Partie 0 : Dénombrement.

N.Auxire

24 janvier 2017

1 Introduction

2 Principes de dénombrement

3 Dénombrement d'applications entre ensembles finis.

Introduction

Définition

* L'univers *U* d'une expérience aléatoire est : l'ensemble <u>non vide</u> des résultats possibles.

- * L'univers *U* d'une expérience aléatoire est : l'ensemble non vide des résultats possibles.
- * U est fini ssi :

il existe $n \in \mathbb{N} \setminus \{0\}$ et une bijection de [1, n] sur U. L'entier n est appelé **cardinal** de U.

- * L'univers *U* d'une expérience aléatoire est : l'ensemble <u>non vide</u> des résultats possibles.
- * U est **fini** ssi : il existe $n \in \mathbb{N} \setminus \{0\}$ et une bijection de $[\![1,n]\!]$ sur U. L'entier n est appelé **cardinal** de U.
- * U est **infini dénombrable** ssi : il existe une partie I non vide et non majorée de $\mathbb{N}\setminus\{0\}$ et une bijection de I sur U.

- ★ L'univers U d'une expérience aléatoire est : l'ensemble non vide des résultats possibles.
- * U est **fini** ssi : il existe $n \in \mathbb{N} \setminus \{0\}$ et une bijection de $[\![1,n]\!]$ sur U. L'entier n est appelé **cardinal** de U.
- * U est **infini dénombrable** ssi : il existe une partie I non vide et non majorée de $\mathbb{N}\setminus\{0\}$ et une bijection de I sur U.
- \star U est **infini non dénombrable** ssi : U n'est pas dénombrable.

Remarque

- ★ Autrement dit : U est dénombrable si l'on peut indicer ses éléments.
- ★ Différentes notations : card(E) |E| #(E)
- \star Convention : $E = \emptyset \Leftrightarrow \operatorname{card}(E) = 0$

Ex.1 Rendre l'initiale d'un mot tiré au hasard dans le dictionnaire.

Le Nomade, Antibes www.alamy.com

$$\ell \mid \begin{bmatrix} [1,26] \end{bmatrix} \rightarrow \{a,b,\ldots,y,z\}$$

$$k \mapsto \ell(k) = k^e \text{ lettre}$$
Suite ℓ bornée donc U fini.

5/3

Ex.1 Rendre l'initiale d'un mot tiré au hasard dans le dictionnaire.

Le Nomade, Antibes www.alamy.com

$$\ell \left| \begin{array}{ccc} \llbracket 1,26 \rrbracket & \to & \{a,b,\ldots,y,z\} \\ \\ k & \mapsto & \ell(k) = k^e \text{ lettre} \end{array} \right|$$

Suite ℓ bornée donc U fini.

Ex.2 Lancer une pièce autant de fois qu'il faut jusqu'à obtenir face.

$$u \mid \mathbb{N} \setminus \{0\} \rightarrow \{pile\}^{\infty} \times \{face\}$$

$$k \mapsto u(k) = (\underbrace{pile, \dots}_{(k-1) \ piles}, face)$$

Suite u non bornée donc U dénombrable infini.

Théorème

Soient E, F deux ensembles finis.

* Principe additif:

$$E \cap F = \emptyset \Rightarrow card(E \cup F) = card(E) + card(F)$$

* Principe multiplicatif :

$$\mathit{card}(E \times F) = \mathit{card}(E) \times \mathit{card}(F)$$

Théorème

Soient E, F deux ensembles finis.

* Principe additif:

$$E \cap F = \emptyset \Rightarrow card(E \cup F) = card(E) + card(F)$$

* Principe multiplicatif :

$$card(E \times F) = card(E) \times card(F)$$

Remarque.

Si E et F sont disjoints alors on peut utiliser le symbole d'union disjointe : $E \sqcup F$.

Partie 0 : Dénombrement.

— Principes de dénombrement

Corollaire. Soit *E* un ensemble fini.

Soient $A, B \in \mathcal{P}(E)$.

$$\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B)$$

Corollaire. Soit E un ensemble fini.

Soient $A, B \in \mathcal{P}(E)$.

$$\operatorname{card}(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) - \operatorname{card}(A \cap B)$$

Remarque.

