Tükörszó betűk beszúrásával

Innen: Algowiki

Tartalomjegyzék

- 1 Feladat
 - 1.1 Az eredeti feladat
- 2 Megoldás
 - 2.1 Fontos gondolatok
 - 2.2 Részletes megoldás
 - 2.3 Helyesség indoklása
- 3 Komplexitás
- 4 Implementáció

Feladat

Egy legfeljebb 2000 karakterből álló szóba legalább hány betűt kell beszúrni, hogy tükörszó legyen (egy tetszőleges példa megadandó).

Az eredeti feladat

Mester (https://mester.inf.elte.hu) / Haladó / Dinamikus programozás / 93. Tükörszó betűk beszúrásával

Megoldás

Fontos gondolatok

A részsztringekre visszavezethető a feladat.

Részletes megoldás

Létrehozunk egy táblázatot, melynek (i, j) pozíciójában a feladatnak az eredeti szó i. karakterével kezdődő és j.-kel végződő részére vonatkozó megoldását tároljuk. Ez a főátlókban nyilvánvalóan 0 értékeket jelent (1 hosszú szó mindig tükörszó), alatta pedig értelmetlen.

A főátló feletti értékek a következőképp számolhatók:

■ Ha a részsztring első és utolsó karaktere megegyezik (az eredeti szóban i. ill. j.), akkor ezek nem befolyásolják a megoldást, elhagyásukkal nem változik az eredmény, így ez az érték megegyezik az i + 1-től j - 1-ig tartó szóéval. (ld. 1. ábra)

	е	Ì	е	m	е
ω	0	1	0	1	2
I		0	1	2	1
е			0	1	0
m				0	1
е					0

1. Ábra: Azonos az első és utolsó karakter (e), így a középső részsztring értéke kerül ide is, nincs szükség új beszúrásra.

■ Ha különböznek, akkor a szó valamelyik végén lévő karaktert be kell majd szúrni a túloldalra, ami azt jelenti, hogy a feladat szempontjából ezután érdektelen lesz. Az egyik szélső karakter elhagyásával keletkezett szavakra kiszámolt értékek az (*i* + 1, *j*)-ben illetve az (*i*, *j* − 1)-ben találhatók, ezek közül a kisebb a számunkra kedvezőbb, melynek értékéhez még hozzá kell adni egyet a beszúrt extra karakter miatt. (*ld. 2. ábra*)

A feladatra a megoldást a jobb felső sarokban lévő érték adja meg. (A táblázat kitöltése elvégezhető átlónként vagy soronként lentről felfelé ill. balról jobbra.)

A beszúrások megtalálása hasonlóan, de visszafelé történik *(ld. 3. ábra)*:

- Azonos első és utolsó karakterek esetén nincsen,
- Balra haladva a részsztring elejére kell beszúrni az utolsó karakterét,
- Lefelé haladva pedig a végére az elsőt.

Mindez az átló eléréséig tart.

	e	I	e	E	e
6	0	1	0	1	2
•		0	-1	-2 	1
е			0	1	0
m				0	1
е					0

^{3.} Ábra: A beszúrások meghatározásának folyamata.

Helyesség indoklása

Mivel a tükörszavak szélső karaktereik elhagyása után is tükörszavak maradnak, a belső részre kiszámolt optimális megoldás a teljesre is optimális lesz. (Ez igaz akkor is, ha az egyik szélső karakter utólag beszúrt.)

Komplexitás

A táblázat tárigénye $O(n^2)$, ennek feltöltése is ennyi lépést igényel, így a lépésszámra is ez a nagyságrend igaz. (A beszúrások meghatározása csak O(n).)

Implementáció

	е	1	е	m	е
e	0	1	0	(1)	2
1		0	1	2	1
е			0	1	0
m				0	1
е					0

2. Ábra: Különböző az első és utolsó karakter (e≠m), így ezek közül az egyik elhagyásával kapott részsztringek értékeinek minimumánál (0<2) eggyel nagyobb szám (0+1=1) kerül ide.

https://pastebin.com/P5FVau4Q

A lap eredeti címe: "https://algowiki.miraheze.org/w/index.php?title=Tükörszó_betűk_beszúrásával&oldid=1375"