実解析第2同演習・演習第12回

2023年1月20日

問 A-1

ノルム空間 X の点列 $\{x_n\}$ について以下は同値であることを示せ.

- 1. $\{x_n\}$ は Cauchy 列.
- 2. 0 に収束する実数列 $a_m \ge 0$ が存在し、任意の $n \ge m$ について $\|x_n x_m\| \le a_m$ となる.

問 A-2

以下を示せ.

- (1) 任意の $n \in \mathbb{N}$ に対し、 $\phi_n(x) := \sqrt{2} \sin n\pi x \in L^2([0,1])$.
- (2) 任意の $m,n\in\mathbb{N}$ に対し $\int_{[0,1]}\phi_n(x)\phi_m(x)\mathrm{d}x=\delta_{mn}$. ただし、 δ_{mn} は Kronecker のデルタ

$$\delta_{mn} := \begin{cases} 1 & m = n \\ 0 & m \neq n \end{cases}$$

である.

問 A-3

内積空間 X において、任意の $x,y \in X$ に対し

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

であることを示せ(これは平行四辺形公式と呼ばれる).

問B-1

X を実 Hilbert 空間とする. $C \subset X$ が凸集合であるとは、任意の $x,y \in C$ と $\lambda \in [0,1]$ に対し

$$\lambda x + (1 - \lambda)y \in C$$

となることである. 閉凸集合 $C \subset X$ と $x \notin C$ に対し、以下を示せ.

(1) 点xからCへの最短距離

$$d(x,C) := \inf_{y \in C} \|y - x\|$$

は有限値に定まる。また, $y_0 \in C$ で $d(x,C) = \|x-y_0\|$ となるものが存在する。 (ヒント: $d:=d(x,C)=\lim_{n\to\infty}\|y_n-x\|$ となる $y_n\in C$ が取れる。平行四辺形公式をうまく用いると, $\alpha_n:=\sup_{m\geq n}\left(\|x-y_m\|^2-d^2\right)\to 0$ となることから y_n が Cauchy 列であることがわかる。)

(2) 点 x から C への最短距離を与える $y_0 \in C$ は一意に定まる.

問 B-2

 $f \in L^2([0,1])$ のとき以下を示せ.

(1)

$$||f||_{L^2} = \sup_{||g||_{L^2} \le 1} \left| \int_{[0,1]} f(x)g(x) dx \right|.$$

(2) L^2 の意味で $g_k \to g$, すなわち $\|g_k - g\|_{L^2} \to 0 (k \to \infty)$ のとき

$$\int_{[0,1]} f(x)g(x) dx = \lim_{k \to \infty} \int_{[0,1]} f(x)g_k(x) dx.$$

問B-3

写像 $\phi: L^2([0,1]) \to \mathbb{R}$ が以下をみたすとき、 ϕ は連続であることを示せ.

線形性 任意の $\lambda \in \mathbb{R}$ と $f, g \in L^2([0,1])$ に対し、 $\phi(\lambda f + g) = \lambda \phi(f) + \phi(g)$.

有界性 ある M>0 が存在し、任意の $f\in L^2([0,1])$ に対して $|\phi(f)|\leq M||f||_{L^2}$.

逆に、線形な $\phi: L^2([0,1]) \to \mathbb{R}$ が連続であれば有界性をもつことを示せ.

(ヒント:対偶を示す.有界性がないので任意の $n\in\mathbb{N}$ に対し, $|\phi(u_n)|>n^2\|u_n\|_{L^2}$ となる $u_n\in L^2([0,1])$ が存在することを用いる.)