MATH 101.2 PS-2

Q1) Evoluate the limit $\lim_{h\to 2} \frac{1}{4-h^2}$ or explain why it does not exist.

Sol: Remember: The limit of the function f at a point c exists and equal to L if and only if $\lim_{x\to c^+} f(x) = \lim_{c\to c^-} f(x) = L$.

Equivalently, $\lim_{x\to c} f(x) = L \iff \lim_{x\to c^+} f(x) = \lim_{x\to c^-} f(x) = L$

 $\lim_{h\to 2^{-}} \frac{1}{4-h^2} = \lim_{h\to 2^{-}} \left(\frac{1}{2+h} \cdot \frac{1}{2-h}\right) = \lim_{h\to 2^{-}} \left(\frac{1}{2+h}\right) \cdot \lim_{h\to 2^{-}} \left(\frac{1}{2-h}\right) = 4 \cdot \infty = \infty$

So, $\lim_{h\to 2^+} \frac{1}{4-h^2} \neq \lim_{h\to 2^-} \frac{1}{4-h^2}$. Thus, $\lim_{h\to 2} \frac{1}{4-h^2}$ does not exist.

Sol: $\lim_{x\to 0^+} \frac{|x-2|}{(x-2)} = \frac{10^{\frac{1}{2}}-21}{(0^{\frac{1}{2}}-2)} = \frac{2}{-2} = -1$ $\lim_{x\to 0^-} \frac{|x-2|}{(x-2)} = \frac{10^{\frac{1}{2}}-21}{(0^{\frac{1}{2}}-2)} = \frac{2}{-2} = -1$ $\lim_{x\to 0^-} \frac{|x-2|}{(x-2)} = \frac{10^{\frac{1}{2}}-21}{(0^{\frac{1}{2}}-2)} = \frac{2}{-2} = -1$

(3) $\lim_{x \to 2} \frac{1x-21}{x-2} = ?$

Sol: $\lim_{x\to 2^+} \frac{|x-2|}{x-2} = \frac{|2^+-2|}{2^+-2} = \frac{|0^+|}{0^+} = \frac{0^+}{0^+} = 1$

 $\lim_{x \to 2^{-}} \frac{1x-21}{x-2} = \frac{12^{-}-21}{2^{-}-2} = \frac{10^{-}1}{0^{-}} = \frac{0^{+}}{0^{-}} = -1$ $\lim_{x \to 2^{+}} \frac{1x-21}{(x-2)} = \lim_{x \to 2^{+}} \frac{x-2}{x-2} = 1$ $\lim_{x \to 2^{+}} \frac{1x-21}{(x-2)} = \lim_{x \to 2^{+}} \frac{x-2}{x-2} = 1$ $\lim_{x \to 2^{+}} \frac{1x-21}{(x-2)} = \lim_{x \to 2^{+}} \frac{x-2}{x-2} = -1$

Therefore, $\lim_{x\to 2} \frac{|x-2|}{x-2}$ does not exists.

Q4)
$$\lim_{S\to 0} \frac{(s+1)^2 - (s-1)^2}{s} = \frac{?}{s}$$

Sol: $\lim_{S\to 0} \frac{(s+1)^2 - (s-1)^2}{s} = \lim_{S\to 0} \frac{s^2 + 2s + t^2 - s^2 + 2s - t^2}{s} = \lim_{S\to 0} \frac{4s}{s} = 4\pi$
 $\lim_{S\to 0} \frac{(s+1)^2 - (s-1)^2}{s} = \lim_{S\to 0} \frac{s^2 + 2s + t^2 - s^2 + 2s - t^2}{s} = \lim_{S\to 0} \frac{4s}{s} = 4\pi$

Q5) $\lim_{S\to 0} \frac{y - 4\sqrt{y} + 3}{y^2 - 1} = \frac{1 - 4\sqrt{1} + 5}{s} = 0$

