

Philippe RIGO

ANAST Université de Liège &

DN&T

OBJECTIFS DE LA RECHERCHE

- · OPTIMISATION STRUCTURELLE,
- OPTIMISATION DU COUT DE CONSTRUCTION
- · ACCESSIBLE DES L'AVANT-PROJET,
- MODELE POLYVALENT
 - CONSTRUCTIONS NAVALES et OFFSHORE
 - STRUCTURES HYDRAULIQUES (GENIE CIVIL)

PRACTICAL ANALYSIS:
CONSTRAINED & NON LINEAR

A SERIE OF
CONVEX APPROXIMATED PROBLEM
(Convex linearization with constraints)

DUAL APPROACH

QUASI UN-CONSTRAINED METHODS

 $(\lambda \leq 0)$

(resolution with the conjugate gradient or Newton Methods)

20-Oct-07

ANAST ULg

CONVEX LINEARISATION

Linearization with X

$$C(X_i) = \tilde{C}(X_i) = C(X_i(0)) + \sum_i [X_i - X_i(0)] \cdot \partial C(X_i(0)) / \partial X_i$$

Linearization with 1/X

$$C(X_{i}) = \tilde{C}(X_{i}) = C(X_{i}(0)) + \sum [1/X_{i} - 1/X_{i}(0)] \cdot \partial C(X_{i}(0)) / \partial (1/X_{i})$$

Linéarisation with X if $\partial C/\partial x > 0$ and with 1/X if $\partial C/\partial x < 0$

$$C(X_{i}) = \tilde{C}(X_{i}) = C(X_{i}(0)) + \sum_{i=1}^{4} [X_{1} - X_{1}(0)] \cdot \partial C(X_{1}(0)) / \partial X_{1}$$

$$+\sum \left[V_{j}X_{j} - V_{j}X_{j}(0) \right] \left(X_{j}(0) \right)^{2} \cdot \mathcal{X}(X_{j}(0)) / \mathcal{J}X_{j}$$

- Convex Approximations C1(X) = $5 \times_2 - X_1^2 - 10 \le 0$ C2(X) = $5/4 \times_2^2 + 16/X_1^2 - 13 \le 0$ En X(0) = (2,2): C1(2,2) = C2(2,2) = -4 ∂ C1(2,2)/ ∂ X = ∂ C2(2,2)/ ∂ X = (-4,5) With X : $5 \times_2 - 4 \times_1 - 6 \le 0$ With 1/X :-20/ $\times_2 + 16/\times_1 - 2 \le 0$ Convexe : $5 \times_2 + 16/\times_1 - 22 \le 0$

SENSIBILITY ANALYSIS

AT EACH ITERATION OF THE OPTIMISATION PROCESS, we need:

- $XI = X_o$; $F(X_o)$ and $C(X_o)$
- ∂F(X₀)/ ∂XI and ∂C(X₀)/ ∂XI = Sensibilities

20-Oct-07 ANAST ULg

AVANTAGES de CONLIN

- Nombre réduit d'itérations (N < 10, 15)
- Convergence dans le domaine admissible

•

LISTE DES RESTRICTIONS

- BORNES: $X_{i \min} \leq X_{i} \leq X_{i \max}$
 - opour chaque variable
- RESTRICTIONS GEOMETRIQUES
 - pour chaque panneau
- RESTRICTIONS STRUCTURELLES
 - pour chaque panneau
 - relative à la structure globale

ANAST ULg

BORNES: $X_{i \text{ min}} \leq X_{i} \leq X_{i \text{ max}}$

Limitations technologiques

- Fabrication
- •Usure
- °Corrosion
- Dimensions commerciales

•

RESTRICTIONS GEOMETRIQUES

- Rigidité relative âme/bordé
 - $3\delta h \le 0$ (cohérence)
- Élancement des semelles
 8 < w/t < 16
- Cohérence du profilé t - 2.d ≤ 0 (soudabilité)

ANAST ULg

RESTRICTIONS STRUCTURELLES

- ELEMENTS CONCERNES
 - Panneaux raidis
 - o Cadres
 - Structure d'ensemble
- ETATS LIMITES
 - Etats limites de service
 - Etats limites ultimes

ANAST ULq

COUT de CONSTRUCTION

Matériaux & Consommables

$$P_{MAT} = \sum_{j=1}^{K} Q_j \cdot P_j$$

Main d'œuvre

$$P_{MdO} = \sum_{i=1}^{NT} . T_i . M_i . S_i$$

Frais généraux

$F_{MdO} = \eta \cdot k \cdot C_1^o \cdot MdO$ $MdO = L \cdot B \begin{bmatrix} \frac{1}{\Delta_X} \cdot P_4 + \frac{1}{\Delta_Y} \cdot P_5 \\ + \frac{1}{\Delta_X} \cdot \Delta_Y & (P_6 + \beta_X \cdot \beta_Y \cdot P_7) \\ + \frac{1-\alpha_X}{\Delta_X} \cdot P_9(X) + \frac{1-\alpha_Y}{\Delta_Y} \cdot P_9(Y) \end{bmatrix}$

Avantages du modèle LBR-5

CONCLUSION

- · Avant-projet,
- Optimisation du coût de production,
- Polyvalence,
- Versatilité (Opt. Orientée modules),
- Calculs directs,

Dr. Ing. RIGO Ph.

ANAST

Université de Liège