Algorithm efficiency analysis

Mădălina Răschip, Cristian Gațu

Faculty of Computer Science "Alexandru Ioan Cuza" University of Iași, Romania

DS 2018/2019

Content

Algorithm efficiency analysis

Recursive function analysis

Recursive functions

Substitution method

Iteration method

Recurrence trees

Master theorem

FII, UAIC

Efficiency classes

Class	Notation	Example
logarithmic	$O(\log n)$	binary search
linear	O(n)	sequential search
quadratic	$O(n^2)$	insertion sort
cubic	$O(n^3)$	multiplication of two matrices $n \times n$
exponential	$O(2^n)$	processing of the subset of an n element set
factorial	O(n!)	processing of the permutation of n order

Algorithm efficiency empirical analysis

▶ Employed when the theoretical analysis is difficult.

- Aim:
 - formulation of an hypothesis regarding the algorithm efficiency;
 - verification of this hypothesis;
 - comparison of algorithms;
 - efficiency analysis of some implementation.

Algorithm efficiency empirical analysis

- ▶ The analysis aim is set.
- ► An efficiency measure is chosen Example: elementary operation counting, running time, etc.
- Input data characteristics are set.
- ▶ The algorithm is implemented.
- ▶ Input data are generated.
- ▶ The program is run for for all input data; the result are stored.
- ▶ The results are analyzed.

Content

Algorithm efficiency analysis

Recursive function analysis
Recursive functions
Substitution method
Iteration method
Recurrence trees
Master theorem

Content

Algorithm efficiency analysis

Recursive function analysis Recursive functions

Substitution method Iteration method Recurrence trees

Master theorem

FII, UAIC

Recursive functions

- ▶ A function f() **calls directly** a function g() if the definition of f() contains at least one call to g().
- ▶ A function f() calls indirectly a function g() if f() calls directly a function h(), and h() calls directly or indirectly the function g().
- A function f() is recursively defined if it calls itself directly or indirectly.

8 / 40

Recursive functions

A recursive function definition:

- ▶ Base case testing recursive calls stopping condition.
- ▶ Recursive (general case): some variable (integer) is passed as parameter to the function itself such that after a finite number of calls to reach the base case.

Remark: There exists recursive function with no parameters.

Recursive functions

Example 1. Factorial function definition:

- ► Base case: 0! = 1;
- General case: $n! = n \times ((n-1)!), n > 0$.

```
Function factorial(n)
begin
if n <= 1 then
return 1
else
return (n * factorial(n-1))
```

factorial(4) - recursive calls

FII, UAIC

factorial(4) - recursive calls

- recursive algorithms: easy to implement;
- ▶ additional cost: each recursive call places information in a specific memory zone (program stack).

FII, UAIC Lecture 3 DS 2018/2019 11 / 40

factorial(n) - iterative version

```
Function factorial(n)
begin

product \leftarrow 1

while n > 1 do

product \leftarrow product * n

n \leftarrow n - 1

return product
end
```

FII, UAIC Lecture 3 DS 2018/2019 12 / 40

Recursion vs. iteration. Recursive Fibonacci

Example 2. Fibonacci numbers:

- f(0) = 0, f(1) = 1,
- f(n) = f(n-1) + f(n-2), n > 1.

```
Function fib(n)
begin
if n <= 1 then
return n
else
return fib(n-1) + fib(n-2)
```

FII, UAIC

Recursive Fibonacci: call tree

 $O(\phi^n)$

4□ > 4□ > 4 = > 4 = > = 90

FII, UAIC Lecture 3 DS 2018/2019 14 / 40

Call number

n	fib(n)	calls
2	1	3
24	46'368	150'049
42	267'914'296	866'988'873
43	433'494'437	1'402'817'465

Recursion vs. iteration: iterative Fibonacci

```
Function ifib(n)
begin
    f0 \leftarrow 0
    f1 \leftarrow 1
    if n <= 1 then
         return n
    else
         for k \leftarrow 2 to n do
              temp \leftarrow f1
              f1 \leftarrow f1 + f0
              f0 \leftarrow temp
         return f1
end
```

