МОДИФИКАЦИЯ ФУНКЦИОНАЛА ОШИБКИ В ЗАДАЧАХ НЕЛИНЕЙНОЙ РЕГРЕССИИ ДЛЯ УЧЕТА ПОГРЕШНОСТИ В ИЗМЕРЯЕМЫХ ДАННЫХ

Г.И. Рудой

Аннотация

Рассматривается случай существенно нелинейной регрессионной зависимости в физическом эксперименте с гетероскедастичными погрешностями измерения как зависимых, так и независимых переменных. Предлагается модифицированный функционал среднеквадратичной ошибки, учитывающий ошибки в независимых переменных и различные распределения ошибок в разных точках. Рассматривается сходимость минимизирующего этот функционал вектора параметров к вектору параметров, оптимальному для классического функционала среднеквадратичной ошибки. Приводятся результаты численного моделирования на данных, полученных в ходе эксперимента по измерению зависимости мощности лазера от прозрачности резонатора.

Ключевые слова: гетероскедастичные ошибки, ошибки измерения независимых переменных, символьная регрессия, нелинейные модели.

1 Введение

В ряде экспериментальных приложений возникает задача нахождения оптимальных коэффициентов ω некоторой регрессионной модели f, представленной в виде аналитической формулы, по набору экспериментальных данных. Для этого в предположении о нормальном распределении регрессионных остатков строится функционал, являющийся суммой квадратов отклонений экспериментальных точек y_i от регрессионной кривой: $\sum_i (y_i - f(x_i, \omega))^2$.

Однако, данный функционал построен и статистически обоснован в предположении о точно измеренных независимых переменных и гомоскедастичности ошибок измерения зависимой переменной. Иными словами, рассматриваются только ошибки измерения зависимой переменной, для которых дисперсия соответствующего распределения принимается одинаковой.

В большинстве естественнонаучных приложений это предположение не выполняется, особенно при измерении некоторой зависимости в достаточно широких диапазонах. Например, в задаче нахождения дисперсионной зависимости прозрачного полимера (то есть, зависимости коэффициента преломления n от длины волны λ) [1] погрешности измерения различных физических параметров, вообще говоря, различны. Так, например, если для измерения длины волны λ используется дифракционная решетка, то постоянной является относительная погрешность определения длины волны $\frac{\sigma_{\lambda_i}}{\lambda_i} \approx \text{const}$, и, следовательно, погрешность определения длины волны зависит от самой длины волны.

Таким образом, возникает задача поиска оптимальных коэффициентов регрессионной формулы с учетом отличающихся погрешностей измерения в различных экспериментальных точках. Для некоторых частных случаев эта задача уже была решена: например, в работе [2] вводится предположение, что зависимые переменные y_i измеряются неточно, и каждая переменная y_i имеет свою собственную погрешность измерения σ_{y_i} .

В настоящей работе рассмотрена более общая ситуация, в которой независимые переменные также определяются неточно в процессе эксперимента, и каждая переменная

имеет свою собственную погрешность измерения. При этом рассматривается случай нелинейной регрессионной зависимости, в отличие от, например, [3], изучающей линейную регрессионную модель.

В настоящей работе предлагается модифицированный функционал качества, учитывающий погрешности как зависимых, так и независимых переменных в виде, достаточном для большинства практических приложений. Рассматривается модификация имеющихся методов оптимизации, применяемых в подобных задачах, на примере широко применяемого алгоритма Левенберга-Марквардта [4] (классический и модифицированный алгоритмы будут в дальнейшем называться АЛМ и мАЛМ соответственно). Показывается корректность модифицированного алгоритма и приводятся результаты на экспериментальных данных по измерению параметров усиливающей среды газового излучателя.

2 Постановка задачи

Дана обучающая выборка D:

$$D = \{\mathbf{x}_i, y_i\} | i \in \{1, \dots, \ell\}, \mathbf{x}_i \in \mathbb{R}^m, y_i \in \mathbb{R}.$$
 (1)

Для каждой зависимой переменной переменной y_i известно стандартное отклонение ошибки ее измерения σ_{y_i} , а для соответствующего вектора независимых переменных \mathbf{x}_i аналогично известны стандартные отклонения его компонент $\sigma_{x_{ij}}|j\in\{1,\ldots,m\}$. Пусть, кроме того, дана некоторая регрессионная модель $y=f(\mathbf{x},\boldsymbol{\omega})$, параметризованная вектором $\boldsymbol{\omega}$.

