METHOD FOR PROCESSING WASTES OF GLASS REINFORCED **POLYAMIDES**

Patent Number:

SU1058978

Publication date: 1983-12-07

Inventor(s):

REKUNOVA VALENTINA M;; SEVERINA LYUDMILA I;; PETRENKO SERGEJ D;;

GOROKHOVSKIJ GEORGIJ A

Applicant(s):

REKUNOVA VALENTINA M (SU); SEVERINA LYUDMILA (SU); PETRENKO SERGEJ

D (SU); GOROKHOVSKIJ GEORGIJ A (SU)

Requested

Patent:

SU1058978

Application

Number:

SU19823403443 19820304

Priority Number

(s):

SU19823403443 19820304

IPC

Classification:

EC Classification:

Equivalents:

Abstract

Data supplied from the esp@cenet database - I2

(19) SU (11) 1058978 A

3(5)) C 08 J 11/04 // C 08 G 69/46

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

(21) 3403443/23-05

(22) 04.03.82

(46) 07.12.83. Бюл. № 45

(72) В.М. Рекунова, Л.И. Северина, С.Д. Петренко и Г. А. Гороховский

(53) 678.675 (088.8)

(56) 1. Патент Франции № 2322891, кл. С 08 J 1/00, опублик. 1978.

2. Морозов В.И. и др. Утилизация отходов стеклонаполненных полиамидов. - 'Производство и переработка пластмасс и синтетических смол''. М., НИИТЭХИМ, 1980, № 2, с. 40 - 42 (прототип).

(54)(57) СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ СТЕКЛОНАПОЛНЕННЫХ ПОЛИАМИДОВ, включающий измельчение отходов, получе-

ние их смеси с первичным полиамидом и стекловолокном в экструдере и дальнейшее формование, о т л и ч а ющ и й с я тем, что, с целью увеличения прочности полученного материала, снижения температуры трения при его контактировании с металлом и уменьшения износа оборудования, смешивают отходы стеклонаполненного полиамида с меламином в массовом соотношении 4-12 : 2-10, полученную смесь смешивают в экструдере с первичным полиамидом, затем в экструдер вводят измельченное стекловолокно при массовом соотношении смеси стеклонаполненного полиамида с меламином, первичного полиамида и стекловолокна 6-22 : 67-72 : 33-28.

SU ... 1058978

Изобретение относится к переработке отходов термопластов, в частности стеклонаполненных полиэмидов, и может быть использовано в любой отрасли промышленности, где имеется производство или переработка стеклонаполненных полиамидов.

Известен способ переработки отходов термопластов с использованием растворителей при нагревании [1].

Недостатками данного способа являются применение легколетучих растворителей, вредно действующих на обслуживающий персонал, а также усложнение процесса удаления растворителя в момент сушки готового ма- 15 териала.

Известен способ переработки отходов стеклонаполненных полиамидов, включающий измельчение отходов, получение их смеси с первичным полиамидом и стекловолокном в экструдере и дальнейшее формование. Отходы стеклонаполненного полиамида вводятся в расплав исходного матернала [2].

Однако этот способ характеризуется невысокими прочностными показателями материала, быстрым износом материала и контактирующих с ним металлических частей оборудования, а также нагревом материала в местах трения деталей.

Цель изобретения - увеличение прочности полученного материала, снижение температуры трения при его контактировании с металлом и уменьшение износа оборудования.

Поставленная цель достигается тем; что согласно способу переработки отходов стеклонаполненных полиамидов, включающему измельчение отходов, получение их смеси с первичным полиамидом и стекловолокном в экструдере и дальнейшее формование, смешивают отходы стеклонаполненного полиамида с меламином в массовом соотношении 4-12:2-10, полученную смесь смешивают в экструдере с первичным полиамидом, затем в экструдер вводят измельченное стекловолокно при массовом соотношении смеси стеклонаполненного полиамида с меламином, первичного полиамида и стекловолокна 6-22:67-72:33-28.

Способ осуществляется следующим образом.

