### **Features**

David S. Rosenberg

Bloomberg ML EDU

October 18, 2017

## Learning Objectives

- Understand where a *feature map* sits in a machine learning pipeline.
- Understand how feature extraction can be used to extend the power of linear methods.
- Build pipelines with expanded feature spaces using the sklearn ecosystem.



Figure 1.5: Flowcharts showing how the different parts of an AI system relate to each other within different AI disciplines. Shaded boxes indicate components that are able to learn from data.

## Feature Extraction

ullet Our general learning theory setup: no assumptions about  ${\mathfrak X}$ 

5 / 36

- ullet Our general learning theory setup: no assumptions about  ${\mathfrak X}$
- But  $\mathfrak{X} = \mathbf{R}^d$  for the specific methods we've developed:

- ullet Our general learning theory setup: no assumptions about  ${\mathfrak X}$
- But  $\mathfrak{X} = \mathbf{R}^d$  for the specific methods we've developed:
  - Ridge regression
  - Lasso regression
  - Linear SVM

#### Motivation

- Two motivations for thinking about feature extraction:
  - Motive 1 Improving performance.

```
Boston House Prices dataset
Notes
Data Set Characteristics:
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive
    :Median Value (attribute 14) is usually the target
```

#### Motivation

- Two motivations for thinking about feature extraction:
  - Motive 1 Improving performance.

```
from sklearn.linear model import ElasticNetCV
en = ElasticNetCV(cv = 5)
en.fit(np.log(train X[['LSTAT']]), train y)
en.score(np.log(test X[['LSTAT']]), test y)
0.74651286928253746
en.fit(train X[['LSTAT']], train y)
en.score(test X[['LSTAT']], test y)
```

David S. Rosenberg (Bloomberg ML EDU)

0.57894475666257272

### Motivation

• Key idea: instead of using more flexible models, use better features.



- Two motivations for thinking about feature extraction:
  - Motive 2 consuming inputs that are not natively in  $\mathbf{R}^d$  examples?

- Two motivations for thinking about feature extraction:
  - Motive 2 consuming inputs that are not natively in  $\mathbb{R}^d$  examples?
    - Text documents
    - Image files
    - Sound recordings
    - DNA sequences

- Two motivations for thinking about feature extraction:
  - Motive 2 consuming inputs that are not natively in  $\mathbb{R}^d$  examples?
    - Text documents
    - Image files
    - Sound recordings
    - DNA sequences
  - But everything in a computer is a sequence of numbers?

9 / 36

- Two motivations for thinking about feature extraction:
  - Motive 2 consuming inputs that are not natively in  $\mathbb{R}^d$  examples?
    - Text documents
    - Image files
    - Sound recordings
    - DNA sequences
  - But everything in a computer is a sequence of numbers?
    - The *i*th entry of each sequence should have the same "meaning"
    - All the sequences should have the same length

#### Feature Extraction

### Definition

Mapping an input from  $\mathfrak{X}$  to a vector in  $\mathbb{R}^d$  is called **feature extraction** or **featurization**.

# Raw Input

## Feature Vector



David S. Rosenberg (Bloomberg ML EDU)

## Example: Detecting Email Addresses

• Task: Predict whether a string is an email address

## Example: Detecting Email Addresses

- Task: Predict whether a string is an email address
- Could use domain knowledge and write down:

```
feature extractor

abc@gmail.com

arbitrary!

length>10 : 1
fracOfAlpha : 0.85
contains_0 : 1
endsWith_com : 1
endsWith_org : 0
```

# Example: Detecting Email Addresses

- Task: Predict whether a string is an email address
- Could use domain knowledge and write down:

```
feature extractor

abc@gmail.com

feature extractor

arbitrary!

length>10 : 1
fracOfAlpha : 0.85
contains_0 : 1
endsWith_com : 1
endsWith_org : 0
```

- But this was ad-hoc, and maybe we missed something.
- Could be more systematic?

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

### Definition (informal)

A feature template is a group of features all computed in a similar way.

### Definition (informal)

A feature template is a group of features all computed in a similar way.

• Input: abc@gmail.com

### Definition (informal)

A feature template is a group of features all computed in a similar way.

• Input: abc@gmail.com

#### Feature Templates

Length greater than \_ \_ \_

### Definition (informal)

A feature template is a group of features all computed in a similar way.

