SECOND DERIVATIVE FILTER

CIRCUIT STRUCTURE [DIAGRAM]

THE CIRCUIT HAS 13 PARTS

- 1 Pulse generator.
- 1 Address generator.
- 1 Rom.
- 1 Ram.
- 1 Delay line.
- 1 Timer.
- 3 Debouncers.
- 2 Binary converters for three 7 segment displays.

CONTROL UNIT

5 INPUTS:

- **Clk**: Controlled by <u>CLOCK_50</u>;
- **Filter**: Controlled by <u>SW[0]</u>;
- Reset_ram : Controlled by KEY[1]
- Reset: Controlled by <u>KEY[2]</u>;
- Iniciate: Controlled by <u>KEY[0]</u>;

4 OUTPUTS:

- Start: output that will start the count;
- Filter_on: output that will start the filtering;
- Rst_ram: output that will clean the <u>RAM</u> and stop the count;
- Rst: output that resets the whole circuit;

DEBOUNCER

Three DEBOUNCERES are needed!

 \rightarrow 1 for KEY[0];

 \rightarrow 1 for KEY[1];

 \rightarrow 1 for KEY[2];

PULSE GENERATOR

2 INPUTS:

- **Clk**: Controlled by <u>CLOCK_50</u>;
- **Start**: Controlled by the initiation of the <u>CONTROL UNIT</u>;

1 OUTPUT:

• **Pulse :** Generated Pulse every 0.5 seconds;

ADDRESS GENERATOR

4 INPUTS:

- **Clk**: Controlled by <u>CLOCK_50</u>;
- RESET_RAM : Controlled by rst_ram from <u>CONTROL UNIT</u>;
- RST : Controlled by rst from CONTROL UNIT;
- **En**: Controlled by the pulse from PULSE GENERATOR;

2 OUTPUTS:

- Ram_AddrOut : RAM address;
- Rom_AddrOut: ROM address;

CAN BE DEVIDED INTO 2 PARTS!

- 1) Rom address generator:
 - Only has a global reset.

2) Ram address generator:

 Has both a global reset and a ram only reset.

256X8 ROM

1 INPUT:

 Address: Controlled by <u>ADDRESS</u> <u>GENERATOR</u>;

1 OUTPUT:

 DataOut: Value from <u>ROM</u> for each address (predefined);

DELAY LINE

4 INPUTS:

- Clk: Controlled by <u>CLOCK_50</u>;
- WrData: ROM values;
- **WE**: Activated by the <u>PULSE</u> <u>GENERATOR</u>;
- RST: Global reset, controlled by CONTROL UNIT

3 OUTPUTS:

- DataOut1: "k+1" value;
- DataOut2: "k" value;
- DataOut3: "k-1" value;

ARITHMETIC UNIT

Filter operation

$$y_k = x_{k+1} - 2x_k + x_{k-1}$$
 $k = 1, ... 254,$
 $y_0 = x_0, y_{255} = x_{255}$

4 INPUTS:

- Filter_on: Controlled by <u>CONTROL</u> <u>UNIT</u>;
- Operand1: "K+1" from <u>DELAY LINE</u>;
- **Operand2**: "K" from <u>DELAY LINE</u>;
- Operand3: "K-1" from <u>DELAY LINE</u>;

1 OUTPUT:

• **Result**: Filter operation result.

256X8 RAM

5 INPUTS:

- WriteClk: Controlled by <u>CLOCK_50</u>;
- WriteEnable: Activated by <u>TIMER</u>;
- WriteData: Result from <u>ARITHMETIC</u> <u>UNIT</u>;
- Address: Controlled by <u>ADDRESS</u> GENERATOR;
- Reset_ram : Controlled by rst_ram from <u>CONTROL UNIT</u>;

1 OUTPUT:

• **ReadData**: Value of <u>RAM in the current</u> address;

TIMER

2 INPUTS:

- **Clk**: Controlled by <u>CLOCK_50</u>;
- Start: Activated by the pulse from <u>PULSE GENERATOR</u>;

1 OUTPUT:

 TimerOut : Output sent after the count;

SIGN MAGNITUDE BCD DISPLAY

1 INPUTS:

• **BinIn**: Binary value to be displayed;

4 OUTPUT:

- **HEX1**: Value sent to the first display;
- HEX2: Value sent to the second display;
- HEX3: Value sent to the third display;
- **HEX4**: Value sent to the fourth display;

CAN ALSO BE DIVIDED INTO 2 PARTS!

1) 8 bit binary number to 4 BCD numbers of 4 bits each converter.

2) 4 bit BCD number to 7 segment display converter.

PUTTING EVERY PIECE TOGETHER...

4 INPUTS:

- <u>KEY[0]</u>: Start;
- <u>KEY[1]</u>: Reset Ram;
- <u>KEY[2]</u>: Reset;
- <u>SW[0]</u>: Filter On;

8 OUTPUTS:

- HEX0 to HEX3: ROM values;
- <u>HEX4 to HEX7:</u> <u>RAM</u> values;

And the following circuit:

