Digital Circuits and Systems

Spring 2015

Week 1 Module 2

Shankar Balachandran*
Associate Professor, CSE Department
Indian Institute of Technology Madras

*Currently a Visiting Professor at IIT Bombay

Binary Switch

(a) Two states of a switch

(b) Symbol for a switch

A Light Controlled by a Switch

Simple connection to a battery

Two Basic Functions

(a) The logical AND function (series connection)

(b) The logical OR function (parallel connection)

A Series Parallel Circuit

An Inverting Circuit

Truth Table

x_1	x_2	$x_1 ullet x_2$	$x_1 + x_2$
0 0 1	0 1 0	0 0 0	0 1 1
1	$\begin{array}{c c} 0 \\ 1 \end{array}$	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

AND

OR

Truth Table of 3-Input AND and OR Operations

x_1	x_2	x_3	$x_1 \bullet x_2 \bullet x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	$1 \mid$	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	$1 \mid$	1	1

Truth Table of 3-Input AND and OR Operations

x_1	x_2	x_3	$x_1 \bullet x_2 \bullet x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	$1 \mid$	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	$1 \mid$	1	1

Symbols

- AND
 - □ Dot (•/)
 - Imagine it to be like multiplication
 - \square Example $x \bullet y$
 - Called "x and y"
- OR
 - □ Plus (+)
 - Imagine it to be like addition
 - \square Example x + y
 - □ Called "x or y"

Introduction

13

NOT Operation

- Symbol
 - Closing single quote '
 - Also overline and ! symbol
 - □ Example: x', \overline{x} , !x
- Calling
 - x complement
 - □ "not of x"
 - □ Simpler: "x bar"

Symbols

(a) AND gates

(b) OR gates

(c) NOT gate

Boolean Algebra

- Named after George Boole
- Axioms

$$0 \cdot 0 = 0$$

$$\Box 0 + 0 = 0$$

Duality

$$\Box 1 \cdot 1 = 1$$

$$\Box 1 + 1 = 1$$

$$0+1=1+0=1$$

$$0 \cdot 1 = 1 \cdot 0 = 0$$

Single Variable Theorems

$$\mathbf{x} \cdot 0 = 0$$

$$x + 1 = 1$$

$$\blacksquare$$
 x · 1 = x

$$\mathbf{x} + 0 = \mathbf{x}$$

$$\blacksquare$$
 \times \cdot \times $=$ \times

$$\blacksquare$$
 $X + X = X$

$$x + !x = 1$$

$$\blacksquare x \cdot !x = 0$$

$$\blacksquare$$
 X · X · X · ... X = X

$$\blacksquare$$
 $X \cdot Y = Y \cdot X$

$$\blacksquare$$
 x + y = y + x

Both are commutative

Three Variable Theorems

Associative Laws

$$\square \quad \times \quad (\land \quad \land \quad \land) \quad = \quad (\land \quad \land \quad \land) \quad \cdot \quad \land$$

$$\square \quad \times + (y + z) = (x + y) + z$$

Distributive Law

$$\square \quad \times \quad (y + z) = (x \cdot y) + (x \cdot z)$$

More as we go

End of Week 1: Module 2

Thank You