A Case Study on Runge Kutta 4 th Order Differential Equations and Its Application

Article in "Imperial Journal of Interdisciplinary Research (IJIR) · January 2017

CITATIONS READS
4 9,246

1 author:

Gowri Palanisamy Sri Krishna Arts and Science College, Coimatore 8 PUBLICATIONS 14 CITATIONS

SEE PROFILE

SEE PROFILE

ISSN: 2454-1362, http://www.onlinejournal.in

A Case Study on Runge Kutta 4th Order Differential Equations and Its Application

Gowri.P¹, Priyadharsini.S², Maheswari.T³

¹Asst.Prof Sri Krishna Arts and Science College

^{2,3}Sri Krishna Arts and Science College

Abstract: In this paper it is discussed about Runge Kutta 4th order with differential equations and its applications. The differential equation problems has sloved by Runge Kutta 4th order method and application problems are discussed with Runge Kutta 4th order and codeded in C programming.

1.Introduction

First Order Runge-Kutta Method

Consider the following case: we wish to use a computer to approximate the solution of the differential equation

$$dy(t)dt+2y(t)=0dy(t)dt+2y(t)=0$$
or
$$dy(t)dt=-2y(t)$$

Second Order Runge-Kutta Method

The first order Runge-Kutta method used the derivative at time t_0 (t_0 =0 in the graph below) to estimate the value of the function at one time step in the future. If you are not familiar with it, you should read the section entitled: A First Order Linear Differential Equation with No Input. We repeat the central concept of generating a step forward in time in the following text.

$$dy(t)dt+2y(t)=0$$
 or $dy(t)dt=-2y(t)$

Third Order Runge-Kutta Method

This method is a third order Runge-Kutta method for approximating the solution of the initial value problem y'(x) = f(x,y); $y(x_0) = y_0$ which evaluates the integrand, f(x,y), three times per step. For step i+1,

$$y_{i+1} = y_i + 1/6 \ (\ k_1 + 4 \ k_2 + k_3 \),$$
 where
$$k_1 = h \ f(x_i, y_i),$$

$$k_2 = h \ f(x_i + h \ / \ 2, \ y_i + k_1 \ / \ 2 \),$$

$$k_3 = h \ f(x_i + h, \ y_i - k_1 + 2 \ k_2 \),$$
 and
$$x_i = x_0 + i \ h.$$

Fourth Order Runge-Kutta Method

Runge-Kutta 4th order method is a numerical technique used to solve ordinary differential equation of the form

$$dy/dx = f(x,y),y(0)=y0$$

So only first order ordinary differential equations can be solved by using the Runge-Kutta 4th order method. Euler and Runge-Kutta methods are used to solve higher order ordinary differential equations or coupled (simultaneous) differential equations

2. Derivation

The runge –kutta 4th order method is based on the following

$$y_{i+1} = y_i + a_1 k_1 + a_2 k_2 + a_3 k_3 + a_4 k_4)h$$
(1)

Where knowing the value of $y=y_i$ at x_i , we can find the value of $y=y_{i+1}$ at x_{i+1} , and

$$h = x_{i+1} - x_i$$

Equation is equated to the first five terms of Taylor series

$$y_{i+1} = y_i + \frac{dy}{dx} \Big|_{z_i, y_i} (x_{i+1} - x_i) + \frac{1}{2!} \frac{d^2y}{dx^2} \Big|_{z_i, y_i} (x_{i+1} - x_i)^2 + \frac{1}{3!} \frac{d^3y}{dx^3} \Big|_{z_i, y_i} (x_{i+1} - x_i)^3 + \frac{1}{4!} \frac{d^4y}{dx^4} \Big|_{z_i, y_i} (x_{i+1} - x_i)^4$$
(2)

Knowing that dy/dx=f(x,y) and $x_{i+1}-x_i=h$

$$y_{i+1} = y_i + f(x_i, y_i)h + 1/2! f'(x_i, y_i)h^2 +$$

$$1/3! f'(x_i, y_i)h^3 + 1/4! f''(x_i, y_i)h^4$$
(3)

Based on equating equation (2) and equation (3), one of the popular solutions used is

$$Y_{i+1} \!\!=\!\! yi \!\!+\! 1/6(k_1 \!\!+\! 2k_2 \!\!+\! 2k_3 \!\!+\! k_4)h$$

$$k_1=f(x_i,y_i)$$

$$k_2=f(x_i+h/2,y_i+k_1/2 h)$$

Vol-3, Issue-2, 2017

ISSN: 2454-1362, http://www.onlinejournal.in

 $k_3=f(x_1+h/2,y_1+k_2/2)$

 $k_4=f(x_i+h,y_i+k_3h)$

3. Problems

1. Using fourth order runge-kutta method. Evaluate the value of y when x=1.1 given that $dy/dx+y/x=1/x^2$ y(1)=1

Solution:

