Ideals in F[x] (continued)

Throughout this class, F is a field.

Recall from last time...

Theorem. All ideals in F[x] are principal.

Theorem. Let $p(x) \in F[x]$, and let $I = \langle p \rangle$. Then:

- (a). $I = \langle 0 \rangle$ if and only if p = 0,
- (b). I is the unit ideal if and only if p is a nonzero constant, and
- (c). I is a maximal ideal if and only if p is irreducible.

Proof. (a) is clear. Note also that $\langle 0 \rangle$ is not maximal, because $\langle 0 \rangle \subsetneq \langle x \rangle \subsetneq F[x]$.

- (b). p is a nonzero constant $\iff p$ is a unit in $F[x] \iff \langle p \rangle$ is the unit ideal.
 - (c). In parts (a) and (b), p is constant and $\langle p \rangle$ is not maximal.

Therefore we may assume that p is not constant and that I is a nonzero proper ideal

If p is not irreducible, then p is reducible, say p=fg with f and g nonconstant. Considering the ideals $\langle p \rangle \subseteq \langle f \rangle \subseteq F[x]$, we have $\langle f \rangle \neq F[x]$ because f is not constant, and $\langle p \rangle \neq \langle f \rangle$ because $f \in \langle p \rangle$ would imply $p \mid f$, so $\deg f \geq \deg p$, and then g would have to be constant. Therefore $\langle p \rangle \subsetneq \langle f \rangle \subsetneq F[x]$, and we conclude that $\langle p \rangle$ is not maximal.

Conversely, assume that p is irreducible. Let $\langle p \rangle \subseteq \langle f \rangle \subseteq F[x]$ be ideals. Since $p \in \langle f \rangle$ we have p = fg for some $g \in F[x]$. Since p is irreducible, f or g must be constant (and they're nonzero because $p \neq 0$). Therefore either $f \in F^*$ (implying $\langle f \rangle = F[x]$) or $g \in F^*$ (which implies $f = g^{-1}p \in \langle p \rangle$, so $\langle f \rangle = \langle p \rangle$). In either case, we do not have $\langle p \rangle \subsetneq \langle f \rangle \subsetneq F[x]$. Since this is true for all ideals $\langle f \rangle$ between I and F[x], I is maximal.

A Loose End

Theorem 23.18. Let F be a field, and let $p, r, s \in F[x]$. If p is irreducible and $p \mid rs$, then $p \mid r$ or $p \mid s$.

Proof. Since p is irreducible, $\langle p \rangle$ is maximal, hence prime. Therefore

$$p \mid rs \iff rs \in \langle p \rangle \iff r \in \langle p \rangle \text{ or } s \in \langle p \rangle \iff p \mid r \text{ or } p \mid s \text{ .}$$

A "Basic Goal"

Stated imprecisely: Let F be a field. Then every nonconstant polynomial in F[x] has a zero in some field containing F as a subfield.

Definition. An extension field of a field F is a field that contains F as a subfield. The words "E/F is a field extension" mean that E is an extension field of F.

Examples. [Diagram on board; lines indicate field extensions]

Kronecker's Theorem

Theorem ("Basic Goal"). Let F be a field and let $f \in F[x]$ be a nonconstant polynomial. Then there exists a field extension E/F and an element $\alpha \in E$ such that $f(\alpha) = 0$.

Proof. Let p be an irreducible factor of f. It will be enough to find E and α such that $p(\alpha) = 0$.

Let $E = F[x]/\langle p \rangle$. Since p is irreducible, $\langle p \rangle$ is maximal, so E is a field. Let $\psi \colon F \to E$ be the composition

$$\psi \colon F \to F[x] \to F[x]/\langle p \rangle = E$$

(so that $\psi(a) = a + \langle p \rangle$). Note that $\psi(1) = 1 + \langle p \rangle \neq 0 + \langle p \rangle$ because $1 \notin \langle p \rangle$. Therefore ψ is injective [why?].

So we can regard E as an extension field of F.

Let $\alpha = x + \langle p \rangle \in E$.

Lemma. For any polynomial $g \in F[x]$, $g(\alpha) = g + \langle p \rangle$.

