Elektronika

XIII. JFET, MOSFET Tirisztor, Triac, ...

13.1. Térvezérlésű tranzisztorok

<u>FET</u>

- FET field effect transistor
- unipoláris (csak egy típusú töltéshordozó)
- feszültség által vezérelt, a vezérlő áram elhanyagolható !! → kisebb fogyasztás
- három kivezetéses eszköz →
 - G gate, vezérlés (mint a bázis)
 - S source (mint az emitter)
 - D drain (mint a kollektor)

Két alap típusa

JFET

- záró réteges FET (junction FET)
- két típusa van →
 N csatornás JFET
 P csatornás JFET

MOSFET

- szigetelt kapu elektródás FET (metal oxid semiconductor FET)
- két altípusa van →
 kiürítéses MOSFET
 növekményes MOSFET
- mindkét altípus lehet
 N csatornás, vagy P csatornás

13.2. JFET

1. JFET felépítése

- junction field effect transistor → záró réteges térvezérlésű tranzisztor
- záró réteges → záró irányban kell előfeszíteni a P-N átmenetét → IG ≈ 0 !!
- a záró G-S feszültség változtatásával lehet vezérelni S és D között folyó áram nagyságát

(UGS feszültség nő → kiürített réteg szélessége nő → ID áram csökken)

- lehet N csatornás, vagy P csatornás

13.2. JFET

2. JFET karakterisztikák

- mint négypólust vizsgáljuk, → egyik kivezetés közös
- közös source kapcsolás (n csatornás FET) ———

Bemeneti karakterisztika

- nincs, mert a $I_G \approx 0$!!
- differenciális bemeneti ellenállás → r_{GS} ≈ néhány GΩ

Kimeneti karakterisztika

Ups és Id közötti kapcsolatot mutatja

elzáródásmentes tartomány
 (ha UDS < UGS - Up)

Ups - ID között ~ lineáris kapcsolatot

elzáródásos tartomány

(ha UDS > UGS - Up)

ID csak kicsit függ UDS értékétől !!

ID ilyenkor UGS értékétől függ

differenciális kimeneti ellenállás

→ rds =ΔUds / ΔId ha Ugs állandó

 $r_{DS} \approx 80 - 100 \text{ k}\Omega$

1/r_{DS} → y₂₂s paraméter

13.2. JFET

2. JFET karakterisztikák

Transzfer karakterisztika

 - Ugs és ID közötti kapcsolatot mutatja (elzáródásos tartományban)

ha Ugs = 0 akkor folyik a legnagyobb ID áram (IDS)

Up feszültséget elérve (lezárási feszültség) ID áram már nagyon kicsi lesz → a JFET lezár

 Az áram az alábbi közelítő képlettel számítható (elzáródásos tartományban):

$$ID = IDS * (1 - UGS / Up)^2$$

- **JFET meredeksége** (M munkapontban)
 - → $S = \Delta ID / \Delta UGS$ ha UDS állandó $S \approx 3 - 10 \text{ mA/V}$

S → y21s paraméter !!

Számítások JFET-el

Hurok törvény (jobb oldali hurok):

$$UT - US - UDS - URD = 0$$

$$UT = US + UDS + URD$$

Hurok törvény (bal oldali hurok):

$$Ug - Us - Ugs = 0$$

$$\rightarrow Us = -Ugs$$

1. mintafeladat:

UT = 12V
ID0 = 4mA
UGS0 = -3V UDS0 = 5V
Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

1. mintafeladat, megoldás:

R_G értéke majdnem tetszőleges lehet, csak ne legyen túl nagy! max. néhány MΩ UT = 12V
ID0 = 4mA
UGS0 = -3V UDS0 = 5V
Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

Megoldás

```
JFET
ID0 = IS0 = 4 mA
IG0 = 0

Bal oldali hurok
UG = 0!!

US = - UGS0 = 3 V

RS = US / IS0 = 3 V / 4 mA = 0,75 kΩ

Jobb oldali hurok
UT = US + UDS0 + URD
URD = UT - US - UDS0 = 12 - 3 - 5 V = 4 V

RD = URD / ID0 = 4 V / 4 mA = 1 kΩ
```

2. mintafeladat:

