Lecture 5 Finish accounting anomalies

Alan Kwan, PhD

What is the value strategy?

- ➤ We buy stocks that, based on the market value of assets relative to accounting value of assets, appear "cheap"
- ➤ While the value investor uses a "fundamental" or "intrinsic" value a quant essentially assumes what the market gives them
- > There are many formulations of the value strategy
 - Price to earnings
 - > Price to dividend
- > Based on tests in which we've tried many measures, the best one appears to be book to market

Variation 1 – use recent market cap

Variation 2 – rebalance more frequently

The Devil in HML's details, α to be had?

The Devil in HML's details, α to be had?

The Devil in HML's details, α to be had?

		U	.S.	
	(1)	(2)	(3)	(4)
Refreshing frequency	Annual	Annual	Annual	Monthly
Method to lag price	Lagged	Current	Lagged	Current
Alpha	-0.58	1.43	-1.61	3.05
	(-1.35)	(3.42)	(-2.92)	(5.92)
MKT	0.01	-0.03	-0.02	-0.01
	(0.93)	(-3.38)	(-2.09)	(-0.82)
SMB	-0.04	0.02	-0.04	0.01
	(-3.32)	(1.78)	(-2.50)	(0.46)
STR	-0.01	0.02	-0.07	0.08
	(-1.13)	(1.85)	(-4.19)	(5.58)
UMD	0.17	-0.19	0.38	-0.43
	(17.24)	(-21.46)	(26.12)	(-39.28)
HML annual,lagged		0.92		0.85
		(70.41)		(53.14)
HML annual,current	0.95			
	(70.41)			
HML monthly,current			0.94	
			(53.14)	
R2	0.89	0.90	0.82	0.89

The value trap

If nothing changed about book value, then..

A book value writedown

The value trap

- ➤ How can we avoid the value trap?
- In practice, an analyst would read company news closely and adjust book value in real time
 - > If there is a factory fire, there's definitely a book value impairment
 - > If Rihanna tweets that her followers should delete Snapchat, that's probably not unreasonable to expect to happen
- > There are a couple of ways we can imagine book value being tracked in a systematic fashion
 - > Analyst coverage could be used
 - ➤ Alternative data of some kind may be developed
 - ➤ A simple example may be Ravenpack

Avoiding the value trap

- ➤So, it's possible in principle to avoid the value trap if we could now-cast value
 - > So, how can we do this?
- ➤ Can we forecast the value trap?
 - ➤ Optional assignment 3

Behavioral vs rational stories

- ➤ There are always two camps behavioral and rational
- Behavioral stories suggest investors must not price a stock appropriately. Some ingredients include
 - > Investors misinterpret fundamentals
 - > There is a reversal to the returns
 - > there is never really severely challenging drawdown to the strategy
- > Rational stories provide a model that explains why these strategies work

Ball, Gerakos, Linnainmaa, Nikolaev (2019), JFE

- ➤ Book value of equity consists of two economically different components: retained earnings and contributed capital.
 - ➤ Retained earnings-to-market predicts the cross section of average returns in U.S. and international data and subsumes book-to-market. Contributed capital-to-market has no predictive power.

Ball, Gerakos, Linnainmaa, Nikolaev (2019), JFE

		Regre	ession		
Regressor	(1)	(2)	(3)	(4)	
og(ME)	-0.07	-0.09	-0.08	-0.07	
	(-1.75)	(-2.40)	(-2.23)	(-2.02)	
71,1	-3.12	-3.20	-3.18	-3.21	
	(-7.18)	(-7.50)	(-7.44)	(-7.50)	
12,2	0.83	0.82	0.83	0.82	
	(4.37)	(4.37)	(4.42)	(4.37)	
log(Reported BE/ME)	0.24	0.05	0.35	0.22	
Value is sign	nifican t ^{3.49)}	(0.70)	(4.53)	(3.61)	
$\log(\mathrm{RE}/\mathrm{ME})$		$^{0.18}_{(4.67)}$ Con	trol for RE/M	$E \rightarrow BE/ME$ no longer sig	nific
og(CC/ME)			-0.13		
			(-4.32)		
og(AOCI/ME)				0.01	
				(0.96)	
Indicator variables					
$RE \leq 0$		-0.56			
		(-2.76)			
$CC \le 0$			0.26		
			(2.80)		
$AOCI \le 0$				-0.05	
A AND PROPERTY OF THE PROPERTY				(-0.57)	
Pseudo t -value for joint					
sig. of add'l regressors		4.27	3.91	0.54	
Avg. Adj. R^2	5.36%	6.00%	5.73%	5.72%	

