Uniform Laws of Large Numbers

Jiuzhou Miao

School of Statistics and Mathematics, Zhejiang Gongshang University

March 19, 2025

- Motivation
- 2 A uniform law via Rademacher complexity
- Upper bounds on the Rademacher complexity

- Motivation

• Let X be a random varible with cumulative distribution function (CDF) $F(x) = \mathbb{P}(X \leq x)$, $x \in \mathbb{R}$ and $\{X_i\}_{i=1}^n$ be independent samples which have same distribution with X.

- Let X be a random varible with cumulative distribution function (CDF) $F(x) = \mathbb{P}(X \leq x), x \in \mathbb{R}$ and $\{X_i\}_{i=1}^n$ be independent samples which have same distribution with X.
- A natural estimation of F is the ECDF based on $\{X_i\}_{i=1}^n$, given by

$$\hat{F}_n(x) = n^{-1} \sum_{i=1}^n \mathbb{I}_{(-\infty,x]}(X_i) = n^{-1} \sum_{i=1}^n \mathbb{I}(X_i \le x).$$

Uniform Laws of Large Numbers

- Let X be a random varible with cumulative distribution function (CDF) $F(x) = \mathbb{P}(X \leq x), x \in \mathbb{R}$ and $\{X_i\}_{i=1}^n$ be independent samples which have same distribution with X.
- A natural estimation of F is the ECDF based on $\{X_i\}_{i=1}^n$, given by

$$\hat{F}_n(x) = n^{-1} \sum_{i=1}^n \mathbb{I}_{(-\infty,x]}(X_i) = n^{-1} \sum_{i=1}^n \mathbb{I}(X_i \le x).$$

• For any fixed $x \in \mathbb{R}$, the strong law of large numbers implies that $F_n(x) \to F(x)$ almost surely as $n \to \infty$.

- Let X be a random varible with cumulative distribution function (CDF) $F(x) = \mathbb{P}(X \leq x)$, $x \in \mathbb{R}$ and $\{X_i\}_{i=1}^n$ be independent samples which have same distribution with X.
- A natural estimation of F is the ECDF based on $\{X_i\}_{i=1}^n$, given by

$$\hat{F}_n(x) = n^{-1} \sum_{i=1}^n \mathbb{I}_{(-\infty,x]}(X_i) = n^{-1} \sum_{i=1}^n \mathbb{I}(X_i \le x).$$

- For any fixed $x \in \mathbb{R}$, the strong law of large numbers implies that $F_n(x) \to F(x)$ almost surely as $n \to \infty$.
- A natural goal is to strengthen this pointwise convergence to a form of uniform convergence.

The functionals of CDFs

 In statistical settings, a typical use of the ECDF is to construct estimators of various quantities associated with the (population) CDF.

5 / 45

The functionals of CDFs

- In statistical settings, a typical use of the ECDF is to construct estimators of various quantities associated with the (population) CDF.
- Many such estimation problems can be formulated in a terms of functional γ which maps any CDF F to a real number $\gamma(F)$.

The functionals of CDFs

- In statistical settings, a typical use of the ECDF is to construct estimators of various quantities associated with the (population) CDF.
- Many such estimation problems can be formulated in a terms of functional γ which maps any CDF F to a real number $\gamma(F)$.
- Given a set of samples distributed according to F, the plug-in principle suggests replacing the unknown F by \hat{F}_n , thereby obtaining $\gamma(\hat{F}_n)$ as an estimation of $\gamma(F)$.

Uniform Laws of Large Numbers

Expectation functionals

 \bullet Given some integrable function g, define the expectation functional γ_g by

$$\gamma_g(F) = \int g(x) dF(x).$$

6 / 45

Expectation functionals

• Given some integrable function q, define the expectation functional γ_a by

$$\gamma_g(F) = \int g(x) dF(x).$$

• For any q, the plug-in estimator is given by

$$\gamma_g(\hat{F}_n) = \int g(x) d\hat{F}_n(x) = n^{-1} \sum_{i=1}^n g(X_i).$$

Quantile functionals

• For any $\alpha \in [0,1]$, the quantile functional Q_{α} is given by

$$Q_{\alpha}(F) = \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}.$$

Quantile functionals

ullet For any $lpha \in [0,1]$, the quantile functional Q_lpha is given by

$$Q_{\alpha}(F) = \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}.$$

The plug-in estimate is given by

$$Q_{\alpha}(\hat{F}) = \inf\{x \in \mathbb{R} : \hat{F}_n(x) \ge \alpha\}.$$

Goodness-of-fit functionals

• It is frequently of interest to test the hypothesis of whether or not a given set of data has been drawn from a known distribution F_0 .

