Анализ Ряды

Галкина

05.09.2022

Оглавление

1	Ряд	ĮЫ		5
		Числовые ряды		
		1.1.1	Базовые определения и теоремы	5
		1.1.2	Знакопостоянные ряды	7
		1.1.3	Знакопеременные ряды	14
		1.1.4	Свойства абсолютно сходящихся рядов	18
		1.1.5	Свойства условно-сходящихся рядов	21
	1.2	Функ	циональные последовательности	21
		1.2.1	Базовые определения	21
		1.2.2	Свойства равномерно сходящихся функциональных	
			последовательностей	24
	1.3	Функа	циональные ряды	25
		1.3.1	Базовые определения	25
		1.3.2	Свойства равномерно сходящихся рядов	29
	1.4	Степе	енные ряды	32
		1.4.1	Базовые определения	32
		1.4.2	Формулы для вычисления радиуса сходимости	33
		1.4.3	Ряды Тейлора	35
		1.4.4	Использование степенных рядов	37

OГЛAВЛEНUЕ

Глава 1

Ряды

В данном разделе мы будем изучать следующие объекты:

- Числовые ряды
- Функциональные ряды (в т.ч. степенные, ряды Фурье)

1.1 Числовые ряды

1.1.1 Базовые определения и теоремы

Определение 1 Ряд - сумма счетного числа слагаемых:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$$

Определение 2 $Частичная сумма S_n$ - сумма nервых n слагаемых

Определение 3 Сумма ряда - предел последовательности частичных сумм

$$S = \lim_{n \to \infty} S_n$$

Если предел существует и конечен, то ряд сходится. Если предел бесконечен, ряд расходится. Заметим, что, согласно теоремам о пределе суммы последовательностей и пределе последовательности, умноженной на число, сходящиеся ряды образуют линейное пространство относительно сложения и умножения на константу.

Определение 4 Остаток ряда - разность между частичной суммой ряда и самим рядом:

$$R_k = S - S_k = \sum_{n=k}^{\infty} a_k$$

Пример. Геометрический ряд $a+aq+aq^2+\dots$ По школьной формуле $S_n=\frac{1-q^n}{1-q}$. Имеем случаи:

1.
$$|q| < 1$$
: $S = \frac{a}{1-q}$

2.
$$|q| > 1$$
: $S = \infty$

3.
$$q = 1$$
: $S = \infty$

Итак, ряд сходится, только если |q| < 1.

Следующие теоремы устанавливаются для любых рядов:

Теорема 1 (необходимое условие сходимости ряда) Если ряд сходится, то предел общего члена равен 0. Равносильная формулировка: если $\lim_{n\to\infty} a_n \neq 0$, то ряд $\sum_{n=0}^{\infty} a_n$ расходится.

Доказательство. По условию, существует число S - предел частичных сумм ряда. Тогда $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (S_n - S_{n-1}) = S - S = 0$. \square

Пример. $\sum_{n=1}^{\infty} \sin nx$, $x \neq \pi k$, $k \in \mathbb{Z}$. Зафиксируем x. Допустим, что $\lim_{n \to \infty} \sin nx = 0$. Но это противоречит тому, что $\sin^2(x) + \cos^2(x) = 1$. Значит, ряд расходится.

Пример. Гармонический ряд расходится, т.к. расходится последовательность частичных сумм: $S_{2^n}>1+\frac{1}{2}+2\cdot\frac{1}{4}\ldots=1+\frac{n}{2}$

Теорема 2 (критерий Коши сходимости ряда)

Pяд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n > N \ \forall p \in \mathbb{N} : |a_{n+1} + \ldots + a_{n+p}| < \varepsilon$$

Доказательство. По определению, ряд сходится, когда существует предел частичных сумм. Применим к ним критерий Коши, получим условие: $|S_{n+p} - S_n| < \varepsilon$. Но $S_{n+p} - S_n \equiv a_{n+1} + ... + a_{n+p}$. \square

Теорема 3 (критерий сходимости через остаток)

- 1. Если ряд сходится, то сходится любой из его остатков.
- 2. Если хотя бы один остаток сходится, то ряд тоже сходится.

Доказательство. 1. По условию, существует сумма ряда S. Зафиксируем номер $N \in \mathbb{N}$ и рассмотрим остаток $R_N = \sum_{k=N+1}^{\infty} a_k$, а также последовательность σ частичных сумм ряда-остатка R_N : $\sigma_n = a_{N+1} + ... + a_{N+n} = a_{N+1} + ...$

$$\sum_{k=N+1}^{N+n} a_k$$
. Рассмотрим её предел: $\lim_{n\to\infty} \sigma_n = \lim_{n\to\infty} (S_{n+N} - S_N) = S - S_N = R_N$. Значит, остаток сходится.

Тогда существует предел частичных сумм σ_n этого остатка: $\lim_{n\to\infty} \sigma_n = \sigma$, $\sigma_n = a_{n_0} + \ldots + a_{n_0+n}$. Пусть $n_0 + n = m$, тогда $\lim_{n\to\infty} S_m = \lim_{n\to\infty} (S_{n_0} + \sigma_{m-n_0}) = S_{n_0} + \sigma$, то есть основной ряд сходится. \square

1.1.2 Знакопостоянные ряды

Исследуем подробнее знакопостоянные ряды. Ряд называется знакопостоянным, если, начиная с некоторого номера, все его члены имеют одинаковый знак (конечное число членов в начале не влияет на сходимость). Следующие теоремы устанавливаются для положительных рядов, для отрицательных рядов применимы эти же рассуждения, стот лишь поменять знак.

Теорема 4 (критерий сходимости для неотрицательных рядов) Ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена сверху.

Доказательство. \Rightarrow . По условию, существует предел $\lim_{n\to\infty} S_n = S \in \mathbb{R}$. Значит, последовательность частичных сумм ограничена сверху. \Leftarrow . По условию, ограниченая неубывающая последовательность $\{S_n\}$ ограничена сверху, значит, по теореме Вейерштрасса у неё есть предел S. \square

Следующее важное утверждение о положительных рядах - признак сравнения. Он позволяет делать выводы о сходимости ряда, сравнивая его с известными рядами: геометрической прогрессией, обобщенным гармоническим рядом (то есть с произвольным показателем степени).

Теорема 5 (признак сравнения в оценочной форме)

Пусть даны последовательности $0 \le a_n \le b_n \ \forall n \in \mathbb{N}$. Тогда из сходимости ряда с общим членом b_n следует сходимость ряда с общим членом a_n (из расходимости ряда с общим членом a_n следует расходимость ряда с общим членом b_n).

Доказательство. Докажем исходя из критерия сходимости. Пусть A_n, B_n - частичные суммы рядов с членами a_n, b_n . Так как ряд B сходится, то существует верхний предел M для его частичных сумм. Так как члены

ряда A меньше членов ряда B, то $A_n \leq B_n \leq M$, откуда по транзитивности неравенств $A_n \leqslant M$, значит, у A_n есть предел. \square

Пример. Обобщенный гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$. Рассмотрим $p \leqslant$

 $1, n^p \leqslant 1, \frac{1}{n^p} > \frac{1}{n}$. Так как гармонический ряд расходится, то $\sum_{n=1}^{\infty} \frac{1}{n^p}$ расходится. С другой стороны, при p > 1 ряд сходится по интегральному признаку.

Пример. Найти сумму. $\sqrt{2} + \sqrt{2 - \sqrt{2}} + \sqrt{2 - \sqrt{2} + \sqrt{2}} + ..., a_{n+1} =$ $\sqrt{2-b_n},\ b_{n+1}=\sqrt{2+b_n}.$ Заметим, что $b_1=2\cos\frac{\pi}{4},\ b_2=\cos\frac{\pi}{8}.$ Дальше эта формула выводится по индукции. $b_n=2\cos\frac{\pi}{2^{n+1}}.\ a_n=\sqrt{2-b_{n-1}}=$ $\sqrt{2-2\cos\frac{\pi}{2^n}}=2\sin\frac{\pi}{2^{n+1}}$ Ита, $a_n\leqslant 2\cdot\frac{\pi}{2^{n+1}}=\frac{\pi}{2^n}$

Теорема 6 (Признак сравнения в предельной форме)

Пусть даны неотрицательные ряды $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$. Пусть $k = \lim_{n \to \infty} \frac{a_n}{b_n}$. Тогда, если

- 1. $k = const \ (k \neq 0)$: ряды сходятся или расходятся одновременно. 1.1. k = 1: ряды эквивалентны.
- 2. k = 0: ecnu B cxodumcs, mo u A cxodumcs.
- 3. $k = \infty$: если A сходится, то и B сходится.

Доказательство.

1. Запишем определение предела $\lim_{n\to\infty}\frac{a_n}{b_n}=k$ для $\varepsilon=\frac{k}{2}>0$:

$$\exists N(\varepsilon) \ \forall n > N : \frac{k}{2} < \frac{a_n}{b_n} < \frac{3k}{2}$$

- откуда $a_n < \frac{3k}{2}b_n$. Значит, если ряд B сходится, то и ряд A сходится. 2. Пусть $\lim_{n\to\infty}\frac{a_n}{b_n}=0$. Для $\varepsilon=1$ $\exists N$ $\forall n>N:\frac{a_n}{b_n}<1$, значит $a_n< b_n$ и сходимость рядов следует из признака сравнения в оценочной форме.
- 3. Переворачивая предел в п.2, получаем все аналогично.

Пример. Исследуем на сходимость ряд $\sum_{n=1}^{\infty} (\frac{1}{n^{\alpha}} - \frac{1}{(n+1)^{\alpha}})$. Имеем $S_n =$ $1-\frac{1}{(n+1)^{\alpha}}$. При $\alpha>0$ S_n сходится к 1, при $\alpha<0$ ряд расходится.

Теорема 7 (третий признак сравнения)

Пусть даны ряды $A=\sum\limits_{n=1}^{\infty}a_n$ и $B=\sum\limits_{n=1}^{\infty}b_n$, причем $\frac{a_{n+1}}{a_n}\leqslant \frac{b_{n+1}}{b_n}$. Тогда если В сходится, то и А сходится.

Доказательство. Перемножив положительные неравенства $\frac{a_2}{a_1} \leqslant \frac{b_2}{b_1} ... \frac{a_{k+1}}{a_k} \leqslant$ $\frac{b_{k+1}}{b_k}$, получим $\frac{a_n}{a_1}\leqslant \frac{b_n}{b_1}$, откуда $a_n\leqslant b_n\cdot const$. Из признака сравнения в оценочной форме получаем, что ряд A сходится, если сходится ряд B. \square

Переходим к более тонким признакам сходимости ряда. Алгоритм вырисовывается следующий: сначала даламберим, потом кошируем. Если не помогает, пробуем признак Раабе, но все вопросы снимает гауссирование.