• Input: abc@gmail.com

#### Feature Templates

- Length greater than \_\_\_\_
- Last three characters equal \_\_\_\_

### Definition (informal)

A feature template is a group of features all computed in a similar way.

• Input: abc@gmail.com

#### Feature Templates

- Length greater than \_\_\_\_
- Last three characters equal \_\_\_\_
- Contains character \_\_\_\_

# Feature Template: Last Three Characters Equal

- Don't think about which 3-letter suffixes are meaningful...
- Just include them all.

# Feature Template: Last Three Characters Equal

- Don't think about which 3-letter suffixes are meaningful...
- Just include them all.

abc@gmail.com endsW ... endsW ...

endsWith\_aab : 0 endsWith\_aac : 0 ...

endsWith\_aaa : 0

endsWith\_com : 1

 $endsWith\_zzz : 0$ 

# Feature Template: Last Three Characters Equal

- Don't think about which 3-letter suffixes are meaningful...
- Just include them all.

endsWith\_aab : 0
endsWith\_aac : 0
...
endsWith\_com : 1
...
endsWith\_zzz : 0

• With regularization, our methods will not be overwhelmed.

endsWith\_aaa:0

# Feature Template: One-Hot Encoding

#### Definition

A one-hot encoding is a set of features (e.g. a feature template) that always has exactly one non-zero value.

# Feature Template: One-Hot Encoding

#### Definition

A one-hot encoding is a set of features (e.g. a feature template) that always has exactly one non-zero value.



From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

### Feature Template: Count-based

- Imagine you are trying to validate a credit card transaction.
- One feature in raw data consumed by pipeline: zip code of transaction.
- There are approximately 43,000 zip codes in the USA.
- What might be a problem with one-hot encoding this feature?

## Feature Template: Count-based

- Imagine you are trying to validate a credit card transaction.
- One feature in raw data consumed by pipeline: zip code of transaction.
- There are approximately 43,000 zip codes in the USA.
- What might be a problem with one-hot encoding this feature?
- Even worse think about internet scale problems.

# Learning with counts



Features are per-label counts [+odds] [+backoff]

$$\phi = [N^+ \quad N^- \quad \log(N^+) - \log(N^-) \quad \text{IsRest}]$$

- $log(N^+)-log(N^-) = log\frac{p(+)}{p(-)}$ : log-odds/Naïve Bayes estimate
- N+, N-: indicators of confidence of the naïve estimate
- IsFromRest: indicator of back-off vs. "real count"

```
fracOfAlpha: 0.85 contains_a : 0 ... contains_@ :1 ...
```

Array representation (good for dense features):

Map representation (good for sparse features):

```
{"fracOfAlpha": 0.85, "contains_0": 1}
```

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

- Arrays
  - assumed fixed ordering of the features

- Arrays
  - assumed fixed ordering of the features
  - appropriate when significant number of nonzero elements ("dense feature vectors")

- Arrays
  - assumed fixed ordering of the features
  - appropriate when significant number of nonzero elements ("dense feature vectors")
  - very efficient in space and speed (and you can take advantage of GPUs)

- Arrays
  - assumed fixed ordering of the features
  - appropriate when significant number of nonzero elements ("dense feature vectors")
  - very efficient in space and speed (and you can take advantage of GPUs)
- Map (a "dict" in Python)
  - best for sparse feature vectors (i.e. few nonzero features)

19 / 36

- Arrays
  - assumed fixed ordering of the features
  - appropriate when significant number of nonzero elements ("dense feature vectors")
  - very efficient in space and speed (and you can take advantage of GPUs)
- Map (a "dict" in Python)
  - best for sparse feature vectors (i.e. few nonzero features)
  - features not in the map have default value of zero

- Arrays
  - assumed fixed ordering of the features
  - appropriate when significant number of nonzero elements ("dense feature vectors")
  - very efficient in space and speed (and you can take advantage of GPUs)
- Map (a "dict" in Python)
  - best for sparse feature vectors (i.e. few nonzero features)
  - features not in the map have default value of zero
  - Python code for "ends with last 3 characters":

```
{\text{"endsWith}_{-} + x[-3:]: 1}.
```

- Arrays
  - assumed fixed ordering of the features
  - appropriate when significant number of nonzero elements ("dense feature vectors")
  - very efficient in space and speed (and you can take advantage of GPUs)
- Map (a "dict" in Python)
  - best for sparse feature vectors (i.e. few nonzero features)
  - features not in the map have default value of zero
  - Python code for "ends with last 3 characters":

```
{\text{"endsWith}_{-}} + x[-3:]: 1.
```

• On "example string" we'd get {"endsWith\_ing": 1}.

