Departamento de Ciência de Computadores Modelos de Computação (CC218)

FCUP 2013/14

 $1^{\rm o}$ Teste (23.04.2014)

Uma resolução

duração: 3h+30m

Cotação: 1, 1.5, (2+4), 3, (1.5+1.5+2+1.5), 1, 1

1. Explique a ideia do método de McNaughton-Yamada-Thompson para a construção de um autómato finito que reconhece $\mathcal{L}(r^*)$, sendo r uma expressão regular sobre Σ .

Resposta:

Para construir um AFND- ε que reconhece $\mathcal{L}(r^*)$, começa por construir um AFND- ε que reconhece $\mathcal{L}(r)$, seguindo uma abordagem recursiva. Os autómatos que produz têm sempre um único estado final e do estado final não saem transições. Supondo que $A_r = (S, \Sigma, \delta, i_r, \{f_r\})$ é o AFND- ε que obteve para $\mathcal{L}(r)$, define

$$A_{r^*} = (S \cup \{i, f\}, \Sigma, \delta', i, \{f\})$$

com dois novos estados i e f, sendo δ' a extensão de δ , com $\delta'(i,\varepsilon) = \{i_r,f\}$ e $\delta'(f_r,\varepsilon) = \{i_r,f\}$ e $\delta'(f,\varepsilon) = \emptyset$, e $\delta'(i,a) = \emptyset = \delta'(f,a)$, para $a \in \Sigma$.

2. Apresente a noção de expressões regulares equivalentes e prove que $(r+s^*)^* \equiv (r+s)^*$.

Resposta:

Expressões regulares equivalentes são expressões regulares que descrevem a mesma linguagem.

Sendo R e S as linguagens descritas pelas expressões r e s, mostrar que $(r+s^*)^* \equiv (r+s)^*$ equivale a mostrar que $(R \cup S^*)^* = (R \cup S)^*$.

Por definição de fecho de Kleene, $S \subseteq S^*$. Logo, por definição de união, $(R \cup S) \subseteq (R \cup S^*)$. Consequentemente, por definição de fecho de Kleene, $(R \cup S)^* \subseteq (R \cup S^*)^*$.

Para mostrar que também $(R \cup S)^* \supseteq (R \cup S^*)^*$, basta ver que qualquer palavra $x \in (R \cup S^*)^*$ é uma sequência finita de palavras de R e S^* , possivelmente zero ou uma. Como qualquer palavra de S^* é uma sequência finita de palavras de S, cada palavra de S^* que ocorra em x é uma sequência de palavras de S. Assim, concluimos que S é uma sequência de palavras de S e, portanto, S e que ocorra em S e que ocorra em

3. Sejam L_1 e L_2 as linguagens de alfabeto $\{a,b\}$ assim definidas:

$$L_1 = \{a\}^* \{abb\} \{b\}^* \qquad L_2 = (\{bba\} \cup \{ba, a\}^*)^*$$

a) Defina informalmente L_1 e L_2

Resposta:

A linguagem L_1 é constituída pelas palavras formadas por a's e b's que têm abb como subpalavra e não têm a's à direita de b's.

A linguagem L_2 é $\{bba, ba, a\}^*$ pela equivalência demonstrada em 2. Pode ser definida como o conjunto das sequências finitas de a's ou b's que não têm mais do que dois b's consecutivos e que não terminam em b.

b) Para cada uma das linguagens indicadas, apresente o autómato finito determinístico mínimo que a reconhece. Explique sucintamente e justifique a sua correção.

Resposta:

Pelo Teorema de Myhill-Nerode, o AFD mínimo que reconhece uma dada linguagem L de alfabeto Σ é dado por

$$A = (\Sigma^{\star}/R_L, \Sigma, \delta, [\varepsilon], F)$$

em que R_L é a relação de equivalência definida em Σ^* por x R_L y sse para todo $z \in \Sigma^*$ se tem $xz \in L \Leftrightarrow yz \in L$, o conjunto de estados Σ^*/R_L é o conjunto das classes de equivalência de R_L , [x] denota a classe de equivalência de x, para todo x, o conjunto de estados finais $F = \{[x] \mid x \in L\}$, e a função de transição é definida por $\delta([x], a) = [xa]$, para todo $x \in \Sigma^*$ e $a \in \Sigma$.

