

CS 383 – Machine Learning

Clustering

Overview

- Unsupervised Learning
- Clustering
 - K-Means/mediods
 - Agglomerative Clustering
- Reading
 - Springer Section 10.3

Supervised vs. Unsupervised Learning

- In general our data comes in two flavors:
 - 1. Supervised
 - 2. Unsupervised
- With *supervised* data we have not only the observations, $\{X_i\}_{i=1}^N$ but also associated labels, $\{Y_i\}_{i=1}^N$.
 - Together these form our dataset: $\{X_i, Y_i\}_{i=1}^N$
 - We will later use this type of data to do
 - Regression
 - Classification
- With *unsupervised* data we only have the observations, $\{X_i\}_{i=1}^N$

Why Unsupervised Learning?

- It's harder 🕾
 - How do we know if results are meaningful since there no answers (labels) to test against?
- We need it though
 - Labeling large datasets is very costly
 - May have no idea what/how many classes there are (data mining)
 - May want to use clustering to gain some insight into the structure of the data before designing a classifier

_

Unsupervised Learning

• The most common type of unsupervised learning is *clustering* where we attempt to learn underlying patterns from data

What is Clustering?

• Clustering: The process of grouping a set of objects into classes of similar objects

• Items within cluster should be similar

 Observations from different clusters should be dissimilar

• This is the most common form of unsupervised learning

Issues for Clustering

- Need a notion of similarity/distance
 - Similarity: Gaussian, Cosine
 - Distance: L2 (Euclidian), L1 (Manhattan)
 - See Blackboard for these
- How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid "trivial" clusters too small or too large
 - Use some statistics?
- How to evaluate cluster quality?
 - It's unsupervised after all....

Hard vs Soft Clustering

- Hard clustering: Each observation belongs to exactly one cluster
 - More common and easier to do
- Soft clustering: An observation can belong to more than one cluster
 - And/or can belong to clusters with some probability

Clustering Algorithms

- Flat algorithms
 - Usually start with a random clustering/model
 - Refine it iteratively
- Hierarchical algorithms
 - Bottom-up, agglomerative
 - Top-down, divisive

K-Means

- Assumes features are continuous.
- Each observation is associated with a single reference vector.
 - This is typically the reference vector that the observation is closest to, or most similar to.
 - For simplicity/intuition, we'll compare observations using Euclidean distance.
 - Therefore we assign an observation to the reference vector it is closest to.

.

K-Means Pseudocode

- 1. Select k vectors $\{a_1, a_2, ..., a_k\}$ as the initial reference vectors.
- 2. Until clustering converges, or other stopping condition:
 - 1. For each observation x
 - 1. Compare x to each reference vector, and associate x with the reference vector it is most similar to/closest to.
 - Update the reference vectors based on the observations associated with it. If we're doing k-means, the reference vector will be updated to be the *mean* of the observations associated with it. If C_i is the set of observations associated with reference vector a_i then:

$$a_i \to \frac{1}{|C_i|} \sum_{x \in C_i} x$$

K-Means Example

k-means

- A few design considerations:
 - What should k be?
 - Application likely dictates this
 - What similarity /distance function to use?
 - Nature of the features likely dictates this
 - Where should the reference vectors start?
 - See next slide
 - What are some termination criteria?
 - See next slide

Initial Reference Vector Choice

- Results can vary based on initial reference vector choice.
- Some choices can result in poor convergence rate, or convergence to sub-optimal clustering
- Some ideas might be:
 - Select good initial reference vectors using a heuristic (e.g. instances least similar to any existing mean)
 - Try out multiple starting points
 - Initialize with the results of another method

Termination Conditions

- Several possibilities
 - 1. A fixed number of iterations
 - 2. Between iterations
 - 1. Cluster assignments don't change
 - 2. Reference vectors don't change (by much)

