Skim read the info on the link below (Link is in the chat).

Assignment Project Exam Help

UK Home Office open letter to Mark Zuckerberg about endhttps://powcoder.com

Ada-weenaryptiveoder

https://homeofficemedia.blog.gov.uk/2019/11/05/factsheet

-encryption/

Symmetric Encryption

https://powcoder.com

Overview

- Key bits Symmetric not a history
- Computationally secure cipher
- Feistel Structusignment Project Exam Help
- DES

https://powcoder.com

- 3DES
- AES Add WeChat powcoder
- End-to-end encryption

Classified along three independent dimensions:

The type of operations used for transforming plain Assignment Projects Exan ciphertext

- Substitution each element in the http://powcoder.com plaintext is mapped into another element
- Transposition elements in plaintex Add WeChat powcoder

The way in which the

- Block cipher processes input one block of elements at a
- Stream cipher processes the

The number of keys used

- Sender and receiver use same key symmetric
- Sender and receiver each use a different key - asymmetric

Completed last week

Completed on Tuesday

From Today

Symmetric Encryption

- Also referred to as:
 - Conventional encryption
 - Secretskeg tonsingterkeyjentryptiom Help
- Only alternative before public-key encryption in 1970's
 - Still most widely used alternative oder
- Has five ingredients:
 - Plaintext
 - Encryption algorithm
 - Secret key
 - Ciphertext
 - Decryption algorithm

Computationally Secure Encryption Schemes

- Encryption is computationally secure if:
 - Cost of breaking cipher exceeds value of information
 - Time required to the sinformation
- Usually very difficult to estimate the amount of effort required to break
- Can estimate time/cost of a brute-force attack did this in last lecture [timing consideration]

- Used in block ciphers
- No of steps
 - Plaintext divided into Left and Right 1)
 - 2) Function is used on the right text and also receive key (function depends on what algorithm you use e.g. DES or 3DES)
 - Results of function is Assignment Project Exam Heir 3) XOR with plaintext from left
 - 4) Plaintext of right goes to left
 - Results of XOR goes to 5) right
- These new left and right texts 6) become inputs for further rounds

Figure 20.1 Classical Feistel Network

Block Cipher Structure

Symmetric block cipher consists of:

analysis

- A sequence of rounds
- With substitutions and permutations controlled by key
- Parameters also design features: am Help

https://powcoder.com Subkey Number of poweoder **Block size** generation algorithm **Fast** Ease of

software Round function encryption/ decryption

- Most widely used encryption scheme
- Adopted in 1977 by National Bureau of Standards (Now NIST)
- FIPS PUB 46
- Algorithm is referred to as the Data Encryption Algorithm (DEA)
- Minor variation of the Feistelment Project Exam Help network
- Used 16 rounds of Feistel cipher Encry Pulon Encry P
- Block size 64 bits
- Key size is 64 bits but effective WeChat powcock key size is 56 bits, 8 bits of the key are check bits (64 bits – 8 check bits = 56 bits key size)

Standard (DES)

- 1) Permutation Assignment
- 2) Round function
- 3) Key generation

DES process

Plaintext is represented in 64 bits

1	2	3	4	5	6	7	8
9	1	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	ı	-
-	-	1	-	-	-	ı	-
-	-	1	-	-	-	1	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	64

Permutation in DES

In initial permutation 58 bit hac properties firs Exosition and 7 becomes last

https://powcoder.com

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

3DES

- A quick solution to overcome the DES weakness was 3-DES
- To save time and money
- K3==K1 2 keys of 56 bits 112 bits
- Problem: too slow

AES

- DES→ Key size too small, exhaustive key search possible with increasing computing power
- 3-DES \rightarrow too slow
- Alternative is AES
- Key features of AES:

 - Block cipher
- 3) 128-bit data, 128/192/256 bit keys,
- 4) Stronger and faster than Triple-DES
- Not based on Feistel structure 5)
- 6) Iterative - a no of substitution & permutation
- Performed operations on bytes 7) rather than on bits
- 8) 128 bits - 16 bytes: arranged in 4 x 4 matrix
- 9) No of rounds depend on key size; 10 for 128 bits, 12 192 bits and 14 for 256 bits
- Each round use a unique key 10)

Figure 20.3 AES Encryption and Decryption

Figure 20.4 AES Encryption Round

Table 20.2 AES S-Boxes

(a) S-box

		У															
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	94.5	\ <u>\$</u> †60	nin	efft	Pro	iec	t 34)	k a fr	E5 (elp	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	.6E	5A	Α0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	120°	·fcl	BY	5BC	6A	SB1	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
l x	7	51	А3	40	8F	de	AM (381	ats [lok	21	10	FF	F3	D2
^	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0B	DB
	Α	E0	32	ЗА	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	Α9	6C	56	F4	EA	65	7A	AE	80
	U	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

Table 20.2 AES S-Boxes

(b) Inverse S-box

									J	/							
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CB
	2	54	7B	AS	sbgt	Me	1772	ro	eot	EX	am		10 B	42	FA	СЗ	4E
	3	08	2E	A1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86.	/9/8	98	486	,D4,	A4	5C	CC	5D	65	В6	92
	5	6C	70	48	50	F	ÉD	В9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	ВС	D3	0A	F7	E4	58	05	B8	В3	45	06
x	7	D0	2C	1E	8 /		Vyre	OA2	to:p() ØA C	Oele	BD	03	01	13	A8	6B
^	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	Α	47	F1	1A	71	1D	29	C5	89	6F	B7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	С	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	Е	A0	E0	3B	4D	AE	2A	F5	B0	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

Shift Rows

Assignment Project Exam Help

Decryptichttps://powcoder.com
does
reverse Add WeChat powcoder

On encryption left rotate each row of State by 0,1,2,3 bytes respectively Assignment Project Exam Help

https://powcoder.com

Mix Columns and Add Key

Mix columns

- Operates on each column individually
- Mapping each byte to a new value that is a function of all four bytes in the column

Assignment Project Exam Help
$$\begin{bmatrix} SX & 0 & 0 & 0 \\ am & Help & 0 \\ 0 & 0 & SZ & 0 \\ 0 & 0 & SZ & 0 \\ com & 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} SX \cdot x \\ SY \cdot y \\ SZ \cdot z \\ 1 \end{pmatrix}$$
Use of equations over finite fields

A finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules

To provide good mixing of bytes in column

Add round key

- Simply XOR State with bits of expanded key
- Security from complexity of round key expansion and other stages of AES

Key Distribution

- The means of delivering a key to two parties that wish to exchange data without allowing others to see the key
- Two parties (A and B) can achieve this by: Assignment Project Exam Help

https://powcoder.com

A key could be selected by A and physically delivered to B

- A third party could select the key and physically deliver it to A and B
- If A and B have previously and recently used a key, one party could transmit the new key to the other, encrypted using the old key
- If A and B each have an encrypted connection to a third party C,
 C could deliver a key on the encrypted links to A and B

Figure 20.10 Automatic Key Distribution for Connection-Oriented Protocol

Criminals use of end-to-end encryption

 https://privasyigementorlangeg/newerarygis/3242/no-uk -hasnt-just-signed-treaty-meaning-end-end-end-encryption
 on https://powcoder.com