MIDLAND SYN-TECH

SERVICE TRAINING MANUAL

INTRODUCTION

The Midland SYNTECH Service Training Manual is designed to be used in conjunction with the Midland SYNTECH Service Manuals. The information contained in this training manual is valid for all frequency ranges of SYNTECH base station and mobile transceivers.

The information given in this training manual will be broken down into several catagories; Theory of operation, schematics, block diagrams, voltage charts, troubleshooting charts. See the table of contents for specific reference to information contained in this training manual.

The intent of this training manual is to provide a qualified technician adequate technical information on the Midland SYNTECH line of base stations and mobile transceivers in order to properly maintain the radios so they will meet or exceed published specifications.

SYN-TECH RESULTS TRAINING MANUAL

STHEY MODEROPS OF THE PERSON

TABLE OF CONTENTS

	PAGE
P.C. Board Interconnect Diagram - Front Mount	61
Control Head Schematic - Trunk Mount	62
Control Interface Schematic - Trunk Mount	63
P.C. Board Interconnect Diagram - Trunk Mount	64
General Troubleshooting Chart	65
Receiver Troubleshooting Chart	66
Transmitter Troubleshooting Chart	67
Modulator Troubleshooting Chart	67
CPU/PLL Troubleshooting Chart	68
Voltage Charts	6971
Repair Information	7274
Microcomputer Pin Outs	7577
70-050B Tx - Waveforms	78
70-050B Rx - Waveforms	79
70-066A Tx - Waveforms	80
70-066A Rx - Waveforms	81
70-340B Tx - Waveforms	82
70-340B Rx - Waveforms	83
70-530B Tx - Waveforms	84
70-530B Rx - Waveforms	85
70-980 Tx - Waveforms	86
70-980 Rx - Waveforms	87

SYN-TECH SERVICE TRAINING MANUAL

TABLE OF CONTENTS

	PAGE
Introduction	2
Performance Specifications	47
System Block Diagram	8
Suggested Test Equipment	9
Test Equipment Set-Up Diagrams	9
Power Supply Theory of Operation	10
Power Supply Block Diagram	11
PLL-Synthesizer Theory of Operation	12
Main PLL and Reference Oscillator Theory of Operation	13 & 14
Main PLL and Reference Oscillator Block Diagram	15
Modulator and Transmit PII Theory of Operation	16 & 17
Transmitter-Low Band, Mid Band, VHF Band, UHF Band	
Block Diagram	18
Transmitter-800 MHz Block Diagram	19
Transmitter Power Amplifier Theory of Operation	20
Syn-Tech 70-340 VHF 40 Watt Power Amplifier Block Diagram	21
Receiver RF-IF-DETECTOR Theory of Operation Receiver Block Diagram - UHF Band	22 & 23
Receiver Block Diagram - 800 MHz Band	24 25
Receiver Block Diagram - Low, Mid, VHF Band	26
Squelch-Audio Amp Theory of Operation	27
Simplified Squelch Circuit Schematic	28
Microcomputer Channel Data Transfer Theory of Operation	29
Channel Drivers - Display Diagram	30
Microcomputer Channel Data Transfer Block Diagram	31
Manual Channel Selection Theory of Operation	32
Manual Channel Selection Block Diagram	33
PTT Flow Chart Block Diagram	34
Scan Theory of Operation	35 & 36
Scan Block Diagrams	3740
Busy Channel Lockout Theory of Operation	41
Busy Channel Lockout Block Diagrams	42 E 43
CTCSS Theory of Operation	44 & 45
CTCSS Schematic - P.C. Board	46
CTCSS Voltage Chart - P.C. Board	47
Receiver P.C. Board - Top View	48
Receiver P.C. Board - Bottom View	49
Receiver Schematic - Front Mount	50 & 51
Receiver Schematic - Trunk Mount	52 & 53
Transmitter P.C. Board - Top View	54
Transmitter P.C. Board - Bottom View	55
Power Amp. P.C. Board - Top View Power Amp. P.C. Board - Bottom View	56
Transmitter Schematic	57 58 & 59
Control Panel Schematic - Front Mount	60
The state of the s	UU

GENERAL SPECIFICATIONS:

Nominal Operating Voltage	13.6	VDC	negative	gnd.
---------------------------	------	-----	----------	------

Temperature Range -30 C to +60 C

Antenna Impedance 50 ohms, unbalanced

Microphone Dynamic, with amplifier Speaker Internal 8 ohms

Frequency Control Synthesized with EPROM

Frequencies of Operation Low Band 29 - 54 MHz
Mid Band 66 - 88 MHz
VHF Band 136 - 174 MHz
UHF Band 406 - 512 MHz

UHF Band 406 - 512 MHz 800 MHz 806 - 866 MHz

Performance Bandwith Low Band TX - 1 MHz

RX - 1 MHz

Mid Band TX - 2 MHz

VHF Band TX - 4.5 MHz

UHF Band TX - 4.5 MHz

TX - 4.5 MHz

TX - 10 MHz

External 4 ohms

Frequency Tolerance and
Stability 800 MHz 2.5 PPM

Others 5.0 PPM

Channel Capability 80 Channels TX and RX

Current Drain

See specific service

manual for specific

model.

RECEIVER SPECIFICATIONS:

12 DB SINAD Senstivity .25uV @ 50 ohm Squelch Senstivity Threshold .2uV max or 6dB SINAD 1.0uV min, 2.0uV max Tight Receiver Attack (squelch release) time 100ms max Receiver Squelch Closing Time 200ms max Modulation Acceptance Bandwidth ±7.0KHz min @ 20/25/30 KHz ±4.5KHz min @ 12.5 KHz Adjacent Channel Two Signal Selectively and Desensitization Low Band 90dB @ +20KHz Mid Band 90dB @ ±30KHz VHF Band 90dB @ ±30KHz **UHF** Band 90dB @ ±25KHz 800 MHz 75dB @ ±25KHz Spurious Responce Attenuation 800 MHz 85dB all others 90dB Intermodulation Spurious Responce Attenuation. Measured at usable sensitivity. Low Band 90dB Mid Band 80dB VHF Band 80dB **UHF** Band 80dB 800 MHz 75dB Audio Power Output 1W @ 5% THD @ 8 ohms Internal 5W @ 5% THD @ 4 ohms External Hum and Noise Unsquelched 40dB Squelched 50dB Conducted Spurious RF power 200 uV across 50 ohms (800pW) from DC to 1000 MHz 10.7 MHZ 1st, 455KHz 2nd Intermediate Frequencies Low Band Mid Band 21.4 MHz 1st, 455KHz 2nd VHF Band 21.4 MHz 1st, 455KHz 2nd **UHF** Band 21.4 MHz 1st, 455KHz 2nd

47.0 MHz 1st, 455KHz 2nd

800 MHz

TRANSMITTER SPECIFICATIONS:

Carrier Power Output	30 Watt Models 40 Watt Models 50 Watt Models 65 Watt Models 40 - 65 Watts 65 Watt Models 40 - 80 Watts 110 Watt Models 15 - 15 Watts 35 Watt Models 20 - 35 Watts
Modulation System	Phase Modulation PM
Audio frequency harmonic distortion System Deviation	3% @ 1000 Hz for ±3.0 KHz deviation
Modulation limiting	Instantaneous peak clipping with low pass audio filter
Hum and Noise	50dB
Transmitter carrier attack time	100ms max for 50% rated power
Conducted spurious emission	ns Less than 25uW, 1MHz to 1000MHz
Microphone input level and impedance	-8dbm ±3db/600 ohms
Output protection	Shall withstand for 5 minutes all VSWR around Smith Chart of 20:1 without failure or damage
Output stability	Shall not exceed spurious emission requirements when operated into a mis-match load with 5:1 VSWR at any point on the Smith Chart

SCAN SPECIFICATIONS:

Scan Speed

Channel Capacity

Scan Detection

Scan Resume Delay

CTCSS SPECIFICATIONS:

Code Frequencies

Modulation Limits

Decode Sensitivity

Receiver Responce Time

Encode Responce Time

Transmitter Tone Distortion

Transmitter Intermodulation Distrotion

20 Channels/second

64 (PRI) 64 (SCAN)

Carrier, tone or vacant

channel

0.3/2.5/5.0 or inifinite

seconds

All EIA standard from 67Hz to 241.8Hz

500 - 1000 MHz

Less than 5db SINAD

200ms max

50ms max

5% max

10%

PERFORMANCE SPECIFICATIONS ASSESSMENT

auntid y fing graves a farmonie

Anducation History

No more proposal, Al-2 ligar straight

Cathletold matthew enteriors

Conjuntarionality

sam anti-

Couplet stopping

Acres : Barbin

oraced Smile Enuri p lature or manys see

Water or Property

-mouseum mod

THE RESERVE AND PARTY AND PARTY.

gilorgyphia mic 2000

estamopenii 1983

Metallican and A

Reserved Statement P.

Francisco III

8

SUGGESTED TEST INSTRUMENTS

INSTRUMENT TYPE	Power/Mate BPA-20F	Bird Model 43 with 50C Element and 50 watt, 50 ohm load
REQUIRED SPECIFICATIONS	13.8 VDC 10amps	136-174 MHz
TEST INSTRUMENT	DC Power Supply	Watt Meter

10v	100v
	1
ΔM	mv
AC 100	100
AC	DC
ultimeter	

		and resistive ble)
AC 100 mv - 10v DC 100 mv - 100v	10mv - 10v	4 ohm speaker and load (switchable)
Digital Multimeter	AC Voltmeter	Speaker Load

Heath SM-5238

B-K 2810

Shop
Cushma

RF Signal Generator 136-17

istive	Shop Fabricate
alibrated	Cushman CE-31A
Internal	
on capability	

CE-31A	Cushman CE-31A
Cushman	Cushman

CE-31A	SM-4120	
u	다	
hman	Heath	
h	H	
Cush	or	
O	0	

Frequency Range 136-174 MHz Frequency tolerance of +/-.00002%

Frequency Meter

Deviation Meter

0-10 KHz Sine Wave 0-5V

Signal Generator

LMR Test Set Sinad Meter

0 - 5 KHz Deviation Range +/- Deviation Capability

Heath SG-5218

TEST EQUIPMENT SET-UP DIAGRAMS

70-340/440

RECEIVER TEST SET-UP

TRANSMITTER TEST SET-UP

POWER SUPPLY

THEORY OF OPERATION:

The 13.6 VDC input is filtered by L256 and related components and switched by K201 (trunk-mount models) or the unit on-off switch (under-dash models). This filtered 13.6 VDC is supplied directly to the PA driver and final stages and also to pin 2 of IC401, the main voltage regulator. IC401 outputs a constant 8 VDC from pin 1 as well as 8 VDC during receive from pin 8 and 8 VDC during transmit from pin 6. The receive/transmit switching signal is output from IC901 pin 13 through Q402 and Q403 to IC401 pin 5. Regulator IC402 (Tx board) provides 5 VDC for the reference oscillator, synthesizer integrated circuits and the E/PROM module. Regulator IC303 (control panel or control head) supplies 8 VDC for microphone bias and LED displays. The microcomputer IC901 is supplied 5 VDC from zener diode D402, which is powered by an unswitched 13.6 VDC source. This allows the microcomputer to retain memory of the last selected channel as long as power is connected to the radio. Other microcomputer functions are disabled at unit turn-off, since power is removed from pin 19, the standby control pin.

VOLTAGE CHARTS:

ANALOG	IC															
REF.NO.	DESCRIPT	ION MODE	No.1		No.3		No.5	PIN No.6			PIN No.9	PIN No.10	PIN No.11	PIN No.12		FUNCTION
IC 303	uPC7808H		13.8		0		 							• •		POWER REGULATOR
IC 401	MB 3756	TX RX	1	13.6		1 1	0 1.7	0 8	0	8 0						POWER REGULATOR
IC 402	uPC7805H		13.8	0	4.9											POWER REGULATOR

POWER SUPPLY BLOCK DIAGRAM

PLL/SYNTHESIZER FUNCTION

The frequency synthesizer consist of two phased-locked loops. One loop (Main PLL) is controlled directly by the microcomputer and generates the receive local oscillator frequency. This loop also generates a frequency used in the second loop (Transmit PLL) for transmitter operation.

Radio Frequenc	cy Range	RX L.O. Frequency	TX PLL Output		
Low Band	A Band	39.7 - 47.7 MHz	29 - 37 MHz		
	B Band	45.7 - 54.7 MHz	35 - 44 MHz		
	C Band	50.7 - 64.7 MHz	40 - 54 MHz		
Mid Band	A Band	87.4 - 98.4 MHz	66 - 77 MHz		
	B Band	98.4 - 109.4 MHz	77 - 88 MHz		
VHF Band	A Band	114.6 - 134.6 MHz	136 - 156 MHz		
	B Band	126.6 - 152.6 MHz	148 - 174 MHz		
UHF Band	A Band	384.6 - 408.6 MHz	406 - 430 MHz		
	B Band	428.6 - 448.6 MHz	450 - 470 MHz		
	C Band	448.6 - 472.6 MHz	470 - 494 MHz		
	D Band	472.6 - 490.6 MHz	494 - 512 MHz		
	E Band	408.6 - 428.6 MHz	430 - 450 MHz		
800 MHz		759.0 - 819.0 MHz	806 - 866 MHz		

REFERENCE OSCILLATOR AND MAIN PLL

A stable frequency for the entire radio is generated by a crystal oscillator composed of X101, Q701 and related components. The stability of this oscillator is maintained by use of a positor crystal heater. This oscillator operates at the frequencies listed below for the different frequencies of SYNTECH radios.

Low Band - 5.12 MHz Mid Band - 5.12 MHz VHF Band - 5.12 MHz UHF Band - 12.8 MHz 800 Mhz - 12.8 MHz

The main oscillator frequency is divided by 1024 in IC701 to generate a reference frequency for the Main PLL loop which consist of IC701 (phase comparator and programmable divider), Q704-706 (loop low pass filter), D702/Q707 (VCO), IC704 (VCO for 800 MHz models), and IC703 (pre-scaler). The reference frequencies generated for each frequency range of SYNTECH radios is listed below.

Low Band - 5.0 KHz
Mid Band - 5.0 KHz
VHF Band - 5.0 KHz
UHF Band - 12.5 KHz
800 MHz - 12.5 KHz

The Main VCO frequencies produced for each frequency range of SYNTECH radio is calculated as follows.

FREQUENCY RANGE	RECEIVER VCO FREQUENCY	TRANSMIT VCO FREQUENCY
Low Band	FRX + 10.7 MHz	FTX + 10.24 MHz
Mid Band	FRX + 21.4 MHz	FTX + 20.48 MHz
VHF Band	FRX - 21.4 MHz	FTX - 20.48 MHz
UHF Band	FRX - 21.4 MHz	FTX - 19.20 MHz

FTX - 19.20 MHz

The Main VCO frequency is divided by the ratios listed below,

FRX - 47.0 MHz

Low Band - 32/33 Mid Band - 32/33 VHF Band - 64/65 UHF Band - 64/65 800 MHz - 64/65

800 MHz Band

REFERENCE OSCILLATOR AND MAIN PLL

by pre-scaler IC703 and further divided in IC701. The divison ratio of IC701 is controlled by the 8 bit code latched into the shift register IC902 from the EPROM IC951 under control of the microcomputer IC901. The 8 bit code is sent in serial fashion from IC902 to IC701 under microcomputer control. Besides being a programmable divider, IC701 is also a phase comparator which generates an error signal for VCO control if the programmable divider output is out of phase with the 5 KHz signal generated in the low band, mid band and VHF band radios; and 12.5 KHz in the UHF band and 800 MHz radios.