Para $L_1 = \{a\}^* \{abb\} \{b\}^*$, o AFD mínimo é:

 $[\varepsilon] \neq [a]$ porque $(\varepsilon, a) \notin R_{L_1}$, pois para z = bb, tem-se $\varepsilon z \notin L_1$ e $az \in L_1$;

 $[\varepsilon] \neq [ab]$ porque $(\varepsilon, ab) \notin R_{L_1}$, pois para z = b, tem-se $\varepsilon z \notin L_1$ e $abz \in L_1$;

 $[\varepsilon] \neq [abb]$ porque $(\varepsilon, abb) \notin R_{L_1}$, pois para $z = \varepsilon$, tem-se $\varepsilon z \notin L_1$ e $abbz \in L_1$;

 $[a] \neq [ab]$ porque $(a, ab) \notin R_{L_1}$, pois para z = b, tem-se $az \notin L_1$ e $abz \in L_1$;

 $[a] \neq [abb]$ porque $(a, abb) \notin R_{L_1}$, pois para $z = \varepsilon$, tem-se $az \notin L_1$ e $abbz \in L_1$;

 $[ab] \neq [abb]$ porque $(ab, abb) \notin R_{L_1}$, pois para $z = \varepsilon$, tem-se $abz \notin L_1$ e $abbz \in L_1$;

[aa] = [a], porque $aaz \in L_1 \Leftrightarrow z \in \mathcal{L}(a^*abbb^*) \Leftrightarrow az \in L_1$;

[abb] = [abbb], porque $aabz \in L_1 \Leftrightarrow z \in \mathcal{L}(b^*) \Leftrightarrow abbz \in L_1$;

[b] = [aba] = [abba] porque para $x \in \{b, aba, abba\}$ não se tem $xz \in L_1$ para nenhum z; Assim, vemos também que [b] não é nenhuma das classes $[\varepsilon], [a], [ab]$ e [abb].

Para $L_2 = \{bba, ba, a\}^*$, o AFD mínimo é:

 $[\varepsilon] \neq [b], [\varepsilon] \neq [bb], [\varepsilon] \neq [bbb], \text{ porque } b, bb, bbb \notin L_2 \text{ e } \varepsilon \in L_2;$

 $[bbb] \neq [b], [bbb] \neq [bb]$ pois para z = a, tem-se $bz \in L_2$ e $bbz \in L_2$ mas $bbbz \notin L_2$;

[bbb] = [bbba] = [bbbb] pois, para todo $z \in \Sigma^*$, tem-se $bbbz \notin L_2$, $bbbbz \notin L_2$, e $bbbaz \notin L_2$;

Como $[\varepsilon] = \{x \mid xz \in L_2 \text{ sse } z \in L_2\}, \text{ concluimos que } [\varepsilon] = [ba] = [bba];$

Finalmente, $[b] \neq [bb]$ pois $b(ba) \in L_2$ e $bb(ba) \notin L_2$.

- 4. Averigue a veracidade ou falsidade das afirmações seguintes sobre linguagens de alfabeto $\Sigma = \{a, b\}$, justificando.
- a) A interseção, finita ou infinita, de linguagens regulares é regular.

Resposta:

Falso. Como $\bigcup_{i \in I} L_i = \bigcap_{i \in I} \overline{L_i}$ e a classe de linguagens regulares é fechada para a complementação, concluiriamos que se a classe fosse fechada para a interseção infinita, também seria fechada para a união infinita. Mas, a classe de linguagens regulares é fechada para a união finita mas não é fechada para a união infinita.

De facto, sendo qualquer linguagem L união de linguagens regulares, pois $L = \bigcup_{x \in L} \{x\}$ e qualquer linguagem finita é regular, concluiamos que, se a classe fosse fechada para a união infinita então todas as linguagens seriam regulares, o que é absurdo (pois sabemos que existem linguagens não regulares).

b) A linguagem $\{a^nba^n \mid n>1\}$ é união de linguagens regulares e não é regular.