Теорема 8 (признак Даламебра в оценочной форме)

 $\Pi y cmb$ дан ряд c общим членом a_n . Тогда

- 1. Если $\frac{a_{n+1}}{a_n} \leqslant q < 1$, то ряд сходится; 2. Если $\frac{a_{n+1}}{a_n} \geqslant q > 1$, то ряд расходится.

Доказательство. 1. Ряд с общим членом $b_n = q^n, q \in (0,1),$ сходится. По условию, $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$, значит, ряд сходится по 3-му признаку сравнения.

2. Ряд с общим членом $b_n = 1$ расходится. По условию, $\frac{a_{n+1}}{a_n} \geqslant \frac{b_{n+1}}{b_n}$, значит, ряд расходится по 3-му признаку сравнения. \square

Теорема 9 (признак Даламбера в предельной форме)

 Π усть дан ряд с общим членом a_n . Тогда

- 1. $\overline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} = q < 1$, mo psd cxodumcs;
 2. $\underline{\lim_{n\to\infty}} \frac{a_{n+1}}{a_n} = r > 1$, mo psd pacxodumcs.

Доказательство. 1. Пусть верхний предел равен q < 1. Возьмем $\varepsilon =$ $\frac{1-q}{2}$. Тогда $\exists n_0 \in \mathbb{N} \ \forall n > n_0: \frac{a_{n+1}}{a_n} \leqslant q + \varepsilon = q_1 < 1$. Тогда по признаку Даламебра в оценочной форме ряд сходится.

2. Так как для некоторой подпоследовательности $\frac{a_{n+1}}{a_n} > 1$, то не выполняется необходимый признак, следовательно, ряд расходится. \square

Замечание. Если предел равен 1, то r = q = 1.

Замечание. В отличие от признака Коши, в п.2 нельзя заменить нижний предел на верхний.

Замечание. Если все-таки получилась единица, то ряд может как сходиться, так и расходиться. Но если предел подходит к единице сверху, то ряд расходится (в силу невыполнения необходимого признака).

Теорема 10 (признак Коши в оценочной форме)

Пусть дан ряд с общим членом a_n .

Если $\sqrt[n]{a_n} \leqslant q < 1$, то ряд сходится.

Eсли $\sqrt[n]{a_n} \geqslant 1$, то ряд расходится.

Доказательство. Сравним с геометрической прогрессией.

- 1. $a_n \leqslant q^n, \ q < 1$, значит ряд сходится по признаку сравнения.
- 2. $a_n > 1$, значит ряд расходится по необходимому признаку. \square

Теорема 11 (признак Коши в предельной форме) Пусть дан ряд с общим членом a_n и $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q$. Тогда:

- 1. Если q < 1, то ряд сходится.
- 2. Если q > 1, то ряд расходится.

Доказательство. Аналогично признаку Даламбера.

1. Рассмотрим предел $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q < 1$. Возьмем $\varepsilon = \frac{1-q}{2}$. Тогда

$$\exists n_0 \ \forall n > n_0 : \sqrt[n]{a_n} = q + \varepsilon = \frac{q+1}{2} < 1$$

Тогда ряд сходится по признаку Коши в оценочной форме.

2. Рассмотрим предел $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q > 1$. Выделим подпоследовательность a_{n_k} , на которой достигается этот верхний предел. Возьмем $\varepsilon=q-1$. Тогда

$$\exists k_0 \ \forall k > k_0: \ \sqrt[n_k]{a_{n_k}} > 1$$

Значит, $a_{n_k} > 1$, и ряд расходится по необходимому условию. \square **Пример.** $\sum_{n=1}^{\infty} \left(\frac{2+(-1)^n}{5+(-1)^{n+1}}\right)^n$. Кошируя это ряд, взяв наибольшую подпоследовательность, получим предел $\frac{3}{4}$, значит, ряд сходится. Можно ещё просто посчитать две подпоследовательности.

Пример. $\sum_{n=1}^{\infty} \left(\frac{1+\cos n}{2+\cos n}\right)^{2n-\ln n}$. Оценим это рядом $b_n = \left(\frac{1+n}{2+n}\right)^{2n-\ln n}$. В n=1 итоге получится, что ряд сходится.

Теорема 12 (признак Раабе в оценочной форме)

Пусть дан знакопостоянный ряд с общим членом $a_n > 0$. Тогда:

- 1. Если $\frac{a_{n+1}}{a_n} \geqslant 1 \frac{1}{n}$, то ряд расходится. 2. Если $\exists \alpha > 1 : \frac{a_{n+1}}{a_n} \leqslant 1 \frac{\alpha}{n}$ тогда ряд сходится.

Доказательство. 1. Пусть $\frac{a_{n+1}}{a_n} \geqslant \frac{n-1}{n}$. Введем ряд с общим членом $b_n = \frac{1}{n-1}$. $\frac{a_{n+1}}{a_n} \geqslant \frac{b_{n+1}}{b_n}$, и так как ряд b_n расходится, то ряд a_n расходится по третьему признаку сравнения.

2. Пусть
$$\beta \in (1, \alpha)$$
, тогда $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^{\beta}}$ сходится. Далее, $\frac{b_{n+1}}{b_n} = (\frac{n}{n+1})^{\beta} = (1+\frac{1}{n})^{-\beta} = 1+\frac{\beta}{n} + O(\frac{1}{n^2})$. Затем, $-\frac{\beta}{n} > -\frac{\alpha}{n} \implies 1-\frac{\beta}{n} > 1-\frac{\alpha}{n}$. Так

как $O(\frac{1}{n^2})$ - бесконечно малая более высокого порядка, чем $\frac{\alpha}{n}$ и $\frac{\beta}{n}$, то $\exists n_0 \in \mathbb{N} \ \forall n > n_0 : 1 - \frac{\alpha}{n} < 1 - \frac{\beta}{n} + O(\frac{1}{n^2})$. Правая часть равна $\frac{b_{n+1}}{b_n}$. По условию, $\frac{a_{n+1}}{a_n} \leqslant 1 - \frac{\alpha}{n}$. Из этих двух условий по свойству транзитивности неравенств получаем оценку $\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$, откуда следует сходимость ряда.

Теорема 13 (Признак Раабе в предельной форме) Пусть дан ряд с общим членом a_n и $\lim_{n\to\infty} n(1-\frac{a_{n+1}'}{a_n})=R$. Тогда:

1. R < 1 - ряд расходится

2. R > 1 - ряд сходится.

Доказательство. 1. Пусть $\varepsilon = 1 - R$. Тогда

$$\exists n_0 \ \forall n > n_0 : n \left(1 - \frac{a_{n+1}}{a_n} \right) < R + \varepsilon = 1$$

Значит, $1 - \frac{a_{n+1}}{a_n} < \frac{1}{n_n}$, $\frac{a_{n+1}}{a_n} > 1 + \frac{1}{n}$, тогда ряд расходится по необходимому признаку.

2. Пусть $\alpha \in (1, R)$, $\varepsilon = R - \alpha$. Тогда

$$\exists n_0 \ \forall n > n_0 : n \left(1 - \frac{a_{n+1}}{a_n} \right) > \alpha$$

откуда $\frac{a_{n+1}}{a} < 1 - \frac{\alpha}{n}$. Значит, ряд сходится по признаку Раабе в оценочной форме. \square

Замечание. $\lim_{n\to\infty} n(\frac{a_n}{a_{n+1}}-1) = \lim_{n\to\infty} n(1-\frac{a_{n+1}}{a_n}).$

Теперь докажем очень прикольный признак, из которого следуют почти все остальные признаки.

Теорема 14 (признак Куммера)

- Пусть даны две последовательности $\{a_n\}$ и $\{c_n\}$. Тогда: 1. Если $\exists \alpha > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 : C_n C_{n+1} \cdot \frac{a_{n+1}}{a_n} \geqslant \alpha$ ряд с общим членом a_n сходится.
- 2. Если ряд $\sum_{n=1}^{\infty} \frac{1}{C_n}$ расходится и $C_n C_{n+1} \cdot \frac{a_{n+1}}{a_n} \leqslant 0$, то ряд с общим членом a_n pacxodumcs.

Доказательство. 1. $\alpha \cdot a_k \leqslant C_k a_k - C_{k+1} a_{k+1}$. Далее $\alpha \cdot \sum_{k=1}^{\infty} a_k \leqslant C_1 a_1 - C_{k+1} a_k$

 $C_{n+1}a_{n+1}\leqslant C_1a_1$. Значит, $S_n\leqslant \frac{C_1a_1}{\alpha}$, и ряд сходится по третьему признаку сравнения.

 $2. \ C_n \leqslant C_{n+1} \cdot \frac{a_{n+1}}{a_n}$, значит, $\frac{C_n}{C_{n+1}} \leqslant \frac{a_{n+1}}{a_n}$. Пусть $b_n = \frac{1}{C_n}$. Тогда ряд с

общим членом b_n расходится и $\frac{b_{n+1}}{b_n} \leqslant \frac{a_{n+1}}{a_n}$, поэтому ряд с общим членом a_n расходится по 3-му признаку сравнения. \square

Следствие 1. Признак Даламбера при $C_n \equiv 1$

$$1. n - 1 - n \cdot \frac{a_{n+1}}{a_n} \geqslant \alpha \implies 1 - \frac{1}{n} - \frac{a_{n+1}}{a_n} \geqslant \frac{\alpha}{n} \implies \frac{a_{n+1}}{a_n} \leqslant 1 - \frac{1+\alpha}{n}.$$

Следствие 2. Признак Раабе. Возьмем $C_n = n-1$. Имеем 1. $n-1-n\cdot \frac{a_{n+1}}{a_n}\geqslant \alpha \implies 1-\frac{1}{n}-\frac{a_{n+1}}{a_n}\geqslant \frac{\alpha}{n} \implies \frac{a_{n+1}}{a_n}\leqslant 1-\frac{1+\alpha}{n}$. Следствие 3. Признак Бертрана. Возьмем $C_n=(n-2)\ln(n-1)$. Тогда $\frac{a_{n+1}}{a_n}\geqslant 1-\frac{1}{n}-\frac{1}{n\ln n}$ ряд сходится.

Теорема 15 (признак Гаусса)

Пусть дан положительный ряд. Представим его в виде

$$\frac{a_{n+1}}{a_n} = D - \frac{R}{n} + \frac{\theta_n}{n^{1+\varepsilon}}$$

Тогда:

- 1. Если D > 1 ряд расходится;
- 2. Если D < 1 ряд сходится;
- 3. Если D=1, $R\leqslant 1$ ряд расходится;
- 4. Если D = 1, R > 1 ряд сходится.