MAIN PLL & REFERENCE OSCILLATOR BLOCK DIAGRAM

MID BAND - 5.12 MHz

VHF BAND - 5.12 MHz

UHF BAND - 12.8 MHz

800MHz - 12.8 MHz

LOW BAND - 5.0 KHz

MID BAND - 5.0 KHz

(-)

LOW BAND - 5.12 MHz

LOW BAND - 6.0 KHz

MID BAND - 6.0 KHz

VHF BAND - 6.0 KHz

UHF BAND - 12.6 KHz

800MHz - 12.6 KHz

(3) LOW BAND A BAND - 39.7 - 47.7 MHz B BAND - 45.7 - 54.7 MHz

C BAND - 50.7 - 64.7 MHz

A BAND - 874 - 984 MHz B BAND - 984 - 1094 MHz

MID BAND

A BAND - 114.6 - 134.6 MHz
B BAND - 126.6 - 152.6 MHz

VHF BAND

UHF BAND

A BAND - 384.6 - 408.6 MHz
B BAND - 428.6 - 448.6 MHz
C BAND - 448.6 - 472.6 MHz
D BAND - 472.6 - 490.6 MHz

800MHz

759.0 - 819.0 MHz

E BAND - 408.6 - 428.6 MHz

MODULATOR AND TRANSMIT PLL

The main reference oscillator frequency, which operates at the frequencies listed below,

```
Low Band - 5.12 MHz
Mid Band - 5.12 MHz
VHF Band - 5.12 MHz
UHF Band - 12.8 MHz
800 MHz - 12.8 MHz
```

is also fed to IC702 (4 bit binary counter) where is is divided by

Low Band	-	8	640 KHz
Mid Band	-	4	1.28 MHz
VHF Band	-	4	1.28 MHz
UHF Band	_	8	1.60 MHz
800 MHz	-	8	1.60 MHz

to generate a new frequency listed in the table above. This new frequency goes directly to the transmit phase shift modulator D101/D102. Audio from the microphone is shaped and limited by IC101 (instantaneous deviation control), filtered and buffered and fed to the phase shift modulator. The modulated outpur becomes the reference frequency for the transmit PLL loop consisting of IC103 (phase comparator), D104/Q108 (VCO), IC104 (VCO for 800 MHz models), D108 (mixer), and IC106 (fixed divider). The VCO output is at the transmit channel frequency and is mixed at D108 with the frequencies listed below from the Main PLL loop

```
Low Band - FTX + 10.24 MHz
Mid Band - FTX + 20.48 MHz
VHF Band - FTX - 20.48 MHz
UHF Band - FTX - 19.20 MHz
800 MHz - FTX - 19.20 MHz
```

to yield the transmitter IF frequencies listed below for the different frequency ranges of SYNTECH radios.

```
Low Band - 10.24 MHz
Mid Band - 20.48 MHz
VHF Band - 20.48 MHz
UHF Band - 19.20 MHz
800 MHz - 19.20 MHz
```

This frequency is divided in IC106 to give a new frequency, and is compared with the reference signal from the modulator. The division ratio of IC106, the new frequency and the modulator reference frequency are listed in the chart below.

MODULATOR AND TRANSMIT PLL

Frequency Range	IC106 Division Ratio	New Freq.	Mod. Ref. Freq.
Low Band	. 16	640 KHz	640 KHz
Mid Band	16	1.28 MHz	1.28 MHz
VHF Band	16	1.28 MHz	1.28 MHz
UHF	12	1.60 MHz	1.60 MHz
800 MHz	12	1.60 MHz	1.60 MHz

Thus the VCO output is forced to track the modulated reference signal, reproducing this modulation at the transmit frequency. IC102 detects any large differences between the two phase comparator inputs and generates an out-of-look signal which biases Q111 on in the Low Band, Mid Band, VHF Band, and UHF Band radios. With Q111 biased on, the transmitted signal is prevented from reaching the final stages of the radio. In the 800 MHz radios, the out-of-lock signal biases Q108 off through Q111, Q112 and Q109. This prevents any transmitter signal from reaching the power amplifier stages. Q111 is biased on (Q108 biased off) during receive by a signal from the microcomputer IC901 pin 6.

TRANSMITTER BLOCK DIAGRAM

LOW BAND - 5.12 MHz MID BAND - 5.12 MHz VHF BAND - 5.12 MHz UHF BAND - 12.8 MHz LOW BAND - 640 KHz MID BAND - 1.28 MHz VHF BAND - 1.28 MHz UHF BAND - 1.60 MHz LOW BAND - 10.24 MHz MID BAND - 20.48 MHz VHF BAND - 20.48 MHz UHF BAND - 19.20 MHz

TRANSMITTER BLOCK DIAGRAM - 800MHz

TRANSMIT POWER AMPLIFIER AND APC (AUTOMATIC POWER CONTROL)

For instructional purposes, we will discuss the power amplifier and automatic power control circuitry for the 40 watt VHF band SYN-TECH transceiver. The other frequency ranges of SYN-TECH radios and the higher power VHF band radios operate on these same basic principles. For a thorough discussion on the transmit power control circuitry of these radios, please see the specific service manual for this information.

The transmit PLL output is amplified by Q110 before being fed to the PA section. The Q110 output is amplified to rated power by Q501 (pre-driver), Q502 (driver), and the final transistor Q503. A sample of the RF output is detected by D504 and coupled to the differential amplifier Q506/Q505. The output of Q505 controls the conduction of Q504 which in turn controls the gain of the pre-driver Q501. Thus any changes in output power are automatically corrected by this control loop. Output power is set at alignment by RV502. Transmitter harmonics are eliminated by output low pass filtering composed of L512-L515 and C525-C529. The PIN diode switch D501 is biased to a low resistance state during transmit and a high impedance condition during receive.

SYN-TECH 70-340 VHF 40 WATT POWER AMPLIFIER

RECEIVER RF/IF/DETECTOR

The theory of operation for the RF, IF and detector sections will be broken down into three sections. The first section will cover the low band, mid band and VHF transceivers. The second section will cover the UHF transceiver and the third section will cover the 800 MHz transceiver.

LOW BAND - MID BAND - VHF

The receiver front end consist of filtering by C201-C206 and L201-L203 and RF amplification by Q201. After further filtering the RF signal is mixed at the FET mixer Q202 with the local oscillator signal generated by the Main PLL loop to give the first IF frequency. The local oscillator frequency and first IF frequency for the low band, mid band and VHF radios is given in the chart below.

MODEL		RX LOCAL OSC. FREQ.	1st IF FREQ.
Low Band	A Band	39.7 - 47.7 MHz	10.7 MHz
	B Band	45.7 - 54.7 MHz	10.7 MHz
	C Band	50.7 - 64.7 MHz	10.7 MHz
Mid Band	A Band	87.4 - 98.4 MHz	21.4 MHz
	B Band	98.4 - 109.4 MHz	21.4 MHz
VHF Band	A Band	114.6 - 134.6 MHz	21.4 MHz
	B Band	126.6 - 152.6 MHz	21.4 MHz

The IF signal is filtered by the crystal filter FL251, amplified by Q251 and fed to the internal mixer of IC251. The 2nd local oscillator frequency is generated by X251 and the IC251 internal oscillator and injected into the internal mixer, producing the 2nd IF frequency of 455KHz. The 2nd local oscillator frequency for the low band, mid band and VHF band radios is listed below.

MODEL	2nd LOCAL OSCILLATOR FREQUENCY
Low Band	10.245 MHz
Mid Band	20.945 MHz
VHF Band	20.945 MHz

The 2nd IF signal is filtered by FL252 and FL253, amplified and limited by the amplifier/limiter stage of IC251, and injected into the quadrature circuit consisting of L252 and the internal balanced mixer of IC251. The output of the balanced mixer is the detected audio signal.

RECEIVER RF/IF/DETECTOR

UHF BAND

The receiver front end consist of filtering by L201-L202 and RF amplification by Q201 and Q202. After further filtering by L203-L206 the RF signal is mixed at the FET mixer Q203 with the local oscillator signal generated by the Main PLL loop to give the 21.4 MHz IF. The local oscillator frequencies for the different frequency ranges of UHF radios is listed below.

MODEL

RX LOCAL OSCILLATOR FREQUENCY

UHF	Band	Α	Band	384.6	_	408.6	MHz
		В	Band	428.6	-	448.6	MHz
		C	Band	448.6	_	472.7	MHz
		D	Band	472.6	_	490.6	MHz
		E	Band	408.6	-	428.6	MHz

The IF signal is filtered by the crystal filter FL251, amplified by Q251 and fed to the internal mixer of IC251. The 2nd local oscillator frequency of 20.945 MHz is generated by X251 and the IC251 internal oscillator and injected into the internal mixer, producing the 2nd IF of 455 KHz. The 2nd IF signal is filtered by FL252 and FL253, amplified and limited by the amplifier-limiter stages of IC251, and injected into the quadrature detector circuit consisting of L252 and the internal balanced mixer of IC251. The output of the balanced mixer is the detected audio signal.

