МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

КУРСОВАЯ РАБОТА

по дисциплине «Алгоритмы и структуры данных» Тема: сортировка n-арной кучей

Студент гр. 9381	 Любимов В.А
Преподаватель	Фирсов М.А.

Санкт-Петербург 2021

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студент Любимов В.А.
Группа 9381
Тема работы: Сортировка n-арной кучей (n=1, 2, 3,), 2 варианта
просеивания (сверху-вниз и снизу-вверх). Демонстрация.
Исходные данные:
На вход программе подаётся размерность кучи п, способ просейки и сам
целочисленный массив, элементы массива разделены пробелом.
Содержание пояснительной записки:
«Содержание», «Введение», «Задание», «Описание классов, структур, функций» «Описание алгоритма», «Тестирование», «Демонстрация», «Заключение», «Список использованных источников».
Предполагаемый объем пояснительной записки:
Не менее 40 страниц.
Дата выдачи задания: 31.10.2020
Дата сдачи реферата: 29.03.2021
Дата защиты реферата: 05.04.2021
Студент Любимов В.А.
Преподаватель Фирсов М.А.

АННОТАЦИЯ

В курсовой работе происходит сортировка массива. Программа демонстрирует процесс сортировки массива n-арной кучей при помощи вывода на экран информации, иллюстрирующей процесс работы программы. Результатом работы программы является массив, отсортированный с помощью n-арной кучи. Для создания программы потребовалось изучить структуру n-арной кучи, алгоритм построения n-арной кучи, алгоритм сортировки n-арной кучи, и разработать визуализацию работы этих алгоритмов. Результатом является программа, которая из файла считывает размерность кучи и исходный целочисленный массив, создаёт из него кучу указанной размерности, при этом визуализируя этот процесс.

СОДЕРЖАНИЕ

	Введение	5
1.	Задание	9
2.	Описание классов, структур, функций	9
3.	Описание алгоритма сортировки	14
4.	Тестирование	15
5.	Демонстрация	113
	Заключение	115
	Список использованных источников	116
	Приложение. Исходный код программы.	117

ВВЕДЕНИЕ

п-арная куча представляет собой сортирующее дерево, в котором любой родитель больше (или равен) любого его потомка, а разница в глубине любых двух листьев не превышает единицы. Так же у каждого элемента ровно п потомков. Это правило не относиться к листьям и к самому правому не листу на предпоследнем уровне. Последний уровень заполняется слева направо без Главной особенностью сортировки n-арной кучей «дырок». является независимость временной сложности сортировки от сложности сортируемого массива, равная O(NlogN), где N – размер массива. Из этого следуют основные преимущество и недостаток сортировки п-арной кучей. Преимущество гарантированная временная эффективность даже для хаотичного входного массива. Недостаток – не лучшая скорость работы для почти отсортированных массивов.

Цель работы

Целью работы является изучение сортировки при помощи n-арной кучи и разработка программы, которая будет сортировать входной массив.

Основные теоретические положения.

n-арной куча — структура данных, представляемая в виде n-арного дерева и имеющая следующие свойства:

- 1. Значение каждого узла не меньше любого его потомка.
- 2. Глубина всех листьев отличается не более, чем на 1 слой.
- 3. Слои заполняются слева направо и без «дырок»

Из этих свойств следует, что реализацией кучи является массив A, в котором в A[0] хранится корень кучи, а сыновьями элемента A[i] являются элементы A[i*n+1], A[i*n+2], ..., A[i*n+n]. Очевидно, что при n=1 куча превращается в массив, отсортированный по убыванию. n- натуральное число.

Так как потомками A[i] являются элементы A[i*n+1], A[i*n+2], ... , A[i*n+n], то если обозначить индекс j-го потомка, как x, то x = n*i+j. Из этого получаем, что i = x-j/n. Это выражение принимает нецелое значение при любом j отличном от нуля и меньшим n. В этом случае его необходимо округлить вниз до ближайшего целого числа, иначе получим, что x = x+ α , где α – добавка при округлении. Такое значение x невозможно. Значит нужно округлять вниз. Тогда можно заменить j на 1 для любого допустимого j. Итого индекс предка любого потомка можно выразить, как i = floor((x-1)/n), где x – индекс рассматриваемого потомка, i – индекс предка, floor(число) – округление вниз до ближайшего целого числа.

Итоговый алгоритм сортировки п-арной кучей.

- 1. Формируем из массива п-арную кучу:
 - Выполняем просейку сверху-вниз от элементов массива с индексами от $\frac{N}{n}$, где N количество элементов в массиве, а n размерность кучи, до 0 включительно. Из свойств n-арной кучи элементы с большими индексами являются листьями, а значит удовлетворяют определению кучи. Просейкой сверху-вниз называется процесс восстановления свойств кучи следующим образом: если значение текущего узла меньше значений его потомков, то оно меняется с наибольшим из значений потомков, а текущим узлом становится узел, бывший наибольшим потомком. Если значение текущего узла больше значения любого потомка или текущий узел лист, то просейка завершается.
- 2. Выполняем сортировку с помощью полученной п-арной кучи:
 - Из определения n-арной кучи следует, что корнем является наибольший элемент в массиве. Сохраняем это значение в буферной переменной.

- Присваиваем корню значения последнего элемента в кучи.
- Записываем в последний элемент кучи сохранённое в буферной переменной значение корня. Уменьшаем размер кучи на один. При этом размер массива, содержащего кучу остаётся неизменным. То есть в нём сначала располагается куча, а затем бывшие корни кучи в обратном порядке исключения, то есть отсортированными по возрастанию
- Теперь необходимо восстановить кучу, если в ней больше одного элемента, иначе она пуста или в ней один элемент, который, очевидно, больше своих не существующих потомков. Для этого существует два способа:
 - 1. Вызвать просейку сверху-вниз, алгоритм которой был описан выше, от корня кучи.
 - 2. Вызвать восходящую просейку от корня кучи. Она работает следующим образом: OT текущего находится путь до листа, проходящий через наибольшие узлы. Когда лист достигнут начинается подъём по найденному пути, пока элементы этого пути меньше корня. Как только найден первый элемент на пути больший корня, его значение сохраняется в буферную переменную, а элемент заменяется на корень. Далее оставшийся элементы пути, кроме корня, сдвигаются на один уровень вверх. Сохранённой в буферной переменной становиться ОТЦОМ элемента, которому присвоили значение корня. Отцом элемента, сохранённого буферной переменной, становиться элемент, который он заменил. Это продолжается, пока корнем не станет первый после корня элемент в пути.
- Все эти действия повторяются, пока куча не является пустой.

3. Как только куча опустеет, то вместо кучи в массиве, который её хранил, окажется отсортированный по возрастанию входной массив.

1. ЗАДАНИЕ

Вариант № 29. Сортировка п-арной кучей (n=1, 2, 3, ...), 2 варианта просеивания (сверху-вниз и снизу-вверх). Демонстрация.

2. ОПИСАНИЕ КЛАССОВ, СТРУКТУР, ФУНКЦИЙ

Класс class Dheap реализует n-арную кучу и методы её обработки.

Объекты класса имеют следующие приватные поля:

- m_arr массив, содержащей кучу
- m_root корень кучи
- m_size размер кучи
- m_arr_size размер массива
- m_mem_size размер массива в памяти
- m_d порядок кучи, то есть n

Были реализованы следующие методы:

- Dheap(int* arr = nullptr, int root = 0, int size = 0, int d = 2) конструктор, из полученного массива arr копирует элементы в массив m_arr, предварительно выделив под него необходимый объём памяти.
- bool readHeapFromFile(ifstream &fin) ссылку на файл fin, содержащий входные данные. Записывает первое число из файла в поле m_d, а остальные числа в полученный массив m_arr. Если заполнен весь массив, то увеличивает количество выделенной под него памяти. Если размер считанного массива нуль или m_d меньше единицы, то возвращает false. Иначе возвращает true.
- int calcHeight() вычисляет и возвращает высоту дерева, спускаясь по левым сыновьям пока они существуют.
- int findMaxLeaf(int root) находит индекс максимального потомка полученного узла root. Последовательного перебирает значения всех потомков узла root, сравнивает их с текущим максимальным значением

- и запоминает индекс потомка с максимальным значением, который и возвращает.
- int findMax(int root) находит индекс максимального потомка полученного узла root. Последовательного перебирает значения всех потомков узла root и самого узла, сравнивает их с текущим максимальным значением и запоминает индекс элемента с максимальным значением, который и возвращает.
- void printNode(int node_value, int step, bool is_col, char side)- выводит узел с полученным значением node_value в консоль на определённом месте задающимся отступом step. В зависимости от значения is_col выделяет узел цветом. Сначала выводит step пробелов или знаков «_», включает выделение цветом при помощи управляющей эскейппоследовательности, если is_col == true. Выводит node_value в поле шириной четыре символа и выравниванием по левому краю. В завершение выводит ещё step пробелов или знаков «_». Пробелы выводятся слева от левого сына и справа от самого правого сына.
- void printAsArr(bool is_col_first) выводит кучу как массив. Ту часть массива, которая является кучей выделяет зелёным, отсортированную часть белым, а первый элемент отсортированной части голубым, если is_col_first == true.
- void printHeap(int* color_nodes, int col_size) выводит кучу, как дерево. Если размер кучи равен нуль, то выводит сообщение о том, что куча пуста. Принимает на вход массив color_nodes, содержащий индексы узлов, которые необходимо раскрасить, и их количество col_size. Высчитывает высоту кучи методом calcHeight(). Для каждого узла высчитывает отступ по описанной далее формуле. После чего выводит этот узел при помощи метода printNode(). Если индекс выводимого узла совпадает с текущим элементом в массиве узлов для раскраски, то раскрашивает его и переходит к следующему элементу в

этом массиве. Если индекс текущего элемента равен максимальному индексу, допустимому на этом уровне, то увеличивает уровень на единицу и переносит строку. Вывод формулы отступа таков. Чтобы при выводе кучи, как дерева, гарантировать корректность вывода, то есть все сыновья умещаются и не накладываются друг на друга, необходимо рассчитать расстояние между началом строки и первым потомком в этом слое и между двумя соседними потомками. Расстояние будет измеряться в символах. Во-первых, узел должен находиться ровно посередине между крайними потомками. Во-вторых, на любом уровне между потомками должен быть хотя бы один символ. В-третьих, первые два пункта должны выполняться при любой высоте дерева и размерности кучи. Итак, каждый уровень дерева будет занимать одинаковое количество символов, и каждый узел – тоже. Для узла количество символов, отображающих его значение равно 4 (если вывод значения узла занимает менее 4 символов, то лишние символы заполняются пробелами). Для п-арного дерева количество узлов на і-ом $(0 \le i < \text{количество уровней})$ уровне равно n^i . Для вывода каждого узла потребуется 2*step + 4, где step - размер отступа от поля вывода значения узла, то есть между двумя узлами 2*step пробелов. Значит, ширина уровня равна $S = (2*step + 4)*n^i$ и такова для любого і. Найдём минимальный step_i, то есть step для i-го уровня. $step_i = \frac{S}{2\pi n^i} - 2$. Так как необходимо минимальное S и step больший нуля, то на самом нижнем уровне, то есть tree_height - 1, step будет равен 1. Из этого следует, что $S=3\cdot 2\cdot n^{tree_height-1}$. Тогда на i-ом $(0\leq \mathrm{i}<$ количество уровней) уровне $step_i = \frac{3\cdot 2\cdot n^{tree_height-1}}{2\cdot n^i} - 2$. Также из этой формулы видно, что ширина вывода бинарной кучи из пяти уровней равна 96 символов, для 3-арной кучи из 4 уровней – 162 символа, а для 8-арной кучи из 3 уровней - 384

- void siftDown(int root) выполняет просейку сверху-вниз для узла root. Если в куче 1 элемент, то просейка не выполняется, так как один элемент уже является кучей. Для выполнения просейки среди текущего узла и его потомков находится элемент с наибольшим значением. Если этот элемент является текущим, то просейка останавливается, ибо куча восстановлена. В противном случае делает новым текущим элементом этот наибольший элемент и меняет его значение со значением его отца (старого текущего элемента). После чего просейка сверху-вниз начинает выполняться для нового текущего элемента. Смыслом этого алгоритма является нахождения места под элемент, нарушающий определение кучи (больше отца), спуская его вниз по уровням, пока не найдётся подходящее место.
- void makeHeap() строит кучу при помощи просейки сверху-вниз. Выполняется просейка сверху-вниз от элементов массива с индексами от $\frac{N}{n}$, где N количество элементов в массиве, а n размерность кучи, до 0 включительно. Из свойств n-арной кучи элементы с большими индексами являются листьями, так как сыновья для элемента с индексом $\frac{N}{n}$ начинаются с $\frac{N}{n} \cdot n + 1$, что больше чем количество элементов в куче. После выполнения просейки для указанных элементов получаем n-арную кучу.
- void dragMax() удаляет максимальный элемент из кучи, то есть корень. Значение корня записывается в буферную переменную. После чего корню присваивается значение последнего элемента в кучи, а значение последнего элемента становится равным сохранённому значению старого корня. Размер кучи уменьшается на единицу. После этих операций кучу необходимо восстановить, так как новый корень, бывший последним элементом в куче, вероятно, меньше, чем хоть ктото из его потомков.