The formula for the fourth order Runge-kutta method of the differential equation dy/dx=f(x,y) is given by

 $k_1=h *f(x_0,y_0)$

 $k_2=h*f(x_0+h/2,y_0+k_1/2)$

 $k_3=h*f(x_0+h/2,y_0+k_2/2)$

 $k_4=h*f(x_0+h,y_0+k_3)$

 $\Delta_v = 1/6(k_1 + 2k_2 + 2k_3 + k_4)$

Where h is the interval of differencing and (x_0,y_0) is the initial value

Hence f $(x,y)=1/x^2-y/x$; $x_0=1$ $y_0=1$ h=0.1

 $K_1=(0.1)*(1/1^2-1/1)$

=0

 $K_2=(0.1) [(1/(x_0+h/2)^2-(y_0+k_1/2/x_0+h/2))]$

 $=(0.1)[(1/(1+0.1/2)^2)-(1/1+0.1/2)]$

=-0.00454

 $K_3 = (0.1)[(0.9070) - (1 + (-0.00454/2)/1.05)]$

=0.1(0.9070-0.9502)

=-0.00432

 $K_4=(0.1)[(1/(1.1)^2)-(1-0.00432/1.1)$

=(0.1)(0.8264-0.9052)

=-0.00788

 $\Delta_{v}=1/6(0-0.00908-0.00864-0.00788)$

=-0.0042667

 $Y_1 = y(1.1)$

 $=y_0 + \Delta_y$

=1+(-0.0042667)

=0.9957

2. Compute y(0.1) and y(0.2) by runge kutta method of fourth order differential equation $dy/dx=xy+y^2$, y(0)=1

Solution:

The formula for the fourth order runge kutta method are

 $k_1=h *f (x_0 y_0)$

 $k_2=h*f(x_0+h/2,y_0+k_1/2)$

 $k_3=h*f(x_0+h/2,y_0+k_2/2)$

 $k_4=h*f(x_0+h,y_0+k_3)$

 Δ_y =1/6(k₁+2k₂+2k₃+k₄)

Where h is the interval of differencing and (x_0,y_0) is the initial value

Hence f $(x,y)=xy/y^2$; $x_0=1$ $y_0=1$ h=0.1

 $K_1=(0.1)(0+1)=0.1$

 $K_2=(0.1)[(0.05(1.05)+(1.05)^2)]$

=0.1155

 $K_3=(0.1)[0.05(1.05775)+(1.05775)^2$

=0.1172

 $K_4=(0.1)[(0.1)(1.1172)+(1.1172)^2]$

=0.1360

 $\Delta_{v}=1/6[0.1+0.2310+0.2344+0.1366]$

=0.1169

 $Y_1 = y_0 + \Delta_v$

=1+0.1169

=1.1169

y(0.1)=1.1169

For the second approximation we have x1=0.1

 $K_1=0.1[0.1*(1.1169)+(1.1169)^2]$

=0.1359

 $K_2=0.1[0.15(1.1849)+(1.1849)^2]$

=0.1582

 $K_3=0.1[0.15(1.196)+(1.196)^2]$

=0.1610

 $K_4=0.1[0.2(1.2779)+(1.2779)^2]$

=0.1889

 $\Delta_v = 1/6[0.1359 + 0.3164 + 0.3220 + 0.1889]$

=0.1605

 $Y_2=y1+\Delta_v$

=1.1169+0.605

=1.2774

Y(0.2)=1.2774

3. Use the classical RK method to estimate

y(0.4) when $y'(x) = x^2 + y^2$ with y(0)=0

assume h=0.2

SOLUTION:

$$f(x,y) = x^2 + y^2$$

$$m_1 = f(x_0, y_0) = 0$$

$$m_2 = f(x_0 + \frac{h}{2}, y_0 + \frac{m_1 h}{2})$$

$$= f(0.1,0) = 0.01$$

$$m_3 = f(x_0 + \frac{h}{2}, y_0 + \frac{m_2 h}{2})$$

$$==f(\frac{0.2}{2},\frac{0.01\times0.2}{2})$$

=0.01

$$m_4 = f(x_0 + h, y_0 + m_3 h)$$

$$= f(0.2, 0.01 \times 0.2)$$

=0.04

$$y(0.2) = 0 + \frac{0 + 2 \times 0.01 + 2 \times 0.01 + 0.04}{6} 0.2$$

=0.002667

ITERATION 2

 $X_1 = 0.2$

 $Y_1 = 0.002667$

4. Application Problem

1. In this program for Runge Kutta method in C, a function f(x,y) is defined to calculate slope whenever it is called. f(x,y) = (x-y)/(x+y) SOLUTION:

