LAST TIME : Line Integrals

- Fundamental Theorem of Line Integrals: Given curve C parameterized by $\vec{r}(t)$ on (a,b) and \vec{f} a function with continuous partial derivatives. Then, $\int_{C} \nabla f \cdot d\vec{r} = f(\vec{r}(b)) f(\vec{r}(a))$ where C is oriented from $\vec{r}(a)$ to $\vec{r}(b)$.
- · Recall: Switching the orientation of curve C negotes the corresponding line integral, i.e. J. c v. dr = Sc v. dr.

Ex#1: Compute [cv.di for v= < sin(y), x cos(y) + cos(z), -y sin(z)> and curve C parameterized by i(t)= < sin(t), t, 2+ on [0, =].

First, we check it is conservative: < check that FTLI applies

$$\frac{\partial}{\partial y} \left[v_{x} \right] = \frac{\partial}{\partial y} \left[\sin(y) \right] = \cos(y) \qquad \frac{\partial}{\partial z} \left[v_{x} \right] = \frac{\partial}{\partial z} \left[\sin(y) \right] = 0 \qquad \frac{\partial}{\partial x} \left[v_{z} \right] = -\sin(z) \qquad \frac{\partial}{\partial z} \left[v_{z} \right] = \frac{\partial}{\partial y} \left[v_{z} \right] = \frac{\partial}{\partial y} \left[v_{z} \right] = \frac{\partial}{\partial y} \left[v_{z} \right] = -\sin(z) \qquad \frac{\partial}{\partial z} \left[v_{z} \right] = -\sin(z) \qquad \frac{\partial}{\partial z} \left[v_{z} \right] = \frac{\partial}{\partial y} \left[v_{z} \right] = \frac{\partial}{\partial y} \left[v_{z} \right] = -\sin(z) \qquad \frac{\partial}{\partial z} \left[v_{z} \right] = \frac{\partial}{\partial z} \left[v_{z} \right] = -\sin(z) \qquad \frac{\partial}{\partial z} \left[v_{z} \right] = -\sin(z) \qquad \frac{\partial}{\partial z} \left[v_{z} \right] = \frac{\partial}{\partial z} \left[v_{z} \right] = -\sin(z) \qquad \frac{\partial}{\partial z} \left[v_{z}$$

= by a previous result & is conservative, i.e. = of for some function f.

Next, we compute such a potential function:

$$\frac{\partial f}{\partial x} = \sin(y)$$
, $\frac{\partial f}{\partial y} = x\cos(y) + \cos(z)$, $\frac{\partial f}{\partial z} = -y\sin(z)$

$$f(x_1y_17) = \int \frac{\partial f}{\partial z} dz = \int -y\sin(z) dz = y\cos(z) + C(x_1y)$$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[y \cos(2) + C(x_{i}y) \right] = \frac{\partial C}{\partial x} = \sin(y) \qquad = C(x_{i}y) = \int \frac{\partial C}{\partial x} dx = \int \sin(y) dx = x \sin(y) + D(y)$$

=
$$x\cos(y) + \cos(z) = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[y\cos(z) + x\sin(y) + D(y) \right] = \cos(z) + x\cos(y) + D'(y)$$

=
$$p'(y) = 0$$
 so $p(y) = E$ is constant.

Independence of Paths for Line Integrals of Conservative Vector Fields

o PROP: Suppose C and D are two paths between the same endpoints a and B, and suppose ♥ is conservative. Then,

Sc v-dr = Sp v-dr.

Proof Apply FTLI: |cv.dr=f(B)-f(d)= fov.dr where v=vf

• PROP: If it sanishes $\int c \vec{v} \cdot d\vec{r} = \int_D \vec{v} \cdot d\vec{r}$ for all (,D paths between the same endpoints on some open region R and if the components of it are all continuous on R, then it is conservative.

Proof Fix any point & in R.

Define f(B) = la v. dr = Sc v. dr where C is any curve from a to B.

By independence of paths, f is well defined. Moreover, of = v. 1

12 exercise, use the FTC

• Observation: If \vec{v} is conservative and C is a closed curve (i.e. C starts and ends at the same point), then $\vec{v} \cdot d\vec{r} = 0$. Conversely, if $\int_C \vec{v} \cdot d\vec{r} = 0$ for all closed C, then \vec{v} is conservative.

is exercise (hint=independence of paths)

- SECTION 16.4: Green's Theorem-	
· IDEA: In some special cases, line integrals can be computed via double integrals.	
· PROP (Green's Theorem): Let 0 be a region in R2 with a piecewise-smooth bund	day curve 20. If P
and Q(x,y) have continuous partial derivatives on some open region O containing	171
Soo Pax + Q dy = So (= = = = = = = = = = = = = = = = = =	0
* For this theorem to hold, 20 needs the positive orientation.	(
Ex#1 = Comporte [x dx + xy dy for C the come positively oriented around the triangle	
with vertices (0,0), (1,0), and (0,1).	
* This hould be monsterous normally, because the curve is split into 3 pieces.	(0.1)
By Green's Theorem, Sap xtdx + xydy = Slo(3x[xy]-3y[xt]) dA = SloydA.	
Note that $0 = \{(x,y): 0 \le x \le 1, 0 \le y \le 1 - x \}$, so:	(0,0) ///////////////////////////////////
No xtdx + xy dy = So y dA = 1x=0 1x=0 y dy dx = 1x=0 \frac{1}{2} [y^2] y=0 dx = \frac{1}{2} [x]	$\frac{1}{1}$ ((1- x^2)-0) dx (
$= -\frac{1}{2} \cdot \frac{1}{3} \left[(1-x)^3 \right]_{x=0}^1 = -\frac{1}{6} \left((1-1)^3 - (1-0)^3 \right) = -\frac{1}{6} \left(-1 \right) = \frac{1}{6} $	

$$\int_{\partial D} x^{4} dx + xy dy = \int_{\partial D} y dA = \int_{x=0}^{x=0} \int_{y=0}^{y=0} y dy dx = \int_{x=0}^{x=0} \frac{1}{2} \left[(1-x^{2})^{2} - 0 \right] dx = \int_{x=0}^{x=0} ((1-x^{2})^{2} - 0) dx = \int_$$

* Reminder: Green's Theorem only norks when the curve is a simple, closed curve in the plane R2.

Ex#2: Compute $\int_{C} (3y - e^{\sin(x)}) dx + (7x + \sqrt{y^4 + 1}) dy$ for C the circle $x^2 + y^2 = 9$. $\int_{\partial D} (3y - e^{\sin(x)}) dx + (7x + \sqrt{y^4 + 1}) dy = \int_{D} (\frac{1}{2} x + \sqrt{y^4 + 1}) - \frac{1}{2} y \left[3y - e^{\sin(x)} \right] dA$

$$= \iint_{D} (7-3) dA = 4 \iint_{D} dA = 4 \operatorname{Area}(D) = 4\pi(3)^{2} = 36\pi$$