Data

	,				Personal
ID	Age	Income	Family	CCAvg	Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1

Constructing a Tree

					Personal
ID	Age	Income	Family	CCAvg	Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1
		7	- /		

Nodes (root node): Test/Decision points

Leaves: Final Decisions / Conclusion

Branch: Collection of nodes and the leaf

Decision Trees with Different Attributes

- Decision points (Divide-and-Conquer)
 - -Deciding where to start (Selection of the root node)
 - -Deciding when to stop (To avoid overfitting)

Trees are Rules Expressed as Disjunctive Normal Form

- *If* (ccAvg is Medium) *or* (CCAvg is High) *then* (Loan = Yes)
 - Within branch nodes are connected with "and" and branches with similar outcome are connected with "or"
- Disjunctive Normal Form
 - Disjunction (or) of conjunction (and) clauses

Geometry of Decision Trees: Axis Parallel Search

Two Aspects

• Which attribute to choose?

• Where to stop?

Attribute Selection Criteria

- Main principle
 - Select attribute which partitions the learning set into subsets as "pure" as possible
- Various measures of purity
 - Information-theoretic
 - Gini index
 - **–** ...
- Various improvements
 - probability estimates
 - normalization
 - binarization, subsetting

Impurity

High impurity

Less impurity

Minimum impurity

Classification Trees

• Entropy of information is a measure of the randomness or uncertainty or impurity of the outcome.

Entropy

- Let us say, I am considering an action like a coin toss. Say, I have five coins with **probabilities for heads** 0, 0.25, 0.5, 0.75 and 1. When I toss them, which one has highest uncertainty and which one has the least?

Entropy: A measure of randomness

Entropy and Information Gain (C5.0)

• $H = -\sum_{i} p_i \log_2 p_i$

• Information gain = Entropy of the system before split – Entropy of the system after split

13 records (6 no and 7 yes) CCAvg

Medium

3 (all yes)

No need to

split

(Recall a posteriori or Frequentist approach to calculating probabilities)

Entropy before split in our example

$$H = -\frac{6}{13} * log_2 \frac{6}{13} - \frac{7}{13} * log_2 \frac{7}{13} = 0.9957$$

Entropy (Weighted) after split on CCAvg

$$H = \frac{8}{13} \left(-\frac{6}{8} * \log_2 \frac{6}{8} - \frac{2}{8} * \log_2 \frac{2}{8} \right) + \frac{3}{13} \left(-\frac{3}{3} * \log_2 \frac{3}{3} \right) + \frac{2}{13} \left(-\frac{2}{2} * \log_2 \frac{2}{2} \right)$$

$$= 0.4992$$

Low

8 (6 low and 2

yes)

Information Gain = 0.9957-0.4992 = 0.4965

High

2 (all yes)

No need to

split

Similar calculation for information gain when splitting on Family gives Information Gain = 0.0726

Sometimes Information Gain Fails

ID	Age	Income	Family	CCAvq	Personal Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1

Let us do information gain for split on ID

Entropy after split

Now, the system will have 13 splits, one for each ID. Entropy = -1*LOG(1,2) = 0

Is ID the root attribute?

• An attribute with many more states is likely to have less variation in each state. So, it will always give better information gain.

• So, we need to normalize it to get something like information gain per state.

Information Content

- Information content is defined as $=-\sum f_i log f_i$. We only want to know fraction of the members in a state divided by the total members.
- **Information content of ID**: It has 13 states. So, the information content
 - = -1/13*LOG(1/13,2)*13 = 3.7
- Information content of ccAvg = 1.33

Gain Ratio

- Information Gain is biased towards attributes with many values (levels)
- Gain Ratio normalizes Information Gain by dividing by the Information Content at the attribute

$$Gain(A) = \frac{Gain(A)}{InformationContent(A)}$$

• Attribute with the maximum Gain Ratio is selected as the splitting attribute

Gain Ratio

- Gain Ratio for ID = 0.27
- Gain Ratio for ccAvg = 0.37

Gini Index – Used in CART

$$1 - \sum_{1}^{m} p_i^2$$

It is computed on binary splits only.

So, if we take ccAvg (low, medium and high), it considers all binary options {Low}, {medium, high} or {medium}, {low, high}, etc.

Is a low or a high Gini preferred?

Gini Index

$$1 - \sum_{i=1}^{m} p_i^2$$

ID		T	i	CCALLE	Personal
ID	Age	Income	Family	CCAvg	Loan
1	Young	Low	4	Low	0
2	Old	Low	3	Low	0
3	Middle	Low	1	Low	0
4	Middle	Medium	1	Low	0
5	Middle	Low	4	Low	0
6	Middle	Low	4	Low	0
10	Middle	High	1	High	1
17	Middle	Medium	4	Medium	1
19	Old	High	2	High	1
30	Middle	Medium	1	Medium	1
39	Old	Medium	3	Medium	1
43	Young	Medium	4	Low	1
48	Middle	High	4	Low	1

Gini Index before split =
$$1 - \left(\frac{6}{13}\right)^2 - \left(\frac{7}{13}\right)^2 = 0.497$$

Gini after split with {Low} and {Medium,High}

$$= \frac{8}{13} \left(1 - \left(\frac{6}{8} \right)^2 - \left(\frac{2}{8} \right)^2 \right) + \frac{5}{13} \left(1 - \left(\frac{5}{5} \right)^2 \right) = 0.231$$

Calculated similarly for other binary splits

The one that gives the least Gini Index is picked