Resposta:

Verdade. É união (infinita) de linguagens regulares porque $\{a^nba^n \mid n>1\} = \bigcup_{n\in\mathbb{N}\setminus\{0,1\}} F_n$, com $F_n=\{a^nba^n\}$, para todo n>1, e qualquer linguagem finita é regular ($|F_n|=1$ e portanto F_n é regular).

A linguagem $L = \{a^nba^n \mid n > 1\}$ não é regular porque $(a^nb, a^mb) \notin R_L$, para todo (n, m) com $n \neq m$, pois para $z = a^n$, tem-se $a^nbz \in L$ e $a^mbz \notin L$. Portanto, o conjunto de classes de equivalência de R_L é infinito e, consequentemente, pelo Teorema de Myhill-Nerode, L não é regular.

c) Não existe uma linguagem não regular L tal que L^* seja regular.

Resposta:

Falso. A linguagem $L = \{a, b\} \cup \{a^n b a^n \mid n > 1\}$ não é regular (justificação análoga à que demos em 4b)), mas $L^* = \{a, b\}^*$ e, portanto, é trivialmente regular.

De facto, podemos mesmo provar que: se M é uma linguagem não regular sobre Σ então $M \cup \Sigma$ não é regular e $(M \cup \Sigma)^* = \Sigma^*$ é regular.

<u>Alternativas:</u>

• Outro contra-exemplo: $L=\{a^p\mid p\text{ primo}\}$, linguagem que se demonstrou nas aulas não ser regular. Neste caso, $L^\star=\mathcal{L}(\varepsilon+aaa^\star)$. Tal resulta de qualquer inteiro maior ou igual a dois ser primo ou produto de primos. Se $p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ for a decomposição de n em primos, para um certo $n\geq 2$, então podemos escrever a palavra a^n como justaposição de a^{p_1} exatamente $p_1^{(\alpha_1-1)}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ vezes. Por exemplo, como $18=2^13^2=2\times 3\times 3=2\times 9$, podemos escrever $a^{18}=a^2a^2a^2a^2a^2a^2a^2a^2a^2a^2a^2$ (embora também seja, $a^3a^3a^3a^3a^3$), e portanto, $a^{18}\in L^\star$. A palavra $a^1=a$ é a única que não pertence a L^\star porque não é possível obter essa palavra por justaposição de palavras de L (pois 1 não é primo).

Notar que os expoentes estão a ser usados com dois significados diferentes.

- Ainda, na linha do primeiro exemplo, bastaria dar como exemplo $L = \{a^p \mid p \text{ primo}\} \cup \{a\}.$
- Também serviria $L = \{a^{n^2} \mid n \ge 1\}$, que se provou nas aulas não ser regular. Neste caso $L^* = \{a\}^*$.
- 5. Seja $A = (\{s_0, s_1, s_2, s_3, s_4\}, \{a, b\}, \delta, s_0, \{s_2, s_3, s_4\})$ um autómato finito não determinístico, em que δ é assim definida:

$$\begin{array}{lll} \delta(s_0,a) = \{s_0,s_1\} & \delta(s_1,a) = \{s_2\} & \delta(s_2,a) = \{\} \\ \delta(s_0,b) = \{s_0,s_4\} & \delta(s_1,b) = \{\} & \delta(s_2,b) = \{s_3\} & \delta(s_3,b) = \{s_3\} & \delta(s_4,b) = \{\} \end{array}$$

a) Determine uma expressão regular que descreva $\mathcal{L}(A)$ por aplicação do método de eliminação de estados de Brzozowski-McCluskey, começando por eliminar s_3 .

3

Resposta:

O AFND dado pode ser representado pelo diagrama abaixo, à esquerda:

O estado inicial não tem grau de entrada zero (por causa do lacete) e assim devemos criar um novo estado inicial i. Como há mais do que um estado final (e alguns com saídas), introduzimos um novo estado final f (sem saídas), que passará a ser o único final. Nos dois casos usamos transições por ε . Substituimos o lacete múltiplo em s_0 por um único etiquetado com a expressão a+b. O novo diagrama está acima à direita. As etiquetas já são expressões regulares.

