Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Poly[[diaquabis(μ_3 -3-carboxylato-4-hydroxybenzenesulfonato)tri- μ_2 -pyrazine-tetrasilver(I)] dihydrate]

Ying-Ying Liu, Shen-Tang Wang and Yong-Sheng Yan*

Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: yys@ujs.edu.cn

Received 16 September 2011; accepted 10 October 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.006$ Å; R factor = 0.033; wR factor = 0.073; data-to-parameter ratio = 13.2.

The title coordination polymer, $\{[Ag_4(C_7H_4O_6S)_2(C_4H_4N_2)_3\cdot (H_2O)_2]\cdot 2H_2O\}_n$, contains two independent Ag^I ions. One Ag^I ion is coordinated by one O atom from a 3-carboxylato-4-hydroxybenzenesulfonate (L) ligand, two N atoms from two pyrazine ligands and a water molecule. The other Ag^I ion is coordinated by two O atoms from two L ligands and one N atom from a pyrazine ligand. One of the pyrazine ligands lies on an inversion center. The L and pyrazine ligands link the Ag^I ions into polymeric layers parallel to the ac plane. The layers are connected by intermolecular $O-H\cdots O$ hydrogen bonds. An intramolecular $O-H\cdots O$ hydrogen bond is also present in the L ligand.

Related literature

For a related structure, see: Nie & Qu (2011).

Experimental

Crystal data

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.622$, $T_{\max} = 0.754$

7253 measured reflections 3387 independent reflections 2190 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.058$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.073$ S = 0.883387 reflections 256 parameters 5 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.70~{\rm e}~{\rm \mathring{A}}^{-3}$

 $\Delta \rho_{\min} = -1.09 \text{ e Å}^{-3}$

Table 1 Selected bond lengths (Å).

Ag1-N1	2.180 (3)	Ag2-N3	2.262 (3)
$Ag1-N1$ $Ag1-O3^{i}$	2.621 (3)	$Ag2-N3$ $Ag2-O1^{ii}$	2.516 (4)
U	()	U	(/
Ag1-O6	2.153 (3)	Ag2-OW2	2.576 (4)
Ag2-N2	2.245 (3)		

Symmetry codes: (i) -x, -y, -z - 1; (ii) x + 1, y, z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$OW1-H1A\cdots O5$	0.88 (2)	1.89 (2)	2.751 (4)	168 (6)
$OW1-H1B\cdots O5^{iii}$	0.89 (2)	2.00 (2)	2.883 (5)	173 (6)
$OW2-H2A\cdots O2^{iii}$	0.88 (2)	1.91 (3)	2.757 (5)	161 (6)
$OW2-H2B\cdots OW1^{iv}$	0.89 (2)	2.03 (3)	2.794 (6)	143 (2)
$O4-H4A\cdots O6$	0.82	1.84	2.556 (4)	146

Symmetry codes: (iii) -x, -y + 1, -z - 1; (iv) -x, -y + 1, -z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

We thank the China Postdoctoral Science Foundation (20100471379) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2474).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2007). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Nie, X. & Qu, J.-N. (2011). *Acta Cryst*. E67, m1107–m1108. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A64, 112–122.

supplementary m	aterials	

Acta Cryst. (2011). E67, m1545 [doi:10.1107/S1600536811041626]

Poly[[diaquabis(μ_3 -3-carboxylato-4-hydroxybenzenesulfonato)tri- μ_2 -pyrazine-tetrasilver(I)] dihydrate]

Y.-Y. Liu, S.-T. Wang and Y.-S. Yan

Comment

As part of an investigation of the applications of transition metal complexes, there is a need to prepare further examples of these compounds. In this paper, the structure of the title compound is described.

