Wenoa Teves 26124157

Muchen He 44638154

Ou (Leo) Liu 18800152

Lufei Liu 14090154

ELEC 391 TEAM B1

Requirements

Draw with laser light

Implement with DC motors

Constraints

Control Frequency of 3000 Hz due to speed of code execution time

Max Motor Current (< 2A per motor)

Max Encoder Resolution (400 pulses)

Goals

Rise Time (< 0.017 s)

Overshoot (< 10 %)

Simulink Model of Motor Within 5 % Error

Support shapes with >5 vertices

Multi-shape animations

Live orientation tracking

LASER LIGHT SHOW

Design and build a 2 degree of freedom spherical wrist that includes 2 mechanically commutated, permanent magnet DC motors that can draw a shape on a flat surface

MOTOR DESIGN DECISIONS

Stranded wire

- Wears out quickly
- Flimsy

Carbon Brush

- Durable
- Large surface area to conduct current

Circular Magnets

- Weak magnetic field
- Large quantities; light weight

60mm x 10mm x 5mm **Rectangular Magnets**

- Length to cover rotor core
- Strong magnetic field
- Small quantities; heavy weight

Commutator

Copper Tube

- Durable Fixed radius
- Difficult to implement brushes

Magnet Orientation

• Small magnetic flux through the rotor

Copper Tape

- Wears out quickly
- Difficult to implement brushes

Large magnetic flux through the rotor

Durable

- Adjustable radius for the disk

YAW MOTOR

PITCH MOTOR

Scaled down version of yaw motor

MOTOR PARAMETERS

Kinetic Friction

Kinetic friction from $\frac{torque}{speed}$ at no load conditions

$$B = K\tau \times \frac{I_{no\ load}}{\omega_{no\ load}}$$

Rotor Inertia

Calculated from mechanical time constant (time to reach 63% of final speed)

$$\tau_m = \frac{J \times R}{K\tau^2}$$

Torque Constant

Torque determined from conservation of power

$$V \times I = \omega \times K_{\tau}$$

Back EMF

Back EMF calculated using KVL

$$V_{\text{measured}} - I \times R = K_{\nu} \times \omega$$

Resistance and Inductance

Measured using multimeter and oscilloscope

YAW

Resistance 4.18Ω

Inductance 1.51 mH

Max Power Out 6.49 W

Torque Constant 0.00125 Nm/A

Back EMF Constant 800 rad/Vs

Inertia 0.00593 kg m²

Kinetic Friction $6.5 \times 10^{-6} \text{ Nm s/rad}$

PITCH

Resistance 26.7 Ω

Inductance 4.37 mH

Max Power Out 1.21 W

Torque Constant 0.02269 Nm/A

Back EMF Constant 44.077 rad/Vs

Inertia $4.11 \times 10^{-5} \text{ kg m}^2$

Kinetic Friction $3.3 \times 10^{-5} \text{ Nm s/rad}$

SIMULINK MODEL

MODEL

CIRCUITS

Pins from Encoder

 4 pins from each encoder PCB for signals, 5V, and ground

NOT gates

- Direc1 outputted from microcontroller
- Direc2 is always inverse of Direc1

12V Input

12V supply for motors

Microcontroller Dock

- Maps microcontroller pins to PCB signals
- Extra header pins for access to each microcontroller pin

Diode Bridge

 Diode H-Bridge to support PWM signals to motor

Motor Driver

Current drivers supplying motors

Extra 5V Pins

Supplied by the microcontroller to be used for off-board components

CIRCUITS

MICROCONTROLLER

- Arduino Uno and Arduino Nano are chosen for their ease of use and safety features
- Considered using FPGA for hardware accelerated tasks but compilation is too slow and debugging is difficult ×
- Considered using 8051 microcontroller but setup is too cumbersome and does not support C++ software ×

Pin Configuration

QUADRATURE DECODING

State Machine

Software Implementation

- Extremely fast ISR (4µs execution time)
- No quadrature decoder hardware needed
- Faster than using quadrature decoder

CONTROLLER

CONTROLLER LOGIC

CONTROLLER

INTEGRATION PROGRESSION

LEGO PROOF OF CONCEPT

MILESTONE II RESULT

FINAL RESULT

EXTERNAL CONTROL

RESET SWITCH ▶

Resets controller

Easily accessible

Safety switch

◄ HOMING 1

- Limiter switch at platform edge
- Triggers calibration event
- Prevents further movement of motor

◄ HOMING 2

- Photoresistor sensor
- Resistance chosen to fit laser light
- Triggers calibration event

LASER SAFETY SWITCH

- Overrides laser control from controller
- Turns off laser to prevent eye damage

SYSTEM FLOWCHART

Microcontroller

REMOTE CONTROLLER

- Internet enabled device connects to the controller server via web browser
- Draw shape by tilting the device
- Host computer generates realistic laser preview
- Time vector for each vertex automatically generated
- Shape data is serialized and transmitted

- Shape data received and stored in memory
- Draws shape stored in memory at full speed

SHAPE VERTEX MAPPING

- Map desired laser path to list of coordinates in memory (passed by host computer)
- 2. Inverse kinematics are applied to obtain angles
- Angles are converted to encoder positions
- 4. Time vector is generated based on length of each line segment

EXPORT

- Position: x and y are exported in two arrays of floats
- Time Vector: relative time between commands are exported in an array of integers
- The exported data is sent through serial and parsed in microcontroller

SUMMARY

- O Fine tuned system models for the custom made motors
- O Very fast and optimized controller firmware
- O Capable of drawing any shapes from any internet connected device
- O Integrated cooling fans
- O 2:1 speed reduction with timing belt with adjustable tension

Wenoa Teves 26124157 Ou (Leo) Liu 18800152 Lufei Liu 14090154 Muchen He 44638154