- void upwardSift() выполняет восходящую просейку для корня. Спускаемся вниз от корня по наибольшим вершинам, поднимаемся по полученному пути до первой вершины больше корня, сохраняем её, заменяем её корнем, сдвигаем ветку на один уровень вверх через буфферную переменную. После этого получаем восстановленную кучу.
- void upwardSiftSort() выполняет сортировку при помощи n-арной кучи и восходящей просейки. Пока в кучи есть элементы вызывает метод dragMax(). Если после этого в куче ещё есть элементы, то восстанавливает кучу восходящей просейкой. В результате в массиве, где раньше располагалась куча, находится отсортированный по возрастанию входной массив.
- void siftDownSort() выполняет сортировку при помощи п-арной кучи и просейки сверху-вниз. Пока в кучи есть элементы вызывает метод dragMax(). Если после этого в куче ещё есть элементы, то восстанавливает кучу просейкой сверху-вниз. В результате в массиве, где раньше располагалась куча, находится отсортированный по возрастанию входной массив.
- void printArr() просто последовательно выводит все элементы массива, хранящего кучу.

Функция int main() реализует простейший функционал взаимодействия с пользователем. Пользователю предлагают выбор из нескольких опций: завершить выполнение программы или начать работу. В последнем случае предлагается ввести путь до файла с входными данными. Создаётся объект класса Dheap и методами readHeapFromFile() и makeHeap() создаётся куча. После этого пользователю предлагают выбрать вид просейки, который будет использоваться при сортировке. В зависимости от выбора пользователя вызывается соответствующий метод, выполняющий сортировку. Отсортированный массив

выводится на экран. Выделенная память освобождается. После чего пользователю снова предлагается выбор из двух выше указанных опций.

3. ОПИСАНИЕ АЛГОРИТМА СОРТИРОВКИ

Сначала формируем из массива n-арную кучу. Для этого выполняется просейка сверху-вниз от элементов массива с индексами от $\frac{N}{n}$, где N — количество элементов в массиве, а n — размерность кучи, до 0 включительно. Из свойств n-арной кучи элементы с большими индексами являются листьями, так как сыновья для элемента с индексом $\frac{N}{n}$ начинаются с $\frac{N}{n} \cdot n + 1$, что больше чем количество элементов в дереве. Алгоритм просейки сверху-вниз был описан в описании метода siftDown().

Затем приступаем к сортировке. Обмениваем корень кучи (наибольший элемент) с последним элементом в куче (он гарантировано не больше корня) и уменьшаем размер кучи на единицу. При этом куча, вероятно, повреждена. Но прежде заметим, что в массиве, содержащем кучу, после оставшихся в куче элементов располагаются бывшие корни кучи, добавленные туда в порядке их уменьшения, то есть эти элементы отсортированы по возрастанию. Значит, после того, как размер кучу станет нуль, мы получим отсортированный исходный массив. Но если размер кучи не нуль, её необходимо восстановить после удаления корня. Для этого можно использовать восходящую просейку или просейку сверху-вниз. Их алгоритмы были уже были описаны выше. После восстановления кучи выше описанные действия повторяются, пока не будет получен полностью отсортированный массив.

Между просейкой сверху-вниз и восходящей просейкой есть разница в эффективности особенно заметная при малых п. В обоих просейках количество обменов будет одинаковым, но в просейки сверху-вниз потомки сравниваются и с родителем, и с друг другом, в то время как в восходящий просейки потомки в основном сравниваются только с друг другом. Так для бинарной кучи при

восходящей просейки нужно будет сделать почти вдвое меньше сравнений (на 1 родитель - 2 потомка; сравнивая только потомков получим одно сравнения), чем при просейки сверху-вниз (одно сравнение для узла и левого потомка и второе — для результата первого и правого узла). С увеличением п количество «выигранных» сравнений будет играть всё меньше роли.

Так же заметим, что с увеличением количества п количество обменов за одну просейку уменьшается, но увеличивается количество сравнений. Оценим временную сложность алгоритма для кучи порядка п, состоящей из N элементов. Не умоляя общности будем использовать просейку сверху-вниз для восстановления кучи после изъятия корня. Будет проведено N изъятий. Для каждого изъятия будет произведена просейка. Сложность просейки зависит от количества узлов (обменов) за проход и количество сравнений для каждого узла (п штук). Рассмотрим наихудший случай, где необходимо дойти до листа на последнем уровне. Высота дерева (количество уровней) $\log_n N + 1$. Тогда сложность просейки $O((n+1)^* (\log_n N + 1)) = O(\log_n N)$. Тогда сложность всей сортировки равна $O(N^* \log_n N)$. Для больших n, константный множитель в виде количества сравнений будет оказывать существенное влияние.

4. ТЕСТИРОВАНИЕ

Номер	Входные данные	Выходные данные
теста		
1	2 13 67 5 -9 67 3456	Input array:
	67 0 0 1 2 9	13 67 5 -9 67 3456 67 0 0 1 2 9
	Выбрана просейка	Fistly we need to make heap from starting array.
	сверху-вниз	
		Let's make heap!
		The current state of heap is:

13
675
-967 345667
00 12 9
It is the sifting down.
No son of this node exist, so it is already subheap.
No sifting needed.
Sifting down has ended.
It is the sifting down.
Let's find the maximal element in this root or its
sons!
The value of root is 3456
13
675
-967 345667
00 12 9
9 is less or equal than current maximum value,
which is 3456
13
675
-967 345667 00 12 9
Summary, the value of maximal element of root
and its leaf is 3456
13

67			5		
-9	67	3456		_67	
0 0	12	9			
<u> </u>					
The root w	hich value	ia 24 56 i a n	aoro tl	on h	ic
			nore u	.1411 11	118
sons, so thi	s subtree is				
	13				
-9	67	3456		_67	
00	12	9			
It is the six	ting down				
It is the sift	ıng down.				
Let's find the	he maximal	elememt ir	this 1	oot c	or its
Let's find the sons!	he maximal	elememt ir	this 1	oot o	or its
sons!	he maximal of root is 67		this 1	oot o	or its
sons!	of root is 67			oot o	or its
sons! The value of	of root is 67			oot o	
sons! The value of	of root is 67		5		
sons! The value of 67	of root is 67 13 67	3456	5		
sons! The value of 679 00	of root is 67 1367 12	3456 <u> </u>	5	_67	
sons! The value of 679 00	of root is 67 13 67	3456 <u> </u>	5	_67	
sons! The value of 679 00	of root is 67 13 67 12 equal than 6	3456 <u> </u>	5	_67	
sons! The value of 679 00 1 is less or	of root is 67 13 67 12 equal than 6	3456 <u> </u>	5 simum	_67	
sons! The value of 67 679 00 1 is less or which is 67	of root is 67 13 67 167 12 equal than 6	3456 9 current max	5	_67	 ie,
sons! The value of 67 67 00 1 is less or which is 67	of root is 67 1367 12 equal than 67	3456 9 current max	5 5 5	_67 ı valu	 ue,
sons! The value of 679 00 1 is less or which is 679	of root is 67 1367 12 equal than 67 13	34569 current max	5 5 5	_67 ı valu	 ne,
sons! The value of 6790 1 is less or which is 6790 00	of root is 67 1367 12 equal than 67 1367 12	34569 current max 34569	5	_67 1 valu	
ons! Che value of 67 -90 is less or which is 67 -90 90	of root is 67 1367 12 equal than 67 13	34569 current max 34569	5	_67 1 valu	

-967 345667 00 12 9 Summary, the value of maximal element of room and its leaf is 67 13 6767 34565 -967 345667 00 12 9 The root, which value is 67 is more than his so so this subtree is heap! 13 675	267					
O0 12 9 Summary, the value of maximal element of room and its leaf is 67 13 675 -967 345667 O0 12 9 So this subtree is heap! 13 675		67			_5	
fummary, the value of maximal element of room of the leaf is 67 13 67	mary, the value of maximal element of roomits leaf is 67 13 67	-9	67	3456		_67
13 675 -967 345667 0 12 9 ne root, which value is 67 is more than his so this subtree is heap! 13 675	13 675 067 34565 10 12 9 root, which value is 67 is more than his son his subtree is heap! 13 675 067 34565	0	12	9		
13 675 -967 34565 -967 345667 ne root, which value is 67 is more than his so this subtree is heap! 13 675	13 675 067 34565 0 12 9 root, which value is 67 is more than his some subtree is heap! 13 675 067 34565	ımmary,	the value of	maximal el	emen	nt of
675	675 067	nd its leaf	f is 67			
-967 345667 00 12 9 The root, which value is 67 is more than his so of this subtree is heap! 13 675	267		13			
00 12 9 The root, which value is 67 is more than his so this subtree is heap! 13 675	0 12 9	67_			_5	
he root, which value is 67 is more than his so this subtree is heap! 13 675	root, which value is 67 is more than his sornis subtree is heap! 13 675 067 345667	-9	67	3456		_67
13 675	13 675 067 345667	00	12	9		
13 675	13 675 067 345667					
13 675	13 675 067 345667	Γhe root, v	which value	is 67 is more	thar	n his
675	675 067 345667	so this sub	tree is heap!			
	<u>67</u> <u>3456</u> <u>67</u>		13			
		67_			_5	
-9 67 3456 67		-9	67	3456		67
						_
<u>0</u> 0 12 <i>y</i>		00	12			
t is the sifting down.	the sifting down	t is the sif	 fting down			
t is the sifting down.	the sifting down.	t is the sif	fting down.			
				element in	thic 1	root (
et's find the maximal element in this root or	s find the maximal element in this root or i	et's find t		elememt in	this 1	root (
et's find the maximal element in this root or ons!	s find the maximal element in this root or i	et's find t	the maximal	elememt in	this 1	root (
et's find the maximal element in this root or ons!	s find the maximal element in this root or is!	et's find tons!	the maximal	elememt in	this 1	root
et's find the maximal element in this root or ons!	s find the maximal element in this root or is! value of root is -9	et's find t	the maximal of root is -9		this 1	root
Let's find the maximal element in this root or ons! The value of root is -9 13	s find the maximal element in this root or is! value of root is -9	et's find tons!	the maximal of root is -9			root
et's find the maximal element in this root or ns! ne value of root is -9 13	responsible to the maximal element in this root or it is: value of root is -9	et's find to ns! ne value	the maximal of root is -9		_5	
2's find the maximal element in this root or as! e value of root is -9 13 675	s find the maximal element in this root or selvature of root is -9 13 675 067 345667	's find t as! e value 67_	the maximal of root is -9 1367	3456	_5	

9				
	13			
67			_5	
-9	67	3456	67	
00	12	9		
0 is less or	equal than c	urrent maxi	mum val	ue,
which is 0				
	13			
67			_5	
-9	67	3456	67	
00	12	9		
Summary, t	the value of	maximal ele	ement of	root
and its leaf	is 0			
	13			
67			_5	
-9	67	3456	67	
00	12	9		
The son, wl	hich value is	s 0, is bigger	r than fati	her,
which value	e is -9! So le	et's change th	heir valu	e.
	13			
67			_5	
-9	67	3456	67	
00	12	9		
Values succ	cessfully cha	anged! One	more ste	o to
make heap	has been do	ne!		
	13			
67			_5	
0	67	3456	67	

-90 12 9
Sifting down has ended.
It is the sifting down.
Let's find the maximal element in this root or its
sons!
The value of root is 5
13
675
067 345667
-90 12 9
3456 is more than current maximum value, which
is 5
13
675
067 345667
-90 12 9
67 is less or equal than current maximum value,
which is 3456
13
675
067 345667
-90 12 9
Summary, the value of maximal element of root
and its leaf is 3456
13

67_			5	
0	67	3456	67	
-90	12	9		
The son, w	hich value i	s 3456, is bi	gger than	
father, whi	ich value is s	5! So let's ch	nange their	•
value.				
	13			
67_			_5	
0	67	3456	67	
-90	12	9		
Values suc	ccessfully ch	anged! One	more step	to
make heap	has been do	one!		
	13			
67_			_3456	
0	67	5	67	
-90	12	9		
Let's find t	the maximal	element in	this root o	or its
sons!				
The value	of root is 5			
	13			
67			_3456	
0	67	5	67	
-90	12	9		
9 is more t	han current	maximum v	alue, whic	ch is 5
	13			
67_			_3456	

0		67	5_		67	
-9	_0	12	9			
Summ	nary,	the value	of maxin	nal ele	ement of ro	oot
and its	s leaf	is 9				
		13				
	67				_3456	
0		67	5_		67	
-9	_0	12	9			
The so	on, w	hich value	e is 9, is l	oigger	than fathe	er,
which	valu	e is 5! So	let's char	nge th	eir value.	
		13				
	67				_3456	
0		67	5		67	
-9	_0	12	9			
Value	s suc	cessfully	changed!	One	more step	to
make l	heap	has been	done!			
		13				
	67				_3456	
0		67	9		67	
-9	_0	12	5			
Sifting	g dow	n has end	led.			
It is th	ne sift	ing down	•			
	find th	ne maxim	al eleme	mt in 1	this root or	its
sons!						

The value	e of root is 67	7			
	13				
67_				_3456	
0	67	9		67	
-90	67 12	5			
	or equal than				е,
which is	67				
	13				
0	67 12	9		67	
-90	12	5			
67 is less	or equal than	n curren	t max	imum valı	ıe,
which is	67				
	13				
67_				_3456	
0	67	9		67	
-90		5			
Summary	, the value of	f maxim	al ele	ement of ro	oot
and its lea	af is 67				
	13				
67_				_3456	
0	67	9		67	
-90	12	5			
The root,	which value	is 67 is	more	than his s	ons,
so this su	btree is heap	!			
	13				
67_				_3456	
0	67	9		67	

-9	0	1	2	5			
It is the	he sift	ting d	own.				
Let's	find t	he ma	aximal	eleme	mt in	this root o	r its
sons!							
The v	alue (of roc	ot is 13	3			
		13					
	67					_3456	
0_			_67	9_		67	
-9	0	1	2	5			
67 is	more	than	curren	t maxii	mum י	value, whi	ch is
13							
		13					
	67					_3456	
0_			_67	9_		67	
-9	0	1	2	5			
3456	is mo	re tha	an curr	ent ma	ximuı	m value, w	hich
is 67							
		13					
	67					_3456	
0_			_67	9_		67	
-9	0	1	2	5			
Sumr	nary,	the va	alue of	f maxin	nal ele	ement of re	oot
and it	s leaf	is 34	56				
		13					
	67					_3456	
0_			_67	9		67	

-9	0	1	2	5				
The se	on, w	hich v	alue i	s 3456,	is big	ger t	han	
father	, whi	ch val	ue is 1	3! So 1	et's ch	ange	thei	r
value								
		13						
	67					3450	5	
0			_67	9			_67	
			2					
Value	s suc	cessfu	ılly ch	anged!	One n	nore	step	to
make	heap	has b	een do	ne!				
		345	56					
	67					13		
0			_67	9			_67	
-9	0	1	2	5				
Let's	find t	he ma	ximal	elemen	nt in tl	nis ro	oot o	r its
sons!								
The v	alue o	of roo	t is 13					
		345	56					
	67					13		
0			_67	9			_67	
-9	0	1	2	5				
9 is le	ess or	equal	than c	current	maxin	num	value	e,
which	is 13	3						
		345	56					
	67					13		
0			_67	9			_67	

	-9	0	1	2	5			
	67 is	more	than c	curren	t maxin	num value	e, whi	ich is
	13							
			345	56				
		67				13		
	0_			_67	9		67	
	-9	0	1	2	5			
	Sumi	nary,	the va	lue of	maxim	nal elemen	nt of r	root
	and i	ts leaf	is 67					
			345	56				
		67				13		
	0_			_67	9		67	
	-9	0	1	2	5			
	The s	son, w	hich v	alue i	s 67, is	bigger th	an fat	ther,
	which	h valu	ie is 13	3! So]	let's cha	inge their	value) .
			345	56				
		67				13		
	0_			_67	9		67	
	-9	0	1	2	5			
	Value	es suc	cessfu	ılly ch	anged!	One more	e step	to
	make	heap	has b	een do	one!			
			345	56				
		67_				67		
	0_			_67	9		13	
	-9	0	1		5			
	Siftin	ig dov	vn has	ende	d.			
1	l							

Building heap has been ended!
The current state of heap is:
3456
6767
067 913
-90 12 5
Choose sifting type. 'd' for sifting down and 'u' fo
upward sifting:
d
You choose sifting down sort.
Heapsort with sifting down.
This sort using the sifting down to restore heap
after draging max element.
Exclude the node with biggest value. It is the root
because we are working with max-heap. Save the
root value in buffer variable
3456
6767
067 913
-9 <u>0</u> 1 <u>2</u> 5

It is heap as array. The green part is actually the

heap, white is sorted sequence and cyan is the old
root, which just has been added to the sorted
sequence: 3456 67 67 0 67 9 13 -9 0 1 2 5
Make the value of the last element in heap the root
value. Eventually, put the old root value into the
last position in heap and decrease the size of the
heap. So we have already sorted elements after the
heap in the array that is storing our elements as
heap and sorted sequence.
Current state of heap as tree:
5
6767
067 913
-90 12
Current state of heap as array:
It is heap as array. The green part is actually the
heap, white is sorted sequence and cyan is the old
root, which just has been added to the sorted
sequence: 5 67 67 0 67 9 13 -9 0 1 2 3456
Heap is corrupted after draging maximal element!
Let's restore our heap with sifting it down.
It is the sifting down.
Let's find the maximal element in this root or its
sons!
The value of root is 5
5

	67_					67		
0			67	9_			13	
-9	0	1	2					
67 is n	more	than	currer	nt max	imum	valu	e, wh	ich i
5								
		5						
1	67_					67		
0			67	9_			13	
.9	0	1	2					
57 is l	less o	or equ	ıal thaı	n curre	ent ma	ıximu	ım va	lue,
which	is 6	7						
		5						
	67_					67		
0			67	9_			13	
-9	0	1	2					
Summ	nary,	the v	alue o	f max	imal e	leme	nt of 1	001
and its	s lea	f is 6'	7					
		5						
	67_					67		
0			67	9_			13	
-9	0	1	2					
The so	on, v	vhich	value	is 67,	is bigg	ger th	an fa	hei
which	ı valı	ie is :	5! So l	et's ch	ange t	heir v	value.	
		5						
						67		
	67_					0		111
0	67_		67				13	111

make l	heap l	nas been	done!				
		67					
,	5				_67		
0		67	9_			_13	
-9	_0	12	,				
Let's fi	ind th	e maxim	al eleme	mt in	this r	oot o	r its
sons!							
The va	alue o	f root is 5	5				
		67					
	5				_67		
0		67	9_			_13	
-9	_0	12	•				
0 is les	ss or e	equal that	n current	maxi	mum	valu	e,
which	is 5						
		67					
:	5				_67		
0		67	9_			_13	
-9	_0	12	,				
67 is n	nore t	han curre	ent maxi	mum י	value	, whi	ch is
5							
		67					
	5				_67		
0		67	9_			_13	
-9	_0	12	,				
Summ	ary, t	he value	of maxii	nal ele	emen	t of r	oot
and its	leaf	is 67					
		67					

5			67		
0	67	9		13	
-90	12				
The son, w	hich value is	67, is b	igger than	n fatl	her,
which valu	ie is 5! So let	's chang	e their va	lue.	
	67				
5			67		
0	67	9		13	
-90	12				
Values suc	ccessfully cha	anged! C	ne more	step	to
make heap	has been do	ne!			
	67				
67_			67		
0	5	9		13	
-90	12				
Let's find t	the maximal	elememt	in this ro	ot o	r its
sons!					
The value	of root is 5				
	67				
67_			67		
0	5	9		13	
-90	12				
1 is less or	equal than c	urrent m	naximum	valu	e,
which is 5					
	67				
67_			67		

0	5	9		13	
-90) 12				
2 is less	or equal than o	current	maximu	m valu	ie,
which is	5				
	67				
67	7		6	7	
0	5	9		13	IIIII
-90) 12				
Summar	y, the value of	maxim	nal elem	ent of 1	root
and its le	eaf is 5				
	67				
67	1		6	7	
0	5	9		13	IIIII
-90) 12				
The root	, which value	is 5 is r	nore tha	n his so	ons,
so this su	ubtree is heap!				
	67				
67	7 		6	7	
0	5	9		13	IIIII
-90) 12				
The hear	p restored!				
Current	state of the hea	ıp:			
	67				
67	1				
0	5	9		13	IIIII
-90) 12				
1					

Exclude the node with biggest value. It is the root because we are working with max-heap. Save the root value in buffer variable 67 67_____67 0_____5 9_____13 -9___0 1___2 It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: 67 67 67 0 5 9 13 -9 0 1 2 3456 Make the value of the last element in heap the root value. Eventually, put the old root value into the last position in heap and decrease the size of the heap. So we have already sorted elements after the heap in the array that is storing our elements as heap and sorted sequence. Current state of heap as tree: 67_____67 -9 _0 1 Current state of heap as array: It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old

root, which just has been	added to	the so	rted	
sequence: 2 67 67 0 5 9	13 -9 0 1 6	57 345	66	
Heap is corrupted after of Let's restore our heap wi	lraging ma	ximal t dow		nent!
It is the sifting down.				
Let's find the maximal e sons!	lememt in	this r	oot o	r its
The value of root is 2				
2				
67			10	
05	9		_13	
-90 1				
67 is more than current i	naxımum '	value	, whi	ch 1s
2				
2	IIIII			
67		_67		
05	9		_13	
-90 1				
67 is less or equal than c	urrent max	kimun	n val	ue,
which is 67				
2				
67		_67		
05	9		_13	
-90 1				
Summary, the value of n	naximal el	emen	t of r	oot
and its leaf is 67				

			2				
	6	57				_67	
	0		5	9_		13	
	-9	_0 1	1				
			-				
	The sor	n, whi	ich valu	e is 67,	is bigge	er than fa	ther,
	which v	value	is 2! So	let's ch	ange th	eir value.	
			2				
	6	57				_67	
	0		5	9_		13	
	-9	_0 2	1				
	Values	succe	essfully	changed	d! One	more step	o to
	make h	eap h	as been	done!			
			67				
	2	2				_67	
	0		5	9_		13	
	-9	_0	1				
			-				
	Let's fin	nd the	e maxim	al elem	emt in	this root o	or its
	sons!						
	The val	lue of	root is 2	2			
			67				
	2					_67	
	0		5	9_		13	
	-9	_0 2	1				
	0 is less	s or e	qual tha	n currer	nt maxi	mum valı	ıe,
	which i	is 2					
			67				
<u> </u>							

2_			67	
0	5	9	13	
-9(1			
5 is more	e than current	maximun	n value, whi	ch is 2
	67			
2_			67	
0	5	9	13	
-9(1			
Summar	y, the value of	maximal	l element of	root
and its le	eaf is 5			
	67			
2_			67	
		0	12	11111
0	5	9	13	
0(9	13	
0		9	13	IIIII
0(-9() 1			
0(-9(The son,) 1 which value i	s 5, is big	gger than fat	her,
0(-9(The son,	1 which value in the second sec	s 5, is big	gger than fat e their value	her,
00 -90 The son, which va) 1 which value i	s 5, is big	gger than fat e their value	her,
0(-9(The son,	1 which value in the second sec	s 5, is big t's chango	gger than fat e their value 67	her,
00 -90 The son, which va	which value in the second of t	s 5, is big	gger than fat e their value 67	her,
0090 The son, which va 2 0090	1 which value in alue is 2! So le 675	s 5, is big t's change	gger than fat e their value 6713	her,
00 -90 The son, which va 2 00 Values s	which value in the second which value is 2! So le 67 5 1 1 1 1	s 5, is big t's change 9 anged! O	gger than fat e their value 6713	her,
0090 The son, which va 2 090 Values s	which value in the second which value is 2! So le second with the second with	s 5, is big t's change 9 anged! O	gger than fate their value	her,
0090 The son, which va 2 090 Values s make he	which value in the second which value is 2! So le 67 5 1 1 1 1	s 5, is big t's change 9 anged! O	gger than fat e their value 6713 One more ste	her,
0090 The son, which va 2 090 Values s make he	which value in the second which value is all the second which value is all the second with the	s 5, is big t's change 9 anged! O	gger than fate their value their value 6713 one more sterm 6767	her,
00 -90 The son, which va 2 090 Values s make he	which value in the second which value is 2! So lesson to the second seco	s 5, is big t's change 9 anged! O	gger than fat e their value 6713 One more ste	her,
0090 The son, which va 2 00 Values s make he	which value in the second which value is 2! So lesson to the second seco	s 5, is big t's change 9 anged! O	gger than fate their value their value 6713 one more sterm 6767	her,
0090 The son, which va 2 090 Values s make he	which value in the second which value is 2! So lesson to the second seco	s 5, is big t's change 9 anged! O	gger than fate their value their value 6713 one more sterm 6767	her,

Let's	find th	he maximal	elemei	mt in t	his ro	ot o	r its
sons	!						
The	value o	of root is 2					
		67					
	5				_67		
0_		2	9		1	3	
-9	0	1					
1 is 1	ess or	equal than	current	maxir	num v	alu	e,
	h is 2						
		67					
	5				_67		
0_		2	9		1	3	
-9	0	1					
Sum	mary,	the value of	maxin	nal ele	ment	of r	oot
	ts leaf						
		67					
	5				_67		
0_		2	9		1	3	
-9_	0	1					
The 1	root, w	hich value	is 2 is 1	more t	han hi	s sc	ons,
so th	is subt	ree is heap!	!				
		67					
	5				_67		
0_		2	9		1	3	
-9	0	1					
The !	heap re	estored!					
		te of the hea	ap:				
	37						

67
567
02 913
-90 1
Exclude the node with biggest value. It is the root
because we are working with max-heap. Save the
root value in buffer variable
67
567
02 913
-90 1
It is heap as array. The green part is actually the
heap, white is sorted sequence and cyan is the old
root, which just has been added to the sorted
sequence: 67 5 67 0 2 9 13 -9 0 1 67 3456
Make the value of the last element in heap the root
value. Eventually, put the old root value into the
last position in heap and decrease the size of the
heap. So we have already sorted elements after the
heap in the array that is storing our elements as
heap and sorted sequence.
Current state of heap as tree:
1
567

0	2	0	1.0	11111
0	2	9	13	
-90				
Current stat	e of heap as	array:		
It is heap as	array. The	green part i	s actually	the
heap, white	is sorted sec	quence and	cyan is th	e old
root, which	just has bee	n added to	the sorted	
sequence: 1	5 67 0 2 9 1	3 -9 0 67 6	7 3456	
Heap is cor	rupted after	draging ma	ximal eler	ment!
Let's restore	e our heap w	ith sifting i	t down.	
It is the sift	ing down.			
Let's find th	ne maximal e	elememt in	this root o	r its
sons!				
The value of	f root is 1			
	1			
5			_67	
0	2	9	13	
-90				
5 is more th	an current n	naximum v	alue, whic	h is 1
	1			
5			_67	
	2	9		
-90				11111
67 is more t	han current	maximum	value, whi	ch is
5			,	
	1			
5		11111	67	
				11111

0		2	9		13	
-9	0					
Sumn	nary, th	ne value o	f maxin	nal elen	nent of 1	root
and it	s leaf i	s 67				
		1				
	5			(57	
0		2	9		13	IIIII
-9	0					
		-				
The so	on, wh	ich value	is 67, is	bigger	than fat	ther,
which	value	is 1! So l	et's cha	nge thei	r value.	
		1				
	5			(57	
0		2	9		13	IIIII
-9	0					
Value	s succe	essfully cl	nanged!	One m	ore step	to
make	heap h	as been d	one!			
		67				
	5			1	1	
0		2	9		13	IIIII
-9	0					
		-				
Let's f	find the	e maxima	l eleme	mt in th	is root c	or its
sons!						
The v	alue of	root is 1				
		67				
	5			1	1	
0		2	9		13	

	- 9	0					
	9 is m	ore tha	an current r	naximu	ım va	lue, whic	h is 1
			67				
		5				_1	
	0_		2	9		13	
	-9	0					
	13 is	more tl	han current	maxin	num v	alue, whi	ch is
	9						
			67				
		5				_1	
	0		2	9		13	
	-9	0					
	Sumn	nary, tł	ne value of	maxim	al ele	ment of r	root
	and it	s leaf i	s 13				
			67				
		5				_1	
	0_		2	9		13	
	-9	0					
	The s	on, wh	ich value is	13, is	bigge	er than fat	her,
	which	ı value	is 1! So let	's chan	ge the	eir value.	
			67				
		5				_1	
	0_		2	9		13	
	-9	0					
	Value	s succ	essfully cha	inged!	One 1	nore step	to
	make	heap h	nas been do	ne!			
			67				
		5				_13	

02 91	
-90	
Sifting down has ended.	
The heap restored!	
Current state of the heap:	
67	
513	
01	
-90	
Exclude the node with biggest value. It is the	
because we are working with max-heap. Sa	ve tne
root value in buffer variable	
67	11111
513	
02 91	
-90	41
It is heap as array. The green part is actually	
heap, white is sorted sequence and cyan is t	
root, which just has been added to the sorte	a
sequence: 67 5 13 0 2 9 1 -9 0 67 67 3456	.1
Make the value of the last element in heap	
value. Eventually, put the old root value int	o the

last position in heap and decrease the size of the
heap. So we have already sorted elements after the
heap in the array that is storing our elements as
heap and sorted sequence.
Current state of heap as tree:
0
513
02 91
-9
Current state of heap as array:
It is heap as array. The green part is actually the
heap, white is sorted sequence and cyan is the old
root, which just has been added to the sorted
sequence: 0 5 13 0 2 9 1 -9 67 67 67 3456
Heap is corrupted after draging maximal element!
Let's restore our heap with sifting it down.
It is the sifting down.
Let's find the maximal element in this root or its
sons!
The value of root is 0
0
513
02 91
-9
5 is more than current maximum value, which is 0
0

	5			13
0		2	9	1
-9				
3 i	s more	than curren	t maximuı	n value, w
		0		l
	5			13
0		2	9	1
9				
Sun	nmary,	the value of	f maximal	element of
and	its leaf	is 13		
		0		
	5			13
0		2	9	1
-9		2	9	1
				1
The	son, w	 hich value	is 13, is bi	
The	son, w	hich value in the interval of	is 13, is bi et's change	their value
The	son, w	 hich value	is 13, is bi	their valu
The whi	son, w ch valu	hich value is 0! So le	is 13, is bi et's change	their value
The whi	son, w ch valu	hich value in the interval of	is 13, is bi et's change	their valu
The whi	son, wch valu	hich value is 0! So le	is 13, is bi	their value 13 1
The whi	son, wch valu	hich value is 0! So le 02 cessfully ch	is 13, is biget's change	their value 13 1
The whi	son, wch valu	hich value is 0! So le 0 2 cessfully chas been de	is 13, is biget's change 9 nanged! Or	their value 13 1 ne more ste
 Γhe whi 0 -9	son, wch valu 5 ues succeeded heap	hich value is 0! So le 0 2 cessfully chas been de 13	is 13, is biget's change 9 nanged! Or	their value 13 1 ne more ste
The whi	son, w ch valu 5 ues succeed the heap	hich value is 0! So le 0 2 cessfully chas been de	is 13, is biget's change 9 nanged! Or	their value 13 1 ne more ste

	Let's find the maximal element in this root or	its
	sons!	
	The value of root is 0	
	13	
	-9	
	9 is more than current maximum value, which	18 (
	13	
	50	
	01	
	-9	
	1 is less or equal than current maximum value,	,
	which is 9	
	13	
ļ	50	
	-9	
	Summary, the value of maximal element of roo	ot
	and its leaf is 9	
	13	
		1111
	-9	
	The son, which value is 9, is bigger than father	r,
	which value is 0! So let's change their value.	
	13	

	5			0)	
0		2	9		1	
-9						
Value	s succ	essfully ch	anged!	One mo	ore ste	p to
		nas been do				•
	1	13				
	5			9)	
0		2	0		1	
-9		2	0		1	11111
-9						
Ciftin	a dann	n has andas	1			
Situit	g dow	n has endec	1.			
		. 11				
		stored!				
Currei	nt state	e of the hea	ıp:			
		13				
	5			9	1	
0		2	0		1	
-9						
Exclu	de the	node with	bigges	t value.	It is th	ne root
becaus	se we	are workin	g with	max-he	ap. Sa	ve the
		n buffer var				
		13				
	5			9)	
0		2	0		1	
			0		1	11111

-9

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: 13 5 9 0 2 0 1 -9 67 67 67 3456

Make the value of the last element in heap the root value. Eventually, put the old root value into the last position in heap and decrease the size of the heap. So we have already sorted elements after the heap in the array that is storing our elements as heap and sorted sequence.

Current state of heap as tree:

Current state of heap as array:

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 5 9 0 2 0 1 13 67 67 67 3456

Heap is corrupted after draging maximal element! Let's restore our heap with sifting it down.

It is the sifting down.

Let's find the maximal element in this root or its sons!

The value of root is -9 -9 0____1 5 is more than current maximum value, which is -9 -9 0_____1 ||||| 9 is more than current maximum value, which is 5 -9 5____9 0_____1 ||||| Summary, the value of maximal element of root and its leaf is 9 -9 0____2 0____1 ||||| The son, which value is 9, is bigger than father, which value is -9! So let's change their value. -9 5_____9

0_____2 0____1 |||||

Values successfully changed! One more step to
make heap has been done!
9
59
01
Let's find the maximal element in this root or its
sons!
The value of root is -9
9
59
01
<u> </u>
0 is more than current maximum value, which is -
9
9
59
01
01
1 is more than current maximum value, which is 0
59
01
Summary, the value of maximal element of root
and its leaf is 1
9
40

	59
	02 01
	The son, which value is 1, is bigger than father,
	which value is -9! So let's change their value.
	9
	59
	02 01
	Values successfully changed! One more step to
	make heap has been done!
	9
	51
	02 09
	Sifting down has ended.
	The heap restored!
	Current state of the heap:
	9
	51
	0
	02 0

Exclude the node with biggest value. It is the root because we are working with max-heap. Save the root value in buffer variable

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: 9 5 1 0 2 0 -9 13 67 67 67 3456

Make the value of the last element in heap the root value. Eventually, put the old root value into the last position in heap and decrease the size of the heap. So we have already sorted elements after the heap in the array that is storing our elements as heap and sorted sequence.

Current state of heap as tree:

Current state of heap as array:

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 5 1 0 2 0 9 13 67 67 67 3456

Heap is corrupted after draging maximal element!

Let's restore our heap with sifting it down.
It is the sifting down
It is the sifting down.
Let's find the maximal element in this root or its
sons!
The value of root is -9
-9
51
02 0
5 is more than current maximum value, which is -
9
-9
51
02 0
1 is less or equal than current maximum value,
which is 5
-9
51
02 0
Summary, the value of maximal element of root
and its leaf is 5
-9
51
02 0
The son, which value is 5, is bigger than father,
which value is -9! So let's change their value.
-9

51
02 0
Values successfully changed! One more step to
make heap has been done!
5
-91
02 0
Let's find the maximal element in this root or its
sons!
The value of root is -9
5
-91
02 0
0 is more than current maximum value, which is -
9
5
-91
02 0
2 is more than current maximum value, which is 0
5
-91
02 0
Summary, the value of maximal element of root
and its leaf is 2
5
-91
02 0

_	
	The son, which value is 2, is bigger than father,
	which value is -9! So let's change their value.
	5
	-91
	02 0
	Values successfully changed! One more step to
	make heap has been done!
	5
	21
	09 0
	Sifting down has ended.
	The heap restored!
	Current state of the heap:
	5
	21
	09 0
	Exclude the node with biggest value. It is the root
	because we are working with max-heap. Save the
	root value in buffer variable
	5
	21

	09 0
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: 5 2 1 0 -9 0 9 13 67 67 67 3456
	Make the value of the last element in heap the root
	value. Eventually, put the old root value into the
	last position in heap and decrease the size of the
	heap. So we have already sorted elements after the
	heap in the array that is storing our elements as
	heap and sorted sequence.
	Current state of heap as tree:
	0
	21
	09
	Current state of heap as array:
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: 0 2 1 0 -9 5 9 13 67 67 67 3456
	Heap is corrupted after draging maximal element!
	Let's restore our heap with sifting it down.
	It is the sifting down.
	Let's find the maximal element in this root or its
	sons!
	The value of root is 0

	0
	21
	09
	2 is more than current maximum value, which is 0
	0
	21
	09
	1 is less or equal than current maximum value,
	which is 2
	0
	21
	09
	Summary, the value of maximal element of root
	and its leaf is 2
	0
	21
	09
	The son, which value is 2, is bigger than father,
	which value is 0! So let's change their value.
	0
	21
	09
	Values successfully changed! One more step to
	make heap has been done!
	2
	01
	09

	Let's find the maximal element in this root or its
	sons!
	The value of root is 0
	2
	01
	09
	0 is less or equal than current maximum value,
	which is 0
	2
	01
	09
	-9 is less or equal than current maximum value,
	which is 0
	2
	01
	09
	Summary, the value of maximal element of root
	and its leaf is 0
	2
	01
	09
	The root, which value is 0 is more than his sons,
	so this subtree is heap!
	2
	01
	09
<u>i</u>	

The heap restored!
Current state of the heap:
2
01
09
Exclude the node with biggest value. It is the root
because we are working with max-heap. Save the
root value in buffer variable
2
01
09
It is heap as array. The green part is actually the
heap, white is sorted sequence and cyan is the old
root, which just has been added to the sorted
sequence: 2 0 1 0 -9 5 9 13 67 67 67 3456
Make the value of the last element in heap the root
value. Eventually, put the old root value into the
last position in heap and decrease the size of the
heap. So we have already sorted elements after the
heap in the array that is storing our elements as
heap and sorted sequence.
Current state of heap as tree:
-9
01

0
Current state of heap as array:
It is heap as array. The green part is actually the
heap, white is sorted sequence and cyan is the old
root, which just has been added to the sorted
sequence: -9 0 1 0 2 5 9 13 67 67 67 3456
Heap is corrupted after draging maximal element!
Let's restore our heap with sifting it down.
It is the sifting down.
Let's find the maximal element in this root or its
sons!
The value of root is -9
-9
01
0
0 is more than current maximum value, which is -
9
-9
01
0
1 is more than current maximum value, which is 0
-9
01
0
Summary, the value of maximal element of root
and its leaf is 1

-9
01
0
The son, which value is 1, is bigger than father,
which value is -9! So let's change their value.
-9
01
0
Values successfully changed! One more step to
make heap has been done!
1
09
0
Sifting down has ended.
The heap restored!
Current state of the heap:
1
0
Exclude the node with biggest value. It is the root
because we are working with max-heap. Save the
The state of the s

	root value in buffer variable
	1
	09
	0
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: 1 0 -9 0 2 5 9 13 67 67 67 3456
	Make the value of the last element in heap the root
	value. Eventually, put the old root value into the
	last position in heap and decrease the size of the
	heap. So we have already sorted elements after the
	heap in the array that is storing our elements as
	heap and sorted sequence.
	Current state of heap as tree:
	0
	09
	Current state of heap as array:
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: 0 0 -9 1 2 5 9 13 67 67 67 3456
	Heap is corrupted after draging maximal element!
	Let's restore our heap with sifting it down.
	It is the sifting down.
	<u> </u>

	Let's find the maximal element in this root or its
	sons!
	The value of root is 0
	0
	09
	0 is less or equal than current maximum value,
	which is 0
	0
	09
	-9 is less or equal than current maximum value,
	which is 0
	0
	09
	Summary, the value of maximal element of root
	and its leaf is 0
	0
	09
	The root, which value is 0 is more than his sons,
	so this subtree is heap!
	0
	09
	The heap restored!

	Current state of the heap:
	0
	09
	Exclude the node with biggest value. It is the root
	because we are working with max-heap. Save the
	root value in buffer variable
	0
	09
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: 0 0 -9 1 2 5 9 13 67 67 67 3456
	Make the value of the last element in heap the root
	value. Eventually, put the old root value into the
	last position in heap and decrease the size of the
	heap. So we have already sorted elements after the
	heap in the array that is storing our elements as
	heap and sorted sequence.
	Current state of heap as tree:
	-9
	0
	Current state of heap as array:

	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: -9 0 0 1 2 5 9 13 67 67 67 3456
	Heap is corrupted after draging maximal element!
	Let's restore our heap with sifting it down.
	It is the sifting down.
	Let's find the maximal element in this root or its
	sons!
	The value of root is -9
	-9
	0
	0 is more than current maximum value, which is -
	9
	-9
	0
	Summary, the value of maximal element of root
	and its leaf is 0
	-9
	0
	The son, which value is 0, is bigger than father,
	which value is -9! So let's change their value.
	-9
	0
	Values successfully changed! One more step to

	make neap has been done!
	0
	-9
	Sifting down has ended.
	The heap restored!
	Current state of the heap:
	0
	-9
	Exclude the node with biggest value. It is the root
	because we are working with max-heap. Save the
	root value in buffer variable
	0
	-9
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: 0 -9 0 1 2 5 9 13 67 67 67 3456
	Make the value of the last element in heap the root
	value. Eventually, put the old root value into the
	last position in heap and decrease the size of the
	heap. So we have already sorted elements after the
	heap in the array that is storing our elements as
1	

heap ar	nd sorted sequence.
Curren	at state of heap as tree:
-9	
Curren	at state of heap as array:
It is he	ap as array. The green part is actually the
heap, v	white is sorted sequence and cyan is the old
root, w	which just has been added to the sorted
	ace: -9 0 0 1 2 5 9 13 67 67 67 3456
Heap is	s corrupted after draging maximal element!
Let's re	estore our heap with sifting it down.
It is the	e sifting down.
Only re	oot is reamining in the heap, so it is already
heap. N	No sifting needed.
Sifting	down has ended.
The he	eap restored!
Curren	at state of the heap:
-9	
	le the node with biggest value. It is the root
becaus	e we are working with max-heap. Save the

root value in buffer variable -9 |||| It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 0 0 1 2 5 9 13 67 67 67 3456 Make the value of the last element in heap the root value. Eventually, put the old root value into the last position in heap and decrease the size of the heap. So we have already sorted elements after the heap in the array that is storing our elements as heap and sorted sequence. Current state of heap as tree: Empty heap! Current state of heap as array: It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 0 0 1 2 5 9 13 67 67 67 3456 It was the last node in the heap! Sort has successfully ended! It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 0 0 1 2 5 9 13 67 67 67 3456

		Sorted array:			
		-9 0 0 1 2 5 9 13 67 67 67 3456			
2	3 123 67 5 -9 67 3456	Input array:			
	67 0 10 -1 -2 -9	123 67 5 -9 67 0 10 -1 -2 -9			
	Восходящая просейка	Fistly we need to make heap from starting array.			
		Lot's make book			
		Let's make heap!			
		The current state of heap is:			
		123			
		67			
		9			
		67010 -19			
		It is the sifting down. No son of this node exist, so it is already subheap. No sifting needed. Sifting down has ended.			
		It is the sifting down.			
		Let's find the maximal element in this root or its sons!			
		The value of root is 5			

123
67
9
67010 -129
-1 is less or equal than current maximum value,
which is 5
123
67
9
67010 -129
-2 is less or equal than current maximum value,
which is 5
123
67
9
67010 -129
-9 is less or equal than current maximum value,
which is 5
123
67
9
67010 -129
Summary, the value of maximal element of root
and its leaf is 5
123
67
9
67010 -129

The root,	which value is 5 is more than his sons,
so this su	btree is heap!
	123
67	5
9	
670	10 -129
It is the si	ifting down.
Let's find	the maximal element in this root or its
sons!	
	e of root is 67
	123
67	5
9	
	10 -129
	or equal than current maximum value,
which is	
willen is	
(7	123
	5
9	
	10 -129
	or equal than current maximum value,
which is	
	123
67	5
9	
670	10 -129

10 is less or equal than current maximum value,			
which is 67			
123			
67			
9			
67010 -129			
Summary, the value of maximal element of root			
and its leaf is 67			
123			
67			
9			
67010 -129			
The root, which value is 67 is more than his sons,			
so this subtree is heap!			
123			
67			
9			
67010 -129			
It is the sifting down.			
Let's find the maximal element in this root or its			
sons!			
The value of root is 123			
123			
67			

670	10 -1	2	9	
67 is less or equal than current maximum value,				
which is 123				
	123			
67		_5	-	
9				
670	10 -1	2	9	
5 is less or eq	qual than cur	rent max	kimum value,	
which is 123				
	123			
67		_5		
9				
670	10 -1	2	9	
-9 is less or e	qual than cu	rrent ma	ximum value,	
which is 123				
	123			
67		_5	-	
9				
670	10 -1	2	9	
Summary, the	e value of m	aximal e	element of root	
and its leaf is	123			
	123			
67		_5		
9				
670	10 -1	2	9	
The root, which value is 123 is more than his sons,				
so this subtre	e is heap!			
	123			

67
9
67010 -129
Building heap has been ended!
The current state of heap is:
123
67
9
67010 -129
Choose sifting type. 'd' for sifting down and 'u' for
upward sifting:
u
You choose upward sifting sort.
Heapsort with upward sifting.
This sort using the upward sifting to restore heap
after draging max element.
Exclude the node with biggest value. It is the root
because we are working with max-heap. Save the
root value in buffer variable
123

	67
	9
	67010 -129
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: 123 67 5 -9 67 0 10 -1 -2 -9
	Make the value of the last element in heap the root
	value. Eventually, put the old root value into the
	last position in heap and decrease the size of the
	heap. So we have already sorted elements after the
	heap in the array that is storing our elements as
	heap and sorted sequence.
	Current state of heap as tree:
	-9
	67
	9
	67010 -12
	Current state of heap as array:
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: -9 67 5 -9 67 0 10 -1 -2 123
	Heap is corrupted after draging maximal element!
	Let's restore our heap with sifting it down.
	Starting upward sifting.
	Firstly, we need to find a route from heap root to

the lea	of which	consis	t of the bigg	gest sons.
Let's f	ind the n	naxima	al son of thi	s root!
The va	alue of ro	oot is -	9	
		-9		
67	7		5	
9				
67	0	_10 -	12	
67 is f	irst son,	so it is	new maxin	num value.
		-9		
67	7		5	
9				
67	0	_10 -	12	
5 is les	ss or equ	al thar	current ma	ximum value,
which	is 67			
		-9		
67	7		5	
9				
67	0	_10 -	12	
-9 is le	ess or equ	ual tha	n current m	aximum value,
which	is 67			
		-9		
67	7		5	
9				
67	0	_10 -	12	
Summ	ary, the	value o	of maximal	leaf is 67
		-9		
67	7		5	
9				

67	_0	_10	-1	2	
Let's fin	nd the r	naxin	nal son	of this	s root!
The val	ue of ro	oot is	67		
		-9			
67_				_5	-
9					
67	_0	_10	-1	2	
67 is fin	rst son,	so it	is new	maxin	num value.
		-9			
67_				_5	-
9					
67	_0	_10	-1	2	
0 is less	s or equ	al tha	ın curr	ent ma	ximum value,
which i	s 67				
		-9			
67_				_5	
9					
67	_0	_10	-1	2	
10 is le	ss or eq	ual th	nan cui	rent m	aximum value,
which i	s 67				
		-9			
67_				_5	-
9					
67	_0	_10	-1	2	
Summa	ry, the	value	of ma	ximal	leaf is 67
		-9			
67_				_5	

	9
	67010 -12
	So we have got the next route:
	-9
	67
	9
	67010 -12
	Let's find the first element on this route which is
	bigger than root.
	Current node, which value is 67 is more than root,
	which value is -9
	-9
	67
	9
	67010 -12
	Save current node in buffer variable, replace the
	value of current node with the value of the root
	and exclude this node from the route.
	-9
	67
	9
	-9010 -12
	Now we are going to shift all remaining nodes in
	the route, which we have got early, to the one
	level upper. The nearest node which will be
	replaced with previous saved in buffer variable
	node value, which is 67
•	

The heap root has been reached. Shifting nodes to
upper level has successfully ended. Upward sifting has ended.
The heap restored!
Current state of the heap:
67
67
9
-9010 -12
Exclude the node with biggest value. It is the root
because we are working with max-heap. Save the
root value in buffer variable
67
67
9
-9010 -12
It is heap as array. The green part is actually the
heap, white is sorted sequence and cyan is the old
root, which just has been added to the sorted
sequence: 67 67 5 -9 -9 0 10 -1 -2 123
Make the value of the last element in heap the root
value. Eventually, put the old root value into the
last position in heap and decrease the size of the

heap in the array that is storing our elemen	its as
heap and sorted sequence.	
Current state of heap as tree:	
-2	
675	
9	
-9010 -1	
Current state of heap as array:	
It is heap as array. The green part is actual	ly the
heap, white is sorted sequence and cyan is	the old
root, which just has been added to the sort	ed
sequence: -2 67 5 -9 -9 0 10 -1 67 123	
Heap is corrupted after draging maximal e	lement!
Let's restore our heap with sifting it down.	
Starting upward sifting.	
Firstly, we need to find a route from heap	root to
the leaf which consist of the biggest sons.	
Let's find the maximal son of this root!	
The value of root is -2	
-2	
675	
9	
-9010 -1	
67 is first son, so it is new maximum value	2.
-2	

67
9
-9010 -1
5 is less or equal than current maximum value,
which is 67
-2
67
9
-9010 -1
-9 is less or equal than current maximum value,
which is 67
-2
67
9
-9010 -1
Summary, the value of maximal leaf is 67
-2
67
9
-9010 -1
Let's find the maximal son of this root!
The value of root is 67
-2
67
9
-9010 -1
-9 is first son, so it is new maximum value.

-2
67
9
-9010 -1
0 is more than current maximum value, which is -
9
-2
67
9
-9010 -1
10 is more than current maximum value, which is
0
-2
67
9
-9010 -1
Summary, the value of maximal leaf is 10
-2
67
9
-9010 -1
So we have got the next route:
-2
67
9
-9010 -1
Let's find the first element on this route which is

bigger than root.
Current node, which value is 10 is more than root,
which value is -2
-2
67
9
-9010 -1
Save current node in buffer variable, replace the
value of current node with the value of the root
and exclude this node from the route.
-2
67
9
-902 -1
Now we are going to shift all remaining nodes in
the route, which we have got early, to the one
level upper. The nearest node which will be
replaced with previous saved in buffer variable
node value, which is 10
Remaining route:
-2
67
9
-902 -1
The value of current will be saved in buffer
variable and then will be replaced with the value
of its biggest son, which is 10 and has been saved
in the another buffer variable.
-2

67
9
-902 -1
-2
10
9
-902 -1
The value of current will be saved in buffer
variable and then will be replaced with the value
of its biggest son, which is 67 and has been saved
in the another buffer variable.
-2
10
9
-902 -1
67
10
9
-902 -1
The heap root has been reached. Shifting nodes to
upper level has successfully ended.
Upward sifting has ended.
The heap restored!
Current state of the heap:
67
10
9
-902 -1

	Exclude the node with biggest value. It is the root
	because we are working with max-heap. Save the
	root value in buffer variable
	67
	10
	9
	-902 -1
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: 67 10 5 -9 -9 0 -2 -1 67 123
	Make the value of the last element in heap the root
	value. Eventually, put the old root value into the
	last position in heap and decrease the size of the
	heap. So we have already sorted elements after the
	heap in the array that is storing our elements as
	heap and sorted sequence.
	Current state of heap as tree:
	-1
	9
	-902
	Current state of heap as array:
	It is heap as array. The green part is actually the

root, which just has bee sequence: -1 10 5 -9 -9	0 -2 67 67 123
Let's restore our heap w	draging maximal element!
Starting upward sifting.	
Firstly, we need to find	a route from heap root to
the leaf which consist o	of the biggest sons.
Let's find the maximal s	son of this root!
The value of root is -1	
-1	
10	5
9	
-902	
10 is first son, so it is no	ew maximum value.
-1	IIIII
10	5
9	
-902	
5 is less or equal than co	urrent maximum value.
which is 10	· · · · · · · · ·
-1	IIII
	5
9	<u>_</u>
-9 <u>0</u> -2	
	current maximum value,

which is	s 10			
	_	·1		
10_			_5	 -
9				
-9()	2		
Summar	ry, the va	alue of ma	ximal l	eaf is 10
	-	·1		
10_			_5	
9				
-9()	2		
Let's fin	d the ma	aximal sor	of this	root!
The valu	ue of roo	ot is 10		
	-	·1		
10_			_5	
9				
-9()	2		
-9 is firs	st son, so	it is new	maxim	ım value.
	-	·1		
10_			_5	
9				
-9(0	2		
0 is mor	e than c	urrent max	kimum '	value, which is -
9				
	-	.1		
10_			_5	-
9 III			_5	
9			_5	

-2 is less or equal than current maximum value,
which is 0
-1
10
9
-902
Summary, the value of maximal leaf is 0
-1
10
9
-902
So we have got the next route:
-1
10
9
-902
Let's find the first element on this route which is
bigger than root.
Current node, which value is 0 is more than root,
which value is -1
-1
10
9
-902
Save current node in buffer variable, replace the
value of current node with the value of the root
and exclude this node from the route.

105	-1
Now we are going to shift all remaining nodes in the route, which we have got early, to the one level upper. The nearest node which will be replaced with previous saved in buffer variable node value, which is 0 Remaining route: -1 -912 The value of current will be saved in buffer variable and then will be replaced with the value of its biggest son, which is 0 and has been saved in the another buffer variable. -1 -9159 -9121 05	10
Now we are going to shift all remaining nodes in the route, which we have got early, to the one level upper. The nearest node which will be replaced with previous saved in buffer variable node value, which is 0 Remaining route: -1 105	9
the route, which we have got early, to the one level upper. The nearest node which will be replaced with previous saved in buffer variable node value, which is 0 Remaining route: -1 -912 The value of current will be saved in buffer variable and then will be replaced with the value of its biggest son, which is 0 and has been saved in the another buffer variable. -1 -912 -1 -912 The value of current will be saved in buffer	-912
level upper. The nearest node which will be replaced with previous saved in buffer variable node value, which is 0 Remaining route: -1 10	Now we are going to shift all remaining nodes in
replaced with previous saved in buffer variable node value, which is 0 Remaining route: -1 10	the route, which we have got early, to the one
node value, which is 0 Remaining route: -1 10	level upper. The nearest node which will be
Remaining route:	replaced with previous saved in buffer variable
-1 10	node value, which is 0
10	Remaining route:
9 -912 The value of current will be saved in buffer variable and then will be replaced with the value of its biggest son, which is 0 and has been saved in the another buffer variable. -1 105 9 -912 -1 05 9 -912 The value of current will be saved in buffer	-1
-912 The value of current will be saved in buffer variable and then will be replaced with the value of its biggest son, which is 0 and has been saved in the another buffer variable. -1 105 9 -912 -1 05 9 -912 The value of current will be saved in buffer	10
The value of current will be saved in buffer variable and then will be replaced with the value of its biggest son, which is 0 and has been saved in the another buffer variable. -1 105	9
variable and then will be replaced with the value of its biggest son, which is 0 and has been saved in the another buffer variable. -1 10	-912
of its biggest son, which is 0 and has been saved in the another buffer variable. -1 10	The value of current will be saved in buffer
in the another buffer variable. -1 105 9 -912 -1 05 9 -912 The value of current will be saved in buffer	variable and then will be replaced with the value
-1 10	of its biggest son, which is 0 and has been saved
105	in the another buffer variable.
9 -912 -1 05 9 -912 The value of current will be saved in buffer	-1
-912	10
-1 05 9 -912 The value of current will be saved in buffer	9
05	-912
9 -912 The value of current will be saved in buffer	-1
-912 The value of current will be saved in buffer	0
The value of current will be saved in buffer	9
	-912
variable and then will be replaced with the value	The value of current will be saved in buffer
	variable and then will be replaced with the value
of its biggest son, which is 10 and has been saved	of its biggest son, which is 10 and has been saved

in the another buffer variable.
-1
0
9
-912
10
0
9
-912
The heap root has been reached. Shifting nodes to
upper level has successfully ended.
Upward sifting has ended.
The heap restored!
Current state of the heap:
10
0
9
-912
Exclude the node with biggest value. It is the root
because we are working with max-heap. Save the
root value in buffer variable
10
0

9
-912
It is heap as array. The green part is actually the
heap, white is sorted sequence and cyan is the old
root, which just has been added to the sorted
sequence: 10 0 5 -9 -9 -1 -2 67 67 123
Make the value of the last element in heap the root
value. Eventually, put the old root value into the
last position in heap and decrease the size of the
heap. So we have already sorted elements after the
heap in the array that is storing our elements as
heap and sorted sequence.
Current state of heap as tree:
-2
0
9
-91
Current state of heap as array:
It is heap as array. The green part is actually the
heap, white is sorted sequence and cyan is the old
root, which just has been added to the sorted
sequence: -2 0 5 -9 -9 -1 10 67 67 123
Heap is corrupted after draging maximal element!
Let's restore our heap with sifting it down.
Starting upward sifting.
Firstly, we need to find a route from heap root to
the leaf which consist of the biggest sons.

	Let's fi	nd the m	aximal soı	n of this	root!
	The va	lue of ro	ot is -2		
			-2		
	0_			_5	
	9				
	-9	1			
	0 is firs	st son, so	it is new	maximu	ım value.
			-2		
	0_			_5	-
	9				
	-9	1			
	5 is mo	re than c	current ma	ximum	value, which is 0
			-2		
	0_			_5	
	9				
	-9	1			
	-9 is le	ss or equ	al than cui	rrent ma	aximum value,
	which	is 5			
			-2		
	0_			_5	
	9				
	-9	1			
	Summa	ry, the v	alue of ma	aximal l	eaf is 5
			-2		
	0_			_5	-
	9				
	-9	1			
į	l				

	So we have go	ot the next r	oute:	
		-2		
	0		_5	-
	9			
	-91			
	Let's find the	first elemen	t on this	route which is
	bigger than ro	ot.		
	Current node,	which valu	e is 5 is 1	more than root,
	which value is	s -2		
		-2		
	0		_5	-
	9			
	-91			
	Save current r	node in buff	er variab	le, replace the
	value of curre	nt node witl	h the val	ue of the root
	and exclude th	nis node fro	m the ro	ute.
		-2		
	0		2	
	9			
	-91			
	Now we are g	oing to shif	t all rem	aining nodes in
	the route, whi	ch we have	got early	, to the one
	level upper. T	he nearest r	node whi	ch will be
	replaced with	previous sa	ved in b	ıffer variable
	node value, w	hich is 5		
	Remaining ro	ute:		
		-2		
	0		2	

		9				
		-9	-1			
		The val	ue of cu	rrent will be	e saved in	buffer
		variable	e and the	en will be re	placed wit	h the value
		of its bi	ggest so	on, which is	5 and has	been saved
		in the a	nother b	uffer variab	ole.	
				-2		
		0		·	-2	
		9				
		-9	-1			
				5		
		0		.	-2	
		9				
		-9	-1			
		The hea	ap root h	nas been reac	ched. Shift	ing nodes to
		upper le	evel has	successfully	y ended.	
		Upward	d sifting	has ended.		
		The hea	ap restor	red!		
		Current	state of	the heap:		
				5		
		0		·	-2	
		9				
		-9	1			
1	<u>'</u>					

	Exclude the node with biggest value. It is the root
	because we are working with max-heap. Save the
	root value in buffer variable
	5
	02
	9
	-91
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: 5 0 -2 -9 -9 -1 10 67 67 123
	Make the value of the last element in heap the root
	value. Eventually, put the old root value into the
	last position in heap and decrease the size of the
	heap. So we have already sorted elements after the
	heap in the array that is storing our elements as
	heap and sorted sequence.
	Current state of heap as tree:
	-1
	02
	9
	-9
	Current state of heap as array:
	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: -1 0 -2 -9 -9 5 10 67 67 123
	Heap is corrupted after draging maximal element!

Let's restore our heap with sifting it down.
Starting upward sifting.
Firstly, we need to find a route from heap root to
the leaf which consist of the biggest sons.
Let's find the maximal son of this root!
The value of root is -1
-1
02
9
-9
0 is first son, so it is new maximum value.
-1
0
9
-9
-2 is less or equal than current maximum value,
which is 0
-1
0 -2 -
9
-9
-9 is less or equal than current maximum value,
which is 0
-1
0 -2 -
<u></u>
-9

Summary, the value of maximal leaf is 0
-1
0
9
-9
Let's find the maximal son of this root!
The value of root is 0
-1
02
9
-9
-9 is first son, so it is new maximum value.
-1
02
9
-9
Summary, the value of maximal leaf is -9
-1
02
9
-9
So we have got the next route:
-1
0
9
-9

	Let's	s find	the fir	st eleme	nt on thi	s route wh	ich is
	bigg	ger tha	ın root	•			
	Current node, which value is -9 is less than root,						
	which value is -1. So we exclude it from the route.				e route.		
			-	-1			
		0			2		
	9						
	-9						
	Cur	rent n	ode, w	hich val	ue is -9	is less than	root,
	whi	ch val	ue is -	1. So we	exclude	e it from th	e route.
			-	-1			
		0			2		
	9						
	-9						
	Cur	rent n	ode, w	hich val	ue is 0 is	s more than	ı root,
	whi	ch val	ue is -	1			
			-	-1			
		0			2		
	9						
	-9						
	Sav	e curr	ent no	de in but	fer varia	able, replac	e the
	value of current node with the value of the root and exclude this node from the route.						
			-	-1			
		-1			-2		-9
	-9						
		v we a	ire goi	ng to shi	ft all rei	naining no	des in
	'	•		<i>U</i>	3-	<i>8</i> 0	

	the route	e, whicl	h we have	e got ear	ly, to the o	ne
	level up	per. Th	e nearest	node wl	hich will be	e
	replaced	l with p	revious s	aved in	buffer vari	able
	node va	lue, wh	ich is 0			
	Remain	ing rout	te:			
			-1			
	-1_			2		9
	-9					
	The valu	ue of cu	rrent will	l be save	ed in buffer	ſ
	variable	and the	en will be	replace	ed with the	value
	of its big	ggest so	on, which	is 0 and	l has been s	saved
	in the ar	other b	ouffer var	iable.		
			-1			
	-1			2		9
	-9					
			0			
	-1_			2		9
	-9					
	The hea	p root h	nas been r	eached.	Shifting no	odes to
	upper le	vel has	successfi	ully end	ed.	
	Upward sifting has ended.					
	The hea	p restor	red!			
	Current	state of	f the heap	:		
			0			
	-1_			2		9

	-9		
	Exclude the node with biggest value. It is the root		
	because we are working with max-heap. Save the		
	root value in buffer variable		
	0		
	-19		
	-9		
	It is heap as array. The green part is actually the		
	heap, white is sorted sequence and cyan is the old		
	root, which just has been added to the sorted		
	sequence: 0 -1 -2 -9 -9 5 10 67 67 123		
	Make the value of the last element in heap the root value. Eventually, put the old root value into the		
	last position in heap and decrease the size of the		
	heap. So we have already sorted elements after the		
	heap in the array that is storing our elements as		
	heap and sorted sequence.		
	Current state of heap as tree:		
	-9		
	-19		
	Current state of heap as array:		

	It is heap as array. The green part is actually the
	heap, white is sorted sequence and cyan is the old
	root, which just has been added to the sorted
	sequence: -9 -1 -2 -9 0 5 10 67 67 123
	Heap is corrupted after draging maximal element!
	Let's restore our heap with sifting it down.
	Starting upward sifting.
	Firstly, we need to find a route from heap root to
	the leaf which consist of the biggest sons.
	Let's find the maximal son of this root!
	The value of root is -9
	-9
	-19
	-1 is first son, so it is new maximum value.
	-9
	-19
	-2 is less or equal than current maximum value,
	which is -1
	-9
	-19
	-9 is less or equal than current maximum value,
	which is -1
	-9
<u>'</u>	101

Summary, the value of maximal leaf is -1

So we have got the next route:

Let's find the first element on this route which is bigger than root.

Current node, which value is -1 is more than root, which value is -9

Save current node in buffer variable, replace the value of current node with the value of the root and exclude this node from the route.