We know $t + 3t + y = (\sqrt{3}y)^2$ and $3t^2 - 3t^2 = (3t + 3)(3t - 1)$
 $y - 4\sqrt{y} + 3 = (\sqrt{3}y)^2 - 4\sqrt{y} + 3 = (\sqrt{3}y - 3)(\sqrt{3}y - 1)$
 $y^2 - 1 = (y + 1)(y - 1) = (y + 1)(\sqrt{3}y - 1)^2 = (y + 1)(\sqrt{3}y + 1)(\sqrt{3}y - 1)$
 $y^2 - 1 = (y + 1)(y - 1) = (y + 1)(\sqrt{3}y - 1) = \lim_{S\to 1} \frac{\sqrt{3}y - 3}{(y + 1)(\sqrt{3}y + 1)} = \frac{1 - 3}{2 \cdot 2} = -\frac{1}{2} / /$

Q6) $\lim_{S\to 2} \frac{y - 4\sqrt{3}y + 3}{(x - 2)} = \lim_{S\to 2} \frac{(\sqrt{3}y - 3)(\sqrt{3}y - 1)}{(\sqrt{3}y + 1)(\sqrt{3}y + 1)} = \lim_{S\to 2} \frac{\sqrt{3}y - 3}{(y + 1)(\sqrt{3}y + 1)} = \frac{1 - 3}{2 \cdot 2} = -\frac{1}{2} / /$

Q6) $\lim_{S\to 2} \frac{1}{(x - 2)} - \frac{1}{x^2 - 4} = \lim_{S\to 2} \frac{x - 2}{(x + 2)} = \lim_{S\to 2} \frac{x - 2}{(x + 2)} = \lim_{S\to 2} \frac{1}{(x + 2)} = \lim_{S\to 2} \frac{1}{x^2 - 42 - x^2} = \lim_{S\to 2} \frac{(\sqrt{2}x^2 - 42 - x^2)}{(\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{\sqrt{2}x^2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{\sqrt{2}x^2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2)} = \lim_{S\to 0} \frac{2}{x^2 (\sqrt{2}x^2 + 4\sqrt{2} - x^2$

Q8) If $2-x^2 \le g(x) \le 2\cos x$ for all x, find $\lim_{x\to 0} g(x)$.

Sol: Squeeze Theorem: Suppose $f(x) \leq g(x) \leq h(x)$ for all x in an open interval about a (except possibly at a itself). Further, suppose $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$. Then, $\lim_{x\to a} g(x) = L$.

 $\rightarrow \lim_{x\to 0} (2-x^2) = 2$ and $\lim_{x\to 0} 2\cos x = 2\cos 0 = 2.1 = 2$.

By the Sque reze theorem, lim g(x)=2.

Same graph. Where do they intersect?

b) The function f(x) satisfies: $\begin{cases} x^2 < f(x) \le x^4 & \text{if } x < -1 \text{ or } x > 1 \\ x^4 \le f(x) \le x^2 & \text{if } -1 \le x \le 1 \end{cases}$

Find $\lim_{x\to -1} f(x)$, $\lim_{x\to 0} f(x)$ and $\lim_{x\to 1} f(x)$.

Sol: a) Let us find the intersection points. $x^{4} = x^{2} \implies x^{4} - x^{2} = 0 \implies x^{2}(x^{2}-1) = 0.$ Then, $x^{2}(x+1)(x-1) = 0$ and, x = 0, -1, 1.

Thus, intersection points are (0,0), (-1,1) and (1,1).

b) Let us redraw the graph we just drew and take and arbitrary function f on the graph which satisfies given conditions.

It is clear by the squeeze theorem that $\lim_{x\to -1} f(x) = \lim_{x\to 1} f(x) = 1$ and $\lim_{x\to -1} c(x) = 0$

 $\lim_{x\to 0} f(x) = 0.$

(10)
$$\lim_{x \to -\infty} \frac{x^2 + 3}{x^3 + 2} = ?$$

Sol:
$$\lim_{x \to -\infty} \frac{x^2 + 3}{x^3 + 2} = \lim_{x \to -\infty} \frac{x^3 \left(\frac{1}{x} + \frac{3}{x^3}\right)}{x^3 \left(1 + \frac{2}{x^2}\right)} = \lim_{x \to -\infty} \frac{\frac{1}{x} + \frac{3}{x^3}}{1 + \frac{2}{x^3}} = \frac{0 + 0}{1 + 0} = 0$$