Segundo o algoritmo, a eliminação de um estado s faz-se substituindo cada par de ramos (u, s) e (s, v), com $u \neq s$ e $v \neq s$, por um novo ramo (u, v), cuja etiqueta é obtida assim:

Quando o ramo (u, v) existe, com etiqueta r_4 , por exemplo, então modifica-se a mesma para $r_4 + r_1(r_2^*)r_3$ ou $r_4 + r_1r_3$, respectivamente. Usando estas regras, vamos proceder à aplicação do método.

Os estados podem ser eliminados por qualquer ordem, mas no enunciado é pedido que o primeiro seja s3.

Na eliminação de s_3 , os pares (u,v) afetados são (s_2,f) e (s_2,s_1) . Usando $\varepsilon + bb^*\varepsilon \equiv b^*$, obtem-se:

Para eliminar s_4 , o par afetado é (s_0, f) , e obtem-se:

Para eliminar s_0 , os pares afetados são (i, f) e (i, s_1) , e obtem-se:

Para eliminar s_1 , os pares afetados são (s_2, s_2) e (i, s_2) , e obtem-se:

Finalmente, eliminamos s_2 , obtendo:

$$(a+b)^*aa(bb^*aa)^*b^* + (a+b)^*b$$

A linguagem aceite pelo autómato é descrita pela expressão regular $(a+b)^*aa(bb^*aa)^*b^* + (a+b)^*b$.

b) Por aplicação do método de Kleene, determine a expressão regular das palavras que levam o autómato dos estado s_2 a um estado final sem passar em s_0 . Explique.

Resposta:

Nas condições indicadas no enunciado, só será relevante a parte do diagrama de transição representada abaixo, à esquerda.

Para aplicar o método, atribuimos números de 1 a 3 aos estados, como indicámos acima à direita, e a expressão que pretendemos obter é $r_{22}^{(3)} + r_{23}^{(3)}$.

No método de Kleene, usamos $r_{ij}^{(k)}$ para designar a expressão que descreve o conjunto das palavras que levam o autómato do estado i ao estado j podendo passar por estados intermédios identificados por números de 1 a k. As expressões vão sendo construídas por fases: as expressões básicas $r_{ij}^{(0)}$ correspondem a acessibilidade direta e $r_{ij}^{(k)}$ é definida por $r_{ij}^{(k)} = r_{ij}^{(k-1)} + r_{ik}^{(k-1)} (r_{kk}^{(k-1)})^* r_{kj}^{(k-1)}$, para todo $k \geq 1$, e todo par (i,j).

Como pretendemos $r_{22}^{(3)}+r_{23}^{(3)}$, só calculamos estas duas expressões para k=3, e como $r_{22}^{(3)}=r_{22}^{(2)}+r_{23}^{(2)}(r_{33}^{(2)})^{\star}r_{32}^{(2)}$ e $r_{23}^{(3)}=r_{23}^{(2)}+r_{23}^{(2)}(r_{33}^{(2)})^{\star}r_{33}^{(2)}$, limitar-nos-emos a calcular as expressões relevantes também quando k=2.

Aplicando ao exemplo, obtém-se:

