"Enhancing scBERT for Optimized Performance and Reduced Latency"

Why is cell annotation using scRNA important

- Single-cell RNA sequencing (scRNA) allows for the identification of distinct cell types and subtypes within a sample. This is crucial for understanding the complex cellular heterogeneity.
- Cell annotation using scRNA can reveal novel therapeutic targets by identifying specific cell types involved in disease mechanisms
- scRNA can uncover new insights into cellular development, differentiation, and function
- scRNA can provide context for the interpretation of other omics data, such as genomic and proteomic data
- Accurate cell annotation is essential for integrating these datasets and gaining a comprehensive understanding of biological systems

Project Idea and Motivation

Why do we need a smaller model that can compete with the larger SOTA models?

- Inference efficiency
- Faster iteration and experimentation
- Democratization of Al

Introduction to scBERT

- scBERT is a large-scale pretrained deep language model designed for cell type annotation in single-cell RNA-seq data.
- It utilizes Transformer(encoder)
 architectures with innovatively designed
 embeddings for genes, pioneering its
 application in scRNA-seq data analysis.
- scBERT employs Performer, maintaining full gene-level interpretation without relying on dimensionality reduction.

Source: https://www.nature.com/articles/s42256-022-00534-z

Problems with scBERT

- High Computational requirement due to high sparsity of data -> 90% of values are 0 -> leads to unnecessary computations
 - o 2.65 × 10¹⁹ FLOPs to train 5 million samples over 5 epochs
- Limited or Loss of resolution for expression values -> scBERT rounds gene expression values into integers (1.99 and 2.01 are far, 1.99 and 1.01 are closer)
- During leave-one-out experiments, scBERT failed to identify novel cell types.
- The current masking strategy in scBERT, which involves non-zero masking, may need further optimization for efficiency.

Smaller & Faster scBERT (Not necessarily better)

Model	Params	dtype
scBERT	8.3M	Float32
Q-scBERT (ours)	8.3M	Int8
Distilled scBERT (ours)	5.7M	Float32
Q-Distilled scBERT (ours)	5.7M	Int8
scBERT1.58 (ours)	8.3M	Int8

Better scBERT

Model	Params	Pre Training strategy
scBERT(Encoder)	8.3M	Masked Language Modelling
scGPT(Decoder)	53M	Next token prediction
xTrimoGene(Encoder + Decoder)	100M	Masked Regression task
scBERT-2.0 (Encoder)	8x10M	MLM + Masked Regression task

scBERT2 Architecture

scBERT 2.0 Improvements

Architectural Improvements for faster training and inference

- 1. Grouped Multi Query Attention (5x faster than Vanilla)
- 2. RMS Norm in place of LayerNorm (Faster training convergence)
- 3. Flash attention 2.0 (2.3x faster than Performer-scBERT)
- 4. SiLU in place of ReLU/GLU (Objectively better than ReLU)

Improvements to improve parameter count(model complexity) while keeping the computational cost to a minimum

1. Sparse Mixture of Experts (8x improvement in model complexity, slight increase in computational cost)

Improvements for faster inference

1. Torch.compile (30% faster inference time)

Improvements to pre-training strategy

- 1. Improved Token Embeddings (
- 2. Improved masking (MLM + Masked Regression task)

For Faster training

- 1. Mixed precision training (2x improvement in throughput)
- 2. Distributed Data Parallel Training (Nx improvement in training time)
- 3. Faster Data Loading using MultDL (reduces cpu-gpu transfer latency)
- 4. Adafactor (More computationally efficient and memory efficient than Adam)
- 5. Data preloading (reduces data loading latency)

What downstream tasks are we planning to cover?

- Cell type annotation
- Perturb-seq effect prediction
- Drug combination prediction

Why these tasks?

The data is already available for scGPT and xTrimoGene. Making it easier for us to compare them.

Current Progress

Model	Code	Pre-training/Conversion	Benchmarking on downstream tasks	
Q-scBERT	Done	Done (~1 hr)		
Distilled scBERT (ours)	Done	In Progress(~4 hrs)	Most of the data and code required to benchmark on downstream tasks is done. We are waiting on the models to complete pre-training stage	
Q-Distilled scBERT (ours)	Done	In progress(~30 minutes)		
scBERT1.58 (ours)	Done	Done		
scBERT 2.0	Done*	To do (~30 hrs)		