Opérations ensemblistes
disjonction
conjonction
différence

Propriétés d'événements disjonction indépendance

complémentarité

Opérations numériques addition multiplication différence

- * Dénombrement : faire sortir le nombre.
- * Les procédures de dénombrement :
 - * la figuration : tableau, arbre, diagramme de Venn
 - ⋆ le comptage : énumération
 - les opérations ensemblistes :
 partition, passage au complémentaire, crible
 - * les formules fondées sur un modèle d'applications.

Exercice

Tirage d'une main dans un jeu de poker J.

- Q.1 Définir l'univers U et le dénombrer.
- Q.2 Dénombrer les mains comportant exactement une paire.

 Paire = deux cartes de même valeur.
- Q.3 Dénombrer les quintes flush.

 Quinte flush

 5 cartes de valeurs consécutives et de même couleur.

Q.1: Définir l'univers U et le dénombrer.

 \star U: ensemble des sous-ensembles de 5 cartes prises parmi 32.

$$U \subset \mathcal{P}(J)$$

$$U = \{\{c_1, c_2, c_3, c_4, c_5\}, \forall k \in [1, 5] c_k \in J\}$$

Q.1: Définir l'univers U et le dénombrer.

 \star U : ensemble des sous-ensembles de 5 cartes prises parmi 32.

$$U\subset\mathcal{P}(J)$$

$$U = \{\{c_1, c_2, c_3, c_4, c_5\}, \forall k \in [1, 5] c_k \in J\}$$

⋆ D'après le modèle des combinaisons :

$$\boxed{\operatorname{card}(U) = \begin{pmatrix} 32 \\ 5 \end{pmatrix}}$$

$$\begin{pmatrix} 32 \\ 5 \end{pmatrix} \underbrace{=}_{A.N} 32 \times 31 \times 29 \times 7 \underbrace{=}_{Calcul} 2^5 \times (30^2 - 1) \times 7$$
$$\underbrace{=}_{Calcul} 2^5 \times (6300 - 7) \underbrace{\sim}_{Calcul} 2 \times 10^5$$

Paire ≡ deux cartes de même valeur.

couleur / valeur	As	Roi	Dame	Valet	10	9	8	7
\Diamond								
♦								
•								
*								

Paire ≡ deux cartes de même valeur.

couleur / valeur	As	Roi	Dame	Valet	10	9	8	7
\Diamond								
♦								
•								
*								

Paire ≡ deux cartes de même valeur.

couleur / valeur	As	Roi	Dame	Valet	10	9	8	7
\Diamond			×					
♦			×					
•								
*								

$Q.2: D\'{e}nombrer \ les \ mains \ comportant \ exactement \ une \ paire.$

Paire ≡ deux cartes de même valeur.

couleur / valeur	As	Roi	Dame	Valet	10	9	8	7
\Diamond	×	×	×	×				
♦			×					
•								
*								

Paire ≡ deux cartes de même valeur.

couleur / valeur	As	Roi	Dame	Valet	10	9	8	7
\Diamond	×	×	×	×				
♦			××					
•								
*			×					

Paire ≡ deux cartes de même valeur.

couleur / valeur	As	Roi	Dame	Valet	10	9	8	7
\Diamond	×	×	×	×				
♦			××	×				
•					×			
*			×			×		

Q.2 (suite)

- * Stratégie de dénombrement : analyse | principe multiplicatif
- les singletons donnant la valeur de la paire : $\begin{pmatrix} 8 \\ 1 \end{pmatrix}$.
- les paires associées à cette valeur : $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$
- les triplets de valeurs parmi les 7 valeurs restantes : $\begin{pmatrix} 7 \\ 3 \end{pmatrix}$.
- les singletons de couleur pour chaque valeur : $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

Q.2 (suite)

- * Stratégie de dénombrement : analyse | principe multiplicatif
- les singletons donnant la valeur de la paire : $\begin{pmatrix} 8 \\ 1 \end{pmatrix}$.
- les paires associées à cette valeur : $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$
- les triplets de valeurs parmi les 7 valeurs restantes : $\begin{pmatrix} 7 \\ 3 \end{pmatrix}$.
- les singletons de couleur pour chaque valeur : $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$.

