

MOTORO

CMOS D

LOGIC ATA

Product Selection Guide	2
The "Better" Program	3
B and UB Series Family Data	4
CMOS Handling and Design Guidelines	5
Data Sheets	6
CMOS Reliability	7

Equivalent Gate Count

Packaging Information

Including Surface Mounts

Master Index

DATA CLASSIFICATION

Product Preview

This heading on a data sheet indicates that the device is in the formative stages or in design (under development). The disclaimer at the bottom of the first page reads: "This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice."

Advance Information

This heading on a data sheet indicates that the device is in sampling, preproduction, or first production stages. The disclaimer at the bottom of the first page reads: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

Fully Released

A fully released data sheet contains neither a classification heading nor a disclaimer at the bottom of the first page. This document contains information on a product in full production. Guaranteed limits will not be changed without written notice to your local Motorola Semiconductor Sales Office.

MOTOROLA

CMOS LOGIC DATA

Prepared by Technical Information Center

This book presents technical data for the broad line of CMOS logic integrated circuits and demonstrates Motorola's continued commitment to Metal-Gate CMOS. Complete specifications are provided in the form of data sheets. In addition, a Product Selector Guide and a Handling and Design Guidelines chapter have been included to familiarize the user with these circuits.

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Motorola Inc. general policy does not recommend the use of its components in life support applications where a failure or malfunction of the component may directly threaten life or injury. Per Motorola Terms and Conditions of Sale, the user of Motorola components in life support applications assumes all risk of such use and indemnifies Motorola against all damages.

The second of the second secon

As a subject of graph and a property of the part of the part of the part of the property of the property of the part of the p

 $+\frac{1}{2}$ (and $+i\hat{A}$) (b)

ing the state of t on a construction of the state 。 1987年 - 1987年 -nakan kacamatan kacamatan bermalah di bermalah bermalah bermalah bermalah bermalah bermalah bermalah bermalah b in the second of The second secon - Definition (現代の) 関い - All Table (1984年) 1. 网络大麻木 机二烷 医二甲基 A CONTRACT OF THE CONTRACT OF - Andrew State Control (1997年) 選択的 Andrew State Control (1997年) ાં પ્રાથમિક કરવા છે. તેમ કરવા માટે કરવા માટે કરવા માટે કરવા છે. જે માટે કરવા માટે કરવા માટે કરવા માટે કરવા માટે આ પ્રાથમિક કરવા માટે આ પ્રાથમિક કરવા માટે one of the second of the secon n de la companya de la co La companya de la co

1100 . S. Sa . . 1.4 1.38 1.50

MASTER INDEX

This index includes Motorola's entire MC14000 series CMOS products, although this book contains data sheets for Logic Devices only. Data sheets for devices in the CMOS/NMOS Special Functions Data book (DL130) are designated in the page number column as SF.

Products which have been cancelled are designated in the page number column as —.

Device	Function	Pa ge
MC14000UB	Dual 3-Input NOR Gate Plus Inverter	6-2
MC14001B	Quad 2-Input NOR Gate	
MC14001UB	Quad 2-Input NOR Gate	
MC14002B	Dual 4-Input NOR Gate	6-5
MC14002UB	Dual 4-Input NOR Gate	6-14
MC14006B	18-Bit Static Shift Register	6-19
MC14007UB	Dual Complementary Pair Plus Inverter	6-23
MC14008B	4-Bit Full Adder	6-27
MC14011B	Quad 2-Input NAND Gate	
MC14011UB	Quad 2-Input NAND Gate	
MC14012B	Dual 4-Input NAND Gate	6-5
MC14012UB	Dual 4-Input NAND Gate	
MC14013B	Dual D Flip-Flop	
MC14014B	8-Bit Static Shift Register	
MC14015B	Dual 4-Bit Static Shift Register	
MC14016B	Quad Analog Switch/Multiplexer	
MC14017B	Decade Counter	
MC14018B	Presettable Divide-by-N Counter	6-59
MC14020B	14-Bit Binary Counter	
MC14021B	8-Bit Static Shift Register	
MC14022B	Octal Counter	
MC14023B	Triple 3-Input NAND Gate	
MC14023UB	Triple 3-Input NAND Gate	
MC14024B	7-Stage Ripple Counter	
MC14025B	Triple 3-Input NOR Gate	
MC14025UB	Triple 3-Input NOR Gate	
MC14027B	Dual J-K Flip-Flop	
MC14028B	BCD-to-Decimal/Binary-to-Octal Decoder	
MC14029B	Presettable Binary/BCD Up/Down Counter	
MC14032B	Triple Serial Adder (Positive Logic)	
MC14034B	8-Bit Universal Bus Register	
MC14035B	4-Bit Shift Register	
MC14038B	Triple Serial Adder (Negative Logic)	
MC14040B	12-Bit Binary Counter	
MC14042B	Quad Transparent Latch	
MC14043B	Quad NOR R-S Latch	
MC14044B	Quad NAND R-S Latch	
MC14046B	Phase-Locked Loop	6-120

Device	Function	Page
MC14049UB	Hex Inverting Buffer	6-125
MC14050B	Hex Noninverting Buffer	6-125
MC14051B	8-Channel Analog Multiplexer/Demultiplexer	6-129
MC14052B	Dual 4-Channel Analog Multiplexer/Demultiplexer	6-129
MC14053B	Triple 2-Channel Analog Multiplexer/Demultiplexer	6-129
MC14060B	14-Bit Binary Counter and Oscillator	6-136
MC14066B	Quad Analog Switch/Multiplexer	
MC14067B	16-Channel Analog Multiplexer/Demultiplexer	
MC14068B	8-Input NAND Gate	6-5
MC14069UB	Hex Inverter	6-154
MC14070B	Quad Exclusive OR Gate	6-156
MC14071B	Quad 2-Input OR Gate	
MC14072B	Dual 4-Input OR Gate	6-5
MC14073B	Triple 3-Input AND Gate	6-5
MC14075B	Triple 3-Input OR Gate	6-5
MC14076B	Quad D-Type Register with Tri-State Outputs	6-158
MC14077B	Quad Exclusive NOR Gate	
MC14078B	8-Input NOR Gate	
MC14081B	Quad 2-Input AND Gate	
MC14082B	Dual 4-Input AND Gate	6-5
MC14093B	Quad 2-Input NAND Schmitt Trigger	6-162
MC14094B	8-Stage Shift/Store Register with Tri-State Outputs	6-166
MC14097B	Dual 8-Channel Analog Multiplexer/Demultiplexer	6-146
MC14099B	8-Bit Addressable Latch	
MC14106B	Hex Schmitt Trigger	
MC14160B	Synchronous Presettable BCD Counter	
MC14161B	Synchronous Presettable 4-Bit Binary Counter	6-180
MC14162B	Synchronous Presettable BCD Counter	6-180
MC14163B	Synchronous Presettable 4-Bit Binary Counter	
MC14174B	Hex D Flip-Flop	6-189
MC14175B	Quad D Flip-Flop	6-193
MC14194B	4-Bit Universal Shift Register	6-197
MC14415	Quad Precision Timer/Driver	
MC14422	Remote Control Transmitter (Product Cancelled)	
MC14433	3½ Digit A/D Converter	
MC14435	31/2 Digit A/D Logic Subsystem (Product Cancelled)	
MC14442	Microprocessor-Compatible A/D Converter	
MC14443	6-Channel A/D Converter Subsystem	SF

Device	Function	Page
MC14444	Microprocessor-Compatible A/D Converter	SF
MC14447	6-Channel A/D Converter Subsystem	SF
MC14457	Remote Control Transmitter	SF
MC14458	Remote Control Receiver	SF
MC14460	Automotive Speed Control Processor	SF
MC14461	Smoke Detector Circuit (Product Cancelled)	_
MC14462	Smoke Detector Circuit (Product Cancelled)	
MC14464	Smoke Detector Circuit (Product Cancelled)	_
MC14465	Smoke Detector Circuit (Product Cancelled)	_
MC14466	Low Cost Smoke Detector	SF
MC14467-1	Low Cost Smoke Detector	SF
MC14468	Interconnectable Smoke Detector	SF
MC14469	Addressable Asynchronous Receiver/Transmitter	SF
MC14490	Hex Contact Bounce Eliminator	6-206
MC14495-1	Hexadecimal-to-7 Segment Latch/Decoder ROM/Driver	SF
MC14497	PCM Remote Control Transmitter	SF
MC14499	7-Segment LED Display Decoder/Driver with Serial Interface	SF
MC14500B	Industrial Control Unit	6-213
MC14501UB	Triple Gate	
MC14502B	Strobed Hex Inverter/Buffer	6-223
MC14503B	Hex 3-State Buffer	6-227
MC14504B	TTL or CMOS to CMOS Hex Level Shifter	
MC14506B	Dual Expandable AOI Gate (Superseded by 14506UB)	_
MC14506UB	Dual Expandable AOI Gate	6-234
MC14508B	Dual 4-Bit Latch	6-239
MC14510B	Presettable BCD Up/Down Counter	
MC14511B	BCD-to-7-Segment Latch/Decoder/Driver	6-252
MC14512B	8-Channel Data Selector	6-258
MC14513B	BCD-to-7-Segment Latch/Decoder/Driver with Ripple Blanking	6-262
MC14514B	4-Bit Transparent Latch/4-to-16 Line Decoder (High)	6-270
MC14515B	4-Bit Transparent Latch/4-to-16 Line Decoder (Low)	
MC14516B	Presettable Binary Up/Down Counter	6-276
MC14517B	Dual 64-Bit Static Shift Register	
MC14518B	Dual BCD Up Counter	
MC14519B	4-Bit AND/OR Selector	
MC14520B	Dual Binary Up Counter	
MC14521B	24-Stage Frequency Divider	
MC14522B	Presettable BCD Down Counter	6-303

Device	Function	P age
MC14526B	Presettable 4-Bit Binary Down Counter	6-303
MC14527B	BCD Rate Multiplier	6-311
MC14528B	Dual Monostable Multivibrator (Not Recommended for New Designs)	6-317
MC14529B	Dual 4-Channel Analog Data Selector	6-323
MC14530B	Dual 5-Input Majority Logic Gate	6-329
MC14531B	12-Bit Parity Tree	6-334
MC14532B	8-Bit Priority Encoder	6-337
MC14534B	5 Cascaded BCD Counters	6-343
MC14536B	Programmable Timer	6-350
MC14538B	Dual Precision Monostable Multivibrator	
MC14539B	Dual 4-Channel Data Selector/Multiplexer	6-369
MC14541B	Programmable Oscillator/Timer	6-373
MC14543B	BCD-to-7-Segment Latch/Decoder/Driver for Liquid Crystals	
MC14544B	BCD-to-7-Segment Latch/Decoder/Driver with Ripple Blanking	
MC14547B	High-Current BCD-to-7-Segment Decoder/Driver	6-389
MC14548B	Dual Monostable Multivibrator (Retriggerable/Resettable)	
MC14549B	Successive Approximation Registers	6-394
MC14551B	Quad 2-Channel Analog Multiplexer/Demultiplexer	6-401
MC14553B	3-Digit BCD Counter	6-408
MC14554B	2 x 2-Bit Parallel Binary Multiplier	
MC14555B	Dual Binary to 1-of-4 Decoder (Active High Outputs)	
MC14556B	Dual Binary to 1-of-4 Decoder (Active Low Outputs)	
MC14557B	1-to-64 Bit Variable Length Shift Register	
MC14558B	BCD-to-7-Segment Decoder	
MC14559B	Successive Approximation Registers	
MC14560B	NBCD Adder	
MC14561B	9's Complementer	6-441
MC14562B	128-Bit Static Shift Register	
MC14566B	Industrial Time Base Generator	
MC14568B	Phase Comparator and Programmable Counters	
MC14569B	Programmable Dual 4-Bit Binary/BCD Down Counter	6-467
MC14572UB	Hex Gate	
MC14573	Quad Programmable Op Amp	
MC14574	Quad Programmable Comparator	
MC14575	Programmable Dual Op Amp/Dual Comparator	
MC14580B	4 x 4 Multiport Register	
MC14581B	4-Bit Arithmetic Logic Unit	
MC14582B	Look-Ahead Carry Block	6-490

Device	Function	Page
MC14583B	Dual Schmitt Trigger	6-494
MC14584B	Hex Schmitt Trigger	
MC14585B	4-Bit Magnitude Comparator	6-503
MC14597B	8-Bit Bus-Compatible Counter Latch	
MC14598B	8-Bit Bus-Compatible Addressable Latch	
MC14599B	8-Bit Addressable Latch	
MC144110	Hex D/A Converter with Serial Interface	SF
MC144111	Quad D/A Converter with Serial Interface	SF
MC145000	48-Segment Multiplexed LCD Driver (Master)	SF
MC145001	44-Segment Multiplexed LCD Driver (Slave)	
MC145026	Remote Control Encoder	SF
MC145027	Remote Control Decoder	SF
MC145028	Remote Control Decoder	SF
MC145029	Remote Control Decoder	SF
MC145040	Analog-to-Digital Converter with Serial Interface	SF
MC145041	Analog-to-Digital Converter with Serial Interface	SF
MC145104	PLL Frequency Synthesizer (Not Recommended for New Designs)	SF
MC145106	PLL Frequency Synthesizer	SF
MC145107	PLL Frequency Synthesizer (Not Recommended for New Designs)	SF
MC145109	PLL Frequency Synthesizer (Not Recommended for New Designs)	SF
MC145112	PLL Frequency Synthesizer (Not Recommended for New Designs)	SF
MC145143	PLL Frequency Synthesizer (Not Recommended for New Designs)	SF
MC145144	4-Bit Data Bus Input PLL Frequency Synthesizer (Not Recommended	
	for New Designs)	SF
MC145145-1	4-Bit Data Bus Input PLL Frequency Synthesizer	SF
MC145146-1	4-Bit Data Bus Input PLL Frequency Synthesizer	
MC145151-1	Parallel Input PLL Frequency Synthesizer	SF
MC145152-1	Parallel Input PLL Frequency Synthesizer	SF
MC145155-1	Serial Input PLL Frequency Synthesizer	SF
MC145156-1	Serial Input PLL Frequency Synthesizer	SF
MC145157-1	Serial Input PLL Frequency Synthesizer	SF
MC145158-1	Serial Input PLL Frequency Synthesizer	SF
MC145159-1	Serial Input PLL Frequency Synthesizer with Analog Phase Detector	SF
MC145453	33-Segment LCD Driver with Serial Interface	SF

2

Product Selection Guide

CMOS Selection Guide by Function

Device	Function	Page
NAND Gates MC14011B MC14011UB MC14093B MC14023B MC14023UB MC14012B MC14012UB MC14018B	Quad 2-Input NAND Gate. Quad 2-Input NAND Gate. Quad 2-Input NAND Schmitt Trigger. Triple 3-Input NAND Gate. Triple 3-Input NAND Gate. Dual 4-Input NAND Gate Dual 4-Input NAND Gate 8-Input NAND Gate.	6-14 6-162 6-5 6-14 6-5 6-14
MC14001B MC14001UB MC14025B MC14025UB MC14000UB MC14002B MC14002UB MC14078B	Quad 2-Input NOR Gate. Quad 2-Input NOR Gate. Triple 3-Input NOR Gate. Triple 3-Input NOR Gate. Dual 3-Input NOR Gate Plus Inverter Dual 4-Input NOR Gate Dual 4-Input NOR Gate. 8-Input NOR Gate.	6-14 6-5 6-14 6-2 6-5 6-14
AND Gates	Quad 2-Input AND Gate	6-5 6-5
MC14071B MC14075B MC14072B	Triple 3-Input OR Gate	6-5
Complex Gates MC14070B MC14077B MC14501UB MC14506UB MC14530B MC14519B MC14572UB	Quad Exclusive OR Gate Quad Exclusive NOR Gate Triple Gate. Dual Expandable AOI Gate Dual 5-Input Majority Logic Gate 4-Bit AND/OR Selector. Hex Gate.	6-156 6-219 6-234 6-329 6-293
Inverters/Buffers MC14007UB MC14049UB MC14050B MC14069UB MC14502B MC14503B MC14504B MC14504B	S/Level Translator Dual Complementary Pair Plus Inverter. Hex Inverting Buffer. Hex Noninverting Buffer. Hex Inverter. Strobed Hex Inverter/Buffer. Hex 3-State Buffer. TTL or CMOS to CMOS Hex Level Shfiter. Hex Schmitt Trigger.	6-125 6-125 6-154 6-223 6-227 6-231

Device	Function	Page
Decoders/Encod	lers	
MC14028B	BCD-to-Decimal/Binary-to-Octal Decoder	6-81
MC14511B	BCD-to-7-Segment Latch/Decoder/Driver	6-252
MC14513B	BCD-to-7-Segment Latch/Decoder/Driver with Ripple Blanking	6-262
MC14543B	BCD-to-7-Segment Latch/Decoder/Driver for Liquid Crystals	6-378
MC14544B	BCD-to-7-Segment Latch/Decoder/Driver with Ripple Blanking	6-383
MC14547B	High-Current BCD-to-7-Segment Decoder/Driver	6-389
MC14558B	BCD-to-7-Segment Decoder	6-425
MC14514B	4-Bit Transparent Latch/4-to-16 Line Decoder (High)	6-270
MC14515B	4-Bit Transparent Latch/4-to-16 Line Decoder (Low)	6-270
MC14532B	8-Bit Priority Encoder	6-337
MC14555B	Dual Binary to 1-of-4 Decoder (Active High Outputs)	6-418
MC14556B	Dual Binary to 1-of-4 Decoder (Active Low Outputs)	6-418
Multipleyers/Der	nultiplexers/Bilateral Switches	
MC14016B	Quad Analog Switch/Multiplexer	6-47
MC14016B	Quad Analog Switch/Multiplexer	6-140
MC14551B	Quad 2-Channel Analog Multiplexer/Demultiplexer	6-401
MC14951B MC14053B	Triple 2-Channel Analog Multiplexer/Demultiplexer	6-129
MC14053B MC14052B	Dual 4-Channel Analog Multiplexer/Demultiplexer	6-129
MC14097B	Dual 8-Channel Analog Multiplexer/Demultiplexer	6-146
MC14529B	Dual 4-Channel Analog Data Selector	6-323
MC14529B MC14539B	Dual 4-Channel Data Selector/Multiplexer	6-369
MC14067B	16-Channel Analog Multiplexer/Demultiplexer	6-146
MC14057B	8-Channel Analog Multiplexer/Demultiplexer	6-129
MC14512B	8-Channel Data Selector	6-258
MC14519B	4-Bit AND/OR Selector	6-293
10.01		
Schmitt Triggers	· ·	
MC14093B	Quad 2-Input NAND Schmitt Trigger	6-162
MC14583B	Dual Schmitt Trigger	
MC14106B	Hex Schmitt Trigger	6-176
MC14584B	Hex Schmitt Trigger	6-500
Flip-Flops/Latch	es Quad Transparent Latch	0.446
MC14042B	Quad Transparent Latch	0-112
MC14043B	Quad NOR R-S Latch	
MC14044B	Quad NAND R-S Latch	
MC14076B	Quad D-Type Register with Tri-State Outputs	6-100
MC14175B	Quad D Flip-Flop.	6-190
MC14013B MC14027B	Dual D Flip-Flop	0-33 6-77
	Dual J-K Flip-Flop	
MC14508B	Hex D Flip-Flop.	
MC14174B MC14099B	8-Bit Addressable Latch	
MC14597B	8-Bit Bus-Compatible Counter Latch	6-507
MC14597B MC14598B	8-Bit Bus-Compatible Addressable Latch	6-507
MC14599B	8-Bit Addressable Latch	6-170

Device	Function	Pa g e
Shift Registers		
MC14015B	Dual 4-Bit Static Shift Register	6-41
MC14517B	Dual 64-Bit Static Shift Register	
MC14562B	128-Bit Shift Register	
MC14557B	1-to-64 Bit Variable Length Shift Register	
MC14006B	18-Bit Static Shift Register	
MC14014B	8-Bit Static Shift Register	
MC14021B	8-Bit Static Shift Register	
MC14034B	8-Bit Universal Bus Register	
MC14094B	8-Stage Shift/Store Register with Tri-State Outputs	
MC14035B	4-Bit Shift Register	
MC14194B	4-Bit Universal Shift Register	6-197
MC14549B	Successive Approximation Registers	6-394
MC14559B	Successive Approximation Registers	6-394
Counters		
MC14017B	Decade Counter	6-54
MC14018B	Presettable Divide-by-N Counter	
MC14020B	14-Bit Binary Counter	
MC14022B	Octal Counter	
MC14024B	7-Stage Ripple Counter	
MC14029B	Presettable Binary/BCD Up/Down Counter	6-86
MC14040B	12-Bit Binary Counter	6-108
MC14060B	14-Bit Binary Counter and Oscillator	
MC14160B	Synchronous Presettable BCD Counter	
MC14161B	Synchronous Presettable 4-Bit Binary Counter	
MC14162B	Synchronous Presettable BCD Counter	
MC14163B	Synchronous Presettable 4-Bit Binary Counter	
MC14510B	Presettable BCD Up/Down Counter	
MC14516B	Presettable Binary Up/Down Counter	6-276
MC14518B	Dual BCD Up Counter	
MC14520B	Dual Binary Up Counter	
MC14522B	Presettable BCD Down Counter	6-303
MC14526B	Presettable 4-Bit Binary Down Counter	6-303
MC14534B	5 Cascaded BCD Counters	6-343
MC14553B	3-Digit BCD Counter	6-408
MC14566B	Industrial Time Base Generator	
MC14569B	Programmable Dual 4-Bit Binary/BCD Counter	6-467
Oscillators/Time	ers	
MC14521B	24-Stage Frequency Divider	6-297
MC14536B	Programmable Timer	
MC14541B	Programmable Oscillator/Timer	
Multivibrators		
MC14528B	Dual Monostable Multivibrator (Not Recommended for New Designs)	6-317
MC14538B	Dual Precision Monostable Multivibrator	

Device	Function	Page
Adders/Compa	rators	
MC14008B	4-Bit Full Adder	. 6-27
MC14032B	Triple Serial Adder (Positive Logic)	. 6-92
MC14038B	Triple Serial Adder (Negative Logic)	. 6-92
MC14560B	NBCD Adder	. 6-430
MC14561B	9's Complementer	. 6-441
MC14582B	Look-Ahead Carry Block	. 6-490
MC14585B	4-Bit Magnitude Comparator	. 6-503
ALU/Rate Multi		
MC14527B	BCD Rate Multiplier	. 6-311
MC14554B	2 x 2-Bit Parallel Binary Multiplier	. 6-414
MC14581B	4-Bit Arithmetic Logic Unit	. 6-485
Parity Checker		
MC14531B	12-Bit Parity Tree	. 6-334
Memory		
MC14580B	4 x 4 Multiport Register	. 6-480
Microprocesso	or/industrial Control	
MC14500B	Industrial Control Unit	. 6-213
Other Complex	c Functions	
MC14046B	Phase-Locked Loop	
MC14415	Quad Precision Timer/Driver	
MC14490	Hex Contact Bounce Eliminator	
MC14568B	Phase Comparator and Programmable Counters	. 6-457

The "Better" Program

The "BETTER" Program

The "BETTER" program is offered on Metal-Gate CMOS in dual-in-line ceramic and plastic packages.

Motorola standard commercial integrated circuits are manufactured under stringent in-process controls and quality

inspections combined with the industry's finest outgoing quality inspections. The "BETTER" program offers two levels of extra processing each tailored to meet different user needs at nominal costs.

BETTER PROCESSING — STANDARD PRODUCT PLUS:

100% Screen	Level !) "D"	Level III "DS"
Temp Cycle 10 Cycles — 25°C to +150°C		x
25°C Functional and Parametric Test	x_	х
High Temperature Test*		x
Bum-In	×	х
25°C Post Burn-In Functional and Parametric Test	x	x

^{*}Thigh = +125°C for AL Device, +85°C for CL/CP Device.

PART MARKING

The Standard Motorola part number with the corresponding "BETTER" suffix can be ordered from your local authorized Motorola distributor or Motorola sales offices. "BETTER" pricing will be quoted as an adder to standard commercial product price.

HOW TO ORDER

B and UB Series Family Data

B AND UB SERIES CMOS FAMILY DATA

The CMOS Devices in this volume which have a B or UB suffix meet the minimum values for the industry-standardized# family specification. These standardized values are shown in the Maximum Ratings and Electrical Characteristics Tables. In addition to a standard minimum specification for characteristics the B/UB devices feature:

- 3-18 volt operational limits
- Capable of driving two low-power TTL loads or one low-power Schottky TTL load over the rated temperature range.
- t Interface to High-Speed CMOS
- Maximum input current of ± 1 μA at 15 volt power supply over the temperature range
- Parameters specified at 5.0, 10, and 15 voit supply

· Noise margins: B Series 1.0 V min @ 5.0 V supply

2.0 V min @ 10 V supply 2.5 V min @ 15 V supply

UB Series 0.5 V min @ 5.0 V supply

1.0 V min @ 10 V supply

1.0 V min @ 15 V supply

The industry-standardized maximum ratings are shown at the bottom of this page. Limits for the static characteristics are shown in two formats: Table 1 is in the industry format and Table 2 is in the equivalent Motorola format. The Motorola format is used throughout this data book. Additional specification values are shown on the individual data sheets.

Switching characteristics for the B and UB series devices are specified under the following conditions:

Load Capacitance, CL, of 50 pF Input Voltage equal to VSS - VDD (Rail-to-Rail swing)

Input pulse rise and fall times of 20 ns

Propagation Delay times measured from 50% point of input voltage to 50% point of output voltage

Three different supply voltages: 5, 10, and 15 V

Exceptions to the B and UB Series Family Specification

There are a number of devices which have a B or UB suffix whose inputs and/or outputs vary somewhat from the family specification because of functional requirements. Some categories of notable exceptions are:

Devices with specialized outputs on the chip, such as NPN emitter-follower drivers or transmission gates, do not meet output specifications.

#Specifications coordinated by FIA/JEDEC Solid-State Products Council.

Devices with specialized inputs, such as oscillator inputs, have unique input specifications.

Input Voltage

The input voltage specification is interpreted as the worstcase input voltage to produce an output level of "1" or "0". This "1" or "0" output level is defined as a deviation from the supply (VDD) and ground (VSS) levels. For a 5.0 V supply, this deviation is 0.5 V; for a 10 V supply, 1.0 V; and for 15 V, 1.5 V. As an example, in a device operating at a 5.0 V supply, the device with the input starting at ground is guaranteed to switch on or before 3.5 V and not to switch up to 1.5 V. Switching and not switching are defined as within 0.5 V of the ideal output level for the example with a 5.0 V supply. The actual switching level referred to the input is between 1.5 V and 3.5 V.

Noise Margin

The values for input voltages and the defined output deviations lead to the calculated noise margins. Noise margin is defined as the difference between VIL or VIH and Vout (output deviation). As an example, for a noninverting buffer at VDD = 5.0 volts: V $_{IL}=1.5$ volts and V $_{Out}=0.5$ volts. Therefore, Noise Margin equals V $_{IL}-V_{Out}=1.0$ volt. This figure is useful while cascading stages (See Figure 1). With the input to the first stage at a worst-case voltage level (V_{IL} = 1.5 V), the output is guaranteed to be no greater than 0.5 volts with a 5.0 volt supply. Since the maximum allowable logic 0 for the second stage is 1.5 volts, this 0.5 volt output provides a 1.0 volt margin for noise to the next stage.

Output Drive Current

Devices in the B Series are capable of sinking a minimum of 0.36 mA over the temperature range with a 5.0 V supply. This value guarantees that these CMOS devices will drive one lowpower Schottky TTL input.

B Series vs UB CMOS

The primary difference between B series and UB series devices is that UB series gates and inverters are constructed with a single inverting stage between input and output. The decreased gain caused by using a single stage results in less noise immunity and a transfer characteristic that is less ideal.

The decreased gain is quite useful when CMOS Gates and inverters are used in a "Linear" mode to form oscillators, monostables, or amplifiers. The decreased gain results in increased stability and a "cleaner" output waveform. In addition to linear operation, the UB gates and inverters offer an increase in speed, since only a single stage is involved.

The B and UB series, and devices with no suffix can be used interchangeably in digital circuits that interface to other CMOS devices, such as High-Speed CMOS Logic.

MAXIMUM RATINGS* (Voltages Referenced to Vec)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	~ 0.5 to + 18.0	>
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	>
In. lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	÷c
TL	Lead Temperature (8-Second Soldering)	260	•c

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: - 12mW/*C from 65*C to 85*C Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

5.0 V V_{out} = 0.5 V V_{IL} = 1.5 V Vout Second Stage First Stage VIL = 1.5 V (Noninverting Buffer) (Noninverting Buffer)

FIGURE 1

TABLE 1 - EIA/JEDEC FORMAT FOR CMOS INDUSTRY B AND UB SERIES SPECIFICATIONS

		TEMP VOD				LIMITS					
	PARAMETER	RANGE		CONDITIONS	TLOW* +2		2 _o C		GH°	UNITS	
		HANGE	(AOE)		Min	Max	Min	Mex	Min	Mex	
IDD	Quiescent Device Current	Mil	5 10 15	Vin = VSS or VDD		0.25 0.5 1.0		0.25 0.5 1.0		7.5 15 30	μAdc
	GATES	Comm	5 10 15	All valid input combinations		1.0 2.0 4.0		1.0 2.0 4.0		7.5 15 30	μAdc
		Mil	5 10 15	VIN - VSS OF VDD		1.0 2.0 4.0		1.0 2.0 4.0		30 60 120	μAdc
İ	BUFFERS, FLIP-FLOPS	Comm	5 10 15	All valid input combinations		4 8 16		4.0 8.0 16.0		30 60 120	μAdc
		Mit	5 10 18	VIN - VSS or VDD		5 10 20		5 10 20		150 300 600	μAdc
	MSI	Comm	5 10 15	All valid input combinations		20 40 80		20 40 80		150 300 600	μAdc
VOL	Low-Level Output Voltage	All	5 10 15	VIN = VSS or VDD		0.05 0.05 0.05		0.05 0.05 0.06		0.05 0.06 0.06	
VOH	High-Level Output Voltage	All	5 10 15	V _{IN} = V _{SS} or V _{DD} IlOI < 1µA	4.95 9.95 14.95		4.95 9.95 14.95	i	4.95 9.95 14.95		Vde
VIL	Input Low Voltege# B Types	All	5 10 15	V _O = 0.5V or 4.5V V _O = 1.0V or 9.0V V _O = 1.5V or 19.5V II _O I < 1μA		1.5 3.0 4.0		1.5 3.0 4.0		1.5 3.0 4.0	Vđc
VIL	Input Low Voltage# UB Types	Ati	5 10 15	V _O = 0.5V or 4.5V V _O = 1.0V or 9.0V V _O = 1.5V or 13.5V Il _O I < 1μA		1.0 2.0 2.5		1.0 2.0 2.5		1.0 2.0 2.5	Vdc
VIH	Input High Voltage# B Types	All	5 10 15	V _Q = 0.5V or 4.5V V _Q = 1.0V or 9.0V V _Q = 1.5V or 13.5V II _Q I < 1#A	3.5 7.0 11.0		3.5 7.0 11.0		3.5 7.0 11.0		Vdc
VIH	Input High Voltage# UB Types	All .	5 10 15	V _O = 0.5V or 4.5V V _O = 1.0V or 9.0V V _O = 1.5V or 13.5V II _O I < 1μA	4.0 8.0 12.5		4.0 8.0 12.5		4.0 8.0 12.5		Vdc
ЮL	Output Low (Sink) Current	Mil	6	V _O ~ 0.4V, V _{IN} = 0 or 5V V _O = 0.5V,	0.64		0.51		0.38		mAdc
1			10 15	V _{IN} = 0 or 10V V _O = 1.5V, V _{IN} = 0 or 15V	1.6		1.3 3.4		0.9 2.4		
. !		Com	5	V _O = 0.4V, V _{IN} = 0 or 5V V _O = 0.5V,	0.52		0.44		0.38		mAdd
			10	V _{IN} = 0 or 10V V _O = 1.5V, V _{IN} = 0 or 15V	1.3 3.6		1.1 3.0		0.9 2.4		

ELECTRICAL CHARACTERISTICS

		TEMP					LIN	ITS			
	PARAMETER	RANGE (Vdc) CONDITION		CONDITIONS	TLOW*		+ 2	+ 25°C		BH°	UNITS
		MANGE	(VBC)		Min	Max	Min	Max	Min	Мах	
ф	Output High (Source) Current	Mil	5	V _O = 4.6V. V _{IN} = 0 or 5V V _O = 9.5V.	-0.25		-0.2		-0.14		mAdc
			10	V _{IN} = 0 or 10V V _O = 13.5V, V _{IN} = 0 or 15V	-0.62 -1.8		-0.5 - t.5		-0.35 -1.1	i	
		Com	5	V _O = 4.6V. V _{IN} = 0 or 5V V _O = 9.5V.	-0.2		-0.16		-0.12		mAde
			10 15	V _{IN} = 0 or 10V V _O = 13.5V V _{IN} = 0 or 15V	-0.5 -1.4		-0.4 -1.2		-0.3 -1.0		
IN	Input Current	Mil Comm	15 15	V _{IN} = 0 or 15V V _{IN} = 0 or 15V		20.1 20.3		±0.1 ±0.3		±1.0 ±1.0	µAdc µAdc
loz	3-State Output Leakage Current	Mil Comm	15 15	VIN = 0 or 15V VIN = 0 or 15V		±0.4 ±1.6		:0.4 :1.6		±12 ±12	μAdc μAdc
CIN	Input Capacitance per unit load	All	-	Any Input				7.5			pF

TABLE 2 - MOTOROLA FORMAT FOR CMOS INDUSTRY B AND UB SERIES SPECIFICATIONS

FI FCTRICAL CHARACTERISTICS

0 6			V _{DD} Vdc	_ T _{lo}	w*	25°C		Thigh*		
Characteristic		Symbol		Min	Max	Min	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	T -	0.05	T-	0.05		0.05	Vdc
V _{in} * V _{DD} or 0			10	-	0.05		0.05	-	0.05	
			15		0.05	L-	0.05		0.05	
	"1" Level	У ОН	5.0	4.95	-	4.95	_	4.95	-	Vdc
V _{in} = 0 or V _{DD}		"	10	9.95	i	9.95		9.95	_	
			15	14.95	l –	14.95	-	14.95	-	
Input Voltage B Types	"O" Level	VIL								Vdc
(Vo = 4.5 or 0.5 Vdc)		'-	5.0		1.5	-	1.5	l - I	1.5	
(VO = 9.0 or 1.0 Vdc)			10	i - I	3.0	l –	3.0	-	3.0	
(VD = 13.5 or 1.5 Vdc)		L	15		4.0	-	4.0	i - I	4.0	
	"1" Level	VIH				Ī				Vdc
(Vo = 0.5 or 4.5 Vdc)		1 "	5.0	3.5	l -	3.5	l –	3.5	.	
(VO 1.0 or 9.0 Vdc)		l i	10	7.0	l –	7.0	l –	7.0	_	
(VO = 1.5 or 13.5 Vdc)		1	15	11.0	l –	11.0	-	11.0		
Input Voltage UB Types	"O" Level	VIL		1			\vdash			Vdc
(V _O = 4.5 or 0.5 Vdc)		"	5.0	_	1.0	l -	1.0	-	1.0	
(VO = 9.0 or 1.0 Vdc)		1	10	-	2.0		2.0	- 1	2.0	
(V _O = 13.5 or 1.5 Vdc)			15	-	2.5	-	2.5	-	2.5	
	"1" Level	VIH								Vdc
(Vp = 0.5 or 4.5 Vdc)		1 " 1	5.0	4.0	-	4.0	۱ ـ	4.0		
(V _O = 1.0 or 9.0 Vdc)		1	10	8.0	-	8.0	- 1	8.0	_	
(Vo = 1.5 or 13.5 Vdc)			15	12.5	_	12.5	_ :	12.5	_	

^{*}TLOW = -55°C for Military temperature range device, -40°C for Commercial temperature range device.

THIGH = +125°C for Military temperature range device, +85°C for Commercial temperature range device.

[#]Applies for Worst Case input combinations.

TABLE 2 - Continued

ELECTRICAL CHARACTERISTICS

Characte	-1-1-	Symbol	VDD	Tlo	w*	25	°c	Thigh		Unit
Gnaracti	HISTIC .	Symbol	Vdc	Min	Max	Min	Mex	Min	Max	
Output Drive Current (AL)		ф			Ī					mAdd
(V _{OH} = 2.5 Vdc)	Source	i	5.0	-3.0	-	-2.4	-	~1.7	_	
(VOH = 4.6 Vdc)			5.0	- 0.64 - 1.6		-0.51 -1.3	-	-0.36 -0.9		l
(VOH = 9.5 Vdc)		l	10	-4.2	-	-1.3	- 1	~ 2.4	-	
(V _{OH} = 13.5 Vdc)		<u> </u>	15	1						i
(VOL = 0.4 Vdc)	Sink	lor	5.0	0.64	· -	0.51	_ :	0.38	_	l
(VOL = 0.5 Vdc)			10	1.6 4.2	_	1.3 3.4	- 1	2.4	_	ŀ
(V _{OL} = 1.5 Vdc)			15	4.2		3.4		2.4		
Output Drive Current (CL/		10н		١	[-2.1				mAd
(VOH = 2.5 Vdc)	Source		5.0	-2.5 -0.52	-	-0.44	_	- 1.7 - 0.36	_	į
(VOH = 4.6 Vdc)		1	5.0 10	-1.3		-1.1	_	-0.36	_	i
(VOH = 9.5 Vdc)		ļ	15	-3.6		-3.0	_	-2.4		ì
(V _{OH} = 13.5 Vdc)		<u> </u>		L		0.44	┝┈	0.36		1
(VOL = 0.4 Vdc)	Sink	OL	5.0 10	0.52	l –	1.1	-	0.36	_	l
(VOL = 0.5 Vdc)		J	15	1.3 3.6	-	3.0		2.4		
(VOL = 1.5 Vdc)			13	3.0		3.0		2.4		
Output Orive Current (AL)		ТОН	٠. ا	-1.2	_	-1.0	_	-0.7		mAd
(VOH = 2.5 Vdc)	Source	i	5.0	-0.25	ı	-0.2		-0.7 -0.14		1
(V _{OH} = 4.6 Vdc)]	5.0 10	-0.25] [-0.5	_	-0.15	1 -	
(VOH = 9.5 Vdc)		1	15	-1.8] [-1.5] [-1.1	l I .	
(VOH = 13.5 Vdc)	<u> </u>	ļ						0.36		
(VOL = 0.4 Vdc)	Sink	lor.	5.0	0.64		0.51 °	-	0.36	_	ŀ
(VOL = 0.5 Vdc)			10 15	1.6 4.2	l -	3.4	l	2.4		l
(VOL = 1.5 Vdc)	(an) a		10	4.2	⊢ -	3.4			├	mAd
Output Drive Current (CL)	Source	юн	5.0	-1.0	_	-0.8	_	-0.6	l _	mac.
(VOH = 2.5 Vdc)	Source	1	5.0	-0.2		-0.16		-0.12	_	ŀ
(V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc)			10	-0.5	l <u> </u>	-0.4	_	-0.3	l _ !	
(VOH = 13.5 Vdc)			15	-1.4	l <u> </u>	-1.2	l _	-1.0	_ '	
	Sink	1	5.0	0.52	-	0.44	 -	0.36		ŀ
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc)	Sink	lor	10	1.3	-	1.1	1 _	0.9		
(VOL = 1.5 Vdc)			15	3.6	ا ـ	3.0	l _	2.4	l _	
Output Drive Current (AL)	Orber Devices	 	<u> </u>	 			-			mAc
(VOH = 4.6 Vdc)	Source	ЮН	5.0	-0.64	l _	-0.51	_	- 0.36	_ :	11170
(VOH = 9.5 Vdc)	Source		10	-1.6	l <u> </u>	-1.3	-	~0.9	1 _	1
(V _{OH} = 13.5 Vdc)		1	15	-4.2	_	-3.4	l	~2.4	-	l
(VOL = 0.4 Vdc)	Sink	la.	5.0	0.64	 _	0.51		0.36		i
(VOL = 0.5 Vdc)	SIDE	lor	10	1.6		1.3	-	0.9	_	l
(VOL * 1.5 Vdc)		ł	15	4.2	_	3.4	i _	2.4	۱ ـ	l
Output Drive Current (CL/	CP) Other Devices	ЮН	 	 			-	<u> </u>	├─-	mAc
(VOH = 4.6 Vdc)	Source	1 '0"	5.0	- 0.52	l _	-0.44		- 0.36		i
(VOH = 9.5 Vdc)		-i	10	- 1.3	l –	-1.1	_	-0.9	_	
(VOH = 13.5 Vdc)		1	15	-3.6	l –	-3.0	-	-2.4		
(VOL = 0.4 Vdc)	Sink	lor	5.0	0.52		0.44	_	0.36	_	ľ
(VOL = 0.5 Vdc)	*	"	10	1.3	l -	1.1		0.9	l – I	l
(VOL = 1.5 Vdc)		1	15	3.6	l –	3.0	-	2.4	_	Ī
Input Current (AL Device)		lin	15	<u> </u>	±0.1	-	±0.1	-	±1.0	μAd
Input Current (CL/CP Dev	ice)	lin	15	-	±0.3	-	±0.3		±1.0	μAd
Input Capacitance		Cin	-	 - -	_	-	7.5	_	_	pF
(Vin = 0)		} ""			l	ł	1	ŀ	}	
Gate Quiescent Current	(AL Device)	IDD	5.0	 -	0.25		0.25		7.5	μAd
(Per Package)	· · · · · - ·	"	10	-	0.5	_	0.5	_	15	
		1	15	I –	1.0	l -	1.0	l –	30	l
	(CL/CP Device)	I _{DD}	5.0	 _	1.0		1.0	 -	7.5	
		1 .00	10	l -	2.0	-	2.0	_	15	
				1	4.0			•		

TABLE 2 - Continued

ELECTRICAL CHARACTERISTICS

	 -	Symbol	Voo	Tio	w.	25°C		Thigh*		
Charac	Characteristic		Vdc	Min	Max 1.0	Min —	Max	Min -	Max 30	Unit
Flip-Flop and Buffer Quiescent Current		IDD	5.0	-						μAdc
(Per Package)	(AL Device)		10	۱ –	2.0	l –	2.0	l –	60	
		l	15	-	4.0	-	4.0	l –	120	
	(CL/CP Device)	1DD	5.0	-	4.0	_	4.0		30	μAdc
			10	-	8.0	l –	8.0	-	60	
			15	<u> </u>	16		16	l <u>-</u>	120	
MSI Quiescent Current	(AL Døvice)	IDD	5.0] -	5.0	_	5.0	_	150	μAdc
(Per Package)		1	10	- 1	10	l –	10	l –	300	
-		i	15	-	20	l –	20	- 1	600	
	(CL/CP Device)	'DD	5.0	_	20	_	20	-	150	μAdc
			10	۱ -	40	i –	40	i –	300	
			15	L -	80	L	80	-	600	
LSI Quiescent Current		I _{DD}			See	Individu	el Data S	heets.		

^{*}Tlow * -55°C for AL Device, -40°C for CL/CP Device.

Thigh * +125°C for AL Device, +85°C for CL/CP Device.

CMOS Handling and Design Guidelines

HANDLING AND DESIGN GUIDELINES

HANDLING PRECAUTIONS

All MOS devices have insulated gates that are subject to voltage breakdown. The gate oxide for Motorola CMOS devices is about 800 Å thick and breaks down at a gate-source potential of about 100 volts. To guard against such a breakdown from static discharge or other voltage transients, the protection network shown in Figure 1 is used on each input to the CMOS device.

Static damaged devices behave in various ways, depending on the severity of the damage. The most severely damaged inputs are the easiest to detect because the input has been completely destroyed and is either shorted to VDD, shorted to VSS, or open-circuited. The effect is that the device no longer responds to signals present at the damaged input. Less severe cases are more difficult to detect because they show up as intermittent failures or as degraded performance. Another effect of static damage is that the inputs generally have increased leakage currents.

Although the input protection network does provide a great deal of protection, CMOS devices are not immune to large static voltage discharges that can be generated during handling. For example, static voltages generated by a person walking across a waxed floor have been measured in the 4-15 kV range (depending on humidity, surface conditions, etc.). Therefore, the following precautions should be observed:

- Do not exceed the Maximum Ratings specified by the data sheet.
- All unused device inputs should be connected to VDD or Vss.
- All low-impedance equipment (pulse generators, etc.) should be connected to CMOS inputs only after the device is powered up. Similarly, this type of equipment should be disconnected before power is turned off
- 4. Circuit boards containing CMOS devices are merely extensions of the devices, and the same handling precautions apply. Contacting edge connectors wired directly to device inputs can cause damage. Plastic wrapping should be avoided. When external connections to a PC board are connected to an input of a CMOS device, a resistor should be used in series with the input. This resistor helps limit accidental damage if the PC board is removed and brought into contact with static generating materials. The limiting factor for the series resistor is the added delay. This is caused by the time constant formed by the series resistor and

input capacitance. Note that the maximum input rise and fall times should not be exceeded. In Figure 2, two possible networks are shown using a series resistor to reduce ESD (Electrostatic Discharge) damage. For convenience, an equation for added propagation delay and rise time effects due to series resistance size is given.

- 5. All CMOS devices should be stored or transported in materials that are antistatic. CMOS devices must not be inserted into conventional plastic "snow", styrofoam, or plastic trays, but should be left in their original container until ready for use.
- 6. All CMOS devices should be placed on a grounded bench surface and operators should ground themselves prior to handling devices, since a worker can be statically charged with respect to the bench surface. Wrist straps in contact with skin are strongly recommended. See Figure 3 for an example of a typical work station.
- Nylon or other static generating materials should not come in contact with CMOS devices.
- 8. If automatic handlers are being used, high levels of static electricity may be generated by the movement of the device, the belts, or the boards. Reduce static build-up by using ionized air blowers or room humidifiers. All parts of machines which come into contact with the top, bottom, or sides of IC packages must be grounded to metal or other conductive material.
- Cold chambers using CO₂ for cooling should be equipped with baffles, and the CMOS devices must be contained on or in conductive material.
- When lead-straightening or hand-soldering is necessary, provide ground straps for the apparatus used and be sure that soldering ties are grounded.
- 11. The following steps should be observed during wave solder operations:
 - a. The solder pot and conductive conveyor system of the wave soldering machine must be grounded to an earth ground.
 - b. The loading and unloading work benches should have conductive tops which are grounded to an earth ground.
 - Operators must comply with precautions previously explained.
 - d. Completed assemblies should be placed in antistatic containers prior to being moved to subsequent stations.

- The following steps should be observed during board-cleaning operations:
 - Vapor degreasers and baskets must be grounded to an earth ground.
 - b. Brush or spray cleaning should not be used.
 - c. Assemblies should be placed into the vapor degreaser immediately upon removal from the antistatic container.
 - d. Cleaned assemblies should be placed in antistatic containers immediately after removal from the cleaning basket.
 - High velocity air movement or application of solvents and coatings should be employed only when assembled printed circuit boards are grounded and a static eliminator is directed at the board.
- The use of static detection meters for production line surveillance is highly recommended.
- 14. Equipment specifications should alert users to the presence of CMOS devices and require familiarization with this specification prior to performing any kind of maintenance or replacement of devices or modules

- 15. Do not insert or remove CMOS devices from test sockets with power applied. Check all power supplies to be used for testing devices to be certain there are no voltage transients present.
- Double check test equipment setup for proper polarity of VDD and VSS before conducting parametric or functional testing.
- Do not recycle shipping rails or trays. Repeated use causes deterioration of their antistatic coating.

RECOMMENDED FOR READING:

"Total Control of the Static in Your Business"

Available by writing to: 3M Company Static Control Systems P.O. Box 2963 Austin, Texas 78769-2963 Or by Calling: 1-800-328-1368

Note: These networks are useful for protecting the following

A digital inputs and outputs C 3-state outputs

B analog inputs and outputs D bidirectional (I/O) ports

PROPAGATION DELAY AND RISE TIME vs. SERIES RESISTANCE

R ~ - 1 C·k

where:

R = the maximum allowable series resistance in ohms

t = the maximum tolerable propagation delay or rise time in seconds

C = the board capacitance plus the driven device's

input capacitance in farads

k = 0.7 for propagation delay calculations

k = 2.3 for rise time calculations

FIGURE 3 — TYPICAL MANUFACTURING WORK STATION

NOTES: 1, 1/16 inch conductive sheet stock covering bench top work area.

- 2. Ground strap.
- 3. Wrist strap in contact with skin.
- Static neutralizer. (Ionized air blower directed at work.) Primarily for use in areas where direct grounding is impractical.
- Room humidifier. Primarily for use in areas where the relative humidity is less than 45% Caution: building heating and cooling systems usually dry the air causing the relative humidity inside of buildings to be loss than outside humidity.

POWER SUPPLIES

CMOS devices have low power requirements and the ability to operate over a wide range of supply voltages. These two characteristics allow CMOS designs to be implemented using inexpensive, conventional power supplies, instead of switching power supplies and power supplies with cooling fans. In addition, batteries may be used as either a primary power source or for emergency backup.

The absolute maximum power supply voltage for 14000 Series Metal-gate CMOS is 18.0 Vdc. Figure 4 offers some insight as to how this specification was derived. In the figure, VS is the maximum power supply voltage and IS is the sustaining current of the latch-up mode. The value of VS was chosen so that the secondary breakdown effect may be avoided.

In an ideal system design, a power supply should be designed to deliver only enough current to insure proper operation of all devices. The obvious benefit of this type design is cost savings; an added benefit is protection

against the possibility of latch-up related failures. This system protection can be provided by the power supply filter and/or voltage regulator.

CMOS devices can be used with battery or battery backup systems. A few precautions should be taken when designing battery-operated systems:

- The recommended power supply voltage should be observed. For battery backup systems such as the one in Figure 5, the battery voltage must be at least 3.7 Volts (3 Volts from the minimum power supply voltage and 0.7 Volts to account for the voltage drop across the series diode).
- Inputs that might go above the battery backup voltage should either use a series resistor to limit the input current to less than 10 mA or use the MC14049UB or MC14050B high-to-low voltage translators.
- Outputs that are subject to voltage levels above V_{DD} or below V_{SS} should be protected with a series resistor to limit the current to less than 10 mA or with clamping diodes.

FIGURE 4 — SECONDARY BREAKDOWN CHARACTERISTICS

VS = Data Sheet Maximum Supply Rating

FIGURE 5 - BATTERY BACKUP INTERFACE

INPUTS

All inputs, while in the recommended operating range (VSS < Vin < VDD) can be modeled as shown in Figure 6. For input voltages in this range, diodes D1 and D2 are modeled as resistors, representing the reverse bias impedance of the diodes. The maximum input current is worst case, 1 μ A, when the inputs are at VDD or VSS, and VDD = 15.0 V. This model does not apply to inputs with pull-up or pull-down resistors.

FIGURE 6 - INPUT MODEL FOR VSS < Vin < VDD

When left open-circuited, the inputs may self-bias at or near the typical switchpoint, where both the P-channel and N-channel transistors are conducting, causing excessive current drain. Due to the high gain of the inverters (see Figure 7), the device may also go into oscillation from any noise in the system. Since CMOS devices dissipate the most power during switching, this oscillation can cause very large current drain and undesired switching.

FIGURE 7 — TYPICAL TRANSFER CHARACTERISTICS FOR BUFFERED DEVICES

For these reasons, all unused inputs should be connected either to VDD or VSS. For applications with inputs going to edge connectors, a 100 kilohm resistor to VSS should be used, as well as a series resistor for static protection and current limiting (Figure 8). The 100 kilohm resistor will help eliminate any static charges that might develop on the printed circuit board. See Figure 2 for other possible protection arrangements.

FIGURE 8 - EXTERNAL PROTECTION

For input voltages outside of the recommended operating range, the CMOS input is modeled as in Figure 9. The resistor-diode protection network allows the user greater freedom when designing a worst case system. The device inputs are guaranteed to withstand voltages from VSS - 0.5 V to VDD + 0.5 V and a maximum current of 10 mA. With the above input ratings, most designs will require no special terminations or design considerations.

FIGURE 9 — INPUT MODEL FOR $v_{in} > v_{DD}$ or $v_{in} < v_{SS}$

Other specifications that should be noted are the maximum input rise and fall times. Figure 10 shows the oscillations that may result from exceeding the 15 μs maximum rise and fall time at $V_{DD}=5.0~V,~5~\mu s$ at 10 V, or 4 μs at 15 V. As the voltage passes through the switching threshold region with a slow rise time, any noise that is on the input is amplified, and passed through to the output, causing oscillations. The oscillation may have a low enough frequency to cause succeeding stages to switch, giving unexpected results. If input rise or fall times are expected to exceed 15 μs at 5.0 V, 5 μs at 10 V, or 4 μs at 15 V, Schmitt-trigger devices such as the MC14093B, MC14583B, MC14584B, MC14106B, HC14, or HC132 are recommended for squaring-up these slow transitions.

FIGURE 10 — MAXIMUM RISE AND FALL TIME VIOLATIONS

OUTPUTS

All CMOS B-Series outputs are buffered to insure consistent output voltage and current performance. All buffered outputs have guaranteed output voltages of VOL = 0.05 V and VOH = VDD -0.05 V for Vin = VDD or VSS and lout = 0 μA . The output drives for all buffered CMOS devices are such that 1 LSTTL load can be driven across the full temperature range.

CMOS outputs are limited to externally forced output voltages of VgS - 0.5 V \leq Vout \leq VpD + 0.5 V. When voltages are forced outside of this range, a silicon controlled rectifier (SCR) formed by parasitic transistors can be triggered, causing the device to latch up. For more information on this, see the explanation of CMOS Latch Up in this section.

The maximum rated output current for most outputs is 10 mA. The output short-circuit currents of these devices typically exceed these limits. Care must be taken not to exceed the maximum ratings found on every data sheet.

For applications that require driving high capacitive loads where tast propagation delays are needed (e.g., driving power MOSFETs), two or more outputs on the same chip may be externally paralleled.

CMOS LATCH UP

Latch up will not be a problem for most designs, but the designer should be aware of it, what causes it, and how to prevent it.

Figure 11 shows the cross-section of a typical CMOS inverter and Figure 12 shows the parasitic bipolar devices. The circuit formed by the parasitic transistors and resistors is the basic configuration of a silicon controlled rectifier, or SCR. In the latch up condition, transistors Q1 and Q2 are turned ON, each providing the base current necessary for the other to remain in saturation, thereby latching

the devices in the ON state. Unlike a conventional SCR, where the device is turned ON by applying a voltage to the base of the NPN transistor, the parasitic SCR is turned ON by applying a voltage to the emitter of either transistor. The two emitters that trigger the SCR are the same point, the CMOS output. Therefore, to latch up the CMOS device, the output voltage must be greater than $V_{\mbox{DD}} + 0.5$ V or less than $V_{\mbox{SS}} - 0.5$ V and have sufficient current to trigger the SCR. The latch-up mechanism is similar for the inputs.

Once a CMOS device is latched up, if the supply current is not limited, the device will be destroyed. Ways to prevent such occurrences are listed below:

- Insure that inputs and outputs are limited to the maximum rated values, as follows:
 - $-0.5 \text{ V} \leq \text{V}_{in} \text{ or } \text{V}_{out} \leq \text{V}_{DD} + 0.5 \text{ V} \text{ (referenced to VSS)}$
 - $|I_{in} \text{ or } I_{out}| \leq 10 \text{ mA (unless otherwise indicated on the data sheet)}$
- If voltage transients of sufficient energy to latch up the device are expected on the inputs or outputs, external protection diodes can be used to clamp the voltage. Another method of protection is to use a series resistor to limit the expected worst case current to the maximum rating of 10 mA. (See Figure 2).
- Sequence power supplies so that the inputs or outputs of CMOS devices are not active before the supply pins are powered up (e.g., recessed edge connectors and/or series resistors may be used in plug-in board applications).
- Voltage regulating or filtering should be used in board design and layout to insure that power-supply tines are free of excessive noise.
- Limit the available power supply current to the devices that are subject to latch-up conditions. This can be accomplished with the power supply filtering network or with a current-limiting regulator.

FIGURE 11 — CMOS WAFER CROSS SECTION

FIGURE 12 — LATCH UP CIRCUIT SCHEMATIC

The second section of the second seco The state of the s **Data Sheets**

MC14000UB

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL 3-INPUT "NOR" GATE PLUS INVERTER

L SUFFIX CERAMIC PACKAGE CASE 632 P SUFFIX LASTIC PACKAGE CASE 646

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXUBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXUBCP (Plastic Package) MC14XXXUBCL (Ceramic Package)

DUAL 3-INPUT "NOR" GATE PLUS INVERTER

The MC14000UB dual 3-input NOR gate plus inverter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These complementary MOS logic gates find primary use where low power dissipation and/or high noise immunity is desired.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Swing Independent of Fanout
- Pin-for-Pin Replacement for CD4000UB

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	V
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	~ 0.5 to V _{DD} + 0.5	V
I _{In} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstp	Storage Temperature	-65 to +150	"C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package = -12mW/*C from 65*C to 85*C Ceramic "L" Package = -12mW/*C from 100*C to 125*C

MC14000UB

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tio	w*		25°C		Thi	gh ⁴	Unit
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unst
Output Voltage "0" Level Vin = VDD or 0	VOL	5.0 10 15	1 1 1	0.05 0.05 0.05	111	0 0 0	0.05 0.05 0.05	111	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	VOH	5.0 10 15	4.95 9.95 14.95	111	4.95 9.95 14.95	5.0 10 15	1 1 1	4.95 9.95 14.95	111	Vdc
Input Voltage "O" Level (VO = 4.5 Vdc) (VO = 9.0 Vdc) (VO = 13.5 Vdc)	V _I L	5.0 10 15	+ 1 +	1.0 2.0 2.5	- - -	2.25 4.50 6.75	1.0 2.0 2.5	111	1.0 2.0 2.5	Vdc
"1" Level (V _O = 0.5 Vdc) (V _O = 1.0 Vdc) (V _O = 1.5 Vdc)	VIH	5.0 10 15	4.0 8.0 12.5		4.0 8.0 12.5	2.75 5.50 8.25	1 1 1	4.0 8.0 12.5	=	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Юн	5.0 5.0 10 15	- 1.2 - 0.25 - 0.62 - 1.8	 	- 1.0 - 0.2 - 0.5 - 1.5	- 1.7 - 0.36 - 0.9 - 3.5	1111	-0.7 -0.14 -0.35 -1.1		mAdc
(V _{OL} = 0.4 Vdc) Sink (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	fOL	5.0 10 15	0.64 1.6 4.2	111	0.51 1.3 3.4	0.68 2.25 8.8	1 1 1	0.36 0.9 2.4	_ 	mAdc
Output Drive Current (CL/CP Device) (VOH = 2.5 Vdc) Source (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Юн	5.0 5.0 10 15	- 1.0 - 0.2 - 0.5 - 1.4	1111	-0.8 -0.16 -0.4 -1.2	- 1.7 - 0.36 - 0.9 - 3.5	111	- 0.6 - 0.12 - 0.3 - 1.0	111	mAdc
(V _{OL} = 0.4 Vdc) Sink (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	lOL	5.0 10 15	0.52 1.3 3.6	1 1 1	0.44 1.1 3.0	0.88 2.25 8.8	1 1 1	0.36 0.9 2.4	1	mAdc
Input Current (AL Device)	lin	15		± 0.1		±0.00001	± 0.1	_	± 1.0	μAdc
Input Current (CL/CP Device) Input Capacitance (Vin = 0)	t _{in} C _{in}	15	<u>-</u>	± 0.3 —	- <u>-</u> -	± 0.00001	± 0.3		± 1.0	μAdc pF
Quiescent Current (AL Device) (Per Package)	IDD	5.0 10 15	-	0.25 0.5 1.0	- - -	0.0005 0.0010 0.0015	0.25 0.5 1.0	1 1 1	7.5 15 30	μAdc
Quiescent Current (CL/CP Device) (Per Package)	QQ [§]	5.0 10 15	- -	1.0 2.0 4.0	- -	0.0005 0.0010 0.0015	1.0 2.0 4.0	I -	7.5 15 30	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Gate, C _L = 50 pF)	ŀΤ	5.0 10 15			l⊤ = (0.6	μΑ/kHz) f + μΑ/kHz) f + μΑ/kHz) f +	IDD/N			μAdc

 $^{^{\}circ}$ Tlow = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 pF) + (C_L - 50) Vfk$$

where: I† is in µH (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.001 \times the number of exercised gates per package.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \ll (V_{in} \text{ or } V_{out}) \ll V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the fC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

MC14000UB

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Cheracteristic	Symbol	Vdc VDD	Min	Тур#	Max	Unit
Output Rise Time	¹ТLH			1		ns
tTLH = (3.0 ns/pF) CL + 30 ns		5.0	1 -	180	360	1
tTLH = (1.5 ns/pF) CL + 15 ns		10	-	90	180	
tTLH = (1.1 ns/pF) CL + 10 ns		15	-	65	130	ļ
Output Fall Time	tTHL.	<u> </u>	1	 		п\$
t _{THL} = (1.5 ns/pF) C _L + 25 ns		5.0	-	100	200	1
tTHL = (0.75 ns/pF) CL + 12.5 ns		10		50	100	l
tTHL = (0.55 ns/pF) CL + 9.5 ns		15	-	40	80	
Propagation Delay Time	tPLH.		 	†		ns
tp_H, tpHL = (1.7 ns/pF) CL + 30 ns	1PHL	5.0	_	115	230	1
tp_H_ tpHL = (0.66 ns/pF) CL + 22 ns		10	-	55	110	
tp_H, tpHL = (0.50 ns/pF) CL + 15 ns		15	_	40	80	

[&]quot;The formulas givon are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for dosign purposes but is intended as an indication of the (C's potential performance.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 — TYPICAL VOLTAGE AND CURRENT TRANSFER CHARACTERISTICS

B-SUFFIX SERIES CMOS GATES

The B Series logic gates are constructed with P and N channel enhancement mode devices in a single monolithic structure (Complementary MOS). Their primary use is where low power dissipation and/or high noise immunity is desired.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- All Outputs Buffered
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range.
- Double Diode Protection on All Inputs
- Prin-for-Pin Replacements for Corresponding CD4000 Series B Suffix Devices

L SUFFIX CERAMIC PACKAGE CASE 632

PLASTIC PACKAGE

CASE 646

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

$\textbf{MAXIMUM RATINGS*} \ \, (\text{Voltages Referenced to V}_{\text{SS}})$

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-05 to +180	٧
V _{in} . V _{oul}	Input or Output Voltage (DC or Transient)	-05 to V _{DD} +05	٧
l _{in} , l _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
TE	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating, Plastic "P" Package = 12mW/°C from 65°C to 85°C Ceramic "L" Package = 12mW/°C from 100°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14001B Quad 2-Input NOR Gate

MC14002B Dual 4-Input Nor Gate

MC14011B Quad 2-Input NAND Gate

MC14012B

Dual 4-Input NAND Gate

MC14023B Triple 3-Input NAND Gate

MC14025B Triple 3-Input NOR Gate

> MC14068B 8-Input NAND Gate

MC14071B Quad 2-Input OR Gate

MC14072B Dual 4-Input OR Gate

MC14073B Triple 3-Input AND Gate

MC14075B Triple 3-Input OR Gate

> MC14078B 8-Input NOR Gate

MC14081B Quad 2-Input AND Gate

MC14082B Dual 4-Input AND Gate

CMOS SSI

(LOW POWER COMPLEMENTARY MOS)

B-SERIES GATES

CMOS B-SERIES GATES

LOGIC DIAGRAMS

PIN ASSIGNMENTS

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		V _{DD}	Tto	w*	I	25°C		Τh	igh *	
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	50	-	0 05	_	0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0	į l	10	-	0 05	-	0	0.05	-	0 05	1
	<u> </u>	15		0 05		0	0.05	-	0 05	
"1" Level	∨он	50	4 95	-	4 95	50	-	4 95	-	Vdc
V _{in} = 0 or V _{DD}		10	9 95	-	9.95	10	-	9.95	-	
		15	14 95	-	14.95	15		14.95	- -	<u> </u>
Input Voltage "0" Level	VIL				i			Į i		Vdc
(V _O = 4.5 or 0.5 Vdc)	1	50	_	15	-	2.25	15	i - I	15	l
(V ₀ = 9.0 or 1.0 Vdc)	i	10	-	30	-	4.50	3.0	-	3.0	İ
(V _O = 13.5 or 1.5 Vdc)	ļ 	15		40	<u> </u>	6 75	40		4.0	
"\" Level (V _O = 0.5 or 4.5 Vdc)	V _{1H}	۱.,	١				Ì	l i		1
(V _O = 0.5 or 4.5 vdc) (V _O = 1.0 or 9.0 vdc)		50	3.5	-	35	2 75	-	3.5	-	Vdc
(V _O = 1.5 or 13.5 Vdc)		10 15	70	-	70	5 50	_	7.0	-	
		1 15	110		110	8 25		11.0		<u> </u>
Output Drive Current (AL Device)	'он	۱.,	-30					l		mAdc
(V _{OH} = 2.5 Vdc) Source	[.	50	064	-	-2.4 -0.51	-4.2	-	-1.7	_	ŀ
(V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc)	'	10	1.6	ļ -	-1.3	-0.88	_	- 0.36	-]
(V _{OH} = 13.5 Vdc)]	15	4.2	_	-1.3 -3.4	-2.25 -8.8	<u>-</u>	-0.9		l
,		-						-2.4		
(V _{OL} = 0.4 Vdc) Sink	'OL	5.0	0.64	-	0.51	0.88	_	0.36	_	mAdc
(V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)		10	16	-	13	2.25	-	0.9	_	ì
		13	4.2		3 4	8.8		2.4		
Output Drive Current (CL/CP Device)	ıон	۱.,	٦.		۱	4.2		.,		mAdc
(V _{OH} = 2.5 Vdc) Source		5.0	-2.5 -0.52	-	-2.1 -0.44	-4.2 -0.88	-	1.7 0.36	_	
(V _{OH} = 4.6 Vdc)		5 0 10	-1.3	-	-11	-2 25	-	-0.9	_	
(V _{OH} = 9.5 Vdc)	ļ	15	-3.6	=	-3.0	-8.8		-2.4	_	
(V _{OH} = 13.5 Vdc)	.									
(V _{OL} = 0.4 Vdc) Sink	lor	5 O 10	052	-	0.44	0 88 2 25	_	0.36	_	mAdc
(V _{OL} = 0.5 Vdc)		15	36	=	3.0	8.8	_	24	_	1
Input Current (AL Device)		15			3.0					
	l _{in}	15	 	±0.1	⊢	:0 00001	±01		±1.0	μAdc
Input Current ICL/CP Device)	l _{in}			40.3	└	:0 00001	±03		:1.0	μAdc
Input Capacitance	Cın	-	-	_	-	50	7.5	_	_	ρF
(V _{in} = 0)					<u> </u>		<u> </u>			
Quiescent Current (AL Device)	ספי	5.0	-	0.25	-	0.0005	0.25	-	7.5	µAdc
(Per Plickage)	1	10	-	0.50	_	0.0010	0.50	_	15.0]
		15		1.00		0.0015	1.00	_	30.0	Ļ
Quiescent Current (Ct /CP Device)	DD	5.0	-	1.0	-	0.0005	1.0	_	7.5	μAdc
(Per Package)		10	-	2.0	-	0.0010	2.0	-	15.0	
	Ļ	15		4.0		0.0015	4.0	_	30.0	1
Total Supply Current**1	١Ŧ	5.0	I		IT = 1	(0.3 µA/kH	z) I + 100	/N		μAdc
(Oynamic plus Quiescent,]	10	i _T = 10.6 μA/kHz) f + 1DD/N							
Per Gate, C _L = 50 pF)		15	J		IT =	(0.9 μA/kH.	z) f + Ipp	/N		

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

where: I_T is in μ A (per package), C_L in pF, V = (V_{DD}-V_{SS}) in volts, f in kHz is input frequency, and k = 0.001 × the number of exercised gates per package.

Data tabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

B-SERIES GATE SWITCHING TIMES

SWITCHING CHARACTERISTICS* (C1 = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD}	Min	Typ#	Max	Unit
Output Rise Time, All B-Series Gates	tteH			i		ns
tTLH = (1,35 ns/pF) Ct + 33 ns	1	5.0	l _	100	200	
TLH = (0.60 ns/pF) C1 + 20 ns	ł	10	-	50	100	
TLH = (0.40 ns/pF) CL + 20 ns	1	15	l –	40	80	ľ
Output Fall Time, All B-Series Gates	THL					ns
^t THL = (1 35 ns/pF) C _L + 33 ns		5.0	_	100	200	
tTHL = (0.60 ns/pF) C1 + 20 ns		10	l	50	100	1
THL = (0.40 ns/pF) CL + 20 ns		15	-	40	80	
Propagation Delay Time MC14001B, MC14011B only	tPLH- tPHL					ns
tp_H, tpHL = (0.90 ns/pF) CL + 80 ns		5.0	l –	125	250	1
tp[H, tpHL = (0.36 ns/pF) CL + 32 ns		10	_	50	100	1
tp_H, tpHL = (0.26 ns/pF) CL + 27 ns		15	. –	40	80	
All Other 2, 3, and 4 Input Gates					ļ	1
tp_H, tpHL = {0.90 ns/pF} CL + 115 ns		5.0	l _	160	300	1
tp[H, tpHL = (0.36 ns/pF) CL + 47 ns		10	l <u> </u>	65	130	1
tp_H, tpHL = (0.26 ns/pF) CL + 37 ns		15	l _	50	100	1
8-Input Gates (MC14068B, MC14078B)				3	}	
tp_H, tpHL = (0.90 ns/pF) CL + 155 ns		50			350	1
tp[H, tpHL = (0.36 ns/pF) CL + 62 ns	1	10	l	200	150	
tp[H, tpHL = (0.26 ns/pF) CL + 47 ns	1	15	l –	80		
ACM. AME (2000 HAP) LOE / 41 H2	1		I	60	110	i .

^{*}The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

*All unused inputs of AND, NAND gates must be connected to VDD. All unused inputs of OR, NOR gates must be connected to VSS.

CIRCUIT SCHEMATIC NOR, OR Gates

CIRCUIT SCHEMATICS NAND, AND Gates

TYPICAL B-SERIES GATE CHARACTERISTICS

These typical curves are not guarantees, but are design aids.

Caution: The maximum rating for output current is 10 mA per pin.

VOS. DRAIN-TO-SBURCE VOLTAGE (Vdc)

VDS. DRAIN-TO-SOURCE VOLTAGE (V44)

6

CMOS B-SERIES GATES

TYPICAL B-SERIES GATE CHARACTERISTICS (cont'd)

VOLTAGE TRANSFER CHARACTERISTICS

FIGURE 8 - VDD = 5.0 Vdc

Single Input NAND, AND Multiple Input NOR, OR Multiple Input NAND, AND

1.0

1.0

1.0

2.0

3.0

4.0

5.0

Vin. (RPUT VOLTAGE (Vdc)

DC NOISE MARGIN

The DC noise margin is defined as the input voltage range from an ideal "1" or "0" input level which does not produce output state change(s). The typical and guaranteed limit values of the input values V_{IL} and V_{IH} for the output(s) to be at a fixed voltage V_O are given in the Electrical Characteristics table. V_{IL} and V_{IH} are presented graphically in Figure 11.

Guaranteed minimum noise margins for both the "1" and "0" levels =

1.0 V with a 5.0 V supply 2.0 V with a 10.0 V supply 2.5 V with a 15.0 V supply

FIGURE 11 - DC NOISE IMMUNITY

CIRCUIT SCHEMATICS NAND, AND Gates

20

CMOS B-SERIES GATES

TYPICAL B-SERIES GATE CHARACTERISTICS N-CHANNEL DRAIN CURRENT P-CHANNEL DRAIN CURRENT (SOURCE) (SINK) FIGURE 2 - VGS = 5.0 Vdc FIGURE 3 - VGS = -5.0 Vdc TA = -55°C ID. DRAIN CURRENT (mA) to, DRAIN CURRENT (mA) -7.0 TA = -55°C 3.0 -6.0 +85°C 125°C -5.C +25°C ·85°(-4.0 +125°C 2.0 3.0 -20 VDS. DRAIN TO SOURCE VOLTAGE (Voc) VDS. DRAIN TO SOURCE VOLTAGE (Vdc) FIGURE 5 - VGS = -10 Vdc FIGURE 4 - VGS = 10 Vdc 20 -50 18 -45 TA = -55°C 16 DRAIN CURRENT (mA) ID. DRAIN CURRENT IMA) -35 12 -30 -55°C 10 -25 +125°C - 20 2.0 -4.0 -5.0 -6.0 -7.0 -8.0 VDS. DRAIN TO SOURCE VOLTAGE (Vdc) VOS. DRAIN-TO SOURCE VOLTAGE (Vdc) FIGURE 6 - VGS = 16 Vdc FIGURE 7 - VGS = -15 Vdc 50 45 -90 40 -80 ID, DRAIN CURRENT (mA) ID, DRAIN CURRENT (mA) 35 30 -60 TA - -55°C 25

These typical curves are not guarantees, but are design aids. Caution: The maximum rating for output current is 10 mA per pln.

-8.0 -10 -12 -14 -18

VOS. CRAIN-TO-SOURCE VOLTAGE (Vdc)

+125°C

VDS. DRAIN-TO-SCURCE VOLTAGE (Vdc)

UB-SUFFIX SERIES CMOS GATES

The UB Series logic gates are constructed with P and N channel enhancement mode devices in a single monolithic structure (Complementary MOS). Their primary use is where low power dissipation and/or high noise immunity is desired. The UB set of CMOS gates are inverting non-buffered functions.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Linear and Oscillator Applications
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range.
- Double Diode Protection on All Inputs
- Pin-for-Pin Replacements for Corresponding CD4000 Series UB Suffix Devices

for All Devices

MC14001UB Quad 2-Input NOR Gate

MC14002UB
Dual 4-Input NOR Gate

MC14011UB Quad 2-Input NAND Gate

MC14012UB
Dual 4-Input NAND Gate

MC14023UB
Triple 3-Input NAND Gate

MC14025UB
Triple 3-Input NOR Gate

CMOS SSI

ILOW POWER COMPLEMENTARY MOS)

UB-SERIES GATES

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXUBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXUBCP (Plastic Package) MC14XXXUBCL (Ceramic Package)

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{Out} should be constrained to the range $V_{SS} \leqslant \{V_{in} \text{ or } V_{Out}\} \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

6

CMOS B-SERIES GATES

TYPICAL B-SERIES GATE CHARACTERISTICS (cont'd)

VOLTAGE TRANSFER CHARACTERISTICS

DC NOISE MARGIN

The DC noise margin is defined as the input voltage range from an ideal "1" or "0" input level which does not produce output state change(s). The typical and guaranteed limit values of the input values V_{IL} and V_{IH} for the output(s) to be at a fixed voltage V_O are given in the Electrical Characteristics table. V_{IL} and V_{IH} are presented graphically in Figure 11.

Guaranteed minimum noise margins for both the "1" and "0" levels =

1.0 V with a 5.0 V supply 2.0 V with a 10.0 V supply 2.5 V with a 15.0 V supply

FIGURE 11 - DC NOISE IMMUNITY

PIN ASSIGNMENTS

NC = No Connection

MAXIMUM RATINGS* (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
v _{DO}	DC Supply Voltage	~ 0.5 to + 18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	~0.5 to V _{DD} +0.5	٧
lin ^{, l} out	Input or Output Current (DC or Transient), per Pin	±10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	ņ
ΤL	Lead Temperature (8-Second Soldering)	260	÷

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: – 12mW/"C from 55°C to 85°C Ceramic "L" Package: – 12mW/"C from 100°C to 125°C

FLECTRICAL CHARACTERISTICS (Voltages Referenced to Voc)

Chanatadatla	Cumbal	VDD	Tto	w*		25°C		Thi	gh*	
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Leve	I VOL	5.0 10 15	=	0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05	1 1 1	0.05 0.05 0.05	Vdc
"1" Leve	VOH	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15	-	4.95 9.95 14.95	=	Vdc
Input Voltage "0" Leve (V _O = 4.5 Vdc) (V _O = 9.0 Vdc) (V _O = 13.5 Vdc)	VIL	5.0 10 15		1.0 2.0 2.5	_ _ _	2.25 4.50 6.75	1.0 2.0 2.5	 - -	1.0 2.0 2.5	Vác
"1" Leve (V _O = 0.5 Vdc) (V _O = 1.0 Vdc) (V _O = 1.5 Vdc)	ViH	5.0 10 15	4.0 8.0 12.5	1 - 1	4.0 8.0 12.5	2.75 5.50 8.25	<u>-</u>	4.0 8.0 12.5	_ _ _	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	ЮН	5.0 5.0 10 15	- 1.2 - 0.25 - 0.62 - 1.8	1111	- 1.0 - 0.2 - 0.5 - 1.5	- 1.7 - 0.36 - 0.9 - 3.5	1111	-0.7 -0.14 -0.35 -1.1	1111	mAdc
(V _{OL} = 0.4 Vdc) Sin (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	lOL	5.0 10 15	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8	-	0.36 0.9 2.4	<u>-</u>	mAdc
Output Drive Current (CUCP Device) (VOH = 2.5 Vdc) Sourc (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	юн	5.0 5.0 10 15	- 1.0 - 0.2 - 0.5 - 1.4	1111	-0.8 -0.16 -0.4 -1.2	- 1.7 - 0.36 - 0.9 - 3.5	1111	- 0.6 - 0.12 - 0.3 - 1.0	1111	mAdc
(V _{OL} = 0.4 Vdc) Sin (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	lOL	5.0 10 15	0.52 1.3 3.6	- - -	0.44 1.1 3.0	0.88 2.25 8.8	-	0.36 0.9 2.4	- - -	mAdc
Input Current (AL Device)	lin	15		± 0.1		± 0.00001	±0.1		± 1.0	μAdc
Input Current (CL/CP Device)	lin	15		± 0.3	_	±0.00001	±0.3		±1.0	μAdc
Input Capacitance (Vin = 0)	C _{in}	_	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (AL Device) (Per Package)	IDD	5.0 10 15	_ _ _	0.25 0.5 1.0	_ _	0.0005 0.0010 0.0015	0.25 0.5 1.0	1 1	7.5 15 30	μAdc
Quiescent Current (CL/CP Device) (Per Package)	^t DD	5.0 10 15		1.0 2.0 4.0	=	0.0005 0.0010 0.0015	1.0 2.0 4.0	- - -	7.5 15 30	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Gate, Ct = 50 pF)	IT	5.0 10 15			$h_{T} = (0.6)$	μΑ/kHz) (+ μΑ/kHz) (+ μΑ/kHz) (+	IDD/N			μAdc

[&]quot;Tiow = -55°C for AL Device, -40°C for CL/CP Device.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I7 is in μH (per package), CL in pF, V = (VDO -VSS) in volts, f in kHz is input frequency, and k = 0.001 \times the number of exercised gates per package.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ#	Max	Unit
Output Rise Time	†TLH					ns
tTLH = (3.0 ns/pF) CL + 30 ns	'-"	5.0	-	180	360	1
tTLH = (1.5 ns/pF) CL + 15 ns		10	_	90	180	[
tTLH = (1.1 ns/pF) CL + 10 ns	i 1	15	_	65	130	1
Output Fall Time	tTHL.			T		ns ns
tTHL = (1.5 ns/pF) CL + 25 ns	""	5.0	1 -	100	200	•
tTHL = (0.75 ns/pF) CL + 12.5 ns		10	_	50	100	
THL = (0.55 ms/pF) CL + 9.5 ms		15	_	40	80	1
Propagation Delay Time	¹PLH-¹PHL					ns
tpt.H. tpHt = (1.7 ns/pF) Ct + 30 ns]	5.0	_	90	180	l
tp_H, tpHL = (0.66 ns/pF) CL + 22 ns	1 1	10	l –	50	100	
tp_H, tpHL = (0.50 ns/pF) CL + 15 ns		15	l –	40	80	l

^{*}The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MOTOROLA

MC14002B See Page 6-5

MC14002UB See Page 6-14

MC14006B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

18-BIT STATIC SHIFT REGISTER

L SUFFIX CERAMIC PACKAGE CASE 632

PLASTIC PACKAGE CASE 646

ORDERING INFORMATION

A Series - 55°C to + 125°C MC14XXXBAL (Ceramic Package Only)

C Series = 40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE (Single Stage)

Dn	С	Q_{n+1}
0	7	0
1	~	1
×	5	a _n

18-BIT STATIC SHIFT REGISTER

The MC14006B shift register is comprised of four separate shift register sections sharing a common clock: two sections have four stages, and two sections have five stages with an output tap on both the fourth and fifth stages. This makes it possible to obtain a shift register of 4, 5, 8, 9, 10, 12, 13, 14, 16, 17, or 18 bits by appropriate selection of inputs and outputs. This part is particularly useful in serial shift registers and time delay circuits.

- · Output Transitions Occur on the Falling Edge of the Clock Pulse
- · Fully Static Operation
- Can be Cascaded to Provide Longer Shift Register Lengths
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4006B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	0 5 to - 18 0	V
V _{ID} V _{OUt}	Input or Output Voltage (DC or Transient)	- 05 to VDD + 05	V
In lout	Input or Output Current (DC or Transient) per Pin	- 10	mA
PD	Power Dissipation, per Packaget	500	mW
1 _{stq}	Storage Temperature	- 65 to - 150	,C
The	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur flemperature Derating Plastic P Rackage 12mW °C from 65°C to 85°C Ceramic L Package 12mW °C from 100 °C to 125°C

BLOCK DIAGRAM Des DP10 Q13 Q Dp14 9170 ORC 09.0 0180 040 D 0 VDD Pin 1'4 n VSS Pin 7 NC Pin 2 Stages. Stage Stages Stage Stages Stages C Clock 3 0-0

MC14006B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Τ _k	w"	F	25°C		Τh	igh *	T
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	Vdc
Vin = VDD or 0	-	10	-	0.05	-	0	0.05	-	0.05	
		15	-	0.05	-	0	0.05	-	0.05	
"1" Level	VOH	5.0	4.95	- -	4.95	5.0	-	4.95	_	Vdc
Vin = 0 or VDD	1	10	9.95	-	9.95	10	-	9.95	_	1
		15	14.95		14.95	15	_	14.95	_	
Input Voltage "0" Level	VIL									Vdc
(V _O = 4.5 or 0.5 Vdc)		5.0	-	1;5	l -	2.25	1.5	-	1.5	l
{VQ = 9.0 or 1.0 Vdc}		10	-	3.0	-	4.50	3.0	-	3.0	L
(V _O = 13.5 or 1.5 Vdc)		15		4:0	<u> </u>	6.75	4.0		4.0	<u> </u>
"1" Level	VIH				l		1	1 .		
(Vo = 0.5 or 4.5 Vdc)		5.0	3.5	-	3.5	2.75	-	3.5	-	Vd¢
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	-	1
(V _O = 1.5 or 13.5 Vdc)		15	11.0		11.0	8.25		11.0		
Output Drive Current (AL Device)	ЮН						i			mAdc
(VOH * 2.5 Vdc) Source		5.0	-3.0	-	-2.4	-4.2	-	-1.7	-	l
(V _{OH} = 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	-	-0.36	-	
(V _{OH} = 9.5 Vdc)		10	-1.6	-	-1.3	- 2.25	-	-0.9	-	İ
(VOH = 13,5 Vdc)		15	-4.2	-	-3.4	-8.8	-	-2.4	-	.
(VOL = 0.4 Vdc) Sink	'OL	5.0	0.64	-	0.51	0.88	-	0.36	-	mAdc
(VOL = 0.5 Vdc)		10	1.6	-	1.3	2.25	-	0.9	-	
(V _{OL} = 1.5 Vdc)		15	4.2		3.4	8.8	-	2.4		
Output Orive Current (CL/CP Device)	Юн			1	١		ŀ			mAdc
(VOH = 2.5 Vdc) Source		5.0	-2.5	-	-2.1	-4.2	-	-1.7	-	1
(VOH = 4.6 Vdc)		5.0	-0.52	-	-0.44	-0.88	-	-0.36	_	l
(V _{OH} = 9.5 Vdc)		10	-1.3 -3.6	-	-1.1 -3.0	-2.25 -8.8	-	-0.9	-	
(V _{OH} = 13.5 Vdc)		15		<u> </u>				-2.4		!
(VOL = 0.4 Vdc) Sink	lOL	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc
(VOL = 0.5 Vdc)		10	1.3	-	1.1	2.25	-	0.9	-	1
(V _{OL} = 1.5 Vdc)		15	3.6	-	3.0	8.8		2.4		
Input Current (AL Device)	lin	15		± 0.1		±0.00001	±0.1		±1.0	μAdc
Input Current (CL/CP Device)	lin	15	-	± 0.3		±0.00001	± 0.3	- :	± 1.0	μAdc
Input Capacitance	C _{in}	-	_	-	-	5.0	7.5	-	_	pF
(V _{in} = 0)					ļ	0.005				.
Quiescent Current (AL Device)	100	5.0	-	5.0	-	0.005	5.0	-	150	µAdc
(Per Package)		10 15	-	10 20	-	0.010	10 20	<u>-</u>	300	
									600	
Quiescent Current (CL/CP Device)	מסי	5.0	-	20	-	0.005	20	1 - 1	150	μAdc
(Per Package)		10	-	40	-	0.010	40	-	300	l
	lτ	15	<u> </u>	80	L <u></u>	0.015	80		600	ļ
Total Supply Current**†	5.0	IT = (1.3 μA/kHz) f + I _{DD}							μAdc	
(Dynamic plus Quiescent,		10				.6 μA/kHz)				1
Per Package)		15			IT = (3	.9 µA/kHz)	T + IDD			
(CL = 50 pF on all outputs, all										l
buffers switching)			L							L

^{*}T_{low} = -55°C tor AL Device. -40°C for CL/CP Device. Thigh = +125°C for AL Device. +85°C for CL/CP Device.

where: I_T is in μ A (per package), C_L in pF, V = {VDO - VSS} in volts, f in kHz is input frequency, and k = 0.001

PIN ASSIGNMENT DP1 **—** 14 voot 2 CNC 04 13 ₃dc 29 12 四十11 ≠ DP6 5 0P10 Q13 **—** 10 OP14 **018**⊨⊃9 vss Q17

NC = No Connection

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

MC14006B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time ttlh. tthl = (1.5 ns/pF) Ct + 25 ns	ITLH-	5.0	_	100	200	nş
t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$	tTHL.	10	-	50	100	
t _{TLH} , t _{THL} = (0.55 ns/pF) C _L + 9.5 ns	İ	15	-	40	80	}
Propagation Delay Time	tPLH		1			ns
tp_H, tpHL = (1.7 ns/pF) CL + 220 ns	tPHL.	5.0	-	300	600	1
tp_H, tpHL = (0.66 ns/pF) CL + 77 ns		10	! -	110	220	1
tp_H, tpHL = (0.5 ns/pF) CL + 55 ns		15	-	80	160	1
Clock Pulse Width	twH	5.0	200	100	_	ns
		10	120	60	-	
		15	80	40	_	i
Clock Pulse Frequency	fcl	5.0		5.0	2.5	MHz
		10	-	8.3	4.2	
		15		12	6.0	ł
Clock Pulse Rise and Fall Time**	[§] TLH	5.0			15	μs
	THL	10	-	- '	5	1
		15	_	- 1	4	
Setup Time	tsu	5.0	0	-50	_	ns.
	100	10	0	-15	_	1
		15	0	-8.0	-	1
Hold Time	th	5.0	180	75	-	ns
		10	90	25	_	1
		15	75	20	_	1

^{&#}x27;The formulas given are for the typical characteristics only at 25°C.

""When shift register sections are cascaded, the maximum rise and fall times of the clock input should be equal to or less than the rise and fall times of the data outputs driving data inputs, plus the propagation delay of the output driving stage for the output capacitance load.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

FIGURE 1 – TYPICAL OUTPUT SOURCE CURRENT CHARACTERISTICS TEST CIRCUIT

FIGURE 2 – TYPICAL OUTPUT SINK CURRENT CHARACTERISTICS TEST CIRCUIT

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14006B

FIGURE 4 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

Output state can change since data previously clocked in might be in either state.

DUAL COMPLEMENTARY PAIR PLUS INVERTER

The MC14007UB multi-purpose device consists of three N-channel and three P-channel enhancement mode devices packaged to provide access to each device. These versatile parts are useful in inverter circuits, pulse-shapers, linear amplifiers, high input impedance amplifiers, threshold detectors, transmission gating, and functional gating

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4007A or CD4007UB
- This device has 2 outputs without ESD Protection. Anti-static precautions must be taken.

MAXIMUM RATINGS* (Voltages Referenced to Voc.)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-05 to +180	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-05 to V _{DD} +05	ν
I _{In} , I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating" Plastic "P" Package = 12mW/°C from 65°C to 85°C Ceramic "L" Package = 12mW/°C from 100°C to 125°C

FIGURE 1 — TYPICAL APPLICATION: 2-INPUT ANALOG MULTIPLEXER

CMOS SSI

(LOW POWER COMPLEMENTARY MOS)

DUAL COMPLEMENTARY PAIR
PLUS INVERTER

ELECTRICAL CHARACTERISTICS (Connected as inverters) (Voltages Referenced to VSS)

l			VDD	Tic	w'		25°C		T _h	gh*	
Characteristic		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage "C	" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	Vdc
V _{ID} = V _{DD} or 0			10	-	0.05	-	0	0 05		0 05	ı
55			15	-	0.05	-	0	0.05	- '	0.05	Ι.
	" Level	νон	5.0	4.95	-	4.95	5.0		4.95	_	Vdc
V _{ID} = 0 or V _{DD}		J.,	10	9.95	-	9.95	10		9.95	-	
			15	14.95	-	14.95	15	-	14.95	-	İ
Input Voltage "C	" Level	VIL									Vdc
(VO = 4.5)			5.0	-	1.0	-	2 25	1.0	-	1.0]
(VO = 9.0)			10		2.0	-	4.50	2.0		2.0	ĺ
(VO = 13.5)			15	- 1	2.5	-	6 75	2.5	-	2.5	1
	l" Level	VIH				t –					
(VO = 0.5)			5.0	4.0	-	4.0	2.75	-	4.0	-	Vdc
(VO = 1.0)			10	8.0	-	8.0	5.50		8.0	_	
(VO = 1.5)			15	12.5	_	12.5	8.25	-	12.5	-	
Output Drive Current IAL De	vice)	юн									mAdc
·	urce	·On	5.0	-3.0	l -	-2.4	-5.0	_	-1.7	_	
(VOH = 4.6 Vdc)			5.0	-0.64	l _	-0.51	-1.0	_	-0.36	_	
(V _{OH} = 9.5 Vdc)			10	-1.6		-1.3	-2.5		-0.9	-	
(VOH = 13.5 Vdcl			15	-4.2	l _	-3.4	- 10	-	-2.4	-	
	nk	lOL	5.0	0.64	<u> </u>	0.51	1.0	_	0.36		mAdc
(VOL = 0.5 Vdc)		.OL	10	1.6	_ ا	1.3	2.5	_	0.9	_	
(VOL = 1.5 Vdc)			15	4.2	_	3.4	10	_	2.4	_	
Output Drive Current ICL/CP	Davical	lau	<u> </u>								mAdc
· ·	ource	Юн	5.0	-2.5	_	-2.1	-5.0	_	-1.7	_	""~"
(VOH = 4.6 Vdc)	,u.ce		5.0	-0.52	_	-0.44	-1.0	_	-0.36	_	
(VOH * 9.5 Vdc)			10	-1.3	_	-1.1	-2.5	_	-0.9	-	
(VOH = 13.5 Vdc)			15	3.6		-3.0	-10	_	-2.4	-	
	nk	1	5.0	0.52		0.44	1.0		0.36	_	mAdc
(VOL = 0.5 Vdc)	175	IOL	10	1.3		1.1	2.5	_	0.50	_	IIIAGC
(VOL = 1.5 Vdc)			15	3.6	1 -	3.0	10	_	2.4	_	
Input Current (AL Device)		4.	15	3.0	101	-	20.00001	±01		± 1.0	μAttc
Input Current (CL/CP Device)		l _{in}	15	<u> </u>	103		±0 00001	103		11.0	µAdc
		lin				-		7.5			
Input Capacitance		C _{in}	-		-	-	50	7.5	-	-	ρF
(V ₁₀ = 0)				ļ	<u> </u>						
Quiescent Current (AL Device	1	QQ ¹	5.0	-	0.25	-	0.0005	0.25	-	7.5	μAdc
(Per Package)			10	-	0.50	-	0.0010	0.50	-	15	
		_	15	-	1.00		0.0015	1.00		30	
Quiescent Current (CL/CP De	vicel	ססי	50	-	1.0	-	0.0005	1.0	-	7.5	μAdc
(Per Package)			10	-	2.0	-	0.0010	2.0	- 1	15	
			15		4.0	-	0.0015	4.0	<u> </u>	30	
Total Supply Current " †		ŀΤ	5.0				.7 µA/kHz				μAdc
	(Dynamic plus Quiescent, Per Gate)				ł	IT = (1	.4 μA/kHz	f + 100/	6		1
(CL = 50 pF)			15		1	IT = (2	.2 μA/kHz	1+ 100/	6		
*T. = 55°C for Al Davice =			L		L						

^{*}Tlaw = -55*C for Al. Device, -40*C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. †To calculate total supply current al loads other than 50 pF:

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

where: I_T is in μ A (per package), C_L in pF, V = (V_{DD} + V_{SS}) in volts, f in kHz is input frequency, and k = 0.003

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

Thigh = + 125°C for AL Device, +85°C for CL/CP Device.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA > 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
Output Rise Time	^t TLH					ns
^t TLH = (1.2 ns/pF) C _L + 30 ns		5.0	-	90	180	l .
tTLH = (0.5 ns/pF) CL + 20 ns	į	10	-	45	90	1
tTLH = (0.4 ns/pF) CL + 15 ns		15		35	70	<u> </u>
Output Fall Time	^t THL					ns
THL = (1.2 ns/pF) CL + 15 ns	ļ	5.0	} -	75	150	1
^t THL = (0.5 ns/pF) C _L + 15 ns		10	l –	40	80	
tդպլ = (0.4 ns/pF) C է + 10 ns		15	-	30	60	
Turn-Off Delay Time	¹PLH					ns
tp[H = (1.5 ns/pF) CL + 35 ns] '	5.0] -	60	125	
tpl H = (0.2 ns/pF) C1 + 20 ns		10	-	30	75	l
tpLH = (0.15 ns/pF) CL + 17.5 ns		15 _		25	55	
Turn-On Delay Time	[†] PHL					ns
tpHL = (1.0 ns/pF) C _E + 10 ns]	5.0	1 -	60	125	1
tpHL = (0.3 ns/pF) Ct + 15 ns		10	-	30	75	
tpHL = (0.2 ns/pF) CL + 15 ns	\	15		25	55	l

^{*} The formulas given are for the typical characteristics only.

FIGURE 2 - TYPICAL OUTPUT SOURCE CHARACTERISTICS

FIGURE 3 - TYPICAL OUTPUT SINK CHARACTERISTICS

All unused inputs connected to ground.

All unused inputs connected to ground.

These typical curves are not guarantees, but are design aids.

Caution: The maximum current rating is 10 mA per pin.

Switching specifications are for device connected as an Inverter.

[₱]Data labelled "Typ" is not to be used for design purposes but is Intended as an indication of the IC's potential performance.

FIGURE 4 - SWITCHING TIME AND POWER DISSIPATION TEST CIRCUIT AND WAVEFORMS

APPLICATIONS

The MC14007UB dual pair plus inverter, which has access to all its elements offers a number of unique circuit applications. Figures 1, 5, and 6 are a few examples of the device flexibility.

FIGURE 5 - 3-STATE BUFFER

INPUT	DISABLE	CUTPUT
1	0	0
0	0	1
×	1	Open

X = Don't Care

FIGURE 6 - AOI FUNCTIONS USING TREE LOGIC

Substrates of P-channel devices internally connected to V_{DD}: Substrates of N-channel devices internally connected to V_{SS}.

4-BIT FULL ADDER

The MC14008B 4-bit full adder is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This device consists of four full adders with fast internal look-ahead carry output. It is useful in binary addition and other arithmetic applications. The fast parallel carry output bit allows high-speed operation when used with other adders in a system.

- Look-Ahead Carry Output
- Diode Protection on All Inputs
- All Outputs Buffered
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4008B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-05 to +180	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-05 to V _{DD} +05	V
I _{in} . I _{aut}	Input or Output Current (DC or Transient), per Pm	± 10	mA
Po	Power Dissipation, per Package†	500	mW
1 _{stq}	Slorage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating Plastic "P" Package – 12mW/°C from 65°C to 85°C Ceramic "L" Package – 12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

4-BIT FULL ADDER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: ~55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE (One Stage)

Ciu	В	А	Cout	S
0	0 0 1	0 1 0	0 0 0	0 1 1 0
1 1 1	0 0 1	0 1 0	0 1 1	1 0 0

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tic	w"		25°C		Th	igh *	
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	_	0.05	_	0	0.05	_	0.05	Vdc
V _{in} = V _{DD} or 0		10	-	0.05	-	0	0.05	-	0.05	
		15		0.05		0	0.05		0 05	<u> </u>
"1" Level	νон	5.0	4.95	l –	4.95	5.0	-	4.95	-	Vdc
V _{in} = 0 or V _{DD}		10	9.95	-	9.95	10	–	9.95	-	
		15	14.95	-	14.95	15		14.95		
Input Voltage "0" Level	٧ıL		i i	ļ	1					Vdc
(V _O = 4.5 or 0.5 Vdc)		5.0	-	1.5	-	2.25	1.5	-	1.5	}
(VD = 9.0 or 1.0 Vdc)		10	_	3.0	-	4.50	3.0	-	3.0	İ
(V _O = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0		4.0	
"1" Level	νін				i					l .
(V _O = 0.5 or 4.5 Vdc)		5.0	3.5	-	3.5	2.75	-	3.5	-	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	_	7.0	5.50	_	7.0	_	
(V _O = 1 5 or 13.5 Vdc)		15	110		110	8 25		11.0		
Output Drive Current (AL Device)	IOH				١			l I		mAdc
(V _{OH} = 2.5 Vdc) Source		5.0	-3.0	_	2.4	-4.2	_	-1.7	-	ļ
(V _{OH} = 4.6 Vdc)		5.0	-0.64	_	-0.51	-0.88		-0.36	-	
(V _{OH} = 9.5 Vdc)		10	-1.6	-	-1.3	-2.25	-	-0.9	-	
(V _{OH} = 13.5 Vdc)		15	4.2		-3.4	-8.8		-2.4		
(VOL=0.4 Vdc) Sink	lOL.	5.0	0.64	-	0.51	0 88	-	0.36	-	mAdc
(V _{OL} = 0.5 Vdc)		10	1.6	_	1.3	2.25	_	0.9	_	ì
(V _{OL} = 1.5 Vdc)		15	4.2		3.4	8.8		2.4	-	L
Output Drive Current (CL/CP Device)	ЧОН							1 !		mAdc
(VOH = 2.5 Vdc) Source		5.0	-2.5	_	-2.1	-4.2	_	-1.7	-	
(V _{OH} = 4.6 Vdc)		5.0	-0.52	-	-0.44	~0.88	-	-0.36	_	ĺ
(V _{OH} = 9.5 Vdc)		10	-1.3	_	-1.1 -3.0	-2.25	_	-0.9 -2.4	_	ſ
(V _{OH} = 13.5 Vdc)		15	- 3.6	_=_		-8.8	_~_			
(VOL = 0.4 Vdc) Sink	1OL	5.0	0.52	_	0.44	0.88	_	0.36	_	mAdc
(V _{OL} = 0.5 Vdc)		10	1.3	_	1.1	2.25	_	0.9	_	ì
(V _{OL} = 1.5 Vdc)		15	3.6		3.0	8.8		2.4		
Input Current (AL Device)	l _{in}	15		±01	_	±0 00001	±01		±10	µAdc ∙
Input Current (CL/CP Device)	lin	15		±03	-	±0.00001	±0.3		±1.0	μAdc
Input Capacitance	Cin	_		_		5.0	7.5	_	_	ρF
(V _{in} ≠ 0)					!					
Quiescent Current (AL Device)	qqi	50		50		0.005	5.0		150	μAdc
(Per Package)		10	_	10	l –	0.010	10	-	300	
	i	15	i —	20		0.015	20	-	600	İ
Quiescent Current (CL/CP Device)	lob	5.0	_	20		0.005	20		150	μAdc
(Per Package)		10	-	40	-	0.010	40	-	300	
		15		80	L-	0.015	80	-	600	
Total Supply Current**1	lΤ	50			¹ T ' (1	.7 µA/kHz)	1+100			μAdc
(Dynamic plus Quiescent,		10	l			4 µA/kHz)				
Per Package)		15	l			O #A/kHzl				
(C _L = 50 pF on all outputs, all			ĺ							
buffers switching)										

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. T_{high} = +125°C for AL Device, +85°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

**The formulas given are for the typical characteristics only at 25°C

 $I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ V/k}$

where: IT is in μA (per package), C_L in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.005

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
Output Rise and Fail Time	tTLH-					ns.
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	†THL	6.0	-	100	200	
ITLH, ITHL = (0.75 ns/pF) C1 + 12.5 ns	1	10	-	50	100	
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns		15	-	40	80	
Propagation Delay Time	tPLH, tPHL					ns
Sum In to Sum Out						
tpLH, tpHL = (1.7 ns/pF) CL + 315 ns		5.0	_	400	800	
tp_H, tpHL = (0.66 ns/pF) CL + 127 ns		10	-	160	320	
tp_H, tpHL = (0.5 ns/pF) CL + 90 ns		15	-	115	230	
Sum In to Carry Out			ļ	1		1
tpլթ, tpթլ = (1.7 ոs/pF) Cլ + 220 ns	1	5.0	-	305	610	J
tp[H, tpHL = (0.66 ns/pF) CL + 112 ns	l l	10	_	145	290	1
tptH, tpHL = (0.5 ns/pF) CL + 85 ns	1	15	-	110	220	1
Carry In to Sum Out						
tp_H, tpHL = (1.7 ns/pF) CL + 290 ns		5.0	_	375	750	1
tp_H, tpHL = (0.66 ns/pF) CL + 122 ns	1	10	-	155	310	ł
tpLH, tpHL = (0.5 ns/pF) CL + 90 ns		15	_	115	230	1
Carry In to Carry Out		· '			ľ	l
tp_H, tpHL = (1.7 ns/pP) CL + 85 ns		5.0	-	170	340	
tpl H, tpHL = (0.66 ns/pF) CL + 42 ns		10	l –	76	150	
tplH, tpHL = (0.5 ns/pF) CL + 30 ns	1	15	-	55	110	

^{*}The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - TYPICAL SOURCE CURRENT CHARACTERISTICS TEST CIRCUIT

FIGURE 2 – TYPICAL SINK CURRENT CHARACTERISTICS TEST CIRCUIT

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 3 - DYNAMIC POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 4 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 5 - LOGIC DIAGRAM

TYPICAL APPLICATION

FIGURE 6 - USING THE MC14008B IN A 16-BIT ADDER CONFIGURATION

Calculation of 16-bit adder speed:

tp total = tp (Sum to Carry) + tp (Carry to Sum) + 2 tp (Carry to Carry)
The guaranteed 16-bit adder speed at 10 V, 25°C, C_L = 50 pF is:

t_p total = 290 + 310 + 300 = 900 ns

tions.

Static Operation

Diode Protection on All Inputs

going edge of the clock pulse

 Supply Voltage Range = 3.0 Vdc to 18 Vdc Logic Edge-Clocked Flip-Flop Design

Pin-for-Pin Replacement for CD4013B

MC14011B, MC14012B See Page 6-5

MC14011UB, MC14012UB See Page 6-14

MC14013B

CMOS SSI

(LOW POWER COMPLEMENTARY MOS)

SUFFIX CERAMIC PACKAGE **CASE 632**

PSHEELY ASTIC PACKAGE CASE 646

ORDERING INFORMATION

A Series: - 55°C to + 125°C MC14XXXBAL (Ceramic Package Only)

C Series - 40°C to + 85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

DUAL TYPE D FLIP-FLOP

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Parameter	Value	Unit
DC Supply Voltage	-05 to +180	V
Input or Output Voltage (DC or Transient)	- 0 5 to V _{DD} + 0.5	V
Input or Output Current (DC or Transient), per Pin	± 10	mA
Power Dissipation, per Package†	500	mW
Storage Temperature	-65 to +150	*C
Lead Temperature (8-Second Soldering)	260	°C
	DC Supply Voltage Input or Output Voltage (DC or Transient) Input or Output Current (DC or Transient), per Pin Power Dissipation, per Package† Storage Temperature	DC Supply Voltage − 0.5 to − 18.0 Input or Output Voltage (DC or Transient) − 0.5 to V _{DD} − 0.5 Input or Output Current (DC or Transient), per Pin ± 10 Power Dissipation, per Package† 500 Storage Temperature −65 to + 150

DUAL TYPE D FLIP-FLOP The MC14013B dual type D flip-flop is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each flip-flop has independent Data, (D), Direct Set, (S), Direct Reset, (R), and Clock (C) inputs and comple-

mentary outputs (Q and Q). These devices may be used as shift regis-

ter elements or as type T flip flops for counter and toggle applica-

Logic state is retained indefinitely with clock level either high or low; information is transferred to the output only on the positive-

Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating Plastic "P" Package - 12mW/°C from 65°C to 85°C Ceramic "L" Package - 12mW/°C from 100°C to 125°C

TRUTH TABLE

	PUTS	OUT		TS	INPU	
1	۵	a	SET	RESET	DATA	CLOCK ¹
	1	0	0	0	0	_
2.0	0	1	0	0	1	
No	a	a	0	0	х	_
Citariy	1	0	0	1	×	×
	0	1	1	0	×	×
1	1	1	1	1	х	×

X = Don't Care t = Level Channe

MC14013B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	T _t	ow"	<u>i</u>	25°C		T _h	igh *	1
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VQL	5.0	-	0.05	-	0	0.05	-	0.05	Vdc
Vin = VDD or 0		10	-	0.05	-	0	0.05	-	0.05	1
		15	-	0.05	-	0	0.05		0.05	
"1" Level	νон	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc
Vin = 0 or VDD	• • •	10	9.95	-	9.95	10		9.95	_	1
	į	15	14.95	_	14.95	15	-	14.95		l
Input Voltage "0" Level	٧ıL									Vdc
(Vo = 4.5 or 0.5 Vdc)		5.0	-	1.5	-	2.25	1.5	-	1.5	
(V _D = 9.0 or 1.0 Vdc)		10	! -	3.0	-	4.50	3.0	-	3.0	ł
(V _O = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0	-	4.0	
"1" Level	VIH									
(V _O = 0.5 or 4.5 Vdc)	1	5.0	3.5] -	3.5	2.75	-	3.5	-	Vđc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	_	
(VO = 1 5 or 13.5 Vdc)		15	11.0	l –	11,0	8.25	-	11.0	-	I
Output Drive Current (AL Device)	ЮН									mAdc
(VOH = 2.5 Vdc) Source		5.0	-3.0	-	-2.4	-4.2	-	-1.7	-	
(VOH = 4.6 Vdc)	1	5.0	-0.64	} _	-0.51	-0.88	-	-0.36	_	1
(V _{OH} = 9.5 Vdc)		10	-1.6	-	-1.3	-2.25	-	-0.9	-	l
(V _{OH} = 13.5 Vdc)		15	-4.2	-	~3.1	-8.8	-	-2.4	-	
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.64		0.51	0.88	_	0.36	-	mAdc
(VOL = 0.5 Vdc)	.00	10	1.6	-	1.3	2.25	_	0.9	_	
(VOL = 1.5 Vdc)		15	4.2	l –	3.4	8.8	_	2.4	-	1
Output Drive Current (CL/CP Device)	Т ОН				├──	 				mAdc
(VOH = 2.5 Vdc) Source	.00	5.0	-2.5	l -	-2.1	-4.2	_	-1.7	_	
(VOH = 4.6 Vdc)		5.0	-0.52	۱ -	-0.44	-0.88	-	-0.36	-	
(VOH = 9.5 Vdc)		10	-1.3	l _	-1.1	-2.25	_	-0.9	_	
(VOH = 13.5 Vdc)		15	-3.6	_	-3.0	-8.8	_	-2.4	_	l
(VOL = 0.4 Vdc) Sink	lOL	5.0	0.52	<u> </u>	0.44	0.88		0.36		mAdc
(VOL = 0.5 Vdc)	.01	10	1.3	_	1.1	2.25	_	0.9	_	
(VOL = 1.5 Vdc)		15	3.6	۱ ـ	3.0	8.8	_	2.4	_	
Input Current (AL Device)	1in	15	-	10.1		± 0.00001	± 0.1		11.0	μAdc
Input Current (CL/CP Device)		15	 	10.1						<u> </u>
	lin		 _		└	20.00001	± 0.3		±1.0	μAdc
Input Capacitance (V _{ID} = 0)	Cʻu	_	L - _	_	_	5.0	7.5	-	-	pF
Quiescent Current (AL Device)	loo	5.0		1.0		0.002	1.0		30	μAdc
(Per Package)		10	-	2.0	-	0.004	2.0	- 1	60	
		15	<u> </u>	4.0		0.006	4.0	-	120	
Quiescent Current (CL/CP Device)	¹pp	5.0	-	4.0		0.002	4.0	- 1	30	μAdc
(Per Package)	55	10	~	8.0	_	0.004	8.0	_	60	
		15	-	16	i -	0.006	16	-	120	ì
Total Supply Current**f	1T	5.0			IT : 10	.75 µA/kHz	11 + 100			μAdc
(Dynamic plus Quiescent,	'	10	l			5 µA/kHz				[
Per Package)		15				.3 μA/kHz				i
(CL = 50 pF on all outputs, all			i		,					
buffers switching)	, ,		l							ĺ

^{*}T_{tow} = -55°C for AL Device, -40°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance

where: IT is in μA (per package), C_L in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.002.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

MC14013B

SWITCHING CHARACTERISTICS* ICL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ #	Mex	Unit
Output Rise and Fall Time	tTLH.					ns
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	tthL	5.0	-	100	200	
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns	1	10	-	50	100	i
tTLH. tTHL = (0.55 ns/pF) CL + 9.5 ns	1	15	_	40	80	
Propagation Delay Time	¹ PLH					ns
Clock to Q. Q	1PHL					ŀ
tpLH. tpHL = (1.7 ns/pF) CL + 90 ns	1	5.0	_	175	350	
tpLH, tpHL = (0.66 ns/pF) CL + 42 ns	1	10	-	75	150	
P_{LH} , $P_{HL} = (0.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ Set to Q, \overline{Q}		15	<u> </u>	50	100	
tpLH, tpHL = (1.7 ns/pF) CL + 90 ns		5.0	-	175	350	
t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_{L} + 42 \text{ ns}$		10	-	75	150	
tp _{LH} , tp _{HL} = (0.5 ns/pF) C _L + 25 ns Reset to Q, Q		15 .	<u> </u>	50	100	
tթլн, tթнլ ⇔ (1.7 ns/pF) Cլ + 265 ns		5.0	_	350	450	
tpLH, tpHL = (0.66 ns/pF) CL + 67 ns		10	_	100	200	1
tp_{LH} , $tp_{HL} = (0.5 \text{ ns/pF}) C_L + 50 \text{ ns}$		15	_	75	150	
Setup Times**	tsu	5.0	40	20	-	ns
•	1 "30	10	20	10	_	
		15	15	7.5		
Hold Times**	th.	5.0	40	20	-	ns
	, 'n	10	20	10	_	ļ
	1	15	15	7.5	-	l
Clock Pulse Width	tWL, tWH	5.0	250	125		ns
	""	10	100	50	-	
		15	70	35	ı	
Clock Pulse Frequency	fcl	5.0	T -	4.0	2.0	MHz
	"	10	-	10	5.0	i
		15		14	7.0	L
Clock Pulse Rise and Fall Time	tTLH.	5.0	_	T - 1	15	μs
	tTHL .	10	_	-	5.0	l
		15	_		4.0	
Set and Reset Pulse Width	tWL,tWH	5.0	250	125	_	ns
	1	10	100	50	_	i
		15	70	35		
Removal Times	t _{rem}					ns
Set	1	5	80] 0	_]
		10	45	5	_	
	ļ	15	35	5		ļ
Reset	1	5	50	- 35	_	
	i .	10	30	- 10	_	ì
		15	25	-5	_	
		1				

^{*}The formulas given are for the typical characteristics only at 25°C.

^{**}Data must be valid for 250 ns with a 5 V supply, 100 ns with 10 V, and 70 ns with 15 V.

[◆]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14013B

FIGURE 1 - DYNAMIC SIGNAL WAVEFORMS
(Data, Clock, and Output)

FIGURE 2 — DYNAMIC SIGNAL WAVEFORMS (Set, Reset, Clock, and Output)

TYPICAL APPLICATIONS

n-STAGE SHIFT REGISTER

BINARY RIPPLE UP-COUNTER (Divide-by-2ⁿ)

MODIFIED RING COUNTER (Divide-by-In + 1))

8-BIT STATIC SHIFT REGISTER

The MC14014B and MC14021B 8-bit static shift registers are constructed with MOS P channel and N-channel enhancement mode devices in a single monolithic structure. These shift registers find primary use in parallel-to-serial data conversion, synchronous and asynchronous parallel input, serial output data queueing; and other general purpose register applications requiring low power and/or high noise immunity.

- Synchronous Parallel Input/Serial Output (MC14014B)
- Asynchronous Parallel Input/Serial Output (MC14021B)
- Synchronous Serial Input/Serial Output
- Full Static Operation
- . "Q" Outputs from Sixth, Seventh, and Eighth Stages
- Double Diode Input Protection
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- · Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- MC14014B Pin-for-Pin Replacement for CD4014B
- MC14021B Pin-for-Pin Replacement for CD4021B

MAXIMUM RATINGS* (Voltages Referenced to Ves)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-05 to -180	V
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	0 5 to V _{DD} - 0.5	V
I _{In} . I _{out}	Input or Output Current (DC or Transient), per Pin	• 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to - 150	C
TL	Lead Temperature (8-Second Soldering)	260	C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating Plastic "P" Package 12mW C from 65 C to 85 C Ceramic "L Package - 12mW C from 100 C to 125 C

MC14014B MC14021B

CMOS MSI

ILOW/POWER COMPLEMENTARY MOST

8-BIT STATIC SHIFT REGISTER

LSUFFIX CERAMIC PACKAGE CASE 620

PSHEELY PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Sories: - 55°C to + 125°C MC14XXXBAL (Ceramic Package Only)

C Series: - 40°C to - 85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

1	CLOCK	DS	P/S	Q6 t = n+6	Q7 t=n+7	08 t = n+8
n	5	0	0	0	7	7
n+1		1	0	1	0	7
n+2	_	0	0	0	1	0
n+3	5	1	0	1	0	1
	7	×	0	Q6	07	08

PARALLEL OPERATION CLOCK DS P/S MC14014B MC14021B

X . Don't Care

°Q_n х x 0 n X Х 1 1 1 *Q6, Q7, & Q8 are available externally

LOGIC DIAGRAM P2 P3 P6 P7 95 914 Q 15 D D D D a D a D O O ā ā C C C C C VDD - Pin 16 P4 - Pin 4 VSS = Pin 8 P5 = Pin 13 06 07

MC14014B•MC14021B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	T _{[c}	w*		25°C		Th	igh °	
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	- -	0.05	_	0	0.05	-	0.05	Vdc
V _{in} = V _{BD} or 0	1	10	-	0.05	-	0	0.05	-	0.05	1
		15	_	0.05		_ 0	0.05		0.05	l
"1" Level	VOH	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc
V _{in} = 0 or V _{DD}		10	9.95	-	9.95	10	-	9.95	-	l
		15	14.95	l	14.95	_ 15	l -	14.95	-	!
Input Voltage "0" Leve	NI VIL									Vdc
(Vo = 4.5 or 0.5 Vdc)	1	5.0	_	1.5	-	2.25	1.5	- 1	1.5	1
(VO = 9.0 or 1.0 Vdc)	1	10	-	3.0	-	4.50	3.0	-	3.0	i
(Vo = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0		4.0	
"1" Levi	t VIH						[
(Vo = 0.5 or 4.5 Vdc)		5.0	3.5	-	3.5	2.75		3.5	-	Vdc
(V _O = 1.0 or 9.0 Vdc)	J	10	7.0	-	7.0	5.50	-	7.0	-	1
(VO = 1.5 or 13.5 Vdc)	1	15	11.0	-	11.0	8.25	-	11.0		l
Output Drive Current (AL Device)	10Н									mAde
(VOH = 2.5 Vdc) Source		5.0	- 3.0	-	~2.4	-4.2	-	-1.7	-	1
(VOH = 4.6 Vdc)	l i	5.0	-0.64	-	-0.51	-0.88	l –	-0.36	-	[
(V _{OH} = 9.5 Vdc)	1	10	-1.6	! -	-1.3	-2.25	-	-0.9	-	ŀ
(V _{OH} = 13.5 Vdc)		15	-4.2		-3.4	8.8	_	-2.4	-	
(VOL = 0.4 Vdc) Sink	IDL	5.0	0.64		0.51	0.88	-	0.36		mAdc
(VOL = 0.5 Vdc)	1	10	1.6	-	1.3	2.25	-	0.9	-	1
(VDL = 1.5 Vdc)	1	15	4.2	-	3.4	8.8	-	2.4	_	1
Output Drive Current (CL/CP Device)	Ιρн					 				mAdc
(VOH = 2.5 Vdc) Source]	5.0	-2.5	_	~2.1	-4.2	-	-1.7	_	ł
(VOH = 4.6 Vdc)	1	5.0	-0.52	-	-0.44	-0.88	l –	-0.36	_	1
(VOH = 9.5 Vdc)	1	10	-1.3	_	-1.1	-2.25	-	-0.9		1
(VOH * 13.5 Vdc)	1 1	15	-3.6	_	~3.0	-8.8	-	-2.4	_	
(VOL = 0.4 Vdc) Sink	lOL	5.0	0.52	_	0.44	0.88	_	0.36	_	mAdc
(VOL = 0.5 Vdc)	"	10	1.3	_	1.1	2.25	_	0.9	_	
(VOL = 1.5 Vdc)		15	3.6	_	3.0	8.8	-	2.4	_	1
Input Current (AL Device)	lin	15		20.1		±0.00001	20.1		21.0	μAdc
Input Current (CL/CP Device)	l _{in}	15		10.3	 	±0.00001	± 0.3		±1.0	μAdc
Input Capacitance	Cin		-		- -	5.0	7.5			oF
(Vin = 0)	, o'iu	_	[-	_	l -	"	/.5	[- '	_	\ P ''
Quiescent Current (AL Device)	IDD	5.0	-	5.0	-	0.005	5.0		150	μAdc
(Per Package)	1 .00	10	_	10	l -	0.010	10	_	300	
-		15		20	i –	0.015	20		600	l
Quiescent Current (CL/CP Device)	'DO	5.0		20		0.005	20	_	150	μAdc
(Per Package)	00	10	_	40	l <u> </u>	0.010	40		300	
		15	_	80	l -	0.015	80		600	1
Total Supply Current**1	İŦ	5.0			17.10	75 µA/kHz				µAdc
(Dynamic plus Quiescent,	1	10				.75 μΑ/kHz				1
Per Package)	1 .	15			IT = 19	25 µA/kHz	111100			
(C _L = 50 pF on all outputs, all	1	-	l		, (2.		00			1
buffers switching)	1 1									1
*To make the Al Douber - 40°C to					leulate teta				o 50 oF:	

[&]quot;T_{low} = -55"C for AL Device, -40"C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. †To calculate total supply current at leads other than 50 pF:

where: IT is in μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, 1 in kHz is input frequency, and k=0.0015.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{OD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Thigh = +125°C for AL Dovico, +85°C for CL/CP Dovice.

^{**}The formulas given are for the typical characteristics only at 25°C.

MC14014B • MC14021B

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD}	Min	Typ#	Max	Unit
Output Rise and Fall Time	ITLH.					กร
t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$	ITHL	5.0	_	100	200	
t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$	'''	10	l –	50	100	
t _{TLH} . t _{THL} = (0.55 ns/pF) C _L + 9.5 ns		15		40	80	
Propagation Delay Time (Clock to Q, P/S to Q)	tpLH,					ns
tpHL, tpLH = (1.7 ns/pF) CL + 315 ns	t _{PHL}	5.0	_	400	800	
tpHL, tpLH = (0.86 ns/pF) CL + 137 ns	1	10	l –	170	340	
tpHL, tpLH = (0.5 ns/pF) CL + 90 ns		15	l –	115	230	
Clock Pulse Width	twn	5.0	400	150	_	ns
	1	10	175	75	l – 1	
		15	135	40	_	
Clock Frequency	f _{Cl}	5.0	_	3.0	1.5	MHz
		10	-	6.0	3.0	
		15	<u> </u>	8.0	4.0	
Parallel/Serial Control Pulse Width	1WH	5.0	400	150] _	ns
		10	175	75	-	1
		15	135	40		
Setup Time	tsu	5.0	200	100	_	ns
P/S to Clock		10	100	50	i –	
		15	80	40		
Hold Time	th	5.0	20	- 2.5	_	ns
Clock to P/S	1	10	20	- 10	1 –	
		15	25	0		
Setup Time	t _{SU}	5.0	350	150	l –	ns
Data (Parallel or Serial) to	İ	10	80	50	_	
Clock or P/S		15	60	30		
Hold Time	t _h	5.0	45	0	-	ns
Clock to D _S	I	10	35	0	l –	
	_1	15	35	5		
Hold Time	th	5.0	50	25	_	ns
Clock to Pn		10	45	20	-	1
		15	45	20		
Input Clock Rise Time	t _{r(cl)}	5.0			15	μ8
	1	10	-	1 –	5	ĺ
	- 1	15	-	-	4]

 $[\]ensuremath{^{\circ}}$ The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - OUTPUT SOURCE CURRENT TEST CIRCUIT

FIGURE 2 - OUTPUT SINK CURRENT TEST CIRCUIT

[₱]Data labelled "Typ" is not to be used for design purposes but is
intended as an indication of the tC's potential performance.

MC14014B • MC14021B

FIGURE 3 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 4 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

MC14015B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL 4-BIT STATIC SHIFT REGISTER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series = 40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

DUAL 4-BIT STATIC SHIFT REGISTER

The MC14015B dual 4-bit static shift register is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. It consists of two identical, independent 4-state serial-input/parallel-output registers. Each register has independent Clock and Reset inputs with a single serial Data input. The register states are type D master-slave flip-flops. Data is shifted from one stage to the next during the positive-going clock transition. Each register can be cleared when a high level is applied on the Reset line. These complementary MOS shift registers find primary use in buffer storage and serial-to-parallel conversion where low power dissipation and/or noise immunity is desired.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Edge-Clocked Flip-Flop Design —
 Logic state is retained indefinitely with clock level either high or
 low; information is transferred to the output only on the positive
 going edge of the clock pulse.
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-05 to +180	٧
V _{In} . V _{oul}	Input or Output Voltage (DC or Transient)	- 0 5 to V _{DD} + 0.5	V
In lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ralings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package = -12mW/°C from 65°C to 85°C Ceramic "L" Package = -12mW/°C from 100°C to 125°C

		TRUT	H TABLE	
С	D	Я	Q0	Qn
1	0	0	0	Q _{n-1}
5	1	0	1	Q _{n-1}
1	×	0	No Change	No Change
X	X	1	0	0

X = Don't Care

Qn = Q0, Q1, Q2, or Q3, as applicable.

Qn-1 = Output of prior stage.

MC14015B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		V _D D	T ₁₀	w*	<u></u>	25°C		τ _h	gh*]
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	_	0	0.05		0.05	Vdc
Vin = VDD or 0		10	-	ບ.05	- 1	0	0.05	- '	0.05	1
		15		0.05		0	0.05		0.05	L
"1" Level	VOH	5.0	4.95		4.95	5.0	-	4.95	-	Vdc
Vin ≈ 0 or VDO	! ;	10	9.95	-	9.95	10	-	9.95	_	
		15	14.95		14.95	15		14.95		
input Voltage "0" Level	VIL		1	ŀ	1	1	l	i '		Vdc
(V _O = 4.5 or 0.5 Vdc)	i	5.0	-	1.5	-	2.25	1.5	-	1.5	i .
(VO = 9 0 or 1.0 Vdc)		10	-	3.0	-	4.50	3.0	l – 1	3.0	ł
(V _O ≈ 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0		4.0	
"1" Level	V _{IH}		ł	ł		1 :		l i		1
(Vo = 0.5 or 4.5 Vdc)	1	5.0	3.5	-	3.5	2.75	-	3.5		Vdc
(VO = 1.0 or 9.0 Vdc)	ł	10	7.0	-	7.0	5.53	-	7.0	_	i
IVO = 1 5 or 13.5 Vdc)		15	11.0		11.0	8.25	-	11.0		<u> </u>
Output Drive Current (AL Device)	ЮН				1	1				mAdc
(VOH = 2.5 Vdc) Source		5.0	-3.0	-	-2.4	-4.2	-	-1.7	-	(
(VOH = 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	-	~0.36	-	
(V _{OH} ≈ 9.5 Vdc)		10	-1.6	-	-1.3	-2.25	–	-0.9	_]
(V _{OH} ≈ 13.5 Vdcl		15	-4.2		-3.4	-8.8		-2.4	_=_	
(VOL = 0.4 Vde) Sink	IOL	5.0	0.64	-	0.51	0.88	-	0.36	_	mAdc
(V _{OL} ≈ 0.5 Vdc)	l i	10	1.6	-	1.3	2.25	-	0.9	_	
(VOL = 1.5 Vdc)		15	4.2	-	3.4	8.8	-	2.4		l
Output Drive Current (CL/CP Device)	ЮН					Ţ				mAdc
(VOH = 2.5 Vdc) Source	l i	5.0	-2.5	-	-2.1	-4.2	-	-1.7	-	}
(V _{OH} = 4.6 Vdc)		5.0	-0.52	-	-0.44	-0.88	_	-0.36	-	
(V _{OH} = 9.5 Vdc)		10	-1.3	-	-1.1	-2.25	-	-0.9	-	1
(V _{OH} = 13.5 Vdc)		15	-3.6		-3.0	-8.8		-2.4		
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc
(VOL = 0.5 Vdc)		10	1.3	-	1.1	2.25	-	0.9	_	
(VOL = 1.5 Vdc)		15	3.6		3.0	8.8	_	2.4		
Input Current (AL Device)	lin	15	_	± 0.1	-	: 0.00001	± 0.1	_	± 1.0	μAdc
Input Current (CL/CP Device)	l _{IR}	15		± 0.3	_	±0 00001	± 0.3	_	± 1,0	μAdc
Input Capacitance	C _{ID}	_			_	5.0	7.5		_	ρF
(V _{in} = 0)			}	1				1 1		,
Quiescent Current (AL Device)	QQ)	5.0		5.0	<u> </u>	0.005	5.0		150	μĀdc
(Per Package)		10	-	10	-	0.010	10	_	300	
	1	15	. – .	20	-	0.015	20	~	600	i
Quiescent Current (CL/CP Device)	ממי	5.0	_	20	_	0.005	20	-	150	μAdc
(Per Package)	"	10	l –	40	l –	0.010	40	_	300]
		15	-	80	 	0.015	80	۱ - ۱	600	1
Total Supply Current**1	5.0			17 . /1	.2 µA/kHz	11.100			μAdc	
(Dynamic plus Quiescent,	¹T	10	Ì			4 µA/kHz				1
Per Package)]	15	1			6 µA/kHz				
(Ct = 50 pF on all outputs, all			ľ		, ,		. 50			
buffers switching)			l							l .

