Лабораторная работа №2

Лукьянова Ирина Владимировна, НФИбд-02-19

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	14
6	Список литературы	15

List of Tables

List of Figures

3.1	Рис.1
3.2	Рис.2
3.3	Рис.3
	Рис.4
4.1	Начальное расстояние
	Функция движения катера
	Начальные условия первого случая
	Функция движения лодки
	Построение для первого случая
	График для первого случая
	Пересечение
	Начальные условия второго случая
	График для второго случая
	Пересечение2

1 Цель работы

Цель работы - познакомиться с пакетом прикладных математических программ Scilab, изучить ее команды, а также решить задачу о погоне, построив математическую модель.

2 Задание

Вариант 40

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 15,5 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 3,5 раза больше скорости браконьерской лодки. ¹

 $^{^{1}}$ Кулябов, Д.С. Задача о погоне.

3 Теоретическое введение

Задаем место нахождения лодки браконьеров в момент обнаружения и место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки. (рис.3.1)

Figure 3.1: Рис.1

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров, а полярная ось г проходит через точку нахождения катера береговой охраны.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить уравнение. (рис. 3.2)

$$\frac{X}{V} = \frac{15.5 - X}{2.5 N} \implies X = \frac{15.5}{4.5} = \frac{31}{9}$$

$$\frac{X}{V} = \frac{15.5 + X}{3.5 N} \implies X = \frac{15.5}{2.5} = 6.2$$

Figure 3.2: Рис.2

После мы должны найти v - тангенциальную скорость, получим: (рис. 3.3)

Figure 3.3: Рис.3

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений с начальными условиями:(рис. 3.4)

$$\frac{dx}{dt} = V \qquad CHALYPA \qquad \begin{cases} \theta_{12} & 0 \\ v_{02} & \chi_{1} \end{cases} \qquad \begin{cases} \theta_{12} - \chi_{1} \\ v_{02} & \chi_{1} \end{cases} \qquad \begin{cases} \theta_{12} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{12} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{13} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{13} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{13} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{13} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{13} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{13} & \chi_{12} \\ v_{02} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{13} & \chi_{12} \\ v_{02} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{13} & \chi_{12} \\ v_{02} & \chi_{12} \\ v_{02} & \chi_{12} \end{cases} \qquad \begin{cases} \theta_{13} & \chi_{12} \\ v_{02} & \chi_{12$$

Figure 3.4: Рис.4

4 Выполнение лабораторной работы

- 1. Записываем уравнение, описывающее движение катера, с начальными условиями для двух случаев.
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки 1

Начнем с первого случая:

1. Записываем начальное расстояние от лодки до катера:(рис. 4.1)

```
--> s=15.5;
--> fi=3*%pi/4;
```

Figure 4.1: Начальное расстояние

2. Далее прописываем функцию, описывающую движение катера береговой охраны:(рис. 4.2)

```
--> function dr=f(tetha, r)
> dr=r/sqrt(11.25);
> endfunction;
```

Figure 4.2: Функция движения катера

 $^{^{1}}$ Кулябов, Д.С. Задача о погоне.

3. Указываем начальные условия:(рис. 4.3)

```
--> r0=31/9;

--> tetha0=0;

--> tetha=0:0.01:2*%pi;

--> r=ode(r0, tetha0, tetha, f);
```

Figure 4.3: Начальные условия первого случая

4. Далее прописываем функцию, описывающую движение лодки браконьеров:(рис. 4.4)

```
--> function xt=f2(t)
> xt=tan(fi)*t;
> endfunction;
--> t=0:1:100;
```

Figure 4.4: Функция движения лодки

5. После строим траектории движения лодки и катера:(рис. 4.5)

```
--> polarplot(tetha, r, style = color('green'));
--> plot2d(t, f2(t), style = color('red'));
```

Figure 4.5: Построение для первого случая

(рис. 4.6)

Figure 4.6: График для первого случая

6. Смотрим точку пересечения траекторий:(рис. 4.7)

Figure 4.7: Пересечение

Рассмотрим второй случай:

Единственное, что нам надо изменить в нашей программе - это начальные условия:(рис. 4.8)

Figure 4.8: Начальные условия второго случая

Далее аналогично проделываем работу из первого случая, строим траектории движения лодки и катера:(рис. 4.9)

Figure 4.9: График для второго случая

Смотрим точку пересечения траекторий:(рис. 4.10)

Figure 4.10: Пересечение2

5 Выводы

В ходе выполнения данной лабораторной работы я подробно ознакомилась с пакетом прикладных математических программ Scilab, изучила ее команды, а также а также научилась решать задачу о погоне, также смогла построить математическую модель.

6 Список литературы

- 1. Кулябов, Д.С. Задача о погоне / Д.С.Кулябов. Москва: 4 с.
- 2. Руководство по оформлению Markdown.