Goodness-of-fit functionals

- It is frequently of interest to test the hypothesis of whether or not a given set of data has been drawn from a known distribution F_0 .
- Such tests can be performed using functionals that measure the distance between F and F_0 , including sup-norm distance $\|F-F_0\|_{\infty}$ and Cramér–von Mises criterion based on the functional

$$\gamma(F) = \int_{-\infty}^{\infty} \{F(x) - F_0(x)\}^2 dF_0(x).$$

The continuity of a functional

ullet Let F and G be two CDF both defined on \mathbb{R} . Define the sup-norm between them by

$$||G - F||_{\infty} = \sup_{x \in \mathbb{R}} |G(x) - F(x)|.$$

Definition 1 (The continuity of a functional)

Let F and G are two CDFs. We say that the functional γ is continuous at F in the sup-norm if for all $\epsilon > 0$, there exists a $\delta > 0$ such that $\|G - F\|_{\infty} \le \delta$ implies that $|\gamma(G) - \gamma(F)| \le \epsilon$.

Glivenko-Cantelli's Theorem

• For any continuous functional γ , the consistency question for the plug-in estimator $\gamma(\hat{F}_n)$ can be reduced to the issue of whether or not $\|\hat{F}_n - F\|_{\infty}$ tends to zero.

Theorem 2 (Glivenko-Cantelli's Theorem)

For any CDF F, as $n \to \infty$, the ECDF \hat{F}_n is a strongly consistent estimator of F in the uniform norm. i.e..

$$\|\hat{F}_n - F\|_{\infty} = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F(x)| \to 0$$

almost surely.

Uniform laws for more general function classes

• Let $\mathcal F$ be a class of integrable real-valued functions with domain $\mathcal X$ and X be a random variable with distribution $\mathbb P$. Let $\{X_i\}_{i=1}^n$ be independent random variables which have same distribution with X.

Uniform laws for more general function classes

- Let \mathcal{F} be a class of integrable real-valued functions with domain \mathcal{X} and X be a random variable with distribution \mathbb{P} . Let $\{X_i\}_{i=1}^n$ be independent random variables which have same distribution with X.
- Define the random variable

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n f(X_i) - \mathbb{E}\{f(X)\} \right|.$$

Glivenko-Cantelli class

Definition 3 (Glivenko-Cantelli class)

We say that \mathcal{F} is \mathbb{P} -Glivenko-Cantelli [or strong \mathbb{P} -Glivenko-Cantelli] if $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ converges to zero in probability [or almost surely].

• When $\mathcal{F} = \{\mathbb{I}_{(-\infty,x]}(\cdot) : x \in \mathbb{R}\}$, one has that

$$\mathbb{E}\left\{\mathbb{I}_{(-\infty,x]}(X)\right\} = \mathbb{P}(X \le x)$$

for fixed x, so that the classical Glivenko-Cantelli theorem is equivalent to a strong uniform law for the class \mathcal{F} .

Uniform Laws of Large Numbers

• Let S be the class of all subsets S of [0,1] such that the subset S has a finite number of elements. Consider the function class

$$\mathcal{F}_S = \{ \mathbb{I}_S(\cdot) : S \in \mathcal{S} \}.$$

• Let S be the class of all subsets S of [0,1] such that the subset S has a finite number of elements. Consider the function class

$$\mathcal{F}_S = \{ \mathbb{I}_S(\cdot) : S \in \mathcal{S} \}.$$

• Suppose that samples $\{X_i\}_{i=1}^n$ are drawn from some distribution \mathbb{P} over [0,1] which satisfies that $\mathbb{P}(\{x\})=0$ for all $x \in [0, 1]$.

• Let S be the class of all subsets S of [0,1] such that the subset S has a finite number of elements. Consider the function class

$$\mathcal{F}_S = \{ \mathbb{I}_S(\cdot) : S \in \mathcal{S} \}.$$

- Suppose that samples $\{X_i\}_{i=1}^n$ are drawn from some distribution \mathbb{P} over [0,1] which satisfies that $\mathbb{P}(\{x\})=0$ for all $x \in [0, 1]$.
- This class includes any distribution that has a density with respect to Lebesgue measure. Then $\mathbb{P}(S) = 0$ for all $S \in \mathcal{S}$.

• However, for any positive integer n, the discrete set $\{X_1,\ldots,X_n\}$ belongs to \mathcal{S} , which implies that

$$\mathbb{P}\big[\{X_1,\ldots,X_n\}\big]=1$$

and

$$\sup_{S \in \mathcal{S}} \left| \mathbb{P}_n(S) - \mathbb{P}(S) \right| = 1.$$

• However, for any positive integer n, the discrete set $\{X_1,\ldots,X_n\}$ belongs to \mathcal{S} , which implies that

$$\mathbb{P}\big[\{X_1,\ldots,X_n\}\big]=1$$

and

$$\sup_{S \in \mathcal{S}} \left| \mathbb{P}_n(S) - \mathbb{P}(S) \right| = 1.$$

• \mathcal{F}_S is not \mathbb{P} -Glivenko-Cantelli.

• Consider an indexed family of probability distributions $\{\mathbb{P}_{\theta}: \theta \in \Theta\}.$

- Consider an indexed family of probability distributions $\{\mathbb{P}_{\theta}:\theta\in\Theta\}.$
- Let $\{X_i\}_{i=1}^n$ be i.i.d. samples lying in some space \mathcal{X} which are drawn according to \mathbb{P}_{θ^*} , where $\theta^* \in \Theta$ is fixed and unknown.