$$\begin{array}{lll} r_{11}^{(0)} = \varepsilon & & r_{11}^{(1)} = r_{11}^{(0)} + r_{11}^{(0)}(r_{11}^{(0)})^* r_{11}^{(0)} \equiv \varepsilon \\ \\ r_{12}^{(0)} = a & & r_{12}^{(1)} = r_{12}^{(0)} + r_{11}^{(0)}(r_{11}^{(0)})^* r_{12}^{(0)} \equiv r_{12}^{(0)} = a \\ \\ r_{13}^{(0)} = \emptyset & & r_{13}^{(1)} = r_{13}^{(0)} + r_{11}^{(0)}(r_{11}^{(0)})^* r_{13}^{(0)} \equiv r_{13}^{(0)} = \emptyset \\ \\ r_{21}^{(0)} = \emptyset & & r_{21}^{(1)} = r_{21}^{(0)} + r_{21}^{(0)}(r_{11}^{(0)})^* r_{11}^{(0)} \equiv r_{21}^{(0)} = \emptyset \\ \\ r_{22}^{(0)} = \varepsilon & & r_{22}^{(1)} = r_{22}^{(0)} + r_{21}^{(0)}(r_{11}^{(0)})^* r_{12}^{(0)} = \varepsilon + \emptyset \equiv \varepsilon \\ \\ r_{23}^{(0)} = b & & r_{23}^{(1)} = r_{23}^{(0)} + r_{21}^{(0)}(r_{11}^{(0)})^* r_{13}^{(0)} = b + \emptyset \equiv b \\ \\ r_{31}^{(0)} = a & & r_{31}^{(1)} = r_{31}^{(0)} + r_{31}^{(0)}(r_{11}^{(0)})^* r_{11}^{(0)} \equiv a \\ \\ r_{32}^{(0)} = \emptyset & & r_{32}^{(1)} = r_{32}^{(0)} + r_{31}^{(0)}(r_{11}^{(0)})^* r_{12}^{(0)} \equiv \theta + a\varepsilon a \equiv aa \\ \\ r_{32}^{(0)} = 0 & & r_{32}^{(1)} = r_{32}^{(0)} + r_{31}^{(0)}(r_{11}^{(0)})^* r_{12}^{(0)} \equiv \theta + a\varepsilon a \equiv aa \\ \\ r_{33}^{(0)} = \varepsilon + b & & r_{33}^{(1)} = r_{33}^{(0)} + r_{31}^{(0)}(r_{11}^{(0)})^* r_{13}^{(0)} \equiv \varepsilon + b + \theta \equiv \varepsilon + b \\ \end{array}$$

Finalmente, temos

$$r_{22}^{(3)} = r_{22}^{(2)} + r_{23}^{(2)}(r_{33}^{(2)})^* r_{32}^{(2)} = \varepsilon + b(\varepsilon + b + aab)^* aa \equiv \varepsilon + b(b + aab)^* aa$$

$$r_{23}^{(3)} = r_{23}^{(2)} + r_{23}^{(2)}(r_{33}^{(2)})^* r_{33}^{(2)} \equiv b(\varepsilon + b + aab)^* \equiv b(b + aab)^*$$

obtendo a expressão procurada

$$r_{22}^{(3)} + r_{23}^{(3)} \equiv \varepsilon + b(b+aab)^{\star}aa + b(b+aab)^{\star} \equiv \varepsilon + b(b+aab)^{\star}(aa+\varepsilon)$$

c) Por aplicação de um algoritmo de conversão, determine um AFD equivalente a A. Explique

Resposta:

Como vimos, o diagrama de transição do autómato A é:

Para $A = (\{s_0, s_1, s_2, s_3, s_4\}, \{a, b\}, \delta, s_0, \{s_2, s_3, s_4\})$, usando a construção baseada em subconjuntos, obtém-se um AFD A' equivalente a A se se definir

$$A' = (2^S, \{a, b\}, \delta', \{s_0\}, \{E \mid E \in 2^S \land E \cap \{s_2, s_3, s_4\} \neq \emptyset\})$$

$$\text{com } S = \{s_0, s_1, s_2, s_3, s_4\} \text{ e } \delta'(E, t) = \cup_{q \in E} \delta(q, t), \text{ para todo } (E, t) \in 2^S \times \{a, b\}.$$

Como $|2^S|=32$, este autómato é relativamente grande. Contudo, muitos desses estados não são acessíveis do seu estado inicial (isto é, de $\{s_0\}$). Se se descartar os inacessíveis, criando apenas aqueles estados que vão surgindo numa pesquisa a partir de $\{s_0\}$, obtem-se um AFD equivalente mas mais simples:

d) Por aplicação do algoritmo de Moore (minimização de AFDs), averigue se o autómato que obteve na alínea anterior é mínimo e, caso não seja, apresente o mínimo.

Resposta:

Para facilitar, introduzimos novas designações para os estados. Os estados finais não são equivalentes aos estados não finais e, por isso, começamos por assinalar todos esses pares (final/não final) como distintos.

