German Patent No. 42 03 644 A1

Job No.: 778-83808

Translated from German by the Ralph McElroy Translation Company 910 West Avenue, Austin, Texas 78701 USA

Ref.: J-2992/2781 PCT

FEDERAL REPUBLIC OF GERMANY GERMAN PATENT OFFICE PATENT NO. 42 03 644 A1

(Offenlegungsschrift)

Int. Cl.⁵:

F 23 D 3/08

Filing No.:

P 42 03 644.5

Filing Date:

February 8, 1992

Date Laid-open to Public Inspection:

August 12, 1993

LONG-BURNING LAMP

Inventor:

Hans-Ludwig Schirneker

4773 Möehnesee, DE

Applicant:

Hans-Ludwig Schirneker

4773 Möehnesee, DE

Agent:

L. Hanewinkel

Patent Attorney 4790 Paderborn

[Abstract]

A long-burning lamp is disclosed which features a dish-like vessel in which a wick is located and which is filled with solid or pasty (at room temperature) or with liquid combustible material. The wick consists at least in part or predominantly of inorganic, noncombustible material and is thus reusable.

Description

The invention pertains to a long-burning lamp which has a dish-like vessel in which a wick is located and which is filled with solid or pasty (at room temperature) or with liquid combustible material.

Long-burning lamps of this kind are known, for example, as tea lights, in which a compressed element of paraffin is located in the dish-like vessel, and into which a wick is inserted. At the lower end of the wick there is a wafer-like wick container so that the wick will retain its vertical position even when the paraffin of the compressed element has melted and become fluid during the burning of the lamp. The wick consists of paraffin-saturated cotton material and burns up with the paraffin, so that it cannot be reused.

In these known tea lights the visible flame disappears with the wick as it becomes shorter as it burns up, and decreases with the falling level of paraffin in the dish, and ultimately, for example in wind lamps in which these tea lights are used, or even in other lighting elements, it will not be sufficiently visible, if at all. Also during the burn up of the tea light, in the lower portion of the vessel some high temperatures are produced which represent a certain fire hazard. In each of the known tea lights, after the burn out, the little dish and wick holder are left over and they cannot be reused and thus have to be cleaned out or even discarded, which increases the amount of trash.

In a known candle as a kind of tea light (DE 34 03 604 A1) the wick is made of a cotton thread and is located in an upright standing tube which is permeable to liquid combustible material, and within this tube there is a suction-shaped element surrounding the wick. This element is used for the intake of liquefied combustible material such as molten wax. The tube surrounding the wick keeps the flame from sinking with the falling level of combustible material. But the tube cannot prevent the wick thread made of cotton material from burning away with the candle, so that the wick cannot be reused. This known candle cannot be lighted again once it has been extinguished after partial burn up, and the wax remaining in the dish-like vessel will solidify because in the vicinity of the upper end of the wick where the flame is burning, there will then not be enough wax to supply the flame until the wax surrounding the wick has softened and can be moved upward to the flame through the suction-like element surrounding the wick. This known candle is likewise intended only for one-time use, i.e., after burn up of the combustible material filled in the dish-like vessel, such as wax, the dish-like vessel with the wick holder and wick located therein cannot be used again.

The invention is based on the problem of creating a long-burning lamp in which the flame will always burn at the same height and in which the solid combustible material can be replenished, so that the lamp can be reused.

This problem is solved according to this invention by a long-burning lamp of the kind described in the introduction, which has the properties specified in Claim 1. Favorable refinements of the invention are the subject of the dependent claims.

Due to the invention a long-burning lamp such as a tea light is created in which the wick consists at least in part, or mostly of inorganic material and the flame does not drop downward with the drop in the level of combustible material such as the level of the wax, but rather always burns at the same level.

The combustible material is preferably paraffin, however, other liquid combustible materials such as paraffin oil are possible. Also, pasty combustible materials can be used.

According to one preferred embodiment of the invention, wafer-like wax or paraffin elements are used as combustible material, which have a thickness of about six mm for example, and an outside diameter of thirty-eight mm and contain a central drilled hole through which the wick can be passed. The central hole can be formed at least in part in a conical shape, so that the upper end of the wick will always have sufficient free space to be ignited and to supply a well-burning flame.

For example, if a long-burning lamp according to this invention with three wafer-like combustible material elements stacked one upon the other is ignited, then the combustible material such as paraffin will begin to melt, as is known, in the immediate vicinity of the flame and will flow to the wick, for example, through a vertically running slit in the tube surrounding the wick. Gradually, all three paraffin wafers will melt entirely, so that the combustible material located in the dish-like vessel is entirely liquid. As soon as the combustible material is consumed, the flame will go out. Additional ring-shaped wafers of combustible material can be installed, whereupon the wick can be ignited again. Since the wick is often entirely or mostly burned up, when the lamp is ignited again, the ignition flame should be set up or maintained long enough so that during ignition, combustible material such as wax will melt off and flow to the wick.

If the long-burning lamp according to this invention is extinguished before the combustible material located in the dish-like vessel is consumed, then before relighting the lamp, individual, ring-shaped wafers of the solid combustible material can be added. The addition of new fuel should take place after the combustible material remaining in the dish-like vessel has solidified.

If the top ring-shaped wafer is intended to protrude above the outer end of the wick tube, then it is useful to position the top, ring-shaped wafer of combustible material so that the cone of the central opening is expanded outward. But if the top of the added combustible material wafers is to be located roughly at the same height or below the upper end of the wick tube, then it would be useful to position the top wafer of combustible material so that the cone of its central opening is expanded downward. Alternatively, the top wafer can be broken apart in half, in particular if it has a corresponding fracture line, so that only one half of a wafer is added to the lamp as top layer and the flame is exposed on one side where the liquid combustible material melted from the half wafer of combustible material can flow off.

It is important that sufficient combustible material can liquefy as quickly as possible in the immediate vicinity of the burn zone of the wick supply the flame without too much combustible material liquefying so as not to smother the flame and cause the lamp to go out. The wick itself is equipped on its surface with vertical grooves, for example, which act as capillary tubes in conjunction with the tube surrounding the wick. The liquid or liquefied combustible material can rise up through these grooves or even through tiny drilled holes within the wick to the upper end of the wick in order to supply the flame with combustible material.

Alternatively, the wick can also contain tiny drilled holes in the form of capillary tubes, through which the liquid wax will rise up before it evaporates in the vicinity of the upper end of the wick and supplies the flame with combustible material.

Finally, it is also possible to design the wick or the wick holder with a polygonal cross section and to set the wick and wick holder cylindrically opposite each other in order to create space between them for the ascending liquid combustible material.

According to another preferred embodiment, the wick tube is equipped with a three prong or multi prong or serrated wick holder which is positioned parallel to the bottom of the cut and preferably resting upon this bottom, in order to keep the wick in the middle and thus centered in the dish. But the wick holder can also be round.

The dish can be equipped with a cover containing a central hole, so that a lamp specified in this manner will have a particularly decorative effect. The central opening located in the cover can have many different shapes, for example, a star-shape, heart-shape or circular shape.

Potential candidates for the inorganic material for the wick are, for instance, gypsum, chalk, clay, cement, glass wool, glass silk, slag wool, rock wool and similar items. Also, mixtures containing at least one inorganic material can be used. A mixture of clay with an inorganic binder such as water glass has proven particularly suitable.

The particular advantages of the invented, long-burning lamp are that during the burn, it produces virtually no soot, that the flame is always burning above the vessel and does not drop down in the vessel with the consumption of the combustible material, that no overheating of the lamp is possible and that the long-burning lamp is very environmentally friendly, because the dish-like vessel and the wick including wick holder can be reused and thus need not be discarded only after a one-time use.

Additional advantages of the long-burning lamp according to this invention are that the wick holder is centered in the dish-like vessel and thus cannot slide off to the side or tip over and thus go out, so that decorative covers can be used which guarantee an attractive appearance and numerous and versatile designs. Because the combustible material can be replenished without having to replace the dish-like vessel or the wick, a low-cost, efficient operation is possible. If the invented long-burning lamp is used as a kind of Rechaud tea light, the added advantage is obtained that the flame always has the same distance from the bottom of the mounted can or pan, so that a uniform heat output is assured and thus also a uniform heat utilization.

The long-burning lamp according to this invention can be designed as a kind of hourly burner, where the dish-like vessel can also consist of transparent material. In this case, the perpendicular wall or the mantle of the vessel can protrude upward over the outer end of the wick and additionally be covered by a perforated cover, so that a certain amount of wind protection is provided.

