SISTEMAS OPERACIONAIS

AULA 01

Professor: ADRIANO DOIMO

E-Mail: <u>adriano.doimo@etec.sp.gov.br</u>

SISTEMA OPERACIONAL

Sistema Computacional

hardware + software

- » Tipos de Software:
 - Programas do sistema: gerenciam a operação do computador
 - Programas de aplicação: programas de usuário
- » Sistema Operacional: principal programa do sistema, que controla todos os recursos do computador (dispositivos físicos e funções de software).

SISTEMA OPERACIONAL

- "É um programa de controle do computador. O Sistema Operacional é responsável por alocar recursos de hardware e escalonar tarefas. Ele também deve prover uma interface para o usuário - ele fornece ao usuário uma maneira de acesso aos recursos do computador." Sobell.
- "Um Sistema Operacional pode ser definido como um gerenciador dos recursos que compõem o computador (processador, memória, I/O, arquivos, etc). Os problemas centrais que o Sistema Operacional deve resolver são o compartilhamento ordenado, a proteção dos recursos a serem usados pelas aplicações do usuário e o interfaceamento entre este e a máquina." Stemmer.

VISÃO GERAL S.O.

Fig. 1.1 Visão do sistema operacional.

MS-Windows: Microsoft

MS-DOS: Microsoft

Linux: Mandriva / Red Hat / Suse / Debian

BeOS: Be Incorporate

UNIX: IBM / HP / OpenBSD / FreeBSD

OS2: IBM

MacOS: Apple Computer

MS-Windows

MS-DOS

```
19/11/2007 13:10
                     <DIR>
                                     Papirus
20/12/2007
           21:45
                     <DIR>
                                     Pictures
30/11/2007
           12:28
                     <DIR>
                                     Saved Games
26/11/2007
           12:59
                     <DIR>
                                     Searches
           09:05
17/11/2007
                                  14 temp.bat
17/11/2007
                     <DIR>
          08:12
                                     Videos
13/12/2007
           20:59
                     <DIR>
                                     workspace
                                   2.617 bytes
               2 File(s)
              21 Dir(s) 21.314.351.104 bytes free
C:\USERS\PAULO>dir /w
 Volume in drive C is ACER
 Volume Serial Number is OCAO-4AB3
 Directory of C:\Users\Paulo
              [...]
                             [.ireport]
                                           [..jude]
                                                          [Arguivos]
[Contacts]
              [Desktop]
                             [Documents]
                                           [Downloads]
                                                          [FAC]
[Favorites]
              [flexdock]
                             [j2mewtk]
                                           jude . log
                                                          [Links]
                                           [Saved Games] [Searches]
[Music]
                             [Pictures]
              [Papirus]
temp.bat
              [Videos]
                             [workspace]
               2 File(s)
                                   2.617 bytes
              21 Dir(s)
                         21.314.351.104 bytes free
C:\USERS\PAULO>_
```

LINUX

UNIX

MacOS

OS₂

ENTÃO... (ANTES e DEPOIS)

Fig. 1.2 Visão do computador pelo usuário.

SERVIÇOS OFERECIDOS

- 1) meios para que um programa seja carregado em memória e executado.
- 2) sistema de arquivos, permitindo criar, ler, escrever e destruir arquivos.
- 3) interface de acesso aos periféricos (impressoras, fitas, discos, outros).
- 4) mecanismos de monitoração de recursos, capazes de identificar possíveis gargalos no sistema.
- 5) meios para armazenar/manter o estado do sistema.
- mecanismos de compartilhamento de hardware por usuários => necessidade de algum tipo de proteção.

MÁQUINA DE CAMADAS

Fig. 1.3 Máquinas de camadas.

VISÃO GERAL DOS SISTEMAS OPERACIONAIS

VISÃO GERAL

- A visão geral divide-se em 03 partes:
 - » Componentes do Software,
 - Componentes do Hardware e
 - » Sistema operacional.
- O sistema Operacional tem inicialmente a seguinte estrutura: Interface de comandos do usuário, gerenciador de unidade de processamento (processador e processo), gerenciador de dispositivos, gerenciador de gerenciador de memória e gerenciador de arquivo. 16

VISÃO GERAL

Até 1975, os computadores eram classificados por sua capacidade de memória e preço, um Mainframe era uma máquina grande em tamanho e capacidade de memória, o IBM 360, que surgiu em 1964, é o exemplo clássico de um Mainframe antigo. O modelo 30 do IBM 360, o de menor tamanho da família 360 (Prasad, 1989), precisava de uma sala de aproximadamente de 6 m² com refrigeração de ar para alojar a CPU, o console do operador, uma impressora, um leitor de cartões e uma máquina de perfuração, a CPU tinha 1,5 m de altura e 2 m de largura, com memória de 64K e vendido a US\$ 200.000,00 em 1964 e o sistema operacional usado era o OS/390 da IBM.

