Graph

- Introduction
- Graph API
- **Elementary Graph Operations**
 - DFS: Depth first search
 - BFS: Breadth first search
 - CC: Connected Components

Major references:

- Fundamentals of Data Structures by Horowitz, Sahni, Anderson-Freed, Algorithms 4th edition Part 1 & Part 2 by Robert Sedgewick and Kevin Wayne
- Wikipedia and many resources available from internet

Algorithm:

- Vertex = intersection
- Edge = passage

pacman

Maze Goal: Explore every intersection in the maze.

Maze graph:

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options

Maze Goal: Explore every intersection in the maze.

Good Visualization: https://www.cs.usfca.edu/~galles/visualization/DFS.html

Maze graph:

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options

Theseus, a hero of Greek mythology, is best known for slaying a monster called the Minotaur. When Theseus entered the Labyrinth where the Minotaur lived, he took a ball of <u>yarn</u> to unwind and mark his route. Once he found the Minotaur and killed it, Theseus used the string to find his way out of the maze.

Read more: http://www.mythencyclopedia.com/Sp-Tl/Theseus.html#ixzz30wFO3ofe

Maze Goal: Explore every intersection in the maze.

Maze graph:

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options

Shannon and his famous <u>electromechanical</u> mouse Theseus (named after <u>Theseus</u> from Greek mythology) which he tried to have solve the maze in one of the first experiments in <u>artificial intelligence</u>.

The Las Vegas connection: Shannon and his wife Betty also used to go on weekends to <u>Las Vegas</u> with <u>MIT</u> mathematician <u>Ed Thorp</u>, and made very successful forays in <u>blackjack</u> using <u>game theory</u>.

Maze Goal: Explore every intersection in the maze.

Design pattern: Decouple graph data type

Idea: Mimic maze exploration

DFS (to visit a vertex v)

- Mark v as visited.
- Recursively visit all unmarked vertices w adjacent to v.

Typical applications:

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

Challenge:

How to implement?

Goal: Systematically search through a graph from graph processing

- Create a graph object
- Pass the graph to a graph processing routine
- Query the graph-processing routine

Goal: Systematically search through a graph from graph processing

- Create a graph object
- Pass the graph to a graph processing routine
- Query the graph-processing routine

```
public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path
```

Graph - Coding

For each edge(v, w) in the list

Insert front each vertex both (adj[v], w) and (adj[w], v) addEdgeFromTo(g, v, w); // add an edge from v to w.

Graph g:

Challenge: build adjacency lists?

Graph Coding - graph.h

```
// a structure to represent an adjacency list node
struct Gnode {
  int   item;
  Gnode* next;
  Gnode (int i, Gnode *p = nullptr) {
   item = i;  next = p;
  }
  ~Gnode() {}
};
using gnode = Gnode *;
```

Graph Coding – graph.h

```
struct Graph {
        // number of vertices in the graph
 int V;
        // number of edges in the graph
 int E;
 gnode adj; // an array of adjacency lists (or gnode pointers)
 Graph(int v = 0) { // constructs a graph with v vertices
   V = V;
   E = 0;
   adj = new (nothrow) Gnode[v];
   assert(adj != nullptr);
   for (int i = 0; i < v; i++) { // initialize adjacency list as empty lists;
       g->adj[i].next = nullptr; set each adj list nullptr
       g->adj[i].item = i;
                                       unused; but may store the degree of vertex i.
 ~Graph() {}
using graph = Graph *;
```

Graph Coding - graph.cpp

```
// add an edge to an undirected graph
void addEdgeFromTo(graph g, int v, int w) {
  // add an edge from v to w.
 // A new vertex is added to the adjacency list of v.
  // The vertex is added at the beginning
 gnode node = new Gnode(w);
                                                    With a bug
 g->adj[v].next = node;
 g->E++;
                                                    add an edge for undirected graph
// add an edge to an undirected graph
void addEdge(graph g, int v, int w) {
  addEdgeFromTo(g, v, w); // add an edge from v to w.
  addEdgeFromTo(g, w, v); // if graph is undirected, add both
```

