(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 August 2002 (01.08.2002)

PCT

(10) International Publication Number WO 02/059377 A2

(51) International Patent Classification7. C12Q 1/68 (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, 8th Floor, San Francisco, CA 94111-3834 (US). (21) International Application Number: PCT/US02/02242 (81) Designated States (national): AE, AG, AL, AM, AT, AU, (22) International Filing Date: 24 January 2002 (24.01.2002)

English

US

(26) Publication Language: English

(25) Filing Language:

60/294 443

(30) Priority Data: 60/263,965 24 January 2001 (24.01.2001) US 60/265,928 2 February 2001 (02.02.2001) US 09/829,472 9 April 2001 (09.04.2001) US 60/282.698 9 April 2001 (09.04.2001) US 60/288,590 4 May 2001 (04.05.2001) US

29 May 2001 (29.05.2001)

(71) Applicant: EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080-7019 (US).

(72) Inventors: MACK, David, H.; 2076 Monterey Avenue. Menlo Park, CA 94025 (US). GISH, Kurt, C.; 40 Perego Terrace #2, San Francisco, CA 94131 (US). AFAR, Daniel; 435 Visitacion Avenue, Brisbane, CA 94005 (US).

- AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

CS4 Title: METHODS OF DIAGNOSIS MODULATORS OF BREAST CANCER (54) Title: METHODS OF DIAGNOSIS OF BREAST CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR

(57) Abstract: Described herein are genes whose expression are up-regulated or down-regulated in breast cancer. Related methods and compositions that can be used for diagnosis and treatment of breast cancer are disclosed. Also described herein are methods that can be used to identify modulators of breast cancer.

METHODS OF DIAGNOSIS OF BREAST CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF BREAST CANCER

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to USSN 60/263,965, filed January 24, 2001; USSN 60/265,928, filed February 2, 2001; USSN 09/829,472 filed April 9, 2001; USSN 60/282,698, filed April 9, 2001; USSN 60/288,590, filed May 4, 2001; and USSN 60/294,443, filed May 29, 2001, all of which are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in breast cancer; and to the use of such expression profiles and compositions in the diagnosis, prognosis and therapy of breast cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit breast cancer.

BACKGROUND OF THE INVENTION

Breast cancer is one of the most frequently diagnosed cancers and the second leading cause of female cancer death in North America and northern Europe, with lung cancer being the leading cause. Lifetime incidence of the disease in the United States is one-in-eight, with a 1-in-29 lifetime risk of dying from breast cancer. Early detection of breast cancer, using mammography, clinical breast examination, and self breast examination, has dramatically improved the treatment of the disease, although sensitivity is still major concern, as mammographic sensitivity has been estimated at only 60%–90%. Treatment of breast cancer consists largely of surgical lumpectomy or mastectomy, radiation therapy, anti-

5

10

15

20

hormone therapy, and/or chemotherapy. Although many breast cancer patients are effectively treated, the current therapies can all induce serious side effects which diminish quality of life. Deciding on a particular course of treatment is typically based on a variety of prognostic parameters and markers (Fitzgibbons et al., 2000, Arch. Pathol. Lab. Med. 124:966-978; Hamilton and Piccart, 2000, Ann. Oncol. 11:647-663), including genetic predisposition markers BRCA-1 and BRCA-2 (Robson, 2000, J. Clin. Oncol. 18:113sup-118sup).

Imaging of breast cancer for diagnosis has been problematic and limited. In addition, dissemination of tumor cells (metastases) to locoregional lymph nodes is an important prognostic factor; five year survival rates drop from 80 percent in patients with no lymph node metastases to 45 to 50 percent in those patients who do have lymph node metastases. A recent report showed that micrometastases can be detected from lymph nodes using reverse transcriptase-PCR methods based on the presence of mRNA for carcinoembryonic antigen, which has previously been shown to be present in the vast majority of breast cancers but not in normal tissues. Liefers et al., New England J. of Med. 339(4):223 (1998).

The identification of novel therapeutic targets and diagnostic markers is essential for improving the current treatment of breast cancer patients. Recent advances in molecular medicine have increased the interest in tumor-specific cell surface antigens that could serve as targets for various immunotherapeutic or small molecule strategies. Antigens suitable for immunotherapeutic strategies should be highly expressed in cancer tissues and ideally not expressed in normal adult tissues. Expression in tissues that are dispensable for life, however, may be tolerated. Examples of such antigens include Her2/neu and the B-cell antigen CD20. Humanized monclonal antibodies directed to Her2/neu (Herceptin®/trastuzumab) are currently in use for the treatment of metastatic breast cancer (Ross and Fletcher, 1998, Stem Cells 16:413-428). Similarly, anti-CD20 monoclonal antibodies (Rituxin®/rituximab) are used to effectively treat non-Hodgekin's lymphoma (Maloney et al., 1997, Blood 90:2188-2195; Leget and Czuczman, 1998, Curr. Opin. Oncol. 10:548-551).

Other potential immunotherapeutic targets have been identified for breast cancer. One such target is polymorphic epithelial mucin (MUC1). MUC1 is a transmembrane

5

10

15

20

25

protein, present at the apical surface of glandular epithelial cells. It is often overexpressed in breast cancer, and typically exhibits an altered glycosylation pattern, resulting in an antigenically distinct molecule, and is in early clinical trials as a vaccine target (Gilewski et al., 2000. Clin. Cancer Res. 6:1693-1701; Scholl et al., 2000, J. Immunother. 23:570-580). The tumor-expressed protein is often cleaved into the circulation, where it is detectable as the tumor marker, CA 15-3 (Bon et al., 1997, Clin. Chem. 43:585-593). However, many patients have tumors that express neither HER2 nor MUC-1; therefore, it is clear that other targets need to be identified to manage localized and metastatic disease. Many other genes have been reported to be overexpressed in breast cancer, such as EGFR (Sainsbury et al., 1987, Lancet 1(8547):1398-1402), c-erbB3 (Naidu et al., 1988, Br. J. Cancer 78:1385-1390), FGFR2 (Penault-Llorca et al., 1991, Int. J. Cancer 61:170-176), PKW (Preiherr et al., 2000, Anticancer Res. 20:2255-2264), MTA1 (Nawa et al., 2000, J. Cell Biochem. 79:202-212), breast cancer associated gene 1 (Kurt et al., 2000, Breast Cancer Res. Treat. 59:41-48). Although monoclonal antibodies to the protein products of some of these overexpressed genes have been reported (for review, see Green et al., 2000, Cancer Treat. Rev. 26:269-286), none are currently approved for breast cancer therapy in the US.

Disclosures of certain genes and ESTs described as being expressed in breast cancer are found in international patent applications WO-99/33869, WO-97/25426, WO-97/02280 and WO-00/55173, WO-98/45328 and WO-00/22130. Similarly, genes and ESTs described as being expressed in breast cancer are disclosed in US Patent Nos. 5,759,776 and 5,693,522. The utility of such genes is described in each of these publications, and their disclosures are incorporated herein in their entirety.

While industry and academia have identified novel sequences, there has not been an equal effort exerted to identify the function of these novel sequences. The elucidation of a role for novel proteins and compounds in disease states for identification of therapeutic targets and diagnostic markers is essential for improving the current treatment of breast cancer patients. Accordingly, provided herein are molecular targets for therapeutic intervention in breast and other cancers. Additionally, provided herein are methods that can be used in diagnosis and prognosis of breast cancer. Further provided are methods that can be used to screen candidate bioactive agents for the ability to modulate breast cancer.

10

15

20

25

SUMMARY OF THE INVENTION

The present invention therefore provides nucleotide sequences of genes that are up- and down-regulated in breast cancer cells. Such genes are useful for diagnostic purposes, and also as targets for screening for therapeutic compounds that modulate breast cancer, such as hormones or antibodies. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

In one aspect, the present invention provides a method of detecting a breast cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-25.

In one embodiment, the present invention provides a method of determining the level of a breast cancer associated transcript in a cell from a patient.

In one embodiment, the present invention provides a method of detecting a breast cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-25.

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1-25.

In one embodiment, the biological sample is a tissue sample. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label

In one embodiment, the polynucleotide is immobilized on a solid surface.

In one embodiment, the patient is undergoing a therapeutic regimen to treat breast cancer. In another embodiment, the patient is suspected of having metastatic breast cancer.

In one embodiment, the patient is a human.

In one embodiment, the breast cancer associated transcript is mRNA.

5

10

15

20

In one embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of breast cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a breast cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-25, thereby monitoring the efficacy of the therapy. In a further embodiment, the patient has metastatic breast cancer. In a further embodiment, the patient has a drug resistant form of breast cancer.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the breast cancer-associated transcript to a level of the breast cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

Additionally, provided herein is a method of evaluating the effect of a candidate breast cancer drug comprising administering the drug to a patient and removing a cell sample from the patient. The expression profile of the cell is then determined. This method may further comprise comparing the expression profile to an expression profile of a healthy individual. In a preferred embodiment, said expression profile includes a gene of Tables 1-25.

 In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1-25.

In one embodiment, an expression vector or cell comprises the isolated nucleic acid.

In one aspect, the present invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-25.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-25.

5

10

15

20

In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical.

In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

In one aspect, the present invention provides a method of detecting a breast cancer cell in a biological sample from a patient, the method comprising contacting the biological sample with an antibody as described herein.

In another aspect, the present invention provides a method of detecting antibodies specific to breast cancer in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprising a sequence from Tables 1-25.

In another aspect, the present invention provides a method for identifying a compound that modulates a breast cancer-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a breast cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-25; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect.

In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant.

In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation of a breast cancer-associated cell to treat breast cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein.

In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having breast cancer

5

10

15

20

25

or to a cell sample isolated therefrom; (ii) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-25 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell sample or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of breast cancer.

In one embodiment, the control is a mammal with breast cancer or a cell sample therefrom that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal.

In one embodiment, the test compound is administered in varying amounts or concentrations. In another embodiment, the test compound is administered for varying time periods. In another embodiment, the comparison can occur after addition or removal of the drug candidate.

In one embodiment, the levels of a plurality of polynucleotides that selectively hybridize to a sequence at least 80% identical to a sequence as shown in Tables 1-25 are individually compared to their respective levels in a control cell sample or mammal. In a preferred embodiment the plurality of polynucleotides is from three to ten.

In another aspect, the present invention provides a method for treating a mammal having breast cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having breast cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

In one aspect, the present invention provides a method of screening drug candidates by providing a cell expressing a gene that is up- and down-regulated as in a breast cancer. In one embodiment, a gene is selected from Tables 1-25. The method further includes adding a drug candidate to the cell and determining the effect of the drug candidate on the expression of the expression profile gene.

In one embodiment, the method of screening drug candidates includes comparing the level of expression in the absence of the drug candidate to the level of

5

10

15

20

25

expression in the presence of the drug candidate, wherein the concentration of the drug candidate can vary when present, and wherein the comparison can occur after addition or removal of the drug candidate. In a preferred embodiment, the cell expresses at least two expression profile genes. The profile genes may show an increase or decrease.

Also provided is a method of evaluating the effect of a candidate breast cancer drug comprising administering the drug to a transgenic animal expressing or over-expressing the breast cancer modulatory protein, or an animal lacking the breast cancer modulatory protein, for example as a result of a gene knockout.

Moreover, provided herein is a biochip comprising one or more nucleic acid segments of Tables 1-25, wherein the biochip comprises fewer than 1000 nucleic acid probes. Preferably, at least two nucleic acid segments are included. More preferably, at least three nucleic acid segments are included.

Furthermore, a method of diagnosing a disorder associated with breast cancer is provided. The method comprises determining the expression of a gene of Tables 1-25, preferably a gene of Table 25, in a first tissue type of a first individual, and comparing the distribution to the expression of the gene from a second normal tissue type from the first individual or a second unaffected individual. A difference in the expression indicates that the first individual has a disorder associated with breast cancer.

In a further embodiment, the biochip also includes a polynucleotide sequence of a gene that is not up- and down-regulated in breast cancer.

In one embodiment a method for screening for a bioactive agent capable of interfering with the binding of a breast cancer modulating protein (breast cancer modulatory protein) or a fragment thereof and an antibody which binds to said breast cancer modulatory protein or fragment thereof. In a preferred embodiment, the method comprises combining a breast cancer modulatory protein or fragment thereof, a candidate bioactive agent and an antibody which binds to said breast cancer modulatory protein or fragment thereof. The method further includes determining the binding of said breast cancer modulatory protein or fragment thereof and said antibody. Wherein there is a change in binding, an agent is identified as an interfering agent. The interfering agent can be an agonist or an antagonist. Preferably, the agent inhibits breast cancer.

5.

10

15

20

25

Also provided herein are methods of eliciting an immune response in an individual. In one embodiment a method provided herein comprises administering to an individual a composition comprising a breast cancer modulating protein, or a fragment thereof. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-25.

Further provided herein are compositions capable of eliciting an immune response in an individual. In one embodiment, a composition provided herein comprises a breast cancer modulating protein, preferably encoded by a nucleic acid of Tables 1-25, more preferably of Table 25, or a fragment thereof, and a pharmaceutically acceptable carrier. In another embodiment, said composition comprises a nucleic acid comprising a sequence encoding a breast cancer modulating protein, preferably selected from the nucleic acids of Tables 1-25, and a pharmaceutically acceptable carrier.

Also provided are methods of neutralizing the effect of a breast cancer protein, or a fragment thereof, comprising contacting an agent specific for said protein with said protein in an amount sufficient to effect neutralization. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-25.

In another aspect of the invention, a method of treating an individual for breast cancer is provided. In one embodiment, the method comprises administering to said individual an inhibitor of a breast cancer modulating protein. In another embodiment, the method comprises administering to a patient having breast cancer an antibody to a breast cancer modulating protein conjugated to a therapeutic moiety. Such a therapeutic moiety can be a cytotoxic agent or a radioisotope.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and prognosis evaluation for breast cancer (PC), including metastatic breast cancer, as well as methods for screening for compositions which modulate breast cancer. Also provided are methods for treating breast cancer.

Tables 1-24B provide unigene cluster identification numbers for the nucleotide sequence of genes that exhibit increased or decreased expression in breast cancer

5

10

15

20

25

samples. Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 19, 20, 21, and 22 list those genes that are up-regulated in breast cancer cells. Table 14 lists those genes that are highly upregulated in breast cancer cells. Table 1, 2, 3, 15, and 23 list genes that are down-regulated in breast cancer cells and Table 16, lists genes that are highly down-regulated in breast cancer genes. The Tables also provide an exemplar accession number that provides a nucleotide sequence that is part of the unigene cluster.

Definitions

5

10

15

20

25

The term "breast cancer protein" or "breast cancer polynucleotide" or "breast cancer-associated transcript" refers to nucleic acid and polypeptide polymorphic variants. alleles, mutants, and interspecies homologues that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200. 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a gene of Tables 1-25; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a gene of Tables 1-25, and conservatively modified variants thereof: (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1-25 and conservatively modified variants thereof or (4) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino sequence identity, preferably over a region of over a region of at least about 25, 50. 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a gene of Tables 1-25. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human: rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. A "breast cancer polypeptide" and a "breast cancer polynucleotide," include both naturally occurring or recombinant forms.

A "full length" breast cancer protein or nucleic acid refers to a breast cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains all of the elements normally contained in one or more naturally occurring, wild type breast cancer polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of post-translation processing or splicing, including alternative splicing.

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of a breast cancer protein, polynucleotide or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention in vivo. Archival tissues, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to

5

10

15

20

25

be "substantially identical." This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions, as well as naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of one of the number of contiguous positions selected from the group consisting typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1995 supplement)).

Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms,

5

10

15

20

25

which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990). BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a

5

10

15

20

25

nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be large negative numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells in vivo, and the like. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means

5

10

15

20

25

removing at least one contaminant from the composition to be purified. In this sense, purification does not require that the purified compound be homogenous, e.g., 100% pure.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions similarly to a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG and GCU all encode the amino

5

10

15

20

25

acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. One of skill will recognize that in certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, often silent variations of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not with respect to actual probe sequences.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid.

Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention typically conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5)

Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts et al., Molecular Biology of the Cell (3rd ed., 1994) and Cantor & Schimmel, Biophysical Chemistry Part I: The Conformation of Biological Macromolecules (1980). "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that

5

10

15

20

25

often form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical

equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have alternate backbones, comprising, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, Carbohydrate Modifications in Antisense Research, Sanghui & Cook, eds., Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g. to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

A variety of references disclose such nucleic acid analogs, including, for example, phosphoramidate (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805

5

10

15

20

25

(1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Patent No. 5.644.048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-jonic backbones (U.S. Patent Nos. 5.386.023, 5.637.684, 5.602.240, 5.216.141 and 4.469.863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook: Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp 169-176). Several nucleic acid analogs are described in Rawls, C & E News June 2, 1997 page 35. All of these references are hereby

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4°C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. Similarly, due to their non-ionic nature. hybridization of the bases attached to these backbones is

5

10

15

20

25

30

expressly incorporated by reference.

relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g. the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include ³²P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The labels may be incorporated into the breast cancer nucleic acids, proteins and antibodies at any position. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982).

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including

5

10

15

20

25

radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; activatable moieties, a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled as with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed

5

10

15

20

25

or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operably linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e., using the in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as depicted above.

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

A "promoter" is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a

5

10

15

20

25

promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times

5

10

15

20

25

background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1% SDS at 65°C. For PCR, a temperature of about 36°C is typical for low stringency amplification, although annealing temperatures may vary between about 32°C and 48°C depending on primer length. For high stringency PCR amplification, a temperature of about 62°C is typical, although high stringency annealing temperatures can range from about 50°C to about 65°C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90°C - 95°C for 30 sec - 2 min., an annealing phase lasting 30 sec. - 2 min., and an extension phase of about 72°C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications. Academic Press, Inc. N.Y.).

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and Current Protocols in Molecular Biology, ed. Ausubel, et al.

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of a breast cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the breast cancer protein or nucleic acid, e.g., a functional, physical, or chemical effect, such as the ability to decrease breast cancer. It includes ligand binding activity; cell growth on soft agar; anchorage dependence; contact

5

10

15

20

inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis in vivo; mRNA and protein expression in cells undergoing metastasis, and other characteristics of breast cancer cells. "Functional effects" include in vitro, in vivo, and ex vivo activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a breast cancer protein sequence, e.g., functional, enzymatic, physical and chemical effects. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the breast cancer protein: measuring binding activity or binding assays, e.g. binding to antibodies or other ligands, and measuring cellular proliferation. Determination of the functional effect of a compound on breast cancer can also be performed using breast cancer assays known to those of skill in the art such as an in vitro assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis in vivo; mRNA and protein expression in cells undergoing metastasis, and other characteristics of breast cancer cells. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for breast cancer-associated sequences, measurement of RNA stability. identification of downstream or reporter gene expression (CAT, luciferase, β-gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

"Inhibitors", "activators", and "modulators" of breast cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using *in vitro* and *in vivo* assays of breast cancer polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block

5

10

15

20

25

activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of breast cancer proteins, e.g., antagonists. Antisense nucleic acids may seem to inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate breast cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of breast cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the breast cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of breast cancer can also be identified by incubating breast cancer cells with the test compound and determining increases or decreases in the expression of 1 or more breast cancer proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more breast cancer proteins, such as breast cancer proteins encoded by the sequences set out in Tables 1-25.

Samples or assays comprising breast cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of a breast cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.

The phrase "changes in cell growth" refers to any change in cell growth and proliferation characteristics in vitro or in vivo, such as formation of foci, anchorage independence, semi-solid or soft agar growth, changes in contact inhibition and density limitation of growth, loss of growth factor or serum requirements, changes in cell morphology, gaining or losing immortalization, gaining or losing tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or

5

10

15

20

25

immortalization of the cell. See, e.g., Freshney, Culture of Animal Cells a Manual of Basic Technique pp. 231-241 (3rd ed. 1994).

"Tumor cell" refers to precancerous, cancerous, and normal cells in a tumor.

"Cancer cells," "transformed" cells or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation is associated with phenotypic changes, such as immortalization of cells, aberrant growth control, nonmorphological changes, and/or malignancy (see, Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed. 1994)).

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See Paul, Fundamental Immunology.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce $F(ab)'_{2}$, a dimer of Fab which itself is a light chain joined to $V_{H^-}C_{H^1}$ by a disulfide bond. The $F(ab)'_{2}$

5

10

15

20

25

may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990))

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4:72 (1983); Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy (1985); Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies, A Laboratory Manual (1988); and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348:552-554 (1990); Marks et al., Biotechnology 10:779-783 (1992)).

A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.

5

10

15

20

Identification of breast cancer-associated sequences

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is characteristic of the state of the cell. That is, normal tissue (e.g., normal breast or other tissue) may be distinguished from cancerous or metastatic cancerous tissue of the breast, or breast cancer tissue or metastatic breast cancerous tissue can be compared with tissue samples of breast and other tissues from surviving cancer patients. By comparing expression profiles of tissue in known different breast cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained.

The identification of sequences that are differentially expressed in breast cancer versus non-breast cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated; does a chemotherapeutic drug act to down-regulate breast cancer, and thus tumor growth or recurrence, in a particular patient. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Metastatic tissue can also be analyzed to determine the stage of breast cancer in the tissue. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the breast cancer expression profile. This may be done by making biochips comprising sets of the important breast cancer genes, which can then be used in these screens. These methods can also be done on the protein basis; that is, protein expression levels of the breast cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the breast cancer nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the breast cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs.

5

10

15

20

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in breast cancer, herein termed "breast cancer sequences." As outlined below, breast cancer sequences include those that are up-regulated (i.e., expressed at a higher level) in breast cancer, as well as those that are down-regulated (i.e., expressed at a lower level). In a preferred embodiment, the breast cancer sequences are from humans; however, as will be appreciated by those in the art, breast cancer sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other breast cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets, e.g., (dogs, cats, etc.). Breast cancer sequences from other organisms may be obtained using the techniques outlined below.

Breast cancer sequences can include both nucleic acid and amino acid sequences. As will be appreciated by those in the art and is more fully outlined below, breast cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; e.g., biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the breast cancer sequences can be generated.

A breast cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the breast cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.

For identifying breast cancer-associated sequences, the breast cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing breast cancer samples with metastatic cancer samples from other cancers, such as lung, breast, gastrointestinal cancers, ovarian, etc. Samples of different stages of breast cancer, e.g., survivor tissue, drug resistant states, and tissue undergoing metastasis, are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art

5

10

15

20

25

for the preparation of mRNA. Suitable biochips are commercially available, e.g. from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal breast, but also including, and not limited to lung, heart, brain, liver, breast, kidney, muscle, colon, small intestine, large intestine, spleen, bone and placenta. In a preferred embodiment, those genes identified during the breast cancer screen that are expressed in any significant amount in other tissues are removed from the profile, although in some embodiments, this is not necessary. That is, when screening for drugs, it is usually preferable that the target be disease specific, to minimize possible side effects.

In a preferred embodiment, breast cancer sequences are those that are up-

regulated in breast cancer; that is, the expression of these genes is higher in the breast cancer tissue as compared to non-cancerous tissue. "Up-regulation" as used herein often means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. All unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al., Nucleic Acids Research 26:1-7 (1998) and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ).

In another preferred embodiment, breast cancer sequences are those that are down-regulated in the breast cancer; that is, the expression of these genes is lower in breast cancer tissue as compared to non-cancerous tissue (see, e.g., Tables 1,2, 3, 15, 16 etc...). "Down-regulation" as used herein often means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred.

further discloses related sequences, compositions, and methods of diagnosis and treatment of

breast cancer is hereby expressly incorporated by reference.

25

5

10

15

Informatics

5

. 10

15

20

25

30

The ability to identify genes that are over or under expressed in breast cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with breast cancer. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (see Anderson, Pharmaceutical Proteomics: Targets, Mechanism, and Function, paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in substantially any form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for any assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing breast cancer, i.e., the identification of breast cancer-associated sequences described herein, provide an abundance of information, which can be correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring,

gene-disease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, prior data processing using high-speed computers is utilized.

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multidimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

See also Mount et al., Bioinformatics (2001); Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Durbin et al., eds., 1999); Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (Baxevanis & Oeullette eds., 1998)); Rashidi & Buehler, Bioinformatics: Basic Applications in Biological Science and Medicine (1999); Introduction to Computational Molecular Biology (Setubal et

5

10

15

20

25

al., eds 1997); Bioinformatics: Methods and Protocols (Misener & Krawetz, eds, 2000); Bioinformatics: Sequence, Structure, and Databanks: A Practical Approach (Higgins & Taylor, eds., 2000); Brown, Bioinformatics: A Biologist's Guide to Biocomputing and the Internet (2001); Han & Kamber, Data Mining: Concepts and Techniques (2000); and Waterman, Introduction to Computational Biology: Maps, Sequences, and Genomes (1995).

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for breast cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

5

10

15

20

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the

5

10

15

20

25

assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

Characteristics of breast cancer-associated proteins

Breast cancer proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the breast cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Molecular

5

10

15

20

25

Biology of the Cell (Alberts, ed., 3rd ed., 1994). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, proteins activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of primary sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden (see, e.g., Bateman et al., Nuc. Acids Res. 28:263-266 (2000); Sonnhammer et al., Proteins 28:405-420 (1997); Bateman et al., Nuc. Acids Res. 27:260-262 (1999); and Sonnhammer et al., Nuc. Acids Res. 26:320-322-(1998)).

In another embodiment, the breast cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described

5

10

15

20

25

for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted (see, e.g. PSORT web site http://psort.nibb.ac.jp/). Important transmembrane protein receptors include, but are not limited to the insulin receptor, insulin-like growth factor receptor, human growth hormone receptor, glucose transporters, transferrin receptor, epidermal growth factor receptor, low density lipoprotein receptor, epidermal growth factor receptor, leptin receptor, interleukin receptors, e.g. IL-1 receptor, IL-2 receptor,

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include

5

10

15

20

25

cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Breast cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins in situ. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeablized to provide access to intracellular proteins.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the breast cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous aspects of physiology. Breast cancer proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or stool tests.

Use of breast cancer nucleic acids

As described above, breast cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the breast cancer

5

10

15

20

25

sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The breast cancer nucleic acid sequences of the invention, e.g., the sequences in Tables 1-25, can be fragments of larger genes, i.e., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the breast cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, et al., supra. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

Once the breast cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire breast cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant breast cancer nucleic acid can be further-used as a probe to identify and isolate other breast cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant breast cancer nucleic acids and proteins.

The breast cancer nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the breast cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, vaccine, and/or antisense applications.

Alternatively, the breast cancer nucleic acids that include coding regions of breast cancer proteins can be put into expression vectors for the expression of breast cancer proteins, again for screening purposes or for administration to a patient.

In a preferred embodiment, nucleic acid probes to breast cancer nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are

5

10

15

20

25

made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the breast cancer nucleic acids, *i.e.* the target sequence (either the target sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (i.e., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of electrostatic,

5

10

15

20

25

hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silicabased materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in copending application entitled Reusable Low Fluorescent Plastic Biochip, U.S. Application Serial No. 09/270,214, filed March 15, 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be ulaced on the inside surface of a tube, for flow-through sample analysis to minimize

5

10

15

20

sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g. using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used

In this embodiment, oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized in situ, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affimetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of breast cancer-associated sequences. These assays are typically performed in conjunction with reverse transcription. In such assays, a breast cancer-associated nucleic acid

5

10

15

20

25

sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of breast cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for quantitative PCR are provided, e.g., in Innis et al., PCR Protocols, A Guide to Methods and Applications (1990).

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu & Wallace, Genomics 4:560 (1989), Landegren et al., Science 241:1077 (1988), and Barringer et al., Gene 89:117 (1990)), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173 (1989)), self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA 87:1874 (1990)), dot PCR, and linker adapter PCR, etc.

Expression of breast cancer proteins from nucleic acids

In a preferred embodiment, breast cancer nucleic acids, e.g., encoding breast cancer proteins are used to make a variety of expression vectors to express breast cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, supra, and Gene Expression Systems (Fernandez & Hoeffler, eds, 1999)) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these

5

10

15

20

25

expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the breast cancer protein. The term "control sequences" refers to DNA sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.

Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the breast cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

5

10

15

20

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g. in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez & Hoeffler, supra).

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

The breast cancer proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a breast cancer protein, under the appropriate conditions to induce or cause expression of the breast cancer protein. Conditions appropriate for breast cancer protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are Saccharomyces cerevisiae and other yeasts, E. coli, Bacillus subtilis, Sf9 cells, C129 cells, 293 cells, Neurospora, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the breast cancer proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include

5

10

15

20

25

retroviral and adenoviral systems. One expression vector system is a retroviral vector system such as is generally described in PCT/US97/01019 and PCT/US97/01048, both of which are hereby expressly incorporated by reference. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez & Hoeffler, supra). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenlyation signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used.

Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

In a preferred embodiment, breast cancer proteins are expressed in bacterial systems. Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the breast cancer protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which

5

10

15

20

25

render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez & Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, breast cancer proteins are produced in insect cells.

Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, breast cancer protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The breast cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the breast cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the breast cancer protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the breast cancer protein is a breast cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In a preferred embodiment, the breast cancer protein is purified or isolated after expression. Breast cancer proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the breast cancer protein may be purified using a standard anti-breast cancer protein antibody column. Ultrafiltration

5

10

15

20

25

and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes, *Protein Purification* (1982). The degree of purification necessary will vary depending on the use of the breast cancer protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the breast cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, etc.

Variants of breast cancer proteins

5

10

15

20

25

30

In one embodiment, the breast cancer proteins are derivative or variant breast cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative breast cancer peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at any residue within the breast cancer peptide.

Also included within one embodiment of breast cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the breast cancer protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant breast cancer protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the breast cancer protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to

optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed breast cancer variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of breast cancer protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the breast cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution relationships provided in the definition section.

The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analog, although variants also are selected to modify the characteristics of the breast cancer proteins as needed. Alternatively, the variant may be designed such that the biological activity of the breast cancer protein is altered. For example, glycosylation sites may be altered or removed.

Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those described above. For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g. seryl or threonyl is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue

5

10

15

20

25

having an electropositive side chain, e.g. lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g. glycine.

Covalent modifications of breast cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a breast cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of a breast cancer polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking breast cancer polypeptides to a water-insoluble support matrix or surface for use in the method for purifying anti-breast cancer polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, threonyl or tyrosyl residues, methylation of the amino groups of the lysine, arginine, and histidine side chains (Creighton, *Proteins: Structure and Molecular Properties*, pp. 79-86 (1983)), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the breast cancer polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence breast cancer polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence breast cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express breast cancer-associated sequences can result in different glycosylation patterns.

5

10

15

20

Addition of glycosylation sites to breast cancer polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence breast cancer polypeptide (for O-linked glycosylation sites). The breast cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the breast cancer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the breast cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330, and in Aplin & Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the breast cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

Another type of covalent modification of breast cancer comprises linking the breast cancer polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

Breast cancer polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a breast cancer polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a breast cancer polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the breast cancer polypeptide. The presence of such epitope-tagged forms of a breast cancer polypeptide can be detected using

5

10

15

20

25

10

15

20

25

30

an antibody against the tag polypeptide. Also, provision of the epitope tag enables the breast cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a breast cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field et al., Mol. Cell. Biol. 8:2159-2165 (1988)); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto (Evan et al., Molecular and Cellular Biology 5:3610-3616 (1985)); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky et al., Protein Engineering 3(6):547-553 (1990)). Other tag polypeptides include the Flag-peptide (Hopp et al., BioTechnology 6:1204-1210 (1988)); the KT3 epitope peptide (Martin et al., Science 255:192-194 (1992)); tubulin epitope peptide (Skinner et al., J. Biol. Chem. 266:15163-15166 (1991)); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA 87:6393-6397 (1990)).

Also included are other breast cancer proteins of the breast cancer family, and breast cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related breast cancer proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the breast cancer nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well known in the art (e.g., Innis, PCR Protocols, supra).

Antibodies to breast cancer proteins

In a preferred embodiment, when the breast cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the breast cancer protein

should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller breast cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are known to the skilled artisan (e.g., Coligan, supra; and Harlow & Lane, supra). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler & Milstein, Nature 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Tables 1-25 or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene

5

10

15

20

25

glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (1986)). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid Tables 1-25 or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

In a preferred embodiment, the antibodies to breast cancer protein are capable of reducing or eliminating a biological function of a breast cancer protein, as is described below. That is, the addition of anti-breast cancer protein antibodies (either polyclonal or preferably monoclonal) to breast cancer tissue (or cells containing breast cancer) may reduce or eliminate the breast cancer. Generally, at least a 25% decrease in activity, growth, size or the like is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

In a preferred embodiment the antibodies to the breast cancer proteins are humanized antibodies (e.g., Xenerex Biosciences, Mederex, Inc., Abgenix, Inc., Protein Design Labs,Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include

5

10

15

20

25

10

15

20

25

30

human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fy framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332;323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)). Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature 321:522-525 (1986): Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4.816.567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a nonhuman species.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom & Winter, J. Mol. Biol. 227:381 (1991); Marks et al., J. Mol. Biol. 222:581 (1991)). The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, p. 77 (1985) and Boerner et al., J. Immunol. 147(1):86-95 (1991)). Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all

10

15

20

25

30

respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, e.g., in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10:779-783 (1992); Lonberg et al., Nature 368:856-859 (1994); Morrison, Nature 368:812-13 (1994); Fishwild et al., Nature Biotechnology 14:845-51 (1996); Neuberger, Nature Biotechnology 14:826 (1996); Lonberg & Huszar, Intern. Rev. Immunol. 13:65-93 (1995).

By immunotherapy is meant treatment of breast cancer with an antibody raised against breast cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the breast cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted breast cancer protein.

In another preferred embodiment, the breast cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the breast cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The antibody may cause down-regulation of the transmembrane breast cancer protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, non-competitive or uncompetitive inhibitor of protein binding to the extracellular domain of the breast cancer protein. The antibody is also an antagonist of the breast cancer protein. Further, the antibody prevents activation of the transmembrane breast cancer protein. In one aspect, when the antibody prevents the binding of other molecules to the breast cancer

10

15

20

25

30

protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, breast cancer is treated by administering to a patient antibodies directed against the transmembrane breast cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be any number of molecules, including labelling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of the breast cancer protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the breast cancer protein. The therapeutic moiety may inhibit enzymatic activity such as protease or collagenase or protein kinase activity associated with breast cancer.

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to breast cancer tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with breast cancer. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against breast cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane breast cancer proteins not only serves to increase the local concentration of therapeutic moiety in the breast cancer afflicted area, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.

10

15

20

25

30

In another preferred embodiment, the breast cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the breast cancer protein can be targeted within a cell, i.e., the nucleus, an antibody thereto contains a signal for that target localization, i.e., a nuclear localization signal.

The breast cancer antibodies of the invention specifically bind to breast cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding is also important.

Detection of breast cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the breast cancer phenotype. Expression levels of genes in normal tissue (i.e., not undergoing breast cancer) and in breast cancer tissue (and in some cases, for varying severities of breast cancer that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state. While two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can

10

15

20

25

qualitatively have its expression altered, including an activation or inactivation, in, e.g., normal versus breast cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays, Lockhart, Nature Biotechnology 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e., upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

Evaluation may be at the gene transcript, or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the breast cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to breast cancer genes, i.e., those identified as being important in a breast cancer phenotype, can be evaluated in a breast cancer diagnostic test.

In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In this embodiment, the breast cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of breast cancer sequences in

10

15

20

25

30

a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity.

In a preferred embodiment nucleic acids encoding the breast cancer protein are detected. Although DNA or RNA encoding the breast cancer protein may be detected, of particular interest are methods wherein an mRNA encoding a breast cancer protein is detected. Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a breast cancer protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3indoyl phosphate.

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The breast cancer proteins, antibodies, nucleic acids, modified proteins and cells containing breast cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, breast cancer proteins, including intracellular, transmembrane or secreted proteins, find use as markers of breast cancer.

Detection of these proteins in putative breast cancer tissue allows for detection or diagnosis

of breast cancer. In one embodiment, antibodies are used to detect breast cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the breast cancer protein is detected, e.g., by immunoblotting with antibodies raised against the breast cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the breast cancer protein find use in in situ imaging techniques, e.g., in histology (e.g., Methods in Cell Biology: Antibodies in Cell Biology, volume 37 (Asai, ed. 1993)). In this method cells are contacted with from one to many antibodies to the breast cancer protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the breast cancer protein(s) contains a detectable label, e.g. an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of breast cancer proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are also provided by the invention.

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing breast

cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of breast cancer proteins.

Antibodies can be used to detect a breast cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of

antibodies may indicate an immune response against an endogenous breast cancer protein.

In a preferred embodiment, in situ hybridization of labeled breast cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including

5

10

15

20

25

breast cancer tissue and/or normal tissue, are made. In situ hybridization (see, e.g., Ausubel, supra) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the breast cancer proteins, antibodies, nucleic acids, modified proteins and cells containing breast cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to breast cancer, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. As above, breast cancer probes may be attached to biochips for the detection and quantification of breast cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

Assays for therapeutic compounds

In a preferred embodiment members of the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The breast cancer proteins, antibodies, nucleic acids, modified proteins and cells containing breast cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al., Science 279:84-8 (1998): Heid. Genome Res 6:986-94, 1996).

In a preferred embodiment, the breast cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified breast cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the breast cancer phenotype or an identified physiological function of a breast cancer protein. As above, this can be done on an individual gene level or

02059377A2 1 a

5

10

15

20

25

by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified the differentially expressed genes herein, a variety of assays may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as up regulated in breast cancer, test compounds can be screened for the ability to modulate gene expression or for binding to the breast cancer protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing breast cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in breast cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in breast cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the breast cancer protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

In a preferred embodiment, gene expression or protein monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein..

In this embodiment, the breast cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of breast cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

5

10

15

20

Expression monitoring can be performed to identify compounds that modify the expression of one or more breast cancer-associated sequences, e.g., a polynucleotide sequence set out inTable 17. Generally, in a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate breast cancer, modulate breast cancer proteins, bind to a breast cancer protein, or interfere with the binding of a breast cancer protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the breast cancer phenotype or the expression of a breast cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a breast cancer phenotype, e.g. to a normal tissue fingerprint. In another embodiment, a modulator induced a breast cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

Drug candidates encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.

5

10

15

20

25

In one aspect, a modulator will neutralize the effect of a breast cancer protein.

By "neutralize" is meant that activity of a protein is inhibited or blocked and the consequent effect on the cell

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a breast cancer polypeptide or to modulate activity.

Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop et al., J. Med. Chem. 37(9):1233-1251 (1994)).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka, Pept. Prot. Res. 37:487-493 (1991), Houghton et al., Nature, 354:84-88 (1991)), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as

5

10

15

20

25

hydantoins, benzodiazepines and dipeptides (Hobbs et al., Proc. Nat. Acad. Sci. USA 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara et al., J. Amer. Chem. Soc. 114:6568 (1992)), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc. 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al., J. Amer. Chem. Soc. 116:2661 (1994)), oligocarbamates (Cho, et al., Science 261:1303 (1993)), and/or peptidyl phosphonates (Campbell et al., J. Org. Chem. 59:658 (1994)). See, generally, Gordon et al., J. Med. Chem. 37:1385 (1994), nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology 14(3):309-314 (1996), and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., Science 274:1520-1522 (1996), and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum, C&EN, Jan 18, page 33 (1993); isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pytrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines. U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis.

5

10

15

20

MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of breast cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention.

Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially

5

10

15

20

preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of breast cancer can also be nucleic acids, as defined above.

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. For example, digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

5

10

15

20

After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an in vitro transcription with labels covalently attached to the nucleotides is performed.

Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cv3 or cv5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemicalment, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to,

5

10

15

20

25

temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration. etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal hybridization and detection, and/or reduce nonspecific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the breast cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens can be done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a breast cancer expression pattern leading to a normal expression pattern, or to modulate a single breast cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically

5

10

15

20

25

modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated breast cancer tissue reveals genes that are not expressed in normal tissue or breast cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for breast cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated breast cancer tissue sample.

Thus, in one embodiment, a test compound is administered to a population of breast cancer cells, that have an associated breast cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e., a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once the test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, e.g., breast cancer tissue may be screened for agents that modulate, e.g., induce or suppress the breast cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on breast cancer activity. By defining such a signature for the breast cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of

5

10

15

20

25

either the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "breast cancer proteins" or a "breast cancer modulatory protein". The breast cancer modulatory protein may be a fragment, or alternatively, be the full length protein to the fragment encoded by the nucleic acids of the Tables. Preferably, the breast cancer modulatory protein is a fragment. In a preferred embodiment, the breast cancer amino acid sequence which is used to determine sequence identity or similarity is encoded by a nucleic acid of Table 25. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of Table 25. In another embodiment, the sequences are sequence variants as further described herein.

Preferably, the breast cancer modulatory protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. Preferably, the fragment includes a non-transmembrane region. In a preferred embodiment, the fragment has an N-terminal Cys to aid in solubility. In one embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, i.e., to cysteine.

In one embodiment the breast cancer proteins are conjugated to an immunogenic agent as discussed herein. In one embodiment the breast cancer protein is conjugated to BSA.

Measurements of breast cancer polypeptide activity, or of breast cancer or the breast cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the breast cancer polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of breast cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second

5

10

15

20

messengers such as cGMP. In the assays of the invention, mammalian breast cancer polypeptide is typically used, e.g., mouse, preferably human.

Assays to identify compounds with modulating activity can be performed in vitro. For example, a breast cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the breast cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the breast cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using the breast cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "breast cancer proteins."

The breast cancer protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate

5

10

15

20

differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present.

Alternatively, cells comprising the breast cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining a breast cancer protein and a candidate compound, and determining the binding of the compound to the breast cancer protein. Preferred embodiments utilize the human breast cancer protein, although other mammalian proteins may also be used, e.g. for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative breast cancer proteins may be used.

Generally, in a preferred embodiment of the methods herein, the breast cancer protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving

5

10

15

20

25

areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

In a preferred embodiment, the breast cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the breast cancer protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the breast cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the breast cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, e.g., ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (i.e., a breast cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40°C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput

5

10

15

20

25

screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the breast cancer protein and thus is capable of binding to, and potentially modulating, the activity of the breast cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the breast cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is canable of binding to the breast cancer protein.

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the breast cancer proteins. In this embodiment, the methods comprise combining a breast cancer protein and a competitor in a first sample. A second sample comprises a test compound, a breast cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the breast cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the breast cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native breast cancer protein, but cannot bind to modified breast cancer proteins. The structure of the breast cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a

5

10

15

20

breast cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a breast cancer protein. The methods comprise adding a test compound, as defined above, to a cell comprising breast cancer proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a breast cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e. cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate breast cancer agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the breast cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

5

10

15

20

25

In one embodiment, a method of inhibiting breast cancer cell division is provided. The method comprises administration of a breast cancer inhibitor. In another embodiment, a method of inhibiting breast cancer is provided. The method comprises administration of a breast cancer inhibitor. In a further embodiment, methods of treating cells or individuals with breast cancer are provided. The method comprises administration of a breast cancer inhibitor.

In one embodiment, a breast cancer inhibitor is an antibody as discussed above. In another embodiment, the breast cancer inhibitor is an antisense molecule.

A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art. as described below.

Soft agar growth or colony formation in suspension

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of breast cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney, *Culture of Animal Cells a Manual of Basic Technique* (3rd ed., 1994), herein incorporated by reference. *See also*, the methods section of Garkavtsev *et al.* (1996), *supra*, herein incorporated by reference.

Contact inhibition and density limitation of growth

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a

5

10

15

20

25

higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. See Freshney (1994), supra. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (3 H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a breast cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with (3 H)-thymidine is determined autoradiographically. See, Freshney (1994), supra.

Growth factor or serum dependence

Transformed cells have a lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Insti. 37:167-175 (1966); Eagle et al., J. Exp. Med. 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

Tumor specific markers levels

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, tumor vascularization, and potential interference with tumor growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)).

Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al., J. Biol. Chem. 249:4295-4305 (1974); Strickland & Beers, J. Biol. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305-

5

10

15

20

25

312 (1980); Gullino, Angiogenesis, tumor vascularization, and potential interference with tumor growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney Anticancer Res. 5:111-130 (1985).

Invasiveness into Matrigel

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate breast cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1994), supra, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.

Tumor growth in vivo

Effects of breast cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the breast cancer gene is disrupted or in which a breast cancer gene is inserted. Knock-out transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous breast cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous breast cancer gene with a mutated version of the breast cancer gene, or by mutating the endogenous breast cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice

5

10

15

20

25

that possess germ cells partially derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)). Chimeric targeted mice can be derived according to Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987).

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer 41:52 (1980)) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing a breast cancer-associated sequences are injected subcutaneously. After a suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

Polynucleotide modulators of breast cancer

Antisense Polynucleotides

In certain embodiments, the activity of a breast cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide, *i.e.*, a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a breast cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other

5

10

15

20

25

sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the breast cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized in vitro. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for breast cancer molecules. A preferred antisense molecule is for a breast cancer sequences in Tables 1-25, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, e.g., Stein & Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)).

Ribozymes

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of breast cancer-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, e.g., in Hampel *et al.*, *Nucl. Acids Res.* 18:299-304 (1990); European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (*see, e.g.*).

5

10

15

20

25

WO 94/26877; Ojwang et al., Proc. Natl. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad. Sci. USA 92:699-703 (1995); Leavitt et al., Human Gene Therapy 5:1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).

Polynucleotide modulators of breast cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of breast cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

Thus, in one embodiment, methods of modulating breast cancer in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-breast cancer antibody that reduces or eliminates the biological activity of an endogenous breast cancer protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding a breast cancer protein. This may be accomplished in any number of ways. In a preferred embodiment, e.g. when the breast cancer sequence is down-regulated in breast cancer, such state may be reversed by increasing the amount of breast cancer gene product in the cell. This can be accomplished, e.g., by overexpressing the endogenous breast cancer gene or administering a gene encoding the breast cancer sequence, using known gene-therapy techniques, e.g.. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), e.g. as described in PCT/US93/03868, hereby incorporated by reference in its entirety. Alternatively, e.g. when the breast cancer

5

10

15

20

sequence is up-regulated in breast cancer, the activity of the endogenous breast cancer gene is decreased, e.g. by the administration of a breast cancer antisense nucleic acid.

In one embodiment, the breast cancer proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to breast cancer proteins. Similarly, the breast cancer proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify breast cancer antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to a breast cancer protein; that is, the antibodies show little or no cross-reactivity to other proteins. The breast cancer antibodies may be coupled to standard affinity chromatography columns and used to purify breast cancer proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the breast cancer protein.

Methods of identifying variant breast cancer-associated sequences

Without being bound by theory, expression of various breast cancer sequences is correlated with breast cancer. Accordingly, disorders based on mutant or variant breast cancer genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant breast cancer genes, e.g., determining all or part of the sequence of at least one endogenous breast cancer genes in a cell. This may be accomplished using any number of sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the breast cancer genotype of an individual, e.g., determining all or part of the sequence of at least one breast cancer gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced breast cancer gene to a known breast cancer gene, i.e., a wild-type gene.

The sequence of all or part of the breast cancer gene can then be compared to the sequence of a known breast cancer gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the breast cancer gene of

5

10

15

20

25

the patient and the known breast cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the breast cancer genes are used as probes to determine the number of copies of the breast cancer gene in the genome.

In another preferred embodiment, the breast cancer genes are used as probes to determine the chromosomal localization of the breast cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the breast cancer gene locus.

5

10

15

20

25

30

Administration of pharmaceutical and vaccine compositions

In one embodiment, a therapeutically effective dose of a breast cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery; Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); and Pickar, Dosage Calculations (1999)). As is known in the art, adjustments for breast cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art. U.S. Patent Application N. 09/687,576, further discloses the use of compositions and methods of diagnosis and treatment in breast cancer is hereby expressly incorporated by reference.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

The administration of the breast cancer proteins and modulators thereof of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the breast cancer proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise a breast cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium. potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

5

10

15

20

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that breast cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise a breast cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Goodman & Gillman, The Pharmacologial Basis of Therapeutics (Hardman et al.,eds., 1996)).

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gillman, The Pharmacologial Basis of Therapeutics, supra.

5

10

15

20

25

The compositions containing modulators of breast cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer.

It will be appreciated that the present breast cancer protein-modulating compounds can be administered alone or in combination with additional breast cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in Tables 1-25, such as antisense polynucleotides or ribozymes, will be introduced into cells, in vitro or in vivo. The present invention provides methods, reagents, vectors, and cells useful for expression of breast cancer-associated polypeptides and nucleic acids using in vitro (cell-free), ex vivo or in vivo (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use

5

10

15

20

25

of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Berger & Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 (Berger), Ausubel et al., eds., Current Protocols (supplemented through 1999), and Sambrook et al., Molecular Cloning - A Laboratory Manual (2nd ed., Vol. 1-3, 1989).

In a preferred embodiment, breast cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, breast cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the breast cancer coding regions) can be administered in a gene therapy application. These breast cancer genes can include antisense applications, either as gene therapy (i.e. for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.

Breast cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL and antibody responses. Such vaccine compositions can include, e.g., lipidated peptides (see, e.g., Vitiello, A. et al., J. Clin. Invest. 95:341 (1995)), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, (1991); Alonso et al., Vaccine 12:299-306 (1994); Jones et al., Vaccine 13:675-681 (1995)), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875 (1990); Hu et al., Clin Exp Immunol. 113:235-243 (1998)), multiple antigen peptide systems (MAPs) (see, e.g., Tam, Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413 (1988); Tam. J. Immunol. Methods 196:17-32 (1996)), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al., In: Concepts in vaccine development (Kaufmann, ed., p. 379, 1996); Chakrabarti, et al., Nature 320:535 (1986); Hu et al., Nature 320:537 (1986); Kieny, et al., AIDS Bio/Technology 4:790 (1986); Top et al., J. Infect. Dis. 124:148 (1971); Chanda et al., Virology 175:535 (1990)), particles of viral or synthetic origin (see, e.g., Kofler et al., J. Immunol, Methods, 192:25 (1996); Eldridge et al., Sem. Hematol. 30:16 (1993); Falo et al., Nature Med. 7:649 (1995)), adjuvants (Warren et al., Annu. Rev. Immunol. 4:369 (1986);

5

10

15

20

25

Gupta et al., Vaccine 11:293 (1993)), liposomes (Reddy et al., J. Immunol. 148:1585 (1992); Rock, Immunol. Today 17:131 (1996)), or, naked or particle absorbed cDNA (Ulmer, et al., Science 259:1745 (1993); Robinson et al., Vaccine 11:957 (1993); Shiver et al., In: Concepts in vaccine development (Kaufmann, ed., p. 423, 1996); Cease & Berzofsky, Annu. Rev. Immunol. 12:923 (1994) and Eldridge et al., Sem. Hematol. 30:16 (1993)). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics. Inc. (Needham, Massachusetts) may also be used.

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NI); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of

5

10

15

20

25

vaccinia virus, e.g., as a vector to express nucleotide sequences that encode breast cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata et al., Mol Med Today 6:66-71 (2000); Shedlock et al., J Leukoc Biol 68:793-806 (2000); Hipp et al., In Vivo 14:571-85 (2000)).

Methods for the use of genes as DNA vaccines are well known, and include placing a breast cancer gene or portion of a breast cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in a breast cancer patient. The breast cancer gene used for DNA vaccines can encode full-length breast cancer proteins, but more preferably encodes portions of the breast cancer proteins including peptides derived from the breast cancer protein. In one embodiment, a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a breast cancer gene. For example, breast cancer-associated genes or sequence encoding subfragments of a breast cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present anticen, including intracellular epitones.

In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the breast cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment breast cancer genes find use in generating animal models of breast cancer. When the breast cancer gene identified is repressed or diminished in cancer tissue, gene therapy technology, e.g., wherein antisense RNA directed

5.

10

15

20

25

to the breast cancer gene will also diminish or repress expression of the gene. Animal models of breast cancer find use in screening for modulators of a breast cancer-associated sequence or modulators of breast cancer. Similarly, transgenic animal technology including gene knockout technology, e.g. as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the breast cancer protein. When desired, tissue-specific expression or knockout of the breast cancer protein may be necessary.

It is also possible that the breast cancer protein is overexpressed in breast cancer. As such, transgenic animals can be generated that overexpress the breast cancer protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of breast cancer and are additionally useful in screening for modulators to treat breast cancer.

15

20

25.

5

10

Kits for Use in Diagnostic and/or Prognostic Applications

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In the diagnostic and research applications such kits may include any or all of the following: assay reagents, buffers, breast cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, dominant negative breast cancer polypeptides or polynucleotides, small molecules inhibitors of breast cancer-associated sequences etc. A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing directions (i.e., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the

like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of breast cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: a breast cancer-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing breast cancer-associated activity. Optionally, the kit contains biologically active breast cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

15

20

25

30

10

5

EXAMPLES

Example 1: Tissue Preparation, Labeling Chips, and Fingerprints

Purifying total RNA from tissue sample using TRIzol Reagent

The sample weight is first estimated. The tissue samples are homogenized in 1 ml of TRIzol per 50 mg of tissue using a homogenizer (e.g., Polytron 3100). The size of the generator/probe used depends upon the sample amount. A generator that is too large for the amount of tissue to be homogenized will cause a loss of sample and lower RNA yield. A larger generator (e.g., 20 mm) is suitable for tissue samples weighing more than 0.6 g. Fill tubes should not be overfilled. If the working volume is greater than 2 ml and no greater than 10 ml, a 15 ml polypropylene tube (Falcon 2059) is suitable for homogenization.

Tissues should be kept frozen until homogenized. The TRIzol is added directly to the frozen tissue before homogenization. Following homogenization, the insoluble material is removed from the homogenate by centrifugation at 7500 x g for 15 min. in a Sorvall superspeed or 12,000 x g for 10 min. in an Eppendorf centrifuge at 4°C. The cleared

homogenate is then transferred to a new tube(s). Samples may be frozen and stored at -60 to -70°C for at least one month or else continue with the purification.

The next process is phase separation. The homogenized samples are incubated for 5 minutes at room temperature. Then, 0.2 ml of chloroform per 1ml of TRIzol reagent is added to the homogenization mixture. The tubes are securely capped and shaken vigorously by hand (do not vortex) for 15 seconds. The samples are then incubated at room temp. for 2-3 minutes and next centrifuged at 6500 rpm in a Sorvall superspeed for 30 min. at 4oC.

The next process is RNA Precipitation. The aqueous phase is transferred to a fresh tube. The organic phase can be saved if isolation of DNA or protein is desired. Then 0.5 ml of isopropyl alcohol is added per 1ml of TRIzol reagent used in the original homogenization. Then, the tubes are securely capped and inverted to mix. The samples are then incubated at room temp. for 10 minutes an centrifuged at 6500 rpm in Sorvall for 20 min at 4°C.

The RNA is then washed. The supernatant is poured off and the pellet washed with cold 75% ethanol. 1 ml of 75% ethanol is used per 1 ml of the TRIzol reagent used in the initial homogenization. The tubes are capped securely and inverted several times to loosen pellet without vortexing . They are next centrifuged at $<8000\,$ rpm ($<7500\,$ x g) for 5 minutes at 4° C.

The RNA wash is decanted. The pellet is carefully transferred to an Eppendorf tube (sliding down the tube into the new tube by use of a pipet tip to help guide it in if necessary). Tube(s) sizes for precipitating the RNA depending on the working volumes. Larger tubes may take too long to dry. Dry pellet. The RNA is then resuspended in an appropriate volume (e.g., 2 -5 ug/ul) of DEPC H₂0. The absorbance is then measured.

The poly A+ mRNA may next be purified from total RNA by other methods such as Qiagen's RNeasy kit. The poly A $^+$ mRNA is purified from total RNA by adding the oligotex suspension which has been heated to 37°C and mixing prior to adding to RNA. The Elution Buffer is incubated at 70°C. If there is precipitate in the buffer, warm up the 2 x Binding Buffer at 65°C. The the total RNA is mixed with DEPC-treated water, 2 x Binding

5

10

15

20

Buffer, and Oligotex according to Table 2 on page 16 of the Oligotex Handbook and next incubated for 3 minutes at 65°C and 10 minutes at room temperature.

The preparation is centrifuged for 2 minutes at 14,000 to 18,000 g, preferably, at a "soft setting," The supernatant is removed without disturbing Oligotex pellet. A little bit of solution can be left behind to reduce the loss of Oligotex. The supernatant is saved until satisfactory binding and elution of poly A^+ mRNA has been found.

Then, the preparation is gently resuspended in Wash Buffer OW2 and pipetted onto the spin column and centrifuged at full speed (soft setting if possible) for 1 minute.

Next, the spin column is transferred to a new collection tube and gently resuspended in Wash Buffer OW2 and centrifuged as described herein.

Then, the spin column is transferred to a new tube and eluted with 20 to 100 ul of preheated (70°C) Elution Buffer. The Oligotex resin is gently resuspended by pipetting up and down. The centrifugation is repeated as above and the elution repeated with fresh elution buffer or first eluate to keep the elution volume low.

The absorbance is next read to determine the yield, using diluted Elution Buffer as the blank.

Before proceeding with cDNA synthesis, the mRNA is precipitated before proceeding with cDNA synthesis, as components leftover or in the Elution Buffer from the Oligotex purification procedure will inhibit downstream enzymatic reactions of the mRNA. 0.4 vol. of 7.5 M NH4OAc + 2.5 vol. of cold 100% ethanol is added and the preparation precipitated at -20°C 1 hour to overnight (or 20-30 min. at -70°C), and centrifuged at 14,000-16,000 x g for 30 minutes at 4°C. Next, the pellet is washed with 0.5 ml of 80% ethanol (-20°C) and then centrifuged at 14,000-16,000 x g for 5 minutes at room temperature. The 80% ethanol wash is then repeated. The last bit of ethanol from the pellet is then dried without use of a speed vacuum and the pellet is then resuspended in DEPC H₂0 at 1ug/ul concentration.

Alternatively the RNA may be purified using other methods (e.g., Qiagen's RNeasy kit).

5

10

15

20

No more than 100 ug is added to the RNeasy column. The sample volume is adjusted to 100 ul with RNase-free water. 350 ul Buffer RLT and then 250 ul ethanol (100%) are added to the sample. The preparation is then mixed by pipetting and applied to an RNeasy mini spin column for centrifugation (15 sec at >10,000 rpm). If yield is low, reapply the flowthrough to the column and centrifuge again.

Then, transfer column to a new 2 ml collection tube and add 500 ul Buffer RPE and centrifuge for 15 sec at >10,000 rpm. The flowthrough is discarded. 500 ul Buffer RPE and is then added and the preparation is centriuged for 15 sec at >10,000 rpm. The flowthrough is discarded. and the column membrane dried by centrifuging for 2 min at maximum speed. The column is transferred to a new 1.5-ml collection tube. 30-50 ul of RNase-free water is applied directly onto column membrane. The column is then centrifuged for 1 min at >10,000 rpm and the elution step repeated.

The absorbance is then read to determine yield. If necessary, the material may be ethanol precipitated with ammonium acetate and 2.5X volume 100% ethanol.

First Strand cDNA Synthesis

5

10

15

20

25

30

The first strand can be make using using Gibco's "SuperScript Choice System for cDNA Synthesis" kit. The starting material is 5 ug of total RNA or 1 ug of polyA+ mRNAl. For total RNA, 2 ul of SuperScript RT is used; for polyA+ mRNA, 1 ul of SuperScript RT is used. The final volume of first strand synthesis mix is 20 ul. The RNA should be in a volume no greater than 10 ul. The RNA is incubated with 1 ul of 100 pmol T7-T24 oligo for 10 min at 70°C followed by addition on ice of 7 ul of: 4ul 5X 1st Strand Buffer, 2 ul of 0.1M DTT, and 1 ul of 10mM dNTP mix. The preparation is then incubated at 37°C for 2 min before addition of the SuperScript RT followed by incubation at 37°C for 1 hour.

Second Strand Synthesis

For the second strand synthesis, place 1st strand reactions on ice and add: 91 ul DEPC H₂0; 30 ul 5X 2nd Strand Buffer; 3 ul 10mM dNTP mix; 1 ul 10 U/ul E.coli DNA Ligase; 4 ul 10 U/ul E.coli DNA Polymerase; and 1 ul 2 U/ul RNase H. Mix and incubate 2

hours at 16°C. Add 2 ul T4 DNA Polymerase. Incubate 5 min at 16°C. Add 10 ul of 0.5M EDTA.

Cleaning up cDNA

The cDNA is purified using Phenol:Chloroform:Isoamyl Alcohol (25:24:1) and Phase-Lock gel tubes. The PLG tubes are centrifuged for 30 sec at maximum speed. The cDNA mix is then transferred to PLG tube. An equal volume of phenol:chloroform:isamyl alcohol is then added, the preparation shaken vigorously (no vortexing), and centrifuged for 5 minutes at maximum speed. The top aqueous solution is transferred to a new tube and ethanol precipitated by adding 7.5X 5M NH4OAc and 2.5X volume of 100% ethanol. Next, it is centrifuged immediately at room temperature for 20 min, maximum speed. The supernatant is removed, and the pellet washed with 2X with cold 80% ethanol. As much ethanol wash as possible should be removed before air drying the pellet; and resuspending it in 3 ul RNase-free water.

15

20

25

30

5

10

In vitro Transcription (IVT) and labeling with biotin

In vitro Transcription (IVT) and labeling with biotin is performed as follows: Pipet 1.5 ul of cDNA into a thin-wall PCR tube. Make NTP labeling mix by combining 2 ul T7 10xATP (75 mM) (Ambion); 2 ul T7 10xGTP (75 mM) (Ambion); 1.5 ul T7 10xCTP (75 mM) (Ambion); 1.5 ul T7 10xUTP (75 mM) (Ambion); 3.75 ul 10 mM Bio-11-UTP (Boehringer-Mannheim/Roche or Enzo); 3.75 ul 10 mM Bio-16-CTP (Enzo); 2 ul 10x T7 transcription buffer (Ambion); and 2 ul 10x T7 enzyme mix (Ambion). The final volume is 20 ul. Incubate 6 hours at 37°C in a PCR machine. The RNA can be furthered cleaned. Clean-up follows the previous instructions for RNeasy columns or Qiagen's RNeasy protocol handbook. The cRNA often needs to be ethanol precipitated by resuspension in a volume commatible with the fragmentation step.

Fragmentation is performed as follows. 15 ug of labeled RNA is usually fragmented. Try to minimize the fragmentation reaction volume; a 10 ul volume is recommended but 20 ul is all right. Do not go higher than 20 ul because the magnesium in the fragmentation buffer contributes to precipitation in the hybridization buffer. Fragment

RNA by incubation at 94 C for 35 minutes in 1 x Fragmentation buffer (5 x Fragmentation buffer is 200 mM Tris-acetate, pH 8.1; 500 mM KOAc; 150 mM MgOAc). The labeled RNA transcript can be analyzed before and after fragmentation. Samples can be heated to 65°C for 15 minutes and electrophoresed on 1% agarose/TBE gels to get an approximate idea of the transcript size range

For hybridization, 200 ul (10 ug cRNA) of a hybridization mix is put on the chip. If multiple hybridizations are to be done (such as cycling through a 5 chip set), then it is recommended that an initial hybridization mix of 300 ul or more be made. The hybridization mix is: fragment labeled RNA (50 ng/ul final conc.); 50 pM 948-b control oligo; 1.5 pM BioB; 5 pM BioC; 25 pM BioD; 100 pM CRE; 0.1 mg/ml herring sperm DNA; 0.5 mg/ml acetylated BSA; and 300 ul with 1xMES hyb buffer.

The hybridization reaction is conducted with non-biotinylated IVT (purified by RNeasy columns) (see example 1 for steps from tissue to IVT): The following mixture is prepared:

15 IVT antisense RNA; 4 μ g: μ l Random Hexamers (1 μ g/ μ l): 4 μ l H₂O: μ l 14 μ l

Incubate the above 14 ul mixture at 70°C for 10 min.; then put on ice.

The Reverse transcription procedure uses the following mixture:

The above solution is added to the hybridization reaction and incubated for 30 min., 42°C. Then, 1 μ l SSII is added and incubated for another hour before being placed on ice.

5

10

20

The 50X dNTP mix contains 25mM of cold dATP, dCTP, and dGTP, 10mM of dTTP and is made by adding 25 μ l each of 100mM dATP, dCTP, and dGTP; 10 μ l of 100mM dTTP to 15 μ l H₂O.]

RNA degradation is performed as follows. Add 86 μ l H₂O, 1.5 μ l 1M NaOH/2 mM EDTA and incubate at 65°C, 10 min. For U-Con 30, 500 μ l TE/sample spin at 7000 g for 10 min, save flow through for purification. For Qiagen purification, suspend u-con recovered material in 500 μ l buffer PB and proceed using Qiagen protocol. For DNAse digestion, add 1 ul of 1/100 dilution of DNAse/30 ul Rx and incubate at 37°C for 15 min. Incubate at 5 min 95°C to denature the DNAse.

Sample preparation

5

10

15

For sample preparation, add Cot-1 DNA, 10 μ l; 50X dNTPs, 1 μ l; 20X SSC, 2.3 μ l; Na pyro phosphate, 7.5 μ l; 10 mg/ml Herring sperm DNA; 1 μ l of 1/10 dilution to 21.8 final vol. Dry in speed vac. Resuspend in 15 μ l H₂0. Add 0.38 μ l 10% SDS. Heat 95°C, 2 min and slow cool at room temp. for 20 min. Put on slide and hybridize overnight at 64°C. Washing after the hybridization: 3X SSC/0.03% SDS: 2 min., 37.5 ml 20X SSC+0.75ml 10% SDS in 250ml H₂O; 1X SSC: 5 min., 12.5 ml 20X SSC in 250ml H₂O; 0.2X SSC: 5 min., 2.5 ml 20X SSC in 250ml H₂O. Dry slides and scan at appropriate PMT's and channels.

TABLE 1: Figure 1 from BRCA 001 US

5 Table 1 shows genes, (incorporated in their entirety here and throughout the application where primekeys are provided), downregulated in tumor tissue compared to normal breast tissue.

10					
10	Pkev:	Date	Caab.	set identifier number	
	ExAccn:			set identifier number on number, Genbank accession number	
	Unigene		iene number	on number, dendank decession number	
	Unigene		ene gene tide		
15	R1:			east tissue to tumor	
	Pkey	ExAcon	UniconolD	UnigeneTitle	R1
	rncy	LANCON	Orngeneil	Unigenerale	κ,
20		D90084	Hs.1023	pyruvate dehydrogenase (lipoamide) alpha	5
		T51986	Hs.283108	hemoglobin, gamma G	10
		M55405		gb:Homo saplens mucin (MUC-3) mRNA, part	5
		BE142019		Homo sapiens cDNA FLJ11572 fis, clone HE	10
25		X52078		transcription factor 3 (E2A immunoglobul	5 5
23		BE259039		Ewing sarcoma breakpoint region 1	5
		X16841 A03758	HS. 16/900	neural cell adhesion molecule 1 NM_000477*:Homo sapiens albumin (ALB), m	10
		L27065			5
		M60832	He 240220	gb:Human neurofibromatosis 2 (NF2) mRNA, collagen, type VIII, alpha 2	5
30		BE379727	Hs.83213	fatty acid binding protein 4, adipocyte	10
50		AJ250562	Hs.82749	transmembrane 4 superfamily member 2	. 5
		M90424	Hs.2099	Ilpocalin 1 (protein migrating faster th	5
		NM 001674	Hs.460	activating transcription factor 3	10
		NM_006732	Hs.75678	FBJ murine osteosarcoma viral oncogene h	10
35		X03350	Hs.4	alcohol dehydrogenase 1B (class I), beta	10
	101447	M21305		gb:Human alpha satellite and satellite 3	10
	101461	N98569	Hs.76422	phospholipase A2, group IIA (platelets,	10
		M27826		endogenous retroviral protease	10
		AV650262	Hs.75765	GRO2 oncogene	5
40		M74447	Hs.502	transporter 2, ATP-binding cassette, sub	10
		U22961		gb:Human mRNA clone with similarity to L	10
		NM_001504		G protein-coupled receptor 9	5
		U48251	Hs.75871		10
45		U89337		tenascin XB	10
43		U60115 AA313538	HS.239069	four and a half LIM domains 1	5 10
		NM 006744	Hs.76461	gb:EST185419 Colon carcinoma (HCC) cell retinol-binding protein 4, interstitial	10
		AA829286		serum amyloid A1	10
		X98085	Hs.54433		5
50		AA081995	113.54400	gb:zn26d06.r1 Stratagene neuroepithelium	10
50		AA126129		gb:zm78c07.r1 Stratagene neuroepithelium	5
		AA137107	Hs.326391	Homo sapiens, clone MGC:16638, mRNA, com	10
		AA326216	Hs.8719	hypothetical protein MGC1136	5
	104080	AB041036	Hs.57771	kallikreln 11 (KLK11; TLSP; PRSS20; hipp	5
55	104093	R50727	Hs.336970	ESTs	10
	104106	AA422123		gb:zv26h12.r1 Soares_NhHMPu_S1 Homo sapl	5
		AL353957		hypothetical protein DKFZp434P0531	10
		F06638	Hs.12440		10
		AA426189		gb:zw11e09.r1 Soares_NhHMPu_S1 Homo sapl	5
60		N73185	Hs.94285	EST	10
		N91071	Hs.109650		10
		N99542	Hs.572	orosomucold 1	5 10
	104532	Al498763	HS.203013	hypothetical protein FLJ12748	10

					_
	104536			Homo sapiens cDNA FLJ14673 fis, clone NT	5
	104572			phosphoinositide-3-kinase, class 2, beta	5
		AW969769	Hs.105201		5 10
_		AA009764	Hs.190380		
5		AA017245		ESTs	10 10
		AA019300		ESTs, Moderately similar to 154374 gene	
		AI039243	Hs.278585		5
		A1298208		ESTs	. 10
10		AA130390		hypothetical protein FLJ20898	10
10	105105		Hs.87016	hypothetical protein FLJ22938	5 5
		AW970043	Hs.238039	hypothetical protein FLJ11090	10
		AA221036		gb:zr03f12.r1 Stratagene NT2 neuronal pr	5
		AA421973		ESTs, Weakly similar to T25731 hypotheti	5
		BE242857		hypothetical protein FLJ11159	10
15	106052			ESTs, Highly similar to T00391 hypotheti	5
		AL359624		KIAA1453 protein	10
		Ai803651	Hs.191608		5
		AW976171	Hs.286194	hypothetical protein FLJ22233	10
20			Hs.25522	KIAA1808 protein	10
20		AL042069		DKFZP434N061 protein	10
		AW235928	Hs.313182		10
		AA135688	Hs.10083	Homo sapiens, clone IMAGE:4139786, mRNA,	5
		AA906434	Hs.3776	zinc finger protein 216	10
0.5		AW054886	Hs.25682	Homo saplens mRNA for KIAA1863 protein,	5
25		AI458623		gb:tk04g09.x1 NCI_CGAP_Lu24 Homo sapiens	5
		Ai983730	Hs.26530	serum deprivation response (phosphatidyi	5
		AI347578		hypothetica) protein MGC2605 Indojethylamine N-methyltransferase	5
		AF128847	Hs.30127		5
30		AJ223811 Al446183	Hs.9572	hypothetical protein ESTs, Highly similar to CYA5_HUMAN ADENY	5
30		AB006532	Hs.31442	RecQ protein-like 4	10
		A1005036		GS1999full	10
		AF127026	Hs.5394	myosin IA	10
		AB020672		KIAA0865 protein	10
35		Al905985	Hs.111805		10
33		U51704	He 323428	ESTs, Moderately similar to ALU8_HUMAN A	5
		W26652	Hs.6163	PTEN induced putative kinase 1	5
		W28516	Hs.19210	hypothetical protein MGC11308	10
		AL042425		hypthetical protein PRO2389	10
40		Ai092790		hypothetical protein FLJ14529	5
		W38002		Empirically selected from AFFX single pr	10
		N53167	Hs.47623	ESTs	10
		W96141	Hs.220687		10
		AA017462	Hs.269244	ESTs	10
45		BE621721		hypothetical protein FLJ12387 similar to	10
		AA025060	Hs.61246	ESTs	10
		BE271708	Hs.95110	ESTs, Weakly similar to A55943 1-phospha	10
	107888	AA025836	Hs.191637		5
		AL049176	Hs.82223	chordin-like	10
50	108056	AA043675	Hs.62633	ESTs .	10
	108081		Hs.28578	muscleblind (Drosophila)-like	5
	108113	AA012881	Hs.72531	hypothetical protein FLJ11838	10
	108238	AA059473	Hs.66783	EST	10
	108257	AA677927	Hs.144269	ESTs	5
55	108335	AA070500		gb:zm70h03.s1 Stratagene neuroepithelium	5
		AA071193		gb:zf79b12.s1 Soares_pineal_gland_N3HPG	10
		NM_006770	Hs.67726	macrophage receptor with collagenous str	5
	108392	AA075124		gb:zm86a01.s1 Stratagene ovarian cancer	10
	108441	AA079079		gb:zm97c09.s1 Stratagene colon HT29 (937	10
60	108446	AA085383		gb:zn13g03.s1 Stratagene hNT neuron (937	10
	108497	AA074897		gb:zm85a05.r1 Stratagene ovarian cancer	10
	108604	AA934589	Hs.49696	ESTs	5
		AF117646		Cas-Br-M (murine) ectropic retroviral tr	5
	108706	AA121820	Hs.74569		10
65		AA126583	Hs.158725		10 10
	108827	Al273692	Hs.110470		10
	109123	AI028376	Hs.73232	ESTs	10

		AA101325	Hs.86154	hypothetical protein FLJ12457	10
		F01449	Hs.26954	Homo sapiens mRNA; cDNA DKFZp762G123 (fr	5
		R40604		ESTs, Weakly similar to MCAT_HUMAN MITOC	10
5		A1094674	Hs.30524	ring finger protein 24	10
,		H46749 W22165	Hs.31540 Hs.22586	ESTs ESTs	10 5
		AW294162		UDP-N-acetyl-alpha-D-galactosamine:polyp	10
		H51276	Hs.13526		10
		H52576		gb:yt85e08.r1 Soares_pineat_gland_N3HPG	5
10		H72639	Hs.167608	ESTs	5
		H60593	Hs.124990		10
		AL044174		patched (Drosophila) homolog	10
		AI753316 N66616	Hs.26034	ESTs H.sapiens mRNA for subtelomeric repeat s	5 5
15		A1798376	HS. 130029	gb:tr34b07.x1 NCI_CGAP_Ov23 Homo sapiens	10
13		AJ224864	Hs.9688	leukocyte membrane antigen	5
		AA641636	Hs.37477	ESTs, Weakly similar to T46908 hypotheti	5
	111400	R00144	Hs.189771		10
		Al168511		gb:ow90h09.s1 Soares_fetal_liver_spleen_	10
20		R16733	Hs.20499	ESTs	10
		R26065	11-005000	gb:yh39d03.s1 Soares placenta Nb2HP Homo	5
		AA593731 R42333	Hs.325823 Hs.302292	ESTs, Moderately similar to ALU5_HUMAN A	10
		AL117490	Hs.47225	Ras-associated protein Rap1	10
25		NM_006668	Hs.25121	cytochrome P450, subfamily 46 (cholester	10
		R51889	Hs.24990		5
		R31094	Hs.24378	ESTs	10
		R77302		gb:yi75h08.s1 Soares placenta Nb2HP Homo	10
••		BE618629	Hs.268809		5
30		T98628	Hs.191290		5
		AI057205	Hs.14584		5 10
		AA581428 T16837	Hs.5021	EST ESTs	5
		T51588	Hs.4241	gb:yb27e06.s1 Stratagene fetal spleen (9	10
35		T54659	Hs.301755	Homo sapiens cDNA FLJ11465 fis, clone HE	5
		AA743563	Hs.10305		5 5
	113299	AW207424	Hs.332594	ESTs	10
		N92359	Hs.14518		10
40		R16763	Hs.268679		5
40		AA913635		Homo saplens cDNA FLJ20812 fis, clone AD	11
		R06874 Al791905		ESTs, Moderately similar to ALU1_HUMAN A hypothetical protein	5 10
		AI244311	Hs.26912	ESTs	10
		W07586	Hs.8045	ESTs	3
45		W86195		gb:zh54e05.s1 Soares_fetal_tiver_spleen_	. 10
		Z39319	Hs.27347	EST	10
	114254	AB018263	Hs.180338	tumor necrosis factor receptor superfami	5
		AA745978	Hs.28273	ESTs	5 5
50		AA020736	11- 007040	gb:ze63b11.s1 Soares retina N2b4HR Homo	5
30		AA034378	Hs.26/319	endogenous retroviral protease	5
		AA065096 AA081507		gb:zm50a02.s1 Stratagene fibroblast (937 gb:zn05b10.r1 Stratagene hNT neuron (937	5
		AA234826	Hs.87386	EST	5
		AA234462	Hs.87350	ESTs	5 5
55		AK000725	Hs.50579	hypothetical protein FLJ20718	3
	115666	AF173081		Vertebrate LIN7 homolog 1, Tax interacti	5
		AB020649	Hs.74569		5
		AA398841	Hs.39850		1
60		AI478427	Hs.43125	esophageal cancer related gene 4 protein	11
OU		AL133916 AA463902	Hs.172572 Hs.13522	hypothetical protein FLJ20093 ESTs, Weakly similar to I38022 hypotheti	11
		AW968703	Hs.30085	hypothetical protein FLJ23186	5
		AW410377	Hs.41502	hypothetical protein FLJ21276	5 5 5
		AW194253	Hs.68607	ESTs	1
65		BE314852		Homo sapiens clone 23763 unknown mRNA, p	5
		F10528	Hs.70001	ESTs, Moderately similar to JC6169 nucle	5
	117058	AW801806		gb:IL5-UM0070-110400-062-g07 UM0070 Homo	5

	117151	AI803656	Hs.42373	ESTs	5
		N20468		gb:yx39b10.s1 Soares melanocyte 2NbHM Ho	10
		AI472863	Hs.43387	ESTs	5
		N34417	Hs.44584	ESTs	3
5		N26627	Hs.82364	ESTs, Weakly similar to JC4124 pregnancy	5
-		N40551		Homo saplens Ets-1 binding protein (E1B)	10
		N49285	Hs.182391		10
		AW263476	Hs.44268	myelin gene expression factor 2	10
		BE222341	Hs.279472		5
10		N53145	110.210112	gb:yv55f09.s1 Soares fetal liver spleen	3
10		AW955696	Hs.90960	ESTS	10
		A1078236	Hs.49688	ESTs	5
		N70907	Hs.230619		. 10
		AL122040		Homo sapiens mRNA; cDNA DKFZp434G1972 (f	3
15		AA993527		hypothetical protein FLJ23403	5
		AI160570		pregnancy specific beta-1-glycoprotein 6	5 3 5
		AF142419	Hs.15020	homolog of mouse quaking QKI (KH domain	5
		AA514422	Hs.221849		5
		AK002001	Hs.51305	v-maf musculoaponeurotic fibrosarcoma (a	10
20		T77892		gb:yd20f04.s1 Soares fetal liver spleen	5
	119378	T81824	Hs.90949	EST	5
	119528	W38051		Empirically selected from AFFX single pr	10
	119792	AL049798	Hs.80552	dermatopontin	3
		AF086332	Hs.58314	ESTs	10
25	119817	AF088061	Hs.159690	ESTs .	5
		AF086429	Hs.58429	ESTs	5 5 5 10
	119923	AW803308	Hs.62954	ferritin, heavy polypeptide 1	5
	119961	U34249	Hs.337461	Human putative zinc finger protein (ZNFB	5
	120379	AL042725		gb:DKFZp434B1822_r1 434 (synonym: htes3)	10
30		AW136934	Hs.97162	ESTs	5
		AA907743	Hs.142373		5
		AA401695	Hs.97334	ESTs	5 5 5 5
		AA405763		Homo sapiens cDNA FLJ20470 fis, clone KA	5
		AA421452		ESTs, Weakly similar to KIAA0926 protein	5
35		AK000229	Hs.98017	Homo sapiens cDNA FLJ20222 fis, clone CO	. 10
		AA447555	Hs.99116	EST	10
		AA458945	Hs.95898	ESTs	10
		AW135093	Hs.97282	ESTs, Highly similar to G100_HUMAN 110 K	5
40		AA609122	HS.112645	Homo saplens mRNA; cDNA DKFZp434D2472 (f	5
40		Ai024595	Hs.97508	a disintegrin and metalloproteinase doma	10
		AA621529		gb:af47a02.s1 Soares_total_fetus_Nb2HF8_	- 10
	124210	H62570 H83465		gb:yr44a01.r1 Soares fetal liver spleen gb:ys91a11.s1 Soares retina N2b5HR Homo	5
		AK001527	No 402052	hypothetical protein FLJ10665	5
45		NM_014312		cortic al thymocyte receptor (X. laevis	10
45		T98199	Ha 49402	hypothetical protein FLJ10847	10
		BE299567		ESTs, Moderately similar to ALU8_HUMAN A	5
		NM_002666	Hs.103253	nodinin	10
	125906		Hs.17775	p75NTR-associated cell death executor; o	5
50		AA485421		ESTs, Weakly similar to ALU7_HUMAN ALU S	10
50		NM_002250	Hs.10082	potassium intermediate/small conductance	10
		R44214	Hs.101189		5
		C16161		hypothetical protein PRO2543	5
		AA193106		chromosome 11 open reading frame 23	10
55		H39537	Hs.75309	eukaryotic translation elongation factor	10
		AW150717		STAT Induced STAT Inhibitor 3	10
	128931	N62889	Hs.107242	Homo sapiens cDNA FLJ12965 fis, clone NT	10
	129001	AA443323		BPOZ protein	5
	129091	AA056483	Hs.301463	Human Chromosome 16 BAC clone CIT987SK-A	5
60	129101	NM_013403	Hs.108665		10
		AL117472		SH3-domain protein 5 (ponsin)	5 3 5 5
		AI146494	Hs.109525	ESTs, Weakly similar to IRX2_HUMAN IROQU	3
		U40714		tyrosyl-tRNA synthetase	5
		AA530892		dual specificity phosphatase 1	5
65		BE617015	Hs.11006	ESTs, Moderately similar to T17372 plasm	10
		AF110141		WAS protein family, member 2	10
	129368	NM_003877	Hs.110776	STAT Induced STAT inhibitor-2	5

	129371	X06828	He 110802	von Willebrand factor	5
		AW245805	He 110002	claudin 5 (transmembrane protein deleted	10
		W37944			
			Hs.4007	Sarcolemmal-associated protein	5
-		BE061069		KIAA0467 protein	10
5		AF020038	Hs.11223		10
		BE222078	Hs.113069	ESTs	10
	129684	BE622468	Hs.11924	ESTs. Weakly similar to I38022 hypotheti	5
		AI304966	Hs.12035	ESTs, Weakly similar to I38022 hypotheti	5
		AK001676	Hs.12457	hypothetical protein FLJ10814	10
10		AK000956	Hs.13209		
10					5
		Al338993	Hs.134535		5
	129973	AJ251760	Hs.273385	guanine nucleotide binding protein (G pr	5
	129977	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	5
	130014	NM_001158	Hs.143102	amine oxidase, copper containing 2 (reti	5
15		M62402		Insulin-like growth factor binding prote	10
		AA452006	Hs.333199		5
		W80711			
				Homo saplens mRNA for KIAA1727 protein,	5
		D88435		cyclin G associated kinase	10
		AI241084	Hs.154353	nonselective sodium potassium/proton exc	5
20		AA435746		gb:zt79e03.s1 Soares_testis_NHT Homo sap	5
	130400	V00517	Hs.283108	hemoglobin, gamma G	10
	130436	NM_001928	Hs.155597	D component of complement (adipsin)	10
		X72308		small inducible cytokine A7 (monocyte ch	5
		BE222978	Hs.15760	MYG1 protein	10
25					
23		AW390834	Hs.75874	pregnancy-associated plasma protein A	5
		BE270472		HSPC015 protein	10
	130589	AL110226	Hs.16441	DKFZP434H204 protein	10
	130606	AI652143	Hs.288382	hypothetical protein FLJ13111	5
	130634	A1769067	Hs.127824	ESTs, Weakly similar to T28770 hypotheti	3
30	130683	AA993269	Hs.17872	Homo saplens, clone IMAGE:3875012, mRNA	10
		NM_006691	Hs.17917	extracellular link domain-containing 1	10
		AA232075			
			Hs.18259	XPA binding protein 1; putative ATP(GTP)	5
		AF263462	Hs.18376	KIAA1319 protein	10
25		N41322	Hs.18441	ESTs	5
35		M81349	Hs.1955	serum amyloid A4, constitutive	10
	130840	BE048821	Hs.20144	small inducible cytokine subfamily A (Cy	10
		AB040935	Hs.23954	cerebral cell adhesion molecule	10
		AA360419		inositol(myo)-1(or 4)-monophosphatase 1	10
		X03350	Hs.4	alcohol dehydrogenase 1B (class I), beta	10
40					
40		AW939251	Hs.25647	v-fos FBJ murine osteosarcoma viral onco	10
		AK000393	Hs.25817	BTB (POZ) domain containing 2	5
		AF110908		TNF receptor-associated factor 3	5
	131406	H83294	Hs.284122	Wnt inhibitory factor-1	5
	131489	BE394648	Hs.27414	hypothetical protein	5
45	131543	AW966881	Hs.41639	programmed cell death 2	10
		BE559681	Hs.30736	KIAA0124 protein	5
		AA829286		serum amyloid A1	10
		AA443966			
			Hs.31595	ESTs	10
E0		H69342	Hs.26320	TRABID protein	10
50		AA021258	Hs.32753		5
		BE244961		FE65-LIKE 2	5
	131828	AJ000263	Hs.278658	keratin, hair, basic, 6 (monllethrix)	10
		AW294659	Hs.34054	Homo sapiens cDNA: FLJ22488 fis, clone H	5
		AJ003112	Hs.34780	doublecortex; tissencephaly, X-linked (d	5
55		AK000010		burneth deal and the Chicago	
22			TIS.200/98	hypothetical protein FLJ20003	10
		H81604		KIAA0798 gene product	5 5
		X80818	Hs.178078	glutamate receptor, metabotropic 4	5
		AA467752	Hs.195161	ESTs	5
	132426	AW118072	Hs.89981	dlacylglycerol kinase, zeta (104kD)	10
60		S68874		prostaglandin E receptor 3 (subtype EP3)	5
	132675	Al291496	Hs.5476	Homo sapiens, clone IMAGE:3530123, mRNA,	10
		NM_006283			10
			110.110.109	transforming, acidic coiled-coil contain	
	132898	W28548	Hs.224829		10
		NM_004235	Hs.7934	Kruppel-like factor 4 (gut)	10
65		BE175645		LBP protein 32	5
		BE563966	Hs.6529	ESTs, Weakly similar to I78885 serine/th	5
	133120	NM_003278	Hs.65424	tetranectin (plasmlnogen-blnding protein	10

					_
		AF052138	Hs.6580	Homo saplens cDNA: FLJ23227 fis, clone C	5
		AA668224	Hs.6634	Homo sapiens cDNA: FLJ22547 fis, clone H	5 5
		AW956781		ESTs, Weakly similar to FXD2_HUMAN FORKH	5
-		NM_002776	Hs.69423	kallikrein 10 (KLK10) (PRSSL1) (nes1)	5
5		AA207059		gb:zq80h09.s1 Stratagene hNT neuron (937	5
		AF017987	Hs.7306	secreted frizzled-related protein 1	5
	133552		Hs.7471	BBP-like protein 1	5
	133702		Hs.75652	glutathlone S-transferase M5	5
	133719	H26904	Hs.75736	apolipoproteln D	5
10	133731			hemoglobin, alpha 2	10
	133789	T85626	Hs.76239	hypothetical protein FLJ20608	5
	134007	AF072441	Hs.7840	calcineurin blnding protein 1	10
	134055	D86062	Hs.182423	ES1 (zebrafish) protein, human homolog o	- 10
	134111	Al372588	Hs.8022	TU3A protein	10
15	134117	AA081846	Hs.7921	Homo sapiens mRNA; cDNA DKFZp566E183 (fr	10
		BE243319	Hs.79672	KIAA0652 gene product	. 5
		AW905827	Hs.81454	ketohexokinase (fructokinase)	10
		BE549343	Hs.82208	acyl-Coenzyme A dehydrogenase, very long	5
		AF207664	Hs.8230	a disintegrin-like and metalloprotease (. 5
20	134449		Hs.83450	laminin, alpha 3 (nicein (150kD), kalini	5
		Al190413	Hs.8373	ESTs	10
		M64936	110.0070	gb:Homo sapiens retinolc acid-inducible	10
		NM_002757	Un 250970	mitogen-activated protein kinase kinase	10
		M26315	Hs.85258	CD8 antigen, alpha polypeptide (p32)	10
25		BE244323	Hs.85951	exportin, IRNA (nuclear export receptor	5
23	134577			killer cell immunoglobutin-like receptor	5
				dynein, axonemal, light polypeptide 4	5
		AL008583	Hs.89394	POU domain, class 1, transcription facto	5
		D10216			10
20		NM_000078	Hs.89538	cholesteryl ester transfer protein, plas	10
30	134786		Hs.89640	TEK tyrosine klnase, endothelial (venous	5
		T87521	Hs.261457		10
		NM_003394	Hs.91985	wingless-type MMTV integration site famil	
		H22570		hypothetical protein FLJ20093	5 5
25		AA302517	Hs.92732	KIAA1444 protein	
35		X04430	Hs.93913	Interleukin 6 (Interferon, beta 2)	10
		AL036557	Hs.95910	putative lymphocyte G0/G1 switch gene	10
		U76456	Hs.190787		5
		AB002361	Hs.96633	KIAA0363 protein	.5
		U83171	Hs.97203	small Inducible cytokine subfamily A (Cy	5 5
40		AA416829	Hs.191597		5
	135337	AA905406	Hs.9905	ESTs, Weakly similar to unnamed protein	3
	135417	X55019	Hs.99975	cholinergic receptor, nicotinic, delta p	10
	101367	X03350	Hs.4	alcohol dehydrogenase 1B (class I), beta	5
		H39537	Hs.75309	eukaryotic translation elongation factor	5
45	129381	AW245805	Hs.110903	claudin 5 (transmembrane protein deleted	5 5 5
	130085	M62402	Hs.274313	Insulin-like growth factor binding prote	5
		NM_006691	Hs.17917	extracellular link domain-containing 1	10
	133120	NM_003278	Hs.65424	tetranectin (plasminogen-binding protein	3
		AF017987	Hs.7306	secreted frizzled-related protein 1	5
50	133731	N71725	Hs.272572	hemoglobin, alpha 2	5 5
		AF207664	Hs.8230	a disintegrin-like and metalloprotease (5
		X04430	Hs.93913	Interleukin 6 (Interferon, beta 2)	10
		AL036557	Hs.95910	putative lymphocyte G0/G1 switch gene	5
		AK001852	Hs.274151		5
55		AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor, type 2	10
23	418043	AW377752	Hs.83341	AXL receptor tyrosine kinase	5
	410043	BE208364	Hs.29283	ESTs, Weakly similar to LKHU proteoglycan link	5
		AA563892		solute carrier family 4 (anion exchanger), memb	10
	4400/4	U85642	Hs.138506	ESTo	5
60	443020	RC_H15814_		Human apM1 mRNA for GS3109 (novel adipose	
00		YEL024w/RIP		EST - YEL024w/RIP1	3
		LEUZTWIRT	•	COT - TECKYWINIF I	

TABLE 1A

Table 1 A shows the accession numbers for those pkeys lacking unigeneID's for Table 1.

For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10								
15	CAT number: Gene of		Eos probeset identifier number luster number ik accession numbers :					
	Pkey	CAT Number	Accessions					
20	108446 108497	112224_1 110079_2	AA085383 AA126091 AA071474 AA075373 AA079120 AA070031 AA075978 AA075372 AA128503 AA074897 AA113914 AA064871 AA075328 AA079100 AA078101 AA129030 AA075042 AA0747374 AA071453 AA07803 AA074807 AA175914 AA064871 AA075328 AA071305 AA087410 AA129030 AA075042 AA0747474 AA071453 AA078030 AA0765131 AA071047 AA079401 AA085070 AA102076 AA115153 AA074198 AA134725 AA113809 AA125105 AA075041 AA0051613 AA071310 AA01144 AA0750509 AA0780531 AA079208 AA0709208 AA0760587 AA0760517 AA0767517 AA0560519					
25			AA131489 AA071308 AA063317 AA070156 AA071430 AA070566 AA075684 AA070053 AA128283 AA128078 AA075995 AA079208 AA07438 AA071986 AA076282 AA070627 AA078802 AA0767622 AA05053 AA078143 AA071110 AA079434 AA148748 AA079230 AA					
30	124215 117058 110455 111168	1597154_1 1219924_1 46874_1 38585_1	H62570 H59063 AW801806 H90434 BE086530 H52576 AF085971 H52172 AI798375 S44600 AW8111917 AW811616 W00557 BE142245 AW858232 AW861851 AW858362 AA232351 AA218567 AA055556 AW858231 AW867541 AW814172 H66214 AW814398 AF134164 AA243933 AA173345 AA199942 AA223384					
35			AA227092 AA227080 T12379 AA032174 T61139 AA14977E AA69822 AW879188 AW813567 AW813358 A267168 AA157718 AA157719 AA100A72 AA100774 AA130756 AA157705 AA157720 AA157715 AA05524 AW884581 AW854566 C05254 AW882366 T92637 AW812621 A200653 AA2082204 BE156808 AA226824 AL823306 AW891857 N68951 AA527374 H68215 AA0455594 AJ694265 H00008 AA149726 AW195620 BE081333 BE073424 AW817662 AW817705 AW817703 AW817599 BE081531 H58570					
40	111498 104340 103747 134496 Al684569	411008_1 46289_10 117944_1 46501_1 4A257011	A1168511 A1022712 AA700366 R07371 R07324 AA426189 F15201 AA031995 AA 101099 M64936 A1025512 AJ382987 BE061777 A4089966 BE169930 T41176 AW594624 BE502415 AA121893 AJ269283 T40311					
45	103750 105239	118365_1 34624_1	AU79277 AI241318 BE327710 AW975215 AW896288 AA884990 BE327514 AA126129 A126033 AA025561 AA25108 R37170 BESS7068 BE54757 C18935 AW812638 B72565 AA227415 AA233942 AA223237 AA688403 AA601627 AA25108 R37170 BESS7068 BE54757 C18935 AW812638 B72565 AA227415 AA233942 AA223237 AA688403 AA601627 AAW869639 BE06183 BE000620 AW861170 AW8147519 AA30542 AW821833 AW845689 C04699 AA205504 AA377241 AW821667 AA055720 AW817981 AW856468 AA155719 AA179928 T03007 AW754298 AA227407 AA113928 AA307904 C16859					
50	120379	34624_3	\(\text{L0L042725}\) BE063316 AW975610 AA457591 BE062092 Al655202 AA714296 Al267264 Al075321 AA222326 AA071122 \(\text{AA227749}\) AA2160 BE063316 AW975610 AA457591 BE062092 Al655202 AA714296 Al267264 Al075321 AA222326 AA071122 \(\text{AA227749}\) AA2167169 AA207169 T59230 T51868 \(\text{AA663341}\) BE7577 AW9181047 AW932286 AA369418 AA099408 AW965396 AW96539 AW96539 AW96539 AW96539 AW96539 AW96539 AW96539 AW96539					
55	114624 106851 108392 100545 100654	111686_1 322947_1 113549_1 22955_11 tigr_HT2969	AA081307 AA070071 AA070340 AA084382 A458823 AA58215 AA075208 AA075124 AA075208 MSS405 AW75208 A03758 A06977 A15293 D17029 D17107 D17171 L00132 L00133 M12523 M13075 M13076 M92816 U22961 V00494 V00495 X51383 X51384 X51385					
60	100702 102208	tigr_HT3413 6735_9	127065 A203623 AA503337 AH74733 AH92802 C06092 AA035357 AH90619 AH99244 AH228450 AA602296 AH378195 A1209170 AH86653 AH22795 AH83346 H77389 AH889465 AA62330 H94306 A0018388 R68584 AA627196 A178413 AH685032 AH093426 AH628473 AH074570 N50096 AA047486 N25060 AA327614 AH042512 AH383957 A4156873 AH333101					

N70806 Al141254 Al383191 Al401237 Al080709 Al093400 W84549 T90806 R00012 W01413 AA630557 Al378348 Al559265 AA877103 W84464 AA625146 R68379 AI133207 AI132980 AI133214 AI064826 AI061615 AI133473 AI174852 AI133404 Al133272 V00494 M12523 M12523 Al207526 Al133120 Al064802 Al174993 Al114729 Al061645 Al064716 Al064959 H77388 T85706 AF075298 Al110799 D17107 NM_000477 AF190168 R50724 Al248416 Al207432 Al133684 Al133345 Al174710 Al133290 Al133304 Al174948 Al207484 Al110717 AF074624 Al114515 AF063516 Al110642 Al114559 Al114498 Al114759 5 Al207568 Al064960 Al174753 Al114666 R69184 R00011 Al064997 T60501 Al207701 T71735 AA385318 H73569 T60496 H94399 Al133158 T74675 AA484750 T73413 T55909 R50261 T72061 N80533 T51189 T74936 Al207490 Al132925 Al064701 A1174748 A1114663 A1133104 A1132999 A1133100 A1064925 A1064979 A1133063 AA343347 T69091 AA233989 T39772 AI444620 T52290 D16931 T40012 T48403 T58926 T69195 AI133061 T50850 AI400677 AI091136 AA334608 T57411 Z20979 N56507 T87485 Al133622 AA343370 T40075 T69671 T53849 T74820 AF075316 Al110818 T40121 T57381 Al111468 10 AA332728 T51362 Al114589 R06691 Al110629 AF063503 Al140543 AA334661 AA332720 AA343262 T73513 T86549 AI114840 T57284 T39981 T61407 T72757 T51749 T56630 AA343125 T72126 R94135 T83028 T39972 T39896 AI174786 Al132926 R09237 Al064838 Al133660 T60398 T88753 T55930 T92126 Al444602 T60996 Al114792 H93911 Al133106 R10779 AI065020 T90925 T50889 D17029 AI133703 AA333805 AI133040 AI133017 AI064857 AI110730 AF074637 AI207567 H71080 T73217 AA343950 AI174743 AA334224 AA334281 R06692 T64739 T40163 T60628 T81661 T73179 R01842 15 AA501730 T39931 T39662 T40136 AA334904 T71425 H77784 R00874 AI065049 T84512 T55918 AI207595 T39951 AA005016 T60361 T69176 T73356 T58795 T61233 T39955 T60612 AI114676 AI064778 AA035710 W52763 AI114786 T83564 AA341859 T81684 T55769 AI114710 T51776 AA343213 AI114714 T58102 AI110809 R28984 AI174854 AA305675 AA343592 T53836 T46869 T64721 T55508 W05241 T54019 T57945 T60513 T48364 AF075308 W86731 T82851 T48269 H54053 T73211 Al114590 T48317 T55965 T74857 R84226 T56552 T52231 T74946 T76976 R02576 T95666 Al203974 20 AI189471 AA005147 AI478102 AI207662 AI192792 AI768421 AI064737 AW051713 AA936693 AI133117 AI766232 AI913646 T83962 AI065112 AI207689 AI174684 AI207702 T81475 AI133325 AI032512 AA701169 AI936354 AI114720 AI433289 AA046980 AI823482 AI 114536 AA860651 AW242644 R07469 AW300438 AI 133416 AW271670 AI991363 T78943 AI823481 AA845518 AA719124 AA883454 T68850 T69115 AI935509 AI150977 T62890 T71374 T68294 AI174774 T67411 T68318 AI064689 T56624 T69010 T68982 T68302 AI332829 T72908 AI064819 AI205880 T62895 T69430 T95111 AA025050 T73330 25 W52657 T71984 T69118 W92684 AI114860 T62093 T61797 AI522333 T73322 H92981 T56018 T61811 T57232 AI336158 T61821 T69457 T62900 T62912 T72917 T46885 AI702448 T57212 T57203 R94581 T71311 T61819 T89358 T67708 T70918 T59166 Al187111 T64308 T62071 T69427 Al114750 T60430 R09734 T69033 T69141 T69453 T67908 R16809 T69394 AI207729 T55839 T90273 T73339 AW194909 T75486 T71850 T71305 T71287 T53877 T73452 T68852 N75290 AI312890 30 T67751 A174983 T51679 T54851 H69880 N73734 AA443453 T73466 H69672 N53869 T68447 D11809 D12412 T64300 T28321 T55864 genbank_AA621529 123941 AA621529 genbank_N53145 14782 20 AA 118049 N53145 AA313538 U88895 U88902 102800 35 104106 AA422123_i_alAA422123_l R26065 111738 genbank R26065 genbank_T51588 113149 T51588 genbank_W86195 W/88195 113958 108335 genbank AA070500 AA070500 40 genbank_AA071193 AA071193 108351 genbank_AA079079 AA079079 108441 H83465 124276 genbank H83465 101447 entrez_M21305 M21305 117226 genbank_N20468 N20468 45 AA207059,AA207241 genbank_AA207059 133370 119366 genbank 177892 **T77892** NOT FOUND entrez W38051 W38051 119528 112588 genbank_R77302 R77302 genbank AA020736 AA020736 114449 50 genbank_AA065096 A W38002 s at W38002 s 114576 AA065096 107459

130339

genbank_AA435746 AA435746

TABLE 2: Figure 2 from BRCA 001 US

5 Table 2 shows genes downregulated in tumor tissue compared to normal breast tissue.

10	Pkey: ExAccn: UnigeneID: Unigene Title:	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Uniquene gene title	
	R1:	Ratio of normal breast tissue to tumor	

15	Pkey	ExAccn	UnigeneID	Unigene Tittle	R1
	100499	T51986	Hs.283108	hemoglobin, gamma G	10
	100549	BE142019	Hs.222056	Homo saplens cDNA FLJ11572 fis, clone HE	10
	100654	A03758		NM_000477*:Homo sapiens albumin (ALB), m	10
20	100971	BE379727	Hs.83213	fatty acid blnding protein 4, adipocyte	10
	101184	NM_001674	Hs.460	activating transcription factor 3	10
	101336	NM_006732	Hs.75678	FBJ murine osteosarcoma viral oncogene h	10
	101367	X03350	Hs.4	alcohol dehydrogenase 1B (class I), beta	10
	101447	M21305		gb:Human alpha satellite and satellite 3	10
25		N98569	Hs.76422	phospholipase A2, group IIA (platelets,	10
		M27826	Hs.267319	endogenous retroviral protease	10
		M74447	Hs.502	transporter 2, ATP-binding cassette, sub-famil	10
		U22961		gb:Human mRNA clone with similarity to L	10
20		U48251	Hs.75871	protein kinase C binding protein 1	10
30		AA313538		gb:EST185419 Colon carcinoma (HCC) cell	10
		NM_006744	Hs.76461	retinol-binding protein 4, interstitial	10
		AA829286	Hs.332053	serum amyloid A1	10
		AA081995		gb:zn26d06.r1 Stratagene neuroepithelium	10
35		AA137107	Hs.326391	Homo saplens, clone MGC:16638, mRNA, com	10
33		R50727	Hs.336970	ESTs	10
		AL353957 F06638	Hs.284181 Hs.12440	hypothetical protein DKFZp434P0531 Homo saplens clone 24734 mRNA sequence	10 10
		N73185	Hs.94285	EST	10
		N91071	Hs.109650	ESTs	10
40		AI498763	Hs.203013	hypothetical protein FLJ12748	10
40		AA009764	Hs.190380	ESTs	10
		AA017245	Hs.32794	ESTs	10
		AA019300	Hs.125070	ESTs, Moderately similar to I54374 gene	10
		AI298208	Hs.28805	ESTs	10
45		AA130390	Hs.25549	hypothetical protein FLJ20898	10
		AA221036		gb:zr03f12.r1 Stratagene NT2 neuronal pr	10
	106052	N79885	Hs.6382	ESTs. Highly similar to T00391 hypotheti	10
	106181	AI803651	Hs.191608	ESTs	10
		AI085846	Hs.25522	KIAA1808 protein	10
50		AL042069	Hs.119021	DKFZP434N061 protein	10
	106451	AW235928	Hs.313182	ESTs	10
	106491	AA135688	Hs.10083	Homo sapiens, clone IMAGE:4139786, mRNA,	10
	106782	AW054886	Hs.25682	Homo sapiens mRNA for KIAA1863 protein,	10
	107124	AB006532	Hs.31442	RecQ protein-like 4	10
55	107148	AI005036	Hs.334305	GS1999full	10
		AF127026	Hs.5394	myosin IA	10
		AB020672	Hs.175411	KIAA0865 protein	10
		A1905985	Hs.111805	ESTs	10
		W28516	Hs. 19210	hypothetical protein MGC11308	10
60		AL042425	Hs.283976	hypthetical protein PRO2389	10
		BE271708	Hs.95110	ESTs, Weakly similar to A55943 1-phospha	10
		AA071193		gb:zf79b12.s1 Soares_pineal_gland_N3HPG	10
		F01449	Hs.26954	Homo saplens mRNA; cDNA DKFZp762G123 (fr	10
		AW294162	Hs.301062	UDP-N-acetyl-alpha-D-galactosamine:polyp	10
65	110976	AL044174	Hs.159526	patched (Drosophila) homolog	5

	111168	A1798376		gb:tr34b07.x1 NCI_CGAP_Ov23 Homo saplens	10
	111651	R16733	Hs.20499	ESTs	10
	111803	AA593731	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	10
	114484	AA034378	Hs.267319	endogenous retroviral protease	10
5	125284	NM_002666	Hs.103253	perilipin	10
		AA193106	Hs.180817	chromosome 11 open reading frame 23	5
	128903	AW150717	Hs.296176	STAT induced STAT inhibitor 3	10
		AF110141	Hs.288908	WAS protein family, member 2	10
	129381	AW245805	Hs.110903	claudin 5 (transmembrane protein deleted	10
10		AF020038	Hs.11223	isocitrate dehydrogenase 1 (NADP+), solu	10
		BE222078	Hs.113069	ESTs	10
		M62402	Hs.274313	insulin-like growth factor binding prote	10
		D88435	Hs.153227	cyclin G associated kinase	10
		V00517	Hs.283108	hemoglobin, gamma G	10
15		NM 001928	Hs.155597	D component of complement (adipsin)	10
		BE270472	Hs.279900	HSPC015 protein	10
		AL110226	Hs.16441	DKFZP434H204 protein	10
		AA993269	Hs.17872	Homo saplens, clone IMAGE:3875012, mRNA	10
		NM_006691	Hs.17917	extracellular link domain-containing 1	10
20		AA046747	Hs.17917	extracellular link domain-containing 1	10
		N70196	Hs.18376	KIAA1319 protein	10
		M81349	Hs.1955	serum amyloid A4. constitutive	10
		BE048821	Hs.20144	small Inducible cytokine subfamily A (Cy	10
		AB040935	Hs.23954	cerebral celi adhesion molecule	10
25		X03350	Hs.4	alcohol dehydrogenase 1B (class I), beta	10
23		AW939251	Hs.25647	v-fos FBJ murine osteosarcoma viral onco	10
		AW966881	Hs.41639	programmed cell death 2	10
		AA829286	Hs.332053	serum amyloid A1	10
		H69342	Hs.26320	TRABID protein	10
30		AJ000263	Hs.278658	keratin, halr, basic, 6 (monilethrix)	10
		AW118072	Hs.89981	diacylglycerol kinase, zeta (104kD)	10
		AI291496	Hs.5476	Homo sapiens, clone IMAGE:3530123, mRNA,	10
		W28548	Hs.224829	ESTs	10
		NM_004235	Hs.7934	Kruppel-like factor 4 (gut)	10
35		NM 003278	Hs.65424	tetranectin (plasminogen-binding protein	10
55		AF017987	Hs.7306	secreted frizzled-related protein 1	10
		H26904	Hs.75736	apolipoprotein D	10
		AF072441	Hs.7840	calcineurin binding protein 1	10
		D86062	Hs.182423	ES1 (zebrafish) protein, human homolog o	10
40		Al372588	Hs.8022	TU3A protein	5
		AA081846	Hs.7921	Homo saplens mRNA; cDNA DKFZp566E183 (fr	5
		BE243319	Hs.79672	KIAA0652 gene product	10
		AF207664	Hs.8230	a disintegrin-like and metalloprotease (10
		M64936	***************************************	gb:Homo sapiens retinoic acid-inducible	10
45		NM_002757	Hs.250870	mitogen-activated protein kinase kinase	10
		M26315	Hs.85258	CD8 antigen, alpha polypeptide (p32)	5
		NM 000078	Hs.89538	cholesteryl ester transfer protein, plas	5
		NM 003394	Hs.91985	wingless-type MMTV Integration site famil	10
		X04430	Hs.93913	interleukin 6 (interferon, beta 2)	10
50		AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor, type 2	10
50		AA563892	Hs.306000	solute carrier family 4 (anion exchanger), memb	10
	710074			Total desired and a famous eventual desired	

TABLE 2A

Table 2A shows the accession numbers for those pkeys lacking unigeneID's for Table 2. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	for sequences comprising each cluster are listed in the Accession column.						
10	Pkey: CAT numb Accession:	er: Gene d	Eos probeset Identifier number luster number nk accession numbers				
15							
	Pkey	CAT number	Accessions				
20	111168	38585_1	AI798376 S46400 AWB11617 AWB11616 W00557 BE142245 AWB58232 AWB61851 AW858362 AA232351 AA218567 AA465556 AW658231 AW857541 AW81417 H68214 AW814038 AF134164 AA24039 AA173254 AA199942 AA223384 AA227026 AA270200 T12379 AA09174 T61139 AA164776 AA699329 AW879188 AW813567 AW818358 AA199942 AA227384 AA277026 AA277000 T12379 AA09174 T61139 AA167776 AA695939 AW879188 AW813567 AW818358 AA267688 AA157718 AA157719 AA106747 BA400747 AA137756 AA157709 AA157719 AA105749 AW8045851 AW856468 C005254 AW8082363 T826257 AW812521 AA265584 AA269584 AW802836 T826257 AW812521 AA265584 AA694586 AA694586 AA269936 AW80280 AW80280 AA269936 AW80280				
25	103747	117944_1	AA081995 AA101099				
	134496	46501_1	M64936 AI025512 AI382987 BE061777 AA089966 BE169930 T41176 AW594624 BE502415 AA121893 AI269283 T40311 AI684569 AA257011 AI079277 AI241318 BE327710 AW975215 AW896268 AA884990 BE327514				
30	105239	34624_1	AA221038 R37170 BES37068 BE544757 C18935 AW812058 T92565 AA227415 AA233942 AA223237 AA668403 AA601627 AW869639 BE061833 BE000620 AW961170 AW847519 AA30842 AW821833 AW945688 C04699 AA205504 AA377241 AW821657 AA055720 AW817981 AW856465 A4155719 AA179828 T03007 AW754296 AA227407 AA173928 AA307904				
	100654	tigr_HT2969	C16859 A03758 A06977 A15293 D17029 D17107 D17171 L00132 L00133 M12523 M13075 M13076 M92816 U22961 V00494 V00495				
	102208	6735 9	X51363 X51364 X51365 U22961 AA203623 AA503337 AI174733 AI192802 C06092 AA035357 AI190619 AI199244 AI828450 AA602296 AI378195				
35			AZ09170 A158653 A142795 A118346 H77389 A158945 AA52399 H94305 A018389 R65364 AA027196 A1745413 A685092 A053425 A1623873 A1074570 N50096 AA047486 N25090 AA327614 A1042512 A1833957 AA156873 A1333101 N70005 A141224 A1833191 A401237 A1080709 A1053400 W65459 T90006 R00012 W01413 AA505557 A378348 A1559265 AA877103 W64464 AA625146 R65379 A1133207 A112390 A113214 A1064025 A1061615 A1133473 A1174562 A1133407 A1133272 V00949 M12523 M12523 A107526 A133207 A05920 A113274 A107499 A114729 A107540 A1064025 A107540				
40			T85706 AF075298 AH10799 D17107 NM_000477 AF190168 R50724 A1249416 A1207432 AH33684 AH33345 AH74710 AH33293 AH33084 AH33984 AH33345 AH74710 AH33293 AH33094 AH396 AH247948 AH24794 AH1497 AH1475 AH34796 AH14795 AH34796 AH24795 AH207568 AH069690 AH74753 AH14666 R5918 R00011 AH06499 T65001 AH27071 CH7175 AH365318 H747569 H76099 AH33198 AH34789 AH34780 T73441 3 T55009 R50261 T72061 NB0533 T51189 T74958 AH207490 AH32925 AH064790 AH32796 AH32796 AH32796 AH32796 AH32925 AH06470 AH374746 AH14765 AH3270 AH3678 A				
45			A444620 T52290 D16931 T40012 T18403 T59926 T69195 AH33061 T50850 A400677 A094136 AA334608 T57411 Z20979 N55607 T57465 AH13362 ZA4343370 T40075 T69671 T5389 774820 AF073316 AH106915 74012 T57381 AH14468 AA332728 T51382 ZH14398 7606891 AH10623 P47063303 AH160513 AA34661 AA332720 AA343262 T73513 T65549 AH14400 T57284 T39981 T61407 T72757 T51749 T56630 AA34135 T72126 R94135 T83028 T39972 T39896 AH174786 AH33226 R96277 A064838 AH36867 T60988 T86735 T55930 T52165 AM44902 T50986 AH174792 H39311 AH33106				
50			AT10754 DRESIZE TRISES TITLES TO THE STATE OF THE STATE O				
55			183004 AAS11809 181089 183709 A11147/U 1811/16.AAS45213.A11147/1 18101X.A1110091 KAS999 A1/174054 AA305675 AA343592 T3385 174869 T94721 T35508 W0521 13690 T5091 T5091 T5091 T5091 T5091 T36934 A175075308 W05271 136955 1146269 H54052 T73211 A1114599 T43817 T55986 T74857 R84226 T56552 T35231 T74946 T76976 R02575 T59666 A202097 A1189471 AA00747 A4778102 A207562 A1192792 A766924 T309473 A7405173 A352695 A1133147 A1765222 A1913946 T38962 A1055112 A1207589 A1174684 A1207702 T381475 A1133255 A1020512 A207169 A1935394 A1144720 A4332289 AA049890 A124382 A114595 A4605651 AVA22646 R07696 AW300348 A1133416 AW217670 A199138 T37843 A1872481				
60			AAM46580 AREZ-8182 A11-140-5- AM5080-01 TO AWAZ-04-4 KU/ABY AW30M-38 A13-314 5-WIZ-11-07 A1891-383 T18943 AREZ-381 AAM46580 A1991-27 AARBAS-45 T18850 T69115 A855509 A11-5937 T18289 T17-31 T68294 A117477 B1741 T18318 A				

T61821 T69457 T62900 T62912 T72917 T46885 AI702448 T57212 T57203 R94581 T71311 T61819 T89358 T67708 T70918 T59166 AI87711 T64309 T62071 T69427 AI14759 T60430 R09734 T69033 T69141 T69453 T67908 R16003 T89394 AI207729 T58393 910273 T73393 AW149909 T75468 T1869 T71905 T7126 T53887 T7345 T58682 T73520 A3132890 T67751 AI174983 T51679 T54851 H69800 N73734 AA443453 T73466 H69672 N53869 T68447 D11809 D12412 T64300 T28231 T55964

102800 14782_20 AA313538 U88895 U88902 108351 genbank_AA071193 AA071193 101447 entrez_M21305 M21305

TABLE 3: Figure 3 from BRCA 001 US

 $\textbf{Table 3} \ \text{shows genes downregulated in tumor tissue compared to normal breast tissue.}$

10	Pkey: ExAccn: UnigeneID: Unigene Title: R1:	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Ratio of normal breast tissue to turnor
----	---	---

15					
	Pkey	ExAccn	UnigenelD	UnigeneTitle	R1
	101336	NM_006732	Hs.75678	FBJ murine osteosarcoma viral oncogene h	10.0
	102208	U22961		gb:Human mRNA clone with similarity to L	10.0
20	102990	AA829286	Hs.332053	serum amyloid A1	10.0
	111168	AI798376		gb:tr34b07.x1 NCI_CGAP_Ov23 Homo saplens	10.0
	111803	AA593731	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	10.0
	130085	M62402	Hs.274313	insulin-like growth factor binding prote	10.0
	130840	BE048821	Hs.20144	small inducible cytokine subfamily A (Cy	10.0
25	131543	AW966881	Hs.41639	programmed cell death 2	10.0
	133120	NM_003278	Hs.65424	tetranectin (plasminogen-binding protein	10.0
	134758	NM_000078	Hs.89538	cholesteryl ester transfer protein, plas	10.0

TABLE 3A

Table 3A shows the accession numbers for those pkeys lacking unigeneID's for Table 3. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey: CAT number: Accession:	Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
	Accession:	Genbank accession numbers

	nucessii	лі. Осл	dank decession numbers
15	Pkey	CAT number	Accessions
	111168	38585_1	AI798376 S48400 AW811617 AW811616 W00557 BE14/245 AW858232 AW861851 AW858382 AA232351 AA218567 AA055566 AW858231 AW857541 AW814172 H86214 AW814398 AF134164 AA243093 AA173345 AA199942 AA22384 AA227052 AA27200 T12379 A062174 T61193 A414975 AA69822 AW879188 AW81567 AW813557 AW813538 AZ67168 AA157718
20			AA157719 AA100472 AA100774 AA130756 AA157705 AA157730 AA157715 AA053524 AW646561 AW684656 C005254 AW6846561 AW682651 AW682651 AW682651 AW682651 AW682651 AW682651 AW682651 AW682651 AW682651 AW68651 AW687651 AW68
25	10220	36735_9	U22961 AA203623 AA503337 A1174733 A1125002 C06092 AA035357 A1190619 A1199224 A182654 OA602296 A1573195 A1290170 A1186055 A1172795 A1186461 H73294 A182654 A1290170 A1186555 A1172795 A1186461 H73294 A129056 AA425719 A189056 A1746413 A1885602 A1093426 A1253973 A107470 N50096 AA407486 N22060 AA327614 A182512 A1839567 A157857 A135391 A135301 A178060 A141254 A1838191 A1481727 A1885070 A118727 A1885070 A188701 W18295 A11870 A188701 A
30			AA 625146 R68379 A113307 A1132890 A113214 AID64826 AID61615 A1133473 A1174852 A1133404 A113272 VOOA94 M12523 M112523 A1133402 AID64802 A1174938 A116767 A11759 A117676 A117679 A117679 A117670 AID (100477 A1190168 R50727 A1284816 A120742 A117698 A117679 A117710 A113290 A113304 A1174948 A1207440 A1110717 AFD74624 A1114515 AFD65316 A1110642 A1114565 A117498 A1107758 A107658 A1064900 A1174753 A1114656 R69184 R00011 A1166987 F05051 A20710 T17735 AA382581 B175365 F05069 B14398 A1134758 B174675 A44750
35			T72413 TES909 FRODE 1 T2061 NB0533 TS1189 T7489S AI207480 A132925 AI064701 A1174748 A114653 A1133100 A132999 A1133100 AI054925 AI064979 A1133053 AA343347 T69091 AA233989 T39772 AI444620 T52290 D16931 T40012 T48403 T69926 T69195 AI133061 T50805 AI400677 AI091136 AA33408 T57411 Z20797 N65607 T67495 A1135322 AA343370 T40075 T699671 T53949 T74820 A7075316 A1110818 T40121 T57381 A1114468 AA332728 T51362 A1114598 R05991 A1110829 A7083503 A140639 AA343461 A332720 AA343262 T73513 T6549 A111480 T572284 T39881 T61407 T7277 T57749
40			T56830 AA343125 T7212C R94133 T83028 T39972 T39986 AI174786 AI132926 R09237 AI054838 AI13360 T60398 T88753 T55930 T92126 AA44020 T60996 AI114792 H3931 AI13306 R1079 AA5520 T30622 T50889 D71029 AI15370 A33300 AI133040 AI133047 AI064857 AI10703 AFD74637 AI207567 H71090 T73217 AA343950 AI14743 AA334224 AA334281 R06822 T64739 T40163 T60628 T81661 T73179 R01462 AA501730 T39951 T39662 T40136 AA334904 T71425 H77784 R0674 A0665040 T8451 T55918 A1207956 T39951 AA005216 T60361 T6915 T73356 T5795 F61233 T39955 T606124 AI14676
45			A0064778 A0035710 W52763 A1114736 T83564 AA241859 T81684 T55769 A1114710 T51776 AA242213 A1114714 T58102 A111089 R28894 A174854 AA205675 AA343362 T38363 T468668 T63472 T35565 W05241 T54019 T57945 T00513 T48354 A7075308 W6273 T35673 T82851 T36296 H40403 T72211 A1114859 T48317 T35565 T74857 R64226 T56553 T25231 T74946 T76976 R02576 T35666 A1203974 A1189471 AA005147 AW78102 A1207662 A1182772 A1768421 A1064737 AW051713 AA396689 A174854 A1207070 T81767 A1189471 A118471 A11874 A1
50			A1114720 A433289 AA04680 A1822482 A114359 A4860651 AW242644 F07749 AW300438 A133416 AW271670 A891363 T78943 A1822461 AA454518 AA791924 A48834641 788807 T6915 A185509 A115907 T756280 T71374 T68280 A17147 T67411 T68318 A1064689 T59624 T69010 T68982 T68020 A1324282 T72508 A1064819 A1205880 T62895 T69430 T95111 AA025050 T73330 W56257 T71984 T69118 W26264 A114680 T62093 T61797 A1822333 T73232 H26298 T56018 T61817 A57232 A2335158 T61621 T69497 T62900 T62912 T72917 T64868 A702448 T57212 T57208 R94681 T7311 T61819 T6919 A57232 A2335158 T61621 T69497 T62900 T62912 T72917 T64805 A702448 T57212 T57208 R94681 T7311 T61819 T6919
55			T67708 T70916 T59166 A187111 T64308 T62071 T69427 A114750 T60430 R09734 T69033 T69141 T69463 T67908 R16609 T69394 A1207729 T55839 T90272 T73339 AW149969 T7468 6T71869 771305 T71287 T5387 T77452 T6582 T75928 T6582 T757240 T6582 T757240 T6582 T757240 T6582 T757240 T6582 T757240 T6582 T75724 T6582 T75724 T6582 T6582 T67874 T

TABLE 4: Figure 4 from BRCA 001 US

5 Table 4 shows genes upregulated in tumor tissue compared to normal breast tissue.

	Pkey:		Unique Eos probeset identifier number					
10	ExAccn:		Exemplar Accession number, Genbank accession number					
10	Unigene		Jnigene numb					
	Unigene R1:		Inigene gene	title to normal breast tissue				
	,,,,	,	valio oi tuilloi	(C NOTHER DICES, ESSUE				
15	Pkey	ExAcon	UnigenelD	Unigene Title	R1			
			69Hs.84746	chromosome condensation 1	2.3			
		X02308	Hs.82962	thymidylate synthetase	2.9			
20		D12485	Hs.11951	ectonucleotide pyrophosphatase/phosphodiesterase 1	1.9			
20		BE185499		KIAA0020 gene product	1.9			
		D13666		osteoblast specific factor 2 (fasciclin Hike) (periostin)	7.5 9.2			
		H60720	Hs.81892	KIAA0101 gene product	1.6			
		W44671	Hs.124 4 Hs.217493	gene predicted from cDNA with a complete coding sequence	2.0			
25		D38521		KIAA0077 protein	1.5			
23				S100 calcium-binding protein A11 (calgizzann)	13.5			
				KIAA0090 protein	5.1			
		D50920	Hs.23106		1.9			
		AW24752		platelet-activating factor acetylhydrolase, Isoform Ib, gamma subunit (29kD)	2.7			
30			41Hs.154868		2.0			
			91Hs.184339		2.6			
		D84145	Hs.39913	novel RGD-containing protein	3.2			
	100400	AW95432	4 Hs.75790	phosphatidylinositol glycan, class C	1.5			
		D86978	Hs.84790	KIAA0225 protein	2.0			
35		M65028	Hs.81361	heterogeneous nuclear ribonucleoprotein A/B	2.9			
			15Hs.74316	desmoplakin (DPI, DPII)	1.9			
		L05424		CD44 antigen (homing function and Indian blood group system)	5.7			
		L05424		CD44 antigen (homing function and Indian blood group system)	9.0			
40		L05424		CD44 antigen (homing function and Indian blood group system)	7.6			
40		AW50293		PTK2 protein tyrosine kinase 2	53.2 1.8			
		AA38325		ribosomal protein L24	1.6			
				estrogen receptor 1 general transcription factor IIH, polypeptide 2 (44kD subunit)	5.9			
			Hs.297939		1.7			
45				S164 protein	1.7			
-10				ubiquitin protein ligase E3A (human papilloma virus E6-associated protein, Angelman syndrome)				
			4 Hs.79172	solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5	6.3			
			5 Hs.76480	ubiquitin-like 4	11.4			
		H38765	Hs.80706	diaphorase (NADH/NADPH) (cytochrome b-5 reductase)	1.6			
50		J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase)	8.2			
	101045	J05614		gb:Human proliferating cell nuclear antigen (PCNA) gene, promoter region.	5.0			
		N99692	Hs.75227	Empirically selected from AFFX single probeset	2.6			
		L06419	Hs.75093	procollagen-lysine, 2-oxoglutarate 5-dioxygenase (lysine hydroxylase, Ehlers-Danlos syndrome ty				
	101161	NM_0062	62Hs.37044	peripherin	16.9			
55			6 Hs.179881		2.0			
			6 Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phosphatase)	1.8			
	101228	AA33338	7 Hs.82916	chaperonin containing TCP1, subunit 6A (zeta 1)	1.7			
	101247	AA13266	6 Hs.78802 Hs.1904	glycogen synthase kinase 3 beta	1.9 1.5			
60	101249	L18964		protein kinase C, iota	5.2			
60	101332	J04088 J04088		topoisomerase (DNA) II alpha (170kD) topoisomerase (DNA) II alpha (170kD)	3.4			
		Al494299		COX17 (yeast) homolog, cytochrome c oxidase assembly protein	6.3			
	101302	BE26793		proliferating cell nuclear antigen	4.2			
	101330	M21259		gb:Human Alu repeats in the region 5' to the small nuclear rib	1.9			
65			46Hs.1846	tumor protein p53 (Li-Fraumeni syndrome)	1.6			
00	10.77							

	101478	NM_002890	Hs.758	RAS p21 protein activator (GTPase activating protein) 1	2.5
	101483	M24486	Hs.76768	procollagen-proline, 2-oxogiutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide I	5.5
	101540	J04977	Hs.84981	X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejo	ining 2.1
	101573	AW248421	Hs.250758	proteasome (prosome, macropain) 26S subunit, ATPase, 3	1.6
5		NM_012151		coagulation factor VIII-associated (Intronic transcript)	5.7
-		AF064853		guanine nucleotide binding protein (G protein), beta polypeptide 2	1.8
		AF064853		guanine nucleotide binding protein (G pr	5.6
		BE391804		guanylate binding protein 1, interferon-inducible, 67kD	2.4
		AW504089		protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52), alpha isoform	1.3
10			Hs.147049		2.1
IU				cut (Drosophila)-like 1 (CCAAT displacement protein)	5.0
			Hs.184601	solute carrier family 7 (cationic amino acid transporter, y+ system), member 5	
			Hs.180884	carboxypeptidase B1 (tissue)	14.4
		AA306495		phosphoglucomutase 1	5.2
		AW409747		stress-induced-phosphoprotein 1 (Hsp70/Hsp90-organizing protein)	8.6
15	101806	AA586894	Hs.112408	S100 calcium-binding protein A7 (psoriasin 1)	8.9
	101810	NM_000318	Hs.180612	peroxisomal membrane protein 3 (35kD, Zellweger syndrome)	3.2
	101879	AA176374	Hs.243886	nuclear autoantigenic sperm protein (histone-binding)	1.6
		AA441787			31.3
		AF182645		IK cytokine, down-regulator of HLA II	1.8
20			Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 1 (GalNAc-	-T1) 2.4
			Hs.75323	prohibitin	8.4
		BE245149		protein tyrosine kinase 9	1.3
			Hs.82906	CDC20 (cell division cycle 20, S. cerevisiae, homolog)	2.0
			Hs.75117	Interleukin enhancer binding factor 2, 45kD	1.6
25		T35901	Hs.75117	Interleukin enhancer binding factor 2, 4	1.3
23					1.4
				heat shock protein 75	1.8
		NM_001809		centromere protein A (17kD)	4.6
		BE313280		death associated protein 3	
••		AW950852		polymerase (DNA directed), deita 2, regulatory subunit (50kD)	4.3
30		AA829978			6.7
		U24389	Hs.65436	iysosomal	4.3
	102234	AW163390	Hs.278554	heterochromatin-like protein 1	1.9
		AL039104			4.4
	102302	AA306342	Hs.69171	protein kinase C-like 2	2.7
35	102330	BE298063	Hs.77254	chromobox homolog 1 (Drosophila HP1 beta)	1.5
			Hs.95577	cyclin-dependent kinase 4	2.3
		U37519	Hs.87539	aldehyde dehydrogenase 3 family, member B2	2.0
				baculoviral IAP repeat-containing 2	3.2
		U39840		hepatocyte nuclear factor 3, alpha	2.0
40		U33635	Hs.90572		6.2
	102014	AA296874	He 77404	deoxyguanosine kinase	1.5
		U48705	Hs.75562	discoldin domain receptor family, member 1	6.9
		NM_001359		2,4-dienoyi CoA reductase 1, mitochondrial	1.8
		U50939	Hs.61828	amyiold beta precursor protein-binding protein 1, 59kD	1.5
45				origin recognition complex, subunit 3 (yeast homolog)-like	3.3
43		AL080116	Hs.74420		2.1
		A1188137	Hs.75193	COP9 homolog	3.2
	102501	AF217197	Hs.74562	slah binding protein 1; FBP interacting repressor; pyrimidine tract binding splicing	2.8
				solute camer family 1 (neutral amino acid transporter), member 5	
				suppressor of Ty (S.cerevisiae) 5 homolog	5.7
50		U59423	Hs.79067	MAD (mothers against decapentapiegic, Drosophila) homolog 1	2.3
		W81489	Hs.223025	RAB31, member RAS oncogene family	5.3
	102580	U60808	Hs.152981	CDP-diacyiglyceroi synthase (phosphatidate cytidylyltransferase) 1	2.1
			Hs.77256	enhancer of zeste (Drosophila) homolog 2	1.6
	102582	U61232	Hs.32675	tubulin-specific chaperone e	2.1
55	102617	AW161453	Hs.198767	COP9 (constitutive photomorphogenic, Arabidopsis, homolog) subunit 5	1.8
		AL037672			5.8
				zinc finger protein 184 (Kruppel-like)	1.3
	102663	NM 00227	0Hs 168075	karyopherin (Importin) bela 2	1.8
		BE262989		putative protein	2.3
60		NM_00701		ubiquitin carrier protein E2-C	4.3
UU	102007	U96132		hydroxyacyl-Coenzyme A dehydrogenase, type ii	6.0
					4.2
		BE540274		forkhead box M1	1.9
	102704	AU077058	ms.54089	BRCA1 associated RING domain 1	2.3
	102705	T97490	Hs.50002	small inducible cytokine subfamily A (Cys-Cys), member 19	1.2
65	102750	AB014460	HS.06196	nth (E.coil endonuclease iii)-iike 1	
		BE252241	Hs.38041	pyridoxai (pyridoxine, vitamin B6) kinase	6.4
	402R12	1190549	Hs 236774	high-mobility group (nonhistone chromosomal) protein 17-like 3	1.6

		BE244588		chaperonin containing TCP1, subunit 2 (beta)	5.6
		AA262170		adaptor-related protein complex 3, sigma 1 subunit	2.0
	102844	AV653790	Hs.324275	WW domain-containing protein 1	1.3
		X02419	Hs.77274	plasminogen activator, urokinase	4.4
5		BE440142	Hs.2943	signal recognition particle 19kD	1.9
-		BE561850		small nuclear ribonucleoprotein polypeptide A'	2.4
				methylene tetrahydrofolate dehydrogenase (NAD+dependent), methenyltetrahydrofolate cyc	
				non-metastatic cells 1, protein (NM23A) expressed in	3.1
	102300	U95742	Hs.2707	G1 to S phase transition 1	5.2
10					
10				multifunctional polypeptide similar to SAICAR synthetase and AIR carboxylase	1.6
		AA926960			2.5
				matrix metalloproteinase 11 (MMP11; stromelysin 3)	4.5
		AU077231		cyclin D1 (PRAD1: parathyrold adenomatosis 1)	3.1
		D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaphyseal chondrodysplasta)	2.4
15	103177	BE244377	Hs.48876	famesyl-diphosphate famesyltransferase 1	3.5
	103178	AA205475	Hs.275865	ribosomal protein S18	9.9
		NM_00177		CD47 antigen (Rh-related antigen, integrin-associated signal transducer)	1.3
		X69636		Homo sapiens, clone IMAGE:3448306, mRNA, partial cds	2.0
		NM_00682	5Hs 74368	transmembrane protein (63kD), endoplasmic reticulum/Golgi intermediate compartment	1.6
20	103101	AA401039	He 2003	protein phosphatase 4 (formerly X), catalytic subunit	2.5
~0		NM_00476		coatomer protein complex, subunit beta 2 (beta prime)	2.2
		NM_00493			6.3
				DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 1	
		X72755	Hs.77367	monokine Induced by gamma Interferon	8.8
25		BE275607		chaperonin containing TCP1, subunit 3 (gamma)	3.0
25		X75962	Hs.129780		1.8
		A1369285		death-associated protein	5.6
		NM_00154		Immature colon carcinoma transcript 1	1.9
		A1803447	Hs.77496	smalt nuclear ribonucleoprotein polypeptide G	2.5
	103349	X89059		gb:H.sapiens mRNA for unknown protein expressed in macrophage	1.6
30	103376	AL036166	Hs.323378	coated vesicle membrane protein	1.8
	103391	X94453	Hs.114366	pyrroline-5-carboxylate synthetase (glutamate gamma-semialdehyde synthetase)	2.3
		X94563		gb:H.sapiens dbi/acbp gene exon 1 & 2.	4.0
		BE564090	Hs 20716	translocase of inner mitochondrial membrane 17 (yeast) homolog A	1.3
				myelold/lymphoid or mixed-lineage leukemia 3	5.6
35		AL031224		transcription factor AP-2 beta (activating enhancer-binding protein 2 beta)	5.1
55				proteasome (prosome, macropaln) subunit, beta type, 8 (large multifunctional protease 7)	9.7
		NM_00621		phospholnositide-3-kinase, catalytic, alpha polypeptide	2.0
		NM_00034		SRY (sex determining region Y)-box 9 (campometic dysplasia, autosomal sex-reversal)	1.3
	103013	DE370700	Un 150075	achini and Collection of the district of the collection of the col	2.0
40	103021	DE3/9/00	FIS. 130073	polymerase (RNA) II (DNA directed) polypeptide K (7.0kD)	
40				membrane component, chromosome 11, surface marker 1	2.3
		AI878883		growth factor receptor-bound protein 2	1.3
		AL135301	Hs.8768	hypothetical protein FLJ10849	1.8
		Al015709		Homo saplens mRNA; cDNA DKFZp586i2022 (from clone DKFZp586i2022)	1.3
				hypothetical 43.2 Kd protein	7.5
45		H26531	Hs.7367	Homo sapiens BTB domain protein (BDPL) mRNA, partial cds	1.2
	103797	AA080912		gb:zn04d03.r1 Stratagene hNT neuron (937233) Homo saplens cDNA clone 5' similar	1.5
	103813	A1042582	Hs.181271	CGI-120 protein	1.5
	103855	W02363	Hs.302267	hypothetical protein FLJ10330	1.5
				hypothetical protein FLJ10416 similar to constitutive photomorphogenic protein 1	6.5
50		NM_00240		mammaglobin 2	2.9
-0		AA251242			1.4
		AA478984		PRO0659 protein	5.6
		AB002343		protocadherin alpha 9	1.6
55	104275	AI/519/0	NS. 10 1007	GCN5 (general control of amino-acid synthesis, yeast, homolog)-like 2	5.4
22				polymerase (RNA) II (DNA directed) polypeptide K (7.0kD)	6.3
		AA324597		Homo sapiens cDNA FLJ12900 fis, clone NT2RP2004321	1.6
		R83113	Hs.1432	protein kinase C substrate 80K-H	5.2
		AB037762		myelin gene expression factor 2	1.2
				hypothetical protein FLJ12748	2.1
60				DKFZP434F1735 protein	1.2
	104667	AI239923	Hs.30098	ESTs	1.3
		Al694413	Hs.332649	olfactory receptor, family 2, subfamily 1, member 6	2.3
		AI858702	Hs.31803	ESTs, Weakly similar to N-WASP [H.sapiens]	1.3
	104806	AB023175		KIAA0958 protein	2.3
65		AW052006		PRP4/STK/WD splitting factor	10.9
33		AI250789		ESTs	5.6
	104040	AA041076	Un 454720	3-phosphoinositide dependent protein kinase-1	12.3
	104654	MMU412/0	115.104/23	о-рноарноновное оереноет рихеи мнезе-т	12.3

	104867	AA278898	Hs.225979	hypothetical protein similar to small G proteins, especially KAP-2A	2.0
	104871		Hs.28893	Homo saplens mRNA; cDNA DKFZp564O2364 (from clone DKFZp564O2364)	1.3
	104896	AW015318	Hs.23165	ESTs	17.7
				transcription factor 19 (SC1)	5.0
5				NS1-associated protein 1	1.7
•		AA026880		prolactin receptor	1.4
		AF043467		neurexophilin 2	2.2
		NM 015310		KIAA0942 protein	5.0
	104974			bromodomain-containing 4	1.4
10				SMC4 (structural maintenance of chromosomes 4, yeast)-like 1	2.4
10		AL136877		SMC4 (structural maintenance of chromoso	2.3
			Hs.50758	Homo sapiens, Similar to RIKEN cDNA 2010317E24 gene, clone IMAGE:3502019, mRNA, partia	
	104978	AI199268	Hs.19322		1.3
	1049/9	AA93/934	Hs.321062	ESIS	3.5
				mitochondrial GTP binding protein	5.5
15		BE379584		dollchyl-diphosphooligosacchande-protein glycosyltransferase	
		AF098158		chromosome 20 open reading frame 1	3.3
			Hs.2331	E2F transcription factor 5, p130-binding	2.2
	105032	AA127818		gb:zl12a02.s1 Soares_pregnant_uterus_NbHPU Homo sapiens cDNA clone IMAGE:501674 3'	6.8
		AA907305		ESTs	2.5
20	105041	AB037716	Hs.26204	KIAA1295 protein	2.2
	105045	BE242899	Hs.129951	speckle-type POZ protein	3.8
	105079	AA151342	Hs.12677	CGi-147 protein	9.5
	105087	AA147884	Hs.9812	Homo saplens cDNA FLJ14388 fis, clone HEMBA1002716	5.6
		H58589	Hs.35156	Homo saplens cDNA FLJ11027 fis, clone PLACE1004114	2.2
25		Z78407 ·		vesicle transport-related protein	2.2
		BE387350		KIAA1160 protein	1.6
		AW975433		ESTs	6.3
				nudix (nucleoside diphosphate linked molety X)-type motif 5	2.1
	105127	AA164687	He 177576	mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase, isoenzyme A	2.7
30	105141	AMOTESET	No 224545	hypothetical protein NUF2R	1.9
50	105150	DE3453D4	He 180780	S164 protein	1.7
		AA191512		Homo saplens cDNA FLJ11309 fis, clone PLACE1010076	4.8
		AA071276		KIAA0859 protein	1.9
		AA263143		RAD51-Interacting protein	2.8
35		N99673	Hs.3585	ESTs, Weakly similar to AF126743 1 DNAJ domain-containing protein MCJ [H.sapiens]	1.9
"					8.0
33		AA700122		sentrin-specific protease	1.8
				KIAA0779 protein CGI-68 protein	8.2
		NM_01601			5.0
40				hypothetical protein FLJ21918	2.5
40		AW887701		hypothetical protein FLJ20628	2.2
				hypothetical protein FLJ10326	2.3
				membrane protein CH1	5.4
				interleukin enhancer binding factor 3, 90kD	1.6
				Npw38-binding protein NpwBP	
45			Hs.65648	RNA binding motif protein 8A	1.6
		AA252395		gb:zs12g10.s1 NCI_CGAP_GCB1 Homo saplens cDNA clone IMAGE:685026 3', mRNA sequen	ice. 5.0
	105507	BE268348	Hs.226318	CCR4-NOT transcription complex, subunit 7	1.6
			Hs.32471		1.3
		AB023179		KIAA0962 protein	3.4
50			Hs.27445		9.3
				hypothetical protein FLJ14299	1.4
	105596	AA579535	Hs.18490	hypothetical protein FLJ20452	10.9
	105597	AF054284	Hs.334826	splicing factor 3b, subunit 1, 155kD	2.9
	105608	AI808201	Hs.287863	hypothetical protein FLJ12475	1.7
55			Hs.99872	fetal Alzheimer antigen	1.4
		AK000892		glucocorticoid modulatory element blnding protein 1	1.7
				casein kinase 1, gamma 2	5.5
	105658	AA985190	Hs 246875	hypothetical protein FLJ20059	9.4
	105697	AW499988	Hs.27801	zinc finger protein 278	2.0
60	105709	R26944	Hs 180777	Homo saplens mRNA; cDNA DKFZp564M0264 (from clone DKFZp564M0264)	1.7
JU		BE246502		sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short	2.6
		AW151952		hypothetical protein FLJ20739	1.5
	100/40	A1123110	Hs.15159		1.3
	100/09	A1267720	He 153224	synovial sarcoma, translocated to X chromosome	1.6
CE	105//1	AA741226	Ho 153100	transcriptional unit N143	2.2
65	100020	AAA79750	He 104477	' E3 ubiquitin Ilgase SMURF2	1.3
	105820	M44/0/30	He 12653	ECT-	2.4

	105858	AF151066	Hs.281428	hypothetical protein	2.9
		AK001708			1.4
		AF016371			5.2
		AW194426			1.7
5	106011	AW081202	He 12284		2.8
,		AA477956			1.4
					1.4
		AL157441			
		AA130158		ESTs, Moderately similar to ALU8_HUMAN ALU SUBFAMILY SX SEQUENCE CONTAMINATION	
10		AA533491			6.8
10		AB006624			1.6
				Homo sapiens, Similar to RIKEN cDNA 5430429M05 gene, clone MGC:13155, mRNA, complete cd	s 10
	106288	AB037742	Hs.24336	KIAA1321 protein	1.3
	106300	Y10043	Hs.19114	high-mobility group (nonhistone chromosomat) protein 4	3.6
		AL043114		ESTs, Weakly similar to A54849 collagen alpha 1(VII) chain precursor [H.sapiens]	5.4
15		AK001404			5.7
		AW390282			6.3
		AB040916			6.5
					2.2
		AW748420			
20		AF119256			2.7
20		D63078	Hs.186180		2.3
		AA454036			1.6
		AA243837			1.6
	106589	AK000933	Hs.28661		2.4
	106610	AA458882	Hs.79732	fibulin 1	7.9
25	106624	NM_003595	5Hs.26350	tyrosylprotein sulfotransferase 2	7.7
		AL049951			1.8
					1.3
				hypothetical protein FLJ12549	4.5
					1.3
20					
30		BE388094			1.6
	106795	AF174487	Hs.293753		5.7
		AW959893			16.2
		BE564871			1.5
	106846	AB037744	Hs.34892		2.2
35	106852	AF151031	Hs.300631		1.3
	106873	N49809	Hs.11197	Homo sapiens, clone IMAGE:3343149, mRNA, partial cds	16.8
		W79171	Hs.9567	GL002 protein	1.5
					2.2
					3.3
40		AK000511			6.8
40		BE156256			6.6
		AL043152			4.8
		AW631480			6.0
					1.3
45	107029	AF264750	Hs.288971		1.8
	107071	AW385224	Hs.35198	ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative function)	1.7
	107113	AK000733	Hs.23900	GTPase activating protein	2.5
	107125	AK000512	Hs 69388	hypothetical protein FLJ20505	1.7
		AV661958			4.6
50		AV661958			3.3
50	407446	AK001455	Hs.0207		2.0
					6.3
		AW378065			33.5
		AW391927			
		BE122762			5.2
55		W15477	Hs.64639		6.1
	107221	AW888411	Hs.81915		17.4
	107243	BE219716	Hs.34727	ESTs, Moderately similar to 138759 zinc finger/leucine zipper protein [H.saplens]	7.4
	107248	AW263124	Hs.315111	nuclear receptor co-repressor/HDAC3 complex subunit	1.8
		D60341	Hs.21198		6.6
60		BE379594		ESTs, Moderately similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE CONTAMINATION	
50		N95657	Hs.6820	ESTs, Moderately similar to YOJ1_CAEEL HYPOTHETICAL 63.5 KD PROTEIN ZK353.1 IN	2.5
					1.7
		N95657	Hs.6820		
		BE277457			3.2
		T63174			2.0
65		NM_00629			5.0
					1.2
	107481	AA307703	Hs.279766	kinesin family member 4A	1.6

				1 1	3.0
				Indicional protein (INCO repeat)	
		AA001386		ESTs	1.3
	107681	BE379594	Hs.49136	ESTs, Moderately similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE CONTAMINATION	2.2
	107772	AA018587	Hs.303055		2.1
5		AW732573	Hs.47584	notassium voltage-gated channel, delayed-rectifier, subfamily S, member 3	8.4
•			Hs.335952		2.5
	107901		Hs.335952		1.6
		BE153855		ig superfamily receptor LNIR	2.2
				ig Superiality receptor Ermit	6.7
10	10/9/4	AW956103	HS.01712	pyruvate dehydrogenase kinase, isoenzyme 1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member	
10					1.3
	108230	AA054224		ESTs	7.1
				F-box only protein 5	
		N31256	Hs.161623		2.5
	108496	AA083069	Hs.339659	ESTs	3.5
15	108607	BE300380	Hs.69476	Homo sapiens cDNA FLJ12758 fis, clone NT2RP2001328	3.4
	108621	AA101809	Hs.182685	ESTs	1.6
	108634	AWD22410	Hs.69507	ESTs	1.7
		BE546947		homeo box C10	9.8
		AB029000		KIAA1077 protein	7.2
20	100050	AA122393	Ho 70911	hypothetical protein FLJ20516	1.3
20		AI 122353 AI 089575		progesterone membrane binding protein	2.7
					1.8
				DKFZP564O0463 protein	1.5
			Hs.178904	ESIS	2.1
		H06720		endosulfine alpha	
25	108891	AI801235	Hs.48480	ESTs	5.3
	108894	AK001431	Hs.5105	hypothetical protein FLJ10569	4.0
	108955	AA149754	Hs,195155	Homo sapiens amino acid transport system N2 (SN2) mRNA, complete cds	5.6
	108982	AA151708	Hs.171980	homeo box (expressed in ES cells) 1	1.6
		AA152178		hypothetical protein FLJ10633	6.2
30		AB028987		KIAA1064 protein	1.7
50	100002	AA156542	Hs 72127	FSTs	1.4
		AA157811		gb:zo35d07.s1 Stratagene colon (937204) Homo sapiens cDNA clone 3' similar to contains Alu rep	petitive
		AA164293	He 72545	ESTs .	2.9
		AW608930		hypothetical protein FLJ20618	1.6
35	109101	AVV000930	HS.32 104	hypothetical protein FLJ13782	3.2
33					1.7
				hypothetical protein FLJ22104	2.6
	109139	AJ132592	Hs.59/5/	zinc finger protein 281	2.9
	109166	AA219691	Hs.73625	RAB6 Interacting, kinesin-like (rabkinesin 6)	
		BE566742		highly expressed in cancer, rich in leucine heptad repeats	2.0
40	109213	NM_01660	3Hs.82035	potential nuclear protein C5ORF5; GAP-like protein	5.3
	109220	AW958181	Hs.189998	ESTs	5.7
	109233	AU077281	Hs.170285	nucleoporin 214kD (CAIN)	5.3
		N99673	Hs.3585	ESTs, Weakly similar to AF126743 1 DNAJ domain-containing protein MCJ [H.saplens]	1.4
		AA375752		Homo sapiens mRNA; cDNA DKFZp586F1822 (from clone DKFZp586F1822)	2.9
45		AF153201		C2H2 (Kruppel-type) zinc finger protein	1.3
-13	100310	AA213506	Hs.115099		2.9
	100041	VI UUCUES	He 184245	KIAA0929 protein Msx2 interacting nuclear target (MINT) homolog	1.5
		H83603	Hs.40408		2.2
			Hs.42215	protein phosphatase 1, regulatory subunit 6	3.0
F 0		N30531		ESTs	1.9
50	109429	Al160029	Hs.61438		1.8
	109445	AA232103	Hs.189915	ESIS	3.7
	109450	AB032969	Hs.173042	KIAA1143 protein	
	109468	NM_01531	0Hs.6763	KIAA0942 protein	3.2
	109478	AW074143	Hs.87134	ESTs	2.0
55	109570	L40027	Hs.118890	glycogen synthase kinase 3 alpha	2.1
	109662	F02614	Hs.27319	ESTs	1.4
		R71264	Hs.16798	ESTs	1.3
	110030	H11938	Hs.21907	histone acetyltransferase	2.0
	1 10055	AA503041		matrix Gla protein	2.5
60	440000	AA603840	He 20056	KIAA0460 protein	1.7
00	1 (0000	TOTOE2	Hs.7948	ESTs	2.9
	1 10110	T07353	110.1340	ESTS, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION	1.7
	11012	R51853	13.220423	CH2 demais bladies excisis 4	4.2
	110154	NM_U145	21Hs.17667	SH3-domain binding protein 4	4.2
	110240	Ai668594		ESTs, Weakly similar to CP4Y_HUMAN CYTOCHROME P450 4A11 PRECURSOR [H.sapiens]	1.3
65	110242	N41744	Hs.19978		
	110259	H28428	Hs.32406	ESTs, Weakly similar to I38022 hypothetical protein [H.sapiens]	2.2
	4 40341	DESCRIPTION	Hs 11896	hypothetical protein FL 112089	2.1

5.3

		AI288666	Hs.16621	DKF2P434I116 prolein	6.2
		H55748		gb:yq94a01.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone IMAGE:203400 3'	6.1
	110504	H55915	Hs.210859	hypothetical protein FLJ11016	6.1
_	110525	H57330	Hs.37430	EST	6.3
5	110568	AK001160	Hs.5999	hypothetical protein FLJ10298	1.3
	110699	T97586	Hs.18090	EŜTs	1.8
		AB007902		KIAA0442 protein	1.6
		AW190338		hypothetical protein MGC11256	7.6
		AL138077		hypothetical protein FLJ12707	2.5
10		BE044245		hypothetical protein MGC2963	9.3
		AK000322		hypothetical protein FLJ20315	5.5
		BE000831		Homo sapiens cDNA FLJ11812 fis, clone HEMBA1006364	2.1
				dpv-30-like protein	1.5
			Hs.24048	FK506 binding protein precursor	6.6
15		AA767373		ESTs, Moderately similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION	5.7
13			Hs.6614	ESTS, Modelately Similar to ALO I_HOWAN ALO SOBRABILITY SEQUENCE CONTAVINATION	
				ESTs, Weakly similar to A43932 mucin 2 precursor, intestinal [H.sapiens]	3.4
	110040	N31598	Hs.12727	hypothetical protein FLJ21610	1.7
	110044	A1/4U/92	HS.10/531	methylcrotonoyl-Coenzyme A carboxylase 2 (beta)	1.7
20		BE612992	Hs.2/931	hypothetical protein FLJ10607 similar to glucosamine-phosphate N-acetyltransferase	4.7
20		AA992380		gb:ot37g06.s1 Soares_testis_NHT Homo saplens cDNA clone 3' similar to contains element	2.3
		BE384447		hypothetical protein MGC13186	3.5
		AL117430		DKFZP434D156 protein	2.2
	110915	BE092285		hypothetical protein FLJ13187	2.6
0.5		H04360	Hs.24283	ESTs, Moderately similar to reduced expression in cancer [H.saplens]	1.9
25.		NM_005864		signal transduction protein (SH3 containing)	6.7
		AK002180		DKFZP564O123 protein	2.0
		AK001980		ADP-ribosyltransferase (NAD+; poly(ADP-ribose) polymerase)-like 2	1.3
		AW613287		UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 1 (GalNAc-T	
20		N63823	Hs.269115	ESTs, Moderately similar to Z195_HUMAN ZINC FINGER PROTEIN 195 [H.sapiens]	3.6
30		AB037807		hypothetical protein	2.1
		N46180		Homo sapiens cDNA FLJ13289 fis, clone OVARC1001170	2.3
		R67419	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT2RP2004321	3.7
		AL050166		Homo sapiens mRNA; cDNA DKFZp586D1122 (from clone DKFZp586D1122)	7.5
25		AK000136		asporin (LRR class 1)	7.1
35		AI815486	Hs.243901	Homo saplens cDNA FLJ20738 fis, clone HEP08257	6.7
			Hs.243901		3.3
		N67603	Hs.272130	ESTs, Weakly similar to S65824 reverse transcriptase homolog [H.sapiens]	3.6
		AW139408			1.5
40		AB037782			2.6
40				KIAA1866 protein	4.6
		N90956			7.9
		AA778711		eukaryotic translation initiation factor 1A	6.9
		AB033091		KIAA1265 protein	5.0
15			Hs.34504	ESTs	3.8
45		T99755	Hs.334728	ESIS	1.2
	111337	AA83/396	Hs.263925	LIS1-interacting protein NUDE1, rat homolog	5.1
		H58589	Hs.35156		2.2
	111370	Al478658	Hs.94631	brefeldin A-inhibited guanine nucleotide-exchange protein 1	2.8
50		N94606		HSCARG protein	2.2
50	111389	AK000987	Hs.169111	oxidation resistance 1	2.1
	111391	NM_003896	5Hs.225939	slalyltransferase 9 (CMP-NeuActactosylceramide alpha-2,3-slalyltransferase; GM3 synthase)	5.1
	111392	W46342	Hs.325081	Homo sapiens, clone IMAGE:3659680, mRNA, partial cds	8.4
	111452	R02354	Hs.15999	ESTs	2.7
		AI051194			6.5
55		W90638	Hs.20321	ESTs, Moderately similar to ZRF1_HUMAN ZUOTIN RELATED FACTOR-1 (M-PHASE	1.4
		R10720	Hs.20670	EST	1.6
		R52656	Hs.21691	ESTs	1.6
		AB037834		Homo saplens mRNA for KIAA1413 protein, partial cds	2.4
		BE298665		Homo sapiens mRNA; cDNA DKFZp564D016 (from clone DKFZp564D016)	10.6
60		AW083791		suppressor of potassium transport defect 3	6.6
		NM_015310		KIAA0942 protein	5.1
		R41823	Hs.7413	ESTs; calsyntenin-2	2.8
		AB029000		KIAA1077 prolein	14.6
		R46071	Hs.301693	Homo saplens, clone IMAGE:3638994, mRNA, partial cds	9.0
65	112456	NM_016248	BHs.232076	A kinase (PRKA) anchor protein 11	1.4
	112464	AW007287	Hs.28538	Homo sapiens cDNA: FLJ21086 fis, clone CAS03272	1.4

		R68425	HS.13809	hypothetical protein FLJ 10648	2.0	
	112752	AK001635	Hs.14838	hypothetical protein FLJ10773	1.8	
		AK000004		Homo sapiens mRNA for FLJ00004 protein, partial cds	6.6	
_	112923		Hs.5037	EST	1.5	
5		AW970828		KiAA1557 protein	3.2	
	112958		Hs.6724	ESTs	6.0	
	112966			glucocorticold receptor DNA binding factor 1	6.4	
		AK000272		hypothetical protein FLJ20265	1.2	
	112995	AA737033	Hs.7155	ESTs, Moderately similar to 2115357A TYKI protein [M.musculus]	5.6	
10	112996	BE276112	Hs.7165	zinc finger protein 259	2.0	
	113047	AI571940	Hs.7549	ESTs	1.9	
	113049	AW965190		Homo sapiens mRNA for KiAA1729 protein, partial cds	2.4	
	113089	T40707	Hs.270862	ESTs	1.3	
	113196	T57317		gb:yb51a03.s1 Stratagene fetal spleen (937205) Homo sapiens cDNA clone iMAGE:74668 3';	1.7	
15	113248			gb:yc16e01.s1 Stratagene lung (937210) Homo sapiens cDNA clone 3', mRNA sequence	2.8	
			Hs.11449	DKFZP564O123 protein	1.3	
			Hs.11774	protein (peptidyl-prolyi cis/trans isomerase) NIMA-interacting, 4 (parvulin)	3.2	
			Hs.179808	ESTs	1.2	
	113499		Hs.8882	ESTs .	5.9	
20		H59588	Hs.15233		2.0	
			Hs.142442		3.6	
	113847	AAR13887	He 188173	Homo sapiens cDNA FLJ12187 fis, clone MAMMA1000831	1.3	
		T97307	110100110	gb:ye53h05.s1 Soares fetal liver spieen 1NFLS Homo sapiens cDNA clone IMAGE:121497 3',	4.4	
			Hs.184411		1.3	
25		AW499665		SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member	5 1.2	
23		BE266947		zinc finger protein 313	13.4	
		AL359588		hypothetical protein DKFZp762B226	1.7	
		AL339300 Al269096		chitoblase, dl-N-acetyl-	1.3	
		W44735	Hs.9286	Homo sapiens cDNA: FLJ21278 fis, clone COL01832	3.3	
30	113000	BE207480		Homo saplens cDNA: FLJ22044 fis, clone HEP09141	3.1	
30			DS.0994	hypothetical protein DKFZp761017121	3.2	
		H13325		hypothetical protein FLJ10826	2.3	
			Hs.24809		11.3	
		T26483	Hs.6059	EGF-containing fibulin-like extracellular matrix protein 2	2.7	
20		W57902	Hs.90744	proteasome (prosome, macropain) 26S subunit, non-ATPase, 11	6.1	
35		AL079314		hypothetical protein, stmilar to (U06944) PRAJA1	6.6	
		AW959486		ESTs	1.9	
		AW953484	HS.3849	hypothetical protein FLJ22041 similar to FK506 binding proteins	1.2	
	113989	W87544	Hs.268828		5.4	
40	114022	AI539519	Hs.120969	Homo sapiens cDNA FLJ11562 fis, clone HEMBA1003197	9.4	
40				hypothetical protein FLJ21939 similar to 5-azacytidine induced gene 2	1.8	
	114060	AB029551	Hs.7910	RING1 and YY1 binding protein	1.5	
				fucose-1-phosphate guanylyltransferase		
		AB028968		KIAA1045 protein	1.8	
			Hs.14831		iele cos	2.3
45	114262	AL117518	Hs.3686	KIAA0978 protein	1.4	
	114275	AW515443	Hs.306117	KIAA0306 protein	15.8	
				fatty acid desaturase 2	1.9	
	114309	AA332453	Hs.20824	CGI-85 protein	2.4	
	114392	AA249590	Hs.100748	ESTs, Weakly similar to A28996 proline-rich protein M14 precursor - mouse [M.musculus]	1.8	
50	114407	BE539976	Hs.103305	Homo sapiens mRNA; cDNA DKFZp434B0425 (from clone DKFZp434B0425)	1.2	
	114455	H37908	Hs.271616	ESTs, Weakly similar to ALU8_HUMAN ALU SUBFAMILY SX SEQUENCE	5.5	
	114463	AL120247	Hs.40109	KiAA0872 protein	5.2	
	114464	Al091713	Hs.106597	Homo sapiens, Similar to RIKEN cDNA 1110012M11 gene, clone IMAGE:3688605, mRNA, partia	cds1.2	
	114471	AA028074	Hs.104613	RP42 homolog	1.8	
55	114480	BE066778	Hs.151678	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-	6) 13.4	
	114671	AA766268	Hs.266273	hypothetical protein FLJ13346	1.9	
	114698	AA476966	Hs.110857	polymerase (RNA) III (DNA directed) polypeptide K (12.3 kDa)	3.5	
		AI373544		Intermediate filament protein syncollin	3.8	
	114767	A1859865	Hs 154443	minichromosome maintenance deficient (S. cerevisiae) 4	1.6	
60	114774	AV656017	Hs 184325	CGI-76 protein	3.1	
00	114779	AA159181	Hs.54900	serologically defined colon cancer antigen 1	3.5	
	114750	AI 157545	Hs.42179	bromodomain and PHD finger containing, 3	4.3	
	114000	AA226177	Hs.76591		7.1	
	114093	BE539101	He 5324	hypothetical protein	1.3	
65	114090	AA236672	100024	gb:zt29f02.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone IMAGE:723771 3', mRNA s		1.5
UJ	114911	AA227022	Hs.188717	FETa	2.0	

	114965	AI733881	Hs.72472	BMP-R1B	2.3
		AF102546		dachshund (Drosophila) homolog	1.3
		AA252360		toll-like receptor 9	1.6
		AI751438		Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 1913076	11.8
5				LIM protein (similar to rat protein kina	1.5
-	115117		Hs.5324	hypothetical protein	1.5
		A1634549		ESTs	2.8
			Hs.186572		2.5
		AW365434		hypothetical protein FLJ10116	1.5
10		BE251328		hypothetical protein FLJ10881	1.3
10				ESTs, Moderately similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE	1.4
				hypothetical protein FLJ11301	1.5
			Hs.293736		2.4
				hypothetical protein FLJ10461	6.2
15		Al215069		ESTs	6.6
13		AA314349		tumor antigen SLP-8p	7.4
		AK001376		hypothetical protein FLJ10514	1.4
				ESTs, Moderately similar to I54374 gene NF2 protein (H.saplens)	4.0
		AW247593		eukaryotic translation initiation factor 4E binding protein 1	16.3
20		Y14443	Hs.88219	zinc finger protein 200	5.0
20		AJ275986			2.5
		AJ275966 AI540842	Hs.61082	transcription factor (SMIF gene) ESTs	6.1
				HSPC039 protein	2.9
				7-60 protein	5.3
25		N36110		solute carner family 2 (facilitated glucose transporter), member 10	4.7
23		BE093589		hypothetical protein FLJ23468	10.6
		AL048269	DS.30170	Homo sapiens, clone MGC:16063, mRNA, complete cds	12.7
		ALU40209 Al138785	Hs.40507	ESTs	2.0
		AA953006		ESTs	3.0
30		AA625132		hypothetical protein FLJ21615	1.7
50	115650	AF231023	Hc 55172	cadherin, EGF LAG seven-pass G-type receptor 3, flamingo (Drosophila) homolog	6.8
		BE395161		proteasome (prosome, macropain) subunit, beta type, 2	1.7
		Al950339		ESTs	2.6
		NM_01543		DKFZP434B168 protein	2.1
35	115011	AI732742	Hs.87440	ESTs	2.1
55		A1675217	Hs.42761	ESTs	1.3
		Al373062		hypothetical protein MGC5370	4.4
		AW062629		KIAA0867 protein	7.2
		N55669		mitochondrial ribosomal protein L13	1.2
40		AI867451	He 46679	hypothetical protein FLJ20739	5.5
70		AB037753		KIAA1332 protein	9.8
		BE275469		Down syndrome critical region gene 5	1.4
		AL359053		Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 2005735	2.4
		AA770688		H2A histone family, member L	1.8
45		BE243834		CGI-04 protein	1.4
73		N35719	Hs.44749	ESTs, Moderately similar to T00358 hypothetical protein KIAA0684 [H.sapiens]	1.2
		AW821113		ESTs	2.1
		AV660717		DKFZP586N0819 protein	1.7
	116236	AF265555	He 250646	baculoviral IAP repeat-containing 6	1.7
50	116262	AI936442	Hs.59838	hypothetical protein FLJ10808	1.7
50		AI955411	Hs.94109	Homo saplens cDNA FLJ13634 fis, clone PLACE1011133	1.9
		AF097645		deleted in cancer 1; RNA helicase HDB/DICE1	4.9
	116336	Al472106	Hs.49303	Homo sapiens cDNA FLJ11663 fis, clone HEMBA1004631	1.4
	116336	AL133033	He 4084	KIAA1025 protein	1.9
55	146220	AK000290	He 44033	dipeptidyl peptidase 8	1.5
55	110003	AA/07120	Hs.184771		1.9
		Al149586		Interferon-induced protein 75, 52kD	1.9
		N50174	Hs.46765	ESTs	6.1
	110300	N90466	Hs.71109	KIAA1229 protein	- 1.6
60	110300	AW499664		Human clone 23826 mRNA sequence	7.4
00	116417	AA161411	He 58668	chromosome 21 open reading frame 57	2.1
	110430	VE318343	Hs.236828	putative helicase RUVBL	1.5
		AI272141		SRY (sex determining region Y)-box 4	2.1
	1104/0	A1272141	Hs.83484	SRY (sex determining region Y)-box 4 SRY (sex determining region Y)-box 4	1.2
65	1104/0	AA312572		phosphoinositide-3-klnase, regulatory subunit, polypeptide 1 (p85 alpha)	1.5
65	1100/0	AK001043	He 92022	integrin-linked kinase-associated serine/threonine phosphatase 2C	2.7
	11603/	ARUUIU4S	Hs.92033		2.1

				hypothetical protein MGC10765	1.4	
	116705	AW074819	Hs.12313	hypothetical protein FLJ14566	3.4	
	116732	AW152225	Hs.165909	ESTs, Weakly similar to I38022 hypothetical protein [H.sapiens]	2.9	
		AW068115		biglycan	8.3	
5	116926		Hs.290830		1.7	
-	117034			YY1-associated factor 2	3.4	
		AI393666		p10-binding protein	5.2	
	117247		113.12010	gb:yx46f06.s1 Soares melanocyte 2NbHM Homo sapiens cDNA cione IMAGE:264803 3', mRNA si	equence.	5.
	117270	N71183	He 121806	Homo sapiens cDNA FLJ11971 fis, clone HEMBB1001208	1.5	
10	447004	AV004704	Ho 492770	Homo sapiens cDNA FLJ10590 fis, clone NT2RP2004392, weakly similar to MNN4 PROTEIN	2.0	
10				ESTs	2.0	
		Ai041793			2.1	
	11/368	Ai878942		ATPase, H+ transporting, lysosomal (vacuolar proton pump), member J	2.7	
		AF150275	Hs.40173	ESTs		
		N32536	Hs.42645	solute carrier family 16 (monocarboxylic acid transporters), member 6	1.4	
15		AF123050			3.4	
		N34895	Hs.44648	ESTs	3.4	
	117745	BE294925	Hs.46680	CGi-12 protein	3.0	
	117754	AA121673	Hs.59757	zinc finger protein 281	1.9	
	117879	N54706	Hs.303025	chromosome 11 open reading frame 24	1.8	
20				butyrate-induced transcript 1	5.7	
				hypothetical protein MGC5370	5.9	
				hypothetical protein FLJ13912	1.7	
		Y10518		hypothetical protein FLJ20048	1.7	
		AL110246		KIAA1785 protein	5.4	
25		N54321	Hs.47790	EST	5.2	
23	110070	AA453902	HS.47730		2.6	
				ESIS	2.5	
		AA243332		cytochrome c oxidase subunit Vic	4.1	
		AL157545		bromodomain and PHD finger containing, 3	1.2	
		AJ277275	Hs.50102	rapa-2 (rapa gene)	1.5	
30		N22617	Hs.43228		7.4	
		AI949952	Hs.49397	ESTs		
	118656	A1458020	Hs.293287	ESTs	2.5	
	118670	AA332845	Hs.152618	ESTs, Moderately similar to ZN91_HUMAN ZINC FINGER PROTEIN 91 [H.sapiens]	1.2	
			Hs.50187	KIAA1287 protein	2.1	
35	118737	AA199686		gb:zq75g09.r1 Stratagene hNT neuron (937233) Homo sapiens cDNA clone IMAGE:647488 5'	5.2	
		N92293	Hs.206832	ESTs, Moderately similar to ALU8_HUMAN ALU SUBFAMILY SX SEQUENCE CONTAMINATION	11.4	
	118984	AI668709	Hs.240722	ESTs, Moderately similar to ALU8_HUMAN ALU SUBFAMILY SX SEQUENCE CONTAMINATION	1 3.6	
	118986	AF148713	Hs.125830	bladder cancer overexpressed protein	4.8	
	119206	W24781	Hs.293798	KIAA1710 protein	1.7	
40		AW453069		activity-dependent neuroprotective protein	2.2	
		AW453069		activity-dependent neuroprotective prote	1.6	
		BE539706			1.4	
		N57568	Hs.48028		25.1	
		NM_00124			1.6	
45	110338	A1417240	He 320836	ESTs, Weakly similar to A47582 B-cell growth factor precursor [H.saplens]	1.3	
45		T65004	Hs.163561		8.4	
				nucleolar protein NOP5/NOP58	6.7	
		Ai624342			2.4	
					2.1	
50		A1796730	H8.555 15		1.9	
50		W37933		Empirically selected from AFFX single probeset	3.7	
		AK000155			3.0	
				hypothetical protein FLJ11350		
		AA243837			1.4	
	119682	W61019	Hs.57811	ESTs	1.2	
55		AB032977		KIAA1151 protein	1.8	
				hypothetical protein	3.1	
		BE393948		kallikrein 5 (KLK5; KLK-L2; stratum comeum tryptic enzyme)	9.2	
		AJ223810		ESTs, Weakly similar to IEFS_HUMAN TRANSFORMATION-SENSITIVE PROTEIN IEF SSP	3.6	
	119818	AA130970	Hs.58382	hypothetical protein FLJ11101	2.5	
60	119863	AA081218	Hs.58608	Homo sapiens cDNA FLJ14206 fis, clone NT2RP3003157	2.7	
		AW449064			2.6	
		AA703129		ESTs	2.7	
		W57554) lymphoid nuclear protein (LAF-4) mRNA	1.2	
		H26735	Hs.91668		45.7	
65		AI924294		uncharacterized bone marrow protein BM033	1.2	
03				I fibroblast growth factor 12B	38.9	
		AW13194			9.6	

	120274	AA177051		gb:nc02a02.s1 NCI_CGAP_Pr3 Homo sapiens cDNA clone IMAGE:194 similar to contains Alu	4.6
		AA190577		gb:zp52g02.s1 Stratagene HeLa cell s3 937216 Homo saplens cDNA clone 3', mRNA sequence	2.0
			Hs 299883	hypothetical protein FLJ23399	1.8
	120297	AA191384	Hs 104072	ESTs, Weakly similar to Z195_HUMAN ZINC FINGER PROTEIN 195 [H.saplens]	15.2
5	120324	AA195517	He 101643	ESTe	5.5
_		AA195651			6.4
				hypothetical protein FLJ20285	16.1
		N85785		eukaryotic translation elongation factor 1 alpha 1	2.9
10		AW450669		hypothetical protein DKFZp434l143	5.7
10		AA210722			4.5
	120349	AW969481		hypothetical protein	16.8
	120352	R06859	Hs.193172	ESTs, Weakly similar to I38022 hypothetical protein [H.sapiens]	5.0
	120356	AF000545	Hs.296433	putative purinergic receptor	28.1
		AA219305			12.4
15		AA228026			4.0
				FSH primary response (LRPR1, rat) homolog 1	9.7
	120386	AWGRGRR5	He 154848	hypothetical protein DKFZp434D0127	32.6
		AA232874			3.1
				ESTs, Moderately similar to ALU7_HUMAN ALU SUBFAMILY SQ SEQUENCE CONTAMINATION	
20					12.5
20	120396	AA134006	HS. 79300	eukaryotic translation initiation factor 4E	
		AB023230		KIAA1013 protein	7.2
		AW966893		Homo sapiens mRNA; cDNA DKFZp586F1323 (from clone DKFZp586F1323)	11.4
		AA236453	Hs.18978	Homo sapiens cDNA: FLJ22822 fis, clone KAtA3968	1.9
		A1950087		gb:wq05c02.x1 NCI_CGAP_Kid12 Homo saplens cDNA clone 3', mRNA sequence	19.4
25	120473	AA251973	Hs.269988	ESTs	5.4
	120484	AA253170	Hs.96473	EST	10.4
		AA256837		gb:zr84d10.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:682387 3', mRNA sequer	ce. 3.9
		BE047718	Hs 96545	ESTs	9.4
		AA258601			2.4
30		BE350244			2.5
50				Homo sapiens, clone IMAGE:3613029, mRNA, partial cds	5.2
				ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION	14.4
					10.2
				ZNF135-like protein	
25				leucine-rich repeat-containing 2	2.1
35				N-acetylglucosamine-phosphate mutase	7.5
		AW965339			2.5
			Hs.173518	M-phase phosphoprotein homolog	52.0
		AA286942		gb:zs56f05.s1 NCI_CGAP_GCB1 Homo saplens cDNA clone IMAGE:701505 3' similar to contains	Alu2.4
	120648	AA287095	Hs.140309	Homo sapiens, clone IMAGE:3677194, mRNA, partial cds	5.0
40	120653	AW063659	Hs.191649	ESTs	2.2
	120668	AW969638	Hs.112318	6.2 kd protein	2.2
		BE536739			1.9
	120695	AA976503		gb:og30a04.s1 NCI_CGAP_GC4 Homo sapiens cDNA clone 3' similar to contains PTR7.t1 PTR7	46.8
		Al821539	He 07240	ESTs	2.5
45		AW449855		Homo sapiens cDNA FLJ12727 fis, clone NT2RP2000027	5.9
73		AA292747		ESTs	2.9
					7.0
	120750	AI191410	Hs.96693	ESTs, Moderately similar to 2109260A B cell growth factor [H.saplens]	
		AI608909			7.8
~~		AA346385	Hs.30002	SH3-containing protein SH3GLB2; KIAA1848 protein	6.8
50		AA346495		gb:EST52657 Fetal heart II Homo sapiens cDNA 3' end similar to EST containing O family repeat,	
		AA386260			4.4
	120977	AA398155	Hs.97600	ESTs	4.4
	120984	BE262951	Hs.99052	ESTs	5.6
	120985	AI219896	Hs.97592	ESTs	1.2
55		AA398360		EST	3.1
-		Al439713			3.5
				ESTs, Highly similar to 137550 mismatch repair protein MSH2 [H.sapiens]	5.4
	404422	AA363307	Ha 07022	ESTS	3.7
	121133	AL121523	De 07774	ESTs	1.7
60					
60		AI002110		ESTs, Weakly similar to dJ667H12.2.1 [H.sapiens]	2.9
		AA403008			1.9
		AW956981		Homo saplens cDNA FLJ13383 fis, clone PLACE1001024	3.5
		AA406137		EST	6.0
	121439	AA410190	Hs.98076	ESTs, Weakly similar to A47582 B-cell growth factor precursor [H.sapiens]	7.4
65	121450	AA406430	Hs.105362	Homo sapiens, clone MGC:18257, mRNA, complete cds	6.9
	121452	AW971063	Hs.292882	ESTs	1.8
		H58306	Hs.15165	retinoic acid induced 14	10.5

	121457	W07404	Hs.144502	hypothetical protein FLJ22055	3.4
	121496	AA442224	Hs.97900	ESTs	14.4
			Hs.194417		13.1
_			Hs.97887	ESTs	28.0
5			Hs.181510	ESTs	6.2
		AA412112		gb:zt69b02.s1 Soares_testis_NHT Homo saplens cDNA clone IMAGE:727563 3', mRNA sequence	e. 2.6
			Hs.98142	EST	7.4
		AA412497		gb:zt95g12.s1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:730150 3' similar to contain	3.5
10			Hs.98096	EST gb:zu05c10.s1 Soares_testis_NHT Homo sapiens cDNA clone 3', mRNA sequence	6.1
10		AA416568	U- 00740	spermine synthase	3.9
	121509	AD001020	Hs.89718 Hs.98247	ESTs	2.2
			Hs.126065		4.2
	121655	AAA21537	He 178072	Homo saplens mRNA; cDNA DKFZp434B1023 (from clone DKFZp434B1023)	7.8
15	121682	AA418160	Hs.86043	Homo sapiens cDNA FLJ13558 fis, clone PLACE1007743	2.0
			Hs.110286		4.7
		U55184		hypothetical protein FLJ11585	12.7
			Hs.98269		8.1
		AI949597	Hs.98325		1.8
20	121731	AA421041	Hs.180744	ESTs .	4.0
			Hs.97514		7.1
	121748	BE536911	Hs.234545	hypothetical protein NUF2R	19.5
				KİAA1196 protein	7.9 1.7
25			Hs.161008		6.6
23 .			Hs.125133 Hs.98376	hypothetical protein FLJ22501	10.5
			Hs.98434		5.8
	121032	VA338348	Hs.218289	EGTs	3.8
				ESTs, Highly similar to KIAA1048 protein [H.sapiens]	5.0
30				serine/threonine kinase 23	2.7
		AA446628		cartilage linking protein 1	2.3
			Hs.293044		2.9
			Hs.98459	ESTs	5.0
٠.	121911	AA427950		gb:zw50f02.s1 Soares_total_fetus_Nb2HF8_9w Homo saplens cDNA clone IMAGE:773499 3	7.2
35	121915	AA428179	Hs.223405	ESTs, Moderately similar to A46010 X-linked retinopathy protein [H.sapiens]	2.5
			Hs.98611	EST	2.3 3.4
				hypothetical protein FLJ14904	11.4
	121985	AA210863	HS.299214	Homo sapiens, clone IMAGE:2822295, mRNA, partial cds nemo-like kinase	3.8
40		AA210863 AA430211		EST	6.4
40				Homo saplens cDNA: FLJ20863 fis, clone ADKA01804	2.2
			Hs.98706		6.5
		W92142	Hs 271963	ESTs, Weakly similar to ALU5_HUMAN ALU SUBFAMILY SC SEQUENCE CONTAMINATION	13.1
			Hs.166109	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2	9.1
45			Hs.98750		13.1
	122114	AW161023	Hs.104921	ESTs	1.5
	122188	AA398838		gb:zt80d01.r1 Soares_testis_NHT Homo sapiens cDNA clone 5', mRNA sequence	3.3
		AA435936		EST	5.6
		AA329550		HCF-binding transcription factor Zhangfei	5.1 5.6
50	122257	AA436819	Hs.98899	ESTs	5.8
	122302	AA441801	Hs.104947	hypothetical protein FLJ22263 similar to nuclear receptor-binding SET-domain protein 1	2.0
	122341	AA443794	Hs.99010	ESTs	7.3
			Hs.303222		12.2
55	122309	AARGRESS	Hs.178222	FSTs	5.0
55	122371	AAAAAAA	Hs.336677	EST	7.6
	122378	AB032948	Hs.21356	hypothetical protein DKFZp762K2015	2.5
	122405	AA446572	Hs.303223	EST	2.8
	122412	AA446869	Hs.119316	ESTs	7.3
60	122415	AA446918	Hs.99088	EST	1.9
	122418	AA446966	Hs.99090	ESTs, Moderately similar to similar to KIAA0766 [H.saplens]	6.8
	122440	AW505139	Hs.9460	Homo sapiens mRNA; cDNA DKFZp547C244 (from clone DKFZp547C244)	2.6
	122446	AA447603	Hs.99123	EST	1.8 3.5
	122448	AA447626	MS.99127	EST	1.5
65	122458	A1266159 AW418788	Hs.104980	ESTs, Weakly similar to S43569 R01H10.6 protein - Caenorhabditis elegans [C.elegans]	9.7
	122460	AA448158	Hs 99152	EST , weakly similar to 545369 KO IT 10.0 protein - Caerioniabolis elegans (c.elegans)	4.8

	122490	AA448349	Hs.238151		6.1	
		AA448417			5.4	
					1.3	•
		AA449232			11.2	
5		AW959741			10.1	
,		AA779725			2.5	
					1.9	
		AA194055			9.5	
		AA452578				
• •		AA452601			11.0	
10		AK001910			3.4	
		AB040893			2.0	
		AI028173			1.7	
	122599	AL355841	Hs.99330	hypothetical protein FLJ23588	4.4	
	122602	AA411925	Hs.301960	ESTs	4.6	
15		AA453518			61.5	
		AA453630			10.7	
		AA453638			107.3	
					121.4	
		AA453641	115.140155		31.1	
20		AA453987	11- 444000	gu.Z-4ecuo.ai Guales_leaus_Mrii Florilo aapiella curio cione 3 , ila von acquellos	5.6	
20					8.5	
		AA456859				
		Al376875			10.4	
		AW204530			81.8	
					3.6	
25		AA460581			4.5	
	122837	AA461509	Hs.293565		2.7	
	122838	AA460584	Hs.334386	ESTs	75.3	
	122854	AA600235	Hs.9625	NIMA (never in mitosis gene a)-related kinase 6	7.7	
		AI929374			5.8	
30		AA335721			1.3	
		BE539656			4.1	
				Janus kinase 2 (a protein tyrosine kinase)	5.3	
				Homo sapiens cDNA: FLJ21766 fis, clone COLF7179	9.9	
		AW081394			5.3	
35		AA769410			13.9	
33					11.5	
		AA470074			1.7	
		AA470140				
		AA478951			5.0	
40		AW968324			15.4	
40				Homo sapiens cDNA FLJ11946 fis, clone HEMBB1000709	2.8	
	123034	AL359571	Hs.44054	ninein (GSK3B Interacting protein)	8.7	
	123072	A1382600	Hs.104308	ESTs, Weakly similar to KIAA1395 protein [H.sapiens]	8.8	
	123082	AA485360	Hs.105661	ESTs	3.9	
	123088	Al343652	Hs.105667	ESTs	3.8	
45		AA486256			7.4	
				myomegalin	2.8	
		T52027		ESTs, Weakly similar to I38022 hypothetical protein [H.sapiens]	2.4	
				Homo sapiens cDNA FLJ12371 fis, clone MAMMA1002434	15.6	
		AW451999			5.1	
50		AI734179			23.8	
50					5.2	
	123152	AW601773	HS.270259	ESIS		9.3
				ESTs, Weakly similar to RMS1_HUMAN REGULATOR OF MITOTIC SPINDLE ASSEMBLY 1 [H.s	apiensj	9.3
		AA496369		gb:zv37d10.s1 Soares ovary tumor NbHOT Homo sapiens cDNA clone IMAGE:755827 3' similar to	04.1	
		AA504757			6.9	
55		AA731404			3.6	
		AW450922			3.7	
	123466	AA599042	Hs.112503	S EST	7.4	
	123470	AW30328	5 Hs.303632	P. Human DNA sequence from clone RP11-110H4 on chromosome 5 Contains a pseudogene similar	r to 3.5	
	123471	AB021644	Hs.197219	zinc finger protein 14 (KOX 6)	5.2	
60	123475	BE439553	Hs 250528	Homo saplens, clone IMAGE:4098694, mRNA, partial cds	1.7	
00	123482	N95059	Hs.55098		1.6	
				2 Homo saplens cDNA FLJ14680 fis, clone NT2RP2004242, weakly similar to	2.4	
	123400	VIVI38U30	113,3340U2	6 KIAA1080 protein; Golgi-associated, gamma-adaptin ear containing, ARF-binding protein 2	2.2	
	123000	A4430038	1 118.100546	chieffo-40 -4 Course testis AUT Harra series a DNA clone 31 mDNA courses	7.8	
66		AA609170		gb:af12a12.s1 Soares_testis_NHT Homo sapiens cDNA clone 3*, mRNA sequence		
65		AA602964		gb:no97c02.s1 NCL_CGAP_Pr2 Homo sapiens cDNA clone, mRNA sequence	2.8	4.7
	123658	AA609364	11. 405:	gb:zu71d09.s1 Soares_testis_NHT Homo saplens cDNA clone IMAGE:743441 3' similar to contain	is Alu.	1.7
	123674	A1269609	Hs.105187	7 kinesin protein 9 gene	5.7	

	123735	NM 013241	He 95231	FH1/FH2 domain-containing protein	10.0
		AA609891			5.2
				Huntingtin interacting protein E	30.6
				EST, Weakly similar to S65657 alpha-1C-adrenergic receptor splice form 2 [H.sapiens]	2.1
5		AA620586		gb:ae60g05.s1 Stratagene lung carcinoma 937218 Homo sapiens cDNA clone IMAGE:951320 3'	2.7
	123951	AB012922	Hs.173043	metastasis-associated 1-like 1	6.2
				choline dehydrogenase .	4.4
		L42542		ralA binding protein 1	7.0
10			Hs.270016		8.1
10		AI950314	Hs.154762	HIV-1 rev binding protein 2	3.7 1.2
		H05635 BE463721		topolsomerase-related function protein 4-2 putative G protein-coupled receptor	3.1
				ESTs, Weakly similar to AF161356 1 HSPC093 [H.sapiens]	5.7
		AA640891			3.1
15		D87454		KIAA0265 protein	3.5
10		Al267847	110.102.000	gb:aq49a10.x1 Stanley Frontal NB pool 2 Homo sapiens cDNA clone similar to contains	57.1
		AA317338	Hs.7535	COBW-like protein	2.8
				NY-REN-18 antigen	7.1
		N34059		gb:yv28h09.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone 3' similar to contains A	lu 3.3
20		H13540	Hs.82202		2.9
				Human DNA sequence from clone 989H11 on chromosome 22q13.1-13.2. Contains part of a	7.8
		R10084	Hs.113319	kinesin heavy chain member 2	2.6
		N53935		9b:yv59d09.s1 Soares fetal liver spleen 1NFLS Homo saplens cDNA clone 3', mRNA sequence	7.9 7.8
25		H79433	Hs.268997		3.3
23		AA669097 N71076		ESTs, Weakly similar to neuronal thread protein AD7c-NTP [H.saplens]	4.5
				FLVCR protein	3.2
				Homo sapiens cDNA FLJ13533 fis, clone PLACE1006371	5.8
				hypothetical protein	9.3
30				sorting nexin 17	3.5
		N92593	Hs.313054		6.1
		.AW297702			8.3
	124661	R48170	Hs.78436	EphB1	5.6
25				ESTs, Weakly similar to M3K9_HUMAN MITOGEN-ACTIVATED PROTEIN KINASE KINASE	7.9
35		R09166	Hs.191148		5.7
		R22952	Hs.268685		11.3 9.0
		AW368528		Homo saplens mRNA for KIAA 1771 protein, partial cds	8.1
		R41772	Hs.100838		4.9
40		R41933		ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE	2.8
		R43543	Hs.100912	Homo saplens cDNA: FLJ22726 fis, clone HSI15005	5.1
	124809	AL355722	Hs.106875	Homo saplens EST from clone 35214, full insert	4.2
	124811	R46068	Hs.288912	hypothetical protein FLJ22604	14.2
	124812	R47948	Hs.188732		7.9
45				Homo saplens cDNA FLJ13558 fis, clone PLACE1007743	6.6
		AA501669			2.3 2.7
		AW975868			2.7
		R63652 R65763	Hs.137190 Hs.101477		23.9
50		Al382555		bromodomain-containing 1	2.0
50				GDP-mannose pyrophosphorylase A	4.4
				hypothetical protein FLJ22242	2.7
		H37941	Hs.101883		5.7
	124903	AW296713	Hs.221441	ESTs	32.4
55				ESTs, Weakly similar to ALUB_HUMAN IIII ALU CLASS B WARNING ENTRY II! [H.saplens]	22.8
		R99978		ESTs, Moderately similar to B34087 hypothetical protein [H.sapiens]	6.1
		AI078645		murine leukemia viral (bmi-1) oncogene homolog	1.9
	124980	T40841	Hs.98681		4.5
60	125002	T59338 T79815	Hs.269463 Hs.279793	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE CONTAMINATION	4.9 5.0
JU		179815 179956	Hs.100588		135.3
		T81310	Hs. 100500		5.4
		A1472068		KIAA1856 protein	5.6
		T96595		ESTs, Weakly similar to ALUF_HUMAN IIII ALU CLASS F WARNING ENTRY III [H.saplens]	1.8
65	125115	T97341		gb:ye57e05.s1 Soares fetal liver spleen 1NFLS Homo saplens cDNA clone IMAGE:121856 3' sim	ilar to
	125125	Al222382	Hs.240767	Human DNA sequence from clone RP1-12G14 on chromosome 6q24.1-25.2. Contains the 5' end	of the gene
	125147	W38150		Emplrically selected from AFFX single probeset	1.7

9.6 1.5

	425404	14144057	11- 444000	FOT	10.7
		W44657	Hs.144232		
				ESTs, Moderately similar to ALUB_HUMAN IIII ALU CLASS B WARNING ENTRY III [H.sapiens]	1.3
	125255	AF098162	Hs.118631	timeless (Drosophila) homolog	9.4
		AW401809		KIAA1150 protein	1.5
5					8.0
,		Al123705			
				Homo sapiens cDNA: FLJ21814 fis, clone HEP01068	1.5
	125660	AW292171	Hs.23978	scaffold attachment factor B	5.9
	125827	NM_003403	RHe 97496	YY1 transcription factor	1.2
		U29589			
10			Hs.7138	cholinergic receptor, muscarinic 3	6.4
10		AW409701		baculoviral IAP repeat-containing 5 (survivin)	14.3
	126202	AA157632	Hs.272630	vacuolar proton pump delta polypeptide	2.4
				a disIntegrin and metalloproteinase domain 10	9.1
				CGI-89 protein	17.0
		AW966158		Homo sapiens cDNA FLJ12789 fis, clone NT2RP2001947	12.8
15	128355	AW293012	Hs.161623	ESTs	7.3
	128493	D87466	Hs.240112	KIAA0276 protein	3.1
		D87466		KIAA0276 protein	1.3
		BE173977			9.4
	128527	AA504583	Hs.101047	transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)	1.5
20	128528	R39234	Hs.251699	ESTs, Weakly similar to IDN4-GGTR14 [H.sapiens]	2.8
	128595	U31875		short-chain alcohol dehydrogenase family member	12.1
				Rho GTPase activating protein 8	2.3
				GIOT-3 for gonadotropin inducible transcription repressor-3	1.3
	128608	BE267994	Hs.102419	zinc finger protein	7.1
25				hypothetical protein ASH1	1.3
				DKFZP434A043 protein	3.2
					2.0
				CGI-47 protein	
		AA458542			1.4
	128656	AA458542	Hs.10326	coatomer protein complex, subunit epsilo	1.3
30				diptheria toxin resistance protein required for diphthamide biosynthesis (Saccharomyces)-like 2	2.4
				Homo sapiens, Similar to RIKEN cDNA 1700010L19 gene, clone MGC:16214, mRNA, complete c	
		W27939		hypothetical protein MGC5576	7.7
	128696	BE081143	Hs.225977	nuclear receptor coactivator 3	3.8
	128700	Y15221	Hs.103982	small inducible cytokine subfamily B (Cys-X-Cys), member 11	1.6
35		T85231	He 179661	tubulin, beta 5	7.6
				hypothetical protein FLJ10702	5.5
	128733	BE147740	Hs.104558	ESTs, Moderately similar to 138022 hypothetical protein [H.sapiens]	2.7
	128737	AF292100	Hs.104613	RP42 homolog	2.8
				proteasome (prosome, macropaln) subunit, alpha type, 4	4.4
40		Al470163		actin related protein 2/3 complex, subunit 4 (20 kD)	2.2
70					
	128/4/	ABU2/249	HS.104741	PDZ-binding kinase; T-cell originated protein kinase	2.8
	128772	BE302796	Hs.105097	thymidine kinase 1, soluble	5.3
	128781	N71826	Hs.105465	small nuclear ribonucleoprotein polypeptide F	53.9
			5He 105027	stem cell growth factor, lymphocyte secreted C-type lectin	13.3
45					
43				RD RNA-binding protein	2.6
				nuclear prelamin A recognition factor	2.2
	128830	BE281170	Hs.106357	valosin-containing protein	5.9
				Homo saplens mRNA; cDNA DKFZp586H0924 (from clone DKFZp586H0924)	1.6
				hypothetical protein FLJ13855	2.2
50					
30				hypothetical protein FLJ13855	1.9
	128868	AA419008	Hs.106730	chromosome 22 open reading frame 3	3.0
	128868	AA419008	Hs.106730	chromosome 22 open reading frame 3	2.2
			He 106778	ATPase, Ca++ transporting, type 2C, member 1	1.5
		F34856		Homo saplens, clone MGC:16362, mRNA, complete cds	13.3
55		R57988	Hs.10706		4.7
	128920	AA622037	Hs.166468	programmed cell death 5	1.4
		R67419		Homo sapiens cDNA FLJ12900 fis, clone NT2RP2004321	1.9
		Y13153		kynurenine 3-monooxygenase (kynurenine 3-hydroxylase)	7.2
		AA009647		a disintegrin and metalloproteinase domain 12 (meltrin alpha) (ADAM-12)	2.4
60				hypothetical protein DKFZp434N035	1.3
	128959	AJ580127	Hs.107381	hypothetical protein FLJ11200	10.9
		AW150697			1.4
		Al375672			1.3
				NICE-5 protein	14.0
65				Homo sapiens cDNA FLJ14028 fis, clone HEMBA1003838	1.6
	128995	AI816224	Hs.107747	DKFZP566C243 protein	1.9
	100010	AIDEOOR7		abane DE CO2 v4 NCL CCAD Vid42 Lione applicant a DNA close 21 mRNA consistence	20

				KIAAUSSU protein	0.0
	129021	AL044675	Hs.173081	KIAA0530 protein	2.5
				ubiquitin-conjugating enzyme E2L 3	3.4
	120076	VIVISDEBUE	He 226234	ESTs, Highly similar to T46422 hypothetical protein DKFZp434M2023.1 [H.saplens]	5.0
5					2.1
,		Al351010			17.1
		AA744610			2.7
	129095			thrombospondin 2	
	129096	AA463189	Hs.288906	WW Domain-Containing Gene	20.9
	129097	BE243933	Hs.108642	zinc finger protein 22 (KOX 15)	3.0
10	120000	AE146074	He 108660	ATP-binding cassette, sub-family C (CFTR/MRP), member 5	5.8
10					5.9
		W93048		hypothetical protein MGC2747	6.3
				KIAA0050 gene product	
				hypothetical protein PRO2577	1.8
	129192	AA286914	Hs.183299	ESTs	2.1
15				tatexin protein	3.2
		N57532		KIAA1415 protein	5.8
				osteoglycin (osteoinductive factor, mimecan)	8.0
			HS. 109435	Osleddy (Osledniotave lactor, miniecary	2.9
	129228	U40714	Hs.239307	tyrosyl-tRNA synthetase	3.2
				polyadenylate binding protein-interacting protein 1	
20	129254	AA252468	Hs.1098	DKFZp434J1813 protein	2.6
	129255	AI961727	Hs.109804	H1 histone family, member X	7.3
		W26392		ESTs, Weakly similar to S13495 pregnancy zone protein [H.sapiens]	9.6
			Hs.110122		1.2
					5.1
~~		AA287239		Homo saplens cDNA FLJ11311 fis, clone PLACE1010102	4.6
25		H75334		F-box only protein 9	
	129347	BE614192	Hs.279869	melanoma-associated antigen recognised by cytotoxic T lymphocytes	7.6
	129362	U30246	Hs.110736	solute carrier family 12 (sodium/potassium/chloride transporters), member 2	6.7
				Homo sapiens done 23785 mRNA sequence	8.6
				SAR1 protein	1.4
30	400070	NIL 04000	OLL- 410003	CGI-99 protein	2.0
30	129372	NW_0 1003	9HS. 1 10003	Cores protein	7.4
	129403	AF149/85	HS.111126	pituitary tumor-transforming 1 Interacting protein	5.0
		Al267700			
	129404	A1267700	Hs.317584	ESTs	2.5
	129423	AA204686	Hs.234149	hypothetical protein FLJ20647	10.2
35		A1096988		ADP-ribosylation factor-like 7	8.0
55				Lsm3 protein	. 3.2
		AA188185			6.7
					3.6
		AA188185			7.1
				hypothetical protein AL110115	
40	129515	AF255303	Hs.112227	membrane-associated nucleic acid binding protein	2.5
				delta-tubulin	3.2 7.5
		W01296		hypothetical protein FLJ14784	7.5
		AA317841		hypothetical protein MGC2752	6.8
					2.0
		Ai923097			1.6
45	129575	F08282		progestin induced protein	
	129587	H14718	Hs.11506	Human clone 23589 mRNA sequence	6.8
	129588	BE408300	Hs.301862	postmelotic segregation increased 2-like 9	1.4
		N57423		HSPC055 protein	7.3
		AW403724			9.0
60	129354	AF005507	115.50505	DEVIS from the work of the part of the subject of DNA polymorphs 70th	1.6
50	129590	AFU3003/	ns.115521	REV3 (yeast homolog)-like, catalytic subunit of DNA polymerase zeta	2.2
		U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (melanoma, p16, Inhibits CDK4)	
		U38945	Hs.1174	cyclin-dependent klnase Inhibitor 2A (me	1.4
	129629	AK000398	Hs.11747	hypothetical protein FLJ20391	3.8
		AD000092		calreticulin	3.3
55				KIAA0440 protein	13.4
"	125075	U03749	A. 13. 17 £ 100	gb:Human chromogranin A (CHGA) gene, promoter an	14.1
	129000	003749		gu-Huitan Gilollogianin A (CHGA) gene, pronotes un	2.6
		AW748482		B7 homolog 3	
		Al304966			7.4
	129720	AA156214	Hs.12152	APMCF1 protein	2.0
60	129721	NM 00141	15Hs.211539	eukaryotic translation initiation factor 2, subunit 3 (gamma, 52kD)	1.7
-	120726	H15474		fatty acid desaturase 1	8.3
	420770	AK001676		hypothetical protein FLJ10814	1.8
	129770	ANDUIO/0	He 12400		5.4
	129779	AA394090	ms.12460	Homo saplens done 23870 mRNA sequence	
		AF052112			1.7
65				3 KIAA0931 protein	1.2
	129815	BE565817	Hs.26498	hypothetical protein FLJ21657	3.1
	420940	NIM DOGS	00He 12820	SnRNP assembly detection 1 homolog	1.8

		AL049999	Hs.85963	DKFZP564M182 protein	2.2
	129864	A1393237	Hs.129914	runt-related transcription factor 1 (acute myeloid leukemia 1; aml1 oncogene)	1.7
	129869	AI222069	Hs.13015	hypothetical protein similar to mouse Dnajl1	2.7
	129922	AF042379	Hs.13386	gamma-tubulin complex protein 2	4.5
5	129945	BF514376	Hs. 165998		1.8
	129953	AA412195	He 13740		2.5
					1.8
	129983	1100040			1.3
	120000	ADDAEDEE	115.152550	activating transcription factor 6	4.0
10					
10					1.6
		AA287325			4.0
		S73265	Hs.1473	gastrin-releasing peptide	1.8
		AL046962			2.8
1.5		AL135561			2.3
15		X53002			2.3
	130112	AA916785	Hs.180610		3.0
	130112	AA916785	Hs.180610	splicing factor proline/glutamine rich (2.1
	130128				1.8
	130135	AA311426	Hs.21635	tubulin, gamma 1	6.1
20	130211	NM_003358	3Hs.23703	ESTs, Moderately similar to CEGT_HUMAN CERAMIDE GLUCOSYLTRANSFERASE [H.sapiens]	1.6
	130212	D80001	Hs.152629	KIAA0179 protein	1.3
		R85367	Hs.51957		2.0
					3.2
		X79201			5.4
25		D81983			4.8
				NIMA (never in mitosis gene a)-related kinase 2	1.4
					2.6
					6.3
30		Z19084	MS. 172210	MUF1 protein	6.2
30					2.4
				putative methyltransferase	3.4
					8.5
		AL135301		hypothetical protein FLJ10849	1.4
25		AI077464	Hs.5011	RNA binding motif protein 9	3.3
35		N89487		KIAA0005 gene product	1.8
	130399	AW374106	Hs.155356		3.4
	130407	BE385099	Hs.334727	hypothetical protein MGC3017	2.3
	130409	NM_00119	7Hs.155419	BCL2-interacting killer (apoptosis-inducing)	2.7
	130419	AF037448	Hs.155489	NS1-associated protein 1	1.8
40	130441	U63630	Hs.155637	protein kinase, DNA-activated, catalytic polypeptide	2.3 3.9
		BE513202	Hs.15589	PPAR binding protein	3.9
		D90041		N-acetyltransferase 1 (arylamine N-acetyltransferase)	33.
		D90041		N-acetyltransferase 1 (arylamine N-acety	4.6
				adducin 1 (alpha)	2.7
45				H2B histone family, member B	5.0
		U49844	Hs.77613		4.3
		L38951		karyopherin (importin) beta 1	1.6
				KIAA0618 gene product	16.
		L32137	Hs.1584	cartilage oligomeric matrix protein (pseudoachondroplasia, epiphyseal dysplasia 1, multiple)	6.1
50		L32137	Hs.1584	cartilage oligomeric matrix protein (pse	5.3
50		AW876523		hypothetical protein FLJ12910	2.1
			No. 10929	TAN before protein PLA 12910	
		U64675		RAN binding protein 2-like 1	7.8
		AA321238		eukaryotic translation initiation factor 1A	1.5
55		AF062649			14.
22		Al907018	Hs.15977	Empirically selected from AFFX single probeset	4.7
		AA383092		replication protein A3 (14kD)	7.9
		AA232119		putative G-protein coupled receptor	3.3
		AF083208		apoptosis antagonizing transcription factor	1.2
		AB007891		KIAA0431 protein	5.6
60		AL042210		hypothetical protein DKFZp762N2316; KIAA1803 protein	1.4
		AA609738	Hs.16525	ESTs	1.5
		AI354355	Hs.16697	down-regulator of transcription 1, TBP-blnding (negative cofactor 2)	1.3
		M90516	Hs.1674	glutamine-fructose-6-phosphate transaminase 1	12.
		M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	2.4
65		AA383439		Spir-1 protein	15.
		BE246961		Homo saplens ubiquitin protein ligase (UBE3B) mRNA, partial cds	13.
	400074	VI 040043	No. 104040		4 6

	130675	AA442233	Hs.17731	hypothetical protein Ft.J12892	5.4
		AA652501		hypothetical protein MGC4692	5.0
		R68537	Hs.17962	ESTs	2.0
				bromodomain-containing 7	1.8
5	130714	Al348274	Hs.18212	DNA segment on chromosome X (unique) 9879 expressed sequence	2.0
	130730	AB007920	Hs.18586	KIAA0451 gene product	3.7
		H59696	Hs.18747	POP7 (processing of precursor, S. cerevisiae) homolog	3.1
			Hs.18879	chromosome 12 open reading frame	1.4
			Hs.18925	protein x 0001	5.7
10		AF258627	Hs.211562	ATP-binding cassette, sub-family A (ABC1), member 1	5.1
		AK000355	Hs.8899	sirtuin (silent mating type information regulation 2, S.cerevisiae, homolog) 5	5.2
	130815	AB018298	Hs.19822	SEC24 (S. cerevisiae) related gene family, member D	1.5
	130836	J05068	Hs.2012	transcobalamin I (vitamin B12 binding protein, R binder family)	15.7
	130841	AL157468	Hs.325825	Homo sapiens cDNA FLJ20848 fis, clone ADKA01732	2.8
15	130843	AA447492	Hs.20183	ESTs, Weakly similar to AF164793 1 protein x 013 [H.sapiens]	1.5
	130844	U76248	Hs.20191	seven in absentia (Drosophila) homolog 2	3.4
	130855	AJ243706	Hs.143323	putative DNA/chromatin binding motif	1.7
	130861	NM_01657	8Hs.20509	HBV pX associated protein-8	1.9
	130879	NM_00341	6Hs.2076	zinc finger protein 7 (KOX 4, clone HF.16)	1.4
20	130880	BE514434	Hs.20830	kinesin-like 2	2.1
		AL120837	Hs.20993	high-glucose-regulated protein 8	2.4
				sphingosine-1-phosphate lyase 1	1.7
			Hs.21189	DnaJ (Hsp40) homolog, subfamily A, member 2	1.8
		N79110	Hs.21276	collagen, type IV, alpha 3 (Goodpasture antigen) binding protein	2.3
25		BE382657		signal transducer and activator of transcription 1, 91kD	5.4
		N39842	Hs.301444		2.2
		BE398091		desmoplakin (DPI, DPII)	1.8 1.6
		T97401	Hs.21929	ESTs	
20		AV658308		thyroid hormone receptor interactor 3	1.6 1.2
30		A1879165	Hs.2227	CCAAT/enhancer binding protein (C/EBP), gamma	1.6
		AI826288		hypothetical protein MGC2628	7.4
		AA321649	Hs.2248	small inducible cytokine subfamily B (Cys-X-Cys), member 10	3.0
		AA321649		small inducible cytokine subfamily B (Cy	1.7
25		H23230	Hs.22481	ESTs, Moderately similar to A46010 X-linked retinopathy protein [H.saplens]	5.1
35	131060	AA194422	HS.22064	myosin VI	2.5
		AA194422	Hs.22607	myosin VI ESTs	7.1
	131070	N53344 AA749230		dollchyl-phosphate (UDP-N-acetylglucosamine) N-acetylglucosaminephosphotransferase 1 (2.0
		AA749230 AA749230		dollchyl-phosphate (UDP-N-acetylglucosam	1.9
40			Hs.226581		7.0
40		NM_00654		nuclear receptor coactivator 2	1.9
		BE280074		cyclin B1	5.8
		AW138839		ESTs	2.0
	131200	AA885699	He 24332	CGI-26 protein	7.0
45		H62087	Hs.31659	thyroid hormone receptor-associated protein, 95-kD subunit	7.5
45		N47468	Hs.59757	zinc finger protein 281	2.9
		D89053		fatty-acid-Coenzyme A Ilgase, long-chain 3	3.5
		AW383256		spectrin SH3 domain binding protein 1	2.8
		AL080080		thloredoxin domain-containing	2.8
50	131247	AL 043100	Hs.326190	fatty acid amide hydrolase	5.6
-			Hs.25227		5.7
		X80038		Homo saplens clone F19374 APO E-C2 gene cluster	1.3
				CGI-76 protein	5.0
			Hs.145696		1.8
55	131339	AF058696	Hs.25812	Nilmegen breakage syndrome 1 (nibrin)	2.6
	131339	AF058696	Hs.25812	Nijmegen breakage syndrome 1 (nibrin)	2.6
	131375	AW293165	5 Hs.143134	ESTs	5.4
				mitochondrial ribosomal protein L20	5.3
	131410	BE259110	Hs.279836	HSPC166 protein	2.2
60				SELENOPHOSPHATE SYNTHETASE; Human selenium donor protein	2.0
		AL046302		hypothetical protein FLJ21908	1.4
	131458	BE297567	Hs.27047	hypothetical protein FLJ20392	1.7
	131475	AA992841	Hs.27263	KIAA1458 protein	2.0
	131501	AV661958	Hs.8207	GK001 protein	2.6
65	131501	AV661958	Hs.8207	GK001 protein	1.6
	131511	AA732153	Hs.27865	Homo sapiens cDNA: FLJ21333 fis, clone COL02535	2.0

		BE268278		hypothetical protein MGC2592	7.4
	131543	AW966881	Hs.41639	programmed ceil death 2	2.2
	131544	AL355715	Hs.28555	programmed cell death 9 (PDCD9)	2.1
		NM_003512		H2A histone family, member L	1.7
5	131564		Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PLACE1004405	5.1
-	131564		Hs.28792	Homo saplens cDNA FLJ11041 fis, clone PL	1.8
				nucleoporin 50kD	5.0
				Homo sapiens mRNA; cDNA DKFZp761C029 (from clone DKFZp761C029); partial cds	1.8
		BE393822			1.3
10	131622		Hs.29692	Homo saplens cDNA FLJ11436 fis, clone HEMBA1001213	
10		AB037791		hypothetical protein FLJ10980	2.2
		AB037791		hypothetical protein FLJ10980	1.9
		AW410601		HSPC182 protein	2.9
	131653	AW960597	Hs.30164	ESTs	1.3
	131656	A1218918	Hs.30209	KIAA0854 protein	2.8
15	131669	X52486	Hs.3041	uracil-DNA glycosylase 2	2.8
		BE559681		KIAA0124 protein	5.6
		AA642831		putative DNA binding protein	2.9
	131722		Hs.311	phosphoribosyl pyrophosphate amidotransferase	3.4
		AK001641		inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein	3.8
20		X76732	Hs.3164	nucleobindin 2	2.9
20				nucleobindin 2	2.8
	131760		Hs.3164		3.4
			Hs.317	topoisomerase (DNA) I	25.5
				KiAA0948 protein	
0.5		BE267158		DKFZP586J0119 protein	5.5
25		D87077		KIAA0240 protein	2.4
		AW966127		Homo sapiens cDNA FLJ14656 fis, clone NT2RP2002439	7.9
		BE501849		high-mobility group 20B	1.4
	131798	X86098	Hs.301449	adenovirus 5 E1A binding protein	4.1
	131817	U20536	Hs.3280	caspase 6, apoptosis-related cysteine protease	4.2
30	131824	U28838	Hs.32935	TATA box blnding protein (TBP)-associated factor, RNA polymerase III, GTF3B subunit 2	3.5
		Al251317	Hs.33184	ESTs	5.1
		AA083764		hypothetical protein MGC3178	5.8
		BE502341		ESTs	13.7
		BE502341		ESTs	2.4
35		W17064	Hs 332848	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member	1 3.
				Homo sapiens, clone MGC:15961, mRNA, complete cds	8.7
	131000	AA0000014	He 231020	Homo sapiens, clone MGC:15961, mRNA, com	2.0
				Homo sapiens cDNA: FLJ22993 fis, clone KAT11914	5.5
		AA179298		stomatin-like 2	11.3
40					1.7
40				degenerative spermatocyte (homolog Drosophila; lipid desaturase)	5.2
		AA025976		ESTs	
		AF151048			2.7
		BE541211		Homo saplens cDNA FLJ11472 fis, clone HEMBA1001711	5.3
		BE252983		ubiquitin specific protease 1	2.3
45		AA355113		x 001 protein	1.5
			Hs.267448	hypothetical protein FLJ20039	2.3
	131965	W79283	Hs.35962	ESTs	1.4
	131971	BE567100	Hs.154938	hypothetical protein MDS025	3.5
	131977	U90441	Hs.3622	procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide II	6.5
50	131985	AA503020	Hs.36563	hypothetical protein FLJ22418	2.4
		AF053306		budding uninhibited by benzimidazoles 1 (yeast homolog), beta	2.1
		H56995	Hs.37372	Homo saplens DNA blnding peptide mRNA, partial cds	3.2
	132031	AF193844		COP9 complex subunit 7a	5.8
		BE266155		ciathrin-associated protein AP47	1.5
55		NM_00226			3.7
22				karyophenn alpha 3 (importin alpha 4) ESTs	1.4
		BE171921			5.8
		AV646076		ESTs	
		AW960474		ESTs	1.7
		AA857025		kinesin-iike 1	3.3
60	132180	NM_00446	0Hs.418	libroblast activation protein, alpha	14.7
		AA206153		mitochondriai ribosomai protein L37	5.5
		R42432	Hs.4212	ESTs .	4.4
				synaptosomal-associated protein, 29kD	2.2
	132207	BE206939	Hs.42287	E2F transcription factor 6	2.2
65	132235	AV658411	Hs.42656	KiAA1681 protein	7.8
		AB018324		KIAA0781 protein	1.5
	400000	AIRCONA	No. 141200		12

	132266	AA301228	Hs.43299	hypothetical protein FLJ12890	5.7
		AA227710		DKFZP586L151 protein	4.2
				hypothetical protein FLJ13089	2.1
		N36110	Hs.305971		1.5
5		AB023191		KIAA0974 protein	10.0
-		NM_01598		cytokine receptor-like molecule 9	1.9
		AW405882		cortistatin	9.2
		N37065	Hs.44856	hypothetical protein FLJ12116	2.0
		AW067708			6.5
10		AW572805		ESTs	3.8
		AF155582		core1 UDP-galactose:N-acetylgalactosamine-alpha-R beta 1,3-galactosyltransferase	1.5
		Al279892		sorting nexin 14	12.5
		AA312135		HSPCO34 protein	28.3
		AL135094		hypothetical protein FLJ14495	1.9
15		AA100012		hypothetical protein FLJ12085	1.9
		AW973521			6.1
		AB011084		KIAA0512 gene product; ALEX2	1.7
		AW169847		KIAA1634 protein	8.6
		AI224456		H.saplens polyA site DNA	5.2
20		X16660		RAB4, member RAS oncogene family	1.4
		AW885606		ESTs	6.1
		T78736	Hs.50758	SMC4 (structural maintenance of chromosomes 4, yeast)-like 1	3.3
		AA306105		SEC22, vesicle trafficking protein (S. cerevisiae)-like 1	2.0
		AA454132		mitochondrial ribosomal protein L16	2.9
25		BE388673		hypothetical prolein MGC10433	2.2
		BE568452		protein regulator of cytokinesis 1	7.3
		AW674699		suppressor of G2 allele of SKP1, S. cerevisiae, homolog of	1.7
		AW631437		TH1 drosophila homolog	7.1
		AK001484		CGI-45 protein	2.2
30		AA345547		hypothetical protein FLJ13287	2.2
		H12751	Hs.5327	PRO1914 protein	6.8
		BE262677			14.0
		A1796870		DNA segment on chromosome X (unique) 9928 expressed sequence	11.4
		U51127	Hs.54434	hypothetical protein MGC1715	1.9
35		AB018319		KIAA0776 protein	2.6
-				collagen, type VIII, alpha 2	2.0
		F11875	Hs.5534	Homo sapiens cDNA FLJ12961 fis, clone NT2RP2005645	1.5
		NM 00460		Sjogren syndrome antigen A2 (60kD, ribonucleoprotein autoantigen SS-A/Ro)	3.0
		Al142265		geranylgeranyl diphosphate synthase 1	2.4
40		Al189075		hypothetical protein MGC4840	12.4
		AA010233		glutamyl-prolyl-tRNA synthetase	14.6
		AA125985		thymosin, beta, identified in neuroblastoma cells	2.7
		Y10275	Hs.56407	phosphoserine phosphatase	3.0
				KIAA0493 protein	2.3
45		Al142133			1.8
		AI026701		KIAA0310 gene product	3.7
		U07418	Hs.57301		1.8
		AB007944		KIAA0475 gene product	5.9
		BE313625		solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2	8.7
50		AI815189	Hs.57475	sex comb on midleg homolog 1	6.4
		N27852	Hs.57553	tousled-like kinase 2	3.6
				CD44 antigen (homing function and Indian blood group system)	2.8
	132833	U78525	Hs.57783	eukaryotic translation initiation factor 3, subunit 9 (eta, 116kD)	14.6
				Homo sapiens clone PP1596 unknown mRNA	1.6
55		F12200	Hs.5811	chromosome 21 open reading frame 59	2.5
-		U09716		lectin, mannose-binding, 1	1.4
				RAB10, member RAS oncogene family	4.2
				ESTs, Moderately similar to AF116721 89 PRO2168 [H.sapiens]	2.8
		AW007683		KIAA1266 protein	2.0
60		NM_00485		Rho-associated, coiled-coll containing protein kinase 2	1.6
-	132891	BE267143	He 59271	U2(RNU2) small nuclear RNA auxillary factor 1 (non-standard symbol)	1.4
		AW503667		ring finger protein 15	5.4
		A1936442		hypothetical protein FLJ10808	6.1
				Homo saplens cDNA FLJ11095 fis, clone PLACE1005374	7.1
65		W78714	Hs.60257		2.8
00		T79136		Homo sapiens mRNA for KIAA1724 protein, partial cds	6.1
		AIR17165		hynothetical protein FL.113222	10.3

	132942	AA554458	Hs.197751	KIAA0666 protein	1.8
	132952	AI658580	Hs.61426	Homo sapiens mesenchymal stem cell protein DSC96 mRNA, partial cds	2.2
		AA576635		CGI-48 protein	4.9
	132972	AA034365	Hs.288924	Homo saplens cDNA FLJ11392 fis, clone HEMBA1000575	2.7
5	132973	AA035446	Hs.323277	ESTs	5.3
	132977	AA093322	Hs.301404	RNA binding motif protein 3	3.2
		AA040696		ESTs	1.3
	132994	AA112748	Hs.279905	clone HQ0310 PRO0310p1	3.0
	133012	AA847843		Homo saplens, clone IMAGE:3351295, mRNA	10.3
10				UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GalNAc-T	7) 2.
			Hs.6289	hypothetical protein FLJ20886	1.3
			Hs.6390	Homo sapiens clone FLB3344 PRO0845 mRNA, complete cds	6.0
		AW500374		PRO0149 protein	5.3
		BE247441		protein with polyglutamine repeat; calcium (ca2+) homeostasis endoplasmic reticulum protein	4.9
15		AK001628		KIAA0483 protein	3.5
		AA808177	Hs.65228	ESTs	13.1
		AF198620	Hs.65648	RNA binding motif protein 8A	1.3
		H94227	Hs.6592	Homo sapiens, clone IMAGE:2961368, mRNA, partial cds	2.2
		Z11695		mitogen-activated protein kinase 1	1.3
20				hypothetical protein MGC2745	17.1
		AW955632		ESTs, Weakly similar to S19560 proline-rich protein MP4 - mouse [M.musculus]	1.8
		X97795	Hs.66718	RAD54 (S.cerevislae)-like	4.9 3.1
		A1275243		hypothetical protein FLJ20671	4.4
25		AI801777	Hs.6774	ESTs Homo sapiens, Similar to bromodomain-containing 4, clone IMAGE:3542455, mRNA, partial cds	1.7
23		A1492924	Hs.6831	golgi phosphoprotein 1	6.0
				ADP-ribosylation factor-likė 1	1.5
		AI567421		Homo sapiens, clone IMAGE:3544662, mRNA, partial cds	1.4
		AI160873	Hs.69233	zinc finger protein	5.6
30			Hs 293937	ESTs, Weakly similar to FXD2_HUMAN FORKHEAD BOX PROTEIN D2 [H.sapiens]	1.9
		M76477		GM2 ganglioside activator protein	4.7
		BE297855		NRAS-related gene	5.0
		AA102670		gamma-aminobutyric acid (GABA) A receptor, pi	2.7
	133321	T79526	Hs.179516	Integral type I protein	9.3
35	133327	AL390127		Kruppel-like factor 13	4.4
	133347	BE257758	Hs.71475	acid cluster protein 33	1.8
		Al016521	Hs.71816	v-akt murine thymoma viral oncogene homolog 1	5.5
		AA292811		non-metastatic cells 5, protein expressed in (nucleoside-diphosphate kinase)	2.7
		AF231919		KIAA0539 gene product	1.7
40		AF245505		DKFZP564I1922 protein	1.8
		BE313555		KIAA1224 protein	1.7
		AI950382		phosphatidylserine receptor	1.3
		AW103364		Inhibin, beta A (activin A, activin AB alpha polypeptide)	16.1
45			Hs.237225		12.2
43		AL031591		phosphotidylinositol transfer protein, beta	10.4 1.2
			9Hs.274382		1.7
		AI659306 AW964804		protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) hypothetical protein FLJ22237	11.1
		W45623	Hs.74571	ADP-ribosylation factor 1	2.8
50		AL037159		proteasome (prosome, macropain) 26S subunit, non-ATPase, 2	2.9
50			Hs.108327		2.5
		AU077050		translin	1.5
		X75346	Hs.75074	mitogen-activated protein kinase-activated protein kinase 2	2.1
		BE391579		Fas-activated sertne/threonine kinase	1.3
55			Hs.172589		2.2
-		AA393273		transcription factor 6-like 1 (mitochondrial transcription factor 1-like)	1.5
		NM_00288		RAP1, GTPase activating protein 1	5.7
		NM_00489		H2A histone family, member Y	25.5
		NM_00204		glycyl-tRNA synthetase	15.8
60		NM_00040		exostoses (multiple) 2	3.3
		U25849	Hs.75393	acid phosphatase 1, soluble	1.6
	133690	AV661185		mitochondrial ribosomal protein L19	4.1
	133720	L27841	Hs.75737	pericentriolar material 1	1.5
	133722	AW969976	Hs.279009	matrix Gla protein	6.3
65				Homo sapiens, Similar to likely ortholog of yeast ARV1, clone IMAGE:3506392, mRNA	3.9
	133757	T52946	Hs.196209	RAE1 (RNA export 1, S.pombe) homolog	1.7

1.5

	133765	M62194	Hs.75929	cadherin 11, type 2, OB-cadherin (osteobiast)		1.5
			Hs.76152	decorin		3.5
			Hs.301064			6.8
		M34338	Hs.76244	spermidine synthase		2.6
5		AL133921		retinoblastoma-binding protein 2		1.4
,		D50525	Hs.699			8.0
				peptidylprolyl Isomerase B (cyclophilin B)		13.5
				putative human HLA class II associated protein I		2.2
		AA147026		ESTs		1.8
10		W29092	Hs.7678	cellular retinoic acid-binding protein 1		
10		U86782		26S proteasome-associated pad1 homolog		2.0
				discs, large (Drosophila) homolog 5		2.8
			Hs.76989	KIAA0097 gene product		6.7
			Hs.183874			2.5
		U30872	Hs.77204	centromere protein F (350/400kD, mltosin)		3.0
15		U30825	Hs.77608	splicing factor, arginine/serine-rich 9		1.4
		D86326		vesicle docking protein p115		5.4
	133929	NM_00630	6Hs.211602	SMC1 (structural maintenance of chromosomes 1, yeast)-like 1		4.9
		L17128	Hs.77719	gamma-glutamyl carboxylase		3.7
	133941	BE244332	Hs.77770	adaptor-related protein complex 3, mu 2 subunit		12.1
20		X81789	Hs.77897	splicing factor 3a, subunit 3, 60kD		9.7
		Al908165		GATA-binding protein 3 (T-cell receptor gene activator)		3.1
		AL040328	Hs.78202	SWI/SNF related, matrix associated, actin dependent regulator of chromatin		1.3
		AI824113	Hs.78281	regulator of G-protein signalling 12		9.7
				RNA binding protein; AT-rich element binding factor		2.4
25		D31764		sorting nexin 17		2.5
		NM_00359		culin 3		1.3
		U41060	Hs.79136	LIV-1 protein, estrogen regulated		4.2
			2Hs.79305	KIAA0255 gene product		2.2
		H86504		protein phosphatase 2, regulatory subunit B (B56), epsilon Isoform		5.0
30			Hs.197803			3.2
50		AF107463		splicing factor 30, survival of motor neuron-related		2.5
						2.1
		NM_00028		peroxisomal biogenesis factor 7		9.1
		NM_00040		glucose-6-phosphate dehydrogenase		2.8
25		BE300078		Homo sapiens, clone IMAGE:3535294, mRNA, partial cds		1.8
35		AI878910	Hs.3688	cispiatin resistance-associated overexpressed protein		2.0
		Ai906291	Hs.81234	immunoglobulin superfamily, member 3		
		AW502505		Homo sapiens cDNA: FLJ21927 fis, clone HEP04178, highly similar to HSU90909		2.5 2.8
		U61397	Hs.81424	ubiquitin-like 1 (sentrin)		
40				KIAA1100 protein		10.4
40		AW903838		chondroitin sulfate proteoglycan 2 (versican)		1.9
		N92036	Hs.81848	RAD21 (S. pombe) homolog		
		NM_00492		SEC24 (S. cerevisiae) related gene family, member C		2.3
		AW291946		interleukin 6 signal transducer (gp130, oncostatin M receptor)		13.0
		AA339449		phosphoribosyiglycinamide formyltransferase, phosphoribosyiglycinamide synthetase,		8.8
45		X06560	Hs.82396	2',5'-oligoadenylate synthetase 1 (40-46 kD)		1.5
				hypothetical protein MGC3222		8.1
		Ai589941		Homo saplens, Similar to tumor differentially expressed 1, clone IMAGE:3639252, mRN	IA, partial c	ds 2.
	134391	AA417383	Hs.82582	integrin, beta-like 1 (with EGF-like repeat domains)		4.1
	134395	AA456539	Hs.8262	lysosomal		1.7
50	134403	AA334551	Hs.82767	sperm specific antigen 2		2.6
	134405	AW067903	Hs.82772	collagen, type XI, alpha 1		1.3
	134411	BE272095	Hs.167791	reticulocalbin 1, EF-hand calcium binding domain		3.2
	134415	Ai750762	Hs.82911	protein tyrosine phosphatase type IVA, member 2		1.9
	134421	AU077196	Hs.82985	collagen, type V, aipha 2		10.3
55	134424	Z44190	Hs.83023	peroxiso mai biogenesis factor 11B		2.4
	134446	AA112036	Hs.83419	KIAA0252 protein		1.2
	134447	M58603	Hs.83428	nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)		1.6
	134470	X54942	Hs.83758	CDC28 protein kinase 2		2.1
	134480	NM_00500	0Hs.83916	Empirically selected from AFFX single probeset		5.3
60		X82153	Hs.83942	cathepsin K (pycnodysostosis)		2.5
		AW246273		threonyl-tRNA synthetase		2.1
		AA425473		KIAA0971 protein		3.8
				hypothetical protein FLJ10709		2.4
	134520	BE091005	Hs.74861	activated RNA polymerase li transcription cofactor 4		6.7
65		AW411479		FK508-binding protein 4 (59kD)		2.3
05	134577	BE244323	Hs.85951	exportin, tRNA (nuclear export receptor for tRNAs)		5.5
	134582	AA927177	Hs.86041	CGG trinlet repeat hinding protein 1		5.8

	134612	AW068223	Hs.171581	ubiquitin C-terminal hydrolase UCH37	2.2
	134624	AF035119	Hs.8700	deleted in liver cancer 1	2.0
	134632			chloride channel 3	2.3
		AK001741		hypothetical protein FLJ10879	1.4
5		AA256106		ESTs ·	72.9
	134666	BE391929	Hs.8752	transmembrane protein 4	8.5
	134687	U62317	Hs.88251	arylsulfatase A	6.0
		NM_003474		a disintegrin and metalloproteinase domain 12 (meltrin.alpha)	4.3
		BE161887		anaphase-promoting complex subunit 10	2.3
10	134714		Hs.890	lysosomal	6.7
			Hs.89232	chromobox homolog 5 (Drosophila HP1 alpha)	2.3
				F-box only protein 6	2.9
				ring finger protein 22	6.6
	134746		Hs.89476	CD2 antigen (p50), sheep red blood cell receptor	2.3
15		AW630803		lamin B1	6.2
10				Integral membrane protein 1	1.9
		AD001528		spermine synthase	1.8
		AW451370		adaptor-related protein complex 1, gamma 2 subunit	1.4
			Hs.90207	hypothetical protein MGC11138	1.4
20				5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase	5.6
20		BE268326		KIAA0007 protein	2.8
		D26488	Hs.90315		1.7
		AI879195		15 kDa selenoprotein	1.7
		AA532963		Homo sapiens cDNA FLJ13100 fis, clone NT2RP3002255	2.1
25		AW885909		PRO1073 protein	1.3
25		AW401361		protein phosphatase 2 (formerly 2A), catalytic subunit, alpha isoform	
			Hs.286049	phosphosenne aminotransferase	2.1
		R50333	Hs.92186	Leman coiled-coll protein	2.3
		AB037835		KIAA1414 protein	1.6
20	135022	NM_00040	8Hs.93201	glycerol-3-phosphate dehydrogenase 2 (mitochondrial)	3.9
30				hypothetical protein FLJ12619	6.2
		AW503733		KIAA1488 protein	2.0
_		AB036063		p53-inducible ribonucleotide reductase small subunit 2 homolog	1.3
		AF027219		zinc finger protein 202	7.1
~ ~		AA081258			3.2
35		Al093155	Hs.95420	JM27 protein	2.5
				px19-like protein	1.4
		AA477514		translin-associated factor X	5.0
		N26427	Hs.9634	ESTs, Highly similar to C10_HUMAN PUTATIVE C10 PROTEIN [H.sapiens]	6.1
		T78802	Hs.96560	hypothetical protein FLJ11656	4.6
40	135243	BE463721	Hs.97101	putative G protein-coupled receptor	5.6
		AI028767			3.5
	135257	AW291023		ESTs, Weakly similar to A46010 X-linked retinopathy protein [H.sapiens]	1.2
		AI088775	Hs.55498	geranylgeranyl diphosphate synthase 1	2.6
	135274	AA448460	Hs.112017	GE36 gene	5.3
45	135294	AA150320	Hs.9800	protein kinase Nimu-R1	9.1
	135295	AI090838	Hs.98006	ESTs	2.4
	135307	AI743770	Hs.98368	ESTs, Weakly similar to KIAA0822 protein [H.sapiens]	13.3
	135321	AI652069	Hs.98614	ribosome blnding protein 1 (dog 180kD homolog)	2.6
			Hs.183418	cell division cycle 2-like 1 (PITSLRE proteins)	8.3
50		AA373452		Homo saplens cDNA FLJ10174 fis, clone HEMBA1003959	1.5
		U05237	Hs.99872	fetal Alzhelmer antigen	4.9
		X78592	Hs.99915	androgen receptor (dihydrotestosterone receptor, testicular feminization; spinal and bulbar	2.0
		R50333	Hs.92186	Leman coiled-coil protein	2.6
		AB037835		KIAA1414 protein	1.4
55		NM_00040		glycerol-3-phosphate dehydrogenase 2 (mi	1.6
-				hypothetical protein FLJ12619	1.4
		AW503733		KIAA1488 protein	1.8
		AB036063		p53-inducible ribonucleotide reductase s	2.5
		AF027219		zinc finger protein 202	1.5
60		AA081258			2.1
UU		Al093155	Hs.95420		4.4
				JM27 protein	14.9
				px19-like protein	14.9
		AA477514		translin-associated factor X	
15		N26427	Hs.9634	ESTs, Highly similar to C10_HUMAN PUTATI	1.7
65		T78802	Hs.96560	hypothetical protein FLJ11656	6.1
	135243	BE463721	HS.9/101	putative G protein-coupled receptor	2.7

	135257	AW291023	Hs.97255		7.6
			Hs.55498		1.8
		AA448460			4.1 1.2
5		AA150320			4.8
3			Hs.98006 Hs.98368		5.8
			Hs.98614	ribosome binding protein 1 (dog 180kD ho	12.3
				cell division cycle 2-like 1 (PITSLRE pr	5.7
	135361	AA373452	Hs.167700	Homo saplens cDNA FLJ10174 fis, clone HE	7.9
10	135389		Hs.99872		1.9 13.9
	135400	X78592	Hs.99915	androgen receptor (diffydrosastosterono i	5.3
				THE TAT Specific letter 1	2.2
					1.4
15				MSTP033 protein	5.2
	310085		Hs.101248	Homo sapiens clone IMAGE:32553, mRNA seq	2.3
		AA808229		2013	2.8
		NM_00705	7Hs.42650		2.0 5.5
20		A1268997			1.4
20	322221	AA902256			1.3
		AF118083		PRO1912 protein	2.9
				hypothetical protein	1.6
	323541	AF292100	Hs.104613		1.8
25		BE278431			1.6 6.1
		AL034548		GIVI (SEX DEIGHIMMING TEGROT I) BOX EX	5.6
		AI580090 R73727	Hs.48295 Hs.101617	THE TICHOLOG INTING	2.6
		AB000115		hypothetical protein, expressed in osteo	2.4
30		Al267592		SERS protein kinase 1	1.5
		AW304454			4.2
		AA381133		ingri-riobility group (nonitations and insee	23.6 5.8
		R57256	Hs.82037	TATA DOX Distalling protein (151) accounts	1.3
35		S79895 NM_00691	Hs.83942		1.6
33		U72937	Hs.96264		2.3
		U22376	Hs.1334	v-myb aylan myeloblastosis viral oncogen	1.6
	421225	AA463798	Hs.102696		3.5
				Total old Topicostatic protein	4.9 3.1
40	421828	AW891965	Hs.279789		1.9
	421983	AA302744	HS.110364	popularipion, isomoraso o (oraspinii)	2.4
		NM_01432			4.1
		AF165883		prefoldin 2	7.0
45	424001	W67883	Hs.137476	paternally expressed 10 (PEG10; KIAA105	4.9
	425182	AF041259	Hs.155040	zinc finger protein 217	3.4 2.1
	425284	AF155568	Hs.155489		7.5
				DEAD/H (Asp-Glu-Ala-Asp/His) box polypep GW128 protein	1.7
50		AW500533		splicing factor, arginine/serine-rich 11	2.4
50		AB001636		DEAD/H (Asp-Giu-Ala-Asp/His) box polypep	3.8
	438449	AK001333	Hs.6216	Homo sapiens hepatocellular carcinoma-as	5.6
		F13386	Hs.7888	Homo saplens clone 23736 mRNA sequence	2.0 7.5
55		AF167572	Hs.12912	skb1 (S. pombe) homolog	2.2
22		AA151520 AI017574	Hs.17409	hypothetical protein MGC4485 cysteine-rich protein 1 (intestinal)	2.8
		BE620592		ESTs, Weakly similar to S16506 hypotheti	1.7
		NM_00367	7Hs.22393	density-regulated protein	5.9
	449687	W68520	Hs.331328	intermediate filament protein syncollin	5.6
60	450701	H39960	Hs.288467	Homo saplens cDNA FLJ12280 fis, clone MA	1.4 4.7
			Hs.184771	Inuclear factor I/C (CCAAT-binding transc Transcription factor	2.9
	452401	N78223	He 285166	5 Homo sapiens cDNA FLJ20845 fis, done AD	12.1
	453157	AF077036	Hs.31989	DKFZP586G1722 protein	4.7
65	453658	BE541906	Hs.87819	Homo sapiens, clone MGC:2492, mRNA, comp	1.3
	100833	AF135168	Hs.108802	N-ethylmalelmide-sensitive factor	3.2
	102481	U50360		gb:Human calcium, calmodulin-dependent p	6.2

	102827	BE244588	Hs.6456	chaperonin containing TCP1, subunit 2 (b	7.9	ð
	103549	BE270465	Hs.78793	protein kinase C, zeta	2.0)
	104331	AB040450	Hs.279862	cdk Inhibitor p21 binding protein	5.3	3
	110018	AW579842	Hs.104557	hypothetical protein FLJ10697	2.0	
5	115008	AK001827	Hs.87889	helicase-mol	5.7	1
	119075	M10905	Hs.287820	fibronectin 1	1.3	
	119615	AL034423	Hs,75875	ubigultin-conjugating enzyme E2 variant	2.9	Ð
	125006	BE065136	Hs.145696	splicing factor (CC1.3)	1.7	7
	127609	X80031	Hs.530	collagen, type IV, alpha 3 (Goodpasture	2.4	
10	129209	R62676	Hs.17820	Rho-associated, coiled-coil containing p	5.2	
	129917	M30773		protein phosphatase 3 (formerly 2B), reg	4.5	
	130182	BE267033	Hs.192853	ubiquitin-conjugating enzyme E2G 2 (homo	11	
	130365	W56119	Hs.155103	eukaryotic translation initiation factor	3.3	3
	131135	NM_01656	9Hs.267182	TBX3-iso protein	1.3	
15	131853	AI681917	Hs.3321	ESTs, Highly similar to IRX1_HUMAN IROQU	3.2	
	131881	AW361018	Hs.3383	upstream regulatory element binding prot	14	
	132726	N52298	Hs.55608	hypothetical protein MGC955	3.0	
	135193	X95525	Hs.96103	TATA box binding protein (TBP)-associate	2.7	
	409487	H19886		gb:yn57a05.r1 Soares adult brain N2b5H	2.3	
20	416040	AW819158	Hs.289044	Homo saniens cDNA FLJ12048 fis, clone HE	7.4	1

TABLE 4A

Table 4A shows the accession numbers for those pkeys lacking unigeneID's for Table 4. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

	Pkey:		ique Eos probi		number									
	CAT number:		ne cluster nun	nber										
	Accession:		nbank accessi	ion numbers										
15														
	Pkey	CAT number	er Accession	15										
	122645	30686 -15	AA609170											
		371681_1	AA602964	AA600200										
20		16505	M21259	701003200										
20		656394 1	AI267847 I	1127261										
		1642364_1	N34059 N4											
		1657509 1	N53935 N											
		3128128	U50360	33530										
25		11052 -2	X89059											
23		19346 14		N33063 N21	419 H70059	D24044	H70057							
	110000	13540_14 .	103797	100600 1421	4 A090042	4407531	8 4 408340	3 4407650	A AA07899	2 440849	AANA18	81 AA11391	3 AA113892	
			AA083821 A	A134801 AA	182953 AA	170343 AA	062835 A4	1075419 A	A063293 A	A071252 A	A078900 A	A062836 A	W974305	
	120290	160212_1	AA190577		/UZ333 /VIII	,, 00-10 10	100200070		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
30		328626 1		N971220 AA4	93469 T63	200								
50		44573.2	A1950087	N70208 PQ70	AU MISSER	A1308119	AW967677	N35320	AJ251473 H	59397 AW	971573 R9	7278 W010	59 AW967671	
	120412	44370_2	AA908598	AA251875 A	1820501 AIS	20532 W	R7891 T859	04 1 17 145	6 T82391 B	E328571 T	75102 R34	1725 AA884	922 BE328517	
			A1219788	A ARRAGA NO	2578 F134	23 44927	794 AJ5602	51 AW874	068 AL 134	043 AW23	363 AA66	3345 AW00	8282 AA488964	
			AA283144	AIRGUSB7 AI	250344 AI7	11346 AI6	89062 AA2	82915 AW	102898 AI8	72193 AI7	3273 AW	173586 AW	150329 Al653832	
35			A1762688	AA988777 AA	488892 AT	56394 AV	V103813 A	539642 A	A642789 A	A856975 A	N505512 /	A1961530 AV	V629970	
-			BE612881	AW276997	W513601	W512843	AA044209	AW85653	38 AA18000	9 AA3374	99 AW961	101 AA2516	69 AA251874	
			AI819225	AW205862 A	683338 Ale	58509 AV	V276905 AI	633006 AA	1972584 AA	908741 A	N072629 A	W513996 A	A293273	
			AA969759	N75628 N22	388 H84729	H60052	T92487 AIC	22058 AA	780419 AA	551005 W8	0701 AW6	13456 Al37	3032 Al564269	
			F00531 H8	33488 W3718	1 W78802 I	R66056 AI	1002839 R6	7840 AA30	00207 AW9	59581 T63	226 F0400	5		
40	129019	44573_2	A1950087	N70208 R970	40 N36809	Al308119	AW96767	7 N35320 A	Al251473 H	59397 AW	971573 R9	7278 W010	59 AW967671	
			AA908598	AA251875 A	1820501 All	320532 W	87891 T859	904 U7145	6 T82391 B	E3285717	75102 R3	4725 AA884	922 BE328517	
			Al219788	AABB4444 NS	2578 F134	93 AA927	794 A15602	51 AW874	068 AL134	043 AW23	5363 AA66	3345 AW00	8282 AA488964	
			AA283144	AI890387 AI	950344 A17	41346 AI6	89062 AA2	82915 AW	102898 Ale	72193 AI7	63273 AW	173586 AW	150329 Al653832	
			Al762688	AA988777 AA	488892 Al	356394 AV	N103813 A	1539642 A	A642789 A	4856975 A	W505512 /	A1961530 AV	N629970	
45			BE612881	AW276997 A	W513601	AW512843	3 AA044209	AW85653	38 AA18000	9 AA3374	99 AW961	101 AA2516	69 AA251874	
			Al819225	AW205862 A	683338 A18	58509 AV	V276905 AI	633006 A/	4972584 AA	1908741 A	N072629 A	\W513996 A	A293273	
													3032 Al564269	
			F00531 H	B3488 W3718	1 W78802 I	R66056 A	1002839 R6	7840 AA31	00207 AW9	59581 T63	226 F0400	5		_
	120695	9683_3	AA976503	Al917802 A	.953664 AA	404613 A	A428771 B	E280542 A	W194691	A1927301 /	41740458 A	1796100 AIS	935603 AW052210	J
50				A1633384 A	425910 All	017004 AI	241295 AA	402816 AA	1291468					
		275673_1		AA435847										
		283769_1		AA442889 A	A417233 A	A442223								
		305217_1		AA454061										
		150431_1		AA836869										
55		genbank_A		AA609364										
		genbank_A		AA620586										
		genbank_T		T97341										
			ND_entrez_W3		W38150									
		382979_1	AA199686											
60	120274	genbank_A	A1//U51	AA177051										
	113196	genbank_T	1000007	T57317										
	120504	genbank_A	A256837	AA256837										

120639 genbank AA286942

AA286942

	113702	genbank_AA346495 genbank_T97307	AA346495 T97307	
	129680		1_001275 J03483 J03915 Al214509 AW245744 AL046455 AA318960 Al741505 AA843875 Al829382 Al560122 055958 Al684005 D53170 AA854091 Al025609 D53119 D54729 D55504 D55377 D55313 AW512244 AA846441	
5		AW043898	Al969102 AA405741 Al091983 AA788784 AA706586 AA854361 AW470949 AA843095 AA772028 Al148432	
			.A782478 AA910064 A1220384 AA781296 AA843881 AA854064 AA843125 AA843419 AA319036 AA319054 V32275 A1584185 C05724 AA789023 A1686818 D54392 A1022485 AA431410 AA854232 W39212 W15214 AA894	1444
			vazzi 3 aigo+103 coo7 z4 aa7 63023 aigoob 18 do4354 aigc2463 aa43 i4 10 aa634232 wasa 12 w 132 i4 aa634 N167381 aw245389 aa319430 aa335156 aig42646 aa327030 aa725170 T27943 aa889304 aa976699 aig870(
		AI621107 A	J865540 AA772107 C06286 AA319661 AA405992	
10		entrez_J05614 J05614		
	117247	genbank N21032		
	110501	genbank H55748		
	103392	entrez_X94563X94563		
		genbank AA127818		
15		NOT FOUND entrez	W37933	
		genbank AA252395		
		genbank AA412112		
		genbank AA412497		
		genbank AA427950		
20		714071_1 AA496369	AA498646	
		genbank AA236672		
			V402806 T10231	
	403407	1134770_1 1113000 A	1402000 1 1023 1	

TABLE 5: Figure 5 from BRCA 001 US

Table 5 shows genes upregulated in tumor tissue compared to normal breast tissue.

