- Part 1: Sturm-Liouville problems (conclusion)
- Part 2: The Big Questions: Existence and Uniqueness of Solutions, and the Fredholm Alternative Theorem (FAT)
- Part 3: Integral equations: another class of linear operator problems

Part 1 : Linear operators and ODE BVP eigenvalue problems: SL in context

- 1. $n^{ ext{th}}$ order non-self-adjoint L: IBP n to get L^*, BC^* then $L^*\psi = -\lambda \psi$ for $\langle \phi_j, \psi_k \rangle_2 = 0$ if $j \neq k$, λ_k can be complex
- 2. n^{th} order self-adjoint L: $L^* = L$, $BC^* = BC$ so $\psi_k = \phi_k$, and $\langle \phi_j, \phi_k \rangle_2 = 0$ if $j \neq k$, and all λ_k real.
- 3. 2nd order general L with Dir/Neu/Rob BC's: $\mathbf{L}\phi = -\lambda \phi$, $\mathbf{L}^*\psi = -\lambda \psi$ if not L^2 self-adjoint can always convert to SL form (via σ), so all λ_k are real!
- 4. SL operators: $\left|\widetilde{\mathbf{L}}u \equiv \frac{d}{dx}\left(p(x)\frac{du}{dx}\right) + q(x)u\right|$ on finite $a \leq x \leq b$ with Dir/Neu/Rob BC's at x=a and x=b: L^2 self-adjoint, all λ_k are real, weighted eig-val prob: $\widetilde{\mathbf{L}}\phi = -\lambda\sigma\phi$, self-orth in σ -weighted inner prod: $\langle\phi_j,\phi_k\rangle_\sigma = 0$ if $j \neq k$

Important SL properties: $\widetilde{
m L}u\equiv (p(x)u')'+q(x)u$ and $\widetilde{
m L}\phi=-\lambda\sigma\phi$

- 1. Regular SL problems: If p(x)>0 on $a\leq x\leq b$ then
 - ullet $-\infty < \lambda_1 < \lambda_2 < \lambda_3 < \cdots < \lambda_k
 ightarrow \infty$
 - ullet $\phi_{oldsymbol{k}}(x)$'s are a complete basis for L^2 expansions
 - ullet k index gives a count of zeroes (nodes) in ϕ_k
- 2. Regular⁺ SL problems: If p(x)>0 and $q(x)\leq 0$ and BC's are: Dirichlet (u(a)=0) or Neumann (u'(a)=0) or "Robin⁺": $u'(a)-\alpha^2u(a)=0$ and $u'(b)+\beta^2u(b)=0$ then regular properties and all $\lambda_k\geq 0$
- 3. **Singular SL problems**: If any of the assumptions/conditions for regular SL problems are <u>violated</u> then the problem is called "<u>singular</u>" and some of the results (on λ 's or $\phi(x)$'s) may work differently. 3 types of "violations":
 - (a) Singular endpoints: If p(x) = 0 at a bdry (x = a or x = b) then one of the two linearly inde. hom. solns in the general soln may be "singular" $(\phi_1 \to \infty \text{ or } \phi_1' \to \infty \text{ or } \dots)$ there and is un-usable for building the eigenfcn. Then no BC at the singular endpoint: just make $\phi_k(x)$ bounded and use the other BC!
 - (b) Mixed BC's: with x=a, x=b terms in same eqn (u'(a)+u(b)=0)
 - (c) Singular domain: $a \le x \le b$ with $a = -\infty$ or $b = \infty$

Examples of SL problems (I): $\{a,b,\widetilde{\operatorname{L}}[p,q,\sigma],\widetilde{BC}[\alpha_1,\alpha_2,\beta_1,\beta_2]\}$

1. $0 \le x \le 1$ with $p(x) \equiv 1$ and $q(x) \equiv 0$ and $\sigma(x) \equiv 1$

$$\widetilde{\mathrm{L}}u=rac{d^2u}{dx^2} \hspace{1cm} : \hspace{1cm} \widetilde{\mathrm{L}}\phi=-\lambda\sigma\phi \hspace{1cm} \Longrightarrow \hspace{1cm} rac{d^2\phi}{dx^2}=-\lambda\phi$$

Pick Regular⁺ BC's: as Dir, Neu, or Rob⁺ then $\lambda \geq 0$, and general soln:

$$\phi_{\text{gen}}(x) = c_1 \cos(\sqrt{\lambda} x) + c_2 \sin(\sqrt{\lambda} x)$$

Subcases:

- 1. <u>Dirichlet BC's</u> $(\alpha_2=\beta_2=0)$: $\phi(0)=0, \phi(1)=0$ This is the **Fourier Sine Series** – Regular SL problem. SL theory: $\{\phi_k(x), k=1,2,\cdots\}$ is <u>complete</u> for L^2 expansions
- 2. Neumann BC's $(\alpha_1=\beta_1=0)$: $\phi'(0)=0, \phi'(1)=0$ This is the **Fourier Cosine Series** – Regular SL problem. SL theory: $\{\phi_k(x), k=0,1,2,\cdots\}$ is **complete** for L^2 expansions
- 3. Others with Dir BC on one end, Neu BC on other...