The wick need not be made exclusively of inorganic material, rather the wick material can also contain organic substances, such as wood charcoal, wood dust, cellulose and such. These supplemental, organic materials burn in the combustion zone of the wick, where the temperature is sufficient, so that within the wick in the combustion zone, cavities are produced which increase the suction capacity of the wick. It is important that a structure of inorganic material remain in the wick in order to maintain the configuration of the wick.

The most interesting inorganic materials for the wick are gypsum, cement, clay, glass wool and glass silk.

As combustible material we can use paraffin, stearin, waxes and liquid fuels, such as paraffin oil. The solid fuels can be used in granulate form, pasty form or as premanufactured combustion elements, such as wafers. In this case, the solid combustible material or the solid fuel can also be colored, which may be of interest in particular when the dish forming the outer sheath is transparent or at least translucent (opaque).

If pasty or plastic fuel is used, then a fuel with lower softening and melting point than paraffin can be used, so that tea lights or other long-term burners with larger diameters are possible, than is presently the case for use of solid (at standard temperature) paraffin as fuel.

An additional advantage of the long-burning lamp according to this invention consists in that the wick cannot tip over and be extinguished in the liquid or liquefied fuel.

The dish-like vessel of the invented long-burning lamp can also be made of plastic, such as transparent plastic, and in the center an inward protruding pin can be molded on, on which a tube acting as wick holder can be placed. In the region of this pin, on the outside of the vessel, a downward open hole can be provided which makes it possible to place the long-burning lamp on a rod or pin located on a holder.

If the dish-like vessel consists of transparent material, which can also be dyed or colored, when the flame is burning a particularly decorative effect is achieved, which can be enhanced by the coloration of the transparent material and/or the coloration of the combustible material.

The dish-like vessel of the invented long-burning lamp can be made of plastic, for example, without any reservations—in contrast to known tea lights—because the flame is always burning above the vessel or at its upper end, and thus for this reason does not come into contact with the vessel itself. If a cover of noncombustible material such as metal is set on top, an additional protection of the plastic vessel can be provided. No overheating will be possible. Also,

foreign objects located in the long-burning lamp, such as residues of matches and such, and which may have fallen to the bottom of the dish-like vessel, will not be ignited because the flame is always burning at the upper end of the noncombustible wick and thus will not get to the bottom of the vessel.

Inside the dish-like vessel, on its bottom, we can install a heat conducting layer such as aluminum foil, which will conduct the heat from the wick holder outward, so that the fuel located in the vessel will be totally consumed and can flow to the lower end of the wick.

According to one preferred design of the invention, the wick holder can be lined at least along a portion of its length with a foil of glass fiber mat which surrounds the wick and thus forms a holder for it. This will ensure that sufficient liquid or liquefied fuel will always be sucked into the burn zone of the wick, in particular when the dish-like vessel has nearly burned empty. The foil should be set back a little from the upper edge of the wick holder designed in the shape of a little tube, for example, by two to three mm, in order to form a ring-like cavity within the wick holder around the wick, in which combustion residues falling from the wick will land.

The longitudinal slit located in the tube-like wick holder should be only a few hundredths of a millimeter wide, in order to prevent the flame from creeping downward on the outside of the wick and of the wick holder when the vessel has burned nearly empty.

Preferably the wick has a point at least at one end. However, if it has a point on both ends, then in case the one end should fail for any reason whatsoever, then it can be extracted from the holder, inverted and reinstalled in the reverse position, if the user does not wish to replace it. Thus the wick can have a circular cross section, or can even be polygonal or rectangular. In the case of a polygonal or multiangular cross section, the advantage attained is that cavities will remain around the wick within the tube-like wick holder which will additionally promote the uptake of the liquefied fuel.

Since the only part subject to wear in this invention is the wick itself, which can and should be replaced only after numerous hours of operation, that is, after it fails to function, whereas the other parts of the long-burning lamp—namely the dish-like vessel, the wick holder and any installed ring-shaped washers—can be replaced after extinguishing the flame, the advantage is that the long-burning lamp according to this invention is particularly environmentally friendly, since little waste is created.

The casing-like or tube-like wick holder according to this invention can be equipped with a casing ring set upon it, which can slide upward or downward at the upper end on the wick holder. By displacement of this casing ring, the height of the flame can be adjusted in order to tailor the flame to the softening point or melting point of the fuel and to the thermal conductance of the material of the wick holder and to additional parameters of the long-burning lamp. Like the tube-like wick holder, the casing ring contains preferably a narrow, longitudinal slit of only a

few hundredths of a millimeter wide. Alternatively, the wick can also be pulled out somewhat from the wick holder in order to change the height of the flame.

The wafers made of solid fuel such as paraffin and intended to replenish the fuel supply can have different shapes. For example, they can be bulged on the bottom and can be hollow on top. Thus, the ring-shaped wafers will be roughly adapted to the surface of the hardened fuel remaining in the dish-like vessel. They can also have protrusions serving as spacers or can be powdered in order to keep them from sticking together.

If the fuel is pasty or plastic at standard temperature, then it can be delivered in the shape of cylindrical rods of two hundred mm length and with a diameter of eighty three mm, for example, and have a central hole. The end user has to cut from the rod individual pieces with a length corresponding to the height of the fuel to be replenished in the dish-like vessel.

Sample designs of the long-burning lamp according to this invention are illustrated schematically in the figures. We have:

Figure 1, a vertical cross section through one embodiment of this long-burning lamp,

Figure 2, a top view of the cover of the long-burning lamp which features a central, circular opening,

Figure 3, a top view of a modified cover of the long-burning lamp which features a central, star-shaped opening,

Figure 4, a vertical cross section through a paraffin wafer suitable for the long-burning lamp in Figure 1 (shown somewhat enlarged),

Figure 5, a vertical cross section through a paraffin wafer modified somewhat in comparison to Figure 4,

Figure 6, a side view of a wick for the long-burning lamp from Figure 1,

Figure 7, a top view of the wick from Figure 6,

Figure 8, a top view of a plate-like wick holder with which the wick can be held centrally in the dish-like vessel of the long-burning lamp from Figure 1,

Figure 9, a vertical cross section of a wick modified in comparison to Figure 6,

Figures 10 to 12, different wick points for the wick from Figure 9, each shown in vertical cross section,

Figure 13, a cross section through another wafer consisting of solid fuel (at normal temperatures) which has a bulged underside, and

Figure 14, a vertical cross section through a replaceable long-burning lamp according to this invention, modified in comparison to Figure 1, which is set up on a pedestal stand.

A long-burning lamp 1 illustrated in particular in Figure 1, has a dish-like vessel 2 which can be covered with a removable lid 3. Both the dish 2 and also the lid 3 can be made from sheet metal.

In the middle of the vessel 2 there is a wick 4 which is made of inorganic, noncombustible material and whose point 5 extends beyond the lid 3, as Figure 1 shows. For this purpose, the lid 3 contains a central opening 6 or 7 which has the circular-shape according to Figure 2 or the star-shape according to Figure 3.

The long-burning lamp 1 is designed as a kind of tea light. In its vessel 2 there are wafers 8 of combustible material which can be of paraffin or wax. The outer diameter of these combustible material wafers 8 is adapted to the inner diameter of the dish-like vessel 2 with a circular perimeter, so that the wafers 8 can be set into the vessel 2 with little free play and can also be replenished in the same manner. The thickness of the individual wafers 8 has been selected so that a number of wafers will fill the dish-like vessel 2 with solid combustible material, whereby a wafer broken in half as top wafer can also protrude above the upper edge of the vessel so that the wick when ignited, will be quickly supplied with liquefying or liquefied combustible material.

From Figures 4 and 5 it is evident that each combustible material wafer 8 has a central opening 9 or 10 whose smallest diameter is somewhat greater than the outer diameter of the wick 4 (with its roughly cylindrical perimeter), so that the wafers 8 when placed into the dish-like vessel 2, can be pushed over the wick located there.

In the embodiment according to Figure 4, the opening 9 is designed as a cylindrical hole which has a conical recess 11 at its upper end (seen in the figure) which expands the opening 9 significantly at one end.

According to Figure 5, the central opening 10 of the wafer 8 is designed overall as a cone, so that the opening on one side of the wafer is narrower than at the other side.

The combustible material wafers 8 represented in detail in Figures 4 and 5 can be placed into the dish-like vessel 2 with the wide or the narrow end of their central opening 9 or 10 facing up or down, depending on whether a broader or a more narrow, central opening is needed at the upper end of the stockpile of solid combustible material located in the vessel 2.

