Ser 7135	Pro	Val	Thr	Thr	Thr 7140		Met	Leu
His	Thr 7145	Ser	Pro	Glu	Leu	Val 7150	Thr	Ser	Ser	Pro	Pro 7155	Lys	Leu	Ser
His	Thr 7160	Ser	Asp	Glu	Arg	Leu 7165	Thr	Thr	Gly	Lys	Asp 7170	Thr	Thr	Asn
Thr	Glu. 7175	Ala	Val	His	Pro	Ser 7180	Thr	Asn	Thr		Ala 7185	Ser	Asn	Val
Glu	Ile 7190	Pro	Ser	Ser	Gly	His 7195	Glu	Ser	Pro	Ser	Ser 7200	Ala	Leu	Ala
Asp	Ser 7205	Glu	Thr	Ser	Lys	Ala 7210	Thr	Ser	Pro	Met	Phe 7215	Ile	Thr	Ser
Thr	Gln 7220	Glu	Asp	Thr	Thr	Val 7225	Ala	Ile	Ser		Pro 7230	His	Phe	Leu
Glu	Thr 7235	Ser	Arg	Ile	Gln	Lys 7240	Glu	Ser	Ile		Ser 7245	Leu	Ser	Pro

Lys	Leu 7250	Arg	Glu	Thr	Gly	Ser 7255	Ser	Val	Glu	Thr	Ser 7260	Ser	Ala	Ile
Glu	Thr 7265		Ala	Val		Ser 7270		Val	Ser	Val	Gly 7275	Ala	Thr	Thr
Glu	Ile 7280		Arg	Thr		Val 7285		Ser	Ser	Ser	Arg 7290		Ser	Ile
Ser	Gly 7295		Ala	Glu	Ser	Thr 7300	Met	Leu	Pro	Glu	Ile 7305	Ser	Thr	Thr
Arg	Lys 7310		Ile	Lys	Phe	Pro 7315		Ser	Pro	Ile	Leu 7320	Ala	Glu	Ser
Ser	Glu 7325		Thr	Ile		Thr 7330	Gln	Thr	Ser	Pro	Pro 7335	Gly	Ser	Thr
Ser	Glu 7340	Ser	Thr	Phe		Leu 7345		Thr	Ser	Thr	Thr 7350	Pro	Ser	Leu
Val	Ile 7355		His	Ser	Thr	Met 7360	Thr	Gln	Arg	Leu	Pro 7365	His	Ser	Glu
	7370					Arg 7375					7380			
	7385					Glu 7390					7395			
	7400					Ser 7405					7410			
Pro	Ala 7415					Ser 7420					7425			
Thr	Pro 7430	-	Gln	Val	Lys	Thr 7435		Glu	Val	Leu	Asp 7440		Ser	Ala

Glu	Pro 7445	Glu	Thr	: Ser	Ser	Pro 7450	Pro	Ser	Leu	Ser	Ser 7455		Ser	Val
Glu	Ile 7460	Leu	Ala	Thr	Ser	Glu 7465	Val	Thr	Thr	Asp	Thr 7470		Lys	Ile
His	Pro 7475	Phe	Ser	Asn	Thr	Ala 7480	Val	Thr	Lys	Val	Gly 7485		Ser	Ser
Ser	Gly 7490	His	Glu	Ser	Pro	Ser 7495	Ser	Val	Leu	Pro	Asp 7500		Glu	Thr
Thr	Lys 7505	Ala	Thr	Ser	Ala	Met 7510	Gly	Thr	Ile	Ser	Ile 7515		Gly	Asp
Thr	Ser 7520	Val	Ser	Thr	Leu	Thr 7525	Pro	Ala	Leu	Ser	Asn 7530		Arg	Lys
Ile	Gln 7535	Ser	Glu	Pro	Ala	Ser 7540	Ser	Leu	Thr	Thr	Arg 7545		Arg	Glu
Thr	Ser 7550	Thr	Ser	Glu	Glu	Thr 7555	Ser	Leu	Ala	Thr	Glu 7560		Asn	Thr
Val	Leu 7565	Ser	Lys	Val	Ser	Thr 7570	Gly	Ala	Thr	Thr	G1u 7575		Ser	Arg
Thr	Glu 7580	Ala	Ile	Ser	Phe	Ser 7585	Arg	Thr	Ser	Met	Ser 7590	Gly	Pro	Glu
Gln	Ser 7595	Thr	Met	Ser	Gln	Asp 7600			Ile		Thr 7605	Ile	Pro	Arg
Ile	Ser 7610	Ala	Ser	Ser	Val	Leu 7615	Thr	Glu	Ser	Ala	Lys 7620	Met	Thr	Ile
Thr	Thr 7625	Gln	Thr	Gly	Pro	Ser 7630	Glu	Ser	Thr	Leu	Glu 7635	Ser	Thr	Leu
Asn	Leu 7640	Asn	Thr	Ala	Thr	Thr 7645	Pro	Ser	Trp	Val	Glu 7650	Thr	His	Ser