800 MHz BAND

The receiver front end consist of filtering by helical resonators L201-1 and L202-1 and RF amplification by IC201. The RF signal is further filtered by helical resonators L201-2 and L202-2 and coupled to the hybrid mixer composed of IC202 and IC203. The other input to the first mixer is the local oscillator signal generated by the Main PLL loop (759-819 MHz) and amplified by IC204. The first mixer output is at the 47.0 MHz IF frequency and is filtered by crystal filters FL201 and FL202 and coupled to the second mixer Q201. The second local oscillator frequency of 47.455 MHz is generated by X201 and Q202. The 455 KHz second IF signal is filtered by the ceramic filter FL251, amplified by Q251 and fed to IC251 for further amplification, filtering by FL252 and limiting by the amplifier-limiter stages. The resulting limited signal is injected into the quadrature detector circuit consisting of L252 and the internal balanced mixer of IC251. The balanced mixer output is the detected audio signal.

806-866MHz DETECTED AUDIO RECEIVER BLOCK DIAGRAM - 800MHz RF AMP IC-201 AF AMP MAIN VCO-L.O. 759-819MHz Q257 HYBRID IC-202 RV302 VOLUME SQUELCH SWITCH Q259 MIXER IC-203 47MHz IC-252 AF PA 0201 MIXER OSCILLATOR 455KHz Q202 SPEAKER D.C. SWITCH AMP-455KHz OSCILLATOR DETECTOR LIMITER IC-251 MIXER IF AMP Q251 47.455MHz 2ND L.O. 9 NOISE AMP Q252 \$ RV301 → SQUELCH DETECTED AUDIO 25

RECEIVER BLOCK DIAGRAM LOW - MID - VHF BAND

SQUELCH AND AUDIO AMPLIFIER

The noise from the detector is amplified by Q252, detected by D253 and controlled in level by the squelch control RV301. This detected noise signal is coupled to the DC switching amplifier of IC251. Under conditions of no RF signal, the detected noise signal increases and turns on the DC switching amplifier, which in turn biases off the transceiver audio squelch gate Q259. The detected audio signal is buffered by Q257 and passes through the volume control RV302 and squelch gate Q259 to the audio power amplifier IC252 and then to the speaker.

A simplified squelch circuit schematic is shown on the following page to enable the technician to break out the SYN-TECH squelch circuits for a better understanding of their operation.

MICROCOMPUTER CHANNEL DATA TRANSFER

At unit power up a pulse is generated by Q405 resetting the microcomputer to an autotest mode. This reset pulse is applied to pin 15 on the microcomputer. A check is made to ensure the EPROM module is installed into the radio. If valed data is present at the EPROM, 3 bits of address data corresponding to the selected receive channel frequency are strobed from the microcomputer IC901 to the latch IC952. The remaining three bits of data are then strobed and latched in IC952. These 6 bits of data are transferred from the microcomputer IC901 pins 32 - 37. The EPROM data corresponding to the selected receive channel frequency is then strobed to the 8 bit shift register IC902 which transfers this data to the programmable divider IC701 under microcomputer control. This EPROM data is strobed to IC902 on pins 7, 6, 5, 4, 13, 14, 15, 1 and transferred to IC701 on pin 6. IC701 divides its input signal by the correct ratio to yield the desired receiver local oscillator frequency. The division ratio and receiver local oscillator frequencies for the different frequency ranges of radios is listed below.

MODEL	DIVISION RATIO		RECEIVER LOCAL OSC. FREQ.
Low Band	32/33	A Band B Band C Band	39.7 - 47.7 MHz 45.7 - 54.7 MHz 50.7 - 64.7 MHz
Mid Band	32/33	A Band B Band	87.4 - 98.4 MHz 98.4 - 109.4 MHz
VHF Band	64/65	A Band B Band	114.6 - 134.6 MHz 126.6 - 152.6 MHz
UHF BAnd	64/65	A Band B Band C Band D Band E Band	384.6 - 408.6 MHz 428.6 - 448.6 MHz 448.6 - 472.6 MHz 472.6 - 490.6 MHz 408.6 - 428.6 MHz
800 MHz	64/65		759.0 - 819.0 MHz

IC701 outputs on pin 10 an out-of-look signal, which is applied to pin 6 on the microcomputer IC901. This out-of-look signal mutes the receiver until phase lock is achieved. The microcomputer IC901 strobes data corresponding to the selected channel from pins 22-25 to the latched LED display drivers IC301 and IC302 on pins 7, 2, 1 and 6. IC301/302 in turn drive the channel LEDS. Brightness of the display is automatically adjusted to ambient light conditions by photosensor CDS301 and transistors O301 and O302.

DRIVER'S & DISPLAY

OUTF <u>PIN</u>	PUT S: 1				PUT 5: 25			C901 2
IC301,302 INPUT PINS =	5	4	3	6	2	1	7	
	ST			D	С	В	Α	
	Х	X	0	X	X	X	X	
	Х	0	1	Х	X	X	Х	
	0	1	1	0	0	0	0	
	0	1	1	0	0	0	1	
	0	1	1	0	0	1	0	
	0	1	1	0	0	1	1	
	0	1	1	0	1	0	0	
	0	1	1	0	1	0	1	
	0	1	1	0	1	1	0	
	0	1	1	0	1	1	1	
	0	1	1	1	0	0	0	
	0	1	1	1	0	0	1	
	0	1	1	1	0	1	0	
	0	1	1	1	0	1	1	
	0	1	1	1	1	0	0	
	0	1	1	1	1	0	1	
	0	1	1	1	1	1	0	
	0	1	1	1	1	1	1	
	1	1	1	Х	Х	Х	Х	

•	OUTPUT IC301 & 302 TO LED DISPLAY										
	_				\	_					
13	13 12 11 10 9 15 14										
а	b	С	d	е	f	g					
1	1	1	1	1	1	1					
0	0	0	0	0	0	0					
1	1	1	1	1	1	0					
0	1	1	0	0	0	0					
1	1	0	1	1	0	1					
1	1	1	1	0	0	1					
0	1	1	0	0	1	1					
1	0	1	1	0	1	1					
0	0	1	1	1	1	1					
1	1	1	0	0	0	0					
1	1	1	1	1	1	1					
1	1	1	0	0	1	1					
0	0	0	0	0	0	0					
0	0	0	0	0	0	0					
0	0	0	0	0	0	0					
0	0	0	0	0	0	0					
0	0	0	0	0	0	0					
0	0	0	0	0	0	0					

DISPLAY
8
BLANK
0
1
2
. 3
4
5
6
7
8
9
BLANK
11
11
П
11
li .
*

(0 = 0 TO 2V) (1 = 6 TO 8V)

X=DON'T CARE

*= DEPENDS UPON BCD CODE PREVIOUSLY APPLIED WHEN ST=0

MICRO COMPUTER CHANNEL DATA TRANSFER **BLOCK DIAGRAM**

MANUAL CHANNEL SELECTION

Activation of the up-down channel selector switch is sensed by the microcomputer on pins 26 and 27. If the channel selector switch is moved to the up position, pin 26 goes low. If the channel selector switch is moved to the down position, pin 27 will go low. The receive audio is muted when ever the channel selector switch is moved up or down. Upon release of the channel selector switch. EPROM data corresponding to the new channel is strobed to the programmable divider IC701 on pin 6. If the synthesizer lock signal is not detected after a channel change, (indicated by a lack of a logic low on pin 10 of IC701), the receiver and transmitter are inhibited and the channel indicator displays an error code 95. The receiver/transmitter inhibit signal is a logic low which comes from the microcomputer IC901 pin 6. The low from IC901 pin 6 will be inverted to a high by the invert gate IC706. This logic high is used to turn on Q111, which will prevent any transmitted signal from reaching the power amplifier. The logic low from IC901 pin 6 is also transfered to the receiver board via J364 pin 7 on the transmit board in order to mute the receiver during th 95 error code condition.

