NACA

Classification Changed to
UNCLASSIFIED

Authority
DOD DIR 5200.10

Date
US 64 Sqadkoon

RESEARCH MEMORANDUM CASE FILE

PRESSURE DISTRIBUTIONS ON THE BLADE SECTIONS

OF THE NACA 10-(3)(066)-033 PROPELLER

UNDER OPERATING CONDITIONS

By Julian D. Maynard and Maurice P. Murphy

Langley Aeronautical Laboratory Langley Air Force Base, Va. GROUP 4
Downgraded at 3 year intervals; declaration after 12 years

JPL LIBRARY
CALIFORNIA INSTITUTE OF TECHNOLOGY

This document contains classified information affecting the National Defense of the United States within the meaning of the Emplonage Act, USS 60:51 and 32. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law. Information so classified may be imparted only to persons in the military and may appropriate civilian officers and employees of the Federal services of the United States, appropriate civilian officers and employees of the Federal Government who have a legitimate interest therein, and to United States citizens of known loyalty and discretion who of necessity must be loyalty and discretion who of necessity must be

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

January 24, 1950

IMPLASSIFIED

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRESSURE DISTRIBUTIONS ON THE BLADE SECTIONS

OF THE NACA 10-(3)(066)-033 PROPELLER

UNDER OPERATING CONDITIONS

By Julian D. Maynard and Maurice P. Murphy

SUMMARY

This is the first of a series of papers presenting the preliminary results obtained in tests of five propellers. The tests were made to determine blade—section characteristics from measurements of the pressure distributions on the blade sections under operating conditions. Values of the section normal—force coefficients, chordwise—pressure—force coefficients, and pitching—moment coefficients obtained by integration of the pressure distributions are presented for 11 sections of one of the propellers having a design lift coefficient of 0.3 and varying in thickness from about 4 percent at the tip to 16 percent at the spinner surface. The measured pressure distributions, together with the results, are presented in the form of tables, and, to expedite distribution, no attempt is made in this paper to analyze the data.

INTRODUCTION

A need for propeller blade—section characteristics in the transonic speed range has long been recognized, but because of wind—tunnel choking effects such data have not been obtained by the usual two—dimensional airfoil tests in wind tunnels. In the low—subsonic—speed range, propeller characteristics may be accurately predicted (reference 1) from a knowledge of the two—dimensional airfoil characteristics. In the important transonic—speed range, however, it is not known whether the two—dimensional airfoil characteristics, even if they were available, could be used for the accurate prediction of propeller performance. A knowledge of the effects of velocity gradient along the blade, the three—dimensional tip effects, and the action of centrifugal force on the boundary layer along the blade would also be desirable.

To fill this urgent need for detailed information, a preliminary investigation (reference 2) was made in the Langley 16-foot high-speed tunnel to determine the propeller section characteristics by measuring the pressure distribution on the airfoil sections of an operating propeller. Although the forward Mach number did not exceed 0.7 in these tests, the combination of rotational and forward speeds produced bladesection Mach numbers as high as 1.2. The results of this preliminary investigation showed that an enlightening knowledge of the operating characteristics of the blade sections at high Mach numbers was obtained, and a more comprehensive program of tests was begun. Five propellers were constructed and instrumented for the measurement of the pressure distribution on any section along the blade radius. The blades had NACA 16-series sections with design lift coefficients of 0, 0.3, or 0.5, and varied in thickness from about 3 to 30 percent. The tests of these five propellers have been completed, and many data have been obtained for a total of 40 blade sections.

The purpose of this paper is to present in preliminary form the results of the tests of one of the five propellers, and to expedite distribution no attempt has been made to analyze the data. Pressure distributions were obtained on 11 sections of this propeller, having a design lift coefficient of 0.3 and varying in thickness from about 4 to 16 percent.

SYMBOLS

The symbols used throughout this paper, some of which are defined in figure 1, are as follows:

b blade chord, feet
c distance from section leading edge to any point on the chord, feet
distance from section leading edge to any point about which pitching moments are taken, feet
cc section chordwise—force coefficient
cd section drag coefficient

CONFIDENTIAL

section friction-drag coefficient

cdf

c, section lift coefficient

c_{la} blade-section design lift coefficient

c_m section pitching-moment coefficient about the quarter-chord point

cn section normal-force coefficient

D propeller diameter, feet

F section chordwise pressure force, pounds

Fn section normal pressure force, pounds

G Goldstein induced—velocity correction factor for a finite number of blades

g acceleration due to gravity (32.2 ft/sec²)

h blade-section maximum thickness, feet

J advance ratio (V/nD)

K gas constant (53.3 ft-lb/lb/°F)

M Mach number of advance

 M_{x} helical section Mach number $\left(M\sqrt{1+\left(\frac{\pi_{X}}{J}\right)^{2}}\right)$

m section pitching moment, pound-feet

N propeller rotational speed, revolutions per minute

n propeller rotational speed, revolutions per second

P pressure coefficient $\left(\frac{p - p_0}{q_x}\right)$

p static pressure at a point on the airfoil surface, pounds per square foot

P _m	static pressure as read on manometer board (uncorrected for centrifugal pressure), pounds per square foot
P _O	free-stream static pressure, pounds per square foot
x ^p	resultant dynamic pressure at a radial station x, pounds per square foot $\left(\frac{1}{2}\rho W_0^2\right)$
R	propeller-tip radius, feet
r	radius to a blade element, feet
rp	polar ordinate, feet
r _s	radius to orifice in rotating shaft of pressure—transfer device, feet
s	distance along surface of the blade section, feet
T	absolute mean temperature of air in propeller tubing, OF absolute
V	velocity of advance (corrected for wind-tunnel wall-interference effects), feet per second
Wo	velocity vector $\left(\sqrt{V^2 + (\pi xnD)^2}\right)$
W	resultant velocity at blade section, feet per second
w _i	induced velocity at blade section, feet per second
x	fraction of propeller-tip radius (r/R)
У	normal distance from chord line to upper or lower surface of airfoil, inches
α _i	induced angle of attack, degrees
α _x	angle of attack of blade element, corrected for induced flow and blade deflection, at radial station x, degrees $\left(\beta_{X}-\not\phi+\Delta\beta\right)$
a _X 1	geometric angle of attack of blade element at radial station x, degrees $\left(\beta_{X}-\emptyset_{O}\right)$

β	blade angle, degrees (equal to 45° at $x = 0.70$)
β0.75R	blade angle at 0.75 tip radius, degrees
β _t	twist in blade measured from station $x = 0.75$, degrees
$\beta_{\mathbf{x}}$	blade angle at station x, degrees $(\beta_{0.75R} - \beta_t)$
Δβ	change in blade angle caused by operating loads, degrees
θ	polar angular ordinate, radians
ρ	mass density of air in free stream, slugs per cubic foot
σ	solidity $\left(B\frac{b}{D}/\pi_X\right)$
Ø	helix angle, degrees $(\phi_0 + \alpha_1)$
Ø ₀	geometric helix angle, degrees $\left[\tan^{-1}(J/\pi x)\right]$
Ψ	slope angle at the surface of the section referenced to chord, degrees
ω	propeller rotational speed, radians per second
Subscripts	g:
L	lower—surface value
U	upper-surface value

APPARATUS

Propeller dynamometer.— The dynamometer used to test the propellers is powered by two 1000—horsepower electric motors arranged in tandem and coupled for the present tests to allow the power of both motors to be expended through a single propeller. A variable—frequency power supply affords an accurate speed control from 300 to 2200 revolutions per minute. A detailed description of the dynamometer is presented in reference 3, and a schematic diagram of the apparatus used for the pressure—distribution tests is shown in figure 2. The fairing profile was calculated from a distribution of sources and sinks to produce a body of revolution with

uniform axial velocity in the plane of the propeller. This axial—velocity distribution has been checked experimentally and found to be uniform within 1 percent. The gap between the propeller blade and the spinner surface at the propeller blade—spinner juncture is very small, but is not sealed. Most of the propeller tests were made with two blades; however, a few tests were made with only one blade to increase the range of advance ratio and power loading for a given blade angle. For these one—blade tests an articulated hub with a counterweight was used, but the counterweight was completely enclosed in the spinner. Figure 3 is a photograph of the dynamometer with the one—blade propeller installed.

Propeller blades.— The propeller blades are made of solid duralumin and are designated the NACA 10-(3)(066)-033 design. The digits in the propeller designation indicate a 10-foot-diameter propeller having NACA 16-series blade sections (reference 4) with the following design parameters at the 0.7 radius: section design lift coefficient of 0.3, thickness ratio of 0.066, and solidity of 0.033 per blade. These blades have a rectangular plan form with a blade width of 8 inches extending to within $1\frac{1}{4}$ inches of the tip. Also, the blade-section camber, or design lift coefficient, was the same for all sections except at the 0.975 radius, where the blade section was not a true NACA 16-series airfoil. This section at the 0.975 radius was the result of the fairing necessary at the tip of the propeller, and the ordinates were measured after the blade was constructed. These ordinates for the blade section at the 0.975 radius are given in table 1.

Figure 4 gives the blade-form curves for the NACA 10-(3)(066)-033 blade design, and figure 5 is a photograph of the blade containing the pressure tubes. The pressure tubes were imbedded in both the upper and lower surfaces of the blade at 12 specified chordwise stations where it was desired to measure the pressure. The tubing was laid in radial grooves with the tops of the tubes flush with the surrounding surface of the blade, and were retained in the blade by peening the edges of the grooves at intervals along the radius. A metal spray was applied to fill any cavities around the tubes. The blade was then carefully finished to its original shape. Orifices could then be drilled in the tubes at any desired radial station. The first pressure distributions were obtained on the outboard station nearest the tip, and when measurements at this station were complete, the orifices were plugged with a lowmelting-point alloy and a new set of orifices drilled at the next desired inboard station. Eleven radial stations, as indicated in figure 4, were chosen as the blade sections of the NACA 10-(3)(066)-033 propeller on which pressure distributions were desired.

The true static pressure at an orifice on the blade surface is not indicated directly on the recording manometer because of the effect of centrifugal pressure acting on the column of air inside the blade tubes. The centrifugal pressure correction can be calculated very accurately when the air column temperature is known. This temperature was assumed to be the same as the mean blade temperature which was measured by means of a resistance thermometer installed in an additional groove cut into the thrust face of the propeller blade at the 50-percent-chord station. The blade mean temperature was recorded simultaneously with the pressures for each test point.

Pressure—transfer device.— The pressure tubes were brought out of the blade surface inside the rotating spinner and run through the hollow dynamometer shaft to a transfer device mounted in the rear. Details of this pressure—transfer device are shown in figure 6. It was necessary to measure only 24 pressures simultaneously, but 30 chambers were provided to have spares in case of a leaking chamber. The pressure tubes shown in the stationary spacers were brought out at the rear end plate and connected to a multiple—tube manometer located outside the tunnel test section. The pressures were recorded by a remotely operated camera.

Optical deflectometer .- An accurate knowledge of the blade-section angle of attack in the reduction of pressure data to airfoil coefficients is obviously desirable; moreover, such knowledge is essential to the accurate determination of the component of normal force acting in the drag direction. While both the initial blade angle and the nominal helix angle could be determined precisely, the aerodynamic and centrifugal forces acting on the blade produced a torsional deflection of appreciable magnitude. An optical deflectometer (fig. 7) was devised for measuring the blade torsional deflection. In principle, the deflectometer was a theodolite movable along an axis parallel to the propeller axis of rotation. A broad light beam transmitted along the optical axis was reflected from a small mirror attached to the propeller blade. The reflection could be seen only when the mirror surface was normal to the optical axis. From a knowledge of the location of the theodolite center with reference to the propeller, and azimuth and elevation of the optical axis. the instantaneous blade angle and consequently blade torsions were determinable. Blade twist was measured simultaneously with the pressure measurements at three radial stations, x = 0.45, 0.70, and 0.90. Repeated tests after fully developing the instrument and operation techniques indicated that the data obtained with the deflectometer were accurate to within 0.10° at the higher speeds, and to within 0.05° at the lower speeds.

8

TESTS

Because the blade—section angle of attack is a function of advance ratio for a constant blade angle, a Mach number range was covered by running the tests successively over the same range of advance ratio using proportionately increased values of tunnel airspeed and propeller rotational speed. Most of the tests were made with the blade angle set at 45° at the three-quarter (45-inch) radius. A constant rotational speed was used for some of the tests, and a range of advance ratio was covered by changing the tunnel airspeed, which could be varied from about 60 to 500 miles per hour. Because of dynamometer power limitations the complete range of advance ratio could not be covered at rotational speeds above 1600 revolutions per minute (β = 45°); therefore some

tests were made with the tunnel—air—stream Mach number held constant, and the range of advance ratio was covered by changing the propeller rotational speed.

Additional tests were made for the radial stations, x = 0.65 and 0.78. These additional tests consisted of two groups. In one group, tests were made at a rotational speed of 1350 revolutions per minute for blade angles from 20° to 55° in 5° increments. In the other group, tests were made at a blade angle of 30° for several constant values of rotational speed up to 2160 revolutions per minute. These additional tests were made to study the effects of different radial blade loadings and Mach number gradients on the measured pressure distributions. Also, a greater range of section angle of attack was possible in the tests made at the lower blade angles. In order to extend the range of section angle of attack at the higher Mach numbers several tests were made with a one-blade propeller to obtain pressure distributions at the 0.975, 0.95, 0.85, and 0.70 radius stations.

Running the tests as described, adequate ranges of section Mach number and angle of attack were obtained for each of the 11 blade sections. The Mach number range covered for the outboard sections was from about 0.7 to 1.2, and for the inboard sections from about 0.3 to 0.7. The section angle—of—attack range was from about —2° to 11° for low values of Mach number, and from about —2° to 4° for the higher values of Mach number.

REDUCTION OF DATA

The usual wind-tunnel-wall corrections, as described in reference 3, have been applied to the data to obtain the equivalent free airspeed.

Pressure coefficient. The pressure coefficient for any pressure at the surface of the section is defined as the difference between the measured surface pressure and the ambient free-stream static pressure divided by the resultant section dynamic pressure; therefore

$$P = \frac{p - p_0}{q_x}$$

The propeller rotation produces a change in the section velocity and the total pressure, but the static pressure and mass density remain unchanged from the free-stream condition. The pressure p at a point on the blade surface is the pressure recorded on the manometer corrected for the centrifugal force on the air column in the pressure tube due to the rotation of the blade, so that

$$p = p_m e^{\left[\frac{\omega^2}{2gKT} \left(r^2 - r_s^2\right)\right]}$$

In the present installation r_s was very small compared with r, and consequently was neglected in computing the corrected pressure p.

Normal-force coefficient. The normal force is that pressure force acting perpendicular to the chord of the section

$$F_{n} = \oint p \cos \psi \, ds = \int_{0}^{b} \left[\left(p_{L} - p_{o} \right) - \left(p_{U} - p_{o} \right) \right] dc$$

The normal-force coefficient is defined as the normal force acting on a section of unit span divided by the chord of the section and the resultant section dynamic pressure; thus,

$$c_{n} = \frac{F_{n}}{q_{x}b} = \int_{0}^{1.0} (P_{L} - P_{U}) d\frac{c}{b}$$

Chordwise-force coefficient. The chordwise force of a section is defined as the pressure force acting parallel to the chord.

$$F_{c} = \oint p \sin \psi \, ds = \int_{0}^{b} \left[(p_{U} - p_{o}) \tan \psi_{U} - (p_{L} - p_{o}) \tan \psi_{L} \right] dc$$

$$CONFIDENTIAL$$

The chordwise-force coefficient is defined as the chordwise force acting on a section of unit span divided by the chord and the resultant dynamic pressure; thus,

$$c_{c} = \frac{F_{c}}{q_{x}b} = \int_{0}^{L.0} \left[P_{U} \tan \psi_{U} - P_{L} \tan \psi_{L} \right] d\frac{c}{b}$$
 (1)

or

$$c_{c} = \int_{0}^{2\pi} (P) \left[\frac{\sin \psi}{\sin(\theta - \psi)} \right] \left(\frac{r_{p}}{b} \right) d\theta$$
 (2)

Equation (2) is the equivalent of equation (1) with the Cartesian coordinates converted to polar coordinates and with the origin located within the section. The total c_c is produced by evaluating these two equations. Equation (1) is used to evaluate that portion of chordwise—force coefficient from $\frac{c}{b}=0.025$ to $\frac{c}{b}=1.0$. Equation (2) is used to evaluate the chordwise—force coefficient from $\frac{c}{b}=0$ to $\frac{c}{b}=0.025$. About the chord line the sign of the slope angle ψ was taken to be positive for the forward half of the upper surface and negative for the forward half of the lower surface. The origin of the polar coordinate system was placed on the chord line at a c/b value of 0.125. In equation (2), r_p is used to represent the radius from the polar origin to the point on the surface of the section.

Pitching-moment coefficient. The pitching-moment coefficient of a section is defined as the moment of the normal force about a given station on the chord of a section of unit span, divided by the chord squared and the resultant section dynamic pressure; thus,

$$c_{m} = \frac{m}{q_{x}b^{2}} = \frac{\overline{c}}{b} \int_{0}^{1.0} (P_{L} - P_{U}) d\frac{c}{b} - \int_{0}^{1.0} (P_{L} - P_{U}) \frac{c}{b} d\frac{c}{b}$$

A positive value of moment coefficient is defined as a moment tending to increase the section angle of attack. In this paper the moments were taken about the section quarter—chord point where $\frac{\overline{c}}{b} = 0.25$.

Angle of attack. - In addition to the correction of the section angle of attack necessary because of the blade deflection, a second correction is necessary because of the induced flow. The section angle of attack may be expressed as

$$\alpha_{x} = \beta_{x} - \phi_{o} + \Delta \beta - \alpha_{i} = \alpha_{x}' + \Delta \beta - \alpha_{i}$$

where $\Delta\beta$ is the deflection angle and α_1 is the induced angle. The deflection angle was measured with the optical deflectometer previously described, and the measured values have been checked against values calculated from a knowledge of the loading along the blade radius. In most cases excellent agreement was obtained between the calculated and measured values of the deflection angle, but in some of the initial tests, before the deflectometer and operation techniques were fully developed, differences amounting to about 0.40 were found. In such cases the calculated values of the deflection angle were used.

The induced angle was calculated by a method of successive approximations using Lock's equation (reference 5) relating the interference velocity w, with the true resultant velocity W.

$$w_i = \frac{\sigma c_l W}{4G \sin \emptyset}$$

Since the interference velocity may be assumed to be perpendicular to the true resultant velocity, then

$$\tan \alpha_{i} = \frac{\sigma c_{i}}{4G \sin \theta}$$

It should be pointed out that if the actual loading along the blade radius is considerably different from an optimum (or Goldstein) loading, then the induced angles calculated for the blade sections using Goldstein's factor G are in error. However, the assumption of an optimum loading was made in calculating the induced angles presented in this paper. As a first approximation for calculation of the induced angle, c_l was

assumed to be equal to c_n , and ϕ was assumed to be equal to ϕ_o .

Usually only two or three approximations were required to obtain calculated values equal to the assumed values. The values used for Goldstein's induced-velocity correction factor G for a finite number of blades were obtained by an interpolation of the values calculated by Lock in reference 5 for a two-blade propeller (fig. 8). The values of Goldstein's factor G for a one-blade propeller (fig. 9) were obtained by extrapolation to the one-blade case of values presented in reference 5 for

two-, three-, and four-blade propellers. As a guide in determining the proper shape of the extrapolated curves Prandtl's equation (reference 5) was used.

RESULTS

The complete results are presented in tables 2 to 12, each table showing the results for one of the 11 chosen blade sections. The blade section and blade twist at each radial station, together with the corresponding table number, are listed in the following table:

Radial station, x	Blade section	Blade twist, β _t (deg)	Table number
0.30 .45 .50 .60 .65 .70 .78 .85 .90 .95	NACA 16-316.25 NACA 16-310.00 NACA 16-308.94 NACA 16-307.50 NACA 16-307.00 NACA 16-305.85 NACA 16-305.30 NACA 16-304.80 NACA 16-304.40 (See table 1)	-23.8 -14.3 -11.5 -6.4 -4.2 -2.0 1.1 3.5 5.3 6.9 7.7	2 3 4 5 6 7 8 9 10 11 12

The digits following the dash in the blade—section designation have the following significance: The first digit is 10 times the design lift coefficient and the remaining digits give the section thickness in percent chord, for example, the blade section at the 0.95 radius is an NACA 16—series section having a design lift coefficient of 0.3 and a thickness of 4.4 percent of the chord. Each of the tables presenting the results is subdivided into several parts, each part being on a separate page showing the data for a particular test condition over a range of advance ratio. Since there are many tables, an index to the tables is provided at the end of the paper to facilitate their use.

Pressure distributions.— The value of the pressure coefficient at each chordwise station on both the upper and lower surfaces is given in a column of the tables for each test point. Each column therefore defines a pressure distribution. Above each column are given the corresponding values of advance ratio, section Mach number, nominal angle of attack, deflection angle, induced angle of attack, normal—force coefficient,

moment coefficient, and chordwise-pressure-force coefficient. It will be noted in the tables that a few faired values, rather than measured values, of the pressure coefficient are given. This was necessary for points at the trailing edge and, in some cases, for points near the trailing edge of the outboard radial stations where the section thickness was insufficient to allow installation of a pressure tube. In the few instances where the faired value of the pressure coefficient at the trailing edge differed for the upper and lower surfaces, only the value for the lower surface is indicated in the tables. The values given for the pressure coefficient at the leading edge of the blade sections were calculated for the stagnation pressure.

Figure 10 shows some typical pressure distributions along the section chord which were obtained for the NACA 16-304.40 blade section located at the 0.95 radius. The angle of attack was approximately the same (0.60) for all three distributions shown. At the subcritical speed, Mach number 0.64, a typical subsonic pressure distribution was obtained which is relatively flat and in close agreement with the theoretical two-dimensional pressure distribution calculated for this section. At this Mach number the section had a normal-force coefficient of 0.20. At a Mach number of 0.9, which is just at the critical speed of this section, there is little change in the shape of the pressure diagram except an increase in the magnitude of the pressures and slight irregularities near the leading edge. With this increase in Mach number the normal-force coefficient increased to a value of 0.34, which is approximately the increase predicted by the Prandtl-Glauert rule. When the Mach number is increased beyond the critical to a low supersonic speed, the pressure diagram undergoes considerable change. The pressures near the leading edge of the blade section become more positive, and over most of the upper surface supersonic flow is established which terminates in a shock close to the trailing edge. In this transition the lift coefficient has dropped back to a value appreciably lower than was obtained at the critical speed. It should be noted that at the subcritical speed low pressures on the rear half of the blade section are counterbalanced by low pressures over the forward part with the result that the pressure drag is very small. At the supersonic speed, however, pressures over the rear half of the blade section are much more negative than those over the forward half with the result that there exists a large chordwise pressure force or drag, and also a change in the pitching moment about the quarter-chord point.

Pressure diagrams such as those in figure 10 have been integrated to obtain values of the section normal-force, chordwise-force, and moment coefficients presented in the tables. These coefficients, together with the section Mach number and angle of attack, are plotted in figure 11 to show the variation with advance ratio. The data in figure 11 are from a single test, and from several plots such as this cross plots may be made to show the variation of the coefficients with Mach number, using

angle of attack as a parameter. Although it is not the purpose of this paper to analyze the data presented, a brief inspection of the results has indicated certain phenomena and limitations which must be considered in any thorough analysis of the data.

Blade loadings. In addition to providing a picture of the lift along the radius of a propeller, loading curves are important in the reduction of the data for two reasons:

- (1) The radial loading affects the blade deflections which are of considerable magnitude and must be taken into account in the determination of the section angle of attack.
- (2) The radial loading affects the induced angle of a section which must also be taken into account in the determination of the angle of attack.

The variation of the normal-force coefficient along the blade radius is shown in figure 12 for propeller operation at an advance ratio of 2.2 and the five values of stream Mach number shown. It should be emphasized that these curves show the actual loading at the propeller blade, as distinguished from the usual loading downstream obtained from wake-survey measurements. The upper curves in figure 12 show the variation of bladesection Mach number along the blade radius, and the line legends correspond to the lines of the loading curves below. Note that as the stream Mach number increases from 0.38 to 0.56 the loading over the outer portion of the blade increases progressively. This increase corresponds to the increase shown by the second diagram in figure 10. As the stream Mach number is further increased to 0.60, the outboard sections lose some of their lift because of compressibility effects. At a stream Mach number of 0.65 the blade sections over the outer half of the blade are operating at Mach numbers above their critical, and at the 0.65 radius the section normal force has dropped to a comparatively low value. However, at the 0.7 radius stations where the section is operating at a Mach number of 0.93 there is a considerable recovery of the lift.

Blade deflections.— Since the blade deflections depend to a large extent on the loading along the blade radius, the radical changes in the loading curves with changes in Mach number shown in figure 12 will cause radical changes in the blade deflections. Figure 13 shows the blade deflections along the blade radius for the loading curves in figure 12. At the blade tip the deflection angle changes from 0.55° to -0.33° when the stream Mach number changes from 0.56 to 0.65. Note that the changes in the shapes of the deflection curves correspond to the changes in the loading curves of figure 12. The test condition chosen in figures 12 and 13 is for a lightly loaded propeller, and for some conditions of operation the deflection angle amounted to as much as 2.3°.

It should be pointed out that since the advance ratio is the same for all the data in figure 12 the angle of attack of a blade section at a particular radius would be the same for all the stream Mach numbers if the deflections and induced effects are disregarded.

Induced-engle correction. - Figure 14 shows the variation of the normal-force coefficient with angle of attack for several outboard radial stations operating at a constant section Mach number of 0.65. In figure 14(a) no correction for the induced angle has been applied to the values of angle of attack, and in figure 14(b) a correction for the induced angle has been applied assuming an optimum loading along the blade radius. Since the outer sections of the blades have the same camber but are slightly thinner than the inboard ones, the slopes of the curves for the outer sections would be expected to be as great or greater than for the inboard ones. Figure 14 shows that the induced-engle correction increases the slopes of the curves, but the assumption of an optimum loading in calculating the induced angles may lead to errors in the determination of the true angle of attack and of the lift-curve slopes. In figure 15 the loading parameter bc1/bc10.75R for an optimum (or Goldstein) loading is compared with the loading obtained experimentally for the same operating condition. The curves of figure 15 are typical in that they show that the experimental propeller loading deviates from the ideal with relatively high loading near the tip and low loading inboard. With a loading of this type it would be expected that the induced angles for stations near the tip would be greater than those calculated from the simple relation used. The curves of figure 14 also indicate that the induced angles near the tip must be greater if the data are to be consistent. The values of the induced angle a; presented in the tables are therefore somewhat in error, particularly for the outboard blade sections. The extent of the error in the induced angles has not yet been determined, but at the present time an attempt is being made to develop an adequate method for calculating the induced angle for an arbitrary loading. A treatment of this subject is given in reference 6. It should be pointed out that there are other factors, such as Mach number effects (reference 7), which should be taken into account in an accurate determination of the true section angle of attack.

Blade-section lift coefficient. The values of the normal-force and chordwise-force coefficients may be resolved into blade-section lift coefficients by using the relationship

$$c_l = c_n \cos \alpha_x - c_c \sin \alpha_x$$

Since the last term in the above equation is the product of two small quantities and since the cosine of small angles is approximately one, the value of the section lift coefficient is very nearly equal to the

normal-force coefficient. Since this is true, the error in the angle of attack (due to inaccuracy of the induced-angle calculation) will have a negligible effect on the values of the section lift coefficient.

Blade-section drag coefficient. The values of the blade-section drag coefficient may be obtained by using the relationship

$$c_d = c_n \sin \alpha_x + c_c \cos \alpha_x + c_d$$

where cdf is the friction drag coefficient. This friction drag coef-

ficient has been estimated to be about 0.004 from a study of the data presented in reference 8. An inspection of the above equation for the drag coefficient reveals that an error in the angle of attack will have a greater effect on the values of the drag coefficient than on the lift coefficient because of the trigonometric relations used in calculating the drag from the normal and chordwise forces. For this reason an accurate determination of the drag coefficient is not possible until an accurate evaluation of the induced angle and section angle of attack is made.

The determination of the chordwise-force coefficient, as described under the section on reduction of data, is at best an approximation from $\frac{c}{b} = 0$ to $\frac{c}{b} = 0.025$. At Mach numbers below the critical most

of the pressure drag is caused by the pressures over the leading edge of the blade section. Since it was not possible to install pressure tubes in the blades at the leading edge, the values of the chordwise—force coefficient at the lower Mach numbers are greatly affected by the fairing of the pressure—distribution curves in the region of the leading edge. For this reason values of the chordwise—force coefficient are given in the tables only for those Mach numbers which are above the critical for the particular blade section. The evaluation of the chordwise—force coefficient at Mach numbers above the critical is believed to be reasonably accurate, and the values are given to indicate the trend of the blade—section drag in this important Mach number range. In general, the blade—section drag at subcritical speeds as determined from the pressure distributions will not be reliable, since both the chordwise force and the component due to the normal force are so uncertain.

Blade—section moment coefficient.— The moment coefficients were calculated about the quarter—chord point from the values of the normal force and do not include the effects of the chordwise force. This simplification results in a negligible error since the blade sections are thin and have fairly low cambers. The values of the pitching moment about the quarter—chord point are generally negative, that is, they tend to reduce the blade angle.

One-blade propeller tests.— The results of the one-blade propeller tests are included in the tabulations. A preliminary analysis of these data reveals some disagreement with the results of the two-blade propeller tests. The reason for this disagreement is not yet known. It may be due in part to the inaccuracy in the final angle of attack. It is expected that further analysis of these data may provide an explanation.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va.

REFERENCES

- 1. Crigler, John L.: Comparison of Calculated and Experimental Propeller Characteristics for Four-, Six-, and Eight-Blade Single-Rotating Propellers. NACA ACR 4B04, 1944.
- 2. Evans, Albert J., and Liner, George: Preliminary Investigation to Determine Propeller Section Characteristics by Measuring the Pressure Distribution on an NACA 10-(3)(08)-03 Propeller under Operating Conditions. NACA RM L8Ell, 1948.
- 3. Corson, Blake W., Jr., and Maynard, Julian D.: The NACA 2000-Horsepower Propeller Dynamometer and Tests at High Speed of an NACA 10-(3)(08)-03 Two-Blade Propeller. NACA RM L7L29, 1948.
- 4. Stack, John: Tests of Airfoils Designed to Delay the Compressibility Burble. NACA Rep. 763, 1943.
- 5. Lock, C. N. H., and Yeatman, D.: Tables for Use in an Improved Method of Airscrew Strip Theory Calculation. R. & M. No. 1674, British A.R.C., 1935.
- 6. Kawada, Sandi: Calculation of Induced Velocity by Helical Vortices and Its Application to Propeller Theory. Rep. No. 172 (vol. XIV, 1), Aero. Res. Inst., Tokyo Imperial Univ., Jan. 1939.
- 7. Tsien, Hsue-Shen, and Lees, Lester: The Glauert-Prandtl Approximation for Subsonic Flows of a Compressible Fluid. Jour. Aero. Sci., vol. 12, no. 2, April 1945.
- 8. Cleary, Harold E.: The Effects of Reynolds Number on the Application of NACA 16-Series Airfoil Characteristics to Propeller Design.
 NACA RM L7H12, 1947.

CONFIDENTIAL

TABLE 1. ORDINATES FOR THE BLADE-SECTION AT THE 0.975 RADIUS
OF THE NACA 10-(3)(066)-033 PROPELLER

c, inches	y _U , inches	JL, inches
0.048	0.010	.009
.10	.023	.014
.20	.040	.021
.40	.065	.027
.60	.085	.031
.80	.102	.034
1.20	.134	.039
1.60	.161	.043
2.00	.185	.049
2.40	. 205	.053
3.20	. 230	.050
4.00	. 240	.041
4.80	. 233	.040
5.60	.216	.044
6.40	.186	.044
7.20	.134	.040
7.60	.085	.031
8.00	0	0

CONFIDENTIAL

NACA

NACA 16-316.25 PROPELLER BLADE SECTION (x = 0.30)

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

									٠٠١)٨١							
	J M _x	1.633	1.766	1.877	2.008	2.128	2.261	2.376	2.554	2.480	2.352	2.209	2.088	1.972	1.855	1.697
	ax,	8.79	6.89	5.46	3.94	2.69	1.43	.44	95	39	.64	1.72	2.75	4.34	5.74	7.82
	Δβ	.02	.02	.02	.02	.01	.01	0	0	0	0	.01	.01	.02	.02	.02
	ai	1.73	1.37	1.12	.89	.80	.68	.52	.32	•39	•59	•73	.82	.95	1.19	1.55
	cn	.7079	.5672	.4709	.3768	•3432	.2977	.2303	.1432	.1723	.2581	•3197	•3535	.4035	.4995	. 6393
	c _m	.0271	.0222	.0172	.0021	0233	0473	0566	0780	0722	0548	0365	0166	.0083	.0187	.0270
	cc															
	c/b							Pressure	coefficie	ent, P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.026 -1.979 -1.771 -1.317 -1.040917789677528336102043043	1.030 -1.484 -1.397 -1.098 916 834 735 653 535 382 133 .028	1.033 -1.103 -1.116 932 816 764 698 638 541 445 180 .072	1.037 756 850 764 701 686 639 604 529 432 240	1.041 489 650 639 632 643 622 611 564 482 324 .200	1.046 258 471 521 596 599 603 573 527 370 061	1.049 071 318 415 491 546 565 583 565 522 406 083 142	1.056 .176105261383509549519451124 .088	1.054 .081 - 190 - 322 - 431 - 502 - 533 - 565 - 559 - 525 - 445 - 116	1.041 111 346 433 495 545 557 573 554 380 068 149	1.044 357 545 569 583 610 606 596 566 504 344 016	1.040 564 704 675 649 653 623 604 549 461 295 .063 .196	1.035 837 918 813 735 706 654 613 532 430 224 .101	1.033 -1.192 -1.175 971 824 766 690 623 521 388 148 .075	1.028 -1.709 -1.572 -1.208991885784683546380127015
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.753 .522 .320 .166 .064 021 112 171 214 187 139 095 b070	.591 .382 .200 .071 014 085 163 210 243 195 133 062	.442 .253 .103 002 080 137 202 254 193 080 015 b.013	.298 .142 .021 061 123 170 217 237 233 162 002 .076	.128 .006 080 137 177 212 252 252 227 094 .057 .179 b.252	035 107 163 199 225 245 268 251 212 051 116 a.190 b.229	184 224 242 251 260 275 291 263 211 035 148 279 a.450	419 389 353 318 318 318 274 195 012 203 295 333	325 325 310 299 296 302 313 273 202 007 -184 -298 a.360	130 179 207 222 241 257 272 253 201 027 149 279 a.350	.048 047 115 160 194 221 248 241 211 061 .093 .222 b.320	.185 .056 044 110 154 195 239 247 224 106 .038 .148	.337 .175 .045 045 105 159 216 236 236 171 012 .053 a.189	.502 .306 .142 .030 046 112 174 210 232 183 090 018 b.024	.662 .440 .243 .106 .005 076 147 207 249 207 157 .091

^aFaired value. ^bLower surface only.

CONFIDENTIAL

NACA

NACA 16-316.25 PROPELLER BLADE SECTION (x = 0.30) - Continued

(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$.

_																		
	J Mx, αx, Δβ αi cn cm	1.696 .396 7.85 .04 1.56 .6439	1.792 .412 6.53 .03 1.32 .5509 .0268	1.884 .427 5.36 .03 1.13 .4760 .0164	1.999 .449 4.03 .02 .95 .4046 .0007	2.099 .469 2.97 .02 .80 .3439 0095	2.205 .489 1.93 .02 .67 .2906 0268	2.308 .508 1.00 .01 .60 .2635 0438	2.405 .526 .19 .00 .48 .2110 0569	2.541 .552 86 .00 .31 .1384 0740	2.484 .542 43 .00 .38 .1681 0671	2.385 .521 .35 .00 .49 .2152 0548	2.288 .503 1.18 .01 .61 .2674 0396	2.178 .480 2.19 .02 .71 .3068 0230	2.069 .464 3.28 .02 .85 .3652 0020	1.954 .439 4.54 .02 .99 .4198 .0091	1.850 .420 5.78 .03 1.21 .5090 .0208	1.750 .404 7.09 .03 1.46 .6058 .0293
	c/b								Pressure	e coeffic	ient, P							
Transa anarboan		1.040 -1.750 -1.620 -1.241 -1.005 894 777 669 526 334 091 017	1.043 -1.429 -1.374 -1.090 922 840 741 655 522 371 112 .028	1.047 -1.109 -1.138 966 832 777 704 641 535 402 157 .079 .098	1.052 788 896 808 740 714 662 618 536 428 214 .107 .154	1.057 545 714 689 668 668 638 616 545 453 263 .098 .179	1.061 319 536 571 597 622 612 607 561 478 309 .029	1.066 159 405 484 552 590 595 600 569 514 344 026	1.071 004 269 385 484 551 573 595 573 573 573 581 381 076	1.078 .191 107 270 408 495 539 580 570 535 442 111	1.075 .108 179 322 440 519 553 570 530 410 093 .116	1.069 030 298 407 493 555 575 575 566 521 362 057 152	1.064 192 428 501 554 597 602 605 573 515 342 023 179	1.060 340 545 565 576 597 581 524 438 270 080 251	1.056 619 766 719 683 674 638 638 530 435 240 130	1.050 911 990 867 776 734 623 531 413 184 .103 .134	1.045 -1.243 -1.236 -1.018 863 800 718 638 529 380 126 .062	1.042 -1.572 -1.479 -1.151 958 866 762 663 530 356 103 .008
	.0375 .075 .150 .250 .350 .450 .550 .650 .850 .925 .975 1.000	.648 .469 .270 .131 .031 054 142 194 235 198 150 093 b052	.583 .374 .197 .070 016 091 166 218 248 201 132 062 b017	.465 .276 .120 .009 061 129 233 246 188 061 010	.317 .160 .034 051 115 168 220 246 246 151 024 .186 b.349	.185 .052 046 111 160 204 247 255 244 117 .014 .125	.039 057 125 173 205 238 274 269 243 092 065 201	078 142 187 216 237 258 282 274 228 059 117 259	224 255 264 273 282 296 311 285 224 036 .161 .286 350	421 396 363 344 336 334 342 301 220 007 .193 .292 a.334	331 333 320 312 312 329 329 294 224 023 .176 .288 a .334	184 225 244 255 266 282 303 278 221 039 .152 .281 a .349	057 129 178 207 233 255 284 269 231 067 107 249 335	.119 .005 065 117 153 190 223 203 047 .103 .235 334	.239 .094 012 087 140 184 234 246 240 126 .005 .108	.384 .211 .073 047 092 147 212 233 245 175 034 .030	.521 .323 .161 .043 -037 -110 -175 -219 -245 -189 -096 -033 b.010	.632 .418 .233 .093 .004 077 160 206 245 145 081

^aFaired value.

bLower surface only.

NACA 16-316.25 PROPELLER BLADE SECTION (x = 0.30) - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

								, , ,	0.15K							
	J M _X α _X ! Δβ α ₁ c _n c _m	1.963 .492 4.45 .03 1.03 .4382 .0094	2.015 .506 3.87 .03 .90 .3832 .0023	2.118 .525 2.79 .02 .77 .3303 0061	2.197 .543 2.02 .02 .69 .2997 0182	2.284 .560 1.22 .01 .61 .2655 0365	2.374 .581 .45 0 .54 .2394 0528	2.467 .601 29 0 .42 .1852 0641	2.534 .616 80 0 .33 .1458 0732	2.501 .607 55 0 .35 .1552 0704	2.426 .589 .03 0 .44 .1935 0610	2.335 .569 .78 .01 .57 .2513	2.242 .550 1.60 .01 .63 .2726 0304	2.169 .534 2.29 .02 .73 .3165 0150	2.092 .519 3.05 .02 .80 .3439 0048	2.006 .501 3.97 .03 .95 .4052 .0056
	c/b							Pressure	e coeffici	ent, P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.062 914 -1.014 899 807 767 699 645 545 420 183 .099	1.065 721 878 819 769 752 707 664 576 466 255 .088	1.070 495 691 691 682 688 659 633 557 459 270 082	1.076346571609630656639622571467292 .050 .207	1.080 176 433 518 578 622 624 622 582 514 331 0	1.086 032 309 428 522 587 606 621 592 543 363 049	1.092 .107 186 337 464 547 578 607 589 546 390 077	1.097 .206 097 273 424 525 571 613 602 562 443 106	1.094 .167 135 299 440 533 574 612 596 553 419 089	1.089 .055 239 375 492 569 597 623 599 552 386 071	1,083 100 369 471 552 609 619 527 594 540 355 033	1.077 245 492 555 602 640 636 627 584 503 324 .013	1.071396614636647662643566462281 .066 .201	1.069558743720699665633555455255	1.064 787 918 835 768 743 685 637 550 433 216 .099
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.384 .209 .069 026 096 156 216 248 258 166 056 .030 a.089	.255 .105 017 098 157 207 264 283 169 045 .067	.151 .027 071 134 180 225 272 281 270 138 .004 .131	.067040114167205241282284263114 .045 .186 a.286	055 131 180 216 242 268 298 288 250 081 .098 .243 a.320	166214237256271286309286309286229042 .153 .280 a.334	293308303303306313330297223016185292335	\\ \(\)	365 364 344 333 335 348 306 226 008 194 292 a.323	259285291295304315334302237035166284 a.326	122 181 217 240 262 284 309 292 240 063 .127 .261 a.417	007095155197228259292286255093080225 a.415	.103010093150191228274276261117 .033 .170 a.330	.195 .058 045 114 166 212 260 274 265 139 001 .113 a.200	.315 .153 .027 061 123 177 235 259 264 160 041 .051 a.112

a Faired value.

NACA 16-316.25 PROPELLER BLADE SECTION (x = 0.30). - Continued

(d) M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

	J M _X	2.121	2.149	2.189 .613	2.221	2.256	2.272	2.319 .608	2.339	2.369	2.414	2.446	2.477	2.520
	αχ' Δβ α ₁ c _n c _m	2.76 .2 .75 .3255 0034	2.48 .2 .73 .3132 0058	2.10 .2 .69 .3010 0149	.2 .65 .2835 0167	1.47 .1 .59 .2558 0298	1.33 .1 .58 .2532 0326	.92 .1 .56 .2471 0454	.74 .1 .54 .2371 0517	.49 .1 .52 .2297 0560	.13 .1 .45 .1984 0626	13 0 .41 .1813 0646	37 0 .37 .1623 0691	69 0 .31 .1384 0751
1	c/b						Pressure	coefficier	nt, P					
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.098407666699719736703668575456240105	1.096363621667695720694664581467262 .095	1.097 297 562 623 665 699 681 658 593 474 279 .072	1.097 248 518 592 645 686 671 656 597 483 294 .054	1.096177453541610658656647596495308 .039	1.094 155 435 531 607 660 662 660 612 331 .013	1.096 084 367 477 566 628 639 646 605 540 349 013	1.095 050 336 456 555 621 637 648 612 557 365 034 .167	1.094 005 296 422 529 601 637 607 556 370 048	1.094 .061 233 378 501 582 612 635 610 562 389 069	1.094 .101 198 347 478 562 625 601 557 397 078	1.094 .142 158 315 452 541 581 613 595 552 410 089 .122	1.093 .197 108 279 426 520 566 606 593 555 441 099 .123
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.142 .014 077 142 191 236 288 301 288 149 0	.104 012 099 158 204 246 294 305 289 143 .012 .148 a.270	.056051125179219258302305286132 .032 .172 a.272	.017 082 151 197 234 269 310 311 285 125 .047 .193 a.300	032 117 173 212 244 274 311 306 272 103 .078 .223 a.315	069 148 198 234 263 290 326 317 277 103 .083 .226 a.330	111175214241262285315299250067 -126 -261 b.344	150 207 236 258 277 324 302 249 059 .138 .267 b.350	185 230 253 267 282 300 323 298 239 043 155 -279 a-352	262 289 294 299 307 319 339 307 239 035 169 283 a.342	297315309315324340306234025179287 a.338	339342330324330342305227016192295337	415399368353346346355313228008 .194 .286 a.330

aFaired value.

bLower surface only.

NACA RM L9L12

CONFIDENTIAL TABLE 2.— PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-316.25 PROPELLER BLADE SECTION (x = 0.30) - Continued

(e) M = 0.60; $\beta_{0.75R} = 45^{\circ}$.

J M _K ^A X [†] Aβ ^A i ^C n ^C n ^C n	2.077 .662 3.21 .02 .80 .3445 .0088	2.106 .660 2.91 .02 .75 .3226 .0046	2.132 .659 2.65 .02 .71 .3058 .0008	2.158 .658 2.39 .02 .68 .2942 0049	2.185 .657 2.13 .02 .63 .2710	2.220 .657 1.80 .01 .58 .2523 0125	2.247 .656 1.56 .01 .54 .2348 0170	2.273 .653 1.32 .01 .53 .2332 0265	2.299 .652 1.09 .01 .50 .2184 0291	2.329 .648 .83 .01 .45 .1974 0373	2.360 .647 .57 0 .45 .1961 0400	2.391 .646 .31 0 .42 .1835 0523	2.426 .647 .03 0 .40 .1755 0613	2.461 .644 25 0 .37 .1642 0669	2.512 .644 63 01 .29 .1271 0711
c/b					-		Pressur	e coeffic	ient, P						
0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.114 454 751 794 821 839 783 721 592 451 197 .077	1.113 393 689 746 787 813 768 719 593 453 199 .076	1.113 340 633 702 753 786 751 711 595 461 214 088 .145	1.113 285 579 660 766 763 707 603 476 242 .099	1.112 240 534 626 693 738 720 695 595 460 208 .082	1.112 179 478 581 666 721 714 695 613 486 256 .080 .156	1.112 126 424 537 630 691 682 609 490 271 .088	1.111 084 385 508 611 678 686 683 523 516 309 .052	1.111 041 343 473 585 657 671 675 623 530 325 .039	1.109 001 306 445 563 641 661 672 622 542 336 .027	1.109 .028 276 420 545 623 649 662 546 342 .020 .184	1.109 .071 236 389 520 609 638 661 625 466 372 031 .170	1.109 .123 187 353 498 592 631 662 583 401 061 .148	1.108 .158 155 326 478 579 623 658 589 415 084 .133	1.108 .220 093 276 439 544 597 641 626 582 434 088
.975 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .925 .975 1.000		.130 0 097 167 221 372 331 350 344 204 056 .065 a.125	.099 022 112 179 226 274 332 344 332 188 033 .092 b.161	.064 048 133 191 239 281 335 343 324 172 008 .123 a.207	.029077151206248288339346325174016 .109 b.173	024 121 185 232 269 304 351 351 351 158 .014 .148 b.219	057 144 198 239 273 305 347 343 308 139 040 174 a-240	100 176 223 257 286 314 352 343 299 116 .075 .211 b.290	137 202 242 268 294 319 354 391 099 -094 -229 0.305	184 241 269 290 310 334 365 347 293 094 .104 .231 a.304	206253276294312332360338279078119241 b.310	254 288 302 310 323 339 362 267 267 267 149 265 b.311	317 335 335 335 342 352 371 335 258 039 169 274 315	363 371 361 356 356 376 338 255 027 181 278 8-325	437 424 3794 378 373 373 383 248 013 192 274 a.307
araired val		1		1 6 1	1 3 1	100	CONFID	ENTIAL						The North	ACA

^aFaired value. ^bLower surface only.

CONFIDENTIAL

TABLE 2.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-316.25 PROPELLER BLADE SECTION (x = 0.30) - Concluded

(f) M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

J M _X α _X ' Δβ α _i c _n c _m		2.129 .722 2.68 0 .69 .2987 .0113	2.162 .720 2.35 0 .64 .2761	2.179 .717 2.19 0 .63 .2742 0013	2.198 .714 2.01 0 .61 .2639 0020	2.220 .713 1.80 0 .57 .2471 0074	2.248 .711 1.55 0 .52 .2252 0092	2.268 .710 1.37 0 .48 .2097 0123	2.283 .706 1.23 0 .43 .1871	2.319 .708 .92 0 .41 .1781 0184	2.338 .704 .75 0 .39 .1703 0213	2.359 .701 .58 0 .39 .1703 0287	2.389 .702 .33 0 .34 .1477 0287	2.413 .699 .13 0 .28 .1252 0349	2.433 .698 02 0 .23 .1032 0354
c/b	b						Pr	essure coe	fficient,	P					
Upper surface	000 025 050 100 200 3300 400 500 600 700 800 990	1.138 209 541 659 783 881 890 801 626 459 206 .107	1.137 140 470 600 728 832 836 778 621 460 207 114 170	1.136 133 461 595 725 834 833 782 633 475 226 111	1.135 112 438 574 705 813 810 770 630 475 229 114 172	1.134 086 411 554 688 792 765 636 481 235 113	1.133 047 370 520 657 766 776 756 640 487 245 .115	1.133 015 338 491 633 741 758 748 639 488 246 .120	1.131 .015 306 468 610 715 737 736 635 491 248 .126	1.132 .054 267 435 582 691 718 724 636 498 252 .134 .170	1.130 .079 242 412 562 671 703 717 636 507 258 .136 .165	1.129 .103 217 392 546 657 693 716 692 523 268 .134 .158	1.129 138 -181 -362 -523 -638 -682 -714 -650 -542 -283 128 151	1.128 .168 151 335 499 616 662 701 642 545 288 .133 .156	1.128 .192 130 317 486 605 656 700 646 552 295 .130 .153
Lower surface	0375 075 150 250 350 450 650 750 850 925 975	.080 025 129 200 255 307 377 393 376 317 043 .086 a.158	.030 068 155 217 265 314 380 388 369 183 015 .120 a.188	.009090169229277324387393367189008 a.140 a.240	011 108 180 237 278 327 386 391 361 179 .003 .140 a.260	038 111 195 252 289 334 391 391 357 175 .011 .147 a.230	085 160 223 270 307 347 402 399 359 167 .021 .155 a.220	114 182 239 283 316 354 405 357 354 159 354 160 a.225	145 201 257 295 323 361 408 349 349 152 .040	176229271304329359406331336137 -053 -176230	203 259 284 313 335 362 404 386 328 128 061 179 230	237 285 304 326 344 368 406 383 320 118 065 180	279310325343354375407378309107 -074 -179 -222	310 319 339 350 358 376 404 370 297 092 -083 -183 b-235	348 355 361 367 373 389 414 378 302 095 .081 .178 b.223

aFaired value. bLower surface only.

NACA 16-310.00 PROPELLER BLADE SECTION (x = 0.45)

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

	(a) 1																	
	J M _X , α _X Δβ α _i cn cm	1.620 .366 10.41 .15 2.44 .9830 0007	1.738 .382 8.42 .13 2.05 .8291 0180	1.858 .401 6.57 .11 1.71 .7026 0195	1.986 .417 4.74 .10 1.34 .5532 0182	2.098 .435 3.27 .08 1.08 .4523 0226	2.199 .448 2.04 .06 .87 .3635 0338	2.340 .468 .44 .04 .58 .2452 0434	2.443 .483 64 .03 .40 .1703 0526	2.568 .504 -1.87 01 .18 .0765 0582	2.516 .496 -1.37 .01 .28 .1187 0559	2.401 .478 21 .03 .47 .1997 0470	2.270 .457 1.21 .05 .71 .3003 0407	2.158 .441 2.53 .07 .97 .4042 0294		1.929 .410 5.54 .10 1.52 .6269	1.783 .390 7.71 .12 1.90 .7750 0190	1.700 .376 9.05 .14 2.21 .8980 0080
	c/b								Pressure	coeffic	eient, P							
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.034 -2.649 -2.635 -2.131 -1.059 866 752 639 555 412 240 058 012	1.037 -2.126 -1.737 -1.275 956 824 715 621 555 420 244 026	1.041 -1.613 -1.410 -1.050 824 733 657 585 534 418 252 .002 .074	1.045 -1.154 -1.051 818 676 629 579 529 499 400 254 .012	1.049 783 783 659 572 554 526 495 482 399 269	1.052 500 575 526 505 500 482 470 473 400 292 027	1.056 178 329 356 397 421 424 429 448 397 297 045 115	1.060 .032 160 237 319 386 401 432 391 319 065 .094	1.065 .243 .017 108 230 297 333 367 410 381 314 079 .075	1.063 .153 062 163 270 329 356 383 420 386 319 075 .083	1.059 065 238 291 354 391 402 412 436 391 302 052	1.054 325 446 437 451 465 460 454 465 409 299 041	1.050 626 673 590 542 527 509 485 482 401 284 017	1.048 896 865 700 599 571 536 499 480 391 256 .013	1.043 -1.328 -1.218 934 748 679 616 555 513 396 250 .012	1.039 -1.867 -1.591 -1.185 905 793 698 616 555 427 258 020	1.036 -2.803 -2.287 -1.414 970 828 712 613 538 399 224 018
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.841 .648 .462 .320 .222 .148 .080 .008 030 042 022 012	.778 .585 .405 .265 .187 .117 .063 031 031 .005 .012 b.019	.661 .481 .321 .205 .136 .078 .032 026 042 034 .006 .006	.484 .330 .211 .118 .065 .022 021 061 068 052 .005 .018	.313 .202 .115 .044 .007 027 055 089 083 058 .010	.163 .087 .037 015 039 062 079 103 088 050 .037	064 075 075 096 102 113 118 134 107 050 .050 .120	247 201 160 155 145 145 147 111 039 .066 .153 a.207	468350242216194184175168120033 .080 .176	366 282 208 186 171 163 158 158 116 035 .076 .167	154 136 117 125 123 125 138 109 044 .056 .133 b .176	.041 001 026 063 077 091 105 122 102 057 .047 .103 b.128	.228 .135 .067 .007 023 047 071 101 092 056 .022 .064 b .085	.379 .249 .151 .073 .032 006 038 076 076 050 .006 .035 b.054	.579 .407 .268 .165 .102 .054 .012 036 050 039 .005 b.019	.726 .529 .364 .236 .161 .097 .040 020 040 040 001 001	.814 .620 .442 .299 .215 .144 .085 .021 010 018 .013 .026

aFaired value. bLower surface only.