As shown in Fig. 1, there exist two crystallographically independent Ag^{I} ions. Ag1 atom is three-coordinated (Table 1), having an approximate T-shaped geometry composed of one sulfonate O atom, one carboxylate O atom from two 3-carboxylate-4-hydroxybenzenesulfonate (L) ligands and one N atom from a pyrazine ligand. Ag2 atom is coordinated by one sulfonate O atom of an L ligand, two N atoms from two pyrazine ligands and one water molecule (Nie & Qu, 2011). The Ag^{I} ions are bridged by the L and pyrazine ligands, forming a two-dimensional polymeric layer (Fig. 2). The layers are connected by intermolecular O—H···O hydrogen bonds (Table 2). An intramolecular O—H···O hydrogen bond is present in the L ligand.

Experimental

To a mixture of 5-sulfosalicylic acid (0.109 g, 0.5 mmol) and NaOH (0.040 g, 1.0 mmol) in water (5 ml) was added AgNO₃ (0.170 g, 1.0 mmol), giving a clear solution. Then ethanol (15 ml) was added to the solution, and white precipitate appeared. The precipitate was collected and dissolved in water. To the solution was added pyrazine (0.081 g, 1 mmol) in methanol (5 ml) and white precipitate formed. The precipitate was dissolved by dropwise addition of acetonitrile. Colorless crystals were obtained from the filtrate after standing in a dark room for several days (yield: 0.150 g, 51%).

Refinement

H atoms bound to C atoms and hydroxyl O atom were positioned geometrically and refined using a riding model, with C—H = 0.93 and O—H = 0.82 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for hydroxyl})U_{eq}(C, O)$. Water H atoms were located from a difference Fourier map and refined with a retraint of O—H = 0.88 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 2. View of the two-dimensional layer in the title compound.

Poly[[diaquabis(μ_3 -3-carboxylato-4-hydroxybenzenesulfonato)tri- μ_2 - pyrazine-tetrasilver(I)] dihydrate]

Crystal data

 $[Ag_4(C_7H_4O_6S)_2(C_4H_4N_2)_3(H_2O)_2]\cdot 2H_2O$ Z = 1

 $M_r = 1176.14$ F(000) = 574

Triclinic, PT $D_{\rm x} = 2.316 \; {\rm Mg \; m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 1

a = 7.646 (5) ÅCell parameters from 2192 reflections

 $\theta = 3.2-27.5^{\circ}$ b = 10.340 (4) Å

c = 11.375 (4) Å $\mu = 2.50 \text{ mm}^{-1}$ T = 293 K $\alpha = 78.751 (3)^{\circ}$

 $\beta = 73.436 (4)^{\circ}$ Block, colorless

 $\gamma = 82.882 (5)^{\circ}$ $0.21\times0.15\times0.12~mm$

 $V = 843.2 (7) \text{ Å}^3$

Data collection

Bruker APEX CCD 3387 independent reflections diffractometer

Radiation source: fine-focus sealed tube 2190 reflections with $I > 2\sigma(I)$

graphite $R_{\rm int} = 0.058$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ φ and ω scans

Absorption correction: multi-scan $h = -9 \rightarrow 9$ (SADABS; Sheldrick, 1996)

 $T_{\min} = 0.622$, $T_{\max} = 0.754$ $k = -12 \rightarrow 13$

7253 measured reflections $l = -12 \rightarrow 14$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.033$

H atoms treated by a mixture of independent and $wR(F^2) = 0.073$

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0213P)^2]$ S = 0.88

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$ 3387 reflections

 $\Delta \rho_{\text{max}} = 0.70 \text{ e Å}^{-3}$ 256 parameters

5 restraints

$$\Delta \rho_{\text{min}} = -1.09 \text{ e Å}^{-3}$$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{\mathbb{A}}^2)$