Recursive / iterative Fibonacci comparison

17 / 40

Recursive algorithm efficiency

- ► To estimate the running time:
 - a recurrence is set in order to express the relation between the execution time of the initial problem and the execution time of the reduced problem;
 - the recurrence is solved.
- Example: for the factorial, the recurrence that estimates the running time is:

$$T(n) = \begin{cases} 0, & n = 0 \\ T(n-1) + 1, & n > 1 \end{cases}$$

FII, UAIC Lecture 3 DS 2018/2019 18 / 40

How to solve recurrences

- 1. Substitution method. A limit is guessed and is proved by induction.
- 2. **Iteration method.** The recurrence is iterated and expressed as a sum of terms that depends only on the problem size and the initial condition (base cases).
- 3. **Recurrence tree.** Expresses the recurrence as a tree (nodes corresponds to costs).
- 4. Master theorem. Provides limits for recurrences of type

$$T(n) = aT(n/b) + f(n)$$

Content

Algorithm efficiency analysis

Recursive function analysis

Recursive functions

Substitution method

Iteration method

Recurrence trees

Master theorem

1. Substitution method

▶ The solution is guessed.

Mathematical induction is employed to determine the constants and to proof that the solution is correct.

FII, UAIC Lecture 3 DS 2018/2019 21 / 40

Find an upper bound for the recurrence $T(n) = 2T(\lfloor n/2 \rfloor) + n$

FII, UAIC Lecture 3 DS 2018/2019 22 / 40

Find an upper bound for the recurrence $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- ▶ Guessed solution: $T(n) = O(n \log n)$.
- ▶ To be proved by induction: $T(n) \le cn \log n$, for c > 0.

FII, UAIC Lecture 3 DS 2018/2019 22 / 40

Find an upper bound for the recurrence $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- ▶ Guessed solution: $T(n) = O(n \log n)$.
- To be proved by induction: $T(n) \le cn \log n$, for c > 0. Suppose that the relation is true for all positive values m < n, in particular for $m = \lfloor n/2 \rfloor$: $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor)$. $T(n) \le 2(c \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor)) + n$ $\le cn \log(\lfloor n/2 \rfloor) + n$ $= cn \log n - cn \log 2 + n$
 - $= cn \log n cn + n$
 - $\leq c n \log n$, for $c \geq 1$

22 / 40

FII, UAIC Lecture 3 DS 2018/2019

Find an upper bound for the recurrence $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- ▶ Guessed solution: $T(n) = O(n \log n)$.
- ▶ To be proved by induction: $T(n) \le cn \log n$, for c > 0. Suppose that the relation is true for all positive values m < n, in particular for $m = \lfloor n/2 \rfloor$: $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor)$.

$$T(n) \le 2(c \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor)) + n$$

$$\le cn \log(\lfloor n/2 \rfloor) + n$$

$$= cn \log n - cn \log 2 + n$$

$$= cn \log n - cn + n$$

$$\le cn \log n, \text{ for } c > 1$$

It has to be shown that the relation holds for the base case (limit conditions). $T(1)=1\leq c1\log 1=0$

Base cases: T(2) and T(3) ($n_0 = 2$)

$$T(2) = 4$$
 and $T(3) = 5$, $T(2) \le c2 \log 2$ and

 $T(3) \leq c 3 \log 3 \Rightarrow c \geq 2.$

Substitution method – tips

Subtraction of an inferior term order (to consolidate the inductive hypothesis).

Example:
$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

- Guessed solution: T(n) = O(n).
- ▶ It is shown by induction that $T(n) \le cn$, for c > 0.

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

= $cn + 1$

▶ It is shown by induction that $T(n) \le cn - d$, d >= 0 const.

$$T(n) \le (c \lfloor n/2 \rfloor - d) + (c \lceil n/2 \rceil - d) + 1$$

= $cn - 2d + 1$
 $\le cn - d$, for $d > 1$

The c constant has to be chosen such that the limit conditions are satisfied.

Substitution method – tips

Traps

Example:
$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

It is shown ("false") that T(n) = O(n) guessing that $T(n) \le cn$ and:

$$T(n) \le 2(c \lfloor n/2 \rfloor) + n$$

 $\le cn + n$
 $= O(n), \iff \text{false!!}$

Error: it was not proven the exact form of the induction hypothesis.

FII, UAIC Lecture 3 DS 2018/2019 24 / 40

Substitution method – tips

▶ Variable changes.

