

Validation of 2011 open data using measurements of top quark pair and W+c production

Oleksandr Zenaiev

Overview:

- ullet Measurements of $tar{t}$ production in dilepton channel at 7 TeV [TOP-11-013, TOP-13-004]
- $\bullet \ \ \mbox{Measurement of associated} \ W + c \ \mbox{production} \\ \ \ \ \mbox{[SMP-12-002]}$

Open data validation meeting 20.10.2016

Introduction

- Using 2011 open data, 2.5fb^{-1} + corresponding MC samples
- Goal: reproduce published CMS results ('research' mode):
 - "Measurement of differential top-quark pair production cross sections in pp colisions at $\sqrt{s}=7$ TeV" [TOP-11-013, arXiv:1211.2220, EPJ C73 (2013) 2339] + total $t\bar{t}$ cross section [TOP-13-004, arXiv:1603.02303, JHEP 1608 (2016) 029]
 - "Measurement of associated W+c production in pp collisions at $\sqrt{s}=7$ TeV" [SMP-12-002, arXiv:1310.1138, JHEP 02 (2014) 013]
- Running VM on private or office laptop, no usage of CMS, CERN and other resources
- Using information mainly from CMS papers, theses, public twiki pages, sometimes needed to consult analysis notes
- All analysis code has been written completely from scratch: no usage of CMS code, except for CMSSW provided with VM

Measurement of differential top-quark pair production cross sections in pp colisions at $\sqrt{s} = 7$ TeV

Dilepton channel: 3 possible final states:

- $e^{\pm}e^{\mp}$ + 2 b-jets + 2 neutrinos
- $\mu^{\pm}\mu^{\mp}$ + 2 b-jets + 2 neutrinos
- $e^{\pm}\mu^{\mp}$ + 2 b-jets + 2 neutrinos

 \Rightarrow selecting events with two leptons, two jets, also expect missing transverse energy (MET)

t and \bar{t} are then reconstructed from measured final state particles and assumptions on m_W , m_t

Data samples:

- $e^{\pm}e^{\mp}$: 'DoubleElectron'
- $\mu^{\pm}\mu^{\mp}$: 'DoubleMu'
- \bullet $e^{\pm}\mu^{\mp}$: 'MuEG'

Primary vertex:

- dof > 4
- \bullet impact parameter <2 cm in transverse plane and <24 cm in z

Leptons: two leading p_T opposite signed $p_T > 20$ GeV, $|\eta| < 2.4$

- Electrons ('gsfElectrons')
 - isolated with $I_{\rm rel}^{\Delta R < 0.3} < 0.17$ ($\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$)
 - no missing hits in the silicon tracker
- Muons ('muons')
 - isolated with $I_{\rm rel}^{\Delta R < 0.3} < 0.20$
 - required to be global muons
 - at least 10 valid tracker hits and 2 pixel hits
 - global track fit $\chi^2/\text{dof} < 10$
 - ullet impact parameter to PV < 0.02 cm in transverse plane and < 0.5 cm in z
- M(ll) > 12 GeV
- in ee and $\mu\mu$ channels exclude 16 < M(ll) < 106 GeV
- in ee and $\mu\mu$ channels require MET >30 GeV

Jets ('ak5PFJets'): at least two with $p_T > 30$ GeV, $|\eta| < 2.4$

- anti- k_T with clustering parameter 0.5
- at least one b-tagged using CSVL (discriminant > 0.244)
- \bullet CSV information stored only for 'ak5CaloJets': perform matching choosing closest jet in ΔR

Kinematic reconstruction

Goal: obtain $\vec{p_t}$ and $\vec{p_{\bar{t}}}$

Efficiency determined in signal MC: $\approx 70\%$ vs 90% in the paper

- Measured input: 2 leptons, 2 jets, MET
- Unknowns: \bar{p}_{ν} , $\bar{p}_{\bar{\nu}}$ (6)
- Constraints:
 - m_t , $m_{\bar{t}}$ (2)
 - m_{W^+} , m_{W^-} (2) $(\bar{p}_{\nu} + \bar{p}_{\bar{\nu}})_T = \text{MET}$ (2)
- For each pair of jets, solve this using the method from [Phys. Rev. D 73 (2006)]
- If there are several solutions in event (either because of many jet combinations, or several solutions for one configuration), prefer:
 - with 2 b-tagged jets
 - with 1 b-tagged jets
 - with highest weight, weight is determined according to the MC neutrino energy spectrum
- Difference from the paper: no m_t scan \Rightarrow worse efficiency due to detector effects

