Algorithmique & Programmation (Suite) Chapitre 2- -

TD - 02

Savoirs et compétences :

On a $u_n = u_{n-1} + u_{n-2} + 1$ avec $u_0 = u_1 = 1$ $(n \ge 2)$. Soit $v_n = v_{n-1} + v_{n-2}$ avec $v_0 = 2$ $v_1 = 2$.

Montrons que $u_n = v_n - 1 \ \forall n \ge 2$

- Initialisation : au rang 2, on a d'une part $u_2 =$ $u_1 + u_0 + 1 = 3$ et d'autre part $v_2 = v_1 + v_0 = 4$; donc $u_2 = v_2 - 1$.
- Hypothèse de récurrence : on suppose la relation de récurrence vraie jusqu'au rang n.
- Vérifions que la relation est vraie au rang n+1: On a d'une part $u_{n+1} = u_n + u_{n-1} + 1$ et d'autre part, $v_{n+1} = v_n + v_{n-1}$.

Montrons que $u_{n+1} - v_{n+1} = -1$.

$$\underbrace{u_{n+1} - v_{n+1}}_{-1} = u_n + u_{n-1} + 1 - v_n - v_{n-1} = \underbrace{u_n - v_n}_{-1} + \underbrace{u_{n-1} - v_{n-1}}_{-1} + 1 = -1$$
. La propriété est donc vraie au rang $n+1$.

Recherchons le terme général de la suite v_n .

L'équation caractéristique associée à v_n est $x^2-x-1=$

0.

On a alors
$$\Delta = 1 + 4 = 5$$
. En conséquence $x_1 = \frac{1 - \sqrt{5}}{2}$

et
$$x_2 = \frac{1+\sqrt{5}}{2}$$
.

et $x_2 = \frac{1+\sqrt{5}}{2}$. Au fir On peut donc écrire v_n sous la forme $v_n = \begin{vmatrix} n \text{ tend vo} \\ \text{Au fir} \\ \text{vers } x_2^n \end{pmatrix}$.

$$\lambda \left(\frac{1-\sqrt{5}}{2}\right)^n + \phi \left(\frac{1+\sqrt{5}}{2}\right)^n.$$
Pour $n = 0$, on a $2 = \lambda + \phi$. Pour $n = 1$ on a $2 = \lambda \frac{1-\sqrt{5}}{2} + \phi \frac{1+\sqrt{5}}{2}$.

En conséquence, on pose $\phi = 2 - \lambda$ et $2 = \lambda \frac{1 - \sqrt{5}}{2} + \frac{1 - \sqrt{5}}{2}$

$$(2-\lambda)\frac{1+\sqrt{5}}{2} \iff 4 = \lambda(1-\sqrt{5}) + (2-\lambda)(1+\sqrt{5})$$

$$\iff 4 = \lambda - \lambda\sqrt{5} + 2 + 2\sqrt{5} - \lambda - \lambda\sqrt{5}$$

$$\iff 1 = -\lambda\sqrt{5} + \sqrt{5} \iff \lambda = \frac{\sqrt{5} - 1}{\sqrt{5}}$$
Au final, $\lambda = \frac{\sqrt{5} - 1}{\sqrt{5}}$ et $\phi = 2 - \frac{\sqrt{5} - 1}{\sqrt{5}} = \frac{\sqrt{5} + 1}{\sqrt{5}}$.

Retour à u_n

1

Whate at rang
$$n+1$$
.

Recherchons le terme général de la suite v_n .

L'équation caractéristique associée à v_n est $x^2-x-1=$

On a alors $\Delta=1+4=5$. En conséquence $x_1=\frac{1-\sqrt{5}}{2}$

Or $\left|\left(\frac{1-\sqrt{5}}{2}\right)^n+\frac{\sqrt{5}+1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^n-1\right|$
 $Or\left|\left(\frac{1-\sqrt{5}}{2}\right)\right|<1$. Donc $\left(\frac{1-\sqrt{5}}{2}\right)^n$ tend vers 0 quand n tend vers l'infini.

Au final, la complexité est donc exponentielle (u_n tend