NACA 16-310.00 PROPELLER BLADE SECTION (x = 0.45) - Continued

(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J Mx αx Δβ αi cn cm	1.781 .465 7.74 .20 1.94 .7933 0136	1.866 .476 6.45 .18 1.74 .7157 0145	1.950 .492 5.24 .15 1.53 .6334 0181	2.035 .508 4.09 .13 1.26 .5245 0190	2.119 .521 3.01 .11 1.05 .4394 0216	2.197 .533 2.06 .10 .91 .3823 0336	2.294 .550 .94 .08 .67 .2848 0435	2.427 .573 48 .04 .42 .1787 0513	2.558 .598 -1.77 01 .13 .0565 0559	2.491 .585 -1.12 .01 .30 .1265 0547	2.362 .559 .20 .06 .56 .2365 0460	2.268 .542 1.24 .09 .76 .3194 0410	2.172 .526 2.36 .11 .98 .4123 0323	1	1.991 .497 4.68 .14 1.37 .5696 0171	1.917 .483 5.71 .16 1.60 .6582 0154	1.847 .472 6.73 .18 1.81 .7427 0151
	c/b								Pressure	coeffic	eient, P							
Transa anafore	.100	1.055 -2.004 -1.636 -1.227 929 807 702 608 542 392 202 .016	1.058 -1.582 -1.442 -1.088 851 757 670 594 541 410 226 .026	1.062 -1.403 -1.207 934 751 685 618 561 520 395 227 .041	1.066 -1.010 974 773 659 621 574 531 503 394 235 .040	1.069 747 784 661 586 568 539 512 498 403 253 .030 .141	1.073 502 601 550 531 531 511 498 502 415 286 .002	1.078 246 400 412 439 464 464 480 412 288 012 .143	1.085 .043 163 245 330 389 412 432 461 412 311 035 .125	1.092 .133 108 243 365 453 453 539 539 548 462 194 033	1.088 .158 065 170 273 344 378 409 448 401 310 034 .128	1.080 091 272 321 421 431 442 466 405 294 020	1.075 323 462 456 468 485 481 477 489 416 295 012	1.071 579 654 583 541 532 512 494 401 266 .020	1.068 814 832 691 606 582 550 515 499 397 249 .033 .137	1.063 -1.160 -1.085 845 708 659 602 555 523 407 241 .034 .113	1.060 -1.417 -1.285 984 783 706 634 570 525 400 222 .038 .102	1.057 -1.672 -1.500 -1.124 866 761 672 532 396 212 .027 .081
Tower Pring Town	1 .	a.711 .572 .403 .271 .191 .124 .066 .005 022 027 .005 014 b054	.662 .481 .326 .211 .142 .084 .031 021 043 .005 005 010	.564 .400 .267 .162 .104 .055 .011 038 052 038 .011	.432 .294 .185 .100 .052 .012 024 066 071 050 .009 .028	.311 .200 .118 .046 .010 024 052 086 081 049 .021 .048 b .055	.168 .091 .039 014 035 062 081 107 092 053 .039 .080	.009 022 035 066 076 091 101 122 097 039 .056 b.147	241 198 151 151 144 144 151 112 039 .070 .152 b .188	667 533 409 382 360 349 334 278 188 071 .009 a.046	356 273 197 182 167 161 155 157 114 031 .079 .162 b.200	111 107 091 107 117 121 135 103 038 .063 1.139 b.175	.060 .015 012 050 067 080 097 118 095 042 .051 .106	.229 .140 .074 .016 011 042 062 079 044 .038 .071 b.085	.346 .225 .135 .061 .022 015 045 082 078 052 .019 b.054	.479 .328 .210 .118 .064 .020 020 069 074 057 0	.604 .432 .293 .185 .120 .069 .020 031 045 036 .012	.702 .516 .360 .239 .164 .102 .049 005 027 .013 0

^aFaired value. ^bLower surface only.

NACA 16-310.00 PROPELLER BLADE SECTION (x = 0.45) - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

									, - ,		-, -0.15)II		_						
	J M _X α _X * Δβ α _i cn cm cc	1.930 .540 5.52 .25 1.61 .6661 0199	2.007 .557 4.46 .21 1.37 .5697 0177		2.147 .583 2.66 .14 1.04 .4368 0290		2.295 .612 .93 .07 .74 .3139 0415	2.377 .628 .04 .04 .57 .2406 0455	2.445 .642 66 0 .38 .1635 0479	2.536 .661 -1.56 04 .18 .0768 0577	2.503 .655 -1.24 03 .25 .1077 0546	2.465 .647 87 01 .34 .1468 0520	2.422 .636 43 .01 .43 .1848 0472			2.318 .616 .68 .06 .69 .2926 0418			2.051 .562 3.88 .18 1.25 .5194 0228	1.984 .547 4.77 .22 1.47 .6086 0169
c/b Pressure coefficient, P																				
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.075 -1.677 -1.370 -1.055 844 763 682 611 561 424 230 .027	1.079 -1.194 -1.137883745695634580541418238 .035	1.082 941 959 786 683 658 611 569 544 428 259 .030	1.087 677 766 6613 600 571 545 536 430 272 .028 .133	1.093 446 578 547 554 538 527 531 438 295 .012	1.096 252 423 478 507 507 507 523 443 304 001	1.102 069 273 335 403 457 470 484 511 438 308 010 138	1.107 .090 -140 -239 -338 -413 -444 -469 -508 -443 -321 -018 .134	1.114 .265 .014 120 253 349 398 440 496 443 335 033 .129	1.112 .209 035 158 280 366 409 497 439 326 024 .137	1.109 .133 102 211 318 396 434 465 507 445 328 024 .133	1.105 .047 175 265 357 424 450 473 510 443 321 020 .134	1.102 027 241 312 389 444 465 480 510 439 312 012 .139	1.100 109 359 420 467 477 487 511 439 008 .141	1.098 200 381 409 454 489 491 496 512 435 301 002 .148	1.095 307 471 475 501 526 523 521 531 448 309 005 .136	1.085 789 843 719 642 588 536 428 264 .029 .126	1.081 -1.028 -1.018 819 704 666 616 569 539 419 246 .034 .112	1.077 -1.345 -1.237 949 786 726 660 599 558 426 241 .032 .090
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.588 .418 .279 .168 .104 .052 .002 052 066 058 008	.469 .322 .204 .110 .057 .011 028 074 082 064 010 002 b001	.368 .239 .142 .062 .017 023 058 099 101 076 009 .011 b.021	.254 154 .083 .017 017 076 108 100 064 .013 .041 b.059	.128 .061 .019 028 054 075 094 121 103 056 .032	.002 031 045 076 089 115 136 110 052 .041 .101 b.126	145 133 113 128 130 137 143 157 123 054 .047 .118 b.151	312 254 192 187 177 177 184 140 061 .046 .119 b.149	521398277252230217208202145051065143 b.175	\\\^35 337 241 222 205 197 190 138 047 .065 .142 b.175	359 286 214 200 188 185 184 185 141 055 .052 .127	265 218 172 165 165 167 177 135 059 .047 .121 b.154	182 162 133 142 147 153 164 128 056 .047 121 b.156	107 107 097 114 119 128 136 152 119 052 .047 .119 b.150	030 050 057 085 096 106 120 138 110 050 .047 .110	.031 012 033 069 087 103 117 138 115 060 .035 .090	.307 .191 .110 .035 002 036 067 106 102 071 .002 .027	.410 .275 .171 .084 .036 008 043 087 091 067 008 .008	.509 .355 .225 .126 .072 .021 020 072 082 066 014 012 b016

bLower surface only.

NACA 16-310.00 PROPELLER BLADE SECTION (x = 0.45) - Continued

(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$.

J Mx cx* AB c1 cn cm	2.045 .604 3.96 .19 1.32 .5477 0198	2.134 .621 2.82 .17 1.12 .4697 0262	2.214 .637 1.86 .14 .95 .4006	2.276 .650 1.15 .11 .79 .3326 0436	2.350 .663 .33 .07 .61 .2597 0469	2.427 .682 48 .03 .43 .1839 0551	2.483 .694 -1.05 01 .30 .1274 0601	2.511 .701 -1.32 03 .23 .0965 0607	2.457 .688 79 .01 .37 .1555 0583	2.394 .673 14 .05 .53 .2248 0497	2.313 .654 .72 .09 .70 .2942 0455	2.249 .640 1.45 .12 .87 .3658 0394	2.179 .627 2.27 .15 1.04 .4355 0320	2.115 .616 3.06 .17 1.17 .4897 0244
c/b						P	ressure coe	fficient, P						
0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.094 -1.039 -1.066858743707653599563431242 .040 .105	1.099 720 820 717 655 641 574 555 438 262 .041	1.105 481 626 588 582 575 553 553 449 285 .030	1.110 287 470 486 523 557 554 547 559 463 307 .011	1.115 098 311 373 451 503 517 525 547 465 314 001	1.122 .086 149 255 370 447 507 548 475 335 016	1.127 .201 047 175 311 405 454 490 543 479 346 019	1.130 .256 .001 140 281 383 441 485 546 482 350 022 .136	1.124 .146 097 215 340 425 469 546 479 340 018	1.118 007 229 312 409 470 493 509 541 464 315 005	1.111 183 384 427 488 529 537 538 558 470 316 .001	1.107366532528545568558545555453295 .020 .151	1.102 587 713 648 621 618 594 567 560 450 279 .033 .138	1.098 799 876 749 672 651 612 574 553 432 256 .045 .129
.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .975 .975	.404 .268 .162 .078 .029 014 054 098 104 082 016 005	.275 .171 .094 .027 011 044 073 111 104 070 .006 .030	.159 .083 .036 018 043 070 089 119 103 056 .030 .066	.024016037075091108125147121063 .034 .088 b.115	120 120 108 126 134 142 153 168 134 064 .043 .118	297247188185178178179185142054059142184	435 343 249 231 217 209 203 203 147 053 .063 .145 b.187	517400284258240230220214156057 .062 .141 b.179	369297224209199196194196146057 .059 .141	192171140148154159171131054 .053 .133 b.174	054 075 080 105 118 129 142 160 131 066 .035 .098	.087 .030 003 046 067 088 105 131 110 059 .033 .082	.210 .120 .054 002 033 062 085 119 106 065 .016 .047	.316 .202 .118 .045 .005 032 064 102 100 067 .003 .027 b.034

bLower surface only.

NACA RM L9L12

CONFIDENTIAL TABLE 3.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-310.00 PROPELLER BLADE SECTION (x = 0.45) - Continued

(e) M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

							(0)		10171					-	
	J M _X Δβ α ₁ c _n c _m	2.116 .679 3.05 .17 1.22 .5116 0285	2.131 .676 2.86 .17 1.16 .4839 0303	2.149 .672 2.64 .16 1.10 .4606 0347	2.175 .669 2.32 .15 1.05 .4426 0361	2.207 .666 1.94 .13 .96 .4045 0378	2.245 .665 1.50 .11 .88 .3710 0395	2.286 .662 1.03 .09 .77 .3271 0402	2.314 .657 .72 .08 .66 .2819 0436	2.353 .657 .30 .06 .56 .2371 0451	2.395 .656 15 .05 .46 .1945 0461	2.412 .650 32 .04 .40 .1723 0472	2.452 .650 73 .02 .32 .1361 0498	2.491 .647 -1.12 .01 .26 .1123 0515	2.532 .645 -1.52 01 .18 .0765 0530
	c/b							Pressure	coefficier	it, P					
Iman ampace	500	1.121718907788746733682632603452240 .059 .123	1.120 654 827 733 703 697 653 610 587 445 241 .065 .140	1.118 587 756 692 673 676 641 609 595 457 263 .055 .142	1.117 527 698 652 645 655 625 599 590 461 271 .049	1.116 442 618 597 606 625 606 589 589 466 284 .039	1.115 354 538 538 559 589 569 569 460 284 037 148	1.114 242 435 460 501 542 540 553 451 288 .030 155	1.112 155 361 402 457 507 518 525 544 449 294 .020	1.112 074 286 348 417 494 507 532 445 299 .012	1.112 .020 207 288 374 449 469 488 520 441 304 .004	1.110 .063 167 258 351 427 455 480 515 441 309 006 .140	1.110 .135 101 206 312 391 428 457 497 431 309 010 .142	1.109 .193 048 168 284 370 412 446 493 434 320 026 .131	1.108 .266 .018 116 243 334 385 424 474 425 319 034 .127
T. Cook of Street, Str	650	.292 a.200 .108 .035 007 042 075 116 113 077 004 .025 b.038	.273 a.191 .102 .033 005 038 068 100 062 .014 .046 b.054	.228 a.160 .074 .013024053082119108065 .015 .051 b.060	a.194 a.128 .057 002 034 060 090 122 110 063 .017 .060 b.072	.138 a.092 .026026054079102133116067 .019 .065 b.080	.084 a.053 .003 044 068 089 109 137 115 062 .025 .076 b.094	.012 a006 032 068 087 104 120 1142 117 057 .033 .094 b.115	062 a060 071 097 111 122 136 155 127 062 .034 .098 b.120	134 a110 105 124 131 139 147 163 131 061 .039 .107 b.136	221 a165145153156156163174137061 .042 b.114	279 a200173173171176184146067 .039116 b.147	343 a238 199 191 182 180 179 183 140 058 .053 .130 b.164	425 a270 236 220 205 198 194 195 145 058 .054 b.168	510 a309 269 244 223 212 202 197 145 052 064 145 b.175

aFaired value. bLower surface only.

NACA 16-310.00 PROPELLER BLADE SECTION (x = 0.45) - Continued

(f) M = 0.60; $\beta_{0.75R} = 45^{\circ}$.

			,												
	J M _X α _X * Δβ α _i c _n c _m	2.112 .728 3.10 .15 1.19 .5000 0318 0066	2.134 .723 2.82 .14 1.13 .4742 0323	2.160 .721 2.50 .14 1.07 .4510 0338	2.196 .719 2.07 .12 .98 .4116 0349	2.225 .717 1.73 .11 .91 .3816 0361	2.249 .712 1.45 .10 .83 .3487 0376	2.291 .711 .98 .08 .73 .3081 0397	2.319 .706 .67 .06 .65 .2732 0424	2.348 .704 .35 .05 .57 .2435 0466	2.371 .700 .11 .03 .50 .2145 0469	2.413 .701 33 .01 .39 .1674 0492	2.446 .699 67 0 .33 .1413 0501	2.473 .695 95 01 .27 .1158 0515	2.501 .693 -1.22 02 .20 .0855 0516
1	c/b			1				Pressure o	coefficient	, P					
Transcription		1.140 536 821 732 784 819 782 721 676 464 219 064 110	1.138 493 743 699 750 800 754 706 671 471 232 .065 .118	1.137 448 681 660 706 755 720 680 656 470 239 .068	1.136 363 586 596 649 705 685 660 652 481 263 .060	1.135 299 519 543 602 657 648 631 631 474 265 .061	1.134 233 451 491 555 612 613 606 616 473 272 .054	1.133 139 364 425 502 568 580 583 601 469 280 049	1.132 068 296 373 461 532 564 590 471 287 .042 .154	1.131 020 255 341 437 514 539 557 590 479 301 .032 .148	1.129 .031 205 301 405 486 517 540 577 475 305 .026 .152	1.130 .099 141 252 368 455 494 523 566 474 312 .014	1.128 .161 083 205 330 422 468 502 551 467 316 .009	1.127 .203 045 175 306 401 451 489 543 465 322 .001 .143	1.126 .258 .007 -134 -273 -374 -428 -473 -530 -464 -328 -011
Torderin const		.228 .135 .068 002 042 074 108 149 139 095 015 .012	.191 .104 .045 019 057 084 116 155 144 095 014 .016	.167 .088 .033 027 060 085 115 151 136 087 004 .028	.102 .038 001 054 081 105 130 162 141 085 .003 .042 b.060	.067 .013 018 064 087 108 130 158 137 078 .013	.019 022 042 082 089 116 136 163 163 076 .019 .068	056 076 077 110 121 134 149 172 142 074 .022 .081 b.104	118123108130138147160179144073 .028 .089 b.118	177 164 140 155 158 164 174 188 151 078 .026 .088 b.115	227 201 161 169 172 177 189 150 073 .031 .099 b.128	307 255 197 197 190 190 192 202 155 074 .334 .106 b.140	377304228217205201201205156068042120156	438345254237221215210210158068 .045 .122 b.160	518402281261242230221217159065051130161

bLower surface only.

NACA

CONFIDENTIAL

TABLE 3 -- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-310.00 PROPELLER BLADE SECTION (x = 0.45) - Concluded

(g) M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

2.187

.783

2.148

.790

2.121

.793

J

 $M_{\mathbf{X}}$

2,170

.787

2.424 2.365 2.393 2.344 2.230 2.253 2.270 2.300 2.322 2.206 .754 .755 .756 .765 .760 .774 .769 .767 .779 .777 -.13 -.45 1.21 .40 .17 1.41 .88 .63 1.95 1.67 .06 .06 .09 .08 .08 .07 .09 .11 .10 .10

	MX	• 193	. 150	- 101	0.10	3 OF	1.67	1.41	1.21	.88	.63	.40	.17	13	45
1	ax *	2.98	2.65	2.38	2.18	1.95		.10	.09	.09	.08	.08	.07	.06	.06
	Δβ	.12	.12	.11	.11	.11	.10	.81	.75	.65	.61	.52	.50	.43	.36
	ai	1.11	1.04	1.01	•97	.92	.86	Toronto de la constante de la		.2761	.2561	.2206	.2110	.1819	.1519
	cn	.4639	.4368	.4232	.4077	.3871	.3619	.3400	.3161	0485	0485	0492	0534	0525	0560
	cm	0487	0457	0464	0477	0460	0457	0460	0460			.0103	.0116	.0132	.0137
1	cc	.0086	.0088	.0081	.0081	.0076	.0076	.0078	.0092	.0082	.0092	.0103	.0110	.0132	.0131
	c/b						Pa	ressure coe	efficient,	P					
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.167 261 550 539 648 752 812 897 992 481 216 039	1.166217487512625726790882969531202010 .032	1.164 189 452 491 612 699 776 866 945 554 197	1.163 166 424 476 607 681 773 854 922 567 201	1.161 142 398 459 596 669 762 829 882 565 209 .051	1.160 105 361 431 572 660 734 800 841 566 221 .058	1.159069324403547647697765800570235 .061	1.157044296385530641673739785579254 .056	1.156 004 257 353 499 614 647 693 756 549 263 .059	1.155 .033 219 323 472 586 625 660 731 548 273 .053 .136	1.153 .085 171 283 436 549 595 636 714 549 288 .047 .142	1.151 .108 -1147 266 421 533 630 711 556 304 .037 .139	1.151 .165 093 220 379 491 546 598 685 538 307 .035 .149	1.151 .211 048 183 345 459 515 572 661 531 316 .025 .153
	.0375 .075 .150 .250 .350 .450 .550 .550 .750 .850 .925 .925 .925	142 a.074 .026 045 085 123 164 218 204 144 055 035 b026	.094 a.045 0065102137175224208148055023 b015	.074 a.027 009 071 104 137 174 219 134 041 002 b.002	.039 a ₀ 030088118148181223199131033 .013	.010 a022048101129157188226198125023 .027 b.049	029 a057067117141166194228196119016 .041 b.067	064 a090085131151172196227189110004 .059 b.090	106 a110108148166184204232192108 0 .064 b.095	144 8143123158174188205228185100 .011 .080 b.116	188 a168145175184197211229183096 .016 .087 b.120	249 8209173195199208217233184090024098 b.130	295 a221199214215220226239186092 .024 .100 b.140	354 a296220225226229237180080 .036 b.117 b.157	415 a357243247237235233237177073 .047 .133 b.175

aFaired value.

bLower surface only.

NACA 16-308.94 PROPELLER BLADE SECTION (x = 0.50)

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J M _x αx' Δβ αi cn cm	1.623 .383 10.56 .25 2.38 .9803 0228	1.736 .399 8.64 .21 2.09 .8613 0188	1.822 .413 7.26 .18 1.81 .7479 0310	1.924 .423 5.73 .16 1.56 .6478	2.060 .443 3.82 .12 1.21 .5006 0275	2.168 .459 2.42 .09 .95 .3945 0374	2.315 .478 .66 .06 .65 .2719 0454	2.432 .496 64 .03 .41 .1739 0628	2.566 .514 -2.03 0 .15 .0616 0578	2.511 .505 -1.47 .01 .25 .1071 0586	2.397 .488 26 .04 .49 .2048 0565	2.243 .466 1.50 .07 .81 .3352 0457	2.105 .450 3.23 .11 1.08 .4445 0331	1.990 .432 4.78 .14 1.33 .5520 0314	1.883 .418 6.33 .16 1.63 .6752	1.772 .406 8.06 .20 1.98 .8149 0268	1.686 .391 9.47 .23 2.23 .9216 0117
	c/b	No.	Pressure coefficient, P															
-	0.000 .025 .050 .100 .200 .400 .500 .600 .700 .800 .900	1.037 -1.677 -1.705 -1.732 -1.542 -1.175 828 588 453 344 241 132 078	1.041 -2.411 -2.257 -1.599 901 764 659 572 504 395 251 063 .009	1.044 -1.794 -1.486 -1.098 865 759 652 573 522 423 272 052 .026	1.046 -1.406 -1.225917752674590531496409272036 .061	1.050 981 892 692 609 567 501 469 448 379 254 021	1.054 609 634 544 521 510 474 451 454 403 296 064 .082	1.059 240 355 358 397 418 408 402 421 389 308 083 116	1.063 .097 156 220 305 349 354 369 399 379 322 092	1.068 .251 .052 075 207 274 299 332 374 316 103	1.065 .250 038 138 249 309 333 352 387 321 102 .031	1.061 108 267 312 383 423 423 433 453 453 433 433 433 433	1.056426443454464470445435440402301070	1.052 790 767 568 536 486 486 454 393 279 043 .092	1.048 -1.166 -1.025793678621549505477405274035	1.045 -1.545 -1.319974791705608546506420273045	1.042 -2.446 -2.581 -1.188 -898 -777 664 579 515 405 263 048	1.039 -1.955 -1.969 -1.899 -1.268 -830 -634 -530 -455 -233 -084 -017
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .975 1.000	.819 .640 .474 .335 .254 .177 .112 .053 008 016 024 039 b049	.768 .580 .422 .287 .212 .144 .081 .039 005 001 .046 b.060	.696 .514 .359 .236 .167 .113 .051 .016 021 001 .023 .044 b.049	.592 .420 .290 .187 .129 .080 .031 001 026 001 .022 .045	.420 .283 .193 .110 .068 .032 010 027 033 015 .014 .056 b.080	.215 .122 .074 .015 008 036 062 076 078 036 .020 .088 b.140	007 041 036 062 067 080 093 093 093 028 .056 .132 b.171	203181126126116116121109102012 .069 .159 a.233	478360244216188177158144110022 .071 .163 a.225	359292199183164157154135116021069160 a.222	191186151158153156146065 .016 .101 a.195	.111 .097 .015 026 042 058 083 086 088 039 .037 .113	.319 .203 .133 .062 .027 002 037 051 066 028 .007 .065 b.104	.487 .333 .224 .136 .083 .042 007 026 052 017 .011 .039	.633 .456 .314 .204 .142 .092 .038 .009 -024 .002 .025 .038	.746 .559 .399 .268 .197 .133 .073 .034 -012 001 .023 .045 b.051	.792 .614 .451 .317 .236 .168 .102 .057 .001 .001 .009 .023

aFaired value.

bLower surface only.

NACA RM 19112

NACA

CONFIDENTIAL TABLE 4.— PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-308.94 PROPELLER BLADE SECTION (x = 0.50) - Continued

(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J M _x α _x * Δβ α ₁ c _n c _m	1.730 .476 8.74 .30 2.20 .8876 0169	1.829 .491 7.16 .28 1.94 .7884 0294	1.931 .504 5.63 .25 1.62 .6635 0309	2.031 .522 4.22 .20 1.33 .5477 0288	2.135 .538 2.84 .16 1.07 .4413 0362	2.267 .560 1.22 .11 .81 .3365 0474	2.361 .577 .14 .07 .60 .2516 0540	2.479 .597 -1.14 .03 .34 .1435 0623	2.564 .611 -2.00 01 .17 .0706 0628	2.445 .588 78 .04 .43 .1797 0597	2.325 .567 .55 .08 .67 .2810 0549	2.218 .549 1.81 .13 .88 .3652 0409	2.114 .532 3.12 .16 1.09 .4516 0344	1.981 .509 4.91 .22 1.49 .6132 0327	1.889 .494 6.25 .26 1.76 .7189 0314	1.803 .484 7.56 .29 2.01 .8166 0258
	c/b	Pressure coefficient, P															
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .950	1.058 -2.279 -2.255 -1.775 961 785 684 588 505 396 243 068 001	1.063 -2.201 -1.625 -1.155 909 792 683 594 528 422 257 044	1.065 -1.430 -1.279 953 794 710 620 554 508 420 264 024	1.070 -1.065 -1.008 773 683 563 516 484 410 265 012	1.074 721 755 613 583 560 513 487 472 416 287 034 097	1.080 -337 -460 -432 -466 -480 -452 -452 -458 -305 -070	1.085 094 268 300 380 416 414 418 4418 4411 335 076 .069	1.091 .155 059 153 280 344 360 399 419 406 346 089	1.096 .315 .082 051 207 288 322 357 405 401 343 093	1.089 .086 116 193 307 361 374 391 423 402 341 080	1.082 178 335 349 410 4430 432 430 446 418 325 075	1.077 469 563 496 507 507 478 461 459 415 298 050	1.072 777 795 637 598 569 523 490 473 413 282 030 .097	1.066 -1.245 -1.1368587356695935364964490268021	1.063 -1.660 -1.401 -1.039 843 744 644 572 514 420 258 033	1.060 -2.426 -1.848 -1.200 916 791 676 585 510 406 241 042 .024
- 1	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .975 .975	a.743 .594 .434 .297 .220 .149 .087 .034 012 004 .009 .034 a.028	.710 .524 .375 .248 .177 .117 .061 .015 021 003 .017 .035 a.061	.591 .421 .291 .184 .127 .074 .026 010 036 012 .014 .030 b.038	.455 .304 .207 .117 .071 .028 012 044 060 021 .008 .037	.287 .174 .109 .041 .011 024 051 075 084 030 .017 .069 b.080	.073 .035 002 042 052 074 091 101 095 024 .045 .128 a.185	092 107 078 095 094 107 115 115 099 014 .065 .162 a.204	329 274 182 175 155 158 153 140 113 014 .084 .183 a.230	524 394 269 242 205 196 184 161 162 012 .091 .190 a.246	247215148146131139137131107009 .080 .182 a.225	026 061 048 073 077 093 103 107 095 018 .061 .151 a.199	.157 .073 .042 010 027 052 075 087 087 035 .032 .094	.317 .196 .126 .053 .021 014 045 067 078 036 001 .053 b.124	.526 .365 .251 .150 .099 .053 .007 023 046 016 .007 .033 a.080	.656 .477 .335 .221 .156 .098 .049 .006 024 004 .021 .033 a.060	.742 .555 .399 .271 .199 .136 .079 .031 007 .006 .029 .049

aFaired value.

bLower surface only.

NACA 16-308.94 PROPELLER BLADE SECTION (x = 0.50) - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

_										- , 0.1	<i>A</i> 1							
	J M _X Δβ α _i c _n c _m	1.907 .545 5.98 .37 1.80 .7359 0277	1.961 .556 5.20 .33 1.59 .6544 0286	2.056 .576 3.88 .27 1.34 .5516	2.132 .590 2.88 .22 1.09 .4529 0364	2.216 .607 1.83 .16 .94 .3929 0429	2.305 .621 .77 .09 .74 .3084 0565	2.386 .638 12 .03 .54 .2265 0621	2.454 .652 88 02 .39 .1645 0674	2.539 .668 -1.76 08 .18 .0781 0696	2.518 .664 -1.54 07 .24 .0997 0678	2.429 .645 61 0 .46 .1932 0660	2.342 .630 .35 .06 .65 .2703 0579	2.282 .618 1.04 .11 .79 .3287 0519	2.172 .599 2.38 .19 1.03 .4258 0374	2.080 .580 3.56 .25 1.23 .5071 0328	2.030 .573 4.23 .29 1.42 .5839 0292	1.957 .556 5.25 .33 1.65 .6758 0286
	с/ъ								Pressure	coeffic	ient, P			150				
Thraw anypood		1.076 -1.981 -1.401 -1.055 870 769 665 583 522 417 245 014	1.079 -1.435 -1.260 950 812 731 642 572 525 432 267 016 .067	1.085 -1.042 -1.015 773 700 650 581 531 498 419 266 008	1.090 742 792 640 616 587 535 503 485 420 278 015	1.095 475 588 522 541 540 507 488 486 432 304 038	1.100 216 380 452 480 469 464 480 442 327 069 .082	1.105 019 216 274 377 426 430 440 466 435 360 075	1.111 .126 .092 .185 319 385 403 425 461 441 376 090	1.117 .296 .060 071 238 323 359 394 445 434 368 087 .060	1.115 .259 .025 098 257 339 370 402 449 437 368 095 .053	1.108 .074 137 218 341 399 414 429 464 438 370 085 .066	1.103 136 316 342 424 461 456 456 477 443 340 074 .082	1.099 -285 -437 -422 -477 -500 -482 -472 -482 -444 -316 -060	1.092 620 702 586 584 568 534 495 484 424 287 022	1.086 942 943 729 675 634 573 527 520 424 272 012	1.084 -1.161 -1.091 -824 -738 -676 -600 -545 -345 -425 -265 -012 .084	1.079 -1.521 -1.296 975 826 737 645 572 523 425 257 012
Town anypage	1 .//-	.646 .472 .335 .220 .157 .098 .047 .004 025 006 .019 .033	.561 .397 .274 .168 .111 .061 .014 025 050 012 .006 .026 b.036	.431 .287 .195 .109 .065 .022 016 049 062 014 .003 .040	.309 .192 .128 .057 .024 011 068 074 017 .015 .070	.173 .085 .053 0 020 047 068 086 082 015 .041 .103	.005 038 031 064 069 089 100 113 094 002 .065 .157 a.227	148 150 104 119 112 125 128 135 105 003 .075 .176 a.245	303 262 175 172 156 156 154 117 002 .085 .189 a.250	556 393 263 241 210 203 190 175 127 002 .094 .196 a.290	480 363 240 226 200 193 184 172 126 012 .090 .192 a.248	244 219 150 153 140 148 148 116 017 .081 183 a.242	057 084 063 085 087 106 114 124 104 020 .063 .156	.054 001 007 045 057 076 091 105 090 020 .057 .137	.247 .146 .093 .029 .004 031 059 082 082 033 .022 .080 b.124	.386 .253 .169 .087 .047 .005 031 063 073 035 .003 .040	.471 .321 .220 .127 .080 .035 008 043 060 027 .004 .035 b.053	.587 .418 .295 .184 .128 .077 .026 014 039 014 .014 .030

aFaired value.

bLower surface only.

NACA RM L9L12

CONFIDENTIAL
TABLE 4.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-308.94 PROPELLER BLADE SECTION (x = 0.50) - Continued

(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$.

						(-/		, 10.75R						
	J M _X α _X Δβ α _i c _n c _m	2.058 .623 3.85 .28 1.34 .5523 0280	2.138 .635 2.80 .23 1.14 .4716 0388	2.221 .649 1.77 .18 .97 .4026 0493	2.299 .665 .84 .13 .78 .3239 0570	2.371 .678 .03 .07 .60 .2510 0646	2.446 .696 50 .01 .42 .1790 0737	2.516 .711 -1.52 05 .25 .1045 0694	2.472 .700 -1.07 01 .33 .1387 0732	2.411 .686 42 .04 .51 .2132 0676	2.353 .675 .23 .09 .65 .2735 0607	2.279 .656 1.07 .12 .87 .3613 0522	2.209 .646 1.92 .19 1.03 .4268 0472	2.108 .626 3.19 .25 1.22 .5058 0329
1	c/b	经 是 [1]			4 4 1 1		Pressu	re coeffici	ent, P					
Upper surface	1100	1.100 -1.003 -1.025 788 725 679 608 555 521 435 269 001	1.105 723 809 664 6649 623 568 530 513 442 287 011	1.110 470 607 548 575 580 544 522 519 457 313 039	1.115 220 399 411 488 522 509 503 516 472 332 064	1.120 033 241 302 415 470 476 482 509 471 377 076	1.128 .167 066 174 326 407 432 460 503 1485 407 091	1.133 .140 .051 081 258 352 392 433 489 471 402 095	1.130 .216 022 140 299 388 418 452 500 478 407 096 .058	1.123 .064 157 241 372 438 451 469 502 469 390 079 .076	1.120 081 283 331 432 481 481 487 508 469 359 072 .085	1.112 317 479 467 524 528 527 518 522 476 327 057	1.108 512 639 564 585 584 545 522 514 452 307 032 110	1.101 866 915 757 686 649 588 544 518 438 279 009
Lower surface		.402 .266 .179 .095 .053 .007 029 065 077 036 .002 .038	.293 .180 .120 .049 .017 020 050 078 081 031 .020 .075 b.072	.165 .080 .051 005 026 054 076 096 091 028 .041 .109	.006 041 033 069 075 096 110 120 105 024 .060 .150	145 152 110 125 122 135 140 148 119 022 .072 177	354 303 203 200 181 184 178 172 131 018 .088 .197 a.320	558 406 269 252 225 215 204 187 135 013 .101 .207 a.300	426350228222202199193182137019 .088 .196 a.315	233 217 151 157 147 157 157 157 126 024 .076 .185	096 115 086 107 106 121 132 113 115 023 .067 .169 a.248	.068 .005 005 045 059 083 100 113 104 030 .049 .131 b.186	.188 .099 .061 .004 019 050 072 094 092 033 .032 .095 b.129	.349 .224 .149 .071 .034 005 041 072 082 036 .006 .054

aFaired value. bLower surface only.

NACA 16-308.94 PROPELLER BLADE SECTION (x = 0.50) - Continued

(e) M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

		1													
	J M _X α _X ' Δβ α _i c _n c _m	2.110 .702 3.17 .26 1.29 .5335 0374	2.136 .699 2.83 .24 1.21 .5032 0385	2.160 .694 2.53 .22 1.13 .4690 0416	2.186 .691 2.20 .19 1.09 .4532 0413	2.230 .689 1.66 .16 .97 .4039 0429	2.246 .684 1.47 .15 .89 .3710 0447	2.279 .683 1.08 .13 .81 .3384 0464	2.305 .679 .77 .11 .72 .2997 0472	2.338 .676 .40 .09 .61 .2561 0488	2.368 .673 .06 .07 .52 .2165 0524	2.394 .671 23 .05 .44 .1865 0529	2.434 .668 66 .03 .38 .1610	2.468 .667 -1.03 .01 .28 .1187 0578	2.511 .661 -1.47 02 .19 .0797 0579
	c/b				_ 4			Pressure	coefficie	nt, P			3.27.6		
Transfer women	100	1.130 713 921 735 748 730 656 599 564 455 261 .026	1.129 652 836 695 710 701 636 587 558 456 270 .020 .122	1.127 567 735 638 661 560 571 549 456 276 .017	1.126 514 680 607 641 648 659 568 552 465 289 .004	1.125 395 566 529 581 597 560 541 533 457 291 .001	1.123 -343 -517 -498 -558 -582 -549 -534 -534 -301 -010 -123	1.123 247 430 436 513 514 519 513 457 304 014 125	1.121 178 365 391 476 517 495 505 453 310 025 119	1.120 082 281 330 431 481 468 474 491 447 312 033 .115	1.118 008 217 283 395 452 447 458 444 318 042 110	1.118 .043 170 247 368 428 428 444 470 439 321 046 .108	1.117 .119 099 193 323 392 400 450 452 429 320 051 .105	1.116 .190 034 143 290 365 382 405 446 427 327 064	1.114 .271 .037 087 245 327 352 381 425 414 326 070 .088
Togother work	1 . 550	.316 .199 .137 .064 .027 016 047 073 092 035 .013 .058 b.088	.283 .174 .118 .048 .014 027 054 079 094 037 .016 .063	.240 .140 .093 .029 0 039 064 098 036 .019 .069 b.103	.200 .106 .066 .006 019 078 078 109 045 .013 .067	.138 .061 .035 014 035 064 084 106 036 .026 .083 b.135	.099 .029 .011 -032 -050 -077 -095 -1109 -112 -041 .026 .085	.037 017 019 055 067 090 106 115 114 037 .033 .096 b.130	019 060 050 079 086 105 118 124 120 042 .031 .098 b.147	094 115 088 106 108 122 131 134 125 040 .037 .109	162 165 119 130 126 140 143 142 130 039 .039 .114 b.159	210 199 140 145 137 148 145 129 036 .046 .123 b.180	280 247 168 163 151 158 154 126 029 .056 .134 b.179	371 306 203 192 175 178 170 157 133 031 .059 .139 b.200	487 360 242 220 196 193 181 163 132 026 .069 .151 b.191

bLower surface only.

NACA 16-308.94 PROPELLER BLADE SECTION (x = 0.50) - Continued

(f) M = 0.60; $\beta_{0.75R} = 45^{\circ}$.

								.0.12K						
	J M _X α _X • Δβ α ₁ c _n c _m	2.099 .753 3.31 .21 1.37 .5690 0508 0065	2.134 .751 2.86 .20 1.29 .5335 0513 0050	2.159 .746 2.54 .19 1.19 .4942 0531	2.188 .740 2.18 .17 1.14 .4735 0590	2.221 .736 1.77 .15 1.03 .4281 0584	2.262 .73 ⁴ 1.28 .12 .88 .3677 0615	2.288 .731 .97 .11 .82 .3406 0629	2.319 .728 .61 .09 .73 .3065 0643	2.353 .725 .22 .06 .61 .2555 0655	2.381 .720 09 .04 .54 .2258 0677	2.423 .719 55 .01 .46 .1919 0712	2.461 .715 95 02 .36 .1535 0733	2.512 .711 -1.48 06 .21 .0877 0761
1	c/b						Pressu	re coeffic	cient, P					
	0.00 .00 .00 .00 .00 .00 .00 .00 .00 .0	25555 851 681 786 00839 00859 00765 00707 477 00265 00221	1.149 502 752 651 742 785 794 719 679 480 277 .016	1.148 448 659 613 700 750 733 678 653 490 294 .002	1.145383561564651708682640632491302002 .133	1.143 321 512 517 610 666 647 620 498 313 014 128	1.142 197 390 430 537 602 596 588 603 513 326 060	1.141 155 350 401 513 578 576 600 517 336 044 .111	1.140 083 281 348 466 534 545 573 502 337 044 .113	1.139 008 213 295 423 495 508 524 556 496 348 056	1.137 .051 159 255 393 469 508 546 497 371 069 .093	1.137 .119 095 205 352 433 457 485 530 488 380 077 .086	1.135 .194 025 150 397 395 426 461 512 480 394 087	1.133 .291 .066 074 245 337 379 421 480 461 386 092 .065
1	Lower surface	.115 .041 .003 .003 .003 .007 .074 .092 .113 .060 .015 .073	.238 .142 .097 .028 005 041 075 091 107 036 .031	.186 .100 .065 .002 026 058 087 101 113 034 .035 .106	.148 .071 .045 010 035 041 090 098 108 029 .045 .121	.099 .032 .017 -033 051 077 073 107 112 028 .047 .128	.004 041 034 073 083 100 119 120 118 029 .056 .146	039 076 059 089 114 131 128 124 032 .056 .149 b.210	091112080105107121134128121025 .067 .159 .215	167 170 120 134 131 139 149 128 025 .070 .170 a.233	239222157163153159164150135028 .070 .171 a.230	309274187185170171173156135023081181240	409343228220197193189166139022 .087 .190 a.249	576409271251219205197165130009 .105 .204 a.250

^aFaired value. ^bLower surface only.

CONFIDENTIAL

NACA RM L9L12

NACA 16-308.94 PROPELLER BLADE SECTION (x = 0.50) - Concluded

(g) M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

_														
	J M _X α _X * Δβ α ₁ cn cm	2.114 .814 3.11 .22 1.17 .4845 0749 .0075	2.150 .813 2.65 .18 1.14 .4723 0803 .0084	2.170 .806 2.40 .17 1.09 .4535 0810 a.0089	2.193 .803 2.11 .15 .99 .4123 0724 .0099	2.220 .800 1.78 .13 .95 .3948 0685 .0093	2.245 .797 1.48 .12 .85 .3555 0637 .0110	2.270 .794 1.18 .11 .75 .3135 0644 .0102	2.286 .790 .99 .10 .71 .2961 0637	2.318 .789 .62 .07 .62 .2594 0623 .0119	2.338 .784 .40 .06 .55 .2277 0651 .0126	2.368 .781 .06 .04 .47 .1971 0647 .0137	2.385 .776 13 .02 .41 .1723 0624 .0147	2.415 .773 46 01 .35 .1458 0668 .0145
	c/b						Pressur	e coeffici	ent, P					
Unner surface		1.177223482463608687766796888826316118030	1.177189438444588676752785887901308101006	1.173 154 398 423 570 659 731 774 873 940 282 058	1.172 115 353 396 548 632 710 757 849 934 255 012	1.170 094 329 381 539 622 707 750 839 906 249 .005	1.169 051 286 349 510 599 684 713 806 809 247 .025	1.168 .041 196 270 435 539 608 635 726 706 213	1.166 .018 219 303 469 581 638 667 750 728 282 .023 .129	1.165 .065 171 264 433 551 599 682 292 .022 .134	1.163 .108 130 234 409 525 573 596 692 657 309	1.162 .153 087 200 378 495 545 573 674 628 320 .003 .132	1.160 .181 057 180 360 475 524 562 662 598 334 011 .128	1.159 .228 014 145 329 442 494 539 637 583 346 021
T.men Burface		.149 .067 .044 025 062 110 150 184 213 135 075 039	.110 .036 .023 041 077 122 159 214 130 062 016 b002	.075 .007 .002 058 090 131 165 190 206 114 036	.039 023 020 075 102 141 172 190 201 103 021 .044 b.079	.008 048 038 090 111 150 177 192 197 098 012	030 078 060 104 124 157 181 191 188 088 .001	034 071 040 076 091 121 140 139 032 .059 1.134 b.172	120147112142152180195198187017 .017	166184131156161184195195196067030105 b.152	229232164182182199202201182065 .032 .108 b.144	286272188199195211213203179058 .041 .120 b.163	337 310 211 217 211 221 221 228 180 083 043 122 b-165	411 357 235 240 227 230 227 209 176 051 .052 .133

aFaired value.

bLower surface only.

CONFIDENTIAL

TABLE 5.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-307.50 PROPELLER BLADE SECTION (x = 0.60)

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J M _x αx' Δβ α ₁ c _n c _m	1.634 .421 10.49 .42 2.47 .9466 0226	1.770 .437 8.20 .36 2.27 .8740	1.888 .451 6.34 .30 1.89 .7301 0384	1.995 .463 4.78 .25 1.54 .5983 0424	2.144 .488 2.71 .18 1.12 .4397 0459	2.263 .497 1.19 .12 .81 .3210	2.397 .518 47 .05 .53 .2110 0601	2.570 .537 -2.36 03 .08 .0300 0568	2.501 .529 -1.58 0 .25 .1010 0566	2.328 .506 .41 .08 .67 .2645 0532	2.210 .493 1.86 .15 .97 .3803 0452	2.085 .474 3.51 .21 1.28 .5006 0444	1.974 .460 5.08 .26 1.60 .6236 0454	1.857 .446 6.83 .32 1.98 .7682 0328	1.735 .431 8.76 .37 2.33 .8967 0154
1.	c/b							Pressure	e coefficie	ent, P						
- 1	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .950	1.045 -1.837 -1.811 -1.692 -1.385 -1.013727542427325229150110	1.049 -2.412 -2.308 -1.519903750634553472375247090021	1.052 -1.814 -1.289 986 758 682 536 479 391 259 059	1.056 -1.142 976 796 640 608 538 502 464 391 275 059 .041	1.061 689 669 566 492 500 459 454 434 381 285 072 .092	1.063 360 404 409 394 421 404 404 414 375 291 081	1.069 020 149 228 279 334 355 376 362 295 094	1.074 .336 .139 014 134 222 256 292 323 318 273 093 .008	1.072 .201 .024 100 193 268 292 317 343 330 281 091	1.065 160 260 308 379 375 382 401 375 303 095 .021	1.062 500 505 475 435 450 425 425 425 427 287 074	1.057 900 786 651 551 545 490 471 442 381 276 059	1.054 -1.248 -1.051 843 674 630 557 517 475 399 281 068 .028	1.051 -2.219 -1.579 -1.028 771 702 604 546 483 388 258 065 .012	1.048 -2.462 -2.333 -1.547 -1.008 -779 -627 -523 -439 -338 -222 -087 -030
- 1	.0375 .075 .150 .250 .350 .450 .450 .550 .750 .750 .925 .975 .925	.805 .653 .486 .357 .275 .209 .136 .084 .028 005 032 084 b125	.736 .579 .420 .298 .226 .170 .110 .069 .032 .022 .028 .031	.648 .496 .353 .245 .186 .140 .087 .059 .032 .037 .059 .082	.496 .374 .255 .163 .121 .083 .043 .019 .002 .019 .046 .066	.254 .191 .122 .064 .041 .016 014 024 024 002 .031 .054	.076 .071 .037 .001 -007 -022 -042 -047 -032 0 .049 .086	170103078085075073080071048001 .059 .110 a.135	539353250215172149140117080016 .061 .136 a.182	385 246 177 164 133 118 115 100 067 067 064 134 a.175	072 038 038 055 055 060 072 069 062 010 .045 .093 a.114	.161 .124 .076 .031 .016 004 027 034 029 .001 .041 .074 b.094	.364 .274 .185 .111 .079 .050 .015 003 014 .010 .042 .060 b .070	.522 .394 .270 .180 .130 .090 .048 .022 .003 .019 .045 .068	.666 .512 .364 .252 .193 .142 .086 .057 .026 .029 .049 .071	.770 .609 .446 .320 .251 .190 .127 .084 .043 .027 .027 .014

aFaired value.

bLower surface only.

NACA 16-307.50 PROPELLER BLADE SECTION (x = 0.60) - Continued

(b) $N = 1350 \text{ rpm}; \beta_{0.75R} = 45^{\circ}.$

1																	1	
	J M _X	1.689 .506	1.773	1.865	1.995	2.092	2.185	2.302	2.409	2.565	2.495	2.384	2.284	2.172	2.074 .563 3.66	1.949 .541 5.44	1.859 .526 6.80	1.738 .511 8.72
	α _x ' Δβ	9.54	8.15 .54	6.70	4.77 .37	3.42	2.18	.71	56 .06	-2.29	-1.53 01	27	.93	2.35	.30	.42	.49	•55
	a ₁	2.52	2.33	2.04	1.64	1.34	.4261	.81	.51	.09	.28	.58	.83 .3290	.4523	1.40	1.76	2.13	2.39
	c _n	·9730 0157	0173	0307	0417	0465	0512	0553	0587	0630	0652	0588	0560	0494	0436	0379	0271	0160
	cc																	
	c/b	-					1		Pressure	e coeffic	cient, P							
	0.000	1.065	1.069	1.073	1.077	1.083	1.086	1.092	1.098	1.107	1.102	1.096	1.091	1.085	1.081	1.075	1.071	1.067
1	.050	-2.073	-2.100	-1.622	-1.097	863	608	360	135	.141	.020	188	386	657	911	-1.194	-1.883	-2.241
Rurface	.100	-1.772 -1.344	-1.7 <i>6</i> 4 -1.074	-1.112	904	714	564	392	233	023 156	113	269	409	590 527	738 625	971 763	-1.200 859	-1.617
urf	-300	972	782	765	680	604	534	454	376	259	306	383	449	540	613	707	764	841
	• 400	727 571	648	659	598	544	500	438	381	296	332	390	440	498	549	620 567	657 583	673
Тров	.600	458	561	591 523	555 507	489	482	447	421	378	391	425	453	473	487	513	512	468
F	.700	355 250	374	422	423	420	425	403	393	371	376	402	412	413	415	422	410	364
	.900	147	245	070	058	301	086	083	313	315 103	318	098	092	074	061	059	072	112
	•950	104	043	.009	.035	.039	.031	.035	•030	.015	.007	.023	•030	.042	.043	.024	.002	056
	.0375	.764	.722	.641	.499	.345	.174	003	233	559	430	176	.019	.228	.387	·555	.669	• 742 • 585
	.075	.606	.565	.491	· 375 · 257	.254	.128	006	149	391 281	276	112	.019	.169	.190	.287	.369	.426
008	.250	.314	.287	.229	.161	.092	.019	047	128	243	190	107	035	.045	.110	.189	.254	.302
Rurface	.350	.240	.217	.172	.115	.060	0019	047	107	199 176	156	092	040	001	.043	.136	.191	.176
	* 550	.106	.098	.069	.031	007	046	071	111	164	139	101	068	028	.005	.044	.084	.107
Tower.	.650	.056	.049	.031	016	025	055	069	104	138 097	118	092	068	041	015	011	.044	.055
1	.000	028	004	002	006	015	025	016	024	030	019	020	014	012	007	007	.011	003
	•925	045	013 059	019	.015	.017	.019	.035	.039	.049	.058	.044	.041	.028	.021	.010	.019	010
	1.000	b161	b092	b040	b020	b.019	b.051	b.092	a.115	a.145	a.170	a.125	a.104	b.055	b.028	b.010	b.021	b033

Faired value.

bLower surface only.

NACA 16-307.50 PROPELLER BLADE SECTION (x = 0.60) - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

		And the second second	-													
	J Mx αx' Δβ αi cn cm	2.536 .710 -1.98 16 .14 .0574 0724	2.445 .691 97 03 .40 .1581 0691	2.360 .676 .01 .09 .63 .2516 0628	2.259 .656 1.24 .23 .96 .3781 0579	2.183 .644 2.21 .33 1.18 .4655 0522	2.088 .626 3.47 .44 1.44 .5652 0451	2.010 .614 4.56 .53 1.70 .6665 0354	1.948 .603 5.46 .58 1.95 .7588 0285	1.975 .606 5.06 .56 1.82 .7111 0335	2.055 .624 3.93 .48 1.55 .6058 0438	2.140 .637 2.77 .38 1.28 .5013 0515	2.221 .652 1.72 .28 1.08 .4245 0542	2.312 .668 .59 .15 .79 .3116 0613	2.389 .682 33 .05 .58 .2284 0671	2.474 .697 -1.29 11 .33 .1329 0728
1	c/b							Pressur	e coeffic	ient, P						
	0.000 .025 .050 .200 .300 .400 .500 .600 .900 .950	.348 .138 .026 171 284 325 375 417 405 338 093	1.126 .170 017 153 259 351 378 449 449 419 344 094	1.120 042 193 285 346 418 426 439 459 424 331 079	1.112 367 448 466 461 500 480 475 480 424 313 061	1.108 637 657 604 546 565 526 513 495 428 306 054 065	1.101 -1.010 936 767 640 574 505 425 290 042 067	1.097 -1.635 -1.119914743706619518425277035058	1.094 -2.236 -1.844 989 812 752 653 585 522 419 261 029 .049	1.095 -1.980 -1.313 965 779 729 637 518 418 265 025 060	1.101 -1.241 -1.080 810 689 593 550 509 422 282 034 065	1.105 799 779 680 589 602 549 528 501 428 300 048 066	1.101 504 553 537 502 531 502 494 425 306 055 .067	1.117 189 310 369 399 459 450 456 470 423 323 071 .056	1.122 .028 135 242 317 397 407 427 448 416 332 080 .046	1.128 .230 .035 113 230 329 361 396 430 408 339 091 .029
	.03° .07' .150 .250 .355 .450 .550 .650 .750 .850 .92' .97'	369 268 235 186 165 158 135 086 009 077 151	372 237 172 169 136 126 126 114 077 009 .071 .139 a.185	158 097 077 102 083 085 097 094 068 013 .056 .112 a.159	.083 .071 .041 009 012 029 050 059 047 005 .049 .087	.225 .173 .111 .050 .029 .008 -022 -036 -031 -004 .042 .072	.376 .285 .192 .116 .082 .048 .011 013 016 .001 .033 .040	.504 .384 .267 .174 .129 .085 .042 .010 -003 .005 .026 .017	.595 .457 .326 .221 .168 .117 .069 .032 .007 .010 .023 .007 b021	.560 .431 .303 .204 .155 .106 .062 .028 .005 .012 .031 .015	.441 .337 .229 .145 .106 .068 .029 .002 005 .005 .031 .031	.294 .223 .147 .079 .053 .024 007 027 025 002 .039 .058	.162 .127 .082 .024 .013 -008 -032 -043 -035 -002 .048 .082 b.098	037 014 019 056 048 057 071 076 056 008 054 102	210 132 097 115 093 091 097 093 062 005 067 130 a.165	443 272 197 186 148 136 133 117 076 004 .082 .158 a.195

^aFaired value. ^bLower surface only.

NACA 16-307.50 PROPELLER BLADE SECTION (x = 0.60) - Continued

(a) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J M _X α _X , Δβ α ₁ c _n c _m	2.505 .757 -1.64 18 .15 .0600 0769 .0219	2.478 .749 -1.34 12 .28 .1123 0803 .0165	2.404 .733 50 .02 .54 .2135 0698	2.333 .721 .34 .15 .76 .3016 0647	2.279 .710 .99 .23 .94 .3723 0609	2.211 .697 1.84 .32 1.13 .4442 0546	2.158 .686 2.53 .39 1.32 .5168 0508	2.116 .679 3.09 .45 1.46 .5729 0462	2.041 .663 4.12 .54 1.68 .6568 0398	2.070 .670 3.72 .50 1.63 .6381 0492	2.136 .682 2.83 .42 1.37 .5361 0487	2.178 .689 2.27 .36 1.25 .4910 0552	2.245 .701 1.42 .27 1.04 .4126 0595	2.306 .713 .66 .19 .85 .3358 0648	2.374 .728 15 .08 .66 .2623 0678	2.444 .741 96 06 .42 .1671 0768 .0148	
- 1	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.152 .354 .142 031 186 315 370 429 488 467 373 093 .040	1.149 .285 .079 083 221 341 389 437 485 457 373 088 .039	1.142 .102 081 212 314 412 440 467 497 459 355 076 .055	1.137 097 248 342 402 482 486 497 514 463 342 070	1.133 286 403 453 469 532 516 513 455 325 056 .072	1.128 506 582 576 544 550 540 527 450 315 048	1.124 739 773 696 614 636 581 559 529 445 302 039	1.121 937 946 783 659 671 602 567 528 439 290 032 075	1.115 -1.427 -1.324 861 754 642 536 436 277 025 .068	1.117 -1.251 -1.186 853 721 711 625 577 530 433 277 024 .074	1.122 836 857 743 641 659 594 565 531 445 299 038 .075	1.125 645 697 650 586 614 567 552 528 447 306 040	1.130 391 489 514 508 556 534 524 521 452 319 052	1.134 179 318 391 434 506 502 505 519 459 335 065	1.141 .006 -162 276 357 447 461 504 458 341 067	1.145 .204 .007 144 268 379 415 456 495 462 372 087	
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	,909 ,359 ,296 ,267 ,218 ,194 ,183 ,157 ,105 ,018 ,074 ,149 a,188	615325245227184167161140095011 .079 .159 a.215	-,289 -,184 -,137 -,149 -,123 -,117 -,123 -,115 -,081 -,066 -,134 a,170	108 063 055 088 076 081 094 094 071 015 .055 .109	.037 .039 .017 028 030 043 064 070 054 008 .050 .096	.159 .127 .078 .021 .008 013 054 045 045 008 .041 .075	.271 .209 .140 .070 .046 .018 012 033 030 003 .041 .064 b.068	.343 .263 .178 .104 .072 .039 .004 018 020 0 .036 .051	.457 .352 .244 .137 .115 .074 .032 .003 007 .001 .026 .021 b.011	.426 .327 .227 .142 .105 .067 .027 001 006 .003 .033 .033	.305 .233 .156 .083 .056 .027 006 027 003 .038 .057	.233 .181 .120 .055 .033 .008 020 038 032 001 .045 .073 b.090	.101 .086 .051 003 010 027 050 060 047 007 .048 .088	043 017 023 063 065 082 085 063 013 013 013	185 115 088 111 092 093 102 097 070 009 .062 .123	416 263 193 189 153 141 141 125 085 009 .074 .147 a.180	

aFaired value.

bLower surface only.

