ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων

Εαρινό Εξάμηνο 2022

Χρονισμός Σύγχρονων Κυκλωμάτων, Καταχωρητές και Μανταλωτές

Γενικό Μοντέλο Σύγχρονων Κυκλωμάτων

- Τα καλώδια, εκτός ρολογιού, μπορούν να έχουν πλάτος πολλά bits.
- Καταχωρητές (registers)
 - συλλογή από flip-flops
- Ρολόι
 - Διανέμεται στα flip-flops

- output
 - Συνδυαστική Λογική (Combinational Logic - CL)
 - Δεν έχουν εσωτερική κατάσταση
 - Έξοδοι είναι συναρτήσεις των εισόδων
 - Προαιρετικά feedbacks

Παράδειγμα κυκλώματος

- Parallel to Serial Converter
- · Όλα τα μονοπάτια είναι ενός bit
- · Οι καταχωρητές είναι απλά flip-flops
- Η συνδυαστική λογική είναι οι πολυπλέκτες
- · Δεν υπάρχει feedback

Γενικό Μοντέλο Σύγχρονων Κυκλωμάτων

- Πώς μετράμε επιδόσεις ;
 - Λειτουργίες / sec;
 - Kúkhoi / sec;
- Τι περιορίζει τον κύκλο ρολογιού;
- Τι συμβαίνει αν αυξήσουμε τη συχνότητα του ρολογιού;

Περιορισμοί στη συχνότητα του ρολογιού

1 Καθυστερήσεις πυλών

2 Καθυστερήσεις flip-flops

- Τι πρέπει να συμβεί σε ένα κύκλο του ρολογιού για να έχουμε σωστή λειτουργία;
- Θεωρώντας ότι το ρολόι διανέμεται τέλεια (όλα τα flip-flops βλέπουν την ακμή ταυτόχρονα):
 - Όλα τα σήματα πρέπει να είναι έτοιμα (setup) πρίν την θετική ακμή του ρολογιού

Flip-Flop: Χρονικές Παράμετροι

- Η είσοδος D πρέπει να μείνει σταθερή τουλάχιστον για χρόνο T_{su} (setup time) πρίν την ακμή του ρολογιού και τουλάχιστον T_{hd} (hold time) μετά την ακμή.
 - Ένα παράθυρο χρόνου γύρω από την ακμή του ρολογιού για το οποίο η είσοδος πρέπει να μείνει σταθερή
- Η έξοδος Q αλλάζει λίγο μετά την ακμή του ρολογίου
 - T_{c2a} είναι ο χρόνος καθυστέρησης από την ακμή στην έξοδο (propagation delay)
 - T_{c2qm} είναι ο ελάχιστος χρόνος καθυστέρησης από την ακμή στην έξοδο (αρχίζουν να αλλάζουν τα δεδομένα contamination delay)

Σύγχρονο Κύκλωμα: Χρονικές Παράμετροι

- · Χρονικές παράμετροι καταχωρητών
 - Τ_{clk}: Περίοδος Ρολογιού
 - T_{su}: Setup time
 - Thd: Hold time
 - T_{c2q}: Clock to Q (worst)
 - T_{c2am}: Clock to Q (min)

- · Χρονικές παράμετροι συνδυαστικής λογικής
 - Τ_{clog}: Καθυστέρηση συνδυαστικής λογικής (max propagation delay)
 - Τ_{clogm}: Ελάχιστη καθυστέρηση συνδυαστικής λογικής (min-contamination)

Χρονισμός Σύγχρονων Κυκλωμάτων: Ελάχιστη περίοδος

Χρονισμός Σύγχρονων Κυκλωμάτων: Ελάχιστη καθυστέρηση

Χρονισμός Σύγχρονων Κυκλωμάτων

· Γενικά , για σωστή λειτουργία πρέπει για όλα τα μονοπάτια να ισχύει:

```
- T_{clk} \ge T_{c2q} + T_{clog} + T_{su}
- T_{clogm} \ge T_{hd} - T_{c2qm} (\acute{\eta} T_{hd} \le T_{c2qm} + T_{clogm})
```

- Πώς βρίσκουμε όλα τα μονοπάτια;
 - Από κάθε είσοδο ή έξοδο καταχωρητή σε κάθε είσοδο καταχωρητή ή έξοδο του κυκλώματος
 - Το πιο αργό μονοπάτι συνδυαστικής λογικής είναι αυτό που καθορίζει το Τ_{clog} (οπότε και την ελάχιστη περίοδο) και λέγεται critical path.
 - Ο εντοπισμός του critical path μας δίνει τη δυνατότητα να προσπαθήσουμε να απλοποιήσουμε την λογική του μονοπατιού και να πετύχουμε υψηλότερη συχνότητα λειτουργίας του κυκλώματος.

