

<u> Análisis IV – Guía de problemas Nº1</u> **Funciones complejas** Límite, continuidad y derivadas

- Realizar un programa en Python que calcule las raíces enésimas de la unidad, muestre sus valores en forma cartesiana y polar, por último, grafique las soluciones en el plano complejo. Modificar el código para calcular la raíz enésima y graficarla de cualquier número complejo
- 2) Determinar la región del espacio y graficarla, dada por las siguientes relaciones
 - a) $|z + 1 5i| \le \frac{3}{2}$ b) $\pi \le |z 4 + 2i| \le 3\pi$ c) $|arg(z)| \le \frac{\pi}{4}$ d) $|z i| \le |z + i|$
- Calcular para las siguientes f(z) y graficar como superficies de igual valor (curvas de nivel) en el plano complejo, las correspondientes parte real y parte imaginaria = constante en un gráfico y en otro la del módulo de f(z), con

a)
$$f(z) = z^2$$
 b) $f(z) = \frac{1}{z}$ c) $f(z) = z^4$

- Determine si las siguientes funciones son analíticas y de ser así en que región del plano complejo lo son.
 - a)
 - b) $f(z) = e^{-2x}(\cos(2y) i \operatorname{sen}(2y))$ c) $f(z) = \frac{1}{(z-z^5)}$ d) $f(z) = \frac{i}{z^8}$

 - $f(z) = \cos(x) \cosh(y) i \operatorname{sen}(x) \operatorname{senh}(y)$
- En el ejercicio anterior, dada z = x + i y, encontrar las funciones f(z) de los ejercicios b) y e)
- ¿Cuáles de las siguientes funciones son armónicas (satisfacen la ecuación de Laplace)? En caso afirmativo hallar la armónica conjugada y la función analítica cuya parte real e imaginaria correspondan a estas funciones armónicas y expresar la misma usando la variable compleja z
 - $u(x,y) = x^2 + y^2$ a)
 - b) u(x,y) = xy
 - $u(x,y) = sen(x)\cosh(y)$
 - $u(x,y) = x^3 3xy^2$

e)
$$u(x, y) = \frac{x}{x^2 + y^2}$$

f)
$$u(x,y) = e^{xy}\cos(\frac{x^2-y^2}{2})$$

g)
$$v(x, y) = (2x + 1)y^{2}$$

h)
$$v(x,y) = e^x sen(2y)$$

Escriba un programa en Python para graficar líneas equipotenciales para una 7) función armónica u(x, y) y su armónica conjugada v(x, y) en el mismo gráfico.

a)
$$u(x,y) = x^2 - y^2$$
; $v(x,y) = 2xy$; de $f(z) = z^2$

a)
$$u(x,y) = x^2 - y^2$$
; $v(x,y) = 2xy$; $de \ f(z) = z^2$
b) $u(x,y) = x^3 - 3xy^2$; $v(x,y) = 3x^2y - y^3$; $de \ f(z) = z^3$
c) $u(x,y) = e^x \cos(y)$; $v(x,y) = e^x \sin(y)$; $de \ f(z) = e^z$

c)
$$u(x, y) = e^x \cos(y)$$
; $v(x, y) = e^x \sin(y)$; $de^x = f(z) = e^x$