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$
Ag1	0.29090 (6)	0.17665 (4)	-0.29686 (4)	0.03972 (13)
Ag2	0.39877 (5)	0.41619 (4)	0.22945 (4)	0.03870 (13)
C1	0.1323 (5)	0.1138 (4)	-0.6235 (4)	0.0216 (9)
C2	0.2275 (6)	-0.0059 (4)	-0.6494 (4)	0.0253 (10)
C3	0.1985 (6)	-0.0669 (4)	-0.7399(4)	0.0288 (10)
Н3	0.2663	-0.1448	-0.7589	0.035*
C4	0.0686 (6)	-0.0115 (4)	-0.8019 (4)	0.0263 (10)
H4	0.0493	-0.0518	-0.8630	0.032*
C5	-0.0332 (5)	0.1047 (4)	-0.7726 (4)	0.0219 (9)
C6	-0.0001 (5)	0.1680 (4)	-0.6871 (4)	0.0214 (9)
Н6	-0.0656	0.2474	-0.6709	0.026*
C7	0.1616 (6)	0.1842 (5)	-0.5288 (4)	0.0266 (10)
C8	0.3541 (6)	0.1792 (5)	-0.0457 (4)	0.0311 (11)
Н8	0.3830	0.0903	-0.0517	0.037*
C9	0.3716 (6)	0.2241 (4)	0.0570 (4)	0.0299 (11)
Н9	0.4142	0.1646	0.1171	0.036*
C10	0.2678 (6)	0.4298 (5)	-0.0175 (4)	0.0317 (11)
H10	0.2345	0.5181	-0.0100	0.038*
C11	0.2525 (6)	0.3863 (5)	-0.1201 (5)	0.0322 (11)
H11	0.2101	0.4459	-0.1802	0.039*
C12	0.5470 (6)	0.3813 (5)	0.4676 (4)	0.0288 (10)
H12	0.5817	0.2972	0.4474	0.035*
C13	0.4107 (6)	0.5879 (5)	0.4325 (4)	0.0294 (11)
H13	0.3477	0.6518	0.3871	0.035*
N1	0.2969 (5)	0.2599 (4)	-0.1363 (3)	0.0280 (9)
N2	0.3295 (5)	0.3496 (4)	0.0728 (4)	0.0281 (9)
N3	0.4568 (5)	0.4690 (4)	0.3978 (3)	0.0288 (9)
O1	-0.3073 (6)	0.2729 (4)	-0.7854 (4)	0.0730 (16)
O2	-0.1208 (6)	0.2172 (5)	-0.9749 (4)	0.0738 (14)
O3	-0.3110 (6)	0.0589 (4)	-0.8372 (5)	0.0805 (17)
O4	0.3512 (4)	-0.0688 (3)	-0.5882 (3)	0.0359 (8)
H4A	0.3588	-0.0253	-0.5370	0.054*
O5	0.0833 (5)	0.2950(3)	-0.5153 (3)	0.0421 (9)
O6	0.2710 (4)	0.1232 (3)	-0.4660(3)	0.0353 (8)
S1	-0.20943 (15)	0.16850 (10)	-0.84628 (11)	0.0261 (3)
OW1	0.0538 (5)	0.4656 (4)	-0.3518 (4)	0.0460 (10)
H1A	0.072 (8)	0.403 (5)	-0.397 (5)	0.069*
H1B	0.021 (8)	0.542 (3)	-0.393 (5)	0.069*
OW2	0.2451 (5)	0.6472 (4)	0.1729 (4)	0.0449 (9)
H2A	0.230 (8)	0.686 (5)	0.100(3)	0.067*
H2B	0.128 (3)	0.648 (3)	0.218 (4)	0.067*

