Uebungsblatt 1

André Harms, Oliver Steenbuck

19.04.2012

Inhaltsverzeichnis

1	Aufgabe 1		
	1.1	Formale Definition des Netzes	
	1.2	Schalthäufigkeit	
2	Auf	gabe 2	
	2.1	Formale Definition des Netzes	
	2.2	Schalthäufigkeit	
3			
	3.1	Formale Definition des Netzes	
	3.2	Schaltschritte	
		3.2.1 Schaltschritt 1	
		3.2.2 Schaltschritt 2	
	3.3	Konflikte	
4	Auf	gabe 4	

Abbildungsverzeichnis

Listings

1 Aufgabe 1

1.1 Formale Definition des Netzes

$$N = \{P, T, W, M_0\} \tag{1}$$

$$P = \{p1, p2, p3, p4\} \tag{2}$$

$$T = \{t1, t2, t3\} \tag{3}$$

$$W(x,y) = \begin{cases} 2 \text{ ;falls } (x,y) \in \{(t1,p2), (t2,p3)\} \\ 1 \text{ ;falls } (x,y) \in \{(p1,t1), (p2,t2), (p3,t3), (t3,p1), (t3,p4)\} \\ 0 \text{ ;sonst} \end{cases}$$

$$M_0(x) = \begin{cases} 1 \text{ ;falls } x = p1 \\ 0 \text{ ;sonst} \end{cases}$$

$$(5)$$

$$M_0(x) = \begin{cases} 1 \text{ ;falls } x = p1\\ 0 \text{ ;sonst} \end{cases}$$
 (5)

1.2 Schalthäufigkeit

Das Netz kann beliebig oft schalten.

2 Aufgabe 2

2.1 Formale Definition des Netzes

$$N = \{P, T, W, M_0\} \tag{6}$$

$$P = \{p1, p2, p3, p4\} \tag{7}$$

$$T = \{t1, t2, t3\} \tag{8}$$

$$W(x,y) = \begin{cases} 2 \text{ ;falls } (x,y) \in \{(t1,p2), (t2,p3)\} \\ 1 \text{ ;falls } (x,y) \in \{(p1,t1), (p2,t2), (p3,t3), (t3,p1), (t3,p4)\} \\ 0 \text{ ;sonst} \end{cases}$$
(9)

$$M_0(x) = \begin{cases} 1 & \text{;falls } x = p1 \\ 0 & \text{;sonst} \end{cases}$$
 (10)

$$M_0(x) = \begin{cases} 1 & \text{;falls } x = p1 \\ 0 & \text{;sonst} \end{cases}$$

$$K(x) = \begin{cases} 7 & \text{;falls } x = p1 \\ 4 & \text{;falls } x = p4 \\ \omega & \text{;sonst} \end{cases}$$

$$(10)$$

Generiert am: 5. April 2012

Oliver Steenbuck, André Harms

2.2 Schalthäufigkeit

Nein, da durch die Kapazität auf p4 die Transition t3 maximal 4 mal geschaltet werden kann und p1 diese Transition benötigt.

3 Aufgabe 3

3.1 Formale Definition des Netzes

$$N = \{P, T, F, M_0\} \tag{12}$$

$$P = \{p1, p2, p3\} \tag{13}$$

$$T = \{t1, t2, t3\} \tag{14}$$

$$F(x,y) = \begin{cases} 1 \text{ ;falls } (x,y) \in \{(p1,t1),(t1,p2),(t1,p3),(p2,t2),(t2,t1),(p3,t3),(t3,p1)\} \\ 0 \text{ ;sonst} \end{cases}$$

(15)

$$M_0(x) = \begin{cases} 1 \text{ ;falls } x = p1\\ 0 \text{ ;sonst} \end{cases}$$
 (16)

3.2 Schaltschritte

3.2.1 Schaltschritt 1

$$t1$$
 ist M-aktiviert da gilt $p \in \bullet t1 : M(p) \ge W(p, t1)$ (17)

genauer
$$\{M(p1) \ge W(p1, t1) = 1 \ge 1$$
 (18)

$$M^{'}(p)$$
 bestimmt sich also durch $M(p)-W(p,t1)+W(t1,p)$ für $p\in P$ (19)

genauer
$$\begin{cases} M'(p1) = M(p1) - W(p1, t1) + W(t1, p1) = 1 - 1 + 0 = 0 \\ M'(p2) = M(p2) - W(p2, t1) + W(t1, p2) = 0 - 0 + 1 = 1 \\ M'(p3) = M(p3) - W(p3, t1) + W(t1, p3) = 0 - 0 + 1 = 1 \end{cases}$$
(20)

$$M \stackrel{t1}{\to} M^{'}$$
 (21)

Generiert am: 5. April 2012

Oliver Steenbuck, André Harms

3.2.2 Schaltschritt 2

$$t2$$
 ist M-aktiviert da gilt $p \in \bullet t2 : M(p) \ge W(p, t2)$ (22)

genauer
$$\{M(p2) \ge W(p2, t2) = 1 \ge 1$$
 (23)

$$M^{'}(p)$$
 bestimmt sich also durch $M(p)-W(p,t2)+W(t2,p)$ für $p\in P$ (24)

genauer
$$\begin{cases} M^{'}(p1) = M(p1) - W(p1, t2) + W(t2, p1) = 0 - 0 + 1 = 1\\ M^{'}(p2) = M(p2) - W(p2, t2) + W(t2, p2) = 1 - 1 + 0 = 0\\ M^{'}(p3) = M(p3) - W(p3, t2) + W(t2, p3) = 1 - 0 + 0 = 1 \end{cases}$$
 (25)

$$M \stackrel{t2}{\to} M'$$
 (26)

3.3 Konflikte

Es besteht ein Rückwärtskonflikt bei p1 da die beiden Tansitionen t2 und t3 nach schalten.

4 Aufgabe 4