	Pkev:	Unique Eos probeset identifier number
	ExAccn:	Exemplar Accession number, Genbank accession number
	UnigenelD:	Unigene number
10	Unigene Title:	Unigene gene title
	R1:	Ratio of tumor to normal breast tissue

	Pkey	ExAccn	UnigeneiD	UnigeneTitle	R1
15	, way	LARCOII	Olligeneid	Dingeneriae	•••
13	100114	X0230B	Hs.82962	thymidylate synthetase	2.9
	100147		Hs.136348	osteoblast specific factor 2 (fasciclin	7.5
		H60720	Hs.81892	KIAA0101 gene product	9.2
		AW247529		platelet-activating factor acetylhydrola	2.7
20					5.7
20	100666		Hs. 169610	CD44 antigen (homing function and Indian	9
	100667		Hs.169610	CD44 antigen (homing function and Indian	
	100668		Hs.169610	CD44 antigen (homing function and Indian	7.6
		AW502935		PTK2 protein tyrosine kinase 2	53.2
~-		AK000405		ubiquitin-like 4	11.4
25	101031		Hs.151738	matrix metalloproteinase 9 (gelatinase B	8.2
	101045			gb:Human proliferating cell nuclear anti	5
		J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)	3.4
		AI494299	Hs. 16297	COX17 (yeast) homolog, cytochrome c oxid	6.3
		NM_01215		coagulation factor Vili-associated (Intr	5.7
30		AF064853		guanine nucleotide binding protein (5.6
		M81057	Hs.180884	carboxypeptidase B1 (tissue)	14.4
	101806	AA586894	Hs.112408	S100 calclum-binding protein A7 (psorias	8.9
			8Hs.180612	peroxisomal membrane protein 3 (35kD, Ze	3.2
		AI904232	Hs.75323	prohibitin	8.4
35	102107	BE258602	Hs.182366	heat shock protein 75	1.4
	102165	BE313280	Hs. 159627	death associated protein 3	4.6
	102198	AW950852	Hs.74598	polymerase (DNA directed), delta 2, regu	4.3
	102217	AA829978	Hs.301613	JTV1 gene	6.7
	102220	U24389	Hs.65436	lysosomai	4.3
40	102302	AA306342	Hs.69171	protein kinase C-like 2	2.7
	102348	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member	2
		U33635	Hs.90572	PTK7 protein tyrosine kinase 7	6.2
	102455	U48705	Hs.75562	discoldin domain receptor family, member	6.9
	102568	W81489	Hs.223025	RAB31, member RAS oncogene family	5.3
45	102618	AL037672	Hs.81071	extracellular matrix protein 1	5.8
	102687	NM_007019	9Hs.93002	ubiquitin carrier protein E2-C	4.3
	102689	U96132	Hs.171280	hydroxyacyl-Coenzyme A dehydrogenase, ty	6
	102704	AU077058	Hs.54089	BRCA1 associated RING domain 1	1.9
	102705	T97490	Hs.50002	small inducible cytokine subfamily A (Cy	2.3
50	102801	BE252241	Hs.38041	pyridoxai (pyridoxine, vitamin B6) kinas	6.4
	102827	BE244588	Hs.6456	chaperonin containing TCP1, subunit 2 (b	5.6
	103060	NM 00594	0Hs.155324	matrix metalloproteinase 11 (MMP11; stro	4.5
	103080	AU077231	Hs.82932	cyclin D1 (PRAD1: parathyroid adenomatos	3.1
		AA205475		ribosomal protein S18	9.9
55		X72755	Hs.77367	monokine induced by gamma interferon	8.8
-		Al369285	Hs.75189	death-associated protein	5.6
		Al376722	Hs.180062	proteasome (prosome, macropain) subunit,	9.7
		BE270465		protein kinase C, zeta	7.9
			Hs.105737	hypothetical protein FLJ10416 similar to	6.5
60			Hs. 150675	polymerase (RNA) II (DNA directed) polyp	6.3
-		AW052006		PRP4/STK/WD solicing factor	10.9
		AI250789	Hs.32478	ESTs	5.6
		AA041276		3-phospholnositide dependent protein kin	12.3
		AA278898		hypothetical protein similar to small G	2
	104007	, ,, , , , , , , , , , , , , , , ,		/٢	-

	104896	AW015318	Hs.23165	ESTs	17.7
	104909	AW408164	Hs.249184	transcription factor 19 (SC1)	5
	104916	AW958157	Hs.155489	NS1-associated protein 1	1.7
	104919	AA026880	Hs.25252	prolactin receptor	1.4
5	104974	Y12059	Hs.278675	bromodomain-containing 4	1.4
	104978	Al199268	Hs.19322	Homo sapiens, Similar to RIKEN cDNA 2010	7.2
	105012	AF098158	Hs.9329	chromosome 20 open reading frame 1	3.3
	105039	AA907305	Hs.36475	ESTs	2.5
	105079	AA151342	Hs.12677	CGI-147 protein	9.5
10	105088	H58589	Hs.35156	Homo sapiens cDNA FLJ11027 fis, clone PL	2.2
	105393	AF167570	Hs.256583	interleukin enhancer binding factor 3, 9	5.4
	105547	AA262640	Hs.27445	unknown	9.3
	105564	BE616694	Hs.288042	hypothetical protein FLJ14299	1.4
	105658	AA985190	Hs.246875	hypothetical protein FLJ20059	9.4
15	105746	AW151952	Hs.46679	hypothetical protein FLJ20739	1.5
	105858	AF151066	Hs.281428	hypothetical protein	2.9
	105930	AF016371	Hs.9880	peptidyl prolyl isomerase H (cyclophilin	5.2
		AA533491	Hs.23317	hypothetical protein FLJ14681	6.8
	106350	AK001404	Hs.194698	cyclin B2	5.7
20	106359	AW390282	Hs.31130	transmembrane 7 superfamily member 2	6.3
		AA458882		fibulin 1	7.9
		NM_003595		tyrosylprotein sulfotransferase 2	7.7
		BE614802		hypothetical protein FLJ12549	4.5
		AW959893		hypothetical protein FLJ23293 similar to	16.2
25		AB037744		KIAA1323 protein	2.2
		N49809	Hs.11197	Homo sapiens, clone IMAGE:3343149, mRNA	
		BE156256	Hs.11923	hypothetical protein	6.6
		AF264750		myeloid/lymphoid or mixed-lineage leukem	1.8
		W15477	Hs.64639	glioma pathogenesis-related protein	6.1
30		AW732573		potassium voltage-gated channel, delayed	8.4
50		L42612	Hs.335952	keratin 6B	2.5
		BE153855		Ig superfamily receptor LNIR	2.2
		AW956103		pyruvate dehydrogenase kinase, isoenzyme	6.7
		AF129535		F-box only protein 5	7.1
35	108647			homeo box C10	9.8
		AB029000		KIAA1077 protein	7.2
		AK001431	Hs.5105	hypothetical protein FLJ10569	4
		AA156542		ESTs	1.4
		AA164293	Hs.72545	ESTs	2.9
40		AA375752	Hs.82719	Homo sapiens mRNA; cDNA DKFZp586F182	2 (f 2.9
		NM 01531		KIAA0942 protein	3.2
		AI668594	Hs.176588	ESTs, Weakly similar to CP4Y_HUMAN CYT	OC 4.2
		AI288666	Hs.16621	DKFZP434I116 protein	6.2
		H55748		qb:yq94a01.s1 Soares fetal liver spleen	6.1
45		AW190338	Hs.28029	hypothetical protein MGC11256	7.6
		BE044245		hypothetical protein MGC2963	9.3
		AA992380		gb:ot37g06.s1 Soares_testis_NHT Homo sap	
		NM_00586	4Hs.24587	signal transduction protein (SH3 contain	6.7
		N63823	Hs.269115	ESTs, Moderately similar to Z195_HUMAN Z	3.6
50		AK000136	Hs.10760	asporin (LRR class 1)	7.1
-		N90956	Hs.17230	hypothetical protein FLJ22087	7.9
		AA778711		eukaryotic translation initiation factor	6.9
		W46342	Hs.325081	Homo saplens, clone IMAGE:3659680, mRN	8.4
		BE298665		Homo sapiens mRNA; cDNA DKFZp564D016	(fr 10
55		AB029000		KIAA1077 protein	14.6
-		AA737033		ESTs, Moderately similar to 2115357A TYK	5.6
	113777			zinc finger protein 313	13.4
		Al269096	Hs.135578	chitobiase, di-N-acetyl-	1.3
		BE207480		Homo sapiens cDNA: FLJ22044 fis, done H	3.1
60	113834		Hs.6059	EGF-containing fibulin-like extracellula	11.3
00	113869	W57902	Hs.90744	proteasome (prosome, macropain) 26S subu	
	113870	AL079314		hypothetical protein, similar to (U06944	6.1
	113070	AW953484	Hs 3849	hypothetical protein FLJ22041 similar to	1.9
	11/275	AW515443	Hs.306117	KIAA0306 protein	15.8
65	114805	AA236177	Hs.76591	KIAA0887 protein	7.1
00	11/065	AI733881	Hs.72472	BMP-R1B	2.3
	44E061	A1751438	He /1271	Home caniens mRNA full length insert cDN	118

	115278	AK002163	Hs.301724	hypothetical protein FLJ11301	1.5
	115291	BE545072	Hs.122579		6.2
	115652		Hs.38178	hypothetical protein FLJ23468	10.6
					6.8
-		AF231023	Hs.55173		
5	115941	AI867451	Hs.46679	hypothetical protein FLJ20739	5.5
	115968	AB037753	Hs.62767	KIAA1332 protein	9.8
	116011	AL359053	Hs.57664	Homo sapiens mRNA full length Insert cDN	2.4
		AW499664		Human clone 23826 mRNA sequence	7.4
		AI272141	Hs.83484	SRY (sex determining region Y)-box 4	2.1
10					2.7
10				Integrin-linked kinase-associated serine	
		Al393666	Hs.42315	p10-binding protein	5.2
	117881	AF161470	Hs.260622	butyrate-induced transcript 1	5.7
	118528	AI949952	Hs.49397	ESTs	7.4
	119075		Hs.287820	fibronectin 1	5.7
15	119265	BE539706	Hs.285363	ESTs	1.4
13					8.4
	119349	T65004	Hs.163561	ESTs	
		AL117554	Hs.119908	nudeolar protein NOP5/NOP58	6.7
	119789	BE393948	Hs.50915	kallikrein 5 (KLK5; KLK-L2; stratum com	9.2
	120206	H26735	Hs.91668	Homo saplens clone PP1498 unknown mRNA	45.7
20	120253	AA131376	Hs.326401	fibroblast growth factor 12B	38.9
20	120297	AA191384	Hs.104072	ESTs, Weakly similar to Z195_HUMAN ZINC	
					6.4
	120325		Hs.104106	ESTs	
	120327			hypothetical protein FLJ20285	16.1
	120349	AW969481	Hs.55189	hypothetical protein	16.8
25	120356	AF000545	Hs.296433	putative purinergic receptor	28.1
	120371		Hs.104196	EST	12.4
		AL109963	Hs.123122	FSH primary response (LRPR1, rat) homolo	9.7
				hypotheticai protein DKFZp434D0127	32.6
	120300	AW969665	NS. 134040	FOR MANAGEMENT ON EPHONE	
		AW967985		ESTs, Moderately similar to ALU7_HUMAN A	
30	120396			eukaryotic translation initiation factor	12.5
	120418	AW966893	Hs.26613	Homo saplens mRNA; cDNA DKFZp586F132	3 († 11.4
	120472	AI950087		gb:wq05c02.x1 NCI_CGAP_Kld12 Homo sap	en 19.4
		AA253170	Hs.96473	EST	10.4
		AA280679	Hs.271445	ESTs, Weakly similar to ALU1_HUMAN ALU:	
25					10.2
35		BE244830	Hs.284228	ZNF135-like protein	
		AA282074	Hs.237323	N-acetylglucosamine-phosphate mutase	7.5
	120624	AW407987	Hs.173518	M-phase phosphoprotein homolog	52
	120695	AA976503		gb:oq30a04.s1 NCI_CGAP_GC4 Homo saple	ns 46.8
		AW449855	Hs.96557	Homo sapiens cDNA FLJ12727 fis, clone NT	5.9
40	120750		Hs.96693	ESTs, Moderately similar to 2109260A B c	7
70			Hs.193985		7.8
	120774			ESTs	
	120807		Hs.30002	SH3-containing protein SH3GLB2; KIAA1848	0.0
	120809	AA346495		gb:EST52657 Fetal heart II Homo sapiens	4.4
	120984	BE262951	Hs.99052	ESTs	5.6
45	121081	AA398721	Hs.186749	ESTs, Highly similar to 137550 mismatch	5.4
		AA406137	Hs.98019	EST	6
		AA494172	Hs.194417	ESTs	13.1
		AA402515	Hs.97887	ESTs	28
					6.2
		AA416653	Hs.181510	ESTs	
50	121549		Hs.98142	EST	7.4
	121558	AA412497		gb:zt95g12.s1 Soares_testis_NHT Homo sap	2.8
	121655		Hs.178072	Homo saplens mRNA; cDNA DKFZp434B102	3 (f 7.8
	121744		Hs.97514	ESTs	7.1
	121748		Hs.234545	hypothetical protein NUF2R	19.5
					7.9
55	121773	AB033022		KIAA1196 protein	
	121832	AW340797	Hs.98434	ESTs	5.8
	121839	AA425691	Hs.191606	ESTs, Highly similar to KIAA1048 protein	5
	121882	AA426376	Hs.98459	ESTs	5
	121911			gb:zw50f02.s1 Soares_total_fetus_Nb2HF8_	7.2
60			Hs.98668	EST	6.4
00	121999				6.5
	122013			ESTs	
	122036		Hs.271963	ESTs, Weakly similar to ALU5_HUMAN ALU	S 13.
	122356	AA443794	Hs.98390	ESTs	7.3
	122371	AA868555	Hs.178222	ESTs	5
65	122372			EST	7.6
33		AW41878		ESTs, Weakly similar to S43569 R01H10.6	9.7
	122400		Hs.238151	EST	6.1
	122490	J MM448349	ns.230131	E91	0.1

	122492 AA				5.4
				ESTs	11.2
				adaptor-related protein complex 1, sigma	10.1
5				EST	11
3	122607 AA4 122614 AA4				61.5 10.7
				ESTs	107.3
		453641		gb:zx48e06.s1 Soares_testis_NHT Homo sap	
				ESTs	5.6
10					8.5
	122829 AW	204530	Hs.99500	ESTs	81.8
	122838 AA	460584	Hs.334386	ESTs	75.3
			Hs.75367	Src-like-adapter	5.8
			Hs.115541	Janus kinase 2 (a protein tyrosine kinas	5.3
15			Hs.169896	ESTs	11.5
	123016 AW				2.8
			Hs.44054	ninein (GSK3B interacting protein)	8.7 5.1
			Hs.194024 Hs.270259	ESTs ESTs	5.2
20			Hs.105510	ESTs	3.6
20			Hs.112503	EST	7.4
			Hs.334802	Homo saplens cDNA FLJ14680 fis, clone NT	2.4
		609170			7.8
	123735 NM	013241	Hs.95231	FH1/FH2 domain-containing protein	10
25			Hs.234961	Huntingtin Interacting protein E	30.6
			Hs.270016	ESTs	8.1
		267847		gb:aq49a10.x1 Stanley Frontal NB pool 2	57.1
	124440 AA			Human DNA sequence from clone 989H11 on	7.8 8.3
30			Hs.102915 Hs.119878	ESTs, Weakly similar to M3K9_HUMAN MITC	
30			Hs.268685	ESTS VICENTY SITTING TO MISKS_FIOWARI WITC	11.3
			Hs.93560	Homo saplens mRNA for KIAA1771 protein,	9
	124768 AW			ESTs	8.1
	124788 R4	3543	Hs.100912	Homo sapiens cDNA: FLJ22726 fis, clone H	5.1
35			Hs.288912	hypothetical protein FLJ22604	14.2
			Hs.188732	ESTs	7.9
			Hs.86043	Homo saplens cDNA FLJ13558 fis, clone PL	6.6
	124860 R6 124903 AV		Hs.101477	EST ESTs	23.9 32.4
40	124903 AV		Hs.173939	ESTs, Weakly similar to ALUB_HUMAN iiii	22.8
-10			Hs.268892	ESTs, Moderately similar to B34087 hypot	6.1
			Hs.100588	EST	135.3
			Hs.100592	ESTs	5.4
		172068	Hs.286236	KIAA1856 protein	5.6
45		7341		gb:ye57e05.s1 Soares fetal liver spleen	9.6
			Hs.106932	ESTs	8
			Hs.58582	Homo sapiens cDNA FLJ12789 fis, clone NT	12.8
			Hs.251699 Hs.103441	ESTs, Weakly similar to IDN4-GGTR14 [H.s	2.8 7.1
50			Hs.103834	Homo sapiens, Similar to RIKEN cDNA 1700 hypothetical protein MGC5576	7.7
50			Hs.105097	thymidine kinase 1, soluble	5.3
		1826	Hs.105465	small nuclear ribonucleoprotein polypept	-53.9
			Hs.105927	stem cell growth factor; lymphocyte secr	13.3
			Hs.106730	chromosome 22 open reading frame 3	3
55	128891 F3	4856	Hs.292457	Homo saplens, clone MGC:16362, mRNA, co	m 13.3
		3153	Hs.107318	kynurenine 3-monooxygenase (kynurenine 3	7.2
			Hs.284233	NICE-5 protein	14
			Hs.107747	DKFZP566C243 protein	1.9
60		950087	Hs.326234	gb:wq05c02.x1 NCI_CGAP_Kid12 Homo sap ESTs, Highly similar to T46422 hypotheti	en 2.9 5
60		N296806 N744610	Hs.194431	palladin	17.1
		4463189	Hs.288906	WW Domain-Containing Gene	20.9
		57532	Hs.109315	KIAA1415 protein	5.8
			Hs.279869	melanoma-associated antigen recognised b	7.6
65	129362 U3	30246	Hs.110736	solute carrier family 12 (sodium/potassi	6.7
			9Hs.110803	CGI-99 protein	2
	129404 Ai	267700	Hs.317584	ESTs	5

	400400	*****	11-000040		6.7
		W01296	Hs.11360		7.5
	129587		Hs.11506		6.8
_	129629	AK000398	Hs.11747		3.8
5	129649	AD000092	Hs.16488	calreticulin	3.3
	129680	U03749		gb:Human chromogranin A (CHGA) gene, pro	14.1
	129689	AW748482	Hs 77873		2.6
		Al304966	Hs.12035		7.4
		AA156214			2
10					1.6
10		AA301116	Hs.142838		
	130097	AL046962	Hs.14845		2.8
		AA311426			6.1
	130211	NM_00335	8Hs.23703	ESTs, Moderately similar to CEGT_HUMAN C	1.6
	130242	X79201	Hs.153221	synovial sarcoma, translocated to X chro	5.4
15	130359		9Hs 277401	bromodomain adjacent to zinc finger doma	8.5
		W56119	Hs.155103	eukaryotic translation initiation factor	11
		BE513202			3.9
		D90041	Hs.155956		33.6
					2.7
20	130471		Hs.183706		
20	130503	BE208491	Hs.295112		16.1
	130511		Hs.1584		6.1
	130542	U64675	Hs.179825	RAN binding protein 2-like 1	7.8
	130553	AF062649		pituitary tumor-transforming 1	14.4
		AI907018	Hs.15977		4.7
25	130567	AA383092	Hs.1608		7.9
23	130574	AF083208	Hs. 16178	apoptosis antagonizing transcription fac	1.2
					12.1
	130617		Hs.1674	glutamine-fructose-6-phosphate transamin	
	130667			Homo sapiens ubiquitin protein ligase (U	13.9
••		R68537	Hs.17962	ESTs	2
30	130744		Hs. 18747	POP7 (processing of precursor, S. cerevi	3.1
	130757	AL036067	Hs.18925	protein x 0001	5.7
	130880	BE514434	Hs.20830	kinesin-like 2	2.1
	130944	BE382657	Hs.21486	signal transducer and activator of trans	5.4
		AA321649		smail Inducible cytokine subfamily B (Cy	7.4
35		AA194422	Hs.22564	myosin VI	5.1
55	131099		Hs.226581	COX15 (yeast) homolog, cytochrome c oxid	7
					3.3
	131135		9Hs.267182	TBX3-iso protein	
	131185	BE280074		cyclin B1	5.8
40	131225		Hs.31659	thyroid hormone receptor-associated prot	7.5
40	131245	AL080080	Hs.24766	thloredoxin domain-containing	2.8
	131283	X80038	Hs.339713	Homo sapiens clone F19374 APO E-C2 gene	1.3
	131569	AL389951	Hs.271623	nucleoporin 50kD	5
		AW410601		HSPC182 protein	2.9
		AA642831		putative DNA binding protein	2.9
45		D13757	Hs.311	phosphoribosyl pyrophosphate amidotransf	3.4
43		X76732	Hs.3164		2.9
				nucleobindin 2	7.9
	131793			Homo sapiens cDNA FLJ14656 fis, clone NT	
		BE502341		ESTs	13.7
		AA099014		Homo sapiens, clone MGC:15961, mRNA, cor	
50	131905	AA179298	Hs.3439	stomatin-like 2	11.3
	131941	BE252983	Hs.35086	ubiquitin specific protease 1	2.3
	131971	BE567100	Hs.154938	hypothetical protein MDS025	3.5
		NM_00446		fibroblast activation protein, alpha	14.7
		NM_00478		synaplosomal-associated protein, 29kD	7.8
55		AA227710		DKFZP586L151 protein	10
"					
		N36110	Hs.305971	solute carrier family 2 (facilitated glu	9.2
	132294	AB023191		KIAA0974 protein	2
	132348	AW067708	Hs.170311	heterogeneous nuclear ribonucleoprotein	12.5
	132370	AW572805	Hs.46645	ESTs	28.3
60	132384	AA312135	Hs.46967	HSPCO34 protein	6.1
		AA100012		hypothetical protein FLJ12085	8.6
	132465	AW169847		KIAA1634 protein	6.1
		AA454132		mitochondrial ribosomal protein L16	7.1
65		AW631437		TH1 drosophila homolog	14
65		A1796870	Hs.54277	DNA segment on chromosome X (unique) 992	12.4
		NM_00460		Sjogren syndrome antigen A2 (60kD, ribon	3.7
	132726	N52298	Hs.55608	hypothetical protein MGC955	14.3
				•	

	132731	AI189075	Hs.301872	hypothetical protein MGC4840	5.9
	132744	AA010233	Hs.55921		6.4
			Hs.295901		14.6
-		AI026701	Hs.5716		2.5
5			Hs.5737		4.2
	132833	NM_016154	Hs.57783	eukaryotic translation Initiation factor Homo sapiens clone PP1596 unknown mRNA	6.1
	132851		Hs.287912		6.1
	132891		Hs.59271		2.7
10	132941		Hs.6120	hypothetical protein FLJ13222	2.1
	132972	AA034365	Hs.288924	Homo sapiens cDNA FLJ11392 fis, clone HE	3.5
	132980	AA040696	Hs.62016		1.3
	132994	AA112748	Hs.279905		17.1
		AH39688			4.4
15	133177		Hs.66718		4.4
		AI801777	Hs.6774		5.5
		AI567421	Hs.273330	Homo sapiens, clone IMAGE:3544662, mRNA	
		Al160873	Hs.69233	zinc finger protein	16.1
20		AW956781 M76477	Hs.293937 Hs.289082	ESTs, Weakly similar to FXD2_HUMAN FORK GM2 ganglioside activator protein	10.4
20		AI950382	Hs.72660	phosphatidylserine receptor	5.7
		AW103364		inhibin, beta A (activin A, activin AB a	25.5
		AL037159	Hs.74619	proteasome (prosome, macropaln) 26S subu	1.7
	133594		Hs.172589	nuclear phosphoprotein similar to S. cer	2.6
25	133621	NM_004890		H2A histone family, member Y	13.5
	133720	L27841	Hs.75737	pericentriolar material 1	6.7
	133760	BE271766	Hs.181357	laminin receptor 1 (67kD, ribosomal prot	5.4
		BE622743		arfaptin 1	12.1
20		M34338	Hs.76244	spermidine synthase	9.7
30		AL133921	Hs.76272	retinoblastoma-binding protein 2	1.3
		D50525	Hs.699	peptidylprolyl isomerase B (cyclophilin cellular retinolc acid-binding protein 1	9.7 4.2
	133850 133865	W29092 AB011155	Hs.7678 Hs.170290	discs, large (Drosophila) homolog 5	5
	133881		Hs.77204	centromere protein F (350/400kD, mitosin	9.1
35	133924		Hs.325948	vesicle docking protein p115	1.8
		X81789	Hs.77897	splicing factor 3a, subunit 3, 60kD	10.4
	133989	AL040328	Hs.78202	SWI/SNF related, matrix associated, acti	2.6
	133997	Al824113	Hs.78281	regulator of G-protein signalling 12	13
		BE300078		Homo saplens, clone IMAGE:3535294, mRNA	
40		AW291946		Interleukin 6 signal transducer (gp130,	6.7
		X06560	Hs.82396	2',5'-oligoadenylate synthetase 1 (40-46	5.5
		AW362124		hypothetical protein MGC3222	5.8 72.9
		AW067903 AU077196		collagen, type XI, alpha 1 collagen, type V, alpha 2	6.7
45	134480			Empirically selected from AFFX single pr	6.2
73		AK001571		hypothetical protein FLJ10709	1.4
		AW411479		FK506-binding protein 4 (59kD)	2.8
		AW630803		lamin B1	6.1
	134790	BE002798	Hs.287850	Integral membrane protein 1	1.2
50		AD001528		spermine synthase	2.6
		Al701162	Hs.90207	hypothetical protein MGC11138	9.1
		D26488	Hs.90315	KIAA0007 protein	13.3
		A1097346 BE250865	Hs.286049 Hs.279529	phosphoserine aminotransferase px19-like protein	2 14.9
55	135101		Hs.9634	ESTs, Highly similar to C10_HUMAN PUTATI	
55		AI028767	Hs.262603	ESTs	12.2
		AW291023		ESTs, Weakly similar to A46010 X-linked	7.6
		A1743770	Hs.98368	ESTs, Weakly similar to KIAA0822 protein	5.8
		AI652069	Hs.98614	ribosome binding protein 1 (dog 180kD ho	12.3
60	135354	AA456454		cell division cycle 2-like 1 (PITSLRE pr	5.7
	135400		Hs.99915	androgen receptor (dihydrotestosterone r	13.9
	302276		Hs.323910	HER2 receptor tyrosine kinase (c	5.3
	317781		7Hs.42650	ZW10 Interactor	2.8 5.5
C.E	321114		Hs.78979 Hs.177507	Golgi apparatus protein 1 hypothetical protein	2.9
65		BE041451 U22376	Hs.177507 Hs.1334	v-myb avian myeloblastosis viral oncogen	2.3
		W67883	Hs.137476	paternally expressed 10 (PEG10; KIAA105	7
	72700	.,,,,,,,,		,,, , , ,	

	425182	AF041259	. Hs.155040	zinc finger protein 217	2.
	446999	AA151520	Hs.334822	hypothetical protein MGC4485	7.5
	450701	H39960	Hs.288467	Homo sapiens cDNA FLJ12280 fis, clone MA	5.
	452461	N78223	Hs.108106	transcription factor	4.
5	453157	AF077036	Hs.31989	DKFZP586G1722 protein	12

TABLE 5A

Table 5A shows the accession numbers for those pkeys lacking unigeneID's for Table 5. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	CAT number: Gene clu		Cos probeset identifier number stater under stater number number stater number number stater number					
15	Pkey	CAT number	Accessions					
20	123615 124385 110856	3068615 656394_1 19346_14	AA609170 Al267847 N27351 AA992280 N33063 N21418 H79958 R21911 H79957					
20	120472	44573_2	AISSOOR TATQOOR REYTAM NISBOON ALOOR 118 AVISGFOTT NISSISCI AIZST 473 HISSIST AWRYT1573 RYYZ78 WOT 1059 AWRSFOTT AAOOLSSIB AAQSBIRTS AIRSOOST AIRSOOST AWRST 4745 RESSOON AIRSOON AIRS					
25			AISS150 A W629970 BE61281 AW275997 AW513601 AW512923 AA04209 AW85638 AA160009 AA337499 AW551101 AA251669 AA251674 AB19225 AW205662 AI68338 AB58509 AW275905 AI633006 AA972584 AA968741 AW072629 AW313996 AA25273 AA969759 N75628 N22388 H84729 H60052 T35487 AI623058 AA760419 AA551005 W60701 AW513456 AB73032 AI564299 F00531 H83488 W37161 W78802 R66056 AU02839 R67840 AA300207 AW959581 T63226 F04005					
30	129019	44573_2	ABS002F N7202B R9700A ID6800 AD08119 AW66767T N3320 AIZ51473 H50397 AW971573 R97278 W01059 AW667671 AA903698 AA251675 AB20501 AI200532 W87891 T85904 U71466 T82391 BE328571 T75102 R34725 AA884922 BE328517 AIZ19788 AA88444 N92578 F13493 AA927794 AIG5022A TAV674068 AL134043 AW25363 AA665345 AW006282 AA488964 AA283144 AI800387 AI850344 AI74136 AI689062 AA282915 AW1072898 AIR72193 AI75373 AW173588 AW150234 BISS324 AI765898 AIR72193 AI753273 AW173588 AW150234 BISS3324 AI765898 AIR72193 AI75373 AW175389 AW150234 BISS3324 AI765688 AIR7548 AIR56978 AIR569					
35	•		AIB61530 AW629970 BE612881 AW276997 AW513601 AW512843 AA044209 AW856538 AA180009 AA337499 AW961101 AA251699 AA251674 AB19225 AW205862 AB63330 AB658958 AW276905 AIB53006 AA972584 AA368741 AM072629 AW513996 AA25273 AA869759 AW55628 N22388 HAZ7891 H00505 T39287 AID20568 AA760419 AA551009 W80701 AW613465 AB73032 AI564269 F00531 H83488 W37181 W78802 R66056 AI002839 R67840 AA300207 AW959581 T63226 F04005					
40	122618 125115	305217_1 genbank_T97	120695 9683,3 AA975033 AI917802 AA953864 AA404613 AA422771 BE280542 AW194691 AI827301 AI740458 A1796100 AI83903 AW052210 AA870201 AI633384 AA425910 AI017004 AI241295 AA402816 AA291468 AA453841 AA454061 311 177341					
45	120809 129680	genbank_AA3 23162_1	M6495 A.346495 U03749 NM, 01775 J03483 J03915 AI214509 AW245744 AL046455 AA318960 AI741505 AA843875 AI829382 AI560122 AI866989 D55958 AI864005 D53170 AA854091 AW25509 D53119 D54725 D55590 D55377 D55313 AW512244 AA84641 AW043898 A1869102 AA405741 A0919938 AA78874 AA706565 AA554361 AW470949 AA843095 AA7720268 AI146402 AI038109 AA782478 AA910064 AI220384 AA781256 AA643881 AA554064 AA843125 AA843196 AA319036 AA319054 AI273881 W36275 AIS64185 C5574 AA7881252 AI868818 D643928 AU246286 AA43419 AA854232 W36212 W15214					
50	101045 110501	entrez_J0561 genbank_H55	AA89441 AIB00081 AI 167391 AW243589 AA319430 AA335156 AD42646 AA327030 AA725170 T27943 AA889304 AA976699 AIB070 AIB21107 AIB65540 AA772107 C06286 AA319661 AA405992 4 J05614 7788 H55748					
55	121558 121911	genbank_AA4 genbank_AA4						

5

PCT/US02/02242 WO 02/059377

TABLE 6: Figure 6 from BRCA 001 US

Table 6 shows genes upregulated in tumor tissue compared to normal breast tissue.

5 Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number EXAccn: Unigene number
Unigene gene title
Ratio of tumor to normal breast tissue UnigenelD:

10

Unigene Title:

15	Pkey	ExAccn	UnigenetD	UnigeneTitle	R1
13	100147	D13666	He 1263/8	osteoblast specific factor 2 (fasciclin	7.5
		AW502935		PTK2 protein tyrosine kinase 2	53.2
					8.9
		U48705	Hs.75562	discoldin domain receptor family, member	6.9
20		X72755	Hs.77367	monokine induced by gamma interferon	8.8
20				sema domain, immunoglobulin domain (lg),	2.6
		BE246502 AW151952		hypothetical protein FLJ20739	1.5
		AW151952 AW503807		histone acetyltransferase	1.8
		AW503807 Al668594	HS.21907	ESTs, Weakly similar to CP4Y_HUMAN CYTOC	4.2
25.					3.2
23.				coat protein gamma-cop Homo saplens clone PP1498 unknown mRNA	45.7
		H26735	Hs.91668	fibroblast growth factor 12B	38.9
				ESTs, Weakly similar to Z195_HUMAN ZINC	15.2
	120297	AA191364	NS. 104072	M-phase phosphoprotein homolog	52
30			ns. 173010	gb:og30a04.s1 NCI_CGAP_GC4 Homo sapiens	46.8
30		AA976503	11-20000	SH3-containing protein SH3GLB2; KIAA1848	6.8
		AA346385			28
		AA402515		ESTs ESTs	61.5
		AA453518			107.
25		AA453638	HS.1618/3	gb:zx48e06.s1 Soares_testis_NHT Homo sap	31.1
35		AA453641			81.8
		AW204530		ESTs	75.3
		AA460584			30.6
		AA609955	Hs.234961		57.1
40		Al267847		9b:aq49a10.x1 Stanley Frontal NB pool 2	23.9
40		R65763	Hs.101477		22.8
		AI076343	Hs.173939 Hs.100588	ESTs, Weakly similar to ALUB_HUMAN IIII	135
		179956			53.9
	128781			small nuclear ribonucleoprotein polypept	20.5
45	129096	AA463189	HS.288906	WW Domain-Containing Gene melanoma-associated antigen recognised b	7.6
43					2.6
		AW748482		B7 homolog 3	16.1
				KIAA0618 gene product	6.1
		L32137	Hs.1584	cartilage oligomeric matrix protein (pse	7.4
		AA321649		small inducible cytokine subfamily B (Cy	2.9
50	131643	AW410601	HS.30026	HSPC182 protein	2.7
		AF151048			14.7
•		NM_00446		fibroblast activation protein, alpha	28.3
		AW572805		ESTs	17.
		AA112748			
55		AJ439688	Hs.6289	hypothetical protein FLJ20886	4.4
	133266	Al160873	Hs.69233	zinc finger protein	16.
		AW103364		inhibln, beta A (activin A, activin AB a	1.2
	134169	AI690916	Hs.178137		1.9
	134219	NM_00040	ZMS.80206	glucose-6-phosphate dehydrogenase	72.9
60		AW067903		collagen, type XI, alpha 1	2.8
		AW411479		FK506-binding protein 4 (59kD)	2.8
		R50333	Hs.92186	Leman colled-coll protein	
	135181		Hs.279529		14.9
	322556	BE041451	Hs.177507	hypothetical protein	2.9

TABLE 6A

Table 6A shows the accession numbers for those pkeys lacking unigeneID's for Table 6. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	-	•						
Pkey: CAT numbe Accession:		ber: Gene cl	Unique Eos probeset Identifier number r: Gene duster number Genbank accession numbers					
15								
	Pkey	CAT number	Accessions					
20	124385 120695	656394_1 9683_3	Al267847 N27351 AA976503 AI917802 AA953664 AA404613 AA428771 BE280542 AW194691 AI927301 AI740458 AI796100 AI935603 AW052210 AA970201 AI633384 AA425910 AI017004 AI241295 AA402816 AA291468					
20	122618	305217 1	AA451641 AA454061					

PCT/US02/02242 WO 02/059377

TABLE 7: Figure 7 from BRCA 001-1 US

Table 7 shows genes upregulated in tumor tissue compared to normal breast tissue. Open 5 reading frames in the sequences have been characterized as having a signal sequence (SS), a transmembrane domain (TM) or other.

10 Unique Eos probeset identifier number Pkey:

Exemplar Accession number, Genbank accession number ExAcon: UnigenelD:

Unigene Title:

Unigene number
Unigene gene title
Ratio of tumor to normal breast tissue R1:

15 ORF struct info: Structural characterization of open reading frame for the sequence of the gene

	Pkey	ExAcon	UnigenelD	UnigeneTitle	R1	ORF struct info
	100113	NM_001269	Hs.84746	chromosome condensation 1	2.3	TM
20	100114		Hs.82962	thymidylate synthetase	2.9	other
	100131	D12485	Hs.11951	ectonucleotide pyrophosphatase/phosphodi	1.9	other
	100146	BE185499	Hs.2471	KIAA0020 gene product	1.9	TM
	100147	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin	7.6	other
		H60720	Hs.81892	KIAA0101 gene product	9.2	other
25	100163	W44671	Hs.124	gene predicted from cDNA with a complete	1.6	other
	100220	AW015534	Hs.217493	annexin A2	2	other
		D38521	Hs.112396	KIAA0077 protein	1.5	other
	100271	BE160081	Hs.256290	S100 calcium-binding protein A11 (calgiz	13.5	other
		BE242802	Hs.154797	KIAA0090 protein	5.1	other
30		D50920	Hs.23106	KIAA0130 gene product	1.9	TM
		AW247529	Hs.6793	platelet-activating factor acetylhydrola	2.7	other
		NM 004341	Hs.154868	carbamoyl-phosphate synthetase 2, aspart	2	other
		NM_014791	Hs.184339	KIAA0175 gene product	2.6	other
		D84145	Hs.39913	novel RGD-containing protein	3.2	other
35		AW954324	Hs.75790	phosphatidylinositol glycan, class C	1.5	other
		D86978	Hs.84790	KIAA0225 protein	2	other
		M65028	Hs.81361	heterogeneous nuclear ribonucleoprotein	2.9	other
		NM_004415	Hs.74316	desmoplakin (DPI, DPII)	1.9	other
		L05424	Hs.169610	CD44 antigen (homing function and Indian	5.7	other
40		L05424	Hs.169610	CD44 antigen (homing function and Indian	9	7
		L05424	Hs.169610	CD44 antigen (homing function and Indian	7.7	other
		AW502935	Hs.740	PTK2 protein tyrosine kinase 2	53.2	other
		AF078847	Hs.191356	general transcription factor IIH, polype	6	other
		BE245294	Hs.180789	S164 protein	1.7	?
45		AF002225	Hs.180686	ubiquitin protein ligase E3A (human papi	1.5	other
73		AA157634	Hs.79172	solute carrier family 25 (mitochondrial	6.3	other
		AK000405	Hs.76480	ubiquitin-like 4	11.4	?
		H38765	Hs.80706	diaphorase (NADH/NADPH) (cytochrome b-5	1.6	other
		J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	8.4	other
50		J05614		gb:Human proliferating cell nuclear anti	5	?
-		N99692	Hs.75227	Empirically selected from AFFX single pr	2.6	other
		L06419	Hs.75093	procollagen-lysine, 2-oxoglutarate 5-dio	1.4	?
		AA020956	Hs.179881	core-binding factor, beta subunit	2	TM
	101706	AA284166	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	1.8	other
55	101210	AA333387	Hs.82916	chaperonin containing TCP1, subunit 6A (1.7	TM
33	401247	AA132666	Hs.78802	glycogen synthase kinase 3 beta	1.9	other
	101247	L18964	Hs.1904	protein kinase C, iota	1.5	other
	101245	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)	5.3	other
	101352	A1494299	Hs.16297	COX17 (yeast) homolog, cytochrome c oxid	4.2	other
60	101302	BE267931	Hs.78996	proliferating cell nuclear antigen	1.9	TM
50		M21259	0000	gb:Human Alu repeats in the region 5' to	1.6	TM
		NM_000546	Hs.1846	tumor protein p53 (Li-Fraumeni syndrome)	2.5	other
	101470	NM.002890	Hs.758	RAS p21 protein activator (GTPase activa	5.5	other

	101483	M24486	Hs.76768	procollagen-proline, 2-oxoglutarate 4-di	2.1	other
		J04977	Hs.84981	X-ray repair complementing defective rep	1.6	other
		AW248421	Hs.250758	proteasome (prosome, macropain) 26S subu	5.7	other
_		NM_012151	Hs.83363	coagulation factor VIII-associated (Intr	1.8	other
5		AF064853	Hs.91299	guanine nucleotide binding protein (G pr	5.6	?
		BE391804	Hs.62661	guanylate binding protein 1, Interferon-	2.4	other
		AW504089	Hs.179574	protein phosphatase 2 (formerly 2A), reg	1.3	other
		M74099	Hs.147049	cut (Drosophila)-like 1 (CCAAT displacem	2.1	?
10		M80244	Hs.184601	solute carrier family 7 (cationic amino	5	TM
10		M81057 AA306495	Hs.180884 Hs.1869	carboxypeptidase B1 (tissue)	14.4 5.2	SS, other
		AW409747	Hs.75612	phosphoglucomutase 1 stress-induced-phosphoprotein 1 (Hsp70/H	8.6	other
		AA586894	Hs.112408	S100 calcium-binding protein A7 (psortas	8.9	SS,TM
		NM 000318	Hs.180612	peroxisomal membrane protein 3 (35kD, Ze	3.2	TM
15		AA176374	Hs.243886	nuclear autoantigenic sperm protein (his	1.6	other
		AA441787	Hs.119689	glycoprotein hormones, alpha polypeptide	31.3	?
		AF182645	Hs.8024	IK cytokine, down-regulator of HLA II	1.8	other
		U41514	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polyp	2.4	other
		BE245149	Hs.82643	protein tyrosine kinase 9	1.3	other
20	102036	BE250127	Hs.82906	CDC20 (cell division cycle 20, S. cerevl	2	?
	102083	T35901	Hs.75117	Interleukin enhancer binding factor 2, 4	1.6	other
	102107	BE258602	Hs.182366	heat shock protein 75	1.4	other
		NM_001809	Hs.1594	centromere protein A (17kD)	1.8	other
~-		BE313280	Hs.159627	death associated protein 3	4.6	?
25		AW950852	Hs.74598	polymerase (DNA directed), delta 2, regu	4.4	?
	102217		Hs.301613	JTV1 gene	6.7	other
		U24389	Hs.65436	lysosomal	4.4	TM
		AW163390	Hs.278554	heterochromatin-like protein 1	1.9	TM
30		AL039104	Hs.159557	karyopherin alpha 2 (RAG cohort 1, impor	4.4 2.7	other ?
30		AA306342 BE298063	Hs.69171 Hs.77254	protein kinase C-like 2 chromobox homolog 1 (Drosophila HP1 beta	1.5	other
		BE378432	Hs.95577	cyclin-dependent kinase 4	2.3	TM
		U37519	Hs.87539	aldehyde dehydrogenase 3 family, member	2.5	TM
		AU077055	Hs.289107	baculoviral IAP repeat-containing 2	3.2	other
35		U39840	Hs.299867	hepatocyte nuclear factor 3, alpha	2	other
		U33635	Hs.90572	PTK7 protein tyrosine klnase 7	6.2	other
	102391	AA296874	Hs.77494	deoxyguanosine kinase	1.5	TM
	102455	U48705	Hs.75562	discoldin domain receptor family, member	7	other
		NM_001359	Hs.81548	2,4-dienoyl CoA reductase 1, mitochondri	1.8	SS,
40		U50939	Hs.61828	amyloid beta precursor protein-binding p	1.5	?
		AL080116	Hs.74420	origin recognition complex, subunit 3 (y	3.3	other
		Al188137	Hs.75193	COP9 homolog	2.1	other
		AF217197	Hs.74562	slah binding protein 1; FBP interacting	3.2	other
45		BE250944	Hs. 183556	solute carrier family 1 (neutral amino a	2.8	?
43		AF040253	Hs.70186	suppressor of Ty (S.cerevisiae) 5 homolo	5.7 2.3	
	102564	U59423 W81489	Hs.79067 Hs.223025	MAD (mothers against decapentaplegic, Dr RAB31, member RAS oncogene family	5.3	other
		U60808	Hs.152981	CDP-diacylglycerol synthase (phosphatida	2.1	other
	102581		Hs.77256	enhancer of zeste (Drosophila) homolog 2	1.6	?
50		U61232	Hs.32675	tubulin-specific chaperone e	2.1	other
-	102617		Hs.198767	COP9 (constitutive photomorphogenic, Ara	1.8	other
		AL037672	Hs.81071	extracellular matrix protein 1	5.8	other
		AL021918	Hs. 158174	zinc finger protein 184 (Kruppei-like)	1.3	other
	102663	NM_002270	Hs. 168075	karyopherin (importin) beta 2	1.8	TM
55	102676	BE262989	Hs.12045	putative protein	2.3	other
	102687		Hs.93002	ublquitin carrier protein E2-C	4.4	?
		U96132	Hs.171280	hydroxyacyl-Coenzyme A dehydrogenase, ty	6	?
		BE540274	Hs.239	forkhead box M1	4.2	other
CO		AU077058	Hs.54089	BRCA1 associated RING domain 1	1.9	other
60	102705		Hs.50002	small inductble cytokine subfamily A (Cy	2.3	SS,TM
	102750		Hs.66196	nth (E.coli endonuclease III)-like 1	1.2	TM other
		BE252241 U90549	Hs.38041 Hs.236774	pyridoxal (pyridoxine, vitamin B6) kinas high-mobility group (nonhistone chromoso	6.5 1.6	other
	102827		Hs.6456	chaperonin containing TCP1, subunit 2 (b	5.6	TM
65	102844		Hs.324275	WW domain-containing protein 1	1.3	TM
05	102868		Hs.77274	plasminogen activator, urokinase	4.4	other
		BE440142	Hs.2943	signai recognition particle 19kD	1.9	other
				-9		

	102935 BE561850	Hs.80506	small nuclear ribonucleoprotein polypept	2.4	?
	102968 AU076611	Hs.154672	methylene tetrahydrofolate dehydrogenase	2.7	other
	102983 BE387202	Hs.118638	non-metastatic cells 1, protein (NM23A)	3.1	other ?
5	102985 U95742	Hs.2707	G1 to S phase transition 1	5.2 1.6	other
3	103023 AW500470 103038 AA926960	Hs.117950	multifunctional polypeptide similar to S CDC28 protein kinase 1	2.5	TM
	103036 AA926960 103060 NM_005940	Hs.334883 Hs.155324	matrix metalloproteinase 11 (MMP11; stro	4.5	other
	103080 AU077231	Hs.82932	cyclin D1 (PRAD1: parathyroid adenomatos	3.1	other
	103089 D31152	Hs.179729	collagen, type X, aipha 1 (Schmid metaph	2.4	other
10	103177 BE244377	Hs.48876	famesyl-diphosphate famesyltransferase	3.5	other
10	103178 AA205475	Hs.275865	ribosomal protein S18	9.9	?
	103179 NM_001777	Hs.82685	CD47 antigen (Rh-related antigen, Integr	1.3	other
	103181 X69636	Hs.334731	Homo sapiens, clone IMAGE:3448306, mRNA,	2	other
	103185 NM_006825	Hs.74368	transmembrane protein (63kD), endoplasmi	1.6	other
15	103191 AA401039	Hs.2903	protein phosphatase 4 (formerly X), cata	2.5	other
	103193 NM_004766	Hs.75724	coatomer protein complex, subunit beta 2	2.2	TM
	103194 NM_004939	Hs.78580	DEAD/H (Asp-Giu-Ala-Asp/His) box polypep	6.3	TM
	103206 X72755	Hs.77367	monokine induced by gamma interferon	8.8	TM other
20	103223 BE275607	Hs.1708	chaperonin containing TCP1, subunit 3 (g	3 1.8	other
20	103232 X75962	Hs.129780	tumor necrosis factor receptor superfami death-associated protein	5.6	TM
	103238 Al369285 103297 NM_001545	Hs.75189 Hs.9078	immature coion carcinoma transcript 1	1.9	7
	103297 NM_001545 103330 AI803447	Hs.77496	small nuclear ribonucleoprotein polypept	2.5	other
	103349 X89059	115,77450	gb:H.sapiens mRNA for unknown protein ex	1.6	other '
25	103376 AL036166	Hs.323378	coated vesicle membrane protein	1.8	other
	103391 X94453	Hs.114366	pyrroline-5-carboxylate synthetase (glut	2.3	other
	103392 X94563		gb:H.saplens dbi/acbp gene exon 1 & 2.	4	TM
	103430 BE564090	Hs.20716	translocase of inner mitochondrial membr	1.3	other
	103491 AF264750	Hs.288971	myeiold/lymphoid or mixed-lineage leukem	5.7	?
30	103505 AL031224	Hs.33102	transcription factor AP-2 beta (activati	5.1	other
	103547 Al376722	Hs.180062	proteasome (prosome, macropain) subunit,	9.7	?
	103588 NM_006218	Hs.85701	phospholnositide-3-kinase, catalytic, al	2	other
	103613 NM_000346	Hs.2316	SRY (sex determining region Y)-box 9 (ca	1.3	? other
35	103621 BE379766 103622 AA609685	Hs.150675 Hs.278672	polymerase (RNA) li (DNA directed) polyp membrane component, chromosome 11, surfa	2.3	TM
33	103022 AA609003 103727 AI878883	Hs.296381	growth factor receptor-bound protein 2	1.3	other
	103754 Al015709	Hs.172089	Homo sapiens mRNA; cDNA DKFZp586i2022 (f	1.3	other
	103780 AA094752	Hs.169992	hypotheticai 43.2 Kd protein	7.6	?
	103795 H26531	Hs.7367	Homo saplens BTB domain protein (BDPL) m	1.3	SS,TM
40	103797 AA080912		gb:zn04d03.r1 Stratagene hNT neuron (937	1.6	other
	103813 AI042582	Hs.181271	CGI-120 protein	1.6	other
	103855 W02363	Hs.302267	hypotheticai protein FLJ10330	1.6	other
	103886 AK001278	Hs.105737	hypothetical protein FLJ10416 similar to	6.6	TM
40	104052 NM_002407	Hs.97644	mammaglobin 2	2.9	other
45	104079 AA251242	Hs.103238	ESTs	1.4	other
	104174 AA478984	Hs.6451	PRO0659 protein protocadherin aipha 9	5.6 1.6	TM other
	104227 AB002343 104275 Ai751970	Hs.98938 Hs.101067	GCN5 (general control of amino-acid synt	5.4	other
	104275 AI751970 104325 BE379766	Hs.150675	polymerase (RNA) II (DNA directed) polyp	6.4	other
50	104370 AA324597	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT	1.6	other
50	104423 R83113	Hs.1432	protein kinase C substrate 80K-H	5.2	other
	104482 AB037762	Hs.44268	myelin gene expression factor 2	1.2	other
	104667 Al239923	Hs.30098	ESTs	1.4	other
	104757 Ai694413	Hs.332649	olfactory receptor, family 2, subfamily	2.4	other
55	104804 Al858702	Hs.31803	ESTs, Weakly similar to N-WASP [H.sapien	1.4	other
	104806 AB023175	Hs.22982	KIAA0958 protein	2.4	other
	104827 AW052006	Hs.8551	PRP4/STK/WD splicing factor	10.9	other
	104846 Al250789	Hs.32478	ESTs	5.7	other
	104854 AA041276	Hs.154729	3-phosphoinositide dependent protein kin	12.3	? other
60	104867 AA278898	Hs.225979	hypothetical protein similar to small G	2.1 1.4	other
	104871 T78044 104896 AW015318	Hs.28893 Hs.23165	Homo saplens mRNA; cDNA DKFZp564O2364 (f ESTs	17.7	other
	104909 AW408164	Hs.249184	transcription factor 19 (SC1)	5.1	TM
	104909 AW408164 104916 AW958157	Hs.155489	NS1-associated protein 1	1.8	other
65	104919 AA026880	Hs.25252	projectin receptor	1.5	other
05	104930 AF043467	Hs.32893	neurexophilin 2	2.3	other
	104973 NM_015310		KIAA0942 protein	5.1	other
			•		

		Y12059	Hs.278675	bromodomain-containing 4	1.5	other
		AL136877	Hs.50758	SMC4 (structural maintenance of chromoso	2.4	other
	104978	Al199268	Hs.19322	Homo saplens, Similar to RIKEN cDNA 2010	7.3	other
_		AA937934	Hs.321062	ESTs	1.3	other
5		Al499930	Hs.334885	mitochondrial GTP blndlng protein	3.6	?
		BE379584	Hs.34789	dolichyl-diphosphooligosaccharide-protei	5.6	other
		AF098158	Hs.9329	chromosome 20 open reading frame 1	3.4	other
	105028	Al050715	Hs.2331	E2F transcription factor 5, p130-binding	2.2	other
		AB037716	Hs.26204	KIAA1295 protein	2.2	other
10	105045	BE242899	Hs.129951	speckle-type POZ protein	3.9	?
		AA151342	Hs.12677	CGI-147 protein	9.5	TM
	105087	AA147884	Hs.9812	Homo saplens cDNA FLJ14388 fis, clone HE	5.7	other
		H58589	Hs.35156	Homo saplens cDNA FLJ11027 fis, clone PL	2.2	other
	105095	Z78407	Hs.27023	vesicle transport-related protein	2.2	other
15	105110	BE387350	Hs.33122	KIAA1160 protein	1.6	other
	105126	AW975433	Hs.36288	ESTs	6.4	?
	105127	AA045648	Hs.301957	nudix (nucleoside diphosphate linked moi	2.2	other
	105141	AA164687	Hs.177576	mannosyl (alpha-1,3-)-glycoprotein beta-	2.8	other
		AW976357	Hs.234545	hypothetical protein NUF2R	2	other
20	105169	BE245294	Hs.180789	S164 protein	1.7	other
		AA191512	Hs.28005	Homo saplens cDNA FLJ11309 fis, clone PL	4.9	SS,TM
	105254	AA071276	Hs.19469	KIAA0859 protein	2	TM
		AA263143	Hs.24596	RAD51-Interacting protein	2.9	?
		N99673	Hs.3585	ESTs, Weakly similar to AF126743 1 DNAJ	1.9	TM
25		AA700122	Hs.3355	sentrin-specific protease	8.2	?
		AW270037	Hs.179507	KIAA0779 protein	1.8	SS,
		NM_016015	Hs.8054	CGI-68 protein	8.4	other
		BE264645	Hs.282093	hypothetical protein FLJ21918	5.1	other
		AW887701	Hs.32356	hypothetical protein FLJ20628	2.6	other
30		BE242803	Hs.262823	hypothetical protein FLJ10326	2.2	TM
	105387	AW592146	Hs.108636	membrane protein CH1	2.3	SS,TM
		AF167570	Hs.256583	Interleukin enhancer binding factor 3, 9	5.5	SS,
		BE386877	Hs.334811	Npw38-binding protein NpwBP	1.6	other
		AF198620	Hs.65648	RNA binding motif protein 8A	1.6	other
35		AA252395		gb:zs12g10.s1 NCI_CGAP_GCB1 Homo sapiens	5.1	?
		BE268348	Hs.226318	CCR4-NOT transcription complex, subunit	1.6	other
	105529	AA113449	Hs.32471	hypothetical protein FLJ20364	1.3	other
		AB023179	Hs.9059	KIAA0962 protein	3.5	other
		AA262640	Hs.27445	unknown	9.3	other
40	105564	BE616694	Hs.288042	hypothetical protein FLJ14299	1.4	other
	105596	AA579535	Hs.18490	hypothetical protein FLJ20452	10.9	TM
	105597	AF054284	Hs.334826	splicing factor 3b, subunit 1, 155kD	2.9	TM
		AI808201	Hs.287863	hypothetical protein FLJ12475	1.7	?
	105610	AA280072	Hs.99872	fetal Atzheimer antigen	1.4	other
45	105617	AK000892	Hs.4069	glucocorticold modulatory element blndin	1.7	TM
		AW302245	Hs.181390	casein kinase 1, gamma 2	5.6	other
		AA985190	Hs.246875	hypothetical protein FLJ20059	9.4	other
	105697	AW499988	Hs.27801	zinc finger protein 278	2	TM
	105708	R26944	Hs.180777	Homo sapiens mRNA; cDNA DKFZp564M0264 (f	1.7	other
50	105743	BE246502	Hs.9598	sema domain, Immunoglobulin domain (lg),	2.7	other
	105746	AW151952	Hs.46679	hypothetical protein FLJ20739	1.5	?
	105759	Al123118	Hs.15159	chemokine-like factor, alternatively spl	1.3	other
	105771	Al267720	Hs.153221	synovial sarcoma, translocated to X chro	1.6	other
		AA741336	Hs.152108	transcriptional unit N143	2.2	other
55	105826	AA478756	Hs.194477	E3 ublguitin ligase SMURF2	1.3	other
	105856		Hs.12653	ESTs	2.4	other
	105858	AF151066	Hs.281428	hypothetical protein	2.9	other
		AK001708	Hs.32271	hypothetical protein FLJ10846	1.4	other
		AF016371	Hs.9880	peptidyl prolyl isomerase H (cyclophllin	5.3	other
60		AW194426	Hs.20726	ESTs	1.7	other
- •		AW081202	Hs.12284	Homo sapiens, clone IMAGE:2989556, mRNA,	2.8	other
		AA477956	Hs.26268	ESTs	1.4	other
		AL157441	Hs.17834	downstream neighbor of SON	1.4	other
		AA130158	Hs.19977	ESTs, Moderately similar to ALU8_HUMAN A	1.6	?
65	106094	AA533491	Hs.23317	hypothetical protein FLJ14681	6.9	other
	106140	AB006624	Hs.14912	KIAA0286 protein	1.6	other
	106271	AA251393	Hs.289052	Homo saplens, Similar to RIKEN cDNA 5430	10.8	?

	106288 AB0377	42 Hs.24336	KIAA1321 protein	1.3	other
	106300 Y10043		high-mobility group (nonhistone chromoso	3.7	other
	106333 AL0431		ESTs, Weakly similar to A54849 collagen	5.5	SS,
~	106350 AK0014		cyclin B2	5.8	other
5	106359 AW390		transmembrane 7 superfamily member 2	6.4	other
	106381 AB0409		KIAA1483 protein	6.6 2.2	TM
	106389 AW748- 106457 AF1192		Homo sapiens cDNA: FLJ21487 fis, clone C zinc finger protein 278	2.7	other
	106470 D63078		Homo sapiens cDNA: FLJ23038 fis, clone L	2.3	other
10	106586 AA2438		ESTs	1.6	other
10	106589 · AK0009		Homo sapiens cDNA FLJ10071 fis, clone HE	2.4	7
	106610 AA4588		fibulin 1	8	SS,
	106624 NM 003		tyrosylprotein sulfotransferase 2	7.8	other
	106650 AL0499		Homo saplens mRNA; cDNA DKFZp564O0122 (f	1.8	other
15	106669 AV6571	117 Hs.184164	ESTs, Moderately similar to S65657 alpha	1.3	TM
	106713 BE6148		hypothetical protein FLJ12549	4.6	other
	106717 AA6003		TIA1 cytotoxic granule-associated RNA-bi	1.3	other
	106723 BE3880		ESTs	1.6	SS,
00	106795 AF1744		Bcl-2-related ovarian killer protein-lik	5.7	other
20	106829 AW959		hypothetical protein FLJ23293 similar to	16.2 1.5	TM other
	106831 BE5648 106846 AB0377		centrin, EF-hand protein, 3 (CDC31 yeast KIAA1323 protein	2.2	other
	106852 AF1510		hypothetical protein	1.3	other
	106873 N49809		Homo sapiens, clone IMAGE:3343149, mRNA,	16.8	other
25	106886 W7917		GL002 protein	1.5	TM
23	106908 AA8612		transcription factor BMAL2	2.2	other
	106920 AK0018		serum/glucocorticold regulated kinase	3.4	other
	106945 AK0005		hypothetical protein DKFZp434L1435 simil	6.8	?
	106973 BE1562	256 Hs.11923	hypothetical protein	6.7	other
30	106978 AW631		ESTs	6.1	SS,
	107004 AA1468		hypothetical protein FLJ20727	1.3	other
	107029 AF2647		myeloid/lymphoid or mixed-lineage leukem	1.8	other
	107071 AW385		ectonucleotide pyrophosphatase/phosphodi	1.7	other
25	107113 AK0007		GTPase activating protein	2.5 1.7	other other
35	107125 AK0005		hypothetical protein FLJ20505	4.7	other
	107136, AV6619		GK001 protein Down syndrome critical region gene 2	2	other
	107151 AW378		ESTs	6.4	TM
	107155 AW391		KIAA1288 protein	33.5	other
40	107174 BE122		ESTs	5.2	7
	107197 W1547		glioma pathogenesis-related protein	6.1	other
	107221 AW888		leukemia-associated phosphoprotein p18 (17.4	other
	107243 BE2197		ESTs, Moderately similar to 138759 zinc	7.4	?
	107248 AW263		nuclear receptor co-repressor/HDAC3 comp	1.8	other
45	107263 D6034		translocase of outer mitochondrial membr	6.7	other
	107265 BE379		ESTs, Moderately similar to ALU7_HUMAN A	2.5	other
	107299 BE277		hypothetical protein MGC4606	3.2	TM
	107316 T63174		Homo sapiens mRNA; cDNA DKFZp586i0324 (f	2 5	TM ?
50	107354 NM_00		zinc finger protein 193 TATA element modulatory factor 1	1.2	other
30	107392 AW299 107481 AA307		kinesin family member 4A	1.6	other
	107529 BE515		nucleolar protein (KKE/D repeat)	3	TM
	107554 AA001		ESTs	1.4	other
	107681 BE379		ESTs, Moderately similar to ALU7_HUMAN A	2.3	SS,TM
55	107772 AA018		ESTs, Weakly similar to ALU1_HUMAN ALU S	2.2	?
	107859 AW732	2573 Hs.47584	potassium voltage-gated channel, delayed	8.4	TM
	107901 L42612	2 Hs.335952	keratin 6B	2.5	other
	107922 BE153		lg superfamily receptor LNIR	2.3	other
	107974 AW956		pyruvate dehydrogenase kinase, isoenzyme	6.8	other
60	108040 AL1210		SWI/SNF related, matrix associated, acti	1.6	other
	108230 AA054		ESTS	1.3 7.2	other ?
	108274 AF129		F-box only protein 5 ESTs	2.6	other
	108296 N3125		ESTS ESTS	3.6	other
65	108496 AA083		Homo sapiens cDNA FLJ12758 fis, clone NT	3.5	other
03	108607 BE300 108621 AA101		ESTs	1.7	other
	108634 AW022		ESTs	1.8	SS,TM
	,0000- ,.11022				

	108647	BE546947	Hs.44276	homeo box C10	9.8	other
		AB029000	Hs.70823	KIAA1077 protein	7.3	other
		AI089575	Hs.9071	progesterone membrane binding protein	2.8	?
		AK001693	Hs.273344	DKFZP564O0463 protein	1.9	other
5		AL121500	Hs.178904	ESTs	1.6	TM
-		H06720	Hs.111680	endosulfine alpha	2.2	other
		AI801235	Hs.48480	ESTs	5.4	other
		AK001431	Hs.5105	hypothetical protein FLJ10569	4.1	TM
	108955	AA149754	Hs.195155	Homo saplens amino acid transport system	5.7	?
10	108982	AA151708	Hs.171980	homeo box (expressed in ES cells) 1	1.7	other
	108987	AA152178	Hs.23467	hypothetical protein FLJ10633	6.3	other
	109002	AB028987	Hs.72134	KIAA1064 protein	1.7	other
	109011	AA156542	Hs.72127	ESTs	1.5	other
	109026	AA157811		gb:zo35d07.s1 Stratagene colon (937204)	5.4	other
15	109068	AA164293	Hs.72545	ESTs	3	other
	109101	AW608930	Hs.52184	hypothetical protein FLJ20618	1.6	SS,
	109112	AW419196	Hs.257924	hypothetical protein FLJ13782	3.3	TM
	109124	AK000684	Hs. 183887	hypothetical protein FLJ22104	1.7	other
	109139	AJ132592	Hs.59757	zInc finger protein 281	2.7	other
20		AA219691	Hs.73625	RAB6 interacting, kinesIn-like (rabkines	3.	TM
		BE566742	Hs.58169	highly expressed in cancer, rich in leuc	2.1	other
		NM_016603	Hs.82035	potential nuclear protein C5ORF5; GAP-II	5.4	other
		AW958181	Hs.189998	ESTs	5.8	other
		AU077281	Hs.170285	nucleoporin 214kD (CAIN)	5.3	other
25		N99673	Hs.3585	ESTs, Weakly similar to AF126743 1 DNAJ	1.4	other
		AA375752	Hs.82719	Homo saplens mRNA; cDNA DKFZp586F1822 (f	3	other
		AF153201	Hs.86276	C2H2 (Kruppel-type) zinc finger protein	1.3	other
		AA213506	Hs.115099	EST	3	?
20		AL096858	Hs.184245	KIAA0929 protein Msx2 interacting nuclea	1.5	other
30		H83603	Hs.40408	homeo box C9	2.2	SS,
		N30531	Hs.42215	protein phosphatase 1, regulatory subuni	3.1	TM
		Al160029	Hs.61438	ESTs	2	?
		AA232103	Hs.189915	ESTs	1.8	other
35		AB032969	Hs.173042	KIAA1143 protein	3.8	other
33		NM_015310	Hs.6763	KIAA0942 protein	3.3	other
		AW074143	Hs.87134	ESTs	2 2.1	TM other
		L40027	Hs.118890	glycogen synthase kinase 3 alpha ESTs	1.4	other
		F02614 R71264	Hs.27319 Hs.16798	ESTs	1.3	other
40		H11938	Hs.21907	histone acetyltransferase	2	other
40		AA503041	Hs.279009	matrix Gla protein	2.5	other
		AA603840	Hs.29956	KIAA0460 protein	1.7	other
		T07353	Hs.7948	ESTs	2.9	other
		R51853	Hs.226429	ESTs. Weakly similar to ALU1_HUMAN ALU S	1.7	SS,
45		NM_014521	Hs. 17667	SH3-domain binding protein 4	4.3	other
43		AI668594	Hs.176588	ESTs, Weakly similar to CP4Y_HUMAN CYTOC	4.3	?
		N41744	Hs.19978	CGI-30 protein	1.3	other
		H28428	Hs.32406	ESTs, Weakly similar to I38022 hypotheti	2.2	other
		BE256986	Hs.11896	hypothetical protein FLJ12089	2.1	other
50		H55748		gb:yq94a01.s1 Soares fetal liver spleen	6.1	?
		H55915	Hs.210859	hypothetical protein FLJ11016	6.1	TM
		H57330	Hs.37430	EST	6.4	other
		AK001160	Hs.5999	hypothetical protein FLJ10298	1.3	?
		T97586	Hs.18090	ESTs	1.8	other
55	110705	AB007902	Hs.32168	KIAA0442 protein	1.6	TM
	110742	AW190338	Hs.28029	hypothetical protein MGC11256	7.8	other
	110761	AL138077	Hs.16157	hypothetical protein FLJ12707	2.5	other
	110762	BE044245	Hs.30011	hypothetical protein MGC2963	9.3	?
	110765	AK000322	Hs.18457	hypothetical protein FLJ20315	5.5	SS,
60	110769		Hs.23837	Homo saplens cDNA FLJ11812 fis, clone HE	2.1	TM
		AI089660	Hs.323401	dpy-30-like protein	1.5	TM
		T25829	Hs.24048	FK506 binding protein precursor	6.7	TM
		AA767373	Hs.35669	ESTs, Moderately similar to ALU1_HUMAN A	5.7	other
		R33261	Hs.6614	ESTs, Weakly similar to A43932 much 2 p	3.4	other
65		N31598	Hs.12727	hypothetical protein FLJ21610	1.7	TM
		AI740792	Hs.167531	methylcrotonoyl-Coenzyme A carboxylase 2	1.7	other
	110854	BE612992	Hs.27931	hypothetical protein FLJ10607 similar to	4.7	omer

	110856	AA992380		gb:ot37g06.s1 Soares_testis_NHT Homo sap	2.3	other
	110885	BE384447	Hs.16034	hypothetical protein MGC13186	3.5	7
		AL117430	Hs.6880	DKFZP434D156 protein	2.2	?
-		BE092285	Hs.29724	hypothetical protein FLJ13187	2.6	SS,
5		H04360	Hs.24283	ESTs, Moderately similar to reduced expr	1.9	TM
		NM_005864	Hs.24587	signal transduction protein (SH3 contain	6.7 2	other other
		AK002180 AK001980	Hs.11449 Hs.24284	DKFZP564O123 protein ADP-ribosyltransferase (NAD+; poly(ADP-r	1.3	other
		AW613287	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polyp	1.8	?
10		N63823	Hs.269115	ESTs, Moderately similar to Z195_HUMAN Z	3.7	other
10		AB037807	Hs.83293	hypothetical protein	2.1	TM
		N46180	Hs.122489	Homo saplens cDNA FLJ13289 fis, clone OV	2.3	other
	111172	R67419	Hs.21851	Homo sapiens cDNA FLJ12900 fis, done NT	3.7	other
	111174	AL050166	Hs.26295	Homo saplens mRNA; cDNA DKFZp586D1122 (f	7.5	other
15		AK000136	Hs.10760	asporin (LRR class 1)	7.1	other
		AI815486	Hs.243901	Homo sapiens cDNA FLJ20738 fis, done HE	6.8	other
		N67603	Hs.272130	ESTs, Weakly similar to S65824 reverse t	3.6 1.5	SS, other
		AW139408	Hs.152940 Hs.15119	ESTs KIAA1361 protein	2.6	other
20		AB037782 AA852773	Hs.334838	KIAA1866 protein	4.7	other
20		N90956	Hs.17230	hypothetical protein FLJ22087	7.9	?
		AA778711	Hs.4310	eukaryotic translation initiation factor	7	other
		AB033091	Hs.74313	KIAA1265 orotein	5	other
	111312	AI523913	Hs.34504	ESTs	3.8	other
25		T99755	Hs.334728	ESTs	1.2	TM
		AA837396	Hs.263925	LIS1-interacting protein NUDE1, rat homo	5.1	other
		H58589	Hs.35156	Homo sapiens cDNA FLJ11027 fis, clone PL	2.2	other
		Al478658	Hs.94631	brefeldin A-Inhibited guanine nucleotide	2.8 2.2	? other
30		N94606	Hs.288969	HSCARG protein	2.1	other
30		AK000987 R02354	Hs.169111 Hs.15999	oxidation resistance 1 ESTs	2.7	TM
		AI051194	Hs.227978	EST	6.6	other
		W90638	Hs.20321	ESTs, Moderately similar to ZRF1_HUMAN Z	1.4	other
		R10720	Hs.20670	EST	1.6	?
35		R52656	Hs.21691	ESTs	1.6	other
	111870	AB037834	Hs.18685	Homo sapiens mRNA for KIAA1413 protein,	2.4	other
		BE298665	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (fr	10.6	other
		AW083791	Hs.21263	suppressor of potassium transport defect	6.6	TM other
40		NM_015310	Hs.6763	KIAA0942 protein	5.1 2.8	other
40		R41823 AB029000	Hs.7413 Hs.70823	ESTs; calsyntenin-2 KIAA1077 protein	14.6	other
		R46071	Hs.301693	Homo saplens, clone IMAGE:3638994, mRNA,	9	other
		NM 016248	Hs.232076	A kinase (PRKA) anchor protein 11	1.4	other
		AW007287	Hs.28538	Homo sapiens cDNA: FLJ21086 fis, clone C	1.4	TM
45		AI742756	Hs.26079	ESTs	3.2	other
		R68425	Hs.13809	hypothetical protein FLJ10648	2	TM
		AK001635	Hs.14838	hypothetical protein FLJ10773	1.8	other
		AK000004	Hs.5013	Homo saplens mRNA for FLJ00004 protein,	6.6 1.5	other
50		T10258	Hs.5037 Hs.6185	EST KIAA1557 protein	3.2	other
30		AW970826 R61388	Hs.6724	ESTs	6.1	other
		Z44718	Hs.102548	glucocorticoid receptor DNA binding fact	6.5	other
		AK000272	Hs.7099	hypothetical protein FLJ20265	1.2	olher
		AA737033	Hs.7155	ESTs, Moderately similar to 2115357A TYK	5.6	other
55	112996	BE276112	Hs.7165	zinc finger protein 259	2	other
		AI571940	Hs.7549	ESTs	1.9	other
		AW965190	Hs.7560	Homo sapiens mRNA for KIAA1729 protein,	2.4	TM
		T40707	Hs.270862	ESTS	1.3 1.7	SS, other
60		T57317		gb:yb51a03.s1 Stratagene fetal spleen (9 gb:yc16e01.s1 Stratagene lung (937210) H	2.8	other
00		T63857 AK002180	Hs.11449	DKFZP564O123 protein	1.3	other
		AW971049	Hs.11774	protein (peptidyl-protyl cis/trans isome	3.2	other
		AA688021	Hs.179808	ESTs	1.2	other
		Al467908	Hs.8882	ESTs	6	other
65	113547	H59588	Hs.15233	ESTs	2	SS,
		AA813887	Hs.188173	Homo sapiens cDNA FLJ12187 fls, clone MA	1.3	SS,
	113702	T97307		gb:ye53h05.s1 Soares fetal liver spleen	4.4	other

	113759	AW499665	Hs.9456	SWI/SNF related, matrix associated, acti	1.2	other	
	113777	BE266947	Hs.10590	zinc finger protein 313	13.4	other	
		AL359588	Hs.7041	hypothetical protein DKFZp762B226	1.7	other	
		Al269096	Hs.135578	chitobiase, di-N-acetyl-	1.3	other	
5		W44735	Hs.9286				
,				Homo sapiens cDNA: FLJ21278 fis, clone C	3.3	other	
		BE207480	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	3.1	other	
		H13325	Hs.332795	hypothetical protein DKFZp761O17121	3.2	other	
	113826	AW378212	Hs.24809	hypothetical protein FLJ10826	2.3	?	
	113834	T26483	Hs.6059	EGF-containing fibulin-like extracellula	11.3	TM	
10	113868	W57902	Hs.90744	proteasome (prosome, macropain) 26S subu	2.7	other	
		AL079314	Hs.16537	hypothetical protein, similar to (U06944	6.1	other	
		AW959486	Hs.21732	ESTs	6.6	other	
		AW953484	Hs.3849	hypothetical protein FLJ22041 similar to	1.9	?	
15		W87544	Hs.268828	ESTs	1.2	other	
13		AI539519	Hs.120969	Horno sapiens cDNA FLJ11562 fis, clone HE	5.4	other	
		AI825386	Hs.164478	hypothetical protein FLJ21939 similar to	9.4	other	
		AB029551	Hs.7910	RING1 and YY1 binding protein	1.8	other	
	114196	AF017445	Hs.150926	fucose-1-phosphate quanylytransferase	1.5	other	
	114226	AB028968	Hs.7989	KIAA1045 protein	1.8	other	
20		BE149866	Hs.14831	Homo sapiens, Similar to zinc finger pro	2.3	other	
		AL117518	Hs.3686	KIAA0978 protein	1.4	TM	
		AW515443.co		Hs.306117		06 protein 15.8	other
		AI815395	Hs.184641		1.9		Outer
				fatty acid desaturase 2		TM	
25		AA332453	Hs.20824	CGI-85 protein	2.4	other	
25		AA249590	Hs.100748	ESTs, Weakly similar to A28996 proline-r	1.9	other	
		BE539976	Hs.103305	Homo sapiens mRNA; cDNA DKFZp434B0425 (f	1.3	TM	
		H37908	Hs.271616	ESTs, Weakly similar to ALU8_HUMAN ALU S	5.6	other	
	114463	AL120247	Hs.40109	KIAA0872 protein	5.3	TM	
		AI091713	Hs.106597	Homo sapiens, Similar to RIKEN cDNA 1110	1.3	other	
30		AA028074	Hs.104613	RP42 homolog	1.9	?	
		BE066778	Hs.151678	UDP-N-acetyl-alpha-D-galactosamine:polyp	13.4	other .	
		AA766268	Hs.266273	hypothetical protein FLJ13346	2	other	
		AA476966	Hs.110857	polymerase (RNA) III (DNA directed) poly	3.6	other	
25		AJ373544	Hs.331328	Intermediate filament protein syncoilin	3.9	other	
35		A1859865	Hs.154443	minichromosome maintenance deficient (S.	1.7	other	
		AV656017	Hs.184325	CGI-76 protein	3.2	other	
	114798	AA159181	Hs.54900	serologically defined colon cancer antig	3.6	other	
	114860	AL157545	Hs.42179	bromodomain and PHD finger containing, 3	4.4	other	
	114895	AA236177	Hs.76591	KIAA0887 protein	7.2	other	
40		BE539101	Hs.5324	hypothetical protein	1.3	other	
		AA236672		gb:zt29f02.s1 Soares ovary tumor NbHOT H	1.5	other	
		AA237022	Hs.188717	ESTs	2	SS.	
		AA242834	Hs.58384	ESTs	2.9	other	
45		AI733881	Hs.72472	BMP-R1B	2.3	?	
43		AF102546	Hs.63931	dachshund (Drosophila) homolog	1.3	other	
		AA252360	Hs.87968	toll-like receptor 9	1.6	other	
		AI751438	Hs.41271	Homo saplens mRNA full length insert cDN	11.8	other	
		Al670847	Hs.5324	hypothetical protein	1.5	other	
	115206	AW183695	Hs.186572	ESTs	2.5	other	
50	115221	AW365434	Hs.79741	hypothetical protein FLJ10116	1.5	other	
	115239	BE251328	Hs.73291	hypothetical protein FLJ10881	1.3	TM	
		Al368236	Hs.283732	ESTs, Moderately similar to ALU1_HUMAN A	1.4	other	
		AK002163	Hs.301724	hypothetical protein FLJ11301	1.5	other	
			Hs.293736		2.4		
		AW972872		ESTs		other	
55		BE545072	Hs.122579	hypothetical protein FLJ10461	6.3	SS,	
		AI215069	Hs.89113	ESTs	6.7	?	
		AA314349	Hs.48499	tumor antigen SLP-8p	7.5	?	
	115471	AK001376	Hs.59346	hypothetical protein FLJ10514	1.4	TM	
	115479	AW301608	Hs.278188	ESTs, Moderately similar to 154374 gene	4.1	TM	
60	115496	AW247593	Hs.71819	eukaryotic translation initiation factor	16.3	other	
••		Y14443	Hs.88219	zinc finger protein 200	5	other	
		AJ275986	Hs.71414	transcription factor (SMIF gene)	2.5	other	
		AJ275900 AI540842	Hs.61082		6.2	other	
				ESTs			
CE		BE081342	Hs.283037	HSPC039 protein	2.9	other	
65		AA399477	Hs.67896	7-60 protein	5.3	TM	
		N36110	Hs.305971	solute carrier family 2 (facilitated glu	4.8	?	
	115652	BE093589	Hs.38178	hypothetical protein FLJ23468	10.6	other	

	115655 AL048269	Hs.288544	Homo sapiens, clone MGC:16063, mRNA, com	12.7	TM
	115663 AI138785	Hs.40507	ESTs	2	other
	115676 AA953006	Hs.88143	ESTs	3.1	other
	115690 AA625132	Hs.44159	hypothetical protein FLJ21615	1.7	TM
5	115693 AF231023	Hs.55173	cadherin, EGF LAG seven-pass G-type rece	6.9	other
	115715 BE395161	Hs.1390	proteasome (prosome, macropaln) subunit,	1.7	other
	115734 AI950339	Hs.40782	ESTs	2.7	TM
	115811 NM_015434	Hs.48604	DKFZP434B168 protein	2.1	other
	115823 Al732742	Hs.87440	ESTs	2.1	other
10	115837 Al675217	Hs.42761	ESTs	1.3	other
	115844 Al373062	Hs.332938	hypothetical protein MGC5370	4.4	other
	115866 AW062629	Hs.52081	KIAA0867 protein	7.3	other
	115875 N55669	Hs.333823	mitochondrial ribosomal protein L13	1.2	other
	115941 AI867451	Hs.46679	hypothetical protein FLJ20739	5.5	other
15	115968 AB037753	Hs.62767	KIAA1332 protein	9.8	other
	116003 BE275469	Hs.66493	Down syndrome critical region gene 5	1.4 2.4	other
	116011 AL359053	Hs.57664	Homo saplens mRNA full length insert cDN	1.8	other
	116108 AA770688	Hs.28777	H2A histone family, member L	1.8	other
20	116134 BE243834	Hs.50441	CGI-04 protein ESTs, Moderately similar to T00358 hypot	1.2	other
20	116189 N35719 116195 AW821113	Hs.44749	ESTs, Moderately similar to 100556 hypot ESTs	2.1	other
	116195 AW621113 116238 AV660717	Hs.72402 Hs.47144	DKFZP586N0819 protein	1.7	other
	116236 AVG00717	Hs.250646	baculoviral IAP repeat-containing 6	1.7	other
	116262 AI936442	Hs.59838	hypothetical protein FLJ 10808	1.8	?
25	116298 AI955411	Hs.94109	Homo saplens cDNA FLJ13634 fis, clone PL	1.9	other
23	116318 AF097645	Hs.58570	deleted in cancer 1; RNA helicase HDB/DI	5 .	SS,
	116325 Al472106	Hs.49303	Homo sapiens cDNA FLJ11663 fis, clone HE	1.4	SS.
	116336 AL133033	Hs.4084	KIAA1025 protein	1.9	?
	116339 AK000290	Hs.44033	dipeptidyl peptidase 8	1.5	other
30	116350 AA497129	Hs.184771	nuclear factor I/C (CCAAT-binding transc	1.9	?
	116358 Al149586	Hs.38125	interferon-Induced protein 75, 52kD	1.9	?
	116365 N50174	Hs.46765	ESTs	6.1	other
	116368 N90466	Hs.71109	KIAA1229 protein	1.6	?
	116417 AW499664	Hs.12484	Human clone 23826 mRNA sequence	7.4	other
35	116436 AA161411	Hs.58668	chromosome 21 open reading frame 57	2.1	other
	116462 AF218313	Hs.236828	putative helicase RUVBL	1.5	TM
	116470 Al272141	Hs.83484	SRY (sex determining region Y)-box 4	2.1	TM
	116575 AA312572	Hs.6241	phosphoinositide-3-kinase, regulatory su	1.5	other
40	116637 AK001043	Hs.92033	integrin-linked kinase-associated serine	2.7 2.3	other
40	116640 X89984	Hs.211563 Hs.317589	B-cell CLL/lymphoma 7A	1.4	other
	116700 Al800202 116705 AW074819	Hs.12313	hypothetical protein MGC10765 hypothetical protein FLJ14566	3.4	other
	116732 AW152225	Hs. 165909	ESTs, Weakly similar to 138022 hypotheti	2.9	other
	116926 H73608	Hs.290830	ESTs	1.7	TM
45	117034 U72209	Hs. 180324	YY1-associated factor 2	3.4	TM
43	117132 Al393666	Hs.42315	p10-binding protein	5.2	?
	117247 N21032	710.72010	gb:yx46f06.s1 Soares melanocyte 2NbHM Ho	5.5	TM
	117276 N71183	Hs.121806	Homo saplens cDNA FLJ11971 fis, clone HE	1.5	TM
	117284 AK001701	Hs.183779	Homo sapiens cDNA FLJ10590 fis, clone NT	2	other
50	117367 AI041793	Hs.42502	ESTs	2	other
	117368 Al878942	Hs.90336	ATPase, H+ transporting, lysosomal (vacu	2.1	?
	117382 AF150275	Hs.40173	ESTs	2.7	TM
	117412 N32536	Hs.42645	solute carrier family 16 (monocarboxyllc	1.4	other
	117557 AF123050	Hs.44532	diublquitin	3.4	TM
55	117588 N34895	Hs.44648	ESTs	3.4	?
	117745 BE294925	Hs.46680	. CGI-12 protein	3	SS,
	117754 AA121673	Hs.59757	zinc finger protein 281	1.9	other
	117879 N54706	Hs.303025	chromosome 11 open reading frame 24	1.8 6	other ?
60	117904 BE540675	Hs.332938	hypothetical protein MGC5370	1.7	other
60	117911 AL137379	Hs.47125 Hs.116470	hypothetical protein FLJ13912	1.7	other
	117933 Y10518 117983 AL110246	HS.1164/U Hs.47367	hypothetical protein FLJ20048 KIAA1785 protein	5.4	other
	118078 N54321	Hs.47790	EST Plotes	5.2	other
	118301 AA453902	Hs.293264	ESTs	2.6	other
65	118429 AA243332	Hs.74649	cytochrome c oxidase subunit VIc	2.5	TM
UJ	118472 AL157545	Hs.42179	bromodomain and PHD finger containing, 3	4.1	other
	118488 AJ277275	Hs.50102	rapa-2 (rapa gene)	1.2	other
			150		

WO 02/059377

	118509	N22617	Hs.43228	Homo saplens cDNA FLJ11835 fis, clone HE	1.5	other
		AI949952	Hs.49397	ESTs	7.4	?
		A1458020	Hs.293287	ESTs	2.5	other
	118670	AA332845	Hs.152618	ESTs, Moderately similar to ZN91_HUMAN Z	1.2	TM
5		AB033113	Hs.50187	KIAA1287 protein	2.1	TM
		AA199686		gb:zq75g09.r1 Stratagene hNT neuron (937	5.2	other
		N92293	Hs.206832	ESTs, Moderately similar to ALU8_HUMAN A	1.4	other
		A1668709	Hs.240722	ESTs, Moderately similar to ALU8_HUMAN A	3.6	other
		AF148713	Hs.125830	bladder cancer overexpressed protein	4.9	?
10		W24781	Hs.293798	KIAA1710 protein	1.7	TM
		AW453069	Hs.3657	activity-dependent neuroprotective prote	2.2	other
		BE539706	Hs.285363	ESTs	1.4	?
		N57568	Hs.48028	EST	25.1	other
		NM_001241	Hs.155478	cyclin T2	1.6	?
15		Al417240	Hs.320836	ESTs, Weakly similar to A47582 B-cell gr	1.3	other
		AL117554	Hs.119908	nucleolar protein NOP5/NOP58	6.7	TM
		A1624342	Hs.170042	ESTs	2.4	other
		A1796730	Hs.55513	ESTs	2.1 1.9	other other
20		W37933	11- 04004	Empirically selected from AFFX single pr	3.7	TM
20		AK000155 AW675298	Hs.91684 Hs.233694	Homo saplens mRNA; cDNA DKFZp667I103 (fr hypothetical protein FLJ11350	3.7	other
		AA243837	Hs.57787	ESTs	1.4	other
		W61019	Hs.57811	ESTS	1.2	?
		AB032977	Hs.6298	KIAA1151 protein	1.8	TM
25		NM_016625	Hs.191381	hypothetical protein	3.1	other
23		BE393948	Hs.50915	kallikreln 5 (KLK5; KLK-L2; stratum com	9.2	other
		AJ223810	Hs.43213	ESTs, Weakly similar to IEFS_HUMAN TRANS	3.6	TM
		AA130970	Hs.58382	hypothetical protein FLJ11101	2.5	?
		AA081218	Hs.58608	Homo saplens cDNA FLJ14206 fis, clone NT	2.7	TM
30		AW449064	Hs.119571	collagen, type III, alpha 1 (Ehlers-Dan!	2.6	other
	119966		Hs.58963	ESTs	2.7	other
		W57554	Hs.125019	lymphoid nuclear protein (LAF-4) mRNA	1.2	other
	120206	H26735	Hs.91668	Homo sapiens clone PP1498 unknown mRNA	45.7	other
	120248	AI924294	Hs.173259	uncharacterized bone marrow protein BM03	1.2	other
35	120269	AW131940	Hs.104030	ESTs	9.6	other
		AA177051		gb:nc02a02.s1 NCI_CGAP_Pr3 Homo saplens	4.7	other
		AA190577		gb:zp52g02.s1 Stratagene HeLa cell s3 93	2.1	other
		AW995911	Hs.299883	hypothetical protein FLJ23399	1.9	TM
40		AA191384	Hs.104072	ESTs, Weakly similar to Z195_HUMAN ZINC	15.2	other
40		AA195517	Hs.191643	ESTs	5.6	?
		AA195651	Hs.104106	ESTs	6.5	other
		AK000292	Hs.278732	hypothetical protein FLJ20285	16.1	other
		N85785	Hs.181165	eukaryotic translation elongation factor	3	other
45		AW450669	Hs.45068	hypothetical protein DKFZp434l143	5.8 4.6	other SS,TM
43		AA210722 AW969481	Hs.104158 Hs.55189	ESTs hypothetical protein	16.8	other
		R06859	Hs.193172	ESTs, Weakly similar to 138022 hypotheti	5.1	other.
		AF000545	Hs.296433	putative purinergic receptor	28.1	TM
		AA219305	Hs.104196	EST	12.4	?
50		AA228026	Hs.38774	ESTs	4.1	TM
	120383		Hs.123122	FSH primary response (LRPR1, rat) homolo	9.7	TM
	120386		Hs.154848	hypothetical protein DKFZp434D0127	32.6	other
	120388		Hs.104245	ESTs	3.2	other
	120389	AW967985	Hs.325572	ESTs, Moderately similar to ALU7_HUMAN A	21.7	other
55	120396	AA134006	Hs.79306	eukaryotic translation initiation factor	12.5	other
	120404	AB023230	Hs.96427	KIAA1013 protein	7.3	other
	120418	AW966893	Hs.26613	Homo saplens mRNA; cDNA DKFZp586F1323 (f	11.4	other
		AA236453	Hs.18978	Homo sapiens cDNA: FLJ22822 fis, clone K	1.9	other
		AI950087		gb:wq05c02.x1 NCI_CGAP_Kid12 Homo sapien	19.4	other
60		AA251973	Hs.269988	ESTs	5.5	?
	120484		Hs.96473	EST AND A CONTRACT OF THE CONT	10.4	?
	120504			gb:zr84d10.s1 Soares_NhHMPu_S1 Homo sapl	4	?
		BE047718	Hs.96545	ESTs	9.4	other
65		AA258601	Hs.161731	EST	2.4 2.5	other ?
65		BE350244 AA279160	Hs.96547 Hs.111407	ESTs Homo saplens, clone IMAGE:3613029, mRNA,	5.3	other
		AA279160 AA280679	Hs.111407 Hs.271445	ESTs, Weakly similar to ALU1_HUMAN ALU S	14.4	?
	1203/0		10.21 1770	EC. O, COMY SHIMM TO MED TO TOMMIT MED O	17.7	

	120582 F	BE244830	Hs.284228	ZNF135-like protein	10.2	?
	120590	AW372799	Hs.125790	leucine-rich repeat-containing 2	2.2	?
	120596 /	AA282074	Hs.237323	N-acetylglucosamine-phosphate mutase	7.6	other
_	120619 /	AW965339	Hs.111471	ESTs	2.5	other
5		AW407987	Hs.173518	M-phase phosphoprotein homolog	52	other
		AA286942		gb:zs56f05.s1 NCL_CGAP_GCB1 Homo sapiens	2.4	other
		AA287095	Hs.140309	Homo sapiens, clone IMAGE:3677194, mRNA,	5	other
		AW063659	Hs.191649	ESTs	2.2	other
		AW969638	Hs.112318	6.2 kd protein	2.2	TM
10		BE536739	Hs.109909	ESTs	1.9	TM
		AA976503	.:	gb:oq30a04.s1 NCI_CGAP_GC4 Homo sapiens	46.8	TM
	120696		Hs.97249	ESTs	2.5	other
		AW449855	Hs.96557	Homo saplens cDNA FLJ12727 fis, clone NT	6	other
1.5		AA292747	Hs.97296	ESTS	2.9	other
15	120750		Hs.96693	ESTs, Moderately similar to 2109260A B c	7.1	SS,
	120774		Hs.193985	ESTs	7.9 7	other TM
		AA346385	Hs.30002	SH3-containing protein SH3GLB2; KIAA1848	4.5	other
		AA346495 AA386260	Hs.104632	gb:EST52657 Fetal heart II Homo sapiens EST	4.5	?
20		AA38626U AA398155	Hs.97600	ESTs	4.5	other
20		AAJ98155 BE262951	Hs.99052	ESTs	5.6	other
		Al219896	Hs.97592	ESTs	1.3	other
		AA398360	Hs.97608	EST	3.2	other
		Al439713	Hs.165295	ESTs	3.6	other
25		AA398721	Hs.186749	ESTs, Highly similar to 137550 mismatch	5.5	other
23		AA363307	Hs.97032	ESTs	3.8	other
		AL121523	Hs.97774	ESTs	1.7	TM
		Al002110	Hs.97169	ESTs, Weakly similar to dJ667H12.2.1 [H.	2.9	other
		AA403008	Hs.301927	c6.1A	1.9	other
30		AW956981	Hs.97910	Homo sapiens cDNA FLJ13383 fis, clone PL	3.5	other
	121408	AA406137	Hs.98019	EST	6.1	?
		AA410190	Hs.98076	ESTs, Weakly similar to A47582 B-cell gr	7.5	other
		AA406430	Hs.105362	Homo sapiens, clone MGC:18257, mRNA, com	7.1	other
		AW971063	Hs.292882	ESTs	1.8	other
35	121455		Hs.15165	retinoic acid induced 14	10.5	other
	121457		Hs.144502	hypothetical protein FLJ22055	3.5	TM
		AA442224	Hs.97900	ESTs	14.4	other
		AA494172	Hs.194417	ESTs	13.1	other
40		AA402515	Hs.97887	ESTs	28	other
40		AA416653	Hs.181510	ESTs	6.3 2.7	other
		AA412112	11-00440	gb:zt69b02.s1 Soares_testis_NHT Homo sap	7.5	SS, ?
		AA412477	Hs.98142	EST gb:zt95g12.s1 Soares_testis_NHT Homo sap	2.8	other
		AA412497 AA411970	Hs.98096	EST	3.5	?
45		AA416568	ns.90090	gb:zu05c10.s1 Soares_testls_NHT Homo sap	6.2	TM
73		AD001528	Hs.89718	spermine synthase	4	other
		AA626010	Hs.98247	ESTs	2.2	other
		AA416931	Hs.126065	ESTs	4.3	TM
		AA421537	Hs.178072	Homo sapiens mRNA; cDNA DKFZp434B1023 (f	7.9	other
50		AA418160	Hs.86043	Homo saplens cDNA FLJ13558 fis, clone PL	2	other
-		AV660305	Hs.110286	ESTs .	4.7	?
	121706		Hs.154145	hypothetical protein FLJ11585	12.7	other
		AA419225	Hs.98269	Homo sapiens cDNA FLJ11953 fis, clone HE	8.3	?
		AI949597	Hs.98325	ESTs	1.8	TM
55	121731	AA421041	Hs.180744	ESTs	4.1	TM
		AA398784	Hs.97514	ESTs	7.1	SS,
	121748	BE536911	Hs.234545	hypothetical protein NUF2R	19.5	other
	121773	AB033022	Hs.158654	KIAA1196 protein	8_	other
		AA421773	Hs.161008	ESTs	1.7	other
60		AA292579	Hs.125133	hypothetical protein FLJ22501	6.7	other
	121786	AI810774	Hs.98376	ESTs	10.5	other
	121832	AW340797	Hs.98434	ESTs	5.9 3.9	other
	121836	AA328348	Hs.218289 Hs.191606	ESTs ESTs, Highly similar to KIAA1048 protein	5	other
65	121839	AA425691 AF027406	Hs.191606 Hs.104865	serine/threonine kinase 23	2.7	7
03	121042	AA446628	Hs.2799	cartilage linking protein 1	2.3	other
	12104/	AW972668	Hs.293044	ESTs	2.9	TM
	1210/1					

	121882 AA426376	Hs.98459	ESTs	5.	other
	121911 AA427950		gb:zw50f02.s1 Soares_total_fetus_Nb2HF8_	7.3	TM
	121915 AA428179	Hs.223405	ESTs, Moderately similar to A46010 X-lin	2.5	other
_	121935 AA428647	Hs.98611	EST	2.3	other
5	121983 AA298760	Hs.180191	hypothetical protein FLJ14904	3.4	other
	121985 Al862570	Hs.299214	Homo sapiens, clone IMAGE:2822295, mRNA,	11.4	other
	121995 AA210863	Hs.3532	nemo-like kinase	3.8	?
	121999 AA430211	Hs.98668	EST	6.5	other
	122009 AW292763	Hs.160822	Homo sapiens cDNA: FLJ20863 fis, clone A	2.2	other
10	122013 AA431085	Hs.98706	ESTs	6.6	other
	122036 W92142	Hs.271963	ESTs, Weakly similar to ALU5_HUMAN ALU S	13.1	other
	122050 Al453076	Hs.166109	ELAV (embryonic lethal, abnormal vision,	9.1	other
	122060 AA431738	Hs.98750	EST	13.1	?
	122114 AW161023	Hs.104921	ESTs	1.5	other
15	122188 AA398838		gb:zt80d01.r1 Soares_testis_NHT Homo sap	3.4	other
	122204 AA435936	Hs.98842	EST	5.6	other
	122246 AA329550	Hs.29417	HCF-binding transcription factor Zhangfe	5.2	other
	122257 AA436819	Hs.98899	ESTs	5.6	other
	122302 AA441801	Hs.104947	ESTs	5.8	other
20	122341 AW601969	Hs.99010	hypothetical protein FLJ22263 similar to	2	other
	122356 AA443794	Hs.98390	ESTs	7.4	SS,TM
	122369 AA443985	Hs.303222	ESTs	12.2	?
	122371 AA868555	Hs.178222	ESTs	5	?
	122372 AA446008	Hs.336677	EST	7.8	?
25	122378 AB032948	Hs.21356	hypothetical protein DKFZp762K2015	2.5	?
	122405 AA446572	Hs.303223	EST	2.8	TM
	122412 AA446869	Hs.119316	ESTs	7.4	other
	122415 AA446918	Hs.99088	EST	1.9	other
	122418 AA446966	Hs.99090	ESTs, Moderately similar to similar to K	6.9	?
30	122440 AW505139	Hs.9460	Homo sapiens mRNA; cDNA DKFZp547C244 (fr	2.6	other
	122446 AA447603	Hs.99123	EST	1.8	TM
	122448 AA447626	Hs.99127	EST	3.5	other
	122458 Al266159	Hs.104980	ESTs	1.5	other
	122460 AW418788	Hs.99148	ESTs, Weakly similar to \$43569 R01H10.6	9.7	other
35	122464 AA448158	Hs.99152	EST	4.9	other
	122490 AA448349	Hs.238151	EST	6.2	?
	122492 AA448417	Hs.104990	ESTs	5.5	other
	122502 AA204969	Hs.234863	Homo sapiens cDNA FLJ12082 fis, clone HE	1.3	other
	122510 AA449232	Hs.99195	ESTs	11.2	?
40	122530 AW959741	Hs.40368	adaptor-related protein complex 1, sigma	10.1	other
	122547 AA779725	Hs.164589	ESTs	2.5	SS,
	122555 AA194055	Hs.293858	ESTs	1.9	other
	122570 AA452578	Hs.262907	ESTs	9.5	other
	122572 AA452601	Hs.99287	EST	11	?
45	122586 AK001910	Hs.99303	Homo sapiens cDNA FLJ11048 fis, clone PL	3.4	other
	122587 AB040893	Hs.6968	KIAA1460 protein	2	other
	122598 Al028173	Hs.99329	ESTs	1.7	?
	122599 AL355841	Hs.99330	hypothetical protein FLJ23588	4.4	?
	122602 AA411925	Hs.301960	ESTs	4.7	other
50	122607 AA453518	Hs.98023	ESTs	61.5	other
	122614 AA453630	Hs.99339	EST	10.7	?
	122616 AA453638	Hs.161873	ESTs	107.3	?
	122617 Al681535	Hs.148135	serine/threonine kinase 33	121.4	other
	122618 AA453641		gb:zx48e06.s1 Soares_testis_NHT Homo sap	31.1	SS,
55	122622 AA453987	Hs.144802	ESTs	5.6	other
	122717 AA456859	Hs.178358	ESTs	8.5	SS,
	122762 Al376875	Hs.105119	ESTs	10.4	other
	122829 AW204530	Hs.99500	ESTs	81.8	?
	122834 AA461492	Hs.99545	Homo sapiens cDNA FLJ10658 fis, clone NT	3.7	?
60	122836 AA460581	Hs.290996	ESTs	4.6	other
	122837 AA461509	Hs.293565	ESTs, Weakly similar to putative p150 (H	2.7	TM
	122838 AA460584	Hs.334386	ESTs	75.3	other
	122854 AA600235	Hs.9625	NIMA (never in mitosis gene a)-related k	7.8	other
	122856 Al929374	Hs.75367	Src-like-adapter	5.8	other
65	122861 AA335721	Hs.119394	ESTs	1.3	other
	122866 BE539656	Hs.283705	ESTs	4.2	other
	122868 AF005216	Hs.115541	Janus kinase 2 (a protein tyrosine kinas	5.3	other

	12207U AVV376312	NS.3 10722	notitio sapiens conv. i coz i roo na, cione o	5.5	other
	122872 AW081394	Hs.97103	ESTs	5.3	
	122879 AA769410	Hs.128654	ESTs	13.9	other
	122907 AA470074	Hs.169896	ESTs	11.5	other
5	122916 AA470140	Hs.229170	EST	1.7	TM
-	122981 AA478951	Hs.105629	ESTs	5	other
				15.4	other
	123013 AW968324	Hs.17384	ESTs		
	123016 AW338067	Hs.323231	Homo sapiens cDNA FLJ11946 fis, clone HE	2.8	other
	123034 AL359571	Hs.44054	nineln (GSK3B Interacting protein)	8.7	other
10	123072 Al382600	Hs.104308	ESTs. Weakly similar to KiAA1395 protein	8.8	other
	123082 AA485360	Hs.105661	ESTs	4	?
	123088 Al343652	Hs.105667	ESTs	3.8	other
				7.4	other
	123110 AA486256	Hs.193510	EST		
	123114 BE304942	Hs.265848	myomegalin	2.8	?
15	123131 T52027	Hs.271795	ESTs, Weakly similar to 138022 hypotheti	2.4	other
	123132 Al061582	Hs.324179	Homo sapiens cDNA FLJ12371 ffs, clone MA	15.6	TM
			ESTs	5.2	other
	123136 AW451999	Hs.194024			TM
	123149 Al734179	Hs.105676	ESTs	23.8	
	123152 AW601773	Hs.270259	ESTs	5.2	other
20	123258 AA490929	Hs.105274	ESTs, Weakly similar to RMS1_HUMAN REGUL	9.3	?
	123315 AA496369		gb:zv37d10.s1 Soares ovary tumor NbHOT H	4.2	TM
	123369 AA504757	Hs.105738	ESTs	7	other
				3.7	other
	123394 AA731404	Hs.105510	ESTs		
	123433 AW450922	Hs.112478	ESTs	3.8	other
25	123466 AA599042	Hs.112503	EST	7.4	other
	123470 AW303285	Hs.303632	Human DNA sequence from clone RP11-110H4	3.5	other
	123471 AB021644	Hs.197219	zinc finger protein 14 (KOX 6)	5.2	?
	123475 BE439553	Hs.250528	Homo sapiens, clone IMAGE:4098694, mRNA,	1.7	other
	123482 N95059	Hs.55098	ESTs	1.6	other
30	123486 BE019072	Hs.334802	Homo sapiens cDNA FLJ14680 fis, clone NT	2.4	other
	123508 AW380388	Hs.155546	KIAA1080 protein; Golgi-associated, gamm	2.2	TM
	123615 AA609170		gb:af12a12.s1 Soares_testis_NHT Homo sap	7.9	other
	123619 AA602964		gb:no97c02.s1 NCL_CGAP_Pr2 Homo saplens	2.8	other
			gp.11057 CO2.5 1 TOCCOOK _ 12 1 Onlo superio	1.7	?
	123658 AA609364		gb:zu71d09.s1 Soares_testis_NHT Homo sap		
35	123674 Al269609	Hs.105187	kinesin protein 9 gene	5.7	?
	123735 NM_013241	Hs.95231	FH1/FH2 domain-containing protein	10	other
	123738 AA609891	Hs.112777	EST	5.2	other
	123753 AA609955	Hs.234961	Huntingtin Interacting protein E	30.6	TM
		Hs.261915	EST, Weakly similar to S65657 alpha-1C-a	2.1	other
40	123804 AA620464	HS.201913		2.7	other
40	123811 AA620586		gb:ae60g05.s1 Stratagene lung carcinoma		
			metastasis-associated 1-like 1		?
	123951 AB012922	Hs.173043		6.3	
		Hs.173043 Hs.146178		4.4	other
	123983 AJ272267 ·	Hs.146178	choline dehydrogenase		other
	123983 AJ272267 124001 L42542	Hs.146178 Hs.75447	choline dehydrogenase ralA binding protein 1	4.4 7.1	?
45	123983 AJ272267 124001 L42542 124006 Al147155	Hs.146178 Hs.75447 Hs.270016	choline dehydrogenase ralA binding protein 1 ESTs	4.4 7.1 8.3	? SS,
45	123983 AJ272267 124001 L42542 124006 AI147155 124070 AI950314	Hs.146178 Hs.75447 Hs.270016 Hs.154762	choline dehydrogenase ralA binding protein 1 ESTs HIV-1 rev binding protein 2	4.4 7.1 8.3 3.8	? SS, other
45	123983 AJ272267 124001 L42542 124006 Al147155 124070 Al950314 124074 H05635	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030	choline dehydrogenase ralA binding protein 1 ESTs HIV-1 rev binding protein 2 topolsomerase-related function protein 4	4.4 7.1 8.3 3.8 1.2	? SS, other SS,
45	123983 AJ272267 124001 L42542 124006 AI147155 124070 AI950314	Hs.146178 Hs.75447 Hs.270016 Hs.154762	choline dehydrogenase ralA binding protein 1 ESTs HIV-1 rev binding protein 2 topolsomerase-related function protein 4 putative G protein-coupled receptor	4.4 7.1 8.3 3.8 1.2 3.2	? SS, other SS, ?
45	123983 AJ272267 124001 L42542 124006 Al147155 124070 Al950314 124074 H05635 124178 BE463721	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030 Hs.97101	choline dehydrogenase ralA binding protein 1 ESTs HIV-1 rev binding protein 2 topolsomerase-related function protein 4 putative G protein-coupled receptor	4.4 7.1 8.3 3.8 1.2	? SS, other SS,
45	123983 AJ272267 124001 L42542 124006 AI147155 124070 AI950314 124074 H05635 124178 BE463721 124203 AA372796	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030 Hs.97101 Hs.269339	chaline dehydrogenase rala binding protein 1 ESTs HIV-1 rev binding protein 2 topolsomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPCO	4.4 7.1 8.3 3.8 1.2 3.2 5.7	? SS, other SS, ? other
	123983 AJ272267 124001 L42542 124006 Al147155 124070 Al950314 124074 H05635 124178 BE463721 124203 AA372796 124352 AA640891	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030 Hs.97101 Hs.269339 Hs.102406	choline dehydrogenase rala binding protein 1 ESTs HIV-1 rev binding protein 2 topolsomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPCD ESTs	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1	? SS, other SS, ? other TM
45 50	123983 AJ272267 124001 L42542 124006 AI147155 124070 AI950314 124074 H05635 124178 BE469721 124203 AA372796 124322 AA640891 124327 D87454	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030 Hs.97101 Hs.269339	chaline dehydrogenase mIA binding protein 1 ESTs HIV-1 rev binding protein 2 topodsomarsas-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPC0 ESTs KIANQ265 protein	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5	? SS, other SS, ? other TM other
	123983 AJZ72267 124001 L42542 124006 Al147155 124070 Al950314 124074 H05635 124178 BE463721 124203 AA372796 124352 AA640891 124375 D87454 124385 Al267847	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030 Hs.97101 Hs.269339 Hs.102406 Hs.192966	choline dehydrogenase rallA binding prolein 1 ESTs HIV-1 rev binding protein 2 topoksomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPC0 ESTs KIAAQSES protein	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1	? SS, other SS, ? other TM other ?
	123983 AJZ72267 124001 L42542 124006 Al147155 124070 Al950314 124074 H05635 124178 BE463721 124203 AA372796 124325 AA640891 124375 D87454 124385 Al267847 124390 AA317338	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030 Hs.97101 Hs.269339 Hs.102406 Hs.192966 Hs.7535	chaline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topolsomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPCO ESTs KIAA0265 protein gbaq4910.x1 Stanley Frontal NB pool 2 COSW-like protein	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8	? SS, other SS, ? other TM other ? other
	123983 AJZ72267 124001 L42542 124006 Al147155 124070 Al950314 124074 H05635 124178 BE463721 124203 AA372796 124325 AA640891 124375 D87454 124385 Al267847 124390 AA317338	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030 Hs.97101 Hs.269339 Hs.102406 Hs.192966 Hs.7535	chaline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topolsomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPCO ESTs KIAA0265 protein gbaq4910.x1 Stanley Frontal NB pool 2 COSW-like protein	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1	? SS, other SS, ? other TM other ?
	123983 AJZ72267 124001 L42542 124006 Al147155 124070 Al950314 124074 H05635 124178 BE4683721 124203 AA372796 124352 AA640891 124375 D87454 124385 Al267847 124390 AA33738 124391 #1555099	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030 Hs.97101 Hs.269339 Hs.102406 Hs.192966	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topodsomerase-related function protein 4 putative C protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPC0 ESTS KIAAQ265 protein P	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.1	? SS, other SS, ? other TM other ? other other
50	12983 ALZ72267 124001 L42542 124006 A1147155 124070 A1950314 124074 H05635 124178 BE463721 124203 AA372796 124352 AA640891 124375 D87454 124390 AA317338 124391 AF155091 124417 N34059	Hs.146178 Hs.75447 Hs.270016 Hs.154762 Hs.294030 Hs.97101 Hs.269339 Hs.102406 Hs.192966 Hs.7535 Hs.279780	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topoksomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 THSPCO ESTS, Weak	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.1 3.3	? SS, other SS, ? other TM other ? other other other
	12988 ALZ72267 124001 A12542 124006 A1147155 124077 A1950314 124074 H05635 124178 BE463721 124203 A372796 124352 AA640891 124375 D87454 124385 A1267847 124390 A3317338 124391 A7155099 124417 N34059 124428 H13540	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 294030 Hs. 97101 Hs. 269339 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topodomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPC0 ESTS KIAA0265 protein 5 protein 4 putative G protein 5 protein NF protein 17 protein NF protein 17 protein NF pr	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.1 3.3 2.9	? SS, other SS, ? other TM other other other other other
50	123883 AJZ72267 124001 L42542 124006 A1147155 124070 A1850314 124074 H05635 124178 BE463721 124203 AA372796 124352 AA640891 124352 AA640891 124359 D87454 124358 AI257647 124390 A317338 124391 AF15509 124440 H13540 124440 AA532519	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 294030 Hs. 97101 Hs. 269339 Hs. 102406 Hs. 7535 Hs. 279780 Hs. 82202 Hs. 129043	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topoksomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 11SPC0 ESTS, Weak	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.1 3.3 2.9 7.9	? SS, other SS, ? other TM other other other other other
50	12988 ALZ72267 124001 ALZ542 124006 A1147155 124070 A1950314 124074 H05635 124178 BEA63721 124320 AA372796 124352 AA640891 124375 D87454 124355 A1267847 124390 AA317338 124391 AF155099 124417 N34059 124442 H13540 124442 AA532519	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 294030 Hs. 97101 Hs. 269339 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topodsomerase-related function protein 4 putative C protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPC0 ESTs KIAA0265 protein 5 protein 1 Prote	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.1 3.3 2.9 7.9 2.6	? SS, other SS, ? other TM other other other other other TM
50	123883 AJZ72267 124001 L42542 124006 A1147155 124070 A1850314 124074 H05635 124178 BE463721 124203 AA372796 124352 AA640891 124352 AA640891 124359 D87454 124358 AI257647 124390 A317338 124391 AF15509 124440 H13540 124440 AA532519	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 294030 Hs. 97101 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780 Hs. 82202 Hs. 129043 Hs. 113319	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topoksomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 11SPC0 ESTS, Weak	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.1 3.3 2.9 7.9 2.6 7.9	? SS, other SS, ? other TM other ? other other other other TM TM
50	123983 AJZ72267 124001 L42542 124006 A1147155 124070 A15950314 124074 H05635 124178 BE463721 124203 AA3727396 124352 AA640891 124357 D87454 124358 A1267947 124390 AA317338 124391 AF155099 124426 H13540 124440 AA352519 124446 R10084	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 294030 Hs. 97101 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780 Hs. 82202 Hs. 129043 Hs. 113319	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topodsomerase-related function protein 4 putative C protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPC0 ESTs KIAA0265 protein 5 protein 1 Prote	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.1 3.3 2.9 7.9 2.6	? SS, other SS, ? other TM other other other other other TM
50 55	12988 AJZ72267 124001 L2542 124006 A1147155 124070 A1950314 124074 H05635 124178 Be463721 124203 AA372796 124352 AA60891 124375 D87454 124350 AA317338 124391 A7155099 124417 N34059 124424 DA532516 124440 AA532519 124468 R105184 124468 R15039 124468 R15039 124468 R150394 124468 R150394 124468 R150394 124468 R150394 124468 R150394 124468 R150394 124469 AF9433 124469 AF9433 124469 AF9433 124469 R150394 124469 AF9433 124469 AF9433 124469 AF9433 124469 AF9433 124469 AF9433 124469 AF9433 AF9433 AF9439 AF9433 AF9439 AF9433 AF9439 AF949 AF9439	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 294030 Hs. 97101 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780 Hs. 82202 Hs. 129043 Hs. 113319 Hs. 268997	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topodomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPC0 ESTs KIAA0265 protein 500 protein 4 putative G protein AVI Stanley Frontal NB pool 2 COBW-like protein hV7-REN-18 antigen gbbyy28h09.s 1 Soares fetal liver spleen ribosomal protein L17 Human DNA sequence from done 9898H11 on kinesin heavy chain member 2 pbyy8909.s 1 Soares fetal liver spleen ESTs	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.1 3.3 2.9 7.9 2.6 7.9	? SS, other SS, ? other TM other ? other other other other TM TM
50	123983 AJ272267 124001 L2542 124006 A1147155 124070 A1950314 124074 H05635 124178 Be463721 124203 AA372736 D3743 124373 D3743 AA374733 124391 AF155099 124426 H13540 AA3474738 124491 A354059 124446 R10084 R10084 R1084	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 754762 Hs. 294030 Hs. 97101 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780 Hs. 82202 Hs. 129043 Hs. 113319 Hs. 268997 Hs. 109370	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topokomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to £AT161356 1 HSPCO ESTs (Weakly Similar to £AT161356 1 HSPCO E	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.5 57.1 2.8 7.1 3.3 2.9 7.9 2.6 7.9 7.8 3.3	? SS, other SS, ? other TM other TM
50 55	123983 AJZ72267 124001 L2542 124006 A1147155 124070 A1950314 124074 H05635 124178 Be463721 124203 AA372796 124352 AA640891 124375 D87454 124390 AA317338 124391 A7155099 124417 N34059 124440 AA532519 124468 R10344 124462 N53935 124469 A715435 AA669097 124469 AA532519 124469 A71545 AA669097 124668 R1074074 R10	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 294030 Hs. 97101 Hs. 269339 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780 Hs. 82202 Hs. 129043 Hs. 113319 Hs. 268997 Hs. 109370 Hs. 109370 Hs. 109370	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topodsomerase-related function protein 4 putative C protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPC0 ESTs KIAA0265 protein Disang49a10.xt Stanley Frontal NB pool 2 COBW-like protein NY-REN-18 antigen gbbyv28h09.st Soares fetal liver spleen ribosomal protein L17 Human DNA sequence from done 989H11 on kinesin heavy chain member 2 pbyv3909.st Soares fetal liver spleen ESTs ESTs Weakly similar to neuronal thread	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.1 3.3 2.9 7.9 7.8 3.3 4.6	? SS, other SS, ? other TM other ? other other other TM TM other other ?
50 55	123983 AJZ72267 124001 L42542 124006 A1147155 124070 A1950314 124074 H05633 124178 BE463721 124203 AA372796 124323 AA680891 124375 D87454 124350 AA317338 124314 A155099 124442 A3432519 124468 R10084 124469 H78433	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 270016 Hs. 269039 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780 Hs. 82202 Hs. 129043 Hs. 113319 Hs. 268997 Hs. 102800 Hs. 102800 Hs. 102800	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topolosmerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161396 11 MSPCO ESTs Weakly similar to RSPCO ESTS WEAKLOOK STORES TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO T	4.4 7.1 8.3 3.8 1.2 3.2 5.7 3.1 3.5 57.1 2.8 7.9 7.9 7.8 3.3 4.6 3.2	? SS, other SS, ? other TM other ? other other other TM other other TM other other? ? other?
50 55	123983 AJZ72267 124001 L2542 124006 A1147155 124070 A1950314 124074 H05635 124178 Be463721 124203 AA372796 124352 AA640891 124375 D87454 124350 AA317338 124391 AF155099 124417 N34059 124440 AA532519 124468 R10384 124482 N53935 124469 A754515 AA669097 124668 R10384 124485 N53935 12469 H79433 124515 AA669097 124668 R170167 124631 NM_014053 12469 H79433 124651 A710765 124631 NM_014053 124651 M710765 124631 NM_014053 124651 M710765 124631 NM_014053 124651 M710765 124651 M71076 124	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 284030 Hs. 97101 Hs. 269339 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780 Hs. 129043 Hs. 129043 Hs. 102800 Hs. 102800 Hs. 102800 Hs. 102800 Hs. 102800 Hs. 102800	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topodsomerase-related function protein 4 putative C protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPC0 ESTs KIAA0265 protein Disang49a10.xt Stanley Frontal NB pool 2 COBW-like protein NY-REN-18 antigen gbbyv28h09.st Soares fetal liver spleen ribosomal protein L17 Human DNA sequence from done 989H11 on kinesin heavy chain member 2 pbyv3909.st Soares fetal liver spleen ESTs ESTs ESTs Weakly similar to neuronal thread FLVCR protein Homo seplens cDNA FLJ13533 fis, done PL	4.4 7.1 8.3 3.8 1.2 3.5 5.7 3.1 3.5 57.1 3.3 2.9 7.9 2.6 7.9 2.6 7.8 3.3 4.6 3.2 5.8	? SS, other SS, ? other TM other ? other other ? other other ?
50 55	123983 AJZ72267 124001 L2542 124006 A1147155 124070 A1950314 124074 H05635 124178 Be463721 124203 AA372796 124352 AA640891 124375 D87454 124350 AA317338 124391 AF155099 124417 N34059 124440 AA532519 124468 R10384 124482 N53935 124469 A754515 AA669097 124668 R10384 124485 N53935 12469 H79433 124515 AA669097 124668 R170167 124631 NM_014053 12469 H79433 124651 A710765 124631 NM_014053 124651 M710765 124631 NM_014053 124651 M710765 124631 NM_014053 124651 M710765 124651 M71076 124	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 270016 Hs. 269039 Hs. 102406 Hs. 192966 Hs. 7535 Hs. 279780 Hs. 82202 Hs. 129043 Hs. 113319 Hs. 268997 Hs. 102800 Hs. 102800 Hs. 102800	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topolosmerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161396 11 MSPCO ESTs Weakly similar to RSPCO ESTS WEAKLOOK STORES TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO T	4.4 7.1 8.3 3.8 1.2 3.7 3.1 5.7 3.1 5.7 3.5 5.7 1.3 2.9 7.9 7.8 3.3 4.6 3.2 5.8 9.3	? SS, other SS, ? other TM other other other other TM other other ther other other ther other other ?
50 55 60	12988 AJZ72267 124001 L42542 124006 A1147155 124070 A1950314 124074 H05635 124178 BE463721 124203 AA372796 124320 AA372797 124320 AA372797 124320 AA372797 124320 AA372797 124320 AA372793 124320 AA37738 124320 AA372219 124420 AA352219 124420 AA362219	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 284030 Hs. 97101 Hs. 269339 Hs. 102406 Hs. 192966 Hs. 192966 Hs. 279780 Hs. 82202 Hs. 129043 Hs. 103370 Hs. 103370 Hs. 103370 Hs. 103370 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topolosmerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPCO ESTs Weakly similar to rotein NY-ACR-NG and protein NY-ACR-NG	4.4 7.1 8.3 3.8 1.2 3.5 5.7 3.1 3.5 57.1 3.3 2.9 7.9 2.6 7.9 2.6 7.8 3.3 4.6 3.2 5.8	? SS, other SS, ? other TM other ? other other ? other other ?
50 55	123983 AJ272267 124001 L2542 124006 A1147155 124077 A15950314 124077 H05503 124478 B450314 124078 H05635 124478 B450318 A17338 124391 A71509 A1735 B12446 H13540 12446 H13540 12446 H13540 12446 H13540 H13540 12446 H13540	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 294030 Hs. 97101 Hs. 162406 Hs. 192406 Hs. 192406 Hs. 192966 Hs. 1929780 Hs. 12202 Hs. 12203 Hs. 10200 Hs. 10200 Hs. 10200 Hs. 10200 Hs. 179788	choline dehydrogenase ralAb binding protein 1 ESTs HIV-1 rev binding protein 2 topoksomerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 THSPCO ESTS, Weakly similar to Member 1 September 2 September 1 September 2 September 1 September 2 September 1 September 2 Septe	4.4 7.1 8.3 3.8 1.2 3.7 3.1 3.5 7.1 3.3 7.9 2.9 7.9 7.8 3.3 4.6 3.2 5.8 9.3 5.8	? SS, other SS, ? other SS, ? other TM other other other other TM TM other
50 55 60	12988 AJZ72267 124001 L42542 124006 A1147155 124070 A1950314 124074 H05635 124178 BE463721 124203 AA372796 124320 AA372797 124320 AA372797 124320 AA372797 124320 AA372797 124320 AA372793 124320 AA37738 124320 AA372219 124420 AA352219 124420 AA362219	Hs. 146178 Hs. 75447 Hs. 270016 Hs. 154762 Hs. 284030 Hs. 97101 Hs. 269339 Hs. 102406 Hs. 192966 Hs. 192966 Hs. 279780 Hs. 82202 Hs. 129043 Hs. 103370 Hs. 103370 Hs. 103370 Hs. 103370 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094 Hs. 172094	choline dehydrogenase rallA binding protein 1 ESTs HIV-1 rev binding protein 2 topolosmerase-related function protein 4 putative G protein-coupled receptor ESTs, Weakly similar to AF161356 1 HSPCO ESTs Weakly similar to rotein NY-ACR-NG and protein NY-ACR-NG	4.4 7.1 8.3 3.8 1.2 3.7 3.1 5.7 3.1 5.7 3.5 5.7 1.3 2.9 7.9 7.8 3.3 4.6 3.2 5.8 9.3	? SS, other SS, ? other TM other other other other TM other other ther other other ther other other ?

122870 AW576312 Hs.318722 Homo saplens cDNA: FLJ21766 fls, clone C 9.9 ?

	124683 AA381661	Hs.119878	ESTs, Weakly similar to M3K9_HUMAN MITOG	7.9	TM
	124712 R09166	Hs.191148	ESTs	5.7	other
	124735 R22952	Hs.268685	ESTs	11.3	?
-	124761 AA374756	Hs.93560	Homo sapiens mRNA for KIAA1771 protein,	9	other
5	124768 AW368528	Hs.100855	ESTs	8.3	other
	124775 R41772	Hs.100878	ESTs	4.9	other
	124777 R41933	Hs.140237	ESTs, Weakly similar to ALU1_HUMAN ALU S	2.8	other
	124788 R43543	Hs.100912	Homo sapiens cDNA: FLJ22726 fis, clone H	5.1	other
10	124809 AL355722	Hs.106875	Homo sapiens EST from clone 35214, full	4.2	other
10	124811 R46068	Hs.288912	hypothetical protein FLJ22604	14.2 7.9	other other
	124812 R47948	Hs.188732	ESTs	6.6	other
	124822 AA418160 124825 AA501669	Hs.86043 Hs.336693	Homo saplens cDNA FLJ13558 fis, clone PL ESTs	2.3	SS.TM
			ESTs	2.7	SS,TM
15	124833 AW975868 124857 R63652	Hs.294100 Hs.137190	ESTs	2.3	other
IJ	124860 R65763	Hs.101477	EST	23.9	?
	124863 Al382555	Hs.127950	bromodomain-containing 1	2	other
	124876 AF135422	Hs.27059	GDP-mannose pyrophosphorylase A	4.4	SS.
	124878 BE397530	Hs.288057	hypothetical protein FLJ22242	2.7	other
20	124902 H37941	Hs.101883	ESTs	5.7	other
20	124903 AW296713	Hs.221441	ESTs	32.4	other
	124930 Al076343	Hs.173939	ESTs, Weakly similar to ALUB_HUMAN !!!!	22.8	other
	124942 R99978	Hs.268892	ESTs, Moderately similar to B34087 hypot	6.1	other
	124958 AI078645	Hs.431	murine leukemla viral (bmi-1) oncogene h	1.9	other
25	124980 T40841	Hs.98681	ESTs	4.5	?
	125002 T59338	Hs.269463	ESTs, Weakly similar to ALU1_HUMAN ALU S	4.9	other
	125047 T79815	Hs.279793	ESTs	5	?
	125051 T79956	Hs.100588	EST ·	135.3	?
	125056 T81310	Hs.100592	ESTs	5.4	other
30	125101 Al472068	Hs.286236	KIAA1856 protein	5.6	other
	125113 T96595	Hs.302270	ESTs, Weakly similar to ALUF_HUMAN I!ii	1.8	other
	125115 T97341		gb:ye57e05.s1 Soares fetal liver spleen	9.6 1.5	? TM
	125125 Al222382 125147 W38150	Hs.240767	Human DNA sequence from clone RP1-12G14 Empirically selected from AFFX single pr	1.7	7
35	125147 W38150 125161 W44657	Hs.144232	EST	10.7	,
33	125249 AA630863	Hs.131375	ESTs, Moderately similar to ALUB_HUMAN I	1.3	other
	125255 AF098162	Hs.118631	timeless (Drosophila) homolog	9.4	other
	125279 AW401809	Hs.4779	KIAA1150 protein	1.5	?
	125280 Al123705	Hs.106932	ESTs	8.1	?
40	125298 AW972542	Hs.289008	Homo sapiens cDNA: FLJ21814 fis, clone H	1.5	other
	125660 AW292171	Hs.23978	scaffold attachment factor B	5.9	other
	125827 NM_003403	Hs.97496	YY1 transcription factor	1.2	?
	125891 U29589	Hs.7138	cholinergic receptor, muscarinic 3	6.5	?
	126005 AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur	14.3	?
45	126202 AA157632	Hs.272630	vacuolar proton pump delta polypeptide	2.5	SS,
	126695 AA643322	Hs.172028	a disintegrin and metalloproteinase doma	9.1	SS,TM
	127050 AW411066	Hs.274351	CGI-89 protein	17	other
	127274 AW966158	Hs.58582	Homo sapiens cDNA FLJ12789 fis, cione NT	12.8	other
50	128355 AW293012	Hs.161623	ESTs	7.4	SS, TM
50	128493 D87466	Hs.240112	KIAA0276 protein putative nucleolar RNA helicase	3.1 9.4	other
	128522 BE173977 128527 AA504583	Hs.10098	transcription factor 3 (E2A Immunoglobul	1.5	other
	128527 AAS04303 128528 R39234	Hs.101047 Hs.251699	ESTs, Weakly similar to IDN4-GGTR14 [H.s	2.8	other
	128595 U31875	Hs.272499	short-chain alcohol dehydrogenase family	12.1	TM
55	128599 NM_015366	Hs.102336	Rho GTPase activating protein 8	2.4	7
33	128604 AI879099	Hs.102397	GIOT-3 for gonadotropin inducible transc	1.3	other
	128608 BE267994	Hs.102419	zinc finger protein	7.2	other
	128625 AB037841	Hs.102652	hypothetical protein ASH1	1.3	other
	128629 AL096748	Hs.102708	DKFZP434A043 protein	3.2	other
60	128639 AW582962	Hs.102897	CGI-47 protein	2	TM
	128656 AA458542	Hs.10326	coatomer protein complex, subunit epsilo	1.4	other
	128658 BE397354	Hs.324830	diptheria toxin resistance protein requi	2.5	other
	128670 AA975486	Hs.103441	Homo saplens, Similar to RIKEN cDNA 1700	7.1	?
	128691 W27939	Hs.103834	hypothetical protein MGC5576	7.8	?
65	128696 BE081143	Hs.225977	nuclear receptor coactivator 3	3.8	other
	128700 Y15221	Hs.103982	small inducible cytokine subfamily B (Cy	1.6	other
	128714 T85231	Hs.179661	tubulin, beta 5	7.8	other

5.5 other

	128/1/ AKUU1564	HS.104222	nypotnetical protein FLJ 10702	5.5	Quiei
	128733 BE147740	Hs.104558	ESTs, Moderately similar to 138022 hypot	2.7	TM
	128737 AF292100	Hs.104613	RP42 homolog	2.8	TM
	128742 AA307211	Hs.251531	proteasome (prosome, macropaln) subunit,	4.5	?
5	128746 AI470163	Hs.323342	actin related protein 2/3 complex, subun	2.2	other
,				2.8	other
	128747 AB027249	Hs.104741	PDZ-binding kinase; T-cell originated pr		
	128772 BE302796	Hs.105097	thymidine kinase 1, soluble	5.4	other
	128781 N71826	Hs.105465	small nuclear ribonucleoprotein polypept	53.9	TM
	128797 NM_002975	Hs.105927	stem cell growth factor; lymphocyte secr	13.3	other
10	128806 AW630942	Hs.106061	RD RNA-blnding protein	2.6	other
	128814 AW248431	Hs.256526	nuclear prelamin A recognition factor	2.2	other
	128830 BE281170	Hs.106357	valosin-containing protein	6	other
	120030 00201170		Management of the service of the ser	1.6	SS,
	128835 AK001731	Hs.106390	Homo sapiens mRNA; cDNA DKFZp586H0924 (f		
	128854 BE159181	Hs.168232	hypothetical protein FLJ13855	2.3	other
15	128871 AF189723	Hs.106778	ATPase, Ca++ transporting, type 2C, memb	1.5	?
	128906 R57988	Hs.10706	epithelial protein lost in neoplasm beta	4.8	other
	128920 AA622037	Hs.166468	programmed cell death 5	1.4	other
	128925 R67419	Hs.21851	Homo saplens cDNA FLJ12900 fis, done NT	1.9	other
				7.3	?
	128946 Y13153	Hs.107318	kynurenine 3-monooxygenase (kynurenine 3		
20	128949 AA009647	Hs.8850	a disintegrin and metalloproteinase doma	2.5	other
	128959 Al580127	Hs.107381	hypothetical protein FLJ11200	1.3	other
	128965 AW150697	Hs.107418	ESTs	1.4	?
	128970 Al375672	Hs.165028	ESTs	1.3	other
		Hs.284233	NICE-5 protein	14	other
0.5	128975 BE560779				
25	128979 AW271217	Hs.281434	Homo saplens cDNA FLJ14028 fis, clone HE	1.6	TM
	128995 Al816224	Hs.107747	DKFZP566C243 protein	1.9	other
	129019 AI950087		gb:wq05c02.x1 NCI_CGAP_Kid12 Homo sapien	2.9	other
	129021 AL044675	Hs.173081	KIAA0530 protein	3.8	other
	129032 R80088	Hs.108104	ubiquitin-conjugating enzyme E2L 3	3.4	other
30			ESTs, Highly similar to T46422 hypotheti	5	other
30	129076 AW296806	Hs.326234			
	129078 Al351010	Hs.102267	lysosomal	2.1	other
	129088 AA744610	Hs.194431	palladin	17.1	other
	129095 L12350	Hs.108623	thrombospondin 2	2.7	other
	129096 AA463189	Hs.288906	WW Domain-Containing Gene	20.9	TM
35	129097 BE243933	Hs. 108642	zinc finger protein 22 (KOX 15)	3	other
33	129099 AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	5.8	TM
			ATF-billowing casselle, sub-latinity C (OF TA	6	other
	129136 W93048	Hs.250723	hypothetical protein MGC2747		
	129149 AA356620	Hs.108947	KIAA0050 gene product	6.4	TM
	129172 AW162916	Hs.241576	hypothetical protein PRO2577	1.8	TM
40	129192 AA286914	Hs.183299	ESTs	2.1	?
	129194 AA150797	Hs.109276	fatexin protein	3.3	SS.TM
	129198 N57532	Hs.109315	KIAA1415 protein	5.9	other
				8.1	other
	129207 Al934365	Hs.109439	osteoglycin (osteoinductive factor, mime		
	129228 U40714	Hs.239307	tyrosyl-tRNA synthetase	2.9	other
45	129229 AF013758	Hs.109643	polyadenylate binding protein-Interactin	3.3	?
	129254 AA252468	Hs.1098	DKFZp434J1813 protein	2.6	SS,TM
	129255 Al961727	Hs.109804	H1 histone family, member X	7.4	other
	129288 W26392	Hs.110080	ESTs, Weakly similar to S13495 pregnancy	9.6	other
				1.2	
	129296 AI051967	Hs.110122	ESTs		other
50	129323 AA287239	Hs.5518	Homo sapiens cDNA FLJ11311 fis, clone PL	5.2	other
	129340 H75334	Hs.11050	F-box only protein 9	4.7	SS,
	129347 BE614192	Hs.279869	melanoma-associated antigen recognised b	7.7	TM
	129362 U30246	Hs.110736	solute carrier family 12 (sodium/potassi	6.7	TM
			Homo sapiens clone 23785 mRNA sequence	8.6	SS.
	129366 BE220806	Hs.184697		1.4	TM
55	129370 Al686379	Hs.110796	SAR1 protein		
	129372 NM_016039	Hs.110803	CGI-99 protein	2	other
	129403 AF149785	Hs.111126	pituitary tumor-transforming 1 Interacti	7.5	other
	129404 Al267700	Hs.317584	ESTs	5.1	other
	129423 AA204686	Hs.234149	hypothetical protein FLJ20647	10.2	other
CO				6.8	other
60	129482 AA188185	Hs.289043	spindlin		
	129513 AW843633	Hs.306163	hypothetical protein AL110115	7.1	SS,
	129515 AF255303	Hs.112227	membrane-associated nucleic acid binding	2.5	other
	129527 AA769221	Hs.270847	delta-tubulin	3.2	other
	129559 W01296	Hs.11360	hypothetical protein FLJ14784	7.5	other
65	129560 AA317841	Hs.7845	hypothetical protein MGC2752	6.8	other
03				2.1	other
	129570 Al923097	Hs.11441	chromosome 1 open reading frame 8	1.6	
	129575 F08282	Hs.278428	progestin induced protein	1.6	other

128717 AK001564 Hs.104222 hypothetical protein FLJ10702

	12000	H14718	11- 44500	14\ 00000D114	6.8	other
			Hs.11506	Human clone 23589 mRNA sequence		
		BE408300	Hs.301862	postmeiotic segregation Increased 2-like	1.4	TM
		N57423	Hs.179898	HSPC055 protein	7.4	other
	129594	AW403724	Hs.36989	coagulation factor VII (serum prothromb)	9	?
5	129596	AF035537	Hs.115521	REV3 (yeast homolog)-like, catalytic sub	1.6	other
-		U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	2.2	other
			Hs.16488	calreticulin	3.3	other
		AD000092				
		NM_015556	Hs.172180	KIAA0440 protein	13.4	other
		U03749		gb:Human chromogranin A (CHGA) gene, pro	14.1	?
10	129689	AW748482	Hs.77873	B7 homolog 3	2.6	other
	129702	Al304966	Hs.12035	ESTs, Weakly similar to I38022 hypotheti	7.5	TM
		AA156214	Hs.12152	APMCF1 protein	2	other
		NM 001415	Hs.211539	eukaryotic translation initiation factor	1.7	TM
1.5		AK001676	Hs.12457	hypothetical protein FLJ10814	1.8	other
15		AA394090	Hs.12460	Homo saplens clone 23870 mRNA sequence	5.5	TM
	129800	AF052112	Hs.12540	lysosomai	1.7	?
	129806	AB023148	Hs.173373	KIAA0931 protein	1.2	other
		BE565817	Hs.26498	hypothetical protein FLJ21657	3.1	other
		NM_006590	Hs.12820	SnRNP assembly defective 1 homolog	1.8	other
20						
20		AL049999	Hs.85963	DKFZP564M182 protein	2.3	other
		Al393237	Hs.129914	runt-related transcription factor 1 (acu	1.7	SS,
	129869	Al222069	Hs.13015	hypothetical protein similar to mouse Dn	2.8	TM
	129945	BE514376	Hs.165998	PAI-1 mRNA-binding protein	1.8	other
		AA412195	Hs.13740	ESTs	2.5	other
25		AW753185	Hs.180628	dynamin 1-like	1.8	?
23		U09848			1.3	other
			Hs.132390	zinc finger protein 36 (KOX 18)		
		AA301116	Hs.142838	nucleolar phosphoprotein Nopp34	1.6	other
	130081	AA287325	Hs.14713	ESTs	4.1	other
	130082	S73265	Hs.1473	gastrin-releasing peptide	1.9	other
30	130097	AL046962	Hs.14845	forkhead box O3A	2.8	other
		AL135561	Hs.14891	hypothetical protein FLJ21047	2.3	other
		X53002			2.3	other
			Hs.149846	Integrin, beta 5		
		AA916785	Hs.180610	splicing factor proline/glutamine rich (3	other
		L76937	Hs.150477	Werner syndrome	1.8	other
35	130135	AA311426	Hs.21635	tubulin, gamma 1	6.1	other
	130211	NM_003358	Hs.23703	ESTs, Moderately similar to CEGT_HUMAN C	1.6	other
		D80001	Hs.152629	KIAA0179 protein	1.3	other
		R85367	Hs.51957		2	other
				splicing factor, arginine/serine-rich 2,		
40		AL035588	Hs.153203	MyoD family Inhibitor	3.2	other
40		X79201	Hs.153221	synovial sarcoma, translocated to X chro	5.4	?
	130249	D81983	Hs.322852	GAS2-related on chromosome 22	4.9	other
	130263	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related k	1.4	other
		AA479005	Hs.154036	tumor suppressing subtransferable candid	2.6	other
		AB011121	Hs.154248	amyotrophic lateral sclerosis 2 (juvenil	6.3	other
45		Z19084	Hs.172210		6.2	other
43				MUF1 protein		
		AF127577	Hs.155017	nuclear receptor interacting protein 1	2.4	other
		AJ224442	Hs.155020	putative methyltransferase	3.5	TM
	130359	NM_013449	Hs.277401	bromodomain adjacent to zinc finger doma	8.5	other
	130367	AL135301	Hs.8768	hypothetical protein FLJ10849	1.4	other
50	130372	AI077464	Hs.5011	RNA binding motif protein 9	3.3	7
-		N89487	Hs.155291	KIAA0005 gene product	1.8	other
		AW374106			3.4	other
			Hs.155356	hypothetical protein MGC2840 similar to		
		BE385099	Hs.334727	hypothetical protein MGC3017	2.3	other
_		NM_001197	Hs.155419	BCL2-interacting killer (apoptosis-induc	2.7	TM
55	130419	AF037448	Hs.155489	NS1-associated protein 1	1.8	other
	130441	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	2.3	other
		BE513202	Hs.15589	PPAR binding protein	4	TM
		D90041	Hs.155956	N-acetyltransferase 1 (arylamine N-acety	33.6	?
		BE245851	Hs.180779	H2B histone family, member B	5	other
60	130487	U49844	Hs.77613	ataxia telanglectasia and Rad3 related	4.4	other
	130498	L38951	Hs.180446	karyopherin (importin) beta 1	1.6	SS,TM
	130503	BE208491	Hs.295112	KIAA0618 gene product	16.1	other
		L32137	Hs.1584	cartilage oligomeric matrix protein (pse	6.1	other
		AW876523	Hs.15929	hypothetical protein FLJ12910	2.1	other
65					1.5	
65		AA321238	Hs.4310	eukaryotic translation initiation factor		other
		AF062649	Hs.252587	pltuitary tumor-transforming 1	14.4	?
	130556	AI907018	Hs.15977	Empirically selected from AFFX single pr	4.8	other

	420507	* * * * * * * * * * * * * * * * * * * *	Un 4000	englication protain A2 (14kD)	8	other
		AA383092	Hs.1608	replication protein A3 (14kD)		
	130568	AA232119	Hs.16085	putative G-protein coupled receptor	3.4	other
	130574	AF083208	Hs.16178	apoptosis antagonizing transcription fac	1.2	other
		AL042210	Hs.16493	hypothetical protein DKFZp762N2316; KIAA	1.4	other
5			Hs.16525	ESTs	1.5	TM
,		AA609738				
	130614	AI354355	Hs.16697	down-regulator of transcription 1, TBP-b	1.3	other
	130617	M90516	Hs.1674	giutamine-fructose-6-phosphate transamin	12.1	TM
	130618	AA383439	Hs.16758	Spir-1 protein	15.9	other
		BE246961	Hs.17639	Homo sapiens ubiquitin protein ligase (U	13.9	other
10						other
10		AL048842	Hs.194019	attractin	1.5	
	130675	AA442233	Hs.17731	hypothetical protein FLJ12892	5.4	other
	130692	AA652501	Hs.13561	hypothetical protein MGC4692	5	other
		R68537	Hs.17962	ESTs	2	other
					1.8	TM
		AJ271881	Hs.279762	bromodomain-containing 7		
15	130714	AI348274	Hs.18212	DNA segment on chromosome X (unique) 987	2	TM
	130730	AB007920	Hs.18586	KIAA0451 gene product	3.8	?
		H59696	Hs.18747	POP7 (processing of precursor, S. cerevi	3.2	?
					1.4	other
		AF052105	Hs.18879	chromosome 12 open reading frame		
	130757	AL036067	Hs.18925	protein x 0001	5.7	other
20	130768	AF258627	Hs.211562	ATP-binding cassette, sub-family A (ABC1	5.2	?
		AK000355	Hs.8899	sirtuin (silent mating type information	1.6	other
			Hs.2012	transcobalamin I (vitamin B12 binding pr	15.7	SS.
		J05068				
	130841	AL157468	Hs.325825	Homo saplens cDNA FLJ20848 fis, clone AD	2.8	other
	130843	AA447492	Hs.20183	ESTs, Weakly similar to AF164793 1 prote	1.5	other
25		U76248	Hs.20191	seven in absentia (Drosophila) homolog 2	3.5	other
		AJ243706	Hs.143323	putative DNA/chromatin binding motif	1.7	other
					1.9	other
		NM_016578	Hs.20509	HBV pX associated protein-8		
	130879	NM_003416	Hs.2076	zinc finger protein 7 (KOX 4, clone HF.1	1.4	other
	130880	BE514434	Hs.20830	kinesin-like 2	2.1	TM
30		AL120837	Hs.20993	high-glucose-regulated protein 8	2.5	other
50		AB033078	Hs.186613	sphingosine-1-phosphate lyase 1	1.7	other
					1.8	other
	130911	BE409769	Hs.21189	DnaJ (Hsp40) homolog, subfamily A, membe		
	130919	N79110	Hs.21276	collagen, type IV, alpha 3 (Goodpasture	2.3	TM
	130944	BE382657	Hs.21486	signal transducer and activator of trans	5.4	other
35	120071	N39842	Hs.301444	KIAA1673	2.2	SS.
22					1.6	other
		T97401	Hs.21929	ESTs		
		AV658308	Hs.2210	thyroid hormone receptor interactor 3	1.6	?
	131028	A1879165	Hs.2227	CCAAT/enhancer binding protein (C/EBP),	1.2	other
		AI826288	Hs.171637	hypothetical protein MGC2628	1.6	other
40		AA321649	Hs.2248	small inducible cytokine subfamily B (Cy	7.4	?
40					5.1	other
		AA194422	Hs.22564	myosin VI		
	131070	N53344	Hs.22607	ESTs	7.1	other
	131076	AA749230	Hs.26433	dolichyl-phosphate (UDP-N-acetylglucosam	2.1	TM
		AL133353	Hs.226581	COX15 (yeast) homolog, cytochrome c oxid	7.1	other
45				nuclear receptor coactivator 2	1.9	?
43		NM_006540	Hs.29131			7
	131185	BE280074	Hs.23960	cyclin B1	5.8	
	131206	AW138839	Hs.24210	ESTs	2	other
	131213		Hs.24332	CGI-26 protein	7.1	TM
		H62087	Hs.31659	thyrold hormone receptor-associated prot	7.6	?
					2.9	other
50		N47468	Hs.59757	zinc finger protein 281		
	131233	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	3.5	other
	131243	AW383256	Hs.24752	spectrin SH3 domain binding protein 1	2.8	?
		. AL080080	Hs.24766	thioredoxin domain-containing	2.8	SS.TM
				fatty acid amide hydrolase	5.6	other
		AL043100	Hs.326190			
55		AA251716	Hs.25227	ESTs	5.8	other
	131283	X80038	Hs.339713	Homo saplens clone F19374 APO E-C2 gene	1.3	other
	131305		Hs.184325	CGI-76 protein	5	7
				splicing factor (CC1.3)	1.8	TM
		AA505691	Hs.145696	Milmanon henokono ovodenno 1 (nik-in)	2.6	other
		AF058696	Hs.25812	Nijmegen breakage syndrome 1 (nibrin)		
60	131375	AW293165	Hs.143134	ESTs	5.4	othe
	131390		Hs.182698	mitochondrial ribosomal protein L20	5.3	othe
	131410		Hs.279836	HSPC166 protein	2.2	other
				SELENOPHOSPHATE SYNTHETASE; Human		2
		2 NM_012247				othe
	131429	AL046302	Hs.26750	hypothetical protein FLJ21908	1.4	
65		BE297567	Hs.27047	hypothetical protein FLJ20392	1.7	othe
		AA992841	Hs.27263	KIAA1458 protein	2	othe
		AV661958	Hs.8207	GK001 protein	2.6	othe

	131511	AA732153	Hs.27865	Homo sapiens cDNA: FLJ21333 fis, clone C	2	other
		AU076408	Hs.28309	UDP-glucose dehydrogenase	1.6	TM
	131532	BE268278	Hs.28393	hypothetical protein MGC2592	7.4	other
_	131543	AW966881	Hs.41639	programmed cell death 2	2.2	other
5		AL355715	Hs.28555	programmed cell death 9 (PDCD9)	2.1	other
		NM_003512	Hs.28777	H2A histone family, member L	1.7	other
		T93500	Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL	5.2	other
		AL389951	Hs.271623	nucleoporin 50kD	5	other
10		BE393822	Hs.29645	Homo saplens mRNA; cDNA DKFZp761C029 (fr	1.8	other
10		R78195	Hs.29692	Homo sapiens cDNA FLJ11436 fis, clone HE	1.3	other
		AB037791	Hs.29716	hypothetical protein FLJ10980	2.2	TM
		AW410601	Hs.30026	HSPC182 protein	3	other
		AW960597	Hs.30164	ESTS	1.3	other
15		AI218918 X52486	Hs.30209 Hs.3041	KIAA0854 protein	2.8	other
13		BE559681	Hs.30736	uracil-DNA glycosylase 2 KIAA0124 protein	2.8 5.6	other ?
		AA642831	Hs.31016	putative DNA binding protein	2.9	?
		D13757	Hs.311	phosphoribosyl pyrophosphate amidotransf	3.4	other
		AK001641	Hs.31323	inhibitor of kappa light polypeptide gen	3.9	?
20		AI878932	Hs.317	topoisomerase (DNA) I	3.4	other
20		AA382590	Hs.170980	KIAA0948 protein	25.5	other
		D87077	Hs.196275	KIAA0240 protein	2.4	SS,
		AW966127	Hs.32246	Homo sapiens cDNA FLJ14656 fis, clone NT	8	TM
		BE501849	Hs.32317	hlgh-mobility group 20B	1.5	other
25	131798		Hs.301449	adenovirus 5 E1A binding protein	4.2	other
		U20536	Hs.3280	caspase 6, apoptosis-related cysteine pr	4.3	other
		U28838	Hs.32935	TATA box binding protein (TBP)-associate	3.5	other
	131850	AI251317	Hs.33184	ESTs	5.2	TM
	131878	AA083764	Hs.6101	hypothetical protein MGC3178	5.9	other
30		BE502341	Hs.3402	ESTs	13.7	other
		AA099014	Hs.231029	Homo sapiens, clone MGC:15961, mRNA, com	8.7	other
		AF078866	Hs.284296	Homo sapiens cDNA: FLJ22993 fis, clone K	5.5	other
		AA179298	Hs.3439	stomatin-like 2	11.3	other
26		AW207440	Hs.185973	degenerative spermatocyte (homolog Droso	1.7	SS,
35		AA025976	Hs.34569	ESTs	5.2	TM
		AF151048	Hs.183180	anaphase promoting complex subunit 11 (y	2.8	other
		BE541211	Hs.34804	Homo sapiens cDNA FLJ11472 fis, clone HE	5.4	TM
		BE252983 AA355113	Hs.35086 Hs.35380	ublquitin specific protease 1	2.4	other
40		AK000046	Hs.267448	x 001 protein	1.5 2.3	?
70		W79283	Hs.35962	hypothetical protein FLJ20039 ESTs	1.4	other
		BE567100	Hs.154938	hypothetical protein MDS025	3.5	other other
		U90441	Hs.3622	procollagen-proline, 2-oxoglutarate 4-di	6.6	TM
		AA503020	Hs.36563	hypothetical protein FLJ22418	2.4	?
45		AF053306	Hs.36708	budding uninhibited by benzimidazoles 1	2.2	SS.TM
		H56995	Hs.37372	Homo saplens DNA binding peptide mRNA, p	3.3	TM
		BE266155	Hs.3832	clathrin-associated protein AP47	1.5	other
	132084	NM_002267	Hs.3886	karyopherin alpha 3 (importin alpha 4)	3.7	other
	132103	BE171921	Hs.3991	ESTs	1.5	other
50		AV646076	Hs.39959	ESTs	5.8	TM
	132116	AW960474	Hs.40289	ESTs	1.7	other
		AA857025	Hs.8878	kinesin-like 1	3.4	other
		NM_004460	Hs.418	fibroblast activation protein, alpha	14.7	SS,
	132194	R42432	Hs.4212	ESTs	2.2	other
55	132207	BE206939	Hs.42287	E2F transcription factor 6	1.5	other
	132235		Hs.42656	KIAA1681 protein	5.7	other
		A1566004	Hs.141269	Homo saplens cDNA: FLJ21550 fis, clone C	2.1	other
		AA301228 AA227710	Hs.43299	hypothetical protein FLJ12890	1.5	other
60		AA653507	Hs.43658 Hs.285711	DKFZP586L151 protein	10	other
00		N36110	Hs.305971	hypothetical protein FLJ13089 solute carrier family 2 (facilitated glu	2 9.2	other other
		AB023191	Hs.44131	KIAA0974 protein	2	other
		NM_015986	Hs.7120	cytokine receptor-like molecule 9	6.6	SS.
		AW405882	Hs.44205	cortistatin	3.8	other
65	132325	N37065	Hs.44856	hypothetical protein FLJ12116	1.5	other
		AW572805	Hs.46645	ESTs	28.3	?
		AF155582	Hs.46744	core1 UDP-galactose:N-acetylgalactosamin	1.9	other

	132376 Al279892	Hs.46801	sorting nexin 14	2	?
	132384 AA312135	Hs.46967	HSPCO34 protein	6.1	?
	132393 AL135094	Hs.47334	hypothetical protein FLJ14495	1.7	other
	132450 AA100012	Hs.48827	hypotheticai protein FLJ12085	8.6	other
5	132452 AW973521	Hs.247324	mitochondrial ribosomal protein S14	5.3	other
	132456 AB011084	Hs.48924	KIAA0512 gene product; ALEX2	1.5	other
	132470 Al224456	Hs.4934	H.saplens polyA site DNA	2	other
	132484 X16660	Hs.119007	RAB4, member RAS oncogene family	2.9	SS,
	132518 AW885606	Hs.5064	ESTs .	2.2	other
10	132530 AA306105	Hs.50785	SEC22, vesicle trafficking protein (S. c	1.7	other
	132532 AA454132	Hs.5080 .	mitochondrial ribosomal protein L16	7.2	MT
	132534 BE388673	Hs.5086	hypothetical protein MGC10433	2.2	SS,
	132543 BE568452	Hs.5101	protein regulator of cytokinesis 1	2.2	other
	132574 AW631437	Hs.5184	TH1 drosophila homolog	14	?
15	132596 AK001484	Hs.5298	CGI-45 protein	1.9	other
	132611 AA345547	Hs.53263	hypothetical protein FLJ13287	2.6	TM other
	132612 H12751	Hs.5327	PRO1914 protein	2	
	132616 BE262677	Hs.283558	hypothetical protein PRO1855	3.1	other TM
•	132638 Al796870	Hs.54277	DNA segment on chromosome X (unique) 992	12.4 2.8	SS,
20	132668 AB018319	Hs.5460	KIAA0776 protein	3	other
	132692 AW191962	Hs.249239	collagen, type VIII, alpha 2	1.8	other
	132715 F11875	Hs.5534	Homo sapiens cDNA FLJ12961 fis, clone NT	3.7	other
	132718 NM_004600	Hs.554	Sjogren syndrome antigen A2 (60kD, ribon	1.8	TM
25	132724 Al142265	Hs.55498	geranylgeranyi diphosphate synthase 1	5.9	other
25.	132731 Al189075	Hs.301872	hypothetical protein MGC4840 glutamyl-prolyl-tRNA synthetase	8.7	other
	132744 AA010233 - 132760 AA125985	Hs.55921 Hs.56145	thymosin, beta, identified in neuroblast	3.6	other
	132760 AA125985 132771 Y10275	Hs.56407	phosphoserine phosphatase	2.8	TM
	132773 AA459713	Hs.295901	KIAA0493 protein	14.6	other
30	132784 Al142133	Hs.56845	GDP dissociation inhibitor 2	1.7	other
30	132798 AI026701	Hs.5716	KIAA0310 gene product	2.5	other
	132807 U07418	Hs.57301	mutL (E. coli) homolog 1 (colon cancer,	1.4	other
	132810 AB007944	Hs.5737	KIAA0475 gene product	4.3	SS.
	132813 BE313625	Hs.57435	solute carrier family 11 (proton-coupled	2.8	other
35	132815 Al815189	Hs.57475	sex comb on midleg homolog 1	1.6	other
-	132817 N27852	Hs.57553	tousled-like kinase 2	1.4	other
	132821 AJ251595	Hs.169610	CD44 antigen (homing function and Indian	5.4	other
	132833 U78525	Hs.57783	eukaryotic translation Initiation factor	6.1	?
	132842 NM_016154	Hs.279771	Homo saplens clone PP1596 unknown mRNA	7.2	other
40	132844 F12200	Hs.5811	chromosome 21 open reading frame 59	2.9	other
	132851 U09716	Hs.287912	lectin, mannose-binding, 1	6.1	other
	132869 AW963217	Hs.203961	ESTs, Moderately similar to AF116721 89	1.8	other
	132873 AW007683	Hs.58598	KIAA1266 protein	2.2	other
	132875 NM_004850		Rho-associated, coiled-coil containing p	5	TM
45	132891 BE267143	Hs.59271	U2(RNU2) small nuclear RNA auxillary fac	2.7	?
	132897 AW503667	Hs.59545	ring finger protein 15	5.4	?
	132902 Al936442	Hs.59838	hypothetical protein FLJ10808	3.2	other
	132912 AW732760	Hs.167578	Homo sapiens cDNA FLJ11095 fis, clone PL	1.4	other
	132913 W78714	Hs.60257	Homo saplens cDNA FLJ13598 fis, clone PL	3	other
50	132940 T79136	Hs.127243	Homo saplens mRNA for KIAA1724 protein,	10.3	SS.
	132942 AA554458	Hs.197751	KIAA0666 protein	2.1 1.3	other
	132952 AI658580	Hs.61426	Homo saplens mesenchymal stem cell prote	4.9	other
	132962 AA576635	Hs.6153	CGI-48 protein Homo sapiens cDNA FLJ11392 fis, clone HE	3.6	TM
55	132972 AA034365 132973 AA035446	Hs.288924 Hs.323277	ESTs	13.1	other
22			RNA binding motif protein 3	1.3	other
	132977 AA093322 132980 AA040696	Hs.301404 Hs.62016	ESTs	2.3	?
			clone HQ0310 PRO0310p1	17.1	other
	132994 AA112748 133012 AA847843	Hs.279905 Hs.62711	Homo sapiens, clone IMAGE:3351295, mRNA	1.9	other
60	133012 AA047643	Hs.246315	UDP-N-acetyl-alpha-D-galactosamine:polyp	5	TM
oo	133062 AW500374	Hs.64056	PRO0149 protein	6.1	other
	133069 BE247441	Hs.6430	protein with polyglutamine repeat; calci	1.5	TM
	133091 AK001628	Hs.64691	KIAA0483 protein	1.4	other
	133110 AA808177	Hs.65228	ESTs	5.6	other
65	133134 AF198620	Hs.65648	RNA binding motif protein 8A	1.9	other
05	133145 H94227	Hs.6592	Homo saplens, clone IMAGE:2961368, mRNA,	4.8	?
	133152 Z11695	Hs.324473	mitogen-activated protein kinase 1	5	other

		AA431620 AW955632	Hs.324178 Hs.66666	hypothetical protein MGC2745 ESTs, Weakly similar to \$19560 proline-r	2.7 9.3	other other			
	133177		Hs.66718	RAD54 (S.cerevisiae)-like	4.5	TM			
-		Al801777	Hs.6774	ESTs	5.5	TM			
5		AW954569	Hs.296287	Homo sapiens, Similar to bromodomain-con	2.7 1.7	other ?			
		AI492924 AI567421	Hs.6831 Hs.273330	golgi phosphoprotein 1 Homo sapiens, cione IMAGE:3544662, mRNA,	1.3	other			
		AW956781	Hs.293937	ESTs, Weakly similar to FXD2_HUMAN FORKH	12.2	other			
		BE297855	Hs.69855	NRAS-related gene	1.2	other			
10		AA102670	Hs.70725	gamma-aminobutyric acid (GABA) A recepto	1.7	TM			
		T79526	Hs.179516	integral type I protein	11.1	?			
		AL390127	Hs.7104	Kruppel-like factor 13	2.9	other			
		BE257758	Hs.71475	acid cluster protein 33	2.5	?			
15		AI016521	Hs.71816	v-akt murine thymoma viral oncogene homo	1.5	other other			
15		AA292811	Hs.72050	non-metastatic cells 5, protein expresse KIAA0539 gene product	2.1 1.3	other			
		AF231919 AF245505	Hs.18759 Hs.72157	DKFZP564I1922 protein	2.2	other			
		AI950382	Hs.72660	phosphatidylserine receptor	5.7	TM			
		AW103364	Hs.727	inhibin, beta A (activin A, activin AB a	25.5	other			
20		AA305127	Hs.237225	hypothetical protein HT023	3.3	other			
		AL031591	Hs.7370	phosphotidylinositol transfer protein, b ·	1.6	other			
		NM_002759	Hs.274382	protein kinase, Interferon-Inducible dou	4.1	other			
		Al659306	Hs.73826	protein tyrosine phosphatase, non-recept	1.5	other TM			
25		AW964804 W45623	Hs.74280 Hs.74571	hypothetical protein FLJ22237 ADP-nbosylation factor 1	6.3 4	?			
23		AU077073	Hs.108327	damage-specific DNA binding protein 1 (1	1.8	· ?			
		AU077050	Hs.75066	translin	1.5	other			
		X75346	Hs.75074	mitogen-activated protein kinase-activat	3.5	TM			
_		BE391579	Hs.75087	Fas-activated serine/threonine kinase	6.8	TM			
30		AW160781	Hs.172589	nuclear phosphoprotein similar to S. cer	2.6	TM			
		AA393273	Hs.75133	transcription factor 6-like 1 (mitochond	1.4	other			
		NM_002885	Hs.75151 Hs.75258	RAP1, GTPase activating protein 1 H2A histone family, member Y	8.1 13.5	other			
	133621	NM_004893 NM_002047	Hs.75280	glycyl-tRNA synthetase	2.2	other			
35		NM_000401	Hs.75334	exostoses (multiple) 2	1.8	other			
		U25849	Hs.75393	acid phosphatase 1, soluble	2	other		,	
		AV661185	Hs.75574	mitochondrial ribosomal protein L19	2.8	other			
		L27841	Hs.75737	pericentriolar material 1	6.8	other			
40		AW969976	Hs.279009	matrix Gla protein	2.5	other	taaliaa da liibado aadhalaa	3.1	TM
40		AW402048.cc T52946	omp Hs.196209	Hs.334787 RAE1 (RNA export 1, S.pombe) homolog	1.4	apiens, Si	imilar to likely ortholog	3.1	I IVI
	133757	BE271766	Hs.181357	laminin receptor 1 (67kD, ribosomal prot	5.4	other			
		M62194	Hs.75929	cadherin 11, type 2, OB-cadherin (osteob	5	other			
		AA557660	Hs.76152	decorin	3.8	other			
45	133797	AL133921	Hs.76272	retinoblastoma-binding protein 2	3.1	?			
		D50525	Hs.699	peptidylprolyl isomerase B (cyclophilin	9.7	?			
		AW797468	Hs.285013	putative human HLA class II associated p	2.4	other			
		AA147026 AB011155	Hs.76704 Hs.170290	ESTs discs, large (Drosophila) homolog 5	2.5 5	other			
50		AW340125	Hs.76989	KIAA0097 gene product	2.5	?			
50		AB012193	Hs.183874	culin 4A	2.1	other			
		U30825	Hs.77608	splicing factor, arginine/serine-rich 9	2.8	TM			
		D86326	Hs.325948	vesicle docking protein p115	1.8	SS,			
		NM_006306	Hs.211602	SMC1 (structural maintenance of chromoso	2	?			
55		L17128	Hs.77719	gamma-glutamyl carboxylase	2.6	other			
		BE244332	Hs.77770	adaptor-related protein complex 3, mu 2 splicing factor 3a, subunit 3, 60kD	2.9 10.4	other			
		X81789 Al908165	Hs.77897 Hs.169946	GATA-binding protein 3 (T-cell receptor	1.9	other			
		AL040328	Hs.78202	SWI/SNF related, matrix associated, acti	2.6	SS.			
60		AI824113	Hs.78281	regulator of G-protein signalling 12	13	other			
	134010	AB016092	Hs.197114	RNA binding protein; AT-rich element bin	8.8	other			
		D31764	Hs.278569	sorting nexin 17	1.5	SS,			
		NM_003590	Hs.78946	cullin 3	8.3	other			
65		U41060	Hs.79136 Hs.79305	LIV-1 protein, estrogen regulated KIAA0255 gene product	2.7 4.2	other			
05		NM_014742 H86504	Hs.173328	protein phosphatase 2, regulatory subuni	1.7	other			
		BE559598	Hs.197803	KIAA0160 protein	2.6	other			
				· · · · · · · · · · · · · · · · · · ·					
				170					

	134206	AF107463	Hs.79968	splicing factor 30, survival of motor ne	1.3	other
		NM_000402	Hs.80206	glucose-6-phosphate dehydrogenase	1.9	other
		BE300078	Hs.80449	Homo saplens, clone IMAGE:3535294, mRNA,	10.3	SS,
	134275	AI878910	Hs.3688	cisplatin resistance-associated overexpr	2.5	other
5		A1906291	Hs.81234	Immunogiobulin superfamily, member 3	1.3	TM
		AW502505	Hs.81360	Homo saplens cDNA: FLJ21927 fis, clone H	1.6	TM
		U61397	Hs.81424	ubiquitin-like 1 (sentrin)	2.1	TM
		AB029023	Hs.179946	KIAA1100 protein	5.3	?
		AW903838	Hs.81800	chondroitin sulfate proteoglycan 2 (vers	2.5	TM
10		N92036	Hs.81848	RAD21 (S. pombe) homolog	3.9	?
		NM_004922	Hs.81964	SEC24 (S. cerevislae) related gene famil	2.4	TM TM
		AW291946	Hs.82065	Interleukin 6 signal transducer (gp130,	6.8	TM
		AA339449	Hs.82285	phosphoribosylglycinamide formyltransfer	2.3	other
		X06560	Hs.82396	2',5'-oligoadenylate synthetase 1 (40-46	5.5 5.9	TM
15		AW362124	Hs.323193	hypothetical protein MGC3222	2.2	other
		AI589941	Hs.8254	Homo saplens, Similar to tumor different	2.2	other
		AA417383	Hs.82582	integrin, beta-like 1 (with EGF-like rep	2.3	other
		AA456539	Hs.8262	lysosomal	72.9	other
		AW067903	Hs.82772	collagen, type XI, alpha 1 reticulocalbln 1. EF-hand calcium blndin	4.4	other
20		BE272095	Hs.167791		2.3	other
		A1750762	Hs.82911	protein tyrosine phosphatase type IVA, m	6.8	?
		AU077196	Hs.82985	collagen, type V, alpha 2	2.4	other
		Z44190	Hs.83023	peroxisomat blogenesis factor 11B KIAA0252 protein	2.9	other
25		AA112036	Hs.83419	nuclear factor of kappa light polypeptid	6.7	other
25	134447		Hs.83428	CDC28 protein kinase 2	2.4	other
		X54942	Hs.83758 Hs.83916	Empirically selected from AFFX single pr	6.3	?
		NM_005000	Hs.83942	cathepsin K (pycnodysostosis)	1.9	other
		X82153 AW246273	Hs.84131	threonyl-tRNA synthetase	1.8	other
30		ANV246273 AA425473	Hs.84429	KIAA0971 protein	1.4	other
30		AK001571	Hs.273357	hypothetical protein FLJ10709	1.4	other
		BE091005	Hs.74861	activated RNA polymerase II transcriptio	5.6	other
		AW411479	Hs.848	FK506-binding protein 4 (59kD)	2.8	?
		BE244323	Hs.85951	exportin, tRNA (nuclear export receptor	1.7	other
35		AA927177	Hs.86041	CGG triplet repeat binding protein 1	1.7	TM
33		AW068223	Hs.171581	ubiquitin C-terminal hydrolase UCH37	2.1	other
		AF035119	Hs.8700	deleted in liver cancer 1	1.3	other
		X78520	Hs.174139	chloride channel 3	2.1	?
		AK001741	Hs.8739	hypothetical protein FLJ10879	2.3	other
40		BE391929	Hs.8752	transmembrane protein 4	4	other
		U62317	Hs.88251	arvisulfatase A	6.2	other
		NM_003474	Hs.8850	a disintegrin and metalloproteinase doma	2	other
		BE161887	Hs.88799	anaphase-promoting complex subunit 10	1.3	SS,
		Y14768	Hs.890	lysosomal	7.2	?
45	134719	AA852985	Hs.89232	chromobox homolog 5 (Drosophila HP1 alph	3.2	other
-	134722	AF129536	Hs.284226	F-box only protein 6	2.5	other
	134746	X07871	Hs.89476	CD2 antigen (p50), sheep red blood cell	5	other
	134751	AW630803	Hs.89497	lamin B1	6.1	other
	134790	BE002798	Hs.287850	integral membrane protein 1	5.6	TM
50	134834	AW451370	Hs.8991	adaptor-related protein complex 1, gamma	5.3	other
	134850	A1701162	Hs.90207	hypothetical protein MGC11138	9.1	other
	134853		Hs.90280	5-aminoimidazole-4-carboxamide ribonucle	2.4	other
		Al879195	Hs.90606	15 kDa selenoprotein	2.7	other
		AW885909	Hs.6975	PRO1073 protein	1.5 4.9	other other
55		AW401361	Hs.91773	protein phosphatase 2 (formerly 2A), cat		other
	134971		Hs.286049	phosphoserine aminotransferase	2 2.6	TM
		R50333	Hs.92186	Leman colled-coil protein	1.4	?
		AB037835	Hs.92991	KIAA1414 protein	1.6	?
		2 NM_000408		glycerol-3-phosphate dehydrogenase 2 (ml	1.4	other
60	13503		Hs.173685	hypothetical protein FLJ12619	1.8	other
	13507		Hs.9414	KIAA1488 protein p53-inducible ribonucleotide reductase s	2.5	other
		3 AB036063	Hs.94262		1.5	TM
		AF027219	Hs.9443	zinc finger protein 202 zinc finger protein 36 (KOX 18)	2.1	other
65		6 AA081258	Hs.132390 Hs.95420	JM27 protein	4.4	?
65		3 AI093155 1 BE250865	Hs.279529	px19-like protein	14.9	,
			Hs.96247	translin-associated factor X	1.3	other
	13519	9 AA477514	115.30247	umilim about the result of		

	135207 N2	6427	Hs.9634	ESTs, Highly similar to C10_HUMAN PUTATI	1.7	other
	135214 T7		Hs.96560	hypothetical protein FLJ11656	6.2	other
	135243 BE		Hs.97101	putative G protein-coupled receptor	2.8	TM
	135245 AIC	028767	Hs.262603	ESTs	12.2	TM
5	135257 AV		Hs.97255	ESTs, Weakly similar to A46010 X-linked	7.7	TM
	135263 AIC		Hs.55498	geranylgeranyl diphosphate synthase 1	1.8	other
	135274 AA		Hs.112017	GE36 gene	4.2	SS,
	135294 AA		Hs.9800	protein kinase Njmu-R1	1.2	other
10	135295 AIC		Hs.98006	ESTs	4.9	other
10	135307 AI7 135321 AI6		Hs.98368 Hs.98614	ESTs, Weakly similar to KIAA0822 protein	5.9 12.3	? TM
	135354 AA		Hs.183418	ribosome blading protein 1 (dog 180kD ho cell division cycle 2-like 1 (PITSLRE pr	5.8	7
	135361 AA		Hs.167700	Homo sapiens cDNA FLJ10174 fis, clone HE	8.1	other
	135389 U0		Hs.99872	fetal Alzhelmer antigen	1.9	other
15	135400 X7		Hs.99915	androgen receptor (dihydrotestosterone r	13.9	TM
	302256 AA		Hs.171595	HIV TAT specific factor 1	1.6	other
	302276 AV		Hs.323910	HER2 receptor tyrosine kinase (c-erb-b2,	5.3	other
	303135 AV	V592789	Hs.279474	HSPC070 protein	2.2	TM
	303686 AK		Hs.109441	MSTP033 protein	1.4	SS,
20	310085 R4		Hs.101248	Homo saplens clone IMAGE:32553, mRNA seq	5.2	other
	315518 AA		Hs.167771	ESTs	2.3	?
	317781 NA		Hs.42650	ZW10 interactor	2.9	?
	320836 Al		Hs.197289	rab3 GTPase-activating protein, non-cata	2 5.6	other SS.
25	321114 AA 322221 N2		Hs.78979 Hs.179662	Golgi apparatus protein 1 nucleosome assembly protein 1-like 1	1.4	33, 7
23	322474 AF		Hs.29494	PRO1912 protein	1.3	other
	322556 BE		Hs.177507	hypothetical protein	2.9	SS,
	323541 AF		Hs.104613	RP42 homolog	1.6	other
	407827 BE		Hs.40323	BUB3 (budding unInhibited by benzimidazo	1.8	other
30	408196 AL	.034548	Hs.43627	SRY (sex determining region Y)-box 22	1.6	other
	408813 Al	580090	Hs.48295	RNA helicase family	6.2	other
	409176 R7	73727	Hs.101617	ESTs, Weakly similar to T32527 hypotheti	5.7	other
	409487 H1			gb:yn57a05.r1 Soares adult brain N2b5HB5	2.7	other
25	413670 AE		Hs.75470	hypothetical protein, expressed in osteo	2.6	?.
35	414108 Al		Hs.75761	SFRS protein kinase 1	2.4	TM
	414846 AV 416040 AV		Hs.77495 Hs.289044	UBX domain-containing 1	2.4	other
	416980 A		Hs.80684	Homo sapiens cDNA FLJ12048 fis, clone high-mobility group (nonhistone chromoso	4.2	TM
	417378 RS		Hs.82037	TATA box binding protein (TBP)-associate	23.6	other
40	418283 S7		Hs.83942	cathepsin K (pycnodysostosis)	5.8	other
	418467 N		Hs.85273	retinoblastoma-binding protein 6	1.3	other
	420269 UT	72937	Hs.96264	alpha thalassemia/mental retardation syn	1.6	?
	420802 U		Hs.1334	v-myb avian myeloblastosis viral oncogen	2.3	?
	421225 A		Hs.102696	MCT-1 protein	1.6	?
45	421642 AF		Hs.106346	retinoic acid repressible protein	3.5	other
	421828 AV		Hs.279789	histone deacetylase 3	5 3.1	other TM
	421983 AI 422052 A/		Hs.110364 Hs.104518	peptidylprolyl isomerase C (cyclophilin ESTs	1.9	TM
	422052 AV		Hs.111029	putative heme-binding protein	2.4	other
50	423750 AF		Hs.298229	prefoldin 2	4.2	?
50	424001 W		Hs.137476	paternally expressed 10 (PEG10; KIAA105	7.1	?
	425182 AI		Hs.155040	zinc finger protein 217	2.3	other
	425284 Al		Hs.155489	NS1-associated protein 1	3.5	other
	426372 BI		Hs.169531	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	1.9	?
55	428049 A		Hs.182238	GW128 protein	7.6	?
	428477 A		Hs.11482	splicing factor, arginine/serine-rich 11	1.7	other
	437562 AI		Hs.5683	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	2.4	other
	438449 Al		Hs.6216 Hs.7888	Homo saplens hepatocellular carcinoma-as	3.8 5.6	other
60	441560 F* 445580 AI		Hs.12912	Homo sapiens clone 23736 mRNA sequence skb1 (S. pombe) homolog	2	TM
00	446999 A		Hs.334822	hypothetical protein MGC4485	7.6	other
	447111 Al		Hs.17409	cysteine-rich protein 1 (Intestinal)	2.2	other
	447778 BI		Hs.71190	ESTs, Weakly similar to S16506 hypotheti	2.9	other
	448873 N		Hs.22393	density-regulated protein	1.8	other
65		/68520	Hs.331328	Intermediate filament protein syncollin	5.9	other
	450701 H		Hs.288467	Homo saplens cDNA FLJ12280 fis, clone MA	5.7	other
	450703 A	AD11202	Hs.184771	nuclear factor I/C (CCAAT-binding transc	1.4	other

	452461 N78223	Hs.108106	transcription factor	4.8	?
	452511 BE408178	Hs.285165	Homo sapiens cDNA FLJ20845 fis, clone AD	2.9	other
	453157 AF077036	Hs.31989	DKFZP586G1722 protein	12.1	SS,TM
_	453658 BE541906	Hs.87819	Homo sapiens, clone MGC:2492, mRNA, comp	4.8	other
5	100685 AA328229	Hs.184582	ribosomai protein L24	1.8 1.6	TM other
	100690 AA383256	Hs.1657	estrogen receptor 1	1.6	other
	100833 AF135168	Hs.108802	N-ethylmalelmide-sensitive factor	1.7	?
	100850 AA836472	Hs.297939 Hs.37044	cathepsin B peripherin	16.9	other
10	101161 NM_006262 102481 U50360	N3.37044	gb:Human calcium, calmodulin-dependent p	3.2	other
10	102831 AA262170	Hs.80917	adaptor-related protein complex 3, sigma	2	?
	103549 BE270465	Hs.78793	proletn kinase C. zeta	8	other
	103749 AL135301	Hs.8768	hypothetical protein FLJ10849	1.8	other
	104331 AB040450	Hs.279862	cdk inhibitor p21 binding protein	2	?
15	104532 AI498763	Hs.203013	hypothetical protein FLJ12748	2.1	other
	104563 AL117403	Hs.306189	DKFZP434F1735 protein	1.2	other ?
	105032 AA127818		gb:zi12a02.s1 Soares_pregnant_uterus_NbH	7 2.6	ź
	105039 AA907305	Hs.36475	ESTs	1.6	other
20	106531 AA454036	Hs.8832 Hs.50421	ESTs KIAA0203 gene product	4.9	other
20	106977 AL043152 107298 N95657	Hs.6820	ESTs, Moderately similar to YOJ1_CAEEL H	2.5	TM
	108717 AA122393	Hs.70811	hypothetical protein FLJ20516	1.3	other
	110018 AW579842	Hs.104557	hypothetical protein FLJ10697	5.3	TM
	110330 Al288666	Hs.16621	DKFZP4341116 protein	6.3	other
25	111391 NM_003896	Hs.225939	sialyltransferase 9 (CMP-NeuActiactosylc	5.1	SS,
	111392 W46342	Hs.325081	Homo saplens, clone IMAGE:3659680, mRNA,	8.4	other
	113554 AW503990	Hs.142442	HP1-BP74	3.7	TM
	113722 AV653556	Hs.184411	albumin	1.3 2	other
20	115008 AK001827	Hs.87889	heilcase-mol LIM protein (similar to rat protein kina	1.5	other
30	115062 AA253314 115121 Al634549	Hs.154103 Hs.88155	ESTs	2.8	other
	117881 AF161470	Hs.260622	butyrate-induced transcript 1	5.8	TM
	119075 M10905	Hs.287820	fibronectin 1	5.7	other
	119615 AL034423	Hs.75875	ubiquitin-conjugating enzyme E2 variant	1.3	other
35	120253 AA131376	Hs.326401	fibroblast growth factor 12B	38.9	other
	125006 BE065136	Hs.145696	splicing factor (CC1.3)	2.9	?
	127609 X80031	Hs.530	collagen, type IV, alpha 3 (Goodpasture	1.8 3	other
	128868 AA419008	Hs.106730	chromosome 22 open reading frame 3 Homo sapiens, clone MGC:16362, mRNA, com	13.3	other
40	128891 F34856	Hs.292457 Hs.107381	hypothetical protein FLJ11200	10.9	other
40	128959 Al580127 129209 R62676	Hs.17820	Rho-associated, coiled-coil containing p	2.4	other
	129449 Al096988	Hs.111554	ADP-ribosylation factor-like 7	8.2	TM
	129453 AW974265	Hs.111632	Lsm3 protein	3.3	?
	129629 AK000398	Hs.11747	hypothetical protein FLJ20391	3.9	other
45	129917 M30773	Hs.278540	protein phosphatase 3 (formerly 2B), reg	5.3	TM
	129922 AF042379	Hs.13386	gamma-tubulin complex protein 2	4.6	other
	129989 AB015856	Hs.247433	activating transcription factor 6	4 4.6	SS, other
	130182 BE267033	Hs.192853	ubiquitin-conjugating enzyme E2G 2 (homo eukaryotic translation initiation factor	11	other
50	130365 W56119 130471 AL121438	Hs.155103 Hs.183706	adducin 1 (alpha)	2.7	other
20	130542 U64675	Hs.179825	RAN binding protein 2-like 1	7.9	other
	130586 AB007891	Hs.16349	KIAA0431 protein	5.6	TM
	130768 AF258627	Hs.211562	ATP-binding cassette, sub-family A (ABC1	5.2	other
	130992 BE398091	Hs.74316	desmoplakin (DPI, DPII)	1.8	TM
55	131047 H23230	Hs.22481	ESTs, Moderately similar to A46010 X-lin	1.7	?
	131135 NM_016569	Hs.267182	TBX3-iso protein	3.3 2.6	TM other
	131339 AF058696	Hs.25812	Nijmegen breakage syndrome 1 (nibrin)	2.9	TM
	131760 X76732	Hs.3164	nucleobindin 2 DKFZP586J0119 protein	5.6	other
60	131774 BE267158 131853 Al681917	Hs.169474 Hs.3321	ESTs, Highly similar to IRX1_HUMAN IROQU	1.3	other
UU	131881 AW361018	Hs.3383	upstream regulatory element binding prot	3.2	TM
	131887 W17064	Hs.332848	SWI/SNF related, matrix associated, acti	3.2	other
	132031 AF193844	Hs.3758	COP9 complex subunit 7a	5.9	?
	132192 AA206153	Hs.4209	mitochondrial ribosomal protein L37	2.2	TM
65	132203 NM_004782	Hs.194714	synaptosomal-associated protein, 29kD	7.9	? other
	132240 AB018324	Hs.42676	KIAA0781 protein	4.3 12.5	other
•	132348 AW067708	Hs.170311	heterogeneous nuclear ribonucleoprotein	12.0	Outer
			1.50		

		T78736	Hs.50758	SMC4 (structural maintenance of chromoso	7.4	7	
		AW674699	Hs.5169	suppressor of G2 allele of SKP1, S. cere	6.9	other	
		N52298	Hs.55608	hypothetical protein MGC955	14.3	7	
-		BE268048	Hs.236494	RAB10, member RAS oncogene family	10.3	other	
5		AI439688	Hs.6289	hypothetical protein FLJ20886	4.4	other	
		AI065016	Hs.6390	Homo sapiens clone FLB3344 PRO0845 mRNA,	1.8	SS,TM	
		AI275243	Hs.180201	hypothetical protein FLJ20671	1.8	other	
		AK001489	Hs.242894	ADP-ribosylation factor-like 1	1.8	other	
10		AI160873	Hs.69233	zinc finger protein	16.1	other	
10		M76477	Hs.289082	GM2 ganglioside activator protein	10.4	SS,	
		BE313555	Hs.7252	KIAA1224 protein	1.5	?	
		AL037159	Hs.74619	proteasome (prosome, macropain) 26S subu	1.7	other	
		BE622743	Hs.301064	arfaptin 1	12.1	other	
15		M34338	Hs.76244	spermidine synthase	9.7	other	
13		W29092	Hs.7678	cellular retinoic acid-binding protein 1	4.2	SS,	
		U86782 U30872	Hs.178761	26S proteasome-associated pad1 homolog	2.2 9.1	other	
		NM_000288	Hs.77204 Hs.79993	centromere protein F (350/400kD, mitosin	3.2	other	
		AA334551	Hs.82767	peroxisomal biogenesis factor 7 sperm specific antigen 2	1.4	other	
20		AF045239	Hs.321576	ring finger protein 22	1.4	other	
20		AD001528	Hs.89718	spermine synthase	2.6	other	
		D26488	Hs.90315	KIAA0007 protein	13.3	other	
		X95525	Hs.96103	TATA box binding protein (TBP)-associate	3.1	other	
	100 100	AA243007	113.30103	ESTs	1.6	?	
25		T70541		ESTs	2.5	SS.	
		X57766		Human stromelysin-3 mRNA	4.5	other	
		S66431		Homo sapiens clone 23592 mRNA sequence	3.1	other	
		AA453483		ESTs	4.6	TM	
		R63925		ESTs	1.4	other	
30		AA173417		ESTS	1.9	other	
		AA280588		ESTs	2.2	other	
		AA504223		ESTs Highly similar to CHROMOSOME	2.4	other	
		AA609996		ESTs Highly similar to Surf-4 protein [M.musculus]	5.5	7	
		F02907		ESTs	2.3	TM	
35		AA480103		ESTs Weakly similar to IIII ALU SUBFAMILY J	2.8	TM	
		AA024664		Human NADH:ubiquinone oxidoreductase subunit	6.2	other	
		AA251776		ESTs	2.3	other	
		AA399047		ESTs	2.4	other	
		N34059		EST - RC_N34059	3.3	other	
40		U95367		Human GABA-A receptor pl subunit mRNA comple	e cds	1.7	TM
		AA490899			3.3	other	
		T54762		ESTs	2.9	?	
		Z41963		Homo saplens HP protein (HP) mRNA complete cd		7	
4.5		AA521186		ESTs	1.6	TM	
45		AA400195		ESTs	1.3	other	
		AA045083		VITAMIN K-DEPENDENT GAMMA-CARBOXYLAS		2.5	other
		AA099589		Homo sapiens mRNA for GDP dissociation inhibitor		1.6	TM
		W85712		ESTs Weakly similar to PROCOLLAGEN ALPHA 2		2.6	TM
		W45728		ESTs Highly similar to HETEROGENEOUS	3.7	other	
50		U61232		Human tubulin-folding cofactor E mRNA complete		2.1	other
		AA425154		ESTs	5.3	other	
		T39176		ESTs Weakly similar to ZK1058.4 [C.elegans]	2.6	SS,TM	
		AA496000		ESTs	1.9	SS,	
55		W38150		EST - RC_W38150 EST - RC_T96595	1.7	?	
33		T96595			1.8	TM	?
		AA227463		ESTs Weakly similar to No definition line found [C.e ESTs		1.9	,
		R46025 AA233177		ESTS	2.8 2	SS,	
		AA338760		ESTs		other	
60		AA412106		ESTs	1.3 6.2	? other	
00		L47276		EST - L47276	3.4	other	
		D82307		ESTs Weakly similar to TH1 protein [D.melanogast		11.4	other
		AA293568		ESTs	1.5	other	Juloi
		R37778		ESTs	2.4	other	
65		AA250843		Interferon regulatory factor 5	14.6	?	
		W49521		Human prolyl 4-hydroxylase alpha (II) subunit	6.5	ż	
		D80000		Human mRNA for KIAA0178 gene partial cds	2	other	
					-		

	R99978	ESTS Weakly Similar to line-1 protein ORF2 [H.Sapiel	าร	0.1	r	
	AA195036	Human Ro/SSA ribonucleoprotein homolog (RoRet	5.3	?		
	Z38501		1.4	other		
	U37547	Human IAP homolog 8 (MIHB) mRNA complete cds	3.2	other		
5	AA479961	ESTs	1.7	other		
	X57579	inhibin beta A (activin A activin AB alpha polypeptide)	15.8	?	
	AA449071	ESTs	1.3	TM		
	N51855		1.3	other		
	AA421213	ESTs Weakly similar to F28F8.3 [C.elegans]	3.2	other		
10	AA355201		1.2	SS,TM		
	N78717		1.5 ·	?		
	N73808		5	?		
	U86782		2.2	other		
	AA234817		1.3	other		
15	D13666		7.5	SS,		
	AA236177		7.1	?		
	U50648		4.1	?		
	M28211		2.9	other		
	AA446949		2.2	other		
20	W03007		1.2	other		
	W61011		1.2	other		
	W87544		1.2	other		
	X02751	Neurobiastoma RAS virai (v-ras) oncogene homolog		?		
	Z14077		1.2	other		
25	Z38839		1.2	?		
	AA410894		1.7	other		
	AA504499	ESTs Highly similar to probable chloride channel 3 [F	1.sap	1.3	other	

TABLE 7A

Table 7 A shows the accession numbers for those pkeys lacking unigeneID's for Table 7.

For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: CAT number: Accession:		Gene clus	Unique Eos probeset identifier number Gene cluster number Genbank accession numbers			
Pkey	CAT	umber	Accession			
102481	31281	28	U50360			

AA127818 H19886 AW402806 T10231

105032 genbank_AA127818 409487 1134778_1

15

20

TABLE 8: Figure 8 from BRCA 001-1 US

5 Table 8 shows genes upregulated in tumor tissue compared to normal breast tissue. Specifically, one column shows the ratio of expression of the indicated gene in breast tumor tissue compared to other body tissues, and another column shows the ratio of expression of the indicated gene in breast tumor tissue compared to normal breast tissue.

