Aside: Marss's Levels of analysis

- 1. Computations "why?" eg loss fuction
- 2. Algorithmic "what?" eg the model
- 3. IMplemenation "whow?" eg the optimization alogo

How is dataset generated?

Let's say $(x,y) \sim p(x,y)$, where x and y is some data.

```
Training: \mathcal{D} = \{(x,y)\ldots\}
```

Assuming they are i.i.d.,

 $p(\mathbf{D}) = p(x, y) = p(x)p(y \in x)$

We are trying to learn $p_{\theta}(y \mid x)$, basically it's a model of the true $p(y \mid x)$.

A good model should make the data look probable.

Therefore, we must choose θ such that:

 $p(\mathbf{D}) = p(x) p_{total}(y \in x)$

is maximized.

But the problem is that $p(x) \leq 1$, multiplying many such terms would make the result closer to zero.

Therefore, we take logarithm:

\$ = \sum \log p_\theta(y_i \mid x_i) + \text{const} \quad (p(x_i) \text{ doesn't depend on } \theta) \$\$

Then,

 $\$ \theta \leftarrow \arg\max \sum \log p_\theta(y_i \mid x_i) \quad \text{(MLE)} \$\$

 $\$ \theta \leftarrow \arg\min -\sum \log p_\theta(y_i \mid x_i) \quad \text{(NLL)} \$\$

Therefore, what is loss function?

The loss function quantifies how bad θ is. We want the least bad θ .