Atomic displacement parameters (\mathring{A}^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0586(3)	0.0419 (3)	0.0292(2)	-0.00358 (19)	-0.0243 (2)	-0.01205 (18)
Ag2	0.0527(2)	0.0423 (3)	0.0330(3)	0.00471 (18)	-0.0272 (2)	-0.01620 (19)
C1	0.026(2)	0.019(2)	0.022(2)	0.0003 (17)	-0.009(2)	-0.0059 (18)
C2	0.028(2)	0.022(2)	0.025(3)	0.0019 (18)	-0.011 (2)	0.0001 (19)
C3	0.034(2)	0.023(2)	0.030(3)	0.0092 (19)	-0.012 (2)	-0.010(2)
C4	0.033(2)	0.025(3)	0.026(3)	-0.0005 (19)	-0.012 (2)	-0.011 (2)
C5	0.026(2)	0.022(2)	0.020(2)	0.0034 (18)	-0.010(2)	-0.0069 (18)
C6	0.026(2)	0.019(2)	0.020(2)	0.0019 (17)	-0.009(2)	-0.0044 (18)
C7	0.033(2)	0.029(3)	0.021(3)	-0.004(2)	-0.013 (2)	-0.004(2)
C8	0.040(3)	0.025(3)	0.032(3)	0.003(2)	-0.016(2)	-0.007(2)
C9	0.035(2)	0.029(3)	0.030(3)	0.001(2)	-0.017 (2)	-0.004(2)
C10	0.041 (3)	0.028(3)	0.032(3)	0.006(2)	-0.020(2)	-0.010(2)
C11	0.040(3)	0.031(3)	0.031(3)	-0.001(2)	-0.022(2)	-0.002(2)
C12	0.039(3)	0.022(3)	0.026(3)	0.003(2)	-0.011 (2)	-0.006(2)
C13	0.039(3)	0.026(3)	0.026(3)	0.003(2)	-0.015 (2)	-0.005(2)
N1	0.031(2)	0.032(2)	0.024(2)	-0.0006 (17)	-0.0104 (18)	-0.0063 (18)
N2	0.030(2)	0.033(2)	0.026(2)	-0.0027 (17)	-0.0116 (19)	-0.0080 (18)
N3	0.034(2)	0.033 (2)	0.022(2)	-0.0005 (17)	-0.0131 (19)	-0.0043 (18)
O1	0.076(3)	0.092(3)	0.077(3)	0.056(3)	-0.058(3)	-0.059(3)
O2	0.066(3)	0.111 (4)	0.036(3)	0.010(3)	-0.025 (2)	0.012(2)
O3	0.082(3)	0.041 (3)	0.143 (5)	-0.019 (2)	-0.087 (4)	0.020(3)
O4	0.0398 (18)	0.035(2)	0.041(2)	0.0159 (15)	-0.0263 (18)	-0.0129 (16)
O5	0.066(2)	0.029(2)	0.047(2)	0.0100 (17)	-0.037(2)	-0.0191 (17)
O6	0.0442 (19)	0.039(2)	0.033(2)	0.0043 (16)	-0.0252 (18)	-0.0135 (16)
S1	0.0345 (6)	0.0234 (6)	0.0274 (7)	0.0032 (5)	-0.0195 (5)	-0.0074(5)
OW1	0.068(3)	0.041(2)	0.036(2)	0.001(2)	-0.026(2)	-0.0095 (18)
OW2	0.059(2)	0.039(2)	0.039(2)	0.0057 (18)	-0.020(2)	-0.0083 (18)
Geometric para	umeters (Å, °)					
Ag1—N1		2.180(3)	C8—I	1 8	0.930	00
Ag1—O3 ⁱ		2.621 (3)	C9—ì	N2	1.332	2 (5)
Ag1—O6		2.153 (3)	C9—I		0.930	
Ag2—N2		2.245 (3)	C10—		1.346	
Ag2—N3		2.262 (3)	C10—		1.368	
Ag2—O1 ⁱⁱ		2.516 (4)	C10—		0.930	
Ag2—OT Ag2—OW2		2.576 (4)	C11—		1.343	
C1—C2		1.395 (6)	C11—		0.930	` '
C1—C2 C1—C6		1.408 (5)	C11—		1.343	
		1.491 (6)		-C13 ⁱⁱⁱ		
C1—C7		* *			1.369	
C2—O4		1.360 (5)	C12—		0.930	
C2—C3		1.388 (6)	C13—		1.340	
C3—C4		1.382 (6)		-C12 ⁱⁱⁱ	1.369	
C3—H3		0.9300	C13—	-H13	0.930	00