 $3 \partial e c \circ \theta_n$ - ограниченная монотонная последовательность, $\varepsilon > 0$.

Доказательство. Пункты 1 и 2 следуют из признака Даламбера, так как $D = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$

3. По условию, имеем

$$\frac{a_{n+1}}{a_n} = 1 - \frac{R}{n} + \frac{\theta_n}{n^{1+\varepsilon}}$$

Тогда $n(1-\frac{a_{n+1}}{a_n})=R-\frac{\theta_n}{n^{\varepsilon}},$ откуда $\lim_{n\to\infty}\left(n\left(1-\frac{a_{n+1}}{a_n}\right)\right)=R,$ значит, ряд сходится по признаку Раабе.

4. По условию, имеем

$$\frac{a_{n+1}}{a_n} = 1 - \frac{1}{n} + \frac{\theta_n}{n^{1+\varepsilon}}$$

откуда $n\left(1-\frac{a_{n+1}}{a_n}\right)-1=-\frac{\theta_b}{n^\varepsilon}$. Домножим на логарифм и рассмотрим предел получившегося выражения:

$$\lim_{n\to\infty} \ln n \cdot n \left(n \left(1 - \frac{a_{n+1}}{a_n} \right) - 1 \right) = \lim_{n\to\infty} \left(\ln n \cdot - \frac{\theta_b}{n^{\varepsilon}} \right) = 0$$

Значит, по признаку Бертрана ряд расходится. 🗆

Теорема 16 (интегральный признак)

Пусть дана непрерывная неотрицательная невозрастающая функция f(x), определенная на $[1,\infty)$. Тогда ряд $\sum_{n=1}^{\infty} a_n$ и интеграл $\int_{1}^{\infty} f(x) dx$ сходятся и расходятся одновременно, где $a_n = f(n)$ - значения функции в натуральных числах.

Доказательство. Очевидно, что $\forall x \geqslant 1 \; \exists k \in \mathbb{N} : k \leqslant x \leqslant k+1$. По условию невозрастания имеем $f(k) \geqslant f(x) > f(k+1)$. Значит, $a_{k+1} < f(x) \leqslant a_k$. Определенный интеграл от функции на единичном отрезке не больше её максимального значения, поэтому

$$a_{k+1} < \int_{k}^{k+1} f(x)dx \leqslant a_k$$

Просуммируем:

$$\sum_{k=1}^{\infty} a_{k+1} < \sum_{k=1}^{\infty} \int_{k}^{k+1} f(x) dx \le \sum_{k=1}^{\infty} a_{k}$$

Отсюда получаем, что

$$S_{n+1} - a_1 < \int_{1}^{n+1} f(x) dx \leqslant S_n$$

Если ряд сходится, то он ограничен. Значит, ограничен и интеграл, а поскольку это интеграл от положительной функции, он тоже сходится. Обратно, если интеграл сходится, то ряд ограничен, значит, он сходится по теореме Вейерштрасса. □

Рассмотрим ещё несколько интересных свойств знакопостоянных рядов.

Теорема 17 (связь признаков Даламбера и Коши)

Если для ряда с общим членом a_n выполняются условия признака Даламбера, то для него выполняются условия признака Коши.

Доказательство. Условие для признака Даламбера: $\forall n \in \mathbb{N}: \frac{a_{n+1}}{a_n} \leqslant q < 1$. Перемножая неравенства $\frac{a_2}{a_1} \leqslant q, \frac{a_3}{a_2} \leqslant q, ..., \frac{a_n}{a_{n-1}} \leqslant q$, получим $\frac{a_n}{a_1} \leqslant q^n$, откуда $\sqrt[n]{a_n} \leqslant \sqrt[n]{a_1}q$. Зафиксируем $\varepsilon = \frac{1-q}{2}$. Тогда $\exists n_0 \ \forall n > 1$

 $n_0: \sqrt[n]{a_1}q < rac{q+1}{2} = q_1.$ Отсюда получаем условие применимости признака Коши: $\sqrt[n]{a_n} < q_1 < 1.$ \square

Ещё одна область применения рядов - оценка погрешности приближенной величины с помощью положительного ряда. Действительно, пусть R_n - n-ный остаток ряда $\sum\limits_{n=1}^\infty a_n$. Тогда из доказательства интегрального признака $a_{k+1} < \int\limits_k^{k+1} f(x) dx \leqslant a_k$, но поскольку по определению $R_n = \sum\limits_{k=n+1}^\infty a_k$, получаем оценку:

$$\int_{n+1}^{\infty} f(x)dx \leqslant R_n < \int_{n}^{\infty} f(x)dx$$

Пример. Вычислим с точностью до 0,001 ряд $\sum_{n=1}^{\infty} \frac{1}{n^4}$. Ответ: 1,082 \pm 0,001 (точный ответ $\frac{\pi^4}{90}$)

1.1.3 Знакопеременные ряды

Переходим к исследованию рядов с произвольным знаком. Иногда бывает полезно рассмотреть этот ряд с числами постоянного знака, что мотивирует следующее определение.

Определение 5 *Ряд сходится абсолютно, если сходится ряд, составленный из модулей членов этого ряда. Ряд сходится условно, если он сходится, но расходится абсолютно.*

Теорема 18 Если ряд сходится абсолютно, то ряд сходится.

Доказательство. Следует напрямую из критерия Коши и свойства модуля: $||a_1|+...|a_n||\geqslant |a_1+...+a_n|$. \square

Теорема 19 (признак Лейбница для знакочередующихся рядов) Пусть ряд имеет вид $\sum_{n=1}^{\infty} (-1)^n v_n$, где $v_n > 0$ и монотонно убывает. Тогда ряд сходится. Более того, имеет место оценка погрешности $|R_n| \leq v_n$ **Доказательство.** 1. Посчитаем частичную сумму для 2k:

$$S_{2k} = v_1 - v_2 + \dots - v_{2k}$$

$$S_{2k+2} = S_{2k} + v_{2k+1} - v_{2k+2}$$

$$S_{2k+2} - S_{2k} = v_{2k+1} - v_{2k+2}$$

$$S_{2k} = v_1 - (v_2 - v_3) - (v_4 - v_5) - \dots - (v_{2k-2} - v_{2k-1}) - v_{2k}$$

Значит, эта последовательность возрастает и ограничена сверху, значит, у неё есть конечный предел: $S_{2k} \leqslant u_1$

$$\lim_{k \to \infty} S_{2k+1} = \lim_{k \to \infty} (S_{2k} + v_{2k+1}) = S$$

Следовательно,

$$\exists \lim_{n \to \infty} S_n = S$$

Последовательность частичных сумм для нечетных чисел также убывает, доказательство аналогичное.

2. Докажем оценку погрешности. $|R_{2k}| = S - S_{2k} < S_{2k+1} - S_{2k}$. Итак,

$$|R_{2k}| \leqslant v_{2k+1}$$

$$R_{2k+1} = S_{2k+1} - S < S_{2k+1} - S_{2k+2}$$

$$|R_{2k+1}| \leqslant v_{2k+2}$$

Теорема 20 (Преобразование Абеля)

Пусть
$$B_i = \sum_{k=1}^i b_k$$
. Тогда

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n$$

Доказательство. $b_k = B_k - B_{k-1}, \ k \in \{2, ..., n\}$. Тогда $\sum_{k=1}^n a_k b_k = a_1 b_1 + \sum_{k=2}^n a_k \cdot (B_k - B_{k-1}) = a_1 b_1 + \sum_{k=2}^n a_k b_k - \sum_{k=1}^{n-1} a_{k+1} b_k = a_1 b_1 = \sum_{k=2}^{n-1} (a_k - a_{k+1}) \cdot B_k + a_n b_n - a_2 b_1 = \sum_{k=1}^n a_k b_k = \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n \square$

Теорема 21 (неравенство Абеля)

 $\Pi y c m b$ последовательность a_n монотонно возрастает или убывает, и пусть существует константа M такая, что $\forall k \in \{1...n\}: |b_1+b_2+b_3|$ $...b_n | \leq M$ (то есть она ограничивает модуль частичных сумм ряда B). $Tor \partial a$

$$\left| \sum_{k=1}^{n} a_k b_k \right| \leqslant M(|a_1| + 2|a_n|)$$

Доказательство. Применим преобразование Абеля к ряду с общим чле-HOM $a_n b_n$: $\left| \sum_{k=1}^n a_k b_k \right| = \left| \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n \right| \leqslant \left| \sum_{k=1}^{n-1} (a_k - a_{k+1}) B_k \right| + a_n B_n$ $|a_n| \cdot |B_n| \leqslant M \cdot \left| \sum_{k=1}^{n-1} (a_k - a_{k+1}) \right| + M|a_n| \leqslant M(|a_1| + 2|a_n|). \square$

Теорема 22 (признак Дирихле)

Пусть общий член ряда имеет вид a_nb_n Тогда если:

- 1. Последовательность a_n монотонна $u\lim_{n\to\infty}a_n=0;$ 2. Последовательность частичных сумм b_n ограничена константой B;Тогда ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Доказательство. Используем критерий Коши. Зафиксируем $\varepsilon > 0$. По условию, предел последовательности a_n равен нулю, тогда для

$$\frac{\varepsilon}{6B} > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \ \forall n > n_0 : |a_n| < \frac{\varepsilon}{6B}$$

Пусть $p \in \mathbb{N}$. Рассмотрим $\left| \sum_{k=n+1}^{n+p} a_k b_k \right|$. Подберем константу из неравен-

ства Абеля:
$$\left|\sum_{k=n+1}^{n+i} b_k\right| = |B_{n+i} - B_n| \leqslant |B_{n+i}| + |B_n| \leqslant 2B = M$$
. Значит,

из неравенства Абеля получаем $\left|\sum_{k=n+1}^{n+p} a_k b_k\right| \leqslant 2B(|a_{n+1}|+2|a_{n+p}|) < 1$ $2B \cdot (\frac{\varepsilon}{6B} + \frac{2\varepsilon}{6B}) = \varepsilon$. \square

Пример. $\sum_{n=1}^{\infty} \frac{\sin n\alpha}{n}$. По признаку Дирихле ряд сходится, так как частичные суммы синуса арифметической прогрессии сходятся.

Теорема 23 (признак Абеля)

Пусть общий член ряда имеет вид a_nb_n . Тогда если

1. Последовательность a_n монотонна и ограничена константой M;

2. Ряд
$$\sum_{n=1}^{\infty} b_n$$
 сходится.

Тогда ряд
$$\sum_{n=1}^{\infty} a_n b_n$$
 сходится.