- Arrays
  - assumed fixed ordering of the features
  - appropriate when significant number of nonzero elements ("dense feature vectors")
  - very efficient in space and speed (and you can take advantage of GPUs)
- Map (a "dict" in Python)
  - best for sparse feature vectors (i.e. few nonzero features)
  - features not in the map have default value of zero
  - Python code for "ends with last 3 characters":

```
{\text{"endsWith}}_{+x}[-3:]: 1.
```

- On "example string" we'd get {"endsWith\_ing": 1}.
- Has overhead compared to arrays, so much slower for dense features.
- Question: if we have a sparse feature vector, what are the implications for preprocessing?

# Handling Nonlinearity with Linear Methods

# Example Task: Predicting Health

• General Philosophy: Extract every feature that might be relevant

# Example Task: Predicting Health

- General Philosophy: Extract every feature that might be relevant
- Features for medical diagnosis
  - height
  - weight
  - body temperature
  - blood pressure
  - etc...

#### Issues for Linear Predictors

• For linear predictors, it's important how features are added

### Issues for Linear Predictors

- For linear predictors, it's important how features are added
- Three types of nonlinearities can cause problems:

### Issues for Linear Predictors

- For linear predictors, it's important how features are added
- Three types of nonlinearities can cause problems:
  - Non-monotonicity
  - Saturation
  - Interactions between features

• Feature Map:  $\phi(x) = [1, temperature(x)]$ 

- Feature Map:  $\phi(x) = [1, temperature(x)]$
- Action: Predict health score  $y \in R$  (positive is good)

- Feature Map:  $\phi(x) = [1, temperature(x)]$
- Action: Predict health score  $y \in \mathbf{R}$  (positive is good)
- $\bullet \ \, \mathsf{Hypothesis} \ \mathsf{Space} \ \mathcal{F} \! = \! \{ \mathsf{affine} \ \mathsf{functions} \ \mathsf{of} \ \mathsf{temperature} \}$

From Percy Liang's "Lecture 3" slides from Stanford's CS221. Autumn 2014.

- Feature Map:  $\phi(x) = [1, temperature(x)]$
- Action: Predict health score  $y \in \mathbf{R}$  (positive is good)
- $\bullet \ \, \mathsf{Hypothesis} \,\, \mathsf{Space} \,\, \mathfrak{F} \!=\! \{\mathsf{affine} \,\, \mathsf{functions} \,\, \mathsf{of} \,\, \mathsf{temperature}\}$
- Issue:

- Feature Map:  $\phi(x) = [1, temperature(x)]$
- Action: Predict health score  $y \in \mathbf{R}$  (positive is good)
- $\bullet \ \, \text{Hypothesis Space } \mathcal{F} \! = \! \{ \text{affine functions of temperature} \}$
- Issue:
  - Health is not an affine function of temperature.

- Feature Map:  $\phi(x) = [1, temperature(x)]$
- Action: Predict health score  $y \in \mathbf{R}$  (positive is good)
- $\bullet \ \ \mbox{Hypothesis Space } {\mathfrak F} \!=\! \{\mbox{affine functions of temperature}\}$
- Issue:
  - Health is not an affine function of temperature.
- Affine function can either say
  - Very high is bad and very low is good, or
  - Very low is bad and very high is good,
  - But here, both extremes are bad.

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature}(x) - 37\}^2\right],$$

where 37 is "normal" temperature in Celsius.

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature}(x) - 37\}^2\right],$$

where 37 is "normal" temperature in Celsius.

- Ok, but this requires domain knowledge
  - Do we really need that?

• Think less, put in more:

$$\phi(x) = \left[1, temperature(x), \{temperature(x)\}^2\right].$$

• Think less, put in more:

$$\phi(x) = \left[1, temperature(x), \{temperature(x)\}^2\right].$$

• More expressive than Solution 1.