MC samples

Signal:

MadGraph + Pythia6, 55M

Background:

- $t\bar{t}$ 'other', mainly via au decays (MadGraph + Pythia6)
- single top (POWHEG + Pythia6), 1.5M
- Drell-Yan (DY) (MadGraph + Pythia6), 44M
- \bullet W + jets (MadGraph + Pythia6), 55M
- Diboson and QCD multijet considered in the paper, but contribute negligibly: not used

TOP-11-013

In total processed:

- Data: 33M $(e\mu)$ + 50M (ee) + 40M $(\mu\mu)$ \approx 123M
- \bullet MC: \approx 155M (processing MC took $\times 5$ more time than data: busy events, larger fraction selected)

Overall \sim 2 weeks (not CPU time!), running several jobs in parallel on one machine, but also gaps between running jobs. Some jobs needed to be resubmitted.

Any improvement here is very desirable: how will it be feasible for more complicated analyses, or 2012 data?..

Control distributions

- $\bullet \approx 25\%$ less events than expected from TOP-11-013: consistent with smaller kin. reco efficiency
- Larger MC / data: consistent with missing scale factors, corrections etc.
- Slightly larger background fraction
- Shapes very similar

* $p_T(t),\,y(t)$ vs $p_T(t),p_T(\bar{t})$ and $y(t),y(\bar{t})$ in paper

Cross section measured at parton level in full phase space:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Y} = \frac{N_{Sig}}{ALB\Delta Y}$$
, $N_{Sig} = N_{DATA} - N_{MCbackgr}$, $E = \frac{N_{MCreco}}{N_{MCgen}}$
 $\sigma = \int \frac{\mathrm{d}\sigma}{\mathrm{d}Y}$
 $L = 2.5 \text{ fb}^{-1}$, $B = 4.6\%$

Efficiency E determined as bin-to-bin corrections: no 'unfolding'. This should give underestimated stat. uncertainties and might bias central values in bins with small purity/stability and poor MC description.

Measure:

- normalised differential x-section $\frac{1}{\sigma} \frac{d\sigma}{dY}$ (published in TOP-11-013)
- total x-section (published in TOP-13-004)

Normalised differential cross sections

Total cross section

How it is determined:

- In this analysis obtained by integrating over differential x-section
- More sophisticated procedure in the paper

Open data

TOP-13-004

e.g. by integrating $p_T(t)$ diff. x-section: ee: 149.7 \pm 8.2 (stat) pb

 $\mu\mu$: 136.0 \pm 6.8 (stat) pb

 136.0 ± 6.8 (stat) pb $e\mu$ channel only: 155.4 ± 4.1 (stat) pb 173.6 ± 2.1 (stat) $^{+4.5}_{-4.0}$ (sys) ± 3.8 (lum) pb

 $e\mu$: 155.4 ± 4.1 (stat) pb

dilepton: 150.4 ± 3.2 (stat) pb

additionally spread between integrations over different variables ≈ 10 fb

- Reasonable consistency. In agreement with larger MC / data rate, missing corrections etc.
- Total x-section sensitive to (in)efficiency, scale factor issues (cancel to large extend for normalised x-section).

Measurement of associated W+c production

$$W \to e \text{ or } \mu$$
 $c \to D^*$, or D^+ , or μ in jet

In total 6 final states

 \Rightarrow selecting events with isolated lepton and jet with charm 'signature'

Signal: oppositely signed (OS) W and c

Background: expect equal fraction of OS and same signed (SS) W and c

 \Rightarrow : suppressed background for OS-SS distributions

Data samples:

- ullet μ : 'SingleMu' dataset
- e: 'SingleEl' dataset

MC:

- W + jets (MadGraph + Pythia6) [signal]
- Drell-Yan (MadGraph + Pythia6) [background] not included

Lepton: leading p_T muon or electron:

- Muons ('muons')
 - $p_T > 25 \text{ GeV}$
 - $|\eta| < 2.1$
 - isolated with $I_{\rm rel}^{\Delta R < 0.4} < 0.12 \; (\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$