Derivation of K-Means

- Why is the mean of the observations in a cluster a good reference vector for it?
- K-Means is based on using the sum of the square of the distances to measure the "goodness" of our solution:

$$J(a_i) = \sum_{x \in C_i} (x - a_i)^2$$

- This is referred to as the *least squared error*.
- Since x and a_i are actually *vectors*, this equation should be written as:

$$J(a_i) = \sum_{x \in C_i} (x - a_i)(x - a_i)^T$$

Derivation of K-Means

- We want to find a value for the reference vector a_i that minimizes this distance.
- So we'll take the derivative of $J(a_i)$ with respect to a_i

$$\frac{dJ(a_i)}{da_i} = \frac{d}{da_i} \left(\sum_{x \in C_i} (x - a_i)(x - a_i)^T \right) = \sum_{x \in C_i} -2(x - a_i)$$

Now let's set this equal to zero:

$$\sum_{x \in C_i} -2(x - a_i) = 0$$

We can re-write this as

$$\sum_{x \in C_i} x = \sum_{x \in C_i} a_i$$

Derivation of K-Means

$$\sum_{x \in C_i} x = \sum_{x \in C_i} a_i$$

- Let $|C_i|$ be the number of members in cluster C_i
- Then $\sum_{x \in C_i} a_i = |C_i| a_i$
- Therefor (via substitution):

$$a_i = \left(\frac{1}{|C_i|} \sum_{x \in C_i} x\right)$$

- Which is the definition of the mean of the cluster, $\mu(C_i)$
- So if $a_i = \mu(C_i)$ then we have minimized the least squared error

Weaknesses of k-Means

- The algorithms is only applicable if the mean is defined
 - For **categorical** data use **k-mode** where the centroid is represented by most frequent values
- The user needs to specify *k*
- The algorithm is sensitive to outliers
 - Outliers are data points that are very far away from other data points
 - Outliers could be errors in the data recording or some special data points with very different values
 - One solution is to use k-medoids (which uses the L1 distance and chooses the median of each feature)

Hierarchical Clustering

Hierarchical Agglomerative Clustering (HAC)

- With hierarchical agglomerative clustering we're building a clustering binary tree
- This can be done either bottom up, or top down
- At each iteration we have a new set of clusters

Hierarchical Agglomerative Clustering (HAC)

Top-Down Approach

- At first everything is part of a single cluster.
- Then split this into two clusters based on some criterial
- Now choose one of these two clusters, and split it into two
 - Now we have three total clusters
- Etc.. until each cluster only has one observation in it (called a singleton)

Hierarchical Agglomerative Clustering (HAC)

- Bottom-Up Approach
 - At first everything is its own cluster
 - If there's *N* observations, then there's *N* clusters
 - Choose two of these clusters to merge
 - Now there's N-1 clusters
 - From these N-1 clusters, choose two to merge
 - Now there's N-2 clusters
 - Etc.. until there is only one cluster
- Let's just look at the bottom-up approach.

Closest Pair of Clusters

- When deciding which to clusters to merge we typically need to determine which two clusters are closest.
- There's many variants to defining closest pair of clusters
 - Single link Similarity of the most similar
 - Complete link Similarity of the furthest points
 - Average link Average pair-wise similarity between clusters

Single Link Example

Single link – Similarity of the most similar

$$sim(C_i, C_j) = \max_{x \in C_i, y \in C_j} sim(x, y)$$

Complete Link HAC

Complete link – Similarity of the furthest points

$$sim(C_i, C_j) = \min_{x \in C_i, y \in C_j} sim(x, y)$$

Average HAC

- Average Link
 - Compromise between single and complete link
 - Average over all pairs between the two original clusters

$$sim(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i} \sum_{y \in C_j} sim(x, y)$$

