No.	Equation	LaTex
001	x^2	x^2
002	\sqrt{x}	sqrt(x)
003	$\sqrt[3]{x}$	$\sqrt{3}{x}$
004	$\frac{x}{y}$	$\operatorname{frac}\{x\}\{y\}$
005	$\frac{1}{2}$	\frac{1}{2}
006	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$	$\sqrt{\frac{a}{b}} = \\ \frac{\sqrt{a}}{\sqrt{b}}$
007	(a+b)+c=a+(b+c)	(a+b)+c = a + (b + c)

008	(ab)c = a(bc)	(ab)c = a(bc)
009	a(b+c) = ab + ac	a(b+c) = ab + ac
010	$(a^m)^n = a^{mn}$	$(a^{n})^{n}) = a^{n}(m+n)$
011	$(ab)^n = a^n b^n$	$(ab)^n = a^n\{n\} b^n\{n\}$
012	$(a+b)(a-b) = a^2 - b^2$	$(a + b)(a - b) = a^2 - b^2$
013	$a^m \div a^n = a^{m-n}$	$a^m \cdot div a^n = a^m \cdot m - n$
014	$a^{-p} = \frac{1}{a^p}$	$a^{-}\{-p\} = \operatorname{frac}\{1\}\{a^{p}\}$
015	$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	$\frac{a}{b} \times \frac{c}{d} = \frac{a}{bd}$

016	$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$	\frac{a}{b} \div \frac{c}{d}= \frac{a}{b} \times \frac{d}{c}= \frac{ad}{bc}
017	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$(\frac{a}{b})^{n} = \frac{a^{n}}{b^{n}}$
018	ax + b = 0	ax +b = 0
019	$ax^2 + bx + c = 0$	$ax^{\wedge}\{2\} + bx + c = 0$
020	$\Delta = b^2 - 4ac$	$\Delta = b^{2} - 4ac$
021	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x=\frac{-b \pm (b^{2}-4ac)}{2a}$
022	$\bar{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$	$\bar{x} = \frac{1}{n}(x_{1}+x_{2}+ \\ \cdots +x_{n})$

023	$\bar{x} = \frac{x_1 f_1 + x_2 f_2 + \dots + x_k f_k}{n}$	$\bar{x} = \frac{x_{1}f_{1}+ x_{2}f_{2}+ \cdots x_{k}f_{k}} $
024	$\sqrt{x^2 + y^2}$	$\ \ \langle x^{2}+y^{2}\rangle $
025	$y = a(x - h)^2 + k$	$y = a(x - h)^{\wedge} \{2\} + k$
026	$y = a(x - x_1)(x - x_2)$	$y=a(x-x_{1})(x-x_{2})$
027	$y = \frac{4ac - b^2}{4a}$	$y=\frac{4ac-b^{2}}{4a}$
028	$\sin 0 = 0$	$\sin 0 = 0$
029	$\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$	$\sin \left\{ pi \right\} \{4\} = \left\{ sqrt \{2\} \right\} \{2\}$
030	$\cos 0 = 1$	$\cos 0 = 1$

031	$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$	$\cos \left\{ pi \right\} \{6\} = \left\{ \left\{ sqrt \{3\} \right\} \{2\} \right\}$
032	$\cos\frac{\pi}{3} = \frac{1}{2}$	$\cos \frac{\pi c}{\pi i} {3}=\frac{1}{2}$
033	$\tan\frac{\pi}{6} = \frac{\sqrt{3}}{3}$	$\tan \left\{ pi \right\} \{6\} = \left\{ sqrt\{3\} \right\} \{3\}$
034	$\sin^2 A + \cos^2 A = 1$	${ (A)^{2}+(\cos A)^{2}=1 }$
035	$\tan A = \frac{\sin A}{\cos A}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ $