

1 1. A MIMO-based space-time wireless sensor node and
2 transceiver comprising:

3 a sensor array unit;
4 an A/D converter unit;
5 a signal processing and data computing unit;
6 a MIMO-based space-time transceiver;
7 a memory bank;
8 a power unit;
9 a power generator; and
10 a multiple antenna unit.

11 2. The MIMO-based space-time wireless sensor node
12 and transceiver of claim 1 wherein the sensor array unit
13 includes N sensors, which each of the sensors is a
14 multimode sensor device.

15 3. The MIMO-based space-time wireless sensor node
16 and transceiver of claim 2 wherein said multimode sensor
17 device that can be one of electronic, optical, chemical,
18 nuclear fusion, gas/liquid, or any combination sensing is
19 use to sensor different input signals.

20 4. The MIMO-based space-time wireless sensor node
21 and transceiver of claim 1 wherein the MIMO-based space-
22 time transceiver comprises a sensor data sequence stream, a
23 FEC, interleaver and spreading, a space-time encoding, a

24 modulation and radio frequency transceiver, and a multiple
25 antenna array.

26 5. The MIMO-based space-time wireless sensor node
27 and transceiver of claim 4 wherein said FEC, interleaver
28 and spreading further includes a convolution encoder, an
29 interleaver, a pseudorandom spreader, a sensor node mask
30 code, and a pseudorandom sequence generator.

31 6. The MIMO-based space-time wireless sensor node
32 and transceiver of claim 4 wherein said space-time encoding
33 further includes a counterclockwise multirate switch unit,
34 K sensor channel memory banks, K spreaders, an orthogonal
35 sequence generator, a dual-mode switch unit, a block sum,
36 and a serial-to-parallel (S/P) .

37 7. The MIMO-based space-time wireless sensor node
38 and transceiver of claim 6 wherein said counterclockwise
39 multirate switch unit is an interleaver down-sampling
40 operation to produce K parallel sequences of a length of
41 L/K with a chip rate of M Mcps from a single input sequence
42 of a length of L with a chip rate of KM Mcps.

43 8. The MIMO-based space-time wireless sensor node
44 and transceiver of claim 6 wherein said dual-mode switch

45 unit is used to form either MIMO or SIMO followed by the
46 block sum and the S/P.

47 9. The MIMO-based space-time wireless sensor node
48 and transceiver of claim 6 wherein said orthogonal sequence
49 generator produces all of the sequences with orthogonal
50 each other.

51 10. The MIMO-based space-time wireless sensor node
52 and transceiver of claim 6 wherein each of K spreaders is
53 an exclusive-OR (XOR) operation.

54 11. A MIMO-based space-time sensor basestation
55 comprising:

56 a multiple antenna unit;
57 a demodulation and radio frequency receiver;
58 a space-time processor and decoding;
59 a space-time Rake processor;
60 a deinterleaver and FEC decoding;
61 a MIMO channel estimate; and
62 a pseudorandom sequence generator.

63 12. The MIMO-based space-time sensor basestation of
64 claim 11 wherein the MIMO channel estimate is either using
65 a training sequence or using a blind estimate method for
66 channel identification.

67 13. The MIMO-based space-time sensor basestation of
68 claim 11 wherein said space-time processor and decoding
69 further includes a space-time matrix equalizer, K
70 despreaders, K receiver channel memory banks, a clockwise
71 multirate switch unit, and an orthogonal sequence
72 generator.

73 14. The MIMO-based space-time sensor basestation of
74 claim 13 wherein said space-time matrix equalizer is a
75 space-time MMSE equalizer.

76 15. The MIMO-based space-time sensor basestation of
77 claim 13 wherein said clockwise multirate switch unit is a
78 deinterleaver up-sampling operation to form a single
79 sequence of a length of L with KM Mcps from K parallel
80 sequences of a length of L/K with M Mcps.

81 16. A system of MIMO-based space-time wireless sensor
82 node comprises a power unit coupled to a power generator,
83 and a power saving mode of operation.

84 17. The system of MIMO-based space-time wireless
85 sensor node of claim 16 wherein the power generator is one
86 of type powers including solar cells, low-power DC source,
87 or any combinations.

88 18. The system of MIMO-based space-time wireless
89 sensor node of claim 16 wherein the power saving mode of
90 operation further includes a full operation mode, a sleep
91 mode, a wake-up mode, and a partial operation mode.

92 19. The system of MIMO-based space-time wireless
93 sensor node of claim 18 wherein said sleep mode indicates
94 that the MIMO-based space-time sensor node is in idle.

95 20. The system of MIMO-based space-time wireless
96 sensor node of claim 18 wherein said wake-up mode is used
97 to randomly wake up the MIMO-based space-time sensor node
98 during setup and to turn the MIMO-based space-time sensor
99 node transceiver off while in inactive.

100 21. The system of MIMO-based space-time wireless
101 sensor node of claim 18 wherein said partial operation mode
102 is used to operate a sensor array unit, an A/D converter
103 unit, and a signal processing and data computing unit, and
104 can be switched into the full operation mode or the sleep
105 mode.