NACA RM 19112

CONFIDENTIAL
TABLE 5.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-307.50 PROPELLER BIADE SECTION (x = 0.60) - Continued

(e) M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

									0.120							
	J M _x α _x ^t Δβ α _i cn c _m	2.122 .753 3.01 .42 1.53 .6019 0569	2.149 .749 2.66 .38 1.43 .5619 0569 0068	2.177 .745 2.29 .34 1.33 .5226 0652	2.195 .740 2.06 .31 1.28 .5032 0628	2.224 .735 1.68 .27 1.17 .4600 0666	2.250 .732 1.36 .24 1.07 .4232 0682	2.279 .728 .99 .20 .99 .3897 0657	2.309 .724 .63 .16 .85 .3374 0675	2.338 .721 .27 .11 .75 .2948 0688	2.370 .717 10 .09 .65 .2584 0710	2.405 .713 51 .04 .53 .2113 0714	2.435 .709 86 0 .46 .1813 0718	2.468 .706 -1.23 03 .34 .1368 0718	2.501 .702 -1.60 07 .24 .0945 0723	2.535 .699 -1.97 10 .12 .0474 0732
	c/b		-1					Pressi	re coeff	lcient, P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800	1.150 662 893 804 719 767 697 611 464 281 002	1.149 603 782 725 673 746 669 609 473 295 011	1.147 524 653 657 629 709 680 645 603 484 312 024	1.145 484 603 622 606 683 649 626 595 487 321 031 .091	1.143 404 521 558 562 636 611 601 581 487 327 037	1.142 319 444 496 516 571 571 564 485 334 047	1.140 246 379 442 548 540 544 543 475 333 050 .081	1.139 133 253 367 423 506 518 528 475 344 063	1.137 055 210 310 380 464 473 494 508 464 346 069	1.136 .022 1459 259 344 431 447 474 489 457 352 078 .058	1.134 .107 076 201 395 418 449 471 471 352 083	1.133 .158 028 164 275 372 398 435 459 435 350 088	1.132 .228 .032 114 238 340 370 418 444 425 343 086	1.130 .298 .091 063 202 309 346 402 431 417 340 089	1.129 .361 .149 -018 -168 -282 -321 -385 -416 -4409 -337 -093 .038
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925	.300 .235 .162 .089 .061 .032 005 029 026 .001 .046	.253 .201 .136 .067 .044 .017 037 032 001 .047 .068 b.070	.203 .161 .106 .045 .026 .002 028 045 036 001 .050 .078 a.090	.175 .140 .089 .031 .014 -007 -034 -050 -039 -001 .052 .083 b.096	.125 .105 .065 .013 .001 017 043 054 040 .001 .058 .091	.070 .064 .036 010 020 031 054 062 047 0 .058 .096	.024 .031 .013 027 031 041 060 066 046 .001 .060 .101	066 032 032 063 059 063 080 081 056 003 063 111 b.133	132 079 063 086 076 088 086 060 003 066 118 b.143	204 127 097 112 095 092 100 093 063 068 .125 a.157	285 181 133 141 116 107 110 101 067 003 .072 .135 a.174	346223160161131120121110074005 .072 .137 a.118	431 269 194 186 148 134 131 117 076 005 .072 .133 a.165	553 324 239 214 171 150 144 126 081 008 070 131 a 160	718 384 280 245 196 171 161 137 091 015 067 126 156

aFaired value.

bLower surface only.

NACA 16-307.50 PROPELLER BLADE SECTION (x = 0.60) - Continued

(f) M = 0.60; $\beta_{0.75R} = 45^{\circ}$.

	J M _x α _x ' Δβ α ₁ c _n c _m	2.124 .800 2.99 .32 1.47 .5768 0737 0005	2.154 .795 2.59 .31 1.36 .5361 0749 .0002	2.183 .794 2.21 .28 1.29 .5090 0759 .0018	2.204 .787 1.94 .26 1.23 .4832 0747 .0022	2.230 .783 1.61 .23 1.12 .4419 0724 .0041	2.258 .779 1.25 .19 1.02 .4039 0736 .0063	2.275 .770 1.04 .17 .95 .3758 0736	2.310 .769 .61 .11 .86 .3394 0772 .0088	2.337 .766 .29 .07 .75 .2977 0768 .0115	2.367 .762 07 .03 .67 .2661 0768 .0126	2.395 .758 40 01 .58 .2277 0763 .0137	2.427 .755 77 06 .46 .1806 0792	2.456 .751 -1.09 10 .38 .1519 0793 .0158	2.493 .747 -1.51 15 .28 .1097 0760	2.521 .744 -1.81 19 .18 .0697 0765
	c/b							Pressu	re coeff	Picient,	P _					
Upper surface		1.170 437 664 637 683 726 800 828 916 608 258 017	1.168387567594624701768802870546269004	1.168 331 486 550 568 664 741 760 796 549 284 006	1.164 311 462 533 556 652 734 711 740 538 293 010 .105	1.163 233 384 469 513 624 686 658 707 535 314 022	1.161 172 326 421 480 601 638 633 674 541 327 031	1.158 131 289 392 458 579 607 611 654 535 338 042 089	1.157 059 224 336 418 536 564 582 525 345 049 .084	1.156 .009 165 287 383 498 530 559 598 520 356 060 .074	1.154 .062 118 248 354 469 501 537 511 361 063	1.153 .133 056 197 316 433 471 512 556 502 371 076	1.151 .205 .008 145 276 396 437 486 531 490 376 084	1.150 .252 .048 110 248 370 414 468 513 481 374 086	1.148 .313 .105 061 208 335 379 438 487 465 366 088	1.147 .362 .150 021 177 305 353 415 466 450 361 088 .048
Lower sumface	1 -//-	.222 .178 .117 .044 .022 012 075 075 072 035 .018 .041 b.049	.178 .146 .095 .028 .009 019 055 071 064 023 .035 .065	.138 .116 .073 .014 001 026 058 069 058 012 .050 .085 b.104	.115 .100 .059 .005 009 031 061 072 059 011 .052	.053 .053 .028 020 028 046 074 079 063 009 .058 .101 b.133	003 .015 001 043 047 059 082 085 064 008 .060 .108 b.128	042 015 021 057 057 070 089 068 010 .062 .112 b.139	102 058 050 080 073 080 097 097 067 067 067 .123 b.152	181 113 089 110 097 100 113 106 076 011 .064 .121 b.148	235 150 113 130 111 109 120 109 078 011 .066 .127 a.166	321 207 151 162 134 129 133 118 083 012 069 132 170	417 265 191 190 155 145 126 085 010 .073 .139 a.175	518296222209169156153130086008 .075 .138 a.176	725330259232188168163136090007 .074 .137	928347288255204180169141092009 .075 .138 a.169

aFaired value,

bLower surface only.

NACA 16-307.50 PROPELLER BLADE SECTION (x = 0.60) - Concluded

(g) M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

							and the same of th	1							
	J M _X α _X ' Δβ α ₁ cn cm	2.106 .870 3.23 .37 1.13 .4432 0754 .0256	2.135 .868 2.84 .31 1.06 .4174 0751 .0255	2.167 .866 2.42 .25 1.00 .3935 0732	2.186 .860 .217 .21 .97 .3813 0747	2.210 .856 1.86 .16 .90 .3548 0775	2.246 .852 1.41 .10 .84 .3323 0769	2.263 .847 1.19 .07 .81 .3181 0749	2.283 .844 .95 .04 .73 .2890 0775	2.304 .837 .69 .01 .65 .2555 0762 .0178	2.330 .833 .37 04 .59 .2342 0751 .0174	2.351 .828 .12 08 .50 .1994 0724 .0189	2.379 .824 21 14 .45 .1781 0770 .0193	2.400 .818 45 18 .38 .1516 0765 .0196	2.421 .815 70 23 .28 .1116 0788 .0204
	c/b						Pres	ssure coeff	Picient, P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.203 106 372 397 472 614 694 791 872 318 278	1.203 073 332 374 444 593 683 691 784 865 311 271	1.201 039 292 349 411 601 671 771 852 289 249	1.198020276337396578669673767853281236208	1.196 .008 246 313 380 565 657 662 761 852 272 218 185	1.195 .057 -201 -275 -354 -539 -635 -645 -741 -858 -257 -189	1.192 .087 176 253 345 533 639 739 827 254 162 107	1.190 .120 143 225 325 519 632 617 719 804 254 111 043	1.187 .159 107 195 304 509 613 594 702 780 280 071	1.185 .195 070 164 284 584 577 670 762 317 038 .040	1.183 .228 039 139 266 487 564 599 659 756 322 019 .061	1.181 .265 003 108 245 546 538 645 744 334 015 .081	1.178 .302 .035 078 223 441 525 517 634 726 342 020	1.177 .338 .074 049 201 414 497 501 613 706 333 032 .088
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.125 .109 .070 .008 017 044 127 170 212 212 207 337 b444	.086 .080 .049 010 032 057 139 179 212 199 314 b420	.042 .065 .025 030 050 073 152 188 219 204 181 278	.006 .021 .003 048 065 085 161 191 214 191 239 b309	034 009 018 066 080 098 170 195 211 178 139 203	088 047 044 086 096 110 177 198 202 159 109 152 b196	143 088 074 111 115 126 188 201 194 142 088 105 b123	188095125125132189195177114047036 b039	257 164 127 151 146 197 196 169 024 .003 b.009	315 202 150 170 159 155 199 191 159 001 .041 b.052	383 243 176 191 175 167 207 195 157 077 .008 .051 b.072	503 290 208 215 191 179 213 194 148 062 .078 b.109	613 356 244 241 212 196 222 197 145 054 .038	750 506 266 264 229 206 226 194 139 045 .051 .113

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65)

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

_																	
	J Mx αx [*] Δβ α ₁ c _n c _m	1.637 .446 10.48 .54 2.61 .9618 0583	1.750 .456 8.60 .47 2.36 .8759 0222	1.883 .473 6.52 .38 2.03 .7620 0288	1.980 .483 5.09 .32 1.67 .6249 0403	2.126 .503 3.05 .24 1.23 .4658	2.230 .515 1.68 .17 .95 .3606	2.367 .532 02 .07 .62 .2348 0519	2.518 .551 -1.76 03 .22 .0845 0587	2.582 .558 -2.46 06 .07 .0265 0574	2.458 .542 -1.08 .01 .39 .1471 0590	2.321 .523 .54 .10 .72 .2735 0501	2.197 .508 2.11 .19 1.05 .3994 0457	2.067 .495 .385 .27 1.39 .5271 0410	1.949 .478 5.54 .34 1.78 .6680 0579	1.840 .468 7.18 .41 2.21 .8225 0232	1.720 .454 9.09 .49 2.45 .9083
	c/b							Pressu	re coeffi	cient, P							
Umer surface	500	1.051 -1.389 -1.352 -1.334 -1.262 -1.101 914 712 555 419 314 217 178	1.053 -1.546 -1.546 -1.535 -1.305 955 674 496 392 306 214 105 059	1.057 -2.092 -1.805 -1.073 -727 659 596 504 449 368 260 068 .019	1.060 -1.244 -1.095 834 665 612 563 482 440 376 270 062 .031	1.065 783 749 591 509 504 487 426 426 407 358 276 067	1.068 472 523 446 418 436 441 394 383 282 076 .045	1.072 113 248 257 295 341 361 339 346 328 279 079 .038	1.078 .224 .018 070 170 252 302 296 319 317 285 101 .018	1.080 .336 .115 .005 -117 -207 -266 -268 -296 -300 -276 -099	1.075 .097 086 146 223 292 333 318 333 326 268 268	1.070 220 336 320 338 377 363 363 343 286 089 .036	1.066 593 608 500 450 460 455 402 388 274 071	1.063 964 894 691 571 551 453 423 371 278 073	1.059 -1.575 -1.163 885 638 587 499 451 382 273 069	1.056 -2.165 -1.886 -1.441834661583494432349243073	1.053 -1.484 -1.468 -1.448 -1.287 -1.049 796 580 434 326 232 138 101
Lower Hirrace	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.770 .623 .468 .354 .266 .194 .075 .018 011 051 a120 a150	.722 .572 .429 .320 .245 .182 .125 .076 .033 .018 .004 -024 b040	.640 .496 .357 .265 .195 .147 .100 .060 .032 .037 .049 .063	.540 .400 .284 .206 .147 .105 .063 .013 .026 .048	.320 .235 .157 .108 .067 .038 .011 .011 .015 .045 .048	.151 .113 .073 .041 .017 001 025 036 .003 .045 .059	075 039 031 026 033 037 044 051 044 -012 -065 107 129	434 260 179 137 116 112 108 007 074 008 055 105 140	533 349 235 172 150 131 121 107 080 007 060 113 113	283 180 120 092 086 086 082 067 004 056 103	014 007 011 014 032 034 046 055 053 0 047 083 b .108	.227 .170 .113 .074 .041 .017 004 021 026 .012 .051 .060 b.063	.408 .300 .205 .143 .095 .060 .028 .003 -013 .015 .040	.577 .433 .306 .224 .160 .114 .072 .040 .016 .027 .046 .056	.691 .534 .392 .297 .222 .166 .114 .075 .042 .042 .042	.735 .587 .438 .332 .251 .186 .127 .025 .005 018 060

aFaired value.

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(b) N = 1350 rpm; $\beta_{0.758} = 45^{\circ}$.

							,	D) 11 - 1.	,	0.75R						-	
	J M _X Δβ αi cn cm cc	1.742 .542 8.73 .70 2.50 .9277 0209	1.841 .559 7.16 .63 2.27 .8453 0216	1.949 .573 5.53 .52 1.89 .7098 0363	2.068 .593 3.83 .38 1.51 .5742 0439	2.163 .606 2.55 .30 1.25 .4748 0459	2.261 .620 1.28 .21 .94 .3558 0532	2.380 .639 17 .08 .60 .2268 0592	2.497 .658 -1.52 04 .29 .1135 0637	2.564 .669 -2.27 09 .11 .0435 0629	2.432 .646 78 .03 .45 .1752 0630	2.318 .626 .58 .15 .77 .2952 0547	2.218 .612 1.83 .26 1.09 .4106 0489	2.105 .595 3.33 .41 1.41 .5355 0454	2.010 .582 4.65 .44 1.63 .6181 0465	1.900 .567 6.26 .58 2.04 .7673 0322	1.800 .551 7.80 .66 2.39 .8879 0195
	c/b		3-3					Pressu	re coeffi	cient, P							
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .880 .990	1.075 -1.883 -1.807 -1.609 -1.299 963 721 544 430 325 231 132 090	1.080 -2.247 -2.059 -1.571 -870 716 632 531 453 361 241 067	1.084 -1.794 -1.128 878 679 612 548 453 395 312 188 .024 .108	1.090 -1.094 -1.010 763 634 605 567 493 454 388 282 057	1.095 773 760 600 537 539 524 463 438 386 292 065 .053	1.100 394 478 420 426 455 467 424 415 377 299 075 .053	1.106 079 229 252 319 376 409 386 391 369 307 089 046	1.113 .200 .005 083 204 287 345 340 362 356 313 100	1.117 .331 .120 .003 144 239 309 314 345 348 312 105 .030	1.108 .057 120 174 268 337 383 367 381 368 316 102	1.101 235 353 338 373 416 440 406 406 375 305 084 .047	1.096 567 609 507 475 493 491 440 422 378 293 067 058	1.091 969 969 594 574 549 479 479 386 287 060	1.087 -1.160 -1.120 852 688 640 593 509 463 391 277 058	1.082 -2.530 -1.460 -1.054 801 718 641 540 472 382 252 053	1.078 -1.942 -1.877 -1.712 -1.168 796 621 503 420 330 223 083 022
Lower surface	1 .//	.742 .591 .441 .332 .248 .184 .124 .068 .021 002 027 068 b092	.694 .546 .402 .301 .225 .167 .116 .071 .035 .031 .031	.662 .525 .397 .309 .244 .196 .152 .114 .089 .098 .112 .122 b.130	.433 .325 .224 .157 .107 .070 .034 .006 009 .012 .042 .042 .042	.280 .206 .138 .091 .051 .024 003 022 031 .003 .039 .048 b.056	.081 .065 .039 .018 004 016 030 048 048 .001 .046 .074 b.082	153 094 069 056 064 068 073 076 066 004 .051 .094 b.114	449 260 187 142 131 118 110 102 078 004 .063 .114 b.136	562 382 264 197 173 151 137 123 090 011 062 117 b.148	282 180 125 097 098 094 095 074 005 .055 .103	028 012 014 019 034 041 055 063 058 004 .047 .081	.189 .141 .092 .058 .026 .005 016 034 037 .005 .044 .062	.374 .278 .189 .132 .084 .053 .020 006 019 .010 .040 .042 b .054	.504 .381 .268 .192 .135 .093 .055 .021 .002 .017 .040	.645 .497 .360 .265 .193 .141 .092 .052 .020 .023 .027 .033 b.039	.720 .569 .425 .320 .240 .183 .126 .074 .035 .023 .015 .005

aFaired value.

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

						4.							
	J	1.960 .636	2.055 .653	2.135	2.242	2.364	2.484	2.544	2.430	2.305	2.206	2.102	2.002
	M _X		4.02	2.92	1.53	.02	-1.38	-2.05	76	.74	1.99	3.37	4.77
	α _x ' Δβ	5.37	•59	.48	.31	.10	12	24	02	.20	•37	•53	.66
100	ai	2.06	1.68	1.39	1.09	.70	•35	.11	.50	.87	1.21	1.51	1.85
	c_n	.7732	.6374	.5310	.4126	.2648	.1342	.0406	.1919	.3303	.4606	•5735	.7006
	cm	0288	0397	0451	0539	0626	0696	0752	0674	0577	0507	0436	0354
	cc												
	c/b	A second			25	P	ressure coe	fficient, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.105 -2.180 -2.015 -1.062 778 735 670 563 500 408 266 037	1.111 -1.421 -1.259 852 703 669 620 532 487 406 277 035 .068	1.117 908 936 707 614 609 583 507 474 474 286 041	1.124 457 571 501 492 524 530 475 460 410 307 061	1.131 060 248 277 348 416 454 425 434 402 319 070	1.139 .232 .009 089 217 318 383 379 410 399 333 086 .058	1.144 .358 .125 .002 153 266 346 354 397 397 340 095 .051	1.135 .102 111 178 282 368 421 404 425 406 331 084 .056	1.126 240 394 383 416 465 488 449 449 449 316 071	1.119 610 685 573 553 551 548 486 465 409 303 056 .070	1.113 -1.034 -1.046 767 649 632 597 517 481 407 288 042	1.107 -1.831 -1.687 849 752 704 645 547 493 407 271 038 .054
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.600 .464 .337 .269 .188 .138 .094 .054 .017 .030 .040 .017 b011	.466 .355 .251 .184 .132 .092 .053 .023 005 .019 .042 .035	.346 .260 .181 .128 .086 .053 .021 004 024 .010 .040 .046	.138 .105 .069 .045 .015 028 043 050 001 .045 .069	131 078 056 049 059 065 072 075 066 001 .058 .101 a.122	477260188143132122117106080002072125147	975357272205179160145125090002074131149	301190130101102100101097081007060110110	.004 .008 .001 007 027 038 057 065 063 007 .049 .084 b.099	.219 .167 .112 .075 .044 .016 007 027 039 .004 .047 .065 b.071	.391 .294 .205 .144 .099 .063 .031 .001 020 .010 .037 .039 b.045	.533 .407 .291 .212 .156 .112 .067 .034 .001 .018 .034 .018

aFaired value.

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(d) N = 1600 rpm; β0.75R = 45°.

	J M _X	2.032	2.130 .718	2.223	2.324	2.418	2.494	2.513 .790	2.516 .790	2.461	2.372	2.280	2.182	2.095
	ax s	4.34	2.99	1.77	.51	62	-1.49	-1.70	-1.74	-1.12	08	1.05	2.30	3.46
	Δβ	.69	.53	.37	.18	04	24	30	31	15	.08	.26	.44	• 59
	ai	1.88	1.51	1.20	.86	.56	.25	.08	.09	.36	.70	1.00	1.34	1.64
	cn	.7155	.5748	.4555	.3284	.2129	.0974	.0316	.0329	.1377	.2661	.3823	.5077	.6252
	cm	0380	0452	0556	0694	0740	0783	0850	0839	0760	0729	0633	0551	0492
	cc				.0070	.0130	.0150	.0160	.0149	.0133	.0102			
	c/b					Pres	sure coeff	icient, P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.130 -1.427 -1.509 -1.327 692 750 690 573 513 421 275 025	1.136 924 -1.095 761 681 696 654 554 557 422 282 025 .080	1.142 482 642 565 556 608 613 535 510 436 309 036 .087	1.150 117 315 343 412 501 545 510 518 462 341 056	1.158 .152 073 161 280 397 470 467 511 468 348 060	1.164 .331 .096 028 181 314 427 501 493 362 067 .073	1.166 .374 .136 .007 154 291 396 415 499 503 370 075 .069	1.166 .384 .146 .016 146 282 389 409 492 499 369 071	1.161 .264 .031 082 222 348 443 445 506 482 358 071	1.153 .023 191 251 348 452 513 492 518 472 356 073	1.146 255 436 430 468 541 568 516 511 451 328 058	1.138 658 808 654 605 637 623 536 504 426 296 035 .087	1.132 -1.203 -1.270 889 728 717 661 559 508 420 280 031 .072
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.501 .386 .280 .206 .146 .103 .063 .027 .007 .027 .049 .058	.353 .268 .187 .132 .084 .049 .015 011 023 .009 .043 .039	.176 .135 .090 .058 .021 .002 021 038 046 .005 .047 .068	064 032 026 029 048 054 068 072 066 .003 .064 .108	336 201 139 111 112 108 109 103 082 0 .070 .132 b.164	819310257202184164154098005 .073 .131 b.160	-1.008 708 278 233 213 188 173 148 109 011 .068 .127 b.155	-1.025 765 274 231 211 185 170 145 104 006 .073 .131 b.155	580 271 216 169 158 143 123 094 006 .069 .126 b.160	201 126 091 074 086 087 094 093 078 003 063 115 b.141	.039 .035 .018 .004 020 031 050 058 060 .001 .054 .088	.267 .201 .139 .094 .054 .024 005 033 .009 .048 .054 b.057	.421 .319 .227 .162 .109 .071 .032 .003 -013 .015 .042 .042

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(e) M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

-															
		M _X Δβ α i cn cm	2.119 .775 3.14 .51 1.61 .6148 0601 0088	2.164 .771 2.54 .43 1.40 .5310 0580 0042	2.200 .766 2.07 .36 1.31 .4987 0608 0016	2.232 .760 1.66 .31 1.19 .4506 0617	2.261 .756 1.29 .26 1.05 .3977 0639 .0030	2.299 .750 .81 .20 .89 .3410 0655 .0061	2.330 .749 .43 .15 .82 .3106 0673	2.361 .744 .06 .10 .68 .3590 0696	2.396 .740 36 .04 .59 .2229 0696	2.426 .733 71 01 .47 .1790 0701	2.452 .730 -1.01 05 .41 .1548 0698	2.492 .725 -1.47 11 .28 .1065 0732	2.541 .720 -2.01 18 .11 .0419 0747
	(c/b							Pressu	re coeffi	cient, P				
	Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.160 624 893 775 739 736 804 715 617 432 267 005 .101	1.158 516 781 600 640 698 743 648 603 447 279 012 .097	1.156 452 666 568 586 673 694 608 584 454 294 021	1.153 367 553 507 536 632 661 581 564 460 308 032	1.152 277 458 440 483 569 605 540 536 453 312 038	1.149 160 348 362 426 513 552 510 518 453 328 055 .079	1.149 086 277 309 384 473 513 482 493 445 330 060	1.147 .005 196 249 340 434 481 461 484 484 442 344 072 .064	1.145 .083 126 194 297 394 444 432 460 427 341 073	1.142 .154 063 145 257 357 413 408 441 341 080	1.141 .196 022 113 234 335 393 392 428 410 338 085 045	1.139 .278 .110 058 192 301 364 374 418 409 347 100	1.137 .366 .136 .012 -135 -250 -322 -336 -382 -382 -382 -103 .033
	Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.312 .242 .172 .122 .073 .041 .006 021 033 .008 .0047 .051	.233 .182 .125 .085 .044 .017 014 037 048 .001 .040	.186 .146 .098 .065 .028 .007 018 040 050 .002 .004 .061	.120 .097 .063 .037 .005 009 033 051 057 003 .045	.061 .056 .033 .017 009 021 040 057 057 .001 .053 .081	035 014 015 021 039 046 062 072 069 003 .054 .098	094 051 040 036 052 056 068 075 067 0	184 111 083 066 076 074 087 074 002 .065 .122 b.149	259157111087091092091075 0 .071 .132 b.160	350213148113112104105100080001 .070 a.124 a.151	410 239 171 130 126 113 112 105 083 002 .073 .140 a.164	610306226170156138129117089 .003 .077 .146 a.170	948371271201177153139122089 0 .080 .146 a.181

a Faired value.

bLower surface only.

NACA RM 19112

CONFIDENTIAL
TABLE 6.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(f) M = 0.60; $\beta_{0.75R} = 45^{\circ}$.

J M _X α _X * Δβ α ₁ c _n		2.136 .834 2.91 .36 1.42 .5387	2.172 .828 2.43 .33 1.36 .5174 0869	2.210 .821 1.94 .28 1.24 .4690	2.239 .814 1.57 .24 1.10 .4168 0798	2.266 .809 1.22 .19 1.04 .3965	2.297 .807 .83 .12 .87 .3310	2.321 .801 .54 .08 .79 .3000	2.365 .799 .01 0 .66 .2532	2.391 .793 30 05 .57 .2161 0731	2.420 .789 64 10 .47 .1806 0746	2.453 .785 -1.02 17 .37 .1406	2.486 .780 -1.40 22 .25 .0968 0765	2.526 .775 -1.85 29 .11 .0406
cc		.0106	.0079	.0059	.0072	.0074	.0091	.0099	.0118	.0127	.0132	.0145	.0148	.0150
c/b							Pres	ssure coefi	Picient, P					
0.00 .00 .00 .10 .20 .30 .40 .50 .60 .60 .70 .80 .90 .90	25 50 00 00 00 00 00 00 00 00 00 00 00	1.186 316 629 466 669 708 749 809 841 274 149	1.183 275 554 453 575 618 686 732 792 865 244 079	1.180 225 468 429 516 588 664 715 752 780 237 017	1.177 151 375 375 454 557 642 662 694 723 258 0	1.175114334349432549621638666691273 .001	1.174 027 248 286 387 523 579 584 643 639 299 010	1.171 .024 198 251 361 497 566 556 626 605 315 021	1.170 .101 125 194 318 542 531 603 567 323 026 .102	1.167 .158 071 154 287 415 514 505 576 539 333 036 .098	1.166 .207 024 118 256 383 480 485 553 512 339 044	1.164 .266 .033 .073 .224 -352 447 460 552 501 349 054	1.162 .321 .087 032 187 317 412 431 498 478 358 065 .080	1.160 .379 .145 .016 148 277 374 397 433 431 364 076
03 07 07 15 25 35 45 55 75 75 86 97 1000	50 50 50 50 50 50 50 50 50 50 50	.197 .158 .109 .067 .025 012 052 090 116 080 066 103 b133	.149 .122 .082 .047 .008 020 054 083 099 048 014 024 b032	.100 .087 .058 .031 026 055 078 085 066 .018 .029	.030 .036 .022 .005 023 041 065 084 084 018 .033	008 .010 .003 008 033 049 070 083 081 012 .041 .067 b.079	098 053 041 042 060 070 087 096 086 013 .046 .079	167 099 074 067 081 088 100 105 092 016 .047 .084	252149107090097100109109090011 .055 .098 b.126	338 199 139 116 117 116 118 116 092 013 .058 .103 b.127	426 239 172 138 136 128 126 118 093 010 .060 .108	596263218172159147142128099010063113133	781 279 251 195 175 156 146 130 094 004 .073 .124	989 523 274 220 194 170 153 133 092 .002 .007 .130 b.151

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(g) M = 0.66; $\beta_{0.75R} = 45^{\circ}$

	J M _x	2.084	2.112	2.145	2.160	2.204	2.222	2.243	2.284	2.312	2.347	2.362	2.428
	az.	3.62	3.23	2.79	2.59	2.02	1.78	1.52	1.00	.65	.23	.05	73
	Δβ	.48	.40	.31	.28	.17	.14	.09	01	07	16	20	38
	α_1	1.17	1.08	.94	.85	.81	.69	•59	.49	.43	.34	.28	.14
	cn	.4439	.4097	.3568	.3239	.3077	.2626	.2239	.1865 0511	.1626 0542	0608	.1052 0652	0829
	c _m	0898	0765	0682	0629	0582	0539	0515 .0268	.0253	.0238	.0236	.0231	.0213
	cc	.0321	.0295	.0293	.0301	.0288	.0282	.0200	.0293	.0230	.0230	ا عراءه	• 0225
	c/b					Pressur	e coeffici	ent, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.232 061 372 253 409 483 543 580 647 728 673 351	1.228040344239395471529570638723501304302	1.226005274236371450512558635722450279	1.222 .015 238 234 363 441 513 564 731 497 282 273	1.219 .034 213 225 351 431 563 645 728 421 255 243	1.216 .079 161 196 312 412 548 629 718 351 226 215	1.212 .118 117 169 283 400 486 543 715 313 199 184	1.209 .164 068 135 252 376 471 524 604 697 285 148	1.207 .200 035 111 235 370 465 509 593 689 280 143 115	1.205 .242 .007 079 211 360 442 486 577 674 326 119 080	1.199 .279 .044 051 191 350 429 475 565 662 416 102 046	1.195 .346 .112 001 154 305 414 431 536 647 568 053
Lower surface	1 .))0	.181 .156 .116 .080 .029 012 072 139 225 215 221 346 b466	.172 .154 .117 .082 .034 007 065 132 218 204 208 344 b492	.097 .097 .072 .044 001 037 093 157 238 217 220 356 b509	.045 .057 .039 .018 005 064 119 182 262 237 238 374 b496	.008 .031 .017 002 044 077 130 191 268 235 233 361 b511	069 025 025 036 072 103 153 211 279 235 227 329 b414	148078067068100126175225281221201270 b320	227124098091119143186230268195164208 b261	319173135120143161199232248166128159 b187	439 232 173 147 163 175 207 229 225 137 091 103 b130	580 363 214 179 188 196 221 235 220 126 060 b061	770631244226223234226186077 .005 .047

bLower surface only.

NACA RM L9L12

CONFIDENTIAL
TABLE 6.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(h) N = 1140 rpm; $\beta_{0.75R} = 30^{\circ}$.

	J M _x α _x * Δβ α _i c _n c _m	0.774 .365 13.44 .35 2.89 .9238 0853	0.890 .370 10.65 .33 2.82 .9300 0468	0.984 .381 8.47 .30 2.48 .8320 0181	1.070 .393 6.55 .25 2.03 .6910 0357	1.200 .408 3.76 .18 1.38 .4753 0410	1.272 .415 2.28 .14 1.03 .3582 0441	1.383 .423 .09 .08 .61 .2124	1.480 .438 -1.73 .02 .20 .0719 0560	1.441 .434 -1.01 .04 .39 .1377 0543	1.335 .418 1.02 .11 .80 .2783 0478	1.246 .406 2.81 .16 1.21 .4201 0404	1.153 .401 4.75 .21 1.65 .5655 0391	1.030 .393 7.43 .27 2.29 .7740 0246	0.940 .381 9.48 .31 2.67 .8904 0134	0.830 .361 12.08 .34 2.80 .9051 0688
1	c/b							Pressu	e coeffic	ient, P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.034 -1.310 -1.273 -1.069 913 840 780 788 648 524 524 456 416	1.035 -1.316 -1.320 -1.289 -1.216 -1.084 891 663 486 354 257 164 122	1.037 -1.630 -1.656 -1.634 -1.695 534 445 384 384 389 220 081 018	1.039 -1.994 -1.346 845 686 624 573 486 435 370 268 075 .015	1.043 850 794 611 517 504 487 424 396 355 275 078	1.044 500 533 449 409 422 432 379 371 342 274 086	1.046 099 235 247 289 334 359 340 353 343 299 122 003	1.049 .218 .026 061 153 228 274 274 302 305 274 138 005	1.048 .087 082 129 205 262 297 290 309 309 272 107	1.045 265 361 332 338 368 390 351 351 335 285 101	1.042 666 650 520 452 459 452 395 377 340 269 075 .038	1.041 -1.091 963 728 583 548 515 442 410 357 268 067 .035	1.039 -2.280 -1.831 -1.144 727 638 579 487 431 357 254 080	1.037 -1.963 -1.963 -1.822 -1.055 -731 594 467 387 307 223 128 089	1.033 -1.491 -1.428 -1.171 950 852 765 662 578 499 428 365 333
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .975 .975	.795 .643 .487 .362 .274 .114 .038 039 103 183 315 b440	.763 .612 .462 .350 .264 .198 .133 .079 .024 006 034 990	.703 .553 .406 .305 .230 .174 .125 .080 .043 .035 .031 .024	.604 .459 .324 .233 .171 .124 .085 .048 .026 .033 .048 .048	.355 .257 .171 .116 .074 .043 .012 009 019 .036 .036	.169 .122 .072 .046 .018 005 022 039 043 .001 .035 .052	142 099 080 074 074 080 080 077 016 .035 .080	432 271 197 153 125 126 104 085 014 .051 .106 a.137	272173126095088088088079067001 .059 .109 a.141	.010 .010 006 016 029 042 052 055 055 003 .043 .067 a.080	.272 .198 .129 .085 .048 .023 0 020 027 .007 .041 .045	.483 .355 .250 .176 .122 .088 .052 .024 .010 .028 .049 .045 b.039	.655 .504 .363 .267 .201 .149 .101 .061 .035 .038 .046 .057 a.061	.758 .598 .145 .338 .258 .193 .136 .083 .037 .014 009 059	.773 .622 .464 .350 .263 .188 .121 .054 -017 -069 -131 243 a304

aFaired value. bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(i) N = 1350 rpm; $\beta_{0.75R} = 30^{\circ}$.

	J M _x α _x ; Δβ α _i c _n c _m	0.875 .445 11.01 .37 2.95 .9681 0691	0.952 .449 9.20 .31 2.66 .8867 0215	1.047 .463 7.05 .22 2.25 .7600 0246	1.120 .472 5.45 .14 1.85 .6299 0371	1.198 .482 3.81 .04 1.44 .4980 0412	1.285 .494 2.02 07 1.00 .3474 0442	1.383 .509 .10 19 .60 .2111 0487	1.493 .522 -1.97 34 .15 .0548 0542	1.437 .512 94 26 .34 .1189 0524	1.355 .503 .63 16 .76 .2668 0480	1.242 .492 2.89 01 1.20 .4161 0421	1.167 .483 4.45 .08 1.63 .5569 0413	1.072 .468 6.51 .19 2.10 .7116 0333	1.041 .461 7.09 .22 2.29 .7720 0249	0.995 .457 8.22 .27 2.46 .8256 0182	0.904 .446 10.32 .35 2.81 .9294 0586
	c/b							Pre	ssure coe	fficient,	P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.051 -1.587 -1.484 -1.233 -1.092 -1.008 897 744 612 479 367 261 215	1.052 -1.817 -1.744 -1.549 -1.196 906 681 509 400 306 220 116 071	1.055 -2.193 -1.871 -1.119 738 659 599 504 1442 362 254 068	1.057 -1.247 -1.097 835 660 605 568 477 432 372 268 062 .041	1.060 870 821 635 535 516 504 429 405 359 275 117 .048	1.062 - 453 - 507 - 435 - 410 - 427 - 440 - 388 - 378 - 347 - 283 - 081 - 038	1.066 084 228 240 285 330 371 333 340 326 278 094 .029	1.070 .259 .059 037 147 221 281 269 295 297 272 102	1.067 .119 064 125 209 271 323 300 314 314 278 097	1.065 229 339 315 363 363 349 349 329 276 084 .038	1.062 651 526 474 474 474 410 395 354 280 074	1.060 -1.045 946 721 591 556 531 459 420 368 277 062 .048	1.056 -2.048 -1.460892716648595500446373268068	1.055 -2.095 -1.914 -1.231 726 649 594 499 436 356 249 066 .018	1.054 -1.805 -1.830 -1.744 997 665 577 494 427 346 243 087 021	1.051 -1.340 -1.333 -1.247 -1.164 -1.059 921 743 584 446 334 233 188
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.780 .625 .475 .360 .271 .205 .141 .078 .006 014 001 161 b139	.736 .587 .432 .328 .247 .186 .132 .081 .019 .017 006 076 b075	.655 .503 .364 .269 .198 .1146 .102 .065 .019 .035 .040 .015	.541 .410 .287 .205 .147 .105 .065 .041 .002 .026 .041 .021	.372 .272 .184 .127 .084 .050 .021 .004 024 .014 .040 .042	.135 .098 .059 .031 .001 014 029 038 057 004 .033 .051 b.055	132 086 067 062 064 067 075 075 012 038 079 097	474 297 210 160 143 127 118 106 088 014 .050 .101 a.148	314 205 144 113 101 097 090 083 012 046 091 a-120	006 004 006 013 028 035 045 049 057 001 043 076 095	.255 .184 .120 .076 .041 .015 008 020 044 .003 .033 .044 b.050	.450 .333 .231 .160 .110 .073 .043 .018 -015 .018 .040 .035	.611 .465 .330 .243 .178 .130 .087 .054 .010 .032 .038 .016	.660 .510 .371 .275 .207 .154 .109 .070 .024 .042 .046 .016	.685 .532 .388 .285 .212 .154 .059 .006 .018 .012 032	.722 .574 .425 .317 .233 .167 .107 .053 016 030 068 165

^aFaired value. ^bLower surface only.

NACA RM 19112

CONFIDENTIAL
TABLE 6.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(j) N = 1500 rpm; $\beta_{0.75R} = 30^{\circ}$.

_										-0. DR	50.							
	J M _X α _X * Δβ α _i c _n c _m	0.823 .492 12.25 .44 3.28 1.0650 0894	0.894 .505 10.56 .40 2.96 .9762 0634	0.970 .515 8.79 .34 2.69 .8969 0147	1.042 .523 7.17 .26 2.38 .8014 0255	1.113 .529 5.61 .16 1.98 .6717 0369	1.193 .540 3.91 .04 1.55 .5300 0435	1.291 .557 1.90 12 1.08 .3751 0471	1.375 .562 .25 25 .66 .2308 0545	1.490 .578 -1.92 43 .17 .0594 0569	1.430 569 80 34 .42 .1493 0594	1.341 .559 .91 19 .82 .2875 0505	1.246 .545 2.81 05 1.28 .4436 0505	1.163 .536 4.54 .08 1.70 .5799 0404	1.081 .526 6.30 .21 2.05 .6977 0404	0.923 .504 9.88 .38 2.81 .9287 0269	0.998 .514 8.15 .31 2.53 .8468 0144	0.860 .498 11.36 .42 2.98 .9790 0949
	c/b							1	Pressure	coefficie	nt, P							
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .900 .950	1.062 -1.283 -1.291 -1.291 -1.253 -1.170 -1.058 889 733 585 457 318 255	1.065 -1.323 -1.287 -1.266 -1.230 -1.117959767599450332224178	1.068 -1.820 -1.735 -1.641 -1.277885640490396310215100053	1.070 -2.236 -1.979 -1.246 784 701 633 536 465 380 263 078	1.072 -1.453 -1.168 898 710 652 599 509 458 389 276 064	1.075 952 908 694 578 560 536 464 430 381 285 066 .046	1.080 480 552 462 434 453 457 413 367 295 083 .040	1.081 095 254 260 306 361 395 365 365 367 304 099	1.086 .272 .056 037 152 237 299 294 315 323 292 105	1.083 .094 095 147 230 299 348 331 342 297 103	1.080 -239 -367 -336 -356 -397 -422 -383 -383 -361 -298 -093 .035	1.076 678 694 553 491 497 493 410 369 286 070	1.074 -1.094 917 768 627 559 480 442 384 283 063	1.071 -2.014 -1.406 952 747 616 521 460 387 271 067	1.065 -1.945 -1.850 -1.555 -1.215 943 578 460 354 262 174 138	1.067 -2.057 -1.959 -1.690 981 711 606 510 431 345 082 022	1.063 -1.077 -1.091 -1.087 -1.087 -1.042 972 848 724 593 476 356 303
- 1	.0375 .075 .150 .250 .350 .350 .550 .650 .750 .925 .975 1.000	.805 .655 .498 .380 .284 .208 .134 .065 001 083 a140 a187	.763 .611 .463 .350 .264 .129 .064 .012 022 060 115 b150	.734 .584 .433 .325 .245 .123 .069 .027 .010 006 029 b037	.659 .506 .366 .268 .195 .142 .094 .051 .021 .028 .032 b.033	.566 .427 .300 .218 .153 .106 .064 .030 .008 .020 .039 .030	.399 .295 .200 .140 .090 .055 .022 003 016 .011 .040 .032 b.032	.152 .109 .066 .034 .007 010 028 044 052 003 .034 .051 b.060	133 085 070 062 066 070 078 080 072 013 .037 .074 b.087	507 311 224 169 150 136 126 113 089 014 012 101	300 194 139 107 107 103 101 097 079 014 .092 b.115	018 010 018 027 039 045 059 068 064 010 035 064 010	.269 .194 .126 .083 .045 .017 008 027 039 .004 .037	.469 .349 .240 .170 .115 .076 .040 .011 006 .016 .032 b.030	.615 .470 .339 .248 .178 .130 .085 .046 .019 .028 .048 .049	.758 .604 .451 .339 .253 .188 .124 .065 .015 -012 -045 -092 b126	.703 .552 .402 .300 .225 .165 .111 .062 .025 .016 .011	.768 .622 .471 .354 .267 .194 .121 .055 011 057 113 199 b249

aFaired value. bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(k) N = 1600 rpm; $\beta_{0.75R} = 30^{\circ}$.

J M _x αx ¹ Δβ α ₁ c _n c _m cc	0.843 .528 11.77 .62 3.11 .1.0106 1049	0.920 .545 9.95 .53 2.89 .9572 0385	0.980 .547 8.56 .45 2.69 .8982	1.059 .557 6.79 .33 2.36 .7995 0256	1.134 .584 5.15 .20 1.87 .6372 0393	1.215 .580 3.45 .05 1.46 .5039 0418	1.301 .594 1.70 11 1.03 .3571 0490	1.367 .600 .40 24 .71 .2463 0522	1.480 .615 -1.73 47 .16 .0571 0594	1.439 .610 97 39 .41 .1429 0557	1.345 .598 .83 20 .83 .2888 0506	1.263 .589 2.46 04 1.25 .4308 0448	1.189 .574 3.99 .10 1.62 .5550 0416	1.106 .563 5.76 .25 2.00 .6790	1.029 .553 7.46 .37 2.50 .8423 0179	0.949 .549 9.27 .49 2.77 .9243 0139	0,892 .536 10.60 .57 3.05 1.0050 0547
0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.071 -1.134 -1.130 -1.102 -1.071 -1.034 976 880 775 654 539 414 358	1.076 -1.780 -1.708 -1.517 -1.276 -1.009797622497383291197160	1.077 -1.963 -1.884 -1.703 -1.221 856 645 507 413 321 218 094 044	1.080 -2.301 -1.789 -1.151 791 709 638 538 1467 379 252 056	1.088 -1.146 -1.150 867 695 650 602 515 468 400 284 062 .038	1.086 857 846 652 559 536 469 437 388 291 065	1.091 416 514 438 425 454 465 409 379 300 078 .045	1.092 130 289 285 327 380 413 382 384 367 305 090 .039	1.097 .277 .054 043 163 251 314 311 334 343 307 110	1.096 .119 078 136 227 302 352 346 348 346 300 096	1.092 230 367 342 404 430 393 391 369 300 084 .042	1.090 634 672 546 490 503 502 446 423 382 295 071 .052	1.085 999 961 728 608 586 559 484 449 290 063 .050	1.081 -1.480 -1.189 922 730 672 617 522 469 393 272 055 .036	1.078 -2.287 -2.073 -1.508852717634530451363240065	1.077 -2.031 -1.908 -1.724 -1.296903671517414323228128091	1.074 -1.834 -1.516 -1.284 -1.241 -1.101 -929 -738 -582 443 -337 -233 190
.0375 .075 .150 .250 .350 .450 .450 .650 .750 .850 .975 1.000	.788 .640 .486 .368 .277 .199 .055 014 071 136 240 b320	.768 .614 .463 .350 .264 .196 .132 .070 .015 018 056 116 b153	.738 .584 .437 .327 .248 .185 .127 .074 .029 .015 0	.657 .510 .370 .271 .202 .149 .099 .057 .026 .026 .034 .032	.521 .389 .273 .192 .133 .090 .050 .016 003 .012 .034 .025	.344 .254 .166 .112 .069 .036 .007 018 027 .005 .034 .031 b.020	.111 .080 .045 .023 003 018 036 049 054 007 .034 .059	098 064 054 053 058 064 075 078 071 014 .037 .073 b.088	544 329 237 180 163 149 138 124 089 022 .046 .098 a.123	319206143114111104098080010 .051 .097 a.120	018007015022037044059064011 .037 .069 b.082	.236 .171 .110 .067 .032 .006 019 037 044 002 .034 .039	.413 .306 .209 .145 .094 .058 .022 003 016 .011 .037 .031 b.027	.570 .432 .307 .222 .157 .109 .066 .032 .007 .015 .034 .028	.694 .543 .404 .299 .222 .165 .113 .068 .030 .028 .030 b .030	.754 .599 .445 .337 .253 .188 .126 .070 .021 002 025 066 b091	.791 .636 .483 .366 .275 .200 .136 .071 .010 024 068 130 b176

aFaired value. bLower surface only.

NACA RM L9L12

CONFIDENTIAL

TABLE 6 .- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(1) N = 1800 rpm; $\beta_{0.75R} = 30^{\circ}$.

										0.1	,								
	J M _X α _X ' Δβ α _i c _n c _m	0.882 .601 10.84 1.27 3.13 1.0325 0510	0.947 .612 9.32 1.09 2.99 1.0000 0238	1.007 .623 7.95 .91 2.87 .9681 0126	1.067 .634 6.61 .72 2.59 .8787 0229	1.133 .640 5.18 .50 2.08 .7135 0343	1.204 .647 3.68 .27 1.67 .5734 0438	1.284 .656 2.04 0 1.23 .4254 0494	1.347 .667 .79 24 .89 .3096 0573	1.414 .681 50 44 .52 .1827 0598	1.453 .686 -1.23 58 .25 .0890 0607	1.377 .672 .21 31 .70 .2441 0542	1.314 .664 1.44 10 1.05 .3633 0518	1.240 .652 2.93 .15 1.40 .4819 0459	1.166 .643 4.47 .40 1.90 .6531 0373	1.098 .636 5.93 .62 2.30 .7838 0305	1.048 .627 7.03 .77 2.82 .9583 0149	0.988 .616 8.38 .96 2.88 .9681 0084	0.920 .608 9.95 1.17 3.03 1.0090 0416
	c/b								Press	ure coef	ficient	, P							
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.093 -2.293 -2.102 -1.453 -1.172 -1.036 884 724 595 479 386 293 257	1.096 -2.151 -2.058 -1.783 -1.341 -1.015 782 595 466 357 269 179 144	1.100 -2.708 -2.627 -2.426 826 755 698 578 498 394 260 059	1.104 -2.4447 -2.317 -1.886 782 755 697 511 413 274 053 .033	1.106 -1.936 -1.779882771724670563509422286051 .042	1.109 -1.031 -1.034 777 655 638 611 524 490 418 298 056 .055	1.112 .555 643 539 510 534 543 479 463 410 310 069	1.116 226 378 365 398 450 486 441 407 323 083 048	1.122 .074 126 185 277 354 405 388 411 391 327 098 .030	1.124 .230 .008 085 207 299 372 358 391 381 322 100	1.118 067 252 275 338 401 449 412 426 395 318 086 .046	1.115 381 506 453 456 494 513 459 453 408 316 075	1.111 769 804 644 579 586 576 502 479 416 307 063	1.107 -1.523 -1.132 883 722 642 546 502 422 296 053 .052	1.105 -2.226 -2.085 950 795 749 688 573 513 420 283 054	1.102 -2.568 -2.453 -2.256 783 759 702 582 509 409 274 057	1.098 -2.681 -2.549 -2.208 -1.008 825 694 551 452 343 224 089 041	1.095 -1.903 -1.844 -1.633 -1.341 -1.065 847 661 530 420 327 235 199
Lower surface	1 . 170	.801 .649 .492 .372 .279 .206 .135 .063 005 049 103 208	.773 .621 .469 .355 .270 .201 .137 .073 .014 016 052 119	.718 .571 .424 .319 .243 .182 .128 .079 .041 .037 .041 .060 b.169	.651 .507 .373 .276 .205 .151 .103 .060 .029 .034 .045 .063	.534 .406 .287 .206 .143 .098 .055 .020 004 .029 .026 .020 b.019	.390 .288 .195 .133 .084 .046 .013 .015 032 0 .028 .017 b.006	.181 .132 .081 .045 .012 008 027 050 058 010 .030 .046 b.049	030 017 026 033 048 059 071 080 077 017 .033 .068 b.082	295 193 143 117 115 115 114 097 025 .042 .100 a.138	508 298 231 180 167 155 145 136 111 032 .037 .093 a.150	154 101 082 071 086 092 098 089 022 .034 .075	.082 .058 .028 .006 018 032 049 066 069 015 .029 .055 b.064	.282 .203 .132 .084 .041 .012 017 039 050 009 .026 .021 b.019	.476 .357 .247 .173 .117 .075 .035 .002014 .007 .031 .020 b.008	.597 .459 .331 .241 .174 .124 .079 .037 .010 .020 .034 .042	.682 .536 .395 .296 .222 .165 .114 .069 .034 .040 .047 .069 a.070	.747 .596 .447 .338 .257 .193 .135 .081 .037 .021 .003 022 b=.034	.779 .626 .473 .359 .270 .198 .131 .066 .002 032 077 160 b210

aFaired value.

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(m) N = 2000 rpm; $\beta_{0.75R} = 30^{\circ}$.

_	-							1/2		- , .0.75	IX.						
		J Mx Δβ αi cn cm	1.032 .697 7.39 1.61 2.97 1.0128 0281	1.097 .703 5.95 1.91 2.53 .8658 0321 0341	1.140 .70.8 5.03 .90 2.17 .7454 0396	1.179 .714 4.20 .66 1.90 .6557 0412 0152	1.238 .727 2.97 .33 1.50 .5186 0509 0048	1.289 .732 1.94 .06 1.16 .4055 0566 .0026	1.344 .740 .85 22 .83 .2882 0620	1.429 .755 78 63 .29 .1019 0680 .0159	1.387 .750 .01 43 .59 .2062 0635 .0124	1.319 .736 1.34 10 .99 .3460 0588	1.277 .733 2.18 .12 1.27 .4408 0559	1.218 .719 3.39 .43 1.64 .5683 0531 0092	1.175 .715 4.28 .69 1.98 .6829 0388 0181	1.129 .706 5.26 .97 2.31 .7935 0373 0264	1.081 .697 6.30 1.28 2.64 .9041 0298
L		c/b						Pre	ssure co	efficient	, P						
- 1	Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.128 -1.943 -1.934 -1.787 -1.673 -1.380647577519423282041 .075	1.131 -1.681 -1.696 -1.548 -1.413 -711 -747 624 550 443 289 031	1.132 -1.384 -1.477 -1.320 722 819 751 620 549 441 284 026	1.134 -1.182 -1.245 943 736 759 715 604 543 442 284 028	1.140 676 858 654 613 664 579 542 450 305 039	1.142 361 533 474 492 564 594 531 461 323 050	1.145 084 284 303 377 466 527 502 519 470 343 067	1.151 .249 .020 076 210 326 412 419 469 456 352 085	1.149 .084 132 192 298 402 474 466 501 469 356 083 .057	1.143 225 409 390 433 516 558 520 521 459 328 055 .073	1.142 456 619 534 531 595 614 556 538 460 319 049	1.137 807 -1.025 709 661 700 681 588 541 448 037 .070	1.135 -1.219 -1.321 -1.084 755 778 726 612 549 446 287 031	1.132 -1.522 -1.559 -1.413 873 758 623 548 443 287 029	1.128 -1.794 -1.807 -1.651 -1.536 702 702 605 537 438 287 031
	LOWer Buriace	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.659 .521 .390 .296 .225 .172 .123 .078 .040 .056 .069 .053 b.041	.572 .446 .326 .244 .178 .128 .088 .046 .011 .035 .053 .041	.498 .383 .275 .200 .141 .097 .058 .022 009 .020 .039 .026 b.010	.412 .313 .219 .154 .100 .062 .028 005 029 .004 .028 .020 b.019	.260 .193 .128 .081 .040 .010 018 042 057 011 .024 .036 b.041	.093 .070 .037 .012 016 035 057 073 077 019 .026 .053 b.078	121 080 069 067 084 094 105 109 100 029 .030 .071 b.090	556 294 242 197 189 179 171 157 126 035 040 101	29619211471261321341361321112031 .037 .089 b.110	.002 .006 008 021 043 059 078 087 087 024 .028 .060	.149 .110 .068 .034 .001 020 047 063 071 016 .027 .048	.320 .235 .161 .107 .061 .029 003 030 050 007 .024 .029	.432 .327 .230 .162 .107 .068 .031 002 028 .003 .027 .017	.531 .410 .297 .219 .156 .108 .069 .033 .001 .026 .044 .033 b.026	.609 .479 .355 .266 .200 .148 .103 .063 .028 .049 .063 .050

bLower surface only.

NACA RM L9112

CONFIDENTIAL

TABLE 6.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(n) N = 2160 rpm; $\beta_{0.75R} = 30^{\circ}$.

