KRYPTOTEKNIK

den 15 december 1997 klockan 14^{00} – 19^{00} .

Institutionen för informationsteknologi Lunds universitet

- Tillåtna hjälpmedel: Formelblad, räknedosa.
- Skriv namn och årskurs överst på varje papper.
- Varje lösning skall skrivas på separat papper.
- Lösningarna måste tydligt dokumentera tillvägagångssättet.
- Lösningarna skall följa de metoder som kursen innehåller.
- Varje lösningssteg skall motiveras.
- Uppgifterna är inte numrerade efter svårighetsgrad.
- Vi kommer att anslå tentamensresultatet på vår www-sida. Endast namn och betyg på de godkända anges. Om du inte vill att ditt namn publiceras på detta sätt vill vi att du skriftligen meddelar institutionen detta.

Lycka till!

Problem 1:

A simple cryptosystem is constructed as follows. The plaintext $M = (M_0 M_1 \cdots M_6)$ is considered as an element in \mathbb{F}_{2^7} , $M_i \in \mathbb{F}_2$, such that

$$M = M_0 + M_1 \alpha + M_2 \alpha^2 + \dots + M_6 \alpha^6,$$

where $\pi(\alpha) = 0$ and $\pi(x) = x^7 + x^3 + 1$. The key $K \in \mathbb{F}_{2^7}$ is similarly written

$$K = K_0 + K_1 \alpha + \dots + K_6 \alpha^6,$$

and chosen such that $K \neq 0$. Encryption is done by multiplying in \mathbb{F}_{2^7} , i.e.,

$$C = K \cdot M$$
.

- a) Decrypt the ciphertext C = (1000001) using the key K = (1110000).
- b) Explain why the key must be chosen such that $K \neq 0$.

Problem 2:

Consider the binary sequence s generated in the above figure, where \otimes denotes ordinary multiplication in \mathbb{F}_2 . The initial states are the all one states, i.e., < 111 > and < 11 >, respectively.

Find the shortest LFSR that generates the sequence s. Motivate your answer!

(10 points)

Problem 3:

In this problem you will compare an RSA-system with a substitution cipher.

The cryptosystems should be used to encode a source S according to the figure below.

The source generates uniformly distributed and independent random symbols from an alphabet of size 30. The map-function takes 3 source symbols and maps them to a numerical value in the range [0, 46917]. Some values will never appear in the ciphertext.

The RSA-system has public parameters (n, e) = (46918, 20107). The substitution cipher has as many different keys as there are possible values of e when n = 46918.

- a) Calculate $H(S_i)$ and $H(M_i)$.
- b) Find the unicity distance ("entydighetslängden") for the substitution cipher.
- c) Find the unicity distance for the RSA-system.
- d) Explain why the answer in c) is less than in b), and what makes RSA (in general) safe.
- e) You observe $C_j = 10164$ in the RSA-system. Find the message M_j .

Hint: $\phi(23458) = 11376$.

(10 points)

Problem 4:

a) Construct a cryptosystem for authentication with three different plaintexts, i.e., $|\mathcal{M}| = 3$, such that

$$P_I \le 1/3$$
, and $P_S \le 1/3$.

(This will require $|\mathcal{C}| \ge 9$ and $|\mathcal{K}| \ge 9$.)

b) Construct a secret sharing scheme over \mathbb{F}_5 for the access structure

$$\Gamma_0 = \{ \{P_1, P_2, P_3\}, \{P_1, P_2, P_4\}, \{P_3, P_4\}, \{P_5\} \}.$$

You will be rewarded according to the following. Any secret sharing scheme for Γ_0 gives 1 point. If the scheme is *perfect*, you receive 3 points and if the scheme is *ideal*, you receive 5 points.

(10 points)

Problem 5:

This problem is about "Toy-DES", a DES-like block cipher. You find a description of Toy-DES in an appendix.

- a) From a friend you get the encrypted message 0010 1110. Your key is 1000 0000. Find the message that your friend is sending to you.
- **b)** You have found out the following pairs of plaintext and ciphertext from Toy-DES with unknown key:

Plaintext	Ciphertext
0000 0000	0011 0010
0010 0000	0010 1110

Find the input x-or and output x-or for the S-box that will help you in finding the key.

- c) Find all possible keys obtained from the input x-or and output x-or in b).
- **d)** Find the key. The parity bit is 0.

For the S-Box we have for some input/output x-or:

Input x-or	Output x-or	Possible S-Box inputs
110011	0011	{000100, 110111}
110011	0010	$\{000110, 001000, 010011, 100000, 110101, 111011\}$

(10 points)

Description of "Toy-DES": "Toy-DES" has an 8-bit input x_0 , an 8-bit output, and an 8-bit key K, where the last bit is a parity bit (odd parity). The block cipher has 3 rounds as follows.

- 1. The plaintext x_0 is divided in two parts, $x_0 = L_0 R_0$, where L_0 is the first 4 (leftmost) bits and R_0 is the 4 last (rightmost) bits.
- 2. A certain function with start value x_0 is iterated 3 times. If $x_i = L_i R_i$, we compute $L_i R_i$ according to the following iteration:

$$L_i = R_{i-1},$$

 $R_i = L_{i-1} \oplus f(R_{i-1}, K_i),$

where \oplus denotes bitwise addition of the two bitstrings.

3. Finally, the ciphertext is (R_3L_3) . Note the reversed order of L_3 and R_3 .

We now describe the function f. If we write $f(R_x, K_x)$, then R_x is of length 4 and K_x is of length 6. The function $f(R_x, K_x)$ returns a bitstring of length 4, which is obtained by executing the following steps:

- 1. R_x is expanded to a bitstring of length 6 using a fixed expansion function E.
- 2. Compute $B = E(R_x) \oplus K_x$.
- 3. The next step uses an S-box S, which is a fixed 4×16 array whose entries are from the integers 0-15. Given a 6-bit string $B=b_1b_2b_3b_4b_5b_6$, we compute S(B) as follows. The two bits b_1b_6 determine the binary representation of a row r of S, $0 \le r \le 3$, and the four bits $b_2b_3b_4b_5$ determine the binary representation of a column c of S, $0 \le c \le 15$. Then S(B) is defined to be the entry in row r and column c, written in a binary representation as a 4-bit string. In this fashion, we compute C = S(B).
- 4. The bitstring C obtained from the previous step is defined to be $f(R_x, K_x)$.

The expansion function E is specified by the following table:

$$E = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 & 2 \end{bmatrix}$$

The S-box is as follows:

The partial keys K_i are obtained from K by selecting the following bits:

Note: Compared with original DES, the IP and P permutations have been removed.

i	$E_i = E(R_{i-1})$	K_i	$B_i = E_i \oplus K_i$	$C_i = S(B_i)$	L_i	R_i
0	-	-	-	-		
1						
2						
3						
Сс	Codeword:					

i	$E_i = E(R_{i-1})$	K_i	$B_i = E_i \oplus K_i$	$C_i = S(B_i)$	L_i	R_i
0	-	1	-	-		
1						
2						
3						
Сс	Codeword:					

i	$E_i = E(R_{i-1})$	K_i	$B_i = E_i \oplus K_i$	$C_i = S(B_i)$	L_i	R_i
0	1	1	1	-		
1						
2						
3						
Сс	Codeword:					

d	$C_1(z)$	C(z)	L	Skiftregister	$C_0(z)$	d_0	e	N
	_	1	0		1	1	1	0