

Figure 12: The cycle C created by two distinct paths from v' to x'

to it in C. Let $v_{i_l}y$ be one such chord; then we show that y lies in $P(v'_1, x'_1)$ in the next claim.

Claim 6.6. *y lies in* $P(v'_1, x'_1)$.

Proof. If y does not lie in $P(v'_1, x'_1)$, then y must lie in the path between v_{i_l} and x'_1 (or the path between v_{i_l} and v'_1). If it lies on the path between v_{i_l} and x'_1 (resp. between v_{i_l} and v'_1), then we have a path from v_{i_l} to x' (resp. between v_{i_l} and v') which has length smaller than $d(v_{i_l}, x')$ (resp. $d(v_{i_l}, v')$), which is a contradiction. Hence, y lies in $P(v'_1, x'_1)$ (refer to Figure 12b).

Note that $d(x'_1, y) \geq d(x'_1, v_{i_l})$ and $d(v'_1, y) \geq d(v'_1, v_{i_l})$. If not, then there exists a shorter or equal length path from v' to v_{i_l} (from x' to v_{i_l}) that bypasses the edge $v_{i_l}v$ (resp. $v_{i_l}x$), which is a contradiction to the fact that the pair v_{i_l}, v' (resp. v_{i_l}, x') monitors the edge $v_{i_l}v$ (resp. $v_{i_l}x$). Hence $d_P(x'_1, v'_1) = d(x'_1, y) + d(y, v'_1) \geq d(v'_1, v_{i_l}) + d(x'_1, v_{i_l})$, implying $d_P(x'_1, v'_1) = d(v'_1, v_{i_l}) + d(x'_1, v_{i_l})$. This implies that $d(x'_1, y) = d(x'_1, v_{i_l})$ and $d(v'_1, y) = d(v'_1, v_{i_l})$, which implies that the vertex y is unique in $P(v'_1, x'_1)$. This fact together with Claim 6.6 implies that in C, v_{i_l} is incident to exactly one chord.

Now note that if v and y are not adjacent, then the induced 2-path $yv_{i_l}v$ is part of a chordless cycle of length at least 4, which is a contradiction. Hence $vy \in E(G_{k+1})$. Similarly, it can be shown that $xy \in E(G_{k+1})$. Hence $vv_{i_l}x$ is part of a 4-cycle $vv_{i_l}xyv$, which leads to a contradiction. Hence v' and x' monitor vv_{i_l} .

Hence, until now, we showed that all edges in E_l can be monitored by the vertices of $Man(G_k) \setminus \{v_{i_l}\}$. Hence, combining this fact with Claim 6.1 and 6.3, we can conclude that $Man(G_{k+1})$ forms an optimal MEG set of G_{k+1} . Hence, meg(G) = |Man(G)| for every strongly chordal graph G.

7. Conclusion and future aspects

In this paper, we solved the complexity status of the MIN-MEG problem for some well-known graph classes. Next, it will be interesting to address the following questions: