Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509 Page 2 of 14

Amendments to the Claims

This listing of the claims will replace all prior versions and listings of the claims in the

application.

Listing of Claims

Claim 1 (Cancelled)

Claim 2 (Currently amended) An apparatus for controlling a plasma used for materials

processing, the apparatus comprising:

a resonant circuit comprising an inductor, the resonant circuit in electrical communication

with an output of a power supply and an input of a plasma vessel, the resonant circuit for storing

and releasing energy;

a sensor for acquiring a signal associated with a state of a plasma in the plasma vessel,

wherein the sensor [[is]] being configured to sense a flux induced by the inductor; and

a switch unit switchable between a first state and a second state in response to the signal,

the second state of the switch unit for shunting the resonant circuit to permit a resonance of the

resonant circuit that causes a change in the state of the plasma.

Claim 3 (Original) The apparatus of claim 2, wherein the sensor is coaxially disposed adjacent

to the inductor of the resonant circuit.

Claim 4 (Currently Amended) The apparatus of claim [[1]] 2, wherein the switch unit has a

resistance that is large enough to effectively act as a damping impedance for the resonant circuit

during shunting.

Claim 5 (Original) The apparatus of claim 4, wherein the switch unit has a resistance that is less

than a resistance of an arc discharge plasma in the plasma vessel.

Claim 6 (Original) The apparatus of claim 4, wherein the switch unit has an impedance that is

greater than an impedance of an arc discharge plasma in the plasma vessel.

Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509

Page 3 of 14

Claim 7 (Original) The apparatus of claim 4, wherein the resistance of the switch unit has a value in a range of approximately 0.001 Ω to approximately 100.0 Ω .

Claim 8 (Currently amended) The apparatus of claim [[1]] 2, further comprising a controller for receiving the signal from the sensor, and for causing the switch unit to switch to at least one of the first state and the second state to affect the state of the plasma.

Claim 9 (Original) The apparatus of claim 8, wherein the controller is configured to cause the switch unit to switch to the second state when a transition of the state of the plasma is indicated by a change in the signal.

Claim 10 (Currently amended) The apparatus of claim [[1]] 2, further comprising a voltage clamp circuit in parallel with the input of the plasma vessel.

Claim 11 (Original) The apparatus of claim 10, wherein the voltage clamp is an asymmetric voltage clamp.

Claim 12 (Currently amended) The apparatus of claim [[1]] 2, further comprising a zero-bias supply unit in series with the switch unit for applying to the switch unit an offset voltage associated with a voltage drop caused by a resistance of at least one of the switch unit and parasitic circuit elements associated with the switch unit.

Claim 13 (Currently amended) The apparatus of claim [[1]] 2, further comprising a voltage sensor for sensing a voltage of at least one of the resonant circuit, the power supply, and the input of the plasma vessel.

Claim 14 (Currently amended) The apparatus of claim [[1]] 2, further comprising a current sensor for sensing a current of at least one of the resonant circuit, the power supply, and the input of the plasma vessel.

Claim 15 (Currently amended) The apparatus of claim [[1]] 2, wherein the switch unit comprises at least one switch.

Attorney Docket No.: ASX-064 U.S.S.N.: 10/642,509

Page 4 of 14

Claim 16 (Currently amended) The apparatus of claim 15, wherein the resonant circuit

comprises an inductor, and the switch unit has one terminal electrically connected between the

inductor of the resonant circuit and the input of the plasma vessel.

Claim 17 (Original) The apparatus of claim 15, wherein the switch unit comprises at least one of

a unipolar device and a bipolar device.

Claim 18 (Original) The apparatus of claim 15, wherein the switch unit comprises at least one of

a gas switch, a SCR switch, an IGBT switch, an SiT switch, a FET switch, a GTO switch, and a

MCT switch.

Claims 19-21 (Cancelled)

Claim 22 (Currently amended) The apparatus of claim [[1]] 2, wherein the plasma vessel

comprises a cathode in electrical communication with the output of the power supply, and the

power supply comprises a DC supply.

Claim 23 (Currently amended) The apparatus of claim [[1]] 2, wherein the power supply

comprises an AC supply in electrical communication with the plasma vessel.