Proof. Write

$$g(x) = a_n x^n + \dots + a_0 .$$

Then

$$g(\alpha) = (a_n + \langle p \rangle)(x + \langle p \rangle)^n + \dots + (a_0 + \langle p \rangle)$$

$$= (a_n + \langle p \rangle)(x^n + \langle p \rangle) + \dots + (a_0 + \langle p \rangle)$$

$$= (a_n x^n + \langle p \rangle) + \dots + (a_0 + \langle p \rangle)$$

$$= (a_n x^n + \dots + a_0) + \langle p \rangle$$

$$= g(x) + \langle p \rangle.$$

In particular, $p(\alpha) = p(x) + \langle p \rangle = 0 + \langle p \rangle = 0$ (in E).

Example. $F = \mathbb{Q}$, $p(x) = x^2 - 2$ (irreducible over \mathbb{Q}). Then $E = F[x]/\langle x^2 - 2 \rangle$ and $\alpha = x + \langle x^2 - 2 \rangle$. Note that

$$\alpha^2 - 2 = x^2 + \langle p \rangle - (2 + \langle p \rangle) = (x^2 - 2) + \langle p \rangle = p + \langle p \rangle = 0 + \langle p \rangle.$$

Since $\mathbb{Q}[x] \to E$ is onto, every element of E can be written as $f + \langle p \rangle$ for some $f \in \mathbb{Q}[x]$.

(Subexample: $f(x)=x^4+3x^3-x-1=(x^2+3x+2)(x^2-2)+(5x-3)$ according to the Division Algorithm, with r(x)=5x-3, so $f(x)+\langle p\rangle=5x-3+\langle p\rangle=5\sqrt{2}-3$. Or, just plug in $\alpha^2=2$: $f(\alpha)=2^2+6\alpha-\alpha-1=5\alpha-3=5\sqrt{2}-3$.)

Clicker Questions!

(And please remind Prof. Vojta to return homeworks and pass out handouts)

Structure of E

Theorem. Let F be a field, let p = F[x] be an irreducible polynomial, let E be the field $F[x]/\langle p \rangle$, regarded as an extension field of F, and let $\alpha = x + \langle p \rangle \in E$. Also let $n = \deg p$. Then every element $\beta \in E$ can be expressed uniquely as a sum

$$\beta = b_{n-1}\alpha^{n-1} + \dots + b_0$$
 with $b_0, \dots, b_n \in F$.

Proof. Existence. Let $\beta \in E$, say $\beta = f + \langle p \rangle$ with $f \in F[x]$. Using the Division Algorithm, write f = qp + r with $q, r \in F[x]$ and $\deg r < n$. Then (since $p(\alpha) = 0$ in E), $f(\alpha) = r(\alpha)$. By the earlier lemma, we then have $\beta = f(x) + \langle p \rangle = f(\alpha) = r(\alpha)$, which can be written in the above form.

Uniqueness. If

$$\beta = b_{n-1}\alpha^{n-1} + \dots + b_0 = b'_{n-1}\alpha^{n-1} + \dots + b'_0,$$

then $c_{n-1}\alpha^{n-1} + \cdots + c_0 = 0$, where $c_i = b_i - b'_i$ for all i. Let

$$g(x) = c_{n-1}x^{n-1} + \dots + c_0 \in F[x]$$
.

Then $g(x) + \langle p \rangle = g(\alpha) = 0$, so $g \in \langle p \rangle$. For degree reasons, this can happen only if g = 0. Therefore $b'_i = b_i$ for all i, which gives uniqueness.

Interlude on Rings and Polynomials

Proposition. Let R be a commutative ring with unity. Let x and y be nonzero elements of R that are not zero divisors. Then $\langle x \rangle = \langle y \rangle$ if and only if x = uy for some unit u of R.

Proof. " \Longrightarrow ": $\langle x \rangle = \langle y \rangle$ implies $x \in \langle y \rangle$, so x = ay for some $a \in R$. Also, $y \in \langle x \rangle$ implies that y = bx for some $b \in R$. Therefore x = abx. Cancelling x gives 1 = ab, so a and b are units.

" \Leftarrow ": Assume that x = uy, where u is a unit in R. Then $x \in \langle y \rangle$, so $\langle x \rangle \subseteq \langle y \rangle$. Similarly $y = u^{-1}x$ gives $\langle y \rangle \subseteq \langle x \rangle$. Therefore $\langle x \rangle = \langle y \rangle$.

Corollary. Let F be a field and let $p, q \in F[x]$, both nonzero. Then $\langle p \rangle = \langle q \rangle$ if and only if p and q are (nonzero) constant multiples of each other.

Corollary. Let N be a nonzero ideal in F[x]. Then there is a unique monic polynomial $f \in F[x]$ such that $N = \langle f \rangle$.

