Monads and other abstractions

John Wiegley

4 Jul 2014

Mathematics

Meaning

There isn't any.

Abstraction

Structures, and relationships between structures.

"Stuff"

A set is a collection of elements.

"Stuff"

A set is a collection of elements.

```
type Set a = a -> Bool
```

Extensional

Can be defined by stating its elements.

{ True, False }

Intensional

Or by describing them.

```
\{ x \mid x \in \mathbb{N}, even(x) \}
```

Distinction

Values can be extensionally equal, but intensionally distinct.

$$n\mapsto 2(n+5)$$
$$n\mapsto 2n+10$$

Deceptively simple

With just a definition of sets, and seven axioms (and we've already seen two!), you can generate a good part of mathematics.

Functions

As maps

Higher-order functions

id
$$x = x$$

$$(f\circ g)\ x=f(g(x))$$

Properties of functions

$$f: cod \rightarrow dom$$

Properties of functions

$$f: cod \rightarrow dom$$

Definition (Idempotent)

$$f \circ f = f$$

Properties of functions

 $f: cod \rightarrow dom$

Definition (Idempotent)

$$f \circ f = f$$

Definition (Involutive)

$$f \circ f = id$$

Homomorphism

"Structure preserving."

Isomorphism

An isomorphism is a pair of functions satisfying two equations:

$$f \circ g = id_{dom(f)}$$
 $g \circ f = id_{dom(g)}$

Isomorphism

In terms of the types involved:

$$A \cong B$$

$$g:A\rightarrow B$$

$$f:B\to A$$

Laws

Algebras

Algebraic

Structures

Magmas

Semigroups

Monoids

Groups

Type Algebras

Equational Reasoning

Quantification

Existential

$$\exists p, P(p)$$

Universal

 $\forall p, P(p)$

Universal

True?

 $\forall x, \exists y \rightarrow x = y$

Universal

True?

 $\forall \ x, \ \exists \ y \rightarrow x \neq y$

Parametricity

Curry-Howard

Isomorphism

Free objects

Category Theory

Functors

Applicatives

Monads

Free Monads