Claim 24 (Currently amended) The apparatus of claim [[1]] 2, wherein the resonant circuit and

the power supply share components.

Claim 25-27 (Cancelled)

Claim 28 (Currently amended) The method of claim [[25]] 31, further comprising acquiring a

signal associated with the state of the plasma, and wherein detecting comprises detecting the

change in the signal.

Claim 29 (Currently amended) The method of claim [[25]] 31, wherein the plasma is at least one

of a glow plasma and an arc discharge plasma.

Claim 30 (Cancelled)

Amendment and Response Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509

Page 5 of 14

Claim 31 (Currently amended) A method for controlling a plasma used for materials processing, the method comprising:

providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel, the resonant circuit for storing and releasing energy;

detecting a change that indicates a transition of a state of a plasma in the plasma vessel, wherein the transition comprises comprising initiation of an arc discharge plasma from a glow plasma in the plasma vessel; and

shunting comprises shunting the resonant circuit for a half cycle of the resonant circuit after the change is detected to permit a resonance of the resonant circuit.

Claim 32 (Original) The method of claim 31, further comprising providing a switch unit for shunting the resonant circuit, and shunting comprises closing the switch for the half cycle of the resonant circuit.

Claim 33 (Original) The method of claim 31, further comprising waiting for a half cycle before again shunting if the arc discharge plasma persists.

Claim 34 (Original) The method of claim 33, further comprising repeating shunting and waiting until the change is no longer detected.

Claim 35 (Original) The method of claim 34, further comprising acquiring at least a second signal comprising at least one of a voltage signal and a current signal of at least one of the resonant circuit, the power supply, and the plasma vessel, wherein repeating comprises repeating if the at least second signal indicates a persistent arc discharge plasma.

Claim 36 (Original) The method of claim 34, wherein shunting comprises causing the power supply to shut down when repeating occurs more than a predetermined number of times.

Claim 37 (Original) The method of claim 36, wherein shunting comprises causing the power supply to shut down when repeating occurs more than the predetermined number of times within a predetermined period.

Amendment and Response Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509

Page 6 of 14

Claim 38 (Currently amended) The method of claim [[25]] 31, further comprising acquiring at

least a second signal comprising at least one of a voltage signal and a current signal of at least

one of the resonant circuit, the power supply, and the plasma vessel, and detecting a change in

the second signal that indicates the transition of the state of the plasma.

Claim 39 (Currently amended) The method of claim [[25]] 31, further comprising detecting a

second change in the acquired signal, the second change indicating extinguishment of the

plasma.

Claim 40 (Original) The method of claim 39, further comprising reigniting the plasma in the

plasma vessel.

Claim 41 (Original) The method of claim 40, wherein reigniting comprises shunting the

resonant circuit to increase an energy stored in the resonant circuit, and removing the shunt to

direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma

vessel.

Claim 42 (Currently amended) A method for igniting a plasma used for materials processing, the

method comprising:

providing a resonant circuit in electrical communication with an output of a power supply

and an input of a plasma vessel, the resonant circuit for storing and releasing energy;

detecting a change that indicates a transition of a state of a plasma in the plasma vessel;

shunting the resonant circuit to increase an energy stored in the resonant circuit by

wherein shunting to increase the stored energy comprises shunting the resonant circuit until the

resonant circuit causes a current of the power supply to be greater than a steady-state current of

an arc plasma; and

removing the shunt to direct the stored energy to the input of the plasma vessel to ignite

the plasma in the plasma vessel, wherein removing the shunt comprises commuting the current to

the input of the plasma vessel.

Claim 43 (Currently amended) The method of claim [[41]] 42, wherein shunting to increase the

stored energy comprises shunting the resonant circuit for an effective portion of a cycle of the

Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509

Page 7 of 14

resonant circuit to increase an energy stored in the resonant circuit, and removing the shunt comprises directing the stored energy to the input of the plasma vessel after the effective portion of the cycle to ignite a glow discharge plasma in the plasma vessel.

Claim 44 (Currently amended) The method of claims [[25]] 31 or 42, wherein the resonant circuit comprises an inductor in series with the output of the power supply and the input of the plasma vessel, and sensing the signal comprises sensing a flux induced by the inductor.