Singular SL examples (II): $\{a,b,\widetilde{\mathrm{L}}[p,q,\sigma],\widetilde{BC}[\alpha_1,\alpha_2,\beta_1,\beta_2]\}$

3b. $0 \leq x \leq 1$ with $p(x) \equiv 1$ and $q(x) \equiv 0$ and $\sigma(x) \equiv 1$

$$\widetilde{\mathrm{L}}u=rac{d^2u}{dx^2} \hspace{1cm} : \hspace{1cm} \widetilde{\mathrm{L}}\phi=-\lambda\sigma\phi \hspace{1cm} \Longrightarrow \hspace{1cm} rac{d^2\phi}{dx^2}=-\lambda\phi$$

with periodic boundary conditions

$$\phi(0) = \phi(1)$$
 $\phi'(0) = \phi'(1)$

- ullet Mixed BC's (info from x=0, x=1 together in same eqns
- Violates Regular SL un-mixed BC's condition, so it is a Singular problem!
- This is the **Full Fourier Series** Singular SL problem.
- But most SL results still hold:
 - $-\widetilde{\mathbf{L}}$ self-adjoint
 - λ real and $\lambda > 0$ too!
 - $\{\phi_{m{k}}(x)\}$ complete for L^2 expansions
- ullet The only thing the is violated is now there are **TWO** eigenfunctions for each $k=1,2,\cdots$ (and $\phi_0(x)\equiv 1$ for $\lambda_0=0$)

$$\lambda_k = (2\pi k)^2$$
 $\phi_k(x) = \cos(2\pi kx)$ $\phi_k(x) = \sin(2\pi kx)$

Singular SL examples (III):
$$\{a,b,\widetilde{\mathrm{L}}[p,q,\sigma],\widetilde{BC}[\alpha_1,\alpha_2,\beta_1,\beta_2]\}$$

3a. A singular endpoint problem for formal SL operator:

$$rac{d}{dx}\left(xrac{d\phi}{dx}
ight)-rac{1}{4x}\phi=-\lambda x\phi \qquad 0\leq x\leq 1$$

Can read off SL coeff fcns: p(x) = x $q(x) = -\frac{1}{4x}$ $\sigma(x) = x$

$$q(x) = -rac{1}{4x}$$
 $\sigma(x) = x$

- ullet It is a singular problem because p(0)=0 violates p>0 condition at x=0
- This problem has general solution

$$\phi_{\mathrm{gen}}(x) = c_1 \frac{\sin(\sqrt{\lambda} x)}{\sqrt{x}} + c_2 \frac{\cos(\sqrt{\lambda} x)}{\sqrt{x}}$$

- $\bullet \ \lim_{x \to 0} \frac{\sin(\sqrt{\lambda}\,x)}{\sqrt{x}} = 0 \ (\text{OK}) \qquad \qquad \lim_{x \to 0} \frac{\cos(\sqrt{\lambda}\,x)}{\sqrt{x}} = \infty \ (\text{Blows-up, BAD!})$
- So $\phi(x) = \sin(\sqrt{\lambda} x)/\sqrt{x}$ is the only acceptable bounded soln. No need for a BC at x=0, just kill the "bad" soln $(c_2=0)$.
- In this problem only need one BC to pick λ 's, like $\phi(1) = 0$.

Part 2: The "Big Questions" for all linear problems $\mathrm{L}u=f$

- 1. Uniqueness: *Is there only one solution?*
- 2. Existence: Is there really a solution, or is there no answer?

Uniqueness: Check for contradictions – assume there are two solns, u_1 and u_2 ,

$$Lu_1 = f \qquad BC_a u_1 = c \qquad BC_b u_1 = d$$

$$Lu_2 = f \qquad BC_a u_2 = c \qquad BC_b u_2 = d$$

Call the difference $w=u_1-u_2$.

Subtract the eqns to show that $oldsymbol{w}$ solves the homogeneous problem:

$$\mathbf{L}w = 0 \qquad BC_a w = 0 \qquad BC_b w = 0$$

One solution of this is the trivial soln, $w\equiv 0$, but that would mean that $u_2=u_1$ are the same. Are there other solutions? Yes, if $\lambda=0$ is an eigenvalue of $\mathrm{L}\phi=-\lambda\sigma\phi$.