•
$$M_T > 40$$
 GeV, $M_T = \sqrt{2p_T E_T^{\mathrm{miss}} (1 - \cos(\phi_l - \phi_{E_T^{\mathrm{miss}}}))}$

- required to be global muons
- at least 10 valid tracker hits and 2 pixel hits
- global track fit $\chi^2/{\rm dof} < 10$
- ullet impact parameter to PV < 0.02 cm in transverse plane and < 0.5 cm in z
- ullet no oppoiste sign muon with $p_T>25$ GeV, $|\eta|<2.4$
- Electrons ('gsfElectrons')
 - $p_T > 35 \text{ GeV}$
 - $|\eta| < 2.1$, excluding $1.44 < |\eta| < 1.57$

•
$$M_T > 55$$
 GeV, $M_T = \sqrt{2p_T E_T^{\text{miss}} (1 - \cos(\phi_l - \phi_{E_T^{\text{miss}}}))}$

- isolated with $I_{\rm rol}^{\Delta R < 0.3} < 0.05$
- no missing hits in the silicon tracker
- ullet no oppoiste sign electron with $p_T>20$ GeV, $|\eta|<2.5$

Jet ('ak5PFJets'): leading p_T with $p_T > 25$ GeV, $|\eta| < 2.5$ and charm 'signature'

- $D^+ \to K^- \pi^+ \pi^+$ candidate
- $D^{*+} \rightarrow D^0 \pi_s^+, D^0 \rightarrow K^- \pi^+$ candidate
- muon

Secondary vertex reconstruction

- ullet Crucial to suppress background for D^+ , D^{*+}
- Differs from the paper:
 - · open data: all track combinations
 - paper: 'exclusive' veritces (no shared tracks)
- Expecting larger selection efficiency, but possibly larger background in open data

$$l_{proj} = \frac{(\vec{d}l \cdot \vec{p}_D)_{xy}}{|\vec{P}_D|_{xy}}, \quad \vec{p}_D = \vec{p}_{K^-} + \vec{p}_{\pi^+}$$
$$s = \frac{l_{proj}}{\Delta l_{proj}}$$

Require:

- s > 3
- $\bullet \ (dl)_{xy} < 2 \ \mathrm{cm} , \ (dl)_z < 2 \ \mathrm{cm}$

Open Data

(OS-SS) events / 0.002 GeV 600 Data W+c W+iets other Gauss + polynomial 400 $\Delta M = 145.4 \pm 0.1 \text{ MeV}$ 200 0.14 0.15 0.16 0 17 $M(K\pi\pi_s)-M(K\pi)$ [GeV]

TOP-12-002

- Fitted to Gaus (signal) + 1st order polynomial (background)
- More signal events in open data
- Similar signal / background ratio

Signal extraction: D^+

Open Data

TOP-12-002

- Fitted to Gaus (signal) + 1st order polynomial (background)
- More signal events in open data
- Worse signal / background ratio
- Drawback in open data vertexing: usage of Adaptive Vertex Fitter with track weighting

Control distributions

Open Data

Data 100

TOP-12-002

- Shapes very similar for D mesons
- MC < data for D^+ , μ : missing background samples
- Prevents from measuring cross section in semileptonic channel

Cross section measured at parton level:

$$p_T^c>25$$
 GeV, $|\eta^c|<2.5|,~p_T^\mu>25$ GeV, $|\eta^\mu|<2.1|:$

$$\sigma = \frac{N_{Sig}}{ALB}$$
, $E = \frac{N_{MCreco}}{N_{MCgen}}$

$$L = 2.5 \; {\rm fb^{-1}}$$

$$D^*: B = f(c \to D^* \to D^0(K\pi)\pi) = 0.622\%$$

 $D^+: B = f(c \to D^+ \to K\pi)\pi) = 2.08\%$

 N_{Sig} extracted from fit of invariant mass spectrum (differs from the paper)

Open data

⇒ reasonable consistency with the paper

- Successfull validation of 2011 open data by re-doing two CMS measurements
- Only similar event selection/reconstruction, no sophisticated corrections
- ... and sometimes even completely different reconstruction methods
- All key features reproduced, cross sections in reasonable agreement with published values
- Results have been (or will be) shown and discussed in physics groups: received interest from ongoing analyses
- ullet Planning to document $tar{t}$ measurement as analysis/validation example