10										
	Pkey:	· Unio	nique Eos probeset Identifier number							
	ExAccn:	Exe	mplar Access	on number, Genbank accession number						
	Unigene	ID: Unio	ene number							
	Unigene	Title: Unio	ene gene title							
15	R1:			normal body tissue						
	R2:		Ratio of tun	nor to normal breast tissue						
	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2				
	- 7		-							
20	100075	AF152333	Hs.284160	protocadherin gamma subfamily B, 4	1	3.8				
		AV652249		polymerase (DNA directed), beta	1.7	5.3				
	100262	D38500		postmetotic segregation increased 2-like	0.8	4.8				
	100271	BE160081		S100 calcium-binding protein A11 (calgiz	3.2	2.3				
	100355	AI907114	Hs.71465	squalene epoxidase	3.3	1.4				
25	100522	X51501	Hs.99949	prolactin-induced protein	11.9	0.4				
	100552	AA019521	Hs.301946		3.8	1.2				
	100599	X77343	Hs.334334	transcription factor AP-2 alpha (activat	9.4	9.4				
	100676	X02761	Hs.287820	fibronectin 1	3	7.8				
	100690	AA383256 ·	Hs.1657	estrogen receptor 1	4.4	4.4				
30	100895	U01351	Hs.75772	nuclear receptor subfamily 3, group C, m	1	3.9				
	101046	K01160		NM_002122:Homo saplens major histocomp	at1.7	4				
	101086	AA382524	Hs.250959	histatin 1	0.8	4.1				
	101148	NM_002923	Hs.78944	regulator of G-protein signalling 2, 24k	1.2	12				
	101161	NM_006262	Hs.37044	peripherin	3.1	1.1				
35	101201	L22524	Hs.2256	matrix metalloproteinase 7 (MMP7; uterin	4.4	0.6				
	101212	Al186220	Hs.83164	collagen, type XV, aipha 1	3.1	3.4				
	101441	AW468397	Hs.100000	\$100 calcium-binding protein A8 (calgran	0.9	4.2				
	101447	M21305		gb:Human alpha satellite and satellite 3	29.9	0.3				
	101469	AA310162	Hs.169248	cytochrome c	8.0	4.9				
40	101567	M33552	Hs.56729	lysosomal	1	5.9				
	101600	BE561617	Hs.119192	H2A histone family, member Z	2.8	4				
	101624	M55998		gb:Human aipha-1 collagen type I gene, 3	3.1	1.7				
		NM 002291	Hs.82124	laminin, beta 1	1.5	4.1				
	101861	AA350659	Hs.83347	anglo-associated, migratory cell protein	3.1	1.4				
45		AF112213		putative Rab5-Interacting protein	1.3	6.9				
		AL036335	Hs.313	secreted phosphoprotein 1 (osteopontin,	1.9	4.9				
		AA334592	Hs.79914	lumican	2.2	3.8				
		AF015224	Hs.46452	mammaglobin 1	4.2	0.7				
		NM_003480		Microfibril-associated glycoprotein-2	1.1	4.2				
50		NM_001394	Hs.2359	dual specificity phosphatase 4	4.5	0.5				
		U96759	Hs.198307		1.4	4.2				
		Al379954	Hs.79025	KIAA0096 protein	0.9	3.9				
		BE244588	Hs.6456	chaperonin containing TCP1, subunit 2 (b	1.5	10.9				
		R50032		collagen, type VI, alpha 2	2.2	6.2				
55	102991	AW293542	Hs.75309	eukaryotic translation elongation factor	5.6	5.7				
		X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	3.7	0.5				
		X69089	Hs.79227	myomesin (M-protein) 2 (165kD)	1.3	4				
		D38616	Hs.54941	phosphorylase kinase, alpha 2 (liver)	1.3	3.8				
	103319	X83492	Hs.82359	tumor necrosis factor receptor superfami	0.8	4.6				
60	103372	BE536700	Hs.4888	seryl-IRNA synthetase	0.9	8				
	103419	T34708	Hs.272927	Sec23 (S. cerevistae) homolog A	1.1	5.1				
		Y00815	Hs.75216	protein tyrosine phosphatase, receptor t	3.7	1.2				
	103546	Z14244	Hs.75752	cytochrome c oxidase subunit Vilb	0.9	4.4				

	103658	NM_000088	Hs.172928	collagen, type I, aipha 1	3.2	3	
		AA084874		gb:zn13e04.r1 Stratagene hNT neuron (937	0.9	10	
	103774		Hs.92918	hypothetical protein	1.9	15.9	
		AA095971			1.2	3.9	
5		BE439604					
,				ATPase, H+ transporting, lysosomal (vacu	1.4	3.9	
		AW130242	HS.293476	hypothetical protein FKSG44	1.6	4.1	
		AK001913		hypothetical protein	1.5	4.3	
		AF183810	Hs.26102		7	7	
	104189	AB040927	Hs.301804	KIAA1494 protein	2	4.6	
10	104230	AB002347			0.7	4.5	
		AW583693			3.3	3.3	
		AW365522		hypothetical protein PRO2219	2.3	4.2	
		AW804296	Hs.9950				
					3.1	7	
1.0		AF283775		x 001 protein	4	1.3	
15	104432		Hs.99949		3.8	0.6	
	104464	AW966728	Hs.54642	methlonine adenosyltransferase II, beta	0.8	6.7	
	104479	AK001731	Hs.106390	Homo sapiens mRNA; cDNA DKFZp586H092	4 (f	1.7	4.8
		W94824		RIKEN cDNA 2010100012 gene	2	7.5	
		AW630488			1.9	7.4	
20		AF123303		hypothetical protein		6.3	
20	104636				1.1		
					1.2	4	
		AW270555		hypothetical protein	1.4	3.9	
		AA960961	Hs.305953	zinc finger protein 83 (HPF1)	1.5	4.2	
	104848	AA305351	Hs.274369	uncharacterized hypothalamus protein HAR	1.1	4.1	
25	104849	AI279065	Hs.241507	ribosomal protein S6	1.3	4.6	
		AL133035	Hs.8728	hypothetical protein DKFZp434G171	1.2	3.6	
		W70164	Hs.20107		0.8	4.2	
		AA058630	Hs.29759	RNA POLYMERASE I AND TRANSCRIPT RE			- 4
						1.7	5.1
20		W03831	Hs.20597		0.8	5.4	
30		W44626	Hs.30627		0.7	6.8	
		AW955089	Hs.306083	Novel human gene mapping to chomosome 23	2	1 3.9	
	104926	BE298808	Hs.33363	DKFZP434N093 protein	3.3	3.3	
	104952	AW076098	Hs.74316	desmoplakin (DPI, DPII)	1.2	3.7	
		AB029020			1.1	5.5	
35		Al392640	Hs.18272		3.2	1.4	
55		BE613061		Homo sapiens, Similar to RIKEN cDNA 0610		11.4	
		N39760	Hs.8859	Homo sapiens, Similar to RIKEN cDNA 5830		7.2	
		BE410438	Hs.9006		1.1	3.5	
		AF146277		CD2-associated protein	1.2	10	
40	105178	AA313825	Hs.21941	AD036 protein	3.6	8.3	
	105182	BE407961	Hs.18271	golgi phosphoprotein 3	1.7	6.8	
	105274	AI554929	Hs.281866	ATPase, H+ transporting, lysosomal (vacu	1.1	3.7	
		BE243327		chromosome 22 open reading frame 5	1.5	4	
		Al015709		Homo sapiens mRNA; cDNA DKFZp586I2022		1.5	14
45		W20027	Hs.23439	ESTs	4.3	2.9	14
73							
		W03516		stress-associated endoplasmic reticulum	1.5	5	
		AA252372	Hs.12144	KIAA1033 protein	1.2	3.6	
		AL137257	Hs.23458	Homo sapiens cDNA: FLJ23015 fis, clone L	1.7	15.8	
0.00	105492	A1805717	Hs.289112	.CGI-43 protein	2	4.8	
50	105495	AL037715	Hs.28785	microfibrillar-associated protein 3	1.3	3.9	
	105539	AB040884	Hs.109694	KIAA1451 protein	2.7	11.4	
		AB024334	Hs.25001		1.3	6.1	
		BE504200	Hs.30127	hypothetical protein	1.7	4.5	
		AA788946	Hs.16869	ESTs, Moderately similar to CA1C RAT COL		24.6	
55		BE614149	Hs.20814	CGI-27 protein	1.8	3.6	
		AI559444	Hs.293960		1.9	6.6	
	105831	AA329449	Hs.247302	twisted gastrulation	1.5	4.3	
	105851	AI827976	Hs.24391	hypothetical protein FLJ13612	3.8	1.9	
		BE392914	Hs.30503	Homo sapiens cDNA FLJ11344 fis, clone PL		4	
60		AW028485	Hs.26136	hypothetical protein MGC14156	1.7	7.4	
50			Hs.12258			1.2	3.8
		AL137728		Homo saplens mRNA; cDNA DKFZp434B092			J.6
		AB033075	Hs.10669	development and differentiation enhancin	1.3	4.6	
		AB030656	Hs.17377	coronin, actin-binding protein, 1C	1.1	5.9	
		AI690586	Hs.29403	hypothetical protein FLJ22060	2	4.6	
65		A1240665	Hs.8895	ESTs	4.1	1.2	
	106060	NM_001329	Hs. 171391	C-terminal binding protein 2	2.6	7	
		T74445	Hs.5957	Homo sapiens clone 24416 mRNA sequence		10.7	

	106083	H62087	Hs.31659	thyroid hormone receptor-associated prot	1.5	3.6
		AA425414	Hs.33287	nuclear factor I/B	5.4	1.2
		BE613206	Hs.279607		1.8	4
_		BE568205	Hs.28827	mitogen-activated protein kinase kinase	5.1	6.1
5		AK000274		HDCMA18P protein	1.2	5.9
		AW051564	Hs.28285	patched related protein translocated in	1.8 2.3	5.4 11.2
		BE044325 N88604	Hs.30212	U6 snRNA-associated Sm-like protein thyroid receptor interacting protein 15	1.2	3.6
		H09548	Hs.5367	ESTs, Weakly similar to 138022 hypotheti	0.9	4.4
10		AA459480	Hs.23956	hypothetical protein FLJ20502	1.3	3.6
		BE387614	Hs.25797	splicing factor 3b, subunit 4, 49kD	1.6	7.3
		AA741038	Hs.6670	ESTs	1.7	6.1
		AA206079	Hs.6693	hypothetical protein FLJ20420	1	5.4
	106866	AA487416	Hs.268231	Homo saplens cDNA: FLJ23111 fis, clone L	1.6	5.4
15		BE185536	Hs.301183		3.3	1.2
		BE503373	Hs.334335		1.4	6.3
	106940			hypothetical protein FLJ10120	3.3	1.8 3
		AF216751	Hs.26813	CDA14 glyceronephosphate O-acyltransferase	3 1.7	7.6
20		BE391904 BE147611	Hs.12482 Hs.6354	stromal cell derived factor receptor 1	1.2	4.3
20		AI289507		hypothetical protein FLJ23399	1.8	6.5
		BE172058	Hs.82689	tumor rejection antigen (gp96) 1	1.2	6.9
		BE267795	Hs.22595	hypothetical protein FLJ10637	1.4	3.5
		AA186629	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polyp	2.6	4.3
25	107679		Hs.60512	ESTs	1.8	4
	107914	AA027229	Hs.61329	ESTs, Weakly similar to T16370 hypotheti	1.3	3.5
	107965		Hs.108787		1.6	3.5
	108033		Hs.323748			1.8
30		AA291440	Hs.73149	paired box gene 8	1.1 0.7	3.5 5.6
30	108081	AA093668 AI283611	Hs.28578	muscleblind (Drosophila)-like		1.2
		AW068579	Hs.7780	ESTs, Weakly similar to HMG1_HUMAN HIGHomo saplens mRNA; cDNA DKFZp564A072		3.1
		A1879238		collapsin response mediator protein-5; C	1.5	4.6
		AA333660	Hs.71331	hypothetical protein MGC5350	1.5	4
35	108339		Hs.51615	ESTs, Weakly similar to ALU7_HUMAN ALU		6.3
	108371	AA074374	Hs.67639	ESTs	1.3	3.8
		AF086070	Hs.237519		1	3.6
		AA079487		gb:zm97f08.s1 Stratagene colon HT29 (937	1.5	3.6
40	108470			gb:zm96h10.s1 Stratagene colon HT29 (937	1.1	4.3
40	108564		Hs.1526	ATPase, Ca++ transporting, cardlac muscl	2	4.9
	108641	AA112059 AA058522	Hs.429 Hs.185751	ATP synthase, H+ transporting, mitochond	1.1	3.5 3.6
		AA036725	Hs.61847	ESTs	1.4	3.6
		AK001332	Hs.44672	hypothetical protein FLJ10470	1.4	3.5
45		AA133456	Hs.102548		1.2	4
		BE276891		retinolc acld Induced 3	1.3	3.6
		AA152312	Hs.72047	ESTs	1.1	4.1
		A1732585	Hs.22394	hypothetical protein FLJ10893	1.2	3.5
	109097			gb:zp10f12.s1 Stratagene fetal retina 93	1.3	5
50	109160	BE220601	Hs.301997		4	6.1
	109244		Hs.64239	Human DNA sequence from clone RP5-1174		1.7 7.7
	109481	AA878923 AA366263	Hs.72531	hypothetical protein FLJ21016 hypothetical protein FLJ11838	3.8 1.9	4.7
		AA173942		Homo saplens mRNA; cDNA DKFZp564H191		3.7
55		BE075297	Hs.6614	ESTs, Weakly similar to A43932 mucin 2 p	4.6	7.4
55	110107		Hs.31444	ESTs	1.2	3.5
		AW001579	Hs.9645	Homo sapiens mRNA for KIAA1741 protein,	3.7	3.3
	110731	NM_014899	Hs.188006	KIAA0878 protein	2.8	3.7
		N21207	Hs.182999		1.6	3.5
60	110930		Hs.14947	ESTs	3.1	1.2
		A1753230		hypothetical protein DKFZp564K142	1.9	7.5 4
		AI681293	Hs.12186	hypothetical protein FLJ22558	2 1.1	3.8
		AK001566 BE301871	Hs.23618 Hs.4867	hypothetical protein FLJ10704 mannosyl (alpha-1,3-)-glycoprotein beta-	1	8.2
65	111357		Hs.87128	hypothetical protein FLJ23309	3.3	6.1
00		R27975	Hs.269401		1.2	5.4
		AF131784	Hs.25318	Homo saplens clone 25194 mRNA sequence		0.8
					-	

8.1

4.7

1.3

		AW176909	Hs.42346	calcineurin-binding protein calsarcin-1	3.4
	302970	W05608	Hs.312679	ESTs, Weakly similar to A49019 dynein he	5.1
	303271	AA652687	Hs.96151	Human DNA sequence from clone RP5-1103G7	3.7
	303289			hypothetical protein FLJ20508	
5					4.1
3	303357	AW006352	Hs.159643		4.2
		AA355607	Hs.309490	ESTs, Weakly similar to putative WHSC1 p	4.3
	303563	AA367699	Hs. 10082	potassium intermediate/small conductance	3.3
		AW299459		gb:xs50d08.x1 NCI_CGAP_Kid11 Homo sapien	4.2
				guilasoudus i NGI_GGAF_Rid i Honio sapieli	
• •	303780		Hs.18995	KIAA1304 protein	3.6
10		AW629759		gb:hh70e05.y1 NCI_CGAP_GU1 Homo saplens	4.9
	303852	R53434	Hs.90207	hypothetical protein MGC11138	3.7
		AA149951	Hs.62112	zinc finger protein 207	3
			110.02112		
		AA582081		gb:nn32h08.s1 NCI_CGAP_Gas1 Homo sapiens	4.1
	305913	AA876109		gb:nx24h01.s1 NCI_CGAP_GC3 Homo sapiens	3
15	305917	AA876469		gb:oe48b04.s1 NCI_CGAP_Pr25 Homo sapiens	3.1
	307010			gb:qa68f09.x1 Soares_fetal_heart_NbHH19W	3.5
	307041				
				gb:qb85b12.x1 Soares_fetal_heart_NbHH19W	3.9
	308106	AI476803		gb:tj77e12.x1 Soares_NSF_F8_9W_OT_PA_P_S	4.3
	308307	AI581398	Hs.172928	collagen, type I, alpha 1	4.6
20	308615	AK000142		hypothetical protein FLJ23045	4.4
		Al951118			
				Homo sapiens breast cancer antigen NY-BR	17.3
		AW024348	Hs.233191	EST, Weakly similar to A27217 glucose tr	3.2
	309574	AW168083		gb:xg59g04.x1 NCI_CGAP_Ut4 Homo sapiens	3.1
	309583	AW170035	He 326736	Homo saplens breast cancer antigen NY-BR	57.6
25		Al199712			
23			ns.140400	ESTs, Weakly similar to 1917210A Pro/Arg	4.6
	310098	A1685841	Hs.161354		3.6
	310438	AW022192	Hs.200197	ESTs	4.6
	310683	Al939456	Hs.160870		3.2
	310727	AK000703			3.6
30			115.323022	Homo saplens mRNA for KIAA1551 protein,	
30		AI380797	Hs.158992		10.2
	310895	AI955121	Hs.165724	N-acetylgalactosamine-4-O-sulfotransfera	3.4
	310955	AI476732	Hs.263912		10.9
	311117	AI671439		Homo sapiens mRNA for KIAA1657 protein,	3.1
25	311166	A1821005	Hs.118599		10.8
35	311237	AA641098	Hs.208809	ESTs, Moderately similar to ALU1_HUMAN A	4.3
	311465	A1758660	Hs.206132	ESTs	4.4
	311587	A1828254	Hs 271019	ESTs, Weakly similar to A47582 B-cell gr	5.1
		AW023595	Hs.232048	CPT-	5.8
40		AA700870	Hs.14304	ESTs	3.3
40	311785	A1056769	Hs.133512	ESTs	3.9
	311872	R12375	Hs.194600	ESTs	3.3
		AA767342		ESTs. Weakly similar to PSF_HUMAN PTB-AS	3
		Al358522	Hs.270188		3
	311923	T60843 ·	Hs.189679		5.6
45	311935	AA216387		gb:nc16b02.s1 NCI_CGAP_Pr1 Homo sapiens	5.2
	312019	AA373630	Hs.188750		3
	312021	AA759263	Hs.14041	ESTs	3.4
	312067	T78968	Hs.14411	ESTs	3.5
	312090	T80177	Hs.118064	similar to rat nuclear ubiquitous casein	3.8
50	312147	AI633744	Hs.195648	ESTs, Weakly similar to 138022 hypotheti	4.4
	312153	BE261944		hexokinase 1	5.2
	312168				
			Hs.198882		3.3
		T94344	Hs.326263		3.3
	312187	AA700439	Hs.188490	ESTs	3.4
55	312199	AW438602	Hs.191179		3.9
55					
	312219		Hs.117874		4
		AA315703	Hs.199993	ESTs, Weakly similar to ALUB_HUMAN II!!	4.9
	312299	AA972712	Hs.269737	ESTs	5.7
		AA516420		ESTs, Weakly similar to 138022 hypotheti	6.3
60		AW439195			
UU				ESTs, Weakly similar to S65657 alpha-1C-	4.9
		AW291545	Hs.185018		4.9
	312837	AW292286	Hs.255058	ESTs	4.4
		AA497043	Hs.115685		3.1
		AI422023	Hs.161338		4.3
65					
65		N76497	Hs.1787	proteolipid protein 1 (Pelizaeus-Merzbac	3.3
	313089	AF026944	Hs.293797		5.8
	313096	AW073310		Homo sapiens cDNA FLJ14142 fis, clone MA	4.5

	313126	AA746503	Hs.283313	ESTs	10
		AI801098	Hs.151500		3.5
	313197	AW979008	Hs.222487	ESTs	3.3
	313280	AW960454	Hs.222830	FST _e	4.7
5					
3	313325	Al420611	Hs.127832		3.4
	313328	AW449211	Hs 105445	GDNF family receptor alpha 1	12.4
			Hs.144758		4.1
		AW150945			
	313385	AI032087	Hs.269819	ESTs	3
	313303	AI674685	Hs.200141	EST.	5.2
10					
10	313417	AA741151	Hs.137323	ESTS	3.5
	313434	W92070		qb:zh48q05.r1 Soares_fetal_liver_spleen_	3.7
				gottinogodii i codico_icac_iiroi_opiocii_	ž
		Al273419	NS. 133 146	hypothetical protein FLJ13984	3
	313591	AA046309		gb:zf12f01.s1 Soares_fetal_heart_NbHH19W	5.6
		AI540978	No 201007	hypothetical protein FLJ13033	3.2
10			115.501551	hypothetical protest rea 10000	3.2
15	313915	C18863	Hs.163443	Homo sapiens cDNA FLJ11576 fis, clone HE	26.3
	313075	AW175896	Hs.65114	keratin 18	3
	313979	Al535895	Hs.221024		4.9
	313997	AV657317	Hs 288649	hypothetical protein MGC3077	3.9
		AA827082	Hs.291872		3.1
20	314078	AW129357	Hs.329700	ESTs .	8.3
	314007	AA648744	Hs.269493	ESTe	6.6
		A1732083	Hs.187619		6.2
	314129	AA228366	Hs.115122	ESTs	4
					5.9
		AA740616		gb:ny97f11.s1 NCI_CGAP_GCB1 Homo saplens	
25	314236	AA743396	Hs.189023	ESTs	3.1
		AL036450	Hs.103238	ECTo	4
	314305	Al280112	Hs.125232	Homo sapiens cDNA FLJ13266 fis, clone OV	8
	314306	A1697901	Hs.192425	ESTs	3.7
			Hs.190060		3.3
		AA907153			
30	314394	AW961597	Hs. 130816	ESTs, Moderately similar to 138022 hypot	4.2
	314404	Al660412	Hs.234557	ESTe	3.3
	314465	AA602917	Hs.156974	ESTS	4.7
	314506	AA833655	Hs 206868	Homo sapiens cDNA FLJ14056 fis, clone HE	8.5
					4
		Al204418	Hs.190080		
.3.3	314546	AWUU/211	HS.16131	nypoinetical protein FLJ128/6	3.4
35		AW007211	Hs.16131	hypothetical protein FLJ12876	
33	314547	AA399272	Hs.144341	ESTS	6.7
33	314547		Hs.144341 Hs.190721	ESTs ESTs	6.7 27.4
33	314547 314558	AA399272 AI873274	Hs.144341 Hs.190721	ESTs ESTs	6.7
33	314547 314558 314627	AA399272 AI873274 AA425310	Hs.144341 Hs.190721	ESTs ESTs ESTs, Weakly similar to A47582 B-cell gr	6.7 27.4 4.4
	314547 314558 314627 314648	AA399272 AI873274 AA425310 AW979268	Hs.144341 Hs.190721 Hs.155766	ESTs ESTs ESTs, Weakly similar to A47582 B-cell gr gb:EST391378 MAGE resequences, MAGP Homo	6.7 27.4 4.4 4.6
40	314547 314558 314627 314648	AA399272 AI873274 AA425310	Hs.144341 Hs.190721	ESTs ESTs ESTs, Weakly similar to A47582 B-cell gr gb:EST391378 MAGE resequences, MAGP Homo	6.7 27.4 4.4
	314547 314558 314627 314648 314691	AA399272 AI873274 AA425310 AW979268 AW207206	Hs.144341 Hs.190721 Hs.155766 Hs.136319	ESTS ESTS ESTS, Weakly similar to A47582 B-cell gr gb:EST391378 MAGE resequences, MAGP Homo ESTs	6.7 27.4 4.4 4.6 20.7
	314547 314558 314627 314648 314691 314729	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638	ESTs ESTs, Weakly similar to A47582 B-cell gr gb:EST391378 MAGE resequences, MAGP Homo ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6
	314547 314558 314627 314648 314691 314729 314754	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374	ESTs ESTs, Weakly similar to A47582 B-cell gr gbEST391378 MAGE resequences, MAGP Homo ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 3.6
	314547 314558 314627 314648 314691 314729 314754	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374	ESTs ESTs, Weakly similar to A47582 B-cell gr gbEST391378 MAGE resequences, MAGP Homo ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6
	314547 314558 314627 314648 314691 314729 314754 314814	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374 Hs.157367	ESTs ESTs, Weakly similar to A47582 B-cell gr gb:EST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs, Weakly similar to 178885 serine/th	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9
40	314547 314558 314627 314648 314691 314729 314754 314814	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374 Hs.157367 Hs.294068	ESTs ESTs, Weakly similar to A47592 B-cell gr gb:EST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3
	314547 314558 314627 314648 314691 314729 314754 314814 314864 314881	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374 Hs.157367 Hs.294068	ESTs ESTs, Weakly similar to A47582 B-cell gr gb:EST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs, Weakly similar to 178885 serine/th	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9
40	314547 314558 314627 314648 314691 314729 314754 314814 314864 314881	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374 Hs.157367 Hs.294068 Hs.152299	ESTs ESTs, Weakly similar to A47582 E-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Wodernately similar to \$65657 alpha	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3 3.7
40	314547 314558 314627 314648 314691 314729 314754 314814 314864 314881	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.154374 Hs.157367 Hs.294068 Hs.152299 Hs.189076	ESTs ESTs, Weakly similar to A47592 B-ceil gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to S65657 alpha ESTS	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1
40	314547 314558 314627 314648 314691 314729 314754 314814 314881 314882 314981	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374 Hs.157367 Hs.294068 Hs.152299 Hs.189076 Hs.293334	ESTs ESTs, Weakly similar to A47592 6-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Weakly similar to 585857 alpha ESTs ESTs ESTs, ESTS, Moderately similar to 585857 alpha ESTS	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3 3.7 3.1 3
40	314547 314558 314627 314648 314691 314729 314754 314814 314881 314882 314981	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374 Hs.157367 Hs.294068 Hs.152299 Hs.189076 Hs.293334	ESTs ESTs, Weakly similar to A47592 6-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Weakly similar to 585857 alpha ESTs ESTs ESTs, ESTS, Moderately similar to 585857 alpha ESTS	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1
40	314547 314558 314627 314648 314691 314729 314754 314814 314884 314881 314882 314981 315006	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374 Hs.157367 Hs.294068 Hs.152299 Hs.189076 Hs.293334 Hs.298241	ESTs ESTs, Weakly similar to A47582 B-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs, Weakly stimilar to 178885 sertine/th ESTs, Weakly stimilar to 178885 sertine/th ESTs, Moderately similar to S65657 alpha ESTs ESTs Transmembrane prolease, sertine 3	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3 3.7 3.1 3
40 45	314547 314558 314627 314648 314691 314729 314754 314814 314884 314881 314882 314880 315006 315021	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AH538613 AA533447	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.134374 Hs.157367 Hs.294068 Hs.152299 Hs.189076 Hs.293334 Hs.298241 Hs.312989	ESTs ESTs, Weakly similar to A47592 6-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 565657 alpha ESTs Transmembrane prolease, serine 3 ESTs	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3 3.7 3.1 3 10.9 5.3
40	314547 314558 314627 314648 3146729 314754 314814 314864 314881 314981 315021 315021	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613 AA533447 AW2262425	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.154374 Hs.157367 Hs.294068 Hs.152299 Hs.189076 Hs.293334 Hs.293234 Hs.312989 Hs.163484	ESTs ESTs, Weakly similar to A47592 B-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serline/th ESTs, Moderately similar to S65657 alpha ESTs ESTs ESTs ESTs ESTs ESTs ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3 3.7 3.1 3
40 45	314547 314558 314627 314648 3146729 314754 314814 314864 314881 314981 315021 315021	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613 AA533447 AW2262425	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.154374 Hs.157367 Hs.294068 Hs.152299 Hs.189076 Hs.293334 Hs.293234 Hs.312989 Hs.163484	ESTs ESTs, Weakly similar to A47592 B-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serline/th ESTs, Moderately similar to S65657 alpha ESTs ESTs ESTs ESTs ESTs ESTs ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3 3.7 3.1 3 10.9 5.3 12.9
40 45	314547 314558 314627 314683 314691 314729 314754 314814 314884 314881 315006 315021 315021 315050	AA399272 AI873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613 AA533447 AW292425 AA551104	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.154374 Hs.157367 Hs.294068 Hs.152299 Hs.189076 Hs.293334 Hs.298241 Hs.312989 Hs.163484 Hs.163484 Hs.189048	ESTs ESTs, Weakly similar to A47592 6-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 565657 alpha ESTs Transmembrane prolease, serine 3 ESTs ESTS ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3 3.7 3.1 3 10.9 5.3 12.9 5.8
40 45	314547 314558 314627 314681 314729 314754 314814 314864 314881 314981 315006 315021 315051 315051 315053	AA399272 AA1873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 A1095087 AA828032 AW972359 A1538613 AA533447 AW292425 AA551104 AW452948	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.157367 Hs.294068 Hs.157299 Hs.189076 Hs.293334 Hs.293334 Hs.312989 Hs.163484 Hs.257631	ESTs ESTs, Weakly similar to A47592 B-cell gr gbt.EST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs, Moderately similar to 865657 alpha ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3 3.7 3.1 3 10.9 5.3 12.9 5.8 4.2
40 45	314547 314558 314627 314681 314729 314754 314814 314864 314881 314981 315006 315021 315051 315051 315053	AA399272 AA1873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 A1095087 AA828032 AW972359 A1538613 AA533447 AW292425 AA551104 AW452948	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191638 Hs.157367 Hs.294068 Hs.157299 Hs.189076 Hs.293334 Hs.293334 Hs.312989 Hs.163484 Hs.257631	ESTs ESTs, Weakly similar to A47592 B-cell gr gbt.EST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs, Moderately similar to 865657 alpha ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 3.6 4.9 4.3 3.7 3.1 3 10.9 5.3 12.9 5.8
40 45	314547 314558 314627 314648 314691 314754 314814 314884 314881 314882 314981 315060 315021 315060 315060 315080	AA399272 AI873274 AA425310 AW979288 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613 AA533447 AW292425 AA551104 AW452948 AA744550	Hs.144341 Hs.190721 Hs.15766 Hs.136319 Hs.191638 Hs.134374 Hs.157367 Hs.294068 Hs.152299 Hs.189076 Hs.293334 Hs.298241 Hs.312989 Hs.163484 Hs.189048 Hs.136345	ESTs ESTs, Weakly similar to A47592 6-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 565857 alpha ESTs Transmembrane prolease, serine 3 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 3 10.9 5.3 12.9 5.8 4.2 3.7
40 45 50	314547 314558 314627 314648 314729 314754 314814 314864 314881 315006 315021 315051 315060 315073 315060 315073 315060	AA399272 AA1873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613 AA5313447 AW2529425 AA551104 AW452948 AA744550 AI025842	Hs.144341 Hs.190721 Hs.155766 Hs.136319 Hs.191633 Hs.134374 Hs.157367 Hs.189076 Hs.189076 Hs.293034 Hs.29334 Hs.29334 Hs.29334 Hs.29354 Hs.136345 Hs.136345 Hs.136345 Hs.136345	ESTs ESTs, Weakly similar to A47582 B-cell gr gbt.EST391378 MAGE resequences, MAGP Homo ESTs ESTs, ESTs, Weakly similar to 178885 serine/th ESTs, Weakly similar to 178885 serine/th ESTs, Moderately similar to S65657 alpha ESTs, Moderately serine 3 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 10.9 5.3 12.9 5.8 4.2 3.7 6
40 45	314547 314658 314691 314729 314754 31484 314884 314881 315006 315021 315051 315050 315073 315080 315183	AA399272 AA873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613 AA533447 AW292425 AA551104 AW452948 AA744550 AI025842 AW451341	Hs.144341 Hs.190721 Hs.155766 Hs.155766 Hs.191633 Hs.191633 Hs.157367 Hs.294068 Hs.152299 Hs.152299 Hs.293334 Hs.298241 Hs.189048 Hs.163484 Hs.189048 Hs.152530 Hs.155361 Hs.257631 Hs.155304	ESTs ESTs, Weakly similar to A47592 E-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 565657 alpha ESTs Transmembrane prolease, serine 3 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 3 10.9 5.3 4.2 4.2 3.7 6 3.9
40 45 50	314547 314658 314691 314729 314754 31484 314884 314881 315006 315021 315051 315050 315073 315080 315183	AA399272 AA873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613 AA533447 AW292425 AA551104 AW452948 AA744550 AI025842 AW451341	Hs.144341 Hs.190721 Hs.155766 Hs.155766 Hs.191633 Hs.191633 Hs.157367 Hs.294068 Hs.152299 Hs.152299 Hs.293334 Hs.298241 Hs.189048 Hs.163484 Hs.189048 Hs.152530 Hs.155361 Hs.257631 Hs.155304	ESTs ESTs, Weakly similar to A47592 E-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 565657 alpha ESTs Transmembrane prolease, serine 3 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 3 10.9 5.3 4.2 4.2 3.7 6 3.9
40 45 50	314547 314558 314627 314648 314691 314754 314814 314881 314881 315060 315073 315080 31575 315183 315183	AA399272 AA873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613 AA533447 AW292425 AA551104 AW452948 AA744550 AI025842 AW136134 AU241331	Hs. 144341 Hs. 190721 Hs. 155766 Hs. 136319 Hs. 191638 Hs. 194374 Hs. 157367 Hs. 294068 Hs. 15299 Hs. 189076 Hs. 298241 Hs. 312989 Hs. 163444 Hs. 257631 Hs. 189046 Hs. 152530 Hs. 152530 Hs. 152530 Hs. 152530	ESTs ESTs, Weakly similar to A47582 B-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs, ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 965657 alpha ESTs ESTs ESTs ESTs ESTs ESTs ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 10.9 5.3 12.9 5.4 2 3.7 6 3.9 4.4
40 45 50	314547 314558 314627 314648 314729 314754 314814 314864 314881 315006 315073 315060 315073 315183 315183 315193	AA99272 AB73274 AA425310 AW979268 AW207206 AW207206 AW207367 BE350122 AW971198 AU95087 AA828032 AW972199 AI538613 AA533447 AW572499 AA744529 AA745294 AA745294 AA745294 AA74534 AA7454 AA745 AA745 AA7534 AA745 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA7534 AA754 AA753 AA	Hs. 144341 Hs. 190721 Hs. 155766 Hs. 136319 Hs. 191638 Hs. 194377 Hs. 294068 Hs. 152299 Hs. 1633437 Hs. 298241 Hs. 298241 Hs. 189076 Hs. 193030 Hs. 163484 Hs. 157631 Hs. 1536346 Hs. 1536	ESTs ESTs, Weakly similar to A47592 E-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Weakly similar to 565657 alpha ESTs ESTs, Moderately similar to 565657 alpha ESTs Transmembrane prolease, serine 3 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 3 10.9 5.8 4.2 3.7 6 3.9 4.4 8.2
40 45 50	314547 314558 314627 314648 314729 314754 314814 314864 314881 315006 315073 315060 315073 315183 315183 315193	AA399272 AA873274 AA425310 AW979268 AW207206 AA457367 AW026761 BE350122 AW971198 AI095087 AA828032 AW972359 AI538613 AA533447 AW292425 AA551104 AW452948 AA744550 AI025842 AW136134 AU241331	Hs. 144341 Hs. 190721 Hs. 155766 Hs. 136319 Hs. 191638 Hs. 194377 Hs. 294068 Hs. 152299 Hs. 1633437 Hs. 298241 Hs. 298241 Hs. 189076 Hs. 193030 Hs. 163484 Hs. 157631 Hs. 1536346 Hs. 1536	ESTs ESTs, Weakly similar to A47582 B-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs, ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 965657 alpha ESTs ESTs ESTs ESTs ESTs ESTs ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 3 10.9 5.8 4.2 3.7 6 3.9 4.4 8.2
40 45 50	314547 314558 314627 314648 314754 314754 314814 314881 314881 315051 315051 315050 315073 315193 315193 315193	AA399272 AB73274 AA425310 AW879236 AW207206 AA457367 AW97193 AI095087 AA828032 AW97193 AI05087 AA53847 AW972359 AI538613 AA53847 AW972359 AI538613 AA5347 AW972359 AI538613 AA5347 AW972359 AI538613 AA5347 AW972359 AI538613 AA5347 AW972359 AI538613 AA5347 AW972359 AI538613 A	Hs. 144341 Hs. 190721 Hs. 195766 Hs. 136319 Hs. 191638 Hs. 134374 Hs. 157367 Hs. 294068 Hs. 189076 Hs. 293334 Hs. 312989 Hs. 189048 Hs. 29624 Hs. 312530 Hs. 135345 Hs. 152530 Hs. 131765 Hs. 131765 Hs. 14488	ESTs ESTs, Weakly similar to A47582 B-cell gr gbt.EST391378 MAGE resequences, MAGP Homo ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Weakly similar to 178885 serine/th ESTs, Moderately similar to 565657 alpha ESTs, Moderately similar of 565657 alpha ESTs ESTs, Moderately similar to ALUC_HUMAN I ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 3 10.9 5.8 4.2 3.7 6 3.9 4.4 4.2 3.6 4.2 3.7 6 3.6 4.9
40 45 50 55	314547 314558 314627 314648 314754 314754 314754 314881 314881 315006 315021 315051 315060 315073 315183 315183 315198 315198	AA3992/2 AB732/4 AA425310 AW979268 AW207206 AA457367 BE350122 AW97199 A0950907 AA828032 AW97129 A1039087 AA528032 AW572359 A1038613 AA53347 AW942298 AA744550 A1025842 AVW136134 AI367347 AI36734 AI367347 AI36734 A	Hs. 144341 Hs. 190726 Hs. 1957266 Hs. 136319 Hs. 191638 Hs. 194334 Hs. 157367 Hs. 157367 Hs. 152299 Hs. 189076 Hs. 189076 Hs. 189048 Hs. 163484 Hs. 189048 Hs. 163484 Hs. 165500 Hs. 165500 Hs. 165500 Hs. 165500 Hs. 165500	ESTs ESTs, Weakly similar to A47582 B-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 565657 alpha ESTs ESTs, Moderately similar to ALUC_HUMAN I ESTs, Moderately similar to ALUC_HUMAN I ESTS ESTS ESTS ESTS ESTS, Woderately similar to ALUC_HUMAN I ESTS, Woderately similar to ALUC_HUMAN I ESTS ESTS ESTS ESTS ESTS ESTS Woderately similar to 138937 DNA/R Homo sapiens done TCCCTA00151 mRNA sequ ESTS, Weakly similar to ALUL_HUMAN ALU S myellin transcription factor 1-like	6.7 27.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 10.9 5.3 12.9 4.2 3.7 6 3.9 4.4 8.2 3.6 3.6 4.2
40 45 50	314547 314583 314627 314648 314691 314729 314754 314884 314884 314882 314981 315006 315060 315060 315060 315060 315183 315193 315193 315193 315198 315198 315198	AA399272 AB73274 AA425310 AW879236 AW207206 AA457367 AW907199 AI095087 AA927012 AW971199 AI050807 AA533447 AW972359 AI538613 AA533447 AW922425 AA53147 AW252949 AA744550 AI025842 AW136134 AI241331 AI367344 AI241331 AI367344 AI241331 AI367344 AI241301 AI36734 AI24130 AI36734 AI24130 AI36734 AI24130 AI36734 AI24130 AI36734 AI24130 AI36734 AI2413 AI36734 AI2413 AI2413 AI36734 AI2413 AI36734 AI2413 AI2413 AI36734 AI2413 AI36734 AI2413 AI2413 AI36734 AI2413 AI2413 AI2413 AI2413 AI36734 AI2413 AI24	Hs. 144341 Hs. 190721 Hs. 195766 Hs. 136319 Hs. 191638 Hs. 191638 Hs. 152299 Hs. 16326 Hs. 293334 Hs. 298241 Hs. 298241 Hs. 189076 Hs. 132938 Hs. 163484 Hs. 257631 Hs. 136348 Hs. 152530 Hs. 136348	ESTs ESTs, Weakly similar to A47582 E-cell gr gbt.EST391378 MAGE resequences, MAGP Homo ESTs ESTs, ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 165657 alpha ESTs ESTs, Moderately similar on S65657 alpha ESTs Transmembrane prolease, serine 3 ESTs Moderately similar to ALUC_HUMAN I ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 10.9 5.3 12.9 5.3 6 3.9 4.4 8.2 3.6 4.3 3.7 6 3.6 3.7 6 3.7 6 3.9 4.3
40 45 50 55	314547 314583 314627 314648 314691 314729 314754 314884 314884 314882 314981 315006 315060 315060 315060 315060 315183 315193 315193 315193 315198 315198 315198	AA399272 AB73274 AA425310 AW879236 AW207206 AA457367 AW907199 AI095087 AA927012 AW971199 AI050807 AA533447 AW972359 AI538613 AA533447 AW922425 AA53147 AW252949 AA744550 AI025842 AW136134 AI241331 AI367344 AI241331 AI367344 AI241331 AI367344 AI241301 AI36734 AI24130 AI36734 AI24130 AI36734 AI24130 AI36734 AI24130 AI36734 AI24130 AI36734 AI2413 AI36734 AI2413 AI2413 AI36734 AI2413 AI36734 AI2413 AI2413 AI36734 AI2413 AI36734 AI2413 AI2413 AI36734 AI2413 AI2413 AI2413 AI2413 AI36734 AI2413 AI24	Hs. 144341 Hs. 190726 Hs. 1957266 Hs. 136319 Hs. 191638 Hs. 194334 Hs. 157367 Hs. 157367 Hs. 152299 Hs. 189076 Hs. 189076 Hs. 189048 Hs. 163484 Hs. 189048 Hs. 163484 Hs. 165500 Hs. 165500 Hs. 165500 Hs. 165500 Hs. 165500	ESTs ESTs, Weakly similar to A47582 E-cell gr gbt.EST391378 MAGE resequences, MAGP Homo ESTs ESTs, ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 165657 alpha ESTs ESTs, Moderately similar on S65657 alpha ESTs Transmembrane prolease, serine 3 ESTs Moderately similar to ALUC_HUMAN I ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 10.9 5.3 12.9 4.2 3.7 6 3.9 4.4 8.2 3.6 3.6 4.2
40 45 50 55	314547 314558 314627 314648 314754 314754 314754 314881 314882 314981 315061 315051 315060 315175 315080 315175 315183 315196 315193 315196 315193 315196	AA3992/2 AB732/4 AA425310 AW979268 AW979268 AW9207206 AA457367 AW927199 A0950907 AA828022 AW97129 A1538613 AA53347 AW93242 AW5245 AA551104 AW942942 AW5248 AA744550 AA167347 AV136134 AI67347 AV136134 AI67347 AV136134 AI67347 AV136134 AV13	Hs. 144341 Hs. 190721 Hs. 195766 Hs. 136319 Hs. 191638 Hs. 191638 Hs. 157367 Hs. 189076 Hs. 189076 Hs. 189076 Hs. 189076 Hs. 131298 Hs. 163484 Hs. 257631 Hs. 15253 Hs. 15253 Hs. 15253 Hs. 15253 Hs. 172619 Hs. 172619 Hs. 172619 Hs. 172619	ESTs ESTs, Weakly similar to A47592 E-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs, Weakly similar to 178885 serine/th ESTs, Weakly similar to 178885 serine/th ESTs, Moderately similar to S65657 alpha ESTs ESTs Anderately similar to S65657 alpha ESTs ESTs ESTs Koderately similar to ALUC_HUMAN I ESTs ESTs ESTs, Moderately similar to ALUC_HUMAN I ESTs ESTS ESTS ESTS ESTS ESTS ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 10.9 5.8 4.2 3.6 4.2 3.6 4.2 3.6 4.2 3.7 4.4 4.2 3.6 4.4 4.2 3.7
40 45 50 55	314547 314557 314658 314691 314729 314754 314864 314881 314882 314981 315051 315051 315050 315073 315193 315193 315193 315196 315282 315282 315282	AA399272 AB73274 AA425310 AW979268 AW979268 AW370706 AA457367 AW026761 BE350122 AW971198 A1085087 AU5268613 AA538613 AA538613 AA538613 AA538613 AA538613 AA538613 AA538613 AA538613 AA538613 AA538613 AA538613 AA538613 AA538613 AA538613 AA745264 AA74526 AA7526	Hs. 144341 Hs. 190721 Hs. 155766 Hs. 136319 Hs. 191633 Hs. 191633 Hs. 157367 Hs. 157367 Hs. 157367 Hs. 159299 Hs. 163484 Hs. 152530 Hs. 163484 Hs. 165900 Hs. 172619 Hs. 144923 Hs. 16494 Hs. 144923 Hs. 152520	ESTs ESTs, Weakly similar to A47582 E-cell gr gbt.EST391378 MAGE resequences, MAGP Homo ESTs ESTs, ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 165657 alpha ESTs ESTs, Moderately similar to 85657 alpha ESTs Transmembrane prolease, serine 3 ESTs Moderately similar to ALUC_HUMAN I ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 12.9 5.3 12.9 5.3 4.2 3.7 6 3.6 4.2 3.7 6 3.6 4.9 4.3 4.3 4.2 4.3 4.4 4.4 4.6 4.9 4.3 4.6 4.9 4.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
40 45 50 55	314547 314557 314658 314691 314729 314754 314864 314881 314882 314981 315051 315051 315050 315073 315193 315193 315193 315196 315282 315282 315282	AA3992/2 AB732/4 AA425310 AW979268 AW979268 AW9207206 AA457367 AW927199 A0950907 AA828022 AW97129 A1538613 AA53347 AW93242 AW5245 AA551104 AW942942 AW5248 AA744550 AA167347 AV136134 AI67347 AV136134 AI67347 AV136134 AI67347 AV136134 AV13	Hs. 144341 Hs. 190721 Hs. 155766 Hs. 136319 Hs. 191633 Hs. 191633 Hs. 157367 Hs. 157367 Hs. 157367 Hs. 159299 Hs. 163484 Hs. 152530 Hs. 163484 Hs. 165900 Hs. 172619 Hs. 144923 Hs. 16494 Hs. 144923 Hs. 152520	ESTs ESTs, Weakly similar to A47592 E-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs, Weakly similar to 178885 serine/th ESTs, Weakly similar to 178885 serine/th ESTs, Moderately similar to S65657 alpha ESTs ESTs Anderately similar to S65657 alpha ESTs ESTs ESTs Koderately similar to ALUC_HUMAN I ESTs ESTs ESTs, Moderately similar to ALUC_HUMAN I ESTs ESTS ESTS ESTS ESTS ESTS ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.7 3.1 10.9 5.8 4.2 3.6 4.2 3.6 4.2 3.6 4.2 3.7 4.4 4.2 3.6 4.4 4.2 3.7
40 45 50 55	314547 314558 314627 314648 314691 314754 314814 314881 314881 315060 315021 315060 315023 315183 315183 315183 315183 315183 315240 315282 315282 315282 315282	AA399272 AA452310 AW979268 AW979268 AW979208 AW579306 AW57306	Hs. 144341 Hs. 190721 Hs. 155766 Hs. 136319 Hs. 191633 Hs. 194374 Hs. 157367 Hs. 1594374 Hs. 157367 Hs. 199076 Hs. 299334 Hs. 152299 Hs. 257631 Hs. 136346 Hs. 155900 Hs. 155900 Hs. 155900 Hs. 15726 Hs. 172619 Hs. 172619	ESTs ESTs, Weakly similar to A47592 B-cell gr gbtEST391378 MAGE resequences, MAGP Homo ESTs ESTs, Weakly similar to 178885 serine/th ESTs, Weakly similar to 178885 serine/th ESTs, Meakly similar to 585557 alpha ESTs ESTs ESTs Transmembrane prolease, serine 3 ESTs ESTs ESTs Koderately similar to ALUC_HUMAN I ESTs, Moderately similar to ALUC_HUMAN I ESTs, Weakly similar to 18937 DNAIR Homo saplens done TCCCTA00151 mRNA sequ ESTs, Weakly similar to ALU1_HUMAN ALU S myelin transcription factor 1-fike ESTs ESTs ESTs ESTS ESTS ESTS ESTS ESTS	6.7 27.4 4.4 4.6 20.7 3.6 4.9 4.3 3.1 12.9 5.3 112.9 5.3 6 3.7 6 3.6 4.2 3.7 6 3.6 4.2 3.7 6 3.6 4.2 4.3 4.3 4.3 4.3 4.3 4.4 4.4 4.6 4.7 4.7 6 4.7 6 4.7 6 4.7 6 4.7 6 4.7 6 4.7 6 4.7 6 4.7 6 4.7 6 4.7 6 6 7 6 7 6 7 6 7 6 7 7 8 7 8 7 8 7 8
40 45 50 55 60	314547 314558 314627 314648 314691 314754 314814 314881 314881 315051 315051 315053 315053 315053 315195	AA3992/72 AB4732/74 AA425310 AW979268 AW307206 AA457367 AW026761 BE350122 AW971198 A0105087 AA220032 AW972359 AA551104 AW520942 AW136134 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA55613 AA566	Hs. 144341 Hs. 190721 Hs. 155766 Hs. 136319 Hs. 191638 Hs. 191638 Hs. 152299 Hs. 163249 Hs. 189076 Hs. 289241 Hs. 312989 Hs. 163404 Hs. 152500 Hs. 163404 Hs. 152500 Hs. 163404 Hs. 152500 Hs. 163404 Hs. 152500 Hs. 163404 Hs. 163404	ESTs ESTs, Weakly similar to A47582 E-cell gr gbt.EST391378 MAGE resequences, MAGP Homo ESTs ESTs, ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 165657 alpha ESTs ESTs, Moderately similar to 85657 alpha ESTs Transmembrane prolease, serine 3 ESTs Moderately similar to ALUC_HUMAN I ESTS ESTS ESTS ESTS ESTS ESTS ESTS EST	6.7 27.4 4.4 4.6 20.7 3.6 4.9 3.7 3.1 3 10.9 5.8 4.2 3.7 3.6 3.9 4.4 8.2 3.6 3.4 4.9 4.7 3.1
40 45 50 55	314547 314558 314627 314648 314691 314729 314754 314814 314881 314882 315006 315021 315073 315080 315175 315183 315193 315193 315193 315240 315282 315282 315282 315368 315368 315368 315368 315368 315368 315368 315368 315368	AA392727 AA425310 AW979268 AW979268 AW979268 AW972069 AW97206761 BE350122 AW97139 A1095087 AA26087 AA361104 AW972359 AK9	Hs. 144341 Hs. 190721 Hs. 1957566 Hs. 138319 Hs. 191633 Hs. 194374 Hs. 157367 Hs. 157367 Hs. 198076 Hs. 298034 Hs. 152299 Hs. 189076 Hs. 298334 Hs. 152596 Hs. 257631 Hs. 155900 Hs. 155900 Hs. 15756 Hs. 172619 Hs. 172619	ESTs ESTs, Weakly similar to A47592 B-cell gr gbt-EST991378 MAGE resequences, MAGP Homo ESTs ESTs, Weakly similar to 178885 serline/th ESTs, Moderately similar to 565657 alpha ESTs ESTs ESTs ESTs Transamerbrane prolease, serline 3 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 6.2 20.7 3.6 4.9 4.3 3.7 3.1 3.7 5.8 4.2 3.6 4.2 3.7 6 3.9 4.4 4.2 3.6 4.2 3.6 4.9 4.3 3.7 3.1 4.2 3.6 4.9 4.3 3.6 4.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
40 45 50 55 60	314547 314558 314627 314648 314691 314729 314754 314814 314881 314882 315006 315021 315073 315080 315175 315183 315193 315193 315193 315240 315282 315282 315282 315368 315368 315368 315368 315368 315368 315368 315368 315368	AA392727 AA425310 AW979268 AW979268 AW979268 AW972069 AW97206761 BE350122 AW97139 A1095087 AA26087 AA361104 AW972359 AK9	Hs. 144341 Hs. 190721 Hs. 1957566 Hs. 138319 Hs. 191633 Hs. 194374 Hs. 157367 Hs. 157367 Hs. 198076 Hs. 298034 Hs. 152299 Hs. 189076 Hs. 298334 Hs. 152596 Hs. 257631 Hs. 155900 Hs. 155900 Hs. 15756 Hs. 172619 Hs. 172619	ESTs ESTs, Weakly similar to A47592 B-cell gr gbt-EST991378 MAGE resequences, MAGP Homo ESTs ESTs, Weakly similar to 178885 serline/th ESTs, Moderately similar to 565657 alpha ESTs ESTs ESTs ESTs Transamerbrane prolease, serline 3 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 27.4 4.4 4.6 6.2 20.7 3.6 4.9 4.3 3.7 3.1 3.7 5.8 4.2 3.6 4.2 3.7 6 3.9 4.4 4.2 3.6 4.2 3.6 4.9 4.3 3.7 3.1 4.2 3.6 4.9 4.3 3.6 4.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
40 45 50 55 60	314547 314558 314627 314648 314691 314729 314754 314814 314881 314881 315006 315051 315060 315073 315080 315073 315198 315198 315198 315198 315283 315283 315283 315286 315286 315286 315286 315286 315286 315286 315387 315489 315489	AA3992/72 AB4732/74 AA425310 AW979268 AW307206 AA457367 AW026761 BE350122 AW971198 A0105087 AA220032 AW972359 AA551104 AW520942 AW136134 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA53613 AA55613 AA566	Hs. 144341 Hs. 190721 Hs. 155766 Hs. 136319 Hs. 191633 Hs. 134374 Hs. 157367 Hs. 294068 Hs. 159209 Hs. 189076 Hs. 298241 Hs. 312989 Hs. 189078 Hs. 298241 Hs. 312989 Hs. 189078 Hs. 153461 Hs. 172619 Hs. 172619 Hs. 172619 Hs. 172619 Hs. 172619 Hs. 172619 Hs. 164926 Hs. 104696 Hs. 104696 Hs. 104696 Hs. 104696 Hs. 191847 Hs. 191847 Hs. 191847 Hs. 191847 Hs. 191847 Hs. 191847 Hs. 191847 Hs. 191847 Hs. 191847	ESTs ESTs, Weakly similar to A47582 E-cell gr gbt.EST391378 MAGE resequences, MAGP Homo ESTs ESTs, ESTs, Weakly similar to 178885 serine/th ESTs ESTs, Moderately similar to 165657 alpha ESTs ESTs, Moderately similar to 85657 alpha ESTs Transmembrane prolease, serine 3 ESTs Moderately similar to ALUC_HUMAN I ESTS ESTS ESTS ESTS ESTS ESTS ESTS EST	6.7 27.4 4.4 4.6 20.7 3.6 4.9 3.7 3.1 3 10.9 5.8 4.2 3.7 3.6 3.9 4.4 8.2 3.6 3.4 4.9 4.7 3.1

...·

	315530	AW015415	Hs.127780	ESTs	8.9
		AA737415	Hs.152826		5.5
	315634	AA837085	Hs.220585	ESTs	6.3
_	315647	AA648983	Hs.212911	ESTs	3.6
5		Al418055	Hs.161160		5.1
		AW515373		Homo sapiens cDNA FLJ13580 fis, clone PL	3.1
		AW270550	Hs.116957		3.8
		AA737345	Hs.294041		5
10		AA683336	Hs.189046		3.1
10		AW865916	Hs.151206		4.7
		AA830893	Hs.119769		4.1
		A1217477 AA764950	Hs.194591 Hs.119898		4.1
		AI469960	Hs.170698		7
15		AI962796	Hs.136754		4.9
13		AW517524		NOD2 protein	4.1 3.2
		AW975114	Hs.293273		3.8
		AW203986	Hs.213003		3.2
		Al187742	Hs.125562		3.7
20		A1904982		ESTs, Moderately similar to ALU1_HUMAN A	30.7
		AI433540		gb:ti69g05.x1 NCI_CGAP_Kid11 Homo sapien	3.1
	316244	Al640761	Hs.224988		3.5
	316303	AA740994	Hs.209609	ESTs	3.8
	316313	AA741300	Hs.202599	ESTs, Weakly similar to (38022 hypotheti	4.4
25		AA747807	Hs.149500		3.2
		AA938198	Hs.146123	poly(A) polymerase gamma	9.4
		AW293174	Hs.252627		4.4
		AI440266		ESTs, Weakly similar to T24832 hypotheti	3
30		A1660898	Hs.195602		3.2
30		AI954880 AA836331	Hs.134604		3.2
		AA838114	Hs.134981 Hs.221612		4.4
		AW014875	Hs.137007		3.7 4.6
		A1732892	Hs.190489		5.9
35		AW445167	Hs.126036		4.1
	317360		Hs.126419		3.5
		AI806867	Hs.126594		5.1
	317452	AA972965	Hs.135568		6.9
	317501	AI822034	Hs.137097		4.6
40	317674	AW294909	Hs.132208	ESTs	4.3
		AW664964	Hs.128899		6.1
		X56348	Hs.287270	ret proto-oncogene (multiple endocrine n	3.1
		A1681545		hypothetical protein FLJ13117	3.4
15		AI827248		Homo sapiens cDNA FLJ11469 fis, clone HE	9.6
45		AW102941	Hs.211265		4.1
		A1565071	Hs.159983		10.3
		AW294522 Al077540	Hs.149991 Hs.134090		3.1
		AW294013	Hs.200942		3.9 3
50		A1093930		Homo sapiens cDNA: FLJ21000 fis, done C	4.4
-		AF107493		Homo saplens LUCA-15 protein mRNA, splic	5.4
		AW402677		RNA binding motif protein, X chromosome	4.4
		AA526235	Hs.193162	Homo sapiens cDNA FLJ11983 fis, clone HE	5.9
	318634		Hs.156832	ESTs	4
55	318740		Hs.77729	oxidised low density lipoprotein (lectin	7.3
	318744	AI793124	Hs.144479	ESTs	17.8
	318781	F11802	Hs.6818	ESTs	3
	319191	NM_012391	Hs.79414	prostate epithelium-specific Ets transcr	3.6
		AI524124	Hs.270307		4.6
60		W88532	Hs.254562		3.3
		AA761668		gb:nz24c08.s1 NCI_CGAP_GCB1 Homo saplens	3.2
		T79366	ms.108258	actin binding protein; macrophin (microf	3.3
		AA071267	Hs.164259	gb:zm61g01.r1 Stratagene fibroblast (937	6.2
65	319040	C19035 AA534222	ris. F04259		3.3
03		AA321166	Hs.278233	gb:nj21d02.s1 NCI_CGAP_AA1 Homo saplens ESTe	4.3
		AA984373	Hs.90790		4.1
	323101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.551 50	Tionio dupieno della i Luzzado ila, didile i	7.1

	320187	T99949	Hs.303428	Homo sapiens cDNA FLJ14832 fis, clone OV	5.3
	320211	AL039402	Hs.125783	DEME-6 protein	9.2
	320416	Al026984	Hs.293662		3.1
_	320588	U78082		RNA polymerase II transcriptional regula	3.1
5	320635	N50617 .		small nuclear ribonucleoprotein polypept	6.1
		Al160015	Hs.118112		3.5
		Al601188	Hs.120910		3
		AA214584	Hs.290167		3.7
		AI359144		Homo sapiens cDNA: FLJ23031 fis, clone L	3.1
10		BE144167		hypothetical protein similar to RNA-bind	3.3
		A1732643	Hs.144151		12.3
		AI769410	Hs.221461		3.3
		AA610649	Hs.333239		3
1.5		AB033041	Hs.13/50/	vang (van gogh, Drosophlla)-like 2	3.9
15		AI432199	Hs.247084		3 11.7
		AW975944	Hs.237396		3.8
		A1471598	Hs.197531 Hs.196151		4.4
		U29112 D80630	ns. 190151	qb:HUM091D02B Human fetal brain (TFujiwa	3.2
20		R59890	Hs.83623	nuclear receptor subfamily 1, group 1, m	3.1
20		H67065		ESTs, Weakly similar to ALU7_HUMAN ALU S	4.7
		AL049351		Homo saplens mRNA; cDNA DKFZp566C093 (fr	3.5
		N77342	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT	5
		AL137517		hypothetical protein DKFZp564O1278	19
25		AF075083	110.00	gb:Homo sapiens full length Insert cDNA	3.6
23		BE265745	He 194359	ESTs, Weakly similar to ALUC_HUMAN IIII	3
		W76326	113.104000	gb:zd60d04.r1 Soares_fetal_heart_NbHH19W	4.4
		Al357412	Hs.157601		11.5
		AW963372	Hs.46677	PRO2000 protein	3
30		T55958		gb:vb35f05.r1 Stratagene fetal spleen (9	3
		AF147347		gb:Homo sapiens full length insert cDNA	4.2
		AF155108	Hs.256150	Homo sapiens, Similar to RIKEN cDNA 2810	4
	322595	W92147	Hs.118394	ESTs	5.4
	322675	AA017656		gb:ze39h01.r1 Soares retina N2b4HR Homo	3.1
35	322766	AW068805		Homo saplens cDNA FLJ12280 fis, clone MA	5.2
		AW043782	Hs.293616		7.6
		AW248508	Hs.279727	Homo saplens cDNA FLJ14035 fis, clone HE	5.9
		C16391		gb:C16391 Clontech human aorta polyA mRN	16.5
40		Al902456		ESTs, Weakly similar to 138022 hypotheti	4
40		AK002088		Homo sapiens cDNA FLJ11226 fis, clone PL	3.3
		AL120862		programmed cell death 9 (PDCD9)	6.3 4.6
		AW675572	Hs.193620		10.5
		AL133990	Hs.190642		6.2
45		A1829520 AV651680	Hs.208558	gb:wl19c06.x1 NCI_CGAP_Ut1 Homo sapiens	4.3
43		A1655499	Hs.161712		9.2
		AW445014	Hs.197746		3.1
		BE081058	Hs.243023		4
		AA317962		ESTs, Moderately similar to PC4259 ferri	3
50		AW961560	Hs.97600	ESTs	3.2
50	323817		1.0.01.000	BMP-R1B	8.4
		AL043683	Hs.8173	hypothetical protein FLJ10803	3.3
		AI825204	Hs.211408		4.5
		AL044949	Hs.116298	ESTs	4.5
55		AI472078	Hs.303662	ESTs	8.4
	324261	BE069341		gb:QV3-BT0381-270100-073-c08 BT0381 Homo	49.4
	324285	AA431159	Hs.122954	ESTs	3
	324296	A1524039	Hs.192524		3
	324305	AA642007	Hs.116369		3.3
60		AA464510	Hs.152812		16.5
		A1823969	Hs.132678		3.3
		AW972227		Homo sapiens cDNA: FLJ22765 fls, clone K	5
		AW993522	Hs.292934		10.4
	324631	AA937116		ESTs, Weakly similar to 154374 gene NF2	3.3 3.2
65	324716	BE169746	Hs.12504	likely ortholog of mouse Arkedia	3.2
		AW974941 AA631739	Hs.335440	ESTs, Weakly similar to 178885 serine/th	3
	324//1	77031133	15.555440		•

	324823 324824	Al031771 AW516704 Al826999 AA704806	Hs.132586 Hs.208726 Hs.224624 Hs.143842	ESTs	4.2 3.4 3.1 4.4	
5	324961 324987	AA613792 Al375572 Al805416	Hs.172634 Hs.213897	gb:no97h03.s1 NCI_CGAP_Pr2 Homo sapiens ESTs	3.9 18.8 3.3	
		AI064690	Hs.171176		4.2 4.4	
10	325544			Phase 2 & 3 Exons	5.7	
	327075			Phase 2 & 3 Exons	3.8	
	332798 334223			C22000007:gi 12314195 emb CAB99338.1 (A NM_005080*:Homo sapiens X-box binding pr	4.3 26.2	
	334447			NM_012429*:Homo saplens SEC14 (S. cerevi	3.9	
15	335809			NM_014509*:Homo saplens kraken-like (BK1	10.1	
	335824			ENSP00000249072*:DJ222E13.1 (N-TERMINAL	20	
	338255	R21945	He 166075	NM_014323*:Homo sapiens zinc finger prot splicing factor, arginine/serine-rich 5	9	
		AW812795		ESTs, Moderately similar to 138022 hypot	4.6	
20		R97268	Hs.177269	ESTs	3.2	
		AA731602	Hs.120266		3.9	
		BE382657 AW836724	Hs.21486	signal transducer and activator of trans Homo saplens mRNA expressed only in plac	4.1 3.7	
	400042	M97935	118.333000	AFFX control: STAT1	3.2	
25		M97935		AFFX control: STAT1	3	
		M55150		fumarylacetoacetate	3	
		M13755		interferon stimulated protein; 15 kDa	4.5	
		AI052047 AA252033		ESTs ESTs; Weakly similar to !!!! ALU SUBFAMILY J	6.7 3.2	
30		AA401739		ESTs	3.3	
		H18459		hepatocellular carcinoma associated protein;	3	
		R48744		ESTs	4.2	
		M31682 AA416873		inhibin; beta B (activin AB beta polypeptide) ESTs	3	
35		D80240		HUM5G11A Human fetal brain (TFujiwara) Homo	4 .	
		R49590		ESTs	3.2	
				CH22_FGENES.678_5	16.8	
				CH22_FGENES.619_7 CH22_FGENES.619_12	12.9 11.3	
40				CH22_FGENES.619_12 CH22_EM:AC005500.GENSCAN.127 9	9.2	
				CH22_EM:AC005500.GENSCAN.3042	8.5	
				CH22_FGENES.271_8	8.4	
				CH22_FGENES.619_13 CH22_FGENES.271_7	8 7.3	
45				CH22_FGENES.617_7 CH22_FGENES.617_7	7.3 7.2	
				CH.07_hs qil6004473	7.1	
				CH22_FGENES.264_1	6.8	
		X03363		HER2 receptor tyrosine kinase (c erbB 2; ERBB2;	neu) 6.6 6.5	
50				CH22_FGENES.617_9 CH.07_hs gij5868264	5.8	
				CH.19_hs gi 5867439	5.7	
				CH22_FGENES.6 3	5.3	
				CH. 17_hs gij5867230	5.1	
55				CH.20_hs gi 6552458 CH22_EM:AC005500.GENSCAN.148 22	5.1 4.7	
-				CH22_FGENES.669_10	4.6	
		AA034918		KIAA1028 protein	4.6	
				CH22_FGENES.48_12	4.5	
60		AF049569		CH22_FGENES.118_2 ESTs	4.5 4.4	
50		M13955		multiple UniGene matches	4.4	
				CH22_FGENES.619_8	4.3	
		110 4400 1 1740		CH22_FGENES.13 7	4.3	
65		HG4126 HT43	90	CH22_FGENES.360_3	ZInc Finger Protein Hzf4 4.3	4.3
33				CH22_FGENES.706_9	4.3	
				CH.21_hs gij6531965	4.2	

		CH.17_hs gi 5867215	4.1	
		CH22_FGENES.669_8	4.1	
	HG2614 HT2710		Collagen, Type Viii, Alpha 1 4.1	
		CH22_FGENES.48_18	4.1	
5	X83535	matrix metalloproteinase 14 (membrane inserted)	4	
		CH22_FGENES.271_6	3.9	
		CH22_FGENES.617_3	3.9	
		CH22 FGENES.290 8	3.8	
	HG4716 HT5158		Guanosine 5' Monophosphate Synthase	3.8
10		CH22 FGENES.13 5	3.8	
		CH22 FGENES.13 2	3.8	
		CH.14_hs gli6682474	3.8	
		CH.02_hs gij5867750	3.8	
		CH22_FGENES.617_8	3.7	
15	HG4677 HT5102		Oncogene Ret/Ptc2, Fusion Activated	3.7
		CH22_DJ32i10.GENSCAN.23 39	3.7	
		CH22 FGENES.543 20	3.7	
		CH22_EM:AC005500.GENSCAN.96 1	3.7	
		CH22 FGENES.204 2	3.5	
20		CH22 FGENES.619_4	3.5	
20		CH.16_hs qil5867087	3.5	
	AA714311	EST cluster (not In UniGene)	3.4	
		CH22_EM:AC005500.GENSCAN.149 9	3.4	
		CH22 EM:AC005500.GENSCAN.421 5	3.4	
25		CH22 FGENES.134	3.3	
		CH.07_hs gij6004478	3.3	
		CH22 FGENES.360 1	3.3	
	HG2465 HT4871		Dna Binding Protein Ap 2, Alt. Splice 3	3.3
		CH22 FGENES.6 2	3.3	
30		CH22 C20H12.GENSCAN.16 2	3.2	
		CH22_C65E1.GENSCAN.8 1	3.2	
	AA707750	ESTs; Weakly similar to cis Golgl matrix	3.1	
		CH22 FGENES.307 4	3.1	
		CH22 EM:AC005500.GENSCAN.248 14	3.1	
35		CH.06 hs qi 5902482	3.1	
55		CH22_FGENES.669_5	3.1	
		CH22_DJ32I10.GENSCAN.19 8	3.1	
		CH22_FGENES.527_6	3.1	
		CH22 FGENES.330_10	3.1	
40		CH22 FGENES.14 2	3.1	
	AA976074	ESTs	3	
		CH22 FGENES.2267	3	
		CH22 FGENES.133	3	
		CH22_EM:AC005500.GENSCAN.209 12	3	
45		CH22_FGENES.271_3	3 3	

10

TABLE 17A

Table 17A shows the accession numbers for those pkeys lacking unigeneID's for Table 17.
 For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers 15 Pkey CAT number Accession 116845 393481_1 AA649530 AA659316 H64973 20 103207 30635 -4 X72790 126257 182217 1 N99638 AW973750 AA328271 H90994 AA558020 AA234435 N59599 R94815 102791 37186_1 AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BF550633 AI636743 AW614951 BF467547 AI680833 AI633818 N29986 U87592 U87593 U87590 U87591 S46404 U87587 AA463992 AW206802 AI970376 AI583718 AI672574 N25695 AW665466 Al818326 AA126128 Al480345 AW013827 AA248638 Al214968 AA204735 AA207155 AA206262 AA204833 25 AW003247 AW496808 AI080480 AI631703 AI651023 AI867418 AW818140 AA502500 AI206199 AI671282 AI352545 BE501030 Al652535 BE465762 AA206331 AW451866 AA471088 AA206342 AA204834 AA206100 AW021661 AA332922 N66048 AA703396 H92278 AW139734 H92683 U87589 U87595 H69001 U87594 BE466420 AI624817 BE466611 AI206344 AA574397 AA348354 AI493192 126872 142696 1 AW450979 AA136653 AA136656 AW419381 AA984358 AA492073 BE168945 AA809054 AW238038 BE011212 BE011359 30 BE011367 BE011368 BE011362 BE011215 BE011365 BE011363 112631 1746257_1 R82040 R70934 120742 176835_1 AA225084 AA302713 106864 324239_1 Al311928 AA936030 T51931 AA609816 AA487195 AA664207 109700 genbank_F09609 F09609 35 111532 genbank_R08440 R08440 113938 genbank_W81598 W81598 113947 genbank_W84768 WAATER 124357 genbank_N22401 N22401 108733 504187_1 AA121022 AA126422 40 112303 genbank_R54797 R54797 322136 46802 1 AF075083 H52291 H52528 322296 47334 1 W76326 AF086341 W72300 321811 1527481_1 D80630 D80896 D80895 314648 293660 1 AW979268 AA878419 AA431342 AA431628 45 322520 38916_1 T55958 T57205 AF147346 322521 38917_1 AF147347 T55426 T55503 322675 86787 1 AA017656 AA017374 AA019761 AI829520 AI791832 AA228414 AI791823 AA229211 AA229315 323332 179142 1 316186 425440_1 A1433540 AA728984 AA804981 50 322975 1510563_1 C16391 C16413 BE069341 AW748403 AL044891 Al908240 AA393080 324261 273265_1 323817 233566_1 AA410943 AW948953 AA334202 AA332882 301976 128835_1 T97905 AA101672 324961 376239_1 AA613792 AW182329 T05304 AW858385 AW299459 AA417112 55 303642 284260 1 303797 386364_1 AW629759 AW749955 AA633408 Al651005 319551 357371_1 AA761668 AA573621 R92814 R09670 311935 174129_1 AA216387 T63548 AA228676 AA071267 T65940 T64515 AA071334 319834 112523 1 60 AA534222 AA632632 T81234 319977 345248_1

314138 179960_1

313591 103087_1

AA740616 AA654854 AA229923

AA046309 A1263500 AA046397

308105 AM78803
33825 CH22_8858FG_LINK_EM-AC00
338809 CH22_3181FG_617_6_LINK_EM
335824 CH22_3181FG_619_11_LINK_E
335814 CH22_3187FG_619_11_LINK_E
307011 A144224
305811 AA876469
305817 AA876469
305817 A4876469
305817 CH2_1466_6_5_LINK_C4G1.G
32594 C12_1507FG_380_4_LINK_EM
327075 C1_hs
327075 C1_hs
327075 C1_hs
32420 CH22_146FG_687_7_LINK_EM
304782 AA882081
304427 CH22_146FG_387_7_LINK_EM
304782 AA882081
30431 S13434 441788_1 W82070 AW019952 W92053

10

15

BMSDOCID: <WO____02059377A2_I_>

TABLE 17B

Table 17B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 17. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref:	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (G1) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402-469-495.
	Strand:	Indicates DNA strand from which exors were predicted.

15				
13	Pkey	Ref	Strand	Nt_position
	334447	Dunham, I. et.al,	Plus	14308764-14308824
	335809	Dunham, I. et.al.	Plus	26310772-26310909
20		Dunham, I. et.al.		26376860-26376942
		Dunham, I, et.al.		232147-231974
	334223	Dunham, I. et.al.	Minus	12734365-12734269
		Dunham, 1, et.al.	Minus	15242294-15242231
	325372	5866920	Minus	1117061-1117304
25	325544	6682452	Plus	171228-171286
	327075	6531965	Plus	4041318-4041431

TABLE 18: Table 2 from BRCA 014 P

Table 18 shows genes with atleast five times the expression in breast tumor tissue than is

specified in normal body tissues.

	FREY.			Jeset Identifier Humber				
10	ExAcon:		Exemplar Accession number, Genbank accession number					
10	Unigene		Unigene number					
	Unigene		Unigene gene title					
	R1:	R	atio of tumor to	o normal body tissue				
15	Pkey	ExAcon	UnigenelD	Unigene Title	R1			
		BE563085	Hs.833	interferon-stimulated protein, 15 kDa	5.3			
		M29874	Hs.1360	cytochrome P450, subfamily IIB (phenobar	9			
		M81057	Hs.180884	carboxypeptidase B1 (tissue)	12			
20		M97815	Hs.183650	cellular retinoic acid-binding protein 2	6.5			
		X52509	Hs.161640	tyrosine aminotransferase	12.4			
		AF183810		opposite strand to trichorhinophalangeal	7.6			
		AA035613		ESTs	6.9			
			Hs.155223	stanniocalcin 2	5.3			
25		AA011449		ESTs	6.1			
			Hs.334806	KIAA1238 protein	7.3			
		Al791493	Hs.129873	ESTs, Weakly similar to A36036 cytochrom	8.2			
		R82331	Hs.164599	ESTs	5.4			
			Hs.241471	RNB6	6.2			
30		W27249	Hs.8109	hypothetical protein FLJ21080	6.9			
		Ai733881	Hs.72472	BMP-R1B	10.1			
		N92293	Hs.206832	ESTs, Moderately similar to ALU8_HUMAN A	19.7			
			Hs.119571	collagen, type iil, alpha 1 (Ehlers-Danl	8.4			
		M31669	Hs.1735	inhibin, beta B (activin AB beta polypep	5.6			
35		AF182277		cytochrome P450, subfamily IIB (phenobar	6.2			
		AI908165	Hs.169946	GATA-binding protein 3 (T-cell receptor	6.2			
		D89377	Hs.89404	msh (Drosophila) homeo box homolog 2	5.8			
		AW183618		solute carrier family 30 (zinc transport	9.9			
			Hs.105445	GDNF family receptor alpha 1	5.7			
40			Hs.278346	KIAA0904 protein	7.7			
			Hs.222399	CEGP1 protein	7.3			
			Hs.323910	HER2 receptor tyrosine kinase (c-erb-b2,	5.4			
			Hs.175563	Homo saplens mRNA; cDNA DKFZp564N0763 (
		AL117406		ATP-binding cassette transporter MRP8	6.7			
45			Hs.204096	lipophilin B (uteroglobin family member)	13.8			
		AI951118	Hs.326736	Homo sapiens breast cancer antigen NY-BR	17.3			
			Hs.326736	Homo saplens breast cancer antigen NY-BR	57.6			
		AI380797	Hs.158992	ESTs	10.2			
		AI821005	Hs.118599	ESTs	10.8			
50		AA216387		gb:nc16b02.s1 NCt_CGAP_Pr1 Homo saplens	5.2			
			Hs.118625	hexokinase 1	5.2			
			Hs.105445	GDNF family receptor alpha 1	12.4			
		C18863	Hs.163443	Homo sapiens cDNA FLJ11576 fis, clone HE	26.3			
			Hs.269493	ESTs	6.6			
55		AA740616		gb:ny97f11.s1 NCL_CGAP_GCB1 Homo saplens	s 5.9			
			Hs.206868	Homo sapiens cDNA FLJ14056 fis, clone HE	8.5			
		AI873274	Hs.190721	ESTs	27.4			
			Hs.136319	ESTs	20.7			
		AI538613		Transmembrane protease, serine 3	10.9			
60			Hs.312989	ESTs	5.3			
	315051	AW29242	Hs.163484	ESTs	12.9			
	315060	AA551104	Hs.189048	ESTs, Moderately similar to ALUC_HUMAN I	5.8			

Unique Eos probeset identifier number

		AI367347		Homo saplens clone TCCCTA00151 mRNA sequ	18.2
		AW015415		ESTs	8.9
	315634	AA837085	Hs.220585	ESTs	6.3
	316012	AA764950	Hs.119898	ESTs	7
5	316177	AI904982	Hs.293102	ESTs, Moderately similar to ALU1 HUMAN A	30.7
	316580	AA938198	Hs.146123	poly(A) polymerase gamma	9.4
	317803	AW664964	Hs. 128899	ESTs	6.1
	317881	AI827248	Hs.224398	Homo sapiens cDNA FLJ11469 fis, clone HE	9.6
	318740	NM_00254	3Hs.77729	oxidised low density lipoprotein (lectin	7.3
10	318744	AI793124	Hs.144479	ESTs	17.8
	320211	AL039402	Hs.125783	DEME-6 protein	9.2
	321107	AI732643	Hs.144151	ESTs	12.3
	321644	AW975944	Hs.237396	ESTs	11.7
	321978	N77342	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT	5
15	322035	AL137517	Hs.334473	hypothetical protein DKFZp564O1278	19
	322766	AW068805	Hs.288467	Homo sapiens cDNA FLJ12280 fis. clone MA	5.2
	322818	AW043782	Hs.293616	ESTs	7.6
	322975			gb:C16391 Clontech human aorta polyA mRN	16.5
	323262	AL133990	Hs.190642	ESTs	10.5
20	323332	AI829520		gb:wl19c06.x1 NCI_CGAP_Ut1 Homo sapiens	6.2
	323817	AA410943		BMP-R1B	8.4
		BE069341		gb:QV3-BT0381-270100-073-c08 BT0381 Homo	49.4
		AA464510		ESTs	16.5
		AW972227		Homo saplens cDNA: FLJ22765 fis, clone K	5
25		AW993522		ESTs	10.4
		AI375572	Hs.172634	ESTs	18.8
	325544			Phase 2 & 3 Exons	5.7
	330388		Hs.46	HER2 receptor tyrosine klnase (c-erb-b2,	6.6
	334223			NM_005080*:Homo sapiens X-box blnding pr	26.2
30	335809			NM_014509*:Homo sapiens kraken-like (BK1	10.1
	335824			ENSP00000249072*:DJ222E13.1 (N-TERMINAL	
		AI052047		ESTs; Weakly similar to CYTOCHROME P450	6.7
		R72427		CH22_EM:AC005500.GENSCAN.127 9	5.5
2.5				CH22_FGENES.619_13	9.2
35				CH22_FGENES.617_9	8
				CH22_FGENES.271_7	6.5
				CH22_FGENES.619_7	7.3
				CH22_FGENES.271_8	12.9
40					8.4
40				CH22_EM:AC005500.GENSCAN.304 2	11.3
				CH.07_hs gi 6004473	8.5
				CH22_FGENES.617_7	7.1
				CH22_FGENES.678_5	7.2
				CH22_FGENES.678_5	16.8

TABLE 18A

Table 18A shows the accession numbers for those pkeys lacking unigeneID's for Table 18.

For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10

Pkey:	Unique Eos probeset identifier number
CAT number:	Gene cluster number
Accession:	Genbank accession numbers

Pkev	CAT number	Accession

		179142_1	AI829520 AI791832 AA228414 AI791823 AA229211 AA229315
20	322975	1510563_1	C16391 C16413
	324261	273265_1	BE069341 AW748403 AL044891 Al908240 AA393080
	323817	233566_1	AA410943 AW948953 AA334202 AA332882
	311935	174129_1	AA216387 T63548 AA228676
	314138	179960_1	AA740616 AA654854 AA229923
-25	335809	CH22_3181FG_	617_6_LINK_EM
	335824	CH22_3197FG_	619_11_LINK_E
	325544	c12 hs	
	334223	CH22 1507FG	360 4 LINK EM

TABLE 18B

Table 18B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 18. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref:	Unique number corresponding to an Eos probeset Sequenca source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication
	Strand: Nt_position:	enfilled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA stand from which exons were predicted. Indicates nucleotide positions of predicted exons.
		a

	Pkey	Ref	Strand	Nt_position
20	335824 334223	Dunham, I. et al. Dunham, I. et al. Dunham, I. et al. 6682452	Plus	26310772-26310909 26376860-26376942 12734365-12734269 171228-171286

TABLE 19: 1045 GENES UP-REGULATED IN BREAST CANCER COMPARED TO NORMAL ADULT TISSUES

5 Table 19 shows 1045 genes up-regulated in breast cancer compared to normal adult tissues. These were selected from 59680 probesets on the Affymetrix/Bos-Hu03 GeneChip array such that the ratio of "average" breast cancer to "average" normal adult tissues was greater than or equal to 2.5. The "average" breast cancer level was set to the 90th percentile value. The "average" normal adult tissue level was set to the 90th percentile value amongst 144 nonmalignant tissues. In order to remove gene-specific background levels of non-specific hybridization, the 15th percentile value amongst the 144 non-malignant tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

15	Pkey:	Unique Eos probeset identifier number
	ExAccn:	Exemplar Accession number, Genbank accession number
	UnigeneID:	Unigene number
	Unigene Title:	Unigene gene title
	D1:	Potio of tumor to normal bady tiesus

	Pkey	ExAcon	UnigenelD	UnigeneTitle	R1
	408591	AF015224	Hs.46452	mammaglobin 1	137.6
25		M21305		gb:Human alpha satellite and satellite 3	71.0
		AA401369	Hs.190721		68.4
	407277	AW170035		Homo saplens breast cancer antigen NY-BR	54.2
	449746	AI668594	Hs.176588	ESTs, Weakly similar to CP4Y_HUMAN CYTOC	46.4
	426878	BE069341		gb:QV3-BT0381-270100-073-c08 BT0381 Homo	
30		AA250737	Hs.72472	BMP-R1B	37.4
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	32.9
		AW138959	Hs.245123		31.9
		AA195651	Hs.104106		30.4
		C16391		gb:C16391 Ciontech human aorta polyA mRN	27.7
35		U90304	Hs.25351	iroquois homeobox protein 5	24.8
		AA412108	Hs.269350		22.0
	428848	NM_000230	Hs.194236	leptin (murine obesity homolog)	21.9
	404561			trichorhinophalangeai syndrome i (TRPS1)	21.8
		AA046309		gb:zf12f01.s1 Soares_fetal_heart_NbHH19W	19.8
40		Al375572	Hs.172634		17.3
		AA009647	Hs.8850	a disintegrin and metalloproteinase doma	16.6
		S73265	Hs.1473	gastrin-releasing peptide	16.5
		AW840171	Hs.265398		16.0
		AI263307	Hs.239884		15.8
45		X51501	Hs.99949	prolactin-induced protein	15.8
		AI267700	Hs.317584		15.5
		AL120862	Hs.124165		14.8
		Al905687	Hs.2533	aldehyde dehydrogenase 9 family, member	14.5
		C18863	Hs.163443	Homo sapiens cDNA FLJ11576 fis, clone HE	13.7
50		AJ224172	Hs.204096	lipophilin B (uteroglobin family member)	13.6
		AL133990	Hs.190642		13.5
		AB014544	Hs.21572	KIAA0644 gene product	13.0
		AA399272	Hs.144341		12.8
	402578			C1001134:gij2117372 pirjji65981 fatty ac	12.6
55		AA436989		H2A histone family, member A .	12.2
		NM_003613	Hs.151407		12.0
		AA193450		gb:zr40e07.r1 Soares_NhHMPu_S1 Homo sapi	11.9
	424086	AJ351010	Hs.102267		11.9
	459587	AA031956		gb:zk15e04.s1 Soares_pregnant_uterus_NbH	11.5

		AW291168	Hs.41295	ESTs, Weakly similar to MUC2_HUMAN MUCIN	
		NM_001394	Hs.2359	dual specificity phosphatase 4	11.5
		AI951118		Homo sapiens breast cancer antigen NY-BR	11.4
5		AW137148 AL035414	Hs.21068	Homo sapiens cDNA FLJ11382 fis, clone HE	11.3
,	452401	NM_007115	Hs.29352	hypothetical protein tumor necrosis factor, alpha-induced pro	11.0
	421037	AI684808	Hs.197653		10.9
	452461		Hs. 108106		10.5
	443348	AW873596		calmodulin 2 (phosphorylase kinase, delt	10.6
10	421155		Hs.102267		10.5
	402606			NM_024626:Homo saplens hypothetical prot	10.4
	409269	AA576953	Hs.22972	hypothetical protein FLJ13352	10.4
		Al370413	Hs.36563	hypothetical protein FLJ22418	10.3
		Al357412	Hs.157601		10.2
15		W72838	Hs.2533	aldehyde dehydrogenase 9 family, member	10.1
		NM_002497		NIMA (never in mitosis gene a)-related k	10.1
	432441	AW292425	Hs.163484		9.9
	427365	AI873274	Hs.190721		9.9
20	438950		Hs.144530		9.8
20	422835	BE218705 D90041		metallothloneln-like 5, testis-specific	9.7
	423092		Hs.23439	N-acetyltransferase 1 (arylamine N-acety ESTs	9.7
		AL360204		Homo saplens mRNA full length insert cDN	9.6 9.6
	445730		Hs.170042		9.5
25		Al907673	110.11.0042	9b:lL-BT152-080399-004 BT152 Homo saplen	9.3
		A1267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	
		AJ224741	Hs.278461		9.1
		Al127076		hypothetical protein DKFZp564O1278	9.1
	449448	D60730	Hs.57471	ESTs	9.1
30	423945	AA410943		gb:zt32h03.r1 Soares ovary tumor NbHOT H	9.1
	406348			Target Exon	9.0
		U31875		short-chain alcohol dehydrogenase famlly	9.0
	453392	U23752	Hs.32964	SRY (sex determining region Y)-box 11	9.0
35		AF026944	Hs.293797		8.8
33	405654	NA AA279490	Hs.86368	C12001521:gi]7513934 pir T31081 cca3 pr	8.8
	451110		Hs.265398	calmegin ESTs, Weakly similar to transformation-r	8.8 8.7
			Hs.47584	potassium voltage-gated channel, delayed	8.5
		AB033025	Hs.50081	KIAA1199 protein	8.4
40	442353		Hs.49136	ESTs, Moderately similar to ALU7_HUMAN A	8.3
	451561		Hs.177403		8.2
	424001		Hs.137476		8.2
	429859	NM_007050	Hs.225952		8.1
	423887	AL080207	Hs.134585	DKFZP434G232 protein	8.1
45	405095			Target Exon	8.1
		AA236115	Hs.120785		8.0
		AF026941	Hs.17518	Homo sapiens cig5 mRNA, partial sequence	8.0
		BE242870	Hs.75379	solute carrier family 1 (gilal high affi	8.0
50	416747 415385		Hs.7535	hypothetical protein FLJ12910	8.0 7.9
50	434424			COBW-like protein Homo sapiens cDNA: FLJ23523 fis, clone L	7.9
		AF044197		small inducible cytokine B subfamily (Cy	7.9
		M31126		matrix metalloproteinase 11 (MMP11; stro	7.8
	400285		, ioit, roto	Eos Control	7.7
55	437207		Hs.15929	hypothetical protein FLJ12910	7.6
	427119		Hs.114574	ESTs	7.5
	429534	AW976987	Hs.163327	ESTs, Weakly similar to 2109260A B cell	7.5
		H69125	Hs.133525		7.5
60		Al222020		CocoaCrisp	7.4
60		H59846		ESTs, Moderately similar to ALU7_HUMAN A	7.4
		Al380797	Hs.158992		7.3
		AA948033	Hs.130853		7.2
		AW602166		CEGP1 protein	7.2
				Homo saplens cDNA FLJ14438 fis, clone HE	7.1
65	414142				
65	426261	AW242243 AK001468		peroxisomal famesylated protein anillin (Drosophila Scraps homolog), act	7.0 6.9

	429432	AI678059		synaptonemal complex protein 2	6.9
		Al375672	Hs.165028		6.9
		A1732643	Hs.144151		6.9
_		AA808229	Hs.167771		6.8
5		Al793124	Hs.144479		6.8
	404253			NM_021058*:Homo sapiens H2B histone fami	6.8
		Al015591		ESTs, Weakly similar to T17227 hypotheti	6.7
	426215 428227	AW963419		stanniocalcin 2	6.6 6.6
10		AA321649 BE545072	Hs.2248	small Inducible cytokine subfamily B (CX hypothetical protein FLJ10461	6.6
10		AW818127	ris. 1225/9	gb:CM1-ST0277-061299-059-b07 ST0277 Homo	
		Al418055	Hs.161160		6.6
		Al733682	Hs.130239		6.6
		A1970394	Hs.197075		6.6
15		L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	6.5
	420757		Hs.99915	androgen receptor (dihydrotestosterone r	6.5
		BE041395		ESTs, Weakly similar to unknown protein	6.5
		X03635	Hs.1657	estrogen receptor 1	6.5
	427356	AW023482	Hs.97849	ESTs	6.5
20	425704	U79293	Hs.159264	Human clone 23948 mRNA sequence	6.4
	441134	W29092	Hs.7678	cellular retinolc acid-binding protein 1	6.4
	424902		Hs.153687		6.4
		AW004854		hypothetical protein FLJ23537	6.4
25	431448	AL137517		hypothetical protein DKFZp564O1278	6.2 6.1
23		NM_014398 AA586894	Hs.10887	similar to lysosome-associated membrane	6.1
		AI240665	Hs.8895	S100 calcium-binding protein A7 (psorias ESTs	6.1
		M13509	Hs.83169	matrix metalloproteinase 1 (MMP1; Inters	6.0
		AA972965	Hs.135568		6.0
30	418092		Hs.106604		6.0
-	430044		Hs.152812		5.9
	432837	AA310693	Hs.87329	HSPC072 protein	5.9
	433285	AW975944	Hs.237396		5.9
		H39960	Hs.288467		5.9
35		AF115402	Hs.11713	E74-like factor 5 (ets domain transcript	5.9
		AW803341		gb:IL2-UM0079-090300-050-D03 UM0079 Homo	
	425398	AL049689 X72755	Hs.77367	hypothetical protein similar to tenascin monokine induced by gamma interferon	5.9 5.8
		R20991	ns.//30/	gb:yg06h01.r1 Soares infant brain 1NIB H	5.8
40	411284		He 135101	ESTs. Weakly similar to unnamed protein	5.8
40	453511	AL031224	Hs.33102	transcription factor AP-2 beta (activati	5.8
	451807		Hs.27099	hypothetical protein FLJ23293 similar to	5.7
	430510			hypothetical protein PRO2577	5.7
	415539	AI733881	Hs.72472	BMP-R1B	5.6
45		AW016531	Hs.122147		5.6
		AW067903	Hs.82772	collagen, type XI, alpha 1	5.5
		AA463893	Hs.220933		5.5
	439809		Hs.101774		5.5
50	423811	AW299598 AW748078	Hs.50895	homeo box C4 ESTs, Weakly similar to MUC2_HUMAN MUCIN	5.4
30		AI742605	Hs.214410 Hs.193696		5.4
		AL121278	Hs.25144	ESTs	5.4
		BE246919	Hs.10290	U5 snRNP-specific 40 kDa protein (hPrp8-	5.4
		BE167434	Hs.98471	ESTs, Weakly similar to T18712 hypotheti	5.4
55	451621		Hs.26770	fatty acid binding protein 7, brain	5.4
	425236	AW067800	Hs.155223		5.3
	421464	AA291553	Hs.190086		5.3
	450736	AW970060		gb:EST382140 MAGE resequences, MAGK Hon	
		AA421081	Hs.12388	ESTs	5.3
60		U65011	Hs.30743	preferentially expressed antigen in mela	5.3
		AB028945	Hs.12696	cortactin SH3 domain-binding protein	5.3
		X52509		tyrosine aminotransferase	5.3 5.2
		L32137	Hs.1584	cartilage oligomeric matrix protein (COM	5.2
65	438167 433330		Hs.24286 He 132816	ESTs hypothetical protein MGC14801	5.2
05		N92293	He 208832	ESTs, Moderately similar to ALU8_HUMAN A	5.2
		U41060	Hs.79136	LIV-1 protein, estrogen regulated	5.2
	410270	571000		p	

	400300	X03363			5.2
		U37519	Hs.87539	aldehyde dehydrogenase 3 family, member	5.2
		AW449211			5.2
E		AB028992	Hs.193143		5.2
5		AW852530		9b:PM1-CT0243-071099-001-g06 CT0243 Homo	
		AW851980 AI916269		ESTs, Weakly similar to S72482 hypotheti	5.2
		AA032279	Hs.61635		5.1 5.1
		AAU32279 AI283133	Hs.297420		5.1
10		Al791495			5.1
		Al798680	Hs.25933		5.1
		AA642007	Hs.116369		5.1
		AW207206	Hs.136319		5.1
	405494				5.1
15	452930	AW195285	Hs.194097	ESTs, Weakly similar to 138022 hypotheti	5.1
		Al201849			5.1
		X70697	Hs.553	solute carrier family 6 (neurotransmitte	5.0
		BE387335			5.0
20		R43646	Hs.12422		5.0
20		W02414	Hs.38383	ESTs	5.0
		AW665281 AA236776	Hs.224625 Hs.79078		5.0 5.0
		AK000713		MAD2 (mitotic arrest delicient, yeast, h hypothetical protein FLJ20706	5.0
		AW512260	Hs.87767	ESTs	4.9
25		X82125	Hs.25040		4.9
		AJ003029	Hs.65792	syntrophin, gamma 2	4.9
		M30703	Hs.270833		4.9
	418836	Al655499	Hs.161712		4.8
		A1820662	Hs.129598		4.8
30		AF220050	Hs.181385	uncharacterized hematopoletic stem/proge	4.8
	400286			C16000922:gl[7499103[pir][T20903 hypothe	4.8
		U71600	11- 400070	gb:Human zinc finger protein zfp31 (zf31	4.8
		Al831190 BE218239	Hs.166676 Hs.202656		4.8 4.8
35		Al217477	Hs.194591		4.8
55		AW997556	Hs.78521	KIAA1717 protein	4.8
		BE440042	Hs.83326	matrix metalloprotelnase 3 (stromelysin	4.7
		Al349764	Hs.217081		4.7
	409110	AA191493	Hs.48778	niban protein	4.7
40	400284			estrogen receptor 1	4.7
		AW248508		Homo saplens cDNA FLJ14035 fis, clone HE	4.7
		R42185	Hs.274803		4.7
		BE062109	Hs.241551	chloride channel, calcium activated, fam	4.7
45		AW961489	Hs.154116		4.7
43		NM_003462 AF077345	Hs.33846 Hs.177936	dynein, axonemal, light intermediate pol	4.7
	421751			ESTs, Moderately similar to S65657 alpha	4.6
		R63503	Hs.28419	ESTs	4.6
	405718			C4000799*:gij6330365jdbjjBAA86508.1[(AB	4.6
50		AW207523	Hs.197628		4.6
		Z40313	Hs.106330	Homo sapiens clone IMAGE:23371, mRNA seq	4.6
		M81057	Hs.180884	carboxypeptidase B1 (tissue)	4.6
		AI199268	Hs.19322	Homo saplens, Similar to RIKEN cDNA 2010	4.6
E E		AK000282	Hs.239681	hypothetical protein FLJ20275	4.6
55		AW855717	11- 70400	gb:RC1-CT0279-081299-013-b01 CT0279 Homo	
		AA242758 AA808189	Hs.79136 Hs.272151	LIV-1 protein, estrogen regulated	4.6
		AW936273	NS.2/2131	gb:QV0-DT0020-090200-107-g07 DT0020 Homo	
		AL036877	Hs.282878		4.6
60		AA514660	Hs.128443		4.6
		H15261	Hs.21948	ESTs	4.6
		AW246333	Hs.17901	Homo sapiens, clone IMAGE:3937015, mRNA,	4.6
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6 (EGFL6)	4.5
		AW966399	Hs.46821	hypothetical protein FLJ20086	4.5
65		W68815	Hs.301885		4.5
		AW503329		gb:Ui-HF-BN0-akx-e-02-0-Ui.r1 NIH_MGC_50	4.5
	406747	AI925153	HS.217493	annexin A2	4.5

	412102	H56435		gb:yq98e09.r1 Soares fetal liver spleen	4.5
	431716		Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	4.5
		AW814902		gb:MR1-ST0206-120400-022-f08 ST0206 Homo	4.5
-	401418			C14000338*:gij7459502 pir S74665 outer	4.5 4.5
5		AK001074 AK001581		Homo sapiens cDNA FLJ10212 fis, clone HE hypothetical protein FLJ10719; KIAA1794	4.5
		AA135257	Hs.47783	B aggressive lymphoma gene	4.4
		AA335497		ESTs, Weakly similar to I38022 hypotheti	4.4
		AW419196		hypothetical protein FLJ13782	4.4
10		AW664964	Hs.128899		4.4
		BE463857	Hs.151258		4.4
	432731			fibronectin 1	4.4
	410534	AW905138		gb:QV0-NN1071-280400-207-g07 NN1071 Home	
	405196			C2000662*:gij7512792 pirj T12482 hypothe	4.4
15		N47863	Hs.336901	ribosomal protein S24	4.4
	401793			C17001545:9i 5360127 gb AAD42882.1 AF155	4.4
		AA381209		gb:EST94257 Activated T-cells I Homo sap	4.4
		AB007975	Hs.131454	KIAA0506 protein	4.4
20		NA AF019612	Un 207007	C19000274*:glj12741327jrefjXP_008833.2j membrane-bound transcription factor prot	4.4
20	400608	AF0 190 12	NS.251001	C10001899:gl[7508633]plrj[T25392 hypothe	4.4
		AV657310	Hs.282898		4.3
		AL138272	Hs.62713	ESTs	4.3
	405906			Target Exon	4.3
25	405925	NA		Target Exon	4.3
		BE247684	Hs.103070		4.3
		H57646	Hs.42586	KIAA1560 protein	4.3
		N63855	Hs.142634		4.3
20		AA603305		gb:np12d11.s1 NCl_CGAP_Pr3 Homo sapiens	4.3 4.3
30		N71277	Hs.70725	gb:za36e03.s1 Scares fetal liver spleen gamma-aminobutyric acid (GABA) A recepto	4.2
	411558	AA102670 AI266484	Hs.31570	ESTs, Weakly similar to KIAA1324 protein	4.2
	421451		Hs.50831	ESTs	4.2
		AA033714	Hs.287629		4.2
35	409757			cystatin SN	4.2
		BE158766		gb:IL2-HT0397-071299-024-F02 HT0397 Homo	4.2
	413499	BE144884		gb:CM0-HT0182-041099-065-e11 HT0182 Homa	54.2
	444619		Hs.8172	ESTs, Moderately similar to A46010 X-lin	4.2
40		AF123050	Hs.44532	dlubiquitin	4.2
40		S82472		gb:beta -pol=DNA polymerase beta (exon a	4.2
	404285		Un 155224	C6001909:gi[704441 db] BAA18909.1 (D298	4.2 4.2
	425247	NM_005940 AW812795		matrix metalloproteinase 11 (MMP11; stro ESTs, Moderately similar to i38022 hypot	4.2
	446163		Hs.25252	prolactin receptor	4.2
45		AW592167	Hs.293299		4.2
1.5		Al908165		GATA-binding protein 3 (T-cell receptor	4.2
		AW821113	Hs.72402	ESTs	4.2
	452176	AA024538	Hs.282990	Human DNA sequence from clone RP1-28H20	4.2
		AW378065	Hs.8687	ESTs	4.2
50		AI085198	Hs.164226		4.2
		AB007948	Hs.158244		4.1
		J05070	Hs.151738 Hs.22242	matrix metalloproteinase 9 (gelatinase B	4.1 4.1
		AA894564 AA634806	H3.22242	ESTs gb:ab28c02.r1 Stratagene lung (937210) H	4.1
55	451381		He 172330	hypothetical protein MGC2705	4.1
55	450229		Hs.8929	hypothetical protein FLJ11362	4.1
	455700		110.002.0	gb:CM1-BT0368-061299-060-g07 BT0368 Hom	
	431924		Hs.272203	Homo sapiens cDNA FLJ20843 fis, clone AD	4.1
	438885		Hs.184987		4.1
60	401451			NM_004496*:Homo sapiens hepatocyte nucle	4.1
	431676	AI685464		gb:tt88f04.x1 NCI_CGAP_Pr28 Homo saplens	4.1
	409092	A1735283	Hs.172608		4.1
	429270	W60379	Hs.57773	ESTs	4.1
	443903	A1220547	Hs.135223		4.1 4.1
65		AW057736		HER2 receptor tyrosine kinase (c-erb-b2, transcription factor AP-2 gamma (activat	4.1
	4702/5	U85658 BE007371	Hs.61796 Hs.200313		4.1
	432912	D2001311	113.2003 10	2010	

	403585			Target Exon	4.1
		Al394151	Hs.37932		4.1
		AA640891	Hs.102406		4.1
-		BE264901			4.1
5		NM_004354	Hs.79069		4.1
	418994	AA296520	Hs.89546		4.1
		U94362	Hs.58589		4.1 4.0
		NM .003528	Hs.2178		4.0
10		AA448460			4.0
		AL359055	Hs.67709		4.0
	429353	AL117406	Hs.200102		4.0
		NM_002666	Hs.103253		4.0
		AA228776	Hs.191721		4.0
15		AW954552	Hs.142634		4.0
		AW938484		gb:CM0-DT0057-290200-253-d06 DT0057 Homo	
	404142		Hs.159650		4.0
		AI027604 AI693927	Hs.265165		4.0 4.0
20		AA165232	Hs.222069		4.0
20		N75582			4.0
		BE390440	10.212070	gb:601283601F1 NIH_MGC_44 Homo sapiens c	
	452281		Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL	4.0
	417801	AA417383	Hs.82582	Integrin, beta-like 1 (with EGF-like rep	4.0
25		Al281848			4.0
		X77343	Hs.334334		4.0
		AL119723		gb:DKFZp761A2124_r1 761 (synonym: hamy2)	4.0
		AA356170	Hs.26750	hypothetical protein FLJ21908	4.0
30		Al591147 Al741122	Hs.61232	ESTs Homo saplens cDNA FLJ14232 fis, clone NT	4.0 4.0
50		N99626	HS. 10 10 10	gb:za39d11.r1 Soares fetal liver spleen	4.0
		Al199738	Hs.208275	ESTs, Weakly similar to ALUA_HUMAN IIII	4.0
		AI948607	Hs.264680		4.0
	452681	AF153330	Hs.30246	solute carrier family 19 (thiamine trans	3.9
35	450192	AA263143	Hs.24596	RAD51-interacting protein	3.9
	406554			Target Exon	3.9
		AA573006	Hs.19173	ESTs	3.9
		Z42023	Hs.106576	alanine-glyoxylate aminotransferase 2-II	3.9
40		AA442176 M86153	Hs.75618	gb:zw63b08.r1 Soares_total_fetus_Nb2HF8_ RAB11A, member RAS oncogene family	3.9
40	401781	INI00 133	HS./3018	Target Exon	3.9
		F05086	Hs.328142		3.9
		AA026777	110.020112	gb:ze93c11.r1 Soares_fetal_heart_NbHH19W	3.9
	442500	AI819068	Hs.209122		3.9
45		Z21336		actin related protein	3.9
		Al472106	Hs.49303	Homo sapiens cDNA FLJ11663 fis, clone HE	3.9
		AF086534		ESTs, Moderately similar to ALU1_HUMAN A	3.9
		AA419529 AB037791	Hs.76391	myxovirus (influenza) resistance 1, homo	3.9
50		BE537217	Hs.29716 Hs.30343	hypothetical protein FLJ10980 ESTs	3.9
50		BE568414		Homo saplens cDNA: FLJ22097 fis, clone H	3.9
		AI073512	Hs.133916		3.9
		BE152428	110.100010	gb:CM0-HT0323-151299-126-b04 HT0323 Homo	
	401785			NM_002275*:Homo saplens keratin 15 (KRT1	3.9
55		M86699		TTK protein kinase	3.9
		A1989885	Hs.231926		3.9
		H75391	Hs.255748		3.9
	419348	BE172186 AA236645	Hs.98274	gb:MR0-HT0559-110300-005-h11 HT0559 Homo ESTs	3.8 3.8
60		AI184268	Hs.339665		3.8
00		AA219691	Hs.73625	RAB6 Interacting, kinesIn-like (rabkines	3.8
	403593			Target Exon	3.8
		AW016669	Hs.29190	ESTs	3.8
		AW664873	Hs.87836	Homo sapiens PAC clone RP5-1087M19 from	3.8
65	433871		Hs.205555		3.8
		AI217928	Hs.144762		3.8
	409542	AA503020	Hs.36563	hypothetical protein FLJ22418	3.8

	443162		Hs.9029		3.8
		AW383618 AL359938			3.8
		AA904244	Hs.153205		3.8
5		Al476732	Hs.263912		3.8
	403426				3.8
		AA470158	Hs.98202		3.8
		BE222648			3.8
10		AW206942 AW105231	Hs.253594 Hs.192035		3.8
10		AW794600	HS. 192033	gb:RC6-UM0014-170300-022-C05 UM0014 Hom	
		NM_005756	Hs 184942		3.8
		BE622641	Hs.38489		3.8
	447995	AI742618	Hs.181733	ESTs, Weakly similar to nitrilase homolo	3.7
15	401747			Homo sapiens keratin 17 (KRT17)	3.7
		NM_014581			3.7
		AP000692 AB029496			3.7
		BE005346	Hs.59729 Hs.116410	semaphorin sem2	3.7
20		AK001666		similar to SALL1 (sal (Drosophila)-like	3.7
		AA018534	Hs.103334		3.7
	402696	NA .		C3002523:gi[6686211]sp[Q27533]YH2M_CAEEL	.3.7
		AV660737	Hs.135100		3.7
25		AW816379	Hs.335018		3.7
25		U80736 AB020689	Hs.90419	trinucleotide repeat containing 9 KIAA0882 protein	3.7
		AA312082		GDNF family receptor alpha 1	3.7
		N62840	Hs.48648	ESTs	3.7
	401508			NM_024817:Homo sapiens hypothetical prot	3.7
30		AA324597	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT	3.7
		U79734 ·	Hs.97206	huntingtin Interacting protein 1	3.7
		AI021992	Hs.124244		3.7
		AA629065 R55373	Hs.116301 Hs.20864	ESTS	3.7
35		BE623004	HS.20004	gb:601441282F1 NIH_MGC_72 Homo sapiens c	
55	458712		Hs.107872	hypothetical protein FLJ20761	3.7
	433404		Hs.102720		3.7
	405232			NM_015832:Homo saplens methyl-CpG blndin	3.7
40		AL109791	Hs.241559	Homo sapiens mRNA full length insert cDN	3.7
40		BE011668	Hs.30098	gb:CM3-BN0223-100500-177-a04 BN0223 Home ESTs	3.7 3.7
		Al239923 Al970797	Hs.64859	ESTs	3.7
		A1248584		Homo saplens cDNA: FLJ21326 fis, clone C	3.7
	401049			Target Exon	3.6
45	418867	D31771	Hs.89404	msh (Drosophila) homeo box homolog 2	3.6
		N74530	Hs.21168	ESTs	3.6
		AV658444		tankyrase, TRF1-interacting ankyrin-rela	3.6
		Al377755 M97815	Hs.120695	cellular retinoic acid-binding protein 2	3.6
50		AI698839	HS. 103030	gb:wd31f02.x1 Soares_NFL_T_GBC_S1 Homo s	
50		AL120173	Hs.301663		3.6
		AW901458		gb:RC0-NN1012-270300-031-c07 NN1012 Home	3.€
		AA352111		gb:EST60061 Activated T-cells XX Homo sa	3.6
		Al142095	Hs.143273	ESTs	3.6
55		BE164500	11-04450	gb:RC4-HT0469-230300-014-e10 HT0469 Homo	3.E
		AA157291 AA062954	Hs.21479 Hs.141883	ubinudeln 1	3.6
		Y12735	Hs.38018	dual-specificity tyrosine-(Y)-phosphoryl	3.6
		AK000054	Hs.12347	hypothetical protein FLJ20047	3.6
60	404091			Target Exon	3.6
	409731	AA125985	Hs.56145	thymosin, beta, Identified in neuroblast	3.6
	405153			Target Exon	3.6
		AA380177	Hs.125845	ribulose-5-phosphate-3-epimerase	3.6
65	403639 404360			ENSP00000233023*:CDNA FLJ12662 fis, clon C7001385:gi 12082809 gb AAG48618.1 AF315	3.6
05		AA766296	Hs.99200	ESTs	3.6
		AB007961		KIAA0492 protein	3.6

	424202	BE350295	Hs.15032	RAN binding protein 17	3.6
	431750	AA514986	Hs.283705		3.6
		AA853978	Hs.124577		
					3.6
_	453596	AA441838	Hs.62905	hypothetical protein FLJ14834	3.6
5	406446	NA		Target Exon	3.6
		AA315308	Un 105970		3.6
			HS. 1530/U		
		AW015415	Hs.127780		3.6
	409079	W87707	Hs.82065	interleukin 6 signal transducer (gp130,	3.6
		AI697121			3.6
10			115.202400	ESTS, Weakly Sillina to 303024 reverse t	
10		AW291095	Hs.21814		3.6
	440671	AW297920	Hs.130054	ESTs	3.5
		AW860158		gb:RC0-CT0379-290100-032-b04 CT0379 Homo	
		AW968226	Hs.60798		3.5
	402820			NM_017646*:Homo sapiens tRNA isopentenyl	3.5
15	417009	AA191719	Hs.314714	FeTe	3.5
		AW393080	Hs.228320	hypothetical protein FLJ23537	3.5
	449978	AI806335	Hs.200829	ESTs, Weakly similar to T30171 ninein -	3.5
	428062	AA420683	Hs.98321		3.5
		NM 015368	Hs.30985		
20			U8'909		3.5
20	400610	NA		Target Exon	3.5
	417843	W07361	Hs.22545	Homo saplens cDNA FLJ12935 fis, clone NT	3.5
		AW960146			3.5
			HS.204137		
		AI805416	Hs.213897		3.5
	443270	NM_004272	Hs.337737	Homer, neuronal immediate early gene, 18	3.5
25		AW392342	Hs.283077		3.5
23					
		AW448937	Hs.197030		3.5
	423841	AW753967		gb:RC2-CT0304-080100-011-h12 CT0304 Homo	3.5
	416806	NM_000288	Hs.79993		3.5
		R20893			
20					3.5
30	433104	AL043002	Hs.128246	ESTs, Moderately similar to unnamed prot	3.5
	415778	H84847	Hs.49391	hypothetical protein LOC54149	3.5
		AW316843	Hs.66309		3.5
		N32536	Hs.42645		3.5
	424639	AI917494	Hs.9812	Homo saplens cDNA FLJ14388 fis, clone HE	3.5
35	424827	AI057094	Hs.96867		3.5
-		Al370876	Hs.79090		
			115.7 3030		3.5
	411514	AW850178		gb:lL3-CT0219-271099-022-H12 CT0219 Homo	3.5
	413783	AA314337	Hs.301547	ribosomal protein S7	3.5
		AA877124	Hs.172844		3.5
40					
40		N25521	Hs.25275		3.5
	440623	Al935016	Hs.216639	ESTs	3.5
	455838	BE145808		gb:MR0-HT0208-101299-103-f11 HT0208 Homo	
		AW295151	Hs.163612		
					3.5
	442942	AW167087	Hs.131562	ESTs	3.5
45	436550	Z50158	Hs.270235	ESTs, Weakly similar to MMHUB1 laminin b	3.5
		AW474547	Hs.53565		3.5
		BE614743	Hs.146688		3.5
	430916	AW505021	Hs.88414	BTB and CNC homology 1, basic leucine zi	3.5
	432030	AI908400	Hs.143789	FSTs	3.5
50			11- 55000		
30		AF086224	Hs.55238		3.5
	405917	NA		C17000675:qij7290703 qb AAF46150.1] (AE0	3.5
	452727	AW993582	Hs.176220	FSTs	3.5
		W47595			3.4
			113.100000	transforming growth factor, beta 2	3.4
		AA283185	Hs.19327		3.4
55	424625	AW904466	Hs.321197	PDZ domain protein (Drosophila inaD-like	3.4
		BE252383	Hs.184668		3.4
			113.104000		
		BE064962	:		3.4
	410555	U92649	Hs.64311	a disintegrin and metalloproteinase doma	3.4
	447754	AW073310	Hs.163533	Homo sapiens cDNA FLJ14142 fis, clone MA	3.4
60		AW749855			
00				gb:QV4-BT0534-281299-053-c05 BT0534 Homo	
	404097			C5000242*:gij9369379jgbjAAF87128.1jAC006	3.4
	434205	AF119861	Hs.283032	hypothetical protein PRO2015	3.4
		Al215069	Hs.89113		3.4
			2.00		
	402421				3.4
65	405248				3.4
	407638	AJ404672	Hs.334483	hypothetical protein FLJ23571	3.4
		BE247275			3.4
	100000			opound protoin, 110 no	

		AF038564	Hs.98074	itchy (mouse homolog) E3 ubiquitin prote	3.4
	432239	X81334	Hs.2936	matrix metalloproteinase 13 (collagenase	3.4
	458747 442082	BE618395	Hs.257391 Hs.7413	hypothetical protein DKFZp761J1523 ESTs; calsyntenin-2	3.4
5		AA210765	NS./413	gb:zr90c06.r1 NCI_CGAP_GCB1 Homo sapiens	
-		AI346468	Hs.145789	ESTs	3.4
		Al613276	Hs.5662	guanine nucleotide binding protein (G pr	3.4
	436007		Hs.232168		3.4
10		AA164366		hypothetical protein FLJ23511	3.4
10	435202	Al971313 AF102546	Hs.170204 Hs.63931	KIAA0551 protein dachshund (Drosophila) homolog	3.4
	405460		113.03931	Target Exon	3.3
	441826		Hs.129915	phosphotriesterase related	3.3
	453472			gb:DKFZp564M037_r1 564 (synonym: hfbr2)	3.3
15 -	447078	AW885727	Hs.301570	ESTs	3.3
	441690		Hs.33106	ESTs	3.3
		AA814043	Hs.88045	ESTs	3.3
	418478 408908		Hs.1174	cyclin-dependent kinase inhibitor 2A (me serine/threonine kinase 15	3.3
20	414737	AI160386	Hs.125087		3.3
20	449650		Hs.23838	calcium channel, voltage-dependent, L ty	3.3
	418912		Hs.89472	angiotensin receptor 1	3.3
	436405	AA160079		Homo sapiens mRNA for partial 3'UTR, seq	3.3
25	453911		Hs.4007	Sarcolemmal-associated protein	3.3
25	409361		Hs.54416 Hs.135288	sine oculis homeobox (Drosophila) homolo	3.3
		AW138872 AA280627	Hs.135288 Hs.57846	ESTS	3.3
		AA296961	118.37040	qb:EST112514 Adrenal gland tumor Homo sa	3.3
		AI936450	Hs.147482		3.3
30	402892	NA		Target Exon	3.3
	426681	AA994896	Hs.22514	ESTs	3.3
		AA741545		ESTs, Weakly similar to T24961 hypotheti	3.3
		R21945 AI954968	Hs.166975 Hs.279009	splicing factor, arginlne/serine-rich 5 matrix Gla protein	3.3
35		AV653771	HS.2/9009	gb:AV653771 GLC Homo sapiens cDNA done	3.3
33	410908	AA121686	Hs.10592	ESTs	3.3
	406151	NA		Target Exon	3.3
	436461	AW511956	Hs.293261		3.3
40		AW820260	11 000044	gb:QV2-ST0296-150200-040-c10 ST0296 Homo	3.3
40		T16971 AF086120	Hs.289014 Hs.102793	ESTs, Weakly similar to A43932 mucin 2 p	3.3
	401575		ris. 102/93	Target Exon	3.3
	420900	AL045633	Hs.44269	ESTs	3.3
		Al344166	Hs.155743		3.3
45	448243	AW369771	Hs.52620	integrin, beta 8	3.3
		AW204610	Hs.22270	ESTs	3.3
		AA976718	Hs.202242		3.3
	435039	AA206186 AW043921	Hs.79889 Hs.130526	monocyte to macrophage differentiation-a ESTs	3.3
50	451474	T70874	Hs.207636		3.2
50	442559	T10213		gycosyltransferase	3.2
	453921	AI824009	Hs.44577	ESTs	3.2
	420036		Hs.52792	Homo sapiens mRNA; cDNA DKFZp586l1823 (f	
	435627	W88774	Hs.118370		3.2
55	411598		Hs.70937	H3 histone family, member A	3.2
	446733 410153	AA863360 BE311926	Hs.26040 Hs.15830	ESTs, Weakly similar to fatty acid omega hypothetical protein FLJ12691	3.2
	403637	NA NA	113.13030	C3001106*:gij10047201jdbjjBAB13394.1j (A	3.2
	405547	· w		NM_018833*:Homo saplens transporter 2, A	3.2
60	427878	C05766		CGI-07 protein	3.2
-	451871	AI821005	Hs.118599		3.2
		R10305	Hs.185683		3.2
		N27833		ESTs, Weakly similar to I38022 hypotheti	3.2
65	449490 450506	A1652777 NM_004460	Hs.197069 Hs.418	fibroblast activation protein, alpha	3.2
05	440684	AI253123		ESTs, Highly similar to S21424 nestin [H	3.2
		N23235	Hs.30567	ESTs, Weakly similar to B34087 hypotheti	3.2

		H26735	Hs.91668		3.2
		AA489732	Hs.154918		3.2
	405394	DE400040	11- 47007		3.2
5		BE169810 H03556	Hs.47557		3.2
,		AA765917	Hs.122840		3.2
		AK000684			3.2
		AL121282	Hs.257786		3.2
		AW856552		gb:RC1-CT0294-080100-012-a04 CT0294 Homo	
10	416283	NM_005429	Hs.79141		3.2
	437488	AA758239	Hs.180330	ESTs	3.2
		AI249368	Hs.98558		3.2
		H38857	Hs.243901		3.2
15		AI904743	HS.104650		3.2
13		AI016377 AB033052	Hs.131693 Hs.22151		3.2
		AI198719	Hs.176376		3.2
	404580	A11307 13	110.170070		3.2
		AA326187	Hs.17170		3.2
20		AW974903	Hs.291231		3.1
	429838	AW904907	Hs.30732	hypothetical protein FLJ13409; KIAA1711	3.1
		AI204995			3.1
	400195				3.1
25		AW408557	Hs.235498		3.1
23		AW974175 AA312735	Hs.188751 Hs.30512		3.1 3.1
		AA701327	Hs.17949		3.1
		AA906366	Hs. 190535		3.1
		D38122	Hs.2007		3.1
30	423728	AW891294			3.1
	439677	R82331	Hs.164599	ESTs	3.1
		AJ638627	Hs.105685		3.1
		AA503653			3.1
35		AA339449	Hs.82285		3.1
33	418827	AA470519 BE327311	Hs.47166	gb:nc71f10.s1 NCI_CGAP_Pr1 Homo saplens HT021	3.1 3.1
		AW806906	HS.47 100	gb:QV4-ST0023-160400-172-d12 ST0023 Homo	
	426269		Hs.168950		
	405336		110.100000		3.1
40	437783	A1683150	Hs.201550		3.1
	440931	AI583052	Hs.270058	ESTs	3.1
	455945			gb:PM1-HT0422-291299-002-c08 HT0422 Homo	
	430437	AI768801	Hs.169943		3.1
45	405848	NA BE066976			3.1
45		M29994		gb:PM0-BT0340-211299-003-c12 BT0340 Homo gb:Human alpha-I spectrin gene, exon 12.	3.1
		W26713	Hs.256972		3.1
	423518				3.1
	425653		Hs.249718		3.1
50	426326	BE165753	Hs.250528		3.1
		AA706910	Hs.112742		3.1
		AL050027		gb:Homo saplens mRNA; cDNA DKFZp566C032	
		AI541305	Hs.48778		3.1
55		AW407181 AF026942	HS.2183//		3.1
55	408254			gb:MR4-ST0062-180200-001-e10 ST0062 Homo	
	424085		Hs.139226		3.1
	416790		Hs.7043		3.1
	420020		Hs.94382	adenosine kinase	3.1
60	426119		Hs.189917		3.1
	426968		Hs.173034		3.1
	457421		Hs.112165		3.1
		BE466639	Hs.61779		3.1
65	454141	AW138413 AA382814	ns.139336		3.1
55		AJ248013	Hs.106532	ESTs, Weakly similar to 138588 reverse t	3.1
		AW135274	Hs.12433		3.1
					٠.١

	446466			arrestin 3, retinal (X-arrestin)	3.1
		BE219794		ESTs	3.1
		AK001423	Hs.94694	Homo sapiens cDNA FLJ10561 fis, clone NT	3.0
5		AB033035 BE153855	Hs.51965 Hs.61460	KIAA1209 protein Ig superfamily receptor LNIR	3.0
,		AA232658	Hs.105794	UDP-glucose:glycoprotein glucosyltransfe	3.0
		AI830417	Hs.44143	polybromo 1	3.0
		N93266	Hs.40747	ESTs	3.0
		AL133731	Hs.4774	Homo saplens mRNA; cDNA DKFZp761C1712 (f 3.0
10	420139	NM_005357	Hs.95351	lipase, hormone-sensitive	3.0
	405609	NA		ENSP00000241065*:CDNA	3.0
	404274			NM_002944*:Homo sapiens v-ros avian UR2	3.0
		AI971362	Hs.231945	ESTs	3.0
15		H07118	Hs.6099	ESTs ESTs	3.0 3.0
13	415245	N59650	Hs.27252	Target Exon	3.0
		BE383592		gb:601297871F1 NIH_MGC_19 Homo sapiens of	
		AW972359	Hs.293334		3.0
		AI791988	Hs.129115		3.0
20	451353	N21043	Hs.42932	ESTs	3.0
	451177	AI969716	Hs.13034	ESTs	3.0
		BE379727	Hs.83213	fatty acid binding protein 4, adipocyte	3.0
	401326			C10000447*:gi 1168375 sp P43467 AGA1_PED	
25		BE169746	Hs.12504 Hs.162859	likely ortholog of mouse Arkadia	3.0
25		AI926047 AF245505	Hs.72157	DKFZP564I1922 protein	3.0
	401045	AF243300	113.72137	C11001883*:qil6753278lrefiNP_033938.1] c	3.0
		AA584062	Hs.272798	hypothetical protein FLJ20413	3.0
		AI221894	Hs.39311	ESTs	3.0
30		BE077155		hypothetical protein DKFZp761B1514	3.0
		AW958879	Hs.270535		3.0
		H91882		DvI-binding protein IDAX (inhibition of	3.0
	433014			KIAA0419 gene product	3.0 3.0
35		R13474 R52782	HS.290203	ESTs, Weakly similar to 138022 hypotheti gb:yg99d09.r1 Soares infant brain 1NIB H	3.0
33		AB014528	Hs.43133	KIAA0628 gene product	3.0
		AW004683	Hs.78934	mutS (E. coli) homolog 2 (colon cancer,	3.0
		A1754212	Hs.21951	Homo sapiens Xq pseudoautosomal region;	3.0
		AW021173	Hs.18612	Homo sapiens cDNA: FLJ21909 fis, clone H	3.0
40		AW901879	Hs.314453		3.0
		D31118		hypothetical protein MGC10520	3.0
		AW294795	Hs.198529		3.0
		AA878939 Al375957	Hs.125406	F-box only protein 22	3.0
45		AA281279	Hs.23317	hypothetical protein FLJ14681	3.0
43		NM_014400	Hs.11950	GPI-anchored metastasis-associated prote	3.0
		AA701259	Hs.189299		3.0
		AI041793	Hs.42502	ESTs	3.0
		BE175605		gb:RC5-HT0580-100500-022-H07 HT0580 Hon	
50		AW295923	Hs.255472	KIAA1843 protein	3.0
		M31659		solute carrier family 25 (mitochondrial	3.0 3.0
	450382	AA397658 W01938	Hs.60257	Homo sapiens cDNA FLJ13598 fis, clone PL ESTs, Weakly Similar to ALU7_HUMAN ALU S	2.9
		W57554		lymphoid nuclear protein (LAF-4) mRNA	2.9
55		U22376	Hs.1334	v-myb avian myeloblastosis viral oncogen	2.9
55		BE246743		hypothetical protein FLJ22635	2.9
	403677			C4001462:gij4887715jgbjAAA79329.2j (L088	2.9
	411093			gb:MR4-BT0358-090300-003-e01 BT0358 Hom	
		W87434		ESTs, Moderately similar to ALU1_HUMAN A	2.9
60		BE568102		mitochondrial ribosomal protein S16	2.9
		AI674818	Hs.316433	Homo sapiens cDNA FLJ11375 fis, done HE	2.9
		AA179949	Hs.1/5563 Hs.120388	Homo sapiens mRNA; cDNA DKFZp564N0763	2.9
		AW365665 A1633559	Hs.120366 Hs.310359		2.9
65		N34128	Hs.145268		2.9
33	402109			Target Exon ·	2.9
		BE501732	Hs.30622		2.9
				202	

	442295	AI827248			2.9
		AA249573	Hs.152618		2.9
	404721				2.9
_		AI208121	Hs. 147313		2.9
5	401987				2.9
		AA481282	Hs.190149		2.9
		AI939339	Hs.146883		2.9
		AW873606	Hs. 149006		2.9
	427691	AW194426	Hs.20726	ESTs	2.9
10	456561	AI868634	Hs.246358	ESTs, Weakly similar to T32250 hypotheti	2.9
	401458			Target Exon	2.9
	421039	NM_003478	Hs.101299	cullin 5	2.9
	459504	BE514127		gb:601315974F1 NIH_MGC_8 Homo sapiens cD:	2.9
	424962	NM 012288	Hs.153954	TRAM-like protein	2.9
15	409617	BE003760	Hs.55209	Homo sapiens mRNA; cDNA DKFZp434K0514 (f	2.9
	416931	D45371	Hs.80485	adipose most abundant gene transcript 1	2.9
	413221	BE161151		gb:PM0-HT0425-141299-001-F08 HT0425 Homo:	2.9
	409732	NM 016122	Hs.56148		2.9
	433687	AA743991		gb:ny57g01.s1 NCL_CGAP_Pr18 Homo saplens	2.9
20	434340	Al193043	Hs.128685	ESTs, Weakly similar to T17226 hypotheti	2.9
	454529		Hs.270425	ESTs	2.9
	421379				2.9
		AF015592	Hs.28853		2.9
		AW452648			2.9
25 -		AW961400			2.9
		AA057264			2.9
	401093	,		C12000586*:gij6330167 dbijBAA86477.1] (A	2.9
		Al651474	Hs.163944		2.9
		Al681475	Hs.200949		2.9
30		AW235786	Hs.195359		2.9
		AI472078	Hs.303662		2.9
	411905	BE265067		gb:601193893F1 NIH_MGC_7 Homo sapiens cD	2.9
	405953	NA		Target Exon	2.8
	420854	AW296927		gb:UI-H-BW0-ajc-c-07-0-UI.s1 NCI_CGAP_Su	2.8
35		AA846811			2.8
		AA295331			2.8
		AA243837	Hs.57787		2.8
	448337	AW206453	Hs.3782		2.8
40	452554		Hs.58006		2.8
40		BE176480		gb:RC3-HT0585-160300-022-c02 HT0585 Homo	
		AL039852	Hs.49136		2.8
	434757	AI038997	Hs.132921		2.8
	409038		Hs.50002		2.8
45	454545			gb:QV4-ST0023-160400-172-c12 ST0023 Homo	
43		AI910896	Hs.132413		2.8
	428479				2.8
		AL035588 BE070800	HS. 100200	MyoD family Inhibitor gb:RC3-BT0502-251199-011-c07 BT0502 Homo	
	400250				2.8
50	449168		Hs.23142		2.8
50		AA485224	HS.23142	gb:aa41b12.s1 NCL_CGAP_GCB1 Homo sapiens	
		AA502490	Hs.336695		2.8
		AA383550			2.8
	405873		113,21 1000		2.8
55		AA994364	He 125594		2.8
-		AI075375			2.8
		BE158791	1.5.120.00	gb:IL2-HT0397-091299-025-D02 HT0397 Homo	
	423739		Hs.97600	ESTs	2.8
		Al754813			2.8
60		AW294631	Hs.11325		2.8
	421825		Hs.183747		2.8
		R64719		gb:EST22d11 WATM1 Homo sapiens cDNA clon	
	402765				2.8
	444378	R41339	Hs. 12569		2.8
65	419172	AW338625	Hs.22120		2.8
	401497			Target Exon	2.8
	402376			C19000763*:gi[1363912 pir JC4296 ring f	2.8

	405041	NA		C3001706*:gi[1345652[sp]P15989]CA36_CHIC	2.8
	408758	NM_003686	Hs.47504	exonuclease 1	2.8
	431917		Hs.2868		2.8
_		AA761190	Hs.244627		2.8
5		AA744862	Hs.194293		2.8
		AF086325			2.8
	401283				2.8
		AW803201		gb:IL2-UM0077-070500-080-E06 UM0077 Homo	
10		NM_014735	Hs.82292		2.8
10		AW994005	Hs.337534		2.8
		AW291488	Hs.117305		2.8
		AW815098		gb:QV4-ST0212-091199-023-f10 ST0212 Homo	
		BE247550	Hs.86859		2.8
1.5		Al651930	Hs.135684		2.8
15		AK000375	Hs.88820		2.8
	414661	AI650633	Hs.21929		2.8
		Al916662			2.7
		W23624	Hs.173059		2.7
20		NM 000399	Hs.1395		2.7
20		BE386870	115.1050	gb:601275271F1 NIH_MGC_20 Homo sapiens c	
	440868		Hs 263339	ESTs, Moderately similar to 138022 hypot	2.7
		BE247449	Hs.31082	hypothetical protein FLJ10525	2.7
		AV646449	Hs.282872		2.7
25		A1378562	Hs.159585		2.7
		AW371048	Hs.93758		2.7
	406504				2.7
		AW959861	Hs.290943		2.7
	424871	NM_004525	Hs.153595	low density lipoprotein-related protein	2.7
30	453619	H87648	Hs.33922		2.7
		D13666	Hs.136348		2.7
		N34524			2.7
		BE314524	Hs.78776		2.7
~ ~		NM_005014	Hs.94070		2.7
35	406182				2.7
	416495		Hs.79350		2.7
		Al916512	Hs.198394		2.7
		AA301228	Hs.43299		2.7
40		AW968128	Hs.336679		2.7
40		AA128978			2.7
	414831	BE563085	Hs.77439 Hs.833		2.7
		AB026264			2.7
		AA742577	Hs.303781		2.7
45		AF075079	113.303701		2.7
1.5		W74653	Hs 271593		2.7
	406153	****	110.21 1000		2.7
	406625	Y13647	Hs.119597		2.7
		Al188139	Hs.147050		2.7
50	432328	Ai572739	Hs.195471	6-phosphofructo-2-kinase/fructose-2,6-bi	2.7
	429628	H09604	Hs.13268	ESTs	2.7
	420149	AA255920	Hs.88095		2.7
		AA495925	Hs.9394		2.7
		BE379623	Hs.27693		2.7
55		A1050073	Hs.135338		2.7
		Al741320			2.7
	408460	AA054726	Hs.285574		2.7
		N91716			2.7
C O		Z97630			2.7
60	418203		Hs.83758		2.7
		AF086332	Hs.58314		2.7
	402184	NA ANAZODEZ	U- 057404		2.7
	454000	AW449251	Hs.257131		2.7 2.7
65		AI825440 AI373638	Hs.224952 Hs.133900		2.7
00		AA938663	Hs.199828		2.7
	441041	A1806867	Hs.126594		2.7
	441111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3. 120054	20.0	
				205	

	423020	AA383092	Hs.1608		2.7
		AV653485	Hs.6390	Homo sapiens clone FLB3344 PRO0845 mRNA,	
		AW293165	Hs.143134		2.7
_	410889		Hs.66744		2.7
5		AW137636	Hs.146059		2.7
		AA496493	Hs.23136		2.7
	406069				2.7
		AI470235	Hs.172698		2.7
10	401256				2.7
10		AW975942	Hs.48524		2.7
		AW958037 BE144762	Hs.286		2.7
		BE327427	Hs.79953	gb:CM0-HT0180-041099-065-b04 HT0180 Homo ESTs	2.7 2.6
		AA045857	Hs.54943		2.6
15		AL121053	Hs.5534		2.6
		AF160477	Hs.61460		2.6
		AK001122			2.6
	453279		Hs.59698		2.6
	430785				2.6
20	456986	D38299	Hs.170917		2.6
	433068	NM_006456	Hs.288215		2.6
	421952	AA300900	Hs.98849	ESTs, Moderately similar to AF161511 1 H	2.6
		AA447990	Hs.190478	ESTs	2.6
		AW975920	Hs.283361		2.6
25		Al346487	Hs.28739		2.6
		Al123555	Hs.81796		2.6
		AW451645	Hs.151504	Homo sapiens cDNA FLJ11973 fis, clone HE	2.6
		AW754311		9b:CM1-CT0337-141299-068-f07 CT0337 Homo	
30		Al675944 M25809	Hs.64173	Homo sapiens cDNA FLJ12033 fis, clone HE	2.6
50		AK002016			2.6
	425071			delodinase, lodothyronine, type II	2.6
		AW292286	Hs.255058		2.6
		AA018311	Hs.114762		2.6
35	405822			Target Exon	2.6
	418301	AW976201	Hs.53913	hypothetical protein FLJ10252	2.6
	417315	AI080042	Hs.336901	ribosomal protein S24	2.6
		AA643687		Homo sapiens cDNA FLJ11980 fis, clone HE	2.6
40		AW205878	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	2.6
40	405638			Target Exon	2.8
		AW812256		gb:RC0-ST0174-191099-031-a07 ST0174 Homo	
	403943	705004	N- 404400	C5000355:gi 4503225 ref NP_000765.1] cyl	2.6
	402800	Z25884	NS. 12 1463	chloride channel 1 , skeletal muscle (Th	2.6
45		Ai989503	Hs.233405	Target Exon	2.6
73		AW846080	Hs.314324		2.6
	424717	H03754		wingless-type MMTV integration site fami	2.6
		AW974476		regulator of G-protein signalling 16	2.6
		AA418187	Hs.330515	ESTs	2.6
50		AK001826	Hs.25245	hypothetical protein FLJ11269	2.6
	453034			Homo sapiens mRNA for FLJ00038 protein,	2.8
	455097	AW855802		9b:RC1-CT0279-170200-023-d08 CT0279 Homo	2.6
		AB028955	Hs.175780	KIAA1032 protein	2.6
	408875	NM_015434	Hs.48604	DKFZP434B168 protein	2.6
55	427510			small nuclear RNA activating complex, po	2.6
	423201	NM_000163	Hs.125180	growth hormone receptor	2.6
	406271	DE 500.000		Target Exon	2.6
		BE566962	Hs.7063	Homo sapiens cDNA: FLJ20913 fis, clone A	2.6
60		AW016892 Al928513	Hs.100855 Hs.59203		2.6
UU		AA121098	Hs.3838	ESTs	2.0
		BE069326	1 13.3030	serum-inducible kinase qb:QV3-BT0381-170100-060-q03 BT0381 Homo	
		W24320	Hs 102041	Homo sapiens cDNA: FLJ21531 fis, clone C	2.0
		X64984		9b:H.sapiens mRNA HTPCRX10 for olfactory	2.0
65	425101	AA830431	Hs.180811	ESTs	2.0
		AA668763	Hs.291939		2.0
		AI681917	Hs.3321	ESTs, Highly similar to IRX1_HUMAN IROQU	2.0

		BE160198		gb:uv 1-n 104 13-0 10200-059-1103 n 104 13 nomo	
		BE274552			2.6
	440283	A1732892	Hs.190489	ESTs	2.6
	423025	AA831267	Hs.12244	hypothetical protein FLJ20097	2.6
5		AA825686			2.6
	404440	701023000			2.6
		414			2.6
	403388				
		NA			2.6
	405037	NA			2.6
10	407447	AF290544		gb:Homo sapiens aminopeptidase mRNA, par	2.6
	420952	AA282067	Hs.88972	ESTs, Moderately similar to A46010 X-lin	2.6
	435447	AI872932			2.6
			Hs.125300		2.6
		AW516211			
		AI702885	Hs.145568		2.6
15	421247	BE391727	Hs.102910		2.6
	414870	N72264	Hs.300670	KIAA1204 protein	2.6
		AW085961	Hs.130093		2.6
		Y08565		UDP-N-acetyl-alpha-D-galactosamine:potyp	2.6
	404443	100303	115.1510/0	C8001428*:gi[6572242]emb]CAB62951.1] (Z9	2.6
20					
20	452268	NM_003512	Hs.28777	H2A histone family, member L	2.6
	430832	AI073913	Hs.100686	ESTs, Weakly similar to JE0350 Anterior	2.6
	444779	Al192105	Hs.147170	ESTs	2.6
		AW963372	Hs.46677	PRO2000 protein	2.6
		F13036	Hs.27373	Homo sapiens mRNA; cDNA DKFZp564O1763 (f	
25			113.21310	gb:yh88b01.s1 Soares placenta Nb2HP Homo	2.6
23		R36075			
		AW081681	Hs.269064		2.6
	411165	NM_000169	Hs.69089	galactosidase, alpha	2.6
	406922	S70284		qb:stearoyf-CoA desaturase [human, adipo	2.6
		H62943	Hs.154188		2.6
30		BE065837	110.101100	gb:RC2-BT0318-110100-012-g12 BT0318 Homo	
30			11- 404007	OF I FROM LOOP LATE OVER LETACE - Name of	2.0
		NM_012247	Hs.124027		
		Al538613		Transmembrane protease, serine 3	2.5
	427032	AF012023	Hs.173274	integrin cytoplasmic domain-associated p	2.5
	445417	AK001058	Hs.12680	Homo saplens cDNA FLJ10196 fis, clone HE	2.5
35		BE245652	Hs.118281	zinc finger protein 266	2.5
55		L22524	Hs.2256	matrix metalioproteinase 7 (MMP7; uterin	2.5
					2.5
		AB020641	Hs.57856	PFTAIRE protein kinase 1	
		NM_000909		neuropeptide Y receptor Y1	2.5
	419589	AW973708	Hs.201925	Homo sapiens cDNA FLJ13446 fis, clone PL	2.5
40	437770	AA767881	Hs.122897	ESTs	2.5
		AK001741	Hs.8739	hypothetical protein FLJ10879	2.5
		AL042306	Hs.97689	VASA protein	2.5
					2.5
		AW628666	Hs.98440	ESTs, Weakly similar to i38022 hypotheti	
		AK002032	Hs.272245	Homo sapiens cDNA FLJ11170 fis, clone PL	2.5
45	455732	BE080908		gb:QV1-BT0631-280200-084-h07 BT0631 Homo	2.5
	458624	Al362790	Hs.278639	KIAA1684 protein; likely homolog of mous	2.5
	42R257	BE394723		S100 calcium-binding protein A6 (calcycl	2.5
		NM 002318	Hs.83354	lysyl oxidase-like 2	2.5
					2.5
50		AW375610	115.11/102	hypothetical protein FLJ13046 similar to	2.5
50		AI424899	Hs.188211		
	422996	BE091089		gb:PM4-BT0724-130400-006-c07 BT0724 Homo	2.5
	410804	U64820	Hs.66521	Machado-Joseph disease (spinocerebellar	2.5
	457211	AW972565	Hs.32399	ESTs, Weakly similar to S51797 vasodilat	2.5
		AW089705		ESTs, Weakly similar to S64329 probable	2.5
55		AI471598	Hs.197531		2.5
,,,			113, 197331		2.5
		AA065081		gb:zm13a03.s1 Stratagene pancreas (93720	
	431385	BE178536	Hs.11090	membrane-spanning 4-domains, subfamily A	2.5
	414569	AF109298	Hs.118258	prostate cancer associated protein 1	2.5
		AW247529	Hs.6793	platelet-activating factor acetylhydrola	2.5
60		BE158687		gb:CM0-HT0395-280100-169-b09 HT0395 Home	
00			H- 40407		2.0
	425025	AW953168	Hs.12407	ESTs	2.5
		AA652687	Hs.96151	Human DNA sequence from clone RP5-1103G7	
	404826			Target Exon	2.5
		NM_001809	Hs.1594	centromere protein A (17kD)	2.5
65		NM_014918		KIAA0990 protein	2.5
00					2.5
	41/404	NM_007350	Hs.82101	pleckstrin homology-like domain, family	
	448516	AW898595		gb:RC1-NN0073-260400-011-g09 NN0073 Hom	UZ.3

455100 BE160198 gb:QV1-HT0413-010200-059-h03 HT0413 Homo 2.6

	403356	NA		ENSP00000251525*: Hypothetical protein Ki	2.5
	404983			ENSP00000252242*:Keratin, type II cytosk	2.5
		AA215535	Hs.98133	ESTs	2.5
5		AW467143 AF186114	Hs.135411 Hs.270737	actin related protein tumor necrosis factor (ilgand) superfami	2.5 2.5
,		AW071349	Hs.215937		2.5
		AW582962		CGI-47 protein	2.5
	439217	AF086041	Hs.42975	ESTs	2.5
• •	400925			Target Exon	2.5
10	404552			ENSP00000220888*:ZINC FINGER TRANSCRIP	
		AL133117	Hs.81376	Homo sapiens mRNA; cDNA DKFZp586L1121 (f	
	418841	NM_002332 U32974	Hs.89137 Hs.172777	low density lipoprotein-related protein baculoviral IAP repeat-containing 4	2.5
		NM 000318	Hs.180612		2.5 2.5
15		AA501760	Hs.15806	Homo sapiens mRNA; cDNA DKFZp434H2019 (I	
		Al271898	Hs.164866		2.5
		AW813428		gb:MR3-ST0192-010200-210-c05 ST0192 Homo	
		AA641876	Hs.191840		2.5
20	402077 400289	NA X07820	Lie Onco	Target Exon	2.5
20		AW885757	Hs.2258 Hs.257862	matrix metalloproteinase 10 (MMP10; str ESTs	2.5 2.5
	447020		Hs.16986	hypothetical protein FLJ11046	2.5
		AI807894	Hs.47274	Homo sapiens mRNA; cDNA DKFZp564B176 (fr	
		AI024353		hypothetical protein FLJ14298	2.5
25		AA059013	Hs.22607	ESTs	2.5
		AA122393	Hs.70811	hypothetical protein FLJ20516	2.5
		AW162919	Hs.170160 Hs.40479	RAB2, member RAS oncogene family-like	2.5
		AI126772 AI580090	Hs.48295	ESTs RNA helicase family	2.5 2.5
30		N80077	Hs.24792	chromosome 12 open reading frame 5	2.5
		AA449644		Homo saplens cDNA FLJ14201 fis, clone NT	2.5
		AW297921	Hs.255703	ESTs	2.5
		AA256769	Hs.94949	methylmalonyl-CoA epimerase	2.5
35		AW086180	Hs.37636	ESTs, Weakly similar to KIAA1392 protein	2.5
33		U29344 AA356923	Hs.83190	fatty acid synthase nuclear cap binding protein subunit 2, 2	2.5 2.5
		AL039402		DEME-6 protein	2.5
		N52639	Hs.32683	ESTs	2.5
		AI743977	Hs.205144		2.5
40		AA740875	Hs.44307	ESTs, Moderately similar to I38022 hypot	2.5
		AW500507		KIAA1600 protein	2.5
	410/18	AI920783	Hs.191435		2.5
		AA479033 AI446747		ESTs, Weakly similar to A47582 B-cell gr olfactory receptor, family 7, subfamily	2.5 2.5
45		AA116021	Hs.38260	ubiquitin specific protease 18	2.5
		NM_007069	Hs.37189	similar to rat HREV107	2.5
		H00820	Hs.30977	ESTs, Weakly similar to B34087 hypotheti	2.5
	419316		Hs.298419		2.5
50		H20669	Hs.35406	ESTs, Highly similar to unnamed protein	2.5
30		AL046412 Al640355	Hs.202151 Hs.312691		2.5 2.5
		AW298631	Hs.27721	Wolf-Hirschhorn syndrome candidate 1-lik	2.5
	423165			hypothetical protein MGC2601	2.5
		AW837349		gb:QV2-LT0038-270300-108-d12 LT0038 Homo	2.5
55		AA843719	Hs.122341		2.5
	406414	4 D000040		C5000506*:gi[124941 spiP18614 iTA1_RAT	2.5
	443464	AB033043 BE548446	Hs.149377 Hs.5167	hypothetical protein DKFZp761L0424	2.5 2.5
		AA347746	Hs.9521	Homo sapiens mRNA; cDNA DKFZp434F152 (fr ESTs, Weakly similar to ZN43_HUMAN ZINC	2.5
60		BE159984	Hs.125395	ESTs	2.5
	409045	AA635062	Hs.50094	Homo sapiens mRNA; cDNA DKFZp43400515 (
	422648	D86983		Melanoma associated gene	2.5
		AL135623		KIAA0575 gene product	2.5
65		AA442324	Hs.795	H2A histone family, member O	2.5
00		D13752 AA081395	Hs.184927 Hs.42173	cytochrome P450, subfamily XIB (steroid Homo sapiens cDNA FLJ10366 fis, clone NT	2.5 2.5
	403133	~~1001333		Target Exon	2.5

400346 435509	BE070231 AB041269 Al458679 Al239457	Hs.272263 Hs.181915 Hs.130794	2.5

BNSDOCID: <WO____02059377A2_I_>

5

10

CAT number:

TABLE 19A

Unique Eos probeset identifier number Gene cluster number

1352723_1 BE070231 BE070229 BE070255

1353887_1 BE161151 BE162495 BE161002 BE072205 BE160989 BE162482 1373910_1 BE144884 H97942

Table 19A shows the accession numbers for those pkeys lacking unigeneID's for Table 19. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

15	Accession:	Genban	k accession numbers
	Pkey	CAT number	Accessions
20	407647 407980	1007366_1	AW860158 AW862385 AW860159 AW862386 AW862341 AW821869 AW821893 AW062660 AW062656
20	407980	103087_1 1049346 1	AA046309 AI263500 AA046397
	400234	1049340_1	AW807227 AW807576 AW807137 AW807157 AW807495 AW807494 AW807417 AW807083 AW845786 AW845801 AW807130 AW807335 AW807081 AW807349 AW807339 AW807164 AW807341 AW807224 AW845903 AW177424
			AW807159 AW807123 BE141578 AW807340 AW807334 AW807520 AW807205 AW807505 BE141574 AW807390
			AW807395 AW845789 AW807101 AW807089 AW807519 AW807239 AW807509 AW807356 AW807526 AW807098
25			AW807307 AW807153 AW807295 AW807313 AW807322 AW807265 AW807513 AW807516 AW807166 AW807501
			AW807120 AW807168 AW807121 AW807527 AW807151 AW807203 AW807489 AW807511 AW807158 AW845800
			AW807507 AW845793 AW845796 AW807296 AW845781 AW807444 AW845871 AW807512 AW807242 AW807141
			AW807522 AW807487 AW807514 AW807142 AW807232 AW807379 AW807114 AW807518 AW807199 AW807211 AW807498 AW807492 AW807492 AW807218 AW807082 AW807525 AW807493 AW807523 AW807587 AW845784
30			AW807037 AW807038 AW807080 AW807118 AW845807 AW807525 AW807493 AW807249 AW845784 AW807037 AW807128 AW807080 AW807118 AW845807 AW807524 AW845803 AW807249 AW845795 AW807160
			AW807343 AW807515 AW807233 AW807289 AW177102 AW807352 AW807394 AW177105 AW807176 AW177103
			AW845870 AW177099 AW177101 AW807528 AW807336 AW807038 AW177100 AW807411 AW807088 AW845865
			AW807226 AW807517 AW807397 AW807303 AW807177 AW807154 AW807136 AW807146 AW807085 AW807521
25			AW807488 AW807385 AW807355 AW807223 AW807155
35	409163	110418_1	AA065081 AA075017 AA084791 AA071015 AA081560 AA071459 AA545727 AA083100 AA085366 AA115845 AA075457
	409695	114876_1	AA064704 AA082878 AA075742 AA069162 AA296961 AA296889 AA076945 AA077528 AA077497
	410534	1207247 1	AW905138 AW753008 R13818 Z43519
	410672	1214882_1	AW794600 AW794730
40	410784	1221005_1	AW803201 BE079700 BE062940
	410785	1221055_1	AW803341 AW803265 AW803403 AW803466 AW803402 AW803413 AW803268 AW803396 AW803334 AW803355
	410835	1223785_1	AW806906 AW806915 AW866460 AW866475 AW866462 AW866448 AW866372 AW866604
	411050	1230330_1	AW814902 BE156656 BE156667 BE156590 BE156441 BE156447
45	411086 411093	1231500_1 1231970_1	BE070800 AW875226 BE149115 BE067650 AW817053
43	411111	1231970_1	AW818127 AW818161 R09719
	411171	1234393 1	AW820260 AW820332 R94406
	411337	1239217_1	AW837349 AW837355 AW882717
	411514	1248638_1	AW850178 AW850233 AW850445 AW850446
50	411670	1253680_1	AW856552 AW861101 AW856574 AW861099 AW861100 AW856573 AW856576 AW856562
	411905	1265181_1	BE265067 BE264978 AW875420
	412102	1277395_1	H56435 H56572 AW892929
	412209 412248	1283610_1 1285000 1	AW901456 AW901450 AW901441
55	412246	1346556 1	BE176480 AW903298 AW903313 BE158766 BE061699 BE147360 BE147362 BE061666 BE061697 BE061647 BE061678
55	413111	1349546 1	BE065837 BE065805 BE065799 BE065818 BE065839 BE065831 BE065894 BE065789 BE065792
	440400	4050700_1	DE000007 DE000700 DE000700 DE000700 DE000000 DE000702

413189

413221

413499

413708 414210 414596

	414605	14657901	BE390440
	415747	155189_1	AA381209 AA381245 AA167683
	416173	1574973_1	R52782 R17313 H24192 R19876
	417742	1696282_1	R64719 Z44680 R12451
5	417974	171237_1	AA210765 T95700 H94407
	418636	177402_1	AW749855 AA225995 AW750208 AW750206
	419536	185688_1	AA603305 AA244095 AA244183
	420854	197072_1	AW296927 Al684514 Al263168 AA281079
	422156	212379_1	N34524 AA305071 AW954803 AA502335 Al433430 Al203597 AW026670 AW265323 AW850787 AA317554 AW993643
10			AW835572 AW385512 Al334966 W32951 H62656 H53902 R88904 AW835732
	422996	223666_1	BE091089 BE091123 AA319959
	423833	232451_1	AW503329 N46610 AA331571
	423841	232507_1	AW753967 AA370795 AA331630 AW962550
	423945	233566 1	AA410943 AW948953 AA334202 AA332882
15	425201	247933_1	AA352111 AW962247 AA429695
	426650	270283_1	AA382814 AA402411 AA412355
	426878	273265_1	BE069341 AW748403 AL044891 Al908240 AA393080
	430264	315008 1	AA470519 BE303010 BE302954 BE384120
	430785	323486_1	Z30201 AA486132 T72025
20	431676	336411_1	Al685464 AW971336 AA513587 AA525142
	433687	373061_1	AA743991 AA604852 AW272737
	434338	383982_1	AW754311 AA630185 AW803285
	434469	387447_1	AA634806 C18732 AA729161 AA729860
	435447	406400_1	Al872932 AA682306 BE220163 W88695 T81307 H91447
25	437152	43386_1	AL050027 BE089051 .
	437854	44418_1	AL119723 AL119874 Al909018 U50537
	439031	46798_1	AF075079 H48601 H48795
	439255	470321_1	BE164500 AA832198 BE164502
	444910	624951_1	Al201849 BE069007 AW946544
30	445432	63943_1	AV653771 BE089370
	446922	69865_1	BE175605 Z43529 F06610 BE175602 AV661027
	447197	711623_1	R36075 Al366546 R36167
	448420	76273_1	BE623004 AA380669 BE263627 BE246433
	448516	766241_1	AW898595 AW898588 AW898590 AW898663 AW898592 A\525093
35	450522	837264_1	AI698839 AI909260 AI909259
	450736	844652_1	AW970060 AI732366 AI792313 AW839644
	451024	85565_1	AA442176 AA259181
	451067	85759_1	BE172186 AA059279 AA020815 AA013437
40	451340	86640_1	AW936273 AW340350 AA017208
40	452542	921410_1	AW812256 AW812257 AI906423 AI906422
	452564	92227_1	AA026777 N50065 R09961 N54721
	453472 454307	968371_1 1106070 1	AL037925 AL037931 AL037957 AW855717 AW362452 AW362443
	454359	1130674_1	N71277 AW390764
45	454545	1223779_1	AW806899 AW866451 AW866393 AW866297 AW817869
43	454693	1229132_1	AW813428 AW813444 AW813367 AW813368 AW813429 AW813424
	454714	1230493_1	AW815098 BE154843 BE154831
	455047	1250536_1	AW852530 AW852527 AW852526
	455092	1252971_1	BE152428 AW855572 AW855607
50	455097	1253130_1	AW855802 AW855794 AW855797 AW855806 AW855796 AW855808 AW855793 AW855807
50	455100	1253334_1	BE 160198 AW935898 T11520 AW935930 AW856073 AW861034
	455431	1289854_1	AW938484 BE001245 BE001190
	455511	1321229_1	BE144762 AW979091
	455609	1337548_1	BE011668 BE011689 BE011627 BE011679 BE011699 BE011678 BE011696 BE011675 BE011622 BE011635
55	455651	1348732_1	BE064962 BE064979 BE064853 BE064857 BE064856 BE064977 BE064960 BE064860 BE064815 BE064957 BE064804
		_	BE064816 BE064850 BE064806 BE064796 BE064818 BE064975 BE064819 BE064810 BE064668 BE065059
	455685	1350393_1	BE066976 BE066928 BE066927
	455700	1351264_1	BE068115 BE068104 BE068102 BE068096 BE068103 BE068154 BE068198
	455708	1352232_1	BE069326 BE069290 BE069352
60	455732	1353874_1	BE080908 BE072258 BE072190 BE072236
	455838	1374605_1	BE145808 BE145807 BE181883
	455935	1384144_1	BE158687 BE158688
	455945	1385588_1	BE160636 BE160606 BE160703
	456207	1650781	AA193450
65	456482	192289_1	AA485224 AA287308 AA258121
	458094		AF086325 W72956 W73221 AA219112
	458673	679507_1	N99626 Al302701

TABLE 19B

5 Table 19B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 19. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

				•
10	Pkey: Ref:	5	Sequence so	number corresponding to an Eos probeset urce. The 7 digit numbers in this column are Genbank Identilier (GI) numbers. "Dunham I. et al." refers to the publication "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402-489-495.
	Chand			
	Strand:			es DNA strand from which exons were predicted.
15	Nt_position	on:	indicate	es nucleotide positions of predicted exons.
13				
	Diversi	n. (04	NA
	Pkey	Ref	Strand	Nt_position
	400555	0004404	Minus	134694-134817
20	400608		Minus	96756-97558
20	400610		Minus	117606-117928.124040-124147
	400925		Plus	38183-38391.43900-44086
	401045		Plus	90044-90184,91111-91345
	401049		Plus	149157-150692
25	401093		Minus	22335-23166
23	401256		Minus	45482-45620
	401283		Minus	47256-47456
	401326			226246-227505
	401418		Minus Minus	226246-227505 124865-125075
30	401451		Minus	119926-121272
30	401458		Plus	76485-77597
	401497		Plus	92607-92813
	401508		Minus	110779-110983
	401575		Minus	76253-76364
35	401747		Minus	118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097-
33	401747	9109012	Minus	
	401781	7240400	Minus	131258,131866-131932,132451-132575,133580-134011 83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814
	401785		Minus	165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942
		7263888	Minus	102945-103083
40	401987		Minus	72893-73021,76938-77049
70	402077		Plus	65014-65195
	402109		Minus	171722-171859,173197-173303
	402184		Minus	112844-112986.113505-113636
	402376		Minus	21753-22385
45	402421		Minus	46609-46662,46758-46811,86293-86346,89776-89829,90048-90101,102817-102924
73	402578		Plus	66350-66496
	402606		Minus	81747-82094
	402696		Minus	23600-23731
	402765		Plus	109588-109726
50		6010175	Plus	43921-44049,46181-46273
50		6456853	Minus	82274-82443
		8086844	Minus	194384-194645
		7331427	Plus	38314-38634
		8569930	Plus	92839-93036
55		9438331	Plus	112733-113001.114599-114735
55		9719529	Minus	157156-158183
		8101208	Minus	131266-131769
		6862650	Minus	62554-62712,69449-69602
		8671936	Minus	142647-142771,145531-145762
60		8671948	Plus	113234-113326,115186-115287,119649-119786
oo		7331517	Minus	55008-55083.62860-63051
		7770580	Minus	102247-102326,103095-103148
		7711864	Plus	100742-100904.101322-101503
	403343	1111004	rius	1007 75-100007; 10 1065-10 (000

	404091 7684554	Minus	82121-83229	
	404097 7770701		55512-55781	
	404142 9856692		80316-80459	
	404253 9367202		55675-56055	
5	404274 9885189		104127-104318	
-	404285 2326514		32282-32416	
	404360 9858450		122873-122966,151324-151469,153093-153253	
	404440 7528051		80430-81581	
	404443 7579073		87198-87441	
10	404552 7243881		19854-20010	
10	404561 9795980		69039-70100	
	404580 6539738		240588-241589	
	404721 9856648		173763-174294	
	404826 6572184		47726-48046	
15	404983 4432779		51178-51374,52000-52173	
13	405037 7543748		127374-127578	
	405041 7547195		121230-121714	
	405095 8072599		138877-139066	
	405153 9965565		175317-175500	
20	405196 7230083	Minus	135716-135851	
20	405232 7249042	Pius	125904-126063	
	405248 7259728		637-777	
	405336 6094635		33267-33563	
	405394 6624123		31900-32373	
25	405460 7684569		52223-52389	
23	405494 8050952		70284-70518	
	405547 1054740		124361-124520.124914-125050	
	405609 575755		42814-43010,43583-43783,44863-45033,46429-46554,47815-48018,49961-50153,51624-51727,51823-51959,57	2702_
	405009 5/5/55	s winus	52918,55469-55601,57111-57307,58169-58296,60215-60332,61482-61727	
30	405638 628922	9 Plus	199260-199372.199826-199929	
50	405654 489515		53624-53759	
	405718 979546		113080-113266	
	405822 627349		154660-154974.155203-155379	
	405848 765180	9 Minus	28135-28244	
35	405873 675874		32129-32764	
33	405906 770512		10835-11059	
	405917 771216		106829-107213	
	405925 675879		129935-130282	
	405953 796037		65101-65574	
40	406069 911773		68880-69374	
70	406151 714480		94087-94285	
	406153 992973		12902-13069	
	406182 592365		28256-28935	
	406271 753421		36179-36692	
45	406291 568627		9562-9867	
73	406348 925598		71754-71944	
	406414 925640		49593-49850	
	406446 945450		116424-116527,118721-118859,121187-121364	
	406504 771136		107068-107277	
50	406554 771156		106956-107121	

WO 02/059377

TABLE 20: 544 GENES UP-REGULATED IN BREAST CANCER COMPARED TO NORMAL ADULT TISSUES THAT ARE LIKELY TO ENCODE EXTRACELLULAR OR CELL-SURFACE PROTEINS

Table 20 shows 544 genes up-regulated in breast cancer compared to normal adult tissues that are likely to encode extracellular or cell-surface proteins. These were selected as for Table 19, except that the ratio was greater than or equal to 3.0, the "average" normal adult tissue level was set to the 85th percentile value amongst 144 non-malignant tissues, and the 96th percentile value amongst the 73 breast cancer specimens was greater than or equal 100 units, and the predicted protein contained a structural domain that is indicative of extracellular localization (e.g. ig, fn3, egf, 7tm domains, signal sequences, transmembrane domains). The predicted protein domains are noted.

PCT/US02/02242

15

20

10

5

Pkey: Unique Eos probeset identifier number ExAcon: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number
Pred.Prot.Domains: Predicted Protein Domains

Unigene Title: Unigene gene title
R1: Ratio of 93™ percentile of tumor to 85™ percentile of normal body tissue

25	Pkey	ExAccn	UnigenelD	Pred.Prot.Domains	UnigeneTitle	R1
	408591	AF015224	Hs.46452	SS,Uteroglobin,SS,Uteroglobin	mammaglobin 1	168.6
	400291	AA401369	Hs.190721	TM	ESTs	73.2
		Al668594		,SS,p450	ESTs, Weakly similar to CP4Y_HUMAN CYTOC	65.7
30		AW170035		TM	Homo saplens breast cancer antigen NY-BR	57.6
		AA250737		death,ZU5,TM,ActivIn_recp,pkinase,	BMP-R1B	55.9
		U31875	Hs.272499	,SS,TM	short-chain alcohol dehydrogenase family	53.8
		BE069341		TM	gb:QV3-BT0381-270100-073-c08 BT0381 Homo	50.3
		NM_000230		SS,Leptin,SS,Leptin,	leptin (murine obesity homolog)	40.8
35		AA195651		,SS,Dihydroorotase,	ESTs	39.3
	408000	L11690	Hs.620	Plectin_repeat,SH3,spectrin,SS,Plectin_r	bullous pemphigoid antigen 1 (230/240kD)	37.3
		D31152	Hs.179729	SS,C1q,Collagen,SS,C1q,Collagen,	collagen, type X, alpha 1 (Schmid metaph	35.2
		AJ224172		,SS,Uteroglobin,	lipophilln B (uteroglobin family member)	30.0
		AA009647		,SS,TM,disintegrin,Pep_M12B_propep,Repro		25.7
40		AF044197		SS,iL8,SS	small inducible cytokine B subfamily (Cy	25.2
		S73265	Hs.1473	SS,Bombesin,SS	gastrin-releasing peptide	24.8
		AI624342	Hs.170042	,SS,TM,Cation_efflux	ESTs	24.1
		AI955040		SS	ESTs, Weakly similar to transformation-r	24.0
		AI127076		TM	hypothetical protein DKFZp564O1278	23.8
45		X51501	Hs.99949	SS,SS	prolactin-induced protein	22.8
		AI267652		,SS,TM,GNS1_SUR4,cNMP_blnding,Rlla	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	22.6
		NM_00361		lg,tsp_1,SS,AAA	cartilage intermediate layer protein, nu	21.7
		X78592	Hs.99915	hormone_rec,Androgen_recep,zf-C4,	androgen receptor (dihydrotestosterone r	21.7
		AI905687	Hs.2533	SS	aldehyde dehydrogenase 9 family, member	20.3
50		Al375572	Hs.172634	,pkinase,	ESTs	19.2
		AA193450		,SS,TM,p450,p450	gb:zr40e07.r1 Soares_NhHMPu_S1 Homo sapl	18.3
			Hs.334473	TM	hypothetical protein DKFZp564O1278	18.2
		AA399272		SS	ESTs	18.2
		X52509	Hs.161640	,SS,TM,aminotran_1_2,Cadherin_C_term,cac		18.1
55		AW840171	Hs.265398 -	SS	ESTs, Weakly similar to transformation-r	17.9
	402578			SS,p450,SS,TM,p450	C1001134:gi[2117372]pir][65981 fatty ac	17.8
		A1263307		SS	H2B histone family, member L	17.8
			Hs.124165	SS	programmed cell death 9 (PDCD9)	17.7
	444342	NM_01439	8Hs.10887	Lamp,SS,TM,Lamp,	similar to lysosome-associated membrane	17.5
				204		

	449765	N92293	Hs.206832	SS	ESTs, Moderately similar to ALUB_HUMAN A	17.3
		AA321649		SS,ILB,	small Inducible cytokine subfamily B (CX	17.0
	425692	D90041	Hs.155956	,SS,Acetyitransf2,	N-acetyltransferase 1 (arylamine N-acety	16.7
_			Hs.137476	,pkinase,	paternally expressed 10	16.5
5		AB014544		LRRCT,LRR,SS,LRRCT,serine_carbpept	KiAA0644 gene product	16.3
	449448		Hs.57471	SS	ESTs	16.2 15.7
	418007		Hs.83169	SS,hemopexin,Peptidase_M10,SS,Peptidase_	_matrix metalioproteinase 1 (MWP1; inters	15.7
		AA296520		SS,lectin_c,sushl,EGF,SS,EGF,lectin_c,su	selectin E (endothelial adhesion molecul	15.5
10		AA441838		SS CLID VII-le	hypothetical protein FLJ14834 tumor necrosis factor, alpha-induced pro	15.0
10	446591	NM_007115		,SS,CUB,Xlink, PDZ,SS	PDZ domain containing 1	14.9
		AA236115	Hs. 15456	SS SS	ESTs	14.8
	452838		Hs.30743	SS.SS	preferentially expressed antigen in mela	14.7
		AA436989		histone,SS,histone,histone	H2A histone family, member A	14.3
15		AL035414		SS	hypothetical protein .	14.2
		Al199268	Hs.19322	.SS.lipocalln	Homo saplens, Similar to RIKEN cDNA 2010	14.2
		W20027	Hs.23439	,SS,Peptidase_M1,	ESTs	13.9
		AI082692	Hs.134662	,SS,TM,SNF	ESTs	13.7
	459587	AA031956		,SS,LIM,	gb:zk15e04.s1 Soares_pregnant_uterus_NbH	13.7
20		AI733682		SS	ESTs	13.5
	400289		Hs.2258	hemopexin,Peptidase_M10,SS,Peptidase_M1		13.5
		BE336654		histone, SS, histone, histone	H3 histone family, member A	13.3
		AA948033		,SS,histone,histone,linker_histone	ESTs	13.2
0.5		AA706910		,SS,Ribosomal_L7Ae,	ESTs	13.1 13.1
25		A1951118		TM	Homo saplens breast cancer antigen NY-BR	13.0
		AW873596		,SS,DENN	calmodulin 2 (phosphorylase kinase, delt programmed cell death 9 (PDCD9)	12.9
		AI684808 AI351010		SS SO thread antidopo	lysyl oxidase	12.8
		W72838	Hs.2533	,SS,Lysyl_oxidase SS	aldehyde dehydrogenase 9 family, member	12.7
30	450280	N78223	Hs.108106	.SS.G9a,PHD.	transcription factor	12.5
50		AI873274		TM	ESTs	12.4
		AF026944		,SS,TPR	ESTs	12.3
		AA576953		SS,TM,UPF0016,SS,TM,UPF0016	hypothetical protein FLJ13352	12.0
		AJ224741		SS,EGF,vwa,SS,TM,vwa,	matrilin 3	11.9
35		AW732573		TM,K_tetra,ion_trans,SS,TM,K_tetra,ion_t	potassium voltage-gated channel, delayed	11.9
	432912	BE007371	Hs.200313	,SS,TM,Folate_carrier	ESTs	11.9
		Al357412	Hs.157601	SS	ESTs	11.8
	421155	H87879	Hs.102267	SS,Lysyl_oxidase,Aldose_epim,Epimerase,S	lysyl oxidase	11.8
		NM_00249		pkinase,SS,TM,pkinase,polyprenyl_synt,	NIMA (never in mitosis gene a)-related k	11.7
40		AL049689		SS	hypothetical protein similar to tenascin	11.6 11.5
		R28363	Hs.24286	,SS,TM,7tm_1,p450,rrm	ESTs	11.5
		AI907673		,pkinase,	gb:iL-BT152-080399-004 BT152 Homo sapien	11.4
	423945	AA410943	Hs.283853	death,ZU5,TM,Activin_recp,pkinase, SS	gb:zt32h03.r1 Soares ovary tumor NbHOT H Homo sapiens mRNA full length insert cDN	11.4
45	402606	AL360204	HS.203053	SS SS	NM_024626:Homo sapiens hypothetical prot	11.3
43		H57646	Hs.42586	SS.Acyltransferase,	KIAA1560 protein	11.2
		N47863	Hs.336901	SS,RNA_pol_A,RNA_pol_A2,Ribosomal_S2		11.1
		AF026941		,TM,IBR	Homo sapiens cig5 mRNA, partial sequence	11.1
		BE178536		.SS.TM	membrane-spanning 4-domains, subfamily A	11.1
50			Hs.134585	,SS,TM,BRCT,ank,ABC_tran,ABC_tran	DKFZP434G232 protein	10.9
		R17798	Hs.7535	,SS,Fork_head,	COBW-like protein	10.9
		U79293	Hs.159264	SS	Human clone 23948 mRNA sequence	10.7
	429859	NM_00705	OHs.225952	,SS,TM,Y_phosphalase,MAM,fn3,	protein tyrosine phosphatase, receptor t	10.4
			Hs.158244	,SS,laminin_B,laminin_EGF,laminin_Nterm	KIAA0479 protein	10.3
55		BE440042		SS,Peptidase_M10,hemopexin,SS,Peptidase	_matrix metalloproteinase 3 (stromelysin	10.3
		NM_00068		SS,TM,7tm_1,SS,TM,7tm_1,	angiotensin receptor 1	10.3
		U80736	Hs.110826	SS	trinucleotide repeat containing 9	10.3
			Hs.301663	,SS,pkinase,	ESTs	10.3 10.2
		AW016531	Hs.122147	,SS,ArlGap,	ESTs	10.2
60	400608	BE242874	110 75070	SS,TM,SS,TM	C10001899:gij7508633 pir j725392 hypothe	10.1
		BE242870		SS	solute carrier family 1 (gliai high effi Homo sapiens cDNA FLJ11346 fis, ctone PL	9.9
		W68815	Hs.301885	SS SC ands annual rate	NM_030920*:Homo saplens hypothetical pro	9.8
	402408	AJ245671	He 12844	,SS,carb_anhydrase ,SS,TM,ras	EGF-like-domain, multiple 6 (EGFL6)	9.7
65		AJ243671 AI879148	Hs.12844 Hs.26770	SS, I m, ras SS, lipocalin, lipocalin,	fatty acid binding protein 7, brain	9.6
03	405654		110.20//0	BTB,SS	C12001521:gi[7513934]pirj[T31081 cca3 pr	9.6
	403034	AM18055	Hs.161160	SS	ESTs	9.6
	+34300	, 10000	3. 10 1 100			

	416220	NA0770	Hs.170994	00.714	h	
	431808		Hs.270833	,SS,TM SS,TM,EGF,SS	hypothetical protein MGC10946	9.5
		AW368397			amphiregulin (schwannoma-derived growth	9.5
				,SS,UDPGT	Homo sapiens cDNA FLJ14438 fis, clone HE	9.4
5		AA032279		TM	six transmembrane epithelial antigen of	9.4
,		AA279490		SS,TM,calreticulin,SS,TM,calreticulin,	calmegin	9.4
	410009		Hs.72472	death,ZU5,TM,Activin_recp,pkinase,	BMP-R1B	9.4
		AA291377		TM	ESTs	9.3
	429432	A1678059	Hs.202676	SS	synaptonemal complex protein 2	9.3
10		A1820662		SS	ESTs	9.1
10	426429		Hs.169849	,SS,TM,fn3,ig,	myosin-binding protein C, slow-type	9.1
	406687		Hs.272620	SS,Peptidase_M10,hemopexin,SS,Peptidase		9.1
		AW004854		SS	hypothetical protein FLJ23537	9.1
		AB041035		Ferric_reduct,TM,Ferric_reduct,	NM_016931:Homo saplens NADPH oxidase 4 (9.1
	426214		Hs.128355	SS	ESTs, Moderately similar to ALU7_HUMAN A	9.0
15	427718	A1798680		,SS,TM,histone,Sec1,histone,sugar_tr	ESTs	8.9
	414812	X72755	Hs.77367	SS,IL8,SS,IL8	monokine Induced by gamma Interferon	8.8
	400285	NA		,TM,ABC_tran,ABC_membrane,	Eos Control	8.8
	422330		Hs.115263	SS,TM,EGF,SS,TM	epiregulin	8.8
		NM_004354		cyclin,SS	cyclin G2	8.8
20		AW512260	Hs.87767	SS	ESTs	8.7
	452281		Hs.28792	,SS,TGF-beta,TGFb_propeptide,	Homo saplens cDNA FLJ11041 fis, clone PL	8.7
		AA642007		SS	ESTs	8.6
	408380	AF123050	Hs.44532	,SS,TM,ubiquitin,7tm_3,ANF_receptor,sush	diubiquitin	8.6
	443788	AI732643	Hs.144151	TM	ESTs	8.6
25	411078	Al222020	Hs.182364	SS.SS	CocoaCrisp	8.5
	445495	BE622641	Hs.38489	SS.SS.ENTH.I LWEQ.ENTH.I LWEQ.DNA I	mis_reESTs, Weakly similar to 138022 hypotheti	8.5
	433426	H69125	Hs.133525	,SS,TM	ESTs	8.5
		NM_004525		SS,EGF,Idl_recept_a,Idl_recept_b,SS,TM,E	low density lipoprotein-related protein	8.4
	426215	AW963419	Hs.155223	SS	stanniocalcin 2	8.4
30		AA635062		TM	Homo sapiens mRNA; cDNA DKFZp434O0515 (f	8.4
		AI831297		TM	ESTs	8.3
		AA780473		SS,p450,SS,p450	cytochrome P450, subfamily IVB, polypept	8.3
		NM_003866		SS,SS	Inositol polyphosphate-4-phosphatase, ty	8.3
	431725		Hs.2839	SS,Cys_knot,SS	Norrie disease (pseudoglioma)	8.3
35	418092		Hs.106604	death, ZU5, pkinase, Activin_recp,	ESTs	8.3
		AW449211		SS	GDNF family receptor alpha 1	8.2
			Hs.180884	SS,Zn_carbOpept,Propep_M14,SS,Propep_N	(14carbovypontidase B1 (tissue)	8.2
		AA280627		SS.con10	ESTs	8.2
			Hs.169300	SS,TGF-beta,TGFb_propeptide,SS	transforming growth factor, beta 2	8.2
40		AW885727		,SS,kazal,	ESTs	8.1
		AW419196		SS	hypothetical protein FLJ13782	8.1
		AW248508		SS	Homo sapiens cDNA FLJ14035 fis, clone HE	8.0
	404347	71772 10000		SS	Target Exon	8.0
		AA743991		TM	gb:ny57g01.s1 NCI_CGAP_Pr18 Homo sapiens	8.0
45		AA808229	He 167771	,SS,IMPDH_C,IMPDH_N,CBS	ESTs	8.0
		NM_016010		SS CALLED TO CALOR	CGI-62 protein	7.9
	453310		Hs.553	TM,SNF,SS,TM,SNF,	solute carrier family 6 (neurotransmitte	7.9
	435957		Hs.190368	.SS.TM	ESTs	7.8
		AL138272		.TM.cpn60_TCP1.Sema.	ESTs	7.8
50			Hs.164226	,TSPN,vwc,tsp_1,EGF,thiored,	ESTs	7.8
		AI754693		,TM,cadherin,Cadherin_C_term,	ESTs	7.7
		AW207523		.SS.rm.	ESTs	7.6
		AL133731		,TM,SDF,UPAR_LY6,	Homo sapiens mRNA; cDNA DKFZp761C1712 (f	7.6
			Hs.193696	TM	ESTS	7.6
55		AW207206		SS	ESTs	7.6
55	429220	AK000713	He 102726	,SS,UDPGT	hypothetical protein FLJ20706	7.5
	4E2E44	AL031224	H- 22402			
		R41396		SS,SS	transcription factor AP-2 beta (activati	7.5
		AA157291	Hs.101774	SS SS	hypothetical protein FLJ23045 ubinuclein 1	7.5
60		U41060				7.5
00		AW378065	Hs.79136	SS,TM,TM	LIV-1 protein, estrogen regulated	7.5
	452002	AI742170		,SS,Pep_M12B_propep,Reprolysin,tsp_1,	ESTs	7.4
		Al240665	Hs.31297	,SS,TM	duodenal cytochrome b	7.4
			Hs.8895	,SS,TM,disIntegrin,Pep_M12B_propep,Repro		7.3
65		U22376	Hs.1334	SS,NA,myb_DNA-binding	v-myb avian myeloblastosis viral oncogen	7.3
65		R43646	Hs.12422	SS	ESTs	7.2
	42200/	L32137	Hs.1584	SS,EGF,Isp_3,SS,E2F_TDP,	cartilage oligomeric matrix protein (COM	7.2
	410004	U37519	Hs.87539	SS,aldedh,SS,aldedh,	aldehyde dehydrogenase 3 family, member	7.2

	426451	AI908165	Hs.169946	SS,GATA,	GATA-binding protein 3 (T-cell receptor	7.1	
	450701	H39960	Hs.288467	,SS,LRR	Homo sapiens cDNA FLJ12280 fis, clone MA	7.1	
	419519	AI198719	Hs.176376	SS	ESTs	7.1	
	410555	U92649	Hs.64311	,TM,disIntegrin,Reprolysin,	a disintegrin and metalloproteinase doma	7.1	
5		AB029496			semaphorin sem2	7.0	
		AA102670			gamma-aminobutyric acid (GABA) A recepto	7.0	
			Hs.82065		interleukin 6 signal transducer (gp130,	7.0	
	417275		Hs.295449		parvalbumin	7.0	
		R31178	Hs.287820		fibronectin 1	6.9	
10		AK001741	Hs.8739		hypothetical protein FLJ10879	6.9	
		AF026942			gb:Homo sapiens cig33 mRNA, partial sequ	6.8	
		AF077345	Hs.177936		ESTS	6.8 6.7	
		AW803341			gb:IL2-UM0079-090300-050-D03 UM0079 Homo	6.7	
15	401045	C44004002	t-allC7c2270lm	ICE_p20,SS,ICE_p10,ICE_p20,ICE_p10,ICE_ [INP_033938.1] c	6.7		
13	440000	Al123555			ESTs	6.7	
		R41823	Hs.7413		ESTs; calsyntenin-2	6.7	
		AA243837			ESTs .	6.6	
		A1655499			ESTs	6.6	
20		R20893	Hs.325823		ESTs, Moderately similar to ALU5_HUMAN A	6.6	
20		BE387335			ESTs, Weakly similar to S64054 hypotheti	6.6	
	404091		1101200710	,TM,7tm_3,ANF_receptor,	Target Exon	6.6	
		AW067903	Hs.82772	SS,Collagen,COLFI,TSPN,SS,TSPN	collagen, type XI, alpha 1	6.6	
		AL135623		SS.SS	KIAA0575 gene product	6.5	
25		U85658	Hs.61796	SS.Ribosomal_S4e	transcription factor AP-2 gamma (activat	6.4	
	425236	AW067800	Hs.155223	SS	stanniocalcin 2	6.2	
	415669	NM_00502	5Hs.78589	,SS,serpin,	serine (or cysteine) proteinase inhibito	6.2	
	416319	AI815601	Hs.79197	SS,TM,lg,SS,TM	CD83 antigen (activated B lymphocytes, I	6.2	
		AA219691		,SS,kinesin,	RAB6 Interacting, kinesin-like (rabkines	6.2	
30		AW167087		,SS,lg,Sema,pkinase,	ESTs	6.2	
		AA026880		,SS,TM,fn3,	prolactin receptor	6.1	
		T49951	Hs.9029	filament,SS,filament,filament	DKFZP434G032 protein	6.1	
		W26713	Hs.256972	,SS,TM,DAGKa,DAGKc,	ESTs	6.1	
35		Y00272	Hs.184572	,SS,pkinase,pkinase	cell division cycle 2, G1 to S and G2 to	6.1 6.1	
33		X03363	11- 400700	,SS,TM,pkinase,Recep_L_domain,SH2,PH,Fu		6.1	
		T32982	Hs.102720	SS Start transf 8 SD	ESTs alveogenin 2	6.1	
	410079	U94362	Hs.58589	Glyco_transf_8,SS .SS.filament,Pribosyltran,filament,Armad	Target Exon	6.1	
		NM_01209	2114 10250	SS, adenylatekinase,	adenylate kinase 5	6.1	
40	402230		31 13. 10200	,SS,TM,p450,	Target Exon	6.1	
40		NM_00352	8Hs 2178	histone, SS, histone,	H2B histone family, member Q	6.1	
		A1249368		,SS,TM	ESTs ·	6.0	
		BE550224		SS	metallothionein 1E (functional)	6.0	
		X04430	Hs.93913	SS,IL6,IL6,	Interleukin 6 (interferon, beta 2)	6.0	
45		N32536	Hs.42645	,SS,TM	solute carrier family 16 (monocarboxylic	6.0	
	419703	A1793257	Hs.128151	,SS,zf-C2H2,	ESTs	5.8	
	424687	J05070	Hs.151738	SS,Peptidase_M10,fn2,hemopexin,SS,TM,Pe	pmatrix metalloproteinase 9 (gelatinase B	5.8	
		Al823951		SS	tolloid-like 1	5.8	
		NM_00266		SS	perilipin	5.8	
50		AW664964		,SS,TM	ESTs	5.7	
		AA242758		,SS,TM	LIV-1 protein, estrogen regulated	5.7	
		AB020689		SS	KiAA0882 protein	5.7	
		Al199738		SS	ESTs, Weakly similar to ALUA_HUMAN IIII	5.7 5.6	
55		X81334	Hs.2936	SS,Peptidase_M10,hemopexin,SS,Peptidase		5.6	
22		AA904244	HS.153205	TM 480 480	ESTs C16000922:qi[7499103 p r [T20903 hypothe	5.6	
	400286	NA H38026	Hs.308	SS,TM,ABC_tran,ABC_membrane,SS arrestin,SS	arrestin 3, retinal (X-arrestin)	5.5	
		NM_00016		SS,TM,fn3,SS	growth hormone receptor	5.5	
		W57554	Hs.125019	SS IW, III 3, 33	lymphoid nuclear protein (LAF-4) mRNA	5.5	
60		AF086332		,SS,TM,Syntaxin	ESTs	5.4	
30		NM_00594		SS,Peptidase_M10,hemopexin,SS	matrix metalloproteinase 11 (MMP11; stro	5.4	
		NM_00189		,SS,cystatin,	cystatin SN	5.4	
		NM_00582		SS SS	37 kDa leucine-rich repeat (LRR) protein	5.4	
		AJ297436		,SS,TM	prostate stem cell antigen	5.4	•
65		AF153330		,SS,TM	solute carrier family 19 (thlamine trans	5.3	
		AL355715		SS	programmed cell death 9	5.3	
		AF086120		,SS,TM,UDPGT,casein_kappa	ESTs	5.2	

	441111	Al806867	Hs.126594	,SS,TM,Phosphodiest,	ESTs	5.2
	452355	N54926	Hs.29202	TM,7tm_1,TM	G protein-coupled receptor 34	5.2
		M31659	Hs.180408	SS	solute carrier family 25 (mitochondrial	5.2
-		AW749855		,SS,TM,HECT	gb:QV4-BT0534-281299-053-c05 BT0534 Homo	5.2
5			Hs.200102	,SS,TM,ABC_tran,ABC_membrane,	ATP-binding cassette transporter MRP8	5.1
		R81733	Hs.33106	,SS,HECT,zf-UBR1,PABP,14-3-3,	ESTs	5.1
		W17064	Hs.332848	SS	SWI/SNF related, matrix associated, acti	5.1
	429698	A1685086		,SS,ras,	ESTs, Weakly similar to S21348 probable	5.1
10	425325	X52730	Hs.1892	SS,NNMT_PNMT_TEMT,SS,NNMT_PNMT_		
10	422000		nolamine N-met Hs.310359	nyiransierase SS	5.1 ESTs	
		Al160386		SS	ESTS	5.1 5.1
	403593		ris. 123007	,CIDE-N,pkinase	Target Exon	5.1
		D50915	Hs.38365	SS.SS	KIAA0125 gene product	5.0
15			Hs.146059	,SS,TM	ESTs	5.0
		NM_00016		SS,Melibiase,BTK,PH,pkinase,SH2,SH3,Ribo		4.9
			1Hs.274480	SS,lipocalin,SS,lipocalin	odorant-binding protein 2A	4.9
		W88559	Hs.1787	,TM,lon_trans,K_tetra,	proteolipid protein 1 (Pelizaeus-Merzbac	4.9
		AA206186		SS,TM,TM	monocyte to macrophage differentiation-a	4.9
20	401093			TM,LRRCT,TM,LRRCT,	C12000586*:glj6330167[dbj]BAA86477.1] (A	4.9
			Hs.68583	Peptidase_M3,	mitochondrial intermediate peptidase	4.9
			Hs.130093	SS	ESTs	4.9
			Hs.232168	,SS,adh_zinc,	ESTs	4.9
0.5		NM_00446		SS,DPPIV_N_term,Peptidase_S9,SS,DPPIV	_N_fibroblast activation protein, alpha	4.9
25		AA641836		,SS,trypsin	hypothetical protein FLJ23186	4.9
		Al215069		SS	ESTs	4.8
			Hs.173274	,SS,14-3-3	integrin cytoplasmic domain-associated p	4.8
		M73700	Hs.105938	SS,transferrin,7tm_1,transferrin,	lactotransfernin	4.8
30	403199		Hs.323910	SS,TM,Folate_carrier,SS,TM,Folate_carrie	NM_025243*:Homo saplens solute carrier f	4.8
50		AF070526		,SS,TM,pkinase,Recep_L_domain,SH2,PH,F .SS.Ca_channel B.	Homo sapiens clone 24787 mRNA sequence	4.8 4.7
		M93221	Hs.75182	SS,TM,lectin_c,fn2,Ricin_B_lectin,SS,TM	mannose receptor, C type 1	4.7
			Hs.193162	SS	Homo saplens cDNA FLJ11983 fis, clone HE	4.7
		BE093589		SS	hypothetical protein FLJ23468	4.6
35 -		AA447453		,SS,TM,7tm_1,	Homo sapiens mRNA; cDNA DKFZp586M0723 (f	4.6
		AW016669		,SS,TM,CBS,voltage_CLC	ESTs	4.6
		AI668605		,TM,Glyco_hydro_1	ESTs, Moderately similar to ALU6_HUMAN A	4.6
			Hs.269533	,SS,pkinase,RhoGEF,ig,PH,SH3,	ESTs	4.6
		AA339449		AIRS,formyl_transf,GARS,SS,GARS,AIRS,fo		4.6
40			Hs.270651	,pkinase	ESTs, Moderately similar to A47582 B-cel	4.6
		AA151342		SS,UPF0099,SS,UPF0099,	CGI-147 protein	4.6
		BE614743		,SS,TM,MAPEG,	prostaglandin E synthase	4.5
		H26735	Hs.146133 Hs.91668	,SS,TM,UDPGT	ESTs	4.5
45 .		AA831879		,SS,TM,PH,SH2,Furin-like,pklnase,Recep_L ,SS,Hist_deacetyl,	Homo saplens clone PP1498 unknown mRNA ESTs	4.5 4.5
45		AI345455		pkinase,OPR,	GA-binding protein transcription factor,	4.5
		A1910275		SS,trefoil,SS,TM,ldLrecept_a,SRCR,tryps	trefoil factor 1 (pS2)	4.5
		BE391804		SS,TM,GBP,TM,GBP	guanylate binding protein 1, interferon-	4.5
		W03242	Hs.44898	SS	Homo sapiens clone TCCCTA00151 mRNA sequ	4.5 •
50		M97711		SS,SS,ig,	gb:Human T-cell receptor (V beta 18.1, J	4.5
		A1638627		,SS,DEAD,Fork_head	KIAA1688 protein	4.5
			Hs.175563	SS	Homo sapiens mRNA; cDNA DKFZp564N0763 (f	4.4
		AA863360		,SS,TM,p450,	ESTs, Weakly similar to fatty acid omega	4.4
		AA976718		,lg,Sema,	ESTs	4.4
55			Hs.105445	SS	GDNF family receptor alpha 1	4.4
		AW294092		,SS,ras,Y_phosphatase,ras	hypothetical protein MGC15754	4.4
		BE466639 AK000136		,SS,HMG_box,filament, SS,LRR,SS	Homo sapiens cDNA FLJ13591 fis, clone PL	4.4
		H87648	Hs.33922	SS SS	asporin (LRR class 1)	4.4
60		NM_00024		SS.LRR.	Homo sapiens, clone MGC:9084, mRNA, comp MHC class II transactivator	4.3 4.3
00			Hs.303662	,SS,Ar(Gap,	ESTs	4.3
		AW935490		,SS,BIR	Human chromosome 5q13.1 clone 5G8 mRNA	4.3
		D45371	Hs.80485	SS,C1q,Collagen,SS,C1q,	adipose most abundant gene transcript 1	4.3
		AW296927		SS,TM,Peptidase_M1,	gb:UI-H-BW0-ajc-c-07-0-UI.s1 NCI_CGAP_Su	4.3
65		D31771	Hs.89404	SS,homeobox,homeobox,	msh (Drosophila) homeo box homolog 2	4.3
			Hs.141937	,SS,TM,MIP,	ESTs	4.3
	447499	AW262580	Hs.147674	SS,TM,cadherin,cadherin	protocadherin beta 16	4.3

PCT/US02/02242 WO 02/059377

	441560	F13386 Hs.7888	pkinase.	Homo saplens clone 23736 mRNA sequence	4.3
	409064	AA062954 Hs.141883	,SS,CUB,	ESTs	4.3
		H25642 Hs.133471	,SS,TM,FMO-like	ESTs	4.3
_		W31790 Hs.194293	,SS,TM	ESTs, Weakly similar to I54374 gene NF2	4.3
5		Al984317 Hs.122589	TM	ESTs	4.3 4.3
	401747	NA 04205711- 070606	,SS,filament,filament	Homo saplens keratin 17 (KRT17) serum/qlucocorticoid regulated kinase-li	4.3
		NM_013257Hs.279696 Al571514 Hs.133022	pkinase,pkinase_C, .SS.TM	ESTs	4.2
		AW073310 Hs.163533	pkinase,	Homo sapiens cDNA FLJ14142 fis, clone MA	4.2
10		AI954968 Hs.279009	SS.TM	matrix Gia protein	4.2
		AI821005 Hs.118599	SS,GDNF,	ESTs	4.2
	457211	AW972565 Hs.32399	WH1,WH1	ESTs, Weakly similar to S51797 vasodilat	4.2
		NM_000399Hs.1395	zf-C2H2,SS	early growth response 2 (Krox-20 (Drosop	4.2
		Al345227 Hs.105448	,SS,TM,pkinase	ESTs, Weakly similar to B34087 hypotheti	4.1
15		AA829286 Hs.332053	,SS,SAA_proteins,ABC_membrane,ABC_tran		4.1 4.1
		Al192105 Hs.147170 Al827248 Hs.224398	SS ,COLFi,vwc,Collagen,	ESTs Homo sapiens cDNA FLJ11469 fis, clone HE	4.1
		Al683487 Hs.152213	,wnt,	wingless-type MMTV integration site fami	4.1
		Al150491 Hs.90756	,TM,Glyco_hydro_1	ESTs	4.1
20		NM 001809Hs.1594	,SS,TM,thiolase,	centromere protein A (17kD)	4.1
		\$70284	SS,TM,Desaturase,SS	gb:stearoyl-CoA desaturase [human, adlpo	4.1
		AL133916 Hs.172572	,SS,lg,pklnase,LRRNT,LRRCT,	hypothetical protein FLJ20093	4.1
		AL035588 Hs.153203	HLH,SS	MyoD family inhibitor	4.1
0.5		Z97630 Hs.226117	,SS,TM,linker_histone,7tm_1	H1 histone family, member 0	4.1 4.0
25		AW594641 Hs.192417	,SS,TM	ESTs small Inducible cytokine subfamily A (Cy	4.0
		T97490 Hs.50002 BE153855 Hs.61460	SS,ILB,SS,ILB ,SS,HLH	ig superfamily receptor LNIR	4.0
		NM_005357Hs.95351	,SS,TM,p450,	lipase, hormone-sensitive	4.0
	408877	AA479033 Hs.130315	SS,TM	ESTs, Weakly similar to A47582 B-cell gr	4.0
30	403329		SS,SS	Target Exon	4.0
		AW014875 Hs.137007	SS	ESTs	4.0
		Al073913 Hs.100686	SS	ESTs, Weakly similar to JE0350 Anterior	4.0
		AW451645 Hs.151504	,SS,Collagen,COLFI,TSPN,	Homo sapiens cDNA FLJ11973 fis, clone HE	4.0 4.0
35		AL133619 Hs.29383	,SS,TM,ras SS	Homo saplens mRNA; cDNA DKFZp434E2321 (f E2F transcription factor 3	4.0
33		NM_001949Hs.1189 X63629 Hs.2877	SS,TM,Cadherin_C_term,cadherin,SS,TM,ca		4.0
		NM_013989Hs.154424	SS,T4_delodinase,T4_delodinase,	delodinase, iodothyronine, type II	4.0
		R36075	,TM,SDF,	gb:yh88b01.s1 Soares placenta Nb2HP Homo	4.0
		U76456 Hs.190787	.SS.TIMP.	tissue inhibitor of metalioproteinase 4	3.9
40	428330	L22524 Hs.2256	SS,Peptidase_M10,SS,Peptidase_M10,hemo	pematrix metalloproteinase 7 (MMP7; uterin	3.9
		AL039402 Hs.125783	SS	DEME-6 protein	3.9 3.9
•		Z45051 Hs.22920	SS,SS,TM	similar to S68401 (cattle) glucose induc protein kinase, cAMP-dependent, regulato	3.9
		M31158 Hs.77439 AW452631 Hs.313803	,SS,cNMP_binding,Rila,HMG_box ,SS,abhydrolase	ESTs, Highly similar to AF157833 1 noncl	3.8
45		NM_015434Hs.48604	SS	DKFZP434B168 protein	3.8
		BE247550 Hs.86859	SS,SH2,PH,SS,TM,PH,SH2,Furin-like,pkinas		3.8
		AB006190 Hs.25475	SS,TM,MIP,SS,TM,MIP,	aquaporin 7	3.8
		N72264 Hs.300670	SS	KIAA1204 protein	3.8
		Al935962 Hs.26289	SS	ESTs	3.8 3.8
50		NM_007069Hs.37189	TM,TM	similar to rat HREV107 ESTs	3.8
		AA371307 Hs.125056 BE170651 Hs.8700	,SS,DENN ,SS,START,	deleted in liver cancer 1	3.8
		AW293165 Hs.143134	SS	ESTs	3.8
		AW873606 Hs.149006	.SS.WH1.WH1	ESTs	3.8
55	403943		p450,SS,p450	C5000355:gij4503225[ref[NP_000765.1] cyt	3.8
	408761	AA057264 Hs.238936	,SS,TM,7tm_1,	ESTs, Weakly similar to (defline not ava	3.8
		AW959861 Hs.290943	SS	ESTs	. 3.8
		NM_002407Hs.97644	,SS,SRCR,Uteroglobin	mammaglobin 2 (MGB2; mammaglobin B; ilp	3.8 3.7
60	445107	Al208121 Hs.147313	,SS,TM	ESTs, Weakly similar to I38022 hypotheti	3.7
60		AW974476 Hs.183601 BE160198	SS,RGS,RGS,RGS TM	regulator of G-protein signalling 16 gb:QV1-HT0413-010200-059-h03 HT0413 Homo	3.7
		M26380 Hs.180878	,SS,lipase,PLAT,Sec7,PH,	Ipoprotein lipase	3.7
		X54942 Hs.83758	CKS,SS,CKS,	CDC28 protein kinase 2	3.7
		AW292053 Hs.12532	SS	chromosome 1 open reading frame 21	3.7
65		Al878918 Hs.10526	SS	cysteine and glycine-rich protein 2	3.7
		AW373784 Hs.71	SS,lg,MHC_I,connexin,SCAN,SS,TM	alpha-2-glycoprotein 1, zinc	3.7
	429638	Al916662 Hs.211577	SS,TM,SS	kinectin 1 (kinesin receptor)	3.7
			309		
			309		

				· ·		
	454071	Al041793	Hs.42502	,TM,7tm_1,	ESTs	3.7
	451859	H44491	Hs.252938	,SS,TM,EGF,Idl_recept_a,idl_recept_b,EGF	ESTs, Weakly similar to ALU1_HUMAN ALU S	3.7
			Hs.191533	.SS.AAA.	ESTs	3.7
		AW194426				
-				,SS,Glycos_transf_2,	ESTs	3.7
5			Hs.173059	SS	ESTs	3.7
	424676	Y08565	Hs.151678	Glycos_transf_2,Ricin_B_iectin,SS,Glycos	UDP-N-acetyl-alpha-D-galactosamine:polyp	3.7
	418026	BE379727	Hs.83213	lipocalin,SS,lipocalin,lipocalin,ferriti	fatty acid binding protein 4, adipocyte	3.7
	457465	AW301344	He 122908	,SS,Pribosyltran,Sulfatase	DNA replication factor	3.7
		NM_014735		PHD,pkinase,SS	KIAA0215 gene product	3.7
10						
10		Al126271		SS	ESTs, Weakly similar to YZ28_HUMAN HYPOT	3.7
		AA890023		SS,TM,fn3,SS,TM,fn3,	prolactin receptor	3.7
	446619	AU076643	Hs.313	,SS,TM,efhand,ion_trans	secreted phosphoprotein 1 (osteopontin,	3.7
	411213	AA676939	Hs.69285	SS,TM,CUB,F5_F8_type_C,MAM,SS,TM,CU		3.6
			Hs.119597	SS,TM,Desaturase,SS	stearoyl-CoA desaturase (detta-9-desatur	3.6
15						
13		AL049176		SS	chordin-like	3.6
		AW207175	Hs.106771	,SS,7tm_1,SPRY,	ESTs	3.6
	407137	T97307		,SS,TM,GDA1_CD39	gb:ye53h05.s1 Soares fetal liver spleen	3.6
	401866			,SS,filament,	Target Exon	3.6
		U10492	Hs.438	SS,homeobox,Ets,SS,homeobox,	mesenchyme homeo box 1	3.6
20		AA502490		SS S	ESTs	3.6
20						
		NM_000909		SS,TM,7tm_1,	neuropeptide Y receptor Y1	3.6
		AW089705		SS	ESTs, Weakly similar to S64329 probable	3.6
	408573	AA284775	Hs.43148	,SS,TM,PMP22_Claudin,	ESTs	3.6
	431830	Y16645	Hs.271387	,SS,TM,iL8	small inducible cytokine subfamily A (Cy	3.6
25		NM_014400		,SS,PH,lactamase_B	GPI-anchored metastasis-associated prote	3.6
23						3.6
		AI791493		,SS,p450,p450	ESTs, Weakly similar to A36036 cytochrom	
			Hs.103849	,TM,hemopexin,Peptidase_M10,hemopexin,F		3.6
	411789	AF245505	Hs.72157	lg,LRRCT,	DKFZP56411922 protein	3.6
	418851	Ai417828	Hs.192435	,SS,TM	ESTs	3.5
30		AA847843		,SS,HMG_box,	Homo sapiens, clone IMAGE:3351295, mRNA	3.5
50		S57296	Hs.323910	,SS,TM,SH2,PH,pkinase,Recep_L_domain,F		3.5
		AW961400		SS, SN, SN, SN, SN, SN, SN, SN, SN, SN, SN		3.5
					HER2 receptor tyrosine kinase (c-erb-b2,	
		AA121098		pkinase,POLO_box,SS,pkinase,POLO_box,	serum-inducible kinase	3.5
	454042	H22570	Hs.172572	,SS,ig,pkinase,LRRNT,LRRCT,	hypothetical protein FLJ20093	3.5
35	459496	AA808940	Hs.274450	,SS,TM,KRAB,SCAN,zf-C2H2,ig	EST	3.5
		NM_002543		.SS.TM	oxidised low density ilpoprotein (lectin	3.5
		AA116021		SS,UCH-1,UCH-2,SS,TM,G_glu_transpept	ubiquitin specific protease 18	3.5
				SS SS, OCI P1, OCI P2, OS, TW, O_GIU_Ualispept		3.5
		AI651930			ESTs	
		BE280074		cyclin,SS,TM,cyclin,	cyclin B1	3.5
40	452554	AW452434	Hs.58006	SS	ESTs, Weakly similar to ALU5_HUMAN ALU S	3.5
	421991	NM_014918	BHs.110488	SS	KIAA0990 protein	3.4
		AK001423		SS	Homo sapiens cDNA FLJ10561 fis, clone NT	3.4
	425770	U25128	Hs.159499	SS,TM,7tm_2,SS,TM,7tm_2	parathyroid hormone receptor 2	3.4
45		AA426202		,TM,ABC_membrane,ABC_tran,Ribosomal_S		3.4
45		L34041	Hs.9739		PEglycerol-3-phosphate dehydrogenase 1 (so	3.4
	445873	AA250970	Hs.251946	,SS,rrm,PABP,pklnase,14-3-3,rrm	poly(A)-binding protein, cytoplasmic 1-l	3.4
	418054	NM_002318	BHs.83354	,SS,TM,mito_carr,Lysyl_oxidase	lysyl oxidase-like 2	3.4
		BE390551		SS,START,SS,START,NNMT_PNMT_TEMT		3.4
		NM_00351		SS,histone,Calc_CGRP_IAPP,lg,MHC_I,SPF	V H2A histona family mambar I	3.4
50		NM_000346				3.4
50				SS,HMG_box,	SRY (sex determining region Y)-box 9 (ca	
		AA442324		histone,SS,histone,BolA	H2A histone family, member O	3.4
	410530	M25809	Hs.64173	ATP-synt_ab,SS,7tm_f,ATP-synt_ab	ATPase, H transporting, lysosomal (vacuo	3.4
	401780			filament, SS, filament, filament	NM_005557*:Homo saplens keratin 16 (foca	3.4
	447131	NM_004585	5He 17/66	TM	retinolc acid receptor responder (tazaro	3.4
55		AA319233		,SS,TM,Ribosomal_L27e,	ESTs	
55						3.4
		C18356	Hs.295944	,Kunitz_BPTI,	tissue factor pathway inhibitor 2	3.4
		AF182277		SS,p450,SS	cytochrome P450, subfamily IIB (phenobar	3,4
	431473	AA825686	Hs.321176	SS	ESTs, Weakly similar to S65824 reverse t	3.4
		Y15221	Hs.103982	SS,IL8,	small Inducible cytokine subfamily B (Cy	3.4
60		NM_005419		SH2,STAT,SS,STAT	signal transducer and activator of trans	3.4
50						
		AW968504	ns. 1230/3	,pkinase,	CDC2-related protein kinase 7	3.4
	405366			RhoGEF,PH,SS,RhoGEF,PH,	NM_003371*:Homo saplens vav 2 oncogene (3.4
		BE274552		SAP,SS,FG-GAP,vwa	protein Inhibitor of activated STAT3	3.4
		AW797437		SS,sushi,trypsin,vwa,rrm,fibrinogen_C,fn	B-factor, properdin	3.3
65		H73505	Hs.117874	,SS,Peptidase_S8,P,Peptidase_S8,P	ESTs	3.3
55		D86961	Hs.79299	,SS,TM	lipoma HMGIC fusion partner-like 2	3.3
	433068	NM_00645	UNS.2002 13	,SS,Pribosyltran,	slalytransferase	3.3
				210		
				310		

445462 AA398716 H-288649 43952 AA398787 H-27895 43952 AA398871 H-27895 54200 A1141031 H-21324 5520 A12402 A1141031 H-21324 553 A12402 A1141031 H-21324 553 A12402 A1141031 H-21324 553 A12402 A1141031 H-21324 554 A12502 A12402 A12402 S SALPANDER A12402 A12								
452017 AF193022 Hs.27495 49999 AN000725 Hs.55679 5 \$85 4799 U4629 hs.356579 5 \$85 4799 U4629 hs.39655 s 4799 U4629 hs.3965 s 4799 U4629 hs.39655 s 42012 AW88149 hs.3965 s 42012 AW88149 hs.3865 s			445462	AA378776	Hs.288649	SS,SS		
409996 AC000725 Hs.50579 SS								
5 422106 Al141031 He.21342 47519 U66259 He.319659 47519 U66259 He.319651 47627 U66259 He.319651 47627 U66259 He.319651 47627 Al19650 He.119651 47627 Al19650 He.119652 47627 A								
447519 046258 Hs.33965 42829 AR03702 Hs.172914 Ss.35.M., short, TGF-bela, TGFb, propeptide 43825 BE37427 Hs.79853 448575 H11267 Hs.2286 Ss.57GFb, propeptide TGF-bela, SS 42728 AW881145 SS.57GFb, propeptide TGF-bela, SS 57GFb, propeptide TGF-bela, S		_						
438298 APS37029 Hs.172314 43829 BE327427 Hs.7935 SS, SM, SM, SS, Port, SS, SS, SS, SS, SS, SS, SS, SS, SS, S		5						
43825 6537427 14.57963 41787								
144575 H11257 H3.22868 SS.phinase.jq. SS.phinase.jq. Homo saplens clone IMAGE.451939, mRNA se 33.3 42718 AW891145 H3.172635 SS.SS.Sl.poxygenase.pLAT SS.T.box.UDPGT SS.T.								
417837 AL079905 Hs.1103								3.3
44594 A267371 Hs.172636 SS.SS.Ipoxygensas.PLAT ESTs 3.3 44596 A167306 Hs.13981 SS.SS.Peptidase_M1.EGF.ig.lectin_c,sushi 44596 A67906 Hs.13981 SS.SS.Peptidase_M1.EGF.ig.lectin_c,sushi 42574 AF052152 Hs.159412 A25010 AN043729 Ls.29316 SS ESTs A67906 AN043729 Ls.29316 SS.SS.M.7Im.1 Homos saplens clone 24628 mRNA sequence 3.3 A67906 A47074		10					transforming growth factor, beta 1	
42997 AP23317 Hs. 194880 44954 A191230 A1912			422128	AW881145		SS		
Add								
15 493867 AlsJ7108 Hs.134981 SS 42501 APRIL APRES SS Homo saplens done 24628 mRNA sequence 3.3 42501 AV04782 Hs.239516 SS SS SS SS SS SS SS								
42574 AF952152 1s. 159412 pkinase, Horno saplens clone 24628 mRNA sequence 33.4 42580 AN040787 La. 123469 SS ESTS		1.5						
42550 AW004782 Hs.293616 SS ESTs Weakly similar to AF208855 1 BM-01 3.3 43428 42372 41572 E314524 Hs.283978 SS,TM,7Im_1 Homo saplens PR02751 RNNA, complete ods 3.3 42574 400419 AF084545 43750 AL39505 Hs.27664 AW01540 Hs.19319 SS,START,ANMT_PNMT_TEMT, SS,Pepidiase_M1, SS,Tart, ANMT_PNMT_TEMT, SS,TART,ANMT_PNMT_TEMT, SS,TART,ANMT_TEMT, AND SS,TART,ANMT_TEMT, SS,TART,ANMT_TEMT, SS,TART,ANMT_TEMT, SS,TART,ANMT_TEMT, AND SS,TART,ANMT_TEMT,		15						
45556 AASC774 Hs. 123469 SS AASC774 Hs. 123469 AASC774 Hs. 123469 SS AASC774 Hs. 123469 AASC774 Hs. 123469 AASC774 Hs. 123469 AASC774 AA								
434228								
1975 ESTAGE ESTAGE 1973 1975 197								
40949 AJ89654 Na.57664 Na.57665 Na.57664 Na.57665 Na.5766		20						3.3
42385			400419	AF084545		,SS,Peptidase_M1,		
April					Hs.57664 .	,TM,Integrin_B,Ricin_B_iectin,rm		
Additional Color								
448988 Y19763 Hs.22785 SS.TM,TM Samala, 1287919 Samala, 1287919 Samala, 1287919 SS.TM,TM Samala, 1287919 SS.TM,TM		~-						
432072 N6237 14.289109 Semala, Semal		25						
417433 BEZ70266 1482718 1482718 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 14727 1482718 1482718 148271 1482718 14827								
452194 ABS9413 Hs.332849 SS.TM.Zhm.3.ANF_receptor.sushil activated laucocycle cell adhesion molecumal activated laucocycle cell activated lauc						Sema,ig,		
32 32 32 32 32 32 32 32								
42004 AM015140 Hs.161723 457282 A92170 hs.161723 457282 A92172 hs.161723 45728 A92172 hs.16172 hs.161723 45728 A92172 hs.16172 hs.16172 hs.16172 hs.16172 hs.161		30						
457282 Algo		50						3.2
421438 NN,003654Hs.104576 431104 AW970599 Hs.3131030 3.58rm.lg, S.S.PCJ.RasGEF.hormone_rec.zt-C4, Sersalg, S.S.P.CJ.RasGEF.hormone_rec.zt-C4, Horno sapiens collect induction of the state							hypothetical protein FLJ14251	
35 44377 EB552138 1489736 1489736 1489736 1489736 1489736 14897376 14897376 14897376 14897376 1489737 14897376 14897376 14897376 14897376 14897376 1489737 1						SS	carbohydrate (keratan sulfate Gal-6) sul	
49898 AN97706 Hs 201925 FGF								
41547 297171 Hs.78454 44346 BESA946 Hs.5167 ST.NM.SFS.ST.M.Tm. 40494 Hs.5167 ST.NM.SFS.ST.M.Tm. 42343 AA25062 A2343 AA25062 42343 AA25062 A3243 AA25062 44546 AW297151 Hs.195922 40494 A886540 Hs.23 A88540		35						
44.3446 BE549446 H.5-167 24.345 BE53046 BE549446 H.5-167 24.345 BE53095 H.8-389 S.S. F.M. S.S. T.M. S.S. T.M. Horn sapiens mRNA.c DNAF72/H.3-4F152 (fr. 3.2 2.3 2.4								
42343 AA23662 AA25276 EE53065 Ha.833 SS, P\$50, P\$50 A50								
441278 BESS10985 Ha.833 Asserting			443404	AA230002	ns.5107			
458451 AW297181 Hs.195922 SS_Ribosomal_L14 ESTs Horno saplens cDNA FLJ13446 fis, clone PL 3.2 41373 117760 Hs.75517 SS_lamini_EGF_lamini_Nerm_adh_short. SS_LAME		40			Hs 833			
440449 AA884540 Ha.201925 FGF, FGF, Horno salpens CDNA FLI13446 fis, chone PL 3.2 434876 AF164077 Hs.61460 S.S., Huhl Fabrica S.S., Huhl S.S., Huh								
43/4876 AF169477 18-581450 S.S.H.LI								
4575 AP:21467 H: A42234 4577 AP:21467 H: A42234 4577 AP:21467 H: A42234 45840 AV55941 H: 442565 5 5 450847 NJ, 00315541 H: 25990 5 5 642087 NJ, 00315541 B: 270149 5 5 5 5 642087 NJ, 00315541 B: 270149 5 5 642087 NJ, 00315541 B: 270149 642097 AV513891 H: 270149 642097 AV513891 H: 270149 642097 AV513891 H: 2701549 642097 AV513891 H: 28090 65 65 65 65 65 65 65 65 65 65 66 66 66			413753	U17760				
44573 R21651 hs.324725 S.S.T.M.Rbesomal_S3Ae,G-gamma S.A.G. Gamma S.A.G								
		45						
459847 NM_00315514s 25590 S.S. homeobox, stannicocalch 3.2								
50 452110 T47627 Hs.280105 S.S.T.M.Activin_recp.ph/nase Horno saplens cDNA FLJ11309 fs, done PL 3.2 45281 A7686270 Hs.278554 Hs.27856270 Hs.27								
1,000 1,00		50						3.2
402837 NA		50						
1,000 1,00							ENSP00000241312*:DJ947L8.1.8 (novel Sush	
5.55 417316 A080042 Hs.338901 SS.RNA.pol.A.RNA.pol.A2/Rbosomel Js24o.nbosomal protein S24 3.1 41301 AVD8315 Hs.21 SLS.RNA.pol.A.RNA.pol.A2/Rbosomel Js24o.nbosomal protein F24 biglycan 3.1 41897 AAS/3439 Hs.294022 SS.Comerch.phormone_prot_zl-C4,connexd biglycan byplycan 3.1 48030 N30714 Hs.29390 SS.STM.Octa hs.57.Mol. protein F214950 3.1 60 407604 AV191962 Hs.296293 SS.TM.C1q. collapan., type VIII, alpha 2 3.1 45657 A0002016 Hs.14727 SS.TM.SEA, mucin.1, transmembrane 3.1 45657 A0002016 Hs.28691 SS.TM.Zm.L, mm.SS TONDU 3.1 656 A0002036 Hs.28691 SS.TM.Zm.L, mm.SS TONDU 3.1 657 432206 A0002016 Hs.28691 Ms.DOU/Im.1, ST.M.Urp.sin.ltefol.ltypsin.ltef Homo sapless, clone MGc:16327, mRNA, com 3.1 405842 A422420 SS.TM.Line Line Line Line Line Line Line Line						,SS,Chromo_shadow,chromo,		
13011 AW059115 He.921 SSLERLERNT SSLRNT LIRR biglycan 14937 A4254394 Hs.244022 SS.Comradh, Domrone, per.gl-CA.comaekin hypothelical protein FL.14050 3.1 14937 A4254394 Hs.24022 SS.Tim. Sea, Hs.24054 SS.						,SS,TM,transport_prot,SWIB,RhoGAP,DAG_	PEglycerol-3-phosphate dehydrogenase 1 (so	
414987 AAS24394 Ha.294022 S.S. connexth, hormone_rec_zt-C4_connexts hypothetical protein FLJ14850 3.1 429197 H24711 Ha.29593 S.S. connexth, hormone_rec_zt-C4_connexts hypothetical protein FLJ14850 3.1 48000 N30714 Ha.325980 S.S. to S.	٠	22						
429197 I24471 Hs. 28930 SS. Gelsolin, ESTs, Weakly similar to T2072 Pypolhed 3.1								
448030 N30714 Hs.325980 SS.TM membrane-spanning 4-domains, subfamily A 3.1								
60 407694 AW191962 Hs.249239 SS.TM.C1q, collapen, type VIII, alpha 2 3.1 419922 J95361 Hs.989633 SS.TM.C1q, collapen, type VIII, alpha 2 3.1 44972 AV002016 Hs.114727 SS.TM.SEA, muich 1, transmembrane Horne asplens, clone MGC:16327, mRNA, com 3.1 44371 BEZ81128 Hs.9939 SS.TM.71m,1,rm,SS TOXND TOXND TOXND 3.1 TOXND 443271 Hs.28661 NS.2661 NS.TM.TM.C1,rm,SS TOXND TOX		,	429197	M29971				
419922 J05581 Hs.89603 SS,TM,SEA, muún l, transmembrane 3.1 45672 A0002016 Hs.141727 S,FM,FM Homo saplens, done MGC-16327, mRNA, com 3.1 40000 A19000 A19000 A19000 A19000 A19000 A19000 A19000 A19000 A19000 40000 A19000		60						
45872 AVC02016 Hs.114727 , S.S.PK.PK Homo saplens, done MGC:16327, mRNA, com 3.1 TONDU 15226 AVC02033 Hs.28681 T.M.(GDI,Tin_1, m.SS 402246 AVC02033 Hs.28681 T.M.(GDI,Tin_1, SS, TIM,trypsin,tSS,		50						
443171 BEZB1128 Hs.9930 SS.TM.7m1.mm.SS TONDU 3.1								
45226 AVX00933 Hs.28661 ,TM,GD),7m-1, Homo saplens cDNA FL10071 fis, done HE 3.1 40564 A32201 AIS38613 Hs.298241 SS,TM,trysin,SS,TM,trefoll,trypsin,tef Transmembrane protease, serine 3 3.1 405642 AJ245210 SS Bythomo saplens mRNA, for immunoglobulin 3.1							TONDU	
405642 AJ245210 SS gb:Homo saptens mRNA for immunoglobulin 3.1			452256	AK000933		,TM,GDI,7tm_1,		
400042 AUZ43210 00		65			Hs.298241	SS,TM,trypsin,SS,TM,trefoll,trypsin,tref	Transmembrane protease, serine 3	
400903 NA SS Target Exon 5.1								
			400903	NA		88	I alder Exou	3.1

		Al031771		,SS,Glyco_hydro_2	ESTs	3.1
		AW962597		SS,WD40,SS,WD40,	KIAA1547 protein	3.1
			Hs.132781	fn3,SS,TM,EF1BD	class I cytokine receptor	3.1
_		AW383226		SS	ESTs, Weakly similar to G01763 atrophin-	3.1
5		AI936442		UBACT_repeat,SS,UBACT_repeat,ThiF_fami	lyhypothetical protein FLJ10808	3.1
	419150	T29618	Hs.89640	,TM,pkinase,fn3,	TEK tyrosine kinase, endothellal (venous	3.1
		AA587773		,SS,SRCR,	Homo sapiens, Similar to RIKEN cDNA 5830	3.1
	418624	A1734080	Hs.104211	Sema,ig,	ESTs	3.1
	436291	BE568452	Hs.5101	,SS,abhydrolase,	protein regulator of cytokinesis 1	3.1
10	411000	N40449	Hs.201619	SS	ESTs, Weakly similar to S38383 SEB48 pro	3.1
	412519	AA196241	Hs.73980	SS, Troponin, Hemagalutinin, SS, TM, C2, Tropo		3.1
			Hs.241493	,SS,pro_isomerase,	natural killer-tumor recognition sequenc	3.1
	422790	AA809875	Hs.25933	,TM,hlstone,Sec1,hlstone,sugar_tr	ESTs	3.1
			Hs.199754	,SS,TM,7tm_2,GPS	ESTs	3.1
15		AJ278120		.SS.WD40	putative ankyrin-repeat containing prote	3.1
		AW630534		,SS,TM,rrm,oxldored_q6,oxidored_q6	Homo sapiens, clone MGC:9381, mRNA, comp	3.1
		R00866	TION GETT	SS	gb:ye79c02.s1 Soares fetal liver spleen	3.0
		AW591433	Hs 298241	,SS,TM,trefoil,trypsin,trefoll	Transmembrane protease, serine 3	3.0
			Hs.126730	.TM.PH.	ESTs, Weakly similar to KIAA1214 protein	3.0
20			Hs.325823	.SS,TM,CD36	ESTs, Moderately similar to ALU5_HUMAN A	3.0
		R91600			gb:yq10c02.r1 Soares fetal liver spleen	3.0
			Hs.162209	SS,TM,SS,TM,PMP22_Claudin,PMP22_Clau		3.0
		H58373	Hs.332938	,SS.TM	hypothetical protein MGC5370	3.0
	401197	1100010	110.002.000	arf,arf,	ENSP00000229263*:HSPC213.	3.0
25		AW204256	Hs 291887	.wnt.	ESTs	3.0
			Hs.336432	,SS,mm,zf-RanBP,pkinase,C2,pkinase_C,DA		3.0
		AA381807		SS.SS	hypoxia-inducible protein 2	3.0
		W27249	Hs.8109	SS	hypothetical protein FLJ21080	3.0
	404826	112.2.10	113.0100	,SS,TM	Target Exon	3.0
30		H70284	Hs.160152	.SS.RA	ESTs, Weakly similar to FPHU alpha-fetop	3.0
50		AL034548		HMG_box,pkinase,zf-CCHC,SS,TM,HMG_bo		3.0
		AW977653		,SS,ribonuc red_sm,	ribonucleolide reductase M2 polypeptide	3.0
			Hs.193465	,death,ZU5,pkinase,Activin_recp,	ESTs	3.0
			Hs.282804	SS,Cu-oxidase,SS,Cu-oxidase,Cu-oxidase	hypothetical protein FLJ22704	3.0
35		C05837	Hs.145807	SS,TM	hypothetical protein FLJ13593	3.0
55			Hs.179808	SS	ESTs	3.0
		AW103364		SS,TGF-beta,TGFb_propeptide,SS,TGF-beta		3.0
		AU077005		SS,disintegrin,Reprolysin,Pep_M12B_prope	a disintegrin and metalloproteinase doma	3.0
			Hs.127698	SS SS	ESTs, Moderately similar to 2109260A B c	3.0
40		AB032417		Frizzled,Fz,SS,TM,Frizzled,Fz,	frizzled (Drosophila) homolog 4	3.0
40		U20325	Hs.1707	SS.SS	cocaine- and amphetamine-regulated trans	3.0
		AW385224		.SS.TM.Phosphodiest.	ectonucleotide pyrophosphatase/phosphodi	3.0
			Hs.131257	,SS,TM,G-gamma	ESTs	3.0
			Hs.105822	,SS,TM,pkinase,	ESTS	3.0
	432204	~~JZ00/	115.100022	,oo, rwi,pxiiiase,	EOIS	3.0

TABLE 20A

Unique Eos probeset identifier number

Table 20A shows the accession numbers for those pkeys lacking unigeneID's for Table 20. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

٠	C	

15		CAT number: Gene custer number Accession: Genbank accession numbers						
	Pkey	CAT number	Accessions					
20	410785	1221055_1	AW803341 AW803265 AW803403 AW803466 AW803402 AW803413 AW803268 AW803396 AW803334 AW803355					
	411667	1253334_1	BE 160 198 AW935898 T11520 AW935890 AW856073 AW861034					
	418636	177402_1	AW749855 AA225995 AW750208 AW750206					
	420854	197072_1	AW298627 A1864514 A1263168 AA281079					
25	422128	211994_1	AW881145 AA600718 M85537 AA304575 T06067 AA331991					
	423431	228162_1	AA325002 AA325758 AW962182					
	423945	233566_1	AA119943 AW946933 AA334202 AA332882					
	426878	273265_1	BE069341 AW748403 AL044891 AI908240 AA393080					
	433687	373061_1	AA743991 AA604862 AW272737					
30	447197	711623_1	R36075 A1366546 R36167					
	451631	878098_1	R00666 R01523 A1606815					
	456207	1650781	AA193450					
	456592	202684_1	R91600 T87079 AA291455					

TABLE 20B

Unique number corresponding to an Eos probeset

Table 20B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 20. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

	10	Ref:			source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication ed "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.
		Strand:			NA strand from which exons were predicted.
		Nt_posit	ion:		ucleolide positions of predicted exons.
		_			
	15				
		Pkey	Ref	Strand	Nt_position
		400608	9887666	Minus	96756-97558
		400903	2911732	Plus	59112-59228
- 2	20	401045	8117619	Plus	90044-90184,91111-91345
		401093	8516137	Minus	22335-23166
		401197	9719705	Plus	176341-176452
		401747	9789672	Minus	118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097-131258,131866-
					131932,132451-132575,133580-134011
- 1	25		7249190		28397-28617,28920-29045,29135-29296,29411-29567,29705-29787,30224-30573
		401781	7249190	Minus	83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814
		401866	8018106	Plus	73126-73623
			9966312		29782-29932
		402408	9796239	Minus	110326-110491
	30		9884928		66350-66496
			9909429		81747-82094
			9369121		2013-2186,9570-9758,11136-11309,19429-19677,21210-21455,23368-23562,24342-24527,29132-29320
			9958183		58895-59036,66618-66789
		403329	8516120	Plus	96450-96598
	35		6862650		62554-62712,69449-69602
			7711864		100742-100904,101322-101503
			7684554	Minus	82121-83229

404347 9838195 404826 6572184

405366 2182280

Plus

Plus

Plus

405654 4895155 Minus 53624-53759

74493-74829

47726-48046

22478-22632

TABLE 21: 210 GENES UP-REGULATED IN BREAST CANCER COMPARED TO NORMAL ADULT TISSUES THAT ARE LIKELY TO ENCODE EITHER ENZYMES OR PROTEINS AMENABLE TO MODULATION BY SMALL MOLECULES

Table 21 shows 210 genes up-regulated in breast cancer compared to normal adult tissues that are likely to encode either enzymes or proteins amenable to modulation by small molecules. These were selected as for Table 19, except that the ratio was greater than or equal to 3.0, the "average" normal adult tissue level was set to the 85th percentile value amongst 144 non-malignant tissues, and the 96th percentile value amongst 73 breast cancers was greater than or equal 80 units, and the predicted protein contained a structural domain that is indicative of enzymatic function or of being modulatable by small molecules (e.g. pkinase, 15 peptidase, phosphatase, ATPase, or ion transporter domains). The predicted protein domains are noted.