В первую загрузочную зону экструдера непрерывно полают 67-72 вес.ч.. полиамида-6. В эту же зону вводят 6-22 вес.ч. смеси предварительно измельченных отходов стеклонаполненного полиамида 6 с меламином в соотношении 4-12 вес.ч. на 2-10 вес.ч60 соответственно. В третью загрузочную зону экструдера подают 33-28 вес.ч. измельченного стеклоровинга. Смесь в экструдере плавится при 220—290°C, гомогенизируется, 65 формустоя в прутки и режется на гранулы необходимого размера. Из полученного материала литьем под давлением получают различные изделия,

Сравнительные свойства материалов, полученных известным и предлагаемым способами приведень в таблице.

Пример 1. В первую загрузочную зону экструдера непрерывно 10 подают 67 вес.ч. полиамида-6. В эту же зону вводят 6 вес.ч. смеси предварительно измельченных отходов стеклонаполненного полиамида-6 с меламином в соотношении 4 вес.ч. отходов стеклонаполненного полиамида и 2 вес.ч. меламина. В третью загрузочную зону экструдера подают 33 вес.ч. измельченного стеклоровинга, Смесь в экструдере плавится при 220-270°С, гомогенизируется, формуется в прутки и режется на гранулы необходимого размера. Из полученного материала литьем под давлением получают различные изделия.

Свойства полученного стеклонапол-

25 ненного полиамида:

The state of the s	
Разрушающее напряжение	
при растяжении, МПа	107
Ударная вязкость,	
кДЖ/м ²	46,8
Линейная интенсивность	•
износа металла, × 10 ⁻⁸	0,15
Линейная интенсивность	·
износа предлагаемого	
материала, х 10 ⁻⁷	0,28
Температура трения	•
в контакте предлагаемый	
материал - металл, ^о С	135
	при растяжении, МПа Ударная вязкость, кДЖ/м ² Линейная интенсивность износа металла, × 10 ⁻⁸ Линейная интенсивность износа предлагаемого материала, х 10 ⁻⁷ Температура трения

Пример 2. В первую загрузочную зону экструдера непрерывно подают 68 вес.ч. полиамида-6. В эту же зону вводят 12 вес.ч. смеси предварительно измельченных отходов стеклонаполненного полиамида-6 с меламином в соотношении 4 вес.ч. и 8 вес.ч. соответствение. В третью загрузочную зону экструдера подают : 32 вес.ч. измельченного стеклоровинга. Смесь в экструдере плавится при 220-270^CC, гомогенизируется, форм**у**ется в прутки и режется на гранулы необходимого размера. Из полученного материала литьем под давлением получают различные изделия.

Свойства полученного стеклонаполненного полиамида:

Разрушающее "напряжение при растяжении, МПа .107 Ударная вязкость. кДж/м 🤻 45,4 Линейная интенсивлость износа металла, х 10-8 0,08 Линерная интенсивность износа полученного материала, х 10-4 0,09 Температура трения в контакте, °C 110

10

45

пример 3. В первую азгрузочную зону экструдера непрерывно подают 69 вес.ч. полнамила-6. В эту же зону вводят 14 вес.ч. смеси из 4 вес.ч. предварительно измельченных отходов стеклонаполненного полиамида-6 и 10 вес.ч. меламина. В третью загрузочную зону экструдера подают 31 вес.ч. измельченного стеклоровинга. Смесь в экструдере плавится при 220-270°С, гомогенизируется, формуется в прутки и режется на гранулы необходимого размера. Из полученного материала литьем под давлением получают различные изделия.

Свойства полученного стеклонапол- 15

ненного полиамида:

Разрушающее напряжение 108 при растяжении, МПа Угарная вязкость, $\kappa Дж/м^2$ 45,2 Линейная интенсивност износа металла, $x 10^{-8}$ 0,08 Линейная интенсивность износа полученного ма-0,07 териала, x 10⁻⁷ Температура трения в контакте, ОС 110

Пример 4. В первую загрузочную зону экструдера непрерывно подают 10 вес.ч. полиамида-6. В эту же зону вводят 14 вес.ч. смеси, 12 вес.ч. предварительно измельченных отходов стеклонаполненного полиамида-6 и 2 вес.ч. меламина. В третью загрузочную зону экструдера подают 30 вес.ч. измельченного стеклоровин- 35 га. Смесь в экструдере плавится при 220-270°C, гомогенизируется, формуется в прутки и режется на гранулы необходимого размера. Из полученного материала литьем под давлением полу- 40 чают различные изделия.