Gross profitability – MSCI version

CUMULATIVE RETURNS OF THE PROFITABILITY FACTOR AND MSCI ACWI (1996-2015)

Source: MSCI

What is gross profitability

➤ Gross profitability is a hot trading strategy

- > AQR, Dimensional Fund Advisers, etc. have adopted this strategy
- > It is a high capacity strategy that improves the traditional value strategy

What is gross profitability (GP)?

$$\frac{REVT - COGS}{ASSETS}$$

This is the value of the firm

$$M_t = \sum_{ au=0}^{\infty} rac{\mathbf{E}_t[Y_{t+ au} - dB_{t+ au}]}{(1+r)^ au},$$

Required rate of returns

Holding all else equal, higher valuations imply lower expected returns, while higher expected earnings imply higher expected returns. That is, value firms should outperform growth firms, and profitable firms should outperform unprofitable firms."

Gross profitability

Holding all else equal, higher valuations imply lower expected returns, while higher expected earnings imply higher expected returns. That is, value firms should outperform growth firms, and profitable firms should outperform unprofitable firms."

Book value

surplus
$$M_{t} = (S_{t} - X_{t}) - dB_{t} + \frac{\mathbf{E}_{t} \left[M_{t+1} \middle| X = X_{t}, dB = dB_{t} \right]}{1 + r}.$$
(2)

Fama and French (2006) test the profitability/expected return relation with mixed results. Their cross-sectional regressions suggest that earnings is related to average returns in the manner predicted, but their portfolio tests suggest that profitability adds little or nothing to the prediction of returns provided by size and book-to-market. These empirical tests, however, employ current earnings as a simple proxy for future profitability. A deeper examination of equation (1) suggests that this proxy is p"

Gross profitability

• It is strongly associated with prices today, both directly through its inclusion of the right hand side of (3), and indirectly because profitability is highly persistent, and thus a component of prices tomorrow. It is consequently economic profitability, not earnings, that is related to expected returns. Conditional on economic profitability, higher valuations imply lower expected stock returns, while conditional on valuations, greater economic profitability implies higher expected stock returns. That is, value firms should outperform growth firms, and profitable firms should outperform unprofitable firms, where "profitable" here means firms that generate large economic profits, not those with high earnings.

surplus
$$M_{t} = (S_{t} - X_{t}) - dB_{t} + \frac{\mathbf{E}_{t} \left[M_{t+1} \middle| X = X_{t}, dB = dB_{t} \right]}{1 + r}.$$
(2)
investments

Gross profitability – portfolio sort alpha

		Α	alphas and thre	e-factor loading	gs	Portfolio characteristics					
Portfolio	re	α	MKT	SMB	HML	GP/A	B/M	ME	n		
Panel A: Port	tfolios sorted	on gross profits	s-to-assets								
Low	0.31	-0.18	0.94	0.04	0.15	0.10	1.10	748	771		
	[1.65]	[-2.54]	[57.7]	[1.57]	[5.87]						
2	0.41	-0.11	1.03	-0.07	0.20	0.20	0.98	1,100	598		
	[2.08]	[-1.65]	[67.5]	[-3.13]	[8.51]						
3	0.52	0.02	1.02	-0.00	0.12	0.30	1.00	1,114	670		
	[2.60]	[0.27]	[69.9]	[-0.21]	[5.42]						
4	0.41	0.05	1.01	0.04	-0.24	0.42	0.53	1,114	779		
	[1.94]	[0.83]	[70.6]	[1.90]	[-11.2]						
High	0.62	0.34	0.92	-0.04	-0.29	0.68	0.33	1,096	938		
	[3.12]	[5.01]	[58.3]	[-2.03]	[-12.3]						
High-low	0.31	0.52	-0.03	-0.08	-0.44						
	[2.49]	[4.49]	[-0.99]	[-2.15]	[-10.8]						

