Лабораторная работа № 8

<u>Итерационные циклические вычислительные</u> <u>процессы с управлением по индексу/аргументу и</u> <u>функции.</u>

Цель лабораторной работы: Изучить итерационные циклические вычислительные процессы с управлением по индексу/аргументу и функции.

Используемое оборудование: ПК, среда программирования Lazarus.

Задача 1

Постановка задачи: Дан процесс, связанный с изменением выходного напряжения Uвых на обкладках конденсатора электрической цепи, которая включает активное сопротивление R=2 Ом и конденсатор с емкостью C=0.01 Ф. Построить переходную характеристику заряда конденсатора по схеме RC цепочки с заданной точностью $\epsilon=10$ -3, Uвх = 50 B, начальное значение t=0.01, с шагом 0.01

Математическая модель:

$$U_{\text{obs}x} = U_{\text{ox}} \left(1 - e^{-\frac{t}{RC}} \right).$$

Таблица 1

Имя	Смысл	Тип
С	Емкость конденсатора	real
t	Время	real

e	Точность	real
R	Активное сопротивление	integer
Uvh	Входное напряжение	integer
Uvyh	Выходное напряжение	real

```
program zadacha1;
var
C,Uvyh,t,e:real;
R,Uvh:integer;
begin
R:=2;
C:=0.01;
e:=0.001;
t:=0.01;
Uvh:=50;
repeat
Uvyh:=Uvh*(1-exp((-t)/(R*C)));
writeln('t = ',t:1:2,', Uvyhod = ',Uvyh:1:6);
t = t + 0.01;
until abs(Uvyh-Uvh)<e;
readln();
end.
```


Анализ результатов вычисления: Программа вычисляет и выводит на экран переходную характеристику заряда конденсатора по схеме RC цепочки с заданной точностью.

Задача 2

Постановка задачи: Вычислить e(x) с точностью 10^{-4} . Начальные условия: k = 1, U0 = 1, S0 = 1, x = 0.5.

Математическая модель:

Математическое обоснование вывода ряда:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

$$U_{n} = \frac{x^{n}}{n!}; M = \frac{U_{n}}{U_{n-1}} = \frac{x^{n}*(n-1)!}{n!*x^{n-1}} = \frac{x^{n}*n!*x}{n!*x^{n}*n} = \frac{x}{n}$$

Таблица 2

Имя	Смысл	Тип
U0	Текущее значение	real
S0	Следующее значение	real

X	Степень	real
e	Точность	real
k	Знаменатель из мат. обоснования	integer

```
program zadacha2;
var
U0,S0,x,e:real;
k:integer;
begin
k:=1;
U0:=1;
S0:=1;
x:=0.5;
e:=0.0001;
while abs(U0)>e do begin
U0:=U0*(x/k);
S0:=S0+U0;
k := k+1;
end;
writeln('e v stepeni ',x:1:1,'=',S0:1:4);
readln;
end.
```


Анализ результатов вычисления: Программа вычисляет и выводит на экран e(x) с точностью 10^{-4} .

Задача 3

Постановка задачи: Вычислить Sin(x) с точностью 10^{-4} . Начальные условия: k = 1, U0 = x, S0 = x, $x = \pi/6$

$$\sin x \approx (-1)^k \cdot \frac{x^{2k+1}}{(2k+1)!}$$

Математическая модель:

Математическое обоснование вывода ряда:

$$M = \frac{\frac{(-1)^k * x^{2k+1}}{(2k+1)!}}{\frac{(-1)^{k-1} * x^{2k-1}}{(2k-1)!}} = \frac{(-1)^k * x^{2k} * x * (2k-1)! * (-1) * x}{(-1)^k * x^{2k} * (2k+1)!}$$
$$= \frac{(-1) * x * x * (2k-1)!}{(2k+1)!} = \frac{-x^2}{2k * (2k+1)}$$

		Таолица З
Имя	Смысл	Тип

U0	Текущее значение	real
S0	Следующее значение	real
X	Значение под знаком sin	real
e	Точность	real
k	Знаменатель из мат. обоснования	integer

```
program zadacha3;
var
U0,S0,x,e:real;
k:integer;
begin
k:=1;
x:=pi/6;
U0:=x;
S0:=x;
e:=0.0001;
while abs(U0)>e do begin
U0:=U0*((-x*x)/(2*k*(2*k+1)));
S0 := S0 + U0;
k := k+1;
end;
writeln('Sin (x) = ',S0:1:4);
readln;
```


Анализ результатов вычисления: Программа вычисляет и выводит на экран $\sin(x)$ с точностью 10^{-4} .

Задача 4

Постановка задачи: Вычислить Cos(x) с точностью 10^{-4} . Начальные условия: $k=1,\,U0=1,\,S0=1,\,x=\pi/6$

$$\cos x \approx (-1)^k \frac{x^{2k}}{(2k)!}$$

Математическая модель:

Математическое обоснование вывода ряда:

$$M = \frac{\frac{(-1)^k * x^{2k}}{(2k)!}}{\frac{(-1)^{k-1} * x^{2k-2}}{(2k-2)!}} = \frac{(-1)^k * x^{2k} * (-1) * (2k-2)! * x^2}{(2k)! * (-1)^k * x^{2k}}$$
$$= \frac{-x^2 * (2k-2)!}{(2k)!} = \frac{-x^2}{2k(2k-1)}$$

Имя	Смысл	Тип
U0	Текущее значение	real
S0	Следующее значение	real
X	Значение под знаком соѕ	real
e	Точность	real
k	Знаменатель из мат. обоснования	integer

```
program zadacha4;
var x,U0,S0,e:real;
k:integer;
begin
x:=pi/6;
U0:=1;
S0:=1;
k:=1;
e:=0.0001;
while abs(U0)>e do
begin
U0:=U0*((-x*x)/(2*k*(2*k-1)));
S0:=S0+U0;
k := k+1;
end;
writeln('Cos(x) = ',S0:0:4);
readln();
```


Анализ результатов вычисления: Программа вычисляет и выводит на экран $\cos(x)$ с точностью 10^{-4} .

Вывод:

Таким образом, были изучены методы реализации итерационные циклических вычислительных процессов с управлением по индексу/аргументу и функции средствами Free Pascal.