 $U_T = 12V$ $I_{D0} = 2,5mA$ $I_{DS} = 10 mA$ $U_p = -4V$ $U_{DS0} = 6V$ Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

Megoldás

```
JFET

ID0 = IS0 = 2,5 mA

IG0 = 0

ID = IDS * (1 - UGS / Up)^2

UGS0 = Up * (1 - \sqrt{ID0 / IDS}) = -4V * (1 - \sqrt{2,5 / 10})

UGS0 = -2 V
```

Bal oldali hurok

```
U_G = 0 !!

U_S = -U_{GS0} = 2 V

R_S = U_S / I_{S0} = 2 V / 2,5 mA = 0,8 k\Omega

és

R_G legyen 1 M\Omega
```

Jobb oldali hurok UT = US + UDS0 + URD URD = UT - US - UDS0 = 12 - 2 - 6 V = 4 V $RD = URD / ID0 = 4 V / 2,5 mA = 1,6 k\Omega$

13.4. Feladatok

1. feladat:

 $U_T = 15V$

 $I_{D0} = 3mA$

Us = 4V $U_{DS0} = 6V$

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

2. feladat:

UT = 12V

 $U_{GS0} = -3 V$

los = 12 mA

 $U_p = -6 V$ $U_{DS0} = 5V$

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

1. MOSFET felépítése

- metal oxid semiconductor FET → szigetelt kapu elektródás térvezérlésű tranzisztor A gate teljesen el van szigetelve (oxid réteg)
- két altípusa van → a kiürítéses és a növekményes MOSFET

kiürítéses MOSFET (önvezető)

- lehet N csatornás, vagy P csatornás
- önvezető → ha Ugs = 0 akkor vezet !! (hasonló működésű mint a JFET)
- a gate feszültség változtatásával lehet vezérelni S és D között folyó áram nagyságát

növekményes MOSFET

- önzáró → ha Ugs = 0 akkor nem vezet → kell egy minimális nyitó feszültség (mint a bipoláris tranzisztornál)
- a gate feszültség változtatásával lehet vezérelni S és D között folyó áram nagyságát

felépítése

P csatornás

felépítése

2. kiürítéses MOSFET karakterisztikák

Kimeneti karakterisztika

differenciális kimeneti ellenállás

rds = Δ Uds / Δ Id ha Ugs állandó rds ≈ 10 – 50 kΩ

3. növekményes MOSFET karakterisztikák

Transzfer karakterisztika

Kimeneti karakterisztika

13.6. MOSFET munkapont beállítás

Növekményes MOSFET munkapontbeállítása

1. mintafeladat

$$UT = 10V$$

$$ID0 = 6mA$$

$$U_{GS0} = 4V$$

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat !

$$U_{DS0} = U_{GS0} = 4 \text{ V}$$
 $U_{RD} = U_{T} - U_{DS0} = 10 - 4 \text{ V} = 6 \text{ V}$
 $R_{D} = U_{RD} / I_{D0} = 6 \text{ V} / 6 \text{ mA} = 1 \text{ k}\Omega$

13.6. MOSFET munkapont beállítás

Növekményes MOSFET munkapontbeállítása 2.


```
összefüggései:
                                  U_1 \approx 0 !!
```

Jobb oldali hurok:

$$UT - UDS - US = 0$$
 \rightarrow $UT = UDS + US$

$$U_1 + U_{GS} + U_{S} - U_{T} = 0$$
 \rightarrow $U_{T} = U_{GS} + U_{S}$ \rightarrow $U_{GS} = U_{DS}$

2. mintafeladat

$$UT = 10V$$

$$ID0 = 6mA$$

$$U_{GS0} = 4V$$

Számoljuk ki a hiányzó feszültségek, áramok értékeit, és a szükséges ellenállásokat!

UDS0 = UGS0 = 4 V
US = UT - UDS0 =
$$10 - 4$$
 V = 6 V
Rs = Us / ID0 = 6 V / 6 mA = 1 k Ω

13.7. Speciális kapcsolások

1. áramgenerátor FET-el

$$It = ID = - UGS / RS$$
 $Rb = 1/y22s * (1 + y21s * Rs)$

Rb nem olyan nagy mint bipoláris tranzisztor esetén

13.8. Négyrétegű dióda

1. felépítése, működése

- elnevezése még: tirisztordióda, dinisztor
- négy félvezető rétegből (három PN átmenetből) álló alkatrész
- a két középső réteg sokkal gyengébben szennyezett mint a két szélső!

