Lesson 18: Inference for Two Proportions

Preparation

Solutions

Please note that the steps show rounded numbers, but that the final answers to the problems are calculated without rounding.

Problem	Part	Solution
1	_	$H_0: p_1 = p_2$
2	-	$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\hat{p}(1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$
		$\hat{p}_1 = \text{Sample proportion for group 1}$
		$\hat{p}_2 = \text{Sample proportion for group 2}$
		$\hat{p} = \text{Overall sample proportion}$
		$n_1 = \text{Sample size for group 1}$
		$n_2 = \text{Sample size for group } 2$
3	-	$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$
		$\hat{p}_1 = \text{Sample proportion for group 1}$
		$\hat{p}_2 = \text{Sample proportion for group } 2$
		$n_1 = \text{Sample size for group } 1$
		$n_2 = \text{Sample size for group } 2$
		$z^* = z$ value for a confidence interval
4	A	296 * 0.213 = 63 > 10
		251 * 0.108 = 27 > 10
		296(1 - 0.213) = 233 > 10
		251(1-0.108) = 224 > 10
4	В	$H_0: p_1 = p_2$
		$H_0: p_1 \neq p_2$
4	\mathbf{C}	z = 3.309
4	D	P-value = 0.001

Normal Probability Applet

4	E	
		Students should include a sketch of normal distribution curve with both to the left
		and right of the two z-scores shaded.
	_	
4	F	reject the null hypothesis
4	G	We have sufficient evidence to say that there is a difference in the proportions of
		men who use labels and women who use labels.
5	-	(0.045, 0.165)
6	-	We are 95% confident that the true difference in the proportions of men being label
		users and women being label users is between 0.045 and 0.165.