Evaluating your machine learning models beyond the basics

Gaël Varoquaux, Arturo Amor

Ínría_

Based on Varoquaux & Colliot, hal.archives-ouvertes.fr/hal-03682454

Outline

1 Performance metrics

Basic classification metrics Evaluating imbalanced binary classification Multi-threshold metrics for classification Confidence scores and calibration

2 Evaluation procedures

Evaluating a prediction rule Evaluating a training procedure

1 Performance metrics

Metrics must capture and reflect application

1 Performance metrics

Basic classification metrics

Evaluating imbalanced binary classification Multi-threshold metrics for classification Confidence scores and calibration Summary metric: accuracy

Accuracy: counts the fraction of error

Simple summary
Overly simplified picture

Distinguishing false detections from misses eq false detection of a brain tumor?

- Very bad if leads to brain surgery
- Minor if leads to confirmatory imaging

Relevant cost (error metric) dependent on application setting

Confusion matrix: beyond accuracy

- **Sensitivity (also called recall):** fraction of positive samples retrieved Sensitivity = $\frac{TP}{TP+FN}$
- Specificity: fraction of negative samples actually classified as negative

 Specificity = TN

 TN+FP

 metrics.recall_score, pos_label=⊙ for specificity

Sensitivity (also called recall): fraction of positive samples retrieved Sensitivity = $\frac{TP}{TP + FN}$

Specificity: fraction of negative samples actually classified as negative

Specificity = TN
TN+FP
metrics.recall_score. pos_label=⊙ for specificity

■ Positive predictive value (PPV, also called precision): fraction of the positively classified samples which are indeed positive

$$PPV = \frac{TP}{TP+FP}$$

■ **Negative predictive value (NPV)**: fraction of the negatively classified samples which are indeed negative

$$NPV = \frac{TN}{TN + FN}$$

[Varoquaux and Colliot 2022]

T denotes test: classifier output; D denotes diseased status.

■ Sensitivity (also called recall): fraction of positive samples retrieved

Sensitivity =
$$\frac{TP}{TP+FN}$$
 Estimates $\mathcal{P}(T+ \mid D+)$

■ **Specificity**: fraction of negative samples actually classified as negative

Specificity =
$$\frac{TN}{TN+FP}$$
 Estimates $\mathcal{P}(T-\mid D-)$

metrics.recall_score, pos_label=0 for specificity

■ Positive predictive value (PPV, also called precision): fraction of the positively classified samples which are indeed positive

$$PPV = \frac{TP}{TP+FP}$$
 Estimates $\mathcal{P}(D+ \mid T+)$

■ **Negative predictive value (NPV):** fraction of the negatively classified samples which are indeed negative

$$NPV = \frac{TN}{TN + FN}$$

Estimates $\mathcal{P}(D- \mid T-)$

1 Performance metrics

Basic classification metrics
Evaluating imbalanced binary classification
Multi-threshold metrics for classification
Confidence scores and calibration

From accuracy to balanced accuracy

Accuracy
uninformative under class imbalance
90% of class 0
⇒ predicting only class o gives Acc=90%

Balanced accuracy: errors on class 0 and class 1

- Sensitivity (= recall): fraction of class 1 retrieved.
- Specificity: fraction of class o actually classified as o.
- Balanced accuracy: $\frac{1}{2}$ (sensitivity + specificity)

sklearn.metrics.balanced_accuracy_score

Asking the right question: $\mathcal{P}(T+|D+)$ vs $\mathcal{P}(D+|T+)$

■ Sensitivity: $\mathcal{P}(T+|D+)$ Specificity: $\mathcal{P}(T-|D-)$

■ More interesting: $\mathcal{P}(D + | T +)$ Positive predictive value: (via Bayes' theorem)

$$\mathcal{P}(D + | T +) = \frac{\text{sensitivity} \times \text{prevalence}}{(1 - \text{specificity}) \times (1 - \text{prevalence}) + \text{sensitivity} \times \text{prevalence}}$$
Test positive