						(11) 1.	2100 11	10.12K	50 .					
	J M _X α _X ' Δβ α _i cn cm	1.095 .765 6.00 .90 2.68 .9145 0700	1.143 .768 4.96 .64 2.18 .7478 0553 0162	1.196 .775 3.84 .39 1.80 .6228 0589 0069	1.256 .783 2.61 .10 1.40 .4835 0636	1.315 .798 1.42 15 .95 .3317 0632 .0099	1.373 .806 .28 37 .55 .1906 0664 .0154	.1.407 .811 37 49 .29 .1026 0662 .0176	1.388 .809 0 43 .45 .1555 0655 .0163	1.311 .790 1.50 13 1.00 .3486 0637 .0094	1.284 .789 2.04 02 1.16 .4008 0660	1.231 .782 3.12 .21 1.54 .5285 0605	1.180 .773 4.18 .46 1.94 .6649 0514 0109	1.129 .764 5.26 .72 2.35 .8051 0521 0198
	c/b						Pressu	e coeffic	ient, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.155 -1.235 -1.309 -1.232 -1.196 -1.185 -1.181 794 679 465 280 023	1.157 -1.006 -1.121 986 -1.009 967 821 796 713 483 272 029	1.160 686 911 638 702 709 802 738 749 528 289 027	1.163 391 628 520 529 619 665 630 692 630 309 029 068	1.169 106 320 327 394 519 577 553 653 653 329 034 .074	1.173 .130 094 161 274 402 506 492 572 654 358 049	1.175 .255 .025 069 204 336 448 453 540 641 399 060 .065	1.175 .181 046 123 245 376 483 475 559 645 373 051 .072	1.166 118 329 336 401 526 586 586 630 654 338 036 .077	1.165 251 464 426 462 577 622 587 658 637 322 030 .075	1.162 508 821 579 618 668 729 694 714 588 307 036 .054	1.159876971910858731832734725503286030 .053	1.155 -1.068 -1.208 -1.099 -1.088 -1.092 863 794 693 477 279 029
Lower surface	1 . 550	.543 .428 .318 .238 .173 .123 .075 .030 003 .022 .042 .031	.430 .332 .237 .168 .111 .066 .022 017 048 017 .003 011 b020	.329 .252 .173 .117 .065 .024 017 076 076 036 006 007	.178 .139 .090 .053 .012 018 051 078 093 040 0	049 029 034 045 074 094 116 131 129 058 0	310 195 154 142 156 165 178 183 161 069 .007 .063	593 253 251 213 217 217 226 225 193 086 .001	393 240 189 168 178 184 196 197 172 074 .005 .066 b.098	043 025 033 044 073 092 116 129 127 052 .006 .041 b.060	.072 .058 .028 .003 030 053 080 100 108 014 .003 .025 b.036	.236 .179 .116 .071 .024 010 047 077 098 050 014 006	.369 .281 .195 .135 .080 .038 004 040 065 030 002 009 b015	.476 .367 .267 .194 .132 .084 .040 002 034 007 .013

bLower surface only.

NACA 16-307.00 PROPELLER BIADE SECTION (x = 0.65) - Continued

(o) N = 1350 rpm; $\beta_{0.75R} = 50^{\circ}$.

r	-			-	-				0.17						
		J Mx cx* AB ci cn cm cc	2.277 :634 6.08 .42 2.25 .8567 0224	2.388 .651 4.73 .36 1.86 .7084 0365	2.488 .667 3.58 .21 1.60 .6088	2.634 .693 1.98 0 1.17 .4472 0503	2.783 .717 .47 23 .80 .3071 0593	2.930 .747 93 44 .48 .1826 0700	3.065 .770 -2.12 65 .08 .0303 0832	3.009 .758 -1.64 55 .26 .1019 0780	2.869 .731 36 35 .62 .2386 0652	2.726 .705 1.04 13 .94 .3614 0561	2.579 .678 2.57 .08 1.32 .5049 0465	2.472 .661 3.76 .24 1.62 .6198 0368	2.367 .644 4.98 .40 1.91 .7286 0331
		c/b						Pressu	re coeffici	ent, P					
	Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.104 -2.279 -2.167 -1.766 769 749 683 567 497 398 256 038 .040	1.110 -1.788 -1.633 827 749 712 657 553 495 407 271 033 .059	1.116 -1.140 -1.192 803 668 653 615 526 482 406 279 033 .074	1.127 548 669 561 528 559 496 475 413 302 047	1.136 130 319 329 383 456 494 453 456 417 318 058	1.148 .169 055 138 257 364 434 418 447 426 342 074	1.158 .391 .154 .027 134 266 363 374 430 434 361 086 .063	1.152 .302 .067 044 190 313 399 399 442 436 362 090 .059	1.141 .040 173 223 317 408 464 437 452 425 336 074	1.131 288 456 419 443 501 524 472 466 416 312 057	1.120 744 814 647 577 593 578 502 473 407 291 048	1.114 -1.245 -1.223 833 689 664 626 533 487 410 281 038 .066	1.108 -1.954 -1.815 844 761 719 659 555 495 405 268 038
	Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.631 .494 .361 .266 .197 .145 .096 .054 .023 .028 .037 .044	.532 .405 .291 .213 .152 .105 .064 .027 .005 .021 .040 .027 b.013	.420 .316 .223 .160 .107 .071 .033 .003 -011 .014 .040	.199 .151 .101 .064 .030 .007 016 035 045 .002 .042 .054 b.050	062 031 025 025 041 048 062 068 062 0 .054 .085	375 221 156 119 111 101 080 .001 .068 .116 b.118	-1.037 529 278 218 193 168 153 129 089 .006 .084 .137 b.160	723 313 242 181 165 148 139 121 090 001 075 126 a .161	224137098075084085091089075002 .060 .103	.046 .040 .023 .008 016 029 045 058 060 002 .042	.294 .220 .151 .104 .060 .030 .001 020 031 .007 .042 .033 b010	.441 .333 .232 .166 .112 .074 .035 .005 011 .013 .038 .027 .008	.561 .429 .310 .227 .163 .116 .071 .034 .011 .023 .039 .039

aFaired value.

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(p) N = 1350 rpm; $\beta_{0.75R} = 40^{\circ}$.

						(1)		, .O. 1)II						
	J M _X Δβ α _i cn c _m	1.408 .513 9.61 .61 2.66 .9525 0293	1.508 .524 7.75 .51 2.37 .8562 0147	1.613 .536 5.89 .39 1.99 .7239 0290	1.721 .553 4.08 .26 1.58 .5759 0385	1.848 .567 2.06 .09 1.11 .4078 0446	1.992 .590 09 13 .61 .2260 0543	2.140 .612 -2.14 38 .12 .0461 0560	2.074 .601 -1.25 27 .36 .1352 0588	1.919 .576 .98 02 .85 .3164 0493	1.782 .558 3.09 .18 1.35 .4998 0407	1.671 .544 4.91 .32 1.79 .6563 0401	1.564 .533 6.75 .45 2.23 .8117 0261	1.471 .521 8.43 .55 2.51 .9070 0173
	c/b						Pressur	e coefficie	nt, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.067 -1.560 -1.536 -1.538 -1.370 -1.076 802 586 449 335 240 143 103	1.070 -2.076 -1.948 -1.641 993 725 613 515 441 352 240 079 011	1.074 -1.941 -1.365957750682617520463385264055	1.079 -1.060 -1.001760 -622597562482446386280059	1.083 570 622 514 472 488 486 432 414 374 294 076	1.090 064 233 248 301 363 397 367 374 359 301 094	1.096 .316 .090 017 141 239 303 298 324 330 298 106 .022	1.093 .143 060 128 221 299 350 332 350 347 303 104 .026	1.085 298 419 378 384 423 443 401 395 368 298 085	1.080 840 828 641 553 548 528 461 431 382 287 069	1.076 -1.253 -1.141872694647595505459391279065	1.073 -2.234 -1.956 -1.235 776 701 630 531 464 379 262 047	1.070 -1.782 -1.705 -1.593 -1.288 932 676 511 409 316 222 107 057
Lower surface	1	.766 .613 .461 .347 .267 .200 .137 .077 .025 003 034 080 b130	.698 .548 .403 .299 .223 .167 .111 .064 .026 .018 .012 002 b009	.608 .463 .332 .243 .175 .129 .083 .044 .015 .022 .028 .017 b.008	.448 .333 .231 .163 .111 .073 .037 .008 008 .014 .037 .025	.204 .149 .096 .059 .028 .004 020 036 041 .002 .040 .045 b.038	150 098 073 058 066 069 075 077 071 009 .043 .083	541 355 246 182 163 145 134 118 093 013 .054 .108 a.136	352 223 157 120 117 106 104 096 082 009 .052 .099 a.125	.033 .027 .009 004 024 031 047 058 060 006 .036 .063 b.124	.340 .249 .168 .116 .071 .040 .009 015 024 .005 .037 .035 b.032	.538 .406 .286 .204 .144 .101 .060 .028 .004 .019 .041 .039	.659 .508 .372 .273 .202 .148 .099 .077 .024 .030 .034 .052	.732 .578 .431 .325 .245 .182 .124 .071 .027 .012 004 032 b049

aFaired value.

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(q) N = 1350 rpm; $\beta_{0.75R} = 35^{\circ}$.

-												and the same of th		The state of the s
	J M _x α _x * Δβ α ₁ c _n	1.078 .474 11.37 .68 2.96 1.0215 0676	1.174 .486 9.30 .63 2.62 .9123 0186	1.264 .495 7.44 .54 2.29 .8035 0242	1.387 .509 5.01 .39 1.76 .6241 0444	1.507 .527 2.77 .22 1.24 .4408	1.652 .546 .23 01 .68 .2465 0512	1.823 .566 -2.56 28 01 0032 0576	1.730 .553 -1.07 13 .34 .1251 0540	1.571 .534 1.63 .12 .98 .3512 0464	1.456 .516 3.71 .30 1.45 .5162	1.319 .501 6.34 .48 2.04 .7164 0347	1.230 .491 8.13 .58 2.45 .8573	1.137 .480 10.09 .66 2.71 .9390 0503
-	c/b						Press	re coefficie	ent. P					1 /2-
Unner simpace	0.000 .025 .050 .100 .200	1.058 -1.383 -1.385 -1.351 -1.260 -1.139978786619470352238190	1.061 -1.645 -1.645 -1.616 -1.323 952 687 509 402 308 216 111 067	1.063 -2.192 -1.989 -1.284774687617521456370258074	1.066 -1.182 -1.086820659614571491450387285071	1.071 686 698 556 497 499 494 435 413 372 290 080	1.077 -1.139283282319368395362366349294095	1.082 .378 .150 .034 099 195 261 261 289 299 275 099 .018	1.078 .138 061 123 212 285 335 338 335 333 277 108 .016	1.073 464 547 473 457 481 490 446 493 493 29 005	1.068879852650546531508441414360274056	1:064 -1.967 -1.350931738670609518462387274072	1.062 -2.096 -1.916 -1.610 984 712 596 500 424 338 232 080 016	1.059 -1.442 -1.442 -1.387 -1.238 -1.080887688528397289193150
T. Owen Bly BCA	550	.796 .647 .490 .373 .282 .210 .144 .077 .016 019 056 121 b188	.749 .597 .445 .334 .255 .190 .131 .075 .028 .010 010 042 b073	.669 .513 .372 .275 .203 .149 .100 .057 .025 .028 .030	.504 .376 .260 .165 .127 .090 .047 .016 003 .016 .035	.259 .189 .121 .076 .045 .019 005 025 039 .001 .030 .047	093 061 051 044 052 061 069 072 069 010 .039 .075 a.090	594397273201173155137121093014052108087	350226158125119108100083013 .047 .089	.069 .039 .004 -020 040 058 076 092 096 047 005	.391 .289 .199 .194 .060 .032 .004 005 .022 .050 .049	.603 .459 .324 .234 .171 .122 .078 .039 .014 .024 .036	.709 .558 .410 .307 .231 .170 .120 .069 .031 .027 .019	.757 .606 .456 .341 .257 .190 .127 .066 .015 019 049 095

aFaired value. bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Continued

(r) N = 1350 rpm; $\beta_{0.75R} = 25^{\circ}$.

							\- / - ·		- F, -O.								
	J Mx cx AB Ci cm cc	0.588 .409 13.14 .57 3.10 .8917 0437	0.674 .430 10.93 .50 3.01 .9084 0744	0.750 .428 9.03 .44 2.64 .8207 0134	0.839 .435 6.86 .35 2.28 .7289 0296	0.922 .455 4.90 .26 1.68 .5480 0389	1.015 .463 2.77 .15 1.19 .3968 0414	1.098 .475 .93 .06 .79 .2656 0460	1.180 .484 82 03 .36 .1212 0521	1.219 .488 -1.63 08 .14 .0491 0480	1.137 .472 .09 .02 .56 .1882	1.064 .467 1.68 .10 .92 .3092 0440	0.965 .449 3.91 .21 1.43 .4719 0418	0.870 .438 6.12 .31 1.95 .6271 0381	0.782 .427 8.25 .41 2.49 .7842 0203	0.697 .417 10.35 .48 2.83 .8611 0139	0.613 .418 12.49 .55 3.07 .8962 0457
	c/b							Pres	sure coef	ficient,	P						
Throw gimpage	FOO	1.043 -1.908 -1.804 -1.312 915 749 648 557 497 439 398 350 329	1.048 -1.251 -1.190 -1.085 -1.027 965 867 748 624 499 392 290 244	1.047 -1.749 -1.718 -1.659 -1.098 708 561 465 393 312 216 094 043	1.049 -2.117 -1.676 941 724 661 605 512 458 381 279 082	1.053 -1.036 954 728 592 563 535 464 432 375 293 085	1.055 588 607 500 450 455 452 400 386 350 286 088 .032	1.058 224 345 316 329 367 388 351 351 331 281 091	1.060 .112 075 130 210 276 323 302 318 315 287 109	1.061 .267 .058 -036 -1140 -221 -278 -268 -290 -292 -276 -107	1.057 046 205 223 277 324 332 340 332 298 113	1.056339430377368395411368365339285091027	1.052 823 795 616 523 509 492 430 430 363 284 082 036	1.049 -1.303 -1.108 850 673 618 572 488 444 380 281 081	1.047 -2.054 -1.816 -1.429 830 652 583 496 434 354 249 089	1.045 -1.766 -1.742 -1.660 -1.235 807 596 471 392 315 242 129 135	1.045 -1.880 -1.702 -1.357 993 838 716 596 512 431 369 307 276
q	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .925 .975 1.000	.806 .646 .486 .364 .270 .192 .116 .044 028 084 150 239 b338	.736 .585 .442 .330 .248 .180 .116 .054 004 041 084 158 b224	.708 .555 .408 .303 .225 .168 .114 .065 .024 .012 0012 b026	.617 .468 .331 .244 .172 .124 .076 .041 .014 .020 .041 .041 b.030	.428 .311 .208 .140 .092 .052 .021005023 .001 .026 .018 b014	.211 .151 .093 .054 .023 002 021 038 046 007 .032 .041 b.035	015 010 015 023 034 039 059 059 007 .038 .071 b.098	321 213 153 117 114 109 106 098 085 018 040 084 a.175	489 314 221 168 150 140 127 115 094 023 .038 .088	181 123 099 086 086 086 086 089 080 017 .033 .075 a.106	.059 .040 .016 0 021 046 054 057 005 .032 .054 b.059	.342 .244 .160 .107 .073 .033 .005 017 032 .002 .031 .031 b.021	.543 .404 .278 .197 .136 .092 .055 .023 0 .015 .032 .021 b001	.664 .513 .370 .268 .197 .147 .096 .052 .018 .018 .018 a029 b070	.738 .580 .433 .320 .238 .181 .118 .060 .012 013 043 092 b128	.781 .623 .465 .346 .259 .185 .116 .048 018 064 120 192 b246

aFaired value.

bLower surface only.

NACA 16-307.00 PROPELLER BLADE SECTION (x = 0.65) - Concluded

(s) N = 1350 rpm; $\beta_{0.75R} = 20^{\circ}$.

				1													
	J M _X α _X , Δβ α _i cn cm c	0.553 .406 9.05 .56 2.88 .7923 0166	0.619 .419 7.34 .46 2.56 .7310	0.656 .425 6.39 .43 2.23 .6452 0381	0.715 .432 4.90 .35 1.81 .5379 0387	0.769 .425 3.56 .28 1.36 .4130 0424	0.839 .441 1.86 .18 .98 .3075 0511	0.905 .443 .30 .09 .60 .1914 0527	0.988 .457 -1.62 03 .20 .0652 0547	0.964 .454 -1.07 0 .35 .1142 0551	0.877 .440 .96 .13 .74 .2344 0496	0.829 .445 2.10 .19 1.12 .3483 0437	0.748 .434 4.08 .30 1.54 .4648 0409	0.692 .426 5.48 .38 1.95 .5754 0420	0.656 .425 6.39 .43 2.31 .6726 0349	0.593 .410 8.01 .51 2.72 .7653 0202	0.493 .382 10.63 .64 3.13 .8212 0419
	C/D			1				Pr	essure co	efficient	, P						
14	0.000 .025 .050 .100 .200 .200 .400 .500 .600 .700 .800 .900	1.042 -2.377 -1.808 -1.397 860 661 573 479 407 328 228 083 020	1.045 -1.934 -1.813 -1.229 684 620 573 483 427 353 255 078 .005	1.046 -1.586 -1.122859682620575486443376275080 .015	1.048 -1.066 965 727 594 561 535 458 426 373 290 081	1.046 -692 -684 -543 -478 -478 -478 -478 -398 -360 -292 -093 .026	1.050 -362 -446 -385 -376 -396 -426 -376 -371 -348 -295 -104	1.050 -063 -216 -228 -277 -325 -353 -333 -344 -336 -296 -115	1.054 .212 .013 .065 .159 .228 .269 .275 .302 .308 .277 .131	1.053 .124 060 116 197 261 297 294 316 316 283 116	1.050 -173 -297 -285 -309 -346 -381 -346 -346 -334 -295 -104	1.051 506 542 451 431 437 384 376 343 285 090 .030	1.048 836 804 619 524 511 494 431 407 362 285 082	1.047 -1.166 -1.041 784 626 581 548 469 429 371 278 076 .028	1.046 -1.904 -1.278 849 684 623 574 481 433 365 267 070	1.043 -2.113 -1.820 -1.341 769 635 570 483 421 343 240 081 010	1.037 -2.015 -1.595 -1.414 -1.033 762 600 470 387 308 234 152 121
	.0375 .075 .150 .250 .350 .450 .650 .750 .850 .925 .975 1.000	.696 .536 .388 .288 .213 .156 .058 .024 .018 .011 .011	.631 .482 .346 .247 .185 .135 .086 .046 .018 .024 .037 .024	.565 .422 .294 .205 .150 .101 .062 .024 .003 .015 .034 .015 b015	.445 .324 .215 .145 .094 .058 .022 021 .003 .028 .016 b010	.257 .179 .111 .064 .026 .002 040 052 010 .021 .026 b.024	.070 .047 .018 002 022 035 046 057 011 .036 .064	165 115 092 086 080 086 086 086 080 018 .039 .084	421 266 197 153 139 125 120 109 087 015 051 112 a.150	327 219 155 121 116 110 107 099 082 016 .046 .104 a.150	070 050 048 048 056 062 070 073 070 012 .036 .073 a.096	.166 .117 .064 .036 .006011035043052005 .033 .047 b.047	.345 .246 .160 .104 .061 .032 .002 022 034 001 .029 .026 b.004	.504 .369 .252 .179 .125 .083 .046 .016 .008 .016 .034 .019 b003	.595 .447 .319 .230 .166 .120 .077 .040 .015 .031 .046 .031 b011	.662 .510 .364 .269 .198 .146 .098 .052 .024 .024 .027 .015 b002	.742 .585 .426 .316 .236 .172 .108 .055 .003 .018 .018 .044 .082 b101

aFaired value.

bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70)

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

									NC1.0			A Townson				
	J M _X α _X * Δβ α ₁ c _n c _m	1.677 .472 9.67 .62 2.57 .9079 0288	1.837 .491 7.13 .50 2.22 .7898 0286	1.949 .502 5.45 .41 1.90 .6805 0444	2.071 .518 3.72 .31 1.49 .5342 0498	2.191 .531 2.11 .23 1.09 .3916 0488	2.309 .543 .60 .12 .76 .2748 0592	2.443 .561 -1.01 .01 .45 .1652 0615	2.585 .579 -2.61 10 .07 .0258 0646	2.521 .568 -1.90 05 .21 .0781 0636	2.401 .553 51 .04 .54 .1968 0603	2.255 .534 1.28 .17 .92 .3342 0515	2.120 .520 3.05 .27 1.34 .4839 0470	2.012 .510 4.54 .36 1.67 .6013 0497	1.890 .493 6.32 .46 2.09 .7457 0342	1.765 .479 8.25 .55 2.40 .8504 0183
-	c/b						11-11-11	Pressure	coefficient	, P						
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.057 -1.947 -1.917 -1.740 -1.098 853 683 551 440 348 262 152	1.062 -1.689 -1.689 -1.682 -1.569895628530470419347240090019	1.064 -1.866 -1.387 834 683 596 488 448 390 277 089	1.068907842671579524475445422381083 .024	1.072 547 574 494 477 450 419 408 401 372 284 085	1.075200315324362369362362379362307103	1.081 .094 080 160 251 284 300 318 343 341 290 103 001	1.086 .378 .162 .021 -127 -189 -226 262 301 314 272 154 .002	1.083 .263 .061 058 184 234 261 293 327 332 287 141 008	1.078 0 157 215 289 314 323 337 358 358 359 105 006	1.073 364 440 405 410 403 384 381 386 366 288 093 .027	1.069 774 742 605 541 500 456 435 422 383 286 089 .025	1.067 -1.220 960 767 643 574 509 471 443 393 285 094 .008	1.062 -1.863 -1.740 -1.278 695 612 548 497 448 384 270 096 007	1.059 -1.796 -1.796 -1.796 -1.718 -1.079 740 573 473 319 221 104 054
	.0375 .075 .150 .250 .350 .450 .650 .650 .850 .925 .975	.741 .593 .444 .334 .255 .186 .120 .072 .030 008 036	.646 .511 .376 .279 .213 .157 .109 .070 .048 .040 .045 .045	.552 .424 .307 .227 .170 .118 .080 .051 .035 .044 .065 .089	.393 .301 .211 .153 .109 .072 .040 .021 .014 .030 .054 .067 a.074	.188 .148 .099 .064 .042 .011 012 025 020 .002 .028 .059 b.062	039 013 009 013 026 039 054 054 039 005 .049 .110 a.152	278170111082078080089072050 .001 .060 .133 a.182	600374245177150137129100066004 .066 .141 a.206	479289194147129121119095066008 .059 .132 a.192	200120082066070082068049002 .056 .127 a.177	.081 .072 .048 .029 .009 013 030 037 030 0	.312 .238 .167 .117 .080 .046 .016 0 0 .016 .039 .057 .069	.468 .361 .256 .185 .134 .092 .056 .034 .025 .037 .058 .072	.597 .469 .340 .250 .189 .137 .091 .058 .037 .043 .056 .068 a.072	.697 .556 .413 .310 .236 .172 .119 .076 .042 .023 .018 008

aFaired value. bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J M _X α _X ! Δβ α _i c _n c _n	1.762 .568 8.30 .83 2.53 .9021 0148	1.872 .582 6.60 .75 2.24 .7999 0257	1.967 .590 5.19 .60 1.90 .6791	2.079 .608 3.61 .43 1.52 .5477 0475	2.191 .625 2.11 .32 1.18 .4281 0505	2.298 .641 .74 .19 .89 .3245 0653	2.404 .657 54 .05 .58 .2097 0703	2.529 .675 -1.98 10 .20 .0713 0705	2.571 .682 -2.47 13 .07 .0261 0719	2.494 .669 -1.59 07 .28 .1016 0685	2.368 .648 11 .09 .67 .2419 0674	2.262 .635 1.19 .24 .99 .3581 0609	2.163 .618 2.48 .35 1.26 .4529 0489	2.030 .601 4.28 .49 1.66 .5974 0431	1.923 .586 5.84 .67 2.07 .7386	1.841 .576 7.08 .78 2.34 .8336 0216
	c/b							Pre	ssure coe	fficient,	P						
Ilmer warm		1.183 -1.991 -1.918 -1.682 -1.174 863 644 505 402 314 215 108 064	1.087 -2.107 -1.895 -1.475 825 666 575 509 447 240 070	1.090 -1.883 -1.087 906 748 655 570 517 473 397 265 056 .033	1.095 932 922 732 632 570 512 478 478 396 278 058 .049	1.101 573 623 534 522 458 446 439 399 296 075 .046	1.107 231 361 364 403 411 404 406 418 398 331 108	1.112 .053 128 202 298 334 348 366 391 393 330 115 .013	1.120 .323 .107 029 180 242 279 317 359 378 323 123	1.122 .405 .179 .030 -138 -254 -298 -347 -371 -371 -322 -126	1.117 .264 .053 068 207 262 295 328 365 382 326 120	1.109 023 192 248 329 355 364 378 399 388 329 106 .007	1.105 336 440 415 434 430 415 414 419 395 309 094 .034	1.099 649 680 570 542 504 467 452 439 293 070 .047	1.093 -1.061 -1.013 805 681 602 535 495 496 275 058	1.088 -2.475 -1.268 964 776 585 524 471 390 256 058 .023	1.085 -2.036 -1.912 -1.630 943 697 572 495 428 382 223 073 010
Tomes were	(50	.720 .582 .437 .327 .253 .186 .128 .077 .041 .017 005 048 b088	.648 .514 .383 .287 .222 .162 .113 .075 .050 .045 .043 .026 b—.006	.550 .429 .311 .229 .170 .119 .076 .047 .027 .031 .038 .031 b.030	.401 .310 .222 .160 .115 .074 .040 .019 .010 .022 .042 .054	.199 .158 .111 .073 .046 .014 017 022 020 .002 .032 .064 b.078	008 .010 .009 001 011 051 051 048 031 .009 .064 .132 a.170	236 143 090 070 069 077 083 072 046 .007 .068 .138 a.184	569330217165145127103064 .001 .072 .144 b.162	634 409 267 196 165 151 139 110 068 .001 .074 .147	481 284 187 142 126 122 120 097 064 001 .069 .141 b.183	170 099 065 052 055 065 077 065 042 .007 .070 .142 b.202	.069 .068 .047 .031 .010 011 030 035 023 .009 .061 .110 a.148	.244 .192 .133 .091 .059 .026 002 016 014 .007 .038 .061 b.072	.462 .358 .258 .185 .137 .092 .055 .028 .017 .020 .030 .037	.598 .471 .344 .254 .191 .138 .092 .056 .034 .026 .023 .015	.674 .539 .403 .304 .235 .173 .123 .081 .052 .033 .019 002 b030

aFaired value.

bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

								0.1)1						-
	J Mx Ax AB Con con coc	1.921 .653 5.86 .90 2.35 .8411	2.012 .667 4.54 .77 1.93 .6955 0401	2.129 .687 2.93 .59 1.52 .5471 0492	2.229 .701 1.61 .40 1.18 .4265 0557	2.353 .723 .06 .14 .79 .2887 0734	2.453 .741 -1.12 09 .42 .1519 0748	2.554 .756 -2.27 -33 .09 .0348 0782	2.510 .749 -1.78 22 .23 .0832 0760	2.400 .728 50 .04 .60 .2181 0690	2.282 .707 .94 .29 .99 .3600 0633	2.184 .691 2.20 .49 1.30 .4684 0510	2.073 .675 3.69 .69 1.69 .6110 0438	1.993 .661 4.81 .80 2.05 .7371 0365
	c/b						Pressure c	oefficient,	P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800	1.111 -2.179 -2.129 -1.902 728 692 617 560 511 427 281 061	1.116 -1.757 -1.616 791 764 596 544 504 428 285 053	1.124 823 927 723 654 543 513 492 430 297 060	1.130 452 570 521 534 518 487 476 476 4431 307 064	1.138 048 232 289 379 408 415 428 450 423 341 093 .039	1.146 .227 .012 109 255 316 353 387 429 420 346 101	1.151 .364 .189 .032 149 235 290 347 407 417 343 106	1.149 .340 .116 027 193 269 314 361 413 413 340 100 .030	1.141 .097 107 197 317 361 383 408 440 422 350 097 .031	1.132 242 395 406 454 462 454 454 464 464 432 328 095 .038	1.126 608 700 596 581 547 505 489 476 428 299 060	1.119 -1.047 -1.152825708634567525493429292059	1.114 -1.928 -1.809 887 765 682 601 545 503 424 283 055
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925	.600 .478 .353 .264 .187 .145 .087 .066 .043 .038 .041	.494 .390 .285 .210 .156 .106 .054 .039 .025 .028 .039 .042	.320 .251 .179 .125 .084 .045 .005 003 007 .009 .030 .051 b.063	.141 .119 .084 .054 .028 0 033 032 028 0 .035 .076 b.096	132 072 044 038 045 059 076 065 045 .002 .062 .134 a.185	436 266 167 130 119 119 120 100 064 002 .070 .148	999468276210180164152120074 0 .078 .155 a.201	677318228172148140132108068 .002 .077 .154 a.194	271 162 106 079 079 085 094 081 053 .004 .071 .147	.008 .024 .018 .006 011 033 051 051 040 .001 .055 .125 a.184	.223 .179 .129 .087 .054 .022 007 018 017 .004 .035 .066 b.080	.410 .322 .231 .167 .119 .075 .038 .017 .009 .020 .038 .049	.532 .421 .310 .217 .173 .122 .078 .051 .034 .036 .047 .048 b.048

aFaired value. bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$.

				Contract of the second							
J M α _x . Δβ α ₁ c _n c _m	2.070 .728 3.73 .77 1.83 .6594 0420	2.161 .739 2.50 .56 1.49 .5387 0533	2.262 .759 1.19 .35 1.12 .4058 0677 .0033	2.360 .776 02 .08 .77 .2794 0769	2.468 .794 1.30 25 .38 .1400 0877	2.526 .806 -1.96 45 .09 .0310 0900	2.490 .798 -1.55 33 .25 .0910 0882	2.431 .787 87 13 .52 .1903 0775	2.325 .765 .41 .19 .87 .3161 0714	2.231 .751 1.59 .42 1.25 .4516 0595	2.129 .732 2.93 .64 1.62 .5826 0508
c/b					Pres	sure coeffic	ient, P				
0.000 .025 .050 .050 .200 .200 .400 .500 .600 .700 .800 .900 .950	1.140 -1.032 -1.131 -1.071 796 700 608 555 516 430 276 031	1.145 626 906 688 686 644 580 546 519 442 290 035 .074	1.153 247 428 443 509 532 530 534 470 323 056 .079	1.160 .063 147 237 367 429 456 502 548 497 344 071	1.167 .323 .094 048 226 318 375 451 543 548 370 083 .059	1.173 .429 .199 .044 152 254 321 412 520 572 358 072	1.169 .363 .134 013 197 293 354 436 556 552 357 072	1.165 .225 .003 120 281 362 404 471 544 511 348 068	1.155 050 247 314 420 468 481 536 481 335 063	1.149 409 582 545 581 577 542 531 520 452 303 043	1.142 732 -1.068 785 724 663 587 549 516 438 288 039
.0375 .075 .150 .250 .350 .450 .650 .750 .850 .925 .925 .975 1.000	.416 .332 .245 .180 .131 .086 .046 .025 .014 .028 .042 .059	.265 .216 .156 .110 .072 .036 .005 010 010 .012 .038 .064	.042 .052 .042 .023 .002 022 046 047 033 .004 .055 .110	218125079064069082094082055001065135175	677375221173153148143115073 .001 .080 .155 a.195	-1.037 880 271 220 196 183 170 136 083 005 .073 .142 b.186	829572242192168151123074003 .071 .137 b.169	433 256 159 125 119 120 124 105 068 004 063 128 128	113 058 034 032 044 061 079 071 049 002 .056 .113 b.147	.145 .128 .094 .062 .035 .004 023 023 .006 .047 .086 b.109	.324 .259 .190 .135 .093 .053 .019 001 001 .019 .042 .062 b.076

aFaired value.

bLower surface only.

NACA RM L9L12

CONFIDENTIAL
TABLE 7.— PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(e) M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

								0.7	, i						
	J M _x α _x ' Δβ α ₁ c _n c _m	2.131 .812 2.91 .57 1.66 .5974 0718	2.161 .806 2.50 .51 1.49 .5400 0677 0023	2.191 .798 2.10 .44 1.39 .5026 0687	2.226 .791 1.65 .37 1.27 .4587 0701	2.253 .787 1.31 .31 1.17 .4252 0762	2.280 .779 .96 .26 1.03 .3748 0714	2.321 .778 .46 .18 .92 .3342 0729	2.351 .774 .09 .11 .79 .2858 0723	2.378 .767 24 .06 .65 .2368 0710	2.399 .761 49 .01 .55 .2006 0736	2.437 .756 94 06 .43 .1581 0739	2.476 .753 -1.39 13 .33 .1194 0751	2.509 .749 -1.76 19 .21 .0781 0757	2.542 .742 -2.14 24 .09 .0323 0752
	c/b		Miles					Pressure c	oefficient	, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.176 420 734 656 714 734 747 776 844 440 216 009	1.173 378 687 553 659 684 702 753 762 461 238 003	1.169341595532619685699696481272016 .088	1.166 272 483 487 567 599 639 639 439 302 029	1.165 207 408 435 523 572 577 598 492 314 036	1.162 128 326 374 471 524 532 542 570 489 321 046	1.161 038 239 309 422 476 495 517 555 489 334 063	1.159 .033 170 254 378 434 458 484 523 477 336 070	1.156 .113 096 194 326 391 415 449 490 460 334 070	1.154 .166 047 156 296 362 391 429 473 453 341 078	1.151 .235 .014 106 257 326 362 403 451 443 341 087	1.150 .308 .085 049 213 287 330 375 428 427 336 091 .038	1.149 .354 .128 016 184 264 308 358 412 417 336 094 .033	1.146 .409 .181 .029 148 232 281 335 392 403 330 102
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.264 .224 .167 .121 .079 .037 0 023 026 002 .028 .049	.205 .178 .134 .092 .057 .003 016 032 031 003 .032 .061 b.080	.149 .133 .098 .067 .034 .001 031 044 037 006 .034 .072 b.096	.096 .094 .073 .048 .020 -010 036 045 035 .003 .049 .108	.045 .056 .046 .029 .008 020 045 048 035 .005 .056 .119	023 .007 .013 .005 013 057 057 057 059 .059 .125 b.158	114 057 031 031 042 058 078 070 048 .002 .059 .132 b.179	189 107 065 055 061 075 088 078 052 001 060 134 b-181	266 156 096 073 074 083 094 081 052 .004 .067 .140	338204126095093099106090057001065139180	441 262 163 126 118 119 099 063 003 .065 .140 a .218	571300201153128127101063 .001 .076 .152	727 328 234 175 151 141 134 109 063 0 0.078 154 a. 222	977357270202172158147118072 0 -077 -153

aFaired value.

bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(f) M = 0.60; $\beta_{0.75R} = 45^{\circ}$.

	Δ α ο		2.155 .864 2.58 .37 1.38 .4968 0844 .0152	2.183 .859 2.20 .34 1.26 .4542 0857	2.210 .853 1.86 .30 1.19 .4284 0836	2.228 .847 1.63 .26 1.11 .4019 0846 .0113	2.253 .843 1.30 .21 1.04 .3781 0811	2.282 .838 .95 .15 .95 .3439 0805	2.299 .832 .74 .11 .89 .3219 0805 .0119	2.327 .827 .38 .05 .79 .2871 0828	2.372 .825 17 06 .64 .2310 0847	2.393 .819 42 11 .59 .2129 0873	2.422 .814 76 18 .48 .1729 0882	2.457 .809 -1.17 27 .35 .1258 0909 .0159	2.484 .805 -1.49 32 .25 .0897 0905 .0167	2.516 .801 -1.85 39 .14 .0503 0936 .0165
1	С	:/ъ						P:	ressure c	oefficient	, P					
		.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.200 175 468 395 538 589 644 685 766 864 261 191 164	1.198 125 372 368 502 556 604 748 858 264 161	1.195 089 320 352 472 529 578 633 740 846 262 113 042	1.192 061 282 335 454 508 565 631 732 832 275 061	1.190 169 235 304 431 482 556 617 711 811 301 019	1.188 028 189 270 405 538 586 688 775 299 004	1.184 .060 157 244 386 462 514 571 665 757 293 008	1.183 .120 099 201 351 443 553 631 744 315 018	1.182 .211 013 132 296 393 447 504 606 715 345 025	1.179 .235 .010 115 281 377 438 495 597 702 342 039 .093	1.177 .307 .055 079 252 350 412 478 581 683 357 051	1.174 .340 .111 032 214 314 377 455 558 635 372 062	1.172 .371 .141 008 193 292 356 435 547 592 385 072 .074	1.171 .416 .188 .031 159 259 327 407 524 557 392 080 .067
	Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.146 .136 .103 .068 .026 021 072 102 117 110 105 151 b195	.085 .091 .069 .041 .005 083 107 111 093 071 092	.043 .059 .047 .026 006 044 086 104 102 072 034 027	.001 .028 .025 .010 019 054 091 104 096 058 007 .023	056 013 004 012 037 067 101 108 093 047 .011 .057	103 046 024 024 047 047 102 104 084 033 030 084 b.114	151 079 048 041 059 081 106 103 078 024 024 010 b.137	233 134 085 067 079 096 116 108 076 017 054 113 b.146	371 216 135 103 107 119 130 114 076 008 .066 .126	433 251 156 119 127 135 116 075 006 .068 .131	559320189147139141118074002 .073 .136171	742 503 225 176 159 151 148 121 072 .003 .081 .142 b.177	860 638 238 192 170 160 152 121 072 .006 .083 .146 b.180	-1.015833238209186172159125072 .006 .084 .149 b.182

bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(g) M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

								0.12							
1	J M _X α _X ' Δβ α ₁ c _n c _m c _c	2.100 .943 3.32 .46 1.22 .4368 -1019 .0359	2.125 .937 2.98 .39 1.13 .4071 1018	2.153 .930 2.61 .31 1.06 .3832 0959 .0348	2.176 .925 2.30 .24 .95 .3432 0906	2.199 .921 2.00 .17 .86 .3103 0883 .0349	2.220 .916 1.73 .12 .83 .2987 0898 .0346	2.246 .907 1.40 .04 .73 .2632 0888 .0336	2.284 .904 .92 07 .61 .2206 0872	2.306 .895 .64 14 .56 .1916 0865 .0314	2.335 .890 .28 22 .43 .1561 0887 .0292	2.347 .885 .14 25 .34 .1239 0821 .0288	2.386 .879 34 37 .23 .0839 0819	2.413 .874 65 45 .12 .0445 0870	2.445 .869 -1.03 55 .07 .0265 0965 .0247
	c/b	3, 1				- 16	P	ressure coe	efficient,	P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.242 .015 .258 .226 .376 .435 .489 .544 .625 .716 .797 .379	1.238 .037 211 215 366 427 482 538 620 714 806 376	1.235 .051 187 215 361 426 484 538 621 719 816 365 341	1.232 .082 147 203 340 410 469 518 611 715 818 342 317	1.230 .109 -115 -189 -324 -397 -455 -508 -609 -717 -816 -342 -310	1.227 .135 088 174 310 382 443 501 604 716 814 324 289	1.222 .173 049 146 291 359 1427 493 600 709 811 280 245	1.221 .219 .003 .111 .267 .336 .412 .482 .584 .695 .794 .221	1.217 .250 .028 -087 249 326 403 473 575 686 773 202 172	1.214 .287 .065 -057 224 317 386 451 561 675 732 178	1.211 .308 .085 043 214 315 376 446 559 676 712 165 126	1.208 .344 .121 -015 -193 -304 -354 -435 -551 -659 -662 -127 -077	1.205 .375 .152 .011 -172 284 341 425 528 646 664 098	1.203 .414 .190 .042 145 255 328 400 511 639 687 062
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.137 .141 .118 .084 .040 014 079 142 187 224 206 286. a330	.089 .104 .089 .060 .019 034 097 161 204 221 300 a338	.044 .066 .058 .032 006 057 121 183 223 259 234 313 a333	009 .026 .029 .009 026 075 136 198 233 261 236 315 b365	060 012 .001 013 046 093 153 212 245 264 236 312 b423	104 044 022 031 061 105 164 221 250 252 224 290	187 100 061 088 129 184 235 256 231 198 246 b289	293 162 100 093 114 151 201 243 251 201 164 192 b215	376212126115131164210246240182145168 b182	480 304 147 137 150 179 220 250 230 165 125 137 b140	547 397 170 159 168 197 236 260 233 160 114 115 b126	631 537 244 188 194 218 252 263 214 139 076 061 b062	693 622 371 204 209 231 259 256 195 112 025 b010	765 697 544 216 221 238 254 231 166 081 011 030 b.040

⁸Faired value.

bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(h) One-blade propeller; N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

					and the second second								
	J M _X	2.273 .697 1.05	2.222 .688 1.70	2.182 .680 2.22	2.120 .672 3.05	2.056 .663 3.93	2.020 .659 4.43	1.977 .651 5.04	1.928 .645 5.76	1.867 .635 6.67	1.820 .627 7.39	1.753 .622 8.44	1.715 .616 9.05
	Δβ α i c n c m c c	•31 •79 •3371 ••0545	.41 .96 .4074 0549	.49 1.04 .4487 0493	.60 1.24 .5316 0489	.71 1.41 .6026 0439	.76 1.56 .6697 0361	.83 1.72 .7394 0334	.89 1.85 .7916 0234	.97 2.06 .8877 0146	1.03 2.18 .9432 0095	1.08 2.16 .9342 0221	1.11 2.18 .9445 0357
	c/b						Pressure co	efficient,	P				N. H. All
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.128206339390405428415434425396276055	1.124 352 478 491 467 473 446 452 439 400 279 054	1.121 493 594 574 518 508 470 467 447 402 275 051 .063	1.118 728 791 711 603 564 512 496 459 408 271 049 .061	1.113 -1.028 948 829 669 540 514 467 404 263 043 057	1.112 -1.713 -1.146 865 706 636 559 522 466 395 247 033 .054	1.110 -2.022 -1.842 930 731 659 575 526 465 384 231 032 .044	1.108 -2.260 -2.031 -1.254743674585535462377226036	1.105 -2.517 -2.253 -1.836811671584527450364218040 .032	1.102 -2.661 -2.418 -2.018 980 687 581 529 442 354 213 049	1.100 -2.170 -1.923 -1.603 -1.201 931 702 538 410 315 218 138 102	1.097 -1.774 -1.671 -1.532 -1.245993768578453355260184149
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .950 .975	.002 .078 .090 .030 006 023 047 029 .011 .060 a.090 a.195	.107 .152 .139 .067 .025 .001 015 033 019 .015 .058 a.082 a.150	.185 .209 .179 .097 .052 .023 .002 019 010 .019 .058 a.076 a.190	.301 .291 .237 .144 .087 .053 .030 001 .001 .022 .058 a.065 a.180	.394 .361 .287 .186 .123 .081 .054 .018 .016 .029 .057 a.055	.458 .408 .326 .216 .151 .104 .072 .034 .026 .032 .056 a.043	.521 .457 .362 .245 .174 .126 .089 .045 .032 .032 .050 a.029	.573 .496 .391 .273 .195 .142 .103 .057 .041 .036 .047 a.021	.641 .553 .434 .313 .231 .174 .129 .079 .057 .045 .052 a.024	.689 .587 .463 .336 .251 .192 .145 .090 .065 .050 .051 a.019	.714 .606 .473 .348 .258 .192 .139 .077 .038 .004 012 a088 a145	.740 .629 .488 .365 .273 .205 .145 .078 .034 006 033 a124 a215

aFaired value.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(i) One-blade propeller; M = 0.57; $\beta_{0.75R} = 45^{\circ}$.

								,		, .		, PO. 15R								
J Mx αx Δβ αi cn cm		2.447 .764 -1.05 08 .33 .1419 0647	2.425 .770 80 04 .42 .1823 0652	2.397 .773 46 .02 .52 .2245 0655	2.365 .779 08 .08 .62 .2639 0639 .0102	2.332 .780 .32 .15 .80 .3432 0582 .0097	2.301 .784 .70 .23 .90 .3832 0580 .0081	2.281 .790 .95 .26 .99 .4226 0582 .0067	2.245 .794 1.41 .33 1.04 .4439 0556 .0055	2.230 .799 1.60 .36 1.11 .4765 0561 .0034	2.202 .804 1.96 .42 1.18 .5048 0567	2.178 .807 2.28 .47 1.25 .5355 0528	2.149 .813 2.66 .53 1.30 .5574 0524 0016	2.130 .821 2.91 .57 1.36 5832 0420 0023	2.103 .826 3.28 .63 1.46 .6232 0570 0023	2.084 .830 3.54 .67 1.52 .6503 0655 0006	2.063 .833 3.83 .72 1.59 .6819 0744 .0011	2.040 .838 4.15 .77 1.67 .7181 0844 .0044	2.020 .842 4.43 .81 1.70 .7316 0900	2.000 .847 4.71 .86 1.91 .8206 1285 .0136
c/b										Pressur	e coeff	icient, 1	P .							
Upper surface	25 50 00 00 00 00 00	1.155 .263 .034 103 216 297 326 381 442 4401 271 044 .080	1.158 .210 015 144 252 329 355 407 a456 416 273 041 .083	1.159 .146 072 194 292 367 438 a500 427 274 035 .086	1.160 .083 131 239 331 401 418 463 a.512 433 270 028 .091	1.162 .002 203 300 381 4459 459 a534 441 268 025	1.164 072 270 356 432 499 504 538 a545 446 263 018	1.166 132 328 406 481 539 561 a541 442 251 007	1.1681922634605255605525831444246004	1.170 243 439 492 538 566 596 625 a584 433 233 .006	1.172 300 515 516 554 621 638 676 a599 424 220 .007	1.174 348 595 534 630 645 660 733 a582 406 208 .009 .086	1.177380638578662694694749 a593392192 .002	1.179404668638681730735769 a589394183005	1.182429699571715770782815627408188035	1.183 445 709 684 741 794 808 854 429 226 087 025	1.185 458 718 708 765 823 876 a621 429 280 154 084	1.189459718725787850864900638429340250186	1.189468703725796856871909651429367307261	1.193 539 691 721 861 881 921 &781 661 615 577 314
Lower surface	375 775 50 50 50 50 50 50 50 50 50 50 50 50 50	419 194 085 098 107 092 098 092 059 .004 .069 .114 b.134	346153055078093082092087056 .004 .067 .109	256 107 021 057 078 067 081 081 055 .004 .063 .098	160 058 .011 029 057 052 069 070 047 .006 .064 .097 b.113	.339 006 .042 006 040 060 066 014 018 .061 a.123 b.153	.379 .040 .073 .017 021 024 048 057 038 .058 a.098 b.118	.394 .083 .107 .041 .001 005 034 046 031 .015 .061 a.096	.398 .117 .128 .058 .012 .002 028 044 031 .011 .056 a.089 b.107	.406 .150 .155 .079 .030 .017 016 034 025 .014 .058 a.091 b.108	.408 .183 .177 .095 .043 .026 010 032 026 .011 .052 a.084 b.100	.415 .213 .201 .111 .056 .037 005 029 025 .007 .043 a.069 b.082	.430 .241 .219 .127 .066 .044 .001 028 028 .001 .030 a.044 b.052	.495 .266 .239 .142 .080 .054 .009 023 027 002 .024 a.048 b.060	.500 .295 .262 .160 .094 .066 .017 020 027 008 .011 a.029 b.036	.506 .314 .276 .172 .103 .070 .019 021 034 022 007 a.013	.429 .340 .297 .189 .119 .084 .030 016 035 029 025 a020	.434 .367 .318 .207 .132 .096 .038 012 038 046 058 a064 a068	.439 .378 .330 .216 .140 .101 .039 014 045 062 087 a113 b132	.444 .396 .340 .228 .149 .106 .044 013 046 112 a150 b168

aFaired value.

bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(j) One-blade propeller; M = 0.59; $\beta_{0.75R} = 45^{\circ}$.

	J M _x α _x ' Δβ α _i c _n	2.222 .830 1.70 .33 1.05 .4465 0692	2.202 .837 1.96 .36 1.11 .4729	2.180 .840 2.25 .40 1.18	2.150 .840 2.65 .44 1.28	2.124 .845 3.00 .48 1.34	2.108 .854 3.21 .50 1.38	2.081 .860 3.58 .53 1.42	2.060 .863 3.87 .55 1.47	2.038 .868 4.18 .58 1.50	2.013 .871 4.53 .61 1.56	1.996 .878 4.77 .64 1.60	1.977 .881 5.04 .67 1.64 .7077	1.955 .886 5.36 .71 1.68 .7219	1.943 .890 5.54 .73 1.71
-	c _m	.0074	0729 .0079	.0097	0826	0826 .0108	0847	0832	0829 .0135	0823	0855 .0143	0878 .0148	0911	0967 .0159	1000
-	c/b						Pre	ssure coef	ficient, I						
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.184 144 353 419 474 560 579 666 721 676 199 008	1.187185400432506570607672754732200027	1.189 227 463 444 440 605 636 698 771 784 223 081 021	1.189 256 504 457 586 629 663 716 783 778 238 122 065	1.192 277 527 498 596 646 681 731 790 701 258 170	1.195 297 549 536 613 667 701 752 810 626 286 223 187	1.198320573563638691721775835530307259233	1.199341588576656712738787851477324292276	1.203 366 598 592 677 733 759 801 866 439 331 314 305	1.204 386 610 614 698 755 783 820 880 429 346 335 328	1.207385612624764794829882420357346	1.209385606627714800838838436371361359	1.211 402 595 623 717 800 840 870 471 386 377 376	1.214 434 589 619 715 771 799 838 852 483 392 384 383
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .975 .975	.103 .118 .400 .057 .003 020 051 072 065 027 .020 a.080 a.122	.137 .145 .402 .071 .014 013 047 072 070 035 .007 a.042 a.061	.177 .174 .406 .086 .025 -007 044 074 079 052 017 a.010 a.021	.218 .207 .417 .109 .043 .010 032 068 076 058 031 018	.252 .235 .425 .126 .057 .021 023 064 079 067 053 041 035	.279 .257 .427 .139 .068 .028 019 065 086 086 086 a090 b090	.310 .281 .432 .155 .081 .039 012 061 088 097 108 a122 b130	.342 .307 .440 .172 .096 .052 003 056 089 105 126 a166 a208	.369 .330 .446 .188 .108 .063 .005 052 091 113 141 4197 4240	.403 .358 .453 .206 .125 .077 .016 044 088 115 148 &.200 &.252	.425 .378 .456 .219 .137 .088 .025 037 082 114 149 a210	.444 .393 .462 .230 .147 .095 .032 034 083 116 151 a200 b220	.466 .413 .466 .245 .160 .106 .041 026 077 114 149 a.212 b290	.484 .430 .472 .258 .172 .118 .053 016 069 106 142 a207 a295

⁸Faired value.

bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Continued

(k) One-blade propeller; M = 0.61; $\beta_{0.75R} = 45^{\circ}$.

						, ,	ado propos		0.75	OR					
	J M _X	2.287 .856	2.220	2.197	2.176	2.150 .874	2.130 .878	2.103 .884	2.084	2.064	2.042	2.025	2.010	1.991	1.964
	ax 1	.88	1.73	2.03	2.30	2.65	2.91	3.28	3.54	3.82	4.12	4.36	4.57	4.84	5.23
	Δβ α _i	.14	.28	.32 1.03	.35	.38	.40 1.21	.42 1.25	.44 1.28	.48 1.35	.52 1.40	.56 1.44	.59 1.51	.62 1.55	.71 1.59
	cn	.2935	.4194	.4432	.4729	.5006	.5168	•5355	.5503	.5806	.6039	.6226	.6477	.6639	.6845
	cm	0673	0778	0783	0829	0839	0829	0844	0826	0921	0946	0982	1018	1036	1086
	cc	.0153	.0154	.0167	.0171	.0177	.0186	.0189	.0190	.0200	.0200	.0205	.0209	.0201	.0212
	с/ъ						P	ressure co	efficient,	P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.197 .104 115 238 361 408 482 556 635 748 230 049 008	1.198051269350418510552617708819240123071	1.201 082 305 357 454 518 568 636 715 826 255 173 132	1.203 113 344 363 490 543 581 651 726 828 257 195 163	1.205152399372515571611672743825270227206	1.208177429395527586627689761816280245229	1.210 199 448 438 537 599 640 699 770 804 297 269 260	1.212216469467554616651712781782315290284	1.215 232 484 483 569 630 662 721 792 813 338 313	1.219249496494579641673725793812351329326	1.219 259 501 501 589 654 684 732 797 823 366 344 341	1.222 279 505 510 660 664 694 739 783 841 380 359 355	1.226297512522611674704747770828380363359	1.226312521535686719759760857403386384
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	098027015024066082110129115067017017035063	.071 .097 a.090 .043 013 039 077 109 110 080 049 a040 b001	.109 .125 a.139 .061 .002 029 071 110 119 098 080 a060 a053	.146 .155 a.149 .078 .016 017 062 104 119 108 098 a090	.188 .188 a.169 .098 .032 003 053 100 123 125 a149 a172	.217 .210 a.189 .112 .042 .005 047 097 126 130 138 a148	.251 .238 a.198 .129 .058 .017 036 090 125 136 151 a.184 a.219	.284 .262 a.211 .142 .068 .025 029 086 146 142 161 a198 a220	.308 .284 a.230 .158 .083 .038 020 082 124 145 166 a215 a279	.337 .309 a.255 .177 .099 .052 009 072 117 141 163 a219	.353 .323 a.269 .184 .106 .058 003 068 117 142 163 a225 a299	.384 .348 a.286 .204 .124 .074 .010 056 107 134 156 a223	.410 .372 a.288 .219 .087 .022 045 096 125 146 a203 a281	.431 .387 a.318 .230 .148 .094 .029 040 095 125 148 a225 a330

aFaired value.

bLower surface only.

NACA 16-306.62 PROPELLER BLADE SECTION (x = 0.70) - Concluded

(1) One-blade propeller; M = 0.64; $\beta_{0.75R} = 45^{\circ}$.