- Consider an indexed family of probability distributions $\{\mathbb{P}_{\theta}: \theta \in \Theta\}.$
- Let $\{X_i\}_{i=1}^n$ be i.i.d. samples lying in some space \mathcal{X} which are drawn according to \mathbb{P}_{θ^*} , where $\theta^* \in \Theta$ is fixed and unknown.
- Let $L: \mathcal{X} \times \Theta \to \mathbb{R}$ be a loss function. The quantity

$$R(\theta) = \mathbb{E}_{X \sim \mathbb{P}_{\theta^*}} \{ L(X, \theta) \}$$

is called as population risk.

Correspondingly, the quantity

$$\hat{R}_n(\theta) = n^{-1} \sum_{i=1}^n L(X_i, \theta)$$

is called as empirical risk.

Correspondingly, the quantity

$$\hat{R}_n(\theta) = n^{-1} \sum_{i=1}^n L(X_i, \theta)$$

is called as empirical risk.

• A standard decision-theoretic approach to estimating θ^* is based on minimizing the empirical risk $\hat{R}_n(\theta)$ over $\Theta_0 \subseteq \Theta$, thereby obtaining an estimator $\hat{\theta}$.

• Consider a parameterized family of distributions $\{\mathbb{P}_{\theta}: \theta \in \Theta\}$ that each \mathbb{P}_{θ} has a strictly positive density $p_{\theta}(\cdot)$ defined with respect to a common underlying measure.

- Consider a parameterized family of distributions $\{\mathbb{P}_{\theta}: \theta \in \Theta\}$ that each \mathbb{P}_{θ} has a strictly positive density $p_{\theta}(\cdot)$ defined with respect to a common underlying measure.
- Let $\{X_i\}_{i=1}^n$ be i.i.d. samples from an unknown distribution \mathbb{P}_{θ^*} and and we would like to estimate the unknown θ^* .

- Consider a parameterized family of distributions $\{\mathbb{P}_{\theta}: \theta \in \Theta\}$ that each \mathbb{P}_{θ} has a strictly positive density $p_{\theta}(\cdot)$ defined with respect to a common underlying measure.
- Let $\{X_i\}_{i=1}^n$ be i.i.d. samples from an unknown distribution \mathbb{P}_{θ^*} and and we would like to estimate the unknown θ^* .
- Consider the loss function

$$L(x,\theta) = \log \{p_{\theta^*}(x)/p_{\theta}(x)\}.$$

The term $p_{\theta^*}(x)$ has no effect on the minimization over θ .

• The maximum likelihood estimation is obtained by minimizing

$$\hat{\theta} = \arg\min_{\theta \in \Theta_0 \subseteq \Theta} \underbrace{\left[n^{-1} \sum_{i=1}^n \log \left\{ p_{\theta^*}(X_i) / p_{\theta}(X_i) \right\} \right]}_{\hat{R}_n(\theta)}$$

$$= \arg\min_{\theta \in \Theta_0 \subseteq \Theta} \left[n^{-1} \sum_{i=1}^n \log \left\{ 1 / p_{\theta}(X_i) \right\} \right].$$

The maximum likelihood estimation is obtained by minimizing

$$\hat{\theta} = \arg\min_{\theta \in \Theta_0 \subseteq \Theta} \underbrace{\left[n^{-1} \sum_{i=1}^n \log \left\{ p_{\theta^*}(X_i) / p_{\theta}(X_i) \right\} \right]}_{\hat{R}_n(\theta)}$$

$$= \arg\min_{\theta \in \Theta_0 \subseteq \Theta} \left[n^{-1} \sum_{i=1}^n \log \left\{ 1 / p_{\theta}(X_i) \right\} \right].$$

• The population risk is given by

$$R(\theta) = \mathbb{E}_{X \sim \mathbb{P}_{\theta^*}} \Big[\log \big\{ p_{\theta^*}(X) / p_{\theta}(X) \big\} \Big],$$

known as the Kullback-Leibler divergence between p_{θ^*} and p_{θ} .

Uniform Laws of Large Numbers

• The statistical question is how to bound the excess risk

$$\mathrm{ER}(\theta) = R(\hat{\theta}) - \inf_{\theta \in \Theta_0} R(\theta).$$

The statistical question is how to bound the excess risk

$$\mathrm{ER}(\theta) = R(\hat{\theta}) - \inf_{\theta \in \Theta_0} R(\theta).$$

• For simplicity, assume that there exists some $\theta_0 \in \Theta_0$ such that $R(\theta_0) = \inf_{\theta \in \Theta_0} R(\theta)$.