* **Résultat**:
$$\begin{bmatrix} 8 \\ 1 \end{bmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \times \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix}^{3}$$

$$= 8 \times 6 \times 35 \times 4^{3} = 105 \times 2^{10} \sim 10^{5} = 107520$$
Calcul Ordre Exact

12/30

Q.3 : Dénombrer les quintes flush.

Quinte flush \equiv 5 cartes de valeurs consécutives et de même couleur.

* Tableau : outil d'analyse.

couleur / valeur	As	Roi	Dame	Valet	10	9	8	7
\Diamond								
♦								
•								
*								

Q.3 : Dénombrer les quintes flush.

Quinte flush \equiv 5 cartes de valeurs consécutives et de même couleur.

* Tableau : outil d'analyse.

couleur / valeur	As	Roi	Dame	Valet	10	9	8	7
\Diamond								
♦								
•								
*								

Q.3 : Dénombrer les quintes flush.

Quinte flush $\equiv 5$ cartes de valeurs consécutives et de même couleur.

* Tableau : outil d'analyse.

couleur / valeur	As	Roi	Dame	Valet	10	9	8	7
Φ.	×	×	×	×	×			
\Diamond		×	×	×	×	×		
\Diamond			×	×	×	×	×	
\Diamond				×	×	×	×	×

Q.3 : suite.

Soit Q_F l'ensemble de quintes flush.

- \star **Stratégie** : partition de Q_F | principe additif.
- (1) Partition : $Q_F = Q_F^{\heartsuit} \sqcup Q_F^{\diamondsuit} \sqcup Q_F^{\spadesuit} \sqcup Q_F^{\spadesuit}$
 - (2) Sous-ensembles de même cardinal : $\operatorname{card}(Q_F) = 4 \times \operatorname{card}(Q_F^{\heartsuit})$
- (3) Énumération : $Q_F^{\heartsuit} = \{ \{ As, Roi, Dame, Valet, 10 \}, \{ Roi, Dame, Valet, 10, 9 \}, \{ Dame, Valet, 10, 9, 8 \}, \{ Valet, 10, 9, 8, 7 \} \}$

Q.3 : suite.

Soit Q_F l'ensemble de quintes flush.

 \star **Stratégie** : partition de $Q_F \mid$ principe additif.

- (1) Partition : $Q_F = Q_F^{\heartsuit} \sqcup Q_F^{\diamondsuit} \sqcup Q_F^{\spadesuit} \sqcup Q_F^{\clubsuit}$
 - (2) Sous-ensembles de même cardinal : $\operatorname{card}(Q_F) = 4 \times \operatorname{card}(Q_F^{\heartsuit})$
- (3) Énumération : $Q_F^{\heartsuit} = \{ \{ As, Roi, Dame, Valet, 10 \}, \{ Roi, Dame, Valet, 10, 9 \}, \{ Dame, Valet, 10, 9, 8 \}, \{ Valet, 10, 9, 8, 7 \} \}$
 - * **Résultat**: $ard(Q_F) = 16$

Dénombrement d'applications entre ensembles finis.

Théorème

Soient E, F deux ensembles finis non vides.

Soit A(E,F) l'ensemble des applications de E dans F.

Théorème

Soient E, F deux ensembles finis non vides.

Soit A(E,F) l'ensemble des applications de E dans F.

(1) Soit
$$f \in \mathcal{A}(E, F)$$
.

Soient $e_1, e_2, \ldots, e_{card(E)}$ les éléments de E.

f est notée sous forme de liste :

$$(y_1, y_2, \dots, y_{card(E)})$$
 / $\forall k \in [1, card(E)]$ $y_k = f(e_k)$

Théorème

Soient E, F deux ensembles finis non vides.

Soit A(E,F) l'ensemble des applications de E dans F.

(1) Soit
$$f \in \mathcal{A}(E, F)$$
.