PRIMEIRA FASE (1940 - 1955)

 Não existia ainda o conceito de Sistema Operacional, somente profissionais trabalhando em aplicações matemáticas, científicas ou militares usavam esses computadores.

ENIAC

SEGUNDA FASE (1955 - 1965)

- Computadores desenvolvidos para atender as empresas.
- Criação do Transistor e das Memórias Magnéticas
- Surgimento das primeiras linguagens de programação. (ASSEMBLY e FORTRAN).
- Surgem os primeiros Sistemas Operacionais
- Operações Periféricas Simultânea On-Line, (SPOOL).

TERCEIRA FASE (1966 - 1980)

- Surgimento dos
 Circuitos Integrados,
 aumento do poder de
 processamento e
 diminuição no
 tamanho dos
 equipamentos;
- A IBM lança a Série
 360 e surge o Sistema
 Operacional OS/390.
- Lançamento da linha PDP-8 da DEC

TERCEIRA FASE (1966 - 1980)

- Surge nessa época a técnica de Multiprogramação, que é dividida em duas formas.
 - » Multiprogramação Passiva e Ativa.
- Substituição das fitas por discos no processo de submissão dos programas - Spooling.
- Limitava-se na comunicação com o usuário.
- Surge então, terminais de vídeo e teclado.
 Chamado de Interação On-line.
- Surge o Sistema Operacional UNIX (1969), concebido inicialmente em um minicomputador.
- A partir dessa fase surgem os microcomputadores.

QUARTA FASE (1981 - 1990)

- Surgimento do PC (Personal Computer) do Sistema Operacional DOS (Disk Operation System).
- Sistemas Multiusuários, UNIX e o VMS (Virtual Memory System).
- Multitarefa.
- Sistema Operacional de Rede e Distribuídos

EVOLUÇÃO DOS COMPUTADORES e SISTEMAS **OPERACIONAIS**

(POR DÉCADA)

- Máquinas criadas para fins militares;
- Surgimento dos primeiros computadores eletromecânicos (calculadoras);
- Formado por milhares de válvulas;
- Criação da máquina Colossus por Alan Turin para decifrar as mensagens alemãs geradas pela máquina conhecida com Enigma.

Criação do primeiro computador eletromecânico em 1944 chamado de MARK I pelo professor Howard Aiken - Universidade de Harvard.

 De 1946 a 1955, criação do primeiro computador digital. O ENIAC (Electronic Numerical Integrator And Calculator) tinha 17 mil válvulas, 10 mil capacitores, 70 mil resistores e pesava 30t.

Em 1949, o EDSAC (Electronic Delay Storage Automatic Calculator) foi o primeiro computador a implementar o conceito de "programa armazenado".

- Outros computadores criados no mesmo conceito do EDSAC:
 - » EDVAC
 - » Manchester Mark I
 - » ORDVAC
 - » ELLIAC entre outros.
- Todos utilizados em ambientes universitários e órgãos militares.
- Nesta época os computadores ainda não tinham uma interface com os usuários.

- Surgimento dos transistores e da memória magnética.
- Aumento de investimento por empresas como:
 - » IBM
 - » RCA
 - » Burroughs
- Em 1951 o MIT (Massachusetts Institute of Tecnology) colocou em operação o que é considerado o primeiro computador voltado para o processamento em tempo real.

Surgiu em 1953 (IBM) do primeiro sistema operacional chamado de monitor devido a sua simplicidade para ser utilizado no computador IBM 701.

DECADA DE 50

- Criação das primeiras linguagens de programação de alto nível como FORTRAN, ALGOL e COBOL.
- Os SO's também melhoraram com a implementação de um conjunto de rotinas para operações de entrada/saída (IOCS -Input/Output Control System).
- No final da década de 50, foi criado o SO Atlas pela Universidade de Manchester que introduziu o conceito de memória hierarquizada (memória virtual). 31

Surgimento dos circuitos integrados.