HAC Pseudocode

- Let $C^{(k)}$ be the set of clusters at clustering level k and $C_i^{(k)}$ to be the i^{th} cluster in cluster-set $C^{(k)}$
- Initialize cluster level, k=N and cluster-set $C_i^{(k)}=\{x_i\}$ for $i=1,\dots N$
- While $k \geq 1$
 - Find closest clusters in $C^{(k)}$, $C_a^{(k)}$, $C_b^{(k)}$ according to some metric.
 - Create new cluster set $C^{(k-1)} = C^{(k)}$
 - Remove from $C^{(k-1)}$, $C_a^{(k-1)}$ and $C_b^{(k-1)}$ and add $C_a^{(k)} \cup C_b^{(k)}$
 - $k \rightarrow k-1$

Choosing The Clustering Level

- Ok so we have a HAC tree.
- What can we use it for?
- If we know how many clusters we want (if the problem dictates k), then we just choose the level of the tree that has that many clusters.
- What if we don't know it a-priori?

Clustering Quality

- We need to provide some way to measure the quality of a given clustering
- A good clustering will produce clusters in which
 - The intra-class (that is, intra-cluster) similarity is high
 - The inter-class similarity is low

Intra-Cluster Distance

• For a given cluster i and a chosen distance/similarity function d, the follow computes the average pairwise intra-cluster distance G_i

$$G_{i} = \frac{\sum_{x,y \in C_{i}} d(x,y)}{(2|C_{i}|)}$$

 The weighed (by cluster size) average intra-cluster distance for clustering level j is then:

$$W_j = \frac{\sum_{i=1}^j |C_i| G_i}{N}$$

• One idea might be to look at how the weighed average intra-cluster distance varies as a function of the number of clusters.

Graph Based Approaches

- Below is a graph showing the weighted average intra-cluster distance
- There are 30 observations
 - Clustering level 1 has everything in one cluster, and thus a large weighted intra-cluster distance
 - Cluster level 27 has everything as its own cluster, and thus a weighed average intra-cluster distance of zero.

Graph Based Approaches

- Obviously just choosing the minimum of this isn't all that useful
 - It will always choose k = N
- How about the slope?
- The slope at location W_i is:

$$W_j' = \frac{(\dot{W_{j+1}} - W_{j-1})}{2}$$

 Maybe select the place where there's the steepest absolute slope?

$$k = \operatorname*{argmax}_{j}(|W_{j}'|)$$

Graph Based Approaches

- How about the place where there's the greatest change in slope
 - Maximize the curvature
 - Second derivative!

$$W_{j}^{"} = \frac{\left(W_{j+1}^{'} - W_{j-1}^{'}\right)}{2} = \frac{\left(\frac{\left(W_{j+2} - W_{j}\right)}{2} - \frac{\left(W_{j} - W_{j-2}\right)}{2}\right)}{2} = \frac{\left(W_{j+2} - 2W_{j} + W_{j-2}\right)}{4}$$

External Criteria for Clustering Quality

- Of course in the end we probably want to figure out how our algorithm is behaving.
- Maybe we can ask some people "after the fact" to do the clustering task and compare theirs to ours.
- Still unsupervised since the labels didn't influence how we clustered. We just used it for evaluation

External Evaluation of Cluster Quality

- Simple measure: purity
 - Let N_{ij} be the number of instances of (supervised) label j within cluster C_i
 - The purity of cluster C_i is then defined as

$$Purity(C_i) = \frac{1}{|C_i|} \max_{j} N_{ij}$$

Then we can define the average purity of this clustering as

$$Purity = \frac{1}{N} \sum_{i=1}^{K} |C_i| Purity(C_i)$$

Purity Example

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Total Purity =
$$\frac{1}{17} \left(6 * \frac{5}{6} + 6 * \frac{4}{6} + 5 * \frac{3}{5} \right) = \frac{12}{17} \approx 70\%$$

External Evaluation of Cluster Quality

- Purity is biased because having k = N clusters maximizes purity
 - But it can be useful in compare methods with the same clustering level
- Other measurements include
 - Silhouette
 - https://en.wikipedia.org/wiki/Silhouette (clustering)
 - V-Measure
 - https://www.aclweb.org/anthology/D07-1043