Παράδειγμα (1/6)

- $T_{and} = 2ns$, $T_{or} = 1ns$, $T_{mux} = 3ns$,
- $T_{c2q} = 0.5$ ns , $T_{c2qm} = 0.2$ ns , $T_{su} = 0.4$ ns , $T_{hd} = 0.3$ ns
- Ποιό είναι το critical path;
- Πόση είναι η ελάχιστη περίοδος ρολογιού;
- Καλύπτονται όλες οι συνθήκες χρονισμού;

Παράδειγμα (2/6)

- $T_{and} = 2ns$, $T_{or} = 1ns$, $T_{mux} = 3ns$,
- T_{c2q} = 0.5ns , T_{c2qm} = 0.2ns , T_{su} =0.4ns , T_{hd} = 0.3ns
- Ποιό είναι το critical path;

Παράδειγμα (3/6)

- $T_{and} = 2ns$, $T_{or} = 1ns$, $T_{mux} = 3ns$,
- T_{c2q} = 0.5ns , T_{c2qm} = 0.2ns , T_{su} =0.4ns , T_{hd} = 0.3ns
- Πόση είναι η ελάχιστη περίοδος ρολογιού;

•
$$T_{min} = T_{c2q} + T_{and} + T_{mux} + T_{and} + T_{su} = 7.9 \text{ ns}$$

Παράδειγμα (4/6)

- $T_{and} = 2ns$, $T_{or} = 1ns$, $T_{mux} = 3ns$,
- $T_{c2q} = 0.5$ ns , $T_{c2qm} = 0.2$ ns , $T_{su} = 0.4$ ns , $T_{hd} = 0.3$ ns
- Καλύπτονται όλες οι συνθήκες χρονισμού;
 - ΟΧΙ !!! Έχουμε $T_{clogm} = 0$ ns και $T_{c2gm} = 0.2$ ns
 - · Πρέπει T_{hd} ≤ T_{c2gm} + T_{clogm}
 - Και τώρα τι κάνουμε;

Παράδειγμα (5/6)

- $T_{and} = 2ns$, $\overline{T_{or}} = 1ns$, $T_{mux} = 3ns$,
- $T_{c2q} = 0.5$ ns , $T_{c2qm} = 0.2$ ns , $T_{su} = 0.4$ ns , $T_{hd} = 0.3$ ns
- Καλύπτονται όλες οι συνθήκες χρονισμού;
 - · Πρέπει T_{hd} ≤ T_{c2qm} + T_{clogm}
 - Προσθέτουμε μια πύλη με T_{or} = 1ns (αρκεί;)
 - · Γενικά όχι! Τ_{orm} (min-contam.);
 - · Έστω Τ_{orm}=Τ_{or} και γενικά για όλες τις πύλες! (απλοποίηση)
 - Τωρα OK !!! Έχουμε T_{clogm} = 1 ns και T_{c2qm} = 0.2ns Ηγ220 - Βασίλης Παπαευσταθίου

Παράδειγμα (6/6)

- $T_{and} = 2ns$, $T_{or} = 1ns$, $T_{mux} = 3ns$,
- $T_{c2q} = 0.5$ ns , $T_{c2qm} = 0.2$ ns , $T_{su} = 0.4$ ns , $T_{hd} = 0.3$ ns
- Καλύπτονται όλες οι συνθήκες χρονισμού;
 - Πρέπει T_{hd} ≤ T_{c2gm} + T_{clogm}
 - · Συνήθως βάζουμε 2 αντιστροφείς (έστω T_{invm} = 0.3ns)
 - OK !!! Έχουμε T_{clogm} = 0.6 ns και T_{c2gm} = 0.2ns

Παράδειγμα κυκλώματος με λάθος

Πού είναι το λάθος;

Πύλες και τεχνολογία (1/6)

· Οι πύλες στα ολοκληρωμένα κυκλώματα υλοποιούνται σε τεχνολογία CMOS (Complementary MOS)

- Βάση της τεχνολογίας τα transistors τύπου MOSFET (metal oxide semiconductor field effect

transistors - transistor

επίδρασης πεδίου τύπου

μέταλλο - οξείδιο - ημιαγωγός)

- Gate (tou transistor)
- Source
- Drain
- Channel

Polysilicon

Πύλες και τεχνολογία (2/6)

- · 2 συμπληρωματικα είδη transistors
 - NMOS (negative channel)
 - PMOS (positive channel)
- · Τα transistors συμπεριφέρονται σαν διακόπτες

PMOS transistor as a switch

Πύλες και τεχνολογία (3/6) Ο αντιστροφέας

· Αντιστροφέας (NOT gate):