When the PTT is depressed, a logic low is applied to the inverter gate IC706. This logic low is inverted into a logic high and applied to the Microcomputer PTT input pin 30. The microcomputer outputs this PTT signal as a logic low on pin 13. This low from IC901 pin 13 is routed to pin 5 of IC401, the 8VDC regulator. When pin 5 is pulled low, pin 6, the receive 8 volt line is inhibited and pin 8, the transmit 8 volt line outputs 8VDC. The microcomputer then outputs EPROM address data corresponding to the selected transmit channel, which results in the programmable divider IC701 being reprogrammed for the correct transmit frequency. The chain of events which will take place have been discussed under the heading MODULATOR AND TRANSMIT PLL.

- DOWN P (41) (40) IC-902 (26) (13) (9) (27) IC-302 IC-901 E PROM IC-951 IC-952 IC-301 (6) (6) IC-701 (10) IC-706 (8) (10) AF IN Tx INHIBIT AUDIO MUTE Q259

MANUAL CHANNEL SELECTION BLOCK DIAGRAM

SCAN OPERATION

When scan operation is selected by activation of either of the push buttons on the radio front panel, pin 9 (PRI) or pin 8 (SCN) on the microcomputer IC901 is pulled low. The transmit and receive addresses of the displayed channel are stored in microcomputer memory as the priority channel. The displayed channel information is sent from IC301 and IC302 pins 7, 1, 2 and 6 and transmitted to the microcomputer on pins 22, 23, 24 and 25. The address data corresponding to the first scan channel is strobed to the latch IC952 directly from the EPROM, resulting in the generation of the correct local oscillator frequency as described in the section titled REFERENCE OSCILLATOR AND MAIN PLL. After synthesized lock is achieved, a 25 millisecond period (Interval A) is alloted for operation of the noise squelch circuitry. At the end of Interval A, one of four sequences of events will take place as described below.

- 1) The microcomputer causes the scan sequence to resume (noise squelch closed). The microcomputer senses the closed squelch condition from a signal transmitted from IC251 on the receiver board. If the squelch is closed, pin 14 of IC251 will be at 1.4 volts. This will turn on transistor Q255 causing the high to be inverted to a low. This logic low will be transmitted to the microcomputer IC901 pin 4 which is labeled SQSIG.
- 2) The microcomputer opens the audio squelch gate (noise squelch open and the noise squelch mode is programmed into the EPROM or the CTCSS mode is programmed into the EPROM and no CTCSS tone is programmed on the specific receive channel). IC901, pin 5, labeled TSQMON goes logic low and transmits this signal to Q261 (squelch switch) which turns it off. With Q261 turned off, Q259 turns on and allows the receive audio to pass.
- 3) The microcomputer activates the Interval B timer (noise squelch open and the CTCSS scan mode is programmed into the EPROM and CTCSS is programmed on the specific receive channel). Interval B is a time period alloted for signaling system decoder operation. The time period is 300 milliseconds. At the end of Interval B, one of two sequenses of events will take place as described below.
 - A) The microcomputer causes the scanning sequence to resume because of no decoder output, indicated by a high level on the TSQMON line at IC901 pin 5. The collector of Q2 on the CTCSS board is held at 0 volts, which will turn off Q260 on the receiver board causing its collector to go high. This high is transmitted to IC901, pin 5.
 - B) The microcomputer causes the audio squelch to open because of a successful decode output indicated by

a low input to IC901, pin 5. If successful decode is achieved, the collector of Q2 on the CTCSS board will go high, which will turn Q260 on the receiver board to the on state. The collector of Q260 will be pulled low when Q260 is turned on and this low will be transmitted to IC901, pin 5.

If the receive channel corresponds to the operated selected priority channel, a two-beep signal is generated when the squelch gate opens. After squelch closure, scan resumption is delayed by the amount of the programmable delay timer (RX or TX). If the priority-sampling scan mode is selected, the microcomputer automatically checks the priority channel after every fourth or eighth non-priority channel (programmable). While in a hold condition on a non-priority channel, the priority channel is sampled every second or two seconds (programmable). The priority channel sampling sequence is identical to the normal scan procedure described above.

PRI ᆘ SCAN 매 Г | (9) Ì Tx BOARD (8) IC-901 (4) SQ SIG IC-251 (14) Rx BOARD 1.4 V Q255

SCAN BLOCK DIAGRAM NOISE SQUELCH CLOSED (RESUME SCAN)

SCAN BLOCK DIAGRAM NOISE SQUELCH OPEN (SCAN STOP)

매 (9) (8) Tx BOARD IC-901 TSQ MON (5) 5 V CTCSS R295 Rx BOARD BOARD R291 < (RxBd)

SCAN BLOCK DIAGRAM TONE SQUELCH (RESUME SCAN)

SCAN BLOCK DIAGRAM TONE SQUELCH (SCAN STOP)

BUSY CHANNEL LOCKOUT AND TIME OUT TIMER

The busy channel lockout function can be jumper selected by JP107 or JP108 to provide transmitter inhibit on either carrier or CTCSS/CDCSS tone. If the busy channel signal is carrier only, pin 14 of IC251 on the receiver board will be at 0 volts. This logic low is transfered to the base of Q256 (squelch switch) which causes it to turn off. With Q256 turned off, the collector of Q256 is held high through R272 which transfers this high to the microcomputer IC901 pin 28 (PTT inhibit). If the busy channel signal is composed of carrier and tone, the collector of Q2 on the CTCSS board is held high through R291 on the receiver board. This high is transfered to the microcomputer IC901 pin 28 (PTT inhibit).

If the Busy Channel Lockout function is programmed in the EPROM, transmit will be inhibited while the busy channel signal is present. An audio alert signal (if programmed) is generated when the transmitter is keyed to indicate the channel busy condition.

The Time OUT Timer function is completely internal to the microcomputer. If the continuous transmit time exceeds the time limit programmed into the EPROM, the transmitter is disabled and an audio beep alerts the operator.

BUSY CHANNEL LOCKOUT BLOCK DIAGRAM CARRIER SQUELCH

BUSY CHANNEL LOCKOUT BLOCK DIAGRAM TONE SQUELCH

CTCSS OPERATION

The CTCSS option provides, under microcomputer control, encode and decode of 35 standard EIA CTCSS tones. At each channel change and transmit/receive transition, data corresponding to the selected channel and mode is strobed from J903 on the EPROM to P903 on the CTCSS board. The data is strobed on lines D0 to D4 and follows the logic pattern listed in the table below for the different CTCSS tones.

ENCODE/DECODE IC 3 FREQUENCY (HZ) PINS

	4	5	6	7	8	9
67.0	1	1	1	1	1	1
71.9	0	A	П	M	1	1
74.4	1	1	1	1	1	0
77.0	0	0	1	1	1	1
79.7	1	1	1	1	0	1
82.5	0	1	1	1	1	0
85.4	1	1	1	1	0	0
88.5	0	0	1	1	1	0
91.5	1	1	1	0	1	1
94.8	0	1	1	1	0	1
97.4	1	1	1	0	1	0
100.0	0	0	1	1	0	1
103.5	0	1	1	1	0	0
107.2	0	0	1	1	0	0

ENCODE/DECODE IC 3
FREQUENCY (HZ) PINS

	4	5	6	7	8	9
110.9	0	1	1	0	1	1
114.8	0	0	1	0	1	1
118.8	0	1	1	0	1	0
123.0	0	0	1	0	1	0
127.3	0	I	Ū	0	0	1
131.8	0	0	1	0	0	1
136.5	0	1	1	0	0	0
141.3	0	0	1	0	0	0
146.2	0	1	0	1	1	1
151.4	0	0	0	1	1	1
156.7	0	1	0	1	1	0
162.2	0	0	0	1	1	0