Example:
$$T(n) = 2T(\lfloor sqrt(n) \rfloor) + \log n$$

The recurrence is simplified by variable change: $m = \log n$.

$$T(2^m) = 2T(2^{m/2}) + m$$

Rename
$$S(m) = T(2^m)$$
, and it follows $S(m) = 2S(m/2) + m$.

$$S(m) = O(m \log m),$$

$$T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n).$$

FII, UAIC

Content

Algorithm efficiency analysis

Recursive function analysis

Recursive functions Substitution method

Iteration method

Recurrence trees

Master theorem

2. Recurrence iteration

Substitution method: implies to guess the solution (!)

Recurrence iteration:

direct

- starts from the base case and builds successive terms using the recurrence;
- the expression of the general term T(n) is identified;
- it is proved by direct computations or mathematical induction.

reverse

- ▶ it starts from the T(n) and is replaced by T(h(n)) with corresponding value, then T(h(h(n))) is replaced and so on until the base case is reached;
- T(n) is obtained.

Recurrence iteration – example n!

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + 1, & n > 1 \end{cases}$$

28 / 40

FII, UAIC Lecture 3 DS 2018/2019

Recurrence iteration – example n!

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + 1, & n > 1 \end{cases}$$

Direct iteration

$$T(1) = 0$$

 $T(2) = 1$
 $T(3) = 2$

. . .

$$T(n) = n - 1$$

FII, UAIC

Recurrence iteration – example n!

$$T(n) = \begin{cases} 0, & n = 1 \\ T(n-1) + 1, & n > 1 \end{cases}$$

Direct iteration

$$T(1) = 0$$

 $T(2) = 1$
 $T(3) = 2$

$$T(n) = n - 1$$

Reverse iteration

$$T(n) = T(n-1) + 1$$

 $T(n-1) = T(n-2) + 1$
...
 $T(2) = T(1) + 1$
 $T(1) = 0$

$$T(n) = n - 1$$

Recurrence iteration – example

$$T(n) = 3T(\lfloor \frac{n}{4} \rfloor) + n$$

$$T(n) = n + 3(\lfloor \frac{n}{4} \rfloor) + 3T(\lfloor \frac{n}{16} \rfloor)$$

$$= n + 3\lfloor \frac{n}{4} \rfloor + 9(\lfloor \frac{n}{16} \rfloor + 3T(\lfloor \frac{n}{64} \rfloor))$$

$$= n + 3\lfloor \frac{n}{4} \rfloor + 9\lfloor \frac{n}{16} \rfloor + 27T(\lfloor \frac{n}{64} \rfloor)$$
...
$$\leq n \sum_{i=0}^{\infty} (\frac{3}{4})^i + \Theta(n^{\log_4 3} \times T(1))$$

$$= 4n + \Theta(n^{\log_4 3} \times T(1))$$

Remark: using geometric series:

$$\frac{1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}, \text{ for } x \neq 1}{1 + x + x^2 + \dots = \frac{1}{1 - x}, \text{ for } |x| < 1}$$

= O(n)

Content

Algorithm efficiency analysis

Recursive function analysis

Recursive functions
Substitution method
Iteration method

Recurrence trees

Master theorem

3. Recurrence trees

Recurrence trees:

- allows to visualize a recurrence;
- each node corresponds to the cost of a sub-problem;
- the costs are sum on levels and then they are summed to get the total cost.
- ► The recurrence tree can be used to generate a value for the substitution method.

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

32 / 40

FII, UAIC Lecture 3 DS 2018/2019

$$T(n) = 3T(|n/4|) + \Theta(n^2)$$

▶ The recurrence tree is created for $T(n) = 3T(n/4) + cn^2$, c > 0

T(n)

32 / 40

FII, UAIC Lecture 3 DS 2018/2019

- ▶ The dimension of a sub-problem corresponding to a node on level i: $n/4^i \Rightarrow$ sub-problem size becomes n=1 when $n/4^i = 1 \Leftrightarrow i = log_4 n \Rightarrow$ the tree has $log_4 n + 1$ levels.
- ▶ The number of nodes on level i: 3^i .
- ▶ The cost of any node on level $i : c(n/4^i)^2$.
- The total cost of nodes on level i: $3^i c (n/4^i)^2 = (3/16)^i c n^2$ (last level $log_4 n$: $n^{log_4 3} T(1)$.)