Доказательство. Докажем по критерию Коши. Зафиксируем $\varepsilon > 0$. Так как сходится ряд с общим членом b_n , то по критерию Коши для

$$\frac{\varepsilon}{3M} > 0 \ \exists n_0 \ \forall n > n_0 \ \forall p \in \mathbb{N} : \left| \sum_{k=n+1}^{n+p} b_k \right| < \frac{\varepsilon}{3M}$$

Из неравенства Абеля получаем $\left|\sum_{k=n+1}^{n+p}a_kb_k\right|\leqslant \frac{\varepsilon}{3M}(|a_{n+1}|+2|a_{n+p}|)<\frac{\varepsilon}{3M}(M+2M)=\varepsilon$. Итак,

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \ \forall p \in \mathbb{N} : \left| \sum_{k=n+1}^{n+p} a_k b_k \right| < \varepsilon \quad \square$$

Упражнение. Доказать признак Абеля, используя признак Дирихле. Решение. Условие означает, что признак Дирихле более общий, чем признак Дирихле, поэтому покажем, что если ряд удовлетворяет условиям признака Абеля, то он удовлетворяет и признаку Дирихле.

Пусть дан ряд $\sum_{n=1}^{\infty} a_n b_n$. По условию признака Абеля, последовательность a_n монотонна и ограниченна, поэтому у её есть конечный предел a, поэтому исходный ряд можно представить в виде

$$a\sum_{n=1}^{\infty}b_n+\sum_{n=1}^{\infty}b_n(a_b-a)$$

Первый ряд сходится по условию, второй удовлетворяет признаку Дирихле.

Пример. $\sum_{n=2}^{\infty} (\sin n\alpha \cos \frac{\pi}{n}) / \ln \ln n$. Косинус монотонный и ограниченный, а все остальное сходится по Дирихле. Значит,ряд сходится по Абелю.

Теорема 24 (признак Даламбера для знакопеременных рядов) Пусть a_n - общий член знакопеременного ряда, $u\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = q$. Тогда:

- 1. Если $0 \leqslant q < 1$, то ряд сходится абсолютно.
- 2. Если q > 1, то ряд расходится.

 $E c \wedge u \ q = 1$, ничего нельзя сказать.

Доказательство. 1. Следует из признака Даламбера для знакопостоянных рядов.

2. Пусть существует предел $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = q > 1$ Для

$$\varepsilon = q - 1 > 0 \ \exists n_0 \ \forall n > n_0 : \frac{|a_{n+1}|}{|a_n|} > 1$$

откуда $\left|\frac{|a_{n+1}|}{|a_n|}-q\right|<\varepsilon$, поэтому $1<\left|\frac{a_{n+1}}{a_n}\right|< q+1$, значит не выполняется необходимый признак. \square

Теорема 25 (признак Коши для знакопеременных рядов) Пусть a_n - общий член знакопеременного ряда, $u\lim_{n\to\infty} \sqrt[n]{a_n} = q$. Тогда:

- 1. Если $0 \leqslant q < 1$, то ряд сходится абсолютно.
- 2. Если q > 1, то ряд расходится.

 $E c \wedge u \ q = 1$, ничего нельзя сказать.

Доказательство. 1. Следует из признака Коши для положительных рядов.

2. Проводится аналогично доказательству п.2 в признаке Даламбера. \square Признак сравнения для знакопеременных рядов не работает. Приведем пример: $a_n = \frac{(-1)^{n+1}}{n}, \ b_n = a_n + \frac{1}{(n+1)\ln(n+1)}$. Предел отношения таких рядов равен 1, то есть они эквивалентны, но вот первый сходится, а второй - расходится

1.1.4 Свойства абсолютно сходящихся рядов

Лемма. Если ряд сходится абсолютно, то модуль его суммы не превосходит суммы его модулей. Лемма следует из неравенства

$$|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$$

Теорема 26 (о перестановках в абсолютно сходящемся ряде) Пусть дан ряд с общим членом a_n , и он сходится абсолютно. Пусть его сумма равна S, сумма из модулей равна \overline{S} . Обозначим соответствующие частичные суммы как S_n , $\overline{S_n}$. Рассмотрим ряд $\sum_{n=1}^{\infty} a_n^*$ с переставленными членами исходного ряда, обозначим его сумму и частичную сумму как S^* , S_n^* (для ряда из модулей соответственно $\overline{S^*}$, $\overline{S_n^*}$). Тогда:

- $1. S^*$ существует и равна S;
- 2. Ряд из a_n^* сходится абсолютно.

Доказательство. 1. По условию, $\sum\limits_{n=1}^{\infty}|a_n|=\overline{S}$. Тогда

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 : |\overline{S_n} - \overline{S}| < \frac{\varepsilon}{2}$$

Из леммы следует, что $|S-S_n|<\frac{\varepsilon}{2}$. Перейдем к переставленному ряду. Выберем в нем такой номер m_0 , чтобы частичная сумма $S_{m_0}^*$ содержала все слагаемые, входящие в S_{n_0} . Тогда для любого числа $m>m_0$ имеем

$$|S_m^* - S_{n_0}| < |\overline{S}| < \frac{\varepsilon}{2}$$

Тогда $|S_m^* - S| = |S_m^* - S_{n_0} + S_{n_0} - S| \leqslant |S_m^* - S_{n_0}| + |S_{n_0} - S| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. В итоге мы доказали сходимость ряда с переставленными членами и равенство его суммы сумме исходного ряда:

$$\forall \varepsilon > 0 \ \exists m_0 \in \mathbb{N} \ \forall m > m_0 : |S_m^* - S| < \varepsilon$$

2. Абсолютная сходимость следует из таких же рассуждений для ряда с модулем. \square

Теорема 27 *Если ряд сходится абсолютно, то ряд, умноженный на константу, сходится абсолютно.*

Доказательство. Так как ряд сходится, то по определению $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} \; \forall n > n_0 \; \forall p \in \mathbb{N} : ||a_{n+1}| + \ldots + |a_{n+p}|| < \varepsilon$. Теперь возьмем $\frac{\varepsilon}{|c|}$. Тогда для ряда, умноженного на константу, получаем, что $||ca_{n+1}| + \ldots + |ca_{n+p}|| = |c| \cdot ||a_{n+1}| + \ldots + |a_{n+p}|| < \frac{\varepsilon \cdot |c|}{|c|}$. \square

Теорема 28 Сумма абсолютно сходящихся рядов сходится абсолютно.

Доказательство. Так как сумма модулей больше модуля суммы, то $\sum_{n=1}^{k} |a_n| + \sum_{n=1}^{k} |b_n| \geqslant \sum_{n=1}^{k} |a_n + b_n|$. Но это значит, что частичные суммы ряда $|a_n + b_n|$ ограничены числом $S_a + S_b$ (суммами рядов), поэтому ряд сходится. \square

Теорема 29 (О произведении абсолютно сходящихся рядов) Сумма всевозможных произведений a_ib_j сходится абсолютно, и сумма ряда равна произведению сумм. Доказательство. Введем обозначения $u_n = |a_n|, \ v_n = |b_n|, S^i = \sum_{n=1}^{\infty} i_n, \overline{S^i} =$

 $\sum_{n=1}^{\infty} |i_n|$. Частичные суммы S_n произведения рядов будут суммами элементов угловых миноров бесконечной матрицы

$$\begin{pmatrix} u_1v_1 & u_1v_2 & u_1v_3 & \dots \\ u_2v_1 & u_2v_2 & u_2v_3 & \dots \\ u_3v_1 & u_3v_2 & u_3v_3 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Получим $S_1 = u_1 v_1$, $S_2 = (u_1 + u_2)(v_1 + v_2)$, $S_3 = (u_1 + u_2 + u_3)(v_1 + v_2)$ v_2+v_3).... Получаем $S_n=\overline{S_n^a}\cdot\overline{S_n^b}$. Так как ряды сходятся абсолютно, то $\lim_{n\to\infty}S_n=\lim_{n\to\infty}\overline{S_n^a}\cdot\lim_{n\to\infty}\overline{S_n^b}=\overline{S^a}\cdot\overline{S^b}$. \square

Определение 6 (произведение рядов по Коши)

Пусть $S_a \cdot S_b = S_c$. Определим ряд-произведение следующим образом:

$$c_1 = a_1 b_1$$

$$c_2 = a_1b_2 + a_2b_1$$

$$c_3 = a_1b_3 + a_2b_2 + a_3b_3$$

То есть суммируем по диагоналям бесконечной матрицы

$$\begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 & \dots \\ a_2b_1 & a_2b_2 & \dots & \\ a_3b_1 & \dots & & \\ \dots & & & \end{pmatrix}$$

Пример 1. $a_n = \frac{1}{n(n+1)} = 1$, $b_n = \frac{n}{2^n}$. Тогда $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{n+1-k}{k(k+1)-2^{n+1-k}}$. Пример 2. Произведение расходящихся рядов $a_n = 1, 5^n$, $b_n = 1$

 $1,5^n$ в смысле Коши - сходится, так как $c_n=0,75^n$.

Заметим, что условной сходимости недостаточно! Так, для $a_n = b_n =$ $(-1)^{n-1}/\sqrt{n}$ ничего не выйдет. Смиритесь. Ребят а че вы с пары то свалили? Неуютненько.

Теорема 30 (о перестановках в абсолютно сходящемся ряде) Если ряд сходится

Доказательство. \square

1.1.5 Свойства условно-сходящихся рядов

Теорема 31 (лемма о сходимости)

Пусть ряд с общим членом a_n сходится условно. Рассмотрим отдельно подпоследовательности из положительных и отрицательных членов ряда. Тогда их суммы $+\infty, -\infty$ соответственно.

Доказательство. Пусть $S^+,\ S^-$ - суммы положительных и отрицательных членов. Тогда $\overline{S}=S^+-S^-,\ S=S^++S^-.$ Поскльку $\overline{S}=\infty,\ a$ S=const. Тогда $S^+=+\infty,\ S^-=-\infty.$ \square

Теорема 32 (Римана)

Если ряд сходится условно, то для любого действительного числа найдется такая перестановка ряда, при которой ряд сходится к этому числу.

