Análise de metaheurísticas em problemas de classificação

Gabriel dos Santos Sereno¹

Abstract

Este artigo tem como objetivo analisar a aplicação de algoritmos metaheurísticos em bases acadêmicas para construir um comparativo com a taxa de acurácia e demais dados. Nisso, foi construído três algoritmos, são eles: Hill Climbing, Simulated Annealing e Genetic, além de utilizar o algoritmo do Heterogeneous Pooling com os classificadores GaussianNB, DecisionTreeClassifier e o KNeighborsClassifier, utilizando o ScikitLearn. Dessa forma, as base de dados também foram utilizadas com o pacote ScikitLearn e são elas: Wine, Breast cancer e Digits.

Keywords: Classificadores, Base de dados, Algoritmos, ScikitLearn, Metaheurísticas

1. Introdução

No contexto empresarial e científico, os problemas envolvendo inteligência artificial para a resolução de problemas se tornou extremamente complexo. Com isso, é importante a utilização de técnicas de metaheurística para potencializar a decisão e a assertividade dos algoritmos de inteligência artificial.

Nesse contexto, o artigo tem como objetivo comparar os algoritmos de metaheurística em conjunto com classificadores para determinar qual metaheurística potencializa melhor a busca por uma solução ótima nas bases de dados. Nisso, foi utilizados comparativos de acurácia, testes estatísticos, gráficos *Box plot* para

 $^{^1{\}rm Aluno}$ do curso de mestrado com enfase em Inteligência Artificial na Universidade Federal do Espírito Santo

ilustrar de forma clara as diferenças das técnicas. As metaheurísticas testados foram: Hill Climbing, Simulated Annealing, Genetic em conjunto com o Heterogeneous Pooling com os classificadores GaussianNB, DecisionTreeClassifier e o KNeighborsClassifier advindos do pacote ScikitLearn.

Todas as bases foram padronizadas com o StandardScaler, além de passarem pelo Cross-validation e o Grid Search para a busca de hiperparâmetros. Após a obtenção de dados, o comparativo foi feito com testes estatísticos como T-Student e o Wilcoxon, além de tabelas com as informações da mediana, desvio padrão, acurácia e os suportes superiores e inferiores de cada classificador testado.

20 2. Metaheurísticas

O foco do artigo é voltado inteiramente na análise do poder das metaheurísticas, bem como na assertividade e técnica em comparação com técnicas simples. Além disso, para engrandecer o conhecimento transmitido por este artigo, foi implementado os algoritmos de *Hill Climbing*, *Simulated Annealing* e o *Genetic* em conjunto com o *Heterogeneous Pooling*.

2.1. Hill Climbing

O algoritmo *Hill Climbing* tem como objetivo procurar melhores valores a partir de pequenos movimentos, verificando se o passo atual é melhor que o passo anterior. Nisso, o *Hill Climbing* consegue encontrar bons resultados em pouco tempo e com pouco processamento. Entretanto, tende-se a não encontrar locais que podem ser um dos melhores resultados.

Nesse artigo, foi implementado o *Hill Climbing* determinístico, que pesquisa em todos os estados possíveis a melhor combinação de classificadores.

O único hiperparâmetro fornecido para a classe, foi o valor de tempo máximo de execução (max_time), para que a aplicação não fique por muito tempo em execução.

Os métodos utilizados no *Hill Climbing* seguem a ideia original do algoritmo. Um deles é a geração de estados, que é fornecido um estado pré-criado contendo um array contendo zero e um ao longo do seu tamanho. Ao fim desse método, é utilizado a avaliação de todos os estados para selecionar o melhor e verificar se houve melhora com o passo anterior, caso não houve melhora na acurácia, o algoritmo retorna o melhor valor guardado.

Pela característica do *Hill Climbing*, o algoritmo geralmente retorna os primeiros classificadores como os melhores, pois tem grandes chances dos testes intermediários resultarem em valores menores que o ótimo já localizado, tornado extremamente difícil para chegar ao final.

