IBM Machine Learning Analysis on Sleep Efficiency

Yu-Hsuan HSIEH Mar 2023

Summary

This is a presentation for the course project for the IBM Machine Learning Course

This presentation is a study of sleep efficiency, and sleep patterns using the Sleep Efficiency Dataset from Kaggle.

In this study, we'll first have an overview of the dataset, then evaluate the data integrity, data cleaning will be performed.

Dataset Overview

The dataset contains information about a group of test subjects and their sleep patterns, with 15 columns and 452 rows of data.

# (columns (total 15 column Column 	ns): Non-Null Count	Dtuno
	Column	Non-Null Count	Dtuno
0 1			Dtype
0 1			
	ID .	452 non-null	int64
1 /	Age	452 non-null	int64
2 6	Gender	452 non-null	object
3 E	Be dtim e	452 non-null	object
4 k	Wakeup time	452 non-null	object
5 5	Sleep duration	452 non-null	float64
6 9	Sleep efficiency	452 non-null	float64
7 F	REM sleep percentage	452 non-null	int64
8 [Deep sleep percentage	452 non-null	int64
9 1	light sleep percentage	452 non-null	int64
10 /	Awakenings	432 non-null	float64
11 (Caffeine consumption	427 non-null	float64
12 /	Alcohol consumption	438 non-null	float64
13 9	Smoking status	452 non-null	object
14 E	Exercise frequency	446 non-null	float64

Data Cleaning - Null Values & Duplicated Value

- 1. Check for columns with null values.
- Columns are: Awakenings, Caffeine consumption,
 Alcohol consumption, and Exercise frequency
- 3. Replace null values with column median.
- 4. Check for duplicated rows.
 - a. Not found.

Data Cleaning - Data Type Convertion

- 1. Column Bedtime, Wakeup time should be datetime.
 - Format as datatime
- 2. Column Awakenings, Exercise Frequency should be int.
 - a. Meaning # awakenings during night & # exercise per week.

```
RangeIndex: 452 entries, 0 to 451
Data columns (total 15 columns):
                            Non-Null Count Dtype
    Column
    ID
                            452 non-null
                                             int64
    Age
                            452 non-null
                                             int64
                            452 non-null
                                            object
    Gender
                                            datetime64[ns]
    Bedtime
                            452 non-null
    Wakeup time
                            452 non-null
                                            datetime64[ns]
    Sleep duration
                            452 non-null
                                            float64
    Sleep efficiency
                            452 non-null
                                             float64
    REM sleep percentage
                            452 non-null
                                             int64
    Deep sleep percentage
                            452 non-null
                                             int64
    Light sleep percentage 452 non-null
                                             int64
 10 Awakenings
                             452 non-null
                                             int32
 11 Caffeine consumption
                            452 non-null
                                            float64
 12 Alcohol consumption
                            452 non-null
                                             float64
 13 Smoking status
                             452 non-null
                                            object
 14 Exercise frequency
                            452 non-null
                                             int32
dtypes: datetime64[ns](2), float64(4), int32(2), int64(5), object(2)
```

Data cleaning - Outlier Treatment

Columns with outliers:

- Sleep Duration
- Deep Sleep Percentage
- Light sleep Percentage
- CaffeineConsumption

Data cleaning - Outlier Treatment

Age vs Sleep Efficiency

Female:

sleep efficiency increases in theirs
 40s.

Drop in 30s and 50s

Male:

- Sleep efficiency increases in their 60s.
- Drop in 20s

Gender

Female Male

Smoking Status vs Sleep Efficiency

On average and most of the time, non-smokers have better sleep efficiency than smoker.

Opposite trend appears in age 45 - 50.

Sleep Duration vs Sleep Efficiency

Sleep duration of 7.4 - 8.2 hr can get best sleep efficiency.

For male, 7.5 hour of sleep gets highest sleep efficiency of 0.8200.

For female, 8 hour of sleep gets highest sleep efficiency of 0.8228.

Awakenings and Bedtime Hour vs Sleep Efficiency

The lesser awakenings, the better sleep efficiency.

Sleeping at 22, awaking 3 times has higher sleep efficiency than 2 times.

Further Research

- Research on Caffeine consumption vs Sleep efficiency
- Research on Light sleep & REM vs Sleep efficiency
- Research on possible reason for awaking 3 times having higher sleep efficiency than 2 times when sleeping at 22.