Some correlation between profitability and ME

			Alphas and thre	e-factor loading	gs		Portfolio c	haracteristics	š
Portfolio	re	α	MKT	SMB	HML	GP/A	B/M	ME	n
nel A: Port	folios sorted o	on gross profit	s-to-assets						
						0.10	1.10	748	771
						0.20	0.98	1,100	598
						0.30	1.00	1,114	670
						0.42	0.53	1,114	779
						0.68	0.33	1,096	938
						0.43	0.25	1,914	96
						0.31	0.54	1,145	690
						0.26	0.79	849	640
						0.21	1.12	641	655
						0.21	5.47	367	703

Double sort strategies do pretty well

		Dependent variable											
		HML GP			PMU BM			HML	PMU				
Independent variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)			
Intercept	0.54 [5.01]	0.23 [4.55]	0.23 [4.52]	0.48 [5.35]	0.48 [5.23]	0.51 [5.54]	0.40 [3.25]	-0.07 [-1.31]	0.32 [3.30]	0.02			
MKT	[4.4.7]	[]	-0.03 [-2.37]	[2,22]	[]	-0.07 [-3.24]	(5.25)	((0.0.0)	[0.0.7]			
SMB			0.05			0.03 [1.12]							
HML		0.77 [45.4]	0.77 [43.0]		0.02 [0.51]	-0.01 [-0.26]							
HML GP								1.04 [47.6]		-0.33 [-22.7			
PMU BM								-0.18		0.98			
Adj. R ²		78.4%	78.7%		0.0%	1.4%		[-6.73] 79.9%		[57.2] 85.8%			

Gross profitability – Fama MacBeth

				ts $(\times 10^2)$ and [test ons of the form r_{ij}			
Independent variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Panel A: Straight profi	tability variables						-
Gross profitability	0.75 [5.49]			0.69 [5.22]	0.62 [4.63]		0.61 [4.59]
Earnings		0.22 [0.84]		0.08		-0.02 [-0.06]	-0.07 [-0.27]
Free cash flow			[2.28]		0.20 [1.64]	0.39 [3.17]	0.33 [2.67]
log(B/M)	0.35 [5.98]	0.30 [4.97]	0.26 [4.59]	0.34 [5.54]	0.30 [5.17]	0.27 [4.48]	0.31 [5.05]
log(ME)	-0.09 [-2.29]	-0.12 [-3.24]	-0.13 [-3.20]	-0.11 [-2.78]	-0.11 [-2.80]	-0.13 [-3.34]	-0.11 [-2.92]
$r_{1,0}$	-5.57 [-13.8]	-5.49 [-13.7]	-5.52 [-13.7]	-5.64 [-14.1]	-5.66 [-14.1]	-5.56 [-13.9]	-5.70 [-14.3]
r _{12,2}	0.76 [3.87]	0.78 [4.02]	0.78 [4.02]	0.74 [3.80]	0.74 [3.80]	0.76 [3.93]	0.73 [3.74]
Panel B: Profitability v	variables demeaned	by industry					
Gross profitability	1.00 [8.99]			0.94 [9.75]	0.94 [8.38]		0.92 [8.39]
Earnings		0.28		0.04 [0.15]		0.09 [0.51]	0.02 [0.13]
Free cash flow			0.16 [2.54]		0.09 [1.23]	0.25 [3.30]	0.21 [2.54]
log(B/M)	0.35	0.32 [5.40]	0.30 [5.13]	0.33 [5.15]	0.34 [5.33]	0.31 [5.12]	0.34 [5.30]
log(ME)	-0.09 [-2.19]	-0.11 [-2.65]	-0.11 [-2.64]	-0.10 [-2.62]	-0.10 [-2.31]	-0.11 [-2.69]	-0.10 [-2.35]
$r_{1,0}$	-5.63 [-13.2]	-5.50 [-13.5]	-5.52 [-13.5]	-5.67 [-13.4]	-5.66 [-13.2]	-5.53 [-13.6]	-5.67 [-13.3]
r _{12,2}	0.76 [3.66]	0.78 [3.98]	0.78 [3.95]	0.75 [3.63]	0.75 [3.63]	0.77 [3.92]	0.74 [3.61]