 $^{^{\}circ}T_{low} = -55^{\circ}C$ for AL Device, $-40^{\circ}C$ for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. †To calculate total supply current at loads other than 50 pF:

where 17 is in μA (per package), C_L in pF, $V=\{V_{DD}-V_{SS}\}$ in volts, t in kHz is input frequency, and k=0.002

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., oither V_{SS} or V_{DD}). Unused outputs must be left open.

Thigh = + 125°C for AL Device, +85°C for CL/CP Device.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

MC14015B

SWITCHING CHARACTERISTICS* (CL = 50 pf, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time	ITLH:		1		t	ns
trum, trum = (1.5 ns/pF) C _L + 25 ns	THL	5.0	_	100	200	1
ITLH, ITHL = (0.75 ns/pF) Ct + 12.5 ns		10	-	50	100	
true. true = (0.55 ns/pF) Ct + 9.5 ns	i	15	1 -	40	80	i
Propagation Delay Tima	tPLH,		1	}	 	ns
Clock, Data to Q	1PHL		1	1	l .	1
tp_H_ tpHL = (1.7 ns/pF) CL + 225 ns	1 1	5.0	1 -	310	750	l
tp_H, tpHL = (0.66 ns/pF) CL + 92 ns	1 1	10	-	125	250	1
tpLH, tpHL = (0.5 ns/pF) CL + 65 ns Reset to Q	-	15	-	90	170	1
tpLH, tpHL = (1.7 ns/pF) CL + 375 ns]	5.0	_	460	750	
tp_H tpHL = (0.66 ns/pF) CL + 147 ns	i i	10	l <u>-</u>	180	250	
tp_H, tpHL = (0.5 ns/pF) CL + 95 ns	1	15	l –	120	170	
Clock Pulse Width	tWH	5.0	400	185		ns
		10	175	85	_	
	i (15	135	55	-	i
Clock Pulse Frequency	fcl	5.0		2.0	1.5	MHz
	"	10	1 -	6.0	3.0	
	i 1	15	1 -	7.5	3.75	1
Clock Pulse Rise and Fall Times	TLH, THL	5.0	_	-	15	Itt
		10	! -	_	5	I.
	Li	15	l	L	4	1
Reset Pulse Width	WH	5.0	400	200	-	ns.
		10	160	80	-	ļ
	l i	15	120	60	_	
Setup Time	t _{su}	5.0	350	100	- -	ns
	""	10	100	50	Į –	1
	1 1	15	75	40	-	1

^{*}The formulas given are for typical characteristics only at 25°C.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - SETUP AND HOLO TIME TEST CIRCUIT AND WAVEFORMS

CIRCUIT SCHEMATICS

LOGIC DIAGRAMS

QUAD ANALOG SWITCH/QUAD MULTIPLEXER

The MC14016B quad bilateral switch is constructed with MOS Pchannel and N-channel enhancement mode devices in a single monolithic structure. Each MC14016B consists of four independent switches capable of controlling either digital or analog signals. The quad bilateral switch is used in signal gating, chopper, modulator, demodulator and CMOS logic implementation.

- · Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- · Linearized Transfer Characteristics
- Low Noise ~ 12nV \ Cycle, f≥1 kHz typical
- · Pin-for-Pin Replacement for CD4016B, CD4066B
- For Lower Ron. Use The HC4016 High-Speed CMOS Device or The MC14066B
- This Device Has Inputs and Outputs Which Do Not Have ESD Protection. Antistatic Precautions Must Be Taken.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	0.5 to • 18.0	V
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	0 5 to V _{DD} + 0.5	V
l _{in}	Input Current (DC or Transient), per Control Pin	: 10	mA
l _{sw}	Switch Through Current	• 25	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	65 to • 150	C
TL	Lead Temperature (8-Second Soldering)	260	ů

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating | Plastic "P" Package: - 12mW °C from 65°C to 85°C | Ceramic "L" Package: - 12mW °C from 100°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{Out} should be constrained to the range $V_{SS} \leqslant (V_{In} \text{ or } V_{OUt}) \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g. either VSS or VDD). Unused outputs must be left open

CMOS SSI

(LOW POWER COMPLEMENTARY MOS)

QUAD ANALOG SWITCH QUAD MULTIPLEXER

CERAMIC PACKAGE

P SUFFIX
PLASTIC PACKAGE
CASE 646

ORDERING INFORMATION

A Series = 55°C to + 125°C MC14XXXBAL (Ceramic Package Only)

C Series = 40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Coramic Package)

BLOCK DIAGRAM

CONTROL	SWITCH
0 = V _{SS}	OFF
1 = V _{DD}	ON

ELECTRICAL CHARACTERISTICS (Voltages Referenced to v_{SS})

	l _ '		VDD		w*	.	25°C			igh °	l
Characteristics	Figure	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Uni
nput Voltage	1	VIL	5.0	-	-	_	1.5	0.9	-	-	Vde
Control Input			10	-	-	-	1.5	0.9	-	-	l
	· '		15				1.5	0.9			
	Ĭ	ViH	5.0	<u>-</u>	-	3.0 8.0	2.0 6.0	_	-	-	Vd
			10 15	_	-	13	11	_		_	l
				<u> </u>					<u> </u>	- -	-
Input Current (AL Device) Control		lin	15		±0.1	<u> </u>	±0.00001	±0.1		11.0	μAd
nput Current (CL/CP Device) Control		lin	15		±0.3		20.00001	:0.3	-	±1.0	μΑσ
nput Capecitance	-	Cin									PF
Control Switch Input			_	-	-	-	5.0 5.0	_	_	-	1
Switch Output			_	-	-	_	5.0	_	l -	_	
Feed Through			_	-	_	_	0.2	_	_		l
Quiescent Current (AL Device)**	2,3	laa	5.0		0.25	_	0.0005	0.25	_	7.5	μAd
(Per Package)	5	lDD	10	-	0.50	-	0.0003	0.50	_	15	~~°
	Į į		15	l –	1.00	_	0.0015	1.00	l _	30	l
Quiescent Current (CL/CP Device)**	2,3	lan	5.0	-	1.0	 _	0.0005	1.0	<u> </u>	7.5	μАс
(Per Package)	4,3	IDD	10	l <u> </u>	2.0	_	0.0005	2.0	_	15	۳^۵
· venugur			15	-	4.0	-	0.0015	4.0	_	30	Ì
'ON" Resistance (AL Dovice)**	4,5,6	Bc+-	 -			-		-			Ohr
VC = VDD, RL = 10 kΩ)	ا ٥,٥,٠	RON							1		""
(V _{in} = +5.0 Vdc)			5.0	l _	600	_	300	660		960	
(Vin = -5.0 Vdc) VSS = -5 Vdc	i i			_	600	_	300	660	_	960	
(Vin = ±0.25 Vdc)				_	600	_	280	660	_	960]
(V _{in} = +7.5 Vdc)]		7.5	l –	360	- 1	240	400	l –	600	1
(Vio = -7.5 Vdc) VSS = -7.5 Vdc				- 1	360	- 1	240	400	_	600	l
(V _{in} = ±0.25 Vdc)	1			-	360	-	180	400	_	600	
(Vin = +10 Vdc)	1		10	-	600	-	260	660	-	960	ĺ
(Vin = +0.25 Vdc) VSS = 0 Vdc	1			-	600	-	310	660	-	960	
(V _{in} = +5.6 Vdc)				-	600	i - I	310	660	-	960	l
(V _{in} = +15 Vdc)			15	-	360	-	260	400	-	600	1
(Vin = +0.25 Vdc) VSS = 0 Vdc				-	360	-	260	400	-	600	\
(V _{in} = +9.3 Vdc)					360	_	300	400	_	600	<u> </u>
'ON" Resistance (CL/CP Device)**	4,5,6	RON							Į.		Ohr
V _C = V _{DD} , R _L = 10 kΩ)										ļ	l
(V _{in} = +5.0 Vdc)			5.0	-	610	-	300	660	-	840	
(Vin = -5.0 Vdc) VSS = -5 Vdc				- 1	610	-	300	660	-	840	
(V _{in} = ±0.25 Vdc)				-	610	-	280	660	-	840	
(V _{in} = +7.5 Vdc)	l i		7.5	-	370	-	240	400	-	520	1
(Vin = -7.5 Vdc) V _{SS} = -7.5 Vdc	i I			-	370	-	240	400	- :	520	
(V _{in} = ±0.25 Vdc)				_	370	-	180	400	-	520	
(V _{in} = +10 Vdc)			10	-	610	_	260	660	-	840	l
(Vin = +0.25 Vdc) VSS = 0 Vdc				-	610	- 	260 310	660	_	840 840	
(V _{in} = +5.6 Vdc)				-	610			660			l
(V _{in} = +15 Vdc)			15	_	370 370	_	260 260	400 400	-	520 520	1
(V _{in} = +0.25 Vdc) V _{SS} = 0 Vdc				_	370	_	300	400	_	520 520	,
(V _{in} = +9.3 Vdc)				<u> </u>	370	⊢	300	700	<u> </u>	520	
"ON" Resistance	- 1	ΔRON					1				Ohn
Between any 2 circuits in a common											l
psckage (VC = VDD)				i '		\					ĺ
(V _{in} = ±5.0 Vdc) V _{SS} = -5 Vdc			5.0	_	_	_	15	_	l _	_	ĺ
(Vin = ±7.5 Vdc) VSS = -7.5 Vdc			7.5		_	_	10	_	_	-	Į.
	\vdash				-						├─
nput/Output Leekage Current (V _C = V _{SS}) (V _{in} = +7.5, V _{out} = -7.5 Vdc)	-	-	7.5	_	±0.100	_	±0.0015	±0.100	_	±1.0	μА
14 IU - 11'0' 4 ORL -1'0 400)			7.5	_	20.100	-		±0.100	_	±1.0 ±1.0	Ι΄.

 $^{^{\}circ}$ T_{low} = -55 $^{\circ}$ C for AL Device, -40 $^{\circ}$ C for CL/CP Device. Thigh $^{\circ}$ +125 $^{\circ}$ C for AL Device, +85 $^{\circ}$ C for CL/CP Device.

NOTE: All unused inputs must be returned to V_{DD} or V_{SS} as appropriate for the circuit application.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{*}For voltage drops across the switch (ΔV_{switch}) >600 mV (≥300 mV at high temperature), excessive V_{DD} current may be drawn; i.e., the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.) Reference Figure 14.

ELECTRICAL CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Figure	Symbol	V _{DD}	Min	Тур#	Max	Unit
Propagation Delay Time (VSS = 0 Vdc)	7	tPLH,	5.0		15	45	ns
Vin to Vout		tPHL.	10	1 -	7.0	15	
(V _C = V _{DD} , R _L = 10 kΩ)	ł		15	l –	6.0	12	
Control to Output	8	¹PHZ-	5.0		34	90	l ns
(V _{in} < 10 Vdc, R _L = 1.0 kΩ)	1	PLZ.	10	l _	20	45	
		^t PZH- ^t PZL	15	_	15	35	
Crosstalk, Control to Output (Vss = 0 Vdc)	9		5.0		30		mv
$(V_C = V_{DD}, R_{in} = 1.0 k\Omega, R_{out} = 10 k\Omega,$	1		10	l –	50	_	
f = 1kHz)	i i	1	15	l –	100	_	
Crosstelk between any two switches (VSS = 0 Vdc)	 -	 - 	5.0	 -	-80		dВ
(R _L = 1.0 kΩ, f = 1.0 MHz,	Ĭ	1	i	İ			
Vout					1		
crosstalk = 20 log10 Vout2	1	İ	ļ		i		i
Noise Voltage (VSS = 0 Vdc)	10,11	 	5.0	- -	24		nV/√Cycle
(VC = VDD, f = 100 Hz)	'**		10	۱ ـ	25	_	,
			15	l -	30	-	1
(VC = VDD, f = 100 kHz)		1	5.0	1 _	12	_	ſ
11C 100,1 100 kills	}		10	l _	12	_	
			-15	-	15	_	[
Second Harmonic Distortion (VSS = -5 Vdc)	_	<u> </u>	5.0		0.16	_	%
(Vin = 1.77 Vdc RMS Centered @ 0.0 Vdc,				1			
$R_{L} = 10 \text{ k}\Omega, f = 1.0 \text{ kHz}$	})		ł		1
Insertion Loss (V _C = V _{DD} , V _{in} = 1.77 Vdc, V _{SS} = -5 Vdc, RMS centered = 0.0 Vdc, f = 1.0 MHz)	12	-	5.0	-			dB
l _{loss} = 20 log ₁₀ V _{out}							
$(R_1 = 1.0 k\Omega)$			İ	_	2.3	_	ŀ
$(R_L = 10 \text{ k}\Omega)$	ł		ł	l –	0.2	_	}
(R _L = 100 kΩ)	1		İ	-	0.1	-	
(R_ = 1.0 MΩ)	1	ł	i	-	0.05	-	}
Bandwidth (-3 dB)	12,13	BW	5.0	_	-		MHz
(V _C = V _{DD} , V _{in} = 1.77 Vdc, V _{SS} = -5 Vdc, RMS centered @ 0.0 Vdc)	ļ		İ				İ
$(R_L = 1.0 \text{ k}\Omega)$	1	1	l	-	54	-	ł
(R _L = 10 kΩ)	1			-	40	-	1
(R _L = 100 kΩ)		1	ł	-	38	-	1
(RL = 1.0 MΩ)			<u> </u>		37		
OFF Channel Foedthrough Attenuation (VSS = -5 Vdc)		<u> </u>	5.0				kHz
(V _C = V _{SS} , 20 log ₁₀ V _{out} = -50 dB)	1						1
(R _L = 1.0 kΩ)				-	1250	-	1
(R _L = 10 kΩ)	1			-	140	-	ł
(R _L = 100 kΩ)				-	18	-	1
(R _L = 1.0 MΩ)		}	l	1 _	2.0	ـــا	j

*Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential porformance.

FIGURE 1 – INPUT VOLTAGE TEST CIRCUIT

 V_{IL} : V_C is raised from V_{SS} until $V_C = V_{IL}$. at $V_C = V_{IL}$: $I_S = \pm 10 \ \mu A$ with $V_{In} = V_{SS}$. $V_{out} = V_{DD}$ or $V_{in} = V_{DD}$. $V_{out} = V_{SS}$.

 V_{IH} : When $V_C = V_{IH}$ to V_{DD} , the switch is ON and the R_{ON} specifications are met.

FIGURE 2 — QUIESCENT POWER DISSIPATION TEST CIRCUIT

FIGURE 3 - TYPICAL POWER DISSIPATION PER CIRCUIT
(1/4 OF DEVICE SHOWN)

TYPICAL RON versus INPUT VOLTAGE

6

Ċ

FIGURE 6 - RON CHARACTERISTICS TEST CIRCUIT

FIGURE 8 - TURN-ON DELAY TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 10 - NOISE VOLTAGE TEST CIRCUIT

FIGURE 7 -- PROPAGATION DELAY TEST CIRCUIT AND WAVEFORMS

FIGURE 9 - CROSSTALK TEST CIRCUIT

FIGURE 11 - TYPICAL NOISE CHARACTERISTICS

FIGURE 12 — TYPICAL INSERTION LOSS/BANDWIDTH

CHARACTERISTICS

2.0

R_L = 1 MΩ and 100 LΩ

10 kΩ

-3.0 dB (R_L = 1.0 MΩ)

-3.0 dB (R_L = 1.0 kΩ)

-10

-10

10 k 100 k 1.0 M 10 M 100 M

(i_{iii}, IMPUT FREQUENCY (H₂)

FIGURE 13 - FREQUENCY RESPONSE TEST CIRCUIT

FIGURE 14 — JV ACROSS SWITCH

I:

APPLICATIONS INFORMATION

Figure A illustrates use of the Analog Switch. The 0-to-5 V Digital Control signal is used to directly control a 5 V_{D-D} analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5V = \text{logic high at the control inputs; } V_{SS} = GND = 0V = \text{logic low.}$

The maximum analog signal level is determined by V_{DD} and V_{SS} . The analog voltage must not swing higher than V_{DD} or lower than V_{SS} .

The example shows a 5 V_{p-p} signal which allows no margin at either peak. If voltage transients above V_{DD} and/or below V_{SS} are anticipated on the analog channels, external diodes (D_x) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between VDD and VSS is 18.0V. Most parameters are specified up to 15V which is the recommended maximum difference between VDD and VSS.

FIGURE A - APPLICATION EXAMPLE

FIGURE B -- EXTERNAL GERMANIUM OR SCHOTTKY CLIPPING DIODES

DECADE COUNTER

The MC14017B is a five-stage Johnson decade counter with built-in code converter. High speed operation and spike-free outputs are obtained by use of a Johnson decade counter design. The ten decoded outputs are normally low, and go high only at their appropriate decimal time period. The output changes occur on the positive-going edge of the clock pulse. This part can be used in frequency division applications as well as decade counter or decimal decode display applications.

- Fully Static Operation
- DC Clock Input Circuit Allows Slow Rise Times
- Carry Out Output for Cascading
- Divide-by-N Counting
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4017B

MAXIMUM RATINGS* (Voltages Referenced to Ves)

Symbol	Parameter	Value	Unit
VDD	DC Supply Vollage	-05 to +180	V
V _{in} . V _{out}	Input or Oulput Voltage (DC or Transient)	-05 to V _{DD} +05	V
I _{In} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tsig	Slorage Temperature	-65 to +150	°C
T _L	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating | Plastic "P" Package | - 12mW/°C from 65°C to 85°C | Ceramic "L" Package | - 12mW/°C from 100°C to 125°C

LOGIC DIAGRAM

CMOS MSI

(LOW POWER COMPLEMENTARY MOS)
DECADE COUNTER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: ~55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

FUNCTIONAL TRUTH TABLE

(Positive Logic)

	CLOCK		DECODE
CLOCK	ENABLE	RESET	OUTPUT * n
0	×	0	
×	1	0	
×	×	1	00
~	0	Ω	n = 1
~	×	0	0
×	_	0	n
1	~	0	n+1

x - Don't Care If n <5 Carry m "1" Otherwise = "0"

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Vss)

	[VDD	Tto	w*		25°C		Thi	gh *]
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0		0.05	Γ-	0	0.05	-	0.05	Vdc
Vin = VDD or 0		10	-	0.05	-	0	0.05	-	0.05	
		15		0.05		0	0.05		0.05	
"1" Level	νон	5.0	4.95	-	4.95	5.0		4.95	_	Vdc
Vin = 0 or VDD	1 -	10	9.95	-	9.95	10	-	9.95	· –	i i
		15	14.95	l – _	14.95	15	-	14.95		
Input Voltage "0" Level	VIL									Vdc
(VO = 4.5 pr 0.5 Vdc)	-	5.0	_	1.5	-	2.25	1.5	1	1.5	ł
(V _O = 9.0 or 1.0 Vdc)		10	- '	3.0	-	4.50	3.0	-	3.0	1
(Vo = 13.5 or 1.5 Vdc)		15		4.0	-	6.75	4.0		4.0	L
"1" Level	VIH]		1
(V _O = 0.5 or 4.5 Vdc)	1	5.0	3.5	- 1	3.5	2.75	-	3.5	-	Vrtc
(VO = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	_	
(V _O = 1.5 or 13.5 Vdc)		15	11.0	_	11.0	B.25	-	11.0	-	1
Output Drive Current (AL Device)	ЮН									mAdd
(V _{OH} = 2.5 Vdc) Source	• • •	5.0	-3.0	-	-2.4	-4.2	_	-1.7	_	ļ
(V _{OH} ≈ 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	-	-0.36	-	l
(V _{OH} = 9.5 Vdc)		10	-1.6	 	-1.3	-2.25	-	-0.9	_	
(V _{OH} = 13.5 Vdc)		15	-4.2	L -	-3.4	_8.8	-	-2.4		ł
(VOL = 0.4 Vdc) Sink	†OL	5.0	0.64	_	0.51	0.88	-	0.36	-	mAde
(VOL = 0.5 Vdc)	"-	10	1.6	-	1.3	2.25	_	0.9	_	1
(V _{OL} = 1.5 Vdc)		15	4.2	l –	3.4	8.8	_	2.4	-	
Output Drive Current (CL/CP Device)	юн									mAdo
(VOH = 2.5 Vdc) Source		5.0	-2.5	l –	-2.1	-4.2	_	-1.7	_	ŀ
(VOH = 4.6 Vdc)		5.0	-0.52	-	-0.44	-0.88	-	-0.36	_	
(V _{DH} = 9.5 Vdc)		10	-1.3	l –	-1.1	-2.25	_	-0.9	_	1
(V _{OH} = 13.5 Vdc)		15	-3.6	l	-3.0	-8.8	_	-2.4	_	1
(VOL = 0.4 Vdc) Sink	loL	5.0	0.52	-	0.44	0.88	-	0.36		mAdo
(VOL = 0.5 Vdc)	'0'	10	1.3	l _	1.1	2.25	_	0,9	_	
(VOL = 1.5 Vdc)		15	3.6	l <u> </u>	3.0	8.8	_	2.4	_	1
Input Current (AL Device)	lin	15	-	± 0.1	 	±0.00001	10.1	_	± 1.0	μAdc
Input Current (CL/CP Device)	lin	15	-	103	 - -	±0 00001	±0.3		± 1.0	μAdc
Input Capacitance	Cin		 	- -		50	7.5			ρF
(V _{in} = 0)	-in		1			""	/	-		"
Quiescent Current (AL Device)	IDD	5.0		5.0	 	0.005	5.0		150	μAdc
(Per Package)	"	10	- '	10	-	0.010	10	l – I	300	
•		15	_	20	-	0.015	20	1 - 1	600	
Quiescent Current (CL/CP Device)	¹pp	5.0	_	20		0.005	20		150	μAdo
(Per Package)	'00	10	-	40	l _	0.010	40	1 _	300	
		15	_ :	80	l –	0.015	80	_	600	i
Total Supply Current**1	١Ţ	5.0			J== = 10			·		μAdo
Total Supply Current**1						"-"				
Re- Bestered						I				
(C _L = 50 pF on all outputs, all		,5			IT = {0	.83 µA/kHz) f + IDD			1
buffers switching)			1							l
*Trans = 55°C for All Device = 40°C for C						Supply curre				ц

^{*}T_{low = -55°C} for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at leads other than 50 pF:

 $I_T(C_1) = I_T(50 \text{ pF}) + (C_1 - 50) \text{ VIk}$

where: I_T is in μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.0011

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper op-

eration, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ#	Max	Unit
Output Rise and Fall Time	tTLH-	† — —		1		ns
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	THL	5.0	-	100	200	
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns		10	l –	50	100	
t _{TLH} , t _{THL} = (0.55 ns/pF) C _L + 9.5 ns		15	_	40	80	
Propagation Delay Time	tPLH.			†		ns
Reset to Decade Output	1PHL		1			
tp_H, tpHL = (1.7 ns/pF) CL + 415 ns	'	5.0	-	500	1000]
tp_H, tpHL = (0.66 ns/pF) CL + 197 ns	ļ	10	1 –	230	460	i
tp_H_tpHL = (0.5 ns/pF) CL + 150 ns	i	15	-	175	350	Ì
Propagation Delay Time	tPLH,	 	 	†	 	ПS
Clock to Cout	1PHL		1			1
tp_H_ tpHL = {1.7 ns/pF} CL + 315 ns	1	5.0	l –	400	800	ł
tpLH_tpHL = (0.66 ns/pF) CL + 142 ns	ł	10	l –	175	350	1
tp[H, tpHL = (0.5 ns/pF) CL + 100 ns		15	j _	125	250	ì
Propagation Delay Time	PLH.		 			ns
Clock to Decode Output	1PHL			[1
tp_H_tpHL = (1.7 ns/pF) CL + 415 ns	"""	5.0	l _	500	1000	1
tp_H_tpHL = (0.66 ns/pF) CL + 197 ns		10	l _	230	460	ļ
tplH, tpHL = (0.5 ns/pF) CL + 150 ns		15	l _	175	350	İ
Turn-Off Delay Time	₹PLH			<u> </u>		ns
Reset to Court	760			ļ		1 '''
tp_H = (1.7 ns/pF) CL + 315 ns		5.0	l _	400	800	İ
tpl = (0.66 ns/pF) CL + 142 ns		10	l _	175	350	ĺ
tp_H = (0.5 ns/pF) CL + 100 ns		15	l –	125	250	
Clock Pulse Width	¹w(H)	5.0	250	125		ns
	·w(m)	10	100	50	l _	1
		15	75	35	1 _	
Clock Frequency	fcl	5.0	 	5.0	2.0	MHz
• •	,cı	10	i _	12	5.0	
		15	_	16	6.7	
Reset Pulse Width	tw(H)	5.0	500	250	 	ns
	·w(H)	10	250	125	I <u> </u>	""
	1	15	190	95	l _	
Reset Removal Time	trem	5.0	750	375		ns
	'rem	10	275	135		·"•
	1	15	210	105	1 =	
Clock Input Rise and Fall Time		5.0	 		L	├
order impartition dire i dit titille	t _{TLH} .	10	1	No Limit		-
		15	1	140 FIMIL		1
Olask Fackle Passa Time			 	1 476	T	
Clock Enable Setup Time	t _{su}	5.0	350	175	-	ns
		10	150	75	-	
· 		15	115	52		L
Clock Enable Removal Time	trem	5.0	420	260	_	ns
	l	10	200	100	-	1
·	i	15	140	70		<u> </u>

^{*}The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the iC's potential performance.

APPLICATIONS INFORMATION

Figure 3 shows a technique for extending the number of decoded output states for the MC14017B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

6-58

FIGURE 4 - AC MEASUREMENT DEFINITION AND FUNCTIONAL WAVEFORMS

PRESETTABLE DIVIDE-BY-N COUNTER

The MC14018B contains five Johnson counter stages which are asynchronously presettable and resettable. The counters are synchronous, and increment on the positive going edge of the clock.

Presetting is accomplished by a logic 1 on the preset enable input. Data on the Jam inputs will then be transferred to their respective \overline{Q} outputs (inverted). A logic 1 on the reset input will cause all \overline{Q} outputs to go to a logic 1 state.

Division by any number from 2 to 10 can be accomplished by connecting appropriate Ω outputs to the data input, as shown in the Function Selection table. Anti-lock gating is included in the MC14018B to assure proper counting sequence.

- Fully Static Operation
- Schmitt Trigger on Clock Input
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4018B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-05 to +180	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstq	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating | Plastic "P" Package | -12mW/°C from 65°C to 85°C | Ceramic "L" Package | -12mW/°C from 100°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{Out}) \leqslant V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14018B

CMOS MSI

(LOW POWER COMPLEMENTARY MOSI

PRESETTABLE DIVIDE-BY-N COUNTER

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

FUNCTIONAL TRUTH TABLE

Clock	Reset	Preset Enable	Jam Input	۵n
~	0	0	×	ān
5	0	0	х	Dn
×	0	1	0	1
×	0	1	1	0
х	1	×	х	1

*Dn is the Data input for that stage. Stage 1 has Data brought out to Pin 1.

PIN ASSIGNMENT

MC14018B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VOD	Tto	w*	i	25°C		Th	igh *	
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	_	0.05		0	0.05		0.05	Vdc
V _{ID} = V _{DD} or 0		10	l -	0.05	l –	0	0.05	-	0.05	
		15	_	0.05		0	0.05	-	0.05	
"1" Level	νон	5.0	4.95	-	4.95	5.0	_	4.95	_	Vdc
V _{In} = 0 or VDD		10	9.95	_	9.95	10	_	9.95	l –	
		15	14.95		14.95	15	l 	14.95	-	l
Input Voltage "O" Level	VIL									Vdc
(VO = 4.5 or 0.5 Vdc)	l	5.0	I –	1.5	-	2.25	1.5	-	1.5	
(V _O = 9.0 or 1.0 Vdc)		10	l –	3.0	-	4.50	3.0		3.0	l
(V _O = 13.5 or 1.5 Vdc)		15		4.0	<u> </u>	6.75	4.0	_	4.0	
"1" Level	VIH			1		1				
(V _O = 0.5 or 4.5 Vdc)		5.0	3.5	-	3.5	2.75	_	3.5	_	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	_	7.0	-	ļ
(V _O = 1 5 or 13.5 Vdc)		15	11.0	<u> </u>	11.0	8.25	-	11.0	-	
Output Drive Current (AL Device)	ЮН			1						mAdc
(V _{DH} = 2.5 Vdc) Source		5.0	-3.0	_	-2.4	-4.2	_	-1.7	-	1
(V _{OH} = 4.6 Vdc)		5.0	-0.64	_	-0.51	-0.88	-	-0.36	_	
(V _{OH} = 9.5 V _{dc})	ľ	10	-1.6	_	-1.3	-2.25	-	-0.9	_	1
(V _{OH} = 13.5 Vdc)		15	-4.2		-3.4	-8.8		-2.4		ļ
(VOL =0.4 Vdc) Sink	IOL	5.0	0.64	_	051	0.88	-	0.36	_	mAdc
(V _{DL} = 0.5 Vdc)		10	1.6	_	1.3	2.25	_	0.9	-	
(V _{OL} = 1.5 Vdc)		15	4.2	_	3.4	8.8	-	2.4		
Output Drive Current (CL/CP Device)	ЮН	_			I					mAdc
(V _{DH} = 2.5 Vdc) Source		5.0	-2.5	-	-2.1	-4.2	_	-1.7	_	
(V _{OH} = 4.6 Vdc)		5.0	-0.52	ļ –	-0.44	-0.88	_	-0.36	_	l
(V _{OH} = 9.5 Vdc)		10	-1.3] -	-1.1	-2.25	_	-0.9	_	1
(V _{OH} = 13.5 Vdc)		15	-3.6		-3.0	-8.8		-2.4	_	
(VOL = 0.4 Vdc) Sink	10L	5.0	0.52	-	0.44	0.88	-	0.36	_	mAdc
(V _{OL} = 0.5 Vdc)	1	10	1.3	_	1.1	2.25	_	0.9	_	[
(V _{OL} = 1.5 Vdc)		15	3.6	_	3.0	8.8	_	24	_	
Input Current (AL Oevice)	l _{in}	15	1	±01	-	±0.00001	20.1		±10	μAdc
Input Current (CL/CP Device)	lin	15	–	103	l –	±0.00001	±0.3	_	11.0	μAdc
Input Capacitance (V _{in} = 0)	Cin			-	_	50	7.5	_	_	ρF
Quièscent Current (AL Device)	1 _{DD}	5.0	_	5.0		0.005	5.0		150	μAdc
(Per Package)		10	l –	10	l –	0.010	10	-	300	[
		15	-	20	_	0.015	20		600	
Quiescent Current (CL/CP Device)	¹DD	5.0	I -	20	_	0,005	20		150	μAdc
(Per Package)	- 1	10	-	40	l –	0.010	40	-	300	<u> -</u>
		15	L	80		0.015	80	L !	600	
Total Supply Current**1	ŀт	5.0			IT = (0).3 µA/kHz)	f+ Inn			μAdc
(Dynamic plus Quiescent,		10	l		IT = (0	1.7 µA/kHz)	f + IDD			
Per Package)		15	i			.0 μA/kHz)				1
(CL 50 pF on all outputs, all			l		•		_			l
buffers switching)			l							l

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Dovice, +85°C for CL/CP Device.

₱Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. †To calculate total supply current at loads other than 50 pF

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$$

where: I $_T$ is in μ A (per package), C $_L$ in pF, V = (VDD - VSS) in volts, t in kHz is input frequency, and k = 0.001.

^{**}The formulas given are for the typical characteristics only at 25°C.

MC14018B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

	ľ	VDD	i	All Types	ì	
Characteristic	Symbol	Vdc	Min	Typ#	Max	Unit
Output Rise and Fall Time	TLH, THL			<u> </u>		ns
^t TLH, ^t THL = (1.35 ns/pF) C ₁ + 32 ns	'	5.0	 	100	200	
1TLH 1THL = (0.6 ns/pF) CL + 20 ns	1	10	l –	50	100	
tTLH, tTHL = (0.4 ns/pF) CL + 20 ns		15	_	40	80	
Propagation Delay Time	¹PLH-					nş
Clock to Q	1PHL				1	
tpլн,tpнլ = (0.90 ns/pF) Cլ + 265 ns	1	5.0	-	310	620	
tpլн,tpнլ = (0.36 ns/pF) Сլ + 102 ns		10	-	120	240	
tp_H,tpHL = (0.26 ns/pF) CL + 72 ns		15	-	85	170	
Reset to Q						nş.
tpLH = (0.90 ns/pF) CL + 325 ns	· · · · · · · · · · · · · · · · · · ·	5.0	_	370	740	
tpLH = (0.36 ns/pF) CL + 132 ns	1 1	10	l –	150	300	
tp[H = (0.26 ns/pF) C[+ 81 ns		15	-	100	200	
Preset Enable to Q	1		 	 		ns
tp[H,tpHL = (0.90 ns/pF) CL + 325 ns		5.0	_	370	740	
tpLH.tpHL = (0.36 ns/pF) CL + 132 ns	1	10	1 -	150	300	
tp_H,tpHL = (0.26 ns/pF) CL + 81 ns		15	l –	100	200	
Setup Time	t _{su}					ns.
Data (Pin 1) to Clock	30	5.0	200	0	-	
		10	100	ō	_	
		15	80	l ŏ l	_	
Jam Inputs to Preset Enable		5.0	200	0		ns
	1	10	100	ا ة ا	_ 1	•••
	{	15	80	0	_	
Data (Jam Inputs)-to-Preset	th	5.0	540	270		ns
Enable Hold Time	. "	10	500	250	_ i	
	Ì	15	480	240	_	
Clock Pulse Width	twH	5.0	400	200		ns
	1 ""	10	200	100	_	
		15	160	80	_	
Reset or Preset Enable	twн	5.0	290	145		nş
Pulse Width		10	130	65	-	
	1	15	110	55	- 1	
Clock Rise and Fall Time	TLH, THE	5.0		•		ns
		10	i	No Limit	!	
		15			l	
Clock Pulse Frequency	f _{cl}					MHz
	1 [5.0	-	2.5	1.25	
		10	-	6.5	3.25	
		15	l –	8.0	4.0	

^{*}The formulas given are for typical characteristics only at 25°C.

FIGURE 1 - SWITCHING TIME WAVEFORMS

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14020B

14-BIT BINARY COUNTER

The MC14020B 14-stage binary counter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This part is designed with an input wave shaping circuit and 14 stages of ripple-carry binary counter. The device advances the count on the negative-going edge of the clock pulse. Applications include time delay circuits, counter controls, and frequency-dividing circuits.

- Fully Static Operation
- Diode Protection on All Inputs . .
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Buffered Outputs Available from stages 1 and 4 thru 14
- Common Reset Line
- Pin-for-Pin Replacement for CD4020B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
v _{in} , v _{out}	Input or Output Voltage (DC or Translent)	-0.5 to V _{DQ} +0.5	>
lin, lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	ç
TL	Lead Temperature (8-Second Soldering)	260	۰c

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: - 12mW/*C from 65*C to 85*C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

14-BIT BINARY COUNTER

L SUFFIX CERAMIC PACKAGE P SUFFIX
PLASTIC PACKAGE
CASE 648

CASE 620

.

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

CLOCK	RESET	OUTPUT STATE
	0	No Change
_	0	Advance to next
×	1	All Outputs are low

X = Don't Care

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		Voo	Tic	w*		25°C		Th	igh *	_
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	_	0.05		0	0.05	-	0 05	Vdc
Vin = V _{DD} or 0	1	10	-	0.05	-	0	0.05	-	0.05	1
55		15		0.05	_	0	0 05		0 05	
"1" Level	νон	5.0	4.95	-	4.95	5.0	_	4 95	_	Vdc
V _{in} = 0 or V _{DD}	1	10	9.95	-	9.95	10	-	9.95	_	1
		15	14.95		14.95	15	_	14.95		
Input Voltage "0" Leve	ı v _ı L				F					Vdc
(Vn = 4.5 or 0.5 Vdc)	1	5.0	-	1.5	-	2.25	1.5	-	1.5	l
(VO = 9.0 or 1.0 Vdc)		10	-	3.0	-	4.50	3.0	-	3.0	
(VO = 13.5 or 1.5 Vdc)		15		4.0		6.75	40		4.0	<u> </u>
"1" Leve	I VIH									1
(Vo = 0.5 or 4.5 Vdc)	l i	5.0	3.5	-	3.5	2.75	-	3.5	-	Vdc
(V _O ≈ 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	_	ł
(V _D = 1.5 or 13.5 Vdc)	1	15	11.0	_	11.0	8.25	_	11.0		L
Output Drive Current (AL Device)	IOH									mAdc
(V _{DH} = 2.5 Vdc) Source		5.0	-3.0	-	~2.4	-4.2	-	1.7	_	l .
(VOH = 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	-	-0.36	_	l
(VOH = 9.5 Vdc)		10	-1.6	-	-1.3	-2.25	-	-0.9	_	!
(VOH = 13.5 Vdc)		15	-4.2		-3.4	-8.8	<u>'</u> —	-2.4	- '	
(VOL = 0.4 Vdc) Sink	OL	5.0	0.64		0.51	0.88	_	0.36	-	mAdc
(VOL = 0.5 Vdc)	"	10	1.6	l –	1.3	2.25		0.9	-]
(V _{OL} = 1.5 Vdc)		15	4.2	-	3.4	8.8	_	2.4	_	l
Output Drive Current (CL/CP Device)	ЮН				 			-		mAdc
(VOH = 2.5 Vdc) Source	1 5	5.0	-2.5	l –	-2.1	-4.2	-	-1.7	-	
(V _{OH} = 4.6 Vdc)		5.0	-0.52	l –	-0.44	-0.88		-0.36	_	
(VDH = 9.5 Vdc)		10	-1.3	! –	-1.1	-2.25	l –	-0.9	_	
(VOH = 13.5 Vdc)		15	-3.6	l –	-3.0	-8.8	-	-2.4	_	
(VOI = 0.4 Vdc) Sink	lOL	5.0	0.52	_	0.44	0.88		0.36		mAdc
(VOL = 0.5 Vdc)	"	10	1.3	l _	1.1	2.25	_	0.9	_	
(VOL = 1.6 Vdc)		15	3.6	_	3.0	8.8	l –	2.4	_	i
Input Current (AL Device)	lin	15	-	:01	-	±0 00001	±0.1		±1.0	μAdc
Input Current (CL/CP Device)	l _{in}	15	 	:03	 	±0 00001	±0.3	 	±10	μAdc
Input Capacitance	C _{in}		 _ 		-	5.0	7.5	 _ 		ρF
(V _{in} = 0)	Cin	_	-	-	_	30	7.5	-	_	"
Quiescent Current (AL Device)	IDD	5.0	_	50	 -	0.005	5.0	 _ 	150	μAdc
(Per Package)	1 .00	10	l _	10	l –	0.010	10	_ '	300	-
		15	-	20	l –	0.015	20	-	600	1
Ourescent Current (CL/CP Device)	¹op	5.0		20	-	0.005	20		150	µArlc
(Per Package)	"00	10	_	40		0.010	40		300	
		15	_	80	_	0.015	80	_	600	Į.
Total Supply Current**†	İŢ	5.0	 		1 10	.42 µA/kHz				#Adc
(Dynamic plus Quiescent,	''	10			17 - 10	.85 µA/kHz	11 100			1 -
Per Package)		15	1			A3 µA/kHz.				I
(C _L : 50 pF on all outputs, all		,,,			., (1					l
	1	1	1							1

^{*}Tlow = -55°C for AL Device, -40°C for CL/CP Device.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ V/k}$$

where, I_T is in μA (per package), C_L in pF, V = (VDD + VSS) in volts, I in kHz is input frequency, and k=0.001

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either v_{SS} or v_{DO}). Unused outputs must be left open.

PIN ASSIGNMENT

Thigh = + 125°C for AL Device. +85°G for CL/CP Device.

[◆]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[†]To calculate total supply current at loads other than 50 pF

^{**}The formulas given are for the typical characteristics only at 25°C

MC14020B

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} V _{de}	Min	Тур#	Max	Unit
Output Rise and Fall Time	tTLH.					ns
TTLH, TTHL = (1.5 ns/pF) CL + 25 ns	THL	5.0	l –	100	200	
TTLH, TTHL = (0.75 ns/pF) CL + 12.5 ns	""	10	! –	50	100	
T _{TLH} , T _{THL} = (0.55 ns/pF) C _L + 9.5 ns		15	-	40	80	
Propagation Delay Time	tPLH:					
Clock to Q1	†PHL	Ī				ns
tpHL, tpLH = (1.7 ns/pF) CL + 175 ns	'''	5.0	_	260	520	
tpHL, tpLH = (0.66 ns/pF) CL + 82 ns		10	1 –	115	230	i
t_{PHL} , $t_{PLH} = (0.5 \text{ ns/pF}) C_L + 55 \text{ ns}$	i	15	_	во	160	
Clock to Q14						ns
tpHL, tpLH = (1.7 ns/pF) CL + 1735 ns		5.0	_	1820	3900	
tpHL, tpLH = (0.66 ns/pF) CL + 772 ns	i	10	l –	805	1725	
tpHL, tpLH = (0.5 ns/pF) CL + 535 ns		15	–	560	1200	<u>'</u>
Propagation Delay Time	^t PHL					ns
Reset to On	'					ŧ
tpHL = (1.7 ns/pF) CL + 285 ns		5.0	l –	370	740	
tpHL = (0.66 ns/pF) CL + 122 ns		10	_	155	310	
tpHL = (0.5 ns/pF) C _L + 90 ns		15	_	115	230	
Clock Pulse Width	twH	5.0	500	140	_	ns
		10	165	55	_	
		15	125	38	_	l
Clock Pulse Frequency	fci	5.0		2.0	1.0	MHz
	"	10	l –	6.0	3.0	
		15	-	8.0	4.0	
Clock Rise and Fall Time	TLH, THL	5.0				_
	''	10	1	No Limit		1
		15	}			
Reset Pulse Width	tw.	5.0	3000	320	_	ns
	"-	10	550	120	–	
		15	420	80		l
Reset Removal Time	trem	5.0	130	65	_	ns
	'`	10	50	25	_	
	1	15	30	15	_	1

[&]quot;The formulas given are for the typical characteristics only at 25°C.

#Data tabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

MC14020B

FIGURE 3 - TIMING DIAGRAM

OCTAL COUNTER

The MC14022B is a four-stage Johnson octal counter with built-in code converter. High-speed operation and spike-free outputs are obtained by use of a Johnson octal counter design. The eight decoded outputs are normally low, and go high only at their appropriate octal time period. The output changes occur on the positive-going edge of the clock pulse. This part can be used in frequency division applications as well as octal counter or octal decode display applications.

- Fully Static Operation
- DC Clock Input Circuit Allows Slow Rise Times
- · Carry Out Output for Cascading
- Divide-by-N Counting
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4022B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-05 to +18.0	V
V _{In} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
Jin- Jout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ralings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: -12mW/"C from 65°C to 85°C Ceramic "L" Package: -12mW/"C from 100°C to 125°C

MC14021B See Page 6-37

MC14022B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOSI OCTAL COUNTER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

FUNCTIONAL TRUTH TABLE (Positive Logic)

	CLOCK		
CLOCK	ENABLE	RESET	OUTPUT = n
0	х	0	n
×	1	0	n
	0	0	n+1
~	×	0	n
,		0	n+1
×		0	n
×	x	1	00

Don't Care If n < 4 Carry # 1, Otherwise = 0

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	Tic	w* ·		25°C		Th	igh *	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0	" Level	VOL	5.0		0.05	_	0	0.05	-	0.05	Vdc
Vin = VDD or 0			10	–	0.05	-	0	0.05	-	0.05	
. :			15		0.05	_	0	0.05		0.05	
"1	" Level	νон	5.0	4.95	-	4.95	5.0	_	4.95	-	Vdc
Vin = 0 or VDD			10	9.95	-	9.95	10	_	9.95	l –	ľ
			15	14.95	_	14.95	15	_	14.95	_	<u> </u>
•	"O" Level	VIL				ļ]		Vdc
(V _O = 4.5 or 0.5 Vdc)			5.0	_	1.5	-	2.25	1.5	-	1.5	ľ
(V _O = 9.0 or 1.0 Vdc)			10	-	3.0	-	4.50	3.0	-	3.0	ì
(V _O = 13.5 or 1.5 Vdc)			15	<u> </u>	4.0		6.75	4.0		4.0	├
	"1" Level	VIH			•	ł			1	•	l
(V _O = 0.5 or 4.5 Vdc)		ĺ	5.0	3.5	_	3.5	2.75	_	3.5	_	Vdc
(V _O = 1.0 or 9.0 Vdc)			10	7.0	-	7.0	5.50	-	7.0	_	ł
(Vo = 1.5 or 13.5 Vdc)			15	11.0		11.0	8.25		11.0		
Output Drive Current (AL Dev		ЮН		۱		١.,	٠		ا م	!	mAdc
	nice		5.0	-3.0	-	-2.4	-4.2	-	-1.7	_	i
(V _{OH} = 4.6 Vdc)	i		5.0 10	-0.64 -1.6	_	-0.51 -1.3	-0.88	-	-0.36		ĺ
(V _{OH} = 9.5 Vdc)	1		15	-1.8 -4.2	_	-3.4	-2.25 -8.8	-	-0.9 -2.4	- <u>-</u>	ì
(V _{OH} = 13.5 Vdc)											
(V _{OL} =0.4 Vdc) Sin	ik	IOL	5.0	0.64	_	0.51	0.88 2.25	-	0.36	_	mAdc
(V _{OL} =0.5 Vdc)			10 15	1.6 4.2	_	1.3 3.4	8.8		0.9 2.4	_	
(VOL = 1.5 Vdc)			15	4.2		3.4	8.8	- :	2.4		└
Output Drive Current (CL/CP		IOH		ا ـ ـ ا		١				ľ	mAde
	nice		5.0	-2.5	-	~2.1	-4.2	_	-1.7	_	
(V _{OH} = 4.6 Vdc)			5.0 10	-0.52	_	-0.44	-0.88	_	-0.36	-	ŀ
(VOH = 9.5 Vdc)	Į.		15	-1.3		-1.1	-2.25 -8.8		-0.9	-	į,
(V _{OH} = 13.5 Vdc)	_			-3.6		-3.0			-2.4		<u> </u>
(VOL = 0.4 Vdc) Sin	ik	'OL	5.0	0.52	_	0.44	0.88	-	0.36	-	mAdc
(V _{DL} = 0.5 Vdc)	1		10. 15	1.3 3.6	_	1.1	2.25 8.8	-	0.9	_	ŀ
(V _{OL} =1,5 Vdc)						3.0			2.4		
Input Current (AL Device)		lin	15		±0.1		±0.00001	±0.1		± 1.0	μAdc
Input Current (CL/CP Device)		lin	15		± 0.3	_	±0.00001	±0.3		±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	-	_	1	-	5.0	7.5	-	-	pF
Quiescent Current (AL Device) .	lpp	5.0	_	5.0	—	0.005	5.0		150	μAdc
(Per Package)			10	_	10	-	0.010	10	–	300	1
	l		15	–	20	_	0.015	20	! –	600	
Quiescent Current (CL/CP Dev	rice)	'DD	5.0		20	_	0.005	20	_	150	μAdc
(Per Package)			10	1	40	_	0.010	40	_	300	1
	l		15	-	80		0.015	80		600	L
Total Supply Current**1		ĺΤ	5.0			IT = (0	.28 µA/kHz) f + Inn			μAdc
(Dynamic plus Quiescent,		, i	10	Ì			.56 μA/kHz				l
Per Package)			15	l			85 µA/kH2				I
(CL = 50 pF on all outputs	, all			1		•					1
buffers switching)											<u>L</u> .

 $^{^{\}circ}T_{10W} = -55^{\circ}C$ for AL Device, $-40^{\circ}C$ for CL/CP Device.

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.00125.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \ll (V_{in} \text{ or } V_{out}) \ll V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be teft open.

NC = No Connection

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

MC14022B

SWITCHING CHARACTERISTICS* (C1 = 50 pf. TA = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
Output Rise and Fail Time	¹TLH-					ns
tTLH. 1THL = (1.5 ns/pF) CL + 25 ns	†THL	5.0	[_	100	200	
tTLH. tTHL = (0.75 ns/pF) CL + 12.5 ns	,	10	! –	50	100	
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns	i	15	-	40	80	1
Propagation Delay Time	tPLH.		l —			ns
Reset to Decode Output	1PHL	1	1			t
tp[H, tpHL = (1.7 ns/pF) CL + 415 ns	1	5.0	-	500	1000	1
tp_H, tpHL = (0.66 ns/pF) CL + 197 ns		10	-	230	460	
tPLH, tPHL = (0.5 ns/pF) CL + 150 ns	l	15	1 -	175	350	1
Propagation Delay Time	¹PLH.	1				ns
Clock to Cout	†PHL		Į.	[
tp_H, tpHL = (1.7 ns/pF) CL + 315 ns		5.0) –	400	800	
tpLH, tpHL = (0.66 ns/pF) CL + 142 ns		10	-	175	360	l
tp_H, tpHL = (0.5 ns/pF) CL + 100 ns	ļ.	15	_	125	250	l
Propagation Delay Time	tPLH,					ns
Clock to Decode Output	1PHL	i	ŀ	,		l
tp_H, tpHL = (1.7 ns/pF) CL + 415 ns	1	5.0	-	275	1000	j j
tp_H, tpHL = (0.66 ns/pF) CL + 197 ns		10	-	125	460	l
tPLH, tPHL = 0.5 ns/PF) CL + 150 ns		15		95	350	
Turn-Off Delay Time	1PLH					ns
Reset to Cout		1			1	1
tp_H = (1.7 ns/pP) C _L + 315 ns	j	5.0	j –	400	800	l
tp_H = (0.66 ns/pF) C _L + 142 ns		10	-	175	350	
tpLH = (0.5 ns/pF) CL + 100 ns		15	-	125	250	
Clock Pulse Width	twH	5.0	250	125		ns
	İ	10	100	50	-	1
		15	75	35		l
Clock Frequency	fci	5.0	-	5.0	2.0	МН
		10	i –	12	5.0	
		-15	l –	16	6.7	
Reset Pulse Width	₩H	6.0	500	250	_	ns
		10	250	125	l –]
		15	180	95	_	
Reset Removal Time	t _{rem}	5.0	750	375.		ns
• ,	,	10	276	135	l –	1
•		15	210	105	-	
Clock Input Rise and Fall Time	ITLH, ITHL	5.0				_
	1 3,	10		No Limit		1
	I	15				l
Clock Ensbie Setup Time	tsu	5.0	350	175	<u> </u>	ns
•	~	10	150	75	_	1
		15	115	52]
Clock Enable Removal Time	t _{rem}	5.0	420	260		ns
	""	10	200	100	_	l "
		15	140	70	I _	ı

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14022B

APPLICATIONS INFORMATION

Figure 3 shows a technique for extending the number of decoded output states for the MC140228. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

FIGURE 3 - COUNTER EXPANSION

MC14023B See Page 6-5

MC14023UB See Page 6-14

MC14024B

CMOS SSI

(LOW-POWER COMPLEMENTARY MOSI

7-STAGE RIPPLE COUNTER

7-STAGE RIPPLE COUNTER

The MC14024B is a 7-stage ripple counter with short propagation delays and high maximum clock rates. The Reset input has standard noise immunity, however the Clock input has increased noise immunity due to Hysteresis. The output of each counter stage is buffered.

- Diode Protection on All Inputs
- Output Transitions Occur on the Falling Edge of the Clock Pulse
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4024B

MAXIMUM RATINGS* (Voltages Referenced to Vss)

III/AAIIII	UM NATINGS (Voltages Hererenced to VSS)		
Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
l _{in} . l _{out}	Input or Oulput Current (DC or Transient), per Pin	±10	mA
PD	Power Dissipation, per Packaget	500	mW
Tstg	Storage Temperature	-65 to +150	ů
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MC14024B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

] !	V _{DD}	T _{low} *		25°C			T _{high} *		J
Characteristic	Symbol	Vdc	Min	Max	Min	Typ #	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	<u> </u>	0.05	_	0	0.05	-	0.05	Vdc
V _{in} ≈ V _{DD} or 0		10	-	0.05	-	0	0.05	1 - 1	0.05	i
		15		0.05		0	0.05		0.05	
"1" Level	VOH	5.0	4.95	_	4.95	5.0	-	4.95	_	Vdc
Vin = 0 or VDD		10	9.95	-	9.95	10	_	9.95	_	1
		15	14.95	_	14.95	15	-	14.95		
Input Voltage "0" Leve	VIL									Vdc
(VO = 4.5 or 0.5 Vdc)		5.0	-	1.5	. –	2.25	1.5	-	1.5	l
(VO = 9.0 or 1.0 Vdc)		10	-	3.0	-	4.50	3.0	-	3.0	l
(VO = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0		4.0	Ь
"1" Leve	VIH				1			l i		ı
(V _O = 0.5 or 4.5 Vdc)	1	5.0	3.5		3.5	2.75	-	3.5	-	Vdc
$(V_0 = 1.0 \text{ or } 9.0 \text{ Vdc})$		10	7.0	-	7.0	5.50	_	7.0	_	1
(VO = 1 5 or 13.5 Vdc)	1	15	11.0	-	11.0	8.15	-	11.0	_	
Output Drive Current (AL Device)	ГОН									mAdd
(VOH = 2.5 Vdc) Source		5.0	-3.0	-	-2.4	-4.2	_	-1.7	-	1
(VOH = 4.6 Vdc)	1	5.0	-0.64	-	-0.51	-0.88	-	-0.36	-	1
(VOH = 9.5 Vdc)	1	10	-1.6	 -	-1.3	-2.25	_	-0.9	-	i
(VDH = 13.5 Vdc)		15	-4.2	l – .	-3.4	-8.8		-2.4		
(VOI = 0.4 Vdc) Sink	IOL	5.0	0.64	-	0.51	0.88	-	0.36	-	mAdd
(VOf ≈ 0.5 Vdc)	"	10	1.6	-	1.3	2.25	_	0.9	_	l
(VOL = 1.5 Vdc)	1	15	4.2	l –	3.4	8.8	_	2.4	-	
Output Orive Current (CL/CP Device)	Юн									mAdo
(VOH = 2.5 Vdc) Source	"	5.0	-2.5	l –	-2.1	-4.2	_	-1.7	-	
(VOH = 4.6 Vdc)		5.0	-0.52	_	-0.44	-0.88	_	-0.36	_	i
(V _{OH} = 9.5 Vdc)		10	-1.3	_	-1.1	-2.25	_	-0.9	-	Į .
(VOH = 13.5 Vdc)	i	15	-3.6	_	-3.0	-8.8	_	-2.4	_	1
(VOL ≠0.4 Vdc) Sink	IOL	5.0	0.52		0.44	0.88	-	0.36		mAdd
(VOL ≈ 0.5 Vdc)	1 .00	10	1.3	l –	1.1	2.25	_	0.9	_	1
(VOL = 1.5 Vdc)		15	3.6	l _	3.0	8.8	_	2.4	_	i
Input Current (AL Device)	lin	15		±0.1	_	± 0.00001	±0.1	- 1	11.0	μAdc
Input Current (CL/CP Device)	l _{in}	15	 	10.1	_	±0.00001	±0.3	_	± 1.0	μAdo
								-	- 1.0	<u> </u>
Input Capacitance (V _{in} = 0)	Cin	_	-	-	-	5.0	7.5	-	_	ρF
	 					0.000	5.0			μAdo
Quiescent Current (A.L. Device) (Per Package)	OO	5.0 10	_	5.0 10	l <u> </u>	0.005 0.010	10		150	µAGC
(гег гаскадел	1	15	_	20	l =	0.010	20		300 600	
	 									.
Quiescent Current (CL/CP Device)	DD	5.0	-	20	-	0.005	20	-	150	μAdo
(Per Package)		10	-	40	_	0.010	40	-	300	l .
		15		80		0.015	80		600	
Total Supply Current**1	l IT	5.0				31 µA/kHz				μAdd
(Dynamic plus Quiescent,		10	1			60 µA/kHz				1
Per Package)		15			¹T *{0.	89 µA/kHz) + DD			l
(CL = 50 pF on all outputs, all										l
buffers switching)	1	l	I							ì

[&]quot;T_{low} = -55°C for AL Dovico, -40°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

†To calculate total supply current at loads other than 50 pF:

where: IT is in μA (per package), CL in pF, V = (VDD - VSS) in volts. f in kHz is input frequency, and k = 0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} < (V_{in} or V_{out}) < V_{DD}. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Thigh = +125°C for AL Dovico. +85°C for CL/CP Device.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

MC14024B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	Vop	Min	Typ#	Max	Unit
Output Rise and Fall Time	tTLH.					N\$
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns	1THL	5.0	 	100	200	
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns	"""	10	-	50	100	
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns		15	-	40	80	
Propagation Delay Time	₹PLH.					ns
Clock to Q1	₹PHL	İ	ŀ			
tp_H, tpHL = (1.7 ns/pF) CL + 295 ns	1	5.0	١ –	380	600	
tpլн, tpнլ = (0.66 ns/pF) Cլ + 117 ns	ľ	10	1 -	150	230	
tp_H, tpHL = (0.5 ns/pF) CL + 85 ns		15	-	110	175	
Clock to Q7						
tpLH, tpHL = (1,7 ns/pF) CL + 915 ns		5.0	-	1000	2000	1
tplH, tpHL = (0.68 ns/pF) CL + 387 ns		10	-	400	750	
tpLH, tpHL = (0.5 ns/pF) CL + 275 ns		15	-	300	565	
Reset to Q _n	İ		1			1
tpLH, tpHL = (1.7 ns/pF) CL + 415 ns		5.0	_	500	800	
tpLH, tpHL = (0.66 ns/pF) CL + 217 ns	•	10	_	250	400	
tp_H, tpHL = (0.6 ns/pF) CL + 166 ns		15	_	180	300	
Clock Pulse Width	₩H	5.0	500	200	-	FIS.
	l	10	165	60	_	Ì
		15	125	40		
Reset Pulse Width	₩H	5.0	600	375	_	ns
		10	350	200	_	l
		15	260	150	_	
Reset Removal Time	trem	5.0	625	250	_	กร
		10	190	75	-	}
	j	15	145	50	i	
Clock Input Rise and Fall Times	TLH, THL	5.0	_	_	1.0	8
	1,	10	l –	l – '	8.0	ms
		15		l. –	200	μ5
Input Pulse Frequency	fel	5.0		2.5	1.0	MHz
	, ei	10	-	8.0	3.0	i
		15	-	. 12	4.0	l

^{*}The formulas given ere for the typical characteristics only at 25°C.

TRUTH TABLE

CLOCK	RESET	STATE
0	0	No Change
Ŏ	1	All Outputs Low
1	0	No Change
1	1	All Outputs Low
	0	No Change
	1	All Outputs Low
	0	Advance One Count
	1	All Outputs Low

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14024B

FIGURE 1 - TYPICAL OUTPUT SOURCE CHARACTERISTICS TEST CIRCUIT

FIGURE 2 — TYPICAL OUTPUT SINK CHARACTERISTICS TEST CIRCUIT

FIGURE 3 - POWER DISSIPATION TEST CIRCUIT

FIGURE 4 - FUNCTIONAL WAVEFORMS

Input tTLH and tTHL = 20 ns

MC14025B See Page 6-5

MC14025UB See Page 6-14

MC14027B

CMOS SSI

(LOW-POWER COMPLEMENTARY MOSI

DUAL J.K FLIP-FLOP

Rangul M

L SUFFIX CERAMIC PACKAGE CASE 620

LASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

DUAL J.K FLIP-FLOP

The MC14027B dual J-K flip-flop has independent J, K, Clock (C), Set (S) and Reset (R) inputs for each flip-flop. These devices may be used in control, register, or toggle functions.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Swing Independent of Fanout
- Logic Edge-Clocked Flip-Flop Design —
 Logic state is retained indefinitely with clock level either high or low; information is transferred to the output only on the positive-going edge of the clock pulse
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4027B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

t = Level Change

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-05 to +180	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-05 to V _{DD} +05	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

	_	INP	ITC			QUTE	UTS*	ı
	_		_		1 - A			
C1	J	K	S	FI	O _n ‡	Q _{n+1}	O _{n+1}	
	1	Х	0	0	0	1	0	l
7	х	0	0_	0	1	1	0	
	0	х	0	0	0	0	1	
7	×	1	0	0	1	0	1	
5	1	1	0	0	Qo	Qo	Qo	
~	х	×	0	0	×	an	Q _n	1
х	х	×	1	0	Х	1	0]
×	x x		0	1	х	0	1_	ļ
х	×	х	1	1	х	1	- 1	
X = Do			1	- Pres	ent St	10		

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

. - Next State

Change

MC14027B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

	j (VDD	T _k	w*		25°C		Th	igh °	
Characteristic	Symbol	Vdc	Min	Max	Min	Typ #	Max	Min	Max	Unit
Output Voltage "O" Level	VOL	5.0	_	0.05		0	0.05		0.05	Vdc
Vin - VDD or 0		10	- :	0.05	_	0	0.05	-	0.05	l
	l	15	l – '	0.05	-	0	0.05	1 – 1	0.05	}
"1" Level	VOH	5.0	4.95	_	4.95	5.0	_	4.95	_	Vdc
Vin = 0 or VDD		10	9.95	_	9.95	10	 	9.95	_	
<u> </u>	1	15	14.95	 	14.95	15	_	14.95	_	
Input Voltage "O" Level	VIL				i	T				Vdc
(Vo = 4.5 or 0.5 Vdc)		5.0	l –	1.5	l –	2.25	1.5	1 1	1.5	1
(Vo = 9.0 or 1.0 Vdc)	1	10	l –	3.0	-	4.50	3.0	i - I	3.0	į.
(V _O ≈ 13.5 or 1.5 Vdc)		15		4.0	_	6.75	4.0	L I	4.0	İ
"1" Level	VIH									
(V _O = 0.5 or 4.5 Vdc)		5.0	3.5	-	3.5	2.75	_	3.5		Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	- 1	7.0	5.50	l –	7.0	_	1
(VO = 1.5 or 13.5 Vdc)		15	11.0	 	11.0	8.25	-	11.0	_	
Output Drive Current (AL Device)	IDH									mAde
(VOH = 2.5 Vdc) Source	•	5.0	-3.0	_	-2.4	-4.2		-1.7		
(VOH = 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	l –	-0.36	-	i
(VOH = 9.5 Vdc)	l	10	-1.6	l –	-1.3	-2.25	۱ –	-0.9		1
(V _{OH} = 13.5 Vdc)	1	15	-4.2	_	~3.4	-8.8		-2.4	_	i
(VOL = 0.4 Vdc) Sink	lOL	5.0	0.64		0.51	0.88		0.36		mAdo
(VOL = 0.5 Vdc)	0.	10	1.6	_	1.3	2.25	_	0.9	_	
(VOL = 1.5 Vdc)		15	4.2	_	3.4	8.8	_	2.4	_	
Output Drive Current (CL/CP Device)	ТОН			 						mAde
(VOH= 2.5 Vdc) Source	ן ייטי ן	5.0	-2.5	l _	-2.1	-4.2	l _	-1.7		11111111
(V _{OH} = 4.6 Vdc)		5.0	-0.52		-0.44	-0.88	_	-0.36	_	
(VOH = 9.5 Vdc)	l .	10	-1.3	_	-1.1	-2.25	_	-0.9	_	ł
(VOH= 13.5 Vdc)	l (15	-3.6	_	-3.0	-8.8	l _	-2.4	_	l
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.52		0.44	0.88		0.36		mAde
(VOL = 0.5 Vdc)	ן יטר ן	10	1.3	_	1.1	2.25	_	0.9	_	1
(VOL = 1.5 Vdc)		15	3.6	_	3.0	8.8		2.4		ļ
Input Current (AL Device)	lin	15		10.1	-	±0.00001	±0.1		11.0	иAdc
					<u> </u>					
Input Current (CL/CP Device)	l _{in}	15		± 0.3		±0.00001	±0.3		± 1.0	μAdc
Input Capacitance (V _{in} = 0)	Cin	1	_	-	_	5.0	7.5	_	_	pF
Quiescent Current (AL Device)	1DD	5.0	_	1.0	_	0.002	1.0	$\overline{}$	30	μAdc
(Per Package)		10	! -	2.0	l –	0.004	2.0	-	60	1
	ĿI	15	!	4.0	L <u>-</u>	0.006	4.0	-	120	ı
Quiescent Current (CL/CP Device)	IDD	5.0		4.0	-	0.002	4.0		30	иAdc
(Per Package)		10	_	8.0	_	0.004	8.0	1 – 1	60	
		15	l –	16		0.006	16	-	120	i
Total Supply Current**†	IT	5.0			(T = /O	80 µA/kHz				μΑσс
(Dynamic plus Quiescent,	'	10			T = (1	80 µA/kHz	100			است
Per Package)		15				40 µA/kHz				l
(C) = 50 pF on all outputs, all	1				, 12.					1
buffers switching)	1		l							l

^{*}Tiow = -55°C for AL Device, -40°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

**The formulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ V1k}$$

where: IT is in μA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.002.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

MC14027B

SWITCHING CHARACTERISTICS* (C1 = 50 pF. TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time	tTLH.					ns
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	THL	5.0	_	100	200	
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns	THE	10	۱ –	50	100	1
t _{TLH} , t _{THL} = (0.55 ns/pF) C _L + 12.5 ns	i	15	-	40	80	Ì
Propagation Delay Times**	₹PLH,					R\$
Clock to Q, Q	TPHL			[
tp_H. tpHL = (1.7 ns/pF) CL + 90 ns		5.0	l -	175	350	
tpLH, tpHL = (0.86 ns/pF) CL + 42 ns	[10	- 1	75	150	l
tplH, tpHL = (0.6 ns/pF) CL + 25 ns	J	15	-	50	100	ł
Set to Q, Q			<u> </u>			1
tp_H, tpHL = (1.7 ns/pF) C _L + 90 ns	ļ	5.0	Ξ	175	350	
tplH, tpHL = (0.66 ns/pF) CL + 42 ns		10	_	75	150	
tpլн, tpнլ = (0.6 ns/pF) Сլ + 25 ns	j	15	-	50	100	1
Reset to Q, Q						ĺ
tpLH. tpHL = (1.7 ns/pF) CL + 265 ns		5.0] -	350	450	
t_{PLH} , $t_{PHL} = (0.88 \text{ ns/pF}) C_L + 87 \text{ ns}$		10	-	100	200	l
tpլн, tpнլ = (0.5 ns/pF) C _L + 50 ns		15	-	78	150	L .
Setup Times	tsu	5.0	140	70		ns
	1	10	- 50	25	-	ì
		15	35	17		L
Hold Times	ŧh.	5.0	140	70	i –	ns.
	"	- 10	. 50	26	-	.
		15	35	17		
Clock Pulse Width	WH. WL	5.0	330	165	_	ពន
		10	110	58	-	ļ
		15	75	38	_	ł
Clack Pulse Frequency	1 _{cl}	6.0	_	3.0	1.5	MHz
	"	10	-	9.0	4.5	ŀ
	l	15	-	13	6.5	ł
Clock Pulse Rise and Fall Time	TLH, THL	5.0			15	μs
	120, 110	10		_	5.0	
		15	۱ –	i –	4.0	l
Removal Times	trem	5	90	10	l –	ns
	1	10	45	5	l –	i
		15	35	3	l –	1
Set						1
	1	5.	50	-30	۱ _	i .
		10	25	-15		1
Reset		15	20	-10	-	1
Set and Reset Pulse Width	HWP	5.0	250	125		ns
	ì	10	100	50	-	•
<u> </u>		15	70	35		<u> </u>

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[₱]Data labelled "Typ" is not to be used for design purposes but is
intended as an indication of the IC's potential performance.

MC14027B

FIGURE 1 - DYNAMIC SIGNAL WAVEFORMS
(J, K, Clock, and Output)

FIGURE 2 — DYNAMIC SIGNAL WAVEFORMS (Sot, Resot, Clock, and Output)

LOGIC DIAGRAM (1/2 of Device Shown)

BCD-TO-DECIMAL DECODER BINARY-TO-OCTAL DECODER

The MC14028B decoder is constructed so that an 8421 BCD code on the four inputs provides a decimal (one-of-ten) decoded output, while a 3-bit binary input provides a decoded octal (one-of-eight) code output with D forced to a logic "0". Expanded decoding such as binary-to-hexadecimal (one-of-16), etc., can be achieved by using other MC14028B devices. The part is useful for code conversion, address decoding, memory selection control, demultiplexing, or readout decoding.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- · Positive Logic Design
- Low Outputs on All Illegal Input Combinations
- Similar to CD4028B.

MAXIMUM RATINGS* (Voltages Referenced to Vss)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-05 to +180	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
I _{In} , I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package – 12mW/°C from 65°C to 85°C Ceramic "L" Package – 12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

BCD-TO-DECIMAL DECODER BINARY-TO-OCTAL DECODER

CERAMIC PACKAGE CASE 620 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series - 40°C to +85°C
MC14XXXBCP (Plastic Package)
MC14XXXBCL (Coramic Package)

TRUTH TABLE

INPUT															
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	١		INF	UT					0	UT	PU	Т			
0	ı	D	С	В	Α	Q 9	Q8	۵7	Q6	Ω5	Q4	QЗ	Q 2	Q١	QΟ
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	١	0	0	0	1	0	0	0	0	0	0	0	0	1	0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	ı	0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	ı	0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	ı	0	1	0	1	0	0	0	0	1	0	٥	0	0	0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ı	0	1	1	0	0	0	0	ī	0	0	0	0	0	0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	١	0	1	1	1	0	0	1	0	0	0	_0_	0	0	0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ı	1	0	0	0	0	1	0	0	0	0	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	1	0	0	1	1	0	0	0	0	0	0	0	D	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	1	0	1	0	0	0	0	0	0	0	0	0	0	0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ı	1	0	1	1	0	0	0	0	0	0	0	0	0	0
1 1 1 0 0 0 0 0 0 0 0 0 0	ı	1	1	0	0	0	0	0	0	٥	0	0	0	0	0
	ı	1	1	0	1	0	0	0	0	0	0	0	0	0	0
1 1 1 1 0 7 7 0 0 0 0 0 0 0	Į	1	1	1	0	0	0		0	0	0	0	0	0	0
	į	1	1	1	1	0		2	0	0	0	0	0	0	0

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		Vpp	Tic	w*		25°C		T _{hi}	gh •	1
Characteristic	Symbol	Vdc	Min	Mex	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0		0.05		0	0.05	_	0.05	Vdc
V _{In} = V _{DD} or 0	1 1	10	i - '	0.05	! -	0	0.05	1 - 1	0.05	i i
		15		0.05		0	0.05		0.05	
"1" Level	VOH	5.0	4.95	_	4.95	5.0	-	4.95	-	Vdc
Vin = 0 or VDD		10	9.95	-	9.95	10	-	9.95		
		15	14.95		14.95	15		14.95		
Input Voltage "0" Level	٧L									Vdc
(V _O = 4.5 or 0.5 Vdc)	i .	5.0	-	1.5		2,25	1.5	- 1	1.5	1
(Vo = 9.0 or 1.0 Vdc)	1 1	10	-	3.0	} -	4.50	3.0	1 - 1	3.0	1
(V _O = 13.5 or 1.5 Vdc)		15	L=_	4.0	<u> </u>	6.75	4.0		4.0	Ļ
"1" Level	VIH		l .	ļ	l			1 1		1
(V _O = 0.5 or 4.5 Vdc)	1 1	5.0	3.5	_	3.5	2.75	_	3.5	-	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	_	l
(V _O = 1.5 or 13.5 Vdc)		15	11.0	_	11.0	8.25	-	11.0		
Output Drive Current (AL.Device)	ЮН									mAdo
(VOH = 2.5 Vdc) Source	, ,	5.0	-3.0	-	-2.4	-4.2	-	-1.7	_	l
(V _{OH} = 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	-	-0.36	_	
(V _{OH} = 9.5 Vdc)		10	-1.6	-	-1.3	-2.25	-	-0.9	_	į
(V _{OH} = 13.5 Vdc)		15	-4.2		<u>-3.4</u>	-8.8_	-	-2.4		<u> </u>
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.64	-	0.51	0.88	-	0.36	_	mAdd
(VOL = 0.5 Vdc)	Į į	10	1.6	-	1.3	2.25	-	0.9	-	l .
(VOL = 1.5 Vdc)		15	4.2	L -	3.4	8.6	-	2.4	-	I
Output Drive Current (CL/CP Device)	ЮН									mAdo
(VOH = 2.5 Vdc) Source		5.0	-2.5	l –	-2.1	-4.2	-	-1.7		Į.
(V _{OH} = 4.6 Vdc)		5.0	-0.52	-	-0.44	-0.86	-	-0.36	-	l
(V _{OH} = 9.5 Vdc)		10	-1.3	 	-1.1	-2.25	-	-0.9	_	i
(V _{OH} = 13.5 Vdc)		15	-3.6		-3.0	-8.8_	_	-2.4		l
(VOL = 0.4 Vdc) Sink	toL	5.0	0.52	-	0.44	0.88	-	0.36	_	mAdo
(VOL = 0.5 Vdc)	1 1	10	1.3	_	1.1	2.25	_	0.9	_	ł
(VOL = 1.5 Vdc)		15	3.6	l –	3.0	8.8	_	2.4	-	l
Input Current (AL Device)	lin	15		± 0.1	, -	±0.00001	±0.1	-	±1.0	μAdo
Input Current (CL/CP Device)	lin	15	_	± 0.3		±0.00001	±0.3	_	±1.0	μAdo
Input Capacitance	Cip				_	5.0	7.5	_		oF.
(V _{in} = 0)	""			1				, 1		-
Quiescent Current (AL Device)	IDD	5.0	_	5.0	 	0.005	5.0		150	#Adc
(Per Package)	ן יייי	10		10	١ ـ	0.010	10	l - I	300	
-		15	l – I	20	_	0.015	20	I - I	600	I
Quiescent Current (CL/CP Device)	100	5.0		20		0.006	20	 	160	иAdc
(Per Package)	.00	10		40	_	0.010	40	_ [300	ا سمود
	1 1	15	_	80		0.015	80	_	600	í
Total Supply Current**†	lт	5.0			1 10	3 #A/kHz			000	μAdo
(Dynamic plus Quiescent,	''	10				A/kHz) هر ی A/kHz) هر				, made
Per Package)	1 . 1	15),9 μΑ/kHz				l
(C ₁ = 50 pF on all outputs, all	[]				-1 -10	M. POINT	טט			
buffers switching)	. !		l							l

^{*}T_{IOW} = -65°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

to the range VSS < (Vin or Vout) < VDD.

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$$

where: I_T is in μ A (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Data tabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ #	Max	Unit
Output Rise and Fail Time ttlh. tthl = (1.5 ns/pF) CL + 25 ns ttlh. tthl = (0.75 ns/pF) CL + 12.5 ns ttlh. tthl = (0.56 ns/pF) CL + 9.5 ns	ttlH- ttHL	5.0 10 15	- -	100 50 40	200 100 80	ns
Propagation Delay Time tp_H, tpH_ = (1.7 ns/pF) C_ + 216 ns tp_H, tpH_ = (0.66 ns/pF) C_ + 97 ns tp_H, tpH_ = (0.5 ns/pF) C_ + 65 ns	tPLH, tPHL	5.0 10 15	- - -	300 130 90	800 260 180	ns

^{*}The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - DYNAMIC SIGNAL WAVEFORMS

inputs B, C, and D switching in respect to a BCD code.

All outputs connected to respective C_L loads. I in respect to a system clock.

Inputs A, B, and D low.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

LOGIC DIAGRAM

Expanded decoding can be performed by using the MC14028B and other CMOS Integrated Circuits. The circuit in Figure 2 converts any 4-bit code to a decimal or hexadecimal code. The accompanying table shows the input binary combinations, the associated "output numbers" that go "high" when selected, and the "redefined output numbers" needed for the proper code. For example: For the combination DCBA = 0111 the output number 7 is redefined for the 4-bit binary, 4-bit gray, excess-3, or excess-3 gray codes as 7, 5, 4, or 2, respectively. Figure 3 shows a 6-bit binary 1-of-64 decoder using nine MC14028B circuits and two MC14069UB inverters.

The MC14028B can be used in decimal digit displays, such as, neon readouts or incandescent projection indicators as shown in Figure 4.

FIGURE 2 - CODE CONVERSION CIRCUIT
AND TRUTH TABLE

Γ				Γ																	E AND				D
				ł										Hexad	lecimal		Decir	nel							
-	<u>NP</u> I	UTS	\$					(ວບ	rpu	JT I	NU!	иве	RS	•					4-Bit Bingry	4-Bit Gray	Excess-3	Excess - 3 Gray	iken	4221
٥	С	В	Α	15	14	13	12	11	10	9	8	7	6	5	4	3	2	ī	0	4 22	4 0	ž	120	₹	4
0	0	0	°	°	0	0	0	0	0	9	0 0	0	0	0	0	0 0	0	9	1	0	·			•	o.
0	ŏ	Ĭ	6	0	ŏ	ŏ	ő	ŏ	ŏ	ő	ŏ	ŏ	ŏ	6	ŏ	ő	ĭ	6	Ĭŏ	2	3		۰ ا	2	2
0	0	1	1	0	0	0	0	0	٥	0	0	0	0	٥	0	1	0	0	0	3	2	0	3	3	
0	1	0	0	P	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	7	1	4	4	Г
0	1	١°	1	I o	8	8	0	l o	l:	0	0	0	ļ°	1	0	0	0	8	l	5 6	6	3	١.		3
ŏ	i	j .	Ĭ	ŏ	ŏ	ŏ	ő	ŏ	ő	ŏ	ö	1	;	ő	ő	0	ö	ő	ő	, ,	5	4	2		•
1	0	0	0	0	0	0	0	0	•	0	٠.	0	0	0	0	0	0	0	0	8	15	5			П
;	0	!	1	10	0	0	0	8	l°.	1	0	8	l	0	0	0	0	0	0	9 10	14	6	9		5
i	o	i	ĭ	ŏ	ŏ	ļ.	ŏ	ĭ	6	ö	Ö	ŏ	ŏ	ö	ŏ	ŏ	ö	0	0	11	13	8		5	
1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	٥	0	12	8	9	5	6	П
!	1	0	1	0	lº.	1	0	0	0	0	0	0	0	0		0	0	0	0	13	9		6	7	7
,	H	١,	9	ľ	l;	0	0	8	0	0	0	0	l	0	0	0	0	0	0	14 15	11	l	8	8	8

FIGURE 3 - SIX-BIT BINARY 1-0F-64 DECODER

FIGURE 4 - DECIMAL DIGIT DISPLAY APPLICATION

BINARY/DECADE UP/DOWN COUNTER

The MC14029B Binary/Decade up/down counter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. The counter consists of type D flip-flop stages with a gating structure to provide toggle flip-flop capability. The counter can be used in either Binary or BCD operation. This complementary MOS counter finds primary use in up/down and difference counting and frequency synthesizer applications where low power dissipation and/or high noise immunity is desired. It is also useful in A/D and D/A conversion and for magnitude and sign generation.

- Diode Proection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Internally Synchronous for High Speed
- Logic Edge-Clocked Design Count Occurs on Positive Going Edge of Clock
- Asynchronous Preset Enable Operation
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin for Pin Replacment for CD4029B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

BINARY/DECADE UP/DOWN COUNTER

L SUFFIX CERAMIC PACKAGE CASE 520 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-05 to +18.0	V
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
lin- lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (8-Second Soldering)	260	*C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: - 12mW/*C from 65*C to 85*C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

TRUTH TABLE

Carry In	Up/Down	Preset Enable	Action
1	×	0	No Count
0	1	0	Count Up
0	0	0	Count Down
×	х	1	Preset

X = Don't Care

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

•		VDD		w*		25°C			gh*	l
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05		0	0.05	-	0.05	Vdc
Vin =VDD or 0		10	-	ა.05	-	0	0.05	-	0.05	
		15		0.05		0	0.05		0.05	
"1" Level	νон	5.0	4.95	-	4.95	5.0	-	4.95	_	Vdc
Vin =0 or VDD		10	9.95	-	9.95	10	-	9.95	-	
		15	14.95	_	14.95	15	-	14.95		
Input Voltage "0" Level	VIL									Vdc
(V _O = 4.5 or 0.5 Vdc)	i i	5.0	(~	1.5	1 -	2.25	1.5	-	1.5	ł
(VO = 9.0 or 1.0 Vdc)	i :	10	~	3.0	-	4.50	3.0	-	3.0	l .
(VO = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0		4.0	
"1" Level	VIH									1
(V _O = 0.5 or 4.5 Vdc)	l .	5.0	3.5	-	3.5	2.75	~	3.5	-	Vđc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50		7.0		I
(Vp = 1.6 or 13.5 Vdc)		15	11.0		11.0	8.25	-	11.0		
Output Drive Current (AL Device)	ЮН									mAdo
(VOH = 2.5 Vdc) Source	-	5.0	-3.0	i –	-2.4	-4.2	-	-1.7	_	ļ
(V _{OH} = 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.B8	-	-0.36	-	l
(VOH = 9.5 Vdc)		10	-1.6	-	-1.3	-2.25	_	-0.9	-	l
(VOH = 13.5 Vdc)		15	-4.2		-3.4	-8.8	-	-2.4		
(VOL = 0.4 Vdc) Sink	lor	5.0	0.64		0.51	0.88	-	0.38	-	mAdd
(VOL = 0.5 Vdc)	<u> </u>	10	1.6	_	1.3	2.25	-	0.9	-	l
(VOL = 1.5 Vdc)		15	4.2	l -	3.4	9.8	-	2.4	_	i
Output Drive Current (CL/CP Device)	ЮН			-						mAdd
(VOH = 2.5 Vdc) Source	J "''	- 5.0	-2.5	_	-2.1	-4.2	-	-1.7	-	ł
(VOH = 4.6 Vdc)		5.0	-0.52	_	-0.44	-0.88	_	-0.36	_	
(VOH = 9.5 Vdc)		10	-1.3	l –	-1.1	-2.25		-0.8	_	Į
(VOH = 13.5 Vdc)		15	-3.B	i -	-3.0	-8.8	-	-2.4	_	İ
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.52	-	0.44	0.88		0.36		mAdo
(VOL = 0.6 Vdc)	ן יטב	10	1.3	_	1.1	2.25	_	0.9	_	
(VOL = 1.5 Vdc)		15	3.6	l –	3.0	8.8	_	2.4	_	
Input Current (AL Device)	lip	15	-	±0.1	-	±0.00001	±0.1		±1.0	µAdc
Input Current (CL/CP Device)	t _{in}	15	_	±0.3	 _	±0.00001	± 0.3	_	±1.0	μAdo
Input Capacitance			1		 	5.0	7.6			pF
(V _{in} = 0)	Cin	_	-	-	-	5.0	7.0			
Quiescent Current (AL Device)	IDD	5.0		5.0	T -	0.005	5.0	_	150	μAdo
(Per Package)		10	-	10	-	0.010	10	-	300	l
-		15	_	20	 	0.015	20		600	
Quiescent Current (CL/CP Device)	IDD	5.0		20		0.006	20		150	µAdd
(Per Package)	55	10	l –	40	l –	0.010	40		300	
 •	'	15	-	80	l –	0.015	80	 - _	600	l
Total Supply Current**†	١T	5.0			lr = (0	.58 µA/kHz	lf+ lco			μAdd
(Dynamic plus Quiescent,	''	10	1			1.2 µA/kHz		,		
Per Package)	1	15				1.7 µA/kHz				1
(C ₁ = 50 pF on all outputs, all	1		ł		''					l
buffers switching)										1

[&]quot;Tiow = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

₱Data labelled "Typ" is not to be used for design purposes but is
intended as an indication of the IC's potential performance.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 pF) + (C_L - 50) V1k$$

where: i_T is in μA (per peckage), C_L in pF, V = (VDD - VSS) in volta, . If in kHz is input frequency, and k = 0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} < (V_{in} or V_{out}) < V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS * (C_I = 50 pF, T_A = 25 °C)

				All Types		
Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time	tTLH:		 			ns
t _{TLH} , t _{THL} = (1.5 na/pF) C _L + 25 ns	THL	5.0	l –	100	200	
tтін, tтні = (0.75 ns/pF) CL + 12.5 ns		10	l –	50	100	
t _{TLH} , t _{THL} = (0.55 ns/pF) C _L + 9.5 ns		15	-	40	80	
Propagation Delay Time	tPLH.					ns
Clk to Q	TPHL					
tp_H, tpHL = (1.7 ns/pF) C _L + 230 as	_	5.0	-	200	400	
tp_H, tpHL = (0.66 ns/pF) CL + 97 ns		10	_	100	200	
tpLH, tpHL = (0.5 ns/pF) CL + 75 ns		15	_	90	180	
Clk to Cout	tPLH.					กร
tpLH, tpHL = (1.7 ns/pF) CL + 230 ns	1PHL	5.0	-	250	500	
tp_H, tpHL = (0.66 ns/pF) CL + 97 ns		10	_	130	260	
tpl_H, tpHL = (0.5 ns/pF) CL + 75 ns		15	_	85	190	
Cin to Cout	tPLH.					ns
tp_H, tpHL= (1.7 ns/pF) CL + 95 ns	1PHL	5.0	-	175	360	
tp_H, tpHL = (0.66 ns/pF) C _L + 47 ns		10	-	50	120	
tPLH. tPHL = (0.5 ns/pF) CL + 35 ns		15		50	100	
PE to Q	1PLH,			1		ns
tp_H, tpHL = (1:7 ns/pF) CL + 230 ns	1PHL	5.0	-	235	470	
tp_H, tpHL = (0.66 ns/pF) CL + 97 ns		10	-	100	200	
tpLH. tpHL™ (0.5 ns/pF) CL + 75 ns		15		80	160	
PE to Cout	¹PLH∙					ns
tPLH, tPHL = (1.7 ns/PF) CL + 465 ns	1PHL	5.0	-	320	640	
tpLH. tpHL = (0.66 ns/pF) CL + 192 ns	\	10 15	-	145	290	
tpLH. tpHL= (0.5 ns/pF) CL + 125 ns				105	210	
Clack Pulse Width	₩(c1)	5.0	180	90	_	ns
		10	80	40	_	
		15	60	30		
Clock Pulse Frequency	fel	5.0	_	4.0	2.0	MHz.
		10	-	8,0	4.0	
		15	_	10	5.0	
Preset Removal Time	trem	5.0	160	80	<u> </u>	ns
The Preset Signal must be low prior to a positive-going	l .	10	80	40	- 1	
transition of the clock.		15	60	30	_	
Clock Rise and Fall Time	t _r (ci)	5.0	_		15	ИS
	tf(cl)	10	-	l I	5	
	1	15	-		4	
Carry In Setup Time	t _{su}	5.0	450			ns
	150	10	150 60	75 30	_	***
		15	40	20	_	
Up/Down Setup Time						
oproven galay filling	1	5.0 10	340 140	170 70	_	ns
		15	100	50		
B (B	,					
Binary/Decade Setup Time	1	5.0	320	160	_ '	ns
		10	140	70	_	
		15	100	50		
Preset Enable Pulse Width	tw	5.0	130	65	-	ns.
		10	70	35	_	
,		15	50	25		

^{*}The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

TIMING DIAGRAM

FIGURE 3 - DIVIDE BY N BCD DOWN COUNTER and TIMING DIAGRAM

LOGIC DIAGRAM

TRIPLE SERIAL ADDERS

The MC14032B and MC14038B triple serial adders have the clock and carry reset inputs common to all three adders. The carry is added on the positive-going clock transition for the MC14032B, and on the negative-going clock transition for the MC14038B. Typical applications include serial arithmetic units, digital correlators, digital servo control systems, datalink computers, and flight control computers.

- Buffered Outputs
- Single-Phase Clocking
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range.
- Pin-for-Pin Replacement for CD4032B and CD4038B.

MAXIMUM RATINGS* (Voltages Referenced to Vos)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	0 5 to + 18 0	V
V _{in} V _{out}	Input or Output Voltage (DC or Transient)	-05 to V _{DD} +05	V
In lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	m₩
T _{stq}	Storage Temperature	- 65 to + 150	-0
1 _L	Lead Temperature (8-Second Soldering)	260	,C

*Maximum Ratings are those values beyond which damage to the device may occur flemperature Derating Plastic "P Package – 12mW/°C from 65°C to 85°C Ceramic "L Package – 12mW/°C from 100°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14032B MC14038B

CMOS MSI

(LOW POWER COMPLEMENTARY MOS)

TRIPLE SERIAL ADDERS

Positive Logic — MC14032B Negative Logic — MC14038B

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Onty)

C Sories: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

BLOCK DIAGRAM A1 10 c-B1 11 0-09 51 Invert 1 70 A2 13 0 B2 12 0-Adder 2 Invert 2 50-V_{DD} = Pin 16 VSS - Pin 8 A3 15 0 B3 14 0-Adder 3 01 53 Invert 3 2 0 Clock 3 0 Carry Reset 6.0

MC14032B • MC14038B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			Vpp	Tio	w*		25°C		Thi	ah *	
Characterist	ic .	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	_	0.05		0	0.05	_	0,05	Vdc
·V _{in} =V _{DD} or 0			10	-	0.05	-	0	0.05	-	0.05	i
			15		0.05		0	0.05	l – J	0.05	
	"1" Level	Vон	5.0	4.95	_	4.95	5.0	_	4.95	_	Vdc
$V_{in} = 0$ or V_{DD}		J	10	9.95	_	9.95	10	-	9.95	_	
			15	14.95	_	14.95	15	_	14.95	-	١ .
Input Voltage	"0" Level	ViL									Vdc
(Vo = 4.5 or 0.5 Vdc)		1	5.0	_	1.5	-	2.25	1.5	l – I	1.5	1
(VO =9.0 or 1.0 Vdc)			10	_	3.0	_	4.50	3.0	1 - 1	3.0	1
(VO = 13.5 or 1.5 Vdc)		15	_ :	4.0	-	6.75	4.0	-	4.0	1
	"1" Level	VIH									
(Vo = 0.5 or 4.5 Vdc)			5.0	3.5	i –	3.5	2.75	_	3.5	_	Vdc
(VO = 1.0 or 9.0 Vdc)			10	7.0	_	7.0	5.50	_	7.0	_	l .
(VO = 1.5 or 13.5 Vdc)		15	11.0	_	11.0	8.25	_	11.0	_	
Output Drive Current (AL	Device)	ЮН									mAdd
(VOH = 2.5 Vdc)	Source	.04	5.0	-3.0		-2.4	-4.2	_	-1.7	_	
(VOH = 4.6 Vdc)			5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	ŀ
(VOH = 9.5 Vdc)			10	-1.6		-1.3	-2.25	_	-0.9	_	l
(VOH = 13.5 Vdc)			15	-4.2	_	-3.4	-8.8	l _	-2.4	_	
(VOL = 0.4 Vdc)	Sink	lai	5.0	0.64		0.51	0.88		0.36		mAdo
(VOL ≈0.5 Vdc)	SIIIK	OL	10	1.5		1.3	2.25	_	0.9	_	
(VOL = 1.5 Vdc)			15	4.2	_	3.4	8.8	_	2.4	_	l
Output Drive Current ICL.	(CD Daviss)						-	-			mAdo
(VOH = 2.5 Vdc)	Source	tон	5.0	-2.5	_	-2.1		l <u>-</u>	-1.7	_	""
	Source		5.0	-0.52	-	-0.44	-4.2 -0.88	=	-0.36	_	1
(VOH = 4.6 Vdc)			10	-0.52	=	-1.1		=		_	
(VOH = 9.5 Vdc)			15	-1.3 -3.6		-3.D	-2.25	_	-0.9	_	
(V _{OH} = 13.5 Vdc)							-8.8		-2.4		
(V _{OL} = 0.4 Vdc)	Sink	IOL	5.0	0.52	-	0.44	0.88	-	0.36	_	mAdc
(VOL = 0.5 Vdc)			10	1.3	_	1.1	2.25	_	0.9	_	l
(V _{OL} = 1.5 Vdc)			15	3.6		3.0	8.8		2.4		
Input Current (AL Device)	1	lin	15	-	±0.1	_	±0.00001	±0.1	_	± 1.0	μAdc
Input Current (CL/CP Dev	ice)	1 _{in}	15	_	± 0.3		±0.00001	± 0.3	_	±1.0	µAdc
Input Capacitance		Cin					5.0	7.5		_	pF
(V _{in} = 0)								1	1		
Quiescent Current (AL De	vice)	IDD	5.0		5.0		0.005	5.0		150	μAdc
(Per Package)		טטי	10	l –	10	l _	0.010	10	_ '	300	1
			15	_	20	l -	0.015	20	_ '	600	(
Quiescent Current (CL/CP	Davisal	100	5.0		20		0.005	20		150	иAdo
(Per Package)	Devices	IDD .	10	_	40	=	0.010	40	<u> </u>	300	I MAGE
11 of a benegor			15	_	80	I =	0.015	80	1 🗆 1	600	1
Tatal Complex Company		 -			00					800	
Total Supply Current**1		ŀт	5.0 10			IT = (0	96 µA/kHz	[[t DO			μAdo
(Dynamic plus Quiesce	nı,					IT * (1)	.93 μA/kHz	מפייייי			[
Per Package)			15	İ		1T = (2	.8 ·μΑ/kHz)	ספויי זי			l
(CL = 50 pF on all out	puts, ali										
buffers switching)				<u> </u>							<u> </u>

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device.
T_{high} = +125°C for AL Device, +85°C for CL/CP Device

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

**The formulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μ A (per package), C_L in pF, V = (VDD - V_{SS}) in volts, f in kHz is input frequency, and k = 0.003.

MC14032B • MC14038B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Mex	Unit
Output Rise and Fall Time	ttu+					ns.
tтын, tтыц = (1.5 ns/pF) Сц + 25 ns	tthi.	5.0	l –	100	200]
t _{TLM} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns	''	10	l –	50	100	1
tTLM, tTHL = (0.55 ns/pF) CL + 9.5 ns	-	15	-	40	80	1
Propagation Delay Time	₹PLH,		 	†		ns
A, B or invert to Sum	TPHL	1	l		1	,
tp_H, tpHL = (1.7 ns/pF) C _L + 195 ns		5.0	-	280	1400	l
tplH, tpHL = (0.66 ns/pF) CL + 87 ns	:	10	-	120	300	1
tp_H, tpHL = (0.5 ns/pF) C _L + 65 ns		15	-	90	230	1
Clock to Sum	ì					ns
tp_H_ tpHL = (1.7 ns/pF) CL + 415 ns	ļ	5.0	l –	500	2400	1
tp_H, tpHL = (0.66 ns/pF) CL + 147 ns	·	10	-	180	600	ĺ
tp_H, tpHL = (0.5 ns/pF) CL + 110 ns	j	15	-	135	450	l
Input Setup Time	ten	5.0	10	-10		ns
		10	10	0	l - ·	ŀ
<u> </u>		15	10	0	-	l
Clock Pulse Frequency	fcl	5.0	-	4.0	1.0	MHz
	' -	10	-	10	2.5	
		15		12	4.0	<u>. </u>
Clock Rise and Fall Times	THL, TLH	5.0	I -	-	15.	μ3
		10	-	-	5	
	ļ ·	15	-		4	1

^{*}The formulas given are for the typical characteristics only at 25°C.

TIMING DIAGRAMS

Note: Unused input pins must be connected to either V_{DD} or V_{SS} .

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14032B•MC14038B

FIGURE 1 - TYPICAL OUTPUT SOURCE TEST CIRCUIT

FIGURE 2 - TYPICAL OUTPUT SINK TEST CIRCUIT

FIGURE 3 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORMS

MC14032B•MC14038B

FIGURE 4 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

8-BIT UNIVERSAL BUS REGISTER

The MC14034B is a bidirectional 8-bit static parallel/serial, input/output bus register. The device contains two sets of input/output lines which allows the bidirectional transfer of data between two buses; the conversion of serial data to parallel form, or the conversion of parallel data to serial form. Additionally the serial

8-BIT UNIVERSAL BUS REGISTER

data input allows data to be entered shift/right, while shift/left can be accompolished by hard-wiring each parallel output to the previous parallel bit input.

Other useful applications for this device include pseudo-random code generation, sample and hold register, frequency and phase-comparator, address or buffer register, and serial/parallel input/output conversions.

- Bidirectional Parallel Data Input
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range.
- Pin-for-Pin Replacement for CD4034B.

MAXIM	UM RATINGS* (Voltages Referenced to VSS)		
Symbol	Perameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
1 _{in} . 1 _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	ç
ΤL	Lead Temperature (8-Second Soldering)	260	ပ္

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/*C from 65°C to 85°C

Ceramic "L" Package: ~12mW/°C from 100°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

	1	V ₀₀		ow*		25°C			igh *	J
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Мах	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	Ī -	0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0		10	-	0.05		0	0.05	_	0.05	1
		15	! -	0.05	-	0	0.05	_	0.05	i
"1" Level	VOH	5.0	4.95		4.95	5.0	-	4.95	_ -	Vdd
V _{in} = 0 or V _{DD}		10	9.95	-	9.95	10	i –	9.95	i -	
	.]	15	14.95	-	14.95	15	-	14.95	-	
Input Voltage "0" Leve	I VIL		l							Vde
(Vo = 4.5 or 0.5 Vdc)	1	5.0	l -	1.5	1 -	2.25	1.5	-	1.5	1
(VO = 9.0 or 1.0 Vdc)	1	10	l -	3.0	-	4.50	3.0] -	3.0	1
(Vo = 13.5 or 1.5 Vdc)		15	<u> </u>	4.0		6.75	4.0	_	4.0	
"1" Leve	t VIH	l -	1							
(VD = 0.5 or 4.5 Vde)	1	5.0	3.5	-	3.5	2.75	-	3.5	_	Vdo
(V _O = 1.0 or 9.0 Vdc)	1	10	7.0	-	7.0	5.50	i -	7.0	-	
(Vo = 1.5 or 13.5 Vdc)		15	11.0	!	11.0	8.25		11.0	-	
Output Drive Current (AL Device)	10Н			1						mAd
(VOH = 2.5 Vdc) Source	1	5.0	-1.2	-	-1.0	-1.7	_	-0.7	-	1
(V _{OH} = 4.6 Vdc)	1	5.0	-0.25	-	-0.2	-0.36	-	-0.14	-	
(V _{OH} = 9.5 Vdc)		10	-0.62	-	-0.5	-0.9	-	-0.35	-	1
(V _{OH} = 13.5 Vdc)		15	-1.8		-1.5	-3.5	_	-1.1		<u> </u>
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.64	-	0.51	0.88	-	0.36	-	mAd
(VOL = 0.5 Vdc)		10	1.6	-	1.3	2.25	-	0.9	-	1
(V _{OL} = 1.5 Vdc)		15	4.2	_	3.4	8.8	-	2.4	-	
Output Drive Current (CL/CP Device)	ІОН									mAd
(V _{OH} = 2.5 Vdc) Source		5.0	-1.0	-	-0.8	-1.7	i -	-0.6	-	1
(V _{OH} = 4.6 Vdc)		5.0	-0.2	-	-0.16	-0.36	-	-0.12	-	1
(VDH = 9.5 Vdc)	1	10	-0.5	-	-0.4	-0.9	-	-0.3	-	
(V _{DH} = 13.5 Vdc)		15	-1.4		-1.2	-3.5	_	-1.0	-	
(VOL ~ 0.4 Vdc) Sink	IOL	5.0	0.52	-	0.44	0.88	- `	0.36	-	mAd
(V _{OL} = 0.5 Vdc)	1	10	1.3	-	1.1	2.25	-	0.9] -	
(V _{QL} = 1.5 Vdc)	1	15	3.6	-	3.0	8.8	-	2.4	-	1
Input Current (AL Device)	lin	15		±0.1	_	±0.00001	±0.1		±1.0	μAd
Input Current (CL/CP Device)	lin	15	T -	± 0.3	_	±0.00001	±0,3	-	±1.0	μAd
Input Capacitance	Cin		-		_	5.0	7.5	_	_	DF
(V _{in} = 0)			ł			1	l			"
Quiescent Current (AL Device)	qq!	5.0	 -	5.0		0.010	5.0	=	150	μÃď
(Per Paçkage)	"00	10	- '	10	-	0.020	10	_	300	1
•	1	15	l	20	-	0.030	20	_	600	ĺ
Quiescent Current (CL/CP Device)	IDD	5.0		50	-	0.010	50		375	μAd
(Per Package)	"	10	l _	100	l -	0.020	100	_	750	
	1	15	_	200	-	0.030	200	-	1500	1
Total Supply Current**†	lт	5.0			1 1	2.2 µA/kHz	1 6 4 1	L		μΑσ
(Dynamic plus Quiescent,	['']	10	l		IT = (4.4 µA/kHz	11 + 100			""
Per Package)		15				6.6 µA/kHz				i
(CL = 50 pF on all outputs, all		-				pro 11 11 10				1
buffers switching)			l							}
2 Same Outerus Lantines Communication		15					.0.5			1
3-State Output Leakage Current (AL Device)	ITL	פו	l <u>-</u>	±0.1	-	±0.0001	±0.1	- '	±3.0	μAdc
	╅╌┈┥		-	-	-			-		+
3-State Output Leakage Current (CL/CP Device)	TL	15	1 -	±1.0	l –	±0.0001	±1.0	-	±7.5	μAde
(CE/CF DOVICO)	1 1	I	ı -	l	-	1	l	-	I	1

[&]quot;T_{low} = -55°C for AL Device, -40°C for CL/CP Device. T_{high} = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

where: I_T is in μA (per packago), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, if in kHz is input frequency, and k=0.004.

[◆]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the iC's potential performance.

^{**}The formulas given are fer the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 26°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
Output Rise Time A or B	tTLH .	—	1			ns.
tTLH = (3,0 ns/pF) CL + 30 ns		5.0	_	180	380	
tTLH = (1.5 ns/pF) CL + 15 ns	· .	10	l –	90	180	1
tTLH = (1.1 ms/pF) CL + 10 ms	1	15	-	65	130	
Output Fall Time A or B	t _{THL}	<u> </u>	—			ns
tTML = (1.5 ns/pF) CL + 25 ns		.5.0	-	100	200	
tTHL = (0.76 ns/pF) CL + 12.5 ns	į.	10	l -	50	100	ľ
tTHL = (0.55 ns/pF) CL + 9.5 ns		15	_	40	80	l
Propagation Delay Time			—			
A (8) Synchronous Parelles Data Input,	PLH.			1	ľ	ns
8 (A) Parallel Data Output	1PHL				1	ĺ
tp_H_tpHL = (1.7 ns/pF) CL + 440 ns	'	5.0	l -	525	1050	l
tpHL tpHL = (0.66 ns/pF) CL + 172 ns	1	10	l –	205	410	1
tpլ , tp լ = (0.5 ns/pF) Cլ + 120 ns	ł	15] -	145	290	ł
Propagation Delay Time		—	 			
A (B) Asynchronous Parallel Data Input	ΨLH.				l	ns
B (A) Parallel Data Output	1PHL		I			1
tp_H, tpHL = (1.7 ns/pF) CL + 420 ns	"""	5.0	l _	505	1010	i
tpLH_tpHL = (0.66 ns/pF) CL + 147 ns		10	-	180	360	}
tp_H tpHL = (0.5 ns/pF) CL + 105 ns		15	-	130	260	i
Clack Pulse Width	₹WH	5.0	340	170	-	ns
	1 310	10	140	70	i -	1
	1	15	110	55	_	
Clack Pulse Frequency	fci	5.0	-	2.5	1.2	MHz
	'61	10	l _	6.0	3.0	1111111
		15	l _	8.0	4.0	İ
Clock Pulse Rise	tTLH, tTHL	5.0	-		15	448
	, TEN, TINE	10	_	1 -	5	~
	ĺ	15	_		4	1
A, B Input Setup Time		6.0	100	35		ns ns
	¹tu	10	45	15	l _	""
		15	35	12	_	
High Level SE, P/S, A/S Pulse Width	5 44::	5.0	600	200		res.
right better on, F10, M10 FB10 WOUL	- ₩ H	10	270	90] _	, "
	l		1		l -	1
		15	200	80	<u> </u>	Щ.

^{*}The formulas given are for the typical characteristics only at 25°C.

TRUTH TABLE

"A" Enable	P/S	A/B	A/S	MODE	OPERATION
0	0	0	×	Serial	Synchronous Serial date input, A and B parallel date outputs disabled.
0	0	1	×	Serial	Synchronous Serial data input, B-Parallel data output.
0	-	٥	0	Persitel	B Synchronous Parallel data inputs, A-Parellel data outputs disabled.
0	1	0	_ 1	Perallel	B Asynchronous Parallel data inputs, A-Parallel data outputs disabled.
0	1	1	. 0	Parettet	A-Parallel data inputs disabled, B-Parallel data outputs.
0	_	1	1	Pereltel	A-Parallel data inputs disabled, 6-Parallel data outputs.
1	0	0	X	Serial	Synchronous serial data input, A-Parallel data output.
1	0	1	×	Serial	Synchronous serial date input, 8-Parallel data output.
1	1	0	0	Parallel	B-Synchronous Parallel data input, A-Parallel data output.
1	1	0	t	Parallel	B-Asynchronous Parallel data input, A-Parallel data output.
1	t	1	0	Perellet	A-Synchronous Parallel data Input, B-Parallel data output.
1	1	1	1	Parallet	A-Asynchronous Parailei data input, B-Parailei data output.

X = Don't Care

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[†]Outputs change at positive transition of clock in the serial mode and when the A/S input is low in the parallel mode.

Buring transfer from parallel to serial operation, A/S should remain low in order to prevent D_S transfer into flip-flops.

OPERATING CHARACTERISTICS

The MC14034B is composed of eight register cells connected in cascade with additional control logic. Each register cell is composed of one "D" master-slave flip-flop with separate internal clocks, and two data transfer gates allowing the data to be transferred bidirectionally from bus A to bus B and from bus B to bus A, and to be memorized. Besides the single phase clock and the serial data inputs, the control logic provides four other features:

A Enable Input — When high, this input enables the bus A data lines.

A/B Input (Data A or B) — This input controls the direction of data flow: when high, the data flows from

bus A to bus B; when low, the data flows from bus B to bus A.

P/S Input (Parallel/Serial) — This input controls the data input mode (parallel or serial). When high, the data is transferred to the register in a parallel asynchronous mode or a parallel synchronous mode (positive clock transition). When low, the data is entered into the register in a serial synchronous mode (positive clock transition).

A/S Input (Asynchronous/Synchronous to the Clock) — When this input is high, the data is transferred independently from the clock rate; when low, the clock is enabled and the data is transferred synchronously.

FIGURE 1 — PROPAGATION DELAY AND TRANSITION TIMES WAVEFORMS

PROPAGATION AND TRANSITION TIME TEST CIRCUITS

FIGURE 3 — B SYNCHRONOUS DATA INPUT, A PARALLEL DATA OUTPUT AND SETUP TIME

FIGURE 4 - POWER: DISSIPATION TEST CIRCUIT AND WAVEFORMS

FIGURE 5 -- 18-BIT PARALLEL IN/PARALLEL OUT, PARALLEL IN/SERIAL OUT, SERIAL IN/PARALLEL OUT, SERIAL IN/SERIAL OUT REGISTER

FIGURE 6 - SHIFT RIGHT/SHIFT LEFT WITH PARALLEL INPUTS

A "High" ("Low") on the Shift Left/Shift Right input silows serial data on the Shift Left Input (Shift Right Input) to enter the register on the positive transition of the clock signal. A "high" on the "A" Enable Input disables the "A" perallel data lines on Reg. 1 and 2 and enables the "A" data lines on registers 3 and 4 and allows parallel data into registers 1 and 2. Other togic schemes may be used in place of registers 3 and 4 for parallel loading.

When parallel inputs are not used Reg. 3 and 4 and associated logic are not required.

*Shift left input must be disabled during perallal entry.

4-BIT PARALLEL-IN/PARALLEL-OUT SHIFT REGISTER

The MC14035B 4-bit shift register is constructed with MOS Pchannel and N-channel enhancement mode devices in a single monolithic structure. It consists of a 4-stage clocked serial-shift register with synchronous parallel inputs and buffered parallel outputs. The Parallel/Serial (P/S) input allows serial-right shifting of data or synchronous parallel loading via inputs Dp0 thru Dp3. The True/Complement (T/C) input determines whether the outputs display the Q or Q outputs of the flip-flop stages. J-K logic forms the serial input to the first stage. With the J and K inputs connected together they operate as a serial "D" input.

This device may be effectively used for shift-right/shift-left registers, parallel-to-serial/serial-to-parallel conversion, sequence generation, up/down Johnson or ring counters, pseudo-random code generation, frequency and phase comparators, sample and hold registers, etc.

- 4-Stage Clocked Serial-Shift Operation
- · Synchronous Parallel Loading of all Four Stages
- J-K Serial Inputs on First Stage
- Asynchronous True/Complement Control of all Outputs
- · Fully Static Operation
- Asynchronous Master Reset
- Data Transfer Occurs on the Positive-Going Clock Transition
- . No Limit on Clock Rise and Fall Times
- All Inputs are Buffered
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

4-BIT PARALLEL-IN/PARALLEL-OUT SHIFT REGISTER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18 0	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-0 5 to V _{DD} +0.5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	-85 to +150	С
TL	Load Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating | Plastic "P" Package | 12mW/C from 100°C to 125°C Ceramic "L" Package | 12mW/C from 100°C to 125°C

TRUTH TABLE

	INP	UTS		t _n OUTPUT
С	J	K	R	00
111	0 0 1	0 1 0	0	0 Q0 (n - 1) Q0 (n - 1)
* /\	1 x x	1 x x	0 0 1	1 Q0(n-1) 0

x = Don't Care
P/S = 0 = Serial Mode
T/C = 1 = True Outputs

PIN ASSIGNMENT 00 VDD T/C 01 715 K 02 714 J 03 R Dp3 C Dp2 7 = □10 PIS VSS

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD		w*		25°C		Thi	gh	ı
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
	" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	Vdc
Vin - V _{DD} or 0			10	-	0.05	-	0	0.05	-	0.05	
			15	-	0.05	_	0	0.05	-	0,05	
	" Level	VOH	5.0	4.95	-	4:95	5.0	-	4.95	-	Vdc
V _{in} = 0 or V _{DD}			10	9.95	-	9.95	10	-	9.95	-	İ
			15	14.95	1	14.95	15		14.95		ł
	"O" Level	٦ı									Vdc
(Vo = 4.5 or 0.5 Vdc)			5.0	-	1,5	-	2.25	1.5	-	1.5	ì
(V _O = 9.0 or 1.0 Vdc)			10	-	3.0	-	4.50	3.0	-	3.0	
(V _O ≈ 13.5 or 1.5 Vdc)			15		4.0	-	6.75	4.0	-	4.0	
	"1" Level	VIH									Vdc
(Vo = 0.5 or 4.5 Vdc)			5.0	3.5	-	3.5	2.75	-	3.5	-	1
(V _O = 1.0 or 9.0 Vdc)			10	7.0	-	7.0	5.50	-	7.0	-	
(VO = 1.5 or 13.5 Vdc)			15	11.0	-	11.0	8.25		11.0	-	
Output Drive Current (AL De		ЮН									mAde
	ntce		5.0	-3.0	-	-2.4	-4.2	-	-1.7	-	
(V _{OH} = 4.6 Vdc)			5.0	-0.64	-	-0.51	-0.88	-	-0.36	-	
(V _{OH} = 9.5 Vdc)			10	-1.6	-	-1.3	-2.25	-	-0.9	-	l
(V _{OH} = 13.5 Vdc)			15	-4.2		-3.4	-8.8	-	-2.4		└
(VOL = 0.4 Vde) Sin	ık	IQL	5.0	0.64	-	0.51	0.88	-	0.36	-	mAdc
(VOL = 0.5 Vdc)			10	1.6	_	1.3	2.25	-	0.9	-	
(VOL = 1.5 Vdc)			15	4.2	-	3.4	8.8	-	2.4		<u></u>
Output Drive Current (CL/CP	Device)	ГОН									mAdc
(V _{OH} = 2.5 Vdc) So	urce		5.0	-2.5	-	-2.1	-4.2	-	-1.7	-	ļ
(VOH = 4.6 Vdc)			5.0	-0.52	-	-0.44	-0.88	-	-0.36	-	1
(VOH # 9.5 Vdc)			10	-1.3	_	-1.1	-2.25	-	-0.9	-	1
(VOH = 13.5 Vdc)			15	-3.6	-	~3.0	-8.8	-	-2.4		<u> </u>
(VOL = 0.4 Vdc) Sin	k i	lOL	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc
(VOL = 0.5 Vdc)			10	1.3	-	1.1	2.25	-	0.9	-	
(VOL = 1.5 Vde)			15	3.6	_	3.0	8.8	-	2.4	-	1
Input Current (AL Device)		lin	15	_	±0.1	-	±0.00001	±0.1	-	± 1.0	μAdc
Input Current (CL/CP Device)	-	lin	15	_	± 0.3		±0.00001	± 0.3	- 1	±1.0	μAdc
Input Capacitance		Cin					5.0	7.5			pF
(V _{in} = 0)		-141									`
Quiescent Current (AL Device	,	IDD	5.0		5.0	 	0.006	5.Ó	_	150	μAdc
(Per Package)		,00	10	_	10	l –	0.010	10	_	300	
-			15	l –	20	-	0.015	20	_	600	1
Quiescent Current (CL/CP Des	rice)	qqi	5.0	_	20		0.005	20	_	150	иAdc
(Per Package)			10		40	l –	0.010	40	_	300	
			15	_	80	-	0.015	80	_	600	
Total Supply Current**1		lт	5.0			J= = /1	0 μA/kHz)				μAdc
(Dynamic plus Quiescent,		''	10				.0 μΑ/kHz)				
Per Package)		1	15	1			0 μΑ/kHz)				ł
				Ì		., 10.	- project 144				1
(C ₁ = 50 pF on all outputs											

^{*}T_{low} = -55°C for AL Dovice, -40°C for CL/CP Dovice. T_{high} = +126°C for AL Dovice, +85°C for CL/CP Dovice.

where: i_T is in μA (per package), C_L in pF, V = (V_DD - V_SS) in volts, f in kHz is input frequency, and k = 0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ cr } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C, See Figure 1)

Characteristic	Symbol	V _{DD}	Min	Тур#	Max	Unit
Output Rise and Fall Time TTLH, TTHL=(1.5 ns/pF) CL + 25 ns TTLH, TTHL=(0.75 ns/pF) CL + 12.5 ns TTLH, TTHL=(0.55 ns/pF) CL + 12.5 ns	^t тьн, ^t тнь	5.0 10 15	=	100 50 40	200 100 80	ns
Propagation Delay Time, Ctock or Reset to Q TplH, TpHL = (1.75 ns/pF) C _L + 223 ns TplH, TpHL = (0.70 ns/pF) C _L + 99 ns TplH, TpHL = (0.53 ns/pF) C _L + 67 ns	^t РLН, ^t РНL	5.0 10 15	111	300 130 95	600 260 190	กร
Clock Pulse Width	HWI	5.0 10 15	335 165 125	135 45 40	=	ns
Reset Pulse Width	twH	5.0 10 15	400 175 130	80 40 35	=	ns
Reset Removal Time	t _{rem}	5.0 10 15	80 30 25	40 15 10	Ξ	ns
Clock Pulse Rise and Fall Time	TILH, THL	5.0 10 15	No Limit			-
Clock Pulse Frequency	f _{cl}	5.0 10 15	Ξ	2.5 6.0 10	1.2 2.0 3.0	MHz
J-K to Clock Setup Time	† _{Su}	5.0 10 15	500 200 150	120 50 30	=	กร
Clock to J-K Hold Time	^t h	5.0 10 15	40 30 25	-40 -5 0	=	ns
P/S to Clack Setup Time	t _{SU}	5.0 10 15	500 200 150	25 10 7.5	Ξ	ns
Clock to P/S Hold Time	th	5.0 10 15	30 20 20	-70 -20 -10	=	ns
Dp to Clock Setup Time	t _{su}	5.0 10 15	500 200 150	90 20 15	=	ns
Clock to Dp Hold Time	^t h	5.0 10 15	90 40 40	-25 0 5	Ξ	ns

[&]quot;The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

T/C Input Low

LOGIC DIAGRAM

MC14038B See Page 6-92

MC14040B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)
12-BIT BINARY COUNTER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

CLOCK	RESET	OUTPUT STATE
	0	No Change
7	O	Advance to next
Х	1	All Outputs are low

X = Don't Care

12-BIT BINARY COUNTER

The MC14040B 12-stage binary counter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This part is designed with an input wave shaping circuit and 12 stages of ripple-carry binary counter. The device advances the count on the negative-going edge of the clock pulse. Applications include time delay circuits, counter controls, and frequency-driving circuits.

- Fully Static Operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Common Reset Line
- Pin-for-Pin Replacement for CD4040B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
Po	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to - 150	°C_
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package | -12mW/°C from 65°C to 85°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

MC14040B

ELECTRICAL CHARACTER'STICS (Voltages Referenced to VSS)

		VDD	T _{low} *		25°C			Thigh*		
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	Vdc
Vin = VDD or 0		10		0.05	-	0	0.05	-	0.05	
		15	l. -	0.05		0	0.05	-	0.05	
"1" Level	VOH	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc
Vin = 0 or V _{DD}		10	9.95	-	9.95	10	· -	9.95	-	1
		15	14.95	-	14.95	15		14.95		<u> </u>
Input Voltage "0" Level	VIL		ŀ							Vdc
(V _O = 4.5 or 0.5 Vdc)	1	5.0	-	1.5	-	2.25	1.5	-	1.5	1
(V _O = 9.0 or 1.0 Vdc)	1	10	i -	3.0	-	4.50	3.0	-	3.0	j .
(V _O = 13.5 or 1.5 Vdc)		15	<u> </u>	4.0		6.75	4.0		4.0	
"1" Level	ViH									
(V _O = 0.5 or 4.5 Vdc)		5.0	3.5		3.5	2.75	-	3.5	-	Vdc
(V _O = 1.0 or 9.0 Vdc)	1	10	7.0	-	7.0	5.50	l -	7.0	-	l
(V _O = 1.5 or 13.5 Vdc)		15	11.0	-	11.0	8.25	-	11.0	-	1
Dutput Drive Current (AL Device)	ЮН									mAde
(VOH = 2.5 Vdc) Source		5.0	-3.0	-	-2.4	-4.2	-	-1.7	-	ł
(V _{OH} * 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	-	-0.36	-	1
(V _{OH} = 9.5 Vdc)		10	-1.6	-	-1.3	-2.25	-	-0.9	-	ŀ
(V _{OH} = 13.5 Vdc)		15	-4.2	-	-3.4	-8.8	-	-2.4	-	
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.64	-	0.51	0.88	-	0.36	-	mAd
(VOL = 0.5 Vdc)	"	10	1.6	-	1.3	2.25	-	0.9	-	
(VOL = 1.5 Vdc)		15	4.2	-	3.4	8.8	-	2.4	-	1
Output Drive Current (CL/CP Device)	ЮН		i							mAde
(VOH = 2.5 Vdc) Source	"	5.0	-2.5	-	-2.1	-4.2	l –	-1.7	_	l
(VOH = 4.6 Vdc)		5.0	-0.52	-	-0.44	-0.88	i –	-0.36	-	Į.
(VOH = 9.5 Vdc)	1	10	-1.3	-	-1.1	-2.25	l –	-0.9	-	1
(VOH = 13.5 Vdc)		15	-3.6	_	-3.0	-8.8	i –	-2.4	_	
(VOL = 0.4 Vdc) Sink	lor	5.0	0.52	_	0.44	0.88	-	0.36	_	mAde
(VOL = 0.5 Vdc)	"-	10	1.3		1.1	2.25	-	0.9	_	
(VOL = 1.5 Vdc)		15	3.6	_	3.0	8.8	_	2.4	_	i
Input Current (AL Device)	lio	15		± 0.1	-	±0.00001	± 0.1		± 1.0	µAda
Input Current (CL/CP Device)	lin	15	_	±0.3		±0.00001	±0.3	-	±1.0	μAdo
Input Capacitance	Cin					5.0	7.5			oF
(V _{in} = 0)	, "m			_		5.5	'.5			"
Quiescent Current (AL Device)	1 _{DD}	5.0		5.0	 	0.005	5.0		150	'µAdo
(Per Package)	ן סטי ן	10	_	10	_	0.010	10	_	300	
1. 0	{	15	_	20	l –	0.015	20	_	600	
Quiescent Current (CL/CP Device)	100	5.0	<u> </u>	20	<u> </u>	0.005	20	-	150	иAd
(Per Package)	loo	10	=	40	-	0.005	40	_	300	HAG
i. e menogos		15	1 =	80	I -	0.015	80		600	
Total Supply Current**†	 -	5.0		- 60		 			000	μAdo
(Dynamic plus Quiescent,	ľΤ	10	I _T = (0.42 μA/kHz) f + I _{DO} I _T = (0.85 μA/kHz) f + I _{DD}							
Per Package)		15				43 µA/kHz				1
(C ₁ = 50 pF on all outputs, all		15			·T - (1.	MO PM/KMZ	לטי דיי			ſ
buffers switching)	'									l
DOTTERS SWITCHINGS			<u></u>							Ц

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. †To calculate total supply current at loads other than 50 pF:

where: I_T is in μA (per package), C_L in pF, $V=(V_{OD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS < (Vin or Vout) < VOD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Thigh = + 125°C for AL Device, +85°C for CL/CP Device.

[&]quot;"The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS (CL = 50 pF. TA = 25°C)

Characteristic	Symbol	V _{DD} V _{dc}	Min	Тур #	Max	Unit
Output Rise and Fall Time	тьн,	-	1			ns
T _{TLH} , T _{THL} =(1.6 ns/pF) C _L +25 ns	THL	5.0	1 -	100	200	i
TTLH, TTHL = (0.75 ns/pF) CL + 12.5 ns		10	-	50	100	
T _{TLH} , T _{THL} = (0.55 ns/pF) C _L + 9.5 ns		15	<u>l –.</u>	40	80	
Propagation Delay Time	tPLH+		İ			ł
Clock to Q1	t _{PHL}				ŀ	R8
tpHL, tpLH = (1.7 ns/pF) CL + 315 ns	i	5.0	1 -	260	520	
tpHL, tpLH = (0.66 ns/pF) CL + 137 ns	ł	10	–	115	230	
tpHL, tpLH = (0.5 ns/pF) C _L + 95 ns)	15	<u> </u>	80	160	<u> </u>
Clock to Q12						ns
tpHԸ, tpLH = (1.7 ns/pF) CL + 2416 ns	1	5.0	-	1625	3250	
tpHL, tpLH = (0.66 ns/pF) CL + 867 ns	1	10	-	720	1440	i
tp _{HL} , tp _{LH} = (0.5 ns/pF) C _L + 475 ns		15	<u> </u>	500	1000	
Propagation Delay Time	1PHL]		ns
Reset to Q _n	i		ŀ			
tpHL = (1.7 ns/pF) C _L + 485 ns		5.0	-	370	740	•
tpHL = (0.66 ns/pF) CL + 182 ns	ł	10	-	155	310	ł
tpHL = (0.5 ns/pF) C _L + 145 ns		15		115	230	
Clock Pulse Width	tw _H	5.0	385	140	_	ns
		10	150	55	_	
		15	115	38	_	
Clock Pulse Frequency	fel	5.0	_	2.1	1.5	MHz
		10	_	7.0	3.5	l
<u> </u>		15		10.0	4.5	
Clock Rise and Fall Time	tTLH: THL	5.0				ns
	1	10	ì	No Limit		
		15	<u> </u>			L
Reset Pulse Width	twH	5.0	960	320	_	ns
•		10	360	120	-	j
	<u> </u>	15	270	80	_	
Reset Removal Time	trem	5.0	130	65	-	ns
. **		10	50	25	_	
		15	30	15	_	

[&]quot;The formulas given era for the typical characteristics only at 25°C.

*Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 — POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

MC14040B

FIGURE 3 - TIMING DIAGRAM

APPLICATIONS INFORMATION

TIME-BASE GENERATOR

A 60 Hz sinewave obtained through a 1.0 Megohm resistor connected directly to a standard 120 Vac power line is applied to the clock input of the MC14040B. By selecting outputs Q5, Q10, Q11, and Q12 division by

3600 is accomplished. The MC14012B decodes the counter outputs, produces a single output pulse, and resets the binary counter. The resulting output frequency is 1.0 pulse/minute.

QUAD TRANSPARENT LATCH

The MC14042B Quad Transparent Latch is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each latch has a separate data input, but all four latches share a common clock. The clock polarity (high or low) used to strobe data through the latches can be reversed using the polarity input. Information present at the data input is transferred to outputs Ω and $\overline{\Omega}$ during the clock level which is determined by the polarity input. When the polarity input is in the logic "0" state, data is transferred during the low clock level, and when the polarity input is in the logic "1" state the transfer occurs during the high clock level.