- Surgimento de conceitos como:
 - » Multiprogramação
 - » Multiprocessamento
 - » Time-sharing
 - » Memória Virtual

 Lançamento do IBM/360 em 1964 que causou uma revolução na indústria de informática.

- O conceito de time-sharing, implementado no OS/360 permitia que cada programa executado utilizasse o processador por um pequeno tempo de execução.
- Implementação de novos dispositivos de entrada/saída como terminais de vídeo e teclado o que permitia uma maior interação entre o usuário com a aplicação (sistema on-line).

 Em 1965, a Digital Equipaments lançou o PDP-8, considerado como a primeira linha de computadores de pequeno porte e baixo custo.

 Em 1969, Ken Thompson, criou o sistema operacional conhecido com UNIX para um PDP-7.

Ken Thompson & Dennis Ritchie

- Surgimento do LSI (Large Scale Integration) e do VLSI (Very Large Scale Integration) o que permitiu criar computadores menores e mais baratos.
- Em 1970 a Digital lança o PDP-11 e depois o VAX/VMS (Virtual Memory System) de 32 bits.

- Em 1971 a Intel Corp lançou o seu primeiro microprocessador, o Intel 4004.
- Em 1974 a Intel Corp lançou o microprocessador 8080.
- Em 1976, Steve Jobs e Steve Wozniak produzem o Apple II de 8 bits.
- O CP/M (Control Program Monitor) da Digital Research foi o sistema operacional de maior destaque na época.
- Implementação do conceito de multiprocessamento o que possibilitou a execução de mais de um programa simultaneamente ou até mesmo em vários processadores.

 Em 1976 o Cray-1 é lançado contendo 200 mil circuitos integrados e capaz de executar 100 milhões de operações de ponto flutuante por segundo (100 MFLOPS).

- Surgimento das WANs e LANs.
- Criação da Linguagem Pascal, 1971, por Niklaus Wirth e da Linguagem C, em 1975, por Dennis Ritchie e Ken Thompson.

- A IBM entra no mercado de microcomputadores com o IBM PC (Personal Computer). O que faz surgir o conceito de computadores pessoais.
- O IBM PC utilizava o processador 8088 de 16 bits e o sistema operacional DOS (Disk Operation System) da Microsoft.
- O conceito de sistemas multiusuários ganham força entre os minis e supermicrocomputadores com o sistema operacional Unix.

- A Universidade de Berkeley (Califórnia) desenvolve o BSD (Berkeley Software Distribution) que desenvolve melhoramentos no protocolo TCP/IP (Transmission Control Protocol/Internet Protocol).
- Surgem as estações de trabalho (workstations).
- Em 1982 surge a Sun Microsystems lançando as primeiras estações RISC com o sistema operacional SunOS e depois com o Sun Solaris.

 Surge os primeiros sistemas operacionais com interface gráfica, como o Microsoft Windows e o IBM OS/2.

- O protocolo TCP/IP passa a ser padrão de mercado.
- A tecnologia VLSI evolue rapidamente para ULSI (Ultra Large Scale Integration).
- Utilização do conceito cliente/servidor.
- O finlandês Linus Torvalds começa o desenvolvimento do Linux.
- Em 1993 surge o Windows NT.
- Evolução rápida dos SOs que possuem interface gráfica.

- Os sistemas operacionais tornam-se mais intuitivos e simples de serem utilizados.
- Novas interfaces homem-máquina serão oferecidos pelos SO's.
- Os SO's são mais proativos, ou seja, incorporam mecanismos automáticos de detecção e recuperação de erros.
- O conceito de processamento distribuído passa a ser implementado.
- Surgem o Windows 2000, Windows XP, Windows 2003 e Windows Vista.
- O Linux se populariza.
- Surgem os microprocessadores de 64 bits.

TIPOS DE SISTEMAS OPERACIONAIS

TIPOS SIST. OPERACIONAIS

Fig. 1.5 Tipos de sistemas operacionais.

MONOPROGRAMÁVEIS / MONOTAREFA

- Execução de apenas um programa ou tarefa por vez.
- Qualquer outra aplicação deve aguardar o programa ou tarefa corrente.
- Processamento dedicado.
- Enquanto o programa aguarda um evento, o processador permanece ocioso, sem realizar qualquer tipo de processamento.
- A memória e os periféricos são subutilizada.
- Não existe a preocupação com o compartilhamento de recursos.