Drawback: depends on prevalence

⇒ Characterizes not only the classifier, but also the dataset

Odds ratios for invariance to sampling

Definition:

Odds of a

$$O(a) = \frac{P(a)}{1 - P(a)}$$

Likelihood ratio of positive class:

LR+ =
$$\frac{O(D+|T+)}{O(D+)}$$
 = $\frac{\text{Sensitivity}}{1-\text{Specificity}}$

- Independent of class prevalence¹
- Use prevalence on target population to compute O(D+|T+)

Useful to extrapolate from case-control to target population

In sklearn dev: sklearn.metrics.class_likelihood_ratios

Notebook

https://github.com/ArturoAmorQ/euroscipy_2022_evaluation 1_evaluation_tutorial.ipynb

1 Performance metrics

Basic classification metrics Evaluating imbalanced binary classification Multi-threshold metrics for classification Confidence scores and calibration

Multi-threshold metrics: ROC curve

Classifiers about continuous scores

ROC obtained by varying the threshold

Summary metric: AUC

Area Under the Curve

Chance = .5

sklearn.metrics.roc_auc_score
sklearn.metrics.RocCurveDisplay

Multi-threshold metrics: Precision Recall curve

Better dynamical range than ROC for imbalanced classes

Area Under the Curve: Chance depends on class imbalance

sklearn.metrics.average_precision_score sklearn.metrics.PrecisionRecallDisplay

Notebook

https://github.com/ArturoAmorQ/euroscipy_2022_evaluation 2_roc_pr_curves_tutorial.ipynb

1 Performance metrics

Basic classification metrics
Evaluating imbalanced binary classification
Multi-threshold metrics for classification

Confidence scores and calibration

Interpreting classifier score as a probability? - Calibration

Calibration

Average error rate for all samples with score s is s

Computed in bins on score s

sklearn.calibration. CalibrationDisplay

Average error on all bins

▲ Does not control individual probabilities

Classifier score as a probability? - Individual probabilities

Does the classifier approach $\mathcal{P}(y|X)$?

Brier score =
$$\sum_{i} (\hat{s}_i - \hat{y}_i)^2$$
Confidence score

Minimal for
$$\hat{s} = P(y|X)$$

sklearn.metrics.brier_score_loss

Choose well your metrics

- Machine learning research chases metrics

 These should reflect application as well as possible
- Worry about $\mathcal{P}(D + | T_+)$
 - Accuracy reasonable proxy only for balanced classes
 - LR+ interesting to keep in mind
- ■Worry about uncertainty
 - Calibration quantifies average errors
 - Brier scores controls individual uncertainty

■ A single number does not tell the whole story

2 Evaluation procedures

Controlled estimation of $e = \mathbb{E}_{x,y\sim\mathcal{D}}[l(f(x),y)]$

Corresponding research paper: [Bouthillier... 2021]

Definitions: what are we benchmarking?

Senario 1: a prediction rule:

We are given $f: X \to \mathcal{Y}$

Evaluating model.predict

Senario 2: a training procedure:

We are given: a procedure that outputs a prediction rule \hat{f} from training data $(\mathbf{X}, \mathbf{y}) \in (\mathcal{X} \times \mathcal{Y})^n$

Evaluating model.fit + model.predict

Definitions: what are we benchmarking?

Senario 1: a prediction rule:

We are given $f: \mathcal{X} \to \mathcal{Y}$

Evaluating model.predict

For application claims: eg medicine

Senario 2: a training procedure:

We are given: a procedure that outputs a prediction rule \hat{f} from training data $(\mathbf{X}, \mathbf{y}) \in (\mathcal{X} \times \mathcal{Y})^n$

Evaluating model.fit + model.predict

For machine-learning research (claims on algorithms)

In-sample error is not meaningful

2 Evaluation procedures

Evaluating a prediction rule

Evaluating a training procedure

We are given $f: \mathcal{X} \to \mathcal{Y}$ (fitted model)

X_{test} different enough from X_{train}

- No repeated acquisition of same individual in train & test [Little... 2017]
- Ideally: show generalization to new site, later in time...