Gross profitability – Fama MacBeth

	-
Independent	(1)
variable	
Panel A: Straight profitab	ility variables
Gross profitability	0.75
Earnings	[5.49]
Free cash flow	
log(B/M)	0.35
	[5.98]
log(ME)	-0.09
$r_{1,0}$	[-2.29] -5.57
1,0	[-13.8]
$r_{12,2}$	0.76
	[3.87]
Panel B: Profitability varia Gross profitability	ables demeand 1.00
Gross promability	[8.99]
Earnings	(/
Free cash flow	
rice cash now	
log(B/M)	0.35
	[5.57]
log(ME)	-0.09
$r_{1,0}$	[-2.19] -5.63
1,0	[-13.2]
$r_{12,2}$	0.76
	[3.66]

Fama French five-factor

- > After all of this evidence, Fama and French (2015) revise their three factor model
 - Motivated by Novy Marx (2012) document profitability is strongly related to average return
 - > Aharoni, Grundy and Zeng (2013) documenting a weaker but reliable relation between investment and average return (alongside other papers)
- Adding these two factors, they see how much additional cross-sectional pricing power

Fama French five-factor

```
CMA = 1/2 (Small Conservative + Big Conservative) 
- 1/2 (Small Aggressive + Big Aggressive).
```

```
HML = 1/2 (Small Value + Big Value)
- 1/2 (Small Growth + Big Growth).
```

$$SMB = \frac{1/3 \left(SMB_{(B/M)} + SMB_{(OP)} + SMB_{(INV)}\right)}{1}$$

- Economic question: "Do the highest quality firms command the highest price, so that these firms can finance operations and invest?"
- ➤ Another AQR paper Asness, frazzini, and Pedersen (2013)
 - > Published in the Journal of Financial Economics eventually
- Strategy: buy high quality firms and short low quality firms

> To define firms that should be "high quality", they look at the Gordon Growth model

$$\triangleright \frac{P}{B} = profitability * \frac{payout}{r-g}$$

- ➤ How do we define any of these?
 - > Let's try a lot of metrics and combine them...
- ➤ There are four pillars
 - > Profitabilityt
 - ➤ Growth
 - > Safety
 - > payout

$$Profitability = z \left(z_{gpoa} + z_{roe} + z_{roa} + z_{cfoa} + z_{gmar} + z_{acc} \right)$$

$$Profitability = z \left(z_{gpoa} + z_{roe} + z_{roa} + z_{cfoa} + z_{gmar} + z_{acc} \right)$$

$$Growth = z(z_{\Delta gpoa} + z_{\Delta roe} + z_{\Delta roa} + z_{\Delta cfoa} + z_{\Delta gmar} + z_{\Delta acc})$$
 (3)

$$Profitability = z \left(z_{gpoa} + z_{roe} + z_{roa} + z_{cfoa} + z_{gmar} + z_{acc} \right)$$

$$Growth = z(z_{\Delta gpoa} + z_{\Delta roe} + z_{\Delta roa} + z_{\Delta cfoa} + z_{\Delta gmar} + z_{\Delta acc})$$
 (3)

$$Safety = z(z_{bab} + z_{ivol} + z_{lev} + z_o + z_z + z_{evol})$$

$$\tag{4}$$

$$Profitability = z(z_{gpoa} + z_{roe} + z_{roa} + z_{cfoa} + z_{gmar} + z_{acc})$$

$$Growth = z(z_{\Delta gpoa} + z_{\Delta roe} + z_{\Delta roa} + z_{\Delta cfoa} + z_{\Delta gmar} + z_{\Delta acc})$$
 (3)

$$Safety = z(z_{bab} + z_{ivol} + z_{lev} + z_o + z_z + z_{evol})$$

$$\tag{4}$$

$$Payout = z(z_{eiss} + z_{diss} + z_{npop})$$
 (5)

$$Profitability = z(z_{gpoa} + z_{roe} + z_{roa} + z_{cfoa} + z_{gmar} + z_{acc})$$

$$Growth = z(z_{\Delta gpoa} + z_{\Delta roe} + z_{\Delta roa} + z_{\Delta cfoa} + z_{\Delta gmar} + z_{\Delta acc})$$
 (3)

$$Safety = z(z_{bab} + z_{ivol} + z_{lev} + z_o + z_z + z_{evol})$$

$$\tag{4}$$

$$Payout = z(z_{eiss} + z_{diss} + z_{npop})$$
 (5)

$$QMJ = \frac{1}{2}(Small\ Quality + Big\ Quality) - \frac{1}{2}(Small\ Junk + Big\ Junk)$$

$$= \frac{1}{2}(Small\ Quality - Small\ Junk) + \frac{1}{2}(Big\ Quality - Big\ Junk)$$

$$QMJ \text{ in small stocks} \qquad QMJ \text{ in big stocks}$$

$$(7)$$

Sampl

Table I Summary Statistics

This table shows summary statistics as of June of each year. The sample includes all U.S. common stocks (CRSP "shred" equal to 10 or 11) and all global stocks ("tcpi" equal to 0) in the merged CRSP/Xpressfeed global databases.

Country	Total number of	Average number	Firm size	Weight in global	Start Year	End Year
	stocks	of stocks	(Billion-USD)	portfolio		
Australia	2,142	660	0.63	0.018	1986	2012
Austria	126	56	0.70	0.002	1990	2012
Belgium	231	91	2.37	0.009	1990	2012
Canada	1,901	541	1.08	0.022	1982	2012
Switzerland	343	135	4.06	0.023	1986	2012
Germany	1,492	596	3.01	0.061	1989	2012
Denmark	227	85	1.08	0.004	1986	2012
Spain	212	82	4.48	0.014	1986	2012
Finland	202	83	1.66	0.005	1986	2012
France	1,088	397	2.85	0.044	1986	2012
United Kingdom	3,312	1,103	1.83	0.095	1986	2012
Greece	239	132	0.48	0.002	1995	2012
Hong Kong	1,351	516	1.21	0.026	1989	2012
Ireland	106	38	1.58	0.002	1987	2012
Israel	284	97	0.64	0.003	1995	2012
Italy	356	129	2.37	0.018	1986	2012
Jap an	3,856	1,988	1.29	0.202	1986	2012
Netherlands	250	109	4.70	0.021	1986	2012
Norway	429	120	0.96	0.004	1986	2012
New Zealand	176	69	1.26	0.003	1990	2012
Portugal	92	38	1.96	0.002	1990	2012
Singap ore	860	353	0.60	0.009	1990	2012
Sweden	677	203	1.35	0.012	1986	2012
United States	19,356	3,594	1.31	0.399	1951	2012

Very high expected returns that are persistent

Panel A: Lor	ng Sample	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P10 - P1	P10 - P1
U.S., 1956 - 2	2012	(Low)									(High)		t-stat
Quality	t	-1.38	-0.71	-0.39	-0.15	0.05	0.25	0.46	0.69	1.00	1.56	2.94	47.46
Quality	t + 12M	-0.60	-0.29	-0.14	0.00	0.14	0.29	0.45	0.63	0.86	1.31	1.92	37.42
Quality	t + 36M	-0.33	-0.12	-0.05	0.05	0.15	0.27	0.40	0.54	0.74	1.16	1.49	33.01
Quality	t + 60M	-0.16	-0.02	0.04	0.09	0.16	0.22	0.35	0.46	0.68	1.04	1.20	20.68
Quality	t + 120M	-0.09	0.00	0.03	0.07	0.09	0.21	0.30	0.38	0.62	0.89	0.98	20.70
Pro fit	t + 120M	-0.37	-0.19	-0.10	0.05	0.12	0.18	0.29	0.35	0.59	1.08	1.44	20.74
Growth	t + 120M	-0.23	-0.19	-0.13	-0.12	-0.10	-0.12	-0.02	0.11	0.11	0.34	0.57	6.10
Safety	t + 120M	-0.28	-0.15	-0.03	0.08	0.15	0.21	0.35	0.49	0.63	0.67	0.95	9.68
Payout	t + 120M	0.12	0.29	0.28	0.29	0.38	0.39	0.49	0.49	0.56	0.61	0.49	17.31

Panel B: Bro	ad Sample	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	H-L	H-L
Global, 1956	-	(Low)									(High)		t-stat
Quality	t	-1.45	-0.79	-0.45	-0.19	0.04	0.25	0.47	0.72	1.04	1.62	3.07	42.28
Quality	t + 12M	-0.59	-0.29	-0.14	0.01	0.13	0.27	0.44	0.60	0.85	1.28	1.87	39.05
Quality	t + 36M	-0.30	-0.13	-0.05	0.06	0.13	0.23	0.36	0.48	0.70	1.07	1.37	44.95
Quality	t + 60M	-0.10	0.00	0.04	0.10	0.13	0.20	0.32	0.42	0.61	0.93	1.03	35.22
Quality	t + 120M	-0.08	-0.01	0.07	0.07	0.10	0.19	0.27	0.36	0.52	0.75	0.82	35.47
Profit	t + 120M	-0.28	-0.08	0.00	0.10	0.14	0.23	0.34	0.37	0.53	0.90	1.19	22.77
Growth	t + 120M	-0.19	-0.16	-0.15	-0.14	-0.12	-0.09	-0.07	0.00	0.09	0.18	0.37	6.40
Safety	t + 120M	-0.22	-0.14	-0.09	0.02	0.06	0.11	0.20	0.32	0.50	0.52	0.74	13.59
Payout	t + 120M	0.17	0.28	0.35	0.31	0.42	0.42	0.49	0.48	0.51	0.57	0.40	8.15

CAPM four factor alpha

50-	Pane	el A: Long Sa	ample (U.S.,	1956 - 2012)	265 (2)	Pan	nel B: Broad Sa	mple (Global	, 1986 - 2012)	Ÿ
(; 	QMJ Pr	ofitability	Safety	Growth	Payout	QMJ	Profitability	Safety	Growth	Payout
Excess Returns	0.40 (4.38)	0.27 (3.81)	0.23 (2.06)	0.12 (L63)	0.31 (3.37)	0.38 (3.22)	0.34 (3.30)	0.19 (133)	0.02	0.38
CAPM-alpha	0.55 (7.27)	0.33 (4.78)	0.42 (4.76)	(106)	0.46 (6.10)	0.52 (5.75)	0.43 (4.61)	0.34 (3.07)	0.02 (0.18)	0.49
3-factor alpha	0.68 (ILI0)	0.45 (7.82)	0.59 (8.68)	0.20 (3.32)	0.43 (6.86)	0.61 (7.68)	0.53 (6.II)	0.50 (5.40)	0.14 (192)	0.44 (5.17)
4-factor alpha	0.66 (10.20)	0.53 (8.71)	0.57 (7.97)	0.38 (6.B)	0,21 (3,43)	0.45 (5.50)	0.49 (5.34)	0.39 (4.00)	0.29 (3.91)	0.19 (2.26)
MKT	-0.25 (-17.02)	-0.11 (-8.08)	-0.34 (-20.77)	0.05 (3.35)	-0.20 (-14.47)	-0.24 (-14.36)	-0.16 (-8.33)	-0.28 (-B.74)	0.00	-0.18 (-10.50)
SMB	-0.38 (-17.50)	-0.21 (-10.21)	-0.41 (-17.00)	-0.05 (-2.53)	-0.30 (-14.82)	-0.33 (-9.46)	-0.20 (-5.07)	-0.31 (-7.48)	-0.18 (-5.62)	-0.23 (-6.58
HML	-0.12 (-5.03)	-0.28 (-12.16)	-0.23 (-8.50)	-0.44 (-18.81)	0.39	-0.01 (-0.3 l)	-0.16 (-3.95)	-0.22 (-5.23)	-0.38 (-IL62)	0.36
UMD	(0.82)	-0.07 (-3.80)	0.01 (0.64)	-0.17 (-8.55)	0.21 (10.79)	0.15 (5.54)	(101)	0.10 (3.07)	-0.14 (-5.64)	0.24 (8.57)
Sharpe Ratio	0.58	0.51	0.27	0.22	0.45	0.62	0.63	0.26	0.05	0.66
Information Ratio	1.46	1.25	1.14	0.88	0.49	1.16	1.13	0.84	0.83	0.48
Adjusted R2	0.57	0.37	0.63	0.40	0.60	0.60	0.34	0.58	0.35	0.52

All components contribute

Panel C: The price of each quality component by size decile

	Long Sample (U.S., 1956 - 2012)												
Size decile	P1 (small)	P2	P3	P4	P5	P6	P7	P8	P9 P1	(large)			
Profitability	0.21	0.28 (26.56)	0.30 (24.91)	0.34 (23.12)	0.34 (23.53)	0.38 (24.43)	0.41 (30.61)	0.37 (21.61)	0.39 (24.01)	0.37 (B.66)			
Growth	0.07 (7.49)	0.08 (7.31)	0.10 (7.05)	0.11 (8.18)	0.12 (9.23)	0.13 (7.97)	0.12 (8.04)	0.14 (8.22)	0.14 (7.23)	0.18 (6.54)			
Safety	-0.09 (-6.68)	-0.05 (-4.30)	-0.07 (-5.35)	-0.07 (-5.63)	-0.01 (-0.51)	-0.05 (-4.76)	-0.04 (-2.30)	-0.01 (-0.80)	-0.03 (-1.48)	-0.13 (-7.01)			
Payout	-0.12 (-8.98)	-0.15 (-13.87)	-0.14 (-13.67)	-0.11 (-13.70)	-0.14 (-16.66)	-0.11 (-9.65)	-0.10 (-9.70)	-0.08 (-5.82)	-0.08 (-6.49)	-0.07 (-5.00)			
Size	0.38 (20.23)	0.20 (9.87)	0.18 (12.30)	0.21 (11.40)	0.19 (14.00)	0.18 (12.76)	0.30	0.34	0.25 (7.23)	0.46			
Ret(t-12,t)	0.28 (26.74)	0.32 (27.15)	0.31 (26.65)	0.29 (23.94)	0.29 (23.72)	0.29 (23.40)	0.28 (19.52)	0.29 (17.75)	0.28	0.23 (12.43)			
Industry FE Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Average R2	0.27	0.30	0.32	0.34	0.36	0.35	0.40	0.40	0.38	0.35			

Fama-macebth

Panel A: The Price of Quality

	Long S	ample (U.S.	, 1956 - 201	2)	Broad Sample (Global, 1986 - 2012)					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Quality	0.32 (22.47)	0.19 (15.94)	0.32 (23.92)	0.20 (13.94)	0.24 (23.33)	0.10 (17.20)	0.22 (24.39)	0.09 (15.54)		
Size		0.31		0.30 (27.08)		0.29 (17.71)		0.31 (20.91)		
Ret(t-12,t)		0.27 (2136)		0.28 (26.50)		0.27 (18.60)		0.28 (22.54)		
Industry FE Country FE	No	No	Yes	Yes	No Yes	No Yes	Yes Yes	Yes Yes		
Average R2	0.12	0.31	0.11	0.30	0.06	0.25	0.05	0.26		

Fama-Macbeth by component

Panel B: The Price of Each Quality Component

	Lo	ng Sample	(U.S., 195	6 - 2012)		Bro	Broad Sample (Global, 1986 - 2012)						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)			
Profitability	0.41 (26.19)				0.30 (23.64)	0.29 (33.76)				0.19 (31.37)			
Growth		0.38 (31.18)			0.11 (12.25)		0.28 (35.02)			0.08 (12.67)			
Safety			0.14 (9.95)		-0.08 -(11.38)			0.11 (8.19)		-0.10 -(12.59)			
Payout				-0.10 -(11.11)	-0.13 -(18.41)				-0.06 -(4.69)	-0.10 -(11.23)			
Size					0.28 (26.22)	Size factor				0.31 (21.67)			
Ret(t-12,t)					0.28 (28.69)	mmomentur	n			0.28 (23.33)			
Industry FE	No	No	No	No	Yes	No	No	No	No	Yes			
Country FE						Yes	Yes	Yes	Yes	Yes			
Average R2	0.18	0.15	0.03	0.01	0.40	0.09	0.08	0.02	0.01	0.31			

