

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Hexakis(μ_3 -1-methylthiourea- $\kappa^3 S:S:S$)-hexakis[iodidocopper(I)]

Saeed Ahmad, a* Muhammad Mufakkar, b Islam Ullah Khan, c Hoong-Kun Fund and Abdul Waheed c

^aDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, ^bDepartment of Chemistry, Government College of Science, Wahdat Road, Lahore, Pakistan, ^cDepartment of Chemistry, Government College University, Lahore, Pakistan, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: saeed a786@hotmail.com

Received 16 October 2012: accepted 18 October 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (N–C) = 0.005 Å; R factor = 0.027; wR factor = 0.061; data-to-parameter ratio = 30.7.

The title compound, $[Cu_6I_6(C_2H_6N_2S)_6]$, was obtained from the reaction of copper(I) iodide with N-methylthiourea (Metu) in equimolar amounts in acetonitile. The complex consists of two six-membered trinuclear $Cu_3S_3I_3$ cores that combine through triply bridging Metu, forming a hexanuclear core which has $\overline{3}$ symmetry. The Cu^{II} atom is coordinated by three S atoms of Metu and one iodide ion in a distorted tetrahedral geometry. The crystal structure is stabilized by $N-H\cdots I$ hydrogen bonds and cuprophilic interactions $[Cu\cdots Cu=3.0264\ (9)\ \mathring{A}]$.

Related literature

For crystal structures of copper(I) complexes of thiourea-type ligands, see: Ahmad *et al.* (2010); Bowmaker *et al.* (2009); Li *et al.* (2005); Lobana *et al.* (2003, 2005); Khan *et al.* (2007); Mufakkar *et al.* (2007, 2009, 2011); Stocker *et al.* (1997); Zoufala *et al.* (2007). For van der Waals radii and cuprophilic interactions, see: Siemeling *et al.* (1997); Singh *et al.* (1997).

$$H_3C$$
 H_2N
 H_2N

Experimental

Crystal data

 $\begin{array}{lll} & Z = 3 \\ M_r = 1683.65 & \text{Mo } K\alpha \text{ radiation} \\ \text{Trigonal, } R\overline{3} & \mu = 7.79 \text{ mm}^{-1} \\ a = 21.7517 \text{ (1) Å} & T = 296 \text{ K} \\ c = 7.6269 \text{ (1) Å} & 0.28 \times 0.15 \times 0.14 \text{ mm} \\ V = 3125.11 \text{ (5) Å}^3 & \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.179, \ T_{\max} = 0.338$ 14898 measured reflections 1995 independent reflections 1649 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.027 & 65 \ \text{parameters} \\ wR(F^2) = 0.061 & \text{H-atom parameters constrained} \\ S = 1.06 & \Delta\rho_{\text{max}} = 1.32 \ \text{e} \ \text{Å}^{-3} \\ 1995 \ \text{reflections} & \Delta\rho_{\text{min}} = -1.64 \ \text{e} \ \text{Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$ \begin{array}{c} N1 - H1N1 \cdots I1^{i} \\ N1 - H2N1 \cdots I1 \\ N2 - H1N2 \cdots I1^{ii} \end{array} $	0.83	2.95	3.744 (3)	161
	0.80	2.90	3.698 (4)	173
	0.80	2.95	3.756 (3)	177

Symmetry codes: (i) $-y + \frac{2}{3}$, $x - y + \frac{4}{3}$, $z + \frac{1}{3}$; (ii) -x + y - 1, -x + 1, z.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors gratefully acknowledge Universiti Sains Malaysia and Government College University, Lahore, for providing X-ray facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5016).

References

Ahmad, S., Altaf, M., Stoeckli-Evans, H., Ruffer, T., Lang, H., Mufakkar, M. & Abdul Waheed, A. (2010). J. Chem. Crystallogr. 40, 639-645.

Bowmaker, G. A., Hanna, J. V., Pakawatchai, C., Skelton, B. W., Thanyasirikul, Y. & White, A. H. (2009). *Inorg. Chem.* 48, 350–368.

Bruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.

Khan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550–m2551.

Li, D., Shi, W. J. & Hou, L. (2005). Inorg. Chem. 44, 3907-3913.

Lobana, T. S., Sharma, R., Bermejo, E. & Castineiras, A. (2003). *Inorg. Chem.* **42**, 7728–7730.

Lobana, T. S., Sharma, R., Sharma, R., Mehra, S., Castineiras, A. & Turner, R. (2005). *Inorg. Chem.* 44, 1914–1921.

Mufakkar, M., Ahmad, S., Khan, I. U., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2384.