34 / 40

FII, UAIC Lecture 3 DS 2018/2019

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + (\frac{3}{16})^{2}cn^{2} + \dots + (\frac{3}{16})^{log_{4}n - 1}cn^{2} + \Theta(n^{log_{4}3})$$

$$= \sum_{i=0}^{log_{4}n - 1} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{log_{4}3})$$

$$< \sum_{i=0}^{\infty} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{log_{4}3})$$

$$= \frac{1}{1 - (3/16)}cn^{2} + \Theta(n^{log_{4}3})$$

$$= \frac{16}{13}cn^{2} + \Theta(n^{log_{4}3})$$

$$= O(n^{2})$$

FII, UAIC Lecture 3 DS 2018/2019 35 / 40

- ▶ The substitution method is employed to verify that $T(n) = O(n^2)$ is an upper bound for the relation $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$.
- ▶ it is shown that $T(n) \le dn^2$, for d > 0

$$T(n) \le 3T(\lfloor n/4 \rfloor) + cn^{2}$$

$$\le 3d\lfloor n/4 \rfloor^{2} + cn^{2}$$

$$\le 3d(n/4)^{2} + c(n^{2})$$

$$= \frac{3}{16}dn^{2} + cn^{2}$$

$$\le dn^{2}, \text{ for } d \ge (16/13)c$$

FII, UAIC Lecture 3 DS 2018/2019 36 / 40

Content

Algorithm efficiency analysis

Recursive function analysis

Recursive functions Substitution method teration method

Master theorem

FII, UAIC

4. Master theorem

▶ Provides a method to solve recurrences of type T(n) = aT(n/b) + f(n) where $a \ge 1$ and b > 1 are constants, and f(n) is a function asymptotically positive.

► Master theorem:

Let $a \ge 1$ and b > 1 constants, f(n) a function and T(n) defined on non-negative integer numbers by the recurrence relation:

$$T(n) = aT(n/b) + f(n)$$
. Then:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for $\epsilon > 0$ constant, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for $\epsilon > 0$ constant, and if $af(n/b) \le cf(n)$ for c < 1 and n large enough, then $T(n) = \Theta(f(n))$.

◆ロト ◆団ト ◆ヨト ◆ヨト ヨ めへで

FII, UAIC Lecture 3 DS 2018/2019 38 / 40

Master theorem – examples

T(n) = 9T(n/3) + n

$$a=9, b=3, f(n)=n$$
 and $n^{log_ba}=n^{log_39}=\Theta(n^2)$. Since $f(n)=O(n^{log_39-\epsilon})$, with $\epsilon=1$, the case 1 of Master theorem can be applied $\Rightarrow T(n)=\Theta(n^2)$.

T(n) = T(2n/3) + 1

$$a=1, b=3/2, f(n)=1$$
 and $n^{log_ba}=n^{log_{3/2}1}=n^0=1$.
Since $f(n)=\Theta(n^{log_ba})=\Theta(1)$, the case 2 of Master theorem can be applied $\Rightarrow T(n)=\Theta(\log n)$.

FII, UAIC Lecture 3 39 / 40

Master theorem – examples

 $T(n) = 3T(n/4) + n \log n$

$$a=3, b=4, f(n)=n\log n$$
 and $n^{\log_b a}=n^{\log_4 3}=O(n^{0.793})$
Since $f(n)=\Omega(n^{\log_4 3+\epsilon})$, with $\epsilon\approx 0.2$, the case 3 of Master theorem can be applied if: $af(n/b)=3(n/4)\log(n/4)\leq (3/4)n\log n=cf(n)$ for $c=3/4$ and n large enough. It follows $T(n)=\Theta(n\log n)$.

▶ The Master theorem cannot be applied for $T(n) = 2T(n/2) + n \log n$

 $a=2, b=2, f(n)=n\log n$ and $n^{\log_b a}=n$ Since $f(n)=n\log n$ is asymptotically larger the $n^{\log_b a}=n$, it follows hat the case 3 can be applied (false!!).

f(n) is not polynomial larger.

 $f(n)/n^{\log_b a} = (n \log n)/n = \log n$ is asymptotically smaller than n^{ϵ} , for any positive constant ϵ .