Свойства полученного стеклонаполненного полиамида:

Разрушающее напряжение	
при растяжении. МПа	109
Ударная вязкость, кДЖ/м2	44,3
Линейная интенсивность	
износа металла, х 10 ⁻⁸	0,42
Линейная интенсивность	
износа полученного	
материала, x 10 ⁻⁷	0,82
Температура трения	
в контакте, ОС	125

пример 5. В первую загрузочную зону экструдера непрерывно подают 71 вес.ч. полиамида-6. В этуже зону вводят 20 вес.ч. смеси предварительно измельченных 12 вес.ч. отходов стеклонаполненного полиамида-6 с 8 вес.ч. меламина. В третью загрузочную зону экструдера подают

29 вес.ч. измельченного стеклоро инга. Смесь в экструдере плавится при 220-270°С, гомогенизируется, формуется в прутки и режется на гранулы необходимого размера. Из полученного материала литьем под давлением получают различные изделия.

Свойства полученного стеклонапол-

ненного полиамида:

разрушающее напряжение	
при растяжении, МПа	193
Ударная вязкость,	
кДж/м ²	43,1
Линейная интенсивность	
износа металла, ж 10 ⁻⁸	0,19
Линейная интенсивность	
износа полученного ма-	
териала, х 10 ⁻⁷	0,22
Температура хранения	
в контакте, ^о С	105

Пример 6. В первую загрузочную зону экструдера непрерывно подают 72 вес.ч. полиамида-6. В эту же зону вводят 22 вес.ч. смеси, 12 вес.ч, предварительно измельчен-25 ных отходов стеклонаполненного полиамида-6 и 10 вес.ч. меламина. В третью загрузочную зону экструдера подают 28 вес.ч. измель ченного стеклоровинга. Смесь в экструдере плавится при 220-270°С, гомогенизирует-

30 ся, формуется в прутки и режется на гранулы необходимого размера. Из полученного материала литьем под давлением получают различные изделия.

Свойства полученного стеклонаполненного полиамида:

Разрушающее напряжение	
при растяжении, МПа	105
Ударная вязкость, кДж/м*	42,9
Линейная интенсивность	
· износа металла, х 10 ⁻⁸	0,17
Линейная интенсивность	
износа полученного ма-	
териала, х 10 ⁻⁽	0,20
Температура в контакте	
металл - предлагаемый	2
материал, ^о С	100

Таким образом, предлагаемый способ позволяет снизить износ оборудования вследствие снижения абразивного действия загружаемой в экструдер смеси, улучшить прочностные показатели получаемого материала, продлить срок службы деталей, контактирующих с изделиями из стеклонапол-

55 ненного полиамида, более полно использовать отходы полиамидов. Кроме того,получаемый материал снижает температуру контактирования с металлами в узлах трения, что позволяет

60 упростить конструкцию узлов, которые требуют системы охлаждения.

Показатели	Натериал	
	известных	предлагаемый
Разрушающее напряжение при растяжении, МПа	90	105-109
Ударная вязкость (без надре- за), к Дж/м^2	14	42,9-46,8
Линейная интенсивность мэно- са металла, х 10^{-5}	2,8	0,07-0,42
Линейная интенсивность изно- са полиамида, х 10 ⁻⁷	5,6	0,09-0,82
Темпєратура трения в контакте металл - стеклонаполненный полиамид, ос	155	100-135

Составитель И. Стояченко
Редактор Н. Киштулинец Техред М.Надь Корректор А. Дзятко
Заказ 9705/23 Тираж 494 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5