20	Pkey:	Unique Eos probeset identifier number		
	ExAccn:	Exemplar Accession number, Genbank accession number		
	UnigenetD:	Unigene number		
	Unigene Title:	Unigene gene title		
	R1:	Ratio of 93rd percentile tumor to 85th percentile of normal body tissue		

	23						
		Pkey	ExAcen	UnigeneiD	Predicted Protein Domains	UnigeneTitle	R1
				Hs.176588	SS,p450	ESTs, Weakly similar to CP4Y_HUMAN CYTOC	65.7
			AA250737		death,ZU5,TM,Activin_recp,pkinase,	BMP-R1B	55.9
	30	424735	U31875	Hs.272499	\$S,TM	short-chain alcohol dehydrogenase family	53.8
		407178	AA195651	Hs.104106	SS,Dihydroorotase,	ESTs	39.3
			AW138959		Phosphodiest,Somatomedin_B,	ESTs	34.9
		450375	AA009647	Hs.8850	SS,TM,disintegrin,Pep_M12B_propep,Reprol	a disintegrin and metalloproteinase doma	25.7
		429170	NM_001394	Hs.2359	DSPc,Rhodanese,	dual specificity phosphatase 4	24.9
	35	445730	A1624342	Hs.170042	SS,TM,Cation_efflux	ESTs	24.1
		424634	NM_003613	Hs.151407	ig,tsp_1,SS,AAA	cartilage intermediate layer protein, nu	21.7
		420757	X78592	Hs.99915	hormone_rec,Androgen_recep,zf-C4,	androgen receptor (dihydrotestosterone r	21.7
		424399	A1905687	Hs.2533	SS	aldehyde dehydrogenase 9 family, member	20.3
		447350	A1375572	Hs.172634	pkinase,	ESTs	19.2
4	40	456207	AA193450		SS,TM,p450,p450	gb:zr40e07.r1 Soares_NhHMPu_S1 Homo sapi	18.3
		456938	X52509	Hs.161640	SS,TM,aminotran_1_2,Cadherin_C_term,cadi		18.1
		402578				C1001134:gi 2117372 pir i65981 fatty ac	17.8
		425692		Hs.155956		N-acetyltransferase 1 (arylamine N-acety	16.7
		424001	W67883		pkinase,	paternally expressed 10	16.5
4		418007			SS,hemopexin,Peptidase_M10,SS,Peptidase	_matrix metalloproteinase 1 (MMP1; inters	15.7
		421727		Hs.107318		kynurenine 3-monooxygenase (kynurenine 3	15.3
				Hs.23439	SS,Peptidase_M1,	ESTs	13.9
		400289		Hs.2258	hemopexin,Peptidase_M10,SS,Peptidase_M1		13.5
			AW873596			calmodulin 2 (phosphorylase kinase, delt	13.0
				Hs.102267	SS,Lysyl_oxidase	lysyl oxidase	12.8
		400295	W72838	Hs.2533	SS	aldehyde dehydrogenase 9 family, member	12.7
			AW732573	Hs.47584	TM,K_tetra,ion_trans,SS,TM,K_tetra,ion_t	potassium voltage-gated channel, delayed	11.9
		421155		Hs.102267		lysyl oxidase	11.8
		424905	NM_002497	Hs.153704	pkinase, SS, TM, pkinase, polyprenyl_synt,	NIMA (never in mitosis gene a)-related k	11.7
		438167		Hs.24286		ESTs	11.5
			AI907673		pkinase,	gb:IL-BT152-080399-004 BT152 Homo saplen	11.5
			AA410943			gb:zt32h03.r1 Soares ovary tumor NbHOT H	11.4
		445263	H57646	Hs.42586	SS,Acyltransferase,	KIAA1560 protein	11.2

5

10

	423887	AL080207	Hs. 134585	SS,TM,BRCT,ank,ABC_tran,ABC_tran	DKFZP434G232 protein	10.9
		NM_007050		SS,TM,Y_phosphatase,MAM,fn3,	protein tyrosine phosphatase, receptor t	10.4
		BE440042		SS,Peptidase_M10,hemopexin,SS,Peptidase		10.3
_	418912	NM_000685	Hs.89472	SS,TM,7tm_1,SS,TM,7tm_1,	angiotensin receptor 1	10.3
5		AL120173	Hs.301663	SS,pkinase,	ESTs	10.3
	402408			SS,carb_anhydrase	NM_030920*:Homo sapiens hypothetical pro	9.8
			Hs.72472	death,ZU5,TM,Activin_recp,pkinase,	BMP-R1B	9.4
		M31126	Hs.272620	SS,Peptidase_M10,hemopexin,SS,Peptidase	_matrix metalloproteinase 11 (MMP11; stro	9.1
		AB041035	Hs.93847	Ferric_reduct,TM,Ferric_reduct,	NM_016931:Homo sapiens NADPH oxidase 4 (9.1
10	400285			TM,ABC_tran,ABC_membrane,	Eos Control	8.8
		AF123050		SS,TM,ubiquitin,7tm_3,ANF_receptor,sushi	diubiquitin	8.6
		AA780473		SS,p450,SS,p450	cytochrome P450, subfamily IVB, polypept	8.3
		NM_003866		SS,SS	inositol polyphosphate-4-phosphatase, ty	8.3
10		X65724		SS,Cys_knot,SS	Norrie disease (pseudoglioma)	8.3
15		R45154		death,ZU5,pkinase,Activin_recp,	ESTs	8.3
			Hs.180884	SS,Zn_carbOpept,Propep_M14,SS,Propep_N		8.2
			Hs.1674	GATase_2,SIS,	glutamine-fructose-6-phosphate transamin	8.1
	426261	AW242243	Hs.168670	SS,TM,WD40,ubiquitin,E1-E2_ATPase,Cation		7.8
20		NM_001034 NM_004482		SS TAKEL TO A POST OF THE PRO	ribonucleotide reductase M2 polypeptide	7.6
20		D38299	Hs.170917		UDP-N-acetyl-alpha-D-galactosamine:polyp	7.6
			Hs.8895	SS,TM,7tm_1, SS,TM,disIntegrin,Pep_M12B_propep,Reprol	prostaglandin E receptor 3 (subtype EP3)	7.5 7.3
		Y12735	Hs.38018	pkinase,		7.2
		U37519	Hs.87539	SS,aldedh,SS,aldedh,	dual-specificity tyrosine-(Y)-phosphoryl aldehyde dehydrogenase 3 family, member	7.2
25		U92649	Hs.64311	TM,disIntegrin,Reprolysin,	a disintegrin and metalloproteinase doma	7.1
23		AW204099		i w, distilite giiit, Ae prolystii,	ESTs, Weakly similar to AF126780 1 retin	6.9
	423545	AP000692	He 129781	GAF,PDEase	chromosome 21 open reading frame 5	6.8
	401045		110.120101	ICE_p20,SS,ICE_p10,ICE_p20,ICE_p10,ICE		0.0
		C11001883	*:ail67532781re	INP_033938.11 c	6.7	
30	442082	R41823	Hs.7413	TM,EPH_lbd,pkinase,SAM,fn3,	ESTs; calsyntenin-2	6.7
		AI655499	Hs.161712	TM,Activin_recp,pkinase,death,ZU5,	ESTs	6.6
	404091	NA		TM,7tm_3,ANF_receptor,	Target Exon	6.6
	450865	Al248013	Hs.106532	zf-C2H2	ESTs, Weakly similar to I38588 reverse t	6.5
		NM_002914		SS,AAA,Viral_helicase1,rrm,	replication factor C (activator 1) 2 (40	6.5
35		AF055575		TM,ion_trans,SS,TM,ion_trans,	calcium channel, voltage-dependent, L ty	6.4
		AA932186		TM,7tm_1,	ESTs	6.2
		NM_005025		SS,serpin,	serine (or cystelne) proteinase Inhibito	6.2
		AW167087		SS,ig,Sema,pkinase,	ESTs	6.2
40		R45503	Hs.97469	SS,TM	ESTs, Highly similar to A39769 N-acetyll	6.1
40		Y00272	Hs.184572	SS,pkinase,pkinase	cell division cycle 2, G1 to S and G2 to	6.1
		X03363	11- 40000	SS,TM,pkinase,Recep_L_domain,SH2,PH,Fu		6.1
	402230	NM_012093	SMS, 18208	SS,adenylatekinase,	adenylate kinase 5	6.1
		J05070	Hs.151738	SS,TM,p450,	Target Exon	6.1
45 -		AI572739	Hs.195471	SS,Peptidase_M10,fn2,hemopexin,SS,TM,Pe 6PF2K,PGAM,	6-phosphofructo-2-kinase/fructose-2,6-bl	5.8 5.8
		X81334	Hs.2936	SS,Peptidase_M10,hemopexin,SS,Peptidase		5.6
	400286		113.2300	SS,TM,ABC_tran,ABC_membrane,SS	C16000922:gi 7499103 pir T20903 hypothe	5.6
		NM_005940	Hs.155324	SS,Peptidase_M10,hemopexin,SS	matrix metalloproteinase 11 (MMP11; stro	5.4
		AA828246		UCH-1,pkinase,OPR,Rhodanese,AMP-binding	n.ESTs	5.4
50		AF086120		SS,TM,UDPGT,casein_kappa	ESTs	5.2
		AI806867		SS,TM,Phosphodiest,	ESTs	5.2
	452355	N54926	Hs.29202	TM,7tm_1,TM	G protein-coupled receptor 34	5.2
	427711	M31659	Hs.180408	SS	solute carrier family 25 (mitochondrial	5.2
		AL117406	Hs.200102	SS,TM,ABC_tran,ABC_membrane,	ATP-binding cassette transporter MRP8	5.1
55	425325	X52730	Hs.1892 '	SS,NNMT_PNMT_TEMT,SS,NNMT_PNMT_1	TEMT,STAR	
			nolamine N-met	hyltransferase	5.1	
			Hs.21814 ·	SS,TM,pkinase,	interleukin 20 receptor, alpha	5.1
	403593			CIDE-N,pkinase	Target Exon	5.1
CO		AA564991		alpha-amylase,	ESTs	5.0
60		AI281848		SS,TM,7tm_3,Ribosomal_L13	retinolc acid induced 3	4.9
		NM_000169		SS,Meliblase,BTK,PH,pkinase,SH2,SH3,Ribo		4.9
		W88559	Hs.1787 Hs.68583	TM,lon_trans,K_tetra, Peptidase_M3,	proteolipid protein 1 (Pelizaeus-Merzbac	4.9
		U80034 NM_004460			mitochondrial Intermediate peptidase	4.9 4.9
65		AA641836		SS,DPPIV_N_term,Peptidase_S9,SS,DPPIV_ SS,typsin	_N_noroblast activation protein, alpha hypothetical protein FLJ23186	4.9
33		M73700	Hs.105938	SS,transferrin,7tm_1,transferrin,	lactotransferrin	4.8
		AW057736		SS,TM,pkinase,Recep_L_domain,SH2,PH,Fu	nHFR2 recentor tyrosine kinase (c-ert-h2	4.8
					militar reachter Arabine unique (a.e.a.a.ari	

	400181	NA			ENSP00000171555:CDNA FLJ10727 fis, clone	4.6
		AA447453		SS,TM,7tm_1,	Homo sapiens mRNA; cDNA DKFZp586M0723 (f	4.6
'	435542	AA687376	Hs.269533	SS,pkinase,RhoGEF,ig,PH,SH3,	ESTs	4.6
	417576	AA339449	Hs.82285	AIRS,formyl_transf,GARS,SS,GARS,AIRS,for		4.6
5	446089	AI860021	Hs.270651	pkinase	ESTs, Moderately similar to A47582 B-cel	4.6
	424420	BE614743		SS,TM,MAPEG,	prostaglandin E synthase	4.5
	452190	H26735	Hs.91668	SS,TM,PH,SH2,Furin-like,pkinase,Recep_L_	Homo sapiens clone PP1498 unknown mRNA	4.5
	419986	AI345455		pkinase,OPR,	GA-binding protein transcription factor,	4.5
	421582	AI910275	Hs.1406	SS,trefoll,SS,TM,Idl_recept_a,SRCR,tryps	trefoil factor 1 (pS2)	4.5
10		AA863360		SS,TM,p450,	ESTs, Weakly similar to fatty acid omega	4.4
		AW294092	Hs.21594	SS,ras,Y_phosphatase,ras	hypothetical protein MGC15754	4.4
	400205				NM_006265*:Homo sapiens RAD21 (S. pombe)	4.4
		AW296927			gb:UI-H-BW0-ajc-c-07-0-UI.s1 NCI_CGAP_Su	4.3
		AF181490		SS,pyr_redox,SS,Ribosomal_L39	prenylcysteine lyase	4.3
15					Homo sapiens clone 23736 mRNA sequence	4.3
		AL043004		SS,pkinase,	KIAA0135 protein	4.3
			Hs.35598	SS,TM,trypsin,vwd,ig	ESTs	4.3
		NM_013257		pklnase,pkinase_C,	serum/glucocorticoid regulated kinase-li	4.2
		AW073310		pkinase,	Homo saplens cDNA FLJ14142 fis, clone MA	4.2
20		NM_002918		SS,AAA,PI3_PI4_kinase,PI3Ka,PI3K_rbd,PI3	replication factor C (activator 1) 4 (37	4.2
		Al345227		SS,TM,pkinase	ESTs, Weakly similar to B34087 hypotheti	4.1
		AA829286		SS,SAA_proteins,ABC_membrane,ABC_tran,		4.1
		NM_001809		SS,TM,thiolase,	centromere protein A (17kD)	4.1
0.5			Hs.1174	ank,ank	cyclin-dependent kinase inhibitor 2A (me	4.1
25		S70284		SS,TM,Desaturase,SS	9b:stearoyl-CoA desaturase [human, adipo	4.1
		AL133916		SS,ig,pkinase,LRRNT,LRRCT,	hypothetical protein FLJ20093	4.1
		Z97630	Hs.226117	SS,TM,linker_histone,7tm_1	H1 histone family, member 0	4.1 4.0
		NM_00535		SS,TM,p450,	lipase, hormone-sensitive	4.0
20		NM_013989		SS,T4_delodinase,T4_delodinase,	deiodinase, lodothyronine, type II ESTs, Moderately similar to ALU7_HUMAN A	4.0
30		BE300512		SS,Y_phosphatase,Band_41	tissue inhibitor of metalloproteinase 4	3.9
		U76456	Hs.190787	SS,TIMP, SS,Peptidase_M10,SS,Peptidase_M10,hemo		3.9
		L22524	Hs.2256		protein kinase, cAMP-dependent, regulato	3.9
		M31158	Hs.77439	SS,cNMP_binding,Rlla,HMG_box	ESTs, Highly similar to AF157833 1 noncl	3.8
35		AW452631 BE247550		SS,abhydrolase SS,SH2,PH,SS,TM,PH,SH2,Furin-like,pkinas		3.8
33			Hs.128065	SS,Peptidase_C1,gpdh	ESTs	3.8
	403943	AA 129040	HS. 120000	p450,SS,p450	C5000355:qi 4503225 ref NP_000765.1 cyt	3.8
		A1/052705	Hs.173334	P430,33,P430	ELL-RELATED RNA POLYMERASE II, ELONGATIO	3.8
			Hs.238936	SS,TM,7tm_1,	ESTs. Weakly similar to (defline not ava	3.8
40		M26380	Hs.180878	SS.llpase.PLAT.Sec7.PH,	lipoprotein lipase	3.7
40		X54942	Hs.83758	CKS,SS,CKS,	CDC28 protein kinase 2	3.7
		AI041793		TM.7tm_1,	ESTs	3.7
		Y08565	Hs.151678	Glycos_transf_2,Rlcin_B_lectin,SS,Glycos	UDP-N-acetyl-alpha-D-galactosamine:polyp	3.7
			Hs.122908	SS.Pribosyltran,Sulfatase	DNA replication factor	3.7
45		NM_01473		PHD,pkinase,SS	KIAA0215 gene product	3.7
45		AU076643		SS,TM,efhand,ion_trans	secreted phosphoprotein 1 (asteopontin,	3.7
		Y13647	Hs.119597	SS,TM,Desaturase,SS	stearoyl-CoA desaturase (delta-9-desatur	3.6
		AW207175		SS,7tm_1,SPRY,	ESTs	3.6
			9Hs.169266	SS,TM,7tm_1,	neuropeptide Y receptor Y1	3.6
50		NM_00315		SS,pkinase,vwa,vwa,Glyco_transf_8	serine/threonine kinase 2	3.6
-		NM_01440		SS,PH,lactamase_B	GPI-anchored metastasis-associated prote	3.6
			Hs.129873	SS,p450,p450	ESTs, Weakly similar to A36036 cytochrom	3.6
		AF059214			cholesterol 25-hydroxylase	3.6
			Hs.103849	TM,hemopexin,Peptidase_M10,hemopexin,Pe	ephypothetical protein DKFZp761D112	3.6
55		AW895719		TM,ion_trans,K_tetra,	gb:QV4-NN0039-290300-154-f06 NN0039 Homo	3.6
		NM_00381			a disintegrin and metalloproteinase doma	3.6
		U29344	Hs.83190	Acyl_transf,adh_zinc,ketoacyl-synt,pp-bl	fatty acid synthase	3.5
			Hs.271699	IMS,SS	polymerase (DNA directed) lota	3.5
		S57296	Hs.323910	SS,TM,SH2,PH,pkinase,Recep_L_domain,Ft	riv-erb-b2 avlan erythroblastic leukemla v	3.5
60			Hs.333526	SS	HER2 receptor tyrosina kinase (c-erb-b2,	3.5
		AA121098		pkinase,POLO_box,SS,pkinase,POLO_box,	serum-Inducible kinase	3.5
		H22570	Hs.172572	SS.lg.pkinase,LRRNT,LRRCT,	hypothetical protein FLJ20093	3.5
		AA116021	Hs.38260	SS,UCH-1,UCH-2,SS,TM,G_glu_transpept	ubiquitin specific protease 18	3.5
		AF039241		Peptidase_M24,	histone deacetylase 5	3.5
65	412970	AB026436	Hs.177534	DSPc,Myosin_tall,	dual specificity phosphatase 10	3.5
		N53437	Hs.18268	SS,adenylatekinase,	adenylate kinase 5	3.5
		U25128	Hs.159499	SS,TM,7tm_2,SS,TM,7tm_2	parathyroid hormone receptor 2	3.4

	407846 AA426202 Hs.40403	TM,ABC_membrane,ABC_tran,Ribosomal_S		3.4
	406925 L34041 Hs.9739		PE-glycerol-3-phosphate dehydrogenase 1 (so	3.4
	445873 AA250970 Hs.251946	SS,mm,PABP,pkinase,14-3-3,mm	poly(A)-binding protein, cytoplasmic 1-l	3.4
_	418054 NM_002318Hs.83354	SS,TM,mito_carr,Lysyl_oxidase	lysyl oxidase-like 2	3.4
5	406815 AA833930 Hs.288036	SS,IPPT,	tRNA isopentenylpyrophosphate transferas	3.4
	410530 M25809 Hs.64173	ATP-synt_ab,SS,7tm_1,ATP-synt_ab	ATPase, H transporting, lysosomal (vacuo	3.4
	407021 U52077	•	gb:Human mariner1 transposase gene, comp	3.4
	421168 AF182277 Hs.330780	SS,p450,SS	cylochrome P450, subfamily IIB (phenobar	3.4
	431473 AA825686 Hs.321176	SS	ESTs, Weakly similar to S65824 reverse t	3.4
10	408101 AW968504 Hs.123073	pkinase.	CDC2-related protein kinase 7	3.4
	422083 NM 001141Hs.111256	lipoxygenase,PLAT,	arachidonate 15-lipoxygenase, second typ	3.3
	411393 AW797437 Hs.69771	SS,sushl,trypsin,vwa,rrm,fibrinogen_C,fn	B-factor, properdin	3.3
	435767 H73505 Hs.117874	SS,Peptidase_S8,P,Peptidase_S8,P	ESTs	3.3
	433068 NM_006456Hs.288215	SS.Pribosyltran.	sialyltransferase	3.3
15	426928 AF037062 Hs.172914	SS,adh_short,TGF-beta,TGFb_propeptide	retinol dehydrogenase 5 (11-cls and 9-ci	3.3
	414575 H11257 Hs.22968	SS,pkinase,iq,	Homo sapiens clone IMAGE:451939, mRNA se	3.3
	445941 Al267371 Hs.172636	SS,SS,lipoxygenase,PLAT	ESTs	3.3
	444542 Al161293 Hs.280380	SS,SS,Peptidase_M1,EGF,ig,lectin_c,sushi	aminopeptidase	3.3
	425741 AF052152 Hs.159412	pkinase,	Homo sapiens clone 24628 mRNA sequence	3.3
20	434228 Z42047 Hs.283978	SS.TM.7tm_1	Homo sapiens PRO2751 mRNA, complete cds	3.3
20	433264 D85782 Hs.3229	55,1W,7UII_1	cysteine dioxygenase, type i	3.3
	400419 AF084545	SS,Peptidase_M1,	Target	3.3
	439750 AL359053 Hs.57664	TM,integrin_B,Ricin_B_lectin,rm	Homo sapiens mRNA full length insert cDN	3.3
	439750 AL339053 HS.57664 417757 R19897 Hs.106604		ESTs	3.3
25	452194 Al694413 Hs.332649	death,ZU5,pkinase,Activin_recp,		3.2
23		SS,TM,7tm_3,ANF_receptor,sushi	olfactory receptor, family 2, subfamily	3.2
	421458 NM_003654Hs.104576	SS SCIENCE LANGE AND	carbohydrate (keratan sulfate Gal-6) sul	3.2
	443767 BE562136 Hs.9736	SS,PCI,RasGEF,hormone_rec,zf-C4,	proteasome (prosome, macropain) 26S subu	
	422648 D86983 Hs.118893	peroxidase,LRRCT,	Melanoma associated gene	3.2
20	423431 AA326062	SS,p450,p450	gb:EST29171 Cerebellum II Homo saplens c	3.2
30	451264 AI768235	SS,Trehalase	gb:wg82g08.x1 Soares_NSF_F8_9W_OT_PA_P_S	3.2
	452110 T47667 Hs.28005	SS,TM,Activin_recp,pkinase	Homo sapiens cDNA FLJ11309 fis, clone PL	3.2
	439963 AW247529 Hs.6793	TM,p450,Ets	platelet-activating factor acetylhydrola	3.2
	453941 U39817 Hs.36820	SS,DEAD,HRDC,hellcase_C,	Bloom syndrome	3.1
20	406664 L34041 Hs.9739	SS,TM,transport_prot,SWIB,RhoGAP,DAG_	PE-	glycerol-3-
35	phosphate dehydrogenase 1 (so	3.1		
	453487 R31770 Hs.23540	TM,7tm_1,	ESTs	3.1
	420911 U77413 Hs.100293		O-linked N-acetylglucosamine (GlcNAc) tr	3.1
	443171 BE281128 Hs.9030	SS,TM,7tm_1,mn,SS	TONDU	3.1
	452256 AK000933 Hs.28661	TM,GDi,7tm_1,	Homo sapiens cDNA FLJ10071 fis, clone HE	3.1
40	432201 Ai538613 Hs.298241	SS,TM,trypsin,SS,TM,trefoil,trypsin,tref	Transmembrane protease, serine 3	3.1
	419150 T29618 Hs.89640	TM,pkinase,fn3,	TEK tyrosine kinase, endothelial (venous	3.1
	444443 Al149286 Hs.55099	SS	rab6 GTPase activating protein (GAP and	3.1
	426283 NM_003937Hs.169139		kynureninase (L-kynurenine hydrolase)	3.1
	436291 BE568452 Hs.5101	SS,abhydrolase,	protein regulator of cytokinesis 1	3.1
45	450223 AA418204 Hs.241493	SS,pro_isomerase,	natural killer-tumor recognition sequenc	3.1
	424269 AW137691 Hs.199754	SS,TM,7tm_2,GPS	ESTs	3.1
	448105 AW591433 Hs.298241	SS,TM,trefoil,trypsin,trefoil	Transmembrane protease, serine 3	3.0
	452560 BE077084 Hs.336432	SS,rrm,zf-RanBP,pkinase,C2,pkinase_C,DA		3.0

TABLE 21A

Table 21 A shows the accession numbers for those pkeys lacking unigeneID's for Table 21. 5 For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10

Pkey: CAT number: Unique Eos probeset identifier number Gene cluster number Accession: Genhank accession numbers

AW895719 N31451 N41451

AA193450

15

455325

456207

Pkey	CAT number	Accessions
420854	197072_1	AW296927 Al684514 Al263168 AA281079
423431	228162_1	AA326062 AA325758 AW962182
423945	233566_1	AA410943 AW948953 AA334202 AA332882
451264	863988_1	AI768235 R31400 H29082 H23107

TABLE 21B

Table 21B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 21. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey:	Unique number corresponding to an Eos probeset
	Ref:	Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I, et al." refers to the publication
		entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.
	Strand:	Indicates DNA strand from which exons were predicted.
	Nt_position:	Indicates nucleolide positions of predicted exons.

	Pkey	Ref	Strand	Nt_position
	401045	8117619	Plus	90044-90184,91111-91345
	402230	9966312	Minus	29782-29932
20	402408	9796239	Minus	110326-110491
	402578	9884928	Plus	66350-66496
	403593	6862650	Minus	62554-62712.69449-69602
	403943	7711864	Plus	100742-100904.101322-101503
	404091	7684554	Minus	82121-83229

TABLE 22: 739 GENES UP-REGULATED IN BREAST CANCER COMPARED TO NORMAL ADULT BREAST

Table 22 shows 739 genes up-regulated in breast cancer compared to normal adult breast. These were selected as for Table 19, except that the ratio was greater than or equal to 3.0, the denominator was the 85th percentile value for 12 non-malignant breast specimens, and the 96th percentile value amongst the 73 breast cancers was greater than or equal 100 units.

	Pkey:	· u	nique Eos pr	obeset identifier number	
	ExAccn:	E	xemplar Acce	ession number. Genbank accession number	
	Unigene	ID: U	nigene numb	er	
15	Unigene	Title: U	nigene gene	title	
	R1:			ercentile tumor to 85th percentile normal breast	tissue
20	Pkey	ExAccn	UnigeneiD	UnigeneTitle	R1
20	*****			DI ID DAD	
	400292	AA250737	Hs.72472	BMP-R1B	51.5
	424735		Hs.272499		38.3 29.9
		AI127076		hypothetical protein DKFZp564O1278	
25		AL137517		hypothetical protein DKFZp564O1278	26.9 25.8
23		A1955040		ESTs, Weakly similar to transformation-r	23.2
	431211		Hs.83758	gap junction protein, beta 2, 26kD (conn CDC28 protein kinase 2	22.6
	418203				
		AA046309		gb:zf12f01.s1 Soares_fetal_heart_NbHH19W	19.8 18.9
30		AA353776		CD48 antigen (B-cell membrane protein)	
30		AB012113		small inducible cytokine subfamily A (Cy	18.0 17.6
		AB033025		KIAA1199 protein	17.6
		AA219691 AA147884		RAB6 Interacting, kinesin-like (rabkines Homo sapiens cDNA FLJ14388 fis. clone HE	17.1
		A1263307		H2B histone family, member L	17.0
35	407137		HS.239004		16.1
33		D90041	U- 455056	gb:ye53h05.s1 Soares fetal liver spleen N-acetyltransferase 1 (arylamine N-acety	16.1
		A1440266		ESTs. Weakly similar to T24832 hypotheti	16.0
		AA321649		small Inducible cytokine subfamily B (CX	15.5
			18.2246 98Hs.10887	similar to insuspense associated membrane	15.1
40		AL120862			14.9
40		AA746503			14.7
		H60720	Hs.81892	KIAA0101 gene product	14.4
		Al267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082	
		AI768015	Hs.92127	ESTs	14.2
45		A1733881	Hs.72472	BMP-R1B	14.1
73				ESTs, Weakly similar to transformation-r	13.8
		AL120659		aryl-hydrocarbon receptor nuclear transl	13.8
	400205		113.0111	NM_006265*:Homo saplens RAD21 (S. pomb	
		AA489732	Hs.154918		13.4
50		AA948033			13.3
-		AL120173			13.2
		BE280074		cyclin B1	13.2
		M18728	110.2000	gb:Human nonspecific crossreacting antig	13.0
		M29540	He 220520	carcinoembryonic antigen-related cell ad	12.8
55				cytochrome P450, 51 (lanosterol 14-alpha	12.8
55		U33632	Hs.79351	potassium channel, subfamily K, member 1	12.7
		A1493046	Hs.146133		12.5
		BE218239			12.5
		AA193450		gb:zr40e07.r1 Soares_NhHMPu_S1 Homo sa	
60	422805	AA436989	Hs.121017	H2A histone family, member A	12.2
	407811	AW19090	2 Hs.40098	cysteine knot superfamily 1, BMP antagon	12.2
	407178	AA195651	Hs.104106		12.2
	-01110	1100001			

5

	420931	AF044197	Hs.100431	small Inducible cytokine B subfamily (Cy	12.1
	421727	Y13153	Hs.107318	kynurenine 3-monooxygenase (kynurenine 3	12.0
	434408	Al031771	Hs.132586		12.0
-	446591	H44186	Hs.15456	PDZ domain containing 1	11.9
5	431385			membrane-spanning 4-domains, subfamily A	11.8
	443348	AW873596	Hs.182278	calmodulin 2 (phosphorylase kinase, delt	11.7
	416602	NM_006159	Hs.79389	ne! (chicken)-like 2	11.7
	433365		Hs.293797	ESTs	11.6
	437866	AA156781	Hs.74170	metallothionein 1E (functional)	11.5
10	412472	AW975398	Hs.293836		11.4
	416030	H15261	Hs.21948	ESTs	11.3
	439979	AW600291		hypothetical protein FLJ10430	11.3
	420757	X78592	Hs.99915	androgen receptor (dihydrotestosterone r	11.3
	411598	BE336654		H3 histone family, member A	11.2
15	423600	AI633559	Hs.310359		11.2
		AA765694			11.0
	421037	AI684808		programmed cell death 9 (PDCD9)	10.9
	452461	N78223		transcription factor	10.7
	409269			hypothetical protein FLJ13352	10.6
20	417791		Hs.111471		10.6
	447268		Hs.36563	hypothetical protein FLJ22418	10.4
	424001	W67883		paternally expressed 10	10.4
	447342	Al199268	Hs.19322		10.4
	424905			NIMA (never in mitosis gene a)-related k	10.1
25	453619		Hs.33922	Homo sapiens, clone MGC:9084, mRNA, com	
	442942		Hs.131562	FSTe	10.1
	434377				10.1
	427217	AA399272	Hs.144341		10.1
	445730			ESTs	10.0
30	432887	AI926047	Hs.162859		10.0
		AL355715	Hs.28555	programmed cell death 9	9.9
	424590	AW966399		hypothetical protein FLJ20086	9.9
	432169		Hs.2910	phosphoribosyl pyrophosphate synthetase	9.9
	438950		Hs.144530		9.9
35	418836		Hs.161712		9.8
	430291	AV660345		CGI-49 protein	9.8
	444665			B aggressive lymphoma gene	9.7
	407377	C16391		gb:C16391 Clontech human aorta polyA mRN	
	445413	AA151342	Hs.12677	CGI-147 protein	9.7
40	443462	A1064690	Hs.171176		9.7
	442145	AI022650	Hs.8117	erbb2-Interacting protein ERBIN	9.7
		AF212222		uncharacterized bone marrow protein BM04	9.7
	439820			Homo sapiens mRNA full length insert cDN	9.6
	428966			choleslerol 25-hydroxylase	9.6
45	449448		Hs.57471	ESTs	9.6
	433929	Al375499	Hs.27379	ESTs	9.5
	432731	R31178		fibronectin 1	9.3
	411815	AA156679		leucine-rich repeat-containing 2	9.3
	415385	R17798	Hs.7535	COBW-like protein	9.3
50	422026			trinucleotide repeat containing 9	9.2
	432596		Hs.278461		9.2
	439451	AF086270		heterochromatin-like protein 1	9.2
	423945	AA410943		9b:zt32h03.r1 Soares ovary tumor NbHOT H	
	442432	BE093589	Hs.38178	hypothetical protein FLJ23468	9.1
55	446715	Al337735	Hs.173919		
	408771	AW732573		potassium voltage-gated channel, delayed	9.0
	437021	AI076089	Hs.292239		9.0
	428479	Y00272		cell division cycle 2, G1 to S and G2 to	8.9
	428839		Hs.82302	Homo sapiens cDNA FLJ14814 fis, clone NT	
60	402408	NA		NM_030920*:Homo saplens hypothetical pro	
	418601	AA279490	Hs.86368	calmedin	8.8
	426327	W03242	Hs.44898	Homo sapiens done TCCCTA00151 mRNA s	
	419519	Al198719	Hs.176376		8.8
	440621		Hs.150434		8.8
65	446142	Al754693	Hs.145968		8.8
	418196	A1745649	Hs.26549	KIAA1708 protein	8.7
	447178	AW594641	Hs.192417		8.7

```
415857 AA866115 Hs.127797 Homo saplens cDNA FLJ11381 fis. clone HE 8.6
          435061 Al651474 Hs.163944 ESTs
                                                                                              8.6
          431374 BE258532 Hs.251871 CTP synthase
                                                                                              8.4
          417866 AW067903 Hs.82772 collagen, type XI, alpha 1
  5
          429859 NM_007050Hs.225952 protein tyrosine phosphatase, receptor t
                                                                                               82
10
                                                                                               8.2
          410193 AJ132592 Hs.59757 zinc finger protein 281
431725 X65724 Hs.2839 Norrie disease (pseudoglioma)
446258 AJ283476 Hs.263478 ESTs
                                                                                              8 1
                                                                                               A 1
          416747 AW876523 Hs.15929 hypothetical protein FLJ12910
          434424 Al811202 Hs.325335 Homo saplens cDNA: FLJ23523 fis, clone L 8.1
421650 AA781795 Hs.122587 ESTs 8.0
          429534 AW976987 Hs.163327 ESTs. Weakly similar to 2109260A B cell
                                                                                               8.0
          457465 AW301344 Hs.122908 DNA replication factor
                                                                                               8.0
          427961 AW293165 Hs.143134 ESTs
20
          436481 AA379597 Hs.5199 HSPC150 protein similar to ubiquitin-con
                                                                                               R n
          418216 AA662240 Hs.283099 AF15q14 protein
                                                                                               8.0
          418250 U29926 Hs.83918 adenosine monophosphate deaminase (isofo 7.9
          400285 NA
                                              Eos Control
          401464 AF039241 Hs.9028 histone deacetylase 5
                                                                                               7.9
25
          407242 M18728
                                              gb:Human nonspecific crossreacting antig
          422232 D43945
                               Hs.113274 transcription factor EC
                                                                                               78
          422222 D43945 Hs.1132/4 transcription ration to 4
454024 AA993527 Hs.293907 hypothetical protein FLJ23403
444542 Al161293 Hs.29390 aminopeptidase
436396 Al683487 Hs.152213 wingless-type MMTV integration site famil
                                                                                               7.8
                                                                                               78
                                                                                               7.7
          495396 Alb03497 Hs. 132213 wingless-type in/win vinegration site anni
437204 AL110216 Hs.12255 ESTS, Wesky similar to 155214 salivary
408805 H69912 Hs.48259 vaccinla related kinase 1
437207 T27503 Hs.15929 hypothetical protein FLJ12910
442818 AK001741 Hs.8739 hypothetical protein FLJ10879
30
                                                                                               7.6
                                                                                               7.6
                                                                                               7.6
          426283 NM_003937Hs.169139 kynureninase (L-kynurenine hydrolase)
                                                                                               7.5
35
          424687 J05070 Hs.151738 matrix metalloproteinase 9 (gelatinase B
                                                                                              7.5
          446315 NM_016293Hs.14770 bridging integrator 2
                                                                                               7.5
          400039 M97711 gold-luman T-cell receptor (V beta 18.1, J 420077 AW512260 Hs.87767 ESTs 457332 AA9651604 He 406673
          433426 H69125 Hs.133525 ESTs
                                                                                               7.5
                                                                                               7.5
                                                                                               74
40
                                                                                               7.4
          422938 NM_001809Hs.1594 centromere protein A (17kD)
          447555 Al391662 Hs.160963 Homo sapiens, clone MGC:12318, mRNA. com7.4
          444618 AV653785 Hs.173334 ELL-RELATED RNA POLYMERASE II, ELONGATIO7.3
          410361 BE391804 Hs.62661 guanylate binding protein 1, interferon- 7.3
400268 NA NM_003292:Homo saplens transfocated prom 7.3
45
          439509 AF086332 Hs.58314 ESTs
                                                                                               73
          407771 AL138272 Hs.62713 ESTs
407202 N58172 Hs.109370 ESTs
                                                                                               7.3
                                                                                               7.3
          433096 AU076803 Hs.282975 carboxylesterase 2 (Intestine, liver)
                                                                                               7.2
50
          422094 AF129535 Hs.272027 F-box only protein 5
430832 Al073913 Hs.100686 ESTs. Weakly similar to JE0350 Anterior
                                                                                               7.1
          430287 AW182459 Hs.125759 ESTs, Weakly similar to LEU5_HUMAN LEUKE7.0
          423739 AA398155 Hs.97600 ESTS
                                                                                              7.0
          448212 Al475858 gb:tc87d07.x1 NCI_CGAP_CLL1 Homo saplens7.0
407277 AW170035 Hs.326736 Homo saplens breast cancer antigen NY-BR 7.0
55
          454440 BE062906 Hs.28338 KIAA1546 protein
444783 AK001468 Hs.62180 aniilin (Drosophila Scraps homolog), act
                                                                                               7.0
                                                                                               7 0
          421373 AA608229 Hs.167771 ESTs
                                                                                               60
          431960 AW241821 Hs.301927 c6.1A
                                                                                               6.9
          424704 Al263293 Hs. 152096 cytochrome P450, subfamily IIJ (arachido 449517 AW500106 Hs.23643 serine/threonine protein kinase MASK
60
                                                                                               6.8
                                                                                               6.8
          439840 AW449211 Hs.105445 GDNF family receptor alpha 1
                                                                                               6.8
          414080 AA135257 Hs.47783 B aggressive lymphoma gene
                                                                                               6.8
          441243 Al767056 Hs.193002 ESTs
                                                                                               67
65
          408380 AF123050 Hs.44532 diublguitin
                                                                                               6.7
          422956 BE545072 Hs.122579 hypothetical protein FLJ10461
          446651 AA393907 Hs.97179 ESTs
```

427585 D31152 Hs.179729 collagen, type X, alpha 1 (Schmid metaph

	419839		Hs.93304	phospholipase A2, group VII (platelet-ac	6.7
			Hs.122915	ESTs	6.7
	421582 427356	AI910275 AW023482	Hs.1406	trefoil factor 1 (pS2) ESTs	6.7 6.6
5	429597	NM_003816		a disintegrin and metalloproteinase doma	6.6
•		NM 016010		CGI-62 protein	6.6
			Hs.89113	ESTs	6.5
		A1798680	Hs.25933	ESTs	6.5
• •	411000		Hs.201619		6.5
10	449343	Al151418	Hs.272458		6.4
	409757 447164	NM_001898	Hs.123114 Hs.17518	cystatin SN	6.4 6.4
	456938	AF026941 X52509	Hs.161640	Homo saplens cig5 mRNA, partial sequence tyrosine aminotransferase	6.4
	418848		Hs.193465	ESTs	6.4
15		NM_003866			6.4
	452838		Hs.30743	preferentially expressed antigen in mela	6.4
			Hs.57987	B-cell CLL/lymphoma 11B (zinc finger pro	6.4
		AJ235664		gb:Homo sapiens mRNA for immunoglobulin	6.3
20	411078 433001	Al222020	Hs.182364	CocoaCrisp	6.3
20	434340	AF217513 Al193043	Hs.279905 Hs.128685	clone HQ0310 PRO0310p1 ESTs, Weakly similar to T17226 hypotheti	6.3 6.2
	429503	AA394183	Hs.26873	ESTS . Weakly similar to 117220 hypothet ,	6.2
	402578	AA334100	113.20073	C1001134:gi[2117372 pir][65981 fatty ac	6.2
	409646	AW161391	Hs.709	deoxycytidine klnase	6.1
25	430447	W17064		SWI/SNF related, matrix associated, acti	6.1
	432415	T16971		ESTs, Weakly similar to A43932 mucin 2 p	6.1
		A1082692	Hs.134662		6.1
	420929 428368	Al694143 BE440042	Hs.296251 Hs.83326	programmed cell death 4 matrix metalloproteinase 3 (stromelysin	6.1 6.1
30	428248	Al126772	Hs.40479	ESTs	6.0
	420344		Hs.97101	putative G protein-coupled receptor	6.0
	453392	U23752	Hs.32964	SRY (sex determining region Y)-box 11	6.0
	425397	J04088		topoisomerase (DNA) II alpha (170kD)	6.0
25	418007	M13509	Hs.83169	matrix metalloproteinase 1 (MMP1; inters	6.0
35	428585 437608	AB007863 AA761605	Hs.185140	KIAA0403 protein	6.0
	427408	AA583206	Hs.2156	ESTs, Weakly similar to ALU1_HUMAN ALU RAR-related orphan receptor A	6.0
	406687		Hs.272620		6.0
		R45154	Hs.106604		6.0
40	447051	AW139130			6.0
	441233	AA972965	Hs.135568		6.0
	432239		Hs.2936	matrix metalloproteinase 13 (collagenase	6.0
	435106 435525	AA100847 AI831297	Hs.193380 Hs.123310		5.9 5.9
45	458809		Hs.20985	sin3-associated polypeptide, 30kD	5.9
43	410785	AW803341	113.20300	gb:IL2-UM0079-090300-050-D03 UM0079 Ho	
	422576		Hs.118554		5.9
		Al793124	Hs.144479		5.9
50	441881			hypothetical protein FLJ22624	5.8
50		A1005043	Hs.24143	Wiskott-Aldrich syndrome protein interac	5.8
	416636 447350		Hs.42645 Hs.172634	solute carrier family 16 (monocarboxylic ESTs	5.8 5.8
		AA305599		hypothetical protein PRO2013	5.8
		AA306105	Hs.50785	SEC22, vesicle trafficking protein (S. c	5.8
55	448807	AI571940	Hs.7549	ESTs	5.8
	452281	T93500	Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL	5.8
	421281	Al299139	Hs.17517	ESTs	5.8
	430361	Al033965		sterol-C4-methyl oxidase-like	5.8
60		X07820 AV657117	Hs.2258 Hs.184164	matrix metalloproteinase 10 (MMP10; str ESTs, Moderately similar to S65657 alpha	5.7 5.7
00		AA831879	Hs.136985		5.7
	426320	W47595	Hs.169300		5.7
	452401	NM_00711		tumor necrosis factor, alpha-induced pro	5.7
	448663	BE614599	Hs.106823		5.7
65	438199				5.7
	446203		Hs.14286	flavin containing monooxygenase 5	5.7
	428336	AA503115	ms.183/52	microseminoprotein, beta-	5.6

		BEZ18705			5.6
	444758	AL044878	Hs.11899	3-hydroxy-3-methylglutaryi-Coenzyme A re	5.6
	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	5.6
5	400301	X03635	Hs.1657	estrogen receptor 1	5.6
•		AW885727			5.6
		AL157504			
		AA906288			5.5
10		R41396		hypothetical protein FLJ23045	5.5
10		AW419196			5.5
		BE247706	Hs.89751	membrane-spanning 4-domains, subfamily A	5.5
	401645	NA		C16001440*:gij12330704jgbjAAG52890.1jAF	35.5
	437967	BE277414	Hs.5947	mel transforming oncogene (derived from	5.5
	445885	A1734009	Hs.127699		5.4
15	439138	A1742605	Hs.193696		5.4
		NM_01598		cytokine receptor-like molecule 9	5.4
		X91221	Hs.144465		5.4
		R28363	Hs.24286	ESTs	5.4
		BE392914			
20				Homo saplens cDNA FLJ11344 fis, clone PL	5.4
20		H59846		ESTs, Moderately similar to ALU7_HUMAN A	
		AA319146		secretogranin II (chromogranin C)	5.4
		L32137	Hs.1584	cartilage oligomeric matrix protein (COM	5.4
		N34895	Hs.44648	ESTs	5.4
		AW205168			5.4
25	422406	AF025441	Hs.116206	Opa-interacting protein 5	5.3
		AA576635		CGI-48 protein	5.3
	418310	AA814100	Hs.86693	ESTs	5.3
		U91616	Hs.91640	nuclear factor of kappa light polypeptid	5.3
		H39960		Homo sapiens cDNA FLJ12280 fis, clone MA	
30		AF070526		Homo saplens cione 24787 mRNA sequence	
50					
				HER2 receptor tyrosine kinase (c-erb-b2,	5.2
				hypothetical protein DKFZp434J037	5.2
			HS.249184	transcription factor 19 (SC1)	5.2
25		U65590	Hs.81134	interleukln 1 receptor antagonist	5.2
35		AF013758	Hs.109643	polyadenylate binding protein-interactin	5.2
			Hs.193736	hypothetical protein FLJ20706	5.2
	427427	AF077345	Hs.177936		5.2
	403485			C3001813*:gi[12737279]ref[XP_012163.1] k	5.2
	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias	5.1
40		A1878857		hematological and neurological expressed	5.1
	426752		Hs.172004	fitin	5.1
		X70697	Hs.553	solute carrier family 6 (neurotransmitte	5.1
		M81933	Hs.1634	cell division cycle 25A	5.1
		AI810054	Hs.14119	ESTs	5.1
45					
7.7				ESTs, Moderately similar to ALU7_HUMAN A	
		AL121278	HS.25144	ESTs	5.1
	404347			Target Exon	5.1
		M30703	Hs.270833	amphiregulin (schwannoma-derived growth	5.1
		D28235	Hs.196384	prostaglandin-endoperoxide synthase 2 (p	5.1
50	436291	BE568452	Hs.5101	protein regulator of cytokinesis 1	5.1
	450603	R43646	Hs.12422	ESTs	5.1
	434725	AK000796		hypothetical protein	5.0
	435981	H74319	Hs.188620		5.0
				ESTs, Weakly similar to ALUF_HUMAN !!!!	5.0
55				UDP-Gal:betaGlcNAc beta 1,3-galactosyltr	5.0
-	405348		13.207030	C7001664:gi 12698061 db BAB21849.1 (AB	
			11- 222400	11-15- 0-15-09-00-10-10-10-10-10-10-10-10-10-10-10-10-	5.0
		AK001084		Homo sapiens cDNA FLJ10222 fis, clone HE	
		AL036450			5.0
		A1936442	Hs.59838	hypothetical protein FLJ10808	5.0
60		NM_006235		POU domain, class 2, associating factor	5.0
		AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	4.9
	403329	NA		Target Exon	4.9
		BE623003	Hs.23625	Homo sapiens clone TCCCTA00142 mRNA se	
		Ai820662	Hs.129598		4.9
65		AW371048		H4 histone family, member H	4.9
		AW966163		gb:EST378236 MAGE resequences, MAGI Ho	mod 0
			He 187770	calmodulin 2 (phosphorylase kinase delt	4 O

430379 AF134149 Hs.240395 potassium channel, subfamily K, member 6 5.6

		AA650274		fibronectin leucine rich transmembrane p	4.9
		NM_00210		granzyme K (serine protease, granzyme 3;	4.9
		R10799	Hs.191990	ESTs	4.8
_	452020			ESTs, Weakly similar to AT2A_HUMAN POT	
5		Z45051	Hs.22920	similar to S68401 (cattle) glucose Induc	4.8
		R38438	Hs.182575	solute carrier family 15 (H??? transport	4.8
		AF078849			4.8
	423575		Hs.163443	Homo sapiens cDNA FLJ11576 fis, clone HE	
10	421524	H93281 AA312082	Hs.10710	hypothetical protein FLJ20417	4.8
10	452827	AI571835	Hs.105445 Hs.55468	GDNF family receptor alpha 1 ESTs	4.8 4.8
	414222		Hs.878	sorbilol dehydrogenase	4.8
		AL161999	Hs.77324	eukaryotic translation termination facto	4.8
		M93119	Hs.89584	insulinoma-associated 1	4.8
15		AA233056	Hs.191518		4.8
		Al357412	Hs.157601		4.8
	451621	AI879148	Hs.26770	fatty acid binding protein 7, brain	4.7
	419968	X04430	Hs.93913	interleukin 6 (interferon, beta 2)	4.7
••	424326		9Hs.145296		4.7
20	431585		Hs.262823		4.7
	429294	AA095971	Hs.198793		4.7
	416814	AW192307		dolichyl-P-Glc:Man9GlcNAc2-PP-dolichylgl	4.7
	439897	NM_01531		KIAA0942 protein	4.7
25	429687	A1675749	Hs.211608	nucleoporin 153kD	4.7
23	422880 405801	AF228704	Hs.121524	glutathione reductase NM_000390:Homo sapiens choroideremia (R	4.7
	432435	BE218886	Hs.282070		4.6
	439544	W26354	Hs.28891	hypothetical protein FLJ11360; artemls p	4.6
	425354		Hs.155935	complement component 3a receptor 1	4.6
30	436027	AI864053	Hs.39972	ESTs, Weakly similar to I38588 reverse t	4.6
	424623	AW963062	Hs.337404		4.6
	403366	NA		Target Exon	4.6
	402542			Target Exon	4.6
35	450193	AI916071	Hs.15607	Homo sapiens Fanconi anemia complementa	
33	411678 456844	Al907114 Al264155	Hs.71465	squalene epoxidase	4.6
	448072		Hs.152981 Hs.24908	CDP-diacylglycerol synthase (phosphatida ESTs	4.6 4.5
			Hs.245123		4.5
		Al472209	Hs.323117		4.5
40		AW630534	Hs.76277	Homo sapiens, clone MGC:9381, mRNA, con	
	448140	AF146761	Hs.20450	BCM-like membrane protein precursor	4.5
	452561	AI692181	Hs.49169	KIAA1634 protein	4.5
	425331	AW962128		gb:EST374201 MAGE resequences, MAGG I	
45	428801		Hs.254881	ESTs	4.5
45		AIB15395	Hs.184641		4.5
	426075 437259		Hs.270149	ESTs, Weakly similar to 2109260A B cell	4.4
		AF153341	Hs.120695 Hs.283954		4.4 4.4
	412863		Hs.59757	zinc finger protein 281	4.4
50	426989		Hs.99395	ESTs	4.4
	401866		110100000	Target Exon	4.4
	418819	AA228776	Hs.191721		4.4
	406348			Target Exon	4.4
		AW895387		gb:QV4-NN0038-300300-157-c10 NN0038 H	omo4.4
55		AW297880	Hs.98661	ESTs	4.4
	411743	AW862214		gb:QV4-CT0361-301299-074-b05 CT0361 H	
	429966		Hs.283037	HSPC039 protein	4.4
	423291 423456	AL110151	9Hs.126590 Hs.128797	guanylate cyclase 1, soluble, beta 2 DKFZP586D0824 protein	4.4 4.4
60	452190		Hs.91668	Homo saplens clone PP1498 unknown mRN/	
00	424871			low density lipoprotein-related protein	4.3
	429575	AA706003		ESTs	4.3
	429922		Hs.226117		4.3
	421379			small Inducible cytokine subfamily B (Cy	4.3
65	400300			HER2 receptor tyrosine kinase (c-erb-b2,	4.3
	437258	AL041243	Hs.174104		4.3
	446595	T57448	Hs.15467	hypothetical protein FLJ20725	4.3

	403011			ENSP00000215330°:Probable serine/threoni	
		AI365384	Hs.11571	Homo sapiens cDNA FLJ11570 fis, clone HE	
	418661			E2F transcription factor 3	4.3
5		AA687538		tetraspan 1 KIAA0704 protein	4.3 4.3
,		AW188551		hypothetical protein FLJ14007	4.3
		A1091795	Hs.179246		4.3
		AI694413		olfactory receptor, family 2, subfamily	4.3
		M63835	Hs.77424	Fc fragment of IgG, high affinity la, re	4.2
10				Homo saplens cDNA FLJ14035 fis, clone HE	4.2
	452110		Hs.28005	Homo saplens cDNA FLJ11309 fis, clone PL	4.2
	442007	AA301116	Hs.142838	nucleolar phosphoprotein Nopp34	4.2
	417318			ESTs	4.2
				ESTs, Weakly similar to T47184 hypotheti	4.2
15		Al085198	Hs.164226		4.2
				ESTs, Weakly similar to S72482 hypotheti	4.2
		BE091926	Hs.16244	mitotic spindle coiled-coll related prot	4.2
		AL039402 AA902953	Hs.308538	DEME-6 protein	4.2 4.2
20		T97490	Hs.50002	small inducible cytokine subfamily A (Cy	4.2
20				hypothetical protein FLJ22635	4.2
	425139	AW630488	Hs.325820	protease, serine, 23	4.2
	447397			E-1 enzyme	4.2
		AK001376		hypothetical protein FLJ10514	4.1
25		AW779318		ESTs	4.1
			Hs.241551		4.1
			Hs.132208		4.1
		BE244074		regulator of Fas-Induced apoptosis	4.1
30	427521 425247		Hs.290585 0Hs.155324		4.1 4.1
50		AF041163		matrix metalloproteinase 11 (MMP11; stro Human T-cell receptor active alpha-chain	4.1
		BE562826	113.74047	gb:601336534F1 NIH_MGC_44 Homo saplen	
		AK000136	Hs.10760	asporin (LRR class 1)	4.1
	426711	AA383471	Hs.180669		4.1
35	405850	NA		Target Exon	4.1
		A1732892	Hs.190489		4.0
			Hs.163484		4.0
	400284			estrogen receptor 1	4.0
40	417341		Hs.102987		4.0
40	429732 411393		Hs.2488	lymphocyte cytosolic protein 2 (SH2 doma	4.0 4.0
	425704		Hs.159264	B-factor, properdin Human clone 23948 mRNA sequence	4.0
	419594		Hs.91417	topoisomerase (DNA) Il binding protein	4.0
	419092		Hs.89603	mucin 1, transmembrane	4.0
45	443147	AI034351	Hs.19030	ESTs	4.0
	408633	AW963372	Hs.46677	PRO2000 protein	4.0
	433404		Hs.102720		4.0
		BE302796	Hs.105097		4.0
-0		BE250127	Hs.82906	CDC20 (cell division cycle 20, S. cerevi	3.9
50		AW630088		Homo saplens mRNA; cDNA DKFZp564B126	
	413762 404580	AW411479	HS.848	FK506-binding protein 4 (59kD) NM_014112*:Homo saplens trichorhinophala	3.9 3.9
		AB018345	Hs.27657	KIAA0802 protein	3.9
	459587		113.27037	gb:zk15e04.s1 Soares_pregnant_uterus_NbH	
55	416658		Hs.79432	fibrilln 2 (congenital contractural ara	3.9
	426647		Hs.294101		3.9
	429353	AL117406	Hs.200102		3.9
	419038	AW134924	Hs.190325		3.9
		X07871	Hs.89476	CD2 antigen (p50), sheep red blood cell	3.9
60		W94197		ribosomal protein L26 homolog	3.9
	442567		Hs.130251		3.9
	421168			cytochrome P450, subfamily IIB (phenobar	3.9
		AW935490 BE019020		Human chromosome 5q13.1 clone 5G8 mRN/ solute carrier family 16 (monocarboxylic	
65	414998			oxidised low density lipoprotein (lectin	3.9 3.9
0.5		AA809875		ESTs	3.9
		NM_007019		ublgultin carrier protein E2-C	3.9
					0.0

		AA263172 Hs.35	protein tyrosine phosphatase, non-recept	3.9	
	458814	Al498957 Hs.170861	ESTs, Weakly similar to Z195_HUMAN ZINC	3.8	
	428514	AW236861 Hs.193139	ESTs	3.8	
_		NM_002267Hs.3886	karyopherin alpha 3 (importin alpha 4)	3.8	
5	409425		zinc finger protein, subfamily 1A, 1 (lk	3.8	
		BE565647 Hs.74899	hypothetical protein FLJ12820	3.8	
		AF055084 Hs.153692		3.8	
	400021		AFFX control - HUMISGF3A/M97935_MA	3.8	
10		BE466639 Hs.61779	Homo saplens cDNA FLJ13591 fis, clone PL	3.8	
10		Al267371 Hs.172636		3.8	
		AA631739 Hs.335440 AW207206 Hs.136319	ESTs	3.8	
		AW207200 Hs.130319 Al446444 Hs.190394	ESTs, Weakly similar to B28096 line-1 pr	3.8 3.8	
	401045	AI440444 IIS. 190394	C11001883*:gi[6753278]ref[NP_033938.1] c	3.8	
15		AW449612 Hs.152475		3.8	
13	423397		chemokine (C-C motif) receptor 7	3.8	
	447630		lymphoid enhancer-binding factor 1	3.8	
	436391			3.8	
		AW068115 Hs.821	biglycan	3.8	
20		Al767949 Hs.179833		3.8	
		NM 003512Hs.28777	H2A histone family, member L	3.8	
	427811	M81057 Hs.180884	carboxypeptidase B1 (tissue)	3.8	
	415579	AA165232 Hs.222069	ESTs	3.8	
	437330	AL353944 Hs.50115	Homo sapiens mRNA; cDNA DKFZp761J1112	2 (f	3.8
25	427122	AW057736 Hs.323910	HER2 receptor tyrosine kinase (c-erb-b2,	3.7	
	400286		C16000922:gl[7499103[pir]]T20903 hypothe	3.7	
	420281			3.7	
		AW900992 Hs.93796	DKFZP586D2223 protein	3.7	
20		Al992191 Hs.180040	hypothetical protein FLJ22439	3.7	
30	426172		ESTs	3.7	
	429638 457001		kinectin 1 (kinesin receptor)	3.7 3.7	
	424109		vitamin D (1,25- dihydroxyvitamin D3) re gb:UI-HF-BL0-adg-g-06-0-UI.r1 NIH_MGC_37		
	417022		Ras association (RalGDS/AF-6) domain fam	3.7	
35			Homo sapiens cDNA FLJ11489 fis, clone HE		
		Al633553 Hs.13303	Homo sapiens cDNA: FLJ21784 fis, clone H	3.7	
		AK000292 Hs.278732		3.7	
	413916	N49813 Hs.75615	apolipoprotein C-II	3.7	
	421662		cell recognition molecule Caspr2	3.7	
40	441633		normal mucosa of esophagus specific 1	3.7	
		AA057264 Hs.238936	ESTs, Weakly similar to (deffine not ava	3.7	
	406153		Target Exon	3.7	
			ESTs	3.7	
45		Al884911 Hs.32989	receptor (calcitonin) activity modifying	3.7	
43	448918	AB011152 Hs.22572	KIAA0580 protein	3.7	
		AF113676 Hs.297681 U76248 Hs.20191		3.6	
		BE005771 Hs.153746	seven in absentia (Drosophila) homolog 2 hypothetical protein FLJ22490	3.6	
			ESTs, Weakly similar to 138022 hypotheti	3.6	
50	419941	X98654 Hs.93837	phosphatidylinositol transfer protein, m	3.6	
	402397		phospholipase A2, group IID	3.6	
		Z29572 Hs.2556	tumor necrosis factor receptor superfami	3.6	
		Al800470 Hs.171941	ESTs	3.6	
	426431	NM_000458Hs.169853	transcription factor 2, hepatic; LF-B3;	3.6	
55	431843	AA516420 Hs.183526	ESTs, Weakly similar to I38022 hypotheti	3.6	
		BE069341	gb:QV3-BT0381-270100-073-c08 BT0381 Ho	mo3.6	;
	434061			3.6	
		AV653264 Hs.13982	Homo sapiens cDNA FLJ14666 fis, clone NT	3.6	
60	452101		Homo sapiens cDNA FLJ14476 fis, clone MA		
00	427581		KIAA0129 gene product	3.6	
	409047	AW961434 Hs.31539	ESTs	3.6	
	416820 410386		glucose-6-phosphate dehydrogenase Homo saplens cDNA: FLJ22219 fis, clone H	3.6	
	440516		cadherin 2, type 1, N-cadherin (neurona)	3.6 3.6	
65		AW015415 Hs.127780		3.6	
33		BE276891 Hs.194691		3.6	
		R43179 Hs.22895	hypothetical protein FLJ23548	3.6	
				,	

3.6

	430044	AA464510	Hs.152812	ESTs	3.6	
	430829	AW451999	Hs.194024	ESTs	3.6	
	434224	AA380731	Hs.84	Interleukin 2 receptor, gamma (severe co	3.6	
5	439247	AF088020	Hs.46767	EST	3.6	
	431542	H63010	Hs.5740	ESTs	3.5	
	430713	AA351647	Hs.2642	eukaryotic translation elongation factor	3.5	
	434988	AI418055	Hs.161160	ESTs	3.5	
	437748	AF234882	Hs.5814	suppression of tumorigenicity 7	3.5	
10	418322	AA284166	Hs.84113	cyclin-dependent kinase Inhibitor 3 (CDK	3.5	
	439569	AW602166	Hs.222399	CEGP1 protein	3.5	
	459583	AI907673		gb:IL-BT152-080399-004 BT152 Homo sapler	13.5	
	403212			NM_019595:Homo saplens Intersectin 2 (IT	3.5	
	409099	AK000725	Hs.50579	hypothetical protein FLJ20718	3.5	
15	453968	AA847843	Hs.62711	Homo saplens, clone IMAGE:3351295, mRNA	3.5	
	436338	W92147	Hs.118394	ESTs .	3.5	
	422890	Z43784	Hs.75893	ankyrin 3, node of Ranvier (ankyrin G)	3.5	
	442295	A1827248	Hs.224398	Homo sapiens cDNA FLJ11469 fis, clone HE	3.5	
	417975	AA641836	Hs.30085	hypothetical protein FLJ23186	3.5	
20		AK002135		hypothetical protein FLJ11273	3.5	
	439926	AW014875	Hs.137007	ESTs	3.5	
			Hs.251946	poly(A)-binding protein, cytoplasmic 1-l	3.4	
	410153	BE311926	Hs.15830	hypothetical protein FLJ12691	3.4	
		AW881145		gb:QV0-OT0033-010400-182-a07 OT0033 Ho	omo	3.4
25		BE390551	Hs.77628	steroidogenic acute regulatory protein r	3.4	
		W29092	Hs.7678	cellular retinolc acid-binding protein 1	3.4	
		A1167877	Hs.143716		3.4	
	402470			Target Exon	3.4	
		AA213437	Hs.192249		3.4	
30		AW875237		ESTs	3.4	
		A1681545		hypothetical protein FLJ13117	3.4	
		U61412	Hs.51133	PTK6 protein tyrosine kinase 6	3.4	
		AA158177		fucosyltransferase 8 (alpha (1,6) fucosy	3.4	
~~		M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	3.4	
35		AA447492	Hs.20183	ESTs, Weakly similar to AF164793 1 prote	3.4	
	402359			C19001991*:gi 12656111 gb AAK00751.1 AF:		
		AA284267	Hs.221504		3.4	
		F01020	Hs.172004	ESTs	3.4	
40		AA812633	Hs.10845			
40		R11141 AJ271216	Hs.22880	hypothetical protein	3.4	
	412115			dipeptidylpeptidase III hypothetical protein FLJ10901	3.4	
		Y18418		RuvB (E coli homolog)-like 1	3.4	
			Hs.194698	colin B2	3.4	
45	4203// 424644	U58766		tissue specific transplantation antigen	3.4	
45				Homo sapiens, clone IMAGE:3616574, mRN/		
		AF037335		carbonic anhydrase XII (tumor antigen H	3.4	
		AW392550		proteasome (prosome, macropain) subunit,	3.4	
				KIAA0175 gene product	3.3	
50			Hs.200266		3.3	
		Al335773	Hs.270123		3.3	
		NM 00050		coagulation factor XII (Hageman factor)	3.3	
	412754	AW160375	Hs.74565	amyloid beta (A4) precursor-like protein	3.3	
	418327		Hs.84136	paired-like homeodomain transcription fa	3.3	
55	449065	AI627393	Hs.258998	ESTs, Weakly similar to high mobility gr	3.3	
	425999	AW513051	Hs.332981	ESTs, Weakly similar to 138022 hypotheti	3.3	
				Interleukin 7 receptor	3.3	
	407777	AA161071	Hs.71465	squalene epoxidase	3.3	
		BE262660	Hs.170197		3.3	
60	414361	AI086138	Hs.204044		3.3	
	427080	AW068287		ras-related C3 botulinum toxin substrate	3.3	
		X73114		myosin-blnding protein C, slow-type	3.3	
	446163	AA026880	Hs.25252	prolactin receptor	3.3	
		U41763	Hs.184916	clathrin, heavy polypeptide-like 1	3.3	
65		BE243136		a disintegrin and metalloproteinase doma	3.3	
		AI601188	Hs.120910		3.3	
	411257	AA628967	Hs.115274	ESTs. Highly similar to IHH, HUMAN INDIAN	3.3	

409619 AK001015 Hs.55220 BCL2-associated athanogene 2

	430253	AK001514	Hs.236844	hypothetical protein FLJ10652	3.3
	430066	Al929659	Hs.237825	signal recognition particle 72kD	3.3
	436469	AK001455	Hs.5198	Down syndrome critical region gene 2	3.3
_		BE142681	Hs.155573	polymerase (DNA directed), eta	3.3
5		H09048	Hs.23606	ESTs	3.3
	457183		Hs.118569	Dvl-binding protein IDAX (Inhibition of	3.3
	431215	AA496078	Hs.121554	Human DNA sequence from clone RP11-2180	:13.
	424563 450828	AA446932 AW270655	Hs.151428	ret finger protein 2 ESTs	3.3
10	408652	R43409	Hs.193004 Hs.6829	Homo sapiens mRNA for KIAA1644 protein,	3.3
10	445142	AW978484		Homo sapiens cDNA: FLJ22554 fis, clone H	3.3
	426761	AI015709	Hs.172089	Homo sapiens mRNA; cDNA DKFZp58612022	
	439237	AW408158		ESTs, Weakly similar to A47582 B-cell gr	3.3
		BE300330	Hs.118725	selenophosphale synthetase 2	3.3
15	443247	BE614387	Hs.333893	c-Myc target JPO1	3.3
	406663	U24683	Hs.302063	immunoglobulin heavy constant mu	3.3
	434137	AA907734	Hs.124895	ESTs	3.3
	408877	AA479033	Hs.130315	ESTs, Weakly similar to A47582 B-cell gr	3.3
	439101	C01765	Hs.38750	hypothetical protein FLJ11526	3.3
20	408221	AA912183	Hs.47447	ESTs	3.3
	447519	U46258	Hs.339665		3.3
	404755	NA		Target Exon	3.3
	451871	Ai821005	Hs.118599		3.2
25	420319 430580	AW406289		hypothetical protein	3.2
23	400202	NA NA	Hs.300697	immunoglobulin heavy constant gamma 3 (G	
	400202	NA.		NM_002795*:Homo sapiens proteasome (pro: NM_002082*:Homo sapiens G protein-couple	
	425988	BE045897	Hs.274454	ESTs, Weakly similar to 138022 hypotheti	3.2
	458098	BE550224	Hs.74170	metallothionein 1E (functional)	3.2
30	430589	AJ002744	Hs.246315	UDP-N-acetyl-alpha-D-galactosamine:polyp	3.2
		AI027643	Hs.120912		3.2
	442353	BE379594	Hs.49136	ESTs, Moderately similar to ALU7_HUMAN A	
	422309	U79745	Hs.114924		3.2
~-	419703	AI793257	Hs.128151		3.2
35	420380	AA640891	Hs.102406	ESTs	3.2
	410853	H04588	Hs.30469	ESTs	3.2
	454417	A1244459	Hs.110826	trinucleotide repeat containing 9	3.2
		AI821926	II- 4400EZ	gb:nt78f05.x5 NCI_CGAP_Pr3 Homo sapiens	3.2
40	422032 415339	AA476966	Hs.110857	polymerase (RNA) III (DNA directed) poly	3.2
40	426384	NM_015156 AI472078	Hs.303662	KIAA0071 protein ESTs	3.2
	448030	N30714	Hs.325960		3.2
	418739	AA310964	Hs.88012	SHP2 interacting transmembrane adaptor	3.2
	442053	R35343	Hs.24968	Human DNA sequence from clone RP1-233G	
45	434747	AA837085			3.2
	427297		Hs.334907	Homo sapiens, clone MGC:17333, mRNA, cor	
	412228	AW503785	Hs.73792	complement component (3d/Epstein Barr vi	3.2
	452304	AA025386	Hs.61311	ESTs, Weakly similar to \$10590 cysteine	3.2
	453953	AW408337		CD7 antigen (p41)	3.2
. 50	407758	D50915	Hs.38365	KIAA0125 gene product	3.2
	451149	AL047586	Hs.10283	RNA binding motif protein 8B	3.2
	430015		Hs.112157		3.2
	433313	W20128	Hs.296039		3.2
55	418334 450223	AA319233 AA418204	Hs.5521 Hs.241493	ESTS	3.2
55	454365	AW966728		natural killer-tumor recognition sequenc methionine adenosyltransferase II, beta	3.2
	451128	AL118668	113.34042	gb:DKFZp761i0310_r1 761 (synonym: hamy2	
	417793	AW405434	He 82575	small nuclear ribonucleoprotein polypept	3.2
	428027	U22029	Hs.334345	cytochrome P450, subfamily IIA (phenobar	3.2
60	441197	BE244638	Hs.166	sterol regulatory element binding transc	3.2
	424634		3Hs.151407	cartilage intermediate layer protein, nu	3.2
	419986	AI345455	Hs.78915	GA-binding protein transcription factor,	3.2
	416714	AF283770	Hs.79630	CD79A antigen (immunoglobulin-associated	3.2
	449465	NM_004386	OHs.23598	CREB binding protein (Rubinstein-Taybi s	3.2
65	422166	W72424	Hs.112405	S100 calcium-binding protein A9 (calgran	3.2
	409079	W87707	Hs.82065	interleukin 6 signal transducer (gp130,	3.2
	423551	AA327598	Hs.233785	ESTs	3.2

			HS.0 1029	nomo sapiens udion rua 12700 ns, done in i	3.2
			Hs.130239	ESTs	3.2
	458079	AI796870	Hs.54277	DNA segment on chromosome X (unique) 992	3.2
	425700	AF076292	Hs.159251	forkhead box H1	3.2
5			Hs.25338	ESTs	3.2
,					
		S57296		v-erb-b2 avlan erythroblastic leukemia v	3.2
	442215	AI703172	Hs.129005	ESTs, Weakly similar to 2109260A B cell	3.1
	430271	T06199			3.1
					3.1
• •				Interleukin 21 receptor	
10	426095	AI278023	Hs.89986	ESTs	3.1
	442313	BE388898	Hs.8215	hypothetical protein FLJ11307	3.1
		AL137589		hypothetical protein DKFZp434K0410	3.1
			Hs.211594		3.1
	429671	BE379335			
	432715	AA247152	Hs.200483	ESTs, Weakly similar to KIAA1074 protein	3.1
15	431574	AW572659	Hs.261373	hypothetical protein dJ434O14.3	3.1
	436876	Al124756	Hs.5337	isocitrate dehydrogenase 2 (NADP), mitoc	3.1
			113.3007		3.1
	405017	NA		Target Exon	
	433805	AA706910	Hs.112742	ESTs	3.1
	437352	AL353957	Hs.284181	hypothetical protein DKFZp434P0531	3.1
20	430105	X70297	Hs.2540	cholinergic receptor, nicotinic, alpha p	3.1
20					3.1
	422083		IHs.111256		
	413507	BE145360	Hs.190064	ESTs, Weakly similar to I38022 hypotheti	3.1
	415989	AI267700	Hs.317584	ESTs	3.1
	422907	AI879263	Hs.6986	Human glucose transporter pseudogene	3.1
25					
25		AA890023	Hs.1906	prolactin receptor	3.1
	422599	BE387202	Hs.118638	non-metastatic cells 1, protein (NM23A)	3.1
	439963	AW247529	Hs.6793	platelet-activating factor acetythydrola	3.1
		Al638516	Hs.22630	cofactor required for Sp1 transcriptiona	3.1
20	458021	AI885190		ESTs, Weakly similar to repressor protei	3.1
30	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	3.1
	400814	NA		Target Exon	3.1
	402327			Target Exon	3.1
		44400742			3.1
		AA190712		gb:zp87f09.r1 Stratagene HeLa cell s3 93	
	439838	AL355722	Hs.106875		3.1
35	437036	Al571514	Hs.133022	ESTs	3.1
		NM 000579	He 54443	chemokine (C-C motif) recentor 5	3.1
	449523		9Hs.54443	chemokine (C-C motif) receptor 5	3.1
	406642	AJ245210	9Hs.54443	gb:Homo sapiens mRNA for immunoglobulin	3.1
	406642	AJ245210 AF052762		gb:Homo sapiens mRNA for immunoglobulin gb:Homo sapiens clone csneg8-1 immunoglo	3.1 3.1
	406642	AJ245210 AF052762		gb:Homo sapiens mRNA for immunoglobulin gb:Homo sapiens clone csneg8-1 immunoglo	3.1
40	406642 406624 421924	AJ245210 AF052762 BE514514	Hs.109606	gb:Homo sapiens mRNA for immunoglobulin gb:Homo sapiens clone csneg8-1 immunoglo coronin, actin-binding protein, 1A	3.1 3.1 3.1
40	406642 406624 421924 414523	AJ245210 AF052762 BE514514 AU076633	Hs.109606 Hs.76353	gb:Homo sapiens mRNA for immunoglobulin gb:Homo sapiens clone csneg8-1 immunoglo coronin, actin-binding protein, 1A serine (or cysteine) proteinase Inhibito	3.1 3.1 3.1 3.1
40	406642 406624 421924 414523 416379	AJ245210 AF052762 BE514514 AU076633 N38857	Hs.109606 Hs.76353 Hs.203933	gb:Homo saplens mRNA for immunoglobulin gb:Homo saplens clone csneg8-1 immunoglo coronin, actin-binding protein, 1A serine (or cysteine) proteinase inhibito ESTs	3.1 3.1 3.1 3.1 3.1
40	406642 406624 421924 414523 416379 422823	AJ245210 AF052762 BE514514 AU076633 N38857 D89974	Hs.109606 Hs.76353 Hs.203933 Hs.121102	gbHomo saplens mRNA for immunoglobulin gbHomo saplens clone csneg8-1 immunoglo coronin, actin-binding protein, 1A serine (or cysteine) proteinase inhibito ESTs vanin 2	3.1 3.1 3.1 3.1 3.1 3.1
40	406642 406624 421924 414523 416379	AJ245210 AF052762 BE514514 AU076633 N38857	Hs.109606 Hs.76353 Hs.203933	gb:Homo saplens mRNA for immunoglobulin gb:Homo saplens clone csneg8-1 immunoglo coronin, actin-binding protein, 1A serine (or cysteine) proteinase inhibito ESTs	3.1 3.1 3.1 3.1 3.1
40	406642 406624 421924 414523 416379 422823 433904	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956	gbHomo saplens mRNA for immunoglobulin gbHomo saplens done csneg8-1 immunoglo coronin, actin-binding protein, 1A serine (or cysteine) proteinase Inhibito ESTs vanin 2 ESTs	3.1 3.1 3.1 3.1 3.1 3.1 3.1
	406642 406624 421924 414523 416379 422823 433904 421904	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309	gbHomo saplens mRNA for immunoglobulin gbHomo saplens clone csneg8-1 immunoglo coronin, actim-binding protein, 1A serine (or cysteine) proteinase inhibito EST's vanin 2 ESTs hypothetical protein FLJ20035	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
40 45	406642 406624 421924 414523 416379 422823 433904 421904 428834	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533 AW899713	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315	gb3Homo sapiens mRNA for immunoglobulin gb4Homo sapiens done caneg8-1 immunoglo coronin, adin-binding protein, 1A serine (or cystelne) proteinase inhibito ESTs vanin 2 ESTs hypothelical protein FLi20035 ESTs	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533 AW899713 AW963838	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830	gb3-bmo sepiers mRNA for Immunoglobulin pb1-dmo sepiers clone cenege1 - Immunoglo coronia, actin-binding protein, 1A serine (or cysteine) proteinase Inhibito ESTs vanin 2 ESTs hypothetical protein FLJ20035 ESTs Homo sepiens CDNA FLJ12136 fis, clone MA	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
	406642 406624 421924 414523 416379 422823 433904 421904 428834	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533 AW899713 AW963838	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830	gb3Homo sapiens mRNA for immunoglobulin gb4Homo sapiens done caneg8-1 immunoglo coronin, adin-binding protein, 1A serine (or cystelne) proteinase inhibito ESTs vanin 2 ESTs hypothelical protein FLi20035 ESTs	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533 AW899713 AW963838 AB012124	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830	gb3-bmo sapiers mRNA for Immunoglobulin bj3-bmo sapiers clone cangel 7-immunoglo corona, adin-binding protein, 1A serine (or cysteine) proteinase inhibito ESTs vanin 2 ESTs hypothetical protein FLI20035 ESTs Homo sapiens cDNA FLJ12136 lis, clone MA transcription factor-tike 5 (basic helix	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 AI399956 BE143533 AW963838 AB012124 NA	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830 Hs.30696	gbbtom sepiera mRNA for Immunoglobulin gbt-tom sepiera clone canegel 1 immunoglo coronia, adin-binding protein, 1A serine (or cysteine) proteinase Inhibito EST3 vanin 2 EST3 hypothetical protein FLJ20035 EST3 Homo sepiena CDNA FLJ12136 fis, clone MA transcription factor-like 5 (basic helix Target Exon	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 428746	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533 AW899713 AW963838 AB012124 NA AW503820	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830 Hs.30696 Hs.192861	gb3-tion septem mRNA for Immunoglobulin bj4-tion septem clone casegle 1 immunoglo coronia, actin-binding protein, 1A serine (or cystelne) proteinase inhibito ESTs vunin 2 ESTs BSTs BSTs Homo septem cDNA FL12136 fis, clone MA transcription factor (8s of Vasich helix Target Exon Syl-B transcription factor (8s of VFPU-1 r	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
	406642 406624 421924 414523 416379 422823 433904 4218034 436043 452823 405381 428746 435147	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 AI399956 BE143533 AW899713 AW963838 AB012124 NA AW503820 AL133731	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.1208956 Hs.109309 Hs.339315 Hs.168830 Hs.30696 Hs.192861 Hs.4774	gbb+om sapiers mRNA for Immunoglobulin gb+om sapiers clone canegel 1 immunoglo coronia, adin-binding protein, 1A serine (or cysteine) proteinase Inhibito EST3 vanin 2 EST3 hypothetical protein FLJ20035 EST3 Homo sapiens cDNA FLJ12136 fis, clone MA transcription factor-like 5 (basic helix Target Exon Spi-B transcription factor (Spi-1/PU_1 r Homo sapiens mRNA; cDNA DKF2/P61C171	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 428746	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533 AW899713 AW963838 AB012124 NA AW503820	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.1208956 Hs.109309 Hs.339315 Hs.168830 Hs.30696 Hs.192861 Hs.4774	gb3-tion septem mRNA for Immunoglobulin bj4-tion septem clone casegle 1 immunoglo coronia, actin-binding protein, 1A serine (or cystelne) proteinase inhibito ESTs vunin 2 ESTs BSTs BSTs Homo septem cDNA FL12136 fis, clone MA transcription factor (8s of Vasich helix Target Exon Syl-B transcription factor (8s of VFPU-1 r	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 428746 435147 425782	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533 AW899713 AW963838 AB012124 NA AW503820 AL133731 U66468	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830 Hs.30696 Hs.192861 Hs.4774 Hs.159525	gb3-bmo seplers mRNA for Immunoglobulin pb4-mon seplers clone caseg6.1 immunoglo coronia, adin-binding protein, 14 serine (or cystelne) proteinase inhibito ESTs vusini 2 ESTs hypothetical protein FLI20005 hypothetical protein FLI20005 hypothetical protein FLI20005 ham seplens cDNA FLI12136 fis, ctone MA transcription factor (8s of beals helix Target Exon Syl-B transcription factor (Sp4-I/PU.1 r Homo seplens mRNA; cDNA DKF22761 CTI Homo seplens mRNA; cDNA DKF22761 CTI et all growth regulatory with EF-hand doma	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 428746 425782 423306	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533 AW899713 AW963838 AB012124 NA AW503820 AL133731 U66468 W88562	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830 Hs.30696 Hs.192861 Hs.159525 Hs.108198	gb3-bmo sepiers mRNA for Immunoglobuling bit-hom sepiers clone canegal 1 immunoglo coronia, actin-binding protein, 1A serine (or cysteine) proteinses Inhibito EST3 vanin 2 EST3 hypothetical protein FLJ20035 EST3 Homos sepiens cDNA FLJ12136 fis, clone MA transcription factor-like 5 (basic helix Target Exon Spi-B transcription factor (SpI-17PULT Floron sepiens mRNA; cDNA DKF2/PR1C171 cell growth regulatory with EF-hand doma EST3	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45	406642 406624 421924 414523 416379 422823 433904 421904 42834 436043 452823 405381 428746 435147 425782 423306 419123	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 AI399956 BE143533 AW899713 AW963838 AB012124 NA AW503820 AL133731 U66468 W88562 AA234276	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830 Hs.30696 Hs.192861 Hs.4774 Hs.159525 Hs.108198 Hs.88253	gb3-bmo seplers mRNA for Immunoglobulin pb4-mon seplers clone caseg8-1 immunoglo coronia, adin-binding protein, 1A serine (or cystelne) proteinase inhibito ESTs varini 2 ESTs hypothetical protein FLI20005 EST EST EST EST EST EST EST EST EST EST	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 40581 428746 428746 425782 42336 419123 438581	AJ245210 AF052762 BE5145144 AU076633 N38857 D8857 D89956 BE143533 AW96383 AB012124 NA AW503820 AL133731 U66468 W88562 AA234276 AW977766	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.16883 Hs.16883 Hs.159856 Hs.192861 Hs.4774 Hs.159525 Hs.108198 Hs.88253 Hs.282133	gbb4mo sapiers mRNA for Immunoglobuling bl4mom sapiers clone canegal 1 immunoglo coronia, actin-binding protein, 1A serine (or cysteine) proteinase Inhibito EST3 vanin 2 EST3 hypothelical protein FLJ20035 EST3 Homo sapiens cDNA FLJ12136 fis, clone MA transcription factor-like 5 (basic helix Target Exon Spi-B transcription factor (Spi-1/PU_1 r Homo sapiens mRNA; cDNA DKF2/P61C171 cell growth regulatory with EF-hand doma EST3 EST5 EST5, Moderatby similar to 178885 serin	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 40581 428746 428746 425782 42336 419123 438581	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 AI399956 BE143533 AW899713 AW963838 AB012124 NA AW503820 AL133731 U66468 W88562 AA234276	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830 Hs.30696 Hs.192861 Hs.4774 Hs.159525 Hs.108198 Hs.88253	gbb4mo sapiers mRNA for Immunoglobuling bl4mom sapiers clone canegal 1 immunoglo coronia, actin-binding protein, 1A serine (or cysteine) proteinase Inhibito EST3 vanin 2 EST3 hypothelical protein FLJ20035 EST3 Homo sapiens cDNA FLJ12136 fis, clone MA transcription factor-like 5 (basic helix Target Exon Spi-B transcription factor (Spi-1/PU_1 r Homo sapiens mRNA; cDNA DKF2/P61C171 cell growth regulatory with EF-hand doma EST3 EST5 EST5, Moderatby similar to 178885 serin	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 428746 435147 425782 423306 419128 438581 417105	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143531 AW969313 AW969313 AW9033820 AL33731 U66468 W88562 AA234276 AW977766 X60992	Hs. 109606 Hs.76353 Hs. 203933 Hs. 2019339 Hs. 109309 Hs. 109309 Hs. 168830 Hs. 30696 Hs. 192861 Hs. 4774 Hs. 159525 Hs. 108198 Hs. 88253 Hs. 292133 Hs. 292133	gb3-bmo seplers mRNA for Immunoglobulin pb4-mon seplers clone caseg8-1 immunoglo coronia, actin-binding protein, 1A serina (or cysteine) proteinase inhibita ESTs vorini 2 ESTs home seplens cDNA FL12136 fis, clone MA proception actor-like 5 (basic helix Target Exon Sy9-B transcription factor (Sp4-IPU-1 r Homo seplens cMNA FL12136 fis, clone MA Sy9-B transcription factor (Sp4-IPU-1 r Homo seplens mRNA; cDNA DKF2D/51C171 cell growth regulatory with EF-hand doma ESTs ESTs, Moderately similar to 178885 serin CDB artigen	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 428746 435147 425782 423306 419123 438581 417105 428361	ALZ 45210 AF052762 BE514514 AU076633 N38857 D89974 AI399956 BE143533 AW899713 AW963838 AB012124 NA AW503820 AL133731 U66468 W88562 AW37766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766	Hs. 109606 Hs. 76353 Hs. 203933 Hs. 121102 Hs. 208956 Hs. 109309 Hs. 339315 Hs. 168830 Hs. 30696 Hs. 19265 Hs. 195525 Hs. 18385 Hs. 18253 Hs. 822133 Hs. 81226 Shs. 18385	gbbtom sepiers mRNA for Immunoglobuling blothom sepiers clone casegla 1 immunoglo coronia, actin-binding protein, 1A serine (or cysteine) proteinsee Inhibito EST3 vanin 2 EST3 hypothetical protein FLJ20035 EST3 Homo sepiens cDNA FLJ12136 fils, clone MA transcription factor-like 5 (basic helix Target Exon Spi-B transcription factor (Spi-1PUL1 r Homo sepiens mRNA; cDNA DKF2/P61C171 cell growth regulatory with EF-hand doma EST3 EST3 EST5 EST5, Moderately similar to 178885 serin CD6 antigen transcription factor 1	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50	406642 406624 421924 414523 416379 422823 433904 428834 436043 452823 405381 428746 435147 425782 438581 417102 438581 417102 438581 417102 428361 417880	AJ245210 AF052762 BE514514 AU076633 N38857 D89974 Al399956 BE143531 AW969313 AW969313 AW9033820 AL33731 U66468 W88562 AA234276 AW977766 X60992	Hs. 109606 Hs. 76353 Hs. 203933 Hs. 121102 Hs. 208956 Hs. 109309 Hs. 339315 Hs. 168830 Hs. 30696 Hs. 19265 Hs. 195525 Hs. 18385 Hs. 18253 Hs. 822133 Hs. 81226 Shs. 18385	gb3-bmo saplers mRNA for Immunoglobulin pb1-dmo saplers clone caseg8-1 immunoglo coronia, actin-binding protein, 1A serine (or cystelne) proteinase inhibito EST3 vanin 2 EST3 hypothetical protein FLJ20035 EST3 Homo saplers CDNA FLJ12136 fils, done MA transcription factor-file of Spasic helix Target Exon SyP-B transcription factor-file of Spasic helix Target Exon SyP-B transcription factor-file of Spasic helix Target Exon SyP-B transcription factor (Sp4-FlyD1 f Homo saplers mRNA; cDNA DKF2p781C171 composition of the spasic protein control of the EST3 EST3, Modernat by amilia to 178885 serin CD6 antigen transcriptional intermediary factor 1 selectin L (tymology factor)	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 428746 435147 425782 423306 419123 438581 417105 428361	ALZ 45210 AF052762 BE514514 AU076633 N38857 D89974 AI399956 BE143533 AW899713 AW963838 AB012124 NA AW503820 AL133731 U66468 W88562 AW37766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766	Hs. 109606 Hs. 76353 Hs. 203933 Hs. 121102 Hs. 208956 Hs. 109309 Hs. 339315 Hs. 168830 Hs. 30696 Hs. 19265 Hs. 195525 Hs. 18385 Hs. 18253 Hs. 822133 Hs. 81226 Shs. 18385	gbbtoms sepiera mRNA for Immunoglob gbtoms sepiera Cone canegat Timmunoglo coronia, adin-binding protein, 1A serine (or cysteine) proteinse Inhibito EST3 vanin 2 EST3 hypothelical protein FLJ20035 EST3 Homos sepiena CDNA FLJ12136 fis, clone MA transcription factor-like 5 (basis helix Target Exon Spi-B transcription factor (Spi-17PU.1 r Homo sepiena mRNA; cDNA DKF2/PSTC17T cell growth regulatory with EF-hand doma EST3 EST3 EST3 Moderately similar to 178885 serin CD6 antigen transcriptional intermediary factor 1 selectin L (lymphocyte adhesion molecule MM, Q246264-bmo sepiena proteical proteins and	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 428746 435147 425782 423306 419123 438581 417105 428361 417880 402606	ALZ 45210 AF052762 BE514514 AU076633 N38857 D89974 AI399956 BE143533 AW899713 AW963838 AB012124 NA AW503820 AL133731 U66468 W88562 AW37766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766 AW977766	Hs. 109606 Hs. 76353 Hs. 203933 Hs. 121102 Hs. 208956 Hs. 109309 Hs. 339315 Hs. 168830 Hs. 30696 Hs. 19265 Hs. 195525 Hs. 18385 Hs. 18253 Hs. 822133 Hs. 81226 Shs. 18385	gbbtoms sepiera mRNA for Immunoglob gbtoms sepiera Cone canegat Timmunoglo coronia, adin-binding protein, 1A serine (or cysteine) proteinse Inhibito EST3 vanin 2 EST3 hypothelical protein FLJ20035 EST3 Homos sepiena CDNA FLJ12136 fis, clone MA transcription factor-like 5 (basis helix Target Exon Spi-B transcription factor (Spi-17PU.1 r Homo sepiena mRNA; cDNA DKF2/PSTC17T cell growth regulatory with EF-hand doma EST3 EST3 EST3 Moderately similar to 178885 serin CD6 antigen transcriptional intermediary factor 1 selectin L (lymphocyte adhesion molecule MM, Q246264-bmo sepiena proteical proteins and	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50 55	406642 406624 421924 414523 416379 422823 433904 421904 42834 436043 452823 405381 425782 425782 423366 419123 438581 417105 42861 417105 42866 401451	AJ245210 AD245210 AD052762 BE514514 AU076633 N38857 D89974 A1399956 BE143533 AW963838 AB012124 NA AW503820 AL133731 U66468 W85562 AA234276 K09992 NM_01590 BE241595	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168830 Hs.30696 Hs.192861 Hs.4774 Hs.159525 Hs.108198 Hs.88253 Hs.292133 Hs.292133 Hs.81226 SHs.183858 Hs.28248	gb3-bmo saplers mRNA for Immunoglobulin pb1-dmo saplers clone caseg8-1 immunoglo coronia, actin-binding protein, 1A serine (or cystelne) proteinase inhibito EST3 vanin 2 EST3 hypothetical protein FLJ20035 EST3 Homo saplers cDNA FLJ12136 fils, clone MA transcription factor-files 5 (pasis helix Target Exon SyP-B transcription factor-files 5 (pasis helix Target Exon SyP-B transcription factor (Sp4-HPU 1 r Mcmo saplers or mRNA; cDNA DKFZp781C171 expension of the spanish of the spanish of the EST3 CDB antigen transcriptional intermediary factor 1 selection L (tymphocyte adhesion molecule NM_0246263+dmo saplers hypothetical prod NM_0044663+dmo saplers hypothetical prod NM_0044663+dmo saplers hypothetical prod NM_0044663+dmo saplers hypothetical prod	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 425782 423366 419123 438581 417105 428366 417880 402606 401457	AL245210 AF052762 BE514514 AU076633 N38857 D89974 Al399964 Al399963 AW963383 AW899713 AW963383 AB012124 NA AW503820 AL133731 U66468 W88562 AA234276 AW977766 X60992 NM_01590: BE241595	Hs. 109606 Hs. 76353 Hs. 203933 Hs. 121102 Hs. 208956 Hs. 109309 Hs. 339315 Hs. 168830 Hs. 192861 Hs. 4774 Hs. 159525 Hs. 182853 Hs. 8253 Hs. 8253 Hs. 8254 Hs. 8254 Hs. 8254 Hs. 82848	gb3-tions septems mRNA for Immunoglobulin pb4-tions septems clone caseged. Immunoglo- coronia, actin-binding protein, 1A serine (or cysteine) proteinsase inhibito EST3 serine (or cysteine) proteinsase inhibito EST3 serine (or cysteine) protein FLI20035 EST3 Homo saplens cDNA FLI12736 fis, clone MA transcription factor (Sp-1-tip-UL 1r Homo saplens mRNA; cDNA DKF2p781 CT71 cell growth regulatory with EF-hand doma EST3 EST3, Moderatby similar to 178885 serin transcription factor (Sp-1-tip-UL 1r Homo saplens mRNA; cDNA DKF2p781 CT71 color and the color of th	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50 55	406642 406624 421924 414523 416379 422823 433904 421804 428834 436043 452823 405381 428746 435147 425782 423306 419123 438581 417105 428361 417806 402606 401451 421878 409518	AL245210 AP052762 BE514514 AU076633 N38857 D89974 A1399956 BE143533 AW963938 AB012124 NA AW503820 AL133731 U66468 W88562 AA234276 AW977766 AW977766 AW977766 AW977766 AW977766 BE241595	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.339315 Hs.168833 Hs.30696 Hs.192851 Hs.19525 Hs.108198 Hs.8253 Hs.8253 Hs.8253 Hs.8253 Hs.8254 Hs.1111496 Hs.3454	gb3-bmo saplers mRNA for Immunoglobulin bj4-bmo saplers clone caseg8-1 immunoglo coronia, actin-binding protein, 1A serine (or cystelne) proteinase inhibito EST3 serine (or cystelne) proteinase inhibito EST3 sunin 2 EST3 hypothetical protein FLJ20035 EST3 Homo saplers cDNA FLJ12136 fils, clone MA transcription factor-files 5 (pasis helix Target Exon Syn-B transcription factor (Spi-4 PUPL 1 r Homo saplers or factor (Spi-4 PUPL 1 r Homo saplers or mRNA; cDNA DKF2p781C171 cell files of the saple show the same description factor (Spi-4 PUPL 1 r EST3 EST3, Modernaty similar to 178885 serin CD6 antigen transcriptional intermediary factor 1 selectin L (lymphocyte adhesion molecule NM, 0246264-formo saplers hypothetical prot Homo saplens cDNA FLJ11643 fis, clone HE KAMABEJ protein	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50 55	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 425782 423366 419123 438581 417105 428366 417880 402606 401457	AJ235210 AP052762 BE514514 AU076633 N38857 D89974 A1399956 BE143533 AW8997131 AW963133 AW963131 U66468 W88562 AL133731 U66468 W88562 AL234276 AW977766 AW977766 AW977766 BE241595	Hs. 109606 Hs. 76353 Hs. 203933 Hs. 121102 Hs. 208956 Hs. 109309 Hs. 339315 Hs. 168830 Hs. 192861 Hs. 4774 Hs. 159525 Hs. 182853 Hs. 8253 Hs. 8253 Hs. 8254 Hs. 8254 Hs. 8254 Hs. 82848	gb3-tions sepiera mRNA for Immunoglob gb1-tions sepiera Cone caneg6-1 immunoglo coronia, actin-binding protein, 14 serina (or cystelne) proteinase inhibito ESTs varina (2 ESTs) varina (2 EST	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50 55	406642 406624 421924 414523 416379 422823 433904 421904 421904 421904 428834 435147 425782 423306 419123 438581 417105 428361 417880 402606 401451 421878 401451 401451 401451 401451 401451 401451 401451	AL245210 AP052762 BE514514 AU076633 N38857 D89974 A1399956 BE143533 AW963938 AB012124 NA AW503820 AL133731 U66468 W88562 AA234276 AW977766 AW977766 AW977766 AW977766 AW977766 BE241595	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208956 Hs.109309 Hs.193696 Hs.19264 Hs.19696 Hs.19264 Hs.195525 Hs.18253 Hs.82513 Hs.8253 Hs.8253 Hs.8254 Hs.8254 Hs.8254 Hs.8254 Hs.8254 Hs.8254 Hs.8254 Hs.8254 Hs.8254	gb3-tions sepiera mRNA for Immunoglob gb1-tions sepiera Cone caneg6-1 immunoglo coronia, actin-binding protein, 14 serina (or cystelne) proteinase inhibito ESTs varina (2 ESTs) varina (2 EST	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50 55	406642 406624 421924 414523 416379 422823 433904 4218834 436043 452823 405381 405381 428746 435147 435147 435147 435147 435147 435147 435147 435147 43606 401451 417880 402606 401451 421878 409518 4169518 4169518 4169518 4169518 4169518 4169518 4169518 4169518 4169518 4169518 4169518 4169518 4169518 4169518 4169518 416931 4	AL245210 AP052762 BE514514 AU076633 N38857 D89974 Al399956 BE143533 AW9897313 AW963838 AB012124 NA AW503820 AL133731 U66468 W957736 AA234276 AW977766 AA234276 AW977765 BE241595	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208936 Hs.109309 Hs.30896 Hs.192851 Hs.4774 Hs.159525 Hs.108198 Hs.8253 Hs.8253 Hs.82253 Hs.8258 Hs.8258 Hs.8254 Hs.81256 Hs.13952 Hs.8254 Hs.81256 Hs.8254 Hs.81256 Hs.8254 Hs.81256	gb3-bmo saplers mRNA for Immunoglobulin pb1-bmo saplers clone casegla 1 immunoglo pb1-bmo saplers clone casegla 1 immunoglo coronia, actin-binding protein, 1A serine (or cystelne) proteinase inhibito EST3 serine (or cystelne) proteinase inhibito EST3 serine (or cystelne) protein EST3 pb1-bmo saplers cDNA FLJ12136 fis, clone MA transcription factor-files 5 (pasis helix Target Exon Sp1-bmo saplers mRNA; cDNA DK720781C171 cell growth regulatory with E7-hand doma EST3 pb1-bmo saplers mRNA; cDNA DK720781C171 cell growth regulatory with E7-hand doma EST3 pb1-bmo saplers mRNA; cDNA DK720781C171 cell growth regulatory with E7-hand doma EST3 pb1-bmo saplers mRNA; cDNA DK720781C171 cell growth regulatory with E7-hand doma EST3 pb1-bmo saplers hypothetical prot transcriptional intermediany factor 1 selectin L (tymhocyte adhesion molecule NM, 004663-flormo saplers hypothetical prot MM, 004465-flormo saplers hypothetical prot MM, 004465-flormo saplers hypothetical prot MA (ENA 1821 protein) small nuclear ritonucleoprotein polypet) mymbotoxin bed (TMS superfamily, membe	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50 55 60	406642 406624 421924 414523 416379 422823 433904 428834 436043 428834 435147 425782 42336 419123 438581 417105 42866 401451 421878 402606 401451 421878 416933 414324 425081	AJ235210 AP052762 BE514514 AU076633 N38857 D89974 A1399956 BE143533 AW8997131 AW963133 AW963131 U66468 W88562 AL133731 U66468 W88562 AL234276 AW977766 AW977766 AW977766 BE241595	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208936 Hs.109309 Hs.30896 Hs.192851 Hs.4774 Hs.159525 Hs.108198 Hs.8253 Hs.8253 Hs.82253 Hs.8258 Hs.8258 Hs.8254 Hs.81256 Hs.13952 Hs.8254 Hs.81256 Hs.8254 Hs.81256 Hs.8254 Hs.81256	gb3-tions sepiera mRNA for Immunoglob gb1-tions sepiera Cone caneg6-1 immunoglo coronia, acilin-binding protein, 14 serina (or cystelne) proteinase inhibito ESTs varina (2 ESTs) belical protein ESTs varina (2 ESTs) belical protein FLI200035 ESTS abelical	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50 55	406642 406624 421924 414523 416379 422823 433904 428834 436043 452823 405381 428746 425782 425382 425382 417105 428361 417105 428361 417105 428361 417105 428361 417880 402606 401451 421878 402606 401451 421878 402606 401451 401519	AL245210 AP052762 BE514514 AU076633 N38857 D89975 BE143533 AW9997313 AW963838 AB012124 NA AW503820 AL133731 U66468 W995726 AA234276 AW977766 SG0992 NM_01590 BE241595 AA29952 BE384836 BE551850 Y14768 X74794	Hs. 109606 Hs.76353 Hs.203933 Hs. 121102 Hs.208956 Hs. 109309 Hs.339315 Hs.309315 Hs.309316 Hs.4774 Hs.15952 Hs.108198 Hs.826253 Hs.82263 Hs.822848 Hs.82544 Hs.111406 Hs.3454 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506 Hs.80506	gb3-bmo sepiera mRNA for Immunoglobulin gb1-bmo sepiera Cone canega 1-immunoglo bulin gb1-bmo sepiera cone canega 1-immunoglo coronia, actin-binding protein, 1A serine (or cystelne) proteinase inhibito EST3 serine (or cystelne) proteinase inhibito EST3 serine (or cystelne) protein protein EST3 serine (or cystelne) protein small nuclear ritonucleoprotein polypet) small nuclear ritonucleoprotein polypet serine (or cystelne) protein	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50 55 60	406642 406624 421924 414523 416379 422823 433904 428834 436043 428834 435147 425782 42336 419123 438581 417105 42866 401451 421878 402606 401451 421878 416933 414324 425081	AL2'85210 AP052762 BE514514 AU076633 N38857 D89975 BE143533 AW9897313 AW963838 AB012124 NA AW503820 AL133731 U864562 AA234276 AW977766 K50992 NM_015909 BE241595 AA299652 BE384836 BE561850 Y14768 X74794	Hs.109606 Hs.76353 Hs.203933 Hs.121102 Hs.208936 Hs.109309 Hs.30896 Hs.192851 Hs.4774 Hs.159525 Hs.108198 Hs.8253 Hs.8253 Hs.82253 Hs.8258 Hs.8258 Hs.8254 Hs.81256 Hs.13952 Hs.8254 Hs.81256 Hs.8254 Hs.81256 Hs.8254 Hs.81256	gb3-tions sepiera mRNA for Immunoglob gb1-tions sepiera Cone caneg6-1 immunoglo coronia, acilin-binding protein, 14 serina (or cystelne) proteinase inhibito ESTs varina (2 ESTs) belical protein ESTs varina (2 ESTs) belical protein FLI200035 ESTS abelical	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
45 50 55 60	406642 406624 421924 414523 416379 422823 433904 421904 428834 436043 452823 405381 428746 435147 425782 423306 419123 438581 417105 428361 417105 428361 417108 409518 416933 414324 425081 401519 411704	AL245210 AP052762 BE514514 AU076633 N38857 D89975 BE143533 AW9997313 AW963838 AB012124 NA AW503820 AL133731 U66468 W995726 AA234276 AW977766 SG0992 NM_01590 BE241595 AA29952 BE384836 BE551850 Y14768 X74794	Hs. 109606 Hs. 76353 Hs. 203933 Hs. 201933 Hs. 121102 Hs. 121102 Hs. 109309 Hs. 109309 Hs. 192861 Hs. 4774 Hs. 159525 Hs. 108198 Hs. 82253 Hs. 82253 Hs. 82253 Hs. 82253 Hs. 8248 Hs. 111496 Hs. 3454 Hs. 3554 Hs.	gb3-bmo sepiera mRNA for Immunoglobulin gb1-bmo sepiera Cone canega 1-immunoglo bulin gb1-bmo sepiera cone canega 1-immunoglo coronia, actin-binding protein, 1A serine (or cystelne) proteinase inhibito EST3 serine (or cystelne) proteinase inhibito EST3 serine (or cystelne) protein protein EST3 serine (or cystelne) protein small nuclear ritonucleoprotein polypet) small nuclear ritonucleoprotein polypet serine (or cystelne) protein	3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1

453553 AA036849 Hs.61829 Homo saplens cDNA FLJ12763 fis, clone NT 3.2

	420423	MUUTOOIT	NS. 1042/0	solute carner family 9 (sodium/nyd/ogen	3.0	
	413835			fatty acid hydroxylase	3.0	
	412600	L28824	Hs.74101	spleen tyrosine kinase	3.0	
_	410491	AA465131	Hs.64001	Homo sapiens clone 25218 mRNA sequence	3.0	
5	433658	L03678	Hs.156110	immunoglobulin kappa constant	3.0	
	427666	AI791495	Hs.180142	calmodulin-like skin protein	3.0	
	452514	AI904898		gb:RC-BT068-130399-085 BT068 Homo sapi	en3.0	
	429500	X78565	Hs.289114	hexabrachion (tenascin C, cytotactin)	3.0	
	432485		Hs.276770	CDW52 antigen (CAMPATH-1 antigen)	3.0	
10	437400	AB011542	Hs.5599	EGF-like-domain, multiple 5	3.0	
	452234		Hs.223296	ESTs, Weakly similar to I38022 hypotheti	3.0	
	413269	BE167526		gb:CM4-HT0509-080300-107-g07 HT0509 Ho	omo	3.
	453216	AL137566	Hs.32405	Homo sapiens mRNA; cDNA DKFZp586G032	21 (f	3.
	400929			ENSP00000252232*:Sterol regulatory eleme	3.0	
15		AI961702	Hs.147434		3.0	
	432615	AA557191	Hs.55028	ESTs, Weakly similar to I54374 gene NF2	3.0	
	423279	AW959861			3.0	
	429392	AL109712	Hs.296506		3.0	
	408548	AA055449		ESTs, Weakly similar to ALUC_HUMAN IIII	3.0	
20	451346	NM_00633		glioma amplified on chromosome 1 protein	3.0	
		AW389845	Hs.110855		3.0	
	401714	NA		ENSP00000241802*:CDNA FLJ11007 FIS, C	LON	3.
	421462	AF016495	Hs.104624	aquaporin 9	3.0	
	421750	AK000768	Hs.107872	hypothetical protein FLJ20761	3.0	
25	453293	AA382267	Hs.10653	ESTs	3.0	
	457085	AA412446	Hs.98138	ESTs	3.0	
	438930	AW843633	Hs.306163	hypothetical protein AL110115	3.0	

TABLE 22A

Table 22A shows the accession numbers for those pkeys lacking unigeneID's for Table 22.

For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

	Pkey: Uniqu CAT number: Gene		Gene	us Eos probeset Identifier number cluster number aukt soccession numbers				
15	Pkey	CAT nui	nber	Accessions				
	407980	103087	1	AA046309 A(263500 AA046397				
	410785	1221055	1_1	AW803341 AW803265 AW803403 AW803466 AW803402 AW803413 AW803268 AW803396 AW803334 AW803355				
20	411743	1256098	3_1	AW862214 AW859811 AW862215				
	412138	1279172	<u>.</u> 1	AW895387 AW895547 AW895564 AW895323 AW895405 AW895539 AW895538				
	413269	1356961	<u>.</u> 1	BE167526 BE167651 BE076401 R24654				
		163179		AA190712 AA190665 AA252564				
		211994		AW881145 AA4907 18 M85637 AA304575 T06067 AA331991				
25		233566		AA410943 AW948953 AA334202 AA332882				
		235506		AW406878 AW966560 AW966151 AW966496 AA336174 AA335376 AA335537				
		235728		AW966163 AA335983 AA336011 AA335668 AA335973				
		250199_		AW962128 AA355353 AA427363				
••		273265		BE069341 AW748403 AL044891 Al908240 AA393080				
30		353673		AI821926 AA658826 AA564492 AA635129 AI791191				
		51084_2		BE562826 BE378727				
		755099		A1475858 AW969013				
		859865_		AL118668 D78823 AI762176				
35		920172		A1904898 A1904849 A1904899				
22	456207	165078	1	AA193450				

Pkey:

10

TABLE 22B

Unique number corresponding to an Eos probeset

Table 22B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 22. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Rei:			purce. The 7 digit numbers in this column are Genoank Identifier (GI) numbers. "Dunham I, et al." refers to the publication d "The DNA sequence of human chromosome 22." Dunham I, et al., Nature (1999) 402:489-495.
	Strand:			A strand from which exons were predicted.
	Nt_post	tion:		cleolide positions of predicted exons.
15	Pkey	Ref	Strand	Nt_position
	PRUY	Rei	Stranti	NI_position
	400814	8569925	Minus	72840-72924,74761-74849
	400929	7651921	1 Minus	122033-122241,123483-124028
20	401045	8117619	9 Plus	90044-90184,91111-91345
	401451	6634068	8 Minus	119926-121272
	401519	6649315	5 Plus	157315-157950
		7657839		34986-35133
	401714	6715702	2 Plus	96484-96681
25		8018108		73126-73623
		7656695		108675-108770,109801-109910
		9211204		40403-41961
		9796239		110326-110491 .
• •		9797107		195129-195776
30		9801558		67076-67594
		9884928		66350-66496
		9909429		81747-82094
		6693597		3468-3623
~ -		7630897		156037-156210
35		8516120		96450-96598
		8783692		49323-49652
		9966528		2888-3001,3198-3532,3655-4117
		983819		74493-74829
40		6539738		240588-241589
40		7706327		53729-53846
		6532084		35551-35690
		2914717		43310-43462
		6006920		7636-8054
4.5		292432		63469-83694
45		616499		13871-14110
		992973		12902-13069
	406348	925598	5 Minus	71754-71944

TABLE 23: 320 GENES DOWN-REGULATED IN BREAST CANCER COMPARED TO NORMAL ADULT BREAST

5 Table 23 shows 320 genes down-regulated in breast cancer compared to normal adult breast. These were selected as for Table 22, except that the numerator was set to the median value for 12 non-malignant breast specimens, the denominator was set to the median value amongst the 73 breast cancers, the 90th percentile value amongst the 12 non-malignant breast specimens was greater than or equal 80 units, and the ratio was greater than or equal to 4.0 (i.e. 4-fold down-regulated in tumor vs. normal breast).

15	Pkey: ExAccn: UnigeneiD: Unigene Title: R1:	Unique Eos probeset Identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Ratio of 50° bereantile normal body tissue to 75° percentile tumor
----	---	--

20	Pkey	ExAcon	UnigenelD	UnigeneTitle	Ratio
•	428722	U76456	Hs.190787	tissue inhibitor of metalloproteinase 4	22.4
	428848	NM_000230	Hs.194236	leptin (murine obesity homolog)	17.4
	445263	H57646	Hs.42586	KIAA1560 protein	15.4
25	418935	T28499	Hs.89485	carbonic anhydrase IV	15.0
	407228	M25079	Hs.155376	hemoglobin, beta	14.6
	417511	AL049176	Hs.82223	chordin-like	14.6
		AL133916	Hs.172572	hypothetical protein FLJ20093	14.3
	412442	AI983730	Hs.26530	serum deprivation response (phosphatidy)	13.6
30	410544	A1446543	Hs.95511	ESTs	12.6
	412047	AA934589	Hs.49696	ESTs	12.2
	422667	H25642	Hs.133471	ESTs	12.0
	406664	L34041	Hs.9739	glycerol-3-phosphate dehydrogenase 1 (so	12.0
	423201	NM_000163	Hs.125180	growth hormone receptor	11.7
35	422163	AF027208	Hs.112360	prominin (mouse)-like 1	10.8
	428769	AW207175	Hs.106771	ESTs	10.6
	407049	X72632		NM_021724*:Homo sapiens nuclear receptor	10.1
	412295	AW088826	Hs.117176	poly(A)-binding protein, nuclear 1	9.8
	425126	N32759	Hs.172944	chorionic gonadotropin, beta polypeptide	9.8
40	406791	AI220684	Hs.272572	hemoglobin, alpha 2	9.5
	447471	AF039843	Hs.18676	sprouty (Drosophila) homolog 2	9.5
	451533	NM_004657	Hs.26530	serum deprivation response (phosphatidy)	9.4
	419407	AW410377	Hs.41502	hypothetical protein FLJ21276	9.0
	411939	AI365585	Hs.146246	ESTs	9.0
45	410532	T53088	Hs.155376	hemoglobin, beta	8.9
	425707	AF115402	Hs.11713	E74-like factor 5 (ets domain transcript	8.8
	416585	X54162	Hs.79386	leiomodin 1 (smooth muscle)	8.7
	443060	D78874	Hs.8944	procollagen C-endopeptidase enhancer 2	8.6
	435265	AA779958	Hs.185932	ESTs	8.5
50		AU076442	Hs.117938	collagen, type XVII, alpha 1	8.4
	433138	AB029496	Hs.59729	semaphorin sem2	8.3
	402195			NM_004497*:Homo sapiens hepatocyte nucle	8.1
	429350	A1754634	Hs.131987	ESTs	8.1
	445107	Al208121	Hs.147313	ESTs, Weakly similar to I38022 hypotheti	8.1
55	406643	N77976	Hs.272572	hemoglobin, alpha 2	8.0
	410199	AW377424	Hs.205126	Homo saplens cDNA: FLJ22667 fis, clone H	8.0
		AA815048	Hs.24078	hypothetical protein FLJ12649	7.8
		AA760849	Hs.294052	ESTs	7.5
	436062	AK000027	Hs.98633	ESTs	7.5
60	425078	NM_002599	Hs.154437	phosphodiesterase 2A, cGMP-stimulated	7.5
	430327	AW973636	Hs.55931	ESTs	7.4

	447077				
		Al393693	Hs.183297	DKFZP566F2124 protein	7.4
		Al150491	Hs.90756	ESTs	7.2
		R20893	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	7.2
	424455	AA452006	Hs.333199	ESTs	7.1
5	424343	AW956360	Hs.4748	adenylate cyclase activating polypeptide	7.1
		Al352340	Hs.131194	ESTs	7.0
		Al219304	Hs.283108		
				hemoglobin, gamma G	6.9
		AI446183	Hs.9572	ESTs, Highly similar to CYA5_HUMAN ADENY	6.8
		AA346839	Hs.209100	DKFZP434C171 protein	6.7
10		A1478427	Hs.43125	esophageal cancer related gene 4 protein	6.7
	422233	AB002058	Hs.113275	purinergic receptor P2X-like 1, orphan r	6.7
	420205	AA256395	Hs.88156	ESTs	6.6
	404368		110.00	ENSP00000241075*TRRAP PROTEIN	6.6
	447261		Hs.17917		
15				extracellular link domain-containing 1	6.5
13		AA193282	Hs.85863	ESTs, Weakly similar to B34612 zinc fing	6.5
		NM_003278	Hs.65424	tetranectin (plasminogen-binding protein	6.5
	427283	AL119796	Hs.174185	ectonucleotide pyrophosphatase/phosphodi	6.5
	415011	AW963085		gb:EST375158 MAGE resequences, MAGH Hom	n6 4
	412068	S72043	Hs.73133	metallothionein 3 (growth inhibitory fac	6.4
20		BE250659	Hs.15463		6.4
		AA701483	Hs.36341		
			HS.3034 I		6.3
	402779				6.3
		AA213626	Hs.136204	EST	6.3
	439335	AA742697	Hs.62492	ESTs, Weakly similar to B39066 proline-r	6.3
25	427019	AA001732	Hs.173233	hypothetical protein FLJ10970	6.2
		BE143068		gb:MR0-HT0158-030200-003-b09 HT0158 Homo	
		BE004783		gb:MR2-BN0114-270400-004-e11 BN0114 Homo	
			U- 400c0		
		NM_012093	Hs.18268		6.1
20		NM_014759	Hs.334688	KIAA0273 gene product	6.1
30		H15968	Hs.293845		6.1
		F08212	Hs.234898	ESTs, Weakly similar to 2109260A B cell	6.0
	400089	-NA			6.0
	433614	W07475	Hs.277101		5.9
	440439		Hs.64754		5.9
35	454404		113.047.54		
55	436704		Un 4400FÔ	gb:MR4-BT0355-200100-201-e05 BT0355 Homo	
			Hs.148050		5.9
	406563				5.9
	433490		Hs.65848	hypothetical protein DKFZp761O132	5.9
	419313	AA843387	Hs.87279	ESTs	5.9
40	409196	NM 001874	Hs.334873		5.8
		AW809163		gb:MR4-ST0118-261099-012-a03 ST0118 Homo	
		AB014533	Hs.33010		
	441899				5.8
			Hs.8022		5.8
		AA372052	Hs.334559		5.8
45		BE063555		gb:CM1-BT0283-081199-033-d09 BT0283 Homo	5.8
	454192	AW876813	Hs.3343	phosphoglycerate dehydrogenase	5.7
	425187	AW014486	Hs.22509		5.7
	429757	AW452355	Hs.256037		5.7
		AL036557	Hs.95910		5.7
50		AI695473			
50			Hs.298006		5.7
		AA181641	Hs.184907		5.6
		NA		Target Exon	5.6
	438887	R68857 AC	Hs.265499	ESTs	5.6
	406082	S47833	Hs.82927		5.6
55		H23963	Hs.32043		5.6
		R50253	Hs.249129		5.5
		C15819	113-245 125		
			11 000000		5.5
		AW444613	Hs.288809		5.5
		AB020629	Hs.38095	ATP-binding cassette, sub-family A (ABC1	5.5
60		A1668605	Hs.60380		5.5
	414629	AA345824	Hs.76688		5.5
	401665				5.5
		T99079	Hs. 191 194		
		AI161428	Hs.75916		5.5
65					5.5
05		BE005346	Hs.116410		5.5
		BE617015	Hs.11006		5.5
	408122	A1432652	Hs.42824	hypothetical protein FLJ10718	5.5

	454016	AW016806	Hs.233108		5.5
	414913				5.4
		AA017590	Hs.129907	ESTs	5.4
_		BE172240	Hs.126379		5.4
5	450637		Hs.18602		5.4
		AA994520		gb:ou42g09.s1 Soares_NFL_T_GBC_S1 Homo s	5.4
	403612			Target Exon	5.3
		AA007629	Hs.9739	glycerol-3-phosphate dehydrogenase 1 (so	5.3
10		R66634	Hs.268107		5.3 5.3
10		BE272452	Hs.183109	monoamine oxidase A	
		AA620814	Hs.144959		5.3 5.3
	431344		Hs.272572		5.3
		AF012023	Hs.173274	integrin cytoplasmic domain-associated p	5.3
15		BE261320	Hs.158196 Hs.194915		5.3
13		AW613948 Ai809481	Hs.131227	ESTs ESTs	5.3
	402054		HS.131221	Target Exon	5.3
		AF212829	Hs.272406	potassium channel, subfamily K, member 9	5.3
	415313		Hs.6181	ESTs	5.2
20		AI904646	H3.0101	gb:QV-BT065-020399-103 BT065 Homo saplen	5.2
20		AB037721	Hs.173871	KIAA1300 protein	5.2
		BE467930	Hs.170381	ESTs	5.2
		AI285901	Hs.181297	ESTs	5.2
	402698		113.101201	ENSP00000251335*:DJ1003J2.1 (sodium and	5.2
25	401810			Target Exon	5.2
		AA827674	Hs.189073	ESTs	5.2
		AA424074	Hs.76780	protein phosphatase 1, regulatory (inhib	5.2
	427809		Hs.180878	lipoprotein lipase	5.1
		NM 006744	Hs.76461	retinol-binding protein 4, interstitial	5.1
30		AW023469	Hs.65256	ESTs, Weakly similar to leucine-rich gli	5.1
		Ai821324	Hs.100445	ESTs	5.1
	402583			NM_021620:Homo sapiens PR domain contain	.5.1
		NM_006103	Hs.2719	HE4; WFDC2; putative ovarian carcinoma m	5.1
		Al435179	Hs.126820	ESTs	5.1
35	416083		Hs.269122	ESTs, Weakly similar to ALU1_HUMAN ALU S	5.1
		BE143867		9b:MR0-HT0164-070100-013-h02 HT0164 Homo	5.1
			Hs.4	alcohol dehydrogenase 1B (class I), beta	5.1
		BE244537	Hs.167382	natriuretic peptide receptor A/guanylate	5.1
		AA486620	Hs.41135	endomucin-2	5.0
40		AW026692	Hs.224829	ESTs	5.0
	445967		Hs.118821	CGI-62 protein	5.0
		A1524307	Hs.162870	ESTs	5.0
		Ai076012	Hs.121388	ESTs, Weakly similar to MDHC_HUMAN MALAT	5.0
4.5	454775	BE160229		gb:QV1-HT0413-090200-062-a12 HT0413 Homo	5.0
45	409451	AF012626	Hs.54472	fragile X mental retardation 2	
		AW502327		gb:Ui-HF-BR0p-aka-a-07-0-Ui.r1 NIH_MGC_5	5.0
	405062			Target Exon	5.0
	446490	AK000706 AW298163	Hs.15125 Hs.82318	hypothetical protein FLJ20699	5.0
50		AVV290103 AJ243662	Hs.110196	WAS protein family, member 3	5.0
30	440338		Hs.12758	NICE-1 protein ESTs	5.0
	415421		Hs.24903	ESTs	5.0
	417574		110.64500	gb:ye69e06.r1 Soares fetal liver spieen	5.0
		AJ243191	Hs.56874	heat shock 27kD protein family, member 7	5.0
55		AI768289	Hs.304389	ESTs	4.9
55	447550	BE550889	Hs.158491	ESTs	4.9
	443074		Hs.144907	ESTs	4.9
		AI783600	Hs.208052	ESTs	4.9
		AW014734	Hs.157969	ESTs	4.9
60		AI989812	Hs.199850	ESTs	4.9
••	414519	N94587	Hs.55063	ESTs	4.9
		AW973716	Hs. 13913	KIAA1577 protein	4.9
		AA682722	Hs.192725	ESTs	4.9
					4.8
	430782	AF026263	Hs.247920	cholinergic receptor, muscarinic 5	
65	430782	AF026263 AW137094	Hs.247920 Hs.97990	cholinergic receptor, muscarinic 5 ESTs	4.8
65	430782 427555 433545	AF026263 AW137094 AA868510		ESTs ESTs	4.1
65	430782 427555 433545	AF026263 AW137094	Hs.97990	ESTs	4.8

	404705	V00001			
	421795		Hs.283822		4.8
	427138	N77624	Hs.173717	phosphatidic acid phosphatase type 2B	4.8
	413072	BE063965		qb:QV3-BT0296-140200-085-h01 BT0296 Homo	4.8
		AW450451	Hs.266355		4.8
5		AW139474	Hs.246862		4.8
5		AA843716			
			Hs.177927		4.7
		Al025499	Hs.132238		4.7
	426220	Al383475	Hs.171697	ESTs, Weakly similar to T13924 sdk prote	4.7
	414593	BE386764		gb:601273249F1 NIH_MGC_20 Homo sapiens c	47
10		AA398716	Hs.97418		4.7
10			Hs.113011		
		AW292618	HS.113011		4.7
	401590				4.7
	457971	AW134679	Hs.242849	ESTs	4.7
	427722	AK000123	Hs.180479		4.6
15		AA045290	Hs.25930		4.6
	407737		Hs.6659		
					4.6
		AA972327	Hs.142903		4.6
		AW298235	Hs.101689		4.6
	447517	AI382726	Hs.182434	ESTs	4.6
20	403017				4.6
	450580	NACORT	Hs.15248		4.6
	404611		Hs.35156		4.6
		M31158	Hs.77439		4.6
	459290	NM_001546	Hs.34853	inhibitor of DNA binding 4, dominant neg	4.6
25	444341	AI142027	Hs.146650	ESTs	4.6
		AL137698	Hs.46531	Homo sapiens mRNA; cDNA DKFZp434C1915 (f	
		AW204277	Hs.250723		4.6
		AF134707	Hs.278679		4.6
		Al375984	Hs.167216		4.6
30	419583	F00312		gb:HSBB0D101 STRATAGENE Human skeletal r	n4.6
	440698	AI348455	Hs.147492	Homo saplens cDNA FLJ11777 fis, clone HE	4.6
		AI290653	Hs.124758		4.6
		NM_014861	Hs.6168		4.6
25		AW015933	Hs.112654		4.5
35	423301	S67580	Hs.1645	cytochrome P450, subfamily IVA, polypept	4.5
	417237	H86385	Hs.81737	palmitoyl-protein thioesterase 2	4.5
	439745	AL389981	Hs.149219		4.5
	424137		Hs.16262		4.5
		H73444	Hs.394		
40					4.5
40		N94835	Hs.283828		4.5
	407402	AF035303		gb:Homo saplens clone 23943 mRNA sequenc	4.5
	443510	NM_012190	Hs.9520	formyltetrahydrofolate dehydrogenase	4.5
	415754	AA169114	Hs.12247		4.5
	415986				4.5
45		BE142052	Hs.62654		
43					4.5
		BE387287	Hs.83384		4.4
	437120	Al356125	Hs.157767	ESTs, Weakly similar to HXA2_HUMAN HOMEO	4.4
	453950	AA156998	Hs.211568	eukaryotic translation Initiation factor	4.4
	401093			C12000586*:gl 6330167 dbj BAA86477.1 (A	4.4
50		AW206494	Hs.253560		4.4
50		AW842353	Hs.321717	ESTs, Weakly similar to S22765 heterogen	4.4
	428222	AL133112	Hs.183085		4.4
	442705	AI264634	Hs.131127	ESTs	4.4
	437409	AL359599	Hs.283850	Homo sapiens mRNA; cDNA DKFZp547C126 (fr	4.4
55	458494	Al380906	Hs.158436		4.4
		H03589			4.4
		R37101	Hs.20982		
					4.4
	438463		Hs.314232		4.4
		Al499723	Hs.135089		4.4
60	438327	H87407	Hs.172944	chorionic gonadotropin, beta polypeptide	4.4
	457711	AF147401	Hs.23917		4.3
	400870				4.3
		A A022E00	LIA 20027		
		AA933590	Hs.28937		4.3
	416267			gb:yn99c10.r1 Soares adult brain N2b5HB5	4.3
65		M12873		gb:Human Ig rearranged H-chain mRNA VDJ4	4.3
	444567	AV654020	Hs.184261		4.3
	403263				4.3
				•	

	41003	4 BE067414		gb:MR4-BT0355-200100-201-e05 BT0355 Horn	4
		4 Al421645	Hs.139851	caveolin 2	no 4
	44842	7 BE395260	Hs.309438	EST	4.
	41693	1 D45371	Hs.80485	adipose most abundant gene transcript 1	4
5	42129	5 NM_002666		perilipin	4.:
	400973			ENSP00000236667*:Mucin 5B (Fragment).	4.3
		2 AW366194	Hs.55962	ESTs	4.3
		NM_005100	Hs.788	A kinase (PRKA) anchor protein (gravin)	4.3
10	405016			CY000171*:gij9280405jgbjAAF86402.1jAF245	4.3
10		Al475671	Hs.88607	ESTs, Highly similar to F-box protein FB	4,3
	406118			ENSP00000246632:CDNA FLJ20261 fis, clone	4.3
		T02850 AA480818	Hs.221736	gb:FB12A9 Fetal brain, Stratagene Homo s	4.3
		AW451206	Hs.115899	ESTs ESTs	4.3
15		AA342329	Hs.115920	Homo sapiens cDNA: FLJ22816 fis, clone K	4.3
		AI803166	Hs.28462	ESTs, Weakly similar to 138022 hypotheti	4.3
		Al377221	Hs.40528	ESTs	4.2
	414541		Hs.76392	aldehyde dehydrogenase 1 family, member	4.2
	444975	AV652165	Hs.182482	ESTs, Weakly similar to T00362 hypotheti	4.2
20	403921			C5000212*:gi 10047237 db BAB13407.1 (A	4.2
	451477		Hs.42710	ESTs	4.2
	406344			C5001660:gi[11611537 dbj]BAB18935.1 (AB	4.2
		AA191201	Hs.35861	DKFZP586E1621 protein	4.2
25	413662		Hs.25522	KIAA1808 protein	4.2
23	404682	AW070634	Hs.144794	ESTs	4.2
		N69913	Hs.6858	C9001188*:gi 12738842 ref NP_073725.1 p	4.2
	403433		115.0000	ESTs, Weakly similar to 178885 serine/th	4.2
		AW975460	Hs.143563	NM_001622:Homo saplens alpha-2-HS-glycop ESTs	4.2
30	414217		Hs.279898	Homo sapiens cDNA: FLJ23165 fis, cione L	4.2
	418425	AI871247	Hs.6262	hypothetical protein MGC8407	4.2
	419589	AW973708	Hs.201925	Homo sapiens cDNA FLJ13446 fis, clone PL	4.2
		AA397789	Hs.161803	ESTs	4.2
20		AF193807	Hs.131835	Rhesus blood group, B glycoprotein	4.2
35		Y09763	Hs.22785	gamma-aminobutyric acid (GABA) A recepto	4.2
		AI733098	Hs.130800	ESTs	4.2
		AF086410		gb:Homo sapiens full length insert cDNA	4.2
		AA399975 AW594172	Hs.274151	ligatin	4.2
40		T77545	Hs.278513 Hs.187559	TP53TG3 protein	4.2
40		AI144152	Hs.58246	ESTs ESTs	4.2 4.2
		AA318060	Hs.135121	hypothetical protein FLJ22415	4.2
		NM_015977	Hs.285681	Williams-Beuren syndrome chromosome regi	4.2
		R57171	Hs.57975	calsequestrin 2 (cardiac muscle)	4.1
45	400545	NA		Target Exon	4.1
	403051			Target Exon	4.1
		NM_005357	Hs.95351	lipase, hormone-sensitive	4.1
	450244		Hs.125062	ESTs	4.1
50		AA034116	Hs.118494	ESTs	4.1
30		W52010	Hs.191379	ESTs	4.1
		Al307802 Al150595	Hs.135560	ESTs, Weakly similar to T43458 hypotheti	4.1
		AND82947	Hs.122226	ESTs	4.1
	412179		Hs.69428	gb:zn10g07.s1 Stratagene hNT neuron (937	4.1
55		Al306150	Hs.153450	hypothetical protein MGC3020 ESTs, Weakly similar to 1909123A Na gluc	4.1
	426411		Hs.169764	hypothetical protein FLJ20701	4.1 4.1
		AL110416	110.100704	gb:DKFZp434K0431_r1 434 (synonym: htes3)	4.1
		AW817177	Hs.102558	Homo sapiens, clone MGC:5352, mRNA, comp	4.1
	417481		Hs.21798	ESTs	4.1
60		AW1 18878	Hs.110835	ESTs	4.1
		AW807116		gb:MR4-ST0062-040100-024-b12 ST0062 Homo	4.1
		AW631296		gb:hh83c09.y1 NCI_CGAP_GU1 Homo saplens	4.1
	435942		Hs.191215	ESTs	4.1
65		T76945		gb:yc92c07.r1 Soares Infant brain 1NiB H	4.1
05	403593 402690	NA		Target Exon	4.0
	418190	D40604	Hs.270425	Target Exon ESTs	4.0
	7 10 150	1140001	113.270423	2013	4.0
				220	

	408641	AW245207	Hs.5555	hypothetical protein MGC5347	4.0
	427899	AA829286	Hs.332053	serum amyloid A1	4.0
	445975	AI811536	Hs.145734	ESTs	4.0
	438831	BE263273	Hs.6439	synapsin II	4.0
5	455578	BE006350	Hs.14355	Homo sapiens cDNA FLJ13207 fis, clone NT	4.0
	401840	NA		Target Exon	4.0
	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	4.0
	445030	Al205925	Hs.147238	ESTs, Highly similar to AAC3_HUMAN ALPHA	4.0
	433873	AW156913	Hs.150478	ESTs, Weakly similar to A Chain A, Cryst	4.0
10	456736	AW248217	Hs.1619	achaete-scute complex (Drosophila) homol	4.0
	450112	BE047734	Hs.5473	ESTs, Moderately similar to ALU5_HUMAN A	4.0
	448906	AI589567	Hs.309719	ESTs	4.0

TABLE 23A

Unique Eos probeset identifier number Gene cluster number

Table 23A shows the accession numbers for those pkeys lacking unigeneID's for Table 23. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

15	Accession:		Genbank accession numbers				
	Pkey	CAT number	Accessions				
20		1156226_1 1170594 1	AW502327 AW502488 AW501829 AW502625 AW502687 BE067414 BE067958 BE067419 BE067963 AW577127 AW601412				
		118656_1 1205347_1	AA082947 AA083036 H03589 AW750687 AW750688				
		1225686_1 1247073 1	. AW809163 AW809247 AW809177 AW809190 AW809225 BE143068 AW849143 AW848705 AW848569 AW848071 AW848475 AW848092 AW848005				
25	413072	1347960_1 1348163_1	BE063555 BE151321 BE151319 BE151657 BE151655 BE063556 BE151322 BE063965 BE063968 BE064034 BE064028 BE063874 BE063966 BE063869 BE064043 BE064033 BE063884				
	414913	1464909_1 1506721_1	BE386764 BE387560 R25621 C03959 C04010				
30	415986	151328_1 1564410_1	AW963085 AA159005 AW963073 Z43619 R61274 H12206 R12883				
	417574	1583547_1 1687770_1 1690392_1	H4538 H49125 H41699 R00348 R09593 T76945 R20210 R05755				
35	418556	17678661 186198_1	T709450 T2U210 T0U3735 T0U3850 F0U312 AA247490 F31427 AA383663 F22045				
55	426328	264901_1 47413_1	AW631296 AA375484 AF086410 W94386 W74609				
	452205	541271_1 90415_1	AA994520 AW393574 C15819 AA024741 AA024742				
40	453692	925931_1 977825_1	BE004783 BE004947 AI911790 AL110416 AW876759				
	454183	1049636_1	AW807116 AW807569 AW807415 AW807338 AW807288 AW807263 AW807316 AW177402 AW8074068 BE141561 BE141569 AW807401 AW807310 B411565 AW807318 AW807119 AW807299 AW807241 AW807225 AW807304 AW807103 BE141615 AW807431 AW807393 AW807397 AW807406 AW807259 AW807375 AW80580 AW807240 AW807345				
45			AW807104 BE 14 16 J AW80/137 AW80/138 AW807024 BE141595 AW807236 AW807027 AW807318 AW807378 AW807202 BE141593 AW807216 AW807318 AW807244 AW807378 AW807221 AW807221 AW807237 AW807218 AW807207 AW807212 AW807308				
			AW807110 AW807104 BE140912 AW807301 AW807382 AW807294 AW807026 AW807020 AW807108 AW807025 AW807032 AW807124 AW807419 AW807031 AW807264 AW807032 AW807029 AW807052 AW807391 AW807207 AW807215 AW807019				
50			AW807238 AW807201 BE141590 AW807302 AW807323 AW807380 AW807109 BE141588 AW845877 AW807418 AW807407 AW807309 BE141614 AW845861 AW807396 AW807300 AW807348 AW807311 AW807214 AW807132 AW807402 AW807350				
			AW807028 AW807298 AW807291 AW807305 AW807217 AW807312 AW807261 AW807268 AW807268 AW807266 AW807268 AW807361 AW807346 AW807346 AW807346 AW807361 AW807351 AW807131 AW807146 AW80746 AW80746 AW80746 AW807478 AW80748 AW8074				
55	454404	1170594 1	AW8000/3 AW80/066 AW80/07/ AW849323 AW80/421 DE141619 BE140943 AW80/720 AW80/361 DE141621 AW849321 BE141629 BE141625 BE141624 BE141636 BE141630 AW80/7405 AW80/7290 AW80/7353 BE067414 BE067958 BE067419 BE0679638 AW57/127 AW801412				
33	454775	1234106_1 1273020_1	BE160229 AW819879 AW820179 AW819882 AW819876 AW820169 BE153201 AW993736 BE152911 BE143267 AW935060 AW886684				
		919998_1	AI904646 BE179494 BE179421				

TABLE 23B

Table 23B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 23. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref:	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genthank Identifier (G1) numbers. "Dunham L et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham L et al., Nature (1999) 402-469-495.
	Strand:	Indicates DNA strand from which exons were predicted.

15				
	Pkey	Ref	Strand	Nt_position
	400545	9800107	Minus	124618-124881
	400870	9838306	Minus	34081-35027
20	400973	7960452	Minus	98119-98253
	401093	8516137	Minus	22335-23166
	401590	9966320	Minus	33547-33649
	401665	7145001	Plus	121591-122537
	401810	7342191	Plus	129063-129476
25	401840	7684597	Plus	56283-56439
	402054	8083691	Minus	8288-8806
	402195	7689778	Minus	147901-148884
	402583	7684486	Plus	94883-95003
	402690	8348058	Plus	13368-13998
30	402698	8570304	Minus	108641-108903
	402779	9588555	Minus	38173-39210
	403017	6693623	Plus	78630-79367
	403051	4827080	Minus	5269-5411
	403263	7770677	Plus	52431-52737
35	403433	9719611	Minus	72225-72437
	403593	6862650	Minus	62554-62712,69449-69602
	403612	8469060	Minus	94723-94859
	403921	7711590	Minus	3297-3536
	404368	7630956	Minus	102053-102199
40	404682	9797231	Minus	40977-41150
	404689	7534100	Plus	119461-119717
	405016	6524300	Plus	51997-53308
	405062	7657730	Plus	101283-101432
	406118	9143818	Plus	53997-54629
45	406344	9255974	Plus	20254-20374,20526-20659,20835-21097
	406563	7711604	Plus	34401-34538

WO 02/059377 PCT/US02/02242

TABLE 24:

Unique Eos probeset identifier number

Table 24 depicts Seq ID No., UnigeneID, UnigeneTitle, Pkey, Pred.Cell.Loc., and ExAccn
for all of the sequences in Table 25. The information in Table 24 is linked by Seq ID No. to
Table 25.

• •	Pkey.			ieset meninnen muniben		
10	ExAccn:			sion number, Genbank accession number		
	Unigene		Inigene number			
	Unigene	:Tille: \	Jnigene gene tit	le		
	Pred.Ce	ell.Loc.: F	redicted Cellula	ar Localization		
	Seq.ID.I			Identification Number found in Table 25		
15	004					
	Pkey	ExAcon	UnigeneID	Unigene Title	Pred.Cell.Loc.	Seq. ID. No.
		2010011	- Ingenera	agene tane		
	449746	A1668594	Hs.176588	ESTs. Weakly similar to CP4Y_HUMAN CYT	OC	Seq ID 1 & 2
	407276	AI951118	Hs.326736	Homo saplens breast cancer antigen NY-BR		Seg ID 3 & 4
20		AI733881	Hs.72472	BMP-R1B		Seq ID 5 & 6
		Al127076		hypothetical protein DKFZp564O1278		Seq ID 7 & 8
		AA009647		a disintegrin and metalloprotelnase doma		Seq (D 9 & 10
		NM 0013		dual specificity phosphatase 4	nuclear	Seq ID 11 & 12
					nuclear	
0.5		NM_0013		dual specificity phosphatase 4		Seq ID 11 & 12
25		A1905687		aldehyde dehydrogenase 9 family, member	cytoplasm	Seq ID 13 & 14
		AL120862		ESTs		Seq ID 15 & 16
	449765	N92293	Hs.206832	ESTs, Moderately similar to ALU8_HUMAN A		Seq ID 17 & 18
	425692	D90041	Hs.155956	N-acetyltransferase 1 (arylamine N-acety		Seq ID 19 & 20
	426215	AW96341	9 Hs.155223	stanniocalcin 2		Seq ID 21 & 22
30	439840	AW44921	1 Hs.105445	GDNF family receptor alpha 1		Seq ID 23 & 24
			8 Hs.279727	Homo saplens cDNA FLJ14035 fis, clone HE		Seq ID 25 & 26
			6 Hs.136319	ESTs		Seg ID 27 & 28
		U41060	Hs.79136	LIV-1 protein, estrogen regulated		Seg ID 29 & 30
		W87707	Hs.82065	interleukin 6 signal transducer (gp130,		Seq ID 31 & 32
35		AK00174		hypothetical protein FLJ10879		Seg ID 33 & 34
33		R41823	Hs.7413	ESTs		Seq ID 35 & 36
			Hs.283713	ESTs, Weakly similar to S64054 hypotheti		Seg ID 37 & 38
			Hs.25252	Homo sapiens cDNA FLJ13603 fis, clone PL		Seq ID 39 & 40
				solute carrier family 16 (monocarboxylic		Seq ID 41 & 42
40		N32536	Hs.42645	ESTs		Seq ID 43 & 44
40			4 Hs.128899			
		W57554	Hs.125019	lymphoid nuclear protein (LAF-4) mRNA		Seq ID 45 & 46
			Hs.200102	ATP-binding cassette transporter MRP8		Seq ID 47 & 48
		H26735	Hs.91668	Homo saplens clone PP1498 unknown mRN/	١.	Seq ID 49 & 50
4.5			Hs.26040	ESTs, Weakly similar to fatty acid omega		Seq ID 51 & 52
45			5 Hs.61460	lg superfamily receptor LNIR		Seq ID 53 & 54
			. Hs.125783	DEME-6 protein		Seq ID 55 & 56
			3 Hs.82128	5T4 oncofetal trophoblast glycoprotein		Seq ID 57 & 58
		AI538613		Transmembrane protease, serine 3		Seq ID 59 & 60
	423961	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin		Seq ID 61 & 62
50	439569	AW60216	6 Hs.222399	CEGP1 protein		Seq ID 63 & 64
	114480	BE066778	3 Hs.151678	UDP-N-acetyl-alpha-D-galactosamine:polyp		Seq ID 65 & 66
	404561			NM_014112*:Homo sapiens trichorhinophala	mitochodria	Seq ID 67 & 68
	325372	NA.		Phase 2 & 3 Exons	nuclear	Seq ID 69 & 70
			4 Hs.334806	KIAA1238 protein		Seq ID 71 & 72
55	335824			ENSP00000249072*:DJ222E13.1 (N-TERMII	IAU	Seq ID 73 & 74
55		U31875	Hs.272499	short-chain alcohol dehydrogenase family		Seq ID 75 & 76
		X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin		Seg ID 77 & 78
		D31152	Hs.179729			Seg ID 79 & 80
				collagen, type X, alpha 1 (Schmid metaph	ER	Seq ID 81 & 82
60			86Hs.226213	cytochrome P450, 51 (lanosterol 14-alpha	ER	Seq ID 83 & 84
00			Hs.204096	lipophilin B (uteroglobin family member)	autor and day	
		H87879	Hs.102267	lysyl oxidase	extracellular	Seq ID 85 & 86
		AF044197		small inducible cytokine B subfamily (Cy		Seq ID 87 & 88
		X51501	Hs.99949	protactin-induced protein	nuclear	Seq ID 89 & 90
	452744	Al267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E08;	2 (17	Seq ID 91 & 92

Pkev:

5	424905 429859 446921 445537	NM_00705 AB012113 AJ245671	Hs.12844	androgen receptor (ditydrotestosterone r NIMA (never in mitosts gene a)-related k protein tyrosine phosphatase, receptor t small inducible cytokine subfamily A (Cy EGF-like-domain, multiple 6	cytoplasm nuclear extracellular	Seq ID 93 & 94 Seq ID 95 & 96 Seq ID 97 & 98 Seq ID 99 & 100 Seq ID 101 & 102
10	428227 424001 421727 452838 419667	AA321649 W67883 Y13153 U65011 AU077005	Hs.2248 Hs.137476 Hs.107318 Hs.30743 Hs.92208	small Inducible cytokine subfamily B (Cy paternally expressed 10 kynurenine 3-monoxygenase (kynurenine 3 preferentially expressed antigen in mela	extracellular nuclear	Seq ID 103 & 104 Seq ID 105 & 106 Seq ID 107 & 108 Seq ID 109 & 110
10	414812 426320	X72755 W47595	Hs.77367 Hs.169300 Hs.1584 Hs.70725	a disintegrin and metalloproteinase doma monokine Induced by gamma Interferon transforming growth factor, beta 2 cartilage oligomeric matrix protein (pse	extracellular extracellular extracellular	Seq ID 111 & 112 Seq ID 113 & 114 Seq ID 115 & 116 Seq ID 117 & 118
15	417866 428398 431958 428722	AW067903 AI249368 X63629 U76456		gamma-aminobutyric acid (GABA) A recepto collagen, type XI, alpha 1 ESTs cadherin 3, type 1, P-cadherin (placenta	plasma membrane	Seq ID 119 & 120 Seq ID 121 & 122 Seq ID 123 & 124 eSeq ID 125 & 126
20	412970 421379	AB026436 Y15221	Hs.177534 Hs.103982 Hs.78776 Hs.10247	tissue inhibitor of metalloproteinase 4 dual specificity phosphatase 10 small Inducible cytokine subfamily B (Cy putative transmembrane protein activated leucocyte cell adhesion molecu	extracellular	Seq ID 127 & 128 Seq ID 129 & 130 Seq ID 131 & 132 Seq ID 133 & 134 Seq ID 135 & 136
	451110	A1955040	Hs.265398	ESTs, Weakly similar to transformation-r		Seq ID 137 & 138

WO 02/059377 PCT/US02/02242

TABLE 24A

Table 24A shows the accession numbers for those pkeys lacking unigeneID's for Table 24. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10 Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

15 Pkey CAT number Accession
335824 CH22_3197FG_619_11_LINK_E
325372 212 hs

TABLE 24B

Table 24B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 24. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey: Unique number corresponding to an Eos probeset

Ref: Sequence source. The 7 dight numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22". Dunham I. et al., Nature (1995) 402-499-495.

Strand: Indicates DNA strand from which exons were predicted.

Nt_position: Indicates nucleotide positions of predicted exons.

15
Pkey Ref Strand Nt_position
404561 9795980 Minus 69039-70100

WO 02/059377 PCT/US02/02242

Table 25

5

45

55

The 69 gene sequences identified to be overexpressed in breast eaneer may be used to identify coding regions from the public DNA databases (nr and htgs in Gerbank). The sequences may be used to either identify genes that nenode known proteins, or they may be used to predict the coding regions from genomic DNA using examprediction algorithms, such as FGDENESH (Salanov and Soloveye, 2000, Genome Res. 10:51-6227)

Seq ID NO: 1 DNA sequence Nucleie Aeid Accession #:

FGENESH predicted ORF

Coding sequence: 1-1518 (underlined sequences correspond to start and stop codons) 10

31 41 51

ATGGAGGCCT CTGGCTTCA GGAACTCATG GCTCACCCCT TCTTGCTGCT GATCCTCCTC 60
TGCATGTCTC TGCTGCTGTT TCAGGTAATC AGGTTGTACC AGAGGAGGAG ATGGATGATC 120 15 AGAGCCCTGC ACCTGTTTCC TGCACCCCCT GCCCACTGGT TCTATGGCCA CAAGGAGTTT 180 TACCCAGTAA AGGAGTTTGA GGTGTATCAT AAGCTGATGG AAAAATACCC ATGTGCTGTT 240 CCCTTGTGGG TTGGACCCTT TACGATGTTC TTCAGTGTCC ATGACCCAGA CTATGCCAAG 300 CCCTTGTGGG TTGGACCCTT TACGATGTTC TTCAGTGTCC ATGACCCAGA CATAGCAGA SON ATTCCCCGAA AAAGACCTGA CATAGCAGA SON ATTCCCCGAA AAAGACCTGA CATAGCAGA CATAGCAGA CATAGCAGA CATAGCAGA CATAGCAGA CATAGCAGA AAAACCTGAGA CATAGCAGA AAAACCTGAGA CATAGCAGA AAAACCTGAACAG CATAGCAGAA ATATCCACAA CATAGCAGA 20 25 AGTGCTATCT CCTGGATCCT TTACTGCTTG GCAAAGTACC CTGAGCATCA GCAGAGATGC 1020 30 CGAGATGAAA TCAGGGAACT CCTAGGGGAT GGGTCTTCTA TTACCTGGGA ACACCTGAGC 1080 CAGATGCCTT ACACCACGAT GTGCATCAAG GAATGCCTCC GCCTCTACGC ACCGGTAGTA 1140 AACATATCCC GGTTACTCGA CAAACCCATC ACCITTCCAG ATGGACGCTC CITACCTGCA 1200
GGAATAACTG TGITITTACCA TAITTGGGCT CITACCCACA ACCCCTATTT CTGGAAAAC 1200
CCTCAGGGTCT TTAACCCCTT GAGATTGTCC AGGGAAAATT CTGAAAAAAT ACATCCCTAT 1320 GCCTTCATAC CATTCTCAGC TGGATTAAGG AACTGCATTG GGCGCTTCATAC CATCTCAGC TGGATTAAGG AACTGCATTG GGCGCTTCA AGCACTATAT 1380
GAGTGTAAAG TGGCAGTGGC ATTAACTCTG CTCCGCTTCA AGCAGCTCC AGACCACTCA 1440 35 AGGCCTCCCC AGCCTGTTCG TCAAGTTGTC CTCAAGTCCA AGAATGGAAT CCATGTGTTT 1500 GCAAAAAAG TITGC<u>TAA</u>TT TTAAGTCCTT TCGTATAAGA ATTAATGAGA CAATTTTCCT 1560 ACCAAAAGGAA GAACAAAAGG ATAAATATAA TACAAAATAA TAGTAATTGG TTGTTTGACA 1620 AATTATATAA CTTAGGATAC TTCTGACTGG TTTTGACATC CATTAACAGT AATTITAATT 1680 40 TETTIGETET ATCTIGGTAAA ACCCCACAAA ACACCTAAACAT AAIIIIAATI 1889
TETCAAAGGGA AATTATTIGGT TIGGTAACA ACACCTAAACAA ACACCTAAACTAA TITTIGTAACT AGTAGTAAGAC TIGGTTAAA CAACATAATTTI SAAAAAACTAAAATTATTIGAT TIGGTAACT AGTAGTAAGAC TIGGTTAAA CAATAATTTI SAAAAAACTAAAATTAACT 1860
ATCAAAACTC CACTCAGTAT CTGCATTACT TITTIATCTCTG CAAAATTCT CACTGATAACT 1860

TTATTCTCAG TTATCTTTCC CCAATAATAA AAAA

Seq ID NO: 2 Protein sequence:

FGENESH predicted Protein Accession #:

50 11 71 31 41 51

> MEPSWLOELM AHPFLLLILL CMSLLLFQVI RLYQRRRWMI RALHLFPAPP AHWFYGHKEF 60 YPVKEFEVYH KLMEKYPCAV PLWVGPFTMF FSVHDPDYAK ILLKRQDPKS AVSHKILESW 120 YPYKLEFYYH KLMEK YPCAY PLWYUFY IM FSYHDUTAK ILLKKQDPKS AVSIKILESW 12 VORGIA'TILO SKWKKHRQU KYGPINSILK IFITMMESEY KMMINKWEER (ADNSRLIEF 18) QHYSLMTLDS MKCAFSHQO SIQLDSTILDS YLKAYFNLSK ISNQBANNFI, HINDLYRKFS 240 SQQUFSKFN QELHQFTEKY IQDKESILKD KLKQDTTQKE REWDEIDLILS AKSENTKDFS 300 EADLQAEVKT FMFAGHDTIS SAISWILYCL AKYPEHQQRC RDEIRELLGD GSSITWEHLS 360 OMPYTTMCIK ECLRLYAPVV NISRLLDKPI TFPDGRSLPA GITVFINIWA LHHNPYFWED 420 POVFNPLRFS RENSEKIHPY AFIPFSAGLR NCIGOHFAII ECKVAVALTL LRFKLAPDHS 480

60 RPPOPVROVV LKSKNGIHVF AKKVC Seg ID NO: 3 DNA sequence

NM 052997 Nucleie Acid Accession #: 100-4125 (underlined sequences correspond to start and stop codons) Coding sequence: 65

11 21 31 51 CTAGTCTATA CCAGCAACGA CTCCTACATC GTCCACTCTG GGGATCTTAG AAAGATCCAT 60 LING STRING LEGENGRAUM CHILDREN STRING STRIN 70

75 CATTATGCTG TTTATAGTGA GATTTTGTCA GTGGTGGCAA AACTGCTGTC CCATGGTGCA GTCATCGAAG TGCACAACAA GGCTAGCCTC ACACCACTTT TACTATCCAT AACGAAAAGA 480

AGTGAGCAAA TTGTGGAATT TTTGCTGATA AAAAATGCAA ATGCGAATGC AGTTAATAAG 540 TATAAATGCA CAGCCCTCAT GCTTGCTGTA TGTCATGGAT CATCAGAGAT AGTTGGCATG CTICTTCAGC AAAATGTTGA CGTCTTTGCT GCAGATATAT GTGGAGTAAC TGCAAACAT TATGCTGTIA CTTGTGGATT TGATGACATT CATGAACAAA TTATGGAATA TATACGAAAA 660 720 TTATCTAAAA ATCATCAAAA TACCAATCCA GAAGGAACAT CTGCAGGAAC ACCTGATGAG 780 GCTGCACCCT TGGCGGAAAG AACACCTGAC ACAGCTGAAA GCTTGGTGGA AAAAACACCT 840 GATGAGGCTG CACCCTTGGT GGAAAGAACA CCTGACACGG CTGAAAGCTT GGTGGAAAAA 900 ACACCTGATG AGGCTGCATC CTTGGTGGAG GGAACATCTG ACAAAATTCA ATGTTTGGAG 960 ACACCITIATIO AGUC TOCATICCTION TO LARGE GRANACTIC TO ACACACTICA ATOTITICOSAT 900
ACAGCIGACO TOGGAAGOTT COMACAGTICA GRANACTICA CACTICAGGA ANTITACGAGT 1020
CCTGCAAAAG AAACATCTTA GAAATTTACO TGGCCAGCAA AAGGAAGACC TAGGAAGATC 1080
GCATGGGAGA AAACAATCTACA GAAATTTACO TGCCCGCAAA AAGAACATCT 1180
GAGAAATTTA GCTGGGCCAGC AAAAGGAACATCT 1180
GAGAAATTTA GCTGGGCCAGC AAAAGGAAGA CCCTAGGAAGAT CCCCCCCAAA AAGAACATCT 1180
ACACCCTCTAA AAACTGAATGC CCTGGGCAAGA GTACACATCA TATAAAACTAA AGTTTTIGGAA 1280 10 AAAGGAAGAT CTAAGATGAT TGCATGTCCT ACAAAAGAAT CATCTACAAA AGCAAGTGCC 1320 15 AATGATCAGA GGTTCCCATC AGAATCCAAA CAAGAGGAAG ATGAAGAATA TTCTTGTGAT 1380 TCTCGGAGTC TCTTTGAGAG TTCTGCAAAG ATTCAAGTGT GTATACCTGA GTCTATATAT 1440 CAAAAAGTAA TGGAGATAAA TAGAGAAGTA GAAGAGCCTC CTAAGAAGCC ATCTGCCTTC 1500 AAGCCTGCCA TTGAAATGCA AAACTCTGTT CCAAATAAAG CCTTTGAATT GAAGAATGAA 1560 CAAACATTGA GAGCAGATCC GATGTTCCCA CCAGAATCCA AACAAAAGGA CTATGAAGAA 1620 20 AATTICTTGGG ATTCTGAGAG TCTCTGTGAG ACTGTTTCAC AGAAGGATGT GTGTTTACCC 1680
AAGGCTACAC ATCAAAAAGA AATAGATAAA ATAAATGGAA AATTAGAAGA GTCTCCTAAT 1740 AAAGATGGTC TTCTGAAGGC TACCTGCGGA ATGAAAGTTT CTATTCCAAC TAAAGCCTTA 1800 GAATTGAAGG ACATGCAAAC TTTCAAAGCG GAGCCTCCGG GGAAGCCATC TGCCTTCGAG 1860 CCTGCCACTG AAATGCAAAA GTCTGTCCCA AATAAAGCCT TGGAATTGAA AAATGAACAA 1920 25 ACATGGAGAG CAGATGAGAT ACTCCCATCA GAATCCAAAC AAAAGGACTA TGAAGAAAAT 1980 TCTTGGGATA CTGAGAGTCT CTGTGAGACT GTTTCACAGA AGGATGTGTG TTTACCCAAG 2040 GCTGGGCATC AAAAAGAAAT AGATAAAATA AATGGAAAAT TAGAAGGGTC TCCTGTTAAA 2100 GATGGTCTTC TGAAGGCTAA CTGCGGAATG AAAGTTTCA TTCCAACTAA AGCCTTAGAA 2160 TTGATGGACA TGCAAACTTT CAAAGCAGA CCTCCCGAGA AGCCATCTGC CTTCGAGCT 2220 30 GCCATTGAAA TGCAAAAGTC TGTTCCAAAT AAAGCCTTGG AATTGAAGAA TGAACAAACA 2280 TTGAGAGCAG ATGAGATACT CCCATCAGAA TCCAAACAAA AGGACTATGA AGAAAGTTCT 2340 TGGGATTCTG AGAGTCTCTG TGAGACTGTT TCACAGAAGG ATGTGTGTTT ACCCAAGGCT 2400 ACACATCAAA AAGAAATAGA TAAAATAAAT GGAAAATTAG AAGAGTCTCC TGATAATGAT 2460 GGTTTTCTGA AGGCTCCCTG CAGAATGAAA GTTTCTATTC CAACTAAAGC CTTAGAATTG 2520 ATGGACATGC AAACTTTCAA AGCAGAGCCT CCCGAGAAGC CATCTGCCTT COAGCCTGCC 2580 ATTGGAATGC AAAAGTCTGT TCCAAATAAA GCCTTGGAAT TGAAGAATGA ACAACCATTG 2640 35 AGAGCAGATC AGATGTTCCC TTCAGAATCA AAACAAAAGA AGGTTGAAGA AAATTCTTGG 2700 GATTCTGAGA GTCTCCGTGA GACTGTTTCA CAGAAGGATG TGTGTGTACC CAAGGCTACA 2760 CATCAAAAAG AAATGGATAA AATAAGTGGA AAATTAGAAG ATTCAACTAG CCTATCAAAA 2820 40 ATCTTGGATA CAGTTCATTC TTGTGAAAGA GCAAGGGAAC TTCAAAAAGA TCACTGTGAA 2880 CAACGTACAG GAAAAATGGA ACAAATGAAA AAGAAGTTTT GTGTACTGAA AAAGAAACTG 2940
TCAGAAGCAA AAGAAATAAA ATCACAGTTA GAGAACCAAA AAGTTAAATG GGAACAAGAG 3000
CCTCTCACAGT GAGAATTGAC TTTAAACCAA GAAGAAAGAGA AAGTGAAAAATG AGCAACAAGAGA 3000 TTAAATGAAA AAATTAGGGA AGAATTAGGA AGAATCGAAG AGCAGCATAG GAAAGAGTTA 3120 45 GAAGTGAAAC AACAACTTGA ACAGGCTCTC AGAATACAAG ATATAGAATT GAAGAGTGTA 3180 GAAAGTAATT TGAATCAGGT TTCTCACACT CATGAAAATG AAAATTATCT CTTACATGAA 3240 AATTGCATGT TGAAAAAGGA AATTGCCATG CTAAAACTGG AAATAGCCAC ACTGAAACAC 3300 CAATACCAGG AAAAGGAAAA TAAATACTTT GAGGACATTA AGATTTTAAA AGAAAAGAAT 3360 GCTGAACTTC AGATGACCCT AAAACTGAAA GAGGAATCAT TAACTAAAAAG GGCATCTCAA 3420 50 TATAGTGGGC AGCTTAAAGT TCTGATAGCT GAGAACACAA TGCTCACTTC TAAATTGAAG 3480 GAAAAACAAG ACAAAGAAAT ACTAGAGGCA GAAATTGAAT CACACCATCC TAGACTGGCT 3540 TCTGCTGTAC AAGACCATGA TCAAATTGTG ACATCAAGAA AAAGTCAAGA ACCTGCTTTC 3600 CACATTGCAG GAGATGCTTG TTTGCAAAGA AAAATGAATG TTGATGTGAG TAGTACGATA 3660 TATAACAATG AGGTGCTCCA TCAACCACTT TCTGAAGCTC AAAGGAAATC CAAAAGCCTA 3720 55 AAAATTAATC TCAATTATGC AGGAGATGCT CTAAGAGAAA ATACATTGGT TTCAGAACAT 3780 GCACAAAGAG ACCAACGTGA AACACAGTGT CAAATGAAGG AAGCTGAACA CATGTATCAA 3840 AACGAACAAG ATAATGTGAA CAAACACT GAACAGCAG AGTCTCTAGA TCAGAAATAA 3900
TTTCAACTAC AAAGCAAAAA TATGTGGCTT CAACAGCAAT TAGTTCATGC ACAGCAAAA 3900 GCTGACAACA AAAGCAAGAT AACAATTGAT ATTCATTTTC TTGAGAGGAA AATGCAACAT 4020
CATCTCCTAA AAGAGAAAAA TGAGGAGATA TTTAATTACA ATAACCATTT AAAAAACCGT 4080 60 ATATATCAAT ATGAAAAAGA GAAAGCAGAA ACAGAAAACT CATGAGAGAC AAGCAGTAAG 4140 AAACTTCTTT TGGAGAACA ACAGACCAGA TCTTTACTCA CAACTCATGC TAGGAGGCCA 4200 GTCCTAGCAT CACCTTATGT TGAAAATCTT ACCAATAGTC TGTGTCAACA GAATACTTAT 4260 TITLAGAA AAATTCATGA TITCTTCCTG AAGCCTACAG ACATAAATA CAGTGTGAA 4320
GAATTACTTG TICACGAATT GCATAAAGCT GCACAGGATT CCCATCTACC CTGATGATGC 4380 65 AGCAGACATC ATTCAATCCA ACCAGAATCT CGCTCTGCAC TCCAGCCTAG GTGACAGAGT 4440 GAGACTCCAC CTCGGAAA

Seq ID NO: 4 Protein sequence; Protein Accession #: NP 443723.1

11 21 31 41 51

75 MTKRKKTINL NIQDAQKRTA LHWACVNGHE EVVTFLVDRK CQLDVLDGEH RTPLMKALQC 60 HQEACANILI DSGADINLVD VYGNNALHYA VYSEILSVVA KLLSHGAVIE VHNYASIFI 120 LLSHTKRSEQ (VEFLLKNA NANAVNKYKC TALMILAVCHG SSEVGMILLQ QNNADSIFID 180

CGVTAEHYAV TCGFHHIHEQ IMEYIRKLSK NHONTNPEGT SAGTPDEAAP LAERTPDTAE 240 SLVEKTPDEA APLVERTPDT AESLVEKTPD EAASLVEGTS DKIQCLEKAT SGKFEQSAEE 300 TRREITSPAK ETSEKFTWPA KERRIKIAWE KEEDTREINE SPAKETSEKF TWAAKGRPRK 360 IAWEKKETPY KTGCVAR VTS NKTKYLEKGR SKMIACPTKE SSTKASANDQ RTPSESKQEE 420 DEEYSCDSRS LFESSAKIOV CIPESIYOKV MEINREVEEP PKKPSAFKPA IEMONSVPNK 480 AFELKNEOTI, RADPMEPPES KOKDYEENSW DSESLCETYS OKDYCLPKAT HOKEIDKING 540 KLEESPNKDG LLKATCGMKV SIPTKALELK DMOTFKAEPP GKPSAFEPAT EMOKSVPNKA LELKNEOTWR ADEILPSESK OKDYEENSWD TESLCETVSO KDVCLPKAAH OKRIDKINGK 660 LEGSPVKDGL LKANCGMKVS IPTKALELMD MQTFKAEPPE KPSAFEPAIE MQKSVPNKAL 720 10 ELKNEQTURA DEILPSESKQ KDYEESSWOS ESLCETVSQK DVCLPKATHQ KEIDKINGKL 780
ESSPDNDGFL KAPCREKVSI PTKALELIMDM GTRKAEPPEK PSAFEFALEM QKSVPNKALE
LKNEQTLRAD QMPPSESKQK KVEENSWOSE SLREKTYSQKD VCVPKATHQK EMDKISGKLE 900 LKNEQTLKAD QMFFSESKQK KVEENSWUSE SLKEITYSKAD VOVEKTINGK EMDKISOLLE 900 DSTSLSKILD TVHSCERARE LQKDHCEQRT GKMEQMKKKF CVLKKKLSEA KEIKSQLENQ 960 KVKWEDELCS VRLTLNQEEE KRRNADILNE KIREELGRIE EDHRKELEVK QQLEQALRIQ 1020 15 DIELKSVESN LNOVSHTHEN ENYLLHENCM LKKEIAMLKL EIATLKHOYO EKENKYFEDI 1080 KILKERNAEL QMTLKLKEES LTKRASQYSG QLKVLIAENT MLTSKLKEKQ DKEILEAEIE 1140 SHIPRLASAV QDHDQIVTSR KSQEPAPHIA GDACLQRKMN VDVSSTIYNN EVLHQPLSEA 1200 QRKSKSLKIN LNYAGDALRE NTLVSEHAQR DORETQOOMK EAEHNYONEQ DNYNKHTEQQ 1260 ESLDOKLFOL OSKNMWLQQQ LVHAHKKADN KSKITIDIHF LERKMQHHLL KEKNEEIFNY 1320 20 NNHLKNRIYO YEKEKAETEN S

Seq ID NO: 5 DNA sequence

25

Nucleic Acid Accession #: none found

Coding sequence: 273-1785 (underlined sequences correspond to start and stop codons)

41 51

30 GAGGACGCGG GAGCCGGGAG CGCACGCGCG GGGTGGAGTT CAGCCTACTC TTTCTTAGAT 120 GTGAAAGGAA AGGAAGATCA TTTCATGCCT TGTTGATAAA GGTTCAGACT TCTGCTGATT 180 CATAACCATT TGGCTCTGAG CTATGACAAG AGAGGAAACA AAAAGTTAAA CTTACAAGCC 240 TGCCATAAGT GAGAAGCAAA CTTCCTTGAT AACATGCTTT TGCGAAGTGC AGGAAAATTA 300 AATGTGGGCA CCAAGAAAGA GGATGGTGAG AGTACAGCCC CCACCCCCG TCCAAAGGTC 360 ANTOGRIGA CAAGAAAGA GGATGGTUAG AGTACAGCCC CCACCCCCC GCCAAAGGT. 300
TIGGGTTGA AATICCACCA CCATTGTCCA AGAAGACTAG TGACACAATAT TTGGACACAA

GACGGATATT GTTCACGAT GATAGAAAGA GATAACTGT GGTTGCCTGT GGTCACTTCT. 480
GGTTGCCTAG GACTAGAAGA CTCAGATTTC AGTGTGCGG ACCTCCCAT TCCCTACAA A94
AGAAGATCAA TIGGAATTGTG CACAGAAAGG AACGAATGTA ATAAAGAACCT ACACCCTACA

CTGCCTCCAT TIGAAAAACAG AGATTTGTT GATGGACCTA ACACCCACAG GGCTTTACTT. 690
CTGCCTCCAT TIGAAAAACAG AGATTTGTT GATGGACCTA TACACCCACAG GGCTTTACTT. 690 35

40 ATATCTGTGA CTGTCTGTAG TITGCTCTTG GTCCTTATCA TATTATTTTG TTACTTCCGG 720

45 ACAGTGTTGA TGAGGCATGA AAACATTTTG GGTTTCATTG CTGCAGATAT CAAAGGGACA 1080 GGGTCCTGGA CCCAGTTGTA CCTAATCACA GACTATCATG AAAATGGTTC CCTTTATGAT 1140 TATCTGAAGT CCACCACCCT AGACGCTAAA TCAATGCTGA AGTTAGCCTA CTCTTCTGTC 1200 50

TATETGRAGIT COACCACCCT AGACGETAAN TEANTICETGA AGITANCETA CICH THETE.

BORDONATO TOANALGTAA, ANALAYETGA GTGALAGAAN AGITANCETA CICH THETE.

BORDONATO TOANALGTAA, ANALAYETGA GTGALAGAAN AGIGAACTTA COTTATTGCT 1320

BACCTGGGCC TGGCTGTTAA ATTITATTAGT GATACAANTO AAGITGACAT ACCACCTAC 1380

RACTGAGGTTG GCACCAAACG CTATATGCCT CCAGAAGTGT TGGACGAGAG CTTGAACGAG 1440 AATCACTTCC AGTCTTACAT CATGGCTGAC ATGTATAGTT TTGGCCTCAT CCTTTGGGAG 1500 GTTGCTAGGA GATGTGTATC AGGAGGTATA GTGGAAGAAT ACCAGCTTCC TTATCATGAC 1560 CTAGTGCCCA GTGACCCCTC TTATGAGGAC ATGAGGGAGA TTGTGTGCAT CAAGAAGTTA 1620

55 CGCCCCTCAT TCCCAAACCG GTGGAGCAGT GATGAGTGTC TAAGGCAGAT GGGAAAACTC 1680 ATGACAGAAT GCTGGGCTCA CAATCCTIGCA TCAAGGCTGA CAGCCCTGCG GGTTAAAGAA 1740 ACACTTGCCA AAATGTCAGA GTCCCAGGAC ATTAAACTCT GATAGGAGAG GAAAAGTAAG 1800 CATCTCTGCA GAAAGCCAAC AGGTACTCTT CTGTTTGTGG GCAGAGCAAA AGACATCAAA 1860 TAAGCATCCA CAGTACAAGC CTTGAACATC GTCCTGCTTC CCAGTGGGTT CAGACCTCAC 1920

60 CTTTCAGGGA GCGACCTGGG CAAAGACAGA GAAGCTCCCA GAAGGAGAGA TTGATCCGTG 1980 TCTGTTTGTA GGCGGAGAAA CCGTTGGGTA ACTTGTTCAA GATATGATGC AT

65 Seq ID NO: 6 Protein sequence: Protein Accession #: none found

21 31 41 51 70

MLLRSAGKLN VGTKKEDGES TAPTPRPKVL RCKCHHHCPE DSVNNICSTD GYCFTMIEED 60 DELIPATION COLLEGESPG CADTPHPHOR RESIDECTERN ECKNOLHETL PERMADEVO 12
GPHHRALLI SYTVCSLLLV LILIFCYRY KRGETRRYS IGLEQDETYIPGESLRDL 180
EQSSSGSGG EDPLLVQRTI AKQIQNAVQI GKGYGEVWA GKWAGEKVAV KYFTTEEAS 240
WRRETEIYQT VLMRHENILG FIAADIKGTG SWTQLYLLTD YHENGSLYDY LKSTTLDAKS 300

75 MI.KLAYSSVS GLCHLHTEIF STOGKPAIAH RDLKSKNILV KKNGTCCIAD LGLAVKFISD 360 TNEVDIPPNT RVGTKRYMPP EVLDESLNRN HFQSYIMADM YSFGLILWEV ARRCVSGGIV 420 EEYQLPYHDL VPSDPSYEDM REIVCIKKLR PSPPNRWSSD ECLRQMGKLM TECWAHNPAS 480 RLTALRVKKT LAKMSESODI KL

Seq ID NO: 7 DNA sequence

Nucleic Acid Accession #: none found
Coding sequence: 482-3007(underlined sequences correspond to start and stop codons)

11 21 31 41 51 10 AACTGAGCTA ACAAGAAATA CTAGAAAAGG AGGAAGGAGA ACATTGCTGC AGCTTGGATC 60 TACAACCTAA GAAAGCAAGA GTGATCAATC TCAGCTCTGT TAAACATCTT GTTTACTTAC 120 TGCATTCAGC AGCTTGCAAA TGGTTAACTA TATGCAAAAA AGTCAGCATA GCTGTGAAGT 180 ATGCGTGAA ATTHANTING AGGAAAAAG GACAATTCA TCTCAGGATGCT CAGGATTACA 20 CTCTGCTTGA AATATTTCA ATGAAATGCT CAGTATTCTA TCTTTGACCA GAGGTTTTAA 300 CTCTGCTTGA AATATTTTCA ATGAAATGCT CAGTATTCTA TCTTTGACCA GAGGTTTTAA 300 CTTTATGAAA CTATGGGACT TGACAAAAAG TGATATTTTGA GAAGAAAGTA CCCAGTGGTT 300 15 GGTGTTTTCT TTTTTTTAAT AAAGGAATTG AATTACTTTG AACACCTCTT CCAGCTGTGC 420 ATTACAGATA ACGTCAGGAA GAGTCTCTGC TTTACAGAAT CGGATTTCAT CACATGACAA 48 CATGAAGCTG TGGATTCATC TCTTTTATTC ATCTCTCCTT GCCTGTATAT CTTTACACTC 540 20 CCAAACTCCA GTGCTCTCAT CCAGAGGCTC TTGTGATTCT CTTTGCAATT GTGAGGAAAA 600 AGATGGCACA ATGCTAATAA ATTGTGAAGC AAAAGGTATC AAGATGGTAT CTGAAATAAG 660 25 CCTGCAAGCA GATAACAATT TTATCACAGT GATTGAACCA AGTGCCTTTA GCAAGCTCAA 960 CAGACTCAAA GTGTTAATTT TAAATGACAA TGCTATTGAG AGTCTTCCTC CAAACATCTT 1020 CCGATTTGTT CCTTTAACCC ATCTAGATCT TCGTGGAAAT CAATTACAAA CATTGCCTTA 1080 TGTTGGTTTT CTCAACCAC TTGGCCGAAT ATTGGATCTT CAGTTGGAGG ACAACAAAT 1140 GGCCTGCAAT TGTGACTTAT TGCAGTTAAA AACTTGGTTG GAGAACATGC CTCCACAGTC 1200 30 TATAATTGGT GATGTTGTCT GCAACAGCCC TCCATTTTTT AAAGGAAGTA TACTCAGTAG 1260 ACTAAAGAAG GAATCTATTT GCCCTACTCC ACCAGTGTAT GAAGAACATG AGGATCCTTC 1320 AGGATCATTA CATCTGGCAG CAACATCTTC AATAAATGAT AGTCGCATGT CAACTAAGAC 1380 CACGTCCATT CTAAAACTAC CCACCAAAGC ACCAGGTTTG ATACCTTATA TTACAAAGCC 1440 35 ATCCACTCAA CTTCCAGGAC CTTACTGCCC TATTCCTTGT AACTGCAAAG TCCTATCCCC 1500 ATCAGGACIT CTAATACATT GTCAGGAGCG CAACATTGAA AGCTTATCAG ATCTGAGACC 1560 TCCTCCGCAA AATCCTAGAA AGCTCATTCT AGCGGGAAAT ATTATTCACA GTTTAATGAA 1620 GTCTGATCTA GTGGAATATT TCACTTTGGA AATGCTTCAC TTGGGAAACA ATCGTATTGA 1680 AGTTCTTGAA GAAGGAATCAT TCACTTTGGA AATGCTTCAC TTGGGAAAAACTCT ATCTAAATGA 1680 40 TAACCACCTG ACCAAATTAA GTAAAGGCAT GTTCCTTGGT CTCCATAATC TTGAATACTT 1800 ATATCTTGAA TACAATGCCA TTAAGGAAAT ACTGCCAGGA ACCTTTAATC CAATGCCTAA 1860 ACTTAAAGTC CTGTATTTAA ATAACAACCT CCTCCAAGTT TTACCACCAC ATATTTTTTC 1920 AGGGGTTCCT CTAACTAAGG TAAATCTTAA AACAAACCAG TTTACCCATC TACCTGTAAG 1980 TAATATITTIG GATGATCHTG ATTTACTTAAC COAGATTGAC CITIGAGGATA ACCCTGGGA 200 CIGCITCCTGT GACCTGGTTG GACTGGAGGA ATGGATCACA AGGTAAGGA AGAACACAGT 2100 GACAGATGAC ATCCTGGCA CTTCCCCCGG GCATCTCGAC AAAAAGGAAT TGAAAGCCCT 2100 AAATAGTGAA ATTCCTGTGC CAGGTTTAGT AAATAACCCA TCCCATGCCAA CACAGACTAG 2220 45 TTACCTTATG GTCACCACTC CTGCAACAAC AACAAATACG GCTGATACTA TTTTACGATC 2280 TCTTACGGAC GCTGTGCCAC TGTCTGTTCT AATATTGGGA CTTCTGATTA TGTTCATCAC 2340 50 TATTGTTTTC TGTGCTGCAG GGATAGTGGT TCTTGTTCTT CACCGCAGGA GAAGATACAA 2400 AAAGAAACAA GTAGATGAGC AAATGAGAGA CAACAGTCCT GTGCATCTTC AGTACAGCAT 2460 GTATGGCCAT AAAACCACTC ATCACACTAC TGAAAAGACCC TCTGCCTCAC TCATGAAACA 2520 GCACAGTGGTG AGCCCCATTGG TTCATGTCTA TAGAAAGTCCA TCCTTTGGTC CAAAGCATCT 250 GGAAGAGGAA GAAGAGAGGA ATGAGAAAGA AGGAAGTGAT GCAAAACATC TCCAAAGAAG 2640 55 TCTTTTGGAA CAGGAAAATC ATTCACCACT CACAGGGTCA AATATGAAAT ACAAAACCAC 2700 GAACCAATCA ACAGAATTTT TATCCTTCCA AGATGCCAGC TCATTGTACA GAAACATTTT 2760 AGAAAAAGAA AGGGAACTTC AGCAACTGGG AATCACAGAA TACCTAAGGA AAAACATTGC 2820 TCAGCTCCAG CCTGATATGG AGGCACATTA TCCTGGAGCC CACGAAGAGC TGAAGTTAAT 2880 GGAAACAITA ATGTACTCAC GTCCAAGGAA GGTATTAGTG GAACAGACAA AAAATGAGTA 2940 TTTTGAACTT AAAGGTAALT TACATGCTGA ACCTGACTAT TTAGAAGTCC TGGAGCAGCA 3000 AACATAGATG AGAGTTTGA GGGCTTTCGC AGAAATAGGTG TGATTCTGTT TTAAAGTCAT 3060 60 ACCTTGTAAA TAAGTGCCTT ACGTGAGTGT GTCATCAATC AGAACCTAAG CACAGCAGTA 3120

Seq ID NO: 8 Protein sequence:
Protein Accession #: none found

MAX.WHILPTS SLIZAGISIS (FLYPASSINGS OSSICHEDER US IMLINCAR KURWYSIS) 60
VPPSREPGIS LINNGLTMLH THOPSGLTIN A ISHILGENIN ADIGICAPIN LIGALOQLIN 120
HNSLEILKED TFHIGLENLEF LQADNNFITV IEPSAFSKLN RIKVILINDN AIESLPPNIF 180
RPPVITHLDL RONQLOTIPY VOGLEHIGRI LDOLQENDW. ANCONCILIQUE XVILEMPIPOS 24
HIGOVYCNSP PFFKOSILSR LKKESICFTP PVYEEHEDPS GSLHLAATSS NDSRMSTKT 300
TSILKLPTKA PGLIPYTIKE STOLPPFYCE PICKVKLYS PGLIHAGTS NDSRMSTKT 300
TSILKLPTKA PGLIPYTIKE STOLPPFYCE PICKVKLYS PGLIHAGTS NDSRMSTKT 300

AACTATGGGG AAAAAAAAG AAGAAGAAAA GAAACTCAGG GATCACTGGG AGAAGCCATG 3180
GCATTATCTT CAGGCAATTT AGTCTGTCCC AAATAAAATC AATCCTTGCA TGTAAATC

65

WO 02/059377 PCT/US02/02242

PPONPRKLII, AGNIHSLMK SOLVEYFTLE MLHLGNNRIE VLEEGSFMNL TRLOKLYLNG 420 NHLTKLSKGM FLGLHNLEYL YLEYNAIKEI LPGTFNPMPK LKVLYLNNNL LQVLPPHIFS 480 GVPLTKVNLK TNOFTHLPVS NILDDLDLLT OIDLEDREWD CSCDLVGLOQ WIGKLSKNTV 540 TDDILCTSPG HLDKKELKAL NSEILCPGLV NNPSMPTQTS YLMVTTPATT TNTADTILRS 600 LTDAVPLSVL ILGLLIMFIT IVFCAAGIVV LVLHRRRRYK KKQVDEQMRD NSPVHLQYSM 660 YGHKTTHHTT ERPSASLYEQ HMVSPMVHVY RSPSFGPKHL EEEEERNEKE GSDAKHLQRS 720 LLQGENHSPL TGSNMKYKTT NGSTEFLSFQ DASSLYRNIL BERRELQQLG ITEYLRKNIA 780 QQFDMEAHY PGAHEELKLM ETLMYSRPRK VLVEQTKNEY FELKANLHAE PDYLEVLEQQ 840

Seg 1D NO: 9 DNA sequence Nucleic Acid Accession #: NM 003474

5

10

Coding sequence: 307-3036 (underlined sequences correspond to start and stop codons) 15 41 51 31 CACTAACGCT CTTCCTAGTC CCCGGGCCAA CTCGGACAGT TTGCTCATTT ATTGCAACGG 60 20 CCGGAGCTGA CTCGCCGAGG CAGGAAATCC CTCCGGTCGC GACGCCCGGC CCCGCTCGGC 240 GCCCGCGTGG GATGGTGCAG CGCTCGCCGC CGGGCCCGAG AGCTGCTGCA CTGAAGGCCG 300 SECURIO MA TIGORICA CONTINUENTO TRANSPORTO A CONTINUENTA CONTINUEN 25 TGTTACTACC ATGGACATGT ACGGGGATAT TCTGATTCAG CAGTCAGTCT CAGCACGTGT 720 30 TCTGGTCTCA GGGGACTTAT TGTGTTTGAA AATGAAAGCT ATGTCTTAGA ACCAATGAAA 780 AGTGCAACCA ACAGATACAA ACTCTTCCCA GCGAAGAAGC TGAAAAGCGT CCGGGGATCA 840 TOTGGATCAC ATCACAACAC ACCAAACCTC GCTGCAAAGA ATGTGTTTCC ACCACCCTCT 900
CAGACATGGG CAAGAAGGCA TAAAAGAGAG ACCCTCAAGG CAACTAAGTA TGTGGAGCTG 960 GTGATCGTGG CAGACAACCG AGAGTTTCAG AGGCAAGGAA AAGATCTGGA AAAAGTTAAG 1020
CAGCGATTAA TAGAGATTGC TAATCACGTT GACAAGTTTT ACAGACCACT GAACATTCGG 1080 ATCGTGTTGG TAGGCGTGGA AGTGTGGAAT GACATGGACA AATGCTCTGT AAGTCAGGAC 1140 CCATTCACCA GCCTCCATGA ATTTCTGGAC TGGAGGAAGA TGAAGCTTCT ACCTCGCAAA 1200 TCCATGACA ATGCGCAGCT TGTCAGTGGG GTTTATTTCC AAGGGACCAC CATCGGCATG 1260
GCCCCAATCA TGAGCATGTG ACAGGCAGCA CAGTCTGGGGGGAGTTGTCAT GGACCATTCA 1260
GACCATCCC TTGGTGCAGC CGTGACACCTG GCACCATGAGC TGGGCCACAATTTCGGGATG 1260 40 AATCATGACA CACTGGACAG GGGCTGTAGC TOTCAAATGG CGGTTGAGAA AGGAGGCTGC 1440
ATCATGAACG CTTCCACCGG GTACCCATTT CCCATGGTGT TCAGCAGTTG CAGCAGGAAG 1500 GACTTGGAGA CCAGCCTGGA GAAAGGAATG GGGGTGTGCC TGTTTAACCT GCCGGAAGTC 1560 AGGGAGTCTT TCGGGGGCCA GAACTGTGGG AACAGATTTG TGGAAGAAGG AGAGGAGTGT 1620 GACTGTGGGG AGCCAGAGGA ATGTATGAAT CGCTGCTGCA ATGCCACCAC CTGTACCCTG 1680 45 AMBODOBACO CTETOTOCOS ACATOGOCTO TOCTOTOMA A ACTOCOAGET BAAGOCTOCA 1960
GANCAGOCTO GEAGGGACTO CAGEAGOCTOCA 1960
AGOCTICACT GCCAGCOCA COTACACTOCA CAGAGOTTOCA GACAGGGGCO 1960
AGOCTICACT GCCAGCCAA COTOTACCTO CACGATOGGC ACTOCATOTOCA GGATOTOGGAC 1860
GGCTACTGCT ACAATOGCAA TOGCCAGACTOCA CACGAGOCTOCA AGTOTOTOCA CTCTGGGGA 1920 50 CCAGGTGCTA AACCTGCCCC TGGGATCTGC TTTGAGAGAG TCAATTCTGC AGGTGATCCT 1980 TATGGCAACT GTGGCAAAGT CTCGAAGAGT TCCTTTGCCA AATGCGAGAT GAGAGATGCT 2040 AAATGTGGAA AAATCCAGTG TCAAGGAGGT GCCAGCCGGC CAGTCATTGG TACCAATGCC 2100 GTTTCCATAG AAACAAACAT CCCCCTGCAG CAAGGAGGCC GGATTCTGTG CCGGGGGACC 2160 SILECTION AND ANGAGED AND ACTION OF THE ANGAGED TO TOUTH TOUTH TOUTH TOUTH TOUTH THE ANGAGED AND ANGAGED AND ANGAGED AND ANGAGED AND ANGAGED A 55 TGTCTTCTTG CTGCCGGATT TGTGGTTTAT CTCAAAAGGA AGACCTTGAT ACGACTGCTG 2520 60 TTTACAAATA AGAAGACCAC CATTGAAAAA CTAAGGTGTG TGCGCCCTTC CCGGCCACCC 2580 CGTGGCTTCC AACCCTGTCA GGCTCACCTC GGCCACCTTG GAAAAGGCCT GATGAGGAAG 2640 CCGCCAGATT CCTACCCACC GAAGGACAAT CCCAGGAGAT TGCTGCAGTG TCAGAATGTT 2700 GACATCAGCA GACCCCTCAA CGGCCTGAAT GTCCCTCAGC CCCAGTCAAC TCAGCGAGTG 2760 CTTCCTCCCC TCCACCGGGC CCCACGTGCA CCTAGCGTCC CTGCCAGACC CCTGCCAGCC 2820 65 AAGCCTGCAC TTAGGCAGGC CCAGGGGACC TGTAAGCCAA ACCCCCCTCA GAAGCCTCTG 2880 70 ATGGGATTCT GGACAGGATG TOTTTGCTTT CTGATCAAGG CCTTATTGGA AAGCAGTCCC 3420
CCAACTACCC CCAGCTGTGC TTATGGTACC AGATGCAGCT CAAGAGATCC CAAGTAGAAT 3480 75

CTCAGTTGAT TTTCTGGATT CCCCATCTCA GGCCAGAGCC AAGGGGCTTC AGGTCCAGGC 3540 TGTGTTTGGC TTTCAGGGAG GCCCTGTGCC CCTTGACAAC TGGCAGGCAG GCTCCCAGGG 3600 WO 02/059377 PCT/US02/02242

ACACCTGGGA GAAATCTGGC TTCTGGCCAG GAAGCTTTGG TGAGAACCTG GGTTGCAGAC 3660 AGGAATCTTA AGGTGTAGCC ACACCAGGAT AGAGACTGGA ACACTAGACA AGCCAGAACT 3720 AGGARTETTA AGGISTAGE ACACAGGAT TAGGAAGGGG TETGTAGGTGT CACTEAAGGC 3780
GGTGCTTGAT AGAAATGCCA AGCACTTCTT TTTCTCGCTG TCCTTTCTAG AGCACTGCCA 3840 5 CCAGTAGGTT ATTTAGCTTG GGAAAGGTGG TGTTTCTGTA AGAAACCTAC TGCCCAGGCA 3900 CTGCAAACCG CCACCTCCCT ATACTGCTTG GAGCTGAGCA AATCACCACA AACTGTAATA 3960 CAATGATCCT GTATTCAGAC AGATGAGGAC TITCCATGGG ACCACAACTA TITTCAGATG 4020 TGAACCATTA ACCAGATCTA GTCAATCAAG TCTGTTTACT GCAAGGTTCA ACTTATTAAC 4080 AATTAGGCAG ACTCTTTATG CTTGCAAAAA CTACAACCAA TGGAATGTGA TGTTCATGGG 4140 10 TATAGTTCAT GTCTGCTATC ATTATTCGTA GATATTGGAC AAAGAACCTT CTCTATGGGG 4200 CATCCTCTTT TICCACCTTG GCTGCAGGAA TCTTTAAAAG ATGCTTTTAA CAGAGTCTGA 4260 ACCTATTTCT TAAACCACTTG CAACCTACCT GTTGAGCACTA (AAGAATGTG ATAAGGAAAT 4260 CAACTTGCTT ATCAACTTCC TAAATATTAT GAGATGTGGC TTGGGCAGCA TCCCCTTGAA 4380 CTCTTCACTC TTCAAATGCC TGACTAGGGA GCCATGTTTC ACAAGGTCTT TAAAGTGACT 4440
AATGGCATGA GAAATACAAA AATACTCAGA TAAGGTAAAA TGCCATGATG CCTCTGTCTT 4500 15 CTGGACTGGT TTTCACATTA GAAGACAATT GACAACAGTT ACATAATTCA CTCTGAGTGT 4560 TTTATGAGAA AGCCTTCTTT TGGGGTCAAC AGTTTTCCTA TGCTTTGAAA CAGAAAAATA 4620 TGTACCAAGA ATCTTGGTTT GGCTTCCAGA AAACAAAACT GCATTTCACT TTCCCGGTGT 4880 TGCCCCACTGT ATCTAGGCAA CATAGTATTC ATGACTAATG ATAAACTAAA CACGTGACAC 4740 20 AAACACACAC AAAAGGGAAC CCAGCTCTAA TACATTCCAA CTCGTATAGC ATGCATCTGT 4800 TTATTCTATA GTTATTAAGT TCTTTAAAAT GTAAAGCCAT GCTGGAAAAT AATACTGCTG 4860 AGATACATAC AGAATTACTG TAACTGATTA CACTTGGTAA TTGTACTAAA GCCAAACATA 4920 TATATACTAT TAAAAAGGTT TACAGAATTT TATGGTGCAT TACGTGGGCA TTGTCTTTTT 4980 AGATGCCCAA ATCCTTAGAT CTGGCATGTT AGCCCTTCCT CCAATTATAA GAGGATATGA 5040 25 ACCAAAAAA AAAAAAAAAAA

Seq ID NO: 10 Protein sequence Protein Accession #: NP 003465.2

21 31 41

MAARPLPVSP ARALLLALAG ALLAPCEARG VSLWNEGRAD EVVSASVRSG DLWIPVKSFD 60

30

SKNIPEVLNI RLQRESKELI INLERNEGLI ASSFTETHYL QDGTDVSLAR NYTVILGHCY 120 YHGHVRGYSD SAVSLSTCSG IROLIVFENES SYVLEPMKSA TIVADYKLFPAK KLKSVRGSSG 180 SHINTPNLAA KNYFPSGT WARRIKETL KATKYL VI YADYKREGYOR GKOLLEKVKQR 240 35 LIEIANHVDK FYRPLNIRIV LVGVEVWNDM DKCSVSODPF TSLHEFLDWR KMKLLPRKSH 300 DNAQLVSGVY FQGTTIGMAP IMSMCTADQS GGIVMDHSDN PLGAAVTLAH ELGHNFGMNH 360 DTLDRGCSCQ MAVEKGGCIM NASTGYPFPM VFSSCSRKDL ETSLEKGMGV CLFNLPEVRE 420 40

SFGGQKCGNR FVEEGEECDC GEPEECMNRC CNATTCTLKP DAVCAHGLCC EDCQLKPAGT 480 ACRDSSNSCD LPEPCTGASP HCPANYYLHD GHSCQDVDGY CYNGICQTHE QQCVTLWGPG 340
AKPAPGICFE RVNSAGDPYG NGGKVSKSSF AKCEMRDAKG GKIQQGGAS RPVIGTNAVS 600
ETNIPLQQG GRILCRGFHAV YLGDDMPDFG LVLAGFKCAD GKICLNPQQQ NSYFGYHEC 660 AMQCHGRGVC NNRKNCHCEA HWAPPFCDKF GFGGSTDSGP IROADNOGLT IGILVTILCL 720

45 AMCCHORIGIV - NNIGANCHEZH HWAPPPEDIK' GFUGSI DOGGI PIRQADNQUET IGILVTILEZ. 720
LAAGEVYVIK KRITIKILET INKKTITEKIR CVPRSPPRR FGPGOQAHLGHLIGKGIMIKEP 780
DSYPPKONPR RLLQCQNVDI SRPLNGLNYP QRQSTQRVLP PILHRAPRAPS VPABPLPAKF 840
ALRQAQGTCK FNPPQKPLPA DPLARTTRLT HALARTPGQW ETGLRLAPLR PAPQYPHQVP 900
RSTHTAYIK

50 Seq ID NO; 11 DNA sequence leic Acid Accession #: "NM 001394 Coding sequence: 400-1584(underlined sequences correspond to start and stop codons)

> 31 41

55 GGAGCCGCGC GACCGGCAAA AATACACGGG AGGCCGTCGC CGAAAAGAGT CCGCGGTCCT CTCTCGTAAA CACACTCTCC TCCACCGGCG CCTCCCCCTC CGCTCTGCGC GCCGCCCGGC 180 TGGGCGCCCG AGGCCGCTCC GACTGCTATG TGACCGCGAG GCTGCGGGAG GAAGGGGGACA 240 GGGAAGAAGA GGCTCTCCCG CGGGAGCCCT TGAGGACCAA GTTTGCGGCC ACTTCTGCAG 300 60 GCGTCCCTTC TTAGCTCTCG CCTGCCCCTT TCTGCAGCCT AGGCGGCCCA GGTTCTCTTC 360
TCTTCCTCGC GGGCCCAGC GCTCGGTTC CCGGGACCA TGGTAGCAGT GAGGAGGTG 420
CGGGACATGG ACTGCAGTGT GCTCAAAAGG CTGATGAACC GGGACGAGAA TGGCGGCGGC C

GCGGGCGGCA GCGGCAGCCA CGGCACCCTG GGGCTGCCGA GCGGCGGCAA GTGCCTGCTG 540 65 CTGGACTGCA GACCGTTCCT GGCGCACAGC GCGGGCTACA TCCTAGGTTC GGTCAACGTG 600 CGCTGTAACA CCATCGTGCG GCGGCGGGCT AAGGGCTCCG TGAGCCTGGA GCAGATCCTG 660 CCCGCCGAGG AGGAGGTACG CGCCCGCTTG CGCTCCGGCC TCTACTCGGC GGTCATCGTC 720 TACGACGAGC GCAGCCCGCG CGCCGAGAGC CTCCGCGAGG ACAGCACCGT GTCGCTGGTG 780 GTGCAGGCGC TGCGCCGCAA CGCCGAGCGC ACCGACATCT GCCTGCTCAA AGGCGGCTAT 840 70 GAGAGGTTTT CCTCCGAGTA CCCAGAATTC TGTTCTAAAA CCAAGGCCCT GGCAGCCATC 900 CCACCCCGG TTCCCCCAG CGCCACAGAG CCCTTGGACC TGGGCTGCAG CTCCTGTGGG 960 ACCCCACTAC ACGACCAGGG GGGTCCTGTG GAGATCCTTC CCTTCCTCTA CCTCGGCAGT 1020 GCCTACCATG CTGCCCGGAG AGACATGCTG GACGCCCTGG GCATCACGGC TCTGTTGAAT 1080 75

GENERACTION AND ACCOUNT OF THE ACCOUNT AND ACCOUNT ACCOUNT AND ACCOUNT ACC

GGACCCCTG GGGAGCGGGG CAAGACCCCC GCCACCCCACT CAGCTTCAT GGGCCCCTCG 1440 TTTCCGGTCT CCGTGGGCGT GCACTCGGCC CCCAGCAGCC TGCCCTACCT GCACAGCCCC 1560 ATCACCACCT CTCCCAGCTG TTAGAGCCGC CCTGGGGGCC CCAGAACCAG AGCTGGCTCC 1620 CAGCAAGGGT AGGACGGCC GCATGCGGCA GAAAGTTGGG ACTGAGCAGC TGGGAGCAGG 1680 CGACCGAGCT CCTTCCCCAT CATTTCTCCT TGGCCAACGA CGAGGCCAGC CAGAATGGCA 1740 ATAAGGACTC CGAATACATA ATAAAAGCAA ACAGAACACT CCAACTTAGA GCAATAACCG 1800 GTGCCGCAGC AGCCAGGGAA GACCTTGGTT TGGTTTATGT GTCAGTTTCA CTTTTCCGAT 1860 AGAAATTIC TACCACITATITAAGCAI TAGGGGGAGG AGGGAGGGC AAGGGATG 1980
AGAACTTIC TACCCACITATITAAGCAI TAGGGGGAGGA AGGAGGGC AAGGGATG 1980
AAGACAAGT TGCCCAACCA GCTTACTAA AGGGGAGGA AGGAGGGCA AAGGATGAG 1980
AAGACAAGT TCCCAGAAGT GCCTGGTTCT GGGTACTTGT CCCTTTGTTGT CGTTGTTGT 2040
AGTTAAAGGA ATTTCATTIT TAAAAGAAT CTTCGAAGGT GTGGTTTTCA TTTCTCAGTG 2100 10 ACCAACAGAT GAATAATTAT GCTTAATAAT AAAGTATTTA TTAAGACTTT CTTCAGAGTA 2160
TGAAAGTACA AAAAGTCTAG TTACAGTGGA TTTAGAATAT ATTTATTGTTG ATGTCAAACA 2220 15 GCTGAGCACC GTAGCATGCA GATGTCAAGG CAGTTAGGAA GTAAATGGTG TCTTGTAGAT 2280 ATGTGCAAGG TAGCATGATG AGCAACTTGA GTTTGTTGCC ACTGAGAAGC AGGCGGGTTG 2340 GGTGGGAGGA GGAAGAAAGG GAAGAATTAG GTTTGAATTG CTTTTTAAAA AAAAAAGAAA 2400 AGAAAAAGAC AGCATCTCAC TATGTTGCCA AGGCTCATCT TGAGAAGCAG GCGGGTTGGG 2460 20 TGGGAGGAGG AAGAAAGGGA AGAATTAGGT TTGAATTGCT TTTTTAAAAA AAAA Seq ID NO: 12 Protein sequence: 25 MYTMFELREM DCSVLKRIMN RDENGGGAGG SGSHGTLGLP SGGKCLLLDC RPFLAHSAGY 60 ILGSVNVRCN TIVRRRAKGS VSLEOILPAE EEVRARLRSG LYSAVIVYDE RSPRAESLRE 120 DSTYSI VVOA LERNAERTDI CLLKGGYERF SSEYPEFCSK TKALAAIPPP VPPSATEPLD 180 30 LGCSSCGTPL HDQGGPVEIL PFLYLGSAYH AARRDMLDAL GITALLNVSS DCPNHFEGHY 240 OYKCIPVEDN HKADISSWFM EAIEYIDAVK DCRGRVLVHC QAGISRSATI CLAYLMMKKR 300 VRLEEAFEFV KORRSIISPN FSFMGQLLQF ESQVLATSCA AEAASPSGPL RERGKTPATP 360 TSOFVESERV SVGVHSAPSS LPYLHSPITT SPSC 35 Seq ID NO: 13 DNA sequence Nucleic Aeid Accession #: none found Coding sequence: 68-340(underlined sequences correspond to start and stop codons) 40 11 21 31 41 51 AGCGCCTTGC CTTCTCTTAG GCTTTGAAGC ATTTTTGTCT GTGCTCCCTG ATCTTCAGGT 60 CACCACCATG AAGTTCTTAG CAGTCCTGGT ACTCTTGGGA GTTTCCATCT TTCTGGTCTC 120
TGCCCAGAAT CCGACAACAG CTGCTCCAGC TGACACGTAT CCAGCTACTG GTCCTGCTGA 180 45 TGATGAAGCC CCTGATGCTG AAACCACTGC TGCTGCAACC ACTGCGACCA CTGCTGCTCC 240 TACCACTGCA ACCACCGCTG CTTCTACCAC TGCTCGTAAA GACATTCCAG TTTTACCCAA 300 ATGGGTTGGG GATCTCCCGA ATGGTAGAGT GTGTCCCTGA GATGGAATCA GCTTGAGTCT 360
TCTGCAATTG GGTCACAACT ATTCATGCTT CCTGTGATTT CATCCAACTA CTTACCTTGC 420 CTACGATATC CCCTTTATCT CTAATCAGTT TATTTTCTTT CAAATAAAAA ATAACTATGA 480 50 GCGAGCTAAC AT Seg 1D NO: 14 Protein sequence: Protein Accession #: 55 11 21 31 41 51 MKFLAVLVIL GVSIFLVSAQ NPTTAAPADT YPATGPADDE APDAETTAAA TTATTAAPTT 60 ATTAASTTAR KDIPVLPKWV GDLPNGRVCP 60 Seq ID NO: 15 DNA seque Nucleic Acid Accession #: NM 016640.2 39-1358(underlined sequences correspond to start and stop codons) Coding sequence: 65 31 41 11 21 GCTTAAGTTG ACCTCTGGGT CCGGAATCGC GGGCAAAGAT GGCGGCGCC AGGTGTTGGA 60 GGCCTTTGCT ACGCGGTCCG AGGCTTTCAT TGCACACCGC GGCTAATGGC GCCCCACCG 120 CTACAGAAAC GACCTCCCAA GACGTCGCGG CGACCCCGGT CGCGCGGTAC CCGCCGATTG 180

CTACADAAC TACCICCAA AGCAAAGCTG CACGGCTGGG GCGGATGGAGG CCTGGCAGG 240
CGACGGTGCA CGCTGCGAG TCGGTAGACG AGAAGCTG AATCCTCACC AAGATGCAGT 300 TTATGAGTA CATGGTTTAC COGCAGACCT TCGCACTGAA TGCCGACCGCTGGTACCAGT 360
ACTTCACCAA GACCGTGTTC CTGTCGGGTC TGCCGCCGCC CCCAGCGGACCC CCGAGCCCG 420

AGCCCGAACC CGAACCTGAA CCTGCGCTGG ACCTCGCGGC GCTGCGTGCG GTCGCCTGCG ACTGCCTGCT GCAGGAGCACTTCTACCTGC GGCGCAGGCG GCGCGTGCAC CGTTACGAGG 540

GAGTTCGTTA AGCAGCGCCG CAGCATCATC TCGCCCAACT TCAGCTTCAT GGGGCAGCTG 1380

70

Seq ID NO: 16 Protein sequence; Protein Accession #: NP 057724.1

1 11 21 31 41 51

25

MAAAKUWEL LKGPRLSI.HI AAMAAAI AIE TINDUVAAIF VAKYPIIVAS MIALDSAAAK. 09

RRIERWOATV HAASSVOBEK, RILTMORPIKK YMVYPOTEIA NADRWYQTYF KTVFLSGIPP 120

PRAFEPPEP EPEPPALDLA ALRAVACDCI. LQEHFYLRRR RRVHRYESSE VISLPELDQL. 180

VSTLVGLI.SE PINPALAAAL DVRCPYHFYW VRGESIERPG RRRGRIDDLY QYDIODXFNNQ. 240

RISKQLAEF VFLDYSVPIE IPTICKFPOK LPLFKRQVEN HIFVGSKTAD PCCYCHTOPH. 300

LEPOKLRRER LLSRON-CADQI EVVFRANAIS SLFAWTIGAD AWYGGFWSBAD VTREPFSQAV. 360

TIDGKYFSFF CYQLNTLALIT TQADQNNPRK NICWGTQSKP LYETIEDNDV KGPNDDVLLQ. 420

VIHELLINEPK EEKSOLLEN

Seq ID NO: 17 DNA sequence Nucleic Acid Accession #: NM 025059.1

40 Coding sequence: 3-2150 (underlined sequences correspond to start and stop codons)

1 11 21 31 41 51

GCATGAGCCT GGACTGCACC AGCCATATCG CGCTGGGTGC CGCTTCGCCA GCGCCCGAGG 60 45 AAACTTACGA TCATCTTTCG GAAGTCCCGG TCACGCGGGA GCAGTTAAAC CACTATCGGA 120 ATGTGGCTCA AAATGCTCGA AGTGAACTTG CAGCAACTTT GGTCAAATTT GAATGTGCTC AGTCTGAGCT TCAAGACCTC CGATCCAAGA TGCTTTCTAA AGAAGTCTCC TGTCAAGAAC 240 TGAAAGCTGA AATGGAGAGCTACAAGGAAA ACAATGCCAG AAAATCATCT CTCCTTACCT 300 CTTTGAGAG ACAAGTTCAG GAACTGAAGA AAGAATCAGC AGCACTTTC ACTTCAAAA 360 TCAGAACAGA AATCACAGCT CACGCTGCAA TCAAGGAGAA CCAGGAATTA AAGAAGAAA (24) 50 TTGTAGAGTT AAATGAAAAA TTACAAAAGT GTTCAAAAGA AAATGAGGAG AATAAGAAAC 480 AAGTTTCAAA GAATTGCAGG AAACATGAGG AATTTCTGAC TCAACTGCGT GACTGCTTGG 540 ATCCAGATGA GAGGAATGAC AAGGCATCAG ATGAAGATTT AATTTTAAAG CTTAGAGACC 600 TGCGCAAAGA AAATGAATTC GTGAAAGGAC AAATTGTTAT TCTTGAAGAG ACTATAAATG 660 55 TCCATGAGAT GGAAGCAAAA GCTAGCAGAG AAACGATCAT GAGGCTGGCT TCAGAAGTCA 720 ACAGAGAGCA GAAAAAAGCT GCCTCCTGTA CTGAAGAGAA AGAGAAGCTG AACCAGGACC 780 TGCTCAGTGC TGTAGAAGCA AAGAAGCTC TTGAAAGGGA AGTTAAGATC TTCCAAGAAA 840
GGCTGCTTGC TGGCCAGCAG GTCTGGGATG CCTCAAAGCA GAAGTGAGC CTCCTGAAGA 840 AAAGCTCTTC TGAGTTGGAG AAGAGTTTGA AGGCCAGTCA GGATGCAGTC ACAACCTCAC 960 60 AAAGCCAGTA CTCCTCATTT AGGGAGAAAA TCGCAGCCCT CCTTAGGGGC AGATTGAGCA 1020 TGACTGGGTC CACTGAGGAC ACCATTTTGG AGAAGATTCG AGAAATGGAC AGCCGGGAAG 1080 TOTAL TUBBLE CACTIGATION ACCALITITION ANAMASTICO ANGAATIGUAL AUGLEGIGADE 1889
AANGCAGGAT COGGATGGTE TECCAGCTTO AANGCCAAATA TETTOAGCTT GTTOAACAGT 1140
TOGGAAAGGA OTCTGGGTTT CACCAGAAAG CTCTCCCAGA GGCCCAGAAA GCCAGAGATA 1200
TOTTTGGAGAC CTCTCCAGGGT CAGCTGACAC ACCTGGAGGC AGAGCTGGTT TCTGGAGGTO 1260
TTTTGCGAGA CAACTTGAAT TTTGAGAAC AAAAATATCT TAAATTTCT GATCAGCTTT 1320 65 CTCAGAAAAT GAAGTTGGAC CAGATGGCTG CCGAACTTGG CTTTGACACG CGGCTGGACG 1380 TGGTTTTAGC TCGAACAGAG CAGCTGGTTC GTCTTGAGAG CAATGCAGTC ATTGAGAACA 1440 70

