

GROUP THEORY - A VISUAL INTRODUC-

MATHEMATICS & COMPUTER SCIENCE

IAN & NEELU @ADA

- Our toolkit Python in a jupyter notebook
- Objects, actions, and structure What maths is really about
- Using Python to visualise structure How computer science helps
- What is a group structure and why does it matter?
- Looking for groups computationally

USING THE JUPYTER NOTEBOOK

Open O_welcome.ipynb and follow the instructions

OBJECTS, ACTIONS, AND STRUCTURE _____

- Find some mathematical objects, or invent them
- Combine them somehow
- Look for patterns

OBJECTS

- Numbers, obviously
- Different kinds of numbers! Integers, rational numbers, real numbers, imaginary numbers, infinite numbers ...
- Symmetries. Transformations
- Functions
- Vectors. Matrices

ACTIONS

- Take two numbers and do the usual $+ \times \div$
- Take two transformations and do one followed by the other
- Take two functions and find the composite function
- Add two vectors

STRUCTURE _____

EXAMPLE

- **Objects** The numbers 0, 1, 2
- Action Addition *modulo* 3

Remember *modulo* 3 means "find the remainder when you divide by 3"

So

 $4 = 1 \mod 3$

And

 $15 = 0 \mod 3$

In Python it's written %3

EXAMPLE

- **Objects** Rotations of an equilateral triangle
- **Action** Composition (one followed by another)

Followed by	Rot 0°	$\mathrm{Rot}120^\circ$	$\mathrm{Rot}240^\circ$
Rot 0°			
Rot 120°			
Rot 240°			

+	0	1	2	Followed by	Rot 0°	$\rm Rot120^\circ$	$\rm Rot240^\circ$
0	0	1	2	Rot 0°	Rot 0°	Rot 120°	Rot 240°
1	1	2	0	Rot 120°	Rot 120°	$Rot240^\circ$	$Rot0^\circ$
2	2	0	1	Rot 240°	Rot 240°	$Rot 0^{\circ}$	Rot 120°

What do you notice about the two tables?

"Addition mod 3" has the same *structure* as "Rotations of an equilateral triangle"

(Technically we'd say they're **isomorphic**)

EXAMPLE

- **Objects** The numbers 0,1,2,3
- Action Multiplication modulo 4

X	0	1	2	3
0				
1				
2				
3				

EXAMPLE

- **Objects** The symmetries of a rectangle
- I =identity (do nothing)
- $R = \text{rotate (through } 180^{\circ}\text{)}$
- *H* =horizontal reflection
- *V* =vertical reflection
- Action Composition (one followed by another)

		R	Н	V					
I					_				
R									
R H									
V									
×	0	1	2	3	0	I	R	H	V
$\frac{\times}{0}$	0	0	0	3	$\frac{\circ}{I}$	I I	R R	H H	$\frac{V}{V}$
$\frac{\times}{0}$	0 0 0	1 0 1	2 0 2	3 0 3	$\frac{\circ}{I}$	I I R	R R I	$H \ H \ V$	V V H
× 0 1 2	0 0 0 0	1 0 1 2	2 0 2 0	3 0 3 2	○ I R H	I I R H	R R I V	H V I	V V H R
× 0 1 2 3	0 0 0 0	1 0 1 2 3	0 2 0 2	3 0 3 2 1	o I R H V	I I R H V	R R I V H	H V I R	V V H R

What do you notice about the tables?

- They're not the same structure
- They both have an **identity** object
- Some objects have inverses
- What's going on with 2 × 2?

Filling out these tables by hand gets tedious, so let's use Python to speed things up.

Make a new cell at the bottom of your notebook and follow along.

```
objects = [1,2,3,4]

def action(a, b):
    return (a * b)%5

for a in objects:
    print([action(a, b) for b in objects])
```

GROUPS __

If a structure meets certain requirements, we call it a **group**

- **Closure** The action shouldn't produce objects we haven't seen before
- Identity There should be an object that doesn't do anything
- Inverses Every object should have an inverse. An object and its inverse should produce the identity
- Associativity eg (a+b)+c=a+(b+c)

Look at the tables so far. Can you tell from the tables which ones are groups?

Now open 1_exploring_structure.ipynb and follow the instructions