Ile	Val 7655	Ile	Gln	Gly	Phe	Pro 7660	His	Pro	Glu	Met	Thr 7665	Thr	Ser	Met
Gly	Arg 7670		Pro	Gly	Gly	Val 7675	Ser	Trp	Pro	Ser	Pro 7680	Pro	Phe	Val
Lys	Glu 7685		Ser	Pro		Ser 7690		Pro	Leu	Ser	Leu 7695	Pro	Ala	Val
Thr	Ser 7700	Pro	His	Pro		Ser 7705		Thr	Phe	Leu	Ala 7710	His	Ile	Pro
Pro	Ser 7715	Pro	Leu	Pro	Val	Thr 7720		Leu	Leu	Thr	Ser 7725	Gly	Pro	Ala
Thr	Thr 7730		Asp	Ile	Leu	Gly ,7735	Thr	Ser	Thr	Glu	Pro 7740	Gly	Thr	Ser
Ser	Ser 7745		Ser	Leu		Thr .7750	Thr	Ser	His	Glu	Arg 7755	Leu	Thr	Thr
Tyr	Lys 7760		Thr	Ala	His	Thr 7765		Ala	Val	His	Pro 7770	Ser	Thr	Asn
Thr	Gly 7775	_	Thr	Asn	Val	Ala 7780		Thr	Ser	Ser	Gly 7785		Lys	Ser
Gln	Ser 7790		Val	Leu	Ala	Asp 7795		Ser	Pro	Met	Cys 7800	Thr	Thr	Ser
	Met 7805		Asp	Thr	Ser	Val 7810	Leu	Thr	Ser	Thr	Pro 7815	Ala	Phe	Leu
Glu	Thr 7820		Arg	Ile	Gln	Thr 7825		Leu	Ala	Ser	Ser 7830		Thr	Pro
Gly	Leu 7835		Glu	Ser	Ser	Gly 7840	Ser	Glu	Gly	Thr	Ser 7845	Ser	Gly	Thr