ENCODE/DECODE IC 3
FREQUENCY (HZ) PINS

	4	5	6	7	8	9
167.9	0	1	0	1	0	1
173.8	0	0	0	1	0	1
179.9	0	1	0	1	0	0
186.2	0	0	0	1	0	0
192.8	0	1	0	0	1	1
203.5	0	0	0	0	1	1
210.7	0	1	0	0	1	0
218.1	0	0	0	0	0	0
225.7	0	1	0	0	0	1
233.6	0	0	0	0	0	1
241.8	0	1	0	0	0	0
250.3	0	0	0	0	0	0

The D0 to D4 data is latched into IC1 on the CTCSS board. IC1 outputs this data to IC3 for generation or detection of the correct CTCSS tone. This data is also input to IC2, which outputs a high logic level for encode/decode inhibit if all data lines D0 to D4 are low. All data lines would be low if no CTCSS tone is desired on a specific channel and an AUX code "0" is programmed on that channel. Encode inhibit is accomplished by holding IC3 pin 17 at a high level through D2, which is biased high through IC2 pin 13 since all inputs to IC2 would be low. Decode is inhibited by biasing Q1 on through D4, which is biased high through IC2 pin 13 since all inputs to IC2 would be low. With Q1 turned on, its collector is pulled low. As long as the collector of Q1 is pulled low, the base of Q261 on the receiver board is also held low. The collector of Q261, which is also connected to the gate of the squelch FET, is then under control of the noise squelch signal from IC251 pin 13. If the squelch is open, pin 13 will be high. If the squelch is closed, pin 13 will be low. If the gate of the squelch FET (Q259) is held high, audio will pass. If the gate of the squelch FET is held low, no audio will pass.

If decode is not inhibited by Aux Code 0 programming, control of the squelch FET is by IC251 pin 13 and Q261. Q261 is controlled by Q260, which in turn is controlled by Q2 on the CTCSS board. Q2 is normally biased on by IC3 pin 12 which outputs a logic low to the base of Q260 on the receiver board. The collector of Q260 will be pulled high through R295 and transfer this high to the microcomputer pin 5 (TSQMON). Q2 on the CTCSS board is switched off when the correct tone is detected and its collector is pulled high by R291 on the receiver board. This high will turn on Q260 which will pull the collector of Q260 low. This low will be transferred to pin 5 on the microcomputer (TSQ MON).

CTCSS OPERATION

The monitor switch and hang up box both control the status of Q1 on the CTCSS board and thus allow or inhibit squelch gate control by the CTCSS board in the same manner as Aux Code "0" programming.

Crystal X1 generates a stable reference for IC3 tone generation and detection. IC4 functions as an audio highpass filter to remove CTCSS tones from the speaker audio. Encode tone output is from IC3 pin 16 with tone modulation level adjustable by RV1.

CTCSS PCB (TOP VIEW)

CTCSS SCHEMATIC DIAGRAM

CTCSS PCB (BOTTOM VIEW)

CTCSS VOLTAGE CHARTS

TRANSISTORS

REF. NO.	DESCRIPTION	BASE	COLLECTOR	EMITTER	FUNCTION
Q1	2SC458C W/Tone Mon. ON Mon. OFF W/''O'' Code W/O Tone Mon. ON Mon. OFF	0.0 0.0 .650 0.0	0.0 .050 .050 0.0 4.44	0.0 0.0 0.0 0.0	Squelch Control
Q2	2SC458C Decode No Decode	0.0	5.85	0.0	Tone Squelch Switch

INTEGRATED CIRCUITS

REF. NO.	DESCRIPTION	PIN NO.	+ V VOLTAGE	GND. PIN NO.	FUNCTION
IC 1	HD14174BP	16	5 V	8	Data Latch
IC 2	HD14078BP	14	5 V	7	Encode/Decode Inhibiter
IC 3	MX 325	22	5 V	10	Encoder/Decoder
IC 4	HA17902P	4	8 V	11	High Pass Filter

ENCODE/DECODE IC 3
FREQUENCY (HZ) PINS

	4	15	6	7	8	9
	1	1	0	-	0	12
67.0	1	1	1	1	1	1
71.9	0		П			П
74.4	1	1	1	1	1	0
77.0	0	0	1	1	1	1
79.7	1	1	1	1	0	
82.5	0	1	1	1	1	0
85.4	1	1		1	0	0
88.5	0	0	1	1	1	0
91.5	1	1	1	0	1	1
94.8	0	1	1	1	0	1
97.4	1		1	0	1	0
100.0	0	0	1	1	0	1
103.5	0	1	1	1	0	0
107.2	0	0	1	1	0	0

ENCODE/DECODE IC 3
FREQUENCY (HZ) PINS

	4	5	6	7	8	9
110.9	0	1	1	0	1	П
114.8	0	0	1	0	1	1
118.8	0	1	1	0	1	0
123.0	0	0	1	0	1	0
127.3	0		Ū	0	0	
131.8	0	0	1	0	0	1
136.5	0		1	0	0	0
141.3	0	0	1	0	0	0
146.2	0	1	0	1	1	1
151.4	0	0	0	1	1	1
156.7	0	1	0	1	1	0
162.2	0	0	0	1	1	0

ENCODE/DECODE IC 3
FREQUENCY (HZ) PINS

· ····································	_,					
	4	5	6	7	8	9
				Ä		,
167.9	0	1	0	1	0	1
173.8	0	0	0	1	0	1
179.9	0	1	0	1	0	0
186.2	0	0	0	1	0	0
192.8	0	1	0	0	1	1
203.5	0	0	0	0	1	1
210.7	0	1	0	0		0
218.1	0	0	0	0	0	0
225.7	0	1	0	0	0	1
233.6	0	0	0	0	0	1
241.8	0	1	0	0	0	0
250.3	0	0	0	0	0	0

28

64

IC401 defective or short on TX +8VDC line

00

Check Q403

1.70

Check IC401 Pin 5

Check IC401 Pin 8 TX +8VDC

Output

Transmitter Problem

No N

8

Code 95

Error

Low Power

0

Base 0 \

Replace Q403 0.7V

(0v or 6.5v) Refer to CPU PLL Trubleshooting Chart

Check Main VCO TP701

(1.5-5V)

OK

Refer to Modulator Troubleshooting Chart

(0V or 6.5V)

(1.5-5V)

OK

Check Transmit

If PA Rechecks OK

Check Q110, IC104, and CV102 alignment

0Ķ

29

out of lock and Q111 Q111)

Check Transmit of detector IC102 a (OV on base of Q

Check Q501, Q502,

Q503 and P.A.

Alignment

Check Antenna Switch Diodes D503 & D504

Recheck above

OK

N K

Check APC Circuit Q504-Q506

VOLTAGE CHARTS

TRANSIST	ORS					
REF. NO.	DESCRIPTION	MODE	BASE	COLLECTOR	EMITTER	FUNCTION
Q101	2SC460B	TX	3.2	8.0	2.5	Buffer
Q102	2SC535B	TX	2.5	3.2	1.8	Buffer
Q103	2SC458C	TX	3.2	5.0	2.5	AF Buffer
Q105	2SC458C	· TX	7.9	8.0	7.3	Power Line Filte
Q106	2SC460B	TX	2.37.	0 7.3	1.66.3	Buffer
Q107	2SC458C	TX	7.9	8.0	7.3	Power Line Filte
Q110	2SC1906	TX	1.2	8.0	0.5	Pre Driver
Q111	2SC458C	TX	. 1	1.35	0	Pre Driver
Q112	2SC1906	TX	1.9	7.6	1.35	Control Buffer
Q203	2SC1906	D.V. I				
Q203	2SA673C	RX	0.6	6.0	0	lst Local Amplifier
Q204 Q205		RX	13.0	11.5	13.6	Power Regulator
`	2SC458C	RX	8.0	13.0	7.4	Power Control
Q251	2SC535B	RX	0.7	3.8	0	lst IF Amplifier
Q252	2SC458C SQ (2SC458C SQ (OFF RX	2.1	3.4	1.5 1.6	Noise Amplifier
Q255	2SC458C	RX	0	2.0	0	Sq. Switch
Q256	2SC458C	RX	0	7.4	0	Sq. Switch
Q257	2SC458C	RX	3.5	8.0	2.8	AF Pre Amplifier
Q260	2SC458C	RX	0.6	0.06	0	Sq. Switch
Q261	2SC458C SQ (2SC458C SQ (0.02	0.1 4.7	0	Sq. Switch
Q301	2SC458C 2SC458C	T X RX		1.8-4.0	0	Dimmer Control
Q302	2SB649C 2SB649C		.6-4.0		2.1-4.6	Dimmer Control
			·			
Q402	2SC458C	T X R X	0 0.7	0.7 0	0	Power Control
Q403	2SC458C	TX RX	0.7	0 2.0	0	Power Switch
Q404	2SC1213C	TX RX	0.7	0	0	Power Control
Q405	2SC458C	TX RX	0.6	0	0	Reset (MCPU)
2501	2SC2438	TX	0.1	38	0	Pre Driver
2502	2SC2539	TX		13.6	0	Driver
(503	2SC2630	TX		13.6	0	RF Power Amp.
2504	2SB834Y	TX	12.9	38	13.6	APC
2505	2SC458C	TX	1.6	12.9	1.1	APC Amp.
2506	2SC458C	TX 1	.61.9	8.0	1.2	APC Amp.