As is evident in particular in Figures 6 and 7, the base element of the wick 4 having an essentially cylindrical base element is housed in a little tube 12 made of metal, from whose upper end only the point 5 of the wick 4 is protruding. This little tube 12 is made of sheet metal whose side edges rest tightly against each other but are not joined together, so that with respect to cross the entire height of the tube 12, a narrow groove 13 with a width on the order of hundredths of millimeters is left open, in which the liquefying or liquefied combustible material can flow upward across the outer side of the wick 4 to its point 5, in order to supply the flame (not illustrated in the drawing) with combustible material.

As an alternative, or as an addition, grooves running in the longitudinal direction can be cut in the mantle-shaped surface of the cylindrical wick 4 in which the liquefied combustible material can rise up to the point 5.

The tube 12 is provided at its lower end with a radial flange 14 which acts as a kind of base and ensures that the wick 4 in the position illustrated in Figure 1 will stand within the dish-like vessel 2, and specifically when the combustible material located in the vessel 2 is entirely liquefied and even when this fuel is entirely consumed.

In order to keep the wick 4 centered in the dish-like vessel 2, a centering wafer 15 can be set onto the tube 12, which for this purpose has a diameter corresponding to a central hole 16. As Figure 8 shows, the centering wafer 15 is of essentially triangular shape, and the outer edges 17 of the three arms 18 of the centering wafer 15 rest on an arc which coincides roughly with the inner diameter of the dish-like vessel 2, but is somewhat smaller in order to assure sufficient free play. Thus the centering wafer 15 can hold the wick 14 centered in the dish-like vessel 2.

It is also evident from Figure 6 that an annular sleeve 33 is seated on the tube 12 serving as a wick-holder; said sleeve can be displaced in the longitudinal or axial direction so as to adjust the length by which tip 5 of wick 4 projects from the tube constituting the holder and thus also be able to adjust or vary the height of the flame, not shown here. Alternatively, one can also change the depth to which the wick is inserted or pushed into the tube.

From Figure 6 it is also evident that the wick 4, which has a circular cross section, but which can also be a polygon or rectangle, is provided at both ends with a point 5.

Since the wick 4 can be displaced in the tube 12 of the holder and thus is replaceable or reversible, optionally either one of the two points 5 of the wick 4 can point upward and be used as the burning wick end.

In the embodiments according to Figures 9 and 10, the wick 19 consists of a perforation element of inorganic, noncombustible material which is inserted into the upper end of the tube 12. In the lower region of the tube 12 there is a filling 20 of glass wool which can be saturated with combustible material. This fuel can rise up through tiny grooves 21 and 22 cut into the surface of the wick 19 from the tube 12 across a perimeter bulge 23 to the point 24, where the combustible material arrives virtually gasified and supplies the flame (not illustrated here) with combustible material.

Whereas the wick 19 formed as insertion element is equipped in the embodiments according to Figures 9 and 10 with tiny grooves 21 and 22 located on its outside, the wick 25 in the embodiments according to Figures 11 and 12 is likewise designed as an insertion element and has one or more thin drilled holes 26, through which the liquid combustible material will rise due to capillary action and in which it can gasify before it reaches the point 27 and thus the flame (not illustrated) burning there.

The wicks 19 and 25 are suitable preferably for the combustion of liquid combustible material such as paraffin oil, however, they can also be used in long-burning lamps which are intended for use with combustible material such as paraffin or wax which is solid at room temperature. In the latter case, care must be taken that the central drilled hole 9 or 10 in the combustible material wafers 8 used in the long-burning lamp have a greater inside diameter than the outer diameter of the perimeter bulge 23 of the wick 19 or 25.

Figure 13 presents a wafer 34 consisting of solid combustible material or fuel, which has a ring-like shape and contains a central opening 35 of uniform cross section going all the way through. This wafer 34 has a bulged, outward pointing or convex surface 36 in the ring zone running around the opening 35, and a corresponding bulged or concave, opposing surface 37, so that wafers 34 of this kind can be adapted to the more or less concave surface of a solidified residue of fuel located in the dish-like vessel of the long-burning lamp, and several wafers of this kind can also be set onto each other or stacked one upon the other in a centered manner.

In the embodiment shown in Figure 14, a removable long-burning lamp 38 is set onto a standardized base 39. The base 39 has a wafer-like support plate 40 at its upper end for this purpose, and a centering pin 41 extends upward from its center.

The long-burning lamp 38 has a dish-like vessel 42 which is made of plastic, for example, of molded plastic. At the bottom 43, in its center, there is a cylindrical shoulder 44 extending into the dish 42; this shoulder is formed as a single piece with the vessel 42 and contains a downward or outward open, central hole 45 in which the centering pin 41 of the base 39 will fit.

Within the dish-like vessel 42 on the cylindrical shoulder 44 there is a tube 46 acting as wick holder, which is designed similar to the tube 12 shown in Figure 6 and which has at its lower end a horizontal flange 47 resting on the base 43 of the vessel 42.

There is a replaceable wick 4 with two points 5 having the design described above inserted into the tube 46, and the downward pointing point 5 of the wick 4 can rest upon the upper end of the cylindrical shoulder 44, which thus forms a stop which determines the maximum insertion depth of the wick 4.

The inner diameter of the cylindrical tube 46 is greater than the outer diameter of the wick 4. The tube 46 is lined with glass fiber mat 48 which promotes the ascent of liquefied fuel, due to its porosity, across the outside of the wick 4.

The glass wool 48 forms a lining of the tube 46 and it terminates below the upper edge of the tube 46, so that in the upper region of the tube 46, between it and the detachably inserted wick 4, a ring-like cavity 49 remains, into which any particles or dirt from the wick can fall.

On the bottom 43 of the vessel 42 of circular perimeter there is a foil 50 nearly covering the bottom surface, or a thin piece of heat conducting sheet metal, for example, an aluminum

foil, in order to distribute the heat from the flame 51, said heat moving downward from the tube 46 made of heat conducting material such as metal, across the bottom 43, in order that regions of the vessel 42 located far from the flame 51 which hold fuel in the vessel 42 will melt completely and can be used to supply the flame with fuel. The foil or bottom wafer resting on the bottom is round or circular (seen from above), and its outer diameter is somewhat smaller than the inside diameter of the vessel.

Inside the dish-like vessel 5 [sic; 42] there is fuel in the form of wafers 52 placed one upon the other; these wafers can be replenished as needed.

At the upper end of the dish-like vessel 42 there is a removable cover 53 having the shape of a ring washer, and it is made of a noncombustible material like metal, and has a relatively large central opening 54 so that the flame 51 will not collide with the cover 53 or will not be impacted by this cover.

The combustible material wafers are designed as compressed blanks and can be provided on top and bottom with protrusions or shoulders which ensure a certain distance from the next wafer, in order to prevent the stacked wafers from sticking together. The wafers can also be powdered for this purpose.

Claims

- 1. Long-burning lamp with a dish-like vessel in which a wick is located and which is filled with solid or pasty (at room temperature) or with liquid combustible material, characterized in that the wick (4; 19; 25) consists at least partly or predominately of inorganic, incombustible material.
- 2. Device according to Claim 1, characterized in that the wick (4; 19; 25) consists of inorganic materials such as gypsum, chalk, clay, cement, glass wool, glass silk or similar material or mixtures which contain at least one of these materials.
- 3. Device according to Claim 1 or 2, characterized in that the wick (4; 19; 25) is a rod-like, solid cylindrical or polygonal element having a point (5; 24; 27) and is made of the inorganic material which is inserted into a metal sheath (12) which features in its cylindrical-shaped mantle surrounding the wick element, at least one opening (13) for the passage of liquid or liquefied combustible material, where the upper end or the point (5; 24; 27) of the wick (4; 19; 25) protrudes at variable length above the upper end of the sheath.
- 4. Device according to Claim 3, characterized in that the sheath (12) is a cut-open tubular element or consists of a round or polygonal curved, rectangular piece of sheet metal whose mutually opposing edges rest at a small distance (13) from each other.

- 5. Device according to Claim 3 or 4, characterized in that the sheath (12) contains a wick (4) extending essentially over its entire length, said wick can extend within the sheath along a portion of its length in a porous lining (48).
- 6. Device according to Claim 3 or 4, characterized in that the sheath (12) contains a wick (19; 25) in its upper region and its lower region is filled with fibrous material (20) such as glass wool.
- 7. Device according to one of Claims 1 to 6, characterized in that at the lower end of the wick (4; 19; 25) on the sheath (12) there is a horizontally extending spacer (15) that features several spacer arms (18) that end near the inner wall of the dish-like vessel.
- 8. Device according to one of Claims 1 to 7, characterized in that in the dish-like vessel (2) there are several wafers (8) of combustible material one upon the other, which surround the wick (4; 19; 25) and contain a central opening (9; 10) for the wick.
- 9. Device according to Claim 8, characterized in that around the central opening (9; 10) of the combustible material wafer (8) on at least one side of the wafer, some combustible material has been removed so that conical-shaped, hole-shaped, star-shaped and similar recesses are provided.
- 10. Device according to Claim 8, characterized in that the combustible material wafer (8) features at least one fracture line or a defined fracture site promoting its fracture, said fracture line bisecting its central opening (9; 10), in order to allow breakage of the wafer into two pieces, for example, before its use.
- 11. Device according to one of Claims 1 to 10, characterized in that the wick (4; 19; 25) features grooves (21; 22) acting as capillaries, and/or drill holes (26) for combustible material rising up to the point (5; 24; 27) or up to the upper end of the wick.

(9) BUNDESREPUBLIK
DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 42 03 644 A 1

(5) Int. Cl.⁵: F 23 D 3/08

DEUTSCHES PATENTAMT

21) Aktenzeichen:

P 42 03 644.5

2 Anmeldetag:

8. 2.92

43 Offenlegungstag:

12. 8.93

(7) Anmelder:

Schirneker, Hans-Ludwig, 4773 Möhnesee, DE

(74) Vertreter:

Hanewinkel, L., Dipl.-Phys., Pat.-Anw., 4790 Paderborn

@ Erfinder:

gleich Anmelder

⁽S) Dauerbrenn-Licht

Es ist ein Dauerbrenn-Licht offenbart, das ein näpfchenartiges Behältnis aufweist, in dem ein Docht angeordnet und das mit bei Zimmertemperatur festem oder pastösem oder mit flüssigem Brennmaterial gefüllt ist. Der Docht besteht wenigstens teilweise oder überwiegend aus anorganischem unbrennbaren Material und ist somit wiederverwendbar.

Beschreibung

Die Erfindung betrifft ein Dauerbrenn-Licht, das ein näpfchenartiges Behältnis aufweist, in dem ein Docht angeordnet und das mit bei Zimmertemperatur festem oder pastösem oder mit flüssigem Brennmaterial gefüllt ist.

Dauerbrenn-Lichte dieser Art sind beispielsweise als Teelichte bekannt, bei denen sich in dem näpfchenartigen Behältnis ein Preßkörper aus Paraffin befindet, in 10 den ein Docht eingesetzt ist. Am unteren Ende des Dochtes befindet sich ein scheibenförmiger Dochthalter, damit der Docht auch dann seine senkrechte Lage beibehält, wenn das Paraffin des Preßkörpers beim Abbrennen des Lichtes geschmolzen und damit flüssig wird. Der Docht besteht aus mit Paraffin getränktem Baumwollmaterial und brennt mit dem Paraffin ab, so daß er nicht wiederverwendbar ist.

Bei diesen bekannten Teelichten verschwindet die sichtbare Flamme mit dem beim Abbrennen kürzer werdenden Docht und mit im Näpfchen absinkendem Paraffinspiegel immer mehr und ist beispielsweise schließlich in Windlichten, in denen solche Teelichte eingesetzt werden, oder auch in anderen Beleuchtungskörpern, nicht mehr oder nicht mehr ausreichend sichtbar. Auch entstehen beim Abbrand des Teelichtes im unteren Teil des Behältnisses hohe Temperaturen, die eine gewisse Brandgefahr darstellen. Bei jedem der bekannten Teelichte bleiben nach dem Abbrennen Näpfchen und Dochthalter zurück, die nicht wieder verwendbar sind und damit entsorgt werden müssen oder gar weggeworfen werden, was den anfallenden Müll erhöht.

Bei einer bekannten Kerze nach Art eines Teelichtes (DE 34 03 604 A1) ist der aus einem Baumwollfaden bestehende Docht in einem für flüssiges Brennmaterial 35 durchlässigen, aufrecht stehenden Röhrchen angeordnet, wobei innerhalb dieses Röhrchens ein den Docht umgebender saugförmiger Körper vorgesehen ist, der zum Ansaugen von verflüssigtem Brennmaterial wie geschmolzenem Wachs dient. Das den Docht umgebende 40 Röhrchen verhindert, daß die Flamme mit dem sinkenden Brennmaterialspiegel absinkt. Nicht verhindern kann das Röhrchen aber, daß der aus Baumwollmaterial bestehende Docht-Faden mit der Kerze abbrennt, so daß der Docht nicht wiederverwendbar ist. Diese be- 45 kannte Kerze ist nicht wieder zu entzünden, wenn sie nach teilweisem Abbrand gelöscht wurde und das im näpschenartigen Behältnis verbliebene Wachs erstarrt, denn in der Nähe des oberen Endes des Dochtes, an dem die Flamme brennt, steht dann nicht genügend Wachs 50 zur Verfügung, um die Flamme so lange zu speisen, bis das den Docht umgebende Wachs erweicht worden ist und durch den den Docht umgebenden saugförmigen Körper zur Flamme nachgefördert werden kann.

Auch diese bekannte Kerze ist nur für einmaligen 55 Gebrauch bestimmt, d. h. nach Abbrennen des in das näpfchenartige Behältnis eingefüllten Brennmaterials wie Wachs kann das näpfchenartige Behältnis mit dem darin untergebrachten Dochthalter und Docht nicht erneut verwendet werden.

Der Erfindung liegt die Aufgabe zugrunde, ein Dauerbrenn-Licht zu schaffen, bei dem die Flamme stets in gleicher Höhe brennt und bei dem festes Brennmaterial nachgefüllt werden kann, so daß das Licht vielfach zu verwenden ist.

Diese Aufgabe wird erfindungsgemäß mit einem Dauerbrenn-Licht der eingangs genannten Gattung gelöst, welches die Merkmale des Patentanspruches 1 aufweist. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.

Durch die Erfindung wird ein Dauerbrenn-Licht wie ein Teelicht geschaffen, bei dem der Docht wenigstens teilweise oder weitgehend aus anorganischem Material besteht und die Flamme nicht mit Absinken des Brennmaterialspiegels wie Wachsspiegels nach unten wandert, sondern stets in gleicher Höhe brennt.

Das Brennmaterial ist vorzugsweise Paraffin, jedoch sind auch flüssige Brennmaterialien wie Paraffinöl denkbar. Auch können pastöse Brennmaterialien eingesetzt werden.

Gemäß einer bevorzugten Ausführungsform der Erfindung werden scheibenförmige Wachs- oder Paraffinkörper als Brennmaterial benutzt, die beispielsweise eine Dicke von etwa sechs Millimeter und einen Außendurchmesser von achtunddreißig Millimeter haben und eine zentrische Bohrung enthalten, durch die der Docht hindurchgeführt werden kann. Die zentrische Bohrung kann zumindest teilweise auch konisch ausgebildet sein, damit das obere Ende des Dochtes stets ausreichend frei liegen kann, um entzündet werden zu können und um eine gut brennende Flamme zu liefern.

Ist beispielsweise ein erfindungsgemäßes Dauerbrenn-Licht, das drei übereinandergestapelte scheibenförmige Brennmaterialkörper enthält, entzündet worden, so schmilzt das Brennmaterial wie Paraffin bekanntlich in unmmittelbare Nähe der Flamme und fließt beispielsweise durch eine senkrecht verlaufende Fuge im den Docht umschließenden Rohr zum Docht. Allmählich schmelzen alle drei Paraffinscheiben vollkommen auf, so daß das im näpfchenartigen Behältnis befindliche Brennmaterial vollständig flüssig ist. Sobald das Brennmaterial verbraucht ist, geht die Flamme aus. Es können weitere ringförmige Scheiben Brennmaterial nachgelegt werden, woraufhin man den Docht neu entzünden kann. Da der Docht dann vielfach ganz oder weitgehend ausgebrannt ist, sollte beim erneuten Anzünden die Zündflamme zweckmäßig so angelegt oder gehalten werden, daß schon beim Anzünden Brennmaterial wie Wachs anschmilzt und zum Docht fließt.

Wird das erfindungsgemäße Dauerbrenn-Licht gelöscht, bevor das im näpfchenartigen Behältnis befindliche Brennmaterial verbraucht ist, kann man vor dem erneuten Entzünden einer Flamme einzelne ringförmige Scheiben des festen Brennmaterials nachlegen. Das Nachlegen sollte zweckmäßig erfolgen, nachdem das im näpfchenartigen Behältnis verbliebene Brennmaterial sich verfestigt hat.