- Buffered Data Inputs
- Common Clock
- Clock Polarity Control
- Q and Q Outputs
- Double Diode Input Protection
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-05 to +180	٧
v _{in} v _{out}	Input or Output Voltage (DC or Transient)	-05 to V _{DD} +05	٧
fin fout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PO	Power Dissipation, per Package†	500	mW
1 _{stq}	Storage Temperature	-65 to +150	°C
1 _L	Lead Temperature (B-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur temperature Derating Plastic "P Package – 12mW/"C from 65°C to 85°C Ceramic "L Package – 12mW/"C from 100°C to 125°C

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

QUAD
TRANSPARENT LATCH

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

PIN ASSIGNMENT □ 16 03 VDD 2 == 00 **1**5 ō3 3 [ā □ 14 D3 4 🗀 00 D2 13 5 ___ Clock 02 Polarity 6 02 __ 10 7 _ D1 Q1. 8 = Vss Q1 **¬** 9

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

	,		VDD	Tto	w*		25°C		Thi	igh *	1
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"0" Level	VOL	5.0	-	0.05		0	0.05	+	0.05	Vdc
V _{in} = V _{DD} or 0			10	-	0.05	-	0	0.05	- 1	0.05	
			15	_	0.05	_	0	0.05	1 - 1	0.05	
	"1" Level	VOH	5.0	4.95		4.95	5.0		4.95	-	Vdc
V _{in} = 0 or V _{DD}		•	10	9.95	-	9.95	10	_	9.95	_	
•			15	14.95	_	14.95	15	l –	14.95	_	i i
Input Voltage	"0" Level	VIL									Vdc
(Vo = 4.5 or 0.5 Vdc)		,-	5.0	_	1.5	-	2.25	1.5	_	1.5	
(VO = 9.0 or 1.0 Vdc)			¹ 10	_	3.0	l –	4.50	3.0	_	3.0	Į
(V _O = 13.5 or 1.5 Vdc)			15	l –	4.0	_	6.75	4.0	· _	4.0	
• •	"1" Level	VIH									
(VO = 0.5 or 4.5 Vdc)			5.0	3.5	l _	3.5	2.75	_	3.5	_	Vdc
(Vo = 1.0 or 9.0 Vdc)			10	7.0	l –	7.0	5.50	_	7.0	_	
(VO = 1.5 or 13.5 Vdc)			15	11.0	l –	11.0	8.25	_	11.0	_	
Output Drive Current (AL	Device)	ЮН									mAdd
	Source	-01	5.0	-3.0	l _	-2.4	-4.2	l _	-1.7	_	
(VOH = 4.6 Vdc)			5.0	-0.64	l -	-0.51	-0.88	l -	-0.36	_	1
(VOH = 9.5 Vdc)			10	-1.6	l <u>-</u>	-1.3	-2.25	l _	-0.9	_	
(VOH = 13.5 Vdc)	·		15	-4.2	l _	-3.4	-8.8	_	-2.4	_	
	Sink	loL	5.0	0.64		0.51	0.88		0.36		mAde
(V _{OL} = 0.5 Vdc)	Jiin	OL	10	1.6	l _	1.3	2.25	_	0.9	_	
(VOL = 1.5 Vdc)			15	4.2	_	3.4	8.8	_	2.4	_	1
Output Drive Current (CL/	CD Davisal			7.5			0.0		•••		mAdo
	Source	IOH	5.0	-2.5	_	-2.1	-4.2	l _	-1.7		""
(V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc)	Source		5.0 5.0	-2.5 -0.52	l <u>-</u>	-0.44	-0.88	l <u>-</u>	-0.36	_	
(VOH = 9.5 Vdc)			10	-1.3	-	-1.1	-2.25] _	-0.9	_	l
(V _{OH} = 13.5 Vdc)			15	-3.6	-	-3.0	-8.8	_	-2.4	_	l
											
	Sink	10L	5.0	0.52	-	0.44	0.88	_	0.36	-	mAdd
(V _{OL} = 0.5 Vdc)			10	1.3	-	1.1	2.25	-	0.9	-	1
(V _{OL} = 1.5 Vdc)			15	3.6	_	3.0	8.8		2.4		
Input Current (AL Dovice)		lin	15	-	±0.1	_	±0.00001	±0.1	-	± 1.0	μAdc
Input Current (CL/CP Devi	ce)	lin	15	-	± 0.3	-	±0.00001	± 0.3	- 1	± 1.0	μAdd
Input Capacitance		Cin	_		_		5.0	7.5		-	ρF
(V _{in} = 0)]		l					l
Quiescent Current (AL Dev	ice)	lpp	5,0		1.0		0.002	1.0	-	30	μAdo
(Per Package)		. '00	10	-	2.0	_	0.004	2.0		60	1
			15	-	4.0	_	0.006	4.0	- 1	120	1
Quiescent Current (CL/CP	Device)	lop	5.0	_	4.0		0.002	4.0	_	30	μAdo
(Per Package)	-6-4CE1	טטי	10	-	8.0] _	0.002	8.0	_	60	"~"
vi er i ochagai			15	_	16	I _	0.006	16		120	I
Total Supply Current**†		1	5.0	_							
(Dynamic plus Quiescer		lT	5.0 10				,0 μA/kHz)				μAdd
Per Package	··.						2.0 µA/kHz)				i
(C ₁ = 50 pF on all outp			15			17 = 13	3,0 µA/kHz)	סטי דיי			l
-	U 15, 811										I
buffers switching)				<u> </u>							

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device.

left open.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ V/k}$$

where: It is in μ A (per package), C_L in pF, $V=(V_{OD}-V_{SS})$ in volts, fin kHz is input frequency, and k=0.004.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_m and V_{out} should be constrained to the race V_S or V_{OD}. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{OD}). Unused outputs must be

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time	t _{TLH} .	i —				ns
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns	ITHL	5.0	. –	100	200	l
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns	1	10	-	50	100	1
tylH, tyHL = (0.55 ns/pF) CL + 9.5 ns		15	-	40	80	<u>i</u>
Propagation Dalay Time, D to Q, Q	tPLH,					ns ns
tpLH, tpHL = (1.7 ns/pF) CL + 136 ns	₹PHL	5.0	_	220	440	l
tplH, tpHL = (0.66 ns/pF) CL + 57 ns	· 1	10	_	90	160	l .
tplH, tpHL = (0.5 ns/pF) CL + 35 ns	·	15	-	-60	120	l .
Propagation Delay Time, Clock to Q, Q	tPLH,					ns
tpլн, tpнլ = (1.7 ns/pF) Cլ + 136 ns	tPHL	5.0	-	220	440	
tpLH, tpHL = (0.66 ns/pF) CL + 67 ns		10	-	90	180]
tp_H, tpHL = (0.5 ns/pF) CL + 35 ns		26	-	60	120	
Clock Pulse Width	HWP	1				ពទ
		5.0	300	150	_	1
		10	100	50	_	1
		15	80	40		<u> </u>
Clock Pulse Rise and Fall Time	tTLH-					μв
	^t THL	5.0) —	-	15	1
	•	10	- 1		5.0	
		15			4.0	<u> </u>
Hold Time	^t h					ns
		6.0	100	50	-	1
		10	50	26	-	
		15	40	20	_	<u> </u>
Setup Time	. I _{su}			'		ns
	\ \	5.0	50	0	-	l
		10	30	0	-	ì
		15	25	0	<u> </u>	

^{*}The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - AC AND POWER DISSIPATION TEST CIRCUIT AND TIMING DIAGRAM (Data to Output)

Data labelled "Typ" is not to be used for design purposes but is intended as an Indication of the IC's potential performance.

FIGURE 2 — AC TEST CIRCUIT AND TIMING DIAGRAM (Clock to Output)

CMOS MSI QUAD R-S LATCHES

The MC14043B and MC14044B quad R-S latches are constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each latch has an independent Q output and set and reset inputs. The Q outputs are gated through threestate buffers having a common enable input. The outputs are enabled with a logical "1" or high on the enable input; a logical "0" or low disconnects the latch from the Q outputs, resulting in an open circuit at the Q outputs.

- Double Diode Input Protection
- Three-State Outputs with Common Enable
- · Outputs Capable of Driving Two Low-power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Supply Voltage Range = 3.0 Vdc to 18 Vdc

MC14043B

QUAD "NOR" B-S LATCH

MC14044B

QUAD "NAND" R-S LATCH

CASE 620

PSUFFIX PLASTIC PACKAGE **CASE 648**

X = Don't Care

ORDERING INFORMATION

A Series: - 55°C to + 125°C MC14XXXBAL (Coramic Package Only)

C Series: - 40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MC14043B•MC14044B

ELECTRICAL CHARACTERISTICS (Voltagos Referenced to VSS)

		V _{DD}	Tic	w*	l	25°C		T _{hi}	igh	J
Characteristic	Symbol	Vdc	Min	Max	Min	Typ #	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05		0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0		10		0.05	-	0	0.05	-	0.05	
		15	l –	0.05		0	0.05	-	0.05	
"1" Level	νон	5.0	4.95		4.95	5.0	_	4.95	-	Vdc
V _{ID} = 0 or V _{DD}		10	9.95	_	9.95	10	-	9.95	-	1
		15	14.95	-	14.95	15	-	14.95		
Input Voltage "0" Level	VIL									Vdc
(Vo ≈ 4.5 or 0.5 Vdc)	_	5.0	-	15	-	2.25	1.5	-	1.5	
(V _O = 9 0 or 1.0 Vdc)		. 10	-	3.0	_	4.50	3.0	-	3.0	
(VD = 13.5 or 1.5 Vdc)		15		4.0	-	6.75	4.0		4.0	
"1" Level	VIH									
(Vo = 0.5 or 4.5 Vdc)		5.0	3.5	-	3.5	2.75	-	3.5	-	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	-	1
(Vg = 1 5 or 13.5 Vdc)		15	11.0	l	11.0	8.25	-	11.0	-	
Output Drive Current (AL Device)	ЮН									mAdc
(V _{OH} = 2 5 Vdc) Source		5.0	-3.0	-	-2.4	-4.2	-	-1,7	-	
(V _{OH} = 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	-	-0.36	-	
(VOH = 9.5 Vdc)		10	-1.6	-	-1.3	-2.25	-	-0.9	-	
(V _{OH} = 13.5 Vdc)		15	-4.2		-3.4	-8.8		-2.4		↓
(V _{OL} = 0.4 Vdc) 5ink	10L	50	0.64		0.51	0.88	-	0.36	-	mAdc
(V _{OL} = 0.5 Vdc)		10	1.6		1.3	2.25	-	0.9	-	
(V _{OL} = 1.5 Vdc)		15	4.2	i -	3.4	8.8	-	2.4	_ -	
Output Drive Current (CL/CP Device)	ГОН									mAdc
(VOH = 2.5 Vdc) Source	_	5.0	-2.5	-	-2.1	-4.2	_	-1.7	-	
(V _{OH} = 4.6 Vdc)		5.0	-0.52	-	-0.44	-0.88	_	-0.36	-	
(V _{OH} =9.5 Vdc)	·	10	-1.3	-	-1.1	-2.25	· -	-0.9	-	1
(V _{OH} = 13.5 Vdc)		15	-3.6	-	-3.0	-8.8	-	-2.4		
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc
(V _{OL} = 0.5 Vdc)		10	1.3	<u> </u>	1.1	2.25	-	0.9	-	i
(V _{OL} = 1.5 Vdc)		15	3.6] –	3.0	8.8	-	2.4		
Input Current (AL Device)	1 _{in}	15	-	±0.1	-	± 0 00001	±01	-	±1.0	μAdc
Input Current (CL/CP Device)	lin	15		± 0.3		10.00001	± 0.3	_	± 1.0	µAdc
Input Capacitance	Cin			-	_	50	7.5	_	_	ρF
(V _{in} = 0)	-111			ŀ						1
Quiescent Current (AL Device)	lpp	5.0	-	1.0		0.002	1.0	_	30	μAdc
(Per Package)	'טט	10	l _	2.0	_	0.004	2.0	_	60	
		15	-	4.0	- '	0.006	4.0	-	120	
Quiescent Current (CL/CP Device)	'DD	5.0		4.0	- -	0.002	4.0		30	µAdc
(Per Package)	'טטי	10	l <u>-</u>	8.0	l	0.004	8.0	i - '	60	BAGC
W 01 / 00 mage/		15	-	16	-	0.006	16	_	120	l
Total Supply Current**†	łт	5.0	 	· · · · ·	1+ = 10	.58 µA/kH				µAdc
(Dynamic plus Quiescent, Per Package)	''	10	I		17 - 10	.36 μΑ/κΗ2 .15 μΑ/kΗ2	111)·		"-36
(CL = 50 pF on all outputs, all outputs		15	I			.73 µA/kH2				l
switching)			I		٠, ٠,			,		ı
Three-State Output Leakage Current	1TL	15	- -	±0.1	_	±0.0001	±0.1		±3.0	μAdc
(AL Device)	יזנ	'5	-	20.1	_	-0.0001	10.1		-5.0	
						0.0001			.36	
Three-State Output Leakage Current (CL/CP Device)	ITL	15	-	±1.0	-	±0.0001	±1.0	-	±7.5	μAdc

[&]quot;T_{low} = -55"C for AL Device, -40"C for CL/CP Device. T_{high} = +125"C for AL Device, +85"C for CL/CP Device.

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ V/k}$$

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

where: IT is in μA (por package), CL in pF, V = (VDD - VSS) in volts, 1 in kHz is input frequency, and k = 0.004.

MC14043B•MC14044B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{BD}	DC Supply Voltage	-0.5 to +18.0	٧
, V _{in} , V _{out}	input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
In lout	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	mΨ
Tatg	Storage Temperature	-65 to +150	ç
Tı	Lead Temperature (8-Second Soldering)	260	·c

*Meximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: -12mW/*C from 65°C to 85°C
Ceramic "L" Package: -12mW/*C from 100°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{Out}) \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
Output Rise Time tTLH = (1.35 ns/pF) CL + 32.5 ns tTLH = (0.60 ns/pF) CL + 20 ns tTLH = (0.40 ns/pF) CL + 20 ns	TTLH	5.0 10 15	- - -	100 50 40	200 100 80	rus
Output Fall Time t THL = (1.35 ns/pF) CL + 32.5 ns t THL = (0.80 ns/pF) CL + 20 ns t THL = (0.40 ns/pF) CL + 20 ns	†THL	5.0° 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time tp_H = (0.90 ns/pF) C _L + 130 ns tp_H = (0.36 ns/pF) C _L + 57 ns tp_H = (0.26 ns/pF) C _L + 47 ns tp_H = (0.90 ns/pF) C _L + 130 ns tp_H = (0.90 ns/pF) C _L + 57 ns	^t PLH	5.0 10 15 5.0	- - - -	175 76 60 175 75	350 176 120 350 176	ns
tp _{HL} = (0.26 ns/pF) C _L + 47 ns Set, Set Pulse Width	w	5.0 10 15	200 100 70	80 40 30		ns
Reset, Reset Pulse Width	₩.	6.0 -10 -15	200 100 70	80 40 30	- - -	ns.
Three-State Enable/Disable Delay	t _{PLZ} , t _{PHZ} , t _{PZL} , t _{PZH}	6.0 10 15	- - -	150 80 55	300 160 110	ns

^{*}The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14043B•MC14044B

THREE-STATE ENABLE/DISABLE DELAYS

Set, Reset, Enable, and Switch Conditions for 3-State Tests MC14043B MC14044B 8 R TEST ENABLE 81 82 8 R Open Closed ^tPZH V_SS VDD ٧ss Closed Open В VDD IPZL ממע VSS Open Closed VDD VSS A V_{DD} ^tPHZ Closed Open B VSS Vop IPLZ

PIN ASSIGNMENT

NC = No Connection

PHASE LOCKED LOOP

The MC14046B phase locked loop contains two phase comparators, a voltage-controlled oscillator (VCO), source follower, and zener diode. The comparators have two common signal inputs, PCAin and PCBin. Input PCAin can be used directly coupled to large voltage signals, or indirectly coupled (with a series capacitor) to small voltage signals. The self-bias circuit adjusts small voltage signals in the linear region of the amplifier. Phase comparator 1 (an exclusive OR gate) provides a digital error signal PC1_{out}, and maintains 90° phase shift at the center frequency between PCAin and PCBin signals (both at 50% duty cycle). Phase comparator 2 (with leading edge sensing logic) provides digital error signals, PC2out and LD, and maintains a 00 phase shift between PCAin and PCBin signals (duty cycle is immaterial). The linear VCO produces an output signal VCO_{out} whose frequency is determined by the voltage of input VCO_{in} and the capacitor and resistors connected to pins C1_A, C1_B, R1, and R2. The source-follower output SFout with an external resistor is used where the VCO_{in} signal is needed but no loading can be tolerated. The inhibit input Inh, when high, disables the VCO and source follower to minimize standby power consumption. The zener diode can be used to assist in power supply regulation.

Applications include FM and FSK modulation and demodulation, frequency synthesis and multiplication, frequency discrimination, tone decoding, data synchronization and conditioning, voltage-to-frequency conversion and motor speed control.

- Buffered Outputs Compatible with MHTL and Low-Power TTL
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 to 18 V
- Pin-for-Pin Replacement for CD4046B
- Phase Comparator 1 is an Exclusive Or Gate and is Duty Cycle Limited
- Phase Comparator 2 switches on Rising Edges and is not Duty Cycle Limited

BLOCK DIAGRAM Self Blas -O2 PC1out mparator 1 -O13 PCZout Phase Comparator 2 -01 LD -O4 VCOout Voltage vcoin 90 -011 R1 Controlled O 12 R2 Oscillator VDD = Pin 16 VSS = Pin B -06 C1 (VCO) -07 C18 Source Follower O10 SFout

VSSC

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

PHASE-LOCKED LOOP

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

O15 Zener

MAXIMUM RATINGS (Voltages referenced to VSS)

Rating	Symbol	Value	Unit
DC Supply Voltage	VDD	-0.5 to +18	Vdc
Input Voltage, All Inputs	Vin	-0.5 to V _{OD} + 0.5	Vdc
DC Input Current, per Pin	tin	±10	mAdc
Operating Temperature Range — AL Device CL/CP Device	TA	-55 to +125 -40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		V _D D	T _k	w*	<u> </u>	25°C			igh °	1
Characteristic	Symbol	Vde	Min	Mex	Min	Тур	Max	Min	Max	Uni
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	V
Vin * VDD or 0		10	J -	0.05	-	0	0.05	J - 1	0.05	
		15	L	0.05		0	0.05	_	0.05	
"1" Level	VOH	5.0	4.95	-	4.95	5.0		4.95	-	V
V _{in} - 0 or V _{DD}		10	9.95	ļ -	9.95	10	-	9.95	-	
		_ 15	14.95	L -	14.95	15	-	14.95		<u>l</u>
Input Voltage" "O" Level	VIL									V
(Vo = 4.5 or 0.5 VI		5.0	-	1.5	-	2.25	1.5	-	1.5	l l
(V _O = 9.0 or 1.0 V)	l i	10	-	3.0	-	4.50	3.0	1 -	3.0	1
(V _O = 13.5 or 1.5 V)	L	15		4.0		6.75	4.0		4.0	
"1" Level	VIH									v
(Vo = 0.5 or 4.5 V)		5.0	3.5	-	3.5	2.75	-	3.5	i -	1
(VO = 1.0 or 9.0 VI		10	7.0	-	7.0	5.50	-	7.0	-	
(VO = 1.5 or 13.5 V)	<u> </u>	15	11.0	<u> </u>	11.0	8.25		11.0		<u> </u>
Output Drive Current (AL Device)	ТОН									mA
(V _{OH} = 2.5 V) Source		5,0	-1.2	-	-1.0	-1.7	-	-0.7	-	
(V _{OH} = 4.6 V)	1	5.0	-0.25	-	-0.2	-0.36	-	-0.14	i	1
(V _{OH} = 9.5 V)		10	~0.62	-	-0.5	-0.9	-	-0,35	-	1
(V _{OH} = 13.5 V)		15	-1.8		-1.5	-3.5	-	-1,1		↓
(V _{OL} = 0.4 V) Sink	IOL	5.0	0.64	_	0.51	0.88	-	0.36	-	mA
(V _{OL} = 0.5 V)		10	1.6	-	1,3	2.25	-	0.9	-	ı
(V _{OL} = 1.5 V)		_ 15	4.2	-	3.4	8.8	-	2.4		1
Output Drive Current ICL/CP Device)	10н		· .							mA
(V _{OH} = 2.5 V) Source		5.0	-1.0	-	-0.8	-1.7	-	-0.6	-	
(VOH = 4.6 V)		5.0	-0.2	-	-0.16	-0.36	-	-0.12	-	
(V _{OH} = 9.5 V)	}	10	-0.5	ł –	-0.4	-0.9	-	-0.3	~	ł
(VOH = 13.5 V)		15	-1.4		-1.2	-3.5	-	-1.0		
(VOL = 0.4 V) Sink	IOL	5.0	0.52	_	0.44	0.88	-	0.36	-	mA
(VOL = 0.5 V)] '	10	1.3] -	1.1	2.25	-	0.9	-	1
(V _{DL} = 1.5 V)		15	3.6	-	3.0	8.8	-	2.4	-	
Input Current (AL Device)	lin	15	-	± 0.1	-	±0.00001	±0.1	_	±1.0	μA
Input Current (CL/CP Device)	lin	15	-	± 0.3		±0.00001	±0.3		±1.0	μА
nout Capacitance	Cin		-			5.0	7.5			pF
Quiescent Current (AL Device)	IDD	5.0	-	5.0	-	0.005	5.0	- -	150	HA.
(Per Package) Inh = PCAin = VDD,	טטי ן	10	_	10	l _	0.010	10	-	300	' ^^
Zener = VCOin = 0 V, PCBin = VDD		15	۱ -	20	l -	0.015	20	_	600	1
or 0 V. Iout = 0 µA] '		1	"	i	0.010			000	1
Quiescent Current (CL/CP Device)	gal	5.0	 	20	<u> </u>	0.010	20	_	150	μА
(Per Package) Inh = PCAin = VOD,	'00	10] -	40	1 🗀	0.020	40]	300	"^
Zener = VCOin = 0 V, PCBin = VDD		15	-	80	l -	0.040	80	- '	600	
or 0 V, I _{gut} = 0 µA				"	1	0.040		-	800	ł
Total Supply Current 1	17	5.0	t		1 11	.46 μA/kHz	1641			
(Inh = "0", fo = 10 kHz, CL = 50 pF,	''	10	ĺ		T = 11	.46 μΑ/κΗ2 .91 μΑ/κΗz	מסי דיי			μA
R1 = 1 MΩ, R2 = =, Rsg = =, and]	15			17 - 12	.91 μΑ/ΚΗ2 .37 μΑ/kΗz	::: DD			1
50% Duty Cycle)			I		-1-14	HUIVUS	סטיייי			1

2.0 Vdc min @ VDD = 10 Vdc

2.5 Vdc min @ VOD = 15 Vdc

[†]To Calculate Total Current in General:

$$\begin{split} & I_{T} \approx 2.2 \times V_{DD} \cdot \left(\frac{\text{VCO}_{in} - 1.65}{\text{R1}} + \frac{\text{V}_{DD} - 1.35}{\text{R2}} \right)^{3/4} \\ & 1 \times 10^{-1} \cdot \text{V}_{DD}^{2} \left(\frac{100 \cdot \% \; \text{Duty Cycle of PCA}_{in}}{100} \right) + I_{Q} \end{split} \right. \\ & + 1.6 \times \left(\frac{\text{VCO}_{in} - 1.65}{\text{R}_{SF}} \right)^{3/4} + 1 \times 10^{-3} \left(\text{C}_{L} + 9 \right) \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{V}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{L} + 9 \cdot \text{C}_{DD} \; \text{C}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{DD} \; \text{C}_{DD} \; \text{f} + 1 \times 10^{-3} \cdot \text{C}_{DD} \; \text{C}_{DD} \; \text{c} + 1 \times 10^{-3} \cdot \text{C}_{DD} \; \text{C}_$$

^{*}T_{IOW} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

Noise immunity specified for worst-case input combination.

Noise Margin for both "1" and "0" level = 1.0 Vdc min @ V_{DD} = 5.0 Vdc

ELECTRICAL CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

	ľ		Mini	mum		Maxi	mum]
Characteristic	Symbol	VDD	AL Device	CL/CP Device	Typical All Types	AL Device	CL/CP Device	Units
Output Rise Time	[†] TLH	1		1				ns
^t TLH = (3.0 ns/pF) C _L + 30 ns		5.0	l -	-	180	350	400	
TLH = (1.5 ns/pF) CL + 15 ns	l	10	-	-	90	150	200	Ì
tTLH = (1.1 ns/pF) CL + 10 ns	l	15	-	-	65	110	160	1
Output Fall Time	†THL							ns
tтнь = (1.5 ns/pF) Сь + 25 ns	- 1	5.0	[-	-	100	175	200	1
tTHL = (0.75 ns/pF) CL + 12.5 ns	l	10	-	-	50	75	100	1
tTHL = (0.55 ns/pF) CL + 9,5 ns		15	_	_	37	55	80	
PHASE COMPARATORS 1 and 2								
Input Resistance - PCA _{in}	Rin	5.0	1.0	1.0	2.0	-	-	MΩ
		10	0.2	0.2	0.4	l –	-	1
		15	0.1	0.1	0.2	-	_	
- PCB _{in}	Rin	15	150	15	1500	-	-	MΩ
Minimum Input Sensitivity	Vin	5.0	-	-	200	300	400	mV p-p
AC Coupled - PCAin		10	-	-	400	600	800	į .
C series = 1000 pF, f = 50 kHz		15			700	1050	1400	
DC Coupled - PCA _{in} , PCB _{in}		5 to 15			See Noise	Immunity	ı	1
VOLTAGE CONTROLLED OSCILLATOR (VCO)								
Maximum Frequency	f _{max}	5.0	0.50	0.35	0.70	-	-	MHz
(VCO _{in} = V _{DD} , C1 = 50 pF,		10	1.0	0.7	1.4	-		l
R1 = 5 kΩ, and R2 = ∞ l		15	1.4	1.0	1.9		-	
Temperature - Frequency Stability	-	5.0	-	- "	0.12		- "	%/°C
(R2 = ∞)		10	-	-	0.04	-	-	
		15			0.015		-	ļ
Linearity (R2 =)	~	l		İ		ļ	1	%
$IVCO_{in} = 2.50 \text{ V} \cdot 0.30 \text{ V}, R1 > 10 \text{ k}\Omega$		5.0	-	-	!	-	-	1
(VCO ₁₀ = 5.00 V : 2.50 V, R1 > 400 kΩ)	ľ	10	-	-	!	-	-	[
(VCO _{in} = 7.50 V : 5.00 V, R1 > 1000 kΩ)		15			1 50	-	<u> </u>	1
Output Duty Cycle		5 to 15	-	-	50		-	%
Input Resistance - VCO _{in}	Rin	15	150	50	1500		-	MΩ
SOURCE-FOLLOWER							·	1
Offset Voltage	-	5.0	- '	-	1.65	2.2	2.5	\ \ \
(VCO _{in} minus SF _{out} , R _{SF} > 500 kst)		10	-	-	1.65	2.2	2.5	
		15			1.65	2.2	2.5	
Linearity	-	5.0	_ '		۱ ۱			%
(VCO _{in} = 2.50 V : 0.30 V, R _{SF} > 50 kΩ)	ı	10		_	0.1	-	-	
$(VCO_{in} = 5.00 \text{ V} \cdot 2.50 \text{ V}, R_{SF} > 50 \text{ k}\Omega)$ $(VCO_{in} = 7.50 \text{ V} \cdot 5.00 \text{ V}, R_{SF} > 50 \text{ k}\Omega)$	- 1	15			0.6 0.8		i	1
ZENER DIODE					L			
Zener Voltage (I ₂ = 50 µA)	Vz	T	6.7	6.3	7.0	7.3	7.7	Τv
Dynamic Resistance (I ₂ = 1 mA)	R _Z				100		- :-	Ω
*The formula given is for the typical characteristics only		L						

^{*}The formula given is for the typical characteristics only.

FIGURE 1 - PHASE COMPARATORS STATE DIAGRAMS

Refer to Waveforms in Figure 3.

FIGURE 2 - DESIGN INFORMATION

Characteristic	Using Phase Comparator 1	Using Phase Comperator 2
No signat on input PCA _{in} .	VCO in PLL system adjusts to center frequency (fg).	VCO in PLL system adjusts to minimum frequency (f _{min}).
Phase angle between PCA _{in} and PCB _{in} .	90° at center frequency (fg), approaching 0° and 180° at ends of lock range (2fg).	Always 00 in tock (positive rising edges).
Locks on harmonics of center frequency.	Yes	No
Signal Input noise rejection.	High	Low
Lock frequency range (2f _L).	The frequency range of the input signal on a initially in lock. 2f _L = full VCO frequency	
Capture frequency range (2f _C).	The frequency renge of the input signal on to out of lock.	which the loop will lock if it was initially
	Depends on low-pass filter characteristics (see Figure 3). f _C < f _L	fc = fL
Center frequency (fg).	The frequency of VCO _{out} , when VCO _{in} = 1/2 V _i	DD
VCO output frequency (f). Note: These equations are intended to be a design guide. Since calculated component values may be in error by as much as a factor of 4, laboratory experimentation may be required for fixed designs. Part to part frequency variation with identical passive components is less than ±20%.	$f_{min} = \frac{1}{R_2(C_1 + 32 pF)}$ (VCO inputed from the second of the	

FIGURE 3 - GENERAL PHASE-LOCKED LOOP CONNECTIONS AND WAVEFORMS

Typical Low-Pass Filters

Sometimes R3 is split into two series resistors each R3 ÷ 2. A capacitor CC is then placed from the midpoint to ground. The value for Note: CC should be such that the corner frequency of this network does not significantly affect ω_0 . In Figure B, the ratio of FI3 to FI4 sets the damping, R4 = (0.1)(R3) for optimum results.

Definitions: N = Total division ratio in feedback loop

 $K\phi = V_{DD}/\pi$ for Phase Comparator 1

Kφ = V_{DD}/4 π for Phase Comparator 2

 $K_{VCO} = \frac{2 \pi \Delta f_{VCO}}{V_{DD} - 2 V}$

for a typical design $\omega_n \approx \frac{2 \pi f_r}{10}$ (at phase detector input) ξ ≥ 0.707

LOW-PASS FILTER

Filter A	Filter B
ω _n = K _φ K _V CO NR ₃ C ₂	ω _n = \
$f = \frac{N\omega_n}{2K_{\phi}K_{VCO}}$	} = 0.5 ω ₀ (R ₃ C ₂ + N/K _φ K _V CO)
$F(s) = \frac{1}{R_3C_2S+1}$	$F(s) = \frac{R_3C_2S+1}{S(R_3C_2+R_4C_2)+1}$

Waveforms

Note: for further information, see:

- (1) F. Gardner, "Phase-Lock Techniques", John Wiley and Son, New York, 1966.

- (2) G. S. Moschytz, "Miniature RC Filters Using Phase-Locked Loop", BSTJ, May, 1965.
 (3) Garth Nash, "Phase-Lock Loop Design Fundamentals", AN-535, Motorola Inc.
 (4) A. B. Przedpelski, "Phase-Locked Loop Design Articles", AR254, reprinted by Motorola Inc.

MC14049UB MC14050B

HEX BUFFERS

The MC14049UB hex inverter/buffer and MC14050B non-inverting hex buffer are constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These complementary MOS devices find primary use where low power dissipation and/or high noise immunity is desired. These devices provide logic-level conversion using only one supply voltage, V_{DD} . The input-signal high level (V_{1H}) can exceed the V_{DD} supply voltage for logic-level conversions. Two TTL/DTL Loads can be driven when the devices are used as CMOS-to-TTL/DTL converters (V_{DD} = 5.0 V, V_{QL} \leqslant 0.4 V, $I_{QL} \geqslant$ 3.2 mA). Note that pins 13 and 16 are not connected internally on these devices; consequently connections to these terminals will not affect circuit operation.

- High Source and Sink Currents
- High-to-Low Level Converter
- Supply Voltage Range = 3.0 V to 18 V
- Meets JEDEC UB Specifications—MC14049UB Meets JEDEC B Specification—MC14050B
- V_{IN} can exceed V_{DD}

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	v
Vin	Input Voltage (DC or Transient)	-0.5 to +18.0	v
Vout	Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
l _{in}	Input Current (DC or Transient), per Pin	± 10	mA
lout	Output Current (DC or Transient), per Pin	+ 45	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	*C

*Maximum Ratings are those values beyond which damage to the device may occur.

CMOS SSI

(LOW POWER COMPLEMENTARY MOS)

HEX BUFFERS

Inverting - MC14049UB Noninverting - MC14050B

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL or UBAL (Ceramic Package Only)

C Series: ~40°C to +85°C MC14XXXBCP or UBCP (Plastic Package) MC14XXXBCL or UBCL (Ceramic Package)

LOGIC DIAGRAMS

NC = Pin 13, 16 NC = Pin 13, 16 $V_{SS} = Pin 8$ $V_{DD} = Pin 1$ $V_{DD} = Pin 1$

MC14049UB•MC14050B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		!	VDD	Tto	w*	L	25°C		Th	igh* .	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	_	0.05	-	0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0			10	l –	0.05	-	0	0.05	-	0.05	1
			15	<u>L-</u>	0.05	_	0	0.05	_	0.05	}
Vin = 0 or VDD	"1" Level	νон	5.0	4.95	_	4.95	5.0	-	4.95	_	Vdc
		•	10	9.95	! -	9.95	10	_	9.95	-	
			15	14.95	l	14.95	15	_	14.95	_	
Input Voltage MC14049UB	"O" Level	VIL									Vdc
(VO = 4.5 Vdc)		' ا	5.0	i -	1.0	- 1	2.25	1.0	1 - 1	1.0	1
(VO = 9.0 Vdc)			10	i –	2.0	-	4.50	2.0	-	2.0	İ
(V _O = 13.5 Vdc)			15		2.5	_	6.75	2.5	-	2.5	
	"1" Level	VIH			Γ						Vdc
(V _O = 0.5 Vdc)			5.0	4.0	l –	4.0	2.75	_	4.0	_	ŀ
(V _O = 1.0 Vdc)			10	8.0	-	8.0	5.50	_	8.0	-	ŀ
(V _O = 1.5 Vdc)		1	15	12.5	l ~	12.5	8.25	-	12.5	_	}
Input Voltage MC14050B	"O" Level	VIL									Vdo
(VO = 0.5 Vdc)		"-	5.0	_	1.5	_	2.25	1.5	-	1.5	l '
(VO = 1.0 Vdc)			10	-	3.0	_	4.50	3.0	l - i	3.0	(
(VO = 1.5 Vdc)			15	l –	4.0	l I	6.75	4.0		4.0	
	"1" Level	VIH									Vd
(V _O = 4.5 Vdc)		l "" i	5.0	3.5	l –	3.5	2.75	-	3.5	_	l
(V _O = 9.0 Vdc)			10	7.0	-	7.0	5.50	i –	7.0	_	
(V _O = 13.5 Vdc)			15	11	_	11	8.25	_	11	_	İ
Output Drive Current (AL Device)		ЮН									mAd
(VOH = 2.5 Vdc)	Source	"	5.0	-1.6	_	-1.25	-2.5	_	leó-l	_	
(VOH = 9.5 Vdc)			10	-1.6	-	-1.3	-2.6	_ '	-0.9	_	ł
(VOH = 13.5 Vdc)			15	-4.7	-	-3.75	-10	_	-2.7	-	ŀ
(VDL = 0.4 Vdc)	Sink	loL	5.0	3.75	-	3.2	6.0	_	2.2	_	mAd
(VOL = 0.5 Vdc)	•	"0"	10	10	-	8.0	16	_	5.6	_	i '
(VOL = 1.5 Vdc)			15	30	_	24	40	_	17.0	_	ŀ
Output Drive Current (CL/CP Device)		ЮН				-					mAd
(VOH = 2.5 Vdc)	Source) "	5.0	-1.5	. –	-1.25	-2.5		-1.0	_	1
(VOH = 9.5 Vdc)			10	-1.5	-	-1.3	-2.6	_	-1.0	-	l
(VOH = 13.5 Vdc)	'		15	-4.5	-	-3.75	~10	_	-3.0	-	l
(VOL = 0.4 Vdc)	Sink	lor	5.0	3.6	-	3.2	6.0	_	2.6		mAd
(VOL = 0.5 Vdc)		.00	10	9.6	_	8.0	16	_	6.6	-	
(VOL = 1.5 Vdc)			15	28	_	24	40	_	19	_ !	l
Input Current (AL Device)		lin	15		: 0.1		±0.00001	± 0.1	-	± 1.0	иAd
Input Current (CL/CP Device)		lin	15		: 0.3	-	±0.00001	± 0.3	_	± 1.0	μAd
Input Capacitance		Cin				_	10	20			oF
(Vin = 0)		Vin		-	-	~	.	20	~	_	"
Quiescent Current (AL Device)		lpp	5.0	-	1.0	-	0.002	1.0		30	μAd
(Per Package)		טטי	10	-	2.0	- 1	0.002	2.0		60	~~~
1. o neuriba.		,	15	-	4.0	_	0.004	4.0	_	120	
Quiescent Current (CL/CP Device)		ממי	5.0	_	4.0		0.002	4.0		30	μAd
(Per Package)		טטי	10	-	8.0	-	0.002	8.0		50 60	200
ti or i mrudila)			15	_	16	-	0.004	16	_ [120	
Total Supply Current **1		<u> </u>	5.0	 -	 _		8 pA/kHz)		L.—. I		иAd
(Dynamic plus Quiescent, Per Package	. 1	1T	10	Ī			6 μΑ/κπε) 5 μΑ/kHz)				#40
(C ₁ 50 pF on all outputs, all buffers			15	l			3 μΑ/KHz)				l
APE TO BE ON ON ORTHORS SIL DOLLOW			13			. - 15.	o printial	סטי י			L

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. T_{high} = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

where: IT is in μA (por package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.002.

[₱]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

MC14049UB•MC14050B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 26°C)

Cherecteristic	Symbol	Vde VDD	Min	Тур#	Max	Unit
MC14049UB			<u> </u>			
Output Rise Time	tтьн					ns
^t TLH = (0.8 ns/pF) C _L + 60 ns		5.0	-	100	160	
TLH = (0.3 ns/pF) CL + 35 ns		10	-	50	100	
TLH = (0.27 ns/pF) C _L + 26.5 ns		15	i -	40	60	
Output Fall Time	tTHL			†		ns
tTHL = (0.3 ns/pF) CL + 25 ns		5.0	l –	40	60	
tTHL = (0.12 ns/pF) CL + 14 ns	-	10	-	20	40	
1THL = (0.1 nz/pF) CL + 10 ns	1	16	-	15	30	
Propagation Delay Time	1PLH					ns
tpLH = (0.38 ns/pF) CL + 61 ns	1	6.0	- 1	80	120	
tplH = (0.20 ns/pF) CL + 30 ns		10	1 -	40	65	
tpLH = (0.11 ns/pF) CL + 24.5 ns		16	l –	30	50	
Propagation Delay Time	t _{PHL}					ns
tpHL = (0.38 ns/pF) CL + 11 ns	"""	5.0	 -	30	60	
tpHL = (0.12 ns/pF) CL + 9 ns		10	-	15	30	
tpHL = (0.11 ns/pF) CL + 4.5 ns		15	-	10	20	
MC14060B						
Output Rise Time	[†] TLH					ns
tTLH = (0.7 ns/pF) CL + 65 ns	ł	5.0	ł –	100	160	
tTLH = (0.25 ns/pF) CL + 37.5 ns		10	-	50	80	
tт∟н = (0.2 ns/pF) C _L + 30 ms		15	-	40	60	
Output Fall Time	†THL					ns
tTHL = (0.2 ns/pF) CL + 30 ns		5.0	 -	40	60	
tTHL = (0.06 ns/pF) CL +17 ns		10	-	20	40	
typic = (0.04 ns/pF) C _L + 13 ns		15	-	15	30	
Propegation Delay Time	†PLH	_				ns.
tpլ = (0.33 ns/pF) Cլ + 63.5 ns	1	5.0	-	80	140	
tpLH = (0.19 ns/pF) CL + 30.5 ns		10	l –	40	80	
tp_H = (0.06 ns/pF) C_ + 27 ns		15	_	30	60	
Propagation Delay Time	†PHL					ns
tpHL = (0.2 ns/pF) CL + 30 ns	1	5.0	-	40	80	
tpHL = (0.1 ns/pF) CL + 15 ns		10	_	20	40	
tթнլ = (0.05 ns/pF) Cլ + 12.5 ns	}	15	J –	J 15	l 30 i	

^{*}The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - TYPICAL VOLTAGE TRANSFER CHARACTERISTICS VOIDUS TEMPERATURE

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14049UB•MC14050B

FIGURE 2 - TYPICAL OUTPUT SOURCE CHARACTERISTICS

FIGURE 4 - AMBIENT TEMPERATURE POWER DERATING

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields referenced to the VSS pin, only. Extra precautions must be taken to avoid applications of any voltage higher than the maximum rated voltages to this high-impedance circuit. For proper operation, the ranges VSS \leq Vin \leq 18 V and VSS \leq Vout \leq VDD are recommended.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

FIGURE 3 - TYPICAL OUTPUT SINK CHARACTERISTICS

FIGURE 5 - SWITCHING TIME TEST CIRCUIT
AND WAVEFORMS

#Invert on MC14049UB only

ANALOG MULTIPLEXERS/DEMULTIPLEXERS

The MC14051B, MC14052B, and MC14053B analog multiplexers are digitally-controlled analog switches. The MC14051B effectively implements an SP8T solid state switch, the MC14052B a DP4T, and the MC14053B a Triple SPDT. All three devices feature low ON impedance and very low OFF leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Analog Voltage Range (VDD VEE) = 3 to 18 V
 Note: VEE must be ≤ VSS
- Linearized Transfer Characteristics
- Low-Noise 12 nV/√Cycle, f > 1 kHz typical
- Pin-for-Pin Replacement for CD4051, CD4052, and CD4053
- For 4PDT Switch, See MC14551B
- For Lower RON, Use the HC4051, HC4052, or HC4053 High-Speed CMOS Devices

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
v _{DD}	DC Supply Voltage (Referenced to V _{EE} , V _{SS} ≥ V _{EE})	-0.5 to +18.0	V
V _{in} . V _{out}	Input or Output Voltage (DC or Transient) (Referenced to V _{SS} for Control Inputs and V _{EE} for Switch I/O)	- 0.5 to V _{DD} + 0.5	v
lin	Input Current (DC or Transient), per Control Pin	± 10	mA
Isw	Switch Through Current	± 25	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	-65 to +150	ů
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur fTemperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C to 85°C Ceramic "L" Package: - 12mW/°C from 100°C to 12°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

ANALOG MULTIPLEXERS/ DEMULTIPLEXERS

				Tic	w°		25°C		Thi	lgh*	
Characteristic	Symbol	V _{DD}	Test Conditions	Min	Max	Min	Тур#	Max	Min	Max	บกเ
SUPPLY REQUIREMEN	TS (Voltage	s Refere	nced to VEE)								
Power Supply Voltage Range	V _{DD}	_	V _{DD} -3 > V _{SS} > V _{EE}	3	18	3		18	3	18	٧
Quiescent Current Per Package (AL Device)	ססי	5 10	Control Inputs: V _{in} = V _{SS} or V _{DD} . Switch I/O: V _{EE} < V _{I/O} < V _{DD} .	=	5 10	_	0.005	. 5 10	_	150 300	μА
	ļ	15	and ∆V _{switch} ≤ 500 mV++	_	20		0.015	20	_	600	
Quiescent Current Per Package (CL/CP Device)	ם סי	5 10 15	Control Inputs: V _{in} ≈ V _{SS} or V _{DD} , Switch I/O: V _{EE} ≤ V _{I/O} ≤ V _{DD} , and ΔV _{switch} ≤ 500 mV++	- - -	20 40 80	-	0.005 0.010 0.015	20 40 80	<u> </u>	150 300 600	μА
Total Supply Current (Dynamic Plus Quiescent, Per Package)	^I D(AV)	D(AV) 5			Typical (0.07 μΑ/κΗ2)! + I _{DD} (0.20 μΑ/κΗ2)! + I _{DD} (0.36 μΑ/κΗ2)! + I _{DD}						μА
CONTROL INPUTS — I	 NHIBIT, A	, в, с		Ŀ							ــــــــــــــــــــــــــــــــــــــ
Low-Level Input Voltage	VIL	5 10	R _{on} = per spec, I _{off} = per spec	_	1.5 3.0	_	2.25 4.50	1.5 3.0	_	1.5 3.0	٧
High-Level Input Voltage	V	15 5	R _{on} = per spec,	3.5	4.0	3.5	6.75 2.75	4.0	3.5	4.0	V
High-Level (hippi voltage	, VịH	10 15	loff = per spec	7.0 11.0	- +	7.0 11.0	5.50 8.25		7.0 11.0	1 1 1	ľ
Input Leakage Current (AL Device)	lin	15	V _{in} = 0 or V _{DD}	1	± 0.1	-	± 0.00001	±0.1	-	±1.0	μА
Input Leakage Current (CU/CP Device)	lin	15	V _{in} = 0 or V _{DD}	_	±0.3	_	± 0 00001	±0.3	_	± 1.0	Αμ
Input Capacitance	C _{in}	<u> </u>	<u>. </u>	L <u> </u>		_	5.0	7.5		<u> </u>	ρF
SWITCHES IN/OUT ANI	COMMO	NS OL	IT/IN - X, Y, Z (Voltages Refere	enced	o VEE)						
Recommended Peak-to- Peak Voltage Into or Out of the Switch	V _{I/O}	_	Channel On or Off	0	V _{DD}	0	1	V _{DD}	0	VDD	VPF
Recommended Static or Dynamic Voltage Across the Switchee (Figure 5)	ΔV _{switch}	_	Channel On	0	600	0	-	600	0	300	mV
Output Offset Voltage	V00	_	V _{in} = 0 V, No load		_		10	_	\Box		μ۷
ON Resistance (AL Device)	Ron	5 10	ΔV _{switch} < 500 mV**. V _{in} = V _{IL} or V _{IH} (Control),	=	800 400	1 1	250 120	1050 500	Ξ	1300 550	Ω
	1	15	and Vin = 0 to VDD (Switch)	_	220	_	80	280	_	320	
ON Resistance (CL/CP Device)	Ron	5 10 15	$\Delta V_{\text{switch}} \leq 500 \text{ mV**},$ $V_{\text{in}} = V_{\text{IL}} \text{ or } V_{\text{IH}} \text{ (Control)},$ and $V_{\text{in}} = 0 \text{ to } V_{\text{DD}} \text{ (Switch)}$	_	450 250	_ 	250 120 80	1050 500 280	<u>-</u>	1200 520 300	Ω
△ ON Resistance Between Any Two Channels	ΔR _{on}	5 10		-	70 50	1 1	25 10	70 5 0	1 1	135 95	Ω
in the Same Package Off-Channel Leakage	1	15	V _{in} = V _{IL} or V _{IH} (Control)	_	45 ± 100		± 0.05	45 ± 100	-	65 ± 1000	nA
Current (AL Device) (Figure 10)	lofi		Channel to Channel or Any One Channel		_ ,00	_	_ 5.03	_ 100	_	500	
Off-Channel Leakage Current (CL/CP Device) (Figure 10)	loll	15	V _{In} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	-	± 300	_	±0.05	±300	1 .	± 1000	nA
Capacitance, Switch I/O	C _{I/O}		Inhibit = V _{DD} .	_	_	_	10	_	_		ρF
Capacitance, Common O/I	C _{O/t}		Inhibit = V _{DD} (MC14051B) (MC14052B) (MC14053B)	-	_	-	60 32 17	-	-		pF
Capacitance, Feedthrough	+		Pins Not Adjacent	\vdash	⊢	_	0.15		_		—

^{*} T_{fow} = -55°C for AL Device, -40° for CL/CP Device.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

[#] Data labeled "Typ" is not to be used for design purposes, but is intended as an Indication of the IC's potential performance.

^{**}For voltage drops across the switch (AV_{switch}) > 600 mV (>300 mV at high temperature), excessive V_{DD} current may be drawn; i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

ELECTRICAL CHARACTERISTICS* ($C_L = 50$ pF, $T_A = 25$ °C) ($V_{EE} < V_{SS}$ unless otherwise indicated)

Cheracteristic	Symbol	VDD-VEE Vdc	Typ # All Types	Max	Unit
Propagation Delay Times (Figure 6) Switch Input to Switch Output (R _L = 10 kΩ) MC14051	tPLH, tPHL				ns
tp_H, tpHL = (0.17 ns/pF) CL + 26.5 ns	1	5.0	35	90	
tp_H, tpHL - (0.08 ns/pF) CL + 11 ns	į į	10	15	40	1
тр_H, тр _H L = (0.06 ns/pF) C _L + 9.0 ns MC14052		15	12	30	
		5.0	30	75	ns
tpLH, tpHL = (0.17 ns/pF) CL + 21.8 ns		10	12	30	ì
tp_H, tpHL = (0.08 ns/pF) CL + 8.0 ns		15	1 10	25	1
tp_H tpHE = (0.06 ns/pF) CE + 7.0 ns MC14063			 		05
tpլн, tpнլ = (0.17 ns/pF) Cլ + 16.5 ns	ļ	5.0	25	65	""
tp[H] tpHL = (0.08 ns/pF) CL + 4.0 ns	İ	10	8.0	20	1
tp_H, tpHL = (0.06 ns/pF) CL + 3.0 ns		15	6.0	15	1
inhibit to Output (R ₁ = 10 kΩ, V _{FF} = V _{SS})	<u> </u>				
Output "1" or "0" to High Impedance, or	TPHZ, TPLZ,				ns
High Impedance to "1" or "0" Level	TPZH, TPZL		1		l
MC140518	7 211, 7 26	6.0	350	700	1
100 1700 I U		10	170	340	1
		15	140	280	1
					
MC14052B		5.0	300	600	ns ns
		10	155	310	}
		15	125	250	
MC14053B	1	5.0	275	550	ns.
	i	10	140	280	ł
		15	110	220	
Control Input to Output (R _L = 10 kΩ, V _{EE} = V _{SS})	**********		+		ns
MC14051B	TPLH, TPHL	5.0	380	720	" "
MC14031B	1	10	160	320	
	i	15	120	240	i
					
MC14052B	l .	5.0	325	650	ns
		10	130	260	
		15	90	180	
MC14053B		5.0	300	600	ns
		10	120	240	
		15	80	160	i
Second Harmonic Distortion (R _L = 10KΩ, I = 1kHz) V _{In} = 5 Vpp		10	0.07	-	%
· · · · · · · · · · · · · · · · · · ·	BW	10	17	-	MH
Bandwidth (Figure 7) $ (R_L = 1 \text{ k}\Omega, V_{in} = 1/2 \text{ (V}_{DD} \cdot V_{EE}) \text{ p.p. } C_L = \text{50pF} $ $ 20 \text{ Log} \frac{V_{out}}{V_{in}} = -3 \text{ dB}) $		10	"	_	
Off Channel Feedthrough Attenuation (Figure 7) RL = $1K\Omega$, V_{IR} = $1/2$ (V_{DD} - V_{EE}) p-p f_{IR} = 4.5 MHz — MC14051B f_{IR} = 30 MHz — MC14052B	-	10	- 50		dB
1 _{in} = 55 MHz MC14053B			_		1
Channel Separation (Figure 8) $(R_L = 1 \text{ k}\Omega, V_{in} = 1/2 \text{ (VDD-VEE) p-p.}$ $t_{in} = 3.0 \text{ MHz}$	-	10	- 50	-	dB
.III and more				1	1
Crosstalk, Control Input to Common O/I (Figure 9)		10	75	_	m∨
$(R_1 = 1 k\Omega, R_L = 10 k\Omega)$	1		1]	1

^{*}The formulas given are for the typical characteristics only at 25°C.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$. Unused inputs must always be field to an appropriate logic voltage level (e.g., either VSS, VEE, or VDD). Unused outputs must be left open.

Data labellad "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - SWITCH CIRCUIT SCHEMATIC

FIGURE 2 - MC140518 FUNCTIONAL DIAGRAM

	IRUIN IABLE										
Contr	ol le	ıρυ	ts								
	S	elec	:t	L	ON S	witche	•				
Inhibit	c•	В	Α	MC14051B	AC14051B MC14052B N				3B		
0	0	0	0	ΧO	YO	ΧO	ZO	٧0	ΧĐ		
0	0	0	1	1 X1	Y1	X1	ZO	YO	X1		
0	0	1	0	X2	Y2	X2	zo	Y1	ΧO		
0	0	1	1	хз	٧3	ХЗ	ZO	Y1	Хī		
0	1	0	0	X4			Z1	YO	ΧO		
0	1	0	1] x5]			Z١	YO	X1		
0	1	1	0	X6			Z1	٧1	ΧO		
0	-	1	1	X7			Z 1	Y1	X1		
1	×	×	×	None None None			None				
				- 14014060					_		

*Not applicable for MC14052

x " Don't Care

FIGURE 3 - MC14052B FUNCTIONAL DIAGRAM

FIGURE 4 - MC14053B FUNCTIONAL DIAGRAM

TEST CIRCUITS

FIGURE 5 - AV ACROSS SWITCH

FIGURE 6 — PROPAGATION DELAY TIMES, CONTROL AND INHIBIT TO OUTPUT

FIGURE 7 — BANDWIDTH AND OFF-CHANNEL FEEDTHROUGH ATTENUATION

A, B, and C inputs used to turn ON or OFF the switch under test.

FIGURE 8 — CHANNEL SEPARATION (ADJACENT CHANNELS USED FOR SETUP)

FIGURE 9 — CROSSTALK, CONTROL INPUT TO COMMON O/I

FIGURE 10 - OFF CHANNEL LEAKAGE

FIGURE 11 - CHANNEL RESISTANCE (RON) TEST CIRCUIT

1388

8

55°C

RON, "ON" RESISTANCE (OHMS) 첧 250 ğ 뚕

APPLICATIONS INFORMATION

Figure A illustrates use of the on-chip level converter detailed in Figures 2, 3, and 4. The 0-to-5 V Digital Control signal is used to directly control a 9

V_{p-p} analog signal.

The digital control logic levels are determined by VDD and VSS. The VDD voltage is the logic high voltage; the VSS voltage is logic low. For the example, VDD = +5 V = logic high at the control inputs; VSS = GND = 0 V = logic low.

The maximum analog signal level is determined by VDD and VEE. The VDD voltage determines the maximum recommended peak above VSS. The VEE voltage determines the maximum swing below VSS. For the example, VDD - VSS = 5 V maximum swing above VSS; VSS - VEE = 5 V maximum swing below VSS. The example shows a ± 4.5 V signal which allows a 1/2 volt margin at each peak. If voltage transients above VDD and/or below VEE are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between VDD and VEE is 18.0 V. Most parameters are specified up to 15 V which is the recommended maximum difference between VDD and VEE.

Balanced supplies are not required. However, VSS must be greater than or equal to VEE. For example, VDD = +10 V, VSS = +5 V, and VEE = -3 V is acceptable. See the Table below.

FIGURE A - APPLICATION EXAMPLE

FIGURE B - EXTERNAL GERMANIUM OR SCHOTTKY CLIPPING DIODES

POSSIBLE SUPPLY CONNECTIONS

			Control Inputs	
V _{DD} In Volts	V _{SS} In Volte	V _{EE} In Volta	Logic High/Logic Low in Volts	Meximum Analog Signal Range in Volta
+8	0	-8	+ 8/0	+8 to ~8 = 16 V _{p-p}
+5	. 0	- 12	+ 5/0	+5 to -12 = 17 V _{p-p}
+5	0	0	+ 5/0	+5 to 0 = 5 V _{P*P}
+5	0	-6	+ 5/0	+5 to -5 = 10 V _{P-P}
+10	+5	-5	+10/+5	+10 to -5 = 15 V _{p+p}

14-BIT BINARY COUNTER AND OSCILLATOR

The MC14060B is a 14-stage binary ripple counter with an on-chip oscillator buffer. The oscillator configuration allows design of either RC or crystal oscillator circuits. Also included on the chip is a reset function which places all outputs into the zero state and disables the oscillator. A negative transition on Clock will advance the counter to the next state. Schmitt trigger action on the input line permits very slow input rise and fall times. Applications include time delay circuits, counter controls, and frequency dividing circuits.

- Fully static operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Buffered Outputs Available from Stages 4 Through 10 and 12 Through 14
- Common Reset Line
- Pin-for-Pin Replacement for CD4060B

CMOS MSI

ILOW POWER COMPLEMENTARY MOST

14-BIT BINARY COUNTER AND OSCILLATOR

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

Clock	RESET	Output State
	L	No Change
	L	Advance to next state
х	н	All Outputs are low

X = Don't Care

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
Vin. Vout	input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
lin-lout	input or Oulput Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	٥
τL	Lead Temperature (8-Second Soldering)	260	ŝ

^{*}Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW*C from 65°C to 65°C Ceramic "L" Package: -12mW*C from 100°C to 125°C

This device contains protection cir-cuitry to guard against damage due cultry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS < (Vin or Vout) < VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

@b		V _D O	Tic	w*		25℃		Thi	Unit	
Characteristic	Symbol	V	Min	Max	Min	Typ#	Max	Min	Max	Uni
Output Voltage "0" Level V _{In} = V _{DD} or 0	VOL	5.0 10 15	=	0.05 0.05 0.05	111	0 0 0	0.05 0.05 0.05	111	0.05 0.05 0.05	>
$V_{in} = 0 \text{ or } V_{DD}$	VOH	5.0 10 15	4.95 9.95 14.95	1 1	4.95 9.95 14.95	5.0 10 15	1	4.95 9.95 14.95		٧
Input Voltage "0" Level (V _O = 4.5 or 0.5 V) (V _O = 9.0 or 1.0 V) (V _O = 13.5 or 1.5 V)	VIL	5.0 10 15	=	1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0	111	1.5 3.0 4.0	٧
(V _O = 0.5 or 4.5 V) "1" Level (V _O = 1.0 or 9.0 V) (V _O = 1.5 or 13.5 V)	VIH	5.0 10 15	3.5 7.0 11.0	111	3.5 7.0 11.0	2.75 5.50 8.25	1 1 1	3.5 7.0 11.0	- -	٧
Input Voltage "0" Level (V _O = 4,5 Vdc) (For Input 11 (V _O = 9.0 Vdc) and Output 10) (V _O = 13.5 Vdc)	ViL	5.0 10 15	=	1.0 2.0 2.5	111	2.25 4.50 6.75	1.0 2.0 2.5	111	1.0 2.0 2.5	Vdc
(V _O = 0.5 Vdc) "1" Level (V _O = 1.0 Vdc) (V _O = 1.5 Vdc)	VIH	5.0 10 15	4.0 8.0 12.5	111	4.0 8.0 12.5	2.75 5.50 8.25		4.0 8.0 12.5		Vdc
Output Drive Current (AL Device) (VOH = 2.5 V) (Except Source (VOH = 4.6 V) Pins 9 and 10) (VOH = 9.5 V) (VOH = 13.5 V)	ЮН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	1111	-2.4 -0.51 -1.3 -3.4	- 4.2 - 0.88 - 2.25 - 8.8	1111	- 1.7 - 0.36 - 0.9 - 2.4	1111	mA
$(V_{OL} = 0.4 \text{ V})$ Sink $(V_{OL} = 0.5 \text{ V})$ $(V_{OL} = 1.5 \text{ V})$	lOL	5.0 10 15	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8	-	0.36 0.9 2.4	<u> </u>	mA
Output Drive Current (CL/CP Device) (VOH = 2.5 V) (Except Source (VOH = 4.6 V) Pins 9 and 10) (VOH = 9.5 V) (VOH = 13.5 V)	ŧон	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6	1111	-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	1111	1.7 0.36 0.9 2.4	1111	mA
(V _{OL} = 0.4 V) (V _{OL} = 0.5 V) (V _{OL} = 1.5 V)	[‡] OL	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	-	0.36 0.9 2.4		mA
Input Current (AL Device)	l _{in}	15	_	±0.1		±0.0001	± 0.1		±1.0	μА
Input Current (CL/CP Device)	l _{in}	15		±0.3		±0.0001	± 0.3		±1.0	μА
Input Capacitance (V _{in} = 0)	Cin	-	-	_	_	5.0	7.5	-	_	ρF
Quiescent Current (AL Device) (Per Package)	lDD	5.0 10 15	=	5.0 10 20	Ξ	0.005 0.010 0.015	5.0 10 20	-	150 300 600	μА
Quiescent Current (CL/CP Device) (Per Package)	סס	5.0 10 15	=	20 40 80		0.005 0.010 0.015	20 40 80	1 1 1	150 300 600	μΑ
Total Supply Current** (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)	lΤ	5.0 10 15			$I_T = (0.5$	5 μΑ/kHz) 4 μΑ/kHz) 5 μΑ/kHz)	f + IDD		-	μА

^{*}Tiow = -55°C for AL Device, -40°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Thigh = +125°C for AL Dovice. +85°C for CL/CP Device.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
		5.0	_	40	200	
Output Rise Time (Counter Outputs)	¹TLH	10 15	_	25 20	100 80	ns
		5.0	_	50	200	
Output Fall Time (Counter Outputs)	¹ THL	10 15	_	30 20	100 80	ns
Propagation Delay Time		5.0		415	740	
Clock to Q4	1PLH	10	_	175	300	ns
	†PHL	15	_	125	200	
Clock to Q14		5.0		1.5	2.7	{
	ŀ	10	_	0.7	1.3	μS
· · · · · · · · · · · · · · · · · · ·		15		0.4	1.0	
		5.0	100	65	i –	
Clock Pulse Width	^t wH	10	40	30	-	ns
		15	30	20		
		5.0	_	5	3.5]
Clock Pulse Frequency	fø	10	_	14	В	MHz
		15	-	17	12	
	ttlH .	5.0				İ
Clock Rise and Fall Time	THL	10		No Limit		ns
		15		1 1		
Bases Bulan Midth	1 . 1	5.0	120	40	! -	1
Reset Pulse Width	1w	10	60	15	_	ns
·····		15	40	10		
Propagation Delay Time		5.0	_	170	360	ŀ
Reset to On	1PHL	10	-	80	160	ns
		15		60	100	Щ.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the (C's potential performance.

FIGURE 1 — POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

Q V_{DD} 500 µF Clock Pulse Generator NC OUT105 OUT2 Qn NC 20 ns 20 ns - VDD 90% 50% 10% Clock · Vss 50% Duty Cycle

FIGURE 2 — SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 3 -- OSCILLATOR CIRCUIT USING RC CONFIGURATION

if 1kHz \leq f \leq 100 kHz and 2Htc < R₈ < 10Rtc (f in Hz, R in ohms, C in farads)

The formula may vary for other frequencies. Recommended maximum value for the resistors is 1 $\mbox{M}\Omega.$

TYPICAL RC OSCILLATOR CHARACTERISTICS

FIGURE 4 - RC OSCILLATOR STABILITY

FIGURE 5 — RC OSCILLATOR FREQUENCY AS A FUNCTION OF RTC AND C

FIGURE 6 - TYPICAL CRYSTAL OSCILLATOR CIRCUIT

FIGURE 7 - TYPICAL DATA FOR CRYSTAL OSCILLATOR CIRCUIT

Characteristic	500 kHz Circuit	32 kHz Circuit	Unit
Crystal Characteristics			
Resonant Frequency	500	32	kHz
Equivalent Resistance, RS	1.0	6.2	kΩ
External Resistor/Capacitor Values			
RO	47	750	kQ
l c _t	82	82	ρF
c _S	20	20	pF
Frequency Stability			,
Frequency Changes as a Function			
of VDD (TA = 25°C)	1		
VDD Change from 5.0 V to 10 V	+6.0	+ 2.0	ppm
VDD Change from 10 V to 15 V	+ 2.0	+ 2.0	ppm
Frequency Change as a Function	1		ł
of Temperature IVDD = 10 V)	Į.		
TA Change from -55°C to +25°C	1		i
Complete Oscillator*	+ 100	+ 120	ppm
TA Change from + 25°C to + 125°C			l
Complete Oscillator*	- 160	- 560	ppm

^{*}Complete oscillator includes crystal, capacitors, and resistors.

QUAD ANALOG SWITCH/QUAD MULTIPLEXER

The MC14066B consists of four independent switches capable of controlling either digital or analog signals. This quad bilateral switch is useful in signal gating, chopper, modulator, demodulator and CMOS logic implementation.

The MC14066B is designed to be pin-for-pin compatible with the MC14016B, but has much lower ON resistance. Input voltage swings as large as the full supply voltage can be controlled via each independent control input.

- Diode Protection on All Inputs
- Supply Voltage Range = 3,0 Vdc to 18 Vdc
- Linearized Transfer Characteristics
- Low Noise 12 nV/√Cycle, f ≥ 1 kHz typical
- Pin-for-Pin Replacement for CD4016, CD4066, MC14016B
- For Lower RON, Use The HC4066 High-Speed CMOS Device

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to + 18.0	v
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
lin	Input Current (DC or Transient), per Control Pin	± 10	mA
!sw	Switch Through Current	± 25	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

QUAD ANALOG SWITCH QUAD MULTIPLEXER

A Series: - 55°C to + 125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

E1	FCTRICAL	CHADA	CTERISTICS

ELECTRICAL CHARACT	Supply Voltage VDD -										
(
L				Min	Max	Min	Typ#	Max	Min	Max	Unit
SUPPLY REQUIREMENTS (Voltages Referenced to VSS)											
Power Supply Voltage	QQV	-		3	18	3	_	18	3	18	v
Range				Ì							
Quiescent Current Per	QQI	5	Control Inputs: Vin = VSS or VDD	-	0.25	-	0.005	0.25	-	7.5	μА
Package (AL Device)			Switch I/O: VSS < VI/O < VDD:	-	1 '	-			-	15	ŀ
		15			1.00	_	0.015	1.00			
Quiescent Current Per	ססי	_		-		_			-		μА
Package (CL/CP Device)				-					_		
					4.0					30	<u> </u>
Total Supply Current	^I D(AV)				_						μΑ
			l' .		''	pical (1
Per Package)	1	15				,	(0.30 μ	K112)1 T	טטי		
CONTROL INDUTS (Vol)	Defect							_			
			T	_	1						١.,
Low-Level Input Voltage	VIL.		1	-		_		_	-		١ ٧
			off = per spec	_		_			_		
			8	7.5		2.5	_		25		- ·
High-Level Input Voltage	VIH			1	_		• .	_		_	١ '
	1		Ton per spee	11.0	l _ :		1	_		_	
Input Leekage Current	li-	15	Via = 0 or Voo	<u> </u>	± 0.1	_	+ 0.00001	± 0.1	_	± 1.0	μА
(AL Device)	, in	'	• _{th} = 0 6. •UU				- 0.0000		ŀ		-
Input Leakage Current	l _{in}	15	Vin = 0 or VDD	 	± 0.3	\vdash	= 0.00001	±0.3	_	± 1.0	μА
(CL/CP Device)	''n	'`	I III GOLVOD						1		"
Input Capacitance	Cin	_		Τ_	<u> </u>	_	5.0	7.5	_	_	ρF
SWITCHES IN AND OU		. Patero	nced to Voc		<u></u>						
		110.0.0		Τ,	Tu '	_	·		_	V==	T.,
Recommended Peak-to- Peak Voltage Into or	V1/O	-	Channel On or Off	°	V _{DD}	0	-	VDD	0	VDD	V _{p-p}
Out of the Switch		1			l	ŀ					İ
Recommended Static or	Δ٧		Channel On	•	600	-	<u> </u>	600	0	300	mV
Dynamic Voltage Across	∆V _{switch}	-	Onlaring: On	•	""	ľ		555		555	
the Switch++ (Figure 1)		ľ		ŀ	1	ŀ					
Output Offset Voltage	Voo	_	Vin = C V, No load	Ι_	<u> </u>	_	10	_	_	_	μ۷
ON Resistance	Pon	5	ΔV _{switch} ≤ 500 mV++,	<u> </u>	800	_	250	1050		1300	Ω
(AL Device)	· ·on	10	Vin = ViL or ViH (Control),	_	400	_	120	500	l _	550	"
1		15	and Vin = 0 to VDD (Switch)	l –	220	_	80	260	l –	320	ł
ON Resistance	Ron	5	ΔV _{switch} ≤ 500 mV++,	<u> </u>	880		250	1050	_	1200	Ω
(CL/CP Device)	"	10	Vin = VIL or VIH (Control),		450	_	120	500	_	520	l
1	l	15	and Vin = 0 to VDD (Switch)	<u> </u>	250	_	80	280		300	
Δ ON Resistance Between	ΔR _{on}	5		-	70	_	25	70	_	135	U
Any Two Channels		10		-	50	_	10	50	-	95	1
in the Same Package		15		<u> </u>	45	_	10	45	ニ	65	
Off-Channel Leakage	†off	15	Vin = VIL or VIH (Control)	-	± 100	_	± 0.05	± 100	-	± 1000	nΑ
Current (AL Device)		i	Channel to Channel or	ļ							
(Figure 6)	_	ļ	Any One Channel	<u> </u>	ļ						_
Off-Channel Leakage	loff	15	Vin = VIL or VIH (Control)	-	±300	_	±0.05	± 300	-	± 1000	nΑ
Current (CL/CP Device)	[Channel to Channel or			1	ļ				
(Figure 6)	 		Any One Channel	₩-	├	 	-	<u> </u>	 -		⊢.
Capacitance, Switch I/O	CI/O	<u> </u>	Switch Off	<u> </u>	<u> - </u>	-	10	15			pF
Capacitance, Foedthrough	C _{I/O}	-		-	-	-	0.47	-	-	-	pF
(Switch Off)			l		<u></u>	[l	1	l	L	

^{*} T_{low} = -55°C for AL Device. -40° for CL/CP Device.

Thigh = + 125°C for AL Device, +85°C for CL/CP Device.

Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

^{••}For voltage drops across the switch (AV_{switch}) >600 mV (>300 mV at high temperature), excessive V_{DD} current may be drawn; i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

ELECTRICAL CHARACTERISTICS* (Ct = 50 pF, TA = 25°C unless otherwise noted.)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Propagation Delay Times $V_{SS}=0$ Input to Output (R _L = 10 k Ω)				,		ns
¹ PLH, tpHL=(0.17 ns/pF) CL+15.5 ns	tPLH, tPHL	5.0	l _	20	40	""
¹ PLH, tpHL = (0.08 ns/pF) CL + 6.0 ns		10	[_	10	20	1
¹ PLH, tpHL = (0.06 ns/pF) CL + 4.0 ns		15	1 -	7.0	15	
Control to Output (R _L = 1 kΩ) (Figure 2)					15	
Output "1" to High Impedance	t _{PHZ}	5.0	_	40	80	ns
		10	-	35	70	
		15	<u> </u>	30	60	
Output "0" to High Impedance	IPLZ	5.0	-	40	80	ns
•	1 1	10	-	35	70	
		15		30	60	
High Impedance to Output "1"	^t PZH	5.0	-	60	120	ns
	1 1	10	–	20	40	1
		15		15	30	<u> </u>
High Impedance to Output "0"	1PZL	5.0	l –	60	120	ns
		10	-	20	40	1
		15		15	30	
Second Harmonic Distortion V _{SS} = -	-5 Vdc —	5.0	-	0.1	 	%
$(V_{in} = 1.77 \text{ Vdc}, \text{ RMS Centered } @ 0.0 \text{ Vdc},$ $R_L = 10 \text{ k}\Omega, 1 = 1.0 \text{ kHz})$						
Bandwidth (Switch ON) (Figure 3) VSS=-	- 5 Vdc —	5.0	_	65		MHz
(R _L = 1 kΩ, 20 Log Vout / V _{in} = -3 dB, C _L = 50 pF, V _{in} = 5 V	/ _{P-P})					
Feedthrough Attenuation (Switch OFF) $V_{SS} = -\frac{1}{2}$ (V _{In} = 5 V _{D-D} , R _L = 1 k Ω , t_{In} = 1.0 MHz) (Figure 3)		5.0	-	-50	_	d₿
Channel Separation (Figure 4) VSS = -		5.0	_	-50	_	dΒ
$(V_{in} = 5 V_{p-p}, R_L = 1 k\Omega, I_{in} = 8.0 MHz)$ (Switch A ON, Switch B OFF)						
Crosstalk, Control Input to Signal Output (Figure 5)						
Vss=-		5.0	-	300	-	mV _{p-l}
$(R_1 = 1 \text{ k}\Omega, R_L = 10 \text{ k}\Omega, \text{ Control} t_{TLH} = t_{THL} = 20$	ns)		<u> </u>		1	1

[&]quot;The formulas given are for the typical characteristics only at 25°C.
#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance,

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an ap-

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

TEST CIRCUITS

FIGURE 1 - AV ACROSS SWITCH

FIGURE 3 — BANDWIDTH AND FEEDTHROUGH ATTENUATION

V_C = V_{DD} for Bandwidth Test V_C = V_{SS} for Feedthrough Test

FIGURE 6 - CROSSTALK, CONTROL TO OUTPUT

FIGURE 2 — TURN-ON DELAY TIME TEST CIRCUIT

FIGURE 4 - CHANNEL SEPARATION

FIGURE 6 - OFF CHANNEL LEAKAGE

6

FIGURE 7 - CHANNEL RESISTANCE (RON) TEST CIRCUIT

TYPICAL RESISTANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Figure A illustrates use of the Analog Switch. The 0-to-5 volt digital control signal is used to directly control a 5 volt peak-to-peak analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5$ V = logic high at the control inputs; $V_{SS} = GND = 0$ V = logic low.

The maximum analog signal level is determined by V_{DD} and V_{SS} . The analog voltage must not swing higher than V_{DD} or lower than V_{SS} .

The example shows a 5 volt peak-to-peak signal which allows no margin at either peak. If voltage transients above V_{DD} and/or below V_{SS} are anticipated on the analog channels, external diodes (D_X) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{SS} Is 18.0 volts. Most parameters are specified up to 15 volts which is the recommended maximum difference between V_{DD} and V_{SS}.

FIGURE A - APPLICATION EXAMPLE

FIGURE B — EXTERNAL GERMANIUM OR SCHOTTKY CLIPPING DIODES

ANALOG MULTIPLEXERS/DEMULTIPLEXERS

The MC14067 and MC14097 multiplexers/demultiplexers are digitally controlled analog switches featuring low ON resistance and very low leakage current. These devices can be used in either digital or analog applications.

The MC14067 is a 16-channel multiplexer/demultiplexer with an inhibit and four binary control inputs A, B, C, and D. These control inputs select 1-of-16 channels by turning ON the appropriate analog switch (see MC14067 truth table.)

The MC14097 is a differential 8-channel multiplexer/demultiplexer with an inhibit and three binary control inputs A, B, and C. These control inputs select 1 of 8 pairs of channels by turning ON the appropriate analog switches (see MC14097 truth table).

- Low OFF Leakage Current
- Matched Channel Resistance
- Low Quiescent Power Consumption
- Low Crosstalk Between Channels
- Wide Operating Voltage Range: 3 to 18 V
- Low Noise
- Pin for Pin Replacement for CD4067B and CD4097B

CMOS

(LOW-POWER COMPLEMENTARY MOS)

ANALOG MULTIPLEXERS/ DEMULTIPLEXERS

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltago	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
lin	Input Current (DC or Transient), per Control Pin	± 10	mΑ
Isw	Switch Through Current	± 25	mΑ
PD	Power Dissipation, per Packaget	500	mW
T _{stg}	Storage Temperature	-65 to +150	•c
TL	Lead Temperature (8-Second Soldering)	260	·c

^{*}Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/*C from 65°C to 85°C

ng: Prastic "P" Package: - 12mW/"C from 65°C to 85°C Ceramic "L" Package: - 12mW/"C from 100°C to 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS < (Vin or Vout) < VDD.

Unused inputs must always be tied to an appropriate togic voltage level (e.g., either VSS or VDD). Unused cutputs must be left open.

MC14067 TRUTH TABLE

	Control Inputs								
_ A	В	С	٥	Inh	Channel				
x	X	X	х	1	None				
0	0	0	0	. 0	X0				
1	0	0	0	0	Χ1				
0	11	0	0	0	X2				
1	1	0	. 0	0	Х3				
0	0	1	0	0	X4				
1	0	1	0	0	X5				
0	1	1	0	0	X6				
1	1	1	0	0	X7				
0	0	0	-1	0	X8				
1	0	0	1	0	X9				
0	1	0	1	Ö	X10				
1	1	0	1	0	X11				
0	0	1	1	0	X12				
1 1	0	1	1	0	X13				
0	1	1	1	0	X14				
1	1	1	1	0	X15				

MC14097 TRUTH TABLE

	Control Inputs								
Α	В	C	Channels						
x	х	х	1	None					
0	0	0	0	X0 Y0					
1	0	0	0	X1 Y1					
0	1 1	0	0	X2 Y2					
1	1	0	0	X3 Y3					
0	0	1	0	X4 Y4					
1	0	1	0	X5 Y5					
0	1 1	1	0	X6 Y6					
1	1	1	0	X7 Y7					

X = Don't Care

MC14067 FUNCTIONAL DIAGRAM

MC14097 FUNCTIONAL DIAGRAM

ELEC.	TRICAL	CHARA	CTERISTICS	

				Tic	ow.		25°C		gh*		
Characteristic	Symbol	VDD	Test Conditions		Max	Mtn	Тур#	Max	Min	Max	Unit
SUPPLY REQUIREME	NTS (Voltage		enced to Vgs)								
Power Supply Voltage Range	VDD			3	18	3	_	18	3	18	٧
Quiescent Current Per	1 _{DD}	5	Control Inputs: Vin = VSS or VDD.		5	_	0.005	5	_	150	μΑ
Package (AL Device)		10	Switch t/O: $V_{SS} \leq V_{I/O} \leq V_{DD}$,	—	10	_	0.010	10	_ !	300	
		15	and ∆V _{switch} ≤ 500 mV++		20	_	0.015	20		600	
Quiescent Current Per	IDD	5	Control Inputs: Vin = VSS or VDD.	-	20	_	0.005	20	-	150	μΑ
Package (CL/CP Device)	1	10 15	Switch I/O: VEE < VI/O < VDD, and ΔV_{Switch} < 500 mV++	=	40 80	_	0.010 0.015	40 80	_	300 600	
Total Supply Current	ID(AV)	5	TA = 25°C only				(0.07 μA/	kHz)1 +	יחם יחם	-	μΑ
(Dynamic Plus Oulescent,	(,,,,,	10	(The channel component,	ĺ	Ту	pical					
Per Packago)		15	(Vin-Voul)/Ron. is not				(0.36 μA/	kHz)1 +	מס ^ו		
		Ļ	included.)	Ļ							
			C, D (Voltages Referenced to V _S	S)							
Low-Level Input Voltage	VIL	5 10	Ron = per spec.	-	1.5 3.0	_	2.25 4.50	1.5 3.0	_	1.5 3.0	٧
		15	I Oli - bar shac	_	4.0	_	6.75	4.0	_	4.0	
High-Level Input Voltage	VIH	5	Ron = per spec,	3.5	†	3.5	2.75		3.5		٧
	- ""	10	loff = per spec	7.0	-	7.0	5.50	_	7.0		
		15		11.0	_	11.0	8.25	_	11.0		
Input Leakage Current (AL Device)	lin	15	V _{in} = 0 or V _{DD}	-	±0.1	_	± 0.00001	±01	-	± 1.0	μА
Input Leakage Current (CL/CP Device)	l _{in}	15	V _{in} = 0 or V _{DD}		± 0.3	-	± 0.00001	±0.3	_	± 1.0	μА
Input Capacitanco	C _{in}	_		_	_	ı	5.0	7.5	_	_	рF
SWITCHES IN/OUT A	ND COMM	ONS C	UT/IN - X, Y. (Voltages Refere	enced	to VSS)					
Recommended Peak-to- Peak Voltage Into or Out of the Switch	V _{I/O}	_	Channel On or Off	٥	VDD	0	_	V _{DD}	0	V _{DD}	۷рр
Recommended Static or	ΔV _{switch}		Channel On	0	600	0		600	0	300	m۷
Dynamic Voltage Across the Switch++ (Figure 1)	- switch										
Output Offset Vollage	V00	_	Vin = 0 V, No toad	_	I –	_	10	_	<u> </u>	_	μ۷
ON Resistance	Ron	5	ΔV _{switch} ≤ 500 mV++,	_	800	_	250	1050		1300	U
(AL Device)		10	V _{in} = V _{IL} or V _{IH} (Control),	-	400	-	120	500	-	550	
		15	and V _{In} = 0 to V _{DD} (Switch)		220	<u> </u>	80	280	<u> </u>	320	!
ON Resistance (CL/CP Device)	Hon	5 10	ΔV _{switch} ≤ 500 mV••.	-	880 450	-	250 120	1050 500	_	1200 520	n
(CDCP Device)		15	V _{in} = V _{IL} or V _{IH} (Control), and V _{in} = 0 to V _{DD} (Switch)	=	250	=	80	280	_	300	l l
A ON Resistance Between	ΔRon	5			70	Ι_	25	70	Ι_	135	n
Any Two Channels	-/-011	10		1 -	50	-	10	50	_	95	1
in the Same Package		15		_	45	_	10	45	_	65	
Off-Channel Leakage Current (AL Device) (Figure 2)	lột	15	V _{in} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	-	± 100	-	± 0.05	± 100	-	± 1000	nA
Off-Channel Leakage	1	15	V _{in} = V _{IL} or V _{IH} (Control)	 -	± 300	<u> </u>	±0.05	± 300	 	± 1000	nA
Current (CL/CP Device)	loff	"	Channel to Channel or		-500	l _	-5.55				''''
(Figure 2)			Any One Channel	L		<u>L</u>		<u></u>	L		L
Capacitance, Switch I/O	CI/O	_	Inhibit = V _{DD}	_	-	_	10	_	_	_	ρF
Capacitance, Common O/I	C _{O/I}	-	Inhibit = V _{DD} (MC14067B) (MC14097B)	-	-	-	100 60	_	_	_	pF
Capacitance, Feedthrough	C _{I/O}	-	Pins Not Adjacent	-	 -	-	0.15	-	 _	-	pF
(Channel Off)		I -	Pins Adjacent	I —	I -	1 -	0.47	I —	ı —	ı –	1

Tlow = -55°C for AL Device, -40° for CL/CP Device.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

[₱] Data tabeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

^{**}For voltage drops across the switch (\$\sigma_v\text{witch}) >600 mV (>300 mV at high temperature), excessive VDD current may be drawn; i.e. the current out of the switch may contain both VDD and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded (See second page of this data sheet.)

ELECTRICAL CHARACTERISTICS (C1 = 50 pF. TA = 25°C)

Characteristic	Symbol	V _{DD} - Vss	Тур#	Max	Unit
Propagation Detay Times Channel Input-to-Channel Output (R _L = 200kΩ) MC14067B	[†] PLH• [†] PHL		_		ns
11011075	(Figure 3)	5.0 10	35 15	90 40	
MC14097B		15	12	30	ns
		5.0 10 15	25 10 7	65 25 18	
Control Input-to-Channel Output	[†] PZH: [†] PZL				ns
Channel Turn-On Time (R _L = 10 kΩ) MC14067B/097B	(Figure 4)	5.0 10 15	240 115 75	600 290 190	
Channel Turn-Off Time (R _L = 300 kΩ) MC14067B/097B	1PHZ+ 1PLZ				กร
1407.0007.0	(Figure 4)	5.0 10 15	250 120 75	625 300 190	
Any Pair of Address Inputs to Output MC14087B	¹PLH+ ¹PHL				ns
		5.0 10 15	280 115 85	700 290 215	
MC14097B	(Figure 10)	5.0 10 15	250 100 75	625 250 190	лв
Second Harmonic Distortion $(R_L = 10 \text{ k}\Omega, f = 1 \text{ kHz}, V_{in} = 5 \text{ V}_{p-p})$	_	10	0.3	-	%
ON Channel Bandwidth [R _L = 1 kΩ, V _{in} = 1/2 (V _{DD} - V _{SS}) _{p-p} (sine-wave)]	BW				MHz
20 Log ₁₀ $\frac{V_{Out}}{V_{in}} = -3 \text{ dB}$ MC14067B MC14097B	(Figure 5)	10 10	15 25		
Off Channel Feedthrough Attonuction $ \begin{array}{ll} [R_L = \ 1 \ k\Omega, \ V_{in} = \ 1/2 \ (V_{DD} - V_{SS})_{D-D} (sine-wave)] \\ f_{in} = 20 \ MHz - MC14067B \\ f_{in} = 12 \ MHz - MC14097B \end{array} $	(Figure 5)	10	- 40	_	dB
Channel Separation [RL = 1 kΩ, V _{in} = 1/2 (V _{DD} - V _{SS}) _{p-p} (sine-wave)] f _{in} = 20 MHz	(Figure 6)	10	~ 40	_	dB
Crosstalk, Control inputs-to-Common O/I (R1 = $1k\Omega$, R _L = $10 k\Omega$,	_	10	30	-	mV
Control t _r = t _f = 20 ns, inhibit = V _{SS})	(Figure 7)	dad sa aa ladi		<u> </u>	

*Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - AV ACROSS SWITCH

FIGURE 2 — OFF CHANNEL LEAKAGE

MC14067B PIN ASSIGNMENT

MC14097B PIN ASSIGNMENT

FIGURE 3 --- PROPAGATION DELAY TEST CIRCUIT AND WAVEFORMS Vin to Vout

FIGURE 4 -- TURN-ON AND DELAY TURN-OFF TEST CIRCUIT AND WAVEFORMS

FIGURE 5 — BANDWIDTH AND OFF-CHANNEL FEEDTHROUGH ATTENUATION

A, B, and C inputs used to turn ON or OFF the switch under test.

FIGURE 6 — CHANNEL SEPARATION (Adjacent Channels Used for Setup)

FIGURE 7 --- CROSSTALK, CONTROL TO COMMON O/I

FIGURE 9 - CHANNEL RESISTANCE (RON) TEST CIRCUIT

FIGURE 10 — PROPAGATION DELAY, ANY PAIR OF ADDRESS INPUTS to OUTPUT

TYPICAL RESISTANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Figure A illustrates use of the Analog Multiplexer/ Demultiplexer. The 0-to-5 volt Digital Control signal is used to directly control a 5 V_{p-p} analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5$ V = logic high at the control inputs; $V_{SS} = GND = 0$ V = logic low.

The maximum analog signal level is determined by VDD and VSS. The analog voltage must swing neither higher than VDD nor lower than VSS. The example

shows a 5 V_{p-p} signal which allows no margin at either peak. If voltage transients above V_{DD} and/or below V_{SS} are anticipated on the analog channels, external diodes (D_x) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{SS} is 18.0 volts. Most parameters are specified up to 15 V which is the recommended maximum difference between V_{DD} and V_{SS}.

FIGURE A - APPLICATION EXAMPLE

FIGURE B — EXTERNAL GERMANIUM OR SCHOTTKY CLIPPING DIODES

MC14068B See Page 6-5

MC14069UB

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

HEX INVERTER

HEX INVERTER

The MC14069UB hex inverter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These inverters find primary use where low power displation and/or high noise immunity is desired. Each of the six inverters is a single stage to minimize propagation delays.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Double Diode Protection on All Inputs
- Pin-for-Pin Replacement for CD4069UB
- Meets JEDEC UB Specifications

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	OC Supply Voltage	-0.5 to + 18.0	٧
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
I _{in} , I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	- 65 to + 150	ů
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur. †Temperaturo Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

A Series: -55°C to +125°C MC14XXXUBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXUBCP (Plastic Package) MC14XXXUBCL (Ceramic Package)

MC14069UB

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tic	w*		25°C		Thi	gh °	
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	_	0.05	_	0.	0.05	_	0.05	Vdc
V _{in} = V _{DD}		10	_	0.05	-	0	0.05	-	0.05	
		15		0.05		0	0.05		0.05	
"1" Level	Voн	5.0	4.95	_	4.95	5.0	-	4.95		Vdc
v _{in} = 0		10	9.95	-	9.95	10	· —	9.95	-	l
		15	14.95		14.95	15		14.95		
Input Voltage "0" Level	VIL						l		_	Vdc
(V _O = 4.5 Vdc)		5.0	_	1.0	_	2.25	1.0	_	1.0	
(VO = 9.0 Vde)	l	10 15	-	2.0	-	4.50 6.75	2.0	_	2.0	l
(V _O = 13.5 Vdc) "1" Level	VIH	15		2.5		0.75	2.5		2.5	
(VO = 0.5 Vdc)	VIH	5.0	4.0	_	4.0	2.75	l	4.0		Vdc
(V _O = 1.0 Vdc)	l	10	8.0	_	8.0	5.50	_	8.0	_	, ,,,
(VO = 1.5 Vdc)		15	12.5		12.5	8.25		12.5	_	
Output Drive Current (AL Device)	ЮН		,,,,,,							mAdc
(VOH = 2.5 Vdc) Source	٠٠٠ ا	5.0	-3.0	l —	-2.4	-4.2	l —	-1.7	_	
(V _{OH} = 4.6 Vdc)		5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	l
(VOH = 9.5 Vde)		10	-1.6	_	-1.3	-2.25	l —	-0.9	-]
(V _{DH} = 13.6 Vdc)		15	-4.2		-3.4	-8.8	_	-2.4		
(VOL = 0.4 Vdc) Sink	lOL	5.0	0.64	_	0.51	0.88	_	0.36	-	mAde
(V _{DL} = 0.5 Vdc)	ł	10	1.6	-	1.3	2.25	l —	0.9	-	
(V _{OL} = 1.5 Vdc)	<u> </u>	15	4.2		3.4	8.8		2.4		
Output Drive Current (CL/CP Device)	lон									mAdc
(VOH = 2.5 Vdc) Source	l	5.0	-2.5	_	-2.1	-4.2	-	-1.7	_	
(V _{OH} = 4.6 Vdc)	1	5.0	-0.52	_	-0.44	-0.88		-0.36	_	
(V _{OH} = 9.5 Vdc)		10	-1.3	-	-1.1	-2.25	-	-0.9	_	
(V _{OH} = 13,5 Vdc)		15	-3.6		-3.0	-8.8		-2.4		
(VOL = 0.4 Vdc) Sink	lor	5.0	0.52	-	0.44	0.88	-	0.36	_	mAdc
(VOL = 0.5 Vde)	l	10	1.3	-	1.1	2.25	-	0.9	_	
(V _{OL} = 1.5 Vdc)		15	3.6	_	3.0	8.8 ± 0.00001		2.4	-	μAdc
Input Cuirent (AL Device)	lin	15		± 0.1			±0.1		±1.0	μAdc
Input Current (CL/CP Device)	lin	15	<u> </u>	± 0.3	-	±0.00001	±0.3		±1.0	
Input Capacitance (V _{in} 0)	Cin	_	_		_	5.0	7.5	1		ρF
Quiescent Current (AL Device)	100	5.0		0.25	_	0.0005	0.25	_	7.5	μAdc
(Per Package)		10	-	0.50	_	0.0010	0.50	_	15	
	<u> </u>	15		1.00		0.0015	1.00		30	
Quiescent Current (CL/CP Device)	ססי	5.0	-	1.0	<u> </u>	0.0005	1.0		7.5	μAdc
(Per Package)		10	-	2.0	-	0.0010	2.0 4.0	_	15 30	
		15		4.0	<u> </u>	0.0015				μAdc
Total Supply Current**1	lt .	5.0).3 µA/kHz).6 µA/kHz				μΑας
(Dynamic plus Quiescent, Per Gate)		10 15).9 μΑ/kHz				ł
(CL = 50 pF)		.5			- 11 - 10	, o parkite	, , , , , , , , , , , , , , , , , , , ,			
Output Rise and Fall Times**	TLH.									ns
(CL = 50 pF)	THL.									
TLH, THL = (1.35 ns/pF) CL + 33 ns	1	5.0	-	_	-	100	200	_	_	l
TLH, THL = (0.60 ns/pF) CL + 20 ns	ł	10	-			50	100	-	. —	ŀ
tTLH, tTHL = (0.40 ns/pF) CL + 20 ns		15	_	_		40	80			
Propagation Delay Times**	tPLH.		1	1	1	· ·				ns.
(CL = 50 pF)	tPHL.	I	[i					I
tpլH.tpHL = (0.90 ns/pF) Cլ + 20 ns		5.0	-	-	I —	65	125	- 1	- '	
tPLH.tPHL = (0.36 ns/pF) C1 + 22 ns		10	-	–	-	40	75	-	-	
tp_H.tpHL = (0.26 ns/pF) CL + 17 ns		15	L –	_	<u> </u>	30	55	-		1

[&]quot;T_{low} = -55"C for AL Davico, -40"C for CL/CP Davico.
T_{high} = +125"C for AL Davice, +85"C for CL/CP Davice.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained

$$I_T(C_L) = I_T(50 pF) + (C_L - 50) Vfk$$

where: IT is in μA (por packago), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.002.

to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

[#]Data labelled "Typ" is not to be used for design purposes but is Intended as an Indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

CMOS SSI

QUAD EXCLUSIVE "OR" AND "NOR" GATES

The MC14070B quad exclusive OR gate and the MC14077B quad exclusive NOR gate are constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These complementary MOS logic gates find primary use where low power dissipation and/or high noise immunity is desired.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- All Outputs Buffered
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Double Diode Protection on All Inputs
- MC14070B Replacement for CD4030B and CD4070B Types
- MC14077B Replacement for CD4077B Type

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18 0	V
Vin. Vout	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	٧
lin: lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstq	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS 20 ns Von VDD Lonut 50% Generator 10% VSS - TPLH 90% Output 50% 109 VOL TI.H *Inverted output on MC14077B only. #Connect unused Input to VDD for MC140708, to VSS for MC140778.

MC14070B

QUAD EXCLUSIVE "OR" GATE

MC14077B

QUAD EXCLUSIVE "NOR" GATE

CASE 632 L SUFFIX CERAMIC PACKAGE CASE 646
P SUFFIX
PLASTIC PACKAGE

ORDERING INFORMATION

A Serios: -55 C to +125 C MC14XXXBAL (Ceramic Package Only)

C Series: -40 C to +85 C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MC14070B•MC14077B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

		VDD	Tic	w*		25°C		Τh	igh *	
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0		0.05	_	0	0.05	_	0.05	Vdc
Vin = V _{DD} or 0		10	_	0.05	_	0	0.05	· —	0.05	1
		15		0.05		0	0.05	_	0.05	
"1" Level	∨он	5.0	4.95	-	4.95	5.0	_	4.95	_	Vdc
Vin = 0 or VDD		10 15	9.95 14.95	-	9.95 14.95	10	_	9.95	_	1
Input Voltage "0" Level	V	- '3	14.95		14.55	15		14.95		
(V _O = 4.5 or 0.5 Vdc)	VIL	5.0	· _	1.5	l _	2.25	1.5		1.5	Vdc
(VO=9.0 or 1.0 Vdc)		10	_	3.0	_	4.50	3.0	-	3.0	
(VO = 13.5 or 1.5 Vdc)		15	l –	4.0	—	6.75	4.0	_ :	4.0	
"t" Level	VIH									
(Vo = 0.5 or 4.5 Vdc)		5.0	3.5	—	3.5	2.75	_	3.5	_	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	_	7.0	_	ļ
(V _O = 1 5 or 13.5 Vde)		15	11.0		11.0	8.25	-	11.0		
Output Drive Current (AL Device) (VOH = 2.5 Vdc) Source	IOH	5.0	-3.0		-2.4	-4.2		-1.7	_	mAdc
(V _{OH} =2.5 Vdc) Source (V _{OH} =4.6 Vdc)		5.0	-0.64	_	-0.51	-0.88		-0.36	1 =	
(VOH = 9.5 Vdc)		10	-1.6	_	-1.3	-2.25	_	-0.9	_	
(VOH = 13.5 Vdc)	,	15	-4.2	_	-3.4	-8.8	_	-2.4	_	
(VOL =0.4 Vdc) Sink	lOL	5.0	0.64	_	0.51	0.88	_	0.36	-	mAdc
(VOL =0.5 Vdc)		10	1.6	l —	1.3	2.25	_	0.9	_	ļ
IV _{OL} = 1.5 Vdc)		15	4.2	-	3.4	8.8	_	2.4	_	I
Output Drive Current ICL/CP Device)	ЮН									mAdc
(V _{OH} = 2.5 Vdc) Source		5.0	-2.5	-	-2.1	-4.2	_	-1.7	_	
(V _{OH} = 4.6 Vdc)	1	5.0	-0.52	-	-0.44	-0.88	_	-0.36	_	
(V _{OH} = 9.5 Vdc)	1	10	-1.3	-	-1.1 -3.0	-2.25		-0.9 -2.4	_	ŀ
(V _{OH} = 13.5 Vdc)		15	-3.6	_		-8.8				
(VOL = 0.4 Vdc) Sink	lOL	5.0 10	0.52 1.3	-	0.44 1,1	0.88 2.25	_	0.36 0.9	_	mAdc
(V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	1	15	3.6	_	3.0	2.25 8.8	_	2.4	_	
Input Current (AL Device)	١	15	3.0	201	-	10.00001	± 0.1		± 1.0	μAdc
Input Current (CL/GP Device)	l _{in}	15	 -	103	┝ <u>╤</u>	10.00001	103	- 	± 1.0	μAdc
Input Capacitance	l _{in}	13	- -		 	5.0	7.5	H=-		ρF
(V _{in} ≈ 0)	Cin	-	-	_	_	30	7.5	_		"
Quiescent Current (AL Device)	IDD	5.0		0.25		0.0006	0.25	_	7.5	μAdc
(Per Package)	.00	10	l –	0.50	l —	0.0010	0.50	;	15	1
-		15	l –	1.00	l –	0.0015	1.00		30	
Quiescent Current (CL/CP Device)	1DD	5.0	_	1.0		0.0005	1.0		7.5	μAdc
(Per Package)		10	_	2.0	_	0.0010	2.0	-	15	
		15		4.0	<u> </u>	0,0015	4.0	<u> </u>	30	
Total Supply Current * 1	İΤ	5.0				.3 µA/kHz)				μAdc
(Dynamic plus Quiescent,		10				.6 µA/kHz)				ì
Per Package)		15	1		IT = (0	.9 µA/kHz)	טטי +ז			ŀ
(CL = 50 pF on all outputs, all buffers switching)		1								
Output Rise and Fall Times**				· · · · · · ·	f	r -		1	ι	ns
(C ₁ = 50 pF)	TLH,									"
tTLH, tTHL = (1.35 ns/pF) CL + 33 ns	, IME	5.0	_	l –	-	100	200	i –	l –	
TLH, THL = (0.60 ns/pF) CL + 20 ns		10	I –	-	l –	50	100	l –	_	
TLH, THL = (0.40 ns/pF) CL + 20 ns		15	L -	L		40	80	<u> </u>	<u></u>	<u> </u>
Propagation Delay Times**	¹PLH-							l		ns
(CL = 50 pF)	(PHL		'				1		1	1
[†] РLH, [†] РНL = (0.90 ns/pF) C _L + 130 ns		5.0	-	-	-	175	350	-	-	
tplH. tpHL = (0.36 ns/pF) CL + 57 ns		10	-	–	-	75	150	-	-	
[†] PLH. [†] PHL = (0.26 ns/pF) C _L + 37 ns		15				55	110	<u> </u>		

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device.

Thigh = + 125°C for AL Dovice, + 85°C for CL/CP Device.

[†]To calculate total supply current at loads other than 50 pF:

[#]Data labelled "Typ" is not to be used for design purposes but is

 $I_T(C_L) = I_T(50 pF) + (C_L - 50) V1k$

intended as an Indication of the IC's potential performance.

where: IT is in μA (per package), CL in pF, V = (VDD = VSS) in volts, f in kHz is input frequency, and k = 0.002.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

4-BIT D-TYPE REGISTER with THREE-STATE OUTPUTS

The MC14076B 4-Bit Register consists of four D-type flip-flops operating synchronously from a common clock, OR gated output-disable inputs force the outputs into a high-impedance state for use in bus organized systems. OR gated data-disable inputs cause the Q outputs to be fed back to the D inputs of the flip-flops. Thus they are inhibited from changing state while the clocking process remains undisturbed. An asynchronous master reset is provided to clear all four flip-flops simultaneously independent of the clock or disable inputs.

- Three-State Outputs with Gated Control Lines
- Fully Independent Clock Allows Unrestricted Operation for the Two Modes: Parallel Load and Do Nothing
- Asynchronous Master Reset
- · Four Bus Buffer Registers
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range Schottky TTL Load Over the Rated Temper

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	>
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
lin-lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tsig	Storage Temperature	- 65 to → 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: -12mW/"C from 65°C to 85°C
Ceramic "L" Package: -12mW/"C from 100°C to 125°C

FUNCTION TABLE

	INPUTS								
		Data	OUTPUT						
Reset	Clock	A	В	D	٥				
1	×	×	х	×	0				
0	0	×	×	×	Q _n				
0		1	×	×	an				
0	5	×	1	×	O _n				
0	_	0	0	0	0				
0		0	0	1	1				

When either output disable A or B (or both) is (are) high the output is disabled to the highimpedance state; however sequential operation of the flip-flops is not affected.

X = Don't Care.

MC14071B thru MC14073B, MC14075B See Page 6-5

MC14076B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

QUAD D-TYPE REGISTER with THREE STATE OUTPUTS

MC14076B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

	V _{DD} T _{low} 25°C T _{high}					25°C		Th	gh*	ĭ
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	_	0.05	-	0	0.05		0.05	Vdc
V _{in} = V _{DD} or 0		10	-	0.05	l '-	0	0.05	_	0.05	
		15		0.05		0	0.05	_	0.05	<u> </u>
"1" Level	νон	5.0	4.95	-	4.95	5.0	_	4.95	-	Vdc
Vin = 0 or V _{DD}	1	10	9.95	-	9.95	10	-	9.95	-	1
		15	14.95		14.95	15	-	14.95		
Input Voltage "0" Level	VIL		l		i					Vdc
(V _O = 4.5 or 0.5 Vdc)		5.0	-	1.5	-	2.25	1.5 3.0	-	1.5	ŀ
(V _O = 9.0 or 1.0 Vdc)		10 15	1 =	3.0 4.0	-	4.50 6.75	4.0	l – i	3.0 4.0	ł
(V _O = 13.5 or 1.5 Vdc) "1" Level	VIH	15		4.0	├	6.75	4.0		4.0	
(V _O = 0.5 or 4.5 Vdc)	VIH	5.0	3.5			2.75		3.5	_	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	_	3.5 7.0	5.50		7.0		1 400
(VO = 1.5 or 13.5 Vdc)		15	11.0	_	11.0	8.25	_	11.0		•
Output Drive Current (AL Device)	1011		11.0		1	0.23		11.0		mAde
(VOH = 2.5 Vdc) Source	ІОН .	5.0	-3.0	_	-2.4	-4.2	_	-1.7	_	
(V _{OH} = 4.6 Vdc)	l	5.0	-0.64	·	-0.51	-0.88	_	-0.36		ł
(VOH = 9.5 Vdc)	i I	10	-1.6	_	-1.3	-2.25	_	-0.9	_	
(V _{OH} = 13.5 Vdc)	ł l	15	-4.2	· · —	-3.4	-8.8	_	-2.4	_	l
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.64	_	0.51	0.88	_	0.36		mAdc
(V _{OL} = 0.5 Vdc)	"-	10	1.6	_	1.3	2.25	_	0.9	_	
(VOL = 1.5 Vdc)		15	4.2	-	3.4	8.8	_	2.4		
Output Drive Current (CL/CP Device)	ЮН			•						mAdc
(VOH = 2.5 Vdc) Source	l "'' l	5.0	- 2.5	_	-2.1	-4.2	_	-1.7	_	1
(VOH = 4.6 Vdc)		5.0	-0.52	_	-0.44	-0.88	_	-0.36	_	
(V _{OH} = 9.5 Vdc)		10	1.3	_	÷1.1	-2.25	_	-0.9	_	1
(V _{OH} = 13,5 Vdc)	,	15	- 3.6	1	-3.0	-8.8	_	-2.4		
(VOL = 0.4 Vdc) Sink	lor	5.0	0.52	_	0.44	0.88	· -	0.36	_	mAdc
(V _{OL} = 0.5 Vdc)		10	1.3	_	1.1	2.25	_	0.9	_	
(V _{OL} = 1.5 Vdc)		15	3.6		3.0	8.8	·	2.4		
Input Current (AL Device)	1 _{čm}	15.	_	±0.1		±0.00001	±0.1	_	±1.0	pAdc
Input Current (CL/CP Device)	lin	15	_	± 0.3	–	±0.00001	±0.3	-	± 1.0	μAdc
Input Capacitance	Cin	_			_	5.0	7.5	_		ρF
(V _{in} = 0)	"				ļ			ľ		
Quiescent Current (AL Device)	agi	5.0	_	5.0	_	0.005	5.0	_	150	μAdc
(Per Package)		10	l –	10	-	0.010	10	_	300	l
<u> </u>		15	L <u>–</u> .	20	_	0.015	20	_	600	
Quiescent Current (CL/CP Device)	IDD	5.0	-	20		0.006	20	-	150	pAdc
(Per Package)		10	-	40	-	0.010	40	_	300	
	<u> </u>	15	_	80		0.016	80		600	
Total Supply Current**1	JT"	5.0			IT = (0	.75 µA/kHz) f + 10D			μAdc
(Dynamic plus Quiescent,]	10	1	•	IT = (1	.50 µA/kHz) f + 100		•	l
Per Package)		15	1		IT = (2	.25 µA/kHz) f + 100	l		
(CL = 50 pF on all outputs, all										
buffers switching)	لسينا		<u> </u>		.—			,		<u> </u>
Three-State Leakage Current	ITL	15	-	± 0.1	-	10.00001	± 0.1	-	±3.0	μAdc
(AL Device)	ļ——ļ				-					
Three-State Leakage Current	1TL	15	-	±1.0	-	10.00001	± 1.0	_	±7.5	μAdc
(CL/CP Device)	1 1		1	i .	1	1		1	l	1

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. T_{high} = +125°C for AL Device, +85°C for CL/CP Device.

IT(CL) = IT(50 pF) + (CL - 50) V1k

high = + 125°C for AL Device, +85°C for CUCP Device.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

where: I_T is in μA (per package), C_L in pF, V = {V_{DD}-V_{SS}} in veits, f in kHz is input frequency, and k = 0.002.

MC14076B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD}	Min	Тур#	Max	Unis
Output Rise and Fall Time	tTLH- THL					ns
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	` I	5.0	-	100	200	1
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns		10	-	50	100	
t _{TLH} , t _{THL} = (0.55 ns/pF) C _L + 9.5 ns		15	<u> </u>	40	80	<u> </u>
Propagation Delay Time	tPLH, tPHL					ns
Clock to Q]]		,			i
tpLH, tpHL = (1.7 ns/pF) CL + 215 ns		5.0	-	300	600	1
tPLH, tPHL = (0.66 ns/pF) CL + 92 ns	.] [10	-	125	250	
tPLH, tPHL = (0.5 ns/pF) CL + 65 ns Reset to Q]]	15		80	180	ļ
tp_H, tpHL = (1.7 ns/pF) CL + 215 ns		5.0	-	300	600	
tPLH, tPHL = (0.66 ns/pF) CL + 92 ns	1	10	-	125	250	ŀ
tp_H, tpHL = (0.5 ns/pF) CL + 65 ns		16	<u> </u>	90	180	
3-State Propagation Delay, Output "1" or "0"	TPHZ, TPLZ	5.0	_	150	300	ns
to High Impedance		10	_	60	120	1
		15	_	45	90	l
3-State Propagation Delay, High Impedance	tPZH, tPZL	5.0	_	200	400	ns
to "1" or "0" Level	,	10	-	80	160	
		15	<u> </u>	60	120	L
Clock Pulse Width	₩H	5.0	260	130		ns
	1	10	110	55	-	
		15	80	40	<u> </u>	L
Reset Pulse Width	tWH	5.0	370	185	-	ns
		10	150	75	-	l
	_11	15	110	55		
Data Setup Time	tsu	5.0	30	15	_	ns
	j	10	10	5	_	į.
	_11	15	1 4	2	<u> </u>	<u> </u>
Data Hold Tima	th	6.0	130	65	_	ns
	1	10	60	30	-	
	_ i	15	50	25		
Data Disable Setup Time	tsu	5.0	220	110	-	ns
	"	10	80	40	-	l
		15	50	25		
Clock Pulse Rise and Fall Time	TLH, THL	5.0	T -	<u> -</u>	15	μ\$
		10	-	-	5	1
	<u> </u>	15	<u> </u>		4	
Clock Pulse Frequency	fcl	5.0	T T	3.6	1.8	MHz
	j	10	-	9.0	4.5	
	l l	15	l –	12	6.0	1

^{*}The formulas given are for the typical characteristics only at 25°C.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

[₱]Data labelled "Typ" is not to be used for design purposes but is intended as an Indication of the IC's potential performance.

MC14076B

FIGURE 1 - TIMING DIAGRAM

FIGURE 2 — THREE-STATE PROPAGATION DELAY WAVESHAPE AND CIRCUIT

EQUIVALENT
FUNCTIONAL BLOCK DIAGRAM

QUAD 2-INPUT "NAND" SCHMITT TRIGGER

The MC14093B Schmitt trigger is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The MC14093B may be used in place of the MC14011B quad 2-input NAND gate for enhanced noise immunity or to "square up" slowly changing wayeforms.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Double Diode Protection on All Inputs
- Pin-for-Pin Compatible with CD4093
- Can be Used to Replace MC14011B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +16.0	v
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
lin-lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tatq	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	•c

*Maximum Ratings are those values beyond which damage to the device may occur.

†Temperature Derating: Plastic "P" Package: -12mW/*C from 65*C to 85*C

Ceramic "L" Package: -12mW/*C from 100*C to 125*C

EQUIVALENT CIRCUIT SCHEMATIC (1/4 OF CIRCUIT SHOWN)

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-Impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{In} \text{ or } V_{out}) \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14077B See Page 6-156

MC14078B, MC14081B, MC14082B See Page 6-5

MC14093B

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

QUAD 2-INPUT "NAND" SCHMITT TRIGGER

L SUFFIX
CERAMIC PACKAGE
CASE 632

P SUFFIX LASTIC PACKAGE CASE 646

ORDERING INFORMATION

A Series: -55°C to +125°C
MC14XXXBAL (Ceramic Package Only)

C Sories: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

LOGIC DIAGRAM

01-0

13 0-1

V_{DD} = Pin 14 V_{SS} = Pin 7

MC14093B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

Characteristic	Symbol	V _{DD}	Tto	w"		25°C		Thi	gh*	Unit
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unn
Output Voltage "0" Level Vin = VDD or 0	VOL	5.0 10 15		0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05	1.11	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD} "1" Level	Voн	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15	111	4.95 9.95 14.95	111	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.8 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Юн	5.0 5.0 10	-3.0 -0.64 -1.6 -4.2		-2.4 -0.51 -1.3 -3.4	4.2 0.88 2.25 8.8	1111	- 1.7 - 0.36 - 0.9 - 2.4	1111	mAdc
(VOL = 0.4 Vdc) Sink (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	lOL	5.0 10 15	0.64 1.6 4.2	-	0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4	111	mAdc
Output Drive Current (CL/CP Device) (VOH = 2.5 Vdc) Source (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	ЮН	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6	-: 	-2.1 -0.44 -1.1 -3.0	4.2 0.88 2.25 8.8		-1.7 -0.36 -0.9 -2.4	1111	mAdc
(VOL = 0.4 Vdc) Sink (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	lOL	5.0 10 15	0.52 1.3 3.6		0.44 1.1 3.0	0.88 2.25 8.8	111	0.36 0.9 2.4	111	mAdc
Input Current (AL Device)	lin	15		±0.1		±0.00001	±0.1	-	± 1.0	μAdc
Input Current (CL/CP Device)	lin	15	L <u> </u>	±0.3		±0.00001	±0.3	_	±1.0	μAdc
Input Capacitance (Vin = 0)	Cin	-	_	_	_	5.0	7.5	_	-	ρF
Quiescent Current (AL Device) (Per Package)	100	5.0 10 15	=	0.25 0.5 1.0	=	0.0005 0.0010 0.0015	0.25 0.5 1.0	_ _ _	7.5 15 30	μAdc
Quiescent Current (CL/CP Device) (Per Package)	(DD	5.0 10 15	=	1.0 2.0 4.0	=	0.0005 0.0010 0.0015	1.0 2.0 4.0	111	7.5 15 30	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (Ct = 50 pF, on all outputs, all buffers switching)	ŀΤ	5.0 10 15	,		IT = (2.4	2 μΑ/kHz) f 1 μΑ/kHz) f 3 μΑ/kHz) f	+ IDD			μAdc
Hysteresis Vottage (Pins 1, 5, 8 and 12 held high or Pins 2, 6, 9 and 13 held high)	VH	5.0 10 15	0.20 0.29 0.39	0.62 0.85 1.20	0.17 0.25 0.33	0.26 0.38 0.50	0.6 0.8 1.1	0.13 0.20 0.27	0.6 0.8 1.1	Vdc
Threshold Voltage (Pins 2, 5, 9, 12 held high or Pins 1, 6, 8, 13 held high) Positive-Going	V _{T+}	5.0 10 15	1.90 3.05 4.12	4.15 6.75 9.15	1.80 2.95 4.02	2.70 4.43 6.03	4.05 6.65 9.05	1.70 2.85 3.92	4.05 6.65 9.05	Vdc
Negative-Going	V _T	5.0 10 15	1.63 2.70 3.59	3.76 6.18 8.40	1.63 2.70 3.69	2.44 4.05 5.53	3.66 6.08 8.30	1.53 2.60 3.70	3.66 6.08 8.30	Vdc

[&]quot;Thom = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ V/k}$$

where: It is in μA (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.004.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the tC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} Vde	Min	Тур#	Max	Unit
Output Rise Time	tTLH	5.0 10 15	=	100 50 40	200 100 80	ns
Output Fall Time	THL	5.0 10 15	Ξ	100 50 40	200 100 80	ពន
Propagation Delay Time	tPLH- tPHL	5.0 10 15	=	125 50 40	250 100 80	ns

#Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT AND WAVE FORMS

FIGURE 2 - TYPICAL SCHMITT TRIGGER APPLICATIONS

MC14093B

8-STAGE SHIFT/STORE REGISTER WITH THREE-STATE OUTPUTS

The MC14094B combines an 8-stage shift register with a data latch for each stage and a three-state output from each latch.

Data is shifted on the positive clock transition and is shifted from the seventh stage to two serial outputs. The QS output data is for use in high-speed cascaded systems. The Q'S output data is shifted on the following negative clock transition for use in low-speed cascaded systems.

Data from each stage of the shift register is latched on the negative transition of the strobe input. Data propagates through the latch while strobe is high.

Outputs of the eight data latches are controlled by three-state buffers which are placed in the high-impedance state by a logic Low on Output Enable.

- Three-State Outputs
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Input Diode Protection
- Data Latch
- Dual Outputs for Data Out on Both Positive and Negative Clock Transitions
- Useful for Serial-to-Parallel Data Conversion
- Pin-for-Pin Compatible with CD4094B

MAXIMUM RATINGS* (Voltages Referenced to Ves)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	0.5 to V _{DD} 0.5	٧
1 _{in} . lout	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	mW
Tstq	Storage Temperature	- 65 to + 150	ŷ
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: -12mWi*C from 65°C to 85°C Ceramic "L" Package: -12mWi*C from 100°C to 125°C

	Output			Parallel	Outputs	Serial (Outputs
Clock	Enable	Strobe	Data	Q1	QN	as.	Q*S
5	0	×	×	Z	Z	Q7	No Chg.
7	0	×	х	Z	Z	No Chg.	Ω7
	1	0	×	No Chg.	No Chg.	Q7	No Chg.
5	- 1	1	0	0	Q _N -1	Q7	No Chg.
5	- 1	1	1	1	Q _N -1	Q7	No Chg.
1	1	1	1	No Chg.	No Chg.	No Chg.	Q7

Z = High Impedance

X = Don't Care

*At the positive clock edge, information in the 7th shift register stage is transferred to Q8 and Qs.

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

8-STAGE SHIFT/STORE REGISTER

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in})$ or $V_{out} \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tic	w"		25°C		Υh	igh"	1
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Uni
Output Voltage "0" Level	VOL	5.0		0.05		0	0.05	_	0.05	Vdd
V _{in} = V _{DD} or 0		10	i – i	0.05	-	0	0.05	[_ [0.05	1
		15	_	0.05	-	0	0.05	L	0.05	
"1" Level	VOH	5.0	4.95	_	4.95	5.0	_	4.95	-	Vd
V _{in} =0 or V _{DD}) "	10	9.95	l –	9.95	10	_	9.95	_	l
) .	15	14.95		14.95	15	_	14.95		l
input Voltage "0" Level	VIL									Vd
(V _O = 4.5 or 0.5 Vdc)	-	5.0	_	1.5	_	2.25	1.5	-	1.5	
(V _O = 9.0 or 1.0 Vdc)		10	_ '	3.0	-	4.50	3.0	- 1	3.0	
(Vo = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0	-	4.0	
"1" Level	VIH									
(V _O = 0.5 or 4.5 Vdc)		5.0	3.5	_	3.5	2.75	-	3.5		Vd
(V _O = 1.0 or 9.0 Vdc)		10	7.0	l —	7.0	5.50	-	7.0	-	ļ
(Vo = 1 5 or 13.5 Vdc)		15	11.0	—	11.0	8.25	_	11.0		1
Output Drive Current (AL Device)	ЮН				1					mAd
(VOH = 2.5 Vdc) Source		5.0	-3.0	-	-2.4	-4.2	-	-1.7	_	1
(VOH = 4.6 Vdc)	ł	5.0	-0.64	-	-0.51	-0.88	_	-0.36		
(V _{OH} = 9.5 Vdc)]	10	-1.6	l —	-1.3	-2.25	_	-0.9	_	
(V _{OH} = 13.5 Vdc)		15	-4.2	_	-3.4	-8.8	_	-2.4		
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.64	-	0.51	88.0	_	0.36	_	mAi
(VOL = 0.5 Vdc)		10	1.6	l —	1.3	2.25	_	0.9	_	i
(VOL = 1.5 Vdc)	ŀ	15	4.2	l —	3.4	8.8	_	2.4	_	
Output Drive Current (CL/CP Device)	ТОН			-						mAi
(VOH = 2.5 Vdc) Source	"	5.0	-2.5	l –	-2.1	-4.2	_	-1.7	_	
(VOH = 4.6 Vdc)	1	5.0	-0.52	l —	-0.44	-0.B8	_	-0.36	_	
(V _{CH} = 9.5 Vdc)		10	-1.3	l —	-1.1	-2.25	_	-0.9	_	1
(VOH = 13.5 Vdc)	l i	15	-3.6	l —	-3.0	-8.8	_	-2.4	_	1
(VOL ≈ 0.4 Vdc) Sink	IOL	5.0	0.52		0.44	0.88	_	0.36	_	mA
(VOL = 0.5 Vdc)	"	10	1.3	l	1.1	2.25	-	0.9	 	
(VOL = 1.5 Vdc)	1	15	3.6	l —	3.0	8.8	l –	2.4		
Input Current (AL Device)	lin	15	_	101		± 0.00001	±01		21.0	μAc
nout Current (CL/CP Device)	lin	15		103	=	±0.00001	± 0.3		±1.0	uAc
					 -	5.0				ρF
Input Capacitance	C _{in}	_	-	-	-	30	7.5	–	-	, pr
(V _{in} = 0)	ļ.,		<u> </u>	<u> </u>		0.005	5.0			μАс
Quiescent Current (AL Device)	loo	5.0	-	5.0 10	=	0.005	10	_	150	MAG
(Per Package)		10	_	20	-	0.010	20		300 600	ĺ
										₩-
Quiescent Current (CL/CP Device)	ספי	5.0	_	20	-	0.005	20	-	150	μA
(Per Package)	l i	10	-	40	-	0.010	40	-	300	ļ
		15		80	ㅡ	0.015	80	Ц=	600	├
Fotal Supply Current**1	١Ŧ	5.0				.1 μA/kHz				μAι
(Dynamic plus Quiescent,		10				4 μA/kHz				
Per Package)		15			IT = (1	40 µA/kHz	111100			l l
(C _L = 50 pF on all outputs, all	1		l							l
buffers switching)										↓—
3-State Output Leakage	1TL	15	-	±0.1		±0.0001	± 0.1	-	±3.0	μΑ
Current (AL Device)							L			<u> </u>
3-State Output Leakage	ITL	15		±1.0	_		± 1.0		±7.5	μА
Current (CL/CP Device)			ı	l	ł	1	ł	ł .	l	1

[&]quot;T_{tow} = -55°C for AL Dovice, -40°C for CL/CP Dovice.
T_{high} = +125°C for AL Device, +85°C for CL/CP Dovice.

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$$

where: i_T is in μA (per package), C_L in pF, V = (VDD = VSg) in volts, f in kHz is input frequency, and κ = 0.001. .

Data labolled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;"The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD}	Min	Тур#	Max	Unit
Output Rise and Fall Time	tTLH,					rs.
tTLH- tTHL * (1.35 ns/pF) CL + 33 ns	1 THL	5.0	! -	100	200	
^t TLH- ^t THL = (0.6 ns/pF) C ₁ + 20 ns	''"	10	-	50	100	
tTLH, tTHL = (0.4 ns/pF) CL + 20 ns		15	-	40	80	
Propagation Delay Time	tPLH.			<u> </u>		ns ns
Clock to Serial out QS	1PHL					
tplH, tpHL = (0.90 ns/pF) CL + 305 ns	'''-	5.0	-	350	600	
tp_H, tpHL = (0.36 ns/pF) CL + 107 ns		10	_	125	250	
tp_H, tpHL = (0.26 ns/pF) CL + 82 ns	1 1	15	_	95	190	
Clock to Serial out Q'S						
tpi_H, tpHL = (0.90 ns/pF) CL + 350 ns	1 1	5.0	_	230	460	
tp_H, tpHL = (0.36 ns/pF) CL + 149 ns		10	-	110	220	
tpLH, tpHL = (0.26 ns/pF) CL + 62 ns	- I	15	_	75	150	
Clock to Parallel out		'				
tp_H, tpHL = (0.90 ns/pF) CL + 375 ns		5.0	_	420	840	
tpLH, tpHL = (0.36 ns/pF) CL + 177 ns		10	_	195	390	
tpLH, tpHL = (0.26 ns/pF) CL + 122 ns		15	-	135	270	
Strobe to Parallel out	l i		ļ		1	ł
tplH, tpHL = (0.90 ns/pF) CL + 245 ns		5.0	_	290	580	
tp_H, tpHL = (0.36 ns/pF) CL + 127 ns		10	_	145	290	
tp_H, tpHL = (0.26 ns/pF) CL + 87 ns		15	_	100	200	
Output Enable to Output	<u> </u>		 			
tpHZ, tpZL = (0.90 ns/pF) CL + 95 ns		5.0	_	140	280	1
tpHZ, tpZL = (0.36 ns/pF) CL + 57 ns	tPHZ.	10	l –	75	150	
tpHZ, tpZL = (0.26 ns/pF) CL + 42 ns	^t PZL	15	1 -	55	110	
tp_Z, tpZH = (0.90 ns/pF) CL + 180 ns	t _{PLZ} ,	5.0	-	225	450	
tpLZ, tpZH = (0.36 ns/pF) CL + 77 ns	1PZH	10	_	95	190	
tp_Z, tpZH = (0.26 ns/pF) CL + 57 ns	'FZR	15	1 -	70	140	
Setup Time	¹su	_	 	 		ns.
Data in to Clock	30	5.0	125	60	-	
		10	55	30	-	}
		15	35	20	} -	İ
Hold Time	t _h	5.0	0	-40	_	ns
Clock to Data	"	10	20	-10	l –	
		15	20	0	-	1
Clock Pulse Width, High	twn	5.0	200	100	_	ns
•	""	10	100	50	-	
		15	83	40	-	
Clock Rise and Fall Time	t _{r(cl)}	5	1 -	-	15	μs
	1/(cl)	10	1 –	_	5.0	1
	1,10.7	15	l –	-	4.0	
Clock Pulse Frequency	fel	5.0	_	2.5	1.25	MHz
	"	10	_	5.0	2.5	
•		15	_	6.0	3.0	
Strobe Pulse Width	tw.	5.0	200	100	_	OS
Strong r also states	, .Mr	10	80	40	<u> </u>	
		15	70	35	l –	i
			<u> </u>			

^{*}The formulas given are for the typical characteristics only at 25°C.

3-STATE TEST CIRCUIT

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

BLOCK DIAGRAM

8-BIT ADDRESSABLE LATCHES

The MC14099B and MC14599B are 8-bit addressable latches. Data is entered in serial form when the appropriate latch is addressed (via address pins AO, A1, A2) and write disable is in the low state. Chip enable must be high for writing into MC14599B. For the MC14599B the data pin is a bidirectional data port and for the MC14099B the input is a unidirectional write only port. The Write/Read line controls this port in the MC14599B.

The data is presented in parallel at the output of the eight latches independently of the state of Write Disable, Write/Read or Chip Enable.

A Master Reset capability is available on both parts.

- Serial Data Input
- Parallel Output
- Master Reset
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range
- MC14099B pin for pin compatible with CD4099B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-05 to +18.0	V
V _{in} . V _{out}	Input or Output Vollage (DC or Transient)	-05 to V _{DD} +05	V
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
Po	Power Dissipation, per Packaget	500	mW
T _{sla}	Storage Temperature	- 65 to + 150	°C
ΤL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating | Plastic "P" Package | - 12mW/*C from 65°C to 85°C | Ceramic "L" Package | - 12mW/*C from 100°C to 125°C

MC14097B See Page 6-146

MC14099B MC14599B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

8-BIT ADDRESSABLE LATCH

MC14599B WITH BIDIRECTIONAL PORT

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

L SUFFIX CERAMIC PACKAGE CASE 726 P SUFFIX
PLASTIC PACKAGE
CASE 707

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \ll V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD		w*		25°C		Thi		ı
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	_	0.05		0	0.05	-	0.05	Vdc
Vin = VOD or 0			10		0.05	-	0	0.05	-	0.05	
			15	_ -	0.05	_	0_	0.05		0.05	
	"1" Level	VOH	5.0	4.95	_	4.95	5.0		4.95	-	Vdc
Vin = 0 or VDD			10	9.95	_	9.96	10	-	9.95	_	
			15	14.95	_	14.95	15	-	14.95	–	L
Input Voltage	"O" Lovel	VIL									Vdc
(Vo = 4.5 or 0.5 Vdc)		'- '	5.0	_	1.5	l -	2.26	1.5	-	1.5	l
(VO = 9.0 or 1.0 Vdc)		ŀ	10	-	3.0	-	4.50	3.0	-	3.0	i
(V _O = 13.5 or 1.5 Vdc)		i	15	l –	4.0	-	6.75	4.0	l – I	4.0	1
	"1" Lavel	VIH									i
(Vn = 0.5 or 4.5 Vdc)		""	5.0	3.5	-	3.5	2.75	_	3,5	_	1
(Vo = 1.0 or 9.0 Vdc)			10	7.0	l –	7.0	5.50	-	7.0	_	
(Vo = 1.5 or 13.6 Vdc)			15	11.0	-	11.0	8.25	_	11.0		L
Output Drive Current (AL D	evice)	10н									mAd
(VOH = 2,5 Vdc)	Source	.07	5.0	-3.0	l <u>-</u>	-2.4	-4.2	_	-1.7	_	1
(VOH = 4.6 Vdc)	,	l	5.0	-0.64	l -	-0.51	-0.88	_	-0.36	_	
(VOH = 9.6 Vdc)			10	-1.6	i –	-1.3	-2.25	-	-0.9	-	1
(VOH = 13.5 Vdc)			15	-4.2	l –	-3.4	-8.8		-2.4	<u> </u>]
(VOL = 0.4 Vdc)	Sink	IOI.	5.0	0.64	_	0.51	0.88		0.36	_	1
(VOL = 0.5 Vdc)			10	1.6	l –	1,3	2.25	_	0.9	_	l
(VOL = 1.5 Vdc)		l	15	4.2	1 –	3.4	8.8	_	2.4	-	ı
Output Drive Current (CL/C	P Device)	ЮН									mAd
(V _{OH} = 2.5 Vdc)	Source	,04	5.0	-2.5	l <u>-</u>	-2.1	-4.2	_	-1.7	_	
(V _{OH} = 4.6 Vdc)	000.00		5.0	-0.52	l –	-0.44	-0.88	_	-0.38	_	i
(VOH = 9.5 Vdc)			10	-1,3	l –	-1.1	-2.25	_	-0.9	-	ļ .
(VOH = 13.5 Vdc)		İ	15	-3.6	l –	-3.0	-8.8	_	-2.4	_	ŀ
(VOL = 0.4 Vdc)	Sink	lot	5.0	0.52	_	0.44	0.88		0.36		1
(VOL = 0.5 Vdc)	Jilla	, OL	10	1.3	l _	1.1	2.25	_	0.9	-	l
(VOL = 1.5 Vdc)			15	3.6	l _	3.0	8.8	_	2.4	_	l
Input Current (AL Device)		1.	15		±0.1		±0.00001	±0.1		±1.0	μAd
	-	lin		├- -	20.3		±0.00001	10.3	-	±1.0	μAd
Input Current (CL/CP Devic	**)	lin	15								
Input Capacitance		Cin	i –	1 -	-	-	5.0	7.5	1 - 1	-	pF
(V _{in} = 0)					L						├
Input Capacitance		Cin	-	-	-	-	15.0	22.5	-	-	ρF
MC145998 - Data (pin 3)	ŀ	l .	l						l	l .
(V _{in} = 0)				<u></u>							└
Quiescent Current (AL Devi	ce)	IDD	5.0	-	5.0	-	0.005	5.0	-	150	μAd
(Per Package)			10	í –	10	l –	0.010	10	-	300	1
			15	L	20		0.015	20		600	<u> </u>
Quiescent Current (CL/CP D	(avice)	IDD	5.0		20	-	0.005	20		150	μAd
(Per Package)			10	-	40	_	0.010	40	- · .	300	1
- -		l	15		80	_	0.015	80	<u> </u>	600	L
Total Supply Current**†		iτ	5.0	<u> </u>		IT = (1.	5 μA/kHz)	f + Ipp			μAd
Dynamic plus Quiescent,		, ,	10	ĺ			0 µA/kHz)				
Per Package)		l	15	l			5 μA/kHz)				1
(CL = 50 pF on all outpu	its.	Ì	'-								
all buffers switching)		ľ	l	l							I

^{*}T_{fow} = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

[€]Data labolied "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

where: I_T is in μA (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.004.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Cheracteristic	Symbol	V _{DD}	Min	Тур#	Max	Unit
Output Rise and Fall Time	tTLH,					its
TLH- THL " (1.35 ns/pF) CL +32 ns	tTHL	5.0	_	100	200	
tTLH, tTHL = (0.6 ms/pF) CL +20 ms		10	_	50	100	
¹TLH, ¹THL * (0.4 ms/pF) CL +20 ms		16		40	80	
Propagation Delay Time	tPHL.					RS .
Data to Output Q	tPLH	5.0	l –	200	400	
		10	 -	75	150	
		15		50	100	
Write Disable to Output Q	!	5.0	_	200	400	ns.
	i	10	_	80	160	
		15	l –	60	120	
Reset to Output Q		6.0		175	350	ns.
1,000,10 00,00		10	i –	80	160	
		15	I –	65	130	
CE to Output O (MC14599B only)		5.0	T _	225	450	ПЭ
		10	<u> </u>	100	200	_
	I .	15	l –	75	150	
Propagation Delay Time, MC145998 only	tou		 	†		ns.
Chip Enable, Write/Read to Data	¹PHL, ¹PLH	5.0	l _	200	400	
. ,	PCH 1	10	i –	80	160	1
		15	1 -	55	130	
Address to Date	l i	6.0	 	200	400	ns
		10	1 =	80	180	
		16	_	75	150	ļ
Pulse Widths	t _{w(H)}		1			na na
Reset		5.0	150	75	_	l '' '
	tw(L)	10	75	40	_	ļ
	ľ	15	50	25	_	Ì
Write Disable		5.0	320	180		ns
,,,,,,	į	10	160	80	_	'''
		15	120	60]	
Set Up Time	teu		 			ns
Data to Write Disable		5.0	100	50	_	···•
		10	50	25		
		15	35	20	l – I	
Hold Time	th		1			ns
Write Disable to Data	"	5.0	150	75		
		10	75	40	_	
		15	50	25	_	
Set Up Time	- . 	5.0	100	45		ns
Address to Write Disable	tsu	10	80	30	_	ПS
		15	40	10	_	
Removal Time	¹rem	5.0	 	- 60	_	na na
Write Disable to Address	1011	10	0	-80 -40	l !	
		15	i ŏ	-40	_	

^{*}The formulas given are for the typical characteristics only at 25°C.