The statistical question is how to bound the excess risk

$$\mathrm{ER}(\theta) = R(\hat{\theta}) - \inf_{\theta \in \Theta_0} R(\theta).$$

- For simplicity, assume that there exists some $\theta_0 \in \Theta_0$ such that $R(\theta_0) = \inf_{\theta \in \Theta_0} R(\theta)$.
- With this notation, the excess risk can be decomposed as

$$ER(\theta) = \underbrace{R(\hat{\theta}) - \hat{R}_n(\hat{\theta})}_{T_{n1}} + \underbrace{\hat{R}_n(\hat{\theta}) - \hat{R}_n(\theta_0)}_{T_{n2}} + \underbrace{\hat{R}_n(\theta_0) - R(\theta_0)}_{T_{n3}}.$$

The statistical question is how to bound the excess risk

$$ER(\theta) = R(\hat{\theta}) - \inf_{\theta \in \Theta_0} R(\theta).$$

- For simplicity, assume that there exists some $\theta_0 \in \Theta_0$ such that $R(\theta_0) = \inf_{\theta \in \Theta_0} R(\theta)$.
- With this notation, the excess risk can be decomposed as

$$ER(\theta) = \underbrace{R(\hat{\theta}) - \hat{R}_n(\hat{\theta})}_{T_{n1}} + \underbrace{\hat{R}_n(\hat{\theta}) - \hat{R}_n(\theta_0)}_{T_{n2}} + \underbrace{\hat{R}_n(\theta_0) - R(\theta_0)}_{T_{n3}}.$$

• Obviously, $T_{n2} < 0$.

Recall that

$$T_{n1} = \mathbb{E}_{X \sim \mathbb{P}_{\theta^*}} \{ L(X, \hat{\theta}) \} - n^{-1} \sum_{i=1}^{n} L(X_i, \hat{\theta}),$$
$$T_{n3} = n^{-1} \sum_{i=1}^{n} L(X_i, \theta_0) - \mathbb{E}_{X \sim \mathbb{P}_{\theta^*}} \{ L(X, \theta_0) \}.$$

Recall that

$$T_{n1} = \mathbb{E}_{X \sim \mathbb{P}_{\theta^*}} \{ L(X, \hat{\theta}) \} - n^{-1} \sum_{i=1}^{n} L(X_i, \hat{\theta}),$$

$$T_{n3} = n^{-1} \sum_{i=1}^{n} L(X_i, \theta_0) - \mathbb{E}_{X \sim \mathbb{P}_{\theta^*}} \{ L(X, \theta_0) \}.$$

Define the function class

$$\mathcal{L}(\Theta_0) = \{ x \mapsto L(x, \theta) : \theta \in \Theta_0 \},\$$

then $T_{n1} + T_{n3}$ is bounded by $2\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{L}(\Theta_0)}$.

- 2 A uniform law via Rademacher complexity

Rademacher complexity of the function class

 \bullet Let \mathcal{F} be a function class. For any collection $x_1^n = \{x_1, \dots, x_n\}$, consider the subset of \mathbb{R}^n given by

$$\mathcal{F}(x_1^n) = \left\{ \left(f(x_1), \dots, f(x_n) \right)^\mathsf{T} : f \in \mathcal{F} \right\}.$$

Motivation

Rademacher complexity of the function class

• Let \mathcal{F} be a function class. For any collection $x_1^n = \{x_1, \dots, x_n\}$, consider the subset of \mathbb{R}^n given by

$$\mathcal{F}(x_1^n) = \Big\{ \big(f(x_1), \dots, f(x_n) \big)^\mathsf{T} : f \in \mathcal{F} \Big\}.$$

• Let $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)^{\mathsf{T}}$ where $\{\varepsilon_i\}_{i=1}^n$ are i.i.d. Rademacher random variables. The Rademacher complexity of $\mathcal{F}(x_1^n)/n$ is given by

$$\mathcal{R}(\mathcal{F}(x_1^n)/n) = \mathbb{E}_{\epsilon} \left\{ \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n \varepsilon_i f(x_i) \right| \right\},$$

where $\mathcal{F}(x_1^n)/n$ denotes the set with elements $\left(f(x_1)/n,\ldots,f(x_n)/n\right)^\mathsf{T}$ for $f\in\mathcal{F}$.

Rademacher complexity of the function class

• Let $\mathbf{X} = (X_1, \dots, X_n)^\mathsf{T}$ where $\{X_i\}_{i=1}^n$ are i.i.d. random variables. The quantity $\mathcal{R}(\mathcal{F}(X_1^n)/n)$ is still a random variable.

- Let $\mathbf{X} = (X_1, \dots, X_n)^\mathsf{T}$ where $\{X_i\}_{i=1}^n$ are i.i.d. random variables. The quantity $\mathcal{R}(\mathcal{F}(X_1^n)/n)$ is still a random variable.
- The quantity

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\mathbf{X}} \left\{ \mathcal{R}(\mathcal{F}(X_1^n)/n) \right\} = \mathbb{E}_{\mathbf{X}, \boldsymbol{\varepsilon}} \left\{ \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n \varepsilon_i f(X_i) \right| \right\}$$

is called as Rademacher complexity of the function class \mathcal{F} .

School of Statistics and Mathematics. Zheijang Gongshang University

Motivation

Theorem 4 (Upper bound of $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$)

Let \mathcal{F} be a function class which satisfies that $||f||_{\infty} \leq b$ for each $f \in \mathcal{F}$. For any positive integer n and t > 0, one has that

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \le 2\mathcal{R}_n(\mathcal{F}) + t$$

with \mathbb{P} -probability at least $1-e^{-\frac{nt^2}{2b^2}}$. Consequently, as long as $\mathcal{R}_n(\mathcal{F}) = o(1)$, one has that \mathcal{F} is \mathbb{P} -Glivenko-Cantelli.