#include<studio.h>

```
#include<math.h>
                                                           the bacteria will reduce as fresh water enters the
float f(float x,float y);
                                                           lake .Find the concentration of the pollutant
void main()
                                                           after 7 weeks.
  float x0,y0,m1,m2,m3,m4,m,y,x,h,xn;
                                                            \frac{dC}{dt} + 0.06c = 0
  printf("Enter x0,y0,xn,h:");
  scanf("%f %f %f %f",&x0,&y0,&xn,&h);
  x=x0;
                                                           The differential equation that governs the
  y=y0;
                                                           concentration c of the pollution as a function of
  printf("\n\nX\t\Y\n");
  while(x \le xn)
                                                           time (in week) is given by
    m1=f(x0,y0);
                                                            \frac{dc}{dt} + 0.06c = 0, c(0) = 10^6
    m2=f((x0+h/2.0),(y0+m1*h/2.0));
    m3=f((x0+h/2.0),(y0+m2*h/2.0));
    m4=f((x0+h),(y0+m3*h));
                                                            \frac{dc}{dt} = -0.06c
    m=((m1+2*m2+2*m3+m4)/6);
    y=y+m*h;
    x=x+h;
    printf("%f\t\%f\n",x,y);
                                                            f(t,c) = -0.06c
getch();
                                                           c_{i+1} = c_1 + 1/6(k_1 + 2k_2 + 2k_3 + k_4)h
float f(float x,float y)
                                                           For i=0,t_0=0,c_0=10^7
  float m;
                                                           k_1 = f(t_0, c_0)
  m=(x-y)/(x+y);
  return m;
                                                           = f(0.10^7)
OUTPUT:
Enter x0,y0,xn,h:
                                                           =-0.06(10^7)
X=
Y=
                                                           =-600000
2. Using fourth order runge-kutta method.
                                                            k_2 = f(t_0 + 1/2 \times h, c_0 + 1/2k_1h)
Evaluate the value of y when x=1.1 given that
dy/dx+y/x=1/x^2 y(1) =1
                                                            = f(0+1/2 \times h, c_0 + 1/2k_1h)
Solution:
Function[]=runge (f,x_0,y_0,x_n,n)
x=x_0, y_1=y_0;
                                                           = f(0+1/2\times3.5,10^7+1/2(-600000)3.5)
h=x_n-x_0/n;
disp('x rk4')
                                                           = f(1.75,8950000)
for i=1:n
k_1=h*f(x,y_1);
                                                            =-0.06(8950000)
k_2=h*f(x+0.5*h,y_1+0.5*k_1);
k_3=h*f(x+0.5*h,y_1+0.5*k_2);
                                                           =-537000
k_4=h*f(x+h,y_1+k_3);
Y_1=y_1+1/6(k_1+2*k_2+2*k_3+k_4);
X=x+h;
                                                           k_3 = f(t_0 + 1/2 \times h, c_0 + 1/2k_2h)
disp([x y_1])
end
                                                           = f(0+1/2\times3.5,10^7+1/2(-537000)3.5)
disp ('RK 4<sup>th</sup> order method:')
disp([y_1])
OUTPUT:
                                                            = f(1.75,9060300)
f=@(x,y)1+y*y;
Runge(f,1,1, , 5)
                                                            =-0.06(9060300)
```

