Tight Muon Reconstruction Efficiency

Xiaoning Wang

Sept 11, 2019

Introduction

- Used Tag & Probe method to calculate the reconstruction efficiency of tight muon. $\varepsilon(\mu) = \varepsilon(\mu|\text{ID}) \times \varepsilon(\text{ID}) \cong \varepsilon(\mu|\text{ID}) \times \varepsilon(\text{ID}|\text{MS})$
- $\varepsilon(ID|MS) = (\# \text{ of MS tracks that have a matched ID track})/(\# \text{ of total MS tracks}).$
- $\varepsilon(\mu|\text{ID})$ = (# of ID tracks that have a matched reconstructed muon)/(# of ID tracks).
- Event Selection:
 - Trigger mu3 || mu8 || mu10
 - GRL
 - At least 1 primary vertex
- $\varepsilon(ID|MS)$ match: MS track with an ID track dR < 0.2

- Probe tracks Selection:
 - Opposite charge with tag
 - ID tracks: Muon ID Selections
 - MS tracks: No Selections
- Invariant mass window
 - for data: J/ψ 2.6 -3.6 GeV
- $\varepsilon(\mu|\text{ID})$ match: ID track with a reconstructed muon dR < 0.005 for mc: Y 8-11 GeV
- Todo:
 - Use MC Truth information to calculate reconstruction efficiency and compare with MC T&P method.

Inner Detector Efficiency $arepsilon(\mathrm{ID}|\mathrm{MS})$ vs probe MS track momentum p_T^{MS}

Inner Detector Efficiency $\varepsilon(\mathrm{ID}|\mathrm{MS})$ vs probe MS track rapidity $\mathrm{q}^*\eta$

Tight Muon Reconstruction Efficiency $arepsilon(\mu| ext{ID})$ vs Probe ID Track Momentum p_T^{ID}

Tight Muon Reconstruction Efficiency $\varepsilon(\mu|\mathrm{ID})$ vs Probe ID Track rapidity $\mathsf{q}^*\eta$

Backup

Eff_id for data in Barrel Region p_T = 6-7 GeV

ID efficiency are in general high, signals are high comparing to the background and matched tracks are

• High pT region has very few data and some fake efficiencies are calculated.

• Low pT region has more data and data and MC go the same trend approximately.