• Think less, put in more:

$$\phi(x) = \left[1, \text{temperature}(x), \{\text{temperature}(x)\}^2\right].$$

• More expressive than Solution 1.

#### General Rule

Features should be simple building blocks that can be pieced together.

• Setting: Find products relevant to user's query

• Setting: Find products relevant to user's query

• Input: Product x

• Action: Score the relevance of x to user's query

- Setting: Find products relevant to user's query
- Input: Product x
- Action: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

- Setting: Find products relevant to user's query
- Input: Product x
- Action: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

• We expect a monotonic relationship between N(x) and relevance, but...

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

#### Is relevance linear in N(x)?

- Relevance score reflects confidence in relevance prediction.
- Are we 10 times more confident if N(x) = 1000 vs N(x) = 100?

#### Is relevance linear in N(x)?

- Relevance score reflects confidence in relevance prediction.
- Are we 10 times more confident if N(x) = 1000 vs N(x) = 100?
- Bigger is better... but not that much better.

#### Saturation: Solve with nonlinear transform

Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

#### Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

•  $log(\cdot)$  good for values with large dynamic ranges

#### Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

- ullet log  $(\cdot)$  good for values with large dynamic ranges
- Does it matter what base we use in the log?

• Discretization (a discontinuous transformation):

$$\phi(x) = (1(5 \leqslant N(x) < 10), 1(10 \leqslant N(x) < 100), 1(100 \leqslant N(x)))$$

• Discretization (a discontinuous transformation):

$$\phi(x) = (1(5 \leqslant N(x) < 10), 1(10 \leqslant N(x) < 100), 1(100 \leqslant N(x)))$$

Sometimes we might prefer one-sided buckets

$$\phi(x) = (1(5 \leqslant N(x)), 1(10 \leqslant N(x)), 1(100 \leqslant N(x)))$$

Why?

• Discretization (a discontinuous transformation):

$$\phi(x) = (1(5 \leqslant N(x) < 10), 1(10 \leqslant N(x) < 100), 1(100 \leqslant N(x)))$$

Sometimes we might prefer one-sided buckets

$$\phi(x) = (1(5 \leqslant N(x)), 1(10 \leqslant N(x)), 1(100 \leqslant N(x)))$$

• Why? Hint: What's the effect of regularization the parameters for rare buckets?

• Discretization (a discontinuous transformation):

$$\phi(x) = (1(5 \leqslant N(x) < 10), 1(10 \leqslant N(x) < 100), 1(100 \leqslant N(x)))$$

Sometimes we might prefer one-sided buckets

$$\phi(x) = (1(5 \leqslant N(x)), 1(10 \leqslant N(x)), 1(100 \leqslant N(x)))$$

- Why? Hint: What's the effect of regularization the parameters for rare buckets?
- Small buckets allow quite flexible relationship

#### Interactions: The Issue

- Input: Patient information x
- Action: Health score  $y \in \mathbb{R}$  (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

#### Interactions: The Issue

- Input: Patient information x
- Action: Health score  $y \in \mathbb{R}$  (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

• Issue: It's the weight relative to the height that's important.

#### Interactions: The Issue

- Input: Patient information x
- Action: Health score  $y \in \mathbf{R}$  (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

- Issue: It's the weight relative to the height that's important.
- Impossible to get with these features and a linear classifier.
- Need some interaction between height and weight.

• Google "ideal weight from height"

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula (for a male):

$$\mathsf{weight}(\mathsf{kg}) = 52 + 1.9 \left[ \mathsf{height}(\mathsf{in}) - 60 \right]$$

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula (for a male):

$$\mathsf{weight}(\mathsf{kg}) = 52 + 1.9 \left[ \mathsf{height}(\mathsf{in}) - 60 \right]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^{2}$$

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula (for a male):

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^{2}$$

WolframAlpha for complicated Mathematics:

$$f(x) = 3.61h(x)^2 - 3.8h(x)w(x) - 235.6h(x) + w(x)^2 + 124w(x) + 3844$$

Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

• More flexible, no Google, no WolframAlpha.

Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

• More flexible, no Google, no WolframAlpha.

### General Principle

Simpler building blocks replace a single "smart" feature.

### Predicate Features and Interaction Terms

#### Definition

A **predicate** on the input space  $\mathcal{X}$  is a function  $P: \mathcal{X} \to \{\text{True}, \text{False}\}.$ 

### Predicate Features and Interaction Terms

#### **Definition**

A **predicate** on the input space  $\mathcal{X}$  is a function  $P: \mathcal{X} \to \{\text{True}, \text{False}\}.$ 

- Many features take this form:
  - $x \mapsto s(x) = 1$ (subject is sleeping)
  - $x \mapsto d(x) = 1$ (subject is driving)

### Predicate Features and Interaction Terms

#### **Definition**

A **predicate** on the input space  $\mathcal{X}$  is a function  $P: \mathcal{X} \to \{\text{True}, \text{False}\}.$ 

- Many features take this form:
  - $x \mapsto s(x) = 1$ (subject is sleeping)
  - $x \mapsto d(x) = 1$ (subject is driving)
- For predicates, interaction terms correspond to AND conjunctions:
  - $x \mapsto s(x)d(x) = 1$ (subject is sleeping AND subject is driving)

- Non-linear feature map  $\phi: \mathcal{X} \to \mathbf{R}^d$
- Hypothesis space:

$$\mathcal{F} = \left\{ f(x) = w^T \phi(x) \mid w \in \mathbb{R}^d \right\}.$$

- Non-linear feature map  $\phi: \mathcal{X} \to \mathbf{R}^d$
- Hypothesis space:

$$\mathcal{F} = \left\{ f(x) = w^T \phi(x) \mid w \in \mathbb{R}^d \right\}.$$

• Linear in w? Yes.

- Non-linear feature map  $\phi: \mathcal{X} \to \mathbf{R}^d$
- Hypothesis space:

$$\mathcal{F} = \left\{ f(x) = w^T \phi(x) \mid w \in \mathbb{R}^d \right\}.$$

- Linear in w? Yes.
- Linear in  $\phi(x)$ ? Yes.

- Non-linear feature map  $\phi: \mathcal{X} \to \mathbf{R}^d$
- Hypothesis space:

$$\mathcal{F} = \left\{ f(x) = w^T \varphi(x) \mid w \in \mathbb{R}^d \right\}.$$

- Linear in w? Yes.
- Linear in  $\phi(x)$ ? Yes.
- Linear in x? No.
  - ullet Linearity not even defined unless  ${\mathcal X}$  is a vector space

### Key Idea: Non-Linearity

• Nonlinear f(x) is important for expressivity.

- Non-linear feature map  $\phi: \mathcal{X} \to \mathbf{R}^d$
- Hypothesis space:

$$\mathcal{F} = \left\{ f(x) = w^T \phi(x) \mid w \in \mathbb{R}^d \right\}.$$

- Linear in w? Yes.
- Linear in  $\phi(x)$ ? Yes.
- Linear in x? No.
  - ullet Linearity not even defined unless  ${\mathcal X}$  is a vector space

### Key Idea: Non-Linearity

- Nonlinear f(x) is important for **expressivity**.
- f(x) linear in w and  $\phi(x)$ : makes finding  $f^*(x)$  much easier

# Geometric Example: Two class problem, nonlinear boundary



• With linear feature map  $\phi(x) = (x_1, x_2)$  and linear models, no hope

# Geometric Example: Two class problem, nonlinear boundary



- With linear feature map  $\phi(x) = (x_1, x_2)$  and linear models, no hope
- With appropriate nonlinearity  $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$ , piece of cake.

# Geometric Example: Two class problem, nonlinear boundary



- With linear feature map  $\phi(x) = (x_1, x_2)$  and linear models, no hope
- With appropriate nonlinearity  $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$ , piece of cake.
- Video: http://youtu.be/3liCbRZPrZA

# Expressivity of Hypothesis Space

• Consider a linear hypothesis space with a feature map  $\phi: \mathfrak{X} \to \mathsf{R}^d$ :

$$\mathcal{F} = \left\{ f(x) = w^T \phi(x) \right\}$$

# Expressivity of Hypothesis Space

• Consider a linear hypothesis space with a feature map  $\phi: \mathfrak{X} \to \mathsf{R}^d$ :

$$\mathcal{F} = \left\{ f(x) = w^T \phi(x) \right\}$$



Question: does  $\mathcal{F}$  contain a good predictor?

We can grow the linear hypothesis space  $\mathcal F$  by adding more features.