C4—C5	1.392 (6)	O1—S1	1.415 (3)
C4—H4	0.9300	O2—S1	1.444 (5)
C5—C6	1.366 (5)	O3—S1	1.423 (4)
C5—S1	1.778 (4)	O4—H4A	0.8200
C6—H6	0.9300	OW1—H1A	0.88(2)
C7—O5	1.241 (5)	OW1—H1B	0.89(2)
C7—O6	1.281 (5)	OW2—H2A	0.88(2)
C8—N1	1.335 (6)	OW2—H2B	0.89(2)
C8—C9	1.383 (6)		
O6—Ag1—N1	171.57 (13)	N2—C10—C11	122.4 (4)
N2—Ag2—N3	175.29 (14)	N2—C10—H10	118.8
N2—Ag2—O1 ⁱⁱ	95.52 (12)	C11—C10—H10	118.8
N3—Ag2—O1 ⁱⁱ	84.24 (12)	N1—C11—C10	121.9 (4)
N2—Ag2—OW2	89.83 (12)	N1—C11—H11	119.1
N3—Ag2—OW2	92.92 (12)	C10—C11—H11	119.1
O1 ⁱⁱ —Ag2—OW2	147.05 (16)	N3—C12—C13 ⁱⁱⁱ	121.9 (4)
C2—C1—C6	118.4 (3)	N3—C12—C13 N3—C12—H12	119.0
C2—C1—C7	122.6 (4)	C13 ⁱⁱⁱ —C12—H12	119.0
C6—C1—C7	119.0 (4)	N3—C13—C12 ⁱⁱⁱ	122.3 (4)
04—C2—C1	122.5 (3)	N3—C13—H13	118.8
O4—C2—C3	116.8 (4)	C12 ⁱⁱⁱ —C13—H13	118.8
C1—C2—C3	120.8 (4)	C8—N1—C11	116.0 (4)
C4—C3—C2	119.8 (4)	C8—N1—Ag1	117.5 (3)
C4—C3—H3	120.1	C11—N1—Ag1	126.5 (3)
C2—C3—H3	120.1	C9—N2—C10	115.6 (4)
C3—C4—C5	119.8 (3)	C9—N2—Ag2	118.8 (3)
C3—C4—H4	120.1	C10—N2—Ag2	125.1 (3)
C5—C4—H4	120.1	C13—N3—C12	115.8 (4)
C6—C5—C4	120.6 (3)	C13—N3—Ag2	123.5 (3)
C6—C5—S1	120.4 (3)	C12—N3—Ag2	120.7 (3)
C4—C5—S1	119.1 (3)	S1—O1—Ag2 ^{iv}	139.7 (2)
C5—C6—C1	120.5 (4)	C2—O4—H4A	109.5
C5—C6—H6	119.7	C7—O6—Ag1	123.7 (3)
C1—C6—H6	119.7	O1—S1—O3	115.8 (3)
O5—C7—O6	124.1 (3)	O1—S1—O2	110.9 (3)
O5—C7—C1	120.2 (4)	O3—S1—O2	110.4 (3)
O6—C7—C1	115.6 (4)	O1—S1—C5	106.73 (19)
N1—C8—C9	121.9 (4)	O3—S1—C5	105.6 (2)
N1—C8—H8	119.1	O2—S1—C5	106.9 (2)
C9—C8—H8	119.1	H1A—OW1—H1B	110 (6)
N2—C9—C8	122.2 (4)	Ag2—OW2—H2A	128 (4)
N2—C9—H9	118.9	Ag2—OW2—H2B	107.5 (17)
С8—С9—Н9	118.9	H2A—OW2—H2B	100 (5)
C6—C1—C2—O4	-176.7 (4)	C11—C10—N2—C9	-1.2 (7)
C7—C1—C2—O4	1.4 (7)	C11—C10—N2—Ag2	170.5 (4)
C6—C1—C2—C3	3.1 (7)	O1 ⁱⁱ —Ag2—N2—C9	35.7 (4)
C7—C1—C2—C3	-178.8 (4)	OW2—Ag2—N2—C9	-176.9 (4)
2. 21 22 23	-, 0.0 (.)	2 2 . 1.2	1,000 (1)