Compare the w-problem to the eigenvalue problem:

$$L\phi = -\lambda\sigma\phi \qquad BC_a\phi = 0 \qquad BC_b\phi = 0$$

It matches for $\lambda_0=0$, so the ϕ_0 eigenfunction gives $w(x)=c\phi_0(x)!$

Uniqueness (concluded)

- ullet So, if $u_1(x)$ is one soln, then $u_2(x)=u_1(x)-c\phi_0(x)$ is another soln for any c!
- Multiple solutions exist if L has a zero eigenvalue!
- ullet If zero is NOT an eigenvalue then soln $oldsymbol{u}$ of the BVP is unique. $^{
 m a}$

Existence of solutions of $\mathbf{L}u=f$: via a "constructive proof"

If you can show how to construct the complete solution, then it exists.

Use the usual soln process, ortho-project the full problem on the adjoint eigfcns $\psi_{m{k}}$:

$$\langle Lu, \psi_k \rangle_2 = \langle f, \psi_k \rangle_2$$

then using IBP yields $B_k - \lambda_k c_k \langle \phi_k, \psi_k \rangle_2 = \langle f, \psi_k \rangle_2$ for each c_k in

$$u(x) = \sum_{k} c_k \phi_k(x)$$
 $c_k = \frac{\langle f, \psi_k \rangle_2 - B_k}{-\lambda_k \langle \phi_k, \psi_k \rangle_2}$

Also described in the **Fredholm Alternative Theorem (FAT)**: $\lambda_0 = 0$?

^aUsually quicker/easier to check if $\lambda = 0$? rather than finding all of the other λ_k 's

Part 3 : Integral equations (IE): another class of linear operator problems

- 1. ODE problems = main equation and side conditions (IC/BC)
- 2. All ODE \implies IE: all linear ODE problems can be re-written as integral eqns. IE have all information in a single equation. (No separate BC's)
- 3. But not all IE's come from ODE's (other problems too)
 IE theory is more general, shares main ideas with ODE/SL/Linear-Operator theory

Examples of ODE \Longrightarrow **IE**: initial value problems (IVP)

1. First order ODE problem for
$$u$$
: $\dfrac{du}{dx} = f(x,u(x))$ $u(a) = c$

Integrate :
$$\int_{t=a}^{t=x} \left(rac{du}{dt} \ = \ f(t,u(t))
ight) dt$$
 (t 'dummy' integration variable) $u(x)-u(a) \ = \ \int_a^x f(t,u(t)) \, dt$

$$\implies$$
 IE for u : $u(x) = c + \int_a^x f(t,u(t)) \, dt$

Integral equations: Examples of ODE \implies IE (continued)

2. Second order ODE IVP problem for u on $x \geq a$:

$$rac{d^2u}{dx^2} = -x^2u \qquad u(a) = c \qquad u'(a) = d$$

Integrate twice and interchange order of integration...

$$\Longrightarrow$$
 IE for u : $u(x) = c + d(x - a) - \int_a^x t^2(x - t)u(t) \, dt$

Volterra IE | (VIE): IE's equivalent to ODE IVP's for $x \geq a$

How to recognize VIE: variable x is a limit of integ. $u(x)=c+\int_a^{\boxed{x}}f(t,u(t))\,dt$ VIE's wont be covered in Math 551.

Fredholm IE (FIE): IE's produced by ODE BVP's on $a \le x \le b$

How to recognize FIE: the integral is over the entire domain $\int_a^b \cdots dt$ Integral equation problems: solve Lu=f(x) for u(x)

FIE's will lead to understanding Green's functions methods for ODE BVP's!

Fredholm Integral Equation (FIE) problems for unknown u(x): Lu = f(x)

Types of linear operators in Fredholm integral equations:

• 1st kind FIE (FIE₁): $Lu \equiv$ integral only

$$\int_a^b K(x,t) u(t) \ dt = f(x)$$
 "kernel" function: $K(x,t)$ given

ullet 2nd kind FIE (FIE2): $Lu \equiv$ integral plus multiple of soln

$$g(x)u(x)+\int_a^b K(x,t)u(t)\,dt=f(x)$$
 $K(x,t),g(x)$ given

Simplest problems: separable ("degenerate") kernel functions

$$K(x,t)=$$
 finite sum of separation of variables products $=\left|\sum_{j=1}^{n}lpha_{j}(x)eta_{j}(t)
ight|$

Harder problems: non-degenerate/non-separable kernels $(n=\infty)$: $K(x,t)=rac{1}{x-t}$ Hilbert, $\overline{K=e^{-xt}}$ Laplace, $K=J_0(xt)$ Hankel, and $K=e^{-ixt}$ Fourier integral transforms (later)