Now we are going to shift all remaining nodes in the route, which we have got early, to the one level upper. The nearest node which will be replaced with previous saved in buffer variable

node value, which is -1 Remaining route: -9 ||||| -9___-9__||||| The value of current will be saved in buffer variable and then will be replaced with the value of its biggest son, which is -1 and has been saved in the another buffer variable. -9 -9___-9____ -1 ||||| -9___-9 |||| The heap root has been reached. Shifting nodes to upper level has successfully ended. Upward sifting has ended. The heap restored! Current state of the heap: -1 -9___-9__||||

Exclude the node with biggest value. It is the root because we are working with max-heap. Save the root value in buffer variable

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -1 -9 -2 -9 0 5 10 67 67 123

Make the value of the last element in heap the root value. Eventually, put the old root value into the last position in heap and decrease the size of the heap. So we have already sorted elements after the heap in the array that is storing our elements as heap and sorted sequence.

Current state of heap as tree:

Current state of heap as array:

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 -9 -2 -1 0 5 10 67 67 123

Heap is corrupted after draging maximal element! Let's restore our heap with sifting it down.

Starting upward sifting.

Firstly, we need to find a route from heap root to
the leaf which consist of the biggest sons.
Let's find the maximal son of this root!
The value of root is -9
-9
-92
-9 is first son, so it is new maximum value.
-9
-92
-2 is more than current maximum value, which is -
9
-9
-92
Summary, the value of maximal leaf is -2
-9
-92
So we have got the next route:
-9
-92
Let's find the first element on this route which is
bigger than root.
Current node, which value is -2 is more than root,
which value is -9
-9
-92
Save current node in buffer variable, replace the
<u> </u>

value of current node with the value of the root and exclude this node from the route.

Now we are going to shift all remaining nodes in the route, which we have got early, to the one level upper. The nearest node which will be replaced with previous saved in buffer variable node value, which is -2

Remaining route:

The value of current will be saved in buffer variable and then will be replaced with the value of its biggest son, which is -2 and has been saved in the another buffer variable.

The heap root has been reached. Shifting nodes to upper level has successfully ended.

Upward sifting has ended.

The heap restored!

Current state of the heap:

Exclude the node with biggest value. It is the root because we are working with max-heap. Save the root value in buffer variable

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -2 -9 -9 -1 0 5 10 67 67 123

Make the value of the last element in heap the root value. Eventually, put the old root value into the last position in heap and decrease the size of the heap. So we have already sorted elements after the heap in the array that is storing our elements as heap and sorted sequence.

Current state of heap as tree:

-9

Current state of heap as array:

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 -9 -2 -1 0 5 10 67 67 123

Heap is corrupted after draging maximal element!

Let's restore our heap with sifting it down.				
Starting upward sifting.				
Firstly, we need to find	a route from heap root to			
the leaf which consist o	f the biggest sons.			
Let's find the maximal s	son of this root!			
The value of root is -9				
-9				
-9				
-9 is first son, so it is ne	w maximum value.			
-9				
-9				
Summary, the value of	maximal leaf is -9			
-9				
-9				
So we have got the next	route:			
-9				
-9				
Let's find the first eleme	ent on this route which is			
bigger than root.				
Current node, which va	lue is -9 is more than root,			
which value is -9				
-9				
-9				
Save current node in bu	ffer variable, replace the			
value of current node w	ith the value of the root			

	and exclude this node from the route.
	-9
	-9
	Now we are going to shift all remaining nodes in
	the route, which we have got early, to the one
	level upper. The nearest node which will be
	replaced with previous saved in buffer variable
	node value, which is -9
	Remaining route:
	-9
	-9
	The value of current will be saved in buffer
	variable and then will be replaced with the value
	of its biggest son, which is -9 and has been saved
	in the another buffer variable.
	-9
	-9
	-9
	-9
	The heap root has been reached. Shifting nodes to
	upper level has successfully ended.
	Upward sifting has ended.
	The heap restored!
	Current state of the heap:
	-9
	-9
 · · · · · · · · · · · · · · · · · · ·	

Exclude the node with biggest value. It is the root because we are working with max-heap. Save the root value in buffer variable

-9 |||||

-9

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 -9 -2 -1 0 5 10 67 67 123

Make the value of the last element in heap the root value. Eventually, put the old root value into the last position in heap and decrease the size of the heap. So we have already sorted elements after the heap in the array that is storing our elements as heap and sorted sequence.

Current state of heap as tree:

-9 |||||

Current state of heap as array:

It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 -9 -2 -1 0 5 10 67 67 123

Heap is corrupted after draging maximal element! Let's restore our heap with sifting it down. Starting upward sifting. Only root is reamining in the heap, so it is already heap. No sifting needed. Upward sifting has ended. The heap restored! Current state of the heap: -9 |||| Exclude the node with biggest value. It is the root because we are working with max-heap. Save the root value in buffer variable -9 |||| It is heap as array. The green part is actually the heap, white is sorted sequence and cyan is the old root, which just has been added to the sorted sequence: -9 -9 -2 -1 0 5 10 67 67 123 Make the value of the last element in heap the root value. Eventually, put the old root value into the

last position in heap and decrease the size of the

heap in the array that is storing our elements as

heap. So we have already sorted elements after the

		heap and sorted sequence.
		Current state of heap as tree:
		Empty heap!
		Current state of heap as array:
		It is heap as array. The green part is actually the
		heap, white is sorted sequence and cyan is the old
		root, which just has been added to the sorted
		sequence: -9 -9 -2 -1 0 5 10 67 67 123
		It was the last node in the heap!
		Sort has successfully ended!
		It is heap as array. The green part is actually the
		heap, white is sorted sequence and cyan is the old
		root, which just has been added to the sorted
		sequence: -9 -9 -2 -1 0 5 10 67 67 123
		Sorted array:
		-9 -9 -2 -1 0 5 10 67 67 123
3	4 123 34 56 90 78	123
		34569078
		Sorted array:
	101001555	34 56 78 90 123
4	10123456789	9
		8

		7
		6
		5
		4
		3
		2
		1
		0
		Sorted array:
		0 1 2 3 4 5 6 7 8 9
5	3 19 121 12 13 1 2 3 4	Sorted array:
	5 86 7 8 9	1 2 3 4 5 7 8 9 12 13 19 86 121
6	8 18 145 54 -985 554	Sorted array:
	32 8 1 2 3 6 5 4 9 8 7 1	-985 -9 -8 -5 0 1 1 2 3 3 4 5 6 7 8 8 9 18 23 32 35
	23 6448 35 185 188 61	54 61 145 185 188 554 1452 6448
	-8 -9 3 -5 0 1452	
7	4 89 81 42 43 61 2 37	Sorted array:
	14 -1 -2 -3 -4 -5 -6 -7 -	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 2 14 37 42 43 61 81 89
	8 -9 0	
İ		

5. ДЕМОНСТРАЦИЯ

После запуска программы пользователю будет предложено выбрать из двух команд: запуск или завершение программы. Им соответствуют значения 's' и 'q':

's' — Начать работу программы.

'q' - Завершить работу программы

Такая реализация позволяет обработать множество различных входных данных, не прерывая выполнения программы.

После выбора команды 's', пользователю предлагается ввести путь до файла с входными данными. После успешного чтения входных данных и построения кучи, сопровождающегося соответствующими комментариями, выводимыми в стандартный поток вывода, пользователю предложат выбрать тип просейки, который будет использован при сортировке.

Далее будет выполнена соответствующая сортировка, сопровождающиеся необходимыми комментариями, выводимыми в стандартный поток вывода

Для завершения программы необходимо ввести команду 'q'. Это можно сделать в стартовом меню, которое выводится автоматически после успешного выполнения сортировки или после введения пользователем ошибочной команды или неверных входных данных.

ЗАКЛЮЧЕНИЕ

В результате выполнения работы была изучена сортировка при помощи n-арной кучи. Была изучена структура n-арной кучи, а также алгоритм её построения. На языке программирования С++ реализован алгоритм сортировки с помощью n-арной кучи, а работа программы сопровождается визуализацией выполняемых операций.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Habr. URL: https://habr.com/ru/company/edison/blog/495420/
- 2. Habr. URL: https://habr.com/ru/company/edison/blog/509330/

3.

4. https://en.wikipedia.org/wiki/Binary_heap

ПРИЛОЖЕНИЕ

ИСХОДНЫЙ КОД ПРОГРАММЫ.

