

CPI1 - Contrôle 1 - Chimie Générale

Durée 2h

30 Octobre 2017

I- (6 points)
Dans les éclairages, plusieurs gaz rares sont utilisés comme l'Argon ₁₈Ar et le Xénon ₅₄Xe.

1) Ou se situe la famille des gaz rares dans le tableau périodique ? Donner un autre nom pour cette même famille et justifier.

Donner la configuration électronique de 18Ar.

- 3) Donner la configuration électronique de la couche de valence du 54Xe sachant qu'il se place dans la 5^{ème} période du tableau.
- 4) Le Chrome ₂₄Cr et le Cuivre ₂₉Cu appartiennent au bloc d. En vous aidant de la configuration de ₁₈Ar, donner leur configuration et expliquer pourquoi elle présente une anomalie.
- II- (8 points)

Le sel de table est appelé Chlorure de Sodium NaCl

a) Donner la configuration électronique du Sodium ₁₁Na et en déduire sa position dans le tableau périodique.

b) Quel type d'ion a-t-il tendance à former ? Expliquer.

a) Donner la configuration électronique du Chlore ₁₇Cl et en déduire sa position dans le tableau périodique.

b) Quel type d'ion a-t-il tendance à former ? Expliquer.

- c) Le Chlore naturel possède 2 isotopes: ³⁵ CI et ³⁷ CI

 Préciser le nombre de protons, de neutrons et d'électrons pour chaque isotope.

 Sachant que la masse de chacun de ces isotopes est respectivement 34,97 uma et 36,97 uma et la masse moyenne pondérée est de 35,454 uma, quel est leur abondance respective?
- III- (3 points)
 Les molécules organiques comprennent très souvent du Carbone ₆C et de l'Oxygène ₈O.
- Donner la configuration électronique de ₆C dans son état excité ainsi que la configuration de Lewis correspondante.

Donner la configuration électronique de 80 et sa configuration de Lewis.

- 3) En déduire la structure développée de la molécule CO₂ en mettant en évidence les liaisons inter atomiques.
- IV- (3 points)

Soit un gaz parfait de volume V₁ dans les conditions normales de température et de pression.

Préciser la valeur de P₁ et T de ce gaz dans ces conditions.

- Ce gaz subit une transformation isotherme avec une pression finale P_2 =2 P_1 , évaluer son volume final V_2 en fonction du volume initial V_1 ?
- Donner la valeur du travail si la transformation est isochore.