O4—C2—C3—C4	177.1 (4)	O1 ⁱⁱ —Ag2—N2—C10	-135.8 (4)
C1—C2—C3—C4	-2.7 (7)	OW2—Ag2—N2—C10	11.6 (4)
C2—C3—C4—C5	-0.4 (7)	C12 ⁱⁱⁱ —C13—N3—C12	0.2(8)
C3—C4—C5—C6	3.1 (7)	C12 ⁱⁱⁱ —C13—N3—Ag2	-177.7 (3)
C3—C4—C5—S1	-176.0 (4)	C13 ⁱⁱⁱ —C12—N3—C13	-0.2 (8)
C4—C5—C6—C1	-2.6 (7)	C13 ⁱⁱⁱ —C12—N3—Ag2	177.8 (3)
S1—C5—C6—C1	176.4 (3)	O1 ⁱⁱ —Ag2—N3—C13	147.0 (4)
C2—C1—C6—C5	-0.4 (7)	OW2—Ag2—N3—C13	-0.1(4)
C7—C1—C6—C5	-178.6 (4)	O1 ⁱⁱ —Ag2—N3—C12	-30.8(4)
C2—C1—C7—O5	174.9 (5)	OW2—Ag2—N3—C12	-177.9 (4)
C6—C1—C7—O5	-7.0 (7)	O5—C7—O6—Ag1	15.5 (7)
C2—C1—C7—O6	-4.6 (7)	C1—C7—O6—Ag1	-165.0(3)
C6—C1—C7—O6	173.5 (4)	Ag2 ^{iv} —O1—S1—O3	-50.2 (6)
N1—C8—C9—N2	1.2 (7)	Ag2 ^{iv} —O1—S1—O2	76.5 (5)
N2—C10—C11—N1	0.5 (7)	Ag2 ^{iv} —O1—S1—C5	-167.4 (4)
C9—C8—N1—C11	-1.8 (7)	C6—C5—S1—O1	-8.2(5)
C9—C8—N1—Ag1	176.7 (3)	C4—C5—S1—O1	170.9 (4)
C10—C11—N1—C8	1.0 (7)	C6—C5—S1—O3	-132.0 (4)
C10—C11—N1—Ag1	-177.4 (4)	C4—C5—S1—O3	47.1 (5)
C8—C9—N2—C10	0.3 (7)	C6—C5—S1—O2	110.5 (4)
C8—C9—N2—Ag2	-171.9 (3)	C4—C5—S1—O2	-70.4 (4)
Symmetry codes: (i) $-x$, $-y$, $-z-1$; (ii)	x+1, y, z+1; (iii) -x+1, -y+	1, -z+1; (iv) x-1, y, z-1.	

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	$D\!\!-\!$
OW1—H1A···O5	0.88(2)	1.89 (2)	2.751 (4)	168 (6)
OW1—H1B···O5 ^v	0.89 (2)	2.00(2)	2.883 (5)	173 (6)
OW2—H2A···O2 ^v	0.88 (2)	1.91 (3)	2.757 (5)	161 (6)
OW2—H2B···OW1 ^{vi}	0.89(2)	2.03 (3)	2.794 (6)	143 (2)
O4—H4A···O6	0.82	1.84	2.556 (4)	146

Symmetry codes: (v) -x, -y+1, -z-1; (vi) -x, -y+1, -z.

Fig. 1

Fig. 2