Доказательство. Пусть $\alpha \in \mathbb{R}$ - искомое число. По предыдущей лемме, ряд a_n^+ из положительных членов расходится, значит, найдется такая его частичная сумма S_1^+ , что $S_1^+ > \alpha$. Дальше найдем такую частичную сумму S_1^- из отрицательных членов, что $S_1^+ + S_1^- < \alpha$. Будем повторять эту операцию, беря частичные суммы из остатков рядов с положительными или отрицательными членами. Поскольку исходный ряд сходится, то его общий член стремится к нулю, поэтому и частичные суммы отрицательных и положительных членов стремятся к нулю. Поэтому ряд $S_1^+ + S_1^- + S_2^+ + S_2^- + \dots$ является рядом Лейбница и сходится к числу α . Переставив члены исходного ряда в соответствии с этими частичными суммами, получим искомую перестановку. \square

1.2 Функциональные последовательности

1.2.1 Базовые определения

Определение 7 Пусть функции f_1, f_2 ... заданы на некотором множестве $X \subset \mathbb{R}$. Тогда задана функциональная последовательность

$$f_1(x), f_2(x), f_3(x), \dots, x \in X$$

Определение 8 Функциональная последовательность f_n сходится **по-точечно** κ f(x) в точке x_0 , если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n > N : |f_n(x_0) - f(x_0)| < \varepsilon$$

Множество всех $x_0 \in X$, для которых предел существует, называется областью сходимости последовательности.

Определение 9 Функциональная последовательность f_n равномерно **сходится** κ функции f на множестве X, если

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \ \forall n > N \ \forall x \in X : |f_n(x) - f(x)| < \varepsilon$$

Обозначается как $f_n \Longrightarrow f$

Это определение эквивалентно супремум-критерию сходимости:

$$\lim_{n \to \infty} \sup_{x \in X} |f_n(x) - f(x)| = 0$$

Теорема 33 Супремум-критерий эквивалентен определению равномерной сходимости.

Доказательство. Пусть $f_n \rightrightarrows f$ на X. Фиксируем $\varepsilon > 0$. Тогда по определению для

$$\frac{\varepsilon}{2} > 0 \ \exists n_0 \ \forall n > n_0 \ \forall x \in X : |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

Пусть $a_n = \sup |f_n(x) - f(x)| \leqslant \frac{\varepsilon}{2} < \varepsilon$. Тогда

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 : |a_n| < \varepsilon \implies \lim_{n \to \infty} a_n = 0$$

Обратно, пусть $\lim_{n\to\infty}\sup_{x\in X}|f_n(x)-f(x)|=0$. Тогда

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 : \sup |f_n(x) - f(x)| < \varepsilon$$

Значит, выполняется неравенство

$$\forall x \in X : |f_n(x) - f(x)| \leqslant \sup |f_n(x) - f(x)|$$

откуда

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \ \forall x \in X : |f_n(x) - f(x)| < \varepsilon \iff f_n \Longrightarrow f$$

Теорема 34 (критерий Коши равномерной сходимости) $f_n(x) \Rightarrow f(x)$ на множестве X тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) \in \mathbb{N} \ \forall n > n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : |f_{n+p}(x) - f_n(x)| < \varepsilon$$

Доказательство. Зафиксируем $\varepsilon > 0$. По условию, $f_n(x) \rightrightarrows f$ на X. Тогда для

$$\frac{\varepsilon}{2} > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

Тогда $\forall p \in \mathbb{N} \ \forall n+p > n > n_0 : |f_{n+p}(x) - f_n(x)| \leq |f_{n+p}(x) - f(x)| + |f(x) - f_n(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Обратно, по условию для

$$\frac{\varepsilon}{2} > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : |f_{n+p}(x) - f_n(x)| < \frac{\varepsilon}{2} \quad (1)$$

Сходимость имеет место для каждой отдельной точки $x \in X$ (поточечная сходимость), тогда по критерию Коши для числовой последовательности сущетсвует конечный предел $\lim_{n\to\infty} f_n(x) = f(x) \in \mathbb{R}$. Тогда в неравенстве

(1) можно перейти к пределу:
$$\lim_{n\to\infty} |f(x)-f_n(x)| < \frac{\varepsilon}{2} < \varepsilon$$
. \square

Следствие (метод граничной точки). Если $f_n(x) \in C[a,b)$ и $f_n(x) \to f(x) \ \forall x \in (a,b)$, и $f_n(a)$ расходится. Тогда $f_n(x)$ не сходится равномерно к f(x) на (a,b).

Доказательство. Допустим, что сходимость равномерная. Тогда

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : |f_{n+p}(x) - f_n(x)| < \frac{\varepsilon}{2}$$

По условию, функции f_n непрерывны на [a,b), тогда $\lim_{x\to a+0} |f_{n+p}(x)-f_n(x)| \leqslant \frac{\varepsilon}{2}$, откуда $|f_{n+p}(a)-f_n(a)| < \varepsilon$. По критерию Коши для числовой последовательности $f_n(a)$ сходится. Но это противоречит условию. \square

Теорема 35 (метод оценки остатка функциональной последовательности)

Пусть $f_n(x) \to f(x)$ на множестве E и $r_n(x) = f_n(x) - f(x)$ - остаток ряда. Тогда:

- 1. Если $\forall x \in E : |r_n(x)| \leqslant b_n \to 0$, то ф.п. сходится равномерно.
- 2. Если $\exists X_n \in E : r_n(x_n) \to a \neq 0$, то ф.п. не сходится равомерно.

Доказательство. 1. По условию, $\forall x \in E: |r_n(x)| \leqslant b_n$, тогда $\sup_{x \in E} |r_n(x)| \leqslant b_n$. Отсюда получаем, что

$$0 \leqslant \lim_{n \to \infty} \sup_{r \in E} \leqslant \lim_{n \to \infty} b_n = 0$$

то есть функция сходится равномерно на множестве E.

2. Пусть $\exists X_n \in E : r_n(x_n) \to a \neq 0$. Но это эквивалентно отрицанию супремум-критерия, поэтому последовательность не сходится равномерно. \square

Теорема 36 (о пределе равномерно сходящейся функциональной последовательности)

Пусть функции f_n непрерывны на X и $f_n
ightharpoonup f$. Тогда f непрерывна на X .

Доказательство. По определению, непрерывность на $X \Leftrightarrow$ непрерывность в каждой точке $x \in X$. Рассмотрим x_0 и зафиксируем $\varepsilon > 0$. По условию имеется равномерная сходимость, тогда для

$$\frac{\varepsilon}{3} > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ \forall x \in X : |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$

Пусть $n > n_0$, функция $f_n(x)$ непрерывна в точке x_0 , тогда для

$$\frac{\varepsilon}{3} > 0 \; \exists \delta > 0 \; \forall x \in X : 0 \leqslant |x - x_0| < \delta \implies |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$$

Оценим эту разницу: $|f(x) - f(x_0)| = |f(x) - f_n(x) + f_n(x) - f_n(x_0) + f_n(x_0) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$. Значит,

$$\forall \varepsilon > 0 \ \exists \delta > 0 : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

то есть функция непрерывна в точке x_0 . \square

1.2.2 Свойства равномерно сходящихся функциональных последовательностей

- 1. Линейные комбинации сходятся с соответствующим линейным комбинациям пределов.
- 2. Умножение на ограниченную (на X) функцию: $(gf_n) \rightrightarrows (gf)$
- 3. На любом подмножестве X функция равномерно сходится.
- 4. Если $\forall x \in X : f_n(x) \to f(x)$ и $E \subset X$ конечное множество, то на $E f_n(x) \rightrightarrows f(x)$ функция сходится равномерно.
- 5. Последовательность, равномерно сходящаяся на двух множествах, равномерно сходится на их объединении.

Доказательство.

1. Докажем для линейной комбинации $\alpha f + \beta g$. Зафиксируем $\varepsilon > 0$. По условию $f_n \Rightarrow f$ на X, тогда для $\frac{\varepsilon}{|\alpha| + |\beta|} > 0$ $\exists n_1 \in \mathbb{N} \ \forall x \in X$:

 $|f_n(x) - f(x)| < \frac{\varepsilon}{|\alpha| + |\beta|}$. Тоже самое для функции g. Для неё существует константа n_2 . Выбрав максимум из них, получаем

$$|(\alpha f_n(x) + \beta g_n(x)) - (\alpha f + \beta g)| \leq |\alpha| \cdot |f_n(x) - f(x)| + |\beta| \cdot |g_n(x) - g(x)| < \varepsilon$$

. Значит, $\alpha f_n + \beta g_n \Longrightarrow \alpha f + \beta g$.

2. По условию, g(x) ограничена на X. Значит, существует такое M, что $\forall x \in X: |g(x)| < M$. Тогда для

$$\frac{\varepsilon}{M} > 0 \ \exists n_0 \in \mathbb{N} \ \forall x \in X : |f_n(x) - f(x)| < \frac{\varepsilon}{M}$$

Отсюда $|g(x)f_n(x) - g(x)f(x)| = |g(x)| \cdot |f_n(x) - f(x)| \leqslant M \cdot \frac{\varepsilon}{M} = \varepsilon$.

3. Допустим, функция не сходится равномерно на $E \subset X$. Тогда существует такая последовательность $\{x_n\} \subset E$, что $\lim_{n \to \infty} |f_n(x_n) - f(x_n)| > 0$. Но поскольку $\{x_n\} \subset E \subset X$, функция не сходится равномерно и на X, что противоречит условию.

- 4. Так как у любого конечного множества есть супремум, то найдется такой $x_0 \in E$, что на нем достигается супремум предела $|f_n(x_0) f(x_0)|$. Так как по условию $f_n(x_0) \to f(x_0)$, то по супремум-критерию последовательность сходится равномерно.
- 5. Используем супремум-критерий. Допустим, последовательность равномерно не сходится на объединении. Тогда

$$\exists \{x_n\} \subset A \cup B : \lim_{n \to \infty} |f_n(x_n) - f(x_n)| = c \neq 0$$

Если последовательность $\{x_n\}$ целиком лежит в одном из двух множеств (или если лишь конечное число членов лежит в другом множестве), тогда f_n не сходится равномерно на этом множестве, что противоречит условию. Допустим, последовательность разбивается на две подпоследовательности $\{x_n^a\} \subset A$ и $\{x_n^b\} \subset B$. По определению, на них достигается супремум величины $|f_n - f|$. Рассмотрим сумму пределов $\lim_{n \to \infty} |f_n(x_n^a) - f(x_n^a)| + \lim_{n \to \infty} |f_n(x_n^b) - f(x_n^b)| = c_a + c_b$. По свойству сумм пределов $c_a + c_b = c$, но тогда $c_a \neq 0$, либо $c_b \neq 0$, что противоречит пред положению согласно супремум-критерию.

1.3 Функциональные ряды

1.3.1 Базовые определения

Определение 10 Область $X \subset D$ сходимости ряда $\sum_{n=1}^{\infty} a_n(x)$ - область, лежащая в области определения всех функций ряда и для каж-

дого x на ней последовательность частичных сумм ряда сходится поточечно.