Graph Coding – graph.cpp

```
// add an edge to an undirected graph
void addEdgeFromTo(graph g, int v, int w) {
  // add an edge from v to w.
  // A new vertex is added to the adjacency list of v.
  // The vertex is added at the beginning
                                                    With a bug
  gnode node = new Gnode(w);
                                                    instantiate a node w and
                                                    insert it at the front of adjacency list[v]
 g->adj[v].next = node;
 g->E++;
                                                      add an edge for undirected graph
// add an edge to an undirected graph
void addEdge(graph g, int v, int w) {
  addEdgeFromTo(g, v, w); // add an edge from v to w.
  addEdgeFromTo(g, w, v); // if graph is undirected, add both
```

For each edge(v, w) in the list

For each edge(v, w) in the list

Insert front each vertex both (adj[v], w) and (adj[w], v) addEdgeFromTo(g, v, w); // add an edge from v to w.

void addEdge(graph g, int v, int w) {


```
Adjacency lists
                                    graph3.txt
   adj[]
                                    13 -
    0
                                    0 5
                                    4 3
    1
                                    0 1
                                    9 12
    2
                                   6 4
                                    5 4
    3
                                    0 2
                                    11 12
    4
                                    9 10
                                    0 6
    5
                                    7 8
                                    9 11
    6
                                    5 3
```

V-E lists

For each edge(v, w) in the list

Graph g

For each edge(v, w) in the list

Graph g

For each edge(v, w) in the list

Graph g

For each edge(v, w) in the list

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

٧	marked[]	parent[v]
0	Т	- //
	F	41
2	F	
1 2 3 4 5	/ F	-
4	F	
	F	-
6	F	-
7	F	-
8 9	F	- <u>-</u>
	F	4 .
10		-
11		- 391
12	F	-

visit 0: Which one first?

visit 0: check 6, check 2, check 1, and check 5 DFS 0

visit 5: check 3, check 4, check 0

DFS 0 6 4 5

visit 3: check 5, check 4

DFS 0 6 4 5 3

visit 3: check 5, check 4

visit 3: check 5, check 4

visit 3: check 5, check 4

3 done: What's the next?

3 done: What's the next? Backtrack!

3 done: What's the next? **Backtrack!** How to?

parent[3] = 5

3 done: What's the next? Backtrack!
How to? Use parent[v]

5 done What's the next? **Backtrack!** How to?

5 done

What's the next? How to?

Backtrack!
Use parent[v]

parent[5] = 4

visit 4: check 5, check 6, check 3

visit 4: check 5, check 6, check 3 4 done

visit 4: check 5, check 6, check 3 4 done Backtrack! parent[4] = 6

visit 6: check 0, check 4

parent[6] = 0

done 6

Backtrack!

visit 6: check 0, check 4

visit 0: check 6, check 2, check 1, and check 5

visit 0: check 6, check 2, check 1, and check 5

visit 1: check 0

DFS: 0 6 4 5 3 2 1

1 done Backtrack! parent[1] = 0

visit 0: check 6, check 2, check 1, and check 5

visit 0: check 6, check 2, check 1, and check 5 0 done

DFS: Depth-First Search Demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

v marked[] parent[v]

0	Т	-//	
1	T	0	
1 2 3 4	Т	0 5	
3	Т	5	
4	T	6	
5	T	4	
6	T	0	
	F	-/	
7 8 9	F	-	
9	F	_	
10	F	_	
11	F	-	
12	F	_	

DFS Output: DFS: 0 6 4 5 3 2 1

- found vertices reachable from 0
- build a data structure parent[v]

DFS: Depth-First Search Demo

Goal: Find all vertices connected to s (and a corresponding path).

Idea: Mimic maze exploration

Algorithm:

- Use recursion (ball of string).
- Mark each visited vertex (and keep track of edge taken to visit it).
- Return (retrace steps) when no unvisited options.