AAAGATTGGT CCATTCACAT CAGCATCACT TTGTTACCTG TGCCTGCCTC AAAGATGTGA 2100 CTACTUGGCA AGAGAGGCAC CCACAAGGCC ATTTACAGCT TCTTCATTIGA ACACTGTATC 2160 TCTTGAGAGAG AGGGGCCATA AGACATGGCA ACACATTCC AATTTCACACA ATTCCTCATG 2220 TCTTTGAGAT TTGATCAGTT TOTGAATATT TTATGCTTTG ATGATATAGT GAGAATGCAT 2280 IGHTIGGANT HIGALCAGTH (GAGALTAT) THA GETTI A TIGATATAGT A GGAATGCAT 2890
CACHTIGCAAN A ACCGATCTCA AAAGTGTCAG CCTTAGAATAA A CCCTCAGCGAT TAAAAAACGC 2340
CAAAAAAAAA AAAAAAAACG ATTTTAGGAT CCAGAAGAAT TCCACCAGAT TGCATGAGTT 2400
AGATTGGGAA ATGGGAGTGTG GAGATAAATAT TGGGAGGTAT CTAGTTTAAGT CCAGGGGCTT 2400 5 TACTAGCCGA TITAGTTCTC ACAATAACCA TGTGGAGAAG CTGTGACATT TTTAATTTAC 2520 AACCTTTCTG GGGCTCAGAC ATAAAGTTAC CTATCCAAGG TTGCAGTTGG GTAGTGGTGG 2580 10 GACCAGGATG GACAACTCAT TGGCCCTGCC TCAAAAGCCA TACCTCTTCT CCTGCTATGC 2640 AGAATCTGTT TCTCCTGAAT CTCTGTGATG CTGGTGGGAA TTGTTTGCAT AGAGGAAGGA 2700 CAATAACCCT GCCATCGTGA GTTAATGTCC GGGCTGGTCA CAGTGGTTCA TGCCTGTAAT 2760 CCCAGCACTT TGGGAGTCCA AGGCAGGCAT ATCATTTGAG GTCAGGAGTT TAAGACCAGC 2820 CTGGCTAACA TAGTGAGACC CTGTTTCTAC TAAAAATACA AAAATAAGCC AGGTGTGGTG 2880 GTGCATGACT GTAATCCCAA CTACTCAGCA GGAAAGCAC TTGAACCAGAG GAGACGAGG 2940 CGGCAGTGAG CCAAGATTGT GCCACTGCAC TCCAGCCTGG GGACAGAGT GAAACTACAT 30 15 AACTTACATA GGTCTCAGGT CCTGTAAGAA ACTTGCCTGT TCTAACTGTT GCTACCAGAT 3180 AACTIACATA GGTALICAGGI CATGIAAGGA ACTIQUETGI TETAACTGIT GCTACAGATI 3180
TATATCTGOT GOTAACTGIT AUTOTTICAG CAGGOCTGOT CTACAGTGCT TYAAATTGAA 1340
TATATCAGT GOTAACTGIT AUTOTTICAG CAGGOCTGOT CTACAGTCCT TYAAATTGAA 1340
TATATCAAT ACAGCACAGG CAATGGTACC TITTITAAGAT CAGGATTTTA TTATGAATTC 3340
CTTAACTTCA CTGAACAAAAA TGTGTTACTC TTTTGGACAA TTTATCTTAT TTCTATCATA 3440
TAGAGATGAT TITTITTATTO TCCTTAAAAGA GAACCTCAGC ATGAAATTAA AGGAAAAGGGA 3440
TAGAGATGAT TITTITITATTO TCCTTAAAAGA GAACCTCAGC ATGAAAATTAA AGGAAAAGGGA 3440 20 25 AAGAAATAGA TCTGGTGCAC CCGAACATTA GGAGAAAATG AAAAATATAC AACCAACCGT 3600 TCGTGAGTCA TCAAAAAGTC AAAGTCAGCC TGGCCAACAT GGCAAAACTC CGTCTCTGCA 3660 AAAAATACAA AAGAACCC GTATGTTGG CATATGCCTG TAATCCCAGC TACTCGAGAG 3780 GCTGAGACA CAGAAATGCC TGAACCTGGG AGCCGGGAGT TGCAATGAGC CGAACTCGCG 3780 GCTGAGACCA CAAAATGCC TGAACCTGGG AGCCGGAGT TGCAATGAGCC GAACTCGCG 3780 30 CTACTGCACT CCAGCCTGGG CAACAGAGAG AGACCTTGTC TCAAAAAACA ACAACAACAA 3840 AAAGTCAAAG TCATAATAAG CAAATTATTG GCTTCTTTCT TCTAGACYAA AAGAAATTAA 3900 AGAGATGAAA CAATCAATG CAAGGGTCAA AACTAGATTG GATCTTGGTT TGAATGAAAA 3960 AAAGCATAAA ATATTCTTGC AATAATTGTA AAAATTTGAA TGTGGACTAA GTCCTAGATT 4020 ATATTAAAAT ATTTTTAATT TITTAAGCTT GACAAATGCA CTGATTGTTA TACTTTAAAT 4080 35 AACTAAAAAT CTGAGAATCC ACAGTGCTAC AGACAATAAA TGATAAAATG GGAAAAAAA 4140 **AAAAAAAA** Seq ID NO: 18 Protein sequence: Protein Accession #: NP 079335.1 40 41 MSLDCTSHIA LGAASPAPEE TYDHLSEVPV TREQLNHYRN VAQNARSELA ATLVKFECAQ 60 45 SELQDLRSKM LSKEVSCQEL KAEMESYKEN NARKSSLLTS LRDRVQELEE ESAALSTSKI 120
RTEITAHAAI KENQELKKKV VELNEKLQKC SKENEENKKQ VSKNCRKHEE FLTOLRDCLD 180 PDERNDKASD EDLILKLRDL RKENEFYKGQ IVILEETINV HEMEAKASRE TIMRLASEVN 240
REOKKAASCT EEKEKLNODL LSAVEAKEAL EREVKIFOER LLAGQQVWDA SKOEVSLLKK 300 SSSELEKSLK ASQDAVTTSQ SQYSSFREKI AALLRGRLSM TGSTEDTILE KIREMDSREE 360

Seq ID NO: 19 DNA sequence
Nucleic Acid Accession # AF071552, NM_000662
Coding sequence: 441-1313 (underlined sequences correspond to start and stop codons)

SSSELEKSIK ASQUAVITSŲ SYSYSKRIKI AALLKORISMI TISTEDTILIE KIREMDISKIE: 360
SSDRIMVSQLE AQISELVĒĻŪ, GESKFIÇKA LQRAGKABIMI EITZOĞQÜTIL LEAK VSGGOV 420
LEDNINJFĒK ÇKYLKRIDJŪS (GKIKLDQMAN BLIGFTRILD VI LARTEQLIVI, LESNAVIJEMS, ITAINLIQRIK, KTQKERILSK ELINMSLLOR, LORGEBEK, ATRILLVERDN AHLTINIQK. 540
KVERLORGEH TORDI. HTELIK AKLADTHELIK IKTLEÇITKAİ BDI.NKSRDÇL EKMEKAREK. 600
KVERLORGEH TORDI. HTELIK AKLADTHELIK IKTLEÇITKAİ BDI.NKSRDÇL EKMEKAREK. 600
KVERLORGEN ATRILLVERD, AVERLORGEN BOLDEN GLNVTSLAL PDYEIIKCLE RLVHSHQHHF VTCACLKDVT TGQERHPQGH LQLLH

50

TTGATGGCAG GAACTACATT GTCGATGCTG GGTTTGGACG CTCATACCAG ATGTGGCAGC 840 CTCTGGAGTT AATTTCTGGG AAGGATCAGC CTCAGGTGCC TTGTGTCTTC CGTTTGACGG 900 AAGAGAATGG ATTCTGGTAT CTAGACCAAA TCAGAAGGGA ACAGTACATT CCAAATGAAG 960 AATTTCTTCA TTCTGATCTC CTAGAAGACA GCAAATACCG AAAAATCTAC TCCTTTACTC 1020 ANTICITICA ILITICATURE CENGRAGACA GENARIASTA ARAMATICIA CIENTIACUE. 1000

TANTO TOTA TAMBATICA ARAMATICA CIENTACA CONTROL CONT TGTATCTTCT GTACCCTTAC CTTATTTTGA AGAAAATCCT AGACATCAAA TCATTTCACC 1440 TATAAAAATG TCATCATATA TAATTAAACA GCTTTTTAAA GAAACATAAC CACAAACCTT 1500 TTCAAATAAT AATAATAATA ATAATAATAA ATGTATTTTA AAGATGGCCT GTGGTTATCT 1560

Seq ID NO: 20 Protein sequence: Protein Accession #: NP_000653.1

20 31 41

5

10

15

MDIEAYLERI GYKKSRNKLD LETLTDILQH QIRAVPFENL NIHCGDAMDL GLEAIFDQVV 60 RRNRGGWCLQ VNHLLYWALT TIGFETTMLG GYVYSTPAKK YSTGMIHLLL QVTIDGRNYI 120 VDAGFGRSYQ MWQPLELISG KDQPQYPCVF RLTEENGFWY LDQIRREQYI PNEEFLHSDL 180 LEDSKYRKIY SPITLERTIE DFESMNTYLQ TSPSSYPTSK SFCSLQIFDG VHCLVGFTLT 240 25 HRRFNYKONT DLIEFKTLSE EEIEKVLKNI FNISLORKLV PKHGDRFFTI

TGGAAATTGG TGATTTATGC TAGAAAGCTT TTAATGTTGG TTTATTGTTG AATTC

Seg ID NO: 21 DNA sequence Nucleic Acid Accession #: NM_003714

30 Coding sequence: 123-1031(underlined sequences correspond to start and stop codons)

41 51 21 31

35 CGGCACGAGC AAAAAGGAAG AGTGGGAGGA GGAGGGGAAG CGGCGAAGGA GGAAGAGGAG 60 GAGGAGGAAG AGGGGAGCAC AAAGGATCCA GGTCTCCCGA CGGGAGGTTA ATACCAAGAA 120 40 GCTTACATGG GATTTGCATG ACTTTTCTGC ACAACGCTGG AAAATTTGAT GCCCAGGGCA 420 AGTCATTCAT CAAAGACGCC TTGAAATGTA AGGCCCACGC TCTGCGGCAC AGGTTCGGCT 480
GCATAAGCCG GAAGTGCCCG GCCATCAGGG AAATGGTGTC CCAGTTGCAG CGGGAATGCT 540

ACCTCAAGCA GGACCTGTGC GCGGCTGCCC AGGAGAACAC CCGGGTGATA GTGGAGATGA 660
TCCATTTCAA GGACCTGCTG CTGCACGAAC CCTACCTGGA CCTCCTGAAC TTGCTGCTGA
CCTGTGTGGGA GGAGGTGAAG GAGGCCATCA CCCACAGCT GCAGGTTCAG TTGAGCAGA
720 45 ACTGGGGAAG CCTGTGCTCC ATCTTGAGCT TCTGCACCTC GGCCATCCAG AAGCCTCCCA 780 CGGCGCCCC CGAGGGCCAG CCCCAGGTGG ACAGAACCAA GCTCTCCAGG GCCCACCACG 840
GGGAAGCAGG ACATCACCTC CCAGAGCCCA GCAGTAGGGA GACTGCCGA GGTGCCAAGG 900

50 GTGAGCGAGG TAGCAAGAGC CACCCAAACG CCCATGCCCG AGGCAGAGTC GGGGGCCTTG 960 GGGCTCAGGG ACCTTCCGGA AGCAGCGAGT GGGAAGACGA ACAGTCTGAG TATTCTGATA 1020 TCCGGAGGTG AAATGAAAGG CCTGGCCACG AAATCTTTCC TCCACGCCGT CCATTTTCTT 1080 ATCTATGGAC ATTCCAAAAC ATTTACCATT AGAGAGGGGG GATGTCACAC GCAGGATTCT 1140 GTGGGGACTG TGGACTTCAT CAGGGTGTGTTGTTCCGGGAA CGGACAGGTG AGATGGAAC 1200

55 CCCTGGGGCC GTGGGGTCTC AGGGGTGCCT GGTGAATTCT GCACTTACAC GTACTCAAGG 1260 GAGCGCGCCC GCGTTATCCT CGTACCTTTG TCTTCTTTCC ATCTGTGGAG TCAGTGGGTG 1320 TCGGCCGCTC TGTTGTGGGG GAGGTGAACC AGGGAGGGGC AGGGCAAGGC AGGGCCCCCA 1380 GAGCTGGGCC ACACAGTGGG TGCTGGGCCT CGCCCGAAG CTTCTGGTGC AGCAGCCTCT 1440
GGTGCTGTCT CCGCGGAAGT CAGGGCGGCT GGATTCCAGG ACAGGAGTGA ATGTAAAAAT 1500

60 CTCGATTTCA CTTTTTTAT TTATCCAGTT ATATCTACAT ATCTGTCATC TAAATAAATG 1800 65

GCTTTCAAAC AAAAAAAAAA AAAAAAAAAA AAAAAAA

Seq ID NO: 22 Protein sequence: NP 003705 Protein Accession #:

21 41

MCAERLGOFM TLALVLATFD PARGTDATNP PEGPODRSSO OKGRLSLONT AEIOHCLVNA 60 MCAERLOQM I ILAVALTI PI PARU IDAT IN' PEUPUNSSQ QEGRESCUM A ELQRECL'UM OU GUPVOCGYPEC PENNSCERG LIGICIATTEH INAGEPAGGAS FERDALIKCE RAHARHEGG 120 ISBKCPARE MYSQLORECY LKHDLCAAAQ ENTRIVIPEM HEKDLLIHEP YYDLVALLIT 180 CGEVKEAIT HSVQVQCEQN WGSLCSILSF CTSAIQKPPT APPERQPQVD RTKLSRAHHG 240 EAGHHLPEPS SRETGROAKG ERGSKSHPNA HARGRVGGLG AQGPSGSSEW EDEQSEYSDI 300 75

RR

5 Seq ID NO: 23 DNA sequence
Nucleic Acid Accession #: NM_005264.1
Coding sequence: 557-1954(underlined sequences correspond to start and stop codons)

10 | 11 | 21 | 31 | 41 | 51

TACATGET AAAATCAA TICAAGCTT TOGCAATGGE TCCGAFTOTO CCGTGTGGCA 120

CCAGCCCTTC CCAGTACAGC CCACACTCC CCATACACCA CATGCCCTC CGGGTTAAGAA 1680

CAAGCCCCTG GGGCCAGCAG GGTCTGAGAA TGAAATTCCCA CATCACTCT CGGTTAAGAA 1680

CAAGCCCCTG GGGCCAGCAG GGTCTGAGAA TGAAATTCCA CATCTTATT TGCCACCGTG 1740

TTCCAATGGT AATTATGAAA AAGAAGGTCT GGGTGCTTC AGCCACATAA CCACAAAATC 1860

ATGCCACCTA TATTCTTAA CAGAAACCA GTTAGCTGCAGCTGT GTCCTGGTG TACCACCACTC 1920

GTCCACCCTA TTATCTTTAA CAGAAACATC ATAGCTGCAT TCCATAAAAAAATA CAAATATGGAC 1980

ATGTAAAAAGA CCAAATTATCTGT TTCCTGTTTCTTTTAC CTGAAATTCCA 2040

45 GTTAAAAAG ACAAAAACCA AGTAACTICH TEACHTCH CTGATATAGCA TOAAATTCA 2000
AGTAAAAAG CAAAAAACCA AGTAACTICH TECCATCTC CTGATATAGCA TOAAATTCA 2000
AGAAAAACCT CCTGATATCC TTGGGGGTCT TCTGAAAAAA CCTAATTGCAG TGCTCCATCC 2100
AAAACCAAACT GCTGTGATAT CTTGAACTGGA ACATTTTTT TTTCTTTT 2100
AAAACCAAACT GCGGGTGT ATTGCATTAT TTTAAAGGGA CAGTTTGTAA CTTGGGGTGT 2200
AAAACCAAACT GGGGCTGTGT TTTCSATAGT GATGATCAC TAGTACTAAT ATATTTAAC 2280

50
AGTITTACTT CTGGCCTTTC CTAGCTAGAG AAGGAGTTAA TATTTCTAAG GTAACTCCCA 2340
TATCTCCTTT AATGACATTG ATTTTCTAATG ATTAAAATTT CAGCCTACAT TAGTACAAG 2400
ATGTTTTCCC ACAAAGAAGA TTCTTACCCA GAGTGGGCTT TGTGGAAACA GCTGGTACTG 2460
ATGTTCACCT TATATATGT ACTAGCATTT TCCACGCTGA TGTTTATGTA CTGTAAACAG 2520
TCTGGCACTC TGTACAAAA GAAAAAAACAC CCCGGGAATGTTTATGTA CTGTAAACAG 2520

55 Seq ID NO: 24 Protein sequence: Protein Accession #: NP 005255

1 11 21 31 41 51

60 MELTLYPAL PLULLLISAE VSGGDRLDCV KASDQCLKEQ SCSTKYKTLR QCVAGKETINF 60 SLASGLEAKD ECRSAMEALK QKSLYNCRCK ROMKKEKNCL RTYVSNYQSL QGNDLLEDSP 120 YPPVNSKLSD BRYVYPSD VFQOVEHIK GNNCLDAKA CNLDDÖKKY RSAVITPCTT 180 SVSNDVCNRR KCHKALRQFF DKVPAKHSYG MECSCRDLA CTERREÇTIV YCSYEEREK 240 PKLULQOSK CHYLYCKSRL ADFTHCOPE SKYSYSCLKE NYADCLLAYS GLIGTYMTH 300

65 YDSSSLVA PWOTCHSRI ADPFINCQUE SKYSVELKE NIAO-LLATS GLIGIYMIPN 300
QTTTATTTA LRYKNKPLOP AGSENEETH VLPPCANLQA QKLKSNYSGN THLCISNGNY 420
EKSGLGASSH ITTKSMAAPP SCGLSPLLVL VYALSTLLS LETETS

70 Seq ID NO: 25 DNA sequence
Nucleic Acid Accession #: FGENESH predicted
Coding sequence: 1576(entire sequence represents open reading frame)

1 11 21 31 41 51

75 CITTIGITIC GCCATGCCTA GTCTAGTGGT ATCTGGAATA ATGGAAAGAA ATGGGGGCTT 60
TGGAGAACTA GGATGTTTCG GGGGAAGCCC TAAGGACCG A GGGCTGCTGG AAGACAGCG 120
CGCCCTCAG CTGGCTCTCG ATCAACTCTG CCTCCTGGGT TTGGGGGAGC CCCCCGCCCC 180

CAGGGCGGGC GAGGACGGGG GAGGTGGGGG GGGCGGCGCC CCCGCGCAGC CGACAGCCCC 240 COCCUCACIÓN GOSCOPICO E GOCOCOCCO GOCOCOCO ACCUMANTO CONTROLO CIENTA CONTROLO CONTROLO CONTROLO CIENTA CIENTA CIENTA CIENTA CIENTA CIENTA CIENTA CI GTTCATGGTG ACAGGGCGAC GGGAGGACGT GGCCACAGCC CGGCGGGAAA TCATCTCAGC 600 AGCGGAGCAC TTCTCCATGA TCCGTGCCTC CCGCAACAAG TCAGGCGCCG CCTTTGGTGT 660 GGCTCCTGCT CTGCCCGGCC AGGTGACCAT CCGTGTGCGG GTGCCCTACC GCGTGGTGGG 720 GCTGGTGGTG GGCCCCAAAG GGGCAACCAT CAAGCGCATC CAGCAGCAAA CCAACACATA 780 CATTATCACA CCAAGCCGTG ACCGCGACCC CGTGTTCGAG ATCACGGGTG CCCCAGGCAA 840 CCTGGAAGCGT GCGCGCGAGA GATCGAGAC GCACATCGCG GTGCGCACTG GCAAGATCCT 900 CCAGGTACAAC AATGAAAACA CATTCCTGGC GGGGAGGCCCC GACGACACAACAATCAATAGGCG 900 CTACTCCGAC GCCTGGCGGG TGCACCAGCC CGGCTGCAAG CCCCTCTCCA CCTTCCGGCA 1020 GAACAGCCTG GGCTGCATCG GCGAGTGCGG AGTGGACTCT GGCTTTGAGG CCCCACGCCT 1080 GGGTGAGCAG GGCGGGGACT TTGGCTACGG CGGGTACCTC TTTCCGGGCT ATGGCGTGGG 1140 CAAGCAGGAT GTGTACTACG GCGTGGCCGA GACTAGCCCC CCGCTGTGGG CGGGCCAGGA 1200 GAACGCCACG CCCACCTCCG TGCTCTTCTC CTCTGCCTCC TCCTCCTCCT CCTCTTCCGC 1260 CAAGGCCCGC GCTGGGCCCC CGGGCGCACA CCGCTCCCCT GCCACTTCCG CGGGACCCGA 1320 GCTGGCCGGA CTCCCGAGGC GCCCCCCGGG AGAGCCGCTC CAGGGCTTCT CTAAACTTGG 1380 TGGGGGCGGC CTGCGGAGCC CCGGCGGCGG GCGGGATTGC ATGGTCTGCT TTGAGAGCGA 1440 AGTGACTGCC GCCCTTGTGC CCTGCGGACA CAACCTGTTC TGCATGGAGT GTGCAGTACG 1500 CATCTGCGAG AGGACGGACC CAGAGTGTCC CGTCTGCCAC ATCACAGCCA CGCAAGCCAT 1560 CCGAATATTC TCCTAA

Seq 1D NO: 26 Protein sequence:
FGENESH predicted

31

30 21 31 41

5

10

15

20

25

FCFAMPSLVV SGIMERNGGF GELGCFGGSA KDRGLLEDER ALOLALDOLC LLGLGEPPAP 60 TOTAMITS AND Y SOUTH CANNOT LEED OF TOOSA KUNGLEEDER ALQUALITY OF A RAGEDGGGGG GGAPQATTA POPAPPPPPA A PPAATTTAP A AQVTPOPTAP FROSADAKLC 102 ALYKEAELRI, KOSSNITTECV PYFISHIVAE IVORQOCKIK ALRAKTNITYI KTPVRGEEV 180 FWYTGRREDV ATAREIELS ALHFEMIRAS RINKSGAAFOV APLAPOQYTI REVPYRYVYO 240 LVVOPKGATI KRIQQQTNITY HTPSRORDV VFEITGAPGN VERAREELET HIAVRTGKIL 300 35

EYNNENDFLA GSPDAAIDSR YSDAWRVHOP GCKPLSTFRO NSLGCIGECG VDSGFEAPRL 360 GEOGGDFGYG GYLFPGYGVG KODVYYGVAE TSPPLWAGOE NATPTSVLFS SASSSSSSSA 420 KARAGPPGAH RSPATSAGPE LAGLPRRPPG EPLQGFSKLG GGGLRSPGGG RDCMVCFESE 480 VTAALVPCGH NLFCMECAVR ICERTDPECP VCHITATOAI RIFS 40

Seq ID NO: 27 DNA sequence Nucleic Acid Accession #:

FGENESH predicted Coding sequence: 1-2070 (underlined sequences correspond to start and stop codons) 45 51

ATGAGCGGTG CGGGGGTGGC GGCTGGGACG CGGCCCCCA GCTCGCCGAC CCCGGGCTCT 60
CGGCGCCGGC GCCAGCGCCC CTCTGTGGGC GTCCAGTCCT TGAGGCCGCA GAGCCCGCAG 120 50 CTCAGGCAGA GCGACCCGCA GAAACGGAAC CTGGACCTGG AGAAAAGCCT GCAGTTCCTG 180 CAGCAGCAGC ACTCGGAGAT GCTGGCCAAG CTCCATGAGG AG ATCGAGCA TCTGAAGCGG 240 CAUSANG AGENTA DE L'INDEAN DE 55 AGCCGTGGCT GGACGATGTT ATGCAGCCAA GCACAGCACG TGCTGCTCTC GGGAAGCCCA 540 GGGCCTG AGG TCATTGCAGG GCGGCAGGTG GCCACAGGGT GCTCCCCAGA CCTCCCTCCT CCAMITAGAG CIGAAATGGG AAGGAACCC TIGGGAGCAGC CUTGCCCTIGC TAVATCTTG 600
CCTCAGATTIG TEGCTGTGGC CAGGCCAGG ATTTCCAGC CTATTGGCTCT GAGTCCTCAC 720
ATGCTGGGGG CCCAGGGGAT ATGGACACAC TCCATCCAGG GATCCCTTCC TGCCATCTGG 780
GCAGCAACCA TGGGGACAA GGGAGGAAGC AGAGTCCTGT TTCCTTGCCA CTTGTCCAAG 840
GCACTTCCCC ATCCTGACAG CGGCCCCAC CCAGCCCAGG ATCCTGGGCT GTGGTCTCAA 900 60

GCTCACTTCC CATTATCTTT GGGGCTGGGG CTGACATCAG GAGGACATCT GACTGGTGGA 960 TGGAGCCAGC CTGGGAACAT CGCAGCTGGG GCAGTGCCTA GGGCTCTCCC TTCCCAGGGA 1020 GACATGGAGA AGGGGGTTGA GGGAGGGCCC TTCCCTAGCC GCTGTGGCAA CTCCAGTGAG 1080 CTGTTCTGGG CAAAGTGTGG CCCAAGTCGG CAGCCCCAGC CCTGCAGTGC TGGGGACGCT 1140 GACAGGACAC GGGAAGAGGC CATGCTTTCC CTCGGGACCT GCTGTTCCAT GTGTCCCAAG 1200 GACHGACAC GGGAAGAGGC CATUCTTICS CALCAUGACET USUB TRUCKT TRUTCCCAAU 1899
GGGGTATGCT TGGGTCTCACT TAGGTCTCACT TGGTCTCACT TGGTCCCAAU 1899
GGGGGTATGCT TGGTCTCACT ACGGAACAC TGGTCAGAGC TGGCTTGCC 1189
AGGCTTGAAGG AGGGCTCCTC ACGGAACACA AGGCCAGAGAGAG GCAAGCTGG GCGTCTTGCC 1189
GGCGGTAGAG CCGGAACATGT GGGCTCTCT GCAGACAGCC TCTCCATGTC AAGCTTCCAG 1490 TCCTTCAACA AGCAAGATTC AAAAGCTGAC GTCTCCCAGA AGGCGGACCT GGAAGAGGAG 1560

CCCCTACTTC ACAACAGCAA GCTGGACAAA GTTCCTGGGG TACAAGGGCA GGCCAGAAAG 1620 GAGAAAGCAG AGGCCTCTAA TGCAGGAGCT GCCTGTATGG GGAACAGCCA GCACCAGGGC 1680 AGGCAGATGG GGGCGGGGG ACACCCCCA ATGATCCTGC CCCTTCCCCT GCGAAAGCCC 1740 ACCACACTTA GGCAGTGCGA AGTGCTCATC CGCGAGCTGT GGAATACCAA CCTCCTGCAG 1800

65

70

ACCCAAGAGC TGCGGCACCT CAAGTCCCTC CTGGAAGGGA GCCAGAGGCC CCAGGCAGCC 1860 CCGGAGGAAG CTAGCTTTCC CAGGAACCAA GAAGCCACGC ATTTCCCCAA GGTCTCCACC 1920 AAGAGCCTCT CCAAGAAATG CCTGAGCCCA CCTGTGGCGG AGCGTGCCAT CCTGCCCGCA 1980 CTGAAGCAGA CCCCGAAGAA CAACTTTGCC GAGAGGCAGA AGAGGCTGCA GGCAATGCAG 2040 AAACGGCGCC TGCATCGCTC AGTGCTTTGA

Seq ID NO: 28 Protein sequence;
Protein Accession #: FGENESH predicted

10

5

41 21 31 MSGAGVAAGT RPPSSPTPGS RRRRORPSVG VOSLRPOSPO LROSDPOKRN LDLEKSLOFL

OOOHSEMLAK LHEEJEHLKR ENKGEPARGP RPALPPOAHS TLPLPOHRNT AINSSTRLGS 120 15 GGTODGEPLO TVLAHLAALA PVCOPSGYRF WGTWTDAATS SRGWTMLCSQ AOHVLLSGSP 180 20

SYKSISNSAN SQGKARPQPG SPIKKQDSKAD VSQKADLEEE PLLIHISKLDK VPGVQQARK 540
EKAEASNAGA ACMGNSQHQG RQMGAGAHPP MILPLPIKKP TTLRQCEVLI RELWNTNLLQ 600 TOELRHLKSL LEGSORPOAA PEEASFPRDQ EATHFPKVST KSLSKKCLSP PVAERAILPA 660 LKOTPKNNFA EROKRLOAMO KRRLHRSVL 25

Seg ID NO: 29 DNA sequence Nucleic Acid Accession #:

:: NM_012319.2 138-2405 (underlined sequences correspond to start and stop codons) Coding sequence:

30 51 21

CTCGTGCCGA ATTCGGCACG AGACCGCGTG TTCGCGCCTG GTAGAGATTT CTCGAAGACA 60 CCAGTGGGCC COTGTGGAAC CAAACCTGCG CGCGTGGCCG GGCCGTGGGA CAACGAGGCC 120 GCGGAGACGA AGACGCAACG GCAAGAACAT TATCTGATCT TATCTGTGCC 180 TCTCTGTGCA CAATCCCCTT CATGAACATA AAGCAGGCGC TTTCCCCCAG ACCACTGAGA 240 35 AAATTAGTCC GAATTGGGAA TCTGGCATTA ATGTTGACTT GGCAATTTCC ACACGGCAAT 300 AMATIARICE GAAT I GUGAAT I CHORCATTA A IGTI I AACTI TO GACATTI CA CACAGUCAAT 300
ATCACTACTA CA ACAGCTTITC TACCGCCTATG GAAAAAATTA TETTTITTICA GTTGAAAGGT 360
TCAGAAAATT ACTTCAAAAT A TAGGCATAG A TAAGATTAA AAGAATCAT A TACACCATIG 420
ACCACGACCA T ACACTCAGAC CACCAGGCATC A CETCAGACCA TIGAGCOTTAC TEAGACCATI GAA
AGCATCACTC A GACCAGOAGCAT CACTCAGACCAT GAAGCATTCA TCACTCTCAC CATAATCATTG 540
CTGCTTCTGG TAAAAATAAG CAGAAAAGCTC TITTCCCCAGA CACTAGCATCA GAATCACTTG
540
CTGCTTCTGG TAAAAATAAG CAGAAAAGCTC TITTCCCCAGA CACTAGCATCA GATAGTTCA 540 40

GTAAAGATCC TAGAAACAGC CAGGGGAAAG GAGCTCACCG ACCAGAACAT GCCAGTGGTA 660 GAAGGAATGT CAAGGACAGT GTTAGTGCTA GTGAAGTGAC CTCAACTGTG TACAACACTG 720 45 TETETGAAGG AACTCACTTT CTAGAGACAÁ TAGAGACTCC AAGACCTGGA AAACTCTTCC 780
CCAAAGATGT AAGCAGCTCC ACTCCACCCA GTGTCACATC AAAGAGCCGG GTGAGCCGGC 840

TRICCIDETMO GALALCALAT GLASTICISTRA CIDAGECCCO ANAGGETTS ATERNATICCA 900
GALACACANA TORANASCACT CAGGAGIOSTI TRADAGECTATO ANGECTATO ACASTICATO 960
GANGGCAT CCAGGTICCG CTGAATICCA CAGGAGTTCA CTATCTGTG CCAGCCATCA 1020
GCATGGCAT TCAGGCAGGAGTTCCA CTTCATCAGCAG TAGAAAGCAACG GCTGAATCC 1080
TCAACCANAT TCATGCTAGGA TCTTGTTCTGA TTCATACAGG TGAAAAGCAG GCTGAATCC 1080 50 CTCCAAAGAC CTATICATTA CAAATAGCCT GGGTTGGTGG TTTTATAGCC ATTTCCATCA 1140

CICCANAMAC CHATICALLIA CAMALAGUCT GUEFTIGEIDU TITTALIAGUE AL ILUCAIDA 1140
TCAUTTICCT GICTICCTICCT GEOGGITTATCT TAGTICCCTIC CANONATCOG GUETTITTICA 1200
AATTICTCCT GAGTITTCCTT GTUGCACTIGU CCCTTTGGGAC TITTAGTIGGT GATGCTITTT 1200
TACACCTICT TCACACTITC CATICCAACTIC CACACCATAGI CATAGCCAT GAGAACCAG 1320
CAATIGGAAT GAAAAGAGGA CACACTITTCA GTCACTGTCTTCTCAACAAC ATAGAACCAA 1380
GTOCCTATTT TGATTCCACOT GAGAAGGGTCT TATTTCATT 1440 55 TICTIGITGA ACATGICCTC ACATTGATCA AACAATTTAA AGATAAGAAG AAAAAGAATC 1500 AGAAGAAACC TGAAAATGAT GATGATGTGG AGATTAAGAA GCAGTTGTCC AAGTATGAAT 1560 60

AGAMANACC TGAAAATGAT GATGATGTGG GATTTAAGAA GCAGTTGTCC AAGTATGAAT 1566
CTCAACTTC AACAAATGAG GAGAAAGTGA GTACAACTGAA GCCATTTTCC CAG
CTCAACTTC AACAAATGAG GAGAAAGTGA GTACAACTGAA GCCATTTTAC CAG
AAGAAGTGAT GATAGCTCAT CCTCATCAC AGGAAGTTTA CAATGAATTA GTACCCAGAG 1746
GGTGCAAGAA TAAAATGCCAT TACACATTCCAC AGGAAGCTTA CAATGAATTA GTACCCAGAG 1746
GGTGCAAGAGA TAAAATGCCAT TACACATTCCAC AGGAACACTC GGGCCAGTGA GACAGTCA 1860
CTCACAGTCA CAGCCAGCGC TACTTCATGCATCATCA CCACCACCAA AACCACCATC 1860
CTCACAGTCA CAGCCAGCGC TACTTCAGTGATGA GAGAGTGAA AGGTGAAGAGCTGAGAGCACTCA 1860 65 TGGCCTGGAT GGTGATAATG GGTGATGGCC TGCACAATTT CAGCGATGGC CTAGCAATTG 1980 GTGCTGCTTT TACTGAAGGC TTATCAAGTG GTTTTAAGTAC TTCTGTTGCT GTGTTCTGTC 2040 ATGAGTTGCC TCATGAATTA GGTGACTTTG CTGTTCTACT AAAGGCTGGC ATGACCGTTA 2100

AGCAGGCTGT CCTTTATAAT GCATTGTCAG CCATGCTGGC GTATCTTGGA ATGGCAACAG 2160 GAATTTTCAT TGGTCATTAT GCTGAAAATG TTTCTATGTG GATATTTGA CTTATGTGGTG 2220 GCTTATTCAT TGTATGTCT CTGGTTGTATA TGGTACCTGA AATGCTGCAC AATGATGCTG 70 GTIGACCATGG ATGTAGCCGC TGGGGGTATT TCTTTTTACA GAATGCTGGG ATGCTTTTGG 2340
GTITTGGAAT TATGTTACTT ATTTCCATAT TTGAACATAA AATCGTGTTT CGTATAAATT 2400 TCTAGTTAAG GTTTAAATGC TAGAGTAGCT TAAAAAGTTG TCATAGTTTC AGTAGGTCAT: 2460 75

AGGGAGATGA GTTTGTATGC TGTACTATGC AGCGTTTAAA GTTAGTGGGT TTTGTGATTT 2520 TTGTATTGAA TATTICCTOTC TGTTACAAAG TCAGTTAAAG GTACGTTTTA ATATTTAAGT 2580 TATTICTATCT TGGAGATAAA ATCTGTATGT GAAATTCACC GGTATTACA GTTTATTTA 2540 TAAACAAGAG ATTTGGCATO ACATGTTCTCO TATGTTTCAG GGAAAACATCT CTTTAATGCT 2700

		NM_014906	Hs.166351	KIAA1072 protein	1	5.4
				KIAA0902 protein	1	3.8
	112141	AW137198 R49499	Hs.278682 Hs.138238	Phosphatidylglycerophosphate Synthase	1.4	3.5 3.6
5	112197	NM_003655		ESTs	1.5 4.6	2
•		AW500106	Hs.23643	serine/threonine protein kinase MASK	3.3	10.5
	112971		Hs.83883	transmembrane, prostate androgen induced	3.2	3
	112984				3.7	10.8
10		AF019226		glioblastoma overexpressed	4.5	3.7
10	113449	AW160683			1.2	4.4
	113497	AF143321	Hs.15572	hypothetical protein IMAGE 109914	0.9	3.6
	113531	AL042936 AK001898	Hs.211571 Hs.16740	holocytochrome c synthase (cytochrome c hypothetical protein FLJ11036	1.1 1.2	3.5 3.9
	113604	AI075407			1.7	5.3
15	113674		Hs.5753	Inositol(myo)-1(or 4)-monophosphatase 2	0.8	6.1
	113841	W30681	Hs.146233		1.7	6.2
	113857	AW243158	Hs.5297	DKFZP564A2416 protein	1.2	4.6
		BE255499	Hs.3496	hypothetical protein MGC15749	1.5	4
20		W17056	Hs.83623	nuclear receptor subfamily 1, group 1, m	3.8	1_
20		AA345519	Hs.9641	complement component 1, q subcomponent,	1.2	4.7
	114132 114156		Hs.24192 Hs.336920	Homo sapiens cDNA FLJ20767 fis, clone CO glutathione peroxidase 3 (plasma)	0.3 1.1	4.3 4.3
	114213		Hs.19575	CGI-11 protein	1.6	9.2
		AA075488	113.13073	gb:zm88d01.s1 Stratagene ovarian cancer	1.6	3.7
25	114760		Hs.252692	hypothetical protein FLJ20343	1.4	4
	114781	T10446	Hs.95388	ESTs	1	4.3
	114795		Hs.173484	hypothetical protein FLJ10337	1.6	9.2
	114901		Hs.196437		1.4	5.2
20		AI683069	Hs.175319		3.7	1
30		BE541042	Hs.23240	Homo sapiens cDNA: FLJ21848 fis, clone H	3.2	4.2
	115764	N36110 AW582256	Hs.305971 Hs.91011	solute carrier family 2 (facilitated glu anterior gradient 2 (Xenepus laevis) hom	1.5 1.3	3.9 5.9
	115802		Hs.206521	YME1 (S.cerevisiae)-like 1	1.7	6.6
	115994	AB037836	Hs.109315		1.5	9.1
35	116032		Hs.42484	hypothetical protein FLJ10618	0.9	4.3
	116046	BE395293	Hs.94491	hypothetical protein FLJ20297	1.6	5.5
	116274		Hs.182874		3.2	2.4
	116310		Hs.42299	ESTs	0.8	4.7
40		Al371223	Hs.288671		2.4	3.9
40		AF191018 AA313607	Hs.279923 Hs.58633	putative nucleotide binding protein, est Homo sapiens cDNA; FLJ22145 fis, clone H	5.5 5	5.5 1.3
		AI272141	Hs.83484	SRY (sex determining region Y)-box 4	8.7	4.5
	116578		Hs.75337	nucleolar and coiled-body phosphprotein	3.2	6.9
	116579	AW888411	Hs.81915	leukemia-associated phosphoprotein p18 (3.2	3
45	116589	AI557212	Hs.17132	ESTs, Moderately similar to 154374 gene	3.1	8.3
		H25836	Hs.301527		3.2	4.5
		N25929	Hs.42500	ADP-ribosylation factor-like 5	7	5.5
	117215		Hs.133207		1.2	6.2
50	117280	M18217 Al383467	Hs.172129 Hs.44597		4.5 1.4	2.4 4.2
30		U59305	Hs.44708	ESTs Ser-Thr protein kinase related to the my	4.3	0.5
	117881		Hs.260622		2.1	5.7
	118336	BE327311	Hs.47166	HT021	3.6	7.7
	118475	N66845		gb:za46c11.s1 Soares fetal liver spleen	4.2	0.5
55	118493	AL353944	Hs.50115	Homo sapiens mRNA; cDNA DKFZp761J111	2 (f	3.5
	118505	N67343		gb:yz50b07.s1 Morton Fetal Cochlea Homo	2.1	3.8
	119159	AF142419	Hs.15020	homolog of mouse quaking QKI (KH domain	3.7	1.5
	119307	BE048061	Hs.37054	ephrin-A3	3	1.1
60	119355	BE218319 BE041667	Hs.5807 Hs.314544	GTPase Rab14	1.1 1.4	5.6 4.3
OU	119462	AI905687	Hs.2533	Homo sapiens cervical cancer suppressor- EST	3.2	4.3
	119771 119940		Hs.272531		4.3	0.7
	119943		Hs.14158	copine III	3.5	1.9
	120407	AA235207	Hs.250456	hypothetical protein DKFZp762F2011	1.5	3.7
65	120493	AW968080	Hs.152939	Homo sapiens clone 24630 mRNA sequence		1.4
	120677		Hs.108327		1.6	6.8
	120867	AA350781	Hs.96967	ESTs	1.1	3.6

3.3

3.7

4.6

		BE262956			1.5	4.1 5.5
		AA416785			2.2 3.4	3.2
					3.4 3.9	3.9
5		AF169797 AB032948		hypothetical protein DKFZp762K2015	1.4	7.1
,		AI718702		major histocompatibility complex, class	1.4	3.7
		AF121856			1.2	4.9
				hypothetical protein	2.4	3.6
	123327	AA421581	Hs.178443		0.9	5.2
10		W28673		serine carboxypeptidase 1 precursor prot	1.3	5.1
		AA608657			2.1	5.2
		AA608751		gb:ee56h07.s1 Stratagene lung carcinoma	2.1	9.3 3.6
		AI932318		ESTs, Moderately similar to H2BL_HUMAN H	1.1	3.5
15		AL050184	Hs.21610 Hs.7351	DKFZP434B203 protein cyclic AMP phosphoprotein, 19 kD	1.4	3.8
13		AF084555 BE563957	Hs.74861	activated RNA polymerase II transcriptio	1.9	11.2
		AB037860		nuclear factor I/A	1.5	4.4
	124059	BE387335		ESTs, Weakly similar to S64054 hypotheti	14.8	11.5
	124083	AW195237	Hs.7734	hypothetical protein FLJ22174	1.2	6.2
20	124148	BE300094	Hs.227751		2.5	12.7
	124153	AU077333	Hs.160483	erythrocyte membrane protein band 7.2 (s	1_	4.1
		BE613340		Homo saplens, Similar to RIKEN cDNA 9430	1.5	8.4 10.2
		AK001552		GTP-binding protein	1.8 1.1	4.8
25	124375	D87454 N39016	Hs.192966 Hs.268869	KIAA0265 protein ESTs, Weakly similar to ALUC_HUMAN IIII	1.3	4.1
23	124447		115.200003	gb:yy98e12.s1 Soares_multiple_sclerosis_	2.7	4.3
	124539		Hs.146409	cell division cycle 42 (GTP-binding prot	2.1	5.7
		A1393320	Hs.104573		1	4.1
	124564		Hs.108275	ESTs	1.4	4
30	124574	AL036596	Hs.42322	A kinase (PRKA) anchor protein 2	0.7	4
		AA749315	Hs.77171	minichromosome maintenance deficient (S.	1.1	3.5
		H60193	Hs.21143	DKFZP586C1324 protein	1.4	3.6 9.9
		A1680737			1.5 0.7	4
35	124737 124760		Hs.78793 Hs.91052	protein kinase C, zeta ESTs, Moderately similar to ALU5_HUMAN A		3.6
33		BE410405	Hs.76288	calpain 2, (m/II) large subunit	1.3	3.9
		R44357	Hs.48712	hypothetical protein FLJ20736	1.8	4.2
		R56485		gb:yg93h09.s1 Soares Infant brain 1NIB H	1	3.6
	124940	AF068846		heterogeneous nuclear ribonucleoprotein	3.2	3.4
40	124949			tubulin, beta polypeptide	1	4.4
	124960			seizure related gene 6 (mouse)-like	0.9	5.2 3.5
	124995		Hs.110044		0.9 1.2	5
	125030	AA610577 BE548446	Hs.187775 Hs.5167	Homo saplens mRNA; cDNA DKFZp434F152		1.5
45	125054		Hs.3343	phosphoglycerate dehydrogenase	0.9	6
43	125076		110.0010	gb:og02h08.s1 NCI_CGAP_Lu5 Homo saple		1 3.7
		T91518		gb:ye20f05.s1 Stratagene lung (937210) H	3.2	2.5
	125103		Hs.122730	ESTs, Moderately similar to KIAA1215 pro	5.3	6.6
	125154			gb:zc78a07.s1 Pancreatic Islet Homo sapl	0.9	6.1 4.3
50		AA837043	Hs.143669	TRF2-interacting telomeric RAP1 protein	1.1	4.1
	125159	AK000669 AL020996	Hs.8518	selenoprotein N	1.1	3.8
	125170		Hs.12396	ESTs, Weakly similar to 2004399A chromos	i	3.6
		W67577	Hs.84298	CD74 antigen (Invariant polypeptide of m	1.2	7.8
55		H05635		topolsomerase-related function protein 4	1	4.9
	125262	AW884980	Hs.171957		1.3	4.8
	125272		Hs.180224		1.1	16.1 5.3
	125388		Hs.64311	a disintegrin and metalloprotelnase doma	1.4 2.4	5.3 8.7
CO	125824			short coiled-coil protein Homo saplens mRNA; cDNA DKFZp564B12		1.8
60		AW630088 AW504721	Hs.76550	high density lipoprotein binding protein	1.9	3.8
		AW160399	Hs.30376	hypothetical protein	1.4	4.1
	126469			ESTs, Weakly similar to JC5024 UDP-galac	2	3.7
		AA057593		hypothetical protein FLJ14735	1.3	4.1
65	127095	AA340277	Hs.10248	Homo saplens cDNA FLJ20167 fls, clone CC	1.3	5
		AI243596	Hs.94830	ESTs, Moderately similar to T03094 A-kin	4.3	0.9
	128312	J04182	HS.150101	lysosomal	1.5	4.7

3.8

		X02761		fibronectin 1	1.2	4.3
		T16206		ESTs, Highly similar to LDHH_HUMAN L-LAC		44.4
	128491			hypothetical protein DKFZp434N1429	0.6	13.1
-		NM_005904		MAD (mothers against decapentaplegic, Dr	1.3	4
5		NM_003478	Hs.101299		1	5.1
		A1185977	Hs.38260	ubiquitin specific protease 18	8.0	4
		NM_014721		KiAA0680 gene product	1.3	3.7
		AA432202		hypothetical protein FLJ21347	1.4	3.9
		D87432	Hs.10315	solute carrier family 7 (cationic amino	1.2	3.6
10		A1246669		WW domain-containing protein 1	0.8	4.1
	128684			hypothetical protein FLJ20396	3	1.6
	128717		Hs.104222	hypothetical protein FLJ10702	2.8	4.8
	128774		Hs.54457	CD81 antigen (target of antiproliferativ	1.1	10.6
		AF026692	Hs.105700	secreted frizzled-related protein 4	1	3.8
15		AA194554	Hs.183434	ATPase, H+ transporting, lysosomai (vacu	5.3	5.3
	128827	A1638184	Hs.106334	Homo saplens clone 23836 mRNA sequence	2.2	5.3
	128840	Al917602	Hs.106440	ESTs	1	4.5
	128869	AA768242	Hs.80618	hypothetical protein	0.8	3.6
	128889	D60985	Hs.106909	DKFZP566D193 protein	4.6	3.7
20	128890	Al222020	Hs.182364	CocoaCrisp	3	1.5
	128915	AK000140	Hs.107139	hypothetical protein	0.2	3.9
		AA622037		programmed cell death 5	2.5	15.2
	128926	AF155096		hypothetical protein FLJ20585	4	4
		AA298958	Hs.10724	MDS023 protein	1.2	4.5
25		AW247536	Hs.10729	hypothetical protein	1.4	5
		AW953622		RAB31, member RAS oncogene family	2.3	5.6
		AB020716		KIAA0909 protein	0.9	3.9
		AW271217		Homo sapiens cDNA FLJ14028 fis, clone HE		3.6
		AA258924	Hs.10758			0.8
30		AI770025	Hs.13323	hypothetical protein FLJ22059	1.2	5.7
		C15105		Homo sapiens cDNA FLJ14368 fis, clone HE		9.9
		AA371156	Hs 107942	DKFZP564M112 protein	2.4	3.8
		Al634522		KIAA1268 protein	1.2	3.8
		AW504486		sterol regulatory element blinding transc	1.2	5.5
35		BE543205		DKFZP586A0522 protein	0.5	3.7
55		AB002450		CGI-109 protein	1	5.2
		AW881089		Homo sapiens mRNA; cDNA DKFZp566M094		1.5
		N23018		C-terminal binding protein 2	2.1	9.7
		AA335362		Empirically selected from AFFX single pr	0.9	8.6
40		M18916		giucosidase, beta; acid (includes glucos	1.1	3.5
70		BE542214	Hs.109697		1.1	12.8
		W57656		ublquitin-like 5	3.2	5.1
		AI878857		hematological and neurological expressed	1.9	5.7
		BE169531		TAK1-binding protein 2; KiAA0733 protein	1.2	6.6
45	129247			- CGI-131 protein	1.5	3.5
73		AA344367		Empirically selected from multiple AFFX	1	5.4
		AA250970		poly(A)-binding protein, cytopiasmic 1-1	1.3	4.1
		AF077200		hypothetical protein	1.6	3.9
		AA357185		ras homolog gene family, member H	1.8	4.2
50		AB007896	Hs.110	putative L-type neutral amino acid trans	1.1	6.1
50		AA318224	Hs.296141		2.5	4.8
		W94197		ribosomal protein L26 homolog	1.6	5.1
		AF189062		tumor metastasis-suppressor	1.8	6.5
		AW511656		Meis1 (mouse) homolog	0.9	4
55	129362			solute carrier family 12 (sodium/potass)	1.4	9.2
33	129379		Hs.11085	CGI-111 protein	1	4.8
		AA318271		hypothetical protein	i	4.1
		AA016188		hypothetical protein	1.8	10.7
		Al498631		ferritin, light polypeptide	1.1	4.8
60		W92931		heat shock factor binding protein 1	1.8	9.3
00		AL050260		DKFZP547E1010 protein	1	5.5
		NM 004477		FSHD region gene 1	1.1	4.2
		AA449789	Hs.75511	connective tissue growth factor	1.9	6.8
		Ai631811		STRIN protein	1.1	9.7
65		AA769221		delta-tubulin	1.1	4.3
05				cisplatin resistance related protein CRR	1.1	4.3
		AW517695		junctional adhesion molecule 1	2.3	3.5
	125518	A4311033	1 13.2002 10	junious au autosigni morecure i		5.5

		AW968941		hypothetical protein DKFZp566I133	2.4	4.4
		AA209534		tetraspan NET-6 protein	3.2	13
		D79338		CCR4-NOT transcription complex, subunit	1.6	4.6
5		AL110212		purine-rich element binding protein B	1.1	5.7
,	129634	AB020335 At207406	Hs.11866	sel-1 (suppressor of lin-12, C.elegans)-	0.9	4.3
		AW889132	Hs.11916	translocase of Inner mitochondrial membr ribokinase	1.9 0.9	4.8
		U53209	Hs.24937	transformer-2 alpha (htra-2 alpha)	1.3	4.1 4.7
		M26939		collagen, type III, alpha 1 (Ehlers-Dani	4.7	3.7
10		U46386	Hs.12102	sorting nexin 3	1.2	3.6
	129747		Hs.12305	DKFZP566B183 protein	1	8.9
		BE397454		Homo saplens clone 24707 mRNA sequence	1.4	3.6
	129796	BE218319	Hs.5807	GTPase Rab14	2.9	5.1
	129797	M62839	Hs.1252	apolipoprotein H (beta-2-glycoprotein I)	0.3	5.1
15		AF052112	Hs.12540	lysosomal	1.6	8.8
	129834			CGI-100 protein	0.9	5.3
		AW410233	Hs.206521	YME1 (S.cerevisiae)-like 1	1.8	9.9
		NM_014840		KIAA0537 gene product	0.9	3.6
20		AA626937	Hs.181551	hypothetical protein MGC2594	1.4	9.5
20		Z43161 AL119499	Hs.283/14 Hs.13285	30 kDa protein	1.1	6.3
	129904	M30773	Hs.278540	neuronat potassium channel alpha subunit	1 2	3.5
	129976		Hs.234734		0.9	5.1 4.9
		Z14221	113.204704	gb:H.saplens germline transcript of lg h	1.2	3.6
25	130007		Hs.142570	Homo sapiens clone 24629 mRNA sequence	4.3	1.3
	130060	BE277024	Hs.146381	RNA blnding motif protein, X chromosome	1.6	3.8
	130064			Empirically selected from AFFX single pr	1.2	8.2
		M93143	Hs.262869	plasminogen-like	1.4	7.9
		H97878		zinc finger protein 36 (KOX 18)	1.4	12.3
30		AK001635	Hs.14838	hypothetical protein FLJ10773	0.2	4.6
		W61005	Hs.14896	DHHC1 protein	1.	4.1
	130112 130115	AA916785 T47294	HS.180610	splicing factor proline/glutamine rich (1.2	5.3
	130113		HS. 149923	X-box binding protein 1 zinc finger protein 262	3.8	0.8
35		BE094848	Hs.15113	homogentisate 1,2-dioxygenase (homogenti	1 0.5	4.2 4
-		R42678		KIAA0564 protein	1	3.7
		M23115	Hs.1526	ATPase, Ca++ transporting, cardiac muscl	0.4	4.4
	130213	BE278370	Hs.15265	heterogeneous nuclear ribonucleoprotein	1.7	7.5
		BE301883	Hs.152707	glioblastoma amplified sequence	1	5.6
40		U29463		gb:Human cytochrome b561 gen	1.2	4.2
		U92014	Hs.153527	Homo saplens pTM5 manner-like transposo	1.3	3.6
		W78907	Hs.15395	similar to arginyl-tRNA synthetase (argi	1.5	4.4
		AB040914	Hs.278628	KIAA1481 protein	2.9	7.5
45		AW067800 AW842182		stanniocalcin 2	3.2	0.2
73		AW163518	He 455405	small inducible cytokine A5 (RANTES) huntingtin interacting protein 2	1.4	10.6
		AA852868	He 122852	KIAA0171 gene product	1.7 1.1	11.7 5
	130442		Hs.118244	protein phosphatase 2, regulatory subuni	1.4	4.3
		AW362955	Hs.15641		1.6	7.6
50	130479	R44163	Hs.12457	hypothetical protein FLJ10814	0.9	4.1
	130499	AB007915	Hs.158286	KIAA0446 gene product	1	3.8
		AI598022	Hs.193989	TAR DNA binding protein	1.3	4.7
		AA232119	Hs.16085	putative G-protein coupled receptor	1.2	9.4
		Al652143		hypothetical protein FLJ13111	1	4.1
55		BE242873	Hs.16677	WD repeat domain 15	1.1	3.6
		AL049963		up-regulated by BCG-CWS	0.6	3.8
		AL045128	Hs.1691	glucan (1,4-alpha-), branching enzyme 1	0.9	6.6
		AL042896 AW073971	Hs. 1697	ATPese, H+ transporting, lysosomat (vacu	0.9	3.9
60		AV073971 AI557212	Hs.17132	ESTs, Weakly similar to KIAA1204 protein	0.9 2.6	6.9 3.9
00		AF158555	Hs.239189	ESTs, Moderately similar to 154374 gene glutaminase	1.2	13.8
		AI861791	Hs.278479		1.3	4
		Al831962	Hs.17409	cysteine-rich protein 1 (intestinal)	2.5	4
		AL117508		KIAA0737 gene product	1.3	6.2
65		AI928985	Hs.17680	hypothetical protein MGC1314 similar to	1.4	3.9
	130693		Hs.17962	ESTs	3.2	0.8
	130694	NM_014827	Hs.17969	KIAA0663 gene product	1.1	4.8

	400000					
		AA325308	Hs.18016	Homo sapiens mRNA; cDNA DKFZp586H0324		1.8
		Z98883	Hs.18079		1.1	6.7
		AW190925	Hs.203559		1.2	4.1
5		AI932971	Hs.18593		1.4	6.9
,		AF072813	Hs.252831	reticulon 3	1.2	11.2
		AA088809	Hs.19525		1.8	6.8
		NM_001761	Hs.1973		1.3	4.1
		Y10805	Hs.20521		3.2	5.9
10		AB037750	Hs.21061	KIAA1329 protein	1 .	3.8
10		AW195747	Hs.21122	hypothetical protein FLJ11830 similar to	1.3	7.9
		BE409769	Hs.21189		2.7	3.7
	130913	BE390905	Hs.21198	translocase of outer mitochondrial membr	1.9	4
		H96115	Hs.21293		1.9	10.3
15		AB023182		KIAA0965 protein	1.5	6.8
13	130967	AA393071		leucine aminopeptidase	1.4	5.5
		AA099923		PEST-containing nuclear protein	1.3	3.8
		BE243101	Hs.22391		1.9	4.1
		D87436	Hs.166318		1.6	3.5
20		AA194422	Hs.22564		4.5	5
20		AL137682	Hs.22937		2	3.7
		BE387561	Hs.22981			4.5
		W27770			0.9	3.5
	131107	BE620886	Hs.75354		2.1	4.5
0.5		BE564123	Hs.23060	DKFZP564F0522 protein	1.1	4.6
25		AB033099	Hs.23413	KIAA1273 protein	1.2	4.2
		AW953575			4.5	13.5
		X77753	Hs.23582		3.4	0.4
		Al472209	Hs.323117		0.8	4.9
	131164	AW013807	Hs.182265		3.3	2.4
30		H25094	Hs.293663		0.6	4
	131194	AW864222	Hs.24083	KIAA0997 protein	1.4	3.8
	131199	AW979155	Hs.298275	amino acid transporter 2	1.2	8.5
	131215	AL050107	Hs.24341	transcriptional co-activator with PDZ-bl	0.7	4.7
	131216	AI815486	Hs.243901	Homo sapiens cDNA FLJ20738 fis, clone HE	2.1	8.2
35	131233	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	1.7	3.5
	131237	AW956868	Hs.24608	DKFZP564D177 protein	1.3	5.4
	131262	AU077158	Hs.24930	tubulin-specific chaperone a	1.6	4.8
	131263	AU077002	Hs.24950	regulator of G-protein signalling 5	1.4	4.4
	131367		Hs.173933	nuclear factor I/A	3.3	2.2
40	131372	AW293399	Hs.144904	nuclear receptor co-repressor 1	1.6	3.9
		NM_006052	Hs.26146	Down syndrome critical region gene 3	1	11.1
	131388	NM 014810	Hs.92200		5	2
	131492	AI452601	Hs.288869	nuclear receptor subfamily 2, group F, m	0.9	3.5
	131493	AW960146		hypothetical protein FLJ12888	1	3.5
45	131514	BE270734	Hs.2795	lactate dehydrogenase A	2	6.5
	131524		Hs.301804	KIAA1494 protein	1.5	10.7
	131528	AU076408	Hs.28309	UDP-glucose dehydrogenase	1.3	4.7
		AF157326		TBP-Interacting protein	1.3	4.9
	131555	T47364		Interferon, alpha-inducible protein 27	1.5	8
50	131578	AA936296		DKFZP586G011 protein	1.8	3.5
	131589	C18825	Hs.29191	epithelial membrane protein 2	1.3	8.2
		D83032		nuclear protein	2.8	3.9
		BE514605		Homo sapiens cDNA: FLJ22380 fis, clone H	1.3	11.2
		H03514	Hs.10130	ESTs	1.3	4.8
55	131697				3.2	9.7
	131701		Hs.30819	hypothetical protein	1.3	5.2
		AW160865	Hs.30888	cytochrome c oxidase subunit VIIa polype	1.3	7.8
		AF017986	Hs.31386	secreted frizzled-related protein 2	10.6	14.7
		Al805664	Hs.31731	peroxiredoxin 5	1.1	3.6
60	131781		Hs.31989	DKFZP586G1722 protein	1.6	3.7
-		X62111	. 10.0 1303	gb:H.sapiens VII-5 gene for Immunoglobul	1.1	3.5
		Al681917	Hs.3321	ESTs, Highly similar to IRX1_HUMAN iROQU		1.2
		NM_014874	Hs.3363	KIAA0214 gene product	0.6	4.2
	131903		Hs.3436			4.2
65	131913	AW207440	Hs.185973	deleted in oral cancer (mouse, homolog)	2.4	6
55	131930		Hs.69476		2.4	9.2
		BE252983	Hs.35086	Homo sapiens cDNA FLJ12758 fis, clone NT	1.7 0.5	5.2
	101041	222300	. 10.00000	ubiquitin specific protease 1	0.0	J.E

	131947	Al123939	Hs.182997	ESTs	0.7	4.
		AA129782	Hs.3576	Homo sapiens mRNA full length insert cDN	0.9	4.8
		AW381148	Hs.198365		1.1	6.
-		AF208856		hypothetical protein	1.3	3.9
5		AF119665	Hs.184011	pyrophosphatase (inorganic)	3.3	6.9
	131997	AF229181	Hs.136644	CS box-containing WD protein	0.9	5.3
	132006	AW162336	Hs.3709	low molecular mass ubiquinone-binding pr	1.2	3.6
		BE277910	Hs.3833	3'-phosphoadenosine 5'-phosphosulfate sy	3.2	1.8
					1.2	3.6
10		BE379335	Hs.211594			
10		AF217798	Hs.3850	LIS1-Interacting protein NUDEL; endoolig	0.7	5.3
	132079	A1701457	Hs.38694	ESTs	2	5.3
	132094	NM_016045	Hs.3945	CGI-107 protein	1.2	4.3
		AW960474	Hs.40289	ESTs	3.1	3.
10		Al752235	Hs.41270	procollagen-lysine, 2-oxoglutarate 5-dio	1.8	3.7
15		AW961231	Hs.16773	Homo seplens clone TCCCIA00427 mRNA se		1.2
	132208	AL031709	Hs.241575	hypothetical protein CAB56184	1.4	4.2
	132258	AA306325	Hs.4311	SUMO-1 activating enzyme subunit 2	2	10
		BE177330		Homo saplens cDNA: FLJ21210 fis, clone C	1.2	4.
		U28831			5.9	1.6
20			Hs.44566	KIAA1641 protein		
20		NM_003542	Hs.46423	H4 histone family, member G	5.8	1.5
	132384	AA312135	Hs.46967	HSPCO34 protein	2.1	9.3
	132397	AA021160	Hs.4750	hypothetical protein DKFZp564K0822	1.3	4.6
	132413	AW361383	Hs 260116	metalloprotease 1 (pitrilysIn family)	2	4.9
		AW970859	Hs.313503		1.2	5
25						
23	132534		Hs.5086	hypothetical protein MGC10433	2	3.9
		BE396290	Hs.5097	synaptogyrin 2	1.4	5.
	132554	AF065391	Hs.194718	zinc finger protein 265	1.2	4
	132575	AV660538	Hs 284162	60S ribosomal protein L30 Isolog	3	1.7
		AF029750		TAP binding protein (tapasin)	1.8	4.7
30		AW606927	Hs.5306	hypothetical protein DKFZp586F1122 simil	1.6	4.5
30						
		AA353044	Hs.5321	ARP3 (actin-related protein 3, yeast) ho	1.8	8.1
	132718	NM_004600	Hs.554	Sjogren syndrome entigen A2 (60kD, ribon	4.2	2
	132719	A1264357	Hs.55405	hypothetical protein MGC16212	1.1	5.3
	132730	AK000868	Hs.5570	hypothetical protein FLJ10006	1.4	5.2
35		BE222975	Hs.56205	Insulin induced gene 1	1.1	5.8
55						
		F07424	Hs.279840		1.3	3.7
		AB020713	Hs.56966	KIAA0906 protein	2.3	6.3
	132805	AW975748	Hs.5724	sclerostin	0.7	7.7
	132863	BE268048	Hs.236494	RAB10, member RAS oncogene family	1.8	6.2
40		D63209	Hs.5944	solute carrier family 11 (proton-coupled	1.5	20
-10		AA579258	Hs.6083		1	3.8
				Homo saplens cDNA: FLJ21028 fls, clone C		
		AW118826	Hs.6093	Homo saplens cDNA: FLJ22783 fis, clone K	0.7	5.4
	132933		Hs.6101	hypothetical protein MGC3178	1.6	4.1
	132965	AI248173	Hs.191460	hypothetical protein MGC12936	1	4.2
45	132984	BE539199	Hs.62112	zinc finger protein 207	1.5	4.4
		X77343		transcription factor AP-2 alpha (activat	13.9	0.8
		Y00062				
				protein tyrosine phosphatase, receptor t	0.6	4.6
		AW499985	Hs.42915	ARP2 (ectin-related protein 2, yeast) ho	1.5	11
	133011		Hs.171921	sema domain, immunogiobulin domain (lg).	3.5	- 1
50	133012	AA847843	Hs.62711	Homo saplens, clone IMAGE:3351295, mRNA	1	4.5
	133040	AW502761	Hs.30909	KIAA0430 gene product	0.9	5.5
		H12028	Hs.6396	jumping translocation breakpoint	1.7	5.3
				the mid recenter interesting and the		
		Al654133	Hs.30212	thyrold receptor Interacting protein 15	0.6	4.9
		AK000708	Hs.169764		1.2	3.5
55		AF089816	Hs.6454	chromosome 19 open reading frame 3	1.2	17
	133110	AA808177	Hs.65228	ESTs	0.9	5.1
	133150	AV655783	Hs.661	Emplrically selected from AFFX single pr	1.1	4.5
		AW955632	Hs.66666	ESTs, Weakly similar to S19560 proline-r	1.5	4.8
		AF231981				
CO			Hs.250175		5.5	5.9
60		AA464362	Hs.6748	hypothetical protein PP1665	1.2	3.7
		AB037773	Hs.6762	hypothetical protein	1.6	8.6
	133221	W32474	Hs.301746	RAP2A, member of RAS oncogene family	2.4	4.8
		AL137480	Hs.6834	KIAA1014 protein	1	4.2
		AW796524	Hs.68644		1.3	3.9
65				Homo sapiens microsomal signal peptidase		
U.J	133257		Hs.6895	actin related protein 2/3 complex, subun	1.4	5.4
		Z48633	HS.283742	H.sapiens mRNA for retrotransposon	3.1	0.7
	133273	N27672	Hs.69469	dendritic cell protein	2.5	6.5

	422207	414/7/07/127	11- 00774	D. Control and Control			
		AW797437	Hs.69771	B-factor, properdin	1.3	4	
		BE297855	Hs.69855	NRAS-related gene	1.4	5	
		AA304961	Hs.699	peptidylprolyl isomerase B (cyclophilln	2.2	6.8	
_	133294		Hs.69997	zinc finger protein 238	1.5	4.3	
5		AF116666	Hs.70333	hypothetical protein MGC10753	1.4	6.3	
		X04898		apolipoprotein A-II	0.2	3.6	
		U56979	Hs.250651	H factor 1 (complement)	0.6	5	
	133347	BE257758	Hs.71475	acid cluster protein 33	1.2	4.2	
	133370	AF245505	Hs.72157	DKFZP564I1922 protein	3.7	5.8	
10		AB007916		KIAA0447 gene product	1.4	5.1	
		Al738719			0.9	6.3	
		AB033061	Hs.73287	KIAA1235 protein	1.2	3.7	
		AL137663	Hs.7378				4.8
				Homo sapiens mRNA; cDNA DKFZp434G227		0.7	4.8
1.5		M27749		immunoglobulin lambda-like polypeptide 1	1.1	4.3	
15		AF038962	Hs.7381	voltage-dependent anion channel 3	0.7	4.2	
		Al962602	Hs.74284	hypothetical protein MGC2714	3.1	5.9	
		NM_004415	Hs.74316	desmoplakin (DPI, DPII)	4.3	11.5	
		BE562958	Hs.74346	hypothetical protein MGC14353	1.8	19.7	
	133532	D87452	Hs.74579	KIAA0263 gene product	1.2	5.4	
20	133574	H97991	Hs.193313	Emplrically selected from AFFX single pr	1.4	3.9	
	133586	A1929645	Hs.225936	synansin I	0.8	4.9	
	133589		Hs.75104	RNA-binding protein S1, serine-rich doma	2	10.8	
		Al423369	Hs.75111	protease, serine, 11 (IGF binding)	2.1	4.5	
		U10564	Hs.75188	wee1+ (S. pombe) homolog	3.3		
25		BE244334	Hs.75249	ADD phonologica footer the C interest	2.3	1.1	
23		Al301740		ADP-ribosylation factor-like 6 interacti		5.6	
			Hs.173381		0.8	13.5	
		H14843		popeye protein 3	1	9.1	
		AJ006239	Hs.75438	quinoid dihydropteridine reductase	0.5	5.8	
20	133668			mitogen-activated protein kinase 6	1.1	6.9	
30		AW503116		zinc finger protein 146	1.8	3.8	
		A1352558	Hs.75544	tyrosine 3-monooxygenase/tryptophan 5-mo	1.5	11.1	
	133694	W17187.comp	Hs.232400	heterogeneous nuclear ribonucleoprotein	2	3.9	
	133708	AI018666 .	Hs.75667	synaptophysin	0.6	3.5	
	133737	AW001130	Hs.75824	KIAA0174 gene product	1.2	7.2	
35		AI929587	Hs.75847	CREBBP/EP300 Inhibitory protein 1	1.5	5	
		BE410769	Hs.75873	zyxin	1.2	4.8	
		M62194	Hs.75929	cadherin 11, type 2, OB-cadherin (osteob	3.2	4.1	
		BE268649		ADP-ribosyltransferase (NAD+; poly (ADP-	2.1	3.8	
		W24087	Hs.76285	DKFZP564B167 protein	1.9	12.6	
40		AF075337					
40		AW239400	Hs.76293	thymosin, beta 10	2.6	6.6	
			Hs.76297	G protein-coupled receptor kinase 6	1	4.9	
	133806		Hs.76325	step II splicing factor SLU7	0.5	3.8	
		AW578716	Hs.7644	H1 histone family, member 2	1.5	4.5	
		AW630088	Hs.76550	Homo saplens mRNA; cDNA DKFZp564B126		3.7	5.6
45		AA345824	Hs.76688	carboxylesterase 1 (monocyte/macrophage	0.3	4.4	
	133845	AA147026	Hs.76704	ESTs	5.5	2.9	
	133863	AI815523	Hs.76930	synuclein, alpha (non A4 component of am	0.6	4.8	
	133887	X07767	Hs.77271	protein kinase, cAMP-dependent, catalyti	1	10.2	
	133892	AW859528	Hs 301497		0.9	4.8	
50	133913	AU076964	Hs.7753		2.8	10.5	
		AI458213	Hs.77542	ESTs	1.8	5.6	
		AL031177	Hs.7756		1.5		
	133947		Hs.77810			6.6	
				nuclear factor of activated T-cells, cyt	1.5	3.8	
55		M54968		v-KI-ras2 Kirsten rat sarcoma 2 viral on	0.9	4.3	
33		L15409		von Hippel-Lindau syndrome	2.3	4.3	
		AL040328	Hs.78202	SWI/SNF related, matrix associated, acti	3.3	3.4	
		R48316	Hs.7822	Homo sapiens mRNA; cDNA DKFZp564C121		1.3	5.7
		BE150882	Hs.143601	hypothetical protein hCLA-iso	1	6.5	
		NM_003470	Hs.78683	ublquitin specific protease 7 (herpes vi	1.7	3.6	
60	134042	AI027881	Hs.7869	lysosomal	1	7.5	
	134049	AF117236	Hs.78825	matrin 3	1.2	4	
	134095	NM_004354	Hs.79069		2.7	4.8	
	134098		Hs.79086	mitochondrial ribosomal protein L3	3.3	2.1	
	. 134207			KIAA0009 gene product	1.3	3.5	
65		AF035606	Hs.80019	programmed cell death 6	1.7	6.9	
33	134218		Hs.80205		0.8		
		X68194	Hs.80919			5.3	
	134270	VOO 194	118.00919	synaptophysin-like protein	1.4	11.4	

WO 02/059377 PCT/US02/02242

		NM_004369 NM_000712			2.6 1.8	3.5 5.8
		AI022650			1.1	3.6
					1.1	5.9
5		NM_001430			0.5	4.8
-		AL037800	Hs.8148		1.7	7.9
		D50683	Hs.82028		0.8	7.6
		X76534	Hs.82226		2.2	3.6
••		N22687	Hs.8236		1.9	3.6
10		AL035786	Hs.82425		1.5 1.1	8.3
		BE512856			1.9	4.6
		AI750762 NM 006416	Hs.82911 Hs.82921		1.2	7.5
		AU077196	Hs.82985		6.6	8.7
15	134439	Z23024			2	3.9
	134454		Hs.286124		3.5	1.1
	134494	D86981	Hs.84084		1.5	4.4
	134501	W84869	Hs.211568		1.2	5.7
••		AW960673			1.3	3.9
20	134520		Hs.74861		1.8	4.3 5.6
	134528		Hs.84775 Hs.85155		0.8 1.4	5
		AI902899 AI203545			0.8	3.9
		NM_016142	Hs.279617		1.3	5.7
25		AB033017	Hs.8594		0.9	3.7
		BE244323	Hs.85951		4	6.8
	134579	AW936928	Hs.85963		2.2	4.3
		AA927177	Hs.86041	CGG triplet repeat binding protein 1	1.6	3.6
20	134600		Hs.86347		2.1	3.5
30	134655		Hs.123090	SWI/SNF related, matrix associated, acti	1.7 4.4	4.2 0.9
	134700 134737		Hs.8868 Hs.89434	golgl SNAP receptor complex member 1 drebrin 1	3.1	1.6
	134762			hemoglobin, gamma G	0.5	4.6
		AA428520	Hs.90061	progesterone binding protein	1.3	3.7
35	134854		Hs.179573		8.7	17.
	134865	AA587775	Hs.66295	multi-PDZ-domain-containing protein	1.7	4
		AB020689	Hs.90419	KIAA0882 protein	3.4	0.9
		AI803761	Hs.90458	senne palmitoyltransferase, long chain	1.3	6.9 9.6
40	134885		Hs.9071	progesterone membrane binding protein	1.4	10.
40	134891 134908		Hs.90787 Hs.9877	ESTs hypothetical protein	1.9	3.9
	134934		Hs.91390	poly (ADP-ribose) glycohydrolase	1	4.3
	134970			NICE-5 protein	1.4	10.
	134982		Hs.92308	Homo sapiens cDNA FLJ11223 fis, clone PL	1.6	4.1
45	135011	AB037835	Hs.92991	KIAA1414 protein	1.2	5.6
		AW301984		hypothetical protein FLJ12619	1.7	7.6
		AL034344		forkhead box C1	3.2	0.6
	135051		Hs.83484	SRY (sex determining region Y)-box 4	4.2 1.3	4.1
50		AK001887 AK000967	Hs.93872	protein kinase, AMP-activated, gamma 2 n KIAA1682 protein	2	3.7
30	135062 135077		Hs.9414	KIAA1488 protein	2.8	3.7
	135082		Hs.94234	frizzled (Drosophila) homolog 1	2.4	4.8
	135107		Hs.337531		1.4	5.8
	135143	AA132813	Hs.69559	KIAA1096 protein	1.8	8.5
55		BE563088	Hs.9552	binder of Arl Two	1.2	6.8
	135172		Hs.12144	KIAA1033 protein	3.1 1.3	1.4 7.5
	135181		Hs.279529		1.3	3.8
	135222		Hs.96800	interferon stimulated gene (20kD) ESTs, Moderately similar to ALU7_HUMAN A		3.9
60	135232 135289		Hs.9788	hypothetical protein MGC10924 similar to	0.9	8.4
00	135290			hypothetical protein FLJ10097	1	3.8
	135291		Hs.97927	ESTs	1.2	3.5
	135349		Hs.9930	serine (or cysteine) proteinase inhibito	2.6	8.9
	135357		Hs.79572	cathepsin D (lysosomal aspartyl protease	2.5	5.4
65	135398		Hs.287270	ret proto-oncogene (multiple endocrine n	0.4	7.5
	135399			ribosomal protein L22	1.5 3.2	4.5
	135400	X78592	Hs.99915	androgen receptor (dihydrotestosterone r	3.2	1.0

		AW176909	Hs.42346	Homo sapiens cDNA FLJ12843 fis, clone NT calcineurin-binding protein calsarcin-1	3.6 3.3	3.6 1.6			
		AW673106		mitochondrial ribosomal protein L43	0.9	4.2			
5		AW081061		DC2 protein	3	17.3			
3		AA887146	Hs.8217	stromal antigen 2	6.2	4			
		AA147979		milochondrial Import receptor Tom22	1.2	6.6			
			Hs.286241	protein kinase, cAMP-dependent, regulato	1	3.5			
				junctional adhesion molecule 1	1.5	4.7			
10				karyopherin alpha 1 (importin alpha 5)		5.6			
10		AA412048		CGI-39 protein; cell death-regulatory pr	1.3	3.5			
			Hs.65450	reticulon 4	1.2	13.9			
		AF279145 BE539367	Hs.8966	hypothetical protein FLJ21776	2	5.1			
					1.3	3.9			
15			Hs.95697 Hs.111029	liver-specific bHLH-Zip transcription fa	1.5	6.2			
13	425815			putative heme-binding protein	2	11.3			
				ESTs, Moderately similar to i38022 hypot Homo sapiens cDNA FLJ13372 fis, clone PL	1.7	3.6 2.8			
					3.3				
		AA523543	Hs.7678	calmodulin 1 (phosphorylase kinase, delt	1.3	4.7			
20		AA361562		cellular retinoic acid-binding protein 1	1.1	3.7 2.5			
20		Al355260		26S proteasome-associated pad1 homolog histone deacetylase 3	3.2 2.8	2.5			
		AW601325		Homo sapiens mRNA; cDNA DKFZp566M063		1.1	5.2		
	430219			HMT1 (hnRNP methyltransferase, S. cerevi	1.8	8.8	5.2		
	430450			hypothetical protein	1.1	5.6			
25		BE395875	He 270600	mitochondrial carrier homolog 2	1.5	6.1			
25		BE407127	Hs.8997	heat shock 70kD protein 1A	1.3	7.6			
		AB001636	Hs.5683	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	1.6	6.5			
		BE616412	Hs.286218	junctional adhesion molecule 1	1.3	3.5			
		R60366	Hs.5822	Homo sapiens cDNA: FLJ22120 fis, clone H	2	5.7			
30		BE513940	Hs.6101	hypothetical protein MGC3178	1.1	6.2			
		AL042986	Hs.7857	erythrocyte membrane protein band	0.5	3.7			
		BE281316	Hs.47334	hypothetical protein FLJ14495	2.5	4.9			
	449404		Hs.23581	leptin receptor gene-related protein	1.1	3.6			
		AW001741	Hs.273193	hypothetical protein FLJ10706	1.4	3.5			
35		N73222	Hs.279009	matrix Gla protein	4	11.2			
		Al634651	Hs.30250	v-maf musculoaponeurotic fibrosarcoma (a	0.8	5.6			
		RC_H15847_s		peptidylprolyl isomerase B (cyclophilin B)	1.8	4.8			
		RC_W84712		catumenin	3.5	4.6			
		X14008_ma1_	f	lysozyme (renal amyloidosis)	0.9	4.5			
40		RC_H86543_f		ESTs	1.8	6.6			
		H07011		ESTs; Weakly similar to SAS [H.saplens]	1.8	3.9			
		RC_AA164586			ESTs	6.2	0.8		
		RC_AA070485		Homo sapiens clone 23967	3.4	2.6			
		RC_H98714_s		ESTs	1.6	3.5			
45		RC_AA406145	J		ESTs	4.6	3		
		AA458584		SRY (sex determining region Y)-box 4	3.4	0.4			
		AA031548		cell division cycle 42 (GTP-binding protein; 25		3.1	3.9		
		X02761		fibronectin 1	3.6	15.2			
50		RC_AA487193		secreted frizzled-related protein 4	4.7	4			
50		R25326		Homo saplens mRNA for putative vacuolar	0.9	5			
		RC_AA393805		ESTs; Weakly similar to (defline not	1.1	8.4			
		RC_AA449333		ESTs	2.9	4.6			
		RC_AA287681		FOT- 18-bb. de-New to be at 1 and feeter	ESTs	1.3	4		
55		RC_AA490864		ESTs; Highly similar to heat shock factor	1.4	5			
33		RC_C14243_f R21443		ESTs; Highly similar to heat shock factor	1.7	5 3.7			
		RC_AA251902		ESTS	1.6 2.2				
		M21121_s		Homo sapiens lysophospholipase (LPL1)	0.9	3.8 9.9			
		C00038_s		small inducible cytokine A5 (RANTES) ESTs	2.8	4.8			
60		Y00503		keratin 19	3.1	1.1			
50		RC_R27006_f		ESTs	1.6	3.7			
		RC_AA416886		ESTs; Weakly similar to predicted using	3.1	3.1			
		RC_AA460450		fibroblast growth factor receptor 2 (bacteria-	1.5	3.7			
		RC_AA488433			1.1	4			
65		RC_AA278400					15 mRNA; partial cds	1.5	3.6
		U28831	-	Human protein immuno-reactive with anti-PTI		0.6			5.0
		RC_AA199588		Homo sapiens actin-related protein Arp3 (ARI		1.8	4.7		
		_							

	AF006082	Homo saplens actin-related protein Arp2	(ARP2)	1.6	10.9
	RC H90899	desmoplakin (DPI: DPII)	5.4	5.5	
•	RC W95070 ·	desmoplakin (DPI; DPII)	5	2.6	
	RC T90946 f	Human mRNA for KIAA263 gene; compl	ete cds	1.1	3.9
5	D87258	protease; serine; 11 (IGF binding)	2.4	3.5	
	AA313414 s	ESTs; Weakly similar to cDNA EST EME	L:T1157	1.5	5.3
	RC H73484 s	ESTs; Weakly similar to similar to Yeast		6.3	
	AFFX-HUMISGF3A/M			2.3	13.5
	AFFX-HUMRGE/M100		1.1	7.9	
10	AFFX-M27830 5	 -		0.5	7.4
	AFFX-M27830 5			0.6	5.4
	RC_AA063431_f		ESTs	8.0	4.1
	RC T63769 f	ferritin: light polypeptide	1.1	3.7	

WO 02/059377 PCT/US02/02242

TABLE 8A

Table 8A shows the accession numbers for those pkeys lacking unigeneID's for Table 8. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number Gene cluster number Accession: Genbank accession numbers

Pkey CAT number Accessions

108469 116761_1

20 129776 190229-1 AA973871 T38817 AA252383 115857 AA97389 A129081 AA97389 A129081 AA97389 A129081 AA97389 A129081 AA97389 A129081 AA97389 A129081 AA97389 A29081 AA97389 A29081 A297389 A297389 A2973

AA079487 AA128547 AA128291 AA079587 AA079600

25 125525 genbank_AA608557 AA60855 125533 genbank_AA608751 125090 genbank_T91518 791518 125154 genbank_W38419 W38419 118475 genbank_N68845 N66345 118505 genbank_N67343 N67343

129982 221_267

5

10

35

40

45

50

60

Z14221 AW381862 M97920 AW401444 Z66542 M29470 AW406502 X61011 M34024 AA327072 Z14166 Z14167 Z14165 AW403806 Z14200 AA383972 Z14205 Z14201 M18513 Z14202 AW403684 X14584 AF062221 U43760 X65892 X65883 X62107 Z80847 X65885 X65893 AF062142 X65891 X17675 Z47274 Z47277 Z47276 X65888 Z47275 X62109 AF062140 L01278 AF062134 AF062139 X81723 Z80840 X81733 X81743 X81744 X81732 Z80843 AW402942 AW403516 X65919 AF062190 AF062177 AF062222 AF062115 Z47240 AF062263 AF062261 AF062223 AF062211 Z47238 AW401714 AW404008 AW404991 AF062280 M99595 Z47214 Z47232 Z47218 M26995 AF062184 X65895 L38433 X81731 Z11946 Z47226 AF062205 AF174012 L01276 AF062168 AF062136 X81755 X81748 AF174019 AF062285 L06924 L11699 AW402665 L09070 L28049 L08090 AW407843 Z14171 AW402944 L08083 AW405627 L33035 L26907 M17750 L28052 M17751 AJ239360 U19885 L14821 X56526 AB014341 L12087 L12098 U68231 L12184 AF062242 AF022000 U64499 U00570 A\268604 Y15773 X64239 X62969 U00506 X73605 X99360 U00577 D83677 AB021539 AF035796 Z33899 U00588 AJ239353 AF174062 Z33901 X98899 AF174058 X63080 D83676 AB021529 Z18318 U00488 L01412 X81746 U21262 U21272 U00560 AF174060 U00547 U00561 Z18321 S73957 M26435 AF115130 AF115117 Z92896 U21254 Z92895 AF115112 AF062290 T28938 Y09386 AF174067 U27189 Y09384 U77373 AF174057 M17749 X69692 AF174038 U64478 U64486 AF174098 X99365 AF174077 AF174083 AF174089 AF015133 AF127792 AJ006171 U00510 U58144 AF004323 AF115109 AF004324 AF015130 AF090414 AF090418 AB021536 AB021519 Z96957 AF021986 Z92898 Z96956 L34164 AF062251 AF052524 U00549 U00541 D83687 AF052522 AF087420 AF052520 AF022011 L43085 U00536 L19915 L43083 AF090420 AB021530 AB021534 Z96955 Z96954 Z33903 X62964 AF103282 U00509 AF062298 AF062289 AF062307 AW408326 L33037 L04337 L04328 X81742 L04336 L03385 AF032360 S56184 AF062191 AF191092 AI906954 AF103184 L04343 AW364860 AF001424 AF103163 Z98717 AF103143 AJ008250 L04323 AF103321 AF103335 L04342 L03818 L03817 AW404978 AW403690 U86801 AF103150 AJ010334 AF035027 AJ007327 AF103115 AF017458 AJ008207 AJ008183 AJ008196 AJ008241 AJ008208 AF103210 AF068668 AF068670 AF068671 AF068664 AF068669 AF068666 AF068665 AF068672 AW371244 AW403670 AW408074 AW404575 AW362153 AW403803 AW406702 AW351514 D78345 T29140 J00231 NM_002179 AW405146 AA301091 X04646 H64660 AW402990 AW406534 T93007

55 108470 genbank AA07500 AA75500 AA75498 AA295885 T27613 T98113 AA07500 110447 genbank, M40000 M40000 M40000 AA75500 AA75500 110447 genbank, M400000 M40000 M40000 M40000 M40000 M400000 M400000 M400000 M400000 M400000 M40000 M40000 M400000 M400000 M400000 M400000 M400000 M40

131791 221_260

X82111 S67984 A.1131056 Z47243 Z47235 A7062268 Z47237 A.1131058 AF062210 AF062282 X62100 A.0385989 A.464794 X98861 AMU20296 M69080 28975 Z59874 Z8975 A870510 X7916 U00545 AF124064 AF174071 U00555 Z19226 AF02198 AF062255 AF174061 S73953 AF062135 AF062155 X6447 U00555 AF174070 AF17575 U85789 Z09714 Z89738 375888 A008175 A.0006188 A.0006188 O20403 H7575 H22208 A527214 1AW06737 H22300 H39871 H25291 H26973 375888 A008175 A.0006188 A.0006188 O20403 H7575 H22208 A527214 1AW06737 H22300 H39871 H25291 H26993 C

AI857980 AW368899 AI905833 AW406586 AA482084 AI872299 AA715266 AW404328 AI831674 AI709348 AA603112

PCT/US02/02242 WO 02/059377

> H45128 R86072 AA327565 AI660584 AW361537 AW383759 S71043 H15014 H45570 H42819 H45523 H45134 R72043 H24543 H27636 H27610 T28147 H25496 AW364071 AW364072 H45561 H45556 H42605 AI735017 T47421 R48719 H27570 H44599 AI459598 H42347 H41938 H24993 AA345888 H22339 AI538691 AJ012264 AA664201 AI880450 AA327310 AI991250 AI833028 AW001210 AI956075 H30467 AA326915 H41943 AI749266 AI744441 AA327377 AW512326 AI735170 H01634 AI587047 AI571623 AA327486 AA327103 AA327195 AA326973 T28143

R56485 R37248 R59992 124842 217726 1

5

15

20

25

103758 AA084874 f at AA084874 f X57815 L29157 AA367448 AW328098 AW404536 L29156 L29163 H27683 R83195 AA295096 AW327822 H25458 AW404692 130064 221_264 X57819 X57823 AW405604 AW404447 Z34914 AW406542 AA427726 AA604389 AW405606 AW405918 AW405117 AW407182 L03632 AW405058 L03627 AW407470 R72738 L21959 AW375738 X87888 AF124166 AF054638 AJ241406 10

009902 AW405284 M12025 AA360219 L03631 L03632 NW327727 AF194810 AF058076 AF194686 AF063774 AF063737 AF063755 AF063740 AF063739 AF063738 S73129 L43088 AF063775 L33026 AF060138 AF194813 AF194812 AF194811 AF194809 AF194814 AF194808 AF064505 AF064503 AF063765 AF063757 AF063752 AF063716 AF063736 AF194806 AF058077 AF063747 AF063772 AF063781 AF060137 AF194805 AF060134 AF060132 AF058074 AF063754 AF0 AF060136 AF064513 AF194683 AF194711 AF058075 AF063717 Z19546 AF194581 X72746 U96393 U09890 X98897 AF194592 M80916 AJ241405 AF194632 AJ388659 AF194625 Z74694 AF194588 AF194601 U09901 U09911 U09892 AJ010336 AJ006162 AJ249377 AJ241414 AA327392 U97248 X72747 Z46850 X95739 AW406701 AJ243109 AF194609 S80758 AF194595 AF194596 L22483 Z70262 D84141 AW405758 AF001788 AF194580 D84143 U76684 AF194593 L03630 X87892 X91134 U21249 Z46346 AJ132426 AF103659 AJ233718 AF021038 AJ233727 H24657 U09882 S75627 AA573599 AF047231 AF047232 AF103616 AW404484 Z46848 S76132 AF103663 AF103713 Y17940 AF047216 AF103595 Y17956 AF052799 AF052797 AF052802 AF052798 AF052801 AF052794 AF052796 AF047218 AF052800 AF047217 AF052795 AF032351 AF103701 AF103708 AF103710 AF103706 S62232 AF103645 AF103632 AF103647 AF103644 AF103640 AF103692 AF093581 AF103620 AW405934 AI445389 AW383753 AA360256 AF099676 H21654 H39501 AI820828 H53689 W26785 AW384496 AW407708 AA541663 AA911602 AI821461 AA588300 AA327050 H42717 AI951280 AA421322 AI923193 AA864302 H25133 D87023 J03011 M61771 D87017 AA526865 AA253450

U29463 U06715 W24970 AA584303 T39581 AA155603 AA305043 AA429426 W05664 AA102382 AA482044 W24487 AA319060 130232 18831 2 T88946 F10106 AA232161 AA243117 AA158937 AA100864 AA167512

109097 genbank AA167512

TABLE 9: Figure 9 from BRCA 001-2 US

5 Table 9 depicts a preferred group of genes upregulated in tumor tissue compared to normal breast tissue.

	Unigene Unigene		nigene number Inigene gene title	•
15	Pkey	ExAcon	UnigenelD	UnigeneTitle
	100690	AA383256	Hs.1657	estrogen receptor 1
	102211	BE314524	Hs.78776	putative transmembrane protein
	103587	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein
20	104115	AF183810	Hs.26102	opposite strand to trichorhlnophalangeal syndrome I
	105038	AW503733	Hs.9414	KIAA1488 protein
	105500	AW602166	Hs.222399	CEGP1 protein
	105990	A1690586	Hs.29403	hypothetical protein FLJ22060
		AA425414		nuclear factor I/B
25		AW503807		histone acetyltransferase
		BE568205		mitogen-activated protein kinase kinase kinase 2
		BE075297		ESTs, Weakly similar to A43932 mucin 2 precursor, Intestinal
	111900	AF131784	Hs.25318	Homo sapiens clone 25194 mRNA sequence
:	114540	Al904232	Hs.75323	prohibitin
30		Al272141	Hs.83484	SRY (sex determining region Y)-box 4
		M18217	Hs.172129	Homo sapiens cDNA: FLJ21409 fis, clone COL03924
		Al905687		EST
		AA243499		hypothetical protein FLJ10134
~ -			Hs.283713	ESTs, Weakly similar to S64054 hypothetical protein YGL050w
35			Hs.303125	p53-induced protein PIGPC1
		AA235448		PRO2000 protein
		Al690916	Hs.178137	transducer of ERBB2, 1
		AL049987		Homo sapiens mRNA; cDNA DKFZp564F112
	452410	AL133619	Hs.29383	Homo sapiens mRNA; cDNA DKFZp434

Unique Eos probeset identifier number

Exemplar Accession number, Genbank accession number

10

ExAcon:

WO 02/059377 PCT/US02/02242

TABLE 10: Figure 10 from BRCA 001-3 PCT

Table 10 depicts a preferred group of genes upregulated in tumor tissue compared to normal 5 breast tissue.

10	UnigeneiD: I Unigene Title: I R1: I	Unigene numbe Unigene gene ti Ratio of tumor to	de o normal body tissue				
15	R2: R3: R4:	Ratio of 7	p [®] percentile tumor to body 5 [®] percentile body to tumor mor to normal breast tissue				
20	Pkey ExAccn	UnigenelD	Unigene Title	R1	R2	R3	R4
20	100082 AA13008	D Hs.4295	proteasome (prosome, macropaln) 26S subu	4.2	152	36	12.2
	100103 AA38088		dolichyl-phosphate mannosyltransferase p	9.8	123	13	5
	100131 D12485	Hs.11951	ectonucleotide pyrophosphatase/phosphodl	13.2	244	19	9.9
	100147 D13666	Hs.136348	osteoblast specific factor 2 (fasciclin	15.7	1030	66	5
25	100154 H60720	Hs.81892	KIAA0101 gene product	4.1	320	· 78	10.6
	100157 D14661	Hs.119	Wilms' tumour 1-associating protein	4.7	119	26	3
	100169 AL03722		D123 gene product	5.1	106	21	9.2
	100203 .BE24228		adenylate cyclase 7	4.7	47	1	4.3
	100210 D26361	Hs.3104	KIAA0042 gene product	4.7	47	4	0.7
30	100219 AW97230	0 Hs.118110	bone marrow stromal cell antigen 2	3.8	350	93	1.9
	100234 D29677	Hs.3085	KIAA0054 gene product; Helicase	4.1	64	16	3
	100248 NM_0151	56Hs.78398	KIAA0071 protein	3.4	77	23	5.9
	100252 NM_0062	07Hs.170040	platelet-derived growth factor receptor-	4.5	45	4	4
	100260 D38491	Hs.322478	KIAA0117 protein	5.9	59	1	2.6
35	100279 D42084	Hs.82007	KIAA0094 protein	3.5	96	28	1.3
	100286 BE24755		growth factor receptor-bound protein 7	3.1	306	98	1.5
	100294 AA33188		peroxiredoxin 3	12.8	128	1.	11.7
	100335 AW24752		platelet-activating factor acetylhydrola	4.2	187	44	5.4
	100365 Al878927		mesoderm specific transcript (mouse) hom	4.5	129	29	3.1
40	100375 D80004	Hs.75909	KIAA0182 protein	3.5	78	23	4.8
	100409 D86957	Hs.80712	KIAA0202 protein	10.2	102	1	4.8
	100410 D86961	Hs.79299	tipoma HMGIC fusion partner-like 2	4	40	1 2	3.8
	100414 NM_0147		KIAA0215 gene product	3.2	32		2.9 3.2
45	100418 D86978	Hs.84790	KtAA0225 protein	3.6	36 76	7 14	2
45	100438 AA01305		topolsomerase (DNA) II binding protein	5.6 3.5	35	9	3.1
	100439 AA34772		KIAA0264 protein cadherin, EGF LAG seven-pass G-type rece	3.5 5.5	145	27	2.2
	100448 AF23488		KIAA0280 protein	3.4	34	1	1.2
	100449 D87470 100522 X51501	Hs.75400 Hs.99949	prolactin-induced protein	22.7	760	34	1.4
50	100522 A51501 100552 AA01952		lysosomal	14.4	144	9	4.7
30	100532 AAU 1952 100643 NM_0050		plastin 3 (T isoform)	4.1	259	63	1.9
	100661 BE62300		Homo sapiens ribosomal protein L39 mRNA.	3.3	116	36	2.2
	100666 L05424	Hs.169610	CD44 antigen (homing function and Indian	8.5	85	1	3.2
	100667 L05424	Hs.169610	CD44 antigen (homing function and Indian	3	594	201	2.3
55	100745 BE20716		nuclear receptor subfamily 2, group F, m	5	82	17	0.9
"	100743 DE20710	Hs.89603	mucin 1, transmembrane	3.5	37	11	2.8
	100774 303301 100783 AF07884		general transcription factor IIH, polype	9.7	97	10	7.2
	100821 M26460	7 73.151000	gb:Homo sapiens (clone 104) retinoblasto	3.3	33	1	0.8
	100864 BE56395	7 He 74861	activated RNA polymerase II transcriptio	3.7	477	130	3.1
60	100877 X80821	Hs.27973	KIAA0874 protein	6.3	63	4	5.7
50	100892 BE24529		S164 protein	4.7	47	1	4.2
	101038 BE29713		replication protein A2 (32kD)	3.8	115	30	7.1
	101046 K01160		NM_002122:Homo saplens major histocompat	3.9	390	100	11.1
	101079 BE26490	1 Hs.250502	carbonic anhydrase Vill	3.9	39	8	3.6

Unique Eos probeset identifier number

Exemplar Accession number, Genbank accession number

Pkey: 10

ExAcon:

	101084	AW409934 Hs.75528	nucleolar GTPase	4.1	53	13	4	
		AW862258 Hs.169266	neuropeptide Y receptor Y1	15.3	153	1	14.1	
		NM_001621Hs.170087	aryl hydrocarbon receptor	11.3	113	ė.	3.9	
		L20320 Hs.184298	cyclin-dependent kinase 7 (homolog of Xe	3.1	118	38	2	
5		L22524 Hs.2256			396			
,			matrix metalloproteinase 7 (MMP7; uterin	8.2		48	0.9	
		AU077288 Hs.242894	ADP-ribosylation factor-like 1	4	110	28	10.7	
		BE545277 Hs.3273	Ts translation elongation factor, mitoch	4.2	50	12	4.4	
		BE535511 Hs.74137	transmembrane trafficking protein	6.6	135	21	13.1	
	101396	BE267931 Hs.78996	proliferating cell nuclear antigen	6.4	249	39	22.4	
10	101447	M21305	gb:Human alpha satellite and satellite 3	6.5	878	135	0.8	
	101448	NM_000424Hs.195850	keratin 5 (epidermolysis bullosa simplex	4.8	622	130	0.7	
		NM_000546Hs.1846	tumor protein p53 (Li-Fraumeni syndrome)	5.1	97	19	9.3	
		NM_002890Hs.758	RAS p21 protein activator (GTPase activa	9.6	96	1	8.5	
		AA053486 Hs.20315	interferon-induced protein with tetratri	11.2	112	8	5.9	
15								
13		X16896 Hs.82112	interleukin 1 receptor, type I	3.9	39	2	3.5	
		BE391804 Hs.62661	guanylate binding protein 1, interferon-	3.6	36	1	2.6	
		M55998	gb:Human alpha-1 collagen type I gene, 3	3.1	2898	923	2.2	
		AA436989 Hs.121017	H2A histone family, member A	6.9	103	15	8.4	
	101684	M63256 Hs.75124	cerebellar degeneration-related protein	6.4	64	2	4.9	
20	101724	L11690 Hs.620	bullous pemphigoid antigen 1 (230/240kD)	9.4	94	1	0.3	
		S70114 Hs.239489	TIA1 cytotoxic granule-associated RNA-bi	8.9	89	5	8	
		M81057 Hs.180884	carboxypeptidase B1 (tissue)	3.6	824	227	1.4	
		M83822 Hs.62354	cell division cycle 4-like	9	144		13	
						16		
26	101/94	M84605 Hs.957	putative oploid receptor, neuromedin K (3.3	36	11	2.4	
25		AW024390 Hs.155691	pre-B-cell leukemla transcription factor	5.4	180	34	15.9	
		M86849 Hs.323733	gap junction protein, beta 2, 26kD (conn	12	120	8	9	
	101839	AA446644 Hs.692	GA733-2 antigen; epithelial glycoprotein	3.1	353	116	2.8	
	101888	AL049610 Hs.95243	transcription elongation factor A (SII)-	7.3	73	1	5.3	
	101960	AL036287 Hs.194662	calponin 3, acidic	3.8	399	105	3.3	
30		BE245149 Hs.82643	protein tyrosine kinase 9	4.6	148	32	11.3	
-		U11313 Hs.75760	sterol carrier protein 2	9.5	95	4	8.8	
		NM_001809Hs.1594	centromere protein A (17kD)	4.2	42	7	3.4	
							3.4	
		NM_006456Hs.288215	slalyltransferase	9.3	93	4		
25		NM_004419Hs.2128	dual specificity phosphatase 5	5.4	137	26	2.5	
35		AA450274 Hs.1592	CDC16 (cell division cycle 16, S. cerevi	4.6	151	33	2	
	102165	BE313280 Hs.159627	death associated protein 3	9.3	93	5	8	
	102193	AL036335 Hs.313	secreted phosphoprotein 1 (osteopontin,	45.7	457	1	39.7	
	102211	BE314524 Hs.78776	putative transmembrane protein	3.9	442	114	1.3	
	102221	NM_006769Hs.3844	LIM domain only 4	4.9	49	1	3.6	
40		U27185 Hs.82547	retinolc acid receptor responder (tazaro	3.1	31	1	1.3	
		NM_001546Hs.34853	Inhibitor of DNA binding 4, dominant neg	3.8	163	43	0.5	
		AA306342 Hs.69171	protein kinase C-like 2	4.5	45	1	3.6	
		AF015224 Hs.46452	mammaglobin 1	8.5	2058	243	1.4	
45		U37519 Hs.87539	aldehyde dehydrogenase 3 family, member	6.4	428	67	2.3	
45		U39840 Hs.299867	hepatocyte nuclear factor 3, alpha	6.7	67	9	6.3	
		AW602154 Hs.82143	E74-like factor 2 (ets domain transcript	5.3	53	1	4.8	
		BE300330 Hs.118725	selenophosphate synthetase 2	3.3	111	34	7.5	
	102457	NM_001394Hs.2359	dual specificity phosphatase 4	20.2	202	5	1.3	
	102544	NM_003937Hs.169139	kynureninase (L-kynurenine hydrolase)	3.8	38	1	1.5	
50	102567	U63830 Hs.146847	TRAF family member-associated NFKB activ	8.2	82	1	6.8	
		U60808 Hs.152981	CDP-diacylglycerol synthase (phosphatida	4.1	41	1	3.3	
		AL037672 Hs.81071	extracellular matrix protein 1	10.2	628	62	17.2	
		U67319 Hs.9216	caspase 7, apoptosis-related cysteine pr			13	5.3	
				5	66			
		NM_002270Hs.168075	karyopherin (importin) beta 2	6.1	126	21	2.4	
55		U71207 Hs.29279	eyes absent (Drosophila) homolog 2	4.5	45	1	2.8	
		U79293 Hs.159264	Human clone 23948 mRNA sequence	4.1	41	1	2.4	
		U85658 Hs.61796	transcription factor AP-2 gamma (activat	4.4	255	58	1.6	
	102805	U90304 Hs.25351	Iroquois homeobox protein 5	3.6	142	39	1.6	
	102813	BE242035 Hs.151461	embryonic ectoderm development	3.5	35	1	2.7	
60		D85390 Hs.5057	carboxypeptidase D	5.6	56	1	5.3	
		BE262386 Hs.7137	clones 23667 and 23775 zinc finger prote	4.2	42	ż	3.7	
		AI815559 Hs.75730	signal recognition particle receptor ("d	3.2	58	18	5.7	
			keratin 15		753	131	0.4	
		NM_002275Hs.80342		5.8				
		BE512730 Hs.65114	keratin 18	3.1	815	266	1.7	
65	102961		activating transcription factor 2	3.2	32	4.	2.6	
		AU076611 Hs.154672	methylene tetrahydrofolate dehydrogenase	5.7	251	44	6.6	
	103003	AI910275 Hs.1406	trefoll factor 1 (pS2)	5.6	1346	239	5.4	

	103023	AW500470	Hs.117950		5.8	218	38	13
	103024	NM_002343	3Hs.105938		3.7	1421	388	1.9
	103036		Hs.83169		3.1	94	30	5.8
_		AA926960			3.5	332	94	3.1
5	103119		Hs.2877		4.8	312	65	30.9
			Hs.2839		5.2	331	64	1.5
			Hs.2839		4.9 3.3	49 1497	5 458	3.8
	103171	AW583058			3.5	796	228	3.2
10	103206		Hs.77367		5.6	191	34	3.5
10		AW411340	Hs.44313		4.1	53	13	4.9
	103226	AA206186			3.4	34	8	2.3
		X87613	Hs.5464		3.9	43	11	1
		H09366	Hs.78853		9.3	93	8	8.2
15		NM_005982			9.7	97	1	9.3
		AL036166		coated vesicle membrane protein	6.3	98	16	9.1
	103391		Hs.114366		4.3	77	18	7.2
		AW175781	Hs.152720	M-phase phosphoprotein 6	4.9	153	31	2.4
	103453	AI878922	Hs.180139		4.9	261	53	3.7
20	103471	Y00815	Hs.75216		3.5	564	162	1.7
	103500	AW408009	Hs.22580		3.9	49	13	2.5
		AL133415			7.5	136	18	3.4
		BE270266			7.9	79	2	6.9
0.0		BE409838			3.3	745	229	1.8
25		AW403814			3.2 7.3	41	13	2.8 5.2
	103613	NM_000346		SRY (sex determining region Y)-box 9 (ca	3.8	73 1612	1 429	3.1
	103658			collagen, type I, alpha 1 H2B histone family, member Q	3.2	32	5	2.8
	103666			ADP-ribosylation factor-like 5	3.2	32	9	2.7
30	103990			bromodomain and PHD finger containing, 3	4.9	49	ĭ	4.2
50		NM_00240		mammaglobin 2	7.2	498	69	9.3
		AF183810		opposite strand to trichorhinophalangeal	29	290	1	26.8
		H63349	Hs.98806	hypothetical protein	3.7	37	7	2.1
		AW880614		RNA binding motif protein, X chromosome	5.2	52	1	4.3
35	104147			HSPC039 protein	8	84	11	6.3
	104209	AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	5.8	58	1	3.2
		AB002367		doublecortin and CaM kinase-like 1	6.4	64	8	3
		AW583693		N-terminal acetyltransferase complex and	4.7	229	49	7.9
40		Ai337300	Hs.284123	hypothetical protein MGC4604	3.2	32	7	2.4
40		AA129551		Homo sapiens cDNA: FLJ21409 fis, clone C	5.3	144	27	13.1
		X51501	Hs.99949	prolactin-Induced protein	6.9	1494	218	1.3
		R56678	Hs.88959	hypothetical protein MGC4816	7.7	77 37	8 5	6.9 2.5
		AA040620		hypothetical protein AF140225	3.7 6.1	493	81	0.7
45		AW373062 H47610	HS.83623	nuclear receptor subfamily 1, group 1, m qb;yp75f03.s1 Soares fetal liver spieen	3.8	38	4	1.2
43		AF123303	Un 24742	hypothetical protein	4.8	231	49	7.3
		H00820	Hs.30977	ESTs, Weakly similar to B34087 hypotheti	3.4	154	46	3
		R82252	Hs.106106	protein kinase (cAMP-dependent, catalyti	5	468	94	4.7
	104660			Homo sapiens mRNA; cDNA DKFZp564D016 (fr		82	22	3.1
50		Al239923	Hs.30098	ESTs	14.9	149	1	6.4
		BE244072		macrophage erythrobiast attacher	6.3	165	26	3.2
		AA027317		gb:ze97d11.s1 Soares_fetal_heart_NbHH19W	3.8	40	11	3.8
	104804	A)858702	Hs.31803	ESTs, Weakly similar to N-WASP [H.sapien	7.7	77	1	5.1
	104807	Al139058	Hs.125790	leucine-rich repeat-containing 2	7	70	1	6.5
55	104846	AI250789	Hs.32478	ESTs	4.7	201	43	4.5
		AW015318		ESTs	7.4	74	1_	6
	104919			prolactin receptor	3.9	280	72	3.3
	104926			DKFZP434N093 protein	4.2	135	32	4
		AF072873		frizzled (Drosophila) homolog 6	16.2	162	1	4.2
60		A1249502	Hs.29669	ESTs	3.8	38	1 165	2.4 1.9
		Al392640	Hs.18272	amino acid transporter system A1	3.2	522		2.9
		AA121686		ESTS	3.2	32 157	4 43	3.6
	105029		Hs.13268	ESTS KIAA1488 protein	3.7 5.5	55	1	5.2
65	105038			KIAA1480 protein KIAA1295 protein	10.3	103	. 1	3.9
05	105041	AB037716 AA148710		lumican	6.6	66	1	5.4
		H58589	Hs.79914 Hs.35156	Homo sapiens cDNA FLJ11027 fis, clone PL	3.1	31	i	2.5
	103080	1130309	115.55150	Homo supremo obras i Ed i 1027 ils, Cione FL	0.7			

	105091	AA148859	Hs.179909	hypothetical protein FLJ22995	3.2	32	1	3
		AI368836	Hs.24808	ESTs, Weakly similar to I38022 hypotheti	7.3	73	1	3.8
		AA307279	Hs.35947	methyl-CpG binding domain protein 4	4.2	90	22	2.8
-		AL133033	Hs.4084	KIAA1025 protein	6	60	6	4.6
5		AW612147		Homo sapiens C1orf19 mRNA, partial cds	3.8	38	2	3.2
		AA313825		AD036 protein	9.3	436	47	5.8
		AA975096		hypothetical protein PRO2849	5.7	57	8	5.3
		AA328102		cytoskeleton associated protein 2	4.5	45	1	3.6
10		AW952479		tropomodulin 3 (ubiquitous)	4.3	43	1	3.9
10		AB039670 AW997484		ALEX1 protein	8	80	6	7.3
		AN997464 AA894638		KIAA0456 protein ESTs	3.9	39 35	6 7	3.2 2.7
		N99673	Hs.3585	ESTS, Weakly similar to AF126743 1 DNAJ	3.5 4.5	35 45	10	
		AK000796	Hs.4104	hypothetical protein	3.8	93	25	0.5 7.5
15		AA234561		ESTs	2.8	131	47	3.9
13		AF151073		hypothetical protein	3.9	79	20	6.5
		AW994032		hypothetical protein FLJ10849	5.1	181	36	15.8
		AW500718		Homo sapiens, cione MGC:16169, mRNA, com	4.1	41	2	3.3
	105400	AF198620	He 65648	RNA binding motif protein 8A	6.2	62	6	5.6
20		W20027	Hs.23439	ESTs	3.3	206	63	2.2
		AL137257	Hs.23458	Homo sapiens cDNA: FLJ23015 fis, clone L.	3.2	466	146	8.4
		AL117441		hypothetical protein FLJ13033	16.6	166	8	12.7
		AW602166		CEGP1 protein	25.4	508	20	3
		AA173942		Homo saplens mRNA; cDNA DKFZp564H1916 (117	13	10.6
25	105511			regulator of nonsense transcripts 2; DKF	3.2	32	6	1.5
		AK001269		hypothetical protein FLJ10407	8.3	83	3	1.8
	105539	AB040884	Hs.109694	KIAA1451 protein	3.5	73	21	1.6
		BE616694		hypothetical protein FLJ14299	5.8	336	58	2
		AA280072		fetal Alzhelmer antigen	3.2	32	1	1
30		R35343	Hs.24968	Human DNA sequence from clone RP1-233G16		79	17	5.2
		AA281279		hypothetical protein FLJ14681	4	75	19	1.7
		AA001021		thyrold hormone receptor interactor 8	4.5	45	1	3.7
		AW294631		ESTs	3.6	36	1	0.1
2.5		A1609530	Hs.279789	histone deacetylase 3	6.4	64	8	6
35	105687			upstream binding protein 1 (LBP-1a)	4.7	152	33	5.3
	105691		Hs.289068	Homo sapiens cDNA FLJ11918 fis, clone HE	5.7	57	8	4.1
		AW377314		DKFZP564I052 protein	6.9	69	1	4.4
		AA834664 BE246502		nuclear receptor coactivator 2	3.4	34 30	1 10	3.1 0.9
40	105743		Hs.15159	sema domain, immunoglobulin domain (Ig), chemokine-like factor, alternatively spi	5.4	54	1	4.4
40		H57111	Hs.221132	ESTs	5.3	67	13	5.3
		AW369278		hypothetical protein FLJ20160	4.9	49	1	4.5
		W84446	Hs.226434	hypothetical protein MGC4643	3.3	98	30	4.7
		AA878183		Homo saplens cDNA FLJ13618 fis, clone PL	3.2	143	46	3.6
45		AF206019		REV1 (yeast homolog)- like	4	40	3	3.2
		AA788946		ESTs, Moderately similar to CA1C RAT COL	4.7	747	158	5.7
		A1559444	Hs.293960	ESTs	3.9	371	94	4.6
	105832	AW802282	Hs.22265	pyruvate dehydrogenase phosphatase	3.6	68	19	6
	105840	AA601518	Hs.22209	secreted modular calcium-binding protein	4.8	134	28	3.2
50	105851	AI827976	Hs.24391	hypothetical protein FLJ13612	4.3	772	179	1.7
•	105864		Hs.28332	Homo saplens cDNA: FLJ21560 fis, clone C	4.3	43	1	3.7
		AW021691		GCN5 (general control of amino-acid synt	3.6	36	7	3.1
		AK001708		hypothetical protein FLJ10846	3.4	34	8	2.9
		AK001735		UDP-glucose:glycoprotein glucosyltransfe	3.6	45	13	1.3
55		N25986	Hs.22380	ESTs	3.4	34	1	1.5
		Al240665	Hs.8895	ESTs	21.2	212	6	17.4
		AA043039		hypothetical protein	3.9	47	12	4.4
		AL122072		heterogeneous nuclear ribonucleoprotein	4.4	174	40	1.6
60		AW952005		hypothetical protein FLJ12903	4.7	47	1	4.4
UU		AA382267	ms.10653	ESTS	3.4	49	15	1.2
		AA417034 BE614474	He 200074	gb:zu04f10.s1 Soares_test/s_NHT Homo sap F-box only protein 22	3.5 3.4	53 116	15 35	2.2
	106060		9Hs.171391	C-terminal binding protein 2	3.6	444	125	4.6
		T74445	Hs.5957	Homo sapiens clone 24416 mRNA sequence	3.6	365	103	6.9
65		AF115402		E74-like factor 5 (ets domain transcript	26.3	356	14	1
00		AW379378		protein tyrosine phosphatase, receptor t	3.2	267	83	2.3
		AA576953		hypothetical protein FLJ13352	3.8	38	1	3.3
				**	2.0			

WO 02/059377 PCT/US02/02242

	106155	AA425414	Hs.33287	nuclear factor I/B	9.9	483	49	1.8
	106157	W37943		KIAA1323 protein	6.7	94	14	8
		A1244563	Hs.325531	Homo saplens clone 015h12 My015 protein	3.3	95	29	4.4
	106236	AB040896		KIAA1463 protein	3.8	83	22	7.5
5	106286	AI765107	Hs.274422	hypothetical protein FLJ20550	3.3	97	30	6.4
	106290	AW961393	Hs.16364	hypothetical protein FLJ10955	4.5	116	26	4.5
	106310		Hs.17240	ESTs	7	70	3	1.3
		AB007866		KIAA0406 gene product	3.2	37	12	2.6
		AW977397	Hs.35580	ESTs	3.8	38	1	1.9
10		AA447453	Hs.27860	Homo sapiens mRNA; cDNA DKFZp586M0723 (i	16	255	16	6.6
		AW748420		Homo saplens cDNA: FLJ21487 fis, clone C	4.9	337	70	2.7
				Homo saplens clone 25142 mRNA sequence	3.1	72	23	5
		AK000310		hypothetical protein FLJ20303	3.1	165	54	1.6
				glioma-amplified sequence-41	3.1	31	1_	2.6
15			Hs.29679	cofactor required for Sp1 transcriptiona	5.5	147	27	4.4
		AI205785	Hs.30348	ESTs	4.4	222	51	1.8
		NM_014892		KIAA1116 protein	7.4	74	3	1.7
			Hs.57787	ESTs	15.2	152	1	12.6
		AK000933		Homo sapiens cDNA FLJ10071 fis, clone HE	3.8	263	69	3.9
20		AA452379		ESTs, Moderately similar to ALU7_HUMAN A	4.9	49	1	4.1
		R49131	Hs.26267	ATP-dependant interferon response protei	5.8	58	5	3.1
		AW188205		Homo saplens clone 23570 mRNA sequence	5.3	166	32	14.9
		AL049951	Hs.22370	Homo saplens mRNA; cDNA DKFZp56400122 (75	14	0.8
0.5		BE296396		DIPB protein	3.6 5.7	210	58 10	4.7 4.8
25	106698		Hs.29403	hypothetical protein FLJ22060	4.4	57 371	84	3.2
		N38902	Hs.334437	hypothetical protein MGC4248	4.4	101	24	1.6
				TIA1 cytotoxic granule-associated RNA-bi		46		4.
		NM_007118		triple functional domain (PTPRF interact	4.6 3.5	40 58	17	1.6
30		AL044182		KIAA0753 gene product	5.4	192	36	4.4
30		AB037744 BE185536	Hs.34892 Hs.301183	KIAA1323 protein molecule possessing ankyrin repeats indu	3.3	696	214	1.8
	106868	AA149537		hypothetical protein FLJ20477	3.8	38	1	1.6
		AA835868		mannosidase, alpha, class 1A, member 1	4.3	43	10	2.2
		AK001826	Hs.25245	hypothetical protein FLJ11269	3.6	36	1	1.2
35		AF039023	Hs.167496	RAN binding protein 6	4.5	45	1	3.8
33	106916		Hs.24170	Homo sapiens, clone IMAGE:3685398, mRNA,	5.7	94	17	7.3
		AI868648	Hs.22315	ESTs	3.5	180	52	2.3
		AF216751	Hs.26813	CDA14	5.5	130	24	12.5
		AA280722	Hs.24758	ESTs. Weakly similar to i38022 hypotheti	3.2	266	83	1.8
40		AL157479	Hs.23740	KIAA1598 protein	5.1	298	59	4.4
	107014			gb:ae36h12.s1 Gessler Wilms tumor Homo s	3.3	228	69	2.8
		AV650537	Hs.247309	succinate-CoA ligase, GDP-forming, beta	3.1	55	18	3.8
		AW401864		programmed cell death 8 (apoptosis-induc	3.1	75	24	2.2
		AW385224		ectonucleotide pyrophosphatase/phosphodi	3.1	367	119	2.3
45	107080	AL122043	Hs. 19221	hypothetical protein DKFZp566G1424	3.9	98	25	8.6
	107102	AB037765	Hs.30652	KIAA1344 protein	6.3	63	1	5.4
	107109	AA249096	Hs.32793	ESTs .	4.6	71	16	3.6
_	107136	AV661958	Hs.8207	GK001 protein	2.5	392	155	4.3
		AW378065		ESTs	15.6	156	7	10.8
50		AL080235		DKFZP586E1621 protein	4.8	48	8	3.1
		BE172058		tumor rejection antigen (gp96) 1	3.4	251	74	23.7
		Al290284	Hs.159872	ESTs	3.6	36	6	0.5
		AW263124		nuclear receptor co-repressor/HDAC3 comp	5.4	483	90	4 19.2
		AA186629		UDP-N-acetyl-alpha-D-galactosamine:polyp	4.6	199	44	2.9
55		BE277457		hypothetical protein MGC4606	12.5	156	13 35	9.6
		T63174	Hs.193700	Homo saplens mRNA; cDNA DKFZp586I0324 (f	3.2	110	1	2.6
		T74445	Hs.5957	Homo sapiens clone 24416 mRNA sequence	3.5	35 151	26	11.4
		AL042613		S-adenosylmethionine decarboxylase 1 Homo sapiens cDNA FLJ13595 fls, clone PL	5.8 3.2	32	5	2.1
60		AI498986	Hs.60090			73	17	6.2
60		AI580492	Hs.42743	hypothetical protein ubiquitin-like 3	4.4 3.5	282	80	3.7
		AA149707			5.7	85	15	7.8
		AW732573 AW372451		potassium voltage-gated channel, delayed CGI-79 protein	3.5	35	1	1
		AW372451 AA054949		ESTs .	4.3	43	10	2.7
65		AA025782	Hs.61284	ESTS	3.1	31	9	2.2
05		AF087999	Hs.42826	ESTs	4.7	47	4	4.3
		BE153855		lg superfamily receptor LNIR	9	90	1	5.5
	.01522	100000		gr	-			

		AA036811		LIM domains containing 1	4.5	45	1	3.8
		AL121031		SWI/SNF related, matrix associated, acti	6.5	65	2	6
			Hs.334483	hypothetical protein FLJ23571	7.4	74	8	6
•		BE548479		hypothetical protein FLJ10773	3.4	34	1	2.3
5		AW151340		ESTs, Weakly similar to ALU7_HUMAN ALU S	18.7	187	1	17
			Hs.94631	brefeldin A-Inhibited guanine nucleotide	3.8	38	1	3.2
	1000039	AA084677 AW022410	HS.04000	hypothetical protein FLJ22222	5.7 3.2	57 32	1	4.9 1.7
			Hs.44276	ESTs homeo box C10	8.7	32 247	29	5.7
10		AB029000		KIAA1077 protein	3.7	625	168	3.8
10	108778	AF133123	Hs 90847	general transcription factor IIIC, polyp	3.7	37	1	3.2
			Hs.71168	Homo saplens done 24674 mRNA sequence	3.4	34	i	2.8
			Hs.49376	hypothetical protein FLJ20644	3.5	35	i	3.2
		AW295647		hypothetical protein MGC5350	5.3	53	1	2.8
15	108846	AL117452	Hs.44155	DKFZP586G1517 protein	4.8	96 -	20	6.5
		AK001468		anillin (Drosophila Scraps homolog), act	5.4	54	1	4
		BE276891		retinoic acid Induced 3	3.1	529	170	4.1
	108917	Al380268	Hs.173648	ESTs, Weakly similar to Zinc-finger prot	3.3	33	5	1.7
		NM_007240		dual specificity phosphatase 12	3.4	34	1	2.6
20		BE062109		chloride channel, calcium activated, fam	3.1	31	8	2
		AW608930		hypothetical protein FLJ20618	3.4	71	21	2.4
		AW419196		hypothetical protein FLJ13782	4.1	334	82	3.4
		AK000684		hypothetical protein FLJ22104	3.3	33	1	2.9
25		H89083	Hs.181915	ESTs	4 -	40	7	1.1
23		BE220601 AA219691		hypothetical protein FLJ13033	3.8	233	62	3.8
		AA179962		RAB6 interacting, kinesIn-like (rabkines	8.8	199	23 1	16.1 2.2
		AW976516		EST Homo sapiens cDNA: FLJ21354 fis, clone C	3.2	32 32	10	2.2
			Hs.300684	calcitonin gene-related peptide-receptor	4.9	121	25	10.4
30		AA375752		Homo saplens mRNA; cDNA DKFZp586F1822 (f		114	39	9.9
50		AW975746		KIAA1702 protein	7.1	71	1	6.5
		AL096858		KIAA0929 protein Msx2 interacting nuclea	6.9	69	5	6.2
		R98881	Hs.109655	sex comb on midleg (Drosophila)-like 1	3.3	39	12	1.5
	109412	BE543313	Hs.209473	hypothetical protein FLJ10520	4.2	56	14	2.2
35	109415	U80736	Hs.110826	trinucleotide repeat containing 9	12.3	123	1	11.3
		AA878923	Hs.289069	hypothetical protein FLJ21016	3.2	286	91	5.7
		AI631874	Hs.155140	casein kinase 2, aipha 1 polypeptide	8.3	83	8	1.9
		AA989362		ESTs	5.9	59	10	4.2
40		F10024	Hs.268740	ESTs	3.2	41	13	3.3
40		AA173942		Homo saplens mRNA; cDNA DKFZp564H1916 (15.9	208	36	1.8
		AW965076		hypothetical protein 669	5	50	5	4.1
	109883	R68827 AW390822	Hs.95011	syntrophin, beta 1 (dystrophin-associate	3.7 14.2	37 142	4	2 9.5
		A1084066	Hs.20072	L-kynurenine/alpha-aminoadipate aminotra myosin regulatory light chain interactin	4.1	41	7	1.7
45		AA001266		ESTs	4.2	58	14	0.8
73		Al796320	Hs.10299	Homo sapiens cDNA FLJ13545 fis, clone PL	3.2	136	43	3.6
				ESTs, Weakly similar to A43932 mucin 2 p	6.3	693	110	7.2
		AI668594	Hs.176588	ESTs, Weakly similar to CP4Y_HUMAN CYTOC		913	199	2.9
	110369	AK000768		hypothetical protein FLJ20761	3.8	38	7	2.8
50	110426	Al610702	Hs.28212	ESTs, Weakly similar to TRHY_HUMAN TRICH	6.7	78	12	3
		H11236	Hs.31034	peroxisomal biogenesis factor 11A	3.7	37	1	2.1
		AF075089	Hs.36823	ESTs	3.6	36	10	2.5
	110581			gb:yr22g03.s1 Soares fetal liver spleen	3.3	33	1	1.8
	110674			KIAA0859 protein	3.5	35	8	1.9
55		AB007902		KIAA0442 protein	3.6	282	79	1.7
		H97678	Hs.31319	ESTs	4.4	103	24	3.8
	110751	NM_014899 BE000831		KIAA0878 protein Homo sapiens cDNA FLJ11812 fis, clone HE	3.3 13.5	138 135	42 1	3.6 5.1
		N22414	HS.23037	gb:yw39a07.s1 Weizmann Olfactory Epithei	5.4	54	i	3.7
60		AA831267	He 12244	hypothetical protein FLJ20097	4.7	47	4	4.2
50		AI089660	Hs.323401	dpy-30-like protein	5	50	1	4.2
				Homo sapiens mRNA; cDNA DKFZp586N2424 (31	i	2.7
	110839		Hs.30246	solute carrier family 19 (thiamine trans	8.4	84	i	5.3
	110844		Hs.167531	methylcrotonoyl-Coenzyme A carboxylase 2	10.5	105	4	7.1
65	110854			hypothetical protein FLJ10607 similar to	7.9	79	1	6.2
		AW963705	Hs.301183	molecule possessing ankyrin repeats Indu	3.9	353	90	1.2
	110908	Al433165	Hs.9856	ESTs	3.1	31	1	1.3

	110915	BE092285	Hs.29724	hypothetical protein FLJ13187	20.9	209	1	19.5
			Hs.14947	ESTs	3.4	115	34	2.4
	110970		Hs.96870	staufen (Drosophila, RNA-binding protein	3.5	35	9	3.2
	111084	H44186	Hs.15456	PDZ domain containing 1	4.3	43	1	2
5	111125	N63823	Hs.269115	ESTs, Moderately similar to Z195_HUMAN Z	5.4	54	1	4.3
	111132	AB037807	Hs.83293	hypothetical protein	7.2	72	10	6.1
	111164	N46180	Hs.122489	Homo sapiens cDNA FLJ13289 fis, clone OV	7.7	77	1	5
	111179	AK000136	Hs.10760	asporin (LRR class 1)	25.1	288	12	6.7
		AI815486	Hs.243901	Homo sapiens cDNA FLJ20738 fis, clone HE	3.9	146	37	9.8
10		AK002055		hypothetical protein FLJ11193	6.3	63	1	5.8
		AB037782		KIAA1361 protein	3.7	119	33	6.7
		AA852773		KIAA1866 protein	3.6	402	112	4.9
		AW389845		ESTs	4.3	43	1	1
		AA902656		NIF3 (Ngg1 interacting factor 3, S.pombe	3.3	33	1	1.1
15		AA345644		PAN2 protein	4.8	61	13	5.6
		AW263155		hypothetical protein FLJ10540	4.3	43	5	2.2
		W20090	Hs.6616	ESTs	4.1	41	1	2.6
		BE314949		hypothetical protein FLJ23309	3.8	425	111	4_
20		AW160993		hypothetical gene DKFZp434A1114	4.3	65	15	5.7
20		AK000987		oxidation resistance 1	3.4	314	91	2.4
		U82670	Hs.9786	zinc finger protein 275	3.5	35	1	2.1
		BE071382		hypothetical protein FLJ20170	3.5	105	30 12	9.6
		AW502285		hypothetical protein FLJ12879	3.2 6.2	37 62	2	3.5 5.9
25		BE383234	Hs.25925	Homo sapiens, clone MGC:15393, mRNA, com	8.1	328	41	1.7
25		AF027208	Hs.112360	prominin (mouse)-like 1	4.2	125	30	7.4
		R40576	Hs.21590	hypothetical protein DKFZp564O0523	6.5	65	10	1.5
• '		NM_015310 R44538	7HS.0703	KIAA0942 protein	3.3	33	10	2.3
			Un 7449	gb:yg29c02.s1 Soares Infant brain 1NIB H	6.1	185	31	6.6
30		R41823 NM 003659	Hs.7413	ESTs; calsyntenin-2 ESTs	3.5	507	145	3.3
30		AM32672	Hs.288539	hypothetical protein FLJ22191	3.5	40	12	2.5
	112244	AB029000		KIAA1077 protein	5.7	567	100	6.7
		R51818	H3.7 U023	gb:yg77h12.s1 Soares Infant brain 1NIB H	4	70	18	6.8
		R53734	Hs.25978	ESTs, Weakly similar to 2109260A B cell	3.7	37	1	3
35		AW972635		hypothetical protein FLJ12671	4.3	45	11	4.4
55		AA863360		ESTs, Weakly similar to fatty acid omega	2.8	751	270	1.3
		AK000914		hypothetical protein FLJ10052	3.5	41	12	3.7
		AW969785		Homo sapiens cDNA FLJ11321 fis, cione PL	4.2	42	6	3.6
		R68425	Hs.13809	hypothetical protein FLJ10648	4.7	54	12	4.5
40	112571	AA412205		ESTs	4.8	48	2	3.4
		Z42387	Hs.83883	transmembrane, prostate androgen induced	4.5	390	87	5.3
		AL134324	Hs.7312	ESTs	3.2	99	31	3.1
	113047	AI571940	Hs.7549	ESTs	9.6	124	13	9
	113073	N39342	Hs.103042	microtubule-associated protein 1B	9.1	91	6	8.3
45	113083	AA283057	Hs.266957	hypothetical protein FLJ14281	6.5	65	6	4.8
	113287	T66847	Hs.194040	ESTs, Weakly similar to 138022 hypotheti	3.5	35	1	1.4
		AW449560		Inner mitochondrial membrane peptidase 2	3.5	35	4	3.3
		Al791905	Hs.95549	hypothetical protein	7.6	76	1	4.2
		Al075407	Hs.296083	ESTs, Moderately similar to 154374 gene	3.1	453	148	7
50		A1869372	Hs.17207	Homo sapiens cDNA FLJ11922 fis, clone HE	3.6	36	4	2.6
		T97307		gb:ye53h05.s1 Soares fetal liver spleen	12.3	129	11	11.7
		AL359588	Hs.7041	hypothetical protein DKFZp762B226	4.6	46	4	4.3
		A1269096	Hs.135578	chitobiase, di-N-acetyl-	3.6	36	1	1.2
		T62849	Hs.11090	membrane-spanning 4-domains, subfamily A	3.3	744	227	2.5
55	113804		Hs.14611	dual specificity phosphatase 11 (RNA/RNP	3.3	180	54	2.1
		W44735	Hs.9286	Homo saplens cDNA: FLJ21278 fis, clone C	5.1	51 238	5	4.5
	113847	NM_00503		plastin 3 (T isoform)	3.2		75	2.1
		AA457211		bromodomain adjacent to zinc finger doma	4.3 6.1	43 110	8 18	3.6 10.2
60	113867	AW002834		ESTs	4	48	12	4
00	113886	W76027	Hs.23920	hypothetical protein FLJ11105	3.7	239	65	3.6
	113923	AW953484		hypothetical protein FLJ22041 similar to	4.3	819	191	1.2
	113936	W17056 AI267652	Hs.83623 Hs.30504	nuclear receptor subfamily 1, group I, m Homo saplens mRNA; cDNA DKFZp434E082 (fr		123	12	7
	113950	A1825386	Hs.164478	hypothetical protein FLJ21939 similar to	4.4	44	6	2.3
65	114050		Hs,177534	dual specificity phosphatase 10	4.5	45	4	2.6
05			Hs.34192	Homo saplens PRO0823 mRNA, complete cds	3.5	35	6	3.2
		AK001612		Homo saplens cDNA FLJ10750 fis, clone NT	3.1	31	5	1.5
	1 14002	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2		-	

	114124	W57554	Hs.125019	lymphold nuclear protein (LAF-4) mRNA	24.2	242	10	5.6
		AW384793		Homo saplens mRNA; cDNA DKFZp434E033 (fr		67	1	6.3
		AF155661				73	19	
					3.8			1.8
-		AF017445	Hs.150926		4.4	104	24	5.1
5		AL049466	Hs.7859	ESTs	5.7	57	1	4.9
	114239	AL137667	Hs.267445	Homo saplens mRNA; cDNA DKFZp434B231 (fr	3.3	33	1	2.4
	114251	H15261	Hs.21948		4.2	46	11	1.4
		AF100143	Hs.6540		4.5	45	2	3
10		AF183810			4.4	44	1	3
10		AW970128			4.7	770	166	5.8
	114652	AI521936	Hs. 107149	novel protein similar to archaeal, yeast	5.2	52	3	2.3
	114767	A1859865	Hs.154443	minichromosome maintenance deficient (S.	4.6	196	43	10
		AF212848		ets homologous factor	13.7	137	1	8.9
1.5		AV656017			3.3	168	51	7.3
15	114798	AA159181	Hs.54900	serologically defined colon cancer antig	7.4	137	19	1.8
	114821	AI648602	Hs.55468	ESTs	4.7	57	12	4.7
	114860	AL157545	Hs.42179	bromodomain and PHD finger containing, 3	9.1	91	1	7.6
		BE165762	Hs.23518	hypothetical protein from BCRA2 region	10.1	111	11	10.2
20			Hs.75928		6.4	67	11	5
20		AI733881	Hs.72472	BMP-R1B	35.9	359	10	29.7
	114969	AW162998	Hs.24684	KIAA1376 protein	9.4	94	8	7.3
		AA251089		gb:zs04f05.s1 NCI_CGAP_GCB1 Homo sapiens	11.5	115	1	6.9
	115004		He 4967	mannosyl (alpha-1,3-)-glycoprotein beta-	4.2	42	9	1.1
				mamosyr (alpha-1,5-)-grycoprotein beta-				
25		AW265668		hypothetical protein FLJ12428	5.1	51	1	4.2
25		AI751438	Hs.41271	Homo sapiens mRNA full length insert cDN	4.5	290	65	3.7
	115140	NM_01415	8Hs.279938	HSPC067 protein	4.8	48	1	4.4
	115142	AI623693	Hs.191533	ESTs	3.2	49	16	4.2
		AK000219		hypothetical protein FLJ20212	3.3	33	1	3.
		AW183695		ESTs	5.8	58	i	5
30							62	
30		AW365434		hypothetical protein FLJ10116	5.5	343		2.5
		A1422867	Hs.88594	ESTs	11.2	112	1	10.3
	115291	BE545072	Hs.122579	hypothetical protein FLJ10461	4.5	96	21	7.8
	115536	AK001468	Hs 62180	aniilin (Drosophila Scraps homolog), act	5.9	59	1	4.2
		NM_01231		leucine zipper, down-regulated in cancer	9.8	98	1	8.8
35					4.6	46	2	
33		AA081395		Homo saplens cDNA FLJ10366 fis, clone NT				1.8
		A1088691	Hs.208414	Homo saplens mRNA; cDNA DKFZp564D0472 (1		44	7	1.1
	115646	N36110	Hs.305971	solute carrier family 2 (facilitated glu	3.2	372	115	2.1
	115674	AW992356	Hs.8364	Homo sapiens pyruvate dehydrogenase kina	10.2	506	50	2.8
	115675	W87707	Hs.82065	Interieukin 6 signal transducer (gp130,	5.2	405	78	10.1
40		AW992405		Homo sapiens, clone IMAGE:3507281, mRNA,	7.6	144	19	13.9
		AW899053		F-box only protein 8	3.1	58	19	2.5
		AW582256		anterior gradient 2 (Xenepus laevis) hom	5.7	368	65	28.5
		AW338063		zinc-finger protein ZBRK1	3.9	39	8	2.2
	115825	R50956	Hs.159993	gycosyltransferase	4.2	79	19	1.9
45	115839		Hs.28935	transducin-like enhancer of split 1, hom	5.8	58	1	4.4
		Al373062	Hs.332938	hypothetical protein MGC5370	6.2	62	1	5.4
		AA291377		ESTs	3.2	40	13	0.7
		AI745379		ESTs	8.4	101	12	8.7
	116093	AW673312	Hs.50848	hypothetical protein FLJ20331	3.6	36	1	2
50	116097	Al198719	Hs.176376	ESTs	5.1	51	1	2
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	3.4	34	8	1
		AF126743		DNAJ domain-containing	3.5	35	8	3.3
		AF189011		putative ribonuclease III	4.5	45	9	3.4
		AW861622		Homo sapiens cDNA FLJ14934 fis, clone PL	5.2	52	4	3.9
55	116226	AW976438	Hs.17428	RBP1-like protein	3.8	38	7	2.1
	116238	AV660717	Hs.47144	DKFZP586N0819 protein	5.1	198	39	17.9
		N76712	Hs.44829	ESTs, Weakly similar to I38022 hypotheti	13.3	133	8	3.2
		AA328153		ESTs, Weakly similar to A Chain A, Cryst	3.3	106	33	9.8
		AI955411	Hs.94109	Homo sapiens cDNA FLJ13634 fis, clone PL	4.8	179	38	2.8
60		AL133033		KIAA1025 protein	3.2	173	55	3
	116351	AL133623	Hs.82501	similar to mouse Xm1 / Dhm2 protein	3.7	37	1	1.8
		N50174	Hs.46765	ESTs	3.9	39	10	0.6
		AA448588	He 71262	hypothetical protein DKFZp761C169	5.6	106	19	9
	1103/9	AE404046	110.7 1202					
		AF191018		putative nucleotide binding protein, est	3.6	256	72	3.7
65		A1654450	Hs.47274	Homo sapiens mRNA; cDNA DKFZp564B176 (fr		119	39	2
		AA313607	Hs.58633	Homo sapiens cDNA: FLJ22145 fis, clone H	5.5	315	58	3.1
	116470	Al272141	Hs.83484	SRY (sex determining region Y)-box 4	3.4	496	144	1.6

	116507	AI418366	Hs.68501	ESTs	3.1	31	4	1.9
		AW888411		leukemia-associated phosphoprotein p18 (3.3	931	279	5.6
	116625		Hs.241567	RNA blnding motif, single stranded inter	3.6	36	1	1.9
		AI768015	Hs.92127	ESTs	4.5	96	22	6.9
5		AW902848		ESTs	4.2	42	1	2.7
	116710	F10577	Hs.306088	v-crk avian sarcoma virus CT10 oncogene	7.1	71	9	6.9
	116724	AA741307	Hs.65641	hypothetical protein FLJ20073	4.3	190	44	5.4
	116786	H25836	Hs.301527	ESTs, Moderately similar to unknown [H.s	22.8	228	9	12.4
	116787	AW362955	Hs.15641	Homo saplens cDNA FLJ14415 fis, clone HE	4.9	108	22	9
10	116790	AW161357	Hs.101174	microtubule-associated protein tau	4.6	163	35	7.3
		H64938	Hs.337434	ESTs, Weakly similar to A46010 X-linked	6.9	69	10	2.4
		AW085208		ESTs	4.8	48	1	2.5
		H91164	Hs.335797	ESTs	3.3	33	1	2.3
		H95785	Hs.167652	ESTs, Highly similar to 1819485A CENP-E	3.1	38	13	1.7
15		AW901347	Hs.38592	hypothetical protein FLJ23342	4.8	48	1	0.9
		N25929	Hs.42500	ADP-ribosylation factor-like 5	3.1	295	96	27.9
		W03011	Hs.306881	MSTP043 protein	3.6	41	12	2.8
		M18217	Hs.172129	Homo sapiens cDNA: FLJ21409 fis, clone C	3.9	322	83	4.4 1.3
		AI041793	Hs.42502	ESTs	3.5	72	21 9	6.9
20		N32536	Hs.42645	solute carrier family 16 (monocarboxylic	17.4 3.2	174 35	11	0.7
		N30205	Hs.93740	ESTs, Weakly similar to I38022 hypotheti		50	i'	4.7
		AW341639		hypothetical protein FLJ22059	5 4.5		47	5
		U59305	Hs.44708	Ser-Thr protein kinase related to the my	4.6	211 ı 46	ĭ	3.8
25			Hs.136102	KIAA0853 protein	3.1	31	i	2.7
25		N49967	Hs.46624	HSPC043 protein	4.9	49	i	4.4
		AI521436	Hs.38891 Hs.93560	ESTs Homo sapiens mRNA for KIAA1771 protein,	5	50	2	3.1
		AA374756	Hs.164478	hypothetical protein FLJ21939 similar to	3.6	89	25	0.9
		AI813865	Hs.43080	platelet derived growth factor C	3.2	378	117	2.8
30		AF091434 AL157545		bromodomain and PHD finger containing, 3	14.5	145	i"	2.4
30		N66845	N3.421/3	gb:za46c11.s1 Soares fetal liver spleen	3.1	199	64	1
		N22617	Hs.43228	Homo saplens cDNA FLJ11835 fis, clone HE	6	60	5	3.7
		AI949952	Hs.49397	ESTs	3.3	81	25	1.5
	118828		Hs.50824	EST, Moderately similar to I54374 gene N	3.4	740	217	2.8
35			Hs.173001	hypothetical protein FLJ13964	4.3	162	38	12.1
55		T58283	Hs.10450	Homo sapiens cDNA: FLJ22063 fis, clone H	3.4	118	35	2.3
		AI824009		ESTs	3.5	35	1	2.9
		Al191811	Hs.54629	ESTs	8.4	84	10	8.0
	118901		Hs.94445	ESTs	7.3	73	3	5.4
40	118981	N29309	Hs.39288	ESTs	5	50	5	4.7
	118991	NM_01665	7Hs.250696	KDEL (Lys-Asp-Glu-Leu) endoplasmic retic	3.7	37	6	0.5
		N98488		gb:zb82h01.s1 Soares_senescent_fibroblas	3.3	36	11	0.6
	119088	R39261	Hs.90790	Homo saplens cDNA; FLJ22930 fis, clone K	3.3	167	51	2.6
	119126		Hs.117183	ESTs	5.3	53	6	2.3
45	119128		Hs.92482	ESTs	3.7	37	4	3
	119271		Hs.65328	Fanconi anemia, complementation group F	8.2	82	1	6.4
			1Hs.155478	cyclin T2	4	40	4	1.2
	119307		Hs.37054	ephrin-A3	3.3	571	171	2 2.4
	119367		Hs.250895	ribosomal protein L34	3.4	34 60	3 13	4.8
50	119427		Hs.53565	Homo saplens PIG-M mRNA for mannosyltran	4.6	94	12	6.5
		AL079310		high-mobility group protein 2-like 1	8.1 3.3	33	8	0.9
			Hs.159225	ESTs	3.3	33	10	0.5
		NM_01612		NY-REN-58 antigen	5.4	54	1	4.1
55	119676	AA243837 AA918317		ESTs B-cell CLL/lymphoma 11B (zinc finger pro	4.6	46	ż	0.8
33		AI905687	Hs.2533	EST	3.5	2073	595	2.1
			25Hs.191381	hypothetical protein	4.4	44	1	3.1
		AL133396		prion protein 2 (dublet)	3.4	34	i	2.5
		AL 133390 AJ223810	Hs.43213	ESTs, Weakly similar to IEFS_HUMAN TRANS	3.6	36	i	2.9
60		AW24574		ESTs, Weakly similar to A35659 krueppel-	5.2	52	6	1.8
00		A1057404	Hs.58698	ESTs	3.7	37	4	1.9
		AL050097		DKFZP586B0319 protein	6.9	162	24	2.6
	11994	BE565849	Hs.14158	copine III	3.7	590	159	3.8
		W57554	Hs.125019	lymphoid nuclear protein (LAF-4) mRNA	6.9	319	47	2.1
65	120150			hypothetical protein FLJ22490	5.3	53	5	0.9
33		AF109219		phosphatidylinositol glycan, class N	3.2	106	34	3.3
	120260	AK000061	Hs.101590	hypothetical protein	3.4	34	1	1.7
	.2020							

	120200	AW995911	U- 200002	hunethatical esetals Et 192200	4.2	124	30	1.8
	120352				7.5	112	15	2.5
		AA223249			3.3	33	10	2.8
-		AW966893		Homo sapiens mRNA; cDNA DKFZp586F1323 (f		48	1	0.5
5				ESTs	3.4	34	4	0.1
	120493	AW968080	Hs.152939	Homo saplens clone 24630 mRNA sequence	3.9	161	42	2
	120524	AA261852	Hs.192905	ESTs	6.8	68	1	0.2
	120554	AA284447	Hs.271887	ESTs	3.2	32	5	0.6
	120562	BE244580	Hs.302267	hypothetical protein FLJ10330	8.5	127	15	1.6
10	120571	AB037744			3.7	37	1	0.5
		H39599		ESTs	3.6	36	ė	0.2
		AA703226		Homo saplens mRNA; cDNA DKFZp586B211 (fr		101	18	1.6
		AA687322		leucine zipper protein FKSG14	5.4	54	10	2.5
		AI952639			3.2		8	3
15				ESTs		32		
13		AW449855		Homo sapiens cDNA FLJ12727 fis, clone NT	5.3	58	11	3.3
	120821			staulen (Drosophila, RNA-binding protein	3.3	33	3	0.2
					3.8	38	7	0.2
				ESTs	3.5	37	11	0.1
	120922	AA481003	Hs.97128	ESTs	3.1	31	1	0.4
20	120977	AA398155	Hs.97600	ESTs	7.9	79	1	2.7
	120999	AI972375	Hs.29626	hypothetical brain protein my038	5.1	51	1	2.4
	121125	AL042981	Hs.251278	KIAA1201 protein	3.7	37	10	1
				ESTs	7	70	1	0.9
				ESTs	3.9	39	i	0.2
25			Hs.41167	ESTs	3.4	34	i	0.8
23		AF044197	Hs.100431	B-cell attracting chemokine 1 (CXCL13;	3.5	35	i	2.6
					10.3	103	i	9.3
			Hs.239681	hypothetical protein FLJ20275				2.6
		A1002968	Hs.235402	ESTs, Weakly similar to T26525 hypotheti	3.5	143	41	
20			Hs.48820	TATA box binding protein (TBP)-associate	4.6	46	3	8.0
30			Hs.98152	EST	4.2	77	19	1,4
		AA416568		gb:zu05c10.s1 Soares_testis_NHT Homo sap	3.2	32	1	8.0
		A1338247	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f	3.4	34	10	0.7
	121723	AA243499	Hs.104800	hypothetical protein FLJ10134	2.9	214	74	3.7
	121831	AA449644	Hs.193063	Homo sapiens cDNA FLJ14201 fis, clone NT	3.9	39	.1	0.2
35	121853	AA425887	Hs.98502	hypothetical protein FLJ14303	4.4	48	11	0.9
		AV650929	Hs.145696	splicing factor (CC1.3)	3.6	150	42	3.2
		A1249368	Hs.98558	ESTs; protease inhibitor 15 (PI15)	2.7	864	321	0.6
		AW117207		ESTs	3.5	35	3	2.3
		Al810721	Hs.95424	ESTs	4.9	49	7	3.7
40		AW794215		KIAA1085 protein	3.2	88	28	1.2
40		AF169797		adaptor protein containing pH domain, PT	12.6	126	7	7.5
			Hs.112227	membrane-associated nucleic acid binding	4.1	43	11	1.6
	122273		Hs.150926	fucose-1-phosphate guanylyltransferase	3.1	31	1	1
4.5		AA446189		ESTs	3.3	53	16	4
45		BE567620	Hs.99210	ESTs	3.2	291	91	4
		AA449453		ESTs, Weakly similar to ALU1_HUMAN ALU S	3.1	31	6	8.0
	122636	AW651706	Hs.99519	hypothetical protein FLJ14007	3.5	35	1	3
	122637	AA454149	Hs.99357	EST	3.2	32	10	3.1
	122798	AW366286	Hs.145696	splicing factor (CC1.3)	3.2	36	11	2.5
50		AA335721		ESTs	5.6	108	20	1.8
		AA749382		ublqultin-conjugating enzyme E2D 3 (homo	3.6	36	1	3.4
		AI718702	Hs.308026	major histocompatibility complex, class	3.7	162	44	12.4
	122963	AA478446		KiAA1096 protein	7.2	72	i	5.7
		AA447871		ESTs, Weakly similar to I38022 hypotheti	4.7	59	13	4.7
55		AW338067			3.3	207	63	
33				Homo sapiens cDNA FLJ11946 fis, clone HE				3.5
		AL135185		niban protein	3.8	207	55	5.5
		Al073913	Hs.100686	ESTs, Weakly similar to JE0350 Anterior	9.9	351	36	13.9
		AA830335	Hs.105273	ESTs	4.1	72	18	1.5
			Hs.293796	ESTs	3.7	41	11	1.6
60	123442	AA299652	Hs.111496	Homo sapiens cDNA FLJ11643 fis, clone HE	6.7	67	2	2.1
	123449	AL049325	Hs.112493	Homo saplens mRNA; cDNA DKFZp564D036 (fr	3.4	34	1	2.6
	123475	BE439553	Hs.250528	Homo sapiens, clone IMAGE:4098694, mRNA,	9.7	102	11	6
	123494		Hs.112110	mitochondrial ribosomal protein L42	4.2	42	7	2.9
			Hs.293156	ESTs, Weakly similar to 178885 serine/th	3.9	39	1	3.2
65			Hs.173933	nuclear factor I/A	4.3	43	i	3.5
0.5		AL035414		hypothetical protein	5.8	58	i	4.9
	123510	AA608588		gb:ae54e06.s1 Stratagene lung carcinoma	3.1	927	295	2.1
	123525	V4000000		governous i Sualayene lung carcinonia	J. 1	321	490	4.1

	123527	AF150208	Hs.108327		5	121		5.9
	123570	AA608955	Hs.109653			68		6.1
	123619	AA602964				85		4.3
	123673	BE550112	Hs.158549	ESTs, Weakly similar to T2D3_HUMAN TRANS	3.9	39		3.7
5	123709	AA706910	Hs.112742	ESTs		60		4.8
	123926	AA425769	Hs.227933			80		3.8
	123960	AW082862	Hs.287733	hypothetical protein FLJ23189		45		3.6
	124006	Al147155	Hs.270016	ESTs		321		17
	124059	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	10.4	880	85	5.3
10	124287	H88296	Hs.5123	inorganic pyrophosphatase	3.1	41	14	2.7
	124292		Hs.13366	Homo saplens cDNA: FLJ23567 fis, clone L	3.2	32	1	1.5
		AA249027		ribosomal protein S6	10.5	105	1	9.9
		NM_005402		v-ral simian leukemia viral oncogene hom	12.8	141	11	12.2
		AF283776		Homo saplens mRNA; cDNA DKFZp586C1723 (f	3.1	31	1	1.8
15			Hs.179864	ESTs	3.3	33	1	1.7
	124677			gb:ye84c03.s1 Soares fetal liver spleen	4.2	42	7	3
	124777	R41933	Hs.140237		3.4	210	63	3.3
		AF068846			6.5	162	25	14.7
	125079		Hs.271396		3.1	31	6	2.4
20	125091			gb:ye20f05,s1 Stratagene lung (937210) H	3.4	985	286	2.8
		AA570056	Hs.122730	ESTs, Moderately similar to KIAA1215 pro	3.6	224	63	4
		AB037742		KIAA1321 protein	6.3	63	6	5
		W38240		Empirically selected from AFFX single pr	3.6	38	11	2.6
		W93048	Hs.250723	hypothetical protein MGC2747	3.1	31	1	2.8
25		AA782536		N-myristoyitransferase 2	3.2	37	12	3.6
	125279	AW401809		KIAA1150 protein	13.1	131	1	5.1
		T32982	Hs.102720	ESTs	7.7	81	11	7.6
		AA173319		hypothetical protein MGC12217	14.3	143	9	13.1
	125377		Hs.77495	UBX domain-containing 1	3.3	34	11	3.2
30		AL038165	Hs.75187	translocase of outer mitochondrial membr	8.2	124	15	11.5
50	125471	AA421691	Hs.152601	UDP-glucose ceramide glucosyltransferase	3.7	224	61	21
	125617			ESTs	6.7	67	1	6
	125621		Hs.278544	acetyl-Coenzyme A acetyltransferase 2 (a	5.5	55	10	4.2
		AA418069	Hs 241493	natural killer-tumor recognition sequenc	5.5	63	12	1
35 .		AW292171		scaffold attachment factor B	4.3	68	16	2.8
-	125698		Hs.191356	general transcription factor IIH, polype	4.8	48	5	4.1
		Al858032	Hs.75722	ribophorin II	6.8	223	33	2.8
		AA143045		v-kit Hardy-Zuckerman 4 feline sarcoma v	8.3	87	11	0.4
		NM_003403		YY1 transcription factor	11.3	124	11	9.7
40	125852	AW630088	Hs 76550	Homo sapiens mRNA; cDNA DKFZp564B1264 (i		306	4	26.5
	126349		Hs.13531	hypothetical protein FLJ10971	4.9	68	14	1.4
		AW090198		KIAA1150 protein	6.4	74	12	6.6
		W78968	Hs.181307	H3 histone, family 3A	5	264	53	3.4
		AA316181		six transmembrane epithellal antigen of	3.8	38	1	2.7
45	126663	AW518478		ESTs	3.6	36	6 .	2.9
	126695		Hs.172028	a disintegrin and metalloproteinase doma	3.1	31	1	2.5
	126764		Hs.102178	syntaxin 16	4.4	76	18	1
		AW663887		hypothetical protein FLJ10936	3.8	38	1	3
		AW163483		double ring-finger protein, Dorfin	6.7	155	23	1.4
50		AL043489	Hs.279609	mitochondrial carrier homolog 2	8.8	110	13	10.5
		AA129640		ESTs	3.6	36	10	1.9
		T26989	Hs.283664	aspartate beta-hydroxylase	5.5	79	15	4.4
		AA625690		ESTs	3.1	33	11	2.3
	127251			ESTs	3.5	35	1	3.1
55		AA412108		ESTs	4.8	106	22	1
		D60237	Hs.14368	SH3 domain binding glutamic acid-rich pr	7.5	75	1	6.5
		Al926047	Hs.162859	ESTs	3.8	38	7	3.4
	127542		Hs.245474	ESTs, Moderately similar to ALU5_HUMAN A	3.3	33	9	0.9
	127677		Hs.26419D	vacuolar protein sorting 35 (yeast homol	4.3	152	35	12.5
60		AA313639		cystein-rich hydrophobic domain 2	5.4	73	14	6.8
••		AW978827		nucleolar protein family A, member 1 (H/	5.2	81	16	1.1
		AA186733		stromal cell protein	3.9	220	57	2.5
	128305		Hs.279009	matrix Gla protein	9.4	94	3	5.3
		AL049974	Hs.100261	Homo saplens mRNA; cDNA DKFZp564B222 (fr		46	8	3.9
65	128482	AI694143	Hs.296251	programmed cell death 4	7.2	72	ĭ	5.8
33	128501	AL133572		protein containing CXXC domain 2	3.8	38	i	0.9
						73		6.1
	128517	AW994403	Hs.100861	hypothetical protein FLJ14600	5.6		13	

	400700		1)- 400 475	Harmon I and a proper would		404	0.5	
		AI932995	Hs.183475	Homo sapiens clone 25061 mRNA sequence	4.2	104	25	7.8
	128579		Hs.101810	Homo sapiens cDNA FLJ14232 fis, clone NT	3.1	172	55	3.1
	128595		Hs.272499	short-chain alcohol dehydrogenase family	3.3	105	32	3
	128610	N48373	Hs.10247	activated leucocyte cell adhesion molecu	7.3	108	15	5
5		D87432	Hs.10315	solute carrier family 7 (cationic amino	3.1	31	1	2.2
-			Hs.251531	proteasome (prosome, macropain) subunit,	3.6	130	36	3.5
						43	11	1.8
		NM_004131		granzyme B (granzyme 2, cytotoxic T-lymp	3.9			
		AF026692		secreted frizzled-related protein 4	17.4	409	24	7.8
		AB011125		KIAA0553 protein	3.1	34	11	2.7
10	128794	NM_014720	Hs.105751	Ste20-related serine/threonine kinase	3.6	36	5	1.5
		AK001731		Homo sapiens mRNA; cDNA DKFZp586H0924 (1		288	87	7.9
		R57988	Hs.10706	epithelial protein lost In neoplasm beta	11.3	113	8	2.5
		R67419	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT	7.1	392	56	3.6
	128949	AA009647	Hs.8850	a disintegrin and metalloprotelnase doma	4.6	132	29	9.7
15	129017	AA115333	Hs.107968	ESTs	8.2	82	1	7.4
	129075	BE250162	Hs.83765	dihydrofolate reductase	5	50	1	3.3
	129095		Hs.108623	thrombospondin 2	3.2	814	257	2.4
							1	
		N23018	Hs.171391	C-terminal binding protein 2	4.4	44		3.8
	129168	AI132988	Hs.109052	chromosome 14 open reading frame 2	14.2	142	6	9.4
20	129229	AF013758	Hs.109643	polyadenylate binding protein-interactin	7.1	71	1	6.2
		BE169531	Hs.109727	TAK1-binding protein 2; KIAA0733 protein	5	64	13	6.3
		AF220050		uncharacterized hematopoletic stem/proge	5.2	75	15	6.4
	129278	NM_015344		leptin receptor overlapping transcript-l	3.7	39	11	3.2
	129337	NM_014918	3Hs.110488	KIAA0990 protein	9.5	95	1	8.5
25	129351	AL049538	Hs.62349	ras association (RalGDS/AF-6) domain con	7.6	92	12	1.4
	129366	BE220806	Hs.184697	Homo sapiens clone 23785 mRNA sequence	7.1	150	21	14.5
	129393		Hs.166982	phosphatidylinositol glycan, class F	3.9	54	14	5.1
	129457		Hs.207776	aspartylglucosaminidase	3.6	36	1	2.7
	129486	NM_005754		Ras-GTPase-activating protein SH3-domain	4	40	4	3.2
30	129586	AW964541	Hs.11500	hypothetical protein FLJ21127	4.6	199	44	2.3
	129598	N30436	Hs.11556	Homo sapiens cDNA FLJ12566 fis, clone NT	4.2	42	1	3.8
	129691		Hs.119571	collagen, type ill, alpha 1 (Ehlers-Dani	6.4	1111	175	5
	129698			ATP-binding cassette, sub-family E (OABP	4.8	48	8	3.8
	129721	NM_001415		eukaryotic translation initiation factor	5.8	171	30	2.9
35	129740	BE165866	Hs.83623	nuclear receptor subfamily 1, group I, m	4.5	45	1	2.4
	129755	R42216	Hs.12342	Homo saplens clone 24538 mRNA sequence	5.3	53	9	3.6
		R39246	Hs.239666	Homo sapiens cDNA FLJ13495 fis, clone PL	3.1	31	2	2.5
					11.4		í	10
		AB028945		cortactin SH3 domain-binding protein		114		
		AI222069	Hs.13015	hypothetical protein similar to mouse Dn	4.7	556	119	4.5
40	129965	T71333	Hs.13854	ESTs	3.1	31	3	3
	129977	NM_00039	9Hs.1395	early growth response 2 (Krox-20 (Drosop	3.2	32	1	0.2
		BE061916		chromosome 8 open reading frame 2	6.7	67	1	5.7
		AF027153		solute carrier family 5 (Inositol transp	1	1	i	1
		AK001635		hypothetical protein FLJ10773	14.6	219	15	7.6
45	130115	T47294	Hs.149923	X-box binding protein 1	3.1	1336	434	1.4
	130170	AW977534	Hs.151469	calcium/calmodulin-dependent serine prot	5.3	53	9	3.2
	130173	U38847	Hs.151518	TAR (HIV) RNA-binding protein 1	4.2	46	11	1.1
		AB040914		KIAA1481 protein	13.2	331	25	12.4
		AF127577		nuclear receptor interacting protein 1	3.3	354	108	4
60								
50		AL135301		hypothetical protein FLJ10849	8.1	81	9	5.5
		AW067800		stanniocalcin 2	72.2	722	1	1.9
	130407	BE385099	Hs.334727	hypothetical protein MGC3017	6.5	65	4	5.3
		AW163518		huntingtin Interacting protein 2	3.5	79	23	2.5
		U63630	Hs.155637	protein kinase, DNA-activated, catalytic	6.1	61	1	5.7
55								
33		D90041	Hs.155956	N-acetyltransferase 1 (arylamine N-acety	10.8	706	66	9.2
		W19744	Hs.180059	Homo sapiens cDNA FLJ20653 fis, clone KA	3.9	39	1	1.9
	130526	AW876523	Hs.15929	hypothetical protein FLJ12910	3.9	39	1	2.6
		AA383092		replication protein A3 (14kD)	4.4	44	1	4.1
			Hs.1657	estrogen receptor 1	32.2	322	i	4.7
60		Al354355				254		
UU			Hs.16697	down-regulator of transcription 1, TBP-b	5.2	251	48	21
	130617		Hs.1674	glutamine-fructose-6-phosphate transamin	10	100	1	7.6
		Al963376	Hs.12532	chromosome 1 open reading frame 21	3.9	39	1	3.4
		AF176012		J domain containing protein 1	10.5	105	1	9
	130677	AL161961	Hs.17767	KIAA1554 protein	6.8	129	19	12.1
65	130681			Rho-associated, colled-coil containing p	4.1		1	
03			Hs.17820			41		3.6
		R68537	Hs.17962	ESTs	9.2	234	26	16.8
	130712	AJ271881	Hs.279762	bromodomain-containing 7	17.5	175	2	12.8

	130723 BE247676 Hs.18442	E-1 enzyme	8.1	81	3 1	2.8
	130751 AF052105 Hs.18879 130780 AA197226 Hs.19347	chromosome 12 open reading frame hypothetical protein MGC11321	4.9 3.6	49 100	28	4.3 6.6
	130863 Y10805 Hs.20521	HMT1 (hnRNP methyltransferase, S. cerevi	3.4	525	154	5.3
5	130871 AF080158 Hs.226573	Inhibitor of kappa light polypeptide gen	10.5	121	12	1.6
-	130888 AL044315 Hs.173094	Homo saplens mRNA for KIAA1750 protein,	6	202	34	3.7
	130974 NM_003528Hs.2178	H2B histone family, member Q	7.1	100	14	7.5
	130979 NM_012446Hs.169833	single-stranded-DNA-binding protein	3.2	87	27	1.7
	130987 BE613269 Hs.21893	hypothetical protein DKFZp761N0624	3.5	124	35	6.5
10	130993 T97401 Hs.21929	ESTs	4.5	45	1	2.5
	131076 AA749230 Hs.26433	dolichyl-phosphate (UDP-N-acetylglucosam	3.2	210	66	3.8
	131085 BE207357 Hs.3454	KIAA1821 protein	3.8	42 67	11 6	0.6 1.9
	131126 NM_016156Hs.181326	KIAA1073 protein	6.7 5.8	115	20	2.5
15	131129 BE541042 Hs.23240 131148 AW953575 Hs.303125	Homo saplens cDNA: FLJ21848 fis, clone H p53-induced protein PIGPC1	3.8	585	153	3.7
13	131164 AW013807 Hs.182265	keratin 19	5.2	1320	256	3.2
	131176 AA465113 Hs.23853	ESTs, Weakly similar to A34615 profilagg	3.8	38	1	3.3
	131200 BE540516 Hs.293732	hypothetical protein MGC3195	4.8	48	1	4.1
	131216 Al815486 Hs.243901	Homo sapiens cDNA FLJ20738 fis, clone HE	6.1	343	56	16.4
20	131245 AL080080 Hs.24766	thloredoxin domain-containing	8	100	13	2.9
	131248 AI038989 Hs.332633	Bardet-Bledi syndrome 2	4	95	24	1.1
	131273 AW206008 Hs.283378	Homo saplens cDNA: FLJ21778 fis, clone H	4.6	239	53	3.5
	131319 NM_003155Hs.25590	stanniocalcin 1	3.5	402	114	2.1
25	131367 AI750575 Hs.173933	nuclear factor I/A	3.3	775	233	2.4
25	131375 AW293165 Hs.143134	ESTs	3.8 3.9	38 116	1 30	3 0.5
	131379 AK001123 Hs.26176 131388 NM_014810Hs.92200	hypothetical protein FLJ 10261 KIAA0480 gene product	7.6	76	1	5
	131475 AA992841 Hs.27263	KIAA1458 protein	5.1	113	22	6.1
	131492 Al452601 Hs.288869	nuclear receptor subfamily 2, group F, m	8.4	169	20	4.6
30	131501 AV661958 Hs.8207	GK001 protein	3.1	197	63	18.7
	131535 N22120 Hs.75277	hypothetical protein FLJ13910	5.9	59	1	4.4
	131544 AL355715 Hs.28555	programmed cell death 9 (PDCD9)	5.1	51	1	3.9
	131546 AA093668 Hs.28578	muscleblind (Drosophila)-like	3.8	79	21	6.9
~-	131562 NM_003512Hs.28777	H2A histone family, member L	4	350	88	3
35	131564 T93500 Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL	4.7	381	81	6.4
	131604 AA306477 Hs.29379	hypothetical protein FLJ10687	4.6	46	7 26	3.8 6.6
	131684 NM_002104Hs.3066	granzyme K (serine protease, granzyme 3; heat shock 70kD protein 9B (mortalin-2)	3.2 6.7	82 93	14	8.4
	131687 BE297635 Hs.3069 131689 AB012124 Hs.30696	transcription factor-like 5 (basic helix	3.8	51	14	1.7
40	131693 AW963776 Hs.110796	SAR1 protein	7.2	72	4	5.7
40	131739 AF017986 Hs.31386	secreted frizzled-related protein 2	2.1	1561	757	1.7
	131742 AA961420 Hs.31433	ESTs	11.7	117	1	10.1
	131775 AB014548 Hs.31921	KIAA0648 protein	4.8	48	1	4.6
	131787 D87077 Hs.196275	KIAA0240 protein	3.2	207	64	5.5
45	131798 X86098 Hs.301449	adenovirus 5 E1A binding protein	3.4	115	34	9.1
	131836 W00712 Hs.32990	DKFZP566F084 protein	5.8	91	16	1.4
	131853 Al681917 Hs.3321	ESTs, Highly similar to IRX1_HUMAN IROQU	4.9	632 68	129	1.7
	131877 J04088 Hs.156346 131881 AW361018 Hs.3383	topolsomerase (DNA) II alpha (170kD) upstream regulatory element blnding prot	6.8 4	140	1 35	5.6 1.8
50	131885 BE502341 Hs.3402	ESTs	5.7	57	1	4.5
50	131904 AF078866 Hs.284296	Homo sapiens cDNA: FLJ22993 fis, clone K	5.5	90	17	2.9
	131919 T15803 Hs.272458	protein phosphatase 3 (formerly 2B), cat	5.6	95	17	9.1
	131941 BE252983 Hs.35086	ubiquitin specific protease 1	7.4	103	14	6.5
	131945 NM_002916Hs.35120	replication factor C (activator 1) 4 (37	3.7	37	1	3.4
55	131949 AK000010 Hs.258798	hypothetical protein FLJ20003	3.5	35	1	2.5
	131965 W79283 Hs.35962	ESTs	5.5	168	31	4.4
	131977 U90441 Hs.3622	procollagen-proline, 2-oxoglutarate 4-di	3.7	37	9	2.8
	131985 AA503020 Hs.36563	hypothetical protein FLJ22418	40.2	402	1	4
60	131993 Al878910 Hs.3688	cisplatin resistance-associated overexpr	7.3	73	1	1.2
60	132064 AA121098 Hs.3838 132094 NM_016045Hs.3945	serum-inducible kinase CGI-107 protein	22.6 3.1	226 227	10 73	0.9 16.8
	132109 AW190902 Hs.40098	cysteine knot superfamily 1, BMP antagon	3.5	73	21	6.3
	132116 AW960474 Hs.40289	ESTs	3.6	141	39	12.6
	132143 D52059 Hs.7972	KIAA0871 protein	4.9	49	1	4.1
65	132160 W26406 Hs.295923	seven in absentia (Drosophila) homolog 1	4.4	53	12	2.1
	132164 Al752235 Hs.41270	procollagen-lysine, 2-oxoglutarate 5-dio	5	225	45	9.1
	132180 NM_004460Hs.418	fibroblast activation protein, alpha	10.7	433	41	7.2

	400407							
	132197		Hs.42151	ESTs	3.4	58	17	4
	132256 /		Hs.431	murine leukemla viral (bmi-1) oncogene h	4.2	42	1	2.2
	132298	NM_015986		cytokine receptor-like molecule 9	3.4	34	2	3
5			Hs.44566	KIAA1641 protein	18.6	186 323	10	1.5
,		N37065 NM_003542	Hs.44856	hypothetical protein FLJ12116	5.5 3.3	979	59 298	10.5 2.2
		AA312135		H4 histone family, member G HSPCO34 protein	3.6	36	1	3.1
		W32624	Hs.278626	Arg/Abl-interacting protein ArgBP2	5.9	186	32	3.7
			Hs.47334	hypothetical protein FLJ14495	4.2	159 .	38	7.1
10	132407		Hs.47783	B aggressive lymphoma gene	4.6	46	1	4.3
10		N87549	Hs.125287	zinc finger protein ZNF140-like protein	3.6	146	41	1.1
		AB020699		KIAA0892 protein	3.3	33	4	2.9
		AW169847		KIAA1634 protein	8.3	145	18	3.7
			Hs.5070	KIAA0947 protein	4.6	46	1	4.4
15		T78736	Hs.50758	SMC4 (structural mainlenance of chromoso	9.3	93	i	8.4
13			Hs.50785	SEC22, vesicle trafficking protein (S. c	4.9	49	i	4.4
			Hs.5101	protein regulator of cytokinesis 1	11.8	201	17	19.1
	132572		Hs.237825	signal recognition particle 72kD	3.8	38	ï	3
		AW803564		Homo saplens cDNA: FLJ22528 fis, clone H	4.8	93	20	3.1
20		AW606927		hypothetical protein DKFZp586F1122 simil	6.1	61	2	5.9
		BE262677	Hs.283558	hypothetical protein PRO1855	3.4	193	58	12.3
			Hs.5338	carbonic anhydrase XII	14.2	390	28	22.5
		AL050025	Hs.279916	hypothetical protein FLJ20151	3.3	909	274	3.2
		AU076916		guanine monphosphate synthetase	5	50	1	4.1
25		AB018319	Hs.5460	KIAA0776 protein	4.2	171	41	12.6
		AA025480		ESTs, Weakly similar to T33468 hypotheti	6.5	65	1	5.6
		AW242243		peroxisomal famesylated protein	3.7	37	1	2.2
	132811		Hs.57419	CCCTC-binding factor (zinc finger protei	7	115	17	5.4
		AL120050		Homo saplens cDNA: FLJ23005 fis, clone L	3.3	61	19	5.1
30		NM 00144		glypican 4	4.8	48	1	3.6
	132880	BE077155	Hs.177537	hypothetical protein DKFZp761B1514	12.6	126	8	9.9
	132902	AI936442	Hs.59838	hypothetical protein FLJ10808	11	187	17	10.4
	132906	BE613337	Hs.234896	geminin	3.3	106	33	2.6
	132914	AL047045	Hs.60293	Homo sapiens clone 122482 unknown mRNA	3.5	110	32	2.1
35		AF234532	Hs.61638	myosin X	4.1	62	15	4.9
		AA093322	Hs.301404	RNA binding motif protein 3	22.1	221	9	17.8
		X77343	Hs.334334	transcription factor AP-2 alpha (activat	12.7	311	25	2.4
		AA112748		done HQ0310 PRO0310p1	3	380	127	5.5
		NM_00637		sema domain, immunoglobulin domain (lg),	7.3	271	37	2.3
40		AJ002744		UDP-N-acetyl-alpha-D-galactosamine:polyp	4.6	427	93	10.4
	133070		Hs.64311	a disintegrin and metalloproteinase doma	3.6	36	1	3.1
		AK001628		KIAA0483 protein	5.2	117	23	5
		AA218564		vacuolar protein sorting 26 (yeast homol	3.1	359	118	2.5
45		AI275243	Hs.180201	hypothetical protein FLJ20671	5.1	58	12	5.7
45		AF231981		homolog of yeast long chain polyunsatura	3	816	275	3.9
	133221		Hs.301746	RAP2A, member of RAS oncogene family	3.1	234	76	8.6
		AK001489		ADP-ribosylation factor-like 1	8.1	81	1	4.6
		Z48633	Hs.283742	H.sapiens mRNA for retrotransposon	12.4	124	6	10.8 2.9
50		BE297855 AJ001388	Hs.69997	NRAS-related gene zinc finger protein 238	3.3 7.9	33 234	1 30	18.9
30		AI499220	Hs.71573	hypothetical protein FLJ10074	4.6	46	5	3.5
		AK001519	Hs.7194	CGI-74 protein	5	110	22	9.7
		AF245505	Hs.72157	DKFZP564I1922 protein	3.2	725	227	3.2
		AF017987		secreted frizzled-related protein 1	4.1	374	91	1.1
55		AB033061		KIAA1235 protein	4.3	43	1	3.9
33		Al929357	Hs.323966	Homo saplens clone H63 unknown mRNA	5.5	186	34	16.5
		W01556	Hs.238797	ESTs, Moderately similar to I38022 hypot	3.5	35	7	2.1
			Hs.194369	arginine-glutamic acid dipeptide (RE) re	3.6	39	11	0.4
		NM_00441		desmoplakin (DPI, DPII)	4.1	640	158	3
60		NM 00016		gap junction protein, alpha 1, 43kD (con	3.2	351	111	5.2
50	133536		Hs.177486	amyloid beta (A4) precursor protein (pro	3.2	226	71	2.8
		AU077050		translin	3.4	178	53	8.8
		D21262	Hs.75337	nucleolar and colled-body phosphprotein	4.7	47	1	4
		AW246428		ubiquitin-conjugating enzyme E2N (homolo	8.5	85	i	7.2
65			5Hs.166975	splicing factor, arginlne/serine-rich 5	3.6	36	i .	0.4
		Al352558	Hs.75544	tyrosine 3-monooxygenase/tryptophan 5-mo	3.4	234	68	10.7
		AW410035		MAD (mothers against decapentaplegic, Dr	9.3	93	1	7.8

		M62194	Hs.75929	cadherin 11, type 2, OB-cadherin (osteob	3.2	560	174	2.6
	133780	AA557660		decorin	5.4	144	27	13.3
	133784		Hs.301064	arfaptin 1	4.7	47	1	4.1
5		NM_00246		myxovirus (influenza) resistance 1, homo	3.3	380	114	4.9
3		AW630088		Homo saplens mRNA; cDNA DKFZp564B1264 (i		304 600	46	7.8 4.1
		AA147026 AU076964		ESTs calumenin	6.2 3.3	889	97 267	5
	133968		Hs.232068	transcription factor 8 (represses Interl	3.7	91	25	2.6
	133990		Hs.7822	Homo saplens mRNA; cDNA DKFZp564C1216 (91	27	8.5
10	133999			RAB2, member RAS oncogene family	7.8	78	ĩ	5.6
	134032			serine (or cystelne) proteinase inhibito	5.9	59	i	3.3
	134064			KIAA0244 protein	5.8	58	1	4.9
	134087	U51166	Hs.173824	thymine-DNA glycosylase	6.4	100	16	4.4
		R51273	Hs.79029	ESTs	5.1	51	9	3.8
15	134095	NM_00435		cyclin G2	5	50	1	3.2
	134098	BE513171		mitochondrial ribosomal protein L3	4.8	246	51	3.9
	134110		Hs.79136	LIV-1 protein, estrogen regulated	4.5	1472	330	2.1
	134125	NM_01478		KIAA0203 gene product	4.6	69	15	5.8
20		D28459	Hs.80612	ubiquitin-conjugating enzyme E2A (RAD6 h	7	97 34	14	7.5 2.6
20	134257	C05768 X76040	Hs.8078	Horno sapiens clone FBD3 Cri-du-chat crit	3.4 3.6	36	5	2.8
		R45621	Hs.278614 Hs.81057	protease, serine, 15	6.7	56 67	9	5.7
		A1022650	Hs.8117	hypothetical protein MGC2718 erbb2-Interacting protein ERBIN	4.5	137	31	12
	134321			ESTs, Moderately similar to A46010 X-lin	5.2	52	1	4.9
25	134326	AW903838		chondroitin sulfate proteoglycan 2 (vers	8.6	568	66	22.4
23	134328			ESTs	4.8	53	11	3.7
		AW291946		interleukin 6 signal transducer (gp130,	7.1	71	4	6.4
	134359			v-erb-b2 avian erythroblastic leukemia v	3	68	23	2.8
	134367			phosphoribosylglycinamide formyltransfer	4.4	44	1	4.1
30	134374	N22687	Hs.8236	ESTS	13.3	445	34	6
	134380	AU077143	Hs.179565	minichromosome maintenance deficient (S.	4.5	45	2	3.4
			Hs.8262	lysosomal	6	60	5	5.9
	134401		Hs.211577	kinectin 1 (kinesin receptor)	4.1	301	73	6.1
2.5	134405	AW067903		collagen, type XI, alpha 1	4.6	1216	267	4.4
35	134415		Hs.82911	protein tyrosine phosphatase type IVA, m	4.9	163	34	15.1
	134417	NM_00641		solute carrier family 35 (CMP-stalic aci	4.9	49	3	3.8
	134419		Hs.82961 Hs.82985	trefoil factor 3 (intestinal)	3.2 6.3	1872 1075	592	3.3 3.8
		AU077196 U29344	Hs.83190	collagen, type V, alpha 2 fatty acid synthase	3.3	710	171 217	2
40	134485	X82153	Hs.83942	cathepsin K (pycnodysostosis)	34.3	411	12	5.1
70	134487			protein associated with PRK1	4.8	153	32	4.3
		D63477	Hs.84087	KIAA0143 protein	3.1	147	48	12.7
	134520			activated RNA polymerase II transcriptio	3.3	33	1	2
	134542		Hs.85112	Insulin-like growth factor 1 (somatomed)	4.2	42	5	2.6
45	134570	U66615	Hs.172280	SWI/SNF related, matrix associated, acti	3.9	39	1	2.5
		AW903849		HUEL (C4orf1)-interacting protein	3.7	41	11	0.6
	134604			RAP1A, member of RAS oncogene family	5.2	52	1	3
	134612		Hs.171581	ublquitin C-terminal hydrolase UCH37	4.9	49	1	3.7
	134643			bone morphogenetic protein receptor, typ	5.2	52	5	3.5
50		AK001741		hypothetical protein FLJ10879	6.4	64 126	1	5.1 10.8
		A1750878	Hs.87409 Hs.322901	thrombospondin 1	12.6	126 81	15	2.6
		AF271212 AK000606		disrupter of silencing 10 golgl SNAP receptor complex member 1	5.4 3.4	179	52	1.5
	134711		Hs.88974	cytochrome b-245, beta polypeptide (chro	3.2	143	45	13.9
55		AF129536	Hs.284226	F-box only protein 6	7	70	6	6
55		BE281128	Hs.9030	TONDU	3.1	31	ĭ	2.3
		Al879195	Hs.90606	15 kDa selenoproteln	5.7	57	i	5
	134917		Hs. 166994	FAT tumor suppressor (Drosophila) homolo	3.2	153	48	4.7
	134921	AL137491	Hs.125511	Homo sapiens mRNA; cDNA DKFZp434P1530 (452	114	2
60	134982	AK002085	Hs.92308	Homo saplens cDNA FLJ11223 fis, clone PL	5.1	150	30	7.2
	134989	AW968058	Hs.92381	nudix (nucleoside diphosphate linked mol	8.2	114	14	9.9
	135029	H58818	Hs.187579	hydroxysterold (17-beta) dehydrogenase 7	11.5	115	1	10
	135035	AL034344	Hs.284186	forkhead box C1	5.4	259	48	1.4
	135051	Al272141	Hs.83484	SRY (sex determining region Y)-box 4	3.3	1296	394	2.2
65	135062	AK000967	Hs.93872	KIAA1682 protein	3.8	240	64	3.2
	135073		Hs.94030	Homo saplens mRNA; cDNA DKFZp586E1624 (101	13	7.9
	135098	AW274526	Hs.277721	ovarian cardnoma antigen CA125	3.3	33	1	2.6

-	135117	W52493	Hs.94694	Homo sapiens cDNA FLJ10561 fis, clone NT	5.3	53	1	4.1	
-	`135144		5Hs.95260	Autosomal Highly Conserved Protein	7.4	74	5	2.4	
	135154		Hs.267812	sorting nexin 4	6.6	69	11	6.3	
-		Al207958	Hs.166556	Homo saplens, Similar to TEA domain fami	6.1	61	1	5.1	
5	135172	AB028956	Hs.12144	KIAA1033 protein	3.4	88	26	1.4	
	135242	AI583187	Hs.9700	cyclin E1	3.1	31	1	2.3	
	135243	BE463721		putative G protein-coupled receptor	3.4	169	50	9.1	
	135269	NM_00340		YY1 transcription factor	3.4	475	142	2.5	
		BE312948	Hs.18104	hypothetical protein FLJ11274	3.1	31	10	1.7	
10	135357	AI565004	Hs.79572	cathepsin D (lysosomal aspartyl protease	4.7	710	151	2.5	
		U05237	Hs.99872	fetal Alzheimer antigen	20.6	206	4	19.1	
		L14922	Hs.166563	replication factor C (activator 1) 1 (14	3.2	32	1	2.4	
	-135400	X78592	Hs.99915	androgen receptor (dihydrotestosterone r	3.2	117	37	9.4	
		Al471525	Hs.247486	ESTs	3.8	58	16	5.5	
15		X70683	Hs.93668	ESTs	1.8	1047	596	1.6	
		L14922	Hs.82128	5T4 oncofetal trophoblast glycoprotein	5	285	58	1.2	
		M23263	Hs.904	amylo-1;6-glucosidase; 4-alpha-glucanotransfera	ıs	3.1	31	1	2.6
		Al267886	Hs.148027	polymerase (RNA) II (DNA directed) polypeptide	В	7.8	137	18	11.9
		AA044840	Hs.241676	stromal cell-derived factor 1	4.7	114	25	0.9	
20		N90960	Hs.227459	ESTs: Moderately similar to !!!! ALU SUBFAMILY	,	4.7	151	32	9.3
		AA873285	Hs.137947	ESTs	4.7	47	3	4.4	
		T56679	Hs.865	RAP1A; member of RAS oncogene family	4	40	1	3.4	
. *		AA305536		*EST176522 Colon carcinoma (Caco-2) cell line	11	3.6	121	34	11.8
~ ~		Al369384		arylsulfatase D	3.5	113	33	1.7	
25		AA219081	Hs.242396	ESTs; Moderately similar to IIII ALU SUBFAMILY	า	3.4	107	32	9.9

TABLE 10A

Table 10 A shows the accession numbers for those pkeys lacking unigeneID's for Table 10. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10

CAT number:

5

15	Accessio	on: Genbank at	ccession numbers
	Pkey	CAT number	Accession
	123619	371681_1	AA602964 AA609200
20	104602	524482_2	H47610 R86920
	121581	283769_1	AA416568 AA442889 AA417233 AA442223
	123523	genbank_AA608588	AA608588
	100821	tigr_HT4306	M26460 U09116
		genbank_T91518	T91518
.25		NOT_FOUND_entre	
		genbank_N66845	N66845
	104787	genbank_AA027317	AA027317
	106055	genbank_AA417034	
	113702	genbank_T97307	T97307
30		entrez_K01160	K01160
	101447		M21305
		entrez_M55998	M55998
		genbank_R01073	
		genbank_H61560	H61560
35		genbank_N98488	N98488
		genbank_N22414	N22414
		genbank_R44538	R44538
		genbank_R51818	R51818
	107014		
40	114988	genbank_AA251089	AA251089

Unique Eos probeset identifier number

Gene cluster number

TABLE 11: Figure 11 from BRCA 001-3 PCT

Unique Eos probeset identifier number

5 Table 11 depicts a preferred group of genes upregulated in tumor tissue compared to normal breast tissue.

10	ExAcon: Unigene Unigene	ID: Unig	nplar Accessi ene number ene gene title	on number, Genbank accession number				
	R1:			normal body tissue				
	R2:	Ratio	of 90th perce	entile tumor to normal body				
15	R3:			entile normal body to tumor				
	R4:	Ratio	of tumor to	normal breast tissue				
	Pkey	ExAccn	UniconotD	Unigene Title	R1	R2	R3	R4
20	,		on gonero	ongone ruc		,	****	
	100131	D12485	Hs.11951	ectonucleotide pyrophosphatase/phosphodi	13.2	244	19	9.9
	100147	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin	15.7	1030	66	5
		X51501	Hs.99949	prolactin-induced protein	22.7	760	34	1.4
0.5		L05424	Hs.169610	CD44 antigen (homing function and Indian	8.5	85	1	3.2
25				neuropeptide Y receptor Y1	15.3	153	1	14.1
		NM_00289		RAS p21 protein activator (GTPase activa	9.6	96	1	8.5
		L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	9.4	94	1	0.3
		S70114	Hs.239489	TIA1 cytotoxic granule-associated RNA-bi	8.9	89	5	8
30		AL049610		transcription elongation factor A (SII)-	7.3	73	1	5.3
30		BE313280	Hs.159627 Hs.46452	death associated protein 3	9.3	93	5	8
		U37519		mammaglobin 1	8.5	2058		1.4
		NM_00139	Hs.87539	aldehyde dehydrogenase 3 family, member	6.4 20.2	428 202	67 5	2.3
		U63830	Hs.146847	dual specificity phosphatase 4 TRAF family member-associated NFKB activ	8.2	82	1	1.3 6.8
35		D85390	Hs.5057	carboxypeptidase D	5.6	56	i	5.3
55			Hs.297753		7.5	136	18	3.4
		NM_00034		SRY (sex determining region Y)-box 9 (ca	7.3	73	1	5.2
			Hs.26102	opposite strand to trichorhinophalangeal	29	290	i	26.8
		Al239923	Hs.30098	ESTs	14.9	149	i	6.4
40	104804	AI858702	Hs.31803	ESTs, Weakly similar to N-WASP IH.sanien	7.7	77	1 .	5.1
	104807	Al139058	Hs.125790	leucine-rich repeat-containing 2	7	70	1	6.5
			Hs.23165	ESTs	7.4	74	1	6
				frizzled (Drosophila) homolog 6	16.2	162	1	4.2
		AW503733		KIAA1488 protein	5.5	55	1	5.2
45		AA234561		ESTs	2.8	131	47	3.9
				CEGP1 protein	25.4	508	20	3
			Hs.30738	hypothetical protein FLJ10407	8.3	83	3	1.8
		AW377314		DKFZP564I052 protein	6.9	69	1	4.4
50		AI240665	Hs.8895	ESTs	21.2	212	6	17.4
30		AF115402		E74-like factor 5 (ets domain transcript	26.3	356	14	1
		AA425414	Hs.33287 Hs.30652	nuclear factor I/B	9.9 6.3	483	49	1.8
		AV661958		KIAA1344 protein	2.5	63 392	1 155	5.4
		AW378065		GK001 protein ESTs	15.6	156	7	4.3 10.8
55		BE153855		Ig superfamily receptor LNIR	9	90	1	5.5
			Hs.51615	ESTs, Weakly similar to ALU7_HUMAN ALU S	18.7	187	i	17
				hypothetical protein FLJ13782	4.1	334	82	3.4
	109292	AW975748	Hs.188662	KiAA1702 protein	7.1	71	1	6.5
		LJ80736		trinucleotide repeat containing 9	12.3	123	i	11.3
60				L-kynurenine/alpha-aminoadipate aminotra	14.2	142	i	9.5
		BE075297		ESTs, Weakly similar to A43932 mucin 2 p	6.3	693	110	7.2
	110915	BE092285	Hs.29724	hypothetical protein FLJ13187	20.9	209	1	19.5
	111164	N46180	Hs.122489	Homo sapiens cDNA FLJ13289 fis, clone OV	7.7	77	1	5

Pkey:

	111179	AK000136		asporin (LRR class 1)	25.1	288	12	6.7
	111190		Hs.151046	hypothetical protein FLJ11193	6.3	63	1	5.8
	111223	AA852773	Hs.334838		3.6		112	4.9
_			Hs.87128	hypothetical protein FLJ23309	3.8	425	111	4
5			Hs.70823	KIAA1077 protein	5.7	567	100	6.7
		AI571940	Hs.7549	ESTs	9.6	124	13	9
		T97307		gb:ye53h05.s1 Soares fetal liver spleen	12.3	129	11	11.7
		W57554	Hs.125019	lymphoid nuclear protein (LAF-4) mRNA	24.2	242	10	5.6
10			Hs.15740	Homo saplens mRNA; cDNA DKFZp434E033 (fr		67	1	6.3
10		AF212848	Hs.182339	ets homologous factor	13.7	137	1	8.9
		AL157545	Hs.42179	bromodomain and PHD finger containing, 3	9.1	91	1	7.6
		AI733881	Hs.72472	BMP-R1B	35.9	359	10	29.7
		AA251089		gb:zs04f05.s1 NCI_CGAP_GCB1 Homo saplens		115	1	6.9
16			Hs.186572		5.8	58	1	5
15		AW992405		Homo sapiens, clone IMAGE:3507281, mRNA,	7.6 6.2 ·	144 62	19 1	13.9 5.4
		AI373062		hypothetical protein MGC5370	1.8	1047		1.6
		Al272141	Hs.83484	SRY (sex determining region Y)-box 4	22.8	228	9	12.4
		H25836 M18217	Hs.301527 Hs.172129	ESTs, Moderately similar to unknown (H.s Homo sapiens cDNA: FLJ21409 fis, clone C	3.9	322	83	4.4
20		N32536	Hs.42645	solute carrier family 16 (monocarboxylic	17.4	174	9	6.9
20		NJ2000 AL157545	Hs.42179	bromodomain and PHD finger containing, 3	14.5	145	1	2.4
		AI061118	Hs.65328	Fanconi anemia, complementation group F	8.2	82	i	6.4
		AI905687	Hs.2533	EST Compensation group	3.5	2073		2.1
		BE244580	Hs.302267	hypothetical protein FLJ10330	8.5	127	15	1.6
25		AK000282	Hs.239681		10.3	103	1	9.3
23		AA243499		hypothetical protein FLJ10134	2.9	214	74	3.7
		AA478446	Hs.69559	KiAA 1096 protein	7.2	72	1	5.7
	123137	A1073913		ESTs, Weakly similar to JE0350 Anterior	9.9	351	36	13.9
	123619	AA602964	113.100000	gb:no97c02.s1 NCI_CGAP_Pr2 Homo sapiens	8.5	85	1	4.3
30	123709		Hs.112742		3.9	60	16	4.8
		AJ147155	Hs.270016		5.8	321	55	17
	124059			ESTs, Weakly similar to S64054 hypotheti	10.4	880	85	5.3
		AA249027		ribosomal protein S6	10.5	105	1	9.9
	125279	AW401809		KIAA1150 protein	13.1	131	1	5.1
35	125617		Hs.164950		6.7	67	1	6
	127439	D60237	Hs.14368	SH3 domain binding glutamic acid-rich pr	30.6	306	4	26.5
	128305	AJ954968	Hs.279009	matrix Gla protein	7.5	75	1	6.5
		A1694143	Hs.296251	programmed cell death 4	7.2	72	1	5.8
	128790	AF026692		secreted frizzled-related protein 4	17.4	409	24	7.8
40	128925	R67419	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT	7.1	392	56	3.6
	129017	AA115333	Hs.107968		8.2	82	1	7.4
	129229	AF013758	Hs.109643	polyadenylate binding protein-Interactin	7.1	71	1	6.2
	129337		BHs.110488		9.5	95	1	8.5
45		BE220806	Hs.184697		7.1	150	21	14.5
45	129821		Hs.12696	cortactin SH3 domain-binding protein	11.4	114	1	10
	130036	BE061916	Hs.125849	chromosome 8 open reading frame 2	6.7 1	67 1	1	5.7 1
	130057	AF027153	Hs.324787 Hs.14838	solute carrier family 5 (Inositol transp	14.6	219	15	7.6
		AK001635 AB040914	Hs.278628	hypothetical protein FLJ10773 KIAA1481 protein	13.2	331	25	12.4
50			Hs.155223		72.2	722	1	1.9
50			Hs.334727		6.5	65	4	5.3
	130441	U63630	Hs.155637		6.1	61	i	5.7
	130455	D90041	Hs. 155956		10.8	706	66	9.2
	130604		Hs.1657	estrogen receptor 1	32.2	322	1	4.7
55	130617		Hs.1674	glutamine-fructose-6-phosphate transamin	10	100	i	7.6
55		AJ271881	Hs.279762	bromodomain-containing 7	. 17.5	175	ż	12.8
	131148		Hs.303125		3.8	585	153	3.7
	131388			KIAA0480 gene product	7.6 -	76	1	5
	131564	T93500	Hs.28792	Homo saplens cDNA FLJ11041 fis, clone PL	4.7	381	81	6.4
60		AA961420		ESTs	11.7	117	1	10.1
	131877			topoisomerase (DNA) Il alpha (170kD)	6.8	68	1	5.6
		AA503020		hypothetical protein FLJ22418	40.2	402	1	4
		U28831	Hs.44566	KIAA1641 protein	18.6	186	10	1.5
	132528	T78736	Hs.50758	SMC4 (structural maintenance of chromoso	9.3	93	1	8.4
65	132742	AA025480		ESTs, Weakly similar to T33468 hypotheti	6.5	65	1	5.6
		X77343		transcription factor AP-2 alpha (activat	12.7	311	25	2.4
	133015	AJ002744	Hs.246315	UDP-N-acetyl-alpha-D-galactosamine:polyp	4.6	427	93	10.4

	133199	AF231981	HS.2501/5	nomolog of yeast long chain polyunsatura	3	816	2/5	3.9	
	133240	AK001489	Hs.242894	ADP-ribosylation factor-like 1	8.1	81	1	4.6	
	133271	Z48633	Hs.283742	H.saplens mRNA for retrotransposon	12.4	124	6	10.8	
_	133640	AW246428	Hs.75355	ublquitin-conjugating enzyme E2N (homolo	8.5	85	1	7.2	
5	133746	AW410035	Hs.75862	MAD (mothers against decapentaplegic, Dr	9.3	93	1	7.8	
	133999	AA535244	Hs.78305	RAB2, member RAS oncogene family	7.8	78	1	5.6	
	134110	U41060	Hs.79136	LIV-1 protein, estrogen regulated	4.5	1472	330	2.1	
	134485	X82153	Hs.83942	cathepsin K (pycnodysostosis)	34.3	411	12	5.1	
	134654	AK001741	Hs.8739	hypothetical protein FLJ10879	6.4	64	1	5.1	
10	134880	AI879195	Hs.90606	15 kDa selenoprotein	5.7	57	1	5	
	135029	H58818	Hs.187579	hydroxysteroid (17-beta) dehydrogenase 7	11.5	115	1	10	
	135389	U05237	Hs.99872	fetal Alzheimer antigen	20.6	206	4	19.1	
	128305	A1954968	Hs.279009	matrix Gla protein	9.4	94	3	5.3	

TABLE 11A

Table 11A shows the accession numbers for those pkeys lacking unigeneID's for Table 11.

For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: CAT number:

Unique Eos probeset identifier number Gene cluster number Genbank accession numbers

15

Pkey CAT number Accession

20 123619 113702 114988

Accession:

371681_1 AA602964 AA609200 genbank_T97307 T97307 genbank_AA251089 AA251089

TABLE 12: Figure 12 from BRCA 001-3 PCT

Table 12 depicts a preferred group of genes upregulated in tumor tissue compared to normal breast tissue.