TRANSISTORS (cont)

REF. NO.	DESCRIPTION	MODE	BASE	COLLECTOR	EMITTER	FUNCTION
Q701	2SC535B	TX RX	2.9 2.9	4.5 4.5	2.4	OSC (RX SYN)
Q703	2SC458C	TX RX	0.7	2.8	0	Buffer
Q705	2SC458C	TX RX	0.6	5.0 5.0	0	Loop Filter (RX Syn.)
Q706	2SC458C	TX RX	5.0 5.0	7.3 7.3	4.35 4.35	Loop Filter (RX Syn.)
Q709	2SC458C	TX RX	8.2 8.2	8.2 8.2	7.4 7.4	Power Line Filter
Q710	2SC1906	TX RX	1.9 1.9	7.3 7.3	1.4	Buffer

F.E.T'S

REF. NO.	DESCRIPTION	MODE	GATE	DRAIN	SOURCE	FUNCTION
Q108	2SK192A BL	TX	0	7.3	0.3	VCO (TX PLL)
Q109	2SK241GR	TX	0	2.9	0	Buffer

Q201	2SK125	RX	0	10.5	2.5	Front End Amp.
Q202	2SK125	RX	0	11.0	2.5	lst Mixer
Q259	2SK117BL SQ.OF 2SK117BL SQ.CI		3.3	3.2 3.2	3.3 3.3	AF Switch

Q708	2SK241GR	TX RX	0	3.0 3.0	0.6	Buffer
Q707	2SK192ABL	TX RX	0	7.4	0.3	VCO (RX Syn)
Q704	2SK117BL	TX RX	3.3	7.3 7.3	3.5 3.5	Loop Filter (RX Syn)

DIGITAL IC

REF. NO.	DESCRIPTION	PIN NO.	+ V VOLTAGE	GND PIN NO.	FUNCTION:
IC 102	HD74LS02P	14	5	7	Nor Gates
IC 103	MC4344	14	5	7	Phase Detector
IC 106	HD74LS93P	5	5	10	4 Bit Binary Counter
IC 301	HD14511BP	16	8	8	Led Driver
IC 302	HD14511BP	16	8	8	Led Driver
IC 701	uPD3805C	18	5	9	PLL
IC 702	HD74LS93P	5	5	10	4 Bit Binary Counter
IC 703	uPB571C	1	5	4	Pre Scaler (Rx Syn)
IC 706	HD14069uPB	14	5	7	Buffer
IC 901	HD44840A27	20/21	5	16	CPU
IC 902	HD14021BP	16	5	8	Date Shifter (Rx Syn)
IC 951	uPD2716D	24	5	12	Read Only Memory
IC 952	HD14174BP	16	5	8	Data Buffer

ANALOG	IC																		
REF.NO	. DESCRIPT	ION MODE			PIN No.3							PIN No.10	PIN No.11	PIN No.12		,		FUNCTIO	N
IC 101	DH 1048	TX		3.8	4.5	3.8	0		4.5	8			4.5					IDC	
IC 104	DH 2502	TX	0	0	0	7.5	7.5	0	0	0	7.5	7.5	0	0				BUFFER	
IC 108	DH 2503	TX	0	0	7.5	0	7.5	0	7.5	1.55								BUFFER	
IC 251	MC3357P	SQUELCH CLSD. RX OPEN RX	7.6		7.6 7.6		1.0		1.0	7.5 7.5			1.9	. 8	PIN 13 0 7.0	14	15 0	2nd IF	AMP
IC 252	MB 3712	RX	7.0	13.8	13.0	0			0.6									AF PWR	AMP
IC 303	uPC7808H		13.8		0													POWER F	REGULATOR
IC 401	MB 3756	TX RX		13.6 13.6			0 1.7	0 8	0	8								POWER F	EGULATOR
IC 402	uPC7805H		13.8	0	4.9													POWER F	EGULATOR
IC 704	DH 2 5 0 2	RX	0	0	6.8	b.8	0	0	0	6.8	6.8	0	0	0				BUFFER	

MICROCOMPUTER (IC 901)

PIN OUT DESCRIPTION

PIN PIN NO. NAME	INPUT OUTPUT	SIGNAL NAME	FUNCTION
1 D3 2 D4 3 D5 4 D6 5 D7 6 D8 7 D9 8 D10 9 D11 10 D12 11 D13 12 D14 13 D15 14 NC 15 RESET 16 GND 17 OSC1 18 OSC2 19 HLT 20 TEST Vec 22 R00 23 R01 24 R02 25 R03 26 R10 27 R11 28 R12 29 R13 30 INTO 31 INT1 32 R20 33 R21 34 R22 35 R23 36 R30 37 R31 38 R32 39 R33 40 D0 41 D1 42 D2	OUT OUT IN OUT	DSTB+ TXTM- ALM- SQSIG+ TSQMON- TSQMON- PLCL- PLCL- VCOCNT SCN- PRI- DSPSTL- DSPSTL- DSPSTL- DSPSTL- DSP95TL- DSP95TL- TXDL DSP0+ DSP1+ DSP2+ DSP3+ UP- DWN- INH+ TA- PTT INT+ RMA0+ RMA1+ RMA2+ RMA3+ RMA4+ RMA5+ ASTB+ AUXSTB+ PSST+ CHDT+ DCLK	Strobe for serial data to synthesizer Signalling option control (TX: LOW, RX: HIGH) Alert (2KHz Tone) Squelch Signal (Busy; High) Tone/Monitor detect (low) Scan hold status (NSQ Hold; Low) Synthesizer Unlock: LOW (input) Audiomute & TX Inhibit: LOW (output) VCO Band Switch High Frequency Range:LOW Scan Switch (on:LOW) Pri Switch (on: LOW) Display Data Tens Digit Strobe Display Data Tens Digit Strobe Band Select (A:LOW, B:HIGH) TX/RX Control (Tx:LOW Rx:HIGH) NO Connection General Reset (Reset: HIGH) Ground Clock Oscillator (800 KHZ +5%) Clock Oscillator (800 KHZ +5%) Standby Mode Control (Standby: LOW) Not Used (HIGH) Power Supply (+5V+10%, LED Display Data (HIGH: 6 to 8V, LOW: 0 to 2V) LED Display Data (HIGH: 6 to 8V, LOW: 0 to 2V) LED Display Data (HIGH: 6 to 8V, LOW: 0 to 2V) Channel Up Switch (ON:LOW) PTT Inhibit (Inhibit: HIGH) Wideband/Standard Select (WIDE:LOW) PTT Switch (PTT: HIGH) Not Used E/PROM ADDRESS DATA RMA5+ is also used as the E/PROM ENABLE SIGNAL """"""""""""""""""""""""""""""""""""

HIGH: 3.5 to 5V, LOW: 0 to 1.5V

Measure with high input impedance meter or oscilloscope

CHIP COMPONENT IDENTIFICATION

Chip components used in Midland SYN-TECH transceivers can be identified as follows:

COLOR

COMPONENT TYPE

Black White with value marking Light Brown Green White (no marking)

Metal Film Resistor Metal Film Resistor Ceramic Capacitor Ceramic Capacitor Ceramic Capacitor

Resistor value marking is as follows:

1st two digits - significant digits 3rd digit - number of added zeros

Example: $105 = 10\ 00000 = 1M\ Ohm$

CHIP COMPONENT REMOVAL/REPLACEMENT

NOTE: Temperature of soldering iron must be maintained at 600-700°F.