2.2. Simulated Annealing

O algoritmo Simulated Annealing tem como objetivo procurar melhores valores similarmente a técnica empregada no resfriamento de materiais através da área metalúrgica. Essa técnica utiliza o conceito de temperatura, sendo que nas temperaturas maiores o algoritmo tende a procurar os melhores valores em todos os estados disponíveis. Ao chegar em temperaturas mais baixas, o algoritmo tende a procurar melhores combinações dos classificadores no melhor ponto encontrado. Dessa forma, diferentemente do Hill Climbing, o algoritmo perde a tendencia de ficar preso em pontos de ótimos locais e ganha mais poder para encontrar o ótimo global.

O método de criação de estados tem o objetivo de criar todos os vizinhos do estado exemplo e com isso é possível analisar boa parte da base dados e suas variações.

Para buscar em todas as possibilidades de combinações e não somente aos que tendem a ser melhores, foi implementado o método de probabilidade, fazendo com que em determinada temperatura possa ser possível procurar os melhores resultados, evitando estagnar em um resultado que é apenas um ótimo local.

Dessa forma, o Simulated Annealing tende a utilizar mais tempo que o Hill

Climbing, pois busca mais combinações, tornando-se mais preciso.

2.3. Genetic

O algoritmo *Genetic* visa procurar os melhores valores através da busca genética, similar ao sistema biológico humano, no qual utiliza mutações, troca

de genes e outras características importantes desse algoritmo. A principal ideia do algoritmo *Genetic* é utilizar as melhores combinações para construir novas combinações com pequena diferenciação, com o objetivo de aprimorar a cada geração o resultado obtido.

Para isso, o método de criação de dados faz uma população para iniciar os testes. Nisso, é verificado qual de todas as combinações são as melhores para iniciar o elitismo e a mutação para gerar novas combinações de classificadores e novamente fazer mais uma etapa da criação da população. No artigo, para encerrar os ciclos a procura do melhor classificador, foi pelo método de parada após 120 segundos.

Como o algoritmo *Genetic* pode gerar combinações que já foram testadas e também com alto número de combinações por ciclo, tendendo a gastar várias horas até determinar o melhor classificador encontrado.

3. Comparativo entre os resultados

Para realizar o estudo das metaheurísticas, foi utilizado a técnica de validação cruzada estratificada (*Cross-validation*) de 10 *folds*, com 3 repetições internas.

Além disso, foi necessário configurar os hiperparâmetros, utilizado em cada algoritmo que está sendo representado na tabela a seguir:

Metaheurística	Hiperparâmetros	
Hill Climbing	$max_time = 120$	
Simulated Annealing	$t = 200$; alfa = 0.1; iter_max = 10; max_time = 120	
Genetic	pop_size = 20 ; max_iter = 100 ; cross_ratio = 0.9 ;	
	$mut_ratio = 0.1; max_time = 120; elite_pct = 20$	
Heterogeneous Pooling	$n_Samples = [1, 3, 5, 7]$	

Table 1: Distribuição dos hiperparâmetros das metaheurísticas

3.1. Digits

A base *Digits* são uma das maiores bases em comparação com as demais, contendo mais de 1700 linhas com 64 colunas, além de ter 10 classes que torna o trabalho do classificador um pouco mais árduo. Os resultados dos classificadores utilizados estão na tabela a seguir:

Técnica	Acurácia	Desvio padrão	Lim. inf.	Lim. sup.
Hill Climbing	0.9705	0.0113	0.9664	0.9745
Simulated Annealing	0.9701	0.0117	0.9659	0.9743
Genetic	0.9762	0.0105	0.9724	0.9800
Het. Pooling	0,9560	0,0130	0,9513	0,9607
RandomForest	0,9756	0,0103	0,9719	0,9793

Table 2: Resultados das técnicas na base Digits

Analisando o gráfico, percebe-se que todas as técnicas tiveram o mesmo desempenho, entretanto é importante lembrar que o algoritmo de *Hill Climbing* e o *Heterogeneous Pooling* foram os maís rápidos para serem executados, gastando menos de 5 minutos.

Entretanto, o *Genetic* obteve o melhor resultado, mas muito aproximado dos demais, em torno de 97% de acurácia. Esse resultado foi possível por causa das técnicas do próprio algoritmo genético que procura com maior amplitude um melhor resultado e em decorrência disso, é mais custoso.

Essa similaridade é observável no gráfico de Boxplot a seguir:

Figure 1: Gráfico Boxplot a partir dos resultados das técnicas na base Digits.

No gráfico fica ainda mais claro a similaridade entre os algoritmos, inclusive entre *Hill Climbing* e *Simulated Annealing* que basicamente tem os mesmos valores. Dessa forma, é necessário utilizar os testes de *Wilcoxon* e o *T-Student* para verificar se os métodos são realmente similares. A Tabela 3 mostra os resultados dos testes:

Hill Climbing	0.7725	0.0144
0.8829	Simulated Annealing	0.0022
0.0101	0.0028	Genetic

Table 3: Gráfico dos testes na tabela pareada da base Digits.

Na Tabela 3, a representação dos classificadores que tiveram a hipótese nula rejeitada são os classificadores que tiveram o resultado abaixo de 5%, em outras palavras, onde há uma diferença significativa e assim, os demais classificadores aceitam a hipótese.

Os testes entre os algorítimos de *Hill Climbing* com *Genetic* e o *Simulated Annealing* com *Genetic* mostram uma diferença significativa, tendo valores abaixo de 1% e os demais mostraram grandes similaridades, com resultados acima de 75%.

Portanto, a utilização de algoritmos de metaheurística mostra-se importante em bases grandes para potencializar a busca da melhor combinação dos dados. Entretanto, deve-se utilizar técnicas mais rápidas para efetuar essa busca, pois todos os algoritmos testados, tiveram resultados muito similares, mas tendo o algoritmo de *Hill Climbing* com menos de 20 minutos tendo um dos melhores resultados. Além disso, uma das técnicas utilizadas no artigo anterior e que teve o mesmo resultados das metaheurísticas foi o *Random Forest*, utilizando menos de 3 minutos para mostrar resultados excelentes. Com isso, mostra que as metaheurísticas devem ser testadas ao serem utilizadas em bases que tem bons resultados com classificadores comuns, pois tendem a terem o mesmos resultados ou com pouca melhoria.

3.2. Wine

115

A base Wine é menor comparado ao Digits, contendo apenas 3 classes e cerca de 180 linhas com 13 colunas. Dessa forma, os classificadores tendem a ter resultados mais precisos pelo menor número de classe, mas menos generalizado pela quantidade de linhas. Os resultados dos classificadores utilizados estão na tabela a seguir:

Técnica	Acurácia	Desvio padrão	Lim. inf.	Lim. sup.
Hill Climbing	0.9812	0.0366	0.9681	0.9943
Simulated Annealing	0.9700	0.0452	0.9538	0.9862
Genetic	0.9716	0.0484	0.9543	0.989
Het. Pooling	0,9660	0,0541	0,9466	0,9853
RandomForest	0,9831	0,0385	0,9693	0,9969

Table 4: Resultados das técnicas na base Wine

Como na base *Wine*, as metaheurísticas e o *Heterogeneous Pooling* tiveram ótimos resultados em torno de 97%. Entretanto, o algoritmo de *Hill Climbing* mostrou o melhor resultado entre eles, surpreendendo no limite superior de quase 100% com poucos minutos de execução.

Dessa forma, como o algoritmo de *Hill Climbing* implementado no artigo é a versão determinística e a base *Wine* é bem menor em comparação as outras bases, então o tempo de execução é bem menor e torna-se mais fácil testar todas as combinações possíveis de classificadores, encontrando a melhor combinação e tendo o melhor resultado.

Figure 2: Gráfico Boxplot a partir dos resultados das técnicas na base Wine.

O gráfico de *Boxplot* mostra a diferenciação entre o algoritmo de *Hill Climbing* entre os demais, mostrando o poder do algoritmo em pouco tempo. Entretanto, houve alguns *outliers* que não obtiveram resultados melhores que os demais classificadores.

Hill Climbing	0.1685	0.0845
0.0616	Simulated Annealing	0.8836
0.0953	0.7995	Genetic

Table 5: Gráfico dos testes na tabela pareada da base Wine.

De acordo com a Tabela 5, nenhum teste apresentou grandes diferenças que resultaram em porcentagens menores que 5%, mostrando que as metaheurísticas estão encontrando as melhores combinações entre os classificadores.

