POLITÉCNICO DO PORTO ESCOLA SUPERIOR DE MEDIA ARTES E DESIGN

ALGORITMIA E ESTRUTURAS DE DADOS

MÓDULO II Funções Matemáticas e Módulo math

TECNOLOGIAS E SISTEMAS DE INFORMAÇÃO PARA A WEB

- 1 Módulos
- 2 Funções *built-in* python
- 3 Importar módulos
- 4 Módulo math

Módulos

Um módulo consiste num bloco de código, geralmente constituído por
um conjunto de funções que podemos importar e reutilizar no nosso
código

- ☐ Diversos módulos estão integrados na *Python Standard Library*, fornecendo acesso a funcionalidades padrão da linguagem python
- ☐ A biblioteca padrão do Python (*Python Standard Library*) faz parte de todas as instalações do Python. Inclui inúmeras funções (*built-in*), como:
 - □ print
 - ☐ input
 - ☐ int
 - \Box str
 - ☐ Float
 - **□** ...etc...

1 Módulos

- ☐ Funções *built-in* são funções internas e nativas, ou seja, que já vem incorporadas na linguagem e estão sempre disponíveis para utilização.
- ☐ Assim não é necessário a sua importação. Basta utilizá-las diretamente no código quando desejar.
- O Python possui inúmeras funções built-in, de diversas categorias.

Funções built-in

abs()	dict()	help()	min()	setattr()
all()	dir()	hex()	next()	slice()
any()	divmod()	id()	object()	sorted()
ascii()	enumerate()	<pre>input()</pre>	oct()	<pre>staticmethod()</pre>
bin()	eval()	<pre>int()</pre>	open()	str()
bool()	exec()	<pre>isinstance()</pre>	ord()	sum()
bytearray()	filter()	<pre>issubclass()</pre>	pow()	super()
bytes()	float()	<pre>iter()</pre>	<pre>print()</pre>	<pre>tuple()</pre>
callable()	format()	len()	<pre>property()</pre>	type()
chr()	<pre>frozenset()</pre>	list()	range()	vars()
<pre>classmethod()</pre>	<pre>getattr()</pre>	locals()	repr()	zip()
compile()	<pre>globals()</pre>	map()	reversed()	import()
complex()	hasattr()	max()	round()	
delattr()	hash()	memoryview()	set()	

Funções built-in

Algumas funções matemáticas, Built-in Python

Função	Descrição
max	Devolve o maior de um conjunto de literais
min	Devolve o menor de um conjunto de literais
abs	Devolve o valor absoluto
pow	Exponenciação, dada a base e o expoente
round	Devolve o valor arredondado

Funções built-in

```
# Algumas funções matemáticas incorporadas
     val1 = 5
     val2 = 10
     val3 = 25
                                                                        C:\WINDOWS\py.exe
     # Maior de um conjunto de literais
     maior = max(val1, val2, val3)
                                                                        maior = 25
     print("\n maior =", maior)
                                                                        menor= 5
     # Menor de um conjunto de literais
11
     menor = min(val1, val2, val3)
12
                                                                        valor absoluto= 13.45
     print("\n menor=", menor)
13
                                                                        arredondado às unidades -13.0
14
15
                                                                        arredondado às decimas -13.4
16
     numero = -13.45
17
     print("\n valor absoluto=", abs(numero))
                                                                        arredondado às decimas -12.6
18
                                                                        potencia de 3 ao quadrado 9
19
     numero1 = -13.45
20
     numero2 = -12.55
21
     # valor arredondado
     print("\n arredondado às unidades", round(numero1, 0))
22
     print("\n arredondado às decimas", round(numero1, 1))
23
24
     print("\n arredondado às decimas", round(numero2, 1))
25
26
     # expoente
27
     numero = pow(3,2)
28
     print("\n potencia de 3 ao quadrado", numero)
```


3 Importar módulos

☐ import nomeModulo

```
2 import math
3
```

```
import math  # módulo que incorpora funções matemáticas
import os  # módulo que incorpora funções d esistema operativo
import random  # módulo que incorpora funções de geração de números aleatórios
```

módulo a incorporar

☐ Quanto importamos mais do que módulo no mesmo programa, é boa prática importá-los por ordem alfabética

- 3 Importar módulos
 - ☐ import nomeModulo

```
import random
num = random.randint(0,10)  # Return random integer in range [a, b], includes the end points
num1 = random.randrange(0,10)  # Return ramdom integer in range [a, b[, excludes the end point
```

módulo.função

3 Importar módulos

☐ from nomeMódulo import função

```
from random import randint
num = randint(0,10)  # Return random integer in range [a, b],
```

Importo apenas a função especificada, e não todo o modulo!