Wenn die nachzulegende oberste ringförmige Scheibe über das äußere Ende des Dochtrohres vorstehen sollte, ist es zweckmäßig, die oberste ringförmige Scheibe aus Brennmaterial so aufzulegen, daß sich der Konus deren zentraler Öffnung nach außen erweitert. Sollte hingegen die Oberseite der obersten nachgelegten Brennmaterial-Scheibe etwa in gleicher Höhe oder unter dem oberen Ende des Dochtrohres liegen, wäre es zweckmäßig, die oberste Brennmaterial-Scheibe so einzulegen, daß der Konus ihrer zentralen Öffnung sich nach unten erweitert. Alternativ kann man auch die oberste Scheibe vor dem Auflegen zerbrechen und damit halbieren, insbesondere wenn sie eine entsprechende Bruchlinie aufweist, so daß nur eine halbe Scheibe als oberste aufgelegt zu werden braucht und die Flamme nach einer Seite frei liegt, zu der das von der halben Brennmaterial-Scheibe abgeschmolzene flüssige Brennmaterial abfließen kann.

Wichtig ist, daß in unmittelbarer Nähe der Brennzone

des Dochtes möglichst schnell ausreichend Brennmaterial antauen kann, um die Flamme versorgen zu können, ohne daß dort zu viel Brennmaterial antaut, damit die Flamme nicht ertränkt und damit zum Erlöschen gebracht wird.

Der Docht selbst ist beispielsweise mit senkrechten Rillen in seiner Oberfläche versehen, die in Verbindung mit dem den Docht umgehenden Rohr als Kapillarröhrchen wirken. Das flüssige oder verflüssigte Brennmaterial kann durch diese Rillen oder auch durch feine Bohrungen innerhalb des Dochtes zum oberen Ende des Dochtes hochsteigen, um die Flamme mit Brennmaterial zu versorgen.

Alternativ kann der Docht auch feine Bohrungen in Form von Kapillarröhrchen enthalten, durch die das 15 flüssige Wachs hochsteigt, bevor es in der Nähe des oberen Dochtendes verdampft und die Flamme mit Brennmaterial versorgt.

Schließlich ist es auch möglich, den Docht oder den Dochthalter im Querschnitt vieleckig auszubilden und 20 Docht und Dochthalter zylindrisch entgegengesetzt, um zwischen beiden für hochsteigendes flüssiges Brennmaterial Raum zu schaffen.

Gemäß einer anderen bevorzugten Ausführungsform ist das Dochtrohr mit einem drei- oder mehrstrahligen 25 seide. oder zackigen Dochthalter versehen, der parallel zum Boden des Näpschens und vorzugsweise auf diesem Boden liegt, um den Docht in der Mitte und damit zentriert im Näpfchen zu halten. Der Dochthalter kann aber auch rund sein.

Das Näpfchen kann mit einer ein zentrales Loch enthaltenden Abdeckung versehen sein, so daß ein entsprechend ausgestattetes Licht besonders dekorativ wirkt. Die in der Abdeckung vorgesehene zentrale Öffnung kann die verschiedensten Formen aufweisen, beispiels- 35 weise sternförmig, herzförmig oder kreisförmig ausge-

Als anorganisches Material für den Docht kommt beispielsweise Gips, Kreide, Ton, Zement, Glaswolle, Glasseide, Schlackenwolle, Steinwolle und dergleichen in 40 Frage. Auch können Gemische, die wenigstens ein anorganisches Material enthalten, eingesetzt werden. Als besonders geeignet hat sich ein Gemisch aus Ton mit einem anorganischen Bindemittel wie Wasserglas erwie-

Besondere Vorteile des erfindungsgemäßen Dauerbrenn-Lichtes sind, daß dieses beim Brennen praktisch nicht rußt, daß die Flamme immer über dem Behältnis brennt und nicht in dem Behältnis mit dem Verbrauch des Brennmaterials nach unten absinkt, daß kein Über- 50 hitzen des Lichtes möglich ist und daß das Dauerbrenn-Licht auch sehr umweltfreundlich ist, weil das näpfchenartige Behältnis und der Docht einschließlich Dochthalter wiederverwendbar sind und somit nach einmaligem Gebrauch nicht weggeworfen werden müssen.

Weitere Vorteile des erfindungsgemäßen Dauerbrenn-Lichtes sind, daß der Dochthalter im näpschenartigen Behältnis zentriert ist und daher nicht seitlich verrutschen oder gar umfallen und daher erlöschen kann, so daß Zierdeckel Verwendung finden können, welche 60 ein schönes Aussehen und eine vielfältiger Gestaltungsmöglichkeit gewährleisten. Weil Brennmaterial nachgefüllt werden kann, ohne das näpfchenartige Behältnis oder den Docht erneuern zu müssen, ist ein preiswerter Betrieb möglich. Wird das erfindungsgemäße Dauer- 65 brenn-Licht nach Art eines Teelichtes in Rechauds verwendet, ergibt sich der Vorteil, daß die Flamme stets gleichen Abstand vom Boden der aufgesetzten Kanne

oder Pfanne hat, so daß eine gleichmäßige Wärmeabgabe und damit auch eine gleichförmige Wärmenutzung gegeben ist.

Das erfindungsgemäße Dauerbrenn-Licht kann als ei-5 ne Art Stundenbrenner ausgeführt sein, wobei das näpfchenartige Behältnis auch aus transparentem Material bestehen kann. In diesem Falle kann die senkrechte Wand bzw. der Mantel des Behältnisses nach oben über das äußere Ende des Dochtes überstehen und zusätzlich mit einem durchlöcherten Deckel abgedeckt sein, so daß ein gewisser Windschutz gegeben ist.

Der Docht braucht nicht ausschließlich aus anorganischem Material zu bestehen, vielmehr kann das Dochtmaterial auch organische Stoffe wie Holzkohle, Holzstaub, Zellulose und dergleichen enthalten. Diese organischen Materialien verbrennen in der Brennzone des Dochtes, in welcher die Temperatur hierzu hoch genug wird, so daß innerhalb des Dochtes in der Brennzone Hohlräume entstehen, welche die Saugfähigkeit des Dochtes erhöhen. Wichtig ist, daß dabei im Docht ein Gerüst aus anorganischem Material verbleibt, um die Gestalt des Dochtes zu erhalten.

Die interessantesten anorganischen Materialien für den Docht sind Gips, Zement, Ton, Glaswolle und Glas-

Als Brennmaterial sind Paraffin, Stearin, Wachse und flüssiger Brennstoff wie Paraffinöl geeignet. Die festen Brennstoffe können in Granulatform, pastöser Form oder als vorgefertigte Brennkörper, beispielsweise Scheiben, eingesetzt werden. Dabei kann das feste Brennmaterial bzw. der feste Brennstoff auch farbig ausgebildet sein, was insbesondere dann von Interesse ist, wenn das die äußere Hülle bildende Näpfchen durchsichtig oder zumindest durchscheinend (opak) ist.

Wird pastöser bzw. plastischer Brennstoff verwendet, kann man einen Brennstoff mit niedrigerem Erweichungs- und Schmelzpunkt als Paraffin verwenden, so daß Teelichte oder sonstige Dauerbrenner mit größeren Durchmessern als bei Verwendung von bei normaler Temperatur festem Paraffin als Brennstoff möglich sind.

Ein weiterer Vorteil des erfindungsgemäßen Drauerbrenn-Lichtes besteht darin, daß der Docht nicht umkippen und auch nicht im flüssigen bzw. verflüssigten Brennstoff verlöschen kann.

Das näpfchenartige Behältnis des erfindungsgemäßen Dauerbrenn-Lichtes kann auch aus Kunststoff wie durchscheinendem Kunststoff bestehen, wobei im Zentrum ein nach innen ragender Zapfen angespritzt sein kann, auf den ein als Dochthalter dienendes Rohr aufgesteckt werden kann. Im Bereich dieses Zapfens kann sich auf der Außenseite des Behältnisses ein sich nach unten öffnendes Loch vorgesehen sein, welches es ermöglicht, das Dauerbrenn-Licht auf einen an einem Halter befindlichen Stift oder Zapfen auswechselbar aufzu-55 stecken.

