Assignment-Regression Algorithm

Problem Statement or Requirement:-

A Client's requirement is, he wants to predict the insurance charges based on several parameters. The Client has provided the dataset of the same

1. Identify Your Problem Statement:-

Client need to predict the insurance charges based on various types of people

1.Domain Selection:

Requirement is fully clear from the client. So it comes under Machine Learning.

2.Learning Selection:

Input and respective output data is present. So it comes under Supervised learning.

3. Regression & Classification:-

The output data values comes under numbers. So regression is the perfect method to sort this problem.

2. Tell basic info about the dataset:-

There are 6 Columns and 1339 Rows are present in the dataset

3. Pre-Processing Method:-

Yes, Here converted categorical data into nominal data which is called **One Hot Coding**. Because Al could not understand words, It only can understand "**0** and **1**"

4. Develop a good model with r2 score: - MULTIPLE LINEAR

Multiple linear r2_score = 0.7894

Develop a good model with r2 score: - SVM-REGRESSION

KERNEL	C=0.01	C=10	C=100
	r2_Score	r2_Score	r2_Score
rbf	-0.0897	-0.0897	-0.0897
poly	-0.0897	-0.0897	-0.0897
sigmoid	-0.0897	-0.0897	-0.0897
linear	-0.0897	-0.0897	-0.0897

<u>Develop a good model with r2_score</u>:- DECISION TREE

CRITERION	SPLITTER	MAX_FEATURES	r2_Score
friedman_mse	best auto		0.7178
friedman_mse	best sqrt		0.7138
friedman_mse	best	log2	0.7521
friedman_mse	random	auto	0.7538
friedman_mse	random	sqrt	0.7162
friedman_mse	random	log2	0.7213

Develop a good model with r2_score:- RANDOM FOREST

n_estimators	criterion	max_features	random_state	r2_Score
20	friedman_mse	sqrt	0	0.8590
20	friedman_mse	log2	0	0.8590
50	friedman_mse	sqrt	0	0.8700
50	friedman_mse	log2	0	0.8700
100	friedman_mse	sqrt	0	0.8709
100	friedman_mse	log2	0	0.8709

5. Reason for choosing this model:-

I did four types of algorithms, which are **Multiple Linear,SVM,Decision tree,Random Forest.** All r2_score values are noted. First three algorithms are given poor value while random forest gives the best "**r2=0.8709**" value. The accuracy is perfect compared to other algorithms,So I chose the "**RANDOM FOREST**" algorithm.