Evaluación

Nombre _____ Apellidos ______

Curso y grupo ____ Fecha ___ Calificación _____

- **1** La solución de la ecuación sen x = -0.5 es:
 - a) 30° y 150°
 - **b)** 150° y 210°
 - c) 210° y 330°
- 2 Si sen $20^\circ = 0.34$, entonces cos 110° será:
 - a) 0,34
 - **b)** 0.94
 - (-0.34)
- **3** Una estaca de longitud *x*, clavada verticalmente en el suelo, proyecta una sombra de longitud 4*x*. Entonces, el ángulo de elevación del Sol sobre el horizonte es:
 - a) 14°
- **b)** 14,04°
- **c)** 76°
- **4** La afirmación, «un ángulo α del segundo cuadrante tiene de seno 4/5 y de coseno, 3/5», es incorrecta porque:
 - a) Los valores de este seno y coseno no verifican la ecuación fundamental de la trigonometría.
 - **b)** La tangente de dicho ángulo α sería 4/3 > 1, y la tangente nunca puede ser mayor que la unidad.
 - c) En el segundo cuadrante el coseno debe ser negativo.
- **5** Si α y β son dos ángulos del cuarto cuadrante y sen α < sen β , entonces:
 - a) $\alpha < \beta$
 - **b)** $\alpha > \beta$
 - c) Con los datos del enunciado no podemos deducir cuál de los dos ángulos es mayor.
- **6** Si un ángulo α cumple que sen $\alpha = -1,09$, podemos deducir que:
 - *a*) α es un ángulo del tercer o cuarto cuadrante.
 - **b)** α es un ángulo negativo.
 - c) El ángulo α no existe.
- **7** La igualdad sen⁴ $\alpha \cos^4 \alpha = \sin^2 \alpha \cos^2 \alpha$:
 - a) Es cierta.
 - b) Es falsa.
 - c) Será cierta para algún valor de α .
- **8** Si cos $\alpha = 0.25$ y $3\pi/2 < \alpha < 2\pi$, entonces:

a) tq
$$\alpha = \sqrt{-15}$$

- **b)** ta $\alpha = -\sqrt{17}$
- c) tg $\alpha = -\sqrt{15}$

- **9** Si cos $70^\circ = 0.34$, entonces:
 - a) $\cos 110^{\circ} = -0.34$

$$\cos 250^{\circ} = -0.34$$

$$\cos 290^{\circ} = 0.34$$

b)
$$\cos 110^{\circ} = -0.34$$

$$\cos 250^{\circ} = 0.34$$

$$\cos 290^{\circ} = 0.34$$

c)
$$\cos 110^{\circ} = 0.34$$

$$\cos 250^{\circ} = 0.34$$

$$\cos 290^{\circ} = -0.34$$

- **10** Si los ángulos α y β son tales que $\alpha + \beta = \pi$:
 - a) sen $\alpha = \text{sen } \beta$

$$cosec \alpha = -cosec (-\beta)$$

$$\sec \alpha = \sec (180^{\circ} + \beta)$$

b) sen $\alpha = \cos \beta$

$$\sec \alpha = \csc (180^{\circ} - \beta)$$

c) sen $\alpha = \text{sen } \beta$

$$\cos\alpha = -\cos\beta$$

$$tg \; \alpha = tg \; \beta$$

11 Dado el triángulo de la figura, averigua *c* y *C*.

- **b)** $C = 48^{\circ}$, $c \approx 1,29 \text{ cm}$
- c) $C = 48^{\circ}$, $c \approx 10,46 \text{ cm}$

- **12** Dado el triángulo de la figura, averigua *h* y *x*.
 - **a)** $h \cong 99 \text{ m}, x \cong 7,83 \text{ m}$
 - **b)** $h \cong 24,99 \text{ m}, x \cong 31,88 \text{ m}$
 - **c)** $h \cong 24,99 \text{ m}, x \cong 48,12 \text{ m}$

40°