13.8. Négyrétegű dióda

2. alkalmazása

Fűrész generátor

Astabil multivibrátor

1. felépítése, működése

- elnevezése még: tirisztortrióda, négyrétegű trióda,
 vezérelt szilícium egyenirányitó (SCR silicon controlled rectifier)
- négy félvezető rétegből (három PN átmenetből) álló alkatrész mint a tirisztordióda, de van egy vezérlőelektróda is!

2. típusai

- többféle tirisztor létezik!
- az előzőekben tárgyalt a gyakoribb → ez a katódoldalról vezérelhető tirisztor (p vezérelt)

katódoldalról vezérelhető tirisztor

anódoldalról vezérelhető tirisztor

GTO tirisztor

- Gate Turn-Off thyristor
- vezérlő elektródával bekapcsolható (gyújtható) és kikapcsolható (oltható) tirisztor
- előfordulhat hogy két külön vezérlő elektródája van (gyújtó → bekapcsolás, oltó → kikapcsolás)
- felhasználása jellemzően nagyfeszültségű, nagy áramú vezérlések esetén

 (akár több ezer volt, több száz amper is!) → érintkező nélküli kapcsolók,
 szaggatók, váltakozó áramú motorok szabályozása, , ...

<u>rajzjele</u>

Tirisztortetróda (SCS)

Vezérelhető csak az egyik - G1 vagy G2 - vagy mindkettő vezérlő elektródával

G1 vezérlő elektródával → bekapcsolható (pozitív impulzus !)

→ kikapcsolható (negatív impulzus !)

G2 vezérlő elektródával → bekapcsolható (negatív impulzus !)

→ kikapcsolható (pozitív impulzus!)

Alkalmazása: főleg kisebb áramú vezérlő és gyújtó áramkörökben

3. alkalmazása

Fázishasításos vezérlés

- bekapcsolás → Ig árammal (pozitív impulzus a Gate lábra)
- kikapcsolás → a váltakozó árammal, a nullátmenet közelében (ha az áram lecsökken I⊤ alá)

Vezérelt egyenirányító.

A fogyasztó teljesítménye szabályozható a gyújtásszöggel!

→ gyújtásszög nő → teljesítmény csökken
 Hátrány: magas felharmonikusok →
 rádiófrekvenciás zavarok

Félhullám vezérlés

- bekapcsolás → IG árammal (pozitív impulzus a Gate lábra)
- kikapcsolás → a váltakozó árammal, a nullátmenet közelében (ha az áram lecsökken I⊤ alá)

Teljes félhullámokat engedünk át (gyújtásszög 0), de nem minden félhullámot! → A fogyasztó teljesítménye szabályozható IG impulzus sorozatának frekvenciájával Előny: kevesebb felharmonikus

13.10. Diac

1. Kétirányú tirisztordióda

- váltakozó áramú kapcsoló dióda (diode alternating current switch)
- működése hasonló, mintha két négyrétegű dióda, ellentétes polaritással párhuzamosan lenne kapcsolva

13.10. Diac

2. Kétirányú dióda

- váltakozó áramú kapcsoló dióda (DIAC) ez is
- npn vagy pnp szerkezetű

Uво billenési feszültség \rightarrow ha feszültsége ezt meghaladja \rightarrow lavina letörés \rightarrow kinyit Uн kritikus feszültség \rightarrow ha feszültsége ez alá csökken \rightarrow lezár

13.11. Triac

1. felépítése, működése

- váltakozó áramú tirisztor (TRIode for Alternating Current), kétirányú tirisztortrióda
- működése hasonló, mintha két tirisztor, ellentétes polaritással párhuzamosan lenne kapcsolva

13.11. Triac

2. alkalmazása

Fényerő szabályozás

A gyújtásszöget a kondenzátor megfelelő feszültségre (a diac billenő feszültségére) feltöltődésének ideje határozza meg (fázishasításos vezérlés mindkét félhullámban)

→ P potméterrel tudjuk állítani

A kimenet nem szinuszos → felharmonikusok! → zavarszűrés kell!!

