

Analysis of factors affecting Bike Rentals in Washington D.C.

Prof. Khasha Dehnad BIA 652-B

Team:

Bhagyashree Shende Nithin Das Purva Khopkar

TEAM

Purva Khopkar

Bhagyashree Shende

Nithin Das

Table of Contents

- Problem Statement
- Data Source
- Data Cleaning and Pre-Processing
- Exploratory Data Analysis
- Workflow
- Data Preparation
- Principal Component Analysis
- Variable Selection Methods
 - Logistic Regression
 - Random Forest
- Logistic Regression on Selected Variables
- Model Comparison and Inference

Introduction

What is Bike Sharing System?

- Means of renting bicycles via a network of kiosk locations throughout Washington D.C.
- People rent a bike from a one location and return it to a different place on an as-needed basis
- Bike sharing solution comes with some problems to be solved :
 - Vandalism
 - Parking problems
 - Logistic issues
- Increasing revenue for the company also one of the goals
- Thus, it is important to study the factors affecting the demand of bikes

Problem Statement

Analysis of the factors affecting the demand of bike rentals in Washington D.C.

Proposed Solution

Developing a classification model to determine the factors affecting demand of bike rentals

Data Source & Description

Source: https://www.kaggle.com/c/bike-sharing-demand/data

Features:

Name of Feature	Туре	Value & Meaning
dteday	Categorical	Date
season	Categorical	1 = spring, 2 = summer, 3 = fall, 4 = winter
month	Categorical	1 to 12 for January to December
year	Categorical	0 = 2011, 1 = 2012
holiday	Categorical	1 = Holiday 0 = Not a Holiday
workingday	Categorical	1 = Not a weekend nor Holiday 0 = Holiday/Weekend
weather	Categorical	1 = Clear, 2 = Cloudy, 3 = Light Snow/Rain
temp	Numeric	normalized temperature in Celsius
atemp	Numeric	"feels like" normalized temperature in Celsius
humidity	Numeric	relative humidity
windspeed	Numeric	wind speed
casual	Numeric	number of non-registered user rentals
registered	Numeric	number of registered user rentals
cnt	Numeric	Total user rentals (Sum of casual and registered user rentals)

Dependent Variable : CNT

Data Pre-Processing

- 1. No missing values in dataset
- 2. Added a new column 'Day' by extracting the day value from date, range [1,31]
- 3. Removed Date column as it is redundant-> Year and Month is present

Variable	N Miss	N
instant	0	730
dteday	0	730
date	0	730
season	0	730
yr	0	730
mnth	0	730
holiday	0	730
weekday	0	730
workingday	0	730
weathersit	0	730
temp	0	730
atemp	0	730
hum	0	730
windspeed	0	730
casual	0	730
registered	0	730
cnt	0	730

Outliers

Removed outlier of Bike Usage value of 22

Exploratory Data Analysis

Checking for Normality of Dependent Variable

Using univariate analysis of dependent variable CNT, we find it is normally distributed

```
29
30∃proc univariate data=daydata normal plot;
31 var cnt;
32 run;
33
```


Relationship between Numeric Variables

- Average demand is more on a non-holiday
- Count is normally distributed on a non-holiday
- May be there are a fixed group of people using bikes daily?
- Average demand is more in season 3 (Summer)

Relationship of Categorical Variables with Dependent Variables

(Contd.)

Workflow

Data Preparation

Dependent variable – cnt (Count of total rental bikes)

Normalized the cnt variable using min-max normalization function

Labelling cnt variable as High and Not High (Mean + Standard dev)

Mean -> 0.492513 S.D -> 0.233018

High > **0.725531**

Not High < **0.725531**

Prediction	Frequency	Percent		Cumulative Percent
HIGH	143	19.59	143	19.59
NOT HIGH	587	80.41	730	100.00

 Checking the correlation between the variables

Numeric values in the dataset : temp, atemp, humidity, windspeed

reals		under H	fficients, N 0: Rho=0	1 - 730
	temp	atemp	hum	windspeed
temp	1.00000	0.99171	0.12798	-0.15756
		<.0001	0.0005	<.0001
atemp	0.99171	1.00000	0.14082	-0.18360
	<.0001		0.0001	<.0001
hum	0.12798	0.14082	1.00000	-0.25511
	0.0005	0.0001		<.0001
windspeed	-0.15756	-0.18360	-0.25511	1.00000
	<.0001	<.0001	<.0001	

Performing PCA

- Standardized the variables with mean = 0 and Standard Deviation =1
- Conducted the PCA to get the principal components

