Analysis of Algorithms, I CSOR W4231.002

Eleni Drinea Computer Science Department

Columbia University

Tuesday, February 16, 2016

Outline

- 1 Recap: matrix chain multiplication
 - Organizing DP computations
- 2 Segmented least squares
 - An exponential recursive algorithm
- 3 A Dynamic Programming (DP) solution
 - A quadratic iterative algorithm
 - Applying the DP principle

Today

- 1 Recap: matrix chain multiplication
 - Organizing DP computations
- 2 Segmented least squares
 - An exponential recursive algorithm
- 3 A Dynamic Programming (DP) solution
 - A quadratic iterative algorithm
 - Applying the DP principle

Matrix chain multiplication

Input

- $ightharpoonup n matrices A_1, A_2, \ldots, A_n;$
- ▶ matrix A_i has dimensions $p_{i-1} \times p_i$.

Output

- ▶ a way to compute the product $A_1 \cdots A_n$ so that the number of scalar multiplications performed is minimized;
- ▶ the minimum number of scalar multiplications.

Remark 1.

- ▶ We do not want to compute the actual product.
- ▶ We want an optimal solution and its cost.
- ► There may be many optimal solutions (with the same cost).

Parenthesized products of matrices

Definition 1.

A product of matrices is fully parenthesized if it is

- 1. a single matrix; or
- 2. the product of two parenthesized matrices, surrounded by parentheses.

Examples: A_1 , (A_1A_2) , $((A_1A_2)A_3)$ are fully parenthesized.

Remark: a parenthesization defines a way to compute the product of the input matrices. Thus the cost of the optimal parenthesization is the minimum cost of computing $A_1 \cdots A_n$.

A divide and conquer attempt

Let $A_{i,j} = \text{optimal parenthesization of the product } A_i \cdots A_j$.

By Definition 1, there exists $1 \le k^* \le n-1$ such that

$$A_{1,n} = ((A_1 \cdots A_{k^*})(A_{k^*+1} \cdots A_n)).$$

In fact, we showed something stronger:

$$A_{1,n} = (A_{1,k^*} \ A_{k^*+1,n})$$

Hence, the overall optimal solution contains optimal solutions to subproblems (optimal substructure).

A recurrence for the optimal cost

Notation: OPT(i, j) =optimal cost for computing $A_i \cdots A_j$.

- $PT(1,n) = OPT(1,k^*) + OPT(k^* + 1,n) + p_0 p_{k^*} p_n$
- \Rightarrow If we knew k^* , we could compute OPT(1, n) recursively!
 - ▶ Solution: consider every possible value for k; set k^* to the one that achieves the minimum cost. Then

$$\begin{split} OPT(1,n) &= & \min_{1 \leq k < n} \left\{ OPT(1,k) + OPT(k+1,n) + p_0 p_k p_n \right\} (1) \\ k^* &= & \arg \min_{1 \leq k < n} \left\{ OPT(1,k) + OPT(k+1,n) + p_0 p_k p_n \right\} \end{split}$$

△ Recurrence (1) yields an **exponential** recursive algorithm (overlapping subproblems).

Elements of DP in matrix chain multiplication

- 1. Overlapping subproblems
- 2. An "easy-to-compute" recurrence for the cost of the optimal solution in terms of the costs of optimal solutions to appropriate subproblems.
- 3. A **natural ordering** of the subproblems from smallest to largest that will allow us to solve them **iteratively**, in a bottom-up fashion.
- 4. A polynomial number of subproblems.

From recursion to dynamic programming

Recurrence (1) offers a natural ordering of the subproblems OPT(i, j) from smaller to larger: for $1 \le i \le j \le n$, let

$$OPT(i,j) = \left\{ \begin{array}{ll} 0 & \text{, if } i = j \\ \min_{i \leq k < j} \left\{ OPT(i,k) + OPT(k+1,j) + p_{i-1}p_kp_j \right\} & \text{, if } i < j \end{array} \right.$$

- ► There are $\Theta(n^2)$ subproblems that can be computed iteratively, from smaller to larger, by increasing the difference j i.
- We want OPT(1, n).
- ▶ OPT(i, j) requires $\Theta(j i) = O(n)$ work **if**, when solving OPT(i, j), we have already solved all subproblems it uses.

Dynamic programming table M

Define matrices M[1:n,1:n], S[1:n-1,2:n].