Claim 45 (Currently amended) The method of claims [[25]] 31 or 42, wherein the transition of the state of the plasma is one of a glow plasma state to an arc discharge plasma state, an arc plasma state to a glow plasma state, an arc discharge plasma state to an off state, a glow plasma state to an off state, an off state to an arc discharge plasma state, and an off state to an arc discharge plasma state.

Claim 46 (Currently amended) The method of claims [[25]] 31 or 42, wherein the resonant circuit comprises a capacitor and inductor, and shunting comprises causing a current to resonate in the resonant circuit to cause a reversal of a current applied to the input of the plasma vessel.

Claim 47 (Original) The method of claim 46, further comprising clamping the reversed current to limit the magnitude of the reversed voltage to less than a predetermined magnitude.

Claim 48 (Cancelled)

Claim 49 (Currently amended) A method for igniting a plasma used for materials processing, the method comprising:

providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel, the resonant circuit for storing and releasing energy;

shunting the resonant circuit to increase an energy stored in the resonant circuit by ,wherein shunting comprises shunting the resonant circuit until the resonant circuit causes a current of the power supply to be greater than a steady-state current of an arc plasma[[,]]; and

Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509 Page 8 of 14

removing the shunt to direct the stored energy to the input of the plasma vessel to ignite

the plasma in the plasma vessel, wherein removing the shunt comprises commuting the current to

the input of the plasma vessel.

Claim 50 (Currently amended) The method of claim [[48]] 49, wherein shunting comprises

shunting the resonant circuit for an effective portion of a cycle of the resonant circuit to increase

an energy stored in the resonant circuit, and removing the shunt comprises directing the stored

energy to the plasma vessel after the effective portion of the cycle to ignite a glow plasma in the

plasma vessel.

Claim 51 (Original) The method of claim 50, wherein the effective portion of the cycle is a half

cycle.

Claim 52 (Currently amended) The method of claim [[48]] 49, further comprising sensing a

signal associated with a state of a plasma in the plasma vessel.

Claim 53 (Currently amended) A method for igniting a plasma used for materials processing, the

method comprising:

providing a resonant circuit in electrical communication with an output of a power supply

and an input of a plasma vessel, the resonant circuit for storing and releasing energy;

shunting the resonant circuit to increase an energy stored in the resonant circuit;

removing the shunt to direct the stored energy to the input of the plasma vessel to ignite

the plasma in the plasma vessel;

sensing a signal associated with a state of a plasma in the plasma vessel; and

further comprising repeating shunting and removing the shunt if the signal indicates

failure to ignite a desired plasma state.

Claim 54 (Original) The method of claim 53, wherein repeating comprises repeating until one of

a glow plasma is ignited, a predetermined number of failures to ignite the glow plasma occur,

and a predetermined period of failure expires.

Amendment and Response Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509

Page 9 of 14

Claim 55 (Original) The method of claim 53, wherein repeating comprises repeating until one of

an arc discharge plasma is ignited, a predetermined number of failures to ignite the arc discharge

plasma occur, and a predetermined period of failure expires.

Claim 56 (Currently amended) The method of claims 52 or 53, further comprising shunting to

extinguish a plasma in the plasma vessel if the signal indicates an undesired plasma state of the

plasma in the plasma vessel.

Claim 57 (Cancelled)

Claim 58 (Currently amended) A method for igniting a plasma used for materials processing.

the method comprising:

providing a resonant circuit including an inductor in electrical communication with an

output of a power supply and an input of a plasma vessel, the resonant circuit for storing and

releasing energy, wherein most of the stored energy [[is]] being stored by the inductor;

shunting the resonant circuit to increase an energy stored in the resonant circuit; and

removing the shunt to direct the stored energy to the input of the plasma vessel to ignite

the plasma in the plasma vessel.

Claim 59 (Original) The method of claim 58, wherein the inductor of the power supply or a

portion of the inductor of the power supply is shared by the resonant circuit.

Claim 60 (Currently amended) The method of claim [[48]] 49, wherein most of the stored

energy is stored by an inductor of the power supply.

Claim 61 (Original) The method of claim 60, wherein the inductor of the power supply has a

larger inductance than an inductor of the resonant circuit.