Soient $e_1, e_2, \ldots, e_{card(E)}$ les éléments de E.

f est notée sous forme de liste :

$$(y_1, y_2, \dots, y_{card(E)})$$
 / $\forall k \in [1, card(E)]$ $y_k = f(e_k)$

(2) A(E,F) et $F^{card(E)}$ sont en bijection.

$$\mathit{card}(\mathcal{A}(E,F)) = \mathit{card}(F)^{\mathit{card}(E)}$$

Corollaire. Soit E un ensemble fini.

$$\operatorname{card}(\mathcal{P}(E)) = 2^{\operatorname{card}(E)}$$

Remarque. Binôme de Newton.

$$\sum_{k=0}^{\operatorname{card}(E)} \left(\begin{array}{c} \operatorname{card}(E) \\ k \end{array} \right) = 2^{\operatorname{card}(E)}$$

Soit E un ensemble fini de cardinal n.

- 1 Un arrangement de E est une injection d'une partie de E dans E.
- 2 Une **permutation de** *E* est une bijection de *E* dans *E*.

Dénombrement d'applications entre ensembles finis.

Définition

Soit E un ensemble fini de cardinal n.

- 1 Un arrangement de E est une injection d'une partie de E dans E.
- 2 Une **permutation de** *E* est une bijection de *E* dans *E*.

Code :homme \mapsto 1| femme \mapsto 2| fille \mapsto 3 Arrangement de 3 parmi 4 $\forall f \in \mathcal{I}(\{1,2,3\}, \{1,2,3,4\})$ 3-liste: (f(1), f(2), f(3))

(1, 2, 4)

Un couple et une fille.

(4, 2, 1)

Une fille et sa mère ... et un homme.

(2, 4, 3)

Une fille et ses parents.
Une famille unie?

Exemple

Codage : $rouge \mapsto 1 \mid jaune \mapsto 2 \mid vert \mapsto 3 \mid bleu \mapsto 4$ Permutations dans $\{1, 2, 3, 4, 5\}$

Exemple

Codage : $rouge \mapsto 1 \mid jaune \mapsto 2 \mid vert \mapsto 3 \mid bleu \mapsto 4$ Permutations dans $\{1, 2, 3, 4, 5\}$

Théorème

Soient E, F deux ensembles finis non vides.

1 Si card(E) = card(F) alors:

 $\forall f \in \mathcal{A}(E,F) \ (f \ injective) \Leftrightarrow (f \ surjective) \Leftrightarrow (f \ bijective)$

Théorème

Soient E, F deux ensembles finis non vides.

1 Si card(E) = card(F) alors :

$$\boxed{\forall f \in \mathcal{A}(E,F) \ (f \ \mathit{injective}) \Leftrightarrow (f \ \mathit{surjective}) \Leftrightarrow (f \ \mathit{bijective})}$$

2 Soit $\mathcal{I}(E,F)$ l'ensemble des injections de E dans F.

$$\operatorname{card}(\mathcal{I}(E,F)) = \left\{ \begin{array}{ll} 0 & \operatorname{si\ card}(E) > \operatorname{card}(F) \\ \\ \operatorname{card}(F)! & \operatorname{si\ card}(E) = \operatorname{card}(F) \\ \\ \frac{\operatorname{card}(F)!}{[\operatorname{card}(F) - \operatorname{card}(E)]!} & \operatorname{si\ card}(E) < \operatorname{card}(F) \end{array} \right.$$

Théorème

Soient E, F deux ensembles finis non vides.

3 Soit \mathcal{R} la relation sur $\mathcal{I}(E,F)$ définie par :

$$\forall f, g \in \mathcal{I}(E, F) \quad (f\mathcal{R}g) \Leftrightarrow f(E) = g(E)$$

$$\mathcal{R} \ \mathit{partitionne} \ \mathcal{I}(E,F) \ \mathit{en} \ \left(\begin{array}{c} \mathit{card}(F) \\ \mathit{card}(E) \end{array} \right) \mathit{classes} \ \mathit{d'\'equivalence}.$$

Théorème

Soient E, F deux ensembles finis non vides.