▶ For $i \leq j$, M[i, j] stores OPT(i, j).

$$M[i,j] = \left\{ \begin{array}{ll} 0 & \text{, if } i = j \\ \min_{i \leq k < j} \left\{ M[i,k] + M[k+1,j] + p_{i-1}p_kp_j \right\} & \text{, if } i < j \end{array} \right. \label{eq:main_model} \tag{2}$$

▶ For i < j, S[i, j] stores optimal division point for $A_i \cdots A_j$.

$$S[i,j] = \ell, \quad \text{if } A_{i,j} = A_{i,\ell} A_{\ell+1,j}$$
 (3)

S allows for fast reconstruction of the optimal parenthesizaton (coming up).

Filling in M

- ightharpoonup Only need fill in the half of M above (and including) the main diagonal.
- Starting from the main diagonal, fill in M diagonal by diagonal.
- ▶ Last entry to fill in: M[1, n], corresponding to the optimal cost for computing $A_1 \cdots A_n$.
- ▶ Time to fill in the entries of M, S: $O(n^3)$
 - $ightharpoonup \Theta(n^2)$ entries to fill in
 - each entry requires $\Theta(j-i) = O(n)$ work
- ▶ Space: $\Theta(n^2)$

Example: $n = 4, p_0 = 6, p_1 = 1, p_2 = 5, p_3 = 2, p_4 = 3$

Use recurrences 2, 3 to fill in tables M, S for the following instance:

- $6 \times 1 \text{ matrix } A_1$
- ▶ 1×5 matrix A_2
- ▶ 5×2 matrix A_3
- ▶ 2×3 matrix A_4
- 1. Entry M[i,j] is the cost OPT(i,j) of subproblem $A_i \cdots A_j$.
- 2. S[i,j] gives the optimal division point for subproblem $A_i \cdots A_j$.
- 3. Subproblems are defined for $i \leq j$; only subproblems with i < j have division points (thus the rows of S correspond to i = 1, 2, 3 while its columns to j = 2, 3, 4). Hence M, S are empty below the main diagonal.

$M = \frac{1}{2}$	0	30	22	34
	-	0	10	16
	-	-	0	30
	-	-	-	0

$$S = \begin{array}{|c|c|c|c|} \hline 1 & 1 & 1 \\ \hline - & 2 & 3 \\ \hline - & - & 3 \\ \hline \end{array}$$

Pseudocode for filling in M, S in $O(n^3)$ (from CLRS)

```
MATRIX-CHAIN-ORDER(p)
 1 \quad n = p.length - 1
 2 let m[1..n, 1..n] and s[1..n − 1, 2..n] be new tables
 3 for i = 1 to n
    m[i,i] = 0
 5 for l = 2 to n // l is the chain length
        for i = 1 to n - l + 1
        i = i + l - 1
          m[i, j] = \infty
            for k = i to j - 1
                q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
10
                if q < m[i, j]
11
12
                    m[i,j] = a
                    s[i,j] = k
13
    return m and s
```

Reconstructing the optimal parenthesization (from CLRS)

Recall that a fully parenthesized product of matrices is

- 1. a single matrix; or
- 2. the product of two parenthesized matrices, surrounded by parentheses.

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Memoized recursion

Use the original recursive algorithm together with M:

- ▶ initialize M to ∞ above the main diagonal and to 0 on the main diagonal.
- ightharpoonup to solve a subproblem, look up its value in M
 - \blacktriangleright if it is ∞ , solve the subproblem **and** store its cost in M;
 - ightharpoonup else, directly use its value from M.

Remark 2.

- ► The memoized recursive algorithm solves every subproblem once, thus overcoming the main source of inefficiency of the original recursive algorithm.
- Running time: $O(n^3)$.

Memoized recursion pseudocode (from CLRS)

```
MEMOIZED-MATRIX-CHAIN(p)
1 \quad n = p.length - 1
2 let m[1...n, 1...n] be a new table
3 for i = 1 to n
       for j = i to n
           m[i,j] = \infty
6 return LOOKUP-CHAIN (m, p, 1, n)
LOOKUP-CHAIN(m, p, i, j)
   if m[i, j] < \infty
       return m[i, j]
3 if i == i
      m[i, j] = 0
  else for k = i to j - 1
            q = \text{LOOKUP-CHAIN}(m, p, i, k)
                 + LOOKUP-CHAIN(m, p, k + 1, j) + p_{i-1}p_kp_j
            if q < m[i, j]
                m[i,j] = q
   return m[i, j]
```

Today

- 1 Recap: matrix chain multiplication
 - Organizing DP computations
- 2 Segmented least squares
 - An exponential recursive algorithm
- 3 A Dynamic Programming (DP) solution
 - A quadratic iterative algorithm
 - Applying the DP principle

Linear least squares fitting

A foundational problem in statistics: find a line of *best fit* through some data points.

