Separation Axioms: Characterizations and Implications

Burak Arslan

(X, τ) is a T_0 space	$\overset{\text{def}}{\Leftrightarrow} \text{For all distinct } x,y \in X \text{, there exists a } U \in \tau \text{ such that } x \in U \text{ and } y \notin U \text{ or } x \notin U \text{ and } y \in U$
	$\Leftrightarrow \text{For all distinct } x, y \in X, \ x \notin \{y\}' \text{ or } y \in \{x\}'$
(X, τ) is a R ₀ space	$\stackrel{\text{def}}{\Leftrightarrow} \text{For all } x, y \in X, x \in \overline{\{y\}} \Rightarrow y \in \overline{\{x\}}$
	$\Leftrightarrow \text{For all } x, y \in X, \overline{\{x\}} = \overline{\{y\}}$
	$\Leftrightarrow \text{For all } x \in X, \overline{\{x\}} = \{y \in X : \mathcal{N}_x = \mathcal{N}_y\}$
	⇔ The Kolmogorov quotient (ayırt edilemezlik denklik bağıntısına göre elde edilen parçalanış) of X is a space
	\Leftrightarrow The specialization preorder $(x \le y \Leftrightarrow x \in \overline{\{y\}} \Leftrightarrow \overline{\{x\}} \subseteq \overline{\{y\}})$ on X is symmetric (and therefore an equivalence relation)
	$\Leftrightarrow \text{The family } \{\overline{\{x\}} : x \in X\} \text{ is a partition of } X$
	$\Leftrightarrow \text{For all } x \in X \text{ and } F \in \tau^k \text{ such that } x \notin F, F \cap \overline{\{x\}} = \emptyset$
	$\Leftrightarrow \text{For all } N \in \mathcal{N}_x, \overline{\{x\}} \subseteq N$
	$\Leftrightarrow \text{For all } U \in \tau, \exists \{F_i : i \in I\} \subseteq \tau^k \ni U = \bigcup_{i \in I} F_i$
	\Leftrightarrow For all $x \in X$, the fixed ultrafilter at x converges only to the points y such that $\mathcal{N}_x = \mathcal{N}_y$
(X, τ) is a T_1 space	$\overset{\text{def}}{\Leftrightarrow} \text{For all distinct } x, y \in X \text{, there exists } U, V \in \tau \text{ such that } x \in U, y \notin U, x \notin V \text{, and } y \in V$
	\Leftrightarrow (X, τ) is a T_0 space and a R_0 space
	$\Leftrightarrow \text{For all } x \in X, \{x\} \in \tau^k$
	$\Leftrightarrow \text{For all } A \subseteq X, A = \bigcap_{A \subseteq U \in \tau} U$
	\Leftrightarrow Every finite set of X is closed
. – – – – – – – – – – –	\Leftrightarrow Every set of X whose complement is a finite set is open
	\Leftrightarrow For all $x \in X$, the fixed ultrafilter at x converges only to x
	\Leftrightarrow For every subset $S \subseteq X$ and every point $x \in X$, x is a limit point of S if and only if every open neighborhood of x contains infinitely many points of S
	 ⇒ Each map from the Sierpinski space, which has two points and only one of which is closed, to X is trivial (constant sanırım).
	\Leftrightarrow The map from the Sierpinski space to the single point has the lifting property with respect to the map from X to the single point. Yani, $f: S \to \{x\}$ and $g: X \to \{x\}$ iki fonksiyon olmak üzere bir $l: S \to \{x\}$ sürekli fonksiyonu vardır.
(X, τ) is a R_1 space	$\overset{\text{def}}{\Leftrightarrow} \text{For all distinct } x, y \in X, \text{ if } x \in \overline{\{y\}} \text{ or } y \in \overline{\{x\}}, \text{ then there exist } U, V \in \tau \text{ such that } x \in U, y \in V, \text{ and } U \cap V = \emptyset$
	⇔ <mark>xxx</mark>
(X, τ) is a T_2 space	$\overset{\text{def}}{\Leftrightarrow} \text{For all distinct } x, y \in X \text{, there exist } U, V \in \tau \text{ such that } x \in U, y \in V \text{, and } U \cap V = \emptyset$

		xxx
(X, τ) is a T_6 space	def ⇔	(X, τ) is a T_0 space and a perfectly normal space
	 ⇔	xxx
(X, τ) is a perfectly normal space	def ⇔	For all disjoint set $F, K \in \tau^k$, there exists a continuous function $f: X \to [0, 1]$ with $F = f^{-1}(\{0\})$ and $K = f^{-1}(\{1\})$
	\Leftrightarrow	xxx
(X, τ) is a T_5 space	def ⇔	(X, τ) is a T_1 space and a completely normal space
	⇔	xxx
(X, τ) is a completely normal space	def ⇔	For all strongly separated sets $A, B \subseteq X$, there exist $U, V \in \tau$ such that $A \subseteq U, B \subseteq V$, and $U \cap V = \emptyset$
	⇔	xxx
(X, τ) is a T_4 space	def ⇔	(X, τ) is a T_1 space and a normal space
	⇔	xxx
(X, τ) is a normal space	def ⇔	For all disjoint sets $F, K \in \tau^k$, there exist $U, V \in \tau$ such that $F \subseteq U, K \subseteq V$, and $U \cap V = \emptyset$
	⇔	xxx
(X, τ) is a $T_{3\frac{1}{2}}$ space	def ⇔	(X, τ) is a T_0 space and a completely regular space
	⇔	xxx
(X, τ) is a completely regular space	def ⇔	For each $x \in X$ and for each $F \in \tau^k$ such that $x \notin F$, there exists a continuous function $f: X \to [0, 1]$ with $f(x) = 0$ and $f(F) = 1$
	\Leftrightarrow	xxx
(X, τ) is a T_3 space	def ⇔	(X, τ) is a T_0 space and a regular space
	\Leftrightarrow	xxx
(X, τ) is a regular space	def ⇔	For each $x \in X$ and for each $F \in \tau^k$ such that $x \notin F$, there exist $U, V \in \tau$ such that $x \in U, F \subseteq V$, and $U \cap V = \emptyset$
	⇔	XXX
(X, τ) is a completely T_2 space	def ⇔	For all distinct $x, y \in X$, there exists a continuous function $f: X \to [0, 1]$ with $f(x) = 0$ and $f(y) = 1$
	\Leftrightarrow	XXX
(X, τ) is a $T_{2\frac{1}{2}}$ space	def ⇔	For all distinct $x, y \in X$, there exist $F, K \in \tau^k$ such that $x \in F$, $y \in K$, and $F \cap K = \emptyset$
	\Leftrightarrow	XXX