Proof. We know that $N = \langle f_0 \rangle$ for some nonzero $f_0 \in F[x]$. Take $f = c^{-1}f_0$, where c is the leading coefficient of f_0 . This is the desired monic polynomial. It is unique because if $\langle f \rangle = \langle g \rangle$ with f and g monic, then f = cg for some $c \in F$, but c = 1 because both f and g are monic. Thus f = g.

Algebraic and Transcendental Elements

Definition. Let E/F be a field extension. Then an element $\alpha \in E$ is **algebraic** over F if there is a nonzero polynomial $f \in F[x]$ such that $f(\alpha) = 0$. Otherwise we say that α is **transcendental** over F.

Definition. A transcendental number is an element of \mathbb{C} which is transcendental over \mathbb{Q} . An algebraic number is defined similarly.

Examples. As noted earlier, π and e (the base of the natural logarithms) are transcendental numbers; $\sqrt{2}$ and 3 are algebraic numbers.

Theorem. Let E/F be a field extension and let $\alpha \in E$. Let $\phi_{\alpha} \colon F[x] \to E$ be the evaluation homomorphism $f(x) \mapsto f(\alpha)$. Then α is transcendental over F if and only if ϕ_{α} is injective.

Proof.

$$\alpha$$
 is transcendental over $F \iff f(\alpha) \neq 0$ for all $0 \neq f \in F[x]$

$$\iff \ker(\phi_{\alpha}) = \langle 0 \rangle$$

$$\iff \phi_{\alpha} \text{ is injective .}$$

$$irr(\alpha, F)$$

Theorem. Let E/F be a field extension and let $\alpha \in E$ be algebraic over F. Then there is an irreducible polynomial $p \in F[x]$ such that $p(\alpha) = 0$. It is a nonzero element of $\ker \phi_{\alpha}$ of smallest degree. If we require it to be monic, then it's unique, and is the unique monic element of $\ker \phi_{\alpha}$ of smallest degree.

Proof. By Theorem 27.24, $\ker \phi_{\alpha} = \langle p \rangle$ for some $p \in F[x]$ (recall that ϕ_{α} is a homomorphism $F[x] \to E$).

We claim that p is irreducible. To show this, assume that p is not irreducible. Since p is nonconstant, it must be reducible. Therefore p=fg with f and g nonconstant. Then $f(\alpha)g(\alpha)=p(\alpha)=0$; hence $f(\alpha)=0$ or $g(\alpha)=0$. This gives $f\in\ker\phi_{\alpha}$ or $g\in\ker\phi_{\alpha}$; therefore $p\mid f$ or $p\mid g$; and that gives $\deg f\geq\deg p$ or $\deg g\geq\deg p$, and that implies that g or f must be constant, respectively. This is a contradiction, so p is irreducible.

You can make p monic (divide it by its leading coefficient).

Then p is the unique monic irreducible polynomial such that $p(\alpha) = 0$. Indeed, if q is another such polynomial, then $q(\alpha) = 0$, so $q \in \ker \phi_{\alpha} = \langle p \rangle$, so $p \mid q$, and this gives q = cp for some $c \in F[x]$. But since q is irreducible, c must be a constant. In fact, since both p and q are monic, c = 1, so q = p.

Notes

- (1) Of all nonzero $f \in F[x]$ such that $f(\alpha) = 0$, p has the smallest degree
- (2) All $f \in F[x]$ such that $f(\alpha) = 0$ are multiples of p.

Definition. This (monic) polynomial p(x) is called the (monic) **irreducible polynomial** of α over F, and is written $\operatorname{irr}(\alpha, F)$ or $\operatorname{irr}_{\alpha, F}$ or $\operatorname{irr}_{\alpha, F}(x)$. The **degree** of α over F is the degree of $\operatorname{irr}_{\alpha, F}(x)$, and is written $\operatorname{deg}(\alpha, F)$.

Note: The image of $\phi_{\alpha} \colon F[x] \to E$ is denoted $F(\alpha)$. We have

$$F(\alpha) \cong F[x]/\langle p \rangle$$
.

It is a field (because p is irreducible, hence $\langle p \rangle$ is maximal).

 $F(\alpha)$ is the smallest subfield of E that contains both F and α (this follows from $\beta = b_{n-1}\alpha^{n-1} + \cdots + b_0$ with $b_{n-1}, \ldots, b_0 \in F$, as above).

Finis

Have a good weekend!

Good luck on your exams