Data labelisd "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC140998 FUNCTION DIAGRAM

TRUTH TABLE

Write Disable	Reset	Addressed Letch	Unaddressed Latches
0	0	Data	On*
0	1	Dete	Plesat [†]
1	0	σu*	□n*
1	1	Reset	Reset

CAUTION: To avoid unintentional data changes in the latches, Write Disable must be active (high) during transitions on the address inputs A0, A1, and A2.

SWITCHING WAVEFORMS

[•] Qn is previous state of letch.

f Reset to zero state.

MC145998 FUNCTION DIAGRAM

TRUTH TABLE

		•					
Chip Enable Write/Read		Write Disable Reset		Addressed Latch	Other Litches	Date Pin	
0	X	×	0	•	•	Z	
1	1	0	0	Data	•	Input	
1	1	1	0	•	•	Z	
1	0	x	0	•	•	Qn	
×	×	×	1	0	0	Z/0	

X = Don't care.

CAUTION: To avoid unintentional data changes in the latches, Write Disable must be active (high) during transitions on the address inputs A0, A1, and A2.

No change in state of latch.

Z = High impedance.

 $[\]mathbf{Q}_{\mathbf{n}}$ = State of addressed latch.

MC14106B

HEX SCHMITT TRIGGER

The MC14106B hex Schmitt Trigger is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The MC14106B may be used in place of the MC14069UB hex inverter for enhanced noise immunity or to "square up" slowly changing waveforms.

- Increased Hysteresis Voltage Over the MC14584B
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD40106B and MM74C14
- Can Be Used to Replace the MC14584B or MC14069UB

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	V
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	v
lin. lout	Input or Output Current (DC or Transiont), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Talg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 65°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

HEX SCHMITT TRIGGER

L SUFFIX CERAMIC PACKAGE CASE 632 P SUFFIX PLASTIC PACKAGE CASE 646

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

EQUIVALENT CIRCUIT SCHEMATIC (1/6 OF CIRCUIT SHOWN)

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

LOGIC DIAGRAM

V_{DD} = Pin 14 V_{SS} = Pin 7

MC14106B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tlow*		25°C			Thigh*		1
Characteriatic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05	_	0.05	Vdc
V _{In} =V _{DD}		10	-	0.05	_	0	0.05	_	0.05	<u> </u>
		15	-	0.05		0	0.05	_	0.05	
"1" Level	V _{OH}	5.0	4.95	_	4.95	5.0	-	4.95	_	Vd
V _{in} = 0	1	10	9.95	_	9.95	10	-	9.95	- 1	
	L	15	14.95		14.95	15	-	14.95	_	L.
Hysteresis Voltage	V _H †	5.0	0.3	2.0	0.3	1.1	2.0	0.3	2.0	Vd
	"	10	1.2	3.4	1.2	1.7	3.4	1.2	3.4	
	ļ	15	1.6	5.0	1.6	2.1	5.0	1.6	5.0	
Threshold Voltage										
Positive-Going	V _T +	5.0	2.2	3.6	2.2	2.9	3.6	2.2	3.6	Va
<u>-</u>	'	10	4.6	7.1	4.6	5.9	7.1	4.6	7.1	1
	1	15	8.8	10.8	6.8	8.8	10.8	6.8	10.8	
Negative-Going	V _T -	5.0	0.9	2.8	0.9	1.9	2.8	0.9	2.8	Va
	''	10	2.5	5.2	2.5	3.9	5.2	2.5	5.2	
		15	4.0	7.4	4.0	5.8	7.4	4.0	7.4	
Output Drive Current (AL Device)	Юн					<u></u>				mA
(VOH=2.5 Vdc) Source	, on	5.0	-3.0	_	-2.4	- 4.2	_	1.7		''''
(V _{OH} =4.6 Vdc)		5.0	-0.64	_	-0.51	-0.88	_	0.36	_	1
(VOH=9.5 Vdc)		10	-1.6	_	- 1.3	- 2.25	- 1	0.9	_	
(VOH = 13.5 Vdc)	i	15	- 4.2	_	-3.4	-8.8	-	2.4	_	
(VOL = 0.4 Vdc) Sink	lor	5.0	0.64		0.51	0.88	_	0.36		mA
(V _{OL} = 0.5 Vdc)	1 .01	10	1.6	_	1.3	2.25	l _ :	0.9	_ '	
(V _{OL} = 1.5 Vdc)	1	15	4.2	_	3.4	8.8	_	2.4	_	
Output Drive Current (CL/CP Device)	ЮН									mA
(VOH=2.5 Vdc) Source	,OH	5.0	- 2.5	-	-2.1	-4.2	l _	- 1.7	_	
(V _{OH} = 4.8 Vdc)	ł	5.0	-0.52	_	-0.44	-0.88	l – I	-0.36	<u> </u>	1
(VOH = 9.5 Vdc)		10	-1.3	_ [-1.1	- 2.25	_	~0.9	_	
(VOH= 13.5 Vdc)	ŀ	15	- 3.6	_	-3.0	- 8.8	–	- 2.4	_	
(VOL = 0.4 Vdc) Sink	lOL	5.0	0.52	_	0.44	0.88	_	0.36	_	mA
(VOL = 0.5 Vdc)	"	10	1.3		1.1	2.25	l –	0.9] _	l
(VOL = 1.5 Vdc)		15	3.6	_	3.0	8.8	l – I	2.4	_	
Input Current (AL Device)	l _{in}	15	_	± 0.1	_	± 0.00001	± 0.1	_	±0.1	μА
Input Current (CL/CP Davice)	l _{in}	15	_	± 0.3	_	±0.00001	± 0.3	_	±0.1	μА
input Capacitance (Vin = 0)	Cin	~	_	_	_	5.0	7.5	_	_	ρί
Quiescent Current (AL Device)	¹ DD	5.0	_	0.25		0.0005	0.25	-	7.5	μА
(Per Package)		10	-	0.50	l –	0.0010	0.50	-	15	1
-		15	-	1.00	!	0.0015	1.00	_	30	L
Quiescent Current (CL/CP Device)	IDD	5.0	_	1.0		0.0005	1.0	_	7.5	μΑ
(Per Package)	~	10	l – I	2.0	l –	0.0010	2.0	_	15	l
· · · · · · · · · · · · · · · · · · ·		15	_	4.0	l –	0.0015	4.0	-	34	l
Total Supply Current**†	ŀτ	5.0			r = (1	1.8 μA/kHz) f	+ Inc			μА
(Dynamic Plus Quiescent,	'	10				3.8 µA/kHz) \$				`
Per Package)		15			IT = (5.4 μA/kHz) f	+ IDD			1
(CL=50 pF on all outputs,			l							l
all buffers switching)	.i		I							ı

[&]quot;T_{low} = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

where: I $_T$ is in μA (per package), C_L in pF, V = (V_DD = V_SS) in volts, 1 in kHz is input frequency, and k = 0.001.

 $tv_H=v_{T+}-v_{T-}$ (But maximum variation of v_H is specified as less than $v_{T+\max}-v_{T-\min}).$

^{Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.}

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS (CL = 50 pF. TA = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
Output Rise Time	[†] TLH	5.0	_	100	200	na
	1	10	_	50	100	1
		15	_	40	80	
Output Fall Time	†THL	5.0	_	100	200	ns
	1	10	-	50	100	
		15	_	40	80	(
Propagation Delay Time	tPLH- tPHL	5.0	_	125	250	ns
		10	l – :	50	100	
		15	_	40	80	

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 — SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 — TYPICAL TRANSFER CHARACTERISTICS

APPLICATIONS

(a) Schmitt Triggers will square up inputs with slow rise and fall times.

(b) A Schmitt trigger offers maximum noise immunity in gate applications.

FIGURE 3

MC14106B

FIGURE 4 — MONOSTABLE MULTIVIBRATOR

Useful as Pushbutton/Keyboard Debounce Circuit.

FIGURE 5 — ASTABLE MULTIVIBRATOR

FIGURE 6 - INTEGRATOR

Useful in discriminating against short pulse durations.

FIGURE 7 - DIFFERENTIATOR

Useful as an edge detector circuit.

FIGURE 8 - POSITIVE EDGE TIME DELAY CIRCUIT

CMOS MSI

SYNCHRONOUS PRESETTABLE 4-BIT COUNTERS

The MC14160B – MC14163B are synchronous programmable counters constructed with complementary MOS P-Channel and N-Channel enhancement mode devices in a single monolithic structure. These counters are functionally equivalent to the 74160–74163 TTL counters.

Two are synchronous programmable BCD counters with asynchronous and synchronous clear inputs respectively (MC14160B, MC14162B). The other two are synchronous programmable 4-bit binary counters with the asynchronous and synchronous clear respectively (MC14161B, MC14163B).

- Internal Look-Ahead for Fast Counting
- Carry Output for N-Bit Cascading
- Synchronously Programmable
- Synchronous Counting
- Load Control Line
- Synchronous or Asynchronous Clear
- Positive Edge Clocked

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	٧
I _{in} , I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	mW
T _{sig}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C

Ceramic "L" Package: -12mW/°C from 100°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14160B

BCD COUNTER
with Asynchronous Clear

MC14161B

4-BIT BINARY COUNTER with Asynchronous Clear

MC14162B

BCD COUNTER with Synchronous Clear

MC14163B

4-BIT BINARY COUNTER with Synchronous Clear

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

BLOCK DIAGRAM

V_{DD} = Pin 16 V_{SS} = Pin 8

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD				25°C		Th	igh "	ĺ
Characteristic	Symbol	Vdc	Min	Мах	Min	Тур#	Max	Min	Max	Unit
Output Voltage "O" Level	VOL	5.0	_	0.05	_	0	0.05	-	0.05	Vdc
Vin=VDD or 0	· '	10	-	0.05	-	0	0.05	-	0.05	l
		15	_	0.05		0	0.05	L	0.05	<u> </u>
"1" Level	VOH	5.0	4.95	_	4.95	5.0	_	4.95	_	Vdc
A ^{(U} = 0 ot A ^{DD}		10	9.95	_	9.95	10	_	9.95	_	1
		15	14.95	-	14.95	15	_	14.95	_	l
Input Voltage "O" Level	V _I L									Vdc
(V∩=4.5 or 0.5 Vdc)		5.0	—	1.5	l –	2.25	1.5	_	1.5	1
(VO = 9.0 or 1,0 Vdc)	'	10	-	3.0	l –	4.50	3.0	_	3.0	
(Vo = 13.5 or 1.5 Vdc)		15	l —	4.0		6.75	4.0	_	4.0	L
"I" Level	VIH									
(VO=0.5 or 4.5 Vdc)		5.0	3.5	Í –	35	2.75	_	3.5	_	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	 	70	5.50	_	7.0	-	1
(V _O = 1.5 or 13.5 Vdc)		15	11.0	l –	11.0	8.25	_	11.0	_	
Output Drive Current (AL Device)	JOH	_								mAdo
(VOH = 2.5 Vdc) Source	Ų.,	5.0	-3.0	i –	-2.4	-4.2	_	-1.7	_	l
(V _{OH} ≈ 4.6 Vdc)		5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	i
(VOH = 9.5 Vdc)		10	-1.6	l –	-1.3	-2.25	_	-0.9	_	
(V _{OH} ≈ 13.5 Vdc)		15	-4.2	-	-3.4	-8.8	_	-2.4	l —	1
(VOL = 0.4 Vdc) Sink	loL	5.0	0.64		0.51	0.88		0.36		mAdo
(VOL = 0.5 Vdc)	,OL	10	1.6	١ _	13	2.25	_	0.9	i _	
(VOL = 1.5 Vdc)		15	4.2	_	34	8.8	_	2.4	_	1
Output Drive Current (CL/CP Device)	ТОН									mAdo
(VOH = 2.5 Vdc) Source	ЮН	5.0	-2.5	l _	-2.1	-4.2		-1.7	_	,,,,,,,,,
(VOH = 4.6 Vdc)		5.0	-0.52	! _	-0.44	-0.88	_	-0.36	_	1
(VOH = 9.5 Vdc)		10	-1.3	l _	-1.1	-2.25	_	-0.9		Į
(VOH = 13.5 Vdc)		15	-3.6	<u> </u>	-3.0	-8.8	_	-2.4	_	
		5.0	0.52	 -	0.44	0.88		0.36		mAdc
1. OF 11. 1 = 1.	lOL	10	1.3	-	1.1	2.25	_	0.36	_	MAGC
(VOL = 0.5 Vdc)		15	3.6	1 -	3.0	8.8	_	2.4	_	ł
(V _{OL} = 1.5 Vdc)				<u> </u>				2.4		
Input Current (AL Device)	lin	15	<u> </u>	±01		±0.00001	±01		± 1.0	μAdc
Input Current (CL/CP Device)	lin	15	<u> </u>	103		:0 00001	± 0.3	_	± 1.0	μAdc
Input Capacitance	Cin			- -		50	7.5		_	pF
(V _{in} = 0)						1				
Quiescent Current (AL Device)	QQI	5.0		50	-	0.005	5.0		150	μAdc
(Per Package)		10	l –	10	l –	0.010	10		300	
		15	-	20	l –	0.015	20	-	600	
Quiescent Current (CL/CP Device)	¹ DD	5.0		20		0.005	20		150	иAdd
(Per Package)	.00	10	l <u> </u>	40	l <u> </u>	0.010	40	_	300	
i. C Denugar		15	_	80	l –	0.015	80	i –	60Ó	1
Total Supply Current**1	lт	5.0			1-7/0	.56 µA/kHz				#Add
(Dynamic plus Quiescent,	''	10			17 = (O.	.56 μΑ/ΚΗΖ .1 μΑ/kΗz	;;; <u>io</u> p			"~"
Per Package)		15	l			. μΑ/κΗz				1
(C) ≃ 50 pF on all outputs, all		.5			. 1 - 11.	- μαιαΠέ	סטי ייי			1
buffers switching)			1							1
			——							1

^{*}T_{low} = ~55°C for AL Dovice, ~40°C for CL/CP Device. T_{high} = +125°C for AL Dovice, +85°C for CL/CP Device.

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vik}$$

where: IT is in μA (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.001.

PIN ASSIGNMENT

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD Vdo	Min	Тур#	Max	Unit
Output Rise Time	^t TLH					กร
		5.0	l –	100	200	ŀ
		10	-	50	100	l
		15		40	60	
Output Fall Time	t _{THL}					ns
	ł	5.0	-	100	200	
		10	l –	50	100	
		15		40	60	
Propagation Delay Time	telh.					ns
	[†] PHL					
Clock to Q	ľ					
tр _{LH} , tр _{HL} = (0.90 ns/pF) C _L + 305 ns		5.0	-	350	700	
tp_H, tpHL=(0.38 ns/pF) CL+132 ns		10	-	150	300	
tp_H, tpHL=(0.28 ns/pF) CL+87 ns	Į.	15	-	100	200	
Clock to Carry Out		ŀ				
tp_H, tpHL = (0.90 ns/pF) CL + 395 ns		5.0	–	440	880	
tթլн, tթнլ = (0.38 ns/pF) Cլ + 167 ns		10	l –	185	370	
tptH, tpHL = (0.26 па/pF) CL + 112 пз		15	I –	125	250	l
TE to Carry Out	1	I	l			Ī
tpLH, tpHL = (0.90 ns/pF) CL+225 ns		5.0	l –	300	600	l
tp_H, tpHL=(0.36 ns/pF) CL+112 ns		10	! –	130	260	1
tptH, tpHt = (0.26 ns/pF) Ct +77 ns	l l	15	١ –	90	160	l
Clear to Q (MC14106B, MC14161B only)						
tpLH, tpHL = (0.90 ns/pF) CL + 110 ns		5.0	l _	350	700	
tp_H, tpHL = (0.38 ns/pF) CL + 37 ns		10	_	150	300	
tpLH, tpHL = (0.26 ns/pF) CL + 22 ns	1	15	l _	100	200	
		- 			200	
Setup Times		l				
Data to Clock	1 _{SU}	5.0	320	160	_	กร
	ì	10	130	65	-	
	1	15	90	45	-	
Load to Clock	1	5.0	600	300	-	
		10	260	130	_	ļ .
	ŀ	15	180	90	_	
Enable to Clock (PE or TE)		5.0	420	210	_	
•		10	170	65	_	
	Į .	15	120	60	_	ľ
Clear to Clock (MC14162B, MC14163B only)		5.0	310	155	_	
	1	10	110	55	-	
		15	70	35	_	
Hold Times						
Clock to Data	t _h	5.0	- 10	-60	_	ns
	"	10	-5	-25	_	
		15	0	-15	_	
. 						
Clock to Load		5.0	-40	- 195	_	
		10	-10	80	-	
		15	-5	- 50	-	
Otanic to DE			ا م	.==		
Clock to PE	1	5.0	-40	175	-	
		10	-10	-70	-	
		15	0	- 40	-	
Clock to TE		5.0	- 150	- 260	_	ı
		10	-30	- 130	_	
		15	-20	-80	<u>-</u>	
	ŀ	-		••		
Clock to Clear (MC14162B, MC14163B only)		5.0	80	40	_	
	ļ	10	30	15	- 1	
	1	15	- 10	70	-	
Clear Removal Time (MC14160B, MC14161B only)	trem	5.0	90	30		กร
The state of the s	'rem	10	65	20	<u> </u>	113

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C) (Continued)

Characterietic	Symbol	V _{DD} Vdc	Min	Typ#	Max	Unit
Clear Pulse Width, Low (MC14160B, MC14181B only)	tWL	5.0	200	100	1	ns
		10	90	45	~	
		15	60	30	1	
Clock Pulse Width, High	1WH	5.0	250	125	~	ns
		10	100	50	-	
		15	70	35	-	
Clock Rise and Fail Time	tr,	5		l –	15	μs
	t _i "	10	-	-	5	
		15		_	4	
Clock Pulse Frequency	fcI	5.0		2.0	1.0	MHz
		10	_	5.0	2.5	
		15	-	8.0	4.0	

^{*}The formulas given are for the typical characteristics only at 25°C.

[₱]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING WAVEFORMS

FUNCTIONAL DESCRIPTION

These counters are fully programmable; that is the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. The clear function for the MC14160B, MC14161B is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clock, load or enable inputs. The clear function for the MC14162B and MC14163B is synchronous and a low level at the clear inputs sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily; decoding the maximum count de-

sired can be acomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output. Both count-enable inputs (PE, TE) must be high to count, and enable input TE fed forward to enable the carry output. The carry output thus enabled will produce a positive output pulse with a duration approximately equal to the positive portion of the Q1 output. This positive overflow carry pulse can be used to enable successive cascaded stages.

MC14160B, MC14162B LOGIC DIAGRAM (Clear is synchronous for MC14162B)

MC14160B, MC14162B TIMING DIAGRAM

Sequence illustrated in waveforms:

- 1. Clear outputs to zero.
- 2. Preset to BCD seven.
- 3. Count to eight, nine, zero, one, two, and three.
- 4. Inhibit

MC14161B, MC14163B LOGIC DIAGRAM (Clear is Synchronous for MC14163B)

MC14181B, MC14163B TIMING DIAGRAM

Sequence illustrated in waveforms:

- 1. Clear outputs to zero.
- 2. Preset to binary twolve.
 3. Count to thirteen, fourteen, fifteen, zero, one, and two.
- 4. Inhibit

MC14174B

HEX TYPE D FLIP-FLOP

The MC14174B hex type D flip-flop is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Data on the D inputs which meets the setup time requirements is transferred to the Q outputs on the positive edge of the clock pulse. All six flip-flops share common clock and reset inputs. The reset is active low, and independent of the clock.

- Static Operation
- All Inputs and Outputs Buffered
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range
- Functional Equivalent to TTL 74174

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-05 to +180	V
V _{in} . V _{out}	Input or Output Vollage (DC or Transient)	-05 to V _{DD} +05	V
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tsta	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating Plastic "P" Package - 12mW/°C from 65°C to 85°C Ceramic "L" Package - 12mW/°C from 100°C to 125°C

TRUTH TABLE (Postive Logic)

	OUTPUT	l		
Clock	Data	Reset	0	l
7	0	1	0	1
_	1	1	1]
7	Х	1	a	1
Х	х	0	0	ľ

X = Don't Care

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{Out} should be constrained to the range $V_{SS} \leq (V_{In} \text{ or } V_{Out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

CMOS MSI

(LOW POWER COMPLEMENTARY MOS)

HEX TYPE D FLIP-FLOP

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MC14174B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	T ₁₀	w"	L	25°C		T _{high} *		j
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0		0.05	_	0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0		10		0.05	l –	0	0.05	- 1	0.05	1
		15	_	0.05		0	0.05	_	0.05	
"1" Level	۷ОН	5.0	4.95	_	4.95	5.0	_	4.95	_	Vdc
V _{in} = 0 or V _{DD}		10	9.95	I -	9.95	10	_	9.95	_	1
		15	14.95	-	14.95	15		14.95	_	
Input Voltage "0" Level	VIL									Vdc
(V _O = 4.5 or 0.5 Vdc)		5.0	_	1.5	_	2.25	1.5	-	1.5	l
(V _D = 9.0 or 1.0 Vdc)		10	. —	3.0	. –	4.50	3.0	- 1	3.0	
(V _O = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0		4.0	
"1" Level	νiΗ							i		I
(Vo = 0.5 or 4.5 Vdc)		5.0	3.5	Í –	3.5	2.75	_	3.5	_	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	_	7.0	_	ļ
(V _O = 1.5 or 13.5 Vdc)		. 15	11.0	-	. 11.0	8.25	_	11.0	_	
Output Drive Current (AL Device)	Юн									mAdc
(VOH = 2.5 Vdc) Source	• • •	5.0	-3.0	l —	-2.4	-4.2	١ –	-1.7	-	ı
(VOH = 4.6 Vdc)		5.0	-0.64	 	-0.51	-0.88	_	-0.36	_	i
(VOH = 9.5 Vdc)		10	-1.6	i –	-1.3	-2.25	_	-0.9	_	l
(VOH = 13.5 Vdc)	_ '	15	-4.2	-	-3.4	-8.8	-	-2.4	L	L
(VOL = 0.4 Vdc) Sink	^I OL	5.0	0.64		0.51	0.88	-	0.36	-	mAdo
(VOL = 0.5 Vdc)	"-	10	1.6		1.3	2.25	_	0.9	_	1
(VOL = 1.5 Vdc)	'	15	4.2	l –	3.4	8.8	_	2.4	_	1
Output Drive Current (CL/CP Device)	ТОН				 					mAdo
(VOH = 2.5 Vdc) Source	011	5.0	-2.5	I _	-2,1	-4.2	_	-1.7	_	1 1
(VOH = 4.6 Vdc)		5.0	-0.52	 	-0.44	-0.88	_	-0.36	_	ł
(VOH = 9.5 Vdc)		10	-1.3	_	-1.1	-2.25	_	-0.9	_	ì
(VOH = 13.5 Vdc)		15	-3.6	l –	-3.0	-8.8		-2.4	_	
(VOL = 0.4 Vdc) Sink	OL	5.0	0.52		0.44	0.88		0.36		mAdo
(VOL = 0.5 Vdc)	"0"	10	1.3	! _	1.1	2.25	_	0.9	_	
(VOL = 1.5 Vdc)		15	3.6	۱ ـ	3.0	8.8	-	2.4	_	ŀ
Input Current (AL Device)	lin	15		±0.1	-	10.00001	±0.1		21.0	µAdc
Input Current (CL/CP Device)	lin	15	_	± 0.3	 _ -	±0.00001	±0.3	_	11.0	µAdc
Input Capacitance	C _{in}	-			 _ _	5.0	7.5	}		oF
(V _{in} = 0)	CIN				_	5.0	7.5			J Pr
Quiescent Current (AL Device)	IDD	5.0	_	5.0	<u> </u>	0.005	5.0	-	150	μAdc
(Per Package)		10	-	10	l –	0.010	10	 -	300	
		15		20	_	0.015	20	_	600	L
Quiescent Current (CL/CP Device)	OD	5.0	_	20		0.005	20		150	μAdc
(Per Package)		10	-	40	-	0.010	40	- 1	300	[]
		15	_	80	L -	0.015	80	L - .	600	<u> </u>
Total Supply Current**1	ŀΤ	5.0			T : 11	.1 µA/kHz)	1 + 100			иAdc
(Dynamic plus Quiescent,	'	10			17 * 12	3 µA/kHz)	יטטי			
Per Package)		15	ŀ		IT = (3	7 µA/kHz)	ממו וו			ł
(CL = 50 pF on all outputs, all			i		•					I
buffers switching)			l							1

[&]quot;Tlow = -55°C for AL Device, -40°C for GL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ V/k}$$

where: i_T is in μA (per package), C_L in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.003.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at leads other than 50 pF:

MC14174B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

		VDD		All Types			
Characteristic	Symbol	Vdc	Min	Тур#	Max	Unit	
Output Rise and Fall Time TILH, THIL = (1.35 ns/pF) CL + 32 ns TILH, THIL = (0.6 ns/oF) CL + 20 ns TILH, THIL = (0.4 ns/pF) CL + 20 ns	TEH: THE	5.0 10 15	_ _ _	100 50 40	200 100 80	ns	
Propagation Delay Time — Clock to Q tp_H, tpHL = (0.9 ns/pF) CL + 165 ns tp_H, tpHL = (0.36 ns/pF) CL + 64 ns tp_H, tpHL = (0.26 ns/pF) CL + 52 ns	ФІН-ФНІ	5.0 10 15	<u>-</u>	210 85 65	400 160 120	ns	
Propagation Delay Time — Reset to Q tpHL = (0.9 ns/PF) CL + 205 ns tpHL = (0.36 ns/PF) CL + 79 ns tpHL = (0.26 ns/PF) CL + 62 ns	¹ PHL	5.0 10 15	-	250 100 75	500 200 150	ns	
Clock Pulse Width	twH	5.0 10 15	150 90 70	75 45 35	<u>-</u> -	ns	
Reset Pulse Width	tWL	5.0 10 15	200 100 80	100 50 40	=	ns	
Clock Pulse Frequency	fa	5.0 10 15	=	7.0 12.0 15.5	2.0 5.0 6.5	MHz	
Clock Pulse Rise and Fall Time	tten tthe	5.0 10 15	=	=	1.5 5.0 4.0	μ8	
Data Setup Time	tsu	5.0 10 15	40 20 15	20 10 0	_ - 8	ns	
Data Hold Time	th .	5.0 10 15	80 40 30	40 20 15	=	ns	
Reset Removal Time	trem	5.0 10 15	250 100 80	125 50 40	=	ns	

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

TIMING DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

MC14175B

QUAD TYPE D FLIP-FLOP

The MC14175B quad type D flip-flop is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each of the four flip-flops is positive-edge triggered by a common clock input (C). An active-low reset input (R) asynchronously resets all flip-flops. Each flip-flop has independent Data (D) inputs and complementary outputs (Q and $\overline{\rm Q}$). These devices may be used as shift register elements or as type T flip-flops for counter and toggle applications.

- Complementary Outputs
- Static Operation
- All Inputs and Outputs Buffered
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Output Compatible with Two Low-Power TTL Loads or One Low-Power Schottky TTL Load
- Functional Equivalent to TTL 74175

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	- 0.5 to + 18.0	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-05 to V _{DD} -05	٧
In. fout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur | Temperature Derating | Plastic "P" Package | 12mW"C from 65°C to 85°C | Ceramic "L" Package | 12mW"C from 100°C to 125°C

TRUTH TABLE

	INPUTS		OUT	PUTS	
Clock	Data	Reset	0	Q	1
	0	1	0	1	
7	1	1	1	0]
7	Х	1	Q	ā	No Change
Х	Х	0	0	1	

X = Don't Care

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{out} should be constrained to the range V_{SS} ≤ (V_{In} or V_{out}) ≤ V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

QUAD TYPE D FLIP-FLOP

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceremic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

BLOCK DIAGRAM

V_{DD} = Pin 16 V_{SS} = Pin 8

MC14175B

ELECTRICAL CHARACTERISTICS (Veltages Referenced to VSS)

		VOD	Tto	w*		25°C		Th	igh *	
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	Vde
V _{in} = V _{DD} or 0	1	10	-	0.05	i -	0	0.05	-	0.05	
		15	<u> </u>	0.05		0	0.05	-	0.05	L
"1" Level	νон	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc
V _{in} = 0 or V _{DD}	1	10	9.95	-	9.95	10	-	9.95	-	1
	<u>L</u>	15	14.95		14.95	15		14.95		
Input Voltage "0" Leve	VIL						1			Vdc
(V _O = 4.5 or 0.5 Vdc)	1	5.0	-	1.5	i –	2.25	1.5	-	1.5	ł
(V _O = 9.0 or 1.0 Vdc)	1	10	-	3.0	-	4.50	3.0	-	3.0	1
(V _O = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0	<u> </u>	4.0	
"1" Leve	VIH					l	l		l	
(V _O = 0.5 or 4.5 Vdc)	1	5.0	3.5	-	3.5	2.75	-	3.5	-	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	-	1
(VO = 1 5 or 13.5 Vdc)		15	11.0		11.0	8.25		11.0		
Output Drive Current (AL Device)	ГОН		١	1	۱	1	Ì		l	mAdc
(VOH = 2.5 Vdc) Source		5.0	-3.0 -0.64	-	-2.4 -0.51	-4.2	-	-1.7 -0.36	-	Į.
(V _{OH} = 4.6 Vdc)		5.0	-1.6	-	-1.3	-0.88	-	-0.36	-	1
(V _{OH} = 9.5 Vdc)		10 15	-1.6 -4.2	-	-3.4	-2.25 -8.8	-	-0.9	-	1
(V _{OH} = 13.5 Vdc)	<u> </u>			<u> </u>			<u> </u>			
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.64	-	0.51	0.88	-	0.36	-	mAdc
(VOL = 0.5 Vdc)		10 15	1.6	-	1.3	2.25	-	0.9 2.4	-	[
(V _{OL} = 1.5 Vdc)	 	15	4.2		3.4	8.8		2.4		.
Output Drive Current (CL/CP Device)	IOH		١		-2.1	١	Ì		l	mAdc
(VOH = 2.5 Vdc) Source	i	5.0	-2.5 -0.52	-	-0.44	-4.2	-	-1.7	-	1
(V _{OH} = 4.6 Vdc)		5.0		-	-1.1	-0.88	-	-0.36	-	1
(V _{OH} = 9.5 Vdc)		10 15	-1,3 -3,6	-	-3.0	-2.25 -8.8	_	-0.9 -2.4	-	ł
(V _{OH} = 13.5 Vdc)							<u> </u>			
(VOL = 0.4 Vdc) Sink	OL	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc
(VOL = 0.6 Vdc)	1	10 15	1.3 3.6	-	1.1	2.25) -	0.9	-	ł
(V _{OL} = 1.5 Vdc)	.			<u> </u>	3.0	8.8		2.4		_
Input Current (AL Device)	lin	15		± 0.1		±0.00001	±0.1		± 1.0	μAdc
Input Current (CL/CP Device)	lin	15		± 0.3		±0.00001	± 0.3	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)	Cin	•	-	_	-	5.0	7.5	-	-	ρF
Quiescent Current (AL Device)	IDD	5.0		5.0	-	0.005	5.0	-	150	μAdc
(Per Package)	-	10	l –	10	-	0.010	10	-	300	1
		15	l	20	-	0.015	20	-	600	1
Quiescent Current (CL/CP Device)	100	5.0	-	20		0.005	20	-	150	µAdc
(Per Package)		10	1 –	40	-	0.010	40	-	300	1
	<u> </u>	15	 -	80	_	0.015	80	_	600	1
Total Supply Current**1	ΙŢ	5.0			IT = (1	.7 μA/kHz)	f + Inc			μAdc
(Dynamic plus Quiescent,	1 1	10	l			4 μA/kHz)				
Per Packagel	j	15	i			.O μA/kHz)				
(CL = 50 pF on all outputs, all	1 1		l		•					
buffers switching)	1		L							l

[&]quot;T_{tow} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

"The formulae given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vik}$$

where: i_T is In μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.004.

MC14175B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

		VDD		All Types		
Characteristic	Symbol	Vdc	Min	Тур#	Max	Unit
Output Rise and Fall Time	TLH, THL					ns
^t TLH, ^t THL = (1.35 ns/pF) C _L + 32 ns	100,	5.0	1 -	100	200	İ
TLH, THL = (0.6 ns/pF)CL + 20 ns		10	-	60	100	
TLH, THL = (0.4 ns/pF) CL + 20 ns	ļ	15	-	40	80	
Propagation Delay Time — Clock to Q, Q	₹PLH.		1			ns
tpLH, tpHL = (0.9 ns/pF) CL + 175 ns	tPHL	5.0	-	220	400	1
tpLH, tpHL = (0.36 ns/pF) CL + 72 ns		10	_	90	160	
tpLH, tpHL = (0.26 ns/pF) CL + 57 ns	Ì	15	-	70	120	
Propagation Delay Time — Reset to Q, Q	teHL.					ns
tpHL = (0.9 ns/pF) CL + 280 ns	†PLH	5.0	-	325	500	1
tpHL = (0.36 ns/pF) C _L + 112 ns	1 '5"	10	_	130	200	
tpHL = (0.26 ns/pF) CL + 87 ns		15	-	100	150	
Clock Pulse Width	twH	5.0	250	110	-	ns
,	****	10	100	45	-	
		15	75	35	-	
Reset Pulse Width	™L	5.0	200	100		ns
Trout result tribin	"-	10	80	40	-	
		15	60	30	-	
Clock Pulse Frequency	fcl	5.0	-	4.5	2.0	MHz
	•	10	-	11	5.0	1
		15	-	14	6.5	1
Clock Pulse Rise and Fall Time	TLH, THL	5.0	-	_	15	μs
	·	10	I -	-	1 5	1
		15	-	-	4	1
Data Setup Time	tsu	5.0	120	60	-	ns
	·	10	50	26	l –	1
	_	15	40	20	-	
Data Hold Time	8/2	5.0	80	40	-	ns
•	1 "	10	40	20	l –	
		15	30	15	-	
Reset Removal Time	trem	5.0	250	125	_	ns
· · · · · · · · · · · · · · · · · · ·		10	100	50	-	ł
		15	1 80	40	_	1

[&]quot;The formulas given are for the typical characteristics only at 25°C.

*Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the fC's potential performance.

R

TIMING DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

MC14194B

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER

The MC14194B is a 4-bit static shift register capable of operating in the parallel load, serial shift left, serial shift right, or hold mode. The asynchronous Reset input, when at a low level, overrides all other inputs, resets all stages, and forces all outputs low. When Reset is at a logic 1 level, the two mode control inputs, S0 and S1, control the operating mode as shown in the truth table. Both serial and parallel operation are triggered on the positive-going transition of the Clock input. The Parallel Data, Data Shift, and mode control inputs must be stable for the specified setup and hold times before and after the positive-going Clock transition.

- Synchronous Right/Left Serial Operation
- Synchronous Parallel Load
- Asynchronous Hold (Do Nothing) Mode
- Functional Pin for Pin Equivalent of LS194

MAXIMUM RATINGS* (Voltages Referenced to Ves)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	-05 to V _{DD} +0.5	V
lin-lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tic	w*		25°C		τ _h	igh °	
Characteristic	Symbol	Vdc	Min	Max	Min	Typ #	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	_	0.05		0	0.05		0.05	Vdc
Vin = VDD or 0		10	1 —	0.05	-	0	0.05	l – I	0.05	ł
	L	15		0.05		0	0.05		0.05	
"1" Level	VOH	5.0	4.95	_	4.95	5.0	_	4.95	_	Vdc
Vin = 0 or VDD		10	9.95	-	9.95	10	l –	9.95	_	ł
	.1	15	14.95		14.95	15	<u> </u>	14.95		
Input Voltage "0" Leve	VIL									Vdc
$(V_0 = 4.5 \text{ or } 0.5 \text{ Vdc})$		5.0	. –	1.5	-	2.25	1.5	-	1.5	l
(V _O =9.0 or 1.0 Vdc)	1	10	-	3.0	l –	4.50	3.0	-	3.0	i
(V _O ≈ 13.5 or 1.5 Vdc)	L	15		4.0		6.75	4.0	<u> </u>	4.0	
: "1" Leve	VIH				İ					1
(V _O = 0.5 or 4.5 Vdc)	i	5.0	3.5	<u> </u>	3.5	2.75	-	3.5	_	Vdc
(V _O =1.0 or 9.0 Vdc)		10	7.0	_	7.0	5.50	_	7.0	_	ļ .
(V _O = 1 5 or 13.5 Vdc)	1	15	11.0	_	11.0	8.25	_	11.0	_	
Dutput Drive Current (AL Device)	ПОН									mAdc
(VOH = 2.5 Vdc) Source	1	5.0	-3.0	 	-2.4	-4.2	-	-1.7	_	
(V _{OH} = 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	-	-0.36	_	
(V _{OH} = 9.5 Vdc)	1	10	-1.6	l —	-1.3	-2.25	 -	-0.9	_	ŀ
(VOH = 13.5 Vdc)		15	-4.2		-3.4	-8.8		-2.4		L
(VOL = 0.4 Vdc) Sink	OL	5.0	0.64	-	0 51	0.88	l –	0.36	_	mAdc
(VOL = 0.5 Vdc)	1	10	1.6	-	1.3	2.25		0.9	_	Į.
(VOL = 1.5 Vdc)		15	4.2	_	3.4	8.8		2.4		L
Output Drive Current (CL/CP Device)	Іон									mAdc
(V _{OH} = 2.5 Vdc) Source	1	5.0	-2.5	l —	-2.1	-4.2	—	-1.7	_	
(V _{OH} = 4.6 Vdc)	1	5.0	-0.52	—	-0.44	-0.88	-	-0.36	_	ł
(V _{OH} ≈ 9.5 Vdc)	1	10	-1.3	-	-1.1	-2.25	i —	-0.9	_	l
(V _{OH} = 13.5 Vdc)		15	-3.6	_	-3.0	-8.8	_	-2.4	_	<u> </u>
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.52	_	0.44	0.88	_	0.36	1	mAdc
(V _{OL} = 0.5 Vdc)	l i	10	1.3	l –	1.1	2.25	-	0.9	_	ŀ
(VOL = 1.5 Vdc)		15	3.6	-	3.0	8.8	-	2.4	_	į .
Input Current (AL Device)	1 _{in}	15	<u> </u>	± 0.1	<u> </u>	±0.00001	± 0.1		± 1.0	μAdc
Input Current (CL/CP Device)	lin	15		± 0.3		±0.00001	±0.3		± 1.0	μAdc
Input Capacitance	Cin	-				5.0	12.0			ρF
(V _{in} = 0)	"					l .				
Quiescent Current (AL Device)	IDD	5.0	_	5.0	_	0.005	5.0	_	150	μAdc
(Per Package)	"00	10	l –	10	_	0.010	10		300	
-		15	_	20	_	0.015	20	l – '	600	ŀ
Quiescent Current (CL/CP Device)	lop	5.0		20		0.005	20	_	150	μAdc
(Per Package)	"	10	l —	40	_	0.010	40	l	300	
	1 1	15	l –	80	l –	0.015	80	_	600	
Total Supply Current**†	1	5.0			17 = (0	.95 µA/kHz				µAdc
(Dynamic plus Quiescent,	1 "	10	1			.9 µA/kHz)				"~~"
Per Package)		15	l			.9 μA/kHz)				l
(C _L = 50 pF on all outputs, all	1 - 1		Ì		.,					l
buffers switching)		1								ı

^{*}Tlow = -55°C for AL Device, -40°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. †To calculate total supply current at loads other than 50 pF:

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in velts, f in kHz is input frequency, and k = 0.002.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DO}). Unused outputs must be left open.

ᅥᅼᆏ V_{DD} 16 DSR ao 🗀 15 9114 PPD 02 13 D_{P1} 10P2 03 12 c|="i" DP3 S1 10 OSL **⊐**9 so F VSS

PIN ASSIGNMENT

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

^{**}The formulas givon are for the typical characteristics only at 25°C.

MC14194B

TRUTH TABLE

OPERATING			INPU (Reset			OUTPUTS (© t _{n + 1})				
MODE	S1	SO	DSR	DSL	D _{P0-3}	00	<u>0</u> 1	Q2	03	
Hold	0	0	×	×	×	00	Q1	Q2	Q3	
	1	0	×	0	×	Q1	02	Q3	0	
Shift Left	1	0	×	1	×	Q١	ΩZ	G3	1	
Culti Dick	0	1	0	×	×	0	0.0	ā	02	
Shift Right	٠ .		1	×	×	1	00	Q1	QZ	
0	1_		×	×	0	0	0	0	0	
Perallel	1	1	×	×	1	1	1	1	1	

X = Don't Care

SWITCHING CHARACTERISTICS* (C. = 50 of Ta = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ#	Max	Unit
Output Rise and Fall Time	TLH, THL					ns
TTLH, TTHL = (1.35 ns/pF) CL + 32 ns	-, -, -, -, -, -	5.0	l –	100	200	
TLH, THL = (0.6 ns/pF) CL + 20 ns		10	-	50	100	
^t TLH, ^t THL = (0.4 ns/pF) C _L + 20 ns		15	-	40	80	l
Propagation Delay Time Clock to Q	tPLH-tPHL					ns
tPLH.tPHL = (0.9 ns/pF) CL + 230 ns	k	5.0	l –	275	550	
tp_H,tpHL = (0.36 ns/pF) CL + 92 ns	ľ	10	i –	110	220	
tpLH.tpHL = (0.26 ns/pF) CL + 72 ns		15	! -	85	170	l
Reset to Q	1PHL		l			ns
tpHL = (0.9 ns/pF) CL + 305 ns		5.0	_	350	700	Į.
tpHL = (0.36 ns/pF) CL + 122 ns	1	10	-	140	280	
tpHL = (0.28 ns/pF) CL + 97 ns		15	<u>-</u>	110	220	
Clock Pulse Width	tWH	5.0	280	140		ns
	ľ	10	110	55	_	1
		15	85	40	<u> </u>	L
Reset Pulse Width	₩H	5.0	180	90	_	ns
		10	70	35	_	1
		15	50	26		<u> </u>
Clock Pulse Frequency	fei	5.0	-	3,6	1.8	MHz
(Shift Right or Left Mode)	1 1	10	l –	9.0	4,5	1
		15		12	6.0	
Clock Pulse Rise and Fall Time	TLH, THL	5.0	l –	-	15	μs
		10	l –	I –	5	
		15			4	
Setup Time	tsu		ŀ	ı		ns
Data to Clock		5.0	10	-8.0	-	1
		10	20] 0	-	1
		15	40	9,0		
Mode Control (S) to Clock	· · · · · · · · · · · · · · · · · · ·	5.0	200	100	=	US
		10	75	38	-	i
		15	56	27		
Hold Time	t _h		j	ı		ns
Data to Clock		5.0	180	90	-	1
		10	50	25	-	
		15	35	10		<u> </u>
Mode Control (S) to Clock	J	5.0	0	-40	-	ns ns
		10	0	-27	-	1
		15	0	-20		└
Reset Removel Time	trom	5.0	300	150	_	ns
		10	110	55	-	i
	i i	15	80	40	í –	[

^{**}The formulas given are for the typical characteristics only at 25°C.

 t_{n+1} = State efter the hext positive-going transition of the clock.

Data labelled "Typ" la net te bo used for design purposes but is intended as an indication of the IC's potential performance.

QUAD PRECISION TIMER/DRIVER

The MC14415 quad timer/driver is constructed with complementary MOS enhancement mode devices. The output pulse width of each digital timer is a function of the input clock frequency. Once the proper input sequence is detected the output buffer is set (turned on), and after 100 clock pulses are counted, the output buffer is reset (turned off).

The MC14415 was designed specifically for application in high speed line printers to provide the critical timing of the hammer drivers, but may be used in many applications requiring precision pulse widths.

- Four Precision Digital Time Delays
- Schmitt Trigger Clock Conditioning
- NPN Bipolar Output Drivers
- Timing Disable Capability Using Inhibit Output
- · Positive or Negative Edge Strobing on the Inputs
- Synchronous Polynomial Counters Used for Delay Counting
- Power Supply Operating Range
 3.0 Vdc to 18 Vdc (MC14415EFL/FL/FP)
 3.0 Vdc to 6.0 Vdc (MC14415EVL/VL/VP)

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage - MC14415EFL/FL/FP MC14415EVL/VL/VP	-0.5 to +18.0 -0.5 to +6.0	v
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
In	Input Current (DC or Transient), per Pin	± 10	mΑ
lout	Output Current (DC or Transient), per Pin	± 20	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Packago: – 12mW/"C from 50°C to 85°C Ceramic "L" Packago: – 12mW/"C from 100°C to 125°C

MC14415

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

QUAD PRECISION TIMER/DRIVER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

Operating Range: -55°C to +125°C MC14415EFL (3 to 18 V, Ceramic Package) MC14415EVL (3 to 6 V, Ceramic Package)

Operating Range: -40°C to +85°C MC14415FL (3 to 18 V. Ceramic Package) MC14415FP (3 to 18 V. Plastic Package) MC14415VP (3 to 6 V. Ceramic Package) MC14415VP (3 to 6 V. Plastic Package)

ELECTRICAL CHARACTERISTICS (Voltagos Referenced to VSS)

			VDD	T	ow*		25°C		Τ _{tt}	igh °	
Characteris	tic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	-	0.01	_	0	0.01	-	0.05	Vdc
(No Load)			10	-	0.01	-	0	0.01	-	0.05	
			15		-	-	_		<u> </u>	-	
	"1" Level	VOH	5.0	_	-	3.0	4.14	_	-	_	Vdc
			10	-	-	8.0	9.09	-	-	-	
		1	15	-	_	-	14.12	_	_	-	
Noise Immunity		VNL	ľ								Vdc
(AV _{out} < 1.5 Vdc)		"-	5.0	1.5	l –	1.5	2.25	-	1.4	-	
(△V _{put} < 3.0 Vdc)		ł	10	3.0	l -	3.0	4.50	_	2.9	-	
(△V _{Out} < 4.5 Vdc)			15	-	l –	-	6.75	-	l		
(△V _{out} < 1.5 Vdc)		VNH	5.0	1.4	-	1.5	2.25	_	1.5		Vdc
(AVout < 3.0 Vdc)		"""	10	2.9	-	3.0	4.50	_	3.0	- 1	
(Vout < 4.5 Vdc)			15	-	l –	-	6.75	-	l -	-	
Output Drive Voltage (N	PN Driver)	VOH									Vdc
(IOH = 0 mA)	Source	100	5.0	_	i _	3.0	4.14	-	_	_	
(IOH = 5.0 mA)				_	-	2.7	3.44	_	-	i - 1	Ī
(IOH = 10 mA			l	_	_	2.5	3.30	-	1 -	- '	1
(IOH = 15 mA)		1	l	_	-	2.2	3.08	_	-	- :	
(I _{OH} = 0 mA)			10		-	8.0	9.09		T-		Vdc
(IOH = 5.0 mA)				l <u>-</u>	-	7.7	8.45	l –	l –	_	1
(IOH = 10 mA)				l -	۱ -	7.5	8.30	! -	1 -		ŀ
(IOH = 15 mA)		1	i	-	_	7.1	8.14	l –	1 -	-	İ
(I _{OH} = 0 mA)		1	15	_		1 -	14.12		-		Vdc
(IOH = 5.0 mA)		1	1	-	l –	۱ -	13.81	-	l –	_	l
(IOH = 10 mA)]	l	I –	i -	-	13.70	_	- 1	_	l
(I _{OH} = 15 mA)		1	l	_	-	_	13.61	-	-	-	l
Output Drive Current		lor							<u> </u>		mAdc
(VOL = 0.4 Vdc)	Sink	0	5.0	0.23	-	0.20	0.78	-	0.16	1 -	
(VOL = 0.5 Vdc)		}	10	0.60	_	0.50	2.0	-	0.40] -	ŀ
(VOL = 1.5 Vdc)			15	-	_	-	7.8	_	-		ļ
Input Leskage Current		lin	15		±0.3	_	± 0.00001	±0.3		±1.0	μAdc
Input Capacitance		Cin	_	-	 	_	5.0	-			DΕ
(Vin = 0)		1 -""		ŀ	l				l		"
Quiescent Oissipation		Pa			 				 	 	mW.
CONSCIENCE CONSTRUCTION		٠. ١	5.0	! <u>-</u>	0.25	l _	0:00005	0.25	l _	3.5	
			10	_	1.0	l _	0.00022	1.0	_	14	
			15	_		-	0.00060	-	_	-	1
Power Dissipation**		PD	-	 					1	•	Wm
(Dynamic plus Quies	cent)	"		I							
(C _L = 15 pF)	-		5.0	I		Po = 49	6 mW/MH	l f + Po			
]	10	I			25 mW/MI				
			15	l			10 mW/MI				
T. a SEOC for MC1				L		٠٠ ٠٠		<u> u</u>			

^{*}Tiow = -55°C for MC14415EFL, EVL; -40°C for MC14415FL,FP,VL,VP Thigh = +125°C for MC14415EFL,EVL; +85°C for MC14415FL,FP,VL,VP

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{out} should be constrained to the range VSS < (Vin or Vout) < VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

^{**}The formulas given are for the typical characteristics only.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING CHARACTERISTICS* (C1 - 16 pF. TA - 260C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
Output Rise Time	tTLH	†				ns
tTLH = {2.0 ns/pF} CL + 10 ns		5.0	-	40	85	
tTLH = (1.25 ns/pF) CL + 6 ns	i	10	-	26	60	l
tTLH = (1.10 ns/pF) CL + 3 ns	į	15	-	20	l ~]
Output Fall Time	tthr.					ns
tTHL = (1.5 ns/pF) CL + 47 ns		5.0	- :	70	150	
tTHL = (0.75 ns/pF) CL + 24 ns	i	10	-	35	80	ļ
t_HL = (0.56 ns/pF) CL + 17 ns		15	-	25	-	
Turn-Off Dalay Tima	tPLH					T1S
tpLH = (2.7 ns/pF) CL + 560 ns		5.0	-	600	1200	1
tpHL = (1.2 ns/pF) CL + 282 ns		10	- 1	300	600	
tp_H = (0.91 ns/pF) CL + 286 ns	i	15	l – I	150	-	
Turn-On Delay Time	tPHL.	 				ns
tpHL = (2.4 ns/pF) CL + 564 ns	1	5.0	-	600	1200	1
tpHL = (1.0 ns/pF) CL + 285 ns		10	-	300	600	
tpHL = (0.75 ns/pF) CL + 289 ns	ŀ	15	-	150	-	
Turn-On Delay Time (Inhibit to Output)	tpHL tpHL					ns
	1	5.0	-	300	550	
		10	-	225	425	
	į.	15	-	110	-	l
Turn-Off Delay Time (Inhibit to Output)	1PLH	 				ns ns
	l l	5.0		300	550	l
	[10	-	225	425	l
		15	-	110	-	
Input Pulse Coincidence (Figure 3)	PCmin					R\$
	i	5.0	500	450	-	ļ
		10	450	350	-	l
	ļ	15	-			ı
Input Pulse Width (Figure 1)	twH					rts .
	- 1	5.0	600	450	_	1
	1	10	450	360	-	1
	1	15	-			1
Input Clock Frequency	fcl				I	MHz
	-	5.0	l -	0.7	-	
	1	10	l -	1.0	·-	j
		15	_	1.5		L
Clock Input Rise and Fall Times (Figure 1)	TLH, THL	5.0	-	-	15	μs
the second second	1 '	10	-	-	5.0	1
	1	15	-	l	4.0	L

[&]quot;The formulas given are for the typical characteristics only at 25°C.

◆Data labelted "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - SWITCHING CHARACTERISTICS - WAVEFORM RELATIONSHIPS

FIGURE 2 — TYPICAL OPERATION MODES AND FUNCTIONAL TIMING DIAGRAM

MODE 1 - OUTPUT SET INITIATES TIME DELAY

MODE 2 : SET A INITIATES TIME DELAY

MODE 3: OUTPUT INHIBIT DISABLES TIME DELAY

MODE 4: POSITIVE-EDGE STROBE (ST2) INITIATES TIME DELAY

HEX CONTACT BOUNCE ELIMINATOR

The MC14490 is constructed with complementary MOS enhancement mode devices, and is used for the elimination of extraneous level changes that result when interfacing with mechanical contacts. The digital contact bounce eliminator circuit takes an input signal from a bouncing contact and generates a clean digital signal four clock periods after the input has stabilized. The bounce eliminator circuit will remove bounce on both the "make" and the "break" of a contact closure. The clock for operation of the MC14490 is derived from an internal R-C oscillator which requires only an external capacitor to adjust for the desired operating frequency (bounce delay). The clock may also be driven from an external clock source or the oscillator of another MC14490 (see Figure 5).

NOTE: Immediately after power-up, the outputs of the MC14490 are in indeterminate states.

- · Diode Protection on All Inputs
- Six Debouncers Per Package
- · Internal Pullups on All Data Inputs
- Can Be Used as a Digital Integrator, System Synchronizer, or Delay Line
- Internal Oscillator (R-C), or External Clock Source.
- TTL Compatible Data Inputs/Outputs
- Single Line Input, Debounces Both "Make" and "Break" Contacts
- Does Not Require "Form C" (Single Pole Double Throw) Input Signal
- Cascadable for Longer Time Delays
- Schmitt Trigger on Clock Input (Pin 7)
- Supply Voltage Range = 3.0 V to 18 V
- Chip Complexity: 546 FETs or 136.5 Equivalent Gates

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

HEX CONTACT BOUNCE ELIMINATOR

MAXIMUM RATINGS* (Voltages Referenced to Vss)

Symbol	Parameter	Value	Unit
_v _{DD}	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
lin	Input Current (DC or Transient), per Pin	± 10	mA
Po	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	-65 to +150	ç
ΤL	Lead Temperature (6-Second Soldering)	260	·c

^{*}Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: - 12mW/°C from 85°C to 85°C
Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

PIN ASSIGNMENT

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

Characteristic	Symbol	VDD	Tlo			25°C			Thigh	
		Vdc	Min	Max	Min	Typ.#	Max	Min	Max	Uni
Output Voltage "0" L	evel VOL	50	-	0.05	-	0	0 05	-	0 05	٧
$V_{in} = V_{DD}$ or 0		10	-	0.05	-	0	0 05	-	0 05	
		15	-	0.05	-	0	0 05	_	0 05	
"1" Li	HOV leve	50	4 95		4 95	50	_	4 95	-	٧
V _{ID} = 0 or VDD	l l	10	9 95	-	9 95	10	-	9 95	-	
	- 1	15	14 95	_	14 95	15	-	14 95	-	
Input Voltage "0" L	evel V _{IL}									٧
(V _O = 4 5 or 0 5 V)		50	'	15	-	2 25	15	-	15	
IVO = 9 0 or 1 0 V)		10	l –	30	-	4 50	30	-	30	
IVO = 13 5 or 1 5 V)	I I	15	l –	40	-	6 75	40	-	40	
"1" u	evel V _{IH}	1	1							V
$(V_0 = 0.5 \text{ or } 4.5 \text{ V})$	- 1 '''	50	3 5	_	35	2 75	l - i	35	-	
(VO = 1 0 or 9.0 V)	1	10	70	_	70	5.50	l - '	70	_ !	
(VO = 1 5 or 13.5 V)	1	15	110		110	B 25	_	110	-	
Output Drive Current	ЮН	 	 	 	 			_		m
Source	1 .04									
Oscillator Output	i			i I					!	
IVOH = 2 5 VI	1	50	-06	l _ '	-05	- 15	l _	04	_	
IV _{OH} = 4 6 VI	i	50	- 0 12			- 03	l –	- 0 08		
(VOH = 9 5 V)	ı	10	- 0 23			-08	l –	- 0 16		1
(V _{OH} = 13.5 V)	l l	15	-14	l	- 12	-30	_	-10	_	
Debounce Outputs		<u> </u>	+-	<u> </u>	<u> </u>	-			\vdash	
(VOH = 2.5 V)		50	-09	l -	- 0 75	- 22	l –	-06	-	
(V _{OH} = 4.6 V)	1	50	- 0 19	l -		- 0 46	_	- 0 12	-	
(V _{OH} = 9.5 V)	- 1	10	- 0 60	1		-12	l -	-04	_	
(V _{OH} = 13.5 V)	i	15	-18			-45	_	- 12	_	ì
Sink		 	—		<u> </u>			 	-	m/
Oscillator Output	OL		1	l	ļ.		1		1	"",
(V _{Ol} = 0.4 VI		50	0.36	_	0 30	09	l _	0 24	_	
(V _{OL} = 0.5 V)		10	0.30	<u>-</u>	0 75	23		06		
(V _{Oi} = 1.5 V)		15	4.2	_	35	10	-	28	_	l
Debounce Outputs		 ""	17.6	-	1,		- -		-	1
(V _{OL} = 0.4 V)		50	26	l _	22	40	_	18	_	1
(V _{OL} = 0.5 V)		10	40	_	3.3	9	_	27	l _	
(V _{OL} = 1.5 V)		15	12	l _	10	35		81	l –	
Input Current		+ "	+		·•	+	 	 	 	
Debounce Inputs (V _{ID} = V _{DD})	ίн	15	l –	2	–	02	2	_	11	μA
	- , -	15	 _	. 620	-	± 255	± 400	-	+ 250	u.f
Input Current Oscillator - Pin 7 (V _{IN} = V _{SS} or V _{DD})	l _{in}			± 620		-	_	70	130	
Pullup Resistor Source Current	ht.	50	210	375	140	190	255			μA
Debounce Inputs	1	10	415	740	280	380	500	145 215	265	l
(V _{in} = V _{SS})		15	610	1100	415	570	750		400	ļ.,
nput Capacitance	C _{in}	 -	<u> -</u>		_	50	7.5		<u> </u>	pί
Quiescent Current	1SS	50] -	150	-	40	100	-	90	μĒ
(Vin = VSS or VDD. Iout = 0 µA)	1	10	 -	280	l –	90	225	-	180	l
		15	I -	840	-	225	660	-	550	乚

[&]quot;T_{low} = -55°C for L Device, -40°C for P Device. T_{high} = +125°C for L Device, +65°C for P Device.

[◆]Data labellod "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING CHARACTERISTICS (C1 = 50 pF, TA = 25°C)

	Characteristic	Symbol	V _{DD} Vdc	Min	тур #	Max	Unit
Output Rise Time All Outputs	-	Ч	5.0 10 15	- - -	180 90 65	360 180 130	ns
Output Fall Time Oscillator Output		ITHL	5.0 10	-	100 50	200 100	ns
Debounce Outputs		tтнь	15 5.0 10 15	- - -	60 30 20	120 60 40	
Propagation Delay Time Oscillator Input to Debou	ince Outputs	tPHL	5.0 10 15	-	285 120 95	570 240 190	ns
		tPLH	5.0 10 15	-	370 160 120	740 320 240	
Clock Frequency (50% Dur (External Clock)	y Cycle)	f _{Cl}	5 0 10 15	- - -	28 6 9	14 30 45	MHz
Setup Time (See Figure 1)		lsu	5.0 10 15	100 80 60	50 40 30	-	ns
Maximum External Clock In Rise and Fall Time Oscillator Input	nput	1 _r . tf	5 0 10 15	,	No Limi	t	ns
Oscillator Frequency OSCout Cevt≥ 100 pF*	Note: These equations are intended to be a design guide. Laboratory experimentation may be required. Formulas are typically ±15% of actual frequencies.	l _{osc} , typ	5.0	c,	1.5 ext lin , 4.5	(F)	Hz
GAL F.			10	Ĉ,	4.5 ext (in a	(F)	
			15	c,	ext lin ,	(F)	

^{*}The formulas given are for the typical characteristics only at 25°C.

*POWER-DOWN CONSIDERATIONS

Large values of C_{ext} may cause problems when powering down the MC14490 because of the amount of energy stored in the capacitor. When a system containing this device is powered down, the capacitor may discharge through the input protection diodes at Pin 7 or the parasitic diodes at Pin 9. Current through these internal diodes must be limited to 10 mA, therefore the turn-off time of the power supply must not be faster than $t = (V_{DD} - V_{SS}) * C_{\text{ext}}/(10 \text{ mA})$. For example, if $V_{DD} - V_{SS} = 15 \text{ V}$ and $C_{\text{ext}} = 1 \, \mu F$, the power supply must turn off no faster than $t = (15 \, \text{V}) * (11 \, \mu F) * (10 \, \text{mA}) = 1.5 \, \text{ms}$. This is usually not a problem because power supplies are heavily littered and cannot discharge at this rate. When a more rapid decrease of the power supply to zero volts occurs, the MC14490 may sustain damage. To avoid this possibility, use external champing diodes, D1 and D2, connected as shown in Figure 2.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

THEORY OF OPERATION

The MC14490 Hex Contact Bounce Eliminator is basically a digital integrator. The circuit can integrate both up and down. This enables the circuit to eliminate bounce on both the leading and trailing edges of the signal, shown in the timing diagram of Figure 3.

Each of the six Bounce Eliminators is composed of a 41/2-bit register (the integrator) and logic to compare the input with the contents of the shift register, as shown in Figure 4. The shift register requires a series of timing pulses in order to shift the input signal into each shift register location. These timing pulses (the clock signal) are represented in the upper waveform of Figure 3. Each of the six Bounce Eliminator circuits has an internal resistor as shown in Figure 4. A pullup resistor was incorporated rather than a pulldown resistor in order to implement switched ground input signals, such as those coming from relay contacts and push buttons. By switching ground, rather than a power supply lead, system faults (such as shorts to ground on the signal input leads) will not cause excessive currents in the wiring and contacts. Signal lead shorts to ground are much more probable than shorts to a power supply lead.

When the relay contact is closed, (see Figure 4) the low level is inverted, and the shift register is loaded with a high on each positive edge of the clock signal. To understand the operation, we assume all bits of the shift register are loaded with lows and the output is at a high level.

At clock edge 1 (Figure 3) the input has gone low and a high has been loaded into the first bit or storage location of the shift register. Just after the positive edge of clock 1, the input signal has bounced back to a high. This causes the shift register to be reset to lows in all four bits — thus starting the timing sequence over again.

During clock edges 3 to 6 the input signal has stayed low. Thus, a high has been shifted into all four shift register bits and, as shown, the output goes low during the positive edge of clock pulse 6.

It should be noted that there is a 3½ to 4½ clock period delay between the clean input signal and output signal. In this example there is a delay of 3.8 clock periods from the beginning of the clean input signal.

After some time period of N clock periods, the contact is opened and at N+1 a low is loaded into the first bit. Just after N+1, when the input bounces low, all bits are set to a high. At N+2 nothing happens because the input and output are low and all bits of the shift register are high, clean signal. At the positive edge of N+6 the output goes high as a result of four lows being shifted into the shift register.

Assuming the input signal is long enough to be clocked through the Bounce Eliminator, the output signal will be no longer or shorter than the clean input signal plus or minus one clock period.

The amount of time distortion between the input and output signals is a function of the difference in bounce characteristics on the edges of the input signal and the clock frequency. Since most relay contacts have more bounce when making as compared to breaking, the overall delay, counting bounce period, will be greater on the leading edge of the input signal than on the trailing edge. Thus, the output signal will be shorter than the input signal — if the leading edge bounce is included in the overall timing calculation.

The only requirement on the clock frequency in order to obtain a bounce free output signal is that four clock periods do not occur while the input signal is in a false state. Referring to Figure 3, a false state is seen to occur three times at the beginning of the input signal. The input signal goes low three times before it finally settles down to a valid low state. The first three low pulses are referred to as false states.

If the user has an available clock signal of the proper frequency, it may be used by connecting it to the oscillator input (pin 7). However, if an external clock is not available the user can place a small capacitor across the oscillator input and output pins in order to start up an internal clock source (as shown in Figure 4). The clock signal at the oscillator output pin may then be used to clock other MC14490 Bounce Eliminator packages. With the use of the MC14490, a large number of signals can be cleaned up, with the requirement of only one small capacitor external to the Hex Bounce Eliminator packages.

6-209

FIGURE 4 - TYPICAL "FORM A" CONTACT DEBOUNCE CIRCUIT (Only One Debouncer Shown)

OPERATING CHARACTERISTICS

The single most important characteristic of the MC14490 is that it works with a single signal lead as an input, making it directly compatible with mechanical contacts (Form A and B).

The circuit has a built in pullup resistor on each input. The worst case value of the pullup resistor (determined from the Electrical Characteristics table) is used to calculate the contact wetting current. If more contact current is required, an external resistor may be connected between VDD and the input.

Because of the built-in pullup resistors, the inputs cannot be driven with a single standard CMOS gate when VDD is below 5 V. At this voltage, the input should be driven with paralleled standard gates or by the MC14049 or MC14050 buffers.

The clock input circuit (pin 7) has Schmitt trigger shaping such that proper clocking will occur even with very slow clock edges, eliminating any need for clock preshaping. In addition, other MC14490 oscillator inputs can be driven from a single oscillator output buffered by an MC14050 (see Figure 5). Up to six MC14490s may be driven by a single buffer.

The MC14490 is TTL compatible on both the inputs and the outputs. When Vpp is at 4.5 V, the buffered outputs can sink 1.6 mA at 0.4 V. The inputs can be driven with TTL as a result of the internal input pullup resistors.

FIGURE 5 – TYPICAL SINGLE OSCILLATOR
DEBOUNCE SYSTEM

TYPICAL APPLICATIONS

ASYMMETRICAL TIMING

In applications where different leading and trailing edge delays are required (such as a fast attack/slow release timer.) Clocks of different frequencies can be gated into the MC14490 as shown in Figure 6. In order to produce a slow attack/fast release circuit leads A and B should be interchanged. The clock out lead can then be used to feed clock signals to the other MC14490 packages where the asymmetrical input/output timing is required.

FIGURE 6 – FAST ATTACK/SLOW RELEASE CIRCUIT

LATCHED OUTPUT

The contents of the Bounce Eliminator can be latched by using several extra gates as shown in Figure 7. If the latch lead is high the clock will be stopped when the output goes low. This will hold the output low even though the input has returned to the high state. Any time the clock is stopped the outputs will be representative of the input signal four clock periods earlier.

FIGURE 7 - LATCHED OUTPUT CIRCUIT

MULTIPLE TIMING SIGNALS

As shown in Figure 8, the Bounce Eliminator circuits can be connected in series. In this configuration each output is delayed by four clock periods relative to its respective input. This configuration may be used to generate multiple timing signals such as a delay line, for programming other timing operations.

One application of the above is shown in Figure 9, where it is required to have a single pulse output for a single operation (make) of the push button or relay contact. This only requires the series connection of two Bounce Eliminator circuits, one inverter, and one NOR gate in order to generate the signal $\overline{A}B$ as shown in Figures 9 and 10. The signal $\overline{A}B$ is four clock periods in length. If the inverter is switched to the A output, the pulse $\overline{A}B$ will be generated upon release or break of the contact. With the use of a few additional parts many different pulses and waveshapes may be generated.

FIGURE 8 - MULTIPLE TIMING CIRCUIT CONNECTIONS

FIGURE 9 - SINGLE PULSE OUTPUT CIRCUIT

FIGURE 10 - MULTIPLE OUTPUT SIGNAL TIMING DIAGRAM

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} < (V_{in} or V_{out}) < V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage layel (e.g., either V_{SS} or V_{DD}). Unused outputs must be left

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

MC14500B

INDUSTRIAL CONTROL UNIT

The MC14500B Industrial Control Unit (ICU) is a single-bit CMOS processor. The ICU is designed for use in systems requiring decisions based on successive single-bit information. An external ROM stores the control program. With a program counter (and output latches and input multiplexers, if required) the ICU in a system forms a stored-program controller that replaces combinatorial logic. Applications include relay logic processing, serial data manipulation and control. The ICU also may control an MPU or be controlled by an MPU.

- 16 Instructions
- DC to 1.0 MHz Operation at VDD = 5 V
- On-Chip Clock (Oscillator)
- Executes One Instruction per Clock Cycle
- 3 to 18 V Operation
- Low Quiescent Current Characteristic of CMOS Devices
- Capable of Driving One Low-Power Schottky Load or Two Low-Power TTL Loads over Full Temperature Range

CMOS LSI

(LOW-POWER COMPLEMENTARY MOSI

INDUSTRIAL CONTROL UNIT

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: ~55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

BLOCK DIAGRAM

PIN ASSIGNMENT

MC14500B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to + 18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
lin. lout	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	e W
Tstg	Storage Temperature	-65 to +150	ç
TL	Lead Temperature (8-Second Soldering)	260	ċ

^{*}Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/*C from 65*C to 85*C Ceramic "L" Package: - 12mW/*C from 100*C to 125*C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS < (Vin or Vout) < Vol. $V_{out}) \leq V_{DD}$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Ves)

			VpD	Tio	w	<u> </u>	25°C		Th	igh °	1
Characteristic		Symbol	V	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	_	0.05	_	0	0.05		0.05	V
Vin = VDD or 0		"	10	_	0.05	l –	0	0.05	- 1	0.05	
· · · · · · · · · · · · · · · · · · ·			15		0.05	l –) o	0.05	-	0.05	
Vin = 0 or VDD	"1" Level	VOH	5.0	4.95		4.95	5.0	-	4.95	-	V
AM COLADD		100	10	9.95	_	9.95	10	_	9.95	_	`
		[.	15	14.95	_	14.95	15	-	14.95	_	•
Input Voltage	"0" Level	VIL				1 1,55					V
RST, D, X2		\ \frac{1}{1}				J	l .		i		'
(V _O = 4.5 or 0.5 V)			5.0	-	1.5	l –	2.25	1.5	_	1.5	
(VO = 9.0 or 1.0 V)			10	l - I	3.0	l _	4.50	3.0	_	3.0	1
(V _O = 13.5 or 1.5 V)			15	_	4.0	-	6.75	4.0	_	4.0	
	"1" Level	VIH				-					1
(VO = 0.5 or 4.5 V)	i Feasi	VIH	5.0	3.5	_	3.5	2.75	_	3.5	_	1
(V _O = 1.0 or 9.0 V)			10	7.0	_	7.0	5.50	_	7.0	_	
(VO = 1.5 or 13.5 V)			15	11.0	_	11.0	8.25	_	11.0	_	1
	"O" Level	V:-	<u> </u>	1		11.5	0.23		··· ·		V
Input Voltage # 10, 11, 12, 13	"U" Level	٧ıL	l]		'
(V _O = 4.5 or 0.5 V)			5.0	_ ,	0.8	_	1.1	0.8	_	0.8	1
(V _O = 9.0 or 1.0 V)			10	-	1.6	_	2.2	1.6]	1.6	•
		i '	15	1 - '	2.4	-	3.4	2.4	-	2.4	i
(V _O = 13.5 or 1.5 V)		<u> </u>	'5		2.4	<u> </u>	3.4	2.4	H-	2.4	ł
	"1" Level	VIH	۱			۱					
(V _O = 0.5 or 4.5 V)			5.0	2.0	-	2.0	1.9	_	2.0	_	ĺ
(V _O = 1.0 or 9.0 V)		1	10	6.0	-	6.0	3.1	-	6.0	-	
(V _O = 1.5 or 13.5 V)			15	10		10	4.3		10		
Output Drive Current	Source	loH	l			ļ	1		l I		mA
Data, Write (AL/CL/CP Device)			l	ļ		ĺ	1		1 1		ı
(V _{OH} = 4.6 V)			5.0	-1.2	_	-1.0	-2.0	_	-0.7	-	l
(V _{OH} = 9.5 V)			10	-3.6	_	-3.0	-6.0	-	-2.1	- '	1
(V _{OH} = 13.5 V)			15	-7.2	-	-6.0	-12		-4.2		1
(VOL = 0.4 V)	Sink	IOL	5.0	1.9	_	1.6	3.2	_	1.1	-	
(VOL = 0.5 V)			10	3.6	_	3.0	6.0	-	2.1	-	1
(VOL = 1.5 V)		1	15	7.2	-	6.0	12	-	4.2	-	1
Output Drive Current	Source	ЮН									mA
Other Outputs (AL Device)		•	i			l					1
(V _{OH} = 2.5 V)			5.0	-3.0	_	-2.4	-4.2	-	-1.7	_	1
(VOH = 4.6 V)			5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	١
(VOH = 9.5 V)			10	-1.6	_	-1.3	-2.25	_	-0.9	_	
(V _{OH} = 13.5 V)			15	-4.2	_	-3.4	8.8	_ '	-2.4	_	
(V _{OL} = 0.4 V)	Sink	lOL	5.0	0.64		0.51	0.88	_	0.36		t
(V _{OL} = 0.5 V)	Silik	l OF	10	1.6	_	1.3	2.25	_	0.9	_	1
(VOL = 1.5 V)			15	4.2	_	3.4	8.8	_	2.4	_	l
	Source	le	⊢ <u>`</u> `	7.2		J.7				_	mA
Output Drive Current	Source	¹он	l								""
Other Outputs (CL/CP Device)			5.0	-2.5	_	-2.1	-4.2	_	-1.7	_	1
(V _{OH} = 2.5 V)			5.0	-0.52	-	-0.44	-0.88	_ '	-0.36		Ì
(VOH = 4.6 V)		1	10	-0.52	-	-0.44	-0.88 -2.25	_	-0.36	<u>-</u>	l
(V _{OH} = 9.5 V)					_			_		_	l
(V _{OH} = 13.5 V)		<u> </u>	15	-3.6	_	-3.0	-8.8		-2.4		ł
(V _{OL} = 0.4 V)	Sink	lor	5.0	0.52	-	0.44	0.86	- 1	0.36	_	l
(VOL = 0.5 V)			10	1.3	-	1,1	2.25		0.9	-	l
(V _{OL} = 1.5 V)		L	15	3.6	-	3.0	8.8	-	2.4		L

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of

the IC's potential performance.

*T_{low} = -55°C for AL Device, -40°C for CL/CP Device.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

MC14500B

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	^DD	T _{low} *		25°C			Thigh*		
			Min	Max	Min	Typ#	Max	Min	Max	Unit
Input Current, RST (AL/CL/CP Device)	lin	15	25	_	T -	150	-	-	250	μА
Input Current (AL Device)	lin	15	<u> </u>	± 0.1	-	±0.00001	± 0.1	-	: 1.0	μА
Input Current (CL/CP Device)	lin	15	- 1	± 0.3		±0.00001	±0.3	-	± 1.0	μА
Input Capacitance (Data)	Cin				<u> </u>	15	_	-	-	pF
Input Capacitance (All Other Inputs)	Cin				-	5.0	7.5	-	-	pF
Quiescent Current (AL Device) (Per Package) 1 _{Out} = 0 µA, Vin=0 or V _{DD}	מסי	5.0 10 15		5.0 10 20	- -	0.005 0.010 0.015	5.0 10 20	-	150 300 600	μА
Quiescent Current (CL/CP Device) (Per Package) I _{Out} = 0 µA, V _{in} =0 or V _{DD}	100	5.0 10 15	111	20 40 80	- -	0.005 0.010 0.015	20 40 80	- - -	150 300 600	μА
**Total Supply Current at an External Load Capacitance (CL) on All Outputs	¹τ	_	I _T = (1.5 μΑ/kHz) f + I _{DD} I _T = (3.0 μΑ/kHz) f + I _{DD} I _T = (4.5 μΑ/kHz) f + I _{DD}							ДА

^{*} Tlow = -55°C for AL Device, -40°C for CL/CP Device.

SWITCHING CHARACTERISTICS (TA = 25°C; t_r = t_f = 20 ns for X and I inputs; C_L = 50 pF for JMP, X1, RR, Flag O, Flag F; C_L = 130 pF + 1 TTL load for Data and Write.)

Characteristic	Symbol	V _{DD} Vdc		1		
			Min	Typ#	Max	Unit
Propagation Delay Time, X1 to RR	tPLH,	5.0	_	250	500	ns
	tPHL	10	_	125	250	
	- THE	15	_	100	200	
X1 to Flag F, Flag O, RTN, JMP		5.0		200	400	7
		10] _	100	200	}
		15	-	85	170	
X1 to Write		5.0		225	450	7
	i	10] _	125	250	1
		15	_	100	200	i i
X1 to Data	1	5.0		250	500	7
A 1 (0 Data		10	i –	120	240	l l
		15	_	100	200	1
RST to RR	1	5.0		250	500	1
		10	_	125	250	
	· ·	1 15	l -	100	200	
RST to X1	i	5.0	 	450	Note 1	┪
HST to XT		10	_	200	,,,,,,	[
		15	_	150		l .
RST to Flag F, Flag O, RTN, JMP		5.0	 	400	800	┪
		10	I -	200	400	
		15	1 -	150	300	1
RST to Write, Data		5.0	 	450	900	┪
		10	-	225	450	ĺ
		15	l <u>-</u>	175	350	1
		5.0	400	200		ns
Clock Pulse Width, X1	¹W(cl)		200	100	=	l us
	-	10 15	180	90	_	Į.
				250		
Reset Pulse Width, RST	*W(R)	5.0	500	125	_	ns
		10	250 200	100	Ξ	1
		15				
Setup Time — Instruction	tsu(1)	5.0	400	200	_	ns.
		10	250	125	_	i
		15	180	90		⊣
Data	t _{su(D)}	5.0	200	100	-	1
	i	10	100	50	-	1
		15	80	40		_
Hold Time — Instruction	¹h(I)	5.0	100) 0 1		ns
	1	10	50	0	-	1
		15	50	0		_
Data	th(D)	5.0	200	100	- .	
		10	100	50	-	
	ŀ	15	100	50	_	1

NOTE 1. Maximum Reset Delay may extend to one-half clock period.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

The formulas given are for the typical characteristics only at 25°C.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - TYPICAL CLOCK FREQUENCY versus RESISTOR (RC)

Pin No.	Function	Symbols
1	Chip Reset	RST
2	Write Pulse	Write
3	Data In/Out	Data
4	MSB Instruction Word	13
5	Bit 2 Instruction Word	l i2
6	Bit 1 Instruction Word	1 15
7	LSB Instruction Word	اه
8	Negative Supply (Ground)	VSS
9	Flag on NOP F	Flag F
10	Flag on NOP O	Flag O
11	Subroutine Return Flag	RTN
12	Jump Instruction Flag	JMP
13	Oscillator Input	X2
14	Oscillator Output	X1
15	Result Register	RR
16	Positive Supply	\ VDD

RC, CLOCK FREQUENCY RESISTOR

TABLE 1. MC14500B INSTRUCTION SET

Instruc	nstruction Code Mnemonic		Action
0	0000	NOPO	No change in registers. RR → RR, Flag O →
1	0001	LD	Load result register. Data → RR
2	0010	LDC	Load complement. Data → RR
3	0011	AND	Logical AND. RR-Data → RR
4	0100	ANDC	Logical AND complement, RR · Data → RR
5	0101	OR	Logical OR. RR + Data → RR
6	0110	ORC	Logical OR complement, RR + Data → RR
7	0111	XNOR	Exclusive NOR. If RR = Data, RR → 1
В	1000	STO	Store. RR → Oata Pin, Write → JL
9	1001	STOC	Store complement. RR ~ Data Pin, Write → _□_
A	1010	IEN	Input enable, Data IEN Register
В	1011	OEN	Output enable. Data → OEN Register
C	1100	JMP	Jump. JMP Flag → J*L
ο	1101	RTN	Return. RTN Flag → JL and skip next instruction
E	1110	SKZ	Skip next instruction if RR = 0
F	1111	NOPF	No change in registers. RR → RR, Flag F → _□_

FIGURE 2 - OUTLINE OF A TYPICAL ORGANIZATION FOR A MC14500B-BASED SYSTEM

lacksquare

MC14500B

TIMING WAVEFORMS

Instructions NOPO, NOPF RR, IEN, OEN remain unaffected

Instructions SKZ, JMP, RTN RR, IEN, OEN remain unaffected

MC14500B

TIMING WAVEFORMS

MC14501UB

TRIPLE GATE

DUAL 4-INPUT "NAND" GATE 2-INPUT "NOR/OR" GATE 8-INPUT "AND/NAND" GATE

The MC14501UB is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These complementary MOS logic gates find primary use where low power dissipation and/or high noise immunity is desired. Additional characteristics can be found on the Family Data Sheet.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Swing Independent of Fanout
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

TATTICE (TOTAL OF TOTAL TOTAL TO TAS)										
Symbol	Parameter	Value	Unit							
VDD	DC Supply Voltage	-0.5 to +18.0	٧							
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>							
lin- lout	Input or Output Current (DC or Transient), per Pin	± 10	mA							
PD	Power Dissipation, per Package†	500	mW							
Tatg	Storage Temperature	-65 to +150	ů							
TL	Lead Temperature (8-Second Soldering)	260	°Ç							

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/°C from 50°C to 85°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

CMOS SSI

(LOW POWER COMPLEMENTARY MOS)

TRIPLE GATE

DUAL 4-INPUT "NAND" GATE 2-INPUT "NOR/OR" GATE 8-INPUT "AND/NAND" GATE

L SUFFIX
CERAMIC PACKAGE

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXUBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXUBCP (Plastic Package) MC14XXXUBCL (Ceramic Package)

LOGIC DIAGRAM (POSITIVE LOGIC)

Use Dotted Connection Externally to Obtain 8-Input AND/NAND

Note: Pin 14 must not be used as an input to the inverter.

MC14501UB

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

	1	V _{DD}	LTi	w*	25°C			Thi	gh*	
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Leve	VOL	5.0	-	0.05		0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0		10	1 -	0.05	_	0	0.05	-	0.05	
		15	<u> </u>	0.05		0	0.05		0.05	
"1" Leve	VOH	5.0	4.95	-	4.95	5.0	-	4.95	_	Vdc
v _{in} = 0 or v _{DD}	1	10	9.95	-	9.95	10	-	9.95	- I	
	ļ	15	14.95		14.95	15		14.95	-	
Input Voltage "0" Leve	VIL		l			l	ľ			Vdc
(V _O = 3.6 or 1.4 Vdc)		5.0	-	1.5	_	2.25	1.5] - [1.4	
(V _O = 7.2 or 2.8 Vdc)		10	-	3.0	_	4,50	3.0	1 - 1	2.9	
(V _O = 11.5 or 3.5 Vdc)	. [15	 	3.75		6.75	3.75	3.5	3.6	
(Vo = 1.4 or 3.6 Vdc) "1" Leve	V _{IH}	5.0 10	3.6 7.1	_ :	3.5 7.0	2.75 5.50	-	7.0		Vdc
(V _O = 2.8 or 7.2 Vdc) (V _O = 3.5 or 11.5 Vdc)		15	11.4		11.25	8.25] _	11.0	_ [
	—	13	11.4		11.23	6.25		1		
Output Drive Current	loн		l			1				mAdc
(AL Device) (VOH = 2.5 Vdc) Source	1	5.0	-1.2		-1.0	-1.7	l	-0.7	_	
(VOH = 4.6 Vdc)	1	5.0	-0.25	_	-0.2	-0.36	-	-0.14	-]	
(VOH = 9.5 Vdc) NAND*	1	10	-0.62		-0.5	-0.38	<u>-</u>	-0.35	-	
(V _{OH} = 13.5 Vdc)	1	15	-1.8) - :	-1.5	-3.5	-	-1,1	- 1	
(VOH = 2.5 Vdc) NOR	1	5.0	-2.1	_	-1.75	-3.0	-	-1.22		mAdc
(V _{OH} = 4.6 Vdc)		5.0	-0.42	_	-0.35	-0.63	l –	-0.24	_	
(VOH = 9.5 Vdc)	1	10	-1.06	_	-0.88	-1.58	-	-0.62	-	
(VOH = 13.5 Vdc)	1	15	-3.1	_	-2.63	-6.12	- 1	-1.84	- 1	
(VOH = 2.5 Vdc) NOR-		5.0	-3.6	-	-3.0	-5.1	-	-2.1	-	mAdc
(VOH = 4.6 Vdc)		5.0	-0.72		-0.6	-1.08	-	-0,42	- 1	
(VOH = 9.5 Vdc) Inverter		10	-1.8	-	-1.5	-2.7	_	-1.05	-	
(V _{OH} = 13.5 Vdc)	<u></u>	15	-5.4		-4.5	-10.5		-3.15		
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.64	-	0.51	88.0	-	0.36	- 1	mAdc
(VOL = 0.5 Vdc) NAND*		10	1.6	-	1.3	2.25	-	0.9	- i	
(VOL = 1.5 Vdc)		15	4.2	_	3.4	8.8	_	2.4		
(V _{OL} = 0.4 Vdc) NOR		5.0	0.92	- 1	0.77	1.32	–	0.54	- 1	mAdc
(VOL = 0.5 Vdc)		10	2.34	-	1.95	3.37	-	1.36	- 1	
(VOL = 1.5 Vde)		15	6.12		5.1	13.2		3.57		
(VOL = 0.4 Vdc) NOR-	1	5.0	1.54	- 1	1.28	2.2	-	0.90	-	mAdc
(VOL = 0.5 Vdc) Inverter		10	3.90	-	3.25	5.63	_	2.27 5.95	-	
(V _{QL} = 1.8 Vdc)	1	15	10.2		8.5	22		5.95		
Output Drive Current	IOH		1							mAdc
(CL/CP Device)			١				1	ا ہے ا		
(V _{OH} = 2.5 Vdc) Source		5.0 5.0	-1.0 -0.2	_	-0.8 -0.16	-1.7 -0.36	_	-0.6 -0.12	_	
(V _{OH} = 4,6 Vdc) (V _{OH} = 9.5 Vdc) NAND*		10	-0.5		-0.16 -0.4	-0.36	-	-0.12	[
(VOH = 13.5 Vdc)	1	15	-1.4	_	-1.2	-3.5] _	-1.0	-	
(V _{OH} = 2.5 Vdc) NOR		5.0	-1.68		-1.4	-3.0	_	-1.05	_	mAdc
(VOH = 4.6 Vdc)	1	5.0	-0.34	_	-0.28	-0.63	_	-0.21	- 1	
(VOH = 9.5 Vdc)		10	-0.84	- 1	-0.7	-1.58	-	-0.52	-	
(VOH = 13.5 Vdc)	1	15	-2.52		-2.1	-6.12	<u> </u>	-1.57		
(VOH = 2.5 Vdc) NOR-	[5.0	-2.88	-	-2.4	-5.1	-	-1.B	_	mAdc
(VOH = 4.6 Vdc)		5.0	-0.58	-	-0.48	-1.08	-	-0.36	-	
(VOH = 9.5 Vdc) Inverter		10	-1.44	-	-1.2	-2.7	-	-0.9	-	
(V _{OH} = 13.5 Vdc)	\vdash	15_	_4.32		-3.6	-10.5		-2.7		
(VOL = 0.4 Vdc) Sink	lor	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc
(VOL = 0.5 Vdc) NAND*	1 .	10	1.3	-	1.1	2.25	-	0.5	-	
(VOL = 1.5 Vdc)		15	3.6		3.0	8.8		2.4	-	
(VOL = 0.4 Vde) NOR		5.0	0.79	-	0.66	1.32	-	0.54	-	mAdc
(VOL = 0.5 Vdc)	1	10	1.98	-	1,65	3.37	-	1.38	-	
(VOL = 1,5 Vdc)		15	5.4		4.5	13.2		3.57		
(VOL = 0.4 Vdc) NOR- (VOL = 0.5 Vdc) Inverter		5.0	1.32	-	1.1 2,75	2,2 5,63	_	0.90	-	mAdc
		10	3.3	-			_			

#Data tabeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

^{*}The output drive current of Pin 15 is tested with Pin 14 open-circuited.

MC14501UB

ELECTRICAL CHARACTERISTICS (Continued)

	1	VDD	Tic	w*	1 -	25°C		Th	igh*	1
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Input Current (AL Device)	lin	15	T -	±0,1	-	±0.00001	±0,1	-	±1.0	μAde
Input Current (CL/CP Device)	lin	15	1 -	±0.3	-	±0.00001	±0.3	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)	Cin	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (AL Device) (Per Package)	lop	5.0 10 15	=	0.25 0.50 1.00	-	0,0006 0,0010 0,0015	0.25 0.50 1.00		7.5 15.0 30.0	μAdc
Quiescent Current (CL/CP Device) (Per Package)	100	5.0 10 15	=	1.0 2.0 4.0	-	0.0005 0.0010 0.0015	1.0 2.0 4.0	=	7.5 15.0 30.0	μAdc
Total Supply Current **† (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)	IT	5.0 10 15	IT = {1.2 μA/kHz} f + I _{DD} IT = {2.4 μA/kHz} f + I _{DD} IT = (3.6 μA/kHz} f + I _{DD}						μAde	

[&]quot;Tiow = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

 $I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

where: IT is in μA (per package), CL in pF, V = (VDD-VSS) in volts. f in kHz is input frequency, and k = 0.004.

SWITCHING CHARACTERISTICS** (CL = 50 pF, TA = 25°C)

Characteristic	Characteristic		Symbol	VDD	Тур#	Max	Unit
Output Rise Time 1TLH = (3.0 ns/pF) CL + 30 ns 1TLH = (1.5 ns/pF) CL + 15 ns 1TLH = (1.1 ns/pF) CL + 10 ns	NAND, NOR	2, 3	TLH	5.0 10 15	180 90 65	360 180 130	na na
Output Fall Time tTHL = (1.5 ns/pF) CL + 25 ns tTHL = (0.75 ns/pF) CL + 12.5 ns tTHL = (0.55 ns/pF) CL + 9.5 ns	NAND, NOR	2, 3	THL	5.0 10 15	100 50 40	200 100 80	ns
Output Rise Time tr_H = (1.35 ns/pF) CL + 32.5 ns tr_H = (0.60 ns/pF) CL + 20 ns tr_H = (0.40 ns/pF) CL + 17 ns	NOR-Inverter	3	ttlH	5.0 10 15	100 50 40	200 100 80	ns
Output Fall Time tTHL = (0.67 ns/pF) CL + 26.5 ns tTHL = (0.45 ns/pF) CL + 17.5 ns tTHL = (0.37 ns/pF) CL + 11.5 ns	NOR-Inverter	3	tTHL	5.0 10 15	60 40 30	120 80 60	ns
Propagation Delay Time tpLH, tpHL = (1.7 ns/pF) CL + 45 ns tpLH, tpHL = (0.66 ns/pF) CL + 37 ns tpLH, tpHL = (0.5 ns/pF) CL + 25 ns	NAND	2	tPLH, tPHL	50 10 15	130 70 50	260 140 100	rtS
tpLH, tpHL = (1.7 ns/pF) CL + 30 ns tpLH, tpHL = (0.66 ns/pF) CL + 32 ns tpLH, tpHL = (0.5 ns/pF) CL + 20 ns	NOR	3	ФLH, ФHL	5.0 10 15	115 65 45	230 130 90	ns.
tPLH, tPHL = (1.7 ms/pF) CL + 45 ms tPLH, tPHL = (0.66 ms/pF) CL + 37 ms tPLH, tPHL = (0.5 ms/pF) CL + 25 ms	NOR-Inverter	3	ФLН, ФНL	5.0 10 15	130 70 50	260 140 100	ns

^{*}The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either Vgg or Vpp). Unused outputs must be left open.

[†]To calculate total supply current at loads other than 50 pF:

[&]quot;The formulas given are for the typical characteristics only at 25°C.

6

FIGURE 1 – POWER DISSIPATION TEST CIRCUIT
AND WAVEFORM

FIGURE 2 - 4 INPUT "NAND" GATE SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - "NOR" GATE and "NOR-INVERTER" SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

MC14502B

STROBED HEX INVERTER/BUFFER

The MC14502B is a strobed hex buffer/inverter with 3-state outputs, an inhibit control, and guaranteed TTL drive over the temperature range. The 3-state output simplifies design by allowing a common bus.

- Separate Output Disable Control
- 3-State Output
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving 4LSTTL Loads Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to Voc)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
lin	Input Current (DC or Transient), per Pin	± 10	mA
lout	Output Current (DC or Transient), per Pin	+ 30	mA
PD	Power Dissipation, per Package†	500	mW
Tsig	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur. †Temporature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

TRUTH TABLE Dn Inhibit Disable a_n 0 a 0 1 0 0 0 1 ō X 1 0 х x Impedance

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

STROBED HEX INVERTER/BUFFER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: - 40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

X - Don't Care

MC14502B

ELECTRICAL CHARACTERISTICS (Voitages Referenced to VSS)

		VDD	Tic	~		25°C		Thi	igh "	
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Mex	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05		0	. 0.05		0.05	Vdc
Vin = VDD or 0	"	10	-	0.05	_	0	0.05	-	0.05	\
		15	-	0.05		0	0.05	<u> </u>	0.05	<u> </u>
"1" Level	VOH	5.0	4.95		4.95	5.0	_	4.95	_	Vdc
Vin = 0 or V _{DD}	_	10	9.95	_	9.95	10	_	9.95	_	1
		15	14.95		14.95	15		14.95		<u>L.</u> .
Input Voltage "0" Level	VIL									Vdc
(V _O = 4.5 or 0.5 Vdc)		5.0	-	1.5	_	2.25	1.5	-	1.5	
(VO = 9.0 or 1.0 Vdc)		10	-	3.0	_	4.50	3.0	- 1	3.0	
(VO = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0		4.0	<u> </u>
"1" Level	VIH				ļ			1 1	l	ļ.
(Vo = 0.5 or 4.5 Vdc)		5.0	3.5	-	3.5	2.75	_	3.5		Vdc
(V _O = 1.0 or 9.0 Vdc)	1	10	7.0	–	7.0	5.50	–	7.0	-	1
(V _O = 1.5 or 13.5 Vdc)		15	11.0		11.0	8.25	_	11.0		
Output Drive Current (AL Oevice)	ЮН		I				·		ĺ	mAdd
(VOH = 2.5 Vdc) Source		5.0	-3.0	~	-2.4	-4.2	_	-1.7	-	l
(V _{OH} =4.6 Vdc)		5.0	-0.64	_	-0.51	-0.88	_	-0.36	-	ł
(VOH = 9.5 Vdc)]	10	-1.6	_	-1.3	-2.25	_	-0.9	_	ļ.
(V _{OH} = 13.5 Vdc)		15	-4.2	<u> </u>	-3.4	-8.8		-2.4		<u> </u>
(VOL = 0.4 Vdc) Sink	IOL	`5.0	3.5	-	2.8	6.6	-	2.0	-	mAdd
(V _{OL} = 0.5 Vdc)	i i	10	7.8	_	6.3	17	_	4.4	-	1
(V _{OL} = 1.5 Vdc)	i '	15	29	–	24	66	_	16	-]
Output Drive Current (CL/CP Device)	ЮН									mAdd
(VOH = 2.5 Vdc) Source		5.0	~2.5	-	-2.1	-4.2	_	-1.7	_	1
(VOH = 4.6 Vdc)	1 .	50	-0.52	-	-0.44	-0.88	-	-0.36	_	
(V _{OH} = 9.5 Vdc)	ļ	10	-1.3	-	-1.1	-2.25	_	-0.9	-	ļ
(V _{OH} = 13.5 Vdc)		15	-3.6	-	-3.0	-8.8	-	-2.4	L	<u> </u>
(VDL = 0.4 Vdc) Sink	IOL	5.0	2.3	-	1.9	6.6	_	1.6	-	mAdd
(V _{OL} = 0.5 Vdc)		. 10	5.0	-	4.2	17	_	3.4	–	l
(V _{OL} = 1.5 Vdc)		15	19	-	16	66	_	13	_] .
Input Current (AL Device)	lin	15		± 0.1		±0.00001	±0.1		±1.0	μAdo
Input Current (CL/CP Device)	lin	15		:03	—	±0.00001	± 0.3		± 1.0	μAdo
Input Capacitance	Cin	_	_			5.0	7.5	-	_	pF
(V _{in} = 0)			i			Ι,		[]	1	
Quiescent Current (AL Device)	ממי	5.0	-	1.0	-	0.002	1.0		30	μAdc
(Per Package)	"05	10	-	2.0	-	0.004	2.0	1 - 1	60	[
	1	15	- 1	4.0	l –	0.006	4.0	I – I	120	ı
Quiescent Current (CL/CP Device)	I _D D	5.0		4.0		0.002	4.0		30	μAdc
(Per Package)		10	l _	8.0	1 -	0.004	8.0	~	60	
		15	-	16	l –	0.006	16	I _ !	120	
Total Supply Current**1	ĺт	5.0	† 		Jr = 15	.7 μA/kHz	16 + 1			µАdc
(Dynamic plus Quiescent.	'	10	ľ		T = 15	.3 µA/kHz	OD!			~~~
Per Package)		15			IT = 10	iO μA/kHz	טטי			1
(C ₁ = 50 pF on all outputs, all			ł		, 10					ì
buffers switching)										l
Three-State Leskage Current	¹TL	15	_	± 0.1		:0.00001	± 0.1		±3.0	µAdc
(AL Device)	'''				ļ [_]				10.0	-^00
			 	±1.0	 	•0.00001	± 1,0		±7.5	μAdc
Three-State Leakage Current	ITL	15								

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impodance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14502B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Observation				Unit		
Characteristic	Symbol	VDD	Min	Тур#	Max] ""
Output Rise Time	ήτιн	5.0 10 15	-	100 50 40	200 100 80	ns
Output Fall Time	THL	5.0 10 15	=	40 20 15	80 40 30	ns
Propagation Delay Time Data to Q	(PHL	5.0 10 15		135 55 40	270 110 80	ns
Propagation Delay Time, Inhibit to Q	^t PHL	5.0 10 15	-	335 145 95	670 290 190	ns
Propagation Delay Time Data to Q, Inhibit to Q	(PLH	5.0 10 15	=	295 130 95	590 260 190	ns
3-State Propagation Delay, Output "1" to High Impedance	lPHZ	5.0 10 15	=	65 30 25	130 60 50	ns
3-State Propagation Delay, High Impedance to "1" Level	tрzн	5.0 10 15	=	260 105 80	520 210 160	ns
3-State Propagation Delay, Output "0" to High Impedance	tPLZ.	5.0 10 15	=	150 70 55	300 140 110	ns
3-State Propagation Delay, High Impedance to "0" Level	tpziL	5.0 10 15		160 65 50	320 130 100	ns

^{*}The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an Indication of the IC's potential performance.

FIGURE 1 - TYPICAL OUTPUT SOURCE CURRENT TEST CIRCUIT (I_{OH})

FIGURE 2 - TYPICAL OUTPUT SINK CURRENT TEST CIRCUIT (IOL)

FIGURE 3 – POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 4 — AC TEST CIRCUIT AND WAVEFORMS (TILH, THIL, THIL)

FIGURE 5 — 3-STATE AC TEST CIRCUIT AND WAVEFORMS
(1pHz, 1pz, 1pzH, 1pzL)

For all tTLH, tTHL, tpHL, and tpLH measurements V_{in} may be applied to any other D_n input or to inhibit.

HEX NON-INVERTING 3-STATE BUFFER

The MC14503B is a hex non-inverting buffer with 3-state outputs, and a high current source and sink capability. The 3-state outputs make it useful in common bussing applications. Two disable controls are provided. A high level on the Disable A input causes the outputs of buffers 1 through 4 to go into a high impedance state and a high level on the Disable B input causes the outputs of buffers 5 and 6 to go into a high impedance state.

- 3-State Outputs
- TTL Compatible Will Drive One TTL Load Over Full Temperature Range
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Two Disable Controls for Added Versatility
- Pin for Pin Replacement for MM80C97 and 340097

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	V
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
lin	Input Current (DC or Transient), per Pln	± 10	mA
lout	Output Current (DC or Transient), per Pin	± 25	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temporature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Reckage: -12mW/"C from 55°C to 85°C Ceramic "L" Package: -12mW/"C from 100°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation,

 V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

MC14503B

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

HEX 3-STATE BUFFER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 64B

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

ln _n	Appropriate Disable Input	Outn
0	0	0
1	0	1
х	1	High Impedance

X = Don't Care

MC14503B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

	-	VDD	Tic	w°	25°C			Thigh*		
Characteristic	Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage "O" Level	VOL	5.0	-	0.05	_	Ö	0.05		0.05	Vdc
V _{in} = 0		10	l — '	0.05	_	0	0.05	_	0.05	
		15	l .— _	0.05	_	0	0.05		0.05	
"1" Level	νон	5.0	4.95	1	4.95	5.0		4.95	l —	Vdc
V _{In} = V _{DD}		10	9.95	l –	9.95	10	–	9.95		Ì
		15	14.95	l –	14.95	15	-	14.95	–	
Input Voltage "0" Level	VIL]	Vdc
(Vo = 3.6 or 1.4 Vdc)		5.0	l _	1.5	_	2.25	1.5	_	1.5	
(Vo = 7.2 or 2.8 Vdc)		10	l — 1	3.0	_	4.50	3.0	_	3.0	
(V _O ~ 11.5 or 3.5 Vdc)		15	 	4.0	_	6.75	4.0		4.0	
(VO = 1.4 or 3.6 Vdc)	VIH	5.0	3.5		3.5	2.75	-	3.5		Vdc
(V _O = 2.8 or 7.2 Vdc)		10	7.0	l –	7.0	5.5		7.0] - '	
(V _O = 3.5 or 11.5 Vdc)		15	11	_	11	8.25	l	- 11	L - .	_
Output Drive Current (AL Device)***	lOH									mAdc
(VOH = 2.5 Vdc) Source		4.5	-4.3	l —	-3.6	-5.0	-	-2.5	-	
(VOH = 2.5 Vdc)		5.0	-5.8	l —	-4.80	-6.1	ļ —	-3.0	-	
(VOH = 4.6 Vdc)		5.0	-1.2	_	-1.02	-1.4	I –	-0.7	_	
(V _{OH} ~ 9.5 Vdc)		10	-3.1	_	-2.60	-3.7	_	-1.8		
(V _{OH} = 13.5 Vdc)		15	-8.2	l –	-6.80	-14.1		-4.8	_	
Sink	IOL		 				Ţ.			mAdc
(VOL = 0.4 Vdc)	"-	4.5	2.2	l —	1.8	2.1		1.2	_	
(VOL = 0.4 Vdc)		5.0	2.6	l —	2.1	2.3	l _	1.3	l – 1	
(VOL = 0.5 Vdc)		10	6.5	l –	5.5	6.2	l _	3.8	1 -	
(VOL = 1.5 Vdc)		15	19.2	l –	16.10	25.00	l –	11.2	_ :	
Output Drive Current (CL/CP Device) ***	ЮН									mAdc
(VOH = 2.5 Vdc) Source	"	4.75	-4.0	_	-3.60	-5.6	l –	-2.4	_	
(VOH = 2.5 Vdc)		5.0	-4.6	_	~4.20	-6.1	_	-3.0	_	
(V _{OH} = 4.6 Vdc)	•	5.0	-1.0	l —	-0.88	-1.4	_	~0.7	l – I	
(V _{OH} = 9.5 Vdc)		10	-2.4	l —	-2.20	-3.7	_	-1.8	l – I	
(V _{OH} = 13.5 Vdc)		15	-6.6	l –	-6.00	-14.1	_	-4.8	_	
Sink	lor.									mAdc
(VOL = 0.4 Vdc)		4.75	2.1	 _	1.95	2.2	l –	1.25		
(VOL = 0.4 Vdc)	1 1	5.0	2.3	l _	2.10	2.3	l _	1.3	_	
(VOL = 0.5 Vdc)		10	6.0	_	5.45	6.2	l — 1	3.8	l	
(VOL = 1.5 Vdc)		15	15.2		13.80	25.00	l <u> </u>	11.2	_	
Input Current (AL Device)	lin	15		±0.1	_	±0.00001	±0.1	_	±1.0	μAdc
Input Current (CL/CP Device)	lin	15	_	± 0.3	_	±0.00001	±0.3		±1.0	μAdc
Input Capacitance (Vin = 0)	Cin	_	_	=	_	5.0	7.5			pF
Quiescent Current (AL Device)	IQ.	5.0		1.0	_	0.002	1.0	_	30	μAdc
(Per Package)		10	_	2.0	_	0.004	2.0	l –	60	
		15	l — '	4.0	_	0.006	4.0	_	120	i
Quiescent Current (CL/CP Device)	Ipp	5.0	-	4.0	_	0.002	4.0	_	30	μAdc
(Per Package)	~	10	l	8.0	_	0.004	8.0	_	60	
		15		16	_	0.006	16	_	120	
Total Supply Current **1	Iт	5.0								μAdc
(Dynamic plus Quiescent, Per Package)		10	$I_T = (2.5 \mu A/kHz) f + I_{DD}$							
(CL = 50 pF on all outputs)		15	$I_{T}^{+} = (6.0 \mu \text{A/kHz}) f + I_{DD}^{-}$ $I_{T}^{-} = (10 \mu \text{A/kHz}) f + I_{DD}^{-}$							
(All outputs switching, 50% Duty Cycle)					'T	= (IU μA/kl	ן + ז (צר	Œ		
3-State Output Leckage Current	ITL	15	_	±0,1	_	±0.0001	±0.1	_	13.0	μAdc
(AL Device)	``		l _	l	_			_		
3-State Output Leekage Current	İTL	15		±1.0		±0,0001	±1.0	_	±7.5	μAdc
(CL/CP Device)	'		_		_			_		
			ــــــــــــــــــــــــــــــــــــــ		L	L				

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. T_{high} = +125°C for AL Device, +85°C for CL/CP Device.

[†]To calculate total supply current at loads other than 50 pF: $I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ V1k}$

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an Indication of the IC's potential performance.

where: IT is in μ A (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.008.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

^{***}Care must be taken not to exceed maximum current ratings (see maximum ratings table)

MC14503B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

		VDD	All Ty	/pes	
Characteristic	Symbol	Vcc	Тур#	Max	Unit
Output Rise Time	TLH				RS
¹ TLH = (0.5 ns/pF) C _L + 20 ns		5.0	45	90	
tTLH = (0.3 ns/pF) CL +8.0 ns	ł	10	23	45	
TLH = (0.2 ns/pF) C1 + 8.0 ns	1	15	18	35	
Output Fall Time	†THL		 		ns
THL = (0.5 ns/pF) C1 + 20 ns	''	5.0	45	90	
THL = (0.3 ns/pF) Ct + 8.0 ns		10	23	45	
THL = (0.2 ns/pF) CL + 8.0 ns		15	18	35	
Turn-Off Delay Time, all Outputs	†PLH	 -	 		ns
tp_H = (0.3 ns/pF) CL + 60 ns	1	5.0	75	150	
tp_H = (0.16 ns/pF) CL + 27 ns		10	35	70	
tpLH = (0.1 ns/pF) CL + 20 ns		15	25	50	
Turn-On Delay Time, all Outputs	†PHL				ns
tpHL = (0.3 ns/pF) CL + 60 ns		5.0	75	150	
tpHL = (0.15 ns/pF) CL + 27 ns		10	35	70	
tpHL = (0.1 ns/pF) CL + 20 ns		15	25	50	
3-State Propagation Dalay Time	1PHZ	5.0	75	150	ns
Output "1" to High Impedance	'''-	10	40	80	
		15	35	70	
Output "0" to High Impedance	1PLZ	5.0	80	160	ns
		10	40	80	
		15	35	70	
High Impedance to "1" Level	¹ PZH	5.0 10	66 25.	130 50	RS
•		15	20	40	
High Impedance to "0" Level	tpzL	5.0	100	200	R\$
	1 PZL	10	35	70	
		15	25	50	

[&]quot;The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an Indication of the IC's potential performance.

FIGURE 1 — SWITCHING TIME TEST CIRCUIT AND WAVEFORMS (ttlm, tthl, tphl, and tplh)

FIGURE 2 — 3 STATE AC TEST CIRCUITS AND WAVEFORMS (IPLZ, IPMZ, IPZH, IPZL)

6

MC14504B

HEX LEVEL SHIFTER FOR TTL to CMOS or CMOS to CMOS

The MC145048 is a hex non-inverting level shifter using CMOS technology. The level shifter will shift a TTL signal to CMOS logic levels for any CMOS supply voltage between 5 and 15 volts. A control input also allows interface from CMOS to CMOS at one logic level to another logic level: Either up or down level translating accomplished by selection of power supply levels VDD and VCC. The VCC level sets the input signal levels while VDD selects the output voltage levels.

- UP Translates from a Low to a High Voltage or DOWN Translates from a High to a Low Voltage
- Input Threshold Can Be Shifted for TTL Compatibility
- No Sequencing Required on Power Supplies or Inputs for Power Up or Power Down
- 3 to 18 Vdc Operation for VDD and VCC
- Diode Protected Inputs to VSS
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

TTL or CMOS to CMOS HEX LEVEL SHIFTER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Sorios: -55°C to +125°C MC14XXXBAL (Coramic Packago Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields referenced to the Ysg pin, only. Extra precautions must be taken to avoid applications of any voltage higher than the maximum rated voltages to this high-impedance circuit. For proper operation, the ranges $V_{SS} \leq V_{in} \leq 18$ V and $V_{SS} \leq V_{out} \leq V_{DD}$ are recommended.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

MC14504B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
vcc	DC Supply Voltage	-0.5 to +18.0	V
VDD	DC Supply Voltage	-0.5 to +18.0	٧
v _{in}	Input Voltage (DC or Transient)	-0.5 to +18.0	٧
Vout	Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
lin. lout	Input or Output Current (DC or Translent), per Pin	±10	mA
PD	Power Dissipation, per Package**	500	mW
Tatg	Storage Temperature	-65 to +150	•c
TL	Lead Temperature (8-Second Soldering)	260	·c

ELECTRICAL CHARACTERISTICS (Voltagos Referenced to V_{SS})

		Vcc	VDD	TI	ow*		25°C		Th	gh "	
Characteristic	Symbol	Vdc	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	_	5.0	-	0.05	_	0	0.05	-	0.05	Vdc
V _{in}		l - :	10	-	0.05	-	0	0.05	l -	0.05	
		_	15		0.05		0	0.05		0.05	
V _{in} = V _{CC} "1" Level	VOH	_	5.0	4.95	_	4.95	5.0		4.95	-	Vdc
		-	10	9.95	-	9.95	10	-	9.95	i – I	
		-	15	14.95	-	14.95	15		14,95		
Input Voltage "0" Level	VIL										Vdc
(VOL = 1.0 Vdc) TTL-CMOS		5	10	-	8.0	l –	1.3	8.0	l –	0.6	
(VOL = 1.5 Vdc) TTL-CMOS	l .	5	15	-	0.8	-	1.3	0.8	- :	0.9	
(VOL = 1.0 Vdc) CMOS-CMOS		5	10	- 1	1.5	-	2.25	1.5	- '	1.4	
(VOL # 1.5 Vdc) CMOS-CMOS		5	15	-	1.5	l -	2.25	1.5	l - :	1.5	
(VOL = 1.5 Vdc) CMOS-CMOS		10	15		3.0		4.5	3.0		2.9	
Input Voltage "1" Level	VIH			[·-							Vdc
(VOH = 9.0 Vdc) TTL-CMOS	1	5	10	2.0	_	2.0	1.5	-	2.0	- 1	
(VOH = 13.5 Vdc) TTL-CMOS	İ	5	15	2.0	-	2.0	1.5	-	2.0	-	
(VOH = 9.0 Vdc) CMOS-CMOS	i	5	10	3.6	-	3.5	2.75	-	3.5	-	
(VOH = 13.5 Vdc) CMOS-CMOS	l	5	15	3.6	-	3.5	2.75	-	3.5	- 1	
(VOH = 13.5 Vdc) CMOS-CMOS		10	15	7.1	-	7.0	5.5	_	7.0		
Output Drive Current (AL Device)	IOH					ŀ			1	l i	mAdc
(VOH = 2.5 Vdc) Source		-	5.0	-3.0	-	-2.4	-4.2		-1.7	-	•
(VOH = 4.6 Vdc)		-	5.0	-0.64	_	-0.51	-0.88	-	-0.36		
(V _{OH} = 9.5 Vdc)	i	-	10	-1.6	-	-1.3	-2.25	-	-0.9	- 1	
(V _{OH} = 13.5 Vdc)			15	-4.2		-3.4	-8.8		-2.4		
(V _{OL} = 0.4 Vdc) Sink	IOL .	-	5.0	0.64	-	0.51	0.88	-	0.36	-	mAdc
(VOL = 0.5 Vdc)		-	10	1.6	_	1.3	2.25	-	0.9	-	
(V _{OL} = 1.6 Vdc)			16	4.2		3.4	8.8	_	2.4		
Output Drive Current (CL/CP Device)	ІОН										mAdc
(VOH = 2.5 Vdc) Source		-	5.0	-2.5	_	-2.1	-4.2	-	-1.7	-	
(VOH = 4.6 Vdc)	•	-	5.0	-0.52	-	-0.44	-0.88	-	-0.36	-	
(V _{OH} = 9.5 Vdc)	İ	-	10	-1.3	-	-1.1	-2.25	-	-0.9	-	
(V _{OH} = 13.5 Vdc)			15	-3.6		-3.0	-8.8		-2.4	-	
(VOL = 0.4 Vdc) Sink	QL	-	5.0	0.52	_	0.44	88.0	-	0.36	-	mAdc
(VOL = 0.5 Vdc)		-	10	1.3	-	1.1	2.25	-	0.9	- 1	
(V _{OL} = 1.5 Vdc)			15	3.6	_	3.0	8.8	_	2.4		
Input Current (AL)	lin		15	-	± 0.1	-	±0.00001	±0.1	-	± 1.0	μAdc
Input Current (CL/CP)	1 _{in}	-	15	Γ – ¨.	±0.3	Γ-	± 0.00001	±0.8	-	£1.0	μAdc
Input Capacitance (Vin = 0)	Cin	-	_	-	_	-	5.0	7.5	_	- :	рF
Quiescent Current (AL Device)	I _{DD} or	_	5.0		0.05		0.0005	0.05		1.5	μAdc
(Per Package)	icc	l	10	_	0.10	_	0.0010	0.10	-	3.0	•
CMOS-CMOS Mode	١	_	15	_	0.20	_	0,0015	0.20	_	6.0	
Quiescent Current (CL/CP Device)	1DD or	_	5.0		0.5		0.0005	0.5	_	3.8	μAdc
(Per Package)	Icc	- '	10	l –	1.0	l –	0.0010	1.0	_	7.5	
CMOS-CMOS Mode	"	l – 1	15	-	2.0	-	0.0015	2.0	_	15.0	
Quiescent Current (AL/CL/CP Device)	ממי	5.0	6.0	-	0.5		0.0005	0.5	_	3,8	μAdc
(Per Package)	.00	5.0	10	l – i	1.0	_	0.0010	1.0	_	7.5	
TTL-CMOS Mode		5.0	16	_	2.0	۱ -	0.0015	2.0	_	15.0	
Quiescent Current (AL/CL/CP Device)	ICC	5.0	5.0	_	5.0		2.5	5.0	_	6.0	mAdc
(Per Package)	1	5.0	10	l –	5.0	l –	2.5	5.0	_	6.0	
TTL-CMOS Mode	I	5.0	15	-	5.0	_	2.5	5.0	_ :	6.0	
Ti ow = -55°C for AL Device, -4	O°C for C					te lebellad	"Typ" is no		d for does		an but to

TLOW = -55°C for AL Device, -40°C for CL/CP Device
THIGH = +125°C for AL Device, +85°C for CL/CP Device

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;Maximum ratings are those values beyond which damage to the device may occur.

"Power dissipation temperature derating: Plastic "P" package: - 12 mW/°C from 65°C to 85°C.

Ceramic "L" package: - 12 mW/°C from 100°C to 125°C.

MC14504B

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)

			Vcc	VDD		Limits		
Characteristic	Symbol	Shifting Mode	Vdc	Vde	Min	Typ#	Max	Units
Propagation Delay, High to Low	1PHL	TTL-CMOS	5.0	10	-	140	280	O3
		V _{DD} > V _{CC}	5.0	15	_	140	280	i
) [CMOS-CMOS	5.0	10	-	120	240	1
	1 5	V _{DD} > V _{CC}	5.0	15	_	120	240	Ī
	l L		10	15		70	140	
	ł Г	CMOS-CMOS	10	5.0	-	185	370	}
	1 1	VCC > VDD	15	5.0	-	185	370	
			15	10	-	175	350	
Propagation Dalay, Low to High	t _{PLH}	TTL-CMOS	5.0	10	-	170	340	ns
	1	V _{DD} > V _{CC}	5.0	15	-	160	320	ļ.
	1 -	CMOS-CMOS	5.0	10		170	340	1
	1 1	V _{DD} > V _{CC}	5.0	15	-	170	340	ł
	1 L		10	15	-	100	200	
		CMOS-CMOS	10	5.0	•	275	550	l
	1 1	Vcc > Vpp	15	5.0	_	275	550	i
	1 1		15	10	-	145	290	
Output Rise and Fall Time	TLH, THL	ALL	-	5.0	-	100	200	ns
	1 1		1 -	10	-	50	100	ĺ
	1		1 -	15	_	40	80	ļ

[₱]Data tabellod "Typ" is not to be used for design purposes but is intended as an Indication of the IC's potential performance.

FIGURE 1 - INPUT SWITCHPOINT CMOS to CMOS MODE

FIGURE 2 - INPUT SWITCHPOINT TTL to CMOS MODE

FIGURE 3 - OPERATING BOUNDARY CMOS to CMOS MODE

FIGURE 4 - OPERATING BOUNDARY TTL to CMOS MODE

DUAL 2-WIDE, 2-INPUT EXPANDABLE AND-OR-INVERT GATE

The MC14506UB is an expandable AND-OR-INVERT gate with inhibit and 3-state output. The expand option allows cascading with any other gate, which may be carried as far as desired as long as the propagation delay added with each gate is considered. For example, the second AOI gate in this device may be used to expand the first gate, giving an expanded 4-wide, 2-input AOI gate. This device is useful in data control and digital multiplexing applications.

- 3-State Output
- Separate Inhibit Line
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to Vss)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	- 0.5 to + 18.0	V
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Dorating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

MC14506UB

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL EXPANDABLE AND-OR-INVERT GATE

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXUBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXUBCP (Plastic Package) MC14XXXUBCL (Ceramic Package)

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{Out} \leqslant V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

TRUTH TABLE

į	Α	B	С	D	E	INHIBIT	DISABLE	Z
١	0	0	0	0	1	0	0	1
1	0	X	0	X	- 1	O	۵	1 1
1	0	×	х	0.	1	۵	0	1
	×	0	0	х	1	٥	0	1
	х	۵	х	0	1	0	0	1
1	1	1	х	×	X	×	0	0
ı	×	х	1	1	Х	×	0	0
ı	×	×	Х	X	0	х	٥	0
ĺ	х	х	х	х	х	1	0	0
ı	х	Х	X	×	х	×	1	High
							<u></u>	Impedance

X = Don't Care

MC14506UB

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Voc)

			VDD	Tlo	w*		25°C		Thi	gh°	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage V _{In} = V _{DD} or 0	"0" Level	VOL	5.0 10 15		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05	1 1 1	0.05 0.05 0.05	Vđc
V _{in} = 0 or V _{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15	=	4.95 9.95 14.95	-	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	VIL	5.0 10 15		1.0 2.0 2.5	=	2.25 4.50 8.75	1.0 2.0 2.5	-	1.0 2.0 2.5	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	ViH	5.0 10 15	4.0 8.0 12.5	 	4.0 6.0 12.5	2.75 5.50 8.25	- - -	4.0 8.0 12.5	111	Vđc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- -	- 2.4 - 0.51 - 1.3 - 3.4	-4.2 -0.68 -2.25 -8.8		- 1.7 - 0.36 - 0.9 - 2.4	1111	mAde
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	IOL	5.0 10 15	0.64 1.6 4.2	1 -	0.51 1.3 3.4	0.88 2.25 8.8	<u>-</u>	0.36 0.9 2.4	111	mAdo
Output Drive Current (CL/CP Devic (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10	-2.5 -0.52 -1.3 -3.6		-2.1 -0.44 -1.1 -3.0	- 4.2 - 0.88 - 2.25 - 8.8	- - -	-1.7 -0.36 -0.9 -2.4	1111	mAdo
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.52 1.3 3.6	 - -	0.44 1.1 3.0	0.88 2.25 8.8	=	0.36 0.9 2.4	- -	mAda
Input Current (AL Device)		l _{in}	15		± 0.1		±0.00001	±0.1		±1.0	μAdc
Input Current (CL/CP Device)	_	lin	15		± 0.3		± 0.00001	± 0.3		± 1.0	μAdc
Input Capacitance (Vin = 0)		Cin	_	_ '	_	_	5.0	7.5	_	_	pF
Quiescent Current (AL Device) (Per Package)		ţDD	5.0 10 15	<u>-</u>	1.0 2.0 4.0	=	0.002 0.004 0.006	1.0 2.0 4.0	=	30 60 120	μAdc
Quiescent Current (CL/CP Device) (Per Package)		loo	5.0 10 15		4.0 8.0 16	=	0.002 0.004 0.006	4.0 8.0 16		30 60 120	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)		ካ	5.0 10 15			tr = (1	.6 μΑ/κΗz) t .1 μΑ/κΗz) f .7 μΑ/κΗz) f	+ !DD			μAdc
Three-State Leakage Current (AL Device)		ITL	15	_	±0.1	_	±0.00001	±0.1	_	±3.0	μAdc
Three-State Leakage Current (CL/CP Device)		Ħι	15	_	± 1.0	_	± 0.00001	± 1.0	_	± 7.5	μAdc

[&]quot;T_{low} = -55°C for AL Dovice, -40°C for CL/CP Device. Thigh = +125°C for AL Dovice, +85°C for CL/CP Device.

₱Data labelled "Typ" is not to be used for design purposes but is
intended as an indication of the IC's potential performance.

**The formulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at leads other than 50 pF:

$$I_T(C_L) = I_T(50 pF) + (C_L - 50) V1k$$

where: IT is in $_{\mu}A$ (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input fraquency, and k = 0.002.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time ttu.H. ttyl. = (1.5 ns/pF) CL + 25 ns ttu.H. ttyl. = (0.75 ns/pF) CL + 12.5 ns ttu.H. ttyl. = (0.55 ns/pF) CL + 9.5 ns	ካኒዙ ካዘር	5.0 10 15	_ 	100 50 40	200 100 80	ns
Data Propagation Delay Time tp_H = (1.7 rs2)F) C _L + 210 rs tp_H = (0.66 rs/p) C _L + 77 rs tp_H = (0.5 rs/p) C _L + 50 rs	ФЦН	5.0 10 15		295 110 75	580 225 180	ns
tPHL = (1.7 ns/pF) CL + 185 ns tPHL ≈ (0.66 ns/pF) CL + 62 ns tPHL = (0.5 ns/pF) CL + 40 ns	tPHL	5.0 10 15	=	270 95 65	480 175 140	ns
Expand Propagation Delay Time tp_LH = (1.7 ns/pF) CL + 95 ns tp_LH = (0.66 ns/pF) CL + 42 ns tp_LH = (0.5 ns/pF) CL + 25 ns	ФЦН	5.0 10 15	_ 	180 75 50	430 160 125	ns
tPHL = (1.7 ns/pF) CL + 115 ns tpHL = (0.66 ns/pF) CL + 47 ns tpHL = (0.5 ns/pF) CL + 30 ns	[†] PHL	5.0 10 15	=	200 80 55	330 110 90	ns
Inhibit Propagation Delay Time tp_H = (1.7 ns/pF) C _L + 135 ns tp_H = (0.66 ns/pF) C _L + 67 ns tp_H = (0.5 ns/pF) C _L + 40 ns	ФІН	5.0 10 15	_ _ _	220 100 65	500 225 160	en
tp _{HL} = (1.7 ns/pF) C _L + 145 ns tp _{HL} = (0.66 ns/pF) C _L + 62 ns tp _{HL} = (0.5 ns/pF) C _L + 35 ns	†PHL	5.0 10 15	_ _ _	230 95 60	400 175 150	ns
3-State Propagation Delay Time "1" to High Impodence	¹РНZ	5.0 10 15	_ _ _	60 45 35	150 110 90	ns
"0" to High Impedance	tPLZ	5.0 10 15	=	90 55 40	225 140 100	ns
High Impedance to "1"	^t PZH	5.0 10 15	=	110 50 40	300 125 100	ris
High Impedance to "0"	tPZL.	5.0 10 15	- -	170 70 50	425 175 125	ns

^{*}The formulas givon are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14506UB

FIGURE 2 – TYPICAL OUTPUT SOURCE CHARACTERISTICS TEST CIRCUIT

FIGURE 3 - TYPICAL OUTPUT SINK CHARACTERISTICS TEST CIRCUIT

FIGURE 4 – 3-STATE LEAKAGE CURRENT TEST CIRCUIT

FIGURE 5 - TYPICAL POWER DISSIPATION TEST CIRCUIT

MC14506UB

FIGURE 6 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS (Data Inputs)

FIGURE 7 — SWITCHING TIME TEST CIRCUIT AND WAVEFORMS (For 3-State Output)

SWITCH POSITIONS

TEST	S1	S2
φLZ	Α	Α
tPHZ.	8	В
^t PZL ^t PZH	A	A
tPZH	В	8

MC14508B

DUAL 4-BIT LATCH

The MC14508B dual 4-bit latch is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. The part consists of two identical, independent 4-bit latches with separate Strobe (ST) and Master Reset (MR) controls. Separate Disable inputs force the outputs to a high impedance state and allow the devices to be used in time sharing bus line applications.

These complementary MOS latches find primary use in buffer storage, holding register, or general digital logic functions where low power dissipation and/or high noise immunity is desired.

- 3-State Output
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load over the Rated Temperature Range.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	٧
V _{in} . V _{out}	Input or Oulput Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
lin. lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package... = 12mW/"C from 65°C to 85°C Ceramic "L" Package... = 12mW/"C from 100°C to 125°C

TRUTH TABLE

MR	ST	Disable	D3	D2	D1	DO	Q3	Q2	Q1	QΟ	
0	1	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0_	1	0	0	0	1	
0	1	0	0	0	1	0	0	0	1	0	
0	1	0	0	1	0	0	0	1	0	0	
0	1	0	1	0	0	0	1	0	0	0	
0	0	0	Х	X	×	X	Latched				
1	Х	0	X	Х	X	X	0	0	0	0	
X	Х	1	X	X	X	X	High Impedance				

X = Don't Care

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL 4-BIT LATCH

MC14508B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Vss)

		ł	VDD	Tic	w*	L	25°C		Thi	gh*	1
Characteristic		Symbol	Vđc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"0" Level	VOL	5.0	-	0.05	_	0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0		ļ	10	-	0.05	_	0	0.05	-	0.05	
		ļ	15		0.05		0	0.05	_	0.05	-
	"1" Level	VOH	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc
V _{in} = 0 or V _{DD}			10 15	9.95 14.95	1 =	9.95 14.95	10 15	_	9.95 14.95	=	
Innet Voltage	"0" Level	V	 -	14.55		14.55	 "	-	14.55		Vdc
tnput Voltage (VO = 4.5 or 0.5 Vdc)	O Level	VIL	5.0	l _	1.5	_	2.25	1.5	l _	1.5	Voc
(VO = 9.0 or 1.0 Vdc)			10	_	3.0	_	4.50	3.0	l _	3.0	
(VO = 13.5 or 1.5 Vdc)			15	-	4.0	i –	6.75	4.0	l –	4.0	
	"1" Level	VIH	1			i	<u> </u>				Vdc
(VO = 0.5 or 4.5 Vdc)			5.0	3.5	_	3.5	2.75	-	3.5	–	
(V _O = 1.0 or 9.0 Vdc)			10	7.0	-	7.0	5.50	-	7.0	_	ł
(VO = 1.5 or 13.5 Vdc)			15	11.0		11.0	8.25		11.0		<u> </u>
Output Drive Current (AL Device)	_	ЮН	١	l		l .	l				mAdd
(VOH = 2.5 Vdc)	Source	•	5.0	-3.0	-	-2.4	-4.2	. –	-1.7	-	
(VOH = 4.6 Vdc) (VOH = 9.5 Vdc)		1	5.0 10	-0.64 -1.6	l <u> </u>	-0.51 -1.3	-0.88 -2.25	_	-0.36 -0.9	_	ĺ
(VOH = 13.5 Vdc)			15	-4.2	_	-3.4	-8.8	_	-2.4	_	
(VOL = 0.4 Vdc)	Sink	loL	5.0	0.64		0.51	0.88		0.36		mAdd
(VOL = 0.5 Vdc)	-	"	10	1.6	l –	1.3	2.25	l –	0.9	l –	
(VOL = 1.5 Vdc)		L	15	4.2	l –	3.4	8.8		2.4	-	l
Output Drive Current (CL/CP Devi	ce)	ЮН									mAdo
(VOH = 2.5 Vdc)	Source	•	5.0	-2.5	-	-2.1	-4.2	-	-1.7	_	
(VOH = 4.6 Vdc)			5.0	-0.52	-	-0.44	-0.88	-	-0.36	-	
(VOH = 9.5 Vdc) (VOH = 13.5 Vdc)		ŀ	10 15	-1.3 -3.6	=	-1.1 -3.0	-2.25 -8.8	-	-0.9 -2.4	-	
		<u> </u>					-	├ ─			-
(VOL = 0.4 Vdc)	Sink	lOL	5.0 10	0.52 1.3	=	0.44 1.1	0.88 2.25	_	0.36 0.9	_	mAdo
(VOL = 0.5 Vdc) (VOL = 1.5 Vdc)			15	3.6	l =	3.0	8.8	=	2.4	_	l
Input Current (AL Device)		tin	15	-	±0.1	-	±0.00001	±0.1		±1.0	μAdc
Input Current (CL/CP Device)		tin	15		±0.3		±0.00001	±0.3		±1.0	μAdc
		-				₩—				- 1.0	,
Input Capacitance (Vin = 0)		C _{in}	-	_	-	<u> </u>	5.0	7.5	_	-	pF
Quiescent Current (AL Device)		IDD.	5.0	 	5.0	_	0.005	5.0	_	150	μAdc
(Per Package)		100	10	_	10	_	0.010	10	_	300	"""
			15	-	20	i –	0.015	20	-	600	
Quiescent Current (CL/CP Device)	1	IDD	5.0	_	20	_	0.005	20	_	150	иAdc
(Per Package)		"	10	_	40	<u> </u>	0.010	40	l —	300] _
			15		80	_	0.015	80		600	
Total Supply Current**†		ч	5.0	"			1 (A/kHz) بر 46				μAdc
(Dynamic plus Quiescent,		1	10	1			91 μΑ/kHz) 1				1
Per Package) (CL = 50 pF on all outputs,			15			IT = (4.	.37 μA/kHz) 1	לסםי +			
all buffers switching)											ľ
Three-State Leakage Current		l-	15	 _	±0.1	I _	±0.00001	±0.1	<u> </u>	±3.0	μAdo
(AL Device)		ITL	'3	-	=0.1	<u> </u>	_ ±0.00001] ±0.1	-	±3.0	μΑισο
<u> </u>	_		15		+10	 	+0.00001	-10		+76	
Three-State Leakage Current (CL/CP Device)		t⊤∟	15	_	± 1.0	ı –	±0.00001	±1.0	-	± 7.5	μAdc

^{*}Tiow = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at leads other than 50 pF:

where: IT is in μA (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.008.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

[₱]Date labelled "Typ" is not to be used for design purposes but is

intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

MC14508B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

			1				
Characteristic	Symbol	VDD	Min Typ#		Max	Unit	
Output Rise and Fall Time TI_H. TIHL = (1.5 ns/pF) CL + 25 ns TI_H. TIHL = (0.75 ns/pF) CL + 12.5 ns TI_H. TIHL = (0.55 ns/pF) CL + 9.5 ns	TLH: THL	5.0 10 15	_ 	100 50 40	200 100 80	ns	
Propagation Delay Time, Dn or MR to Q tpLH, tpHL = (1.7 ns/pF) CL + 135 ns tpLH, tpHL = (0.68 ns/pF) CL + 57 ns tpLH, tpHL = (0.5 ns/pF) CL + 35 ns	трін, трні	5.0 10 15	- 1 -	220 90 60	440 180 120	ns	
Master Reset Pulse Width	^t WH(R)	5.0 10 15	200 100 70	100 50 35	_ 	ns	
Master Reset Removal Time	trem	5.0 10 15	30 25 20	15 0 0	=	ns	
Strobe Pulse Width	twH(S)	5.0 10 15	140 70 40	70 35 20	=	ns	
Setup Time Data to Strobe	¹su	5.0 10 15	50 20 10	25 10 5.0	-	ns	
Hold Time Strobe to Data	th	5.0 10 15	50 35 35	20 10 10	=	ns	
3-State Propagation Delay Time Output "1" to High Impedance	^t PHZ	5.0 10 15		55 35 30	170 100 70	ns	
Output "0" to High Impedance	IPLZ	5.0 10 15	=	75 40 35	170 100 70		
High Impedance to "1" Level	tРZН	5.0 10 15	=	80 35 30	170 100 70		
High Impedance to "0" Level	tPZL.	5.0 10 15	=	105 50 35	210 100 70		

^{*}The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - AC WAVEFORMS

FIGURE 2 - 3-STATE AC TEST CIRCUIT AND WAVE FORMS

TEST	ST1	ST2	ST3	ST4
tPHZ	OPEN	CLOSE	CLOSE	OPEN
tPLZ	CLOSE	OPEN	OPEN	CLOSE
1PZL	CLOSE	OPEN	OPEN	CLOSE
^t PZH	OPEN	CLOSE	CLOSE	OPEN

6

3-STATE MODE OF OPERATION

The MC14508B can be used in bussed systems as shown. The output terminate of N 4-bit latches can be directly wired to bus line, and to one of the 4-bit latches selected. The selected latch controls the logic state of the bus line, and the remaining (N-1) 4-bit latches are disabled into a high impedance "off" state. The number of letches, N, which may be connected to a bus line is determined from the output drive current, I_{OD}, the 3-state or disabled output leekage current, I_{TL}, and the load current, I_L required to drive the bus line (including fanout to other device inputs) and can be calculated by the following:

$$N = \frac{I_{OD} - I_L}{I_{TL}} + 1$$

N must be calculated for both high and low logic states of the bus line.

4-Line Date Bus

BCD UP/DOWN COUNTER

The MC14510B synchronous up/down BCD counter is constructed with MOS P-channel and N-channel enhancement mode devices in a monolithic structure. The counter consists of type D flip-flop stages with a gating structure to provide type T flip-flop capability.

This counter can be preset by applying the desired value in BCD to the Preset inputs (P1, P2, P3, P4) and then bringing the Preset Enable (PE) high. The direction of counting is controlled by applying a high (for up counting) or a low (for down counting) to the UP/DOWN input. The state of the counter changes on the positive transition of the clock input.

Cascading can be accomplished by connecting the Carry Out to the Carry In of the next stage while clocking each counter in parallel. The ouputs (Q1, Q2, Q3, Q4) can be reset to a low state by applying a high to the Reset (R) pin.

This CMOS counter finds primary use in up/down and difference counting. Other applications include: (1) Frequency synthesizer applications where low power dissipation and/or high noise immunity is desired, (2) Analog-to-digital and digital-to-analog conversions, and (3) Magnitude and sign generation.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Internally Synchronous for High Speed
- Logic Edge-Clocked Design Count Occurs on Positive Going Edge of Clock
- Asynchronous Preset Enable Operation
- Capable of Driving Two Low-power TTL Loads or One Lowpower Schottky TTL Load Over the Rated Temperature Range.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	V
v _{in} . v _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tatil	Storage Temperature	-65 to +150	ပံ
TL	Load Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. 1Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

TRUTH TABLE

Carry In	Up/Down	Preset Enable	Reset	Clock	Action
1	х	0	0	х	No Count
0	1	0	0		Count Up
0	0	0	0		Count Down
х	×	1	0	х	Presel
×	×	х	1	×	Reset

X = Don't Care

Note: When counting up, the Carry Out signal is normally high, and is low only when Q1 and Q4 are high and Carry In is low. When counting down, Carry Out is low only when Q1 through Q4 and Carry In are low.

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)
BCD UP/DOWN COUNTER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

BLOCK DIAGRAM

V_{DD} = Pin 16 V_{SS} = Pin 8

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DO}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		1	VDD	Tic	w*		25°C			Thigh	
Characteristic		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	VOL	5.0 10 15	7 7 1	0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05	-	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	1 1 1	4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95	111	Vdc
input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	ViL	5.0 10 15		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	ViH	5.0 10 15	3.5 7.0 11.0	111	3.5 7.0 11.0	2.75 5.50 8.25	- -	3.5 7.0 11.0	111	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	- 2.4 - 0.51 - 1.3 - 3.4	-4.2 -0.88 -2.25 -8.8		-1.7 -0.36 -0.9 -2.4	1111	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lou	5.0 10 15	0.64 1.6 4.2	=	0.51 1.3 3.4	0.88 2.25 8.8	111	0.36 0.9 2.4	111	mAdc
Output Drive Current (CL/CP Device (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	e) Source	Юн	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6	1111	-2.1 -0.44 -1.1 -3.0	-4.2 -0.68 -2.25 -8.8		- 1.7 - 0.36 - 0.9 - 2.4	1111	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lor	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	=	0.36 0.9 2.4	_ _	mAdc
Input Current (AL Device)		lin	15		±0.1		±0.00001	± 0.1	_	± 1.0	μAdc
Input Current (CL/CP Device)		lin	15		±0.3		±0.00001	± 0.3	<u> </u>	± 1.0	μAdc
Input Capacitance (Vin = 0)		Cin	_	_	_		5.0	7.5	_	_	ρF
Quiescent Current (AL Device) (Per Package)		lDD	5.0 10 15	= =	5.0 10 20		0.005 0.010 0.015	5.0 10 20	=	150 300 600	μAdc
Quiescent Current (CL/CP Device) (Per Package)	•	İDD	5.0 10 15	=	20 40 80	=	0.005 0.010 0.015	20 40 80	=	150 300 600	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)		·Τ	5.0 10 15			lT = (1	58 μΑ/kHz) f .2 μΑ/kHz) f .7 μΑ/kHz) f	+ IDD			μAdc

 $^{^{\}circ}T_{low} = -55^{\circ}C$ for AL Device, $-40^{\circ}C$ for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

intended as an indication of the IC's potential performance.

"The formulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ V/k}$$

where: I_T is in μA (por package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.001.

[#]Data labelled "Typ" is not to be used for design purposes but is

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C, See Figure 2)

<u>.</u>	ا ا			All Types	LO	
Characteristic	Symbol	ADD	Min	Тур#	Max	Unit
Output Rise and Fall Time	TLH,					กร
t <u>լե</u> լ, tլել = (1.5 ns/pF) C _L + 25 ns	THL	5.0	1 - 1	100	200	
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns		10	1 - 1	50 ⋅	100	
tTLH, tTHL=(0.55 ns/pF) CL+9.5 ns		15	_	40	80	
Propagation Delay Time	^t PLH,		1 1			ns
Clock to Q	tPHL					
tpLH, tpHL = (1.7 ns/pF) CL + 230 ns	\ <u>-</u>	5.0	_	315	630	l
to: u. tou: = (0.66 ns/pF) C: + 97 ns		10	l – 1	130	260	
tpLH. tpHL = (0.5 ns/pF) CL + 75 ns		15		100	200	
Clock to Carry Out	tPLH,		1			ns
tpLH, tpHL = (1.7 ns/pF) CL + 230 ns	1PHL	5.0	-	315	630	1
tplH, tpHL = (0.66 ns/pF) CL + 97 ns	1	10	-	130	260	
1pLH, tpHL = (0.5 ns/pF) CL + 75 ns	<u> </u>	15		100	200	
Carry In to Carry Out	tPLH,		1		١	ns
tp_H, tpHL = (1.7 ns/pF) CL + 230 ns	tPHL	5.0	1 -	160 60	360 160	
tplH, tpHL = (0.66 ns/pF) CL + 47 ns tplH, tpHL = (0.5 ns/pF) CL + 35 ns		10 15	1 =	. 60	120	
			+ -			
Preset or Reset to Q	IPLH,	5.0	1	315	630	ns
tp _{LH} , tp _{HL} = (1.7 ns/pF) C _L + 230 ns tp _{LH} , tp _{HL} = (0.66 ns/pF) C _L + 97 ns	^t PHL	5.0 10	_	130	260	I
tpLH, tpHL = (0.5 ns/pF) CL + 75 ns	1	15	<u>-</u>	100	200	I
Preset or Reset to Carry Out	tour		†		T	ns
toru, tour = (1.7 ns/oF) Cr + 465 ns	tPLH, tPHL	5.0	l _	550	1100	'''
tpLH, tpHL = (0.66 ns/pF) CL + 192 ns	PAL	10	_	225	450	
tpLH, tpHL = (0.5 ns/pF) CL + 125 ns		15	l –	150	300	
Reset Pulse Width	tw(H)	5.0	380	160		ns
neset Paise Width	, AG(13)	10	210	105		""
	ł	15	160	80	! _	İ
			250			
Clock Pulse Width	¹w(H)	5.0 10	350 170	200 100	_	ns
		15	140	75	ιΞ	
			+ ''-			
Clock Pulse Frequency	fct	5.0	-	3.0	1.5	MHz
		10 15	1 =	6.0 8.0	3.0 4.0	
			 		7.0	
Presot or Reset Removal Time	t _{rem}	5.0	650	325	-	ns
The Preset or Reset Signal must be low prior to a positive-going transition of the clock.		10	230 180	115 90	-	ŀ
positive-going transmon of the clock.		15	180	30		
Clock Rise and Fall Time	tTLH+	5.0	I -	_	15	μ8
	[†] THL	10	-	_	5	
		15	<u> </u>	_	4	<u> </u>
Setup Time	t _{su}	5.0	260	130	-	ns
Carry In to Clock		10	120	60	-	1
		15	100	50		
Hold Time	th	5.0	0	- 50	-	ns
Clock to Carry In	1 "	10	10	- 15	-	1
	<u> </u>	15	10	-5		L
Setup Time	t _{su}	5.0	500	250		กร
Up/Down to Clock		10	200	100	l –	
		15	175	75	-	l
Hold Time	¹h	5.0	-70	- 140	_	ns
Clock to Up/Down	"	10	-30	- 80	_	"
		15	-20	-50	_	1
Clock to oproown		5.0	- 50	- 100		ns
·				- 100 - 65		""
Setup Time	t _{su}		- 30			
·	t _{su}	10 15	-30 -25	- 55	_	i
Setup Time Pn to PE		10 15	-25	- 55	_	
Setup Time Pn to PE Hold Time	t _{su}	10 15 5.0	- 25 480	- 55 240		ns
Setup Time		10 15 5.0 10	-25 480 410	- 55 240 205	<u>-</u> - -	ns
Setup Time Pn to PE Hold Time PE to Pn	th	10 15 5.0 10 15	-25 480 410 410	- 55 240 205 205	_ _ _ _	
Setup Time Pn to PE Hold Time		10 15 5.0 10	-25 480 410	- 55 240 205		ns ns

[&]quot;The formulas given are for the typical characteristics only at 25°C.

Data tabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

STATE DIAGRAM FOR DOWN COUNTING

PIN DESCRIPTIONS

INPUTS

P1, P2, P3, P4, Preset Inputs (Pins 4, 12, 13, 3)—Data on these inputs is loaded into the counter when PE is taken high.

Carry In, (PIn 5) — Active-low input used when cascading stages. Usually connected to Carry Out of the previous stage. While high, clock is inhibited.

Clock, (Pin 15) — BCD data is incremented or decremented, depending on the direction of count, on the positive transition of this signal.

OUTPUTS

Q1, Q2, Q3, Q4, BCD outputs (Pins 6, 11, 14, 2)—BCD data is present on these outputs with Q1 corresponding to the least significant bit.

Carry Out, (Pin 7) — Used when cascading stages, this pin is usually connected to Carry in of the next stage. This synchronous output is active low and may also be used to indicate terminal count.

CONTROLS

PE, Preset Enable (Pin 1) — Asynchronously loads data on the Preset Inputs. This pin is active high and will inhibit the clock when high.

R, Reset, (Pin 9) — Asynchronously resets the Q outputs to a low state. This pin is active high and will inhibit the clock when high.

Up/Down, (PIn 10) — Controls the direction of count: high for up count, low for down count.

SUPPLY PINS

Vss, Negative Supply Voltage, (Pin 8) — This pin is usually connected to ground.

Vpp, Positive Supply Voltage, (Pin 16) — This pin is connected to a positive supply voltage ranging from 3.0 Vdc to 18.0 Vdc.

FIGURE 3 — PRESETTABLE CASCADED 8-BIT UP/DOWN COUNTER Q1 Q2 Q3 Q4 Q5 Q5 Q7

Note: The Least Significant Digit (L.S.D.) counts from a preset value once Preset Enable (PE) goes low. The Most Significant Digit (M.S.D.) does not change while \overline{c}_{in} is high. When the count of the L.S.D. reaches 0 (count down mode) or reaches 9 (count up mode), \overline{c}_{out} goes low for one complete clock cycle, thus allowing the next counter to decrement/increment one count. The L.S.D. now counts through another cycle (10 clock pulses) and the above cycle is repeated.

TIMING DIAGRAM FOR THE PRESETTABLE CASCADED 8-BIT UP/DOWN COUNTER

FIGURE 4 — PROGRAMMABLE CASCADED FREQUENCY DIVIDER

Note: The programmable frequency divider can be set by applying the desired divide ratio, in BCD, to the preset inputs. For example, the maximum divide ratio of 99 may be obtained by applying a 10011001 to the preset inputs P0 to P7. For this divide operation, both counters should be configured in the count down mode. The divide ratio of zero is an undefined state and should be avoided.

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER

The MC14511B BCD-to-seven segment latch/decoder/driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and an output drive capability. Lamp test (\overline{LT}), blanking ($\overline{B1}$), and latch enable (\overline{LE}) inputs are used to test the display. To turn off or pulse modulate the brightness of the display, and to store a BCD code, respectively. It can be used with seven-segment light emitting diodes (\overline{LED}), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

- Low Logic Circuit Power Dissipation
- High-Current Sourcing Outputs (Up to 25 mA)
- · Latch Storage of Code
- Blanking Input
- Lamp Test Provision
- · Readout Blanking on all Illegal Input Combinations
- · Lamp Intensity Modulation Capability
- Time Share (Multiplexing) Facility
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range.
- Chip Complexity: 216 FETs or 54 Equivalent Gates

MAXIMUM RATINGS (Voltages referenced to Voc.)

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to +18	V
Input Voltage, All Inputs	Vin	-0.5 to V _{DD} + 0.5	٧
DC Current Drain per Input Pin	I	10	mΑ
Operating Temperature Range — AL Device CL/CP Device	TA	-55 to • 125 -40 to •85	°C
Storage Temperature Range	Tstg	-65 to • 150	°C
Maximum Output Drive Current (Source) per Output	lOHmax	25	mA
Maximum Continuous Output Power (Source) per Output ‡	POHmax	50	m₩

POHmax = IOH (VDD -VOH)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. A destructive high current mode may occur if V_{in} and V_{out} are not constrained to the range $V_{SS} \ll (V_{in} \text{ or } V_{out}) \ll V_{DD}$.

Oue to the sourcing capability of this circuit, damage can occur to the device if V_{DD} is applied, and the outputs are shorted to V_{SS} and are at a logical 1. (See Maximum Ratings).

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or V_{DD})

MC14511B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER

CERAMIC PACKAC CASE 620 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

		MPUT	5				_				\cap	1P	u r	
LE	BI	LT	D	С	В	Α	3	h	ε	п	e	1	q	DISPLAY
ж	×	a	Ж	×	ж	×	1	1	1	1	1	1	1	8
×	0	1	×	×	я	×	0	0	0	0	D	0	D	Blank
a	1	1	a	0	0	0	1	1	1	1	1	1	0	0
0	1	- 1	0	C	0		0	1	1	0	0	0	0	1.0
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	- 1	0	0	- 1	3	1	3	1	3	0	0	- 1	3
a	1	- 1	0	1	0	0	0	1	- 1	0	0	1	1	4
0	- 1	1	0	1	0	1	1	0	-1	1	0	1	1	5
0	1	1	0	1	-1	0	0	0	1	1	3	1	1	6
0	1	1	٥	1	1	1	1	1	1	a	0	0	0	7
0	1	1	-1	۵	0	0	1	1	1	1	1	1	1	В
0	1	1	- 1	0	0	1	1	1	1	0	O		1	. 19
0	1	1	- 1	0	- 1	0	0	0	0	0	0	0	0	Blank
0	_ 1	- 1	- 1	0	1	1	0	0	0	0	0	0	0	Blank
0	1	1	- 1	3	0	0	0	0	0	0	٥	0	0	Blank
0	- 1	- 1	-1	1	D	1	0	0	0	0	0	0	0	Biana
0	1	1	1			0	0	0	0	0	0	0	0	Blank
0	1	1 1	1	1	1	1	0	0	0	0	0	0	0	Hises
1	1	1	,	*		*		_		*				+

X - Don't Care

*Depends upon the BCD code previously applied when LE = 0

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	Tlo	~ *		25°C		Thi	gh °	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Мах	Unit
Output Voltage	"O" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	V
V _{in} ≠ V _{DD} or 0			10	-	0.05	-	0	0.05	-	0.05	
			15	_	0.05		0	0.05	_	0.05	
	"1" Level	Voн	5.0	4.1	-	4.1	4.57	-	4.1	-	. 🗸
V _{in} = 0 or V _{DD}			10	9.1	-	9.1	9.58	-	9.1	-	
			15	14.1		14.1	14.59	-	14.1		
Input Voltage#	"0" Level	VIL	Į.								V
(VO = 3.8 or 0.5 V)			5.0	- 1	1.5	-	2.25	1.5	-	1.5	
(V _O = 8.8 or 1.0 V)			10	-	3.0	-	4.50	3.0	-	3.0 4.0	
(VO = 13.8 or 1.5 V)	"1" Level		15		4.0		6.75	4.0	-		
$(V_0 = 0.5 \text{ or } 3.8 \text{ V})$	1 Level	VIH	5.0	3.5	-	3.5	2.75	-	3.5	-	v
(Vo = 1.0 or 8.8 V)			10	7.0	-	7.0	5.50	-	7.0	-	
(V _O ≈ 1.5 or 13.8 ∨)			15	11.0		11.0	8.25		11.0		
Output Drive Voltage (AL De		∨он				4.50	4.57	۱ ـ	4.1	_	٧
(IOH = 0 mA)	Source		5.0	4.10	_	4.10	4.57 4.24	1 -	".'	_	
(I _{OH} = 5.0 mA)				-		3.90	4.12	l -	3.5		
(1 _{OH} = 10 mA)				3.90	_	3.90	3.94	_	_	_	
(I _{OH} = 15 mA) I _{OH} = 20 mA)			1	3.40	_	3.40	3.70	_	3.0	_	
(I _{OH} = 25 mA)			i	3.40	_		3.54	_	_	_	
(IOH = 0 mA)			10	9.10		9.10	9.58	_	9.1		V
(I _{OH} = 5.0 mA)			l '°	""	_	5.10	9.26	l <u>-</u>	-	_	,
(IOH = 10 mA)			[9.00	_	9.00	9.17	_	8.6	_	
(I _{OH} = 15 mA)			i	-	_	-	9.04	l –		-	
(IOH = 20 mA)			l	8.60	_	8.60	8.90	-	8.2	_	
(I _{OH} = 25 mA)			İ	-	_		8.70	-		_	
(I _{OH} = 0 mA)			15	14.1		14.1	14.59	-	14.1		V
(IOH = 5.0 mA)				_	-	-	14.27	-	-	-	
(IOH = 10 mA)				14.0	-	14.0	14.18	-	13.6	-	
(IOH = 15 mA)				-	-		14.07	-	-	-	
(I _{OH} = 20 mA)				13.6	-	13.6	13.95	-	13.2	-	
(I _{OH} = 25 mA)				-			13.70				
Output Drive Voltage (CL/CI		VOH							4.1		>
(IOH = 0 mA)	Source		5.0	4.10	-	4.10	4.57	-	\ " '	_	
(I _{OH} = 5.0 mA)				3.60	_	3.60	4.24 4.12	_	3.3	_	
(I _{OH} = 10 mA)				3.60	_	3.60	3.94	_	-	_	
(I _{OH} = 15 mA)			ŀ	2.80	_	2.80	3.75	l _	2.5	_	
(I _{OH} = 20 mA) (I _{OH} = 25 mA)		İ	ļ	2.50	_	-	3.54	-	-	-	
(IOH = 0 mA)			10	9.10		9.10	9.58		9.1		
(IOH = 5.0 mA)	1			-	_	_	9.26	-	_	_	
(I _{OH} = 10 mA)	ł			8.75	-	8.75	9.17		8.45	-	
(I _{OH} = 15 mA)	1			-	-	-	9 04	-	_	-	
(I _{OH} = 20 mA)	1			8.10	-	8.10	8.90	-	7.8	-	
(I _{OH} = 25 mA)				- _		~	8.75				
(I _{OH} * 0 mA)			15	14.1	_	14.1	14.59	-	14.1	-	>
(I _{OH} = 5.0 mA)			1	-	-	-	14.27	-	[- [-	
(I _{OH} = 10 mA)				13.75	-	13.75	14.18	-	13.45	-	!
(IOH = 15 mA)			1	- 1	-	l l	14.07	-	-	-	
((_{OH} = 20 mA)		ŀ	ł	13.1	-	13.1	13.95	-	12.8	-	
(I _{OH} = 25 mA)			L			-	13.80				
Output Drive Current (AL D		lOL	١	0.64		051	0.88	l	0.36		mA
(VOL = 0.4 V)	Sink		5.0	1.64	-	13	2 25	_	0.36		
(VOL = 0.5 V)		1	10 15	4.2	-	34	88		2.4	_	
(V _{OL} = 1.5 V)			15			<u> </u>		<u> </u>			
Output Orive Current (CL/C	P Device) Sink	lor	[_	0.52		0.44	0.00	l .	0.36		mA
(V _{OL} = 0.4 V)	Sink		5.0 10	052	_	1.1	0 88 2 25	_	0.36	_	
(VOL = 0.5 V)											

(Continued)

ELECTRICAL CHARACTERISTICS (Continued)

		VDD	Tı	ow*		25°C		T _{high} *			
Characteristic	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit	
Input Current (AL Device)	lin	15	-	±0.1		±0.00001	±0.1	<u> </u>	± 1.0	μА	
Input Current (CL/CP Device)	lin	15	-	± 0.3	-	±0.00001	±0.3	T -	± 1.0	μА	
Input Capacitance	Cin	_		-	T -	5.0	7.5] -	-	ρF	
Quiescent Current (AL Device) (Per Package) V _{in} =0 or VDD, J _{out} = 0 µA	1DD	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μА	
Quiescent Current (CL/CP Device) (Per Package) V _{tn} =0 or VDD, I _{Out} = 0 μA	IDD	5.0 10 15	- - -	20 40 80	-	0.005 0.010 0.015	20 40 80	- - -	150 300 600	μА	
Total Supply Current**1 (Dynamic plus Quiescent, Per Package) (CL - 50 pF on all outputs, all buffers switching)	ŀτ	5.0 10 15			i† * (1.9 µA/kHz 3.8 µA/kHz 5.7 µA/kHz	1) 1 + 100			Ац	

^{*}T_{1ow} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = *125°C for AL Device, +85°C for CL/CP Device.
#Noise immunity specified for worst-case input combination.
Noise Margin for both "1" and "0" tevel =

tTo calculate total supply current at loads other than 50 pF: |TCL|*= |T(50 pF) + 3.5 x 10⁻³ (CL -50) VDDf where: |T is in µA (per package), CL in pF, VDD in Vdc, and f in kHz is input frequency.

**The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Cherecteristic	Symbol	V _{DD} Vdc	Min	Тур	Max	Unit
Output Rise Time	tTLH.					ns
tTLH = (0.40 ns/pF) CL + 20 ns	'"	5.0	-	40	80	
tTLH = (0.25 ns/pF) CL + 17.5 ns		10	-	30	60	1
tTLH = (0.20 ns/pF) CL + 15 ns		15	-	25	50	1
Output Fall Time	tTHL.			405		ns
tTHL = (1.6 ns/pF) CL + 50 ns		5.0	_	125	250	- 1
tTHL = (0.75 ns/pF) CL + 37.5 ns	i	10	_	75	150	
tTHL = (0.55 ns/pF) CL + 37.5 ns		15		65	130	
Data Propagation Delay Time	†PLH					ns
tpլ н = (0.40 ns/pF) Cլ + 620 ns		5.0	_	640	1280	
tp_H = (0.25 ns/pF) C _L + 237.5 ns		10	-	250	500	1
tp_H = (0.20 ni/pF) C _L + 165 ns	<u>L</u>	15		175	350	
tpHL = (1.3 ns/pF) CL + 655 ns	TPHL	5.0	-	720	1440	l l
tPHL = (0.60 ns/pF) CL + 260 ns	_	10	-	290	580	
tpHL = (0.35 ns/pF) CL + 182.5 ns	· ·	15	-	200	400	1
Blank Propagation Delay Time	tPLH.					ns
tpLH = (0.30 ns/pF) CL + 585 ns	i	5.0	_	600	750	1
tp_H ≈ (0.25 ns/pF) C _L + 187.5 ns		10	_	200	300	ì
tp_H = (0.15 ns/pF) C _L + 142.5 ns		15		150	220	
tpHL = (0.85 ns/pF) CL + 442.5 ns	ФHL	5.0	-	485	970	
tPHL = (0.45 ns/pF) CL + 177,5 ns		10	-	200	400	
tpHL = (0.35 ns/pF) CL + 142.5 ns		15	-	160	320	1
Lamp Test Propagation Delay Time	ФГН					ns.
тр LH = (0.45 ns/pF) CL + 290.5 ns	1	5.0	-	313	625	
tp լ н = (0.25 ns/pF) С լ + 112.5 ns		10	_	125	250	ı
tp _H = (0.20 ns/pF) C _L + 80 ns		15		80	160	
tpнL = (1.3 ns/pF) CL + 248 ns	ΨHL	5.0		313	625	_[
tpHL = (0.45 ns/pF) CL + 102.5 ns	_	10	-	125	250	1
трн = (0.35 ns/pF) CL + 72.5 ns		15		90	180	_[
Setup Time	tsu	5.0	100		_	ns
	"	10	40	-	-	1
		15	30			
Hold Time	th	5.0	60	-		ns
		10	40	-	_	1
		15	30	_	_	
Latch Enable Pulse Width	tWL	5.0	520	260	-	ns
		10	220	110	-	1
		16	130	65	_	1

^{*}The formulas given are for the typical characteristics only.

FIGURE 1 – DYNAMIC POWER DISSIPATION SIGNAL WAVEFORMS

FIGURE 2 - DYNAMIC SIGNAL WAVEFORMS

CONNECTIONS TO VARIOUS DISPLAY READOUTS

LOGIC DIAGRAM

MC14512B

8-CHANNEL DATA SELECTOR

The MC14512B is an 8-channel data selector constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This data selector finds primary application in signal multiplexing functions. It may also be used for data routing, digital signal switching, signal gating, and number sequence generation.

- Diode Protection on All Inputs
- Single Supply Operation
- 3-State Output (Logic "1", Logic "0", High Impedance)
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
In. lout	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	mW
Tatg	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperaturo (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

TRUTH TABLE

С	В	А	INHIBIT	DISABLE	z
0	0	0	0	0	xo
0	0	1	o	0	ХI
0	1	0	0	0	X2
0	1	1	0	0	х3
1	0	0	0	٥	X4
1	٥	1	0	0	×5
1	1	٥	0	0	×6
1	1	1	0	0	X7
Х	×	Х	1	0	0
×	×	×	х	1	High Impedance

X = Don't Care

CMOS MSI

(LOW-POWER COMPLEMENTARY MOSI

8-CHANNEL DATA SELECTOR

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Coramic Package)

PIN ASSIGNMENT

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{Out}) \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

MC14512B

EI COTDICAL	CHARACTERISTICS	: /\/el\agas Dafaranaa	1 10 1/0-1

÷		l	V _{DD}	Tic	w*		25°C		Thi	gh*	
Charecteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max-	Unit
Output Voltage Vin = VDD or 0	"0" Level .	VOL	5.0 10 15	1.1.1	0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05	111	0.05 0.05 0.05	Vdc
Vin = 0 or VDD	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	1 1	4.95 9.95 14.95	5.0 10 15	1 1	4.95 9.95 14.95	111	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"O" Level	ViL	5.0 10 15		1.5 3.0 4.0	-	2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0	<u>-</u>	3.5 7.0 11.0	2.75 5.50 8.25	- - -	3.5 7.0 11.0	_ _ _	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	1111	mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8	1 1 1	0.36 0.9 2.4	111	mAdc
Output Drive Current (CL/CP Devic (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	lОН	5.0 5.0 10 15	- 2.5 - 0.52 - 1.3 - 3.6	- - - -	-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	=	0.36 0.9 2.4		mAdc
Input Current (AL Device)		l _{in}	15	_	±0.1		±0.00001	± 0.1	ı	± 1.0	μAdc
Input Current (CL/CP Device)		lin	15	_	±0.3		± 0.00001	±0.3	_	± 1.0	μAdc
Input Capacitance (Vin = 0)		C _{in}		_	_	_	5.0	7.5		_	pF
Quiescent Current (AL Device) (Per Package)		סמי	5.0 10 15	=	5.0 10 20	<u>-</u> -	0.005 0.010 0.015	5.0 10 20	=	150 300 600	μAdc
Quiescent Current (CL/CP Device) (Per Package)		ממי .	5.0 10 15	=	20 40 80	=	0.005 0.010 0.015	20 40 80	<u>-</u>	150 300 600	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (Ct = 50 pF on all outputs, all buffers switching)		ŀΤ	5.0 10 15			l T = (1	.8 µA/kHz) 1 - .6 µA/kHz) f - .4 µA/kHz) 1 -	+ IDD			μAdc
Three-State Leakage Current (AL Device)		ŀΤL	15	-	±0.1		±0.00001	±0.1		±3.0	μAdc
Three-State Leakage Current (CL/CP Device)		ĦL	15	_	± 1.0	_	±0.00001	± 1.0	-	±7.5	μAdc

[&]quot;T_{tow} = -55°C for AL Device, -40°C for GL/CP Device.
Thigh = +125°C for AL Device, +85°C for GL/CP Device.

†To calculate total supply current at loads other than 50 pF:

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$$

where: i_T is in μA (por packago), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.001.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C, See Figure 1)

			All T	ypes	
Characteristic	Symbol	VDD	Typ #	Max	Unit
Output Rise and Fall Time tth, ttht=(1.5 ns/pF) Ct+25 ns tth, ttht=(0.75 ns/pF) Ct+12.5 ns tth, ttht=(0.55 ns/pF) Ct+9.5 ns	t _{тен,} t _{тне}	5.0 10 15	100 50 40	200 100 80	វាន
Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z	^t PLH	5.0 10 15	330 125 85	850 250 170	ns
Propagation Delay Time (Figure 2) Inhibit, Control, or Data to Z	^t PHL	5.0 10 15	330 125 65	650 250 170	ns
3-State Output Delay Times (Figure 3) "1" or "0" to High Z, and High Z to "1" or "0"	tpHZ. tpLZ. tpZH. tPZL	5.0 10 15	60 35 30	150 100 75	ns

^{*}The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14512B

FIGURE 3 - 3-STATE AC TEST CIRCUIT AND WAVEFORM

LOGIC DIAGRAM

3-STATE MODE OF OPERATION

Output terminals of several MC145128 8-Bit Data Selectors can be connected to a single data bus as shown. One MC148128 is estected by the 3-state control, and the remaining devices are disabled into a high -impedance "off" state. The number of 8-bit data selectors, N, that may be connected to a bus line is determined from the output drive current, I_{OD}, 3-state or disable output leakage current, I_{TL}, and the load current, I_L, required to drive the bus line (including fanout to other device inputs), and can be calculated by:

N must be calculated for both high and low logic state of the bus line.

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER

The MC14513B BCD-to-seven segment latch/decoder/driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and has output drive capability. Lamp test (LT), blanking (BI), and latch enable (LE) inputs are used to test the display, to turn-off or pulse modulate the brightness of the display, and to store a BCD code, respectively. The Ripple Blanking Input (RBI) and Ripple Blanking Output (RBO) can be used to suppress either leading or trailing zeroes. It can be used with seven-segment light emitting diodes (LED), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

- Low Logic Circuit Power Dissipation
- High-current Sourcing Outputs (Up to 25 mA)
- Latch Storage of Binary Input
- Blanking Input
- Lamp Test Provision
- Readout Blanking on all Illegal Input Combinations
- Lamp Intensity Modulation Capability
- Time Share (Multiplexing) Capability
- Adds Ripple Blanking In, Ripple Blanking Out to MC14511B
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving Two Low-Power TTL Loads, One Low-power Schottky TTL Load to Two HTL Loads Over the Rated Temperature Range.

MAXIMUM RATINGS (Voltages referenced to Vos)

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to +18	V
Input Voltage, All Inputs	Vin	-0.5 to V _{DD} + 0.5	٧
DC Current Drain per Input Pin	l	10	mA
Operating Temperature Range – AL Device CL/CP Device	TA	-55 to +125 -40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Maximum Continuous Output Drive Current (Source) per Output	IOHmax	25	mA
Maximum Continuous Output Power (Source) per Output ‡	POHmax	50	mW

POHmax = IOH (VDD - VOH)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields: however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. A destructive high current mode may occur if V_{in} and V_{out} is not constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$.

Due to the sourcing capability of this circuit, damage can occur to the device if V_{DD} is applied, and the outputs are shorted to V_{SS} and are at a logical 1 (see Maximum Ratings).

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $v_{\mbox{\scriptsize NS}}$ or $v_{\mbox{\scriptsize DD}}$).

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER WITH RIPPLE BLANKING

P SUFFIX PLASTIC PACKAGE CASE 707

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

Į.		1.0	PUTS					1				0	UTI	Pul	5	
RBI	LE	(8)	.7	D	C	8	â	#B0		D	ç	e		1	9	DISPLAY
H	×	×	0	×	×	×	R		-	.1	1	. 1	-1	1	3	- 1
- 8	X	0	1	×	X	ж	я		0	0	0	0	G	0	۵	Blank
1	0	1	1	0	0	0	0	1	0	۵	0	a	D	0	0	Brank
0	0	-1	1	n	0	n	0	0	- 1	1	-1	1	1	1	0	0
R	0	1	1	0	0	o	ï	0	0	1	1	a	0	0	0	1
×	0	1	1	0	۵	- 3	D	0	1	1	Ç	1	1	0	1	2
×	0	1	I.	2	a	- 9	3	D	1	1	1		0	0	1	3
ж	n	-1	- 1	0	1	C		0	0	1	1	0	0	1	1	4
	0	1	1	0	1	Q	1	0	1	۵	1	1	0	1	1	5
ж	0	- 8	1	0	-1	1	J	0	- 1	0	1	1	1	1	1	6
х	0	1	1	a	1	1	1	0	1	1	1	0	3	Û	0	7
8	0	3	1	1	٥	0	3	0	1	1	1	1	1	1	T	a
ж	0	- 1	1	1	0	0	1	0	1	1	1	1	0	1	1	9
×	٥	1	1 1	1	0	1	-0	0	0	a	٥	0	а	О	0	Brank
×	0	1	1	1	0	3	1	0	0	0	۵	0	0	۵	0	Blank
×	0	-1	1	1	4	D	3	0	C	Û	0	0	0	Ω	0	Blank
*	0	1	1	7	X	0	1	0	0	0	0	Û	0	ū	0	Stank
H	0	- 1	1	1	1	1	2	0		٥	a	0	0	Ω	0	Black
×	0	1	1	1	1	1	1	0	а	0	0	О	а	C	0	Brank
2	1	1	1	11	×	н	14	1				٠				

Find Don't Care

Find A Res (\$ € 8 X) indicated by other color of signs.

Colored some the ECD color processing by other (\$ € 0).

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tio			25°C			gh [*]	l
Characteristic	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Uni
Output Voltage - Segment Outputs	VOL									V
"O" Level		5.0	-	0.05		0	0.05	-	0.05	
Vin = VDD or 0		10	-	0.05	-	0	0.05	-	0.05	
		15	-	0.05	-	0	0.05	_	0.05	
"1" Level	VOH	5.0	4.1	_	4,1	5.0		4.1		v
Vin - 0 or VDD	1 '0"	10	9.1	} _	9.1	10	l _	9.1		
VIA US. VDD		15	14.1		14.1	15	_	14.1	'	l
			17.1	 	14.1	<u> </u>		17.1		
Output Voltage - RBO Output	VOL									v
"O" Level	1	5.0	-	0.05	-	0	0.05	-	0.05	
V _{in} [∞] V _{DO} or 0	l	10	-	0.05	-	0	0.05] -	0.05	
		15		0.05		0	0.05		0.05	
"1" Level	Vон	5.0	4.95	-	4.95	5.0	-	4.95		l v
Vin = 0 or VDD	1	10	9.95	-	9.95	10		9.95	-	1
55	l	15	14.95	_	14.95	15	_	14.95		ŀ
nput Voltage" "0" Level										v
	VIL					2.25			٠. ا	ľ
(VO = 3.8 or 0.5 V)	l .	5.0		1.5	-	2.25	1.5	_	1.5	
(VO = 8.8 or 1.0 V)	ì	10	-	3.0	-	4.50	3.0	-	3.0	
(V _O ≈ 13.8 or 1.5 V)	L	15		4.0		6.75	4.0		4.0	
(VO = 0.5 or 3.8 V) "1" Level	VIH	5.0	3.5	-	3.5	2.75	-	3.5	-	v
(VO = 1.0 or 8.8 V)		10	7.0	_	7.0	5.50		7.0		ł
(VO = 1.5 or 13.8 V)	l	15	11.0	_	11.0	8.25	_	11.0		l
`	V								\vdash	
Output Drive Voltage - Segments	∨он					l	İ			۱ °
(AL Device)	1	١	l	1	١		1	۱		l .
IOH = 0 mA) Source:	ł	5.0	4.10	-	4.10	4.57	-	4.1	_	1
(1 _{OH} = 5.0 mA)			-	-	-	4.24	i -			
(I _{OH} = 10 mA)			3.90	-	3.90	4.12	-	3.5	-	
(I _{OH} = 15 mA)		1	· -		-	3.94	-	-	-	ļ.
(I _{OH} = 20 mA)			3.40	-	3.40	3.75	-	3.0	-	ļ.
(IOH = 25 mA)			-	-	-	3.54	_			l .
(IOH = 0 mA)		10	9.10	-	9.10	9.58	-	9.1	_	$\overline{}$
(IOH = 5.0 mA)	l		3.10	l	,	9.26	-	-	_	ľ
(IOH = 10 mA)	ļ.		9.00	_	9.00	9.17		8.6	_	1
	l .		9.00	-	3.00	9.04	<u> </u>		"	1
(I _{OH} = 15 mA)	Į.			-	-		1			l .
(IOH = 20 mA)	i		8.60		8.60	8.90	-	8.2	_	l .
(I _{OH} = 25 mA)				-		8.75				<u> </u>
(IOH+* 0 mA)		15	14.1	-	14.1	14.59	-	14.1	-	v
((OH = 5.0 mA)	ł	1	-	-	1 -	14.27	- 1	l -	_	1
(IOH 10 mA)			14.0	-	14.0	14.18	-	13.6	-	l .
(I _{OH} =15 mA)			-	-	-	14.07	-	-	_	l
(IOH 20 mA)		1	13.6	l –	13.6	13.95	-	13.2	-	1
(IOH = 25 mA)	l		_	l		13.80	_	_	_	l
	V/2	 		 	 		 			 -√
Output Drive Voltage - Segments	∨он			1	1		l		l	ľ
(CL/CP Device)	1	1		l			ł		}	l
(IOH = 0 mA) Source:		5.0	4.10	-	4.10	4.57	-	4.1	I -	1
(IOH = 5.0 mA)			<u>-</u>	-	1	4.24	-	1	l -	1
(I _{OH} = 10 mA)			3.60		3.60	4.12		3.3	-	l
(I _{OH} = 15 mA)			-	-		3.94	-	-	-	1
(I _{OH} - 20 mA)			2.80		2.80	3.75		2.5	-	l
(I _{OH} = 25 mA)	1		-		-	3.54	-	-]
(I _{OH} = 0 mA)	1	10	9.10		9.10	9.58	-	9.1		١,
(I _{OH} = 5.0 mA)	1		5.10]	3.10	9.26				ı '
(IOH : 3.0 IIIO)	1	l		-	0.76	9.20	_	8.45		1
(I _{OH} ± 10 mA)			8.75	1 -	8.75		1	6.45	-	l
(IOH = 15 mA)				1 -		9.04	- 1		-	l
(I _{OH} = 20 mA)	1		8.10	-	8.10	8.90	-	7.8	-	
(IOH = 25 mA)				٠	-	8.75			-	
(IOH = 0 mA)	1	15	14.1		14.1	14.59	-	14.1		
(IOH = 5.0 mA)				-	-	14.27				l
(I _{OH} = 10 mA)	٠ .	Į.	13.75	_	13.75	14.18		13.45	l .	l
(I _{OH} 15 mA)				l <u>-</u>	"-"	14.07		-		l
			121		13.1	13.95	~	12.8	-	l
II _{OH} · 20 mA)	I		13.1	-	13.1		1	12.0	l -	1
(IOH ** 25 mA)	1	1	1 -	1 -	1 -	13.80	1 -	ı -		l

ELECTRICAL CHARACTERISTICS (Continued)

		V _{DD}	Tlo	w*		25°C		This	ih*	
	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
Output Drive Current - RBO Output	ІОН									mA
(AL Device)										
(VOH = 2.5 V) Source	i	5.0	-0.40	-	-0.32	-0.64	-	-0.22	- 1	
(V _{OH} = 9.5 V)	i	10	-0.21	- 1	-0.17	-0.34	- '	-0.12	~	
(V _{OH} = 13.5 V)		15	-0.81	-	-0.66	-1.3	-	-0.46		
{V _{OL} = 0.4 V} Sink	IOL	5.0	0.18	-	0.15	0.29	-	0.10	-	mA
(V _{OL} = 0.5 V)	1	10	0.47	-	0.38	0.75	-	0.26	-	
(V _{OL} = 1.5 V)		15	1.8	-	1.5	2.9	_	1.0	-	
Output Drive Current - RBO Output (CL/CP Device)	ЮН				}					mA
(VOH = 2.5 V) Source	ŀ	5.0	-0.25	-	-0.21	-0.64	-	-0.17	-	
(V _{OH} = 9.5 V)	i	10	-0.13	l -	-0.11	-0.34	-	-0.092	l - 1	
(VOH = 13.5 V)		15	-0.52	-	-0.44	-1.3	-	-0.36	-	
(VOL = 0.4 V) Sink	IOL	5.0	0.12	-	0.098	0.29		0.080		mA
(VOL = 0.5 V)	"-	10	0.30	-	0.25	0.75		0.21	-	
(VOL = 1.5 V)	l	15	1.2		0.98	2.9	-	0.80	l - i	
Output Drive Current - Segments (AL Device)	lor									mA
(VOL = 0.4 V) Sink		5.0	0.64	_	0.51	0.88	_	0.36	_	
(VOL = 0.5 V)		10	1.6		1.3	2.25	_	0.9	- 1	
(V _{OL} = 1.5 V)		15	4.2	_	3.4	8.8	_	2.4	-	
Output Drive Current - Segments	lOL									mA
(CL/CP Device)			i		1			l]	
(V _{OL} = 0.4 V) Sink		5.0	0.52	-	0.44	0.88	-	0.36	1	
(VOL = 0.5 V)	i	10	1.3	-	1.1	2.25	-	0.9	-	
(V _{OL} = 1.5 V)		15	3.6	-	3.0	8.8		2.4		
Input Current (AL Device)	lin	15		±0.1		±0.00001	±0.1	-	±1.0	μΑ
Input Current (CL/CP Device)	lin	15	-	±0.3		±0.00001	±0.3	-	±1.0	μΑ
Input Capacitance	Cin	-	-	-		5.0	7.5	-		ρF
Quiescent Current (AL Device)	IDD	5.0	-	5.0	-	0.005	5.0	-	150	μА
(Per Package) Vin = 0 or VDD.		10	-	10	-	0.010	10	-	300	
l _{out} = 0 μA		15	-	20	-	0.015	20	-	600	
Quiescent Current (CL/CP Device)	100	5.0	-	20		0.005	20	-	150	μА
(Per Package) Vin = 0 or VDD.	"	10	_	40	i -	0.010	40	-	300	1
lout = 0 µA	1	15	-	80		0.015	80	-	600	
Total Supply Current**1	ΙŢ	5.0			(T = (1	.9 μA/kHz)	f + I _{DD}			μА
(Dynamic plus Quiescent,		10	10 $I_{T} = (3.8 \mu \text{A/kHz}) f + I_{DD}$							
Per Package)]	15	I _T = (5.7 μA/kHz) f + I _{DD}						J	
(C _L = 50 pF on all outputs, all buffers switching)										

^{*}Tlow = -55°C for AL Device, -40°C for CL/CP Device.

FIGURE 1 - DYNAMIC POWER DISSIPATION SIGNAL WAVEFORMS

Thigh = +125°C for AL Device, +25°C for CL/CP Device.

[#] Noise immunity specified for worst-case input combination.

Noise Margin for both "1" and "0" level =

^{1.0} V min @ VDD = 5.0 V

^{2.0} V min @ V_{DD} = 10 V 2.5 V min @ V_{DD} = 15 V

t To calculate total supply current at loads other than 50 pF: $I_T(C_L) = I_T(50 \, pF) + 3.5 \times 10^{-3} \, (C_L - 50) \, V_{DD}f$ where: IT is in μA (per package), CL in pF, VDD in V, and f in kHz is input frequency.

^{**} The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

				All Types		
Characteristic	Symbol	Vqc VDD	Min	Тур	Max	Unit
Output Rise Time Segment Outputs	'TLH			1		ns
		5.0	-	40	80	
		10	-	30	60	
		15		25	50	
Output Rise Time RBO Output	tTLH	1	l	1		ns
		5.0		480	960	
		10	-	240	480	
		15	<u> </u>	190	380	
Output Fall Time-Segment Outputs*	1THL	١.,	l		250	ns
tTHL = (1.5 ns/pF) CL + 50 ns		5.0	-	125	250	
t _{THL} = (0.75 ns/pFl C _L + 37.5 ns		10	-	75	150	
t _{THL} = (0.55 ns/pF) C _L + 37.5 ns		15		65	130	
Output Fall Time - RBO Outputs	^t THL					ns
t _{THL} = (3.25 ns/pF) C _L + 107.5 ns		5.0	-	270	540	1
tTHL = (1.35 ns/pF) CL + 67.5 ns		10	-	135	270	
tTHL = (0.95 ns/pF) CL + 62.5 ns		15		110	220	
Propagation Delay Time-A, B, C, D Inputs*	1PLH	l				ns
тр∟н (0.40 ns/pF) С∟ + 620 ns		5.0	-	640	1280	
tp_H (0.25 ns/pF) C _L + 237.5 ns		10	-	250	500	
tpLH (0.20 ns/pF) CL + 165 ns		15		175	350	
tpHL (1.3 ns/pF) CL + 655 ns	1PHL	5.0	-	720	1440	ns
tpHL - (0.60 ns/pF) CL + 260 ns	ļ	10	-	290	580	j
tpHL (0.35 ns/pF) CL + 182.5 ns		15		200	400	
Propagation Delay Time—RBI and BI Inputs*	PLH					ns
tpLH = (1.05 ns/pF) CL + 547.5 ns		5.0		600	750	
tpLH = (0.45 ns/pF) CL + 177.5 ns		10	-	200	300	
tPLH = (0.30 ns/pF) CL + 135 ns		15		150	220	ļ
tpHL - (0.85 ns/pF) CL + 442.5 ns	1PHL	5.0	-	485	970	ns
tPHL (0.45 ns/pF) CL + 177.5 ns		10	-	200	400	
tpHL - (0.35 ns/pF) CL + 142.5 ns		15		160	320	
Propagation Delay Time-LT Input®	†PLH	1	ĺ			ns
tp_H = (0.45 ns/pF) CL + 290.5 ns		5.0	-	313	625	
tpLH · (0.25 ns/pF) CL + 112.5 ns		10 15	-	125 90	250 180	
tpLH (0.20 ns/pF) CL + 80 ns		- -	· ·			
tpHL (1.3 ns/pF) CL + 248 ns	1PHL	5.0	-	313	625	ns
tpHL - (0.45 ns/pF) C _L + 102.5 ns		10 15	-	125 90	250 180	
tPHL (0.35 ns/pF) CL + 72.5 ns			<u>i — — </u>	<u> </u>	-	
Setup Time	t _{\$u}	5.0	100	-	-	ns
	-	10	40	-	!	l
		15	30		 	<u> </u>
Hold Time	t _h	5.0	60	-		ns
		10 15	40 30	_		
		+			 	-
Latch Enable Pulse Width	WL(LE)	5.0	520	260		ns
		10	220	110		
		15	130	65	<u> </u>	L

^{*}The formulas given are for the typical characteristics only.

FIGURE 2 - DYNAMIC SIGNAL WAVEFORMS

a. Data Propagation Delay: Inputs RBI, D and LE low, and Inputs A, B, BI and LT high.

b. Inputs A, B, D and LE low, and Inputs RBI, BI and LT high.

c. Setup and Hold Times: Input RBI and D low, Inputs A, B, BI and LT high.

d. Pulse Width: Data DCBA strobed into latches.

CONNECTIONS TO VARIOUS DISPLAY READOUTS

LOGIC DIAGRAM

TYPICAL APPLICATIONS FOR RIPPLE BLANKING

TYPICAL APPLICATIONS FOR RIPPLE BLANKING (Cont)

4-BIT TRANSPARENT LATCH/4-TO-16 LINE DECODER

The MC14514B and MC14515B are two output options of a 4 to 16 line decoder with latched inputs. The MC14514B (output active high option) presents a logical "1" at the selected output, whereas the MC14515B (output active low option) presents a logical "0" at the selected output. The latches are R-S type flip-flops which hold the last input data presented prior to the strobe transition from "1" to "0". These high and low options of a 4-bit latch/4 to 16 line decoder are constructed with N-channel and P-channel enhancement mode devices in a single monolithic structure. The latches are R-S type flip-flops and data is admitted upon a signal incident at the strobe input, decoded, and presented at the output.

These complementary circuits find primary use in decoding applications where low power dissipation and/or high noise immunity is desired.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	±10	mA
PD	Power Dissipation, per Package†	500	mW
Υstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

4-BIT TRANSPARENT LATCH/4-TO-16 LINE DECODER

BLOCK DIAGRAM VDD = Pin 2: VSS = Pin 1: Data 1 0 2 Data 2 0 3 Transparen Latch Data 4 0 22 Strobe C 1	A	4 to 16 Decoder	S1 9 0 0 S2 8 0 0 S4 6 0 S5 5 0 S6 5 0 S7 18 0 S9 17 0 S10 19 0 S11 14 0 S13 13 0 S14 15	A A A A A A A A A A A A A A A A A A A
--	---	--------------------	--	---------------------------------------

DECODE TRUTH TABLE (Strobe = 1)* DATA INPUTS | SELECTE

	ı	ATA	INPUT	S	SELECTED OUTPUT
TIBIHNI	D	С	В	А	MC14514 = Logic "1" MC14515 = Logic "0"
0	0	0	0	0	so
0	0	0	0	1	S1
0	0	0	1	0	S2
0	0	0	1	1	\$3
0	0	1	0	0	S4
0	٥	1 1	0	1	\$5
0	0	1	1	0	S6
0	0	1	1	1	S7
0	1	۵	0	0	58
0	1	0	a	1	S9
0	1	0	1	0	S10
0	1	0	1	1	S11
٥	1	1	0	0	512
0	1 -	1	0	1	\$13
0	1 1	1	1	0	514
0	1	1	1	_ 1	S15
1	х	X	X.	X	All Outputs = 0, MC 14514
					All Outputs = 1, MC14515

X = Don't Care
*Strobe = 0, Data is latched

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	T _{le}	<u> </u>	<u> </u>	25°C		T _{hi}	gh	J
Characteris		Symbol	Vde	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	<u> </u>	0.05	T -	0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0		ľ	10	í –	0.05	l. –	0	0.05	-	0.05	i
		<u></u>	15		0.05	-	0	0.05		0.05	1
	"1" Level	VOH	5.0	4.95		4.95	5.0	1	4.95	_	Vdc
Vin = 0 or VDD			10	9.95	1 -	9.95	10		9.95	-	
			15	14.95	- _	14.95	15	-	14.95		<u> </u>
Input Voltage	"O" Lavel	VIL									Vdc
(Vo = 4.5 or 0.5 Vdc))		5.0	l –	1.5	l –	2.25	1.5	l - I	1.5	
(Vo = 9.0 or 1.0 Vdc))		10	l -	3.0	-	4.50	3.0	- 1	3.0	i
(Vo = 13.5 or 1.5 Vd			15	<u> </u>	4.0		6.75	4.0		4.0	1
	"1" Level	VIH									Vdc
(VO = 0.5 or 4.5 Vdc)	1		5.0	3.5	i -	3.5	2.75	-	3.6	-	ł
(V _O = 1.0 or 9.0 Vdc)			10	7.0	-	7.0	5.50	-	7.0	-	l I
(Vo • 1.5 or 13.5 Vd	c)		15	11.0] -	11.0	8.25	٠-	11.0	_	1
Output Drive Current (Al	L Device)	Іон									mAdı
(V _{DH} = 2.5 Vdc)	Source		5.0	-1.2	-	-1.0	-1.7	_	-0.7	_	l
(VOH • 4.6 Vdc)		'	5.0	-0.25	-	-0.2	-0.36	-	-0.14	-	1
(V _{DH} = 9.5 Vdc)			10	-0.62	- 1	-0.5	-0.9	-	-0.35	-	1
(VOH = 13.5 Vdc)			15	-1.8	<u> </u>	-1.5	-3.5	-	-1.1		<u> </u>
(VOL = 0.4 Vdc)	Sink	lor	5.0	0.64	-	0.51	0.88	_	0.36	-	mAd
(VOL = 0.5 Vdc)		"	10	1.6	۱ -	1.3	2.25	-	0.9	-	1
(VOL = 1.5 Vdc)			15	.4.2	l –	3.4	8.8	_	2.4	_	l
Output Drive Current (CI	/CP Device)	IOH									mAde
(VOH = 2.5 Vdc)	Source	0	5.0	-1.0	-	-0.8	~1.7	_	-0.6	· _	ì
(VOH = 4.6 Vdc)			5.0	-0.2	-	-0.16	-0.36	-	-0.12	_	ĺ
(VOH = 9,5 Vdc)			10	-0.5	l –	-0.4	-0.9	-	-0.3	-	l
(VOH = 13.5 Vdc)			15	-1.4	-	-1.2	-3.5	-	-1.0	_	ŀ
(VOL = 0.4 Vdc)	Sink	lor	5.0	0.52		0.44	0.88		0.36		mAd
(VOL = 0.5 Vdc)		.01	10	1.3	-	1.1	2.25	_	0.9	_	
(VOL = 1.5 Vdc)			15	3.6		3.0	8.8	_	2.4		i
Input Current (AL Device		lin	15	-	±0.1		±0.00001	±0.1		±1.0	μAdo
Input Current (CL/CP De		lin	15		10.3		±0.00001	±0.3		±1.0	µAda
Input Capacitance		_					5.0	7.5	<u> </u>		ρF
(V _{in} = 0)		Cin	_		} _	_] 3.0	7.5	_	_	"
Quiescent Current (AL D	-ui-st		5.0		5.0	-	0.005	5.0	<u> </u>	150	μAdo
(Per Package)	avice)	IDD	10	_	10	-	0.005	10	-	150 300	#^*
(rerrackeye)			15	-	20	1 _	0.010 0.016	20		600	ŀ
							0.005				-
Quiescent Current (CL/C	P Devicel	ספי	5.0] -	20] -		20	- 1	150	μAd
(Per Package)			10	l <u>-</u>	40	1 -	0.01 0 0.015	40	-	300	
		 	15		80	<u> </u>		80		600	
Total Supply Current**1		l T	5.0	l			35 μA/kH2				.Ad
(Dynamic plus Quieso	ent,		10	1			70 µA/kHz				1
Per Package)			15]		'T ={4.	05 µA/kHz	מסי + ייי			1
(Ct = 50 pF on all ou	tputs, air										
buffers switching)	<u> </u>			L							<u> </u>

^{*}Tiow = -55°C for AL Device, -40°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

†To calculate total supply current at loads other than 50 pF:

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$$

where: IT is in μA (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.002.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \ll (V_{in} \text{ or } V_{out}) \ll V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Thigh = + 125°C for AL Davice, +85°C for CL/CP Davice.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 26°C)

				All Types		
Characteristic	Symbol	V _{DD}	Min	Тур#	Mex	Unit
Output Rise Time	^t TLH					ns
tTLH = (3.0 ns/pF) C(+ 30 ns	1	5.0		180	360	
tTLH = (1.6 ns/pF) CL + 15 ns		10	l –	90	180	
TLH = (1.1 ns/pF) CL + 10 ns		15	_	65	130	
Output Fall Time	†THL				1	ns.
t _{THL} = (1.5 ns/pF) C _L + 26 ns		5.0	_	100	200	
tTHL = (0.75 ns/pF) CL + 12.5 ns		10	_	50	100	
tTHL = (0.55 ns/pF) CL + 9.5 ns		15	_	40	80	
Propagation Delay Time; Data, Strobe to S	tPLH.					ns
tթլլн, tթլլլ = (1.7 ns/pF) Cլ + 466 ns	1PHL	5.0	-	550	1100	
tp_H, tpHL = (0.66 ns/pF) CL + 192 ns		10	_	225	450	
tp_H, tpHL = (0.5 ns/pF) CL + 126 ns		15	-	150	300	
Inhibit Propagation Dalay Times	tPLH.	1	1		1	ns
tթլֈֈ, tթֈֈլ = (1.7 ու/pF) Сլ + 315 ու	tPHL	5.0	1 -	400	800	
tp_H, tpHL = (0.66 ns/pF) CL + 117 ns		10	_	150	300	
tplH, tpHL = (0.5 ns/pF) CL + 75 ns		15	-	100	200	
Setup Time	tsu				1	ns
Data to Strobe		5.0	250	125	-	
		10	100	50	T	
		15	75	38	-	
Hold Time	th	5.0	- 20	-100		na
Strobe to Data		10	-5	-40	=	
		15	10	- 30	-	
Strobe Pulse Width	twH				1	ns .
		5.0	350	175	1 - 1	
	1	10	100	50	-	
	1	15	76	38	-	

^{*}The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - DRAIN CHARACTERISTICS TEST CIRCUIT

[₱]Data tabelled "Typ" is not to to used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 2 - DYNAMIC POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

PIGURE 3 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

COMPLEX DATA ROUTING

Two MC14512 eight-channel data selectors are used here with the MC145148 four-bit latch/decoder to effect a complex data routing system. A total of 16 inputs from data registers are selected and transferred via a 3-state data bus to a data distributor for rearrangement and entry into 16 output registers. In this way sequential data can be re-routed or intermixed according to patterns determined by data select and distribution inputs.

Data is placed into the routing scheme via the eight inputs on both MC14512 data selectors. One register is assigned to each input. The signals on AO, A1, and A2 choose one of eight inputs for transfer out to the 3-state data bus. A fourth signal, labelled Dis, disables one of the MC14512 selectors, assuring transfer of data from only one register.

In addition to a choice of input registers, 1 thru 16, the rate of transfer of the sequential information can also be varied. That is, if the MC14512 were addressed at a rate that is eight times faster

than the shift frequency of the input registers, the most significant bit (MSB) from each register could be selected for trensfer to the data bus. Therefore, all of the most significant bits from ell of the registers can be transferred to the data bus before the next most significant bit is presented for transfer by the input registers.

Information from the 3-state bus is redistributed by the MC14514B four-bit latch/decoder. Using the four-bit address, Dirtu D4, the information on the inhibit line can be transferred to the addressed output line to the desired output registers, A thru P. This distribution of data bits to the output registers can be made in many complex petterns. For example, all of the most significant bits from the input registers can be routed into output register A, all of the next most significant bits into register B, etc. In this way horizontal, vertical, or other methods of data slicing can be implemented.

DATA ROUTING SYSTEM

BINARY UP/DOWN COUNTER

The MC14516B synchronous up/down binary counter is constructed with MOS P-channel and N-channel enhancement mode deivces in a monolithic structure.

This counter can be preset by applying the desired value, in binary, to the Preset inputs (P0, P1, P2, P3) and then bringing the Preset Enable (PE) high. The direction of counting is controlled by applying a high (for up counting) or a low (for down counting) to the UP/DOWN input. The state of the counter changes on the positive transition of the clock input.

Cascading can be accomplished by connecting the Carry Out to the Carry In of the next stage while clocking each counter in parallel. The outputs (Q0, Q1, Q2, Q3) can be reset to a low state by applying a high to the reset (R) pin.

This CMOS counter finds primary use in up/down and difference counting. Other applications include: (1) Frequency synthesizer applications where low power dissipation and/or high noise immunity is desired, (2) Analog-to-digital and digital-to-analog conversions, and (3) Magnitude and sign generation.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Internally Synchronous for High Speed
- Logic Edge-Clocked Design Count Occurs on Positive Going Edge of Clock
- Single Pin Reset
- Asynchronous Preset Enable Operation
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	٧
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	V
lin-lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	ô

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: – 12mW/°C from 100°C to 125°C
Ceramic "L" Package: – 12mW/°C from 100°C to 125°C

TRUTH TABLE

Carry In	Up/Down	Preset Enable	Reset	Clock	Action
1	×	0	0	×	No Count
0	1	0	0	_	Count Up
0_	0	0	0	_	Count Down
х	х	1	0	×	Presel
X	×	х	1	×	Reset

X = Don't Care

Note: When counting up, the Carry Out signal is normally high and is low only when O0 through O3 are high and Carry in is low. When counting down, Carry Out is low only when O0 through O3 and Carry in are low.

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

BINARY UP/DOWN COUNTER

CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: ~55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: - 40°C to + 85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

BLOCK DIAGRAM

V_{DD} = Pin 16 V_{SS} = Pin 8

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} \leq (V_{in} or V_{out}) \leq V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			V _{DD}	Tto	w*	i	25°C		Thi	gh*	
Characteristic		Symbol	Vdc	Min	Max	Min	Typ #	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VOL	5.0 10 15	-	0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	111	4.95 9.95 14.95	5.0 10 15	l	4.95 9.95 14.95	111	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"O" Level	V _{IL}	5.0 10 15	- -	1.5 3.0 4.0	- -	2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	ViH	5.0 10 15	3.5 7.0 11.0	111	3.5 7.0 11.0	2.75 5.50 8.25	1 1	3.5 7.0 11.0	111	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	1111	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	1111	- 1.7 - 0.36 - 0.9 - 2.4	1111	mAdo
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	†OL	5.0 10 15	0.64 1.6 4.2	111	0.51 1.3 3.4	0.88 2.25 8.8	=	0.36 0.9 2.4	111	mAde
Output Drive Current (CL/CP Devic (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	- 2.5 - 0.52 - 1.3 - 3.6	1111	- 2.1 - 0.44 - 1.1 - 3.0	-4.2 -0.88 -2.25 -8.8	1111	- 1.7 - 0.36 - 0.9 - 2.4	1111	mAdd
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	†OL	5.0 10 15	0.52 1.3 3.6	-	0.44 1.1 3.0	0.88 2.25 8.8	111	0.36 0.9 2.4	111	mAde
Input Current (AL Device)		lin	15		±0.1		±0.00001	±0.1		± 1.0	μAdd
Input Current (CL/CP Device)		lin	15		±0.3		± 0.00001	±0.3		± 1.0	μAdd
input Capacitance (V _{in} = 0)		Cin	_	_		_	5.0	7.5	_	_	ρF
Quiescent Current (AL Device) (Per Package)		מסו	5.0 10 15	<u>-</u>	5.0 10 20	_ _ _	0.005 0.010 0.015	5.0 10 20	<u>-</u>	150 300 600	μAdo
Quiescent Current (CL/CP Device) (Per Package)		מסו	5.0 10 15	=	20 40 80	=	0.005 0.010 0.015	20 40 80	=	150 300 600	μAdd
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)		lŢ	5.0 10 15			lT = (1	58 μΑ/kHz) f .2 μΑ/kHz) f .7 μΑ/kHz) f	+ IDD			μAdd

*T_{low} = -55°C for AL Dovico, -40°C for CL/CP Dovico. Thigh = +125°C for AL Dovice, +85°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

"The fermulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vik}$$

where: IT is in μA (per package). C_L in pF, $V=\{V_{DD}-V_{SS}\}$ in volts, f in kHz is input frequency, and k=0.001.

SWITCHING CHARACTERISTICS* (CL = 50 pF. TA = 25°C)

		l		All Types		
Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time	ITLH.					ns
tTLH, tTHL=(1.5 ns/pF) CL+25 ns	1THL	5.0	-	100	200	
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns		10	i –	50	100	
tTLH, tTHL=(0.55 ns/pF) CL+9.5 ns		15	_	40	80	
Propagation Delay Time	¹PLH,		[ns
Clock to O	t _{PHL}					
tpLH, tpHL = (1.7 ns/pF) CL + 230 ns		5.0	_	315	630	
tpLH, tpHL = (0.88 ns/pF) CL + 97 ns		10	-	130	260	
tplH. tpHL = (0.6 ns/pF) CL + 75 ns		15		100	200	
Clock to Carry Out	^t PLH,		i			ns
tp _{LH} , tp _{HL} = (1.7 ns/pF) C _L + 230 ns tp _{LH} , tp _{HL} = (0.66 ns/pF) C _L + 97 ns	[†] PHL	5.0	-	315	630	
tplH, tpHL = (0.66 ns/pF) CL + 97 ns tpLH, tpHL = (0.6 ns/pF) CL + 75 ns		10 15	-	130 100	260 200	
				-100	200	
Carry In to Carry Out tpLH, tpHL = (1.7 ns/pF) CL + 230 ns	^t PLH,	5.0		180	360	ns
тры, тры = (1.7 парт) С + 230 па тры, тры = (0.66 па/рг) С + 97 па	¹ PHL	10	=	80	160	
tp_H, tpHL = (0.5 ns/pF) CL + 75 ns		15	=	60	120	
Preset or Reset to Q	tour	<u>† </u>		-		ns
tp_H, tpHL = (1.7 ns/pF) Ct + 230 ns	^t PLH, ^t PHL	5.0	l _	315	630	***
tplH, tpHL = (0.66 ns/pF) CL + 97 ns	, THE	10	-	130	360	
tplH, tpHL = (0.5 ns/pF) CL + 75 ns		15		100	200	1
Preset or Reset to Carry Out	[†] PLH,					ns
tpLH, tpHL = (1.7 ns/pF) CL + 465 ns	PHL	5.0	_	550	1100	
tpլн, tpнլ = (0.66 ns/pF) Čլ + 192 ns	'	10	-	225	450	1
tpLH, tpHL = (0.5 ns/pF) CL + 125 ns		15	-	150	300	[
Reset Pulse Width	1 _w	5.0	380	190	_	ns ns
	· "	10	200	100	_	i
		15	160	80	' –	[
Clock Pulse Width	1WH	5.0	350	200	_	ns
	, wu	10	170	100	_	'''
	l	15	140	75	_	1
Clock Pulse Frequency	l'ct	5.0		3.0	1.5	MHz
	, c,	10	_	6.0	3.0	"""
	f	15	l –	8.0	4.0	
Preset or Reset Removal Time	trem	5.0	650	325		ns
The Preset or Reset signal must be low prior to a	-yem	10	230	115	l _	'
positive-going transition of the clock.	l	15	160	90	_	
Clock Rise and Fall Time	ITLH.	5.0			15	μS
	THL	10	_	l =	5	"
	I	15	l –	l –	4	ł
Setup Time	tsu	5.0	260	130		ns
Carry in to Clock	*80	10	120	60		''*
		15	100	50	_]
Hotd Time	 .	5.0	-			
Clock to Carry In	th	10	20	-60 -20	_	ns
3.334 13 Garry III		15	20	آةً ا	=	1
Setup Time			500			
Up/Down to Clock	t _{su}	5.0 10	500 200	250 100	_	ns
-p		15	150	75	1 =	
N-14 TI	 					<u> </u>
Hold Time	th	5.0	-70	- 160	-	ns
Clock to Up/Down		10 15	- 10 0	-60 -40	_	
<u> </u>			-			 -
Setup Time	l _{SU}	5.0	-40	- 120 - 70	_	ns
Pn to PE		10 15	-30 -25	- 70 - 50		
						
Hold Time	th	5.0	480	240	_	ns
PE to Pn	l	10 15	420	210	_	
	Ļ		420	210	_	
Preset Enable Pulse Width	¹wH	5.0	200	100	. – .	ns
	I	10	100	50	_	
	1	15	60	40	_	

[&]quot;The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 2 - SWITCHING TIME WAVEFORMS

PIN DESCRIPTIONS

INPUTS

P0, P1, P2, P3, Preset Inputs (Pins 4, 12, 13, 3) — Data on these inputs is loaded into the counter when PE is taken high.

Carry In, (Pin 5) — This active-low input is used when cascading stages. Carry In is usually connected to Carry Out of the previous stage. While high, Clock is inhibited.

Clock, (Pin 15) — Binary data is incremented or

Clock, (Pln 15) — Binary data is incremented or decremented, depending on the direction of count, on the positive transition of this input.

CUTPUTS

Q0, Q1, Q2, Q3, Binary outputs (Pins 6, 11, 14, 2) — Binary data is present on these outputs with Q0 corresponding to the least significant bit.

Carry Out, (Pin 7) — Used when cascading stages, Carry Out is usually connected to Carry in of the next stage. This synchronous output is active low and may also be used to indicate terminal count.

CONTROLS

PE, Preset Enable, (Pin 1) — Asynchronously loads data on the Preset Inputs. This pin is active high and inhibits the clock when high.

R, Reset, (Pin 9) — Asynchronously resets the Q outputs to a low state. This pin is active high and inhibits the clock when high.

Up/Down, (Pin 10) — Controls the direction of count, high for up count, low for down count.

SUPPLY PINS

VSS, Regative Supply Voltage, (Pin 8) — This pin is usually connected to ground.

Vpp, Positive Supply Voltage, (Pin 16) — This pin is connected to a positive supply voltage ranging from 3.0 volts to 18.0 volts.

FIGURE 3 - PRESETTABLE CASCADED 6-BIT UP/DOWN COUNTER

Note: The Least Significant Digit (L.S.D.) counts from a preset value once Preset Enable (PE) goes low. The Most Significant Digit (M.S.D.) is disabled while $\overline{C_{in}}$ is high. When the count of the L.S.D. reaches 0 (count down mode) or reaches 15 (count up mode), $\overline{C_{out}}$ goes low for one complete clock cycle, thus allowing the next counter to decrement/increment one count. (See Timing Diagram) The L.S.D. now counts through another cycle (15 clock pulses) and the above cycle is repeated.

TIMING DIAGRAM FOR THE PRESETTABLE CASCADED 8-BIT UP/DOWN COUNTER

FIGURE 4 -- PROGRAMMABLE CASCADED FREQUENCY DIVIDER

Note: The programmable frequency divider can be set by applying the desired divide ratio, in binary, to the preset inputs. For example, the maximum divide ratio of 255 may be obtained by applying a 1111 1111 to the preset inputs P0 to P7. For this divide operation, both counters should be configured in the count down mode. The divide ratio of zero is an undefined state and should be avoided.

DUAL 64-BIT STATIC SHIFT REGISTER

The MC14517B dual 64-bit static shift register consists of two identical, independent, 64-bit registers. Each register has separate clock and write enable inputs, as well as outputs at bits 16, 32, 48. and 64. Data at the data input is entered by clocking, regardless of the state of the write enable input. An output is disabled (open circuited) when the write enable input is high, During this time, data appearing at the data input as well as the 16-bit, 32-bit, and 48-bit taps may be entered into the device by application of a clock pulse. This feature permits the register to be loaded with 64 bits in 16 clock periods, and also permits bus logic to be used. This device is useful in time delay circuits, temporary memory storage circuits, and other serial shift register applications.

- Diode Protection on All Inputs
- · Fully Static Operation
- Output Transitions Occur on the Rising Edge of the Clock Pulse
- · Exceedingly Slow Input Transition Rates May Be Applied to the Clock Input
- 3-State Output at 64th-Bit Allows Use in Bus Logic Applications
- Shift Registers of any Length may be Fully Loaded with 16 Clock Pulses
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS (Voltages referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	>
lin. lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Packaget	500	mW
T _{s1g}	Storage Temperature	- 65 to + 150	°Ç
TL	Load Temperature (8-Second Soldering)	260	ů

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: - 12mW/*C from 85°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

MC14517B

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL 64-BIT STATIC SHIFT REGISTER

L SUFFIX CERAMIC PACKAGE **CASE 620**

P SUFFIX PLASTIC PACKAGE **CASE 648**

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: - 40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

PIN ASSIGNMENT

FUNCT	IONAL
TRUTH	TARLE

CLOCK	WRITE ENABLE	DATA	16-BIT TAP	32-BIT TAP	48-BIT TAP	64-BIT TAP
0	0	×	Contant of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
0	1	x	High Impedance	High Impedance	High Impedance	High Impedance
1	0	×	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
1	1	×	High Impedance	High Impedence	High Impedence	High Impedance
5	0	Data entered into 1st Bit	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
	1	Data entered into 1st Bit	Data at tap entered into 17-Bit	Data at tap entered into 33-Bit	Data at tap entered into 49-8it	High Impedance
~	0	×	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
~	1	×	High Impedance	High Impedance	High Impedence	High Impedance

X - Don't Care

MC14517B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

Characteristic		Symbol	V _{DD} Vdc	Tlow*		25°C			Thigh		l
				Min Max		Min	Typ#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VOL	5.0 10 15	~ 1 1	0.05 0.05 0.05	-	0	0.05 0.05 0.05	111	0.05 0.05 0.05	Vdc
Vin = 0 or VDD	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15	-	4.95 9.95 14.95		Vdc
Input Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc)	"0" Level	ViL	5.0 10 15	-	1.5 3.0 4.0	=	2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
(VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc)	"1" Level	ViH	5.0 10 15	3.5 7.0 11.0	- -	3.5 7.0 11.0	2.75 5.50 8.25	- -	3.5 7.0 11.0	111	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	1111	-2.4 -0.51 -1.3 -3.4	4.2 0.88 2.25 8.8	1111	-1.7 -0.36 -0.9 -2.4	1111	mAd
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	(OL	5.0 10 15	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4	1 1	mAd
Output Drive Current (CL/CP Devic (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6	1111	-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	1 1 1	-1.7 -0.36 -0.9 -2.4		mAd
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.52 1.3 3.6	Ξ	0.44 1.1 3.0	0.68 2.25 8.8	=	0.38 0.9 2.4	111	mAd
Input Current (AL Device)		lin	15		±0.1	_	±0.00001	±0.1		± 1.0	μAd
Input Current (CL/CP Device)		l _{in}	15		±0.3		±0.00001	±0.3	_	±1.0	μAd
Input Capacitance (Vin = 0)		Cin	-	_	_	_	5.0	7.5	-	1	ρF
Quiescent Current (AL Device) (Per Package)		IDD	5.0 10 15	=	5.0 10 20	<u>-</u>	0.005 0.010 0.015	5.0 10 20	111	150 300 600	μAd
Quiescent Current (CL/CP Device) (Per Package)		†DD	5.0 10 15	 	20 40 80	=	0.005 0.010 0.015	20 40 80	1 1 1	150 300 600	μAd
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)	_	l l	5.0 10 15	10 IT = (8.8 μΑ/kHz) 1 + tDD				μAd			
Three-State Leakage Current (AL Device)		ħΤL	15	_	±0.1	_	±0.00001	±0.1	-	±3.0	μAd
Three-State Leakage Current (CL/CP Device)		HτL	15		± 1.0		±0.00001	± 1.0	_	±7.5	μAdd

^{*}T_{low} = ~55°C for AL Device, ~40°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \, pF) + (C_L - 50) \, VIk$$

where: IT is in μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in velts, f in kHz is input frequency, and k=0.004.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} < (V_{in} or V_{out}) < V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Thigh = + 125°C for AL Device, +85°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fail Time TI_H, THI_ = (1.5 ns/pF) C_L + 25 ns TI_H, THI_ = (0.75 ns/pF) C_L + 12.5 ns TI_H, THI_ = (0.55 ns/pF) C_L + 9.5 ns	եւթ, երև	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time tp_H, tpHL = (1.7 ns/pF) CL + 390 ns tp_H, tpHL = (0.66 ns/pF) CL + 177 ns tp_H, tpHL = (0.5 ns/pF) CL + 115 ns	PLH- PHL	5.0 10 15	=	475 210 140	770 300 215	ns
Clock Pulse Width	WH	5.0 10 15	330 125 100	170 75 60	=	ns
Clock Pulse Fraquency	fcI	5.0 10 15		3.0 6.7 8.3	1.5 4.0 5.3	MHz
Clock Pulse Rise and Fall Time	тін. ты	5.0 10 15	**See Note			
Data to Clock Setup Time	tsu	5.0 10 15	0 10 15	-40 -15 0	=	ns
Data to Clock Hold Time	th	5.0 10 15	150 75 35	75 25 10	- -	ns
Write Enable to Clock Setup Time	¹su	5.0 10 15	400 200 110	170 65 50	-	ns
Write Enable to Clock Release Time	^t cel	5.0 10 15	380 180 100	160 55 40	=	ns

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

^{*} The formulas given are for the typical characteristics only at 25°C.

* Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

** When shift register sections are cascaded, the maximum rise and fall time of the clock input should be equal to or less than the rise and fall time of the data outputs, driving data inputs, plus tho propagation delay of the output driving stage.

MC14517B

FIGURE 2 — TYPICAL OUTPUT SOURCE CURRENT CHARACTERISTICS TEST CIRCUIT

FIGURE 3 – TYPICAL OUTPUT SINK CURRENT CHARACTERISTICS TEST CIRCUIT

(Output being tested should be in the high-logic state). (Output being tested should be in the low-logic state).

FIGURE 4 - AC TEST WAVEFORMS

DUAL UP COUNTERS

The MC14518B dual BCD counter and the MC14520B dual binary counter are constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each consists of two identical, independent, internally synchronous 4-stage counters. The counter stages are type D flip-flops, with interchangeable Clock and Enable lines for incrementing on either the positive-going or negative-going transition as required when cascading multiple stages. Each counter can be cleared by applying a high level on the Reset line. In addition, the MC14518B will count out of all undefined states within two clock periods. These complementary MOS up counters find primary use in multi-stage synchronous or ripple counting applications requiring low power dissipation and/or high noise immunity.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Internally Synchronous for High Internal and External Speeds
- Logic Edge-Clocked Design Incremented on Positive Transition of Clock or Negative Transition on Enable
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL BCD UP COUNTER (MC14518B) DUAL BINARY UP COUNTER (MC14520B)

CERAMIC PACKAGE
CASE 620

P SUFFIX LASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: = 40°C to = 85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	V
Vin. Vout	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	٧
lin- lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tsig	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: –12mW/"C from 65°C to 65°C Ceramic "L" Package: –12mW/"C from 100°C to 125°C

TRUTH TABLE

CLOCK	ENABLE	RESET	ACTION
_	_1	0	Increment Counter
0	_	0	Increment Counter
7	х	0	No Change
×	5	0	No Change
5	0	0	No Change
1	7	0	No Change
×	×	1	00 thru 03 = 0

X = Don't Care

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Vocal

)	VDD	Tle	<u>w*</u>		25°C		Thi	gh*	1
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"0" Level	VOL	5.0		0.05	_	0	0.05		0.05	Vdc
Vin = VDD or 0			10		0.05	_	0	0.05	_	0.05]
		i	15	l	0.05		0	0.05		0.05	
	"1" Level	VOH	5.0	4.95	_	4.95	5.0	_	4.95		Vdc
Vin = 0 or VDD			10	9.95	l _	9.95	10	_	9.95	_	ļ
		ľ	15	14.95	_	14.95	15	-	14.95	_	
Input Voltage	"0" Level	VIL			-						Vdc
(VO = 4.5 or 0.5 Vdc)		"-	5.0	l –	1.5	_	2.25	1.5	_	1.5	ı
(VO = 9.0 or 1.0 Vdc)		1	10	l –	3.0	l –	4.50	3.0	_	3.0	1
(VO = 13.5 or 1.5 Vdc)			15	-	4.0	–	6.75	4.0		4.0	
	"1" Level	VIH									Vdc
(Vn = 0.5 or 4.5 Vdc)	. 20.0.	1 ""	5.0	3.5	–	3.5	2.75	_	3.5	-	
(VO = 1.0 or 9.0 Vdc)			10	7.0	_	7.0	5.50	_	7.0	l —	
(VO = 1.5 or 13.5 Vdc)		1	15	11.0	–	11.0	8.25	- _	11.0	l -	l
Output Drive Current (AL Device)		Юн									mAdd
(VOH = 2.5 Vdc)	Source	""	5.0	-3.0	l –	-2.4	-4.2	–	- 1.7	_	
(VOH = 4.6 Vdc)		1	5.0	-0.64	l –	-0.51	~ 0.88	_	-0.36	-	
(VOH = 9.5 Vdc)			10	- 1.6	-	- 1.3	~ 2.25	_	-0.9	_	
(VOH = 13.5 Vdc)			15	-4.2		-3.4	8.8	-	-2.4	_	
(VOL = 0.4 Vdc)	Sink	lOL.	5.0	0.64	_	0.51	0.88		0.36	-	mAde
(VOL = 0.5 Vdc)		"	10	1.6	l —	1.3	2.25	_	0.9	l –	
(VOL = 1.5 Vdc)			15	4.2	_	3.4	8.8	_	2.4	-	
Output Drive Current (CL/CP Devi	ce)	ЮН									mAdd
(VOH = 2.5 Vdc)	Source	1 '0''	5.0	- 2.5	l –	- 2.1	-4.2	_	-1.7	_	1
(VOH = 4.6 Vdc)		1	5.0	-0.52	_	- 0.44	- 0.88	_	-0.36	_	
(VOH = 9.5 Vdc)		1	10	- 1.3	-	-1.1	~ 2.25	_	- 0.9	–	l
(VOH = 13.5 Vdc)			15_	-3.6	_	-3.0	- 8.8		-2.4		
(VOL = 0.4 Vdc)	Sink	l _O L	5.0	0.52		0.44	0.88	_	0.36	-	mAdd
(VOL = 0.5 Vdc)		"-	10	1.3	l –	1.1	2.25	_	0.9	_)
(VOL = 1.5 Vdc)		1	15	3.6	l –	3.0	8.8	l —	2.4		
Input Current (AL Device)		lin	15		±0.1	_	±0.00001	±0.1		± 1.0	μAdo
Input Current (CL/CP Device)		tin	15	_	±0.3	_	±0.00001	± 0.3	_	± 1.0	μAdo
Input Capacitance (Vin = 0)		Cin	_	-		_	5.0	7.5		_	pF
Quiescent Current (AL Device)		lpp	5.0	_	5.0		0.005	5.0		150	μAdo
(Per Package)		100	10	l –	10	_	0.010	10	l –	300	"
		ł	15	l –	20	-	0.015	20	l –	600	l
Quiescent Current (CL/CP Device	<u> </u>	¹DD	5.0	_	20		0.005	20		150	μAdo
(Per Package)	•	700	10	l –	40	l –	0.010	40	l –	300	~~~
		1	15	l –	80	-	0.015	80	-	600	l
Total Supply Current**†		İt	5.0			hr = 10	.6 μΑ/kHz) I	- Inn			μAdo
(Dynamic plus Quiescent,		"	10	1			.0 μΑ/κΗz) f ·				~~~
Per Package)		l	15	ł			.7 μA/kHz) f -				l
(CL = 50 pF on all outputs,		i		1		• •	•				1
all buffers switching)		l	1								I

^{*} T_{low} = -55°C for AL Devico, -40°C for CL/CP Devico. T_{high} = +125°C for AL Device, +85°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ V1k}$$

where: IT is in μA (per package), CL in pF, V = (VDD - VSS) in volts, 1 in kHz is input frequency, and k = 0.002.

PIN ASSIGNMENT

^{**}The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

			L	All Types	,	
Characteristic	Symbol	V _{DD}	Min	Тур#	Max	Unit
Output Rise and Fall Time	tTLH.					ns
tTLH, tTHL = (1.5 ms/pF) CL + 25 ms	[‡] THL	5.0	l –	100	200	1
tTLH. tTHL = (0.75 ns/pF) CL + 12.5 ns	1 1	10	-	50	100	1
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns		15	l –	40	80	
Propagation Delay Time	ΨLH,		1			D18
Clock to Q/Enable to Q	I ΦHL I					1
tp_H, tpHL = (1.7 ns/pF) CL + 216 ns	''''	5.0	_	280	560	1
tp_H, tpHL = (0.66 m/pF) CL + 97 ms		10	_	115	230	1
tp_H, tpHL = (0.5 ns/pF) CL + 75 ns		15	-	80	160	1
Reset to Q	1 _{PHL}					ns ns
tрнц = (1.7 ns/pF) C _L + 265 ns		5.0	-	330	660	
tpHL = (0.66 ns/pF) CL + 117 ns		10	-	130	230	1
tpHL ≈ (0.66 ns/pF) CL + 95 ns	1	15	-	90	170	1.
Clock Pulse Width	tw(H)	5.0	200	100	-	ns.
	lw(L)	1,0	100	50	-	1
		15	70	35		<u> </u>
Clock Pulse Frequency	l (d	5,0	1 -	2,6	1.5	MHz
		10	-	6.0	3.0	1
		15	<u> </u>	8,0	4.0	
Clock or Enable Rise and Fall Time	THL, TLH	5,0	1 -	-	15	μs
]	10	l –	_	5	
· · · · · · · · · · · · · · · · · · ·	•	15	<u> </u>	_	4	1
Enable Pulse Width	WH(E)	5.0	440	220	_	l ms
		10	200	100	1 -	1
		15	140	70	<u> </u>	
Reset Pulse Width	TWH(R)	5.0	280	125	-	ma
	[[10	120	55	l –	
<u></u>		15	90	40	<u> </u>	_l
Reset Removal Time	t _{rem}	5.0	-5	-45		ns
	1 1	10	15	- 15	-	Ī
		15	20	-5	-	1

^{*}The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

[◆]Data fabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - TIMING DIAGRAM

FIGURE 4 — DECADE COUNTER (MC145188) LOGIC DIAGRAM (1/2 OF DEVICE SHOWN)

FIGURE 5 — BINARY COUNTER (MC14520B) LOGIC DIAGRAM (1/2 OF DEVICE SHOWN)

4-BIT AND/OR SELECTOR or QUAD 2-CHANNEL DATA SELECTOR or QUAD EXCLUSIVE "NOR" GATE

The MC14519B is constructed with MOS P-channel and N-channel enhancement mode devices in a monolithic structure. These complementary MOS logic gates find primary use where low power dissipation and/or high noise immunity is desired.

This device provides three functions in one package; a 4-Bit AND/OR Selector, a Quad 2-Channel Data Selector, or a Quad Exclusive NOR Gate.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Plug-In Replacement for CD4019 in Most Applications

Control A 90 0 10 20 X0 60 0 10 20 X1 40 0 11 21 V1 50 0 12 22 V2 30 0 13 23 VDD = Pin 16 VSS = Pin 8

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

4-BIT AND/OR SELECTOR

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

CONTRO	LINPUTS	Ουτρυτ
Α	В	Zn
0	0	0
0	1 1	Yn
1	0	×n
1	1	x _n ⊚ Y _n

Note:

X_n
Y_n meens X_n (Exclusive-NOR) Y_n

MAXIMUM RATINGS* (Voltages Referenced to Vss)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
I _{tn} . I _{out}	Input or Output Current (DC or Transient), per Pin	±10	mΑ
PD	Power Dissipation, per Package†	500	mW
Tata	Storage Temperature	- 65 to + 150	÷
TL	Lead Temperature (8-Second Soldering)	260	•c

^{*}Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: -12mW/"C from 65"C to 85"C
Ceramic "L" Package: -12mW/"C from 100"C to 125"C

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			V _{DD}	Tic	w*	25°C			Thigh*		
Characteristic		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Uni
Output Voltage Vin = VDD or 0	"O" Level	VOL	5.0 10 15	1 1 1	0.05 0.05 0.05		0 0	0.05 0.05 0.05	- -	0.05 0.05 0.05	Vdo
V _{in} = 0 or V _{DD}	"1" Level	Voн	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95		Vd
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	V _{IL} .	5.0 10 15	<u>-</u> -	1.5 3.0 4.0	<u>-</u>	2.25 4.50 6.75	1.5 3.0 4.0	<u>-</u>	1.5 3.0 4.0	Vde
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0	<u>-</u> -	3.5 7.0 11.0	2.75 5.50 8.25	111	3.5 7.0 11.0		Vde
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	1 1 1 1	- 1.7 - 0.36 - 0.9 - 2.4	1111	mAd
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lor -	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	1 1 1	0.36 0.9 2.4	1	mAc
Output Drive Current (CL/CP Devic (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6		-2.1 -0.44 -1.1 -3.0	- 4.2 - 0.68 - 2.25 8.8	- I - I	- 1.7 - 0.36 - 0.9 - 2.4	1	mAc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	111	0.36 0.9 2.4	111	mAc
Input Current (AL Device)		lin	15	_	± 0.1		±0.00001	±0.1	_	± 1.0	μAd
Input Current (CL/CP Device) Input Capacitance (Vin = 0)		l _{in} C _{in}	15 —	_	± 0.3 —		±0.00001 5.0	± 0.3	_	± 1.0	μAd pF
Quiescent Current (AL Device) (Per Package)		too	5.0 10 15	=	5.0 10 20	_ 	0.005 0.010 0.015	5.0 10 20	=	150 300 600	μAd
Quiescent Current (CL/CP Device) (Per Package)		[‡] DD	5.0 10 15	=	20 40 80	=	0.005 0.010 0.015	20 40 80		150 300 600	μAd
Total Suppty Current**† (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)		ŀΤ	5.0 10 15	T = (1.2 μΑ/κHz) f + IDD T = (2.4 μΑ/κHz) f + IDD T = (3.6 μΑ/κHz) f + IDD T = (3.6 μΑ/κHz) f + IDD					μAd		

^{*}T_{low} = ~55°C for AL Dovice, ~40°C for CL/CP Device. T_{high} = +125°C for AL Dovice, +85°C for CL/CP Dovice.

†To calculate total supply current at leads other than 50 pF:

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.004.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (C1 = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time	tTLH-					ns
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns	THL	5.0	-	100	200	1
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns	1	10	1 -	50	100	
t _{TLH} , t _{THL} = (0.55 ns/pF) C _L + 9.5 ns		15	i -	40	60	
Propagation Delay Time	¹PLH,	 	†	1		ns
tpLH_tpHL = (1.7 ns/pF) CL + 165 hs	tPHL.	5.0	-	250	500	
tPLH_tPHL = (0.66 ns/pF) CL + 82	'	10	-	115	225	1
tpLH, tpHL = (0.5 ns/pF) CL + 65 ns		15	-	90	165	1

^{*}The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - DYNAMIC POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

TYPICAL CIRCUIT APPLICATIONS

DATA REGISTER SELECTION COMPARISON

CO	NV	FRS	ION	TAR	I F

	PERATIO CODE	N		ουτ	FUNCTION		
Α	В	INV	Ω0	Q1	Q2	Q3	
0	0	٥	0	0	0	0	Inhibit, all zeros
0	0	1	1	1 1	1	1	Inhibit, all ones
1 1	0	٥	×ο	X1	X2	Х3	Control A
1	0	1	Χo	Χī	X2	ХЗ	Control A and Invert
0	1	0	Υ0	Y1	Y2	Y3 _	Control B
0	1	1	₹0	₹1	Ÿ2.	⊽ 3	Control B and Invert
1	1 1	0	X0 @ Y0	X1@Y1	X2@ Y2	X3@ Y3	Exclusive NOR
	1	1	X0 ⊕ Y0	X1⊕ Y1	X2 ⊕ Y2	X3⊕ Y3	Exclusive OR

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14520B See Page 6-288

MC14521B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

24-STAGE FREQUENCY DIVIDER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Serios: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C
MC14XXXBCP (Plastic Package)
MC14XXXBCL (Ceramic Package)

PIN ASSIGNMENT

24-STAGE FREQUENCY DIVIDER

The MC14521B consists of a chain of 24 flip-flops with an input circuit that allows three modes of operation. The input will function as a crystal oscillator, an RC oscillator, or as an input buffer for an external oscillator. Each flip-flop divides the frequency of the previous flip-flop by two, consequently this part will count up to $2^{24} = 16,777,216$. The count advances on the negative going edge of the clock. The outputs of the last seven-stages are available for added flexibility.

- All Stages are Resettable
- Reset Disables the RC Oscillator for Low Standby Power Drain
- RC and Crystal Oscillator Outputs Are Capable of Driving External Loads
- Test Mode to Reduce Test Time
- VDD' and VSS' Pins Brought Out on Crystal Oscillator Inverter to Allow the Connection of External Resistors for Low-Power Operation
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load over the Rated Temperature Range.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
1 _{in} . 1 _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
Po	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	ò
TL	Lead Temperature (B-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: – 12mW/°C from 65°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

This device contains protection circultry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{\text{SS}} \leq (V_{\text{in}} \cap V_{\text{out}}) \leq V_{\text{DS}}$.

Unused Inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

MC14521B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

	i i	V _{DD}	Tlo	w*		25°C		Th	lgh *	J
Characteristic	Symbol	Vdc	Min	Max	Min	Typ #	Max	Min	Max	Unit
Output Voltage "O" Level	VOL	5.0	_	0.05	_	0	0.05		0.05	Vdc
V _{in} = V _{DD} or O	"	10	l – :	0.05	_	0	0.05	_	0.05	
· · · · · · · · · · · · · · · · · · ·	i :	15	l –	0.5	_	0	0.05	-	0.05	
"1" Level	VOH	5.0	4.95	_	4.95	5.0	_	4.95	Τ	Vdc
V _{in} = 0 or V _{DD}	104	10	9.95	_	9.95	10	_	9.95	-	1
TIN S S. TOO		15	14.95	_	14.95	15	_	14.95	l _	1
									 	1/4-
Input Voltage "O" Level	V _I L				l	2.25			١, ٥	Vdc
(V _O = 4.5 or 0.5 Vdc)		5.0	_	1.5	-	2.25	1.5		1.5	
(V _O = 9.0 or 1.0 Vdc)		10 15	-	3.0 4.0	-	4.50 6,75	3.0 4.0	_	3.0 4.0	
(V _O = 13.5 or 1.5 Vdc)		15		4.0		0./5	4.0		4.0	↓
"1" Level	V _{tH}			İ	l	1				Vdc
(V _O = 0.5 or 4.5 Vdc)	}	5.0	3.5	-	3.5	2.75	-	3.5	l –	1
(V _O = 1.0 or 9.0 Vdc)	1	10	7.0	l –	7.0	5.50	-	7.0	-	
(VO = 1.5 or 13.5 Vdc)		15	11.0	-	11.0	8.25	-	11.0	-	
Output Drive Current (AL Device)	ЮН									mAdc
(VOH = 2.5 Vdc) Source	Un	5.0	-1.2	_	-1.0	-1.7	_	-0.7	-	1
(VOH = 4.6 Vdcl Pins 4 & 7	i	5.0	-0.25	l –	-0.2	-0.36	_	-D.14	I –	
(VOH = 9.6 Vdc)	1	10	-0.62	-	-0.5	-0.9	-	0.35		
(V _{OH} ≈ 13.5 Vdc)		15	-1.B	-	-1.5	- 3.5	-	-1.1	-	ľ
IV _{OH} = 2.5 Vdc) Source		5.0	-3.0	_	-2.4	-4.2	-	-1.7	<u> </u>	mAdc
		5.0	-0.64	_	-0.51	-0.88	_	-0.36	-	""
(V _{OH} = 4.6 Vdc) Pins 1, 10, (V _{OH} = 9.5 Vdc) 11, 12, 13, 44	1 :	10	-1.6	_	-1.3	-2.25	_	-0.9	1 -	
(V _{OH} = 13.5 Vdc) and 15		15	-4.2	-	-3.4	-8.8	_	-2.4	_	
•		15	7.2		 -	-				
(V _{OL} = 0.4 Vdc) Sink	IOL	5.0	0.64	-	0.51	0.88	-	0.36	-	mAdc
(V _{OL} = 0.5 Vdc)		10	1.6	-	1.3	2.25	-	0.9	_	1
(VOL = 1.5 Vdc)		15	4.2	-	3.4	8.8	-	2.4	-	l
Output Drive Current										
(CL/CP Device)	loн	l	1		i	·				mAdc
(VOH = 2.5 Vdc) Source	"	5.0	- 1.0	-	-0.8	-1.7	_	-0.6	_	
(VOH = 4.6 Vdc) Pins 4 & 7		5.0	-0.2	l –	-0.16	-0.36	_	-0.12	_	
(V _{OH} = 9.5 Vdc)		10	-0.5	l –	-0.4	-0.9	_	-0.3	-	
(V _{OH} = 13.5 Vdc)		15	-1.4	-	-1.2	-3.5	-	-1.0	-	1
(V _{OH} = 2.5 Vdc) Source	t	5.0	-2.5	l _	- 2.1	-4.2		-1.7	T	mAdc
(V _{OH} = 4.6 Vdc) Pins 1, 10,	١.	5.0	-0.52	l <u> </u>	-0.44	-0.88	_	-0.36] =	1
(V _{OH} = 9.5 Vdcl 11, 12, 13, 14	ľ	10	-1.3	l <u> </u>	-1.1	-2.25	_	-0.9	_	1
(V _{OH} = 13.5 Vdc) and 15	1	15	-3.6	l _	- 3.0	-8.8	_	-2.4	l <u>-</u>	1
· · · · · · · · · · · · · · · · · · ·										+
(V _{OL} = 0.4 Vdcl Sink	lOL	5.0	0.52	-	0.44	0.88	_	0.36	-	mAdc
(V _{OL} = 0.5 Vdc)		10	1.3	-	1.1	2.25	_	0.9	-	1
(V _{OL} = 1.5 Vdc)		15	3.6		3.0	8.8		2.4		
Input Current	1	1	1	l	I	±				1
(AL Device)	lin	15	-	±0.1	-	0.00001	± 0.1	-	± 1.0	μAdc
Input Current	<u> </u>	<u> </u>			1	±			1	
(CL/CP Device)	lin	15	_	±0.3	_	0.00001	±0.3	l –	±1.0	μAdc
			 		 			-	+	' —
Input Capacitance	Cin	-	-	1 -	-	5.0	7.5	-	1 -	pF
(V _{in} = 0)	<u> </u>	<u> </u>	L					1	<u> </u>	
Quiescent Current (AL Device)	IDD	5.0	- "	5.0	-	0.005	5.0	-	150	μAdc
(Per Package)	"	10	-	10	-	0.010	10	-	300	
	L	15	<u>L</u>	20		0.015	20		600	<u> </u>
Quiescent Current (CL/CP Device)	QQ!	5.0	_	20	_	0.005	20	-	150	μAdc
(Per Package)	1 '00	10	_	40	l –	0.010	40		300	Ι΄ -
		15	l –	80	- 1	0.015	80	-	600	
Total Supply Current * * ‡	l _T	5.0	1	-	I+ = 10	42 μA/kH	z) 1 + In	<u> </u>		μAdc
(Dynamic plus Quiescent,	Т (10	1			85 μA/kH				15.100
Per Packagei	1	15	1			4 μA/kH				ı
(C _L = 50 pF on all outputs.	I	l			.,		· · •L			1
10 - 20 hi ou ou outhors.	1		1 .							1

[&]quot;T_{low} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for GL/CP Device.

†To calculate total supply current at loads other than 50 pF:

 $I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} \sim 50) \text{ Vtk}$

where: IT is in μA (per package), C_L in pF, V = (VDD - VSS) in volts, . I in kHz is input frequency, and k = 0.003.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

MC14521B

SWITCHING CHARACTERISTICS* (CI = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
Output Rise and Fall Time (Counter Outputs) TILH, THL = (1.5 ns/pF) CL + 25 ns TILH, THL = (0.75 ns/pF) CL + 12.5 ns TILH, THL = (0.55 ns/pF) CL + 12.5 ns	ካኒዘ፡ ተዘነ	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time Clock to C18 LPHL, IPLH = (1.7 ns/pF) CL + 4415 ns LPHL, IPLH = (0.66 ns/pF) CL + 1667 ns LPHL, IPLH = (0.5 ns/pF) CL + 1275 ns Clock to C24 LPHL, IPLH = (1.7 ns/pF) CL + 5915 ns	tPHL, tPLH	5.0 10 15	- -	4.5 1.7 1.3	9.0 3.5 2.7	μs
tpHL, tpLH = (0.66 ns/pF) CL + 2167 ns tpHL, tpLH = (0.5 ns/pF) CL + 1675 ns Propagation Delay Time	(PHL	10 15	=	2.2 1.7	4.5 3.5	ns
Reset to C _n tpH _L = (1.7 ns/pF) C _L + 1215 ns tpH _L = (0.66 ns/pF) C _L + 467 ns tpH _L = (0.5 ns/pF) C _L + 350 ns	441	5.0 10 15	_ 	1300 500 375	2600 1000 750	
Clock Pulse Width	tWH(cl)	5.0 10 15	385 150 120	140 55 40	=	กร
Clock Pulse Frequency	fal	5.0 10 15	=	3.5 9.0 12	2.0 5.0 6.5	MHz
Clock Rise and Fall Time	ተւዙ ተዘኒ	5.0 10 15	_ 	=	15 5.0 4.0	μ8
Reset Pulse Width	lwH(R)	5.0 10 15	1400 600 450	700 300 225	_ 	ns
Reset Removal Time	tem	5.0 10 15	30 0 -40	-200 -160 -110	- -	ns

^{*}The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used fer design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

MC14521B

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - CRYSTAL OSCILLATOR CIRCUIT

*Optional for low power operation. 10 k Ω < R < 70 k Ω

FIGURE 4 – TYPICAL DATA FOR CRYSTAL OSCILLATOR CIRCUIT

CHARACTERISTIC	500 kHz CIRCUIT	50 kHz CIRCUIT	UNIT
Crystal Characteristics	500	50	kHz
Resonant Frequency Equivalent Resistance, RS	1.0	6.2	kΩ
External Resistor/Capacitor Values			
R _o	47	750	kΩ
CT	82	82	рF
cs	20	20	pF
Frequency Stability Frequency Change as a Function of V _{DD} (T _A = 25 ⁰ C) V _{DD} Change from 5.0 V to 10 V V _{DD} Change from 10 V to 15 V	+6.0 +2.0	+2.0 +2.0	ppm
Frequency Change as a Function of Temperature (V _{DD} = 10 V) T _A Change from -55°C to +25°C MC14521 only Complete Oscillator*	-4.0 +100	-2.0 +120	ppm
T _A Change from +25°C to +125°C MC14521 only Complete Oscillator*	-2.0 -160	-2.0 -560	bbw bbw

^{*}Complete oscillator includes crystal, capacitors, and resistors.

COMMENTS

MC14521B

FIGURE 5 - RC OSCIL_ATOR STABILITY

100 - 15 V Text Circuit Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

100 - 15 V Figure 7

10

FIGURE 6 - RC OSCILLATOR FREQUENCY AS A FUNCTION OF RTC AND C

FIGURE 7 - RC OSCILLATOR CIRCUIT

FIGURE 8 - FUNCTIONAL TEST CIRCUIT

FUNCTIONAL TEST SEQUENCE

INPLITS

A test function (see Figure 8) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections, and 255 counts are loaded in each of the 8-stage sections in parallel. All flip-flops are now at a logic "1". The counter is now returned to the normal 24-stages in series configuration. One more pulse is entered into Input 2 (In 2) which will cause the counter to ripple from an all "1" state to an all "0" state.

LIME	10			11010		COMMENTS
Reset	In 2	Out 2	V _{SS} '	VDD,	Q18 thru Q24	Counter is in three 8-stage
1	0	0	V _D O	Gnd	0	sections in perallel mode Counter is reset. In 2 and Out 2 are connected together
0	1	1				First "0" to "1" transition on In 2, Out 2 node.
	0 1 - -	0 1				255 "0" to "1" transitions are clocked into this in 2, Out 2 node.
	1				1	The 255th "0" to "1" transition.
	0	0	Gnd		1	
	1	0		VDD	1	Counter converted back to 24-stages in series mode.
	1	0			1	Out 2 converts back to en output.
	•	1			0	Counter ripples from en ell "1" state to en ell "0" stage.

OUTPUTS

LOGIC DIAGRAM

PRESETTABLE 4-BIT DOWN COUNTERS

The MC14522B BCD counter and the MC14526B binary counter are constructed with MOS P-channel and N-channel enhancement mode devices in a monolithic structure.

These devices are presettable, cascadable, synchronous down counters with a decoded "0" state output for divide-by-N applications. In single stage applications the "0" output is applied to the Preset Enable input. The Cascade Feedback input allows cascade divide-by-N operation with no additional gates required. The Inhibit input allows disabling of the pulse counting function. Inhibit may also be used as a negative edge clock.

These complementary MOS counters can be used in frequency synthesizers, phase-locked loops, and other frequency division applications requiring low power dissipation and/or high noise immunity.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Edge-Clocked Design Incremented on Positive Transition of Clock or Negative Transition of Inhibit
- Asynchronous Preset Enable
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	>
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Talg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temporature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C

Ceramic "L" Package: -12mW/°C from 100°C to 125°C

FUNCTION TABLE

		Inputs			Output	Resulting
Clock	Reset	Inhibit	Preset Enable	Cascade Feedback	0	Function
×	н	×	L	L	L.	Asynchronous reset*
×	Н	X	н	L	н	Asynchronous reset
X	Н	X	х	н	н	Asynchronous reset
х	L	×	н	х	L	Asynchronous preset
	L	_ н	L	×	L	Decrement inhibited
_ L	L	_	L	Х	L	Decrement inhibited
1	L	L	L	L	L	No change** (inactive edge)
н	L		L	L	L	No change** (inactive edge)
1	L	L	L	L	L	Decrement**
н	L		L	L	L	Decrement**

X = Don't Care

Notes

- *Output "0" is low when reset goes high only if PE and CF are low.
- "Output "0" is high when reset is low, only if CF is high and count Is 0000.

MC14522B MC14526B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

PRESETTABLE
4-BIT DOWN COUNTERS

BCD - MC14522B Binary - MC14526B

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

PIN ASSIGNMENT 03 16 v_{DD} **P**3 02 DC P2 7 14 Inhibit □ 13 CF PO "0" 7 12 Clock Р1 QO □ 10 Reset Vss 01 ٦ ۵

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} \leq (V_{in} or V_{out} \leq V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

MC14522B•MC14526B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Vss)

			V _{DD}	Tk	w.		25°C	_	Thi	gh*	
Characteristic		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage	"0" Level	VOL	5.0	_	0.05		0	0.05		0.05	Vdc
Vin = VDD or 0			10	l –	0.05	l –	0	0.05	l —	0.05	
			15	l –	0.05	-	0	0.05	l –	0.05	1
	"1" Level	Voн	5.0	4.95		4.95	5.0		4.95	_	Vdc
Vin = 0 or VDD			10	9.95	۱ –	9.95	10	_	9.95	_	l
		1	15	14.95	-	14.95	15	–	14.95	_	ŀ
Input Voltage	"0" Level	VIL									Vdc
(Vo = 4.5 or 0.5 Vdc)		'-	5.0	l –	1.5	l –	2.25	1.5	_	1.5	1
(VO = 9.0 or 1.0 Vdc)			10	l –	3.0	l —	4.50	3.0	_	3.0	l
(VO = 13.5 or 1.5 Vdc)			15	-	4.0		6.75	4.0		4.0	l
	"1" Level	VIH									Vde
(VO = 0.5 or 4.5 Vdc)] ""	5.0	3.5	J —	3.5	2.75	l – ,	3.5	_	l
(VO = 1.0 or 9.0 Vdc)			10	7.0	l –	7.0	5.50	_	7.0	_	1
(VO = 1.5 or 13.5 Vdc)			15	11.0	L –	11.0	8.25		11.0	—	
Output Drive Current (AL Device)		Юн				_					mAde
(VOH = 2.5 Vdc)	Source		5.0	- 3.0	l –	-2.4	-4.2	-	-1.7	_	Į.
(VOH = 4.6 Vdc)			5.0	~0.64	-	-0.51	-0.88	l –	-0.38	_	ŀ
(VOH = 9.5 Vdc)		l	10	- 1.6	l –	-1.3	-2.25	-	-0.9	_	l
(VOH = 13.5 Vdc)			15	-4.2		-3.4	-8.8		-2.4		
(VOL = 0.4 Vdc)	Sink	loL	5.0	0.64	—	0.51	0.88	- '	0.36	_	mAde
(VOL = 0.5 Vdc)			10	1.6	l –	1.3	2.25	 	0.9	-	
(VOL = 1.5 Vdc)			15	4.2		3.4	8.8		2.4	_	
Output Drive Current (CL/CP Dev	ice)	ЮН									mAdc
(VOH = 2.5 Vdc)	Source		5.0	-2.5	l –	-2.1	-4.2	l – '	-1.7	-	l
(VOH = 4.6 Vdc)			5.0	-0.52	l –	-0.44	-0.88	-	-0.36	-	
(VOH = 9.5 Vdc)			10	-1.3	l –	-1.1	-2.25	I —	-0.9	-	
(VOH = 13.5 Vdc)			15	-3.6		-3.0	- 8.8	_	-2.4		
(VOL = 0.4 Vdc)	Sink	l lOL	5.0	0.52	l –	0.44	0.88	 	0.38	l	mAdc
(VOL = 0.5 Vdc)			10	1.3	l –	1.1	2.25	-	0.9	-	ĺ
(V _{OL} = 1.5 Vdc)			15	3.6		3.0	8.8		2.4		
Input Current (AL Device)		4n	15	_	±0.1		±0.00001	±0.1	_	±1.0	μAdc
Input Current (CL/CP Device)		Ųп	15	_	±0.3	-	±0.00001	±0.3		±1.0	μAdc
Input Capacitance		Cin	_	_	_		5.0	7.5		_	ρF
(Vin = 0)		"						1		1	
Quiescent Current (AL Device)		^I DD	5.0	_	5.0		0.005	5.0	_	150	μAdc
(Per Package)		55	10	 	10	_	0.010	10	l –	300	l
		l	15	l – .	20	!	0.015	20		600	
Quiescent Current (CL/CP Device)	IDD	5.0	l –	20	_	0.005	20		150	μAdc
(Per Package)	-	"	10	_	40	l –	0.010	40	l –	300	
		L	15		80	<u> </u>	0.015	80	<u> </u>	600	
Total Supply Current**†	_	IT	5.0			ht = (1	.7 μΑ/κHz) f	+ IDD			μAdc
(Dynamic plus Quiescent,		'	10				. 1 (A/kHz بر 1.4				l · · ·
Per Package)		1	15				ا (A/kHz) ا				
(CL = 50 pF on all outputs,		l	1	1			•				l
all buffers switching)											l

[&]quot;T_{low} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

 $I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vik}$

where: IT is in μA (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.001.

[#]Data labelled "Typ" le not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

MC14522B•MC14526B

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time	ITLH.					ns
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns	[†] THL	5.0	_	100	200	_
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns	(Figures 4, 5)	10	_	50	100	
tTLH, tTHL= (0.55 ns/pF) CL+9.5 ns		15		40	60	
Propagation Dolay Time (Inhibit Used as Negative- Edge Clock)	¹PLH, ¹PHL					ns
Clock or Inhibit to Q	(Figures 4, 5, 6)			l i		
tpLH, tpHL = (1.7 ns/pF) CL + 465 ns	' -	5.0	_	550	1100	
tpLH, tpHL = (0.66 ns/pF) CL + 197 ns		10	i –	225	450	
tpLH, tpHL = (0.5 ns/pF) CL + 135 ns		15		160	320	
Clock or inhibit to "0"						
tpLH, tpHL = (1.7 ns/pF) CL + 155 ns		5.0 10	-	240 130	460 260	
tр _L H, tр _H L = (0.66 ns/pF) C _L + 87 ns tр _L H, tр _H L = (0.5 ns/pF) C _L + 65 ns		15	=	100	200	
	•		-			
Propagation Dolay Time Pn to Q	tPLH,	5.0 10	1 -	260 120	520 240	ns
Pil to G	¹ PHL (Figures 4, 7)	15	_	100	200	
						
Propagation Delay Time Reset to Q	[†] PHL	5.0 10	-	250 110	500 220	ns
noset to Q	(Figure 8)	15	=	80	160	
Propagation Dolay Time	¹PHL.	5.0		220	440	ns
Prosot Enable to "0"	tPLH	10	=	100	200	""
	(Figures 4, 9)	15	_	80	160	
Clock or Inhibit Pulse Width	tw	5.0	250	125	-	ns
		10	100	50	_	
	(Figures 5, 6)	15	60	40	-	
Clock Pulso Frequency (with PE = low)	† _{max}	5.0	_	2.0	1.5	MHz
		10	i —	5.0	3.0	
	(Figures 4, 5, 6)	15		6.6	4.0	
Clock or Inhibit Rise and Fall Time	t _r ,	5.0	l –	-	15	μS
	t _i	10	_	_	5	
	(Figures 5, 6)	15			4	
Setup Time	t _{su}	5.0	90	40	-	ns
Pn to Preset Enable	(Figure 10)	10 15	50 40	15 10	_ :	
Hold Time			30	- 15		
Preset Enable to Pn	th .	5.0 10	30	- 15 - 5		ns
773337 2112373 13 7 77	(Figure 10)	15	30	ا ن		
Preset Enable Pulse Width	1	5.0	250	125	_	ns
		10	100	50	_	
	(Figure 10)	15	80	40	_	
Reset Pulse Width	1 _w	5.0	350	175	-	กร
	(Flaura 0)	10	250	125	_	
	(Figure 8)	15	200	100		
Reset Removal Time	1 _{rem}	5.0	10	-110	_	ns
	(Figure 6)	10 15	20 30	-30 -20	_	
	(Liffma o)	10	J 30	-20	_	

^{*}The formulas given are for the typical characteristics only at 25°C.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - TYPICAL OUTPUT SOURCE CHARACTERISTICS TEST CIRCUIT

FIGURE 3 - POWER DISSIPATION

FIGURE 2 - TYPICAL OUTPUT SINK CHARACTERISTICS TEST CIRCUIT

FIGURE 4 - TEST CIRCUIT

*Includes all probe and jig capacitance.

(ô

MC14522B•MC14526B

SWITCHING WAVEFORMS

FIGURE 10

MC14522BeMC14526B

PIN DESCRIPTIONS

Preset Enable (PIn 3) — If Reset is low, a high level on the Preset Enable input asynchronously loads the counter with the programmed values on P0, P1, P2, and P3.

Inhibit (Pin 4) — A high level on the Inhibit input prevents the Clock from decrementing the counter. With Clock (pin 6) held high, Inhibit may be used as a negative edge clock input.

Clock (Pin 6) — The counter decrements by one for each rising edge of Clock. See the Function Table for level requirements on the other inputs.

Reset (Pin 10) — A high level on Reset asynchronously forces Q0, Q1, Q2, and Q3 low and, if Cascade Feedback is high, causes the "0" output to go high.

"0" (Pin 12) — The "0" (Zero) output issues a pulse one clock period wide when the counter reaches terminal count (Q0 = Q1 = Q2 = Q3 = low) if Cascade Feedback is high and Preset Enable is low. When presetting the

counter to a value other than all zeroes, the "0" output is valid after the rising edge of Preset Enable (when Cascade Feedback is high). See the Function Table.

Cascade Feedback (Pin 13) — If the Cascade Feedback input is high, a high level is generated at the "0" output when the count is all zeroes. If Cascade Feedback is low, the "0" output depends on the Preset Enable input level. See the Function Table.

PO, P1, P2, P3 (Pins 5, 11, 14, 2) — These are the preset data inputs. P0 is the LSB.

Q0, Q1, Q2, Q3 (Pins 7, 9, 15, 1) — These are the synchronous counter outputs. Q0 is the LSB.

Vss (Pin 8) — The most negative power supply potential. This pin is usually ground.

Vpp (Pin 16) — The most positive power supply potential. Vpp may range from 3 to 18 V with respect to Vss.

STATE DIAGRAMS

MC14522B

15 15 14 14 6 6 13 7 MC14526B

6

MC14522B • MC14526B

MC14522B LOGIC DIAGRAM (BCD Down Counter)

MC14526B LOGIC DIAGRAM (Binary Down Counter)

MC14522BeMC14526B

APPLICATIONS INFORMATION

Divide-By-N, Single Stage

Figure 11 shows a single stage divide-by-N application. The MC14522B (BCD version) can accept a number greater than 9 and count down in binary fashion. Hence, the BCD and binary single stage divideby-N counters (as shown in Figure 11) function the same.

To initialize counting a number, N is set on the parallel inputs (P0, P1, P2, and P3) and reset is taken high asynchronously. A zero is forced into the master and slave of each bit and, at the same time, the "0" output goes high. Because Preset Enable is tied to the "0" output, preset is enabled. Reset must be released while the Clock is high so the slaves of each bit may receive N before the Clock goes low. When the Clock goes low and Reset is low, the "0" output goes low (if P0 through P3 are unequal to zero).

The counter downcounts with each rising edge of the Clock. When the counter reaches the zero state, an output pulse occurs on "0" which presets N. The propagation delays from the Clock's rising and falling edges to the "0" output's rising and falling edges are about equal, making the "0" output pulse approximately equal to that of the Clock pulse.

The Inhibit pin may be used to stop pulse counting. When this pin is taken high, decrementing is inhibited.

Cascaded, Presettable Divide-By-N

Figure 12 shows a three stage cascade application. Taking Reset high loads N. Only the first stage's Reset pin (least significant counter) must be taken high to cause the preset for all stages, but all pins could be tied together, as shown.

When the first stage's Reset pin goes high, the "0" output is latched in a high state. Reset must be released while Clock is high and time allowed for Preset Enable to load N into all stages before Clock goes low.

When Preset Enable is high and Clock is low, time must be allowed for the zero digits to propagate a Cascade Feedback to the first non-zero stage. Worst case is from the most significant bit (M.S.B.) to the L.S.B., when the L.S.B. is equal to one (i.e. N = 1).

After N is loaded, each stage counts down to zero with each rising edge of Clock. When any stage reaches zero and the leading stages (more significant bits) are zero, the "0" output goes high and feeds back to the preceding stage. When all stages are zero, the Preset Enable automatically loads N while the Clock is high and the cycle is renewed.

FIGURE 11 - +N COUNTER

FIGURE 12 - 3 STAGES CASCADED

BCD RATE MULTIPLIER

The MC14527B BCD rate multiplier (DRM) provides an output pulse rate based upon the BCD input number. For example, if 6 is the BCD input number, there will be six output pulses for every ten input pulses. This part may be used for arithmetic operations including multiplication and division. Typical applications include digital filters, motor speed control and frequency synthesizers.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- · Output Clocked on the Negative Going Edge of Clock
- Strobe for Inhibiting or Enabling Outputs
- Enable and Cascade Inputs for Cascade Operation of Two or More DRMs
- "9" Output for the Parallel Enable Configuration and DRMs in Cascade
- Complementary Outputs
- · Clear and Set to Nine Inputs

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
In- lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	- 65 to + 150	ů
TL	Lead Temperature (8-Second Soldering)	260	ပ့

"Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/"C from 100°C to 125°C Ceramic "L" Package: -12mW/"C from 100°C to 125°C

TRUTH TABLE

Г			_								OUT	PUT	
1										L	OGIC	LEVEL	
1						NPUTS				NUMBER OF PULSES			SES
H	Т			No. of									\Box
۵.	С	В	Α	Clock Pulses	Ein	STROBE	CASCADE	CLEAR	SET	OUT	OUT	Eaut	"9"
0	0	00	0	10	00	0	0	0	0	0	1	1	1
10	6	1	6	10	0	0	0	0	0	2	2	 ; 	+++
l ö	lŏ	l i	١ĭ	10	۱ŏ	Ö	6	ŏ	ő	ĵ.	â	l i	l i l
0	11.	0	0	10	0	0	o	0	0	4	4	1	i
0	1	0	1	10	0	o o	a	0	0	5	5	1 1	!
ഥ	با	1	0	10	0	0	0	0	0	6	6	1	\vdash
0	1 1	1	1	10	0	0	0	0	0	7	7	1	1 1
11	18	0	10	10 10	0	0	0	0	0	8	8 9	!	1 ; 1
H	١۵	1 7	اهٔ ا	10	۱ŏ	l ĕ	1 6	ŏ	ă	8	8	1 ;	1 ; 1
Ιi	ŏ	î	ĭ	10	ŏ	ò	l ŏ	ŏ	ŏ	9	9	l i	i
T	1	0	0	10	0	0	0	0	0	8	В	1	1
1	1	0	1	10	0	0	0	0	0	9	9	1	1
1.	1	1	0	10	0	0	0	0	0	8	В	1 1	1 !
l ½	l t	X	l ½	10 10	0	0	0	0	0	9	9	! !	'
×	×	×	x	10	0	1	Ö	0	-	0	1	1	1
×	×	×	x	10	0	ò	1	ō	0	1	0	1	l i l
ļ١	×	×	×	10	0	0	0	Į 1	0	10	10	1	0
l º	×	X	×	10	8	0	0	1	0	0	1	1	0
Ľ	L×.	Ľ	Ľ	10	_ 6	_ 0	L u		_'_	0	1	0	1 1

X = Don't Care

CMOS MSI

(LOW POWER COMPLEMENTARY MOSI

BCD RATE MULTIPLIER

L SUFFIX CERAMIC PACKAGE CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

[&]quot;D = Most Significant Bit

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	Tic	w*		25°C		Thi	gh"]
Characteristic		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"O" Level	VQL	5.0 10 15	- -	0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05	- -	0.05 0.05 0.05	Vdo
V _{in} = 0 or V _{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	111	4.95 9.95 14.95	5.0 10 15	111	4.95 9.95 14.95	111	Vdc
Input Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc)	"0" Level	VIL	5.0 10 15	<u>-</u>	1.5 3.0 4.0	_ 	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0	111	3.5 7.0 11.0	2.75 5.50 8.25	111	3.5 7.0 11.0	111	Vdc
Output Drive Current (AL Device) $\{V_{OH} = 2.5 \text{ Vdc}\}$ $\{V_{OH} = 4.6 \text{ Vdc}\}$ $\{V_{OH} = 9.5 \text{ Vdc}\}$ $\{V_{OH} = 13.5 \text{ Vdc}\}$	Source	Юн	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	 	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	1111	-1.7 -0.36 -0.9 -2.4	1111	mAde
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.64 1.6 4.2	-	0.51 1.3 3.4	0.88 2.25 8.8	111	0.36 0.9 2.4	111	mAd
Output Drive Current (CL/CP Devi (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6	<u>-</u> - -	-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	1111	-1.7 -0.36 -0.9 -2.4	1111	mAde
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.52 1.3 3.6	111	0.44 1.1 3.0	0.88 2.25 8.8	111	0.36 0.9 2.4	1 1	mAde
Input Current (AL Device)		t _{in}	15		±0.1	_	±0.00001	±0.1		±1.0	μAde
Input Current (CL/CP Device) Input Capacitance (Vin = 0)		l _{ín} Cin	15 —	<u>-</u> -	±0.3	-	±0.00001	± 0.3	_	±1.0	μAdd pF
Quiescent Current (AL Device) (Per Package)		iDD	5.0 10 15		5.0 10 20		0.005 0.010 0.015	5.0 10 20	<u>-</u>	150 300 600	μAd
Quiescent Current (CL/CP Device (Per Package))	αOi	5.0 10 15	=	20 40 80	=	0.005 0.010 0.015	20 40 80	- I	150 300 600	μAd
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)		ŀΤ	5.0 10 15			h = (1.	85 μΑ/kHz) f 75 μΑ/kHz) f .6 μΑ/kHz) f	+ IDD			μAd

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 pF) + (C_L - 50) Vfk$$

where: I_T is in μA (per package), C_L in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.0012.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation. V_{In} and V_{out} should be constrained to the range V_{SS} \sim (V_{In} or V_{out}) \leq V_{DD}.