Linear least squares fitting

Input: a set *P* of *n* data points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n);$ we assume $x_1 < x_2 < ... < x_n.$

Output: the line L defined as y = ax + b that minimizes the error

$$err(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$
 (4)

Linear least squares fitting: solution

Given a set P of data points, we can use calculus to show that the line L given by y = ax + b that minimizes

$$err(L, P) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$
 (5)

satisfies

$$a = \frac{n\sum_{i} x_{i} y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}$$
(6)

$$b = \frac{\sum_{i} y_i - a \sum_{i} x_i}{n} \tag{7}$$

How fast can we compute a, b?

What if the data changes direction?

What if the data changes direction more than once?

How to detect change in the data

- ► Any single line would have large error.
- ▶ Idea 1: hardcode number of lines to 2 (or some fixed m).
 - ► Fails for the dataset on the previous slide.
- ▶ Idea 2: pass an *arbitrary set* of lines through the points and seek the set of lines that minimizes the error.
 - ▶ Trivial solution: have a different line pass through each pair of consecutive points in *P*.
- ▶ Idea 3: fit the points well, using as few lines as possible.
 - ▶ Trade-off between complexity and error of the model

Formalizing the problem

Input: data set $P = \{p_1, \ldots, p_n\}$ of points on the plane.

- A segment $S = \{p_i, p_{i+1}, \dots, p_j\}$ is a contiguous subset of the input.
- ▶ Let \mathcal{A} be a partition of P into $m_{\mathcal{A}}$ segments $S_1, S_2, \ldots, S_{m_{\mathcal{A}}}$. For every segment S_k , use (5), (6), (7) to compute a line L_k that minimizes $err(L_k, S_k)$.
- ▶ Let C > 0 be a fixed multiplier. The cost of the partition is

$$\sum_{S_k \in \mathcal{A}} err(L_k, S_k) + m_{\mathcal{A}} \cdot C$$

Segmented least squares

This problem is an instance of change detection in data mining and statistics.

Input: A set P of n data points $p_i = (x_i, y_i)$ as before.

Output: A segmentation $\mathcal{A}^* = \{S_1, S_2, \dots, S_{m_{\mathcal{A}^*}}\}$ of P whose cost

$$\sum_{S_k \in \mathcal{A}^*} err(L_k, S_k) + m_{\mathcal{A}^*} C$$

is minimum.

A brute force approach

We can find the optimal partition (that is, the one incurring the minimum cost) by exhaustive search.

- ► Enumerate every possible partition (segmentation) and compute its cost.
- ▶ Output the one that incurs the minimum cost.

 $\triangle O(2^n)$ partitions

A crucial observation regarding the last data point

Consider the last point p_n in the data set.

- \triangleright p_n belongs to a single segment in the optimal partition.
- ▶ That segment starts at an earlier point p_i , for some $1 \le i \le n$.

This suggests a recursive solution: if we knew where the last segment starts, then we could remove it and recursively solve the problem on the remaining points $\{p_1, \ldots, p_{i-1}\}$.

A recursive approach

- Let OPT(j) = cost of optimal partition for points p_1, \ldots, p_j .
- ▶ Then, if the last segment of the optimal partition is $\{p_i, \ldots, p_n\}$, the cost of the optimal solution is

$$OPT(n) = err(L, \{p_i, \dots, p_n\}) + C + OPT(i-1).$$

- ▶ But we don't know where the last segment starts! How do we find the point p_i ?
- ► Set

$$OPT(n) = \min_{1 \le i \le n} \Big\{ err(L, \{p_i, \dots, p_n\}) + C + OPT(i-1) \Big\}.$$

A recurrence for the optimal solution

Notation: let $e_{i,j} = err(L, \{p_i, \dots, p_j\})$, for $1 \le i \le j \le n$. Then

$$OPT(n) = \min_{1 \le i \le n} \left\{ e_{i,n} + C + OPT(i-1) \right\}.$$

If we apply the above expression recursively to remove the last segment, we obtain the recurrence

$$OPT(j) = \min_{1 \le i \le j} \left\{ e_{i,j} + C + OPT(i-1) \right\}$$
 (8)

Remark 3.