Wenn das näpfchenartige Behältnis aus durchscheinendem Material besteht, das auch farbig ausgebildet sein kann, ergibt sich bei brennende Flamme eine besonders dekorative Wirkung, die durch die Färbung des durchscheinenden Materials und/oder die Färbung des Brennmaterials verstärkt werden kann.

Das näpfchenartige Behältnis des erfindungsgemäßen Dauerbrenn-Lichtes kann im Gegensatz zu bekannten Teelichten unbedenklich und beispielsweise aus Kunststoff bestehen, weil die Flamme stets über dem Behältnis bzw. am oberen Ende desselben brennt und schon deshalb mit dem Behältnis selbst nicht in Kontakt kommt. Ist ein Deckel aus unbrennbarem Material wie

Metall aufgelegt, ergibt sich ein zusätzlicher Schutz des aus Kunststoff bestehenden Behältnisses. Eine Überhitzung kann nicht eintreten. Auch entzünden sich keine im Dauerbrenn-Licht befindliche Fremdkörper Streichholzreste und dergleichen, die auf den Boden des näpfchenförmigen Behältnisses gesunken sind, weil die Flamme stets am oberen Ende des nicht abbrennenden Dochtes brennt und somit nicht zum Boden des Behältnisses gelangt.

den Boden desselben eine Wärmeleitschicht wie beispielsweise eine aus Aluminium bestehende Folie angeordnet sein, welche die Wärme vom Dochthalter nach außen leitet, so daß der im Behältnis befindliche Brennstoff restlos aufgebraucht wird und zum unteren Ende 15 des Dochtes fließen kann.

Der Dochthalter kann gemäß einer bevorzugten Ausführungsform der Erfindung auf wenigstens einem Teil seiner Länge mit einer Folie aus Glasvlies ausgelegt sein, welche den Docht umgibt und damit eine Aufnah- 20 me für denselben bildet. Dadurch ist sichergestellt, daß immer genügend flüssiger bzw. verflüssigter Brennstoff zur Brennzone des Dochtes gesaugt wird, insbesondere auch bei fast leergebranntem näpschenartigen Behältnis. Die Folie sollte von der Oberkante des in Form 25 eines Röhrchens ausgebildeten Dochthalters etwas zurück versetzt sein, beispielsweise um zwei bis drei Millimeter, um innerhalb des Dochthalters um den Docht herum einen ringförmigen Hohlraum zu bilden, in welchen Verbrennungsrückstände, die vom Docht abfallen, 30 gelangen.

Der im röhrchenförmigen Dochthalter befindliche Längsschlitz sollte nur wenige hunderstel Millimeter weit sein, um zu verhindern, daß bei weitgehend leergebranntem Behältnis die Flamme auf der Außenseite des 35 enthält, Dochtes und des Dochthalters nach unten kriechen kann.

Der Docht hat vorzugsweise zumindest an einem Ende eine Spitze. Wenn er jedoch an beiden Enden eine Spitze aufweist, so kann er, falls das eine Ende aus ir- 40 gendwelchen Gründen ausfällt, aus dem Halter herausgezogen und in umgekehrter Position erneut eingesteckt werden, falls man ihn nicht auswechseln will. Dabei kann der Docht einen im Querschnitt kreisförmig oder auch mehreckig bzw. viereckig aufweisen. Beim 45 brenn-Licht aus Fig. 1, mehreckigem oder vieleckigem Querschnitt des Dochtes, beispielsweise bei sechseckigem Querschnitt, ergibt sich der Vorteil, daß innerhalb des röhrchenförmigen Dochthalters um den Docht herum Hohlräume verbleiben, die das Hochsaugen von verflüssigtem Brennstoff 50 Fig. 1 gehalten werden kann, zusätzlich begünstigen.

Da erfindungsgemäß das einzige Verschleißteil der Docht ist, der auch erst nach vielen Betriebsstunden, nämlich wenn er ausfällt, ausgewechselt werden kann und muß, während alle anderen Teile des Dauerbrenn- 55 Lichtes, nämlich der näpschenförmige Behälter, der Dochthalter und gegebenenfalls aufgesetzte Ringscheiben nach dem Auslöschen der Flamme erneut verwendet werden können, ist das erfindungsgemäße Dauerbrenn-Licht besonders umweltfreundlich, da wenig Ab- 60 fall anfällt.

Der hülsenförmige oder rohrförmige Dochthalter kann erfindungsgemäß mit einem auf ihn aufgesetzen Hülsenring versehen sein, der am oberen Ende nach oben oder unten verschiebbar auf dem Dochthalter 65 sitzt. Durch Verschieben dieses Hülsenringes läßt sich die Flammenhöhe einstellen, um diese auf dem Erweichungs- bzw. Schmelzpunktes des Brennstoffes und die

Wärmeleitfähigkeit des Materials des Dochthalters und weitere Parameter des Dauerbrenn-Lichtes abzustimmen. Der Hülsenring enthält vorzugsweise ebenso wie der rohrförmige Dochthalter einen schmalen Längsschlitz von nur wenigen hundertstel Millimeter Weite. Alternativ kann man den Docht auch mehr oder weniger weit aus dem Dochthalter herausziehen, um die Höhe der Flamme zu verändern.

Die aus festem Brennstoff wie Paraffin bestehenden, Innerhalb des näpfchenartigen Behältnisses kann auf 10 zum Nachlegen bestimmten Scheiben können verschiedene Formen haben. Sie können z. B. auch nach unten ballig und nach oben entsprechend hohl ausgebildet sein. Hierdurch sind die ringförmigen Scheiben etwa der Oberfläche des im näpfchenartigen Behältnisses verbliebenen hart gewordenen Brennstoff angepaßt. Sie können auch als Abstandshalter dienende Vorsprünge aufweisen oder eingepudert sein, um ein Aneinanderkleben zu vermeiden.

> Ist der Brennstoff bei normaler Temperatur pastös bzw. plastisch, kann er in Form zylindrischer Stangen von beispielsweise zweihundert Millimeter Länge und einem Durchmesser von achtunddreißig Millimeter, die eine zentrale Bohrung enthalten, geliefert werden. Der Endverbraucher muß von der Stange nur einzelne Stükke in eine Länge abschneiden, die der Höhe entspricht, welche in dem näpfchenförmigen Behältnis an Brennmaterial nachgefüllt werden soll.

In der Zeichnung sind Ausführungsbeispiele des erfindungsgemäßen Dauerbrenn-Lichtes schematisch dargestellt, und zwar zeigt

Fig. 1 einen senkrechten Abschnitt durch eine Ausführungsform dieses Dauerbrenn-Lichtes,

Fig. 2 eine Draufsicht auf den Deckel des Dauerbrenn-Lichtes, der eine zentrale kreisförmige Öffnung

Fig. 3 eine Draufsicht auf einen abgewandelten Dekkel des Dauerbrenn-Lichtes, der eine zentrale sternförmige Öffnung enthält,

Fig. 4 einen senkrechten Schnitt durch eine für das Dauerbrenn-Licht aus Fig. 1 geeignete Paraffin-Scheibe in etwas größerem Maßstab,

Fig. 5 einen senkrechten Schnitt durch eine gegenüber Fig. 4 etwas abgewandelte Paraffin-Scheibe,

Fig. 6 eine Seitenansicht eine Dochtes für das Dauer-

Fig. 7 eine Draufsicht auf den Docht aus Fig. 6,

Fig. 8 eine Draufsicht auf einen plattenförmigen Dochthalter, mit dem der Docht zentrisch in dem näpfchenartigen Behältnis des Dauerbrenn-Lichtes aus

Fig. 9 einen senkrechten Schnitt eines gegenüber Fig. 6 abgewandelten Dochtes.

Fig. 10 bis 12 verschiedene Dochtspitzen für den Docht aus Fig. 9, jeweils in einem senkrechten Schnitt,

Fig. 13 einen Querschnitt einer anderen, aus bei normalen Temperaturen festem Brennstoff bestehenden Scheibe, welche eine ballige Unterseite aufweist, und

Fig. 14 einen senkrechten Schnitt durch ein gegenüber Fig. 1 abgewandeltes erfindungsgemäßes Dauerbrenn-Licht, das auf einen fußartigen Ständer auswechselbar aufgesetzt ist.

Ein insbesonders in Fig. 1 dargestelltes Dauerbrenn-Licht 1 hat ein näpfchenartiges Behältnis 2, das mit einem abnehmbaren Deckel 3 verschließbar ist. Sowohl das Näpfchen 2 als auch der Deckel 3 können aus Metallblech geformt sein.

