Ejercicio N°5

Resuelve las siguientes situaciones problemáticas:

- a) Cierto cultivo de la bacteria *Rhodobacter sphaeroides* inicialmente tiene 25 bacterias y se observa que se duplica cada 5 horas.
- i) Encuentre un modelo exponencial para el número de bacterias del cultivo después de "t" horas.

$$n(t) = n_0 \cdot 2^{t/a}$$

Donde: "n(t)" es la cantidad de bacterias después de un tiempo t, " n_0 " es la cantidad inicial de bacterias, "t" es el tiempo en horas y "a" es el tiempo de duplicación.

$$\rightarrow n(t) = 25 \cdot 2^{t/5}$$

ii) Estime el número de bacterias después de 18 horas.

$$n(t) = 25 \cdot 2^{\left(\frac{18}{5}\right)} =$$

iii) ¿Después de cuántas horas llegará el número de bacterias a un millón?

$$1000000 = 25 \cdot 2^{\frac{t}{5}}$$

Despejamos "t":

$$\log_2 40000 = \log_2 2^{\frac{t}{5}}$$

$$15,28 = \frac{t}{5}\log_2 2 \to 15,28 = \frac{t}{5} \cdot 1 \to t = 15,28 \cdot 5 = 76,4 \text{ horas}$$

- b) La población de cierta especie de peces tiene una tasa de crecimiento relativa de 1,2% por año. Se estima que la población en 2000 era de 12 millones.
- i) Encuentre una función que modele la población en "t" años después de 2000.

$$n(t) = n_0 e^{rt}$$

Donde: "n(t)" es la población de peces, "n₀" es la población inicial (año 2000), "t" es el tiempo en años y "r" es la tasa de crecimiento relativa (porcentaje expresado en decimales).

$$\rightarrow n(t) = 12 \cdot e^{0.012 \cdot t}$$
(en millones)

ii) Estime la población de peces en el año 2005.

$$t = 2005 - 2000 = 5$$

$$n(t) = 12 \cdot e^{(0.012 \cdot 5)} = 12.74 \text{ millones}$$

iii) Trace una gráfica de la población de peces

Ejercicio Nº6

Graficar cada una de las siguientes funciones, hallar su amplitud, período y fase:

a) y = sen(2x)Amplitud: 1

Periodo: T=2pi/2=pi

Fase: -C/B=0pi

$$b) y = \frac{1}{2} sen(2x)$$

Amplitud: 1/2

Periodo: T=2pi/2=pi Fase: -C/B=0pi

 $1 \qquad (2 \quad \pi^2)$

 $c) y = \frac{1}{2} sen \left(2x - \frac{\pi}{4} \right)$

Amplitud: 1/2

Periodo: T=2pi/2=pi Fase: -C/B=pi/8

$$d) y = \frac{1}{2} sen\left(2x - \frac{\pi}{4}\right) + 2$$

Amplitud: 1/2

Periodo: T=2pi/2=pi Fase: -C/B=pi/8

La *amplitud* de una función es la distancia que hay desde el centro de la función hasta cualquiera de sus extremos. Es el número |A| que multiplica por fuera de la función. El *periodo* es la cantidad de tiempo que tarda un ciclo completo de movimiento, o es el intervalo de valores de "x" en el que se repite la función. T = 2pi/B La *fase* de una función trigonométrica es el desplazamiento horizontal que tiene la función. El ángulo de fase o desfase se calcula como -C/B.

Ejercicio Nº7

Para cada una de las siguientes funciones trigonométricas:

$$f(x) = sen(x); g(x) = cos(x); h(x) = tan(x)$$

Graficar su función inversa indicando dominio e imagen de la misma.

 $f(x) = sen(x) \rightarrow función inversa: y = arc sen(x) = sen^{-1}(x)$

 $g(x) = cos(x) \rightarrow función inversa: y = arc cos(x) = cos^{-1}(x)$

 $h(x) = tan(x) \rightarrow función inversa: y = arc tan(x) = tan^{-1}(x)$

Como se ve en las gráficas, se invierte el dominio con la imagen (el eje "y" ahora tiene unidades de ángulos), pero quedando una función más acotada en algunos casos.

Ejercicio Nº8

Resuelve las siguientes situaciones problemáticas:

a) Una escalera de 20 metros está inclinada contra un edificio, de modo que el ángulo entre el suelo y la escalera es de 72°. ¿A qué altura llega la escalera en el edificio?

Como necesito calcular la altura, y ésta es el cateto opuesto del ángulo, entonces me sirve usar la definición de la función trigonométrica seno:

$$sen(72^\circ) = \frac{cat. op.}{hip.} = \frac{y}{20 m}$$
$$\rightarrow y = 20m \cdot sen(72^\circ) = \boxed{19,02 m}$$

d) Una empinada montaña está inclinada 74° con la horizontal y se eleva a 3400 pies sobre la llanura circundante. Un funicular se ha de instalar desde un punto a 800 pies de la base hasta lo alto de la montaña, como se muestra. Encuentre la longitud más corta del cable necesario.

1 pie = 30,50 cm

Del triángulo celeste, al tener el ángulo y la altura, puedo usar la función tangente; ya que permite calcular la distancia horizontal (cateto adyacente):

$$tan(74^{\circ}) = \frac{cat. op.}{cat. ad.} = \frac{3400 \ pies}{d}$$

$$\rightarrow d = \frac{3400 \ pies}{tan(74^{\circ})} = 974,9 \ pies$$

Del triángulo rojo, usando el Teorema de Pitágoras:

$$\rightarrow x = \sqrt{(3400^2 + 1774,9^2)} = 1835,41 \text{ pies}$$