Для удобства введем вектор, составленный из ошибок измерений зависимых переменных σ_{u_i} :

$$\boldsymbol{\sigma}_y = \{\sigma_{y_1}, \dots, \sigma_{y_\ell}\}.$$

Аналогично введем матрицу, составленную из ошибок измерений независимых переменных $\sigma_{x_{ij}}$:

$$\Sigma_x = \|\sigma_{x_{ij}}\||i \in \{1, \dots, \ell\}, j \in \{1, \dots, m\}.$$

Требуется построить функционал ошибки $S(\omega)$ вектора параметров ω модели f, учитывающий ошибки измерений σ_y и Σ_x :

$$S(\boldsymbol{\omega}) = S(\boldsymbol{\omega}, \boldsymbol{\sigma}_{\boldsymbol{v}}, \boldsymbol{\Sigma}_{\boldsymbol{x}}), \tag{2}$$

и, кроме того, найти вектор параметров ω , минимизирующий функционал (2):

$$\hat{\boldsymbol{\omega}} = \arg\min_{\boldsymbol{\omega}} S(\boldsymbol{\omega}). \tag{3}$$

3 Модифицированный функционал качества

Воспользуемся следующим естественным качественным физическим соображением: чем больше погрешность определения зависимой и независимых переменных для некоторой экспериментальной точки, тем меньше соответствующий регрессионный остаток должен учитываться при оптимизации параметров модели. Кроме того, эта зависимость линейна: если, например, $\sigma_{x_{i1}} = k\sigma_{x_{i2}}$, т. е. если погрешность измерения первой компоненты признакового описания в k раз больше погрешности второй компоненты, то расстояние от экспериментально измеренной точки (\mathbf{x}_i, y_i) до регрессионной зависимости по оси, соответствующей первой компоненте, имеет в k раз меньший вес, чем то же расстояние по

оси, соответствующей второй компоненте. Можно заметить, что это эквивалентно некоторому локальному растяжению пространства в окрестности точки (\mathbf{x}_i, y_i) . Кроме того, с физической точки зрения складывать можно только величины, имеющие одинаковую размерность, либо безразмерные величины, поэтому необходима некоторая нормировка невязок по каждому из измерений.

Рассмотрим для простоты изложения случай одной независимой переменной: $x \in \mathbb{R}$. С учетом приведенных выше соображений введем следующее определение расстояния $\rho(x,i)$ от точки (x_i,y_i) из обучающей выборки до некоторой точки $(x,f(x,\boldsymbol{\omega}))$ на кривой, описываемой регрессионной моделью:

$$\rho^{2}(x,i) = \frac{(x_{i} - x)^{2}}{\sigma_{x_{i}}^{2}} + \frac{(y_{i} - y)^{2}}{\sigma_{y_{i}}^{2}},$$
(4)

где $y = f(x, \boldsymbol{\omega})$.

Рис. 1: Различные способы введения расстояния от точки до прямой: $\tilde{\rho}$ — истинное расстояние как минимум расстояния от точки (x_i,y_i) до какой-либо точки на прямой, $y_i-f(x_i,\boldsymbol{\omega})$ — расстояние в классическом функционале среднеквадратичной ошибки в предположении об отсутствии ошибок измерения независимой переменной, ρ — предлагаемое нами расстояние.

Непосредственное точное определение расстояния от экспериментальной точки до регрессионной кривой представляется отдельной сложной вычислительной задачей, однако, в подавляющем большинстве практических приложений регрессионные зависимости достаточно гладкие, а погрешности измерения достаточно малы. Пользуясь этим, линеаризуем $f(x, \omega)$ в окрестности точки $(x_i, f(x_i, \omega))$:

$$f(x, \boldsymbol{\omega}) \approx \mathbb{L}_i[f](x, \boldsymbol{\omega}) = f(x_i, \boldsymbol{\omega}) + (x - x_i) \frac{\partial f}{\partial x}(x_i, \boldsymbol{\omega}),$$
 (5)

где \mathbb{L}_i обозначает оператор линеаризации в окрестности точки $(x_i, f(x_i, \boldsymbol{\omega}))$.