Módulo math

- ☐ O módulo *math* incorpora um conjunto de funções matemáticas para estruturas de dados ditas simples
- ☐ Para estruturas de dados complexas, recorrer ao módulo *cmath*
- ☐ A generalidade das funções do módulo math devolve valores flutuantes (float)

Algumas funções incorporadas no módulo math

Função	Descrição
ceil(x)	Arredonda para cima (menor inteiro acima de x)
floor(x)	Arredonda para baixo (maior inteiro abaixo de x)
trunc(x)	Trunca o valor x, devolve valor inteiro
fabs(x)	Valor absoluto de x
gcd(x,y)	Devolve o maior divisor comum entre x e y
sqrt(x)	Raiz quadrada de x
pi	Devolve a constante 3.14
sin, cos, tan	Funções trigonométricas

ceil(x) - Arredonda para cima (menor inteiro acima de x)

floor(x) - Arredonda para baixo (maior inteiro abaixo de x)

```
Exemplo_math.py > ...

1   import math  # importa o módulo math

2   
3   
4   numero = 13.25
5   numero1 = math.floor(numero)
6   print("numero =", numero1)
7   
8   numero = 13.55
9   numero1 = math.floor(numero)
10   print("numero =", numero1)
11
12
```


trunc(x) - Trunca o valor x, devolve valor inteiro

```
Exemplo_math.py > ...
    import math  # importa o módulo math

anumero = 13.25
    numero1 = math.trunc(numero)
    print("numero =", numero1)
    numero = 13.95
    numero1 = math.trunc(numero)
    print("numero =", numero1)
    print("numero =", numero1)
```


fabs(x) – devolve o valor absoluto de x

```
Exemplo_math.py > ...

1 import math  # importa o módulo math

2 
3 
4 numero = 13.25
5 numero1 = math.fabs(numero)
6 print("numero =", numero1)
7 
8 numero = -13.95
9 numero1 = math.fabs(numero)
10 print("numero =", numero1)
11
12
```


sqrt(x) — devolve a raiz quadrada de x

```
Exemplo_math.py > ...
1  # Algumas funções do módulo math
2  import math # importa o módulo math
3
4
5  numero = 144
6  raiz = math.sqrt(numero) # raiz quadrada de numero
7  print(raiz)
8
9
10
11
C:\WINDOWS\py.exe
```


gcd(x, y) — Devolve o major divisor comum entre x e y

```
Exemplo_math.py > ...
     # Algumas funções do módulo math
     import math # importa o módulo math
     numero1 = 12
     numero2 = 18
     divisor = math.gcd(numero1, numero2) # raiz quadrada de numero
     print("maior divisor comum entre \{\emptyset\} e \{1\} é \{2\}" .format(numero1, numero2, divisor))
                                                      C:\WINDOWS\py.exe
11
                                                     maior divisor comum entre 12 e 18 é 6
12
```


pi – Devolve o valor de pi

```
Exemplo_math.py > ...
      # Algumas funções do módulo math
      import math # importa o módulo math
      numero1 = 12
      numero2 = 18
      divisor = math.gcd(numero1, numero2) # raiz quadrada de numero
      print("maior divisor comum entre {0} e {1} é {2}" .format(numero1, numero2, divisor))
                                                 C:\WINDOWS\pv.exe
      print (math.pi)
                                                maior divisor comum entre 12 e 18 é 6
11
      print (round(math.pi, 2))
                                                3.141592653589793
12
                                                3.14
13
14
15
```