Πύλες και τεχνολογία (4/6) Συμπεριφορά πυλών

Ο αντιστροφέας

Μοντελοποιεί την είσοδο άλλων πυλών και την χωρητικότητα του καλωδίου

Ο ρυθμός εξαρτάται από την δύναμη του δικτύου ανέλκυσης και την χωρητικότητα C Ο ρυθμός εξαρτάται από την δύναμη του δικτύου καθέλκυσης και την χωρητικότητα *C*

Πύλες και τεχνολογία (5/6) Λογικές τιμές

- Κατώφλι Threshold
 - Λογικό 1 (true) : V > Vdd Vth
 - Λογικό O (false): V < Vth

Πύλες και τεχνολογία (6/6) Το στοιχείο του χρόνου

• Οι αλλαγές στις εξόδους δεν είναι ακαριαίες !!!

Καθυστερήσεις Καλωδίων

- Τα καλώδια έχουν καθυστέρηση!!!
 - Τα σήματα κινούνται περίπου με την ταχύτητα του φωτός (~30 cm/ns)
 - Ο χρόνος των σημάτων από την πηγή στον προορισμό είναι ο χρόνος μεταφοράς (transit time)
 - Στα ICs τα καλώδια είναι «κοντά» οπότε οι χρόνοι μεταφοράς είναι πολύ μικροί σε σύγκριση με την περίοδο του ρολογιού και συνήθως τις αγνοούμε!
 - Έχουν μεγάλη σημασία όμως στις τυπωμένες πλακέτες (PCBs)
 - Επίσης είναι πολύ σημαντικές σε γρήγορα chips με μακριά καλώδια
 - Π.χ. Busses, clocks

ΗΥ220 - Βασίλης Παπαευσταθίου

Στοιχεία Μνήμης: Latch vs Register

- Latch Mavtaλwtής:
- Level triggered!
- Αποθηκεύει τα δεδομένα όταν το ρολόι είναι Ο.

- Register Καταχωρητής:
- Edge triggered!
- Αποθηκεύει τα δεδομένα στην ακμή του ρολογιού

Υλοποιήσεις: Στοιχεία μνήμης μεσω ανάδρασης

- Δύο αντιστροφείς σχηματίζουν ένα στατικό κύτταρο μνήμης (memory cell) - το πιο απλό με βρόγχο ανάδρασης
 - Θα κρατήσει την τιμή όσο τροφοδοτείται με ηλεκτρισμό

- Πώς μπορούμε να εισάγουμε νέα τιμή στο memory cell;
 - Σπάμε το μονοπάτι της ανάδρασης (feedback)
 - Φορτώνουμε νέα τιμή

Υλοποιήσεις: Cross-coupled Gates - RS Latches

- · Βρόγχος ανάδρασης με NOR για υλοποίηση RS latch
 - Παρόμοιο με το ζευγάρι των αντιστροφέων αλλά με τη δυνατότητα να Θέσουμε την έξοδο στο Ο (reset=1) ή στο 1 (set=1)

- · Βρόγχος ανάδρασης με NAND για υλοποίηση RS latch
 - Παρόμοιο με το ζευγάρι των αντιστροφέων αλλά με τη δυνατότητα να Θέσουμε την έξοδο στο 0 (reset=0) ή στο 1 (set=0)

Χρονική Συμπεριφορά: NOR-based RS Latch

	Q	Q	R	S
	Q	Q	0	0
	0	1	0	1
Απαγορευμένο -	1	0	1	0
	0	0	1	1

Υλοποιήσεις: D Latch

- · D-Latch με ρολόι και data:
 - Φόρτωση δεδομένων εισόδου με το ρολόι
 - Υλοποίηση με gated NOR-based RS Latch

Υλοποιήσεις: Mux-Based Positive D Latches

Positive latch: «διαφανής» όταν CLK=1


```
module pos_latch (clk, d, q)
input clk, d;
output q;
reg q;

always @(clk or d)
    if (clk) q <= d;
endmodule</pre>
```

Υλοποιήσεις: Mux-Based Negative D Latches

Negative latch: «διαφανής» όταν CLK=0


```
module neg_latch (clk, d, q)
input clk, d;
output q;
reg q;

always @(clk or d)
    if (~clk) q <= d;

endmodule</pre>
```

Υλοποιήσεις: Latch με Transistors

NMOS transistors

 Δ έχεται μη επικαλυπτόμενα (non-overlapping) clocks

Latches

Χρονικές παράμετροι:

- T_{d2q}: Χρόνος από την είσοδο την έξοδο όταν το ρολόι θεωρείται ενεργό
- T_{c2q}: Χρόνος για την αλλαγή της εξόδου μετά την ενεργοποίηση του ρολογιού

Καθυστερήσεις Καταχωρητή - Μανταλωτή

Ακμοπυροδότητος Καταχωρητής Αφέντη - Σκλάβου (1/2)

