Соревнование RuATD-2022

https://www.dialog-21.ru/evaluation/2022/ruatd/

Матяш Дарья Кошкина Ксения

Постановка задачи

Обучить модель отличать тексты, написанные человеком, от сгенерированных (задача бинарной классификации).

Описание данных

Пример разметки

Обозначения двух классов -

текст написан:

- Н человеком
- М машиной

н	M-MT (FR→RU)
Эх, у меня может быть и нет денег, но у меня всё ещё есть гордость.	Может, у меня нет денег, но у меня всегда есть гордость.
Меня покусали комары.	Меня похитили муски.
Я не могу чувствовать себя в гостинице как дома.	Я не могу чувствовать себя дома в отеле.
Эта книга показалась мне интересной.	Я нашёл эту интересную книгу.
Я был полон решимости помочь ему, даже рискуя собственной жизнью.	Я был готов помочь ему в опасности своей жизни.
Моя квартира находится меньше чем в пяти минутах пешком от станции.	Моя квартира находится на расстоянии менее пяти минут от станции.

Данные

Train data - 129066 текстов

Test data - 64533 текста

Validation data - 21511 TEKCT

Для дальнейших экспериментов использовали только 60% train и validation data. Соотношение двух классов в датасетах было сохранено.

Метрики

организаторы ориентируются на accuracy

+ смотрели на **precision**, **recall**, **F1-score** для более глубокого понимания работы модели

Команда, роли

Даша, Ксюша:

- анализ данных
- генерация идей (в feature engineering, поиске полезной информации)

Ксюша:

ML-эксперименты

Даша:

• DL-эксперименты

Baseline

	name	metric_acc
0	Baseline Bert	0.79622
1	Baseline Tf-Idf	0.63562

Интересные наблюдения

длина текста

искусственно созданный текст чаще длиннее человеческого

число токенов в текстах

в искусственных текстах скорее больше слов, чем в человеческих

Интересные наблюдения

ЧИСЛО СТОП-СЛОВ

число уникальных слов

Интересные наблюдения

В искусственном тексте больше:

- СТОП-СЛОВ
- уникальных слов
- слов в целом
- длина всего текста
- прилагательных (и меньше глаголов)
- слов, которым pymorphy не может определить POS-тег

PS.:многие из этих наблюдений привели к значительному улучшению качества (см. далее)

Эксперименты

Обучено моделей: больше 10

Общее время обучения моделей: больше 50 часов

Машинное обучение

Улучшенная логистическая регрессия (добавлены фичи):

- 1) Количество None пос-тегов
- 2) Количество токенов в тексте
- 3) Средняя длина токена в тексте

Качество: + 0.05 по сравнению с

бейзлайном

XGBoost

При обучении XGBoost были добавлены дополнительные фичи: количество символов, количество уникальных слов, средняя длина слова, количество токенов, количество пунктуационных знаков, количество слов с заглавной буквы, количество стоп-слов, количество unknown pos-tags, количество слов в upper case

Первая модель была обучена только на них

XGBoost (добавлены фичи):

- 1) Количество None пос-тегов
- 2) Количество токенов в тексте
- 3) Средняя длина токена в тексте

Качество: + 0.08 по сравнению с

Classification	Report		
	precision	recall	f1-score
Н	0.70	0.73	0.71
М	0.72	0.68	0.70
accuracy			0.71
macro avg	0.71	0.71	0.71
weighted avg	0.71	0.71	0.71

Также были обучены, но безрезультатно:

1)	PassiveAgressive Classifier		precision	recall	f1-score
		Н	0.54	0.50	0.52
		М	0.53	0.57	0.55
		accuracy			0.53
		macro avg	0.53	0.53	0.53
		weighted avg	0.53	0.53	0.53
2)	MultinominalNB		precision	recall	f1-score
		Н	0.59	0.80	0.68
		М	0.69	0.46	0.55
		accuracy			0.63
		macro avg	0.64	0.63	0.61
		weighted avg	0.64	0.63	0.61

BERT family

Ниже представлены топ-4 самых лучших результатов экспериментов

Мы экспериментировали с:

- конкатенацией эмбеддинга [CLS] токена с последнего слоя
- weight_decay
- scheduler
- разные параметры при tokenizer и др.

model name	num_epochs	Accuracy
RuBERT-large	3	0.793
RuBERT-tiny	5	0.7934
multilingual-bert-base-un cased + CLS	3	0.81
XLM-RoBERTa	3	0.814

Результат

NB.: использовали только 60% train и validation данных, тем не менее, получилось так:

Baseline	Лучшая модель	Accuracy	Accuracy относительно Baseline
Tf-idf + LogReg	XGBoost	0.71	+0.08
BERT	XLM-RoBERTa	0.81	+0.02

Анализ результатов

Из ML-части:

• Кастомные фичи num_unique_words, len_tokens, num_chars имели наибольший вес при обучении

И DL-части интересно было:

- частое пересечение предсказаний для ruBERT (tiny и "стандартного")
- детекция более синтаксически "некрасивых" текстов как Н (человек) всеми моделями

Предложения об улучшениях

- большее количество эпох
- исходное количество данных
- подбор гиперпараметров при обучении
- дополнительные классификаторы поверх выхода другого
- ансамбли моделей

Список литературы

- 1. Santiago Alonso-Bartolome, Isabel Segura-Bedmar. Multimodal Fake News Detection. arXiv:2112.04831 [cs.CL] 9 Dec 2021
- 2. Bimal Bhattarai, Ole-Christoffer Granmo, Lei Jiao. Explainable Tsetlin Machine framework for fake news detection with credibility score assessment. arXiv:2105.09114v1 [cs.CL] 19 May 2021
- 3. Sushma Kumari. NoFake at CheckThat! 2021: Fake News Detection Using BERT. arXiv:2108.05419 [cs.CL] 11 Aug 2021
- 4. Mateusz Szczepański1 Marek Pawlicki Rafał Kozik & Michał Choraś. New explainability method for BERT-based model in fake news detection. 8 Dec 2021
- 5. Wanjun Zhong, Duyu Tang, Zenan Xu, Ruize Wang, Nan Duan, Ming Zhou, Jiahai Wang, Jian Yin. Neural Deepfake Detection with Factual Structure of Text. 15 Oct 2020
- 6. Tiziano Fagni, Fabrizio Falchi, Margherita Gambini, Antonio Martella, Maurizio TesconiTweepFake: about Detecting Deepfake Tweets. 6 May 2021

Ссылка на гитхаб

Проект