Motivation

Outline of proof

• The proof of Theorem 4 involves two steps.

Outline of proof

- The proof of Theorem 4 involves two steps.
- Concentration around mean: Show that for any t > 0,

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \le \mathbb{E}(\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}) + t$$

with \mathbb{P} -probability at least $1-e^{-\frac{nt^2}{2b^2}}$.

Outline of proof

- The proof of Theorem 4 involves two steps.
- Concentration around mean: Show that for any t > 0,

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \le \mathbb{E}(\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}) + t$$

with \mathbb{P} -probability at least $1-e^{-\frac{nt^2}{2b^2}}$.

Upper bound on mean: Show that

$$\mathbb{E}(\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}) \le 2\mathcal{R}_n(\mathcal{F}).$$

Necessary conditions with Rademacher complexity

• The proof of Theorem 4 illustrates an important technique known as symmetrization, which relates the random variable $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ to its symmetrized version

$$||S_n||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n \varepsilon_i f(X_i) \right|.$$

Necessary conditions with Rademacher complexity

• The proof of Theorem 4 illustrates an important technique known as symmetrization, which relates the random variable $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ to its symmetrized version

$$||S_n||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n \varepsilon_i f(X_i) \right|.$$

 It is natural to wonder whether much was lost in moving from the variable to its symmetrized version.

• The proof of Theorem 4 illustrates an important technique known as symmetrization, which relates the random variable $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ to its symmetrized version

$$||S_n||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^n \varepsilon_i f(X_i) \right|.$$

- It is natural to wonder whether much was lost in moving from the variable to its symmetrized version.
- Denote

$$\check{\mathcal{F}} = \Big\{ f - \mathbb{E}_X \big\{ f(X) \big\} : f \in \mathcal{F} \Big\},$$

where X is a random variable from \mathbb{P} .

School of Statistics and Mathematics, Zheijang Gongshang University

Motivation

Necessary conditions with Rademacher complexity

<u>Proposition 5 (Sandwich results on $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ and $\|S_n\|_{\mathcal{F}}$)</u>

For any convex and non-decreasing function $\phi: \mathbb{R} \to \mathbb{R}$, one has that

$$\mathbb{E}_{\mathbf{X},\boldsymbol{\varepsilon}}\Big\{\phi\big(\|S_n\|_{\check{\mathcal{F}}}/2\big)\Big\} \leq \mathbb{E}_{\mathbf{X}}\Big\{\phi\big(\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}\big)\Big\} \leq \mathbb{E}_{\mathbf{X},\boldsymbol{\varepsilon}}\Big\{\phi\big(2\|S_n\|_{\mathcal{F}}\big)\Big\}.$$

• When $\phi(t) = t$, Proposition 5 implies that

$$\mathbb{E}_{\mathbf{X},\boldsymbol{\varepsilon}}\{\|S_n\|_{\check{\mathcal{F}}}\}/2 \leq \mathbb{E}_{\mathbf{X}}\{\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}\} \leq 2\mathbb{E}_{\mathbf{X},\boldsymbol{\varepsilon}}\{\|S_n\|_{\mathcal{F}}\}.$$

Theorem 6 (Lower bound of $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$)

Under the assumption of Theorem 4, for any positive integer n and t>0, one has that

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \ge 2^{-1} \mathcal{R}_n(\mathcal{F}) - 2^{-1} n^{-1/2} \sup_{f \in \mathcal{F}} \left| \mathbb{E} \left\{ f(X) \right\} \right| - t$$

with \mathbb{P} -probability at least $1-e^{-\frac{nt^2}{2b^2}}$.

School of Statistics and Mathematics. Zheijang Gongshang University

Motivation

- Motivation
- 2 A uniform law via Rademacher complexity
- 3 Upper bounds on the Rademacher complexity

Recall the notation

$$\mathcal{F}(x_1^n) = \Big\{ \big(f(x_1), \dots, f(x_n) \big)^\mathsf{T} : f \in \mathcal{F} \Big\}.$$

For a given collection of points $x_1^n = \{x_1, \dots, x_n\}$, the "size" of $\mathcal{F}(x_1^n)$ provides a sample-dependent measure of the complexity of \mathcal{F} .

Recall the notation

$$\mathcal{F}(x_1^n) = \left\{ \left(f(x_1), \dots, f(x_n) \right)^\mathsf{T} : f \in \mathcal{F} \right\}.$$

For a given collection of points $x_1^n = \{x_1, \dots, x_n\}$, the "size" of $\mathcal{F}(x_1^n)$ provides a sample-dependent measure of the complexity of \mathcal{F} .

• Consider that $\mathcal{F}(x_1^n)$ contains only a finite number of vectors for all sample sizes, so that its "size" can be measured via its cardinality.