Data Structures:

- Boolean[] marked to mark visited vetices.
- int[] parent to keep tree of paths.
 (parent[w] == v) means that edge v-w taken to visit w for first time

DFS: Depth-First Search Coding

```
// DFS - find vertices connected to v
void DFS(graph g, int v, queue<int>& que) {
  if (empty(g)) return;
  for (int i = 0; i < V(g); i++)
    g->marked[i] = false;
  _DFS(g, v, que); // recursive _DFS at v
  g->DFSv = que; // save result at DFSv at v
}
```

DFS: Depth-First Search Coding

```
// DFS - find vertices connected to v
void DFS(graph g, int v, queue<int>& que) {
   if (empty(g)) return;
   for (int i = 0; i < V(g); i++)
     g->marked[i] = false;
   _DFS(g, v, que); // recursive _DFS at g->DFSv = que; // save result at DF
}
```

```
// Recursive _DFS does the work
void _DFS(graph g, int v, queue<int>& que) {
 g->marked[v] = true; 'v' current visiting vertex
 que.push(v);
                    // save the path
 for (gnode w = g->adj[v].next; w; w = w->next) {
   if (!g->marked[w->item]) {
       _DFS(g, w->item, que);
       g->parentDFS[w->item] = v;
                            keep where it reached from
```

DFS: Depth-First Search Properties

Proposition: After DFS, can find vertices connected to s in constant time and can find a path to s (if one exists) in time proportional to its length.

Proof: parent[] is parent-link representation of a tree rooted at s.

```
// returns a path from v to w using the result of DFS's parent[].
// It has to use a stack to retrace the path back to the source.
// Once the client(caller) gets a stack returned,
void DFSpath(graph g, int v, int w, stack<int>& path) {
  if (empty(q)) return;
 // DFS at v, starting vertex
 queue<int> q;
 DFS(q, v, q);
 path = {};
 for (int x = w; x != v; x = q -> parentDFS[x])
   path.push(x);
  path.push(v);
```

v marked[] parent[v]

```
0 T - 1 T 0 2 T 0 3 T 5 4 T 6 5 T 4 6 T 0 7 F - 8 F - 9 F - 10 F - 11 F - 12 F - 12 F - 10
```

DFS: Depth-First Search Coding

Proposition: After DFS, can find vertices connected to s in constant time and can find a path to s (if one exists) in time proportional to its length.

Proof: parent[] is parent-link representation of a tree rooted at s.

What is the path from vertex 0 to vertex 3? In this case, what is in the stack when parnet() returns?

```
// returns a path from v to w using the result of DFS's parent[].
// It has to use a stack to retrace the path back to the source.
// Once the client(caller) gets a stack returned,
void DFSpath(graph g, int v, int w, stack<int>& path) {
  if (empty(q)) return;
 // DFS at v, starting vertex
 queue<int> q;
 DFS(q, v, q);
 path = {};
 for (int x = w; x != v; x = g->parentDFS[x])
   path.push(x);
  path.push(v);
```

v marked[] parent[v]

```
10
11
12
```

DFS: Depth-First Search Coding

Proposition: After DFS, can find vertices connected to s in constant time and can find a path to s (if one exists) in time proportional to its length.

Proof: parent[] is parent-link representation of a tree rooted at s.

```
// returns a path from v to w using the result of DFS's parent[].
// It has to use a stack to retrace the path back to the source.
// Once the client(caller) gets a stack returned,
void DFSpath(graph g, int v, int w, stack<int>& path) {
  if (empty(q)) return;
 // DFS at v, starting vertex
 queue<int> q;
 DFS(q, v, q);
 path = {};
 for (int x = w; x != v; x = g->parentDFS[x])
   path.push(x);
 path.push(v);
```


a wrong edge between?