Q11)
$$\lim_{x\to\infty} \frac{2x-1}{\sqrt{3x^2+x+1}} = ?$$

Solo
$$\lim_{x \to \infty} \frac{2x-1}{\sqrt{3x^2+x+1}} = \lim_{x \to \infty} \frac{2x-1}{\sqrt{x^2(3+\frac{1}{x}+\frac{1}{x^2})}} = \lim_{x \to \infty} \frac{2x-1}{|x|\sqrt{3+\frac{1}{x}+\frac{1}{x^2}}}$$

$$= \lim_{x \to \infty} \frac{x(2-\frac{1}{x})}{x\sqrt{3+\frac{1}{x}+\frac{1}{x^2}}} = \lim_{x \to \infty} \frac{2-\frac{1}{x}}{\sqrt{3+\frac{1}{x}+\frac{1}{x^2}}}$$

$$= \frac{2-0}{\sqrt{3+0+0}} = \frac{2}{\sqrt{3}}$$

(212)
$$\lim_{x \to -\infty} \frac{2x-5}{13x+21} = ?$$

Sol:
$$\lim_{x \to -\infty} \frac{2x-5}{|3x+2|} = \lim_{x \to -\infty} \frac{2x-5}{-3x-2} = -\frac{2}{3} /$$

(213)
$$\lim_{x \to (-\frac{2}{5})^{-\frac{2x+5}{5x+2}}} = ?$$

Sol:
$$\lim_{x \to (-\frac{2}{5})^{-}} \frac{2x+5}{5x+2} = \frac{2\cdot (-\frac{2}{5})^{-} + 5}{5\cdot (-\frac{2}{5})^{-} + 2} = \frac{\frac{21}{5}}{0^{-}} = -\infty$$

$$314$$
) $\lim_{x \to 1^{-}} \frac{1}{|x-1|} = 8$

Sol?
$$\lim_{x\to 1^-} \frac{1}{|x-1|} = \frac{1}{|1^--1|} = \frac{1}{|0^-|} = \frac{1}{0^+} = \infty$$
.

Q 15)
$$\lim_{x \to 1^+} \frac{\sqrt{x^2 - x}}{x - x^2} = ?$$

(2.15) $\lim_{x \to 1^{+}} \frac{Jx^{2} - x}{x - x^{2}} = 7$ Sole $\lim_{x \to 1^{+}} \frac{Jx^{2} - x}{x - x^{2}} = \lim_{x \to 1^{+}} -\frac{\sqrt{x^{2} - x}}{x^{2} - x} = \lim_{x \to 1^{+}} \frac{-1}{\sqrt{x^{2} - x}} = \frac{-1}{\sqrt{0^{+}}} = \frac{-1}{\sqrt{0^{+}}} = -\infty$

Q16)
$$\lim_{x\to-\infty}\frac{1}{\sqrt{x^2+2x^2-x}}=?$$

Sole $\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x^2 - x}} = \lim_{x \to -\infty} \frac{1}{\sqrt{x^2 (1 + \frac{2}{x})^2 - x}} = \lim_{x \to -\infty} \frac{1}{|x| \sqrt{1 + \frac{2}{x}^2} - x}$ $= \lim_{x \to -\infty} \frac{1}{-x \sqrt{1+\frac{2}{x}} - x} = \lim_{x \to -\infty} \frac{1}{x \left(-\sqrt{1+\frac{2}{x}} - 1\right)}$ $=\frac{1}{(-\infty)\cdot(-2)}=0.$

Q17) Let $f(x) = \begin{cases} x & \text{if } x < 0 \end{cases}$. State where in its domain the given function is continuous, and where it is just discontinuous.

Sol: Clearly, f is continuous for all x>0 and x<0. We must examine only OEB.

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} x = 0$$

$$\lim_{x\to 0^{+}} f(x) = \lim_{x\to 0^{+}} x^{2} = 0$$

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x) = 0.$$

Also, $\lim_{x\to 0} f(x) = f(0) = 0$. It means f is continuous at OEB. So, f is continuous everywhere.

Q18) How should the function $\frac{x^2-4}{x-2}$ be defined at x=2 to be continuous there. Give a formula for the continuous extention.