- Master-Slave καταχωρητής Edge-triggered D Flip-Flop
 - Κατά την αρνητική φάση του ρολογιού αποθηκεύονται τα data στον master latch
 - Κατά την θετική φάση του ρολογιού αλλάζουν οι έξοδοι του slave latch

Ακμοπυροδότητος Καταχωρητής Αφέντη - Σκλάβου (2/2)

- Master-Slave καταχωρητής Edge-triggered D Flip-Flop
 - Το setup-time προκύπτει από την καθυστέρηση του master latch
 - Το c2q-time προκύπτει από την καθυστέρηση του slave latch

Ασύγχρονες είσοδοι σε σύγχρονα κυκλώματα (1/2)

- · Τι γίνεται με τα εξωτερικά σήματα; (π.χ. buttons)
 - Δεν μπορούμε να
 εγγυηθούμε ότι οι χρόνοι
 setup και hold θα
 τηρούνται!!!

· Όταν ένα ασύγχρονο σήμα παραβιάζει setup και hold times...

Ασύγχρονες είσοδοι σε σύγχρονα κυκλώματα (2/2)

- Σιγουρευτείτε ότι οι εξωτερικές είσοδοι πηγαίνουν σε ένα ακριβώς flip-flop!!!
 - Οι περιπτώσεις Ι και ΙΙ μπορούν να προκαλέσουν λάθος στο κύκλωμα αν από την ίδια είσοδο σε ένα flip-flop συμβεί το φαινόμενο Ι ενώ σε ένα άλλο το ΙΙ.

Χειρισμός Μεταστάθειας (Metastability)

- Περίπτωση ΙΙΙ Αδύνατον να προληφθεί!
- Τα μοντέρνα ψηφιακά κυκλώματα βγαίνουν σχετικά γρήγορα από καταστάσεις μεταστάθειας.
- Λύση: Περιμένουμε τα σήματα να σταθεροποιηθούν
 - Συγχρονισμός με 2-3 flips-flops (synchronization)

Η αρχή του Pipelining με ένα παράδειγμα (1/2)

- Ανάλογο πλύσης ρούχων:
 - βήμα 1: wash (20 minutes)
 - βήμα 2: dry (20 minutes)
 - βήμα 3: fold (20 minutes)

60 minutes \times 4 loads \Rightarrow 4 hours

Και αν επικαλύψουμε τα βήματα - στάδια;

20mins 20mins 20mins 20mins 20mins

		201111110	201111110	201111110		401111110
wash	load1	load2	load3	load4		
dry		load1	load2	load3	load4	
fold			load1	load2	load3	load4

overlapped \Rightarrow 2 hours

Η αρχή του Pipelining με ένα παράδειγμα (2/2)

20mins 20mins 20mins 20mins 20mins

wash	load1	load2	load3	load4		
dry		load1	load2	load3	load4	
fold			load1	load2	load3	load4

- Αν αύξησουμε των αριθμό των loads, ο μέσος χρόνος ανα load πλησιάζει τα 20 minutes
- Καθυστέρηση Latency (ο χρόνος από την αρχή μεχρι το τέλος) για ένα load = 60 min
- Παροχή -Throughput = 3 loads/hour
- Pipelined throughput \approx # of pipe stages x un-pipelined throughput.

 HY220 Bagiline Tamaeugtaθίου

 41

Pipelining

· Κόβουμε το CL block σε κομμάτια (stages) και τα χωρίζουμε με registers: _______

$$T' = 4 \text{ ns} + 1 \text{ ns} + 4 \text{ ns} + 1 \text{ ns} = 10 \text{ ns}$$

 $F = 1/(4 \text{ ns} + 1 \text{ ns}) = 200 \text{ MHz}$

· CL block παράγει νέο αποτέλεσμα κάθε 5 ns αντί για κάθε 9 ns

Όρια στο Pipelining

- · Χωρίς το χρονικό κόστος (overhead) των FF, η βελτίωση στο throughput θα ήταν ανάλογη του αριθμού των σταδίων(stages) του pipeline
 - Αν προσθέσουμε πολλά στάδια, το overhead των FF αρχίζει να κυριαρχεί!

- Άλλοι περιοριστικοί παράγοντες για πιο αποδοτικό pipelining:
 - Οι καθυστερήσεις/αβεβαιότητες του ρολογιού (clock skew) συνεισφέρουν στο overhead
 - Μη ισορροπημένα στάδια
 - Το κόστος των FFs κυριαρχεί
 - Κατανάλωση ισχύος για την διανομή του ρολογιού(clock distribution power consumption)
 - Αναδράσεις στις λογικές feedbacks (dependencies between loop iterations) ΗΥ220 - Βασίλης Παπαευσταθίου