Graph

- Introduction
- Graph API
- Elementary Graph Operations
 - DFS: Depth first search
 - BFS: Breadth first search
 - CC: Connected Components

Major references:

- 1. Fundamentals of Data Structures by Horowitz, Sahni, Anderson-Freed,
- 2. Algorithms 4th edition Part 1 & Part 2 by Robert Sedgewick and Kevin Wayne
- 3. Wikipedia and many resources available from internet

Prof. Youngsup Kim, idebtor@handong.edu, 2014 Data Structures, CSEE Dept., Handong Global University

Graph

- Introduction
- Graph API
- Elementary Graph Operations
 - DFS: Depth first search
 - BFS: Breadth first search
 - CC: Connected Components

Major references:

- 1. Fundamentals of Data Structures by Horowitz, Sahni, Anderson-Freed,
- 2. Algorithms 4th edition Part 1 & Part 2 by Robert Sedgewick and Kevin Wayne
- 3. Wikipedia and many resources available from internet

Prof. Youngsup Kim, idebtor@handong.edu, 2014 Data Structures, CSEE Dept., Handong Global University

Connectivity Queries

Def.: Vertices v and w are connected if there is a path between them.

Goal: Preprocess graph to answer queries of the form "is v connected to w?" in constant time.

public class CC			
	CC(Graph G)	find connected components in G	
boolean	<pre>connected(int v, int w)</pre>	are v and w connected?	
int	count()	number of connected components	
int	id(int v)	component identifier for v	

Depth-first search? Yes ...

The relation "is connected to" is equivalence relation:

Reflexive: v is connected to v.

Symmetric: if v is connected to w, then w is connected v.

Transitive: if v connected to w and w connected to x, then v connected to x

The relation "is connected to" is equivalence relation:

Reflexive: v is connected to v.

Symmetric: if v is connected to w, then w is connected v.

Transitive: if v connected to w and w connected to x, then v connected to x

Def.: A connected component is a maximal set of connected vertices.

The relation "is connected to" is equivalence relation:

Reflexive: v is connected to v.

Symmetric: if v is connected to w, then w is connected v.

Transitive: if v connected to w and w connected to x, then v connected to x

Def.: A connected component is a maximal set of connected vertices.

Goal: Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.

graph3.txt 13 13 11 12 9 10 0 6 7 8 9 11 5 3

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

Graph g:

Challenge: build adjacency lists?

Graph g

Graph g:

V	marked[]	id[]
0	F	_
1	F	-
2	F	-
3	F	-
4	F	-
5	F	-
6	F	-
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

Graph g:

v	marked[]	id[]
0	Т	0
1	Т	0
2	Т	0
3	Т	0
4	Т	0
5	Т	0
6	Т	0
7	Т	1
8	Т	1
9	Т	2
10	Т	2
11	Т	2
12	Т	2

Done:

Connected Components – Coding

```
// returns true if v and w are connected.
bool connected(graph g, int v, int w) {
  if (empty(g)) return true;

  queue<int> q;
  DFS(g, v, q);

  return g->CCID[v] == g->CCID[w];
}
```

```
// returns number of connected components.
int nCCs(graph g) {
  int id = g->CCID[0];
  int count = 1;
  for (int i = 0; i < V(g); i++)
    if (id != g->CCID[i]) {
    id = g->CCID[i];
    count++;
    }
  return id == 0 ? 0 : count;
}
```

Graph

- Introduction
- Graph API
- Elementary Graph Operations
 - DFS: Depth first search
 - BFS: Breadth first search
 - CC: Connected Components
- pset graph.cpp
 - implement DFS, BFS, CC and others

Major references:

- 1. Fundamentals of Data Structures by Horowitz, Sahni, Anderson-Freed,
- 2. Algorithms 4th edition Part 1 & Part 2 by Robert Sedgewick and Kevin Wayne
- 3. Wikipedia and many resources available from internet

Prof. Youngsup Kim, idebtor@handong.edu, 2014 Data Structures, CSEE Dept., Handong Global University

DFS - Exercise

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

adjacent list

A: BF

B: G C A

C: DGB

D: CG

E: F

F: E A

G: HBCD

H: G

Graph g:

Hint: A B...?...F E

DFS - Exercise

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

adjacent list

A: B F
B: G C A
C: D G B
D: C G
E: F
F: E A
G: H B C D
H: G

dfs(A) dfs(B) dfs(G) dfs(H) check G H done check B dfs(C) dfs(D) check C check G D done check G check B C done check D G done check C check A B done dfs(F) dfs(E) check F E done check A F done A done check B check C check D check E check F check G

check H

Graph g:

Hint: A B G H C D F E