Unused inputs must always be tied to an appropriate togic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

^{**}The formulae given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (C1 = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time	tTLH.				1	ns
TLH, tTHL = (1.5 ns/pF) CL + 25 ns	THL	5.0	_	100	200	1
TLH, tTHL = (0.75 ns/pF) CL + 12.5 ns		10	_	50	100	
TLH, ^t THL ≈ (0.55 ns/pF) C _L + 9.5 ns		15	_	40	80	
ropagation Delay Time	tPHL,		-			ns
Clock to Out	₹PHL		1	i		1
tpLH, tpHL = (1.7 ns/pF) CL + 115 ns		5.0	i -	200	400	1
tPLH, tPHL = (0.66 ns/pF) CL + 67 ns		10	-	100	200	i
tplH, tpHL = (0.5 ns/pF) CL + 45 ns		15	-	70	140	
Clock to Out	PLH.			 	 	ns
tpլн, tpнլ = (1.7 ns/pF) Cլ + 40 ns	tPHL.	5.0	_	125	250	1
tp_H_tpHL = (0.66 ns/pF) CL + 32 ns		10	_	65	130	1
tp_H, tpHL = (0.5 ns/pF) CL + 20 ns		15	-	45	90	Į.
Clock to Equit	TPLH.	-	 	 	 	ns
tpLH, tpHL = (1.7 ns/pF) CL + 210 ns	1PHL	5.0	-	295	590	1
tPLH, tPHL = (0.66 ns/pF) CL + 97 ns		10	1 -	130	260	
tp_H tpHL = (0.5 ns/pF) CL + 60 ns]	15	-	85	170	1
Clock to "9"	tPLH,		 	 	 	ns.
tp_H, tpHL = (1.7 ns/pF) CL + 315 ns	tPHL	5.0	ł _	400	800	1
tp_H, tpHL = (0.66 ns/pF) CL + 122 ns	THE	10	_	155	310	1
tplm tpmL = (0.5 ns/pF) CL + 85 ns	ļ	15	_	110	220	1
Set or Clear to Out	*****		 			ns
*tpHL = (1.7 ns/pF) CL + 295 ns	tPHL	5.0		380	760	175
		10	-	165	330	i
tpHL = (0.66 ns/pF) CL + 132 ns tpHL = (0.5 ns/pF) CL + 85 ns		15	_	110	220	
	ļ.,			110		
Cascade to Out	tPLH			105	250	ns
tpHL = (1.7 ns/pF) CL + 40 ns		5.0	, -	125	250	1
tpHL = (0.66 ns/pF) CL + 32 ns		10 15	-	65	130 90	Į.
tpHL = (0.5 ns/pF) CL + 20 ns		15		45	80	<u> </u>
Strobe to Out	¹ PLH	l				ns
tpHL = (1.7 ns/pF) CL + 145 ns		5.0	-	230	260	1
tpHL = (0.68 ns/pF) CL + 72 ns		10	-	105	210	1
tpHL = (0.5 ns/pF) CL + 45 ns		15		70	140	ļ
lock Pulse Width	₩H	5.0	500	250	-	ns
		10 15	200	110 80	_	
			150			100
Sock Pulse Frequency	fci	5.0	-	2.0	1.2	MHz
		10 15	_	4.5 6.0	2.5 3.5	1
W D			 -	 		
Clock Pulse Rise and Fall Time	tTLH,	5.0	_	_	15	μs
	THL	10 15	_	-	5 4	
et or Cisar Puise Width	- 		240	80		
et of Clear FUIS WIGTI	tWH	5.0	100		-	ns
		15	75	35 30	l <u>-</u>	
				+	}	
ist Removal Time	t _{rem}	5.0	0	-20	~	ns ns
		10	0	-10	-	1
		15	0	-7.5		——
inable In Setup Time	t _{SU}	5.0	400	175	-	ns
	i	10	150	60	l -	1
		15	120	45	i -	1

[&]quot;The formulas given are for the typical characteristics only at 25°C.

*Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 3 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

LOGIC DIAGRAM

FIGURE 4 - TWO MC14527Bs IN CASCADE WITH PRESET NO. of 94

DUAL MONOSTABLE MULTIVIBRATOR

The MC14528B is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an output pulse over a wide range of widths, the duration of which is determined by the external timing components, C χ and R χ .

- Separate Reset Available
- Diode Protection on All Inputs
- Triggerable from Leading or Trailing Edge Pulse
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement with the MC14538B and MC14548B.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
lin. lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	့
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

THE MC14528B IS NOT RECOMMENDED FOR NEW DESIGNS

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL RETRIGGERABLE/RESETTABLE MONOSTABLE MULTIVIBRATOR

CERAMIC PACKAGE

P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Serios: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

BLOCK DIAGRAM

 V_{DD} = Pin 16 V_{SS} = Pin 1, Pin 8, Pin 15 R_χ and C_χ are external components

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			V _{DD}	T _{lc}	w*		25°C		Thi	gh*	l
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VQL	5.0 10 15	<u>-</u>	0.05 0.05 0.05	111	0 0 0	0.05 0.05 0.05	- -	0.05 0.05 0.05	Vdc
Vin = 0 or VDD	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	111	4.95 9.95 14.95	5.0 10 15	1 -	4.95 9.95 14.95	111	Vdc
Input Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc)	"O" Level	V _{IL}	5.0 10 15	=	1.5 3.0 4.0	- -	2.25 4.50 6.75	1.5 3.0 4.0	- - - - - - - - - -	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0	 	3.5 7.0 11.0	2.75 5.50 8.25	=	3.5 7.0 11.0	1 1 1	Vdc
Output Drive Current (AL Device) (VQH = 2.5 Vdc) (VQH = 4.6 Vdc) (VQH = 9.5 Vdc) (VQH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-1.2 -0.64 -1.6 -4.2	- - - -	-1.0 -0.51 -1.3 -3.4	-1.7 -0.88 -2.25 -8.8	1111	-0.7 -0.36 -0.9 -2.4	1111	mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	^t OL	5.0 10 15	0.64 1.6 4.2	<u> </u>	0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4	111	mAdc
Output Drive Current (CL/CP Device (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	-1.0 -0.52 -1.3 -3.6	- - - -	-0.8 -0.44 -1.1 -3.0	-0.7 -0.88 -2.25 -8.8	- - -	-0.6 -0.36 -0.9 -2.4	1	mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lor	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	- -	0.36 0.9 2.4	- -	mAdc
Input Current (AL Device)		t _{in}	15	_	±0.1		±0.00001	±0.1		± 1.0	μAdc
Input Current (CL/CP Device)		t _{in}	15		±0.3		±0.00001	±0.3	'	±1.0	μAdic
Input Capacitance (Vin = 0)		C _{in}	1	_	-	-	5.0	7.5	_	_	ρF
Quiescent Current (AL Device) (Per Package)		סס ^ו	5.0 10 15	-	5.0 10 20	111	0.005 0.010 0.015	5.0 10 20	1 1 1	150 300 600	μAdc
Quiescent Current (CL/CP Device) (Per Package)		IDD	5.0 10 15	=	20 40 80		0.005 0.010 0.015	20 40 80		150 300 600	μAdc
**Total Supply Current at an externa load Capacitance (CL) and at external timing capacitance (CX use the formula —		łŢ	_	tr(CL, Cx) = {(CL + 0.36Cx)VDD(+ 2x10 ⁻⁸ RxCx(VDD ⁻²) ² f] x 10 ⁻³ where: It in µA (per circun), CL and Cx in pF, Rx in megohms, VDD in Vdc, f in kHz is input frequency.							

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{out} should be constrained to the range $V_{\text{SS}} \leq (V_{\text{in}} \text{ or } V_{\text{out}}) \leq V_{\text{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

PIN ASSIGNMENT

^{**} The formulas given are for the typical characteristics only at 25°C.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING	CHARACTERISTICS**	(Cı	= 50 (F. TA	= 25°C)

Characteristic	Symbol	Cχ pF	Rχ kΩ	V _{DD} Vdc	Min	Тур#	Max	Unit
Output Rise and Fall Time tt_H. ttHt = (1.5 ns/pF) Ct + 25 ns tt_H. ttHt = (0.75 ns/pF) Ct + 12.5 ns tt_H. ttHt = (0.55 ns/pF) Ct + 9.5 ns	tг.н. trhl	_	-	5.0 10 15	=	100 50 40	200 100 80	ns
Turn-Off, Turn-On Delay Time — A or B to Q or \(\overline{Q} \) \$\text{ip_H, tp_H}_1 = (1.7 \text{ ns/pF}) \(\overline{C}_1 + 240 \text{ ns} \) \$\text{tp_H, tp_H}_2 = (0.66 \text{ ns/pF}) \(\overline{C}_2 + 87 \text{ ns} \) \$\text{tp_H, tp_H}_2 = (0.5 \text{ ns/pF}) \(\overline{C}_1 + 65 \text{ ns} \)	tPLH: tPHL	15	5.0	5.0 10 15	111	325 120 90	650 240 180	ns
Tum-Off, Tum-On Delay Time — A or B to Q or \(\overline{Q} \) \[\pu_{\mu, \text{tp} \mu_1} = (1.7 \text{ ns/pF}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	tPLH- tPHL	1000	10	5.0 10 15	=	705 290 210	111	ns
Input Pulse Width — A or B	twH	15	5.0	5.0 10 15	150 75 55	70 30 30	111	ns
	\WL	1000	10	5.0 10 15	=	70 30 30	-	ns
Output Pulse Width — Q or \overline{Q} (For $C_X < 0.01 \mu F$ use graph for appropriate VDD level.)	w	15	5.0	5.0 10 15	=	550 350 300	=	กร
Output Pulse Width — Q or Q (For Cχ > 0.01 μF use formula: (W = 0.2 Rχ Cχ Ln [VDD - VSS])†	w	10,000	10	5.0 10 15	15 10 15	30 50 55	45 90 95	μ\$
Pulse Width Match between Circuits in the same package	t1 - t2	10,000	10	5.0 10 15	=	6.0 8.0 8.0	25 35 35	%
Reset Propagation Delay — Reset to Q or Q	tPLH, tPHL	15	5.0	5.0 10 15	Ξ	325 90 60	600 225 170	ns
		1000	10	5.0 10 15	<u> </u>	1000 300 250		ns _
Retrigger Time	ter	15	5.0	5.0 10 15	0 0 0	=	Ξ	ns
		1000	10	5.0 10 15	0 0 0	<u>-</u>		ns
External Timing Resistance	Rχ		_		5.0		1000	kΩ
External Timing Capacitance	CX	-	_	_		No Limits		μF

[†] R_X is in Ohms, C_X is in farads, V_{DD} and V_{SS} in volts, PW_{QUI} in seconds.
• If C_X > 15 μ F, Use Discharge Protection Diode D_X, per Fig. 9.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FUNCTION TABLE

	Inputs	Outputs			
Reset	A	В	<u>a</u> <u>a</u>		
H	J.	/τ	υ γ		
H	₹	\ 	Not Triggered Not Triggered		
H	L, H, _ L	H L, H, -	Not Triggered Not Triggered		
~L~	X	X	L H Not Triggered		

^{**}The formulas given are for the typical characteristics only at 25°C.

FIGURE 2 - OUTPUT SINK CURRENT TEST CIRCUIT

FIGURE 3 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORMS

FIGURE 4 - AC TEST CIRCUIT

INPUT CONNECTIONS						
CHARACTERISTICS	Reset	Α	8			
ФLH∙ФHL∙ ^t TLH, ^t THL tw	V _{DD}	PG1	V _{DD}			
ФLH-ФHL- ^t TLH, ^t THL ^t W	۵۵۷	vss	PG2			
ም LH(R)₊ΨHL(R)₊ 'W	PG3	PG1	PG2			

6

FIGURE 5 - AC TEST WAVEFORMS

FIGURE 6 - PULSE WIDTH versus CX

TYPICAL APPLICATIONS

FIGURE 7 — RETRIGGERABLE MONOSTABLES CIRCUITRY

FIGURE 8 — NON-RETRIGGERABLE MONOSTABLES CIRCUITRY

FIGURE 9 — USE OF A DIODE TO LIMIT POWER DOWN CURRENT SURGE

FIGURE 10 - CONNECTION OF UNUSED SECTIONS

6

DUAL 4-CHANNEL ANALOG DATA SELECTOR

The MC14529B analog data selector is a dual 4-channel or single 8-channel device depending on the input coding. The device is suitable for digital as well as analog application, including various one-of-four and one-of-eight data selector functions. Since the device has bidirectional analog characteristics it can also be used as a dual binary to 1-of-4 or a binary to 1-of-8 decoder.

- Data Paths Are Bidirectional
- 3-State Outputs
- Linear "On" Resistance
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load over the Rated Temperature Range.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18 0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	- 0 5 to V _{DD} - 0 5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstq	Storage Temperature	- 65 to + 150	°C
TL	Load Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating Plastic "P" Package = 12mW-°C from 65°C to 85°C Ceramic "L" Package: = 12mW-°C from 100°C to 125°C

				TF	RUTH 1		
STX	sτγ	В	Α	Z	w		
1	1	0	0	ΧO	YO		
1	1	0	1	X1	Y1		
1	1 1	1	0	X2	Y 2		
1	1	1	1	×3	Y3		
-1	0	0	0	×	0		
1	0	0	1	×	4		
1	0	1 1	0	×	2		
1	0	- 1	1	×	3		
0	1	0	0	Y	0		
0	1	0	- 1	Y	1		
0	1	1	٥	Y	2		
0	1	1	1) Y	3		
0	0	×	×		High Impedance		

Dual 4-Channel Mode 2 Outputs

Single 8-Channel Mode 1 Output (Z and W tied together)

X = Don't Care

This device contains protection circuitry to guard against damage due to high static voltages or electric lields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$.

Unused inputs must always be fied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

CMOS MSI

ILOW POWER COMPLEMENTARY MOS

DUAL 4-CHANNEL ANALOG DATA SELECTOR OR 8-CHANNEL ANALOG DATA SELECTOR

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Ves)

Cherecteristic		Figure	Symbol	VSS	VDD	The	₩ 		25°C		, n	igh"	Unit
				Vdc	Vdc	Min	Max	Min	Тур#	Mex	Min	Max	<u>L.</u>
Output Voltage	"O" Level	1	VOL	0.0	5.0	-	0.05	-	0	0.06	-	0.05	Vdc
V _{in} = 0		İ			10	-	0.06	-	0	0.05	-	0.05	(
			<u> </u>		15	-	0.05		0	0.05	-	0.05	-
•	"1" Love!		VOH	0.0	5,0	4.95	-	4.95	5.0	-	4.95 9.98	-	1
V V					10	9.95 14.95	_	9.95 14.95	10 15	-	9.95 14.95] _	i
V _{in} = V _{DD}	"O" Level	2	14	0.0	" <u>"</u>	14.55	⊢	14.55		<u> </u>	14.55	<u> </u>	Vdc
(V _O = 4.5 or 0.5 Vdc)	O CEVE	*	VIL	0.0	5.0	_	1.5	l _	2.25	1.5		1.5	1
(VO = 8.0 or (1.0 Vdc)			i		10	_	3.0	l _	4.50	3.0	l _	3.0	l
(V _O = 13.5 or 1.5 Vdc)		ļ	Į.	l	15	_	4.0	_	6.75	4.0	-	4.0	
(V _O = 0.5 or 4.5 Vdc)	"1" Level		VIH	0.0	5.0	3.5	_	3.5	2.75	-	3.5	-	1
(V _O = 1.0 or 9.0 Vdc)		1			10	7.0	-	7.9	5.50	-	7.0	۱ –	l
(V _O = 1.5 or 13.5 Vdc)					16	11	_	11	8.25	_	11		l
Input Current (AL Device) Control			lin	0.0	15	_	±0.1	_	±0.00001	±0.1		±1.0	μAde
Input Current (CL/CP Device) Control			lin	0.0	15	-	±0.3	_	±0.00001	±0.3		±1.0	μAde
Input Capacitance (Vin = 0)			Cin	0.0									ρF
Control		1			-	-	-	-	5.0	7.5	- '	-	1
Switch Input					-	-	-	-	8.0	-	-	-	
Switch Output		l			-	-	-	-	20 0.3	-	-	-	l
Feed Through		⊢_			-	_				-	_		ļ.,
'Quiescent Current (AL Device)		3	IDD	-	5.0 10	_	1.0	_	0.001	1.0	-	60	μAde
(Per Package)					15	-	2.0	=	0.002	2.0	_	120	1
Quiescent Currept (CL/CP Device)		3	IDD		5.0		5.0	 	0.001	5.0		70	⊭Ade
(Per Package)		"	יטטי ן	-	10	_	5.0	<u>-</u>	0.002	5.0	_	70	
(ĺ			15	_	10	_	0.003	10	_	140	1
"ON" Resistance (AL Device)		4,5,5	RON	 									Ω
(VC = VDD, RL = 10 kΩ)		1	"		1			ł				ĺ	l
(V _{in} = +5.0 Vdc)		l		-5.0	5.0	-	400	-	200	480	(-)	640	(
(V _{in} = -5.0 Vdc)						-	400	-	200	480	- '	640	}
(V _{In} = ±0.25 Vdc)					١,,	<u>-</u>	400 240	-	190 160	480 270	=	640 400	
(V _{in} = +7.5 Vdc) (V _{in} = -7.6 Vdc)				-7.5	7.5	<u>-</u>	240		160	270		400]
(Vin = ±0.25 Vdc)						-	240	_	120	270	_ '	400	1
(V _{in} = +10 Vdc)		l	ł	0	10	_	400	_	180	480	-	640	l
(V _{in} = +0.26 Vdc)				1	[i	-	400	-	180	480	-	640	Į .
(V _{In} = +5.6 Vdc)		Ī				_	400	-	220	480	-	640	l
(Vin = +15 Vdc)				0	15	-	250	-	180	270 270	-	400 400	1
(V _{in} = +0.25 Vdc)						_	250 250	-	180 215	270	-	400	ļ
(V _{In} = +9.3 Vdc) "DN" Resistance (CL/CP Device)		4,5,5	RON	┝		┝ <u></u>	1250	⊢	210		⊢	 ~~	Ω
(VC = VDD, RL = 10 kΩ)		7,5,5	PON								}		
(V _{in} = +5,0 Vdc)			[-5.0	5.0	_	410	l _	200	480	_	560	ĺ
(Vin = -5.0 Vde)			i			_	410		200	480	-	560	İ
(Vin = +0.26 Vdc)		1	1			-	410	-	190	480	-	560	
(V _{in} = +7.5 Vdc)			1	-7.5	7.5	-	250	-	160	270	-	350	
(V _{in} = -7.5 Vdc)			Ì	ļ		-	250	-	160	270	-	350	J
(V _{in} = ±0.26 Vdc)			ŀ		10	_	250 410	<u>-</u>	120 180	270 480	/ <u>-</u>	350 560	(
{V _{in} = +10 Vdc} (V _{in} = +0.25 Vdc}				"	10	_	410		180	480	_ '	560	
(V _{in} = +6.8 Vdc)	1	1	ì	1		_	410	_	220	480] _ [560)
(V _{in} = +15 Vdc)		ĺ		0	15	_	250	l –	180	270	-	350	1
(V _{in} = +0.25 Vdc)		1		l		-	250	-	180	270	-	350	l
(V _{In} = +9.3 Vdc)		l		1		-	250	-	215	270	-	350	
△"ON" Resistance		-	ARON										· U
Between any 2 circuits in a common packag	>	l		۔۔ ا	ا ـ ـ ا		l						l
(V _{in} = ±6.0 Vdc)			l	-5.0	5.0	-	-	-	15	_	-	_	l
(Vin = ±7.5 Vdc)				-7.5	7.5		_	<u> </u>	10			_	

⁽V_{In} = ±7.5 Vdc)

*Tlow = -55°C for AL Device, -40°C for CL/CP Device
*Thigh = +125°C for AL Device, +85°C for CL/CP Device.
*Data labelted "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING CHARACTERISTICS (TA = 25°C)

Characteristic	Figure	Symbol	Vss	VDD	Min	Тур #	Max	Unit
V_{in} to V_{out} Propagation Delay Time (C_L = 50 pF, R_L = 1.0 k Ω)	7	[†] PLH: [†] PHL	0.0	5.0 10 15		20 10 8.0	40 20 15	กร
Propagation Delay Time, Control to Output, V _{in} = V _{DD} or V _{SS} (C _L = 50 pF, R _L = 1.0 kΩ)	8	1PLZ. 1PZL. 1PHZ. 1PZH	0.0	5.0 10 15	111	140 70 50	400 160 120	ns
Crosstalk, Control to Output (C _L = 50 pF, R _L = 1.0 k Ω R _{Out} = 10 k Ω)	9	_	0.0	5.0 10 15	111	5.0 5.0 5.0	111	m∨
Control input Pulse Frequency (C _L = 50 pF, R _L = 1.0 k Ω)	10	fin	0.0	5.0 10 15	111	5.0 10 12	2.5 6.2 8.3	MHz
Noise Voltage (f = 100 Hz)	11,12	_	0.0	5.0 10 15 5.0	111	24 25 30	- - -	_nV √cycle
			Í .	10 15	_	12 15	-	
Sine Wave Distortion $ \begin{aligned} &(V_{in}=1.77 \text{ Vdc RMS} \\ &\text{Contered @ 0.0 Vdc,} \\ &\text{R}_L=10 \text{ k}\Omega, \text{ (= 1.0 kHz)} \end{aligned} $	-	_	- 5.0	5.0	1	0.36	_	%
Off-Channel Leakage Current (Vin = +5.0 Vdc, V _{out} = -5.0 Vdc) (Vin = -5.0 Vdc, V _{out} = +5.0 Vdc) (Vin = +7.5 Vdc, V _{out} = -7.5 Vdc) (Vin = -7.5 Vdc, V _{out} = +7.5 Vdc)	-	loft	- 5.0 - 5.0 - 7.5 - 7.5	5.0 5.0 7.5 7.5	1111	±0.001 ±0.001 ±0.0015 ±0.0015	± 125 ± 125 ± 250 ± 250	nA
Insertion Loss (Vin = 1.77 Vdc HMS centered @ 0.0 Vdc, t = 1.0 MHz)	13	_	- 5.0	5.0				dB
loss=20 Log ₁₀ Vout Vin								
(R _L = 1.0 kΩ) (R _L = 10 kΩ) (R _L = 100 kΩ) (R _L = 1.0 MΩ)					- - -	2.0 0.8 0.25 0.01		
Bandwidth (-3 dB) $\{V_{lTl}=1.77\ Vdc$ RMS centered @ 0.0 Vdc) $\{R_L=1.0\ k\Omega\}$	_	BW	- 5.0	5.0	_	35	_	MHz
(R _L = 10 kΩ) (R _L = 100 kΩ) (R _L = 1.0 MΩ)					_ 	28 27 26		
Feedthrough and Crosstalk 20 Log10 Vout 50 dB	_	_	- 5.0	5.0				MHz
(R _L = 1.0 kΩ) (R _L = 10 kΩ) (R _L = 100 kΩ) (R _L = 1.0 MΩ)					-	850 100 12 1.5	- - -	

#Data labellod "Typ" is not to be used for design purposes but is intended as an Indication of the IC's potential performance.

FIGURE 1 - OUTPUT VOLTAGE TEST CIRCUIT

FIGURE 3 - QUIESCENT POWER DISSIPATION TEST CIRCUIT

FIGURE 2 - NOISE IMMUNITY TEST CIRCUIT

Pins 2, 3, 4, 12, 13 and 14 are left open. $V_{IL}: V_C$ is raised from V_{SS} until $V_C = V_{IL}$. at $V_C = V_{IL}: I_S = \pm 10 \ \mu A$ with $V_{In} = V_{SS}$, $V_{Out} = V_{DD}$ or $V_{In} = V_{DD}$. $V_{Out} = V_{SS}$.

V_{IH}: When V_C = V_{IH} to V_{DD}, the switch is ON and the R_{ON} specifications are met.

FIGURE 4 -- RON CHARACTERISTICS TEST CIRCUIT

TYPICAL RON Versus INPUT VOLTAGE

6

FIGURE 7 — PROPAGATION DELAY TEST CIRCUIT AND WAVEFORMS

FIGURE 9 - CROSSTALK TEST CIRCUIT

FIGURE 11 - NOISE VOLTAGE TEST CIRCUIT

FIGURE 8 — TURN-ON DELAY TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 10 - FREQUENCY RESPONSE TEST CIRCUIT

FIGURE 12 - TYPICAL NOISE CHARACTERISTICS

FIGURE 13 - TYPICAL INSERTION LOSS/BANDWIDTH CHARACTERISTICS

LOGIC DIAGRAM

V_{DD} = Pin 16 V_{SS} = Pin 8

(6

DUAL 5-INPUT MAJORITY LOGIC GATE

The MC14530B dual five-input majority logic gate is constructed with P-channel and N-channel enhancement mode devices in a single monolithic structure. Combinational and sequential logic expressions are easily implemented with the majority logic gate, often resulting in fewer components than obtainable with the more basic gates. This device can also provide numerous logic functions by using the W and some of the logic (A thru E) inputs as control inputs.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to Vss)

Symbol	Perameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	V
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
lin. lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tatg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	•c

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/*C from 65°C to 85°C Ceramic "L" Package: -12mW/*C from 100°C to 125°C

LOGIC TABLE

INPUTS A B C D E	w	Z
For all combinations of inputs where three	0	1
or more inputs are logical "0".	W Z 0 1 1 0 0 0	0
For all combinations of inputs where three	0	0
or more inputs are logical "1".	1	1

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14530B

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL 5-INPUT MAJORITY LOGIC GATE

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX LASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

*M₅ is a logical "1" if any three or more inputs are logical "1".

⊕ Exclusive NOR = Exclusive OR

TRUTH TABLE

M ₅	W	z
0	0	1
0	1	0
1	0	- 0
1	1	1

V_{DD} = Pin 16 V_{SS} = Pin 8

MC14530B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	Tle	w*	L	25°C		Thi	gh*]
Characteristic		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage	"0" Level	VOL	5.0	_	0.05		0	0.05	_	0.05	Vdc
Vin = VDD or 0] "	10) —	0.05	l –) 0	0.05) — .	0.05]
		ŀ	15		0.05	-	0	0.05	_	0.05	ł
	"1" Level	VOH	5.0	4.95		4.95	5.0		4.95		Vdc
Vin = 0 or VDD		""	10	9.95	 	9.95	10	l –	9.95	_	
55		l	15	14.95	_	14.95	15	l —	14.95	l –	
Input Voltage	"0" Level	VIL									Vdc
(VO = 4.5 or 0.5 Vdc)		,,,,	5.0	l –	1.2	l –	2.25	1.25	l —	1.15	1
(VO = 9.0 or 1.0 Vdc)		l	10	۱ ـ	2.5	l —	4.50	2.5	l – '	2.4	1
(VO = 13.5 or 1.5 Vdc)		l	15	_	3.0	 	6.75	3.0	i —	2.9	
-	"1" Level	VtH									Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$. 20731	*in	5.0	3.85	_	3.75	2.75	۱ _	3.75	_	""
(VO = 1.0 or 9.0 Vdc)			10	7.6	_	7.5	5.50	l –	7.5	l —	1
(VO = 1.5 or 13.5 Vdc)			15	12.1	l –	12	8.25	l –	12	! —	1
Output Drive Current (AL Device)		Юн									mAde
(VOH = 2.5 Vdc)	Source	, OA	5.0	-3.0	_	-2.4	-4.2	l –	~ 1.7	_	
(VOH = 4.6 Vdc)			5.0	-0.64		-0.51	-0.88	l _	-0.36	l _	l
(VOH = 9.5 Vdc)		l	10	-1.6	l <u> </u>	- 1.3	-2.25	l _	-0.9	l —	
(VOH = 13.5 Vdc)			15	-4.2	_	-3.4	-8.8	l —	-2.4	l –	
(VOL = 0.4 Vdc)	Sink	łoL	5.0	0.64		0.51	0.88	<u> </u>	0.36	_	mAd
(VOL = 0.5 Vdc)	U	∿	10	1.6	l _	1.3	2.25		0.9	_	
(VOL = 1.5 Vdc)		ľ	15	4.2	_	3.4	8.8	l –	2.4	_	ļ
Output Drive Current (CL/CP Device		Юн					i				mAde
(VOH = 2.5 Vdc)	Source	ויסי ן	5.0	-2.5	_	-2.1	-4.2	۱ ـ	-1.7	_	ן יייייי
(VOH = 4.6 Vdc)			5.0	-0.52	_	~0.44	-0.88	l _	-0.36	_	
(VOH = 9.5 Vdc)			10	- 1.3	–	-1.1	-2.25	l –	-0.9	-	l
(VOH = 13.5 Vdc)			15	-3.6	_	-3.0	-8.8	l –	-2.4	l –	•
(VOL = 0.4 Vdc)	Sink	loL	5.0	0.52	_	0.44	0.88	_	0.36	_	mAde
(VOL = 0.5 Vdc)		, OL	10	1.3	_	1.1	2.25		0.9	_	""
(VOL = 1.5 Vdc)		l	15	3.6	_	3.0	8.8	l –	2.4	_	[
Input Current (AL Device)		t _{in}	15		±0.1		±0.00001	±0.1		± 1.0	µАdo
Input Current (CL/CP Device)		lin lin	15	<u> </u>	±0.3		±0.00001	±0.3		± 1.0	μΑф
					0.0						·
Input Capacitance (Vin = 0)		Cin	_		_		5.0	7.5	_	_	ρF
Quiescent Current (AL Device)		IDD	5.0		0.25	-	0.0005	0.25	-	7.5	μAde
(Per Package)			10	! —	0.50	_	0.0010	0.50	_	15	l
			15	_	1.00	_	0.0015	1.00	_	30	
Quiescent Current (CL/CP Device)		¹ DD	5.0		1.0	_	0.0005	1.0		7.5	μAdd
(Per Package)			10	l –	2.0	_	0.0010	2.0	_	15	l
		l	15	L – 1	4.0		0.0015	4.0	_	30	Ī
Total Supply Current**†		Ιτ	5.0			lt = (0.	75 μΑ/kHz) f	+ (nn			μAdo
(Dynamic plus Quiescent,		"	10	l			50 μA/kHz) f				~~~~
Per Package)			15	l			25 μA/kHz) f				l
(CL = 50 pF on all outputs,		l		1		. ,	,				1
all buffers switching)		ı	1	l							

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. T_{high} = +125°C for AL Device, +85°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

†To calculate total supply current at loads other than 50 pF:

where: I $_T$ is in μA (por package), C_L in pF, $V = (V_{DD} - V_{SS})$ in veits, f in kHz is input frequency, and k=0.002.

^{**}The formulas given are for the typical characteristics only at 25°C.

MC14530B

SWITCHING CHARACTERISTICS* (C1 = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time	ITLH-					ns
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	THL	5.0	-	100	200	
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns	} '' '	10	i –	50	100	ſ
ITLH. tTHL = (0.55 ns/pF) CL + 9.5 ns		15	-	40	80	1
Propagation Delay Time	†PLH					ns
A, C, W = VDD; B, E = Gnd; D = Pulse Generator						
tpLH = (1.7 ns/pF) CL + 290 ns		5.0	-	375	960	1
^t p_H = (0.66 ns/pF) C _L + 127 ns		10	-	160	400	
tp[H = (0.5 ns/pF) C[+ 85 ns		15	-	110	300	
tpHL = (1.7 ns/pF) CL + 345 ns	1PHL	5.0		430	1200	ns
tpHL = (0.66 ns/pF) CL + 162 ns	_	10	-	195	540]
tpHL = (0.5 ns/pF) CL + 95 ns	1	15	l -	120	410	
A, B, C, D, E = Pulse Generator; W = VDD	₹PLH					ns
tPLH = (1.7 ns/pF) CL + 170 ns	ļ	5.0	- 1	255	640	i
tp_H = (0.66 ns/pF) C _L + 87 ns	ł	10	1 -	120	300	ļ
tpLH = (0.5 ns/pF) CL + 60 ns	ł	15	-	85	210	
tpHL = (1.7 ns/pF) CL + 195 ns	†PHL	5.0	_	280	750	ns
tpHL = (0.66 ns/pF) CL + 92 ns	·	10	-	125	330	ŀ
tpHL = (0.5 ns/pF) CL + 75 ns	i	15	_	100	250	
A, B, C, D, E = Gnd; W = Pulse Generator	tPLH.					ns
tpHL, tpLH = (1.7 ns/pF) CL + 145 ns	TPHL	5.0		230	575	1
tpHL, tpLH = (0.66 ns/pF) CL + 72 ns	1	10	l -	105	265	ł
tpHL_tpLH = (0.5 ns/pF) CL + 50 ns	1	15	_	75	190	1

^{*}The formulas given are for the typical characteristics only at 25°C.

#Data labellad "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 – POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

SEQUENTIAL LOGIC APPLICATIONS COINCIDENT FLIP-FLOP

A flip-flop with three output conditions, where the third state is in oscillation between "1" and "0". The period of oscillation is twice the delay of the gate and the feedback element.

The flip-flop changes state only when alt "1's" or all "0's" are entered. This configuration may be extended by cascading Mg gates to cover n-inputs where all inputs must be "1's" or "0's" before the output will change. As an example, this configuration is useful for controlling an n-stage up/down counter that is to cycle from a minimum to maximum count and back again without flipping over (from all "1's" to all "0's".)

MC14530B

Correlation of 75%, 100%.

Z Correlation of 100%

B C D

To To SO S1 S2

5-INPUT MAJORITY LOGIC GATE APPLICATIONS

Each package labeled M₅ is a single majority logic gate using five inputs, A thru E, and one output Z.

 Majority Logic Gate Array yielding the symetric function of 1 thru 7 variables true, out of 7 input variables (X1 . . . X7)

MC14531B

12-BIT PARITY TREE

The MC14531B 12-bit parity tree is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. The circuit consists of 12 data-bit inputs (D0 thru D11), and even or odd parity selection input (W) and an output (Q). The parity selection input can be considered as an additional bit. Words of less than 13 bits can generate an even or odd parity output if the remaining inputs are selected to contain an even or odd number of ones, respectively. Words of greater than 12-bits can be accommodated by cascading other MC14531B devices by using the W input. Applications include checking or including a redundant (parity) bit to a word for error detection/correction systems, controller for remote digital sensors or switches (digital event detection/correction), or as a multiple input summer without carries.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- · All Outputs Buffered
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Variable Word Length
- Diode Protection on All Inputs

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
v _{DD}	DC Supply Voltage	- 0.5 to + 18.0	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

12-BIT PARITY TREE

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

		ουτρυ						
w	D11	D10	2	D2	01	00	DECIMAL IOCTALI EQUIVALENT	٥.
D	0	0		0	a	0	0 (01	0
0	0	0		0	0	1	1 (1)	1
0	0	0		0	1	a	2 (2)	Y
0	0	0		0	1	1	3 (3)	0
0	0	0		3	0	0	4 (4)	1
a	0	0		1	0	1	5 151	0
0	0	0		1	1	0	6 161	0
0	0	0		. 1	1	1	7 (7)	1 1
_								-
					0.1		(4)	1
١	1	-		0	0	a	8184 (17770)	0
1	1	1		a	0	1	B185 (17771)	1
1	1	1	• • •	0	1	0	B186(17772)	1
1	1	1			1	1	B187 (17773)	0
1	3	1		1	0	-	B188 (17774)	1
ι	- 1	1		1 ,	0	1	B189 (17775)	١ ٥
1	1	1		1	1 1	0	B190 (17776)	0
1	1	1		1	1 1	1	8191 177771	1

MC14531B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

Symbol	V _{DD} Vdc	Min	Max	Min	T-1- 4			gh *	1
VOL				With	Typ#	Max	Min	Max	Unit
	5.0		0.05	_	0 '	0.05		0.05	Vdc
	10	-	0.05	[- '	0 [0.05	- 1	0.05	ĺ
	15		0.05		0	0.05		0.05	
∨он	5.0	4.95	_	4.95	5.0	_	4.95	_	Vdc
)	_		_	1
	15	14.95		14.95	15	_=_	14.95	_=_	
VIL]		ļ))				Vdc
i l		-		-			- 1		
		-		-			- 1		
	15		4.0	<u> </u>	6.75	4.0		4.0	
ViH				l	l l				l
ł l			_			_		_	Vdc
			_			_		_	1
	15	11.0		11.0	8.25		11.0		
10н									mAdc
		-3.0	-	-2.4	-4.2	_	-1.7	_	l
		-0.64	_	-0.51	-0.88		-0.36		
	_	- 1.6	_		-2.25		-0.9	-	
								=	<u> </u>
OL	5.0	0.64	_			_		_	mAdc
	10	1.6	-	1		_		_	1
l :	15	4.2		3.4	8.8	ı	2.4	_	
ГОН									mAdc
	5.0	-2.5	-	-2.1	-4.2	_	-1.7	-	l
	5.0	-0.52	-	-0.44	-0.88	_	-0.36	_	l
	10		-			_		_	
	15	-3.6	L	-3.0	-8.8		-2.4		
IOL	5.0	0.52	-	0.44	0.88	1	0.36	-	mAdc
••	10	1.3	_	1,1	2.25	_	0.9	_	
	15	3.6	-	3.0	8.8	_	2.4	_	1
lin	15	_	± 0.1		±0.00001	± 0.1	_	± 1.0	μAdc
lin	15	_	± 0.3		±0.00001	± 0.3	_	± 1.0	μAdc
Cin				_	5.0	7.5			pF
				ŀ			li		ĺ
ion	5.0		5.0		0.005	5.0		150	μAdc
] '40	10	_ '	10	l —		10			
	15	_	20		0.015	20	-	600	i i
IDD	5.0	T	20			20			μÀdc
.00		l .		_			l i]
	-	_		l _	0.015		_ '		l
 -				1 10					μAdc
''									المحمد
									1
	''			1 (0.	AN HUIVER	טטי			ł
)							l
	VIL VIH OH OH	IO 15 VIL 5.0 10 15 VIH 5.0 10 15 IOH 5.0 5.0 10 15 IOH 5.0 10 15 IOH 5.0 10 15 IOH 5.0 10 15 IOH 5.0 10 15 IOH 5.0 10 15 IOH 5.0 10 15 IOH 5.0 10 15 IOH 5.0 10 15 IOH 5.0 10 15 IOH 5.0 10 15 IOH 15 I	10 9.95 14.95 VIL	10 9.95	10	10 9.95 — 9.95 10	10 9.95 - 9.95 10 -	10	10 9.95 9.95 10 9.95 15 14.95 14.95 15 14.95 VIL 5.0 1.5 2.25 1.5 10 3.0 4.50 3.0 3.0 15 4.0 6.75 4.0 4.0 VIH

[&]quot;T_{low} = -55°C for AL Device, -40°C for CL/CP Device. T_{high} = +125°C for AL Device, +85°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. †To calculate total supply current at loads other than 50 pF:

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$$

where: i_{T} is in μA (per package), C_{L} in pF, V = (VDD - Vgg) in volts, 1 in kHz is input frequency, and k = 0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be fied to an appropriate logic voltage level (e.g., either VSS or VOD). Unused outputs must be left open.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

MC14531B

SWITCHING CHARACTERISTICS* (C) = 50 of TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time	tTLH.					ns
tTLH. tTHL = (1.5 ns/pF) CL + 25 ns	t _{THL}	5.0	-	100	200	
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns	1 - I	10	! –	50	100)
t _{TLH} , t _{THL} = (0.55 ns/pF) C _L + 9.5 ns	l	15] -	40	80	
Propagation Delay Time	TPLH.					ns
Data to Q	TPHL		1			
tpլֈֈ tpֈֈլ = (1.7 ns/pF) Cլ + 355 ns		5.0	1 –	440	1320	i
tp_H_tpHL = (0.66 ns/pF) CL + 142 ns	<u> </u>	10	-	175	525	
tp_H, tpHL = (0.5 ns/pF) CL + 95 ns Odd/Even to Q		15	-	120	360	
tptH_tpHL = (1.7 ns/pF) Ct + 165 ns	i i	5.0	_	250	750	
tp_H, tpHL = (0.66 ns/pF) CL + 67 ns		10	-	100	300	
tp_H_tpHL = (0.5 ns/pF) CL + 45 ns	i l	15	-	70	210	

^{*}The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - DYNAMIC POWER DISSIPATION SIGNAL WAVEFORM

f in respect to system clock

FIGURE 2 - DYNAMIC SIGNAL WAVEFORMS

8-BIT PRIORITY ENCODER

The MC14532B is constructed with complementary MOS (CMOS) enhancement mode devices. The primary function of a priority encoder is to provide a binary address for the active input with the highest priority. Eight data inputs (D0 thru D7) and an enable input (E_{in}) are provided. Five outputs are available, three are address outputs (Q0 thru Q2), one group select (GS) and one enable output (E_{out}).

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-05 to +180	٧
V _{in} . V _{oul}	Input or Output Voltage (DC or Transient)	-0510 V _{DD} +05	V
I _{In} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to → 150	°C
7L	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur illemperature Derating Plastic "P Package = 12mW/°C from 65°C to 85°C Ceramic "L" Package = 12mW/°C from 100°C to 125°C

TRUTH TABLE

	INPUT								OUTPUT				
Ein	۵7،	D6	D5	D4	D3	D2	D1	00	GS	Ω2	Q1	Ω0	Eout
0	х	×	×	×	×	×	×	×	0	0	0	0	0
1	0	0	0	0	0	0	٥	0	0	0	0	0	1
1	1	×	×	×	×	×	×	×	1	1	1	1	0
1	0	1	×	x	×	×	×	×	1	1	1	0	0
1	0	0	1	×	×	×	X	×	1	1	0	1	0
1	0	0	0	1	×	×	х	×	1	1	0	0	0
1	0	0	0	0	1	x	х	×	1	0	1	1	0
1	0	٥	0	0	0	1	×	×	1	0	1	0	0
1	0	0	0	0	0	0	1	×	1	0	0	1 1	0
1	0	0	0	0	0	0	0	1	1	0_	0	0	0

X = Don't Care

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{Out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{Out}) \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either v_{SS} or v_{DD}). Unused outputs must be left open.

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

8-BIT PRIORITY ENCODER

CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

PIN ASSIGNMENT

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	T _{to}	w*	1	25°C		T _h i	gh*	J
Characteri		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage	"0" Level	VOF	5.0	-	0.05	-	0	0.05		0.05	Vdc
Vin= V _{DD} or 0			10	-	0.05	-	0	0.05	-	0.05	
			15		0.05		0	0.05	- 1	0.05	<u> </u>
Vin = 0 or VDD	"1" Level	νон	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc
		-	10	9.95	-	9.95	10	-	9.95	-	l .
			15	14.95	l	14.95	15		14.95		1
input Voltage	"O" Level	٧ıL				[Vdc
(Vo * 4.5 or 0.5 Vdc)		5.0	-	1.5	-	2.25	1.5	l - i	1.5	l
(Vo = 9.0 or 1.0 Vdc)		10	-	3.0	-	4.50	3.0	-	3.0	
(Vo ≈ 13.5 or 1.5 Vd			15	_	4.0	-	6.75	4.0	-	4.0	<u> </u>
	"1" Level	ViH									1
(Vo ≈ 0.5 or 4.5 Vdc)		5.0	3.5	-	3.5	2.75	-	3.5	-	Vdc
(VO * 1.0 or 9.0 Vdc)		10	7.0	l -	7.0	5.50	-	7.0	-	ŀ
(V _Q ≈ 1.5 or 13.5 Vd	lci		15	11.0	-	11.0	8.25	-	11.0	-	
Dutput Drive Current (A	L Device)	IOH									mAdc
(VOH = 2.5 Vdc)	Source]	5.0	-3.0	-	-2.4	-4.2	-	-1.7	-	ŀ
(VOH = 4.6 Vdc)			5.0	-0.64	-	-0.51	-0.88	-	-0.36	.~	
(VOH = 9.5 Vdc)			10	-1.6	l -	-1.3	-2.25	-	-0.9	`-	1
(VOH = 13.5 Vdc)			15	-4.2	-	-3.4	-8.8	-	-2.4	-	
(VOL = 0.4 Vdc)	Sink	lOL	5.0	0.64	-	0.51	0.88	-	0.36	_	mAdo
(VOL = 0.5 Vdc)			10	1.6	۱ ـ	1.3	2.25	_	0.9	-	}
(VOL = 1.5 Vdc)			15	4.2	-	3.4	8.8	-	2.4	٠ -	Į
Output Drive Current (C	L/CP Device)	ЮН			 	 	 				mAdc
(VOH = 2.5 Vdc)	Source	.0.1	5.0	-2.5	-	-2.1	-2.4	-	-1.7	~	
(VOH = 4.6 Vdc)			5.0	-0.52	_	-0.44	-0.88	_	-0.36	_	
(VOH = 9.5 Vdc)			10	-1.3	l -	-1.1	-2.25	_	-0.9	~	1
(VOH = 13.5 Vdc)			15	-3.6	_	-3.0	-8.8	_	-2.4	-	
(VOL = 0.4 Vdc)	Sink	¹OL	5.0	0.52	_	0.44	0.88		0.36		mAdo
(VOL = 0.5 Vdc)	-	,OL	10	1.3	۱ -	1.1	2.25	_	0.9	_	
(VOL = 1.5 Vdc)			15	3.6	l _	3.0	8.8	_	2.4	_	l .
Input Current (AL Devic	a)	1 _{in}	15		±0.1	-	±0.00001	±0.1	-	± 1.0	μAdc
Input Current (CL/CP D			15	- -	10.3		±0.00001	±0.3	<u> </u>	± 1.0	μAdc
	EAICGI	lin		<u> </u>	20.3						_
Input Capacitance (V _{in} = 0)		Cin	-		_	-	5.0	7.5	-	•	pF
Quiescent Current (AL D	Pevice)	IDD	5.0	-	5.0	-	0.005	5.0	-	150	µAdc
(Per Package)		-	10	-	10	l -	0.010	10	- 1	300	
			15	-	20	-	0.015	20	-	600	1
Quiescent Current (CL/C	P Device)	lop	5.0	-	20	-	0.005	20	-	150	μAdc
(Per Package)		""	10	-	40	l -	0.010	40	_	300	1
			15	l -	80	l -	0.015	80	-	600	1
Total Supply Current **1	}	İŦ	5.0			17.711	.74 µA/kHz	11+1==			μAdc
(Dynamic plus Quiesi		''	10			17 - 12	.74 µA/kHz .65 µA/kHz	11 + 100			~~~~
Per Package)			15				.73 µA/kHz				1
ICL = 50 pF on all or	itouts, all					, ,					1
buffers switching))	I							1

[&]quot;T_{low} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 pF) + (C_L - 50) Vfk$$

where: iT is in μA (per package), CL in pP, V = {VDD - VSS} in volts, f in kHz is input frequency, and k = 0.005.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL * 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time	tTLH-					ns
¹ TLH, ¹ THL = (1.5 ns/pF) C _L + 25 ns	†TKL	5.0	-	100	200	ŀ
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns	TINE	10	I –	50	100	J
tTLH. tTHL = (0.55 ns/pF) CL + 9.5 ns		15	-	40	80	
Progagation Delay Time - Ein to Eout	¹₽LH,		†	 	i ·	ns
tp_H, tpHL = (1.7 ns/pF) CL + 120 ns	1PHL	5.0	_	205	410	1
tplH, tpHL = (0.66 ns/pF) CL + 77 ns	'''-	10	1 -	110	220	i
tp[H, tpHL = (0.5 ns/pF) CL + 55 ns		15	-	80	160	1
Propagation Delay Time (Ein to GS	tPLH.			 		ns
tp_H, tpHL = (1.7 ns/pF) CL + 90 ns	tPHL.	5.0	-	175	350	ļ
tpLH, tpHL = (0.66 ns/pF) CL 57 ns	1	10	l –	90	180	1
tpLH, tpHL - (0.5 ns/pF) CL + 40 ns		15	1 -	65	130	1
Propagation Delay Time — Ein to Qn	tPHL,					ns
tpLH, tpHL = (1.7 ns/pF) CL + 195 ns	1PLH	5.0	-	280	560	ì
tp_H, tpHL = (0.66 ns/pF) CL + 107 ns	1	10	-	140	280	1
tp_H, tpHL = (0.5 ns/pF) CL + 75 ns		15	-	100	200	
Propagation Delay Time - Dn to Qn	tPLH.		1			ns
tpLH_tpHL = (1.7 ns/pF) CL + 265 ns	tPHL.	5.0		300	600	1
tp_H_ tpHL = (0.66 ns/pF) CL + 137 ns	'	10	-	170	340	i
tp_H, tpHL = (0.5 ns/pF) CL + 85 ns		15	-	110	220	ł
Propagation Delay Time - Dn to GS	tPLH.			1		ns
tpLH, tpHL = (1.7 ns/pF) CL + 195 ns	TPHL	5.0	-	280	560	1
tpLH, tpHL = (0.66 ns/pF) CL + 107 ns		10	-	140	280	
tp_H, tpHL = (0.5 ns/pF) CL + 75 ns		15	-	100	200]

[&]quot;The formulas given are for the typical characteristics only at 25°C.

Data tabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 – TYPICAL SINK AND SOURCE CURRENT CHARACTERISTICS

Output Under Test	VGS = V VDS = Vc Sink Curr	out	VGS = -VDD VDS = Vout -VDD Source Current				
	D0 thru D7	Ein	DO thru D6	D7	Ein		
E _{out} Q0	X	<u> </u>	0	0	1		
QO	x	0	0	1 1	1		
Q1	X	0	0	1	1		
Q2	X	0	0	1 1	1		
GS	x	0	o o	1	1		

FIGURE 2 - TYPICAL POWER DISSIPATION TEST CIRCUIT

FIGURE 3 - AC TEST CIRCUIT AND WAVEFORMS

LOGIC DIAGRAM (Positive Logic)

FIGURE 4 - TWO MC14532R's CASCADED FOR 4-BIT OUTPUT

FIGURE 5 - DIGITAL TO ANALOG AND ANALOG TO DIGITAL CONVERTER

DIGITAL TO ANALOG CONVERSION

The digital eight-bit word to be converted is applied to the inputs of the MC14512 with the most significant bit at X7 and the least significant bit at X0. A clock input of up to 2.5 MHz (at VDD = 10 V) is applied to the MC14520B. A compromise between l_{bigs} for the MC1710 and ΔR between N and P-channel outputs gives a value of R of 33 k ohms. In order to filter out the switching frequencies, RC should be about 1.0 ms (if R = 33 k ohms, C $\approx 0.03~\mu\text{F}$). The analog 3.0 dB bandwidth would then be dc to 1.0 kHz.

ANALOG TO DIGITAL CONVERSION

An analog signal is applied to the analog input of the MC1710. A digital eight-bit word known to represent a digitized level less than the analog input is applied to the MC14512 as in the D to A conversion. The word is incremented at rates sufficient to allow steady state to be reached between incrementations (i.e. 3.0 ms). The output of the MC1710 will change when the digital input represents the first digitized level above the analog input. This word is the digital representation of the analog word.

Input

MOTOROLA

MC14534B

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

5 CASCADED BCD COUNTERS

5 CASCADED BCD COUNTERS

The MC14534B is composed of five BCD ripple counters that have their respective outputs multiplexed using an internal scanner. Outputs of each counter are selected by the scanner and appear on four (BCD) pins. Selection is indicated by a logic high on the appropriate digit select pin. Both BCD and digit select outputs have three-state controls providing an "open-circuit" when these controls are high and allowing multiplexing. Cascading may be accomplished by using the carry-out pin. The counters and scanner can be independently reset by applying a high to the counter master reset (MR) and the scanner reset (SR). The MC14534B was specifically designed for application in real time or event counters where continual updating and multiplexed displays are used.

- Four Operating Modes (See truth table)
- Input Error Detection Circuit
- Clock Conditioning Circuits for Slow Transition Inputs
- Counter Sequences on Positive Transition of Clock A
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS (Voltages referenced to VSS)

Symbol	Parameter	Value	Unit
00٧	DC Supply Voltage	-0.5 to +18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
I _{in} . lout	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	mW
Tsig	Storage Temperature	-65 to +150	ပ္
TL	Lead Temperature (8-Second Soldering)	260	å

*Maximum Ratings are thoso values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: - 12mW/"C from 85°C to 85°C
Ceramic "L" Package: - 12mW/"C from 100°C to 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

FLECTRICAL CHARACTERISTICS (Voltages Referenced to Voc)

	ì	ν _{DD}	Tic	w*	l	25°C		T _{tt}	igh *	i
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Mex	Min	Max	Uni
Output Voltage "0" Level	VOL	5.0	-	0.05		0	0.05	-	0.05	Vdo
V _{in} = V _{DD} or 0		10	-	0.05	-	0	0.05	-	0.05	
		15	-	0.05		0	0.05	-	0.05	<u> </u>
"1" Level	VOH	5.0	4.95	-	4.95	5.0	-	4.95	-	Vde
V _{in} =0 or V _{DD}	J	10	9.95	! -	9.95	10	-	9.95	-	l
		15	14.95	-	14.95	15	-	14.95	_	
Input Voltage "O" Level	VIL	-								Vdc
(VO - 4.5 or 0.5 Vdc)	'-	5.0	_	1.0	- 1	1.5	1.0	-	1.0	1
(VO = 9.0 or 1.0 Vdc)		10	-	2.0	-	3.0	2.0	-	2.0	1
(VO = 13.5 or 1.5 Vdc)		15		3.0		4.5	3.0	-	3.0	<u> </u>
(VO = 0.5 or 4.5 Vdc) "1" Level	VIH	5.0	4.0	_	4.0	3.5	_	4.0	-	Vdc
(VO = 1.0 or 9.0 Vdc)		10	8.0	-	8.0	7.0	l –	8.0	_	
(VO = 1.5 or 13.5 Vdc)		15	12	-	12	11	l -	12	-	
Output Drive Current (AL Device)	Юн									пıAd
(V _{OH} 2.5 Vdc) Source	•	5.0	-3.0	-	-2.4	-4.2	l –	-1.7	_	1
(VOH 4.6 Vdc)		5.0	- 0.64	-	-0.51	-0.88	-	-0.38	-	1
(VOH 9.5 Voc)		10	-1.6	_	-1.3	-2.25	-	-0.9	-	1
(V _{OH} - 13.5 Vdcl	i	15	-4.2	-	-3.4	-8.8	-	-2.4	_	1
(VOL = 0.4 Vdc) Sink	IOL	5.0	0,64	-	0.51	0.88		0.36		mAd
(V _{OL} = 0.5 Vdc)	"	10	1.6	_	1.3	2.25	-	0.9	_	1 -
(VOL = 1.5 Vdc)	1	15	4.2	_	3.4	8.8	_	2.4	_	1
Output Drive Current (CL/CP Device)	Юн		_							mAd
(VOH = 2.5 Vdc) Source	'0"	5.0	-2.5	l -	-2.1	-4.2	۱ ـ	-1.7	_	
(V _{OH} = 4.6 V _{dc})		5.0	-0.52	_	-0.44	-0.88	-	-0.38	_	1
(VOH - 9.5 Vdc)		10	-1.3	l -	-1.1	-2.25	-	-0.9	_	1
(VOH = 13.5 Vdc)	İ	15	-3.6	_	-3.0	-8.8		-2.4	_	1
(Vol. = 0.4 Vdc) Sink	IOL	5.0	0.52		0.44	0.88		0.36		mAd
(VOL = 0.5 Vdc)	,OL	10	1.3	_	1.1	2.25	_	0.50	_	''''
(VOL * 1.5 Vdc)		15	3.6	_	3.0	8.8	_	2.4	_	
Output Drive Current - Pins 1 and 22	+					0.0	 			mAd
(AL Device)				ŀ		l				man
(VOH = 2.5 Vdc) Source	ЮН	5.0	-0.31	_	-0.25	-0.8	l _	-0.17	_	1
(VOH = 9.5 Vdc)	.04	10	~0.31	Ι.,	-0.25	-0.4	l _	-0.17	_	ļ.
(VOH = 13.5 Vdc)	!	15	-0.9	_ `	-0.75	-1.6	-	-0.51	_	(
(VOL = 0.4 Vdc) Sink	1OL	5.0	0.024	<u> </u>	0.02	0.03	_	0.014		mAd
(VOL = 0.5 Vdc)	, or	10	0.06	1 -	0.05	0.09	-	0.035	_	,,,,,,
(VOL = 1.5 Vdc)		15	1.3	l _	0.25	1.63	_	0.175	_	l
Output Drive Current - Pins 1 and 22	 			 						mAd
(CL/CP Device)				l	,			· .		""^"
(VOH = 2.5 Vdc) Source	ЮН	5.0	-0.11	_	-0.10	-0.8	_	-0.08	_	l
(VOH = 9.5 Vdc)	1 ·OH	10	-0.11	l -	-0.10	-0.4	_	-0.08	-	l
(VOH = 13.5 Vdc)	1	15	-0.33	l _	-0.30	-1.6	_	-0.24	_	
(VOL = 0.4 Vdc) Sink	1-1-1	5.0	0.012	- -	0.01	0.02	-	0.008		
(VOL = 0.5 Vdc)	lor	5.0 10	0.012	l .	0.025	0.05		0.02	_	mAd
(VOL = 1.5 Vdc)	1	15	0.14		0.12	1.35	-	0.10	- -	
	+				-					—
nput Current (AL Device)	lin	15	-	20.1	<u> </u>	10,00001	10,1		±1.0	μAd
nput Current (CL/CP Device)	lin	15		±0.3	- -	10.00001	20.3	-	:1.0	μAd
nput Capacitance	Cin	-	-	-		5.0	7.5		-	ρF
(V _{in} - 0)	1			L		L		L		<u> </u>

^{*}Tlow = -55°C for AL Device, -40°C for CL/CP Device.

Thigh = + 125°C for AL Dovico, +85°C for CL/CP Device.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS}) (continued)

		VDD	T ₁	ow*		25°C		Th	iigh *	
Characteristic	Symbol	Vdc	Min	Max	Min	Typ #	Max	Min	Max	Unit
Quiescent Current (AL Device) (Per Package)	^I DD	5.0 10 15	- - -	5.0 10 20	- - -	0.010 0.020 0.030	5.0 10 20	-	150 300 600	μAdc
Quiescent Current (CL/CP Device) (Per Package)	l _{DD}	5.0 10 15	- - -	50 100 200	- - -	0.010 0.020 0.030	50 100 200	-	375 750 1500	μAdc
Total Supply Current**f (Dynamic plus Quiescent, Per Package) (CL * 50 pF on all outputs, all buffers switching)	ŀγ	5.0 10 15	IT = (0.5 µA/kHz) (+ IDD Scan Oscillator IT = (1.0 µA/kHz) (+ IDD Scan Oscillator IT = (1.5 µA/kHz) (+ IDD Frequency = 1 kHz					μAdc		
Three-State Leakage Current (AL Device)	ITL	15	_	±0.1	-	-0.00001	± 0 .1	-	23.0	μAdc
Three-State Leakage Current (CL/CP Device)	1TL	15	_	±1.0	-	·0.00001	± 1.0	_	± 7.5	μAdc

^{*}Tlow = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

"The formulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

where: IT is in μA (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.001.

Characteristic	Symbol	V _{DD} Vde	Min	Тур#	Max	Unit
Output Rise and Fall Time	ttlH- tthL	5.0 10 15	-	100 50 40	200 100 80	ns
Propagation Delay Time,	tpLH,					μs
Clock to Q 1pLH, tpHL = (1.8 ns/pF) CL + 4.0 µs 1pLH, 1pHL = (0.8 ns/pF) CL + 1.5 µs 1pLH, 1pHL = (0.6 ns/pF) CL + 1.0 µs	[†] PHL	5.0 10 15	=	4.0 1.5 1.0	8.0 3.0 2.25	
Clock to Carry Out tpLH = (1.8 na/pF) CL + 3.3 µs tpLH = (0.8 na/pF) CL + 1.1 µs tpLH = (0.8 na/pF) CL + 0.8 µs	[†] PLH	5.0 10 15	=	3.3 1.1 0.8	6.6 2.2 1.7	p48
Master Reset to Q 1PHL = (1.8 ns/pF) C _L + 1.8 μs 1PHL = (0.8 ns/pF) C _L + 0.6 μs 1PHL = (0.6 ns/pF) C _L + 0.5 μs	†PHL	5.0 10 15	, <u> </u>	1.8 0.6 0.5	3.6 1.2 0.9	μ8
Master Reset to Error Out tp _H L = (1.8 ns/pF) C _L + 0.57 μs tp _H L = (0.8 ns/pF) C _L + 0.19 μs tp _H L = (0.6 ns/pF) C _L + 0.11 μs	†PHL	5.0 10 15	=	0.6 0.2 0.12	1.5 .5 0.38	ha
Scanner Clock to Q tp_H, tpHL = (1.8 ns/pF) C _L + 1.8 μs tp_H, tpHL = (0.8 ns/pF) C _L + 0.6 μs tp_H, tpHL = (0.8 ns/pF) C _L + 0.5 μs	[†] PLH, [†] PHL	5.0 10 15	=	1.8 0.6 0.5	3.6 1.2 0.9	μ3
Scanner Clock to Digit Solect ¹pHL . ¹pLH = (1.8 ns/pF) CL + 1.5 μs ¹pHL . ¹pLH = (0.8 ns/pF) CL + 0.5 μs ¹pHL . ¹pLH = (0.6 ns/pF) CL + 0.4 μs	^t PLH, ^t PLH	5.0 10 15	=	1.5 0.5 0.4	3.0 1.0 0.75	μ8
Propagation Delay Time 3-State Control to Q	†PHZ	5.0 10 15	=	75 45 40	150 90 80	ns
	^t PZH	5.0 10 15	<u>-</u> -	120 55 40	240 110 80	ns
	t _{PLZ}	5.0 10 15	- -	120 55 45	240 110 90	ns
	tPZL	5.0 10 15	=	160 70 45	320 140 90	ns
Clock Pulse Frequency	fcı	5.0 10 15	-	1.0 3.0 5.0	0.5 1.0 1.2	MHz
Clock or Scanner Clock Pulse Width	twH	5.0 10 15	1000 500 375	500 190 125		ns
Scanner Reset Pulse Width	t _w	5.0 10 15	320 130 80	160 65 40	-	ua
Scanner Reset Removal Time	t ^{tem}	5.0 10 15	900 150 100	270 80 50	=	ns
Master Reset Pulso Width	¹WH(R)	5.0 10 15	2000 600 450	900 300 250	=	ns
Master Reset Removal Time	1 _{rem}	5.0 10 15	1060 350 250	550 205 140	=	ns

^{*}The formulas given are for the typical characteristics only at 25°C. #Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

COUNTER TIMING DIAGRAM

MODE CONTROL TRUTH TABLE

Mode A	Mode B	First Stage Output	Carry to Second Stage	Application
0	0	Normal Count and Display	At 9 to 0 transition of first stage	5-digit Counter
0	1	Inhibited	Input Clock	Test Mode: Clock directly into stages 1, 2, and 4.
1	1	Inhibited	At 4 to 5 transition of first stage	4-digit counter with + 10 and roundoff at front end.
1	0	Counts 3, 4, 5, 6, 7 = 5 Counts 8, 9, 0, 1, 2 = 0	At 7 to 8 transition of first stage	4-digit counter with 1/2 pence capability.

SCANNER TIMING DIAGRAM

Note: If Mode 8 = 1, the first decade is inhibited and S1 will not go high, and the cycle will be shortened to four stages. DS5 is selected automatically when Scanner Reset goes high-

ERROR DETECTION TIMING DIAGRAM

Note: Error detector looks for inverted pulse on Clock 8. Whenever a positive edge at Clock A is not accompanied by a negative pulse at Clock 8 (or vice-versa) within a time period of the one-shots an error is counted. Three errors result in Error Out to go to a "1", if error detection is not needed, tie Clock B high or low and leave Pins 1 and 22 unconnected.

CLOCK SKEW RANGE

Notes:

- 1. The skew is the time difference be-1. The staw is the time direction of the contract of the low-to-light transition of C_A to the high-to-low transition of C_B or vice-vers. Capacitors C1 = C22 tied from pins 1 and 22 to V_{SS}.

 2. This graph is accurate for C1 = C22 ≥ 100 pF.
- 3. When the error detection circuitry is not used, pins 1 and 22 are left open.

APPLICATIONS INFORMATION

FIGURE 1 - CASCADE OPERATION

*Carry Out is high for a single clock period when all five BCD stages go to zero. (Carry Out also goes high when MR is applied.)

FIGURE 2 — FORCING A BCD STAGE TO THE Q OUTPUTS

When the Q outputs of a given stage are required, this configuration will tock up the selected stage within four clock cycles. The select line feedback may be hardwired or switched.

PROGRAMMABLE TIMER

The MC14536B programmable timer is a 24-stage binary ripple counter with 16 stages selectable by a binary code. Provisions for an on-chip RC oscillator or an external clock are provided. An on-chip monostable circuit incorporating a pulse-type output has been included. By selecting the appropriate counter stage in conjunction with the appropriate input clock frequency, a variety of timing can be achieved.

- 24 Flip-Flop Stages Will Count From 20 to 224
- · Last 16 Stages Selectable By Four-Bit Select Code
- · 8-Bypass Input Allows Bypassing of First Eight Stages
- · Set and Reset Inputs
- · Clock Inhibit and Oscillator Inhibit Inputs
- On-Chip RC Oscillator Provisions
- On-Chip Monostable Output Provisions
- Clock Conditioning Circuit Permits Operation With Very Long Rise and Fall Times
- Test Mode Allows Fast Test Sequence
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	٧
lin. lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstq	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (B-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

CMOS LSI

(LOW POWER COMPLEMENTARY MOSI

PROGRAMMABLE TIMER

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	V _{DD} T _{low} *		L	26°C		T _{high} *		l
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Uni
Output Voltage "O" Level	VOL	5.0	_	0.05	-	0	0.05	_	0.05	Vd
V _{in} = V _{DD} or O	J 0.	10	_	0.05	l –	0	0.05	-	0.05	
iii		15	_	0.05	-	0]	0.05	_	0.05	i
"1" Level	VOH	5.0	4.95	_	4.95	5.0	_	4.95	_	Vde
V _{in} = 0 or V _{DD}	TOH	10	9.95	_	9.95	10	_	9.95	Í	'
		15	14.95	_	14.95	15	_	14.95	l _	l
	<u> </u>				1	H-*				
Input Voltage "O" Level	V _{IL}					1 1				Vdo
(V _O = 4.5 or 0.5 Vdc)	1	5.0	- !	1.5	-	2.25	1.5	-	1.5	1
(V _O = 9.0 or 1.0 Vdc)	1	10	-	3.0	-	4.50	3.0	-	3.0	l
$(V_{Q} = 13.5 \text{ or } 1.5 \text{ Vdc})$	1	15	- 1	4.0	-	6.75	4.0	-	4.0	ŧ
"1" Level	VIH									Vdd
(V _O = 0.5 or 4.5 Vdc)	*IH	5.0	3.5	l _	3.5	2.75	_	3.5	i _	'*'
{V _O = 1.0 or 9.0 Vdc}		10	7.0	۱ ـ	7.0	5.50	_	7.0	i _ i	i
(V _O = 1.5 or 13.5 Vdc)	1	15	11.0		11.0	8.25		11.0	l _	l
`	-		11.0			0.23		11,0		ļ
Output Drive Current (AL Device)	IOH	l								mAc
(VDH = 2.5 Vdc) Source	1	5.0	-1.2	_	-1.0	-1.7	_	-0.7	-	l
(VOH = 4.6 Vdc) Pins 4 & 5	1	5.0	-0.25	-	-0.2	-0.36	_	-0.14	-	l
(V _{OH} = 9.5 Vdc)		10	-0.62	-	-0.5	-0.9	_	-0.35	-	l
(VOH = 13.5 Vdc)	I	15	-1.8	-	-1.5	-3.5	_	-1.1	-	1
=::		50	-3.0	 -	-2.4	-4.2	_	-1.7	_	mAi
(V _{OH} = 2.5 Vdc) Source	ľ	5.0		-				-0.36		""~
(V _{OH} = 4.6 Vdc) Pin 13		5.0	-0.64	-	-0.51	-0.88	_	-0.36		l
(V _{OH} = 9.5 Vdc)		1.0	-1.6	-	-1.3	-2.25	_		-	l
(V _{OH} = 13.5 Vdc)		15	-4.2		-3.4	-8.8		-2.4	_	L
(V _{OL} = 0.4 Vdc) Sink	lor	5.0	0.64	_	0.51	0.88	_	0.36	_	mA
(V _{OL} = 0.5 Vdc)	۱۰۰۰	10	1.6	l –	1.3	2.25	_	0.9		
(VOL = 1.5 Vdc)	i	15	4.2	_	3.4	8.8	_	2.4	_	
	<u> </u>		7.2	<u> </u>	J	J			-	
Output Drive Current	I OH				1				i	mAi
(CL/CP Device)	i i			ŀ	1	l 1				Ì
(VOH = 2.5 Vdc) Source		5.0	-1.0	-	-0.8	-1.7	-	-0.6	-	
(VOH = 4.6 Vdc) Pins 4 & 5	1	5.0	-0.2	l –	-0.16	-0.36	_	-0.12	-	
(V _{OH} = 9.5 Vdc)	i .	10	-0.5	_	-0.4	-0.9	_	-0.3	-	Į.
(V _{OH} = 13.5 Vds)		15	-1.4	l –	-1.2	-3.5	_	-1.0	- 1]
= 1 :										
(V _{OH} = 2.5 Vdc) Source	ľ	5.0	-2.5	-	-2.1	-4.2	-	-1.7	_	mA
(V _{OH} = 4.6 Vdc) Pin 13		5.0	-0.52	-	-0.44	-0.88	-	-0.36	-	ì
(V _{OH} = 9.5 Vdc)		10	-1.3	-	-1.1	-2.25	-	-0.9	-	ĺ
(V _{OH} = 13.5 Vdc)	<u> </u>	15	-3.6	<u> </u>	-3.0	-8.8	_	-2.4		L
(V _{OL} = 0.4 Vdc) Sink	lOL.	5.0	0.52		0.44	0.88	_	0.36	-	mA
(V _{OL} = 0.5 Vdc)	"	10	1.3	l –	1.1	2.25	_	0.9	- 1	1
(V _{OL} = 1.5 Vdc)	i	15	3.6	-	3.0	8.8	_	2.4	-]
	 	-			ļ <u>-</u>	l				
nput Current	lin	15	_	±0.1	-	±	±0.1	_	±1.0	μΑσ
(AL Device)	1			L		0.00001				<u> </u>
nput Current	lin	15		±0.3	_	±	±0.3	_	±1.0	μА
(CL/CP Device)	""	l		l	1	0.00001		1		
	-	-	 	\vdash	 	·	7.5			
Input Capacitance	C _{in}	-	_·	i -	ı –	5.0	7.5	-	ı -	₽F
(V _{in} = 0)	<u></u>	<u></u>	<u></u>	<u></u>	L	L		<u> </u>		<u> </u>
Quiescent Current (AL Device)	I _{DD}	5.0	_	5.0	1 _	0.010	5.0		150	μΑσ
(Per Package)	יטט	10	-	10	-	0.020	10		300	1
. C Canago,	1	15	1 _	20	_	0.030	20	_	600	1
0.3	+ := -		 			0.010			375	цAd
Quiescent Current (CL/CP Device)	DD	5.0	I -	50	_		50	_		PAC
(Per Package)	1	10	-	100	-	0.020	100	-	750	l
		15	<u> </u>	200		0.030	200	<u> </u>	1500	<u> </u>
Total Supply Current * * †	ŀτ	5.0	l		IT = (1.	15 μA/kH	z) f + In	D C		μΑσ
(Dynamic plus Quiescent,	Ι'	10	l		Ir = 12.	3 μA/kH	z) f + ln	n		1
	I .		ı		1 12	55 μA/kH		Ξ		I
Per Package)		15	I							
Per Package) (C ₁ = 50 pF on all outputs,		15	Į.		17 - 13.	OO MAAAA	41 T 10	ט		

^{*}T_{low} = -55°C for AL Dovico, -40°C for CL/CP Dovico. Thigh = +125°C for AL Dovico, +85°C for CL/CP Dovice.

₱Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. †To calculate total supply current at loads other than 50 pF:

 $I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$

where: i $_T$ is in μ A (por package), C $_L$ in pF, V = (VDD - VSS) in volts, t in kHz is input frequency, and k = 0.003.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time (Pin 13)	1TLH-	1	† — —	 		ns
ttlH, ttHL = (1.5 ns/pF) CL + 25 ns	[‡] THL	5.0	-	100	200	
${}^{1}TLH$, ${}^{1}THL = (0.75 \text{ ns/pF}) C_{L} + 12.5 \text{ ns}$] '''-	10] -	50	100	
¹ TLH, ¹ THL = (0.55 ns/pF) C _L + 9.5 ns		15	-	40	80	(
Propagation Delay Time	₹PLH,		<u> </u>			ns
Clock to Q1, 8-Bypass (Pin 6) High	\$PHL			1	1	
tp_H, tpHL = (1.7 ns/pF) CL + 1715 ns	j	5.0	I -	1800	3600	
tpLH, tpHL = (0.66 ns/pF) CL + 617 ns	1	10	1 -	650	1300	
tp_H, tpHL = (0.5 ns/pF) CL + 425 ns		15] -	450	1000	
Clock to Q1, 8-Bypass (Pin 6) Low	· tPLH,		1			μs
tp_H, tpHL = (1.7 ns/pF) CL + 3715 ns	tPHL.	5.0	-	3.8	7.6	
tplH, tpHL = (0.66 ns/pF) CL + 1467 ns		10	-	1.5	3.0	ł
tp[H, tpHL = (0.5 ns/pF) CL + 1075 ns		15	[-	1.1	2.3	
Clock to Q16	TPLH,		T	T		μs
tрн∟, tр∟н = (1.7 ns/pF) С∟ + 6915 ns	tPHL.	5.0	-	7.0	14	
tpHL tpLH = (0.66 ns/pF) CL + 2967 ns		10	-	3.0	6.0	1
tpHL, tpLH = (0.5 ns/pF) CL + 2175 ns	- 1	15	-	2.2	4.5	ì
Reset to Q _n	†PHL		 			- ns
tpHL = (1.7 ns/pF) CL + 1415 ns	'''-	5.0	_	1500	3000	1
tpHL = (0.66 ns/pF) CL + 567 ns	ĺ	10	-	600	1200	
tpHL = (0.5 ns/pF) CL + 425 ns		15	-	450	900	
Clock Pulse Width	twH	5.0	600	300		ns.
		10	200	100	_	ļ
		15	170	85		l
Clock Pulse Frequency	fcl	5.0	-	1.2	0.4	MHz
(50% Duty Cycle)		10	-	3.0	1.5	1
		15	<u> </u>	5.0	2.0	
Clock Rise and Fall Time	TLH,	5.0				_
	THL	10	1	No Limit		1
		15				
Reset Pulse Width	twH	5.0	1000	500		ns
		10	400	200	-	1
	ì	15	300	150	l –	

[&]quot;The formulas given are for the typical characteristics only at 25°C.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS < (Vin or Vout) < VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

PIN DESCRIPTIONS

INPUTS

SET (Pln 1) — A high on Set asynchronously forces Decode Out to a high level. This is accomplished by setting an output conditioning latch to a high level while at the same time resetting the 24 flip-flop stages. After Set goes low (inactive), the occurrence of the first negative clock transition on IN, causes Decode Out to go low. The counter's flip-flop stages begin counting on the second negative clock transition of IN,. When Set is high, the on-chip RC oscillator is disabled. This allows for very low-power standby operation.

RESET (PIn 2) — A high on Reset asynchronously forces Decode Out to a low level; all 24 flip-flop stages are also reset to a low level. Like the Set input, Reset disables the on-chip RC oscillator for standby operation.

iN₁ (Pin 3) — The device's internal counters advance on the negative-going edge of this input. IN₁ may be used as an external clock input or used in conjunction with OUT₁ and OUT₂ to form an RC oscillator. When an external clock is used, both OUT₁ and OUT₂ may be left unconnected or used to drive 1 LSTTL or several CMOS loads.

8-BYPASS (Pin 6) — A high on this input causes the first 8 flip-flop stages to be bypassed. This device essentially becomes a 16-stage counter with all 16 stages selectable. Selection is accomplished by the A, B, C, and D inputs. (See the truth tables.)

CLOCK INHIBIT (Pin 7) — A high on this input disconnects the first counter stage from the clocking source. This holds the present count and inhibits further counting. However, the clocking source may continue to run. Therefore, when Clock Inhibit is brought low, no oscillator start-up time is required. When Clock Inhibit is low, the counter will start counting on the occurrence of the first negative edge of the clocking source at IN.

OSC INHIBIT (Pin 14) — A high level on this pin stops the RC oscillator which allows for very low-power

standby operation. May also be used, in conjunction with an external clock, with essentially the same results as the Clock Inhibit input.

MONO-IN (PIn 15) — Used as the timing pin for the on-chip monostable multivibrator. If the Mono-In input is connected to VSS, the monstable circuit is disabled, and Decode Out is directly connected to the selected Q output. The monostable circuit is enabled if a resistor is connected between Mono-In and VDD. This resistor and the device's internal capacitance will determine the minimum output pulse widths. With the addition of an external capacitor to VSS, the pulse width range may be extended. For reliable operation the resistor value should be limited to the range of 5 kΩ to 100 kΩ and the capacitor value should be limited to a maximum of 1000 pf. (See figures 3, 4, 5, and 10).

A, B, C, D (Pins 9, 10, 11, 12) — These inputs setect the flip-flop stage to be connected to Decode Out. (See the truth tables.)

OUTPUTS

OUT₁, OUT₂ (PIn 4, 5) — Outputs used in conjunction with IN₁ to form an RC oscillator. These outputs are buffered and may be used for 2⁰ frequency division of an external clock.

DECODE OUT (PIn 13) — Output function depends on configuration. When the monostable circuit is disabled, this output is a 50% duty cycle square wave during free run.

TEST MODE

The test mode configuration divides the 24 flip-flop stages into three 8-stage sections to facilitate a fast test sequence. The test mode is enabled when 8-Bypass, Set and Reset are at a high level. (See Figure 8.)

TRUTH TABLES

	Stage Selected				
8-Bypass		С	8	A	For Docode Out
0	0	0	0	۰	9
0	0	0	0	1	. 10
0	0	٥	1	0	11
0	0	٥	1	1	12
0	0	7	0	0	13
0	0	-	0	-	14
0	0	-	-	٥	15
0	0	-	-	1	16
0	1	٥	٥	٥	17
0	1	٥	0	1	18
0	1	0	1	0	19
. 0	1	0	1	1	20
0	1	1	0	0	21
0	1	1	٥	1	22
0	1	1	1	0	23
0	1	1	1	1	24

	Stage Selected				
8-Bypass	D	С	В	A	For Decode Out
1	0	٥	٥	٥	1
1	0	0	0	1	2
1	0	0	1	0	3
1	0	0	1	1	4
1	0	1	0	0	5
1	0	1	0	1	6
1	0	1	1	0	7
1	0	1	1	1	В
1	1	0	0	0	9
1	1	0	0	1	10
1	1	0	1	0	11
1	1	٥	1	1	12
1	1	1	0	0	13
1	1	1	0	1	14
1	1	1	1	0	15
1	1	1	1	1	16

FUNCTION TABLE

ln ₁	Set	Reset	Clock Inh	OSC Inh	Out 1	Out 2	Decode Out
\	0	0	0	٥		7	No Change
7	0	0	0	0	7	\	Advance to next_state
х	1	0	0	0	0	1	1
х	0	1_	0	0	0	1	0
х	0	D	1	0	-	-	No Change
х	0	0	0	1	0	1	No Change
0	0	0	0	х	0	1	No Change
1	0	0	0		~	~	Advance to next state

X = Don't Care

Į.

LOGIC DIAGRAM

6-355

TYPICAL RC OSCILLATOR CHARACTERISTICS

(For Circuit Diagram See Figure 11 in Application)

FIGURE 2 - RC OSCILLATOR FREQUENCY AS A FUNCTION OF RTC AND C 100 V_{DD} = 10 V 1. OSCILLATOR FREQUENCY (KHZ) of RTC (C = 1000 pF. (RS = ZRTC) (ATC - 56 kss) (Rs = 120 k) 0 0.2 0.1 RTC, RESISTANCE (DHMa) 0.001 C, CAPACITANCE (µF)

0.1

MONOSTABLE CHARACTERISTICS

0.0001

(For Circuit Diagram Sea Figure 10 in Application)

FIGURE 5 — TYPICAL CX versus PULSE WIDTH @ VOD = 15 V

FIGURE 6 — POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 7 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FUNCTIONAL TEST SEQUENCE

Test function (Figure 8) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections and 255 counts are loaded in each of the 8-stage sections in parallel. All flip-flops are now at a "1". The counter is now returned to the normal 24-stages in series configuration. One more pulse is entered into In, which will cause the counter to ripple from an all "1" state to an all "0" state.

FIGURE 8 - FUNCTIONAL TEST CIRCUIT

FUNCTIONAL TEST SEQUENCE

		INPUTS		OUTPUTS	COMMENTS	
Ing	Set	Reset	8-Bypass	Decade Out Q1 thru Q24	Att 24 stages are in Reset mode.	
1	0	1	1	0	0	
1	1	1	1	0	Counter is in three 8 stage sections in parallel mode	
0	1	1	1	0	First "1" to "0" transition of clock	
0 -	1	1	1		255 "1" to "0" transitions are clocked in the counter	
0	7	1	1	1	The 255 "1" to "0" transition.	
0	٥	0	0	1	Counter converted back to 24 stages in series mode Set and Reset must be connected together and simultaneously go from "1" to "0"	
1	0	0	0	1	In 1 Switches to a "1".	
-	0	0	0	0	Counter Ripples from an all "1" state to an all "0" state	

FIGURE 9 — TIME INTERVAL CONFIGURATION USING AN EXTERNAL CLOCK, SET, AND CLOCK INHIBIT FUNCTIONS (DIVIDE-8Y-2 CONFIGURED)

Note: When power is first applied to the device, Decode Out can be either at a high or tow state. On the rising edge of a Set pulse the output goes high if initially at a low state. The output remains high if initially at a high state. Because Clock Inh is held high, the clock source on the input pin has no effect on the output. Once Clock Inh is taken low, the output goes low on the first negative clock transition. The output returns high depending on the 8-Bypass, A, B, C, and D inputs, and the clock input period. A 2ⁿ frequency division (where n = the number of stages selected from the truth table) is obtainable at Decode Out. A 2^o-divided output of IN₁ can be obtained at OUT₁ and OUT₂.

MC14536B

FIGURE 10 -- TIME INTERVAL CONFIGURATION USING AN EXTERNAL CLOCK, RESET, AND OUTPUT MONOSTABLE TO ACHIEVE A PULSE OUTPUT. (DIVIDE-BY-4 CONGIFURED).

Note: When Power is first applied to the device with the Reset input going high, Decode Out initializes low. Bringing the Reset input low enables the chip's internal counters. After Reset goes low, the $2^n/2$ negative transition of the clock input causes Decode Out to go high. Since the Mono-In input is being used, the output becomes monostable. The pulse width of the output is dependent on the external timing components. The second and all subsequent pulses occur at $2^n \times$ (the clock period) intervals where n=the number of stages selected from the truth table.

MC14536B

FIGURE 11 — TIME INTERVAL CONFIGURATION USING ON-CHIP RC OSCILLATOR AND RESET INPUT TO INITIATE TIME INTERVAL (DIVIDE-BY-2 CONFIGURED)

Note: This circuit is designed to use the on-chip oscillation function. The oscillator frequency is determined by the external R and C components. When power is first applied to the device, Decode Out initializes to a high state. Because this output is tied directly to the Osc-inh input, the oscillator is disabled. This puts the device in a low-current standby condition. The rising edge of the Reset pulse will cause the output to go low. This in turn causes Osc-Inh to go low. However, while Reset is high, the oscillator is still disabled (i.e.: standy condition). After Reset goes low, the output remains low for 2ⁿ/2 of the oscillator's period. After the part times out, the output again goes high.

DUAL PRECISION RETRIGGERABLE/RESETTABLE MONOSTABLE MULTIVIBRATOR

The MC14538B is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an accurate output pulse over a wide range of widths, the duration and accuracy of which are determined by the external timing components, C_X and B_X .

- Unlimited Rise and Fall Time Allowed on the A Trigger Input
- Pulse Width Range = 10 μs to 10 s
- Latched Trigger Inputs
- Separate Latched Reset Inputs
- 3.0 Vdc to 18 Vdc Operational Limits
- Triggerable from Positive (A Input) or Negative-Going Edge (B-Input)
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-pin Compatible with MC14528B and CD4528B (CD4098)
- Use the MC54/74HC4538 for Pulse Widths Less Than 10 μs with Supplies Up to 6 V.

CMOS MSI

(LOW POWER COMPLEMENTARY MOS)

DUAL PRECISION
RETRIGGERABLE/RESETTABLE
MONOSTABLE MULTIVIBRATOR

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to + 18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	· V
lin-lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storago Temperature	-65 to +150	°C
TL	Load Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Denating: Plastic "P" Package: -12mW/°C from 65°C to 65°C Ceramic "L" Package: -12mW/°C from 100°C to 125°C

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tic	ow°		25°C		Τ _{hi}	g.	
Characteristic	Symbol	Vde	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	_	0.05	_	0	0.05		0.05	Vdc
Vin = VDD or 0	"	10	l –	0.05	_	l o l	0.05	-	0.05	
22	Į.	15	l –	0.05	_	0	0.05	-	0.05	
"1" Lovel	VOH	5.0	4.95	-	4.95	5.0		4.95		Vdc
V _{in} = 0 or V _{DD}	1 5	10	9.95	-	9.95	10	_	9.95	_	
	L	15	14.95	-	14.95	15	_	14.95	_ '	1
Input Voltage "0" Level	VIL									Vdc
(V _O = 4.5 or 0.5 Vdc)	1	5.0	l –	1.5	-	2.25	1.5	-	1.5	1
(V _O = 9.0 or 1.0 Vdc)		10	-	3.0	_	4.50	3.0	-	3.0	l
(V _O = 13.5 or 1.5 Vdc)		15		4.0		6.75	4.0		4.0	L
"1" Level	VIH	1	1]				ł		Vdc
(Vo = 0.5 or 4.5 Vdc)	l	5.0	3.5	-	3.5	2.75	-	3.5	-	
(V _O = 1.0 or 9.0 Vdc)	- 1	10	7.0	- 1	7.0	5.50	_	7.0	-	
(V _O = 1.5 or 13.5 Vdc)		15	11.0		11.0	8.25		11.0		
Output Drive Current (AL Device)	ЮН	۔۔ ا	۱		١	ا ا		ا . ـ ا		mAd
(VOH = 2.5 Vdc) Source		5.0	-3.0	-	-2.4	-4.2	-	-1.7	-	
(V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc)	1	5.0 10	-0.64 -1.6	-	-0.51 -1.3	-0.88 -2.25	-	-0.36 -0.9	-	
(VOH = 13.5 Vdc)	i	15	-4.2		-1.3 -3.4	-2.25	-	-2.4	-	
(VOL = 0.4 Vdc) Sink		5.0	0.64		0.51	0.88	 -	0.36	_	- 4 4
(VOL = 0.5 Vdc)	lOL	10	1.6	-	1.3	2.25	_	0.36	-	mAde
(VOL = 1.5 Vdc)		15	4.2] [3.4	8.8	_	2.4	_	
Output Drive Current (CL/CP Device)	IOH	 -	- ···	 		0.0		2.4		mAd
(VOH = 2.5 Vdc) Source	, OH	5.0	-2.5	_	-2.1	-4.2	_	-1.7	_	mAG
(VOH = 4.6 Vdc)		5.0	-0.52	_	-0.44	-0.88	_	-0.36	1 -	
(VOH = 9.5 Vdc)	1	10	-1.3	l <u>-</u>	-1.1	-2.25	_	-0.9	_	1
(VOH = 13.5 Vdc)	1	15	-3.6	l - i	-3.0	-8.8	_	-2.4	1 -	1
(VOL = 0.4 Vdc) Sink	loL	5.0	0.52	_	0.44	0.88		0.36		mAde
(VOL = 0.5 Vdc)	-	10	1.3	_	1.1	2.25	_	0.9	-	
(VOL = 1.5 Vdc)	1	15	3.6	i - i	3.0	8.8	_	2.4	-	
Input Current, Pin 2 or 14	lin	15	, =	±0.05	_	±0.00001	±.05	-	:0.5	μAdo
Input Current, Other Inputs (AL Device)	lin	15		±0.1		±0.00001	±0.1	_	±1.0	μAdo
Input Current, Other Inputs (CL/CP Dovi	ice) lin	15	_	±0.3		±0.00001	±0.3	-	11.0	μAdo
Input Capacitance, Pin 2 or 14	Cin	_		_		25	_			ρF
Input Capacitance, Other Inputs	Cin					5.0	7.5			pF
(V _{in} = 0)) ""]] _ [_] "
Quiescent Current (AL Device)	IDD	5.0		5.0		0.005	5.0	-	150	μAdo
(Per Package)	100	10	~	10	_	0.010	10	_	300	
Q-Low, Q-High		15	L	20		0.015	20] _ [600	
Quiescent Current (CL/CP Device)	IDD	5.0	_	20	_	0.005	20	_	150	μAdo
(Per Package)		10	-	40	_	0.010	40	-	300	l
Q=Low, Q=High		15	_	80	_	0.015	80	-	600	1
Quiescent Current, Active State (Both)	IDD	5	_	2.0	_	.04	.20	_	2.0	mAdo
(Per Package)		10	_	2.0	_	.08	.45		2.0	
Q = High, Q = Low		15		2.0		.13	.70		2.0	<u>L</u>
**Total Supply Current at an external lo	ad IT		i							
capacitance (CL) and at external		5.0	IT	= (3.5 x	10-2) R	XCX1+40	χf + 1 x	10 ⁻⁵ CL	.1	
timing network (R_X , C_X)	1 1	10.0	T	= (8 x 1	0-2) R _X	C _X 1 + 9C _X	f + 2 x 10)-5 CL1		
		15.0	ļ 'ī	- (1.25	× 10- ') (RXCXI+Î	2CX1 + 3	x 10-5	CLf	
				whe		ι μΑ (one π n μF, CL ir				١,

 $^{^{\}circ}$ T_{low} = -55 $^{\circ}$ C for AL Device, -40 $^{\circ}$ C for CL/CP Device. Thigh = +125 $^{\circ}$ C for AL Device, +85 $^{\circ}$ C for CL/CP Device.

Date labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} < (V_{in} or V_{out}) < V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be lett open.

^{*}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

	1 1	W	l	All Types		
Characteristic	Symbol	AQC ADD	Min	Typ#	Max	Unit
Output Rise Time	'TLH					ns
^t TLH = (1.35 ns/pF) C _L + 33 ns		5.0	_	100	200	l
TLH = (0.60 ns/pF) CL + 20 ns		10	1 -	50	100	
*TLH = (0.40 ns/pF) CL + 20 ns		15	<u> </u>	40	80	
Output Fall Time	^t THL			1		ns
THL = (1.35 ns/pF) C _L + 33 ns	i I	5.0	\ -	100	200	(
THL = (0.60 ns/pF) C _L + 20 ns	1	10) -	50	100	}
TTHL = (0.40 ns/pF) CL + 20 ns		15	<u> </u>	40	80	L
Propagation Delay Time	tPLH,			i		ns
A or B to Q or 🖸	1PHL		ļ	ļ	l]
tթլн, tթнլ = (0.90 ns/pF) Cլ + 255 ns	i	5,0	-	300	600	ŀ
tp[H. tpHL = (0.36 ns/pF) CL + 132 ns	1 1	10	1 ~	150	300	l
tբլн, tpңլ = (0.26 ns/pF) Cլ + 87 ns) <u>[</u>	15	_ ~	100	220	
Reset to Q or Q	1					ns
tpլн, tpнլ = (0.90 ns/pF) Cլ + 205 ns	1	5.0	1 ~	250	500	
tpլн, tpнլ = (0.36 ns/pF) Cլ + 107 ns	J J	10] ~	125	250	
tp_H, tpHL = (0.26 ns/pF) CL + 82 ns	1	15	} -	95	190	
Input Rise and Fall Times	tg. tg	5			15	μв
Reset	1 "" }	10	-		5]
		15	L	L	4	
B Input	ĺ	5	_	300	1.0	ms
	1 1	10	١ –	1.2	0.1	ļ
		15	<u> </u>	0.4	0.05	
A Input	1	5	i			l –
	1	10	1	No Limit		
. .		15	<u> </u>			L_
Input Pulse Width	twH,	5.0	170	85	ł –	ns
A, B, or Reset	tWL	10	90	45	-	
		15	80	40		L
Retrigger Time	trr	5.0	0	-	-	ns
		10 15	0] _	-	
001.18.0.0.0	+ + +	- 15	 -	 		 -
Output Pulse Width — Q or Q	1 ' 1		1	İ	1	μ:
Refer to Figures 8 and 9	1 1	5.0	198	210		ļ
$C_X = 0.002 \mu\text{F}, H_X = 100 \text{k}\Omega$		10	200	212	230 232	
	i i	15	202	214	232	l
0 44 5 5 4-44) }	5.0	9.3	9.86		
C _X = 0.1 μF, R _X = 100 kΩ	I I	10	9.4	10	10.5 10.6	ms
	[15	9.5	10.14	10.5	ţ
C _Y = 10 μF, R _Y = 100 kΩ) }	5.0	 	0.965	1.03	-
οχ - 10 μr, nχ - 100 κιτ	, I	5.0 10	0.91 0.92	0.98	1.03	1
		15	0.92	0.99	1.06	
				 		%
Pulse Width Match between circuits in	100 (T T-)	50	ı ~		1 +50	
Pulse Width Match between circuits in the same package.	100(<u>T₁ - T₂)</u>	5.0 10	_	± 1.0 ± 1.0	± 5.0 ± 5.0	70

[&]quot;The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

OPERATING CONDITIONS

External Timing Rosistance	R _X _		5.0			kΩ
External Timing Capacitance	c×	-	0	=	No Limit †	μF

The maximum usable resistance R_X is a function of the leakage of the capacitor C_X, leakage of the MC14538B, and leakage due to board layout and surface resistance. Susceptability to externally induced noise signals may occur for R_X > 1 MΩ.
 If C_X > 15 μF, use discharge protection diode per Fig. 11.

FIGURE 2 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - SWITCHING TEST CIRCUIT

CHARACTERISTICS	Reset	Α	В
tplH, tpHL, tTLH, tTHL, T, tWH, tWL	V _{DD}	PG1	V00
ФЕН, ФИС, ТЕН, ТИС. Т, ТМН, ТМС	VDD	v _{\$8}	PG2
[†] PLH(R)- [†] PHL(R)- [†] WH- [†] WL	PG3	PG1	PG2

	Inputs		Outp	uts
Reset	Α	В	Q	<u>ā</u>
H	.	۲	Λ Λ	T T
H	√ ~	ړ کړ کړ	Not Tri	
H H	L, H, \	H L, H, -	Not Tri Not Tri	ggered ggered
ر ۲	X	X	L Not Tri	H ggered

FUNCTION TABLE

THEORY OF OPERATION

FIGURE 10 - Timing Operation

TRIGGER OPERATION

The block diagram of the MC145388 is shown in Figure 1, with circuit operation following.

As shown in Figure 1 and 10, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor C_X completely charged to V_{DD} . When the trigger input A goes from V_{SS} to V_{DD} (while inputs B and Reset are held to V_{DD}) a valid trigger is recognized, which turns on comparator C1 and N-channel transistor N1 \bigcirc . At the same time the output latch is set. With transistor N1 on, the capacitor C_X rapidly discharges toward V_{SS} until V_{ref1} is reached. At this point the output of comparator C1 changes state and transistor N1 turns off. Comparator C1 then turns off while at the same time comparator C2 turns on. With transistor N1 off, the capacitor C_X begins

to charge through the timing resistor, R_X , toward V_{DD} . When the voltage across C_X equals V_{ref} 2, comparator C_2 changes state, causing the output latch to reset (Q goes low) while at the same time disabling comparator C_2 ②. This ends at the timing cycle with the monostable in the quiescent state, waiting for the next trigger.

In the quiescent state, C_X is fully charged to V_{DD} causing the current through resistor R_X to be zero. Both comparators are "off" with total device current due only to reverse junction leakages. An added feature of the MC14538B is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of C_X, R_X, or the duty cycle of the input waveform.

RETRIGGER OPERATION

The MC14538B is retriggered if a valid trigger occurs $\fill \fil$

RESET OPERATION

The MC14538B may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on Reset sets the reset latch and causes the capacitor to be fast charged to VDD by turning on transistor P1 ⑤. When the voltage on the capacitor reaches Vref 2, the reset latch will clear, and will then be ready to accept another pulse. If the Reset input is held low, any trigger inputs that occur will be inhibited and the Q and Q outputs of the output latch will not change. Since the Q output is reset when an input low level is

detected on the $\overline{\text{Reset}}$ input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

POWER-DOWN CONSIDERATIONS

Large capacitance values can cause problems due to the large amount of energy stored. When a system containing the MC14538B is powered down, the capacitor voltage may discharge from Vpp through the standard protection diodes at pin 2 or 14. Current through the protection diodes should be limited to 10 mA and therefore the discharge time of the Vpp supply must not be faster than (Vpp). (C)/(10 mA). For example, if Vpp= 10 V and Cx= 10 μF , the Vpp supply should discharge no faster than (10 V) \times (10 μF)/(10 mA) = 10 ms. This is normally not a problem since power supplies are heavily filtered and cannot discharge at this rate.

When a more rapid decrease of V_{DD} to zero volts occurs, the MC14538B can sustain damage. To avoid this possibility use an external clamping dlode, D_X, connected as shown in Fig. 11.

FIGURE 11 — USE OF A DIODE TO LIMIT POWER DOWN CURRENT SURGE

6

TYPICAL APPLICATIONS

FIGURE 12 — RETRIGGERABLE MONOSTABLES CIRCUITRY

FIGURE 13 — NON-RETRIGGERABLE MONOSTABLES CIRCUITRY

FIGURE 14 — CONNECTION OF UNUSED SECTIONS

MC14539B

DUAL 4-CHANNEL DATA SELECTOR/MULTIPLEXER

The MC14539B data selector/multiplexer is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. The circuit consists of two sections of four inputs each. One input from each section is selected by the address inputs A and B, A "high" on the Strobe input will cause the output to remain "low".

This device finds primary application in signal multiplexing functions. It permits multiplexing from N-lines to I-line, and can also perform parallel-to-serial conversion. The Strobe input allows cascading of n-lines to n-lines.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	V
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
lin. lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	-65 to +150	ç
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Packago: =12mW/°C from 65°C to 85°C

Ceramic "L" Package: =12mW/°C from 100°C to 125°C

TRUTH TABLE

I		RESS	D	ATA II	NPUTS	;		
ļ	INP	UTS	Х3	X2	X1	X0	1	OUTPUTS
1	8	Α	Y3	Y2	Y1	Y0	ST,ST	Z, W
	×	х	х	×	×	х	1	0
١	0	0	×	X	×	0	0	0
1	0	0	х	X	X	1	0	1
1	0	1	×	х	0	х	0	0
ł	0	1	Х	×	1	×	0	1
ſ	1	0	×	0	Х	×	0	0
ĺ	1	0	×	1	X	×	0	1
ı	1	1	0	Х	×	x	0	0
ı	1	1	1	×	×	x	0	1

X = Don't Care

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL 4-CHANNEL
DATA SELECTOR/MULTIPLEXER

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Serios: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Coramic Package)

BLOCK DIAGRAM

MC14539B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	Tic	<u>w</u> *		25°C		Thi	gh*)
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	_	0.05		0	0.05		0.05	Vdc
Vin = VDD or 0		l	10	l –	0.05	-	0	0.05	_	0.05]
			15		0.05		0	0.05		0.05	
	"1" Løvel	VOH	5.0	4.95	-	4.95	5.0	-	4.95	_	Vdc
Vin ≈ 0 or VDD			10	9.95	l –	9.95	10	-	9.95	-	
			15	14.95	<u> </u>	14.95	15	_	14.95	L. –	L
Input Voltage	"0" Level	VIL	1	ŀ	l			ļ	1	1	Vdc
$(V_0 = 4.5 \text{ or } 0.5 \text{ Vdc})$		1	5.0	-	1.5	<u> </u>	2.25	1.5	-	1.5	ì
(VO = 9.0 or 1.0 Vdc)			10	-	3.0	-	4.50	3.0	_ '	3.0	ļ
$(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$			15		4.0		6.75	4.0		4.0	
	"1" Løvel	VIH	ł	l	1	1	l			l	Vdc
(VO = 0.5 or 4.5 Vdc)			5.0	3.5	-	3.5	2.75	_	3.5	_	1
(VO = 1.0 or 9.0 Vdc)			10	7.0	-	7.0	5.50	_	7.0) —	1
(V _O = 1.5 or 13.5 Vdc)			15	11.0	_=_	11.0	8.25		11.0		L
Output Drive Current (AL Device)	_	1ОН		l	!	ļ	1	ŀ			mAdc
(VOH = 2.5 Vdc)	Source		5.0	-3.0		-2.4	- 4.2	-	- 1.7	-	1
(V _{OH} = 4.6 Vdc)			5.0	-0.64	-	~0.51	~0.88	_	-0.36	-	i i
(VOH = 9.5 Vdc) (VOH = 13.5 Vdc)			10 15	-1.6 -4.2	_	-1.3 -3.4	~2.25 -8.8	_	-0.9	-	1
									- 2.4		
(VOL = 0.4 Vdc)	Sink	lor	5.0	0.64	-	0.51	0.68	-	0.36	–	mAdc
(VOL = 0.5 Vdc)		1	10	1.6	-	1.3	2.25	-	0.9	_	1
(V _{OL} = 1.5 Vdc)			15	4.2	L <u> </u>	3.4	8.8		2.4		<u> </u>
Output Drive Current (CL/CP Device		lОН	ŀ		ŀ	1	1				mAdc
(V _{OH} = 2.5 Vdc)	Source		5.0	-2.5	_	-2.1	-4.2	-	- 1.7	_	ļ.
(VOH = 4.6 Vdc)		<u>'</u>	5.0	-0.52	-	-0.44	~0.88	-	-0.36	- '	ì
(VOH = 9.5 Vdc) (VOH = 13.5 Vdc)			10 15	- 1.3 - 3.6	_	-1.1 -3.0	-2.25 -8.8	_	- 0.9 - 2.4	_	ı
. •								_=_			<u> </u>
(VOL = 0.4 Vdc)	Sink	IOL	5.0	0.52	_	0.44	0.88	_	0.36	-	mAdc
(VOL = 0.5 Vdc) (VOL = 1.5 Vdc)			10 15	1.3 3.6	_	1.1	2.25	_	0.9	_	
						3.0	8.8		2.4		├
Input Current (AL Device)		lin_	15		± 0.1		±0.00001	±0.1		± 1.0	μAdc
Input Current (CL/CP Device)		₹n	15		±0.3		±0.00001	±0.3		±1.0	μAdc
Input Capacitance (Vin = 0)		Cin	_	_	_		5.0	7.5	-	_	pF
Quiescent Current (AL Device)		lDD -	5.0	_	5.0		0.005	5.0	_	150	μAdc
(Per Package)			10	i – ,	10	_	0.010	10		300	l
			15		20		0.015	20	-	600	
Quiescent Current (CL/CP Device)		l _{DD}	5.0	_	20		0.005	20	-	150	μAdc
(Per Package)			10	_	40	_ '	0.010	40	_	300	
			15	1	80		0.015	80	-	600	i
Total Supply Current**†		ΙT	5.0			tr = (0.	85 μΑ/kHz) 1	+ inn			μAdc
(Dynamic plus Quiescent,		'	10	1			.7 μA/kHz) f -				
Per Package)			15				.6 μΑ/kHz) f -				í
(CL = 50 pF on all outputs,		1									1
all buffers switching)		L									

^{*}T_{low} = -55°C for AL Davico, -40°C for CL/CP Davice.
Thigh = +125°C for AL Davico, +85°C for CL/CP Davice.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

**The formulas given are for the typical characteristics only at 25°C.

 $I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$

where: I_T is in μ A (per packago), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts. fin kHz is input frequency, and k=0.002.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{out} should be constrained to the range V_{SS} ≤ (V_{In} or V_{out}) ≤ V_{DD}. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

[†]To calculate total supply current at loads other than 50 pF:

MC14539B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	Vop	Min	Typ#	Max	Unit
Output Rise and Fall Time	tTLH.			1		ns
tтын, tты = (1.5 пв/pF) Сь + 25 пв	THL	5.0	-	100	200	
trum, trum = (0.75 ns/pF) CL + 12.5 ns	\ -	10	-	50	100	J
tTLH. tTHL = (0.55 ns/pF) CL + 9.5 ns	l i	15	-	40	80	ì
Propagation Delay Time	₩LH,		† · · · · · · · · · · · · · · · · · · ·	 	<u> </u>	ns
X, Y Input to Output	1PHL	}	1	I	}	ì
tթլн_ tթнլ = (1.7 ns/pF) Cլ + 125 ns	} '''•	5.0	-	210	420	
tp[H, tpHL = (0.66 ns/pF) CL + 57 ns		10	-	90	180	
tpլн, tpнլ = (0.55 ns/pF) Сլ + 45 ns		15	- "	70	140	
A Input to Output	†PLH		 	 		OS.
tp_H = (1.7 ns/pF) CL + 140 ns	1	5.0	l -	225	450	""
tp_H = (0.66 ns/pF) C ₁ + 77 ns	J	10	-	110	220	
tp_H = (0.5 ns/pF) C _L + 60 ns	1	15	-	85	170	i
tpHL = (1.7 ns/pF) C ₁ + 160 ns	tPHL.	5.0		245	490	ns
tpHL = (0.66 ns/pF) C ₁ + 82 ns	411	10	l _	115	230	1 "
tput = (0.5 ns/pF) Ct + 65 ns	1	15	· ~	90	180	í
Strobe Input to Output			 	 	1	
tplH tpHL * (1.7 ns/pF) C1 + 60 ns	ФLH,	5,0	_	145	290	ns
tp_H, tpHL = (0.66 ns/pF) CL + 42 ns	₹PHL .	10	1 -	75	150	l
tplH, tpHL = (0.5 ns/pF) CL + 35 ns		15	-	60	1	
ACM AME JOIN UNDEL OF 4 20 US		15		00	120	<u> </u>

^{*}The formulas given are for the typical characteristics only at 25°C.

#Data tabolied "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - AC TEST CIRCUIT AND WAVEFORMS

Input Connections for TTLH, TTHL, TPHL, TPLH

TEST	STROBE	Α	ΧO
1 2 3	Gnd	Gnd	P. G
	P. G.	Gnd	V _{DD}
	Gnd	P. G.	V _{DD}

FIGURE 2 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

PROGRAMMABLE TIMER

The MC14541B programmable timer consists of a 16-stage bihary counter, an integrated oscillator for use with an external capacitor and two resistors, an automatic power-on reset circuit, and output control logic.

Timing is initialized by turning on power, whereupon the power-on reset is enabled and initializes the counter, within the specified V_{OD} range. With the power already on, an external reset pulse can be applied. Upon release of the initial reset command, the oscillator will oscillate with a frequency determined by the external RC network. The 16-stage counter divides the oscillator frequency $\{f_{OSC}\}$ with the n^{th} stage frequency being $f_{OSC}/2^n$.

- Available Outputs 28, 210, 213 or 216
- Increments on Positive Edge Clock Transitions
- Built-in Low Power RC Oscillator
 (± 2% accuracy over temperature range and ± 20% supply and ± 3% over processing at < 10 kHz)
- Oscillator May Be Bypassed if External Clock Is Available (Apply external clock to Pin 3)
- External Master Reset Totally Independent of Automatic Reset Operation
- Operates as 2ⁿ Frequency Divider or Single Transition Timer
- Q/Q Select Provides Output Logic Level Flexibility
- Reset (auto or master) Disables Oscillator During Resetting to Provide No Active Power Dissipation
- Clock Conditioning Circuit Permits Operation with Very Slow CLock Rise and Fall Times
- Automatic Reset Initializes All Counters On Power Up
- Supply Voltage Range = 3.0 Vdc to 18 Vdc with Auto Reset Disabled (Pin 5 = V_{DD})
 8.5 Vdc to 18 Vdc with Auto Reset Enabled (Pin 5 = V_{SS})

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	v
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
lin	Input Current (DC or Transient), per Pin	± 10	mA
lout	Output Current (DC or Transient), per Pin	± 45	mA
PD	Power Dissipation, per Package†	500	mW
T _{stq}	Storage Temperature	- 65 to + 150	*C
ΤL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Tomperature Derating: Plastic "P" Package: – 12mW/°C from 65°C to 85°C Ceramic "L" Package: – 12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

OSCILLATOR/TIMER

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		V	The			25°C		Thi		
Characteristic	Symbol	VDD	Min	Max	Min	Typ#	Mex	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05	_	0.05	Vdc
Vin = VDD or 0	100	10	_	0.05	_	١٥	0.05	_	0.05] '''
		15	_	0.05	_	l ŏ	0.05	l - i	0.05	1
"1" Level	VOH	5.0	4.95		4.95	5.0		4.95	-	Vdc
Vin = 0 or V _{DD}	J	10	9.95	-	9.95	10	-	9.95	_	
		15	14.95		14.95	15	-	14.95	_	[
Input Voltage "0" Level	VIL									Vdc
(V _O = 4.5 or 0.5 Vdc)		5.0	-	1.5	_	2.25	1.5	l - !	1.5	
(VO = 9.0 or 1.0 Vdc)]	10] -	3.0	-	4.50	3.0	i - I	3.0	1
(V _O = 13.5 or 1.5 Vdc)		15		4.0	<u> </u>	5.75	4.0	<u> </u>	4.0	
"1" Level	VIH	ŀ								Vdc
(V _O = 0.5 or 4.5 Vdc)	1	5.0	3.5	-	3.5	2.75		3.5	-	ľ
(V _O = 1.0 or 9.0 Vdc)		10	7.0	_	7.0	6.50	-	7.0	_	l
(Vo = 1.5 or 13.5 Vdc)		15	11.0		11.0	8.25		11.0		
Output Drive Current (AL Device)	IOH	ł				1	1			mAde
(VOH = 2.5 Vdc) Source		5.0	-7.96	-	-6.42	- 12.83	-	-4.49	-	
(VOH = 9.5 Vdc)	1	10	-4.19	-	-3.38	-6.75	-	- 2.37	-	ì
(VOH = 13.5 Vde)		15	- 16.3	_=	-13.2	-26.33		-9.24		
(VOL = 0.4 Vdc) Sink	JOL	5.0 10	1.93 4.96	-	1.56 4.0	3.12 8.0	-	1.09	-	mAdc
(VOL = 0.5 Vdc) (VOL = 1.5 Vdc)		15	19.3	_	15.6	31.2	_	2.8 10.9	_	i
					13.0	31.2		10.5		
Output Drive Current (CL/CP Device)	ЮН	ا ۔ ۔	~5.1		- 4.27	- 12.83	l	-3.5		mAdc
(VOH = 2.5 Vdc) Source (VOH = 9.5 Vdc)	ĺ	5.0 10	-2.69	_	-2.25	- 6.75	_	-1.85	_	l
(VOH = 13.5 Vdc)		15	-10.5	_	-8.8	-26.33	-	~ 7.22	_	1
(VOL = 0.4 Vdc) Sink	<u> </u>	5.0	1,24		1.04	3.12	-	0.85		
(VOL = 0.5 Vdc)	IOL .	10	3.18	_	2.66	8.0		2.18	_	
(VOL = 1.5 Vdc)	i '	15	12.4	_	10.4	31.2	l _	8.50	-	
Input Current (AL Device)	lin	15		±0.1	_	±0,00001	±0.1		±1.0	μAdc
Input Current (CL/CP Device)	lin	15		±0.3	 _ _	±0.00001	10.3		±1.0	μAdc
Input Capacitance		-				5.0	7.5			
(V _{in} = 0)	Cin	-	-	-	-	5.0	/.5	_	_	pF
Quiescent Current (AL Device)			,							μAdc
	1	5.0	-	5.0	-	0.005	5.0	-	150	ł
(Pin 5 is High)	100	10	- 1	10) -	0.010	10	1 - 1	300	Ì
Auto Reset Disabled		15		20	L -	0.015	20] -	600	I
Quiescent Current (CL/CP Device)										μAde
		5.0	- 1	20	- '	0.005	20	-	150	1
(Pin S is High)	ססי	10	- 1	40	-	0,010	40	-	300	}
Auto Reset Disabled		15		80		0,015	80		600	
Auto Reset Quiescent Current							1			μAdc
	IDDR	10	_	250	-	30	250	_	1500	ļ
(Pin 5 is low)		15	-	500	-	82	500	-	2000	
Supply Current**†										μAdc
(Dynamic plus Quiescent)		5.0			In = (0).4 µA/kHz)	f+ Inn			
	l _D	10								
		15				.2 µA/kHz)				I

Tiow = -55°C for AL Device, -40°C for CL/CP Device.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS < (Vin or Vout) < VDD.

Unused inputs must always be tied to an appropriate togic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[†]When using the on chip oscillator the total supply current (in μ Adc) becomes: $I_T = I_D + 2$ C_{tc} V_{DD} fx 10^{-3} where I_D is in μ A. C_{tc} is in pF, V_{DD} in Volta DC, and f in kHz. (see fig. 3) Dissipation during power-on with automatic reset enabled is typically 50μ A @ $V_{DD} = 10$ Vdc.

SWITCHING CHARACTERISITCS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time †TLH. †THL = (1.5 ns/pF) C _L + 25 ns †TLH, †THL = (0.75 ns/pF) C _L + 12.5 ns †TLH, †THL = (0.55 ns/pF) C _L + 9.5 ns	tTLH, tTHL	5.0 10 15	=	100 50 40	200 100 80	ns
Propagation Delay, Clock to Q (2 ⁸ Output) tpLH, tpHL = (1.7 ns/pF) C _L + 3415 ns tpLH, tpHL = (0.66 ns/pF) C _L + 1217 ns tpLH, tpHL = (0.5 ns/pF) C _L + 875 ns	tPLH tPHL	5.0 10 16	-	3.5 1.25 0.9	10.5 3.8 2.9	με
Propagation Delay, Clock to Q (2 ¹⁶ Output) tpHL, tpLH = (1.7 ns/pF) CL + 5915 ns tpHL, tpLH = (0.66 ns/pF) CL + 3467 ns tpHL, tpLH = (0.5 ns/pF) CL + 2475 ns	tPHL tPLH	5.0 10 15	-	6.0 3.5 2.5	18 10 7.5	μς
Clock Pulse Width	WH(cl)	5.0 10 15	900 300 225	300 100 85		ns
Clock Pulse Frequency (50% Duty Cycle)	fcl	5.0 10 15	=	1.5 4.0 6.0	0.75 2.0 3.0	MHz
MR Pulse Width	twH(R)	5.0 10 15	900 300 225	300 100 85	-	ns
Master Reset Removal Time	^t rom	5.0 10 15	420 200 200	210 100 100	_ _ _	ns

^{*}The formulas given ere for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 — POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

(R $_{10}$ and C $_{10}$ outputs are left open)

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

EXPANDED BLOCK DIAGRAM

V_{DD} = Pin 14 V_{SS} = Pin 7

FREQUENCY SELECTION TABLE

A	ė	Number of Counter Stages n	Count 2n
0	0	13	B192
0	1	10	1024
1	. 0	8	256
1	1	16	65536

TRUTH TABLE

	St	tate
Pin	0	1
Auto Reset, 5	Auto Reset Oper- ating	Auto Reset Disabled
Master Reset, 6	Timer Operational	Master Raset On
Q/Q, 9	Output Initially Low After Reset	Output Initially High After Reset
Mode, 10	Single Cycle Mode	Recycle Mode

FIGURE 3 - OSCILLATOR CIRCUIT USING RC CONFIGURATION

TYPICAL RC OSCILLATOR CHARACTERISTICS

8.0

4.0

4.0

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10 V

10

50

TA, AMBIENT TEMPERATURE (°C)

75

FIGURE 5 - RC OSCILLATOR FREQUENCY AS A FUNCTION OF RTC AND CTC 100 V_{DD} = 10 V **DSCILLATOR FREQUENCY** (C = 1000 oF 10 (Re = 2RTC) 5.0 of C (RTC = 56 kf) 2.0 ≈ 120 kΩ) 0.5 0.2 1.01 RTC. RESISTANCE (OHMS) 0.1 0.0001 0.001 C, CAPACITANCE (µF)

OPERATING CHARACTERISTICS

With Auto Reset pin set to a "0" the counter circuit is initialized by turning on power. Or with power already on, the counter circuit is reset when the Master Reset pin is set to a "1". Both types of reset will result in synchronously resetting all counter stages independent of counter state. Auto Reset pin when set to a "1" provides a low power operation.

The RC oscillator as shown in Figure 3 will oscillate with a frequency determined by the external RC network i.e.,

$$f = \frac{1}{2.3 \text{ R}_{\text{LC}} c_{\text{LC}}} \quad \text{if (1 kHz < f < 100 kHz)}$$

$$R_S \approx 2 R_{\text{LC}} \quad \text{where } R_S > 10 \text{ k}\Omega$$

and

The time select inputs (A and B) provide a two-bit address to output any one of four counter stages (28, 210, 213 and 218). The 2th counts as shown in the Frequency Selection Table represents the Q output of the Nth stage of the counter. When A is "1", 218 is selected for both

states of B. However, when B is "0", normal counting is interrupted and the 9th counter stage receives its clock directly from the oscillator (i.e., effectively outputing 28).

The Q/\overline{Q} select output control pin provides for a choice of output level. When the counter is in a reset condition and Q/\overline{Q} select pin is set to a "0" the Q output is a "0", correspondingly when Q/\overline{Q} select pin is set to a "1" the Q output is a "1".

When the mode control pin is set to a "1", the selected count is continually transmitted to the output. But, with mode pin "0" and after a reset condition the RS flip-flop (see Expanded Block Diagram) resets, counting commences, and after 2ⁿ⁻¹ counts the RS flip-flop sets which causes the output to change state. Hence, after another 2ⁿ⁻¹ counts the output will not change. Thus, a Master Reset pulse must be applied or a change in the mode pin level is required to reset the single cycle operation.

DIGITAL TIMER APPLICATION

When Master Reset (MR) receives a positive pulse, the internal counters and latch are reset. The Q output goes high and remains high until the selected (via A and B) number of clock pulses are counted, the Q output then goes low and remains low until another input pulse is received.

This "one shot" is fully retriggerable and as accurate as the input frequency. An external clock can be used (pin 3 is the clock input, pins 1 and 2 are outputs) if additional accuracy is needed.

Notice that a setup time equal to the desired pulse width output is required immediately following initial power up, during which time Q output will be high.

MC14543B

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER for LIQUID CRYSTALS

The MC14543B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (B1), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.

Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

- Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4056A (with Pin 7 Tied to VSS).
- Chip Complexity: 207 FETs or 52 Equivalent Gates

MAXIMUM RATINGS (Voltages referenced to VSS)

	-		
Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to +18	٧
Input Voltage, All Inputs	Vin	-0.5 to V _{DD} + 0.5	V
DC Input Current per Pin	lin	±10	mA
Operating Temperature Range — AL Device CL/CP Device	TA	-55 to +125 -40 to +85	°C
Storage Temperature Rance	T _{stg}	-65 to +150	οС
Maximum Continuous Output Drive Current (Source or Sink) per Output	IOHmax IOLmax	10	mA
Maximum Continuous Output Power* (Source or Sink) per Output	POHmax POLmax	70	mW

*POHmax = IOH (VOH - VDD) and POLmax = IOL (VOL - VSS)

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER

for LIQUID CRYSTALS

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

		INPUT	5							1	ou	TPL	JFS	
LD	81	Ph.	D	C	B	A	á	b	¢	d	*	1	0	Display
x	1	0	×	×	×	×	0	0	0	a	0	0	Ó	Biaria
1	0	0	()	0	0	0	1	1	1	1	1	1	0	.0
1	0	0	0	0	0	1	0	1	1	0	0	0	0	1
1	0	0	0	0	1	0	1	1	0	1	1	0	1	7
1	0	0	0	0	1	1	1	1	1	1	0	0	1	3
1	0	0	0	1	0	0	0	1	1	0	0	1	1	4
1	0	0	0	1	0	1	1	O	4	1	0	1	1	5
1	0	0	0	1	1	0	1	O	1	1	1	1	1	6
1	0	0	0	1	1	1	1	1	1	0	П	0	0	7
1	0	0	1	0	0	0	1	1	1	1	1	1	-1	8
1	0.	0	7	0	0	1	1	1	1	1	D	1	1	9
1	0	0	1	0	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	0	1	1	0	0	0	0	0	0	Ð	Blank
1	0	0	1	1	0	0	0	0	0	0	0	0	D	Diams
T	0	D	1	3	0	3	0	0	0	0	0	0	0	Blace
T	0	0	1	1	1	O	0	0	0	0	0	0	0	Blank
1	0.	0	1	1	1	1	0	0	0	0	0	0	0	Blank
0	0	0	Х	Х	Х	Х								**
,	1	1					Co		нпа	f C		lu l		Display as abov

X - Don I care

- For liquid crystal readouts, apply a square wave to Ph

 For liquid crystal readouts, apply a square wave to Ph For common cathode LED readouts, select Ph = O
 For common anode LED readouts, select Ph = 1

For common anode LED readouts, select Ph 1 1

Depends upon the BCD code previously applied when LD

MC14543B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Vss)

	}	VDD		w*	L	25°C			gh *	[
Characteristic	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Uni
Output Voltage "O" Leve	VOL	5.0	-	0.05	-	0	0.05		0.05	٧
V _{in} V _{DD} or 0	}	10	-	0.05		0	0.05	- 1	0.05)
]	15	-	0.05		0	0.05	- '	0.05	
"1" Leve	VOH	5.0	4.95		4.95	5.0		4.95		V
Vin O or VDD	1	10	9.95	-	9.95	10	_	9.95		ł
	ł	15	14.95	~	14.95	15	-	14.95	-	•
nput Voltage# "0" Leve	VIL									v
(VO 4.5 or 0.5 V)	'-	5.0	-	1.5		2.25	1.5	- '	1.5	1
(VD 9.0 or 1.0 V)	1	10		3.0	-	4.50	3.0		3.0	}
(VO 13.5 or 1.5 V)	-	15	_	4.0	-	6.75	4.0		4.0	
"1" Leve	VIH									
(VO - 0.5 or 4.5 V)	1	5.0	3.5] .	3.5	2.75	_	3.5	_	Ιv
(VO 1.0 or 9.0 V)	1	10	7.0	۱ ـ	7.0	5.50	-	7.0	-	1
(Vp = 1.5 or 13.5 V)	ł	15	11.0		11.0	8.25	_	11.0	_	1
Output Drive Current (AL Device)	ЮН				1			· · · · · ·		m/
(VOH = 2.5 V) Source		5.0	-3.0	_	-2.4	~4.2	_	_1.7	_	''''
(VOH = 4.6 V)	[5.0	~0.64	_	-0.51	~0.88	_	-0.36	-	ľ
(VOH = 0.5 V)	1 :	10	_		_	-10.1	_	-	_	Į į
(Vau = 9.5 V)	1 .	10	1.6	-	-1.3	-2.25	-	-0.9	-	
(VOH = 13.5 V)	L	15	-4.2		-3.4	-8.8		-2.4		<u> </u>
(VOL = 0.4 V) Sink	OL	5.0	0.64	i	0.51	0.88	-	0.36	-	m/
(VOL - 0.5 V)	1 1	10	1.6		1,3	2.25	-	0.9	-	ļ
(VOL = 9.5 V)		10		_	3.4	10,1		2.4	_	
(VOL * 1.5 V)		15	4.2		3.4	8.8		2.4		<u> </u>
Output Drive Current (CL/CP Device)	ІОН				_	(m/
(VOH = 2.5 V) Source	1	5.0	-2.5	-	-2.1	-4.2	-	-1.7		ļ.
(VOH = 4.6 V)	Į.,	5.0	~0.52	-	-0.44	-0.88	-	-0.36	-	1
(VOH = 0.5 V)		10		_		-10.1	-		-	
(VOH = 9.5 V)	['	10	-1.3	-	-1.1	~2.25	-	-0.9	-	l
(V _{OH} = 13.5 V)	ļ	15	-3.6	<u> </u>	-3.0	-8.8		-2.4		ļ.,
(VOL = 0.4 V) Sink	lOL	5.0	0.52	-	0.44	0.88	-	0.36	-	m/
(VOL = 0.5 V)	l '	10	1.3	_	1.1	2.25	-	0.9	-	(
(VOL = 9.5 V)	[10 15	3.6	-	3.0	10.1 8.8	-	2.4	-	ł
(V _{OL} = 1.5 V)				- -	3.0	10.00001	10.1	2.4	: 1.0	μА
nput Current (AL Device)	lin	15		:01	ļ		_			
nput Current (CL/CP Device)	lin	15		:03		±0.00001	± 0.3	_ :	: 1.0	μΑ
nput Capacitance	Cin	-			-	5.0	7.5	-		pF
luiescent Cuirent (AL Device)	'DD	- 5.0		5.0		0.005	5.0		150	μА
(Per Package) Vin=0 or VDD,) 55	10		10	-	0.010	10	-	300	1
l _{out} = 0 μA	l	15		20	[-	0.015	20	- 1	600	L_
Julescent Current (CL/CP Device)	'DD	5.0		20	<u> </u>	0.005	20		150	μА
(Per Package) Vin=0 or VDD,	1 .00	10	-	40	۱	0.010	40	_	300	
Iout = 0 #A]	15		80	_	0.015	80	l -	600	1
	 	5.0	 		1/-					μ,
otal Supply Current**I	T	10	ĺ			1.6 μΑ/kHz 3.1 μΑ/kHz				" ا
(Dynamic plus Quiescent,	1		ł			3.1 μΑ/ΚΠΖ 4.7 μΑ/ΚΗΖ				1
Per Package)	1 .	15	1		'T"	4. <i>F HAI</i> KM?	טפי זיי	'		1
(CL=50 pF on all outputs, all										

^{*}Tlow -55°C for AL Device, -40°C for CL/CP Device.

Thigh +125°C for AL Device, -85°C for CL/CP Device.

*Noise immunity specified for worst-case input combination.

Noise Margin for both "1" and "0" level 1.0 V min @ Vop = 5.0 V

^{2.0} V min @ V_{DD} = 10 V 2.5 V min @ V_{DD} = 15 V

tTo calculate total supply current at loads other than 50 pF:

17(C_L) 17(50 pF) + 3.5 x 10⁻³ (C_L -50) V_{DD}I

where 17 is in µA (per package), C_L in pF, V_{DD} in V, and f in kHz is input frequency.

**The formulas given are for the typical characteristics only at 25°C.

MC14543B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур	Max	Unit
Output Rise Time	TLH		T		j	пѕ
tተլн = (3.0 ns/pF) Cլ + 30 ns		5.0	_	100	200	
tTLH = (1.5 ns/pF) CL + 15 ns	1	10	-	50	100	
t լ լ բ = (1.1 ns/pF) C լ + 10 ns		15	1 -	40	80	
Output Fall Time	1THL	 	 	 	 	ns
tTHL = (1.5 ns/pF) CL + 25 ns		5.0	_	100	200	1
tTHL = (0.75 ns/pF) CL + 12.5 ns		10	-	50	100	1
t_HL = (0.55 ns/pF) CL + 12.5 ns		15	-	40	80	
Turn-Off Delay Time	TPLH			1		ns
tp_H = (1.7 ns/pF) C_ + 520 ns		5.0	-	605	1210	1
tp_H = (0.66 ns/pF) C_ + 217 ns		10	-	250	500	1
tpլн = (0.5 ns/pF) Cլ + 160 ns		15	-	185	370	1
Turn-On Delay Time	tPHL	 			 	ns
tpHL = (1.7 ns/pF) CL + 420 ns	=	5.0	_	505	1650	
tрн∟ = (0.66 ns/pF) С_ + 172 ns		10	-	205	660	1
tpHL = (0.5 ns/pF) CL + 130 ns	j	15	_	155	495	j
Setup Time	t _{su}	5.0	350	· · · · · ·		ns
		10	450	Ì	_	1
		15	500	1	1 -	
Hold Time	th	5.0	40		 	ns
] "	10	30	į	_	1
	1	15	20	1	-	1
Latch Disable Pulse Width (Strobing Data)	twH	5.0	250	125		ns
		10	100	50	-	1
		15	80	40	_	

^{*}The formulas given are for the typical characteristics only.

LOGIC DIAGRAM

FIGURE 1 - TYPICAL OUTPUT SOURCE CHARACTERISTICS 0 /DO = 5.0 Vd : 10 mWdc POHmax 10H. SDURCE CURRENT (mAdc) VDD = 10 Vdc - 12 VDD = 15 Vdc VSS = 0 Vdc -24 -12 -8.0 -4.0 (VOH -VOD), SOURCE DEVICE VOLTAGE (Vdc)

FIGURE 2 - TYPICAL OUTPUT SINK
CHARACTERISTICS

24

VDD = 15 Vdc

VDD = 15 Vdc

VDD = 10 Vdc

VDD = 50 Vdc

VSS = 6 Vdc

VSS = 6 Vdc

(VDL - VSS), SINK DEVICE VOLTAGE (Vdc)

FIGURE 3 – DYNAMIC POWER DISIPATION SIGNAL WAVEFORMS

FIGURE 4 - DYNAMIC SIGNAL WAVEFORMS

CONNECTIONS TO VARIOUS DISPLAY READOUTS

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER FOR LIQUID CRYSTALS

The MC14544B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts, and is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit provides the functions of a 4-bit storage latch and an 8421 BCDto-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display. The outputs of the circuit are connected directly to the segments of the LC readout. The Ripple Blanking Input (RBI) and the Ripple Blanking Output (RBO) can be used to suppress either leading or trailing zeroes.

For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.

Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

- · Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range = 3.0 V to 18 V
- · Capability for Suppression of Non-significant zero
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

CMOS MSI

ILOW-POWER COMPLEMENTARY MOST

BCD-TO-SEVEN SEGMENT LATCH/DECODER/DRIVER WITH RIPPLE BLANKING

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MAXIMUM RATINGS (Voltages referenced to VSS)

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to +18	Vdc
Input Voltage, All Inputs	V _{ID}	-0.5 to V _{DD} + 0.5	Vdc
DC Input Current per Pin	lin	±10	mAdc
Operating Temperature Range — AL Device CL/CP Device	TA	-55 to +125 -40 to +85	οС
Storage Temperature Range	T _{stg}	-65 to +150	°C
Maximum Continuous Output Drive Current (Source or Sink) per Output	IOHmax IOLmax	10	mAdc
Maximum Continuous Output Power* (Source or Sink) per Output	POHmax	70	mW

^{*}POHmax = IOH (VOH · VDD) and POLmax = IOL (VOL · VSS)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however. it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that Vin and Vout be constrained to the range VSS ≤ (Vin or Vout) ≤ VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD).

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	Tic	w*		25°C		Thi	gh *	İ
Characterist	ic	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
Output Voltage	"O" Level	VΩL	5.0	-	0.05		0	0.05	-	0.05	\ \
Vin = VDD or 0			10		0.05	-	0	0.05	-	0.05	i
			15		0.05	-	0	0.05	-	0.05	i
	"1" Level	νон	5.0	4.95		4.95	5.0		4.95		V
Vin = 0 or VDD		.01	10	9.95	_ ا	9.95	10	_	9.95		· ·
· III · · · · · · · · · · · · · · · · ·			15	14.95	! -	14.95	15	-	14.95		ı
Input Voltage#	"O" Level	VIL			 -	\vdash	 				V
(V _O 4.5 or 0.5 V)	2 2000	1,16	5.0	١.	1.5		2.25	1.5] -	1.5	
IVO 9.0 or 1.0 V)			10	'	3.0	-	4.50	3.0	ا - ا	3.0	İ
(V _O 13.5 or 1.5 V)			15	_	4.0	-	6.75	4.0	1	4.0	İ
	"1" Level	VIH									
(Vo 0.5 or 4.5 V)		- (11	5.0	3.5	ì .	3.5	2.75		3.5	_	l v
(VO 1.0 or 9.0 V)			10	7.0		7.0	5.50	_	7.0	_	
(VO 1.5 or 13.5 V)			15	11.0		11.0	8.25	_	11.0	_	1
Output Drive Current (Al	Device)	Юн		,,, <u>,</u>		17.5	<u> </u>		11,10		mA
(VOH = 2.5 V)	Source	-06	5.0	~3.0	-	-2.4	-4.2	L-	-1.7	-	
(VOH = 4.6 V)			5.0	-0.64	-	-0.51	-0.88		-0.36	-	ł
(VOH = 0.5 V)			10	-	_		-10.1	-	- 1		ŀ
(VOH = 9.5 V)	l		10	-1.6	-	-1.3	-2.25		-0.9	-	l
(VOH = 13.5 V)			15	-4.2		-3.4	-8.8		-2.4		—
(VOL = 0.4 V)	Sink	lor	5.0	0.64	ĺ	0.51	0.88	-	0.36	-	mA
(VOL - 0.5 V)			10	1.6	-	1.3	2.25 10.1	-	0.9		1
(VOL = 9.5 V)			10 15	4.2]	3.4	8.8	_	2.4] [ľ
(V _{DL} = 1.5 V)				۳.2		3.7	0.8		2.4		
Output Drive Current (CI		ЮН		امدا	1	١.,	-4.2				mA
(VOH = 2.5 V)	Source		5.0	-2.5	-	-2.1	-0.88	-	~1.7		ł .
(V _{OH} = 4.6 V)			5.0	-0.52	-	-0.44	-10.1	-	-0.36	-	1
(VOH = 0.5 V)			10 10	-1.3	_	-1.1	-2.25	_	-0.9	_	l .
(V _{OH} = 9.5 V) (V _{OH} = 13.5 V)			15	-3.6		-3.0	-8.8		-0.9 -2.4		
(VOL = 0.4 V)	Sink		5.0	0.52		0.44	0.88		0.36		mA
(VOL = 0.5 V)	SIIIK	OL	10	1.3	i -	1,1	2.25		0.30]	'''^
(VOL = 9.5 V)			10		- 1		10,1	-	"."	_	ł
(VOL = 1.5 V)			15	3.6	l -	3.0	8.8	-	2.4	_	{
Input Current IAL Device	1	1,0	15	-	:01		:0 00001	·01	-	-10	μА
input Current (CL/CP Dev		110	15	-	:03		: 0.00001	:03		:1.0	μA
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-				_			οF
nput Capacitance		C'u	_			•	50	7.5	,		0"
Dusescent Current IAL De		1 _{DD}	50		5.0		0.005	5 0	-	150	μА
(Per Package) V _{in} =0 or	v _{DD} ,		10		10		0.010	10		300	l
l _{out} = 0 μA			15		20	L	0.015	20		600	<u> </u>
Quiescent Current ICL/CP		۵۵۱	50	-	20		0.005	20	-	150	μA
(Per Package) V _{in} =0 or	۰ ۷ _{۵۵} ۰		10		40		0.010	40		300	1
lout_= 0 µA			15		80	L	0.015	80		600	
Total Supply Current**1		١٢	5.0			17 (1	.6 μA/kHz	t t Inn			μА
(Dynamic plus Quiesce	nt,	Ť	10	l			3.1 µA/kHz				l .
Per Package)			15	l			1.7 µA/kHz				1
(CL = 50 pF on all out	puts, all					•					
truffers switching)	·			l							1

^{*}T_{low} -55°C for AL Device, -40°C for CL/CP Device.
Thigh +125°C for AL Device, +85°C for CL/CP Device.
"Noise immunity specified for worst-case input combination

[#]Noise immunity specified for worst-case input combination

Noise Margin for both "1" and "0" level = 1.0 V min @ VDD = 5.0 V

2.0 V min @ VDD = 10 V

2.5 V min @ VDD = 15 V

1To calculate total supply current at loads other than 50 pF:

| 1¬(C_L) = 1¬(50 pF) + 3.5 × 10⁻³ (C_L - 50) VDD

where. 1¬ is in μA (per package), C_L in pF, VDD in Vdc, and f in kHz is input frequency.

**The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (C) * 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур	Max	Unit
Output Rise Time	^t TLH				T	ns
tTLH = (3.0 ns/pF) CL + 30 ns		5.0	_	100	200	l l
ttlH = (1.5 ns/pF) CL + 15 ns		10	l –	50	100	
tTLH = (1.1 ns/pF) CL + 10 ns		15	-	40	80	ŀ
Output Fall Time	tTHL		 	1		ns
tTHL = (1.5 ns/pF) CL + 25 ns	""-	5.0	1 -	100	200	1
tTHL = (0.75 ns/pF) CL + 12.5 ns		10	_	50	100	ł
tγHL = (0.55 ns/pF) CL + 12.5 ns		15	-	40	80	1
Turn-Off Delay Time	†PLH		† 		 	ns
tpt H = (1.7 ns/pF) CL + 520 ns	1	5.0	_	605	1210	
tpLH = (0.66 ns/pF) CL + 217 ns	1	10	1 -	250	600	
tp_H = (0.5 ns/pF) CL + 160 ns		15	-	185	370	
Turn-On Delay Time	tPHL		†			ns
tpHL = (1.7 ns/pF) CL + 420 ns)	5.0	-	505	1650	1
tpHL = (0.66 ns/pF) CL + 172 ns		10	-	205	660	
tpHL = (0.5 ns/pF) CL + 130 ns	}	15	! -	155	495	1
Setup Time	tsu	5.0	0	-40	-	ns ns
·	1	10	0	-15	-	1
	l	15	0	-10	_	
Hold Time	th	5.0	80	40	_	ns
	"	10	30	15	-	1
	ł	15	20	10	-	
Latch Disable Pulse Width (Strobing Data)	twH	5.0	250	125	T -	ns
•	""	10	100	50	-	1
		15	80	40	l	

^{*}The formulas given are for the typical characteristics only.

CONNECTIONS TO VARIOUS DISPLAY READOUTS

TRUTH TABLE

		11	VPUTS									0	UTI	PUI	s	
ны	LD	ê	Pn·	D	C	Ħ	Α	HBO	. •	to	ç	d	•	1	9	DISPLAY
×	×	_1_	0	×	X	x	×		. 0	0	0	0	0	o	0	Blank
	1	0	0	0	O	0	Ü	1	0	•	0	0	٥	~	0	Blank
0	1	0	0	0	Q	_0	0	0	1	1	:	1	1	1	0	0
×	1	0	0	0	0	0	1	0	٥	1	1	0	0	~	0	1
x	1	0	0	0	0	1	U	n	1	1	0	1	1	0	1	2
×	1	0	0	0	U	1	1	0	1	1	1	1	0	0	1	3
×	۱ ا	0	0	0	•	U	0	0	0	1	1	a	0	1	1	4
×	لللا	0	0	_0	1	0	1	0	_ 1	0	•	•	0	1	1	5
x	1	0	0	0	1	7	0	0	-	0	1	t	1	ī	1	6
×	1	0	0	U	1	•	1	O	1	1	1	0	0	0	0	,
×	1	0	0	١	Ð	0	0	0	- 1	1	1	ı	1	1	1	8
×	,	0	0	יו	0	0	ı	0	1	1	1	1	0	1	1	9
×	1	0	0	1	0	1	0	U	0	0	0	0	0	0	0	Blank
x		0	0	1	0	ī	ŧ	0	0	0	o	0	0	0	٥	Blank
×	•	٥	0	ı	1	0	٥	0	0	0	0	0	0	0	0	Blank
×	١,	0	0	ון	1	۵	•	0	0	0	0	0	0	0	0	Blank
x	1	0	•	,	1	1	0	0	0	0	0	0	0	0	0	Blank
X		0	0		1		1	0	0	0	0	0	0	0	0	Blank
_×	٥	0	0	×	x	×	×	- 1				• •				· · ·
	1	1	1	' -				, I		Ine				****		D-spray

- х Don't Care
- **Above Combinations**
- For liquid crystal readouts, apply a square wave to Ph. For common cathode LED readouts, select Ph = 0. For common anode LED readouts, select Ph = 1.

 Depends upon the BCD Code previously applied when LD = 1.
- RBO-RBI (ĀĒĈĎ)

POHMEX - 70 mWdc

VDD = 10 Vdc

VDD = 15 Vdc

VDD = 15 Vdc

VDD = 15 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

VDD = 10 Vdc

FIGURE 2 - TYPICAL OUTPUT SINK
CHARACTERISTICS

24

VDD = 15 Vdc

VDD = 10 Vdc

VSS = 0 Vdc

VSS = 0 Vdc

(VDL - VSS). SINK DEVICE VOLTAGE (Vdc)

FIGURE 3 – DYNAMIC POWER DISIPATION SIGNAL WAVEFORMS

FIGURE 4 - DYNAMIC SIGNAL WAVEFORMS

TYPICAL APPLICATIONS FOR RIPPLE BLANKING

HIGH CURRENT BCD-TO-SEVEN SEGMENT DECODER/DRIVER

The MC14547 BCD-to-seven segment decoder/driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of an 8421 BCD-to-seven segment decoder with high output drive capability. Blanking (BI), can be used to turn off or pulse modulate the brightness of the display. The MC14547 can drive seven-segment light-emitting diodes (LED), incandescent, fluorescent or gas discharge readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses

- High Current Sourcing Outputs (Up to 65 mA)
- Low Logic Circuit Power Dissipation
- Supply Voltage Range = +3.0 V to +18 V
- Blanking Input
- · Readout Blanking on All Illegal Combinations
- Lamp Intensity Modulation Capability
- Multiplexing Capability
- Capable of Driving Two Low-Power TTL Loads,
 One Low-Power Schottky TTL Load or
 Two HTL Loads over the Rated Temperature Range
- Use MC14511B for Applications Requiring Data Latches

MAXIMUM RATINGS * (Voltage referenced to VSS, Pin 8)

Rating	Symbol	Value	Unit
DC Supply Voltage	VDD	-0.5 to +18	V
Input Voltage, All Inputs	V _{in}	-05 to VDD +0.5	V
Operating Temperature Range MC14547BAL MC14547BCL/CP	TA	-55 to +125 -40 to +85	°C
Storage Temperature Range	T _{stq}	-65 to +150	°C
Maximum Continuous Output Drive Current (Source) per Output	IOHmax	65	mA
Maximum Continuous Power Dissipation	POHmax	1200*	mW

★ Maximum Ratings are those values beyond which damage to the device may occur

*See power derating curve (Figure 1).

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. A destructive high current mode may occur if V_{ini} and V_{out} is not constrained to the range $V_{SS} \leqslant (V_{ini})$ or $V_{out} 1 \leqslant V_{DD}$

Due to the sourcing capability of this circuit, damage can occur to the device if V_{DD} is applied, and the outputs are shorted to V_{SS} and are at a logical 1. (See Maximum Ratings).

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or V_{DD}).

MC14547B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

HIGH CURRENT BCD-TO-SEVEN SEGMENT DECODER/DRIVER

CERAMIC PACKAGE CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

INPUTS					OUTPUTS							
ВІ	D	С	В	Α	а	b	С	d	e	f	g	DISPLAY
0	×	×	×	х	0	0	0	0	0	0	0	Blank
1	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	1	1	0	a	0	0	1
1	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	1	1	1	1	1	1	0	0	1	3
1	0	1	٥	0	0	1	1	0	0	1	1	4
1	0	1	0	1	1	0	1	1	0	1	1	5
1	0	1	1	0	0	0	1	1	1	1	1	6
1	0	- 1	1	1	1	1	1	0	0	D	0	7
1	1	0	0	0	1	1	1	1	1	1	1	8
1	1	0	0	1	1	1	1	0	0	1	1	9
1	1	0	1	0	0	0	0	D	0	0	0	Blank
1	1	0	1	1	0	0	0	0	0	0	0	Blank
1	1	1	0	0	0	0	0	0	0	0	0	Blank
1	1	1	0	1	۵	0	0	0	0	0	0	Blank
1	1	-1	1	0	0	0	0	0	0	0	٥	Blank
1	1	- 1	1	1	0	0	0	0	0	0	Ω	Blank

X Don't care

MC14547B

	- (
ELECTRICAL	CHARACTERISTICS	(Voltages Referenced to Vss)

Characteristic		Symbol	VDD	Tio	_		26°C		Thi	Unit	
		-,	Vdc	Min	Max	Min	Тур	Max	Min	Max	
Output Voltage	"0" Level	VOL	5.0	l -	0.05	- 1	0	0.05	-	0.05	
$\Lambda^{RU} = \Lambda^{DD}$ or 0			10	-	0.05	-	0	0.05	-	0.05	
•			15	<u>_</u>	0.05		0	0.05		0.05	
	"1" Level	VOH	5.0	4.1	-	4.4	4.6	-	4.3	-	٧
V _{in} = 0 or VDD			10 15	9.1 14.1	-	9.4 14.4	9.6 14.6	-	9.3 14.4	_	
		<u></u>	15	14.1	_	14.4	14.0	<u>├</u>	14.4		
Input Voltage #	"O" Level	ViL	5.0	ł	1.5	ŀ	2.25	1.5	_ '	1.5	l v
(V _O = 3.8 or 0.5 V) IV _O = 8.8 or 1.0 VI			10	-	3.0	_	4.50	3.0	-	3.0	
(VO = 13.8 or 1.5 V)		i	15	_	4.0	_	6.75	4.0	_ '	4.0	
(Vn = 0.5 or 3.8 V)	"1" Level	ViH	5.0	3.5	-	3.5	2.75	-	3.5		V
(V _O = 1.0 or 8.8 V)	,	VIH I	10	7.0	i _	7.0	5.50	l _	7.0	_	ľ
(V _O = 1.5 or 13.8 V)		ľ	15	11.0	l – ,	11.0	8.25	l –	11.0	-	ŀ
Output Drive Voltage IAL Device)		VOH	5.0	-			<u> </u>		 		v
(IOH = 5.0 mA)	Source	- 011		4.0	-	4.2	4.3	_	4.3	-	ľ
(IOH = 10 mA)		· '	l	-	-	4.1	4.3	-	-	-	
IIOH = 20 mA)				3.8	-	3.9	4.2	-	4.0	~	l
(1 _{OH} = 40 mA)				-	-	3.7	4.0	-	l	-	
(IOH = 65 mA)				3.1		3.2	3.7		3.0		
(IOH = 5.0 mA)			10	9.1	-	9.2	9.3	-	9.3	-	
(I _{OH} = 10 mAI			l	-	-	9.1	9.3	-	-	-	
(I _{OH} = 20 mA)			l	8.8	-	9.0 8.9	9.2 9.0	l -	9.2	-	i
(I _{OH} = 40 mA) (I _{OH} = 65 mA)				8.4	-	8.5	8.8	_	8.1	_	
- · · · · · · · · · · · · · · · · · · ·					<u> </u>			<u> </u>			
(IOH = 5.0 mA)			15	14.0	-	14.2	14.3	-	14.4	-	
(I _{OH} = 10 mA) (I _{OH} = 20 mA)				13.8	<u>-</u>	14.1 14.0	14.3 14.2	_	14.2	_	
(IOH = 40 mA)				- 13.0	_	13.8	14.0	_ :	14.2	_	
(IOH = 65 mA)				13.5	_	13.5	13.7	l I	13.3	_	
Output Drive Voltage (CL/CP Device)		VOH	5.0		-			 			
(IOH = 5.0 mA)	Source	-011		3.9	-	4.1	4.3	_	4.2	_	•
(IOH = 10 mA)				l –	-	4.0	4.3	1 - 1		-	
(IOH = 20 mA)		i		3.6	-	3.8	4.2	[-]	3.9	_	
(I _{OH} = 40 mA)				ł –	-	3.5	4.0	-	-	-	
(I _{OH} = 65 mA)				3.0	-	3.0	3.7	-	2.9	-	
(IOH = 5.0 mA)			10	8.9	-	9.1	9.3	-	9.2	-	
(IOH = 10 mA)					-	9.0	9.3	-	_	-	ļ
(IOH = 20 mA)				8.6	- 1	8.8	9.2	-	9.0	-	
(I _{OH} = 40 mA) (I _{OH} = 65 mA)	i			8.0	_	8.5 8.1	9.0 8.8	_	8.0	-	ı
	ĺ		15		-	_					
(!OH = 5.0 mA) (IOH = 10 mA)			15	13.9	_	14.1 14.0	14.3 14.3	_	14.2	-	
(IOH = 20 mA)	- 1			13.6	_	13.8	14.3	_	14.0	_	
(IOH = 40 mA)				-	_ :	13.5	14.0	_			
(IOH = 65 mA)	- 1			13.0	_	13.0	13.7	- 1	13.0	_	
Output Drive Current (AL Device)		1OL						 -			mA
(VOL = 0.4 V)	Sink	ا ۲۰	5.0	0.32	_	0.26	0.44	- 1	0.18	- 1	
(VOL = 0.5 V)			10	0.80	<u>-</u>	0.65	1.13	- 1	0.45	- 1	
(V _{OL} = 1.5 V)			15	2.10	-	1.7	4.4	-	1.2	-	ı
Output Drive Current (CL/CP Device)		lOL									mA
$(V_{OL} = 0.4 \text{ V})$	Sink		5.0	0.26	-	0.22	0.44		0.18	-	
(VOL = 0.5 V)	i		10	0.65	- 1	0.55	1.13	-	0.45	-	
$(V_{OL} = 1.5 V)$		1	15	1.8	- 1	1.5	4.4		1.2	-	

^{*} T_{low} = −55°C for AL Device, −40°C for CL/CP Device Thigh = +125°C for AL Device, +85°C for CL/CP Device \$Noise immunity specified for worst-case input combination. Noise Margin for both "1" and "0" level = 1.0 V min @ V_{DD} = 5.0 V 2.0 V min @ V_{DD} = 15 V

MC14547B

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	VDD	T _{low} *		25°C			Thigh*		Unit
Characteristic	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Oill
Input Current (AL Device)	lin	15	1	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	μΑ
Input Current (CL/CP Device)	l _{in}	15	-	±0.3	-	± 0.00001	± 0.3	-	±10	μА
Input Capacitance	C _{in}		-		-	50	7.5	-	-	pF
Quiescent Current (AL Device) (Per Package) V _{in} =0 or V _{DD} , I _{out} =0 μA	IDD	5.0 10 15	-	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	-	150 300 600	μΑ
Quiescent Current (CL/CP Device) (Per Package) V _{in} =0 or V _{DD} , I _{Qu1} =0 μA	lDD	5.0 10 15	- - -	20 40 80	- - -	0.005 0.010 0.015	20 40 80	- -	150 300 600	μА
Total Supply Current**† (Dynamic plus Quiescent, Per Packagel (CL = 50 pF on all outputs, all bullers switching)	ΙŢ	5.0 10 15	iγ = (1.9 μΔ/kHz) f + IDD iγ = (3.8 μΔ/kHz) f + IDD iγ = (5.7 μΔ/kHz) f + IDD							μА

 $^{^{\}circ}$ T $_{low}$ = -55°C for AL Device, -40°C for CL/CP Device T $_{high}$ = +125°C for AL Device, +85°C for CL/CP Device

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _O C Vdc	Min	Тур	Max	Unit
Output Rise Time	1TLH	5.0	_	40	80	ns
		10	_	40	80)
·		15	-	40_	80	
Output Fall Time	THL	5.0		125	250	ns
	'=	10	 ~ '	75	150	ł
	(15	í –	70	140	L
Data Propagation Delay Time	^t PLH	5.0		750	1500 .	ns
	'	10	l –	300	600	ì
		15	-	200	400	
	1PHL	5.0	-	750	1500	1
	1 '''	10	l –	300	600	
	<u> </u>	15	-	200	400	1
Blank Propagation Delay Time	¹ PLH	5.0		750	1500	ns
	'	10	i –	300	600	ļ
·	ł	15	1 –	200	400	i
	(PHL	5.0	-	500	1000	7
	"	10	l –	250	500	1
		15	-	170	340	l

¹ To calculate total supply current at loads other than 50 pF:

IT ICL) = IT (50 pF) + 3.5 × 10⁻³ (C_L -50) V_{DD}f

where: IT is in µA (per package), C_L in pF, V_{DD} in V,

and f in kHz is input frequency.

^{**} The formulas given are for the typical characteristics only at 25°C.

TA. AMBIENT TEMPERATURE (°C)

MC14547B

CONNECTIONS TO VARIOUS DISPLAY READOUTS

LIGHT EMITTING DIODE (LED) READOUT

INCANDESCENT READOUT

LIGHT-EMITTING DIODE (LED) READOUT USING A ZENER DIODE TO REPLACE DROPPING RESISTORS

GAS DISCHARGE READOUT

- V_{ZD} should be set at V_{DD} 1.3 V V_{LED}. Wattage of zener diode must be calculated for number of segments and worst-case conditions.
- ** A filament pre-warm resistor is recommended to reduce filament thermal shock and increase the effective cold resistance of the filament.

Direct (Low Brightness) Filament Supply

FLUORESCENT READOUT

(Caution: Absolute maximum working voltage = 18.0 V)

VSS or appropriate

voltage below VSS

SUCCESSIVE APPROXIMATION REGISTERS

The MC14549B and MC14559B successive approximation registers are 8-bit registers providing all the digital control and storage necessary for successive approximation analog-to-digital conversion systems. These parts differ in only one control input. The Master Reset IMRI on the MC14549B is required in the cascaded mode when more than 8 bits are desired. The Feed Forward (FF) of the MC14559B is used for register shortening where End-of-Conversion (EOC) is required after less than eight cycles.

Applications for the MC14549B and MC14559B include analog-todigital conversion, with serial and parallel outputs

- Totally Synchronous Operation
- All Outputs Buffered
- Single Supply Operation
- Serial Output
- Retriggerable
- Compatible with a Variety of Digital and Analog Systems such as the MC1408 8-Bit D/A Converter
- All Control Inputs Positive Edge Triggered
- Supply Voltage Range = 3 0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads, One Low-Power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range
- Chip Complexity 488 FETs or 122 Equivalent Gates

MAXIMUM RATINGS (Voltages referenced to VSS)

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-05 to +18	Vdc
Input Voltage, All Inputs	V _{in}	-05 to VDD +05	Vdc
DC Input Current, per Pin	1 _{in}	± 10	mAdc
Operating Temperature Range – AL Device CL/CP Device	TA	-55 to +125 -40 to +85	°C
Storage Temperature Range	Tstg	-65 to +150	°C

TRUTH TABLES

	1	MC14	549B		
sc	SC(t-1)	MR	MR (t-1)	Clock	Action
×	×	×	×		None
×	×	1	×		Reset
1	0	0	0	7	Start
1	×	a	1	7	Start Conversion
1	1	0	0	۲	Continue Conversion
0	×	o	×		Continue Previous Operation

0	×	1	
1	×	1	
			_
			i i

х

0 0 0

SC SCIT-11 EOC Clock

0

0

X = Don't Care

t-1 - State at Previous Clock -

MC14549B MC14559B

CMOS MSI

(LOW POWER COMPLEMENTARY MOS)

SUCCESSIVE APPROXIMATION REGISTERS

L SUFFIX
CERAMIC PACKAGE
CASE 620

P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

PIN ASSIGNMENT

Q4 (70	16	VDD
Q5 [2	15	1 Q3
061	3	14	1 Q2
07[4	13	101
Sout	5	12	100
D	6	11	1EOC
C	7	10	1 •
VSS	8	9]SC

For MC14549B Pin 10 is MR input For MC14559B Pin 10 is FF input

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} \leqslant IV_{in}$ or $V_{out}) \leqslant V_{DD}$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or $V_{DD}\}$

MC14559B

__

Action

Start Conversion

Continue

Conversion

Continue

Retain

Result

Start

Conversion

Conversion

Conversion

ELECTRICAL CHARACTERISTICS (Voltages referenced to VSS)

	ı	VDD	Tio	N™		25℃		Thic	ih* [
Characteristic	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05		0.05	٧
Vin = VDD or 0	"	10		0.05	-	0	0.05	_	0.05	
55		15	-	0.05	-	0	0.05		0.05	
"1" Level	VOH	5.0	4.95		4.95	5.0		4.96	-	٧
Vin=0 or VDD	1	10	9.95	_	9.95	10	_	9.95	_ 1	
1		15	14.95	- 1	14.95	15	-	14.95	-	
Input Voltage/ "0" Level	VIL									V
(Vo≈4.5 or 0.5 V)	"-	5.0	- 1	1.5	-	2.25	1.5	_	1.5	
(Vo≈9.0 or 1.0 V)		10	۱ – ۱	3.0	~	4.50	3.0	-	3.0	İ
(V _O ≈ 13.5 or 1.5 V)		15	(- I	4.0	-	6.75	4.0		4.0	
"1" Level	VIH									٧
(Vp≈0.5 or 4.5 V)		5.0	3.5	- 1	3.5	2.75	-	3.5	_	
(VO = 1.0 or 9.0 V)	i	10	7.0	- 1	7.0	5.50	-	7.0	- 1	
(Vo≈ 1.5 or 13.5 V)		15	11.0	-	11.0	8.25		11.0	-	
Output Drive Current (AL Device)	ЮН	\Box								mΑ
(VOH=2.5 V) Source	1	5.0	- 1.2	- 1	- 1.0	- 1.7	-	- 0.7	- 1	l
(VOH=4.6 V)	1	5.0	- 0.25		-0.2	-0.36	_	-0.14		
(VOH=9.5 V)		10	- 0.62	-	-0.5	-0.9	-	- 0.35	-	
(V _{OH} = 13.5 V)		15	- 1.8	-	- 1.5	-3.5	-	-1.1	_	
(VOL = 0.4 V) Sink	IOL	5.0	1.28	-	1.02	1.76		0.72	-	mΑ
(VOL = 0.5 V) Q Outputs		10	3.2	-	2.6	4.5	-	1.8	l – i	
(VOL = 1.5 V)	Į	15	8.4	-	6.8	17.6	-	4.8	i – I	
(V _{OL} = 0.4 V) Sink		5.0	0.64	- 1	0.51	0.88	_	0.36	_	
(VOL = 0.5 V) Pin 5, 11 only		10	1.6	-	1.3	2.25	-	0.9	_	ł
(VOL = 1.5 V)	ļ	15	4.2	l - I	3.4	8.8	-	2.4] _	
Output Drive Current (CL/CP Device)	Юн	_	 	_						mΑ
(VOH=2.5 V) Source		5.0	- 1.0	-	-0.8	~1.7	_	~0.6	l – I	l
(VOH = 4.6 V)	1	5.0	-0.2	-	- 0.16	- 0.36	-	0.12	l – I	ı
(VOH=9.5 V)		10	- 0.5	- 1	- 0.4	~ 0.9	-	-0.3	-	
(V _{OH} = 13.5 V)		15	- 1.4	-	- 1.2	~ 3.5	-	~ 1.0	-	ŀ
(V _{OL} = 0.4 V) Sink	IOL	5.0	1.04		0.68	1.76	_	0.72	_	mΑ
(VOL = 0.5 V) Q Outputs		10	2.6	-	2.2	4.5	-	1.8	-	
(V _{DL} = 1.5 V)		15	7.2	1 - 1	6.0	17.6	-	4.8	i - i	1
(VOL = 0.4 V) Sink		5.0	0.52		0.44	0.88	-	0.36	_	
(V _{OL} = 0.5 V) Pin 5, 11 only	1	10	1.3	I – 1	1.1.	2.25	-	0.9	[-	1
(VOL = 1.5 V)		15	3.6	1 – 1	3.0	8.8	-	2.4	-	ı
Input Current (AL Device)	lin	15	=	±0.1	-	± 0.00001	±0.1	_	±1.0	μА
Input Current (CL/CP Device)	lin	15	_	±0.3	-	± 0.00001	±0.3		± 1.0	μΑ
Input Capacitance	Cin	-	-	Η-		5.0	7.5	-		рF
Quiescent Current IAL Device)	IDD	5.0	+-	5.0		0.005	5.0	-	150	μA
(Per Package)	''	10	-	10	_	0.010	10	Í -	300	1
(Clock = 0 V.	l	15	_	20	_	0.015	20	_	600	l
Other Inputs = VDD or 0 V, Iout = 0 µAl		'		-					i '	l
Quiescent Current (CL/CP Device)	IDD.	5.0	-	20		0.005	20	 _ _	150	μА
(Per Package)	"	10	_	40	_	0.010	40	-	300	
(Clock = 0 V,	1	15	-	80	_	0.015	80	- 1	600	l
Other Inputs = VDD or 0 V, I out = 0 #A)		1]			1 1	l
Total Supply Current * 1	ΙT	5.0	\vdash		IT= (0.	B μA/kHz)	1+ lon			μА
(Dynamic plus Quiescent,		10	l			6 μA/kHz)				<u>ر</u> ا
	l	15	l			4 μA/kHz)				l
Per Package)										
Per Package) IC1 = 50 pF on all outputs, all		"				•	00			

^{*} Tlow = -55°C for AL Device, -40°C for CL/CP Device

Thigh = + 125°C for AL Device, +85°C for CL/CP Device

Noise immunity specified for worst-case input combination

Noise immunity specified for worst-case input combination

Noise Margin for both "1" and "0" level = 1.0 V min @ VpD = 5.0 V

2.0 V min @ VpD = 10 V

2.5 V min @ VpD = 15 V

1 To calculate total supply current at loads other than 50 pF

IT(CL) = IT[50 pFI + 2 × 10 - 3(CL - 50) VDD!

where IT is in μA (per package), CL in pF, VDD in V, and f in kHz is input frec

** The formulas given are for the typical characteristics only at 25°C

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 26°C)

Characteristic	Symbol	VOD	Min	Тур	Mex	Unit
Output Rise Time	†TLH	1	1			ns ns
tTLH = (3.0 ns/pF) CL + 30 ns	1	5.0	-	180	360	
tTLH = (1,5 ms/pF) CL + 15 ms		10	_	90	180	1
tTLH = (1,1 ns/pF) CL + 10 ns		15	-	65	130]
Output Fell Time	THL				1	ns
t _{THL} = (1.5 ns/pF) C _L + 25 ns		5.0	-	100	200	
tTHL = (0.76 ns/pF) CL + 12.5 ns]	10	_	50	100	1
tTHL = (0.55 ns/pF) CL + 9.5 ns	i	15	_	40	80	1
Propagation Delay Time	ΨLH.	1		† · · · · ·	†	ns
Clock to Q	\$PHL	Į.		ŀ	1	
tp_H, tpHL = (1.7 ns/pF) CL + 415 ns	''	5.0	-	500	1000	ł
tp_H tpHL = (0.66 ns/pF) CL + 177 ns		10	_	210	420	
tp[H, tpHL = (0.5 ns/pF) CL + 130 ns		15	_	155	310	İ
Clock to Sout				ľ	ł	
tPLH, tPHL = (1.7 ns/pF) CL + 665 ns.		5.0	_	750	1500	ŀ
tpLH_tpHL = (0.66 ns/pF) CL + 277 ns	į	10	_	310	620	:
tpLH, tpHL = (0.5 ns/pF) CL + 195 ns	i	15	1 _	220	440	1
Clock to EOC		"			[ı
tp_H, tpHL = (1.7 ns/pF) CL + 215 ns		5.0	1 _	300	600	I
tp_H, tpHL = (0.66 ns/ pF) CL + 97 ns		10	1 -	130	260	
tplH, tpHL = (0.5 ns/pF) CL + 76 ms		15	l	100	200	1
SC, D, FF or MR Setup Time	teu	5.0	250	125		63
	40	10	100	50	_	\ " "
		16	80	40		
Clock Pulse Width	WH(cl)	5.0	700	350		CS.
	-WH(CI)	10	270	135		118
		15	200	100	_	1
Pulse Width - D, SC, FF or MR	twH	5.0	500	250		ns ns
	.444.	10	200	100		1 "
		15	160	80	_	1
Clock Rise and Fall Time	****	5.0	 		15	
was the wife this time	TLH, THL	10	1 -	1 -	1.0	μs
	1111	15	1 [1 =	0.5	1
Clock Pulse Frequency		5.0	 			
ander i give i tedeburk	^f cl	10	1 -	1.5 3.0	0.8 1.5	MHz
		15	i -	4.0	2.0	1
The farmed and the state of the		<u> </u>	<u> </u>	4.0	2.0	<u> </u>

The formulae given are for the typical characteristics only.

SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

TIMING DIAGRAM

~ Don't care condition

Inh - Indicates Serial Dut is inhibited low.

Q8 is ninth-bit of seriel information available from B-bit register.
 Note: Pin 10 = V_{SS}

OPERATING CHARACTERISTICS

Both the MC14549B and MC14559B can be operated in either the "free run" or "strobed operation" mode for conversion schemes with any number of bits. Reliable cascading and/or recirculating operation can be achieved if the End of Convert (EOC) output is used as the controlling function, since with EOC = 0 (and with SC = 1 for MC14549B but either 1 or 0 for MC14559B) no stable state exists under continual clocked operation. The MC14559B will automatically recirculate after EOC = 1 during externally strobed operation, provided SC = 1.

All data and control inputs for these devices are triggered into the circuit on the positive edge of the clock pulse.

Operation of the various terminals is as follows:

C = Clock - A positive-going transition of the Clock is required for data on any input to be strobed into the circuit.

SC = Start Convert — A conversion sequence is initiated on the positive-going transition of the SC input on succeeding clock cycles.

D = Data In — Data on this input (usually from a comparator in A/D applications) is also entered into the circuit on a positive-going transition of the clock. This input is Schmitt triggered and synchronized to allow fast response and guaranteed quality of serial and parallel data.

MR = Master Reset (MC14549B only) — Resets all output to 0 on positive-going transitions of the clock. If removed while SC = 0, the circuit will remain reset until SC = 1. This allows easy cascading of circuits.

FF = Feed Forward (MC14559B only) - Provides register shortening by removing unwanted bits from a system

For operation with less than 8 bits, tie the output following the least significant bit of the circuit to EOC.

E.g., for a 6-bit conversion, tie Q1 to FF; the part will respond as shown in the timing diagram less two bit times. Not that Q1 and Q0 will still operate and must be disreparded.

For 8-bit operation, FF is tied to VSS.

For applications with more than 8 but less than 16 bits, use the basic connections shown in Figure 1. The FF input of the MC14559B is used to shorten the setup. Trying FF directly to the least significant bit used in the MC14559B allows EOC to provide the cascading signal, and results in smooth transition of serial information from the MC14559B to the MC14549B. The Serial Out (Sout) inhibit structure of the MC14559B remains inactive one cycle after EOC goes high, while Sout of the MC14549B remains inhibited until the second clock cycle of its operation.

Q_n = Data Outputs — After a conversion is initiated the Q's on succeeding cycles go high and are then conditionally reset dependent upon the state of the D input. Once conditionally reset they remain in the proper state until the circuit is either reset or reinitiated.

EOC = End of Convert - This output goes high on the negative-going transition of the clock following FF = 1 (for the MC14559B) or the conditional reset of Q0. This allows settling of the digital circuitry prior to the End of Conversion indication. Therefore either level or edge triggering can indicate complete conversion.

Sout = Serial Out — Transmits conversion in serial fashion. Serial data occurs during the clock period when the corresponding parallel data bit is conditionally reset. Serial Out is inhibited on the initial period of a cycle, when the circuit is reset, and on the second cycle after EOC goes high. This provides efficient operation when cascaded.

FIGURE 1 - 12-BIT CONVERSION SCHEME

TYPICAL APPLICATIONS

Externally Controlled 6-Bit ADC (Figure 2)

Several features are shown in this application:

- Shortening of the register to six bits by feeding the seventh output bit into the FF input.
- Continuous conversion, if a continuous signal is applied to SC.
- Externally controlled updating (the start pulse must be shorter than the conversion cycle).
- The EOC output indicating that the parallel data are valid and that the serial output is complete.

Continuously Cycling 8-Bit ADC (Figure 3)

This ADC is running continuously because the EOC signal is fed back to the SC input, immediately initiating a new cycle on the next clock pulse.

Continuously Cycling 12-Bit ADC (Figure 4)

Because each successive approxiamtion register (SAR) has a capability of handling only an eight-bit word, two must be cascaded to make an ADC with more than eight bits.

When it is necessary to cascade two SAR's, the second SAR must have a stable resettable state to remain in while awaiting a subsequent start signal. However, the first stage must not have a stable resettable state while recycling, because during switch-on or due to outside influences, the first stage has entered a reset state, the entire ADC will remain in a stable non-functional condition.

This 12-bit ADC is continuously recycling. The serial as well as the parallel outputs are updated every thirteenth clock pulse. The EOC pulse indicates the completion of

FIGURE 2 - EXTERNALLY CONTROLLED 6-BIT ADC

FIGURE 3 - CONTINUOUSLY CYCLING 8-BIT ADC

FIGURE 4 - CONTINUOUSLY CYCLING 12-BIT ADC

the 12-bit conversion cycle, the end of the serial output word, and the validity of the parallel data output.

Externally Controlled 12-Bit ADC (Figure 5)

In this circuit the external pulse starts the first SAR and simultaneously resets the cascaded second SAR. When Q4 of the first SAR goes high, the second SAR starts conversion, and the first one stops conversion. EOC indicates that the parallel data are valid and that the serial output is complete. Updating the output data is started with every external control pulse.

Additional Motorola Parts for Successive Approximation ADC

Monolithic digital-to-analog converters — The MC1408/1508 converter has eight-bit resolution and is available with 6, 7, and 8-bit accuracy. The amplifier-comparator block — The MC1407/1507 contains a high speed operational amplifier and a high speed comparator with adjustable window.

With these two linear parts it is possible to construct SA-ADCs with an accuracy of up to eight bits, using as the register one MC14549B or one MC14559B. An additional CMOS block will be necessary to generate the clock frequency.

Additional information on successive approximation ADC is found in Motorola Application Note AN-716.

FIGURE 5 - EXTERNALLY CONTROLLED 12-BIT ADC

QUAD 2-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

The MC14551B is a digitally-controlled analog switch. This device implements a 4PDT solid state switch with low ON impedance and very low OFF Leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Analog Voltage Range (V_{DD}-V_{EE}) = 3 to 18 V
 Note: V_{EF} must be ≤ V_{SS}
- Linearized Transfer Characteristics
- Low Noise 12 nV/ √Cycle, f > 1 kHz typical
- For Lower R_{ON}, Use The HC4051, HC4052, or HC4053 High-Speed CMOS Devices

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
v _{DO}	DC Supply Voltage (Referenced to V _{EE} , V _{SS} ⇒ V _{EE})	-0.5 to +18.0	>
V _{in} .V _{ou1}	Input or Output Voltage (DC or Transient) (Referenced to V _{SS} for Control Input & V _{EE} for Switch I/O)	-0.5 to V _{DD} +0.5	٧
lin	Input Current (DC or Transient), per Control Pin	± 10	mΑ
Isw	Switch Through Current	± 25	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur.

†Temperature Derating: Plastic "P" Package: -12mW/"C from 65°C to 85°C

Ceramic "L" Package: -12mW/"C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

ANALOG MULTIPLEXER/ DEMULTIPLEXER

CASE 620 L SUFFIX CERAMIC PACKAGE CASE 648
P SUFFIX
PLASTIC PACKAGE

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

	1	I	Į.	T ₀	ow*	L	25°C		Thi	gh [*]	1
Characteristic	Symbol	VDD	Test Conditions	Min	Max	Min	Тур#	Max	Min	Max	Unit
SUPPLY REQUIREMEN	NTS (Voltages	Refere	nced to VEE)								
Power Supply Voltage Range	V _{DD}	<u> </u>	V _{DD} -3 > V _{SS} > V _{EE}	3	18	3	-	18	3	18	٧
Quiescent Current Per Package (AL Device)	lDD	5 10	Control Inputs: V _{In} ≈ V _{SS} or V _{DD} , Switch I/O: V _{EE} ≤ V _{I/O} ≤ V _{DD} ,	-	5 10	_	0.005 0.010	5 10	_	150 300	μА
		15	and ∆V _{switch} < 500 mV**	_	20		0.015	20	_	600	
Quiescent Current Per	loo	5	Control Inputs: Vin = VSS or VDD,	-	20	-	0.005	20	-	150	μА
Package (CL/CP Devico)		10 15	Switch I/O: VEE < VI/O < VDD, and AVswitch < 500 mV**		40 80	_	0.010 0.015	40 80	=	300 600	
Total Supply Current	Incom	5	T _A = 25°C only	┢		L	(0.07 µA/k		L	1 000	μA
(Dynamic Plus Quiescent, Per Packago)	ID(AV)	10 15	(The channel component, (Vin - Vout)/Ron, is not		Т	/pical ⁽	(0.20 μA/k (0.36 μA/k	Hz)f +	IDD		μ,
CONTROL INDUT	<u> </u>	<u> </u>	included.)								<u> </u>
CONTROL INPUT (Volta			1							T	1
Low-Level Input Voltage	VIL	5 10	R _{on} ≃ per spec, t _{off} = per spec	_	1.5 3.0	_	2.25 4.50	1.5 3.0	_	1.5 3.0	٧
	1	15	1 011 PAR SPEC	_	4.0	_	6.75	4.0	-	4.0	
High-Level Input Voltage	VIH	5	R _{on} = per spec,	3.5	<u> </u>	3.5	2.75	_	3.5	-	v
		10	loff = per spec	7.0	_	7.0	5.50	-	7.0	[_	1
Input Leakage Current	lin	15	V _{In} = 0 or V _{DD}	11.0	± 0.1	11.0	8.25 ± 0.00001	±0.1	11.0	± 1.0	μА
(AL Device)	lin	15	V _{in} = 0 or V _{DD}	-	±0.3	_	= 0.00001	±0.3	_	± 1.0	μА
(CL/CP Device) Input Capacitance		_	 								_
	Cin			<u> </u>		<u>. </u>	5.0	7.5	L=_	<u> </u>	ρF
Recommended Peak-to-		NS U	UT/IN - W, X, Y, Z (Voltages I Channel On or Off	o		VEE)		·	0	T.,	
Peak Voltage Into or Out of the Switch	Vvo	_	Channel On or On		VDD	Ů	_	VDD		VDD	V _{p-}
Recommended Static or Dynamic Voltage Across the Switch** (Figure 3)	ΔV _{switch}	_	Channel On	0	800	0	_	600	0	300	m۷
Output Offset Voltage	Voo	—	V _{in} = 0 V, No load	_	_	_	10	_	_	_	μ۷
ON Resistance	Ron	5	ΔV _{switch} ≤ 500 mV++,	_	800	_	250	1050	_	1300	Ω
(AL Device)		10 15	V _{in} = V _{IL} or V _{IH} (Control), and V _{in} = 0 to V _{DD} (Switch)	_	400 220	_	120 80	500 280	-	550 320	İ
ON Resistance	Ron	5	ΔV _{switch} ≤ 500 mV**,	_	880		250	1050	_	1200	n
(CL/CP Device)	''on	10	Vin = VIL or VIH (Control),	_	450	l = .	120	500	_	520	"
		15	and V _{in} = 0 to V _{DD} (Switch)		250		80	280		300	
Δ ON Resistance Between	ΔR _{on}	5		–	70	-	25	70	_	135	Ω
Any Two Channels in the Same Package		10 15		_	50 45	_	10 10	50 45	_	95 65	
Off-Channel Leakage Current (AL Device)	loff	15	V _{in} ≠ V _{IL} or V _{IH} (Control) Channel to Channel or	-	± 100	_	± 0.05	± 100		±1000	nΑ
(Figure 8)		<u> </u>	Any One Channel								<u> </u>
Off-Channel Leakage Current (CL/CP Device) (Figure 8)	lotf	15	V _{in} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	_	± 300	_	± 0.05	± 300	-	± 1000	nΑ
Capacitance, Switch I/O	C _{I/O}		Switch Off	_	_		10	_			ρF
Capacitance, Common O/I	CO/I					_	17	_	_	_	pF

 $^{^{\}bullet}$ T_{low} = -55°C for AL Device, -40° for CL/CP Device.

(Channel Off)

- Pins Adjacent

Thigh = +125°C for AL Devico, +85°C for CL/CP Device.

Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

^{••}For voltage drops across the switch (ΔV_{switch}) >800 mV (>300 mV at high temperature), excessive V_{DD} current may be drawn; i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

ELECTRICAL CHARACTERISTICS (CL = 50 pF, TA = 25°C, VEE < VSS)

Characteristic	Symbol	VDD ~ VEE	Min	Тур#	Max	Unit
Propagation Delay Times Switch Input to Switch Output (R _L = 10 kΩ)	tPLH: tPHL					ns
tpLH, tpHL=(0.17 ns/pF) CL + 26.5 ns		5.0	_	35	90	
tpLH, tpHL=(0.08 ns/pF) CL + 11 ns	1	10	-	15	40	
tp_H, tpHL=(0.06 ns/pF) CL + 9.0 ns		15	_	12	30	
Control Input to Output (R _L = 10 kΩ) VEE = VSS (Figure 4)	[†] PLH: [†] PHL	5.0	-	350	875	ns
*		10	-	140	350	
		15	_	100	250	1
Second Harmonic Distortion R _L = 10 kΩ, f= 1 kHz, V _{in} = 5 V _{p-p}		10	-	0.07	_	%
Bandwidth (Figure 5) R _L = 1 kΩ, V _{in} = 1/2 (V _{DD} - V _{EE}) _{p-p}	BW	10	_	17	-	MHz
20 Log Vout = -3 dB, CL = 50 pF		_				
Off Channel Feedthrough Attenuation, Figure 5 $R_L = 1 \ k\Omega$, $V_{in} = 1/2 \ (V_{DD} - V_{EE}) \ p.p.$ $I_{in} = 55 \ \text{MHz}$	_	10	-	-50		dB
Channel Separation (Figure 6) R _L = 1 kΩ, V _{in} ≈ 1/2 (V _{DD} − V _{EE}) p-p. f _{in} = 3 MHz	_	10	~	- 50	~	dB
Crosstalk, Control Input to Common O/I, Figure 7 R1 = 1 k Ω , R _L = 10 k Ω , Control t_f = t_f = 20 ns	_	10	-	75	_	m∨

Data labolled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{Out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{Out}) \leq V_{DD}$ for control inputs and $V_{EE} \leq (V_{in} \text{ or } V_{Out}) \leq V_{DD}$ for Switch I/O.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS, VEE, or VDD). Unused outputs must be left open.

FIGURE 1 - SWITCH CIRCUIT SCHEMATIC

FIGURE 2 - MC14551B FUNCTIONAL DIAGRAM

6

TEST CIRCUITS

FIGURE 3 - AV ACROSS SWITCH

FIGURE 4 — PROPAGATION DELAY TIMES, CONTROL TO OUTPUT

FIGURE 5 — BANDWIDTH AND OFF-CHANNEL FEEDTHROUGH ATTENUATION

Control input used to turn ON or OFF the switch under test,

$$\frac{V_{DD}-V_{\xi E}}{2}$$

FIGURE 6 — CHANNEL SEPARATION (Adjacent Channels Used for Setup)

FIGURE 7 — CROSSTALK, CONTROL INPUT TO COMMON O/I

FIGURE 8 - OFF CHANNEL LEAKAGE

FIGURE 9 - CHANNEL RESISTANCE (RONI TEST CIRCUIT

TYPICAL RESISTANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Figure A illustrates use of the on-chip level converter detailed in Figure 2. The 0-to-5 volt Digital Control signal is used to directly control a 9 V_{p-p} analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5$ V = logic high at the control inputs; $V_{SS} = GND = 0$ V = logic low.

The maximum analog signal level is determined by V_{DD} and V_{EE} . The V_{DD} voltage determines the maximum recommended peak above V_{SS} . The V_{EE} voltage determines the maximum swing below V_{SS} . For the example, $V_{DD}-V_{SS}=5$ volt maximum swing above V_{SS} ; $V_{SS}-V_{EE}=5$ volt maximum swing

below VSS. The example shows a ± 4.5 volt signal which allows a 1/2 volt margin at each peak. If voltage transients above VDD and/or below VEE are anticipated on the analog channels, external diodes (D_x) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{EE} is 18.0 volts. Most parameters are specified up to 15 volts which is the recommended maximum difference between V_{DD} and V_{EE}.

Balanced supplies are not required. However, VSS must be greater than or equal to VEE. For example, $V_{DD} = +10$ volts, $V_{SS} = +5$ volts, and $V_{EE} = -3$ volts is acceptable. See the table below.

FIGURE A - APPLICATION EXAMPLE

FIGURE 8 — EXTERNAL SCHOTTKY OR GERMANIUM CLIPPING DIODES

POSSIBLE SUPPLY CONNECTIONS

V _{DD} In Volts	V _{SS} In Volta	VEE In Voits	Control inputs Logic High/Logic Low In Volts	Maximum Analog Signal Range In Volte
+8	0	-8	+8/0	+8 to -8 = 16 V _{p-p}
+5	0	-12	+ 5/0	+ 5 to - 12 = 17 V _{p-p}
+5	0	0	+ 5/0	+ 5 to 0 = 5 V _{p-p}
+5	0	-5	+ 5/0	+5 to -5 = 10 V _{p-p}
+ 10	+5	-5	+ 10/+5	+10 to -5 = 15 V _{p-p}

3-DIGIT BCD COUNTER

The MC14553B 3-digit BCD counter consists of 3 negative edge triggered BCD counters that are cascaded synchronously. A quad latch at the output of each counter permits storage of any given count. The information is then time division multiplexed, providing one BCD number or digit at a time. Digit select outputs provide display control. All outputs are TTL compatible.

An on-chip oscillator provides the low-frequency scanning clock which drives the multiplexer output selector.

This device is used in instrumentation counters, clock displays, digital panel meters, and as a building block for general logic applications.

- TTL Compatible Outputs
- On-Chip Oscillator
- Cascadable
- Clock Disable Input
- Pulse Shaping Permits Very Slow Rise Times on Input Clock
- Output Latches
- Master Reset

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltago	-0.5 to +18.0	٧
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	v
lin	Input Current (DC or Transient), per Pin	± 10	mA
lout	Output Current (DC or Transient), per Pin	+ 20	mA
PD	Power Dissipation, per Package†	500	mW
Telg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	•c

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

TRUTH TABLE

	INPUTS							
MASTER RESET	CLOCK	DISABLE	ĻΕ	OUTPUTS				
0	_	0	0	No Change				
0	_	0	0	Advance				
٥	×	1	×	No Change				
0	1		0	Advance				
٥	1	_	0	No Change				
0	0	×	х	No Change				
0	×	×		Latched				
0	×	×	1	Latched				
1	×	×	0	00 - 01 - 02 -				

X = Don't Care

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

3-DIGIT BCD COUNTER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX LASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}.$

Unused inputs must always be fied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

Chara-1-11-	O	VDD	Tio		<u> </u>	25°C		This	gh	l
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	_	0	0.05	-	0.05	Voc
V _{in} =V _{DD} or 0		10	 -'	0.05	-	0	0.05	-	0.05	
1		15		0.05	_	0	0.05		0.05	
"1" Level	VOH	5.0	4.95	_ '	4.95	5.0	-	4.95	-	ı
Vin=0 or VDD		10	9.95	–	9.95	10	-	9.95	-	
		15	14.95	_	14.95	15		14.95	-	
input Voitage "0" Level	V _{(L}	1								Vdc
(V _O =4.5 or 0.5 Vdc)		5.0	-	1.5	-	2.25	1.5	_	1.5	
(VO=9.0 or 1.0 Vdc)		10	} —	3.0	-	4.50	3.0	-	3.0	
(V _O = 13.5 or 1.5 Vdc)		15	<u>1 – </u>	. 4.0	<u> </u>	6.75	4.0		4.0	
"1" Level	VIH									ĺ
(V _O = 0.5 or 4.5 Vdc)		5.0	3.5	_	3.5	2.75	_	3.5	-	l
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	-	
(V _O = 1.5 or 13.5 Vda)		15	11.0	_	11.0	8.25	l –	11.0	. – '	
Output Drive Current (AL Device)	юн									mAdd
(VOH = 4.6 Vdc) Source - Pin 3	•	5.0	-0.25	_	-0.20	-0.36	_	0.14	_	
(V _{OH} =9.5 Vdc)		10 .	-0.62	_ '	-0.50	-0.9	-	0.35	-	
(V _{OH} = 13.5 Vdc)		15	- 1.8	–	-1.5	-3.5	-	1.1	-	
(VDH=4.8 Vdc) Source - Other		5.0	-0.64		-0.51	- 0.88		-0.36	_	
(VOH=9.5 Vdc) Outputs		10	-1.6	l	- 1.3	-2.25	_	-0.9	_	
(V _{OH} = 13.5 Vdc)		15	-4.2	l _	-3.4	-8.8	_	-2.4	_	
•"		5.0	0.5		0.4	0.86		0.28	-	
(V _{OL} = 0.4 Vdc) Sink - Pin 3 (V _{OL} = 0.5 Vdc)	lOF	10	1.1	_	0.4	2.25	_	0.65		
(V _{OL} = 1.5 Vdc)		15	1.80		1.5	8.8	_	1.20	_ '	
									-	
(VOL = 0.4 Vdc) Sink - Other Outputs		5.0	3.0	_	2.5	4.0	_	1.8	-	
(V _{OL} = 0.5 Vdc)		10 15	6.0	_	5.0 15	6.0 20	_	3.5 10	-	
(V _{OL} = 1.5 Vdc)	_	13	18		13	-20				
Output Drive Current (CL/CP Device)	ЮН									mAde
(VOH = 4.6 Vdc) Source - Pin 3		5.0	-0.2	_	-0.16	-0.36		-0.12		
(V _{OH} = 9.5 Vdc)		10	-0.5	-	-0.4	-0.9 -3.5	_	- 0.3 - 1.0	-	
(V _{OH} = 13.5 Vdc)		15	-1.4		-1.2					
(VOH=4.6 Vdc) Source-Other Outputs		5.0	- 0.52	_	-0.44	0.88	_	- 0.38	-	
(V _{OH} = 9.5 Vdc)		10	- 1.3	-	-1.1	-2.25	_	-0.9	-	
(V _{OH} = 13.5 Vdc)		. 15	-3.6	-	- 3.0	-8.8		-2.4		
(VOL = 0.4 Vdc) Sink - Pin 3	IOL	5.0	0.23	_	0.2	0.86	_	0.16	-	
(V _{OL} = 0.5 Vdc)		10	0.60	_	0.5	2.25	_	0.40	-	
(V _{OL} = 1.5 Vdc)		15	1.80	_	1.5	8.8		1.20	_	
(VOL = 0.4 Vdc) Sink - Other Outputs		5.0	2.4	_	2.0	4.0	_	1.6	_	
(V _{OL} = 0.5 Vdc)		10	3.8	_	3.0	8.0		2.5	-	
(V _{OL} = 1.5 Vdc)		15	10	_	8.4	20		7.0	-	
Input Current (AL Device)	l _{in}	15	_	±0.1	_	±0.00001	± 0.1	_	± 1.0	μAd
Input Current (CL/CP Device)	fin	15	_	± 0.3		±0.00001	±0.3	1	± 1.0	μAdı
Input Capacitance	Cin	_		_	_	5.0	7.5	_	_	pF
(V _{In} = 0)	-111			i '						
Quiescent Current (AL Device)	lpp	5.0		5.0		0.010	5.0		150	μAd
(Per Package)	90	10	_	10		0.010	10	_	300	
MR=V _{DD}		15	_	20	_	0.030	20	_	600	
			 		H		50		375	μAdı
Quiescent Current (CL/CP Device)	1DD	5.0	_	50 100		0.010	100	_	750	μΑσ
(Per Package)		10 15	_	200		0.020	200	_	1500	
MR=V _{DD}		-			<u> </u>					
Total Supply Current**†	lτ	5.0				5 μA/kHz)				μΑσ
(Dynamic Plus Quiescent,		10				5 μA/kHz)				
Per Package) (Ct = 50 pF on all outputs,		15			1T = (1.5	i0 μA/kHz)	ססי⊤י			

[&]quot;T_{low} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

†To calculate total supply current at loads other than 50 pF:

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vtk}$$

[&]quot;The formulas given are for the typical characteristics only at 25°C.

where: I $_T$ is in μA (per package), C_L in pF, V = (V_DD - V_SS) in volts, I in kHz is input frequency, and k = 0.004.

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)

Characteristic	Figure	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time tt_H. ttHL = (1.5 ns/pF) CL + 25 ns tt_H. ttHL = (0.75 ns/pF) CL + 12.5 ns tt_H. ttHL = (0.55 ns/pF) CL + 9.5 ns	2a	т г н. Тнг	5.0 10 15	_ _ _	100 50 40	200 100 80	ns
Clock to BCD Out	2a	tPLH: tPHL	5.0 10 15	<u>-</u>	900 500 200	1600 1000 400	ПŜ
Clock to Overflow	2a	¹ PHL	5.0 10 15	=	600 400 200	1200 800 400	ns
Reset to BCD Out	2b	^t PHL	5.0 10 15	_	900 500 300	1800 1000 600	ns
Clock to Latch Enable Setup Time Master Reset to Latch Enable Setup Time	2b	¹su	5.0 10 15	600 400 200	300 200 100	=	ns
Removal Time Latch Enable to Clock	2b	trem	5.0 10 15	-80 -10 0	-200 -70 -50	- -	ns
Clock Pulse Width	2a	(MH(ci)	5.0 10 15	550 200 150	275 100 75		ns
Reset Pulse Width	2b	^t WH(R)	5.0 10 15	1200 600 450	600 300 225	=	ns
Reset Removal Time	-	t _{rem}	5.0 10 15	-80 0 20	-180 -50 -30	 	ns
Input Clock Frequency	2a	⁽ ci	5.0 10 15	=	1.5 5.0 7.0	0.9 2.5 3.5	MHz
Input Clock Rise Time	25	TLH	5.0 10 15		No Limit		ns
Disable, MR, Latch Enable Rise and Fall Times	_	Т ГН. ТНL	5.0 10 15	- -	<u>-</u>	15 5.0 4.0	μ8
Scan Oscillator Frequency (C1 measured in µF)	1	fosc	5.0 10 15	-	1.5/C1 4.2/C1 7.0/C1	<u>-</u>	Hz

The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 2 - SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

OPERATING CHARACTERISTICS

The MC14553B three-digit counter, shown in Figure 3, consists of three negative edge-triggered BCD counters which are cascaded in a synchronous fashion. A quad latch at the output of each of the three BCD counters permits storage of any given count. The three sets of BCD outputs (active high), after going through the latches, are time division multiplexed, providing one BCD number or digit at a time. Digit select outputs (active low) are provided for display control. All outputs are TTL compatible.

An on-chip oscillator provides the low frequency scanning clock which drives the multiplexer output selector. The frequency of the oscillator can be controlled externally by a capacitor between pins 3 and 4, or it can be overridden and driven with an external clock at pin 4. Multiple devices can be cascaded using the overflow output, which provides one pulse for every 1000 counts.

The Master Reset input, when taken high, initializes the three BCD counters and the multiplexer scanning circuit. While Master Reset is high the digit scanner is set to digit one; but all three digit select outputs are disabled to protong display life, and the scan oscillator is inhibited. The Disable input, when high, prevents the input clock from reaching the counters, while still retaining the last count. A pulse shaping circuit at the clock input permits the counters to continue operating on input pulses with very slow rise times. Information present in the counters when the latch input goes high, will be stored in the latches and will be retained while the latch input is high, independent of other inputs. Information can be recovered from the latches after the counters have been reset if Latch Enable remains high during the entire reset cycle.

FIGURE 4 - SIX-DIGIT DISPLAY

2-BIT BY 2-BIT PARALLEL BINARY MULTIPLIER

The MC14554B 2 x 2-bit parallel binary multiplier is constructed with complementary MOS (CMOS) enhancement mode devices. The multiplier can perform the multiplication of two binary numbers and simultaneously add two other binary numbers to the product. The MC14554B has two multiplicand inputs (X0 and X1), two multiplier inputs (Y0 and Y1), five cascading or adding inputs (K0, K1, M0, M1, and M2), and five sum and carry outputs (S0, S1, S2, C1 [S3], and C0). The basic multiplier can be expanded into a straightforward m-bit by n-bit parallel multiplier without additional logic elements.

Application areas include arithmetic processing (multiplying/adding, obtaining square roots, polynomial evaluation, obtaining reciprocals, and dividing), Fast Fourier Transform processing, digital filtering, communications (convolution and correlation), and process and machine controls.

- Diode Protection on All Inputs
- All Outputs Buffered
- Straight-forward m-Bit By n-Bit Expansion
- No Additional Logic Elements Needed for Expansion
- Multiplies and Adds Simultaneously
- Positive Logic Design
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

2-BIT BY 2-BIT PARALLEL BINARY MULTIPLIER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceremic Package)

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	v
ν _{iη} . ν _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
l _{in} , l _{out}	Input or Output Current (DC or Transient), per Pin	≐10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C Ceramic "L" Package: - 12mW/°C from 100°C to 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

EQUATIONS

 $S = (X \times Y) + K + M$

Where:

x Means Arithmetic Times.

+ Means Arithmetic Plus.

S = S3 S2 S1 S0, X = X1X0, Y = Y1Y0, K = K1 K0, M = M1 M0 (Binary Numbers).

Example:

Given: X = 2(1), Y = 3(11)

K = 1(01), M = 2(10)Then: $S = (2 \times 3) + 1 + 2 = 9$

 $S = (10 \times 11) + 01 + 10 = 1001$

Note: C0 connected to M2 for this size multiplier.

See general expansion diagram for other size multipliers.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Vss)

		1	VDD	Tic	w*	25°C			Thigh*		ļ
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VOL	5.0 10 15	<u>-</u>	0.05 0.05 0.05		0 0 0	0.05 0.05 0.05	111	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	МОН	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15	111	4.95 9.95 14.95	111	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"O" Level	V(L	5.0 10 15	=	1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0	 - -	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0	=	3.5 7.0 11.0	2.75 5.50 8.25	_ _ _	3.5 7.0 11.0	111	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2		-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	1111	-1.7 -0.36 -0.9 -2.4	111	mAd
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.64 1.6 4.2	-	0.51 1.3 3.4	0.88 2.25 8.8	_ 	0.36 0.9 2.4	 	mAd
Output Drive Current (CL/CP Devi- (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	ce) Source	ЮН	5.0 5.0 10	-2.5 -0.52 -1.3 -3.6		~2.1 -0.44 ~1.1 -3.0	-4.2 -0.88 -2.25 -8.8		- 1.7 - 0.36 - 0.9 - 2.4	1 - 1	mAd
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.52 1.3 3.6	-	0.44 1.1 3.0	0.88 2.25 8.8	- -	0.36 0.9 2.4	1 1 1	mAd
Input Current (AL Device)		ţin	15		±0.1		±0.00001	± 0.1		± 1.0	μAd
Input Current (CL/CP Device)		lin	15	_	±0.3	<u> </u>	±0.00001	±0.3		±1.0	μAd
Input Capacitance (Vin = 0)		C _{in}	_		_	<u> </u>	5.0	7.5			pF
Quiescent Current (AL Device) (Per Package)		מסי	5.0 10 15		5.0 10 20	<u>-</u>	0.005 0.010 0.015	5.0 10 20		150 300 600	μAd
Quiescent Current (CL/CP Device) (Per Package))	lDD	5.0 10 15	=	20 40 80	=	0.005 0.010 0.015	20 40 80	=	150 300 600	μΑσ
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)		ч	5.0 10 15			lT = (2	• 1 (ΣΗΧΝΑ 0. • 1 (ΣΗΧΝΑ 0.1 • 1 (ΣΗΧΝΑ 0.1	+ lDD			μΑσ

[&]quot;T_{low} = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

"The formulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

where: IT is in μA (per package), CL in pF, V = (VDD – VSS) in volts, I in kHz is input frequency, and k = 0.0035.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time	¹TLH-					ns
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	†THL	5.0	-	100	200	
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns	''	10	-	50	100	
t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$		15	_	40	80	ļ
Propagation Delay Time	tРLH.					ns ns
KO to CO	1PHL		1			
tթլн, tթнլ = (1.7 ռs/pF) Cլ + 185 ռs	_	5.0	_	270	675	Į
tp_H_tpHL = (0.66 ns/pF) CL + 82 ns	į	10	-	115	290	i
tp_H, tpHL = (0.5 ns/pF) CL + 60 ns	i	15	_ `	85	215	İ
M0 to \$2	i		1			j
tp_H_tpH_ = (1.7 ns/pF) C_ + 595 ns	1	5.0	-	580	1700	1
tp[H] tpHL = (0.66 ns/pF) CL + 247 ns		10	-	280	750	1
tp_H_tpHL = (0.5 ns/pF) CL + 185 ns]	15	-	210	570	I

[&]quot;The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for dosign purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - DYNAMIC POWER DISSIPATION WAVEFORMS

LOGIC DIAGRAM 21 14 -0 X0 М Multiplie Multiplie Cell 12 -0 K D COO M2 Ŏ 13 -0 X 1 M Multiplier X Multiplier Cell Cell 10 ၂၈ ၂၈ C1(S3)

FIGURE 2 - DYNAMIC SIGNAL WAVEFORMS

For K0 to C0: Inputs X0, X1, Y0, Y1, K1, and M2 low, and inputs M0 and M1 high. For M0 to S2:

Inputs X1, Y1, and K0 low, and Inputs X0, Y0, K1, M1, and M2 high.

EXPANSION DIAGRAM

m-Bit by n-Bit Parallel Binary Multiplier (Top View)

S = (X x Y) + K + M Where: x means Arithmetic Times. + means Arithmetic Plus.

S = S(m + n-1) S(m + n-2) - - - S2 S1 S0

 $X = X(m-1) \times (m-2) \cdots \times 2 \times 1 \times 0, Y = Y(n-1) \times Y(n-2) \cdots \times Y2 \times 1 \times 0$

K = K(m-1) K(m-2) - - - K2 K1 K0 and M = M(n-1) M(n-2) - - - M2 M1 M0

(Bingry Numbers).

Number of output binary digits = m + n Number of packages = mxn/4 (For m or n or both odd select next highest even number.)

MC14555B MC14556B

DUAL BINARY TO 1-OF-4 DECODER/DEMULTIPLEXER

The MC14555B and MC14556B are constructed with complementary MOS (CMOS) enhancement mode devices. Each Decoder/ Demultiplexer has two select inputs (A and B), an active low Enable input (E), and four mutually exclusive outputs (Q0, Q1, Q2, Q3). The MC14555B has the selected output go to the "high" state, and the MC14556B has the selected output go to the "low" state. Expanded decoding such as binary-to-hexadecimal (1-of-16), etc., can be achieved by using other MC14556B or MC14556B devices.

Applications include code conversion, address decoding, memory selection control, and demultiplexing (using the Enable input as a data input) in digital data transmission systems.

- Diode Protection on All Inputs
- Active High or Active Low Outputs
- Expandable
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- All Outputs Buffered
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Paramater	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	V
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
1 _{in} lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	~ 65 to + 150	°C
TL	Load Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: - 12mW/°C from 65°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL BINARY TO 1-OF-4 DECODER/DEMULTIPLEXER

Active High Outputs - MC145558 Active Low Outputs - MC145568

P SUFFIX

L SUFFIX
CERAMIC PACKAGE
CASE 620

PLASTIC PACKAGE

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

Ц	INP	Ιo	OUTPUTS				OUTPUTS				
Н	ENABLE	SEI	ECT	MC14555B				MC14556B			
U	E	В	Α	Q3	Ω2	Q1	Qσ	āз	ā2	Ō١	Ō٥
ľ	0	0	0	D	0	0	1	1	1	1	0
1	٥	0	1	0	0	1	0	1	1	0	1
L	0	1	0	۵	1	0	0	1	0	1	1
ı	٥	1	1	1	0	0	0	0	1	1	1
h	1	х	х	0	0	0	0	1	1	1	1

X = Don't Care

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \equiv (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

MC14555B•MC14556B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD		w*		25°C		Thi		J
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	I	0.05		0	0.05		0.05	Vdc
V _{in} = V _{DD} or 0	ł	10	-	0.05	-	0	0.05	-	0.05	i
		15	<u> </u>	0.05	1	0	0.05		0.05	<u>l</u>
"1" Level	VOH	5.0	4.95	_	4.95	5.0	-	4.95		Vdc
Vin = 0 or VDD		10	9.95	-	9.95	10	_	9.95	_	1
		15	14.95	l	14.95	15		14.95	-	
Input Voltage "O" Level	VIL									Vdc
(VO = 4.5 or 0.5 Vdc)		5.0	J - 1	1.5	-	2.25	1.5	-	1.5	ļ.
(VO = 9.0 or 1.0 Vdc)	ì	10	- '	3.0	-	4.50	3.0	-	3.0	1
(VO = 13.5 or 1.5 Vdc)		15	_	4.0		6.75	4.0	_	4.0	l
"1" Level	VIH								-	Vdc
(V _O = 0.5 or 4.5 Vdc)		5.0	3.5	-	3.5	2.75	-	3.5	_	1
(V _O = 1.0 or 9.0 Vdc)	1	10	7.0 .	_	7.0	5.50	_	7.0	_	
(Vo = 1.5 or 13.5 Vdc)	1 :	15	11.0	_	11.0	B.25	_	11.0		l
Output Drive Current (AL Device)	ЮН									mAdc
(VOH = 2.5 Vdc) Source	" '	5.0	-3.0	 	-2.4	-4.2	_	-1.7	_	1
(VOH = 4.6 Vdc)		5.0	-0.64	-	-0.51	-0.88	_	-0.36	_	I
(VOH = 9.5 Vdc)		10	-1.6	_	-1.3	-2.25	_	-0.9	-	
(V _{OH} = 13.5 Vdc)		15	-4.2	<u> </u>	-3.4	-8.8		-2.4		
(VOL = 0.4 Vdc) Sink	loL	5.0	0.64	_	0.51	0.88	-	0.36	-	mAde
(VOL = 0.5 Vdc)	"-	10	1.6	_	1.3	2.25	_	0.9		i
(VOL = 1.5 Vdc)		15	4.2	_	3.4	8.8	-	2.4	-	
Output Drive Current (CL/CP Device)	ЮН									mAdc
(V _{OH} = 2.5 Vdc) Source	, On	5.0	-2.5	l _	-2.1	-4.2	_	-1.7	-	
(VOH = 4.6 Vdc)	1	5.0	-0.52	l –	-0.44	-0.88	_	-0.36	_	
IVOH = 9.5 Vdcl		10	-1.3	l –	-1.1	-2.25	_	-0.9	-	
(VOH = 13.5 Vdc)		15	-3.6	l –	-3.0	-8.8	_	-2.4		
(VOI = 0.4 Vdc) Sink	lOL	5.0	0.52		0.44	0.88		0.36		mAdc
(VOL = 0.5 Vdc)	.0.	10	1.3	_	1.1	2.25	_	0.9		
(VOL = 1.5 Vdc)	1	15	3.6	l	3.0	8.8	-	2.4	_	
Input Current (AL Device)	l _{in}	15		± 0.1		±0.00001	: 0.1	-	± 1.0	μAdc
				10.7	 	10.00001	: 0.3		11.0	μAdc
Input Current (CL/CP Device)	lin	15		103	<u> </u>					-
Input Capacitance	Cin	-	-	-	-	5.0	7.5	-	-	₽F
(V _{in} =0)										_
Oulescent Current (AL Device)	100	5.0	-	5.0	-	0.005	5.0	- '	150	μAdc
(Per Package)	1	10	–	10	-	0.010	10	_	300	i
		15		20		0.015	20		600	
Quiescent Current (CL/CP Device)	lpo	5.0	-	20		0.005	20		150	μAdo
(Per Package)		10	-	40	l –	0.010	40	-	300	1
		15		80		0.015	80	L - _	600	
Total Supply Current**1	İŢ	5.0			IT ≈ 10	.85 µA/kHz) f + Ipp			μAdd
(Dynamic plus Quiescent,	'	10				.7 μA/kHz)				1
Per Package)		15				.6 μA/kHz)				1
(C ₁ = 50 pF on all outputs, all			1		•					
buffers switching)										1

[&]quot;T_{low} = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) \approx I_T(50 \text{ pF}) + (C_L - 50) \text{ VIk}$$

where: IT is in μA (per package), CL in pF, V = (VDO - VSS) in volts, f in kHz is input frequency, and k = 0.002.

^{**}The formulas given are for the typical characteristics only at 25°C.

MC14555B•MC14556B

SWITCHING CHARACTERISTICS*(C1 = 50 pF, TA = 25°C)

Characteristic	Symbol	VOD	Min	Typ #	Max	Unit
Output Rise and Fall Time ttlh, tthl = (1.5 ns/pF) Cl + 25 ns ttlh, tthl = (0.75 ns/pF) Cl + 12.5 ns ttlh, tthl = (0.55 ns/pF) Cl + 9.5 ns	ttlH, tthL	5.0 10 15	-	100 50 40	200 100 80	ns
Propagation Detay Time — A, 8 to Output tplH, tpHL = (1.7 ns/pF) CL + 136 ns tpLH, tpHL = (0.66 ns/pF) CL + 62 ns tpLH, tpHL = (0.5 ns/pF) CL + 45 ns	[†] ՔՆН, [†] ՔНL	5.0 10 15	=	220 95 70	440 190 140	ns
Propagation Delay Time — E to Output tp_H, tpHL = (1.7 ns/pF) CL + 115 ns tpLH, tpHL = (0.66 ns/pF) CL + 52 ns tpLH, tpHL = (0.5 ns/pF) CL + 40 ns	^t PLH, ^t PHL	5.0 10 15	- -	200 85 65	400 170 130	ns

[&]quot;The formulas given are for the typical characteristics only at 25°C.

FIGURE 1 - DYNAMIC POWER DISSIPATION SIGNAL WAVEFORMS

FIGURE 2 - DYNAMIC SIGNAL WAVEFORMS

LOGIC DIAGRAM (1/2 of Dual)

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

MC14557B

1-TO-64 BIT VARIABLE LENGTH SHIFT REGISTER

The MC14557B is a static clocked serial shift register whose length may be programmed to be any number of bits between 1 and 64. The number of bits selected is equal to the sum of the subscripts of the enabled Length Control inputs (L1, L2, L4, L8, L16, and L32) plus one. Serial data may be selected from the A or B data inputs with the A/B select input. This feature is useful for recirculation purposes. A Clock Enable (CE) input is provided to allow gating of the clock or negative edge clocking capability.

The device can be effectively used for variable digital delay lines or simply to implement odd length shift registers.

- 1-64 Bit Programmable Length
- Q and Q Serial Buffered Outputs
- Asynchronous Master Reset
- · All Inputs Buffered
- · No Limit On Clock Rise and Fall Times
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or one Lowpower Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	V
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
In. laut	Input or Oulput Current (DC or Transient), per Pin	± 10	mА
PD	Power Dissipation, per Package†	500	mW
Tstq	Storage Temperature	-65 to +150	°C
TL	Load Temperature (8-Second Soldering)	260	°C_

"Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: –12mW/°C from 65°C to 85°C Ceramic "L" Package: –12mW/°C from 100°C to 125°C

LENGTH SELECT TRUTH TABLE

L32	L16	L8	L4	L2	L1	Register Length
0	0	0	0	0	0	1 Bit
0	0	0	0	0	1	2 Bits
0	0	0	0	1	0	3 Bits
0	0	0	0	1	1	4-Bits
0	0	0	1	0	0	5 Bits
0	0	0	1	0	1	6 Bits
	- 0	160				
	1.6		4	90		
	- 6	100		3		
1	0	0	0	0	0	33 Bits
1	0	0	0	0	1	34 Bits
		0.0		-	1.	
	75		4	+	1.41	
1	1	1	1	0	0	61 Bits
1	1 1	1	1	0	1	62 Bits
1	1 1	1	1	1	0	63 Bits
1	1 1	1	1	1	1	64 Bits
	1		1	ı		

Note Length equals the sum of the binary length control subscripts plus one

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

1-TO-64 BIT VARIABLE LENGTH SHIFT REGISTER

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

	in	Output		
Ast	A/B	Clock	CE	Q
0	0	7	0	В
0	1	_	0	A
0	0	1	~	В
0	1	1	~	A
1	×	×	×	0

Q is the output of the first selected shift register stage. X = Don't Care.

MC14557B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to Vss)

ELECTRICAL CHARACTERISTIC	e (voilages)	1	V _{DD} T _{low} *				25°C		Thi		
Characteristic		Symbol	VDD Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VOL	5.0 10 15	- -	0.05 0.05 0.05	=	0 0	0.05 0.05 0.05	111	0.05 0.05 0.05	Vdc
Vin = 0 or VDD	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.0 10 15	111	4.95 9.95 14.95	1 1 1	Vdc
trput Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc)	"0" Level	VIL	5.0 10 15	<u>-</u>	1.5 3.0 4.0	=	2.25 4.50 6.75	1.5 3.0 4.0	<u>-</u>	1.5 3.0 4.0	Vdc
(VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0	_ 	3.5 7.0 11.0	2.75 5.50 8.25	111	3.5 7.0 11.0	1 1	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8		1.7 0.36 0.9 2.4	1111	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lor.	5.0 10 15	0.64 1.6 4.2	=	0.51 1.3 3.4	0.88 2.25 8.8	1 1 1	0.36 0.9 2.4		mAdc
Output Drive Current (CL/CP Dev (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	ice) Source	Юн	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6	- - -	-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lot	5.0 10 15	0.52 1.3 3.6	-	0.44 1.1 3.0	0.88 2.25 8.8	-	0.36 0.9 2.4	=	mAdc
Input Current (AL Device)		lin	15	_	± 0.1	-	±0.00001	±0.1	_	± 1.0	μAdc
Input Current (CL/CP Device) Input Capacitance (Vin = 0)		l _{in} C _{in}	15 —	_	±0.3 —	-	±0.00001	±0.3	_	± 1.0	μAdc pF
Quiescent Current (AL Device) (Per Package)		iDD	5.0 10 15	_	5.0 10 20	=	0.010 0.020 0.030	5.0 10 20	<u>-</u>	150 300 600	μAdc
Quiescent Current (CL/CP Device (Per Package))	lDD	5.0 10 15	=	50 100 200	=	0.010 0.020 0.030	50 100 200	_	375 750 1500	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)	-	μ	5.0 10 15	- 200 - 0.030 200 - 1500							μAdc

[&]quot;Tlow = -55°C for AL Dovice, -40°C for GL/CP Device.

†To calculate total supply current at leads other than 50 pF:

where: IT is in μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} < (V_{in} \text{ or } V_{out}) < V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

Thigh = + 125°C for AL Dovice, + 85°C for CL/CP Davice.

[₱]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

MC14557B

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD}	Min	Typ#	Max	Unit
Rise and Fall Time, Q or \$\overline{Q}\$ Output \text{TILH}, \text{THL} = (1.5 ns/pF) CL + 25 ns \text{TILH}, \text{TRL} = (0.75 ns/pF) CL + 12.5 ns \text{TILH}, \text{THL} = (0.55 ns/pF) CL + 9.5 ns	[†] TLH· [‡] THL	5 10 15	111	100 50 40	200 100 80	ns
Propagation Delay, Clock or CE to Q or Q tplH, tpHL = (1.7 na/pF) CL + 215 ns tplH, tpHL = (0.66 na/pF) CL + 97 ns tplH, tpHL = (0.6 na/pF) CL + 65 ns	tpLH. tpHL	5 10 15	111	300 130 90	600 260 160	ns
Propagation Delay, Reset to Q or Q Pp_H, ppH_ = (1.7 ns/pF) C_ + 215 na pp_H, ppH_ = (0.66 ns/pF) C_ + 97 ns pp_H, ppH_ = (0.5 ns/pF) C_ + 70 ns	tplh, tphl	5 10 15	111	300 130 95	600 260 190	ns
Pulse Width, Clock	^t WH(cl)	5 10 15	200 100 75	95 45 35	111	ns
Pulse Width, Reset	¹WH(rst)	5 10 15	300 140 100	150 70 50		ns
Clock Frequency (50% Duty Cycle)	f _C l	5 10 15	=	3.0 7.5 13.0	1.7 5.0 6.7	MHz
Setup Time, A or B to Clock or \overrightarrow{CE} Worst case condition: L1 = L2 = L4 = L8 = L16 = L32 = V _{SS} (Register Length = 1) Best case condition: L32 = V _{DD} , L1 through L16 = Don't Care (Any register length from 33 to 64)	^t su	5 10 15 5	700 290 145 400 165	350 130 85 45	111	ns
Hold Time, Clock or \overline{CE} to A or B Bost case condition: L1 = L2 = L4 = L8 = L16 = L32 = V _{SS} (Register Length = 1)	t _h	5 10 15	200 100 10	- 150 - 80 - 50		ns
Worst case condition: L32 = Vpp, L1 through L16 = Don't Care (Any register length from 33 to 64)		5 10 15	400 185 85	50 25 22	- -	
Rise and Fall Time, Clock	t _r , t _f	5 10 15		No Limit		-
Rise and Fall Time, Reset or CE	t _F ,	5 10 15	=	=	15 5 4	μ8
Removal Time, Reset to Clock or CE	t _{rem}	5 10 15	160 60 70	80 40 35	=	ns

[&]quot;The formulas given are for the typical characteristics only at 25°C.

#Data tabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential porformance.

BCD-TO-SEVEN SEGMENT DECODER

The MC14558B decodes 4-bit binary coded decimal data dependent on the state of auxiliary inputs, Enable and RBI, and provides an active-high seven-segment output for a display driver

An auxiliary input truth table is shown, in addition to the BCD to seven-segment truth table, to indicate the functions available with the two auxiliary inputs.

Leading Zero blanking is easily obtained with an external flip-flop in time division multiplexed systems displaying most significant decade first.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Segment Blanking for All Illegal Input Combinations
- Lamp Test Function
- Capability for Suppression of Non-Significant Zeros
- Lamp Intensity Function
- . Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range

CMOS MSI

(LOWPOWER COMPLEMENTARY MOS)

BCD-TO-SEVEN SEGMENT DECODER

LSHEELY CERAMIC PACKAGE CASE 620

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

PIN ASSIGNMENT

MAXIMUM RATINGS (Voltages referenced to VSS)

Rating	Symbol	Value	Unit
	-	-0.5 to +18	
DC Supply Voltage	V _{DD}		Vdc
Input Voltage, All Inputs	Vin	-0 5 to V _{DD} + 0.5	Vdc
DC Input Current, per Pin	lin	± 10	mAdc
Operating Temperature Range - AL Device	TA	-55 to +125	°C
CL/CP Device		-40 to +85	
Storage Temperature Range	T _{s1g}	-65 to +150	°C

AUXILIARY INPUT TRUTH TABLE

Enable Pin 3	RBI Pin 5	8CD Input Code	RBO Pin 4	Function Performed
0	0.	×	0	Lamp Test
0	1	×	1	Blank Segments
1	1	0	1	Display Zero
1	0	0	0	Blank Segments
1	х	1 9	1	1-9 Displayed

X = Don't Care

ABI - Ripple Blanking Input ABO - Ripple Blanking Output C Enable RBO RBI D 10 VSS DISPLAY

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tic	Tiow*		25°C			Thigh		
Characteristic	Symbol	Vdc	Min	Max	Min	Тур	Max	Min	Max	Unit	
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	Vdc	
V _{in} = V _{DD} or 0	1 7	10	-	0.05	_	0	0 05	-	0.05		
		15	-	0 05	-	0	0.05	-	0.05		
"1" Level	VOH	50	4.95	-	4.95	5.0		4.95	-	Vdc	
V _{in} = 0 or V _{OD}	1 -	10	9.95	-	9.95	10	-	9.95	-		
L	1	15	14.95	-	14.95	15	-	14.95			
Input Voltage " "0" Level	VIL								_	Vdc	
(VO = 4.5 or 0.5 Vdc)	1	50	-	1.5	l -	2.25	1.5		1.5	ŀ	
(VO = 9.0 or 1.0 Vdcl	1	10	-	3.0	-	4.50	3.0	- !	3.0		
(V _O = 13 5 or 1 5 Vdc)		15		4.0		6 75	4.0		4.0		
"1" Leve	VIH									ŀ	
IVO = 0.5 or 4.5 Vdc)		50	3.5	-	35	2.75	-	3.5	-	Vdc	
(V _O = 1.0 or 9.0 Vdc1		10	7.0	-	7.0	5 50	-	7.0	-	l	
(VO = 1 5 or 13.5 Vdc)	<u> </u>	15	11.0	**	11.0	8.25		11.0	-		
Output Drive Current (AL Device)	IOH			l	i .			i		mAdc	
(VOH = 2.5 Vdc) Source	1 .	50	-3.0	-	-2.4	-4.2	-	-1.7	-		
(VOH = 4.6 Vdc)		5.0	-D.64	-	-0.51	-0.88	-	-0.36	_		
(V _{OH} = 9.5 Vdc)		10	-1.6	-	-1.3	-2.25	-	-0.9	-		
(V _{OH} = 13.5 Vdc)		15	-4.2		-3.4	-8.8		-2.4		Ь—	
(VOL = 0.4 Vdc) Sink	IOF	5.0	0.64	-	0.51	0.88	-	0 36	-	mAdc	
(VOL = 0.5 Vdc)		10	16	-	1.3	2.25	-	0.9	-	1	
(V _{OL} = 1.5 Vdc)		15	4.2	-	3.4	8.8		24	-		
Output Drive Current (CL/CP Device)	10Н	Ì								mAdc	
(VOH = 2.5 Vdc) Source	Í	5.0	-2.5	-	-2.1	-4.2	-	-1.7	-	l	
(V _{OH} = 4.6 Vdc)		5.0	-0.52	-	-0.44	-0.88	-	-0.36	-	1	
(V _{OH} = 9.5 Vdc)	1	10	-1.3	-	-1.1	-2.25	-	-0.9	-]	
(V _{OH} = 13.5 Vdc)		15	-3.6		-3.0	-8.8		-2.4	-	L	
(VOL = 0.4 Vdc) Sink	IOL	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc	
{VOL = 0.5 Vdc)	1	10	1.3	ļ -	1.1	2.25	-	0.9	-	i	
(VOL = 1.5 Vdc)	<u> </u>	15	3.6	-	3.0	8.8	-	24	-		
Input Current (AL Device)	l _{in}	15	<u> </u>	±01	<u>-</u>	±0 00001	±01		±10	μAdc	
Input Current (CL/CP Device)	l _{in}	15	-	±03	-	±0 00001	±03	-	±10	µAdc	
Input Capacitance	Cʻu	-	-	_	_	50	7.5	-	-	ρF	
Quiescent Current (AL Device)	IDD	50	 	50	_	0.005	50	-	150	μAdc	
(Per Package) Vin = 0 or VDD	"00	10	-	10	-	0.010	10	-	300		
I _{out} = 0 μA		15	-	20	۱ -	0.015	20	-	600	İ	
Quiescent Current (CL/CP Device)	IDO	50	_	20	-	0.005	20		150	µАdc	
(Per Package) V _{in} = 0 or V _{DD}	"	10	_	40	-	0.010	40	_	300]	
l _{out} =0 μA		15		80	- 1	0.015	80	-	600		
Total Supply Current**!	Ιτ	50			I= = /1	2 µA/kHz)	1 + 100			µAdc	
(Dynamic plus Quiescent,	'	10	[.4 μΑ/kHz)					
Per Package)	1	15	i		•	.9 дА/кН2) .6 дА/kH2)				}	
(C _L = 50 pF on all outputs, all			1		.1 - 13	.U MU/KUS/				l	
buffers switching)			l							[

^{*}Tiow = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal preceutions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range V_{SS} < {V_{in} or V_{out}} < VDO

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD).

⁼Noise immunity specified for worst-case input combination

Noise Margin for both "1" and "0" level = 1.0 Vdc min @ VDD = 5.0 Vdc

^{2 0} Vdc min @ VDD . 10 Vdc

^{2.5} Vdc min @ VDD = 15 Vdc

¹ To calculate total supply current at loads other than 50 pF

IT(CL) = IT(50 pF) + 4 x 10-3 (CL -50) VDDf

where I_T is in μ A (per package), C_L in pF, V_{DD} in Vdc, and I in kHz is input frequency. **The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C; see Figure 1)

Characteristic	Symbol	VDD	Min	Тур	Max	Unit
Output Rise Time	[†] TLH		1	†	 	- ns
tŢĹĦ = (3.0 ns/pF) CĹ + 30 ns	,	5.0	i -	100	200	
tTLH = (1.5 ns/pF) CL + 15 nt		10	_	50	100	1
tTLH = (1.1 ns/pF) CL + 10 ns		15	1 -	40	80	
Output Fall Time	†THL		·	†	 	ns
t բ լ = (1.5 ns/pF) C լ + 25 ns	""-	5.0	l –	100	200	l
1THL = (0.75 ns/pF) CL + 12.5 ns		10	-	50	100	
^t THL = (0.55 ns/pF) C _L + 9.5 ns	1 1	15	_	40	80	
Propagation Dalay Time	¹PLH					ns
tp_H = (1.7 ns/pF) C _L + 495 ns		5.0	-	580	1160	
tp_H = (0.66 ns/pF) C_ + 187 ns		10	l -	220	440	
tp_H = (0.5 ns/pF) C_ + 120 ns		15	-	145	230	
Propagation Delay Time	1PHL					ns ns
tpHL = (1.7 ns/pF) CL + 695 ns		5.0	_	780	1560	
tpHL = (0.66 ns/pF) CL + 242 ns	i l	10	_	275	550	1
tpHL = (0.5 ns/pF) CL + 160 ns	\ \ \	15	-	185	370	

[•] The formulae given are for the typical characteristics only.

						TR	UTH TAB	LE						
INPUTS						OUTPUTS*								
Enable Pin 3	ABI Pin 5	O Pin 6	C Pin 2	B Pin 1	A Pin 7	e Pin 13	b Pin 12	c Pin 11	d Pin 10	e Pin 9	f Pin 15	9 Pin 14	RBO Pin 4	DISPLAY
1	1	0		0	0	1	,	,	1	1	1	0	1	0
1	×	0	•	٥	١	۰	0	0	0	,	,	0	1	1
1	×	0	۰	,	0	1	,	0	1	ŀ	0	1	1	Դ
1	×	0	0	,	1	1	,	1	1	0	0	1	-	'n
1	×	۰	1	۰	٥	0	1	,	0	0	1	1	-	3-
1	×	٥	,	0	,	1	۰	,	1	۰	1	1	1	5
1	×	0	,	,	0	0	0	1	1	1	1	1	-	Ь
1	×	0	,	1	1	1	1	1	0	0	0	0	1	7
	×	1	٥	٥	0	1	1	1	1	-	1	1	1	8
1	×	,	0	٥	1	1	1	1	0	٥	1	-	1	9
1	0	۰	0	•	0	•	0	0	0	•	0	٥	0	Blank
0	0	×	×	×	×	1	1	1	,	,	1	1	0	8
0	1	×	×	×	×	•	۰	•	0	•	۰	0	1	Slank

^{*}All non-valid BCD input codes produce a blank display.

FIGURE 1 - SIGNAL WAVEFORMS

X - Don't Care

TYPICAL APPLICATIONS

FIGURE 2 – LEADING AND TRAILING ZERO SUPPRESSION WITH LAMP TEST

FIGURE 3 – LEADING AND TRAILING ZERO SUPPRESSION WITH PWM INTENSITY BLANKING AND NO LAMP TEST

FIGURE 4 – ZERO SUPPRESSION WITH LAMP TEST AND INTENSITY BLANKING

MC14559B See Page 6-394

MC14560B

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

NBCD ADDER

CERAMIC PACKAGE

PISHEFIX PLASTIC PACKAGE **CASE 648**

ORDERING INFORMATION

A Saries: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

NBCD ADDER

The MC145608 adds two 4-bit numbers in NBCD (natural binary coded decimal) format, resulting in sum and carry outputs in NBCD

This device can also subtract when one set of inputs is complemented with a 9's Complementer (MC14561B).

All inputs and outputs are active high. The carry input for the least significant digit is connected to VSS for no carry in.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- · Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Vollage	-05 to +180	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-05 to V _{DD} +05	V
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Isto	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

^{*}Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating Plastic "P" Package = 12mW/°C from 65°C to 85°C Ceramic "L" Package - 12mW/°C from 100°C to 125°C

TRUTH TABLE

				INPUT		OUTPUT							
Α4	А3	A2	Al	84	83	82	81	Cin	Cout	\$4	53	S 2	S١
0	0	0	0	0	0	0	0	a	0	0	0	0	0
0	0	0	0	0	0	0	a	1	0	0	0	0	1
0	1	a	0	a	0	1	1	0	0	0	1	1	1
0	1	0	0	0	0	1	1	1	0	1	0	0	0
0	1	1	1	0	1	0	0	0	1	0	0	0	1
. 0	1	1	1	0	1	o	0	1 1	1	0	0	1	0
1	0	0	0	0	1	0	1	0	1	0	0	1	1
0	1	1	0	1	0	0	0	0	- 1	0	1	0	0
1	0	0	1	1	0	0	1	1	- 1	1	a	0	י

^{*}Partial truth table to show logic operation for representative input values

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS ≤ (Vin or Vout) ≤ VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	Tic	ow*		25°C		Thi	gh*]
Characteristic		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VOL	5.0 10 15	=	0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05	=	0.05 0.05 0.05	Vdc
Vin = 0 or V _{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	- -	4.95 9.95 14.95	5.0 10 15	=	4.95 9.95 14.95	=	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	VIL	5.0 10 15	=	1.5 3.0 4.0	<u>-</u>	2.25 4.50 6.75	1.5 3.0 4.0	Ξ	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0	=	3.5 7.0 11.0	2.75 5.50 8.25	1 - 1	3.5 7.0 11.0	=	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.68 -2.25 -8.8	1111	-1.7 -0.36 -0.9 -2.4	1111	mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	4OL	5.0 10 15	0.64 1.6 4.2	=	0.51 1.3 3.4	0.88 2.25 8.8	_ 	0.36 0.9 2.4		mAdc
Output Drive Current (CL/CP Dov (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	ice) Source	Юн	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6	- - -	-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	1111	- 1.7 - 0.36 - 0.9 - 2.4	1111	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	-	0.36 0.9 2.4	-	mAdc
Input Current (AL Device)		tin	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Current (CL/CP Device)		lin	15	L –	±0.3		±0.00001	±0.3	_	±1.0	μAdc
tnput Capacitance (Vin = 0)		C _{in}	_	_		_	5.0	7.5	_		pF
Quiescent Current (AL Device) (Per Package)		IDD	5.0 10 15	=	5.0 10 20	=	0.005 0.010 0.015	5.0 10 20	_	150 300 600	μAdc
Quiescent Current (CL/CP Device (Per Package))	lDD	5.0 10 15	=	20 40 80	=	0.005 0.010 0.015	20 40 60	<u>-</u>	150 300 600	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)		tŢ	5.0 10 15			IT = (3.	68 μΑ/kHz) f 35 μΑ/kHz) f 03 μΑ/kHz) f	+ 10D			μAdc

^{*}T_{tow} = -55°C for AL Dovice, -40°C for CL/CP Dovice.
Thigh = +125°C for AL Dovice, +85°C for CL/CP Davice.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

"The formulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ V1k}$$

whore: IT is in μ A (por package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.005.

^{.....}

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Тур#	Max	Unit
Output Rise and Fall Time tTLH, tTHL = (1.5 ns/pF) CL + 25 ns tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns	тин тни	5.0 10 15	_ _ _	100 50 ,40	200 100 80	ns
Propagation Delay Time A or B to S tptH, tpHL = (1.7 ns/pF) CL + 665 ns tptH, tpHL = (0.66 ns/pF) CL + 297 ns tptH, tpHL = (0.5 ns/pF) CL + 195 ns	tPLH. tPHL	5.0 10 15	 	750 330 220	2100 900 675	ng
A or B to C _{out} tp_H, tpHL = (1.7 ns/pF) CL + 565 ns tp_H, tpHL = (0.66 ns/pF) CL + 197 ns tp_H, tpHL = (0.5 ns/pF) CL + 145 ns		5.0 10 15	_ _ _	650 230 170	1800 600 450	ns
G _{in} to C _{out} tpLH, tpHL = (1.7 ns/pF) C _L + 465 ns tpLH, tpHL = (0.86 ns/pF) C _L + 187 ns tpLH, tpHL = (0.5 ns/pF) C _L + 135 ns		5.0 10 15		550 220 160	1500 600 450	ns
Turn-Off Detay Time C _{In} to S tptH = (1.7 ns/pF) CL + 715 ns tptH ≈ (0.66 ns/pF) CL + 197 ns tptH ≈ (0.5 ns/pF) CL + 215 ns	tPLH .	5.0 10 15	=	800 350 240	2250 975 750	ns
Turn-On Detay Time Cin to S 1pHL = (1.7 ns/pF) CL + 565 ns 1pHL = (0.68 ns/pF) CL + 197 ns 1pHL = (0.5 ns/pF) CL + 145 ns	tPHL .	5.0 10 15	<u>-</u> -	650 230 170	1800 600 450	ns

FIGURE 1 - POWER DISSIPATION WAVEFORMS

Duty Cycle = 50%
All outputs connected to respective C_L loads
f = System clock frequency

FIGURE 2 - SWITCHING TIME WAVEFORMS

[&]quot;The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FUNCTIONAL EQUIVALENT LOGIC DIAGRAM

FIGURE 3 - PARALLEL ADD/SUBTRACT CIRCUIT

X - Don't Care

APPLICATIONS INFORMATION

INTRODUCTION

Frequently in small digital systems, simple decimal arithmetic is performed. Decimal data enters and leaves the system arithmetic unit in a binary coded decimal (BCD) format. The adder/subtracter in the airthmetic unit may be required to accept sign as well as magnitude, and generate sign, magnitude, and overflow. In the past, it has been cumbersome to build sign and magnitude adder/subtracters. Now, using Motorola's MSI CMOS functions, the MC14560 NBCD Adders and MC14561 9's Complementers, NBCD adder/subtracters may be built economically, with surprisingly low package count and moderate speed.

Some background information on BCD arithmetic is presented here, followed by simple circuits for unsigned adder/subtracters. The final circuit discussed is an adder/subtracter for signed numbers with complete overflow and sign correction logic.

DECIMAL NUMBER REPRESENTATION

Because logic elements are binary or two-state devices, decimal digits are generally represented as a group of bits in a weighted format. There are many possible binary codes which can be used to represent a decimal number. One of the most popular codes using 4 binary digits to represent 0 thu 9 is Natural Binary Coded Decimal (NBCD or 8-4-2-1 code).

NBCD is a weighted code. If a value of "0" or "1" is assigned to each of the bit positions, where the rightmost position is 2^0 and the leftmost is 2^3 , and the values are summed for a given code, the result is equal to the decimal digit represented by the code. Thus, 0110 equals $0\cdot 2^3 + 1\cdot 2^2 + 1\cdot 2^1 + 0\cdot 2^0 = 4 + 2 = 6$. The 1010, 1011, 1100, 1101, 1110, and 1111 binary codes are not used. Because of these illegal states, the addition and subtraction of NBCD numbers is more complex than similar calculations on straight binary numbers.

ADDITION OF UNSIGNED NBCD NUMBERS

When 2 NBCD digits, A and B, and a possible carry, C, are added, a total of 20 digit sums (A + B + C) are possible as shown in Table 1.

The binary representations for the digit sums 10 thru 19 are offset by 6, the number of unused binary states, and are not correct. An algorithm for obtaining the correct sum is shown in Figure 1. A conventional method of implementing the BCD addition algorithm is shown in Figure 2(a). The NBCD digits, A and B, are summed by a 4 bit binary full adder. The resultant (sum and carry) is input to a binary/BCD code converter which generates the correct BCD code and carry.

An NBCD adder block which performs the above function is available in a single CMOS package (MC14560). Figure 2(b) shows n decades cascaded for addition of n digit unsigned NBCD numbers. Add time is typically 0.1 \pm 0.2n μ s for n decades. When the carry out of the most significant decade is a logical "1", an overflow is indicated.

COMPLEMENT ARITHMETIC

Complement arithmetic is used in NBCD subtraction. That is, the "complement" of the subtrahend is added to the minuend. The complementing process amounts to biasing the subtrahend such that all possible sums are positive. Consider the subtraction of the NBCD numbers, A and B:

where $\bf R$ is the result. Now bias both sides of the equation by 10^N-1 where $\bf N$ is the number of digits in $\bf A$ and $\bf B$.

$$R + 10^{N} - 1 = A - B + 10^{N} - 1$$

Rearranging,

$$R + 10^N - 1 = A + (10^N - 1 - B)$$

The term (10^N-1-B) , -B biased by 10^N-1 , is known as the 9's complement of B. When A>B, R + $10^N-1>10^N-1$; thus R is a positive number. To obtain R, 1 is added to R + 10^N-1 , and the carry term, 10^N , is dropped. The addition of 1 is called End Around Carry (EAC).

When A < B, R + 10^N - 1 < 10^N - 1, no EAC results and R is a negative number biased by 10^N - 1; thus R + 10^N - 1 is the 9's complement of R

SUBTRACTION OF UNSIGNED NBCD NUMBERS

Nine's complement arithmetic requires an element to perform the complementing function. An NBCD 9's complementer may be implemented using a 4 bit binary adder and 4 inverters, or with combinatorial logic. The Motorola MC14561 9's complementer is available in a single package. It has true and inverted complement disable, which allow straight-through or complement modes of operation. A "zero" line forces the output to "0". Figure 3 shows an NBCD subtracter block using the MC14560 and MC14561. Also shown are n cascaded blocks for subtraction of n digit unsigned numbers. Subtract time is $0.6 + 0.4n \mu s$ for n stages. Underflow (borrow) is indicated by a logical "0" on the carry output of the most significant digit. A "0" carry also indicates that the difference is a negative number in 9's complement form. If the result is input to a 9's complementer, as shown, and its mode controlled by the carry out of the most significant digit, the output of the complementer will be the correct negative magnitude. Note that the carry out of the most significant digit (MSD) is the input to carry in of the least significant digit (LSD). This End Around Carry is required because subtraction is done in 9's complement arithmetic.

By controlling the complement and overflow togic with an add/subtract line, both addition and subtraction are performed using the basic subtracter blocks (Figure 4).

TABLE 1 - Sum = A + B + C

Binary Sums	Decimal Number	Corrected Binary Sums
0000	0	0000
0001	1 1	0001
0010	2 .	0010
0011	3	0011
0100	4	0100
0101	5	0101
0110	6	0110
0111	7	0111
1000	8	1000
1001	9	1001
1010	10	0000 + Carry
1011	11	0001 + Carry
1100 Non valid	12	0010 + Carry
1101 BCD	13	0011 + Carry
1110 representation	14	0100 + Carry
11111	15	0101 + Carry
0000 + Carry	16	0110 + Carry
0001 + Carry	17	0111 + Carry
0010 + Carry	18	1000 + Carry
0011 + Carry	19	1001 + Carry

ADDITION AND SUBTRACTION OF SIGNED NBCD NUMBERS

Using MC14560 NBCD Adders and MC14561 9's Complementers, a sign and magnitude adder/subtracter can be configured (Figure 5). Inputs A and B are signed positive (AS, BS = "0") or negative (AS, BS = "1"). B is added to or subtracted from A under control of an Add/Sub line (subtraction = "1"). The result, R, of the operation is positive signed, positive signed with overflow, negative signed, or negative signed with overflow. Add/subtract time is typically 0.6 + 0.4n µs for n decades.

An exclusive-OR of Add/Sub line and BS produces B', which controls the B complementers. If BS, the sign of B, is a logical "1" (B is negative) and the Add/Sub line is a "0" (add B to A), then the output of the exclusive-OR (BS') is a logical "1" and B is complemented. If BS = "1" and Add/Sub = "1", B is not complemented since subtracting a negative number is the same as adding a positive number. When Add/Sub is a "1" and BS = "0", BS' is a "1" and B is complemented. The A complementer is controlled by the A sign bit, AS. When AS = "1", A is complemented.

FIGURE 4 — Unsigned NBCD Addition Algorithm

FIGURE 5 — Addition of Unsigned NBCD Numbers

The truth table and Karnaugh maps for sign, overflow, and End Around Carry are shown in Figures 6 and 7. Note the use of Bg' from the exclusive-OR of Add/Sub and Bg. Bg' eliminates Add/Sub as a variable in the truth table. As an example of truth table generation, consider an n decade adder/subtracter where Ag = "0", Bg = "1", and Add/Sub = "0". B is in 9's complement form, $10^N - 1 - B$. Thus A + $(10^N - 1 - B) = 10^N - 1 + (A - B)$. There is no carry when A \leq B, and the sign is negative (sign = "1"). When Ag and Bg are opposite states and Add/Sub is a "0" (add mode), no overflow can occur (overflow = "0"). The other output states are determined in a similar manner (see Figure 6).

From the Karnaugh maps it is apparent that End Around Carry is composed of the two symmetrical functions S2 and S3 of three variables with AS BS' Cout as the center of symmetry. This is the definition of the majority logic function M₃(ABC). Similarly the Sign is composed of the symmetrical functions S2(3) and S3(3) but with the center of symmetry translated

to ASBS' C_{out}. This is equivalent to the majority function M₃(ASBS' C̄_{out}). Further evaluation of the maps and truth table reveal that Overflow can be generated by the exclusive-OR function of End Around Carry and Carry Out. This analysis results in a minimum device count consisting of one exclusive-OR package and one dual Majority Logic package to implement BS', EAC, Sign and Overflow. The logic connections of these devices are shown in Figure 5.

The output sign, Rs, complements the result of the add/subtract operation when Rs = "1". This is required because the adder performs 9's complement arithmetic. Complementing, when Rs indicates the result is negative, restores sign and magnitude convention.

Several variations of the adder/subtracter are possible. For example, 9's complement is available at the output of the NBCD adders, and output complementers are eliminated if sign and magnitude output is not required.

FIGURE 6 — Subtraction of Unsigned NBCD Numbers

SUMMARY

The concepts of binary code representations for decimal numbers, addition, and complement subtraction were discussed in detail. Using the basic Adder and Complementer MSI blocks, adder/subtracters for both signed and unsigned numbers were illustrated with examples.

REFERENCES

- Chu, Y.: Digital Computer Design Fundamentals, New York, McGraw-Hill, 1962.
- 2. McMOS Handbook, Motorola Inc., 1st Edition.
- Beuscher, H.: Electronic Switching Theory and Circuits, New York, Van Nostrand Reinhold, 1971.
- Garrett, L.: CMOS May Help Majority Logic Win Designer's Vote, *Electronics*, July 19, 1973.
- Richards, R.: Digital Design, New York, Wiley-Interscience, 1971.

where n = Number of Decades

FIGURE 7 -- Adder/Subtractor for Unsigned NBCD Numbers

6-438

	INPUTS		Arithmetic Expression for R° (Result) (N = Number of Digits, 10N = Modulus		OUTPUTS				
AS "1" = Neg	B _S ' "1" = Neg	Cout "1" = Carry	A, B, R are Positive Magnitudes)	A, B, R are Positive End Around Carry (EAC) Sign of R					
0	0	0	R * A + B	No EAC ("0") because R is correct result.	Since A and B are positive signed, R is positive signed ("0").	When $C_{out} = "0"$, there is no carry (R $< 10^N$) and thus no overflow ("0").			
0	0	3				When $C_{out} = "1"$, there is a carry (R $\geq 10^N$) and thus overflow ("1")			
0	1	0	R = A - B = A + (10 ^N - 1 - B)	No EAC ("0") because 9's complement expression for R is correct result.	A B when Cout = "0"; thus sign of A must be negative ("1").				
0	1	1	- А - В + 10 ^N - 1	EAC = "1" because ex- pression for R is in error by 1.	A > B when C _{out} = "1"; thus sign of R must be positive ("0").	There is never an overflow when			
1	0	0	R = B - A = B + (10 ^N - 1 - A)	No EAC ("0") because 9's complement expression for R is correct result.	B A when Cout = "0": thus sign of R must be negative ("1").	numbers of opposite sign are added			
1	0	1	# B - A + 10 ^N - 1	EAC = "1" because ex- pression for R is in error by 1.	B > A when C _{out} * "1", thus sign of R must be positive ("0").				
1	1	0	A = - A - B = (10 ^N - 1 - A) +	EAC = "1" because 9's complement expression for R is in error by 1.	Since A and B are negative signed, R is negative signed ("1").	When $C_{OUT} = "0"$, there is no carry $(R < 10^N)$ and $(A + B) > 10^N - 1$ indicating overflow ("1").			
1	1	1	(10N - 1 - B) = - (A + B) + 2 × 10N - 2			When $C_{Out} = "1"$, there is a carry (R > 10^N) and (A + B) $\leq 10^N - 1$ indicating no overflow ("0").			

^{*}Output of Adders

FIGURE 9 - Truth Table Generation for EAC, Sign, and Overflow Logic

TRUTH TABLE

	INPUT	S	OUTPUTS				
AS	B _S '	Cout	EAC	SGN	OVF		
0	0	0	0	0	0		
0	1	0	0	1	0		
1	0	0	0	1	0		
1	1	0	1	1	1		
0	0	. 1	0	0	1		
0	1	1	1	0	0		
1	0	1	1	0	0		
1	1	1	1	1	0		

 $B_S' = (Add/Sub) \oplus B_S$

As = Sign of A ("1" = Negative)

BS = Sign of B ("1" = Negative)

Cout = Adder Carry Out

KARNAUGH MAPS

* = Center of Symmetry

FIGURE 10 — Mapping of EAC, Sign and Overflow Logic

9's COMPLEMENTER

The MC14561B 9's complementer is a companion to the MC14560B NBCD adder to allow BCD subtraction. A BCD number $(B\cdot4\cdot2\cdot1\ code)$ is applied to the inputs $(A1=2^0,A2=2^1,A3=2^2,A4=2^3)$. If the complement control (Comp) is low, the BCD number appears at the outputs unmodified. The complement disable (Comp) allows the complement control to be gated, or an inverted control signal to be used. If the complement input is high and the disable input low, the 9's complement of the number is displayed at the outputs. The zero control (Z), when high, forces the outputs low regardless of the state of the other inputs.

When the MC14561B is used to perform BCD subtraction in conjunction with the MC14560B NBCD adder, the complement control becomes an add/subtract control.

- All Inputs Buffered
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

9's COMPLEMENTER

CERAMIC PACKAGE
CASE 632

P SUFFIX PLASTIC PACKAGE CASE 646

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	±10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ralings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: - 12mW/*C from 65°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

TRUTH TABLE

1	Z	Comp	Comp	F1	F2	F3	F4	Mode
Į	0	0	0					
	0	0	1	A1	A2	EA	A4	Straight-through
[0	1	1					
-	0	1	0	Ã1	A2	A2A3 + A2A3	AZAJĀ4	Complement
1	1	х	х	0	0	0	0	Zero

X = Don't Care.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS & (Vin or Vout) & VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		1	V _{DD}	Tlo	w*		25°C		Thi	gh"	<u>l</u>
Characteristic		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage	"0" Level	Vol	5.0		0.05	_	0	0.05		0.05	Vdc
Vin = VDD or 0			10	–	0.05	_	٥	0.05	_	0.05	
			15	-	0.05	-	0	0.05		0.05	l
	"1" Level	VOH	5.0	4.95	_	4.95	5.0	_	4.95	_	Vdc
Vin = 0 or VDD		l ⁰	10	9.95	i –	9.95	10	_	9.95	l —	1
			15	14.95	-	14.95	15		14.95	l –	ľ
Input Voltage	"0" Level	VIL						i			Vdc
(VO = 4.5 or 0.5 Vdc)		'-	5.0	_	1.5	l –	2.25	1.5	l –	1.5	Į.
(VO = 9.0 or 1.0 Vdc)		1	10	l –	3.0	_	4.50	3.0	_	3.0	l
(VO = 13.5 or 1.5 Vdc)			15	_	4.0	_	6.75	4.0		4.0	l
	"1" Level	VIH									Vdc
(Vo = 0.5 or 4.5 Vdc)		"	5.0	3.5	–	3.5	2.75	_	3.5	l –	i
(VO = 1.0 or 9.0 Vdc)		l	10	7.0	l –	7.0	5.50	l —	7.0	۱ –	l
(VO = 1.5 or 13.5 Vdc)		Ĺ	15	11.0	-	11.0	8.25	l –	11.0	I —	
Output Drive Current (AL Device)		юн									mAd
(V _{OH} = 2.5 Vdc)	Source		5.0	-3.0	I –	-2.4	-4.2	l –	-1.7	l —	ľ
(VOH = 4.6 Vdc)			5.0	~0.64	_	-0.51	- 0.88	l —	-0.36	i —	l
(VOH = 9.5 Vdc)			10	-1.6	-	-1.3	-2.25	-	-0.9	l –	l
(VOH = 13.5 Vdc)			15	-4.2	_	-3.4	-8.8		-2.4	_	
(VoiL = 0.4 Vdc)	Sink	lOL.	5.0	0.64	_	0.51	0.88		0.36	_	mAd
(VOL = 0.5 Vdc)			10	1.6	l –	1.3	2.25	_	0.9	_	ı
(V _{OL} = 1.5 Vdc)			15	4.2	L	3.4	8.8	-	2.4	_	(
Output Drive Current (CL/CP Devi	ice)	IOH									mAde
(VOH = 2.5 Vdc)	Source	1	5.0	-2.5	_	-2.1	-4.2	l —	-1.7	_	
(VOH = 4.6 Vdc)			5.0	-0.52	_	-0.44	-0.88	! —	-0.36	- 1	i
(VOH = 9.5 Vdc)			10	- 1.3	_	-1.1	-2.25	-	-0.9	_	ļ .
(VOH = 13.5 Vdc)			15	- 3.6		-3.0	-8.8		-2.4	_	
(VOL = 0.4 Vdc)	Sink	tOL.	5.0	0.52	_	0.44	0.88	_	0.36		mAde
(VOL = 0.5 Vdc)]	10	1.3	_	1.1	2.25	_	0.9	_	1
(V _{OL} = 1.5 Vdc)			15	3.6	_	3.0	8.8	_	2.4	_	L.
Input Current (AL Device)		t _{in}	15	<u> </u>	±0.1	_	±0.00001	±0.1	-	±1.0	μAdo
Input Current (CL/CP Device)		lin	15	Γ-	±0.3	_	±0.00001	±0.3	_	±1.0	μAdd
Input Capacitance		Cin	_	_			5.0	7.5	_	_	ρF
$(V_{in}=0)$			l	ĺ	•	ł					"
Quiescent Current (AL Device)		qqi	5.0		5.0	_	0.005	5.0	-	150	μAdd
(Per Package)			10	l –	10	l –	0.010	10	_	300	
· <u> </u>			15		20	<u> </u>	0.015	20	l — ,	600	
Quiescent Current (CL/CP Device)	IDD	5.0		20		0.005	20		150	иAdd
(Per Package)	-	"	10	l –	40	l –	0.010	40	_	300	
			15	l –	80	l –	0.015	60		600	
Total Supply Current**†		ΙT	5.0			hr = /1	.5 μΑ/kHz) f -	t lon			µАdc
(Dynamic plus Quiescent,		l "	10	ŀ			.0 μΑ/kHz) t -				~~~~
Per Package)			15	l			.5 μΑ/kHz) 1 -				
(CL = 50 pF on all outputs,			i	l		• •	• • • • • • • •	-			1
all buffers switching)		l		l							ĺ

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. T_{high} = +126°C for AL Device, +85°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at leads other than 50 pF:

 $I_{T}(C_{L})=I_{T}(50~pF)+(C_{L}-50)~Vfk$ where: I_{T} is in μA (per package), C_{L} in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.004.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time ttlh, tthl = (1.5 ns/pF) CL + 25 ns ttlh, tthl = (0.75 ns/pF) CL + 12.5 ns ttlh, tthl = (0.55 ns/pF) CL + 9.5 ns	tTLH- tTHL	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time tp_H, tpHL = (1.7 ns/pF) CL + 315 ns tp_H, tpHL = (0.86 ns/pF) CL + 127 ns tp_H, tpHL = (0.5 ns/pF) CL + 95 ns	₹PLH, ₹PḤL	5.0 10 15	-	400 160 120	1000 400 300	ns

^{*}The formulae given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - SWITCHING TIME WAVEFORMS

6

LOGIC DIAGRAM

TRUTH TABLE - COMPLEMENT MODE (Z = 0, Comp = 1, Comp = 0)

						• -		-		
	Decimal Equivalent Input	_	Inp	uts		Decimal Equivalent Output		Outp	outs	
	δŭ	A4	А3	A2	A1	åü	F4	F3	F2	F١
	0	0	0	0	0	9	1	٥	0	1
	1 1	0	0	0	1	8	1	0	0	٥
	2	0	0	١ ١	0	7	0	1	1	١ ١
	3	0	0	1	1	6	0	1	1 1	0
	4	0	1	٥	٥	5	0	1	0	١ ١
	5	0	1	0	1	4	0	1	0	0
	6	0	1	1	0	3	0	0	1	1
	7	0	1	1	1	2	0	٥	١ ١	0
	8	1	0	0	٥	1 1	0	٥	0	1
	9	1	0	0	1	0	0	٥	0	0
Hiegal	10	1	0	1	0	7	0	1	1	1
BCD	11	1	0	1	1	6	0	1	1	٥
Input	12	1	1	0	0	5	0	1	0	1
Codes	13	1	1	0	1	4	0	1	0	0
	14	1	1	1	0	3	0	0	1	1
1	16	1	1	1	1	2	0	0	1	0

TYPICAL APPLICATIONS

One MC14560B and one MC14561B permit a BCD digit to be added to or subtracted from a second digit, such as in the typical configurations in Figures 2 and 3. A second MC14561B permits either digit to be added to or subtracted from the other, or either word to appear unmodified at the output.

FIGURE 2 - PARALLEL ADD/SUBTRACT CIRCUIT (10's COMPLEMENT)

TRUTH TABLE
Add/Subtract Re

Zero	Add/Subtract	Result
0	0	B plus A
0	1	B minus A
1	×	В
		^

X = Don't Care

FIGURE 3 - SERIAL ADD/SUBTRACT CIRCUIT

128-BIT STATIC SHIFT REGISTER

The MC14562B is a 128-bit static shift register constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Data is clocked in and out of the shift register on the positive edge of the clock input. Data outputs are available every 16 bits, from 16 through bit 128. This complementary MOS shift register is primarily used where low power dissipation and/or high noise immunity is desired.

- · Diode Protection on All Inputs
- Fully Static Operation
- · Cascadable to Provide Longer Shift Register Lengths
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	>
I _{in} , I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	mW
Tatg	Storage Temperature	-65 to +150	ů
TL	Lead Temperature (8-Second Soldering)	260	°C

"Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C

Ceramic "L" Package: -12mW/°C from 100°C to 125°C

CMOS LSI

(LOW-POWER COMPLEMENTARY MOS)

128-BIT STATIC SHIFT REGISTER.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	Tic	ow*		25°C		Titl	gh	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VOL	5.0 10 15	- - -	0.05 0.05 0.05	<u>-</u>	0 0 0	0.05 0.05 0.05	111	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	Voн	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15	=	4.95 9.95 14.95		Vdc
Input Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc)	"O" Level	V _{iL}	5.0 10 15	<u>-</u> -	1.5 3.0 4.0	_ 	2.25 4.50 6.75	1.5 3.0 4.0	-	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 6.25		3.5 7.0 11.0	_ 	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	1111	-2.4 -0.51 -1.3 -3.4	4.2 0.88 2.25 8.8	 	- 1.7 - 0.36 - 0.9 - 2.4	1111	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lor	5.0 10 15	0.64 1.6 4.2	=	0.51 1.3 3.4	0.88 2.25 8.8	=	0.36 0.9 2.4	=	mAdc
Output Drive Current (CL/CP Devi (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10	-2.5 -0.52 -1.3 -3.6	_ _ _	-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	_ _ _	-1.7 -0.36 -0.9 -2.4		mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	ĮOL	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	1 -	0.36 0.9 2.4	-	mAdc
input Current (AL Device)		lin	15		±0.1		±0.00001	±0.1		±1.0	μAdic
Input Capacitance (Vin = 0)		lin Cin	15 —		±0.3	_	±0.00001	±0.3	_	±1.0	μAdc pF
Quiescent Current (AL Device) (Per Package)		lDD	5.0 10 15	-	5.0 10 20	=	0.010 0.020 0.030	5.0 10 20	1 1 1	150 300 600	μAdc
Quiescent Current (CL/CP Device (Per Package))	iDD	5.0 10 15	_ _ _	50 100 200	=	0.010 0.020 0.030	50 100 200	1 1 1	375 750 1500	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)		ŀΤ	5.0 10 15			IT = (3.	94 μΑ/kHz) f 81 μΑ/kHz) f 52 μΑ/kHz) f	+ IDD			μAdc

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} = (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time	tTLH.					ns
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	^t THL	5.0	-	100	200	
TTLH. THL = (0.75 ns/pF) CL + 12.5 ns		10	i -	50	100	ł
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns		15		40	80	l
Propagation Delay Time	^t PLH,		1	1	l	ns
Clock to Q	TPHL	i		1		1
tpLH, tpHL = (1.7 ns/pF) CL + 515 ns		5.0	-	600	1200	
tp_H, tpHL = (0.66 ns/pF) CL + 217 ns		10	-	250	500	I
tpLH, tpHL = (0.5 ns/pF) CL + 145 ns		15	<u> </u>	170	340	L
Clock Pulse Width	twn	5.0	600	300	-	ns
(50% Duty Cycle)		10	220	110	l –	
		15	150	75		
Clock Pulse Frequency	fel	5.0	T -	1.9	1.1	MHz
		10	-	5.6	3.0	Į.
		15		8.0	4.0	l
Data to Clock Setup Time	tsu(1)	5.0	-20	-170	_	ns
		10	-10	-64	-	ļ
		15	0_	-60		l
	[†] su(0)	5.0	-20	-91		ns
		10	-10	-58	ł –	ļ
	- (15	j o _	-48	l	L
Data to Clock Hold Time	¹ h(1)	5.0	350	263		ns
		10	165	109	1 -	
		15	155	100	-	l
	th(0)	5.0	350	267		ns
	","	10	200	140	-	ļ
		15	140	93	<u> </u>	<u> </u>
Clock Input Rise and Fall Times	te, te	5.0	_	1 -	15	μв
	""	10	-	-	5	
	l	15	1 –	-	4	1

 $[\]mbox{{\fontfamily constraints}}$ The formulas given are for the typical characteristics only at 25 $\mbox{{\fontfamily C}}.$

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORMS

TIMING DIAGRAM

AC TEST WAVEFORMS

Note: The remaining Data-Bit Outputs (Q32, Q48, Q64, Q80, Q96, Q112 and Q128) will occur at Clock Pulse 32, 48, 64, 80, 96, 112, 128 in the same relationship as Q16.