Lys	Met 7850	Ser	Thr	Val	Leu	Ser 7855	Lys	Val	. Pro	Thr	Gly 7860		a Thi	Thr
Glu	Ile 7865	Ser	Lys	Glu	Asp	Val 7870	Thr	Ser	lle	Pro	Gly 7875	Pro	Ala	Gln
Ser	Thr 7880	Ile	Ser	Pro	Asp	Ile 7885	Ser	Thr	Arg	Thr	Val 7890		Trp	Phe
Ser	Thr 7895	Ser	Pro	Val	Met	Thr 7900	Glu	Ser	Ala	Glu	Ile 7905		Met	Asn
Thr	His 7910	Thr	Ser	Pro	Leu	Gly 7915	Ala	Thr	Thr	Gln	Gly 7920		Ser	Thr
Leu	Ala 7925	Thr	Ser	Ser	Thr	Thr 7930	Ser	Leu	Thr	Met	Thr 7935		Ser	Thr
Ile	Ser 7940	Gln	Gly	Phe	Ser	His 7945	Ser	Gln	Met	Ser	Thr 7950	Leu	Met	Arg
Arg	Gly 7955	Pro	Glu	Asp	Val	Ser 7960	Trp	Met	Ser	Pro	Pro 7965	Leu	Leu	Glu
Lys	Thr 7970	Arg	Pro	Ser	Phe	Ser 7975	Leu	Met	Ser	Ser	Pro 7980	Ala	Thr	Thr
Ser	Pro 7985	Ser	Pro	Val	Ser	Ser 7990	Thr	Leu	Pro	Glu	Ser 7995	Ile	Ser	Ser
	8000					Ser 8005					8010	Leu	Ala	Lys
Thr	Thr 8015	Asp	Met	Leu		Lys 8020	Ser	Ser	Glu		Val 8025	Thr	Asn	Ser
	Ala 8030	Asn	Leu	Ser	Ser	Thr 8035	Ser	Val	Glu		Leu 8040	Ala	Thr	Ser
Glu '	Val 8045	Thr	Thr	Asp	Thr	Glu 8050	Lys	Thr	His		Ser 8055	Ser	Asn	Arg

Thr	Val 8060	Thr	Asp	Val		Thr 8065	Ser	Ser	Ser	Gly	His 8070	Glu	Ser	Thr
Ser	Phe 8075	Val	Leu	Ala	Asp	Ser 8080	Gln	Thr	Ser	Lys	Val 8085	Thr	Ser	Pro
Met	Val 8090	Ile	Thr	Ser	Thr	Met 8095		Asp	Thr	Ser	Val 8100	Ser	Thr	Ser
Thr	Pro 8105		Phe	Phe	Glu	Thr 8110	Ser	Arg	Ile	Gln	Thr 8115	Glu	Pro	Thr
Ser	Ser 8120		Thr	Leu		Leu 8125		Lys	Thr	Ser	Ser 8130	Ser	Glu	Gly
Thr	Ser 8135		Ala	Thr		Met 8140		Thr	Val	Leu	Ser 8145	Gly	Val	Pro
Thr	Gly 8150		Thr	Ala		Val 8155		Arg	Thr	Glu	Val 8160	Thr	Ser	Ser
Ser	Arg 8165		Ser	Ile		Gly 8170		Ala	Gln	Leu	Thr 8175		Ser	Pro
Glu	Thr 8180		Thr	Glu	Thr	Ile 8185		Arg	Leu	Pro	Thr 8190	Ser	Ser	Ile
Met	Thr 8195		Ser	Ala		Met 8200		Ile	Lys	Thr	Gln 8205	Thr	Asp	Pro
Pro	Gly 8210	Ser	Thr	Pro	Glu	Ser 8215	Thr	His	Thr	Val	Asp 8220	Ile	Ser	Thr
Thr	Pro 8225		Trp	Val	Glu	Thr 8230		Ser	Thr	Val	Thr 8235	Gln	Arg	Phe
Ser	His 8240		Glu	Met	Thr	Thr 8245		Val	Ser	Arg	Ser 8250	Pro	Gly	Asp

Met	Leu 8255	Trp	Pro	Ser	Glr	Ser 8260	Ser	· Val	. Glu	ı Glu	Thr 8265		: Ser	: Ala
Ser	Ser 8270	Leu	Leu	Ser	Leu	Pro 8275	Ala	Thr	Thr	Ser	Pro 8280	Ser	Pro	Val
Ser	Ser 8285	Thr	Leu	Val	Glu	Asp 8290	Phe	Pro	Ser	Ala	Ser 8295		Pro	Val
Thr	Ser 8300	Leu	Leu	Thr	Pro	Gly 8305	Leu	Val	Ile	Thr	Thr 8310		Arg	Met
Gly	Ile 8315	Ser	Arg	Glu	Pro	Gly 8320	Thr	Ser	Ser	Thr	Ser 8325		Leu	Ser
Ser	Thr 8330	Ser	His	Glu	Arg	Leu 8335	Thr	Thr	Leu	Glu	Asp 8340		Val	Asp
Thr	Glu 8345	Asp	Met	Gln	Pro	Ser 8350		His	Thr	Ala	Val 8355	Thr	Asn	Val
Arg	Thr 8360	Ser	Ile	Ser	Gly	His 8365	Glu	Ser	Gln	Ser	Ser 8370	Val	Leu	Ser
Asp	Ser 8375	Glu	Thr	Pro	Lys	Ala 8380	Thr	Ser	Pro	Met	Gly 8385	Thr	Thr	Tyr
Thr	Met 8390	Gly	Glu	Thr	Ser	Val 8395	Ser	Ile	Ser	Thr	Ser 8400	Asp	Phe	Phe
	8405					8410					Ser 8415			
	8420					8425					Ser 8430			
	8435					8440					Gly 8445			
Glu	Val 8450	Ser	Arg	Thr	Glu	Val 8455	Ile	Ser	Ser	Arg	Gly 8460	Thr	Ser	Met

Ser	Gly 8465	Pro	Asp	Gln		Thr 8470		Ser	Pro	Asp	Ile 8475	Ser	Thr	Glu
Ala	Ile 8480	Thr	Arg	Leu	Ser	Thr 8485	Ser	Pro	Ile	Met	Thr 8490	Glu	Ser	Ala
Glu	Ser 8495		Ile			Glu 8500		Gly	Ser		Gly 8505	Ala	Thr	Ser
Glu	Gly 8510	Thr	Leu	Thr		Asp 8515		Ser	Thr	Thr	Thr 8520	Phe	Trp	Ser
Gly	Thr 8525		Ser	Thr		Ser 8530		Gly	Phe	Ser	His 8535	Ser	Glu	Met
Thr	Thr 8540		Met	Ser		Thr 8545		Gly	Asp	Val	Pro 8550	Trp	Pro	Ser
	Pro 8555		Val	Glu		Ala 8560		Ser	Val	Ser	Ser 8565	Ser	Leu	Ser
Ser	Pro 8570		Met	Thr		Thr 8575		Phe	Phe	Ser	Thr 8580	Leu	Pro	Glu
Ser	Ile 8585		Ser	Ser		Ніs 8590		Val			Leu 8595	Leu	Thr	Leu
Gly	Pro 8600		Lys	Thr		Asp 8605		Leu	Arg		Ser 8610		Glu	Pro
	Thr 8615										Ser 8625		Glu	Ile
Leu	Ala 8630		Ser	Glu	Val	Thr 8635	Lys	Asp	Arg	Glu	Lys 8640	Ile	His	Pro
Ser	Ser 8645		Thr	Pro	Val	Val 8650		Val	Gly	Thr	Val 8655	Ile	Tyr	Lys

His	Leu 8660	Ser	Pro	Ser	Ser	Val 8665	Leu	Aļa	. Asp	Leu	Val 8670		Thi	Lys
Pro	Thr 8675	Ser	Pro	Met	Ala	Thr 8680	Thr	Ser	Thr	Leu	Gly 8685		Thr	Ser
Val	Ser 8690	Thr	Ser	Thr	Pro	Ala 8695	Phe	Pro	Glu	Thr	Met 8700		Thr	Gln
Pro	Thr 8705	Ser	Ser	Leu	Thr	Ser 8710	Gly	Leu	Arg	Glu	Ile 8715		Thr	Ser
Gln	Glu 8720	Thr	Ser	Ser	Ala	Thr 8725	Glu	Ārg	Ser	Ala	Ser 8730		Ser	Gly
Met	Pro 8735	Thr	Gly	Ala	Thr	Thr 8740		Val	Ser	Arg	Thr 8745		Ala	Leu
Ser	Leu 8750	Gly	Arg	Thr	Ser	Thr 8755	Pro	Gly	Pro	Ala	G1n 8760	Ser	Thr	Ile
Ser	Pro 8765	Glu	Ile	Ser	Thr	Glu 8770	Thr	Ile	Thr	Arg	Ile 8775	Ser	Thr	Pro
	Thr 8780					8785					8790			
	His 8795					8800					8805		_	
	Ser 8810					8815					8820			
	Ser 8825					8830					8835			
Glu	Asp 8840	Val	Ser	Trp	Pro	Ser 8845	Arg	Pro	Ser		Glu 8850	Lys	Thr	Ser
	Pro 8855	Ser	Ser .	Leu '		Ser 8860	Leu	Ser .	Ala		Thr 8865	Ser	Pro	Ser

Pro	Leu 8870		Ser	Thr		Ser 8875		Ser	Ser	His	Ser 8880	Ser	Pro	Leu
Arg	Val 8885	Thr	Ser	Leu	Phe	Thr 8890	Pro	Val	Met	Met	Lys 8895	Thr	Thr	Asp
Met	Leu 8900		Thr	Ser		Glu 8905	Pro	Val	Thr	Thr	Ser 8910	Pro	Pro	Ser
Met	Asn 8915	Ile	Thr	Ser		Glu 8920	Ser	Leu	Ala	Thr	Ser 8925	Lys	Ala	Thr
Met	Glu 8930		Glu	Ala		Gln 8935		Ser	Glu	Asn	Thr 8940	Ala	Val	Thr
Gln	Met 8945	Gly	Thr	Ile	Ser	Ala 8950		Gln	Glu	Phe	Tyr 8955	Ser	Ser	Tyr
Pro	Gly 8960		Pro	Glu		Ser 8965		Val	Thr	Ser	Pro 8970	Val	Val	Thr
Ser	Ser 8975		Ile	Lys	Asp	Ile 8980		Ser	Thr	Thr	Ile 8985	Pro	Ala	Ser
Ser	Glu 8990		Thr	Arg		Glu 8995		Glu	Ser	Thr	Ser 9000	Thr	Leu	Thr
Pro	Thr 9005		Arg	Glu		Ser 9010		Ser	Gln	Glu	Ile 9015	His	Ser	Ala
	Lys 9020	Pro	Ser	Thr	Val	Pro 9025	Туг	Lys			Thr 9030	Ser	Ala	Thr
Ile	Glu 9035		Ser	Met	Thr	Gln .9040		Met	Ser	Ser	Ser 9045		Gly	Pro
Ser	Pro 9050		Gln	Ser	Thr	Met 9055		Gln	Asp	Ile	Ser 9060	Ser	Glu	Val

Ile	Thr 9065	Arg	Leu	Ser	Thi	Ser 9070	Pro	Ile	Lys	Ala	Glu 9075		Th:	Glu
Met	Thr 9080	Ile	Thr	Thr	Glr	9085	Gly 5	Ser	Pro	Gly	Ala 9090		: Sei	Arg
Gly	Thr 9095	Leu	Thr	Leu	. Asp	9100	Ser	Thr	Thr	Phe	Met 9105		: Gly	Thr
His	Ser 9110	Thr	Ala	Ser	Gln	Gly 9115	Phe	Ser	His	Ser	Gln 9120		Thr	Ala
Leu	Met 9125	Ser	Arg	Thr	Pro	Gly 9130	Asp	Val	Pro	Trp	Leu 9135		His	Pro
Ser	Val 9140	Glu	Glu	Ala	Ser	Ser 9145		Ser	Phe		Leu 9150		Ser	Pro
Val	Met 9155	Thr	Ser	Ser	Ser	Pro 9160	Val	Ser	Ser	Thr	Leu 9165		Asp	Ser
Ile	His 9170	Ser	Ser	Ser	Leu	Pro 9175	Val	Thr	Ser	Leu	Leu 9180	Thr	Ser	Gly
Leu	Val 9185	Lys	Thr	Thr	Glu	Leu 9190	Leu	Gly	Thr	Ser	Ser 9195	Glu	Pro	Glu
	Ser 9200	. –				Leu 9205					9210			
	9213					Thr 9220					9225			
	9230	•				Tyr 9235					9240	•		
•	9243					Thr 9250			•		9255	Met	Gly	Ile
Thr 5	Tyr 9260	Pro	Thr	Gly	Asp	Thr 9265	Asn '	Val	Leu		Ser 9270	Thr	Pro	Ala

Phe	Ser 9275	Asp	Thr	Ser	Arg	Ile 9280	Gln	Thr	Lys	Ser	Lys 9285	Leu	Ser	Leu
Thr	Pro 9290	Gly	Leu	Met	Glu	Thr 9295	Ser	Ile	Ser	Glu	Glu 9300	Thr	Ser	Ser
Ala	Thr 9305		Lys	Ser	Thr	Val 9310		Ser	Ser	Val	Pro 9315	Thr	Gly	Ala
Thr	Thr 9320		Val	Ser	Arg	Thr 9325		Ala	Ile	Ser	Ser 9330	Ser	Arg	Thr
Ser	Ile 9335		Gly	Pro	Ala	Gln 9340		Thr	Met	Ser	Ser 9345	Asp	Thr	Ser
Met	Glu 9350		Ile	Thr		Ile 9355		Thr	Pro	Leu	Thr 9360	Arg	Lys	Glu
Ser	Thr 9365		Met	Ala	Ile	Thr 9370	Pro	Lys	Thr	Gly	Pro 9375		Gly	Ala
Thr	Ser 9380		Gly	Thr		Thr 9385		Asp	Ser	Ser	Ser 9390	Thr	Ala	Ser
Trp	Pro 9395		Thr	His	Ser	Ala 9400		Thr	Gln	Arg	Phe 9405	Pro	Gln	Ser
Val	Val 9410		Thr	Pro	Met	Ser 9415	Arg	Gly	Pro	Glu	Asp 9420	Val	Ser	Trp
Pro	Ser 9425	Pro	Leu	Ser	Val	Glu 9430	Lys	Asn	Ser	Pro	Pro 9435		Ser	Leu
Val	Ser 9440		Ser	Ser	Val	Thr 9445	Ser	Pro	Ser	Pro	Leu 9450	Tyr	Ser	Thr
Pro	Ser 9455		Ser	Ser	His	Ser 9460		Pro	Val	Pro	Val 9465	Thr	Ser	Leu

Phe	Thr 9470	Sei	: Ile	e Met	: Mei	Lys 947	Ala 5	a Th:	r Ası) Met	Leu 9480		Ala	a Ser
Leu	Glu 9485	Pro	Glu	Thr	Thi	Ser 9490	Ala O	Pro	o Asr	ı Met	: Asn 9495		e Thi	s Ser
Asp	Glu 9500	Ser	Lev	Ala	Ala	Ser 9505	Lys 5	Ala	a Thr	Thr	Glu 9510	Thr	Glu	ı Ala
Ile	His 9515	Val	Phe	Glu	Asn	9520	Ala	Ala	s Ser	His	Val 9525		Thr	Thr
Ser	Ala 9530	Thr	Glu	Glu	Leu	Tyr 9535	Ser	Ser	: Ser	Pro	Gly 9540		Ser	Glu
Pro	Thr 9545	Lys	Val	Ile	Ser	Pro 9550	Val	Val	Thr	Ser	Ser 9555	Ser	Ile	Arg
Asp	Asn 9560	Met	Val	Ser	Thr	Thr 9565	Met	Pro	Gly	Ser	Ser 9570		Ile	Thr
Arg	Ile 9575	Glu	Ile	Glu	Ser	Met 9580	Ser	Ser	Leu	Thr	Pro 9585	Gly	Leu	Arg
Glu	Thr 9590	Arg	Thr	Ser	Gln	Asp 9595	Ile	Thr	Ser	Ser	Thr 9600	Glu	Thr	Ser
Thr	Val 9605	Leu	Tyr	Lys	Met	Pro 9610	Ser	Gly	Ala	Thr	Pro 9615	Glu	Val	Ser
•	9020					9625		,			Ile 9630			
,						9640			•		Glu 9645			
:	9630					9655					Ala 9660			
Ile :	Thr 9665	Thr	Gln	Thr	Gly	Tyr 9670	Ser :	Leu	Ala	Thr	Ser 9675	Gln	Val	Thr