Mufakkar, M., Isab, A. A., Ruffer, T., Lang, H., Ahmad, S., Arshad, N. & Waheed, A. (2011). Transition Met. Chem. 36, 505–512.

metal-organic compounds

Mufakkar, M., Tahir, M. N., Ahmad, S., Shaheen, M. A. & Waheed, A. (2009). *Acta Cryst.* E**65**, m892–m893.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemeling, U., Vorfeld, U., Neumann, B. & Stammler, H.-G. (1997). Chem. Commun. pp. 1723-1724.

Singh, K., Long, J. R. & Stavropoulos, P. (1997). *J. Am. Chem. Soc.* **119**, 2942–2943.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stocker, F. B., Troester, M. A. & Britton, D. (1997). *Inorg. Chem.* **35**, 3145–3153

Zoufala, P., Rüffer, T., Lang, H., Ahmad, S. & Mufakkar, M. (2007). X-ray Struct. Anal. Online 23, x219–x220.

supplementary materials

Acta Cryst. (2012). E68, m1405-m1406 [doi:10.1107/S1600536812043437]

Hexakis(μ_3 -1-methylthiourea- κ^3 S:S:S)hexakis[iodidocopper(I)]

Saeed Ahmad, Muhammad Mufakkar, Islam Ullah Khan, Hoong-Kun Fun and Abdul Waheed

Comment

Copper(I) complexes with thiones possess a variety of structures ranging from mononuclear three- or four-coordinate species with trigonal planar and tetrahedral Cu(I) respectively to hexameric species with pseudo-four-coordinated geometry (Ahmad *et al.* 2010; Bowmaker *et al.*, 2009; Li *et al.*, 2005; Lobana *et al.*, 2003, 2005; Khan *et al.* 2007; Mufakkar *et al.*, 2007, 2009, 2011; Stocker *et al.*, 1997; Zoufala *et al.*, 2007). In some cases mononuclear units further aggregate to form polymeric structures, for example, [Cu₆(PyT)₆I₆]n (where Pyt = pyridine-2-thione) (Li *et al.*, 2005; Lobana *et al.*, 2003, 2005). The present report describes the structure of a hexameric copper(I) complex, iodido(*N*-methylthiourea)copper(I), that is characterized by significant copper-copper interactions.

The structure of the title complex is shown in Figure 1. The complex is hexanuclear consisting of six [Metu-Cu—I] units, associated through sulfur atoms of *N*-methylthiourea. Three copper(I) iodides and three Metu ligands are combined through bridging sulfur atoms to form a six-membered trinuclear core, $Cu_3S_3I_3$. Two six-membered trinuclear cores combine $via~\mu_3$ -sulfur atoms of Metu to form the centrosymmetric hexanuclear core, $Cu_6S_6I_6$. Each copper within the complex is coordinated to three sulfur atoms of *N*-methylthiourea and with one iodide as a terminal ligand adopting a distorted tetrahedral geometry. The angles around Cu vary over the range 98.22 (5)–122.56 (3) °. The Cu—S bond distances are unequal; two are short (2.3164 (10) and 2.3210 (10) Å) and one is long (2.6057 (13) Å). However, they are within the range (2.30–2.60 Å) of the Cu—S bond distances found in other complexes. All of the Cu—I distances are equal (2.5379 (5) Å) and are in agreement with the values reported in the literature. The hexanuclear structure is supported by significant intermolecular N—H···I hydrogen bonding (Table 1) and Cu···Cu interactions. The Cu····Cu distance of 3.0264 (9) Å is close to similar distances observed in other complexes. However, this value is slightly larger than the sum of the van der Waals radii of two copper atoms (2.80 Å) (Siemeling *et al.* 1997; Singh *et al.*, 1997). Similar hexanuclear core structures have been reported for [Cu₆(Imt)₆I₆]n and [Cu₆(Pyt)₆I₆]n (Imt = imidazolidine-2-thione and Pyt = pyridine-2-thione; Lobana *et al.*, 2003, 2005).

Experimental

The title compund was prepared by mixing solutions of copper(I) iodide (1.0 mmol) in 10 ml acetonitrile and *N*-methylthiourea (1.0 mmol) in acetonitrile (15 ml). The mixture was stirred for half an hour and then filtered. The resulting colourless solution when allowed to stand for 24 h yielded white crystals suitable for X-ray structure analysis.

Refinement

All H atoms were placed in calculated positions with C—H = 0.96 Å, N—H = 0.80-0.83 Å, and with $U_{iso}(H) = 1.2 U_{eq}(N)$ or 1.5 $U_{eq}(C)$

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Symmetry codes:
(a) 1-y, 2+x-y, z; (b) -1-x+y, 1-x, z; (c) -x, 2-y, -z; (d) -1+y, -x+y, -z; (e) 1+x-y, 1+x, -z.

Hexakis(μ_3 -1-methylthiourea- κ^3 S:S:S)hexakis[iodidocopper(I)]

 $\begin{array}{lll} \textit{Crystal data} \\ [\text{Cu}_6\text{I}_6(\text{C}_2\text{H}_6\text{N}_2\text{S})_6] & \textit{Z} = 3 \\ \textit{M}_r = 1683.65 & \textit{F}(000) = 2340 \\ \text{Trigonal, $R\overline{3}$} & \textit{D}_x = 2.684 \text{ Mg m}^{-3} \\ \text{Hall symbol: -R 3} & \text{Mo $K\alpha$ radiation, $\lambda = 0.71073 Å} \\ \textit{a} = 21.7517 \text{ (1) Å} & \text{Cell parameters from 4617 reflections} \\ \textit{c} = 7.6269 \text{ (1) Å} & \textit{\theta} = 2.2-26.6^{\circ} \\ \textit{V} = 3125.11 \text{ (5) Å}^3 & \textit{\mu} = 7.79 \text{ mm}^{-1} \\ \end{array}$

T = 296 KBlock, colourless

Data collection

Bruker SMART APEXII CCD area-detector diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

 φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.179$, $T_{\max} = 0.338$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.061$

S = 1.06

S = 1.06 1995 reflections 65 parameters 0 restraints

Primary atom site location: structure-invariant

direct methods

 $0.28 \times 0.15 \times 0.14 \text{ mm}$

14898 measured reflections 1995 independent reflections 1649 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.035$

 $\theta_{\text{max}} = 29.8^{\circ}, \, \theta_{\text{min}} = 1.9^{\circ}$

 $h = -30 \rightarrow 30$ $k = -30 \rightarrow 30$

 $l = -10 \rightarrow 10$

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0202P)^2 + 17.0381P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 1.32 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -1.64 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.082885 (13)	0.829523 (13)	0.17796 (4)	0.04164 (9)	
Cu1	0.04125 (3)	0.91805(3)	0.12398 (9)	0.05416 (16)	
N1	-0.10312 (17)	0.76485 (17)	0.3103 (5)	0.0478 (8)	
H1N1	-0.1264	0.7232	0.3455	0.057*	
H2N1	-0.0616	0.7805	0.2909	0.057*	
N2	-0.19615 (15)	0.78569 (16)	0.2972 (4)	0.0394 (7)	
H1N2	-0.2067	0.8151	0.2721	0.047*	
C1	-0.12810(18)	0.80754 (17)	0.2777 (5)	0.0330 (7)	
C2	-0.2500(2)	0.7132 (2)	0.3356 (6)	0.0489 (10)	
H2A	-0.2945	0.7111	0.3573	0.073*	
H2B	-0.2363	0.6970	0.4375	0.073*	
H2C	-0.2549	0.6834	0.2375	0.073*	
S1	-0.07031 (4)	0.89448 (4)	0.21477 (14)	0.0388 (2)	

supplementary materials

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.04018 (14)	0.03935 (13)	0.05508 (16)	0.02713 (11)	0.00274 (11)	0.00505 (11)
Cu1	0.0380(3)	0.0348 (2)	0.0945 (4)	0.0218 (2)	-0.0005(3)	0.0007(3)
N1	0.0340 (16)	0.0398 (17)	0.071(2)	0.0197 (14)	0.0127 (16)	0.0209 (17)
N2	0.0316 (14)	0.0353 (15)	0.0534 (19)	0.0182 (13)	0.0053 (13)	0.0115 (14)
C1	0.0318 (16)	0.0306 (16)	0.0369 (17)	0.0157 (13)	0.0033 (14)	0.0031 (13)
C2	0.0305 (17)	0.042(2)	0.063(3)	0.0101 (16)	0.0039 (18)	0.0181 (19)
S1	0.0266 (4)	0.0264 (4)	0.0635 (6)	0.0133 (3)	0.0024 (4)	0.0039 (4)

Geometric parameters (Å, °,

Geometric parameters (Å, °)			
I1—Cu1	2.5379 (5)	N2—C1	1.317 (4)
Cu1—S1i	2.3164 (10)	N2—C2	1.449 (5)
Cu1—S1	2.3210 (10)	N2—H1N2	0.8028
Cu1—S1 ⁱⁱ	2.6057 (13)	C1—S1	1.735 (3)
Cu1—Cu1 ⁱⁱⁱ	3.0264 (9)	C2—H2A	0.9600
Cu1—Cu1 ⁱⁱ	3.0264 (9)	C2—H2B	0.9600
N1—C1	1.313 (4)	C2—H2C	0.9600
N1—H1N1	0.8316	S1—Cu1 ^{iv}	2.3164 (10)
N1—H2N1	0.8039	S1—Cu1 ⁱⁱⁱ	2.6057 (13)
S1 ⁱ —Cu1—S1	98.22 (5)	C1—N2—C2	124.5 (3)
S1 ⁱ —Cu1—I1	122.56 (3)	C1—N2—H1N2	113.8
S1—Cu1—I1	120.95 (3)	C2—N2—H1N2	121.2
S1 ⁱ —Cu1—S1 ⁱⁱ	102.80 (4)	N1—C1—N2	120.7 (3)
S1—Cu1—S1 ⁱⁱ	102.67 (4)	N1—C1—S1	119.5 (3)
I1—Cu1—S1 ⁱⁱ	106.80(3)	N2—C1—S1	119.7 (3)
S1 ⁱ —Cu1—Cu1 ⁱⁱⁱ	118.09 (3)	N2—C2—H2A	109.5
S1—Cu1—Cu1 ⁱⁱⁱ	56.49 (3)	N2—C2—H2B	109.5
I1—Cu1—Cu1 ⁱⁱⁱ	118.39 (2)	H2A—C2—H2B	109.5
S1 ⁱⁱ —Cu1—Cu1 ⁱⁱⁱ	47.86 (3)	N2—C2—H2C	109.5
S1 ⁱ —Cu1—Cu1 ⁱⁱ	56.52 (3)	H2A—C2—H2C	109.5
S1—Cu1—Cu1 ⁱⁱ	118.03 (3)	H2B—C2—H2C	109.5
I1—Cu1—Cu1 ⁱⁱ	119.84 (2)	C1—S1—Cu1 ^{iv}	115.65 (12)
S1 ⁱⁱ —Cu1—Cu1 ⁱⁱ	47.96 (3)	C1—S1—Cu1	115.53 (12)
Cu1 ⁱⁱⁱ —Cu1—Cu1 ⁱⁱ	85.08 (3)	Cu1 ^{iv} —S1—Cu1	123.88 (5)
C1—N1—H1N1	126.2	C1—S1—Cu1 ⁱⁱⁱ	98.60 (12)
C1—N1—H2N1	116.1	Cu1 ^{iv} —S1—Cu1 ⁱⁱⁱ	75.63 (3)
H1N1—N1—H2N1	117.6	Cu1—S1—Cu1 ⁱⁱⁱ	75.55 (3)
C2—N2—C1—N1	-7.1 (6)	Cu1 ⁱⁱⁱ —Cu1—S1—C1	92.76 (14)
C2—N2—C1—S1	174.9 (3)	Cu1 ⁱⁱ —Cu1—S1—C1	154.78 (14)
N1—C1—S1—Cu1 ^{iv}	171.7 (3)	$S1^{i}$ — $Cu1$ — $S1$ — $Cu1^{iv}$	57.15 (8)
$N2$ — $C1$ — $S1$ — $Cu1^{iv}$	-10.3(4)	I1—Cu1—S1—Cu1 ^{iv}	-166.73 (4)
N1—C1—S1—Cu1	15.6 (4)	$S1^{ii}$ — $Cu1$ — $S1$ — $Cu1^{iv}$	-48.03 (7)
N2—C1—S1—Cu1	-166.4(3)	$Cu1^{iii}$ — $Cu1$ — $S1$ — $Cu1^{iv}$	-61.20 (5)
N1—C1—S1—Cu1 ⁱⁱⁱ	93.6 (3)	Cu1 ⁱⁱ —Cu1—S1—Cu1 ^{iv}	0.83 (8)
N2—C1—S1—Cu1 ⁱⁱⁱ	-88.4(3)	S1 ⁱ —Cu1—S1—Cu1 ⁱⁱⁱ	118.35 (4)

supplementary materials

S1 ⁱ —Cu1—S1—C1	-148.90 (13)	I1—Cu1—S1—Cu1 ⁱⁱⁱ	-105.53 (3)	
I1—Cu1—S1—C1	-12.78 (15)	S1 ⁱⁱ —Cu1—S1—Cu1 ⁱⁱⁱ	13.17 (4)	
S1 ⁱⁱ —Cu1—S1—C1	105.92 (14)	Cu1 ⁱⁱ —Cu1—S1—Cu1 ⁱⁱⁱ	62.03 (4)	

Symmetry codes: (i) -y+1, x-y+2, z; (ii) x-y+1, x+1, -z; (iii) y-1, -x+y, -z; (iv) -x+y-1, -x+1, z.

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> 1···I1 ^v	0.83	2.95	3.744 (3)	161
N1—H2 <i>N</i> 1···I1	0.80	2.90	3.698 (4)	173
N2—H1 <i>N</i> 2···I1 ^{iv}	0.80	2.95	3.756 (3)	177

Symmetry codes: (iv) -x+y-1, -x+1, z; (v) -y+2/3, x-y+4/3, z+1/3.