Тогда расстояние (4) можно выразить через линеаризованную функцию (5) следующим образом:

$$\rho^{2}(x,i) = \frac{(x_{i}-x)^{2}}{\sigma_{x_{i}}^{2}} + \frac{(y_{i}-f(x_{i},\boldsymbol{\omega}) - \frac{\partial f}{\partial x}(x_{i},\boldsymbol{\omega})(x-x_{i}))^{2}}{\sigma_{y_{i}}^{2}}.$$
(6)

Минимизируя это выражение, находим выражение для расстояния от точки (x_i, y_i) из обучающей выборки до линеаризованной в ее окрестности регрессионной зависимости:

$$\rho^{2}(x,i) = \frac{(y_{i} - f(x_{i}, \boldsymbol{\omega}))^{2}}{\sigma_{y_{i}}^{2} + \frac{\partial f}{\partial x}(x_{i}, \boldsymbol{\omega})^{2} \sigma_{x_{i}}^{2}}.$$
(7)

Аналогично можно получить выражение для случая, когда объекты в обучающей выборке имеют m независимых переменных ($\mathbf{x} \in \mathbb{R}^m$):

$$\rho^{2}(\mathbf{x},i) = \frac{(y_{i} - f(\mathbf{x}_{i},\boldsymbol{\omega}))^{2}}{\sigma_{y_{i}}^{2} + \sum_{j=1}^{m} (\frac{\partial f}{\partial x_{j}}(\mathbf{x}_{i},\boldsymbol{\omega}))^{2} \sigma_{x_{ij}}^{2}}.$$

Таким образом, предлагаемый нами функционал, минимизирующий сумму введеных согласно (4) расстояний, для достаточно гладких функций выглядит следующим образом:

$$S(\boldsymbol{\omega}) = \sum_{i=1}^{\ell} \frac{(y_i - f(\mathbf{x}_i, \boldsymbol{\omega}))^2}{\sigma_{y_i}^2 + \sum_{j=1}^{m} (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2}.$$
 (8)

Отметим следующее:

- Функционал (8) соответствует классической сумме квадратов регрессионных остатков при условии нормировки квадрата каждого остатка на сумму квадратов погрешности определения зависимой величины σ_{y_i} и произведения частной производной регрессионной модели по j-ой компоненте вектора независимых величин на погрешность определения соответствующей компоненты $\sigma_{x_{ij}}$.
- При прочих равных условиях в выражении для расстояния (7) и, соответственно, в функционале (8) с большим весом учитываются те точки, в которых производная регрессионной модели $\frac{\partial f}{\partial x_j}$ по соответствующей компоненте x_j больше, что соответствует соображениям здравого смысла: чем меньше наклон регрессионной зависимости в окрестности данной точки, тем меньше влияние неточного измерения соответствующей независимой переменной на значение регрессионной зависимости в этой точке.
- Если все независимые переменные измерены точно, то есть, $\forall i,j:\sigma_{x_{ij}}=0$, то предложенный функционал переходит в рассмотренный в [2]. Если же, кроме того, все зависимые переменные имеют одну и ту же погрешность, то предложенный функционал переходит в известную сумму квадратов регрессионных остатков с точностью до некоторого множителя σ_y , не влияющего на точки минимума функционала среднеквадратичной ошибки.

4 Модифицированный алгоритм Левенберга-Марквардта

Для численной оптимизации функционала (8) представим его в виде суммы квадратов регрессионных остатков путем следующего переобозначения переменных. Вместо выборки (1) рассмотрим выборку

$$\tilde{D} = {\{\tilde{\mathbf{x}}_i, \tilde{y}_i\} | i \in \{1, \dots, \ell\}, \tilde{\mathbf{x}}_i \in \mathbb{R}^{m+1}, y_i \in \mathbb{R},}$$

где $\tilde{y}_i \equiv 0$, а $\tilde{\mathbf{x}}_i = \{\mathbf{x}_i, y_i\}$ — исходный вектор \mathbf{x}_i с дополнительно приписанным к нему значением y_i . Кроме того, примем

$$\tilde{f}(\tilde{\mathbf{x}}_i, \boldsymbol{\omega}) = \frac{f(\mathbf{x}_i, \boldsymbol{\omega}) - y_i}{\sqrt{\sigma_{y_i}^2 + \sum_{j=1}^m (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2}}.$$

Тогда минимизация функционала (8) возможна известными методами оптимизации, так как легко видеть, что (8) в этом случае эквивалентен

$$S(\boldsymbol{\omega}) = \sum_{i=1}^{\ell} (\tilde{y}_i - \tilde{f}(\tilde{\mathbf{x}}_i, \boldsymbol{\omega}))^2.$$

При невозможности выполнить аналитическое дифференцирование функции f предлагается следующий итеративный алгоритм, предназначенный для использования с уже имеющимися реализациями методов оптимизации. Предполагается, что соответствующая реализация «принимает на вход» массив значений y_i , функцию вычисления значения f в точках \mathbf{x}_i с вектором параметров $\boldsymbol{\omega}$, и критерий останова в виде числа итераций. Пример такой реализации представлен в [5].