Пример. $\sum_{n=1}^{\infty} \frac{8^n}{n} (\sin x)^{3n}$. Область сходимости - $|\sin x| < \frac{1}{2}$.

Определение 11 $Pяд \sum_{n=1}^{\infty} a_n(x)$ сходится равномерно $\kappa S(x)$ на X, если $S_n \rightrightarrows S$ на X (S_n - частичная сумма pяда).

Пример. Исследуем на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{x(2n-1)}{((n-1)^2+x^2)(n^2+x^2)}, x \in [1,\infty)$. Здесь предел частичных сумм можно найти по определению: $S_n(x) = \sum_{n=1}^{\infty} a_k = x(\frac{1}{x^2} - \frac{1}{n^2+x^2})$. При фиксированном $x \in D$: $\lim_{n \to \infty} S_n(x) = \frac{1}{x}$, $S(x) = \frac{1}{x}$. Проверим, что остаток равномерно стремится к нулю (тогда это верно и для суммы): $R_n(x) = S(x) - S_n(x) = \frac{x}{n^2+x^2} \leqslant \frac{x}{2nx} = \frac{1}{2n} \to 0, \ n \to \infty$ (по методу оценки остатка). Итак, ряд сходится равномерно к своей сумме.

Пример. Исследуем на равномерную сходимость $\sum_{n=1}^{\infty} \frac{x^2(2n-1)}{((n-1)^2+x^2)(n^2+x^2)}, \ x \in [1,\infty)$. Имеем $S_n(x) = 1 - \frac{x^2}{n^2+x^2}, \ S(x) = 1$

Теорема 37 (необходимое условие равномерной сходимости функционального ряда)

Pяд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно к S(x) на X. Тогда $a_n \rightrightarrows 0$ на X.

Доказательство. По условию,

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ \forall x \in X : |S_n(x) - S(x)| < \frac{\varepsilon}{2} \implies |S_{n+1}(x) - S(x)| < \frac{\varepsilon}{2}$$

Отсюда имеем

$$|a_n(x)| = |S_{n+1}(x) - S_n(x)| \leqslant |S_{n+1}(x) - S_n(x)| + |S_n(x)| - |S_n(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Значит, $a_n \rightrightarrows 0$ на X. \square

Теорема 38 (критерий Коши равномерной сходимости функционального ряда)

 $\sum\limits_{n=1}^{\infty}a_{n}(x)$ равномерно сходится на X к S(x) тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) \in \mathbb{N} \ \forall n > n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : |\sum_{k=n+1}^{n+p} a_k(x)| < \varepsilon$$

Доказательство. Применим определение Коши равномерной сходимости для последовательности. \square

Пример. Докажем, что у ряда $\sum_{n=1}^{\infty} \frac{\sqrt{x}}{n^2 x^2 + \sqrt{n}}$, $x \in (0,1)$ нет равномерной сходимости. Возьмем $x = \frac{1}{2n}$; $a_k(x) \geqslant \frac{1}{4n}$. Поэтому для $\varepsilon \geqslant \frac{1}{4}$ по критерию Коши ряд расходится.

Теорема 39 (метод граничной точки)

Пусть дан ряд $\sum_{n=1}^{\infty} a_n(x)$, его члены непрерывны на отрезке [a,b] и ряд сходится на интервале (a,b), но расходится на каком-либо конце интервала. Тогда равномерной сходимости нет.

Доказательство. Повторяет доказательство для последовательностей.

Пример. $\sum_{n=1}^{\infty} \frac{1}{n^x}$, $x \in (1,2)$. Ряд сходится на интрвале как обобщенный гармонический ряд. При x=1 ряд расходится, значит, равномерной сходимости нет.

Теорема 40 (признак Вейерштрасса равномерной сходимости функционального ряда /мажорантный признак)

Пусть дан ряд с общим членом $a_n(x)$ и мы можем оценить $|a_n(x)| \leq a_n$ (то есть мажорирующим рядом, не зависящим от x), причем $\sum_{n=1}^{\infty} a_n$

сходится. Тогда ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на том множестве, на котором верна оценка.

Доказательство. Испоьзуем критерий Коши: фиксируем $\varepsilon > 0$. Ряд a_n сходится, значит, по критерию Коши

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) \in \mathbb{N} \ \forall n > n_0 \ \forall p \in \mathbb{N} : \sum_{k=n+1}^{n+p} a_k < \varepsilon$$

По условию, $\forall x \in X \ \forall n \in \mathbb{N} : |a_n(x)| \leqslant a_k$, значит

$$\left| \sum_{k=n+1}^{n+p} a_k(x) \right| \leqslant \sum_{k=n+1}^{n+p} |a_k(x)| \leqslant \sum_{k=n+1}^{n+p} a_k < \varepsilon$$

. Тогда по критерию Коши для функционального ряда следует равномерная сходимость. \square

Пример. Исследуем на равномерную сходимость $\sum_{n=1}^{\infty} \frac{arcctg(nx)}{n}$, $x \in (\varepsilon, \infty)$, $\varepsilon > 0$. Подставив ноль, по методу граничной точки нет равномерной сходимости.

Пример. Исследуем сходимость $\sum_{n=1}^{\infty} e^{-n^5 x^2} \sin nx$ на прямой. Спойлер: сходится равномерно. Сделаем оценку: $|a_n(x)| \leqslant e^{-n^5 x^2} n |x|$. Функция симметрична при замене $x \mapsto -x$, значит, будем оценивать на положительном луче, откинув модуль. Оценим максимумом, вычислив производную и решив уравнение. Имеем $x = \frac{1}{\sqrt{2n^5}}$. Подставляем: $f_n(x) \leqslant f(\frac{1}{\sqrt{2n^5}}) = \frac{1}{\sqrt{2en^3}} = a_n$. Значит, $|a_n(x)| \leqslant |f_n(x)| \leqslant a_n \ \forall x \in \mathbb{R}$. Итак, сходимость равномерная.

Теорема 41 (признак Дирихле равномерной сходимости функционального ряда)

Пусть дан ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ и

- 1. $\forall x \in X : \{a_n(x)\}$ монотонна по n;
- 2. $\exists M = const \ \forall x \in X \ \forall n \in N : |B_n(x)| \leqslant M$, где $B_n(x)$ частичные суммы ряда b_n .

Тогда ряд сходится равномерно на X.

Доказательство. Фиксируем $\varepsilon > 0$. Так как $a_n \rightrightarrows 0$ на X, то для

$$\frac{\varepsilon}{6B} > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ \forall x \in X : |a_n(x)| < \frac{\varepsilon}{6B}$$

Из пункта 3 условия имеем

$$\left| \sum_{k=n+1}^{n+i} b_k(x) \right| = |B_{n+i}(x) - B_n(x)| \le |B_{n+1}(x)| + |B_n(x)| \le 2B$$

По неравенству Абеля получаем

$$\forall x \in X : \left| \sum_{k=n+1}^{n+p} a_k(x) b_k(x) \right| \le 2B(|a_{n+1}(x)| + 2|a_{n+p}(x)|) < \varepsilon$$

Значит, исходный ряд сходится равномерно по критерию Коши. \square

Пример. $\sum_{n=1}^{\infty} \sin nx/n$. Исследовать на равномерную сходимость на интервалах $(\varepsilon, 2\pi - \varepsilon)$, $(0, 2\pi)$. Ну, раз говорят что уже было, то не пишем. На втором интервале нет равномерной сходимости по краевому критерию.

Теорема 42 (признак Абеля равномерной сходимости функционального ряда)

Дан ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ $u \ \forall x \in X$:

- 1. $|a_n(x)| \leq M = const$ для всех n;
- $2. \{a_n(x)\}$ мнонотонна;
- 3. $\sum_{n=1}^{\infty} b_n(x)$ равномерно сходится на X; Тогда исходный ряд равномерно сходится на X.

Доказательство. По определению Коши. Фиксируем $\varepsilon > 0$. Так как ряд с общим членом b_n сходится равномерно, то по критерию Коши для

$$\frac{\varepsilon}{3M} > 0 \ \exists n_0(\varepsilon) \ \forall n > n_0 \ \forall p \in \mathbb{N} \ \forall x \in X : \left| \sum_{k=n+1}^{n+p} b_k(x) \right| < \frac{\varepsilon}{3M}$$

Тогда по неравенству Абеля

$$\left| \sum_{k=n+1}^{n+p} b_k(x) a_k(x) \right| \leqslant \frac{\varepsilon}{3M} (|a_{n+1}| + 2|a_{n+p}(x)|) < \frac{\varepsilon}{3M} \cdot 3M = \varepsilon$$

Тогда по критерию Коши этот ряд сходится равномерно на X. \square

Пример. Исследуем на равномерную сходимость ряд $\sum_{n=1}^{\infty} \frac{\cos nx \sin x arctgnx}{\sqrt{n^2+x^2}}$.

Алгоритм:

- 1. Арктангенс монотонен и ограничен.
- 2. Все остальное сходится по Дирихле.

1.3.2Свойства равномерно сходящихся рядов

Теорема 43 (о непрерывности суммы равномерно сходящегося ряда)

Дан ряд $\sum_{n=1}^{\infty} a_n(x)$, причем

- 1. Все функции непрерывны на множестве X;
- 2. $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно к S(x) на X;

Tогда S(x) непрерывна на X.

Доказательство. По условию, сумма из $a_n(x)$ сходится равномерно на X к S(x), то есть $S_n(x)
ightrightarrows S(x)$ на $X, S_n(x)$ непрерывна как сумма. Тогда по теореме о непрерывности предела равномерно сходящейся последовательности, составленной из непрерывных функций, S(x) непрерывна. Другая формулировка:

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} a_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} a_n(x)$$

(то есть можно поменять местами сумму и предел). \square

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n} = f(x)$$
 - непрерывна на $(0, 2\pi)$

Теорема 44 (об интегрировании равномерно сходящегося ряда) Пусть дан ряд $\sum\limits_{n=1}^{\infty}a_{n}(x)$, причем

- 1. все функции непрерывны на отрезке [a,b];2. $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на [a,b] к s(x);Тогда

$$\forall x, x_0 \in [a, b] : \int_{x_0}^x \left(\sum_{n=1}^\infty a_n(t)\right) dt = \sum_{n=1}^\infty \left(\int_{x_0}^x a_n(t) dt\right)$$

(можно менять интеграл и сумму).

