Image Detail

My Tags Add a tag and press enter

riculctions	
Tag	Probability
dog	87.3%
sneezing	80.7%
indoors	80.4%
outdoors	15.3%
cat	8.9%

Save and close

X

The results for the AII trained above vs pre-trained Azure Computer Vision below

Detected attributes JSON

Dredictions

mammal (98.44%)
dog (98.20%)
dog breed (98.15%)
animal (96.47%)
snout (95.49%)
pet (94.69%)
dog collar (85.86%)
collar (85.02%)
pit bull (72.46%)
brown (71.44%)
yellow (62.36%)
outdoor (60.70%)
bulldog (49.34%)

Ai performance Iteration 1

Tag	Precision	^ Recall	A.P.	Image count 🛕
<u>sheep</u>	100.0%	92.3%	99.5%	64
<u>pig</u>	100.0%	80.0%	97.0%	73
<u>happy</u>	100.0%	100.0%	100.0%	6
dog	77.8%	77.8%	75.9%	42
<u>cat</u>	75.0%	75.0%	86.3%	41
<u>horse</u>	50.0%	33.3%	58.9%	16
<u>outdoors</u>	33.3%	14.3%	47.6%	63
<u>energetic</u>	20.0%	100.0%	20.0%	7

Al Performance Iteration 4 (Advanced training) The precision, recall and AP %s are all

Performance Per Tag

Tag	Precision ^	Recall	A.P.	Image count 🛕
<u>sheep</u>	100.0%	84.6%	93.2%	64
<u>pig</u>	100.0%	100.0%	100.0%	73
<u>indoors</u>	100.0%	25.0%	58.5%	20
COW	100.0%	100.0%	100.0%	79
<u>cat</u>	100.0%	96.2%	99.7%	127
<u>horse</u>	94.1%	100.0%	100.0%	69
dog	92.3%	100.0%	96.1%	118
outdoors	84.0%	67.7%	89.8%	158
<u>standing</u>	33.3%	20.0%	40.3%	51
walking	0.0%	0.0%	22.9%	18
sociable	0.0%	0.0%	19.4%	20
running	0.0%	0.0%	51.0%	13

Azure Computer vison –common tags extractor

grass (99.69%)
mammal (98.15%)
animal (96.67%)
outdoor (94.95%)
dog breed (94.80%)
dog (92.03%)
pet (88.66%)
german shepherd (87.87%)

mouth (59.73%)

black (65.75%)

vs our refined animal behavior analyser

My Tags

Add a tag and press enter

Predictions

Tag	Probability
dog	92.4%
agressive	84.4%
outdoors	77.2%
sociable	14.3%
energetic	13%

Save and close

Iteration 4

Predictions Tag Probability cat 72.9% dog 66.8% outdoors 36.4% laying 34.6% walking 8%

Vs Iteration 2

Image URL

https://wallpaperacces

Browse local files

File formats accepted: jpg, png, bmp File size should not exceed: 4mb

Using model trained in

Iteration

Iteration 2 💙

Predictions

Tag	Probability
dog	79.3%
outdoors	41.4%
cat	32.6%
pig	24.9%
walking	21.7%

Most importantly the errors in tagging are wrong. Specifically, the 24.9% that the animal is a pig is gone from the top 5 tags, and it actually fell to 1.2% which is a very large improvement.