Im Behältnis 2 steht mittig ein Docht 4, der aus anorganischem unbrennbaren Material besteht und dessen Spitze 5 über den Deckel 3 übersteht, wie Fig. 1 zeigt. Der Deckel 3 enthält zu diesem Zwecke eine zentrale Öffnung 6 bzw. 7, die gemäß Fig. 2 kreisförmige und gemäß Fig. 3 sternförmige Gestalt hat.

Das Dauerbrenn-Licht 1 ist nach Art eines Teelichtes ausgebildet. In sein Behältnis 2 sind Brennmaterial-Scheiben 8 eingelegt, welche aus Paraffin oder Wachs bestehen können. Der Außendurchmesser dieser Brennmaterial-Scheiben 8 ist dem Innendurchmesser des im Grundriß kreisförmigen näpfchenartigen Behältnisses 2 angepaßt, so daß die Scheiben 8 mit geringem Spiel in das Behältnis 2 eingelegt und auch nachgelegt werden können. Die Dicke der einzelnen Scheiben 8 ist so gewählt, daß eine Mehrzahl von Scheiben das näpfchenartige Behältnis 2 mit festem Brennmaterial füllt, wobei eine halbierte Scheibe als oberste Scheibe auch über den oberen Rand des Behältnisses überstehen kann, damit der Docht beim Anzünden schnell mit angetautem bzw. verflüssigtem Brennmaterial versorgt werden

Aus Fig. 4 und 5 ist erkennbar, daß jede Brennmaterial-Scheibe 8 jeweils eine zentrale Öffnung 9 bzw. 10 enthält, deren kleinster Durchmesser etwas größer als der Außendurchmesser des im Grundriß etwa zylindrischen Dochtes 4 ist, damit die Scheiben 8 beim Einlegen 25 in das näpfchenartige Behältnis 2 über den dort befindlichen Docht geschoben werden können.

Bei der Ausführung gemäß Fig. 4 ist die Öffnung 9 als zylindrische Bohrung ausgebildet, die am — in der Zeichnung gesehen — oberen Ende eine konische Ansenkung 11 enthält, welche die Öffnung 9 an einem Ende bedeutend erweitert.

Gemäß Fig. 5 ist die zentrale Öffnung 10 der Scheibe 8 insgesamt konisch ausgebildet, so daß die Öffnung an einer Seite der Scheibe enger als an der anderen Seite ist

Die in Fig. 4 und 5 im einzelnen dargestellten Brennmaterial-Scheiben 8 können je nach Bedarf mit dem weiteren oder dem engeren Ende ihrer zentralen Öffnung 9 bzw. 10 nach oben oder unten weisend in das näpfchenartige Behältnis 2 eingelegt werden, je nachdem ob man am oberen Ende des im Behältnis 2 befindlichen Vorrates aus festem Brennmaterial zum günstigen Anbrennen des Dochtes eine weitere oder eine engere zentrale Öffnung benötigt.

Wie insbesondere Fig. 6 und 7 zeigen, ist der im wesentlichen zylindrische Grundkörper des Dochtes 4 in einem aus Metall bestehenden Röhrchen 12 untergebracht, aus dessen oberen Ende lediglich die Spitze 5 des Dochtes 4 herausragt. Dieses Röhrchen 12 ist aus Metallblech gebogen, dessen dicht aneinander liegende Seitenkanten aber nicht miteinander verbunden sind, so daß über die gesamte Höhe des Röhrchens 12 eine schmale Nut 13 mit einer Weite in der Größenordnung von hundertstel Millimetern frei bleibt, in der angetautes bzw. verflüssigtes Brennmaterial über die Außenseite des Dochtes 4 zu dessen Spitze 5 hochsteigen kann, um die in der Zeichnung nicht dargestellt Flamme mit Brennmaterial zu versorgen.

Alternativ oder auch zusätzlich können in die mantelförmige Oberfläche des zylindrischen Dochtes 4 in Längsrichtung verlaufende Rillen eingearbeitet sein, in welchen verflüssigtes Brennmaterial zur Spitze 5 hochsteigen kann.

Das Röhrchen 12 ist am unteren Ende mit einem radialen Flansch 14 versehen, der als eine Art Standfuß dient und gewährleistet, daß der Docht 4 in der in Fig. 1 dargestellten Position innerhalb des näpschenartiges

Behältnisses 2 steht, und zwar auch dann, wenn das im Behältnis 2 befindliche Brennmaterial vollständig verflüssigt und gegebenenfalls auch ganz verbraucht ist.

Um den Docht 4 im näpfchenartigen Behältnis 2 auch zentrisch zu halten, kann auf das Röhrchen 12 eine Zentrierscheibe 15 aufgesteckt werden, die zu diesem Zweck eine zentrale Bohrung 16 entsprechenden Durchmessers enthält. Wie Fig. 8 zeigt, ist die Zentrierscheibe 15 im wesentlichen dreieckförmig ausgebildet, wobei die Außenkanten 17 der drei Arme 18 der Zentrierscheibe 15 auf einem Kreisbogen liegen, der etwa mit dem Innendurchmesser des näpfchenartigen Behältnisses 2 übereinstimmt, jedoch etwas kleine ist, um ein ausreichendes Spiel zu gewährleisten. Somit kann die Zentrierscheibe 15 den Docht 14 zentrisch im näpfchenartigen Behältnis 2 halten.

Aus Fig. 6 ist auch ersichtlich, daß auf dem als Dochthalter dienenden Röhrchen 12 eine ringförmige Hülse 33 sitzt, die in Längsrichtung bzw. axialer Richtung verschoben werden kann, um die Länge einzustellen, welche die Spitze 5 des Dochtes 4 aus dem den Halter bildenden Röhrchen herausragt und somit auch die Höhe der hier nicht dargestellten Flamme einstellen bzw. verändern zu können. Alternativ kann man auch die Tiefe verändern, um die der Docht in das Röhrchen eingesteckt oder eingeschoben ist.

Aus Fig. 6 ist ferner erkennbar, daß der Docht 4, welcher im Querschnitt kreisförmig ist, aber ebenso auch mehr- oder vieleckig sein kann, an beiden Enden mit je einer Spitze 5 versehen ist.

Da der Docht 4 in dem Röhrchen 12 des Halters verschiebbar und damit auswechselbar oder umsetzbar steckt, kann wahlweise die eine der beiden Spitzen 5 des Dochtes 4 nach oben weisen und als brennendes Dochtende benutzt werden.

Bei den Ausführungsformen gemäß Fig. 9 und 10 besteht der Docht 19 aus einem Steckkörper aus anorganischem unbrennbaren Material, der in das obere Ende des Röhrchens 12 eingesteckt ist. Im unteren Bereich des Röhrchens 12 befindet sich eine Füllung 20 aus Glaswolle, die mit Brennmaterial getränkt sein kann, das durch in die Oberfläche des Dochtes 19 eingearbeitete feine Rillen 21 und 22 aus dem Röhrchen 12 über einen umlaufenden Wulst 23 zu Spitze 24 hochsteigen kann, wo das Brennmaterial praktisch vergast ankommt und die hier nicht dargestellte Flamme mit Brennmaterial versorgt.

Während der als Steckkörper ausgebildete Docht 19 bei den Ausführungsformen gemäß Fig. 9 und 10 mit auf seiner Außenseite angeordneten feinen Rillen 21 und 22 versehen ist, enthält der ebenfalls als Steckkörper ausgebildete Docht 25 bei den Ausführungsformen gemäß Fig. 11 und 12 ein oder mehrere dünne Bohrungen 26, durch welche das flüssige Brennmaterial aufgrund von Kapillarwirkung hochsteigen und in denen es vergasen kann, bevor es die Spitze 27 und damit die dort brennende, hier nicht gezeigte Flamme erreicht.

Die Dochte 19 und 25 sind vorzugsweise für die Verbrennung von flüssigem Brennmaterial wie Paraffinöl geeignet, jedoch können sie auch in Dauerbrenn-Lichten benutzt werden, die für bei Zimmertemperatur festes Brennmaterial wie Paraffin oder Wachs bestimmt sind. Im letztgenannten Fall ist lediglich darauf zu achten, daß die zentrale Bohrung 9 bzw. 10 der im Dauerbrenn-Licht verwendeten Brennmaterial-Scheiben 8 einen größeren Innendurchmesser als der Außendurchmesser des umlaufenden Wulstes 23 der Dochte 19 bzw. 25 hat.

In Fig. 13 ist eine aus festem Brennmaterial oder Brennstoff bestehende Scheibe 34 gezeigt, die ringförmig ausgebildet ist und eine zentrale durchgehende Öffnung 35 gleichförmigen Querschnittes enthält. Diese Scheibe 34 hat im um die Öffnung 35 verlaufenden Ringbereich eine ballig nach außen weisende bzw. konvexe Oberfläche 36 und eine entsprechend ballige bzw. konkave gegenüberliegende Oberfläche 37, damit derartige Scheiben 34 sich einerseits an die mehr oder weniger konkave Oberfläche eines erstarrten Restes von im näpfehenartigen Behältnis des Dauerbrenn-Lichtes befindlichem Brennstoff anpaßt und mehrere Scheiben dieser Art auch zentriert aufeinandergesetzt oder aufeinandergesteckt werden können.

Bei der in Fig. 14 gezeigten Ausführungsform ist ein 15 Dauerbrenn-Licht 38 abnehmbar auf einen ständerartigen Fuß 39 aufgesetzt. Der Fuß 39 hat zu diesem Zweck am oberen Ende eine scheibenförmige Auflageplatte 40, in deren Zentrum sich ein Zentrierstift 41 senkrecht nach oben erstreckt.

Das Dauerbrenn-Licht 38 hat ein näpfchenartiges Behältnis 42, das aus Kunststoff besteht, beispielsweise aus Kunststoff gespritzt ist. Im Boden 43 ist im Zentrum desselben ein in das Näpfchen 42 ragender zylindrischer Ansatz 44 vorgesehen, der einstückig mit dem Behältnis 42 ausgebildet ist und eine nach unten bzw. außen offene zentrale Bohrung 45 enthält, in die der Zentrierstift 41 des Fußes 39 paßt.

Innhalb des näpschenartigen Behältnisses 42 ist auf den zylindrischen Ansatz 44 ein als Dochthalter dienendes Röhrchen 46 aufgesteckt, das ähnlich wie das in Fig. 6 gezeigte Röhrchen 12 ausgebildet ist und am unteren Ende einen sich auf den Boden 43 des Behältnisses 42 legenden horizontalen Flansch 47 aufweist.

Im Röhrchen 46 steckt auswechselbar ein Docht 4 mit zwei Spitzen 5 der oben beschriebenen Ausführung, wobei die nach unten weisende Spitze 5 des Dochtes 4 auf dem oberen Ende des zylindrischen Ansatzes 44 aufliegen kann, das somit einen Anschlag bildet, der die maximale Einstecktiefe des Dochtes 4 bestimmt.

Der Innendurchmesser des zylindrischen Röhrchens 46 ist größer als der Außendurchmesser des Dochtes 4. Das Röhrchen 46 ist mit Glaswollevlies 48 ausgekleidet, die aufgrund ihrer Porosität das Hochsteigen von verflüssigtem Brennstoff über die Außenseite des Dochtes 45 begünstigt.

Die eine Auskleidung des Röhrchens 46 bildende Glaswolle 48 endet unterhalb der oberen Kante des Röhrchens 46, so daß im oberen Bereich des Röhrchens 46 zwischen dieser und dem lösbar eingesteckten Docht 4 ein ringförmiger Hohlraum 49 verbleibt, in den vom Docht abfallende Partikel oder Schmutzteilchen fallen können.

Auf dem Boden 43 des im Grundriß kreisförmigen Behältnisses 42 liegt eine die Bodenfläche nahezu bedeckende Folie 50 bzw. ein dünnes Blech aus wärmeleitfähigem Material, beispielsweise ein Aluminiumfolie, um die vom aus wärmeleitfähigem Material wie Metall bestehenden Röhrchen 46 nach unten transportierte Wärme der Flamme 51 über den Boden 43 zu verteilen, damit auch im äußeren, der Flamme 51 fernen Bereich des Behältnisses 42 der im Behältnis 42 befindliche Brennstoff vollständig schmilzt und zur Versorgung der Flamme mit Brennstoff zur Verfügung steht. Die auf dem Boden aufliegende Folie oder Bodenscheibe ist in Draufsicht rund oder kreisförmig, wobei ihr Außendurchmesser etwas kleiner als der Innendurchmesser des Behältnisses ist.

Innerhalb des näpfchenartigen Behältnisses 5 ist Brennstoff in Form von übereinander liegenden Scheiben 52 angeordnet, die auch nachgelegt werden können.

Auf das obere Ende des näpfchenartigen Behältnisses 42 ist ein ringscheibenförmiger Deckel 53 abnehmbar aufgesteckt, der aus nicht brennendem Material wie Metall besteht und eine verhältnismäßig große zentrale Öffnung 54 enthält, damit die Flamme 51 nicht mit den Deckel 53 kollidiert bzw. von diesem Deckel beeinträchtigt wird.

Die als Preßlinge ausgebildeten Brennmaterial-Scheiben können auf der Oberseite und der Unterseite jeweils mit Vorsprüngen oder Ansätzen versehen sein, welche einen gewissen Abstand zur nächsten Scheibe gewährleisten, um ein Aneinanderkleben der übereinander liegenden Scheiben zu verhindern. Die Scheiben können zu diesem Zweck auch eingepudert sein.

Patentansprüche

1. Dauerbrenn-Licht, mit einem näpfchenartigen Behältnis, in dem ein Docht angeordnet und das mit bei Zimmertemperatur festem oder pastösem oder mit flüssigem Brennmaterial gefüllt ist, dadurch gekennzeichnet, daß der Docht (4; 19; 25) wenigstens teilweise oder überwiegend aus anorganischem unbrennbaren Material besteht.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Docht (4; 19; 25) aus anorganischen Materialien wie Gips, Kreide, Ton, Zement, Glaswolle, Glasseide oder dergleichen oder Gemischen, die wenigstens eines dieser Materialien enthalten, besteht.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Docht (4; 19; 25) ein eine Spitze (5; 24; 27) aufweisender stiftförmiger voller zylindrischer oder vieleckiger Körper aus dem anorganischen Material ist, der in einer Hülle (12) aus Metall steckt, die in ihrem den Docht-Körper umschließenden zylinderförmigen Mantel wenigstens eine Öffnung (13) zum Durchtritt von flüssigem oder verflüssigtem Brennmaterial enthält, wobei das obere Ende oder die Spitze (5; 24; 27) des Dochtes (4; 19; 25) in variabler Länge über das obere Ende der Hülle übersteht.

4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Hülle (12) ein aufgeschnittener Rohrkörper ist oder aus einem rund oder vieleckig gebogenen rechteckigen Blechzuschnitt besteht dessen einander gegenüber liegende Kanten in einem geringen Abstand (13) voneinander liegen.

5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Hülle (12) einen sich im wesentlichen über deren gesamte Länge erstrekkenden Docht (4) enthält, der innerhalb der Hülle auf einem Teil seiner Länge in einer porösen Auskleidung (48) stecken kann.

6. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Hülle (12) in ihrem oberen Bereich einen Docht (19; 25) enthält und ihr unterer Bereich mit Fasermaterial (20) wie Glaswolle gefüllt ist.

7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß am unteren Ende des Dochtes (4; 19; 25) auf der Hülle (12) ein sich horizontal erstreckender Abstandhalter (15) angeordnet ist, der mehrere nahe der Innenwand des näpfchenartigen Behältnisses endende Distanz-Arme

(18) aufweist.

8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in dem näpfchenartigen Behältnis (2) übereinander mehrere Brennmaterial-Scheiben (8) angeordnet sind, die den Docht (4; 19; 25) umgeben und für den Docht jeweils eine zentrale Öffnung (9; 10) enthalten.

9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß um die zentrale Öffnung (9; 10) der Brennmaterial-Scheibe (8) an wenigstens einer Seite der Scheibe Brennmaterial ausgespart ist, so daß kegelförmige, lochförmige, sternförmige und ähnliche Ausnehmungen versehen sind.

10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Brennmaterial-Scheibe (8) wenigstens eine deren zentrale Öffnung (9; 10) schneidende Bruchlinie oder ein Zerbrechen begünstigende Sollbruchstelle aufweist, um die Scheibe vor Gebrauch in beispielsweise zwei Teile zerlegen zu können.

11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Docht (4; 19; 25) als Kapillare wirkende Rillen (21; 22) und/oder Bohrungen (26) für zur Spitze (5; 24; 27) bzw. dem oberen Ende des Dochtes hochsteigendes Brennmaterial aufweist.

Hierzu 2 Seite(n) Zeichnungen

30

35

40

45

50

55

60

- Leerseite -

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 42 03 644 A1 F 23 D 3/08

12. August 1993

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 42 03 644 A1 F 23 D 3/08 12. August 1993