COMPONENT REMOVAL

1. Place solder iron tip directly on component in order to melt solder and glue as shown in figure #1 & #2. Remove component with tweezers or long nose pliers.

FIG. #1

FIG. #2

2. Completely remove old solder from PC board, using a desoldering tool. Application of a small amount of flux will greatly aid in the removal of old solder.

CHIP COMPONENT REPLACEMENT

3. After component has been removed and PC pattern cleaned, apply a small amount of solder on PC pattern and let cool, as shown in figure #3.

CHIP COMPONENT REPLACEMENT (CONTINUED)

4. Insert new component and apply soldering iron tip to PC pattern as shown in figures 4. 5. 6 and 7.

CAUTION: As patterns and components are close to each other, extreme care must be exercised when soldering, as not to damage components or bridge PC pattern paths. High soldering iron temperatures can cause component damage. DO NOT apply the soldering iron tip to a new component during installation.

IC COMPONENT REMOVAL/REPLACEMENT

COMPONENT REMOVAL:

Extreme care must be exercised when removing and replacing defective transistors and IC's. Keep in mind that copper foil is employed on both sides of the printed circuit board. IC's and transistors may be removed from the circuit for testing. If IC's are to be removed from the circuit intact and unharmed, an IC desoldering tip attached to a soldering iron should be used. This tip will melt solder on all pin connections simulateously and the IC may be pulled from the PC board.

A solder suction tool or braided desoldering wick may be used to remove the solder, freeing one pin at a time. Carefully and thoroughly remove solder from all IC pins until the IC can be removed without resistance. When removing transistors for testing, use needle nose or clamping type seizing pliers that will act as a heatsink on the transistor leads. If a transistor or IC is defective, it may be cut from the leads and removed. The leads may be unsoldered and removed one at a time.

REPLACEMENT:

If it is necessary to bend IC leads, firmly hold and bend the lead with needle nose pliers. Make sure the leads are free from solder and are parallel to the IC body. Remove all solder from the holes in the PC board before attempting replacement. When replacing an IC or transistor on the PC board, make sure the component is properly orientated. Before soldering an IC, verify there is no AC voltage between the solder iron tip and common ground.

PC BOARD REMOVAL

TX/SYNTHESIZER PC BOARD

To remove the TX/Synthesizer PC board, remove the 8 Phillips head PC board mounting screws. Disconnect the 4 multi pin connectors at J363, J361, J362 and J364, located at the front of the board. Next disconnect the 2 Coaxial connectors at J365 and J366, located at the rear of the board. Slide the PC board to the rear of the radio to clear the front retaining tab, then pull up.

RX PC BOARD

To remove the RX PC board, remove the 5 Phillips head PC board mounting screws. Next disconnect the 5 multi pin connectors at J351, J354, J353, J352 and J358 located at the middle and front of the board. Disconnect the 2 Coaxial connectors at J356 and J355 located near the rear of the board. Slide the PC board to the rear of the radio to clear the front retaining tab and then pull up.

PA PC BOARD

To remove the PA PC board, loosen the 4 Phillips head screws (2 on each side) located at the outside rear of the unit. Tilt PA/heatsink downwards and remove the 2 Phillips head screws holding the PA cover and remove the cover. Remove the 10 Phillips head mounting screws holding the PC board and output transistors. Next unsolder the antenna connector which protrudes through the PC board on the left hand side. The antenna connector is soldered to the board at 3 connections. All solder must be removed from these connections before attempting to remove the board. Next disconnect the 2 coaxial connectors at J372 and J371 and pull up on board. The board will still be retained by power wiring but access to the rear of the PCB is possible.

IC 901 MICROCOMPUTER PIN OUT

LEVELS: (LOW = 0 - 1.5v) (HIGH = 3.5 - 5v)

		-197
Pin Number	Signal Name	<u>Function</u>
1	DSTB+	Output strobe from micro to IC701 Pin 1 for serial data transfer to synthesizer; CONDITION: Initial power up, channel change, scan stop, error code indication.
2	TXTM-	Output from micro to receiver BD. D259 cathode for receiver muting; CONDITION: Rx=High, Tx=Low.
3	ALM-	Output from micro of a 2KHz alert tone, to receiver BD. IC252 Pin 6 for speaker output; CONDITION: Error code indication, transmit time out timer, busy channel lock out, scan stop.
4	SQSIG+	Input to micro from squelch circuit Q255 collector; <u>CONDITION</u> : Busy channel, IC251 pin 14 goes low, collector of Q255 goes high (See Scar Theory of Operation)
5	TSQMON-	Input low level from tone BD./or monitor detect on receiver BD. Pin 2 of J354 or J357 Pin 5; <u>CONDITION</u> : CTCSS/CDCSS tone decode, monitor switch select. (See Scan Theory of Operation).
5	TSQMON-	Output low level from micro to open squelch gate; (See Scan Theory of Operation).
	PLCL-	Input low level to micro from IC701 Pin 10, and output low level from micro to Q111 and J364 Pin 7 audio mute indicating synthesizer unlock; CONDITION: (See Modulator and Transmit PLL, microcomputor channel data transfer and manual channel
7		change theory of operation) NOT USED
		NOT OSED
8	SCN-	Input low level from front panel on J361 Pin 1 to micro for non-priority scan selection (Scan B)

IC 901 MICROCOMPUTER PIN OUT

LEVELS: (LOW 0 -1.5v) (HIGH = 3.5 - 5v)

<u>Pin Number</u>	Signal Name	<u>Function</u>
9	PRI-	Input low level from front panel on J361 Pin 2 to micro for priority scan selection (Scan A)
10	DSPSTL-	Low level strobe output from micro to IC301 Pin 5 for display data ones digits.
11	DSPSTL-	Low level strobe output from micro to IC302 Pin 5 for display data tens digits.
12		NOT USED
. 13	TXDL	Output from micro to IC401 Pin 5 for Tx-8v and Rx-8v select. Tx=Low, Rx=High.
14		NO CONNECTION
15		High input pulse from Q405 resetting micro to an autotest mode at unit power up.
16	State of Charles I an	GROUND
17		800KHz Clock Oscillator
18		800KHz Clock Oscillator
19		Standby mode control; with power applied this line is high for normal micro functions, when this line is low (power off) micro functions are disabled.
20		NOT USED (HIGH)
21		VCC Power Supply +5v
22	DSPO+	Output from micro to IC301 and IC302 Pins 7, 1, 2, 6 for LED Display Data (High = 6 - 8v) (Low = 0 - 2v)
23	DSP1+	Same As DSPO+

IC 901 MICROCOMPUTER PIN OUT

LEVELS: (LOW 0 - 1.5v) (HIGH = 3.5 - 5v)

Pin Number	Signal Name	<u>Function</u>
24	DSP2+	Same As DSPO+
25	DSP3+	Same As DSPO+
26	UP-	Input low level from channel selector switch; CONDITION: Channel change up.
27	DWN-	Input low level from channel selector switch; CONDITION: Channel change down.
28	INH+	High level from receiver BD. for PTT Inhibit (See Busy Channel Lock Out Theory of Operation).
29		NOT USED
30	DTT IN7+	High input to micro from PTT mic switch.
31		NOT USED
32 - 37	RMA 0+ - RMA5+	Address data corresponding to the selected Rx channel which is strobed and latched into IC952 before being strobed into the shift register IC902. (See Microcomputer Channel Data Transfer Theory of Operation).
38	ASTB+	Output strobe for IC952 address data latch listed above.
39	AUXSTB+	Output strobe for Aux Data (Signaling Options Board-CTCSS) (See CTCSS Theory of Operation).
40	PSST+	Output strobe to IC902 shift register Pin 9. (See Microcomputer Channel Data Transfer Theory of Operation).
41	СНОТ+	Serial data input from shift register IC902 Pin 3.
42	DCLK	Clock output signal to shift register IC902 Pin 10.

tildin level from recolver 80. for