1. Méthodologie

L'objectif de ce projet est de développer un modèle prédictif fiable pour estimer les prix des biens immobiliers au Maroc à partir d'un ensemble de données collectées en ligne. Plusieurs étapes ont été suivies : collecte des données, exploration, nettoyage, transformation, sélection de variables, modélisation et évaluation.

2. Analyse Exploratoire des Données (EDA)

- ➤ **Dimensions** du jeu de données : 9595 lignes × 9 colonnes.
- Colonnes principales : surface, ville, nombre_chambres, prix, type_bien, meublé, garage, balcon, ascenseur.
- ➤ Valeurs manquantes : Quelques valeurs nulles ont été détectées dans surface et nombre chambres.
- ➤ Valeurs aberrantes : Des prix supérieurs à 10 millions MAD ou des surfaces supérieures à 1000 m² ont été considérés comme extrêmes.
- ➤ Corrélation : surface, nombre_chambres, et la ville ont montré une certaine corrélation avec prix.

3. Prétraitement des Données

✓ Nettoyage :

Suppression des doublons.

Remplissage ou suppression des valeurs manquantes.

✓ Conversion de texte :

Un dictionnaire de traduction a été utilisé pour convertir les villes de l'arabe au français.

✓ Encodage :

Variables catégorielles (ville, type bien) encodées en One-Hot.

✓ Normalisation :

Les variables numériques ont été standardisées pour les modèles sensibles à l'échelle comme SVR.

✓ Division des données :

Train-test split: 80% entraînement / 20% test.

4. Modèles Testés

Les modèles suivants ont été testés avec validation croisée et optimisation d'hyperparamètres :

- **Régression Linéaire**
- > Random Forest
- **➢** Gradient Boosting
- > SVR (Support Vector Regression)

Chaque modèle a été évalué avec :

- ♦ MAE (Mean Absolute Error)
- ♦ RMSE (Root Mean Squared Error)
- ♦ R² (coefficient de détermination)
- ♦ Validation croisée (R² moyen et écart-type)

5. Résultats

Modèle	MAE	RMSE	R ² Test	R ² CV (moyen ± écart-type)
Régression Linéaire	$\approx 280~000$	$\approx 370~000$	0.16	0.16 ± 0.06
Random Forest	272 677.57	359 874.18	0.18	0.11 ± 0.08
Gradient Boosting	273 818.86	366 679.85	0.15	0.16 ± 0.06
SVR	300 373.99	400 680.74	-0.02	-0.02 ± 0.02

6. Conclusion

Meilleur modèle selon R^2 test : Random Forest ($R^2 = 0.18$)

Meilleur modèle selon validation croisée : Régression Linéaire & Gradient Boosting ($R^2 = 0.16$)

SVR ne performe pas bien sur ces données probablement à cause de la distribution des prix très dispersée.

Améliorations possibles:

- Ajouter plus de variables explicatives (quartier, année de construction...).
- Appliquer un logarithme sur prix pour réduire la variance.
- Entraîner des modèles plus robustes ou des réseaux de neurones.