Solo $\frac{x^2-4}{x-2}$ is not defined at x=2. (undefined)

 $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x+2)(x-2)}{x - 2} = \lim_{x \to 2} (x+2) = 4. \quad \text{if we}$

choose f such that $f(x) = \begin{cases} \frac{x^2-4}{x-2} & \text{if } x \neq 2 \\ 4 & \text{if } x = 2 \end{cases}$

Then, f is continuous function. (Actually, f(x)=x+2).

(219) Find $k \le 0$ that $f(x) = \begin{cases} x^2 & \text{if } x \le 2 \\ k - x^2 & \text{if } x > 2 \end{cases}$ is a continuous function.

Sole if f is continuous at 2, then $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = f(2)$ $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} x^2 = 4$ and $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} (k-x^2) = k-4$ $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} (k-x^2) = k-4$

Q20) Find m so that $g(x) = \begin{cases} x-m & \text{if } x < 3 \\ 1-mx & \text{if } x \geqslant 3 \end{cases}$ is

Sol: $\lim_{x \to 3^{-}} g(x) = \lim_{x \to 3^{-}} (x-m) = 3-m$ $\lim_{x \to 3^{+}} g(x) = \lim_{x \to 3^{+}} (1-mx) = 1-3m$ $\lim_{x \to 3^{+}} g(x) = \lim_{x \to 3^{+}} (1-mx) = 1-3m$ Q21) Find the intervals which the function $f(x) = \frac{x^2-1}{x^2-4}$ is positive or negative.

Sol8
$$f(x) = \frac{x^2-1}{x^2-4} = \frac{(x+1)(x-1)}{(x+2)(x-2)}$$
 roots of denom. are 2,-2
We can make a table by using this information.

Hence, f(x)>0 on $(-\infty,-2)\cup(-1,1)\cup(2,\infty)$ f(x)<0 on $(-2,-1)\cup(1,2)$

- Q22) Show that $f(x) = x^3 + x^2 1$ has has a zero between x = 0 and x = 1.
- Sol: Intermediate Value Theorem (IVT): If f is a continuous function whose domain contains the interval [a,b], then it takes on any given value between f(a) and f(b) at some point within the interval.
- \rightarrow So, we can see that f is continuous function on [0,1]. Also $-1 = f(0) \times 0 \times f(1) = 1$. Then, there exists a point $c \in [0,1]$ such that f(c) = 0 by the IVT.
- (23) Show that the equation $x^3-15x+1=0$ has three solutions in the interval [-4,4].
- Sol: Clearly, $f(x) = x^3 15x + 1 \text{ th}$ is continuous on [-4, 4]. We can write [-4, 4] as $[-4, 4] = [-4, -3] \cup [-3, 1] \cup [1, 4]$. Also, f(-4) = -3, f(-3) = 19, f(1) = -13 and f(4) = 5. By the IVT, there exists $a \in [-4, -3]$, $b \in [-3, 1]$ and $c \in [1, 4]$ such that f(a) = f(b) = f(c) = 0.

Q24) Show that $\lim_{x\to 1} \frac{1}{x+1} = \frac{1}{2}$ by using formal

definition of limit.

Sol: Def: Let f(x) be a function defined on an interval that contains x=a, except possibly x=a. Then, we say that, $\lim_{x\to a} f(x) = L$ if given any $\varepsilon>0$, there exists $\varepsilon>0$ such that $|f(x)-L|<\varepsilon$ for all $0<|x-a|<\varepsilon$.

> Let $\epsilon > 0$ be given. Then, $\left| \frac{1}{x+1} - \frac{1}{2} \right| = \left| \frac{1-x}{2(x+1)} \right| = \frac{|x-1|}{2|x+1|}$

Q25) Show that $\lim_{x\to 1^+} \frac{1}{x-1} = \infty$ by using formal definition of limit.

Sol: Let M>0 be given. (Here M is arbitrary positive number)
Then, $\frac{1}{x-1}$? B if $0 < x-1 < \frac{1}{B}$. It means

 $\frac{1}{x-1}$ > B if $1 < x < 1 + \frac{1}{B}$. If we choose $S = \frac{1}{B}$.

then $\frac{1}{x-1} > B$ for all 1 < x < 1 + S. This completes

the proof.