J M _X α _X * Δβ α ₁ c _n c _m		2.250 .895 1.35 .03 .56 .2394 0596	2.212 .902 1.83 .14 .67 .2877 0661	2.185 .904 2.19 .21 .71 .3039 0705 .0286	2.166 .911 2.43 .27 .78 .3355 0755	2.138 .912 2.81 .35 .84 .3594 0792 .0294	2.125 .918 2.98 .39 .92 .3945 0881 .0297	2.100 .921 3.32 .46 1.03 .4419 0986 .0314	2.077 .926 3.64 .52 1.12 .4781 1064 .0318	2.059 .931 3.89 .57 1.17 .5042 1097 .0315	2.040 .935 4.15 .63 1.24 .5332 1141 .0318	2.011 .940 4.56 .74 1.30 .5613 1181 .0326	1.992 .944 4.83 .81 1.33 .5742 1267 .0328
c/b						Pre	essure coef	ficient, P					
Upper surface	000 025 050 000 000 000 000 000 000 000	1.216 .128 092 218 322 410 452 533 623 736 357 241 226	1.220 .132 090 206 293 394 445 514 599 720 371 235 223	1.221 .102 120 222 308 406 462 532 614 729 397 255 242	1.225 .075 147 231 336 418 468 539 616 729 439 273 261	1.225 .053 -172 -238 -360 -434 -483 -546 -614 -733 -482 -291 -279	1.228 .028 -208 -243 -383 -454 -501 -561 -617 -740 -531 -310 -297	1.230 003 249 249 398 469 517 570 615 751 634 340 326	1.233 028 280 263 408 479 525 582 610 758 691 356 340	1.235 048 299 294 414 488 532 586 600 764 718 368 353	1.238 070 320 328 432 503 545 594 588 773 753 384 368	1.240 092 356 454 523 562 609 581 785 802 407 391	1.243 103 354 368 466 535 572 613 568 787 821 430 411
Lower surface	0375 075 050 050 050 050 050 050 050 075 075	135 055 001 063 113 140 180 236 248 232 217 a215 a215	032 .033 .074 .005 051 082 128 190 211 206 198 a200 a208	.008 .063 .095 .019 038 072 120 185 211 211 204 a213 a228	.053 .097 .120 .042 019 055 174 204 209 204 a215 a225	.083 .122 .139 .057 008 047 097 167 200 209 205 a218 a230	.121 .154 .162 .078 .011 030 083 155 192 204 198 a215 a228	.162 .188 .189 .100 .029 013 069 141 182 199 194 a200 a225	.199 .189 .209 .118 .046 .003 056 127 171 190 186 a205 a220	.237 .173 .228 .135 .062 .016 040 114 159 180 176 a185 a200	.270 .200 .249 .151 .077 .028 029 104 150 174 170 a178 a185	.295 .210 .262 .163 .086 .037 022 099 146 172 168 a183 a190	.316 .224 .273 .173 .096 .046 014 091 139 166 163 a190 a200

aFaired value.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78)

(a) N = 1140 rrm: 8- -- = 450

								(a) N = 1	L140 rpm	; β0.75R	= 45°.						-			
J Mx Δβ αi cn cm cc	2.584 .617 -2.62 13 .01 .0032 0610	2.479 .607 -1.43 05 .28 .0910 0598	2.390 .597 38 .04 .56 .1813 0602	2.302 .586 .69 .14 .82 .2639 0561	2.209 .571 1.87 .26 1.13 .3639 0526	2.120 .564 3.03 .35 1.45 .4626 0487	2.026 .552 4.32 .44 1.74 .5542 0452	1.914 .536 5.91 .56 2.18 .6877 0358	1.831 .526 7.13 .64 2.44 .7662 0296	1.729 .519 8.69 .75 2.70 .8423 0209		1.673 .513 9.58 .81 2.85 .8901 0286	1.780 .527 7.91 .70 2.53 .7927 0245	1.872 .536 6.52 .60 2.35 .7399 0302	1.974 .545 5.05 .49 1.97 .6203	2.063 .556 3.81 .40 1.60 .5103 0480	2.158 .567 2.53 .31 1.29 .4161 0488	2.254 .578 1.29 .21 .97 .3126 0528	2.354 .588 .05 .08 .65 .2106 0585	2.443 .598 -1.01 01 .41 .1326 0588	2.547 .612 -2.21 10 .09 .0300 0615
c/b									Press	ure coef	ficient,	P									
0.000 .025 .050 .100 .200 .300 .400 .500 .600 .900 .950	1.098 .384 .185 .039 083 159 204 235 282 277 249 122 005	1.095 .220 .049 063 152 211 243 263 300 289 254 120 001	1.092 .018 113 181 232 271 289 326 326 306 261 120	1.088 186 269 290 303 322 328 345 318 266 118	1.084 419 437 390 349 339 324 331 291 226 073	1.082 765 681 565 473 445 417 389 385 333 259 097	1.078 -1.019 896 717 565 508 459 422 443 340 255 088 .019	1.074 -1.964 -1.505 887 657 579 512 459 419 345 253 090	1.071 -1.941 -1.818 -1.400 760 593 506 446 396 315 222 004	1.069 -1.779 -1.715 -1.593 -1.120 761 545 536 363 282 199 102 056	1.065 -1.637 -1.557 -1.435 -1.135 917 714 581 463 367 290 221 192	1.067 -1.753 -1.720 -1.585 -1.165 840 615 492 391 302 227 147 110	1.071 -1.845 -1.841 -1.607 894 635 510 434 370 289 198 081 022	1.074 -1.937 -1.779 -1.222 677 578 506 450 407 330 238 089 001	1.076 -1.436 -1.014 794 614 545 486 436 409 343 252 084	1.079 916 802 647 524 484 445 410 396 341 264 097	1.082 610 574 491 432 418 376 376 376 330 263 104	1.086 307 361 350 340 350 348 340 354 319 263 113	1.089 056 170 221 258 290 303 309 333 311 264 122	1.092 .140 013 109 184 233 260 275 307 293 253 120 .001	1.096 .338 .146 .012 100 171 211 239 280 276 244 120 002
.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	527 371 242 169 138 116 110 090 062 010 .056 a.106	321 239 152 108 093 076 083 068 047 .003 .062 a.115	162 111 069 050 045 058 050 036 .005 .060 a.112 a.140	001 006 001 .001 014 035 033 027 .007 .056 a.129 a.185	.215 .157 .122 .102 .079 .063 .034 .028 .026 .052 .095 a .154 a .200	.336 .238 .170 .122 .088 .064 .034 .020 .010 .026 .060 a.129 a.180	.468 .340 .244 .178 .134 .103 .062 .042 .023 .031 .058 a.118 a.161	.591 .443 .325 .238 .182 .143 .095 .068 .039 .057 a.072 a.081	.664 .508 .377 .284 .220 .175 .122 .086 .054 .045 .054 a.070	.727 .570 .432 .324 .253 .198 .137 .096 .026 .022 a.010	.770 .615 .468 .352 .274 .209 .141 .086 .034 012 043 a086 a129	.747 .592 .447 .337 .260 .201 .138 .091 .045 .011 005 a030 a042	.701 .550 .412 .310 .242 .190 .136 .096 .059 .014 .044 a.050 a.052	.632 .480 .354 .262 .203 .157 .109 .078 .052 .048 .061 a.076 a.087	.539 .402 .294 .215 .164 .123 .085 .062 .040 .045 .068 a.110 a.140	.396 .284 .203 .144 .103 .075 .042 .026 .011 .026 .054 a .082 a .100	.253 .172 .124 .091 .043 .013 .003 003 .017 .055 a.097 a.124	.084 .053 .039 .030 .012 .005 020 020 020 .010 .010 .113 a .151	099 071 040 030 038 034 049 043 032 .007 .007 .032	275 177 115 082 071 062 069 057 040 .001 .061 a.125 a.167	455 324 206 146 120 100 097 055 005 .062 a.135 a.185

aFaired value.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J M _X α _X * Δβ α ₁ c _n c _m	1.710 .606 8.99 1.11 2.84 .9026 0240	1.868 .623 6.59 .97 2.54 .8025 0302	2.034 .647 4.21 .62 1.92 .6084 0500	2.182 .663 2.22 .42 1.37 .4403	2.365 .691 09 .10 .75 .2435 0629	2.527 .715 -1.97 14 .21 .0681 0705	2.572 .722 -2.48 18 .08 .0258 0762	2.434 .702 90 03 .50 .1616 0675	2.278 .676 1.00 .26 1.05 .3394 0575	2.118 .654 3.06 .50 1.59 .5110 0506	1.964 .632 5.20 .78 2.18 .6954 0397	1.806 .615 7.51 1.05 2.68 .8500 0216
	с/ъ					Pressure	coefficie	ent, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.095 -1.765 -1.745 -1.629 -1.212 871 628 502 394 304 224 147 111	1.102 -2.520 -2.365 -1.144 724 642 553 486 434 345 236 077 .009	1.109 -1.110 -1.021 803 627 565 506 461 439 366 269 089 .023	1.115 617 624 539 481 468 443 425 368 286 104 .027	1.125 054 187 245 332 347 382 348 288 123 .018	1.135 .332 .137 004 132 211 260 291 345 334 293 142	1.138 .403 .201 .048 093 179 236 273 334 327 294 143 .001	1.130 .149 021 125 216 275 305 324 367 345 293 133	1.120302382381379394390382400358285116 .022	1.111 871 801 654 542 509 468 438 438 430 367 276 096	1.105 -2.092 -1.452 840 684 609 535 482 447 368 261 080 .020	1.097 -2.108 -1.904 -1.558 -1.037 729 552 466 392 302 208 093 038
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .6750 .850 .925 .975 1.000	.740 .587 .445 .336 .259 .200 .134 .085 .037 .007 007 a040 a062	.669 .520 .390 .291 .227 .177 .126 .090 .061 .063 .068 a.080 a.092	.482 .356 .260 .189 .140 .105 .066 .042 .027 .045 .068 a.105 a.135	.246 .169 .121 .080 .052 .032 .005 009 012 .014 .057 a.125 a.167	094 069 036 034 035 034 050 045 035 .011 .067 a.137 a.187	439 323 212 159 105 103 083 054 .008 .075 a.150 a.202	935 362 248 185 149 119 112 089 056 .009 .079 a.132 a.166	321 185 125 093 084 069 079 066 047 -011 -071 a.131 a.168	.084 .051 .039 .022 .007 002 025 028 025 .061 a.123 a.167	.359 .253 .182 .127 .090 .064 .030 .013 .002 .059 a.109 a.146	.569 .428 .317 .233 .176 .134 .090 .061 .038 .049 .067 a.094	.703 .549 .415 .311 .227 .189 .131 .089 .054 .042 .037 a.034

awaired value.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J Mx αx Δβ αi cn cm	1.871 .695 6.54 1.28 2.92 .9234	1.954 .703 5.33 1.11 2.52 .8006 0346	2.032 .717 4.23 .94 2.09 .6645 0482	2.135 :735 2.83 .69 1.68 .5355 0541	2.240 .751 1.47 .41 1.26 .4045 0626	2.345 .767 .16 .12 .85 .2723	2.474 .790 -1.37 23 .39 .1252 0828	2.550 .800 -2.24 42 .09 .0290 0919	2.414 .775 67 06 .64 .2055 0764	2.322 .760 .44 .19 1.00 .3203 0672	2.206 .743 1.90 .50 1.40 .4477 0562	2.094 .723 3.38 .79 1.84 .5845 0505	2.000 .712 4.68 1.02 2.23 .7071 0442	1.934 .700 5.62 1.15 2.64 .8358
	c/b						Pressu	re coeffic	lent, P					1000	
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.127 -1.974 -1.915 -1.800 -1.667 786 417 436 418 346 242 071	1.131 -1.694 -1.683 -1.571 -1.135 517 488 467 382 268 074 .038	1.136 -1.344 -1.342 -1.231636625574526505419305101 .016	1.143 -814 -980 -722 -594 -562 -516 -477 -469 -387 -278 -073	1.149 372 479 473 462 481 470 453 470 399 298 092	1.156 026 181 258 380 401 409 454 397 306 101	1.166 .284 .090 050 154 271 326 364 443 408 329 117 .034	1.170 .412 .210 .054 100 204 278 330 412 336 121	1.160 .137 041 153 256 329 367 390 450 406 322 114 .034	1.153 130 271 324 372 414 426 424 461 401 309 104 039	1.147 521 612 553 506 508 484 460 466 289 083 047	1.138 893 -1.106 929 632 591 534 492 476 392 280 075 .041	1.134 -1.478 -1.478 -1.348 617 579 540 497 475 388 277 077	1.129 -1.791 -1.774 -1.657 -1.265545499478454371262076
Lower surface	1	.672 .527 .404 .310 .245 .197 .140 .106 .074 .074 .091 a.113 a.125	.585 .450 .338 .254 .197 .155 .103 .073 .050 .059 .079 a.110 a.132	.465 .341 .246 .178 .123 .091 .044 .021 .002 .014 .045 a.092 a.122	.348 .250 .184 .133 .095 .070 .031 .014 .002 .027 .065 a.120 a.159	.139 .091 .070 .046 .025 .013 -019 025 .013 .062 a.125 a.162	095 066 035 028 032 032 052 048 036 014 075 a.151 a.192	776236182134112094097078051 .015 .087 a.155 a.191	-1.133 976 188 168 145 121 116 092 057 .016 .090 a.150 a.184	301 167 111 085 075 066 078 066 046 .015 .081 a.153 a.190	016 016 .021 .015 018 024 044 043 037 .010 .069 a.130 a.164	.221 .152 .112 .075 .047 .027 001 013 016 .015 .063 a.130 a.180	.411 .299 .219 .157 .113 .080 .043 .022 .009 .030 .063 a.109 a.135	.532 .402 .300 .221 .168 .127 .085 .057 .040 .055 .082 a.113 a.130	.619 .480 .361 .274 .213 .166 .085 .062 .072 .093 a.130 a.151

aFaired value.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$.

-															
	J Mx αγ Δβ αi cn cm cc	2.097 .783 3.36 .89 2.00 .6394 0513 0124	2.158 .796 2.54 .71 1.23 .5452 0606	2.240 .806 1.47 .48 .21 .4397 0714 .0034	2.312 .817 .57 .24 64 .3361 0778 .0086	2.393 .833 42 07 -1.60 .2326 0839 .0133	2.454 .843 -1.13 33 -2.15 .1065 0996 .0169	2.516 .856 -1.85 62 -2.80 .0142 1111	2.486 .847 -1.50 48 -2.50 .0639 1083	2.416 .836 70 17 -1.80 .1781 0897 .0138	2.364 .825 06 .05 -1.28 .2765 0819	2.338 .818 .24 .14 -1.01 .3161 0804	2.284 .810 .92 .34 28 .3687 0727 .0057	2.220 .797 1.73 .53 .48 .4603 0649	2.141 .787 2.77 .76 1.47 .5619 0577 0072
	c/b						Pressur	e coeffic	ient, P						
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.163 726 903 891 906 877 623 483 483 474 384 258 049	1.169 542 747 680 685 656 647 519 518 408 275 057	1.173 273 433 465 494 543 545 527 567 423 423 060	1.178 036 205 294 382 465 484 492 582 534 289 067	1.185 .174 014 140 263 367 426 449 550 288 066 .070	1.190 .326 .129 018 166 280 363 386 512 642 412 060	1.197 .434 .236 .078 085 203 294 347 472 599 622 054 .079	1.192 .382 .183 .030 126 241 328 375 496 624 557 058	1.187 .292 .101 036 173 279 352 385 483 609 267 024	1.182 .097 083 195 306 403 450 467 550 639 296 074	1.178 .011161258354444474482559563296082	1.175 134 295 364 431 500 509 502 571 447 299 073	1.169355526521532571575509427290066 .061	1.165 624 813 772 731 661 603 501 512 405 274 059
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.399 .294 .224 .164 .121 .091 .045 .026 .008 a.030 .072 a.126 a.163	.277 .199 .149 .105 .072 .047 .007 016 .018 .063 a .112 a .140	.129 .087 .070 .046 .025 .009 025 028 031 a.005 .069 a.131 a.170	053 036 015 019 027 032 057 053 044 a001 .074 a .150 a .204	386 159 115 091 081 075 088 075 054 a.005 .082 a.145 a.183	826 684 160 158 136 115 120 068 a ₀ .084 a _. 165 a _. 208	941 865 741 240 148 129 129 099 065 a.009 .088 a.157 a.194	909 824 505 160 149 128 102 068 a .008 .086 a .150 a .189	581 180 120 082 062 048 059 016 a.050 .131 a.195 a.234	211 125 080 067 064 061 079 059 054 a.001 .077 a.150 a.198	102 069 038 035 040 043 065 058 047 a ₀ .075 a _{.147} a _{.195}	.025 .013 .015 .006 008 017 046 045 045 040 a.005 .072 a.135 a.170	.171 .116 .088 .083 .034 .015 020 026 031 a ₀ .062 a _. 135 a _. 175	.319 .229 .171 .121 .085 .059 .017 .002 010 a.010 .062 a.122 a.159

aFaired value.

CONFIDENTIAL
TABLE 8.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(e) M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

							, , (. 12.						
Y	J M _X α _X ' Δβ α _i c _n c _m	2.158 .859 2.53 .60 1.64 .5271 -:0867 .0061	2.168 .847 2.40 .57 1.63 .5245 0988	2.208 .838 1.88 .46 1.52 .4871 0823 .0043	2.252 .832 1.32 .35 1.30 .4190 0737 .0053	2.274 .825 1.04 .29 1.20 .3865 0774 .0055	2.310 .818 .59 .20 1.01 .3252 0774 .0086	2.348 .814 .12 .11 .87 .2800 0782	2.384 .807 31 .01 .73 .2352 0814	2.404 .801 55 03 .61 .2284 0719	2.439 .795 97 13 .46 .1945 0711	2.466 .787 -1.28 20 .32 .1690 0664	2.503 .781 -1.71 29 .21 .1213 0703	2.533 .776 -2.05 36 .08 .0903 0678
	c/b						Pressu	re coeffic	ient, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.198281491463554579629678768798083029	1.192 285 494 456 558 581 620 687 766 800 202 331	1.188236424430520546580668717758209021 .069	1.185 169 338 396 450 450 598 665 655 632 032 082	1.182 115 279 354 424 490 519 571 615 562 270 054 074	1 179 - 012 - 181 - 273 - 366 - 454 - 482 - 492 - 571 - 558 - 294 - 071 066	1.177 .053 120 223 410 458 463 561 463 304 078	1.174 .130 049 164 275 360 411 429 537 452 317 091	1.171 .181 003 125 244 330 382 410 510 439 327 105 .047	1.168 .253 .062 -073 -200 -288 -344 -380 -467 -420 -328 -111	1.165 .301 .107 035 170 259 319 359 439 405 327 115 .034	1.162 .346 .148 .001 -138 -232 -294 -336 -415 -327 -125 .026	1.160 .388 .188 .036 -110 -206 -270 -316 -390 -376 -319 -126
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.238 .175 .138 .097 .062 .035 015 038 057 a021 .002 a.018 a.025	.211 .151 .118 .083 .049 .027 -019 -035 -047 a-020 .032 a.079 a.107	.155 .109 .086 .058 .031 .014 028 038 040 a010 .051 a.119 a.159	.091 .064 .055 .038 .017 .003 032 037 035 .013 .070 a.140 a.187	.029 .017 .022 .012 004 011 044 038 .012 .072 a.137 a.175	081 057 031 028 035 037 062 057 045 010 074 a.143 a.197	150 095 054 045 045 066 058 043 014 080 a.138 a.170	266 144 095 073 068 061 076 063 044 .019 .086 a.175 a.239	407 190 129 096 084 073 085 069 048 .016 .086 a.153 a.192	669 228 165 121 102 086 092 075 051 .086 a.148 a.177	844242192142120100103081054 .012 .083 a.149 a.180	994360207160132110086055 .013 .086 a.160 a.200	-1.113 590 213 172 142 117 115 088 057 .012 .085 a.145 a.174

aFaired value.

CONFIDENTIAL

NACA RM 19112

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(f) M = 0.60; $\beta_{0.75R} = 45^{\circ}$.

_													1	
	J M _X	2.158	2.188	2.217	2.251	2.278	2.311	2.350	2.364	2.396	2.428	2.467	2.500 .844	2.521
1	ax !	2.53	2.14	1.76	1.33	•99	.58	.10	07	46	84	-1.29	-1.67	-1.91
1	Δβ	•39	.34	.28	.22	.14	.04	08	12	22	32	44	55	61
1	α_1	1.31	1.26	1.12	1.06	.96	.86	.74	.70	•59.	.47	•37	.14	.03
1	cn	.4216	.4035	.3606	.3432	.3097	.2774	.2387	.2268	.1916	.1529	.1181	.0458	.0097
	cm	0828	0796	0773	0815	0875	0922	0965	0937	0948	1001	1003	1052	1041
	cc	.0183	.0177	.0173	.0172	.0185	.0181	.0190	.0184	.0174	.0179	.0187	.0179	.0175
1	c/b			17			Press	ure coeff	icient, P					1
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.222 106 319 308 436 476 533 586 671 767 317 230 224	1.220080279298424465523583674739295195	1.217 024 207 272 380 434 487 572 637 729 314 173 150	1,213 .010 171 256 350 418 477 556 623 731 307 150	1.210 .075 -106 209 309 379 462 516 612 708 386 139 086	1.206 .128 054 168 287 366 440 504 579 690 442 115 051	1.204 .187 .001 123 253 349 410 473 567 678 546 070	1.201 .207 .019 108 241 347 392 467 568 662 575 041	1.198 .249 .056 076 213 330 385 450 548 646 556 026	1.195 .299 .105 037 181 295 370 411 519 639 542 037	1.194 .355 .157 .009 142 256 345 386 499 627 510 054 .082	1.191 .388 .190 .035 120 234 322 369 495 609 412 070	1.188 .416 .215 .059 102 215 303 358 488 586 368 085 .066
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.181 .134 .104 .068 .032 001 063 102 149 133 132 a144 a158	.138 .102 .083 .051 .023 005 070 100 139 122 111 a122 a153	.071 .053 .048 .024 .001 023 082 106 135 110 089 a082 a091	.023 .021 .026 .009 010 031 085 102 123 092 058 a033 a024	068 040 018 024 037 051 098 116 072 029 a ₀	174 094 061 056 062 068 107 108 105 053 001 a.025 a.036	333 121 105 087 083 083 113 109 098 038 022 a.050 a.061	417 130 125 101 091 087 113 103 085 021 .043 a.072 a.081	568240147119103094112097076007 .061 a.105 a.120	733 526 155 142 121 104 117 095 068 -005 -079 a.145 a.180	853 740 238 156 136 115 121 095 062 -015 -092 a.169 a.210	931 836 447 155 141 116 122 092 058 .021 .098 a.168 a.210	997906603151140117122089056 -023101 a.189 a.238

aFaired value.

NACA RM L9L12

CONFIDENTIAL
TABLE 8.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(g) M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

	J M _X α _x ' Δβ α _i c _n c _m	2.148 .995 2.67 .24 1.20 .3839 1257 .0414	2.168 .985 2.39 .17 1.11 .3548 1182 .0415	2.190 .980 2.11 .10 .99 .3161 1100 .0402	2.216 .974 1.78 .02 .86 .2755 1037 .0397	2.240 .968 1.47 07 .76 .2432 0939 .0391	2.260 .963 1.21 13 .60 .1939 0808 .0345	2.288 .957 .86 23 .45 .1452 0755 .0328	2.310 .952 .60 30 .36 .1165 0694 .0310	2.336 .943 .27 39 .24 .0761 0663 .0306	2.363 .937 06 47 .13 .0429 0707 .0301	2.390 .932 -39 56 .01 .0035 0711 .0301	2.407 .925 59 60 06 0197 07 <i>6</i> 9 .0286	2.433 .920 90 69 15 0487 0805 .0282
	c/b						Pressur	e coeffici	ent, P					162
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.272 .123 069 109 245 296 356 413 495 594 655 765 760	1.266 .134 052 111 247 298 365 424 508 608 675 793 760	1.263 .160 020 102 229 286 352 418 505 581 671 794 626	1.260 .186 .007 092 209 275 338 418 504 571 670 798 503	1.256 .208 .029 079 194 266 327 415 489 570 669 742 362	1.253 .231 .050 066 178 259 324 411 478 576 668 505 308	1.250 .260 .077 043 161 241 319 388 474 573 660 358 267	1.248 .285 .104 021 149 225 313 372 471 568 658 263	1.242 .321 .139 .009 -131 215 295 366 453 553 659 237 193	1.239 .342 .157 .023 120 214 290 362 445 558 662 231 189	1.236 .365 .181 .043 104 208 280 349 441 558 661 219	1.233 .382 .195 .055 -094 -207 -266 -345 447 557 660 198 162	1.230 .407 .218 .074 078 198 255 334 445 654 169 135
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.151 .130 .119 .090 .057 .028 -038 -094 152 204 194 a195 a198	.092 .083 .078 .053 .023 004 066 123 181 236 222 a220 a220	.032 .041 .044 .024 001 025 083 139 197 250 234 a222 a220	035 .004 .013 004 024 044 100 155 211 263 245 a218 a205	101 023 016 027 044 060 112 166 220 248 a210 a150	206062055060068084131185235280252 a203	306172075093090107145201247286246 a195 a164	383 286 055 120 111 125 161 213 254 275 194 a116 a085	459400173136133146182230264242148 a097 a086	510 459 283 143 152 166 203 249 281 224 137 a097 a090	564 514 402 188 171 185 224 271 298 193 112 a084 a080	611 560 467 280 188 201 240 287 286 139 083 a067 a064	654 602 514 386 214 208 249 247 109 059 a040 a035

aFaired value.

NACA 16-305.85 PROPELIER BLADE SECTION (x = 0.78) - Continued

(h) N = 1140 rpm; $\beta_{0.75R} = 30^{\circ}$.

	J M _X α _X ² Δβ α _i c _n c _m	0.789 .423 11.06 .81 3.04 .8466 0494	0.894 .432 8.86 .72 2.76 .7862 0216	1.034 .442 6.02 .56 2.22 .6451 0430	1,201 .458 2.79 .35 1.48 .4404 0510	1.285 .465 1.23 .23 1.00 .2978 0528	1.405 .477 93 .06 .50 .1509 0562	1.495 .488 -2.49 06 .06 .0174 0564	1.457 .489 -1.85 01 .25 .0748 0580	1.357 .474 07 .13 .68 .2057 0504	1.275 .467 1.41 .25 1.01 .3023 0507	1.238 .469 2.09 .29 1.24 .3664 0520	1.109 .455 4.55 .47 1.83 .5358 0506	0.978 .431 7.15 .63 2.37 .6807 0404	0.830 .423 10.18 .77 2.95 .8244 0280
	c/b						Pressure o	coefficient	, P						1
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.046 -1.274 -1.187 -1.071 875 599 533 415 316 229 168 096 059	1.048 -1.555 -1.553 -1.481790482367289234159084 .016	1.050 -1.731 -1.184 643 492 421 363 317 285 218 134 .014	1.054 607 529 417 338 309 287 263 263 210 148 .006	1.055 204 244 225 215 217 217 212 225 193 144 011 108	1.058 .172 .037 034 089 128 151 162 191 173 139 019	1.061 .443 .252 .122 .010 054 095 095 161 158 138 039 .078	1.061 .333 .166 .055 032 087 123 141 177 166 143 038 .081	1.058 .028 073 110 142 168 181 187 211 187 147 .023 .094	1.056225260238225227225222233199148 .015 .102	1.0577370365304261255243227291195139 .001	1.053 -853 -722 -550 -416 -368 -368 -294 -279 -222 -148 006 118	1.048 -2.090 -1.543973572459382321279205117 .018 .104	1.046 -1.590 -1.543 -1.366841593434335252176108035 .005
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.877 .723 .584 .470 .395 .327 .265 .213 .160 .123 .089 a.062 a.047	.805 .655 .519 .420 .350 .300 .248 .206 .169 .151 .145 a.150 a.170	.672 .532 .419 .341 .285 .244 .207 .177 .160 .160 .180 a.210 a.210	.429 .335 .269 .224 .193 .173 .142 .128 .119 .134 .170 a,227 a,268	.195 .163 .146 .135 .121 .113 .094 .092 .092 .116 .162 a.225 a.264	102034 .013 .033 .039 .049 .044 .049 .065 .101 .156 a.220 a.250	372 232 120 059 029 008 003 .015 .038 .089 .152 a.229 a.290	246154069025 .007 .011 .027 .045 .091 .150 a.207 a.239	.012 .028 .059 .070 .065 .070 .054 .059 .067 .104 .152 a.181 a.190	.200 .160 .146 .133 .118 .110 .089 .086 .086 .113 .157 a.190 a.207	.306 .243 .208 .174 .158 .147 .120 .112 .109 .124 .169 a,221 a,258	.548 .426 .338 .272 .232 .209 .169 .152 .136 .144 .169 a.210 a.240	.743 .592 .465 .373 .315 .270 .226 .191 .167 .160 .170 a.208 a.229	.848 .691 .554 .446 .373 .312 .253 .207 .161 .140 .116 a.100 a.099

aFaired value.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(i) N = 1350 rpm; β_0 758 = 30°.

						\-,	- 13)0 1 pm	, .0.75R	, ,					
	J M _x α _x ' Δβ α _i cn c _m	0.884 .517 9.06 1.07 2.92 .8279 0277	0.993 .532 6.84 .92 2.51 .7272 0371	1.118 .547 4.38 .68 1.88 .5504 0540	1.252 .554 1.84 .39 1.21 .3576 0507	1.338 .566 .27 .19 .75 .2245 0569	1.437 .575 -1.49 05 .37 .1118 0566	1.490 .581 -2.40 17 .10 .0313 0607	1.406 .574 95 .03 .47 .1406 0580	1.306 .558 .84 .27 .94 .2802 0534	1.221 .557 2.41 .46 1.43 .4177 0513	1.170 .546 3.38 .58 1.64 .4839 0498	1.059 .538 5.53 .80 2.22 .6485 0456	0.954 .523 7.63 .98 2.67 .7673 0223
	c/b						Pressu	re coeffici	lent, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.068 →1.741 −1.708 −1.570 −1.018 −.702 −.548 −.452 −.373 −.296 −.220 −.134 −.093	1.072 -1.873 -1.747 -1.314 687 567 503 440 399 317 228 086 004	1.077 999 887 705 556 499 456 417 400 334 254 090	1.079452462420378370337363320256104 .017	1.082 088 192 233 266 286 306 332 306 258 120	1,085 .201 .026 068 156 203 241 258 296 249 123 001	1.087 .358 .168 .030 088 150 198 228 274 266 241 125 003	1.085 .125 025 112 186 227 257 273 306 288 247 122	1.080 235 303 311 315 323 327 347 311 260 117	1.080 624 582 494 436 413 397 375 377 327 261 105 .017	1.076 859 755 619 513 476 448 415 409 352 278 120	1.074 -1.699 -1.103 819 637 557 498 445 347 255 097	1.070 -1.965 -1.724 -1.461 611 501 432 376 295 089 022
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.718 .563 .425 .318 .203 .189 .129 .084 .045 .025 .009 a.010	.632 .486 .364 .269 .206 .162 .116 .084 .056 .056 .065 a.078	.470 .343 .250 .178 .134 .105 .071 .047 .036 .047 .073 a.112 a.139	.176 .119 .086 .059 .037 .021 .001 007 007 .061 a.112 a.151	069 055 033 029 029 039 037 029 060 a.113 a.145	300 225 147 107 090 076 078 062 044 .001 .064 a.120 a.154	474342220156125102096076049 .001 .067 a.132 a.173	263 170 108 083 073 059 067 053 037 004 062 a.118 a.149	.036 .016 .016 .008 .009 011 025 029 .021 .020 .018 a.063 b.077	.262 .178 .128 .089 .061 .043 .017 .002 0 .019 .059 a.103 a.129	.352 .244 .167 .116 .079 .051 .023 .004 002 .015 .044 a.080 a.100	.559 .417 .306 .222 .167 .130 .089 .063 .045 .073 a.110 a.129	.676 .523 .393 .293 .225 .176 .124 .086 .052 .046 .046 a.050

aFaired value.

bLower_surface value only.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(j) N = 1500 rpm; $\beta_{0.75R} = 30^{\circ}$.

							(0)	- 1)00 F	10.10	3 - 20.		-				
	J Mx αx Δβ αi cn cm	.820 .565 10.40 1.32 2.99 .8362 0415	.873 .575 9.29 1.32 2.98 .8432 0261	.981 .583 7.08 1.17 2.60 .7461 0332	1.096 .603 4.80 .86 2.12 .6186 0498	1.211 .615 2.60 .53 1.50 .4435 0541	1.294 .622 1.06 .28 1.02 .3017 0553	1.380 .635 49 .03 .59 .1775 0592	1.471 .645 -2.08 25 .14 .0419 0605	1.412 .634 -1.05 07 .40 .1208 0619	1.339 .627 .25 .14 .80 .2380 0591	1.263 .620 1.63 .37 1.23 .3645 0552	1.167 .607 3.43 .66 1.76 .5198 0521	1.044 .597 5.82 1.00 2.42 .7020 0316	.928 .587 8.16 1.27 2.78 .7934 0213	.846 .576 9.85 1.33 2.98 .8399 0310
	c/b						Pr	essure co	efficient	, P						1,12
Upper surface		1.082 -1.538 -1.442 -1.278 -937 -741 558 447 346 201 129 092	1.085 -1.684 -1.634 -1.498 -1.000 660 477 375 293 214 145 068 029	1.087 -2.077 -1.647 -1.195 691 543 454 331 242 142 0	1.093 -1.047 956 731 549 477 425 375 349 276 180 004	1.097 568 540 444 383 364 343 321 322 269 193 021	1.100 190 263 267 267 281 284 284 300 260 200 043 .088	1.105 .130 015 090 156 197 220 234 266 241 191 044 .083	1.108 .399 .206 .074 014 111 159 188 236 223 188	1.104 .254 .084 018 109 162 197 217 258 238 194 052	1.102 010 124 168 207 235 249 255 281 248 197 044 .086	1.100 337 373 342 315 317 313 301 313 266 202 039 .089	1.095 -821 -725 -570 -453 -411 -378 -343 -343 -335 -273 -190 -016 -103	1.092 -2.210 -1.010 841 619 526 452 389 350 264 155 .018	1.088 -1.699 -1.650 -1.488 894 581 447 363 294 209 123 021	1.085 -1.682 -1.628 -1.478 961 662 495 402 316 238 173 099 064
Tower surface		.831 .678 .536 .423 .343 .280 .214 .160 .106 .045 a060 a023	.807 .655 .513 .405 .332 .286 .213 .164 .117 .085 .073 a .058 a .048	.735 .582 .453 .357 .294 .247 .194 .159 .130 .119 .130 a.141 a.155	.588 .455 .351 .277 .229 .198 .152 .130 .110 .113 .139 a.172 a.203	.346 .264 .212 .173 .145 .126 .095 .086 .076 .096 .137 a .188 a .238	.126 .101 .098 .089 .074 .069 .047 .047 .049 .081 .131 a.184 a.220	129 060 015 .003 .009 .019 .009 .017 .029 .070 .130 a.183 a.228	- 389 - 259 - 148 - 089 - 061 - 039 - 034 - 018 .009 .059 - 126 a .195 a .235	238 151 079 042 025 009 015 003 .018 .063 .126 a.193 a.233	003 .014 .042 .042 .044 .028 .032 .038 .081 .134 a .209 a .255	.216 .165 .140 .119 .099 .089 .063 .057 .056 .084 .130 a .190 a .229	.463 .354 .278 .224 .185 .160 .122 .107 .093 .107 .143 a.190 a.225	.671 .527 .407 .321 .264 .224 .175 .145 .118 .111 .126 a.168 a.194	.768 .617 .485 .383 .314 .259 .203 .159 .123 .102 a.110 a.120	.817 .665 .523 .413 .335 .274 .211 .162 .111 .075 .060 a .092

aFaired value.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(k) N = 1600 rpm; $\beta_{0.75R} = 30^{\circ}$.

	J M _X α _X , Δβ α _i c _n c _m	0.830 .616 10.19 1.96 3.08 .8677 0432	0.897 .614 8.79 1.77 3.01 .8529 .0244	0.990 .632 6.90 1.48 2.78 .7983 0244	1.043 .642 5.85 1.31 2.44 .7067 0359	1.119 .645 4.35 1.05 2.03 .5885 0528	1.196 .652 2.88 .78 1.68 .4931 0558	1.273 .664 1.45 .49 1.20 .3562 0590		1.440 .684 -1.54 12 .32 .0950 0652	1.488 .690 -2.37 30 .11 .0339 0652	1.400 .674 84 .03 .55 .1652 0640	1.311 .665 .75 .36 1.04 .3083 0603	1.232 .661 2.21 .65 1.45 .4304 0551	1.159 .646 3.59 .91 1.85 .5449 0501	1.098 .636 4.76 1.13 2.14 .6292 0441	1.029 .634 6.12 1.36 2.59 .7498 0331	0.940 .627 7.91 1.64 2.97 .8496 0164	0.869 .619 9.38 1.84 3.03 .8575 0269
	c/b							Pre	ssure co	pefficien	nt, P								
- 1	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .600 .900 .950	1.098 -1.792 -1.699 -1.458 -1.003755614529439366305241213	1.097 -1.937 -1.793 -1.536 -1.051 765 579 461 375 293 210 126 088	1.103 -2.351 -2.204 -1.175 748 641 550 470 473 317 207 055 .015	1.107 -2.054 -1.928 832 685 603 536 471 431 230 055 .032	1.108 -1.012 -1.042 792 619 554 506 456 434 360 259 074 .040	1.110 807 742 611 514 482 455 422 416 354 267 085	1.115 -359 415 396 388 394 394 384 399 350 277 102	1.119034160218270305325333362330267110 .019	1.123 .264 .084 039 148 210 257 282 329 311 268 118 .018	1.125 .387 .192 .044 085 163 217 254 304 297 262 118	1.119 .115 041 132 211 259 390 308 344 319 270 110 .021	1.116 226 309 325 340 356 367 362 381 342 277 109	1.114 574 581 504 454 441 428 407 409 355 276 096	1.108 954 861 686 558 512 476 438 425 359 268 083	1.105 -1.692 -1.009 834 641 567 508 454 426 346 245 060 .046	1.104 -2.232 -2.100 935 699 616 543 473 425 336 221 085 .033	1.102 -2.434 -2.194 -1.321 914 704 563 466 387 293 201 090 041	1.099 -1.823 -1.754 -1.576 -1.071 789 611 504 406 322 246 166 130
	.0375 .075 .150 .250 .350 .450 .550 .650 .850 .925 .975	.750 .595 .454 .340 .261 .198 .134 .078 .021 029 055 \$\frac{3}{2}\$.093	.727 .574 .438 .329 .259 .203 .139 .091 .049 .017 .008 a012 a030	.670 .522 .391 .295 .232 .180 .131 .089 .062 .046 .062 a.079	.584 .444 .331 .246 .190 .150 .102 .071 .045 .038 .057 a.090 a.111	.483 .355 .262 .195 .146 .116 .070 .048 .032 .040 .067 a.091	.341 .244 .179 .133 .094 .040 .023 .015 .034 .069 a.132 a.170	.123 .079 .060 .040 .022 .016 011 013 013 .014 .067 a.135 a.188	104 073 040 029 036 029 043 040 028 .014 .071 a.137	336 268 173 121 101 082 082 068 041 .010 .076 a.154 a.205	486353231164132103097045 .012 .081 a.152 a.200	248152098072065053061050034 .015 .076 a.145 a.189	.040 .023 .021 .016 .002 .002 023 023 017 .016 .070 a.142 a.198	.239 .166 .121 .082 .058 .043 .010 .002 003 .023 .023 .064 a.115 a.152	.403 .290 .211 .156 .111 .091 .050 .032 .018 .032 .070 a.120 a.155	.536 .401 .297 .222 .169 .135 .092 .066 .046 .047 .073 a.110	.635 .488 .367 .274 .213 .168 .120 .084 .059 .047 .068 a.104 a.131	.704 .552 .418 .313 .241 .189 .088 .049 .028 .028 a.030 a.032	.734 .583 .441 .330 .254 .196 .096 .080 .033 003 015 a010

CONFIDENTIAL

Faired value.

NACA 16-305.85 PROPELLOR BLADE SECTION (x = 0.78) - Continued

(1) N = 1800 rpm; $\beta_{0.75R} = 30^{\circ}$.

											-								
1	J M _X	0.880	0.931	0.998	1.062	1.168	1.236	1.296	1.378	1.449	1.469	1.404	1.347	1.269	1.198	1.110	1.029	0.958	0.904
	ax'	9.15	8.10	6.74	5.47	3.42	2.14	1.03	45	-1.70	-2.04	92	.10	1.52	2.80	4.53	6.12	7.55	8.65
	Δβ	2.42	2.16	1.82	1.50	.96	.61	.30	13	50	61	27	03	. 44	.80	1.25	1.66	2.02	2.30
-	ai	3.22	3.22	3.12	2.82	1.99	1.57	1.16	.69	.26	.14	.55	.83	1.32	1.76	2.31	2.95	3.18	3.22
	cn	.9195	.9293	.9099	.8266	.5889		.3484	.2057	.0787	.0413	.1672	1	•3953	.5228	.6804	.8656	.9240	.9210
1	c_{m}	0277	0126	0287	0352	0512	0540	0643	0714	0780	0793	0728	0720	0610	0573	0478	0328	0229	0255
-	c _c											The same							
	c/b								Pre	ssure co	efficien	t, P							Na F
	0.000	1.127	1.131	1.134	1.137	1.140	1.144	1.149	1.152	1.157	1.158	1.154	1.150	1.146	1.144	1.138	1.134	1.132	1.131
	.025	-2.065	-1.945	-1.759	-1.563	897	569	235	.103	.332	.383	.197	008	382	793	-1.321	-1.679	-1.887	-2.065
	.050	-1.955 -1.645	-1.874 -1.765	-1.723 -1.626	-1.565 -1.462	-1.081 928	653 574	353 380	068 168	.136 008	.183	.014	161 241	480	949 706	-1.319 -1.224	-1.665 -1.570	-1.832 -1.731	-1.970
0		-1.093	-1.638	-1.505	-1.363	638	523	404	261	144	114	218	314	458	594	637	-1.454	-1.607	-1.753 -1.153
яптрясе	.300	832	852	934	585	596	519	431	325	233	207	290	365	475	563	597	694	873	814
7112	.400	622 511	568 403	515 424	503 473	548 497	501 466	445	 367 383	297	277	341	397 404	475 451	529 485	559	490 460	567	574
	.,00	410	355	409	455	482	470	461	435	335 407	320 397	366 426	448	468	478	501 480	444	412 383	476 388
Upper	.700	321	273	334	367	394	392	396	390	382	380	392	397	397	395	392	362	312	306
P		248	184	230	254	278	288	301	314	319	320	319	315	299	285	275	252	220	233
1	.900	177 147	067 013	061	062	072	082	098	117	127	129	121	116	093	079	074	067 .034	066	168
-	1	•=-	••••	••50			.010	.030	-052	.022	.020	.020	.020	.042	,044	.040	.034	.020	139
	.0375	•745	.707	.652	.586	•393	.237	.054	245	-1.003	-1.118	410	138	.139	.327	.500	.616	.682	.749
	.075	.596	.560	.511	.452	.287	.165	.029	159 106	293 232	467 252	235 157	100 064	.090	.232	.374	.477	.540	.600
0	1	•353	.330	.299	.258	.150	.081	.012	077	167	192	112	052	.039	.115	.204	.272	.313	.467
anrface	.350	.276	.258	.235	.199	.108	.051	001	073	140	156	100	058	.018	.081	.153	8.227	.246	.280
TILE	.450	.221	.204	.187	.155	.077	.029	005	062	112	125	080	051	.004	.054	.114	.167	.192	.221
	1 .)) 0	.150	.101	.135	.107	.040	.001	033 034	074 062	112 088	120 094	089 075	068 062	021 028	.019	.070	.081	.140	.156
Lower	.750	.043	.062	.073	.056	.008	014	029	044	058	059	049	044	026	005	.029	.086	.069	.051
1	1 .000	.015	.054	.083	.068	.034	.013	.008	.008	.005	.006	.010	.005	.007	.021	.048	.097	.070	.023
	.925	013	.052 a.047	.102	.091	.063	.060	.066	.076	.079	.081	.078	.069	.061	.059	.078	.093	.088	006
	975	a060 a088	a.047	a.122 a.140	a.135 a.167	a.088 b.105	a.132 a.185	a.135 a.182	a.143 a.187	a.130 a.157	a.132 a.156	a.147 a.186	a.139 a.185	a.134 a.187	a.120 a.160	a.131 a.170	a.130 a.161	a.108 a.120	8054
L					.201	.10))	.102	.101		.1,0	100	.10)	•==	.100	110	101		,

aFaired value.

bLower-surface value only.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(m) N = 2000 rpm; $\beta_{0.75R} = 30^{\circ}$.

0.9529 .8479 .7249 .5825 .4633 .3069 .1829 .0400 .1095 .0878 .0797 .0724 .0708 .0641 .0690 .06m .0777 .0768 .0961 .1001 .1005 .0878 .0797 .0724 .0708 .0641 .0690 .0208 .0191 .0141 .0074 .0004 .0006 .0096 .0152 .0228 .0208 .0191 .0141 .0074 .0004 .0006 .0096 .0152 .0228 .0208 .0191 .0141 .0074 .0004 .0006 .0096 .0152 .0228 .0208 .0191 .0141 .0074 .0004 .0006 .0096 .0152 .0228 .0208 .0191 .0141 .0074 .0004 .0006 .0096 .0152 .0228 .0208 .0191 .0141 .0074 .0004 .0006 .0096 .0152 .0228 .0208 .0191 .0141 .0074 .0004 .0006 .0096 .0152 .0228 .0208 .0191 .0141 .0074 .0004 .0006 .0096 .0152 .0228 .0208 .0191 .0141 .0074 .0004 .0006 .0096 .0152 .0228 .0208 .0152 .0166 .0168 .0208 .0191 .0194 .01																	
0.000		M _X α _X Δβ α _i c _n	.789 6.46 1.76 3.27 .9529 0754	.803 5·35 1·53 2·90 .8479 0676	.809 4.10 1.27 2.47 .7249 0642	.817 3.00 .98 1.97 .5825 0666	.822 1.87 .63 1.55 .4603	.834 .70 .19 1.03 .3069 0768	.846 58 32 .54 .1629 0961 .0180	.847 -1.45 69 .13 .0400 1001 .0208	.847 96 48 .35 .1058 1005 .0191	.831 .19 01 .81 .2408 0878 .0141	.825 1.26 .41 1.33 .3950 0797	.819 2.36 .79 1.71 .5072 0724	.808 3.45 1.11 2.33 .6876 0708	.797 4.74 1.41 2.65 .7754 0641	.795 5.90 1.64
0.000		c/b											1 182	1 179	1.174	1.169	1.168
1.63		.025 .050 .100 .200 .300 .400 .500 .600 .700 .800	-1.217 -1.240 -1.178 -1.165 -1.173 -1.169 -1.146 597 383 215 042	-1.000 -1.046 -1.027 -1.048 -1.028 -1.030 -1.053 601 331 198 028	666 855 863 901 912 936 900 590 351 231	514 705 677 699 700 638 691 740 451 226 024	273 452 449 486 509 599 581 650 708 245 034	.013 155 242 340 422 458 491 603 682 287 049	.270 .081 049 187 291 375 407 507 641 533 057	.391 .196 .051 102 210 303 347 477 602 620	.328 .137 002 148 252 342 379 497 626 593 062	.135 045 155 274 371 428 458 576 665 356 056	133 293 354 417 480 558 622 716 265 048	380 591 507 583 556 632 659 671 549 245 033	654 831 814 858 864 701 795 403 235 024	802 909 931 975 978 -1.003 978 512 341 217 029 .071	-1.129 -1.165 -1.138 -1.127 -1.116 -1.116 -1.116 -557 -331 -201 -033 .065
925 .082 .014 .004 .004 .005 8 100 8 100 8 122 8 112 8 125 8 120 8 112	Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925	.627 .494 .385 .297 .230 .183 .124 .085 .053 .048 .082 a.110	.549 .425 .326 .248 .189 .147 .092 .061 .032 .034 .074	.447 .340 .257 .191 .105 .057 .028 .011 .024 .064	.235 .175 .126 .087 .058 .015 -005 -015 .006 .054	.112 .083 .054 .028 .010 028 040 041 005 .053 a.130	057 035 031 045 047 076 076 064 009 .061 a.115	218193156142121130115086016 .064 a.154	798 387 218 210 177 167 095 018 .064 a.128	668 210 191 175 144 123 090 015 065 a.090	151 113 091 082 105 098 075 014 .060 a.122	.029 .023 .008 -011 -023 -055 -060 -058 -012 .052	.161 .120 .081 .050 .031 011 025 032 0 .054 a.125	.306 .228 .165 .118 .083 .039 .012 001 .023 .068 a.136	.378 .287 .214 .160 .121 .071 .041 .021 .031 .071 a.128 a.170	.459 .353 .270 .206 .160 .104 .069 .042 .045 .080 a.110 a.136

aFaired value.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(n) N = 2160 rpm; $\beta_{0.75R} = 30^{\circ}$.

_							0.172					
	J M _X α _X Δβ α ₁ c _n c _m	1.075 .869 5.21 1.28 2.65 .7774 1081	1.146 .878 3.84 .90 2.21 .6544 1073	1.227 .889 2.30 .48 1.48 .4399 0875 .0179	1.294 .899 1.06 .14 .93 .2873 0926	1.353 .904 01 16 .33 .0981 0826 a.0273	1.413 .917 -1.07 46 26 0777 0613	1.379 .907 47 39 .16 .0474 0736	1.323 .898 .54 01 .68 .2041 0856 a.0269	1.266 .893 1.58 .28 1.22 .3624 0905	1.202 .879 2.77 .60 1.72 .5112 0877 a.0151	1.115 .873 4.43 1.06 1.84 .7376 1122 .0096
	c/b					Pressure co	efficient,	P				
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800	1.203 519 710 743 807 834 864 893 926 475 365 330 315	1.207382563567635675715736799901346281251	1.213 121 329 320 441 470 530 583 658 735 435 215 191	1.218 .108 072 171 264 327 421 471 566 654 740 203 176	1.221 .293 .108 014 148 245 298 367 474 573 672 162 128	1.228 .414 .227 .090 057 172 239 307 409 508 627 147 097	1.222 .347 .162 .033 106 217 268 336 447 540 650 154 111	1.218 .204 .022 091 215 291 367 430 506 623 725 195 162	1.215 .005 -172 -249 -340 -390 453 516 594 704 652 197 171	1.208223436422506535588637709758337215191	1.205 484 648 667 731 761 804 835 887 690 365 301 270
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.507 .396 .395 .231 .171 .125 .062 .012 040 070 087 a126 a189	.358 .270 .206 .148 .101 .062 .027 038 082 090 084 a072 a069	.159 .114 .086 .053 .019 007 059 095 128 120 100 a071 a053	078048048036045065078123150175147119 a083 a062	526402143158154152186206183130094044,	661 609 519 269 213 222 263 308 316 181 077 a.005 a.045	593 532 171 182 180 189 219 244 213 116 073 a.005 a.036	267 105 103 096 106 114 160 180 191 151 118 a075 a051	.040 .027 .020 0 025 041 093 121 151 128 101 a067 a048	.245 .181 .135 .091 .052 .020 034 071 107 103 086 a069 a042	.439 .336 .257 .190 .137 .093 .034 010 055 068 073 a051 a039

aFaired value.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(o) N = 1350 rpm; $\beta_{0.75R} = 50^{\circ}$.

	J M _X α _X ; Δβ α _i c _n c _m	2.283 .685 5.92 .81 2.39 .7738 0179	2.435 .709 4.08 .47 1.93 .6269 0240	2.582 .729 2.40 .12 1.51 .4933 0276	2.755 .754 .55 30 .94 .3064 0359	2.865 .774 56 55 .61 .2010 0378	2.996 .798 -1.82 84 .24 .0774 0442	3.057 .806 -2.38 96 03 0110	2.948 .787 -1.37 73 .41 .1355 0428	2.823 .763 14 45 .78 .2560 0383	2.688 .742 1.25 14 1.16 .3789 0308	2.506 .721 3.26 .31 1.60 .5179 0260	2.382 .693 4.71 .59 2.23 .7246 0195
	c/b					Pre	ssure coef	ficient, P		1		HIE W	
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.123 -1.877 -1.853 -1.724 740 551 529 493 464 378 265 081	1.133 -1.171 -1.205 990 650 600 540 473 388 275 076	1.141 645 731 618 540 526 493 465 388 283 080 .048	1.151 100 248 312 358 403 417 420 420 454 400 316 124	1.159 .156 025 146 252 325 390 447 400 335 129	1.170 .361 .163 .008 -139 -237 -350 -439 -406 -336 -131	1.174 .443 .243 .078 082 191 268 326 437 414 342 148	1.165 .289 .095 050 181 272 327 367 442 408 344 150	1.155 .041 126 223 302 362 389 404 450 404 331 129	1.146 307 422 436 432 452 448 440 460 397 298 096 .045	1.138 839 970 706 587 551 507 473 463 385 279 082 .039	1.127 -1.582 -1.579 -1.323 627 605 545 474 389 278 084 .031
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.610 .473 .356 .267 .207 .164 .114 .081 .057 .068 .087 a.106 b.116	.467 .347 .256 .189 .139 .105 .064 .041 .024 .044 .071 a.098 b.112	.281 .198 .144 .102 .069 .046 .014 .001 004 .023 .059 a.101 b.127	031 025 009 011 017 023 042 037 032 .013 .083 a.156 a.201	330 174 115 088 078 069 079 046 013 092 a.174 a.232	990 610 199 160 135 111 110 085 054 .016 .098 a.163 a.196	-1.182 -1.042 427 151 141 120 118 088 054 .018 .103 a.195 a.244	808230186140117098101004050 .019 .104 a.187 a.232	164 108 065 049 049 045 053 040 .013 .088 a.163 a.212	.109 .072 .054 .034 .016 .001 022 026 024 .011 .068 a.144 a.206	.349 .253 .183 .130 .091 .062 .028 .010 .002 .027 .053 a.111 a.156	.531 .403 .301 .222 .171 .130 .086 .060 .041 .060 .082 a.118 a.155

^aFaired value. ^bLower-surface value only.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(p) N = 1350 rpm; $\beta_{0.75R} = 40^{\circ}$.

	- 1-	1													
J Mx α_x ' $\Delta\beta$ α_1 α_1 α_2 α_3	1.417 .575 8.86 .87 2.83 .8697 0222	1.502 .583 7.39 .82 2.64 .8134 0236	1.605 .597 5.68 .69 2.21 .6819 0422	1.706 .609 4.05 .52 1.77 .5492 0494	1.827 .620 2.19 .28 1.30 .4055 0531	1.918 .632 .85 .08 .91 .2852	2.026 .646 68 15 .51 .1597 0647	2.146 .662 -2.31 42 .05 .0165 0642	2.086 .654 -1.51 29 .30 .0945 0645	1.965 .635 .17 02 .72 .2257 0612	1.871 .624 1.54 .19 1.14 .3566 0531	1.769 .614 3.07 .39 1.54 .4793 0501	1.665 .597 4.70 .59 1.96 .6066 0462	1.567 .590 6.30 .74 2.38 .7380	1.455 .579 8.20 .85 2.75 .8467 0195
c/b							Pressure	coefficien	t, P						
0.000 .025 .050 .200 .200 .300 .400 .500 .600 .700 .800 .900	1.085 -1.756 -1.703 -1.562 -1.134 801 574 462 370 283 201 115	1.087 -2.046 -1.876 -1.469 863 945 521 456 399 311 214 088 013	1.092 -1.726 -1.054 881 677 593 518 463 4435 354 251 078	1.095 956 864 698 565 516 469 436 426 357 270 097	1.100 537 547 483 432 401 387 391 342 267 100	1.103 190 283 310 322 341 344 346 371 329 270 114 .018	1.108 .122 037 135 211 259 285 305 346 318 274 129	1.114 .419 .291 .074 -055 -133 -180 -218 -275 -264 -232 -104	1.111 .258 .075 049 153 216 250 279 324 306 268 162 .001	1.105 044 173 231 273 306 318 328 328 276 127	1.101 394 440 411 384 385 373 366 382 382 334 267 102	1.097 776 706 590 497 467 433 410 410 347 268 096	1.092 -1.102 988 791 621 551 488 449 427 354 258 088	1.090 -2.121 -1.498 -1.015 707 606 524 473 430 345 243 087	1.086 -2.005 -1.887 -1.560 -1.030 -737 548 460 384 297 206 098 043
.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .925 .975	.729 .576 .438 .331 .258 .199 .141 .091 .050 .031 .013 a005 a012	. 673 . 522 . 394 . 294 . 230 . 178 . 127 . 088 . 057 . 054 . 056 a . 062 a . 068	.578 .435 .321 .236 .180 .139 .095 .067 .045 .069 a.073	.419 .302 .217 .156 .112 .082 .048 .027 .015 .034 .062 a.105	.227 .154 .110 .078 .051 .032 .009 003 004 .025 .054 a.076 b.088	.015 .003 .008 .001 007 012 029 027 027 .010 .064 a.112 a.144	266165106081071062070057042 .006 .069 a.130 a.171	497 338 213 145 085 077 054 027 .033 .101 a.144 a.166	344 263 171 124 085 086 069 048 .009 .007 a.126 b.147	098 075 044 034 033 050 041 034 009 069 a.109 a.130	.156 .103 .076 .050 .031 .019 001 010 .023 .064 a.093 b.108	.338 .238 .171 .119 .086 .061 .031 .014 .009 .063 a.086 b.094	.507 .375 .276 .165 .150 .116 .077 .051 .034 .050 .071 a.093 a.104	.620 .473 .350 .260 .199 .154 .106 .075 .049 .054 .067 a.071	.705 .552 .415 .311 .241 .187 .129 .086 .047 .037 .032 a.024 a.020

aFaired value.

bLower-surface value only.