	Pkey:			obeset Identifier number				
10	ExAccn:	E	cemplar Acce	ession number, Genbank accession number				
	Unigene	ID: U	nigene numb	er				
	Unigene		nigene gene					
	R1:	R	atio of tumor	to normal body tissue				
	R2:		Ratio of	90 th percentile tumor to body				
15	R3:		Ratio of	75th percentile body to tumor				
	R4:		Ratio of	tumor to normal breast tissue				
	Pkev	ExAcen	Halaman	Unigene Title	R1	R2	R3	R4
	Pkey	EXACCI	Unigenesi	Onigene Title	KI	KZ	KS	R4
20	100131	D12485	Hs.11951	phosphodiesterase (PC-1)	13.2	244	19	9.9
	105500	AW602166	Hs.222399	ESTs	25.4	508	20	3
	112244	AB029000	Hs.70823	KIAA1077 protein	5.7	567	100	6.7
	114124	W57554	Hs.125019	ESTs	24.2	242	10	5.6
	119771	AI905687	Hs.2533	ESTs	3.5	2073	595	2.1
25	121723	AA243499	Hs.104800	ESTs	2.9	214	74	3.7
		AF026692		secreted frizzled-related protein 4	17.4	409	24	7.8
	131148		Hs.303125		3.8	585	153	3.7
	131985	AA503020		ESTs	40.2	402	1	4
	133199	AF231981	Hs.250175	Homo sapiens clone 23904 mRNA sequence	3	816	275	3.9

TABLE 13: Table 1 from BRCA 001-5 US

5 Table 13 depicts a preferred group of genes upregulated in breast cancer cells.

10	Pkey: ExAccn: UnigeneiD: Unigene Title:	Unique Eos probeset Identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title
	R1:	Ratio of tumor to normal body tissue

15					
13	Pkey	ExAccn	UniGene ID	Unigene Title	R1
	100038	M97935		control	16.7
		M97935		control	6.3
20		M97935		control	8.3
20		M97935		control	14.8
		AB003103	Hs 4295	proteasome (prosome; macropain) 26S sub	7.5
			Hs.111783	Lsm1 protein	4.9
		AF006084		actin related protein 2/3 complex; subunit	4.7
25		AF007875		dolichyl-phosphate mannosyltransferase p	13.4
20		D00596	Hs.82962	thymidylate synthetase	15.9
		D10495	Hs.155342	protein kinase C; delta	4.6
		D10523	Hs.168669	oxoglutarate dehydrogenase (lipoamide)	7.5
		D11094	Hs.61153	proteasome (prosome; macropain) 26S sub	4.4
30		D12485	Hs.11951	phosphodiesterase Vnucleotide pyrophosp	8.7
50		D13627	Hs. 15071	chaperonin containing TCP1; subunii 8 (t	9.5
		D13643	Hs.75616	Human mRNA for KIAA0018 gene; comp	6
		D13666	Hs.136348	osteoblast specific factor 2 (fasciclin I-like	8.5
		D14657	Hs.81892	KIAA0101 gene product	10.5
35		D14812	Hs.173714	MORF-related gene X	4.6
		D14878	Hs.82043	D123 gene product	7.9
		D21090	Hs.178658	RAD23 (S. cerevisiae) homolog B	5.6
		D25538	Hs.172199	adenylate cyclase 7	9.9
		D26308	Hs.76289	biliverdin reductase B (flavin reductase (N	4.9
40		D26598	Hs.82793	proteasome (prosome; macropain) subunit	14.2
		D26599	Hs.1390	proteasome (prosome; macropaln) subunit	11.3
		D28137	Hs.118110	bone marrow stromai cell antigen 2	5.7
		D28915	Hs.82316	interferon-induced; hepatitis C-associated	5.7
		D31888	Hs.78398	KIAA0071 protein	7.4
45		D43950	Hs.1600	chaperonin containing TCP1; subunit 5 (e	5.6
7.5		D49396	Hs.75454	antioxidant protein 1	12.9
		D50525	Hs.699	hypothetical protein	8.4
		D63391	Hs.6793	platelet-activating factor acetylhydrolase;	6.8
		D63487	Hs.82563	KIAA0153 protein	4.4
50		D78129	Hs.71465	Homo sapiens mRNA for squalene epoxid	12.6
50		D78514	Hs.78563	ubiquitin-conjugating enzyme E2G 1 (hom	4.6
		D79987	Hs.153479	extra spindie poles; S. cerevisiae; homolo	6.5
		D79997	Hs.184339	KIAA0175 gene product	8.4
		D80004	Hs.75909	KIAA0182 protein	4.5
55		D82060	Hs.278721	Ke4 gene; mouse; human homolog of	8.1
55		D83777	Hs.75137	KIAA0193 gene product	10.7
		D84145	Hs.39913	novel RGD-containing protein	7.2
		D84557	Hs.155462	minichromosome maintenance deficient (m	7.2
		D86425	Hs.82733	nidogen 2	5.4
60		D86479	Hs.118397	AE-binding protein 1	4.3
00		D86957	Hs.80712	KIAA0202 protein	11.9
		D86985	Hs.79276	Human mRNA for KIAA0232 gene; comp	9.7
		D87464	Hs.10037	KIAA0274 gene product	6.4
		D87465	Hs.74583	KIAA0275 gene product	10
65		D87469	Hs.57652	EGF-like-domain; multiple 2	6.2
03	100440	D01 400		216	0.1

	100467 D89052	Hs.7476	ATD	
			ATPase; H+ transporting; lysosomal (vacu	7.5
	100468 D89289	Hs.118722	fucosyltransferase 8 (alpha (1;6) fucosyltr	5
	100486 HT1112	Hs.10842	Ras-Like Protein Tc4	16.9
~	100497 HT1400	Hs.79137	Carboxyl Methyltransferase, Aspartate, A	5.6
5	100618 HT2710	Hs.114599	Collagen, Type Viii, Alpha 1	7.5
	100661 HT3018	Hs.132748	Ribosomal Protein L39 Homolog	4.4
	100667 HT3127	Hs.169610	Epican, Alt. Splice 11	4.6
	100668 HT3938	Hs.169610	Epican, Alt. Splice 12	4.4
	100676 HT3742	Hs.287820	Fibronectin, Alt. Splice 1	9
10	100775 HT26388	Hs.89603	Mucin 1, Epithelial, Alt. Splice 9	4.7
	100783 HT4018	Hs.191356	Basic Transcription Factor, 44 Kda Subun	13.7
	100829 HT4343	Hs.278544	Cytosolic Acetoacetyl-Coenzyme A Thio	10.6
	100830 HT4344	Hs.4756	Rad2	5.5
	100840 HT4392	Hs.183418	Protein Kinase Pitslre, Alpha, Alt. Splice	4.1
15	100850 HT417	Hs.297939	Cathepsin B	4
	100866 HT4582	Hs.75113	Transcription Factor Ilia	4.9
	100906 HT5158	Hs.5398	Guanosine 5'-Monophosphate Synthase	
	100900 HT5136	Hs.324178		7.2
	100916 HT544	Hs.73946	Ras Inhibitor Inf	
20			Endothelial Cell Growth Factor 1	5.9
20	100945 HT884	Hs.180686	Oncogene E6-Ap, Papillomavirus	4.6
	100975 J02923	Hs.76506	lymphocyte cytosolic protein 1 (L-plastin	30.1
	100988 J03589	Hs.76480	ubiquitin-like 4	8.3
	100996 J03909	Hs.14623	interferon; gamma-inducible protein 30	6.9
~ ~	100999 J03934	Hs.80706	diaphorase (NADH/NADPH) (cytochrom	4.3
25	101011 J04430	Hs.1211	acid phosphatase 5; tartrate resistant	5.9
	101017 J04599	Hs.821	biglycan	5.1
	101031 J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B;	37.2
	101038 J05249	Hs.79411	replication protein A2 (32kD)	6.1
	101054 K02405	Hs.73931	Human MHC class II HLA-DQ-beta mRN	4.3
30	101061 K03515	Hs.180532	glucose phosphate isomerase	4.3
	101091 L06132	Hs.149155	voltage-dependent anion channel 1	7.4
	101097 L06797	Hs.89414	chemokine (C-X-C motif); receptor 4 (fus	4.6
	101104 L07615	Hs.169266	Human neuropeptide Y receptor Y1 (NPY	18.3
	101143 L12723	Hs.90093	heat shock 70kD protein 4	17.4
35	101152 L13800	Hs.9884	Homo sapiens liver expressed protein gen	7.6
55	101183 L19779	Hs.795	H2A histone family; member O	10.9
	101216 L25876	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	7.4
	101233 L29008	Hs.878	sorbitol dehydrogenase	14.6
	101247 L33801	Hs.78802		7.5
40	101282 L38810	Hs.79387	glycogen synthase kinase 3 beta	4.4
40			proteasome (prosome; macropain) 26S sub	
	101326 L42572	Hs.78504	inner membrane protein; mitochondrial (m	5.8
	101332 L47276	Hs.156346	Homo sapiens (cell line HL-6) alpha topo	18.9
	101348 L77213	Hs.30954	phosphomevalonate kinase	7.5
4.5	101352 L77701	Hs.16297	COX17 (yeast) homolog; cytochrome c ox	9.3
45	101378 M13755	Hs.833	interferon-stimulated protein; 15 kDa	18.1
	101396 M15796	Hs.78996	proliferating cell nuclear antigen	8.6
	101404 M16342	Hs.182447	heterogeneous nuclear ribonucleoprotein C	4.5
	101439 M20902	Hs.268571	apolipoprotein C-I	6.1
	101464 M22538	Hs.51299	NADH dehydrogenase (ubiquinone) flavo	8.7
50	101469 M22877	Hs.169248	Human somatic cytochrome c (HCS) gene	4.2
	101472 M22960	Hs.118126	protective protein for beta-galactosidase (6.5
	101478 M23379	Hs.758	RAS p21 protein activator (GTPase activa	14
	101484 M24594	Hs.20315	Interferon-induced protein 56	9.2
	101539 M30818	Hs.926	myxovirus (influenza) resistance 2; homol	5.1
55	101540 M30938	Hs.84981	X-ray repair complementing defective rep	4.7
	101544 M31169		Human propionyl-CoA carboxylase beta-s	5.5
	101552 M31642	Hs.82314	hypoxanthine phosphoribosyltransferase 1	8.5
	101580 M34677	Hs.83363	DNA segment on chromosome X (unique)	
	101600 M37583	Hs.119192	H2A histone family; member Z	4.5 5.7
60	101663 M60750	Hs.2178	H28 histone family; member A	5.7 5.8
oo				
	101664 M60752	Hs.121017	H2A histone family; member A	13.5
	101667 M60858	Hs.79110	nucleolin	4
	101684 M63256	Hs.75124	cerebellar degeneration-related protein (62	7.6
65	101702 M64929	Hs.179574	protein phosphatase 2 (formerly 2A); regu	4.2
65	101754 M77142	Hs.239489	TiA1 cytotoxic granule-associated RNA-b	4.5
	101758 M77836	Hs.79217	pyrroline-5-carboxylate reductase 1	5.7
	101767 M81057	Hs. 180884	carboxypeptidase B1 (tissue)	21.7

	101770 M81601	Hs.78869	transcription eiongation factor A (SII); 1	4.6
	101791 M83822	Hs.62354	cell division cycle 4-like	9.7
	101803 M86546	Hs.155691	pre-B-cell leukemia transcription factor 1	5.5
_	101809 M86849	Hs.323733	Homo sapiens connexin 26 (GJB2) mRNA	22.5
5	101839 M93036	Hs.692	membrane component; chromosomal 4; su	4 _
	101851 M94250	Hs.82045	midkine (neurite growth-promoting factor	7.6
	101888 M99701	Hs.95243	transcription elongation factor A (SII)-like	11.4
	101973 S82597	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:po	4.6
10	101991 U00968	Hs.166	Human SREBP-1 mRNA; complete cds	4.1
10	102009 U02680	Hs.82643	protein tyrosine kinase 9	4.4
	102025 U03911	Hs.78934	mutS (E. coli) homolog 2 (colon cancer; n	4
	102047 U07158	Hs.83734	syntaxin 4A (placental)	6.1 4.4
	102051 U07550	Hs.1197	heat shock 10kD protein 1 (chaperonin 10	10.4
15	102083 U10323	Hs.75117	Interleukin enhancer binding factor 2; 45k	9.5
13	102095 U11313 102130 U15009	Hs.75760 Hs.1575	sterol carrier protein 2 small nuclear ribonucleoprotein D3 polyp	6.6
	102130 U15173	Hs.155596	BCL2/adenovirus E1B 19kD-interacting p	4.3
	102133 U16173	Hs.75823	ALL1-fused gene from chromosome 1q	6.9
	102179 U19713	Hs.76364	allograft Inflammatory factor 1	4.8
20	102180 U19718	Hs.83551	microfibrillar-associated protein 2	7.2
20	102193 U20758	Hs.313	secreted phosphoprotein 1 (osteopontin; b	7.2
	102198 U21090	Hs.74598	polymerase (DNA directed); delta 2; regu	4.3
	102202 U21931	Hs.574	fructose-bisphosphatase 1	4.5
	102209 U22970	Hs.265827	Interferon; alpha-inducible protein (clone	9.9
25	102211 U23070	Hs.78776	putative transmembrane protein	4.9
	102220 U24389	Hs.65436	lysyl oxidase-like 1	8.5
	102224 U24704	Hs.148495	proteasome (prosome; macropain) 26S sub	5.4
	102234 U26312	Hs.278554	chromobox homolog 3 (Drosophila HP1 g	7.7
	102250 U28014	Hs.74122	caspase 4; apoptosis-related cysteine prot	5.4
30	102260 U28386	Hs.159557	karyopherin alpha 2 (RAG cohort 1; impo	6.3
	102261 U28488	Hs.155935	complement component 3a receptor 1	5.7
	102273 U30888	Hs.75981	ublquitin specific protease 14 (tRNA-guan	6.1
	102298 U32849	Hs.54483	N-myc (and STAT) Interactor	4.1
0.5	102302 U33052	Hs.69171	protein kinase C-like 2	4.3
35	102305 U33286	Hs.90073	chromosome segregation 1 (yeast homolo	5.4 4.1
	102320 U34683	Hs.82327	glutathione synthetase	4.1
	102330 U35451	Hs.77254 Hs.87539	chromobox homolog 1 (Drosophila HP1 b	9.4
	102348 U37519 102361 U39400	Hs.75859	aldehyde dehydrogenase 8 chromosome 11 open reading frame 4	5.2
40	102361 U39412	Hs.75932	N-ethylmaleimide-sensitive factor attachm	9.3
40	102369 U39840	Hs.299867	hepatocyte nuclear factor 3; alpha	7.7
	102395 U41767	Hs.92208	a disintegrin and metalloproteinase domai	10.4
	102409 U43286	Hs.118725	selenophosphate synthetase 2	6.2
	102418 U43923	Hs.79058	suppressor of Ty (S.cerevisiae) 4 homolog	4.1
45	102425 U44772	Hs.3873	palmitoyl-protein thioesterase (ceroid-lipo	4.8
	102457 U48807	Hs.2359	dual specificity phosphatase 4	6.3
	102465 U49352	Hs.81548	2;4-dienoyl CoA reductase 1; mitochondri	9.4
	102495 U51240	Hs.79356	Lysosomal-associated multispanning mem	6.5
	102534 U56833	Hs.198307	von Hippel-Lindau binding protein 1	8.6
50	102546 U57877	Hs.3577	succinate dehydrogenase complex; subuni	4.3
	102549 U58046	Hs.198899	eukaryotic translation initiation factor 3; s	6.3
	102557 U58766	Hs.264428	tissue specific transplantation entigen P35	5
	102562 U59309	Hs.75653	fumarate hydratase	6 9.1
55	102568 U59877	Hs.223025	RAB31; member RAS oncogene family	7.9
33	102580 U60808 102581 U61145	Hs.152981 Hs.77256	CDP-diacylglycerol synthase (phosphatid	7.6
	102581 U61145 102590 U62138	Hs.79300	enhancer of zeste (Drosophila) homolog 2 Homo saptens enterocyte differentiation e	7.0
	102591 U62325	Hs.324125	amyloid beta (A4) precursor protein-bindi	4
	102591 U62325 102592 U62389	Hs.11223	Human putative cytosolic NADP-depende	5
60	102617 U65928	Hs.198767	Jun activation domain binding protein	6.1
00	102618 U65932	Hs.81071	extracellular matrix protein 1	23.2
	102638 U67319	Hs.9216	caspase 7; apoptosis-related cysteina prot	8.9
	102663 U70322	Hs.168075	karyopherin (importin) beta 2	7.1
	102666 U70660	Hs.279910	ATX1 (antioxidant protein 1; yeast) homo	4.7
65	102679 U72661	Hs.11342	ninjurin 1; nerve injury-induced protein-1	4.7
	102687 U73379	Hs,93002	ubiquitin carrier protein E2-C	7.7
	102704 U76638	Hs.54089	BRCA1 associated RING domain 1	5.6

	102705 U77180	Hs.50002	small inducible cytokine subfamily A (Cy	11.8
	102721 U79241	Hs.118666	Human clone 23759 mRNA; partial cds	15
	102729 U79254	Hs.181311	asparaginyi-tRNA synthetase	5
_	102739 U79282	Hs.155572	Human clone 23801 mRNA sequence	6
5	102742 U79293	Hs.159264	Human clone 23948 mRNA sequence	13.1
	102761 U82130	Hs.118910	tumor susceptibility gene 101	7
	102788 U86602	Hs.74407	nucleolar protein p40	4.1
	102790 U87269	Hs.154196	E4F transcription factor 1	7.1
10	102801 U89606	Hs.38041	pyridoxal (pyridoxine; vitamin B6) kinase	4.7
10	102808 U90426 102817 U90904	Hs.179606 Hs.83724	nuclear RNA helicase; DECD variant of D Human clone 23773 mRNA sequence	7.5 15.2
	102823 U90914	Hs.5057	carboxypeptidase D	6.6
	102827 U91327	Hs.6456	chaperonin containing TCP1; subunit 2 (b	6
	102838 U94592	Hs.80658	Human uncoupling protein homolog (UCP	6.1
15	102841 U95006	Hs.37616	Human D9 splice variant B mRNA; comp	4.2
	102844 U96113	Hs.324275	Homo saplens Nedd-4-like ubiqultin-prot	6.8
	102868 X02419	Hs.77274	plasminogen activator, urokinase	4
	102907 X06985	Hs.202833	heme oxygenase (decycling) 1	22.7
	102919 X12447		aldolase A; fructose-bisphosphate	9.9
20	102929 X13238	Hs.74649	cytochrome c oxidase subunit Vic	5.4
	102973 X16663	Hs.14601	hematopoletic cell-specific Lyn substrate	4.8
	102983 X17620	Hs.118638	non-metastatic cells 1; protein (NM23A)	4.6
	102985 X17644	Hs.2707	G1 to S phase transition 1	20.6
0.5	103003 X52003	Hs.1406	trefoil factor 1 (breast cancer; estrogen-ind	10.7
25	103018 X53296	Hs.81134	interleukin 1 receptor antagonist	5.8
	103023 X53793	Hs.117950	multifunctional polypeptide similar to SA	4 7.3
	103036 X54925 103060 X57766	Hs.83169 Hs.155324	matrix metalloproteinase 1 (interstitial col matrix metalloproteinase 11 (stromelysin	7.3 17.8
	103073 X59417	Hs.74077	proteasome (prosome; macropain) subunit	5.6
30	103075 X59543	Hs.2934	ribonucleotide reductase M1 polypeptide	4.2
20	103080 X59798	Hs.82932	cyclin D1 (PRAD1; parathyroid adenomat	6.7
	103094 X60787	Hs.296281	Interleukin enhancer binding factor 1	5.7
	103105 X61970	Hs.76913	proteasome (prosome; macropaln) subunit	5.8
	103121 X63679	Hs.4147	translocating chain-associating membrane	4.2
35	103149 X66363	Hs.171834	PCTAIRE protein kinase 1	12
	103180 X69433	Hs.5337	Isocitrate dehydrogenase 2 (NADP+); mit	18.9
	103182 X69819	Hs.99995	Intercettular adhesion molecule 3	10.7
	103188 X70040	Hs.2942	macrophage stimulating 1 receptor (c-met	4.1
40	103191 X70218	Hs.2903	protein phosphatase 4 (formerly X); cataly	10.7 8.2
40	103193 X70476 103194 X70649	Hs.75724 Hs.78580	coatomer protein complex; subunit beta 2 DEAD/H (Asp-Glu-Ala-Asp/His) box poi	13.7
	103195 X70940	Hs.2642	eukaryotic translation elongation factor 1	13.4
	103206 X72755	Hs.77367	monokine induced by gamma interferon	15.1
	103207 X72790	110.77007	Human endogenous retrovirus mRNA for	5.3
45	103208 X72841	Hs.31314	retinoblastoma-binding protein 7	12.3
	103216 X74262	Hs.16003	retinoblastoma-binding protein 4	4.1
	103226 X75042	Hs.44313	v-rei avian reticuloendotheliosis viral onco	6.9
	103230 X75861	Hs.74637	testis enhanced gene transcript	7.9
	103262 X78565	Hs.289114	hexabrachion (tenascin C; cytotactin)	5
5.0	103278 X79882	Hs.80680	lung resistance-related protein	5.7
	103297 X81788	Hs.9078	immature colon carcinoma transcript 1	4.6
	103302 X82103	Hs.3059	coatomer protein complex; subunit beta	4.5
	103316 X83301	Hs.324728	SMA5	7.1
55	103330 X85373 103349 X89059	Hs.77496	small nuclear ribonucleoprotein polypepti serine/threcnine kinase 9	4 4.7
55	103352 X89398	Hs.78853	uracil-DNA glycosylase	5.3
	103364 X90872	Hs.279929	SULT1C sulfotransferase	4
	103374 X91788	Hs.84974	chloride channel; nucleotide-sensitive; 1A	4.2
	103380 X92396	Hs.24167	synaptobrevin-like 1	13.6
60	103395 X94754	Hs.279946	methionine-tRNA synthetase	14.2
	103402 X95404	Hs.180370	cofilin 1 (non-muscle)	4.6
	103410 X96506	Hs.295362	DR1-associated protein 1 (negative colact	8.3
	103420 X97065	Hs.173497	Sec23 (S. cerevisiae) homolog B	4.9
	103421 X97074	Hs.119591	adaptor-related protein complex 2; sigma	5
65	103427 X97303	Hs.250655	H.sapiens mRNA for Ptg-12 protein	7
	103430 X97544	Hs.20716	translocase of Inner mitochondrial membr	4.5
	103438 X98263	Hs.152720	M-phase phosphoprotein 6	4.5

	103464 Y00285	Hs.76473	insulin-like growth factor 2 receptor	4.2
	103470 Y00796	Hs.174103	integrin; alpha L (antigen CD11A (p180);	4.5
	103494 Y08991	Hs.83050	phosphatidylinositol 3-kinase-associated p	4.1
-	103505 Y09912	Hs.33102	transcription factor AP-2 beta (activating	4.5
5	103547 Z14982	Hs.180062	proteasome (prosome; macropain) subunit topoisomerase (DNA) II beta (180kD)	4.3 4
	103551 Z15115 103565 Z22548	Hs.75248 Hs.146354	thloredoxin-dependent peroxide reductase	7.6
	103587 Z29083	Hs.82128	5T4 oncofetal trophoblast glycoprotein	14.6
	103621 Z47727	Hs.150675	polymerase (RNA) II (DNA directed) pol	6.3
10	103622 Z48042	Hs.278672	membrane component; chromosome 11; s	4.4
	103658 Z74615	Hs.172928	collagen; type I; alpha 1	5.9
	103680 Z93784		Homo saplens DNA sequence from PAC	4.4
	103772 AA09247	3 Hs.278554	chromobox homolog 3 (Drosophila HP1 g	4.9
	103774 AA09289		ESTs; Weakly similar to R07G3.8 [C.eleg	6.1
15	103821 AA15762		KIAA0750 gene product	23.3
	103835 AA17221		ESTs; Moderately similar to TRANSCRIP	4
	103886 AA23638		ESTs; Weakly similar to gene 9306 protei	4.9 7.8
	103890 AA23684 103892 AA24352		ESTs; Weakly similar to unknown [S.cere ESTs	4.8
20	103092 AA24352 104054 AA39343		hypothetical protein	5.3
20	104115 AA42809		ESTs	28.7
	104136 AA44266		zv68f6.r1 Soares_total_fetus_Nb2HF8_9w	5.7
	104147 AA45199		ESTs; Highly similar to HSPC039 protein	6.9
	104173 AA47656		ESTs; Weakly similar to finger protein HZ	5.2
25	· 104181 AA47952		ESTs	7.8
	104183 AA48083		ESTs	5.1
	104192 AA48694		Homo sapiens mRNA; cDNA DKFZp564	4.3
	104209 AB00022	21 Hs.16530	small inducible cytokine subfamily A (Cy	12.3
	104234 AB00235		kinesin family member 3B	6.2 4.2
30	104271 C01687	Hs.7381 Hs.109253	ATP synthase; H+ transporting; mitochon	4.2
	104278 C02582 104307 D52818	Hs.111680	ESTs; Highly similar to N-terminal acetyl endosuifine alpha	4.7
	104307 D52616 104309 D55869	Hs.284123	Homo saplens mRNA full length Insert cD	4.2
	104370 H19378	Hs.21851	Homo sapiens mRNA; cDNA DKFZp586	6.4
35	104446 L44497	Hs.7351	ESTs	4.9
55	104453 M19169		cystatin SN	11.6
	104476 N33807	Hs.324275	protease; serine; 15	5.6
	104558 R56678	Hs.88959	Human DNA sequence from clone 967N2	6.3
	104592 R81003	Hs.325820	serine protease; umbilical endothelium	13.6
40	104634 AA0042	74 Hs.19151	ESTs	6.3
	104636 AA0044		ESTs	10.1 4.3
	104658 AA0071		Homo sapiens mRNA; cDNA DKFZp564	4.3 16.6
	104667 AA00723 104675 AA00959		ESTs ESTs: Moderately similar to IIII ALU SU	4.6
45	104675 AA0095		ESTs, Woderately situate to the ACO SO	4.8
73	104785 AA0271		ESTs	8.1
	104791 AA0290		ESTs; Moderately similar to cAMP Induc	10.9
	104804 AA0313		ESTs: Weakly similar to N-WASP [H.sap	5.5
	104807 AA0321	47 Hs.23296	ESTs	10.4
50	104837 AA0394		ESTs; Weakly similar to KIAA0299 [H.s	4.6
	104849 AA0402		Homo sapiens mRNA; cDNA DKFZp564	4.3
	104867 AA0454		Human gene from PACs 37M17 and 305B	4.5
	104884 AA0530	21 Hs.14511	SCO (cytochrome oxidase deficient; yeast	4.7
55	104906 AA0558 104919 AA0571	09 HS.26802	ESTs; Weakly similar to phosphoprotein [ESTs	8.8 5.5
33	104919 AA0578		ESTs	4.2
	104926 AA0588		DKFZP434N093 protein	7
	104938 AA0646		ESTs; Highly similar to CGI-72 protein [H	7.1
	104943 AA0652		ESTs	5.7
60	104957 AA0749		ESTs; Weakly similar to ORF YJL063c [S	4.7
	104961 AA0766	72 Hs.33905	ESTs	5.5
	104968 AA0846		ESTs	4.3
	104975 AA0860	71 Hs.50758	chromosome-associated polypeptide C	8.3
	104977 AA0882		ESTs	6.2
65	104978 AA0884		ESTs	6.7 9.2
	104987 AA1017 105002 AA1132		ESTs ESTs; Moderately similar to alternatively	9.2 6.9
	100002 AA1132	NO 1102/04	CO19, moderately situate to attendancely	0.5

	105012 AA116036 Hs.9329	chromosome 20 open reading frame 1	10.7
	105019 AA121879 Hs.9280	proteasome (prosome; macropain) subunit	5.7
	105029 AA126855 Hs.13268	ESTs	4.4
5	105033 AA127964 Hs.274329	TP53 target gene 1	6.3
3	105035 AA128486 Hs.8859	ESTs	6.5
	105039 AA130349 Hs.36475	ESTs	4.
	105062 AA134968 Hs.36529	ESTs	4.3
	105076 AA142858 Hs.37810	ESTs	6.4
10	105087 AA147884 Hs.9812	ESTS	9.2
10	105091 AA148859 Hs.179909	ESTs; Weakly similar to !!!! ALU SUBFA	5.7
	105093 AA149051 Hs.32405	ESTs	6.3
	105107 AA152302 Hs.25035	DKFZP566G223 protein	6.2
	105127 AA158132 Hs.301957	ESTs; Weakly similar to contains similari	5.7
15	105132 AA159501 Hs.247280	HBV associated factor	4.2
13	105143 AA165333 Hs.24808	ESTs	4.7
	105154 AA171736 Hs.35947	methyl-CpG binding domain protein 4	9
	105162 AA176690 Hs.4084	KIAA1025 protein	9.1
	105186 AA191512 Hs.28005	Homo sapiens mRNA; cDNA DKFZp564	19.3
20	105209 AA205072 Hs.227743	KIAA0980 protein	7.4
20	105223 AA211388 Hs.7750	ESTs	5.1
	105252 AA227428 Hs.9728	ESTs; Weakly similar to KIAA0512 prote	11.1
	105253 AA227448 Hs.5003	KIAA0456 protein	6.4
	105261 AA227871 Hs.6361	MEK partner 1	9.1
26	105263 AA227926 Hs.6682	ESTs	6.7
25	105274 AA228122 Hs.281866	ATPase; H+ transporting; lysosomal (vacu	5.3
	105297 AA233451 Hs.183858	transcriptional intermediary factor 1	8.7
	105309 AA233790 Hs.4104	ESTs, Weakly similar to cDNA EST yk38	7.4
	105312 AA233854 Hs.23348	S-phase kinase-associated protein 2 (p45)	5.8
30	105342 AA235286 Hs.157078	ESTs	4.5
30	105376 AA236559 Hs.8768	ESTs; Weakly similar to IIII ALU SUBFA	5.8
	105386 AA236950 Hs.8115	ESTs	5.5
	105397 AA242868 Hs.7395	ESTs; Weakly similar to house-keeping p	7.7
	105399 AA243007 Hs.16420	ESTs; Highly similar to SH3 domain-bind	5.6
35	105400 AA243052 Hs.65648	RNA binding motif protein 8	5.8
33	105404 AA243303 Hs.21187	ESTs	9.1
	105409 AA243562 Hs.301855	ESTs	4.4
	105436 AA252172 Hs.237856	ESTs; Moderately similar to cAMP Induc	5.1
	105483 AA255874 Hs.23458	ESTs	4.9
40	105493 AA256268 Hs.10283 105495 AA256317 Hs.28785	ESTS	6 5.2
40	105495 AA256317 Hs.28785 105496 AA256323 Hs.301997	Homo saplens mRNA; cDNA DKFZp586	8.7
	105500 AA256485 Hs.222399	DKFZP434N126 protein	9.5
		CGI-96 protein	4.1
	105507 AA256678 Hs.226318 105538 AA258860 Hs.32597	ESTs; Moderately similar to CCR4-associ	4.1
45	105544 AA261954 Hs.24678	ring finger protein (C3H2C3 type) 6	8
43	105546 AA262032 Hs.268281	ESTs	8.1
		ESTs; Weakly similar to 62D9.a [D.melan	4.6
		ESTs	4.6 9.1
	105551 AA262477 Hs.25292	ribonuclease HI; large subunit	
50	105560 AA262783 Hs.306915 105565 AA278302 Hs.18349	ESTs	4.5 4.2
30	105566 AA278323 Hs.17481	ESTs; Weakly similar to partial CDS [C.e	11.9
	105575 AA278717 Hs.12772	Homo saplens clone 24606 mRNA sequen ESTs	5.9
	105584 AA279012 Hs.3454		
	105596 AA279418 Hs.18490	ESTs; Weakly similar to KIAA0665 prote	4.4
55	105604 AA279787 Hs.15467	ESTs ESTs; Moderately similar to putative pho	4 5.6
55			
	105610 AA279991 Hs.99872 105621 AA280865 Hs.6375	ESTs; Weakly similar to trithorax homolo	5.3
		Homo saplens mRNA; cDNA DKFZp564	4.8
	105627 AA281245 Hs.23317 105638 AA281599 Hs.247817	ESTS Home content mPNA for for histone H2B	7.5
60	105645 AA282138 Hs.11325	Homo sapiens mRNA for for histone H2B	5.9
00		ESTs	6.4
	105650 AA282347 Hs.25635	ESTs; Highly similar to HSPC003 [H.sap	11.3
	105666 AA283930 Hs.34906 105674 AA284755 Hs.279789	ESTS	4.7
		CDW52 antigen (CAMPATH-1 antigen)	8
65	105687 AA286809 Hs.28423 105700 AA287643 Hs.35254	ESTs	7.1
03	105700 AA287643 Hs.35254 105705 AA290767 Hs.101282	ESTs; Weakly similar to hypothetical pro	4.9
	105709 AA291268 Hs.26761	Homo saplens mRNA; cDNA DKFZp434	8
	100/00 AM201200 HS.20/01	DKFZP586L0724 protein	6.8

	105731	AA292711	Hs.29131	ESTs	6.4
		AA299789		ESTs	7
	105774	AA348014	Hs.23412	ESTs	7.1
		AA350771		ESTs	13.4
5	105791	AA358038	Hs.14368	SH3-binding domain glutamic acid-rich p	4.3
	105807	AA393803	Hs.16869	ESTs; Moderately similar to COLLAGEN	5.3
	105808	AA393808	Hs.286131	KIAA0438 gene product	4.1
	105812	AA394126	Hs.20814	ESTs: Highly similar to CGI-27 protein [H	14.6
		AA394140		ESTs	4.9
10	105819	AA397920	Hs.28783	Homo sapiens mRNA; cDNA DKFZp564	4.9
		AA399623		ESTs	4.8
		AA400074		ESTs	4
		AA400999		Human ring zinc-finger protein (ZNF127-	4.8
		AA404248		ESTs	5.2
15		AA404277		ESTs; Weakly similar to bisphosphate 3'-	4
		AA406105		adaptor-related protein complex 1; gamma	8.3
		AA406321		KIAA0895 protein	4.6
		AA410336		ESTs; Weakly similar to PROBABLE AT	4.5
		AA410510		ESTs	4.9
20		AA410972		ESTs	5.8
		AA411462		ESTs; Weakly similar to vell 1 [H.sapiens	6.9
		AA411819		KIAA0898 protein	5
		AA412473		ESTs	6.6
~ ~			Hs.169895	ubiquitin-conjugating enzyme E2L 6	4.6
25			Hs.289074	ESTs	4.5
		AA417558		ESTs	12.3 5
		AA417761		Homo sapiens clone 24416 mRNA sequen	15.4
		AA421104		ESTS	6.4
20		AA424006		ESTs; Moderately similar to H5AR [M.m	5.1
30	106154	AA425304	HS.0994	ESTs	11.1
	106157	AA425367	MS.34892	ESTs	19.3
	106166	AA425872	HS. 19301	NADH dehydrogenase (ubiquinone) 1 aip	4.7
	106204	AA428024 AA428239	HS.21479	ESTs	5.7
35		AA428582		ESTs ESTs: Moderately similar to metargidin p	7.7
33		AA420302 AA429951		ESTs	8
		AA430074		ESTs: Weakly similar to Ylr218cp [S.cere	4.4
		AA431462		ESTs	4.9
		AA435536		ESTs	8.8
40			Hs.301444	signal sequence receptor, gamma (transloc	8.7
70		AA436244		ESTs	4.5
			Hs.108124	ESTs	4
	106328	AA436705	Hs.28020	KIAA0766 gene product	4.4
	106341	AA441798	Hs.5243	ESTs; Moderately similar to piL2 hypoth	23.7
45	106348	AA442253	Hs.10702	ESTs	4.7
	106350	AA442763	Hs.194698	cyclin 82	6.1
			Hs.170310	ESTs	6.8
	106389	AA446949	Hs.6236	ESTs	4.7
	106394	AA447223	Hs.25320	Homo sapiens clone 25142 mRNA sequen	4.4
50	106426	AA448282	Hs.16206	ESTs; Weakly similar to F55C12.5 [C.ele	4.5
	106459	AA449741	Hs.4029	glioma-amplified sequence-41	4.8
	106462	AA449912	Hs.30532	ESTs; Highly similar to CGI-77 protein [H	5.2
		AA450047		ESTs	6.8
		AA450351		ESTs	12.4
55		AA452108		transcription factor AP-2 alpha (activating	4.5
		AA452411		ESTs; Highly similar to mediator [H.saple	5.1
			Hs.267819	protein phosphatase 1; regulatory (inhibito	4.9
			Hs.145998	ESTs	8.3
		AA455970		patched related protein translocated in ren	7.6
60		AA456598		ESTs	8.2
		AA456646		ESTs	4.8
			Hs.283437	Homo sapiens clone 23851 mRNA sequen	4.4
		AA458904		ESTs; Weakly similar to torsinA [H.saple	7
		AA458934		ESTS	4.5 6.5
65		AA459657		Homo sapiens clone 23570 mRNA sequen	5.5
			Hs.250824	ESTS	4.4
	100044	AA460239	713.1200U	ESTs	4.4

			11 7540		
		AA460969		mitogen-activated protein kinase kinase ki	8.4
	106698	AA463745	Hs.29403	ESTs; Weakly similar to PROBABLE AT	5.3
	106719	AA465171	Hs 236844	ESTs	5.6
		AA465339		ESTs	10.1
5					
3		AA476473		tripie functional domain (PTPRF interacti	10.4
	106759	AA477263	Hs.25584	ESTs	4.2
	106765	AA477717	Hs.306117	interleukin 13 receptor; alpha 1	6.9
		AA478558		API5-like 1	5.1
		AA482014		centrin; EF-hand protein; 3 (CDC31 yeast	5.1
10	106836	AA482112	Hs.238707	ESTs	4.8
	106840	AA482548	Hs.5534	ESTs	10.3
		AA486183		ESTs; Weakly similar to similar to oxyste	6.2
		AA487228		ESTs	4.5
	106878	AA488872	Hs.12314	Homo sapiens mRNA; cDNA DKFZp586	7.9
15	106888	AA489101	Hs 24734	oxysterol binding protein	6.4
		AA489665		ESTS	4.6
		AA490323		SUMO-1 activating enzyme subunit 1	4.2
	106919	AA490885	Hs.21766	ESTs	12.3
		AA490899		ESTs	6.2
20		AA496204		ESTS	4
20					
		AA496347		retinoblastoma-binding protein 7	4.8
	106948	AA496788	Hs.21077	KIAA0532 protein	4
	106968	AA504631	Hs 26813	ESTs; Weakly similar to hypothetical 43.2	4.4
		AA505141		Human DNA sequence from clone 167A1	5.4
25					
25		AA521121		bromodomain adjacent to zinc finger dom	4.1
	106981	AA521157	Hs.74101	ESTs	5.7
	106998	AA598461	Hs.195464	insulin-like growth factor binding protein	18.7
		AA598710		ESTs	6.2
		AA599214		ESTs	4.1
30	107032	AA599472	Hs.247309	succinate-CoA ligase; GDP-forming; beta	5.3
	107052	AA600134	Hs 12482	glyceronephosphate O-acyltransferase	4.8
		AA600147		ESTs; Weakly similar to NADH-cytochro	5.8
		AA600310		programmed cell death 8 (apoptosis-induc	4.9
		AA609210		ESTs	8.4
35	107102	AA609723	Hs.30652	ESTs	8
	107100	AA609943	Un 22702	ESTs	9.5
		AA620553		flap structure-specific endonuclease 1	4.9
	107132	AA620598	Hs.9052	ESTs	5.3
	107136	AA620795	Hs.8207	ESTs	4
40			Hs.170088	ESTs	6.7
-10					
		AA621169		ESTs	19
	107159	AA621340	Hs.10600	ESTs; Weakly similar to ORF YKR081c [8.1
	107174	AA621714	Hs.25338	ESTs	8.5
		D51095	Hs.35861	DKFZP586E1621 protein	7.2
45	107217	D59971	Hs.25925		7.9
43				ESTs	
	107295	T34527	Hs.80120	UDP-N-acetyl-aipha-D-gaiactosamine:po	5.6
	107299	T40327	Hs.30661	iung resistance-related protein	8.4
		T8 1665	Hs.278422	DKFZP586G1122 protein	7.5
			Hs.8297		4.7
		U85625		ribonuclease 6 precursor	
50	107373	U85773	Hs.154695	phosphomannomutase 2	4.8
	107481	W58247	Hs.279766	Homo sapiens kinesin superfamily motor	6.3
		Y13936	Hs.17883	protein phosphatase 1G (formerly 2C); ma	8.3
		AA024835			
				potassium voltage-gated channel; delayed	7.3
		AA026030		ESTs; Weakly similar to CALPAIN 2; LA	7.3
55	107908	AA026894	Hs.42826	ESTs	4.9
		AA041341		ESTs	5.4
			Hs.159971		
				ESTs	8.4
		AA046424		ESTs; Weakly similar to HYPOTHETICA	6.6
	108217	AA058686	Hs.62588	ESTs	7.7
60			Hs.172608	ESTs	4
50				ESTs	
		AA071514			4
		AA100694		Human DNA sequence from BAC 15E1 o	5.5
	108647	AA112396	Hs.44276	ESTs; Moderately similar to HOMEOBO	14.3
			Hs.274417	Homo sapiens mRNA; cDNA DKFZp564	5.2
65		AA120785			
03				ESTs	5.6
		AA121315	Hs./0823	KIAA1077 protein	10.5
	108733	AA126422		zn84f1.s1 Stratagene lung carcinoma 9372	4.4
				•	

		AA128125		ESTs; Moderately similar to CELL GROW	4.6
			Hs.273344	DKFZP564O0463 protein	5.5
			Hs.111680	ESTs	7.2
_			Hs.293591	ESTs	11.3 8.9
5			Hs.194691	retinoic acid induced 3 ESTs	14.7
		AA156360 AA156460		dual specificity phosphatase 12	4.9
		AA156542		ESTs	4.6
		AA159525		Homo sapiens DNA from chromosome 19	7.2
10			Hs.270737	tumor necrosis factor (ligand) superfamily	4
		AA167006		ESTs	5.9
		AA167708		ESTs	4.2
			Hs.257924	ESTs	4
			Hs.301997	DKFZP434N126 protein	4
15		AA179845		RAB6 Interacting; kinesin-like (rabkinesin	13.6
			Hs.283707	ESTs	11.8
		AA181902		ESTs; Weakly similar to IIII ALU SUBFA	5.4
		AA195255		ESTs	6.7 4.9
20		AA195515		ESTs; Weakly similar to alternatively spli	5.4
20		AA196332 AA206800		ESTs ESTs: Moderately similar to zinc finger p	5.5
			Hs. 110826	trinucleotide repeat containing 9	20.1
			Hs.295232	ESTs	4.7
		AA232904		ESTs	6.8
25			Hs.289069	ESTs; Weakly similar to WD40 protein C	10.6
		AA233892		ESTs: Weakly similar to IIII ALU SUBFA	8
			Hs.262346	ESTs; Weakly similar to ORF2: function	8.2
	109572	F02027	Hs.171937	ESTs	4.8
		F04165	Hs.235873	ESTs; Weakly similar to K11C4.2 [C.eleg	5.2
30		F04477	Hs.291531	ESTs; Moderately similar to GLYCERAL	6.6
		F09684	Hs.24792	ESTs; Weakly similar to ORF YOR283w	7.1 5
		F10009	Hs.9196	ESTs	4.7
		F10161	Hs.22969	ESTs Homo sapiens clone 669 unknown mRNA	4.5
35		F10770 F10979	Hs.180378 Hs.153106	Homo saplens clone 23728 mRNA sequen	8.7
33		H20543	Hs.6278	DKFZP586B1621 protein	16.6
		H25577	Hs.176588	ESTs; Weakly similar to CYTOCHROME	6.2
		H29285	Hs.32468	ESTs	4.5
		H56965	Hs.4082	yr09f06.s1 Soares fetal liver spleen 1NFL	5.7
40		H59617	Hs.5199	ESTs; Weakly similar to UBIQUITIN-CO	19.5
		H95079	Hs.15617	ESTs; Weakly similar to IIII ALU SUBFA	6.2
		H98714	Hs.24131	ESTs	30.2
		N22262	Hs.131705	ESTs	5.8 8.2
45		N23174	Hs.22891	solute carrier family 7 (cationic amino aci	6.7
43		N24716	Hs.12244	ESTs; Weakly similar to C44B9.1 [C.eleg ESTs	5.9
		N25262 N26101	Hs.27931 Hs.323401	Human ring zinc-finger protein (ZNF127-	4
		N29454	Hs.27552	ESTs; Weakly similar to putative p150 [H	4.3
		N30856	Hs.30246	solute carrier family 19 (thlamine transpo	12.8
50		N31952	Hs.167531	Homo sapiens mRNA full length insert cD	10.1
-		N32919	Hs.27931	ESTs	4.7
		N33063		ESTs; Weakly similar to S164 [H.sapiens	4.2
	110860		Hs.170065	ESTs	12.5
	110897	N39148	Hs.6880	DKFZP434D156 protein	4
55		N46252	Hs.29724	ESTs	23.2
	110935		Hs.305979	protease inhibitor 1 (anti-elastase); alpha-	4.8
	110970		Hs.96870	Homo saplens mRNA full length insert cD	5.4
	111006		Hs.166146	Homer, neuronal immediate early gene; 3	4.7 13.3
60		N53388	Hs.7222 Hs.3628	ESTs mitogen-activated protein kinase kinase ki	5.7
UU		N54067 N59543	Hs. 15456	PDZ domain containing 1	8.3
		N62522	Hs.20450	ESTs	14.3
		N63823	Hs.269115	ESTs	7.9
	111132		Hs.83293	ESTs; Highly similar to unknown function	4.4
65	111139		Hs.290943	ESTs	6
		N66857	Hs. 14808	ESTs; Weakly similar to III! ALU CLASS	4.1
		N67102	Hs.21851	Homo sapiens mRNA; cDNA DKFZp586	5.5

	111178 N67227	Hs.24633	ESTs	5.7
	111179 N67239	Hs.10760	ESTS	37
	111181 N67278	Hs. 171802	ESTs; Weakly similar to hypothetical pro	5.6
	111184 N67437	Hs.243901	Homo saplens mRNA; cDNA DKFZp564	8.7
5	111221 N68869	Hs.15119	ESTs	7.3
,	111223 N68921	Hs.297939	ESTs; Weakly similar to neogenin (H.sap	9
	111229 N69113	Hs.110855	ESTs . Weakly similar to neogenia (ri.sap	8.9
	111241 N69514	Hs.288880		6.9
	111268 N70481	Hs.26118	ESTs; Weakly similar to CGI-82 protein [
10	111295 N73275		Homo sapiens clone 24766 mRNA sequen	4.5
10		Hs.21275	ESTs; Weakly similar to ubiquitin-conjug	5.6
	111299 N73808	Hs.24936	ESTs	8.5
	111336 N79565	Hs.29894	ESTs	6.7
	111357 N91023	Hs.87128	ESTs	15
16	111370 N92915	Hs.94631	brefeldin A-inhibited guantne nucleotide-e	5.2
15	111806 R33468	Hs.279008	ESTs	10
	111825 R35885	Hs.286148	stromal antigen 1	4.5
	111836 R36228	Hs.25119	ESTs	7.2
	111890 R38678	Hs.12365	ESTs	17.3
20	111923 R39995	Hs.25925	Homo sapiens clone 23860 mRNA sequen	7.3
20	111942 R40576	Hs.21590	ESTs	9.2
	111987 R42036	Hs.6763	KIAA0942 protein	10.6
	112101 R44793	Hs.296341	adenylyl cyclase-associated protein 2	5.3
	112134 R46025	Hs.7413	ESTs	17.4
	112197 R49482	Hs.5637	ESTs	4.4
25	112244 R51309	Hs.70823	KIAA1077 protein	11
	112253 R51818		Homo sapiens mRNA; cDNA DKFZp566	9.3
	112305 R54822	Hs.26244	ESTs	4.4
	112449 R63802	Hs.124186	ring finger protein 2	6.3
	112483 R66534	Hs.285885	ESTs	4.9
30	112519 R68631	Hs.11861	ESTs	14.3
	112610 R79392	Hs.23643	ESTs	5.2
	112693 R88741	Hs.91065	ESTs; Moderately similar to proliferation	4.6
	112751 R93507	Hs.8207	ESTs	5.6
	112801 R97486	Hs.157160	protein kinase; DNA-activated; catalytic p	8.7
35	112869 T03313	Hs.4747	dyskeratosis congenita 1; dyskerin	5.9
	112871 T03352	Hs.12285	ESTs	5.8
	112908 T10065	Hs.3530	TLS-associated serine-arginine protein	4.1
	112966 T17119	Hs.102548	glucocorticoid receptor DNA binding fact	5.7
	112971 T17185	Hs.83883	ESTs	6.4
40	112995 T23528	Hs.7155	ESTs; Weakly similar to TYKI protein [M	9.1
-	113047 T25867	Hs.7549	ESTs	5.4
	113075 T34660	Hs.6986	ESTs; Weakly similar to IIII ALU SUBFA	5.7
	113117 T47819	Hs.159153	ESTs	5.8
	113206 T58044	Hs.241471	ESTs; Moderately similar to IIII ALU SU	6.4
45	113248 T63857		yc16e1.s1 Stratagene lung (#93721) Homo	4.6
	113260 T64896	Hs.287420	ESTs	6.9
	113277 T65797	Hs.11774	protein (peptidyl-prolyl cis/trans isomeras	5.6
	113278 T65802	Hs.11135	yc11h10.s1 Stratagene lung (#937210) Ho	4.5
	113440 T86121	Hs.191445	ESTs	6.4
50	113523 790037	Hs.95549	ESTs	6.4
50	113604 T92735	Hs.296083	ESTs	8.7
	113702 T97307	113.1.30000	ESTs; Moderately similar to IIII ALU SU	9.5
	113783 W19222	Hs.7041	ESTs; Weakly similar to IIII ALU SUBFA	5.2
	113794 W37382	Hs.11090	ESTs	11.9
55	113808 W44735	Hs.9286	ESTs	16.7
55	113811 W44928	Hs.6994	ESTs	4
	113822 W47350	Hs.17466		4.8
	113823 W47388	Hs.55099	retinolc acid receptor responder (tazaroten	4.0
	113836 W56792	Hs.12040	rab6 GTPase activating protein (GAP and ESTs; Weakly similar to KIAA0881 prote	4.1
60		Hs.5297		4.3
UU	113857 W65477	Hs.23920	Homo sapiens mRNA; cDNA DKF2p564	
	113886 W72471		ESTS	4.6
	113895 W73738	Hs.12921	ESTs	7.1
	113923 W80763	Hs.3849	ESTs; Weakly similar to FK506-binding p	6.8
65	113931 W81205	Hs.3496	ESTs	6.1
65	113950 W85765	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434	14
	113970 W86748	Hs.8109	ESTs	15
	114051 W94942	Hs.177534	dual specificity phosphatase 10	5.4

	114057	W96222	Hs.34192	ESTs	4.8
	114086	Z38266	Hs.288649	Homo saplens PAC clone DJ0777O23 fro	5.1
	114098	Z38347	Hs.118338	ESTs; Weakly similar to similar to S. cere	6.2
_		Z38435	Hs.184108	ribosomal protein L21	4.6
5		Z38595	Hs.125019	ESTs; Highly similar to KIAA0886 prote	22
		Z38763	Hs.15740	amyloid beta (A4) precursor protein-bindi	8.8
		Z38814	Hs.27196	ESTs	4_
		Z38909	Hs.22265	ESTs	7.2
10	114177	Z39062	Hs.23740	ESTs	5.3
10	114196	Z39211	Hs.150926	fucose-1-phosphate guanylyltransferase	4.4
		Z39301	Hs.7859	ESTs	5.1 7.2
		Z39897	Hs.13297	ESTs	14.7
		Z39898 Z40715	Hs.21948 Hs.184641	ESTs delta-6 fatty acid desaturase	19.4
15	114202	Z40713	Hs.173091	DKFZP434K151 protein	8.9
13		Z41342	Hs.22941	ESTs	13.7
		AA024604		ESTs .	10.1
			Hs.104613	ESTs	5.7
			Hs.151678	UDP-N-acetyl-alpha-D-galactosamine:po	7.3
20			Hs.106469	suppressor of var1 (S.cerevisiae) 3-like 1	4.3
	114542	AA05576B	Hs.293380	ESTs	11.7
			Hs.292833	ESTs	7.3
			Hs.107149	ESTs; Weakly similar to PTB-ASSOCIAT	6.1
		AA113303		transmembrane 4 superfamily member (te	4.3
25			Hs.110857	ESTs; Highly similar to putative DNA-dir	7.1
			Hs.154443	minichromosome maintenance deficient (S	5.3
			Hs.109929	ESTs	4.2
			Hs.269956	ESTs	4.8 7.1
30		AA161161		mulliple inosilol polyphosphate phosphata ESTs	4.4
30		AA165313 AA235035		ESTs; Moderately similar to ubiquitin spe	5
			Hs.196437	ESTs; Weakly similar to R26660_1; parti	16.9
		AA236359		ESTs	5.1
		AA243012		ESTs	8.5
35		AA250737		ESTs	35.1
		AA252627		homeo box B5	5.7
		AA252863		ESTs	6.2
		AA253217		ESTs	13
	115082	AA255557	Hs.198269	NADH dehydrogenase (ubiquinone) 1 alp	28.2
40		AA256486		ESTs	8.8
			Hs.279938	ESTs; Weakly similar to supported by GE	4.1
			Hs.284216	ESTs	8.3
			Hs.186572	ESTs	5.1
45		AA278650		ESTs; Weakly similar to similar to the bet	4.6 8.3
43			Hs.283732	ESTs ESTs	10.1
		AA278961 AA279071		splicing factor 3b; subunit 1; 155kD	9.5
	115285	AA279799	Hs.293736	ESTs	5.8
	115203	AA279943	Hs.122579	ESTs	5.1
50		AA281793		ESTs	5
-			Hs.193063	ESTs	6.1
		AA283198		ESTs	4.9
		AA284561		ESTs	5.8
	115471	AA287138	Hs.59346	ESTs; Weakly similar to ASPARTYL-TR	11.7
55	115506	AA292537	Hs.45207	Human DNA sequence from clone 620E1	6.8
		AA331393		ESTs	5.8
		AA398392		ESTs; Weakly similar to F33G12.3 gene p	9.7
		AA399264		ESTs; Highly similar to HSPC039 protein	8.7
60		AA400247		ESTs	4
60		AA400948		ESTs; Weakly similar to zinc finger prote	8.4
			Hs.305971	ESTS	5.3 16.1
		AA405098 AA405620		ESTs ESTs; Weakly similar to weak similarity t	4.7
			Hs.183056	Human DNA sequence from clone 34B21	5.1
65		AA406546		Homo saplens mRNA; cDNA DKFZp564	20.5
05	115721	AA417102	Hs 90960	ESTs	4.8
		AA421560		ESTs	7.0
	110100	70 112 1000			-

	115764 AA421562		anterior gradient 2 (Xenepus laevis) homo	41.6
	115835 AA428576		ESTs	4.2
	115844 AA430124		ESTs	11.9
_	115875 AA433943		ESTs; Weakly similar to Weak similarity	33.5
5	115888 AA435839	Hs.76591	KIAA0887 protein	7.2
	115922 AA441911	Hs.71869	ESTs; Weakly similar to KIAA0926 prote	5.1
	115941 AA443602	Hs.46679	ESTs	4.8
	115947 AA443793	Hs.94761	ESTs	8.3
	115948 AA443798		poly(A)-specific ribonuclease (deadenylat	13.5
10	115951 AA443918		cofilin 1 (non-muscle)	7.5
••	115967 AA446887		ESTs	8.8
	115984 AA447687		ESTs	13.1
	116009 AA449448		ESTs	5.5
15	116024 AA451748		Human DNA sequence from clone 718J7	7.5
13	116028 AA452112		thioredoxin-like	12.7
	116050 AA453656		ESTs	7.2
	116097 AA456099		ESTs	11.8
	116108 AA457566		ESTs	4.5
	116121 AA459254		ESTs	4.5
20	116127 AA459703	Hs.279884	v-myc avian myelocytomatosis viral onco	4.3
	116129 AA459956	Hs.49163	ESTs; Highly similar to putative ribonucle	7.6
	116142 AA460649	Hs.39457	ESTs	4.8
	116204 AA465701	Hs. 108646	ESTs	6.8
	116221 AA478397		ESTs	4.9
25	116222 AA478415		ESTs	4
	116238 AA479362		DKFZP586N0819 protein	4.6
	116246 AA479961		ESTs; Highly similar to ubiquitin-conjuga	4
	116249 AA480886		ESTs	18.5
30	116250 AA480975		ESTs	10.8
20	116254 AA481146		ESTs; Weakly similar to OXYSTEROL-B	9.1
	116256 AA481256		ESTs; Weakly similar to lysophospholipa	8.4
	116264 AA482594		Homo sapiens mRNA; cDNA DKFZp586	7.2
~	116265 AA482595		ESTs; Weakly similar to F25B5.3 [C.eleg	11.1
	116282 AA486550		ESTs; Weakly similar to Wiskott-Aldrich	6.2
35	116298 AA489046		ESTs	4.9
	116300 AA489194		ESTs; Weakly similar to snRNP protein B	4.6
	116327 AA490959	Hs.28005	Homo saplens mRNA; cDNA DKFZp564	5.8
	116334 AA491457	Hs.48948	ESTs	4.3
	116337 AA496127	Hs.44070	ESTs	8.4
40	116351 AA504116	Hs.82501	Homo sapiens mRNA; cDNA DKFZp434	5.3
	116357 AA504806		Homo sapiens clone 23620 mRNA sequen	5.2
	116415 AA609204		KIAA0874 protein	6.6
	116443 AA620313		ESTs; Weakly similar to KERATIN; TYP	4.5
	116470 C13992	Hs.83484	ESTS	4.5
45	116480 C14088	HS.03404		
45		11- 75007	glyceraldehyde-3-phosphate dehydrogena	5.6
	116578 D51272	Hs.75337	nucleolar phosphoprotein p130	4.1
	116579 D51276	Hs.81915	leukemia-associated phosphoprotein p18	5.8
	116626 F02028	Hs.81907	ESTs	4.9
	116647 F03069	Hs.15395	ESTs; Weakly similar to ARGINYL-TRN	6.1
50	116674 F04816	Hs.92127	ESTs	10.6
	116680 F08813	Hs.273829	LINE retrotransposable element 1	4.2
	116700 F09983	Hs.317589	ESTs	13
	116724 F13665	Hs.65641	ESTs	8.5
	116726 F13681	Hs.53913	ESTs	5.6
55	116732 F13779	Hs.165909	ESTs	11.6
	116734 F13789	Hs.93796	DKFZP586D2223 protein	5.4
	116760 H11054	Hs. 155342	protein kinase C; delta	4.3
	116780 H22566	Hs.30098	ESTs	5.7
	116786 H25836	Hs.301527	tumor necrosis factor (ligand) superfamily	8.8
60	116787 H28581	Hs.15641	ESTs	
00	116790 H29532	Hs.101174		8.6
			microtubule-associated protein tau	22.2
	116803 H47357	Hs.109701	ESTs; Moderately similar to weak similar	6.7
	116877 H68116	Hs.168732	ESTs	6.5
	116921 H72948	Hs.821	biglycan	20.7
65	117216 N20083	Hs.42792	ESTs	4.4
	117232 N20579	Hs.61153	ESTs	7.4
	117284 N22162	Hs.183779	ESTs; Weakly similar to cDNA EST yk33	4.1
			· ·	

	117344	N24046	Hs.210706	ESTs	7.4
	117367		Hs.42502	ESTs	10.5
	117392	N26175	Hs.93405	ESTs	5.8
_	117394	N26257	Hs.39871	KIAA0727 protein	8.4
5	117412		Hs.42645	ESTs	18.1
	117498		Hs.44268	ESTs; Highly similar to myelin gene expr	5.8
	117557		Hs.44532	diublqultin	12.3
	117634		Hs.13323	ESTs; Weakly similar to SODIUM- AND	4.4
10	117639		Hs.44833	ESTs	6
10	117754		Hs.59757	ESTs	7.6
	117852		Hs.136102	KIAA0853 protein	5.9 7.9
	117879		Hs.303025	ESTs; Weakly similar to keratin; 67K typ	7.9
	117924		Hs.38891	ESTs KIAA0956 protein	5
15	117950 117992		Hs.75478 Hs.172089	Homo sapiens mRNA; cDNA DKFZp586	7
13	118138		Hs.93560	ESTs; Weakly similar to trg [R.norveglou	4.8
	118215		Hs.77910	3-hydroxy-3-methylglutaryl-Coenzyme A	13.4
	118229		Hs.166254	heat shock 90kD protein 1; alpha	5.4
	118265		Hs.48645	EST	4.2
20	118336		Hs.47166	ESTs	7.2
	118363		Hs.48938	ESTs	6
	118429		Hs.74649	ESTs	4.1
	118470	N66769	Hs.291033	ESTs	5.4
	118472		Hs.42179	ESTs	10.8
25	118475	N66845		ESTs; Weakly similar to IIII ALU CLASS	4.5
	118493		Hs.50115	ESTs	5.3
	118528		Hs.49397	ESTs	10.4
	118542		Hs.49427	ESTs	7.9
20	118600			ESTs	9.2
30	118695		Hs.50081	Homo saplens mRNA full length insert cD	9.8 4.3
	118698		Hs.50187	ESTs ·	8.1
	118901 118952		Hs.94445	ESTs; Highly similar to CGI-90 protein (H	12.5
	118976	N02630	Hs.93391	ESTs, Flighty similar to Cor-so protein (1)	5
35	118986		Hs.125830	ESTs	7.3
55	118989		Hs.45105	ESTs	8.2
	119027		Hs.114611	ESTs	5
	119042		Hs.5472	ESTs	4
	119075		Hs.287820	fibronectin 1	6
40	119260	T15916	Hs.102950	ESTs; Highly similar to coat protein gamm	4.1
	119271	T16387	Hs.65328	ESTs	12.1
	119298		Hs.155478	cyclin T2	5.6
	119302			ESTs	14.3
	119341		Hs.146388	microtubule-associated protein 7	4
45		W35390	Hs.55533	ESTs	5.3
	119580		Hs.92260	high-mobility group protein 2-like 1	5.6
		W46286	Hs.233694	ESTs; Weakly similar to ZK1058.5 [C.ele	6.5 8.1
		W47620	Hs.56009 Hs.57787	2'-5'oligoadenylate synthetase 3 ESTs	5.5
50		W60473 W69134	Hs.57987	ESTs	4.6
50		W69747	Hs.94806	KIAA1062 protein	4
		W73788	Hs.43213	ESTs	4
		W80702	Hs.58461	ESTs	4.8
		W80852	Hs.250696	KDEL (Lys-Asp-Glu-Leu) endoplasmic re	4.2
55	119873	W81129	Hs.44865	Homo saplens mRNA; cDNA DKFZp586	4.8
		W84767	Hs.58698	ESTs	5.9
	119940	W86779	Hs.272531	DKFZP586B0319 protein	9
		W86835	Hs.14158	copine III	4.8
		W87812	Hs.93581	Homo saplens mRNA; cDNA DKFZp586	4
60	120131		Hs.75887	coatomer protein complex; subunit alpha	4.2
	120150		Hs.153746	ESTs	11
	120206		Hs.91668	ESTs	8.2
	120241		Hs.65946	ESTS	15.6
65		AA169752		ESTs; Weakly similar to Similarity to Yea	4.2
65		AA194166		KIAA1038 protein ESTs	6.8
	120325	AA195651	Hs.104106 Hs.193172	ESTs .	15.2 6.8
	120352	AAZ 1 1400	113, 193 172	2019	0.0

	120428 AA236822	Hs.173694	KIAA1097 protein		5.6
	120524 AA261852	Hs.192905	ESTs		5.6
	120528 AA262107	Hs.104413	ESTs		4.5
	120571 AA280738		ESTs		4.9
5	120649 AA287115	Hs.192843	ESTs		4.5
	120655 AA287347		ESTs		6.7
	120668 AA287833	Hs.292913	ESTs		8.3
	120712 AA292654		eukaryotic translation initiation factor 2 ai		4.6
• •	120713 AA292655		ESTs		10.6
10	120724 AA293470		ESTs		5.4
	120873 AA358015		EST		7.1
	120885 AA365515		ESTs; Moderately similar to IIII ALU SU		4.6
	120919 AA381125		ESTs		8.2
15	120948 AA397822		ESTs; Highly similar to similar to mage n		8.6
13	120969 AA398116		casein kinase 1; gamma 3		10.5 10.9
	120977 AA398155 121103 AA398936		ESTs EST		7.4
	121291 AA401753		lung cancer candidate		5.3
	121320 AA403008		T-cell receptor; alpha (V;D;J;C)		13.5
20	121463 AA411745		ESTs; Weakly similar to KIAA0554 prote		8.9
	121596 AA416740		ESTs		22.6
	121723 AA419622		ESTs; Weakly similar to Mouse 19.5 mRN		8
	121748 AA421171		ESTs		5.6
	122125 AA434411		ESTs		5.3
25	122522 AA449444	Hs.98969	ESTs		4
	122655 AA454756		ESTs		4
	122704 AA456326		ESTs		6.2
	122782 AA459894	Hs.99472	ESTs		5.3
20	122856 AA463740		Src-like-adapter		13.1
30	122882 AA465381		ESTs; Weakly similar to B0041.5 [C.eleg		5.5
	122928 AA476578		ESTs		6.3
	122974 AA478625		ESTs		6 12.5
	122997 AA479295 123016 AA480103		Kelch motif containing protein ESTs; Weakly similar to alternatively spli		4.4
35	123107 AA486071		ESTs; vveakly similar to alternatively spill		8.3
"	123111 AA486273		ESTS		4.2
	123114 AA486407		ESTs; Moderately similar to KIAA0454 p		5.2
	123136 AA487449		ESTs		4.2
	123137 AA487468		ESTs; Weakly similar to secreted cement		14.6
40	123169 AA488892		ESTs; Weakly similar to Gag-Pol polypro		4.5
	123176 AA489020	Hs.69233	ESTs		5.2
	123338 AA504249	Hs.187585	ESTs		4
	123436 AA598714		protease; serine; 15		7.3
	123442 AA598803		ESTs		5.9
45	123449 AA598899		Homo sapiens mRNA; cDNA DKFZp564	.*	4.1
	123494 AA599786		ESTs		4
	123503 AA600121		ESTs		12.8
	123533 AA608751		ESTs; Weakly similar to IIII ALU SUBFA		7.9 23.1
50	123619 AA609200		ESTs ESTs		6.6
50	123673 AA60947 123729 AA609778				4.7
	123819 AA620636		membrane component; chromosome 11; s ESTs		4.7
	123960 AA62178		methylmalonate-semialdehyde dehydroge		7.6
	124000 D57317	Hs.74861	activated RNA polymerase II transcription		4.4
55	124006 D60302	Hs.270016	ESTs		20.6
	124012 D80240	Hs.241471	HUM5G11A Human fetal brain (TFujiwa		6.7
	124021 F02859	Hs.13974	ESTs		4.7
	124049 F10523	Hs.74519	primase; polypeptide 2A (58kD)		4.7
	124059 F13673	Hs.283713	ESTs		7.7
60	124243 H66710	Hs.133525	ESTs		5.5
	124308. H93575	Hs.241507	Homo sapiens mRNA; cDNA DKFZp564		11.4
	124314 H94877		GTP-binding protein		13.7
	124315 H94892	Hs.288757	v-ral simian leukemia viral oncogene hom		14
	124350 N21359	Hs.101282	Homo sapiens mRNA; cDNA DKFZp434		8.6
65	124352 N21626	Hs.102406	ESTS		7.2
	124357 N22401	U- 7525	yw37g07.s1 Morton Fetal Cochlea Homo		5.2 7.9
	124390 N29325	Hs.7535	ESTs; Highly similar to COBW-like place		7.9

	124420	N40188	Hs.11090	ECT	9.5
		N48000	ns. 1 1090	ESTs Homo saplens mRNA; cDNA DKFZp586	4.8
		N50114	Hs.266175	ESTs	6.1
_		N63172	Hs.146409	cell division cycle 42 (GTP-binding prote	5.6
5		N74604	Hs.11090	ESTs	12.8
		N79515	Hs.306117	interleukin 13 receptor, alpha 1	6.4 8.3
		N91279 R01037	Hs.109654 Hs.181013	ESTs; Moderately similar to outer membr phosphoglycerate mutase 1 (brain)	12.3
		R01037	ns. 10 10 13	ESTs; Weakly similar to IIII ALU CLASS	5.4
10		R12405	Hs.112423	Homo sapiens mRNA; cDNA DKFZp586	6.6
		R40923	Hs.106604	ESTs	4.9
		R41933		ESTs	7.2
		R44357	Hs.48712	ESTs; Weakly similar to cDNA EST EMB	8.6 4.9
15		R63652 R88992	Hs.137190 Hs.180612	ESTs ESTs	4.5
15		T10598	Hs.324841	ESTs; Weakly similar to IIII ALU SUBFA	4.4
		T11134	Hs.431	murine leukemia viral (bmi-1) oncogene h	12.6
		T78089	Hs.270134	ESTs	4.1
		T92544	Hs.137548	CD84 antigen (leukocyte antigen)	14.8
20		W15495	Hs.129781	chromosome 21 open reading frame 5	6.7 4.8
		W37999	Hs.24336	ESTS	4.0 5.3
		W38419 W86423	Hs.105413	ESTs ESTs	6.6
		W93640	Hs.4779	ESTs; Moderately similar to similar to AD	5.8
25		Z39436	Hs.102720	ESTs	12.2
		Z39821	Hs.288193	ESTs	10.2
		Z39833	Hs.124940	GTP-binding protein	6.8
		AA151216		tyrosine 3-monooxygenase/tryptophan 5-m	8 5.4
30		AA044232 AA126504		ESTs sorting nexin 4	4.1
50		AA507383		cytochrome c oxidase subunit VIc	11.5
		AI432621	Hs.82685	CD47 antigen (Rh-related antigen; integri	4
	125698	AA748483	Hs.191356	general transcription factor IIH; polypepti	9.4
2.5	125745	A1283493	Hs.75722	ribophorin II	6.2
35		H09290	Hs.76550	Homo saplens mRNA; cDNA DKFZp564	25.9 4.1
		AA434562 N90960	Hs.35406 Hs.265398	ESTs ESTs; Weakly similar to transformation-r	16.4
		N99638	Hs.124084	tumor necrosis factor receptor superfamily	9.5
		AI066486		similar to S. cerevislae RER1	5.6
40		U46278	Hs.122489	ESTs	7.5
		W40262	Hs.146310	ESTs; Weakly similar to putative p150 [H	4.1
		W78968	Hs.181307	H3 histone; family 3A	4.5 5.2
		AA205862 T72569	Hs.7942 Hs.125359	ESTs Thy-1 cell surface antigen	4.4
45		AI334393	Hs.102178	ESTs	4.6
		AI203334	Hs.160628	ESTs	11.7
			Hs.279607	ESTs	4
		A1052047	Hs.26102	ESTs	7
50		R31652	Hs.821	biglycan	5.6 14.3
50			Hs.179729	collagen; type X; alpha 1 (Schmid metaph	4.5
		W07286	Hs.204214 Hs.10340	ESTs ESTs; Weakly similar to weak similarity t	5.1
			Hs.264190	ESTs; Highly similar to MEM3 (M.muscu	17.3
			· Hs.136713	ESTs; Weakly similar to V4-1 [H.sapiens	4.1
55		Al281549		ESTS	5.5
			Hs.166229	ESTs	5.8
		H02682	Hs.292154	ESTs; Moderately similar to recombinatio	5.8 7.4
		D59653 U83908	Hs.241471 Hs.296251	EST programmed cell death 4	5.8
60		AA280617		ESTs; Weakly similar to p60 katanin [H.s	8.3
00			Hs.183475	Homo sapiens clone 25061 mRNA sequen	6.6
			Hs.101448	metastasis associated 1	5.2
	128574	AA412048	Hs.38260	keratin 8	5.1
	128595		Hs.152677	short-chain alcohol dehydrogenase famlly	27.1
65		L38608	Hs.10247	activated leucocyte cell adhesion molecule	13.2 6.7
			Hs.102708 Hs.103106	DKFZP434A043 protein Homo saplens mRNA for G7b protein (G	4.5
	120049	AA 142000	110.100100		4.0
				220	

	128651	AA446990	Hs.103135	ESTs	6.1
		R48943	Hs.10315	solute carrier family 7 (cationic amino aci	4.4
		AA458542	Hs.10326	coatomer protein complex; subunit epsilon	14.3
	128717	T30617	Hs.104222	Homo saplens mRNA; cDNA DKFZp566	24.5
5		M64174	Hs.50651	Janus kinase 1 (a protein tyrosine kinase)	7.3
		N49308	Hs.104938	ESTs; Weakly similar to alpha 1(XVIII) c	9.2
		X85372	Hs.105465	small nuclear ribonucleoprotein polypepti	5.4
		W93562	Hs.105749	KIAA0553 protein	4.6
10		W15528	Hs.106390	Homo saplens mRNA; cDNA DKFZp586	4
10		AA455658		basement membrane-induced gene	6.9
		AA400271		Homo saplens mRNA for putative Ca2+t	4.5
		AA252023 D61676	Hs.21851	ESTs; Weakly similar to HRIHFB2157 [H	6.4
		AA410325		Homo saplens mRNA; cDNA DKFZp586 ESTs	6.4 7
15		N29353	Hs.107318	kynurenine 3-monooxygenase (kynurenin	5.2
13		AA485655		proteasome (prosome; macropain) subunit	13.1
		F10290	Hs.185807	Homo sapiens clone 24758 mRNA sequen	5.8
		AA460049		ESTs; Weakly similar to SODIUM- AND	12.6
		AA131421		ESTs	9.8
20		H13108	Hs.107968	ESTs .	13.9
		X62466	Hs.276770	CDW52 antigen (CAMPATH-1 antigen)	10.7
	129075	AA129465	Hs.83765	ESTs	4.7
		L12350	Hs.108623	thrombospondin 2	4.4
		AA234530		N-ethylmaleimide-sensitive factor	20.7
25		AA131252		ESTs	5.9
		AA282183		ESTs	5.8
		R40556	Hs.318401	ESTs; Highly similar to HSPC039 protein	7.6
		X89109	Hs.109606	coronin; actin-binding protein; 1A	12
20		AA211941		polyadenylate binding protein-interacting	7.9
30		W24360	Hs.237868	interleukin 7 receptor	5.3
		AA435665 H88033	Hs.109706 Hs.109727	ESTs; Moderately similar to HN1 [M.mus	8.4 7.8
		AA151574		KIAA0733 protein pilin-like transcription factor	6.4
		AA090695		ESTs	6.2
35		Z35227	Hs.109918	ras homolog gene family; member H	5.4
		AA026318		glucose regulated protein; 58kD	4.4
		C20976	Hs.110165	ESTs; Highly similar to ribosomal protein	5.7
	129318	N93155	Hs.285976	calmodulin 1 (phosphorylase kinase; delta	7.7
	129319	AA037467	Hs.30340	ESTs	6
40		AA167268		Human ras inhibitor mRNA; 3' end	9.3
		H18027	Hs.184697	plexin C1	18.2
		W92984	Hs.288224	ESTs	5.9
		AA151621		ESTs	4.1
45		T80814	Hs.11101	discs; large (Drosophila) homolog 3 (neur	10.9
43		AA172056 N23707		ESTs	5.3
		AA412087	Hs.111138 Hs.111323	KIAA0712 gene product EST; Highly similar to protein inhibitor o	4 8
		AA421213		Lsm3 protein	5.5
		C00225	Hs.306163	ESTs; Weakly similar to fos39554_1 [H.s	5.5
50		AA298786		ESTs	6.8
-		R21443	Hs.166254	heat shock 90kD protein 1; alpha	5
		AA278243		ESTs	6.8
		AA447410		ESTs; Weakly similar to IIII ALU SUBFA	5.1
	129627	AA258308	Hs.71968	Homo sapiens mRNA; cDNA DKFZp564	5.3
55		U26727	Hs.1174	cyclin-dependent kinase inhibitor 2A (mel	8.2
		R50008	Hs.11806	7-dehydrocholesterol reductase	4.3
		AA442768		translocase of inner mitochondrial membr	4.4
	129665		Hs.118778	KDEL (Lys-Asp-Glu-Leu) endoplasmic re	4
60	129691		Hs.119571	collagen; type III; alpha 1 (Ehlers-Danios	6
OU		AA454618		associated molecule with the SH3 domain	6.4
	129800	AA252436 AA452161		lysophospholipase I	7.7
	129850		Hs.206521 Hs.288932	YME1 (S.cerevislae)-like 1 GDP dissociation inhibitor 2	5 6.9
		AA102520		ESTs; Weakly similar to heat shock prote	5
65		AA043021		UDP-Gal:betaGicNAc beta 1;4- galactosy	6.6
		M87789		immunoglobulin gamma 3 (Gm marker)	4
			Hs.140452	cargo selection protein (mannose 6 phosp	5.8
					-10

	120020	A A 22C 4 4 2	Hs.236510	ESTs; Moderately similar to PFT27 [M.m	5.6
	130029		Hs.181301	cathensin S	5.4
		AA195260		ESTs; Moderately similar to IIII ALU SU	7.4
_		AA055896		collagen; type V; alpha 1	7.6
5	130077		Hs.91379	ribosomai protein L26	4
	130080		Hs.147097	H2A histone family; member X	12.1 5
		AA223874 AA234717	Hs.197955 Hs.14992	KIAA0704 protein ESTs	7.8
	130114		Hs.1504	hemopexin	7.2
10	130135		Hs.21635	tubulin; gamma 1	5.6
		AA610070	Hs.151469	calcium/calmodulin-dependent serine pro	7.5
	130189		Hs.151761	KIAA0100 gene product	6.4
		AA620556		peroxisomal D3;D2-enoyl-CoA isomerase	6.4
15	130211		Hs.23703	UDP-glucose ceramide glucosyltransferas	4.5 9.1
13	130235 130276		Hs.153053 Hs.169149	CD37 antigen karyopherin alpha 1 (importin alpha 5)	9.1 8.6
	130276		Hs. 153937	activated p21cdc42Hs kinase	5
		AA620323		ubiquitin-activating enzyme E1C (homolo	6.1
	130314		Hs.154332	KIAA0212 gene product	10
20	130328	AA135673		KIAA0391 gene product	6.1
	130356		Hs.155017	nuclear receptor interacting protein 1	10.6
	130367		Hs.8768	ESTs; Weakly similar to IIIt ALU SUBFA	8.3
	130378		Hs.155188	TATA box binding protein (TBP)-associa	7.1
25	130384		Hs.166071	cyclin-dependent kinase 5	5.6 4.1
23	130393	D13630 AA449417	Hs.155291 Hs.155356	KIAA0005 gene product Homo saplens mRNA for putative glucosy	4.6
	130407		Hs.155410	ESTs	7
	130414		Hs.241392	small inducible cytokine A5 (RANTES)	4.1
	130417		Hs.155485	huntingtin-interacting protein 2	7.9
30	130421		Hs.178710	clathrin; heavy polypeptide-like 2	4
	130441		Hs.155637	protein kinase; DNA-activated; catalytic p	6.8
	130455		Hs.155956	N-acetyltransferase 1 (arylamine N-acetyl	26.4
	130498		Hs.180446	karyopherin (importin) beta 1	4.8 6.1
35	130499	AA416723	Hs.158286 Hs.1584	Homo saplens mRNA for KIAA0446 prot cartilage oligomenic matrix protein (pseud	8.3
,,,		AA430032		pituitary tumor-transforming 1	7.5
	130558		Hs.15984	ESTs; Weakly similar to gene pp21 protei	5.6
		AA232535		ESTs; Highly similar to CGI-13 protein [H	4
	130583	W24957	Hs.293907	ESTs; Moderately similar to similar to C.e	13.3
40	130585	H66211	Hs.16331	ESTs	10.1
	130604		Hs.1657	estrogen receptor 1	39.9
		AA132007 AA477739	Hs.16697 Hs.12532	ESTs ESTs	5.1 5.9
		AA235247	Hs.16846	ESTs; Weakly similar to cytochrome P45	4.1
45	130625	F03969	Hs.260720	matrix metalloproteinase 2 (gelatinase A;	8.3
	130627		Hs.1695	matrix metalioproteinase 12 (macrophage	10.3
	130629		Hs.1697	ATPase; H+ transporting; lysosomal (vacu	7
	130635		Hs.1706	Interferon-stimulated transcription factor	5.5
	130639	D59711	Hs.17132	ESTs	7.2
50	130677		Hs.17767	ESTs	13.5
	130681	D82808 AA487202	Hs.17820	Rho-associated; coiled-coil containing pro ESTs	6 6.1
	130703		Hs.18103	ESTS	4.3
		AA488843	Hs.201673	cornichon-like	4
55		AA292066	Hs.279762	adenylate cyclase 7	5.1
	130714		Hs.18212	DNA segment on chromosome X (unique)	8.4
	130715		Hs.171952	occludin	5.7
		AA203527	Hs.18747	POP7 (processing of precursor; S. cerevis	6.2
60		AA471293	Hs.6879	ESTs	8.2
60		AA435633	Hs.18879 Hs.19525	Homo sapiens clone 23965 mRNA sequen ESTs	8.3 4.5
	130796	AA223386	Hs.19525 Hs.19574	ESTS; Weakly similar to katanin p80 subu	7.7
		AA425439	Hs.143323	putative DNA/chromatin binding motif	4.3
		AA287327	Hs.20478	ceroid-lipofuscinosis; neuronal 2; late infa	9.8
65	130866		Hs.2055	ubiquitin-activating enzyme E1 (A1S9T a	4.3
	130880		Hs.20830	kinesin-like 2	4.5
	130891	D31891	Hs.20991	SET domain; bifurcated; 1	4

		AA056489		ESTs	8.7
		W03592	Hs.21198	translocase of outer mitochondrial membr	20.9
		AA291710		collagen; type IV; alpha 3 (Goodpasture a	9
5	130944	AA074596 M97935	Hs.21486	bromodomain adjacent to zinc finger dom	5.3
,	130974		Hs.2178	signal transducer and activator of transcrip	18.8
		R45698	Hs.21893	H2B histone family; member Q ESTs; Weakly similar to cAMP inducible	13.4 8.5
		N48963	Hs.21992	KIAA0689 protein	7.2
		AA435748		ESTs; Weakly similar to phosphatidic acid	5.2
10		X02530	Hs.2248	small inducible cytokine subfamily B (Cy	10.1
	131091		Hs.22880	ESTs; Highly similar to dipeptidyl peptid	6.3
		H11760	Hs.23606	ESTs	7.3
		M25753	Hs.23960	cyclin B1	6.2
		AA609427		ESTs; Moderately similar to II!! ALU SU	4.3
15		AA044078	Hs.24210	ESTs	5.5
		AA430047	Hs.95549	ESTs	7.1
		AA429472		DKFZP434P106 protein	5.6
		D38076	Hs.24763	RAN binding protein 1	5.5
		AA620599		DKFZP564E1962 protein	6.7
20		AA256042		ESTs	5.8
		U25997	Hs.25590	stanniocalcin	8.9
		AA463450	Hs 25812	Nijmegen breakage syndrome 1 (nibrin)	6.5
		R34531	Hs.92200	KIAA0480 gene product	9.2
		H84658	Hs.279836	ESTs	12.1
25		AA608962		calcyclin binding protein	18.1
		Z39053	Hs.27263	ESTs	7.5
	131501	AA121127	Hs.8207	H3 histone; family 3A	5.5
		X02152	Hs.2795	lactate dehydrogenase A	5.1
		N39152	Hs.301804	ESTs	4.3
30	131528	D60856	Hs.28309	UDP-glucose dehydrogenase	8.4
	131544	N33236	Hs.28555	ESTs; Weakly similar to B0511.8 (C.eleg	5.6
	131557	D30946	Hs.28707	signal sequence receptor, gamma (transloc	8.7
	131562	U90551	Hs.28777	H2A histone family; member L	18.8
	131564	AA491465	Hs.28792	ESTs	11.8
35		AA235385	Hs.26966	ESTs; Moderately similar to alternatively	4.7
		M15182	Hs.183868	glucuronidase; beta	5.2
		U52100	Hs.29191	epithelial membrane protein 2	4.4
		D14533	Hs.192803	xeroderma pigmentosum; complementatio	4.6
40		AA136126		mitogen-activated protein kinase-activated	4.3
40		AA136660		ESTs	9.4
		U26174	Hs.3066	granzyme K (serine protease; granzyme 3	9.7
		L11066	Hs.3069	heat shock 70kD protein 9B (mortalin-2)	6.2
		AA599653		transcription factor-like 5 (basic helix-loo	8.3
4.0		W60913	Hs.110796	ESTs; Weakly similar to cDNA EST yk45	9
45		AA233225		MRS1 protein	5.2
		D49738	Hs.31053	cytoskeleton-associated protein 1	6.6
		D31352	Hs.31433	ESTs	11
		H46831	Hs.107767	ESTs; Moderately similar to CaM-KII inh	4.9
50		AA460450		DKFZP586G1722 protein	9.2
30		N32724 L76517	Hs.32317	Sox-like transcriptional factor	4.5
		AA437226	Hs.3260	presentlin 1 (Alzheimer disease 3)	5.4
				interleukin 10 receptor, alpha	4
		AA091932 J04088	Hs.156346	dynamin-like protein	6.7
55		AA044095		topoisomerase (DNA) II alpha (170kD) ESTs	5
33		AA158258		heterogeneous nuclear protein similar to r	11.1 5.6
			Hs.183180		
		AA205460		ESTs; Weakly similar to RING finger pro ESTs	4.5 14.3
		D62657	Hs.35086	ubiquitin-specific protease 1	6.2
60		W90146	Hs.35962	ESTs	6.3
		D86960	Hs.3610	KIAA0205 gene product	4.2
		R70167	Hs.154938	ESTs	4.3
		AA410424		Homo sapiens mRNA; cDNA DKFZp586	4.6
	131977		Hs.3622	procollagen-proline; 2-oxoglutarate 4-diox	6.4
65	131994		Hs.279882	Human DNA sequence from clone 703H1	12
		D82399	Hs.136644	Homo sapiens clone 23714 mRNA sequen	10
		W67251	Hs.267659	Homo saplens vav 3 oncogene (VAV3) m	4.7

	132021	T68246	Hs.306079	chaperonin containing TCP1; subunit 5 (e	5.2
	132065	D82226	Hs.211594	proteasome (prosome; macropain) 26S sub	8.5
	132085		Hs.3887	proteasome (prosome; macropain) 26S sub	13.5
_		AA131971	Hs.39122	ESTs	4.8
5		AA599801	Hs.40098	ESTs	6.2
		AA257056		KiAA0871 protein	14.6
	132149		Hs.324743	ESTs	5.3
	132153	N90141	Hs.41066	ESTs; Moderately similar to ELONGATi	9.2
		AA281770		seven in absentia (Drosophila) homolog 1	5.5
10		U84573	Hs.41270	procollagen-lysine; 2-oxogiutarate 5-dioxy	8.1
	132180	AA405569	Hs.418	fibroblast activation protein; alpha; sepras	15.4
	132183		Hs.199695	hypothetical protein	12.2
		AA128980		ESTs	5.6
		AA412620		ESTs	6.7
15		F09058	Hs.42656	ESTs	6.2
		AA608856		murine leukemia virai (bmi-1) oncogene h	6
		N41849	Hs.7120	Homo sapiens cytokine receptor related p	5.6
		AA285290		small EDRK-rich factor 2	6.8
	132325		Hs.44856	ESTs	4.7
20		AA479933		Human DNA sequence from clone 167A1	4.2
		R70914	Hs.281434	heat shock 70kD protein 1	9.1
		W85888	Hs.47334	ESTs; Moderately similar to IIII ALU SU	4
		F09979	Hs.4774	ESTs	15
~~		AA431459		ESTs	8
25		AA132969	Hs.260116	KIAA1104 protein	4
		AA426218		ESTs	5.3
	132465	AA047896	Hs.49169	ESTs	15.4
			Hs.238126	ESTs; Highly similar to CGI-49 protein [H	9
20	132492		Hs.4990	KIAA1089 protein	8.5
30		AA283006		chromosome-associated polypeptide C	4.3
		AA488987		synaptogyrin 2	9.8
		AA417152		protein regulator of cytokinesis 1	10.1
		L37042	Hs.283738	caseln kinase 1; alpha 1	5.9
35		AA412452		DKFZP434N024 protein	4.2
33		AA199588		ARP3 (actin-related protein 3; yeast) hom	4.2 5.2
		AA386264		isocitrate dehydrogenase 2 (NADP+); mit	10.1
		AA171913		carbonic anhydrase XII	4.8
			Hs.279916	adaptor-related protein complex 1; gamma Tax1 (human T-celi leukemla virus type I	5.7
40		U33821 AA453614	Hs.5437	KIAA0776 protein	4.4
+0		M60830	Hs.5509	ecotropic viral integration site 28	15.6
		N47109	Hs.5521	ESTs	7
		AA417962		geranylgeranyl diphosphate synthase 1	5.6
		W42674	Hs.264636	ESTs; Moderately similar to neuronal thre	4.9
45			Hs.292812	ESTs; Weakly similar to C43H8.1 [C.eleg	7.9
-13		X54326	Hs.55921	giutamyl-prolyl-tRNA synthetase	4.1
		H99152	Hs.57079	ESTs	8
		AA331777		mutL (E. coll) homolog 1 (colon cancer; n	- 8
		U25435	Hs.57419	transcriptional repressor	4
50		AB004884		tousied-like klnase 2	6.5
50		N23817	Hs.5807	Homo saplens clone 23675 mRNA sequen	5.6
		D62588	Hs.5813	ESTs	12.4
	132847		Hs.58189	eukaryotic translation initiation factor 3; s	7
	132856		Hs.58367	glypican 4	6.2
55		N26855	Hs.203961	ESTs	6.5
		AA425776		ESTs	5.6
			Hs.177537	ESTs	7.2
		D82422	Hs.5944	ESTs	7.5
		N56451	Hs.5978	LIM domain only 7	4.4
60		AA235404		Homo saplens clone 25186 mRNA sequen	9.1
		X83618	Hs.59889	3-hydroxy-3-methyiglutaryl-Coenzyme A	10.7
			Hs.234896	ESTs; Highly similar to geminin (H.sapie	10.2
		AA496037		ESTs	4.7
		AA252605		KIAA0616 protein	7.1
65		AB002305		KIAA0307 gene product	8.3
		U04209	Hs.61418	microfibrillar-associated protein 1	4.3
		AA234791		Human gene from PAC 753P9; chromoso	13.2
				•	

13299 H9049 Hs.62112 zinc Inger protein 207 42 alpha (activating 13299 AA459761 Hs.18387 solute carrier family 2 (facilitated glucose 132998 (190062 Ls.42915 133002 AF000692 Hs.42915 133002 AF000692 Hs.42915 133003 AF00705 Hs.246315 133003 X52025 Hs.546315 s.26783 133003 AA471397 Hs.54681 133003 AA471397 Hs.54681 133003 AA598749 Hs.64631 133003 AA598749 Hs.64631 133003 AA598749 Hs.64631 133003 AA598749 Hs.6551 133003 AA598749 Hs.6531 133003 AA598749 Hs.6531 133003 AA598749 Hs.6531 133003 AA598749 Hs.6531 133003 AA598749 Hs.6531 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.8593 133003 AA79808 Hs.7293 133003 AA798			AA028103		ESTs; Weakly similar to unknown [S.cere	18.9
132990 AAS96131 Nat.18387 13298 4AS96131 Nat.279905 13298 700002 Hs.170121 133002 AF000602 Hs.279905 133005 C21400 Hs.278605 133015 AAV7005 Hs.26315 133015 AAV7005 Hs.26315 133016 W81298 Hs.2639 13302 K87235 Hs.26315 13302 K87235 Hs.26315 13302 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 K87235 Hs.26315 133030 AAS96749 Hs.269593 133124 AA156049 Hs.265913 133124 A156049 Hs.265913 133124 N50049 Hs.265913 13322 K87232 Hs.26315 133224 K80022 Hs.26315 133224 K80022 Hs.26315 133224 K80022 Hs.26315 133224 K80022 Hs.26315 133224 K80022 Hs.26315 133224 AA88866 Hs.66312 133227 AEV06086 Hs.6831 133237 AEV06086 Hs.6893 13323 AA41507 Hs.69612 133234 AA41607 Hs.69612 133234 AA41607 Hs.69612 133234 K80023 AA491266 Hs.69512 133234 K80023 AA491266 Hs.69512 133234 K80023 AA491266 Hs.69512 133234 K80023 AA491266 Hs.69512 13324 K80023 AA41607 Hs.69618 133234 AA41607 Hs.69618 133234 AA41607 Hs.69618 133234 AA41607 Hs.69618 133234 AA41607 Hs.69618 133234 K80028 Hs.69311 13324 K80028 Hs.69311 13324 K80028 Hs.6931 13324 K80028 Hs.69311 13324 K80028 Hs.6						5.8
13299						4.3 4.2
132988 Y00062 Ha.170121 prolein fyrrasine phosphatese; receiptor typ 4 133006 Y01298 ta.24915	5					26.4
133002 AF0006082 Hs.42915 13005 C21400 Hs.278605 13005 SC21400 Hs.278605 13005 SC21400 Hs.278605 13005 SC21400 Hs.278605 13005 SC21205 Hs.52895 13005 SC2025 Hs.53788 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5396 13006 AN071387 Hs.5296 13006 AN071387 Hs.5296 13006 AN071387 Hs.5296 13006 AN071387 Hs.5296 13006 AN071387 Hs.5296 13006 AN071387 Hs.5296 13006 AN071387 Hs.5296 13006 AN071387 Hs.5296 13006 AN071387 Hs.5296 13007 AN07138 Hs.5296 13007 AN07138 Hs.5296 13007 AN07138 Hs.5296 13007 AN07138 Hs.5296 13007 AN07138 Hs.5296 13007 AN07138 Hs.5296 13008 AN091389 Hs.7296	,					4.4
133016 W8129					ARP2 (actin-related noticin 2: yeast) hom	4.7
133015 AAJ07056 Hs_246315 ESTs growth factor receptor-bound protein 2 133029 X62055 Hs_63469 133020 X62055 Hs_63469 133026 X67325 Hs_64565 Hs_64565 Hs_64056						6.6
130306 W871298 hs.6289 solve the standard profile of t						7.9
133060 S877325 Hs.53788 proplomy Coenzyme A carboxylases: beta 133082 R33685 Hs.64056 Hs.6456 Hs.6551 Hs.6561 Hs.6661	10				growth factor receptor-bound protein 2	5.2
13306 AA071387 Hs.6396 133081 A705031 Hs.6456 133081 A705031 Hs.64561 133083 A7058749 Hs.285998 133124 A7156049 Hs.267923 133126 D14469 Hs.6551 133221 Y16469 Hs.6551 133221 Y16469 Hs.6551 133222 Y16469 Hs.6551 133224 Y16469 Hs.6551 133224 Y16469 Hs.6551 133224 Y16469 Hs.6551 133224 Y16469 Hs.6551 133224 Y16469 Hs.6551 133224 Y16469 Hs.6511 133224 Y16469 Hs.6511 133224 Y16469 Hs.6511 133224 Y16469 Hs.6511 133224 Y16469 Hs.6511 133224 Y16469 Hs.6511 133224 Y16469 Hs.6511 133224 A8001229 Hs.6511 133224 A8001229 Hs.6511 133224 A8001229 Hs.6511 133224 A8001229 Hs.6511 133224 A8001229 Hs.6511 133224 A8001229 Hs.6511 133224 A8001229 Hs.6511 133224 A8001229 Hs.6511 133224 A8001229 Hs.6511 133224 A8001229 Hs.6511 133224 R787221 Hs.65121 133224 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.65121 133234 R787221 Hs.7225 Ks.640605 protein Ps.7225 Ks.6406				Hs.63489	protein tyrosine phosphatase; non-recepto	4
133062 R33963 Hs.64096						5.2
13303 ANG98749 Hs.285993 133124 AN150049 Hs.285993 133124 AN150049 Hs.285913 133126 D18469 Hs.6551 133224 Y10839 Hs.285913 133224 Y10839 Hs.285913 133224 Y10839 Hs.285913 133224 Y10839 Hs.285913 133234 AN150049 Hs.6523 133234 AN150049 Hs.6233 133234 AN15049 Hs.6323 133234 AN15049 Hs.6323 133234 AN15049 Hs.6323 133234 AN15049 Hs.6323 133234 AN15049 Hs.6323 133234 AN15049 Hs.6323 133234 AN15049 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.6323 133234 AN15059 Hs.7226 133234 AN15059 Hs.7226 133234 AN15059 Hs.7226 133234 AN15059 Hs.7226 133234 AN15059 Hs.7226 133234 AN15059 Hs.7226 133243 AN15059 Hs.7226 133243 AN15059 Hs.7226 133243 AN15059 Hs.7226 133243 AN15059 Hs.7226 133243 AN15059 Hs.7226 133243 AN15059 Hs.7226 133243 AN15059 Hs.7226 133250 AN15089 Hs.72265 133263 AN15059 Hs.72265 133264 AN15059 Hs.72265 133264 AN15059 Hs.72265 133264 AN15059 Hs.72265 133264 AN15059 Hs.72265 133264 AN15059						5
133061 AA12247 Is-64691 KUAA0483 protein Section	1.5					5.4
13393 AA95974 Hz.269592 ESTS STS	13					6
133126 A156949 hs.267923 ESTs A7Pase, H+ transporting; lysosomal (vacu Ras-G1Pase activating profels R34 doma State Ras-G1Pase Ras-G1Pase activating profels Ras-G1Pase R						5.6
133126 D16469 Hs.6551						4.1
						6.2
13324 Y10699 Hs_285115 13325 2741475 Hs_8235 13326 N90029 Hs_8831 13326	20					5.1
133225 241415 Hs.6823 ESTS; Weakly similar to intrinsic factor-B 13329 AM599405 Hs.179882 Homo sapiers done 24655 mRNA sequen 5 13329 AM599405 Hs.68915 St. 180912 St. 18091	~0					6.2
13329 AA059405 Hs.179882						8.3
25 133240 D31161 ha-242694 133267 AP005068 has 6895 133267 AP005068 has 6895 133267 AA468886 has 6895 133267 AA468886 has 6895 133267 AA468868 has 6895 133267 L15702 has 6896 133267 L15702 has 6896 133267 L15702 has 6896 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70266 133267 AA600057 has 70267 has 702						4.7
133297 AP006986 Hs.6895						5.5
133264 W72187 hs.69192 133281 AA412079 hs.69594 133281 AA412079 hs.69594 133281 AA412079 hs.69594 133287 L15702 hs.69591 133287 AA150807 hs.69581 133287 AA150807 hs.69591 133287 AA600057 hs.70265 133287 AA600057 hs.70265 133381 AA258168 hs.192316 133381 AA258168 hs.192316 133381 AA558168 hs.7194 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133381 AA558168 hs.72187 133484 AA044869 hs.72187 133484 AA044869 hs.72187 133484 AA0448698 hs.72181 133484 AA0448698 hs.72181 133484 AA04486 hs.72181 133581 AA558168 hs.72381 133581 AA558168 hs.72381 133581 AA558168 hs.72381 133582 AA35886 hs.73811 133583 AA35886 hs.73811 133583 AA35886 hs.73811 133583 AA35886 hs.73811 133583 AA35886 hs.73811 133583 AA35818 hs.73831 133583 AA35818 hs.73831 133583 AA35818 hs.73831 133583 AA35818 hs.73831 133583 AA35818 hs.73831 133583 AA35818 hs.73831 133583 AA35818 hs.73831 133583 AA35818 hs.73831 133583 AA35888 hs.73831 133	25					9
133274 AA48886 Hs.69594 133287 AA410797 Hs.69584 133287 L145702 Hs.69594 133287 A75702 Hs.6971 133294 R79721 Hs.6971 133294 R79721 Hs.6971 133294 R79721 Hs.6971 133294 R79721 Hs.6971 133294 R79721 Hs.6971 133294 R79721 Hs.70268 133318 AA259168 Hs.192316 133318 AA259168 Hs.192316 133318 AA25916 Hs.70268 133319 X5779 Hs.727 133391 X5779 Hs.727 133391 X5779 Hs.727 133391 X5779 Hs.727 133391 X5779 Hs.727 133391 X5779 Hs.727 133391 X5779 Hs.727 133391 X5779 Hs.727 133391 X5779 Hs.727 133391 X5779 Hs.728 13340 X5979 Hs.7381 13340 X5979 Hs.7381 13340 X5979 Hs.7381 13340 X5979 Hs.7381 13340 X5979 Hs.7381 13350 X5979 Hs.7381 13350 X5979 Hs.7381 13350 X5979 Hs.7381 13350 X5979 Hs.7381 13350 X5979 Hs.7580 1						7.7
133281 AA412079 Hs.89594 133287 L15702 Hs.89591 133287 AA600057 Hs.70268 133287 AA600057 Hs.70268 133287 AA600057 Hs.70268 133381 AA256168 Hs.192316 133393 AA15887 Hs.192316 133393 AA15887 Hs.192316 133393 AA15887 Hs.192316 133393 AA15887 Hs.72187 133391 X97579 Hs.7287 133391 X97579 Hs.7287 13394 X97516 Hs.7287 13395 AA491296 Hs.7287 13395 X97516 Hs.7287 13395 X97						6.7 4.2
3323 AA410507 18-8588 133294 7879723 133294 7879724 133294 7879724 133294 7879724 133294 7879724 133294 7879724 133294 7879724 133294 7879724 133294 7879724 133294 7879724 133294 7879724 133294 7879724 133294 787924 133294 787924 133294 787924 133295 78792						4.2
133287 L15702 Hs.59971 133287 AA600057 Hs.70266 133370 AA600057 Hs.70266 133370 AA600057 Hs.70266 133370 AA616887 Hs.12316 133381 AA56868 Hs.132316 133382 H06195 Hs.7194 133381 AX57579 Hs.72157 133381 X57579 Hs.72157 133381 X57579 Hs.72157 133381 X57579 Hs.72157 133381 X57579 Hs.72157 133422 N79516 Hs.72805 133422 N79516 Hs.72805 133424 X78716 Hs.7385 133434 X78710 Hs.7385 133434 X78710 Hs.211581 133484 X78710 Hs.211581 133581 AX5868 Hs.73831 133581 X57599 Hs.73831 133581 X57599 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.73831 133581 X57591 Hs.75831 133581 X57591 Hs.758351 133581 X57591 Hs.	30					4.3
133294 R7972b 14.69997 2inc (Ingre protein 238 238	50					9.3
13327 AA600057 Hs.70266 133370 AA568087 Hs.192316 133380 H06195 Hs.7194 133381 X57579 Hs.72157 133381 X57579 Hs.72157 133381 X57579 Hs.72157 133381 X57579 Hs.72157 133381 X57579 Hs.72157 133381 X57579 Hs.72157 133381 X57579 Hs.72157 133422 N79516 Hs.72855 133445 X79516 Hs.72851 133451 X525493 Hs.72851 133451 X525493 Hs.72851 133451 X525491 Hs.72851 133451 X52947 Hs.72151 133561 X52947 Hs.74471 133551 D63480 Hs.72851 133561 X52947 Hs.74471 133551 D63480 Hs.72851 133562 X5257 W94333 Hs.72951 133577 W94333 Hs.72951 133577 W94331 Hs.75104 133580 D13315 Hs.75104 133580 D13315 Hs.75247 133567 X52947 Hs.75104 133560 D13315 Hs.75247 13567 W94333 St.75249 13567 W94333 St.75249 13567 W94333 St.75249 13567 W94333 St.75249 13567 W94335 St.75249 13567 W94335 St.75249 13567 W94335 St.75249 13567 W94335 St.75249 13567 W94335 St.75249 13567 W94335 St.75249 13567 W94335 St.75249 13567 W94335 St.75249 13567 W94335 St.75249 13567 W94336 St.75249 13567 W94336 St.75249 13567 W94336 St.75249 13567 W94337 Hs.75253 13564 W957 W9435 St.75249 13567 W94337 Hs.75253 13564 W957 W94337 Hs.75253 13564 W957 W94337 Hs.75253 13564 W957 W94337 Hs.75253 13564 W957 W94337 Hs.75253 13564 W957 W957 W957 W957 W957 W957 W957 W957						30.4
335 H06195 Ha.7194 133391 X3779 Ha.72157 133391 X3779 Ha.72157 133391 X3779 Ha.72157 133391 X3779 Ha.72157 133391 X3759 Ha.72157 133391 X3759 Ha.72157 133391 X3759 Ha.72157 133422 N79516 Ha.72805 133443 X37586 Ha.72805 133443 X37586 Ha.72805 133443 X37586 Ha.72815 133463 X37586 Ha.72815 133463 X37586 Ha.72817 133563 X37586 Ha.72817 133563 X37586 Ha.72817 133571 X52947 Ha.74471 133551 D63480 Ha.72817 133572 W4333 Ha.72817 133572 W44333 Ha.72817 133572 W44333 Ha.72817 133573 K37587 Ha.75174 133580 X37586 Ha.75174 133580 X37586 Ha.75174 133583 X3758 Ha.75174 133583 X3758 Ha.75174 133583 X3758 Ha.75174 133583 X3758 Ha.75174 133583 X3758 Ha.75174 133583 X3758 Ha.75249 133583 X3758 Ha.75249 135874 X448484 Ha.75283 13583 X2758 Ha.75237 13583 X2758 Ha.75237 13583 X2758 Ha.75237 13583 X2758 Ha.75237 13583 X2758 Ha.75237 13583 X2758 Ha.75237 13583 X2758 Ha.75237 13583 X2758 Ha.75237 13583 X2758 Ha.75238 13583 X2758 Ha.752		133297	AA600057	Hs.70266		10.4
133370 AA158897 Hs.72187 133391 X57579 hs.722 133395 AA491296 Hs.72805 133422 N79516 hs.72805 133434 X525438 Hs.7388 133436 X394898 Hs.7388 133436 X394898 Hs.7381 133484 X78710 hs.211891 45 133506 AA316886 hs.7381 133484 X78710 hs.211891 45 133506 AA316886 hs.7381 133507 X52947 hs.74346 133507 D53480 hs.7381 133509 AA31377 hs.74345 133509 AA31377 hs.74345 133509 AA31377 hs.74345 133509 AA31377 hs.74345 133509 AA31377 hs.74345 133509 AA31377 hs.74345 133509 AA31377 hs.74345 133509 AA31377 hs.75104 133509 AA31377 hs.75104 133509 AA31377 hs.75104 133509 AA31377 hs.75104 133509 AA31377 hs.75104 133509 AA3137 hs.75104 133509 AA3137 hs.75104 133509 AA3137 hs.75104 133509 AA3137 hs.75104 133509 AA31384 hs.75297 133509 AA31384 hs.75299 133709 AA31394 hs.75299 133709 AA31384 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA31394 hs.75299 133709 AA313						8.5
133391 X57799 h3.727 133392 XA91206 h3.7285 133492 X797916 h3.7285 133493 X491206 h3.7285 133493 X495298 h3.22986 133493 X79700 h3.7285 133493 X79710 h3.7281 133488 X30308 h3.7381 133488 X30308 h3.7381 133488 X30308 h3.7381 133488 X30308 h3.7381 133595 X631688 h3.7381 133595 X631688 h3.7381 133595 X631688 h3.7381 133595 X631688 h3.7383 133596 X631698 h3.7383 133596 X631698 h3.7389 133596 X631698 h3.7389 133597 h3.7510 133577 h3.7510 133577 h3.7510 133577 h3.7510 133578 X9.7510 133579 X9.7510 13579 X9.7572	35					14
133395 AA491296 Hs.72805 13342 N79516 hs.73287 133431 AA255438 hs.7358 133436 X295438 hs.7358 133436 X295438 hs.7358 133436 X3968 hs.32866 133436 X3968 hs.7381 13346 X3968 hs.7381 13346 X3968 hs.7381 13448 X3971 hs.211591 13551 D53480 hs.73436 133567 A34586 hs.73436 133567 A34587 hs.27853 13589 AA315977 hs.74345 13556 A34688 hs.73436 13556 A34688 hs.73436 13556 A34588 hs.73436 13556 A34588 hs.73436 13556 A34588 hs.73436 13558 A34597 hs.74471 13551 D53480 hs.735714 13552 Ns.75144 13555 A3587 Ns.75144 13556 A3598 hs.75144 13556 A3598 hs.75144 13556 A3598 hs.75144 13556 A3598 hs.75144 13558 A3598 hs.75144 13558 A3598 hs.75144 13558 A3598 hs.75144 13558 A3598 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 D8.9577 hs.75249 13564 A4458948 hs.75459 13576 A4458948 hs.75459 13576 A4458948 hs.75459 13576 N21684 hs.75529 13576 N21684 hs.75529 13576 N21684 hs.75529						5
133422 N79516						13.9
133431 AA255438 Hs.7358						4.3 4.5
13345 172983 hs.32986 ESTS voltage-dependent anion charmel 3 (13468 X03086 hs.7381 tr.3381 tr.3481 tr.3381 tr.3381 tr.3481 tr.3381 tr.3381 tr.3481 tr.3481 tr.3381 tr.3381 tr.3481 tr.3481 tr.3381 tr.3481 tr.3481 tr.3381 tr.3481 tr.3481 tr.3881 tr.	40					8
133449 AJ094989 Is-7381 voltage-dependent anion channel 3 (13484 X78710 Hz. 13591) in the Loron politic complex; class II metal-regulatory transcription factor 1 (13565 AJ3686 AJ3686 Hz. 74346 EJ (13566 AJ3686 Hz. 74346 EJ (13566 AJ3686 Hz. 74346 EJ (13566 AJ3696 AJ3697 Hz. 74363 EJ (13569 AJ31977 Hz. 74563 EJ (13569 AJ31977 Hz. 75164 EJ (13569 AJ31977 Hz. 75164 EJ (13569 AJ31977 Hz. 75164 EJ (13569 AJ31977 Hz. 75164 EJ (13569 AJ31977 Hz. 75164 EJ (13569 AJ31977 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75164 EJ (13569 AJ3197 Hz. 75249 EJ (13569 AJ3197 Hz. 75249 EJ (13569 AJ3197 Hz. 75249 EJ (13569 AJ3197 Hz. 75249 EJ (13569 AJ3197 Hz. 75357 EJ	40					5
133468 X03086 145.73931 major histocompetibility complex, class I major histocompetibility class I major histocompetibility complex, class I						8.7
133494 X78710 h 2-11581 melal-regulatory transcription factor 1						5
133517 X32947				Hs.211581		5.3
133551 D63480 hs.278634 KIAA0146 protein 133551 D63480 hs.278634 KIAA0146 protein 133572 W94333 hs.279915 translocase of lnner mitochondrial membr 133572 W94333 hs.279915 translocase of lnner mitochondrial membr 133698 137588 hs.75063 hs.75063 hs.75070 133687 AJ148318 hs.75240 ks.75207 133687 U09587 hs.75207 ks.75207 ks.752	45					6.8
133569 A.313977 hs.172772 transcription clargetion factor B (SIII); po 1 133577 F03717 hs.75043 133580 S13788 hs.75104 hs.75043 133580 S13788 hs.75104 hs.75249 133567 J.3567 A.4148318 hs.75249 133567 J.3567						5.7
133572 W94333 Hs.279915 translocase of lnner mitochondrial membr 1 133698 L37868 Hs.75033 hr.75035 hr.75037 13369 L37868 Hs.75040 133569 L37368 hs.75207 133617 AJ.148318 Hs.75240 133672 W9587 hs.752307 133634 U24166 hs.75230 136343 U24166 hs.75240 13364 U24166 hs.75230 133640 U24166 hs.75230 133640 U24166 hs.75230 133640 U24166 hs.75230 133640 U24166 hs.752307 133640 U24166 hs.752357 133649 AJ.79139 hs.75395 133649 AJ.79139 hs.75395 133649 AJ.79139 hs.75395 13365 AJ.2625 AJ.267383 hs.7540 13370 Kp.21648 hs.75497 133700 Kp.12648 hs.75495 133705 Kp.21648 hs.75659 13376 Kp.21648 hs.75659 13376 Kp.21648 hs.75659 13376 Kp.21648 hs.75659 13376 Kp.21648 hs.75659 13376 Kp.21648 hs.75659 13376 Kp.21648 hs.75659 13376 Kp.21648 hs.757522 kp.21648 hs.757522 kp.21648 hs.75752 kp.21648 hs.75659 kp.21648 hs.						4.8
50 133577 F03717 Hs.75063 human immunocleficiency virus type I enh 133608 D13315 Hs.75104 Incheding protein \$1; seefne-rich dom 133608 D13315 Hs.75104 Incheding protein \$1; seefne-rich dom 19/vorabase I 133627 U09587 Hs.75249 Incheding protein \$1, 57249 Incheding protein \$1, 57249 Incheding protein \$1, 57249 Incheding \$1, 57		133569	AAJ139//			9.5 5
133598 137368 Hs.75010 RNA-binding protein S1; serine-rich dom 13360 13315 Hs.75207 133617 An.148318 Hs.75204 KIAA0069 protein 133617 An.148318 Hs.75240 KIAA0069 protein 13363 D21262 Hs.75230 KIAA0069 protein 1306 13363 D21262 Hs.75230 KIAA0069 protein p.130 KIAA0069 protei	50					7.4
133608 D13315 Hs.75207 glyovalase i	50					5
133617 A.148318 Hs.75240 by 147-147-147-147-147-147-147-147-147-147-						4.2
138627 U09587 Hs.75280 glycyl-tRNA symbelase 13363 D21329 Ls. 15-75337 specialized principal proposition pl 30 microfubule-associated protein; RP/EB fa microfub						4.5
133634 U24166						10
133640 D83004 hs.75355 ublquitin-onjigalting enzyme E2N (homo 13364) AA79139 hs.75367 133649 AA79139 hs.75367 133625 AA297383 hs.7540 133625 AA297383 hs.7540 133674 AA458945 hs.7549 ESTS 133705 N21648 hs.75497 protease inhibitor 1 (anti-elastase); alpha-133705 N21648 hs.75659 hydry17 transgene; murine homolog; glom right for y00282 hs.75722 hydroptin li	55				nucleolar phosphoprotein p130	4.5
13364 D89077 Hz.75397 Src-like-adapter 13369 A479139 Hz.75393 add phosphatase 1; soluble 501 133652 A4267383 Hz.7540 ESTS 133674 A4458945 Hz.76497 ESTS 133705 N21648 Hz.57652 protease inhibitior 1 (anti-elastase); alpha- 133705 N21648 Hz.75522 hg/917 transpane; murine homolog; glom 133716 Y00282 Hz.75722 hg/9						15.2
133649 AA79139 hs.75393 add phosphatase 1; soluble 60 133652 AA297383 hs.7540 ESTS 133674 AA459945 hs.7549 ESTS 133700 K01395 hs.297651 protease inhibitor 1 (anti-clastase); alpha- 133705 X21648 hs.75629 myV17 transgene; murine homolog; glom 133716 Y00282 hs.75722 inhopother il						9.1
60 133652 AA267383 Hs.7540 ESTs 133674 AA458946 Hs.75497 ESTS 133700 K01386 Hs.297681 protease inhibitor 1 (anti-elastase); alpha- 133705 X21648 Hs.75659 MpV17 transgene; murine homolog; glom 133716 Y00282 Hs.75722 riborhorin II						6.4
133674 AA45946 Hs.75497 ESTS 133705 K01366 Hs.297681 prollease inhibitor 1 (anti-eleatase); alpha- 133705 K01648 Hs.75659 MpV17 transgene; murine homolog; glom 133716 Y00282 Hs.75722 incheption III	60					4.8
133700 K01396 Hs.297681 protease inhibitor 1 (anti-elestase); alpha- 133705 N21648 Hs.75599 MpV17 transgene; murine hornolog; glom 133716 Y00282 Hs.75722 ribophorin II	00					4.2
133705 N21648 Hs.75659 MpV17 transgene; murine homolog; glom 133716 Y00282 Hs.75722 ribophorin II						8.3
133716 Y00282 Hs.75722 ribophorin II		133705	N21648			4.6
						7.5
65 133720 L27841 Hs.75737 pericentriolar material 1	65			Hs.75737	pericentriolar material 1	9.4
					ubiquitin-conjugating enzyme E2 variant	4.5
133765 D21255 Hs.75929 cadherin 11 (OB-cadherin; osteoblast)		133765	D21255	Hs./5929	caunenn 11 (OB-cadhenn; osteoblast)	6.4

		W73693	Hs.76038	isopentenyl-diphosphate delta isomerase	7.9
	133774	Z23090	Hs.76067	heat shock 27kD protein 1	4.1
	133776		Hs.177766	ADP-ribosyltransferase (NAD+; poly (AD	13
_			Hs.301064	ESTs	5.2
5		M33882	Hs.76391	myxovirus (influenza) resistance 1; homol	11.7
		AA453783		Homo saplens mRNA; cDNA DKFZp564	9.4
		AA147510	Hs.288660	serine protease; umbilical endothelium	4.8
		M59815	Hs.170250	complement component 4A	6.7
10		U73477	Hs.285013	putative human HLA class II associated p	7.1 6.3
10		T68510	Hs.76704	ESTs	13.7
		U86782 D43948	Hs.178761 Hs.76989	26S proteasome-associated pad1 homolog KIAA0097 gene product	4.1
		U58090	Hs.183874	cullin 4A	4
		AA454597		ESTS	4.7
15		X01060	Hs.77356	transferrin receptor (p90; CD71)	8.3
13		N32811	Hs.77542	ESTs	5
		W72783	Hs.58382	ESTs; Weakly similar to C13F10.5 [C.ele	4.5
		AA045870		Homo saplens mRNA; cDNA DKFZp564	6.3
		AA156565		4-nitrophenylphosphatase domain and non	6.4
20	133963	L34587	Hs.184693	transcription elongation factor B (Siii); po	6.3
	133980	D00760	Hs.250811	proteasome (prosome; macropain) subunit	11.9
	133990	C02374	Hs.7822	Homo saplens mRNA; cDNA DKFZp564	8.2
		M28213	Hs.78305	RAB2; member RAS oncogene family	5.2
		J03077	Hs.78575	prosaposin (variant Gaucher disease and v	4.6
25		Z81326	Hs.78589	protease inhibitor 12 (neuroserpin)	6.5
		S82470	Hs.78768	BB1	11.9
		D28473	Hs.172801	isoleucine-tRNA synthetase	5.2
		D87685	Hs.78893	KIAA0244 protein cuilin 3	7.3 4.7
30		H98621 U51166	Hs.78946 Hs.173824	thymine-DNA glycosylase	7
30		M22382	Hs.79037	heat shock 60kD protein 1 (chaperonin)	4.5
		X06323	Hs.79086	ribosomal protein; mitochondrial; L3	9.4
		U41060	Hs.79136	LIV-1 protein; estrogen regulated	4.4
		U32519	Hs.220689	Ras-GTPase-activating protein SH3-doma	6.6
35		AA398908		Human Chromosome 16 BAC clone CIT9	8.6
		M63138	Hs.79572	cathepsin D (lysosomal aspartyl protease)	9.3
	134208	U88871	Hs.79993	peroxisomal biogenesis factor 7	6.3
		L28010	Hs.808	heterogeneous nuclear ribonucleoprotein F	4.3
		AA430008		ESTs	6.9
40		AA313414		Homo sapiens clone 24856 mRNA sequen	7.4
		U16306	Hs.81800	chonorolan surrate proteogrycan z (versic	6.1 8.6
		D38551	Hs.81848	RAD21 (S. pombe) homolog	6.1
		AA452020 R82074	Hs.111222 Hs.82109	ESTs; Weakly similar to CGI-128 protein syndecan 1	4.4
45		L43575	Hs.82171	Human clone 191B7 placenta expressed m	6.6
45	124357	M37033	Hs.82212	CD53 antigen	5.3
		X54199	Hs.82285	phosphoribosylglycinamide formyttransfe	4.8
		D62633	Hs.8236	ESTs	15.2
		AA412720		ESTs; Highly similar to CGI-118 protein	7.2
50		X02874	Hs.82396	2';5'-oligoadenylate synthetase 1	6.4
		U56637	Hs.184270	capping protein (actin filament) muscle Z-	4
	134388	M15841	Hs.82575	smali nuclear ribonucleoprotein polypepti	5.7
		L09717	Hs.8262	lysosomal-associated membrane protein 2	6.9
		H99801	Hs.82689	tumor rejection antigen (gp96) 1	4.5
55			Hs.211577	kinectin 1 (kinesin receptor)	11.2
		J04177	Hs.82772	collagen; type XI; aipha 1	15.3
		AA329274		protein tyrosine phosphatase type IVA; m	4.1
		D87969	Hs.82921	solute carrier family 35 (CMP-slafic acid t	4.2
60		L08044 AA122386	Hs.82961 Hs.82985	trefoil factor 3 (intestinal) collagen; type V; alpha 2	5.9 5.8
UU		W96151	Hs.83006	ESTs; Highly similar to CGI-139 protein	4.4
		AA449984		ESTs; Highly similar to proteine kinase JN	7.7
		T25732	Hs.83419	KIAA0252 protein	4.6
		X70683	Hs.83484	SRY (sex determining region Y)-box 4	5.1
65		X54942	Hs.83758	CDC28 protein kinase 2	20.3
		R38185	Hs.83954	Homo sapiens unknown mRNA	5
		D63477	Hs.84087	KIAA0143 protein	16.1

	134498	M63180	Hs.84131	threonyl-IRNA synthetase	6.1
		U45328	Hs.84285	ubiquitin-conjugating enzyme E21 (homol	4.6
		H24460	Hs.848	FK506-binding protein 4 (59kD)	6.2
_		U66615	Hs.172280	SWI/SNF related; matrix associated; actin	4.8
5		AA234966		CGG triplet repeat binding protein 1	4.7
		R68884	Hs.86347	ESTs; Weakly similar to predicted using G	5.8
		X74496	Hs.86978	prolyl endopeptidase	4.5
	134654		Hs.8739	ESTs; Weakly similar to ORF YGR200c [13.7
	134655		Hs.123090	ESTs	5.8
10		AA250745		protein kinase; cAMP-dependent; catalyti	8.9
		X04011	Hs.88974	cytochrome b-245; beta polypeptide (chro	6.8
		U89922	Hs.890	lymphotoxin beta (TNF superfamily; mem	35.7
		W47183	Hs.284226	ESTs; Weakly similar to neural F box pro	8.1
1.5		J05582	Hs.89603	mucin 1; transmembrane	6.2
15		Z49099	Hs.89718	spermine synthase	4.2
		M27394	Hs.89751	membrane-spanning 4-domains; subfamily	7
		U51477	Hs.89981	diacylglycerol kinase; zeta (104kD)	4.1
		H60595	Hs.90061	progesterone binding protein	4.7
20		D82348	Hs.90280	5-aminoimidazote-4-carboxamide ribonuc	10.2
20		U84011	Hs.904	amylo-1;6-glucosidase; 4-aipha-glucanotr	12.1
		Z39762	Hs.90419	KIAA0882 protein	6
		N27670	Hs.9071	progesterone membrane binding protein	5
		N46086	Hs.92308	ESTs	4.1
25		AA236324	Hs.92381	Homo saplens mRNA; chromosome 1 spe	16.8
25		H05625	Hs.5831	ESTs	4
		AA282343		purine-rich eiement binding protein B	4.4
	135010		Hs.92927	ESTs	7
		U54999	Hs.278338	LGN protein	4.8
30		AA224180		ESTs; Moderately similar to 17-beta-hydr	13.6
30		AA243497	Hs.173685	Human DNA sequence from clone 30M3	4
	135037		Hs.278589	general transcription factor II; I	8
		AA598449	Hs.93832	Homo sapiens clone 24483 unknown mRN	5.4
		L08069	Hs.94	heat shock protein; DNAJ-like 2 ESTs	9.3
35		AA495950 W52493	Hs.94694		6.7
55		AA044842		Homo saplens clone 24837 mRNA sequen	10.2
			Hs.267812	Homo saplens mRNA; cDNA DKFZp586 sorting nexin 4	6.6
		D31157	Hs.324277		7.4
		AA454930		ESTs; Weakly similar to growth factor-res ESTs	6.2 19.5
40		AA215333		putative G protein-coupled receptor	8.8
70		H20989	Hs.198281	pyruvate kinase; muscle	12.4
		D83174	Hs.9930	collagen-binding protein 2 (coiligen 2)	5.5
		AA480109		TYRO protein tyrosine kinase binding pro	5.4
		U05237	Hs.99872	fetal Alzhelmer antigen	7.8
45		M23263	Hs.99915	androgen receptor (dihydrotestosterone re	9.1
,,,		L10333	Hs.99947	reticulor 1	5.3
		M97935	110.55541	AFFX control; STAT1	8.3
	300021			AFFX control: STAT1	7
		M97935		AFFX control: STAT1	14
50		Al199738	Hs.208275	ESTs; Weakly similar to !lii ALU CLASS	9.1
		A1694585	Hs.270464	ESTs; Weakly similar to IIII ALU CLASS	7.4
	300254			ESTs; Weakly similar to ZnT-3 [H.sapien	30.1
		AW015860		ESTs	11.9
		AA699328		ESTs	5.5
55		Al492179	Hs.166244	ESTs; Weakly similar to cDNA EST yk40	11
		AW293224		ESTs	11
	301124		Hs.298262	ESTs; Weakly similar to dJ88J8.1 [H.sapi	8.8
	301165	N85789	Hs.150186	ESTs; Weakly similar to PTERIN-4-ALP	6
		Ai682905	Hs.270431	ESTs; Weakly similar to IIII ALU SUBFA	4.7
60		AA373124		ESTs; Weakly similar to C17G10.1 [C.ele	8
		AA526313		ESTs	4.2
		N99399	Hs.143046	EST cluster (not in UniGene) with exon h	18
		AA312082		GDNF family receptor alpha 1	20.7
	301936	NM_004694	Hs.114924	EST cluster (not in UniGene) with exon h	11.6
65	302002	AF013956	Hs.5637	chromobox homolog 4 (Drosophila Pc cla	9.2
		NM_001993		EST cluster (not in UniGene) with exon h	4.3
		H05698	Hs.222399	ESTs; Weakly similar to protein-tyrosine	7.8
				, Januar to protess ground	

PCT/US02/02242 WO 02/059377

	302145 NM_003613Hs.151407	EST cluster (not in UniGene) with exon h	15.1
	302236 Al128606 Hs.6557	zinc finger protein 161	25.8 21.6
	302276 NM_004448Hs.323910 302290 AL117607 Hs.175563	EST cluster (not in UniGene) with exon h Homo sapiens mRNA; cDNA DKFZp564	41.4
5	302326 NM_004271Hs.184018	EST cluster (not in UniGene) with exon h	8.9
_	302342 AB023141 Hs.190386	KiAA0924 protein	5.4
	302372 AL117406 Hs.200102	Homo sapiens mRNA; cDNA DKFZp434	8.9
	302422 AB021227 Hs.3743	matrix metalloproteinase 24 (membrane-in	5.2
10	302431 AF129530 Hs.226434 302501 AF022726 Hs.251446	EST cluster (not in UniGene) with exon h EST cluster (not in UniGene) with exon h	5.3 9.9
10	302505 AL049650 Hs.247874	multiple UniGene matches	4.3
	302533 L36149 Hs.248116	chemokine (C motif) XC receptor 1	4.9
	302638 AA463798 Hs.102696	ESTs; Weakly similar to C11D2.4 [C.eleg	. 5.3
1.5	302656 AW293005 Hs.70704	ESTs	8.4
15	302792 AA343696 Hs.46821 302820 X04588 Hs.85844	ESTs; Weakly similar to putative [H.sapie EST cluster (not in UniGene) with exon h	4.5 6.8
	302838 U66049 Hs.82171	EST cluster (not in UniGene) with exon h	8.4
	302892 N58545 Hs.42346	histone deacetylase 3	22.8
	302977 AW263124 Hs.315111	EST cluster (not in UniGene) with exon h	6.8
20	302989 N46406 Hs.84700	EST cluster (not in UniGene) with exon h	8.9
	303007 AA478876 Hs.317714	pallid (mouse) homolog; pallidin	10.1
	303052 AF140242 Hs.279926 303131 AW081061 Hs.103180	EST cluster (not in UniGene) with exon h actin-like 6	24.4 6.3
	303132 Al929819 Hs.4055	ESTS	17.7
25	303153 U09759 Hs.246857	mitogen-activated protein kinase 9	11.4
	303387 AA908797 Hs.180799	ESTs	15.8
	303499 Al815990 Hs.293515	ESTs	7.2
	303502 AA488528 303576 T07216 Hs.301226	EST cluster (not in UniGene) with exon h	5.3 16.2
30	303576 T07216 Hs.301226 303620 AA397546 Hs.119151	EST duster (not in UniGene) with exon h ESTs	8,9
30	303634 Al953377 Hs.28444	ESTs; Weakly similar to predicted using G	12
	303642 AW299459 Hs.111977	EST cluster (not In UniGene) with exon h	4.2
	303654 AA436942 Hs.288529	ESTs	8.4
25	303733 AW502498 Hs.15220	ESTs; Weakly similar to zinc finger prote	5.2 28.4
35	303780 Al424014 Hs.18995 303792 C75094 Hs.199839	ESTs; Moderately similar to KIAA0456 p ESTs; Highly similar to NG22 [H.sapiens	4.4
	303792 C73094 Hs.198639 303842 Al337304 Hs.126268	ESTs; Weakly similar to similar to PDZ d	8.1
	303951 AW475081 Hs.172928	collagen; type I; alpha 1	7.5
	304465 AA421948	EST singleton (not in UniGene) with exon	6.5
40	304507 AA458426	EST	5.4
	304591 AA505702 304601 AA507875	EST singleton (not in UniGene) with exon EST singleton (not in UniGene) with exon	9.8 7.5
	304659 AA533185	EST singleton (not in UniGene) with exon	7.5
	305040 AA630582 Hs.169476	glyceraldehyde-3-phosphate dehydrogena	12.4
45	305134 AA653159 Hs.179661	EST singleton (not in UniGene) with exon	8.7
	305415 AA725116 Hs.78465	EST singleton (not in UniGene) with exon	5.3
	305453 AA738110	EST singleton (not in UniGene) with exon	4.1
	305898 AA872838 305913 AA876109	keratin 8 EST singleton (not in UniGene) with exon	7.7 6.3
50	305950 AA884479	EST singleton (not in UniGene) with exon	5.6
	306004 AA889992 Hs.2186	EST singleton (not in UniGene) with exon	13.2
	306009 AA894560 Hs.283370	EST singleton (not in UniGene) with exon	4.4
	306060 AA906161 Hs.76277	EST singleton (not in UniGene) with exon	4.6
55	306398 AA970548 Hs.297681 306505 AA987722 Hs.172928	EST singleton (not in UniGene) with exon	7.6 19.7
55	306576 AA995761 Hs.276092	EST singleton (not in UniGene) with exon EST singleton (not in UniGene) with exon	5.5
	307117 Al184111 Hs.76067	heat shock 27kD protein 1	7.7
	307138 Al185516 Hs.172928	collagen; type I; aipha 1	8.8
	307187 Al190870 Hs.276417	EST singleton (not in UniGene) with exon	4.1
60	307542 Al280859 Hs.62954	EST singleton (not in UniGene) with exon	6
	307554 Al281603 Hs.172928 307806 Al351739 Hs.276726	EST singleton (not in UniGene) with exon EST singleton (not in UniGene) with exon	10.8 4.7
	308079 Al472733 Hs.270208	ESTs	4.7
	308307 Al581398 Hs.172928	collagen; type I; alpha 1	5.4
65	308511 Al687580 Hs.169476	EST singleton (not in UniGene) with exon	10.1
	308615 Al738593 Hs.101774	EST singleton (not in UniGene) with exon	15.1
	308677 AI761173	EST singleton (not in UniGene) with exon	4.6
		237	
		231	

	308852 A(829848 Hs.182937	peptidylprolyl isomerase A (cyclophilin A	5.9
	308974 Al872290 Hs.300697	immunoglobulin gamma 3 (Gm marker)	4.5
		finitialogiobalii galiina 3 (Gili Illarker)	
	308981 AI873242	EST singleton (not in UniGene) with exon	7.6
_	308995 Al880172	EST singleton (not in UniGene) with exon	6.6
5	309177 Ai951118	EST singleton (not in UniGene) with exon	24.3
	309186 AI952723 Hs.90207	EST singleton (not in UniGene) with exon	6.1
	309198 AI955915	major histocompatibility complex; class I;	5.6
	309226 Ai969897		
		EST singleton (not in UniGene) with exon	6.2
10	309279 Ai990102	EST singleton (not in UniGene) with exon	7.9
10	309583 AW170035	EST	64.5
	309624 AW191929 Hs.252989	EST	5.3
	309629 AW192764 Hs.172928	collagen; type l; alpha 1	6.9
	309641 AW194230 Hs.253100	EST	11.4
	309698 AW238461 Hs.73742	ribosomal protein; large; P0	4.3
15	309700 AW241170 Hs.179661	Homo saplens clone 24703 beta-tubulin m	11.9
	310073 Al335004 Hs.148558	ESTs	4.2
	310094 AW450967 Hs.235240	ESTs	5.7
	310373 AW080778 Hs.145582	ESTs	
			4.8
20	310438 AW022192 Hs.200197	ESTs	39.1
20	310470 Al281848 Hs.194691	ESTs	4.9
	310583 AW205632 Hs.211198	ESTs	7
	310877 T47784 Hs.188955	ESTs	4.1
	311067 AI587332 Hs.209115	ESTs	
			11.2
0.5	311166 Al821294 Hs.118599	ESTs	24.1
25	311199 T57896 Hs.191095	EST cluster (not in UniGene)	5.7
	311465 AI758660 Hs.206132	ESTs	15.7
	311587 Al828254 Hs.271019	ESTs	6.4
	311774 AA700870 Hs.14304	ESTs	6.2
20	311785 Al056769 Hs.133512	ESTs	5
30	311923 T60843 Hs.189679	ESTs	5.9
	311935 AA216387	EST cluster (not in UniGene)	5.5
	311972 N51511 Hs.188449	ESTs	5.2
	312014 Al435650 Hs.128778	ESTs	4.3
	312047 AA588275 Hs.180669		
25		ESTs	14.7
35	312147 T89855 Hs.195648	EST cluster (not in UniGene)	9.8
	312153 AA759250 Hs.153028	cytochrome b-561	27.1
	312168 T92251 Hs.198882	ESTs	4.2
	312172 AI222168 Hs.191168	ESTs	6.1
	312226 Al796815 Hs.199993	ESTs; Weakly similar to ublquitous TPR	5.5
40			
40	312292 AW451893 Hs.151124	ESTs	18.4
	312312 Al080505 Hs.134529	ESTs ·	11.9
	312369 AA582039 Hs.173884	Homo sapiens mRNA; chromosome 1 spe	4
	312407 R46180 Hs.153485	ESTs	13.6
	312430 AW139117 Hs.117494	ESTs	4.1
45	312470 AW451347 Hs.175862	ESTs	
73			4.6
	312483 Al417526 Hs.7753	ESTs	15.3
	312521 AA033609 Hs.319093	ESTs	12.5
	312544 Al498371 Hs.183526	ESTs	14.6
	312638 AW439195 Hs.256880	ESTs	5.3
50	312754 R99834 Hs.250383	ESTs	8.4
50			
	312772 H63791	EST cluster (not in UniGene)	4.3
	312821 AA699325 Hs.269880	ESTs	8.3
	312837 AW292286 Hs.255058	ESTs	7.1
	312849 AA846353 Hs.194054	ESTs	5.9
55	312854 AA828713 Hs.321058	EST cluster (not in UniGene)	4.1
00			
	312992 AA088446 Hs.170298	ESTs	7.3
	313096 Al422367 Hs.163533	ESTs	6.1
	313112 AA732534 Hs.269099	ESTs	4.2
	313126 AA720887 Hs.283313	EST cluster (not in UniGene)	18.1
60	313136 N59284 Hs.288010	ESTs	17
-0			
	313197 AI738851 Hs.222487	ESTs	12.9
	313219 N74924 Hs.182099	ESTs	7.1
	313258 AW068358 Hs.183918	ESTs	13.7
	313328 AW449211 Hs.105445	ESTs	27.9
65	313352 AW292127 Hs.144758	ESTs	9.8
00		ESTs	8.2
	313417 AA741151 Hs.137323		
	313455 AW081702 Hs.98571	ESTs	6.9

	313590 AA804410 Hs.291677	EST cluster (not in UniGene)		5.3
	313663 Al953261 Hs.169813	ESTs		7.6
	313667 U69201 Hs.13684	ESTs; Weakly similar to choline kinase is		12.5
_	313749 AW450376 Hs.119004	ESTs		5.5
5	313832 AW271022 Hs.133294	ESTs		4.3
	313881 AA535580 Hs.16331	ESTs		7.7
	313915 Al969390 Hs.163443	ESTs		27.1
	313955 A1858884 Hs.270647	ESTs		5.7
10	313974 Al310151 Hs.173524	ESTs		4.3
10	314097 AA648744 Hs.269493	ESTs		14.5
	314129 AA228366 Hs.115122	ESTs		9.5 5.4
	314359 AA205569 Hs.194193 314384 AA535840 Hs.162203	ESTs ESTs; Weakly similar to alternatively spll		5.3
	314394 Al380563 Hs.130816	ESTs; weakly similar to atternatively spir		13.2
15	314462 AA347951 Hs.326413	ESTs		6.2
13	314465 AA602917 Hs.156974	ESTs		18.1
	314470 Al934422 Hs.30661	ESTs :		4.2
	314488 AA358265 Hs.182890	ESTs		6.1
	314506 AA833655 Hs.206868	ESTs		27.8
20	314510 Al204418 Hs.190080	ESTs		9.5
	314558 Al873274 Hs.190721	ESTs		22.5
	314661 AA436432 Hs.324239	EST cluster (not in UniGene)		13.3
	314691 AW207206 Hs.136319	ESTs		21.4
	314754 AW026761 Hs.134374	ESTs ·		4.4
25	314775 Al149880 Hs.188809	ESTs		4.4
	314943 Al476797 Hs.184572	cell division cycle 2; G1 to S and G2 to M		18.4
	314961 AW008061 Hs.231994	ESTs		10.2
	314963 Al689617 Hs.200934	ESTs		5.3
20	315006 Al538613 Hs.298241	ESTs		20.7
30	315010 AA531082 Hs.240049	ESTs	1	5 6.1
	315019 AA532807 Hs.105822 315033 AI493046 Hs.146133	ESTs ESTs		12
	315036 AA534953 Hs.163297	ESTS		8.3
	315037 AW205863 Hs.133988	ESTs; Weakly similar to gene MAC25 pr		6.1
35	315051 AW292425 Hs.163484	EST		12.7
55	315054 AI968598 Hs.78768	ESTs		7.6
	315073 AW452948 Hs.257631	ESTs		13.9
	315080 AA744550 Hs.136345	ESTs		4.4
	315083 Al221325 Hs.205442	ESTs		5.1
40	315088 AA557351 Hs.152448	ESTs; Moderately similar to MULTIFUN		4.7
	315175 Al025842 Hs.152530	ESTs		11.9
	315196 AA972756 Hs.44898	ESTs		28.8
	315296 AA876905 Hs.125286	ESTs		16.1
4.0	315303 AW194364 Hs.128022	ESTs; Weakly similar to FIG-1 PROTEIN		25.7
45	315352 AA604799 Hs.136528	ESTs; Moderately similar to IIII ALU SU		12.3
	315364 AA643602 Hs.155485	ESTs; Highly similar to serine protease [H		4.6 4.8
	315368 AW291563 Hs.104696	ESTs		4.4
	315390 Al801565 Hs.200113 315408 AW273261 Hs.216292	ESTs; Weakly similar to alternatively spli ESTs		5
50	315458 AA872000 Hs.116104	ESTs		7.6
50	315472 AA828850 Hs.165469	ESTs		4.9
	315478 AA665612 Hs.120874	ESTs		5.2
	315498 AA628539 Hs.116252	ESTs; Moderately similar to IIII ALU SU		4.8
	315527 Al791138 Hs.116768	ESTs		4.4
55	315530 Al200852 Hs.127780	ESTs .		22.4
	315562 AA737415 Hs.152826	ESTs		5.9
	315634 AA837085 Hs.220585	ESTs		8.8
	315647 AA648983 Hs.212911	ESTs		15
	315652 Al521489 Hs.3053	ESTs		6.3
60	315676 AW002565 Hs.124660	ESTs		9.2
	315680 AA814309 Hs.123583	ESTs		8.1
	315735 Al831760 Hs.155111	ESTs		13.4
	315741 AA812168 Hs.122559	ESTs		5.4
65	315769 AA744875 Hs.189413	ESTs ESTs		4.4 10.4
03	315978 AA830893 Hs.119769 315984 Al015862 Hs.131793	ESTS		5
	315984 Al015862 Hs.131793 316042 AW297979 Hs.170698	ESTS		14.7
	310042 MW231313 113.170090			17./

	040400 44000000 11 40400		
	316136 AA830808 Hs.124366	ESTs	4
	316177 Ai908272 Hs.293102	EST cluster (not in UniGene)	32.6
	316313 AA741300 Hs.202599	ESTs	4.8
5	316405 AA757900 Hs.270823	ESTs	4.8
,	316480 Al749921 Hs.205377	ESTs	12.9
	316564 Al743571 Hs.168799	ESTs; Weakly similar to !!!! ALU SUBFA	8.1
	316714 AA809792 Hs.123307	ESTs	5
	316715 Al440266 Hs.170673	ESTs	4.2
10	316828 AA828116 Hs.173076	ESTs	5.2
10	316869 Al954880 Hs.134604	ESTs	13.3
	316905 AW138241 Hs.210846	ESTs	6.2
	316943 AW014875 Hs.137007	ESTs	5.3
	316949 AA856749 Hs.124620	ESTs	7.2
16	317008 AW051597 Hs.143707	ESTs	4.1
15	317028 AA962623 Hs.189144	ESTs; Weakly similar to RENAL SODIU	4.2
	317067 Al805392 Hs.325335	ESTs	4.5
	317069 Al732892 Hs.190489	ESTs	6.4
	317210 AA490718	EST cluster (not in UniGene)	4.4
20	317298 Al922374 Hs.158549	ESTs	5.9
20	317658 AW139077 Hs.202217	ESTs	4.6
	317674 AW294909 Hs.132208	ESTs	5.2
	317685 Al798630 Hs.149997	ESTs	4.3
	317836 AA983913 Hs.128929	ESTs	12.4
25	317881 Al827248 Hs.224398	ESTs	12.1
25	317902 Al828602 Hs.211265	ESTs	8.8
	317916 Al565071 Hs.159983	ESTs	12.6
	318042 AW294522 Hs.149991	ESTs	5.6
	318053 Al074465 Hs.133469	ESTs	4
20	318064 AW296888 Hs.170939	ESTs	5.2
30	318070 Al024594 Hs.248942	ESTs	4.7
	318073 AW167087 Hs.131562	ESTs	15.7
	318146 AI040125 Hs.150521	ESTs	5.9
	318186 AW016773 Hs.3709	ESTs	5.3
35	318481 Ai291584 Hs.145921	ESTs; Weakly similar to HYPOTHETICA	7.6
22	318566 Al335361 Hs.226376 318617 AW247252 Hs.75514	ESTs	5.8
		nucleoside phosphorylase	11.1
	318662 Al285898 Hs.294014	ESTs	16.3
	318691 AW192139 Hs.181307 318740 NM_002543Hs.77729	H3 histone; family 3A	4
40		EST cluster (not in UniGene)	21.3
70		ESTs	35
	318948 AA317274 Hs.13996 319163 F15257 Hs.27	ESTs	11.7
		glycine dehydrogenase (decarboxylating;	7
		EST cluster (not in UniGene)	8.9
45	319545 R83716 Hs.14355 319668 NM_002731Hs.87773	ESTs	8.2
70	319763 AA460775 Hs.6295	EST cluster (not in UniGene)	25.4
	319913 AA179304 Hs.271586	ESTs	7
	319936 W22152 Hs.282929	ESTs; Moderately similar to III! ALU SU EST cluster (not in UniGene)	8.7
	319951 AA307665 Hs.14559	ESTs	5.6
50	319962 H06350 Hs.135056	ESTs	4.9 9.2
50	319977 AA632632	EST cluster (not in UniGene)	9.2 4.6
	320074 AA321166 Hs.278233	EST cluster (not in UniGene)	16.7
	320092 AF022799 Hs.113292	calpain 9 (nCL-4)	5.4
	320107 AA836461 Hs.291712	EST cluster (not in UniGene)	5.3
55	320133 D63271	EST cluster (not in UniGene)	5.5 5.5
55	320167 AA984373 Hs.90790	EST cluster (not in UniGene)	15
	320187 T99949 Hs.303428	EST cluster (not in UniGene)	6.7
	320211 AL039402 Hs.125783		
	320401 U90449 Hs.152717	DEME-6 protein nucleoside diphosphate kinase type 6 (Inh	24.3
60	320458 Al884396 Hs.24131	ESTs	10 5.4
00	320488 R31386 Hs.191791	EST cluster (not in UniGene)	
	320521 N31464 Hs,24743	ESTs Cluster (not in UniGene)	4.9 9.5
	320661 AA864846 Hs.115175		
	320691 R61576 Hs.313951	EST cluster (not in UniGene) hypothetical protein	6.6 5.9
65	320699 R63161 Hs.118249	EST cluster (not in UniGene)	5.9 4
05	320727 U96044 Hs.181125	EST cluster (not in UniGene)	4 15.3
	320993 AL050145 Hs.225986	Homo sapiens mRNA; cDNA DKFZp586	7.2
	32000 / 1200143 FIS.223900	Lionio appiona ministri, contri Dinizipodo	1.2

		AA737314	Hs.194324	EST cluster (not in UniGene)	6.1
		AW393497		EST cluster (not in UniGene)	5
		AF134149		EST cluster (not in UniGene)	11.4
		AI769410	Hs.221461	ESTs	7.7
5		AA295304	Hs.297939	ESTs; Weakly similar to neogenin [H.sap	5.5
	321354	AA078493	11- 444000	EST cluster (not in UniGene)	16.9
		H68014	Hs.141278	ESTs; Weakly similar to IIII ALU SUBFA	4.2
		AW366305 AW392474		EST cluster (not in UniGene)	6.3
10		N98619	Hs.172759 Hs.42915	ESTs; Moderately similar to !!!! ALU SU	9
10		H84762	Hs.253197	ARP2 (actin-related protein 2; yeast) hom ESTs	11.3
		D28390	Hs.272897	EST cluster (not in UniGene)	10.4 19.9
		AW157424		ESTs	5.6
		H67065	Hs.271530	ESTs; Weakly similar to illi ALU SUBFA	5.4
15		AW068268		ESTs; Weakly similar to !!!! ALU CLASS	6.5
		N77342	Hs.21851	EST cluster (not In UniGene)	10.2
	322017	AA310039		ESTs	9.8
	322026	AA233527	Hs.283675	low density lipoprotein receptor (familia)	27.8
		AL137517	Hs.306201	EST cluster (not in UniGene)	40.2
20	322171		Hs.48474	EST cluster (not in UniGene)	5.7
		AF085975		EST cluster (not in UniGene)	7.7
		AL134970		follistatin-like 1	14.4
		W07459	Hs.157601	EST cluster (not in UniGene)	13.4
25		AA086123		EST cluster (not in UniGene)	7.6
23		AA679082		ESTs	4.4
		AW043782 AW248508		ESTs	21
		C16391	NS.2/9/2/	DiGeorge syndrome critical region gene 2 EST cluster (not in UniGene)	15.3 21.3
		C18965	Hs.159473	ESTs	11.7
30		AA580288	110.100-110	EST cluster (not in UniGene)	8.9
		AW014094	Hs.210761	ESTs	10.8
	323107	Al301107	Hs.150790	ESTs	6.5
	323136	AL120351	Hs.30177	EST cluster (not in UniGene)	5.5
		AL120862	Hs.124165	ESTs	17.9
35		A1064982	Hs.117950	multifunctional polypeptide similar to SA	5.8
		AL049370		Homo saplens mRNA; cDNA DKFZp586	11.6
		AA203135		ESTs	6.4
		W44372 T70731	Hs.110771	EST duster (not in UniGene)	7.3
40		AA228078	Hs.193620	EST cluster (not in UniGene)	15.8
70		AI829520	Hs.227513	EST cluster (not in UniGene) ESTs	4.8 20.2
		AA228883		EST cluster (not in UniGene)	8.8
		AL038623		ESTs; Weakly similar to IIII ALU SUBFA	5
		Al751438	Hs.41271	ESTs; Weakly similar to IIII ALU SUBFA	6.5
45	323685	AA344205	Hs.289088	EST cluster (not in UniGene)	7.1
	323753	AA327102	Hs.70266	EST cluster (not in UniGene)	6.1
		AA410943		EST cluster (not in UniGene)	16.8
	323845			ESTs; Weakly similar to waclaw (D.melan	10.1
50		AA570698		ESTs	6.4
50		AA844907		EST cluster (not in UniGene)	8
		AA378201		EST cluster (not in UniGene)	6.3
		AL044891 AA543008	Hs.269350	EST cluster (not in UniGene)	50.1
			Hs.145078	ESTs; Weakly similar to IIII ALU SUBFA	5.7
55		AW502000		ESTs EST cluster (not in UniGene)	9.5
-		AA464510		EST duster (not in UniGene)	4.4 16.7
	324495	AW501411	Hs 122489	ESTs; Weakly similar to iiii ALU CLASS	5.5
				ESTs	5.4
	324598	AA502659	Hs.163986	ESTs	8.8
60		AW016378		ESTs	23.1
		AA448021		EST cluster (not in UniGene)	21.2
		A!610425	Hs.19597	ESTs	5
		AI031771	Hs.132586	ESTs	5
65		AA640770		EST cluster (not in UniGene)	4.1
65		AI826999 AA704806	Hs.224624	ESTs	6.3
	324920		Hs.271492	ESTs	11.7
	324302	551323	110.27 1492	ESTs	4.8

	224004	4 40 40 700		FOT -11 (1)- 11-10)	40.0
		AA613792	11- 470024	EST cluster (not in UniGene)	13.3
		T06882	Hs.172634	ESTs	19.6
		T06997 Al064690	Hs.121028 Hs.171176	EST cluster (not in UniGene) ESTs	24.5 4.6
5	325622	AIUU409U	ns. 17 1170	CH.14_hs gij5867000	5.2
,	326213			CH.17_hs gi[5867224	8.1
	326474			CH.19_hs gij5867405	12.7
	326816			CH.20_hs gi]6552458	9.4
	326817			CH.20_hs gij6552458	11.7
10	327110			CH.21_hs gi 6117842	14.7
10	327196			CH.01_hs gi 5867446	5.1
	327283			CH.01_hs gij5867478	4.3
	327313			CH.01_hs gi 5867501	4.8
	327450			CH.02_hs gij5867766	4.1
15	328059			CH.06_hs gi[6117819	6.2
	328304			CH.07_hs gi[6004478	5.4
	328492			CH.07_hs gij5868455	7
	328857			CH.07_hs gij6381927	5.2
	329367			CH.X_hs gi[5868842	7.6
20	329373			CH.X_hs gij6682537	12
	329655			CH.14_p2 gij6448516	4
	329899			CH.15_p2 gij6563505	4
	329960			CH.16_p2 gi 5091594	7.6
	330084			CH.19_p2 gij6015302	4
25		M23263		androgen receptor (dihydrotestosterone re	5.8
		AA449749		ESTs; Highly similar to secreted apoptosi	10.2
		H14624		ESTs; Highly similar to secreted apoptosi	4.4
		X03363		HER2 receptor tyrosine kinase (c-erbB-2;	17.7
		D50692	Hs.78221	c-myc binding protein	10.1
30		TIGR:HT54		Hs.73946	Endothelial Cell Growth Factor 1 5.5
		M13755	Hs.833	interferon-stimulated protein; 15 kDa	67
		M29696	Hs.237868	interleukin 7 receptor	6
		M34423	Hs.79222	gaiactosidase; beta 1	13.1
25		M75099	Hs.227729	FK506-binding protein 2 (13kD)	29
35		M81057	Hs.180884	carboxypeptidase B1 (tissue)	38.5
		U22970 U23942	Hs.265827 Hs.226213	multiple UniGene matches	7.4 15
		U32989	Hs.183671	cytochrome P450; 51 (lanosteroi 14-alpha	11
		U39840	Hs.299867	tryptophan 2;3-dioxygenase hepatocyte nuclear factor 3; alpha	6.5
40		U49082	Hs.76460	transporter protein	7.7
70		U62800	Hs.83393	cystatin E/M	4
		D57823	Hs.321403	Sec23 (S. cerevisiae) homolog A	10.5
		AA164687		mannosyl (alpha-1;3-)-glycoprotein beta-1	24.3
		AA015730		ESTs; Weakly similar to transformation-r	44.1
45		AA075298		ESTs	4.4
		AA127474		ESTs; Weakly similar to IIII ALU SUBFA	8.1
		AA133457		ESTs	5.2
	330912	AA195936	Hs.82719	general transcription factor IIA; 1 (37kD a	5
	330924	AA232136	Hs.159737	Homo sapiens mRNA; cDNA DKFZp434	9.1
50		H55762	Hs.9302	ESTs	7.6
		H98597	Hs.30340	ESTs	13.5
		N32919	Hs.27931	ESTs	9.1
		N66563	Hs.191358	ESTs	10.5
~ ~		R61398	Hs.4197	ESTs	7.4
55		R72427	Hs.129873	ESTs; Weakly similar to CYTOCHROME	41.9
		R73816	Hs.17385	ESTs	4.7
		T98531	Hs.173904	ESTs	4.1
		W69807	Hs.16537	hypothetical protein; similar to (U06944)	4.9
60		AA252079		dachshund (Drosophila) homolog	15.1
00		AA281076		ESTs	4.8
		AA287662 AA303125		ESTS	7.6
		AA303125 AA357927		ESTs; Weakly similar to !!!! ALU SUBFA	13 12.4
		AA417956		ESTs ESTs	12.4 6.5
65		AA417956 AA421562		anterior gradient 2 (Xenepus laevis) homo	8.5 28.2
05		AA443802		ESTs: Weakly similar to cDNA EST yk47	15.1
		AA456001		ESTs	7.9
	001001				

331558 N9577 Hs.468243 331581 N9571 Hs.19571 5 331681 WS572 Hs.19571 5 331681 WS572 Hs.19571 5 331681 WS572 Hs.19571 6 SSTs 331760 AA28477 Hs.111471 5 SSTs 331760 AA28477 Hs.111471 5 SSTs 331760 AA28477 Hs.111471 5 SSTs 331760 AA28477 Hs.111471 5 SSTs 331760 AA28477 Hs.111471 5 SSTs 331760 AA28477 Hs.111471 6 SSTs 331760 AA28477 Hs.111471 6 SSTs 331760 AA28477 Hs.111471 6 SSTs 331760 AA28487 Hs.111471 6 SSTs 331760 AA28487 Hs.111471 6 SSTs 331760 AA28487 Hs.111471 6 SSTs 331760 AA28487 Hs.111471 6 SSTs 331760 AA28487 Hs.111471 6 SSTs 331760 AA28487 Hs.111471 6 SSTs 331760 AA28487 Hs.111471 6 SSTs 331760 AA28487 Hs.111471 6 SSTs 331760 AA2887 Hs.111471 6 SSTs 331760 AA2887 Hs.111471 6 SSTs 33200 AA3878 Hs.111471 6 SSTs 33200 AA3878 Hs.111471 6 SSTs 33200 AA6878 Hs.112670 6 SSTs 33200 AA6887 Hs.112670 6 SSTs 33200 AA6887 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 SSTs 33200 AA6888 Hs.11267 Hs.112670 6 CH2_FGRNS.8.1 Hs.112		331478	N26608	Hs.40639	ESTs	7
3 33168 WS572 st. 19571 collagent, type III; alpha 1 (Ehlers-Danlos 13.8 331760 AA28440 htt. 114381 ESTs 5.6 331761 AA28440 htt. 143818 ESTs 5.6 331760 AA28440 htt. 143818 ESTs St. 15.6 331760 AA28440 htt. 143818 ESTs St. 15.6 A31760 AA28440 htt. 143818 ESTs St. 15.6 A31826 AA312681 htt. 143826 ESTs A31826 AA32668 htt. 143826 ESTs A3260 A326079 htt. 143878 Htt. 143879 ESTs A3260 A326079 htt. 143878 Htt. 143879 ESTs A3260 A326079 htt. 143878 Htt. 143879 ESTs A32600 A326079 htt. 143878 Htt. 143879 ESTs A32600 A326079 A326079 htt. 14386 Htt. 143879 ESTs A32600 A326079 A326079 A326079 A326079 Htt. 143878 Htt. 143879 A326079					19.8	
5 331969 AA284379 Hs.142288						
331769 AA28440 H. 14.3918 ESTs	5					
331767 AA28460 Ps.143818 ESTs 331763 AA28460 Ps.143818 ESTs (Seakly similar to unknown [H.sap 7.4 A31762 AA292721 Ps.14544 ESTs; Weakly similar to unknown [H.sap 7.4 A31762 AA29268] ESTs 5158 ESTs 33180 AA24766 Ps.15377 A31952 AA4471910 Ps.208800 ESTs 33200 AA4471910 Ps.208800 ESTs 33200 AA4471910 Ps.208800 ESTs 33200 AA447197 Ps.191402 ESTs 33200 AA908371 Ps.12085 ESTs; Weakly similar to IIII ALU CLASS 10.5 A3200 AA908371 Ps.12085 ESTs 33200 AA908371 Ps.12085 ESTs 33201 AA298804 Ps.12085 ESTs 33219 AA29808 Ps.12085 ESTs 33219 AA29808 Ps.12085 ESTs 33219 AA29808 Ps.12077 ESTs 33219 A32219 A	,					
331763 A327221 hs.154434 ESTs; Weakly similar to unknown [H.sap 3176 A312861 hs.1577 s. 31865 A412861 hs.1577 s. 31890 A4132166 hs.3577 s. 2578 s. 31890 A4132166 hs.35783 s. 2578 s. 320015 A443716 hs.37873 s. 2578						
331862 AA411144 Hs_226882 ESTs 331862 AA41144 Hs_226882 ESTs 331892 AA45786 Hs_87837 ESTs 5331992 AA467910 Hs_226800 ESTs 532006 AA697910 Hs_226800 ESTs 532006 AA697910 Hs_226800 ESTs 11.4 11.5 11						
331890 AA34756 Hs.3577 331992 AA34756 hs.35787 331992 AA34756 hs.35787 332015 AA469381 hs.25056 515 515 516 517 518 518 518 518 519 519 519 519 519 519 519 519 519 519		331763	AA312861	Hs.96704	ESTs	
331992 AA487916 Hs. 327637 332015 AA487916 Hs. 320800 332016 AA687916 Hs. 128096 332001 AA960179 Hs. 191402 ESTs 332001 AA960179 Hs. 191402 ESTs 33201 AA960179 Hs. 191402 ESTs 33201 AA960179 Hs. 191402 ESTs 33219 A20268 Hs. 112879 332219 A20268 Hs. 112879 332224 NS3221 Hs. 100426 ESTs 332224 NS3221 Hs. 100426 ESTs 332224 NS3221 Hs. 100426 ESTs 332224 NS3221 Hs. 103870 ESTs 332224 NS3221 Hs. 103870 ESTs 332224 NS3221 Hs. 103870 ESTs 332224 NS3221 Hs. 103870 ESTs 332224 NS3221 Hs. 103870 332230 WS3240 332328 WS3240 332328 WS3240 332328 NS322 Hs. 1822 33252 NS3322 Hs. 1822 33252 NS3322 Hs. 1822 33252 NS3322 Hs. 182091 33252 NS3322 Hs. 182091 33252 NS3322 Hs. 182091 33252 NS3322 Hs. 182091 33252 NS3322 Hs. 182091 33252 NS3322 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 33252 NS3323 Hs. 182091 AA97888 Hs. 18202 Hs. 18202 Hs. 1820 AA97888 Hs. 18202 Hs. 18202 Hs. 18202 Hs. 18202	10					
332043 AA490831 Hs.12696						
332043 AA499831 Hs.126056 ESTs 11.4						
332001 AAS98594 A. 1262023 ESTs 3.9.1						
33207 AA96894 Hs.205236 ESTs 33207 AA968974 Hs.12692 ESTs 33219 A22508 Hs.112679 ESTs 332246 N57927 Hs.100370 ESTs 332246 N57927 Hs.10377 ESTs, Weakly similar to RNA POLYME 332246 N57927 Hs.10370 ESTs 332240 N7008 Hs.134047 ESTs, Weakly similar to outer membr 332240 N7008 Hs.134047 ESTs, Weakly similar to outer membr 332260 N7008 Hs.134047 ESTs, Moderately similar to outer membr 32240 N57937 Hs.106564 ESTs, Moderately similar to outer membr 32240 N57937 Hs.106564 ESTs, Moderately similar to outer membr 32240 N57939 Hs.106564 ESTs, Moderately similar to outer membr 32240 N57939 Hs.106564 ESTs, Moderately similar to outer membr 32240 N57939 Hs.2056 Hs.20560 Hs.20	15					
332093 AA620569 Hs. 112592 ESTS 8.8 33219 AA620569 Hs. 139315 ESTS 7.1 332246 ASSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	1.5					
332219 N32226 N3213 Hs.139315 ESTS 12.2 332247 NS9172 Hs.100425 ESTS 16.5 332268 N7088 Hs.13947 ESTS; Weekly similar to RNA POLYME 15.6 332269 N7088 Hs.139467 ESTS; Moderately similar to outer membr 15.2 25 33236 N7088 Hs.139467 ESTS; Moderately similar to outer membr 15.2 33236 N7088 Hs.139467 Hs.139767 ESTS; Moderately similar to outer membr 15.2 33236 N70812 Hs.139767 ESTS; Moderately similar to outer membr 15.2 33236 N70812 Hs.139767 Hs.1						8.8
20 33226 N39213 Hs.100425 ESTs 122 33226 N79727 Hs.109370 ESTs 16.9 33226 N70088 Hs.139467 ESTs 16.9 33226 N70088 Hs.139467 ESTs 17.2 33226 N70088 Hs.139467 ESTs 17.2 33226 N70088 Hs.139467 ESTs 17.2 33226 N70088 Hs.139467 ESTs 17.2 33226 N70088 Hs.13947 Hs.109564 ESTs 17.2 33226 N70088 Hs.13946 Hs.127811 chromosome 21 open reading frame 5 14.1 332340 W16326 Hs.28884 ESTs 17.2 33236 PA46890 Hs.4779 Hs.109564 ESTs 17.2 33236 PA46890 Hs.4779 Hs.109564 ESTs 17.2 33236 PA46890 Hs.4779 Hs.10956 Hs.10910 Hs.						
332246 N9372 Hs.12077 ESTs; Weakly similar to RNA POLYME 15.6 332269 N91279 Hs.139467 ESTs 4.9 332269 N91279 Hs.139567 ESTs 4.9 332340 W15435 Hs.13957 ESTs 5.1 332340 W15435 Hs.12784 ESTs 5.1 332340 W15435 Hs.12784 ESTs 5.1 332340 W15435 Hs.12784 ESTs 5.1 332340 W15435 Hs.12784 ESTs 5.1 332450 W15435 Hs.12784 ESTs 5.1 332540 W15435 Hs.12784 ESTs 5.1 332540 W15435 Hs.12784 ESTs 5.1 332540 W15435 Hs.12784 ESTs 5.1 332540 W15435 Hs.12784 ESTs 5.1 332540 W15435 Hs.12784 ESTs 5.1 332540 W15435 Hs.12784 ESTs 5.1 332554 NA1912 Hs.1900 Ks.18556 pare product 4.8 8.9 33255 ANA1912 Hs.1900 Ks.18556 pare product 4.8 33256 ANA1912 Hs.1900 Ks.18556 pare product 4.8 33256 ANA1912 Hs.1900 Ks.18556 pare product 4.8 33256 ANA1912 Hs.1900 Ks.18556 pare product 5.1 33256 ANA1912 Hs.1900 Ks.1856 pare product 5.1 33256 Hs.1900 Ks.1856 pare product 5.1 33256 Ks.1856 pare product 5.1 33256 Ks.1856 pare product 5.1 33256 Ks.1856 pare product 5.1 33256 Ks.1856 pare product 5.1 33256 Ks.1856 pare product 5.1 33256 Ks.1856 pare product 5.1 33256 Ks.1856 pare product 5.1 33256 ks.1856 pare product 5.1 33256 ks.1856 pare product 5.1 33256 pare product 5.1 33256 ks.1856 pare product 5.1 33256	20					
332247 N89172	20					
332269 N91279 HA. 108654 SETs, Moderately similar to outer membr 8.2						
S32269 NB1929 Ha.108654 ESTs; Moderately similar to outher membr 8.2						
25 332340 (1948) Ha.137561 ESTs 7.7 32340 (Wis498) Ha.127811 brownosome 21 open reading frame 5 14.1 32342 (Wis208) Ha.288684 ESTs ESTs 30 332499 (Mis208) Ha.19004 16.9 30 332499 (Mis208) Ha.19004 MAA0865 gene product 4.8 30 332499 (Mis208) Ha.19004 MAA0865 gene product 4.8 332523 (NS122) AND 18122 (Ha.1822) Ha.19004 Ha.19004 332524 (NS122) Ha.19024 Ha.19004 Ha.19004 332525 (NS122) Ha.19024 Ha.19004 Ha.19004 332654 (AA27185) Ha.1902 Ha.19000 12.3 33266 (AA17118) Ha.36366 Ha.1901 Ha.1901 Ha.1901 Ha.1901 33267 (Ha.1906) Ha.2725 Ha.1901						
332347 W60226 Hs_28868 ESTs Moderalely similar to similar to AD 19.9 332467 AA4868030 Hs. 119004 MAA0665 gene product 4.8 332467 AA4868030 Hs. 119004 MAA0665 gene product 4.8 332568 AA281758 Hs. 154424 delodinase; doorbyronine; type 19.3 332568 AA281758 Hs. 15751 Hs. 1582 Hs. 1892 Hs. 1	25					7.7
332282 W93840 Hs.4779 ESTs, Moderalely similar to similar to AD 16.9						
332467 AA489530 Hs. 119004 33269 M2036 Hs. 1232910 Hs. 119004 33261 AA29175 Hs. 154424 332526 AA281753 Hs. 154424 332526 AA281753 Hs. 154524 332526 AA281753 Hs. 15751 Hs. 1682 33265 AA28496 Hs. 1892 33265 AA28496 Hs. 1892 33260 AA471752 Hs. 1892 33260 AA471752 Hs. 1892 33260 AA471751 Hs. 185666 33260 AA471751 Hs. 155666 33260 AA471752 Hs. 157275 Hs.						
332499 M243968 Hs.325910 Human hyrosine kinase-type receptor (HE 10.4 33256 AA218182 Hs.145424 Incision 14,5-thickpotate receptor (type 15,8 132565 AA23868 Hs.25771 Incision 14,5-thickpotate receptor (type 19 15,8 132565 AA23868 Hs.25772 Incision 14,5-thickpotate receptor (type 19 15,8 132565 AA23868 Hs.25772 Incision 14,5-thickpotate receptor (type 19 15,8 13,5 13						
332513 AA018182 Hs.154424 delodinase; lodothyronine; type II 5.8 332566 AA281753 Hs.7515 solid life, thiphophather resplor; type 19 332561 AA28898 Hs.8272 th.1892 EST; Highly similar to PHENYLETHAN 15.3 332667 AA28989 Hs.2672 th.1892 Lift dynamic resplor; type 19 th.1892 th	30					
332266 AA281753 Hs.17515 lossled 14;5-ftyliosphate receptor, type 19 332565 AA281753 Hs.1822 E1A binding protein p300 12.3 15.3 332667 R41791 Hs.25672 E1A binding protein p300 12.3 15	50					
332502 NS3192 Hs.1892						
335 332607 R41791 Hs.36566 LIM domain linase 1 11.1 332604 AA29768 Hs.243901 KAA11667 protein 15.2 332702 H93968 Hs.86251 KAA1676 protein 15.2 332703 H93968 Hs.86251 KAA1667 protein 15.2 332704 H93968 Hs.86251 KAA1667 protein 15.2 332705 T59161 Hs.76293 CH22_FGENES.38.1 77.7 332620 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 33269 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.38.1 77.7 333010 CH22_FGENES.39.1 77.7 333010 CH22_FGENES.29.1 77.7 333010 CH22_FGE					EST; Highly similar to PHENYLETHAN	
332840 AM17152 Hs.5101 profein regulator of cytokinesis 1 15.2 332704 332888 Hs.57255 Hs.5283 Hs.528						
33289 AAR2788 Ha_282901 MAA1087 protein 15.2	35					
332702 H93968 Hs.75725 Iranagelin 2 4.7. 332705 T59161 Hs.75293 Iranagelin 2 5.5. 332747 AA79968 Hs.88251 AA79968 Hs.88251 A75293 AA79968 Hs.88251 A75293 AA79968 Hs.88251 A75293 AA79968 Hs.88251 A75293 AA79968 Hs.88251 A75293 AA79968 Hs.88251 A75293 AA79968 Hs.88251 A75295 A						
332795 745161 Hs.76293 hymosin; bela 10 35279 745161 Hs.76293 hymosin; bela 10 327979 74679 84879588 Hs.88251 alsolitations A 9.8.8 328297 332929 CH22_FGENES.38_1 77.7 47.8 47.9 47.9 47.9 47.9 47.9 47.9 47.9 47.9						
40 332749 AA79968 Hs.88251 ar/sulfatase A 9.8 332749 AA79968 Hs.88251 CH22_FGENES.38.1 17.7 332829 CH22_FGENES.38.1 17.7 332839 CH22_FGENES.38.4 7.4 332956 CH22_FGENES.38.4 17.7 332958 CH22_FGENES.38.4 15 17.8 332968 CH22_FGENES.38.15 17.8 10.6 17.8 332968 CH22_FGENES.48.15 17.8 10.6 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8						
332293 CH22_FGENES.38.3 47.4 332935 CH22_FGENES.38.4 77.4 332935 CH22_FGENES.38.4 77.4 332936 CH22_FGENES.38.1 57.4 45 332981 CH22_FGENES.48.15 17.8 332981 CH22_FGENES.48.15 10.6 332983 CH22_FGENES.45.5 4.3 333000 CH22_FGENES.45.5 4.3 333000 CH22_FGENES.51.1 5.2 8.1 50 333010 CH22_FGENES.51.2 8.1 333108 CH22_FGENES.51.2 8.1 333108 CH22_FGENES.51.2 8.5 55 333345 CH22_FGENES.71.4 5.6 8.3 333294 CH22_FGENES.71.3 8.6 8.8 333294 CH22_FGENES.71.3 8.6 8.8 333294 CH22_FGENES.71.3 8.6 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	40					
332935 CH22_FGENES.38_4 7,4 45 332956 CH22_FGENES.48_15 17,8 332961 CH22_FGENES.48_15 10,6 332983 CH22_FGENES.48_15 10,6 332983 CH22_FGENES.48_16 10,6 332930 CH22_FGENES.45_1 43,3 33009 CH22_FGENES.45_1 5,2 333010 CH22_FGENES.61_2 8,1 50 333011 CH22_FGENES.61_2 8,1 33108 CH22_FGENES.61_5 8,5 33319 CH22_FGENES.61_5 6,6 33319 CH22_FGENES.81_6 6,3 333036 CH22_FGENES.81_6 6,3 333036 CH22_FGENES.81_6 6,8 333036 CH22_FGENES.81_6 5,6 333038 CH22_FGENES.18_2 5,8 333038 CH22_FGENES.18_2 5,8 333038 CH22_FGENES.18_2 5,8 333038 CH22_FGENES.19_1 5,5 333038 CH22_FGENES.19_1 5,5 333039 CH22_FGENES.19_1 5,5 333049 CH22_FGENES.19_1 5,5 333049 CH22_FGENES.19_5 4,2 333049 CH22_FGENES.19_5 4,2 333049 CH22_FGENES.19_5 4,2 333049 CH22_FGENES.19_5 4,2 333049 CH22_FGENES.19_5 5,6 4,2 333049 CH22_FGENES.21_6 4,3 333763 CH22_FGENES.247_6 4,3 333763 CH22_FGENES.247_6 4,3 333763 CH22_FGENES.247_6 5,5 65 333769 CH22_FGENES.271_7 12,2 658 333769 CH22_FGENES.271_7 12,2						
332956 CH22_FGENES.48_12 5.4						
45 332988 CH22_FGENES.48_15 17.8 332981 CH22_FGENES.48_18 10.6 332983 CH22_FGENES.45_1 15.2 333009 CH22_FGENES.45_1 15.2 333010 CH22_FGENES.61_1 5.2 333011 CH22_FGENES.61_2 8.1 333013 CH22_FGENES.61_5 8.5 333109 CH22_FGENES.61_5 8.5 333109 CH22_FGENES.61_5 8.5 333109 CH22_FGENES.61_5 8.5 333030 CH22_FGENES.81_6 6.3 333030 CH22_FGENES.81_6 6.3 333036 CH22_FGENES.81_6 6.8 333036 CH22_FGENES.18_2 6.8 333036 CH22_FGENES.18_2 15.2 55 333348 CH22_FGENES.18_12 5.1 333038 CH22_FGENES.19_1 5.7 33349 CH22_FGENES.19_7.5 4.2 33349 CH22_FGENES.19_7.5 4.2 33349 CH22_FGENES.19_7.5 4.2 33349 CH22_FGENES.19_7.6 4.3 33349 CH22_FGENES.19_7.6 4.3 33349 CH22_FGENES.19_7.6 4.3 33349 CH22_FGENES.19_7.6 4.3 33376 CH22_FGENES.247_6 4.3 333773 CH22_FGENES.247_6 4.3 333773 CH22_FGENES.247_6 5.6 5 333786 CH22_FGENES.28_1 4 333787 CH22_FGENES.28_1 13.4 333787 CH22_FGENES.271_7 12.2						
332981	15					
332983	43					
333090 CH22_FGENES.61_1 5.2 33010 CH22_FGENES.61_2 8.1 33010 CH22_FGENES.61_2 8.1 33108 CH22_FGENES.61_5 8.5 333139 CH22_FGENES.71_4 5.6 333139 CH22_FGENES.71_4 5.6 333294 CH22_FGENES.71_6 6.3 333294 CH22_FGENES.71_6 6.3 333343 CH22_FGENES.71_7 11,4 333348 CH22_FGENES.71_7 11,4 33348 CH22_FGENES.71_7 12,2 3346 CH22_FGENES.71_7 12,2 60 3356 CH22_FGENES.71_7 12,2 61 33578 CH22_FGENES.71_7 12,2 62 33578 CH22_FGENES.71_7 12,2 63 33578 CH22_FGENES.71_7 12,2 65 33578 CH22_FGENES.271_7 12,2 65 33578 CH22_FGENES.271_7 12,2						
333010 CH22_FGENES.61_2 8.1 333013 CH22_FGENES.61_5 8.5 333108 CH22_FGENES.61_5 8.5 333109 CH22_FGENES.71_4 5.6 333139 CH22_FGENES.71_6 6.3 33324 CH22_FGENES.71_6 6.3 33324 CH22_FGENES.118_2 6.8 CH22_FGENES.118_2 1.8 333306 CH22_FGENES.117_2 1.1 333388 CH22_FGENES.137_2 5.1 33346 CH22_FGENES.137_1 5.1 33346 CH22_FGENES.157_5 4.2 33349 CH22_FGENES.157_5 7.6 33349 CH22_FGENES.157_8 7.6 33357 CH22_FGENES.173_2 8.2 CH22_FGENES.173_2 8.2 CH22_FGENES.271_6 4.3 333783 CH22_FGENES.247_6 4.3 333783 CH22_FGENES.247_6 4.3 333783 CH22_FGENES.247_6 5.5 65 333768 CH22_FGENES.271_7 122 65 333769 CH22_FGENES.271_7 122 66 333769 CH22_FGENES.271_7 122 67 333769 CH22_FGENES.271_7 122						
333108 CH22_FGENES79_14 5.6 333199 CH22_FGENES81_16 6.3 333294 CH22_FGENES81_16 6.3 333295 CH22_FGENES.118_2 6.8 333306 CH22_FGENES.118_2 118.2 333308 CH22_FGENES.137_2 114.3 333388 CH22_FGENES.139_12 5.1 333489 CH22_FGENES.157_5 4.2 333499 CH22_FGENES.157_5 7.6 60 333565 CH22_FGENES.157_5 7.8 60 333578 CH22_FGENES.173_2 8.2 60 333678 CH22_FGENES.271_5 4.3 333783 CH22_FGENES.247_6 4.3 333783 CH22_FGENES.247_6 5.5 65 333768 CH22_FGENES.281_1 4.6 65 333768 CH22_FGENES.271_7 12.2 65 333769 CH22_FGENES.271_7 12.2					CH22_FGENES.61_2	
333193	50					
333294 CH22_FGENES.118_2 6.8 333305 CH22_FGENES.117_2 114. 55 333343 CH22_FGENES.137_2 5.1 333388 CH22_FGENES.139_12 5.1 333489 CH22_FGENES.157_5 4.2 333499 CH22_FGENES.157_5 7.6 33357 CH22_FGENES.157_5 7.6 33357 CH22_FGENES.173_2 8.2 60 333576 CH22_FGENES.173_2 8.2 60 333678 CH22_FGENES.247_6 4.3 333773 CH22_FGENES.247_6 4.3 333783 CH22_FGENES.247_6 4.3 333783 CH22_FGENES.288_1 4.1 65 333786 CH22_FGENES.288_1 5.6 65 333789 CH22_FGENES.271_7 12.2 65 333789 CH22_FGENES.271_7 12.2						
33336						
555 333343 CH22 FGENES 139.12 5.1 333388 CH22 FGENES 139.12 12 333496 CH22 FGENES 157.5 4.2 33499 CH22 FGENES 157.5 7.6 335479 CH22 FGENES 173.2 8.2 60 335679 CH22 FGENES 173.2 8.2 333743 CH22 FGENES 247.6 4.3 333783 CH22 FGENES 247.6 4.3 333783 CH22 FGENES 288.1 4 333786 CH22 FGENES 288.1 4 65 333787 CH22 FGENES 288.1 5.6 65 333789 CH22 FGENES 271.7 12.2 65 333789 CH22 FGENES 271.7 12.2						
333388 CH22_FGENES.144_3 12.7 333496 CH22_FGENES.157_5 4.2 333499 CH22_FGENES.157_6 7.6 333591 CH22_FGENES.203_4 5 333573 CH22_FGENES.203_4 5.3 333743 CH22_FGENES.204_1 13.4 333763 CH22_FGENES.264_1 13.4 333768 CH22_FGENES.264_1 5.6 333769 CH22_FGENES.268_1 4 65 333768 CH22_FGENES.271_5 5.6 65 333769 CH22_FGENES.271_5 4.3	55					
333499 CH2Z_FGENES.187_8 7.6 333517 CH2Z_FGENES.187_3 2 8.2 60 333585 CH2Z_FGENES.203_4 5 333679 CH2Z_FGENES.203_4 5 333743 CH2Z_FGENES.261_1 13.4 333783 CH2Z_FGENES.261_1 4 60 333787 CH2Z_FGENES.261_5 5.6 65 333788 CH2Z_FGENES.271_5 5.6 65 333789 CH2Z_FGENES.271_5 42.3						12.7
333917 CH22_FGENES.173_2 8.2 033456 CH22_FGENES.203_4 5 333578 CH22_FGENES.247_6 4.3 333783 CH22_FGENES.284_1 134 333787 CH22_FGENES.284_1 4 333787 CH22_FGENES.284_1 5 65 333788 CH22_FGENES.271_7 122 65 333789 CH22_FGENES.271_7 122 66 333789 CH22_FGENES.271_7 122						
60 333985 CH22_FGENES.203_4 5 335979 CH22_FGENES.264_1 13.4 333743 CH22_FGENES.264_1 13.4 333787 CH22_FGENES.268_1 4 533767 CH22_FGENES.271_6 5.6 65 333768 CH22_FGENES.271_7 12.2 66 333769 CH22_FGENES.271_7 44.8						
333679 CH22_FGENES_247_6 4.3 333743 CH22_FGENES_264_1 134.4 333788 CH22_FGENES_268_1 4 333767 CH22_FGENES_271_5 5.6 65 333768 CH22_FGENES_271_7 12.2 333769 CH22_FGENES_271_7 4.8	60					
333743 CH2Z_FGENES_264_1 13.4 333783 CH2Z_FGENES_268_1 44. 333767 CH2Z_FGENES_271_6 5.6 65 333768 CH2Z_FGENES_271_7 12.2 CH2Z_FGENES_271_7 42.2 48.3	ou					
333788 CH22_FGENES_288_1 4 333787 CH22_FGENES_271_5 5.6 65 333788 CH22_FGENES_271_7 12.2 333789 CH22_FGENES_271_8 48.3						
333767 CH22_FGENES.271_6 5.6 65 333768 CH22_FGENES.271_7 12.2 333769 CH22_FGENES.271_8 48.3						
65 333768 CH22_FGENES.271_7 12.2 333769 CH22_FGENES.271_8 48.3						
	65					
333795 CH22_FGENES.275_1 6.1						
		333795			UNZZ_FGENES.2/5_1	0.1

| 333796 CH2Z_FGENES_275_3 333892 CH2Z_FGENES_275_1 333894 CH2Z_FGENES_292_14 333906 CH2Z_FGENES_294_2 333906 CH2Z_FGENES_294_2 333998 CH2Z_FGENES_294_3 33402 CH2Z_FGENES_295_1 334022 CH2Z_FGENES_307_4 334022 CH2Z_FGENES_307_5 34023 CH2Z_FGENES_307_5 34024 CH2Z_FGENES_307_5 34024 CH2Z_FGENES_307_5 34024 CH2Z_FGENES_307_5 34024 CH2Z_FGENES_307_5 34025 CH2Z_FGENES_307_5 34026 CH2Z_FGENES_307_5 34026 CH2Z_FGENES_307_5 34026 CH2Z_FGENES_307_5 34027 CH2Z_FGENES_307_5 34027 CH2Z_FGENES_307_5 34027 CH2Z_FGENES_307_5 34027 CH2Z_FGENES_307_5 34027 CH2Z_FGENES_307_5 34027 CH2Z_FGENES_307_5 34027 CH2Z_FGENES_307_5 34027 CH2Z_FGENES_307_5 34027 CH2Z_FGENES_507_5 6.8
4.4
6.5
9.3
9.6
15.9
7.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
7
7
12.4
7
7
12.2
8
7
12.2
8
7
12.2
12.3
12.3
12.3
12.3
12.3
12.3
12.3 |
|--|--|
| 333904 CH2Z_FGENES_294_2 333905 CH2Z_FGENES_294_3 333906 CH2Z_FGENES_294_3 333908 CH2Z_FGENES_294_3 333908 CH2Z_FGENES_296_12 334022 CH2Z_FGENES_297_4 34422 CH2Z_FGENES_307_4 34422 CH2Z_FGENES_307_4 34424 CH2Z_FGENES_307_5 34424 CH2Z_FGENES_367_15 34428 CH2Z_FGENES_376_15 344343 CH2Z_FGENES_376_15 344340 CH2Z_FGENES_376_5 344780 CH2Z_FGENES_376_5 34789 CH2Z_FGENES_376_2 34789 CH2Z_FGENES_376_1 34789 CH2Z_FGENES_432_1 3489 CH2Z_FGENES_472_8 3489 CH2Z_FGENES_570_28 35544 CH2Z_FGENES_570_28 35491 CH2Z_FGENES_570_28 35498 CH2Z_FGENES_570_28 35498 CH2Z_FGENES_570_28 35498 CH2Z_FGENES_570_28 355610 CH2Z_FGENES_570_28 355610 CH2Z_FGENES_570_28 355610 CH2Z_FGENES_570_28 355610 CH2Z_FGENES_570_28 355610 CH2Z_FGENES_570_28 355610 CH2Z_FGENES_570_28 35562 CH2Z_FGENES_570_28 35563 CH2Z_FGENES_570_28 35563 CH2Z_FGENES_570_28 35569 CH2Z_FGENES_570_28 35579 CH2Z_FGENES_580_4 35579 CH2Z_FGENES_580_4 35579 CH2Z_FGENES_580_4 35582 CH2Z_FGENES_580_4 35582 CH2Z_FGENES_580_1 | 6.5
9.3
9.6
15.9
7.1
6.7
33.5
18.5
16.1
4.8
5.1
7
12.4
7.9
18.8
4.5
5.3
2.4
7
12.2
12.2
12.3
13.5
14.8
15.1
17.7
12.4
12.7
12.4
12.7
13.8
14.8
15.7
17.7
17.7
17.7
17.7
17.7
17.7
17.7 |
| 333901 CH2_FGENES.294_3 333921 CH2_FGENES.294_1 333921 CH2_FGENES.296_12 333921 CH2_FGENES.307_4 334102 CH2_FGENES.307_4 334102 CH2_FGENES.307_5 34122 CH2_FGENES.307_5 34122 CH2_FGENES.307_5 34124 CH2_FGENE | 9.3
9.6
15.9
7.1
6.7
33.5
8.1
6.1
6.1
6.2
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8
4.8 |
| 333901 CH2_FGENES.294_3 333921 CH2_FGENES.294_1 333921 CH2_FGENES.296_12 333921 CH2_FGENES.307_4 334102 CH2_FGENES.307_4 334102 CH2_FGENES.307_5 34122 CH2_FGENES.307_5 34122 CH2_FGENES.307_5 34124 CH2_FGENE | 9.6
15.9
7.1
6.7
33.5:18.5:18.5:18.5:1
6.1
4.8
5.1
7 12.4
7.9
18.8
4.5
5.3
24
7 12.2
12.2
12.3
13.1
17.9
17.9
22.3
11.5
17.9
22.3
11.5
17.9
22.3
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 |
| 333988 CH22_FGENES.307_A 334102 CH22_FGENES.307_50 334102 CH22_FGENES.307_50 334223 CH22_FGENES.307_50 334223 CH22_FGENES.300_A 334223 CH22_FGENES.300_A 334224 CH22_FGENES.300_A 334234 CH22_FGENES.376_15 3343430 CH22_FGENES.376_25 334784 CH22_FGENES.378_5 334789 CH22_FGENES.378_5 334789 CH22_FGENES.378_5 335004 CH22_FGENES.432_1 335004 CH22_FGENES.432_1 335004 CH22_FGENES.432_1 335004 CH22_FGENES.432_1 335004 CH22_FGENES.472_8 335115 CH22_FGENES.472_8 335227 CH22_FGENES.570_23 335349 CH22_FGENES.570_23 335491 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335493 CH22_FGENES.570_23 335540 CH22_FGENES.570_23 335550 CH22_FGENES.570_23 335750 CH22_FGENES.570_23 335770 CH22_FGENES.570_23 335890 CH22_FGENES.570_3 335800 CH22_FGENES.570_8 335800 CH22_FGENES.570_8 335800 CH22_FGENES.570_8 | 15.9
7.1
6.7
33.5
18.5
6.1
6.1
4.8
5.1
7
12.4
7
12.2
8.4
12.9
12.3
13.9
12.3
13.9
12.3
13.9
12.3
13.9
13.9
14.8
15.1
15.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
16.1
1 |
| 334102 | 7.1
6.7
33.5
18.5
6.1
6.1
4.8
5.1
7
12.4
7.9
18.8
4.5
5.3
24
1.2
12.7
12.7
12.7
12.9
11.9
11.9
12.9
12.9
12.9
12.9
12.9 |
| 334222 CH2_FGENES.360_3 334223 CH2_FGENES.360_4 334223 CH2_FGENES.360_4 334243 CH2_FGENES.367_15 334243 CH2_FGENES.376_25 334343 CH2_FGENES.376_25 334784 CH2_FGENES.376_25 334789 CH2_FGENES.378_5 334789 CH2_FGENES.378_1 335004 CH2_FGENES.432_1 335004 CH2_FGENES.432_1 335004 CH2_FGENES.432_1 335015 CH2_FGENES.47_8 335115 CH2_FGENES.47_8 335117 CH2_FGENES.570_23 335491 CH2_FGENES.570_23 335495 CH2_FGENES.570_23 335496 CH2_FGENES.570_23 335496 CH2_FGENES.570_23 335496 CH2_FGENES.570_23 335497 CH2_FGENES.570_23 335498 CH2_FGENES.570_23 335498 CH2_FGENES.570_23 335498 CH2_FGENES.570_23 335499 CH2_FGENES.570_23 335490 CH2_FGENES.570_23 335491 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335494 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335893 CH2_FGENES.570_23 335894 CH2_FGENES.570_23 335792 CH2_FGENES.570_23 335792 CH2_FGENES.570_3 335899 CH2_FGENES.570_3 335899 CH2_FGENES.571_5 335892 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_6 335899 CH2_FGENES.571_6 335899 CH2_FGENES.571_6 3358997 CH2_FGENES.571_6 | 6.77 33.5 18.5 6.1 6.1 6.1 4.8 5.1 7 12.4 7 7 12.2 8.4 12.9 6.7 6.7 12.7 12.2 8.4 12 |
| 334222 CH2_FGENES.360_3 334223 CH2_FGENES.360_4 334223 CH2_FGENES.360_4 334243 CH2_FGENES.367_15 334243 CH2_FGENES.376_25 334343 CH2_FGENES.376_25 334784 CH2_FGENES.376_25 334789 CH2_FGENES.378_5 334789 CH2_FGENES.378_1 335004 CH2_FGENES.432_1 335004 CH2_FGENES.432_1 335004 CH2_FGENES.432_1 335015 CH2_FGENES.47_8 335115 CH2_FGENES.47_8 335117 CH2_FGENES.570_23 335491 CH2_FGENES.570_23 335495 CH2_FGENES.570_23 335496 CH2_FGENES.570_23 335496 CH2_FGENES.570_23 335496 CH2_FGENES.570_23 335497 CH2_FGENES.570_23 335498 CH2_FGENES.570_23 335498 CH2_FGENES.570_23 335498 CH2_FGENES.570_23 335499 CH2_FGENES.570_23 335490 CH2_FGENES.570_23 335491 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335494 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335493 CH2_FGENES.570_23 335893 CH2_FGENES.570_23 335894 CH2_FGENES.570_23 335792 CH2_FGENES.570_23 335792 CH2_FGENES.570_3 335899 CH2_FGENES.570_3 335899 CH2_FGENES.571_5 335892 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_5 335893 CH2_FGENES.571_6 335899 CH2_FGENES.571_6 335899 CH2_FGENES.571_6 3358997 CH2_FGENES.571_6 | 33.5.5
18.5
6.1
6.1
4.8
5.1
7
12.4
7.9
18.8
4.5
5.3
24
4
7
12.7
12.7
12.7
12.7
12.7
12.7
12.7
12 |
| 10 334244 CH2_FGENES.367_15 334436 CH2_FGENES.367_15 CH2_FGENES.367_15 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.432_14 CH2_FGENES.432_14 CH2_FGENES.432_14 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.578_11 CH2_FGENES.578_11 CH2_FGENES.578_11 CH2_FGENES.578_11 CH2_FGENES.578_11 CH2_FGENES.578_21 CH2_FGENES.57 | 18.5
6.1
6.1
4.8
5.1
7
12.4
7.9
18.8
4.5
5.3
2.4
7
7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 10 334244 CH2_FGENES.367_15 334436 CH2_FGENES.367_15 CH2_FGENES.367_15 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.378_25 CH2_FGENES.432_14 CH2_FGENES.432_14 CH2_FGENES.432_14 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.432_16 CH2_FGENES.578_11 CH2_FGENES.578_11 CH2_FGENES.578_11 CH2_FGENES.578_11 CH2_FGENES.578_11 CH2_FGENES.578_21 CH2_FGENES.57 | 18.5
6.1
6.1
4.8
5.1
7
12.4
7.9
18.8
4.5
5.3
2.4
7
7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 33443 | 6.1
4.8
5.1
7
12.4
7.9
18.8
4.5
5.3
24
7
7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 334/96 | 6.1
4.8
5.1
7
12.4
7.9
18.8
4.5
5.3
24
7
7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 334789 CH2_FGENES.432_9 334789 CH2_FGENES.432_14 334789 CH2_FGENES.432_14 334889 CH2_FGENES.434_2 335004 CH2_FGENES.434_2 335107 CH2_FGENES.436_2 335117 CH2_FGENES.436_1 33512 CH2_FGENES.436_1 33512 CH2_FGENES.436_1 33549 CH2_FGENES.536_1 335498 CH2_FGENES.71_2 335498 CH2_FGENES.77_1 335498 CH2_FGENES.77_1 335561 CH2_FGENES.77_1 335610 CH2_FGENES.77_1 335610 CH2_FGENES.76_5 335682 CH2_FGENES.76_5 335682 CH2_FGENES.76_1 335682 CH2_FGENES.80_4 335785 CH2_FGENES.80_4 335785 CH2_FGENES.80_4 335781 CH2_FGENES.80_4 335781 CH2_FGENES.80_4 335781 CH2_FGENES.80_5 33582 CH2_FGENES.80_5 335821 CH2_FGENES.80_5 335823 CH2_FGENES.80_5 335823 CH2_FGENES.80_5 335824 CH2_FGENES.80_5 335825 CH2_FGENES.80_1 335826 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 335827 CH2_FGENES.80_1 | 4.8
5.1
7
12.4
7.9
18.8
4.5
5.3
2.4
7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 334789 | 5.1
7
7.2
18.8
4.5
5.3
24
7
7.12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 15 334794 CH2_FGENES.43-[2 334889 CH2_FGENES.43-[2 3 335040 CH2_FGENES.472_8 335004 CH2_FGENES.472_8 3350115 CH2_FGENES.472_8 CH2_FGENES.472_8 CH2_FGENES.472_8 CH2_FGENES.578_1 CH2_FGENES.578_1 CH2_FGENES.578_1 CH2_FGENES.578_1 CH2_FGENES.578_1 CH2_FGENES.578_1 CH2_FGENES.578_1 CH2_FGENES.578_1 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_2 CH2_FGENES.578_3 CH2_FGENES.578_4 CH2_FGENES.578_5 | 7
12,4
7.9
18,8
45,5
53,3
24
7
12,2
8,4
12,9
6,7
12,1
13,9
11,5
17,9
27,3
19,2 |
| 334889 | 12.4 7.9 18.8 4.5 5.3 24 7 7 12.2 8.4 12.9 6.7 12.1 13.9 11.5 17.9 27.3 |
| 335004 CH2_FGENES.472_8 335115 CH2_FGENES.472_8 335115 CH2_FGENES.472_8 335237 CH2_FGENES.586_1 335237 CH2_FGENES.586_1 335495 CH2_FGENES.586_1 335496 CH2_FGENES.570_28 335498 CH2_FGENES.570_28 335498 CH2_FGENES.570_28 335498 CH2_FGENES.570_28 335694 CH2_FGENES.570_5 335693 CH2_FGENES.576_5 335693 CH2_FGENES.580_4 335683 CH2_FGENES.880_4 335687 CH2_FGENES.890_2 335762 CH2_FGENES.996_2 335762 CH2_FGENES.996_2 335762 CH2_FGENES.90_4 335791 CH2_FGENES.801_4 335809 CH2_FGENES.811_7 335809 CH2_FGENES.811_7 335823 CH2_FGENES.811_7 335823 CH2_FGENES.811_8 335824 CH2_FGENES.811_8 335825 CH2_FGENES.811_8 335826 CH2_FGENES.811_8 335997 CH2_FGENES.813_1 335997 CH2_FGENES.813_1 335997 CH2_FGENES.83_1 335997 CH2_FGENES.83_1 335997 CH2_FGENES.83_1 335997 CH2_FGENES.83_1 335907 CH2_FGENES.83_1 | 7.9
18.8
4.5
5.3
24
7
12.2
8.4
12.9
6.7
12.1
13.9
27.3
19.2 |
| 335115 CH2Z_FGENES.49E,2 335287 CH2Z_FGENES.49E,1 335491 CH2Z_FGENES.53E,1 335491 CH2Z_FGENES.53E,1 335495 CH2Z_FGENES.570,23 335498 CH2Z_FGENES.570,23 335544 CH2Z_FGENES.570,23 335561 CH2Z_FGENES.570,5 335610 CH2Z_FGENES.576,5 335682 CH2Z_FGENES.582,4 335682 CH2Z_FGENES.592,4 33575 CH2Z_FGENES.590,4 33575 CH2Z_FGENES.590,2 33575 CH2Z_FGENES.590,1 33576 CH2Z_FGENES.590,2 335820 CH2Z_FGENES.591,7 335820 CH2Z_FGENES.591,7 335820 CH2Z_FGENES.591,1 335820 CH2Z_FGENES.691,1 335820 CH2Z_FGENES.691,1 335823 CH2Z_FGENES.691,1 335824 CH2Z_FGENES.691,1 335825 CH2Z_FGENES.691,1 335826 CH2Z_FGENES.691,1 335827 CH2Z_FGENES.691,1 335827 CH2Z_FGENES.691,1 335829 CH2Z_FGENES.691,1 335829 CH2Z_FGENES.691,1 335820 CH2Z_FGENES.691,1 335827 CH2Z_FGENES.691,1 335827 CH2Z_FGENES.681,1 335827 CH2Z_FGENES.681,1 335827 CH2Z_FGENES.683,1 335997 CH2Z_FGENES.683,1 335997 CH2Z_FGENES.683,1 | 18.8
4.5
5.3
24
7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 335287 CH2_FGENES.526_11 335342 CH2_FGENES.526_11 335491 CH2_FGENES.526_13 335495 CH2_FGENES.570_23 335495 CH2_FGENES.570_28 335498 CH2_FGENES.570_28 335544 CH2_FGENES.571_7 335544 CH2_FGENES.576_5 33563 CH2_FGENES.576_5 33563 CH2_FGENES.580_4 335682 CH2_FGENES.580_4 335687 CH2_FGENES.595_2 335782 CH2_FGENES.596_2 335782 CH2_FGENES.596_2 335782 CH2_FGENES.604_4 335791 CH2_FGENES.601_4 335809 CH2_FGENES.611_7 335809 CH2_FGENES.611_7 335809 CH2_FGENES.611_7 335822 CH2_FGENES.611_7 335823 CH2_FGENES.611_8 335823 CH2_FGENES.611_8 335824 CH2_FGENES.611_8 335825 CH2_FGENES.611_8 335826 CH2_FGENES.611_1 335827 CH2_FGENES.611_1 335827 CH2_FGENES.611_1 335828 CH2_FGENES.611_1 335829 CH2_FGENES.611_1 335821 CH2_FGENES.611_1 335821 CH2_FGENES.611_1 335822 CH2_FGENES.611_1 335823 CH2_FGENES.611_1 335824 CH2_FGENES.611_1 335825 CH2_FGENES.611_1 335826 CH2_FGENES.611_1 | 4.5
5.3
24
7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 20 335342 CH2_FGENES.536_1 335491 CH2_FGENES.570_23 335495 CH2_FGENES.570_23 335498 CH2_FGENES.570_23 335498 CH2_FGENES.570_23 335640 CH2_FGENES.570_5 335610 CH2_FGENES.570_5 335660 CH2_FGENES.576_5 335662 CH2_FGENES.590_4 335662 CH2_FGENES.590_4 335755 CH2_FGENES.590_4 335757 CH2_FGENES.590_1 335763 CH2_FGENES.690_1 335763 CH2_FGENES.690_1 335775 CH2_FGENES.690_1 335775 CH2_FGENES.690_1 335780 CH2_FGENES.691_1 335820 CH2_FGENES.691_1 335821 CH2_FGENES.691_1 335822 CH2_FGENES.691_1 335823 CH2_FGENES.691_1 335826 CH2_FGENES.691_1 335826 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 | 5.3
24
7
7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 335491 | 24
7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 335498 CH2_FGENES.570_28 335498 CH2_FGENES.570_28 335498 CH2_FGENES.570_5 335644 CH2_FGENES.576_5 335610 CH2_FGENES.576_5 335682 CH2_FGENES.590_4 335682 CH2_FGENES.590_4 335755 CH2_FGENES.590_4 335775 CH2_FGENES.590_4 335779 CH2_FGENES.690_4 335779 CH2_FGENES.690_4 335789 CH2_FGENES.691_7 335820 CH2_FGENES.691_7 335820 CH2_FGENES.691_7 335821 CH2_FGENES.691_7 335822 CH2_FGENES.691_12 335825 CH2_FGENES.691_12 335826 CH2_FGENES.691_12 335827 CH2_FGENES.691_12 335827 CH2_FGENES.691_12 335827 CH2_FGENES.691_12 335827 CH2_FGENES.691_12 335827 CH2_FGENES.691_12 335827 CH2_FGENES.691_12 335827 CH2_FGENES.691_12 335827 CH2_FGENES.691_12 | 7
12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 335498 CH2_FGENES.57L7 335644 CH2_FGENES.57L5 335610 CH2_FGENES.58L5 33563 CH2_FGENES.58L5 335687 CH2_FGENES.59L2 335687 CH2_FGENES.59L2 335762 CH2_FGENES.59L2 335762 CH2_FGENES.60L4 335761 CH2_FGENES.60L4 335782 CH2_FGENES.60L4 335809 CH2_FGENES.61L7 335809 CH2_FGENES.61L7 335809 CH2_FGENES.61L7 335822 CH2_FGENES.61L7 335823 CH2_FGENES.61L7 335824 CH2_FGENES.61L7 335825 CH2_FGENES.61L7 335826 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 335827 CH2_FGENES.61L7 | 12.2
8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 25 335640 CH2_FGENES.576_5 335610 CH2_FGENES.576_5 335682 CH2_FGENES.590_4 335682 CH2_FGENES.590_4 335785 CH2_FGENES.596_2 335775 CH2_FGENES.596_2 335775 CH2_FGENES.690_4 335779 CH2_FGENES.691_1 335890 CH2_FGENES.691_7 335820 CH2_FGENES.691_7 335821 CH2_FGENES.691_7 335822 CH2_FGENES.691_7 335823 CH2_FGENES.691_7 335824 CH2_FGENES.691_8 335825 CH2_FGENES.691_8 335826 CH2_FGENES.691_1 335826 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 335827 CH2_FGENES.691_1 | 8.4
12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 25 335610 CH2_FGENES.88_4 335633 CH2_FGENES.88_0.4 335683 CH2_FGENES.89_0.4 335687 CH2_FGENES.99_0.4 335782 CH2_FGENES.99_1.2 335782 CH2_FGENES.90_4 335791 CH2_FGENES.90_4 335809 CH2_FGENES.81_7 335809 CH2_FGENES.81_7 335823 CH2_FGENES.81_7 335823 CH2_FGENES.81_8 335824 CH2_FGENES.81_8 335825 CH2_FGENES.81_8 335826 CH2_FGENES.81_8 335827 CH2_FGENES.81_8 335828 CH2_FGENES.81_8 335897 CH2_FGENES.81_10 335897 CH2_FGENES.83_1 335997 CH2_FGENES.83_1 335997 CH2_FGENES.83_1 | 12.9
6.7
12.1
13.9
11.5
17.9
27.3
19.2 |
| 335653 | 6.7
12.1
13.9
11.5
17.9
27.3
19.2
19.1 |
| 335682 | 12.1
13.9
11.5
17.9
27.3
19.2
19.1 |
| 335687 CH22_FGENES.596_2 335755 CH22_FGENES.596_2 30 335762 CH22_FGENES.600_4 335791 CH22_FGENES.600_4 335809 CH22_FGENES.611_7 335802 CH22_FGENES.611_6 335802 CH22_FGENES.611_6 335802 CH22_FGENES.610_1 335805 CH22_FGENES.610_1 335805 CH22_FGENES.610_1 335907 CH22_FGENES.630_1 335917 CH22_FGENES.630_1 335907 CH22_FGENES.630_1 40 336005 CH22_FGENES.630_6 | 13.9
11.5
17.9
27.3
19.2
19.1 |
| 30755 CH2_FGENES.604_4 335762 CH2_FGENES.604_4 335761 CH2_FGENES.609_4 335761 CH2_FGENES.611_7 335809 CH2_FGENES.611_7 335822 CH2_FGENES.611_7 335823 CH2_FGENES.619_1 335824 CH2_FGENES.619_1 335825 CH2_FGENES.619_1 335825 CH2_FGENES.619_1 335895 CH2_FGENES.619_1 335997 CH2_FGENES.63_1 335997 CH2_FGENES.63_6 40 34005 CH2_FGENES.63_6 | 11.5
17.9
27.3
19.2
19.1 |
| 307 335782 CH22_FGENES.809_4 335791 CH22_FGENES.801_7 335809 CH22_FGENES.817_6 335822 CH22_FGENES.817_8 335823 CH22_FGENES.819_8 335824 CH22_FGENES.819_8 335825 CH22_FGENES.819_11 335825 CH22_FGENES.819_12 335826 CH22_FGENES.803_1 335997 CH22_FGENES.805_1 40 336055 CH22_FGENES.805_16 | 17.9
27.3
19.2
19.1 |
| 335791 CH2_FGENES.811_7 335809 CH2_FGENES.811_6 335802 CH2_FGENES.811_6 335823 CH2_FGENES.819_8 35823 CH2_FGENES.819_1 335825 CH2_FGENES.819_1 335825 CH2_FGENES.819_1 335805 CH2_FGENES.819_1 335897 CH2_FGENES.83_1 335917 CH2_FGENES.83_6 40 34005 CH2_FGENES.83_6 | 27.3
19.2
19.1 |
| 335909 CH22_FGENES.817_6 335822 CH22_FGENES.819_7 335823 CH22_FGENES.619_8 335824 CH22_FGENES.619_1 335825 CH22_FGENES.619_11 335825 CH22_FGENES.619_12 335895 CH22_FGENES.635_3 335917 CH22_FGENES.635_1 40 336055 CH22_FGENES.636_16 | 19.2
19.1 |
| 338622 CH2_FGENES.619_7 338623 CH2_FGENES.619_8 35 338624 CH2_FGENES.619_1 338625 CH2_FGENES.619_11 338625 CH2_FGENES.619_12 338695 CH2_FGENES.83_3 339917 CH2_FGENES.83_13 339920 CH2_FGENES.83_16 40 336055 CH2_FGENES.83_6 | 19.1 |
| 338223 CH22_FGENES.619_8 338224 CH22_FGENES.619_11 338225 CH22_FGENES.619_12 338265 CH22_FGENES.619_12 338997 CH22_FGENES.635_3 338917 CH22_FGENES.636_13 339920 CH22_FGENES.636_16 40 339035 CH22_FGENES.636_16 | |
| 355 338824 CH2_FGENES.619_11 338825 CH2_FGENES.619_12 33895 CH2_FGENES.63_3 338997 CH2_FGENES.63_3 339970 CH2_FGENES.63_6 338920 CH2_FGENES.63_6 6 40 38605 CH2_FGENES.63_6 6 | |
| 338825 CH22_FGENES.619_12
338895 CH22_FGENES.635_3
338917 CH22_FGENES.636_13
338920 CH22_FGENES.636_16
40 339055 CH22_FGENES.676_6 | 40.2 |
| 335895 CH22_FGENES.635_3
335917 CH22_FGENES.636_13
335920 CH22_FGENES.636_16
40 336035 CH22_FGENES.678_6 | 34.3 |
| 335917 CH22_FGENES.636_13
335920 CH22_FGENES.636_16
40 336035 CH22_FGENES.678_6 | 10.2 |
| 40 336035 CH22_FGENES.678_6 | 6 |
| | 8.8 |
| | 5.9 |
| . 336042 CH22_FGENES.679_4 | 5.8 |
| 336093 CH22_FGENES.691_2 | 11.6 |
| 336096 CH22_FGENES.691_5 | 7.6 |
| 336150 CH22_FGENES.706_6 | 6.3 |
| 45 336152 CH22_FGENES.706_9 | 10.5 |
| 336416 CH22_FGENES.823_38 | 5 |
| 336444 CH22_FGENES.827_10 | 4.8 |
| 336449 CH22_FGENES.829_6 | 13.6 |
| 336471 CH22_FGENES.829_30 | 6.9 |
| 50 336512 CH22_FGENES.834_7 | 21.4 |
| 336558 CH22_FGENES.842_3 | 8.2 |
| 336560 CH22_FGENES.842_5 | 9 |
| 336676 CH22_FGENES.43-4 | 9.4 |
| 336959 CH22_FGENES.367-13 | 19 |
| 55 337968 CH22_EM:AC005500.GENSCAN.103-2 | 13.4 |
| 338008 CH22_EM:AC005500.GENSCAN.127-9 | 15.2 |
| 338057 CH22_EM:AC005500.GENSCAN.160-1 | 13.9 |
| 338410 CH22_EM:AC005500.GENSCAN.341-6 | |
| 338451 CH22_EM:AC005500.GENSCAN.359-3 | 8 |
| 60 338588 CH22_EM:AC005500.GENSCAN.432-1 | 8
11.6 |
| 338665 CH22_EM:AC005500.GENSCAN.464-2 | 8
11.6
10.3 |
| 338689 CH22_EM:AC005500.GENSCAN.475-3 | 8
11.6
10.3
4.8 |
| 338832 CH22 DJ246D7.GENSCAN.6-9 | 8
11.6
10.3
4.8
6.7 |
| | 8
11.6
10.3
4.8
6.7
4.8 |
| 338980 CH22 DA59H18.GENSCAN.2-4 | 8
11.6
10.3
4.8
6.7
4.8
5.1 |
| | 8
11.6
10.3
4.8
6.7
4.8 |

TABLE 13A

Table 13 A shows the accession numbers for those pkeys lacking unigeneID's for Table 13. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10 Pkey: Unique Eos probeset Identifier number CAT number: Gene cluster number Accession: Genbank accession numbers 15 Pkev CAT number Accession 123619 371681_1 AA602964 AA609200 20 103207 30635_-4 X72790 103349 11052_-2 Y89059 110856 19346_14 AA992380 N33063 N21418 H79958 R21911 H79957 113248 328626 1 T63857 AW971220 AA493469 T63699 123169 44573 2 AJ950087 N70208 R97040 N36809 AJ308119 AW967677 N35320 AJ251473 H59397 AW971573 R97278 W01059 AW967671 25 AA908598 AA251875 AI820501 AI820532 W87891 T85904 U71456 T82391 BE328571 T75102 R34725 AA884922 BE328517 AI219788 AA884444 N92578 F13493 AA927794 AI560251 AW874068 AL134043 AW235363 AA663345 AW008282 AA488964 AA283144 AIR90387 AI990344 AI741346 AI689062 AA282915 AW102898 AI872193 AI763273 AW173586 AW150329 AI653832 AI762688 AA988777 AA488892 AI356394 AW103813 AI539642 AA642789 AA856975 AW505512 AI961530 AW629970 BE612881 AW276997 AW513601 AW512843 AA044209 AW856538 AA180009 AA337499 AW961101 AA251669 AA251874 30 AIB19225 AW205862 AI683338 AIB58509 AW276905 AI633006 AA972584 AA908741 AW072629 AW513996 AA293273 AA969759 N75628 N22388 H84729 H60052 T92487 AI022058 AA780419 AA551005 W80701 AW613456 AI373032 AI564269 F00531 H83488 W37181 W78802 R66056 Al002839 R67840 AA300207 AW959581 T63226 F04005 123533 genbank AA608751 AA608751 116480 genbank_C14088 C14088 35 132225 genbank_AA128980 AA128980 125154 genbank_W38419 W38419 118475 genbank_N66845 102919 25180 2 M2 N66845 M21191 AL035748 AA021266 AA323126 AA180515 Al613029 D28356 NM_000034 M11560 AW401425 AW248248 AA012956 AA323294 W04965 H38759 AA206622 AA580747 AI541172 AA381075 AA354229 AW402353 AW405575 AW404021 AW406207 40 AA075752 AW176066 AA287222 AA195818 T20243 R87945 AA295539 AA402533 AA232419 AA224515 AW401583 AA331367 AW402140 AW249079 R31488 AA075757 X05236 AW239490 AA338036 AW239495 AA357262 AA431005 AA306726 R33804 AA216544 AW275288 AA227044 AL038124 AA243300 C03242 AA315615 AL035840 R64336 AA313917 AA018963 AA001385 AA054395 H30840 AW498825 AA086141 AI557324 AA121576 H39128 R77161 AA019688 AA380987 AA348140 AA348257 AW176086 AA362432 AA171389 AA362416 AA299938 AA319093 AA337972 C04921 AA345696 R89640 AA085425 AA481708 45 AA313637 AL039229 H84490 H86153 F00656 AA326668 AA347304 R65890 H41949 AA339309 AW402002 AW404854 AA192582 AA112802 H09248 N83165 H38367 AA356339 AA455763 R66853 AA294935 H85911 AA310414 H93436 N87014 AA001186 H83640 AA411328 AA317929 C04192 AW406288 U46335 AA323179 AA427649 Al366131 H14328 AA197161 AA379497 AA311816 AA017206 AA001137 AA017420 AA012990 AW163775 AA021397 AA295513 AA355248 AA374921 AW380419 AA345864 AA318058 AA371711 AA363255 AA057094 R88057 AA394045 AW362741 AA479579 AW362789 AW362775 AA223624 AW362809 AW362746 AW362753 AW380412 AA057104 AA295271 X06352 AW362771 X12447 R59553 50 R87925 AA292864 R83920 F01120 AA496740 AA852551 AL039209 AA093339 AA333961 N86416 C03325 C03831 AA194750 AA359270 AA359460 AW245492 AA339400 AA330784 AI908970 N89223 AW361938 AI940063 AA134323 AA371741 F01267 AW372970 AA341973 AA346098 AW372969 AA337549 AA327342 H93855 Al074079 F29118 AA852940 F35696 AA345963 AA079578 AA113785 C02989 AA095945 C03145 C05199 AA346024 AA190506 AW361659 AI909845 AW374374 AW374382 55 AW374401 AW374373 AW374370 AI909B31 AW374367 AA353658 F01041 C02843 AA375948 AW374414 AA213946 AI525039 H13744 R31007 AA112044 AA134404 H47935 AW177018 AA429768 AA336873 AA112875 H46393 AA191267 D59131 AW406037 AA055244 AA341880 AA179024 AA308537 AW406985 AW327311 H30301 AA300705 H43788 AW364149 AA806213 AA481936 C04941 AW375299 M21190 AA410818 AA250940 AI354547 AA317422 AA250903 AI865497 AA890603 AA366197 AW498538 M78072 AW406461 C03092 F00308 H56488 AA336320 AW406501 AA354102 AA382942 AA096393 AW376830 AA383446 F01259 AW081388 T94036 AA379643 H43842 AI524063 AA621727 AA379099 AA371417 R66811 60 H44129 N84794 F01135 AA477852 AA293062 AW361595 H27194 Al831650 H43253 H24797 Al564680 AA380090 W20057 Al921586 Al192549 AW090808 H25967 AA918121 Al626060 H20221 AA812572 H42178 AA887222 H96000 C03180 F00946

C03986 Al318091 Al860172 AA582179 Al633388 AA557193 R68075 F24105 AW518239 W56622 Al625219 Al925243 AW468046 Al921828 AA339164 Al144391 AA643334 AA459631 AA873247 AW373432 AA604384 H27600 Al680458 AA159956 AA610836 AA364298 AW373435 AA604225 W73754 AW087924 AA599776 N89227 Al630871 Al633128 AW514329 AA010455 AA563928 AI571596 AI128394 W73707 AI423575 AA583809 AA657988 AI950837 AA169782 AA600009 AI885540 AA771884 5 Al978829 AA505408 AA533937 AA481469 AA610869 AA775241 AW273870 AW070909 Al905695 AA480115 AA574051 AI889185 AA773167 AA331375 AAD01437 AA194324 AA194300 AA558632 AI038538 AA411329 AA781570 AI833176 AA935520 AW074197 AA583063 AW073099 AW001198 AA948025 AA587857 AA191540 AI460085 AA193244 AI538037 .AA515572 AA758587 AI149311 AA508610 AA206409 AA534004 AA994600 AA827543 AI916349 AW245129 AW517804 D25663 AA781985 AA284536 Al819422 H16040 H27531 AA456564 AA845555 Al423596 AA012908 AA889439 AA716311 AA968868 10 AA320508 AA725731 AA834202 AA935997 AA724815 AA769353 AA594803 F00827 AI342442 AI003519 AI002503 AI347597 AI040946 AA197162 AA987883 AA292865 AW001944 AI640711 AW244044 AA456784 F30588 AA290829 H24754 AI978683 AA483686 AA583939 AA121382 AA6833831 AA477102 AA977322 AA666379 F35456 AA993537 AJ749610 AA226934 AA716204 AW513025 AA628543 AA583705 F25702 Al368748 Al124097 Al880086 AA477513 Al758834 Al690753 AA4777746 F37761 AA642243 AA159957 AA250844 AA459406 AA427566 F25054 AI569314 AA961665 AI922050 AI759000 AA555236 AA514432 15 AA293474 AA001129 AA826789 AA641390 AA134405 F35585 AA477416 AW193359 Al361315 AA284988 F36340 Al361322 F26969 AA991922 AA021267 F26973 Al361314 F35891 Al918509 AA250964 AA190992 AA577139 AA865535 AA134324 AW192842 AI224046 F18975 AA779626 AA856894 AW269997 AW014614 H95554 F31378 AA374868 F26343 AA654007 AI830942 AA113195 F26432 W56652 AA464690 AA055263 AA340654 AA031448 AA976399 AA972526 AA063476 R83921 T16240 AA533290 N91545 H44053 AA883451 AA513761 AA086477 H09249 F20482 F26737 AA054148 AA857063 AA017259 20 AA179789 AA088908 H43704 AA194320 F35950 AI880127 F20441 F32878 AA962483 H39094 H56489 H44621 F19390 Al302232 F25162 AA826965 AA086052 AA917410 AA454513 R59554 AA196755 AA086369 AA079530 H28106 AA243301 AI025737 AA101239 AA088887 AI214910 AA974886 F16089 F26054 AA515092 F33436 F32829 M78061 AA235645 F19715 F37529 Al811549 AA665180 AA708200 F01124 F32382 AA346220 AA627361 F30741 F30010 F28543 AA211715 F20245 AA331222 F25634 F21996 W28215 F21911 R65793 AI192566 H20130 H84491 AA719223 AA557435 F16967 F26989 F30353 25 AA857159 AA291918 F28234 F20840 F25176 F22437 T27904 AA480355 F19528 R87926 H14286 F27532 AW337864 F28411 H13692 F25651 AA975454 F24229 F29657 F18024 AA464779 F17588 F34954 AA947328 F18063 AA657777 AA459644 N91455 F27850 F29608 F27206 F18418 F31459 F18564 F33496 F16376 F29740 F29843 F29904 F29866 F19135 AW276602 T40337 F24835 F34672 F26474 AI926215 AA464185 F18217 N26193 AL043256 T41197 F33055 F00386 F29500 F34191 F33297 AI937207 F22724 F15909 F26232 F18889 AA318627 F29085 AA872104 F17509 F23373 F15660 F17552 F17412 F16863 30 F34033 F21515 F17364 F18383 F16546 F17561 F17260 AA292000 F15723 T47438 F16798 F18046 F18319 F17978 F17566 F34230 F33258 F20860 F17998 Al695701 118600 genbank N69222 N69222 118952 genbank_N92966 N92966 AA358015 120873 genbank AA358015 35 113702 genbank_T97307 T97307 129982 221 267 Z14221 AW381862 M97920 AW401444 Z66542 M29470 AW406502 X61011 M34024 AA327072 Z14166 Z14167 Z14165 AW403806 Z14200 AA383972 Z14205 Z14201 M18513 Z14202 AW403684 X14584 AF062221 U43760 X65892 X65883 X62107 Z80847 X65885 X65893 AF062142 X65891 X17675 Z47274 Z47277 Z47276 X65888 Z47275 X62109 AF062140 L01278 AF062134 AF062139 X81723 Z80840 X81733 X81743 X81744 X81732 Z80843 AW402942 AW403516 X65919 AF062190 40 AF062177 AF062222 AF062115 Z47240 AF062263 AF062261 AF062223 AF062211 Z47238 AW401714 AW404008 AW404991 AF062280 M99595 Z47214 Z47232 Z47218 M26995 AF062184 X65895 L38433 X81731 Z11946 Z47226 AF062205 AF174012 L01276 AF062168 AF062136 X81755 X81748 AF174019 AF062285 L06924 L11699 AW402665 L09070 L28049 L08090 AW407843 Z14171 AW402944 L08083 AW405627 L33035 L26907 M17750 L28052 M17751 AJ239360 U19885 L14821 X56526 AB014341 L12087 L12098 U68231 L12184 AF062242 AF022000 U64499 U00570 Al268604 Y15773 X64239 X62969 U00506 45 X73605 X99360 U00577 D83677 AB021539 AF035796 Z33899 U00588 AJ239353 AF174062 Z33901 X98899 AF174058 X63080 D83676 AB021529 Z18318 U00488 L01412 X81746 U21262 U21272 U00560 AF174060 U00547 U00561 Z18321 S73957 M26435 AF115130 AF115117 Z92896 U21254 Z92895 AF115112 AF062290 T28938 Y09386 AF174067 U27189 Y09384 U77373 AF174057 M17749 X89892 AF174038 U64478 U64486 AF174098 X99365 AF174077 AF174083 AF174089 AF015133 AF127792 AJ006171 U00510 U58144 AF004323 AF115109 AF004324 AF015130 AF090414 AF090418 AB021536 AB021519 50 Z96957 AF021986 Z92898 Z96956 L34164 AF062251 AF052524 U00549 U00541 D83687 AF052522 AF087420 AF052520 AF022011 L43085 U00536 L19915 L43083 AF090420 AB021530 AB021534 Z96955 Z96954 Z33903 X62964 AF103282 U00509 AF062298 AF062289 AF062307 AW408326 L33037 L04337 L04328 X81742 L04336 L03385 AF032360 S56184 AF062191 AF191092 AI906954 AF103184 L04343 AW364860 AF001424 AF103163 Z98717 AF103143 AJ008250 L04323 AF103321 AF103335 L04342 L03818 L03817 AW404978 AW403690 U86801 AF103150 AJ010334 AF035027 AJ007327 AF103115 55 AF017458 AJ008207 AJ008183 AJ008196 AJ008241 AJ008208 AF103210 AF068668 AF068670 AF068671 AF068664 AF068669 AF068666 AF068665 AF068672 AW371244 AW403670 AW408074 AW404575 AW362153 AW403803 AW406702 AW351514 D78345 T29140 J00231 NM_002179 AW405146 AA301091 X04646 H64660 AW402990 AW406534 T93007 Al857980 AW368899 Al905833 AW406586 AA482084 Al872299 AA715266 AW404328 Al831674 Al709348 AA603112 AW514864 AA485775 H64492 AW404789 AA487630 AA715498 AA295885 T27613 T98113 60 115763 genbank_AA421560 AA421560 124357 genbank N22401 N22401 108733 504187 1 AA121022 AA126422 101544 entrez_M31169 M31169 124447 genbank_N48000 N48000 65 124677 genbank_R01073 R01073 124777 genbank_R41933 R41933

119302 genbank T25725

T25725

```
103680 entrez Z93784Z93784
           135029 H58818_at
                                     H58818
          112253 genbank_R51818
Pkey CAT number Accession
                                                      R51818
  5
           322175 46877_1
                                       AF085975 H53458 H53459
           323011 139750 1
                                       AA580288 AA315655 AA133031 AA377748
           322975 1510563_1 C16391 C16413
           317210 211994 1
                                       AW881145 AA490718 M85637 AA304575 T06067 AA331991
           323817 233566_1
                                       AA410943 AW948953 AA334202 AA332882
10
           309583 1046029 -2
                                       AW170035
                                       AA613792 AW182329 T05304 AW858385
           324961 376239_1
           303502 325188_1
                                       BE174240 AA488528 AL042253
          320133 447553_1
311935 174129_1
                                       RF151746 RF336853 D63271 T94955 AA774994
                                       AA216387 T63548 AA228676
          31957 74129_1 AA23636 10336 AA226076
321050 502195_1 C05928 AW393497
31977 345248_1 AA534222 AA632632 T81234
312772 4380_T AW962299 AA310349 AW962
15
                                       AW962299 AA310349 AW962294 H63791 H63751
           321354 116028_-2
                                       AA078493
           336512 CH22_3941FG_834_7_LINK_DJ
20
           336558 CH22_3992FG_842_3_LINK_DJ
336560 CH22_3994FG_842_5_LINK_DJ
           329367 c_x_hs
           329373 C.X.hs
329373 C.X.hs
336676 CH22_4154FG_43_4_
338008 CH22_6490FG_LINK_EM:AC00
25
           338057 CH22_6558FG__LINK_EM:AC00
           329655 c14_p2
336959 CH22 4764FG 367 13
           329899 c15_p2
           329969 C16_p2
329960 C16_p2
338410 CH22_7067FG__LINK_EM:AC00
338451 CH22_7124FG__LINK_EM:AC00
30
           338588 CH22 7331FG LINK EM:AC00
           338665 CH22_7438FG_LINK_EM:AC00
338689 CH22_7464FG_LINK_EM:AC00
308677 Al761173
35
           30867 AI/61173
338832 CH22_768FG_LINK_DJ246D7
338980 CH22_7859FG_LINK_DA59H18
333009 CH22_233FG_61_1_LINK_EM:A
40
           333010 CH22_234FG_61_2_LINK_EM:A
           333013 CH22_237FG_61_5_LINK_EM:A
           308981 Al873242
           308995 AI880172
           333108 CH22 336FG_79_14_LINK_EM:
45
           333139 CH22 368FG 83 16 LINK EM:
           333139 CH22_495FG_118_2_LINK_EM:
333254 CH22_495FG_118_2_LINK_EM:
333305 CH22_550FG_137_2_LINK_EM:
333343 CH22_589FG_139_12_LINK_EM:
50
           326213 c17_hs
           333456 CH22_706FG_157_5_LINK_EM:
           333459 CH22_709FG_157_8_LINK_EM:
333517 CH22_773FG_173_2_LINK_EM:
333585 CH22_846FG_203_4_LINK_EM:
333679 CH22_941FG_247_6_LINK_EM:
55
            326474 c19_hs
           333743 CH22_1009FG_264_1_LINK_EM
333758 CH22_1024FG_268_1_LINK_EM
            333767 CH22_1034FG_271_6_LINK_EM
60
           333768 CH22_1035FG_271_7_LINK_EM
333769 CH22_1036FG_271_8_LINK_EM
           333795 CH22_1063FG_275_1_LINK_EM
333796 CH22_1065FG_275_3_LINK_EM
           335004 CH22_2326FG_472_8_LINK_EM
333892 CH22_1163FG_292_14_LINK_E
65
```

335115 CH22_2447FG_496_2_LINK_EM 333904 CH22_1176FG_294_2_LINK_EM

333905 CH22 1177FG 294 3 LINK EM 333921 CH22_1194FG_296_12_LINK_E 333968 CH22_1245FG_307_4_LINK_EM 328059 c_6_hs 5 335287 CH22 2629FG 526 11 LINK E 326816 c20_hs 326817 c20_hs 335342 CH22_2689FG_536_1_LINK_EM 335491 CH22_2843FG_570_23_LINK_E 10 335495 CH22_2847FG_570_28_LINK_E 335498 CH22_2850FG_571_7_LINK_EM 328304 c.7_hs 305453 AA738110 335544 CH22_2899FG_576_5_LINK_EM 15 335610 CH22_2969FG_583_4_LINK_EM 335653 CH22_3013FG_590_4_LINK_EM 335682 CH22_3043FG_595_2_LINK_EM 335687 CH22_3048FG_596_2_LINK_EM 328492 c_7_hs 20 335755 CH22_3122FG_604_4_LINK_EM 335782 CH22_3151FG_609_4_LINK_EM 335791 CH22_3160FG_611_7_LINK_EM 335809 CH22_3181FG_617_6_LINK_EM 335822 CH22_3195FG_619_7_LINK_EM 335823 CH22_3196FG_619_8_LINK_EM 25 335824 CH22_3197FG_619_11_LINK_E 335825 CH22_3198FG_619_12_LINK_E 335895 CH22_3272FG_635_3_LINK_EM 335917 CH22_3294FG_636_13_LINK_E 30 335920 CH22_3297FG_636_16_LINK_E 305898 AA872838 305913 AA876109 305950 AA884479 328857 c_7_hs 35 330084 c19_p2 337968 CH22_6419FG__LINK_EM:AC00 309177 Al951118 309198 AI955915 309226 AI969897 40 339352 CH22_8317FG__'LINK_BA354I1 309279 Al990102 339373 CH22_8348FG__LINK_BA232E1 325622 c14_hs 334102 CH22 1380FG 327 60 LINK E 332927 CH22_148FG_38_1_LINK_C20H 332929 CH22_150FG_38_3_LINK_C20H 332930 CH22_151FG_38_4_LINK_C20H 332955 CH22_179FG_48_12_LINK_EM: 45 332956 CH22_17976_46_12_LINN_EM: 332956 CH22_185FG_48_18_LINN_EM: 332983 CH22_207FG_54_5_LINK_EM:A 50 334222 CH22_1506FG_360_3_LINK_EM 334223 CH22_1507FG_360_4_LINK_EM 334264 CH22_1551FG_367_15_LINK_E 55 327110 c21_hs 334343 CH22_1636FG_375_25_LINK_E 334360 CH22_1654FG_378_5_LINK_EM 327196 c_1_hs 327283 c_1_hs 327313 c_1_hs 304465 AA421948 60 304507 AA456426 327450 c_2_hs 304591 AA505702 65 304601 AA507875

304659 AA533185

334784 CH22_2096FG_432_9_LINK_EM

334789 CH22_2101FG_432_14_LINK_E 334794 CH22_2106FG_434_2_LINK_EM 336035 CH22_34076_678_1_LINK_DI 336042 CH22_3407FG_678_1_LINK_DI 336039 CH22_3401FG_681_2_LINK_DI 336039 CH22_3401FG_681_2_LINK_DI 336039 CH22_3206FG_681_2_LINK_DI 336152 CH22_336167_618_LINK_DI 336152 CH22_354167_618_LINK_DI 336444 CH22_3894FG_623_38_LINK_BI 336444 CH22_3894FG_623_38_LINK_BI 336447 CH22_3894FG_623_38_LINK_BI 336447 CH22_3894FG_623_38_LINK_DI

TABLE 13B

Table 13B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 13B. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

	Pkey:	Unique number corresponding to an Eos probeset
10	Ref:	Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication
		entitled "The DNA sequence of human chromosome 22." Dunham I, et al., Nature (1999) 402:489-495.
	Strand:	Indicates DNA strand from which exons were predicted.
	Nt position:	Indicates purpositions of prodicted evens

15				
13		0.7		*** ***
	Pkey	Ref	Strand	Nt_position
	332955	Dunham, I. et.al.	Plus	2508896-2508992
	332958	Dunham, I. et.al.	Plus	2516164-2516310
20	332961		Plus	
20	333139	Dunham, I. et.al.		2521424-2521555
		Dunham, I. et.al.	Plus	3369495-3369571
	333254	Dunham, I. et.al.	Plus	2521424-2521555
	333305	Dunham, I. et.al.	Plus	4630388-4630645
25	333388	Dunham, I. et.al.	Plus	4913749-4913805
23	333517	Dunham, I. et.al.	Plus	5570729-5570925
	333585	Dunham, I. et.al.	Plus	6234778-6234894
	333679	Dunham, I. et al.	Plus	7068795-7068896
	333767	Dunham, I. et.al.	Plus	7694407-7694623
20	333768	Dunham, I. et.al.	Plus	7695440-7695697
30	333769	Dunham, I. et.al.	Plus	7696625-7696707
	333795	Dunham, I. et.al.	Plus	7807688-7807795
	333796	Dunham, I. et.al.	Plus	7808253-7808319
	333892	Dunham, I. et.al.	Plus	8156825-8157001
~ -	333921	Dunham, I. et.al.	Plus	8380325-8380441
35	333968	Dunham, I. et.al.	Plus	8681004-8681241
	334102	Dunham, I. et.al.	Plus	9995140-9996373
	334264	Dunham, I. et.al.	Plus	13234447-13234544
	334343	Dunham, I. et.al.	Plus	13655828-13656307
	334794	Dunham, I. et.al.	Plus	16374312-16374458
40	334889	Dunham, I. et.al.	Plus	19286024-19286515
	335287	Dunham, I. et.al.	Plus	22299047-22299299
	335491	Dunham, I. et.al.	Plus	24128651-24128827
	335495	Dunham, I. et.al.	Plus	24140688-24140872
	335498	Dunham, I. et.al.	Plus	24172082-24172161
45	335653	Dunham, I. et.al.	Plus	25329710-25329802
	335687	Dunham, I. et.al.	Plus	25445952-25446064
	335809	Dunham, I. et.al.	Plus	26310772-26310909
	335822	Dunham, I. et.al.	Plus	26364087-26364196
	335823	Dunham, I. et.al.	Plus	26365925-26366004
50	335824	Dunham, I. et.af.	Plus	26376860-26376942
	335825	Dunham, I. et.al.	Plus	26378175-26378268
	336035	Dunham, I. et.al.	Plus	29016748-29017410
	336093	Dunham, I. et.al.	Plus	29556922-29557002
	336096	Dunham, I. et.al.	Plus	29578878-29579047
55	336444	Dunham, I. et.al.	Plus	34190585-34190718
-	336959	Dunham, I. et.al.	Plus	13233040-13233126
	338008	Dunham, I. et.al.	Plus	7697068-7697236
	338057	Dunham, I. et.al.	Plus	8526397-8526522
	338410	Dunham, I. et.al.	Plus	19292807-19292916
60	338588	Dunham, I. et.al.	Plus	22896767-22896920
00	338665	Dunham, I. et.ai.	Plus	
	338832	Dunham, I. et.al.	Plus	24472654-24472853 27775128-27775290
	338980	Dunham, I. et.al.	Plus	
	339352			29896789-29896874
	JJJJJJZ	Dunham, I. et.al.	Plus	33544784-33545121

2020758-2020664

	332930 Dunham, I. et.al.	Minus	2022565-2022497
	332983 Dunham, I. et.al.	Minus	2631933-2631797
	333009 Dunham, I. et.al.	Minus	2766043-2765856
5	333010 Dunham, I, et.al.	Minus	2766207-2766119
	333013 Dunham, I. et al.	Minus	2772278-2772039
	333108 Dunham, I. et.al.	Minus	3240494-3240389
	333343 Dunham, I. et al.	Minus	4692886-4692753
	333456 Dunham, I. et al.	Minus	2631933-2631797
10	333459 Dunham, I. et.al.	Minus	5144548-5144344
	333743 Dunham, I. et.al.	Minus	7573218-7573060
	333758 Dunham, I. et.al.	Minus	7666413-7666091
	333904 Dunham, I. et.al.	Minus	8217374-8217261
	333905 Dunham, I. et.al.	Minus	8217796-8217670
15	334222 Dunham, I. et.al.	Minus	12732417-12732289
	334223 Dunham, I. et al.	Minus	12734365-12734269
	334360 Dunham, I. et al.	Minus	13728850-13728751
	334784 Dunham, I. et.al.	Minus	16294548-16294360
20	334789 Dunham, I. et.al.	Minus	16306095-16305996
20	335004 Dunham, I. et.al.	Minus	20581911-20581794
	335115 Dunham, I. et.al.	Minus	21388250-21388146
	335342 Dunham, I. et.al.	Minus	22597448-22597284
	335544 Dunham, I. et.al.	Minus	24650505-24650403
25	335610 Dunham, I. et.al.	Minus	25068943-25068841
25	335682 Dunham, I. et.al.	Minus	25421215-25421093
	335755 Dunham, I. et al.	Minus	25763806-25763747
	335782 Dunham, I. et.al.	Minus	25908578-25908440 25948563-25948411
	335791 Dunham, I. et.al. 335895 Dunham, I. et.al.	Minus Minus	26975307-26975239
30		Minus	27028481-27028377
30	335917 Dunham, I. et.al. 335920 Dunham, I. et.al.	Minus	27034927-27034811
	336042 Dunham, I. et al.	Minus	29041694-29041500
	336150 Dunham, I. et al.	Minus	30150423-30150256
	336152 Dunham, I. et.al.	Minus	30156053-30155870
35	336416 Dunham, I. et.al.	Minus	34047408-34047311
55	336449 Dunham, I. et al.	Minus	34204707-34204577
	336471 Dunham, I. et.al.	Minus	34215091-34214978
	336512 Dunham, I. et.al.	Minus	34278373-34278275
	336558 Dunham, I. et.al.	Minus	34375825-34375698
40	336560 Dunham, I. et.al.	Minus	34376814-34376596
	336676 Dunham, I. et.al.	Minus	2022565-2022497
	337968 Dunham, I. et.al.	Minus	7095797-7095680
	338451 Dunham, I. et al.	Minus	20174286-20174193
	338689 Dunham, I. et.al.	Minus	24893073-24892972
45	339373 Dunham, I. et al.	Minus	33860127-33860047
	325622 5867000	Plus	69994-70075
	329655 6448516	Minus	35565-35843
	329899 6563505	Minus	111058-111783
	329960 5091594	Minus	1031-1162
50	326213 5867224	Minus	60751-60927
	326474 5867405	Plus	16995-18101
	330084 6015302	Minus	57019-59337
	326816 6552458 326817 6552458	Plus Plus	198354-198436 199909-200001
55	326817 6552458 327110 6117842	Plus	94608-94785
55	327196 5867446	Plus	180921-181333
	327283 5867478	Minus	567-962
	327313 5867501	Minus	89734-89838
	327450 5867766	Minus	47928-48076
60	328059 6117819	Plus	37052-37204
50	328492 5868455	Minus	46094-46241
	328304 6004478	Minus	3884-3952
	328857 6381927	Minus	80557-81051
	329367 5868842	Minus	87201-87587
65	329373 6682537	Minus	38950-39301

TABLE 14: Table 2 from BRCA 001-5 US

Table 14, a subset of table 13, depicts a preferred group of genes highly upregulated in breast cancer cells.