Recall the notation

$$\mathcal{F}(x_1^n) = \left\{ \left(f(x_1), \dots, f(x_n) \right)^\mathsf{T} : f \in \mathcal{F} \right\}.$$

For a given collection of points $x_1^n = \{x_1, \dots, x_n\}$, the "size" of $\mathcal{F}(x_1^n)$ provides a sample-dependent measure of the complexity of \mathcal{F} .

- Consider that $\mathcal{F}(x_1^n)$ contains only a finite number of vectors for all sample sizes, so that its "size" can be measured via its cardinality.
- If \mathcal{F} consists of a family of binary-valued functions, then $\mathcal{F}(x_1^n)$ can contain at most 2^n elements. Of interest to us are function classes for which this cardinality grows only as a polynomial function of n.

Definition 7 (Polynomial discrimination)

Let \mathcal{F} be a class consisting a family of binary-valued functions on \mathcal{X} . We say that \mathcal{F} has polynomial discrimination of order $\nu > 1$ if for each positive integer n and collection $x_1^n = \{x_1, \dots, x_n\}$ of npoints in \mathcal{X} , $\mathcal{F}(x_1^n)$ has cardinality upper bounded as

$$\operatorname{Card}(\mathcal{F}(x_1^n)) \le (n+1)^{\nu}.$$

• The significance of this property is that it provides a straightforward approach to controlling the Rademacher complexity.

Upper bound of the Rademacher complexity

Proposition 8 (Upper bound of $\mathcal{R}(\mathcal{F}(x_1^n)/n)$)

Suppose that \mathcal{F} has polynomial discrimination of order ν . Then for all positive integers n and any collection of points $x_1^n = \{x_1, \dots, x_n\}$, one has that

$$\underbrace{\mathbb{E}_{\varepsilon} \left\{ \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \varepsilon_{i} f(x_{i}) \right| \right\}}_{\mathcal{R}(\mathcal{F}(x_{1}^{n})/n)} \leq 4D(x_{1}^{n}) \sqrt{\nu \log (n+1)/n},$$

where
$$D(x_1^n) = n^{-1/2} \sup_{f \in \mathcal{F}} \sqrt{\sum_{i=1}^n f^2(x_i)}$$
.

• When the function class is b uniformly bounded, then one has that $D(x_1^n)$ is bounded by b uniformly for all points x_1^n , which implies that

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\mathbf{X}} \left\{ \mathcal{R}(\mathcal{F}(X_1^n)/n) \right\} \le 4b\sqrt{\nu \log (n+1)/n}.$$

School of Statistics and Mathematics, Zhejiang Gongshang University

Motivation

Upper bound of the Rademacher complexity

• When the function class is b uniformly bounded, then one has that $D(x_1^n)$ is bounded by b uniformly for all points x_1^n , which implies that

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\mathbf{X}} \{ \mathcal{R}(\mathcal{F}(X_1^n)/n) \} \le 4b\sqrt{\nu \log (n+1)/n}.$$

 As discussed previously, the classical Glivenko-Cantelli law is based on indicator functions of $(-\infty, t]$, which are uniformly bounded by b = 1.

Upper bound of the Rademacher complexity

• When the function class is b uniformly bounded, then one has that $D(x_1^n)$ is bounded by b uniformly for all points x_1^n , which implies that

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\mathbf{X}} \left\{ \mathcal{R}(\mathcal{F}(X_1^n)/n) \right\} \le 4b\sqrt{\nu \log (n+1)/n}.$$

- As discussed previously, the classical Glivenko-Cantelli law is based on indicator functions of $(-\infty, t]$, which are uniformly bounded by b=1.
- We will apply Proposition 8 and Theorem 4 to give a version proof of Theorem 2.

Classical Glivenko-Cantelli's Theorem

Theorem 9 (Classical Glivenko-Cantelli)

Let $F(x) = \mathbb{P}(X \leq x)$ be the CDF of a random variable X and $\hat{F}_n(x)$ be the ECDF based on n i.i.d. samples $\{X_i\}_{i=1}^n$ from \mathbb{P} . Then one has that for all t>0

$$\|\hat{F}_n - F\|_{\infty} \le 8\sqrt{\log(1+n)/n} + t$$

with \mathbb{P} -probability at least $1 - e^{-nt^2/2}$, which implies that as $n \to \infty$, $\|\hat{F}_n - F\|_{\infty} \to 0$ almost surely.

Vapnik-Chervonenkis (VC) dimension

Definition 10 (Shattering and VC dimension)

Given a class \mathcal{F} of binary-valued functions, we say that the set $x_1^n = \{x_1, \dots, x_n\}$ is shattered by \mathcal{F} if $\operatorname{Card}(\mathcal{F}(x_1^n)) = 2^n$. The VC dimension $\nu(\mathcal{F})$ is the largest integer n for which there is some collection x_1^n of n points that is shattered by \mathcal{F} .

• When $\nu(\mathcal{F}) < \infty$, \mathcal{F} is said to be a VC class.