X_{test} representative of target population

Sample *X*_{test}:

- to match statistical moments

Evaluation error: Sampling noise on test set

Evaluation quality is limited by number of test examples

Sampling noise¹ for $n_{\text{test}} = 1000$:

Binomial distribution of error on test accuracy

[Varoquaux 2018]

25

Varoquaux & A**sampling other data will lead to other results.**

¹The data at hand (eg the test set) is just a small sample of the full population "in the wild", and

Evaluation noise is not negligible - in Kaggle competitions

Confidence intervals & statistical testing

Evaluate uncertainty to know when to stop, what to trust (diminishing returns, creeping complexity)

Confidence interval¹: Range of values compatible with the observations

For accuracy²: binomial

N	65%	80%	90%	95%
100	[-9.0% 9.0%]	[-8.0% 8.0%]	[-6.0% 5.0%]	[-5.0% 4.0%]
1000	[-3.0% 2.9%]	[-2.5% 2.4%]	[-1.9% 1.8%]	[-1.4% 1.3%]
10000	[-0.9% 0.9%]	[-0.8% 0.8%]	[-0.6% 0.6%]	[-0.4% 0.4%]
100000	[-0.3% 0.3%]	[-0.2% 0.2%]	[-0.2% 0.2%]	[-0.1% 0.1%]
Table from Varequally and Co				

Table from [Varoquaux and Colliot 2022]

¹Technically not making the difference with a credible interval Varoquaux & ²Also for sensitivity, NPV, PPV, see [Varoquaux and Colliot 2022]

2 Evaluation procedures

Evaluating a prediction rule Evaluating a training procedure

Benchmarking to conclude on good training procedures

■We are given: a procedure that outputs a prediction rule \hat{f} from training data $(\mathbf{X}, \mathbf{y}) \in (\mathcal{X} \times \mathcal{Y})^n$

We want machine-learning research claims (choosing one model over another)

■ Many arbitrary components

random_state = 3407??

Useless to tune random seeds will not carry over to new training data

Arbitrary variance in a machine-learning benchmark

Variance when rerunning an evaluation, modifying arbitrary elements:

[Bouthillier... 2021]

[Bouthillier... 2021]

Notebook

https://github.com/ArturoAmorQ/euroscipy_2022_evaluation 3_uncertainty_in_metrics_tutorial.ipynb

Better evaluation procedure

■ Cross-validation multiple train-test splits

■ Randomize all arbitrary factors in folds

Better evaluation procedure

- Cross-validation multiple train-test splits
- Randomize all arbitrary factors in folds

But, a full learning pipeline comes with hyper-parameters

These are set to minimize error on left-out data

Benchmarks accounting for hyper-parameter selection

Setting hyper-parameters is part of the pipeline

It must be evaluated

- One option: train, validation, and test splits
 - + manual tuning of hyperparameters

Rampant overfit of validation set [Makarova... 2021]

Benchmarks accounting for hyper-parameter selection

Setting hyper-parameters is part of the pipeline

It must be evaluated

- One option: train, validation, and test splits
 - + manual tuning of hyperparameters

Rampant overfit of validation set [Makarova... 2021]

- Multiple splits
 - + automated tuning of hyperparameters

Brain imaging prediction

Analysts overfit the public set

Sub-optimal hyper-parameters on baseline models routinely lead to invalid conclusions

See refs in [Bouthillier... 2021]

ROC-AUC of a submission

Hyper-parameter optimization procedures

Grid search
Vary each hyper-parameter on a grid
sklearn.model_selection.GridSearchCV

Hyper-parameter optimization procedures

■Grid search

Random search
[Bergstra and Bengio 2012]

prefer to grid-search for more than 2 params

sklearn.model_selection.RandomSearchCV

See scikit-learn MOOC, Hyperparameter tuning chapter

Benchmarking training procedures (eg to compare them)