10	Pkey: ExAcon: Unigene Unigene R1:	: E elD: L eTitle: L	xemplar Acces: Inigene number Inigene gene titl		
15	Pkey	ExAccn	UniGene ID	Unigene Title	R1
20	100114 100975 101031 101104 101143	M97935 D00596 J02923 J05070 L07615 L12723	Hs.82962 Hs.76506 Hs.151738 Hs.169266 Hs.90093	AFFX control: STAT1 thymidylate synthetase hymphocyte cytosolic protein 1 (L-plastin) marix metalloproteinase 9 (gelatinase B; 9 Human neuropeptide Y receptor Y1 (NPYY heat shock 70kD protein 4	16.7 15.9 30.1 37.2 18.3 17.4
25	101378 101809 102618 102721 102817	L47276 M13755 M86849 U65932 U79241 U90904	Hs.156346 Hs.833 Hs.323733 Hs.81071 Hs.118666 Hs.83724	Homo sapiens (ceil line HL-6) alpha topois Interferon-stimulated protein; 15 kDa Homo sapiens connexin 26 (GJB2) mRNA extracellular matrix protein 1 Human clone 23759 mRNA; partial cds Human clone 23773 mRNA sequence	18.9 18.1 22.5 23.2 15 15.2
30	102985 103060 103180 103206	X06985 X17644 X57766 X69433 X72755	Hs.202833 Hs.2707 Hs.155324 Hs.5337 Hs.77367	heme oxygenase (decycling) 1 G1 to S phase transition 1 matrix metalloproteinase 11 (stromelysin 3 isocitrate dehydrogenase 2 (NADP+); mito monokine induced by gamma interferon	22.7 20.6 17.8 18.9 15.1
35	104115 104667 105186 106103	AA428090 AA007234 AA191512	Hs.198793 Hs.26102 Hs.30098 Hs.28005 Hs.12094	KIAA0750 gene product ESTs ESTs Homo sapiens mRNA; cDNA DKFZp564G ESTs	23.3 28.7 16.6 19.3 15.4
40	109415 110189 110561 110734		Hs.5087 Hs.110826 Hs.6278 Hs.5199 Hs.24131 Hs.29724	ESTs trinucleotide repeat containing 9 DKFZP588B1621 protein ESTs; Weakly similar to UBIQUITIN-CON ESTs ESTs	19 20.1 16.6 19.5 30.2 23.2
45	111179 111357 112134 113970	N67239 N91023 R46025 W86748 Z38595	Hs.10760 Hs.87128 Hs.7413 Hs.8109 Hs.125019	ESTS ESTS ESTS ESTS ESTS ESTS ESTS ESTS	23.2 37 15 17.4 15 22
50	114292 114901 114965 115652	Z40715 AA236276 AA250737 AA405098	Hs.184641 Hs.196437	delta-6 fatty acid desaturase ESTs; Weakly similar to R26660_1; partial ESTs ESTs ESTs; Weakly similar to Weak similarity t	19.4 16.9 35.1 16.1 33.5
55	116790 116921 117412 120241	H29532 H72948 N26722 Z41815	Hs.101174 Hs.821 Hs.42645 Hs.65946 Hs.104106	microtubule-associated protein tau biglycan ESTs ESTs	22.2 20.7 18.1 15.6
60	121596 123619 124006 125852		Hs.174104	ESTS ESTS ESTS ESTS Homo sapiens mRNA; cDNA DKFZp564B ESTS; Weakly similar to transformation-rel	15.2 22.6 23.1 20.6 25.9 16.4

	127677 AA916752 Hs.264190	ESTs; Highly similar to MEM3 [M.muscul	17.3
	128595 U31875 Hs.152677	short-chain alcohol dehydrogenase family m	27.1
	128717 T30617 Hs.104222	Homo saplens mRNA; cDNA DKFZp566L	24.5
_	129124 AA234530 Hs.108802	N-ethylmateimide-sensitive factor	20.7
5	129366 H18027 Hs.184697	plexin C1	18.2
	130455 X17059 Hs.155956	N-acetyltransferase 1 (arylamine N-acetylt	26.4
	130604 X03635 Hs.1657	estrogen receptor 1	39.9 20.9
	130913 W03592 Hs.21198	translocase of outer mitochondrial membra	18.8
10	130944 M97935 Hs.21486	signal transducer and activator of transcript	18.1
10	131472 AA608962 Hs.27258 131562 U90551 Hs.28777	calcyclin binding protein H2A histone family; member L	18.8
	132180 AA405569 Hs.418	fibroblast activation protein; alpha; seprase	15.4
	132406 F09979 Hs.4774	ESTs	15
	132465 AA047896 Hs.49169	ESTs	15.4
15	132994 AA505133 Hs.279905	solute carrier family 2 (facilitated glucose t	26.4
10	133294 R79723 Hs.69997	zinc finger protein 238	30.4
	133634 U24166 Hs.234279	microtubule-associated protein; RP/EB fam	15.2
	134374 D62633 Hs.8236	ESTs	15.2
	134405 J04177 Hs.82772	collagen; type XI; alpha 1	15.3
20	134470 X54942 Hs.83758	CDC28 protein kinase 2	20.3
	134495 D63477 Hs.84087	KIAA0143 protein	16.1
	134714 U89922 Hs.890	lymphotoxin beta (TNF superfamily; memb	35.7
	135237 AA454930 Hs.9691	ESTs	19.5
	301884 AA312082 Hs.105445	GDNF family receptor alpha 1	20.7
25	302276 NM_004448Hs.323910	EST cluster (not in UniGene) with exon hit	21.6
	302290 AL117607 Hs.175563	Homo sapiens mRNA; cDNA DKFZp564N	41.4
	309177 Al951118	EST singleton (not in UniGene) with exon	24.3
	309583 AW170035	EST	64.5
20	310438 AW022192 Hs.200197	ESTs	39.1 24.1
30	311166 Al821294 Hs.118599	ESTs	27.1
	312153 AA759250 Hs.153028	cytochrome b-561 ESTs	27.1
	313915 Ai969390 Hs.163443 314506 AA833655 Hs.206868	ESTs	27.8
	314558 Al873274 Hs.190721	ESTs	22.5
35	314691 AW207206 Hs.136319	ESTs	21.4
55	314943 Al476797 Hs.184572	cell division cycle 2; G1 to S and G2 to M	18.4
	315196 AA972756 Hs.44898	ESTs	28.8
	316177 Al908272 Hs.293102	EST duster (not in UniGene)	32.6
	318073 AW167087 Hs.131562	ESTs	15.7
40	318662 Al285898 Hs.294014	ESTs	16.3
	318740 NM_002543Hs.77729	EST duster (not in UniGene)	21.3
	318744 AI793124 Hs.144479	ESTs	35
	319668 NM_002731Hs.87773	EST duster (not in UniGene)	25.4
	320074 AA321166 Hs.278233	EST cluster (not in UniGene)	16.7
45	320211 AL039402 Hs.125783	DEME-6 protein	24.3
	320727 U96044 Hs.181125	EST cluster (not in UniGene)	15.3
	322818 AW043782 Hs.293616	ESTs	21
	322882 AW248508 Hs.279727	DiGeorge syndrome critical region gene 2	. 15.3 50.1
50	324261 AL044891 Hs.269350 324432 AA464510 Hs.152812	EST cluster (not in UniGene) EST cluster (not in UniGene)	16.7
30	324432 AA464510 Hs.152612 324603 AW016378 Hs.292934	ESTs	23.1
	324620 AA448021 Hs.94109	EST cluster (not in UniGene)	21.2
	324988 T06997 Hs.121028	EST cluster (not in UniGene)	24.5
	330388 X03363	HER2 receptor tyrosine kinase (c-erbB-2; E	17.7
55	330486 M13755 Hs.833	interferon-stimulated protein; 15 kDa	67
-	330814 AA015730 Hs.265398	ESTs: Weakly similar to transformation-rel	44.1
	331145 R72427 Hs.129873	ESTs; Weakly similar to CYTOCHROME	41.9
	331306 AA252079 Hs.63931	dachshund (Drosophila) homolog	15.1
	331890 AA432166 Hs.3577	succinate dehydrogenase complex; subunit	24.3
60	332526 AA281753 Hs.77515	inositoi 1;4;5-triphosphate receptor, type 3	19
	332532 N63192 Hs.1892	EST; Highly similar to PHENYLETHANO	15.3
	332694 AA262768 Hs.243901	KIAA1067 protein	15.2
	332958	CH22_FGENES.48_15	17.8
	333769	CH22_FGENES.271_8	48.3
65	333968	CH22_FGENES.307_4	15.9
	334223	CH22_FGENES.360_4	33.5
	334264	CH22_FGENES.367_15	18.5

335791	CH22_FGENES.611_7	27.3
336512	CH22_FGENES.834_7	21.4
338008	CH22 EM:AC005500.GENSCAN.127-9	15.2

TABLE 14A

Table 14A shows the accession numbers for those pkeys lacking unigeneID's for Table 14. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10

15

5

Pkey: Unique Eos probeset Identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

AW170035

Pkey CAT number Accession

309583 1046029_-2

20 335512 CH22, 3901FG, 39.3 7_LINK_DJ 33000 CH22, 5430FG, LINK_EM-AC00 333799 CH22, 1038FG, 271.8_LINK_EM 333898 CH22, 1248FG, 307.4_LINK_EM 335791 CH22, 3160FG, 511.7_LINK_EM 325959 CH22, 1360FG, 511.7_LINK_EM 32959 CH22, 1367FG, 580.4_LINK_EM 34225 CH22, 1507FG, 580.4_LINK_EM 34264 CH22, 1557FG, 380.4_LINK_EM 34264 CH22, 1557FG, 387.15_LINK_E 23619 371681_1 AA602364 AA609240

TABLE 14B

5 Table 14B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 14. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref:	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I, et al." refers to the publication
15	Strand: Nt_position:	enitided "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402-489-495. Indicates DNA stand from which excess were predicated, indicates nucleoting positions of predicted excess.

	Pkey	Ref	Strand	Nt_position
	332958	Dunham, I. et.al.	Plus	2516164-2516310
20	333769	Dunham, I. et.al.	Plus	7696625-7696707
	333968	Dunham, I. et.ai.	Pius	8681004-8681241
	334264	Dunham, I. et.al.	Plus	13234447-13234544
	338008	Dunham, I. et.ai.	Pius	7697068-7697236
	334223	Dunham, I, et.al.	Minus	12734365-12734269
25	335791	Dunham, I. et.al.	Minus	25948563-25948411
	336512	Dunham, I. et.ai.	Minus	34278373-34278275

TABLE 15: Table 3 from BRCA 001-5 US

Table 15 shows genes downregulated in breast cancer cells.

5

Unique Eos probeset Identifier number

Pkøy: ExAcon: Exemplar Accession number, Genbank accession number Unigene number

UnigenelD: 10

Unigene Title: Unigene gene title
R1: Ratio of normal breast tissue to tumor

	Pkey	ExAccn	UniGene II	Unigene Title	R1
15					
	100115	D00632	Hs.172153	glutathlone peroxidase 3 (plasma)	1.7
	100499	TIGR:HT1428	Hs.283108	Globin, Beta	1.5
	100502	TIGR:HT1496	Hs.169228	Adrenal-Specific Protein Pg2	2.3
	100815	TIGR:HT4268	Hs.9739	L-Glycerol-3-Phosphate:Nad+ Oxidoreduct	1.7
20	101125	L10373	Hs.82749	transmembrane 4 superfamily member 2	1.5
	101367	M12963	Hs.4	alcohol dehydrogenase 1 (class I); alpha po	2.9
		M15856	Hs.180878		1.6
	101883	M98399	Hs.75613	CD36 antigen (collagen type I receptor; thr	1.6
		U25138	Hs.93841	potassium large conductance calcium-activ	1.6
25	102857	X00129	Hs.76461	retinol-binding protein 4; Interstitial	3
	103211	X73079	Hs.288579	polymeric Immunoglobulin receptor	1.8
		Y09267	Hs.132821	flavin containing monooxygenase 2	1.5
		Z21966	Hs.2815	POU domain; class 6; transcription factor 1	1.8
		AA007629		glycerol-3-phosphate dehydrogenase 1 (sol	2.4
30		AA146619	Hs.18791	ESTs; Weakly similar to CALCIUM-BIND	1.7
		AA164519	Hs.15248	ESTs	1.5
		AA417915	Hs.25930	ESTs	1.5
		AA487576	Hs.26530	serum deprivation response (phosphatidyls	1.6
		AA609645	Hs.211568	eukaryotic translation initiation factor 4 gam	2.7
35		AA004901	Hs.261164		1.6
		AA037388	Hs.82223	Human DNA sequence from clone 141H5 o	1.7
		AA099820	Hs.49696	ESTs	2.4
		N64265	Hs.19515	yz44h12.s1 Morton Fetal Cochlea Homo sa	1.7
40		R36447	Hs.24453	ESTs	1.6
40		R70255		ESTs	1.9
		R97970	Hs.281022		1.5
		T40652		DKFZP434C171 protein	1.9
		AA418033	Hs.283559		1.6
4.5		AA443800	Hs.43125	ESTs	2
45		AA446661	Hs.173233		2.2
		N20300	Hs.218707		1.7
		N32174	Hs.44317	SRY (sex-determining region Y)-box 10	1.7
		R15436	Hs.77889	Friedreich ataxia region gene X123	1.7
E0	119175			ESTs; Weakly similar to cell death activato	2.8
50		T71021 .	Hs.285681		1.9
		W73386	Hs.249129		3
		AA365784	Hs.97044	ESTS	1.6
		AA405747	Hs.97984	ESTs; Weakly similar to WASP-family pro	1.8
55		AA421184	Hs.97549	ESTs	1.5 2.5
22	122127		Hs.106771		2.5
		AA443695	Hs.293410		1.5
		AA448300	Hs.160318	phospholemman	1.8
		AA598841	ms. 10/302	natriuretic peptide receptor A/guanylate cy	
60		AA600135 W94688	Hs.103253	ESTs; Moderately similar to IIII ALU SUB	1.5
ou			rts. 103233		1.8
		D81972	Un 100310	HUM427D08B Human fetal brain (TFujiw	1.6
		R72515 AA309765	Hs.160318	phospholemman ESTs; Weakly similar to KIAA0795 protel	1.5
		AA452788	Hs.75432	zx39g11.r1 Soares_total_fetus_Nb2HF8_9	1.7
	12/35/	AA432788	ns./5432	zx3ag i i.r i Soares_iotal_tetus_Noznro_a	1.7

	127620	AA634405	Hs.122608	ECT.	1.5
		AA972780		ESTs; Weakly similar to IIII ALU SUBFA	1.5
	128351	AI092391	Hs.134886		1.5
_		N44757	Hs.20340	ESTs	1.6
5		R71403	Hs.75309	eukaryotic translation elongation factor 2	1.7
		AA459944		DKFZP586P1422 protein	1.5
		T62068	Hs.11006	ESTs	2.1
	129331	N93465		ESTs; Highly similar to CGI-38 protein [H	1.5
	130085	M62402	Hs.274313	insulin-like growth factor binding protein 6	1.7
10		M25079	Hs.283108	hemoglobin; beta	1.7
	131267	AA211776	Hs.2504	myomesin 1 (skelemin) (185kD)	3.8
		AA131466	Hs.23767	ESTs	1.9
		M12272	Hs.4	alcohol dehydrogenase 3 (class I); gamma p	2.2
		AA295848	Hs.25475	aquaporin 7	1.7
15	131810		Hs.194236		2.5
		AA045503	Hs.56874	ESTs; Weakly similar to Homo sapiens p2	1.6
			Hs.6090	deleted in bladder cancer chromosome regi	1.5
	133120		Hs.65424	tetranectin (plasminogen-binding protein)	2
		U95367			
20	133314		Hs.70725	gamma-aminobutyric acid (GABA) A recep	1.5
20	133507	X74295	Hs.74369	integrin; alpha 7	1.7
	133601		Hs.284176		2.3
	133702		Hs.75652	glutathlone S-transferase M5	1.9
	134111		Hs.8022	TU3A protein	4.6
	134699		Hs.88646	deoxyribonuclease I-like 3	1.5
25	134749	L10955	Hs.89485	carbonic anhydrase IV	1.6
	135173	M72885	Hs.95910	Human G0S2 protein gene; complete cds	1.9
	300132	AW027556	Hs.156286	ESTs	1.7
	300732	AI369956	Hs.257891	ESTs	1.5
	300750	AA514805	Hs.293055	ESTs	1.8
30	301140	AI807692	Hs.129129	ESTs	1.6
		AA923549	Hs.224121		2.1
		N77976	Hs.251577		1.8
	303798		Hs.36977	hemoglobin; delta	1.6
	303831	T04868	Hs.46780	EST cluster (not in UniGene) with exon hit	1.7
35	303844		Hs.58589	glycogenin 2	1.5
55		H91086	113.00303	EST singleton (not in UniGene) with exon	1.5
		AA516384		EST singleton (not in UniGene) with exon	1.5
		AA550994			1.7
		AA782347	U- 279E79	EST singleton (not in UniGene) with exon	1.5
40			NS.212312	EST singleton (not in UniGene) with exon	
40		AA923457		EST singleton (not in UniGene) with exon	1.5
		Al192534		EST singleton (not in UniGene) with exon	1.6
	307377	Al222691		EST singleton (not in UniGene) with exon	1.5
		AI452732	Hs.251577		1.9
		A1612774	Hs.79372	retinoid X receptor; beta	1.5
45	309838		Hs.255504		1.5
	310403	AI720978		ESTs; Moderately similar to alternatively s	1.8
	311671	AW241947	Hs.232478	ESTs	1.6
	311794	AW238092	Hs.254759	ESTs	2.1
	312082	T79860	Hs.118180	ESTs	1.9
50	312575	H25237	Hs.306814	ESTs	2.3
	313076	N49684	Hs.143040	ESTs	1.8
	313283	W32480	Hs.157099	ESTs	2.2
	313374		Hs.132760		1.9
	314701		Hs.131987		1.7
55	315391		Hs.192007		1.8
-	315688	AA680055	Hs.264885	ESTe	1.5
	316249		Hs.130414		1.6
	316586		Hs.294085		1.7
	316890		Hs.24647	ESTS	1.5
60			Hs.177131		1.5
JU	316983				
	317604		Hs.300756		1.6
	317951	AW206520	Hs.129621		1.5
	319400		Hs.154085		1.7
	320757		Hs.6382	EST duster (not in UniGene)	1.5
65	321594		Hs.11067	ESTs	1.7
	322102			EST cluster (not in UniGene)	1.5
	322814	A1824495	Hs.211038	ESIS	2.2

	322929	Al365585	Hs.146246	ESTs	2.3
	323831	AA335715	Hs.200299	ESTs	1.7
	324044	AL045752	Hs.22350	ESTs	1.8
	324675	AW014734	Hs.157969	ESTs	2.2
5	325272			CH.11_hs gij5866902	1.5
-	325558			CH.12_hs gij6056302	1.6
	325656			CH.14_hs gil6056305	1.6
	326120			CH.17_hs glj5867194	1.5
	326139			CH.17_hs gij5867203	1.5
10	326855			CH.20_hs glj6552460	1.5
10	327438			CH.02_hs qi[6004454	1.6
	329733			CH.14_p2 gij6065783	1.6
		F01443	Hs.284256		4.6
	331591		Hs.42146	ESTs	1.9
15		AA621393	Hs.112984		1.5
13		W94688	Hs. 103253		2.1
		H21819	Hs.14896		1.5
	334175	112 10 15	110.14030	CH22 FGENES.349 10	1.5
	334347			CH22 FGENES.375 31	1.8
20	334737			CH22_FGENES.424_12	1.8
20	335352			CH22 FGENES.539 5	1.5
	335639			CH22_FGENES.584_19	1.6
	336244			CH22_FGENES.746_2	1.5
	336336			CH22_FGENES.814 B	1.7
25	336865			CH22_FGENES.305-1	1.6
23				CH22_FGENES.799-12	1.6
	337494			CH22_FGENES./99-12 CH22_EM:AC000097.GENSCAN.119-1	1.8
	337764			CH22_EM:AC005500.GENSCAN.119-1	2
	337983				1.5
20	338192			CH22_EM:AC005500.GENSCAN.228-1	1.5
30	339366			CH22_BA354I12.GENSCAN.34-2	1.0

TABLE 15A

Table 15A shows the accession numbers for those pkeys lacking unigeneID's for Table 15.

5 For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

PCT/US02/02242

Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genhank accession numbers 15 Pkey CAT number Accession 126300 250375 2 D81972 BE003132 20 112538 504579_1 AA908813 R70255 123505 genbank AA600135 AA600135 * 104672 6735_7 AA349096 Al368018 F21390 F17759 R48772 Al421485 Al300352 H43971 Al378525 F33652 R47898 Al264177 F22289 N28263 Al276281 R48205 Al245302 Al190036 Al281050 AW242903 H42892 AA910870 AW473816 H25721 AW451438 F19647 F22375 H45809 F33447 AA774528 AA007629 H42537 C01077 F32386 25 322102 46708_1 H45589 H19807 AF075038 H19808 H42437 336865 CH22_4590FG_305_1_ 338192 CH22_6755FG_LINK_EM:AC00 329733 c14 p2 326120 c17_hs 30 326139 c17_hs 326855 c20_hs 335352 CH22_2699FG_539_5_LINK_EM 335639 CH22_2999FG_584_19_LINK_E 307206 Al192534 35 307377 Al222691 337494 CH22_5727FG_799_12 337764 CH22_6115FG__LINK_EM:AC00 337983 CH22_6438FG__LINK_EM:AC00 339366 CH22_8336FG LINK BA35411 40 325272 c11 hs 325558 c12 hs 325656 c14_hs 334175 CH22_1455FG_349_10_LINK_E 304182 H91086 45 334347 CH22_1640FG_375_31_LINK_E 327438 c_2_hs 304622 AA516384

50

334737 CH22_2049FG_424_12_LINK_E 304682 AA550994

336244 CH22_3642FG_746_2_LINK_DA 306193 AA923457 336336 CH22_3746FG_814_8_LINK_BA

TABLE 15B

Table 15B shows the genomic positioning for those pkeys lacking unigene ID's and accession numbers in Table 15. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref:	Unique number corresponding to an Los proceset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402-489-495.
	Strand: Nt_position:	Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.
15	Pkey Ref	Strand Nt_position

Pkey	Ref	Strand	Nt_position
334347	Dunham, I. et.al.	Plus	13663814-13663926
334737	Dunham, I. et.al.	Plus	15998517-15998685
335639	Dunham, I. et.al.	Plus	25173591-25173696
337494	Dunham, I. et.al.	Plus	33339024-33339148
334175	Dunham, I. et.al.	Minus	11668659-11668597
335352	Dunham, I. etal.	Minus	22681512-22681384
336244	Dunham, I. etal.	Minus	31402729-31402583
336336	Dunham, I. etal.	Minus	33797209-33797076
336865	Dunham, I. etal.	Minus	8622405-8622289
337764	Dunham, I. etal.	Minus	4035640-4035446
338192 339366 325272 325558	Dunham, I. et.al. Dunham, I. et.al. Dunham, I. et.al. 5866902 6056302	Minus Minus Minus Minus Plus	7275495-7275271 13248453-13248277 33647431-33647293 13247-13312 70930-71030
325656	6056305	Minus	78190-78707
329733	6065783	Plus	163237-163450
326120	5867194	Plus	36116-36276
326139	5867203	Minus	218901-218960
326855	6552460	Minus	111390-111463
327438	6004454	Minus	199569-199692
	334347 334737 335639 337494 334552 336244 336865 337764 337983 338192 325272 325556 329733 326120 326139 326120 326385	34347 Dunham, I. etal. 34747 Dunham, I. etal. 34747 Dunham, I. etal. 34747 Dunham, I. etal. 33583 Dunham, I. etal. 33749 Dunham, I. etal. 33749 Dunham, I. etal. 334715 Dunham, I. etal. 335352 Dunham, I. etal. 335352 Dunham, I. etal. 335865 Dunham, I. etal. 33798 Dunham, I. etal. 33798 Dunham, I. etal. 33798 Dunham, I. etal. 33798 Dunham, I. etal. 33986 Dunham, I. e	334347 Dunham, I. etal. Plus 334737 Dunham, I. etal. Plus 334737 Dunham, I. etal. Plus 337494 Dunham, I. etal. Plus 337495 Dunham, I. etal. Minus 335325 Dunham, I. etal. Minus 335325 Dunham, I. etal. Minus 335326 Dunham, I. etal. Minus 335338 Dunham, I. etal. Minus 337764 Dunham, I. etal. Minus 337785 Dunham, I. etal. Minus 337885 Dunham, I. etal. Minus 337885 Dunham, I. etal. Minus 337885 Dunham, I. etal. Minus 337885 Dunham, I. etal. Minus 358865 Dun

TABLE 16: Table 4 from BRCA 001-5 US

Table 16, a subset of table 15, depicts a preferred group of genes highly downregulated in 5 breast cancer cells.

10		Unigene number Unigene Title: R1: Unigene title: Ratio of normal breast tissue to tumor						
15	Pkey	ExAcon	UniGene (D	Unigene Title	R1			
		TIGR:HT1496	Hs.169228	Adrenal-Specific Protein Pg2	2.3			
		M12963	Hs.4	alcohol dehydrogenase 1 (class I); alpha	2.9			
		X00129	Hs.76461	retinol-binding protein 4; interstitial	3			
20		AA007629		glycerol-3-phosphate dehydrogenase 1	2.4			
		AA609645	Hs.211568	eukaryotic translation initiation factor 4 gam	2.7			
		AA099820	Hs.49696	ESTs	2.4			
		AA443800	Hs.43125	ESTs	2			
25		AA446661	Hs.173233	ESTs	2.2			
25		R71792	Hs.301002	ESTs; Weakly similar to cell death activator	2.8			
		W73386	Hs.249129	ESTs	3			
		AA434447	Hs.106771	ESTs	2.5			
		AA443695	Hs.293410	ESTs	2.1			
20		T62068	Hs.11006	ESTs	2.1			
30		AA211776	Hs.2504	myomesin 1 (skelemin) (185kD)	3.8			
		M12272	Hs.4	alcohol dehydrogenase 3 (class I); gamma	2.2			
		D49487	Hs.194236	leptin (murine obesity homolog)	2.5			
		X64559	Hs.65424	tetranectin (plasminogen-binding protein)	2			
35		S95936	Hs.284176	transferrin	2.3			
33		N79674	Hs.8022	TU3A protein	4.6			
		AA923549	Hs.224121	ESTs	2.1			
		AW238092	Hs.254759	ESTs	2.1			
		H25237	Hs.306814	ESTs	2.3			
40		W32480	Hs.157099	ESTs	2.2			
40		AI824495 AI365585	Hs.211038	ESTs	2.2			
		AI365585 AW014734	Hs.146246	ESTs	2.3			
			Hs.157969	ESTs	2.2			
		F01443	Hs.284256	ESTs	4.6			
45		W94688	Hs.103253	perilipin	2.1			
43	337983			CH22_EM:AC005500.GENSCAN.110-1	2			

Unique Eos probeset Identifier number ExAccn: Exemplar Accession number. Genbank accession number

Pkey:

TABLE 16A

Table 16A shows the accession numbers for those pkeys lacking unigeneID's for Table 16. For each probeset, we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10

15

20

5

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

Pkey CAT number Accession

104672 6735_7

AA349096 AJS68018 F21390 F17759 R48772 AI421485 AJS00352 H43971 AJS78525 F33652 R47898 AJS64177 F22289 N28263 AIZ78281 R48205 AJ245920 AJ190036 AJ281050 AW242903 H42892 AA910870 AW473816 H25721 AW451438 F19647 F22375 H45809 F3347 AA774528 AA07629 H42537 COUTY F32386

TABLE 17: Table 1 from BRCA 014 P

5 Table 17 shows accession numbers representing 759 sequences of breast cancer genes or fragments thereof encoding breast cancer modulating proteins. For each overexpressed gene identified, a ratio of the relative amount of expression in breast tumors versus normal breast tissue.

	Trade of whom to normal product assure					
	Pkey	ExAccn	UnigeneiD	Unigene Title	R1	
20		AV654694	Hs.82316	interferon-induced, hepatitis C-associat	3	
	100405	AW291587	Hs.82733	nidogen 2	3.2	
	100406	AI962060	Hs.118397	AE-binding protein 1	3.6	
	100420	D86983	Hs.118893	Melanoma associated gene	3.2	
	100911	X83300	Hs.289103		5.2	
25		J00124		keratin 14 (epidermolysis bullosa simple	4.3	
		BE387036	Hs.1211	acid phosphatase 5, tartrate resistant	3	
		AA442324	Hs.795	H2A histone family, member O	3.2	
		L20971	Hs.188	phosphodlesterase 4B, cAMP-specific (dun	3	
		U66042	Hs.82171	Homo sapiens clone 191B7 placenta expres	4.1	
30		BE563085	Hs.833	Interferon-stimulated protein, 15 kDa	5.3	
		R07566	Hs.73817	small Inducible cytokine A3 (homologous	3.9	
		M25809	Hs.64173	ATPase, H+ transporting, lysosomal (vacu	4.5	
		M29874	Hs.1360	cytochrome P450, subfamily ItB (phenobar	9	
0.5		AA353776	Hs.901	CD48 antigen (B-cell membrane protein)	3.4	
35		NM_003528	Hs.2178	H2B histone family, member Q	5.6	
		BE019494	Hs.79217	pyrroline-5-carboxylate reductase 1	3.6	
		M81057		carboxypeptidase B1 (tissue)	12	
		M89907		SWI/SNF related, matrix associated, acti	3.2	
40		BE260964	Hs.82045		4.1	
40		M97815		cellular retinoic acid-binding protein 2	6.5	
		NM_002038	Hs.265827		3	
		U23752	Hs.32964	SRY (sex determining region Y)-box 11	3	
		NM_001504		G protein-coupled receptor 9	3.7	
4.5		NM_005824		37 kDa leucine-rich repeat (LRR) protein	3.7	
45		NM_005651		tryptophan 2,3-dioxygenase	5.2	
		AL043202	Hs.90073		3.5	
		U39840		hepatocyte nuclear factor 3, alpha	3.9	
		U62325		amylold beta (A4) precursor protein-bind	4	
50		H16646		hypothetical protein PP591	3.5	
50		AA363025	Hs.155572	Human clone 23801 mRNA sequence	3.2	
		AF080229		gb:Human endogenous retrovirus K done 1	3	
		NM_002318	Hs.83354		3.2	
		M73779		retinoic acid receptor, alpha	3.3	
55		X52509		tyrosine aminotransferase	12.4	
23		T81656		ribosomal protein S3	4.5	
	103117	X63578	HS.295449	parvalbumin	3	

Hs.279929 gp25L2 protein

Hs.37189 similar to rat HREV107

gb:Human endogenous retrovirus mRNA for

Hs.77628 steroidogenic acute regulatory protein r Hs.8375 TNF receptor-associated factor 4 retinoblastoma-binding protein 5

Hs.9629 papillary renal cell carcinoma (transloc

Unique Eos probeset identifier number

Ratio of turnor to normal breast tissue

Unigene number

Unigene gene title

Exemplar Accession number, Genbank accession number

60

103207 X72790

103282 BE390551

103385 NM_007069

103456 AA496425

103284 AI751601

103329 X85134 103364 X90872

10 Pkey:

15 R1:

ExAccn:

UnigeneID:

Unigene Title:

		Y09306 BE616547	Hs.30148 Hs.2785	homeodomain-interacting protein kinase 3 keratin 17	3.4
	103563			Activin A receptor, type ! (ACVR1) (ALK	3.2
_	103612	BE336654	Hs.70937	H3 histone family, member A	4.5
5		AI571835	Hs.55468	ESTs	4
		AW779318 AW021102	Hs.88417 Hs.21509	ESTs ESTs	3.8 4.3
		AF183810	Hs.26102	opposite strand to trichorhinophalangeai	7.6
		AA461618	Hs.31704	ESTs, Weakly similar to KIAA0227 [H.sapi	3.6
10		AA084273	Hs.76561	ESTs, Weakly similar to S47072 finger pr	4
		AF173296		DC6 protein	3
		AB040927 Al559444	Hs.301804 Hs.293960	KIAA1494 prolein	3.2 4.3
		A1929700		endosulfine alpha	3.1
15		H20816		Homo sapiens mRNA; cDNA DKFZp586I1420 (f	3.2
		AV650851	Hs.96900	hypothetical protein; KIAA1830 protein	4.4
		AA360954	Hs.27268	Homo saplens cDNA: FLJ21933 fis, clone H	3.2
		AA015879 T49951	Hs.33536 Hs.9029	ESTs DKFZP434G032 protein	4.5
20		AA035613	Hs.141883		6.9
		AW294092	Hs.21594	hypothetical protein MGC15754	11.
	104865	T79340	Hs.22575	B-cell CLL/lymphoma 6, member B (zinc fi	3.5
		BE298684	Hs.26802	protein kinase domains containing protei	6.5
25		H78517 AW503733	Hs.33905 Hs.9414	ESTs KIAA1488 protein	3.6 4.5
23		H58589	Hs.35156	Homo sapiens cDNA FLJ11027 fis, clone PL	3.8
		AA148982	Hs.29068	ESTs	3
		AL137566	Hs.32405	Homo sapiens mRNA; cDNA DKFZp586G0321 (f	4.8
20		AW134924	Hs.190325		8.2 3.1
30	105397	AA814807 AW505076	Hs.7395 Hs.301855	hypothetical protein FLJ23182 DIGeorge syndrome critical region gene 8	4.2
		AA252033		hypothetical protein DKFZp434K1421	4.4
	105552	AA256750	Hs.28802	centaurin-alpha 2 protein	3.2
25		AA279439		hypothetical protein FLJ10504	3.5
35		W16741	Hs.25635	HSPC003 protein	3.7 5.5
		Al299139 Al133161	Hs.17517 Hs.286131	ESTs CGi-101 protein	3.5
		AW973653	Hs.20104	hypothetical protein FLJ00052	3.3
	105909	AA195191	Hs.5111	hypothetical protein FLJ20729	3.2
40		AA131657	Hs.23830	ESTs	3.3
		AL117474	Hs.41181 Hs.10762	Homo saplens mRNA; cDNA DKFZp727C191 (fr ESTs	3.2 3.3
		W28948 N39842	Hs.301444		4.1
		BE397649	Hs.94109	Homo saplens cDNA FLJ13634 fis, clone PL	3.1
45		BE383668	Hs.42484	hypothetical protein FLJ10618	3.2
		AA351978	Hs.4943	hepatocellular cardinoma associated prot	7.8
		AL134708 AA648459	Hs.145998	ESTs hypothetical protein AF301222	3 3.8
		AW958037	Hs.286	ribosomal protein L4	3.3
50		AW499914	Hs.7579	hypothetical protein FLJ10402	3
		BE613328	Hs.21938	hypothetical protein FLJ12492	4.2
		AA485055	Hs.158213		3.4
		Al311928 AW192535	Hs.19479	gb:qo89h04.x1 NCI_CGAP_Kid5 Homo saplens ESTs	4.4 3.6
55		AW472981		hypothetical protein MGC2771	4.1
		AA995351	Hs.31314	retinoblastoma-blnding protein 7	3.6
		AF216751	Hs.26813	CDA14	5.3
		AW963419		stanniocalcin 2	3.4
60		N32849 AW263124	Hs.31844	hypothetical protein FLJ12586 nuclear receptor co-repressor/HDAC3 comp	3.1 5.9
00	107265		Hs.49136	ESTs, Moderately similar to ALU7_HUMAN A	3.9
		AW961576	Hs.60178	ESTs	4.6
		Al955040		ESTs, Weakly similar to transformation-r	3
65		AA025386	Hs.61311	ESTs, Weakly similar to S10590 cysteine	3.1 4.8
05	107985	T40064 Al263307	Hs.71968 Hs 239884	Homo sapiens mRNA; cDNA DKFZp564F053 (fr H2B histone family, member L	3.3
		AA058686	Hs.62588	ESTs	3.8

	100433	102421		Tionio sapiens contr. i cozooos no, cione A	
			Hs.43857	similar to glucosamine-6-sulfatases	3.3
		AA121022		gb:zn84f10.r1 Stratagene lung carcinoma	3.9
	108771	AF068290	Hs.79741	hypothetical protein FLJ10116	6.1
5	108819	AA011449	Hs.271627	ESTs	3.6
		AA136674	Hs.118681		3.9
		AF186114		tumor necrosis factor (ligand) superfami	3.7
		AK000684		hypothetical protein FLJ22104	3.1
10		AI970536	Hs.16603	hypothetical protein FLJ13163	3.7
10	109163		Hs.30567	ESTs, Weakly similar to B34087 hypotheti	4.5
		AA196443	Hs.86043	Homo sapiens cDNA FLJ13558 fis, clone PL	3.7
		AW504732	Hs.21275	hypothetical protein FLJ11011	4.6
	109454	AA232255	Hs.295232	ESTs, Moderately similar to A46010 X-lin	6.4
		AA234087		ESTs, Weakly similar to S72482 hypotheti	4.8
15	109581	R45584	Hs.23025	ESTs, Weakly similar to ALU5_HUMAN ALU S	3.3
10		AA325138		hypothetical protein FLJ22672	3
					3
		AW973964	HS.29 1551	ESTs, Highly similar to 1203217A dehydro	
	109700			gb:HSC33H092 normalized infant brain cDN	3.2
		F06838	Hs.14763	ESTs	3.2
20		R43646	Hs.12422	ESTs	3.8
	109842	AW818436	Hs.23590	solute carrier family 16 (monocarboxylic	3.3
	109895	AK001680	Hs.30488	DKFZP434F091 protein	3.6
		AW973152	Hs.31050	ESTs	4.2
		AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	5.1
25		H89355		adrenergic, alpha-2A-, receptor	5.3
23		Al239832	Hs.15617	ESTS, Weakly similar to ALU4_HUMAN ALU S	3.7
		BE092285	Hs.29724	hypothetical protein FLJ13187	3.7
		N64683	Hs.290943		4
		N66563	Hs.191358		3.1
30	111199	AI767435	Hs.29822	ESTs	4.5
	111336	A1457338	Hs.29894	ESTs	5.4
	111510	R07856	Hs.16355	ESTs	3.2
		R08440		gb:yf19f09.s1 Soares fetal liver spleen	3.1
		AA602004	Hs.23260	ESTs	3.2
35		R35252	Hs.24944	ESTs, Weakly similar to 2109260A B cell	3.3
55		R38239		ESTs, Weakly similar to putative p150 [H	3.1
					3.4
		AA421081	Hs.12388	ESTs	
	111893	AF070526	Hs.13429	Homo sapiens clone 24787 mRNA sequence	3.3
		AW379029		ESTs, Weakly similar to unnamed protein	4.4
40		BE246743		hypothetical protein FLJ22635	7.3
	112287	AB033064	Hs.334806	KIAA1238 protein	3.2
	112300	H24334	Hs.26125	ESTs	4.4
	112303	R54797		gb:yg87b07.s1 Soares infant brain 1NIB H	3.4
	112478	R66067	Hs.28664	ESTs	8.2
45		Al791493		ESTs, Weakly similar to A36036 cytochrom	5.5
		R82040	113.12.0010	gb:yj06b06.s1 Soares placenta Nb2HP Homo	3.9
			11- 404500		
		R82331	Hs.164599		5.4
		AW844878	Hs.19769	hypothetical protein MGC4174	3.2
		Al418466	Hs.33665	ESTs	4.7
50	112917	AA082465		choline/ethanolaminephosphotransferase	3.7
	113070	AB032977	Hs.6298	KIAA1151 protein	3.1
	113095	AA828380	Hs.126733	ESTs	3.4
	113117	AW813731	Hs.159153	ESTs, Moderately similar to S65657 alpha	3.4
	113187	BE613410	Hs.31575	SEC63, endoplasmic reticulum translocon	3.2
55		T57773	Hs.10263	ESTs	3.5
55		BE262470	Hs.241471		6.2
				ESTs, Weakly similar to ALU1_HUMAN ALU S	
		T79925			3.7
		U54727	Hs.191445		3
		T91451	Hs.86538	ESTs	3.4
60		AW367788	Hs.323954	postmeiotic segregation increased 2-like	3.1
	113571	A1702609	Hs.15713	hypothetical protein MGC2776	3.1
	113822	NM_004585	Hs.17466	retinoic acid receptor responder (tazaro	3.9
		AI912410	Hs.27475	Homo saplens cDNA FLJ12749 fis, clone NT	3
		W81598		gb:zd88g02.s1 Soares_fetat_heart_NbHH19W	4.6
65	113947			gb:zh53d03.s1 Soares_fetal_liver_spleen_	3.
33		W27249	Hs.8109	hypothetical protein FLJ21080	6.9
		AA378776		hypothetical protein MGC3077	4.3
	14000	M310110	110.200043	Hypothetical protest wid C3077	4.0
				266	

108435 T82427 Hs.194101 Homo sapiens cDNA: FLJ20869 fis, clone A 3

	114148	AW470411	Hs.288433		4.1
	114424	AW780192	Hs.267596		3.4
		AW163267		suppressor of var1 (S.cerevisiae) 3-like	3.1
_		Al979168	Hs.82226	glycoprotein (transmembrane) nmb	4.8
5		AI733881	Hs.72472	BMP-R1B	10.1
		AA769266	Hs.193657		3.6
		AI634549		ESTs	3.2
		AW968073		ESTs, Highly similar to A55713 inositol	4.2
10		AA749209	Hs.43728	hypothetical protein	3.6
10		BE149845	Hs.86693	hypothetical protein MGC4126 ESTs	3.9
		AA814100 N46436	Hs.109221		3.4
		AA281636			4.8
		AA405620	Hs.55158	ESTs, Weakly similar to T29520 hypotheti	3.5
15		AA953006	Hs.88143	ESTs	9.3
		AW293849	Hs.58279	ESTs, Weakly similar to ALU7_HUMAN ALU S	3.4
	115729		Hs.38775	ESTs	4
		Al126772	Hs.40479	ESTs	3.1
	115830	AW970529	Hs.86434	hypothetical protein FLJ21816	3.6
20		AA521410	Hs.41371	ESTs	3.1
		NM_014937	Hs.52463	KIAA0966 protein	3
		AK001500		hypothetical protein FLJ13852	3.2
		AA354549	Hs.41181	Homo sapiens mRNA; cDNA DKFZp727C191 (fr	3
25		AL042465	Hs.43445	poly(A)-specific ribonuclease (deadenyla	3.1 6.7
25		AB041035	Hs.93847	NM_016931:Homo saplens NADPH oxidase 4 (3.6
		AL042355 AW450737	Hs.70202 Hs.128791	WD repeat domain 10 CGI-09 protein	3.1
		AA464976	Hs.62528	ESTs, Moderately similar to A46010 X-lin	3.3
		AI219083	Hs.42532	ESTs, Moderately similar to ALU8_HUMAN A	3.2
30		AF265555		baculoviral IAP repeat-containing 6	3.6
		AW962196		LBP protein 32	4.1
	116470	AI272141	Hs.83484	SRY (sex determining region Y)-box 4	4.1
	116726	AK001114	Hs.53913	hypothetical protein FLJ10252	8.6
		AA649530		gb:ns44f05.s1 NCI_CGAP_Alv1 Homo sapiens	3.2
35		H88256	Hs.50456	ESTs, Moderately similar to ZN75_HUMAN Z	3.5
		AI569804	Hs.42792	ESTs, Weakly similar to 178885 serine/th	3.1
		AL133427	Hs.42506	Homo sapiens mRNA full length insert cDN	3.2 4.7
		H84455	Hs.40639 Hs.93836	ESTs DKFZP434N014 protein	3
40		AB040959 AW968941		hypothetical protein DKFZp566i133	3.3
70		AI183838	Hs.48938	hypothetical protein FLJ21802	4.3
		N66028	Hs.49105	FKBP-associated protein	3.1
		AW970584	Hs.291033		3.4
		AL157488	Hs.50150	Homo saplens mRNA; cDNA DKFZp564B182 (fr	5.2
45	118695	AK000465	Hs.50081	KIAA1199 protein	3.4
	118925	N92293		ESTs, Moderately similar to ALU8_HUMAN A	3.3
	119025		Hs.55209	Homo sapiens mRNA; cDNA DKFZp434K0514 (f	19.
		R95872		chemokine binding protein 2	3.7
50		R16833	Hs.53106	ESTs, Moderately similar to ALU1_HUMAN A	4.1 3.2
50	119075			fibronectin 1	3.2
	119620		Hs.56009 Hs.43670	2'-5'-oligoadenylate synthetase 3 (100 k klnesin family member 3A	3.1
	119741	AF041853 AI970797	Hs.64859	ESTs	5
		AL037824		ras homolog gene family, member I	3.8
55	119905		He 119571	collagen, type III, alpha 1 (Ehlers-Dani	3.1
33	120084		Hs.59529	ESTs, Moderately similar to ALU1_HUMAN A	8.4
	120241			ESTs, Weakly similar to S65824 reverse t	3.6
		AA196300	Hs.21145	hypothetical protein RG083M05.2	3.2
		AA225084		gb:nc21d06.r1 NCI_CGAP_Pr1 Homo saplens	3.6
60	120870	AA357172		ESTs, Moderately similar to ALU1_HUMAN A	5.8
	120885			hypothetical protein MGC4840	3
	120970		Hs.97579	ESTs, Weakly similar to A46010 X-linked	3.7
	121054		Hs.97387	ESTS	5.3 4
65		AA320134		Homo sapiens mRNA for KIAA1657 protein, EST	3.5
65		AA398936 AA399371	Hs.97697	is similar to SALL1 (sal (Drosophila)-like	6.3
	121121	AA399371 AW885727	Hs.301570		4.7
	121337	MA10021.51	110.001010	. 2013	4.1

		AW206227		hypothetical protein FLJ23132	5
		M31669	Hs.1735	inhibin, beta B (activin AB beta polypep	3.6
	121643	AA640987	Hs.193767	ESTs	5.6
	121770	NM_015902	Hs.278428	progestin induced protein	3.4
5	122125	AK000492	Hs.98806	hypothetical protein	4.1
		AA443311	Hs.98998	ESTs	3
		AA446965	Hs.112092		4.7
		AI767879	Hs.99214	ESTs	3.8
		AW973253	Hs.292689		3
10		AA323296	Hs.97837	Homo sapiens mRNA; cDNA DKFZp547J047 (fr	5.6
10		AA526911	Hs.82772		3.2
				collagen, type XI, alpha 1	
		AW205931	Hs.99598	hypothetical protein MGC5338	8.6
		AA487809		catenin (cadherin-associated protein), d	3
• •		AA228776	Hs.191721		6.9
15		AA371307	Hs.125056		3.6
	123273	AA491253	Hs.173611	Empirically selected from AFFX single pr	7
	123385	BE149685	Hs.17767	KIAA1554 protein	3.1
	123419	T66087	Hs.112482	Homo sapiens unknown mRNA sequence	3.4
	123485	Al308876	Hs.103849	hypothetical protein DKFZp761D112	3.1
20	123645	A1675944		Homo sapiens cDNA FLJ12033 fis, clone HE	3.8
	123819		Hs.112264		4.7
	124012	AA352723	Hs.241471		3.8
		H69125	Hs.133525		4.1
		N22401	113.130323	gb:yw37g07.s1 Morton Felai Cochlea Homo	4.1
25		N22508	He 130315	Homo sapiens cDNA: FLJ21479 fis, clone C	3.6
23	124567			Homo sapiens cDNA FLJ11973 fis, clone HE	3.1
		N34151		interferon induced transmembrane protein	3.5
		R41396		hypothetical protein FLJ23045	4.3
		BE065136		splicing factor (CC1.3)	6
30		T78906		ESTs, Moderately similar to ALU1_HUMAN A	8.1
	125184			Homo sapiens cDNA FLJ11750 fis, clone HE	4.7
	125243	AW970536	Hs.105413	ESTs	3.1
	125286	AF086534	Hs.187561	ESTs, Moderately similar to ALU1_HUMAN A	3.3
	125304	AL359573	Hs.124940	GTP-blnding protein	3
35	125330	AW880562	Hs.114574	ESTs	3
		Al422996	Hs.161378		3.2
	125685		Hs.4943	hepatocellular carcinoma associated prot	3.2
		N99638		gb:za39g11.r1 Soares fetal liver spleen	4
		AW975814	Hs 326714	Homo saplens clone IMAGE:713177, mRNA se	4
40		AA648886	Hs.151999		3.8
70		AW450979	113.13.1333	gb:UI-H-Bi3-ala-a-12-0-UI.s1 NCI_CGAP_Su	3
		AW771958	He 175/27	ESTs, Moderately similar to PC4259 fem	3.6
			Hs.125644		
		AA961459			4.1
45		AW068311		Homo saplens mRNA full length Insert cDN	3.3
43		AA650274	Hs.41296	fibronectin leucine rich transmembrane p	4.6
		NM_003616		survival of motor neuron protein interac	3.9
	128946			kynurenine 3-monooxygenase (kynurenine 3	3.1
	128955			Homo sapiens, Similar to PRO0478 protein	3.9
	129092	D56365	Hs.63525	poly(rC)-binding protein 2	3.3
50	129270	AA357185	Hs.109918	ras homolog gene family, member H	3.1
	129301	AF182277	Hs.330780	cytochrome P450, subfamily IIB (phenobar	3.9
	129385	AA172106		Rag C protein	6.2
		AA209534		tetraspan NET-6 protein	3.4
	129629		Hs.11747	hypothetical protein FLJ20391	3
55		X56411	Hs.1219	alcohoi dehydrogenase 4 (class ii), pi p	3.2
		Al754813		collagen, type V, alpha 1	5.4
		X03363	He 222010	v-erb-b2 avian erythroblastic leukemia v	4.4
		Al347487	H- 420704	v-ero-bz avian erymobiasic reukenna v	
			HS. 132781	class I cytokine receptor	4.6
60		NM_003450		zinc finger protein 174	5.6
60		Al582291	Hs.16846	ESTs, Weakly similar to O4HUD1 debrisoqu	3
		R77776	Hs.18103	ESTs .	3.8
		AA809875	Hs.25933	ESTs .	4.2
		AB014544	Hs.21572	KIAA0644 gene product	4.7
		Al399653	Hs.22917	ESTs	4.3
65		H09048	Hs.23606	ESTs .	3.8
	131253		Hs.24853	ESTs	3.5
	131372	AW293399	Hs.144904	nuclear receptor co-repressor 1	3.6

		A1695549	Un 102000	glucuronidase, beta	3.1
		AF017986	Hs.31386	secreted frizzled-related protein 2	3.2
			HS.3 1300		3.2
5		BE501849	Hs.32317	high-mobility group 20B	3.6
2		D86960	Hs.3610	KIAA0205 gene product LIM domain kinase 1	3.2
		NM_002314	Hs.36566		3.2
		AA400091	Hs.39421	ESTs	3.2
		AA426202	Hs.40403	Cbp/p300-interacting transactivator, wit	3.2
10		D76435	Hs.41154	Zic family member 1 (odd-paired Drosophi	3.5
10		AA192669	Hs.45032	ESTs	
		AL133731	Hs.4774	Homo sapiens mRNA; cDNA DKFZp761C1712 (f	9.2
		AV660345		CGI-49 protein	8.2
		BE568452	Hs.5101	protein regulator of cytokinesis 1	3.4
		AA326108	Hs.33829	bHLH protein DEC2	3.2
15		AA319233 •		ESTs	4.8
		NM_006276		splicing factor, arginine/serine-rich 7	3.6
		W73311		SAC2 (suppressor of actin mutations 2, y	3.2
	132847		Hs.58189	eukaryotic translation initiation factor	3.5
		Y00272		cell division cycle 2, G1 to S and G2 to	4.4
20		AL120659	Hs.6111	aryl-hydrocarbon receptor nuclear transl	4.8
		Al128606	Hs.6557	zinc finger protein 161	3.3
		AW952412	Hs.65874	ESTs, Weakly similar to A40348 Elay/Sex-	3.5
	133167	AW162840	Hs.6641	kinesin family member 5C	4.5
	133225	AW600291	Hs.6823	hypothetical protein FLJ10430	3.3
25	133274	AA085191	Hs.6949	hypothetical protein MGC11275	3
	133275	Z93241	Hs.239934	CGI-96 protein	4.5
	133287	AW797437	Hs.69771	B-factor, properdin	4.1
		BE618768	Hs.7232	acetyl-Coenzyme A carboxylase alpha	5.1
		AW675064	Hs.73875	furnarylacetoacetate hydrolase (furnarylac	3
30		AW162919		RAB2, member RAS oncogene family-like	3.4
-		BE274552	Hs.76578	protein Inhibitor of activated STAT3	3.9
		Al908165	Hs.169946		6.2
		BE391929	Hs.8752	transmembrane protein 4	3.1
		A1433797	Hs.8889	serine hydroxymethyltransferase 1 (solub	3
35		D89377	Hs.89404	msh (Drosophila) homeo box homolog 2	5.8
55		J05582	Hs.89603	mucin 1, transmembrane	4
		AF064804	Hs.96757	suppressor of Ty (S.cerevisiae) 3 homolo	3.2
		R61253	Hs.98265	KIAA1877 protein	3.3
		X78592	Hs.99915	androgen receptor (dihydrotestosterone r	4.8
40		L10333	Hs.99947	reticulon 1	3.8
40		Al199738		ESTs, Weakly similar to ALUA_HUMAN IIII	3.8
		AW614220	Hs.189402		4.2
			Hs.55610	solute carrier family 30 (zinc transport	9.9
		AW183618			4.9
45		AW591433		Transmembrane protease, serine 3	3.4
43		Z45270		hypothetical protein FLJ22672	3.5
		AA572949	Hs.207566		3.8
		R10799	Hs.191990		
		AA887801		G protein-coupled receptor	13.9 4.4
		AI091631		two pore potassium channel KT3.3	5.7
50		AA312082		GDNF family receptor alpha 1	8.6
		U79745	HS.114924	solute carrier family 16 (monocarboxylic	
		T97905		gb:ye54c10.r1 Soares fetal liver spleen	3.9
		AB020711		KIAA0904 protein	7.7
		BE542706		CEGP1 protein	7.3
55		AW749321	Hs.6786	ESTs	3.3
		AL049670		ribosomal protein L34 pseudogene 1	4.2
	302145	NM_003613		cartilage intermediate tayer protein, nu	7.9
		AL049987		Homo sapiens mRNA; cDNA DKFZp564F112 (fr	5.6
	302276	AW057736	Hs.323910	HER2 receptor tyrosine kinase (c-erb-b2,	5.4
60		AA179949	Hs.175563	Homo saplens mRNA; cDNA DKFZp564N0763 (f	34.1
	302372	AL117406	Hs.200102	ATP-binding cassette transporter MRP8	6.7
		AL109712	Hs.296506	Homo saplens mRNA full length insert cON	4
	302384	AI678059	Hs.202676	synaptonemal complex protein 2	4.3
		AJ224172	Hs.204096	lipophilin B (uteroglobin family member)	13.8
65		AW192334	Hs.38218	ESTs	9.6
05		AI038997	Hs.132921		5
		AF282265		inner centromere protein antigens (135kD	3.4
	302301			p y 1	

131507 AI826268 Hs.27769 ESTs, Weakly similar to MCAT_HUMAN MITOC 3.2

TTTTCAAGAA CTAACACAGT TATTCCTATA CTGGATTTTA GGTCTCTGAA GAACTGCTGG 2760 TGTTTAGGAA TAAGAATGTG CATGAAGCCT AAAATACCAA GAAAGCTTAT ACTGAATTTA 2820 AGCAAAGAAA TAAAGGAGAA AAGAGAAGAA TCTGAGAATT GGGGAGGCAT AGATTCTTAT 2880 AGAAANTAGA AAATTIGTIG TAAATTAGAG GGGGGAAATT TAGAATTATTIC CCGTAAAAAC 3000
CAGAATTAGT ATAGAGTACA TICATTAAAC ATTITTIGTCA GGATTATITTIC CCGTAAAAAC 3000
GTAGTGAGCA CTCTCATATA CTAATTAGT TACATTATAC TTGTTATAAT ACAGAAATT 3060 5 AAATATATTT AATGAATTCA AGCAATATAC ACTTGACCAA GAAATTGGAA TTTCAAAATG 3120 TTCGTGCGGG TTATATACCA GATGAGTACA GTGAGTAGTT TATGTATCAC CAGACTGGGT 3180 TATTGCCAAG TTATATATCA CCAAAAGCTG TATGACTGGA TGTTCTGGTT ACCTGGTTTA 3240 10 CAAAATTATC AGAGTAGTAA AACTTTGATA TATATGAGGA TATTAAAACT ACACTAAGTA 3300 TCATTTGATT CGATTCAGAA AGTACTTTGA TATCTCTCAG TGCTTCAGTG CTATCATTGT 3360 GAGCAATTGT CITTATATAC GGTACTGTAG CCATACTAGG CCTGTCTGTG GCATTCTCTA 3420 GATGTTTCTT TTTTACACAA TAAATTCCTT ATATCAGCTT G Seq ID NO: 30 Protein sequence: NP_036451.2 15 21 31 41 20 EHHSDHDHHS HHNHAASGKN KRKALCPDHD SDSSGKDPRN SQGKGAHRPE HASGRRNVKD 180 SVSASEVTST VYNTVSEGTH FLETIETPRP GKLFPKDVSS STPPSVTSKS RVSRLAGRKT 240 NESYSEPRKG FMYSRNTNEN PQECFNASKL LTSHGMGIQV PLNATEFNYL CPAIINQIDA 300 RSCLIHTSEK KAEIPPKTYS LQIAWVGGFI AISIISFLSL LGVILVPLMN RVFFKFLLSF 360 25 30 NALSAMLAYL GMATGIFIGH YAENVSMWIF ALTAGLFMYV ALVDMVPEML HNDASDHGCS 720 RWGYFFLONA GMLLGFGIML LISIFEHKIV FRINE Seq ID NO: 31 DNA sequence 35 NM_002184.1 Nucleic Acid Accession #: Coding sequence: 256-3012(underlined sequences correspond to start and stop codons) 40 GAGCAGCCAA AAGGCCCGCG GAGTCGCGCT GGGCCGCCCC GGCGCAGCTG AACCGGGGGC 60 UNBOARCHA ANGOCCICLOS O VAN INDUSTRI ORGENICACE ORGENICACI DI ANCADONOL. 00 COCCCCCTOCO 20 COCCCCTOTO 20 ANGADOCO COCCCOTTO ANGADOCO COCCOTTO ANGADOCO COCCCOTTO ANGADOCO COCCOTTO ANGADOCO COCCCOTTO ANGADOCOCCOTTO ANGA 45 CCAGTTGTAC AACTTCATTC TAATTTCACT GCAGTTTGTG TGCTAAAGGA AAAATGTATG 420 GATTATTTTC ATGTAAATGC TAATTACATT GTCTGGAAAA CAAACCATTT TACTATTCCT 480 AAGGAGCAAT ATACTATCAT AAACAGAACA GCATCCATTG TCACCTTTAC AGATATAGCT 540 TCATTAAATA TTCAGCTCAC TTGCAACATT CTTACTATTG GACAGCTTGA ACAGAATGTT CA 50 TATGGAATCA CAATAATTTC AGGCTTGCCT CCAGAAAAAC CTAAAAATTT GAGTTGCATT 660 GTGAACGAGG GGAAGAAAAT GAGGTGTGAG TGGGATGGTG GAAGGGAAAC ACACTTGGAG 720 ACAAACTTCA CTTTAAAATC TGAATGGGCA ACACACAAGT TTGCTGATTG CAAAGCAAAA 780 CGTGACACCC CCACCTCATG CACTGTTGAT TATTCTACTG TGTATTTTGT CAACATTGAA 840 GTCTGGGTAG AAGCAGAGAA TGCCCTTGGG AAGGTTACAT CAGATCATAT CAATTTTGAT 900 OTCIGOUTION ANGENORANDAN ISCUCTIONS AND TIMEAT CANALIZATIA CANTITUDIO TO CCTOTATATA AAGTGAAGCA (CANTOCGCC ACTATATITAT CAGTGATCACCAGAGGAA 90 CTGTCTAGTAT ATCTAAAAATT GACATGGAGC AACCCAAGTA TTAAGAGTGT TATAATACTA 1020 AAATATACACA TTCAATATAG GACCAAGAGT GCCTCAACTT GGACCAGGAT TCCTCCTGAA 1080 GACCAGGAT CCACCCGTAT TTCATCTTCACT GTCCAAGACC TTAAACCTTT TACAGAATAT I ILO 55 GTGTTTAGGA TTCGCTGTAT GAAGGAAGAT GGTAAGGGAT ACTGGAGTGAA 1200
GAAGCAAGTG GGATCACCTA TGAAGATAGA CCATCTAAAG CACCAAGTTT CTGGTATAAA 1260 60 ATAGATCCAT CCCATACTCA AGGCTACAGA ACTGTACAAC TCGTGTGGAA GACATTGCCT 1320 CCTTITIGANG CCAATIGGAAA AATCTTIGGAT TATGAAGTGA CTCTCACAAG ATGGAAATCA 1380 CATTTACAAA ATTACACAGT TAATGCCCACA AAACTGACAG TAAATCTCAC AAATGATCAG 1440 TATCTAGCAA CCCTAACAGT AAGAAATCTT GTTGGCAAAT CAGATGCAGC TGTTTTTACT 1500 65 ATCCCTGCCT GTGACTTTCA AGCTACTCAC CCTGTAATGG ATCTTAAAGC ATTCCCCAAA 1560 GATAACATGC TTTGGGTGGA ATGGACTACT CCAAGGGAAT CTGTAAAGAA ATATATACTT 1620
GAGTGGTGTG TGTTATCAGA TAAAGCACCC TGTATCACAG ACTGGCAACA AGAAGATGGT 1680 ACCGTGCATC GCACCTATTT AAGAGGGAAC TTAGCAGAGA GCAAATGCTA TTTGATAACA 1740 GTTACTCCAG TATATGCTG A TGGACCAGGA AGCCCTGAAT CCATAAAGGC ATACCTTAAA 1800 70 CAAGCTCCAC CTTCCAAAGG ACCTACTGTTCGGACAAAAA AAGTAGGGAA AAACGAAGCT 1860 GTCTTAGAGT GGGACCAACT CTCGTTGTAT GTCAGAATG GATTTATCAG AAATTATACT 192 TATTTTTATA GAACCAACT AT TGGAAATGAA ACTGCTGTGA ATGTGGATCT TTCCCACACA 1980 GAATATACAT TGTCCTCTTT GACTAGTGAC ACATTGTACA TGGTACGAAT GGCAGCATAC 2040 ACAGATGAAG GTGGGAAGGA TGGTCCAGAA TTCACTTTTA CTACCCCAAA GTTTGCTCAA 2100 75 GGAGAAATTG AAGCCATAGT CGTGCCTGTT TGCTTAGCAT TCCTATTGAC AACTCTTCTG 2160 GGAGTGCTGT TCTGCTTTAA TAAGCGAGAC CTAATTAAAA AACACATCTG GCCTAATGTT 2220 CCAGATCCTT CAAAGAGTCA TATTGCCCAG TGGTCACCTC ACACTCCTCC AAGGCACAAT 2280

PCT/US02/02242 WO 02/059377

TTTAATTCAA AAGATCAAAT GTATTCAGAT GGCAATTTCA CTGATGTAAG TGTTGTGGAA 2340 ATAGAAGCAA ATOACAAAAA GCCTTTTCCA GAAGATCTGA AATCATTGGA CCTGTTCAAA 2400 AAGGAAAAAA TTAATACTGA AGGACACAGC AGTGGTTATTG GGGGGTCTTC ATTGCATGTCA 2460 ANOGANAAA I IAA IACIGA AGGACKAGC AGIGGIAI II GUGGGICII CAIGCAIGICA 240 TCTTCTAGGC CAAGCATTIC TAGCAGTGAT GAAAATGAAT CTTCACAAAA CACTTCGAGC 2520 ACTGTCCAGT ATTCTACCGT GGTACACAGT GGCTACAGAC ACCAAGTTCC GTCAGTCCAA 2580 5 GTCTTCTCAA GATCCGAGTC TACCCAGCCC TTGTTAGATT CAGAGGAGCG GCCAGAAGAT 2640 CTACAATTAG TAGATCATGT AGATGGCGGT GATGGTATTT TGCCCAGGCA ACAGTACTTC 2700 AAACAGAACT GCAGTCAGCA TGAATCCAGT CCAGATATTT CACATTTTGA AAGGTCAAAG 2760 AMACAGACT GCAGICAGCA TGAATCCAGT CCAGATATTT CACCATTTIBA AAGGTCAAAG 2760
CAAGTTCAT CAGTCAATCA GAAGAGTTT GTTTGTAGACTTA AACACACGAGT TTCAGACTACT
ATTCACAAT CCTGTGGGTC TGGGCAAATG AAAAATGTTTC AGGAAGTTTT CTGCAGCAGAT 2880
GCTTTTGGTC CAGGTACTGA GGGCAAATG AAAAGATTTG AAACAGTTGG CATGGAGGCT 2960
GCGACTGATGA AAGGCATGC TAAAAGTTAC TTACCACAGGA CTGTACCGGCA AGGGGGGTAC 3000
ATGCCTCAGTG AAGAGGATGA TGATGTCCTGC TACACGTCA GCGATGCCTTAAAAGTAAG 3400
ATGCCTCAGTG AAGAGGATGA TGATGTCCTGC TACACACTTCA GCGATGCCTTAAAAGTAAA 3400 10 CTAAAATGAT TITATCTGTG AATTC 15

Seq ID NO: 32 Protein sequence:
NP_002175.1

41 20

NANYIVWKTN HFTIPKEOYT IINRTASSVT FTDIASLNIO LTCNILTFGO LEONVYGITI 120 ISGLPPEKPK NI.SCIVNEGK KMRCEWDGGR ETHLETNFTL KSEWATHKFA DCKAKRDIPT 180 SCTVDYSTVY FVNIEVWVEA ENALGKVTSD HINFDPVYKV KPNPPHNLSV INSEELSSIL 240 SCHUNSTIVY EVNIEWWEA BRAUGKUTSD HINFOPPUKK VERPERINSS INSBELSSII. 280
KLITHTHESIS SUULKING VERKLASTEVS GEPERINST ISSETVOOL FETEVYERE 300
GRUDVENT, TRWKSSILDIN TUVALTIKLIVA ILTIORIVALTIL TURILVOKSSI AAVLTIPACID
GRUDVENT, TRWKSSILDIN TUVALTIKLIVA ILTIORIVALTI, TURILVOKSSI AAVLTIPACID
GRUDVENT, TRWKSSILDIN TUVALTIKLIVA ILTIORIVALTI, TURILVOKSSI AAVLTIPACID
420
FACHTEPHOL KAPPKONBLIW
VERTHESIS VEKTILBEVU, TSOKAPCTIDIV OGODOTVERT
430
VERGHALBESK CYLITYTPYY ADGRGSPSSI KAYILKOAPPS KGPTVATKKV GKNEAVLEWD
540
CLYPUDVONGR TERMYTTEYKT ILDIKTAVIN DISSITTYTIS SLITSDITLYM PKIAAVTÜTBGG 600 25

30 KDGPEFTFTT PKFAOGEIEA IVVPVCLAFL LTTLLGVLFC FNKRDLIKKH IWPNVPDPSK 660 SHIAQWSPHT PPRHNFNSKD QMYSDGNFTD VSVVEIEAND KKPFPEDLKS LDLFKKEKIN 720

TEGHISSOIGG SSCHISSER'S ISSEDENISS ONTSTYUYS TYVHISTYRHQ YPEYQYFSEL. 780 ESTOPLLDSE ERPEDLQU'N HYDOGODULP RQQYKRQNCS QHESSPIBIH PERSKQVSSY. 940 NEEDPYKLKQ QISDHISQSC GSQMKMFQE VSAADAFGPG TEGQVERFET VGMEAATDEG 900 MFKSYLPQTY RQGGYMFQ. 35

Seq ID NO: 33 DNA sequence

Nucleic Acid Accession #: NM_018255.1 40 Coding sequence:

11-2491 (underlined sequences correspond to start and stop codons)

31 41 51

AGTTGGCGAC ATGGTGGCAC CCGTGCTGGA GACTTCTCAC GTGTTTTGCT GCCCAAACCG 60 45 GGTGCGGGGA GTCCTGAACT GGAGCTCTGG GCCCAGAGGA CTTCTGGCCT TTGGCACGTC 120 50

ATTAGCATGT GGCAATGATG ATTGCAGAAT TCACATATTT GCTCAACAAA ATGATCAGTT 600 A TORAN A THE SECRET OF A TORANGA A TORANGA A THE SECRET OF A TORANGA A THAT I SECRET OF A TORANGA A THAT I SECRET OF A TORANGA A THAT I SECRET OF A TORANGA A THAT I SECRET OF A TORANGA A THAT I SECRET OF A TORANGA A 55

60 TCTCTGGGCT CCAGATGAAG AGTCAGGAGT TTGGCTAGAA CAGGTTCGAG TAGGTGAAGT 1020 AGGTGGGAAT ACTITGGGAT TITATGATTG CCAGTTCAAT GAAGATGGCT CCATGATCAT 1080

65

70 75

CTGGTCATTG TGGAAAAAGC AGGATACAAT CTCACCTGAG TTCGAGCCAG TTTTTAGTCT 1980 TTTTGCCTTC ACCAACAAAA TTACTTCTGT GCACAGTAGA ATTATTTGGT CTTGTGATTG 2040

PCT/US02/02242

GAGTCCTGAC AGCAAGTATT TCTTCACTGG GAGTCGAGAC AAAAAGGTGG TTGTCTGGGG 2100 TGAGTGCGAC TCCACTGATG ACTGTATTGA GCACAACATT GGCCCCTGCT CCTCAGTCCT 2160 GGACGTGGGT GGGGCTGTGA CAGCTGTCAG CGTCTGCCCA GTGCTCCACC CTTCTCAACG 2220 ATACGTGGTT GCAGTAGGAT TGGAGTGTGG AAAGATTTGC TTATATACCT GGAAAAAGAC 2280 TGATCAAGTT CCAGAAATAA ATGACTGGAC CCACTGTGTA GAAACAAGTC AAAGCCAAAG 2340 TCATACACTG GCTATCAGAA AATTATGCTG GAAGAATTGC AGTGGAAAAA CTGAACAGAA 2400 GGAAGCAGAA GGTGCTGAGT GGTTACACTT TGCAAGCTGT GGTGAAGATC ACACTGTGAA 2460 GATACACAGA GTCAATAAAT GTGCACTGTA ATGG

Seq ID NO: 34 Protein sequence:
Protein Accession #: NP_060725.1

10

15 MVAPVLETSH VFCCPNRVRG VLNWSSGPRG LLAFGTSCSV VLYDPLKRVV VTNLNGHTAR VNCIQWICKQ DGSPSTELVS GGSDNQVIHW EIEDNQLLKA VHLQGHEGPV YAVHAVYQRR 120 TSDPALCTLI VSAAADSAVR LWSKKGPEVM CLQTLNFGNG FALALCLSF, PNTDVPILAC 180 GNDDCRIHF AQONDPOKU LSLCGHEDWI RGVEWAAFGR DLFLASCSDO CLRIFWKLYI 240 KSTSLETODD DNIRLKENTF TIENESVKIA FAVTLETVLA GHENWVNAVH WOPVFYKDGV 300 20

25 GAVTAVSVCP VLHPSORYVV AVGLECGKIC LYTWKKTDQV PEINDWTHCV ETSOSOSHTL 780

AIRKLOWKNO SOKTEOKEAE GAEWLHFASO GEDHTVKIHR VNKCAL

30 Seq ID NO: 35 DNA sequence

Nucleic Acid Accession #: NM 022131

Coding sequence: 11-2878 (underlined sequences correspond to start and stop codons)

31 35

TGCTGCGAGG ATGCTGCCTG GGCGGCTGTG CTGGGTGCCG CTCCTGCTGG CGCTGGGCGT GGGGAGCGGC AGCGGCGGTG GCGGGGACAG CCGGCAGCGC CGCCTCCTCG CGGCTAAAGT 120 CAATAAGCAC AAGCCATGGA TCGAGACTTC ATATCATGGA GTCATAACTG AGAACAATGA CACAGTCATT TTGGACCCAC CACTGGTAGC CCTGGATAAA GATGCACCGG TTCCTTTTGC 240 AGGGGAAATC TGTGCGTTCA AGATCCATGG CCAGGAGCTG CCCTTTGAGG CTGTGGTGCT 300 40 CAACAAGACA TCAGGAGAGG GCCGGCTCCG TGCCAAGAGC CCCATTGACT GTGAGTTGCA 360 GAAGGAGTAC ACATTCATCA TCCAGGCCTA TGACTGTGGT GCTGGGCCCC ACGAGACAGC 420 CTGGAAAAAG TCACACAAGG CCGTGGTCCA TATACAGGTG AAGGATGTCA ACGAGTTTGC 480 CTGGAAAAAG TCACACAAGG CCGTUGTICLA IATACAUGTB AAUGAITICA ACUAGITTUS 100
TCCCACCTTC AAAGGACCAG CCTACAAGGC TGTTGTGACG GAGGGAAGA TCATGACAG 360
CATTCTGCAG GTGGAGGCCA TTGACGAGGA CTGCTCCCCA CAGTACAGCC AGATCTGCAA 600
CATTCTGCAG GTGGAGGCCAT GTGACGAGGA CTGCTCCCACAATCGCACA ACATCAGGAA 660
CACTGAGAAATC GTCACCACAG ATGTGCCTTT TGCCATCGAC AGAATGGCA ACATCAGGAA 660
CACTGAGAAAG CTGAGGTATG ACAAACAACA CCAGTATGAG ATCCTGGTGA CCGCCTACGA 73 45 CTGTGGACAG AAGCCCGCTG CTCAGGACAC CCTGGTGCAG GTGGATGTGA AGCCAGTTTG 780 CAAGCCTGGC TGGCAAGACT GGACCAAGAG GATTGAGTAC CAGCCTGGCT CCGGGAGCAT 840 50 GCCCCTGTTC CCCAGCATCC ACCTGGAGAC GTGCGATGGA GCCGTGTCTT CCCTCCAGAT 900 CGTCACAGAG CTGCAGACTA ATTACATTGG GAAGGGTTGT GACCGGGAGA CCTACTCTGA 960

GAAATCCCTT CAGAAGTTAT GTGGAGCCTC CTCTGGCATC ATTGACCTCT TGCCATCCCC 1020 TAGOGETGO: ACCAACTIGA CTIGCAGGACT GETGOTIGGAC ACCAGTOAGA TO ATTECA 1089
GITTIANGGIG AGGCAGGGTG CCAAAATOCC COATIGGACT TIGGCCCAGA ACCTIACCAG 1140
TEAGITICACC ATCACCATGT GGATGAAACA CGGCCCCAGC CCTIGGTGTA GAGCCAGAGA 1240
GGAAACCATC CCTGTGCAACT CAGACAAACA CGGACCCAGC CGGCATCACT ATGCCCTGTA 1260 55

TGTGCACAAC TGCCGCCTCG TCTTTCTCTT GCGGAAGGAC TTCGACCAGG CTGACACCTT 1320 TCGCCCCGCG GAGTTCCACT GGAAGCTGGA TCAGATTTGT GACAAAGAGT GGCACTACTA 1380 TGTCATCAAT GTGGAGTTTC CTGTGGTAAC CTTATACATG GATGGAGCAA CATATGAACC 1440 60 ATACCTGGTG ACCAACGACT GGCCCATTCA TCCATCTCAC ATAGCCATGC AACTCACAGT 1500
CGGCGCTTGT TGGCAAGGAG GAGAAGTCAC CAAACCACAG TTTGCTCAGT TCTTTCATGG 1560 AAGCCTGGCC AGTCTCACCA TCCGCCCTGG CAAAATGGAA AGCCAGAAGG TGATCTCCTG 1620
CCTGCAGGCC TGCAAGGAAG GGCTGGACAT TAATTCCTTG GAAAGCCTTG GCCAAGGAAT 1680

AAAGTATCAC TTCAACCCCT CGCAGTCCAT CCTGGTGATG GAAGGTGACG ACATTGGGAA 1740 65 CATTAACCGT GCTCTCCAGA AAGTCTCCTA CATCAACTCC AGGCAGTTCC CAACGGCGGG 1800 GAAAACCACA GACCCCAAAT CAGAAGTCTT AGAGGAAATG CTTCATAACT TAGATTTCTG 2100

70 TGACATTTTG GTGATCGGAG GGGACTTGGA CCCAAGGCAG GAGTGCTTGG AGCTCAACCA 2160 CAGTGAGCTC CACCAACGAC ACCTGGATGC CACTAATTCT ACTGCAGGCT ACTCCATCTA 2220
CGGTGTGGGC TCCATGAGCC GCTATGAGCA GGTGCTACAT CACATCCGCT ACCGCAACTG 2280 GGTCCGGCT TCCCTTGAGG CCCGGCGTTT CCGGATTAAG TGCTCAGAAC TCAATGGGGG 2340 CTACACTAGC AATGAGTTCA ACTTGGAGGT CAGCATCCTT CATGAAGACC AAGTCTCAGA 2400 TAAAGGAGCAT GTCAATCATC TGATTGTGCA GCCTCCCTTC CTGAAGACC AAGTCTCAGC 2460 75

TGAGTCCCGG AGTAGCATCC AGCACAGTTC AGTGGTCCCA AGCATTGCCA CAGTGGTCAT 2520

CATCATCTCC GTGTGCATGC TTGTGTTTGT CGTGGCCATG GGTGTGTACC GGGTCCGGAT 2580 CGCCCACCAG CACTICATEC AGGAGACTGA GGCTGCCAAG GAATCTGAGA TGGACTGGGA 2640 CGATTCTGCG CTGACTATCA CAGTCAACCC CATGGAGAAA CATGAAGGAC CAGGGCATGG 2700 GGAAGATGAG ACTGAGGGAG AAGAGGAGGA AGAAGCCGAG GAAGAAATGA GCTCCAGCAG 2760 TGGCTCTGAC GACAGCGAAG AGGAGGAGGA GGAGGAAGGG ATGGGCAGAG GCAGACATGG 2820 GCAGAATGGA GCCAGGCAAG CCCAGCTGGA GTGGGATGAC TCCACCCTCC CCTACTAGTG 2880 CCCAGGGGTC TGCTGCCTGG CCCACATGTC CCTTTTGTAA ACCCTGACCC AGTGTATGCC 2940
CATGTCTATC ATACCTCACC TCTGATGTCT GTGACATGTC TGGGAAGGCC TTCTCCAGCT 3000 TECTOGAGEC CACCETTIAA OCCTIGOGCA CTECCTOTOT TECATECATO OOGAAGTTCC 3000 AAGAAGECCA GEATGGECAT CAGTGAGGAC TICAGGGTAG ACTITOTECT GTAGCCTCCA 3120 CTTCTGECET AAGTTCCCCA GCATCCTGAC TACCTGTCTG CAGAGTTTCC CTTTGTTTTT 3180 10: TCCTGCAGGG AAGAAGGCCC ACCTTTGTGT CACTCACCTC CCCAGGCTCA GAGTCCCCAA 3240 GGCCCTGGGG TTCCAACTCA CTGTGCGTCT CCTCCACACA GACCAGTAGG TTCTCCTATG 3300 CTGACTCCAG GTTGCTTCAT ACAAGGAGGG TGGTTGAACT TCACACACGT AAGGTCTTAG 3360 15 TGCTTAACAG TTTAAAGGAA AGTCCTTGTT GAGGCAGAAC TAAGTTTACA GGGAAAAGGTA 3420
CACACATTCT CTCTCTCTC CTCTCTCTGT CTATCTAGTT CCCCAGCTTG GAGAGCCTTT 3480 CCCCTTGCTT CTTTCTGAGG CCATATAAGC TTATAAGAAA AGTCCCAAAC CAAGAATAGG 3540
TCCTTGGCCA CAAGCAGGGT CTGATCCCCC ATCAGAGCTA TCTGAGCCTG CCTGTCTGGG
ACCATGCTGA ACCATGCAG CTACCTCC CAGGGGCACCTC AGCAAACAA ACCACAGGGC
3600 CCAGGAGGCA TTCCACACAG GCACTGCCCC AGGACAACAC AACAAGGACA GTCACAACAA 3720 20 GGACACAAG GACACACACACACACACACAACAAGACAGTC ACAACAAGCC TAGAGCCAGA 3780 AAGCAGATGG AAATGCTAAT GAGGTCAAAC GTAGGCTTCA TGGTGGGTGG AGTGGGGGTG 3840 GCTGGGCTCC CCCAGGACAG AGGGGACCCT GAGGTTGGCA AGGCTCTCAC CACTCAGCCT 3900 TATGGTCCCT TATCTCCTAT CTTCCCTCTT GAGAAAATAC ACGCTTTCTG CATGTATTAG 3960 TATIGITUCE I TATESTICATE CITICUTE TE GAUAAAATA CAGGITICATE CATUTATTAG 3980
AAGCCACAGA GATCACCAGA AAGATTICAAA TITTAAATTICA AAGAAATTAGAA TAGAATAGA AAGATTAGAA TAGAATAGA GAGAATAGA 1080
AAGCATATTI GCAATCATTA CAGCTTCTTE TITCITCTCC TCATTAAAAGA AGGAACACTT 4880
TAGATAGAGG GCAAATATAT CTGAAAACCT AATTICTTTC TTTTITTTGAT AAGGAAATCT 1410
TITTCCATCTC CATCCTAACA TGCACAACCT GTGAAGAGAA TTGTTTCTAT AGTAACTGGT 4200 25 CTGTGATCTT TTGTGGCCAA GAGAATAGCA GGCAAGAATT AGGGCCTTGA CAGAATTTCC 4260 30 ACGAAGCTCT GAGAACATGT TTGTTTCGAA TGTCTGATTC CTCTTTGTCA TCAATGTGTA 4320 TGCTCTGTCC CCATCCTTCA CTCCTCCTCA AGCTCACACC AATTGGTTTG GCACAGGCAC 4380 AGAGCTGGTC CCTAGTTAAG TGGCATTTAT GTTAAAAAAA AATAGTTCAG AATCTCAGCC 4440 TTTTCTTTGT GTCATCAAAA CAGCTTAAGA AGGGGACTAC TGCCAATGTC CTCTAGTCTG 4500 ACCTCCACCC AGGGAGGACC CATGGCAGGT CTTTTCAACT TTCTGATTCA TGAGAACAAC 4500
CTTGTGAAGC TTTTCCCACC TCCTAAAGTG TTTTTCTGCAT CTGTTCCTTC CTTTGGACCT 4620 35 CACAACAAAT CCTGTGAAGT AACTGAGACA TCTGTTGTTA GATACATTTT TGTGATGAGT 4680 AAACTGAGGC TTCG Seq ID NO: 36 Protein sequence:
NP_071414.1 40 41 MLPGRLCWYP LLLALGYGSG SGGGGDSROR RLLAAKVNKH KPWIETSYHG VITENNDTVI 60 45 LDPPLVALDK DAPVPFAGEI CAFKIHGOEL PFEAVVLNKT SGEGRLRAKS PIDCELQKEY 120 TFIIQAYDCG AGPHETAWKK SHKAVVHIQV KDVNEFAPTF KEPAYKAVVT EGKIYDSILQ 180
VEAIDEDCSP QVSQICNYEI VTTDVPFAID RNGNIRNTEK LSYDKQHQYE ILVTAYDCGQ 240 KPAAQDTLVQ VDVKPVCKPG WQDWTKRIEY QPGSGSMPLF PSIHLETCDG AVSSLQIVTE 300 LQTNYIGKGC DRETYSEKSL QKLCGASSGI DILLPSPSAA TNWTAGLLVD SSEMIFKFDG 360 RQGAKEPDGI VPKNLTDQPT TIMWMKHGPS PGVRAEKETI LCNSDKTEMN RHHYALYVHN 420 50 CRLVFLLRKD FDOADTERPA EFHWKLDOIC DKEWHYYVIN VEFPVVTLYM DGATYEPYLV 480 TNDWPIHPSH IAMOLTYGAC WOGGEVTKPO FAOFFHGSLA SLTIRPGKME SQKVISCLQA 540 CKEGLDINSL ESLOQGIKYH FNPSQSILVM EGDDIGNINR ALQKVSYINS RQFPTAGVRR 600 LKVSSKYQCF GEDVCISIPE VDAYMVLQA IEPRITLRGT DIHPWRPAAQF ESARGVTLPP 660 DIKIVSTFAK TEAPGDVKTT DPKSEVLEEM LENLDPCDIL VIGGDLDPRQ ECLELNHSEL 720 55 DIATATATA I ENGUNTATI DOTSINJENJEN JAHAN HIRYRAWIPA SLEARRIPIK CSELINGRYTS 780
NEFNLEVSIL HEDQVSDKEH INHLVQPFF LQX HEBES AS SLEARRIPIK CSELINGRYTS 780
NEFNLEVSIL HEDQVSDKEH INHLVQPFF LQX HEBES SSJORDSAV STATEVIL HEDQVSDKEH INHLVQPFF LQX HEBES AS STATEVIL HEDQVSDKEH SING FOR STATEVIL VÇIL TEGEFEREAE EEMSSSSGSD DSEEEEEEEG MGRGRHGONG AROAOLEWDD STLPY 60 Seq ID NO: 37 DNA sequence leic Acid Accession #: 143-874 (underlined sequences correspond to start and stop codons) Coding sequence: 65 11 21 31 41 GGGAGGGAGA GAGGCGCGCG GGTGAAAGGC GCATTGATGC AGCCTGCGGC GGCCTCGGAG 60 VAUAUMON O REACHER OF METALET DE L'ACTION 70 CATTCCGGGT ACACCTGGGA TCCCAGGTCG GGATGGATTC AAAGGAGAAA AGGGGGAATG 420 TCTGAGGGAA AGCTTTGAGG AGTCCTGGAC ACCCAACTAC AAGCAGTGTT CATGGAGTTC 480
ATTGAATTAT GGCATAGATC TTGGGAAAAT TGCGGAGTGT ACATTTACAA AGATGCGTTC 540 75 AAATAGTGCT CTAAGAGTTT TGTTCAGTGG CTCACTTCGG CTAAAATGCA GAAATGCATG 600

CTGTCAGCGT TGGTATTTCA CATTCAATGG AGCTGAATGT TCAGGACCTC TTCCCATTGA 660

AGCTATAATT TATTTGGACC AAGGAAGCCC TGAAATGAAT TCAACAATTA ATATTCATCG 720 5 TITAAATCTA GCATTATICA TITIGCTICA ATCAAAAGTG GTITCAATAT TITITITAGT 1080 TGGTTAGAAT ACTITCTICA TAGTCACATT CTCTCAACCT ATAATTTGGA ATATTGTTGT 1140 GGTCTTTTGT TTTTTCTCTT AGTATAGCAT TTTTAAAAAA ATATAAAAGC TACCAATCTT 1200 10 TGTACAATTT GTAAATGTTA AGAATTTTTT TTATATCTGT TAAATAAAAA TTATTTCCAA 1260 CAACCTTAAA AAAAAAAAAA AAAA

Seq ID NO: 38 Protein sequence:

15 51

MRPOGPAASP ORLRGLILLL LLOLPAPSSA SEIPKGKOKA OLROREVVDL YNGMCLOGPA 60

GVPGRDGSPG ANGIPGTPGI PGRDGFKGEK GECLRESFEE SWTPNYKQCS WSSLNYGIDL 120 GKIAECTFTK MRSNSALRVL FSGSLRLKCR NACCORWYFT FNGAECSGPL PIEAIIYLDQ 180 GSPEMNSTIN IHRTSSVEGL CEGIGAGLVD VAIWVGTCSD YPKGDASTGW NSVSRIJIEE 240

Seg ID NO: 39 DNA sequence 25

20

Nucleic Acid Accession #: NM 000949

Coding sequence: 285-2153(underlined sequences correspond to start and stop codons)

21 31 41 51

30 CTCCCTCTTT CTGGATTTTA CCGACCGTTC GCGAAACAGC TTTCCACACA ATGGAGCTTC 120 ATGTCCTCGT GCAGGAAGTA CTCATCGACT GATGTGGCAG ACTTTGCTCC CTGACAAAAC 180 TAAAGAACTC TCCTATTCAT GGAGGCGAAC ACTGAGGATG CTTTCCACAT GAACCCTGAA 240 35

GRIGAMENTET GATACATTRE CRIGEAGGAAG AGAAGGCAGE CAMCATGAAG GAAAATGRIG 300 CANTEIGGAAC GOTHTICAGT GIGGTACHTI THETCHACAGC GTGCTICTIG TAATGGACGAT 300 TACCICCTIGG AAAACCTGAG ATCHTAAAT GTGGTTCTCC CAATAAGGAA ACATICACCT 420 GCTGGTGGAG GCCTGGGACA GATGGAGGAC TICCTACCAA TATATCACTG ACTTIACCAC 450 GGGAAGGAGA GACACTCATG CATGAATOTC CAGACTACAT AACCGGTGGC CCCAACTCCT 540
GCCACTTTGG CAAGCAGTAC ACCTCCATGT GGAGGACATA CATCATGATG GTCAATGCCA 600 40

GCACATI IGO ANGLASI IA. ACCICTATO I GANGALAIA A ICATIANI DI CAMIGLE 800
CTAACCAGA TEGGAGCAGT TECTEGGAT GACTTATOT GGACTGACTTACTAGTC 600
ACCCAGAGACC TCCTTTIGGAG CTGGCTTGTG AAGTAAAACA GCCAGAGAGA AGAAAACCCT 720
ACCTOTIGGAT TAAATGGTC CACCCTACCC TGATTGACTT AAAACTGGTT GGTTCACGC 780
TCCTGTATGA AATTCGATTA AAACCCGAGA AAGCAGCTGA GTGGGAGATC CATTTTGCTG 340
GGCAGCAAAA CAGGTTTAAG ATTCTCAGCC TACATCAGG ACGAAATAC CTTGTCCAGG 780 45 TTCGCTGCAA ACCAGACCAT GGATACTGGA GTGCATGGAG TCCAGCGACC TTCATTCAGA 960 TACCTAGTGA CITCACCATG AATGATACAA CCGTGTGGAT CTCTGTGGCT GTCCTTTCTG 1020

CTGTCATCTG TITGATTATT GTCTGGGCAG TGGCTTTGAA GGGCTATAGC ATGGTGACCT 1080 CTGTACTET TITTATTATT GETEGGGCA TIGGETTIGAA GGGCIATIAGE ATGGTAGACT 1989
GCATCTITCC GCCAGTTCCT GGGCCCAAAAT AAAGGATT TGATGCCAT CTGTTGGAGA 1140
AGGGCAAGTC TGAAGAACTA CTGAGTGCCT TGGGATGCCA AGACTTTCCT CCCACTTCTG 1200
ACTATGAGGA CTTGCTGGTG GAGTATTTAG AAGTAGATGA TAGTGAGGAC CAGCATCTA 1260
TGTCAGTCCA TTCAAAAGAA CACCCAAGTC AAGGTATGAA ACCCACATAC CTGGATCCTG 1320 50 ACACTGACTC AGGCCGGGGG AGCTGTGACA GCCCTTCCCT TTTGTCTGAA AAGTGTGAGG 1380

AACCCCAGGC CAATCCCTCC ACATTCTATG ATCCTGAGGT CATTGAGAAG CCAGAGAATC 1440 CTGAAACAAC CCACACCTGG GACCCCCAGT GCATAAGCAT GGAAGGCAAA ATCCCCTATT 1500 55 TICATIOCTOS TORATICCAAA TICTTCAACAT GEOCCTTACE ACAGCCCAGE CAGEACAACE 1590 CAGARICCAT TACCACAAT ATTACTACAT OTOTOTOAGET GEOCTOGOGO GEOTOGOGO CETICAGOTOS 1800 CACGGGCCAC TCTGTTGAAT GAAGCAGGTA AAGATGCTTT AAAATCCTCT CAAACCATTA 1690 CACCAGGCAC AGAGGGAGT AGAAGCTT CATTCTAGAG 1740 TACTCAGGAG AGAGGGAGT AGAAGCTT CATTCTGAGA 1740

CTGACCAGGA TACGCCCTGG CTGCTGCCCC AGGAGAAAAC CCCCTTTGGC TCCGCTAAAC 1800
CCTTGGATTA TGTGGAGATT CACAAGGTCA ACAAAGATGG TGCATTATCA TTGCTACCAA 1860 60 AACAGAGAGA GAACAGCGGC AAGCCCAAGA AGCCCGGGACTCCTGAGAAC AATAAGGAGT 1920

ACTAATGGAA TGATTGGTTA AAATGTGATT TTTCTTCAGG TAACACTACA GAGTACGTGA 2220 AATGCTCAAG AATGTAGTCA GACTGACACT ACTAAAGCTC CCAGCTCCTT TCATGCTCCA 2280 TTTTTAACCA CTTGCCTCTT TCTCCAGCAG CTGATTCCAG AACAAATCAT TATGTTTCCT 2340

THITHAMACA CHOCACICH ICLICAGUAG CIGATICAG ARCANALAT FATGTTTCCT 2340
ACACTIGATT TGTAGATTTA CHITTIFICGTG THAGTITATA ANACTIGGTG TCAATGGAAT 7400
AAAAGCACAC TOCTTAGTAT TCTTGAGGGA CAATGCCAAT AGGTATATCC TCTGGAAAAG 7460
GCTTTCATGA TTTGGCATGG GACAGACGGA AATGCCAAT GCATAATTGCT TTACCATAGA 2520
AAGATGACAA AAGAAATTT TCCACATAGG AAAATGCCAT GAAAATTGCT TTTGAAAAAC 2580 70 AACTGCATAA CCTTTACACT CCTCGTCCAT TTTATTAGGA TTACCCAAAT ATAACCATTT 2640 AAAGAAAGAA TGCATTCCAG AACAAATTGT TTACATAAGT TCCTATACCT TACTGACACA 2700 75 TIGCTGATAT GCAAGTAAGA AAT

Sea ID NO: 40 Protein sequence:

Protein Accession #: NP 000940.1 21 31 41 MKENVASATV FTLLLFLNTC LLNGOLPPGK PEIFKCRSPN KETFTCWWRP GTDGGLPTNY 60 SLTYHREGET LMHECPDYIT GGPNSCHFGK QYTSMWRTYI MMVNATNQMG SSFSDELYVD 120 VTYIVOPDPP LELAVEVKOP EDRKPYLWIK WSPPTLIDLK TGWFTLLYEI RLKPEKAAEW 180 EIHFAGQQTE FKILSLHPGQ KYLVQVRCKP DHGYWSAWSP ATFIQIPSDF TMNDTTVWIS 240 VAVLSAVICL IIVWAVALKG YSMVTCIFPP VPGPKIKGFD AHLLEKGKSE ELLSALGCQD 300 VAVISAVILLI UWALKA TSAVILKI TIPP Y TOPTANID AITLEENDE BLISALOUD 300
FPYTSYPED LI VEYLEVDDS EDQHLMSVIS KEHESQOMEP TYLDPOTDSG RGSCDSPSLL 360
SEKCEEPQAN PSTFVDPEVI EKPENPETTH TWOPQCISME GKIPYFHAGG SKCSTWPLPQ 420
PSQHNPRSSY HNITDVCELA VGRAGAPATL LNEAGKDALK SSQTIKSREE GKATOQREVE 480
SFHSETDQDT PWLLIQEKTP FGSAKPLDVV EHKVNKDGA LSLLPKQREN SGKPKKPGTF 540 10 ENNIK EVAKUS GUMDINIL VI. VPDPHAKNVA CEEESAKEAP PSLEONOAEK ALANETATSS 600 15 KCRLOLGGLD YLDPACFTHS FH Seg ID NO: 41 DNA sequence leic Acid Accession #: none found. Eos cloned sequence Coding sequence: 1-1572 (underlined sequences correspond to start and stop codons) 20 41 21 31 ATGACCCAAA ATAAATTAAA GCTTTGTTCC AAAGCCAATG TGTATACTGA AGTGCCTGAT 60 GGAGGATGGG GCTGGGCGGT AGCTGTTTCA TTTTTCTTCG TTGAAGTCTT CACCTACGGC 120 25 ATCATCAAGA CATTTGGTGT CTTCTTTAAT GACTTAATGG ACAGTTTTAA TGAATCCAAT 180 AGCAGGATCT CATGGATAAT CTCAATCTGT GTGTTTGTCT TAACATTTTC AGCTCCCCTC 240 GCCACAGTIC: TOAGCAATCG TITCGGACAC COTCTIGITAG TGATGTTTGGG GGGGCTACTT 300 GTCAGCACCG GGATGGTGGG CGCCCCTCT CACAGAGGG TITCTCATAT GTACCTGCC 360 ATCGGCATCA TCTCTGGTCT GGGATACTGC TTTAGTTTTC TCCCAACTGT AACCATCTA 420 TCACAATAT TTTGGCAAAAG ACGTTCCATA GTACATCAC TTGTTCTCAC AGGAGAATAT 480 30 TTCGCTGTGT TTGCTTTCGC ACCAGCAATC ATGGCTCTGA AGGAGCGCAT TGGCTGGAGA 540 TACAGCCTCC TCTTCGTGGG CCTACTACAG TTAAACATTG TCATCTTCGG AGCACTGCTC 35 GGTCTCTTTG CAACACTGGG ATTCTTTGCA CCTTCCTTGT ACATCATTCC TCTGGGCATT 960 AGTCTGGGCA TTGACCAGGA CCGCGCTGCT TTTTTATTAT CTACGATGGC CATTGCAGAA 1020 40 GTTTTCGGAA GGATCGGAGC TGGTTTTGTC CTCAACAGGG AGCCCATTCG TAAGATTTAC 1080 ATTGAGCTCA TCTGCGTCAT CTTATTGACT GTGTCTCTGT TTGCCTTTAC TTTTGCTACT 1140 ALMANCTION OF THE ALMAN AND ALMAN AN 45 ATGGCCCTGG CTGCTGTGTG CCTCGCCCTG GTGAGACCGT GTAAGATGGG ACTGTGCCAG 1440 CATCATCACT CAGGTGAAAC AAAGGTAGTG AGCCATCGTG GGAAGACTTT ACAGGACATA 1500
CCTGAAGACT TTCTGGAAAT GGATCTTGCA AAAAATGAGC ACAGAGTTCA CGTGCAAATG 1560 GAGCCGGTAT GA 50 Seq ID NO: 42 <u>Protein sequence;</u>

Pentein Accession #: none found, Eos cloned sequence 55 MTQNKLKLCS KANVYTEVPD GGWGWAVAVS FFFVEVFTYG IIKTFGVFFN DLMDSFNESN 60 SKISWIISIC VPULTSAPI, ATVLSNRFOH RUVMLOGIL VSTOMWAAS FQVSSMMYA 10 IGIISGIGYC FSFLPTVTIL SQYFGKRSI VTAVASTGEC FAVFAFAPAI MALKERIGWR 180 YSLLFVGILG UNIVIFGALL RPIERGPAS PKUYQENKE AQVYMLENEK TRSTIDSIDS 240 GVELTTSPKN VPTHTNLELE PKADMQQVLV KTSPRPSEKK APLLDFSILK EKSFICYALF 300 60 GLFATLGFFA PSLYIPLGI SLGIDQDRAA FLLSTMAIAE VFGRIGAGFV LNREPIRKIY 360 IELICVILLT VSLFAFTFAT EFWGLMSCSI FFGFMVGTIG GTHIPLLAED DVVGIEKMSS 420 AAGVYIFIQS IAGLAGPPLA GLLVDQSKIY SRAFYSCAAG MALAAVCLAL VRPCKMGLCQ 480 HHHSGETKVV SHRGKTLODI PEDFLEMDLA KNEHRVHVQM EPV 65 Seq ID NO: 43 DNA sequence Nucleic Acid Accession #: FGENESH predicted ORF 1-1749 (underlined sequences correspond to start and stop codons) Coding sequence: 70 31 TGCTGTCTG GCTTCTTGAT GAGTCCCAGT ACCCAGCACA GAGCACAGTA CACTCCCGGA 60 GGAAAGAAAC TTCCGTGGGA GGCTTCCATC GGTGCGCACA CCTCCCGAGG GCGAGGCAGC 120 GACCGGGAGA GGGAGAGCCG GCCGGAGGCT GCCGGGCTCC TGTGGGACCG CGCTGCAGCC 180 75 CCGCGGCCGC CGCCAGCTGG GCAGGCTCCC GGGACTGCGG CTGGGGGCGC GCAGGACCCT 300 CGCCTGCGTC CTGGACGTTC CCGGGGGAGG GTCCGGTTGC CAGTGAAACC TCCAGAGGCT 360

TCCGGACGAC AGCCCCGGGG GCCTTCTGAC TGCATCCCGA GATTTCCATC AGCGAGTGCA 420 ACTCATAAGG CAGTCCCTAA GGGGACCGGG CCACCGGCTG AGGACGGGGA TGGCTTAGGA 480 GCTCCTGGAC CTAGGGCCCG GCGTCGTCGC CTCCTGGGCG TCGCGGCAGA GGGGAGTGGC 540 CCGCGCGGAA AGCGCCGCGG GACAGTCAGT GACGAGGCCC GGGGGTCGCC GGGGCCACGA 600 CTICTEGGAG ACCOTOCIGC GETETETIGA GACGCCTGT CCGCGCCCAG GGTGGTGCCA 660 TGTGGGGGCGCTCGCCCCTCCTCCTCTCATCCTGCAA CGCCGCTTGC CTCCTGCAGC 720 TGCTGCTGGCTGGCTGGCGGGGGCCAGGCGAGTA CTGCCACGGC 10 GGAGACGGCG AGGGTGCGCC CCCACCCGTG AGGGCCTGGC AGCGGTGCTC CCCTGAAGGC 1080 TCCCCGAAAG GAAGGCAGCT CCTCAGGGCT TTCCCGGGGC TGCTGCCCCG TGCCAGACGC 1140 TOCCCAGANG UNAUGCAGE CETEAGUGET TECCEGGGG IN FUNCACIO (GEOGRAFICE CATESTICE AGGGGGGGG COCCETTECCE TGAGGGGGGGG COCCETTGGCC 1200
ATCTACOTGC COTTCCTCAT TOTTGGCTCC GTOTTTGTGG CETTATCAT CTTGGGGTCC 1200
CTGGTGGCAG CCTGTTCGTG CAAATGTCTC CGGCCTAAGC AGGATCCCCCA GCAGAGCCGA 1320
GCCCCAGGGG GTAACCGCTT GATGGAGACC ATCCCCATGA TCCCCAGTGC CAGCACCTCC 1300 15 CGGGGGTCGT CCTCACGCCA GTCCAGCACA GCTGCCAGTT CCAGCTCCAG CGCCAACTCC 1440 GGGGCCCGGG CGCCCCCAAC AAGGTCACAG ACCAACTGTT GCTTGCCGGA AGGGACCATG 1500 20 AACAACGTGT ATGTCAACAT GCCCACGAAT TTCTCTGTGC TGAACTGTCA GCAGGCCACC 1560 CAGATTGTGC CACATCAAGG GCAGTATCTG CATCCCCCAT ACGTGGGGTA CACGGTGCAG 1620 CACGACTCTG TGCCCATGAC AGCTGTGCCA CCTTTCATGG ACGCCTGCA GCCTGGCTAC 1680
AGGCAGATTC AGTCCCCCTT CCCTCACACG AACAGTGAAC AGAAGATGTA CCCAGCGGTG 1740 AGGCABATTIC AGRICUZEUTI CUCTUACALU ARCAGIGARA, ADARBATURA CLEAGUGUTO 1.700
ACTOTATARAC GAGAGATICAC TOGTGGGTTC CITTACTIGAA GGGAAGGAAGGAGGGGTG 1860
GATTCTGGAG GTGGAAGTCC GCACATOTCG GTGGTATTTA TGGCACGATT CCTTTGGATG 1860
GCTTCATTTG GCCCCCACACT GTATGAAACA CAFTCCCGAAT TAGCATTTCT GGATATGTTT 1920
CATCCAGGGT ATCATTGATT TATGATGGAA AACCGGCCTC AGCTGGAGAT GACTGTGATG 1870 25 TTGCTGATGG GTGTATAACA AATGCTTGAG TCCGAAGTGC CCTTGAGATA TGGTTGACGA 2040 AAGAATTITA TAAACTGATA AATTAAGGAT TITTATTATG TIGTTATTAT TATTICTITT 2100 30 TTGTTGTTGA CTGCACAGGA TCAAAATGCC TGTTATCTCC CTTTTACTGG GACTTTTTT 2160 THITTITT THITTITTA TCAGACAGGG TCTTGCTCTG TTGCCCAGGC TGGAGTGCAG 2220
TGGTGCGATC TCGGCTCACT GCAACTTCAG CCTCCTGGAT TCAGGCAACA CTCCTGCCTC 2280 AGCCTCCCAC OTGGCTGGGA TTACAGGTGC CTGCCCCAT GGCTAATTIT TTGTATTTT 2340
TGTAGAGATG GGGTTTCACC ATGTTGGCTG GGCTGGTCTC ACTCTCCTGA CCTCAACACA 2400 35 TCTGCCTGTC TCAGCCTCCC AAAGTGCTGG GATTACAGGC GTGAGCCACC GCCCCCAGCC 2460 TGAGCCTTTT TTTTTTCTA ATGCATCCAA GGTTAAGGGG AAGACGCAAA TAACAGGACT 2520 ATTCTAAAAG GAAACCTGTT TGAACTCTGT GAGATCAGTC ATCAGTCTCA GTATTCCACA 2580 ATTENANAN O MANCLISTI TOMALICISTI GROBICATIC ALLASTICIA GIAI ICCALA 200
GGOCACACTI ATTITICATIO TANAMAGNAT ATTATATTIT GIAITATTITI GIOGITITTIGO 2600
GGOCTATIT IGIGICITITI TACCITATGI AGGATICITA TIACANAGGA ATTICITACA
TITAMANAGA ACTIGANATA ATTIGATAGI TACITACATACITA ATTAGACACAT TICAGACCIC 40 TTGATTGTAT CITAATTTTC TGGCTTTAAG GTGACATCTG AGAGGTAATG CATTCTTTTT 2880 TATATIGAAA TCATAAACTA TCACCCGCTG CTTCTCTGAG TTACTTTTAA TTTTGCCTTG 2940 TGGTTATGGT TTGGCGTTTC CTTCTGTTTG GTTTTCAGAG CCCCATGTCT ATATAGTCCT 3000 TOGTTAINGGETTEGGET 45 GATTGTTAAG AGAAAAGCTT TTCAACGAAG GATTGCCTTT CTTCTCCCAC ACTGTTCTTG 3300 50 ATTICCTCTC TCTTTCAGGC CTCAACAGGC ACTGTATTCA TTGCCAAATGT TCCAAATTAT 3360
CAAATTCAAG TGAATTTATT TGTGTGTTCT TTACTTATAT AAAAAAAGAT AACTTTAAGG 3420 ATGTGCAAGT ACATTTCCAA CTGCTAGCAC AACCAGTATT TTGTAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGATATT TATCGATCAT CTTTCTATTC 3540
GTTTCATGA CTGAATGATG TAAAACCAGT GTTGGCAATT GGTATCATCA CATGATACTCA 3600
TGTTTTCATGA CTGAATAGATG TAAAACCAGT GTTGGCAATT GGTATCATCA ATGATACTCA 3600
TTTTTTTATATA TATTTTTTTATT 3600 55 ΤGΑΑΛΑΑΛΑ ΛΛΑΑΛΑΑΛΑΑ ΛΑΑΛΑΛΑΑΛ Seq ID NO: 44 Protein sequence:
Protein Accession #: FGENESH predicted 60 41 MLSGFLMSPS TQHRAQYTPG GKKLPWEASI GAHTSRGRGS DRERESRPEA AGLLWDRAAA MLSGFLMSPS TQFRAQYTPTÖ GKCLPWEASI GANTSRGRSS DREBESSPEA AGILLYDRAAA. 60
GBAEKORKGE PAMIRAQOQ PEPPAMIRAQOQ PEPAMIRAQOQ PEPPAMIRAQOQ PEPPAMIRAQOQ PEPPAMIRAQOQ PEPPAMIRAQOQ PEPAMIRAQOQ PEPPAMIRAQOQ PEPPA 65 70

HDSVPMTAVP PFMDGLQPGY RQIQSPFPHT NSEQKMYPAV TV

NM_002285

Coding sequence: 55-3738 (underlined sequences correspond to start and stop codons)

Seq ID NO: 45 DNA sequence

Nucleic Acid Accession #:

366

70 Seq ID NO: 46 Protein sequence:
Protein Accession #: NP_002276

75 MDSFDLALLQ EWDLESLCVV EPDRNALRAK ERERRNQETQ QDDOTFNSSY SLFSEPYKTN 60 KGDELSNRIQ NTLGNYDEMK DEFLTDRTNOS HLVGVYKFGV POTTVNKIDE HEVADSRAQN 120 QPSIGSTTT STPAAYPVQQ SKRGTMGWQK AIGHPESDOG RATQGGSRAT LIGDGVGRQQ 180 PRAKQVCNVE VGLQTQERPP AMAAKHSSSG HCVQNFPPSL ASKPSLVQQK PTAYVRMDG 240

ODOAPDESPK LKSSSETSVH CTSYRGVPAS KPEPARAKAK LSKFSIPKOG EESRSGETNS 300 CVEEIIREMT WLPPLSAIQA PGKVEPTKFP FPNKDSQLVS SGHNNPKKGD AEPESPDNGT 360 SNTSMLEDDL KLSSDEEENE QQAAQRTALR ALSDSAVVQQ PNCRTSVPSS KGSSSSSSSG 420 TSSSSSDSES SSGSDSETES SSSESEGSKP PHFSSPEAEP ASSNKWQLDK WLNK VNPHKP 480 PILIONESHG SESNOYYNPV KEDVQDCGKV PDVCQPSLRE KEIKSTCKEE ORPRTANKAP 540 GSKGVKQKSP PA AVAVAVSA AAPPPAVPCA PAENAPAPAR RSAGKKPTRR TERTSAGDGA 600 NCHRPEEPAA ADALGTSVVV PPEPTKTRPC GNNRASHRKE LRSSVTCEKR RTRGLSRIVP 660 KSKEFIETES SSSSSSDSD LESEQEEYPL SKAQTVAASA SSGNDQRLKE AAANGGSGPR 720 APVGSINART TSDIAKELEE OFYTLVPFGR NELLSPLKDS DEIRSLWVKI DLTLLSRIPE 780 10 HLPQEPGVLS APATKDSESA PPSHTSDTPA EKALPKSKRK RKCDNEDDYR EIKKSQGEKD 840 SSSRLATSTS NTLSANHONM NINSVAIPIN KNEKMLRSPI SPLSDASKHK YTSEDLTSSS 900 RPNGNSLFTS ASSSKKPKAD SQLQPHGGDL TKAAHNNSEN IPLHKSRPQT KPWSPGSNGH 960 REMEMBEL STASSMERS AND STADE REMEMBERS AND STATE OF THE RESERVENT AND STATE TLHSSMEHLV OYSOOGLHWL RNSAHLS

Nucleic Acid Accession #: NM 033151

15

20

351-4499(underlined sequences correspond to start and stop codons) Coding sequence:

31 41 25 ACTGGGATAA AGCAAGAAGA CTGATTTTAT GAGCAGGGGT TTGATACATC AAAGGAGATT 60 GCCCAGGATC AAGGGTGCGG TGTTGGGGGT GGGTTGGGGA GGGTGGTTAG AGAAGGTTTC 120 ACTAAGTGAT TTGGGCCTGA GGCCTGAGAA GATGTTTAAA AAGAGGGATC AAGCACAGGC 180 ANAGAMAGIA MANAGAGIA CACCAMACCITICA ATRICA CONTATTIC TOCTOCOMO 190 CITATIC TOCTOCOMO 190 CITATIC TOCTOCOMO 190 CITATIC CONTATTIC TOCTOCOMO 190 CITATICA CONTATTIC TOCTOCOMO 190 CITATICA TA TICATICA TIC TOCTOCOMO 190 CITATICA TA TICATICA TIC TOGGA ANGAGA AGAATTIGAC GAATCAGAGA 190 ANGAGGACATA CTOGGACO ANCETICTO GO GOGOCOTOCO ANTOCOGO A TEGACATAG 490 CITATICA CONTAGAGA 190 CITATICA CONTAGAGA 30 GCGATGACAT GGTTTCAGGA CTTATTTATA AAACCTATAC TCTCCAAGAT GGCCCCTGGA 480 GTCAGCAAGA GAGAAATCCT GAGGCTCCAG GGAGGGCAGC TGTCCCACCG TGGGGGAAGT 540 35 ADAMACANA BANAA TEEL DAWING TECKNI GONDARD THE CONTROLL OF THE 40 TTTTCGATGC ACTTCTGGGC ATCTGCTTCT GCATTGCCAG TGTACTCGGG CCAATATTGA 900 TTATACCAAA GATCCTGGAA TATTCAGAAG AGCAGTTGGG GAATGTTGTC CATGGAGTGG 960 GACTCTGCTT TGCCCTTTTT CTCTCCGAAT GTGTGAAGTC TCTGAGTTTC TCCTCCAGTT 1020 GGATCATCAA CCAACGCACA GCCATCAGGT TCCGAGCAGC TGTTTCCTCC TTTGCCTTT 1080 AGAAGCTCAT CCAATITAAG TCTGTTAATAC ACATCACCTC AGGAAGAGCC ATCAGCTTCT 1140 TCACCGGTGA TGTAAACTAC CTGTTTGAAG GGGTTGCTA TGGACCCCTA GTACTGATCA 1200 45 CCTGCGCATC GCTGGTCATC TGCAGCATTT CTTCCTACTT CATTATTGGA TACACTGCAT 1260 TTATTGCCAT CTTATGCTAT CTCCTGGTTT TCCCACTGGC GGTATTCATG ACAAGAATGG 1320 CTGTGAAGGC TCAGCATCAC ACATCTGAGG TCAGCGACCA GCGCATCCGT GTGACCAGTG 1380 AAGTTCTCAC TTGCATTAAG CTGATTAAAA TGTACACATG GGAGAAACCA TTTGCAAAAA 1440 TCATTGAAGA CCTAAGAAGG AAGGAAAGGA AACTATTGGA GAAGTGGGG CTTGTCCAGA 1500 GCCTGACAAG TATAACCTTG TTCATCATCC CCACAGTGGC CACAGCGGTC TGGGTTCTCA 1500 50 TCCACACATC CTTAAAGCTG AAACTCACAG CGTCAATGGC CTTCAGCATC CTGGCCTCCT 1620
TGAATCTCCT TCGGCTGTCA GTGTTCTTTG TGCCTATTGC AGTCAAAGGT CTCACGAATT 1680 CCAAGTCTGC AGTGATGAGG TTCAAGAAGT TTTTCCTCCA GGAGAGCCCT GTTTTCTATG 1740 55 TCCAGACATT ACAAGACCCC AGCAAAGCTC TGGTCTTTGA GGAGGCCACC TTGTCATGGC 1800 AACAGACCTG TCCCGGGATC GTCAATGGGG CACTGGAGCT GGAGAGGAAC GGGCATGCTT 1860 CTGAGGGGAT GACCAGGCCT AGAGATGCCC TCGGGCCAGA GGAAGAAGGG AACAGCCTGG 1920 GCCCAGAGTT GCACAAGATC AACCTGGTGG TGTCCAAGGG GATGATGTTA GGGGTCTGCG 1980 GCAACACGGG GAGTGGTAAG AGCAGCCTGT TGTCAGCCAT CCTGGAGGAG ATGCACTTGC 2040 60 TCGAGGGCTC GGTGGGGGTG CAGGGAGCC TGGCCTATGT CCCCCAGCAG GCCTGGATCG 2100 TCAGCGGGAA CATCAGGGAG AACATCCTCA TGGGAGGCGC ATATGACAAG GCCCGATACC 2160
TCCAGGTGCT CCACTGCTGC TCCCTGAATC GGGACCTGGA ACTTCTGCCC TTTGGAGACA 2220 TGACAGAGAT TGGAGAGCGG GGCCTCAACC TCTCTGGGGG GCAGAAACAG AGGATCAGCC 2280 TRACCOCCOCCO TOUTH AT A GREAT TO A CONTROL OF THE ACCOUNT OF THE A 65 GGAAATATGC CCAACTTATC CAGAAGATGC ACAAGGAAGC CACTTCGGAC ATGTTGCAGG 2580 GGAATIATURE CULAUTIATE CAGAAGATUR ACAAGGAAGUE CACHTIGGAG ATGTTECAGG 2580
ACACACCACA BATAGCAGAG AGCCAAAGG TAGAAGATCA COCCUTTOCCA CETCCCTG 2560
ACACACCACA BATAGCAGAG AGCCAAAGG TAGAAGATCA COCCUTTOCCAC CETCCCTG 2560
AGGAAGGCTC CTTGAGTTGG AGGGTTACC ACCACTACAT CCAGGCAGCT GGAGGTTACA 2760
TGGTCCTTG ACTATATTTC TETCTGTGG TGCTGATGTCTTCTTAACG ATCTTCACCC 2580
TCTGGTGCCTG GACTACTGG TTGGAGCAGG GCTGAGGGAC CAATAGCAGC CGAGAGAGCA 2580
ATGGAACCAT GGCAGACTGG GGACACTTG CAACACATCC TAACGTTCCT CTTCACCAC 2580 70 75 TGGTGTACGG GCTCAACGCC CTGCTCCTCA TCTGTGTGGG GGTCTGCTCC TCAGGGATTT 3000 TCACCAAAGT CACGAGGAAG GCATCCACGG CCCTGCACAA CAAGCTCTTC AACAAGGTTT 3060

TCCGCTGCCC CATGAGTTTC TTTGACACCA TCCCAATAGG CCGGCTTTTG AACTGCTTCG 3120

CAGGGGACTT GGAACAGCTG GACCAGCTCT TGCCCATCTT TTCAGAGCAG TTCCTGGTCC 3180 TANTOGGAG CATAATCATG GTTATTTGCT TCATTTATTA TATGATGTTC AAGAAGGCCA 3300 TCGGTGTGTT CAAGACTG GAGAACTATA GCCGGTCTCC TTTATTCTCC CACATCCTCA 3360
ATTCTCTGCA AGGCCTGAGC TCCATCCATG TCTATGGAAA AACTGAAGAC TTCATCAGCC 3420 5 AGTTTAAGAG GCTGACTGAT GCGCAGAATA ACTACCTGCT GTTGTTTCTA TCTTCCACAC 3480 AGTITHAGAG GCTGACTIGAT GCGCAGAATA ACTACCTGCT GTTGTTTCTA TCTTCCACAC. 3480
GATGGATGGCATTGAGGCTG GAAACTACTAG CCAACCTTGT GAGCTTGGCT GTTCCCCGTG 31940
TCGTGCAGCT ATTGAGGCTG GAAACTACTAG CACACCTTGT GAGCTTGGCAT GTCAACACTG
TCGTCCACGCT GCGGCCACGCTTCCAGCACCTGCTGCAACACTGCAGAGGCAC 3660
AGTTCACGGCTGTAGAGAGG ATACTGCAGT ACATGAAAGAT GTGTGTCTGC GAAGGCTCCTT 3720
TACACATGGG AGGCACAGT TGTCCCCAGG GTGTGCACACTGGGCAACTGATATTTC 3730
AGGATTATCA CATGAAATAC AGGACAAACA CACCCACCGT GCTTCACGGCA TCAACCTGA 3840
CCATCCAGGGG CACCAGAGTG GTGGGCAACG GACCTCACCTGG ATACCTCTC 3840 10 TGGGCATGGC TCTCTTCCGC CTGGTGGAGC CCATGGCAGG CCGGATTCTC ATTGACGGCG 3960 15 TGGACATTTG CAGCATCGGC CTGGAGGACT TGCGGTCCAA GCTCTCAGTG ATCCCTCAAG 4020 TIGAZATTI GI KACATI CIGAL CHIGANICAT TIGGGTEZAA GETELTARIA ATECUTAAN 9.020
ATECATICAT CENTRACAGA TAGATI CAACATIAA ECETTARIA ATECATICAT CENTRACAGATI CAACATIAA ATECATICAT CENTRACAGATI CAACATICAT CAACA 20 ACATCCTGGT TATGGGCAAT GGGAAGGTGG TAGAATTTGA TCGGCCGGAG GTACTGCGGA 4440 AGAAGCCTGG GTCATTGTTC GCAGCCCTCA TGGCCACAGC CACTTCTTCA CTGAGATAAG 4500
GAGATGTGGA GACTTCATGG AGGCTGGCAG CTGAGCTCAG AGGTTCACAC AGGTGCAGCT 4560 25 TCGAGGCCCA CAGTCTGCGA CCTTCTTGTT TGGAGATGAG AACTTCTCCT GGAAGCAGGG 4620 GTMANIGTAG GGGGGGTGGG GATTGCTGGA TGGAAACCCT GGAATAGGGT ACTTGATTGC 4890
TCTCAAGACCC THAGAACCCC GAAACCATTCA AAGACTAGGA ATTCAGTGAT CATTGGTGTGTC 4890
TCCTTTTAAC TACACTGCTG AATAATTTTA TAATAAGGTA AAAGCTTATA GTTTTCTATA GTTTCTCTAT 4800
TCGTGTTTAGA AGTGTTGCAA TAGGTAACT GACTTGTGTAA AATATAAAAC TAAAGGAAAAC 4800 30

Seq ID NO: 48 Protein sequence Protein Accession #:

MTRKRTYWVPNSSGGLVNRGIDIGDDMVSGLIYKTYTLQDGPWSQQERNPEAPGRAAVPPWGKYDAALRT MIPFRPKPRFPAPQPLDNAGLFSYLTVSWLTPLMIQSLRSRLDENTIPPLSVHDASDKNVORLHRLWEEE 35 VSRRGIEKASVLLVMLRFORTRLIFDALLGICFCIASVLGPILIIPKILEYSEEOLGNVVHGVGLCFALF 40

VSRRGIEKASVLLYMLRFQRTRLIFDALLGICFCIASVLGPILIPKILEVSEEQLGNVVHOVGLCFALF LSECVISLISSSWINGRTAIRFAAVSSA FAFKLQFKSVHTSGBAISSFTGDWYNLFGGVCYOPL VLITCASLVICSISSYFIIOYTAFIALICYLLVFPLAVFMTRMAVKAQHHTSBVSDQRRVTSBVLTCIK LIKMYTWEKPFAKIBDLRKREKALLEKGGLVGSLISTILIPITVATAVWLHITSLKLKLTASMAFSM LASINLILSLSFFVHYMSVKTKISKSAVMRFKKFFLQESFVFYVQTLQDFSKALVFEEATLSWQQTCFGI WGALLEKSPHONASGKTKGTAGTEGEGNSLGFELKINLKVSKAMMLGVCKOTTSGKSSLISAILEE MHLLGGSVQVGGSLAVYPQQAWIVSKINENILMGGAYSKARYLQVLHCCSINRDLELLFFGOMTEIGER GUINSGGGKGSUSLAAAVYSRGVILDDFLSAVAHVCKHIFEECKKTLKGKTVLVTYĞLQVLEFGO 45

GINLSGGGKQRISLARAVYŠDRQIYLLDDPJSAVDAHVGKHJFEECİKKILRGKTVYLVTHQLQYLEFCO
QILLENGKICRƏKTHSELMÇKKGKY QOLIÇMEKHEATISMLQDTAKLBEKVENSON AVEHQLTQEEEMEEGISLSWRVYHHYQAAGGYMVSCIEPFVVLVFLIFSFWWLSYVLEQGGSTINSS
RSRYGTMADLGNADPQLSFYQLVYQLAAGLIKVQVOSSGGFIX VYRACASLANELNFLVFRCMSH
KRAGVERLENYSSEPLSHLINSLQGLSSHVYGKTEDFISQFKRLTDAQNNYTLLIFLSTRWMALIKL
ERMINLYTLAVLIVAFGISSTPYSSEVANAVNIVLQLASSFQATARGGETEAQFTAVERGUYMKOVS
EAPLINMEGTSCQGWPQHOEIFCDYHMKYRDNTFTVLHGINLTRGHEVGIVGKTGSGKSSLGMALFR
LVEPMAGRILDOVICSIGLEDLESKLSVPYGDPVLASTGRATARGHVGIVGKTGSGKSSLGMALFR
LVEPMAGRILDOVICSIGLEDLESKLSVPYGDPVLASTGRATARGHVGIVGKTGSGKSSLGMALFR
SKFFKKHITDVVENGONSVGERQLAGARAVLRNSGILLDGATASISMETDILQRTREAFQCTVL
VAIRNTYTLANDLILVAGNISSTPYGLENGKYGSSLSAVEROPTENTOQUYMALERFTLTXAI 50

55 Seq ID NO: 49 DNA sequence Nucleic Acid Accession #:

NM_033419 18-980 (underlined sequences correspond to start and stop codons) Coding sequence:

31

CGAGCCAGGG AGAAAGGATG GCCGGCCTGG CGGCGCGGTT GGTCCTGCTA GCTGGGGCAG 60 CGGCGCTGGC GAGCGGCTCC CAGGGCGACC GTGAGCCGGT GTACCGCGAC TGCGTACTGC 120
AGTGCGAAGA GCAGAACTGC TCTGGGGGGCG CTCTGAATCA CTTCCGCTCC CGCCAGCCAA 180 TCTACATGAG TCTAGCAGGC TGGACCTGTC GGGACGACTG TAAGTATGAG TGTATGTGGG 240
TCACCGTTGG GCTCTACCTC CAGGAAGGTC ACAAAGTGCC TCAGTTCCAT GGCAAGTGGC 300 65 CCTTCTCCCG GTTCCTGTTC TTTCAAGAGC CGGCATCGGC CGTGGCCTCG TTTCTCAATG 360 GCCTGGCCAG CCTGGTGATG CTCTGCCGCT ACCGCACCTT CGTGCCAGCC TCCTCCCCCA 70

75 AGTGCGTGGT GGTGGTCTTG CTGCTGCAGG GGCTGTCCCT GCTCGAGCTG CTTGACTTCC 840 CACCGCTCTT CTGGGTCCTG GATGCCCATG CCATCTGGCA CATCAGCACC ATCCCTGTCC ACGTCCTCTT TTTCAGCTTT CTGGAAGATG ACAGCCTGTA CCTGCTGAAG GAATCAGAGG 960

ACAAGTTCAA GCTGGACTGA AGACCTTGGA GCGAGTCTGC CCCAGTGGGG ATCCTGCCCC 1020 CGCCCTGCTG GCCTCCCTTC TCCCCTCAAC CCTTGAGATG ATTITCTCTT TTCAACTTCT 1080 TGAACTTGGA CATGAAGGAT GTGGGCCCAG AATCATGTGG CCAGCCCACC CCCTGTTGGC 1140 CCTCACCAGC CTTGGAGTCT GTTCTAGGGA AGGCCTCCCA GCATCTGGGA CTCGAGAGTG 1200 GGCAGCCCCT CTACCTCCTG GAGCTGAACT GGGGTGGAAC TGAGTGTGCT CTTAGCTCTA 1260 CCGGGAGGAC AGCTGCCTGT TTCCTCCCCA TCAGCCTCCT CCCCACATCC CCAGCTGCCT 1320 GGCTGGGTCC TGAAGCCCTC TGTCTACCTG GGAGACCAGG GACCACAGGC CTTAGGGATA 1380 CAGGGGGTCC CCTTCTGTTA CCACCCCCA CCCTCCTCCA GGACACCACT AGGTGGTGCT 1480
GGATGCTTGT TCTTTGGCA GCCAAGGTTC ACGGCGATTC TCCCCATGGG ATCTTGAGGG 1500
ACCAAGGTGC TGGGATTGGG AAGGAGTTC ACGGCGATTC TCCCCATGG ATCTTGAGGG 1500
ACCAAGGTGC TGGGATTGGG AAGGAGTTTC ACCTGACCA TTGCCTCAGC CAGGTTCCCA. 1560 10 GGAGGCCTCA CCATACTCCC TTTCAGGGCC AGGGCTCCAG CAAGCCCAGG GCAAGGATCC 1620 TGTGCTGCTG TCTGGTTGAG AGCCTGCCAC CGTGTGTCGG GAGTGTGGGC CAGGCTGAGT 1680 GCATAGGTGA CAGGGCCGTG AGCATGGGCC TGGGTGTGTG TGAGCTCAGG CCTAGGTGCG 1740 CAGTGTGGAG ACGGGTGTTG TCGGGGAAGA GGTGTGGCTT CAAAGTGTGT GTGTGCAGGG 1800 15 GGTGGGTGTG TTAGCGTGGG TTAGGGGAAC GTGTGTGCGC GTGCTGGTGG GCATGTGAGA 1860 TGAGTGACTG CCGGTGAATG TGTCCACAGT TGAGAGGTTG GAGCAGGATG AGGGAATCCT 1920 GTCACCATCA ATAATCACTT GTGGAGCGCC AGCTCTGCCC AAGGCCGCAC CTGGGCGGCAC 1980
AGCCAGGAGC TCTCCATGGC CAGGCTGCCT GTGTGCATGT TCCCTGTCTG GTGCCCCTTT 2040 GCCCGCCTCC TGCAAACCTC ACAGGGTCCC CACACAACAG TGCCCTCCAG AAGCAGCCCC 2100 20 TCGGAGGCAG AGGAAGGAAA ATGGGGATGG CTGGGGCTCT CTCCATCCTC CTTTTCTCCT 2160 TGCCTTCGCA TGGCTGGCCT TCCCCTCCAA AACCTCCATT CCCCTGCTGC CAGCCCCTTT 2220 GCCATAGCCT GATTTTGGGG AGGAGGAAGG GGCGATTTGA GGGAGAAGGG GAGAAAGCTT 2280 ATGGCTGGGT CTGGTTTCTT CCCTTCCCAG AGGGTCTTAC TGTTCCAGGG TGGCCCCAGG 2340 GCAGGCAGGG GCCACACTAT GCCTGCGCCC TGGTAAAGGT GACCCCTGCC ATTTACCAGC 2400 AGCCCTGGCA TGTTCCTGCC CCACAGGAAT AGAATGGAGG GAGCTCCAGA AACTTTCCAT 2460 25 CCCAAAGGCA GTCTCCGTGG TTGAAGCAGA CTGGATTTTT GCTCTGCCCC TGACCCCTTG 2520 TCCCTCTTTG AGGGAGGGA GCTATGCTAG GACTCCAACC TCAGGGACTC GGGTGGCCTG 2580 30

Seq ID NO: 50 <u>Protein sequence:</u>
Protein Accession #: NP_219487.1

35 1 11 21 31 41 3

MKDVGPESCG QFTPCVPSPA LESVLGKASQ HLGLESGQPL YLLELNWGGT ECALSSTGRT 60
AACFLPISLL PTSPAAWLGP BALCLFQRPG TTGLRDTGGP LLLPPPTLLQ DTTRWCWMLV 120
LWPAKVHGDS PRIGLADQA GIGKEFFPDG CFSQVPSPRH HTPFQGGGS KPRARLICCE
LVESLPPCVG SVGQAECIGD RAVSMGLGVC ELRPRCAVWR RVLSGKRCGF KVCVCRGWVC

Scq ID NO: 51 DNA sequence Nucleic Acid Accession #: XM_059098.1

Coding sequence: 178-618(underlined sequences correspond to start and stop codons)

1 11 21 31 41 51

50
ACCITCAGA TECTITACTIC COTGGCTCTO AACCCTGAGC ATCAAGAGAG ATGCCGGGAG 120
GAGGTCAGGGGGAG 120
TGGTACACGA CAATGTGCAT CAAGGAGAGG GACCCTGAGGAGA 120
TGGTACACCA CAATGTGCAT CAAGGAGAGG TGCCGATTGAT TCCCTGCAGT CGCGTGCAGTGAT 120
TCCGACACATCTGCAGCAAGCA CATTACCTTC CCAAGTGGAT GCACATTCCCTCAGAGGAACT 500
ACCGTGGTTC TTAGTATTTG GGGTCTTCAC CACAACCCTG CTGTCTGGAA AAACCCAAAG 360
GCTTTGACCCTTCAGGTTCTCCACAGCAGAGATG TGAGAGAACCC CTTAGCTCAC 220
TTACCCATTCACTACCACACCTG CTGTGTGCAT CAGAGCACCCC CATAGCCTAC 420
AAGGTAACCA TTGCCTTGAAT TCCTCCACCACTCACTGAGTTACTTCACCCACAGGACT 540
CTTACTTTCC CCAACCACTTT TATCCTCAAGC CCCAAGAATG GGATGTATTT GCACCTGAAGA
AAACTCCCC CCAACCACTTT TATCCTCCAAG CCCAAGAATG GGATGTATTT GCACCTGAAGA
AAACTCCCC CCAACCACTTT TATCCTCCAAG CCCAAGAATG GGATGTATTT GCACCTGAAG
AAACTCCCC CAACCACTTT TATCCTCCAAG CCCAAGAATG GGATGTATTT GCACCTGAAG
AAACTCCCC CCAAGCACTTT TATCCTCCAAGC CCCAAGAACTAC TGATTTATTTTCGAACTTAAGACTACTTCATTTTCTGAATT 640
AAACTCCCC CAACCAGCATCT TATCCTCCAAGCACTAGATG TGATTATTT GCACCTGAAGA

GATGTACACT CTGAAGTGAG CACATTCCTG TTGGCAGGAC ATGACACCTT GGCAGCAAGC 60

60 TAMATTIACA GETAATGATE CANGENGATA GAAAGGGATE AATGTATGGT GIGAGGGATTG 780
GAGGTTGGTG GGATAGGGGGT CICTIGTGAAA GAATCCAAAA TAATTICTAG GTACAAGGTG 780
TGTCAGCTAG ATCTGTTTCT ATATAACTT GGGAGATTTT CAGATCTTT CTGTTAAACT 840
TTCATTACTAT TAATGCGTGT ATACACCAAT GAACTTICAT ATATTICTTG TGTTTTTAA, 900
AATAGTTTT GAATTATGCA AGTAATAGT CICTIGTTTTTAA TATTICTCAT TGTTTTTAAA 900
AATAGTTTA GAATTATGCA AGTAATAGT CICTIGTTTTTAA TATTICCA 900
ACACTAGGAAA ATCATTATGA ATAAAAATTT TAATTICTAC TTCACTTGCA CAGACTTCCA 1200

65 ACACTAGAAA ATCATGTAGA ATAAAAATIT TAAATCICAC TICACTITAGC GGACATTCCA 102
TGCCCTGACC AATCCACTGC CITTICCTTAA AAACAAATA ATTTGGGTGG CATCTTTCA 1080
GACTITTICC TATACATTIT ATATGTAGAA ATGTAGCAAT GATTITGATA GAGTGTGATC 1140
ATICCTATAT TGTTATTGAT TITTITTACCT TAATAAAAAAT TCACCTTATT CCTT

70 Seq ID NO: 52 Protein sequence: Protein Accession #: XP_059098.1

1 11 21 31 41 51

MSYTTMCKE TCRLIPAVPS ISRDLSKPLT FPDGCTLPAG ITVVLSIWGL HINPAVWKNP 60 KVFDPLRFSQ ENSDQRIFYA YLPFSAGSEN CIGQEFAMIE LKVTIALILL HFRVTPDPTR 120 PLTFPNIFIL KPKNGMYLHL KKLSEC

Seq ID NO: 53 DNA sequence Nucleic Acid Accession #: NM 030916 Coding sequence: 1-1533 (underlined sequences correspond to start and stop codons) 5 ATGCCCCTGT CCCTGGGAGC CGAGATGTGG GGGCCTGAGG CCTGGCTGCT GCTGCTGCTA 60 CTGCTGGCAT CATTTACAGG CCGGTGCCCC GCGGGTGAGC TGGAGACCTC AGACGTGGTA 120
ACTGTGGTGC TGGGCCAGGA CGCAAAACGG CCCTGCTTCT ACCAGGGGGA CTCCGGCGAG 180
CAAGTGGGCA AAGTGGCATG GGCTGGGTG GACGCGGGGG AAGGGGGCA GGACTAGGG 240 10 CTACTGCACT CCAAATACGG GCTTCATGTG AGCCCGGCTT ACGAGGGCCG CGTGGAGCAG 300 CCGCCGCCC CACGCAACCC CCTGGACGGC TCAGTGCTCC TGCGCAACGC AGTGCAGGCG 360 GATGAGGGCG AGTACGAGTG CCGGGTCAGC ACCTTCCCCG CCGGCAGCTT CCAGGCGCGG 420 CTGCGGCTCC GAGTGCTGGT GCCTCCCCTG CCCTCACTGA ATCCTGGTCC AGCACTAGAA 480 15 GAGGGCCAGG GCCTGACCCT GGCAGCCTCC TGCACAGCTG AGGGCAGCCC AGCCCCCAGC 540 GTGACCTGGG ACACGGAGGT CAAAGGCACA ACGTCCAGCC GTTCCTTCAA GCACTCCCCC 600 TCTGCTGCCG TCACCTCAGA GTTCCACTTG GTGCCTAGCC GCAGCATGAA TGGGCAGCCA 660 CTGACTTGTG TGGTGTCCCA TCCTGGCCTG CTCCAGGACC AAAGGACTACA CCACCATCCCC 720 CACGTGTCCT TCCTTGCTGA GGCCTCTGTG AGGGCCCTTG AAGACCAAAA TCTGTGGCAC 780 20 ATTGGCAGAG AAGGAGCTAT GCTCAAGTGC CTGAGTGAAG GGCAGCCCCC TCCCTCATAC 840 AACTIGACAC GGCTGGATGG GCCTCTGCCC AGTGGGGTAC GAGTGGATGG GGACACTTTG 900
GGCTTTCCCC CACTGACCAC TGAGCACAGG GGCATCTACG TCTGCCATGT CAGCAATGAG 960 TTCTCCTCAA GGGATTCTCA GGTCACTGTG GATGTTCTTG ACCCCCAGGA AGACTCTGGG 1020 AAGCAGGTGG ACCTAGTGTC AGCCTCGGTG GTGGTGGTGG GTGTGATCGC CGCACTCTTG 1080 25 TICTGCCTTC TGGTGGTGGT GGTGGTGCTC ATGTCCCGAT ACCATCGGCG CAAGGCCCAG 1140
CAGATGACCC AGAAATATGA GGAGGAGCTG ACCCTGACCA GGGAGAACTC CATCCCGAGG
TGCATTCCC ATCACAGGA CCCCAGGAGC CAGCCGGAGG AGAGTGTTAGG GCTGAGAGCC 1260 GAGGGCCACC CTGATAGTCT CAAGGACAAC AGTAGCTGCT CTGTGATGAG TGAAGAGCCC 1320 GAGGGCCGCA GITACTCCAC GCTGACCACG GTGAGGGAGA TAGAAACACA GACTGAACTG 1380 30 CTGTCTCCAG GCTCTGGGCG GGCCGAGGAG GAGGAAGATC AGGATGAAGG CATCAAACAG 1440 GCCATGAACC ATTITGTTCA GGAGAATGGG ACCCTACGGG CCAAGCCCAC GGGCAATGGC 1500 ATCTACATCA ATGGGCGGGG ACACCTGGTC TGA Seq ID NO: 54 Protein sequence: NP 112178.1 35 MPLSLGAEMW GPEAWLLLL LLASPTGRCP AGELETSDVV TVVLGQDAKL PCFYRGDSGE 60
QVGQVAMARV DAGEGAGELA LLISKYGLHV SPAYEGKVEQ PPPRRNPLDG SVLLRNAVGA 120
DEGBYECRVS TPFAGSGYGAR LERKVLYPEP, PSLAVPGALE EGGGITLANS CTASEGPAPS 180
VTWDTEVKGT TSSKSFKISK SAAVTSEPHL VPSRSMNGOP LTCVVSHPGL LQDQRITHL 240
HVSYLLAGSV GOLEDQNLWH INGEGAMLKC LSGQPPSY NWTLDGPPJE SVKYVDGDT. 300 40 GFPPLTTEHS GTYVCHVSNE FSSRDSQVTV DVLDPQEDSG KQVDLVSASV VVVGVIAALL 360 FCLLVVVVVL MSRYHRRKAQ QMTQKYEEEL TLTRENSIRR LHSHHTDPRS QPEESVGLRA 420 45 EGHPDSLKDN SSCSVMSEEP EGRSYSTLTT VREIETQTEL LSPGSGRAEE EEDQDEGIKQ 480 AMNHIVOENG TLRAKPTGNG IYINGRGHLV Seq ID NO: 55 DNA sequence 50 Nucleic Acid Accession #: AF007170.1 Coding sequence: 73-1725 (underlined sequences correspond to start and stop codons) ANGIAGETGO CETECTORIA A AGCACCOC AGGACTECTO AGAGCAGCT CEATGAGGCC 50 CTOGACCAGT GCATGACTC THEOTACCA ACCAGTITETA GAAGCAGTC 190 AGCTACCTCA AGCACAGACTC 190 AGCTACCTCA AGCACAGACACC 190 AGCTACCTCA AGGACAGACAC CAGGACAGCACC 190 CTGGAGATAC AGGCCATGA ACCTTGACTA TACCTACTAC AGGCCATGAGACAT CACTTGAGACAT ACCTGCAGTAC AGGCCATACT 190 CTGGAGATAC AGGCCATACT ACCTTTGTAC CCTCAGGACAT COTGGAGACATC 30 ACCTGAGACACT ACCTAGACACT CT ACCTAGACACT ACCTAGACACT ACCTAGACACTACT ACCTAGACACT ACCTA 55 ATGAAGGAGG CACAGATGCT GTGTCAGAGG CACCGGAGGA AGTCTTCTGT AACAGATTCC 60 TTCAGCAGCC TGGTGAACCG CCCCACGCTG GGCCAATTCA CTGAAGAAGA AATCCACGCT 360 TITAMENDAGE 1991 MANAGE CECCAGUE 16 SUCCAGA 10 C TOMAGNAMA AN ANTAGE 1892

AGENTIGITE A TOCAGA TO A GEOTERATE CONTINUATION AND ANTAGE 1892

GARCITICITE A TOCAGA TO A GEOTERATE CONTINUATION AND ANTAGE 1892

GARCITICITE A GEOTERATE CONTINUATION AND ANTAGE 1892

GARCITICAGE 1892

AGENTIGIA O CONTINUATION ANTAGE 1892

AGENTICAGE 18 65 CTGTGCTACC ACACCTTCCT CACCTTCGTG CTCGGTACTG GGAACGTCAA CATCGAGGAG 780 GCCG AGAAGC TCTTGAAGCC CTACCTGAAC CGGTACCCTA AGGGTGCCAT CTTCCTGTTC 840 GECTAMANGE INTO AAGEC CTACTIMAC CONTINUED A MOUTINE STORM TITTERCAGGIA GATTOAAG CATTAMAGGC AACATTGATG CAGCATCCG AGCTTCGAG OB GAGTGCAGT CATTAMAGGC AACATTGAGCACCAGCATCCG AGCTTCGAG OB GAGTGCTGTG AGGCCCAGCA GACTGGAAG CAGTTTCACC ACATGTGCTA CTGGGAGCTG 960 ATGTGGTGCT TCACCTACAA GGGCCAGTGG AAGATGTCCT ACTTCTACGC CGACCTGCTC 1020 AGCAAGGAGA ACTGCTGCTC CAAGCCACC TACATTTACA TGAAGGCCGG CTACCTCAGC 1020 70 ATGTTTGGGA AGGAGGACCA CAAGCCGTTC GGGGACGACG AAGTGGAATT ATTTCGAGCT 1140 GTGCCAGGCC TGAAGCTCAA GATTGCTGGG AAATCTCTAC CCACAGAGAA GTTTGCCATC 1200 75 CGGAAGTCCC GGCGCTACTT CTCCTCCAAC CCTATCTCGC TGCCAGTGCC TGCTCTGGAA 1260 ATGATGTACA TCTGGAACGG CTACGCCGTG ATTGGGAAGC AGCCGAAACT CACGGATGGG 1320 ATACTTGAGA TTATCACTAA GGCTGAAGAG ATGCTGGAGA AAGGCCCAGA GAACGAGTAC 1380

TCAGTGGATG ACGAGTGCTT GGTGAAATTG TTGAAAGGCC TGTGTCTGAA ATACCTGGGC 1440 CGTGTCCAGG AGGCCGAGGA GAATTTTAGG AGCATCTCTG CCAATGAAAA GAAGATTAAA 1500 TATGACCACT ACTTGATCCC AAACGCCCTG CTGGAGCTGG CCCTGCTGCT TATGGAGCAA 1560 TATIONACIACI ACTIONACICE ANACIGEETIG CIGGAGETIGG CECTIGETIGE TATIOGACIAA 1560
GACAGAAACG AAGAGGCCAT CAAACTTTTG GAATCTGCCA AGCAAAACTA CAAGAATTAC 1620
TCCATGGAGT CAAGGACACA CTTTCGAATC CAGGCAGCCA CACTCCAAGC CAAGTCTTCC 1680 5 CTAGAGAACA GCAGCAGATC CATGGTCTCA TCAGTGTCCT TGTAGCTTTG TGCAGCAGTT 1740 CCGGGCTGGA AGACAGAGAC AGCTGGACAG AGCTCCTGAA AACATTTCAA AATACCCCCT 1800 CCCCCTGCCC TGCCCTGCCT TTGGGGTCCA CCGGCACTCC AGTTGGATGG CACAACATAG 1860 TGTATCCGTG CAGAAGCCGA GCTGGCATTT TCACCAGTGT AGCCAAGGGC CTTTGCCAAG 1920 10 GGCAGAGCAG GTGGAGCCCT CTGCCTGCCC TATCACACAT ACGGGTACTT GCTTTTCACT 1980 15 AGAGGCTAAG CCTCAGGCTT CAATGCTTCT GGGGTTGGGC ATGAGGATGT ACACAGACAC 2280 CCACTACCTT ACTACTCACA CITICATTICA CTCCTTTTGT AAAITTCCAA TITTAAAAATC 2340 AAGCACGTCT TITTAGTGAG ATAAAAATCTA AGCTCTTCTG TAGAAAAAATC AATCCTACC 2400 AGTAGAAAAT GCCAGGGCTT GATGGAAGAG CTGTGTAGCC CTTTCTATTGC CAAAGCCAGG 2460 AAATTTGGGG GGCAGGAGGA GGTTCTCAGA ATCCAGTCTG TATCTTTGCT GTATGCCAAA 2520 20 CTGAAACCAC TGGGAATAAT TTATGAAACA TAAAAATCTT CTGTACTTCA CTCCAAGGTA 2580 CATTIGCTTA CTGACAGCAT TTTTGTTAAA ACTGTTATTC TTGAAAAAAA AAAAAAAAA 2640 Seq ID NO: 56 Protein sequence:
Protein Accession #: AAC39582.1 25 21 31 41 1 MTALDLELTN OFSEALSYLK PRTKESMYHS LTYATILEMQ AMMTEDPODI LLAGNMMKEA 30 QMLCQRHRRK SSYTDSFSSL VNRPTLGQFT EEEIHAEVCY AECLLQRAAL TFLQDENMVS 120 FIKGGIKVRN SYQTYXELDS LVQSSQYCKG ENHPHFEGGG VLGVGAFNLT LSMLPTRILR 180 LLEFVGFSGN KDYGLLQLEE GASGHSFRSV LCVMLLLCYH TFLTFYLGTG NYMEEAEKL 240 LKPYLNRYPK GAIFLFFAGR IEVIKGNIDA AIRRFEECCE AQQHWKQFHH MCYWELMWCF 300 TYKGOWKMSY FYADLISKEN CWSKATYIYM KAAYLSMEGK EDHKPEGDDE VELFRAVPGL 360 KLKIAGKSLP TEKFAIRKSR RYFSSNPISL PVPALEMMYI WNGYAVIGKQ PKLTDGILEI 420 35 TIKAEEMLEK GPENEYSVDD ECLVKLLKGL CLKYLGRYQE AEBIFRSISA NEKKIKYDHY 480
LIPNALLELA LLLMEODRNE EAIKLLESAK ONYKNYSMES RTHFRIOAAT LOAKSSLENS 540 SRSMVSSVSL 40 Seq ID NO: 57 DNA sequence NM_006670.1 Nucleic Acid Accession #: Coding sequence: 1-927 (underlined sequences correspond to start and stop codons) Argectragia agractecca agacecease accagance agarteraea atractera agarteraea estadores en entradores estadores en estadores estadores estadores estadores estadores estadores estadores en estadores estadores estadores estadores estadores estadores en estadores estadores estador CAGTGCCCCG CGCTGTGCGA GTGCTCCGAG GCAGCGCGCA CAGTCAAGTG CGTTAACCGC 240 50 AATCTGACCG AGGTGCCCAC GGACCTGCCC GCCTACGTGC GCAACCTCTT CCTTACCGGC 300 AACCAGCTGG CCAGCAACCA CTTCCTTTAC CTGCCGCGGG ATGTGCTGGC CCAACTGCCC 360 AGCCTCAGGC ACCTGGACTT AAGTAATAAT TCGCTGGTGA GCCTGACCTA CGTGTCCTTC 420 CGCAACCTTA CACATCTACA AAGECTECAC CTGGAGGACA ATGGCCTCA GETTECTTECK 480 AATGGCACCCT GGGCTGAGTT GCAAGGTCTA CCCCACATTA GGGTTTCCT GGACAACAAT 540 ACTGGCACCCT GGCTGAGTT GCAAGGTCA CCCCACATTA GGGTTTCCT GGACAACAAT 540 CCCTGGGTCT GCGACTGCCA CATGGCAGAC ATGGTGACCT GGCTCAAGGA AACAGGGGTA 640 GTGCAGGGGAA AAGACCGGGT CACCTGTGCA TATCCGGAAA AAATGAGGAA TCGGGTCCTC 660 55 TTGGAACTCA ACAGTGCTGA CCTGGACTGT GACCCGATTC TTCCCCCATC CCTGCAAACC TCTTATGTCT TCCTGGGTAT TGTTTTAGCC CTGATAGGCG CTATTTTCCT CCTGGTTTTG 780 TATTIGAACC GCAAGGGGAT AAAAAAGTGG ATGCATAACA TCAGAGATGC CTGCAGGGAT 840
CACATGGAAG GGTATCATTA CAGATATGAA ATCAATGCGG ACCCCAGATT AACAAACCTC 900 60 AGITCTAACT CGGATGTCCT CGAGTGA Seq ID NO: 58 Protein sequence
Protein Accession #: NP_006661.1

Seq ID NO: 59 DNA sequence Nucleic Acid Accession #:

11 21 31 41 51

SZNSDVI E

NM 024022

MPGGCSRGPA AGDGRLRLAR LALVLLGWVS SSSPTSSASS FSSSAPFLAS AVSAQPPLPD 60 QCPALCECSE AARTVKCVNR NLTEVPTDLP AYVRNLFLTG NQLASNHFLY LPRDVLAQLP 120

SLRHLDLSNN SLVSLTYVSF RNLTHLESLH LEDNALKVLH NGTLAELQGL PHIRVFLDNN 180 PWVCDCHMAD MVTWLKETEV VQGKDRLTCA YPEKMRNRVL LELNSADLDC DPILPPSLQT 240 SYVFLGIVLA LIGAIFLLVL YLNRKGIKKW MHNIRDACRD HMEGYHYRYE INADPRLTNL 300

65

70

Coding sequence: 1-1362(underlined sequences correspond to start and stop codons) 51

41

5 ATGGGGGAAA ATGATCCGCC TGCTGTTGAA GCCCCCTTCT CATTCCGATC GCTTTTTGGC 60 CTTGATGATT TGAAAATAAG TCCTGTTGCA CCAGATGCAG ATGCTGTTGC TGCACAGATC 120 CTGTCACTGC TGCCATTGAA GTTTTTTCCA ATCATCGTCA TTGGGATCAT TGCATTGATA TTAGCACTGG CCATTGGTCT GGGCATCCAC TTCGACTGCT CAGGGAAGTA CAGATGTCGC 240 TCATCCTTTA AGTGTATCGA GCTGATAGCT CGATGTGACG GAGTCTCGGA TTGCAAAGAC 300 10 GGGGAGGACG AGTACCGCTG TGTCCGGGTG GGTGGTCAGA ATGCCGTGCT CCAGGTGTTC 360 ACAGCTGCTT CGTGGAAGAC CATGTGCTCC GATGACTGGA AGGGTCACTA CGCAAATGTT 420 15 ACCTTGCAGT GCACAGCCTG TGGTCATAGA AGGGGCTACA GCTCACGCAT CGTGGGTGGA 660 AACATGTCCT TGCTCTCGCA GTGGCCCTGG CAGGCCAGCC TTCAGTTCCA GGGCTACCAC 720 CTGTGCGGGG GCTCTGTCAT CACGCCCCTG TGGATCATCA CTGCTGCACA CTGTGTTTAT 780 GACTTGTACC TCCCCAAGTC ATGGACCATC CAGGTGGGTC TAGTTTCCCT GTTGGACAAT 840 CCAGCCCCAT CCCACTTGGT GGAGAAGATT GTCTACCACA GCAAGTACAA GCCAAAGAGG 900
CTGGGCAATO ACATCGCCCT TATGAAGCTG GCCGGGCCAC TCACGTTCAA TGAAATGATC 900
CAGCCTGTGT GCCTGCCCAA CTCTGAAGAGA AACTTCCCCG ATGGAAAGAT GTGCTGGACG 1020 20 TCAGGATGGG GGGCCACAGA GGATGGAGGT GACGCCTCCC CTGTCCTGAA CCACGCGGCC 1080 GTCCCTTTGA TTTCCAACAA GATCTGCAAC CACAGGGACG TGTACGGTGG CATCATCTCC 1140 CCCTCCATGC TCTGCGCGGG CTACCTGACG GGTGGCGTGG ACAGCTGCCA GGGGGACAGC 1200 25 GGGGGGCCCC TGGTGTGTCA AGAGAGGAGG CTGTGGAAGT TAGTGGGAGC GACCAGCTTT 1260 GGCATCGGCT GCGCAGAGGT GAACAAGCCT GGGGTGTACA CCCGTGTCAC CTCCTTCCTG 1320
GACTGGATCC ACGAGCAGAT GGAGAGAGC CTAAAAACCT GA

Seq ID NO: 60 Protein sequence Protein Accession #: NP_076927 30

MGENDPPAVE APFSFRSLFG LDDLKISPVA PDADAVAAQI LSLLPLKFFP IIVIGIIALI 60 35 LALAIGLGIH FDCSGKYRCR SSFKCIELIA RCDGVSDCKD GEDEYRCVRV GGONAVLOVF 120 TAASWETMCS DOWKGHYANV ACAOLGEPSY VSSDNLRVSS LEGOFREEFV SIDHLLPDDK 180 VTALHHSYYV REGCASGHVV TLQCTACGHR RGYSSRIVGG NMSLLSQWPW QASLQFQGYH 240 LCGGSVITPL WITAAHCVY DLYLPKSWTI QVGLVSLLDN PAPSHLVEKI VYHSKYKPKR 300 LGNDIALMKL AGPLTFNEMI QPVCLPNSEE NFPDGKVCWT SGWGATEDGG DASPVLNHAA 360 40 VPLISNKICN HRDVYGGIIS PSMLCAGYLT GGVDSCOGDS GGPLVCOERR LWKLVGATSF 420

GIGCAEVNKP GVYTRVTSFL DWIHEQMERD LKT

Seq ID NO: 61 DNA sequence NM 006475 Nucleic Acid Accession # 45

Coding sequence: 28-2538 (underlined sequences correspond to start and stop codons)

AACAGAACTG CAACGGAGAG ACTCAAG<u>ATG</u> ATTCCCTTTT TACCCATGTT TTCTCTACTA 60 TTGCTGCTTA TTGTTAACCC TATAAACGCC AACAATCATT ATGACAAGAT CTTGGCTCAT 120 AGTCCTATCA GGGGTCGGGA CCAAGGCCCA AATCATT ATGACAAGAT CTTGGCTCAT 120 50 ACCAAAAAGA AATACTTCAG CACTTGTAAG AACTGGTATA AAAAGTCCAT CTGTGGACAG 240 AAAACGACTG TTTTATATGA ATGTTGCCCT GGTTATATGA GAATGGAAGG AATGAAAGGC 300 AMANUACIU IIIIAITGA AIGITIGECZI GETTAIALUA UAALUUAAUG AATUAAAGG 300
TOCCAGGAG FITTIGECCAT TAACAATGIT AATGACATCT TAACAATGCAATGT GGGACATGT GGGAGCACCT GGG
ACAACGCAGC GCTAITTGCACCGGT AAATGAGGGT GAGGAGAG AATCOACGG AAAGGGATCC
400
TICACTTACT TICACCCGGT TAATGAGGCT TOGGACAACT TGGAT TICTIGA TATCCGTAGA
GGTTTIGGAGG CAACGTGAA TICTIGAATTACTGATGCTT TACATAGCAT CAACATGAATACAAT 500
AAAGGAATGT TAACCAATGGC TATAAAAAT GGCATGTTATTCTTCTTAATGTTAACAAT 500 55 TTGGGGCTTT TCATTAACCA TTATCCTAAT GGGGTTGTCA CTGTTAATTG TGCTCGAATC 660 60 ATCCATGGGA ACCAGATTGC AACAAATGGT GTTGTCCATG TCATTGACCG TGTGCTTACA 720 ATCAMINGGO ACCAMINIC AACAANIGG UNITOTAN I EATINGCO INTECTION 20 CAANTIGGTO ECTCAMITCO AGACTICATI GAGGCAGARA ATAACCTTIC ATCITITAGA 78 CCAGCTICCA TCACATOGG CATATTIGGG GCCTTCAGAA GAGACGGTCA CTTCACACTC 80 TITTIGCTCCCA CCAMIGAGGC TITTIGGGAA CCTCCACGAG GTGTCCTAGA AAGACGGTCA CTTCACACTC 80 GTGTGACAAAG TGCTTCCGA AGCTCTTTAG AAGTACCACA TCTTAAAATAC TCTCCAGTG 50 GTGTGACTCTA TATTGGGAGG AGCACTCTTT GAAACCCTCC ATCTAAAATAC TCTCCAGTG 50 TCTGAGTCTA TATTGGGAGG AGCACTCTTT GAAACCCTCG AAGAAATAC AATTGAGATA 100 65 GGATGTGACG GTGACAGTAT AACAGTAAAT GGAATCAAAA TGGTGAACAA AAAGGATATT 1080 GTGACAAATA ATGGTGTGAT CCATTTGATT GATCAGGTCC TAATTCCTGA TTCTGCCAAA 1140

CAAGTTATTG AGCTGGCTGG AAAACAGCAA ACCACCTTCA CGGATCTTGT GGCCCAATTA 1200 GGCTTGGCAT CTGCTCTGAG GCCAGATGGG AGATACACTT TGCTGGCACC TGTGAAATAAT 1260 GCATTTTCTG ATGATACTCT CAGCATGGTT CAGCGCCTCC TTAAATTAAT TCTGCAGAAT 1320 CACATATTGA AAGTAAAAGT TGGCCTTAAT GAGCTTTACA ACGGGCAAAT ACTGGAAACC 1380 ATCGGAGGCA AACAGCTCAG AGTCTTCGTA TATCGTACAG CTGTCTGCAT TGAAAATTCA 1440 ATCAAGCCAG CAGAGAAATC CCTCCATGAA AAGTTAAAAC AAGATAAGCG CTTTAGCACC 1560

TTCCTCAGCC TACTTGAAGC TGCAGACTTG AAAGAGCTCC TGACACAACC TGGAGACTGG 1620
ACATTATTTG TGCCAACCAA TGATGCTTTT AAGGGAATGA CTAGTGAAGA AAAAGAAATT 1680 CTGATACGGG ACAAAAATGC TCTTCAAAAC ATCATTCTTT ATCACCTGAC ACCAGGAGTT 1740

373

70

TTCATTGGAA AAGGATTTGA ACCTGGTGTT ACTAACATTT TAAAGACCAC ACAAGGAAGC 1800 AAAATCTTTC TGAAAGAAGT AAATGATACA CTTCTGGTGA ATGAATTGAA ATCAAAAGAA 1860 TCTGACATCA TGACAACAAA TGGTGTAATT CATGTTTGTAG ATAAACTCCT CTATCCAGCA 1920 GACACACCTG TTGGAAATGA TCAACTGCTG GAAATACTTA ATAAATTAAT CAAATACATC 1980
CAAATTAAGT TTGTTCGTGG TAGCACCTTC AAAGAAATCC CCGTGACTGT CTATACAACT 2040 5 AAAATTATAA CCAAAGTTGT GGAACCAAAA ATTAAAGTGA TTGAAGGCAG TCTTCAGCCT 2100 ATTATCAAAA CTGAAGGACC CACACTAACA AAAGTCAAAA TTGAAGGTGA ACCTGAATTC 2160 10 GAAGGTCGTT CTCAGTGAAA ATCCAAAAAC CAGAAAAAA TGTTTATACA ACCCTAAGTC 2580 15 AATAACCTGA CCTTAGAAAA TTGTGAGAGC CAAGTTGACT TCAGGAACTG AAACATCAGC 2640 ACAAAGAAGC AATCATCAAA TAATTCTGAA CACAAATTTA ATATTTTTT TTCTGAATGA 2700 GAAACATGAG GGAAATTGTG GAGTTAGCCT CCTGTGGTAA AGGAATTGAA GAAAATATAA 2760 UMAGATUAG UGAAA ITI ITI GAVITAGCE CCIGI GUITAA AUGATITAA AAAAATAA IAA ZIO CACCTITACA CCITTITICA CTIGACATTA AAAGTICTIGG CATACTITIGG AATCATTAG 2820 AGAAAAATCC TTOTCACCAG ATTCATTACA ATTCAAATCG AAGAGTIGTG AACGTITATC 2880 CCATTGAAAA GACCGAGCCT TOTATGTATG TTATGGATAC ATAAAATGCA CGCAAGCCAT 2940 TATCTCTCCCA TUGGAAGCTA AGTTATAAAA ATAAGTGCTT GGTGTACAAA ACTITITATA 3000 20 TCAAAAGGCT TIGCACATTI CTATATGAGT GGGTTTACTG GTAAATTATG TTATTTTTTA 3060
CAACTAATTI TGTACTCTCA GAATGTTTGT CATATGCTTC TTGCAATGCA TATTTTTTAA 3120 TCTCAAACGT TTCAATAAAA CCATTTTTCA GATATAAAGA GAATTACTTC AAATTGAGTA 3180 25 ATTCAGAAAA ACTCAAGATT TAAGTTAAAA AGTGGTTTGG ACTTGGGAA Seq ID NO: 62 Protein sequence:
NP_006466 30 MIPFLPMFSL LLLLIVNPIN ANNHYDKILA HSRIRGRDQG PNVCALQQIL GTKKKYFSTC 60 MUPELMINEL ELELLIVINIA ANNIHI IDALIA HISKURURUQU PNYCALQQILU INAAA FISILE 90
12 KNWYKKSIGO (KYTLVYESCO FYOMKMEGMIK GCRAVLPIBH VYGTUGINGA TITTQYSDAS 12 OKRUSELEGIKG SFTYFAPSNE AWDNLDSDIR RGLESNYNVE LLNALISHIMI NKRMLTKDLK 180
NGMIJESAVYN IDALEPINHYP NGVYTVNCAR I HIGHQIATIN GVYYLIDEVL TQIGTSIQDF 240
IEAEDDLSSF RAAAITSDIL EALGRDGHET LFAPTNEAFE KLPRGYLERF MGDXYASEAL 300 35 MKYHILNTLQ CSESIMGGAV FETLEGNTIE IGCDGDSITV NGIKMVNKKD IVTNNGVIHL 360 MKYHILINTLQ CSESMGGAV FETLEGNTIE IGCDGDSITY NGIKMYNKKD IYTNNGYHLI 360
LIQVLIPDSA KYULLAKIQ QTIFTDLVAQ LGLASALPED GEYTLLAPYN NAYSDDTLSM 420
VQRLLKLILQ NHLKYKVGL NELYNGQULE TIGGKQLRVY VYRTAVCIEN SKMEKGSKQG 489
KQRLIFTER STANDERS HELLENDER STANDERS SKAMEN SKAME 40 45 QEEVTKVTKF IEGGDGHLFE DEEIKRLLQG DTPVRKLQAN KKVQGSRRRL REGRSO Seq ID NO: 63 DNA sequence Nucleic Acid Accession # NM_020974 Coding sequence: 81-3080 (underlined sequences correspond to start and stop codons) 50 31 GGCGTCCGCG CACACCTCCC CGCGCCGCCG CCGCACCGC CCGCACTCCG CCGCCTCTGC 55 AGCCTGGCTA CCAAGGGGAA GGCAGGCAGT GTGAGGACAT CGATGAATGT GGAAATGAGC 360 TCAATGGAGG CTGTGTCCAT GACTGTTTGA ATATTCCAGG CAATTATCGT TGCACTTGTT 420
TTGATGGCTT CATGTTGGCT CATGACGGTC ATAATTGTCT TGATGTGGAC GAGTGCCTGG 480 60 AGAACAATGG CGGCTGCCAG CATACCTGTG TCAACGTCAT GGGGAGCTAT GAGTGCTGCT 540 AGAACAATGG COGCTUCCAG CATACCTGTG TCAACGTCAT GGGGAGCTAT GAGTGCTGCT 540
GCCAAGGAGGG GTTTTTCCTG AGTGACATC AGCACACCTG CATTCACCGC TCGGAGAGAGG 69
GCCTGAGCTG CATGAATAAG GATCACGGCT GTAGTCACAT CTGCAAGGAG GCCCCAAGGG 69
GCAGGCTGCC CTGTGAGTGC AGGCCTGGTT TTGAGCTGGC CAAGAACCAG AGGACTGCA 720
TCTTGACCTG TAACCATGGG AACGGTGGGT GCCAGCACTC CTGTGACGGAT ACAGCCGATG 780 65 GCCCAGAGTG CAGCTGCCAT CCACAGTACA AGATGCACAC AGATGGGAGG AGCTGCCTTG 840 AGCGAGAGGA CACTGTCCTG GAGGTGACAG AGAGCAACAC CACATCAGTG GTGGATGGGG 900 ATAAACGGGT GAAACGGCGG CTGCTCATGG AAACGTGTGC TGTCAACAAT GGAGGCTGTG 960 ATAMASCH GAAGGATCH TEGACAGGT TECACTIGAG THOTECTIT GGATTCACTC 1929
TCCAGTTGTA TGGGAAAGAC TGTAAAGAT TTGTATGAGT TGCACTCACTC 1929
TCCAGTTGTA TGGGAAAGAC TGTAAAGATA TTGTATGAGTC CCAGACCCG AATGGAGGTT 1939
GTGATCATT TGGAAAAGAC ATCGTGAGCCA GTTTTGACTG CGGCTGCAAG AAAGGATT 1449
GTGATCATT TGGAAAAGAC 70 GIGATCATTI CTGCAMAACA TICOTGGIGCA GITTITIACIJI CGGCTIGCAIG AAAGGATTIA 1140
AATTATIAKA GAATGGAGAG TICTITIGCACAG ATTITIGGATICA GITCICTITIG GATAGGACCT 1260
GIGACCACAG CTGCATCAAC CACCCTIGGCA CATTITIGCTITIG TIGCTTICCAAC CGAGGGTACA 1260
CCCTIGTATIGG CITCACCCAC TIGTIGGAGACA CCAATGAGTG CAGACACAACA CAGGAGGCT 1261
GICAGCAGGT CTGTGTGAAC ACAGTGGGCA GCTATGAATG CCAGTGCCAC CCTGGGTACA 1380
ACCTCCACTG GAATAAAANA GACTGTGTGG AAGTGAAGGG CGTCCTGCCC CACAGTGTCT 1404
CACCCCCGTGT GTCCCTCCCC CACAGTGTTCT 1404
CACCCCGTGT GTCCCTGCAC TICCGGTAAGA GTGGTGGGAGG AGACGGGTGC TTCCTCAGAT 1500 75

GTC ACTCTGG CATTCACCTC TCTTCAGATG TCACCACCAT CAGGACAAGT GTAACCTTTA 1560 AGCTAAATGA AGGCAAGTGT AGTTTGAAAA ATGCTGAGCT GTTTCCCGAG GGTCTGCGAC 1620 AGCTAAATGA AGGCAAGTGT AGTTTGAAAA ATGCTBAGET UTTTCCCCAG GGTCTGCCAG. 1820 CAGCACTACCA QAGGAAGACCA CAGCTCAGTAA AAAGGAGGCT COCCTACGTA AAGCCTTACAT 1890 GCAGCTCTGG CAAGCAAGTC CCAGGAGCCC CTGCCCGACCC AAGCACCCCT AAGGAANTGT 1740 TTATCACTGT TAGGTTTGAG CTGAAACTA ACCAAAAGGA GGTGACACCCT CATGGAAATGT TAGC 1890 TGAGCTGCCA CGTAAAAGGA ACCGAGAAAGC GGCTCCGTAA AGCCATCCGG ACGCTCAGGAA 1860 AGGCCGTCCA CAGGGAGCAG TTTCACCTCC AGGCTCAGGACTGTAGACCTC GACGTGGGAT 1890 AAAAGCCTCC CAGAACATCT GAACGCCAGG CAGAGTCCTG TGAGTGGGC CAGGGTCATT 1980 CAGGAAAACCA ATGTGTCAGTTGCAGGCTG GGACCTTATTA TGATGGAGCC CAGGATACGT 1980 CAGGAAAACCA ATGTGTCAGTTGCAGGCTG GGACCTTATTA TGATGGAGCAC CGAGAACGCT 2040 10 GCATTTTATG TCCAAATGGA ACCTTCCAAA ATGAGGAAGG ACAAATGACT TGTGAACCAT 2100 GCCCAAGACC AGGAAATTCT GGGGCCCTGA AGACCCCAGA AGCTTGGAAT ATGTCTGAAT 2160 GET AL MONTET ATTOCK ALC'T GETRALTATT CINCADATGE CITTIGEACCT TG CALGETT T 220
GIGCATIGG CACGTICCAG COTGAACCT GIGCAACTTG GICTIGEACCT TG CALGETT T 220
GICCTIGGC ACCATICCAG COTGAACCTG GIGCAACTTG GICTICCCC GIGTIGAGGAGGA 230
GICCTIGCCAC CALACATCAG GIGAGCTACTT CCTITICAGGA CTGTGAAACC AGAGTICAAT 2340
GITCACCTGG ACATITICTAC AACACCACCAC TACTACCCGAT TATTGGTTGC CCAGTGGAGA 2400 15 CAT ACCAGGC TGAATTTGGA AAAAATAATT GTGTTTCTTG CCCAGGAAAT ACTACGACTG 2460 ACTTTGATGG CTCCACAAAC ATAACCCAGT GTAAAAACAG AAGATGTGGA GGGGAGCTGG 2520
GAGATTTCAC TGGGTACATT GAATCCCCAA ACTACCCAGG CAATTACCCA GCCAACACCG 2580 AGTGTACGTG GACCATCAAC CCACCCCCA AGCGCCGCAT CCTGATCGTG GTCCCTGAGA 2640 20 AND STAULIO MELLOADE CASCELLA AND SCIENT TO STATE OF THE 25 TCAAGGCTCT GTTTGATGTC CTGGCCCATC CCCAGAACTA TTTCAAGTAC ACAGCCCAGG 3000 AGTCCCGAGA GATGTTTCCA AGATCGTTCA TCCGATTGCT ACGTTCCAAA GTGTCCAGGT 3060 AGTECCOAGA GATGTTTCCA AGATCGTTCA TECCOATTIGET ACGTTCCAAA GTGTCCCAGGT 3690
TITTIGGAGACTTACAAATIG CTCAGCCCAC GTGCCACTCA ATACAAATGI TCTCCTTACA ATACAATGI CTCCTCTACA ATACAATGI CTCCTCTACA ATACAATGI CTCCTCTACA ATACAATGI CTCCTACAATGI CTCCTAATGI CTCCTACAATGI CTCCTACAATGI CTCCTACAATGI CTCCAATGI CTCCTAATGI CTCCTAATGI CTCAAATGI CTCCTAATGI CTCAAATGI CTCCTAATGI CTCAAATGI CTCAATGI CTCAATGI CTCCTAATGI CTCAATGI CTCCTAATGI CTCAATGI CTCCAATGI CTCCTAATGI CTCAATGI TGTAGTGGAA AGGAGGCCAC AGAATAAGCT GCTTATTCTG AAACTTCAGC TTCCTCTAGC 3480
CCGGCCCTCT CTAAGGGAGC CCTCTGCACT CGTGTGCAGG CTCTGACCAG GCAGAACAGG 3540 35 CAAGAGGGGA GGGAAGGAGA CCCCTGCAGG CTCCCTCCAC CCACCTTGAG ACCTGGGAGG 3600 ACTCAGTTTC TCCACAGCCT TCTCCAGCCT GTGTGATACA AGTTTGATCC CAGGAACTTG 3660 AGTTCTAAGC AGTGCTCGTG AAAAAAAAA GCAGAAAGAA TTAGAAATAA ATAAAAACTA 3720 AGCACTTCTG GAGACAT Seq ID NO: 64 Protein sequence:
NP_066025.1 40 41 51 45 MGVAGRNRPG AAWAVLLLLL LLPPLLLLAG AVPPGRGRAA GPQEDVDECA QGLDDCHADA 60 MGYAGRNRPG AAWAVLLLL LIPPLILLAG AVPPRIGRAA GPGEDVDECA (GLDDCHADA 60 LCQNTPTSYK CSKEPGYOGE GRQCEDIDEC GNBLKOGCVIP LCLNRGMYR CTCPDGMLA 120 HDGHNCLDVD ECLENNGGCQ HTCVNYWAGSY ECCKEGFFL SDNGHTCHR SEGLECMKK 180 DHGCSHICKE APRGSVACEC RYGFELAKNQ RDCLTCNHG NGGCQHSCDD TADGPECSCH 240 PCYKMHTDGR SCLEREDTVL EVTESNTTSV VDGDKRVKRR LLMETCAVNN GGCDRTCKDT 300 50 STGVHCSCPV GFTLQLDGKT CKDIDECQTR NGGCDHFCKN IVGSFDCGCK KGFKLLTDEK 360 STOVRESSEY OF FOLIABLE CONDECTION REGISTED THE YEAR SECRET REGISTED TO STOUR SECRET REGISTED THE SECRET RE 55 PEAGRTSCFP CGGGLATKHQ GATSFQDCET RVQCSPGHFY NTTTHRCIRC PVGTYQPEFG 780 KINCVSCFGN TITDFDGSTN ITQCKNRRCG GELDDFTGYI ESPNYFONYF ANTECTWITN \$40 PPPFCRRILIV YPEIFLIPIED DCGGYL/VMRK TSSNSVTIY ETCYTREFI AFTSKKLW 500 (GPKSNEGNS AKGFÇYYVT YDEDYGELIE DIVRDGRLYA SENNIGELIKD KKLIKALFDW 500 60 LAHPONYFKY TAQESREMFP RSFIRLLRSK VSRFLRPYK Seq ID NO: 65 DNA sequence Nucleic Acid Accession #: NM_007210 65 Coding sequence: 1-1869 (underlined sequences correspond to start and stop codons) 51 70 GTGCTCTTCC TCTTCCTCCT GCATAGGGAT GTGAGCAGCA GAGAGGAGGC CACAGAGAAG 120 CCGTGGCTGA AGTCCCTGGT GAGCCGGAAG GATCACGTCC TGGACCTCAT GCTGGAGGCC 180 ATGAACAACC TTAGAGATTC AATGCCCAAG CTCCAAATCA GGGCTCCAGA AGCCCAGCAG 240 ACTCTGTTCT CCATAAACCA GTCCTGCCTC CCTGGGTTCT ATACCCCAGC TGAACTGAAG 300

CCCTTCTGGG AACGGCCACC ACAGGACCCC AATGCCCCTG GGGCAGATGG AAAAGCATTT 360

GTGATCATTG TGTTCCACAA CGAAGCCTGG TCCACACTGC TGCGAACAGT GTACAGCGTC 600 CTACACACCA CCCCTGCCAT CTTGCTCAAG GAGATCATAC TGGTGGATGA TGCCAGCACA 660 GAGGAGCACC TAAAGGAGAA GCTGGAGCAG TACGTGAAGC AGCTGCAGGT GGTGAGGGTG 720 GTGCGGCAGG AGGAGCGGAA GGGGTTGATC ACCGCCCGGC TGCTGGGGGC CAGCGTGGCA 780 5 CAGGCGGAGG TGCTCACGTT CCTGGATGCC CACTGTGAGT GCTTCCACGG CTGGCTGGAG 840 CCCCTCCTGG CTCGAATCGC TGAGGACAAG ACAGTGGTGG TGAGCCCAGA CATCGTCACC 900 COCCENCENT OF THE ACTION AND ACTION OF THE ACTION OF THE ACTION AND ACTION OF THE ACTION AND ACTION OF THE ACTION AND ACTION OF THE ACTION AND ACTION OF THE ACTION ACTION OF THE ACTION ACTION OF THE ACTION ACTION OF THE ACTION ACTION OF THE ACTION ACTION OF THE ACTION OF THE ACTION OF THE ACTION OF THE ACTION OF THE ACTION OF THE ACTION OF THE ACTION OF THE ACTION OF THE ACTION ACTION OF THE 10 GGGGAGAACG TGGAAATGTC CTTCCGGGTG TGGCAGTGTG GGGGCCAGCT GGAGATCATC 1200 CCCTGCTCTG TCGTAGGCCA TGTGTTCCGG ACCAAGAGCC CCCACACCTT CCCCAAGGGC 1260 ACTAGTGTCA TTGCTCGCAA TCAAGTGCGC CTGGCAGAGG TCTGGATGGA CAGCTACAAG 1320 ACTAMIBITA TIGLICECAN TEAAGIIGASC CIBECANAGG IL TIGLITUGA CAGCITALANA 1320
AGATITTICA TAGGAGAAN TITCGCAGGAG GAAAAAGTGG CEAAGAGAGAA TACTCTCGGT 136
GACATITCGG AACGACTGCA GCTGAGGGAA CAACTGCACT GTCACAACTT TITCCTGGTAC 1440
CTGCACAATG TCTACCCAGA GATGTTTGTT CCTGACTGA CGCCCACCTT CTATGGTGCC 1500
ATCAAGAACC TCGGCACCAA CCAATGCCTG GATGTGGGTG AGAACAACCG CGGGGGGAAG 1560 15 CCCCTCATCA TGTACTCCTG CCACGGCCTT GGCGGCAACC AGTACTTTGA GTACACAACT 1620 CAGAGGGACC TTCGCCACAA CATCGCAAAG CAGCTGTGTC TACATGTCAG CAAGGGTGCT 1680 20 CTGGGCCTTG GGAGCTGTCA CTTCACTGGC AAGAATAGCC AGGTCCCCAA GGACGAGGAA 1740 TGGGAATTGG CCCAGGATCA GCTCATCAGG AACTCAGGAT CTGGTACCTG CCTGACATCC 1800 CAGGACAAAA AGCCAGCCAT GGCCCCCTGC AATCCCAGTG ACCCCCATCA GTTGTGGCTC 1860 25 TTCTAGAAAT AGAGGCTCCC AAAGTAGGGA AGGCAGCTGG GGGAGGGTTC AGGGCAGCAA 2160 TGCTGAGTTC AAGAAAAGTA CTTCAGGCTG GGCACAGTGG CTCATGCCTG AAATCCTAGC 2220 ACTITIGGGAA GACAATGTGG GAGAATGGCT TGAGCCCAGG AGTTCAAGAC CGGCCTGAGC 2280 ACTITIOGRA VALAA IGIGG GAGAT TOUCH TOAGCCLAGU AGI LAADAA CUGCETGATE 2200
ACCATAGTGA GAGTECCATE TTACGCCAC CECTCCCCCC GGACAAAAAA AAACGTGGTG 2400
ATGGTGGCTT ATGCCTGTAG TGGCAGCTAC TCAGAAGGCT GAGTGGGAA GATTGCTTGT 2400
TCCCCGGAGG TTGAAGCTAC AGTGAGCCTT GATTGTGTCA CTGCACTCCA GCCTGGGCAA 2460
CAGGTAAGACTCTGTCTCAA AAAAAAAACA AAAAAGAAGA AGAAAAGTACTTCTACAGCC 2520 30 ATGTCCTATT CCTTGATCAT CAAAAGCACC TGCAGAGTCC AGTGAAATGA TATATTCTGG 2580 CTGGGCACAG TGGCTCACAC CTGTAATCCT AGCACTTTTGG GAGGCCAAGG CAGGTGGATC 2640 35 ACCTGAGGTC AGAAGTTTGA AACCAGCCTG GACTACATGG TGAAACTCCA TCTCTACTAA 2700 AAGTACAAAA ATTAGCTGGG CATGATGGCA CGCACCTGCA GTCCCAGCTA CTTGGGAGGC 2760 TGAGGCAGGA GAATCACTCG AACCCAGGAG GCAGAGGTTG CAGTGAGCCA AGACAGCACC 2820 ATTGCACCCC AGCCTGAGCA ACAAGAGCGA AACTCCATCT CAGGAAAAAA AAAAAAAAA 2880 40 Seq 1D NO: 66 Protein sequence:
NP_009141 45 21 31 41 51 MRLLRRRHMP LRLAMVGCAF VLFLFLLHRD VSSREEATEK PWLKSLVSRK DHVLDLMLEA 60 MNNLRDSMPK LQIRAPEAQQ TLFSINQSCL PGFYTPAELK PFWERPPODP NAPGADGKAF 120 QKSKWTPLET QEKEEGYKKH CFNAFASDRI SLQRSLGPDT RPPECVDQKF RRCPPLATTS 180 50 VIIVFHNEAW STLLRTVYSV LHTTPAILLK EIILVDDAST EEHLKEKLEQ YVKQLQVVRV 240 VILVERIERA W SILLRIYYSY LEHIFALLK EILYDDAST BEHLKEKLEG YYKQLQVYRV 240
VRQEEKCLI FARLLGASVQ AGEVLTILDIA KEEFEHGWLE PLIALBAEK TOVYSPDIYY 300
IDINTIFEK FVQRGAVISIS GNFDWSLTEG WELLPPHEKG RIKDETYPK STFFAGGLES 360
WESTFERA KYQRGAVISIS GNFDWSLTEG WELLPPHEKG RIKDETYPK STFFAGGLES 360
TSYJARROVR LAEWMDSYK KIFYRRILGA AKMAQEKSEG DISERLQIRE QLICHINFSYY 480
TSYJARROVR LAEWMDSYK KIFYRRILGA AKMAQEKSEG DISERLQIRE QLICHINFSYY 480
TSYJARROVR LAEWMDSYK KIFYRRILGA AKMAQEKSEG DISERLQIRE QLICHINFSYY 480 55 QRDLRHNIAK QLCLHVSKGA LGLGSCHFTG KNSQVPKDEE WELAQDQLIR NSGSGTCLTS 600 QDKKPAMAPC NPSDPHQLWL FV Seq ID NO: 67 DNA sequence 60 cleic Acid Accession#: NM_014112 Coding sequence: 600-4484 (underlined sequences correspond to start and stop codons)

CTCCCCCCC CAATAATCCA AGATCAACTC TOCAAACAAC AGAAGACCGT TEATGCCTTT 420
GGCCCCCCGG CACCACTT TCGGGCTGCC AGAGGGGTGTC TCATGCGTTT 420
GGCCCCCCGG CACCACTAT TCGGGCTGCC AGAGGGGTGTC TCATGCAGTAT ATCAACAACAAT 48
GTACAGATCA GCTCTCAAAA TGTCTTCGTG TGTCTCTGAG CGTCTTCTAA GACAATTCGCA 540
TTAGGCCTCCT GCTAGTTGAC TAATGAATT AATAATTGTA AAAAGACACTC TAAAGCACC 600
TGCCTTATGAA AGTCAATGCT GGGTATGATT TTACAAATTAT GGTCCGGAAA AAAGACCCCC 600
CTCTGAGAAAA GGTCAATGCT GGGTATGATT TTACAAATTAT GGTCCGGAAA AAAGACCCC 600
CTCTGAGAAAA GGTCAATGCT GAAGGCCAGTACTC GGAGCCTATA GGTCAGAAAA 730

GCAAGGTATC TGGAAAGAAC AAAGAATTCT CTGCAGATCA GATGTCAGAA AATACGGATC 780

37

65

70

AGADITANTE (INCANACIA ANTICALIANDA AUGANCIA) NO LITUCATURI L'ADARTOCI.

