Simulación de empaquetamiento de objetos poligonales

Susana Ruiz Nuñez

Resumen

Un artículo suele empezarse con un resumen.

Palabras clave: Empaquetamiento, simulación.

1. Introducción

En este proyecto

2. Antecedentes

Se conoce que incluso la versión unidimensional del problema de encontrar el óptimo al uso de un recurso dado, el problema clásico de la mochila, pertenece a la clase de NP-difícil de problemas de optimización. Por esta razón, la mayor parte del trabajo relacionado con problemas de corte y embalaje emplean enfoques heurísticos. No obstante, el desarrollo de métodos de solución exactos es una tarea importante para ampliar la gama de casos óptimos solucionables [7].

El problema de empaquetamiento en un rectángulo con dimensiones (largo o/y ancho) abiertas es conocido como "Bin Packing Problem". En este problema un conjunto de objetos (por ejemplo, polígonos convexos o círculos) se debe cortar de una faja o placa de forma rectangular. Los objetos pueden ser orientados libremente.

Existen dos formas a mencionar; cuando las placas de diseño necesitan ser producidas, o se encuentran ya disponibles en stock. El objetivo es minimizar el área de los rectángulos de diseño. Las placas de diseño están sujetos a los límites inferior y superior de sus anchos y longitudes [6].

3. Trabajos relacionados

Se encuentran publicaciones sobre el empaquetamiento de círculos en un rectángulo que minimice el área del mismo [5]. En [2] una serie de óptimos locales se proponen para minimizar el área de un rectángulo que contiene un conjunto de círculos. En [4] se consideran el problema de empaque de círculos en rectángulos y otras formas geométricas. Otro trabajo que vale la pena mencionar es [3] donde calculan el perímetro mínimo en rectángulos que encierran círculos congruentes no superpuestos. Otro enfoque interesante está propuesto en [1] donde se formuló el problema de empacar un conjunto de círculos de diferentes tamaños dentro del área del cuadrado más pequeño posible como un problema de

programación no lineal (NLP) y estableció las condiciones de primer orden de optimalidad.

- 4. Modelo propuesto
- 5. Implementación de la simulación
- 6. Experimentos (diseño, resultados y discusión)
- 7. Conclusiones
- 8. Trabajo futuro

Referencias

 Ozcan E. Atkin J. A. D. Baumers M Araujo, L. J. P. Analysis of packing problems

- in additive manufacturing: a new taxonomy and dataset. URL https://doi.org/10.1080/00207543.2018.1534016.
- [2] Scheithauer G. Stoyan Y Bennell, J. Optimal clustering of a pair of irregular objects. URL https://doi.org/10.1007/s10898-014-0192-0.
- [3] Yousef L Hifi M. A local search-based method for sphere packing problems.
- [4] Kallrath J. Cutting circles and polygons from area-minimizing rectangles. URL https://doi.org/10.1007/s10898-007-9274-6.
- [5] Graham R Lubachevsky, B.D. Minimum perimeter rectangles that enclose congruent non-overlapping circles.
- [6] Pankratov A. Romanova T., Litvinchev I. Packing ellipsoids in an optimized cylinder.
- [7] Leao A. A. S. Irregular packing problems: a review of mathematical models. URL https://doi.org/10.1016/j.ejor.2019.04.045.