Алгоритм выглядит следующим образом:

- 1. Выбирается некоторое начальное приближение вектора параметров ω .
- 2. Для каждой пары (\mathbf{x}_i,y_i) из обучающей выборки рассчитывается значение частной производной $\frac{\partial f}{\partial x}$ в точке $(\mathbf{x}_i,\boldsymbol{\omega})$.
- 3. Каждое значение зависимой переменной y_i и значение функции $f(\mathbf{x}_i, \boldsymbol{\omega})$ нормируется на соответствующую величину

$$\sigma_{y_i}^2 + \sum_{j=1}^m (\frac{\partial f}{\partial x_j}(\mathbf{x}_i, \boldsymbol{\omega}))^2 \sigma_{x_{ij}}^2,$$

где вместо самой частной производной может использоваться ее некоторое численное приближение.

- 4. Выполняется итерация классического алгоритма оптимизации для таким образом модифицированных значений функции f и зависимых переменных y_i , таким образом получается новое значение вектора ω .
- 5. Если критерий останова не достигнут, алгоритм продолжает выполнение с пункта 2.

Отметим следующее:

- Критерием останова могут служить обычные критерии вроде достижения некоторого числа итераций, нормы изменения вектора ω , и т. п.
- Если известно, что производная $\frac{\partial f}{\partial x}$ является достаточно гладкой в окрестности $(\mathbf{x}_i, \boldsymbol{\omega}) \mid i \in \{1, \dots, \ell\}$, на шаге 4 алгоритма представляется разумным выполнить сразу несколько итераций классического алгоритма во избежание потенциально ресурсоемкого пересчета производных и перенормировки значений y_i и f.

5 Вычислительный эксперимент

В вычислительном эксперименте рассматриваются данные, полученные в ходе измерения зависимости интенсивности излучения I лазера от прозрачности его резонатора. Изучался лазер высокого давления (≈ 3 атм $He, \approx 60$ Topp $Ne, \approx 20$ Topp Ar) на 3p-3s переходах неона (основной переход — 585 нм), возбуждаемый электронным пучком.

Пусть насыщающая переход интенсивность излучения — I_s , наблюдаемая интенсивность — I_l . В таком случае для безразмерной величины $y = \frac{I_l}{I_s}$ с учетом однородного уширения линии усиления при высоком давлении газа и хорошей однородности возбуждения, обеспечиваемой электронным пучком, можно получить нелинейное уравнение [6]:

$$\alpha_0 L - \frac{1}{2} \ln R_0 = g_0 L \frac{1 + \sqrt{R_0}}{1 - \sqrt{R_0}} \frac{1}{y} \ln \left(1 + \frac{y \frac{1 - \sqrt{R_0}}{1 + \sqrt{R_0}}}{1 + y \frac{2\sqrt{R_0}}{1 - R_0}} \right), \tag{9}$$

где α_0 — распределенные потери (например, на рассеяние света), g_0 — коэффициент усиления слабого сигнала, R_0 — коэффициент отражения выходного зеркала лазера. Однородность накачки означает, что g_0 и α_0 одинаковы по всему объему с хорошей точностью.

Значение R_0 является независимой переменной, изменяемой экспериментаторами, и в данном разделе также обозначается как x сообразно остальной части работы.

Для достаточно больших R_0 , близких к единице, можно заменить $2\sqrt{R_0}\approx 1+R_0$ в (9), получив выражение

$$y(R_0) = \gamma \frac{1 - R_0}{1 + R_0} \left(\frac{g_0}{\alpha_0 - \frac{1}{2}L \ln R_0} - 1 \right), \tag{10}$$

где γ — нормировочный коэффициент.

Длина активной среды L-150 см, точность определения мощности лазера y имеет относительную погрешность в 2%, точность определения прозрачности R_0 имеет абсолютную погрешность и составляет 0.01 см при $R_0 \ge 0.6$ и 0.1 см иначе.

В ходе физических измерений получены значения $y(R_0)$, приведенные в таблице 1.

Таблица 1: Экспериментальные значения $y(R_0)$.