Vapnik-Chervonenkis (VC) dimension

Definition 10 (Shattering and VC dimension)

Given a class \mathcal{F} of binary-valued functions, we say that the set $x_1^n = \{x_1, \dots, x_n\}$ is shattered by \mathcal{F} if $\operatorname{Card}(\mathcal{F}(x_1^n)) = 2^n$. The VC dimension $\nu(\mathcal{F})$ is the largest integer n for which there is some collection x_1^n of n points that is shattered by \mathcal{F} .

- When $\nu(\mathcal{F}) < \infty$, \mathcal{F} is said to be a VC class.
- When \mathcal{F} is consisted by indicator functions $\mathbb{I}_S(\cdot)$ for $S \in \mathcal{S}$, we use $\mathcal{S}(x_1^n)$ and $\nu(\mathcal{S})$ to denote $\mathcal{F}(x_1^n)$ and $\nu(\mathcal{F})$ respectively.

 Consider the class of all indicator functions for left-sided half-intervals on the real line, i.e., the class

$$\mathcal{S}_1 = \{(-\infty, a] : a \in \mathbb{R}\}.$$

We have shown that for any collection $x_1^n = \{x_1, \dots, x_n\}$, $\operatorname{Card}(\mathcal{S}_1(x_1^n)) \le n+1.$

 Consider the class of all indicator functions for left-sided half-intervals on the real line, i.e., the class

$$S_1 = \{(-\infty, a] : a \in \mathbb{R}\}.$$

We have shown that for any collection $x_1^n = \{x_1, \dots, x_n\}$, $\operatorname{Card}(\mathcal{S}_1(x_1^n)) \le n+1.$

• For any single point x_1 , the collection $\{x_1\}$ can be be picked out by the class S_1 . But given two distinct points $x_1 < x_2$, it is impossible to find a left-sided interval that contains x_2 but not x_1 . Therefore, we conclude that $\nu(S_1) = 1$.

 Consider the class of all indicator functions for two-sided intervals on the real line, i.e., the class

$$S_2 = \{(a, b] : a, b \in \mathbb{R}, a < b\}.$$

 Consider the class of all indicator functions for two-sided intervals on the real line. i.e., the class

$$S_2 = \{(a, b] : a, b \in \mathbb{R}, a < b\}.$$

• The class S_2 can shatter any two-point set. But given three distinct points $x_1 < x_2 < x_3$, it cannot pick out the subset $\{x_1, x_3\}$, which implies that $\nu(\mathcal{S}_2) = 2$.

Intervals in \mathbb{R}

 Consider the class of all indicator functions for two-sided intervals on the real line, i.e., the class

$$S_2 = \{(a, b] : a, b \in \mathbb{R}, a < b\}.$$

- The class S_2 can shatter any two-point set. But given three distinct points $x_1 < x_2 < x_3$, it cannot pick out the subset $\{x_1, x_3\}$, which implies that $\nu(\mathcal{S}_2) = 2$.
- Note that any collection of n distinct points $x_1 < \cdots < x_n$ divides up the real line into n+1 intervals. Thus, any set of the form (a, b] can be specified by choosing one of n + 1intervals for a and a second interval for b, which implies that this class has polynomial discrimination with $\nu = 2$.

Connection between VC dimension and polynomial discrimination

Theorem 11 (Vapnik-Chervonenkis, Sauer and Shelah)

Consider a set class S with $\nu(S) < \infty$. Then for any collection of points $x_1^n = \{x_1, \dots, x_n\}$ with $n \ge \nu(\mathcal{S})$, one has that

$$\operatorname{Card}(\mathcal{S}(x_1^n)) \le \sum_{i=0}^{\nu(\mathcal{S})} \binom{n}{i} \le (n+1)^{\nu(\mathcal{S})}.$$

Operations on VC classes

Proposition 12 (Operations on VC classes)

Let S and T be set classes, each with finite VC dimensions $\nu(S)$ and $\nu(\mathcal{T})$ respectively. Then each of the following set classes also have finite VC dimension:

- (1) $S^c = \{S^c : S \in S\}.$
- (2) $S \sqcup T = \{S \cup T : S \in S, T \in T\}.$
- (3) $S \cap T = \{S \cap T : S \in S, T \in T\}.$

Motivation

Definition 13 (Subgraph)

Let $g: \mathcal{X} \to \mathbb{R}$ be a function, the subset of \mathcal{X}

$$S_g = \left\{ x \in \mathcal{X} : g(x) \le 0 \right\}$$

is called as the subgraph of q at level zero. Let \mathcal{G} be a function class, the collection of subsets

$$\mathcal{S}(\mathcal{G}) = \{ S_g : g \in \mathcal{G} \}$$

is called as the subgraph class of \mathcal{G} .

Vector space structure

Proposition 14 (Finite-dimensional vector spaces)

Let \mathcal{G} be a vector space of functions $g: \mathbb{R}^d \to \mathbb{R}$ with dimension $\dim(\mathcal{G}) < \infty$. Then the subgraph class $\mathcal{S}(\mathcal{G})$ has VC dimension at *most* dim (\mathcal{G}) .