Название файла main.cpp

```
#include <iostream>
#include <string>
#include <fstream>
#include <cstdlib>
#include <cmath>
using namespace std;
class Dheap{
    private:
        int* m_arr = nullptr;//массив хранящий кучу
        int m_root = 0;//корень кучи
        int m_size = 0;//размер кучи
        int m_arr_size = 0;//размер массива
        int m_mem_size = 0;//размер кучи в памяти
        int m_d = 2;//порядок кучи; по умолчанию куча бинарная
    public:
        Dheap(int* arr = nullptr, int root = 0, int size = 0, int d = 2):
m_root(root), m_size(size), m_d(d){//конструктор копирует полученный массив в
массив вершин; пока в это ещё не d-арное дерево
            if(arr){
                m_arr = new int[size];
                m_arr_size = size;
                for(int i = 0; i < size; i++){</pre>
                    m_arr[i] = arr[i];
                }
            }
        }
        bool readHeapFromFile(ifstream &fin){//метод считывающий массив из входного
файла
            m_size = 0;
            m_mem_size = 0;
            m_root = 0;
            m_d = 0;
            fin >> m_d;
            if(m_d <= 0){
                cout << "Non natural value of amount of node sons!\n";</pre>
                return false;
            }
```

```
while(1){
                if(m_size == m_mem_size){
                     m_mem_size += 10;
                     int* new_arr = new int[m_mem_size];
                     for(int i = 0; i < m_size; i++){</pre>
                         new_arr[i] = m_arr[i];
                     }
                     delete[] m_arr;
                     m_arr = new_arr;
                }
                if(fin.eof()){
                     break;
                }
                fin >> m_arr[m_size];
                m_size += 1;
            }
            m_arr_size = m_size;
            if(m_size == 0){
                cout << "Error! Empty heap has inputed!\n";</pre>
                return false;
            return true;
        }
        int calcHeight(){//высчитывает количество уровней в дереве
            int i = m_root;
            int height = 0;
            while(i < m_size){</pre>
                height += 1;
                i = i*m_d + 1;
            return height;
        }
        int findMaxLeaf(int root){//поиск индекса максимального элемента среди
потомков вершины
            cout << "----\n";
            cout << "Let's find the maximal son of this root!\n";</pre>
            int max = -1;
            int j = 0;
            int nodes[m_d+1];
            cout << "The value of root is " << m_arr[root] << "\n";</pre>
            nodes[j] = root;
            j += 1;
            printHeap(nodes, j);
            for(int i = root*m_d+1; i <= root*m_d + m_d && i < m_size; i++){</pre>
                if(max == -1){
```

```
max = i;
                     cout << m_arr[i] << " is first son, so it is new maximum</pre>
value.\n";
                     nodes[0] = i;
                     //j += 1;
                     printHeap(nodes, j);
                     continue;
                }
                if(m_arr[i] > m_arr[max]){
                     cout << m_arr[i] << " is more than current maximum value, which</pre>
is " << m_arr[max] << '\n';
                     nodes[0] = max;
                     max = i;
                }
                else{
                     cout << m_arr[i] << " is less or equal than current maximum</pre>
value, which is " << m_arr[max] << '\n';</pre>
                     nodes[0] = max;
                nodes[j] = i;
                //j += 1;
                printHeap(nodes, j+1);
            cout << "Summary, the value of maximal leaf is " << m_arr[max] << "\n";</pre>
            nodes[0] = max;
            printHeap(nodes, 1);
            cout << "----\n";
            return max;
        }
        int findMax(int root){//поиск индекса максимального элемента среди вершины
и потомков
            cout << "----\n";
            cout << "Let's find the maximal element in this root or its sons!\n";</pre>
            int max = root;
            int j = 0;
            int nodes[m_d+1];
            cout << "The value of root is " << m_arr[root] << "\n";</pre>
            nodes[j] = root;
            j += 1;
            printHeap(nodes, j);
            for(int i = root*m_d+1; i <= root*m_d + m_d && i < m_size; i++){</pre>
                 if(m_arr[i] > m_arr[max]){
                     cout << m_arr[i] << " is more than current maximum value, which</pre>
is " << m arr[max] << '\n';</pre>
                     nodes[0] = max;
                     max = i;
                }
                else{
```

```
cout << m_arr[i] << " is less or equal than current maximum</pre>
value, which is " << m_arr[max] << '\n';</pre>
                   nodes[0] = max;
               nodes[j] = i;
               //j += 1;
               printHeap(nodes, j+1);
           cout << "Summary, the value of maximal element of root and its leaf is</pre>
" << m_arr[max] << "\n";
           nodes[0] = max;
           printHeap(nodes, 1);
           cout << "----\n";
           return max;
       }
       void siftDown(int root){//обыкновенная просейка сверху-вниз
           cout << "-----\n";
           cout << "It is the sifting down.\n";</pre>
           if(m_size < 2){</pre>
               cout << "Only root is reamining in the heap, so it is already heap.</pre>
No sifting needed.\n";
               cout << "Sifting down has ended.\n";</pre>
               cout << "----\n":
               return;
           }
           if(!(root * m_d + 1 < m_size)){</pre>
               cout << "No son of this node exist, so it is already subheap. No</pre>
sifting needed.\n";
               cout << "Sifting down has ended.\n";</pre>
               cout << "-----\n";
               return;
           }
           while(root * m d + 1 < m size){</pre>
               int n_root = findMax(root);
               int nodes[2] {root, n_root};
               if(n root == root){
                   cout << "The root, which value is " << m_arr[root] << " is more</pre>
than his sons, so this subtree is heap!\n";
                   printHeap(nodes, 2);
                   cout << "\n";</pre>
                   return;
               }
               cout << "The son, which value is " << m_arr[n_root] << ", is bigger</pre>
than father, which value is " << m_arr[root] << "! So let's change their value.\n";
               printHeap(nodes, 2);
```

```
int c = m_arr[root];
              m_arr[root] = m_arr[n_root];
              m_arr[n_root] = c;
              root = n_root;
              cout << "Values successfully changed! One more step to make heap</pre>
has been done!\n";
              printHeap(nodes, 2);
              cout << "\n";</pre>
          cout << "Sifting down has ended.\n";</pre>
           cout << "-----\n";
       }
       void makeHeap(){//получение кучи из массива за O(n) времени, где n -
количетсво элементов в массиве
          cout << "-----
-----\n";
          cout << "Let's make heap!\nThe current state of heap is:\n";</pre>
          printHeap(nullptr, -1);
          int i = m_size/m_d;//элементы с большими индексами не имеют потомков,
то есть они уже являются кучами
          while(i >= 0){
              siftDown(i);
              i -= 1;
          }
          m_arr_size = m_size;
          cout << "Building heap has been ended!\nThe current state of heap</pre>
is:\n";
          printHeap(nullptr, -1);
          cout << "-----
----\n";
       }
       void dragMax(){//удаляет вершину из кучи перенося её в конец массива
предварительно заменив его последним элементом
          cout << "----\n";
           cout << "Exclude the node with biggest value. It is the root because we
are working with max-heap. Save the root value in buffer variable \n";
           int nodes[2] {m_root, m_size-1};
          printHeap(nodes, 2);
          printAsArr(false);
          int max = m_arr[m_root];
          m_arr[m_root] = m_arr[m_size-1];
          m_arr[m_size-1] = max;
          m_size -= 1;
          cout << "Make the value of the last element in heap the root value.</pre>
Eventually, put the old root value into the last position in heap and decrease the
size of the heap. So we have already sorted elements after the heap in the array
that is storing our elements as heap and sorted sequence.\n";
          cout << "Current state of heap as tree:\n";</pre>
```

```
nodes[0] = m_root;
           printHeap(nodes, 1);
           cout << "Current state of heap as array:\n";</pre>
           printAsArr(true);
           cout << "-----\n";
       }
       void upwardSift(){//восходящая просейка (модифицированная просейка снизу-
вверх); спускаемся вниз по наибольшим вершинам, поднимаемся по этой ветке до первой
вершины больше корня, сохраняем её, заменяем её корнем, сдвигаем ветку на один
уровень вверх через буфферную переменную
           cout << "-----\n";
           cout << "Starting upward sifting.\n";</pre>
           if(m_size > 1){
               int buf;
               int cur = m_root;
               int way[calcHeight()];
               int i = 0;
               way[i] = m_root;
               i += 1;
               cout << "Firstly, we need to find a route from heap root to the</pre>
leaf which consist of the biggest sons.\n";
               while(cur*m d+1 < m size){</pre>
                   cur = findMaxLeaf(cur);
                   way[i] = cur;
                   i += 1;
               }
               cout << "So we have got the next route:\n";</pre>
               printHeap(way, i);
               cout << "\nLet's find the first element on this route which is</pre>
bigger than root.\n";
               int nodes[2] = {m root, cur};
               if(m_arr[m_root] > m_arr[cur]){
                   while(m arr[m root] > m arr[cur]){
                       cout << "Current node, which value is " << m_arr[cur] << "</pre>
is less than root, which value is " << m_arr[m_root] <<". So we exclude it from the
route.\n";
                       printHeap(nodes, 2);
                       cur = way[i-1];
                       nodes[1] = cur;
                       i -= 1;
                   }
               }
               else{
                   i -= 1;
                   cur = way[i];
               }
```

```
nodes[1] = cur;
                cout << "Current node, which value is " << m_arr[cur] << " is more</pre>
than root, which value is " << m_arr[m_root] <<"\n";</pre>
                printHeap(nodes, 2);
                cout << "Save current node in buffer variable, replace the value of</pre>
current node with the value of the root and exclude this node from the route.\n";
                buf = m_arr[cur];
                m_arr[cur] = m_arr[m_root];
                printHeap(nodes, 2);
                i -= 1;
                int add_buf = buf;
                cout << "Now we are going to shift all remaining nodes in the</pre>
route, which we have got early, to the one level upper. The nearest node which will
be replaced with previous saved in buffer variable node value, which is " << buf <<
"\n";
                cout << "Remaining route:\n";</pre>
                printHeap(way, i+1);
                while(cur > m_root){
                    cout << "The value of current will be saved in buffer variable</pre>
and then will be replaced with the value of its biggest son, which is " << add buf
<< " and has been saved in the another buffer variable.\n";
                    cur = way[i];
                    nodes[0] = cur;
                    printHeap(nodes, 1);
                    buf = m_arr[cur];
                    m_arr[cur] = add_buf;
                    add buf = buf;
                    i -= 1;
                    nodes[0] = cur;
                    printHeap(nodes, 1);
                cout << "The heap root has been reached. Shifting nodes to upper</pre>
level has successfully ended.\n";
            }
            else{
                cout << "Only root is reamining in the heap, so it is already heap.</pre>
No sifting needed.\n";
            }
            cout << "Upward sifting has ended.\n";</pre>
            cout << "-----\n";
        }
        void upwardSiftSort(){//сортировка с использованием восходящей просейки
            cout << "Heapsort with upward sifting.\n This sort using the upward
sifting to restore heap after draging max element.\n";
```

```
cout << "------
 ----\n";
          while(m_size){;
              dragMax();
              if(!m_size){
                 cout << "It was the last node in the heap!\n";</pre>
                 break;
              }
              cout << "\033[1;30;43mHeap is corrupted after draging maximal</pre>
element!\033[0m Let's restore our heap with sifting it down.\n";
              upwardSift();
              cout << "\033[1;30;42mThe heap restored!\033[0m\nCurrent state of</pre>
the heap:\n";
              printHeap(nullptr, -1);
              cout << "\n\n\n\n";</pre>
          }
          cout << "-----
-----\n";
          cout << "Sort has successfully ended!\n";</pre>
          printAsArr(false);
       }
       void siftDownSort(){//сортировка с использованием просейки сверху-вниз
          cout << "Heapsort with sifting down.\n This sort using the sifting down
to restore heap after draging max element.\n";
          cout << "-----
-----\n":
          while(m_size){;
              dragMax();
              if(!m size){
                 cout << "It was the last node in the heap!\n";</pre>
                 break;
              }
              cout << "\033[1;30;43mHeap is corrupted after draging maximal</pre>
element!\033[0m Let's restore our heap with sifting it down.\n";
              siftDown(m root);
              cout << "\033[1;30;42mThe heap restored!\033[0m\nCurrent state of</pre>
the heap:\n";
              printHeap(nullptr, -1);
              cout << "\n\n\n\n";</pre>
          }
          cout << "-----
-----\n";
          cout << "Sort has successfully ended!\n";</pre>
          printAsArr(false);
       }
       void printArr(){//выводит массив
          for(int i = 0; i < m_arr_size; i++){</pre>
              cout << m arr[i] << ' ';</pre>
```

```
}
             cout << '\n';</pre>
         }
         void printAsArr(bool is_col_first){//выводит кучу как массив
             cout << "It is heap as array. The green part is actually the heap,</pre>
white is sorted sequence and cyan is the old root, which just has been added to the
sorted sequence: ";
             for(int i = 0; i < m_arr_size; i++){</pre>
                 cout << "\033[1;30;42m";</pre>
                 if(i >= m_size){
                      if(i == m_size && is_col_first){
                          cout << "\033[1;30;46m";</pre>
                      }
                      else{
                          cout << "\033[1;30;47m";</pre>
                      }
                 }
                 cout << m_arr[i] << ' ';</pre>
                 cout << "\033[0m";</pre>
             }
             cout << '\n';</pre>
         }
         void printNode(int node_value, int step, bool is_col, char side){//выводит
узел в консоль
             if(side == 'l' || side == 't'){
                 for(int i = 0; i < step; i++){</pre>
                      cout << ' ';
                 }
             }
             else{
                 for(int i = 0; i < step; i++){</pre>
                      cout << ' ';
                 }
             }
             if(is_col){
                 cout << "\033[1;30;47m";</pre>
             }
             cout.setf(ios::left);
             cout.width(4);
             if(side != 'r' && side != 't'){
                 cout.fill('_');
             }
             cout << node value;</pre>
             cout.unsetf(ios::left);
             cout.fill(' ');
             cout << "\033[0m";
```

```
if(side == 'r' || side == 't'){
                 for(int i = 0; i < step; i++){</pre>
                     cout << ' ';
                 }
            }
            else{
                 for(int i = 0; i < step; i++){</pre>
                     cout << '_';
                 }
            }
        }
        void printHeap(int* color_nodes, int col_size){//выводит кучу в консоль,
как дерево
            if(m_size == 0){
                 cout << "Empty heap!\n";</pre>
                 return;
            }
            int lev = 0;
            int height = calcHeight();
            bool is_col = false;
            int j = 0;
            char side = 0;
            int step = 0;
            for(int i = 0; i < m_size; i++){</pre>
                 step = int(3*2*int(pow(double(m_d),double(height-
1)))/(2*int(pow(double(m_d),double(lev))))-2);
                 is_col = false;
                 if(j < col_size){</pre>
                     if(i == color_nodes[j]){
                         is_col = true;
                         j += 1;
                     }
                 }
                 if(lev == 0){
                     printNode(m_arr[i], step, is_col, 't');
                     lev += 1;
                     cout << "||||";
                     cout << '\n';</pre>
                     continue;
                 }
                 if(i%m d == 1){
                     side = 'l';
                 if(i%m_d == 0 || i == m_size-1){
                     side = 'r';
```

```
}
                 if(m_d == 1 || (i == m_size-1 && i%m_d == 1)){
                     side = 't';
                 }
                 printNode(m_arr[i], step, is_col, side);
                 side = 0;
                 if(i%((int)(double(1.0-pow(double(m_d), double(lev+1)))/double(1-
(m d))-1) == 0 || m_d == 1){
                     lev += 1;
                     cout << "||||";
                     cout << '\n';</pre>
                 }
            }
            cout << "\n";</pre>
        }
        int getHeight(){//возвращает высоту дерева
            return calcHeight();
        }
        ~Dheap(){//деструктор; очищает память выделенную под массив-кучу
            delete[] m_arr;
        }
};
int main(){
    ifstream fin;
    char command;
    string fname;
    Dheap* heap = nullptr;
    bool isD = true;
    while(1){
        cout << "Input 's' to start the program or input 'q' to stop the</pre>
program:\n";
            cin >> command;
             switch (command){
                 case 'q':
                     cout << "You choose to end the programm!\n";</pre>
                     return 0;
                 case 's':
                     cout << "Input the path to data file:\n";</pre>
                     cin >> fname;
                     fin.open(fname, ifstream::in);
                     if(!fin.is_open()){
                         cout << "Opening file with test data failed! Try again!\n";</pre>
```

```
break;
                      }
                      heap = new Dheap;
                      isD = heap->readHeapFromFile(fin);
                      fin.close();
                      if(!isD){
                           cout << "Error in input data";</pre>
                           delete heap;
                          break;
                      }
                      cout << "Input array:\n";</pre>
                      heap->printArr();
                      cout << "Fistly we need to make heap from starting array.\n";</pre>
                      heap->makeHeap();
                      cout << "\n\n\n";</pre>
                      cout << "Choose sifting type. 'd' for sifting down and 'u' for</pre>
upward sifting:\n";
                      cin >> command;
                      if(command == 'd'){
                           cout << "You choose sifting down sort.\n";</pre>
                          heap->siftDownSort();
                      }
                      else{
                           if(command == 'u'){
                               cout << "You choose upward sifting sort.\n";</pre>
                               heap->upwardSiftSort();
                           }
                           else{
                               cout << "Error command!\n";</pre>
                               delete heap;
                               break;
                           }
                      }
                      cout << "\n\n\n\n";</pre>
                      cout << "Sorted array:\n";</pre>
                      heap->printArr();
                      cout << "\n\n\n\n";</pre>
                      delete heap;
                      break;
                  default:
                      cout << "Error command! Try again!\n";</pre>
                      break;
             }
    }
```

```
return 0;
}
```