Evaluating the PCA results

- Selected the principal component 1 and 2 due to following reasons:
 - Eigenvalue is greater than 1.
 - The cumulative proportion is 0.8105

Eigenvalues of the Correlation Matrix						
	Eigenvalue	Difference	Proportion	Cumulative		
1	2.10131375	0.96080938	0.5253	0.5253		
2	1.14050437	0.39025129	0.2851	0.8105		
3	0.75025308	0.74232429	0.1876	0.9980		
4	0.00792879		0.0020	1.0000		

Eigenvectors							
	Prin1	Prin2	Prin3	Prin4			
temp	0.663490	0.248244	0.031327	705106			
atemp	0.667997	0.225726	0.018479	0.708863			
hum	0.219157	688287	0.691522	005376			
windspeed	255990	0.643183	0.721439	0.017614			

Approach 1- Logistic Regression – Variable selection

- Variable selection using Logistic regression on data set
- We used forward selection method.
- Important variables from the regression model are: Month, Holiday, Weathersit, Prin1

Type 3 Analysis of Effects						
Effect	DF	Wald Chi-Square	Pr > ChiSq			
mnth	11	33.0616	0.0005			
уг	1	0.0305	0.8613			
season	3	7.3626	0.0612			
holiday	1	5.1296	0.0235			
weathersit	2	34.8781	<.0001			
Prin1	1	3.9656	0.0464			

Logistic Regression on selected variables

We performed Regression model on selected variables

```
proc logistic data=princomp;
  class prediction mnth weathersit;
  model prediction(event="High")= mnth weathersit prinl holiday/lackfit ctable outroc =rocl;
        output out = pred p = phat upper=ucl lower=lcl;
run;
```


Classification Table								
Correct Incorrect Percentages								
Event	Non- Event	Event	Non- Event	Correct		Speci- ficity		False NEG
116	405	182	27	71.4	81.1	69.0	61.1	6.3

Hosmer and Lemeshow Goodness-of-Fit Test						
Chi-Square	DF	Pr > ChiSq				
7.8012	7	0.3504				

Approach 2- Random Forest – Variable selection

Use Random Forest to verify important features

RandomForestClassifier (n_estimators=1000, random_state=0,min_samples_split=5, n_jobs=-1)

```
('date', 0.060550855883866966)

('season', 0.06045778370715398)

('yr', 0.3330848375770469)

('mnth', 0.10895788660044785)

('holiday', 0.008899895754418094)

('weekday', 0.03819861948918749)

('weathersit', 0.054368931074843085)

('workingday', 0.009528392123165396)

('Prin1', 0.23782489474990706)

('Prin2', 0.08812790303996342)
```

- Setting threshold value to 0.1 gives 'yr', 'mnth', 'Prin1'
- "We have seen an increasing trend in the Bike Usages from 2011 to 2012"
- "Data shows decrease in bike usage shows decreasing trend between July and December each year"

Logistic Regression with variable selection

- Divided dataset to training-test with 70%-30% proportion
- LogisticRegression(Bike Usage ~ Month+ Year +Prin1)

Model Evaluation

Confusion Matrix

	Not High	High
Not High	167	12
High	17	24

Sensitivity

Sensitivity= TP/(TP+FN) ~ approx. 93.29%

Specificity

Specificity = TN/(TN+FP) ~ approx. 58.5%

Model Accuracy

Accuracy= TP+ TN/(TP+TN+FP+FN) ~ approx. 86.81%

ROC Curve

(Contd.)

Area Under Curve

AUC: 0.94

Highlights:

- As the data contains 587 instances of "Not High" usage and 143 instances of "High" usage, there is a potential chance of class imbalance problem
- Therefore, we focus more on the Specificity of the model i.e. model performance in classifying "High" usage cases
- Now, we will compare our model with Null model

Model Comparison and Inference

Model	Accuracy	Event = High	Event = Not High	AUC
Approach 1	71.4%	81.1%	69.0%	0.83
Approach 2	86.81%	58.5%	93.29%	0.94

- Model selection is depending upon the business requirement of the company if "High" usage is the event of concern then Approach 1 can be accepted otherwise if "Not high" usage is the event of concern then Approach 2 can be accepted
- Factors significantly affecting the Bike Sharing trend in Washington DC by comparing 2 models are: Month, Prin1 (Temperature, feels like temperature, Humidity and Windspeed)
- ➤ We can observe that there is increase in bike rentals between **January June** for both the years
- > It can be also observed that Weather situation and holiday also plays an important role in bike rentals usage
- > The analysis of these factors will help the company in efficient demand forecasting of the bikes

THANK YOU