MONOPROGRAMÁVEIS/ MONOTAREFA

MULTIPROGRAMÁVEIS / MULTITAREFA

- Evolução dos sistemas monoprogramáveis.
- Os recursos são compartilhados entre diversos usuários e aplicações.
- Enquanto aguarda uma aplicação (leitura ou gravação em disco, por exemplo) outros programas podem estar sendo processados neste mesmo intervalo.
- Acesso concorrente.
- Redução de tempo de execução das aplicações.
- Implementação mais complexa.

MULTIPROGRAMÁVEIS / MULTITAREFA

MULTIPROGRAMÁVEIS / MULTITAREFA

Fig. 1.8 Tipos de sistemas multiprogramáveis/multitarefa.

SISTEMAS BATCH

- Têm a característica de não exigir a interação do usuário na aplicação.
- Todas as entradas e saídas da aplicação são implementadas geralmente por discos.
- Geralmente utilizam bem o processador, porém podem possuir tempo de resposta longo.
- Atualmente os sistemas operacionais implementam ou simulam o processamento batch, mas não existem sistemas exclusivamente dedicados a esse tipo de processamento.

SIST. TEMPO COMPARTILHADO

- Permitem que os programas sejam executados a partir da divisão do tempo do processador em intervalos.
- É criado um ambiente de trabalho para cada usuário, dando a impressão que o sistema é dedicado a ele.
- Normalmente utilizam monitor de vídeo, teclado e mouse.
- Ficaram conhecidos como sistemas on-line.
- Oferecem tempos de resposta razoavelmente boas a custos baixos, em função do compartilhamento de recursos.

SISTEMAS DE TEMPO REAL

- Parecido com os sistemas de tempo compartilhado, mas se difere no tempo exigido no processamento das aplicações.
- Utiliza o processador o tempo que for necessário até que apareça outro mais prioritário. Essa prioridade é definida pela aplicação.
- É muito utilizada em controle de processos como refinarias de petróleo, usinas, controle de tráfego aéreo ou qualquer aplicação onde o tempo de processamento é fator fundamental.

SISTEMAS COM MÚLTIPLOS PROCESSADORES

Fig. 1.9 Tipos de sistemas com múltiplos processadores.

MÚLTIPLOS PROCESSADORES

- Possuem duas ou mais UCP's interligadas e trabalhando em conjunto.
- É possível a criação de sistemas voltados ao processamento científico, aplicado, por exemplo, desenvolvimento aeroespacial, simulações, processamento de imagens e CAD.
- O conceito aplicados os sistemas de múltiplos processadores possui os mesmos princípios e benefícios da multiprogramação, além da escalabilidade, disponibilidade e balanceamento de carga.

FORTEMENTE ACOPLADOS

 Existem vários processadores compartilhando uma única memória física e dispositivos de entrada e saída gerenciados por um único sistema operacional. (multiprocessadores)

FRACAMENTE ACOPLADOS

 Possuem dois ou mais sistemas computacionais conectados por uma linha de comunicação, sendo independentes entre si. (multicomputadores)

Fig. 1.11 Sistemas fracamente acoplados.

BIBLIOGRAFIA

- ✓ MACHADO, Francis Berenger; MAIA, Luiz Paulo (orgs.). Arquitetura de Sistemas Operacionais. 1ª ed. Rio de Janeiro: LTC -Livros Técnicos e Científicos, 2008.
- ✓ TANENBAUM, A.. Sistemas Operacionais Modernos. 1ª ed. São Paulo: Pearson, 2003.
- ✓ SILBERSCHATZ, Abraham. Fundamentos de Sistemas Operacionais. 6ª ed. Rio de Janeiro: LTC - Livros Técnicos e Científicos, 2004.
- ✓ OLIVEIRA, Rômulo. Sistemas operacionais. 3ª ed. Porto Alegre: Bookman, 2008.
- ✓ TANENBAUM, Andrew S; WOODHULL, A.S.. Sistemas Operacionais: Projeto e Implementação. 1ª ed. Porto Alegre: Bookman, 2005.
- ✓ DEITEL, Paul J.; DEITEL, H. M.; CHOFFNES, David R.. Sistemas operacionais. 3^a ed. : Pearson, 2008.