***TICTAGOCA TAAGAAGGE CITACAATGE CASTICTIGA TORAGAGGET GECTICAATT **

***TICTAGOCA TAAGAAGGE CITACAATT CONTICTURE CECTATATGAG GITACAGACA **

***ATGAAGACCE CAGTAAGGGA GGAAACTTTIC CETCATTIC GEOTATAGAGC TIGACAGACA **

***CAGTACTURE CONTICTURE CONTICTURE GEOTATAGAGC TIGACAGACA **

**CAGTACTURE CONTICTURE AGACTEGTICA AGCCAATTGT CAAGGTTTGA GCCCAGTTTC AGTGGCCTCA AAAAACCCAC 1200 AAGTIGCETTC AGA TGGGGGGT GTAAGACTGA ATAAATCCAA AACTGACTTA CTGGTGAATG 1260
ACAACCCAGA CCCGGCACCT CTGTCTCCAG AGCTTCAGGA CTTTAAATGC AATATCTGTG 1320 10 GATATGGTTA CTACGGCAAC GACCCCACAG ATCTGATTAA GCACTTCCGA AAGTATCACT 1380 UMA JUDULA EL JACUSCAAC GACCECACA ATCTUALLA GEACHICUA AAGTATCACH TAGGACTIGCA TAACCGCACA GAGCAAGATA CTGAGCTIGGA CAAGCAAAAC TIGGOCCTTC 1404 ATAACATIGGT GCAGTICAGC CATTICCAAG ACTICCAGAA GGTCAACCGT TCTGTGTTTT 150 CTGGTGTGCT GCAGGACATC AATTCTTCAA GGCCTGTTTT ACTAAATGGG ACCTATGATG 1560 TGCAGGTGAC TTCAGGTGGA ACATTCATTG GCATTGGACG GAAAACACCA GATTGCCAAG 1620 15 GGAACACCAA GTATTTCCGC TGTAAATTCT GCAATTTCAC TTATATGGGC AACTCATCCA 1680
CCGAATTAGA ACAACATTTT CTTCAGACTC ACCCAAACAA AATAAAAGCT TCTCTCCCCT 1740 CCTCTGAGGT TGCAAAACCT TCAGAGAAAA ACTCTAACAA GTCCATCCCT GCACTTCAAT 1800 CCAGTGATTC TGGAGACTTG GGAAAATGGC AGGACAAGAT AACAGTCAAA GCAGGAGATG 1860 ACACTCCTGT TGGGTACTCA GTGCCCATAA AGCCCCTCGA TTCCTCTAGA CAAAATGGTA 1920 ACACTICACT TOGGTALTACTICATION AND ATTECCTION TOGGTACA TO ACACTICACT TOGGTACATION AND ATTECCTION AND ATTACTICATION AND ATTECCTION AND ATTACTICACT TOGGTACACT AND ATTACTICACT ATTACTICAC 20 AGGACTTCTC CAGCAAGGGA GCCGAGGATA ATATGGTAAC GAGCTATAAT TGTCAGTTCT 2220 25 GTGACTTCCG ATATTCCAAA AGCCATGGCC CTGATGTAAT TGTAGTGGGG CCACTTCTCC 2280 GTCATTATCA ACAGCTCCAT AACATTCACA AGTGTACCAT TAAACACTGT CCATTCTGTC 2340 CCAGAGGACT TTGCAGCCCA GAAAAGCACC TTGGAGAAAT TACTTATCCG TTTGCTTGTA 2400
GAAAAAGTAA TTGTTCCCAC TGTGCACTCT TGCTTCTGCA CTTGTCTCCT GGGGCGGCTG 2460 UMAGNIZIOS NOTELANCAT CALTISCUTE AGTOTICATE CACCACCET GAGTIAGATE 329

TACTICITETT TACATATGAA AGTOTICACAT GATOCACAC ATTOGATOTA AACAAGAAA 2380
CAAATCACCTT TACATATGAA AGTOTICACAG AGTOCCAAGC ATTOGGAATOT AAACAAGAAA 2380
CAAATCACCT GCAAGGAATCG GATGGGCAGC AGTCTGTCAA GGAAAGCAAAA GAACAACTCAT 2840
TACCAAATC TACATTCATAT ACCCAAATGGG AAGAAGAGAAT TITCCGGAACCAT TACAGGAGAGA 2700 30 CACACAGCTG CTACAAATGC CGTCAGTGCA GTTTTACAGC TGCCGATACT CAGTCACTAC 2760 TGGAGCACTT CAACACTGTT CACTGCCAGG AACAGGACAT CACTACAGCC AACGGCGAAG 2820 35 AAGCAAGCCT GGGGCTGCTG ACGCCTGTGT CTGGCACCCA AGAGCAGACA AAGACTCTAA 3120 40 GGGATAGTCC CAATGTGGAG GCCGCCCATC TGGCGCGACC TATTTATGGC TTGGCTGTGG 3180 45 GGGGCAGCAA TGAGGAGCAA GTCAATGGAA GCCCGTTAGA GAGGAGGTCA GAAGATCATC 3600 TAACTGAAAG TCACCAGAGA GAAATTCCAC TCCCCAGCCT AAGTAAATAC GAAGCCCAGG 3660 GTTCATTGAC TAAAAGCCAT TCTGCTCAGC AGCCAGTCCT GGTCAGCCAA ACTCTGGATA 3720 50 STEENAMM INVESTIGATE THE CACHTE AGAINAMAN TECENGRIA A STACTEGO 378 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGTACTEGO 478 A AGGACTEGO CTGATTGGCT GCGGTTCTGG AGTAAATATA AGCTCTCCGT TCCTGGGAAT CCGCACTACT 4020 55 TGAGTCACGT GCCTGGCCTA CCAAATCCTT GCCAAAACTA TGTGCCTTAT CCCACCTTCA 4080 ATCTGCCTCC TCATTTTTCA GCTGTTGGAT CAGACAATGA CATTCCTCTA GATTTGGCGA 4140 TOAGCATTE CAGACCTIGG COACTIGGA ACGGTGCCTC CAGAGGAGAAA GTTGATGAGAGGCAC 1800
CACCAAATGT AAAAAATGAA GGTCCCTTGA ATGTAGTAAA AACAGAGAAA GTTGATGATAA 4260
GTACTCAAGA TGAACCTTCA ACAAAATGTG TGCACCTGTGG CATTGTCTTTCTGTGTGATGAAGAA 1260
TGATGTAGCATTGACTTTCA ACAAAATGTG GTCACCTGTGG CATTGTCTTTCTGTGTAGATGAGAA 1230
TGATGTATGCTTTGCATATG AGTTGCCATG GTGACAGTGG ACCTTTCCAG TGCAGCATAT 4380 60 GCCAGCATCT TTGCACGGAC AAATATGACT TCACAACACA TATCCAGAGG GGCCTGCATA 4440 GGAACAATGC ACAAGTGGAA AAAAATGGAA AACC<u>TAA</u>AGA GTAAAACCTT AGCACTTAGC 4500 ACAATTAAAT AGAAATAGGT TTTCTTGATG GGAATTCAAT AGCTTGTAAT GTCTTATGAA 4560 65 TTATAAAGAA AGAGACCAAA ACTGTCTAGA ATTTGAAAGG GTTTACATAT TATTATACTA 4860 70 75 CCACACATGT ACCCATTITA AAAAACAATG TCCTCGATGC TTCTGTAGTG ATTTCATTTT 5280 AGCCAGGTAT TICTTTCTTG TGTGTGATGA ACCAGTATGG ATTTGCTTTT CTAAGCCTCC 5340 TGTTGGTTAC TAATCTCACT TGGCACATTA TAACTAAAGG AATCCCCTCA ATTCAAAAGC 5400

AGAGTGATGC TGCAGAACTA AATCATAAGG AGGAACATAG CTTGCATGTT CAAGATCCAT 840

ATAGATGGAT ACAAATGTCA GACCGTGGGT TTAATTTGTT TAGAACACAT GGCATTTCTT 5460 CACAAGGTAA CCTGCTGTAT TTATTTATTT TCTTTTGGTT AAATATAATT TCCAAACTTT 5520 GTGGTCAGGC AGCGTCTAAG GTTACGTTAC CACAGACTGA CAGTTGGTAT ATGTACCAGC 5580 CAATCCCTTC ATTAAATGTA TACAGATITA GTTAAGTAGC ATTAAATAGG ATTCTTAGAA 5640 5 GTATGTCCTC ATAGAACTIT TAATACTTAA GGCTTTGTAA AAACTATCCA TGAAGGGAAA 5700 GCTCCTCAGC ATAACTGCTC AGGGAAATAGCTGTAAACTGAACATTA AATAATTGGT 5700 TAAAGGTGGT GTTAGTCGAG CCTCAATGCT TGCTACAAGG ATGATATATACTAAGGACTGAC 5820 TTTAATAATT TGCATTATAT TGTCCCAACC AGTAGTTTAT TTTTTGCCAC GGAGATGTAG 5880 AAGATATTAC AAGCTACTGG ATGCACTGTC AGATTAACTT ATTTCATTAA AGAAGTTGGG 5940 10 AGAACAAATA GGAAAAAAA AACTTATTTT TCTAGTAAAT ATTAATGTAT TACATTTCAA 6000 ATAATGGTGC CTGACATATT GAATAATTAT TTTCTACAGT GTACGTATGC AACAAAGATA 6060 TTCCATCATG CATTAGAGTC AGTTCTGGCT CTGCCTAGCT GTTTACATTT GCAAATGTAG 6120 CAAACAAGGT AATGAAGCAA CTATTTCTAT TGCAGTAGAT ATCCTTTTGT GTGTGTGTGT 6180 GTGCATTAAA GTTGTAAACG GTAACATGAA ACAAATGAAA GTTCTTTGCTA TAATGGTATG 6240 GAAAACAAGA AGGAAATGAA AATATTTTTA TGCCTACTTA GGAAAAAAAG GGTAGCACTT 6300 15 ATTCATTCCA AGTACTTTTT TTTTTTTAAT TTTTAAGCTC TTAACTCACA TTGTTATGCT 6360 TAAGATGATA AACATATATC CTCTTTTTAT TGCTTTGTCT ATGTTTCATA TGAAACATTT 6420 CAGAAATTAT TITGATAAGT GTTGCTGGAA TCTGCAACGC TGATTTTTT TTGCATTCTG 6480 TAGTCGCATT TGCACTCCAT TTTTACATTA ATTCGCAGTT GCTTTGTATC ATTGTTTTGT 6540 20 TTGGGTTTTG TTTCTTTTC ACAGTGCCGG GTCTTCGTTT CTTAAAGTTG GATGGCAGGT 6600 AGAGTTCAAC CAGTTCGTGA CTGTTGTAGC GAATGAAGTT AAAAAAATGT CTTTCTGATG 6660 TTGTGTTGTC ATTTTCATTT TTGCATTTTTTTGTTTGCAT ATTAAAAAAA GAGAAAAGAG 6720 AAAGCAAGAG ACAGAAATCA GGACTAAGTC CTCTGCTTCA GTTTCATTGT TAACGGGCCT 6780 TATTCTGATC TCACCTGTCG CGTAGCTCTA ATATTCACAT AAACTGAAAT AAAGAAGTGG 6840
AATGAGGAGC TITGACATTC AAATTATGTG ATGTAATTTA TCTTCCTTAG GAATTTTGAT 6900 25 GGATGCATCT CAAAATGTAT AGCCAGACTT GAGAGGTGAC AATTAAAGAT CTAAAAAAGA 6960 GAGOAGATTC COCCAACAA CAATATTAA TITTICTITAGT AAAAAGAATA ACAGAATGGA 7020 TOGTIGGCAAT CCTTAAGGAA CAATATCTAT GTGGACTIGGT TAAATCAGGA AACACCAGA 7020 AGTITIGGTTA ACTIGGGCAA TATGACAAGT ATTACTITTIT GGGCAAAACT ACTCATTAAG 7140 CAATITICTC TAGTGTGTGG ACCACAATAG GTGCTTTATT TTTIGGCATGT ATGCCTTTIT 7200 30 ATTITICATTC AATTITITIT TITTCTCAGA CAGACATAGT AGTATCAACT AGCATTGGAA 7260 AATACATATC ACTATTCTTG GAATATTTAT GGTCAGTCTA CTTTTTAGTA AAATATTTTT 7320 CATTTTTTGC TITCATTATT ATACATATTT TGGTGGAGAA GAGGTTGGGC TTTTTTGAAA 7440 35 GAGACAAAAA TTTATTATAA CACTAAACAC TCCTTTTTTG ACATATTAAA GCCTTTATTC 7500 CATECICICA GATATATAT ANA MITATITATITATITA AGAITTCIC AATIATITTA 759 TCTTAAATIG TGATITTAAA CAGGCTATATA TGGTACGGAA CTITITITATA TAGGAGAATIT 759 CATGATGATT TAGGAATITT CICICITIGGA AAAGGCTICC CCTGTGATGA AAATIGATG 7580 CAGGATAAA TIGTGTGCCA TITAAAAACT TAAAATITATI TGTGTATATI 7740 40 CTAAATTGAG CTTTGGATCA AACTTTAGGC CAGGACCAGC TCATGCGTTC TCATTCTTCC 7800 TTTTCTCACT CTTTCTCTCA TCACTCACCT CTGTATTCAT TCTGTTGTTT GGGATAGAAA 7860 AATCATAAAG AGCCAACCCA TCTCAGAACG TTGTGGATTG AGAGAGACACTACATGACTC 7920 CAAGTATATG AGAAAAGGAC AGAGCTCTAA TTGATAACTC TGTAGTITCAA AAGGAAAAGA 789 GTATGCCCAA TTCTCTCTAC ATGACATATT GAGATTTTT TTAATCAACT TTTAAGATAG 8940 45 TGATGTTCTG TTCTAAACTG TTCTGTTTTA GTGAAGGTAG ATTTTTATAA AACAAGCATG 8100 GGGATTCTTT TCTAAGGTAA TATTAATGAG AAGGGAAAAA AGTATCTTTA ACAGCTCTTT 8160 GTTGAAGCCT GTGGTAGCAC ATTATGTTTA TAATTGCACA TGTGCACATA ATCTATTATG 8220 ATCCAATGCA AATACAGCTC CAAAAATATT AAATGTATAT ATATTTTAAA ATGCCTGAGG 8280 AAATACATTI TICTIAATAA ACTGAAGAGT CCAGTTATGG CTATTAAAAT AAATAATTATGC \$800
CCCCTGTTGT GTGGGTGCAA ACACTACAAA AGTGACGGGT CTTGGAACTGCT GTGAACTGCT \$900
CCCCTGTTTTA GTAAATAAAA TTAATGCATT TCTAGAGGGG GAATATCTGC CATCCAGTGG \$900
TGGAAATGTGG AGGTAAAGAA GCTGGTGGTCT GCGTTCTGTCC GTGTATGCCA GCCTTTTGCC \$520 50 TTA AGTTGAG AGGAGGTCAA CTTTAGCTAC TGTCTTTGGT TTGAGAGCCA TGGCAAAAAA 8580 AAAAAAGAA AAAAAGATCA AGTCGTCTTT GGTGAGCCAG TAAGGTGAAA GCTTGCTGAC 8640 55 TGTCCAAGGC ACAAGAGAAA ATTGAGGAAT TGAAATGCAA CCTGAGTATC AAACTAAATA 8700 TTCTAATCAA AGGTAGGTAC TGTTAGGTGG AATTCTATCA GCAGGCAACT GCAAATGAGA 8760 AGAAGATAGA AGGACGCCCG TCGGGACTTT GGAGGGCATT GTTATTTTCC CAAAGAAAGA 8820 AGMANIANA AGNACIACUS QUORNETTI DE AGNACACTE CTITTEGITT TICAGTACTE 8820 CGGCCAAGGA CAGTAGCTAG ATTCTTTGC AGNACACTE CTITTEGITT TICAGTACTE 8840 ATTCTTAGACA CATTAGTAGA CATTAGTAGA ACTAGTAGA ATTCTTAGAGA CATTAGTAGA ACTAGTAGA ATTCTTAGG CAGAAGTATG TCAGATAGTATGT 9000 AGTTAATTGA CATTAGTAGAA ACTTCTTAGAA TATTCTAGGA CAGAAGTATGT TOOR 60 CACATGAAGA AAATGTGAAA TTCAAGAGTA ATCCACACGT GAGAAACTAG ACAATGTACA 9060 TTCATGTGTT CTCTTGAAAG GAAAGGGAGA GCTGTAAGCT TCACTCTGTC CTACACCGGA 9120 GAAAAGCAGG AATAACTITA CCOTGGAAAT AATGITTAGC TITTATCAGA GAAAATTGTC 9180 CTTCTAGAGC ATAGAGTCCC AAAACTCAAT TCTGGTTTTC CCCTGTTTTT TTTTTTTTT 9240 65 TITTICCCAA CATATGAACT GCAGCATATC ACTITTICTT TITGTGCCTC AGGTTCCTCA 9309 CGTAGAAAT TGAAAAATAT ATGTATTAATA AAATATATIA A TAATAAG AGGTACAG TAGTAAGTA 79420 CGTACTTGTTT GTAAAGCACT TTGAGATCCT TGGTTGAAAG GCCCATAGG AGGTACCAAGT 9420 ATTATTATGT GGCCAAGGGG GTTATTTAAA CTGTCAGTTC CCAAAGGCCA GGAAAGGTTG 9480 GGGTCATTTT TCTTAAAGAC GAGCTGTAAA TATCAACTAG GCAGCCAATA GTGTTGACTA 9540 70 75 TCTTACAACA CATGAAATTI TITCGTTITA TITTATITTIG TITTCATAGI GCATGTTCAT 9900 TICTACTCAC AAACATGTTC TIGGTGTATT TCTTATGCAA ACAATCTTCA GGCAGCAAAG 9960

Seq ID NO: 68 Protein sequence: Protein Accession #: NP 054831

5 21 31 41

MPYEVNAGYD FTNMVRKKNP PLRNVASEGE GQILEPIGTE SKVSGKNKEF SADQMSENTD 60 OSDAAELNHK EEHSLHVOOP SSSSKKDLKS AVLSEKAGFN YESPSKGGNF PSFPHDEVTD 120 RNMLAFSPPA AGGVCEPLKS PQRAEADDPQ DMACTPSGDS LETKEDQKMS PKATEETGQA 180
OSGOANCOGL SPVSVASKNP OVPSDGGVRL NKSKTDLLVN DNPDPAPLSP ELQDFKCNIC 240 10 GYGYYGNDPT DLIKHFRKYH LGLHNRTRQD AELDSKILAL HNMVQFSHSK DFQKVNRSVF 300 SGYLODINSS RPYLLNGTYD VQVTSGGTFI GIGRKTPDCQ GNTKYFRCKF CNFTYMGNSS 360

TELEOHFLOT HENCIKASLE SSEVAKPSEK NSNKSIFALQ SSDSGDLGKW QDKITVKAGD 420 DTPVGYSVPI KPLDSSRQNG TEATSYYWCK FCSFSCESS SLKLLEHYGG QHGAVQSGGL NPELIDKLSK GSVINONDL A KSSEGETMIK TDKSSCAKK KDFSKGAED NWYTSYNCOF 540 15 CDFRYSKSHG PDVIVVGPLL RHYQQLHNIH KCTIKHCPFC PRGLCSPEKH LGEITYPFAC 600
RKSNCSHCAL LLLHLSPGAA GSSRVKHOCH OCSFTTPDVD VLLFHYESVH ESOASDVKOE 660 ANHLOGSDGO OSVKESKEHS CTKCDFITQV EEEISRHYRR AHSCYKCRQC SFTAADTQSL 720 LEHFNTVHCQ EQDITTANGE EDGHAISTIK EEPKIDFRVY NLLTPDSKMG EPVSESVVKR 780

20 EKLEEKDGLK EKVWTESSSD DLRNVTWRGA DILRGSPSYT QASLGLLTPV SGTQEQIKTL 840 RDSPNVEAAH LARPYGLAV ETKGFLQGAP AGGEKSGALP QQYPASGENK SKDESGKLR 900 RRRGSGYPCA NCLTIKTSLW RKNANGGYVC NACGLYQKLH STPRILIIK QNNGEQIRR 960 RTRKILINFRA LQARQUINKQ ROSNEGVING SPLERRSEDH LITSHKKEH PISLKYERQ (100 GSLTKSHSAQ QPULVOQTLD IHCKMQPLH QKSPQESTG DØGNSSYSE KKGSSERGSP (100 EKYMRAGH PHYSPFOSH BEVYQPLEGI PYHNDRÖGS ADVLRFWSKY KLSVPGNPHY 1140

25 LSHVPGLPNP CONYVPYPTF NLPPHFSAVG SDNDIPLDLA IKHSRPGPTA NGASKEKTKA 1200 PPNVKNEGPL NVVKTEKVDR STQDELSTKC VHCGIVFLDE VMYALHMSCH GDSGPFQCSI 1260 COHLCTDKYD FTTHIORGLH RNNAOVEKNG KPKE

30 Seq ID NO: 69 DNA sequence

XM_073879

Nucleic Acid Accession #: Coding sequence: 1-387(underlined sequences correspond to start and stop codons)

21 35

1 TO SECTION OF THE ACCOUNT OF ACCOUNTS OF THE CONTROL OF THE ACCOUNTS OF ACCOUNTS OF ACCOUNTS OF THE CONTROL O 40 GACAGGAAGG CTCACTTCTC TGCCCCAGTT GCAGCCATCG CCTCTCCAGC ACCGACTCCT 300

GTCTGTCCTG CACACCACTC AACACAGAGC ATCTGCCAGT TTCTACAGCA CTGCAGGCAG 360 AACACTCACT TGCAGGCTGC TAACTAA

Seq ID NO: 70 Protein sequence: XP 073879 45

> 31 41 51

MGFGDOGTVE GSLGTSKKPP EVKMFG ASQG LLTMETNQSL AQGTGCSVVK VDTVLFESLY 60 50 HCGFEHGSVM HCLGDDHPQE DRKAHFSAPV AAIASPAPTP VCPAHHSTQS ICQFLQHCRQ 120

Seq ID NO: 71 DNA sequence AB033064 Nucleic Acid Accession #:

55 Coding sequence: 826-1986 (underlined sequences correspond to start and stop codons)

GGGGAACAGC AAATTCAGTC ACAGACAATC CTCCACTCGG TCAAGAGCCA CTTTTCTCTT 60 GOGGAACACCA ANATICAGIC ACAGACANT CITCACTICOS INAGAGOCANTITICITI 90
CCTOCCTTGC COCCOCCAGA GOGGTAAGGA ACTAGAGGGTT TATACTTTAG COGGTTGGCT 120
ACCAGCTAAA ATICTACTTA TCTTAGTTTC TAGTGGATAG CTTTCTTATT TTGCCCATGT 180
TTTCTTAGAA TCCCTGTTTA ATTACTTTT GTCAGTAGATGATGATCATGAGG GTAGACAGGGA 240
GAGTGACAAT AAATTAGCCC CTTCTTTTTT CCCTTGCAT TCAGGCCCCTTTTCCTCCC 300 60

AGAGGGAAAT TACCAGTAAA CTCTTCTAAA TCTTCCACCC CTTCTCAGTC ATACTGTGAA 360 65 GAAACACACT AAAGTGGACA TTATTTGACC AGTGAACACG AACCCAGCTT CAGGCATTGG 420 UMANALALA I ANGLIOUCH I IATTI DALC AN IVAACAD ANCUCATTI COUGATTICO 420
TITOTIOTIOG CACATIGAGA ACACTECTI THAAAATATC TOCCAATTIA CETTITICACA 480
ATTIGTATCC ACCTAGGATT TGCTGCTGGG GTAAGTCACT AGATTTATTT CTCAAAGCTC 540
CCCTCTCTAT GAGCTGAAAG ACTGACCAAC CATGAACACT AGATTTATTT CTCAAAGCTC 540
GACAGAGCAG AGCCAGTTGT TCCACACTTT GGGAAGGGG AGTAGCTTTT ATCATCTTCC 660

TCTGGGGAGC AGGCATAGAG ACATAAACTG AGTGAAAATG GGTGGAGGAA GAACTTCTAT 720 70 ACCCACGAAC AACATGTGAA GAGAGAGAAC CAAACATAAA GTAAGGAGGG TAGACGTTAC 780 ATCCAAGAGG AAATAATCCA GGCAAGGAAG CACAAGCTGA TCAAGATGTG TAGTTCTGTG 840 GCTGCCAAGT TGTGGTTTTT GACAGATCGT CGCATCAGGG AAGACTATCC TCAAAAAGAG 900 ATTTTACGAG CATTGAAGGC CAAATGTTGT GAGGAGGAAC TGGACTTTAG GGCTGTGGTG 960 75

ATGGATGAGG TGGTGCTGAC AATCGAGCAA GGAAACCTGG GTCTGCGGAT CAATGGAGAG 1020 CTAATCACTG CCTACCCACA AGTGGTGGTA GTCAGAGTAC CAACCCCTTG GGTGCAAAGT 1080 GATAGTGACA TCACTGTTTT GCGCCATCTA GAGAAGATGG GATGTCGGTT AATGAACCGA 1140

CCTCAAGCCA TCCTGAACTG CGTTAATAAG TTCTGGACAT TTCAAGAGTT GGCTGGCCAT 1200 GGTGTTCCTC TGCCGGATAC TTTCTCTTAT GGTGGCCACG AAAATTTTGC TAAAATGATT 1260 GATGAGGCTG AAGTTCTGGA GTTCCCAATG GTAGTAAAGA ATACGCGGGG TCACAGAGGT 1320 AAAGCTGTTT TCTTGGCTCG AGATAAGCAC CATTTGGCTG ATCTAAGCCA TCTTATTCGC 1380 CATGAAGCGC CATACCTGTT CCAGAAGTAT GTTAAAGAGT CTCATGGACG GGATGTACGT 1440 GTCATTGTCG TGGGAGGCCG TGTGGTTGGC ACCATGTTAC GTTGTTCAAC AGATGGGAGA 1500 ATGCAAAGCA ACTGCTCATT AGGTGGTGTG GGGATGATGT GCTCATTGAG TGAACAAGGG 1560 AAGCAGCTAG CTATCCAGGT GTCTAATATC CTGGGGATGG ATGTGTGTGG CATTGACCTG 1620 CTGATGAAAG ATGACGCTC CTTCTGCGTC TGTGAGGCCA ATGCAAATGT AGGTTTCATC 1680 GCCTTTGATA AGGCTTGTAA TCTAGATGTA GCTGGTATCA TAGCAGACTA TGCCGCCTCC 1740 10 CETTCHACCET CTGGCCGGCT CACCCGGCGT ATGTCCCTGC TCTCCGTGGT GTCACTGCC 1800
AGTGAGACTA GTGAGCCGGA GCTGGGTCCC CCAGCCAGCA CTGCTGTTGA CAACATGAGT 1860 GCAAGTTCCA GCTCTGTTGA CAGCGACCCT GAAAGCACGG AGCGAGAGCT GCTCACCAAG 1920 CTCCCAGGGG GCCTGTTCAA CATGAACCAG CTGCTAGCCA ATGAAATCAA ACTACTGGTG 1980 15 GACTGACTCC ACTGGTAATT AACCAACAAA ACCCTTGTAA AACTTTCTTT CTTCTTTTCT 2040 ATTTITAAAA CCAACTIGCA ATGCTGTTCA TGGAGGATGC TCAGGAAGAT GAGAGAAAAT 2100
TAGTAGGATT AGTTGGAGAG AGTGGGAGAT AGATGAGACC TCTGCTAGTA AGATGTTACT 2160 TTCATTTACA AATCCTACAA ATAGAGAGGC AGAATAGGTG GGGTATAGAA AAATGTCAGG 2220 CTCTCATAGT TACCCTITTA AATTGCTAAA AAATGTGTAT GCTCATAGGC CATGAGGAAC 2280
AAATACTTTT TTTTTTCAT GGTCCCTTGC TTTTGTTTTT GTACAAAAAA AAATGGTTTT 2340 20 GCTACAAATA TCCAAGTAGC ATAACTTCAC ATTGTGTTGG AAGATTTGTC ATCAGTGAGG 2400 AAAACATCTG CTTAAATTAC AGGAATTTTT GTATTATACA GCTCTGAAAA TTCTGCCATT 2460 TCCTTATTAA CTAGCAGCTT TAGTTTGTAG TTTATGAAAT CTTGAGGGGC TCTTTTACTG 2520 GGATTICITA TTTTTTGTT TTTTCCCGCT TAATTTGGTG GGAGGTCAAA TTGAATATAA 2580 25 CCCAATAAAG GCTITCTTAAT GACAAAATTG GCATGTTTGC ATGATGAAAT GGAAATGAAC 2640 AGTATTGCAA TGTCCGGTAT ACAAAATAAC ATTAATTCAA TGTAGATAAA ATTAACACTAG 2700 TTTAAAATAT GTGCATTCAC TGTATTTTGT TAGTGTTTTA GTCTTTTTTG TAGATGAC 2700 TCTGTTAATG TTGCTTTTT TTTTTTTTT TAATACATGC TAGTCTAACA TTTCCTGCTC 2820 TATGCCTGCA TCTTTAACAA TGGCCAAAGT GAAGAAAATG CTACCTTTTT TGTTAACAAG 2880 30 ACACTGACTT GAAACATGTA CATTTAAAGC CTTTTATTTT TTCCCTTTTT GTTTTGGTAG 2940 TTGGGCATTT AAATAAGGAC AAGGAAAAAT ATTTTTGGGG GCAAATCAAG AGCCTATGAG 3000 TTCTAAGTAT AAAGCTGAAG TGATTTCGAA TGCCAGCGTT ATATATTTGC ATTTTTCACA 3060 TTTTACGAGG GAGTATATGT GTATGTGTGT GCACGCATGC ATGTGTATGT GTTTTGCTTT 3120 TTGITTCCAT CAACTAATCA AAAAGGATAA TITTAGAAAAT GGAGCATGAT GGGAAACAGA 3180 GTITTTGACT TTAAAAAACA GATGAGTIGT TITTCATTAGT AGACTCCACT GGGGTAGAGG 3300 TATTCACCTT AAAACATAG GTGAGTAGAT GCTTTTTTAG GCCTTTTTG TGTATATGTAC 3300 35 GTTGTTTGTT TTTTTCCTTT TGTTTCTAGC CTGTTCAGTG TACAGTTTAT TCAAGGCTAC 3360 ATGCTTTTCT TTAATGCTTC TGGCTATGCA TTTTCTCTTT TTACATATAG GATTTGGGAT 3420 TGGGGGTGGG TTGGATGTT TTGTTTGGG ACTIATTAG TAGTATTGAG TCTCTAATAG 3480 CCCTACTGTT AAGCCTTCAA TACTGTCGAC TCTTTATATT GACTGTTAATTG AAGAATTTAT 3480 AAAAGCCCCC AAACTGCATA TAATATGAGC CTTTAAAACA TGGGTAAAAC TAATCCCATT 3600 AATGGGTTG AAGTGCTAAGA CTAATCCCATT 3600 AATGGGTTG AATGGTTATTATTA 3600 AATGGGTTG AATGGTTATTTTAT 3600 AATGGGTTG AATGGTTATTTTTA 3600 AATGGTTGAG AATGGTTGAG TAATTTTTTA 3600 AATGGTTGAG AATGGTTGAG AATGTTTTA 3600 AATGGTTGAG AATGGTTGAG AATGTTTTA 3600 AATGGTTGAG AATGTTTATA 3600 AATGGTTGAG AATGTTTATA 3600 AATGGTTGAG AATGTTTATA 3600 AATGGTTGAG AATGTTTATA 3600 AATGGTTGAG AATGTTGAG AATGTTGAG AATGTTTATA 3600 AATGGTTGAG AATGTTGAG AACAGCAAGT TITCCATCTC CCTACGAATC CTCTGAAGCT TITACCCAAG CCCTTTCTTG 3720 CCTCTCCAGT GCTATTTTCC TTCAGATGGA CCTTAAACAT AATTTCTTGG ACACTACTAG 3780 AGAGACTTCG AGGCAATAAT AAAAGATCAG TATTAACCAG CTATAACAGA GGTTTGATCA 3840 50 GGGGACTCAC ATACATATAT TAATACCTCT GACTCATTAA CAGAAAGAAA TACTTGGTAC 4140 TTCTTTCGCT GAATGACCAT ACTGTGGAGG ATGCATACTA TTTGGTATAG AGAAATAAAT 4200 GAGGAAGAAA GAACTGCTTA ATTAAATTAT CATTCATATG TTCATATAGA GACCATCTGG 4260 TTGCCATGTG TATTATGACA CATACACTTT GAATAGTTAC ATATCACAAG TATGTAGTTC 4320 ATGTTTGTGT TGGTGGGGTA AGGCATCAGG AAAAATGTAG TTAGTCTTTT CTTAACTTAT 4380 55 ACCAAATTAA CCAACTATAT TATAGGAAAT ATGTGAAATT AGTTCATTAG CTTTATTCAC 4440 TATTATACCAT TCACATGATA TTAAAACCTA CACTCACATG TTAGAATGAA AAGAGCAGTA 4500 GTTATCTTAG ATTITAAAAA CATGGATATC TTCTTGAATT CCTTCAGAG 150A AATAAGAGCA AATCATTCTG GAAGTACCTT AAGGAAACAA ACAGCAGCAG ATATTTAGGT 4620 TAAACTTATT TTCATAATTG TTTAATAACT TTTGTATAAT CTTCATTGCT ATTATGAGAG 4680 60 AGAATGTATA TATCAAATAT GTGTAATGAT AAAATCTGAA TTGTAAAATT TITGTATATT 4740 GTTAAAATTG TAATTCTAAA TTGTATTTCA AAAATGATTA TTTCTGATAT TGTTTTTATG 4800 TCACCATGA TGAAAACTGG ACTITATATA TCTAAACATA CAAGTATGAA CTATTCTATT 4860 TAAAATITITI AATAGTTITI TTCTITTITTG TGGCATAAA TTGAATTGGTCA TTTCTGGTCG 4920 GCTITTCTCC AATGAACATT GAAATCTTC TGCCTATAGTT ACCAATAAGA AAACTACCCT 4920 65 GGAACAGTAG AAAAACCCAA CAAGAGACTT GGCATTCATC AAGCACATTA TCAGACTTTG 5040 AGAACATATT GAAGGCATTG ACTTTGAAAA TCATCTCTTT TTCTCAAGAA GAAAGCAATG \$100 GAGAAGCAAA TTTGTTTCAT TCAGTGAATC CCCAGTTTGG GGCTTGTGGG GCTTAGAGAC 5160 ATTGTGAAAT CAAATCTTGT GTTATACTTT TCTCCTGGCT CACTTTTTTT GAGAAGGTTT 5220 ATGGGCTATT TGGCTGGTGA GACACGATCC CCTCCTAAGA AAATGTAGGT GCTCAGACAG 5280 70 GTAACCACTG CTGCTACTGT TITTATTTGT TTGTTTGTTC AATTITATTT AAGATTTGTT 5340 TTTGTTGTAC TAGGATTTTA AAAAATGTAA TATATTGCAG GATTTATAAC CAG

Seq ID NO: 72 Protein sequence: Protein Accession #: BAA86552

11 21 31 41 51

PCT/US02/02242 WO 02/059377

MCSSVAAKLW FLTDRRIRED YPQKEILRAL KAKCCEEELD FRAVVMDEVV LTIEQGNLGL 60 MIGSSYAAKLEW FILDKRIKED YPÇKELIKAL KARCCEBELD PRAYVMOVEYV ETTEGORUGE. 60
RINGELITAP PGVVVVRVIT PHYVÖSSSITI VLEHLEKMOR ELMANREPALI NCYNKEWTFÖ. 120
ELAGHGVPLP DTFSYGGHEN FAKMIDEA EV LEFPMYVKNT RGHRGKAVFL ARDKHHLADI. 180
SHLRHEAPY LFÇKYVKESH GRDVRVIVVG GRVVGTMLRC STDGRMQSNC SLGGVGMMCS 240
LSEGGKQLAL QVSNILGMBV CGIDLLMKDD GSFCVCEANA NYGFLAFDKA CNLDVAGIIA 300 DYAASILIPSG RITRRMSILIS VVSTASETSE PELGPPASTA VDNMSASSSS VDSDPESTER 360 ELLTKLPGGL FNMNOLLANE IKLLVD

Seq ID NO: 73 DNA sequence 10

5

50

cleic Acid Accession #: XM 040080.2

Coding sequence: 159-1104 (underlined sequences correspond to start and stop codons)

21 31 41 51 15 CTGAGTGGGG GCGGGGACTG CTGGAGTTGC GGGGCCTGCC TGGGGTAGGG CGGGGCAGGA CAGCTTGGAG ATAGGGCCCG GAATTGCGGG CGTCACTCTG CTCCTGCGAC CTAGCCAGGC 120 GTGAGGGAGT GACAGCAGCG CATTCGCGGG ACGAGAGCGA TGAGTGAGAA CGCCGCACCA 18
GGTCTGATCT CAGAGCTGAA GCTGGCTGTG CCCTGGGGCC ACATCGCAGC CAAAGCCTGG 240 GGCTCCCTGC AGGGCCCTCC AGTTCTCTGC CTGCACGGCT GGCTGGACAA TGCCAGCTCC 300
TTCGACAGAC TCATCCCTCT TCTCCCGCAA GACTTTTATT ACGTTGCCAT GGATTTCGGA 360
GGTCATGGGC TCTCGTCCCA TTACAGCCCA GGTCTCCCAT ATTACCTCC AGACTTTTTTTGTG 420 20 AGTGAGATCC GAAGAGTTGT GGCAGCCTTG AAATGGAATC GATTCTCCAT TCTGGGCCAC 480 AGCTTCGGTG GCGTCGTGGG CGGAATGTTT TTCTGTACCT TCCCCGAGAT GGTGGATAAA 540

CTTATCTTGC TGGACACGCC GCTCTTTCTC CTGGAATCAG ATGAAATGGA GAACTTGCTG 600
ACCTACAAGC GGAGAGCCAT AGAGCACGTG CTGCAGGTAG AGGCCTCCCA GGAGCCCTCG 660 25 CACGTGTTCA GCCTGAAGCA GCTGCTGCAG AGGTTACTGA AGAGCAATAG CCACTTGAGT 720 GAGGACTICOS GOCAGCTTCT CCTOCAAAGA GGAACCACGA AGGTICGGCCAC AGGTICTGGTT 1
CTTAAACGAGG ACCAGAGGCT CGCCTGGGGA AGGAACCAGCA TTGACTTCACT ACGACGGGAG 80
CTGTGTGCGC ATTCCATCAG GAAGCTGCAG GCCCATGTCC TGTTGATCAA AGCAGTCCAC 500
GGATATTTG ATTCAAGACG AGATTACCT GAGAAGGAGGT CCCCTGTGGTT CATGATAGAC 560

30 ACGATGAAAT CCACCCTCAA AGAGCAGTTC CAGTTTGTGG AAGTCCCAGG CAATCACTGT 1020 GTCCACATGA GCGAACCCCA GCACGTGGCC AGTATCATCA GCTCCTTCTT ACAGTGCACA 1080 CACATGCTCC CAGCCCAGCT GTAGCTCTGG GCCTGGAACT ATGAGAACACT AGTGCTCCCA 1140
GACTCAACAC TGGGACTCTG AGTTCCTGAG CCCCACAACA AGGCCAGGGA TGGTGGGGAC 1200 35

AGGCCTCACT AGTCTTGAGG CCCAGCCTAG GATGGTAGTC AGGGGAAGGA GCGAGATTCC 1260 AACTTCAACA TETGTGACCT CAAGGGGGAG ACAGAGTCTG GGTTCCAGGG CTGCTTTCTC 1320 CTGGCTAATA ATAAATATCC AGCCAGCTGG AGGAAGGAAG GGCAGGCTGG GCCCACCTAG 1380 CCTTTCCCTG CTGCCCAACT GGATGGAAAA TAAAAGGTTC TTGATTCTC A

40 Seq ID NO: 74 Protein sequence:

Protein Accession #: XP 040080.1

51 21 31 41 45 MSENAAPGLI SELKLAVPWG HIAAKAWGSL OGPPVLCLHG WLDNASSFDR LIPLLPODFY 60 YVAMDFGGHG LSSHYSPGVP YYLQTFVSEI RRVVAALKWN RFSILGHSFG GVVGGMFFCT 120 FPEMVDKLIL LDTPLFLLES DEMENLLTYK RRAIEHVLQV EASQEPSHVF SLKQLLQRLL 180 KSNSHLSEEC GELLLQRGTT KVATGLVLNR DQRLAWAENS IDFISRELCA HSIRKLQAHV 240 LLIKAVHGYF DSRONYSEKE SLSFMIDTMK STLKEOFOFV EVPGNHCVHM SEPQHVASII 300

SSFLOCTHML PAOL Seq ID NO: 75 DNA sequence

Nucleic Acid Accession #: NM 005794

Coding sequence: 434-1276 (underlined sequences correspond to start and stop codons) 55

21 31 41 51

CTCACTCGTT GGGTCCGTGC CACCTTTAAG AGCTGTAACA CTCACCGCGA AGGTCTGCAA 120
CTTCACTCCTT GGGGCCAGCA AGACCACGAA TGCACCGAGA GGAATGAACA ACTCTGGACA 180 60 CACCATCTTT AAGAACCGTA ATACTCACCG CAAGGGTCTG CAACTTCATT CTTGAAGTCA 240 GTGAGGCCAA GAACCCATCA ATTCCGTACA CATTTTGGTG ACTTTGAAGA GACTGTCACC 300 TATCACCAAG TGGTGAGACT ATTGCCAAGC AGTGAGACTA TTGCCAAGTG GTGAGACCAT 360 65

GGTTCCCTTC CACGCTGTGA AGCTTTGTTC TTTTGGTCTT CATGATAAAT CTTGCTGCTG 60

CATGGCCAAG CTGCAGGGGG AGGGGCTGAG TGTGGCGGGC ATTGTGTGCC ACGTGGGGAA 720 70 GGCTGAGGAC CGGGAGCAGC TGGTGGCCAA GGCCCTGGAG CACTGTGGGG GCGTCGACTT 780 CCTGGTGTGC AGCGCAGGGG TCAACCCTCT GGTAGGGAGC ACTCTGGGGA CCAGTGAGCA 840 GATCTIGGAC ANGATECTAA GTGTGAACGT GAAGTCCCCA GCCCTGCTGC TCAGCCAGTT 900 GCTGCCCTAC ATGGAGAACA GGAGGGGTGCC TGTCATCCTG GGTCCTTCCATTT AGGACCTTA 900 TAATCCAGTA GTGGCGCTGG GTGTCTACAA TGTCAGCAAG ACAGCGCTGC TGGGTGCTCAC 1020 TAGGACACTG GCATTGGAGC TGGCCCCCAA, GGACATCCGG GTAAACTGG TGGTTCCAG 1020 75

TAGAACACTG GCATTGAGTCA GGCAAAGTGTT TCATGGGAAT GAGTCTCT GGAAGAACTT 1140
CAAGGAACAT CATCAGCTGC AGAGGATTGG GGAGTCAGAG GACTGTGCAG GAATCGTGTC 1200

CTTCCTGTGC TCTCCAGATG CCAGCTACGT CAACGGGGAG AACATTGCGG TGGCAGGCTA 1260 CTCCACTCGG CTCTGAGAGG AGTGGGGGCG GCTGCGTAGC TGTGGTCCCA GCCCAGGAGC 1320 CTGAGGGGGT GTCTAGGTGA TCATTTGGAT CTGGAGCAGA GTCTGCCATT CTGCCAGACT 1380 AGCAATTTGG GGGCTTACTC ATGCTAGGCT TGAGGAAGAA GAAAAACGCT TCGGCATTCT 1440

Seq ID NO: 76 Protein sequence:
Protein Accession #: NP 005785

10 31 51

21

MLSAVARGYQ GWFHPCARLS VRMSSTGIDR KGVLANRVAV VTGSTSGIGF AIARRLARDG 60 AHYVISSRKQ QNVDRAMAKI. QGEGLSVAĞI VCHVGKAEDR EQLVAKALEH CĞĞVDFLVCS 120 AĞVNPLVGST LGTSEQİWDK ILSVNVKSPA LLLSQLLPYM BINRRĞAVILV SSIAAYNPVV 180 ALGYYNYSKT ALLGLLRTLA LELAPKDIRV NCVVPGIIKT DFSKYPHĞINE SLWKINRKEHH 240 15 QLQRIGESED CAGIVSFLCS PDASYVNGEN IAVAGYSTRL

Seq ID NO: 77 DNA sequence 20 11

5

Nucleic Acid Accession #: NM 002425 31

Coding sequence: 26-1453 (underlined sequences correspond to start and stop codons)

41

25 AAAGAAGGTA AGGGCAGTGA GAATGATGCA TCTTGCATTC CTTGTGCTGT TGTGTCTGCC 60 AGTCTGCTCT GCCTATCCTC TGAGTGGGGC AGCAAAAGAG GAGGACTCCA ACAAGGATCT 120 TGCCCAGCAA TACCTAGAAA AGTACTACAA CCTCGAAAAG GATGTGAAAC AGTTTAGAAG 180 AAAGGACAGT AATCTCATTG TTAAAAAAAT CCAAGGAATG CAGAAGTTCC TTGGGTTGGA 240
GGTGACAGGG AAGCTAGACA CTGACACTCT GGAGGTGATG CGCAAGCCCA GGTGTGGAGT 300 30

GGTBACAGGG AAGCTAMANA CIVALACHTCI GGGATGACG AGGCAAUCAA GUITIGUAGAI TICTIACAGGT GGTCACTTCA GCTCCTTTCI TGGATGCG AGGGATGACGA AAACCA 360 TACATACAGG ATTGGAATT ATCACCAGA TITTICCCAGA GATGCTGTTG ATTGGCATT 400 TACATACAGG ATTGGAATGTCT GGGATGAGGGT GACTCACCTC ACATTCTCACA GGCTGTTATGA 480 AGGAGAGGCT GATATAATGA TCTCTTTCGC AGTTAAAGAA CATGGAGACT TTTACTCTTT 540 TGATGGCCCA GGACACAGTT TGGCTCATGC CTACCCACCT GGACCTGGGC TTTATGGAGA 600 35 TATTCACTTT GATGATGATG AAAAATGGAC AGAAGATGCA TCAGGCACCA ATTTATTCCT 660
CGTTGCTGCT CATGAACTTG GCCACTCCCT GGGGCTCTTT CACTCAGCCA ACACTGAAGC 720

40

TTGGCGAAGA TCCCACTGGA ACCCTGAACC TGAATTTCAT TTGATTTCTG CATTTTGGCC 1020 CTCTCTTCCA TCATATTTGG ATGCTGCATA TGAAGTTAAC AGCAGGGACA CCGTTTTTAT 1080 45

ACAGTTTGAG TTTGACCCCA ATGCCAGGAT GGTGACACAC ATATTAAAGA GTAACAGCTG 1440 GTTACATTGC TAGGCGAGAT AGGGGGAAGA CAGATATGGG TGTTTTTAAT AAATCTAATA 1500
ATTATTCATC TAATGTATTA TGAGCCAAAA TGGTTAATTT TTCCTGCATG TTCTGTGACT 1560 50 GAAGAAGATG AGCCTTGCAG AT ATCTGCAT GTGTCATGAA GAATGTTTCT GGAATTCTTC 1620

ACTTGCTTTT GAATTGCACT GAACAGAATT AAGAATACT CATGTGCAAT AGGTGAGAGA 1680 ATGTATTTTC ATAGATGTGT TATTACTTCC TCAATAAAAA GTTTTATTTT GGGCCTGTTC 1740 55

Seq ID NO: 78 Protein sequence:
Protein Accession #: NP_002416

11 21 31 41 51 60

MHLAFLVLLC LPVCSAYPLS GAAKEEDSNK DLAQQYLEKY YNLEKDVKQF RRKDSNLIVK 60 KIQGMQKFLG LEVTGKLDTD TLEVMRKPRC GVPDVGHFSS FPGMPKWRKT HLTYRIVNYT 120 PDLPRDAVDS AIEKALKVWE EVTPLTFSRL YEGEADIMIS FAVKEHGDFY SFDGPGHSLA 180 HAYPPGPGLY GDIHFDDDEK WTEDASGTNL FLVAAHELGH SLGLFHSANT EALMYPLYNS 240

HAYPPORLY QUINT-DUDER W IEDIASQI'NI FLYAAHELUH SUQLHISANI EALMYPLYNS 24 FFELAQFRLS QODVNGIQSL YEPPASTEE EIVLYTISSYS GSEMPAKCDP ALSPDAISTL 300 RGEYLFFKDR YFWRRSHWAP EPEFHLISAF WPSLFSYLDA AYEVNSRDTY FFKGNEFWA 360 IRGNEVQAGY PRGIHTLGFP PTIRKIDAAV SDKEKKKTYF FAADKYWRFD ENSQSMEQGF 420 PRLIADDFFG VEPKYDAYUQ AFGFFYFFSG SSQFEEDFWA RMYTHILKSN SWLHC 65

70 Sea ID NO: 79 DNA sequence Nucleic Acid Accession #: NM 000493.1 Coding sequence: 1-2043 (underlined sequences correspond to start and stop codons)

21 31 75

ATGCTGCCAC AAATACCCTT TTTGCTGCTA GTATCCTTGA ACTTGGTTCA TGGAGTGTTT 60 TACGCTGAAC GATACCAAAC GCCCACAGGC ATAAAAGGCC CACTACCCAA CACCAAGACA 120

PCT/HS02/02242 WO 02/059377

CAGTTCTTCA TTCCCTACAC CATAAAGAGT AAAGGTATAG CAGTAAGAGG AGAGCAAGGT 180 ACTCCTGGTC CACCAGGCCC TGCTGGACCT CGAGGGCACC CAGGTCCTTC TGGACCACCA 240 ACTICITUDE CALCANULCE TUCHIGACET GRAUGICALE CAGITECTE TUGACCACCA 240
GGAAAACCAG GETACGGAGA ECTEGACTE CAAGGAAGCA CAGGITTECE CAGGACACCAG
GGACCATCAG CTGTAGGGAA ACCAGGTGTGE CAGGACTCC CAGGAAAACCAGGAGAGAGA 360
GGACCATCAG CACCAAAAGG AGATGTTGGA CCAGCTGGCC TACCAGGACAC CCGGGGCCCA 420
CCAGGACCAC CTGGAATCCC TGGACCGGCT GGAATTTCTG TGCCAGGAAA ACCTGGACA 5 CAGGGACCAC CTOURATECE TOURCOOL GOART TETO TOUCAGGARA ACCTOURCAG 400 GTCCCTGGTA TGAATGGACA GAAAGGGGAA ATGGGATATG GTGCTCCTGG TCGTCCAGGT 600 GAGAGGGGTC TTCCAGGCCC TCAGGGTCCC ACAGGACCAT CTGGCCCTCC TGGAGTGGGA 660 10 AAAAGAGGTG AAAATGGGGT TCCAGGACAG CCAGGCATCA AAGGTGATAG AGGTTTTCCG 720 GGAGAAATGG GACCAATTGG CCCACCAGGT CCCCAAGGCC CTCCTGGGGA ACGAGGGCCA 790 GGAGAAATGU GASTAATTUU SEEMETUU EE COORMIGUS LII SEEMIGU AAATTUU SEEMIGU EE COORMIGUS LII SEEMIGU AAATTUU SEEMIGU EE COORMIGUS LII SEEMIGU EE COORMIGUS AAATTUU SEEMIGU EE COORMIGUS AAAAGUTTEE CHGGGGECTEG GGAGAAAGA SEEMIGU GGAGAAGGAG GGAGAAGGAGAAAAA GGACCTGCTG GCCTTCCTGG GGGTCCAGGT 900 CCCAAAGGGGA AAAAGGACAAGGACTCTTCCTGGGAAGCCCTTGGACCCCCTT 1020 15 GGGAATATGG GACCCCAAGG ACCAAAAGGC ATCCCGGGTA GCCATGGTCT CCCAGGCCCT 1080 AAAGGTGAGA CAGGGCCAGC TGGGCCTGCA GGATACCCTG GGGCTAAGGG TGAAAGGGGT 1140 TCCCCTGGGT CAGATGGAAA ACCAGGGTAC CCAGGAAAAC CAGGTCTCGA TGGTCCTAAG 1200 GGTAACCCAG GGTTACCAGG TCCAAAAGGT GATCCTGGAG TTGGAGGACC TCCTGGTCTC 1260 20 CCAGGCCCTG TGGGCCCAGC AGGAGCAAAG GGAATGCCCG GACACAATGG AGAGGCTGGC 1320 CCAAGAGGTG CCCCTGGAAT ACCAGGTACT AGAGGCCCTA TTGGGCCACC AGGCATTCCA 1380 GGATTCCCTG GGTTAAAGG GGATCCAGGA AGTCCCGGTC CTCCTGGCCC AGGCACTA 1440 GCAACTAAGG GCCTCAATGG ACCCACCGGG CCACCAGGGC CTCCAGGTCC AAGAGGCCCC 1500 TCTGGAGAGC CTGGTCTTCC AGGGCCCCCT GGGCCTCCAG GCCCACCAGG TCAAGCAGTC 1560 25 ATGCCTGAGG GTTTTATAAA GGCAGGCCAA AGGCCCAGTC TTTCTGGGAC CCCTCTTGTT 1620 AGTGCCAACC AGGGGGTAAC AGGAATGCCT GTGTCTGCTT TTACTGTTAT TCTCTCCAAA 1680 GCTTACCCAG CAATAGGAAC TCCCATACCA TTTGATAAAA TTTTGTATAA CAGGCAACAG 1740 CATTATGACC CAAGGACTGG AATCTTTACT TGTCAGATAC CAGGAATATA CTATTTTTCA 1800 TACCACGTGC ATGTGAAAGG GACTCATGTT TGGGTAGGCC TGTATAAGAA TGGCACCCCT 1860 GTAATGTACA CCTATGATGA ATACACCAAA GGCTACCTGG ATCAGGCTTC AGGGAGTGCC 1920
ATCATCGATC TCACAGAAAA TGACCAGGTG TGGCTCCAGC TTCCCAATGC CGAGTCAAAT 1980 30 GGCCTATACT CCTCTGAGTA TGTCCACTCC TCTTTCTCAG GATTCCTAGT GGCTCCAATG 2040 TGAGTACACC CCAGAGGT AATCTAAATC TTGTGCTAGA AAAAGCATTC TCTAACTCTA 2100
CCCCACCCTA CAAAATGCAT ATGGAGGTAG GCTGAAAAGA ATGTAATTTT TATTTTCTGA 2160 35 AATACAGATT TGAGCTATCA GACCAACAAA CCTTCCCCCT GAAAAGTGAG CAGCAACGTA 2220 AAAACGTATG TGAAGCCTCT CTTGAATTTC TAGTTAGCAA TCTTAAGGCT CTTTAAGGTT 2280 GAAATITGAT TTGAGAAACT CGGCATTTCC TTTTTAAAAA AGCCTGTTTC TAACTATGAA 2460 40 TATGAGAACT TCTAGGAAAC ATCCAGGAGG TATCATATAA CTTTGTAGAA CTTAAATACT 2520 TOANTATICA AATTIAAAAG ACACTGTATC CCCTAAAATA TITCTGATGG TGCACTACTC 2580 TGAGGCCTGT ATGGCCCCTT TCATCAATAT CTATTCAAAT ATACAGGTGG CATATATACTT 2640 GTTAAAGGTC TTATATAAAA AAGCCCCAAA ATATTGAAAGT TCATCTGAAA TGCAAGGTGC 2700 TITICATCAAT GAACCTITTIC AAAACTTTTC TATGATTGCA GAGAAGCTTT TTATATACCC 2760 AGCATAACTT GGAAACCAGGT ATCTGACCTA TTCTTATITTA GTTAACACAA GTGTGAATAAA TTTGATTTCT TTAATTCCTT ATTGAATCTT ATGTGAATATG ATTTTCTGGA TTTACAGAAC 2820 45 ATTAGCACAT GTACCTTGTG CCTCCCATTC AAGTGAAGTT ATAATTTACA CTGAGGGTTT 2940 CAAAATTCGA CTAGAAGTGG AGATATATTA TTTATTTATG CACTGTACTG TATTTTTATA 3000 TTGCTGTTTA AAACTTTTAA GCTGTGCCTC ACTTATTAAA GCACAAAATG TTTTACCTAC 3060 50 TCCTTATTTA CGACACAATA AAATAACATC AATAGATTTT TAGGCTGAAT TAATTTGAAA 3120 CATCAATAGA TTTTTAGG Seq ID NO: 80 Protein sequence: NP_000484.1 55 Protein Accession # 31 41 60 MLPQIPFLLL VSLNLVHGVF YAERYQTPTG IKGPLPNTKT QFFIPYTIKS KGIAVRGEQG 60 TPOPPOPAGP RGHPOPSGPP GKPGYGSPGL QGEPGLPOPP GPSAVGKPGV PGLPGKPGER 120
GPYGPKGDVG PAGLPOPRGP GEPGGPGB GSVPGKSPGQ QQPTGAPFGF GFFGEKGAPG 180
VPGMPGGKGE MGYGAPGRP GEPGGPGPG FGSPGSPGVG KRGENGVPGQ PGKGDRGPP 240 POLIFICAÇÃO DE POLIFICAÇÃO DE CONTRACA DE 65 PGPVGPAGAK GMPGHNGEAG PRGAPGIPGT RGPIGPPGIP GFPGSKGDPG SPGPPGPAGI 480 ATTIGLINGTO PROPRIES SEPECIFOF OPPOPPIQAV MPEGFIKACQ RISLSCTPLV 340
SANQGYTOMP VSAFTVILSK AYPAIGTEP FOKILYNRQ HYDPRTGIFT CQPGTYYFS 600
YHWHYKGTHW WYGLYKMGTP WMYTYDEYTK GYLDQASGSA IDLTENDQV WLQLPNAESN 660 70 GLYSSEYVHS SESGELVAPM

NM_000786

Coding sequence: 332-1861 (underlined sequences correspond to start and stop codons) 51

383

75

Sea ID NO: 81 DNA sequence

Nucleic Acid Acces

CGCGATTCTC AGGGATTGAT CCGCCTCTTC AGGTAAGTTA TCTTCCGGCC CCGTACCACT 60 GTGCCACAGG CGCAGCCCGC TTCCTCAGGT GCCCTATCCC GCGCAGAAGA CCACGGCTTC 120 GTGCCACAGG CGCAGCCCGC TTCCTCAGGT GCCCTATCCC GGUCAGAAGA LUALUAU II. 120 ACAGAAGTAT ATTHAAGGGC GTGGCCAGGG GAACATCCCG CCCATTCTG TAGCACACGG 180 GGTGGCCCCC GTGGGAACCCG AGGGGTGGGG CTGGGTTTAG TAGGAAACCT GGGGCAAGGC 240 CCCCTGTGGA GACCATCTG CCAGCTTCTC TCGTTCCGTC GATTGGGAGG AGCCGTGGCG 300 5 ACCTCGGCCT TCAGTGTTTC CGACGGAGTG AATGCGCGC GCGCTGGGA TGACAGCGCG 250
GGGCTTGCTG CAGGCGGTG GGTCGGTGCT GGGCCAGGCG ATGGACAAGG TGACAGGCGG 420 CAACCTCTTG TCCATGCTGCTGATCGCCTG CGCCTTCACC CTCAGCCTGG TCTACCTGAT 480 10 CCGTCTGGCC GCCGGCCACC TGGTCCAGCT GCCCGCAGGG GTGAAAAGTC CTCCATACAT TITICTCCCCA ATTCCATTCC TTGGGCATGC CATAGCATTT GGGAAAAGTC CAATTGAATT 600 TCTAGAAAAT GCATATGAGA AGTATGGACC TGTATTTAGT TTTACCATGG TAGGCAAGAC 660 ATTTACTTAC CTITCTGGGA GTGATGCTGC TGCACTGCTT TITAATAGTA AAAATGAAGA 729 CCTGAATGCA GAAGATGTCT ACAGTCGCCT GACAACACCT GTGTTTGGGA AGGGAGTTGC 15 ATACGATGTG CCTAATCCAG TTTTCTTGGA GCAGAAGAAA ATGTTAAAAA GTGGCCTTAA 840 CATAGCCCAC TITA AACAGC ATGTTTCTAT AATTGAAAAA GAAACAAAGG AATACTTTGA 900 CAMPINGGON ANAMOTORA ANAMOTORA THIRDAMAA GAMACKANGG ANTACTITUR 500

ANAMOTORA CANTOTTICA ANAMOTORA THIRDAMOTORI TUTTURGANC TOATACTITURGANC TOATACTITURGANC TOATACTITURGANC TOATACTITURGANC TOATACTITURGANC TOATACTITURGANC TOATACTITURGANCA TOATACTITURGANGGANT 1280

TITACTICANOTO COTACATACA ANGATOGOGO TOCTITURGAT GANACTACATACA TOATACAGGGANT 1280 20 GCTTATTGGA TTACTCTTGG CAGGGCAGCA TACATCCTCA ACTACTAGTG CTTGGATGGG 1320 CTTCTTTTTG GCCAGAGACA AAACACTTCA AAAAAAATGT TATTTAGAAC AGAAAACAGT 1380 25 CTGTGGAGAG AATCTGCCTC CTTTAACTTA TGACCAGCTC AAGGATCTAA ATTTACTTGA 1440 TCGCTGTATA AAAGAAACAT TAAGACTTAG ACCTCCTATA ATGATCATGA TGAGAATGGC 1500 CAGAACTCCT CAGACTGTGG CAGGGTATAC CATTCCTCCA GGACATCAGG TGTGTGTTTC 1560 COCACTOT CATCAAGAC TTAAAGACTC ATGGTAGAA CGCCTGGACT TTAATCCTGA 1220
TCCCACTOTC AATCAAAGAC TTAAAGACTC ATGGTAGAA CGCCTGGACT TTAATCCTGA 1220
TCCCACTOTC AATCAAGAC TTAAAGACTCAGG GGAAAAGTTT GCCTATGTGCACTATGGAC CATTTTGGACC 1540
TGGGCGTCAT CCTTGTATTT GGGAAAAGTTT TGCCTATGTT CAACTAAGAC CAATTTGGTC 1740 30 CACTATGCTT CGTTTATATG AATTTGATCT CATTGATGGA TACTTTCCCA CTGTGAATTA 1800 TACAACTATG ATTCACACCC CTGAGAACCC AGTTATCCGT TACAAACGAA GATCAAAATG 1860 AAAAAGGTTG CAAGGAACGA ATATATGTGA TTATCACTGT AAGCCACAAA GGCATTCGAA 1920 GAGAATGAAG TGTACAAAAC AACTCTTGTA GTTTACTGTT TTTTTAAGTG TGTAATTCTA 1980 35 DAGGATIGAG TGTACAAAAC AACICTIGTA GTTTACHTTTTTATAGTG TGTAATTCTA 1980
AAAGCCAGTT TATGATTTAG GATTTGTTA ACTGAATGGT TCTAATCAATA ATAATAGCAT 2040
TTGACACATT TTCTAATAGT TATGATACTT ATACATGTGC TTTCAGGAAG TTCCTTGGTG 2100
AAACCAATTGT TGAGGGGGGA TCTAGGTAAT TGGCAGATTCTAAATAATAT AATTTCCAGA 2160
TAGTAATTTT AAAGTACTC ATCGCTCTTG CCAAATAAGT TCAGGGTATT CAAATCTTGG 2220 ACTAGTCCTG CAAGGTATAA AGAATAAAAA TCCCAGTGAG ATACTTGGAA ACCACAGTTT 2280 40 ATTATTATTT ATCTGGGCAA TTATTGTGTG TGTGAGGATG GAAGGGTAGG GAATAATCGA 2340 ACATCTAAAG CCTTGAATAA GAGAATACTA ATTGTTTTGG TATGATGATA CTCAGAAATG 2400 GAGATATTAT AGGAAAAAGA AATCCTTTGG AATTTTAACT AAAATCACTG CATATGGGAA 2460 ATTAAGAGAT CCAGGACCAT ATTTGATAAG AGTTCCTAAA AATAATGTAA TTATTAATGC 2520 TAAAGACTIGC TCATGTATCT TGATCTAATT ACTAAATAAA TTACATATTT ATTTACCTGA 2580
TAAATATGTA TCTAGTTCTA CAAGGTCACA TTTATGTGGA AGTCCAAAGT CAAGTCCTTA 2640 45 TTGAGATGGA GTCTCGCTCT GTTGCCCAGG CTGGAGTGCA GTGGTGCGAT CTCAGCTCAC 2760 HIGAMIGGA GICLICULTI GHIGCCCAGG CTGGGTGCA TGGGTGCGAT CTCAGCTCAC 2760
ICCATCCTC CCCCCGGG TTCAAGCAT TCTCAGCTCAC 2760
ITACAGGCAC CTGCCACCAT GCCTGGCTAA TTTTTTGTAT TTTTTGTAGA GACGGGGGT 2880
TACAGGCAC CTGCCACCAT GCCTGGCTAA TTTTTTGTAT TTTTTGATAG AGCGGGGGT 2880
TCACATAGTT GGCTAGCCTG CTGAGCCTC GTGAGTCAC CCCCCTTGGC 2960
CTCCCAAAGT GCTGGGATTA CAGGCGTGAG CCACCGGAC TGGCCTTCC TGCTTCTT 3000
CTGAGATCCA ATTAGGGATG TTGTTACTA CATATTGA TAAACAGAT TAAACAAATT 3000 50 TTTTCTTTTT AAAATGTGAG ATCAGTGAAC TCTGGTTTTA AGATAATCTG AAACAAGGTC 3120 CTTGGGAGTA ATAAAATTGG TCACATTCTG TAAAGCACAT TCTGTTTAGG AATCAACTTA 3180 55 TCTCAAATTG TAACTCGGGG CCTAACTATA TGAGATGGCT GAAAAAATAC CACATCGTCT 3240 GTITTICACTA GGTGATGCCA AAATATTTTG CTTTATGTATA ATTACAGTTTC TTTTTAAAAC 3300 ACTGGAAGC TCATGTTAAA CTCTAATTGT GAAGGCAGAA TCTCTGCTAA TTTTTCAGAT 3360 TAAAATTCTC TTTGAAAAAA T 60 Seq ID NO: 82 Protein sequence Protein Accession #: NP_000777

65 MAAAAGMILI GILQAGGSVL GQAMEKYTGG NILSMILIAC AFTISLVYLI RLAAGHILVQL 60 PAOVKSPYH FSPIFLOHA IAFGKSPIEF LENA YEKYGP VFSFTMYGKT FTYLLGSDAA 120 ALLFNSKNED LINAEDVYSRI. TTPVFGKGVA YDVPNPVPLE QKKMIKSGILN IAHKQHIVSI 180 EKKFKEYFE SWOESGEKNY FEAL SEILLT ASHCHCHEK RSQLNEKVA QLYADLOGGF 29 SHAAWILPGW L'PLEFSRARD RAHREKDET YKAJQKKRGS GEKIDDILQT LLDATYXGGR 300 PLITDSEVAGM LIGGLLAGQH TSSTTSAWMG FFLARBKYTQ KKCYLEGKYT CGENIPPLITY 360 DQLKDLNILLD RCIKETILRIR PPIMIMMEMA RTPQTVAGYT IPPGRIVCYS PTVNQRIKDS 420 WVERLDPPND RYLQDPNSG EKRAYVPGGA GRIBGGIDER AYVQRKTINS TMIRLYEEDL S

75 Seq ID NO: 83 DNA sequence Nucleic Acid Accession #: NM_006551.2 Coding sequence: 64-336 (underlined sequences correspond to start and stop codons)

IDGYFPTVNY TTMIHTPENP VIRYKRRSK

```
11
                       21
                              31
          AATTCTAGAA GTCCAAATCA CTCATTGTTT GTGAAAGCTG AGCTCACAGC AAAACAAGCC 60
         ACCATGA AGC TGTCGGTGTG TCTCCTGCTG GTCACGCTGG CCCTCTGCTG CTACCAGGCC 120
         AATGCCGAGT TCTGCCCAGC TCTTGTTTCT GAGCTGTTAG ACTTCTTCTT CATTAGTGAA 180
         CCTCTGTTCA AGTTAAGTCT TGCCAAATTT GATGCCCCTC CGGAAGCTGT TGCAGCCAAG 240
         TTAGGAGTGA AGAGATGCAC GGATCAGATG TCCCTTCAGA AACGAAGCCT CATTGCGGAA 300
GTCCTGGTGA AAATATTGAA GAAATGTAGT GTGTGACATG TAAAAACTIT AACTGTGTT 360
TCCACTGTCT TTCAATGACA CCCTGATCTT CACTGCAGAA TGTAAAAGGTT TCAACGTCTT 420
10
         GCTTTAATAA ATCACTTGCT CTAC
         Seq ID NO: 84 Protein sequence:
         Protein Accession #:
                                NP 006542.1
15
                       21
                             31
         GVKRCTDQMS LQKRSLIAEV LVKILKKCSV
20
         Sea ID NO: 85 DNA sequence
                                            NM 002317.1
         Nucleic Acid Accession #:
         Coding sequence: 231-1484 (underlined sequences correspond to start and stop codons)
25
                                      41
         GGGCCAGGAC TGAGAAAGGG GAAAGGGAAG GGTGCCACGT CCGAGCAGCC GCCTTGACTG 60
         GGGAAGGGTC TGAATCCCAC CCTTGGCATT GCTTGGTGGA GACTGAGATA CCCGTGCTCC 120
         GCTCGCCTCC TTGGTTGAAG ATTTCTCCTT CCCTCACGTG ATTTGAGCCC CGTTTTTATT 180
30
         AGCAGATCCA ATGGGAGAAC AACGGGCAGG TGTTCAGCTT GCTGAGCCTG GGCTCACAGT 420
ACCAGCCTCA GCGCCCCGG GACCCGGGCG CCGCCGTCCC TGGTGCAGCC AACGCCTCCC 480
35
         CCCAGCAGCC CCGCACTCCG ATCCTGCTGA TCCGCGACAA CCGCACCGCC GCGGGGCGAA 540
         CGCGGACGC CGGCTCATCT GGAGTCACCG CTGGCCGCCC CAGGCCCACC GCCCGTCACT 600
         GGTTCCAAGC TGGCTACTCG ACATCTAGAG CCCGCGAAGC TGGGCCCTCG CGCGCGGAGA 660
         ACCAGACAGC GCCGGGAGAA GITCCTGCTC TCAGTAACCT GCGGCCGCCC AGCCGCGTGG 720
         ACGGCATGGT GGGCGACGAC CCTTACAACC CCTACAAGTA CTCTGACGAC AACCCTTATT 780
ACAACTACTA CGATACTTAT GAAAGGCCAC AACCTGGGGG CAGGTACCGG CCCGGATACC 840
GCACTGGCTA CTTCCAGTAC GATCTCCCAG ACCTGGTGGC CGACCCCTAC TACATCCAGG 900
40
         GCTCCACGTA CGTGCAGAAG ATGTCCATGT ACACCTGAG ATGCCCCGGCGGGGGGAAAACT 969
GTCTGGCCAG TACAGCATAC AGGGCAGATG TCAGAGATTA TGATCACAGGGGTGCTCA 1020
         GATTTCCCCA AAGAGTGAAA AACCAAGGGA CATCAGATTT CTTACCCAGC CGACCAAGAT 1080
45
         ATTCCTGGGA ATGGCACAGT TGTCATCAAC ATTACCACAG TATGGATGAG TTTAGCCACT 1140
          TGTACCTGCT TGATGCCAAC ACCCAGAGGA GATGGGCTGA AGGCCACAAA GCAAGTTTCT 1200
         GITCHTGAAGA CACATCCTGT GACTATGGET ACCACAGGGG ATTTGCATGT ACTGCACACA 1890
CACAGGGGAT GAGTCTGGGT GTTATGATA CCTCAGAGGG ATTTGCATGT ACTGCACACA 1890
CACAGGGGAT GAGTCAGGGG GTGTATGATA CCCTAGGGGG GAGACATGAGA TGCCAGTGGG 1890
TIGATATTAC AGATGTAAAA CCTGGAAACT ATATCCTAAA GGTCAGTGTA AACCCCAGGT 1890
ACCTGGTTCC TGAATCTGAC ATATCCAACA ATGTTGTGTGG GTGTGACATT GGGTACACAG 1440
50
         GACATCATCC GTATGCCTCA GGCTGCACAA TTTCACCGTA TTAGAAGGCA AAGCAAAACT 1500
CCCAATGGAT AAATCAGTGC CTGGTGTTCT GAAGTGGGAA AAAATAGACT AACTTCAGTA 1560
         GGATTTATGT ATTTTGAAAA AGAGAACAGA AAACAACAAA AGAATTTTTG TTTGGACTGT 1620
         TTTCAATAAC AAAGCACATA ACTGGATTTT GAACGCTTAA GTCATCATTA CTTGGGAAAT 1680
55
          TTTTAATGTT TATTATTTAC ATCACTTTGT GAATTAACAC AGTGTTTCAA TTCTGTAATT 1740
         Seq ID NO: 86 Protein sequence:
         Protein Accession #:
                                 NP 002308.1
60
                                      41
                              31
         | NEFAWTVLLL GPLOLCALVH CAPPAAGQQQ PPREPPAAPG AWRQQIQWEN NGQVFSLLSL 60
GSQVQPQRRR DPGAAVPGAA NASAQQPRTP ILLIRDNRTA AGRTRTAGSS GYTAGRPRPT 120
RRHWFQAGYS TSRAREAGD'S RAENQTAPGE VPALSNLRPP SRVDGMVYDDD PYNPYKYSDD 180
NPYTNYYDTY EBRPGGRYR RGYGTGYFQY GLPDLYAPPY YIQASTYVQK MSHYNLRCAA 240
65
         EBNCLASTAY RADVRDYDHR VLLRFPQRVK NQGTSDFLPS RPRYSWEWHS CHQHYHSMDE 300
FSHLYLLDAN TQRRWAEGHHA KSCLEDTSC DYGYHRIFAC TAHTQGLSPB CYDTYGADID 360
CQWIDITDVK PGNYILKYSV NPSYLVPESD YTNNVVRCDI RYTGHHAYAS GCTISFY
70
         Seq ID NO: 87 DNA sequence
         Nucleic Acid Accession #:
                                            NM_006419.1
         Coding sequence: 91-420 (underlined sequences correspond to start and stop codons)
75
         TTCGGCACTT GGGAGAAGAT GTTTGAAAAA ACTGACTCTG CTAATGAGCC TGGACTCAGA 60
                                                                               385
```


AAGAAAGCAC AATAAAAATG AGTAACAGAA AAAGCACATA TACTAGCCTA ACAGATTGGC 1020 TTGTTTTAAA GCAAAGACTG AATTGAAGGT TACATGTTTT AGGATAAACT AATTTCTTTT 1080 GAGTTCATAA ATCATTTGTA CCCAGAATGT ATTAATATAT TGCTATTAGG TTAATCTGTT 1140 AACTGAATGC TTTGATCAGC ATTGAGGTGA TGCTCACCTC CGAGGACCTC AGAACTGGTG 1200 5 CAGCTTCTCT CTCCCTCCCT CCCACAGACT GAACCTTTCG CCAGAAGCTG TCCTTATAAC 1260 GCCTTATACG CATACACAGC CAGGAAACGT GGAGCATTGT TTCTCACAGA GAGTCTCCAA 1320 SCHAINGELATION OF THE ANALYSIS TRACE AND A TEST AND A T 10 CTGATTCTAA ATTTAGTGAT ATGGTAATGA AATTGGTATT TATTTTAAAT ATTAGTTATT 1620 CTAAGGAGAA AAAAATGCTT CTGCAAGATT TTCATAATTC AGGGGCTGTG GATAGGATTG 1680 TECCTCTGTT TCCCTAATCA TTCATCTGTT CATGTCTCCC TCTTGTGCCA GTCAGCCTAG 1740 GTTATACAGA TGCCATGCTC CACACCAGGA GCAGTGTACA AATCTGGCTG CCCGTTTACT 1800
TTCTGAGCAA GCACTGGAGT CCACTCCGAC CTTTTTCTT GAACATGCAT GCTGCTGGAA 1860 15 TATGTATAAA TCAGAACATA GAGAAGCAACA GAGATAGTAG AGAGAAAATA GGCACTGAAT 1920
TCGTCAACTC TITTITGTGA GCCTACTTGT GAATATTACC TAGAGTACCT GTTGTCACTC 1980
TTCACAGGTT ATTTAAGTC TGAAGCTGG GAGGAAAAAA AGAGATACCT GTTGTCACTC 1980
TTCACAGGTT ATTTAAGTC TGAAGCTGG GAGGAAAAAA GAGAATACCT GAGTGTAAAAAT 2040 TCCAGCACTG AGCCGTGAGC CGGTCATGAG CCACGATAAA AAATGCCAGT TTGGCAAACT 2100 20 CAGCACTCCT GTTCCCTGCT CAGGTATATG CGATCTCTAC TGAGAAGCAA GCACAAAAGT 2160 AGACCAAAGT ATTAATGAGT ATTTCCTTTC TCCATAAGTG CAGGACTGTT ACTCACTACT 2220 AAACTCTACC AAGAATGGAA ACCAAGAATA TTTTCTGAAG ATTTTTTTGA AGATTAATTT 2280 25 Seq ID NO: 92 Protein sequence BAA91096.1 Protein Accession #: 41 21 31 30 MEHLKAFDDE INAFLDNMFG PRDSRVRGWF TLDSYLPTFF LTVMYLLSIW LGNKYMKNRP 60 ALSIASOILTI, YNLOTILISA YMLAELIST WEGOYNLOCO DLTSAGEADI KYAKVLWWYY 190 NEK VYEEDI TIPPULRIKETS QUTELHYYHH ASMIYIWWC VINWIDOQOS FOFTLISTYN 180 ILMYSYYGLS VEPSMIKYLW WIXYLTOAQL VQFVLTITH MSAVYAPGGF PFGCLIEQSS 240 YMLTLVILER INFYQYTYKK PMKKDMQEPP AGKEVKNGIS KAYFTAANGV MKKKAQ 35 Seq ID NO: 93 DNA sequence NM_000044 Nucleic Acid Accession Coding sequence: 1115-3874 (underlined sequences correspond to start and stop codons) 40 51 31 41 CGAGATCCCG GGGAGCCAGC TTGCTGGGAG AGCGGGACGG TCCGGAGCAA GCCCACAGGC AGAGGAGGCG ACAGAGGGAA AAAGGGCCGA GCTAGCCGCT CCAGTGCTGT ACAGGAGCCG 120 AAGGGACGCA CCACGCCAGC CCCAGCCCGG CTCCAGCGAC AGCCAACGCC TCTTGCAGCG 180 45 CGGCGGCTTC GAAGCCGCCG CCCGGAGCTG CCCTTTCCTC TTCGGTGAAG TTTTTAAAAG 240 CTGCTAAAGA CTCGGAGGAA GCAAGGAAAG TGCCTGGTAG GACTGACGGC TGCCTTTGTC 300 CTCCTCCTCT CCACCCGGC TCCCCCCAC TGCCTTCCC CCCCTCCCCG GTCTTCTTCTC 360 CCGCAGCTGCTC CTCAGTCAGC TACTCTAGC CAACCCCCCT CACCACCCTT CTCCCCACCC 420 GCCCCCCGC CCCGTCGGC CCAGCGCTGC CAGCCCGAGT TTGCAGAGAG GTAACTCCCT 480 50 TTGGCTGCGA GCGGGCGAGC TAGCTGCACA TTGCAAAGAA GGCTCTTAGG AGCCAGGCGA 540 CTGGGGAGCG GCTTCAGCAC TGCAGCCACG ACCCGCCTGG TTAGAATTCC GGCGGAGAGA ACCCTCTGTT TTCCCCCACT CTCTCTCCAC CTCCTCCTGC CTTCCCCACC CCGAGTGCGG 660 600 55 GGTTGCTCCC GCAAGTTTCC TTCTCTGGAG CTTCCCGCAG GTGGGCAGCT AGCTGCAGCG 1020 ACTACCGCAT CATCACAGCC TGTTGAACTC TTCTGAGCAA GAGAAGGGGA GGCGGGGTAA 1080 60 GGGAAGTAGG TGGAAGATTC AGCCAAGCTC AAGGATGGAA GTGCAGTTAG GGCTGGGAAG 1140 GGTCTACCCT CGGCCGCCGT CCAAGACCTA CCGAGGAGCT TTCCAGAATC TGTTCCAGAG 1200 COTGCGCGAA GTGATCCAGA ACCCGGGCCC CAGGCACCCA GAGGCCGCGA GCGCAGCACC 1260
TCCCGGCGCC AGTTTGCTGC TGCTGCAGCA GCAGCAGCAGC AGCAGCAGC AGCAGCAGCAGC 1220 GCAGCAGCAG CAGCAGCAGC AGCAGCAAGA GACTAGCCCC AGGCAGCAGC AGCAGCAGCA 1380 65 GGGTGAGGAT GGTTCTCCCC AAGCCCATCG TAGAGGCCCC ACAGGCTACC TGGTCCTGGA 1440 TGAGGAACAG CAACCTTCAC AGCCGCAGTC GGCCCTGGAG TGCCACCCCG AGAGAGGTTG 1500
CGTCCCAGAG CCTGGAGCCG CCGTGGCCGC CAGCAAGGGG CTGCCGCAGC AGCTGCCAGC 1560 CETICLAMAN CLIPANGECU CONTINUECCE CANCANGIUM CHECCACAC ABCTECCACE 1560
ACCTECCACA GAGGATGACT CACGEGECCA TRECAGTITI TO ECCTECTAGG GCACCACTTT 1620
CCCCGGCTTA AGCACCTGCT CCGCTGACCT TAAGACATC CTGAGGGAGG CCAGCACCT 1680
GCACTCCTT CACCACACAC CAGCAGGAACC AGTATCCGAA GGCAGCAGCAC ACCGGAGAGAC 740
GAGGGAGGC TCGGGGGCTC CCACTTCCTC CAAGACAAT TACTTAGGGGAGGC ACCTTCACE 1680 70 CATTTCTGAC AACGCCAAGG AGTTGTGTAA GGCAGTGTCG GTGTCCATGG GCCTGGGTGT 1860 GGAGGCGTTG GAGCATCTGA GTCCAGGGGA ACAGCTTCGG GGGGATTGCA TGTACGCCCC 1920 ACTITTGGGA GTTCCACCCG CTGTGCGTCC CACTCCTTGT GCCCCATTGG CCGAATGCAA 1980 75 AGGTTCTCTG CTAGACGACA GCGCAGGCAA GAGCACTGAA GATACTGCTG AGTACTCCCC 2040 TTTCAAGGGA GGTTACACCA AAGGGCTAGA AGGCGAAGAC CTAGGCTGCT CTGGCAGCGC 2100 TGCAGCAGGG AGCTCCGGGA CACTTGAACT GCCGTCTACC CTGTCTCTCT ACAAGTCCGG 2100

AGCACTGGAC GAGGCAGCTG CGTACCAGAG TCGCGACTAC TACAACTTTC CACTGGCTCT 2220 AGCGGGACCG CCGCCCCTC CGCCGCCTCC CCATCCCCAC GCTCGCATCA AGCTGGAGAA 2280
CCCGCTGGAC TACGGCAGC CCTGGGCGCT CCGCGCGCTC AGTGCCGCT ATGGGGACA 2280 GGCGAGCCTG CATGGCGCGG GTGCAGCGGG ACCCGGTTCT GGGTCACCCT CAGCCGCCGC 2400 TTCCTCATCC TGGCACACTC TCTTCACAGC CGAAGAAGGC CAGTTGTATG GACCGTGTGG 2460 CGGCGGCGGC GAGGCGGGAG CTGTAGCCCC CTACGGCTAC ACTCGGCCCC CTCAGGGGCT 2580 GGCGGGCCAG GAAAGCGACT TCACCGCACC TGATGTGTGG TACCCTGGCG GCATGGTGAG 2640 CAGAGTGCCC TATOCCAGTC CCACTTGTGT CAAAAGCGAA ATGGGCCCCT GGATGGATAG 2700
CTACTCCGGA CCTTACGGGG ACATGCGTTT GGAGACCTGC AGGGACCATG TTTTGCCCAT 2760 10 TGACTATTAC TITICCACCCC AGAAGACCTG CCTGATCTGT GGAGATGAAG CTTCTGGGTG 2200
TCACTATGGA GCTCTCACAT GTGGAAGCTG CAAGGTCTTC TTCAAAGAG CCGCTGAAGG 2800
GAAACAGAAG TACCTGTGGC CCAGCAGAA TGATTGCACT ATTAGATAAAT TCCGAAGGAA 2900 AAATTGTCCA TCTTGTCGTC TTCGGAAATG TTATGAAGCA GGGATGACTC TGGGAGCCCG 3000 15 GAAGCTGAAG AAACTTGGTA ATCTGAAACT ACAGGAGGAA GGAGAGGCTT CCAGCACCAC 3060 CAGCCCCACT GAGGAGACAA CCCAGAAGCT GACAGTGTCA CACATTGAAG GCTATGAATG 3120 TCAGCCCATC TTTCTGAATG TCCTGGAAGC CATTGAGCCA GGTGTAGTGT GTGCTGGACA 3180 CGACAACAAC CAGCCCGACT CCTTTGCAGC CTTGCTCTCT AGCCTCAATG AACTGGGAGA 3240
GAGACAGCTT GTACACGTGG TCAAGTGGGC CAAGGCCTTG CCTGGCTTCC GCAACTTACA 3300 20 CGTGGACGAC CAGATGGCTG TCATTCAGTA CTCCTGGATG GGGCTCATGG TGTTTGCCAT 3360 GGGCTGGCGA TCCTTCACCA ATGTCAACTC CAGGATGCC TACTTCGCCC CTGATCTGGT 3420
TTTCAATGAG TACCGCATGC ACAAGTCCCG GATGTACAGC CAGTGTGTCTCC GAATGAGGCA 3480 CCTCTCTCAA GAGTTTGGAT GGCTCCAAAT CACCCCCCAG GAATTCCTGT GCATGAAAGC 3540 ACTGCTACTC TTCAGCATTA TTCCAGTGGA TGGGCTGAAA AATCAAAAAT TCTTTGATGA 3600
ACTTCGAATG AACTACATCA AGGAACTCGA TCGTATCATT GCATGCAAAA GAAAAAATCC 3660 25 CACATCCTGC TCAAGACGCT TCTACCAGCT CACCAAGCTC CTGGACTCCG TGCAGCCTAT 3720
CACAGAGAGAG CTGCATCAGTCACACTCTGTACCAAGTCACACA TGGTGAGCGT 3780
GGACTTTCCG GAAATGATGG CAGAGATCAT CTCTGTGACA GTGCCAAGA TCCTTTCTGG 3840 GAAAGTCAAG CCCATCTATT TCCACACCCA GTGAAGCATT GGAAACCCTA TTTCCCCACC 3900
CCAGCTCATG CCCCCTTTCA GATGTCTTCT GCCTGTTATA ACTCTGCACT ACTCCTCTGC 3960 30 AGTGCCTTGG GGAATTTCCT CTATTGATGT ACAGTCTGTC ATGAACATGT TCCTGAATTC 4020 AACCCTCCCA TGGCACCTTC AGACTTTGCT TCCCATTGTG GCTCCTATCT GTGTTTTGAA 4140 35 Seq ID NO: 94 Protein sequence:
NP_000035.1 40 21 41 51 MEVQLGLGRV YPRPPSKTYR GAFQNLFQSV REVIQNPGPR HPEAASAAPP GASLLLLQQQ 60 QQQQQQQQQQQQQQQT SPRQQQQQG EDGSPQAHRR GPTGYLVLDE EQQPSQPQSA LECHPERGCV PEPGAAVAAS KGLPQQLPAP PDEDDSAAPS TLSLLGPTFP GLSSCSADLK 180 LECHPERGCV PEPGAAVAAS KGLPQQLPAP PDEDDSAAPS TLSLLGPTPF GLSSCSADLK 180
DILSEASTMG LLQQQQQEAV SEGSSSGARA EASCAPTSSK DNYLGGTSTI SDNAKELCKA 240
VSVSMGLGVE ALEHLSPGEG LRGDCMYAPL LGVPPAVRPT PCAPLAECKG SLLDDSAGKS 300
TEDTAEVSPF KGGYTKGLEG ESLGCSGSAA AGSSGTLELP STLSLYKSGA LDEAAAYQSR 360
DYYNFPLALA GPPPPPPPP PHARIKLENPL LDYGSAWAAA AAQCKYGDLA SLHGAGAAGP 420 50 GYTRPPQGLA GQESDFTAPD VWYPGGMVSR VPYPSFTCVK SEMGPWMDSY SGPYGDMRLE 540
TARDHVLPID YYFPPQKTCL ICGDEASGCH YGALTCGSCK VFFKRAAEGK QKYLCASRND 600 CTIDKFRRKN CPSCRLRKCY EAGMTLGARK LKKLGNLKLQ EEGEASSTTS PTEETTQKLT 660 VSHIEGVECO PETLAVILEAI EPICYVC AGIED INXEDEDITA LL ESELHELGIE GLUPEVUKLIK. 590
ALPGERNLIK DODQNAVIQUY SWIGLIMVFANGW WESFITNIVSKI MILYAPIDLIV INSTYBANIKISIM 780
YSQCYRARHIL SQEFGWLQIT PQEFLCKKAL LLFSIEPVDG LKNQKFFDEL RNNYIKELIDE. 840
INACKEKNEYT SCREFFVQUT KLLDSVQHA RELHQFTFDL LLISHMYSVD FPEMAKELIS. 55 VQVPKILSGK VKPIYFHTQ 60 Seq ID NO: 95 DNA sequence NM_002497 Nucleic Acid Accession # Coding sequence: 135-1472 (underlined sequences correspond to start and stop codons) 65 GGCACGAGTA GGGGTGGCGG GTCAGTGCTG CTCGGGGGCT TCTCCATCCA GGTCCCTGGA GTTCCTGGTC CCTGGAGCTC CGCACCTTGGC GCGCAACCTG CCTGAGGCAG CGCCACCTCG 220 GCCACTGCGC TCCCGGGCTG AGGACTATGA AGTGTTGTAC ACCATTGGCA CAGGCTCCTA CGGACGCAAGAT TGATGGCAAG ATATTAGTTT 240 CAGGCTCCTA CGGCCGCTGC CAGAAGATCC GGAGGAAGAG TGATGGCAAG ATATTAGTTT 240 CAGGCTCCTA CGGCCGCTGC CAGAAGATCC GGAGGAAGAG TGATGGCAAG ATATTAGTTT 240 CAGGCTCCTA CGGCCGCTGC CAGAAGATCC GGAGGAAGAG TGATGGCAAG ATATTAGTTT 240 CAGGCTCCTA CGGCCGCTGC CAGAAGATCC GGAGGAAGAG TGATGGCAAG ATATTAGTTT 240 CAGACTCCTA CGGCCGCTCCTA CGGCCGCTGC CAGACTCCTA CGGCCGCTCTA CGGCCACTCCTA CGGCCGCTCTA CGGCCACTCTA GETECTA COGCOCCAGE CANADATA COGARANA GALAGAGA TOCTT GETTECTGAAG 300
TGAATTIGCT TCGTGAACTG AAACATCCAA ACATCGTTCG TTACTATGAT CGGATTATTG 360 ACCGGACCAA TACAACACTG TACATTGTAA TGGAATATTG TGAAGGAGGG GATCTGGCTA 420 GTGTAATTAC AAAGGGAACC AAGGAAAGGC AATACTTAGA TGAAGAGTTT GTTCTTCGAG 480 GTGTAATTAL AAAQUAALC AAQUAAAGG AATGCCACAG ACQAAGTAGT GTGTGCTAT 540
TGATGACTAC ATTGACTTGT GCCCTGAAGG AATGCCACAG ACQAAGTGAT GTGTGCTAT 540
CCGTAATTGCA TCGGGATCTT AACCCAGCCA ATTGTTTTCCT GGATGGCAAG CAAAACGTCA 600
AGCTTGGAGA CTTTGGGCTA GCTAGAATT TAAACCATTG ACCGAGTTTT GCAAAAAACAT 660

70

TTGTTGGCAC ACCTTATTAC ATGTCTCCTG AACAAATGAA TCGCATGTCC TACAATGAGA 720 AATCAGATAT CTGGTCATTG GGCTGCTTGC TGTATGAGTT ATGTGCATTA ATGCCTCCAT 780 TTACAGCTTT TAGCCAGAAA GAACTCGCTG GGAAAATCAG AGAAGGCAAA TTCAGGCGAA 840 TTCGTGAGAG ACTAGCAGAG GACAAACTGG CTAGAGCAGA AAATCTGTTG AAGAACTACA 1200 10 GCTTGCTAAA GGAACGGAAG TTCCTGTCTC TGGCAAGTAA TCCAGAACTT CTTAATCTTC 1260 CATCCTCAGT AATTAAGAAG AAAGTTCATT TCAGTGGGGA AAGTAAAGAG AACATCATGA 1320 CAIGCECAGT ATTANGANG ANAGTICATT TCAGTGGGGG ANGTANGAG ANCATCATIG) 126
GGOTTGGGAN TICTGGAGGT CAGCTCAAT CTAAGTCCAA GTGCAAGGACCTGAAGAACAA 1380
GGCTTCAGGC TGCCAGCGTG CGGGCTCAAGCCCTCAGCCCTGTCAGG ATATGAGGAAA AATTACCAAC 141
TGAAAAGCAG ACAGATCCTG GGCATGCGCT_AGCCCAGTCAG AATTGAGGAAA AATTACCAAC 141
TGAAAAGCAG ACAGATCCTG GGCATGCGT_AGCCAGGTCAG AGACCACGA GCCTGTGTGTAC 1500
AGGCCCCATGA ATTACCAACC TTTAAGACT GAATTACAAA TGCTGTAGTG TTGAATACTT 151
AGGCCCCATGA CCCCTGCCTT TTTATGATAGT ACACTAATATTCTGGAAATT GGTTTATTCTG 1520 15 TTCTTCAGCA ACTATTGTAC AAAATGTTCA CATTTAATTT TTCTTTCTTC TTTTAAGAAC 1680 ATATTATAAA AAGAATACTT TCTTGGTTGG GCTTTTAATC CTGTGTGTGA TTACTAGTAG 1740 GAACATGAGA TGTGACATTC TAAATCTTGG GAGAAAAAT AATATTAGGA AAAAAAAAT T 1800
TATGCAGGAA GAGTAGCACT CACTGAATAG TTTTAAATGA CTGAGTGGTA TGCTTACAAT 1860 20 TGTCATGTCT AGATTTAAAT TTTAAGTCTG AGATTTTAAA TGTTTTTGAG CTTAGAAAAC 1920 CCAGTTAGAT GCAATTTGGT CATTAATACC ATGACATCTT GCTTATAAAT ATTCCATTGC 1980
TCTGTAGTTC AAATCAGAA GATTGGTAAAAAATAATTCCATTGC 1980
TCTGTAGTTC AAATCAGAA TATGAGCTGT CTGTCATTTA CATTCATTT GATACTCTT TATCACTAAA 2100 25 TAAAAGAATT CTTCAGTTA Seq ID NO: 96 Protein sequence:
NP_002488 30 21 31 41 51 GIREFNPNIM ANEVERINMI TOSISGENEA RELATEDKIN ASEHOMOSAP IENSMPSRAE 60 DYEVLYTIGT GSYGRCQKIR RKSDGKILVW KELDYGSMTE AEKQMLVSEV NLLRELKHPN 120 IVRYYDRIID RTNTTLYIVM EYCEGGDLAS VITKGTKERQ YLDEEFVLRV MTQLTLALKE 180 35 CHRRSDGGHT VLHRDLKPAN VFLDGKQNVK LGDFGLARIL NHDTSFAKTF VGTPYYMSPE 240 OMNRMSYNEK SDIWSLGCLL YELCALMPFF TAFSOKELAG KIREGKFRRI PYRYSDELNE 300 ITRMLNLKD YHRPSVEEIL ENPLIADLVA DEQRRNLERR GRQLGEPEKS QDSSPVLSEL 360 KLKEIQLQER ERALKAREER LEQKEQELCV RERLAEDKLA RAENLLKNYS LLKERKFLSL 420 ASNPELLNLP SSVIKKKVHF SGESKENIMR SENSESQLTS KSKCKDLKKR LHAAQLRAQA 480 40 LSDIEKNYOL KSROILGMR Seq ID NO: 97 DNA sequence leic Acid Accession #: NM_007050.2 Coding sequence: 185-4576 (underlined sequences correspond to start and stop codons) 45 21 41 CCTCCCGCCT CAGTTCGCGC CGCGCCTCGG CTTGGAACGC AGGAGCGCCG GCTCCGGGAG 60 50 55 CACCCACTGC ATCGACTTCC ATTACTACTT CTCCAGCCGT GACAGGTCCA GCCCAGGGGC 540 60 GCGGAGCGTC AGCAAGTACC GCTGTGTGAT CCGCTCTGAT GGTGGGTCTG GTGTGTCCAA 1020 GOGGAGGUIL AGCAAGTACE GISTRITIGAT COGISTICAT GUIDIGITET GUIDITECAA 1838
CTAGGGGGAG CITARTORTIA AAGAGCCTOC CAGGCCATT GUIDIGITET GUIDIGIT GUID 65 70 AGCCCGGCAG CTGACCCTGC AGTGGGAGCC CTTCGGCTAC GCGGTGACCC GCTGCCATAG 1440
CTACAACCTC ACCGTGCAGT ACCAGTATGT GTTCAACCAG CAGCAGTACG AGGCAGTACG AGGCAGTACG AGGCAGTACG AGGCACTTCA TGACCATCCG ACTACACCCT GCGAGGCCTG CGCCCCTTCA TGACCATCCG 1500

GGTCATOCAG ACCITECTECE ACTACACCET GGGAGGECTG GGGCATTATA TGGCATCOCI 1890
GGTCGCAGCT TGGCTGTCA ACCCCA AGGG CCAAATGGAA AGGCAGGAGGAC
GGAGAGATCA TGGCTGTCA ACCCCA AGGG CCAAATGGAA AGGCAGGAGCAC
GGAGAGATCA TACATCCAGT GGAAACCTCC CAATGAGACC AATGGGGTCA TCACCGTCTT 1704
GGAGATCAACA TCACAGGCTGT TCGGCTCGGT GGACCCAGT GGTGACCTCT CCAGCCCAGA 1800

GACCACCTAT TOCTTCACCA TCAAGGCCAG CACAGCAAAG GGCTTTGGGC CCCTTGTCAC 1920 CACTCGGATT GCCACCAAAA TTTCAGCTCC ATCCATGCCT GAGTACGACA CAGACACCCC 1980 ATTGAATGAG ACAGACACGA CCATCACAGT GATGCTGAAA CCCGCTCAGT CCCGGGGAGC 2040 5 TCCTGTCAGT GTTTATCAGC TGGTTGTCAA GGAGGAGCGA CTTCAGAAGT CACGGAGGGC 2100 INCIDICAM I 911 ALLAUC INGTIBITICA GGAGGAGGA CITCAGAAGT CACGGAGGGC 2100
ACCIGACATI ATTRAGGICE I TITCGGITECC CEGTAGACTAT CGGAAGTGCC CCAGGCCTGA 2100
TICTCTACAC TACTITIGGT CEGAGTTIGAA GCCTGCCAAC CTGCCTGTCA CCCAGCCATT 2200
TICTCTACAC TACTITICAC CATACAATGG CATACTGGAAC CCTCCTCTCTCT CTCCCCTGAA 2200
AAGCTACAGC ATCTACTTCC AGGCACTCAG CAAAGCCAAT GGAGGACCAC AAATCAACTG 2440
TGTTCGTCTG GCTACAAAGC CACCAATGGG ACGCCCAG TGGACCCCGG GGAGCTCCACT 2400 10 CTGCCTCCTC ACCACAGGTG CCTCCACCCA GAATTCTAAC ACTGTGGAGC CAGAGAAGCA 2460 GGTGGACAAC ACCGTGAAGA TGGCTGGCGT GATCGCTGGC CTCCTCATGT TCATCATCAT 2520 TCTCCTGGGC GTGATGCTCA CCATCAAAAG GAGAAGAAAT GCTTATTCCT ACTCCTATTA 2580 CTTGTCCCAA AGGAAGCTGG CCAAGAAGCA GAAGGAGACC CAGAGTGGAG CCCAGAGGGA 2640 15 GATGGGCCT GTGGCCTCTG CCGACAAACC CACCACCAAG CTCAGGGCCA GCCGCAATGA 2700
GCATTGCCTTCTTGTTCTTCAGGCCTCAACGGATTC ACAGATGGCA GCCGCGGGGCA 2760
GCATTGCCTAC CCCACCCTCA COATCCAGAC TCATCCCTAC CGCACCTGTG ACCCTGTGGA 2252 GATGAGCTAC CCCCGGGACC AGTTCCAACT CGCCATCCGG GTGGCTGACT TGCTGCAGCA 2880 CATCACGCAG ATGAAGAGAG GCCAGGGCTA CGGGTTCAAG GAGGAATACG AGGCCTTACC 2940 20 AGAGGGGCAG ACAGCTTCGT GGGACACAGC CAAGGAGGAT GAAAACCGCA ATAAGAATCG 3000 ATATGGGAAC ATCATATCCT ACGACCATTC CCGGGTGAGG CTGCTGGTGC TGGATGGAGA 3060 25 AACAGAGCCC CTGGCAGAAT ACGTCATACG CACCTTCACA GTCCAGAAGA AAGGCTACCA 3360 TGAGATCCGG GAGCTCCGCC TCTTCCACTT CACCAGCTGG CCTGACCACG GCGTTCCCTG 3420 CTATGCCACT GGCCTTCTGG GCTTCGTCCG CCAGGTCAAG TTCCTCAACC CCCCGGAAGC 3480 TGGGCCCATA GTGGTCCACT GCAGTGCTGG GGCTGGGCGG ACTGGCTGCT TCATTGCCAT 3540 30 TGACACCATG CTTGACATGG CCGAGAATGA AGGGGTGGTG GACATCTTCA ACTGCGTGCG 3600 TGAGCTCCGG GCCAAAGGG TCAACCTGGT ACAGACAGAG GAGCAATATG TGTTTGTGCA 3660 CGATGCCATC CTGGAAGCGT GCCTCTGTGG CAACACTGCC ATCCCTGTGT GTGAGTTCCCG 3720 TTCTCTCTAC TACAATATCA GCAGGCTGGA CCCCCAGACA AACTCCCAGCC AAATATCAAGAG 3720 TGAATTTCAG ACCITCAACA TIGTGACACC CCGTGTGCGG CCCGAGGACT GCAGCATTGG 3840
GCTCCTGCCC CGGAACCATG ATAAGAATCG AAGTATGGAC GTGCTGCCTC TGGACCGCTG 3900 35 CCTOCCCTTC CTTATCTCAR TANACCGAGAA ATCCAGCAATTACATCAACG CAGCACTAT 3990
GGATAGCCAC AGCACCTG CCCCCTTCCT GGTCACCCAG CACCCTCTAC CCAACACCGT 4020
GGATAGCCAC AGCACCTG CCCCTTCCT GGTCACCCAG CACCCTCTAC CCAACACCGT 4020
GGCAGACTTC GGAGCTGG TGTTCGATTA CAACTGCTCC TCTGTGGTGAT GATCGAATGA 4000
GATGGACACT GCCGTGATTCT GTTATCAGTA CTGGCCTGAG AGACACCTCC GGTCCTAGTATT 4020
GCCCATCCAG GGTGGATTCT GTTATCCAGTAC AGCACTACTCC ACCAGAATATT 4200 40 CCGCATCTGT AACATGGCCC GGCCACAGGA TGGTTATCGT ATAGTCCAGC ACCTCCAGTA 4260 CATTGGCTGG CCTGCCTACC GGGACACGCC CCCCTCCAAG CGCTCTCTGC TCAAAGTGGT 4320 CCGACGACTG GAGAAGTGGC AGGAGCAGTA TGACGGGAGG GAGGGACGTA CTGTGGTCCA 4380 45 CCTGACTCCA AGGAGAAGAC TGGTGGCCCT GTGTTCCACG GGGGGCTCTG CACCTTCTGA 4740 50 GGGGTCTCCT GTTGCCGTGG GAGATGCTGC TCCAAAAGGC CCAGGCTTCC TTTTCAACCT 4800 55 CCCCTGCAAC CTCCTTCAGG GGCCTCTGGC ACCAGACATT TGCAGTCTGG ACCAGTGTGA 5100 CCTTACGATG TTCCCTAGGC CACAAGAGAG GCCCCCCATC CTCACACCTA ACCTGCATGG 5160 GGCTTCGCCC ACAACCATTC TGTACCCCTT CCCCAGCCTG GGCCTTGACC GTCCAGCATT 5220 CACTGGCCGG CCAGCTGTGT CCACAGCAGT TTTTGATAAA GGTGTTCTTT GCTTTTTTGT 5280 GTGGTCAGTG GGAGGGGGTG GAACTGCAGG GAACTTCTCT GCTCCTT GTCTTTGTAA 5340 60 AAAGGGACCA CCTCCCTGGG GCAGGGCTTG GGCTGACCTG TAGGATGTAA CCCCTGTGTT 5400 TETTTGGTGG TAGCTTTCTT TGGAAGAGAC AAACAAGATA AGATTTGATTATTTTCCAAA 5450 GTGTATGGA AAAGAAACTT TCTTTTGGA GGTGTTAAAAT CTTAGTCTCT TATGTCAAAA 5450 AGAAGGGGG GGGGAGTTT:GAGTATGTAC CTCTAAGACA AATCTCTCGG GCCTTTTATT 5580 TTTTCCTGGC AATGTCCTTA AAAGCTCCCA CCCTGGGACA GCATGCCACT GAGCAAGGAG 5640 65 AGATGGGTGA GCCTGAAGAT GGTCCCTTTG GTTTCTGGGG CAAATAGAGC ACCAGCTTTG 5700 ANATIONED TO COLTANANT INSTITUTATION OF CONTRACT ANATIONAGE ACCARGETTED 5700 TOCATANTET GATOTICAN ATTIGNACTE CITECTANAG ANACCAGAG ACCACCTTIGA 5700 ANAAGGCCAT TOTGOAGCCC ATTATACTIT GATTTANAAT AGGCCAAGAG AATCAGGCCT 5820 GGAGATCTAG GGTCTTGTCC AAAGTGTGAG TGAGTCAATTA GAGAGGAACC AACATTTGCT 5880 AAGTCTCTAC TGTATGCCAG GGATCATGCT TGGCACTTTC CATAGGACAT TTCACACAGT 5540 70 CCTTAGAACC CCCAGGAGAG AGCTACTGAC TTGTTATCAT CTCCATTTGA TCATCTCCTC 6000 CAATGAGGAA ACCCACGCAC CTTCCTTAGT AATGAAATCC TGGGTTCCAA AGGGGCAGGT 6060 AATGGCAATG AGACTTCTCC GTGCTGTTTT CTTCATCTTC TCTAAGCCAA GCAATTATTT 6120 TATGGAGGGA AAATAAGGCC AGAAACTTCT GAGCAGATAA CTCCACAAAT GGAAATTTAG 6180 TACTITICTIC CTGATGCCAG TICTTCTGGG AAGCGCAGAA TITTCAGATAT AITTTAGTAA 6240 CACATITCCCA GCTCCCCAGG AAAGCCAGTC TCATCTAATT TCTTAGTCAG TAAAAACAAT 6300 TCCCTGTTCC TTCAGGCTAT GAATGGACCA GCCAGGGAAA CTCTCGACCT TGATCTCTAG 6360 75 CCAGTGCTTA GGCCCAATAT CTGACAGCCT CAGGTGGGCT GGGACCTAGG AAGCTCCATC 6420

GGGGAAAGTG TTCAAGCTCC GGAATGAAAC CCACCACCTC TTTGTGGGTC TGTACCCAGG 1860

TTGAAGGCTG GTCTAGCCCC AGACAGGGCA TGAGGGGCAG AGAATTCAAG AAGGTACAGC 6480
TTTGGCCCTC AAGAGCCCAC TGTATGCTGG GGAAATGGAA CCATGGTGCA GTAGTGTGGA 6540 GTGGATGAGT GTTCCATGAG CCTAGGAGCA AGAAAGTCTC TTCGGCCTCG GGCTTCCTGG 6600 AGAAGGGGAC GTCCATTCCT GCTGGGTCTT AACAAGCATA AAAAGGAAAA AAAGGAAACT 6660 CAGGCAAAGG ATCCATATG TGCAATGGCA AAGAAATGTG AAAAGGAATT GGGAGAAGCA 6720 GTCTGGGGGGA GCCCAGCCCA GTCGGGGCAC AGCAACACC GGGGAGCAGCA AAAGAATGAG 7520 5 CCAGGGTCCA GGAGACAGAT GCCCATCGCG AGTACAGACT TTGTCCTATT GGCAACAAGG 6840 CANGGITCA GRANAMA GOLATICAGO ANTICARAL HISTORIA HOLDARIANA AGRICATIGA GETTAGAGA GATECATIGA CATURA ANTICATIGA GETTAGAGA GATECATICA GETTAGAGA ANCATTCCCT TAAGCGTGA CATURA CA 10 AGTTGCTTCC ATTGGCATGG GCTCTGGAGC TGTCCAGAAG TCCAGGGACA CCAGACTTGA 7200 TCAAGGAAGG GCTGTCACTT TAGAGGTTCA AAAGGAAGTG CCTCAAAGCA AAGGCAAGCA 7260 15 AAGGAACCCC ACGATGAACT TGCTCTTTTC CTTTGATGAG CCTCTCCCCA GGTGTATTTC 7320 AAGGAACCUC GOGGACCAC CCCCACTGG CCTGCTGCTGC CCCCCCCC GGTGTATTC 7320
AGCGACCCC GGGGACCAC CCCCACTGG CCTGCTGCG CCCCCTCGGC CCACGCCCAT
GCCCAGCTG GCCTTCCCCA GCCTGCAAGG AGCCTGTAGC ATGGCAAATC TGCCTGCTT 7440
ATGCTATTTT CTTAGATCTT GGTACATCCA GACAGGATGA GGGTGGAGGA GAGCTATTT 7530
AACACAAATC CTAAGATTT TTTCTGCTCA GGAAGGGGTG AAATAGCTGG CAGATACAA 7540 20 AGACAGTGGC TITTATCATT TTAAATGGTA GGAATTTAAG GTGTGACTTC AGGGAGAAAC 7620 AGACATIGCAA AAAAAAAA TCTCAGGCCA TGTTGGGGTA ACCCAGCAAG GGCCAGTGAT 7680
GATTTCCCCC AGCTCATCCC CTTATTTTCC CACAACCCAA CCATTCTCTA AAGCAGGACA 7740 GTGAATAGGT CTTAGGCCAG TGCACACAGG AAGAAATTGA GGCTTATGGA TGGGGATGAC 7800
TTCCCTAAGA TCCCATGGGA CAAGGATGTG GCAAGGCTTG GATGAGATGG GGCACCAGTG 7860 25 CCCAGGAATT TGAACATTTT CCTTTACCCA GGAAATCTCC GGAGCCAACA CCACCACCCC 7920 CAGGGGGTCT CCCCACCCCA CCCCATTAC AGGGTGAGCT CAGCCTGTCA TGAGCAAGAG 7920 AAAATATTAT TAATGCTCTC TGAGTCTTTA CAACAGGAGC TCTTACCTCA TAGATGTGGG 8040 CTCTGTTTGG GGAAGATGCA AGGAAGTAAT GAGAAGCCCA GGAAATTTCT CCACCTGTGT 8100 TTATGGCCTA AATAGCTTCA GGATGTATCT TAGCTGCACT CCAACATTGC ATCCTTTCTG 8160 30 GGGTGAAGAA TCTGGGCCAA CCAGGGGTCC TTGGGCCTCT AGAAGGCCAC AGTAGGCCTC 8220 TCTTTGTGGG AATGGAAGGG GACAGTTTGC TTTTAGTGCT GGCCCTCTCT GTGGGTGTGG 8280 CCTGCAAGG AACAACAG ACCATGCTG GGGCTCTAA CATGTGAGCT CATTAAATTC 8340
TTCCAGGGGA AACAACAG ACCATGCTG GGGCTCTAA CATGTGAGCT CATTAAAATTC 8347
TTCCAGGGGA AAAACACTT GGCCACAGTT CACAAGTTA ATGTGATGAGG AAACTAAGGC 847
TAAACGGGTT TTCTCATCACTACTACAGACACAA TATTTTTCAC CATTGTATC TCACATTTTT 839
TAAACGGGTT TACCTACAC AAAAGAGACAT AAAGTGGAACA GAATACGTCA GTGGATAAAGGCAT 8480
CCCAGGAGGGT TACCCTACAC AAAAGAGACAT AAAGTGGAACAGATAATACGTCA GTGGATAAAAG 35 CTCAAAGCAA ACAACAGTAA GCTTAAAATT CCTTCATAGT CTCATGTTTT ACGTTCACAA 8640 TTCATGCAAA ATTTGCATTC CACTTTCTGA TTTAGCCTTG TTGGTTTTAA TATGACTCTA 8700 TICATICANA ATTICATTIC CACTITICINA ITTAUCCTIO TIGUTITIAA TATGACTICTA \$700 TGAATATTIC AAAAAAAAA TIGECTIGTIC TICCATGTIG TICTGTITGTIG TICACCCCGC \$700 TATGACCGCC CCTAGGTCAG CTGGTCTTCA GCTTGACCCT AGAATGACT CTAGGAGCAG \$820 TGACCCTGCT CCCTCCCAGA GCCAGTTATA GGCTCAAGAT CAAGACCAAC TGACCTTCT C \$800 CTAGGCAGCT CCTTTGGTGT GTGGGTGCTC TGACCTCACT GTCATGAGG GGACCTCAAC \$820 40 TAAGGCATCT TCCAGTTGGG TGCTGGAAGG AACCCATTAA CTCACACTAG AATGATGAGG 9000 ATTTGCTCAT CTGGCGTGGA GAAGGATGAG CCCACAAAAC CCTAAAGGGA AAAGAGAAGC 9060 45 TGGACACAGC TGTACTCAGC AGATTCCTGA ATGCTAGGCT GGAAAGTGGT GCCTGTTGTC 9120 CAAGTGGAGT CACATGGTTG CTAATGTGGG CAAGTCTGAG GACACACTTC ATGAGCAGCT 9180 GGGGTGTGGA AGGCTCCTCA CTTTACCCTA GCCACACATA ATTACTGGGT GCCTACAGCA 5940 CCTAGCACCT TGGAGGGGGG ACTATTAGGA AATGGAGATA TACTAGGGCA CAATAAATCC 5900 TGGGTAAGGC ATGGGGTTGT GGTGGACAGA GCTCAGTCTT TAGTTTGAAC GAAAACATAC 5900 ATACATGAAA AACATACATG AAAAAAGGAC CCTCATCAAC ATTAGAAGGG GTAGATTTGG 9420 50 AGCACTITAG GCAGGAAAAC AGGAACGCAA GGCCAGGAAA CTGGAACCCA GTGAATACTC 9480 AGAACCGAGG ATGCAGATGA CTTATTTAGC AAAATGGTCA CTTCTGTGAC ATAGCTGGAG 9540 AAAGGATGGG TAACAGCTTG CCAGAGCCAC TTGGAACAAG GGCAAATCTC AGTGTCTGGG 9600 AGAMANAM I ANCASTIC CARANACA I HAMPA TATACTICA CTECCATTO 9800
CONCAT ACI CITTOCTTA AOTOCTACA AOTOCTACA CECCATTO 9800
CONCAT ACI CITTOCTTA AOTOCTAC 55 60 CATCAGCACC AGGCTCAACC AGGAGTAACA TTCTGGAAGA CATGGGTGAG CCCAAGAGGA 10020 AGCATGAACA GGACGCTGTT CCTAAGTCAT GTCAACAGGT TGTGCTGGGC CAGGATCCCC 10080 AGGGAAAAAA ATGGTCAACC CAACTGGAGG GTAGGTTAGA AGAAAAAAA CATAAACGTG 10140 AUGUANAANA TIGUTAAAC CAACTGUAGG GTAGGTTAGA AAAAAAAAAA CATAAACGTI III GATAGTCATG TCATCTCAAA TOCCCTGACTT GGCTTCOCCA TTACTTGACA GTCTGAGCTC 10200 CTTCTTAGCC TGTGACCAGC TTCAAATCAC AGCCAAGTAA AACAAGGAAA TAGGAAAAAGT 10260 65 AAATCCAACT AGAAGAGACA AGCTGAGATT CAGATTIGTT TACTCCTCCC ATGCAAAGTT 10320
TCCCTGTTGG AGGTTTTCCA TGTATACATG TCTAGAAGTG ATAGAATGCA AGGCCTTGGC 10380 TTTGTCTTGC AGGGATCTGC CTTTGAGGTC ATAGACTGAA CAGCAGGGAG AGAGGTTAGT 10440
GGTGGAGTGT GGGGGGAGCT GTTCTAGCTC CAGTTTCTTC TGACACATTT TTCAGGATCA 10500
TGGATCTGAT CCTCCGAAGC ACAGCAGAGA TATCTAAGCC ATATTTTGTGC ACATGAGCAG 10560 70 CAGGGGTGGT CCACTGGGGC AGATACAAGG GAAGTGCAAG GGCTCAGGAT GAAAGAAAAT 10860 75 CTATTGGGAA GAGTTTTAGG GGCTTGATCA TTATGGGGCT TCCTTCTATA TCTGAGAACT 10920 GCTCTGGGTG GTGAGATGTG GACTCTGATC CTTAATTGGA ATGTTCGGAG AATGAGTGTC 10980 TGGTGGCCTT GAAGTGTTGG ACAGAAAAGT ATCAGTATAA AAGCCTGGAG CTCAGGGTAA 11040

TTAATGTAGT TCATGGTTCC TTAGTGAGCA GGACTCTTGG ATGTGGAGGA GAAAGGGTCA 11100 TAGGAAGTAA ACCACCAAAA TTACAAAATT GAGTCTCTGT ACAATTACTT CAGTGCCTTT 11160 INGUARDIAA ACCACCARAA I IACAARAATI QADICICIDI ACAATTACII CADIGUCITI IIIBU GGGCTTATGAA ATCAACTAC ATGGGCCTTC CTATGATGG TCCAACACAAC TCTACAGTGTC 1120 CACCCTGTCC CTGTATCTCC CATGGAAGAT GAATAATGTC AGGTGTTCTT TGGGTCAACA 11280 GCCCCAGGGC AGTCTGGAG GCTTAGAGGC AGAGTGGTGT CATTCCATGT AAAGTTAGGC 11340 TTCTGAGGGG TCAGGCAGAA TATGGTGTCC ATATCTTCCA TAGCTCTGCA GATTCTTGGA 11400 5 TGAAGTCAAG CACAGTTTGC TAGACCCAGG TCACTCCTCT GAGTATAACT AGGACCCATG 11460 AGTGAAACTT AATAGCTGTA AGGAAGAACC TGCTGTCTGC CAGAGAGGAT AAGCTGCCCA 11520 TCTCAGCAGC TGTCTAAAAG AAGGCAGGTG TCTCTTTAAA GGGAAGAGAA GCATTGGTGA 11580 AATGGATTTC AGGTCACTTC CATTCCAGAT GGGTGAGATC TTGTGGAGCT GGGATCATGT 11640 10 TTGAACTCAT TCATACCTGT AGAGCACGAA TCCAAGTAGA TTGTGTTTGG TCTGTACAGG 11700 CTGAAGCCCC CTGGTCTCCC ACCCAAGTGC CCCCACTGAG CAGGCCAAC TGCTGTTGTG 11760 GCCACAATA CTGGGCTGAT CCAGGCTGGT TATCACCAAA CAGCCAAACCA TAGGGAACAG 11820 CTGCTTTGCC ATAGACCCAA TACCCATGTA GATCTCTCAT GAGAGCAGCC ATAACTCAGA 11880 15 CCCACTGACC AACAGGGCCA TGAGTGACAG CCAGAACCAG TGAAGGTCCA AGTAGGACAC 11840 AGAGCAGGGC TTTTCTTACC ATACACATTA TCTCCAGAGG TTATTTCTAC CCCACTCCCT 12000 ATTCAAGGCC TGTTGGAGCA CACTGCAAAA GCAAAAGCAC AGTAACTCAA TTTACACATG 12060 ATTATAATCA TTTCCAGTGC ACACATTTCA TCACCAGGTG GATCCTGAGC TAGCCCATGT 12120 ATTATATION THE CAGGIGE ACACATTEC TECH CACCAGGIGE GATCCTGAGG TAGGCCATGT 1220
ANATCCGGGTT TAACCCATAT TIGGTAATCAT ACTCAAAGG CAGTTTTTACCC CTAACTTCATTCAT
CTAGCCATC AAAGACAAG AGTTGTGGCC TCTACCATTG CCTTGCCTTC TGGACACCCT 12240
CACAAGCTAT CCCAAGGTTC CCCCTCAACT CCAGGGAGGC TGACATCTTC ACATCCACTG
GGCATATAAT ATTGCATGAG ACCAAAGTCT CCACGACTCTT TGCAGCCTCC TCCATGAATC 12300 20 CCAATGGCCT GCACTTGTAC AGTTTGGGTG TTTGATAGAT AAAGCACGTA TGAGAAGAGA 12420 AAACAAAATA AATCAACTTT TTAAAAAAGC CAGCACTGTG CTGTCAATGT TTTTTTTTTC 12480 2.5 TTTTCAATTC TAGCTCAGAA AAGCAGAAGG TAAATAATGT CAGGTCAATG AATATCAGAT 12540 ATATTTTTTG ACTGTACATT ACAGTGAAGT GTAATCTTTT TACACCTGCA AGTCCATCTT 12600 ATTTATTCTT GTAAATGTTC CCTGACAATG TTTGTAATAT GGCTGTGTTA AAAAATCTAT 12660 ACAATAAAGC TGTGACCCTG 30 Seq ID NO: 98 Protein sequence:
NP_008981.1 41 35 GIREFNPPRO TEINTYROSI NEPHOSPHAT ASERECEPTO RTYPETHOMO SAPIENSMAS 60 LAALALSLLI RLQLPPLPGA RAQSAPGGCS FDEHYSNCGY SVALGTNGFT WEQINTTEKP 120
MLDOAVPTGS FMVNSSGRA SGOKAHLLIP TLKENDTHCI DFHYYFSSRD RSSPGALNVY 180 IGGPQGN PVWNVSGVVT EGWVKAELAI STFWPHFYOV IFESVSLKGH PGYIAVDEVR 240 VA MAGGIGARD HE WAS SEVEN THE SERVICE AND THE STATE OF TH 40 45 KLRNETHHLF VGLYPGTTYS FTIKASTAKG FGPPVTTRIA TKISAPSMPE YDTDTPLNET 660 DTTITVMLKP AQSRGAPVSV YQLVVKEERL QKSRRAADII ECFSVPVSYR NASSLDSLHY 720 DITHY WHILE AUSKULPTVSY VQLVYLEEBL QKSROCAULI BERSYYYSYK NASSLUSELY /20
TAABELEPANL PYTOPTY GO NETTYGY WAP ELSEKSYSI FYGASKANG ETKINCYLL. 789
TKARMOSAQV TROTHLILLI TIGASTQKSRT VEPERQVENT VEMACVIAGL LHRILLIGV 88
MUTTKARMOSAQV TSYSYLLQR LLAKKQERT 9 KARQENEMOY AKANDYTILL SARSHDEGTS 900
SSSQDVNOFT DOSSGELEQ TLTIQTHY'N TCDPY LBYN PROPICALBY DALUGHTUM 900
SSSQDVNOFT DOSSGELEQ TLTIQTHY'N TCDPY LBYN TY DORQULAR DALUGHTUM 900
SSSQDVNOFT DOSSGELEQ TLTIQTHY'N TCDPY LBYN TY DORQULAR DALUGHTUM 900
THE STANDARD STAN 50 YINANYIDGY HRPRHYIATQ GPMQETYKDF WRMIWQENSA SIVMYTNLVE VGRVKCVRYW 1080 PDDTEVYGDI KVTLIETEPL AEYVIRTFTV QKKGYHEIRE LRLFHFTSWP DHGVPCYATG 1140 LLGPRQVKE LNPPEAGPIV VIICADA GARY COZI, IDDNL DMABLERV VIDENCVIGLLA 1900 (RNNLVQTBE QVVVVIDAL LA ALGORY COZI, IDDNL DMABLERV VIDENCVIGLLA 1900 (RNNLVQTBE QVVVVIDAL LA ALGORYLA I PVGERSLLY NIRBLIDPYTI SOKJONDEGY 1200 (LNIVTRYNRP DDCSIGLJER NHDKIRSKOW) LPLDRCLPFL ISV DGESSNY INALIMDISKI. 1200 (QNAFVVTGH PLINTVADFW MLYFDYKCSS VVMLINEMDTA GEOGNOYPWER SIGCOGYDIQV 1300 EFVSADDED IHHIFIRICH MARPQDCYBI VQHLQYIGWP AYRDTPSKR SLLKVVRILE 1400 (KWQEQY)DGBE GRIVVHCLMG GGGSSTFCAL CSVCEMIQQQ NIDDFBIW TLINKKSMW 1500 (GROSSTFCAL CSVCEMIQQQ NIDDFBIW TLINKKSMW 1500 (DRIVER) TLINKKSMW 1500 (TRINKSMW 1500 (TRINKSMW) 1500 (TRINKSMW 1500 55 60 ETLEQYKFVY EVALEYLSSF Seq ID NO: 99 DNA sequence Nucleic Acid Accession # NM 002988.1 Coding sequence: 71-340 (underlined sequences correspond to start and stop codons) 65 31 41 CCGGCACGAG AGGAGTTGTG AGTTTCCAAG CCCCAGCTCA CTCTGACCAC TTCTCTGCCT CCGGCACUAN AGGARI FIGIG ANTIFICZANI CECCANCITA CICTIGACIA I ILLIBUCI. 80
GCCCAGCATE ATMANGAGEC TICACATRIC CICTECTRICT CICTOTICTAC CATOGROCCT 120
CTIGCTCCTGT GCACAAGTTG GTACCAACAA AGAGCTCTGC TGCCTCGTCT ATACCTCCTG 180
GCAGATTCCA CAAAAGTTCA TAGTTGACTA TTCTGAAACC AGCCCCAGT GCCCCAAGCC 240
AGGTGTCATC CTCCTAACCA AGAAAGGCCG GCAGATCTGT GCTGACCCCA ATAAGAAGT 70 GGTCCAGAAA TACATCAGCG ACCTGAAGCT GAATGCCTGA GGGCCTGGA AGCTGCAGG 360
GCCCAGTGAA CTTGGTGGGC CCAGGAGGGA ACAGGAGCCT GAGCAGGGC AATGGCCCTG 420 75 CCACCCTGGA GGCCACCTCT TCTAAGAGTC CCATCTGCTA TGCCCAGCCA CATTAACTAA 480 CTITAATCTT AGTITATGCA TCATATTTCA TTITGAAATT GATTTCTATT GTTGAGCTGC 540 ATTATGAAAT TAGTATTTTC TCTGACATCT CATGACATTG TCTTTATCAT CCTTTCCCCT 600

TTCCCTTCAA CTCTTCGTAC ATTCAATGCA TGGATCAATC AGTGTGATTA GCTTTCTCAG 660 CAGACATTGT GCCATATGTA TCAAATGACA AATCTTTATT GAATGGTTIT GCTCAGCACC 720 ACCTTTTAAT ATATTGGCAG TACTTATTAT ATAAAAGGTA AACCAGCATT CTCACTGTGA 780 **AAAAAAAAAAAAAAAA** Seq 1D NO: 100 Protein sequence NP 002979.1 Protein Accession #: 31 LLTKRGROIC ADPNKKWYOK YISDLKLNA Sea ID NO: 101 DNA sequence NM 015507.2 Nucleic Acid Accession # Coding sequence: 241-1902 (underlined sequences correspond to start and stop codons) 31 41 CCGCAGAGGA GCCTCGGCCA GGCTAGCCAG GGCGCCCCA GCCCCTCCCC AGGCCGCGAG 60 CGCCCTGCC GCGGTGCCTG GCCTCCCCTC CCAGACTGCA GGGACAGCAC CCGGTAACTG 120 CGAGTGGAGC GGAGGACCCG AGCGGCTGAG GAGAGAGAG GCGGCGGCTT AGCTGCTACG 180 GGGTCCGGCC GGCGCCCTCC CGAGGGGGGC TCAGGAGGAG GAAGGAGGAC CCGTGCGAGA 240 ATGCCTCTGC CCTGGAGCCT TGCGCTCCCG CTGCTGCTCT CCTGGGTGGC AGGTGGTTTC 300 GGGAACGCGG CCAGTGCAAG GCATCACGGG TTGTTAGCAT CGGCACGTCA GCCTGGGGTC 360 TOTCACTATG GAACTAAACT GOCCTGCTGC TACGGCTGGA GAAGAAACAG CAAGGGAGTC 420
TOTGAAGCTA CATGGGAAGC TGGATGTAAAC TTTGGTGAATG GCGTGGGAGCA AAACAAATGC 480
AGATGCTTTC CAGGATACAC CGGGAAAACC TGCAGTCAAG ATGTGAATGA TGTGGGAATG 540 AAACCCCGGC CATGCCAACA CAGATGTGTG AATACACACG GAAGCTACAA GTGCTTTTGC 600 CTCAGTGGCC ACATGCTCAT GCCAGATGCT ACGTGTGTGA ACTCTAGGAC ATGTGCCATG 660 ATAAACTGTC AGTACAGCTG TGAAGACACA GAAGAAGGGC CACAGTGCCT GTGTCCATCC 720 TCAGGACTCC GCCTGGCCCC AAATGGAAGA GACTGTCTAG ATATTGATGA ATGTGCCTCT 780
GGTAAAGTCA TCTGTCCCTA CAATCGAAGA TGTGTGAACA CATTTGGAAG CTACTACTGC 840 AAATGTCACA TTGGTTTCGA ACTGCAATAT ATCAGTGGAC GATATGACTG TATAGATATA 900 AATGALTGTA CTATGGTAGA CCATACGTCA GCCACCATG CCAATAGCT LATAGATATA 399
AATGALTGTA CTATGGTAAATG CCATACGTCA GCCACCATG CCAATAGCT CTATGCT CAATACCCA 96
GGGTCCTTCA AGTGTAAATG CAAGCAGGGA TATAAAGGCA ATGGACTTCG GTGTTCTGCT 1020
ATCCCTGAAA ATTCTGTGAA GGAAGTCCTC CAAGCACCTG GTACCATCAA AGACAATC 1080 AAGAAGTTGC TTGCTCACAA AAACAGCATG AAAAAGAAGG CAAAAATTAA AAATGTTACC 1140 CCAGAACCCA CCAGGACTCC TACCCCTAAG GTGAACTTGC AGCCCTTCAA CTATGAAGAG 1200 ATAGTTTCCA GAGGCGGGAA CTCTCATGGA GGTAAAAAAG GGAATGAAGA GAAAATGAAA 1260 GAGGGGCTTG AGGATGAGAA AAGAGAAGAG AAAGCCCTGA AGAATGACAT AGAGGAGCGA 1320 AGCCTGCGAG GAGATGTGTT TTTCCCTAAG GTGAATGAAG CAGGTGAATT CGGCCTGATT 1380 CTGGTCCAAA GGAAAGCGCT AACTTCCAAA CTGGAACATA AAGATTTAAA TATCTCGGTT 1440
GACTGCAGCT TCAATCATGG GATCTGTGAC TGGAAAACAGG ATAGAGAAGA TGATTTGAC 1500 TGGAATCCTG CTGATCGAGA TAATGCTATT GGCTTCTATA TGGCAGTTCC GGCCTTGGCA 1560
GGTCACAAGA AAGACATTGG CCGATTGAAA CTTCTCCTAC CTGACCTGCA ACCCCAAAGC 1620 GOTENCAMON ANGACATIGO COGATIGAA CITTETCATAC CIGACETICO ACCCCAAGC 1829
ACCITECTOT INCICETTICA TRACCOGCTO GOCGGGAACA CANCOCGGAA CATCOGAGTO 1839
ACCITECTOT INCICETTICA TRACCOGCTO GOCGGGAACA CANCOCGGGAA CATCOGAGTO 1839
TGGAAGCAAG GGAAAATTCA GITTOTATCAA GGAACTGAATO CTACCAAAAG CATCATTTTI 1830
GAAGCAAGA GGAAAATTCAA GOTAAATTCACA GGAACTGAAG CATCATTTIT 1830
GAAGCAGAAC GGGACAGGG CAAAACCGGG GAAAATCGAAG CATCATTTITTITTITTI 1830
TGGACTGAT GTCCAGATAG CCTITTATCT GTGGATGACC GAAATCGAAT 1830
TGGACTGAT AUTCAGTTC CCTICGTTTTT TGAATTGAT ATTCATAGGAC CTTCGGCACT 1830 TTAGAATTAC TAGCTGAAAA ATTGTAATGT ACCAACAGAA ATATTATTGT AAGATGCCTT 2040 TCTTGTATAA GATATGCCAA TATTTGCTTT AAATATCATA TCACTGTATC TTCTCAGTCA 2100 TTTCTGAATC TTTCCACATT ATATTATAAA ATATGGAAAT GTCAGTTTAT CTCCCCTCCT 2160 LAGTAMATO GATTEGRATA ATALTA GENERAL TO GENERAL TO GATE ATALTA GATE Seq ID NO: 102 Protein sequence:
NP_056322.2 41 MPLPWSLALP LLLSWVAGGF GNAASARHHG LLASARQPGV CHYGTKLACC YGWRRNSKGV 60 CEATCEPOCK FGECVGPNKC RCFPGYTGKT CSQDVNECGM KPRPCQHRCV NTHGSYKCFC 120
LSGHMLMPDA TCVNSRTCAM INCQYSCEDT EEGPQCLCPS SGLRLAPNGR DCLDIDECAS 180 GKVICPYNRR CVNTFGSYYC KCHIGFELQV ISGRYDCIDI NECTMDSHTC SHHANCFNTQ 240
GSFKCKCKQG YKGNGLRCSA IPENSVKEVL RAPGTIKDRI KKLAHKNSIM KKKAKIKNYT 300 PEPTRTPTPK VNLQPFNYEE IVSRGGNSHG GKKGNEEKMK EGLEDEKREE KALKNDIEER 360 PEPTRTPTPK VNLQPPNYE I VSROGNSNI GIKKGNEEKMK EGLEDEKREE KALKNDIEEK 300 SLRODVFPK VNEAGEFGIL LVORKALTSK LEHKDLNISV DESPHIOLO WKOQREDDFD 420 WNPARDNAI GFYMAVPALA GHCKDIGRLK LLLPDLQPG NFCLLEDVRL AGDKVGKLRV 480 FVKNSNNALA WEKTTSEDEK WKTGIGLQLVG GTDATKSIE BÆRKGKGKT GEAVDGVLLV 540

SGLCPDSLLS VDD
Sea ID NO: 103 DNA sequence

5

10

15

20

25

30

35

40

45

50

55

60

65

70

	Nucleic Acid Accession #: NM_001565.1 Coding sequence: 67-363 (underlined sequences correspond to start and stop codons)
5	1 11 21 31 41 51
	GAGACATTICC TÉAATTIGETT AGACATATTE TGAGOCTACA GCAGAGGAAC CTCCAGTCTC 60 AGGACCA <u>TGA</u> ATCAAACTGC GATTCTGATT TGCTGCCTTA TCTTTCTGAC TCTAAGTGGC 120 ATTCAAGGAG TACCTCTCTC TAGAACCGTA CGCTGTACCT GCATCAGCAT TAGTAATCAA 180
10	CCTGTTAATC CAAGGTCTTT AGAAAAACTT GAAATTATTC CTGCAAGCCA ATTTTGTCCA 240 CGTGTTGAGA TCATTGCTAC AATGAAAAAG AAGGGTGAGA AGAGATGTCT GAATCCAGAA 300 TCGAAGGCCA TCAAGAATTT ACTGAAAGCA GTTAGCAAGG AAATGTCTAA AAGATCTCCT 360
15	TABAACCAGA GGGGAGCAAA ATCGATGCAG TGCTTCCAAG GATGGACCAC ACAGAGGCTG 420 CCTCTCCCAT CACTTCCCTT ACTGGAGTAT ATGTCAAGCC ATAATTGTT TATGGTTTAGTTTGCA 480 GTTAACATAA AAGGTGACCA ATGATGGTCA CCAAATCAGC TGCTACTACT CCTGTAAGGAA 540 GGTTAAATGT CATCATCCTT AGCTATTCAGT TAATAACTCT ACCCTGGCAC ATTAATGTAA 600
	GCTCTACTGA GGTGCTATGT TCTTAGTGGA TGTTCTGACC CTGCTTCAAA TATTTCCCTC 660 ACCTTTCCCA TCTTCCAAGG GTACTAAGGA ATCTTTCTGC TTTGGGGTTT ATCAGAATTC 720 TCAGAATCTC AAATAACTAA AAGGTATGCA ATCAAAATCTG CTTTTTAAAG AATGCTCTTT 780
20	ACTICATGGA CTICCACTGC CATCCTCCCA AGGGGCCCAA ATTCTTTCAG TGGCTACCTA 880 CATACAATTC CAAACACATA CAGGAAGGTA GAAATATCTG AAAATGTAT 7600 CITATITAAT GAAAGACTGT ACAAAGTATA AGTCTTAGAT GTATATATTT CCTATATTGT 760 TITCAGTGTA CATGGAATAA CATGTAATTA AGTCTTATATTAT ATTACTAGAT ACAAGGAAAA 1020
25	TTTTAAAAAT ACAGATAGAT ATATGCTCTG CATGTTACAT AAGATAAATG TGCTGAATGG 1080 TTTTCAAATA AAAATGAGGT ACTCTCCTGG AAATATTAAG
	Seq ID NO: 104 Prolein sequence: Protein Accession #: NP_001556.1
30	1 11 21 31 41 51 MNOTALLICC LEILTLASIQ GVPLSRTVRC TCISISNOPV NPRSLEKLEI IPASQFCPRV 60 EILATMIKKKØ EKRCLYPESK AIKVILIKAVS KEMSKASP
35	Seq ID NO: 105 DNA sequence Nucleic Acid Accession #: NM_015068.1 Coding sequence: 1170-2243 (underlined sequences correspond to start and stop codons)
40	1 11 21 31 41 51
+0	GTAACAACGG TÉACCÉTGGG TECCGACTGG CEACCTICCTC CTCCTCCCCC TECCCCCAAC 60 AACAACAACAA ACAACAACTC CAAGCACACG GGCCATAAG, G GTGCGTGTGTC CCCCAACATG 120 ACCGAACGAA GAAGGGACGA GCTCTCTGAA GAGATCAACA ACTTAAGAGA GAAGGTCATG 120 AAGCAATGGG AGGGAACAAC CAACCTGCGA GCCCAGGTGC AGAAGGTCACAC AGAGGAACC 240 AAGCAGTGGG AGGAGAACAAC CAACCTGCGA GGCCAGGTGC AGAAGGTCACA CAAGCAGAACC 240
45	ACACCCTTC GAGAGCAGT GGAACCCACC CCTGAGGATG AGGATGATGA CATCGAGCTC 300 CGCGGTGCTG CAGCAGCTGC TGCCCCCCCCCCCAATAGA AGGAAGGATG CCCAGAAGAC 360 CTCCCAGAGA AGTTCGATGG CAACCCAGAC ATGCTGGCTC CTTTCATGGC CAGTGCCAG 420 ATCTTCATGG AAAAGACAC CAGGGATTC TCAGTTCAGT
50	TACCTGATGC ACAACTACCC AGCTTTCATG ATGGAAATGA AGCATGTCTT TGAAGACCCT 600 CAGAGGCAG AGGTTTTGATGCAA AGCAGAGTC AGAGCCTGCG CGCAAGGCAT GGGGTCTGTTG 600 ATGGACTTACT CCAATGCTTT CCAGATGATT GCCCAGGACC TGGATGTGATTGTGC 600 CTGATTGACC AGTACCTACGA GGGCCTCAGC GACCACATTC AGGAGGAGTC TCCCACCTC 780 GAGGTGCGCCA AGTGCATGTC TGCCTGATT GGGCCAGTCCA TTCACATTGA GAAGGGCT 840 CAGGTCGCCACA AGTGCATGTC TGCCTTGATT GGGCCAGTCCA TTCACATTGA GAAGGGCT 840
55	CCCAGGGGTG CTGCAGGTCG CAAGCCAGGC TCGCCACCCC GGGCGCTGGT GTTGCCTCAC 900 ATTGCAAGCC ACCACAGGT ACATCCAACG AGCCGGTGGTGAGAGGTGCCGC CATGCGCTG 900 ACGCAGGAAG AAAAAGAAG ACGCAGAAAG CTGAACCTGT GCCTCTACTG TGGAACAGGA 1020 GGTCACTAGG CTGACAATTG TCCTGCCAAG GCCTCAAAGT CTTCGCCGGC GGGAAACTCC 1080 CCGGCCCCGC TGTAGAGGGG ACCTTCAAGCG ACGGGCAGAA ATATATAAGT GCCCCACAAG 1140
60	ATGATECCTE ATCITCACAC TIGCAAGTGA TGCTCCAGAT TCATCTTCCG GGCAGACACA 1200 CCCCGTTGTG TCCAGACACA 1200 CCCCGTTGTG TCCATCAGACACA 1200 ATGTTGCTCA AAATGGAAT 1CATCATGATCATCATCATCATCACACACACACACACACAC
65	TCGTCCTAGG GGTTCGCTGG CTGAGCACAC ATGATCCCAA TATCACATGG AGCACTCGAT 1500 CTATCGTCTT TGATTCTGAA TACTGCCGCT ACCACTGCCG GATGTATTCT CCAATACCAC 1560
	CATCGCTCCC ACCACCAGCA CCACAACCGC CACTCTATTA TCCAGTAGAT GGATACAGAG 1620 TTTACCAACC AGTGAGGTAT TACTATGTCC AGAATGTGTA CACTCCAGTA GATGAGCACG 1680 TCTACCCAGA TCACCGCTG GTTGACCCTC ACATAGAAAT GATACCTGGA GCACACAGTA 1740
70	TICCCAGTGG ACATGITAT TCACTGTCGG AACCTGAAAT GGCAGGTCTT CGAGATTTG 1800 TGGCAGGAAA TGTAAAAGAT GGGCTAATTA CTCCACGAT TGCACCTAAT GGGCCAGA 1800 TICTCCAGGT GAAGAGGGG TGGAAACTGC AAGTTCTTA TGATTGCCGA GCTCCAAACA 1920 ATTTTACTAT CCAGAACCAG TATCCTGGCCTATCTATTCC AAATTTAGAA GACCAAGCAC 1980 ACCTGGCAAC GTACACTGAA TTGGTACCTC AAATTACCTGG ATACCAAACA TACCACCACT 2940
75	ATGCCGCGTA CCCGACCTAC CCAGTAGGAT TCGCCTGGTA CCCAGTGGGA CGAGACGGAC 2100 AAGGAAGATC ACTATATGTA CCTGTGATGA TCACTTGGAA TCCACACTGG TACCGCCAGC 2160
, ,	ANGGARGAT ACTATATGTA CCTGTGATGA TACACTAGGA TACACACACTGG TACCACACTGC 2220 CTCCGGTACC ACAGTACCCG CCGCCACAGC CGCCGCCTCC ACCACCACCA CCGCCGCCGCC 2220 CTCCATCTTA CAGTACCCGT TAAATACCCGT TCATGTCCTT CAGGATCTTA CAGTACCTG TAAATACC

TCAGGCCACC TGAGGCACAT CCTCTCTGAA ACGGCTATGG AAGGTTAGGG CCACTCTGGA 2400 TASBUCANCE TRADEGALARI CELETICIDAN ALGUELATUR AMBUTHAGUD CEACTICIDUA 2499
CTGGCACAGA TOCTAMAGAGA CAAAAAGACE TITACACATIT TEIGAGAGGA CAAGAGATAT 2460
TÜCCAATAAA TGATETETCA TITTICCACC TITGACTGCCA ATCTAACTAA AATAAATTAAT 2580
AAGITTACTT TECAGCCAGT COTEGGAAGTC TEGGGTTTTAC CTGCCAAAAC CTCACTACCAC 2580
ATCTAAATTA TAGGCTBCCA AATTGCTGT TTAACATTTA CAGAGAAGGT GATACAAACC 2540
CAGGAAATOC TOATTGCTT ATGGAGGGGGGA AGAGGAGGAGACA TOATTTCTC 2760 5 TGCGGTTTCG GTACCCTCTT TTTAAATCAC TGGAGGACTG AGGCCTTATT AAGGAAGCCA 2760 AAATTATCGG TGCAGTGTGG AAAGGCTTCC GTGATCCTCT CGCTGCACCC TTAGAAACTT 2820 10 CACCGTCTTC AAACTCCATT TCCATGGTTC TGTTAATTCT CAAGGAGCAG CAACTCGACT 2880 GGTTCTCCCA GGAGCAGGAA AAACCCTTGT GACATGAAAC ATCTCAGGCC TGAAAAGAAA 2940 GTIGCTETECH AGATIGACTIC TITGCATCHTHA AGACTATGTC TTCACATCAT GGTIGCAAATC 3000 ACATGTTACCC AATIGACTICG GETTITGACE AACACCTTAC CATCATACTIC CACATGATGGG 300 TTCCACAAAG CATTAAACCT GGTAACCAGA GATTACTGC GGCTCAGCG TTGTTAGATG 3120 15 TTCATGAAAT GTGACCACCT CTCAATCACC TTTGAGGGCT AAAGAGTAGC ACATCAAAAG 3180 GACTCCAAAA TCCCATACCC AACTCTTAAG AGATTTGTCC TGGTACTTCA GAAAGAATTT 3240
TCATGAGTGT TCTTAATTGG CTGGAAAAGC ACCAGCTGAC GTTTTGGAAG AATCTATCCA 3300 TOTGTCTGCC TCCATATGCA TCTGGGCATT TCATCTTCAG TCCCCTCATT AGACTGTAGC 3360 ATTAGGATGT GTGGAGAGAG GAGAAATGAT TTAGCACCCA GATTCACACT CCTATGCCTG 3420 20 GAAGGGGGAC ATCTTTGAAG AAGAGGAATT AGGGCTGTGG ACACTGTCTT GAGGATGTGG 3480 ACTICCITAG TGAGCTCCAC ATTACTTGAT GGTAACCACT TCAAAAGGAT CAGAATCCAC 3540 GTAATGAAAA AGGTCCCTCT AGAGGATGGA GCTGATGTGA AGCTGCCAAT GGATGAAAAG 3600 CCTCAGAAAG CAACTCAAAG CACTCAAAGC AACGGACAAA CACAGGATGTG TCTTCAGCCC 3660 AGTGACACCT CTGATGTCCC CTGGAAGCTT TGTGCTAACC TGGGATGCC TGACTTCCTT 3720 25 TAGCCTGGTC CCTTGCTACT ACCTTGAACT GTTTTATCTA ACCTCTCTTT TTCTGTTTAA 3780 TICTTIGCTA CTGCCATTGA CCCTGCTGCA GGATTTGTGT CATTTTCCTG CCTGGTTGCT 3840 GAGACTCCAT TITGCTGCCA CACACAGAGA TGTAAGAGGC AGGCTTTAAT TGCCAAAGCA 3900
CAGTTTGAGC AGTAGAAAAC AACATGGTGT ATATCTCAAA TTGCCTGACA TGAAGAGGAG 3960 TCTAACGGTG AAGTTTCACT TTTCATCAGC ATCATCTTTC ACATGTTCAT TATCATCCGC 4020 30 TCTTATTCTT GCATGTTTAA ACACTTAAAA TTTTTAGTAT AATTTTTAGT GTGTTTTGAA 4080 GTGGTGACTA GGCTTTCAAA AACTTCCATT GAATTACAAA GCACTATCCA GTCTTTATTG 4140 TTAAACTAAG TAAAAATGAT AAGTAACATA GTGTAAAATA TTCCTTTACT GTGAACTTCT 4200 TACAATGCTG TGAATGAGAG GCTCCTCAGA ACTGGAGCAT TTGTATAATA ATTCATCCTG 4260 TTCATCTTCA ATTITAACAT CATATATAAA TICAATTCTA TCAATTGGGC CTTTAAAAAAT 4320 CATATAAAAAG GATATAAAAAT TIGAAAAGAG AAAACCTAAATT GGCTATITAA TCCAAAACCAA 4380 CTTTTTTTTTT TCCTTCAATG GAAACGAA GCTTGTCAAT CACTCATGTG TTTTAGAGTG 4440 35 ATTACTITTA AAATGGTGCA TITGTGCTTC TGAACTATTT TGAAGAGTCA CTTCTGTTTA 4500 CCTCAAGTAT CAATTCATCCAACGTGT TGAATTCAAG TGTGTTTTITG TCAAATTTIG TCAAATTCATC 4520 AGTTGTCAAC TAATTCAA GCTGCAGGGT GCCTAGAAAT GGGCCGTTGT CATGTTAGCCC 4520 40 GGCATGTGCA CACGGACATT TGCCACCACT GCAAGCAAAA GTCTGGAGAA GTTCACCAAC 4680 GACAAGAACG ATTAGGGAAA ATATGCTGCT GTGGGTTAAC AACTCAGAAA GTCCCTGATC. 4740 CACATTTGGC TGTTTACTAA AGCTTGTGAT TAACTTTTTG GCAGTGTGTA CTATGCTCTA 4800 TTGCTATATA TGCTATCTAT AAATGTAGAT GTTAAGGATA AGTAATTCTA AATTTATTAT 4860 45 50 TTATCATGCT AGGATATTGA AACACAGAAA GTTTACATAC ATTTATGAAG GGTCAATTTA 5280 TTATCATGLI AGUAIATIUA AACACANAA UTTIACATA CATTIATURAD UUTLAATTIA 2000
TTTTGGACAT TAGOTATTI GETTAGTIG AAAAAAGGA AATTAGTIG ATCAAATCGT 530
GAAGTAATAC AGTGAACTTG CAGGTGCACA AAATAAGAGG ACCACATCTA TATGGTGCAG 540
TCCGGAATTC GTTTAAGTT TOTAGGTACC TETTGAACTT CTGAATTGAT CAGTTGTCA 540
TCCACCACAG ACATCTCACA TCAGATACAG ACAGTTCCAA GATTGACACA GAGAACACAC 5520 55 CTGCTGGAAA GACCTGGGCA GAAATGGAGA GCCCTGCGGG AACCATGCTA CATTTTCATC 5580 TAAAGAGAGA ATGCACATCT GATGAGACTG AAAGTTCTTT GTTGTTTTAG ATTGTAGAAT 5640 GGTATTGAAT TGGTCTGTGG AAAATTGCAT TGCTTTTATT TCTTTGTGTA ATCAAGTTTA 5700 AGTAATAGG GATATTAAT CATAAGCAT TTAGGGTGG AGGACTATT AAGTAATTT 5780
AAGTIGGTGG AGTATTAAG AATOTTAGAA TAATAATTAT TATTAGATAT CACTAAGT 5820
GGACATICCTA ACTTACTTA AAACCTTTAC CCTATAATTG CATTAGATAT CCCTATAAGT 5820
GGACATICCTA ACTTACTTGT AAACCTTTAC CCTATAATTG CATTAGATATCCTAAA AGTAATTTCAAA 5840
TAAACTCCAGTG GGAGAAGTCA GGAGAACCACTTATTATTAGA GCCAATTGGA CATGGATAAA 5940
AACCCCCAGTG GGAGAAGTT CAAAGGTGAT TAGAATTAATAA GTTAATAAGA GCCATAGAGTGA 60 CCTCTGATAA ATTACTGCTA GAATGAACTT GTCAATGATG GATGGTAAAT TTTCATGGAA 6 GTTATAAAAG TGATAAATAA AAACCCTTGC TTTTACCCCT GTCAGTAGCC CTCCTCCTAC 6120 65 CACTGAACCC CATTGCCCCT ACCCCTCCTT CTAACTTTAT TGCTGTATTC TCTTCACTCT 6180 ATATTCTCT CTATTTGCTA ATATTGCATT GCTGTTACAA TAAAAATTCA ATAAAGATTT 6240 AGTGGTTAAG TGC

TTTATTCCTG TTCAGCTTCT CAATCAGTGA CTGTGTGCTA AATTTTAGGC TACTGTATCT 2340

70 Seq ID NO: 106 Protein sequence; Protein Accession #: NP_055883.1

1 11 21 31 41 5

TIESROELS EERNLISEK VIKKOSEENNIN, OGVVOKLTER NITT AEGVET TEREDDDDE 60
75 LIGAAAAAF PRIESECPE DIE PERFORD POMLAPPIAN OG CUIPMENSTIDE SYNDRIVNET 120
VISMATIGIAA REVASAKLERS IN/LAHINTAFA HIMEMIKINFER PORREVAKRIK BRILROGMÖS 180
VIDYSNAPOM IAODLÜWINEP ALIDOVYEGE STOHIOESEKSI LEVAKSISAL IGOCHIERER 200

Seq ID NO: 107 DNA seque

LARAAAARKP RSPPRALVLP HIASHHQVDP TEPVGGARMR LTQEEKERRR KLNLCLYCGT 300 GGHYADNCPA KASKSSPAGN SPAPI.

Nucleic Acid Accession # NM_003679.1 Coding sequence: 47-1507(underlined sequences correspond to start and stop codons) 41 10 GGCACGAGCA GAAGCAACAA TAATTGTGAA AAATACTTCA GCAGTT<u>ATG</u>G ACTCATCTGT CATTCAAAGG AAAAAAGTAG CTGTCATTGG TGGTGGCTTG GTTGGCTCAT TACAAGCATG 120 15 AATGATCCAC TCTCTTTCAG GAAAAAAGTC TGCAATTCCC TATGGGACAA AGTCTCAGTA 360 20 ACTICCTAAC ATGAACAAAT CATTCACATG TACTTTGTTC ATGCCCTTTG AAGAGTTTGA 780 AAAACTTCTA ACCAGTAATG ATGTGGTAGA TTTCTTCCAG AAATACTTTC CGGATGCCAT 840
CCCTCTAATT GGAGAGAAAC TCCTAGTGCA AGATTTCTTC CTGTTGCCTG CCCAGCCCAT 900 25 GATATCTGTA AAGTGCTCTT CATTTCACTT TAAATCTCAC TGTGTACTGC TGGGAGATGC 960 AGCTCATGCT ATAGTGCCGT TTTTTGGGCA AGGAATGAAT GCGGGCTTTG AAGACTGCTT 1020
GGTATTTGAT GAGTTAATGG ATAAATTCAG TAACGACCTT AGTTTGTGTC TTCCTGTGTT 1080 CTCAAGATTG AGAATCCCAG ATGATCACGC GATTTCAGAC CTATCCATGT ACAATTACAT 1140 AGAGATGCGA GCACATGTCA ACTCAAGCTG GTTCATTTTT CAGAAGAACA TGGAGAGATT 1200 30 TCTTCATGCG ATTATGCCAT CGACCTTTAT CCCTCTCTAT ACAATGGTCA CTTTTTCCAG 1260 AATAAGATAC CATGAGGCTG TGCAGCGTTG GCATTGGCAA AAAAAGGTGA TAAACAAAGG 1320 ACTOTTTTTC TTGGGATCAC TGATAGCCAT CAGCAGTACC TACCTACTTA TACACTACAT 1380 GTCACCACGA TCTTTCCTCT GCTTGAGAAG ACCATGGAAC TGGATAGCTC ACTTCCGGAA 1440
TACAACATGT TTCCCCGCAA AGGCCGTGGA CTCCCTAGAA CAAATTTCCA ATCTCATTAG 1500 35 ACAGGIGATAG AAAGGITTITG TGGTAGCAAA TGCATGAGTTT CITCTGTGACC AAAATTAAGC 1500
ATGAAAAAAAA TGTTTCCATT GGTAGCAAA TGCATGAGTTT CITCTGTGACC AAAATTAAGC 1500
ATGAAAAAAAA TGTTTCCATT GCCATATTTG ATTCACTAGT GGGAAGATAGT GTTCTGCTTA 1620
TAATTAAACT GAATGTAGAG TATCTCTGTA TGTTAATTGC AATTACTGGT TGGGGGGTGC 1600 ATTTTAAAAG ATGAAACATG CAGCTTCCCT ACATTACACA CACTCAGGTT GAGTCATTCT 1740 AACTATAAAA GTGCAATGAC TAAGATCCTT CACTTCTCTG AAAGTAAGGC CCTAGATGCC 1800 40 AACTIAAAA GIGCANIGAE INAGAIGE I CACITICTU AAAGTAAGGE CLIAGATUCE 1890
TCAGGGAAGA CAGTAATCAT CCCTITTICTT TAAAAGACAC ATTAAGACTC GACAGCAT 1890
TGACTCAACA CCTAGGACTA AAAATCACAA CTTAACTAGC ATGTTAACTIG CACTITTCAT 1920
TACGTGAATG GAACTTACCT AACCACAGGG CTCAGACTTA CTAGATAAAA CCAGAAATGG 1930
AAATAAGGAA TTCAGGGGGG TTCCAGAGAC TTACAAATG AACTCATTT ATTTTCCCAC 2040 CTTCAAATAT AAGTATTATC ATCTATCTGT TTATCGTCTA TCTATCTATC ATCTATCTAT 2100 45 TCTATTTATT TATGTATITA GAGATCAGGT CTCACTCTGT TGACCAGGCT GGAGTGCAGT 2220 50 AAAAGGCTAT TAATATCATA CTAAGTGAAG GACAGGAAAG GGTTTTATTC ATAAATTAAA 2520
TGTCTACATG TGCCAGAATG GAAAGGAAAC AAGGGGAGAC AACTTTTATA GAAATACAAA 2580 GCCATTACTT TATTCAATTT CAGACCCTCA GAAGCAATTT ACTAATTTAT TCTTCGACTA 2640 CATACTGCAG CAGAACCAGC AATACACTTG ATTTTTAAAA GCACATTTAG TGAAATGTTT 2700 TCTTTGGTTC ATCCTTCTTT AACAGGCTGC TGAGTCACTC AGAAATCCTT CAAACATGAT 2760 55 TCAGTTTGTA GGGAAAGAAA AAATAATTT TCCTTCTACC CACTTTAGGT TCCTTGGCTG 2940
GGGCCCCTAT AACAAAAGAC AGATTGACAA GAGAAAAACA AACATAAATT TATTAGCGGG 3000 60 TATATGTAAT ATATATGTGG GAAATACAGG GGAATGAGCA AATCTCAAAG AGCTGGCGTC 3060 TTAGAACTCC CTGGCTTATA TAGCATCGAC AAAGAACAGT AAATTTTTAG AGAAACAACA 3120 AAACAAAGAA AAAGACTTI GAGTCTGTAG GGGCAGCAAT TTGGGGGAAG CAAATATATG 3180 GGAGTTTGCC TTGTAGATTC CTCTGGTGGT GGTCTCCAGG CTGACAAGGA TTCAAAGTTG 3240 TCTCTGAAAC TCCTCTTTGT CATACTGCAC ATATAAAACG TCTTTTGTTT CCAACAAGAG 3300 65 GATTTCTTTT TCATTCTAGA ATTATCTCCT TGATAACTTG ATCAGATATA GGACATGACA 3360 CTGAATAGAG TCCAACAGTA CAAAAAAAAT TCAGTATGTT CTAGCTACTT CACACATGTG 3420
TACGCGACAG TTATTTTTAC AGTAAGGTAT TTTCGAGAAA AATGCATTAC GTGTTTTTGGA 3480 AAATAGAGTA ATTTAAAAAA TATATTTGAA ATGAAAATCT CCAACACATT AGAAGATGAT 3540 GATGTTAGAT GCCCATCGTG TGCCACAAGT GGTTTTTTCA TTATGTAAAG CACCCGTTGA 3600 GATGITAGAI GULCALCUTG TGC.ACAAGT GGTTITITCA LIAIDIAAAG CACCCGI IUA 3600
ATTIAAAAGAA TITGITTTIG TITGAACCCT TCCTGAGGCC CAAGAGCATA TGGGCAATT 3600
GGATTICCTG CTGGACCACA AGGTTCTGTT GATATTAGAT AGAAACGGGT ATTCCAGACA 3720
CTCTTATAGA TGAAAGTCCA AAAGTGCCAT CCAATTTAAG GCCCATCTT TCCTTGCAT 3720
TCTTCATTGC TACAAAGGAC GAACTTGGAT TACATCAACT TTGGACCCAT TGGTTTTGT 3810 70 GCTGTCGTCA ACTGACAGTG ATTCACCACT GGTGATGATA AAAATGATGG AAGAAGAGTT 3900

GAAAGTCACT TTTTTCTTTG GCCTGTCCCC ATCTTTCTGT GACATCACAA TAGGTCTGAT 3960 CTGCATTTCA CTTCCAGCTG CTGGTAGGTC TTTAGCAGGC CTCTGGCACC TCAGCAGTCG 4020

PCT/US02/02242 WO 02/059377

ATTAAGTAAA AGTTGGGCAC TAATCTGGAT TAACATTCGA GGAAATCAGT TGAGCTGATT 4140 TAAGTIGTTT TITGTTTGTT AGCAGGTTGTG GATGTGGGT TATGTGGTCA TGCTCAGATC 4200
TACCTAAATC ACCCCAGAGC TITATGTCTT TTATTCATTC TAAATCTTAT TAACCGGAAT 4260 ATGTAGGACC ATTTCAATAC CTTGTAATCC TCCAAGCTTC AATCTGCACA CACTTTCTAT 4320 GAGGGCAGGT ACAACTATTA AGAGATTTTG AACATTAAGT TAGTCCACAA ATATTCAGTG 4380 GGCATCTACT AGGTGACAGC CACTGTGCTA TAATTAGAGA CITTITACTA TAAGCATCAA 4440 AAACAGATAA GGCTCTTCCT GGCAGAGTTT ACAGCCTGGT GTACTTGCTA ATGTCTCTTT 4500 ANALYSIA DA SALIENTE TENERGY AND ANALYSIA TO TRANSPORT AND ANALYSIA TO THE STATE OF THE SALIENT AND ANALYSIA TO THE SALIENT AND ANALYSIA THE SALIENT AND ANALYSIA THE SALIENT AND ANALYSIA THE SALIENT AAATGACTGC ATAGGACAGA TCCCATCTCC TCCACCCAAT ACATTATTAG ACTGAACTGT 4800 GACCTGAAAT GAGCAATAAA CTCTGTATTA ATTCACTGAA ATGTTGGGGT TGCTTGTTAT 4860 AGTAGTCGGT CCATCATGAC CAGTAAAACA TAAATCAAAA GTTAATGTAA TTGTTATCCC 4920 ATTATTTAGA GCGAAATAAA TGTTGAATAT ATGGACTTTC TCAGATTAGG AAATACCAAT 4980 TAAAAATATA ATAAATAGCT

Seq ID NO: 108 Protein sequence: NP_003670.1 20

5

10

15

41 31 21

MDSSVIORKK VAVIGGGLVG SLOACFLAKR NFQIDVYEAR EDTRVATFTR GRSINLALSH 60 RGROALKAVG LEDQIVSQGI PMRARMIHSL SGKKSAIPYG TKSQYILSVS RENLNKDLLT 120 AAEKYPNVKM HFNHRLLKCN PEEGMITVLG SDKVPKDVTC DLIVGCDGAY STVRSHLMKK 180 25 AAEKYPNYKM HENIRLIKCN PEEGMITVLG SDKVPKDVTC DLIVGCDGAY STVRSHLMKK 180
PEFDYSQQYI PHGYMELTIP PKONDYAMEP NYLHWPRNIT FAMMALPINNIN SETICITLEMP 240
FEEFEKLLTS NDVVDFFQCY PFDAIPLIGE KLLVQDFFLL PAQPMISVKC SSFHFKSHCV 300
LLGDAAHAIV PFRQQGMNAG FEDCLVYFDEL MDKFSNDLSL CLPVFSRLRI PDDHAISDLS 360
MYNYIEMRAH VNSSWFEQC NMERFLHAAM PSTFIPLYTM VTFSRIRVHE AVQRWHWQKK 420

30 VINKGLEFLG SLIAISSTYL LIHYMSPRSF LCLRRPWNWI AHFRNTTCFP AKAVDSLEQI 480

Seq ID NO: 109 DNA sequence

Nucleic Acid Accession #: NM_006115.1
Coding sequence: 236-1765 (underlined sequences correspond to start and stop codons)

35 21 41 11

GCTTCAGGGT ACAGCTCCCC CGCAGCCAGA AGCCGGGCCT GCAGCCCCTC AGCACCGCTC 60 CGGGACACCC CACCCGCTTC CCAGGCGTGA CCTGTCAACA GCACCTTGC GGTGTGGTGA 120
ACTCTCTGAG GAAAAACCAT TITAATTATT ACTTCTCAGAC GTGCTGGCA ACAAGTAGTGAGAGAGAGAGAGAGAGTGAGTGC TGGAGGTCC TGAGGGTGCT GCAAGTGCT TCCAAGACTAGTGCT TCCAAGACTAGTGCT TCCAAGTCC TGCAAGTCC TAGAATGAGTGC TCCAAGTCGCT TCCAAGTCC TTCAAGTCC TCCAAGTCGCT TCCAAGTCC TTCAAGTCC TCCAAGTCGCT TCCAAGTCGCAGTCT TCCAAGTCGCAGTCT TCCAAGTCGCCAGTCT TCCAAGTCGCAGTCT TCCAAGTCGCAGTCT TCCAAGTCGCAAGTCGCAGTCT TCCAAGTCGCAGTCT TCCAAGTCT TCCA 40 ACGA AGGCGT TTGTGGGGTT CCATTCAGAG CCGATACATC AGCATGAGTG TGTGGACAAG 300 CCCACGAGA CTTGTGGAGC TGGCAGGCA GAGCCTGCTG AAGGATGAGG CCCTGGCCAT 360
TGCCGCCCTG GAGTTGCTGC CCAGGGAGCT CTTCCCGCCA CTCTTCATGG CAGCCTTTGA 420 45 CGGGAGACAC AGCCAGACCC TGAAGGCAAT GGTGCAGGCC TGGCCCTTCA CCTGCCTCCC 480 CGGGAGACAC AGCCAGACCC TGAAGGCAT GGTGCAGGCC TGGCCCTTCA CCTGCCTCCC 480
TCTGGGAGTG CTATGAAGG GACAACATC TCACCTGGGA ACCTTCAAAG CTGTGCTTGA 40
TGGACTTGAT GTGCTCCTTG CCCAGGAGGT TCGCCCCAGG AGGTGGAAAC TTCAAGTGCT 600
GGATTTACGG AAGAACTCTC ATCAGGACTT CTGGACTGTA TGGTCTGGAA ACAGGGCCAG 660
TCTGTACTCA TTTCCAGAGC CAGAAGCAGC TCAGCCCATG ACAAAGAACG AAAAAGTAGA 720 50 TGGTTTGAGC ACAGAGGCAG AGCAGCCCTT CATTCCAGTA GAGGTGCTCG TAGACCTGTT 780
CCTCAAGGAA GGTGCCTGTG ATGAATTGTT CTCCTACCTC ATTGAGAAAG TGAAGCGAAA 840 GAAAAATGTA CTACGCCTGT GCTGTAAGAA GCTGAAGATT TTTGCAATGC CCATGCAGGA 900

GARARARIUA-CIA-UGCTUT GETGTARGIA GETURAMATT I II-UK-ARIGC CCATUCAGGA 390
TATCARGATRI ATECTGARAR TIGGTOCAGCT GGACCTERT GAGAGATTICO AAGTACET 980
TACCTGGARA TACCTGARAR TIGGTOCAGCT GGACCTERT GAGAGATTICO AAGTACET 1020
GCGTGAGACT CTCCTCTCCC ACTCCATCC ATTCCCTAC ATTTCCCTACA TACATRACT 1020
GCATGATATC CCCATUTCAC CACTCCATCC ATTCCCTAC ATTTCCCTACA ATTACTCCTAC AGCCTCTAC 1140
TGTGGACTCT TATTTTTC TTAGAGGCCC CCTGGATCACT TGCTCCAGC AGCCTCTAC 1140
TGTGGACTCT TATTTTTC TTAGAGGCCC CCTGGATCACT TGCTCCAGC AGCCTCTAC 1140 55 CCCTTGGAA ACCCTCTCAA TAACTAACTG CCGGCTTTCG GAAGGGGATG TGATGCATCT 1260 60 GTCCCAGAGT CCCAGCGTCA GTCAGCTAAG TGTCCTGAGT CTAAGTGGGG TCATGCTGAC 1320

CGATGTAAGT CCCGAGCCCC TCCAAGCTCT GCTGGAGAGA GCCTCTGCCA CCCTCCAGGA 1380 CUATITIANALI CANTAGRICO TECANGETET GELIGIANANA QUELITARA CELICANGAN 1380
COTIGENTI TANTAGRICO GARCIACOGA TARTAGAGRICO ETIOCOCCTIC GEOCTICOCCI 1460
GAGCIACTIC CECCAGOTTA CAACCITTAAG CITCITACOGG ANTICACTI CCATATETICE 1500
CITCICACAGRIC TECTEGICAGE ACCITCATOGA GETIAGECARI CITACOCCAGO TOCTICATICO ES
TOTICOCCOCCO GAGCIACOGA GAGTICOCTIC TOTICACTICO ES
TOTICACTOCO AGGICTAGGIO AGTICOCTICI TOTAGTIGGGIO GAGCACAGIO AGGITTICOCTI 1620
TOTICACATOCA AGGICTAGGIO AGTICOCTICI TOTAGTIGGGIO GAGCCAGGIO AGGITTICOCTI 1630 65 TAGTGCCAAC CCCTGTCCTC ACTGTGGGGA CAGAACCTTC TATGACCCGG AGCCCATCCT 1740

GTOCCCCTGT TTCATGCCTA ACTAGCTGGG TGCACATATC AAATGCTTCA TTCTGCATAC 1800 TTGGACACTA AAGCCAGGAT GTGCATGCAT CTTGAAGCAA CAAAGCAGC ACAGTTTCAG 1860 ACAAATGTTC AGTGTGAGTG AGGAAAAACAT GTTCAGTGAG GAAAAAACAT TCAGACAAAT 1920 GTTCAGTGAG GAAAAAAAGG GGAAGTTGGG GATAGGCAGA TGTTGACTTG AGGAGTTAAT 1980 GTGATCTTTG GGGAGATACA TCTTATAGAG TTAGAAATAG AATCTGAATT TCTAAAGGGA 2040 GATTCTGGCT TGGGAAGTAC ATGTAGGAGT TAATCCCTGT GTAGACTGTT GTAAAGAAAC 2100 TGTTGAAAAT AAAGAGAAGC AATGTGAAGC AAAAAAAAA AAAAAAAA

Seq ID NO: 110 Protein sequence; Protein Accession #: NP_006106.1

70

AQLVTGTSFS GPTVGMAIQN SICSPDFSGG VNMDHSTSIL GVASSIAHEL GHSLGLDHDL 360 PGNSCPCPGP APAKTCIMEA STDFLPGLNF SNCSRRALEK ALLDGMGSCL FERLPSLPPM 420 PGNSCPCPGP APARTCIMEA STOPLPGLIN'S NICSROALER ALLIDMUSCL PERCESSLETM 4.0
AAFCGNMFVE PGEQCDCGFL DDCVDPCCDS LTCQLRPGAQ CASDGPCCQN CQLRPSGQQC 480
RPTRGDCDLP EFCPGDSSOC PPDVSLGDGE PCAGGOAVCM HGRCASYAQO CQSLWGPGAQ 540 PAAPLCLOTA NTRGNAFGSC GRNPSGSYVS CTPRDAICGQ LQCQTGRTQP LLGSIRDLLW 600 ETIDVNGTEL NCSWYHLDLG SDVAOPLLTL PGTACGPGLY CIDHRCORVD LLGAOECRSK 660 CHGHGVCDSN RHCYCEEGWA PPDCTTOLKA TSSLTTGLLL SLLVLLVLVM LGAGYWYRAR 720 LHORLCOLKG PTCOYRAAOS GPSERPGPPO RALLARGTKS QGPAKPPPPR KPLPADPQGR 780 CPSGDLPGPG AGIPPLVVPS RPAPPPPTVS SLYL 10 Seq ID NO: 113 DNA sequence NM_002416 Nucleic Acid Accession #: Coding sequence: 40-417 (underlined sequences correspond to start and stop codons) 15 ANGUSTICAL OF TECHNICAL CANCECTRICA CANCECTRICA TECHNICAL TO THE TECHNICAL THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TO THE TECHNICAL TH 20 A ACTOGGAGA AACAGGTCAG CCAAAAGAAA AAGCAAAAGA ATGGGAAAAA ACATCAAAAA 360 AAGAAAGTTC TGAAAGTTCG AAAATCTCAA CGTTCTCGTC AAAAGAAGAC TACATAAGAG 420 ACCACTTCAC CAATAAGTAT TCTGTGTTAA AAATGTTCTA TTTTAATTAT ACCGCTATCA 480 25 TTCCAAAGGA GGATGGCATA TAATACAAAG GCTTATTAAT TTGACTAGAA AATTTAAAAC 540 ATTACTCTGA AATTGTAACT AAAGTTAGAA AGTTGATTTT AAGAATCCAA ACGTTAAGAA 600 TIGATIANAGG CTATGATTGT CTTIGTTCTT CTACACCCA CCAGTTGAATTTCATCATCC 660
TTANGGCCAT GATTTTAGCA ATACCCATGT CTACACAGAT GTTCACCCAA CCACATCCCA 720
CTCACACACAG CTGCCTGGAA GAGCAGCCCT AGGCTTCCAC GTACATGTCACC TCCACAGAGA 780 30 TATCTGAGGC ACATGTCAGC AAGTCCTAAG CCTGTTAGCA TGCTGGTGAG CCAAGCAGTT 840 TGAAATTGAG CTGGACCTCA CCAAGCTGCT GTGGCCATCA ACCTCTGTAT TTGAATCAGC 900 CTACAGGCCT CACACACAAT GTGTCTGAGA GATTCATGCT GATTGTTATT GGGTATCACC 960 ACTGGAGATC ACCAGTGTGT GGCTTTCAGA GCCTCCTTTC TGGCTTTGGA AGCCATGTGA 1020 AGGINANTE ACCADIGITATION TO STANDARD ACCADIGNATION ACCADIGNATION ACCADIGNATION ACCADIGNATION ACCADIGNATION ACCADIGNATION ACCADIGNATION ACCADIGNATION ACCADIGNATION ACCADIGNATION ACC 35 AAATAAACCT TTTTGGACAC ACAAATTATC TTAAAACTCC TGTTTCACTT GGTTCAGTAC 1320 CACATGGGTG AACACTCAAT GGTTAACTAA TTCTTGGGTG TTTATCCTAT CTCTCCAACC 1380 40 AGATTOTCAG CTCCTTGAGG GCAAGAGCCA CAGTATATTT CCCTGTTTCT TCCACAGTGC 1440 ANATIONAL CITCHIOAGU GLANDAGULA CAUTAINT I CLOUTTET TEACAUTHE 1940 CETANTANTA CITOGAACTIA GOTTITANTA NITTITTAAT TGATOTTOTTOTTOTTOT CAGAGCAGOT GCTGGCTCTT TCTGGCTAC TCCATGTTOG 1560 CTAGCCTCTT GATAACCTCTT ACTTATTATC TTCAGGACAC TCACTACAGG GACCAGGGAT 1620 GATGCAACAT CCTTGGCTTT TATTAACAGG ATGTTTGCTC AGCTTCTCCA ACATAAGAA 1860 ATGCAACAT CCTTGGCTTT TTATGACAGG ATGTTTGCTC AGCTTCTCCA ACATAAGAA 1860 45 GCACGTGGTA AAACACTTGC GGATATTCTG GACTGTTTTT AAAAAATATA CAGTTTACCG 1740 AAAATCATAT AATCTTACAA TGAAAAGGAC TTTATAGATC AGCCAGTGAC CAACCTTTTC 1800 CCAACCATAC AAAAATTCCT TTTCCCGAAG GAAAAGGGCT TTCTCAATAA GCCTCAGCTT 1860 50 CTTTCCCAAA TTGAATCACT GCTCACACTG CTGATGATTT AGAGTGCTGT CCGGTGGAGA 2220 TCCCACCCGA ACGTCTTATC TAATCATGAA ACTCCCTAGT TCCTTCATGT AACTTCCCTG 2280 55. AAAAATCTAA GTGTTTCATA AATTTGAGAG TCTGTGACCC ACTTACCTTG CATCTCACAG 2340 GTAGACAGTA TATAACTAAC AACCAAAGAC TACATATTGT CACTGACACA CACGTTATAA 2400 TCATTTATCA TATATATACA TACATGCATA CACTCTCAAA GCAAATAATTTTTCACTTCA 2460 AAACAGTATT GACTTGATAT CCCTTGTAATT TGAAATATTT TCTTTTATAA AATAGAATGG 2520 TATCAATAAA TAGACCATTA ATCAG 60 Seq ID NO: 114 Protein sequence:
NP_002407 31 41 65 MKKSGVLFLL GILLVLIGV OGTPVVRKGR CSCISTNQGT IHLQSLKDLK QFAPSPSCEK 60 IEIIATLKNG VQTCLNPDSA DVKELIKKWE KQVSQKKKQK NGKKHQKKKV LKVRKSQRSR 120 70 Seq ID NO: 115 DNA sequence

NM 003238.1 Coding sequence: 182-1426 (underlined sequences correspond to start and stop codons)

CAAGCAGGAT ACGTTTTCT GTTGGGCATT GACTAGATTG TTTGCAAAAG TTTCGCATCA 60 AAAACAAACA ACAACAACAA AAAACCAAAC AACTCTCCTT GATCTATACT TTGAGAATTG 120

BNSDOCID: <WO____ __02059377A2_l_>

75

Nucleic Acid Accession #:

TTGATTTCTT TTTTTTATT CTGACTTTTA AAAACAACTT TTTTTTCCAC TTTTTTAAAA 180 AATGCACTAC TGTGTGCTGA GCGCTTTTCT GATCCTGCAT CTGGTCACGG TCGCGCTCAG 240 CCTGTCTACC TGCAGCACAC TCGATATGGA CCAGTTCATG CGCAAGAGGA TCGAGGCGAT 300 CCGCGGGCAG ATCCTGAGCA AGCTGAAGCT CACCAGTCCC CCAGAAGACT ATCCTGAGCC 360 CGAGGAAGTC CCCCCGGAGG TGATTTCCAT CTACAACAGC ACCAGGGACT TGCTCCAGGA 420 GAAGGCGAGC CGGAGGGCGG CCGCCTGCGA GCGCGAGAGG AGCGACGAAG AGTACTACGC 480 CAAGGAGGTT TACAAAATAG ACATGCCGCC CTTCTTCCCC TCCGAAAATG CCATCCCGCC 540 CACTITICTAC AGACCCTACT TCAGAATTGT TCGATTTGAC GTCTCAGCAA TGGAGAAGAA 600 TGCTTCCAAT TTGGTGAAAG CAGAGTTCAG AGTCTTTCGT TTGCAGAACC CAAAAGCCAG 10 AGTGCCTGAA CAACGGATTG AGCTATATCA GATTCTCAAG TCCAAAGATT TAACATCTCC 720 AACCCAGCGC TACATCGACA GCAAAGTTGT GAAAACAAGA GCAGAAGGCG AATGGCTCTC 780 CTTCGATGTA ACTGATGCTG TTCATGAATG GCTTCACCAT AAAGACAGGA ACCTGGGATT 840 TAAAATAAGC TTACACTGTC CCTGCTGCAC TTTTGTACCA TCTAATAATT ACATCATCCC 900 AAATAAAAGT GAAGAACTAG AAGCAAGATT TGCAGGTATT GATGGCACCT CCACATATAC 960 15 CAGTGGTGAT CAGAAAACTA TAAAGTCCAC TAGGAAAAAA AACAGTGGGA AGACCCCACA 1020 TCTCCTGCTA ATGTTATTGC CCTCCTACAG ACTTGAGTCA CAACAGACCA ACCGGCGGAA 1080 GAAGCGTGCT TIGGATGCGG CCTATTGCTT TAGAAATGTG CAGGATAATT GCTGCCTACG 1140
TCACTTTAC ATTGATTTCA AGAGGGATCT AGGGTGGAAA TGGATACACG AACCCAAAGG 1200
GTACAATGCC AACCTCTGTG CTGGAGCATG CCCCTATTTAT TGGAGTTCAG ACACTCAGCA 1200 20 CAGCAGGGTC CTGAGCTTAT ATAATACCAT AAATCCAGAA GCATCTGCTT CTCCTTGCTG 1320 CGTGTCCCAA GATTTAGAAC CTCTAACCAT TCTCTACTAC ATTGGCAAAA CACCCAAGAT 1380 25 AAAAAAAGTT GAAGGCCTTA TTCTACATTT CACCTACTTT GTAAGTGAGA GAGACAAGAA 1680 GCAAATTTTT TTAAA

30

21 31 41

MHYCVLSAFL ILHLVTVALS LSTCSTLDMD OFMRKRIEAI RGOILSKLKL TSPPEDYPEP 60 35 EEVPPEVISI YNSTROLLOE KASRRAAACE RERSDEEYYA KEVYKIDMPP FFPSENAIPP 120 TFYRPYFRIV RFDVSAMEKN ASNLVKAEFR VFRLONPKAR VPEQRIELYO ILKSKDLTSP TORYIDSKVV KTRAEGEWLS FDVTDAVHEW LHHKDRNLGF KISLHCPCCT FVPSNNYIIP 240

NKSEELEARF AGIDGTSTYT SGDQKTIKST RKKNSGKTPH LLLMLLPSYR LESQQTNRRK 300 KRALDAAYCF RNYQDNCCLR PLYIDFKRDL GWKWIHEPKG YMANFCAGAC PYLWSSDTQH 360 SRVLSLYNTI NPEASA SPCC VSQDLEPLTI LYYIGKTPKI EQLSNMIYKS CKCS 40

Seq ID NO: 117 DNA sequence leic Acid Accession #

NM 000095.1

Coding sequence: 26-2299 (underlined sequences correspond to start and stop codons) 45

21 31 41 51

CAGCACCCAG CTCCCCGCCA CCGCCATGGT CCCCGACACC GCCTGCGTTC TTCTGCTCAC 60
CCTGGCTGCC CTCGGCGCGT CCGGACAGGG CCAGAGCCCG TTGGGCTCAG ACCTGGGCCC 120 50 GCAGATGCTT CGGGAACTGC AGGAAACCAA CGCGGCGCTG CAGGACTGC GGGACTGGCT 180 GCGGCAGCAG GTCAGGGAGA TCACGTTCCT GAAAAACACG GTGATGGAGT GTGACGCGTG 240 CGGGATGCAG CAGTCAGTAC GCACCGGCCT ACCCAGCGTG CGGCCCCTGC TCCACTGCGC 300 GCCCGGCTCT TGCTTCCCCG GGGTGGCCTC ACTCCAGACG GAGACGGCG GCCGCTGCGG 360 CCCCTGCCCC GCGGGTTCA CGGGATGCAA 420 55 CGCCCACCC TGCTTCCCCC GAGTCCGCTG TATCAACACC AGCCCGGGGT TCCGCTGCGA 480 GGCTTGCCCG CCGGGGTACA GCGGCCCCAC CCACCAGGGC GTGGGGCTGG CTTTCGCCAA 540 GGCCAACAAG CAGGTTTGCA CGGACATCAA CGAGTGTGAG ACCGGGCAAC ATAACTGCGT 600 CCCCAACTCC GTGTGCATCA ACACCGGGG CTCCTTCCAG TGCGGCCCGT GCCAGCCCGG 660

CTTCGTGGGC GACCAGGCGT CCGGCTGCCA GCGCGGCGCA CAGCGCTTCT GCCCCGACGG 720 CTCGCCCAGC GAGTGCCACG AGCATCACTCA GAGCGCGGTG 780 GTGCGTGGCT GGGCGGGTC 780 GTGCGTGTGT CACCGTGACCT 840 CTGCGTGTGT CACCGTGACCT 840 CTGCGTGTGT CACCGTGACCT 840 CTGCGTGTGT CACCGTGACCT 840 CTGCGCTGACCT 840 CTGCGTGACCT 840 CTGCTGACCT 840 CTGCT 60 AGACGGCTTC CCGGACGAGA AGCTGCGCTG CCCGGAGCCG CAGTGCCGTA AGGACAACTG 900 CGTGACTGTG CCCAACTCAG GGCAGGAGGA TGTGGACCGC GATGGCATCG GAGACGCCTG 960 CGATCCGGAT GCCGACGGGG ACGGGGTCCC CAATGAAAAG GACAACTGCC CGCTGGTGCG 1020 65

GAACCCAGA C CACGGCAAC A GGACGAGAG C AAGTGGGG G ATGGGTGG A CAACTGGG 1699
GTCCCAGAGA C AAGCGACC AAAAGGAC C AAACTGGG G GACGAGCG A TGCGTGCG A 1140
GTCCCAGAGA C AACGGACC AAAAGGACC AAACTGGCG G ACGGGCCG A TGCGTGCGA 1140
CTCCAGACCAT GACGGGCAC GAGTCGCCAA CACGGCGCGAC CACGGCCCTA GGGTACCCAA 1240
CTCCAGACCCA AAGGACACTT ATGGCGATTGG TATAGGGGAT GCCTCTTGCACA 1250
GAAGAGCACA CCGGATCAGG GGGATTGTGGA CACGACCTT GTGGGGATTGCTTTGACAG 1250 70 CGATCAAGAC CAGGATGGAG ACGGACATCA GGACTCTCGG GACAACTGTC CCACGGTGCC 1380 TAACAGTGCC CAGGAGGACT CAGACCACGA TGGCCAGGGT GATGCCTGCG ACGACGACGA 1440

CGACAATGAC GGAGTCCCTG ACAGTCGGGA CAACTGCCGC CTGGTGCCTA ACCCCGGCCA 1500 GGAGGACGCG GACAGGGACG GCGTGGGCGA CGTGTGCCAG GACGACTTTG ATGCAGACAA 1560 GGTGGTAGAC AAGATCGACG TGTGTCCGGA GAACGCTGAA GTCACGCTCA CCGACTTCAG 1620 GGCCTTCCAG ACAGTCGTGC TGGACCCGGA GGGTGACGCG CAGATTGACC CCAACTGGGT 1680 75

GGTGCTCAAC CAGGGAAGGG AGATCGTGCA GACAATGAAC AGCGACCCAG GCCTGGCTGT 1740 GGGTTACACT GCCTTCAATG GCGTGGACTT CGAGGGCACG TTCCATGTGA ACACGGTCAC 1800

PCT/IIS02/02242 WO 02/059377

GGATGACGAC TATGCGGGCT TCATCTTTGG CTACCAGGAC AGCTCCAGCT TCTACGTGGT 1860 CATGTGGAAG CAGATGGAGC AAACGTATTG GCAGGCGAAC CCCTTCCGTG CTGTGGCCGA 1920 GCCTGGCATC CAACTCAAGG CTGTGAAGTC TTCCACAGGC CCCGGGGAAC AGCTGCGGAA 1980 UNCLINUATIO CAACICAAUU CIUTISAAGTE TICCACAUGE CCCGGGGAAC AUCTGCGGAA 1980 CCCCTCITGTGG CATACAGGAG A ACAGAGTCC CAGGGTGCGG CTECTGTGGA AGGACCCGG 2904 AAACGTGGGT TGGAAGACC GGCCCCAAGT 2100 GGCCTACATC AGGGTGCGAT TTATTAGAGGG CCCTAGACTG GTGGCCAAC GCCCCAAGT 2100 CGCCTACATC AGGGTGCCAAT CAACAGTGGT 2100 CTCTGGACCAAC ACACTGGT 2100 CTCTGGACCAA ACCATGGT 2100 CTCTGGACCAA ACCATGCGT 200 CTCTGGACCAA ACCATGCGT 200 CTCTGGACCAA ACCATGCT 200 CTCTGGACCAA ACCATGCT 200 CTCTGGACCAA ACCATGCT 200 CTCTGGACCAA ACCATGCT 200 CTCTGGACCAA ACCATGCT 200 CTCTGCTCCC AGGAGAACAT 2220 CATCTGGGCC AACCTGCGTT ACCGCTGCAA TGACACCATC CCAGAGGACT ATGAGACCCA 2280 TCAGCTGCGG CAAGCCTAGG GACCAGGGTG AGGACCCGCC GGATGACAGC CACCCTCACC 2340
GCGGCTGGAT GGGGGCTCTG CACCCAGCCC AAGGGGTGGC CGTCCTGAGG GGGAAGTGAG 2400 AAGGGCTCAG AGAGGACAAA ATAAAGTGTG TGTGCAGGG

Seq ID NO: 118 Protein sequence: Protein Accession #: NP_000086.1

5

10

20

25

15

41

NPPDTACVIL LTLAALGAS QGQSPLGSDL GPOMLRELQE TNAALQDVRD WI.RQQVREIT 60
FILKSTYMECD ACGMQGSVRT GI.PSVRP.LLH CAPGCCFPGV ACIQTESGGR CGFCFAGFTG 120
NGSLCTDVNE CANHECPFRV RCINTSGDR CAEAPPOVSO PTHQGVGLAF ALKANKQVCTD 180
NECETGQHN CVPNSVCINT RGSFQCGFQ FGFVGDQASG CQRGAQRFCP DGSPSECHEH 240
ACVLEROSS SECVCRVGWA RORILCCRIT DLOEPFDEKL RCFPCQKEX DCVTYNSOG 100
EDVDRDGIGD ACDPTADADDG VPNECDNCH, VRNPDQRTNT E DKWGDACDN CRSQKNDDQK 360
DTDQDGGGDA CDDDIDGDGR NRQADNEYS CHSSQKSDDGDGGDACDNC PSSKNDQAD 820
DTDQDGGGDA CDDDIDGDGR NRQADNEYS THE SDSQKSDDGDGGDACDNC PSSKNDQAD 820

VDHDFVGDAC DSDODODGDG HODSRDNCPT VPNSAQEDSD HDGQGDACDD DDDNDGVPDS 480 RDNCRLVPNP GOEDADRDGV GDVCQDDFDA DKVVDKIDVC PENAEVTLTD FRAFQTVVLD 540 KUNCKLYMPR GQEDADROUY GDVCQDDEDA DKVYDKUDYC PENAEVTLTD FRAFQTYVILD 540
FEGDAQDEN YVVLNQGREU TYMNADDELA KYVTKNIDYC PERAEVTLTD FRAFQTYVILD 540
FGYQDSSSFY YVNWKQMEOT YWQANFRAV AEBGIQLKAV KSSTGRGEQL RNALWHTGDT 660
ESQVRLLIWND PRNYWEDKK SYRWFLQHRP QVGYTRVRFY EGPELV ADSN YVLDTTMRGG 720
RLGVFCFSQE NIWANLRYR CNDTIFEDVE THQLRQA

30

Seq ID NO: 119 DNA sequence

NM 014211 Nucleic Acid Accession #:

Coding sequence: 157-1479 (underlined sequences correspond to start and stop codons) 35

GGGACAGGGC TGAGGATGAG GAGAACCCTG GGGACCCAGA AGACCGTGCC TTGCCCGGAA 60 GOTCTGCCG TAGGCCTGAA GGACTTGCCC TAACAGAGCC TCAACAACTA CCTGGTGATT 120
CTTCGTTGTG TCAGGCGCT TCAACGAGCT CTCAACGACCT CCACTGGCC 120
CTTCGTGTGTG TAGGCGCTT CACTGAGAGGATCACTCAGCGGC 200
CTTCGTGTGTG TAGGCGCTT CACTGAGAGGATCACTCAGCGGCAGTCA GTTCAACGTC 200 40

45 TTCCTCCATG AAGTCACTGT GGGAAACAGG CTCATCCGCC TCTTCTCCAA TGGCACGGTC 600 CTGTATGCCC TCAGAATCAC GACAACTGTT GCATGTAACA TGGATCTGTC TAAATACCCC 660 ATGGACACAC AGACATGCAA GTTGCAGCTG GAAAGCTGGG GCTATGATGG AAATGATGTG 720

50 GAGTTCACCT GGCTGAGAGG GAACGACTCT GTGCGTGGAC TGGAACACCT GCGGCTTGCT 780

55 ATGATCGGGT CCCGCACTTC TCTTCCCAAC ACCAACTGCT TCATCAAGGC CATCGATGTG 1080 TACCTGGGGA TCTGCTTTAG CTTTGTGTTT GGGGCCTTGC TAGAATATGC AGTTGCTCAC 1140

60

ACCCACATCC AATGGTGCTA CAAGTGACTG AAATAATATT TGAGTCTTTC TGCTCAAAGA 1620 65

70 TTGGAAGTCA ATGCACTAAC TCAATACCAA GATGAGTTTT TAAATAATGA ATATTATTTA 2040 ATACCACAAC AGAATTATCC CCAATTTCCA ATAAGTCCTA TCATTGAAAA TTCAAATATA 2100
AGTGAAGAA AAATTAGTAG ATCAACAATC TAAACAAATC CCTCGGTTCT AAGATACAAT 2160 75

AGUINAMANA ANALIAM RICARCALU IRANCARA E CUCUMI ILI ANMARCAN ZI GGATTICCCA TACTIGANAG GACTIGAGGG TITATITATICCC CACCATAGGAT ATCITATATA TA TITATITATTA TACACACATC CATCCTANC TATACTANAG COCTITICCC ATGCATGGAT 2280 GGANATGGAN GATTITTITI TACACTIGTIC TAGANGTICTI ANTATIGAGGC TITICCCATIG 2400 AGGCTTICAG ANTIGAGTICC ATTITCTAGC TGCCTTTATT CACATAGTGA TGGGGTACTA 2400

5

10

15

AATATACCAT ATTAGCTACC CACC

Seq ID NO: 120 Protein sequence:
Protein Accession #: NP_055026.1

20 1 11 21 31 41 51

MNYŠLHLAFV CLŠLFTERMĆ IQOSOPNEV ORSDKLSLOG FENLTAGYNK FLRPNFOGEP 60
VQIALTIDA SISSISSISSIN DYTATIVLIKOR RWIMORULVES GNASFILDAR LIVEFLEWYDT 10
VYDESKASFL REVTYGYNEL RLESNOTYLY ALRITTYVAC NIMDLSKYPMD TOTCKLOGES 180
WYDDSDWEF TWLROMOSVA GLEBLAGOV TEREYTHY RSQQTETONT RLVLQFERR 240
CFFRAIDVYL GICTSFEVFGA LLEVAVAHYS SLOQMAAKDR GTPHENS TRIMINSSI. 300
CFFRAIDVYL GICTSFEVFGA LLEVAVAHYS SLOQMAAKDR GTPHENS TRIMINSSI. 300
SKRKISKAS BISSIONVOY SDLIMKTISKK KFVFREKAM GRIVPYTTIQP SPNOMIYSKL 420

30 Seq ID NO: 121 DNA sequence

Nucleic Acid Accession #: NM_001854

Coding sequence: 163-5582 (underlined sequences correspond to start and stop codons)

35 41 51 AACCATCAAA TITAGAAGAA AAAGCCCTTT GACTTTTTCC CCCTCTCCCT CCCCAATGGC 60 TGTGTAGCAA ACATCCCTGG CGATACCTTG GAAAGGACGA AGTTGGTCTG CAGTCGCAAT 120 TICTICAMENT AGATICACO TICTICATOR GEOGRECICAGA AGTIGOTICTE CARTECCEAT 120
TICCITOGRAT AGATICACOA TICTICATOR GEOGRECICAGA AGATIGAGACO TEGOTECTETA 18
GOTOGAMAC GAAACGGTGG CETCIGOGATI TACACCATOC 240
TICTICAMAN TAGAGAGGTC AGAGGAGGTC TICCAGTTAA TATACTATACA AGACATGATT 300
TICACAMITE TCCAGAGGGA TATACAAAAA CAACGGGGATT TICACAAAAC AGAAAGAATT 300
CTAAAGGGCT AGATACTGAT TACAGAGTTT CAAAGCAAGCAAACTACAT GCCCAAACA 40 AACAGTTATT TCCAGGTGGA ACTTTCCCAG AAGACTTTTC AATACTATTT ACAGTAAAAC 480 45 CAAAAAAAGG AATTCAGTCT TTCCTTTTAT CTATATATAA TGAGCATGGT ATTCAGCAAA 540 TTGGTGTTGA GGTTGGGAGA TCACCTGTTT TTCTGTTTGA AGACCACACT GGAAAACCTG 600 CCCCAGAAGA CTATCCCCTC TTCAGAACTG TTAACATCGC TGACGGGAAG TGGCATCGGG 660 TAGCAATCAG COTGGAGAAG AAAACTGTGA CAATGATTGT TGATTGTAAG AAGAAAACCA 720 CGAACACCACT TTGTAAGAAG AAAACTGTGA TATCATTGTAATAC CAATGGAATCACGATTTTTG 780 CGAACACCACT TTGTAACTAA GAAGTTTTG AGGGGGACAT TCAGCAGTTT TTGTATCACAGA 840 50 GTGATCCCAA GGCAGCATAT-GACTACTGTG AGCATTATAG TCCAGACTGT GACTCTTCAG 900 CACCCAAGGC TGCTCAAGCT CAGGAACCTC AGATAGATGA GTATGCACCA GAGGATATAA 960 TCGAATATGA CTATGAGTAT GGGGAAGCAG AGTATAAAGA GGCTGAAAGT GTAACAGAGG 1020 GACCCACTGT AACTGAGGAG ACAATAGCAC AGACGGAGGC AAACATCGTT GATGATTTTC 1080 55 AAGAATATGA AGATAAACCA ACAAGCCCCC CTAATGAAGA ATTTGGTCCA GGTGTACCAG 1380 60 CAGAAACTGA TATTACAGAA ACAAGCATAA ATGGCCATGG TGCATATGGA GAGAAAGGAC 1440 AGAAAGGAGA ACCAGCAGTG GTTGAGCCTG GTATGCTTGT CGAAGGACCA CCAGGACCAG 1500 CAGGACCTGC AGGTATTATG GGTCCTCCAG GTCTACAAGG CCCCACTGGA CCCCCAGGGTG 1500 ACCCTGGGA TAGGGGCCCC CCAGGACGTC CTGGCTTACC AGGGGCTGAT GGTCTACCTG 1600 GTCCTCCTGG TACTATGTTG ATGTTACCGT TCCGTTATGG TGGTGATGGT TCCAAAGGAC 1680 65 CAACCATCTC TGCTCAGGAA GCTCAGGCTC AAGCTATTCT TCAGCAGGCT CGGATTGCTC 1740 TGAGAGGCCC ACCTGGCCCA ATGGGTCTAA CTGGAAGACC AGGTCCTGTG GGGGGGCCTG 1800
GTTCATCTGG GGCCAAAGGT GAGAGTGGTG ATCCAGGTCC TCAGGGCCCT CGAGGCCTCC 1860 AGGGTCCCCC TGGTCCAACG GGAAAACCTG GAAAAAGGGG TCGTCCAGGT GCAGATGGAG 1920 GAAGAGGAAT GCCAGGAGAA CCTGGGGCAA AGGGAGATCG AGGGTTTGAT GGACTTCCGG 1980 GTCTGCCAGG TGACAAAGGT CACAGGGGTG AACGAGGTCC TCAAGGTCCT CCAGGTCCTC 2040 70 CTGGTGATGA TGGAATGAGG GGAGAAGATG GAGAAATTGG ACCAAGAGGT CTTCCAGGTC 2160
AAGCTGGCCC ACGAGGTTTG CTGGGTCAA GGGGAACTCCA GGGCAGCCTC 2160 GTATGGCAGG TGTAGATGGC CCCCCAGGAC CAAAAGGGAA CATGGGTCCC CAAGGGGAGC 2220 CTGGGCCTCC AGGTCAACAA GGGAATCCAG GACCTCAGGG TCTTCCTGGT CCACAAGGTC 2280 75 CAATTGGTCC TCCTGGTGAA AAAGGACCAC AAGGAAAACC AGGACTTGCT GGACTTCCTG 230
GTGCTGATGG GCCTCCTGGT CATCCTGGGA AAGAAGGCCC 2400
TGGGTCCCCC TGGTCCACAA GGTCCTATTG GATNNCCGGG CCCCCGGGGA GTAAAGGGAG 2400

PCT/US02/02242 WO 02/059377

CAGATGGTGT CAGAGGTCTC AAGGGATCTA AAGGTGAAAA GGGTGAAGAT GGTTTTCCAG 2520 GATTCAAAGG TGACATGGGT CTAAAAGGTG ACAGAGGAGA AGTTGGTCAA ATTGGCCCAA 2580 GAGGGNAAGA TGGCCCTGAA GGACCCAAAG GTCGAGCAGG CCCAACTGGA GACCCAGGTC 2640 CTTCAGGTCA AGCAGGAGAA AAGGGAAAAC TTGGAGTTCC AGGATTACCA GGATATCCAG 2700 5 GAAGACAAGG TCCAAAGGGT TCCACTGGAT TCCCTGGGTT TCCAGGTGCC AATGGAGAGA 2760 AAGGTGCACG GGGAGTAGCT GGCAAACCAG GCCCTCGGGG TCAGCGTGGT CCAACGGGTC 2820 10 CTGGTCCTCC TGGCCCTCCT GGTGAGCAAG GTCTTCCTGG TGCTGCAGGA AAAGAAGGTG 3180 CAAAGGGTGA TCCAGGTCCT CAAGGTATCT CAGGGAAAGA TGGACCAGCA GGATTACGTG 3240 CTTTCCCAGG GGAAAGAGGT CTTCCTGGAG CTCAGGGTGC ACCTGGACTG AAAGGAGGGG 3300 15 A AGGTCCCCA GGGCCCACCA GGTCCAGTTG GCTCACCAGG AGAACGTGGG TCAGCAGGTA 3360 CAGCTGGCCC AATTGGTTTA CGAGGGCGCC CGGGACCTCA GGGTCCTCCT GGTCCAGCTG 3420 GAGAGAAAGG TGCTCCTGGA GAAAAAGGTC CCCAAGGGCC TGCAGGGAGA GATGGAGTTC 3480 AAGGTCCTGT TGGTCTCCCA GGGCCAGCTG GTCCTGCCGG CTCCCCTGGG GAAGACGGAG 3540 AAUGI RELIGIT GO ATTIGETA GEOGRAFIE GIECTIGEEG ETECETIGU GAAGAAGTA 3549
ACAAGGGTG AATTIGETAGA CEGGGACAAA AAGCAGGAAAA GGGTGGCAAA GGATGAAATT 3600
GCCCTCCCGG TECCCAGGT CTTCAAGGAC CAGTTGTGC CECTGGAATT GCTGGAGGT 3600
ATGGTGAAAC AGGTCCTAGA GGACAGCAGG GGATGTTTTGG CEAAAAAGGT GATGAGGTG 3780 20 CCAGAGGCTT CCCTGGACCT CCTGGTCCAA TAGGTCTTCA GGGTCTGCCA GGCCCACCTG 3780 GTGAAAAAGG TGAAAATGGG GATGTTGGTC CATGGGGGCC ACCTGGTCCT CCAGGCCCAA 3840
GAGGCCCTCA AGGTCCCAAT GGAGCTGATG GACCACAAGG ACCCCCAGGT TCTGTTGGTT 3900 CAGTTGGTGG TGTTGGAGAA AAGGGTGAAC CTGGAGAAGC AGGAAACCCA GGGCCTCCTG 3960 GGGAAGCAGG TGTAGGCGGT CCCAAAGGAG AAAGAGGAGA GAAAGGGGAA GCTGGTCCAC 4020 25 CTGGAGCTGC TGGACCTCCA GGTGCCAAGG GGCCGCCAGG TGATGATGGC CCTAAGGGTA 4080
ACCCGGGTCC TGTTGGTTTT CCTGGAGATC CTGGTCCTCC TGGGGAACTT GGCCCTGCAG 4140 GTCAAGATGG TGTTGGTGGT GACAAGGGTG AAGATGGAGA TCCTGGTCAA CCGGGTCCTC 4200 CTGGCCCATC TGGTGAGGCT GGCCCACCAG GTCCTCCTGG AAAACGAGGT CCTCCTGGAG 4260 30 CTGCAGGTGC AGAGGGAAGA CAAGGTGAAA AAGGTGCTAA GGGGGAAGCA GGTGCAGAAG 4320 GTCCTCCTGG AAAAACCGGC CCAGTCGGTC CTCAGGGACC TGCAGGAAAG CCTGGTCCAG 4380 AAGGTCTTCG GGGCATCCCT GGTCCTGTGG GAGAACAAGG TCTCCCTGGA GCTGCAGGCC 4440 AAGUTICAC ACCEGETCA TROGACCE CEGETACA GETECAGGE 4440
AAGATGAGAC ACCEGETCA TROGACCE CEGEGETACE TOGETCAAA GGTGACCCTG 4500
GCTCCAAGGG TGAAAAGGGA CATCCTGGTT TAATTGGCCT GATTGGTCCT CCAGGACAAC 4560
AAGGGGAAAA AGGTGACCGA GGCCTCCTG GAACTCAAGG ATTCCCAGGA GCAAAAAGGGA 4520
ATGGGGGAAA TCCTGGTCCT GCTGGTCCCT TAGGTCCACC TGGTCCTCCA GGCTTACCAG 4880 35 GTCCTCAAGG CCCAAAGGGT AACAAAGGCT CTACTGGACC CGCTGGCCAG AAAGGTGACA 4740 GTGGTCTTCC AGGGCCTCCT GGGCCTCCAG GTCCACCTGG TGAAGTCATT CAGCCTTTAC 4800
CAATCTTGTC CTCCAAAAAA ACGAGAAGAC ATACTGAAGG CATGCAAGCA GATGCAGATG 4860 40 CANICITISTIC SICE-AMANA ACUALANGUA FINA-TURANDO CATROCANCA OFITO-COTTA 4980
ATALATISTIC TRAITTACTCO GATOGAATOG AMAGANATIT TOGOTTCCCTCA 47920
AACAAGACAT CGAGCATATOG AMATTICCAA TGGOTACTCA GACCAATCCA GCCCCGAACTT 4980
GTAMAGACCT GCAACTCAGC CATCCTGACT TCCCAGATGG TGAATATTIGG ATTAITACTCAT 5940
ACCAAGGTTIG CTCAGGAGAT TCCCTTCAAAG TTTACTGTAA TTTCACATCT GGTGGTGAGA 5180 45 CTTGCATTTA TCCAGACAAA AAATCTGAGG GAGTAAGAAT TTCATCATGG CCAAAGGAGA 5160 AACCAGGAAG TTGGTTTAGT GAATITAAGA GGGGAAAACT GCTTTCATAC TTAGATGTTG 5220 ATCCTTTTAT CAAAACACTG TATGATGGTT GTACGTCCAG AAAAGGCTAT GAAAAAACTG 5460 50 ATCETTITAT CANANCEDI IATUATEGI PACTOCON TENTRATOR ATOACACATO 529
CATTOGOGA A CAGAACACA ACCITCAGA TITAGACTTAG TOCTOTATOR TATACACACTO 529
AGAATTAGAA CAGAACACA ACCITCAGAT TITAGACTTAG TOCTOTATTAG TITTELTIGACE, 589
AGAATTAAGA CAAAGACAT ATCAAATCAA CAGAAAATGT ACCTTAGGTGC CACCAACCCA 549
TITTUTUTOCCA CATOCACATT TITGAATAAGG ATTATAGGAA AACAACACGTG CATATACAGG THE TOTAL AND ANALY TO A TOTAL OF THE TOTAL AND A TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE TOTAL OF THE T 55 TOTOTTIANT ANATIGITAAT TATTITIGTOT ACAGTICTAT ACTGTTATCT GTGTCCATT 6000
CCAAAACTIG CACGTGTCCT GAATICGCG TOACTCAAT TITTAGAGGAAT GCCGAACCTG 6000
GATGGCAATA ATATATGTAT TATGAAAATG AAGTTATGAT TICCGATGAC CCTAACTCCC 61000 60 TITCTTTGGT TAATGATGAA ATTCCTTTGT GTGTGTTT

Seq ID NO: 122 Protein sequence; 65 Protein Accession #:

51 21 31 41

MEPWSSRWKT KRWLWDFTYT TLALTFLFQA REVRGAAPVD VLKALDFHNS PEGISKTTGF CTNRKNSKGS DTAYRVSKQA QLSAPTKQLF PGGTFPEDFS ILFTVKPKKG IQSFLLSIYN 120 CTNRKNSKUS DIA YKYSKQA QLSAPYKQUF PUGITYEDES ILET VAFAKA ÜLSEKLESIN 120
EBIGQQIQUE VGRSPYFLEF DITTIKCAPADE DYBERTVINIA DOKWIRVALS VERKETVTIMV 180
DCKKKTTKPL DRSERANDTI NGITYFOTRI LDEEVFEGDI QQFLITGDPK AAYDYCEHYS 240
PDCDSSAPKA AQAQEPQDE VAPEDIEVD V SYGAEAYKE ASVYTGPTV TEETIAQTEA 300
NIVDDFQEYN YGTMESYQITE APRHYSGTNE PRPVEEHTE EYLTGEDYDS QRKNSEDTLY 360 75 ENKEIDGROS DLLVDGDLGE YDFYEYKEYE DKPTSPPNEE FGPGVPAETD ITETSINGHG 420 AYGEKGQKGE PAVVEPGMLV EGPPGPAGPA GIMGPPGLQG PTGPPGDPGD RGPPGRPGLP 480

GADGLPGPPG TMLMLPFRYG GDGSKGPTIS AQEAQAQAIL QQARIALRGP PGPMGLTGRP 540 ondelfoppe immelffryg gidskriftis aquanquall cygrialist formelfter 140
Gfyggegsg akgesgoffg ogproyoppe gfygriagter generagor kog
Gfdgfglig bkghrgerop ggproppod gmrgedgeig prolygerop rglegeroakor kog
Gfdgfglig bkghrgerop ggproppod gmrgedgeig prolygerop rglegopy
Gaproppamag ydgfpgfkan mgpqgeppp ggygnyopg lydpygpigp pgekopy
Glacifgadd ppghfgkegg sgekgalgpp ggygnyopg broykgaddy rglkgskget 720
Glacifgadd ppghfgkegg sgekgalgpp ggygnigyd proykgaddy rglkgskget 720 5 GEDGFPGFKG DMGLKGDRGE VGOIGPRGXD GPEGPKGRAG PTGDPGPSGO AGEKGKLGVP GLPGYPGRQG PKGSTGFPGF PGANGEKGAR GVAGKPOPRG QRGPTGPRGS RGARGPTGKP 900
GPKGTSGGDG PPGPPGERGP QGPQGPVGFP GPKGPPGPPG RMGCPGHPGQ RGETGFQGKT 960 GPPGPGGVVG PQGPTGETGP IGERGYPGPP GPPGEQGLPG AAGKEGAKGD PGPQGISGKD 1020 10 GPFOPGGYVG PQGFTGBTGF IGEKGYFVGPF GPFGEQGLIFG AAGKEGAKGD PGPQGISGKD 1020
GPGAGLAGPG BERLIFAQGGA PGLKGGGEGQ GPFOPVGSPG BERGSAGTAGP IGLKRGFDPQ 1080
GPFGPAGEKG APGEKGPGGP AGRDGVQGPV GLFGPAGPAG SPGEDGDKGE IGEPGQKGSK 1.140
GGKGENGPFG PPGLQGPVGA PGIAGGDGEP GPRGQCGMFG QKGDEGARGF PGPPGPIGLQ 1200
GLFGPFGEKG ENGDVGPWGP PGFPGFRGPQ GPNGADGPCG PFGSVGSVGG VGEKGEFGE 1.260 GNPGPPGEAG VGGPKGERGE KGEAGPPGAA GPPGAKGPPG DDGPKGNPGP VGFPGDPGPP 1320 15 GELGPAGQDG VGGDKGEDGD PGQPGPPGPS GEAGPPGPPG KRGPPGAAGA EGRQGEKGAK 1380 GEAGAEGPPG KTGPVGPQGP AGKPGPEGLR GIPGPVGEQG LPGAAGQDGP PGPMGPPGLP 1440 GLKGDPGSKG EKGHPGLIGL IGPPGEQGEK GDRGLPGTQG SPGAKGDGGI PGPAGPLGPP 1500 GPFGLFGPQG PKGNKGSTGP AGQKGDSGLP GPFGPFGPFG EVIQPLPILS SKKTRRHTEG 1560 MQADADDNIL DYSDGMEEIF GSLNSLKQDI EHMKFPMGTQ TNPARTCKDL QLSHPDFPDG 1620 20 EYWIDPNOGC SGDSFKVYCN FTSGGETCIY PDKKSEGVRI SSWPKEKPGS WFSEFKRGKL 1680 LSYLDVEGNS INMVQMTFLK LLTASARQNF TYHCHQSAAW YDVSSGSYDK ALRFLGSNDE 1740
EMSYDNNFFI KTLYDGCTSK KGYEKTVIEI NTPKIDOVPI VDVMISDFGD ONOKFGFEVG 1800 25 Seq ID NO: 123 DNA sequence Nucleic Acid Accession #: NM 015886 Coding sequence: 485-1261 (underlined sequences correspond to start and stop codons) 21 31 41 30 GAATTCCCCC CCCCCCCCCCTCACTTGGTG TGTCTATATG TCTGGCAGAC ATTATCAGCA CATTCTCTGT TGTTACCTGT GATTCATTTT TTCTTCACTC TCCAGGTGAA TTTCAATTGC 120 TGAAAATTTC CCACTGAAAA TATGCAGTAA TATATTTTGT GGTTCAGACA TTTGGGGCAA 180 ATGGTTCACA TTCATTITAG GGTTAGTGGT CATGCTGTTT ATTTTCTCT GCTATACAAA 240 GTTCCTCTTA GGGGTCTGGC TCATGACACT AAAAAATGAA TAGAGATTCT ACTGTAGGTT 300 ATCTCCTAGG CTTGAGTTCA ACAITTGTT GGATTTTTTGA TGAAAAGTCAA A TTCAAGCAAT 300 35 GCTCCCAAAT GATGTCTTTG TAAATTCATA CCCTCTGGCC CTATTTTTTT TCATAGACCC 420 TAACTCTACC TTTCTGCTTT AAAGCAAAGT AAACTCGGTG GCCTCTTCTT CTCCACCCCT 480 1AAAA_IGATA GCAATCHCTA TAGCCTACAU JAACHUSTIG GCCTCCTCTTCTCCCTTC TCTGTGAACC 590
AAGTACCGTC GCCTACTCA ATTCCACTGA CTCACCCCCTC TCTCCCCTC CTCTGTGAACC 590
AAGTACCGTC GCCTCACAAC ACCACATGA CTCACCCCCCCAACAATA ATTCACTGA 690
4ATTGAAGGC GCCTCTGAAAC ACCACATTGA CTACACCCGAA TCCCCCAAGCCCGACGGAA 690
GCGCTACACTT TCCCACGAATG ACATTGATCGC CATTCTTCAT TATCATAATC AAGTTCGGGG 720
CAAAGGTGTTC CCCCCGCGCG ACAAATTGGGA ATTATTGGGTT GGGGGATGAAA ATCTTGCAAA 780 40 ATCGGCAGAG GCTTGGGCGG CTACTTGCAT TTGGGACCAT GGACCTTCTT ACTTACTGAG 840 45 ATTTTTGGGC CAAAATCTAT CTGTACGCAC TGGAAGATAT CGCTCTATTC TCCAGTTGGT 900 CAAGCCATGG TATGATGAAG TGAAAGATTA TGCTTTTCCA TATCCCCAGG ATTGCAACCC 960 CAGATGTCCT ATGAGATGTT TTGGTCCCAT GTGCACACAT TATACGCAGA TGGTTTGGGC 1020 50 TTGTACTGAC AATCTGTGTT TTCCAGGAGT TACGTCAAAC TACCTGTACT GGTTTAAATA 1260 AGTTTACCTT TTCCTCCAGG AAATATAATG ATTTCTGGGA ACATGGGCAT GTATATATAT 1320 ATATGGAGAG AGAATTTTGC ACATATTATA CATATTTTGT GCTAATCTTG TTTTCCTCTT 1380 AGTATTCCTT TGTATAAATT AGTGTTTGTC TAGCATGTTT GTTTAATCCT TTGGGAATTC 55 Seq ID NO: 124 Protein sequence:
Protein Accession #: NP_056970.1 60 MIAISAVSSA LLFSLLCEAS TVVLLNSTDS SPPTNNFTDI EAALKAQLDS ADIPKARRKR 60 YISQNDMIAI LDYHNQVRGK VFPPAANMEY MVWDENLAKS AEAWAATCIW DHGPSYLLRF 120 LGQNLSVRTG RYRSILQLVX PWYDEVKDYA FPYPQDCNPR CYMRCFGPMC THYTQMWAT 180 SNRIGCAIHA CQNMYVWGSY WRRAVYLYCH YAPKGNWIGE AFYKVGYPCS SCPPSYGGSC 240 65 TONLCFPGVT SNYLYWFK Seq ID NO: 125 DNA sequence Nucleie Acid Accession #: NM 001793 70 Coding sequence: 54-2543 (underlined sequences correspond to start and stop codons) 31 41

egad AACACC GROCCEGOCGT COLOGOCAGE GETTCACCCC TETTCTTGCA GCCATTGGGCC 80 TCCCTCGTGG ACCTCTCGCG TCTCTCCTCC TTCTCCAGGT TIGCTGGCTG CAGTGCGCGG 120 CCTCCGAGCC GTGCCGGGGG GTCTTCAGGG AGGCTGAAGT GACCTTGGAG GCGGGAGGCC 180

CGGAGCAGGA GCCCGGCCAG GCGCTGGGGA AAGTATTCAT GGGCTGCCCT GGGCAAGAGC 240

PCT/IIS02/02242 WO 02/059377

MEYNKSHIQG AVHINCADKI SRRRLQQGKI TVLDLISCRE GKDSFKRIFS KEIIVYDENT 240 NEPSRVMPSO PLHIVLESLK REGKEPLVLK GGLSSFKONH ENLCDNSLOL OECREVGGGA 300 SAASSILPOP IPTTPDIENA ELTPILPFLF LGNEODAODL DTMORLNIGY VINVTTHLPL 360 YHYEKGLENY KRLPATDSNK ONLROYFEEA FEFIEEAHOC GKGLLIHCOA GVSRSATIVI 420 AYLMKHTRMT MTDAYKFVKG KRPIISPNLN FMGQLLEFEE DLNNGVTPRI LTPKLMGVET 480

Seq ID NO: 131 DNA sequence

Nucleic Acid Accession #: NM_005409.3 10

Coding sequence: 94-378 (underlined sequences correspond to start and stop codons)

TICCTITICAT GTTCAGCATT TCTACTCCTT CCAAGAAGAG CAGCAAAGCT GAAGTAGCAG 60 15 CAACAGCACC AGCAGCAACA GCAAAAAACA AACATGAGTG TGAAGGGCAT GGCTATAGCC 120
TTGGCTGTGA TATTGTTGC TACAGTTGTT CAAGGCTTCC CCATGTTCAA AAGAGGACGC 180 TGTCTTTGCA TAGGCCCTGG GGTAAAAGCA GTGAAAGTGG CAGATATTGA GAAAGCCTCC 240 ATAATGTACC CAAGTAACAA CTGTGACAAA ATAGAAGTGG TTATTACCCT GAAAGAAAAT 300 20

AGACTITICT ATGGTTTTGT GACTITCAAC TTTTGTACAG TTATGTGAAG GATGAAAGGT 540 25

CATCTATGTG TCGTAAAGCA TTCCTCAAAC ATTTTTTCAT GCAAATACAC ACTTCTTTCC 960 30 CCAAATATCA TGTAGCACAT CAATATGTAG GGAAACATTC TTATGCATCA TTTGGTTTGT 1020 TTTATAACCA ATTCATTAAA TGTAATTCAT AAAATGTACT ATGAAAAAAA TTATACGCTA 1080 TGGGATACTG GCAACAGTGC ACATATTTCA TAACCAAATT AGCAGCACCG GTCTTAATTT 1140

35 TTGTTCATGC CTATATACTG TAAAATTTAG GTATACTCAA GACTAGTTTA AAGAATCAAA 1440

40 Seq ID NO: 132 Protein sequence: Protein Accession #: NP_005400.1

45 MSVKGMAJAL AVILCATVVQ GFPMFKRGRC LCIGPGVKAV KVADIEKASI MYPSNNCDKI 60 EVIITLKENK GORCLNPKSK QARLIIKKVE RKNF

Seq ID NO: 133 DNA sequence

Nucleic Acid Accession # NM_012342 50 Coding sequence: 373-1155 (underlined sequences correspond to start and stop codons)

CTGGCGCGGG CGGGAGCTGC GGCGGATACC CTTGCGTGCT GTGGAGACCC TACTCTCTTC 60 GCTGAGAACG GCCGCTAGCG GGGACTGAAG GCCGGGAGCC CACTCCCGAC CCGGGGCTAG 120 55 CGTGCGTCCC TAGAGTCGAG CGGGGCAAGG GAGCCAGTGG CCGCCGACGG GGGACCGGGA 180 AACTTTICTG GGCTCCTGGA GAGCCCTGTA GCCGCGCTCC ATGCTCCGGC AGCGGCCCGA 240 AACCCAGCCC CGCCGCTGAC GGAGCCCGCC GCTCCGGGCA GGGCCCATGC CCTGCGCGCT 300 CCGGGGGTCG TAGCTGCCGC CGAGCCGGGG CTCCGGAAGC CGGCGGGGGC GCCGCGGCCG 360 60

TOGGGGGGGT CALTIGATIC CAMPACTERS TO TRACETTE AT TOTAGGTGCA GTGGAGCTC 48
TGGGGGCAT CALTIGATIC CACCANAGGT GAAATTCAT TOTGGGTGCA GTGGAGCTC 48
TGGGTGCACT CACCANAGGT GAAATTCGAT GCTACTGTG TGCTGCCAC 48
TGTGTAGCCA CTGGTTATAT GTGTAAATCT GAGCTCACGC COTCETTCT CAGACTTCT
40
GATCCTCAGA ACTCAAATTC CCCACTCACC CATGGGTGC TGGACTCTCT TGCAAGCAC ACAGACATCT GCCAAGCCAA ACAGGCCCGA AACCACTCTG GCACCACCAT ACCCACATTG 660 ACADACATO ACCAMA ACADOCCOM ANCACTOR GENERAL ACCAMA ACADOCCOM ANCACTOR GENERAL ACCAMA ACADOCCOM ANCACTOR GENERAL ACADOCCOM ANCACTOR GENERAL ACADOCCOM ANCACTOR ACADOCCOM ACADOCCO 65

ACCAAGGTGC AGGAGCTGAC TTCTTCCAAA GAGTTGTGGT TCCGGGCAGC GGTCATTGCC 840 GTGCCCATTG CTGGAGGGCT GATTTTAGTG TTGCTTATTA TGTTGGCCCT GAGGATGCTT 900
CGAAGTGAAA ATAAGAGGCT GCAGGATCAG CGGCAACAGA TGCTCTCCCG TTTGCACTAC 960 AGCTTTCACG GACACCATTC CAAAAAGGGG CAGGTTGCAA AGTTAGACTT GGAATGCATG 1020 GTGCCGGTCA GTGGGCACGA GAACTGCTGT CTGACCTGTG ATAAAATGAG ACAAGCAGAC 1080 70

CTCAGCAACC ATAAGATCCT CTCGCTTGTT CACTGGGGCA TGTACAGTGG CCACGGGACA 1140 CTGGAATTCC TATGACGGAG TCTTATCTGA CATACACTTA CTGAACAGCT TGAAGGCCTT 1200 TTGAGTTCTG CTGGACAGGA GCACTTATC TGAAGACAAA CTCATTTAAT CATACTTTTGAG 1260 75 AGACAAAATG ACCTCTGCAA ACAGAATCTT GGATATTTCT TCTGAAGGAT TATTTGCACA 1320 GACTTAAATA CAGTTAAATG TGTTATTTGC TTTTAAAATT ATAAAAAGCA AAGAGAAGAC 1380

TTTGTACACA CTGTCACCAG GGTTATTTGC ATCCAAGGGA GCTGGAATTG AGTACCTAAA 1440

TANACAAAAA TGTGCCCTAT GTAAGCTTCT ACATCTTGAT TTATTGTAAA GATTTAAAAG 1500 AAATATATAT ATTTTGTCTG A

5 Seq ID NO: 134 Protein sequence: Protein Accession #: NP_036474.1

- MDRHSSYIFI WLQLELCAMA VLLTKGBIRC YCDAAHCVAT GYMCKSELSA CFSRLLDPQN 60
 SNSPLTHGCL DSLASTIDIC GAKQARNHSS THIFILECH EDMCNYRCHL DVLSPRGA 120
 SQGMRYQHD GSRNLITK VQ ELTSSKEWF RAAVLVAVIA GGLLVLLIM LALRMILSEN 180
 KRLQDQRQOM LSRLHYSFHG HHSKKGQVAK LDLECMYPVS GHENCCLTCD KMRQADLSND 240
 KLISLYHWOM YSGHGKLEFV
- 15 See ID NO: 135 DNA sequence

Nucleic Acid Accession #: NM_001627.1

Coding sequence: 64-1815 (underlined sequences correspond to start and stop codons)

- 20 | 1 | 21 | 31 | 41 | 5
- CGGGACA-CA CÉCCCTCTA OGGCATGGAC TECCTECAGTG GECCACCAAG AAGGAGGAGG 60
 AATATGGAAT CCAAGGGGC CAGTTCCTGC CGTCTGCTCT TCTGCCTCTT AATCTCCCCC 120
 ACCGTCTTCA GGCCAGGGCC TGGATGGTAT ACTGTAAATT CAGCATATGG AGATACCATT 180
 ACCATACCTT GCCGACCTGG CATACCTCAG AATCCTCATG TAGCAATGG CAAATAGAA 240
 AGGCCCCAATG GCTCCCCCAGT ATTTATTGCTTCAGAATCCT CTACAAAGAA AAGTGTGCAG 300
- TAGGAGGATA TACCAGAATA CAMAGACAGA TIGAACCTTC CAGAAMACTA CACTITTGTT 180
 ACAGTAATIC CAAGGACTAG TOATAGAAAG AGATTTGTT CATOCTAGATA CACTITTGTT 180
 ACGGTGTTG AGGCACCTAC AATAGTCAAG GAGTTGTAACC AACCATCTAA ACCTGAAATT 480
 ACGGTGTTG AGGCACCTAC AATAGTCAAG GTGTTCAAGC AACCATCTAA ACCTGAAATT 480
 GAAGACAGTT ATCCAGATGG CAATAATCACA TOGTTCAAGC AACCAGTAA ACCTGAAATT 480
 GAAGACAGTT ATCCAGATGG CAATAATCACA TOGTTCAAGGA ATGGAAAAG TGCTCACTCC 60
 CTGAAAGGACGGTGTGCTAT AATTTTTAAA AAGGAAATGG ACCAGTGTAAT 760
 CTGAAAGGACGGTGTGCTAT AATTTTTAAA AAGGAAATGG ACCAGTGTCAT TGCACTTAT 760
- CTIGARGAC COSTOCIA ATTITICA ANGURATION CALAGUATOR COLLICITAT 809
 ACCATRACTI CCACCCTGGA GTACAAGACA ACCAAGGCTG ACATACAAAT GCATTCCCC 720
 TGCTCGGTGA CATALTATGG ACCATCTGGC CAGAAAACA TTCATTCTGA ACAGGCAGTA 780
 TTGATATTT ACTTCCTAC CAGACAGAGGTG ACATACAAG TGCTGCCACC AAAAATGCC 840
 ATCAAAGAAG GGGATAACAT CACTCTTAAA TGCTTAGGGA ATGGCAACCC TCCCCCAGAG 900
 GAATTTTTGT TTTACTTACC AGGACAGCCC GAAGGAATAAA ATAGCTACACA 900
- GAATTITTOT TITACTTACC AGGACAGCCE GAAGGATTA GAAGCTCAA TACTTACACA 990
 CTGATGGATE TGAGGGCGAA TGCAACAGGG AGATCACAAGT GTTCCTGAT AGACAAAAA 1020
 AGCATGATTG CTTCAACAGC CATCACAGT CACTATTTGG ATTTGTCCTT AAACCAAAAA 1020
 GGAGAAGTGA CTAGACAGAT TGGTATGTCC CTACCCGTGT CATGCACAAT ATTCTGCTAGC 1140
 AGGAATGCAA CTGTGGTATG GATGAAAGAT AACATCAGG CTTGGATCTAG CCCGTCATTT 1220
 CTGAGTCTCC ATTACTACAGGA TGCTGGAAACTATTCTGCTCGC AAACTGCTCT GCAGGAGGTT 1280
- GAAGGACTIAA AGAAAAGAGA GTCATTGACT CTCATTGTAG AAGGCAAACC TCCAATTAAAA 1200
 ATGACAAGA AAACTGTGATCC CAGTGGACTA TCTAAAACA TAATCTGCCA TGTGGAAGGT 1380
 TITTCCAAAGC CAGCCATTCA GTGGACAATT ACTGGCAGTG GAAGCGTCAT AAACCAAACA 1400
 45
 GAGAATCTC CTTATATTAAT GGCAGGATT ATTAATGAAAA TTATCATTTC CCCTGAAGAG 1500
 AATGTTACAT TAACTTGCAC AGCAGAAAAC CAACTGGAGA GAACAGTAAA CTCCTTGAAT 1500
 GTCTCTGCTA TAAGTATTCA CGAACAGGAT GAGAGACG GAATATGATGA TGAACAGA 1600
- GAAAAGGTGA ATGACCAGGC AAAACTAATT GTGGGAATCG TIGTTGGTGT CTCCTTGCT 1889
 GCCCTTGTTG CTGGTGTGCT CTACTGGTGT TACATGAGA AGTCAAAACA GTGACTAAAA 1740
 CATGTAAACA AGGACCTCGG TAATATGGAA GAAAACAAATA AGTTAGAAGA AAACAATCAC 1880
 AAACTGAAG CCTAAGAGAGAGA AAACTGTCCA GAGTTAGAAAC CAATGAAGC 1860
 AAATGTAGAGC TGAAGTGGA TTGTATTTAA GACATTAAACA AAGACATTGA CAGGAATTCA 1920
 TGGTCAAGT ATTAAGCAGT TCATTCTACC AAGGTCTACA AGGACTTTGA GAGATTATCT 1980
- CONTACTA AND CONTACT TO A CONTACT TO A CONTACT AND CON
- AAAGACATAA AACAGAATT

 Seq ID NO: 136 Protein sequence:
 Protein Accession #: NP_001618.1
 - Protein Accession #: NP_001616.1
- 70
 MESKGASSCR LLECLLISAT VFRPGLGWYT VNSAYGDTII IPCRLDVPQN LMFGKWKYEK 69 PDGSPVFIAF RSSTKKSVQY DDVPFYXDRI, NLSBNYTLS I SNARISDEKR FVCMLVTEUN 120 VFEAFTIIKY FKÇASFEYIS VSALFLETEG LKKLGDCISS BYPDGNITY WRIGKVLHPL 180 EGAVVIIFKK EMPDYTQLYT MTSTLEYKIT KADIGMPFTC SVTYVOSEG KTHISEQAVE 240 DYYPTFEQYT JGVLPRKAJA KEGONTILKCL GLOMGPPPEE FFLYFLOGPE GIRSSNYTTI. 300
- 75

 MDYPTFGQVT IQVLPPKNAI KEGDNITLKC LGNGNPPPEB FLFYLPGQFE GRSSNTYTI. 300

 MDVRNATGD YKCSLIDKKS MIASTAITUY YLJDLSLNPSG EVTRAGIODAL PVSCTISASR 360

 NATVVWMKDN IRLRSSPSPS SLHYQDAGNY VCETALQBVB GILKKRESLTI. IVEGKPQUKM 420

 KKKTPSGLS KTIGHVEGF PKPA GOVOWTT GGSSVINOTE ESPYINGRYY SKUIISPEBE 480

VTLTCTAENQ LERTVNSLNV SAISIPEHDE ADEISDENRE KVNDQAKLIV GIVVGLLLAA 540 LVAGVVYWLY MKKSKTASKH VNKDLGNMEE NKKLEENNHK TEA

Seq ID NO: 137 DNA sequence
Nucleic Acid Accession #: XM_030559
Coding sequence: 1-119 (underlined sequences correspond to start and stop codons)

ATAGAAGTIT CAGGGAAGAG CCTTGATCAA GTAACAGACA TQATGATTGC AAATAGCCGT 720
ACCCTATCA TAACAGTGAG ACCCGGCAAC CAGAGGAATA ATGTGTGAG GAACAGTGCG 780
ACTCTGGCA GTTCCGGTCA GTCTACTGAT AACAGCCTTC TTGGCTACCC ACAGCAGATT 840
SACCACAGCT TTGAGCACAG AGATGAAGAC AGCCAAGAAGA ATGACATATT ACATGTAAGAC 900
AATGAGGTCC CACAGCAGAT TCCAAAAGCT GTTCCTAATA CTGAGAGCCT GAGAGATCATTA 960
ACCCAGAGT ACCCTT TAACTCTCGACAGAATAGCT TTGACTCTCT TAATGAGTTGT 1070

Seq ID NO: 138 Protein sequence: Protein Accession #: XP 030559

40 NLITYRAN (RANNVENRS TASSEGGTD NSLLGYPQG EPSFEPEDE DEEDDIIED 300 NGYPQGYKA YPNTESLESL TQIELSFESG QNGFIPSNEV SLAAIASSSN TEFETHAPDQ 360 KLLEEDGIII TL.

409

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All

publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

1

2

1 1. A method of detecting a breast cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-25.

- The method of claim 1, wherein the biological sample comprises isolated nucleic acids.
- 1 3. The method of claim 2, wherein the nucleic acids are mRNA.
- 1 4. The method of claim 2, further comprising the step of amplifying 2 nucleic acids before the step of contacting the biological sample with the polynucleotide.
- 1 5. The method of claim 1, wherein the polynucleotide comprises a 2 sequence as shown in Tables 1-25.
- 1 6. The method of claim 1, wherein the polynucleotide is immobilized on 2 a solid surface.
- 1 7. The method of claim 1, wherein the patient is undergoing a therapeutic 2 regimen to treat breast cancer.
- 1 8. The method of claim 1, wherein the patient is suspected of having 2 breast cancer.
- 9. An isolated nucleic acid molecule consisting of a polynucleotide
 sequence as shown in Tables 1-25.
- 1 10. The nucleic acid molecule of claim 9, which is labeled.
- 1 11. An expression vector comprising the nucleic acid of claim 9.
- 1 12. A host cell comprising the expression vector of claim 11.

l 2			An isolated polypeptide which is encoded by a nucleic acid molecule sequence as shown in Tables 1-25.		
ı	1	4.	An antibody that specifically binds a polypeptide of claim 13.		
1	1	5.	The antibody of claim 14, further conjugated to an effector component		
1	1 fluorescent label		The antibody of claim 15, wherein the effector component is a		
1 2		7.	The antibody of claim 15, wherein the effector component is a		
1	-	•	The antibody of claim 15, which is an antibody fragment.		
I			The antibody of claim 15, which is a humanized antibody		
l			A method of detecting a breast cancer cell in a biological sample from		
2	a patient, the me	thod o	comprising contacting the biological sample with an antibody of claim		
l 2	2 an effector comp		The method of claim 20, wherein the antibody is further conjugated to		
l 2	2 fluorescent label		The method of claim 21, wherein the effector component is a		
l			A method for identifying a compound that modulates a breast cancer-		
2	associated polypeptide, the method comprising the steps of:				
3	(i) contacting the compound with a breast cancer-associated polypeptide, the				
4	polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least				
5	80% identical to a sequence as shown in Tables 1-25; and (ii) determining the functional effect of the compound upon the polypeptide.				
	2	4	A drug corresping agent comprising the stone of		

2 (i) administering a test compound to a mammal having breast cancer or a cell
3 isolated therefrom;
4 (ii) comparing the level of gene expression of a polynucleotide that selectively
5 hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-25 in a
6 treated cell or mammal with the level of gene expression of the polynucleotide in a control
7 cell or mammal, wherein a test compound that modulates the level of expression of the
8 polynucleotide is a candidate for the treatment of breast cancer.

(19) World Intellectual Property Organization International Bureau

I INTER BUNGUN IN BUNG KERUTUK BENG KAN INTER KAN DERKERAN KAN INTER BUNG KAN INTER BUNG BUNG BUNG BUNG BUNG B

(43) International Publication Date 1 August 2002 (01.08.2002)

(10) International Publication Number

(51) International Patent Classification7: G01N 33/48, C07K 16/18, C12N 15/12

C07K 14/47,

WO 2002/059377 A3

(21) International Application Number:

PCT/US2002/002242

(22) International Filing Date: 24 January 2002 (24.01.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/263.965 60/265,928 09/829.472

60/282.698

60/288.590

60/294,443

24 January 2001 (24.01.2001) US 2 February 2001 (02.02.2001) US 9 April 2001 (09.04.2001) US 9 April 2001 (09.04.2001) US 4 May 2001 (04.05.2001) US 29 May 2001 (29.05.2001) 110

- (71) Applicant: PROTEIN DESIGN LABS [US/US]: 225A Gateway Boulevard, South San Francisco, CA 94080-7019
- (72) Inventors: MACK, David, H.; 2076 Monterey Avenue. Menlo Park, CA 94025 (US). GISH, Kurt, C.; 37 Artuna Avenue, Piedmont, CA 94611 (US). AFAR, Daniel; 435 Visitacion Avenue, Brisbane, CA 94005 (US).

- (74) Agent: HALLUIN, Albert, P.: Howrey Simon Arnold & White LLP, 301 Ravenswood Avenue, Box 34, Mento Park. CA 94025 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU. CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC. LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG. SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 1 April 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF DIAGNOSIS OF BREAST CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF BREAST CANCER

(57) Abstract: Described herein are genes whose expression are up-regulated or down-regulated in breast cancer. Related methods and compositions that can be used for diagnosis and treatment of breast cancer are disclosed. Also described herein are methods that can be used to identify modulators of breast cancer.

Interrenal Application No

	INTERNATIONAL SEARCH REP	ORT	PCT/US 02	/02242		
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER CO7K14/47 GO1N33/48 CO7K16/	18 C12N15/	12			
According to	According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS	SEARCHED					
Minimum do IPC 7	cumentation searched (classification system followed by classificat CO7K	ion symbols)				
Documentat	ion searched other then minimum documentation to the extent that	such documents are incl	uded in the fields se	earched		
Electronic date base consulted during the international search (name of data base and, where practical search terms used) EPO-Internal, Sequence Search, WPI Data, PAJ, BIOSIS						
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT					
Cetegory *	Citation of document, with indication, where appropriate, of the re		Relevant to claim No.			
x	DATABASE SWISSPROT 'Online! 1 May 1992 (1992-05-01), "ODPA human" XPOO2254869 accession no. EBI Database accession no. PO8559 abstract			1-19,23, 24		
х	WO 99/33869 A (CORIXA CORP) 8 July 1999 (1999-07-08) cited in the application the whole document			1-24		
x	WO 98/45328 A (CORIXA CORP) 15 October 1998 (1998-10-15) cited in the application the whole document			1-24		
		-/				
X Further documents are listed in the continuation of box C. X Patent terrily members are listed in ennex.						
"A" docume consid "E" earlier of lilling d "L" docume which citation "O" docume other r "P" docume later th	nt which may throw doubts on priority claim(s) or is cled to establish the publication date of another or other special reason (as specified) int reterring to an oral disclosure, use, exhibition or mones. In published prior to the international filling date but an the priority date claimed	The ter document published effect his International tiling data or printly date and not to continue with the application but clied to undorstand the principle or theory underlying the hivestino. X document of positicists reterence; the claimed mentions X document of positicists reterence; the claimed mention is reviewed in the continue to the continue to the continue to the continue to the continue to the continue to the continue to the continue to the continue to the continue to				
	actual completion of the international search 8 September 2003		0 9, 01, 04	arch report		
	nalling address of the ISA European Patent Ciffice, P.B. 5818 Patentlaan 2 NL - 2200 HV Rijswik Tet (-31-70) 340-2040, Tx. 31 651 epo nl, Fax: (431-70) 340-3016	Authorized officer Stolz,				

Form PCT/ISA/210 (second shoot) (July 1892)

Internal Application No
PCT/US 02/02242

	lation) DOCUMENTS CONSIDERED TO BE RELEVANT	
egory °	Ctation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	WO 00/22130 A (CHIRON CORP) 20 April 2000 (2000-04-20) cited in the application the whole document	1-24
	WATSON M A ET AL: "ISOLATION OF DIFFERENTIALLY EXPRESSED SEQUENCE TAGS FROM HUMAN BREAST CANCER" CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, BALTIMORE, MD, US, vol. 54, no. 17, 1 September 1994 (1994-09-01), pages 4598-4602, XP000576043 ISSN: 0008-5472 the whole document	1-24
	BURGER A M ET AL: "Detection of novel genes that are up-regulated (Dil2) or down-regulated (TiAl2) with disease progression in breast cancer" MEDLINE, XP002217698 the whole document	1-24
•	MARTIN K J ET AL: "LIMKING GENE EXPRESSION PATTERNS TO THERAPEUTIC GROUPS IN BREAST CANCER" CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, BALTIMORE, MD, US, vol. 60, no. 8, 15 April 2000 (2000-04-15), pages 2232-2238, XP001026395 ISSN: 0008-5472 the whole document	1-24
C	BERTUCCI F ET AL: "Gene expression profiling of primary breast carcinomas using arrays of cancidate genes" HUMAN MOLECULAR GENETICS, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 9, no. 20, 2000, pages 2981-2991, XP002225994 ISSN: 0964-6906 the whole document	1-24
		-

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international Search Report is restricted to the Invention first mentioned in the claims; It is covered by claims Nos.: see PCT/ISA/210 annex
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1

claims 1-24 (partially):

as far as they relate to the first gene of Table 1, pyruvate dehydrogenase E1 subunit alpha, and its uses

Inventions 2 - 4800

claims 1-24 (partially):

as far as they relate to any of the about 4800 genes listed in Tables 1--25

BNSDOCID: <WO_____02059377A3_I_>

Interna	Application No
PCT/US	02/02242

		rc1/U3 1	02/02242
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9933869	A 08-07-1999	US 6379951 B1 US 6365348 B1 AU 2010699 A CA 2316397 A1 EP 1042360 A2 JP 2002507387 T W0 9933869 A2 US 6410507 B1 US 6432707 B1 US 6432707 B1 US 0501018058 A1	30-04-2002 02-04-2002 19-07-1999 08-07-1999 11-10-2000 12-03-2002 08-07-1999 25-06-2002 13-08-2002
		ZA 9811800 A	30-08-2001 23-06-1999
WO 9845328	A 15-10-1998	US 6225054 B1 AU 6956098 A BR 9808509 A EP 1127893 A2 EP 0975666 A2 JP 2001521384 T NO 994932 A PL 336349 A1 TR 9903154 T2 W0 9845328 A2 US 2003125536 A1 US 6586570 B1 US 2002165371 A1 ZA 9802968 A HU 0001270 A2 US 6344550 B1	01-05-2001 30-10-1998 18-09-2001 29-08-2001 02-02-2000 06-11-2001 07-12-1999 19-06-2000 21-08-2000 15-10-1998 03-07-2003 01-07-2003 15-08-2002 06-06-2002 07-11-2002 27-10-1998 28-07-2000 05-02-2002
WO 0022130	A 20-04-2000	AU 1316200 A EP 1121437 A2 JP 2002527066 T WO 0022130 A2 US 6468790 B1 US 2002009739 A1	01-05-2000 08-08-2001 27-08-2002 20-04-2000 22-10-2002 24-01-2002

Form PCT/ISA/210 (patent family annex) (July 1992)