3 Soit \mathcal{R} la relation sur $\mathcal{I}(E,F)$ définie par :

$$\forall f, g \in \mathcal{I}(E, F) \quad (f\mathcal{R}g) \Leftrightarrow f(E) = g(E)$$

$$\mathcal{R} \ \mathit{partitionne} \ \mathcal{I}(E,F) \ \mathit{en} \ \left(\begin{array}{c} \mathit{card}(F) \\ \mathit{card}(E) \end{array} \right) \mathit{classes} \ \mathit{d'\'equivalence}.$$

4 Soient $n, p \in \mathbb{N}$ tels que : 0 . $Soit <math>\mathcal{M}_c$, l'ensemble des applications strictement croissantes de $[\![1,p]\!]$ dans $[\![1,n]\!]$. Alors :

$$card(\mathcal{M}_c) = \begin{pmatrix} n \\ p \end{pmatrix}$$

Injections dans $E = \{1, 2, 3\}$ dans $F = \{a, b, c, d\}$

- * Classe de $\{a, b, c\}$: $\{(a, b, c), (a, c, b), (c, b, a), (b, a, c), (b, c, a), (c, a, b)\}$
- * Classe de $\{a, b, d\}$: $\{(a, b, d), (a, d, b), (d, b, a), (b, a, d), (b, d, a), (d, a, b)\}$
- * Classe de $\{a, c, d\}$: $\{(a, c, d), (a, d, c), (d, c, a), (c, a, d), (c, d, a), (d, a, c)\}$
- * Classe de $\{b, c, d\}$: $\{(b, c, d), (b, d, c), (d, c, b), (c, b, d), (c, d, b), (d, c, b)\}$

Remarque : Une classe est un ensemble noté $\{...\}$. Une injection est une application notée (...).

Arrangements à 3 éléments dans $E = \{1, 2, 3, 4\}$

 \star Classe de $\{1, 2, 3\}$:

$$\{(1,2,3), (1,3,2), (3,2,1), (2,1,3), (2,3,1), (3,1,2)\}$$

 \star Classe de $\{1,3,4\}$:

$$\{(1,3,4),(1,4,3),(4,3,1),(3,1,4),(3,4,1),(4,1,3)\}$$

Théorème

Soient E, F deux ensembles finis non vides.

3 Soit \mathcal{R} la relation sur $\mathcal{I}(E,F)$ définie par :

$$\forall f, g \in \mathcal{I}(E, F) \quad (f\mathcal{R}g) \Leftrightarrow f(E) = g(E)$$

$${\mathcal R} \ partitionne \ {\mathcal I}({\mathsf E},{\mathsf F}) \ en \ \left(\begin{array}{c} {\it card}({\mathsf F}) \\ {\it card}({\mathsf E}) \end{array} \right) {\it classes} \ d'\'equivalence.$$

Théorème

Soient E, F deux ensembles finis non vides.

3 Soit \mathcal{R} la relation sur $\mathcal{I}(E,F)$ définie par :

$$\forall f, g \in \mathcal{I}(E, F) \quad (f\mathcal{R}g) \Leftrightarrow f(E) = g(E)$$

$$\mathcal{R} \ \mathit{partitionne} \ \mathcal{I}(E,F) \ \mathit{en} \ \left(\begin{array}{c} \mathit{card}(F) \\ \mathit{card}(E) \end{array} \right) \mathit{classes} \ \mathit{d'\acute{e}quivalence}.$$

4 Soient $n, p \in \mathbb{N}$ tels que : 0 . $Soit <math>\mathcal{M}_c$, l'ensemble des applications strictement croissantes de $[\![1,p]\!]$ dans $[\![1,n]\!]$. Alors :

$$card(\mathcal{M}_c) = \left(egin{array}{c} n \\ p \end{array}
ight)$$

Formulaire.

parmi *n*.

$$\star \frac{n!}{(n-p)!} \text{ arrangements de } p \text{ parmi } n.$$

$$\star \left(\begin{array}{c} n \\ p \end{array} \right) \text{ arrangements strictement croissants de } p$$

 $\star n!$ permutations de n éléments.

 $\star \begin{pmatrix} n \\ p \end{pmatrix}$ combinaisons de p éléments parmi n.

- * Une boîte comporte trois compartiments ouverts.
- \star On y place n billes identiques de telle sorte que lorsqu'on bascule la boîte, chaque bille vient se placer aléatoirement dans l'un des trois compartiments.
- \star On dénombre les applications de [1, n] dans [1, 3].

i.e. : 3^n distributions possibles des billes dans la boîte |.

- ★ Une entreprise distribue aléatoirement 500 cuillers parmi 50000 paquets de céréales.
- \star On dénombre les injections de [1,500] dans [1,50000].

i.e.: $\frac{50000!}{49500!}$ distributions possibles de cuillers parmi les paquets.

- \star Un chemin du point D au point A suit les arcs orientés d'un quadrillage de dimension $a \times b$.
- \star On dénombre les injections strictement croissantes de $[\![1,a]\!]$ dans $[\![1,a+b]\!].$

Exemple

 \star Dénombrer les suites (x_1,\ldots,x_p) de $\mathbb N$ de somme égale à 5.

 \star Dénombrer les suites $(x_1,\ldots,x_p){\rm de}~\mathbb{N}$ de somme égale à 5.

 \star Algorithme du sac à dos.

р	Suite de somme 5	Suite des cumuls
1	(5)	5
2	(4,1) (1,4)	(4,5) (1,5)
	(3,2) (2,3)	(3,5) (2,5)
3	(3,1,1) (1,3,1) (1,1,3)	(3,4,5) (1,4,5) (1,2,5)
3	(2,2,1) (2,1,2) (1,2,2)	(2,4,5) (2,3,5) (1,3,5)
4	(2,1,1,1) (1,2,1,1)	(2,3,4,5) (1,3,4,5)
	(1,1,2,1) $(1,1,1,2)$	(1,2,4,5) (1,2,3,5)
5	(1,1,1,1,1)	(1,2,3,4,5)

- \star Dénombrer les suites (x_1,\ldots,x_p) de $\mathbb N$ de somme égale à 5.
- * Algorithme du sac à dos.

р	Suite de somme 5	Suite des cumuls
1	(5)	5
2	(4,1) (1,4)	(4,5) (1,5)
_	(3,2) (2,3)	(3,5) (2,5)
3	(3,1,1) (1,3,1) (1,1,3)	(3,4,5) (1,4,5) (1,2,5)
	(2,2,1) (2,1,2) (1,2,2)	(2,4,5) $(2,3,5)$ $(1,3,5)$
4	(2,1,1,1) (1,2,1,1)	(2,3,4,5) (1,3,4,5)
	(1,1,2,1) (1,1,1,2)	(1,2,4,5) (1,2,3,5)
5	(1,1,1,1,1)	(1,2,3,4,5)

- * Dénombrer les suites strictement croissantes de type :
 - (5), (a, 5), (a, b, 5), (a, b, c, 5), (a, b, c, d, 5)
- * Dénombrer les suites strictement croissantes dans [1,4]:

$$\sum_{p=0}^{4} {4 \choose p} = 2^4 = 16 \text{(binôme de Newton)}$$

Exercice

Soient n, p entiers naturels non nuls.

Dénombrer les p—listes (x_1, \ldots, x_p) d'entiers naturels non nuls de somme n.

- 1 Justifier que chaque terme appartient à [1, n].
- Soit $S_n(p)$ l'ensemble des p—listes de somme n.

Soit
$$\phi$$
 $S_n(p) \rightarrow [1, n]^p$ $(x_1, \dots, x_p) \mapsto (\underbrace{x_1}_{c_1}, \underbrace{x_1 + x_2}_{c_2}, \dots, \underbrace{\sum_{j=1}^k x_j}_{c_k}, \dots, \underbrace{n}_{c_p})$.

- Justifier que, pour tout $(x_1, ..., x_p) \in \mathcal{S}_n(p)$, alors $\phi((x_1, ..., x_p))$ est une p—liste croissante.
- b Soit $C_n(p)$ l'ensemble des p—listes strictement croissantes. Montrer que ϕ est bijective de $S_n(p)$ dans $C_n(p)$.
- 3 Conclure : dénombrer les listes d'entiers naturels de somme n.

Exercice

Soient E, F deux ensembles de cardinaux respectifs n et p. Vérifier que le nombre de surjections de E dans F est :

$$\begin{cases} & 0 & \text{si } p > n \\ & n! & \text{si } p = n \end{cases}$$

$$\begin{cases} & \sum_{k=0}^{p-1} (-1)^k \binom{p}{k} (p-k)^n & \text{si } p < n \end{cases}$$