- 1. We can precompute and store all $e_{i,j}$ using equations (5), (6), (7) in $O(n^3)$ time. Can be improved to $O(n^2)$.
- 2. The natural recursive algorithm arising from recurrence (8) is **not** efficient (think about its recursion tree!).

Exponential-time recursion

Notation: T(n) = time to compute optimal partition for n points.

Then

$$T(n) \ge T(n-1) + T(n-2).$$

- ▶ Can show that $T(n) \ge F_n$, the *n*-th Fibonacci number (by strong induction on *n*).
- From Problem 5a in Homework 1, $F_n = \Omega(2^{n/2})$.
- Hence $T(n) = \Omega(2^{n/2})$.
- \Rightarrow The recursive algorithm requires $\Omega(2^{n/2})$ time.

Today

- 1 Recap: matrix chain multiplication
 - Organizing DP computations
- 2 Segmented least squares
 - An exponential recursive algorithm
- 3 A Dynamic Programming (DP) solution
 - A quadratic iterative algorithm
 - Applying the DP principle

Elements of DP in segmented least squares

- 1. Overlapping subproblems
- 2. An easy-to-compute recurrence (8) for combining solutions to the smaller subproblems into a solution to a larger subproblem in O(n) time (once smaller subproblems have been solved).
- 3. Iterative, bottom-up computations: compute the subproblems from smallest (0 points) to largest (n points), iteratively.
- 4. Small number of subproblems: we only need to solve n subproblems.

A dynamic programming approach

$$OPT(j) = \min_{1 \le i \le j} \left\{ e_{i,j} + C + OPT(i-1) \right\}$$

- ▶ The optimal solution to the subproblem on p_1, \ldots, p_j contains optimal solutions to smaller subproblems.
- ▶ Recurrence 8 provides an **ordering** of the subproblems from smaller to larger, with the subproblem of size 0 being the smallest and the subproblem of size n the largest.
- \Rightarrow There are n+1 subproblems in total. Solving the j-th subproblem requires $\Theta(j) = O(n)$ time.
- \Rightarrow The overall running time is $O(n^2)$.
 - ▶ Boundary conditions: OPT(0) = 0.
 - ▶ Segment $p_k, ..., p_j$ appears in the optimal solution only if the minimum in the expression above is achieved for i = k.

An iterative algorithm for segmented least squares

Let M be an array of n entries. M[i] stores the cost of the optimal segmentation of the first i data points.

```
\begin{split} & M[0] = 0 \\ & \textbf{for all pairs } i \leq j \textbf{ do} \\ & \text{Compute } e_{i,j} \textbf{ for segment } p_i, \dots, p_j \textbf{ using } (5), (6), (7) \\ & \textbf{end for} \\ & \textbf{for } j = 1 \textbf{ to } n \textbf{ do} \\ & M[j] = \min_{1 \leq i \leq j} \{e_{i,j} + C + M[i-1]\} \\ & \textbf{end for} \\ & \text{Return } M[n] \end{split}
```

Running time: time required to fill in dynamic programming array M is $O(n^3) + O(n^2)$. Can be brought down to $O(n^2)$.

Reconstructing an optimal segmentation

- Suppose we want the optimal solution in addition to its value, that is, the actual segmentation that achieves the minimum cost M[n].
- \blacktriangleright We can trace back through the dynamic programming array M to compute the optimal segmentation.

```
\begin{split} & \text{Initial call: OPTSegmentation}(n) \\ & \text{OPTSegmentation}(j) \\ & \text{if } (j == 0) \text{ then return} \\ & \text{else} \\ & \text{Find } 1 \leq i \leq j \text{ such that } M[j] = e_{i,j} + C + M[i-1] \\ & \text{OPTSegmentation}(i-1) \\ & \text{Output segment } \{p_i, \dots, p_j\} \\ & \text{end if} \end{split}
```

Obtaining efficient algorithms using DP

- 1. Optimal substructure: the optimal solution to the problem contains optimal solutions to the subproblems.
- A recurrence for the overall optimal solution in terms of optimal solutions to appropriate subproblems. The recurrence should provide a natural ordering of the subproblems from smaller to larger and require polynomial work for combining solutions to the subproblems.
- 3. Iterative, bottom-up computation of subproblems, from smaller to larger.
- 4. Small number of subproblems (polynomial in n).

Dynamic programming vs Divide & Conquer

- ▶ They both combine solutions to subproblems to generate the overall solution.
- ▶ However, divide and conquer starts with a large problem and divides it into small pieces.
- While dynamic programming works from the bottom up, solving the smallest subproblems first and building optimal solutions to steadily larger problems.