Appendix B: Multimodal Mathematical function to optimize with GA

Choose <u>only one</u> function from the two multimodal families of functions (either from *Shubert* or *Shekel* family).

Shekel family functions

Definition

Shekel5, Shekel7, Shekel10 functions:
$$f_{4,m}(x_1,...,x_4) = -\sum_{i=1}^{m} \left(\sum_{j=1}^{4} (x_j - a_{ij})^2 + c_i\right)^{-1}, m = 5, 7, 10.$$

The constants c_i and a_{ii} are given in Table 1.

Properties

$$f_{4.5}(4.00004, 4.00013, 4.00004, 4.00013) = -10.1532;$$

• Global minima: $f_{4,7}(4.00057, 4.00069, 3.99949, 3.99961) = -10.4029;$

$$f_{4.10}(4.00075, 4.00059, 3.99966, 3.99951) = -10.5364;$$

Search domain

• $D_4 = \{(x_1, ..., x_4) \in \mathbb{R}^4 : -10 \le x_i \le 10, i = 1, ..., 4\}$

Table 1. Data for Shekel 5,7,10 functions.

i	a			C	
	a_{ij}			C_{i}	
1	4.0	4.0	4.0	4.0	0.1
2	1.0	1.0	1.0	1.0	0.2
3	8.0	8.0	8.0	8.0	0.2
4	6.0	6.0	6.0	6.0	0.4
5	3.0	7.0	3.0	7.0	0.4
6	2.0	9.0	2.0	9.0	0.6
7	5.0	5.0	3.0	3.0	0.3
8	8.0	1.0	8.0	1.0	0.7
9	6.0	2.0	6.0	2.0	0.5
10	7.0	3.6	7.0	3.6	0.5

Fig.1. Shekel10 function.

References

Tfaili, W., Dréo, J. and Siarry, P., "Fitting Of An Ant Colony Approach To Dynamic Optimization Through A New Set Of Test Functions", International Journal of Computational Intelligence Research, Vol. 3, No. 3 pp. 203-216, 2007.

Georgieva A. and I. Jordanov, *Hybrid Metaheuristics for Global Optimization Using Low-Discrepancy Sequences of Points*, Computers & Operations Research, vol. 37 (3), pp. 456-469, 2010.

Ali, M.M., Porn, C.K. and Zabinsky, Z.B., "A Numerical Evaluation Of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems", Journal of Global Optimization 31, pp. 635-672, 2005.

Chelouah, R. and Siarry, P., "Genetic And Nelder-Mead Algorithms Hybridized For A More Accurate Global Optimization Of Continuous Multiminima Functions", European Journal of Operational Research 148, pp. 335-348, 2003.

Neural Networks and Genetic Algorithms

Shubert family functions

Definition

• Shubert1:
$$f_1(x_1,...,x_n) = \prod_{i=1}^n \left[\sum_{j=1}^5 j \cos((j+1)x_i + j) \right];$$

• Shubert2:
$$f_2(x_1,...,x_n) = \prod_{i=1}^n \left[\sum_{j=1}^5 j \cos((j+1)x_i+j) \right] + \frac{1}{2} \left((x_1+1.42513)^2 + (x_2+0.80032)^2 \right);$$

• Shubert3:
$$f_3(x_1,...,x_n) = -\sum_{i=1}^n \left[\sum_{j=1}^5 j \sin((j+1)x_i + j) \right].$$

Properties

- Number of local minima: 760 for f_1 , many for f_2 , and 400 for f_3 .
- Number and value of the global minima:
 - > 18 for Shubert1: $f_1^* = -186.730909$ (all 2D minimisers are given in Table 2);
 - $ightharpoonup 1 ext{ for } Shubert2: f_2^* = -186.730909;$
 - $ightharpoonup 9 ext{ for } Shubert3: f_3^* = -24.062499.$

Search domain

•
$$D_1 = \{(x_1, x_2) \in \mathbb{R}^2 : -10 \le x_i \le 10, i = 1, 2\}, (n=2);$$

Table 2. Argument values for Shubert1 global minima.

x_1^*	x_2^*
-7.0835	4.8580
-7.0835	-7.7083
-1.4251	-7.0835
5.4828	4.8580
-1.4251	-0.8003
4.8580	5.4828
-7.7083	-7.0835
-7.0835	-1.4251
-7.7083	-0.8003
-7.7083	5.4828
-0.8003	-7.7083
-0.8003	-1.4251
-0.8003	4.8580
-1.4251	5.4828
5.4828	-7.7083
4.8580	-7.0835
5.4828	-1.4251
4.8580	-0.8003

Fig.2. Shubert function.

References

- Ali, M., Torn, C. and Zabinsky, Z., "A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems", Journal of Global Optimization 31, pp. 635-672, 2005.
- Ali, M. and Törn, C., "Population Set-Based Global Optimization Algorithms: Some Modifications and Numerical Studies", Computers & Operations Research 31, pp. 1703-1725, 2004.

Georgieva A. and I. Jordanov, *Hybrid Metaheuristics for Global Optimization Using Low-Discrepancy Sequences of Points*, Computers & Operations Research, vol. 37 (3), pp. 456-469, 2010