Claim 62 (Currently amended) The method of claims [[25]] 49, 53, or 58, wherein detecting the

change that indicates the transition of the state of the plasma comprises detecting a change that

anticipates the transition of the state of the plasma.

Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509

Page 10 of 14

Claim 63 (Original) The method of claim 62, wherein shunting the resonant circuit after the

change is detected comprises shunting prior to the transition occurring.

Claim 64 (New) An apparatus for controlling a plasma used for materials processing, the

apparatus comprising:

a resonant circuit in electrical communication with an output of a power supply and an

input of a plasma vessel, the resonant circuit for storing and releasing energy;

a combination of two or more different types of sensors for acquiring a signal associated

with a state of a plasma in the plasma vessel; and

a switch unit switchable between a first state and a second state in response to one or

more of the signals, the second state of the switch unit for shunting the resonant circuit to permit

a resonance of the resonant circuit that causes a change in the state of the plasma.

Claim 65 (New) The apparatus of claim 64, wherein sensor type is selected from the group

consisting of a flux sensor, a current sensor, and a voltage sensor.

Claim 66 (New) The apparatus of claim 64, wherein the switch unit has a resistance that is large

enough to effectively act as a damping impedance for the resonant circuit during shunting.

Claim 67 (New) The apparatus of claim 66, wherein the switch unit has a resistance that is less

than a resistance of an arc discharge plasma in the plasma vessel.

Claim 68 (New) The apparatus of claim 66, wherein the switch unit has an impedance that is

greater than an impedance of an arc discharge plasma in the plasma vessel.

Claim 69 (New) The apparatus of claim 66 wherein the resistance of the switch unit has a value

in a range of approximately 0.001 Ω to approximately 100.0 Ω .

Claim 70 (New) The apparatus of claim 64, further comprising a controller for receiving the

signal from the sensor, and for causing the switch unit to switch to at least one of the first state

and the second state to affect the state of the plasma.

Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509

Page 11 of 14

Claim 71 (New) The apparatus of claim 70, wherein the controller is configured to cause the

switch unit to switch to the second state when a transition of the state of the plasma is indicated

by a change in the signal.

Claim 72 (New) The apparatus of claim 64, further comprising a voltage clamp circuit in

parallel with the input of the plasma vessel.

Claim 73 (New) The apparatus of claim 72, wherein the voltage clamp is an asymmetric voltage

clamp.

Claim 74 (New) The apparatus of claim 64, further comprising a zero-bias supply unit in series

with the switch unit for applying to the switch unit an offset voltage associated with a voltage

drop caused by a resistance of at least one of the switch unit and parasitic circuit elements

associated with the switch unit.

Claim 75 (New) The apparatus of claim 64, wherein the switch unit comprises at least one

switch.

Claim 76 (New) The apparatus of claim 75, wherein the resonant circuit comprises an inductor,

and the switch unit has one terminal electrically connected between the inductor and the input of

the plasma vessel.

Claim 77 (New) The apparatus of claim 75, wherein the switch unit comprises at least one of a

unipolar device and a bipolar device.

Claim 78 (New) The apparatus of claim 75, wherein the switch unit comprises at least one of a

gas switch, a SCR switch, an IGBT switch, an SiT switch, a FET switch, a GTO switch, and a

MCT switch.

Claim 79 (New) The apparatus of claim 64, wherein the resonant circuit comprises a capacitor

in parallel with the switch unit.

Attorney Docket No.: ASX-064

U.S.S.N.: 10/642,509

Page 12 of 14

Claim 80 (New) The apparatus of claim 64, wherein the power supply comprises a capacitor in

parallel with the output of the power supply, and in parallel with a capacitor of the resonant

circuit.

Claim 81 (New) The apparatus of claim 80, wherein the resonant circuit further comprises an

inductor in series with the output of the power supply.

Claim 82 (New) The apparatus of claim 64, wherein the plasma vessel comprises a cathode in

electrical communication with the output of the power supply, and the power supply comprises a

DC supply.

Claim 83 (New) The apparatus of claim 64, wherein the power supply comprises an AC supply

in electrical communication with the plasma vessel.

Claim 84 (New) The apparatus of claim 64, wherein the resonant circuit and the power supply

share components.