145

Novamente, o gráfico Boxplot e as tabelas apresentadas nesse tópico mostram

que não é recomendado utilizar algoritmos que utilizam muito tempo para encontrar um resultado, pois o algoritmo *Hill Climbing* mostrou um ótimo desempenho, chegando quase a 100% de acerto com pouco tempo. Além disso, deve-se considerar a necessidade da utilização das metaheurísticas em conjunto a classificadores, pois os resultados teve pouco ganho em comparação aos classificadores que não utilizaram a técnica.

5 3.3. Breast cancer

A base Breast cancer contêm 2 classes apenas, significando se o paciente possui ou não o câncer. Além disso, é uma base mediana, contendo 569 linhas com 30 colunas. Com essas características, os classificadores tendem a ter um excelente desempenho, pois contem um bom número de linhas e colunas e o trabalho mais fácil de classificar apenas duas classes. Dessa forma, os classificadores podem ter resultados semelhantes. Os resultados dos classificadores utilizados estão na tabela a seguir:

Técnica	Acurácia	Desvio padrão	Lim inf.	Lim. sup.
Hill Climbing	0.9525	0.0272	0.9428	0.9623
Simulated Annealing	0.9537	0.0237	0.9452	0,9762
Genetic	0,9583	0,0233	0,9500	0.9622
Het. Pooling	0,9548	0,0238	0,9463	0,9634
AdaBoost	0,9677	0,0235	0,9593	0,9762

Table 6: Resultados das técnicas na base Breast cancer

Novamente, todas as técnicas tiveram resultados similares, girando em torno de 96% de acurácia e com os limites inferiores e superiores de 94% e 96% respectivamente.

Figure 3: Gráfico Boxplot a partir dos resultados das técnicas na base Breast cancer.

Os resultados mostrados no gráfico de *Boxplot* mostram a igualdade do desempenho entre os classificadores e também o poder de classificação utilizando metaheurística.

Hill Climbing	0.9859	0.3662
0.7732	Simulated Annealing	0.3409
0.2445	0.3601	Genetic

Table 7: Gráfico dos testes na tabela pareada da base Breast cancer.

De acordo com a Tabela 7, os testes de *Wilcoxon* e do *T-student* mostram que todos as metaheurísticas utilizadas são parecidos e que não tem diferença significativa, tendo resultados de até 98% nos testes.

Dessa forma, não é recomendado a utilização de metaheurísticas com classificador em bases mais fáceis de classificar como a *Breast cancer*, pois tiveram os mesmos resultados e o *ensemble AdaBoost* teve o melhor desempenho em comparação as demais técnicas. Portanto, o uso de metaheurísticas podem atrasar a classificação desnecessariamente.

4. Conclusões

Trabalhar com comparações é essencial para achar o melhor resultado e o classificador que encaixa melhor a um determinado problema. Com os testes feitos desse artigo, foi possível ver a diferença das metaheurísticas com os classificadores, principalmente no uso do tempo e computacional. É possível concluir que as metaheurísticas são mais eficazes em classificadores que não obteve uma taxa de acurácia aceitável, aprimorando a busca pelo melhor resultado.

Ademais, as metaheurísticas se demonstraram poderosas em aprimorar os resultados dos classificadores, além de ser facilmente implementados e altamente customizáveis. Diante disso, deve-se analisar o uso computacional se é viável ou não em um projeto que visa classificar rapidamente bases de dados, pois para produzir os dados desse artigo, foi necessário acima de 8 horas para cada base.

Com os testes de *Wilcoxon* e *T-test* foi possível analisar a diferença entre as metaheurísticas, logo determinando qual técnica teve o melhor desempenho em conjunto com as tabelas e os gráficos de apoio apresentados. Geralmente, as melhores metaheurísticas tiveram uma diferença significativa aos demais classificadores, determinando a sua superioridade.

Esse trabalho contribuiu com o aprofundamento das técnicas de metaheurística e de testes, possibilitando o aprendizado mais palpável na prática. As descobertas ao implementar empiricamente a teoria foram fundamentais para consolidar e tornar base para situações reais. Por isso, para contribuições futuras, sugiro a utilização de outras metaheurísticas e também de bases em que classificadores não tiveram boa efetividade para verificar a eficácia na implementação dessas técnicas. Uma outra futura contribuição, é a utilização de metaheurísticas em maquinas lineares e *Deep Learning* para a buscas de pesos.

References

 Slides, artigos e notas transmitidas em aula das disciplinas tutoradas pelo professor.