Доказательство. Докажем, что $\int\limits_{x_0}^x S(t)dt = \sum\limits_{n=1}^\infty \int\limits_{x_0}^x a_n(t)dt$. По предыдущей теореме S(t) непрерывна на [a,b], значит,интегрируема на нем по Риману. Обозначим $\sigma_n(x) = \sum_{k=1}^n \int_{x_0}^x a_k(t) dt$ и докажем, что $\sigma_n(x) \Longrightarrow \int_{x_0}^x S(t) dt$. Зафиксируем $\varepsilon > 0$. По условию, $S_n(t)$ равномерно сходится на [a,b] для

$$\frac{\varepsilon}{b-a} > 0 \, \exists n_0(\varepsilon) \, \forall n > n_0 \, \forall x \in [a,b] : |S_n(t) - S(t)| < \frac{\varepsilon}{b-a}$$
 Тогда $\left| \sigma_n(x) - \int\limits_{x_0}^x S(t) dt \right| = \left| \sum\limits_{k=1}^n \int\limits_{x_0}^x a_k(t) dt - \int\limits_{x_0}^x S(t) dt \right| = \left| \int\limits_{x_0}^x (S_n(t) - S(t)) dt \right| \leqslant \left| \int\limits_{x_0}^x |S_n(t) - S(t)| dt \right| < \frac{\varepsilon}{b-a} \cdot |x - x_0| < \varepsilon. \,$ Значит, $\sigma_n(x) \Rightarrow \int\limits_{x_0}^x S_n(t) dt. \, \square$

Теорема 45 (о дифференцировании равномерно сходящегося ряда) Пусть дан ряд $\sum_{n=1}^{\infty} a_n(x)$, причем

- 1. Производные всех функций непрерывны на отрезке [a, b];
- 2. $\sum_{n=1}^{\infty} a_n(x)$ сходится на [a,b] поточечно;
- 3. Pяд из производных сходится равномерно на [a,b] к S(x); Tогда

$$\sum_{n=a}^{\infty} a'_n(x) = \left(\sum_{n=1}^{\infty} a_n\right)'$$

то есть в ряде можно менять производную и сумму, причем $\sum_{n=1}^{\infty} a_n$ сходится равномерно.

Доказательство. 1. Используем предыдущую теорему. Тогда

$$\int_{x_0}^x \left(\sum_{n=1}^\infty a_n'(t)\right) dt = \sum_{n=1}^\infty \int_{x_0}^x a_n'(t) dt$$

Получаем, что в равенстве $\int_{x_0}^x S(t)dt = \sum_{n=1}^\infty (a_n(x) - a_n(x_0))$ справа стоит число (в силу непрерывности функции), ряд из $a_n(x_0)$ сходится по условию, следовательно, ряд из $a_n(x)$ сходится. Поэтому, дифференцируя равенство $\int_{x_0}^x \sum_{n=1}^\infty a_n(t) \, dt = \sum_{n=1}^\infty a_n(x) - \sum_{n=1}^\infty a_n(x_0)$, получаем первое утверждение теоремы.

Теперь покажем равномерную сходимость исходного ряда. Для этого покажем, что остаток ряда из производных $r_n(x) = \sum_{k=n+1}^{\infty} a'_n(x)$ равномерно стремится к нулю. Из этого следует применимость теоремы об инетгировании: $\int\limits_{x_0}^{x} \sum\limits_{k=n+1}^{\infty} a'_k(t) \, dt = \sum\limits_{k=n+1}^{\infty} \int\limits_{x_0}^{x} a'_k(t) dt = \sum\limits_{k=n+1}^{\infty} (a_k(x) - a_k(x_0)).$ Если ряд удовлетворяет теореме об интегрировании, то и его остатки тоже, значит, $\int\limits_{x_0}^{x} r_n(t) dt = R_n(x) - R_n(x_0),$ откуда

$$R_n(x) = \int_{x_0}^{x} r_n(t)dt + R_n(x_0) \quad (1)$$

. Зафиксируем $\varepsilon > 0$. По условию, остаток обычного ряда стремится к нулю: $R_n(x) \to 0$. Тогда для

$$\frac{\varepsilon}{2} > 0 \ \exists n_1(\varepsilon) \ \forall n > n_1 : |R_n(x_0)| < \frac{\varepsilon}{2}$$

Остаток ряда из производных равномерно стремится к нулю, тогда для

$$\frac{\varepsilon}{2(b-a)} > 0 \ \exists n_2(\varepsilon) \ \forall n > n_2 \ \forall x \in [a,b] : |r_n(x)| < \frac{\varepsilon}{2(b-a)}$$

По формуле (1) получаем:
$$|R_n(x)| \leqslant \left|\int_{x_0}^x r_n(t)dt\right| + |R_n(x_0)| \leqslant \left|\int_{x_0}^x r_n(t)dt\right| + |R_n(x$$

1.4 Степенные ряды

1.4.1 Базовые определения

Определение 12 Степенной ряд- ряд вида
$$\sum_{n=0}^{\infty} c_n (x-x_0)^n$$

Числа c_n - коэффициенты степенного ряда, x_0 - число. Итак, степенной ряд - обобщение понятия многочлена. Область сходимости степенного ряда непуста, так как там лежит как минимум x_0 (в этом случае сумма ряда равна c_0). Сделав замену $t=x-x_0$, сведем любой степенной ряд к виду $\sum_{n=0}^{\infty} c_n t^n$.

Теорема 46 (лемма Абеля)

Если ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_0 и $|x| < |x_0|$, то ряд сходится сходится и в x, причем абсолютно.

Доказательство. По условию ряд сходится, значит, $c_n x^n \to 0$. Тогда существует константа M, большая чем все члены ряда. Тогда $|c_n x^n| = \left|c_n x_0^n \left(\frac{x}{x_0}\right)^n\right| \leqslant M \cdot \left|\frac{x}{x_0}\right|^n$. Ряд $\sum_{n=0}^{\infty} Mq^n$ сходится \Rightarrow ряд из модулей сходится, т.е. ряд сходится абсолютно. \square

Теорема 47 Пусть D - область сходимости ряда $\sum_{n=0}^{\infty} c_n x^n$, $R = \sup_{x \in D} |x|$. Тогда $(-R,R) \subset D \subset [-R,R]$.

Доказательство. По лемме Абеля, второе включение очевидно: $\forall x \in D: |x| \leqslant R \implies D \subset [-R,R]$. Пусть $x \in (-R,R)$. Тогда $|x| < R = R_1$. Тогда для него найдется $x_0 \in D: |x_0| > |x|$. Значит, ряд в точке x_0 сходится, и значит сходится в x. Значит, интервал лежит в области сходимости. \square

Формулы для вычисления радиуса сходимости

Пусть $\sum\limits_{n=0}^{\infty}c_nx^n=\sum\limits_{n=0}^{\infty}a_n$. По признаку Даламбера $\lim\limits_{n\to\infty}\frac{|a_{n+1}(x)|}{|a_n(x)|}=|x|\cdot\lim\limits_{n\to\infty}\frac{|c_{n+1}|}{|c_n|}<1$, то ряд сходится. Итак, если предел существует, то

$$R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|}$$

Аналогично, из признака Коши получим формулу Коши-Адамара:

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|c_n|}}$$

В общем случае алгоритм такой:

- 1. Найти радиус сходимости.
- 2. Выписываем интервал сходимости $(x_0 R, x_0 + R)$.
- 3. Исследуем на сходимость концы интервала.

Пример. Найдем область сходимости $\sum_{n=0}^{\infty} \frac{(x-6)^n}{(n+2)3^n}$. Применим признак Даламбера: $R = \lim_{n \to \infty} \frac{(n+3)3^{n+1}}{(n+2)3^n} = 3$. Интервал сходимости: (6-3,6+3). В точке x=9 ряд расходится (т.к. гармонический), в точке x=3 - условная сходимость (по признаку Лейбница).

Пример. Найдем область сходимости $\sum_{n=0}^{\infty} \frac{n^2}{(n+1)^2} \cdot \frac{x^{2n}}{2^n}$. Заметим, что у этого ряда коэффициенты чередуются с нулем (лакунарный ряд). Используем два способа:

- 1. По формуле Коши-Адамара возьмем четные номера, так как на них доставляется супремум предела последовательности: $R = \frac{1}{2}$
- $\sqrt{2}$. Интервал сходимости ($-\sqrt{2}, \sqrt{2}$), на концах расходится.
- 2. Исследуем как функциональный ряд по признаку Даламбера. $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} =$

 $\frac{x^2}{2}\lim_{n\to\infty}\left(\frac{n^2+2n+1}{n^2+2n}\right)^2=\frac{x^2}{2}$. Значит, ряд сходится, если $\frac{x^2}{2}<1$, откуда мы получаем тот же интервал сходимости.

Теорема 48 (о равномерной сходимости степенного ряда) Степенной ряд сходится равномерно на любом отрезке, лежащем внутри интрвала сходимости.

Доказательство. Для простоты рассмотрим ряд с центром в нуле. Пусть ряд сходится на (-R,R). Возьмем $[a,b] \subset (-R,R)$. Обозначим d=

 $\max(|a|,|b|)$. Тогда ряд $\sum_{n=0}^{\infty} c_n d^n$ сходится, значит, его мы можем использовать для оценки сверху рядов на отрезке: $|c_n x^n| \leq |c_n d^n|$, значит, по признаку Вейерштрасса ряд сходится на [a,b]. \square

Теорема 49 (о непрерывной сумме степенного ряда) Сумма степенного ряда непрерывна в любой точке из интервала сходимости.

Доказательство. Пусть $\sum_{n=0}^{\infty} c_n x^n$ сходится на (-R,R) к f(x). Степенные функции непрерывны на интервале (и вообще на всей прямой); по предыдущей теореме, на любом отрезке, лежащем в интервале, ряд равномерно сходится. Значит, по теореме о непрерывности суммы равномерно сходящегося ряда, сумма непрерывна на отрезке. Так как этот отрезок произволен, то сумма непрерывна на интервале. \square

Теорема 50 (об интегрировании и дифференцировании степенного ря- ∂a)

Пусть дан ряд $\sum_{n=0}^{\infty} c_n(x-x_0)^n = f(x)$, R - радиус сходимости. Тогда у функции f(x) существуют производные любого порядка внутри интервала:

$$f' = \sum_{n=0}^{\infty} nc_n (x - x_0)^{n-1}$$

Интегрирование тоже почленное. Причем при дифференцировании и интегрировании радиус сходимости не меняется.

Доказательство. Следует из соотвествующих теорем для функциональных рядов. Последнее утверждение следует из формулы Коши-Адамара.

Пример. Вычислить сумму ряда $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$. Задания типа таких можно делать, используя свойства степенных рядов. Пусть $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$. Радиус сходимости $x \in [-1,1)$. Возьмем производную: $f'(x) = \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x}$. А вот теперь проинтегрируем: $\int_0^x \frac{dt}{1-t} = f(x) - f(0)$; $f(x) = -\ln(1-x) + f(0)$. Значит, сумма искомого ряда равна $f(\frac{1}{2}) = 2$. Цель этих телодвижений - привести к виду геометричсекой прогрессии, которую легко посчитать.

