Brief Overview of Lecture 2

- Basic data mining tasks
- Data mining development
- $oldsymbol{\odot}$ Data mining issues

https://www.menti.com/5o5g9ow31r

Outline of Today's lecture

- Why Machine Learning?
- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Machine Learning

Steps to Learn Machine Learning

Steps to Learn Machine Learning

End to End Machine Learning Workflow

Why Machine Learning now?

Bigger Data

Numbers: 5 KB / record
Text: 500 KB / record
Image: 1000 KB / picture
Audio: 5000 KB / song
Video: 5,000,000 KB / movie

High-Res: 50,000,000 KB / object

Better Hardware

Transistor density doubles 18m Computation / kwh doubles 18m Cost / Gigabyte in 1995; \$1000.00 Cost / Gigabyte in 2015; \$0.03 Smarter Algorithms

Theoretical advances in training multi-layer feedforward neural networks led to better accuracy

New mathematical techniques for optimization over non-convex curves led to better learning algorithms

Why Machine Learning now?

Taxonomic Foundation

Image Coupept on the Americas HPC User Forum, Tucson, AZ April 12, 2016

Machine Learning Applicability

	Application	Model Type
IM. GENET	Object Localization and Image Classification	Convolutional Neural Networks (CNN), Support Vector Machines
NETFLIX	Collaborative Filtering, Recommendation Engines, Inputting Missing Interactions	Restricted Boltzmann Machines (RBM), ALS
RECOMMENDED TV	Anomaly Detection	Clustering, Decision Trees
Ok Goagle	Forecasting or prediction of time-series and sequences like speech and video	Recurrent Neural Networks (RNN), Long-short Term Memory (LSTM), Hidden Markov Models
CTR 🚵	Click Through Rate (CTR) Prediction	Logistic Regression
	State-Action Learning, Decision Making	Deep Q Networks (Reinforcement Learning)

Image Coupept ปกระวัย Marketing Manager, Intel Americas ปPC User Forum. Tucson, AZ April 12, 2016

Types of Machine Learning

What is Machine learning?

Machine learning is a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under uncertainty (such as planning how to collect more data!).

Machine learning Notations

- D training set,
 N is the number of training examples.
 X_j training input is a D-dimensional vector.
 These are called features, attributes or covariates.
 Eg:

 X_i=Email message
 X_i[To ,From,Bec,cc,content]
- X_i[color,size,shape]

 Y_i: output variable or Response variable . categorical or nominal

Supervised Learning

- The goal is to learn a mapping from inputs x to outputs y, given a labelled set of input-output pairs.
- This kind of learning is possible when inputs and the outputs are clearly identified, and algorithms are trained using labelled examples.

Supervised learning-Classification

- The goal is to learn a mapping from inputs x to outputs y, where $y \in \{1, \ldots, C\}$, with C being the number of classes.
- If C = 2, this is called **many classification** (in which case we often assume $y \in \{0, 1\}$);
- if C > 2, this is called multiclass classification.
- If the class labels are not mutually exclusive (e.g., somebody may be classified as tall and strong), its multi-label classification

Example

Example

Binary Classification

- Spam
- Not spam

Multiclass Classification

- · Dog
- Cat
- Horse
- Fish
- Bird
- ...

Multi-label Classification

- · Dog
- Cat
- Horse
- Fish
- · Bird
- ...

Real time applications-Supervised Learning Document classification

Real time applications-Supervised Learning

Email spam filtering

Handwriting recognition

Object Detection

Unsupervised Learning

Descriptive or unsupervised learning

For the given inputs, and the goal is to find "interesting patterns" in the data. This is sometimes called **knowledge**

Image Courtesy:https://data-flair.training/blogs/clustering-in-machine-learning/

Unsupervised Learning

- Learn from the data no labels
- Discover "interesting structure" in the data knowledge discovery
- Does not require a human expert to label data

Applications

- Discovering clusters
- Discovering latent factors
 - □ Topic model / Theme/ Essence of the data
 - Dimensionality reduction
- Discovering graph structures
- **■** Matrix completion image imputation
- Association mining

Real time -applications-Unsupervised-**Discovering latent factors**

Real time -applications-Unsupervised Learning Discovering Graph Structure

Image Courtesy:https://aws.amazon.com/blogs/apn/exploring-knowledge-graphs-on-amazon-neptune-using-metaphactory/

Real time -applications-Unsupervised Learning-Image Inpainting

Real time -applications-Unsupervised Learning-Collaborative Filtering

Image Courtesy: https://data-flair.training/blogs/data-science-r-movie-recommendation/

Reinforcement Learning

Computer learns to perform a task through repeated trial-and-error interactions with a dynamic environment.

- Accompany an example with positive or negative feedback according to the solution the algorithm proposes
- Learning by trial and error
- "how to act or behave when given occasional reward or punishment signals"

Reinforcement Learning Real Time Applications

Parametric vs Non-parametric models

Parametric models

- Summarizes data with a set of **parameters of fixed size** (independent of the number of training examples) is called a **parametric model**.
- Assume fixed form for mapping function

 Eg: Naive Bayes, Simple Neural Network, Logistic regression etc

Non-parametric models

- Non-parametric methods are good when you have a lot of data and no prior knowledge
- Do not make strong assumptions about the form of the mapping function
- Eg: KNN, SVM, Decision Tree

Overfitting

- Modeling error that occurs when a function is too closely fit to a limited set of data points.
- Happens when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data

Model Selection

- How should we pick the right one?
 Compute the misclassification (error) rate of each method, select with minimum error
 - Training error
 - Generalization error (test error
 - Validation error
- Cross Validation
 - □ K-Fold CV
 - Leave One Out Cross Validation (LOOCV)