Panel A: Long Sample U.S., 1956 - 2012	P1 (Low)	P2	Р3	P4	P5	P6	P7	P8	P9	P10 (High)	H-L
Excess return	0.15 (0.55)	0.36	0.38	0.39 (2.04)	0.45 (2.51)	0.45 (2.60)	0.57 (3.42)	0.47 (2.75)	0.58 (3.48)	0.61 (3.68)	0.47 (2.80)
CAPM alpha	-0.53 (-4.62)	-0.24 (-2.85)	-0.15 (-2.25)	-0.12 (-2.01)	-0.02 (-0.33)	-0.01 (-0.18)	0.13 (2.41)	0.01 (0.23)	0.14 (2.71)	0.18 (2.86)	0.71 (4.92)
3-factor alpha	-0.67 (-7.83)	-0.38 (-5.47)	-0.25 (-4.47)	-0.21 (-4.11)	-0.08 (-144)	-0.06 (-109)	0.12 (2.26)	(0.12)	0.16 (3.37)	0.29 (5.24)	0.97 (9.02)
4-factor alpha	-0.56 (-6.24)	-0.42 (-5.73)	-0.26 (-4.26)	-0.29 (-5.39)	-0.14 (-2.37)	-0.12 (-2.22)	0.04	-0.05 (-108)	0.19 (3.62)	0.41 (7.10)	0.97 (8.55)
Beta	1.28	1.22	1.08	1.09	1.03	1.01	0.97	1.00	0.95	0.90	-0.38
Sharpe Ratio	0.07	0.21	0.25	0.27	0.33	0.35	0.46	0.37	0.46	0.49	0.37
Information Ratio	-0.90	-0.82	-0.61	-0.77	-0.34	-0.32	0.10	-0.15	0.52	1.02	1.23
Adjusted R2	0.90	0.91	0.92	0.93	0.90	0.91	0.91	0.93	0.92	0.90	0.60

Panel B: Broad Sample Global, 1986 - 2012	P1 (Low)	P2	P3	P4	P5	P6	P7	P8	P9	P10 (High)	H-L
Excess return	-0.03 (-0.08)	0.35	0.43	0.38	0.52	0.46	0.57 (2.29)	0.52 (2.08)	0.61 (2.54)	0.65 (2.78)	0.68 (3.22)
CAPM alpha	-0.61 (-3.20)	-0.20 (-1.19)	-0.06 (-0.42)	-0.12 (-0.90)	0.07	(0.25)	0.17 (1.52)	0.11 (105)	0.22 (2.05)	0.28 (2.44)	0.89 (5.00)
3-factor alpha	-0.73 (-4.14)	-0.33 (-2.08)	-0.18 (-133)	-0.24 (-198)	-0.02 (-0.17)	-0.04 (-0.35)	0.10 (0.92)	0.11 (0.98)	0.24 (2.17)	0.39 (3.49)	1.12 (7.68)
4-factor alpha	-0.46 (-2.49)	-0.24 (-144)	-0.09 (-0.63)	-0.23 (-175)	(0.06)	-0.04 (-0.36)	0.10 (0.91)	0.11 (0.95)	0.23 (197)	0.47 (3.96)	0.93 (6.06)
Beta	1.14	1.12	1.00	1.03	0.94	0.91	0.85	0.87	0.82	0.78	-0.36
Sharpe Ratio	-0.01	0.20	0.27	0.24	0.36	0.33	0.44	0.40	0.49	0.53	0.62
Information Ratio	-0.53	-0.30	-0.13	-0.37	0.01	-0.08	0.19	0.20	0.41	0.84	1.28
Adjusted R2	0.79	0.80	0.81	0.84	0.81	0.82	0.82	0.82	0.80	0.79	0.56