Abel Lawrence Peirson

Kavli Institute for Particle Astrophysics and Cosmology, Stanford CA 94305

orcid.org/0000-0001-6292-1911

Education

Stanford University — *Ph.D in Physics*

2017 - Jan 2023

Thesis: High Energy Polarization Statistics and Geometry.

GPA: 4.0 (in required coursework).

University of Oxford — MPhys in Physics

2017

First Class Honours with Distinction – top 10% of graduating class.

College: Christ Church

Fellowships, Honors & Awards

Stanford Data Science Scholar (\$100k+) — Stanford, USA	2021
Future Investigator in NASA Earth and Space Science and Technology (\$160k+) — Stanford, USA	2019
Roach Prize for the most outstanding undergraduate across the sciences — Oxford, UK	2017
Hooke Prize for the most outstanding member of Christ Church in the sciences — Oxford, UK	2017
Oxford International Strategy Scholarship — Oxford, UK	2016
Christ Church Academic Scholarship — Oxford, UK	2014-2017
Gold, British Physics Olympiad — London, UK	2013

Research

Kavli Institute for Particle Astrophysics and Cosmology — Stanford University, CA

July 2018 - Present

with **Prof. Roger Romani**

- Set current state of the art in X-ray polarization recovery by developing novel computer vision techniques.
- \circ Improved NASA IXPE polarization sensitivity by > 30% (Code adopted as official data analysis pipeline).
- Created fast quadratic program + nested sampling approach to fit gravitational microlenses.
- o Designed testable (and fittable) emission models to explain observed polarization phenomena in relativistic jets.

Wu Tsai Neurosciences Institute — Stanford University, CA

Mar 2018 - Jun 2018

with Prof. Shaul Druckmann

• Developed biologically inspired recurrent neural network to reproduce path integration in the drosophilia fly brain.

NeuroAI Lab — Stanford University, CA

Dec 2017 - Mar 2018

with Prof. Dan Yamins

 Found transfer-learning certain affine transformations of images does not improve accuracies in object classification, using RotNet and ImageNet datasets.

Department of Physics - University of Oxford, UK

Sep 2016 - May 2017

with Prof. Garret Cotter

- o Modelled blazar spectra and investigated how they change travelling across different intergalactic media.
- Placed limits on whether the Cherenkov Telescope Array will constrain the existence of axion-like particles.

CLIC Test Facility — CERN, Switzerland

June - Aug 2016

with **Prof. Philip Burrows**

- Used beam dispersion to improve CTF3's Quadrupole scan and reduce uncertainty in the beam energy spread.
- Designed and implemented new fitting program to enhance beam analysis pipeline.

Plasma and Fusion Laboratory — University of Science and Technology of China, Hefei with **Prof. Xuan Sun**

June - Aug 2015

o Improved plasma confinement in the KMAX axisymmetric tandem mirror machine by applying a bias voltage.

Selected Experience & Outreach

G-Research — London, UK

June - Sep 2021

Ouantitative Researcher

o Quantitative research intern working on forecasting capital markets.

Peirson & Freedman — Stanford, CA

Aug 2018 - Present

Co-founder

Conceived and designed iOS app Dank Learning that uses neural networks to generate memes.

Wonderfest — Bay Area, CA

June 2019 - June 2020

Science Envoy

- Selected as one of 10 graduate students from Stanford and Berkeley.
- Communicated science to public audiences as part of the Bay Area-wide Wonderfest program

Stanford Judo Club — Stanford, CA

June 2019 - June 2020

President

- Led the club as captain in competitions.
- Set the annual budget and ran all financial matters for both the adults' and children's club.

Stanford Diversity and First Generation Office — Stanford, CA

Oct 2018 - Oct 2020

First Generation and Low Income Student Mentor

Mentoring undergraduates from underprivileged backgrounds in all matters of student life.

Selected Invited Talks

Optimal Signal Extraction for IXPE and an Application to Blazars, Naval Research Laboratory Colloquium, 2021

Towards Optimal Signal Extraction for IXPE, Third Science Collaboration Meeting (SCM03), 2021

The Polarization Behavior of Synchrotron Self-Compton Emission in Blazars, Understanding the Multiwavelength Blazar Variability - Workshop, Stanford, 2019

AI in Design, Used Future: Symposium by Current Obsession, Pratt Institute NY, 2018

Episode 68, The NVIDIA AI Podcast, 2018

Telescope & Computing Allocations

NuStar — Multi-Energy X-ray observations of IXPE blazar targets, 140ks (Co-I)	2021
Swift — Monitoring IXPE blazar targets with Swift, 240ks (Co-I)	2020
Google Cloud Platform — Parametric Density Estimation with Uncertainty using Deep Ensembles, \$1000	2020
XMM-Newton — Exploring the Synchro-Compton transition in CGRaBS J0211+1051, 57ks (Co-I)	2019

Skills

Languages: Spanish (native) — English (native).

Software (extensive): Python — C/C++ — Scala — PyTorch — Tensorflow — Git — LATEX.

Software (basic): R — Julia — MPI — Mathematica — Swift.

Graduate Coursework

- o APPHYS293 (Theoretical Neuroscience)
- *CS379C* (Computational Models of the Neocortex)
- CS238 (Decision Making Under Uncertainty)
- o STATS207 (Time Series)
- o CS224N (Natural Language Processing)
- o CS230 (Deep Learning)

- EE364a (Convex Optimization)
- *EE364b* (Convex Optimization II)
- PHYS266 (Statistical Methods in Physics)
- CS106b (Programming Abstractions)
- *CS361* (Engineering Design Optimization)
- EE263 (Linear Dynamical Systems)

Teaching

Stanford PHYS113 — Computational Physics (Teaching Assistant)
Stanford PHYS100 — Introduction to Observational Astrophysics (Teaching Assistant)

Winter 2021 Spring 2019

Peer-Reviewed Publications

[9] A Deep Ensemble Approach to X-ray Polarimetry

A.L.Peirson, R.W.Romani Neurips ML4PS workshop, 2021

[8] New Tests of Millilensing in the Blazar PKS 1413+135

A.L.Peirson, I.Liodakis, A.C.S.Readhead et al. ApJ, 2021 (under review)

[7] Towards Optimal Signal Extraction for Imaging X-ray Polarimetry

A.L.Peirson, R.W.Romani. *ApJ*, 920, 40, 2021

[6] The Relativistic Jet Orientation and Host Galaxy of the Peculiar Blazar PKS 1413+135

A.C.S.Readhead et al. ApJ, 907, 61, 2020

[5] Deep Ensemble Analysis for Imaging X-ray Polarimetry

A.L.Peirson, R.W.Romani, H.L.Marshall, J.F.Steiner, L.Baldini. NIMA, 986, 2020

[4] The Polarization Behavior of Relativistic Synchrotron Self-Compton Jets [Code]

A.L.Peirson, R.W.Romani. *ApJ*, 885, 1, 2019

[3] Prospects for Detecting X-ray Polarization in Blazar Jets

I.Liodakis, A.L.Peirson, R.W.Romani. ApJ, 880, 1, 2019

[2] The Polarization Behavior of Relativistic Synchrotron Jets

A.L.Peirson, R.W.Romani. *ApJ*, 864, 2, 2018

[1] Transverse Beam Phase-Space Measurement Experience at CTF3

D.Gamba, L.Martin, A.L.Peirson Serratosa et al. IPAC2017, 2017

Whitepapers & Other Publications

[3] Neural Network Analysis of X-ray Polarimeter Data

A.L.Peirson, The Handbook of X-ray and Gamma Ray Astrophysics, Springer Nature, 2022

[2] The X-ray Polarization Probe Mission Concept

K.Jahoda et al. Decadal Survey on Astronomy and Astrophysics, 1907.10190, 2020

[1] Dank Learning: Generating Memes Using Deep Neural Networks [Code]

A.L.Peirson, E.M.Tolunay, 1806.04510, 2018

- Techcrunch Dank learning system autogenerates memes
- The Next Web Stanford researchers taught AI to make dank memes