96 交通大學 資料結構與演算法

1.

(a) 10, 20, 24, 25, 26, 40, 45, 55

(注意原程式碼與正常的 Quicksort 不太一樣)

(b)
$$T(n) = 2T(n/2) + n$$
, so, $T(n) = \theta(n\log n)$

(c)
$$T(n) = T(n-1) + n$$
, so, $T(n) = \theta(n^2)$

2.

3. (a) $\theta(n)$ (b) $\theta(n^2)$ (c) $\theta(n^2)$ (d) $\theta(n^5)$ (e) $\theta(n^4)$

4. (a)

(1)

(2)

(b)

$$\begin{cases}
N(H) = N(H - 1) + 1 \\
N0 = 1, N2 = 2
\end{cases}$$

解遞迴式, N(H) = F_{h+2} - 1, 其中 F 為 Fibonacci number

5.

6. ?

7.

將一串 string 依各 letter 出現的次數或頻率,令其為 set 中的值,每次將 set 中的值最小之兩個取出相加後,形成一個新的 element,並將此值 push 入 set 中,不斷運作直到 set 中值的個數 ==1

此時,Huffman tree 之 leaf 皆為 letter,依其 path 將左子樹編碼為 $\mathbf{0}$,右子樹編碼為 $\mathbf{1}$,即可得 Huffman code,其 weight*path 之 code 最小。

8. ?