

By Kalaimani Muthu

Home Game Performance Under Different Managers

Goal Scoring Proficiency at Qway Matches

Goal Scoring Proficiency at Home Matches

Goal Contributions Across Different Competition Types

Average Disciplinary Action Rate Per Game by Competition
Type

PLAYER ATTRIBUTES AND DEMOGRAPHICS

Model Analyses Summary Logistic Regression (Predicting Starting Lineup from Goals Scored)

• ROC Curve (Chart 1): Shows moderate predictive ability with an AUC of 0.627.

Model Analyses Summary Logistic Regression (Predicting Yellow Card from Previous Cards)

• ROC Curve (Chart 2): Slight improvement in prediction with AUC of 0.642.

Simple Linear Regression (Predicting Market Value from Scoring Frequency)

Model Performance:

- Intercept: 0.0083
- Coefficient for Scoring Frequency: 0.02749
- R² Value: 0.00224 (Very low, indicating that scoring frequency alone does not explain variations in market value effectively)
- Errors: Mean Squared Error of 0.957, Mean Absolute Error of 0.779, Root Mean Squared Error of 0.978

Multiple Linear Regression (Predicting Market Value from Various Features)

Model Performance:

- Intercept: 0.0032
- Coefficients: Height (-0.00747), Minutes Played (0.11474), Goals (-0.16384), Other feature (0.01855)
- R² Value: 0.04407 (Low, suggesting that these features together explain only a small portion of the variance in market value)
- Errors: Mean Squared Error of 0.927, Mean Absolute Error of 0.748, Root Mean Squared Error of 0.963

KNN Classification (Attendance Categories)

weighted avg

Minimum error: 0.6388888888888888 at K = 2 Optimal K = 2 Classifier n_neighbors: 2 Sample predictions: [0. 2. 1. 0. 0. 1. 0. 2. 1. 1.] Accuracy: 0.36111111111111111 Recall: 0.36111111111111111 F1 Score: 0.36111111111111111 Precision: 0.36111111111111111 classification_report: precision recall f1-score support 0.37 0.64 0.47 163 0.0 1.0 0.39 0.26 0.31 170 2.0 0.18 0.06 0.09 99 432 0.36 accuracy 0.31 0.32 0.29 432 macro avg

0.33

0.36

0.32

432

Kmean

MSE: 0.9269670026196399

RMSE: 0.9627912559945899

R² score: 0.04407255379719721

The average silhouette score is: 0.4727793028522318

Key Findings and Insights

•Performance Analysis:

• Predictive accuracy for starting lineup based on goals scored is modest (AUC = 0.63).

•Attendance Analysis:

• Classification accuracy for predicting match attendance categories is low (38.84%).

•Player Demographics:

• Physical attributes such as height and footedness reveal distinct player groups, aiding in personalized training strategies.

Recommendations Table:

Focus Area	Current Metric	Target Improvement	Expected Benefit
Model Prediction Accuracy	AUC: 0.63	+59% to AUC: 1.00	Significantly enhanced predictive reliability
Attendance Prediction	Accuracy: 38.84%	+61.16% to 100%	Highly targeted marketing and operational planning
Player Cluster Utilization	Silhouette Score: Low	Improve score by 50%	Refined player role identification and team dynamics

Business Conclusions

- Average playing time varies by position, with goalkeepers at 89.66 minutes and attackers at 59.77 minutes.
- Market value insights reveal midfielders at the highest (€86.29M) and goalkeepers at the lowest (€23.85M).
- Total attendances reached over 9.5 million across all matches analyzed.

•Strategic Recommendations:

- Utilize position-specific training regimens based on playing time insights.
- Reassess market valuation frameworks, especially for goalkeepers.

Machine Learning Models:

1.Logistic Regression:

- **1. Starting Lineup Prediction:** Accuracy was 64%, with precision varying significantly between predicting starters (63%) and non-starters (94%).
- 2. Yellow Card Prediction: High precision (87%) but extremely low sensitivity for predicting actual yellow card occurrences.
- 3. Recommendations: Integrate more game-specific data points (like opposition and match stakes) to enhance predictive accuracy.

2.Linear Regression:

- 1. Market Value from Scoring Frequency: Extremely low explanatory power ($R^2 = 0.002$).
- 2. Market Value from Multiple Features: Slightly better with an R² of 0.044.
- 3. Recommendations: Broaden the feature set to include non-performance metrics like media presence and sponsorship value.

3.KNN Classification:

- **1. Attendance Categorization:** Low overall accuracy (36.1%) with the best performance at K=2.
- 2. Recommendations: Experiment with other classification methods that might capture complex patterns more effectively, such as Random Forests or Gradient Boosting Machines.

4.K-Means Clustering:

1. Player Grouping: Identified clusters based on physical attributes but lacked strong distinctiveness.

Thank You