Leu	Pro 9680	Leu	Gly	Thr	Ser	Met 9685	Thr	Phe	Leu	Ser	Gly 9690	Thr	His	Ser
Thr	Met 9695	Ser	Gln	Gly	Leu	Ser 9700	His	Ser	Glu	Met	Thr 9705	Asn	Leu	Met
Ser	Arg 9710	Gly	Pro	Glu	Ser	Leu 9715		Trp	Thr	Ser	Pro 9720	Arg	Phe	Val
Glu	Thr 9725	Thr	Arg	Ser	Ser	Ser 9730	Ser	Leu	Thr	Ser	Leu 9735	Pro	Leu	Thr
Thr	Ser 9740'		Ser	Pro	Val	Ser 9745		Thr	Leu	Leu	Asp 9750	Ser	Ser	Pro
Ser	Ser 9755	Pro	Leu	Pro	Val	Thr 9760		Leu	Ile	Leu	Pro 9765	Gly	Leu	Val
Lys	Thr 9770	Thr	Glu	Val	Leu	Asp 9775		Ser	Ser	Gļu	Pro 9780	Lys	Thr	Ser
Ser	Ser 9785	Pro	Asn	Leu	Ser	Ser 9790		Ser	Val	Glu	Ile 9795	Pro	Ala	Thr
Ser	Glu 9800	Ile	Met	Thr	Asp	Thr 9805		Lys	Ile	His	Pro 9810	Ser	Ser	Asn
Thr	Ala 9815		Ala	Lys	Val	Arg 9820		Ser	Ser	Ser	Val 9825	His	Glu	Ser
His	Ser 9830	Ser	Val	Leu	Ala	Asp 9835	Ser	Glu	Thr	Thr	Ile 9840	Thr	Ile	Pro
Ser	Met 9845		Ile	Thr	Ser	Ala 9850		Asp	Asp	Thr	Thr 9855	Val	Phe	Thr
Ser	Asn 9860		Ala	Phe	Ser	Glu 9865		Arg	Arg	Ile	Pro 9870	Thr	Glu	Pro

Thr Phe Ser Leu Thr Pro Gly Phe Arg Glu Thr Ser Thr Ser Glu 9875 9880 9885
Glu Thr Thr Ser Ile Thr Glu Thr Ser Ala Val Leu Tyr Gly Val 9890 9895 9900
Pro Thr Ser Ala Thr Thr Glu Val Ser Met Thr Glu Ile Met Ser 9905 9910 9915
Ser Asn Arg Thr His Ile Pro Asp Ser Asp Gln Ser Thr Met Ser 9920 9925 9930
Pro Asp Ile Ile Thr Glu Val Ile Thr Arg Leu Ser Ser Ser 9935 9940 9945
Met Met Ser Glu Ser Thr Gln Met Thr Ile Thr Thr Gln Lys Ser 9950 9955 9960
Ser Pro Gly Ala Thr Ala Gln Ser Thr Leu Thr Leu Ala Thr Thr 9965 9970 9975
Thr Ala Pro Leu Ala Arg Thr His Ser Thr Val Pro Pro Arg Phe 9980 9985 9990
Leu His Ser Glu Met Thr Thr Leu Met Ser Arg Ser Pro Glu Asn 9995 10000 10005
Pro Ser Trp Lys Ser Ser Pro Phe Val Glu Lys Thr Ser Ser Ser 10010 10020
Ser Ser Leu Leu Ser Leu Pro Val Thr Thr Ser Pro Ser Val Ser 10025 10035
Ser Thr Leu Pro Gln Ser Ile Pro Ser Ser Phe Ser Val Thr 10040 10045 10050
Ser Leu Leu Thr Pro Gly Met Val Lys Thr Thr Asp Thr Ser Thr 10055 10060 10065
Glu Pro Gly Thr Ser Leu Ser Pro Asn Leu Ser Gly Thr Ser Val 10070 10075 10080

	Ile 10085		Ala	Ala	Ser	Glu 10090	Val	Thr	Thr	Asp	Thr 10095	Glu	Lys	Ile
His	Pro 10100		Ser	Ser	Met	Ala 10105	Val	Thr	Asn	Val	Gly 10110	Thr	Thr	Ser
Ser	Gly 10115		Glu	Leu	Tyr	Ser 10120	Ser	Val	Ser	Ile	His 10125	Ser	Glu	Pro
	Lys 10130		Thr	Tyr	Pro	Val 10135	Gly	Thr	Pro	Ser	Ser 10140	Met	Ala	Glu
Thr	Ser 10145		Ser	Thr	Ser	Met 10150	Pro	Ala	Asn	Phe	Glų 10155	Thr	Thr	Gly
Phe	Glu 10160		Glu	Pro	Phe	Ser 10165	His	Leu	Thr	Ser	Gly 10170	Phe	Arg	Lys
Thr	Asn 10175		Ser	Leu	Asp	Thr 10180		Ser	Val	Thr	Pro 10185	Thr	Asn	Thr
Pro	Ser 10190	Ser	Pro	Gly	Ser	Thr 10195	His	Leu	Leu	Gln	Ser 10200	Ser	Lys	Thr
Asp	Phe 10205		Ser	Ser	Ala	Lys 10210	Thr	Ser	Ser	Pro	Asp 10215	Trp	Pro	Pro
Ala	Ser 10220		Tyr	Thr		Ile 10225		Val	Asp	Ile	Ile 10230	Thr	Pro	Phe
Asn	Ala 10235	Ser	Pro	Ser	Ile	Thr 10240	Glu	Ser	Thr	Gly	Ile 10245	Thr	Ser	Phe
Pro	Glu 10250		Arg	Phe	Thr	Met 10255		Val	Thr	Glu	Ser 10260	Thr	His	His
Leu	Ser 10265		Asp	Leu	Leu	Pro 10270		Ala	Glu	Thr	Ile 10275		Thr	Gly

Thi	: Val 10280	Met	Pro	Ser	Leu	Ser 10285	Glu	Ala	Met	Thr	Ser 10290	Phe	Ala	Thr
Thr	Gly 10295	Val	Pro	Arg	Ala	Ile 10300	Ser	Gly	Ser	Gly	Ser 10305	Pro	Phe	Ser
Arg	Thr 10310	Glu	Ser	Gly	Pro	Gly 10315	Asp	Ala	Thr	Leu	Ser 10320	Thr	Ile	Ala
Glu	Ser 10325	Leu	Pro	Ser	Ser	Thr 10330	Pro	Val	Pro		Ser 10335		Ser	Thr
Phe	Thr 10340	Thr	Thr	Asp	Ser	Ser 10345	Thr	Ile	Pro	Ala	Leu 10350	His	Glu	Ile
Thr	Ser 10355	Ser	Ser	Ala	Thr	Pro 10360	Tyr	Arg	Val	Asp	Thr 10365	Ser	Leu	Gly
Thr	Glu 10370	Ser	Ser	Thr	Thr	Glu 10375	Gly	Arg	Leu	Val	Met 10380	Val	Ser	Thr
	Asp 10385					10390					10395			
Leu	Asp 10400	Thr	Arg	Met	Thr	Glu 10405	Ser	Val	Glu	Leu	Gly 10410	Thr	Val	Thr
Ser	Ala 10415	Tyr	Gln	Val	Pro	Ser 10420	Leu	Ser	Thr	Arg	Leu 10425	Thr		Thr
Asp	Gly 10430	Ile												

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)