

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)	
x	y	
2104	460	
1416	232	
1534	315	
852	178	
•••		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
	x_1	x_2	x_3	x_4	y	
	2104	5	1	45	460	-
	1416	3	2	40	232	
	1534	3	2	30	315	→ M=47
	852	2	1	36	178	
			•••	•••		
No.	tation:		γ n=4			[1416]
$n = \text{number of features}$ $x^{(2)} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$						$^{)}=\begin{bmatrix} 3\\ 2\end{bmatrix}$
$x^{(i)}$ = input (features) of i^{th} training example.						
$x_i^{(i)}$ = value of feature j in i^{th} training example.						

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now:
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

E.g.
$$h_{\theta}(x) = 80 + 0.1x_1 + 0.02x_2 + 3x_3 - 2x_4$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$. $x_0^{(i)} = 1$

$$X = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in R^{n+1} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$= \boldsymbol{\theta}^T X$$

$$[\theta_0, \theta_1, \dots, \theta_n] \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Multivariate linear regression.

Machine Learning

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$

$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n)$$
 $\}$ (simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

Repeat
$$\left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right\}$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

New algorithm $(n \ge 1)$: Repeat $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update $\, heta_{\, i} \,$ for $i=0,\ldots,n$ $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=0}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$
...

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g. x_1 = size (0-2000 feet²)

 x_2 = number of bedrooms (1-5)

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Feature Scaling

Get every feature into approximately a $-1 \le x_i \le 1$ range.

$$0 \le x_1 \le 3 \quad \checkmark$$

$$-2 \le x_2 \le 0.5 \quad \checkmark$$

$$-100 \le x_3 \le 100 \quad \mathsf{X}$$

$$-0.0001 \le x_4 \le 0.0001 \quad \mathsf{X}$$

$$\begin{array}{c} \sqrt{\text{ok}} \\ -\frac{1}{3} \le x_i \le \frac{1}{3} \\ -5 \le x_i \le 5 \end{array}$$

Mean normalization

Replace x_i with $x_i - \underline{\mu_i}$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

Average value of x_i in training set

other methods:

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

More general role:

$$x_i = \frac{x_i - u_i}{S_i}$$

 u_i is the average value of x_i in training set

 s_i is the range of x_i , that is maximum value of x_i — minimum value of x_i s_i also can be the standard deviation

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try

 $\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, \dots$

Machine Learning

Linear Regression with multiple variables

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D
$$(\theta \in \mathbb{R})$$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{d}{d\theta}J(\theta) = \dots \stackrel{set}{=} 0$$

Solved for θ

$$\theta \in \mathbb{R}^{n+1}$$
 $J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$ (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178
$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$		$ \begin{bmatrix} 2104 & 5 & 1 \\ 1416 & 3 & 2 \\ 1534 & 3 & 2 \\ 852 & 2 & 1 \end{bmatrix} $		$u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	460 232 315 178

$$\theta = (X^T X)^{-1} X^T y$$

m examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$; n features.

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} \left(x^{(1)} \right)^T \\ \left(x^{(2)} \right)^T \\ \vdots \\ \left(x^{(m)} \right)^T \end{bmatrix} \in R^{m \times (n+1)}$$
(Design matrix)

E.g. If
$$x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$

$$\Theta = (X^T X)^{-1} X^T y$$

$$\begin{aligned} \text{E.g.} \quad & \text{If} \ \ x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix} & \qquad \chi = \begin{bmatrix} 1 & x_1^{(1)} \\ 1 & x_1^{(2)} \\ \vdots & \vdots \\ 1 & x_1^{(m)} \end{bmatrix} & \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix} \\ & \Theta = (X^TX)^{-1}X^Ty & \qquad \chi_1^{(m)} \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

is inverse of matrix X^TX .

Octave:
$$pinv(X'*X)*X'*y$$

$$(X^TX)^{-1}$$

For normal equation Feature scaling is not necessary.

m training examples, n features.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$ O(n³)
- Slow if n is very large.

Issue: numerical stability