Guillermo Betancourt, carnet 11-10103 Gabriel Giménez, carnet 12-11006

Proyecto - BOT

Revisión teórico-práctica

1. Dé tres expresiones regulares E_1 , E_2 y E_3 que correspondan respectivamente al reconocimiento de la palabra clave create , de la palabra clave char y de identificadores:

Dado un alfabeto \sum que está formado por todos los caracteres ASCII, podemos decir que E_1 = create, E_2 = char y E_3 = $[a-zA-Z][a-zA-Z0-9_]*$ son expresiones regulares que reconocen la palabra clave create, de la palabra clave char y los identificadores de nuestro lenguaje, respectivamente.

2. Dé los diagramas de transición (i.e. representación gráfica) de los tres automatas finitos (posiblemente no-determinísticos) M_1 , M_2 y M_3 que reconocen respectivamente a los lenguajes denotados por E_1 , E_2 y E_3 , esto corresponde al paso (1) del algoritmo A, con R_i y R_i refiriéndose a nuestras E_i :

Podemos representar gráficamente los autómatas finitos determinísticos M_1 , M_2 y al autómata finito no-determinístico M_3 que reconocen las expresiones E_1 , E_2 y E_3 mediante digrafos de la siguiente manera:

3. Construya un autómata finito no-determinístico M que reconozca la unión de los lenguajes $L(M_1)$, $L(M_2)$ y $L(M_3)$ tal como se indica en el paso (2) de A.

El siguiente autómata M es un autómata finito no-determinístico y reconoce la unión de los lenguajes $L(M_1)$, $L(M_2)$ y $L(M_3)$:

Donde se representa la frase vacía con el símbolo λ , que nos permite unir los tres autómatas obtenidos anteriormente en un único autómata que reconozca los tres lenguajes dados.

Nótese que el no-determinismo de M no está dado únicamente por el no-determinismo de M_3 , al unir M_1 y M_2 , ambos reconocen frases cuya primera letra empieza por "c".

4. Note que, a efectos de implementar un analizador lexicográfico, es importante que el autómata M sepa reportar a cuál de los tres lenguajes pertenece cada palabra que él reconozca. Esto significa que M debe poder identificar a cuál de los tres lenguajes corresponde cada estado final. Indique a qué lenguaje corresponde cada uno de los estados finales de su autómata M:

Los estados finales q_4^1 , q_6^2 y q_1^3 corresponden a los lenguajes $L(M_1)$, $L(M_2)$ y $L(M_3)$, respectivamente.

5. La asignación de estados finales a lenguajes de su respuesta a la pregunta 4 debe crear conflictos, pues hay elementos que pertenecen a más de uno de los tres lenguajes $L(M_1)$, $L(M_2)$ y $L(M_3)$. Cada conflicto corresponde a una palabra w que pertenece a más de un lenguaje, digamos L_x y L_y . Indique cuáles son los conflictos de su autómata M, especificando las palabras que lo generan, y los lenguajes y estados finales involucrados:

Podemos observar que la frase w_1 =char pertenece tanto al lenguaje $L(M_1)$ como a $L(M_3)$. De manera similar, la frase w_2 =create pertenece tanto al lenguaje $L(M_2)$ como a $L(M_3)$. Esto sucede debido a que $sem(E_1) \cup sem(E_2) \subset sem(E_3)$, luego $L(M_3)$ contendrá las mismas frases de $L(M_1)$ y $L(M_2)$.

6. Construya un autómata finito determinístico M_{det} equivalente a M , i.e. que reconozca el mismo lenguaje M (viz. $L(M_1) \cup L(M_2) \cup L(M_3)$). Esto corresponde al paso (3) de A:

Aplicando el paso (3) del algoritmo A, obtenemos un autómata finito determinístico equivalente a M , que llamaremos M_{det} , el cual reconoce el lenguaje $L=L(M_1)\cup L(M_2)\cup L(M_3)$.

7. ¿Cómo se reflejan los conflictos de su respuesta a la pregunta 5 en su autómata $\,M_{\it det}\,$?:

Básicamente, en el autómata $M_{\rm det}$ todos los estados son de aceptación excepto el estado q_i , dado que la frase vacía no es reconocida por la unión de los tres lenguajes dados. Los estados $q_4^1q_1^3$ y $q_6^2q_1^3$ reconocen las frases $w_1=char$ y $w_2=create$, respectivamente, por lo que el conflicto de saber a qué lenguaje pertenecen las frases w_1 y w_2 persiste en $M_{\rm det}$, sabiendo que solamente pueden pertenecer a un lenguaje.

8. Los conflictos deben ser resueltos mediante un orden lineal que priorice a los lenguajes involucrados. En nuestro caso, establecemos que el orden de prioridad viene dado por la secuencia $\langle L(E_1), L(E_2), L(E_3) \rangle$ de manera decreciente, i.e. el primer lenguaje tiene más prioridad que los otros dos y el segundo más que el tercero. De acuerdo con esto, asocie un lenguaje (solo uno) a cada estado final de M_{det} tal como lo hizo en la pregunta 4 para M:

Dado el orden de prioridad anterior, podemos asociar los lenguajes $L(E_1)$ y $L(E_2)$ a los estados de aceptación $q_4^1q_1^3$ y $q_6^2q_1^3$, respectivamente, mientras que el resto de los estados de aceptación del autómata M_{det} les asociamos al lenguaje $L(E_3)$.

9. Tal como se indica en el paso (4) de A, construya un autómata finito determinístico mínimo $M_{\it min}$ equivalente a M (y, por lo tanto, también equivalente a $M_{\it det}$). Explique por qué se debe usar la partición inicial de estados especificada en el paso (4) de A, e indique a cuál de los tres lenguajes corresponde cada estado final de $M_{\it min}$:

Para hallar el autómata $\,M_{\it min}\,$ debemos tomar inicialmente una partición del conjunto de estados del autómata $\,M_{\it det}\,$, la cual será

$$\Pi_{0} \; = \; \left\{ \, \{ \, q_{i} \} \right. \; , \; \left\{ \, q_{1}^{1} q_{1}^{2} q_{1}^{3} \right. \; , \; q_{2}^{1} q_{1}^{3} \; , \; q_{3}^{1} q_{1}^{3} \; , \; q_{1}^{3} \; q_{1}^{3} \; , \; q_{2}^{2} q_{1}^{3} \; , \; q_{3}^{2} q_{1}^{3} \; , \; q_{4}^{2} q_{1}^{3} \; , \; q_{5}^{2} q_{1}^{3} \; \right\} \; , \; \left\{ \, q_{4}^{1} q_{1}^{3} \right\} \; , \; \left\{ \, q_{6}^{2} q_{1}^{3} \right\} \; \right\}$$

En lugar de tomar la partición inicial como el conjunto de estados finales y el conjunto de estados no finales, tomamos Π_0 dado que queremos saber a qué lenguaje $L(E_1)$, $L(E_2)$ o $L(E_3)$ pertenece cada frase que reconoce M_{det} , dado el orden de prioridad establecido anteriormente.

Aplicando clases de equivalencia obtenemos que

$$\begin{split} \Pi_1 &= \left\{ \left\{ q_i \right\} \;,\; \left\{ q_1^1 q_1^2 q_1^3 \;,\; q_2^1 q_1^3 \;,\; q_1^2 \;,\; q_2^2 q_1^3 \;,\; q_3^2 q_1^3 \;,\; q_4^2 q_1^3 \right\} \;,\; \left\{ q_4^1 q_1^3 \right\} \;,\; \left\{ q_6^2 q_1^3 \right\} \;,\; \left\{ q_3^1 q_1^3 \right\} \;,\; \left\{ q_5^2 q_1^3 \right\} \right\} \\ \Pi_2 &= \left\{ \left\{ q_i \right\} \;,\; \left\{ q_1^1 q_1^2 q_1^3 \;,\; q_1^3 \;,\; q_2^2 q_1^3 \;,\; q_3^2 q_1^3 \right\} \;,\; \left\{ q_4^1 q_1^3 \right\} \;,\; \left\{ q_6^2 q_1^3 \right\} \;,\; \left\{ q_3^1 q_1^3 \right\} \;,\; \left\{ q_5^2 q_1^3 \right\} \;,\; \left\{ q_2^1 q_1^3 \right\} \;,\; \left\{ q_4^2 q_1^3 \right\} \right\} \right] \\ \Pi_3 &= \left\{ \left\{ q_i \right\} \;,\; \left\{ q_1^3 \;,\; q_2^2 q_1^3 \right\} \;,\; \left\{ q_4^1 q_1^3 \right\} \;,\; \left\{ q_6^2 q_1^3 \right\} \;,\; \left\{ q_3^1 q_1^3 \right\} \;,\; \left\{ q_5^2 q_1^3 \right\} \;,\; \left\{ q_4^2 q_1^3 \right\} \;,\; \left\{ q_1^1 q_1^2 q_1^3 \right\} \;,\; \left\{ q_3^2 q_1^3 \right\} \right\} \right] \\ \Pi_4 &= \left\{ \left\{ q_i \right\} \;,\; \left\{ q_1^3 \right\} \;,\; \left\{ q_2^2 q_1^3 \right\} \;,\; \left\{ q_4^1 q_1^3 \right\} \;,\; \left\{ q_6^2 q_1^3 \right\} \;,\; \left\{ q_3^2 q_1^3 \right\} \;,\; \left\{ q_2^2 q_1^3 \right\} \;,\; \left\{ q_1^2 q_1^2 \right\} \;,\; \left\{ q_3^2 q_1^3 \right\} \;,\; \left\{ q_3^2 q_1^3 \right\} \right\} \right\} \end{split}$$

Finalmente, obtenemos que Π_4 es la partición de los singletones de los estados del autómata $M_{\it det}$, por lo tanto el autómata finito determinístico mínimo $M_{\it min}$ es $M_{\it det}$.

10. ¿Cómo relaciona usted el desarrollo de las preguntas 1-9 a la implementación de su analizador lexicográfico construido con la herramienta escogida?:

El algoritmo A anteriormente utilizado, también conocido como Algoritmo de Hopcroft, nos permite obtener un autómata finito determinístico mínimo dada una expresión regular, generando a partir de esta última un autómata finito no-determinístico, luego convirtiéndolo en determinístico y finalmente minimizándolo.

Este algoritmo es el que implementa la herramienta Flex, para C y C++, que es básicamente un generador de analizadores lexicográficos, donde toma como entrada un texto escrito en los lenguajes anteriormente mencionados, y tokeniza dicho texto dadas ciertas expresiones regulares aplicando el Algoritmo de Hopcroft.