MC14566R

INDUSTRIAL TIME BASE GENERATOR

The MC14566B industrial time base generator is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This device consists of a divide-by-10 ripple counter and a divide-by-5 or divide-by-6 ripple counter to permit stable time generation from a 50 or 60 Hz line. By cascading this device as divide-by-60 counters, seconds and minutes can be counted and are available in BCD format at the circuit outputs. An internal monostable multivibrator is included whose output can be used as a reset or clock pulse providing additional frequency flexibility. Also a pin has been included to allow divide-by-5 counting for generating 1.0 Hz from European 50 Hz line. Pin 11 = $V_{\rm DD}$ will cause ± 5 .

- · Negative Edge Triggered Counters for Ease of Cascading
- Pulse Shapers on Counter Inputs Accept Slow Input Rise Times
- Monostable Multivibrator Positive or Negative Edge Triggered
- Diode Protection on All Inputs
- Supply Voltage Range = 3,0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schotliky TTL Load Over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to Vss)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
Po	Power Dissipation, per Package†	500	mW
Tsig	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	*C

*Maximum Ratings are those values beyond which damage to the device may occur.

†Temperature Derating: Plastic "P" Package: -12mW/°C from 85°C to 85°C

Ceramic "L" Package: -12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

INDUSTRIAL
TIME BASE GENERATOR

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Coramic Package Only)

C Series: - 40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		;	VDD	Tic	w*		25°C		Thi	gh*	l
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VOL	5.0 10 15		0.05 0.05 0.05	1 1	0 0	0.05 0.05 0.05	111	0.05 0.05 0.05	Vdc
V _{in} = 0 or VDD	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	111	4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95	. 1 1 1	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	V _{(L}	5.0 10 15	=	1.5 3.0 4.0	111	2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0	-	3.5 7.0 11.0	2.75 5.50 8.25		3.5 7.0 11.0		Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2		-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	_ _ _	- 1.7 - 0.36 - 0.9 - 2.4		mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.64 1.6 4.2	=	0.51 1.3 3.4	0.88 2.25 8.6	<u>-</u>	0.36 0.9 2.4	=	mAdc
Output Drive Current (CL/CP Devi (VOH ≈ 2.5 Vdc) (VOH ≈ 4.6 Vdc) (VOH = 9.5 Vdc) (VOH ≈ 13.5 Vdc)	ce) Source	IОН	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6	-	-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	-	0.36 0.9 2.4	-	mAdc
Input Current (AL Device)		lin	15	_	±0.1	_	±0.00001	±0.1		±1.0	μAdc
Input Current (CL/CP Device)		lin	15	-	±0.3	_	±0.00001	± 0.3	-	± 1.0	μAdc
Input Capacitance (Vin = 0)		Cin	-	_	-	_	5.0	7.5	_	1	pF
Quiescent Current (AL Device) (Per Package)		OOi	5.0 10 15		5.0 10 20	=	0.005 0.010 0.015	5.0 10 20	i - I	150 300 600	μAdc
Quiescent Current (CL/CP Device (Per Package))	ממו	5.0 10 15	=	20 40 80	<u>-</u>	0.005 0.010 0.015	20 40 80	-	150 300 600	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)		т	5.0 10 15			IT = (2	.0 µA/kHz) 1 + .0 µA/kHz) 1 + .0 µA/kHz) 1 +	+ IDD			μAdc

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Device, +85°C for CL/CP Device.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

†To calculate total supply current at loads other than 50 pF:

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

where: l_T is in μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, I in kHz is input frequency, and k=0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time	¹TLH-					ns
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns	1THL	5.0	1 -	100	200	[
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns	1 1	10	-	50	100	
tTLH. tTHL = (0.55 ns/pF) CL + 9.5 ns	1	15	l -	'40	80	
Propagation Delay Time, Clock to Q3A	tPLH.					ns ns
tp_H_tpHL = (1.7 ns/pF) CL + 1365 ns	tPHL	5.0	-	1450	4500	
tp_H, tpHL = (0.66 ns/pF) CL + 497 ns	1	10	_	530	1500	
tp[H, tpHL = (0.5 ns/pF) CL + 296 ns]	15] -	320	1000	
Propagation Delay Time, Reset to Q3A	tPHL		$\overline{}$	<u> </u>		ns
tpHL = (1.7 ns/pF) CL + 845 ns	1	5.0	-	930	3000	
tpHL = (0.66 ns/pF) Ct + 282 ns	1 1	10	-	315	1000	l
tpHL = (0.5 ns/pF) CL + 185 ns		15	-	210	750	
Clock Pulse Width	tWH(cl)		1		 	ns
		5.0	1200	400	\ -	
		10	400	125	! –	l
		15	270	90		
Reset Pulse Width	WH(R)					ns
		5.0	1200	400	_	
	l '	10	400	125	_	1
		15	270	90	-	i
Clock Pulse Frequency	fcl				1	MHz
	1 -	5.0	-	1.0	0.3	l
		10	_	2.5	1.0	
		15	-	4.2	1.5	
Clock Pulse Rise and Fall Time	TLH.					-
	†THL	5.0	1			1
	'	10	1	No Limit		i
		15	1			
Monostable Multivibrator Pulse Width	twH(Q _m)					ns
		5.0	1200	2800	-	ļ
		10	400	800	-	i
		15	300	600	l -	ļ

^{*}The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORM QVDD 20 ns ·VDD 90% 500 µF 50% 10% ·vss _Variable Width QOA Generator QIA CB Q2A Reset Q3A Q0B +5/+6 Control Q18 8 Q2B 디木디木디 a_{m} φνss

FIGURE 2 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

Note: Assume + 10 Counter at "6" and +5/+6 Counter at "2" at beginning of sequence.

TIMING DIAGRAM

Z - Don't Care

APPLICATION - 12 HOUR CLOCK

^{÷5/÷6} Control not shown = V_{SS} Reset pins not shown = V_{SS}

^{*}Care must be taken in the indicated circuit to filter line transients which may cause "false" counting.

PHASE COMPARATOR AND PROGRAMMABLE COUNTERS

The MC14568B consists of a phase comparator, a divide-by-4, 16, 64 or 100 counter and a programmable divide-by N 4-bit binary counter fall positive-edge triggered) constructed with MOS P-channel and N-channel enhancement mode devices (complementary MOS) in a monolithic structure

The MC14568B has been designed for use in conjunction with a programmable divide by N counter for frequency synthesizers and phaselocked loop applications requiring low power dissipation and/or high noise immunity

This device can be used with both counters cascaded and the output of the second counter connected to the phase comparator (CTL high), or used independently of the programmable divide-by-N counter, for example cascaded with a MC14569B, MC14522B or MC14526B (CTL

- Supply Voltage Range = 3.0 to 18 V
- Capable of Driving Two Low-Power TTL Loads, One Low-Power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range
- Chip Complexity 549 FETs or 137 Equivalent Gates

DP2 DP1

Pin 8 VSS

MAXIMUM RATINGS (Voltages referenced to VSS)

Rating	Symbol	Value	Unit
DC Supply Voltage	VDD	-0 5 to •18	V
Input Voltage, All Inputs	Vin	-0 5 to V _{DD} + 0 5	٧
DC Input Current, per Pin	I _{in}	± 10	mΑ
Operating Temperature Range - AL Device	TA	-55 to +125	°¢
CL/CP Device		-40 to +85	
Storage Temperature Range	T _{stg}	-65 to +150	°C

CMOS MSI

(LOW POWER COMPLEMENTARY MOS)

PHASE COMPARATOR AND PROGRAMMABLE COUNTERS

CERAMIC PACKAGE **CASE 620**

PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXX8CP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TARLE

F Pin 10	G Pin 11	Division Ratio of Counter D1
0	0	4
0	1	16
1	0	64
1	1	100

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	Tic	ow*		25°C		T _h	igh *	1
Characteristic	Symbol	Vdc	Min	Max	Min	Түр	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	Vdc
V _{IN} V _{DD} or 0		10	-	0.05		0	0.05	1	0.05	1
		15	L -	0.05		0	0.05	-	0.05	L
"1" Level	νон	5.0	4.95	-	4.95	5.0	-	4.95	-	Vdc
V _{in} 0 or V _{DD}	_	10	9.95	-	9.95	10		9.95	-	
		15	14.95		14.95	15	-	14.95		
Input Voltage #†: "0" Level	VIL					1				Vdc
(VO 4.5 or 0.5 Vdc)		5.0		15		2.25	1.5	-	1.5	Į.
(V _O 9.0 or 1.0 Vdc)		10	-	3.0		4.50	3.0	-	3.0	1
(V _O 13.5 or 1.5 Vdc)		_ 15	ــــّـــــــــــــــــــــــــــــــــ	4.0	L	6.75	4.0		4.0	Ь—
"1" Level	Viн			1	ì		1	'		1
(V _O 0.5 or 4.5 Vdc)		5.0	3.5		3.5	2.75	-	3.5	-	Vdc
(V _O 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	-	1
(VO 1.5 or 13.5 Vdc)		15	11.0		11.0	8.25		11.0		<u> </u>
Output Drive Current (AL Device).	Іон			1			1			mAdc
IVOH 2.5 Vdc) Source		5.0	-1.2	-	-1.0	-1.7	-	-0.7	-	1
(V _{OH} 4.6 Vdc)	-	5.0	-0.25	-	-0.2	-0.36	-	-0.14	-	
(V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)		10 15	-0.62 -1.8	_	-0.5 -1.5	-0.9 -3.5	-	-0.35 -1.1	-	1
_										
(VOL - 0.4 Vdc) Sink	OL	5.0	0.64	-	0.51	0.88	-	0.36	-	mAdc
(V _{OL} ≠ 0.5 Vdc) (V _{OL} ≠ 1.5 Vdc)		10 15	1.6 4.2	_	1.3 3.4	2.25	i -	0.9 2.4	-]
		13	4.2		3.4	8.8		2.4		L.,
Output Drive Current (CL/CP Device)	Юн		١.,	ĺ		l	l	١		mAdc
(V _{OH} = 2.5 Vdc) Source		5.0 5.0	~1.0 ~0.2] _	-0.8	-1.7] -	-0.6	_	
(V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc)		10	-0.2	-	-0 16 -0.4	-0.36 -0.9	-	-0.12 -0.3	-	
(V _{OH} = 13.5 Vdc)		15	-1.4	l -	-1.2	-3.5		-1.0	_	
(VOL = 0.4 Vdc) Sink	1	5.0	0.52		044		<u> </u>			
(VOL = 0.5 Vdc)	OL	10	1.3] [1.1	0.88 2.25] _	0.36		mAdc
(VOL = 1.5 Vdc)		15	3.6		3.0	8.8	_	0.9 2.4	_	
Input Current (AL Device)		15		:01	3.0	20.00001	20.1			.
	l _{in}				ļ			<u> </u>	1.0	μAdc
Input Current (CL/CP Device)	I _{ID}	15		:03		±0.00001	±0.3		11.0	μAdc
Input Capacitance	Ciu					5.0	7.5	-	-	ρF
Quiescent Current (AL Device)	ססי	5.0		5.0	-	0.005	5.0	-	150	μAdc
(Per Package) V _{IO} = 0 or V _{DD} ,		10	٠.	10	-	0.010	10		300	i
l _{out} =0 μA		15		20	<u> </u>	0.015	20		600	
Quiescent Current (CL/CP Device)	¹ DD	5.0	-	20	-	0.005	20		150	µАdc
(Per Package) V _{IO} = 0 or V _{DD} ,		10	-	40	-	0.010	40	-	300	
l _{out} = 0 μA		15	-	80	<u> </u>	0.015	80		600	
Total Supply Current**!	IΤ	5.0	ļ		IT = (0	.2 µA/kHz}	1 + 1 _{DD}			μAdc
(Dynamic plus Quiescent		10	1			.4 μA/kHz)				l
Per Package)	l j	15	l			.9 µA/kHz)				1
(CL 50 pF on all outputs, all										1
buffers switching)										$oldsymbol{ol}}}}}}}}}}}}}}}}}$
Three-State Leakage Current, Pins 1, 13 (AL Device)) ⊤ ∟	15	-	±0.1	-	± 0.00001	±0,1	-	± 3,0	μAdc
Three-State Leakage Current, Pins 1, 13 (CL/CP Devices)	'TL	·15		± 1.0	-	:0.00001	± 1.0	-	: 7.5	μAdc

^{*}Tlow -55°C for AL Device, -40°C for CL/CP Device.
Thigh +125°C for AL Device, +85°C for CL/CP Device.

PIN ASSIGNMENT

[&]quot;Noise immunity specified for worst-case input combination

Noise Margin for both "1" and "0" level = 1.0 Vdc min @ VpD = 5.0 Vdc 2.0 Vdc min @ V_{DD} 10 Vdc 2.5 Vdc min @ V_{DD} 15 Vdc

tTo calculate total supply current at loads other than 50 pF IT(CL) IT(50 pF) + 1 x 10⁻³ (CL -50) VDDI

where .17 is in JA (per package), CL in PF, VDD in Vdc, and f in kHz is input frequency.
**The formulas given are for the typical characteristics only at 25°C.

 $[\]dagger Pin$ 15 is connected to VSS or VDD for input voltage test.

Characteristic	Symbol	V _{DD} V	Min	Тур	Max	Unit
Output Rise Time	¹ТLH	50	_	180	360	ns
	_	10	-	90	180	
		15		65	130	
Output Fall Time	†THL	5.0	-	100	200	ns
		10	-	50	100	
		15		40	80	
Minimum Pulse Width, C1, Q1/C2, or PC _{in} Input	ſwн	50	_	125	250	ns
		10	-	60	120	
		15		45	90	
Maximum Clock Rise and Fall Time,	₹TLH-	50	15	-		μS
C1, Q1/C2, or PC _{In} Input	[†] THL	10	15	-	-	
·		15	15	<u> </u>		L
PHASE COMPARATOR						
Input Resistance	R _{in}	5.0 to 15		106	-	MΩ
Input Sensitivity, dc Coupled		5.0 to 15		See Input Voltage		
Turn-Off Delay Time,	₹PHL	50	_	550	1100	ns
PCout and LD Outputs	'''-	10	-	195	390	
		15		120	240	
Turn-On Delay Time,	1PLH	50	_	675	1350	ns
PCout and LD Outputs	'	10	-	300	600	
		15		190	380	
DIVIDE-BY-4, 16, 64 OR 100 COUNTER (D1)						
Maximum Clock Pulse Frequency	1 _{cl}					MHz
Division Ratio = 4, 64 or 100	u.,	50	30	60	-	1
		10	80	16	-	
	İ	15	10	22	L <u>-</u>	ĺ
Division Ratio = 16		50	10	2.5	-	1
		10	30	63	-	
		15	5.0	9.7		
Propagation Delay Time, Q1/C2 Output	tPLH.	-				ns
Division Ratio = 4, 64 or 100	₹PHL	5.0	-	450	900	
	İ	10		190	380	İ
		15		130	260	
Division Ratio = 16		50	_	720	1440	1
	}	10	-	300	600	l
		(15	_	200	400	ı

PROGRAMMABLE DIVIDE-BY-N 4-BIT COUNTER	(D2)					
Maximum Clock Pulse Frequency	fct	5.0	1.2	1.8	_	MHz
(Figure 3a)	"	10	3.0	8.5	-	
_	11	15	4.0	12		<u> </u>
Turn-On Delay Time, "0" Output	t _{PLH}	50	-	450	900	ns
(Figure 3a)		10	-	190	380	
	1 1	15	-	130	260	i
Turn-Off Delay Time, "0" Output	t _{PHL}	5.0	<u> </u>	225	450	ns
(Figure Sa)	1	10	_	85	170	
_		15		60	150	
Minimum Preset Enable Pulse Width	¹WH(PE)	5.0	-	75	250	ns
	[10	-	40	100	l
	l i	15	l –	30	75	

FIGURE 2 - COUNTER D1

FIGURE 3 - COUNTER D2

a.

*TLH

b.

مو۷۹

Typical Maximum Frequency Divider D1 Division ratios: 4, 64 or 100 (CL = 50 pF)

Typical Maximum Frequency Divider D1 Division ratio: 16 (CL = 50 pF)

Typical Maximum Frequency Divider D2 Division ratio: 2 (CL = 50 pF)

OPERATING CHARACTERISTICS

The MC14568B contains a phase comparator, a fixed divider (÷ 4, ÷ 16, ÷ 64, ÷ 100) and a programmable divide-by-N 4-bit counter.

PHASE COMPARATOR

The phase comparator is a positive edge controlled logic circuit. It essentially consists of four flip-flops and an output pair of MOS transistors. Only one of its inputs (PCin. pin 14) is accessible externally. The second is connected to the output of one of the two counters D1 or D2 (see block diagram).

Duty cycles of both input signals (at A and B) need not be taken into consideration since the comparator responds to leading edges only,

If both input signals have identical frequencies but different phases, with signal A (pin 14) leading signal B (Ref.), the comparator output will be high for the time equal to the phase difference.

If signal A lags signal B, the output will be low for the same time. In between, the output will be in a three-state condition and the voltage on the capacitor of an RC filter normally connected at this point will have some intermediate value (see Figure 4). When used in a phase locked loop, this value will adjust the Voltage Controlled Oscillator frequency by reducing the phase difference between the reference signal and the divided VCO frequency to

FIGURE 4 - PHASE COMPARATOR WAVEFORMS

If the input signals have different frequencies, the output signal will be high when signal B has a lower frequency than signal A, and low otherwise.

Under the same conditions of frequency difference, the output will vary between VOH (or VOL) and some intermediate value until the frequencies of both signals are equal and their phase difference equal to zero, i.e. until locked condition is obtained.

Capture and lock range will be determined by the VCO frequency range. The comparator is provided with a lock indicator output, which will stay at logic 1 in locked conditions

The state diagram (Figure 5) depicts the internal state transitions. It assumes that only one transition on either signal occurs at any time. It shows that a change of the output state is always associated with a positive transition of either signal. For a negative transition, the output does not change state. A positive transition may not cause the output to change; this happens when the signals have different frequencies.

DIVIDE BY 4, 16, 64 OR 100 COUNTER (D1)

This counter is able to work at an input frequency of 5 MHz for a VDD value of 10 volts over the standard temperature range when dividing by 4, 64 and 100. Programming is accomplished by use of inputs F and G (pins 10 and 11) according to the truth table shown. Connecting the Control input (CTL, pin 15) to VDD allows cascading this counter with the programmable divide-by-N counter provided in the same package, Independent operation is obtained when the Control input is connected to VSS.

The different division ratios have been chosen to generate the reference frequences corresponding to the channel spacings normally required in frequency synthesizer applications. For example, with the division ratio 100 and a 5 MHz crystal stabilized source a reference frequency of 50 kHz is supplied to the comparator. . The lower division ratios permit operation with low frequency crystals.

FIGURE 5 - PHASE COMPARATOR STATE DIAGRAM

6

If used in cascade with the programmable divide-by-N counter, practically all usual reference frequencies, or channel spacings of 25, 20, 12.5, 10, 6.25 kHz, etc. are easily achievable.

PROGRAMMABLE DIVIDE-BY-N 4-BIT COUNTER (D2)

This counter is programmable by using inputs Dpo . . .

Dp₃ (pins 7 ... 4). The Preset Enable input enables the parallel preset inputs Dp₀ ... Dp₃. The "0" output must be externally connected to the PE input for single stage applications. Since there is not a cascade feedback input, this counter, when cascaded, must be used as the most significant digit. Because of this, it can be cascaded with binary counters as well as with BCD counters (MC14569B, MC14522B, MC14526B).

TYPICAL APPLICATIONS

FIGURE 6 - CASCADING MC145688 AND MC145228 OR MC145268 WITH MC145698

FIGURE 7 — FREQUENCY SYNTHESIZER WITH MC14568B and MC14569B USING A MIXER (Channel Spacing 10 kHz)

FIGURE 8 - FREQUENCY SYNTHESIZER USING MC14568B, MC14569B AND MC14522B (Without Mixer)

Divide ratio = 160N1 + 16N2 + N3

Example:

fout = N1 (MHz) + N2 (x100 kHz) + N3 (x25 kHz)

Frequency range = 5 MHz

Channel spacing = 25 kHz

Reference frequency = 6.25 kHz

Figures shown in parenthesis refer to example.

Recommended reading:
(1) AN535: "Phase-Lock Techniques"
(2) AR254: "Phase-Locked Loop Design Articles"

FIGURE 9 - TYPICAL 23-CHANNEL CB FREQUENCY SYNTHESIZER FOR DOUBLE CONVERSION TRANSCEIVERS

PROGRAMMABLE DIVIDE-BY-N DUAL 4-BIT BINARY/BCD DOWN COUNTER

The MC14569B is a programmable divide-by-N dual 4-bit binary or BCD down counter constructed with MOS P-channel and N-channel enhancement mode devices (complementary MOS) in a monolithic structure

This device has been designed for use with the MC14568B phase comparator/counter in frequency synthesizers, phase-locked loops, and other frequency division applications requiring low power dissipation and/or high noise immunity.

- Speed-up Circuitry for Zero Detection
- Each 4-Bit Counter Can Divide Independently in BCD or Binary Mode
- Can be Cascaded With MC14568B, MC14522B or MC14526B for Frequency Synthesizer Applications
- · All Outputs are Buffered
- Schmitt Triggered Clock Conditioning

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
lin-lout	Input or Output Current (DC or Transient), per Pin	± 10	mA_
PD	Power Dissipation, per Package†	500	mW
Tatg	Storage Temperature	-65 to +150	*C
TL	Lead Temperature (8-Second Soldering)	260	,C

"Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C Ceramic "L" Packago: -12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

PROGRAMMABLE
DIVIDE-BY-N DUAL 4-BIT
BINARY/BCD DOWN COUNTER

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

			VDD	Tic	w*		25°C		Thi	gh*	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	'0" Level	VOL	5.0 10 15	- - -	0.05 0.05 0.05	<u>-</u>	0 0 0	0.05 0.05 0.05	1 -	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	'1" Level	VOH	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95	- -	Vdc
Input Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc)	'O" Level	ViL	5.0 10 15	- - -	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
(VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc)	'1" Level	VIH	5.0 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25	<u>-</u>	3.5 7.0 11.0		Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2		-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	 	- 1.7 - 0.36 - 0.9 - 2.4	1111	mAdic
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.64 1.6 4.2	=	0.51 1.3 3.4	0.88 2.25 8.8	=	0.36 0.9 2.4		mAdc
Output Drive Current (CL/CP Device (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	- 2.5 - 0.52 - 1.3 - 3.6	- - -	-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	- - -	1.7 0.36 0.9 2.4	1 1 1	mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	¹ OL	5.0 10 15	0.52 1.3 3.6		0.44 1.1 3.0	0.88 2.25 8.8	<u>-</u>	0.36 0.9 2.4	111	mAdc
Input Current (AL Device)		lin	15		±0.1		±0.00001	±0.1	_	± 1.0	μAdc
Input Current (CL/CP Device) Input Capacitance (Vin = 0)		lin Cin	15 —		±0.3	_	±0.00001	±0.3	_	± 1.0	μAdc pF
Quiescent Current (AL Device) (Per Package)		lDD	5.0 10 15	<u>-</u>	5.0 10 20	=	0.005 0.010 0.015	5.0 10 20	<u> </u>	150 300 600	μAdc
Quiescent Current (CL/CP Device) (Per Package)		lDD	5.0 10 15		50 100 200	<u> </u>	0.005 0.010 0.015	50 100 200	1 1	150 300 600	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching)		iT	5.0 10 15			IT = (1.	58 μΑ/kHz) f 20 μΑ/kHz) f 95 μΑ/kHz) f	+ lDD			μAdc

^{*}T_{IOW} = -55°C for AL Device, -40°C for CL/CP Device.
Thigh = +125°C for AL Dovice, +85°C for CL/CP Device.

where: IT is in μA (por package), C_L in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS < (Vin or Vout) < VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

[&]quot;The formulas given are for the typical characteristics only at 25°C.

[†]To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS* (C: = 50 pF. TA = 25°C)

		VDD	1	All Types		ļ
Characteristic	Symbol	Vdc	Min	Typ#	Max	Unit
Output Rise Time	тин	5.0 10 15	=	100 50 40	200 100 80	ns
Output Fall Time	THL	5.0 10 15	=	100 50 40	200 100 80	ns
Turn-On Delay Time Zero Detect Output	tPLH :	5.0 10 15	=	420 175 125	700 300 250	ns
Q Output		5.0 10 15	=	675 285 200	1200 500 400	ns
Turn-Off Delay Time Zero Detect Output	tPHL	5.0 10 15	=======================================	380 150 100	600 300 200	ns
Q Output		5.0 10 15	=	530 225 155	1000 400 300	ns
Clock Pulse Width	tWH	5.0 10 15	300 150 115	100 45 30		ns
Clock Pulse Frequency	lcl	5.0 10 15	<u>-</u>	3.5 9.5 13.0	2.1 5.7 7.8	MHz
Clock Pulse Rise and Fall Time	tTLH. tTHL	5.0 10 15		NO LIMIT		μ5

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING WAVEFORMS

PIN DESCRIPTIONS

INPUTS

P0, P1, P2, P3 (Pins 3, 4, 5, 6) — Preset Inputs. Programmable inputs for the least significant counter. May be binary or BCD depending on the contro! input.

P4, P5, P6, P7 (Pins 11, 12, 13, 14) — Preset Inputs. Programmable inputs for the most significant counter. May be binary or BCD depending on the control input.

Clock (Pin 9) — Preset data is decremented by one on each positive transition of this signal.

OUTPUTS

Zero Detect (Pin 1) — This output is normally tow and goes high for one clock cycle when the counter has decremented to zero.

Q (Pln 15) — Output of the last stage of the most significant counter. This output will be inactive unless the preset input P7 has been set high.

CONTROLS

Cascade Feedback (Pin 7) — This pin is normally set high. When low, loading of the preset inputs (P0 through P7) is inhibited, i.e., P0 through P7 are "don't cares." Refer to Table 1 for output characteristics.

CTL₁ (Pin 2) — This pin controls the counting mode of the least significant counter. When set high, counting mode is BCD. When set low, counting mode is binary.

CTL₂ (Pin 10) — This pin controls the counting mode of the most significant counter. When set high, counting mode is BCD. When set low, counting mode is binary.

SUPPLY PINS

VSS (Pin 18) — Negative Supply Voltage. This pin is usually connected to ground.

V_{DD} (Pin 16) — Positive Supply Voltage. This pin is connected to a positive supply voltage ranging from 3.0 volts to 18.0 volts.

OPERATING CHARACTERISTICS

The MC14569B is a programmable divide-by-N dual 4-bit down counter. This counter may be programmed (i.e., preset) in BCD or binary code through inputs P0 to P7. For each counter, the counting sequence may be chosen independently by applying a high (for BCD count) or a tow (for binary count) to the control inputs CTL₁ and CTL₂.

The divide ratio N (N being the value programmed on the preset inputs P0 to P7) is automatically loaded into the counter as soon as the count 1 is detected. Therefore, a division ratio of one is not possible. After N clock cycles, one pulse appears on the Zero Detect output. (See Timing Diagram.) The Q output is the output of the last stage of the most significant counter (See Tables 1 through 5, Mode Controls.)

When cascading the MC14569B to the MC14568B, MC14522B or the MC14526B, the Cascade Feedback input, Q, and Zero Detect outputs must be respectively connected to "0". Clock, and Load of the following counter. If the MC14569B is used alone, Cascade Feedback must be connected to VDD.

18 C_ - 50 pF 16 14 I, FREQUENCY (NOIZ), TYPICAL 15 V 12 DD -10 10 8.0 4.0 504 2.0 -40 -20 +20 +40 +60 +80 +100 TA, AMBIENT TEMPERATURE (°C)

PIN ASSIGNMENT

TABLE 1 - MODE CONTROLS (Cascade Feedback - Low)

	Control ues	Divi Rat	
CTL ₁	CTL ₂	Zero Detect	٥
0	0	256	256
0	1	160	160
1	0	160	160
1 l	1	100	100

Note: Data Preset Inputs (P0-P7) are "Don't Cares" while Cascade Feedback is Low.

TABLE 2 — MODE CONTROLS (CTL1 = Low, CTL2 = Low, Cascade Feedback = High)

				set outs					ide itio	
7	P6	P5	P4	P3	P2	P1	PO	Zero Detect	a	Comments
0	0	0	0	. 0	0	0	0	256	258	Max Count
o ∣	0	0	0	0	0	0	1	X	X	Illegal State
۱ ٥	0	0	0	0	0	1	0	2	×	Min Count
•	0		•		0	1	!	3	, × [
.	•	1	'	'		1	1		X	
٠	•	٠.	i .				١.		×	
٠ ا	•		١.		1 •	٠.			×	
。	0	0	0	1	1	1	1	15	x	
•	0	0	!	ļ 0	, o		0	16	x	
· i	•	l '	•		i .	•	, ·	, ·	×	
٠ ا	•		١ ٠			١ ٠	٠ ا		x	
•	•	l •			} •			· ·	×	
o	0	1	0	0	0	0	. 0	32	×	
٠ ا	•	l .	١.	1 .			•		×	
٠	•	١ .	٠.	١ .			١ .		×	
.	•						٠ .		×	
o	1	0	0	0	0	0	l º	84	×	
٠	•	١ .	٠.	١ .			1 '	1 '	×	
.	•							l ·	x	
• [•	•	١.						x	
。	1	1 1	1	1 1	1 1	١ ،	1 1	127	x	
1	0	0	1 0	0	0	0	0	128	128	Q Output Active
:	:	1 :	1:	1 :	:	1 :	1 :			l l
: 1	:	:	1: .	1 :	:	:	:	:	1	ľ
,	0			١,	١٠	١ .	۰	136	136	
•	•		•	•			:			
:	:	l :	1 :	:	1 :	:	:	1 :		J
. 1	1 .		1	,				255	255	Y
7	25	25	24	23	22	21	20	+		
28	84 84	32	16	8	4	2	1			Bit Value
		ter #2				ter #1		<u> </u>		Counting Sequence

X = No Output (Always Low)

TABLE 3 -- MODE CONTROLS (CTL1 = High, CTL2 = Low, Cascade Feedback = High)

			Pro	oset				Div Re	ide tio	
P7	P6	P5	P4	Р3	P2	P1_	PO	Zero Detect	a	Comments
0 0 0		0	0	000	0000	0 1 1 .	0 1 0 1 .	160 X 2 3	160 X X X	Max Count Illegal State Min Count
	•	•					•		x x	
0	0	0	0 1	1 0	0	0	1 0	9 10	X X X	
:	•						•	:	×	
0	0	0 1	1 0	1 0	0	0	1 0	19 20	X X X	
	•					:	•		×	
0.	•	! !	!	•		0.	· •	30	×××	
									×	
	!						· ·	40	××	
	!	0	1	0			•	50	x x	
						:			×	
o.	!	!	ė.	0	ė.		ė	60	×	
			•	•				•	×	
0	!	! !	!	•		9	• •	70	X X	
. 1								80	X X 80	Q Qutput Active
	:		:	:	:	:	:	:		
!		•	•			, ;	<u>.</u>	90	90	
1.	!	1 .	1.	0	0	•	0.	150	150	
,	1	1	1	1			,	159	159	†
80	40	20	10	8	4	2	1			Bit Value
		ter #2 nary				ter #1 CD				Counting Sequence

X = No Output (Always Low)

TABLE 4 - MODE CONTROLS (CTL₁ = Low, CTL₂ = High, Cascade Feedback = High)

				sot ues					ide tio	
P7	P6	P5	P4	Р3	P2	P1	PO	Zero Detect	Q	Comments
0	٥	0	0	0	0	0	0	160	160	Max Count
0	0	0	0	0	0	0	1	X	×	Illegal State
0	0	0	0	0	0	1 1	0	2	×	Min Count
ė.	•	o.	,	ė.	0	! !	1.	3	X	
l l			١. ١					١.	×	
•				•	•	1	•		×	
٠ ا	•	•		•	•		•		×	
0	0	0	0	1	1	1	1	15	x	
0	ŏ	ŏ	l ĭ l	ó	ö	اۃا	0	16	l ŝ l	
٠ ,	•	•		•	•	1	•		X	
.	•	•	1 •		•				×	
						١. ١			×	
0	0	o	1	1	1	1 1	1	31	l â l	
ŏ	ŏ	1	انا	ö	ó	;	i	32	Î	
•	•	•	`		•	•	•	ļ . - -	X	
	•	•	•		•				l x l	
.	•	•	•		•	•			×	
0	0	1	1	0	0	0	٥	48	×	
: 1	:	:	l : 1		:	:	:	l :		
			l : i			:		:		
	1	0	0	0	0	۱۰	٥	64	×	
•	•	•		•	•					
٠	•	•	:			:	:	1 :	:	
•	•	•					1			
•	!	o.	!	0	0	, o	ļ •	80		
. 1		•	l • 1				١.		•	
	•	•		•	•		٠ .		•	
0	1	1	1	0	0	o.	ļ •	112	×	
: 1	:	:	:			:	:	:	:	
							.		.	
1	0	o	ا ہ ا	0	0	ا ہ ا		128	128	Q Quiput Active
.	•	•		•	. •	•		•	1 - 1	1
: 1	:	:	:		:	l :	:	1 :	:	
,	0	0		0	0	١	١	144	144	
: 1	•	٠	:	٠	۲		" .	'''	';'	
•]	•	•		•	•	٠ .	٠ .		•	
.	•	•		•	•	١ .	'			1
1	0	0	1	1	1	1	1	159	159	<u></u>
2 ⁷ 128	2 ⁶ 84	2 ⁵ 32	2 ⁴ 16	2 ³ 8	2 ²	2 ¹	2 ⁰			Bit Value
.20							<u>'</u> _	 		Counting
		ter #2 CD				ter #1 nary		1		Sequence

X = No Output (Always Low)

TABLE 5 - MODE CONTROLS (CTL1 = High, CTL2 = High, Cascade Feedback = High)

		Div Ra				eset lues	Pri Va			
Commenta	Q	Zero Detect	P0	P1	P2	Р3	P4	P5	P6_	P7
Max Count	100	100	0	0	0	0	0	0	ō.	0
Illegal State Min Count	×	X 2	1	0	0	0	0	0	0	0
Willi Count	â l	3	1	i	ŏ	0	0	0	0	0
	×	١ ٠ ١	•	•	•	•	•		•	•
	x)	•	•	.	•		•		•	•
	x	•	•	•	•	• .	•	•	•	•
	×	9	1	0	0	1	0	0	0	0
	×	10	o.	•	0	9	1 1	9	o.	•
	×	. 1								
	x	.	•							
	x	30	0	0	o	ا ہ	1	,	o	0
	x	**	•	' '	Ť			•	•	•
	x	•	•	•		•	•	-	•	•
	×	•	•	•	.	•		•	•	•
	×	40	o.	o	o.		0	•	1	0
	×									
	x				•					
	X X	50	0	0	i	0	1		,	0
	x	"	•	•	' ;]		· •	•	•	:
	×	•	•		•	• 1	•		•	•
	×	•	•	•	•	•		•	•	•
	x x	70	ó.	ė.	0	•	!!	!!	!	ė
	x									
	×		•		•			·		•
Q Output Active	во	80	0	٥	0	۰	0	0	0	1
	:	:	:	:	:		:			:
	•]		•	•	•
]	90	90	o.	o.		o l	1 1	o i	0	1
								.		
Ţ	•	•	•		•	•	•	:	•	•
Tin Makes	99	99	1	2	-0	- 1 8	10	0 20	40	80
Bit Value					4 Count	8	-"-		Count	ου -
Counting Sequence					Count			GD CD		

X - No Output (Always Low)

TIMING DIAGRAM MC14569B

TYPICAL APPLICATIONS

FIGURE 6 - CASCADING MC14588B AND MC14522B OR MC14526B WITH MC14569B

FIGURE 7 — FREQUENCY SYNTHESIZER WITH MC14568B and MC14569B USING A MIXER (Channel Specing 10 kHz)

HEX GATE

The MC14572UB hex functional gate is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These complementary MOS logic gates find primary use where low power dissipation and/or high noise immunity is desired. The chip contains four inverters, one NOR gate and one NAND gate.

- Diode Protection on All Inputs
- Single Supply Operation
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- NOR Input Pin Adjacent to V_{SS} Pin to Simplify Use As An Inverter
- NAND Input Pin Adjacent to V_{DD} Pin to Simplify Use As An Inverter
- NOR Output Pin Adjacent to Inverter Input Pin For OR Application
- NAND Output Pin Adjacent to Inverter Input Pin For AND Application
- Capable of Driving Two Low-power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-05 to +180	>
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	>
In-lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	ů
T _L	Lead Temperature (8-Second Soldering)	260	ç

*Maximum Ratings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package: - 12mW/*C from 65°C to 85°C Ceramic "L" Package: - 12mW/*C from 100°C to 125°C

CMOS SSI

(LOW-POWER COMPLEMENTARY MOSI

HEX GATE
4 INVERTERS PLUS
2-INPUT NOR GATE PLUS
2-INPUT NAND GATE

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX
PLASTIC PACKAGE
CASE 648

ORDERING INFORMATION

A Series: - 55°C to + 125°C MC14XXXUBAL (Ceramic Package Only)

C Serios: ~40°C to +85°C MC14XXXUBCP (Plastic Package) MC14XXXUBCL (Ceramic Package)

LOGIC DIAGRAM

VSS * Pin 8

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

VOL VOH VIL	5.0 10 15 5.0 10	Min 4.95 9.95	Max 0.05 0.05 0.05	Min —	Typ # 0 0	0.05 0.05	Min —	0.05	Unit
∨он	10 15 5.0 10	- - 4.95	0.05 0.05						Vdc
	15 5.0 10	- 4.95	0.05	_	0 1	0.06		~ ~ ~	
	5.0 10	4.95		_			- 1	0.05	1
	10		<u> </u>		0	0.05		0.05	
VIL		200		4.95	5.0	-	4.95	-	Vde
VIL	15		-	9.95	10	-	9.95	_	1
VIL		14.95		14.95	15		14.95		L
				l					Vde
	5.0	- '	1.0	-	2.25	1.0	-	1.0	
	10	-	2.0	-	4.50	2.0	-	2.0	l
	15	<u> </u>	2.5	_	8.75	2.5_	_=_	2.5	
VIH		Í	1						1
			-						Vdc
	_	1	-				•	_	ŀ
	15	12.5		12.5	B.25		12.5		
ЮН					l		l		mAd
						1		_	1
			1					_	ı
		1	ı						ı
			↓ <u> </u>	_			_		-
IOL		1	-						mAd
			-			-	1 1	-	!
	15	4.2		3.4	8.8		2.4		<u> </u>
Юн									mAd
		1	-			_		_	l l
			-					_	
	-		-			_		-	ì
	15						_		<u> </u>
IOL	5.0		-			-		-	mAd
			-			_		_	i .
	15	3.6	L <u> </u>	3.0			2.4		İ
lin	15		±0.1		± 0.00001	± 0.1	1	± 1.0	μAd
lin	15	_	± 0.3	—	±0.00001	± 0.3		±1.0	μAd
Cin	-	-	-	_	5.0	7.5	-	_	pF
	6.0	 	0.35	 	0.000	0.2F	-	7.6	μAd
ספי							l		µAG
		•		I =					l
									
ספי				-					μAd
	_			l			(1
			1 7.0					30.0	
T'		1							μAd
	15	l		i T = (5	.06 µA/KHZ	מטי + ז ז			l
									1
	lin lin	15 VIH 5.0 10 15 10 10	15	15	VIH 5.0 4.0 - 4.0 10 8.0 - 8.0 15 12.5 - 12.5 10H 5.0 -1.2 - -1.0 5.0 -0.62 - -0.5 15 -1.8 - -1.5 10L 5.0 0.64 - 0.51 10 1.6 - 1.3 15 4.2 - 3.4 10H 5.0 -1.0 - -0.8 5.0 -0.2 - -0.16 10 -0.5 - -0.4 15 -1.4 - -1.2 10L 5.0 0.52 - 0.44 10 1.3 - 1.1 15 3.6 - 3.0 15 3.6 - 3.0 15 - 2.0 1 - 10 15 - 2.0 - 10 - 15 - 1.00 - 15 - 1.00 - 15 - 1.00 - 15 - 1.00 - 15 - 1.00 - 15 - 4.0 - 17 10 17 5.0 10 - 4.0 - 17 10 10	VIH	15	VIH 5.0	15

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. T_{high} = +125°C for AL Device, +85°C for CL/CP Device.

Data fabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

**The formulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ V1k}$$

where: IT is in μ A (per packago), CL in pF, V = {VDD - VSS} in volts, f in kHz is input frequency, and k = 0.008.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Cheracteristic	Symbol	V _{DD}	Min	Тур#	Max	Unit
Output Rise Time	†TLH					ns
tTLH = (3.0 ns/pF) Cլ + 30 ns		5.0	-	180	360	
tт∟н = (1.5 ns/pF) С_ + 15 ns		10	-	90	180	
tTLH = (1.1 ns/pF) CL + 10 ns	ļ	15	-	65	130	1
Output Fall Time	tTHL.					ns
tTHL = (1.5 ns/pF) CL + 25 ns	'''-	5.0	_	100	200	
tTHL = (0.75 ns/pF) CL + 12.5 ns		10	-	50	100	
tTHL = (0.55 ns/pF) CL + 9.5 ns		15	-	40	80	
Propagation Delay Time	tPLH,	i	1		l	ns
tp_{LH} , $tp_{HL} = (1.7 \text{ ns/pF}) C_L + 5 \text{ ns}$	1PHL	5.0	-	90	180	
tpLH, tpHL = (0.66 ns/pF) CL + 17 ns		10	-	50	100	
tplH, tpHL = (0.5 ns/pF) CL + 15 ns		15	l -	40	80	1

^{*}The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential perfermance.

FIGURE 1 - SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VOD	Min	Тур#	Max	Unit
Output Riso and Fall Time 1TLH, tTHL = (1.5 ns/pF) CL + 25 ns 1TLH, tTHL = (0.75 ns/pF) CL + 12.5 ns	¹ TLH ^{, 1} THL (Figures 3 and 6)	5.0 10	_	108 50	200 100	ns
1TLH, 1THL = (0.55 ns/pF) CL + 9.5 ns	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15	_	40	80	ĺ
Propagation Delay Time	tPLH: tPHL	5.0	-	850	1300	ns
Clock to Output	(Figures 3 and 6)	10 15	_	250 170	500 340	İ
					340	<u> </u>
Write Enable Setup Time (Enabling a Write or Read)	(Figure 5)	5.0 10	800 300	400 150	=	ns
(DEDANG & WIND OF FIDER)	(1.19610.5)	15	500	100	_	
Write Enable Removal Time	trem	5.0	0	-100		ns
(Disabling a Write or Read)	(Figure 5)	10	0	-50	_	ł
		15	0	-35		
Setup Time**	t _{su} .	5.0	50	20	_	ns
Address, Data to Clock	(Figure 3)	10 15	30 25	0	_	ŀ
Hold Time**	th	5.0	480	160		ns
Clock to Address, Data	(Figure 3)	10	195	85		
-		15	150	50		l
3-State Enable/Disable Delay Time	tPHZ, tPLZ	5.0	_	130	260	ns
	_ tPZH- tPZL_	10	_	60	120	
	(Figures 4 and 7)	15		45	90	<u> </u>
Clock Pulse Width	t _w	5.0	820	410	_	ns
	(Figure 3)	10	330	165	_	
		15	220	110		L

^{**}When loading repetitive highs, the output may glitch low momentarily after the rising edge of Clock. However, data integrity remains unaffected and data is valid after the propagation delays listed in the Switching Characteristics Table.

FIGURE 1 - OUTPUT DRIVE CURRENT TEST CIRCUIT

	Sink Current	Source Current
Position of \$1	2	1
VGS -	VDD	-V _{DD}
V _{DS} -	Vout	Vout - VDD

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ #	Max	Unit
Output Rise Time	†TLH					ns.
tTLH = (3.0 ns/pF) CL + 30 ns		5.0	l –	180	360	Į.
tTLH = (1.5 ns/pF) CL + 15 ns		10	-	90	180	ŀ
tTLH = (1.1 ns/pF) CL + 10 ns	į.	15	1 -	65	130	
Output Fall Time	tTHL.			1		ns
tTHL = (1.5 ns/pF) CL + 25 ns	•	5.0	-	100	200	1
tTHL = (0.75 ns/pF) CL + 12.5 ns		10	<u> </u>	50	100	1
tTHL = (0.55 ns/pF) CL + 9.5 ns		15	-	40	80	
Propagation Delay Time	tPLH.		i	1		пз
tp_H, tpHL = (1.7 ns/pF) CL + 5 ns	tPHL.	5.0	1 -	90	180	1
tpLH, tpHL = (0.66 ns/pF) CL + 17 ns	'''-	10	-	50	100	
tpլн, tpнլ = (0.5 ns/pF) Cլ + 15 ns		15	_	40	80	

^{*}The formulas given are for the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - SWITCHING TIME TEST CIRCUITS AND WAVEFORMS

MC14580B

4 x 4 MULTIPORT REGISTER

The MC14580B is a 4 by 4 multiport register useful in small scratch pad memories, arithmetic operations when coupled with an adder, and other data storage applications. It allows independent reading of any two words (or the same word at both outputs) while writing into any one of four words.

Address changing and data entry occur on the rising edge of the clock. When the write enable input is low, the contents of any word may be accessed but not altered.

- No Restrictions on Clock Input Rise or Fall Times
- 3-State Outputs
- Single Phase Clocking
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or one Lowpower Schottky TTL Load Over the Rated Temperature Range
- Pin Compatible with CD40108

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltago	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
l _{in} . l _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstq	Storage Temperature	-65 to +150	•c
Τι	Lead Temperature (8-Second Soldering)	260	·c

*Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating: Plastic "P" Packago: -12mW/"C from 65°C to 85°C
Ceramic "L" Package: -12mW/"C from 100°C to 125°C

CMOS LSI

ILOW-POWER COMPLEMENTARY MOSI

4 x 4 MULTIPORT REGISTER

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

MC14580B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

_			VOD		w	<u> </u>	25°C			gh*	1
Characterist		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	_	0.05	-	0	0.05	-	0.05	Vdc
$V_{in} = V_{DD}$ or 0			10	i	0.05	_	0	0.05	-	0.05	l
			15	-	0.05	-	0	0.05	-	0.05	
	"1" Level	VOH	5.0	4.95		4.95	5.0	_	4.95	_	Vdc
Vin = 0 or VDD			10	9.95	l –	9.95	10	_	9.95	_	l
			15	14.95	l –	14.95	15	-	14.95	_	l
Input Voltage	"0" Level	VIL				1					Vdc
(VO = 4.5 or 0.5 Vdc)			5.0	۱ ـ	1.5	[_	2.25	1.5	l – 1	1.5	
(VO = 9.0 or 1.0 Vdc)			10	l –	3.0	_	4.50	3.0	i - I	3.0	
(VO = 13.5 or 1.5 Vdc)			15	l _	4.0	_	6.75	4.0	_	4.0	i i
	"1" Level	VIH		-							-
(Vo = 0.5 or 4.5 Vdc)			5.0	3.5	l 🗕	3.5	2.75	_	3.5	_	Vdc
(VO = 1.0 or 9.0 Vdc)			10	7.0	l _	7.0	5.50	_	7.0	_	1
(VO = 1.5 or 13.5 Vdc)			15	11.0	l _	11.0	8.25	_	11.0	_	1
Output Drive Current IAL	Device)	IOH		 	\vdash		-				mAde
(V _{OH} = 2.5 Vdc)	Source	HO	5.0	-3.0	_	-2.4	-4.2	_	-1.7	_	"""
(VOH = 4.6 Vdc)	COUNTE		5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	ı
(V _{OH} = 9.5 Vdc)			10	-1.6		-1.3	-2.25		-0.9	_	l
(VOH = 13.5 Vdc)			15	-4.2	l <u> </u>	-3.4	-8.8		-2.4	_	1
(VOL = 0.4 Vdc)	Sink	1-:	5.0	0.64		0.51	0.88	_	0.36		mAdo
(VOL = 0.5 Vdc)	Sink	IOL	10		_	1.3	2.25	i e	0.9	_	made
			15	1.6 4.2	I =	3.4	8.8	_	2.4		
(VOL = 1.5 Vdc)			- 13	4.2		3.4	0.0		2.4		⊢ −
Output Drive Current (CL		¹он			Ì						mAde
(V _{OH} = 2.5 Vdc)	Source		5.0	-2.5	-	-2.1	-4.2	_	-1.7	_	
(V _{OH} = 4.6 Vdc)			5.0	-0.52	-	-0.44	-0.88	_	-0.36	-	
(V _{OH} =9.5 Vdc)			10	-1.3	-	-1.1	→2.25	_	-0.9	_	
(V _{OH} = 13.5 Vdc)			15	-3.6	_	-3.0	-8.8		-2.4	_	Ь
$(V_{OL} = 0.4 \text{ Vdc})$	Sink	IOL	5.0	0.52	-	0.44	0.88	_	0.36	_	mAde
(VOL = 0.5 Vdc)			10	1.3	-	1.1	2.25	_	0.9	_	
(VOL = 1.5 Vdc)			15	3.6	-	3.0	8.8	_	2.4	_	
Input Current (AL Device)	lin	15	_	± 0.1		±0.00001	± 0.1		± 1.0	μAdo
Input Current (CL/CP Dev	rice)	lin	15		103	_	±0.00001	± 0.3		± 1.0	μAdo
Input Capacitance		Cin					5.0	7.5	 _ 		ρF
(V _{in} = 0)		O'IN	_	_	_	_	0.0	7.5	_	_	"
Quiescent Current (AL De			5.0		5.0		0.010	5.0	 		μAdo
(Per Package)	Arcel	ססי	10	-	10	I -	0.010	10	-	150	MAGG
tref rackage)			10	_	20	_	0.020 0.030	20		300	1
			-			-				600	-
Quiescent Current (CL/CF	Device)	ססי	5.0	-	50	_	0.010	50	- 1	375	μAdd
(Per Package)			10	-	100	-	0.020	100	! – i	750	i
			15		200		0.030	200	<u> </u>	1500	ļ
Total Supply Current**t		İT	5.0			IT * (1.	18 µA/kHz	11 100			μAdo
(Dynamic plus Quiesce	nt,		10				91 µA/kHz				I
Per Package)			15			IT = (2.	.67 µA/kHz	1 + 1 DD			1
(C _L = 50 pF on all out	puts, all										
buffers switching)											<u> </u>
Three-State Leakage Curre	ent	1 _{TL}	15		±0.1	I -	0.00001	± 0.1	-	±3.0	μAdo
(AL Device)	1	-				i					ľ
Three-State Leakage Curre	ent	ITL	15		±1.0		0.00001	± 1.0		± 7.5	μAdo
(CL/CP Device)		.,,,					3.00001	2 1.0	-	- 7.5	"~"

[&]quot;Tlow = -56"C for AL Dovice, -40°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vik}$$

where: i_T is in μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, t in kHz is input frequency, and k=0.004.

This device contains protection circuitry to guard against damage due to high static voltages or efectric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS < (Vin or Vout) < VDD. Unused inputs must always be tied to an appropriate logic voltage tevel (e.g., either VSS or VDD). Unused outputs must be left open.

Thigh = + 125°C for AL Dovice. +85°C for CL/CP Dovice.

Data labollod "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time 1T_H, 1THL = (1.5 ns/pF) CL + 25 ns 1T_H, 1THL = (0.75 ns/pF) CL + 12.5 ns 1T_H, 1THL = (0.55 ns/pF) CL + 9.5 ns	¹ TLH• ¹ THL (Figures 3 and 6)	5.0 10 15	=	100 50 40	200 100 80	ns
Propagation Detay Time Clock to Output	tpLH, tpHL (Figures 3 and 6)	5.0 10 15	=	650 250 170	1300 500 340	ns
Write Enable Setup Time (Enabling a Write or Read)	t _{SU} (Figure 5)	5.0 10 15	800 300 200	400 150 100	=	ns
Write Enable Removal Time (Disabling a Write or Read)	t _{rem} (Figure 5)	5.0 10 15	0	- 100 - 50 - 35	=	ns
Setup Time** Address, Data to Clock	t _{su} (Figure 3)	5.0 10 15	50 30 25	20 0 0	=	กร
Hold Time ^{4*} Clock to Address, Data	^t h (Figure 3)	5.0 10 15	480 195 150	160 65 50		ns
3-State Enable/Disable Delay Time	tpHZ, tpLZ tpZH, tpZL (Figures 4 and 7)	5.0 10 15	- - -	130 60 45	260 120 90	ns
Clock Pulse Width	t _w (Figure 3)	5.0 10 15	820 330 220	410 165 110	111	ns

^{**}When loading repetitive highs, the output may glitch low momentarily after the rising edge of Clock. However, data integrity remains unaffected and data is valid after the propagation delays listed in the Switching Characteristics Table.

FIGURE 1 - OUTPUT DRIVE CURRENT TEST CIRCUIT

	Sink Current	Source Current
Position of S1	2	1
V _{GS} •	V _D D	-V _{DD}
V _{DS} -	Vout	Vout - VDD

MC14580B

FIGURE 2 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORMS (3-State Inputs are High)

FIGURE 7 — TEST CIRCUIT

MC14580B

TRUTH TABLE

Clock	WE	Write 1	Write 0	Read 1 _A	Read 0 _A	Read 18	Read 0 _B	3-State A	3-State B	Dn	QnA	Q ₀ 8
կ	1	0	1	0	1	0	1	1	1	1	1	1
	1	0	1	0	1	0	1 1	1	1	0	0	0
	x	×	×	×	×	×	×	1	1	×	No Change	No Change
X	X	x	×	x	х	' x	x	0	0	l x	z	Z
0	x	×	×	×	х	x	×	1	1	×	No Change	No Change
1	×	×	x	х	x	×	×	1	1	x	No Change	No Change
۲	1	0	0	0	1	1	0	1	1	D _n to word 0	Contents	Contents of word 2
	0	0	0	O	1	1	0	1	1		Contents of word I	of word 2

Z = High Impedance X = Don't care

4-BIT ARITHMETIC LOGIC UNIT

The MC14581B is a CMOS 4-bit ALU capable of providing 16 functions of two Boolean variables and 16 binary arithmetic operations on two 14-bit words. The level of the mode control input determines whether the output function is logic or arithmetic. The desired logic function is selected by applying the appropriate binary word to the select inputs (S0 thru S3) with the mode control input high, while the desired arithmetic operation is selected by applying a low voltage to the mode control input, the required level to carry in, and the appropriate word to the select inputs. The word inputs and function outputs can be operated with either active high or active low data.

Carry propagate $\overline{\{P\}}$ and carry generate $\overline{\{G\}}$ outputs are provided to allow a full look-ahead carry scheme for fast simultaneous carry generation for the four bits in the package. Fast arithmetic operations on long words are obtainable by using the MC14582B as a second order look ahead block. An inverted ripple carry input $\{C_n\}$ and a ripple carry output $\{C_{n+4}\}$ are included for ripple through operation.

When the device is in the subtract mode (LHHL), comparison of two 4-bit words present at the \overline{A} and \overline{B} inputs is provided using the A = B output. It assumes a high-level state when indicating equality. Also, when the ALU is in the subtract mode the C_{n+4} output can be used to indicate relative magnitude as shown in this table:

Data Level	Cn	Cn + 4	Magnitude
Active	H	Н	A ≤ B A < B
High	Н	L	A > B A ≥ B
Active	LH	L	A ≤ B A < B
Low	H	н	A > B A ≥ B

- Functional and Pinout Equivalent to 74181.
- Diode Protection on All Inputs
- All Outputs Buffered
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	- 0.5 to V _{DD} + 0.5	V
lin. lout	Input or Output Current (DC or Transient), per Pin	± 10	mΛ
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Packago: – 12mW/°C from 65°C to 85°C Coramic "L" Packago: – 12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

4-BIT ARITHMETIC LOGIC UNIT

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		VDD	T _{to}	w*	<u> </u>	25°C		Th	igh *]
Characteristic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage "0" Level	VOL	5.0	-	0.05	-	0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0		10	-	0.05	l –	0	0.05	-	0,05	Į.
j - +		15	-	0.05	-	0	0.05	-	0.05	
"1" Lave!	VOH	5.0	4.95	-	4.95	5.0	-	4.95		Vdc
V _{in} = 0 or V _{DD}	•	10	9.95	l -	9.95	10	۱ -	9.95	_	
		15	14.95	l -	14.95	15	-	14.95	_	Į.
Input Voltage "0" Level	VIL					 				Vdc
(V _O = 4.5 or 0.5 Vdc)		5.0	_	1.5	l –	2.25	1.5	_ '	1.5	'
(Vo = 9.0 or 1.0 Vdc)		10	_	3.0	-	4.50	3.0	_	3.0	1
(VO = 13.5 or 1.5 Vdc)		15	-	4.0	-	6.75	4.0	l – I	4.0	ł
"1" Level	VIH					1				1
(V _O = 0.5 or 4.5 Vdc)		5.0	3.5	_	3.5	2.75		3.5	_	Vdc
(V _O = 1.0 or 9.0 Vdc)		10	7.0	-	7.0	5.50	-	7.0	_	1
(VO = 1.5 or 13.5 Vdc)		15	11.0	-	11.0	8.25	u =2	11.0		1
Output Drive Current (AL Device)	1он					1				mAdc
(VOH = 2.5 Vdc) Source	·UH	5.0	-1.2		-1.0	-1.7	l _	-0.7		111700
(VOH = 4.6 Vdc)		5.0	-0.64	_	-0.51	-0.88	_	-0.36	_	1.
(VOH = 9.5 Vdc)		10	-1.6	l –	-1.3	-2.25	l	-0.9	_	i .
(VOH = 13.5 Vdc)		15	-4.2	l _	-3.4	-8.8	l _	-2.4	_	1
(VOL = 0.4 Vdc) Sink		5.0	0.64		0.51	0.88		0.36		mAdc
	IOL	10	1.6	[1.3	2.25	[0.36	_	MAGC
(VOL = 0.5 Vdc)		15	4.2		3.4	8.B		2.4	_ _	
(V _{OL} = 1.5 Vdc)		כו	4.2		3.4	8.8	L <u>-</u>	2.4		<u> </u>
Output Drive Current (CL/CP Device)	юн		1 .	ł		1	!			mAdc
(V _{OH} = 2.5 Vdc) Source		5.0	-1.0	-	-0.8	-1.7	-	-0.6	-	
(V _{OH} = 4.6 Vdc)		5.0	-0.52	-	-0.44	-0.88		-0.36	-	
(V _{OH} = 9.5 Vdc)		10	-1.3	-	-1.1	-2.25	-	-0.9	-	1
(V _{OH} = 13.5 Vdc)		15	-3.6	_	- 3.0	-8.8		-2.4		
(VOL = 0.4 Vdc) Sink	loL	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdc
(VOL = 0.5 Vdc)		10	1.3	-	1,1	2.25	-	0.9	-	1
(VOL = 1.5 Vdc)		15	3.6	-	3.0	8.8	-	2.4	-	1
Input Current (AL Device)	1 _{in}	15	-	±0.1	-	±0.00001	±0.1	_	± 1.0	µAdc
Input Current (CL/CP Device)	lin	15		± 0.3		±0.00001	± 0.3		± 1.0	μAdc
Input Capacitance	Cin				 -	5.0	7.5			DF
(V _{in} = 0)	O _I n					"."	٠. ت			1
Quiescent Current (AL Device)	100	5.0		5.0		0.005	5.0	-	150	иÁdc
(Per Package)	,00	10	_	10		0.010	10	l	300]
		15	1 _	20	l _	0.016	20	- 1	600	ĺ
Quiescent Current (CL/CP Device)		5.0	 			0.005	20			.
	100	5.0 10	-	20	-	0.005	40	· -	150	μAdc
(Per Package)		10	<u>-</u> .	40	-		80	-	300	1
			<u> </u>	80		0.015			600	-
Total Supply Current**t	١T	5.0			jT = (1	I,8 µA/kHz	11+ 100			μAdc
(Dynamic plus Quiescent,		10				3.7 µA/kHz				l
Per Package)		15	Į		IT = (5.5 µA/kHz	מסו + זונ			
(CL = 50 pF on all outputs, all										1
buffers switching)			l							1

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device.

†To calculate total supply current at loads other than 50 pF:

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ V/k}$$

where: l_T is in μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.008.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

^{*}Date tabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{**}The formulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD}	Min	Тур#	Max	Unit
Output Riso and Fall Time	tTLH∙			1		ns
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns	THL	5.0	_	100	200	
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns	"	10	-	50	100	
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns	- 1	15	-	40	80	
Propagation Delay Time	tPLH.			i		ns
Sum in to Sum Out	1PHL			ĺ		
tpLH_ tpHL = (1.7 ns/pF) CL + 620 ns		5.0	_	705	1410	
tPLH, tPHL = (0.68 ns/pF) CL + 217 ns		10	_	250	500	
tp[H] tpHL = (0.5 ns/pF) CL + 155 ns		15	-	180	360	
Sum in to Sum Out (Logic Mode)	PLH.					ns
tթլн, tթнլ = (1.7 ns/pF) Cլ + 520 ns	1PHL	5.0	-	605	1210	
tpլн_tpнլ = (0.66 ns/pF) Cլ + 182 ns		10		215	430	
tpLH_tpHL = (0.5 ns/pF) CL + 155 ns		15	-	180	360	
Sum in to A = B	TPLH,					ns
tPLH_tPHL = (1.7 ns/pF) CL + 870 ns	1PHL	5.0	_	955	1910	
tp_H, tpHL = (0.66 ns/pF) CL + 297 ns		10	-	330	660	
tpLH, tpHL = (0.5 ns/pF) CL + 220 ns	1	15	-	245	490	
Sum In to P or G	tPLH.					ns
tp_H, tpHL = (1.7 ns/pF) CL + 400 ns	TPHL	5.0	l –	485	970	
tplH_tpHL = (0.66 ns/pF) CL + 147 ns	1	10	-	180	360	
tp_H, tpHL = (0.5 ns/pF) CL + 105 ns		15	_	130	260	
Sum in to Co+4	†PLH		_			ns
tpլн tpнլ = (1.7 ns/pF) Cլ + 530 ns	'	5.0	_	615	1230	
tptH tpHL = (0.66 ns/pF) CL + 187 ns		10	_	220	440	
tpLH, tpHL = (0.6 ns/pF) CL + 135 ns		15	_	160	360	
Carry In to Sum Out	tPLH.					ns
tp_H, tpHL = (1.7 ns/pF) CL + 295 ns	1PHL	5.0	_	380	760	
tpLH tpHL = (0.66 ns/pF) CL + 112 ns		10	_	145	290	
tpLH, tpHL = (0.5 ns/pF) CL + 80 ns		15	-	105	210	
Carry in to Cn+4	tPLH,			1		ns
tp_H, tpHL = (1.7 ns/pF) CL + 220 ns	1PHL	5.0	-	305	610	
tp_H, tpHL = (0.66 ns/pF) CL + 87 ns		10	_	120	240	
tPLH, tPHL = (0.5 ns/pF) CL + 60 ns		15	-	85	170	

^{*}The fermulas given are for the typical characteristics only at 25°C.

AC TEST SETUP REFERENCE TABLE

	AC F	PATHS	DC DATA	INPUTS		FIG. 3
TEST	INPUTS	OUTPUTS	TO V _{SS}	TO V _{DD}	MODE	WAVEFORM
Sumin to Sumout Delay Time	ÃO	Any F	Remaining A's Cn	All B's	Add	#1
Sum _{in} to P Delay Time	ĀO	P	Remaining A's Cn	All B's	Add	#1
Sum _{in} to G Delay Time	Bo	Ğ	All Ā's Cn	Remaining B's	Add	#1
Sum _{in} to C _{n+4} Delay Time	Во	C _{n+y}	All Ā's Cn	Remaining B's	Add	#2
C _n to Sum _{out} Delay Time	Cn	Any F	All Ā's	Ali B's	Add	#1
Cn to Cn+4 Delay Time	Cn	Cn+4	All Ā's	All B's	Add	#1
Sum _{in} to A = B Delay Time	ÃO	A = B	All B's Remaining A's	Cn	Sub	#2
Sumin to Sumout Delay Time (Logic Mode)	₿ ₀	Any F	All A's	M	Exclusive OR	#2

[◆]Data tabelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - TYPICAL SOURCE CURRENT TEST CIRCUIT

FIGURE 2 - TYPICAL SINK CURRENT TEST CIRCUIT

FIGURE 3 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 4 - DYNAMIC POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

TRUTH TABLE

				INPUTS/OUTP	UTS ACTIVE LOW	INPUTS/OUTPUTS ACTIVE HIGH			
1		LOGIC FUNCTION	ARITHMETIC* FUNCTION	LOGIC FUNCTION	ARITHMETIC* FUNCTION				
S3	S2	51	SO	(MC = H)	(MC = L, Cn = L)	(MC - H)	(MC = L, Ĉ _n = H)		
T	τ	۲	L	Ā	A minus 1	Ā	A		
ļ٤	L	L	н	ĀB	AB minus 1	A+B	A+B		
į L	L	н	L	Ã+B	AB minus 1	ĀB	A+8		
L	L	н	н	Logic "1"	minus 1	Logic "O"	minus 1		
) L	н	L	L	A+B	A plus (A+B)	ĀB	A plus AB		
ļ	н	L	н	<u>B</u>	AB plus (A+B)	В	(A+B) plus AB		
L	н	н	L	A ⊕ B	A minus B minus 1	А⊙в	A minus B minus 1		
L	н	н	н	A+B	A+B	AB	AB minus 1		
Н	L	L	L	ÃB	A plus (A+B)	Ã+8	A plus AB		
н	ļι	L	н	А⊙в	A plus B	A ⊕ B	A plus 8		
Н	ļ٠	н	L	В	AB plus (A+B)	В	(A+B) plus AB		
ļн	 L	н	н	A+B	A+B	AB	AB minus 1		
Н	н	L	L	Logic "O"	A plus A	Logic "1"	A plus A		
н	н	L	н	AŘ	AB plus A	A+B	(A+B) plus A		
н	н	н	L	AB	AB plus A	A+B	(A+B) plus A		
н	н	н	н	A	A	A	A minus 1		

Expressed as two's complements. For arithmetic function with C_n in the opposite state, the resulting function is as shown plus 1.

MC14582B

LOOK-AHEAD CARRY BLOCK

The MC14582B is a CMOS look-ahead carry generator capable of anticipating a carry across four binary adders or groups of adders. The device is cascadable to perform full look-ahead across n-bit adders. Carry, generate-carry, and propagate-carry functions are provided as enumerated in the pin designation table shown below.

- Expandable to any Number of Bits
- All Buffered Outputs
- Low Power Dissipation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- · Capable of Driving Two Low-power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	٧
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
Tstg	Storage Temperature	-65 to +150	°C
ΤĹ	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C

Ceramic "L" Package: - 12mW/°C from 100°C to 125°C

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

LOOK-AHEAD CARRY BLOCK

CERAMIC PACKAGE **CASE 620**

P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: - 55°C to + 125°C MC14XXXBAL (Ceramic Package Only)

C Series: - 40°C to + 85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

LOGIC EQUATIONS

P - P3 - P2 - P1 - P0

PIN DESIGNATIONS

DESIGNATION	PIN NO's	FUNCTION
G0,G1,G2,G3	3,1,14.5	Active-Low Carry-Generate Inputs
P0,P1,P2,P3	4,2,15,6	Active-Low Carry Propagate Inputs
Cn	13	Carry Input
Cn+x, Cn+y Cn+z	12,11,9	Carry Outputs
G	10	Active-Low Group Carry-Generate Output
P	7	Active-Low Group Carry Propagate Output

MC14582B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

	ĺ	V _{DD}	Tic	w*	25°C			Thigh*		1	
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"0" Level	VOL	5.0	-	0.05	_	0	0.05	_	0.05	Vdc
Vin = VDD or 0			10	-	0.05	-	0	0.05	_	0.05	l
			15		0.05		0	0.05		0.05	└
	"1" Level	VOH	5.0	4.95	-	4.95	5.0	J –	4.95		Vdc
Vin = 0 or VDD			10	9.95	-	9.95	10	-	9.95	. –	
			15	14.95		14.95	15		14.95		
Input Voitage	"0" Level	VIL				1				-	Vdc
(Vo = 4.5 or 0.5 Vdc)			5.0	_	1.5	-	2.25	1.5	_	1.5	
(VO = 9.0 or 1.0 Vdc)		l	10	-	3.0	-	4.50	3.0	-	3.0	i
(VO = 13.5 or 1.5 Vdc)			15		4.0		6.75	4.0		4.0	
	"1" Level	ViH			İ	İ	1	'			Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$			5.0	3.5	-	3.5	2.75	-	3.5	-	Į.
(VO = 1.0 or 9.0 Vdc)			10	7.0	-	7.0	5.50	-	7.0	-	
(VO = 1.5 or 13.5 Vdc)		ļ	15	11.0		11.0	8.25		11.0		<u> </u>
Output Drive Current (AL Device)	_	ЮН						l			mAde
(VOH = 2.5 Vdc)	Source		5.0	-3.0	-	-2.4	-4.2	-	-1.7	_	ŀ
(VOH = 4.6 Vdc)			5.0 10	-0.64 -1.6	_	-0.51 -1.3	-0.88 -2.25	_	- 0.36 - 0.9	_	
(VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	-	ì	15	-4.2	_	-3.4	-2.25 -8.8	_	-2.4	_	
. •								├──			
(VOL = 0.4 Vdc)	Sink	OL	5.0	0.64	-	0.51	88.0	-	0.36	-	mAd
(VOL = 0.5 Vdc)		1	10	1.6 4.2	! =	1.3	2.25 8.8	-	0.9 2.4	-	
(V _{OL} = 1.5 Vdc)			15	4.2		3.4	0.0	┡ <u></u>	2.4		-
Output Drive Current (CL/CP Devi		loh			1			İ	l		mAde
(VOH = 2.5 Vdc)	Source		5.0	-2.5	_	-2.1	-4.2	-	-1.7	· —	
(VOH = 4.6 Vdc)			5.0	-0.52 -1.3	-	-0.44 -1.1	-0.68 -2.25	<u>-</u>	- 0.36 - 0.9	_	
(VOH = 9.5 Vdc) (VOH = 13.5 Vdc)			10 15	-3.6	_	-3.0	-8.8	l =	-2.4	_	
	-										
(VOL = 0.4 Vdc)	Sink	lOL	5.0 10	0.52] —	0.44	0.88 2.25	_	0.36 0.9	_	mAde
(VOL = 0.5 Vdc) (VOL = 1.5 Vdc)			15	1.3 3.6	l <u> </u>	1.1	8.8		2.4	_	
		 			-						
Input Current (AL Device)		lin	15		±0.1		±0.00001	±0.1	_	±1.0	μAdd
Input Current (CL/CP Device)		l _l n	15		±0.3	<u> </u>	±0.00001	±0.3		±1.0	μAdd
Input Capacitance (Vin = 0)		Cin	-	-	- _	<u> </u>	5.0	7.5	_	-	ρF
Quiescent Current (AL Device)		lDD	5.0		5.0	_	0.005	5.0		150	μAdd
(Per Package)			10	-	10	l –	0.010	10	_	300	
			15	_	20	_	0.015	20	_	600	
Quiescent Current (CL/CP Device))	IDD	5.0	_	20		0.005	20	_	150	μAdo
(Per Package)		"	10	l –	40	l –	0.010	40	-	300	١
			15		80	L =	0.015	80		600	<u></u>
Total Supply Current**†		ь	5.0			tr = (1	.4 μΑ/kHz) f	+ lpp			μAdo
(Dynamic plus Quiescent,] "	10	ļ			.8 μΑ/kHz) f				
Per Package)			15	!			.3 μΑ/kHz) f				
(CL = 50 pF on all outputs,											
ail buffers switching)			I								l

^{*}T_{low} = -85°C for AL Dovico, -40°C for CL/CP Devico. T_{high} = +125°C for AL Dovico, +85°C for CL/CP Dovico.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. "The formulas given are for the typical characteristics only at 25°C. TTo calculate total supply current at loads other than 50 pF:

where: i_T is in μA (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, I in kHz is input frequency, and k = 0.005.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{In} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time	tTLH.					ns
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	t _{THL}	5.0	l -	100	200	l
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns	'''-	10	l –	50	100	l
t _{TLH} , t _{THL} = (0.55 ns/pF) C _L + 9.5 ns	1	15	-	40	80	
Propagation Delay Time	tPLH,		1		$\overline{}$	ns
tp_H, tpHL = {1.7 ns/pF} CL + 260 ns	†PHL	5.0	! -	345	690	1
tpLH, tpHL = (0.66 ns/pF) CL + 107 ns		10	-	140	280	i
tp_H, tpHL = (0.5 ns/pF) CL + 85 ns		15	l -	110	220	l

^{*}The formulas given are for the typical characteristics only at 25°C.

Data tabelled "Typ" is not to be used for design purposes but is intended as an indication of the IG's potential performance.

FIGURE 1 - DYNAMIC POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

FIGURE 2 - SOURCE CURRENT TEST CIRCUIT

FIGURE 3 - SINK CURRENT TEST CIRCUIT

Cn+x

Cn+z

MC14582B

FIGURE 4 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

A end B inputs and F outputs are not shown (MC14581B).

DUAL SCHMITT TRIGGER

The MC14583B is a dual Schmitt trigger constructed with complementary P-channel and N-channel MOS devices on a monolithic silicon substrate. Each Schmitt trigger is functionally independent except for a common 3-state input and an internally-connected Exclusive OR output for use in line receiver applications. Trigger level are adjustable through the positive, negative, and common terminals with the use of external resistors. Applications include the speed-up of a slow waveform edge in interface receivers, level detectors, etc.

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Single Supply Operation
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Resistor Adjustable Trigger Levels

MAXIMUM RATINGS* (Voltagos Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +1B.0	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	V
lin. lout	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	-65 to +150	*C
TL	Lead Temperature (8-Second Soldering)	260	*C

"Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/"C from 65°C to 85°C Ceramic "L" Package: -12mW/"C from 100°C to 125°C

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

DUAL SCHMITT TRIGGER

L SUFFIX CERAMIC PACKAGE P SUFFIX
PLASTIC PACKAGE
CASE 648

CASE 620 CASE 6

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: - 40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

TRUTH TABLE

	NPUTS	3	OUTPUTS						
Α	В	Dis	Agut	Agut	Bout	Bout	•		
0	0	0	0	Z	0	Z	0		
0	0	1	0	1	0	1	0		
0	1	0	0	Z	1	Z	1		
0	1	1	0	1	1	0	1		
1	0	0	1	Z	0	z	1		
1	0	1	1	0	0	1	1		
1	1	O	1	z	1	z	0		
1	1	1_	1	0	1	0	0		

Z = High Impodance at output

ELECTRICAL	CHARACTERISTICS	(Voltages Referenced to Vss)

			VDD	T _{low} *		25°C			Thigh*		
Characteristic		Symbol	Vdc	Min	Max	Min	Typ#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VOL	5.0 10 15	=	0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05	-	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15	=	4.95 9.95 14.95	111	Vdc
tnput Voltage A and B (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	VIΓ	5.0 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	111	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0	_ 	3.5 7.0 11.0	2.75 5.50 8.25	_ 	3.5 7.0 11.0		Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	ЮН	5.0 5.0 10 15	-1.2 -0.25 -0.62 -1.8		-1.0 -0.2 -0.5 -1.5	-1.7 -0.36 -0.9 -3.5	111	-0.7 -0.14 -0.35 -1.1	1111	mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.64 1.6 4.2	=	0.51 1.3 3.4	0.88 2.25 8.8	-	0.36 0.9 2.4	1 1 1	mAdc
Output Drive Current (CL/CP Davi (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 19.5 Vdc)	Source	Юн	5.0 5.0 10 15	- 1.0 - 0.2 - 0.5 - 1.4	- - -	-0.8 -0.16 -0.4 -1.2	- 1.7 - 0.36 - 0.9 - 3.5	- - -	-0.6 -0.12 -0.3 -1.0	1111	mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	lOL	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	=	0.36 0.9 2.4	_ 	mAdc
Input Current (AL Device)		lin	15	_	±0.1	_	±0.00001	± 0.1	_	±1.0	μAdc
input Current (CL/CP Device)		lin	15	-	±0.3		±0.00001	± 0.3	<u> </u>	± 1.0	μAdc
Input Capacitance (Vin = 0)		Cin	-	_	1	_	5.0	7.5	_	_	pF
Quiescent Current (AL Device) (Per Package)		IDD	5.0 10 15		0.25 0.50 1.00	- - -	0.0005 0.0010 0.0015	0.25 0.50 1.00	-	7.5 15.0 30.0	μAdc
Quiescent Current (CL/CP Device) (Per Package)	 	מסי	5.0 10 15	-	1.0 2.0 4.0	1 -	0.0005 0.0010 0.0015	1.0 2.0 4.0	1 1 1	7.5 15.0 30.0	μAdc
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)		łŢ	5.0 10 15			IT = (2.	33 µA/kHz) f 65 µA/kHz) f 98 µA/kHz) f	+ IDD			μAdc
Three-State Leakage Current (AL Device)		ŀΤL	15	-	±0.1	_	± 0.00001	±0.1	-	±3.0	Adc
Three-State Leakage Current (CL/CP Device)		ŀτι	15		±1.0		±0.00001	± 1.0	_	± 7.5	μAdc

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ #	Max	Unit
Output Rise Time	[†] TLH			1		ns
tTLH = (3.0 ns/pF) CL + 30 ns	'-"	5.0	_	180	360	1
tTLH = (1.5 ns/pF) CL + 15 ns		10	ŧ –	90	180	1
t _{TLH} = (1.1 ns/pF) C _L + 10 ns		15	} -	65	130	
Output Fall Time	THL		1			ns
tTHL = {1.5 ns/pF) CL + 25 ns		5.0	-	100	200	l
t_HL = (0.75 ns/pF) CL + 12.5 ns		10	-	50	100	
t _{THL} = (0.55 ns/pF) C _L + 9.5 ns		15	_	40	80	
Propagation Delay Time	tPLH∙				f	ns
Ain, Bin to Aout, Bout	tPHL.	ŀ	l	1	1	
tp_H, tpHL = (1.7 ns/pF) CL + 565 ns	'	5.0	-	650	1300	1
tpլн, tpнլ = (0.66 ns/pF) Cլ + 197 ns		10	ł –	230	460	1
tpLH, tpHL = (0.5 ns/pF) CL + 125 ns		15] -	150	300	
A _{in} , B _{in} to A _{out} , B _{out}	tPLH.		1			ns
tpLH, tpHL = (1.7 ns/pF) CL + 1015 ns	\$PHL	5.0	-	1100	2200	l
tpLH, tpHL = (0.66 ns/pF) CL + 347 ns	''	10	-	380	760	1
tp_H, tpHL = (0.5 ns/pF) CL + 235 ns		15	_	260	520	
Ain, Bin to Exclusive OR	tPLH,				 	ns
tp_H, tpHL = (1.7 ns/pF) CL + 665 ns	1PHL	5.0	1 -	750	1500	!
tpLH, tpHL = (0.66 ns/pF) CL + 257 ns	'	10	_	280	560	
tp_H, tpHL = (0.5 ns/pF) CL + 145 ns		15	_	170	340	İ
3-State Enable, Disable Delay Time (see figure 5)	t _{on} ,					ns
ton, toff = (1.7 ns/pF) CL + 140 ns	toff	5.0	_	225	450	
ton, toff = (0.66 ns/pF) C1 + 57 ns	-0"	10	۱ –	90	180	
ton, toff = (0.5 ns/pF) CL + 30 ns	l	15	_	55	110	
Positive Threshold Voltage	V _{T+}	5.0	_	3,30		Vdc
(R1, R2 = 5.0 kΩ)	1 ''	10	i –	5.70	l –	
• •		15	_	8.20	-	
Negative Threshold Voltage	V _T _	5.0		1.70	-	Vdc
(R1, R2 = 5.0 kΩ)	',-	10	1 -	4.30	l _	
• • • • • • • • • • • • • • • • • • • •		15	1 –	6,80	l –	
Hysteresis Voltage	VH	5.0	0.85	1.70	3.40	Vdc
(R1, R2 = 5.0 kΩ)	1 '"	10	0.70	1,40	2.80	
	1	15	0.70	1,40	2.80	
Threshold Voltage Variation, A to B	ΔVT	5.0		0.1	<u> </u>	Vdc
(R1, R2 = 5.0 kΩ)	1	10	l –	0.15	l –	
,	1	1 15	l	0.20	l _	{

^{*}The formulas given are for the typical characteristics only at 25°C.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

FIGURE 1 - TYPICAL OUTPUT SOURCE AND SINK CHARACTERISTICS TEST CIRCUIT

FIGURE 2 - POWER DISSIPATION TEST CIRCUIT AND WAVEFORMS

FIGURE 3 - TYPICAL THRESHOLD POINTS

8 - Feedback scheme for hysteresis adjustment:

FIGURE 4 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

Note: Dashed lines indicate high output resistance

FIGURE S - 3-STATE SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH POSITION
ton HL	1
Ton LH	2
toff HL	2
Toff LH	1

*Matal film, \pm 1%, 1/4 W or greater C $_{L}$ = 15 pF, which includes test circuit capacitance.

 V_{OL} and V_{OH} refer to the levels present as a result of the 1 k ohm load resistors.

MOTOROLA

MC14584B

HEX SCHMITT TRIGGER

The MC14584B Hex Schmitt Trigger is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The MC14584B may be used in place of the MC14069UB hex inverter for enhanced noise immunity to "square up" slowly changing waveforms.

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load over the Rated Temperature Range
- Double Diode Protection on All Inputs
- Can Be Used to Replace MC14069UB
- For Greater Hysterisis, Use MC14106B which is Pin-for-Pin Replacement for CD40106B and MM74C14

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-05 to +18.0	٧
V _{in} . V _{out}	Input or Output Voltage (DC or Transient)	-05 to V _{DD} +05	V
I _{In} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Packaget	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	,C

*Maximum Ralings are those values beyond which damage to the device may occur †Temperature Derating: Plastic "P" Package = 12mW/°C from 65°C to 85°C Ceramic "L" Package = 12mW/°C from 100°C to 125°C

CMOS SSI

(LOW-POWER COMPLEMENTARY MOS)

HEX SCHMITT TRIGGER

L SUFFIX CERAMIC PACKAGE CASE 632 P SUFFIX PLASTIC PACKAGE CASE 646

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: -40°C to +85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

EQUIVALENT CIRCUIT SCHEMATIC

(1/6 OF CIRCUIT SHOWN)

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leqslant (V_{in} \text{ or } V_{out}) \leqslant V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

LOGIC DIAGRAM

V_{DD} = Pin 14 V_{SS} = Pin 7

MC14584B

ELECTRICAL CHARACTERISTICS (Voltagos Referenced to VSS)

		1	VDD		w*		25°C			gh*	ļ
Characteri	stic	Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage	"O" Level	VOL	5.0	_	0.05	-	0	0.05	-	0.05	Vdc
$V_{In} = V_{DD}$			10	-	0.05	-	0	0.05	- '	0.05	i
			15	<u> </u>	0.05	L	0	0.05		0.05	L
	"1" Level	νон	5.0	4.95		4.95	5.0	-	4.95	-	Vdc
$V_{in} = 0$		1	10	9.95	-	9.95	10	- '	9.95	-	(
			15	14.95		14.95	15		14.95		ļ
Output Drive Current (A		ІОН		-			1		'		mAdo
(V _{OH} = 2.5 Vdc)	Source	l	5.0	-3.0	-	-2.4	-4.2	-	-1.7	-	į
(V _{OH} = 4.6 Vdc)			5.0	-0.64	-	-0.51	-0.88	-	-0.36	-	l
(V _{OH} = 9.5 Vdc)			10	-1.6	-	-1.3	-2.25	_	-0.9 -2.4	<u>-</u>	1
(V _{OH} = 13.5 Vdc)			15	-4.2	 	-3.4	-8.8				
(VOL = 0.4 Vdc)	Sink	IOL	5.0	0.64	-	0.51	0.88	-	0.36	-	mAdd
(VOL = 0.5 Vdc)		1	10	1.6	-	1.3	2.25	-	0,9		1
(VOL = 1.5 Vdc)		<u> </u>	15	4.2		3.4	8.8		2.4		
Output Drive Current (C		ІОН		1		١				l	mAdd
IV _{OH} = 2.5 Vdc)	Source	l	5.0	-2.6	-	-2.1	-4.2		-1.7	_	
(V _{OH} = 4.6 Vdc)			5.0	-0.52	ļ -	-0.44	-0.88	-	-0.36 -0.9		l
(VOH = 9.5 Vdc)			10	-1.3 -3.6	-	-1.1 -3.0	-2.25 -8.8	_	-0.9 -2.4	-	
(V _{OH} = 13.5 Vdc)	_: .	<u> </u>	15		ļ <u>-</u> -						
(VOL = 0.4 Vdc)	Sink	10L	5.0	0.52	-	0.44	0.88	-	0.36	-	mAdd
(VOL = 0.5 Vdc)		1	10	1.3	-	1.1	2.25	-	0.9 2.4	-	t
(VOL * 1.5 Vdc)	· . · · · · · · · · · · · · · · · · · ·	<u> </u>	15	3.6	 _	3.0	8.8				.
Input Current (AL Devic		lin	15	-	± 0.1	-	±0.00001	± 0.1	<u> </u>	± 1.0	μAdc
Input Current (CL/CP D	evice)	lin	15		± 0.3		±0.00001	± 0.3		±1.0	μAdc
Input Capacitance		Cin	-	-	-	-	5.0	7.5	-	-	pF
(V _{in} = 0)					<u> </u>						
Quiescent Current (AL (Device)	IDD	5.0	-	0.25	-	0.0005	0.25	-	7.5	μAdc
(Per Package)		ľ	10	- 1	0.50	- 1	0.0010	0.50	~	15	ŀ
			15	<u> </u>	1.00	<u> </u>	0.0015	1.00		30	
Quiescent Current (CL/0	CP Device)	100	5.0	-	1.0	1 -	0.0005	1.0	l -	7.5	μAdc
(Per Package)		1	10	-	2.0	-	0.0010	2.0	-	15	
		<u> </u>	15	<u> - </u>	4.0	<u> </u>	0.0015	4.0		34	<u> </u>
Total Supply Current **		l _T	5.0	l			₿ #A/kHz)				μAdc
(Dynamic plus Quies	icent,	1	10	ł			1.6 µA/kHz)				1
Per Package)		1	15	1		IT = (5	i.4 μΑ/kHz)	f + IDD			ļ.
ICL = 50 pF on all o	utputs, all										
buffers switching)		 		<u> </u>	,	,					
Hysteresis Voltage		VH*	5.0	0.27	1.0	0.25	0.6	1,0	0.21	1.0	Vdc
		1	10	0.36	1.3	0.30	0,70	1.2	0.25	1.2	ľ
z. 15.00		——	15	0.77	1.7	0.60	1.1	1.5	0.50	1,4	↓
Threshold Voltage		l	۱		1			١	1	1	ĺ
Positive-Going		V _{T+}	5.0	1.9	3.5	1.8	2.7	3.4	1.7	3,4	Vdc
		1	10 15	3.4	7,0	3.3	5.3	6.9	3.2	6.9	1
			_	5.2	10.6	5.2	8.0	10.5	5.2	10,5	
Negative-Going		V _T _	5.0	1.6	3.3	1.6	2.1	3.2	1.5	3.2	Vdc
			10	3.0	6.7	3.0	4.6	6.7	3.0	6.7	ł
			15	4.5	9.7	4.6	6.9_	9.8	4.7	9,9	1

†To calculate total supply current at loads other than 50 pF:

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ V1k}$$

where: IT is in μA (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.001.

 4V_H = V_{T+} - V_{T-} (But maximum variation of V_H is specified as lass than V_{T+} max = V_{T-} mIn).

[&]quot;T_{low} = -55°C for AL Dovico, -40°C for CL/CP Device. T_{high} = +125°C for AL Dovice, +85°C for CL/CP Device.

[₱]Data labelled "Typ" is not to be used for design purposes but is
intended as an indication of the IC's potential performance.

[&]quot;The fermulas given are for the typical characteristics only at 25°C.

SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C)

Characteristic	Symbol	V _{DD} Vde	Min	Тур#	Max	Unit
Output Rise Time	tтьн	5.0 10 15	- - -	100 50 40	200 100 80	ns
Output Fall Time	THL	6,0 10 15	-	100 50 40	200 100 80	ns
Propagation Delay Time	tPLH, tPHL	5.0 10 15	- - -	125 50 40	250 100 80	ns

[#]Data labelled "Typ" is not to be used for design purposes but in intended as an indication of the IC's potential performance.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 2 - TYPICAL SCHMITT TRIGGER APPLICATIONS

(e) Schmitt Triggers will square up inputs with slow rise and fall times.

4-BIT MAGNITUDE COMPARATOR

The MC14585B 4-Bit Magnitude Comparator is constructed with complementary MOS (CMOS) enhancement mode devices. The circuit has eight comparing inputs (A3, B3, A2, B2, A1, B1, A0, B0), three cascading inputs (A<B, A=B, and A>B), and three outputs (A < B, A = B, and A > B). This device compares two 4-bit words (A and B) and determines whether they are "less than", "equal to", or "greater than" by a high level on the appropriate output. For words greater than 4-bits, units can be cascaded by connecting outputs (A > B), (A < B), and (A = B) to the corresponding inputs of the next significant comparator. Inputs (A < B), (A = B), and (A > B) on the least significant (first) comparator are connected to a low, a high, and a low, respectively.

Applications include logic in CPU's, correction and/or detection of instrumentation conditions, comparator in testers, converters, and controls.

- · Diode Protection on All Inputs
- Expandable
- Applicable to Binary or 8421-BCD Code
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load over the Rated Temperature Range
- · Can be Cascaded See Fig. 3

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
VDD	DC Supply Voltage	-0.5 to +18.0	>
Vin. Vout	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
I _{in} . I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Ratings are thoso values beyond which damage to the device may occur.

†Temperature Derating: Plastic "P" Package: -12mW/°C from 65°C to 85°C

Ceramic "L" Package: -12mW/°C from 100°C to 125°C

TRUTH TABLE

		41	NPUTS					UTPUT		
	COMPARING				SCADIN	IG	0017013			
A3, B3	A2, B2	A1, B1	A0, B0	A <b< td=""><td>A = B</td><td>A>B</td><td>A < B</td><td>A = B</td><td>A>B</td></b<>	A = B	A>B	A < B	A = B	A>B	
A3>83	×	×	×	×	×	×	0	0	1	
A3 = B3	A2>B2	×	×	×	×	×	0	0	1	
A3 = B3	A2=82	A1>B1	×	×	×	×	0	0	1	
A3 = B3	A2 = B2	A1 = B1	A0>B0	×	×	×	0	0	1	
A3 = B3	A2 = B2	A1 = B1	A0 = B0	0	0	×	0	0	1	
A3 = B3	A2 = B2	A1=B1	A0 = B0	0	1	×	0	1	0	
A3 = B3	A2=82	A1 = B1	A0 = B0	1	0	×	1	0	0	
A3 = B3	A2=B2	A1=B1	A0 = B0	1	1	×	1	1	0	
A3 = B3	A2=B2	A1 = B1	A0 <b0< td=""><td>х</td><td>×</td><td>×</td><td>1</td><td>0</td><td>0</td></b0<>	х	×	×	1	0	0	
A3 = B3	A2=B2	A1 <b1< td=""><td>×</td><td>×</td><td>×</td><td>×</td><td>1</td><td>0</td><td>0</td></b1<>	×	×	×	×	1	0	0	
A3 = B3	A2 <b2< td=""><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>1</td><td>0</td><td>0</td></b2<>	×	×	×	×	×	1	0	0	
A3 <b3< td=""><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>1</td><td>0</td><td>0</td></b3<>	×	×	×	×	×	×	1	0	0	

× = Don't Care

CMOS MSI

(LOW POWER COMPLEMENTARY MOS)

4-BIT MAGNITUDE COMPARATOR

L SUFFIX CERAMIC PACKAGE CASE 620 P SUFFIX PLASTIC PACKAGE CASE 648

ORDERING INFORMATION

A Series: -55°C to +125°C MC14XXXBAL (Ceramic Package Only)

C Series: - 40°C to + 85°C MC14XXXBCP (Plastic Package) MC14XXXBCL (Ceramic Package)

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)

		1	VDD	T _{lo}	w*	<u> </u>	25°C		T _{hl}	gh*	j
Characteristic		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage Vin = VDD or 0	"0" Level	VOL	5.0 10 15	=	0.05 0.05 0.05	=	0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	Vdc
Vin = 0 or VDD	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	=	4.95 9.95 14.95	5.0 10 15	<u> </u>	4.95 9.95 14.95	=	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"O" Level	VIL	5.0 10 15	=	1.5 3.0 4.0	=	2.25 4.50 6.75	1.5 3.0 4.0	=	1.5 3.0 4.0	Vdc
(V _O = 0.5 or 4.5 Vdc) (V _O = 1.0 or 9.0 Vdc) (V _O = 1.5 or 13.5 Vdc)	"1" Level	VIH	5.0 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25		3.5 7.0 11.0	111	Vdc
Output Drive Current (AL Device) (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	Source	Юн	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	1111	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	1111	-1.7 -0.36 -0.9 -2.4	1111	mAdc
(VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc)	Sink	fOL	5.0 10 15	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8	1 1	0.36 0.9 2.4		mAdd
Output Drive Current (CL/CP Dev (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc)	rice) Source	Юн	5.0 5.0 10 15	-2.5 -0.52 -1.3 -3.6		-2.1 -0.44 -1.1 -3.0	-4.2 -0.88 -2.25 -8.8	- - - -	-1.7 -0.36 -0.9 -2.4		mAdd
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	ЮL	5.0 10 15	0.52 1.3 3.6	=	0.44 1.1 3.0	0.88 2.25 8.8	=	0.36 0.9 2.4	-	mAdo
Input Current (AL Device)		tin	15		±0.1		±0.00001	±0.1		± 1.0	μAdd
Input Current (CL/CP Device) Input Capacitance (Vin = 0)	· · · · ·	l _{in} C _{in}	15 —	-	±0.3 —		±0.00001	± 0.3	<u>-</u> -	± 1.0	μAdd pF
Quiescent Current (AL Device) (Per Package)		lDD	5.0 10 15	_ _	5.0 10 20	=	0.005 0.010 0.015	5.0 10 20	111	150 300 600	μAdo
Quiescent Current (CL/CP Device (Per Package))	aal	5.0 10 15		20 40 80	<u>-</u>	0.005 0.010 0.015	20 40 80	111	150 300 600	μAdo
Total Supply Current**† (Dynamic plus Quiescent, Per Package) (Ct = 50 pF on all outputs, all buffers switching)		ŀΤ	5.0 10 15			H = (1	.6 μΑ/κΗz) f · .2 μΑ/κΗz) f · .8 μΑ/κΗz) f ·	+ tDD		j	μAdc

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

"The fermulas given are for the typical characteristics only at 25°C.

†To calculate total supply current at loads other than 50 pF:

$$I_{T}(C_{L}) = I_{T}(50 \text{ pF}) + (C_{L} - 50) \text{ Vfk}$$

where: IT is in μA (per package), C_L in pF, $V=(V_{DD}-V_{SS})$ in volts, f in kHz is input frequency, and k=0.001.

Thigh = +125°C for AL Device, +85°C for CL/CP Device.

SWITCHING CHARACTERISTICS* (C1 = 50 pF. TA = 25°C)

Characteristic	Symbol	VDD	Min	Typ#	Max	Unit
Output Rise and Fall Time trun, trun = (1.5 ns/pF) Cu + 25 ns trun, trun = (0.75 ns/pF) Cu + 12.5 ns trun, trun = (0.55 ns/pF) Cu + 9.5 ns	tTLH- tTHL	5.0 10 15	- - -	100 50 40	200 100 80	ns
Turn-On, Turn-Off Delay Timo tp_LH, tpHL = (1.7 ns/pF) CL + 345 ns tp_LH, tpHL = (0.56 ns/pF) CL + 147 ns tp_LH, tpHL = (0.5 ns/pF) CL + 105 ns	^t PLH, ^t PHL	5.0 10 15	- - -	430 180 130	860 360 260	ns

^{*}The formulas given are for the typical characteristics only at 25°C.

#Data labelled "Typ" is not to be used for design purposes but is
intended as an indication of the IC's potential performance.

FIGURE 1 – DYNAMIC POWER DISSIPATION SIGNAL WAVEFORMS

Inputs (A > B) and (A=B) high, and inputs B2, A2, B1, A1, B0, A0 and (A < B) low

f in respect to a system clock.

FIGURE 2 - DYNAMIC SIGNAL WAVEFORMS

Inputs (A>B) and (A=B) high, and inputs 63, A3, B2, A2, B1, A1, A0, and (A< B) low.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

MC14599 See Page 6-170

MC14597B MC14598B

8-BIT BUS-COMPATIBLE LATCHES

The MC14597B and MC14598B are 8-bit latches, one addressed with an internal counter and the other addressed with an external binary address. The 8 latch-outputs are high drive, three-state and bus line compatible. The drive capability allows direct applications with MPU systems such as the Motorola 6800 family.

With MC14597B, a 3-bit address counter (clocked on the falling edge of Increment) selects the appropriate latch. The latches of the MC14598B are accessed via the Address pins, AO, A1, and A2. A Full Flag is provided on the MC14597B to indicate the position of the Address counter.

All 8 outputs from the latches are available in parallel when Enable is in the low state. Data is entered into a selected latch from the Data pin when the Strobe is high. Master reset is available on both parts.

- Serial Data Input
- Three-State Bus Compatible Parallel Outputs
- Three-State Control Pin (Enable) TTL Compatible Input
- Open Drain Full Flag (Multiple Latch Wire-O Ring)
- Master Reset
- Level Shifting Inputs on All Except Enable
- Diode Protection All Inputs
- Supply Voltage Range 3.0 Vdc to 18 Vdc
- Capable of Driving TTL Over Rated Temperature Range With Fanout as Follows:

1 TTL Load 4 LSTTL Loads

CMOS MSI

(LOW-POWER COMPLEMENTARY MOS)

8-BIT, BUS-COMPATIBLE THREE-STATE LATCHES

Internal Counter - MC14597B Binary Address - MC14598B

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to +18.0	>
Vin	Input Voltage, Enable (DC or Transient)	-0.5 to V _{DD} +0.5	٧
Vin	Input Voltage, All other Inputs (DC or Transient)	-0.5 to V _{DD} +12	>
Vout	Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	v
t _{in} . l _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mΑ
PD	Power Dissipation, per Package†	500	πW
T _{Stg}	Storage Temperature	-65 to +150	÷
TL	Lead Temperature (8-Second Soldering)	260	•c

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \ll (V_{in})$ or $V_{out} \ll V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

FLECTRICAL CHARACTERISTICS (Voltages Referenced to Von)

]	V _{DD}	Tic	w*	Ì	25°C		Thi	gh "	
Characteristic	Symbol	Vdc	Min	Mex	Min	Typ#	Max	Min	Max	.Unit
Output Voltage "0" Level	VOL	5.0		0.05	-	0	0.05	-	0.05	Vdc
V _{in} = V _{DD} or 0	"-	10	-	0.05	-	lol	0.05	l –	0.05	
		15	l –	0.05	_	Ö	0.05	-	0.05	
"1" Level	VOH	5.0	4.95		4.95	6.0	_	4.95		Vdd
Vin = 0 or VDD	104	10	9.95	l _	9.95	10	_	9.95] '-
- III		15	14.95	۱ _	14.95	15	_	14.95	۱ ـ	1
Input Voltage** — Enable "0" Level	VIL		1		1112		-			Vdd
(V _O = 4.5 or 0.5 Vdc)	* IL	5.0	l _	0.8	l _	1,1	0.8	_	8.0	
(VO = 9.0 or 1.0 Vdc)		10	ا ـ	1.6	_	2.2	1.6	_	1.6	
(VO = 13.5 or 1.5 Vdc)		15	l _	2.4		3.4	2.4	l _	2.4	ļ .
"1" Level	VIH		 					-		Vde
(VD = 0.5 or 4.5 Vdc)	VIH .	5.0	2.0	l _	2.0	1.9	_	2.0		1 **
(VO = 1.0 or 9.0 Vdc)]	10	6.0	-	6.0	3.1	_	6.0		l
(V _O = 1.5 or 13.5 Vdc)	1	15	10	l	10	4.3	_	10	_	
Input Voltage "0" Level	VIL	- :-	 "	- -	 ``	1		 		Va
Other Inputs	\ \IL]					I	1 40
(VO = 4.5 or 0.5 Vdc)		5.0	1_	1.5	l _	2.25	1.5	l _	1.5	ŀ
(VO = 9.0 or 1.0 Vdc)		10	1 =	3.0	-	4.50	3.0	_	3.0	1
(VO = 13.5 or 1.5 Vdc)		15	_	4.0		6.75	4.0	_	4.0	1
"1" Level	14	- ''-		7.0		0.75	7.0		7.0	Vd
(Vp = 0.5 or 4.5 Vdc)	νін	5.0	3.5		3.5	2.75		3.5		V 44
(V _O = 1.0 or 9.0 Vdc)	i	10	7.0	-	7.0	5.50	_	7.0		l
(VO = 1.5 or 13.5 Vdc)	Į	15	11	_	11	8.25	_	11	_	l
Output Drive Current Source	1	- 15			- ''-	0.25				mAd
(Full – Sink Only)	Іон				1	1				1
(V _{OH} = 4.6 Vdc)		5.0	-1.0		-1.0	-2.0	_	-1.0	_	l
(VOH = 9.5 Vdc)		10		_	-1.0	-6.0	_		_	l
(V _{OH} = 13.5 Vdc)	1 1	15	-	-	1 =	-12		_		1
	<u> </u>									H
(VOL = 0.4 Vdc) Sink	lor	5.0	1.6	-	1.6	3.2	-	1.6	_	mAc
(VOL = 0.5 Vdc)		10	-	-	_	6.0	-		-	
(V _{OL} = 1.5 Vdc)	L	15				12				٠
Input Current (AL Device)	lin	15		±0.1	<u> </u>	±0.00001	±0.1	_	±1.0	μAd
Input Current (CL/CP Device)	lin	15		±0.3	_	±0.00001	±0.3	_	±1.0	μAd
Three-State Leakage Current	İTL									μAd
(AL Device)		15	-	±0.1	l -	±0.00001	±0.1	-	±3.0	1
(CL/CP Device)	L	15	-	_ ±1.0	<u> </u>	±0.00001	±1.0		± 7.5	ļ
Input Capacitance	Cin	-	-	-	-	5.0	7.5	_	_	pF
(V _{in} = 0)	l "		i i			1 1				1
Quiescent Current (AL Device)	IDD	5.0	-	5.0	_	0.005	5.0	-	150	μAd
(Per Package)	"	10	-	10	_	0.010	10	-	300	
- - -		15	-	20	-	0.015	20	-	600	l
Quiescent Current (CL/CP Device)	IDD	5.0		20	 -	0.005	20		150	μAd
(Per Package)	ן יייי ן	10	l _	40	l _	0.010	40	-	300	
t. c sumugur	(1	15		80	_	0.015	80	_	600	1
+Total Supply Current at an	ΙΤ	5.0	-			.0 μA/kHz)1				μAd
External Load Capacitance	'「	10	1			:.0 μΑ/κΗz)(0 μΑ/kHz)				اسما
of 130 pF		10 15	ĺ			i.0 μΑ/kHz)1				
VI IVV PF		Device			-1 - 10		טטי י			Ь

^{*}T_{low} = -55°C for AL Device, -40°C for CL/CP Device. Thigh = +125°C for AL Device, +85°C for CL/CP Device.

^{*}Maximum Ralings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P" Package: -12mW/*C from 65*C to 85*C Ceramic "L" Package: -12mW/*C from 100*C to 125*C

^{**} The formulas given are fer the typical characteristics only at 25°C.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING CHARACTERISTICS* (T_A = 25°C, C_L = 130 pF + 1 TTL Load)

	1	V _{DD}		All Types		j
Characteristic	Symbol	Vde	Min	Typ #	Max	Unit
Output Rise and Fall Time	tTLH,					ns
¹ТLH, ¹THL = (0.5 ns/pF) C _L +35 ns	THL	5.0	l –	100	200	l
tTLH, tTHL = (0.2 ns/pF)CL + 25 ns	'''-	10	i -	50	100	
TLH- THL = (0.16 ns/pF) CL +20 ns		15	l –	40	80	1
Propagation Delay Time	\$PLH.			1		DS
Enable to Output	tPHL	5.0	l _	160	320	
	1 SPAL	10	! _	125	250	1
	ł	15	_	100	200	1
Strobe to Output	ľ	5.0	 	200	400	†
on one to Cathat	ľ	10	I -	100	200	l
	1	15	-	80	160	ł
Strobe to Full (MC145978 only)	İ	5.0				1
Strope to Pull (MC149878 only)	l l		-	200	400	[
		10	-	100	200	ł
		15	↓	80	160	4
Reset to Output		5.0	-	175	350	ł
	ł	10	-	90	180	
···		15	<u> </u>	70	140	L
Pul <u>se Widt</u> h	₩H.			l	l	ns
Enable	₩L	5.0	320	160	-	l
	"-	10	240	120	(-	1
	\	15	160	80]
Strobe	ı	5.0	200	100	-	1
		10	100	50	_	
		15	80	40	_	l
Increment (MC14597B only)	Ĭ	5.0	200	100	-	1
		10	100	50	!	1
		15	80	40	l _	1
Reset		5.0	300	150		1
		10	160	80	_	
		15	100	50	_	ł
Setup Time	-	 	1.00	 	 	
Data	t _{EU}	5.0	100	50	_	ns
	1	10	50	25	_	ľ
		15	35	20	I -	L
Address (MC14598B only).	ł		+		1	-1
Accies (MC140305 Chiy).	ľ	5.0	200	100	-	1
		10	100	50	<u> </u>	l
	İ	15	70	35	-	4
Increment (MC14597B only)		5.0	400	200	-	i
	J	10	200	100	-	
		15	170	85	<u> </u>	↓
Hold Time	l on	ı	ì	i	1	ns
Deta	"	5.0	100	50	_	1
	1	10	50	25	-	1
	1	15	35	20		J
Address (MC14598B only)	ſ	5.0	100	60		7
••		10	50	25	۱ -	1
		15	35	20	_	
	+		+		 	
Reset Removal Time	t _{rem}	5.0	20	-25	-	ns
		10	20	- 15	1 -	I
	1	15	20	-10	. –	l .

[&]quot;The formulas given are for the typical characteristics only at 25°C.
#Data labellod "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential perfermance.

MC14598B FUNCTION DIAGRAM

MC14598B TIMING DIAGRAM

* 1.4 V with V_{DD} = 5.0 V.

NOTES 1. High-impedance output state (another device controls bus).
2. Output Load as for MC14597B.

LATCH TRUTH TABLE

Strobe	Reset	Addressed Latch	Other Latches
0	1	•	•
1	1	Data	•
×	0	0	0

" = No change in state of latch

TRUTH TABLE FOR MC14597B

Increment	Enable	Reset	Address Counter	Full
	х	1	Count Up	-
5	x	1	No Change	-
×	1	0	Reset to Zero	Set to One
X	0	1	No Change	Set to One
×	1	1	If at ADDRESS 7	To Zero on Falling Edge of STROBE

X = Don't care

Circuit diagrams external to or containing Motorola products are included as a means of illustration only. Complete information sufficient for construction purposes may not be fully illustrated. Although the information herein has been carefully checked and is believed to be reliable, Motorola assumes no responsibility for inaccuracies. Information herein does not convey to the purchaser

any license under the patent rights of Motorola or others.

The information contained herein is for guidance only, with no warranty of any type, expressed or implied. Motorola reserves the right to make any changes to the information and the product(s) to which the information applies and to discontinue manufacture of the product(s) at any time.

X = Don't care

CMOS Reliability

RELIABILITY

Paramount in the mind of every semiconductor user is the question of device performance versus time. After the applicability of a particular device has been established, its effectiveness depends on the length of troublefree service it can offer. The reliability of a device is exactly that — an expression of how well it will serve the customer. The following discussion will attempt to present an overview of Motorola's reliability efforts.

BASIC CONCEPTS

It is essential to begin with an explanation of the various parameters of Reliability. These are probably summarized best in the Bathtub Curve (Figure 1). The reliability performance of a device is characterized by three phases: infant mortality, useful life, and wearout. When a device is produced, there is often a small distribution of failure mechanisms which will exhibit themselves under relatively moderate stress levels and therefore appear early. This period of early failures, termed infant mortality is reduced significantly through proper manufacturing controls and screening techniques. The most effective period is that in which only occasional random failure mechanisms appear. The useful life typically spans a long period of time with a very low failure rate. The final period is that in which the devices literally wear out due to continuous phenomena which existed at the time of manufacture. Using strictly controlled design techniques and selectivity in applications, this period is shifted well beyond the lifetime required by the user.

Both the infant mortality and random failure rate regions can be described through the same types of calculations. During this time the probability of having no failures to a specific point in time can be expressed by the equation:

$$P_0 = e^{-\lambda t}$$

where λ is the failure rate and t is time. Since λ is changing rapidly during infant mortality, the expression does not become useful until the random period, where λ is relatively constant. In this equation λ is failures per unit of time. It is usually expressed in percent failures per thousand hours. Other forms include FIT (Failures in Time = $(\%/10^3 \text{ hrs}) \times 10^{-4} = 10^{-9} \text{ failures per hour)}$ and MTTF (Mean Time To Failure) or MTBF (Mean Time Between Failures), both being equal to $1/\lambda$ and having units of hours.

Since reliability evaluations usually involve only samples of an entire population of devices, the concepts of the Central Limit Theorem apply and λ is calculated using x^2 distribution through the equation:

$$\lambda \le \frac{x^2 (x, 2r + 2)}{2nt}$$
where $x = \frac{100 - CL}{100}$

CL = Confidence Limit in percent

r = Number of rejects n = Number of devices

t = Duration of test

The confidence limit is the degree of conservatism desired in the calculation. The Central Limit Theorem states that the values of any sample of units out of a large population will produce a normal distribution. A 50% confidence limit is termed the best estimate and is the mean of this distribution. A 90% confidence limit is a very conservative value and results in a higher λ which represents the point at which 90% of the area of the distribution is to the left of that value (Figure 2). The term (2r+2) is called the degrees of freedom and is an expression of the number of rejects in a form suitable to x^2 tables.

The number of rejects is a critical factor since the definition of rejects often differs between manufacturers. While Motorola uses data sheet limits to determine fallures, sometimes rejects are counted only if they are catastrophic. Due to the increasing chance of a test not being representative of the entire population, as sample size and test time are decreased, the x^2 calculation produces surprisingly high values of λ for short test durations even though the true long term failure rate may be quite low. For this reason relatively large amounts of data must be gathered to demonstrate the real long term failure rate.

Since this would require years of testing on thousands of devices, methods of accelerated testing have been developed.

Years of semiconductor device testing has shown that temperature will accelerate failures and that this behavior fits the form of the Arrhenius equation:

$$R(t) = R_0(t)e - \Theta/kT$$

where R(t) = Reaction rate as a function of time and temperature

R₀ = A constant

t = Time

 Θ = Activation energy in electron volts

k = Boltzman's constant

T = Temperature in degrees Kelvin

To provide time-temperature equivalents this equation is applied to failure rate calculations in the form:

 $t = t_0 e \Theta/kT$

where t = time

to = A constant

The Arrhenius equation essentially states that reaction rate increases exponentially with temperature. This produces a straight line when plotted in log-linear paper with a slope expressed by O. O may be physically interpreted as the energy threshold of a particular reaction or failure mechanism. The activation energy exhibited by semiconductors varies from about 0.3 eV. Although the relationships do not prohibit devices from having poor failure rates and high activation energies, good performance usually does not imply a high O. Studies by Bell Telephone Laboratories have indicated that an overall O for semiconductors is 1.0 eV. This value has been accepted by the Rome Air Development Command for time-temperature acceleration in powered burn-in. Data taken by Motorola on Integrated Circuits have verified this number and it is therefore applied as our standard time-temperature regression for extrapolation of high temperature failure rates to temperatures at which the devices will be used (Figure 3). For Discrete products, 0.7 eV is generally applied.

To accomplish this, the time in device hours (t1) and temperature (T1) of the test are plotted as point P1. A vertical line is drawn at the temperature of interest (T2) and a line with a 1.0 eV slope is drawn through point P1.

Its intersection with the vertical line defines point P2, and determines the number of equivalent device hours (12). This number may then be used with the x^2 formula to determine the failure rate at the temperature of interest. Assuming T1 of 125°C at 11 of 10,000 hours, a t2 of 7.8 million hours results at a T2 of 50°C. If one reject results in the 10,000 device hours of testing at 125°C, the failure rate at that temperature will be 20%/1,000 hours using a 60% confidence level. One reject at the equivalent 7.8 million device hours at 50°C will result in a 0.026%/1,000 hour failure rate, as illustrated in Figure 4.

Three parameters determine the failure rate quoted by the manufacturer: the failure rate at the test temperature, the activation energy employed, and the difference between the test temperature and the temperature of the quoted λ . A term often used in this manipulation is the "acceleration factor" which is simply the equivalent device hours at the lower temperature divided by the actual test device hours.

Every device will eventually fall, but with the present techniques in Semiconductor design and applications, the wearout phase is extended far beyond the lifetime required. During wearout, as in infant mortality, the fallure rate is changing rapidly and therefore loses its value. The parameter used to describe performance in this area is "Median Life" and is the point at which 50% of the devices have failed. There are currently only few significant wearout mechanisms: electromigration of circuit metallization, electrolytic corrosion in plastic devices and metal fatigue for Power devices.

FIGURE 3
NORMALIZED TIME-TEMPERATURE
REGRESSIONS FOR VARIOUS ACTIVATION
ENERGY VALUES

FIGURE 4
FAILURE RATE

For increased flexibility in working with a broad range of device hours, the time-temperature regression lines have been normalized to 500°C and the time scale omitted, permitting the user to define the scale based on his own requirements.

_

"RAP" RELIABILITY AUDIT PROGRAM FOR LOGIC INTEGRATED CIRCUITS

INTRODUCTION

In Jánuary, 1977, Motorola Bipotar Digital Reliability Engineering implemented "RAP" (Rapid Reliability Assessment Program) to provide rapid assessment of the reliability newly introduced TTL Low-Power Schottky (LS) devices. This RAP concept permits rapid feedback of information on any reliability problems to the Product Engineering group so that corrective action can be quickly implemented. The RAP program is performed by the Reliability Engineering Department on samples submitted by Product, Process, or Package Engineering for obtaining a rapid look at the reliability of new products, processes, or packages. This program has been extended to standard 74F (FAST), TTL, TTL Memories, MDTL, MHTL, MECL III, MECL 10K and 10KH, MECL Memories, Macroceil Arrays, Phase Lock Loop (PLL) and CMOS Logic product families.

RELIABILITY AUDIT PROGRAM (RAP) (per Motorola specification 12MRM15301A)

PTHB — 15 psig/121°C/100% RH at rated V_{CC} for 16 hours — performed on a weekly basis. (To be performed on plastic encapsulated devices only.) Final readout at 48 hrs.

Temp Cycling — MIL-STD-833, Method 1010, 1000 cycles, Condition C, -65°C/+150°C. Interim readout at 100 cycles (plastic and hermetic packages). Sample pulled on weekly basis — final readout at 1000 cycles.

Op. Life Test — MIL-STD-883, Method 1005, Condition A (Reverse Bias) or C (Power plus Reverse Bias), T_A ≈ 145°C; readouts at 40 hrs and 250 hrs (plastic and hermetic packages). Sample pulled on weekly basis.

Report — Monthly Reliability Engineering computer printout summarizing test results.

- All standard 25°C dc and functional parameters will be measured Go/No/Go at each readout.
- Any indicated failure is first verified and then submitted to the Product Analysis Lab for detailed analysis.
- Device types sampled will be by generic type within each digital I/C product family and will include all major package assembly options (U/S bond, TC bond, ball bond, T.A.B., etc.) and all assembly locations (Korea, Malaysia, etc.).
- 16 hrs PTHB is equivalent to approximately 800 hrs of 85°C/85% RH THB for V_{CC} ≤ 15 V.
- Only moisture related failures (like corrosion) are criteria for failure on PTHB test.
- 40 hr/145°C Op Life is equivalent to 160 hr/125°C using 1.0 eV in Arrhenius equation.
- 250 hrs/145°C Op Life is equivalent to 1000 hrs/125°C using 1.0 eV in Arrhenius equation.
- Special device specifications (48A's) for logic products will reference 12MRM15301A as source of generic data for any customer required monthly audit reports.

Equivalent Gate Count

EQUIVALENT GATE COUNT

The following is a list of equivalent gate counts for some of Motorola's CMOS devices. In general for CMOS, the number of equivalent gates is equal to the total number of transistors on chip divided by four. This list includes only those devices with equivalent gate counts known at the time of this printing.

DEVICE	EQUIVALENT GATE COUNT	DEVICE	EQUIVALENT GATE COUNT
MC14000UB	3.5	MC14099B	70
MC14001B	8	MC14161B	72.5
MC14001UB	4	MC14163B	72.5
MC14002B	7	MC14174B	43.5
MC14002UB	4	MC14014B	74
MC14006B	61.5	MC14018B	38.25
MC14007UB	1.5	MC14021B	74
MC14008B	40	MC14067B	65
MC14011B	8	MC14097B	65
MC14011UB	4	MC14500B	206
MC14012B	7	MC14534B	192
MC14012UB	4	MC14175B	39.5
MC14013B	16	MC14490	136.5
MC14014B	74	MC14500B	192
MC14016B	8	MC14503B	17
MC14017B	62.5	MC14504B	37.5
MC14017B	38.25	MC14504B MC14508B	42
MC14020B	84	MC14500B MC14510B	74
MC14020B MC14021B	74	MC14511B	74 54
MC14021B	9	MC14511B MC14512B	17
MC14023UB	4.5	MC14512B MC14514B	59
MC140230B			
	59	MC14515B	67
MC14025B	9	MC14516B	61
MC14025UB	4.5	MC14517B	119
MC14028B	26	MC14518B	43.5
MC14029B	65.5	MC14520B	43.5
MC14034B	145	MC14522B	86
MC14035B	38.5	MC14526B	86
MC14040B	73	MC14527B	46
MC14042B	17.5	MC14528B	24
MC14046B	35	MC14532B	38.5
MC14049UB	3	MC14534B	206
MC14050B	6	MC14536B	103
MC14051B	48.5	MC14538B	38
MC14052B	38.5	MC14539B	20
MC14053B	38	MC14541B	93
MC14066B	13	MC14543B	52
MC14067B	65	MC14549B	122
MC14068B	8	MC14551B	35
MC14069UB	3	MC14553B	147.5
MC14071B	10	MC14555B	21
MC14072B	8	MC14556B	25
MC14073B	10.5	MC14557B	232.5
MC14075B	10.5	MC14559B	122
MC14078B	7.5	MC14568B	137.25
MC14081B	10	MC14569B	156
MC14082B	8	MC14572UB	4
MC14093B	16	MC14573	7
MC14094B	79	MC14574	9
MC14097B	65	MC14575	11

PACKAGE DIMENSIONS

The standard package availability for each device is indicated on the front page of the individual data sheets. Dimensions for the packages are given in this chapter. Surface mount packages may be special ordered by specifying the following suffixes: "D" (narrow SOIC), "DW" (wide SOIC), or "FN" (PLCC). For example, to order a guad NOR gate, use MC14001BD.

14-PIN PACKAGE

CERAMIC PACKAGE CASE 632-08

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	19.05	19.94	0.750	0.785
В	6.23	7.11_	0.245	0.280
С	3.94	5.08	0.155	0.200
D	0.39	0.50	0.015	0.020
F	1.40	1.65	0.055	0.065
G	2.54	BSC	0.100 BSC	
J	0.21	0.38	0.008	0.015
K	3.18	4.31_	0.125	0.170
L	7.62 BSC		0.300	BSC
М	0°	15°	0°	15°
N	0.51	1.01	0.020	0.040

PLASTIC PACKAGE CASE 646-06

NOTES:

- LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
- 4. ROUNDED CORNERS OPTIONAL.

	MILLIM	ETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	18.16	19.56	0.715	0.770
В	6.10	6.60	0.240	0.260_
С	3.69	4.69	0.145	0.185
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0.070
G	2.54	BSC	0.100 BSC	
Н	1.32	2.41	0.052	0.095
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	7.62	BSC	0.300	BSC
M	0°	10°	0°	10°
N	0.39	1.01	0.015	0.039

0

PACKAGE DIMENSIONS (Continued)

14-PIN PACKAGE

SOIC PACKAGE CASE 751A-02 D SUFFIX

- DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE.
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 3. CONTROLLING DIMENSION: MILLIMETER.
- 4. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.55	8.75	0.337	0.344
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
М	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS (Continued)

16-PIN PACKAGE

CERAMIC PACKAGE

CASE 620-09

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	19.05	19.55	0.750	0.770
В	6.10	7.36	0.240	0.290
С	_	4.19	_	0.165
D	0.39	0.53	0.015	0.021
Е	1.27	BSC	0.050 BSC	
F_	1.40	1,77	0.055	0.070
G	2.54	BSC	0.100 BSC	
J	0.23	0.27	0.009	0.011
K	_	5.08	_	0.200
L	7.62 BSC		0.300	BSC
M	0°	15°	0°	15°
N	0.39	0.88	0.015	0.035

PLASTIC PACKAGE CASE 648-06

J 16 PL

♦ 0.25 (0.010) M T B 3

NOTES:

- LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
- 4. "F" DIMENSION IS FOR FULL LEADS.
- 5. ROUNDED CORNERS OPTIONAL.

	MILLIMETERS		ILLIMETERS INCHES	HES
DIM	MIN	MAX	MIN	MAX
Α	18.80	21.34	0.740	0.840
В	6.10	6.60	0.240	0.260
С	3.69	4.69	0.145	0.185
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0.070
G	2.54	BSC	0.100 BSC	
Н	0.38	2.41	0.015	0.095
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300	BSC
М	0°	10°	_0°	10°
N	0.39	1.01	0.015	0.040

PLANE

D 15 PL

♦ 0.25 (0.010) M T A S

16-PIN PACKAGE

SOIC PACKAGE CASE 751B-03 D SUFFIX

NOTES:

- DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 3. CONTROLLING DIMENSION: MILLIMETER.
- 4. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
_ D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOIC PACKAGE CASE 751G-01 DW SUFFIX B-P + 0.25 (0.010) © B © R X 45° T-P - C SEATING PLANE PL

- 1. DIMENSIONS A AND B ARE DATUMS AND T IS A DATUM SURFACE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 3. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 5. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

	MILLIMETERS		INCHES	HES
DIM	MIN	MAX	MIN	MAX
Α	10.15	10.45	0.400	0.411
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
_ F	0.50	0.90	0.020	0.035
G	1.27	BSC	0.050 BSC	
J	0.25	0.32	0.010	0.012
K	0.10	0.25	0.004	0.009
_M	0°	7°	0°	7°
Р	10.05	10.55	0.395	0.415
	0.25	0.75	0.010	0.029

PACKAGE DIMENSIONS (Continued)

■ 18-PIN PACKAGE

PLASTIC PACKAGE CASE 707-02

NOTES:

- POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm(0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	22.22	23.24	0.875	0.915	
B	6.10	6.60_	0.240	0.260	
ပ	3.56	4.57	0.140	0.180	
D	0.36	0.56	0.014	0.022	
F	1.27	1.78_	0.050	0.070	
G	2.54	BSC	0.100 BSC		
H	1.02	1.52	0.040	0.060	
_	0.20	0.30	800.0	0.012	
K	2.92	3.43	0.115	0.135	
	7.62 BSC		0.300 BSC		
M	ů	15°	00	15°	
N	0.51	1.02	0.020	0.040	

- LEADS, TRUE POSITIONED WITHIN 0.25 mm (0.010) DIA. AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION.
- 2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIM "A" & "B" INCLUDES MENISCUS.
- "F" DIMENSION IS FOR FULL LEADS. "HALF" LEADS ARE OPTIONAL AT LEAD POSITIONS 1, 9, 10, AND 18.

	MILLIMETERS		INC	HES
DIM	MIIN	MAX	MIN	MAX
A	22.35	23.11	0.880	0.910
В	6.10	7.49	0.240	0.295
С	-	5.08		0.200
D	0.38	0.53	0.015	0.021
F	1.40	1.78	0.055	0.070
G	2.54	BSC	0.100 BSC	
Н	0.51	1.14	0.020	0.045
J	0.20	0.30	0.008	0.012
K	3.18	4.32	0.125	0.170
L	7.62 BSC		0.300	BSC
M	0°	15°	0°	15°
N	0.51	1.02	0.020	0.040

PACKAGE DIMENSIONS (Continued)

24-PIN PACKAGE

CERAMIC PACKAGE CASE 623-05

NOTES:

- DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARALLEL).

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	31.24	32.77	1.230	1.290
В	12.70	15.49	0.500	0.610
С	4.06	5.59	0.160	0.220
D	0.41	0.51	0.016	0.020
F	1.27	1.52	0.050	0.060
G	2.54	BSC	0.100 BSC	
J	0.20	0.30	0.008	0.012
_ K	3.18	4.06	0.125	0.160
L	15.24 BSC		0.600	BSC
М	0°	15°	0°	15°
N	0.51	1.27	0.020	0.050

PLASTIC PACKAGE CASE 709-02

- POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 mm (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
A	31.37	32.13	1.235	1.265
В	13.72	14.22	0.540	0.560
C	3.94	5.08	0.155	0.200
D	0.36	0.56	0.014	0.022
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.100 BSC	
H	1.65	2.03	0.065	0.080
J	0.20	0.38	800.0	0.015
K	2.92	3.43	0.115	0.135
ι	15.24 BSC		0.600	BSC
M	0°	15°	0°	15°
N	0.51	1.02	0.020	0.040

- 1 Master Index
- 2 Product Selection Guide
- The "Better" Program
- B and UB Series Family Data
- 5 CMOS Handling and Design Guidelines
- 6 Data Sheets
 - 7 CMOS Reliability
- 8 Equivalent Gate Count
- Packaging Information Including Surface Mounts

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands Milton Keynes, MK145BP, England.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong.