10.7 Trigonometric identities

HSG.SRT.C.8

1. Given right $\triangle ABC$ with AC = 5, $BC = 5\sqrt{3}$, AB = 10, $m\angle C = 90^{\circ}$. Express each trig ratio as a fraction, then as a decimal to the nearest thousandth.

(a)
$$\sin A =$$

(c)
$$\sin B =$$

(d)
$$m \angle A =$$

2. Right triangle $\triangle ABC$ is shown with base AC=6 and hypotenuse AB=10 as marked.

- (a) Write down $\cos A$.
- (b) Find the length of side BC.

- (d) Write down $\sin A$.
- (e) Find the angle measures of $\angle A$ and $\angle B$.

3. Are the lines parallel, perpendicular, or neither? Justify your answer. (you must use the values of the slopes in your justification)

$$y = 4x + 1$$

$$y = \frac{1}{4}x - 4$$

4. Given P(4,7) and Q(5,0), find the length of \overline{PQ} , expressed as a simplified radical. Use: $l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

- 5. A translation $T_{x,y}$ maps $A(-1,12) \rightarrow A'(5,-2)$.
 - (a) Write down the translation.
 - (b) Apply the same translation to B(-3,8).
- 6. In the diagram below, \overline{PQ} has endpoints with coordinates P(-2,5) and Q(4,-1). Find the equation of the perpendicular bisector of \overline{PQ} and plot it on the grid.