Control arbitrary fluctuations (that will not generalize)

Sample all:

■data sampling
Multiple train-test splits (cross-validation)

- arbitrary choices (seeds)
 Randomize them all
- hyper-parameters
 Hyper-parameter optimization

Expensive to randomize

Accounting for variance in conclusions

Confidence intervals & statistical testing

Statistical testing with multiple folds Challenge: folds are not independent¹

At-test/Wilcoxon across folds are not valid Don't divide std by number of folds

Hypothesis testing (Neyman-Pearson view)

Two hypothesis, H_0 and H_1 H_1 : p_1 outperforms p_2 by a margin H_0 H_0 H_1 H_1 Which is mostly likely?

- Test on $\mathcal{P}(p_1 > p_2) > \delta$ $\delta > .5$: Neyman-Pearson margin
- Evaluate $\mathcal{P}(p_1 > p_2)$ by resampling Randomize everything: data splits, seeds,...

Gaussian approximation: amounts to comparing differences to standard deviations

Summary – comparing learning procedures

Sample multiple sources of variance:

- data split
- random seeds
- hyper-parameter tuning

Two different cases:

- Concluding on fitted model: a single train-test split
- Concluding on the fitting procedure: many train-test split

Statistical testing: no t-test on cross-validation!

Detect practical differences:

delta in performance > standard deviation

Better experimental procedures

Crack the black box open

A prediction score is seldom insightful

- Ablation studies: remove/change atomic elements
- ■Learning curves

Better benchmarking in these

- ■Tune hyper-parameters to the same quality
- Randomize everything
- Account for variance in conclusions

Summary – Better benchmarking procedures

Reminder: Your validation measure is intrinsically unreliable (sampling noise)

An arbitrary choice (random seed) may give seemingly-good results that do not generalize

Optimizing test accuracy will explore the tails

Evaluation is a bottleneck

Varoquaux & Amor

42

Model evaluation

Choice of performance metrics

- ■Should be suited to the application setting
- Machine learning does metric chasing 😁

Evaluation procedures

- Account for variance
- Different sources of variance for applying prediction rules vs learning them

Careful benchmarking is crucial

- ■Optimistic flukes will not generalize
- ■What is our purpose? External validity 🗳

References I

- J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. *Journal of Machine Learning Research*, 13:281, 2012.
- X. Bouthillier, P. Delaunay, M. Bronzi, A. Trofimov, B. Nichyporuk, J. Szeto, N. Mohammadi Sepahvand, E. Raff, K. Madan, V. Voleti, ... Accounting for variance in machine learning benchmarks. *Proceedings of Machine Learning and Systems*, 3, 2021.
- M. A. Little, G. Varoquaux, S. Saeb, L. Lonini, A. Jayaraman, D. C. Mohr, and K. P. Kording. Using and understanding cross-validation strategies. perspectives on saeb et al. *GigaScience*, 6(5):1–6, 2017.
- A. Makarova, H. Shen, V. Perrone, A. Klein, J. B. Faddoul, A. Krause, M. Seeger, and C. Archambeau. Overfitting in bayesian optimization: an empirical study and early-stopping solution. *arXiv preprint arXiv:2104.08166*, 2021.
- N. Traut, K. Heuer, G. Lemaître, A. Beggiato, D. Germanaud, M. Elmaleh, A. Bethegnies, L. Bonnasse-Gahot, W. Cai, S. Chambon, ... Insights from an autism imaging biomarker challenge: promises and threats to biomarker discovery. *NeuroImage*, 255:119171, 2022.
- G. Varoquaux. Cross-validation failure: small sample sizes lead to large error bars. *Neuroimage*, 180:68–77, 2018.

References II

G. Varoquaux and O. Colliot. Evaluating machine learning models and their diagnostic value. https://hal.archives-ouvertes.fr/hal-03682454/, 2022.