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(q) N = 1350 rpm; $\beta_{0.75R} = 35^{\circ}$.

															-	
	J M _x α _x * Δβ α _i c _n c _m	1.109 .538 9.55 .87 2.89 .8571 0322	1.187 .546 8.05 .79 2.72 .8112 0222	1.287 .554 6.19 .65 2.34 .7020 0418	1.389 .567 4.35 .46 1.86 .5611 0509	1.492 .578 2.56 .26 1.39 .4212 0527	1.589 .588 .94 .05 .96 .2931 0557	1.685 .601 61 16 .57 .1742 0598	1.789 .612 -2.23 40 .09 .0290 0601	1.734 .605 -1.38 27 .35 .1073 0589	1.633 .593 .22 05 .74 .2256 0569	1.539 .584 1.77 .15 1.14 .3477 0489	1.442 .572 3.42 .36 1.66 .5025 0502	1.335 .563 5.32 .56 2.12 .6372 0451	1.257 .555 6.74 .69 2.51 .7534 0295	1.160 .538 8.57 .83 2.79 .8262 0192
	c/b						Pr	essure (coefficie	ent, P						
Unner surface		1.074 -1.588 -1.501 -1.404 -1.089 859 647 517 401 306 226 144 106	1.076 -1.963 -1.878 -1.504 918 665 519 451 303 211 094 033	1.079 -1.912 -1.405902671589514465432351257098002	1.082 997 887 715 566 514 462 431 419 350 267 102	1.086 616 585 509 441 425 400 387 336 266 102 .018	1.089237313327342346344364364361267119 .012	1.093 .075 067 156 217 262 279 335 306 266 131 001	1.096 .350 .158 .012 100 171 211 248 296 282 252 129 004	1.094 .212 .040 076 164 218 249 277 319 299 261 132 005	1.091 067 183 237 271 301 308 319 353 319 273 131	1.088405441413380367380334271115 .014	1.084854758629513478436411407347268105	1.081 -1.455 -1.030 824 636 562 495 454 429 356 264 099 .003	1.079 -1.961 -1.791 -1.259 712 599 513 461 416 335 236 092 006	1.074 -1.886 -1.756 -1.527 -1.002 717 538 450 374 290 206 112 065
Twen There	1	.736 .582 .441 .333 .259 .198 .137 .089 .044 .020 .003 a015 a034	.685 .530 .399 .301 .230 .178 .127 .086 .053 .045 .042 a .048 a .052	.586 .442 .322 .238 .177 .136 .095 .046 .052 .071 a.093 a.110	.449 .327 .234 .166 .124 .090 .058 .036 .024 .040 .066 a.088 a.106	.261 .178 .128 .086 .059 .037 .014 0 001 .024 .052 a.076 a.090	.045 .023 .019 .012 0 009 022 026 018 .012 .064 a.152 a.199	-211 142 086 065 060 051 060 049 034 .010 .068 a.111 a.137	481 344 223 161 132 109 104 083 058 004 .060 a.105 a.131	322 240 157 115 101 081 085 070 052 003 .060 a.113 a.143	090 069 045 035 037 046 039 033 006 054 a.093 a.116	.142 .089 .062 .038 .019 .008 013 021 019 .010 .046 a.077 a.097	.373 .267 .190 .136 .096 .071 .037 .021 .013 .032 .061 a.084 a.097	.538 .400 .291 .212 .158 .122 .081 .052 .036 .050 .073 a.100	.631 .483 .358 .265 .203 .159 .107 .050 .050 .065 a.085	.701 .547 .408 .307 .235 .181 .125 .085 .042 .019 .019 a.032 a.039

Faired value.

CONFIDENTIAL

TABLE 8.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Continued

(r) N = 1350 rPm; $\beta_{0.75R} = 25^{\circ}$.

									The same of the sa							
	J M _X α _X ' Δβ α ₁ c _n c _m	.642 .475 9.22 .86 3.07 .7912 0261	.683 .481 8.33 .81 2.86 .7551 0196	.804 .491 5.73 .64 2.30 .6254 0465	.885 .506 4.04 .51 1.82 .5059 0510	.966 .512 2.38 .37 1.36 .3831 0474	1.044 .527 .82 .23 .88 .2522 0556	1.138 .535 -1.01 .05 .50 .1446 0611	1.226 .541 -2.68 11 0 0006 0617	1.190 .544 -2.00 04 .25 .0740 0609	1.086 .533 0 .15 .68 .1951 0625	1.020 .526 1.30 .27 1.10 .3117 0532	.923 .517 3.26 .44 1.60 .4457 0489	.846 .507 4.85 .57 2.08 .5703 0459	.752 .483 6.84 .71 2.61 .7109 0301	.658 .496 8.87 .84 2.97 .7798 0159
	0/0						Pre	ssure coef	Picient, P							
Thron anyface		1.058 -1.443 -1.375 -1.292 -1.018772554437347271211143104	1.059 -1.731 -1.696 -1.481792587482424366288201092028	1.062 -1.578 -1.013 779 616 543 476 438 410 344 257 103 001	1.066 907 788 632 516 471 427 404 390 334 259 106	1.067 530 524 446 407 393 373 364 368 325 261 111	1.071 162 249 275 292 310 312 319 342 312 268 136 008	1.073 .125 028 116 188 233 256 278 308 295 265 196 015	1.075 .404 .203 .054 070 142 183 223 268 266 247 185 012	1.076 .284 .102 019 118 178 238 277 273 245 187	1.073 016 136 198 242 278 287 305 329 311 273 172 025	1.071315365331339348339339355317268127 .001	1.068 708 639 535 459 434 399 386 382 334 267 115	1.066 -1.043915734582523467431412350271115005	1.060 -1.955 -1.732 -1.037 657 578 494 448 334 244 101	1.063 -1.723 -1.664 -1.493 913 486 415 350 279 203 111 062
Town asymptone	1 -	.722 .571 .431 .326 .248 .190 .131 .083 .039 .020 .000 .000	.669 .519 .385 .283 .217 .168 .115 .079 .047 .042 .042 a.042	.540 .401 .290 .209 .160 .122 .084 .058 .042 .054 .075 a.104	.412 .296 .210 .151 .111 .086 .053 .034 .025 .044 .069 a.117 a.151	.216 .147 .100 .067 .044 .026 .003 006 006 .018 .046 a.095 a.150	017 023 015 017 021 026 034 032 028 .010 .061 a.112 a.144	267172116090076063067054039 .011 .074 a.167 a.217	543 385 253 185 148 121 112 087 059 001 .071 a.163 a.237	383 277 182 133 107 088 086 045 .011 .076 a.152 a.210	149111074061056044061052038 .006 .069 a.128 a.160	.085 .047 .031 .015 .001 008 023 025 023 .010 .049 a.082 b.102	.303 .210 .146 .100 .065 .046 .019 .007 0 .026 .054 a.097 a.131	.482 .350 .247 .177 .130 .096 .062 .012 .024 .040 .064 a.091 a.109	.608 .457 .337 .243 .184 .141 .098 .067 .043 .050 .064 a.074 a.082	.693 .540 .403 .299 .228 .177 .118 .077 .040 .028 .021 a.012

aFaired value.

bLower-surface value only.

NACA

CONFIDENTIAL
TABLE 8.— PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-305.85 PROPELLER BLADE SECTION (x = 0.78) - Concluded

(s) N = 1350 rpm; $\beta_{0.75R} = 20^{\circ}$.

							. 0. 1)11						
J M _x α _x ° Δβ α _i c _n c _m	.536 .464 6.56 .86 2.63 .6337	.620 .469 4.70 .72 2.12 .5303 0489	.707 .493 2.81 .56 1.64 .4257 0497	.756 .487 1.75 .46 1.20 .3162 0522	.849 .512 21 .26 .67 .1797 0560	.925 .522 -1.78 .10 .26 .0720 0566	.987 .519 -3.04 03 .13 0355 0547	.962 .520 -2.53 .02 .06 .0168 0566	.889 .510 -1.04 .18 .45 .1222 0549	.810 .495 .61 .35 .90 .2405 0549	.722 .486 2.48 .53 1.39 .3591 0506	.648 .478 4.09 .67 1.90 .4799 0488	.567 .471 5.87 .81 2.40 .5862 0450
c/b	10. 10		****		Pr	essure coef	ficient, P						
0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.055 -1.837 -1.285 785 626 550 485 440 408 340 252 098	1.057 986 963 701 559 504 451 422 403 345 264 106	1.062 674 610 507 436 412 383 364 317 250 099	1.061 348 386 363 342 348 339 335 348 316 261 122	1.067 008 128 183 230 262 273 285 313 290 253 130 012	1.070 .256 .083 030 125 181 211 238 278 269 245 143 021	1.069 .436 .235 .081 047 123 168 206 253 253 237 143 029	1.069 .353 .162 .027 084 151 187 221 264 259 239 142 023	1.066 .145 005 095 166 212 232 254 288 272 241 129 010	1.063 144 232 258 277 298 300 307 328 300 261 137 015	1.061 493 491 431 360 350 356 317 256 111	1.059 881 767 618 508 464 423 400 388 337 262 108 .007	1.057 -1.368 951 766 600 532 473 434 407 344 260 102
.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.558 .412 .300 .212 .161 .121 .081 .055 .031 .053 a.088 a.122	.446 .317 .224 .158 .110 .084 .048 .033 .014 .019 .048 a.095 a.135	.304 .208 .150 .103 .074 .058 .029 .022 .009 .024 .062 a.112 a.151	.112 .066 .048 .029 .012 .003 013 017 .005 .055 a.112 a.148	135 101 066 052 052 041 054 045 036 001 057 a.117 a.156	351 263 170 125 109 084 066 048 001 062 a.117 a.150	602423277204168132123096069016 .051 a.108 a.139	468336219203135104102079057005 .060 a.114 a.142	263166111081075059063049035 .010 .068 a.117 a.148	027 027 015 015 025 025 037 030 027 .005 .059 a.109	.202 .133 .096 .067 .041 .029 .005 0 006 .015 .055 a.098	.392 .276 .194 .137 .099 .074 .040 .029 .012 .027 .055 a.103 a.138	.516 .376 .268 .193 .142 .110 .069 .049 .027 .029 .053 B .079 B .098

aFaired value.

NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85)

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

-																	
	J M _X α _X , Δβ α ₁ c _n c _m	2.582 .642 -2.54 15 .08 .0210 0622	2.477 .628 -1.35 07 .44 .1190 0619		- 2227	2.089 .586 3.46 .43 1.62 .4368 0483	1.945 .566 5.43 .61 2.15 .5785 0439	1.840 .555 6.93 .74 2.57 .6851 0302	1.700 .544 9.02 .92 2.94 .7821 0281	1.658 .543 9.66 .85 2.97 .7906 0378	1.752 .554 8.23 .68 2.80 .7507 0206	1.888 .563 6.24 .53 2.43 .6510 0342	2.000 .579 4.67 .39 1.91 .5129 0477	2.131 .592 2.91 .24 1.49 .4016 0497		2.358 .615 .06 11 .73 .1984 0605	2.531 .634 -1.96 13 .24 .0652 0612
	c/b							P	ressure (coefficien	nt, P						
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .950	1.107 .447 .214 .075 058 131 177 215 258 267 237 181 002	1.102 .237 .055 044 143 195 226 253 285 284 248 191	1.096 045 180 209 252 273 282 291 310 296 255 120 004	1.091 358 428 373 349 341 334 327 336 301 242 096 .005	1.088 672 661 534 441 418 388 367 363 319 249 099 .002	1.082 -1.576 -1.104 716 558 503 8444 412 392 334 252 140 008	1.079 -1.574 -1.535 -1.365 747 515 440 399 366 302 218 091	1.076 -1.412 -1.414 -1.410 -1.131814564416331258188104066	1.076 -1.287 a-1.324 -1.289 -1.133906665484363272199128095	1.079 -1.487 -1.494 -1.462 -1.060701492395338273198100047	1.081 -1.667 -1.578 -1.137 576 507 451 411 383 238 094 012	1.086 -1.042825659514469425378326249098001	1.090 577 583 480 394 372 355 357 314 248 099 .002	1.094 258 352 326 326 326 319 319 332 306 254 109 009	1.098 .021 130 176 236 264 278 292 313 303 262 162 012	1.104 .326 .132 .011 105 167 204 236 273 275 243 187
T corners of		513 376 230 156 123 090 080 067 039 .011 .067 a.115 a.142	287 226 135 089 075 054 053 048 027 .020 .069 a.114 a.139	051 042 017 008 011 002 015 022 013 .035 .069 a.091 a.103	.171 .115 .089 .064 .043 .040 .018 .003 .001 .036 .051 a.078 a.087	•339 •239 •174 •127 •093 •076 •049 •024 •017 •043 •049 a•087 a•110	.501 .369 .269 .199 .150 .115 .085 .050 .033 .052 .046 a.102 a.160	.596 .456 .340 .258 .194 .155 .116 .077 .051 .057 .041 a.055 a.059	.678 .533 .402 .306 .236 .185 .137 .088 .052 .043 .005 a010 a022	.694 .548 .418 .318 .243 .190 .140 .086 .045 .030 013 a036 a050	.645 .498 .374 .280 .215 .171 .121 .074 .043 .014 a.010 a.008	.557 .420 .311 .230 .176 .142 .101 .063 .043 .057 .045 a.060 a.078	.444 .324 .237 .173 .128 .107 .068 .038 .049 .047 a.078 a.095	.285 .197 .148 .105 .075 .064 .013 .010 .043 .047 a.045 a.042	.096 .060 .051 .036 .022 .022 .022 0 015 009 .034 .054 a.081 a.101	123 095 053 035 035 023 039 029 .060 a.084 a.094	396 297 177 120 098 071 066 060 034 .026 .068 a.100 a.118

aFaired value.

NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85) - Continued

(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$.

						-	,-) 11 -5,		0.1)1		-	-				
	J M _X α_{x} $\Delta \beta$ α_{1} α_{n} α_{m}	1.780 .660 7.81 1.27 3.21 .8582 0169	1.873 .672 6.45 1.13 2.99 .8012 0231	1.980 .681 4.94 .86 2.34 .6279 0415	2.081 .703 3.57 .64 1.82 .4916 0528	2.200 .712 2.01 .44 1.39 .3755 0565	2.300 .728 .76 .24 1.02 .2761 0621	2.407 .742 53 0 .63 .1716 0660	2.534 .76° -2.00 21 .13 .0355 0732	2.562 .763 -2.31 24 .01 .0026 0759	2.488 .751 -1.48 14 .37 .1013 0700	2.381 .736 22 .06 .70 .1890 0664	2.272 .722 1.11 .30 1.08 .2916 0603	2.151 .706 2.65 .52 1.51 .4110 0534	2.033 .690 4.22 .73 2.03 .5439 0483	1.938 .679 5.53 .98 2.49 .6654 0405	1.830 .662 7.08 1.21 3.16 .8460
	c/b							Pressure	coeffic	ient, P							
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.114 -2.272 -2.082 -1.860 830 585 501 431 383 310 218 081	1.118 -2.086 -1.977 -1.763 -568 -535 495 448 418 349 248 084	1.122 -1.745 -1.564 638 579 536 487 442 442 441 359 259 085 .012	1.131 700 800 630 513 481 447 417 417 417 408 357 267 093	1.133 384 478 433 407 401 394 381 350 269 095 014	1.140 094 232 271 314 332 346 367 343 274 106	1.146 .170 004 111 209 260 290 313 348 340 281 116 004	1.153 .390 .199 .050 097 175 228 271 326 328 279 119 +.007	1.155 .430 .237 .080 -074 -160 -217 -264 -323 -329 -280 -120 -008	1.150 .316 .127 010 139 209 253 289 334 334 281 122	1.143 .116 052 145 235 277 302 322 355 344 283 118 004	1.138 150 282 306 335 348 351 375 349 279 108	1.131 521 590 499 440 434 417 397 401 356 271 099	1.125 -1.305 799 678 548 506 462 426 415 357 267 091	1.121 -1.885 -1.757 -925 -571 541 493 448 422 357 256 088	1.114 -2.307 -2.143 -1.919 638 525 491 445 411 341 241 086 .001
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .925 .975	.673 .526 .402 .305 .237 .184 .136 .090 .063 .062 .051 a .030 a .020	.600 .463 .349 .263 .202 .158 .114 .077 .058 a.051 .065 a.082 a.090	.500 .373 .278 .205 .154 .116 .080 .052 .036 a.038 .058 a.078 a.089	.368 .263 .196 .142 .102 .073 .044 .015 a.025 .050 a.080 a.102	.183 .121 .092 .067 .043 .024 .010 007 007 a.011 .048 a.090 a.138	001 011 .005 .005 002 006 013 027 016 a.020 .062 a.095 a.110	248175098067061046049050057067114145	996294209145118090081072042 a.004 .069 a.116 a.140	-1.177471213160130100089077046 a.002 .066 a.093 a.103	316 292 178 120 098 075 070 066 038 a.009 .070 a.115 a.138	193 142 081 053 052 040 045 048 030 a.004 .064 a.110	.037 .013 .016 .013 .002 005 013 026 019 a.015 .055 a.085 a.100	.251 .171 .125 .089 .058 .037 .015 002 006 a0 .041 a.100 a.138	.426 .310 .230 .170 .124 .091 .059 .034 .023 a.030 .054 a.105	.546 .412 .310 .231 .174 .133 .095 .063 .043 a.041 .060 a.080 a.097	.643 .498 .377 .288 .220 .171 .127 .087 .094 a.079 .097 a.109

aFaired value.

NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85) - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J M _x	2.535 .848	2.462	2.380	2.287	2,209	2.123	1.980 .756	1.996 .761	2.083	2.241	2.335	2.419	2.504
	ax s	-2.01	-1.18	21	.92	1.90	3.01	4.94	4.72	3.54	1.50	•33	67	-1.66
	Δβ	52	30	06	.23	.49	.79	1.29	1.23	•93	•37	.08	17	43
	ai	.09	.30	.72	1.11	1.52	1.81	2.63	2.52	2.09	1.36	1.01	.58	.15
	cn	.0252	.0806	.1958	.3003	.4126	.4897	.7059	.6752	.5645	•3665	.2739	.1594	.0406
	c _m	0986	0891	0743	0695	0686	0544	0353	0412	0508	0651	0735	0787	0937
	cc							•-323			1	00135	-,0101	
+	c/b					Pre	ssure coef	ficient, P				Activities and the second		7
	0.000		0-	0-										
	0.000	1.193 .454	1.185 •355	1.180	1.172	1.166	1.161 530	1.151	1.153 -1.255	1.157	1.168 189	1.175	1.180	1.188
	.050	.262	.164	.006	211	465	 735	-1.286	-1.217	817	 109	133	.256	.398 .205
0	.100	.105	.020	107	250	-144	674	-1.221	-1.147	830	377	215	061	.055
Burrace	.200	054	123	224	355	460	534	-1.176	-1.084	791	419	305	191	098
B	.300 .400	173 266	230 307	306	389 404	456 445	500 480	482 405	407	468	430	359	279	207
	•500		343	358 377	409	429	447	424	433 438	478 447	427 422	385 395	335 364	283 329
Upper	.600	313 424	450	466	459	459	452	435	474	450	454	452	456	439
B	.700	524	469	416	408	397	384	374	384	380	402	404	418	465
133	.800	 286 075	298 086	296	295	283	270	269	275	269	292	300	309	317
	.950	045	.036	087 .033	092	081	073 .037	078 033	081 030	074	089	089	092	090
-												.030		.030
	.0375	951 905	826 648	272 186	012	.167	.309	•511 •388	.477	.380	.092	090	492	917 812
0	.150	771	152	101	003	.087	.164	·300 •295	•359 •271	.278 .210	.048	072 030	221 138	812 233
Burrace	.250	101	116	069	.001	.063	.121	.225	.205	.155	.033	019	093	111
F	.350	078	098	064	010	.040	. 085	.165	.151	.113	.042	024	080	102
	.450	068	077	051	014	.020	.057	.140	.123	.082	.004	021	063	081
P. P.	.550	071 072	074 070	055 059	023 037	012	.030	.099	.087	.051	009	006	063	079
Lower	.750	-014	045	041	031	012	.009	.045	.034	.018	019	017 028	063 041	073 044
-	.850	.027	.026	.023	a.010	a.014	a ₀	.070	a.015	a 030	a 014	a 003	a.010	a.001
1 3 1	.925	.052	.068	.062	.062	.055	.049	.071	.061	a.057	.058	.067	.069	.075
	.975 1.000	a.109 a.150	a.119 a.148	a.105	a 114	a.128	a 100	a.095	a.097	a. 084	a.095	a.098	a.105	a.120
	1.000		.140	a.129	a.154	a.145	a.141	a.120	a.119	a.103	a.115	8.111	a.124	a.142
		-		-			-	-						

aFaired value.

CONFIDENTIAL

TABLE 9 .- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85) - Continued

(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$.

										0.120								
0 0	μ β in m	2.523 .895 -1.89 85 19 0516 1108 .0218	2.473 .884 -1.30 58 .17 .0477 1118 .0208	2.427 .873 77 32 .50 .1374 1044 .0191	2.368 .863 06 01 .85 .2316 0939 .0161	2.318 .856 .54 .12 1.05 .2852 0828 .0121	2.259 .842 1.27 .45 1.37 .3710 0714 .0073	2.179 .832 2.30 .74 1.78 .4826 0737 0004	2.108 .822 3.22 .99 2.04 .5523 0546	2.062 .813 3.82 1.15 2.38 .6452 0474	2.085 .819 3.52 1.07 2.16 .5826 0519	2.152 .826 2.64 .84 1.87 .5065 0588 0023	2.210 .839 1.88 .63 1.61 .4355 0729 .0035	2.260 .847 1.27 .44 1.36 .3671 0729 .0076	2.335 .855 .34 .14 1.03 .2800 0823 .0118	2.392 .868 36 14 .73 .1981 0975 .0168	2.467 .881 -1.25 54 .26 .0703 1067 .0199	2.499 .886 -1.59 73 02 0065 1093 .0210
0	:/ъ							P.	ressure	coeffic	cient,	P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800	1.217 .482 .295 .139 019 153 247 325 403 520 632 066 .021	1.211 .418 .230 .081 072 204 285 368 450 545 659 050	1.205 .338 .150 .010 134 260 327 408 476 538 640 043 .072	1.199 .226 .042 083 211 323 387 445 571 579 503 038	1.196 .102 080 177 292 384 431 467 515 568 300 049	1.190 077 264 309 447 457 488 490 502 547 257 057	1.185 314 530 504 666 665 360 484 426 256 047	1.180 454 645 669 746 755 725 349 437 379 250 048 .057	1.176 766 772 775 863 866 875 278 324 314 216 023	1.179 565 680 733 818 805 817 386 359 246 049	1.182 375 586 591 640 718 670 362 471 400 257 050	1.188203405390559552540456479551264055	1.192 065 254 304 434 459 486 491 517 549 256 061	1.195 .119 067 166 282 381 433 467 537 584 318 048	1.202 .266 .078 051 185 305 366 438 498 576 587 040 .069	1.208 .392 .201 .056 095 226 303 388 472 557 660 049	1.211 .449 .260 .108 -049 -182 -271 -351 -428 -538 -650 -058
Lower surface	.0375 .075 .150 .250 .350 .450 .650 .750 .850 .925 .975	807 775 694 638 292 037 052 040 010 047 a.090 a.116	759720618214084060065073049060060080080080	669574181102088070071074047029 .070 a.093 a.108	316197104070064052059063041 .032 .075 a.119	107082037022031025037048031 a.010 .078 a.138 a.166	.067 .038 .039 .030 .012 002 013 032 024 a.010 .067 a.114 a.140	.242 .171 .134 .098 .068 .044 .019 .001 003 a.020 .061 a.105 a.130	.335 .245 .185 .138 .100 .070 .041 .018 .009 a.013 .059 a.108 a.131	.452 .348 .273 .212 .167 .130 .097 .071 .059 a.066 .101 a.160 a.192	.374 .275 .211 .156 .116 .082 .053 .026 .016 a.028 .063 a.106 a.130	.275 .196 .151 .109 .076 .049 .022 .002 003 a.012 .053 a.110 a.143	.156 .104 .084 .061 .038 .017 003 019 017 a.010 .059 a.140 a.200	.049 .024 .030 .021 .006 007 019 026 a.012 .066 a.153 a.210	137 105 046 036 039 036 046 056 039 a.005 .070 a.140 a.186	465300130087076063067071046 .026 .069 a.112 a.143	740699557108087070074080054011059	792 758 669 494 077 047 066 045 a005 -056 a-098 a-120

aFaired value.

NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85) - Continued

(e) M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

								0.171	and the same of th					
	J M _X α_X^* α_i on om oc	2.143 .896 2.75 .71 1.79 .4858 0852	2.183 .886 2.23 .57 1.66 .4503 0818	2.220 .881 1.76 .46 1.55 .4184 0876	2.258 .872 1.29 .35 1.35 .3661 0886 .0109	2.297 .864 .81 .24 1.19 .3239 0870	2.330 .856 .39 .15 1.00 .2706 0813 .0128	2.365 .849 03 .03 .84 .2297 0818	2.392 .840 36 06 .71 .1923 0847 .0153	2.415 .836 62 13 .58 .1577 0872	2.445 .831 98 21 .48 .1306 0905 .0161	2.480 .828 -1.38 32 .31 .0852 0854	2.511 .818 -1.75 42 .16 .0439 0882	2.534 .815 -1.99 48 .08 .0219 0898
	c/b				•	Pr	essure coef	ficient, P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.217 126 340 348 486 556 565 639 696 754 204 127	1.211 085 296 291 467 543 544 611 667 716 248 062	1,209 -,032 -,229 -,259 -,442 -,490 -,506 -,583 -,638 -,680 -,400 -,019 -,062	1.204 .025 162 225 372 413 489 542 596 654 392 015	1,200 .087 096 186 300 399 443 492 559 609 343 027	1.196 .138044149261365423467495570287048	1.193 .200 .014 102 221 331 379 428 480 558 276 058	1.188 .251 .063 063 187 297 361 382 459 563 284 077	1.186 .290 .102 032 160 269 335 366 460 517 299 088 .038	1.184 .322 .133 004 137 246 313 349 450 149 307 092 .036	1.182 .364 .173 .028 109 222 291 336 437 430 314 102	1.179 .417 .223 .072 072 186 260 311 401 404 312 105	1.177 .442 .248 .093 052 168 243 296 382 387 308 109 .019
Lower surface	•0375 •075 •150 •250 •350 •450 •550 •650 •750 •850 •925 •975 1.000	.215 .154 .125 .092 .058 .038 001 043 060 a060 037 a086	.161 .112 .094 .071 .040 .025 009 043 052 a040 004 a.020 a.033	.095 .062 .060 .047 .024 .014 041 038 a012 .043 a095 a124	.017 .005 .022 .020 .002 .002 .003 .024 .042 .033 a.012 .062 a.130 a.163	065 054 016 006 018 018 047 031 047 031 010 074 125 151	147109051030035030041049031020079137169	247161083054051041047051030 a.022 a.126 a.148	418188123079068053056057032 a.022 a.022 a.102 a.154	579231146094080063062060035013080134166	692376153101085065063059033 a.020 .081 a.129 a.156	846638151116097074071066060 a0 .079 a.135 a.167	9948601511171.04080074068037 a.007079 a.134 a.168	-1.055 -933 -210114105082076067037 a.010 .080 a.148 a.188

aFaired value.

NACA 16-305.30 PROFELLER BLADE SECTION (x = 0.85) - Continued

(f) M = 0.60; $\beta_{0.75R} = 45^{\circ}$.

								0.1)11						
	J Mx Cx Ch Cn Cm	2.140 .961 2.80 .42 1.52 .4103 1027 .0250	2.168 .957 2.43 .40 1.51 .4071 1005 .0247	2.193 .950 2.11 .36 1.37 .3706 0952 .0238	2.220 .943 1.76 .30 1.29 .3490 0936	2.249 .936 1.39 .21 1.17 .3174 0981 .0231	2.277 .929 1.05 .11 1.58 .2735 0941 .0235	2.304 .923 .71 .01 .94 .2548 0983 .0235	2.334 .917 .34 11 .84 .2268 1017 .0238	2.379 .914 21 28 .68 .1848 1045 .0235	2.405 .908 52 36 .49 .1342 1062	2.430 .899 80 46 .38 .1039 1099	2.460 .893 -1.14 57 .24 .0642 1146 .0222	2.484 .888 -1.43 67 .21 .0561 1170 .0211	2.535 .876 -2.02 86 0 .0006 1278 .0220
	c/b						Pressur	e coeffic	ient, P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.252 .044 156 181 322 403 438 506 592 650 720 271 257	1.250 .046 -155 -168 -335 -430 -454 -528 -612 -662 -747 -255 -236	1.246 .081113139320416435503591654701209191	1.242 .122 065 118 300 392 416 488 567 644 670 184 164	1.238 .152 034 105 280 345 407 486 565 633 665 163 139	1.235 .189 .007 088 246 304 398 468 563 613 689 164 138	1.231 .221 .035 072 211 304 383 456 556 611 680 147 118	1.228 .253 .067 050 187 300 359 451 547 611 680 135 101	1.227 .308 .120 009 a173 269 340 421 516 596 679 128 093	1.223 .340 .153 .017 124 249 328 393 504 595 683 111 061	1.219 .369 .180 .039107235316385499579671092034	1.215 .399 .209 .062 093 221 295 383 488 557 675 087 006	1.212 .416 .225 .075 079 209 289 376 469 555 669 069	1.206 .467 .275 .116 052 175 268 326 442 538 615 071
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.185 .128 .114 .088 .051 .015 028 081 129 1140 130 a130 a132	.141 .096 .088 .063 .029 005 046 099 150 a160 146 a127 a113	.105 .070 .072 .054 .023 007 046 097 141 a .141 137 a .127 a .127	.040 .021 .038 .031 .001 020 058 107 143 a148 134 a124 a117	014 020 .011 .012 014 029 066 111 142 a140 118 a105 a096	098 081 029 018 037 047 080 118 141 a125 092 a115 a099	178138058040052059086116125 a102063 a037 a023	286215087062067070093118118 a091049 a024 a010	449374138087080075094113104 a074029 a.016	554 500 271 104 089 079 094 109 095 a.071 013 a.020	636 594 434 111 092 078 089 080 a043 .010 a.047	710 671 559 180 088 072 080 087 064 a021 a.036 a.075 a.096	761 726 620 244 081 066 073 078 053 a010 .058 a.136 a.189	869 837 738 488 058 043 054 058 030 a.011 .093 a.130 a.148

aFaired value.

NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85) - Continued

(g) M = 0.66; $\beta_{0.75R} = 45^{\circ}$.

_										Street of the Contraction				
	J M _X α _X ' Δβ α _i c _n c _c	2.142 1.058 2.77 .12 1.28 .3474 1210 .0386	2.158 1.050 2.56 .07 1.21 .3265 1263 .0390	2.180 1.044 2.27 01 1.11 .3006 1178 .0401	2.205 1.037 1.95 09 1.00 .2703 1170 .0407	2.223 1.028 1.72 15 .91 .2465 1150 .0406	2.256 1.023 1.31 25 .79 .2148 1118	2.278 1.017 1.03 33 .65 .1761 1095 .0412	2.288 1.008 .91 36 .52 .1406 1067 .0409	2.318 1.001 .54 46 .40 .1084 1036 .0401	2.349 .996 .16 56 .22 .0606 0895	2.359 .991 .04 59 .09 .0252 0872 .0367	2.384 .981 26 67 .04 .0097 0857	2.426 .976 76 79 28 0749 0736 .0339
	c/b						Pressi	re coeffi	cient, P					1
Upper surface	- 400	1.312 .269 .072 .035 138 210 252 324 400 471 536 637 646	1.306 .292 .100 .056 -1119 205 242 321 398 464 546 643	1.302 .307 .120 .066 113 202 240 317 396 458 550 645 666	1.298 .321 .135 .067 112 206 244 316 403 466 563 658	1.292 .336 .153 .074 102 198 236 395 466 562 660 681	1.289 .364 .184 .089 081 174 227 302 383 467 557 665 680	1.285 .383 .203 .099 065 139 224 300 374 462 547 668 676	1.280 .393 .212 .100 054 130 228 304 378 428 551 673 681	1.275 .411 .229 .111 032 127 219 293 377 456 551 665 634	1.273 .433 .253 .128 013 121 201 279 371 438 550 657 352	1.269 .447 .268 .140 .001 115 182 272 364 433 547 655 276	1.264 .463 .280 .147 .006 -117 -188 -280 -371 -445 -559 -668 -227	1.261 .489 .309 .170 .024 098 182 262 355 443 546 520 171
Lower surface.	(FO	.192 .152 .150 .136 .099 .072 .038 036 086 a106 135 a163 a180	.141 .107 .120 .117 .084 .059 .026 047 096 a121 143 a172 a193	.095 .057 .092 .092 .065 .040 .008 062 111 a150 158 a180 a191	.036 .007 .051 .058 .035 .013 019 085 138 a162 179 a192 a205	008 036 .022 .033 .019 001 031 094 141 a180 186 a210 a229	079100028015003029053111155 a188197 a221 a245	141 150 085 052 033 052 072 126 165 a194 204 a227 a251	200198140089062075093140177 a206211 a240 a258	257 249 201 155 088 092 113 155 183 a210 213 a240 a253	308299237212126105122156178 a200202 a219 a230	351 341 282 260 190 114 133 164 180 a190 198 a200 a200	411399335319279172159191198 a205195 a180 b170	468 449 387 372 356 277 203 218 213 a195 159 a126 b108

Faired value.

bLower-surface value only.

NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85) - Continued

(h) One-blade propeller; N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

								- 0.75	ш.	4			
	J M _X α _X , Δβ α ₁ c _n c _m	2.297 .784 -5.50 .20 .72 .2816 0701	2.241 .775 1.50 .37 .90 .3523 0596	2.185 .766 2.21 .57 1.05 .4074 0582	2.150 .760 2.66 .69 1.22 .4732 0520	2.087 .749 3.49 .92 1.35 .5239 0503	2.036 .743 4.18 1.10 1.53 .5942 0436	1.979 .731 4.96 1.29 1.65 .6413	1.939 .731 5.52 1.41 1.82 .7071 0336	1.894 .725 6.15 1.55 2.05 .7929 0246	1.847 .719 6.83 1.67 2.15 .8335 0198	1.787 .710 7.71 1.81 2.27 .8819 0147	1.741 .704 8.40 1.89 2.21 .8600 0131
	c/b	,				P	ressure coef	ficient, P			ATTENDED.		
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.163 004 180 280 338 354 376 392 387 367 290 095	1.159194336388404400405405391363285090 .033	1.156 363 485 494 470 446 436 428 406 371 287 092	1.153 512 679 625 522 476 453 434 407 365 278 083 .034	1.149 598 874 781 571 512 478 451 415 368 278 083 .032	1.147 -1.138 -1.103 982 572 527 489 458 418 367 274 079	1.142 -1.374 -1.337 -1.256 589 489 480 456 412 358 263 073 .032	1.141 -1.519 -1.475 -1.400 -939 461 451 439 345 251 071	1.139 -1.676 -1.592 -1.524 -1.456 541 426 417 382 332 243 072 .024	1.136 -1.797 -1.697 -1.617 -1.488 666 439 392 358 310 227 068 .023	1.133 -1.969 -1.861 -1.750 -1.358 822 547 391 329 276 198 063 .006	1.131 -2.071 -1.952 -1.829 -1.067 838 564 402 323 258 183 067 011
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	053 a037012012025020012025020 .041 .064 a.067 b.065	.082 a.071 .053 .038 .012 .010 .012 007 007 .048 .065 a.069 b.070	.166 a.136 .093 .064 .030 .023 .023 .001006 .045 .057 a.060 b.062	.256 a.212 .144 .104 .064 .050 .044 .019 .009 .054 .059 a.060 b.059	.342 a.272 .192 .139 .091 .072 .061 .031 .016 .056 .056 a.050 b.047	.411 a.323 .236 .173 .119 .096 .081 .047 .029 .064 .062 a.035 b.017	.478 a.380 .280 .206 .147 .120 .099 .063 .039 .069 .061 a.050 b.040	.526 a.430 .314 .233 .170 .138 .116 .076 .079 .076 .066 a.050 b.043	.574 a.479 .348 .261 .192 .157 .133 .090 .062 .083 .067 a.038 b.021	.618 a.521 .382 .288 .214 .177 .150 .103 .070 .088 .070 a.043 b.030	.665 a.558 .416 .314 .236 .192 .162 .110 .071 .083 .054 a.021	.689 a .572 .434 .327 .244 .199 .165 .111 .066 .072 .037 a001 b018

aFaired value.

bLower surface only.

NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85) - Continued

(i) One-blade propeller; M = 0.57; $\beta_{0.75R}$ = 45°.

-											0.171						
	J Mx αx Δβ αi cn cm	2.493 .832 -1.53 36 .08 .0258 0864 .0157	2.448 .841 -1.01 22 .25 .0826 0873	2.35 ⁴ .862 .10 .17 .6 ⁴ .21260801 .0120	2.325 .868 .46 .16 .71 .2313 0791	2.298 .872 .79 .24 .82 .2694 0775	2.267 .879 1.17 .32 .92 .3026 0750	2.241 .885 1.50 .40 1.00 .3290 0773 .0103	2.213 .892 1.85 .48 1.11 .3632 0761	2.185 .897 2.21 .57 1.20 .3942 0788 .0105	2.155 .901 2.60 .67 1.30 .4252 0853	2.121 .905 3.04 .77 1.43 .4677 0899	2.096 .912 3.37 .85 1.48 .4816 0873	2.084 .920 3.53 .88 1.52 .4965 0905	2.058 .927 3.88 .95 1.64 .5332 0955 .0142	2.035 .932 4.19 1.01 1.73 .5658 1022 .0155	2.013 .939 4.49 1.07 1.81 .5877 1072 .0159
	c/ъ							Pressi	re coef	ficient,	P						
	0.000 .025 .050 .000 .000 .000 .000 .000	1.185 .423 .214 .007 -111 -196 -273 -319 a-388 -402 a-289 -091 .023	1.189 .368 .162 038 151 233 310 346 a390 453 a321 081	1.199 .226 .029 143 254 334 372 393 a454 539 a305 037 .065	1.203 .189 005 160 280 343 391 418 a478 550 a284 022 .074	1.204 .144 047 193 307 352 427 442 a509 597 a278 012	1.208 .082106237324402451481 a534614 a259010 .062	1.211 .044 142 254 346 411 477 503 a556 653 a250 019	1.214 .001 186 271 408 431 493 522 a583 665 a240 048	1.217044239283434475525537605699217082054	1.220 076 284 295 443 548 560 560 716 716 282 118 105	1.222 126 336 358 474 521 580 583 a652 715 a385 155 151	1.225 145 351 390 497 528 587 597 686 686 350 177 177	1.230 156 355 404 506 533 590 602 a635 686 a386 201 204	1.233 174 365 428 514 548 601 612 a659 729 a415 229 231	1.2361933784505255656126167567561448254258	1.239 207 391 464 541 583 623 621 a680 771 a456 272 276
	.0375 .075 .150 .250 .350 .450 .550 .750 .850 .925 .975 1.000	a966 a730153131120098084059045 .029 .073 a.128 a.158	a806 587 154 123 108 088 077 054 042 .033 .074 a.122 b.145	a274171093067067059057040036 .073 a.131 a.160	a198 a128069048054049051036034 .038 .071 a.135 a.210	a123 a084 040 029 041 045 034 037 .032 .063 a.116	a045 a025 007 007 025 035 042 035 042 .022 .047 a.058 b.064	a.012 a.016 .022 .013 009 019 033 031 043 008 .034 a.069 a.087	a.070 a.068 .052 .035 .007 008 027 030 050 .003 .012 a.024	a.124 a.113 .081 .053 .022 .003 021 030 058 015 019 a030 a040	a.163 a.144 .105 .072 .036 .012 016 033 067 032 051 a078	a.207 a.177 .127 .086 .045 .017 015 037 079 050 082 a120	a.250 a.216 .155 .111 .065 .034 002 027 078 055 098 a144 a185	a.276 a.236 .172 .123 .074 .042 .004 025 080 061 110 a160	a.309 .250 .194 .142 .090 .054 .014 -019 079 064 117 a178 a242	a.347 a.293 .221 .164 .110 .072 .028 007 073 058 113 a185 a267	a .376 a .318 .241 .180 .124 .084 .038 .001 067 054 107 a170 a295

aFaired value.

bLower surface only.

TABLE 9.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS

OF AN NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85)

(j) One-blade propeller; M = 0.59; $\beta_{0.75R} = 45^{\circ}$.

	J M _x α _x * Δβ α ₁ c _n c _m	2.513 .860 -1.76 55 .03 .0116 1155 .0175	2.468 .868 -1.24 40 .11 .0348 1029	2.425 .876 74 25 .37 .1200 0860	2.377 .886 17 09 .44 .1432 0811	2.335 .895 .33 .04 .57 .1855 0811	2.298 .901 .79 .15 .68 .2219 0769	2.258 .911 1.28 .27 .77 .2529 0713 .0161	2.219 .920 1.77 .39 .88 .2890 0666	2.183 .931 2.23 .48 1.04 .3400 0768	2.148 .940 2.69 .57 1.14 .3723 0837	2,108 .947 3.21 .65 1.30 .4216 0910	2.074 .957 3.66 .72 1.38 .4484 0875 .0178	2.043 .964 4.08 .77 1.54 .4997 1032 .0201	2.018 .972 4.42 .80 1.63 .5287 1098 .0208	2.002 .977 4.64 .82 1.70 .5539 1152 .0211
-	c/b							Pressur	re coeffic	ient, P						
Upper surface	0.000 .025 .050 .100 .200 .300	1.198 .477 .253 .045 087 179 269 341 a433 506 a486 062	1.202 .434 .217 .011 114 210 300 349 a439 503 a421 039 .073	1.206 .386 .170 035 155 255 317 386 a460 522 331 045	1.211 .342 .127 072 184 277 322 411 a475 534 355 015	1.217 .293 .083 104 219 287 354 417 a485 572 323 038	1.220 .238 .031 133 247 306 377 451 a520 591 306 070 018	1.225 .186 017 159 253 339 400 463 a536 612 240 096 062	1.230 .048 064 180 306 348 421 479 a559 626 a240 119 101	1.235 .080 119 199 347 392 448 502 a571 647 a350 153 145	1.240 .036 174 207 362 416 473 524 a594 660 a380 191 186	1.244 014 226 262 386 436 494 536 a603 681 a425 223 224	1.250 046 248 298 412 447 505 552 a.621 697 284 259	1.254 070 260 320 424 463 516 556 8.622 704 433 305 302	1.258080269349477527561629708471327321	1.261 083 274 357 483 530 964 620 703 484 359 343
Lower Surface	.0375 .075 .150 .250 .350 .450	893 a860719099092080073049039040082 a-220 a-400	816 a763603098100084074051040 .037 .079 a.125 a.160	696 a358199110102086077057048 .031 .068 a.116 a.140	580 a345136101094082077060055 .020 .051 a.110 a.170	390 a250103075076072073062064 .004 .027 a.055 b.079	224 a.,143073053064067075071083019007 a002	101 a061028021041051066071094039040 a035 a035	006 a.015 .017 .010017034055068105057072 a.087 a.095	.073 a.069 .057 .037 .004018046067118079110 a135 a147	.144 a.127 .099 .069 .030 .003 056 118 086 123 a149 b166	.218 a.191 .144 .104 .059 .027010040108082119 a157 b177	.268 a.235 .176 .130 .082 .047 .007026098076 .113 a148 b166	.311 a.269 .204 .152 .100 .063 .021 016 093 073 107 a142 b160	.343 a.289 .226 .171 .116 .077 .034 005 083 064 a.135 b155	.370 a.315 .247 .189 .132 .092 .046 .006 073 057 092 a125 b140

^aFaired value. ^bLower surface only.

NACA 16-305.30 PROPELIER BLADE SECTION (x = 0.85) - Continued

(k) One-blade propeller; M = 0.61; $\beta_{0.75R} = 45^{\circ}$.

-																			
	J M _X	2.365	2.334	2.317	2.281	2.254	2.233	2.213	2.183	2.162	2.134	2.123	2.098	2.083	2.053	2.039	2.020	2.001	1.977
14	ax'	03	•35	•55	1.00	1.33	1.60	1.85	2.23	2.52	2.87	3.01	3.34	3.54	3.95	4.14	4.39	4.65	4.99
	Δβ	22	11	04	.10	.20	.29	.31	.38	.41	.43	.44	.49	.51	•59	.63	.68	.75	.84
	ai	•58	.67	.68	•77	.83	.91	.92	1.03	1.12	1.22	1.30	1.35	1.46	1.55	1.63	1.71	1.76	1.84
	cn	.1884	.2187	.2206	.2490	.2723	.2974	.3019	.3368	.3652	-3968	.4219	.4387	.4697	.5006	-5265	•5535	.5677	•5955
1	cm	1121	1144	1026	0995	0978	0977	0949	1006	1003	1014	1057	1106	1168	1311	1395	1463	1444	1560
18	cc	.0235	.0240	.0247	.0245	.0247	.0257	.0256	.0267	.0267	.0275	.0280	.0283	.0286	.0315	.0326	.0338	.0340	.0350
	c/b								Pres	ssure co	efficient	, P							
Transport of the state of the s	500	1.225 .361 .146 066 182 259 365 364 641 571 719 131 084	1.229 .327 .117 077 199 261 336 381 619 570 713 138 103	1.234 .312 .103 077 198 260 330 382 599 569 706 145 115	1.235 .267 .061 105 215 297 345 588 584 724 173 143	1.239 .232 .031 124 223 310 361 410 568 725 187 158	1.244 .210 .010 134 245 311 368 417 550 725 209 181	1.247 .189 009 137 271 321 370 420 531 599 723 228 199	1.251 .151 045 150 300 352 385 436 519 613 736 280 240	1.254 .124 075 156 313 366 397 446 501 614 742 302 253	1.258 .100 104 159 320 376 401 452 485 618 744 354 290	1.263 .082 131 168 325 382 406 457 467 625 744 417 319	1.264 .067 147 187 328 381 406 456 451 626 742 469 339	1.269 .047 162 215 343 389 409 462 437 632 744 549 373	1.272 .030 174 236 357 400 412 466 425 638 751 715	1.275 .019 -180 248 362 407 409 466 409 636 748 768 605	1.279 .005 186 258 369 415 404 392 634 747 776 672	1.283 008 195 270 377 423 400 469 377 635 746 777 750	1.287 024 202 282 382 428 392 469 361 634 741 771
Torrow component	EEO		425 315 142 085 097 082 095 039 035 a 038 b 040	366240117068085073090086111046048 a080 b100	258135087054078072093094128066076 a118 a139	154 058 049 030 060 056 083 088 133 074 092 a130 a151	085 010 021 010 002 002 073 082 136 083 110 a160 a185	034 .026 .003 .005 032 034 066 078 139 091 119 a159	.025 .070 .033 .027 018 025 059 075 141 100 128 a191 a230	.074 .107 .061 .048 .001 010 045 063 132 098 122 a172	.120 .143 .088 .069 .016 .004 -035 -055 -126 -099 -123 a-168 b190	.159 .173 .112 .087 .032 .018 -023 042 119 100 121 a160 b180	.195 .204 .135 .108 .051 .032 010 034 109 092 114 a150 a170	.222 .224 .151 .119 .059 .040 004 030 103 194 115 a152	.253 .249 .171 .133 .073 .050 .005 098 096 118 a158	.287 .279 .196 .156 .091 .068 .021 009 085 084 107 a132	.321 .307 .220 .177 .111 .086 .036 .006 070 070 094 a120	.348 .328 .237 .189 .122 .096 .045 .014 062 066 092 a132 a155	.382 .357 .262 .213 .143 .115 .064 .031 047 049 077 a120

aFaired value.

bLower surface only.

NACA 16-305.30 PROPELLER BLADE SECTION (x = 0.85) - Concluded

(1) One—blade propeller; M = 0.64; $\beta_{0.75R} = 45^{\circ}$.

J Mx αx* Δβ αi cn cm	2.336 .977 .32 52 .23 .0761 1018 .0326	2.308 .980 .66 43 .30 .0984 1026	2.282 .985 .98 34 .39 .1284 1044 .0343	2.259 .991 1.27 26 .54 .1768 1114 .0361	2.239 .996 1.52 20 .66 .2165 1195 .0384	2.218 1.002 1.79 13 .79 .2574 1293 .0402	2.191 1.007 2.13 04 .84 .2748 1275 .0402	2.173 1.016 2.36 .02 .95 .3103 1322 .0398	2.150 1.019 2.66 .09 1.00 .3265 1319 .0393	2.125 1.025 2.99 .17 1.09 .3548 1156	2.106 1.030 3.24 .23 1.16 .3781 1372 .0390	2.094 1.037 3.40 .26 1.24 .4061 1398 .0388	2.063 1.043 3.81 .35 1.34 .4342 1438	2.035 1.053 4.19 .43 1.44 .4665 1446	2.019 1.058 4.41 .48 1.48 .4806 1454 .0356
0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900 .950	1.261 .421 .210 .012 104 165 249 303 485 624 596 230	1.263 .404 .197 003 103 175 250 303 380 485 624 637 259	1.266 .392 .187 -011 -102 -184 -255 -303 -379 -484 -665 -303	1.270 .358 .155 029 111 203 274 318 391 494 625 691 479	1.273 .333 .132 035 131 209 286 328 400 503 630 694 659	1.276 .316 .115 -038 -158 -214 -290 -332 -405 -508 -635 -698 -708	1.279 .299 .099 .099 -037 -171 -222 -289 -331 -403 -503 -631 -689 -707	1.285 .271 .072 -0.046 -1.192 247 303 342 412 508 635 691 708	1.286 .253 .051 051 201 260 311 350 418 513 636 692	1.290 .227 .025 053 268 313 355 419 517 634 690	1.293 .200 006 062 218 277 318 363 423 524 638 691	1.298 .183 028 077 228 327 366 430 529 641 694 703	1.302 .162 048 104 238 288 327 367 423 530 642 689 699	1.308 .132 069 137 258 306 323 375 409 536 643 684	1.312 .120 077 150 268 316 326 380 404 541 648 686 690
.0375 .075 .150 .250 .350 .450 .550 .750 .850 .925 .975 1.000	-376 -333 -310 -260 -137 -140 -132 -132 -132 -138 -141 a-147 a-148	346 304 279 177 122 122 117 126 a138 150 156 a163 a166	-305 -267 -226 -125 -104 -102 -102 -118 a-131 -151 -164 a-176 a-181	-235 -198 -138 -076 -084 -091 -115 a-135 -162 -183 a-198 b-205	174123075041065065078108 a134161186 a206 b213	123 062 038 020 048 052 068 099 a123 158 185 a205 b211	069005005004027034055086 a118145173 a191 b199	.009 .064 .037 .033 004 015 040 072 a100 136 164 a181 b192	.049 .094 .059 .049 .009 -005 -031 064 a100 129 159 a174 b182	.101 .135 .089 .073 .028 .013 018 050 a082 118 148 a162 b170	.155 .179 .122 .099 .049 .031 002 036 a072 107 140 a153 b162	.203 .217 .156 .125 .073 .053 .016 017 a068 092 125 a144 b153	.250 .254 .185 .172 .094 .075 .034 .002 a037 075 107 a125 b133	.304 .298 .223 .181 .119 .097 .054 .022 a020 057 090 a111 b121	.315 .308 .228 .186 .123 .100 .056 .024 a017 056 090 a109 b119

a Faired value.

bLower surface only.

NACA 16-304.80 PROPELLER BLADE SECTION (x = 0.90)

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

								, , ,			15R									
J M _x α _x , Δβ α _i cn cm	1.628 .553 9.77 1.10 3.37 .7454 0223	1.700 .561 8.68 1.00 3.21 .7103 0167	1.804 .576 7.16 .87 2.92 .6458 0213	1.855 .575 6.43 .80 2.74 .6079 0270	1.957 .585 5.01 .65 2.31 .5133 0366	2.058 .598 3.65 .50 1.94 .4303 0400	2.141 .619 2.57 .41 1.57 .3487 0396		2.334 .625 .16 .11 .69 .1552 0559	2.490 .646 -1.67 10 .30 .0661 0557	2.583 .654 -2.71 20 02 0055 0598	2.438 .638 -1.07 04 .45 .1016 0559	2.319 .628 .34 .14 .82 .1839 0515	2.206 .613 1.74 .32 1.29 .2881 0389	2.079 .599 3.37 .48 1.78 .3968 0415	1.999 .588 4.44 .58 2.12 .4699 0392	1.931 .581 5.37 .69 2.45 .5446 0353	1.814 .574 7.02 .85 2.85 .6307 0244	1.73 ⁴ .567 8.18 .95 3.07 .6799 0175	1.674 .561 9.07 1.03 3.22 .7137 0201
c/b									Pres	ssure coe	efficient	, P								
0.000 0.005 0.050 0.000	1.079 -1.500 -1.428 -1.287983739549409332264180126101	1.081 -1.550 -1.513 -1.370 922 624 462 366 317 256 187 091 051	1.085 -1.609 -1.550 -1.264 652 489 416 357 332 273 199 077 020	1.085 -1.769 -1.431 876 559 494 435 380 362 303 228 088 017	1.088 -1.132 857 668 499 457 402 358 354 302 233 083	1.092 861 669 542 418 402 364 329 336 291 229 085 007	1.099 592 485 421 344 355 328 303 317 278 224 082 001	1.098 - 352 - 321 - 315 - 291 - 312 - 300 - 286 - 279 - 235 - 093 - 015	1.101 044 112 176 218 256 267 265 300 286 246 141 042	1.108 .196 .073 038 120 181 209 217 261 255 220 161 020	1.112 .339 .220 .049 064 139 177 197 250 250 221 160 023	1.107 .103 .003 091 156 206 224 231 271 261 224 158 024	1.102 108 152 202 226 257 262 257 290 272 233 115 032	1.097 424 369 350 313 327 316 299 286 285 241 098 017	1.092 783 612 513 405 398 362 333 342 298 242 096 015	1.089 983 778 619 468 438 392 353 351 302 235 091 013	1.087 -1.440 -1.005 716 525 474 418 370 359 304 235 089 015	1.084 -1.667 -1.570 -1.164 595 490 428 376 355 293 220 087 023	1.082 -1.620 -1.563 -1.329 798 549 433 363 326 264 191 084 037	1.081 -1.410 -1.381 -1.290 968 678 487 367 305 240 176 097 066
.0375 .075 .150 .250 .350 .450 .550 .750 .850 .975 .975	.667 .516 .374 .285 .216 .168 .105 .067 .031 a003 015 a033 a047	.630 .486 .347 .261 .200 .155 .094 .065 .039 a.015 .014 a.010	.576 .435 .309 .235 .178 .139 .080 .061 .043 a.034 .039 a.037 a.037	.539 .398 .278 .210 .156 .112 .060 .044 .033 .039 .044 a.046 a.045	.456 .329 .225 .169 .120 .084 .038 .032 .027 a.036 a.048 a.048	.344 .239 .161 .122 .073 .051 .017 .015 a.020 .050 a.084 a.104	.227 .150 .097 .072 .029 .022 007 001 0 a.015 .049 a.073 a.086	.087 .045 .024 .010 018 011 034 025 016 a.009 .043 a.060 a.069	145 129 112 077 075 060 070 054 037 a002 .048 a.077 a.089	310 250 183 120 104 078 079 060 038 a.005 058 a.120 a.170	505 355 253 171 139 107 100 075 049 a002 .055 a.094 a.114	219193148097089066072056036 a.004 .056 a.095 a.118	077073072051053041055039025 a.010 .055 a.087 a.105	.120 .069 .036 .020 013 010 035 027 a.004 .034 a.055 a.065	.294 .196 .125 .093 .044 .029 002 002 a.008 .036 a.050 a.059	.405 .287 .190 .143 .097 .064 .024 .020 .015 a.020 .041 a.058 a.066	.484 .352 .239 .180 .131 .092 .043 .032 .025 a.049 a.049 a.052	.560 .419 .292 .221 .163 .122 .066 .050 .034 .026 .037 a.045 a.054	.606 .461 .327 .248 .190 .146 .086 .061 .038 .013 .027 a.030 a.035	.638 .495 .357 .272 .198 .161 .103 .070 .039 002 .002 a001 a002

aFaired value.