Para os pares que sobram, temos:

- $\delta'(q_0, a) = q_1$ e $\delta'(q_1, a) = q_2$ e já sabemos que q_1 e q_2 não são equivalentes. Logo, q_0 não é equivalente a q_1 .
- $\delta'(q_2, a) = q_2$ e $\delta'(q_3, a) = q_1$ e sabemos que q_2 e q_1 não são equivalentes. Logo, q_2 e q_3 não são equivalentes.
- Por razão análoga, q_2 e q_4 não são equivalentes, pois $\delta'(q_2,a)=q_2$ e $\delta'(q_4,a)=q_1$.
- Finalmente, para (q_3, q_4) tem-se $\delta'(q_3, a) = q_1$ e $\delta'(q_4, a) = q_1$ e $\delta'(q_3, b) = q_3$ e $\delta'(q_4, b) = q_4$, pelo que, não sendo possível distinguir q_3 de q_4 , concluimos que são equivalentes.

A tabela final e o AFD mínimo estão abaixo. Designámos por q_3' o estado que resulta da junção de q_3 e q_4 .

6. Sejam $A_1 = (S_1, \{a, b\}, \delta_1, s_0^{(1)}, F_1)$ e $A_2 = (S_2, \{a, b\}, \delta_2, s_0^{(2)}, F_2)$ dois AFDs, com $s_0^{(1)} \in S_1$ e $s_0^{(2)} \in S_2$. Apresente um AFD que permita verificar se $\mathcal{L}(A_1) \cup \mathcal{L}(A_2) = \{a, b\}^*$.

Resposta:

Com base na construção do autómato produto, definimos o AFD $A = (S_1 \times S_2, \{a, b\}, \delta, (s_0^{(1)}, s_0^{(2)}), F)$ com $\delta((s_1, s_2), t) = (\delta((s_1, t), \delta(s_2, t))$, para todo $t \in \Sigma$, e $F = \{(s_1, s_2) \mid s_1 \in F_1 \text{ ou } s_2 \in F_2\}$, ou seja $F = (S_1 \times F_2) \cup (F_1 \times S_2)$. Com este conjunto de estados finais, a linguagem reconhecida por $A \notin \mathcal{L}(A_2) \cup \mathcal{L}(A_2)$. Esta linguagem é Σ^* se e só se o conjunto de estados de A acessíveis do estado inicial $(s_0^{(1)}, s_0^{(2)})$ só contiver estados finais (esse conjunto é igual a F se os AFDs de partida não tiverem estados não acessíveis do estado inicial).

7. Mostre (explicitamente) que a linguagem $\{a, ab, abb\} \cup (\{bba\}\{bba\}^*)$ sobre $\Sigma = \{a, b\}$ satisfaz a condição do lema da repetição para linguagens regulares.

Resposta:

O lema diz que se L for regular, então existe n>0 tal que todas as palavras $x\in L$, com $|x|\geq n$, têm algum prefixo uv tal que $|uv|\leq n$ e $v\neq \varepsilon$, e v pode ser retirado ou repetido quantas vezes quisermos, obtendo sempre palavras de L (ou seja, sendo x=uvw, para tal uv, teremos $uv^iw\in L$, qualquer que seja $i\geq 0$).

Neste caso, podemos tomar, por exemplo, n=6 (de facto, basta tomar n=4). Qualquer palavra $x\in L$ com $|x|\geq 6$ é da forma $(bba)^p$, para algum $p\geq 2$. Então, se tomarmos, $u=\varepsilon,\ v=bba$ e $w=(bba)^{p-1}$ temos, x=uvw, com $|uv|=3\leq n$ e $v\neq \varepsilon$ e é verdade que para todo $i\geq 0$ se tem $uv^iw\in L$ pois, $uv^iw=\varepsilon(bba)^i(bba)^{p-1}=(bba)^{p-1+i}$, com $p-1+i\geq 1$, uma vez que $p\geq 2$ e $i\geq 0$.

7

Assim, $uv^iw \in \{bba\}\{bba\}^*$, para todo $i \geq 0$, e consequentemente, uv^iw pertence à linguagem (c.q.d.)