1.4.3 Ряды Тейлора

Определение 13 Пусть в некоторой окрестности $U(x_0)$ у функции существуют производные всех порядков. Тогда для функции y = f(x) в точке x_0 существует ряд Тейлора:

$$f(x_0) = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Если $x_0 = 0$, то ряд называется рядом Маклорена.

Теорема 51 Если функция представляется в виде степенного ряда, то он совпадает с её рядом Тейлора. $f(x) = \sum_{n=1}^{\infty} c_n (x - x_0)^n$.

Доказательство. Пусть $(x_0 - R, x_0 + R)$ - интервал сходимости ряда. Из разложения функции в ряд имеем $f(x_0) = c_0$. Беря производную, получаем, что $f'(x_0) = c_1$. Дифференцируя дальше, получаем, что $c_n = \frac{f^{(n)}(x_0)}{r!}$. \square

Если по произвольной функции составить ряд Тейлора, то совсем не обязательно, что он сойдется к этой функции. Сейчас поясним:

Пример. Рассмотрим

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Очевидно (по индукции), что производная порядка $f^{(n)}(x) = e^{-\frac{1}{x^2}} \cdot p\left(\frac{1}{x}\right)$, где p(t) - многочлен. Посчитаем производную в нуле; первая производная в нуле - нуль. По индукции получаем, что все остальные производные тоже равны нулю. Значит, ряд Маклорена тождественно равен нулю, и сходится не к исходной функции, а к тождественно нулевой.

Теорема 52 (достаточное условие сходимости ряда Тейлора) Пусть $\exists h > 0$, $\exists M = const$ такие, что $\forall x \in \mathbb{N} \ \forall x \in (x_0 - h, x_0 + h) : |f^{(n)}(x)| \leq M$. Тогда на всей h-окрестности точки x_0 функция равна своему ряду Тейлора, причем он сходится равномерно на данном интервале.

Доказательство. Разложим функцию f(x) в ряд Тейлора и запишем остаток в форме Лагранжа: $r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}, \xi \in (x_0,x)$ (лежит между ними). Остаток по модуля меньше, чем $M \cdot \frac{h^{n+1}}{(n+1)!}$ - значит, он равномерно сходится к нулю. Поэтому и сам ряд сходится равномерно на $(x_0 - h, x_0 + h)$. \square

Ряды Маклорена для основных функций

1.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \dots, \ x \in \mathbb{R}$$

2.
$$sh(x) = x + \frac{x^3}{3!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots, \ x \in \mathbb{R}$$

3.
$$\operatorname{ch}(x) = 1 + \frac{x^2}{2!} + \dots + \frac{x^{2n}}{(2n)!} + \dots, \ x \in \mathbb{R}$$

4.
$$\sin(x) = x - \frac{x^3}{3!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \ x \in \mathbb{R}$$

5.
$$\cos(x) = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \ x \in \mathbb{R}$$

6.
$$\ln(1+x) = 1 - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^n}{n} + \dots, \ x \in (-1,1]$$

7.
$$\ln(1-x) = x \in [-1,1)$$

8. $\ln \frac{1+x}{1-x} = 2 \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}, \ x \in (-1,1)$ - в этой формуле функция принимает все положительные значения, поэтому она круче.

9.
$$(1+x)^{\alpha} = 1 + \alpha x + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + \dots$$

10.
$$arctg(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots, x \in [-1, 1]$$

11.
$$arcsin(x) = x + \sum_{n=1}^{\infty} \frac{(2n-1)!! \cdot x^{2n+1}}{n! \cdot 2^n (2n+1)}, \ x \in (-1,1)$$

(Для логарифма) покажем, что остаток ряда стремится к нулю.

1. $x \in [0,1]: r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$. Подставим $\xi = x_0 + \theta(x-x_0), \ \theta = \theta(x,n)$. При этом имем оценку $0 \leqslant x \leqslant 1 \leqslant 1 + \theta x$. Получим $|r_n(x)| = \frac{1}{n+1} \cdot \left(\frac{x}{1+\theta x}\right)^{n+1} \leqslant \frac{1}{n+1}$. Значит, остаток равномерно сходится к 0 на [0,1]. Чтобы доказать равномерную сходимость на (-1,0), запишем остаток в форме Коши. Получим $|r_n(x)| = \left(\frac{1-\theta}{1+\theta x}\right)^n \cdot \frac{|x|^{n+1}}{1+\theta x}$. Первая дробь меньше 1, вторую оценим как $\frac{|x|^{n+1}}{1-|x|}$, что при фиксированном x стремится к нулю. Значит, мы можем писать разложение для логарифма!

Пример.
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} = e^2$$

Ряд $(1+x)^{\alpha}$. Найдем радиус сходимости: $R = \lim_{n \to \infty} |\frac{a_n}{a_{n+1}}| = |\frac{n+1}{\alpha-n}| = 1$. Запишем остаток в форме Коши: $(1+x)^{\alpha} = 1 + \alpha x + ... + \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n + r_n$, $r_n(x) = \frac{f^{(n+1)}(\theta x)}{n!} (1-\theta)^n x^{n+1}$. Если остаток стремится к нулю, то и ряд сходится к данной функции. Пусть $r_n = A_n \cdot B_n \cdot C_n$, где $B_n(x) = 1$

 $(1+\theta x)^{\alpha-1},\ C_n(x)=\left(\frac{1-\theta}{1+\theta x}\right)^n,\ A_n=\frac{\alpha(\alpha-1)...(\alpha-n)}{n!}x^{n+1}.\ A_n\to 0$ по признаку Даламбера, $|B_n(x)|\leqslant \max\{(1-|x|)^{\alpha-1},(1+|x|)^{\alpha-1}\},\ C_n(x)<1,$ значит, остаток стремится к нулю, и ряд сходится к функции.

Задача. Доказать, что в x=1 ряд сходится при $\alpha>-1$, расходится при $\alpha\leqslant-1$. В точке x=-1 сходится абсолютно при $\alpha\geqslant0$, расходится при $\alpha<0$

Выражения для арксинуса и арктангенса получаются интегрированием разложния их производных.

1.4.4 Использование степенных рядов

Разложение функции в ряд - мощнейшая тема. Иногда в физике и других прикладных областях делают так: берут сложную функцию, раскладывают её в ряд Тейлора и отбрасывают все члены, кроме первого. Дифференцирование обычно упрощает функцию, и зачастую такое упрощение имеет физический смысл (вспомним решение уравнения физического маятника).

Пример. Вычислим интеграл $\int_0^1 e^{-x^2} dx$ с точностью до 0,001. Разложим подынтегральную функцию в ряд Тейлора: $e^{-x^2} = 1 - x^2 + \frac{1}{2}x^4 - \frac{1}{6}x^6 + \frac{1}{24}x^8 - \frac{1}{120}x^{10} + \dots$ Интегрируя почленно и подставляя x_0 , получаем $1 - \frac{1}{3} + \frac{1}{25} - \frac{1}{6\cdot7} + \frac{1}{27\cdot9} - \frac{1}{120\cdot11} + \dots$ Чтобы достичь требуемой точности, необходимо оценить остаток. Вспоминаем, что для знакочередующегося ряда оценка дается первым членом остатка. Так как $\frac{1}{120\cdot11} < \frac{1}{1000}$, то

$$\int_{0}^{1} e^{-x^{2}} \approx 1 - \frac{1}{3} + \frac{1}{25} - \frac{1}{6 \cdot 7} + \frac{1}{27 \cdot 9}$$

Пример. Вычислим $\ln 3$ с точностью 0,001. Представим его в виде $\ln 3 = \ln \frac{1+x}{1-x}$, откуда $x = \frac{1}{2} \in (-1,1)$ - входит в область сходимсоти, значит, мы можем написать разложение: $\ln 3 = 1 + \frac{1}{3 \cdot 2^2} + \frac{1}{5 \cdot 2^4} + \ldots + \frac{1}{(2n+1)2^{2n}}$. Этот ряд не знакочередующийся, поэтому придется оценивать остаток геометрической прогрессией: $r_n = \frac{1}{(2n+3)2^{2n+2}} + \frac{1}{(2n+5)2^{2n+4}} + \ldots \leqslant \frac{1}{2^{2n+2}} + \frac{1}{2^{2n+2}} \ldots = \frac{1}{2^{n+2}(1-\frac{1}{4})} = \frac{1}{3 \cdot 2^n}$. Требуемая точность достигается при n=5, поэтому

$$\ln 3 \approx 1 + \frac{1}{3 \cdot 2^2} + \frac{1}{5 \cdot 2^4} + \frac{1}{7 \cdot 2^6} + \frac{1}{9 \cdot 2^8} \approx 1,099$$

Пример. Решение дифференциальных уравнений с помощью разложений в степенной ряд. Решим y'' = 2x'y + 4y, y(0) = 0, y'(0) = 1 - диффренециальное уравнение с задачей Коши.

Первый способ - метод неопределенных коэффициентов:

$$\begin{cases} y = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^{n-1} \dots | \cdot 4; y(0) = c_0 = 0 \\ y' = c_1 + 2c_2 x + 3c_3 x^2 + \dots + nc_n x^{n-1}, \dots | \cdot 2x; y'(0) = c_1 = 1 \\ y'' = 2c_2 + 6c_3 x + \dots + n(n-1)c_n x^{n-2} \end{cases}$$

 x^0 соответствует $2c_2=4c_0\Rightarrow c_2=0; c_{2n}=0; c_5=\frac{1}{2}; c_7=\frac{1}{3!};\Rightarrow c_{2n+1}=\frac{1}{n!}$ x^1 соответствует $6c_3=2c_1+4c_1\Rightarrow c_3=1$ x^n соответствует $(n+2)(n+1)c_{n+2}=2nc_n+4c_n\Rightarrow c_{n+2}=\frac{2}{n+1}c_n$ Мы получили $y=x+x^3+\frac{1}{2!}x^5+\frac{1}{3!}x^7+\ldots+\frac{x^{2n+1}}{n!}+\ldots=x(1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\ldots),$ откуда решение диффура: $y=xe^{x^2}$

Второй способ - метод последовательного дифференцирования. Так как $y=\sum_{n=0}^{\infty}\frac{y^{(n)}(0)}{n!}x^n$, то $y''(0)=1\cdot 2\cdot 0+4\cdot 0=0,\ y'''(x)=2xy''+6y'$ и так далее.