NACA 16-304.80 PROPELLER BLADE SECTION (x = 0.90) - Continued

(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$.

									.J)0 1 pm	PO.75R									
J Mx αx* Δβ αi cn cm	1.771 .675 7.64 1.41 3.43 .7612 0214	1.901 .691 5.79 1.17 2.93 .6530 0249	1.983 .698 4.66 1.09 2.58 .5753 0517	2.096 .717 3.15 .61 1.98 .4413 0554	2.181 .725 2.05 .47 1.53 .3403 0454	2.271 .735 .93 .32 1.18 .2639 0492	2.350 .743 03 .13 .88 .1971 0530	2.418 .754 84 04 .56 .1255 0583	2.492 .762 -1.69 19 .34 .0777 0600	2.567 .775 -2.54 28 05 0123 0728	2.530 .770 -2.12 24 .19 .0426 0667	2.447 .756 -1.17 11 .45 .1000 0590	2.380 .750 39 .06 .71 .1574 0585	2.284 .736 .77 .29 1.13 .2516 0516	2.201 .718 1.80 .46 1.47 .3284 0420	2.114 .715 2.92 .61 1.90 .4227 0523	2.023 .708 4.12 .81 2.30 .5116 0472	1.927 .690 5.42 1.10 2.78 .6171 0346	1.830 .680 6.79 1.33 3.30 .7348 0135
с/ъ									Pressu	e coeffi	cient, I								
0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.119 -2.167 -2.020 -1.632634576483415366292206077018	1.126 -1.857 -1.736 -1.133 511 511 453 416 397 333 249 090 010	1.129 -1.579 -1.390594523495436405395337255093010	1.136 900 681 564 449 438 375 375 378 329 256 094 006	1.139 538 466 428 369 388 358 352 318 249 084 .008	1.143 262 276 303 295 339 329 329 314 253 091	1.146 049 117 192 228 295 293 309 340 312 258 095 003	1.151 .121 .013 124 169 256 268 293 333 310 262 097 007	1.154 .250 .119 016 114 216 238 273 321 305 263 100 006	1.160 .360 .214 .060 061 178 211 258 315 306 268 105 013	1.158 .313 .172 .027083190221263315303263102008	1.151 .176 .059 063 145 236 254 285 327 327 307 262 100 006	1.149 .030 057 148 202 275 279 302 336 310 259 097 003	1.143 213 238 280 282 329 317 326 351 315 259 096 002	1.137 452 409 389 344 369 344 341 355 313 249 083 .010	1.135 797 617 527 424 420 380 366 369 321 251 090 001	1.132 -1.295 919 632 493 467 411 385 381 325 251 090 006	1.125 -1.798 -1.655 753 515 500 441 389 327 244 084 005	1.121 -2.066 -1.948 -1.708 497 446 411 386 319 233 083 008
.0375 .075 .150 .250 .350 .550 .550 .750 .850 .975 1.000	.623 .480 .342 .262 .196 .154 .107 .081 .044 a.025 .034 a.040	.518 .385 .267 .209 .150 .116 .077 .059 .039 a.051 .056 a.058 a.060	.449 .324 .221 .168 .123 .093 .060 .046 .032 a.051 .063 a.071 a.078	.306 .209 .135 .104 .072 .053 .026 .020 .011 a.030 a.090 a.110	.179 .114 .069 .050 .005 .005 023 018 013 a.0 .036 a.061 a.075	.032 .009 011 008 027 022 042 033 023 a.003 .044 a.077 a.095	117 103 100 060 062 049 062 049 034 a.005 047 a.078 a.097	214 212 158 100 092 068 076 059 039 a.009 .051 a.079 a.090	327277211134114084087066041 a.007 .056 a.085 a.099	-1.156509219163140107104077048 a.001 a.053 a.088 a.104	953 261 227 154 130 096 070 044 a.004 .055 a.082 a.100	260246183116103076082062040 a.002 .051 a.086	181 154 134 078 075 057 051 035 a.007 .051 a.087 a.108	004 018 036 027 044 031 051 040 030 a.010 .042 a.086 a.100	.140 .084 .050 .041 .018 .011 008 008 011 a.007 .039 a.079 a.106	.279 .190 .121 .094 .066 .049 .024 .017 .010 a.029 .053 a.079 a.093	.407 .293 .198 .152 .111 .086 .055 .044 .032 a.043 .069 a.085 a.098	.507 .376 .261 .199 .149 .115 .078 .063 .043 a.052 .063 a.074 a.079	.587 .445 .317 .243 .185 .146 .101 .080 .057 a.061 .063 a.062

Faired value.

NACA 16-304.80 PROPELLER BLADE SECTION (x = 0.90) - Continued

(c) N = 1500 rpm; β_0 75P = 45°.

_							1 PM, PO.75R						
	J M _X α _X ¹ Δβ α ₁ c _n c _m	1.995 .794 4.49 1.39 2.72 .6058 0351	2.081 .806 3.35 .92 2.24 .4974 0418	2.178 .818 2.09 .59 1.72 .3835 0517	2.300 .836 .57 .12 1.17 .2610 0607	2.426 .854 92 29 .56 .1255 0751	2.527 .869 -2.09 59 03 0077 0903	2.550 .872 -2.34 66 14 0310 0965	2.479 .862 -1.53 45 .31 .0690 0842	2.377 .843 32 14 .84 .1877 0697	2.258 .824 1.17 .29 1.35 .3026 0578	2.147 .807 2.62 .73 1.88 .4187 0480	2.058 .798 3.79 1.12 2.40 .5342 0429 0087
	с/ъ						Pressure co	efficient, P	2.86				
1	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.168 -1.057 -1.057 -1.019972666310370417362262070 .021	1.173772823811755405405401433368259067	1.193 482 533 497 451 412 392 446 378 268 068 .028	1.187 100 176 261 304 376 365 358 450 390 273 067	1.196 .194 .069 065 169 283 311 326 424 469 277 069	1.203 .358 .215 .060 074 210 260 292 389 487 279 057	1.204 .395 .249 .091 051 189 246 283 382 480 341 053	1.199 .288 .152 .005 116 240 281 308 408 497 277 070 .033	1.190 .079 026 143 225 303 332 340 1440 409 285 076 .028	1.182 237 285 346 353 404 380 372 447 387 279 077	1.173 597 688 580 462 466 422 402 440 377 269 073	1.170 856 918 866 821 383 401 406 433 370 264 076
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.433 .320 .222 .170 .110 .082 .032 .027 .020 a.030 .061 a.109	.323 .226 .151 .117 .076 .044 001 003 a.006 .048 a.112 a.151	.171 .108 .065 .043 .001 001 030 026 022 a.011 .048 a.081 a.100	046 056 064 033 044 036 055 054 032 a.009 .059 a.103 a.127	608267163106099077086065043 a.010 .067 a.115 a.140	853 784 714 033 063 066 087 069 043 a ₀ .074 a.133 a.164	904843796266025043076062039 a.018 .078 a.125	810732197096104084093070045 a.012 .072 a.118 a.149	209176136081081064078060041 a.011064 a.103 a.115	.040 .011 032 010 029 025 049 032 a.011 .057 a.104 a.129	.236 .156 .096 .074 .045 .014 -029 -024 -022 a ₀ .041 a.080 a.102	.370 .264 .176 .136 .093 .066 .023 .004 .001 a.020 .051 a.087 a.104

a Faired value.

NACA 16-304.80 PROPELLER BLADE SECTION (x = 0.90) - Continued

(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$.

									-		
	J M _X α _X ' Δβ α ₁ c _n c _m	2.078 .848 2.99 1.20 2.41 .5394 0526 0068	2.184 .864 2.02 .77 1.80 .4019 0539 0001	2.288 .877 .72 .36 1.27 .2842 0653	2.383 .892 43 13 .80 .1800 0919 .0146	2.481 .907 -1.57 73 .11 .0235 1066 .0181	2.537 .918 -2.20 -1.09 26 0590 1082 .0204	2.442 .901 -1.12 49 .40 .0900 0997 .0163	2.339 .880 10 .12 1.05 .2355 0824 .0122	2.227 .865 1.47 .60 1.57 .3519 0602 .0041	2.123 .848 2.80 1.02 2.08 .4645 0501 0036
	c/b				Pressure	coefficient,	P				
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.192 605 670 688 691 790 800 287 362 362 244 046	1.200369458431510605550309423518225032	1.207 064 142 248 320 408 412 405 460 485 326 026	1.215 .183 .071 070 178 303 353 367 441 486 581 040	1.223 .355 .224 .067 067 217 289 337 418 474 568 080	1.228 .419 .282 .122 019 174 258 304 389 471 581 088	1.219 .281 .159 .007 117 257 317 344 406 463 575 067	1.208 .070 021 154 246 355 396 379 450 487 550 033	1.200 239 293 352 438 486 418 383 427 531 531 044 .051	1.192 504 603 605 610 691 547 321 452 411 256 053 .040
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.329 .235 .159 .148 .085 .064 .033 .021 .011 a.024 .061 a.146 a.209	.183 .123 .059 .045 .014 .013 022 020 017 a.002 .061 a.118 a.150	034042060030044032058047036 a.006 a.128 a.165	530 364 128 089 070 087 067 040 a.023 095 a.138 a.160	714 677 679 473 015 058 058 058 047 a.002 066 a.134 a.169	767 723 697 643 473 .034 .001 022 027 a.007 .060 a.105	655 614 504 050 070 063 087 070 049 a 008 075 a 135 a 170	213150122072074058077060042 a.013 a.074 a.123 a.145	.087 .046 .007 .003 021 018 021 017 009 a.014 .061 a.106	.258 .177 .114 .086 .048 .031 003 007 014 a.009 .048 a.100 a.132

aFaired value.

NACA 16-304.80 PROPELIER BLADE SECTION (x = 0.90) - Continued

(e) N = 0.56 rpm; $\beta_{0.75R} = 45^{\circ}$.

	J M _X α _X , Δβ α1 cn cm	2.115 .940 2.91 .84 1.91 .4242 0746	2.147 .928 2.49 .73 1.85 .4132 0782 .0107	2.179 .919 2.09 .62 1.73 .3858 0824 .0116	2.214 .910 1.64 .49 1.68 .3758 0882	2.255 .903 1.13 .36 1.49 .3332 0859	2.288 .892 .72 .26 1.28 .2868 0801 .0111	2.325 .883 .27 .14 1.06 .2361 0782 .0120	2.349 .878 01 .06 .90 .2003 0791	2.384 .870 44 07 .73 .1629 0774	2.426 .864 94 21 .53 .1197 0733	2.457 .858 -1.29 31 .39 .0871 0760	2.493 .851 -1.71 43 .20 .0445 0816	2.541 .839 -2.24 57 16 0355 0765
	с/ъ					Pre	ssure coet	ficient,	P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.241201309322390490541572565587394107085	1.234174286283383474502543547578518067	1.229147241260382459490518533569550040 .030	1.224104186244362447485506548548549	1.221045129220329417441445530519024	1.215 .007 086 195 297 364 390 432 453 504 467 020 .100	1,210	1.207 .120 .009 117 225 312 347 369 391 472 436 .015	1.203 .181 .060 074 181 288 317 382 382 388 026 .054	1.200 .242 .112 029 138 257 301 389 491 241 048	1.197 .281 .145 .001 114 233 275 292 395 463 268 061 .041	1.194 .326 .184 .036 088 203 248 277 388 395 284 068 .031	1,188 .390 .241 .086 050 157 207 246 343 347 271 090 .018
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.243 .180 .098 .085 .042 .025 027 046 a080 072 a072 a072	.190 .136 .064 .060 .024 .011 037 051 071 a055 028 a005 a .008	.141 .096 .033 .039 .007 .001 .045 .054 .065 a.054 .099 a.059	.084 .053 .001 .016 008 012 005 053 a.054 a.011 .045 a.095 a.125	.017 .001 030 004 023 020 052 050 041 a.005 .074 a.130 a.155	055 054 064 026 038 030 058 049 034 a.020 .092 a.149 a.182	157 094 050 054 063 051 030 a.027 .099 a.144 a.164	298147121068053070055033024097132148	498197137083076057071055030 a.025093 a.144 a.110	667461120088085063075056030030089 a.143 a.172	755 645 109 089 090 068 080 058 032 a.088 a.155 a.196	849771195081093072081060031 a.028 a.088 a.140 a.168	995913486061088071082057003005010 a.062 a.125

NACA 16-304.80 PROPELLER BLADE SECTION (x = 0.90) - Continued

(f) M = 0.60; $\beta_{0.75R} = 45^{\circ}$.

								0.174						
	J M _x α _x ' Δβ α _i c _n c _m	2.145 .990 2.52 .41 1.65 .3690 1025 .0236	2.176 .980 2.12 .38 1.44 .3226 0879	2.217 .977 1.60 .34 1.28 .2861 0808	2.253 .971 1.15 .18 1.05 .2342 0742	2.268 .960 .97 .12 .93 .2074 0748	2.300 .956 .57 01 .80 .1800 0725	2.334 .947 .16 15 .72 .1600 0741 .0192	2.350 .936 03 22 .59 .1310 0799	2·379 .929 38 34 .50 .1106 0846	2.420 .924 86 51 .30 .0684 0919	2.449 .918 -1.20 64 .19 .0435 0992 .0185	2.481 .914 -1.57 77 .06 .0145 1027 .0184	2.520 .903 -2.01 92 11 0258 1058 .0178
	с/ъ						Pressu	re coeffici	ent, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.269030143155264382429495527560609605270	1.263 .001 .099 140 258 366 399 484 507 549 601 415	1.261 .049 045 118 234 348 386 452 487 535 588 320 148	1.258 .100 .002 095 202 327 369 418 464 515 576 296 116	1.252 .132 .028 081 187 312 363 414 465 513 581 205 095	1.250 .159 .051 066 176 292 354 413 462 511 583 155 069	1.244 .189 .075 050 163 276 340 413 462 510 584 131	1.238 .221 .102 029 145 268 329 412 512 586 117 035	1.235 .245 .124 -013 -133 -262 -317 -403 -466 -510 -590 -104 -013	1.232 .300 .170 .028 -102 -239 -289 -376 -460 -510 -589 -087	1.229 .328 .196 .048 085 226 276 365 452 500 583 078	1.226 .358 .221 .070 068 213 272 354 432 495 580 070 .049	1.221 .392 .251 .095 048 198 271 334 402 466 570 056 .072
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.135 .094 .042 .041 0 017 074 087 132 a155 160 a164 a165	.079 .054 .011 .021 013 026 078 091 138 a162 144 a072 a.002	.019 .012 021 .001 027 036 086 097 143 a159 139 a080 a033	070 050 061 024 046 050 095 103 151 a163 136 a065 a.028	186100094048064066108116161 a165135 a071 a020	285 191 111 061 073 072 111 157 a150 101 a040 a005	373 305 131 068 077 076 114 118 144 a140 070 a.013 a.013	457 415 281 070 081 084 120 122 134 a118 052 a.006 a.038	513 470 385 068 074 080 117 118 119 a092 031 a.029 a.058	604 557 556 239 040 056 098 100 094 a060 001 a.058 a.084	663611624354021036083084074 a043 .021 a.086 a.122	720 666 678 528 031 014 062 067 057 a029 .038 a.103 a.135	799740720629045 0049052041 a009 .059 a.130 a.169

aFaired value.

CONFIDENTIAL

TABLE 10. - PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-304.80 PROPELLER BLADE SECTION (x = 0.90) - Concluded

(g) M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

_							0.	.75R					
	J M _x α _x ' Δβ α ₁ cn cm	2.132 1.093 2.68 .01 1.40 .3116 1059 .0310	2.146 1.085 2.50 03 1.34 .2987 1075 .0308	2.170 1.078 2.19 10 1.23 .2729 1047 .0321	2.188 1.067 1.96 16 1.13 .2523 1054 .0319	2.215 1.059 1.63 24 1.03 .2310 1054 .0320	2.238 1.052 1.34 31 .94 .2103 1042	2.262 1.045 1.04 38 .82 .1845 1042 .0322	2.291 1.037 .68 46 .61 .1355 1013 .0324	2.307 1.030 .49 51 .60 .1335 1045	2.346 1.020 .02 63 .39 .0871 1018	2.364 1.010 20 69 .19 .0439 1009	2.442 .991 -1.12 92 30 0684 0810 .0301
	c/b					Pre	ssure coef	ficient, 1					
Upper surface	1.500	1.334 .146 .045 .010 101 216 277 328 384 425 479 520 533	1.330 .160 .043 .014 102 221 280 335 391 434 492 538 548	1.325 .175 .082 .016 102 225 281 336 394 440 501 550 578	1.317 .202 .109 .027 092 219 271 328 388 438 501 552 559	1.312 .221 .128 .032 086 218 263 324 388 442 506 558 566	1.308 .233 .136 .034 084 215 259 323 388 446 511 507 573	1.303 .260 .161 .047 068 193 248 312 379 442 509 567 572	1.298 .281 .178 .055 057 179 242 297 375 436 505 565 569	1.293 .291 .187 .060 053 178 243 296 372 434 506 570	1.287 .331 .221 .086 031 156 236 292 365 429 514 583 586	1.281 .349 .236 .097 023 150 229 365 428 517 589 591	1.269 .374 .242 .107 021 161 225 308 380 442 538 620 261
Lower surface	1 - //-	.199 .155 .090 .092 .059 .037012020070 a110106 a038 a.039	.156 .119 .056 .074 .041 .021 029 036 085 a120 123 a106 a088	.092 .071 .009 .046 .013 .005 056 061 106 a150 142 a058 a050	.021 .025 020 .026 004 016 028 031 113 a180 150 a062 a.030	044 030 058 002 024 032 043 044 124 &180 160 a050 a.060	092 079 096 036 041 045 091 133 &155 167 a119 a060	145 139 149 079 056 099 094 136 a147 169 a138 a095	200194212146102075109102140 a157171 a152 a113	228220238173117078109100139 a151170 a140 a100	309293315256217121114102144 a168173 a148 a106	356 338 364 304 282 198 133 108 151 a173 178 a140 a096	502 484 505 448 439 400 363 236 157 a120 122 a060 a.030

aFaired value.

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95)

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

							,		T-O I fund	PO.75R							
		J M _x α _x * Δβ αi cn cm	1.780 .601 7.25 .94 3.60 .5778 0283	1.882 .613 5.82 .80 3.04 .4871 0360	2.017 .620 4.01 .58 2.34 .3742 0374	2.138 .634 2.44 .43 1.81 .2897 0342	2.250 .639 1.05 .26 1.30 .2084 0364	2.361 .656 29 .07 .79 .1281 0406	2.502 .666 -1.91 13 .23 .0368 0444	2.582 .677 -2.80 22 01 0019 0472	2.455 .664 -1.38 08 .50 .0806 0414	2.312 .646 .30 .15 1.02 .1645 0414	2.188 .633 1.81 .36 1.54 .2477 0356	2.062 .625 3.42 .52 2.05 .3287 0354	1.952 .612 4.87 .69 2.66 .4264 0403	1.842 .604 6.38 .85 3.21 .5159 0330	1.699 .590 8.41 1.05 3.57 .5729 0330
1		c/b						P	ressure c	oefficien	t, P			125			
	Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.090 -1.564 -1.433 947 459 388 392 314 298 269 218 098 039	1.095 -1.436 979 564 420 365 333 298 291 263 216 093 030	1.099 647 635 460 348 313 292 263 264 247 204 084 022	1.103 397 448 344 279 264 257 232 240 227 191 072 014	1.106138262227208216222208222214183070014	1.112 .069 100 128 150 178 192 184 205 202 176 063 010	1.115 .294 .085 015 084 133 159 164 191 194 175 065 018	1.120 .377 .158 .042 046 100 137 143 173 179 161 059	1.115 .207 .015 063 114 150 167 164 189 191 169 062 011	1.108023167183183200205193211206178067015	1.104 272 353 289 240 238 220 232 220 184 070 009	1.100 524 544 406 315 294 280 254 261 245 086 027	1.094 930 715 464 387 317 317 317 258 215 093 028	1.092 -1.646 -1.304 517 465 369 333 320 293 245 123 065	1.087 -1.408 -1.372 734 644 425 365 319 299 264 215 110 059
	Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .925	.525 .390 .278 .206 .166 .130 .087 .065 .035 .056 .035	.462 .337 .235 .173 .141 .110 .073 .055 .027 .051 .034 a .048 a .054	.332 .233 .158 .115 .091 .072 .044 .028 .011 .042 .032 a.034 a.034	.206 .139 .097 .073 .063 .016 .023 .012 001 .036 .034 a.035 a.034	.049 .027 .024 .024 .017 003 008 016 .025 .032 a.032 a.032	087 071 037 020 008 005 021 018 020 .022 .034 a.035 a.034	289216128082053045039034 .012 .034 a.036 a.035	466265155094060045046037031 .021 .041 a.043 a.042	192148085050028022030025025 .019 .040 a.038 a.035	028021003 .002 .011 .007010016 .025 .038 a.043 a.045	.136 .086 .059 .044 .030 .022 .008 .003 -005 .030 .035 a.045	.265 .183 .120 .082 .061 .042 .028 .014 .007 .019 .028 a.034 a.037	.359 .288 .199 .139 .106 .079 .058 .041 .027 .034 .036 a.050	.349 .345 .232 .158 .114 .081 .056 .031 .013 .017 .015 a.018	.235 .433 .305 .222 .167 .163 .093 .068 .040 .040 .024 a.010

aFaired value.

CONFIDENTIAL

TABLE 11.- FRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Continued

(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$.

_																	
	J M _x αx Δβ α ₁ c _n c _m	1.706 .693 8.31 1.55 3.69 .5929 0342	1.886 .711 5.77 1.27 3.17 .5110	1.984 .720 4.45 .97 2.63 .4226 0390		2.198 .747 1.69 .49 1.64 .2645 0403	2.293 .760 .52 .28 1.28 .2071 0426	2.415 .774 92 05 .74 .1200 0488	2.541 .792 -2.35 28 .13 .0213 0593	2.589 .798 -2.88 35 12 .0194 0655	2.477 .781 -1.63 18 .50 .0806 0487	2.353 .764 19 .13 .93 .1510 0479		2.148 .739 2.32 .59 1.84 .2968 0380	2.014 .728 4.05 .65 2.55 .4116 0387	1.910 .710 5.44 1.21 3.06 .4903 0383	1.796 .699 7.02 1.45 3.39 .5458 0375
	c/b							Pressure	coeffic	ient, P							
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.126 -2.083 -1.968 477 535 473 419 364 341 304 238 116 056	1.133 -1.678 -1.618 -351 414 388 364 330 330 310 250 108 034	1.137 -1.259 872 372 402 367 341 309 315 301 245 104 026	1.144 533 634 376 338 316 300 272 283 275 223 085 009	1.148 280 413 332 276 273 267 247 264 259 212 075 003	1.153 015 167 217 222 238 243 230 248 254 217 081 009	1.159 .199 016 095 149 190 205 235 245 212 076 007	1.167 .363 .131 .017 082 144 175 182 220 238 211 081	1.170 .413 .180 .053 059 129 165 175 217 236 212 085 013	1.162 .282 .058 037 115 168 193 230 242 213 085 010	1.155 .084 111 163 192 218 231 225 249 256 218 090 016	1.151 149 301 279 254 254 254 258 258 254 215 083 010	1.145 -390 -503 -360 -310 -296 -285 -265 -265 -279 -268 -222 -089 -011	1.141 944 755 368 396 354 331 301 307 292 240 103 026	1.133 -1.607 -1.490 -301 -422 -386 -359 -328 -328 -308 -251 -114 -038	1.129 -1.901 -1.824 436 439 407 379 344 335 308 248 117 046
- 1	.0375 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.264 .455 .322 .230 .173 .130 .094 .065 .035 .038 .019 a.002 a002	.322 .358 .248 .176 .133 .105 .072 .052 .027 .052 .039 a.020 a.009	.267 .271 .182 .126 .091 .069 .044 .009 .031 .028 a.022 a.020	.213 .179 .117 .080 .055 .039 .022 .009 .001 .017 .025 a.030 a.030	.132 .086 .053 .036 .021 .013 .002 006 015 .033 .032 a .024 a .018	036 028 015 007 .004 001 020 023 024 .027 .040 a.040 a.038	180 148 086 053 030 026 035 034 029 .024 .044 a.050 a.051	948181131091057047052045034 .023 .048 a.066 a.072	-1.142501115097067055060050038 .022 .047 a.050 a.050	218194125077047040047042035 .020 .042 a.055 a.059	094 083 054 033 016 017 034 034 033 .020 .040 a.050 a.057	.058 .031 .021 .016 .020 .008 .016 .010 023 .026 .033 a.038 a.035	.174 .125 .076 .049 .031 .019 .004 005 013 .008 .021 a.045 a.059	.244 .255 .169 .116 .085 .061 .038 .023 .006 .029 .028 a.010	.332 .339 .232 .165 .121 .093 .063 .043 .023 .041 .034 a .029	.251 .411 .289 .206 .155 .117 .085 .062 .036 .052 .036 a.020 a.007

aFaired value.

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

							0.	, , ,					
	J M _x α _x Δβ α ₁ c _n	2.007 .815 4.14 1.45 2.65 .4277 0428	2.108 .828 2.83 .93 2.29 .3684 0439	2.187 .837 1.83 .55 1.86 .2984 0432	2.299 .854 .45 .07 1.29 .2081 0494	2.402 .868 77 39 .81 .1316 0562	2.504 .884 -1.94 63 .17 .0277 0747	2.550 .891 -2.45 77 08 0135 0791	2.468 .876 -1.53 51 .43 .0690 0670	2.345 .858 10 10 1.08 .1742 0537	2.256 .842 .97 .24 1.55 .2481	2.136 .830 2.47 .79 2.04 .3290 0459	2.048 .818 3.60 1.24 2.27 .3658 0497
	c/b					Pressur	e coefficie	ent, P			7		
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.177 847 904 480 a375 315 332 316 344 333 267 098 013	1.183 428 718 461 308 325 324 295 320 309 242 075 .010	1.187 191 493 344 275 286 283 276 287 282 215 046 .038	1.195 .035 200 244 245 269 276 253 305 307 240 065 .015	1.203 .241 .004 100 168 223 247 231 296 315 237 060	1.211 .385 .147 .018 096 180 221 215 287 340 243 064	1.214 .429 .192 .054 075 166 210 202 273 341 233 057	1.206 .332 .095 022 119 192 228 218 288 327 239 061 .024	1.198 .138 094 172 210 247 259 242 300 309 239 066 .017	1.189 051 290 285 151 260 261 237 280 279 214 046 .038	1.184 341 643 426 a352 334 324 329 313 246 078	1.179543758471 a347338311336325257091006
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	a.430 .277 .190 .136 .108 .088 .046 .029 .005 a.012 .034 a.059 a.070	a.360 .207 .141 .102 .083 .065 .034 .020 .001 a.010 .041 a.069 a.082	.158 .120 .086 .068 .053 .045 .028 .021 .004 a.015 .061 a.994 a.110	031 027 012 002 .005 .001 022 022 030 a011 .043 a.073 a.091	406101079050031028040037037037050 a.065 a.071	790 726 457 .009 017 030 049 047 044 a.000 .054 a.075 a.087	823 761 680 024 007 035 037 a.005 .061 a.091	726630033040034033044042039 a001 .054 a.089 a.110	107089048025011011028028033005 .045072087	.078028 .052 .048 .050 .039 .014 .011 .025 .053 .067 a.075	.131005 .096 .065 .047 .030 .012 .002016 a.007 .032 a.057 a.070	.127 .045 .155 .111 .089 .069 .034 .019 003 a.009 .034 a.031 a.041

araired value.

CONFIDENTIAL

TABLE 11.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Continued

(d) $N = 1600 \text{ rpm}; \beta_{0.75R} = 45^{\circ}.$

		7									
	J M _x α _x ' Δβ α ₁ c _n c _m cc	2.073 .880 3.28 1.28 2.67 .4284 0503 0007	2.173 .897 1.99 .85 2.10 .3387 0456 .0030	2.292 .913 .53 .34 1.55 .2497 0606 .0100	2.375 .924 44 12 1.08 .1755 0667 .0133	2.471 .938 -1.56 75 .37 .0594 0834 .0168	2.515 .948 -2.05 -1.05 .03 .0058 0973	2.435 .932 -1.14 50 .64 .1039 0806 .0156	2.343 .915 07 .07 1.18 .1903 0637	2.241 .899 1.16 .58 1.77 .2852 0593 .0076	2.122 .883 2.64 1.07 2.27 .3671 0500 .0007
	C/D				Pr	essure coeffi	cient, P				
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.208304564336613491446372264327220019 .045	1.217 140 450 364 456 398 376 377 323 361 322 044	1.226 .095 172 209 284 304 305 322 383 436 025	1.232 .257 .075 091 245 246 275 275 290 366 438 076	1.240 .396 .156 .031 100 203 263 277 281 344 419 174	1.245 .456 .217 .090 042 212 232 263 369 427 229	1.236 .345 .104 011 126 232 265 244 276 353 431 161 .048	1.227 .206 040 136 203 267 284 288 297 369 437 035 .062	1.219 .003 293 264 358 329 307 299 383 398 056 .046	1.210 237 519 358 555 438 368 298 317 393 246 058 .026
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.182 .260 .182 .133 .107 .090 .055 .038 .021 .066 .061	.121 .125 .082 .053 .036 .025 .002 011 024 030 037 a001 a.023	019 014 004 004 0 003 027 035 041 .018 .039 a.068	229162030040027027046052052010 .039 a.042 a.049	580 542 455 307 .022 .019 023 045 058 .005 .033 a.030	661 613 561 454 304 015 .011 018 042 .005 .030 a.039	555 521 410 009 0 019 047 057 061 .006 .033 a.040 a.042	240 072 055 034 021 021 038 044 044 .018 .049	.063 .042 .032 .019 .021 .011 014 025 031 .024 .042 a .058 a .060	.128 .175 .113 .077 .058 .042 .015 .000 017 .033 .036 a.076 a.095

afaired value.

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Continued

(e) M = 0.56 rpm; β_0 75P = 45°.

						(e	M = 0.50	rpm; Po.7	5R = 4).					-	
	J M _x α _x , Δβ α _i c _n c _m	2.141 .966 2.41 .77 2.07 .3342 0669 .0136	2.170 .961 2.03 .67 1.97 .3184 0658 .0134	2.195 .950 1.73 .57 1.93 .3097 0677 .0124	2.213 .942 1.51 .51 1.85 .2981 0653 .0116	2.241 .934 1.16 .41 1.72 .2774 0647	2.262 .929 .89 .34 1.56 .2510 0627 .0108	2.293 .921 .53 .24 1.41 .2277 0628 .0113	2.320 .909 .19 .15 1.24 .2006 0649 .0113	2.354 .906 20 .02 1.08 .1739 0631 .0117	2.383 .899 56 09 .94 .1523 0622 .0117	2.422 .890 -1.01 23 .73 .11.84 0655 .01.25	2.460 .882 -1.44 35 .50 .0813 0668 .0135	2.488 .876 -1.75 45 .39 .0639 0669 .0126	2.551 .867 -2.46 65 .14 .0226 0751 .0133
	c/b						Pressure	coefficien	t, P		7,500				
Transferred	0.000	1.255 .007 279 280 347 364 372 378 393 450 508 231 102	1.252 .021 269 273 332 348 365 371 387 442 500 235 070	1.246 .016 -263 -257 -331 -350 -371 -372 -389 -444 -500 -202 -041	1.242 .049 252 243 335 356 369 367 383 434 496 171 019	1.237 .064 222 231 335 356 361 355 369 421 491 150 002	1.234 .091 175 214 319 330 340 331 347 411 440 113	1.230 .123 129 197 273 327 318 320 340 398 466 080	1.224 .154 092 178 237 305 306 307 319 387 452 068	1.222 .192 049 147 217 269 286 283 301 385 418 056 .029	1.219 .224 .011 119 252 263 278 273 304 388 385 051	1.214 .288 .051 064 155 222 246 238 291 357 280 046	1.209 .306 .073 042 140 214 240 303 353 272 079	1.207 .301 .089 027 131 205 237 239 302 340 272 096 007	1.202 .380 .146 .021 098 176 212 221 279 311 a290 098 013
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .925	.147 .120 .075 .042 .021 .004 031 057 099 062 095 a057 a.005	.124 .094 .059 .031 .021 .002 035 060 096 057 085 a027 a.084	.091 .063 .038 .017 .011 006 042 063 094 049 066 a.002 a.105	.060 .037 .023 .006 .002 013 045 064 088 041 048 a.050 a.105	.008001005014013025054069085035030 a.015 a.125	032 026 019 021 016 024 050 061 071 017 0 a.085 a.145	084 062 042 036 025 030 054 061 065 004 .022 ±.069 a.131	161 088 062 048 034 036 054 058 059 .002 .032 a.073 a.107	306 095 079 078 042 041 057 056 056 .008 .041 a.075 a.098	417230086072054051065065060 .004 .039 a.056 a.064	588388045051034029043042036 .029 .060 a.077 a.085	702 607 041 062 052 050 062 057 053 .012 .040 a.057 a.064	780 704 069 064 059 057 076 067 059 .002 .033 a.060 a.078	886815374031049076068065057 .005 .035 a.108 a.120

avaired value.

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Continued

(f) $M = 0.60 \text{ rpm}; \beta_{0.75R} = 45^{\circ}.$

-										0.17							
		J M _X	2.131	2.148	2.182	2.210	2.240	2.259	2.289	2.312	2.341	2.382	2.413	2.439	2.472	2.518 •933	2.543
-		ax f	2.42	2.20	1.79	1.45	1.10	.87	.54	.25	08	58	91	-1.20	-1.30	-2.05	-2.34
1		Δβ	.42	.39	.34	.28	.19	.12	.01	09	23	41	55	68	83	-1.01	-1.10
		α_1	1.93	1.82	1.71	1.62	1.43	1.30	1.12	1.00	.84	.73	.64	.48	.38	.18	.04
-		cn	.3106	.2932		.2590	.2306	.2090		.1610	.1361	.1177	.1039	.0774	.0613	.0297	.0068
1		cm	0852	0872	0863	1		0764	0761	0772	0812	0878	0929	0918	0952	0955	0924
		°c	.0223	.0233	.0236	.0236	.0231	.0212	.0212	.0201	.0217	.0203	.0192	.0195	.0181	.0170	.0154
		c/b				-		Pressu	re coeff	icient,	P					411	
	Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.297 .175 114 141 232 273 284 307 314 370 422 426 490	1.291 .185 114 132 230 275 290 314 325 380 433 471 500	1.285 .194 105 113 223 268 288 321 378 431 475 495	1.280 .211 080 092 208 278 305 367 419 467 476	1.274 .276 001 043 157 204 235 262 269 380 430 398	1.268 .249 017 078 194 242 276 300 308 362 423 473 307	1.264 .272 .016 066 183 277 279 392 360 420 465 214	1.260 .295 .046 050 171 230 276 284 297 360 421 452 167	1.256 .323 .078032155232276287298361423129	1.253 .350 .110 010 119 277 278 293 293 357 419 417 120	1.249 .369 .130 .006 105 311 280 297 298 354 422 399 079	1,246 .396 .155 .029086328272284291346417353 .010	1.242 .416 .174 .046 078 358 269 285 285 345 417 295	1.236 .437 .197 .068 068 371 258 279 285 334 409 199 .046	1.233 .469 .227 .093 050 377 240 261 266 319 403 123
	Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	a093 a116 109	.160 .126 .094 .061 .047 .019 017 a061 107 a130 119 a127 a130	.118 .093 .069 .045 .039 .014 023 a074 111 a130 121 a125 a125	.070 .058 .052 a.040 .034 .011 027 a071 111 a125 117 a121 a127	081 a080	a110	205127061016004017049 a098122 a123085 a074 a075	267 214 108 005 003 017 048 a093 120 a115 069 a040 a025	333 296 199 024 015 050 a093 114 a107 050 a015 a015 a02	411 328 293 127 .025 004 045 071 098 a.081 083 a.027 a.055	484 359 367 225 .024 .007 038 067 087 a.057 001 a.041 a.069	537383424288 -020 -023021051067030022054067	604 413 496 370 012 .028 013 041 a053 a.090 a.110	677426569455063 .034002038 a.002 .059 a.095 a.110	718430606502114 .045 .017009018 a.004 .080 a.126 a.145

aFaired value.

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Continued

(g) M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

							0.0), P	0.171					,
	Δ α c ₁ c ₂ c ₃	x ³ β i n m	2.135 1.122 2.48 09 1.43 .2306 0619 .0215	2.161 1.113 2.15 17 1.34 .2155 0635	2.184 1.103 1.86 24 1.22 .1955 0649 .0230	2.210 1.097 1.54 32 1.13 .1826 0647 .0234	2.228 1.084 1.32 37 1.00 .1613 0660 .0241	2.254 1.075 1.00 44 .89 .1435 0683 .0252	2.279 1.068 .69 52 .82 .1323 0719 .0254	2.306 1.060 .37 59 .67 .1077 0769	2.336 1.051 .01 68 .45 .0723 0804 .0269	2.398 1.032 72 86 .08 .0129 0786 .0279	2.460 1.015 -1.44 -1.04 29 0468 0761
	C	/b					Press	ure coeffici	Lent, P				
1	Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.354 .305 .020 016 101 164 198 220 233 283 335 a308 211	1.348 .316 .025 .002 104 166 203 230 241 293 345 a337 237	1.342 .332 .037 .030 060 160 200 231 243 297 347 a358 259	1.337 .338 .046 .039 098 160 202 236 248 300 349 a.328 285	1.329 .353 .070 .052 095 156 200 238 249 301 350 a355 318	1.323 .362 .093 .052 098 156 204 243 256 307 358 a385 354	1.318 .372 .099 .057 093 153 159 238 254 305 357 a389 376	1.313 .397 .118 .073 076 136 184 225 242 299 355 a402 403	1.307 .419 .131 .083 062 130 180 226 246 308 367 a425 440	1.295 .449 .099 .099 029 130 187 237 263 327 387 448 469	1.284 .492 .100 .138 .005 108 177 222 248 316 380 a431 426
	Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.231 .044 .151 .125 .094 .072 .029 .013 042 a070 069 a059	.181 .021 .118 .098 .070 .054 .013 002 055 a085 a085 a085	.116003 .089 .072 .052 .040 .002013067 a091092 a092	.055032 .058 .047 .036 .026011024077 a105101 a099 a098	006066 .018 .015 .020 .017017031084115107115	066106036030014001028040095 a124117 a115	103 128 074 062 040 013 030 027 095 a123 117 a121 a122	156160123098079041026006087 a119112 a114 a115	214205178142126103076 .017091 a123118 a115	333 319 279 233 204 186 185 025 143 a145 118 a095 a085	440 412 365 308 249 229 232 027 187 a152 056 a005

aFaired value.

CONFIDENTIAL

TABLE 11.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Continued

(h) One-blade propeller; N = 1500 rpm; $\beta_{0.75R}$ = 45°.

						1					0-1721		-				
	J M _X α _X ' Δβ α _i c _n c _m	2.508 .878 -1.98 64 .05 .0090 0754	2.468 .872 -1.53 50 .27 .0529 0700	2.392 .859 65 26 .54 .1032 0623	2.353 .853 19 13 .79 .1519 0564	2.286 .842 .61 .12 1.09 .2090 0519	2.243 .837 1.13 .29 1.33 .2532 0486	2.176 .830 1.96 .60 1.58 .2997 0447	2.129 .821 2.56 .82 1.76 .3342 0438	2.082 .814 3.16 1.07 2.05 .3861 0420	2.024 .804 3.92 1.36 2.35 .4381 0424	1.975 .797 4.57 1.60 2.69 .5000 0446	1.928 .792 5.20 1.82 2.99 .5587 0423	1.861 .783 6.11 2.10 3.45 .6439 0342	1.815 .779 6.75 2.25 3.68 .6877 0356	1.764 .772 7.47 2.38 3.99 .7374 0328	1.697 .765 8.44 2.48 4.03 .7439 0283
	c/b							Pre	ssure co	efficien	it, P						
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.236 .387 .192 005 104 158 206 235 294 326 240 079	1.220 .337 .147 044 126 175 218 246 301 327 242 083 .012	1.198 .257 .071 107 165 204 238 261 307 324 244 090	1.195 .169 008 169 198 224 249 267 306 313 238 087	1.189 .035 125 255 242 250 266 280 311 313 241 090	1.187 079 229 323 274 272 280 292 316 316 243 093	1.184 238 394 412 313 297 304 322 315 243 094 001	1.180 351 546 460 343 317 312 315 328 319 245 097 005	1.177 481 684 678 358 334 326 326 336 324 249 100	1.172 652 735 870 354 343 342 344 349 334 261 111 020	1.169 959 968 935 353 329 343 358 358 343 269 123 031	1.167 -1.121 -1.119 -1.068 500 317 360 364 349 278 134 042	1.163 -1.284 -1.280 -1.223 -1.010 -317 -337 -370 -370 -356 -284 -142 -051	1.161 -1.382 -1.372 -1.310 -1.153 -344 -341 -375 -370 -365 -284 -149 058	1.158 -1.492 -1.468 -1.398 -1.294 394 332 374 366 349 281 147 059	1.155 -1.594 -1.552 -1.475 -1.167 430 338 370 363 348 278 148 059
-	.0375 .075 .150 .250 .350 .450 .550 .650 .650 .750 .850 .925 .975 1.000	826 726 342 055 056 013 083 019 028 012 054 a.089 a.105	783 656 041 104 072 017 083 021 031 .008 .048 a.083 a.108	572 169 079 113 070 016 079 023 034 .002 .040 a.080 a.097	205 123 052 087 051 002 068 012 028 .005 .041 a.082 a.108	068 035 .001 064 033 .019 057 .004 021 .009 .038 a.060 a.072	.017 .024 .037 045 019 .032 047 .005 017 .010 .034 a.054 a.064	.114 .091 .080 016 0 .048 036 .013 014 .009 .030 a.046 a.055	.117 .137 .109 .004 .016 .059 027 .020 010 .008 .027 a.043 a.052	.254 .196 .151 .035 .037 .080 012 .037 .001 .012 .029 a .050 a .062	.315 .243 .183 .061 .056 .090 0 .044 .007 .020 .027 a .050 a .070	.381 .295 .218 .098 .079 .113 .017 .058 .019 .028 .033 a.070	.431 .336 .245 .128 .097 .129 .029 .068 .038 .032 .037 a .070 a .092	.488 .384 .279 .164 .119 .147 .046 .080 .038 .038 .038 .038 .038	.528 .417 .302 .187 .136 .161 .057 .090 .044 .043 .039 a.040	.564 .450 .329 .207 .153 .174 .068 .099 .051 .047 .062 a .058 a .050	.589 .470 .342 .218 .159 .176 .069 .098 .047 .039 .027 a .038 a .045

aFaired value.

NACA 16-304.40 PROPELLER BIADE SECTION (x = 0.95) - Continued

(1) One-blade propeller; M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

	J M _X α _X ! Δβ α _i c _n c _m	2.440 .893 -1.21 39 .37 .0706 0720 .0129	2.410 .899 86 19 .49 .0929 0734 .0132	2.383 .906 55 09 .53 .1016 0723	0665	0651	0643	2.228 .943 1.32 .45 1.33 .2548 0655 .0127	2.208 .948 1.57 .51 1.42 .2710 0669	2.170 .954 2.04 .65 1.56 .2948 0692	2.144 .962 2.37 .76 1.68 .3197 0687	2.119 .969 2.68 .84 1.76 .3352 0657 .0136	2.102 .978 2.90 .90 1.95 .3710 0753	2.073 .983 3.28 .99 2.10 .3958 0813	2.052 .992 3.55 1.06 2.22 .4171 0871	2.031 .999 3.82 1.12 2.40 .4494 0968 .0187	2.013 1.005 4.06 1.17 2.45 .4581 0967	1.993 1.012 4.33 1.23 2.55 .4745 0991	1.971 1.020 4.62 1.28 2.67 .4955 1053	1.949 1.028 4.91 1.34 2.68 .4981 1003 .0185	1.930 1.035 5.17 1.38 2.75 .5106 0981 .0178	1.908 1.044 5.47 1.43 2.76 .5148 1004	1.883 1.053 5.81 1.49 2.88 .5339 1008
	c/b				- y -						Pr	essure d	coefficie	ent, P									
Upper surface	0.000 .025 .050 .100 .200 .400 .500 .600 .700 .800 .900	1.215 .326 .131 062 152 202 214 285 369 288 070 .026	1.219 .310 .116 074 173 213 213 213 213 213 213 216 364 056 .036	1.222 .283 .089 100 182 227 243 226 272 378 415 045	1.225 .262 .068 -119 -191 -225 -249 -228 -276 -371 -417 -048	1.232 .197 .003 -175 -208 -273 -271 -256 -310 -381 -428 -094	1.237 .141 -060 -207 -268 -276 -304 -272 -321 -399 -443 -149	1.242 .123 076 212 283 293 301 271 328 329 439 180 .008	1.245 .099 106 225 297 310 315 280 337 406 246 234 020	1.248 .067 151 254 315 322 333 296 425 425 458 271 045	1.253 .047 179 277 326 331 339 301 362 433 467 336	1.257 .029 199 296 341 343 301 435 470 417 033	1.262 .005 219 317 364 355 399 368 441 477 495 157	1.265 015 232 331 376 378 364 368 439 478 533 224	1.270032240341389378378318375443480551327	1.274 046 245 343 395 403 384 377 443 480 555 473	1.278055241340393402381326369434471546	1.282 074 247 348 401 413 392 376 440 474 549 552	1.287 083 246 348 401 415 3334 375 439 472 546	1.292 115 267 369 413 433 447 383 447 478 553 565	1.297114266370421433409342383446476551546	1.302 117 268 371 429 437 414 344 385 444 473 547 559	1.308 122 264 366 432 437 414 342 382 441 149 542 553
Lower surface	.0375 .075 .150 .250 .350 .450 .750 .650 .750 .850 .925 .975	674612 .003088062012077018032 .013 .061 a.101 a.120	625 571 .007 092 058 008 073 017 031 .016 .064 a.092 a.106	550 473 016 101 061 009 075 019 036 010 058 a.092 a.111	482 294 036 100 057 007 018 037 .007 .053 a.087	211 077 032 080 042 .004 006 017 042 002 .034 a.075 b.102	070 016 .007 060 028 .018 059 014 046 015 .010 a .031 b .047	017 .020 .031 049 016 .027 053 010 046 019 0 a .018 b .035	.027 .051 .051 042 011 .030 055 015 056 035 026 a023 b021	.076 .083 .071 030 003 .035 052 017 064 047 050 a046 b038	.117 .112 .091 -016 .006 .042 051 016 069 056 067 a082 b090	.158 .143 .113 -002 .017 .052 044 012 071 059 075 a092 b102	.197 .173 .134 .011 .025 .059 040 010 076 065 081 a098 b109	.234 .203 .157 .028 .039 .071 031 074 066 080 a094 a102	.274 .234 .181 .046 .052 .082 024 .005 069 066 076 a087	.300 .257 .198 .060 .063 .092 016 .012 062 066 073 a080	.330 .281 .219 .078 .078 .107 003 .025 050 056 063 a078	.350 .299 .231 .087 .085 .111 001 .029 047 058 062 a068 a071	.375 .320 .248 .102 .097 .123 .009 .037 038 054 057 a055	.410 .348 .271 .119 .112 .135 .020 .047 030 047 050 a050	.433 .368 .287 .134 .123 .146 .030 .055 021 041 043 a043	.452 .385 .300 .147 .135 .155 .038 .064 013 035 037 a027	.485 .415 .325 .171 .154 .173 .054 .077 0 024 029 a026 a022

aFaired value.

bLower surface only.

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Continued

(j) One-blade propeller; M = 0.59; $\beta_{0.75R} = 45^{\circ}$.

							1									Andrew State of the Control of the C	
	J Mx cx AB ai cn cm cc	2.336 .952 .01 03 .69 .1316 0759 .0158	2.245 .978 1.i1 .32 1.09 .2094 0755 .0183	2.221 .985 1.40 .40 1.31 .2516 0736 .0186	2.192 .991 1.76 .49 1.43 .2723 0755	2.172 .998 2.01 .55 1.60 .3039 0837	2.148 1.004 2.32 .61 1.72 .3284 0891	2.119 1.010 2.69 .68 1.85 .3506 0915	2.098 1.017 2.95 .73 1.95 .3681 0931	2.076 1.025 3.24 .78 2.04 .3848 0943	2.057 1.030 3.49 .81 2.09 .3929 0987	2.032 1.038 3.81 .86 2.23 .4171 0936 .0209	2.013 1.045 4.06 .88 2.35 .4384 0983	1.992 1.051 4.34 .91 2.44 .4523 1025	1.970 1.058 4.63 .94 2.46 .4594 1012	1.951 1.066 4.89 .97 2.54 .4713 1025	1.929 1.073 5.19 1.01 2.60 .4797 1032
	c/b							Pre	essure co	efficient	, P						
1	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.248 .293 .098 066 159 242 255 237 290 368 428 284	1.262 .206 .008 118 224 268 286 262 307 382 442 469 110	1.266 .185 -018 -126 -238 -274 -292 -260 -305 -376 -437 -489 -163	1.270 .166 044 141 244 302 264 313 382 437 491 260	1.274 .142 075 164 255 295 314 272 321 393 447 500 380	1.277 .125 099 185 264 305 322 276 326 397 453 507 498	1.280 .103 -121 -209 -280 -316 -324 -274 -325 -397 -453 -510	1.285 .088 133 221 292 328 328 327 327 398 453 510 520	1.290 .074 141 230 303 354 281 329 398 454 511	1.293 .061 148 238 312 346 340 281 398 453 512 522	1.299 .042 157 248 322 357 346 288 335 401 455 512	1.303 .023 164 256 332 368 354 290 339 401 453 512	1.308 .009 -167 -258 -337 -372 -359 -291 -340 -401 -452 -511 -530	1.312 002 166 258 339 372 357 289 336 396 445 504	1.316 021 174 268 349 384 371 298 346 405 453 510	1.321 024 170 262 343 363 290 397 397 444 504 515
1	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	374 342 031 035 038 016 062 042 072 038 016 016 016 016	113 034 002 028 024 001 057 039 094 068 076 a081 b085	017 .024 .032 008 008 .014 046 029 089 071 082 a097 b107	.038 .057 .055 .009 .004 .026 037 020 084 075 084 075 b103	.088 .089 .078 .022 .012 .033 035 016 083 087 089 a090	.128 .119 .099 .037 .021 .040 028 009 079 092 095 a093 a090	.184 .164 .120 .062 .042 .052 014 .004 067 084 089 a088 a087	.220 .194 .137 .078 .052 .058 005 .013 058 078 086 a093 a100	.253 .219 .162 .089 .044 .056 .001 .022 052 076 087 a090	.275 .238 .176 .102 .072 .081 .008 .027 047 070 046 a012 a .016	.312 .265 .195 .121 .087 .086 .020 .032 040 064 080 a088 a091	.344 .294 .214 .138 .101 .088 .033 .035 031 055 069 a078 a080	·372 ·318 ·231 ·155 ·115 ·094 ·045 ·039 -023 -049 -063 ^a -066 ^a -070	.392 .334 .246 .167 .126 .100 .056 .046 012 039 053 a056 a059	.413 .352 .258 .176 .131 .103 .059 .046 -012 -039 055 a060	.439 .377 .280 .196 .149 .120 .073 .061 0 028 044 a055 a058

aFaired value.

bLower surface only.

NACA

CONFIDENTIAL
TABLE 11.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF AN

NACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Continued

(k) One—blade propeller; M = 0.61; $\beta_{0.75R} = 45^{\circ}$.

															-				
	J M _X α_{x}	2.434 .957 -1.14	2.353 .977 19	2.320 .991 .20	2.266 1.004 .85	2.239 1.012 1.18	2.212 1.019 1.52	2.188 1.025 1.81	2.163 1.033 2.13	2.137 1.041 2.46	2.117 1.048 2.71	2.090 1.051 3.06	2.073 1.062 3.28	2.049 1.069 3.59	2.025 1.072 3.90	2.003 1.080 4.19	1.983 1.086 4.46	1.965 1.093 4.70	1.946 1.100 4.95
	Δβ α4	66 .18	28 .43	24	.14	.21	.30	.35 1.39	.39 1.48	1.53	1.66	1.83	.56 1.89	.62 1.98	2.09	.78	.85 2.25	2.34	2.43
	cn	.0335	.0835	.1206	.1842	.2171	.2245 0837	.2639 0800		.2900 0863	0853	·3448 0869	0877	.3703. 0889	0909	.4058 0913	.4190 0937	0943	0964
1	c _m	.0184	.0194	.0208	.0235	.0242		.0236		.0230	.0227	+0226	.0221	.0221	.0213	.0214	.0211	.0208	.0208
F	с/ъ								Pr	essure	coeffic	ient, P							
TTowns		1.250 .407 .210 .037 097 184 252 234 282 346 412 344	1.261 .353 .155 006 108 203 251 236 277 346 424 072	1.269 .322 .126 031 129 213 262 228 273 345 406 444 171	1.278 .278 .081 056 165 225 266 233 285 353 410 453 397	1.282 .257 .059 066 179 231 267 234 285 353 410 476	1.287 .237 .034 078 190 242 275 240 292 356 410 459 474	1.290 .220 .013 090 197 246 280 242 296 363 413 464 479	1.295 .196 021 113 209 256 288 245 300 367 417 470 482	1.301 .183 038 125 214 260 288 246 301 369 419 474 485	1.310 .177 046 131 220 264 289 244 297 364 414 471 481	1.307 .157 065 151 238 278 295 247 298 366 417 477 485	1.314 .145 074 160 247 285 247 298 247 297 362 413 473 481	1.320 .136 080 168 253 294 304 253 300 364 415 476 485	1.321 .099 092 179 264 303 310 255 302 364 415 478 486	1.326 .099 099 186 272 309 315 254 361 412 474 480	1.330 .086 -102 -192 -276 -313 -318 -255 -303 -408 -472 -479	1.334 .068 108 200 279 318 321 253 302 357 406 470 475	1.339 .047 112 210 287 325 325 325 304 360 468 477
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	623 517 466 374 .012 .049 020 024 059 026 .007 a.050 b.077	466 365 302 140 .020 .013 051 044 062 053 a046 b043	358 272 192 007 010 002 059 044 100 089 079 a070 b066	245 138 022 027 025 0 054 039 100 110 112 a110		099 .024 .034 007 008 .018 039 027 088 104 116 8127 8134	026 .069 .061 .010 .005 .029030021082101113 a127 a135	.038 .108 .087 .028 .016 .040 021 014 074 095 107 a110	.085 .140 .111 .045 .028 .049 011 007 067 091 104 a110	.117 .164 .129 .058 .040 .058 003 .001 059 084 096 a107 a112	.167 .200 .158 .080 .057 .073 .029 .031 051 077 089 a103	.199 .226 .178 .094 .070 .085 .020 .023 039 066 079 a083	.225 .248 .193 .105 .078 .091 .025 .027 035 063 077 a084 a087	.261 .295 .215 .124 .093 .104 .037 027 057 052 a039	.297 .307 .233 .145 .111 .120 .048 .050 014 044 058 a066 a070	.323 .327 .247 .160 .123 .129 .058 .058 006 036 049 a054	.357 .357 .270 .183 .141 .140 .072 .069 .006 024 038 a045 a048	.386 .380 .287 .200 .154 .142 .083 .075 .015 016 029 a031 a032

aFaired value.

bLower surface only.