Linear functions in \mathbb{R}^d

• For a pair $(a,b) \in \mathbb{R}^d \times \mathbb{R}$, define $f_{a,b}(x) = \langle a, x \rangle + b$ and consider the family

$$\mathcal{L}^d = \{f_{\boldsymbol{a},b} : (\boldsymbol{a},b) \in \mathbb{R}^d \times \mathbb{R}\}.$$

Motivation

• For a pair $(a,b) \in \mathbb{R}^d \times \mathbb{R}$, define $f_{a,b}(x) = \langle a,x \rangle + b$ and consider the family

$$\mathcal{L}^d = \{ f_{\boldsymbol{a},b} : (\boldsymbol{a},b) \in \mathbb{R}^d \times \mathbb{R} \}.$$

• The associated subgraph class $\mathcal{S}(\mathcal{L}^d)$ corresponds to the collection of all half-spaces of the form

$$H_{\boldsymbol{a},b} = \{ \boldsymbol{x} \in \mathbb{R}^d : \langle \boldsymbol{a}, \boldsymbol{x} \rangle + b \le 0 \}.$$

Linear functions in \mathbb{R}^d

• For a pair $(a,b) \in \mathbb{R}^d \times \mathbb{R}$, define $f_{a,b}(x) = \langle a,x \rangle + b$ and consider the family

$$\mathcal{L}^d = \{ f_{\boldsymbol{a},b} : (\boldsymbol{a},b) \in \mathbb{R}^d \times \mathbb{R} \}.$$

• The associated subgraph class $\mathcal{S}(\mathcal{L}^d)$ corresponds to the collection of all half-spaces of the form

$$H_{\boldsymbol{a},b} = \{ \boldsymbol{x} \in \mathbb{R}^d : \langle \boldsymbol{a}, \boldsymbol{x} \rangle + b \leq 0 \}.$$

• \mathcal{L}^d forms a vector space of dimension d+1, one has that $\mathcal{S}(\mathcal{L}^d)$ has VC dimension at most d+1.

Consider the sphere

$$S_{\boldsymbol{a},b} = \left\{ \boldsymbol{x} \in \mathbb{R}^d : \|\boldsymbol{x} - \boldsymbol{a}\|_2 \le b, (\boldsymbol{a},b) \in \mathbb{R}^d \times \mathbb{R}_+ \right\}$$

and let \mathcal{S}^d be the collection of all such spheres.

Consider the sphere

$$S_{\boldsymbol{a},b} = \left\{ \boldsymbol{x} \in \mathbb{R}^d : \|\boldsymbol{x} - \boldsymbol{a}\|_2 \le b, (\boldsymbol{a},b) \in \mathbb{R}^d \times \mathbb{R}_+ \right\}$$

and let S^d be the collection of all such spheres.

Define

$$f_{a,b}(x) = ||x||_2^2 - 2\langle a, x \rangle + ||a||_2^2 - b^2,$$

then one has that

$$S_{\boldsymbol{a},b} = \{ \boldsymbol{x} \in \mathbb{R}^d : f_{\boldsymbol{a},b}(\boldsymbol{x}) \le 0 \},$$

so that the sphere $S_{a,b}$ is a subgraph of the function $f_{a,b}$.

• Define a feature map $\phi: \mathbb{R}^d \to \mathbb{R}^{d+2}$ via

$$\phi(\mathbf{x}) = (1, x_1, \dots, x_d, ||x||_2^2)^{\mathsf{T}}$$

and then consider functions of the form $g_c(x) = \langle c, x \rangle$, $oldsymbol{c} \in \mathbb{R}^{d+2}$

• Define a feature map $\phi: \mathbb{R}^d \to \mathbb{R}^{d+2}$ via

$$\phi(\mathbf{x}) = (1, x_1, \dots, x_d, ||x||_2^2)^{\mathsf{T}}$$

and then consider functions of the form $g_c(x) = \langle c, x \rangle$, $c \in \mathbb{R}^{d+2}$

• The family of functions $\{g_{\boldsymbol{c}}: \boldsymbol{c} \in \mathbb{R}^{d+2}\}$ is a vector space of dimension d+2 and contains the function class $\{f_{\boldsymbol{a},b}:(\boldsymbol{a},b)\in\mathbb{R}^d\times\mathbb{R}_+\}.$

Motivation

• Define a feature map $\phi: \mathbb{R}^d \to \mathbb{R}^{d+2}$ via

$$\phi(\mathbf{x}) = (1, x_1, \dots, x_d, ||\mathbf{x}||_2^2)^\mathsf{T}$$

and then consider functions of the form $g_c(x) = \langle c, x \rangle$, $c \in \mathbb{R}^{d+2}$

- The family of functions $\{g_{\boldsymbol{c}}: \boldsymbol{c} \in \mathbb{R}^{d+2}\}$ is a vector space of dimension d+2 and contains the function class $\{f_{\boldsymbol{a},b}:(\boldsymbol{a},b)\in\mathbb{R}^d\times\mathbb{R}_+\}.$
- By applying Proposition 14 to this larger vector space, one has that $\nu(\mathcal{S}^d) \leq d+2$.

Thank You