ſ					0.73			
Ī	y	3.25	10.2	16.5	20.5	22.5	23.2	18.2

Таким образом, решается задача минимизации функционала (8) при

$$\boldsymbol{\omega} = (\omega_1, \omega_2, \omega_3) = (\gamma, \alpha_0, g_0),$$

$$f(x, \omega) = y(R_0, \gamma, \alpha_0, g_0),$$

$$\sigma_{y_i} = 0.02y_i,$$

$$\sigma_{x_i} = \begin{cases} 0.01 & | x_i \ge 0.6, \\ 0.1 & | x_i < 0.6. \end{cases}$$

5.1 Оптимальные параметры модели

Кроме предложенного в настоящей работе функционала (8) рассмотрен также и классический функционал среднеквадратичной ошибки:

$$S = \sum_{i=1}^{\ell} (y_i - f(x_i, \boldsymbol{\omega}))^2, \tag{11}$$

В таблице 2 приведены значения параметров ω и ω^0 , минимизирующие (8) и (11) соответственно, а также относительные разности их компонент. Кроме того, приведены значения функционалов (8) и (11) для обоих векторов параметров.

Таблица 2: Оптимальные значения параметров модели.

5.2 Сходимость оптимальных параметров

Численно исследована зависимость сходимости параметров ω к параметрам ω^0 , получаемым минимизацией функционалов (8) и (11) соответственно, от погрешности σ_y измерения зависимой переменной y.

Разумно ожидать, что при увеличении погрешности измерения величины y при фиксированной погрешности измерения R_0 оптимальный вектор ω будет приближаться к ω^0 , так как тем более незначителен вклад ошибки измерения независимой переменной.

Рассматриваются два случая:

- 1. Погрешность *i*-го измерения y_i задается как $\sigma_{y_i} = 0.02ky_i$, т. е. погрешность зависит от значения самого y_i .
- 2. Погрешность i-го измерения y_i задается как $\sigma_{y_i} = 0.02ky_{\rm max}$, т. е. погрешность от значения конкретного y_i не зависит. Заметим, что выбор конкретного значения y, определяющего погрешность, является в данном случае достаточно произвольным и соответствует умножению всех погрешностей на некоторую константу.

В первом случае ошибки измерения y распределены неодинаково, следовательно, применение стандартного метода наименьших квадратов не обосновано. В то же время во втором случае ошибки принадлежат одному и тому же распределению, и, кроме того, независимы, поэтому в данном случае МНК-оценка применима (с точностью до ошибки измерения независимой переменной).

Для обоих случаев подробно рассматривалась область $k \in [1;100]$, значение k изменялось с шагом 0.01. Отметим, что уже при k = 50 характерная погрешность измерения величины y сопоставима с самой величиной y, а при больших значениях k превышает ее.

Результаты приведены на рис. 2а и 2b соответственно. На графиках отображены отношения компонент вектора ω к соответствующим коэффицентам ω^0 в зависимости от значения k.

Рис. 2: Зависимость оптимальных параметров от $k \in [1; 100]$.

Видно, что в случае фиксированной погрешности для всех y_i значения ω действительно стремятся к ω^0 для разумных значений k, а в случае гетероскедастичности ошибки такой зависимости не наблюдается, хотя значения ω и оказываются достаточно близки к ω^0 .

6 Заключение

Предложен модифицированный функционал среднеквадратичной ошибки для существенно нелинейных моделей, применимый в случае наличия ошибок измерения независимых переменных и различия распределения, к которому принадлежат ошибки, в разных точках обучающей выборки.

Показана сходимость предложенного функционала к классическому функционалу среднеквадратичной ошибки для случая гомоскедастичности погрешностей зависимой переменной и пренебрежимо малой погрешности измерения независимых переменных.

Список литературы

- [1] Рудой, Г. И.: О возможности применения методов Монте-Карло в анализе нелинейных регрессионных моделей. Сибирский Журнал Вычислительной Математики, 4, 2015.
- [2] Jukić, Dragan: On nonlinear weighted least squares estimation of Bass diffusion model. Applied mathematics and computation, 219(14):7891–7900, 2013.
- [3] Kiryati, Nahum ¤ Bruckstein, Alfred M: Heteroscedastic Hough transform (HtHT): An efficient method for robust line fitting in the 'errors in the variables' problem. Computer Vision and Image Understanding, 78(1):69–83, 2000.

- [4] Marquardt, D. W.: An algorithm for least-squares estimation of non-linear parameters. Journal of the Society of Industrial and Applied Mathematics, 11(2):431–441, 1963.
- [5] King, Davis E.: *Dlib-ml: A Machine Learning Toolkit*. Journal of Machine Learning Research, 10:1755–1758, 2009.
- [6] Champagne, LF: Transient Optical Absorption in the Ultraviolet. В Applied Atomic Collision Physics, Volume 3: Gas Lasers, том 3, страница 349, 1982.