MACA 16-304.40 PROPELLER BLADE SECTION (x = 0.95) - Concluded

(1) One-blade propeller; M = 0.64; $\beta_{0.75R} = 45^{\circ}$.

_							and propor		0.17	K> .					
	J Mx cx* AB c1 cn cm cc	2.319 1.041 .21 63 .37 .0700 0823	2.279 1.055 .69 51 .55 .1042 0802	2.246 1.065 1.10 42 .70 .1329 0789	2.212 1.074 1.52 32 .81 .1539 0774	2.185 1.082 1.85 24 .96 .1819 0770	2.167 1.088 2.08 19 1.09 .2074 0754 .0247	2.154 1.096 2.24 15 1.23 .2316 0739	2.130 1.102 2.55 08 1.32 .2481 0749	2.111 1.109 2.79 02 1.43 .2684 0769	2.087 1.117 3.10 .04 1.52 .2835 0782 .0236	2.069 1.124 3.33 .10 1.66 .3100 0818	2.049 1.131 3.59 .16 1.71 .31710819 .0223	2.032 1.137 3.81 .21 1.82 .3397 0825	2.013 1.144 4.06 .25 1.88 .3516 1090
L	c/b						P	ressure co	efficient,	P					11.5
Thron ginford	.400	1.300 .405 .214 .056 052 138 197 201 246 316 370 422 436	1.310 .382 .189 .040 073 142 207 202 249 317 369 425 431	1.316 .358 .161 .025 092 154 217 203 249 314 364 421	1.323 .346 .147 .023 093 156 213 196 241 302 352 411 420	1.327 .330 .128 .013 -105 165 219 199 242 304 351 409 417	1.326 .317 .110 .004 -112172221195242305352408417	1.329 .303 .091 008 119 177 223 194 242 305 352 408 416	1.340 .291 .073 022 126 184 226 194 242 303 351 408 416	1.343 .279 .057 036 136 190 228 194 239 305 353 410 418	1.350 .291 .051 040 137 223 187 234 234 297 344 403 411	1.355 .253 .035 056 151 200 230 187 233 294 342 401 409	1.360 .244 .029 063 155 205 231 188 232 292 338 398 405	1.365 .231 .020 073 166 214 240 194 236 294 399 407	1.370 .218 .014 079 174 218 246 194 240 294 340 400
Towns and	0,000	255 232 193 167 150 092 046 011 068 091 111 a125 a130	167160122117101006029017076103125 a140 a148	108099059070039012035023078103124 a135 a,143	052 036 004 009 004 .028 025 013 068 092 112 a123 a128	008 .016 .035 .020 .009 .035 019 007 063 086 107 a119 a125	.043 .070 .070 .043 .023 .047 010 .001 055 079 100 a113 a120	.097 .116 .093 .062 .038 .058 0 .009 047 073 092 a105 a110	.146 .153 .116 .080 .053 .069 .016 040 067 085 a095 a100	.201 .195 .144 .102 .073 .084 .021 .028 029 057 076 a085	.204 .230 .171 .123 .093 .100 .037 .044 015 043 062 a073 a078	.228 .265 .200 .139 .109 .115 .069 .056 .033 032 051 a055 a055	.257 .290 .218 .156 .124 .118 .063 .067 .007 021 040 a055 a060	.292 .313 .246 .168 .134 .171 .074 .013 016 035 a045 a050	.325 .340 .264 .183 .147 .150 .080 .086 .021 009 028 a035 a043

aFaired value.

THE BLADE SECTION AT THE 0.975 RADIUS

(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$.

					(-, -	+0 1 Jun, PO. 75	41				
	J M _x α _x ' Δβ α _i c _n c _m	1.769 .593 7.29 .96 4.36 .5127 0451	1.931 .609 5.07 .73 3.26 .3794 0494	2.102 .627 2.84 .48 2.20 .2565 0365	2.291 .648 .51 .19 1.32 .1552 0333	2.488 .663 -1.78 12 .48 .0561 0311	2.578 .672 -2.78 24 .15 .0174 0377	2.374 .655 48 .04 .78 .0910 0337	2.200 .638 1.61 .35 1.65 .1935 0324	2.018 .620 3.92 .58 2.60 .3029 0377	1.840 .602 6.31 .87 3.72 .4371 0484
	с/ъ				Pressu	re coefficier	nt, P				
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.091 -1.470 -1.191 601 385 327 312 301 299 303 273 200 140	1.096 774 578 426 308 261 250 246 248 259 232 162 104	1.102 456 326 276 213 179 180 182 186 201 177 116 061	1.109193156173153133143146154173149089043	1.115 .073 .029 046 077 077 096 105 113 134 112 062 024	1.118 .203 .124 .012 049 062 092 103 116 138 120 067 029	1.112 003 028 095 109 106 122 129 139 157 137 080 031	1.106 282 215 208 169 144 154 161 178 154 095 044	1.099581413334249206206206208224196132078	1.093 -1.054675472343287276272270281249180126
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	.455 .335 .224 .150 .122 .090 .075 .075 .055 .036 .017 a006 a012	.347 .249 .167 .110 .094 .067 .058 .062 .044 .034 .019 a.008 a.007	.181 .128 .084 .057 .053 .038 .033 .039 .026 .024 .022 a.019	.006 .004 .009 .002 .021 .006 .007 .024 .011 .019 .021 a.028 a.032	172103059042011016008 .005 .003 .015 .027 a.039 a.047	327183113075034034023005004 .013 .030 a.052 a.065	126067047034015015011 .005002 .005 .018 a.035 a.045	.085 .063 .045 .031 .036 .023 .021 .035 .021 .021 .023 a.027 a.028	.251 .180 .116 .079 .067 .048 .041 .049 .032 .023 .019 a.017 a.015	.401 .289 .191 .128 .102 .080 .065 .053 .040 .030 .022 a.010

aFaired value.

CONFIDENTIAL

TABLE 12.- PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF THE

BLADE SECTION AT THE 0.975 RADIUS - Continued

(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$.

_																		
	J M _x α _x , Δβ α ₁ c _n c _m	1.950 .752 4.82 1.09 3.48 .4062 0441	2.038 .753 3.66 .83 2.91 .3381 0413	2.130 .758 2.49 .63 2.25 .2629 0366	2.221 .767 1.35 .45 1.71 .2003 0347	2.301 .779 .39 .17 1.37 .1600 0334	2.379 .787 54 .05 .96 .1123 0281	2.468 .800 -1.56 18 .60 .0713 0396	2.570 .814 -2.70 -33 .10 .0123 0462	2.539 .810 -2.36 29 .27 .0323 0434	2.430 .792 -1.13 09 .65 .0768 0399	2.379 .771 54 .05 1.09 .1271 0366	2.272 .772 .74 .34 1.50 .1768 0318	2.181 .760 1.85 .53 1.92 .2252 0344	2.117 .753 2.65 .65 2.35 .2729 0370	2.079 .751 3.14 .72 2.58 .2984 0390	1.992 .743 4.26 .95 3.17 .3689 0482	1.952 .741 4.79 1.09 3.43 .4009 0443
	c/b								Pressure	coefficie	nt, P							
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .800 .900 .950	1.150 -1.105 850 401 318 275 271 269 275 291 263 184 115	1.150 803 466 387 287 247 243 243 268 268 242 167 099	1.152 520 365 317 245 213 215 217 225 244 219 144 078	1.156 311 240 248 204 180 186 191 200 220 195 124 060	1.161 170 150 193 175 160 169 175 185 208 184 114 051	1.164 022 047 124 130 146 151 163 187 164 095 032	1.170 .082 .025 079 122 127 148 156 168 194 172 106 048	1.172 .210 .126 007 082 101 132 143 158 166 106 047	1.175 .175 .097 029 095 109 137 148 163 192 170 108 049	1.167 .056 .005 094 131 152 161 173 198 177 111	1.158 085 095 159 162 165 171 184 208 184 113 048	1.158 -217 181 213 186 169 176 181 193 214 189 120 057	1.153 365 275 274 220 195 203 206 215 237 211 138 073	1.150 545 386 329 252 219 229 230 250 223 150 084	1.150 641 420 359 270 232 230 232 240 259 233 159 093	1.146 973 482 419 319 276 272 272 279 296 268 189 120	1.145 -1.146 742 421 338 294 287 287 294 312 282 201 130
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .975 1.000	.326 .237 .155 .100 .082 .060 .056 .034 .021 .006 a.005 a.007	.251 .176 .114 .070 .060 .042 .034 .039 .026 .016 .006 a.014 a.023	.151 .102 .063 .035 .033 .018 .013 .014 .012 .006 .001 a.000 a.000	.049 .032 .018 .006 .013 004 .006 003 .002 a.017 a.027	039 028 018 023 004 015 003 008 006 a.028 a.043	128 070 046 035 008 017 012 .002 001 .010 .023 a.048 a.063	203 141 095 070 035 043 033 018 017 001 .016 a.036 a.046	891 137 114 094 056 059 046 027 024 001 .022 a.051 a.067	707136119091053056044027024005 .018 a.037 a.047	232 132 094 069 038 043 034 019 020 006 .011 a.024 a.031	108064048042019029023010015007 .006 a.017 a.025	010010010014001018014004011006 .002 a.011 a.017	.068 .043 .019 .005 .009 007 008 .001 008 005 a001 a.003	.167 .116 .067 .038 .032 .018 .013 .011 .003 001 a006 a007		.285 .203 .126 .076 .061 .038 .030 .037 .021 .006 004 a010	.313 .225 .140 .085 .068 .046 .034 .041 .020 .006 005 a011 a013

aFaired value.

OF THE BLADE SECTION AT THE 0.975 RADIUS - Continued

(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

								0.171						
	J M _X	2.141	2.205 .854	2.281	2.364	2.439	2.489 .893	2.540	2.524	2.466	2.415	2.328	2.251 .856	2.184
	ax 1	2.35	1.55	.62	36	-1.23	-1.80	-2.37	-2.19	-1.53	96	.06	.99	1.81
	Δβ α _i	•77 2•54	.47 2.12	.13 1.60	19 1.13	44 •79	60 •54	76 .28	71 .24	53 .51	36 .87	06 1.29	.25 1.70	.56 2.10
	cn	.2968	.2474	.1877	.1323	.0932	.0639	.0329	.0287	.0603	.1026	.1503	.1990	.2458
1	c _m	0442	0426	0402	0438	0484	0547	0578	0579	0539	0454	0397	0401	0390
	c c													
	с/ъ		4 1/4 1/4	0			Pressur	e coefficie	ent, P					
Ifnner surface		1.192 561 527 366 266 236 238 241 256 290 254 158 078	1.195 414 329 318 242 217 226 242 278 240 145 063	1.201 207 180 241 209 192 200 207 226 265 226 30 047	1.207 038 065 162 174 168 182 188 211 255 214 114 032	1.212 .088 .029 096 146 155 176 185 209 264 220 113 028	1.215 .149 .076 063 130 143 169 177 227 268 218 110 023	1.220 .212 .128 026 124 139 162 170 200 277 221 105 018	1.217 .199 .116 037 128 142 168 176 207 280 225 111 023	1.213 .134 .064 072 037 150 174 183 210 271 223 107 028	1.208 .055 .003 112 153 158 176 185 208 256 215 112 028	1.203 085 099 184 184 175 188 193 215 255 217 119 037	1.196 247 207 256 213 194 209 229 263 229 131 051	1.192437334323243224227243277242147068
Town amplace		.163 .112 .069 .038 .037 .018 .012 .024 .011 .010 .002 a.002	.081 .050 .030 .010 .017 005 005 .007 003 .001 .002 a.005 a.006	025 022 014 025 005 022 019 007 013 003 .001 a.005 a.007	099 076 052 046 018 031 025 011 014 .001 .013 a.025 a.030	498156071065035045020020001022 a.037 a.045	617485043052031046038022021 .004 .027 a.047	697609326026013039024023 .003 .030 a.052	713 619 289 028 022 046 044 030 028 002 025 a.048 a.062	638460077061038051042027027005 .019 a.034 a.042	352 099 078 061 029 041 033 020 021 003 .017 a.031	103 060 043 041 016 030 036 014 007 .006 a.017 a.023	.008 .003 002 010 .003 017 014 004 011 005 .004 a.012	.099 .065 .035 .014 .019 003 004 .005 011 008 002 a.002

agaired value.

THE BLADE SECTION AT THE 0.975 RADIUS - Continued

(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$.

							0.124					
	J M _x αx Δβ αi cn cm	2.059 .887 3.39 1.35 3.33 .3906 0497 .0004	2.110 .894 2.74 1.13 2.97 .3471 0491	2.213 .905 1.45 .70 2.21 .2594 0484	2.327 .922 .08 .15 1.59 .1861 0486	2.409 .937 88 36 .82 .0968 0652 .0084	2.538 .958 -2.34 -1.25 10 0123 0805	2.490 .945 -1.81 90 .31 .0371 0769	2.370 .928 43 10 1.09 .1271 0535 .0071	2.314 .919 .23 .22 1.50 .1748 0480	2.267 .911 1.25 .47 1.77 .2065 0503 .0059	2.167 .897 2.02 .88 2.41 .2826 0469
	c/b				Pr	essure coeffic	cient, P					
Trans many and		1.212613595512397374326279292375311126098	1.216474511459368303274267278371296171078	1.222311288296269254242252249348350132046	1.230 069 088 198 205 205 239 226 317 344 106	1.239 .097 .037 107 180 179 190 216 215 305 328 261 002	1.250 .277 .189 .026 105 159 207 243 244 297 303 334 019	1.243 .214 .135 020 139 180 217 208 196 275 299 320 010	1.234 .036 010 143 185 189 201 224 220 313 340 128	1.229 053 077 192 202 197 207 228 226 322 345 102 013	1.225 159 153 237 221 214 219 249 235 333 342 114 028	1.217 378 404 357 280 254 249 249 264 357 282 151 060
Towns words	1	.212 .169 .101 .052 .045 .023 .029 .025 .009 .008 004 a012	.176 .129 .074 .036 .032 .014 .008 .017 0 0004 a.007 a.018	.061 .036 .016 003 .008 016 018 012 021 011 006 a.002	088057042043014035033027032014 .001 8.012 b.017	427 371 158 032 023 051 048 044 049 027 002 a 021 b 033	621555270374312174013009029019 .012 a.048 b.068	575504260305035009019028042023009076016	332153064065032050045040047028003 a.020 b.032	107 066 049 049 020 035 031 037 020 0	028025025020032009030028024030016001 a.013 a.020	.121 .079 .042 .014 .020 001 003 001 0016 003 a.001

aFaired value.

bLower-surface value only.

CONFIDENTIAL

NACA

THE BLADE SECTION AT THE 0.975 RADIUS - Continued

(e) M = 0.56; $\beta_{0.75R} = 45^{\circ}$.

							,	0.172.						
	J M _x	2.151	2.176	2.221	2.240	2.276	2.293	2.326	2.362	2.400	2.416	2.462	2.505	2.539
-	ax,	2.22	1.91	1.36	1.12	.69	.48	.09	34	78	97	-1.49	-1.98	-2.36
	Δβ	.73	.65	.48	.41	.30	.24	.13	02	17	23	37	52	63
	α_1	2.51	2.36	2.22	2.02	1.72	1.58	1.42	1.04	.91	.80	.53	.35	.14
	cn	.2932	.2771	.2584	.2355	.2016	.1855	.1665	.1223	.1068	.0945			
	cm	0741	0687	0670	0628	0696	0557	0484	0531	0533	0534	0542	0556	0556
	cc	.0143	.0115	.0102	.0089	.0084	.0075	.0059	.0073	.0075	.0074	.0072	.0077	.0076
	c/b					Press	ure coeff	cicient,	P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.263 181 221 225 247 229 237 267 284 359 397 440	1.257 187 216 226 241 236 243 275 290 366 408 404 216	1.251 170 173 205 243 231 235 265 279 355 394 444	1.248145139196248225227258270344370411	1.242 085 094 185 218 208 213 245 250 330 366 350 015	1.238055074183194207205242244324358244	1.235 030 059 176 193 202 202 241 231 314 346 145	1.230 .034 013 076 178 183 196 215 213 303 332 093 0	1.226 .070 .015 111 161 172 196 213 302 296 096 011	1.220 .095 .034 096 153 162 186 192 215 300 248 104 018	1.217 .134 .065 070 135 148 172 180 208 277 220 104 022	1.212 .174 .096 043 121 137 159 172 196 251 206 108 026	1.208 .210 .125 020 108 128 148 163 186 233 194 109 031
Lower Burface		.128 .094 .056 .014 .024 024 006 018 028 056 094 a130	.100 .073 .040 .003 .015 014 025 034 062 062 095 &125 b142	.058 .048 .019 009 .007 019 027 036 055 055 079 a082 b089	.016 .020 002 023 001 027 035 035 051 045 056 a068 b076	059 027 031 036 011 037 038 050 042 038 a039 b041	086053045045017038040041048037021005	136 068 058 053 024 044 041 041 047 031 009 a.012 b.022	301 102 063 059 026 044 042 038 042 020 .006 a.032 b.045	430 195 057 060 029 045 040 033 033 011 .016 a.033 a.043	513290052062033042033032008018 a.038 a.050	605450041057032046041030026002 .025 a.048 a.061	700 574 051 052 031 047 062 029 025 0 .029 a.054 a.074	782 667 104 047 033 048 043 025 .001 .029 a.057 a.075

aFaired value. bLower surface only.

THE BLADE SECTION AT THE 0.975 RADIUS - Continued

(f) M = 0.62; $\beta_{0.75R} = 45^{\circ}$.

			No. of the last of								
	J M _x	2.169 1.078	2.232 1.053	2.258	2.283	2.305 1.028	2.340	2.382	2.415	2.468	2.502
	ax 1	2.00	1.22	.90	.60	.34	08	57	95	-1.56	-1.94
	Δβ	.41	.22	.12	.02	08	33	32	59	84	97
	aj	1.52	1.36	1.23	1.13	1.00	.78	.60	.34	.08	15
	cn	.1790	.1661	.1516	.1365	.1268	.0942	.0842	.0423	.0106	0161
	cm	0569	0621	0635	0640	0660	0676	0734	0718	0730	0760
	cc	.0163	.0175	.0178	.0174	.0175	.0175	.0176	.0157	.0156	.0136
	c/b				Pressu	re coefficie	ent, P				
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.325 .054 .035 017 098 110 133 158 177 239 277 322 388	1.308 .065 .046 025 127 139 161 186 198 264 302 350 411	1.303 .081 .059 025 125 142 164 186 196 262 300 349 409	1.298 .101 .072028125149172191197263299350413	1.292 .127 .091 025 118 174 1796 198 261 298 348 412	1.286 .164 .118 017 082 140 176 199 201 259 294 345 409	1.279 .193 .136010096145182211218271299347403	1.274 .220 .157 .003 090 147 183 219 224 274 299 345 363	1.266 .258 .182 .025 087 151 185 225 226 289 310 341 259	1.258 .283 .200 .040 089 155 190 228 235 305 320 336 157
Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	.127 .106 .077 .046 .042 .027 .014 .021 023 046 088 a022 a011	.004 .012 .006 004 .004 006 023 016 061 085 125 a159 a178	043 028 025 024 .006 006 025 020 065 090 129 a162 a182	099081069060003006029028073098134 a167 a183	149127103095024 .001022029074101137 a166 a182	216190136139075 .005005021060098132 a155 a167	288257 a210179139057 .004018055097132 a157 a169	359316 a255214182096 .004009057083108 a128 a139	448395 a335271232187060 .001038060077 a080 a082	529471393322276239091002031044037020010

aFaired value.

BLADE SECTION AT THE 0.975 RADIUS - Continued

(g) M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

	J M _X α _X * Δβ α ₁ cn cm	2.141 1.152 2.35 14 1.60 .1855 0535	2.157 1.143 2.15 19 1.57 .1823 0555 .0177	2.179 1.139 1.87 25 1.45 .1677 0536	2.196 1.129 1.6630 1.35 .15740524 .0180	2.224 1.117 1.3238 1.15 .13480519 .0175	2.251 1.108 .99 46 1.05 .1232 0519	2.268 1.094 .78 51 .89 .1035 0542 .0180	2.299 1.088 .4160 .76 .08900547 .0178	2.321 1.078 .15 66 .60 .0700 0538 .0182	2.338 1.068 05 71 .45 .0523 0457 .0185	2.375 1.057 49 82 .19 .0223 0508 .0188	2.416 1.046 97 94 09 0106 0417	2.432 1.042 -1.15 98 19 0223 0411
	c/b		Se law top				Press	ure coeffic	ient, P					
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.376 .106 .057 .016 053 068 092 119 135 194 230 270	1.369 .104 .064 .020 054 074 099 127 143 202 242 288 345	1.366 .107 .074 .023 054 105 133 149 208 247 294	1.359 .107 .084 .026 063 088 114 142 156 217 255 302 358	1.351 .119 .100 .035 068 097 122 151 166 225 262 306 362	1.345 .129 .107 .036 072 100 127 154 170 229 265 308 364	1.335 .149 .119 .035 073 105 135 162 179 236 271 311 368	1.331 .170 .135 .039 067 103 134 161 177 236 269 308 364	1.325 .194 .153 .039 060 099 133 163 178 239 274 313 370	1.318 .217 .169 .044 052 095 132 166 183 246 283 322 381	1.311 .233 .178 .039 053 103 145 179 195 260 299 341 400	1.303 .252 .190 .040 052 110 153 189 204 270 310 352 414	1.301 .272 .205 .051 043 104 147 186 199 265 306 350 411
Lower surface	.0375 .075 .150 .250 .350 .450 .650 .750 .850 .925 .975	.225 .198 .148 .096 .084 .063 .042 .051 .007 013 050 a074 a091	.198 .178 .127 .079 .071 .053 .031 .039 006 026 065 a088 a099	.175 .160 .110 .065 .056 .041 .019 .028 016 041 076 a097 a109	.132 .132 .081 .040 .036 .025 .006 .013 031 055 090 a113 a126	.070 .084 .040 .007 .008 .007 010 003 047 071 105 a130 a143	.034 .054 .016 011 009 007 012 007 051 075 109 a131 a144	022 0 026 045 038 031 016 057 084 116 a138 a152	061 037 053 065 063 059 048 018 054 081 114 a 138 a 152	109081081087080082075034052080115 a124 a150	151121103108097103105063065078114 a139 a153	215181132146130137147119124105123 a149 a164	278232157183162166179158177162166 a177 a185	304 249 159 169 170 186 167 180 172 167 165

aFaired value.

THE BLADE SECTION AT THE 0.975 RADIUS - Continued

(h) One-blade propeller; N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$.

-		0.1/2														And the second
	J M _X α _x ' Δβ α ₁ c _n c _m	2.480 .921 -1.70 58 .07 .0119 0691	2.409 .908 89 34 .41 .0645 0622	2.367 .897 40 19 .69 .1081 0562	2.308 .889 .30 .02 .95 .1510	2.260 .881 .88 .21 1.15 .1816 0477	2.190 .869 1.74 .53 1.51 .2342 0450	2.123 .857 2.57 .87 1.76 .2765 0443	2.077 .853 3.16 1.11 1.94 .3055 0469	2.005 .841 4.09 1.48 2.38 .3742 0482	1.948 .833 4.84 1.77 2.83 .4419 0523	1.887 .826 5.66 2.05 3.30 .5200 0582	1.850 .820 6.17 2.18 3.55 .5568 0613	1.811 .815 6.71 2.30 3.83 .6045 0646	1.761 .812 7.40 2.43 4.06 .6355 0646	1.729 .809 7.86 2.48 4.26 .6703 0664
1	c/b							Pres	sure coef	ficient,	P					
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900 .950	1.230 .259 .136 079 191 238 179 178 242 268 308 145 031	1.224 .183 .065 137 196 200 184 195 248 279 292 181 052	1.217 .115 .009 173 199 201 185 195 265 283 264 177 047	1.213 .027 064 226 218 209 193 199 285 285 256 174 047	1.209 068 143 281 235 219 202 205 288 284 255 176 051	1.203 220 267 356 274 249 226 291 290 266 191 070	1.197366411402311271245239298296274204084	1.195 461 567 415 337 285 261 311 310 288 219 095	1.189 638 707 585 374 282 279 338 337 318 246 119	1.185 827 880 743 439 332 303 299 363 366 348 277 146	1.182 -1.016 -1.037 931 499 386 334 329 394 399 380 315 178	1.180 -1.107 -1.114 -1.010 556 425 358 348 413 420 400 339 198	1.177 -1.204 -1.193 -1.090 618 479 378 366 428 437 415 361 216	1.175 -1.265 -1.246 -1.138 657 510 386 377 438 445 424 375 228	1.174 -1.362 -1.335 -1.220 744 497 389 387 455 455 385 238
	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975 1.000	671 607 502 322 015 021 035 056 054 005 .022 a.043	634 579 251 053 059 058 055 068 060 014 .014 a.020 a.021	524 213 088 080 063 052 046 056 048 007 .015 a.026 a.030	213 108 082 069 054 043 049 045 009 .007 a.013 a.014	116060052052041033030041040007 .002 a.005 a.005	015 .001 018 033 029 023 023 037 037 009 005 a005	.077 .063 .021 008 012 009 011 027 030 005 008 a012	.136 .101 .048 .016 .006 0 005 024 029 004 014 a025 a032	.214 .157 .085 .042 .026 .015 .008 009 018 .001 015 a041 a053	.283 .206 .119 .065 .044 .031 .022 .006 008 .010 012 a045 a060	.348 .256 .154 .087 .062 .046 .035 .016 .001 .015 011 a048	.377 .279 .169 .097 .068 .050 .039 .018 .004 .016 014 a039 a055	.413 .307 .192 .113 .080 .061 .048 .025 .011 .019 012 a037 a054	.433 .323 .203 .122 .085 .065 .050 .027 .012 .018 013 a038 a050	.471 .353 .227 .138 .099 .077 .053 .037 .020 .025 008 a039 a060

aFaired value.

NACA

CONFIDENTIAL TABLE 12.— PRESSURE COEFFICIENTS AND AERODYNAMIC CHARACTERISTICS OF

THE BLADE SECTION AT THE 0.975 RADIUS - Continued

(i) One-blade propeller; M = 0.57; β_{0.75R} = 45°.

	(1) the property of the proper																
	J M _X	2.365 .933	2.336 .940 03	2.311	2.283 .952	2.256 .959	2.240 .969	2.200 .975 1.61	2.174 .987 1.93	2.160 .991 2.11	2.121 .998 2.60	2.101 1.004 2.85	2.086 1.014 3.04	2.055 1.018 3.44	2.033 1.025 3.73	2.014 1.032 3.97	1.998 1.043 4.18
	α _x ¹ Δβ α ₁	01 .77	.09	.18	.27 1.12	.36 1.28	1.33	·55	.65 1.62	.70 1.70	1.82	.91 1.96	.96	1.06	1.13	1.18 2.33	1.23 2.39
	c _m	.1223 0506 .0067	.1410 0569 .0080	.1652 0615 .0085	.1774 0624 .0096	.2003 0619 .0105	.2081 0632 .0114	.2345 0633 .0129	.2548 0680 .0143	.2652 0738 .0148	.2861 0764 .0153	0756 0150	.3148 0759 .0150	.3268 0767 .0148	0775 0148	.3668 0796 .0146	0793 0146
	c/b					- 415	30	Pre	ssure coe	fficient,	P						
Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.237 .095 009 205 207 214 186 202 241 a285 332 137	1.241 .063 -039 220 201 210 181 220 248 285 333 259 .007	1.243 .034 063 222 185 228 177 215 260 300 340 372 003	1.247 .015 .084 .217 .182 .221 .190 .212 .262 .292 .350 .436 .031	1.251015115210220212185225271305356469081	1.257 038 142 197 234 226 188 223 276 a323 362 484 163	1.260 063 168 193 238 240 201 232 284 a330 373 491 236	1.267080185204229243207234288381499374	1.270089198223231242207238386506463	1.275107235256251212248303 a353401520505	1.277114249260263252212247301 a355401518506	1.283 123 259 270 273 258 216 250 302 a345 402 518 506	1.286130261274277259216253304 a343403503	1.290153276289290268228263314 a355412518507	1.294164282293295272234265317 a360412515504	1.301 170 280 290 294 267 231 315 a.355 410 508 498
Lower surface	.0375 .075 .150 .250 .350 .450 .650 .750 .850 .925 .925	359215068070065047046057057019004058	287 114 075 066 060 044 045 056 057 021 004 a.003 b.005	219068069058055039041054026017 a020	167047059049035038053059032032036 a040 b043	103 023 044 042 044 030 036 053 063 040 058 a073 b080	048 .006 028 034 039 027 034 056 071 051 080 a105 b115	007 .029 015 027 036 025 033 055 074 053 087 a120 b145	.040 .058 .003 013 029 018 029 053 074 054 090 a120 b140	.071 .079 .016 005 023 014 026 051 076 055 090 a120	.117 .110 .033 .001 021 026 052 080 063 094 a125 a140	.151 .136 .053 .016 011 003 018 045 073 058 087 a110 a120	.181 .160 .069 .027 006 .003 015 038 068 059 087 a113	.223 .193 .096 .048 .007 .017 026 057 054 080 a100 a115	.250 .214 .113 .058 .014 .020 002 025 056 056 083 a108	.278 .235 .134 .074 .027 .029 .006 016 048 048 076 a100	. 303 . 258 . 137 . 093 . 048 . 044 . 018 004 - 037 - 038 - 067 a_ 105

^aFaired value. ^bLower surface only.

THE BLADE SECTION AT THE 0.975 RADIUS - Continued

(j) One-blade propeller; M = 0.59; $\beta_{0.75R} = 45^{\circ}$.

1																			
	J Mx Δβ α1 cn cm	2.326 .970 .09 0 .65 .1029 0556	0534	2.285 .984 .58 .16 .71 .1100 0477 .0131	2.249 .991 1.01 .31 .98 .1526 0583 .0148	2.220 .998 1.37 .41 1.08 .1694 0634	2.206 1.006 1.54 .45 1.20 .1881 0611	2.161 1.010 2.10 .59 1.26 .1974 0651 .0166	2.147 1.020 2.27 .63 1.40 .2194 0655 .0157	2.119 1.028 2.62 .69 1.50 .2368 0676	2.100 1.035 2.86 .74 1.61 .2523 0668 .0156	2.073 1.043 3.21 .80 1.63 .2577 0696 .0146	2.052 1.050 3.48 .83 1.73 .2723 0690	2.026 1.054 3.82 .87 1.84 .2871 0712	2.010 1.064 4.03 .90 1.89 .2994 0724	1.996 1.073 4.21 .91 2.01 .3165 0734 .0153	1.972 1.077 4.53 .94 2.03 .3168 0744 .0151	1.951 1.084 4.81 .98 2.13 .3316 0762 .0153	1.932 1.092 5.06 1.02 2.18 .3419 0764 .0150
	c/b								Pres	sure coe	efficient	, P							
1	0.00 .00 .00 .00 .22 .33 .44 .56 .66 .77 .88 .99	25 .131 .022 .000146 .000162 .000219 .000174 .000245 .000245 .000245 .000245 .000245 .000245	1.261 .106 006 142 162 196 186 198 275 344 449 127	1.266 .093 019 135 166 188 180 201 243 271 340 450 198	1.270 .057 063 133 192 199 179 205 253 283 349 461 329	1.274 .041 099 121 199 207 255 255 285 351 461	1.276 .028 132 102 190 203 180 203 249 281 347 454 436	1.280 017 183 146 101 219 201 223 272 301 370 474 470	1.286027188160197215199222274302369475473	1.292 038 192 171 203 209 194 217 270 300 369 473 473	1.295 051 197 183 216 212 196 218 270 300 370 472 472	1.302 057 199 190 222 214 199 220 271 299 370 469 472	1.307 062 198 195 227 215 199 220 270 297 367 466 470	1.309 069 199 202 233 218 202 225 274 301 370 464 470	1.316 070 195 202 232 215 202 224 271 290 367 457	1.321 075 195 208 235 216 203 225 272 298 367 455 463	1.326 078 193 206 232 213 200 221 274 294 365 449 458	1.329 092 195 210 237 220 207 226 277 299 369 449	1.334 105 197 214 239 221 206 226 278 302 374 450 461
	.00.00 .1	248 048 048 048 048 061 061 081 091 086 086 091 086 086 087	215 163 163 050 059 059 079 111 094 100 a105 b110	174 118 158 072 048 055 057 076 112 096 104 a117 b125	135 031 167 071 048 051 053 073 113 108 114 a122 a126	111 0 155 061 043 044 049 065 109 113 a120 a122		009 .059 118 036 028 030 040 055 103 116 a130 a138	.036 .088 102 025 018 021 031 047 104 114 a120 a128	.087 .101 077 008 004 006 019 036 084 094 106 a116	.126 .146 060 .004 .002 012 029 078 088 100 a111 a117	.158 .167 042 .016 .014 .011 004 021 071 081 094 a109 a116	.187 .190 024 .028 .023 .020 .003 014 064 082 087 a084	.223 .216 .001 .042 .034 .029 .011 007 057 068 080 a095 a104	.256 .243 .027 .046 .050 .044 .025 .007 044 055 067 a084	.283 .264 .046 .073 .060 .054 .033 .015 036 048 061 a075 a082	.302 .278 .061 .081 .069 .062 .041 029 042 055 a066 a073	.323 .293 .075 .090 .074 .066 .045 .024 026 039 051 a064 a070	.348 .312 .093 .102 .084 .075 .052 .030 021 035 046 a060

aFaired value. bLower surface only.

THE BLADE SECTION AT THE 0.975 RADIUS - Continued

(k) One-blade propeller; M = 0.61; $\beta_{0.75R} = 45^{\circ}$.

							(-/	0110 011	re brober	,		NC1.0							
	J M _X α _X * Δβ α _i cn cm	2.326 1.013 .09 16 .55 .0868 0610	2.293 1.018 .48 02 .66 .1026 0596	2.260 1.022 .88 .12 .74 .1135 0599	2.253 1.033 .96 .15 .93 .1458 0547	2.221 1.039 1.35 .25 1.06 .1658 0556	2.185 1.044 1.80 .34 1.17 .1839 0567	2.172 1.053 1.96 .36 1.20 .1890 0615	2.149 1.060 2.25 .39 1.26 .1997 0598 .0166	2.116 1.067 2.66 .45 1.37 .2165 0605	2.105 1.075 2.80 .48 1.41 .2229 0619	2.080 1.084 3.12 .54 1.54 .2439 0617	2.058 1.090 3.40 .59 1.61 .2523 0625 .0168	2.030 1.095 3.77 .69 1.68 .2665 0662 .0154	2.016 1.106 3.95 .74 1.80 .2835 0655	1.995 1.114 4.22 .82 1.88 .2961 0667 .0161	1.977 1.119 4.46 .88 1.96 .3071 0675 .0148	1.960 1.126 4.69 .95 2.03 .3152 0716 .0158	1.922 1.127 5.19 1.12 2.14 .3339 0733 .0147
c/b Pressure coefficient, P																			
	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.283 .183 .071 101 112 179 187 224 241 300 416 404	1.286 .157 .041 101 128 177 159 180 227 244 304 420 414	1.288 .130 .009 101 146 183 157 234 255 312 428 423	1.295 .118 010 089 149 175 146 177 227 249 307 423 418	1.299 .094 052 079 157 180 151 232 236 314 426 420	1.302 .078 088 076 156 181 155 235 260 322 431 424	1.308 .071 099 082 150 178 152 182 233 256 318 428	1.313 .065 104 093 144 171 148 178 231 254 315 426 418	1.317 .053 112 111 151 172 151 182 235 258 320 429 423	1.322 .053 110 117 153 166 145 176 230 255 317 424 419	1.329 .041 122 132 166 171 180 232 257 320 425 420	1.333 .038 123 135 169 171 150 178 230 255 320 422 418	1.336 .017 130 145 176 174 152 181 233 256 321 422 419	1.342 .009 129 149 179 174 181 232 255 319 417 415	1.348 .002 124 152 182 175 150 183 232 255 317 412 411	1.352 010 126 157 186 175 151 234 255 320 412	1.356 024 130 162 190 178 154 236 255 320 409	1.357 049 140 175 203 188 163 191 246 265 328 415 417
- 1	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	239 213 205 166 061 008 034 061 101 105 136 a175 a200	192 174 168 110 024 046 068 103 107 137 &169 &.,190	153 138 131 061 038 053 072 106 110 142 a175 a195	105 087 074 034 038 023 043 060 095 099 130 a155 a169	070 015 038 028 037 023 039 056 089 094 125 a157	032 .045 019 017 026 015 032 051 085 089 121 150	0 .076 004 005 015 005 025 042 077 080 111 a125	.042 .107 .016 .010 001 .009 012 031 066 070 102 a140	.082 .125 .030 .020 .007 .015 008 027 067 065 098 a128	.125 .154 .051 .036 .021 .028 .003 017 052 056 086 113	.160 .176 .066 .045 .027 .032 .008 012 048 051 083 a113	.193 .199 .084 .058 .037 .041 .016 045 045 078 a120	.223 .219 .081 .068 .045 .049 .023 0 036 040 034 a028	.260 .249 .124 .086 .061 .064 .037 .013 023 028 060 &095 &115	.288 .270 .142 .097 .071 .073 .045 .021 014 019 050 a083 a100	.319 .295 .165 .113 .084 .085 .055 .030 006 012 043 8073 8090	.347 .318 .184 .127 .095 .095 .064 .039 .001 003 035 a072 a090	.374 .339 .205 .138 .102 .070 .042 .005 001 032 a065 a080

aFaired value.

THE BLADE SECTION AT THE 0.975 RADIUS - Concluded

(1) One-blade propeller; M = 0.65; $\beta_{0.75R} = 45^{\circ}$.

-																			
		J M _X α _X ' Δβ α ₁ c _n c _m	2.343 1.067 11 73 .25 .0381 0569	2.321 1.073 .15 66 .32 .0490 0542 .0184	2.303 1.082 .36 61 .40 .0619 0548	2.273 1.086 .72 53 .49 .0765 0550	2.251 1.093 .99 46 .61 .0968 0546	2.232 1.104 1.22 40 .70 .1094 0539 .0180	2.212 1.110 1.46 35 .76 .1206 0540	2.175 1.112 1.92 24 .91 .1435 0563	2.165 1.125 2.05 21 .99 .1571 0566	2.141 1.131 2.35 14 1.08 .1700 0599	2.122 1.138 2.59 09 1.14 .1810 0590	2.101 1.140 2.85 03 1.25 .1971 0596	2.080 1.148 3.12 .03 1.38 .2181 0618	2.061 1.161 3.37 .09 1.48 .2316 0631 .0179	2.041 1.168 3.62 .15 1.61 .2523 0636	2.026 1.175 3.82 .19 1.65 .2600 0658 .0177	
		c/b							Pre	ssure coe	fficient,	P							
	Upper surface	0.000 .025 .050 .100 .200 .300 .400 .500 .600 .700 .800 .900	1.318 .262 .152 018 058 125 127 161 189 221 277 358 361	1.321 .248 .138 016 063 125 160 190 220 273 361 362	1.328 .243 .132 006 062 120 151 181 209 263 350 352	1.330 .221 .106 007 079 128 119 153 212 265 358 361	1.334 .209 .091 .002 081 126 112 145 177 200 257 353 357	1.342 .202 .082 .014 077 120 104 135 165 184 247 342	1.346 .188 .070 .019 -078119103131159180248341342	1.347 .165 .049 .005 084 123 107 135 165 187 256 350 352	1.356 .156 .041 006 082 118 103 131 164 188 255 348 351	1.360 .147 .029 020 084 116 103 131 167 192 258 350 353	1.366 .148 .028 022 080 106 093 119 158 187 253 344 346	1.367 .145 .015 031 100 084 106 150 181 247 336 340	1.372 .138 004 043 090 103 083 098 150 180 246 334 338	1.382 .134 010 045 093 101 080 098 150 178 244 332 336	1.388 .113 028 061 107 112 085 111 162 188 253 340 343	1.393 .116 021 056 102 105 074 104 154 181 246 330 334	
	Lower surface	.0375 .075 .150 .250 .350 .450 .550 .650 .750 .850 .925 .975	192 177 164 140 119 113 122 086 084 056 090 A132 b175	151 152 146 126 112 102 106 075 074 068 104 a167 b270	110120118101094081077048062063099 a162 b230	075 091 087 085 084 064 048 037 070 073 108 a 175 b285	038 054 054 057 060 026 018 030 064 069 102 a161 b235	002017023031031005020054056089136200	.032 .022 .010 005 003 .017 0 015 048 050 081 a128 b185	.057 .062 .042 .021 .013 .022 .003 015 046 049 079 a125 b180	.088 .108 .074 .039 .026 .033 .013 006 038 039 070 a127 b210	.118 .151 .095 .051 .033 .042 .018 .001 -032 034 065 a105 b150	.152 .186 .117 .072 .050 .059 .033 .015 019 021 052 a103 b160	.197 ,216 .141 .096 .070 .076 .050 .030 004 005 042 a095 b180	.242 .245 .161 .114 .086 .091 .065 .042 .009 .007 025 a067 b125	.274 .267 .177 .126 .098 .100 .074 .051 .018 .016 017 a075 b170	.314 .295 .196 .140 .107 .078 .054 .020 .018 015 a070 b175	.342 .319 .215 .157 .124 .121 .092 .067 .035 .030 003 a062 b150	

^aFaired value. ^bLower surface only.

NACA RM L9L12

Figure 1.- Vector diagram of the velocities and forces acting on a blade section.

Figure 2.- Diagram of the apparatus used to obtain pressure distributions on the sections of operating propellers.

Figure 3.- Propeller dynamometer with the one-blade propeller installed.

CONFIDENTIAL

Figure 4.- Blade-form curves for the NACA 10-(3)(066)-033 propeller.

Figure 5.- The NACA 10-(3)(066)-033 propeller blade containing pressure tubes.

CONFIDENTIAL

- Hollow shaft
- Rotating pressure tubes
- Rotating spacer
- "O" Ring gaskets
- Two Synthe-Seal ball bearings
- Stationary spacer

Figure 6.- Details of the 30-chamber pressure-transfer device.

Figure 7.- The optical deflectometer mounted on top of the tunnel test section. CONFIDENTIAL

NACA RM L9L12

Figure 8.- Goldstein's induced-velocity correction factor for a two-blade propeller.

Figure 9.- Goldstein's induced-velocity correction factor for a one-blade propeller. (Extrapolated values.)

Figure 10.- Typical pressure distributions along the chord of the NACA 16-304.40 blade section located at the 0.95 radius. $\alpha_{\rm X}$ = 0.6 (approx.).

Figure 11.- Variation of section normal-force coefficient, moment coefficient, chordwise-pressure-force coefficient, angle of attack, and Mach number with advance ratio for the blade section at the 0.85 radius, from table 9(e). $\beta_{0.75R} = 45^{\circ}$; M = 0.56.

NACA RM L9L12

Figure 12.- Variation of the normal-force coefficient and section Mach number along the blade radius. $\beta_{0.75R} = 45^{\circ}$; J = 2.2.

Figure 13.- Variation of the blade deflection $\Delta\beta$ along the blade radius. $\beta_{0.75R}$ = 45°; J = 2.2.

(a) No correction for the induced angle.

(b) Correction applied for the induced angle assuming an optimum loading.

Figure 14.- The effect of the induced-angle correction on the slopes of the normal-force-coefficient curves. $\beta_{0.75R}$ = 45°; M_x = 0.65.

Figure 15.- Comparison of a measured loading curve with the optimum loading for the same condition of operation. $\beta_{0.75R} = 45^{\circ}$; J = 2.2; M = 0.45.

TABLE INDEX

Pa	ge
Table 1.— Ordinates for the Blade—Section at the 0.975 Radius of the NACA 10-(3)(066)-033 Propeller	19
Table 2 Pressure Coefficients and Aerodynamic Character- istics of an NACA 16-316.25 Propeller Blade Section (x = 0.30)	
(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$	20
(1) 77 1050	21
/ \ 77 7-00	22
(d) $M = 0.56$; $\beta_{0.75R} = 45^{\circ}$	23
(e) $M = 0.60$; $\beta_{0.75R} = 45^{\circ}$	24
(-)	25
Table 3 Pressure Coefficients and Aerodynamic Characteristics of an NACA 16-310.00 Propeller Blade Section (x = 0.45)	
	26
(b) $N = 1350 \text{ rpm}; \beta_{0.75R} = 450 \dots$	27
O • / III	28
	29
(e) $M = 0.56$; $\beta_{0.75R} = 45^{\circ}$	30
(f) $M = 0.60$; $\beta_{0.75R} = 45^{\circ}$	31
	32
Table 4.— Pressure Coefficients and Aerodynamic Character— istics of an NACA 16—308.94 Propeller Blade Section (x = 0.50)	
(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$	33
	34
	35

Table 4.— Continued	Page
(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$	36
(e) $M = 0.56$; $\beta_{0.75R} = 45^{\circ}$	37
(f) $M = 0.60$; $\beta_{0.75R} = 45^{\circ}$	38
(g) $M = 0.65$; $\beta_{0.75R} = 45^{\circ}$	39
Table 5.— Pressure Coefficients and Aerodynamic Character— istics of an NACA 16-307.50 Propeller Blade Section (x = 0.60)	
(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$	40
(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$	41
(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$	42
(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$	43
(e) $M = 0.56$; $\beta_{0.75R} = 45^{\circ}$	44
(f) $M = 0.60$; $\beta_{0.75R} = 45^{\circ}$	45
(g) $M = 0.65$; $\beta_{0.75R} = 45^{\circ}$	46
Table 6 Pressure Coefficients and Aerodynamic Characteristics of an NACA 16-307.00 Propeller Blade Section (x = 0.65)	
(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$	47
(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$	48
(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$	49
(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$	50
(e) $M = 0.56$; $\beta_{0.75R} = 45^{\circ}$. 51
(f) $M = 0.60$; $\beta_{0.75R} = 45^{\circ}$	52
(g) $M = 0.66$; $\beta_{0.75R} = 45^{\circ}$	53
(h) N = 1140 rpm; $\beta_{0.75R} = 30^{\circ}$	54
(i) N = 1350 rpm; $\beta_{0.75R} = 30^{\circ}$	55
(j) N = 1500 rpm; $\beta_{0.75R} = 30^{\circ}$	56
(k) N = 1600 rpm; $\beta_{0.75R} = 30^{\circ}$	57
(1) N = 1800 rpm; $\beta_{0.75R} = 30^{\circ}$	58
(m) N = 2000 rpm; $\beta_{0.75R} = 30^{\circ} \dots \dots \dots$	59

Table 6.— Continued Page	ge
(o) N = 1350 rpm; $\beta_{0.75R} = 50^{\circ}$ (p) N = 1350 rpm; $\beta_{0.75R} = 40^{\circ}$ (q) N = 1350 rpm; $\beta_{0.75R} = 35^{\circ}$ (r) N = 1350 rpm; $\beta_{0.75R} = 25^{\circ}$	60 61 62 63 64 65
(a) N = 1140 rpm; β _{0.75R} = 45° (b) N = 1350 rpm; β _{0.75R} = 45° (c) N = 1500 rpm; β _{0.75R} = 45° (d) N = 1600 rpm; β _{0.75R} = 45° (e) M = 0.56; β _{0.75R} = 45° (f) M = 0.60; β _{0.75R} = 45° (g) M = 0.65; β _{0.75R} = 45° (h) One-blade propeller; N = 1500 rpm; β _{0.75R} = 45° (i) One-blade propeller; M = 0.57; β _{0.75R} = 45° (j) One-blade propeller; M = 0.59; β _{0.75R} = 45° (k) One-blade propeller; M = 0.61; β _{0.75R} (k) One-blade propeller; M = 0.64;	66 67 68 69 70 72 73 74 75 76
(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$	78 79

Table	8	Co	nt	inue	d																		Page
	(c)	N	= :	1500	rpm;	β	0 5	75D	=	450													80
					rpm;																		81
	(e)	M	= 1	0.56	; β ₀ .	75	D =	: 45	50														82
	(f)	M	= 1	0.60	, β ₀ .	77	K =	= 45	50														83
	(g)	M	= 1	0.65	; β ₀ .	(2)	n =	= 4	50														84
	(h)	N	= .	1140	rpm;	B				30°													85
	(i)	N	= .	1350	rpm;	β	0.7	DK DK		300													86
	(1)	N	=	1500	rpm;	β	0.7	'SR		30°	,												87
	(k)	N	=	1600	rpm;	β	0.7	DK ZED		30°													88
	(1)	N	=.	1800	rpm;	β	0.1	24		300													89
	(m)	N	=	2000	rpm;	β	0.7)K	=	30°													90
	(n)	N	=	2160	rpm;	β	0.7	/SR		30°													91
	(0)	N	=	1350	rpm;	β	0.7	75R		50°													92
	(n)	N	=	1350	rpm;	В	0.7	75R		400													93
	(a)	N	=	1350	rpm;	β	0.7	75R		35°													94
	(r)	N	=	1350	rpm;	β	0.7	75R		250													95
	(g)	N	=	1350	rpm;	В	0.7	75R		200													96
	(5)	-		-570	r Pm,		0.7	75R					i					i			i		
		of	a		Coet														er-	-			
	(a)	N	=	1140	rpm	β	0 -	75R	=	45°)						•						97
	(b)	N	=	1350	mom	B		_	=	45°)												98
	(c)	N	=	1500	rpm	β	0.	75R	=	45°)												99
	(d)	N	=	1600	rpm	β	0.5	75R	=	45°)					•							100
	(e)	M	=	0.56	rpm; rpm; β	75	R =	= 4	50														101
	(f)	M	=	0.60	; BO	75	R =	= 4	50														102
	(g)	M	=	0.66	β ₀	75	R =	= 4	5°														103
	(h)	On	10-	-hlad	e pro	one	776	er;	N	=]	.50	0	r	om;	;								
			β	0.75	R = 1	+5°							•										104

Table 9 Continued	Page
(i) One—blade propeller; M = 0.57; $\beta_{0.75R} = 45^{\circ} \dots \dots \dots$	105
(j) One-blade propeller; M = 0.59;	10)
β0.75R = 45°	106
(k) One—blade propeller; M = 0.61; β = 45°	107
(1) One-blade propeller; M = 0.64; β 0.75R = 45°	108
Table 10 Pressure Coefficients and Aerodynamic Characteristics of an NACA 16-304.80 Propeller Blade Section (x = 0.90)	
(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$	109
(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$	
(c) N = 1500 rpm; $\beta_{0.75R} = 45^{\circ}$	111
(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$	112
(e) $M = 0.56$; $\beta_{0.75R} = 45^{\circ}$	113
(f) $M = 0.60$; $\beta_{0.75R} = 45^{\circ}$	114
(g) $M = 0.65$; $\beta_{0.75R} = 45^{\circ}$	115
Table 11 Pressure Coefficients and Aerodynamic Character- istics of an NACA 16-304.40 Propeller Blade Section (x = 0.95)	
(a) N = 1140 rpm; $\beta_{0.75R} = 45^{\circ}$	116
(b) N = 1350 rpm; $\beta_{0.75R} = 45^{\circ}$	117
(c) N = 1500 rpm; $\beta_{0.75P} = 45^{\circ}$	118
(d) N = 1600 rpm; $\beta_{0.75R} = 45^{\circ}$	119
(e) M = 0.56; β = 45° · · · · · · · · · · · · · · · · · · ·	120
(e) $M = 0.56$; $\beta_{0.75R} = 45^{\circ}$ (f) $M = 0.60$; $\beta_{0.75R} = 45^{\circ}$	121
(g) $M = 0.65$; $\beta_{0.75R} = 45^{\circ}$	122
(h) One-blade propeller: N = 1500 rpm:	
β _{0.75R} = 45° · · · · · · · · · · · · · · · · · · ·	123

Table 11.	- Continued	Page
(i)	One—blade propeller; M = 0.56; $\beta_{0.75R} = 45^{\circ} \dots \dots$	124
(j)	One—blade propeller; $M = 0.59$; $\beta_{0.75R} = 45^{\circ}$	125
(k)	One—blade propeller; $M = 0.61$; $\beta_{0.75R} = 45^{\circ}$	126
(1)	One—blade propeller; $M = 0.64$; $\beta_{0.75R} = 45^{\circ}$	127
	- Pressure Coefficients and Aerodynamic Character- of the Blade Section at the 0.975 Radius	
(a)	$N = 1140 \text{ rpm}; \ \beta_{0.75R} = 45^{\circ} \dots \dots \dots$	128
(b)	$N = 1350 \text{ rpm}; \ \beta_{0.75R} = 45^{\circ} \dots \dots \dots \dots$	129
(c)	N = 1500 rpm; β _{0.75R} = 45°	130
(d)	$N = 1600 \text{ rpm}; \ \beta_{0.75R} = 45^{\circ} \dots \dots \dots$	131
(e)	$M = 0.56; \beta = 45^{\circ} \dots \dots \dots \dots$	132
(f)	$M = 0.62$; $\beta_{0.75R} = 45^{\circ}$	133
(g)	$M = 0.65$; $\beta_{0.75R} = 45^{\circ}$	134
(h)	One—blade propeller; N = 1500 rpm; $\beta_{0.75R} = 45^{\circ} \dots \dots \dots \dots$	135
(i)	One—blade propeller; $M = 0.57$; $\beta_{0.75R} = 45^{\circ}$	136
(j)	One—blade propeller; M = 0.59; $\beta_{0.75R} = 45^{\circ} \dots \dots \dots \dots$	137
	One—blade propeller; $M = 0.61$; $\beta_{0.75R} = 45^{\circ}$	138
(1)	One—blade propeller; M = 0.65; \[\beta = 45^{\text{O}} \\ \text{0.75R} \]	139