3. A polluted lake has an initial concentration of a bacteria of 10⁷ parts/m³. The concentration of

Vol-3, Issue-2, 2017

ISSN: 2454-1362, http://www.onlinejournal.in

= -543620	$= f(3.5+1/2\times3.5,8105900+1/2(-440648)3.5)$
$k_4 = f(t_0 + h, c_0 + k_3 h)$	£(5.25.7244100)
$= f(0+3.5,10^7 + (-543620)3.5)$	= f(5.25,7344100)
= f(3.5,8097300)	=-0.06(7444100)
=-0.06(8097300)	= -440648
= -485840	$k_4 = f(t_1 + h, c_1 + k_3 h)$
$c_1 = c_0 + 1/6(k_1 + 2k_2 + 2k_3 + k_4)h$	= f(3.5 + 3.5,8105900 + (-440648)3.5)
$= 10^7 + 1/6(-600000 + 2(-537000) + 2(-543620)$ $(-485840))3.5$	$= f(7,6563600)$ $\stackrel{)+}{=} 0.06(6563600)$
$= 10^7 + 1/6(-3247100)3.5$	= -393820
$= 8.1059 \times 10^6 \ parts / m^3$	$c_2 = c_1 + 1/6(k_1 + 2k_2 + 2k_3 + k_4)h$
C_1 is the approximate concentration of bacteria at $t=t_1=t_0+h=0+3.5=3.5 \text{ parts/m}^3$	$= 8105900 + 1/6(-486350 + 2 \times (-435290) + 2 \times (-440648) + (-393820)) \times 3.5$
$C(3.5)=C_1 = 8.1059 \times 10^6 \ parts / m^3$	$= 8105900 + 1/6(-2632000) \times 3.5$
For i=1, t_1 =3.5, C_1 = 8.1059×10 ⁶	$=6.5705\times10^6 \ parts/m^3$
$k_1 = f(t_1, c_1)$	1
$= f(3.5, 8.1059 \times 10^6)$	C ₂ is the approximate concentration of bacteria at
$=-0.06(8.1059\times10^6)$	$t_2 = t_1 + h = 3.5 + 3.5 = 7$ weeks C
= -486350	$C(7) = C_2 = 6.5705 \times 10^6 \ parts / m^3$
$k_2 = f(t_1 + 1/2 \times h, c_1 + 1/2k_1h)$	PROGRAM:
$= f(3.5 + 1/2 \times 3.5,8105900 + 1/2(-486350)3.5)$	#include <conio.h> #include<iostream.h> Void main() {</iostream.h></conio.h>
= f(5.25,7254800)	float c[10], f,t[10],h, n; cout<<"Enter the initial values of concentration of bacteria:"; int i; cin>>c[0]; cout<<"Enter the initial value of time:";cin>>t[0]; cout<<"Enter the value of time in weeks at which we want to see the concentration:";cin>>f; cout<<"Enter the difference: ";cin>>h; n=(f-c[0])/h; for(i=1;i<=n;i++)
=-0.06(7254800)	
-435290	
$k_3 = f(t_1 + 1/2 \times h, c_1 + 1/2k_2h)$	

Vol-3, Issue-2, 2017

ISSN: 2454-1362, http://www.onlinejournal.in

```
=-2.2067\times10^{-12}(653.05^4-81\times10^8)
{
a=0
k1 = -(.06 * c[a]);
                                                               =-0.38347
k2=-h*(.06*(c[a]+k1/2));
k3=-h*(.06*(c[a]+k2/2));
                                                               k_3 = f(t_0 + 1/2h, \theta_0 + 1/2k_2h)
k4=-h*(.06*(c[a]+k3));
k=(k1+2*k2+2*k3+k4)/6;
y[i]=y[a]+1;
                                                                f(0+1/2(240),1200+1/2(-0.38347)\times 240)
a++;
Cout <<"/n table ";
                                                               = f(120,1154.0)
For (i-0;i\leq n;i++)
Cout << \text{``} t x = \% f ty = \% f \text{''}, val[i][0], val[i][1];
                                                               =-2.2067\times10^{-12}(1154.0^4-81\times10^8)
Cout<<"\n";
Getch();
                                                               = -3.8954
Output:
                                                               k_4 = f(t_0 + h, \theta_0 + k_3 h)
Enter the initial values of concentration of bacteria:
Enter the initial value of time:
Enter the value of time in weeks at which we want
                                                               = f(0 + 240,1200 + (-3.894) \times 240)
to see the concentration:
Enter the difference:
                                                                = f(240,265.10)
4. A ball at 1200 K is allowed to cool down
in air at an ambient temperature of 300 K.
                                                                =-2.2067\times10^{-12}(265.10^4-81\times10^8)
Assuming heat is lost only due to radiation,
the differential equation for the temperature
                                                                =-0.0069750
of the ball is given by
                                                                \theta_1 = \theta_0 + 1/6(k_1 + 2k_2 + 2k_3 + k_4)h
\frac{d\theta}{d\theta} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8), \theta(0) = 1200k
                                                               =1200+1/6(-4.5579+2(-0.38954)+0.069750))240
                                                               =1200+(-2.1848)\times240
f(t, \theta) = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8)
                                                               =675.65K
\theta_{i+1} = \theta_i + 1/6(k_1 + 2k_2 + 2k_3 + k_4)h
                                                                \theta_1 is the approximate temperature at
For i=0, t_0=0, \theta_0 =1200k
                                                               t = t_1
k_1 = f(t_0, \theta_0)
                                                               =t_0+h
                                                               =0+240
=f(0,1200)
                                                               =240
=-2.2067\times10^{-12}(1200^4-81\times10^8)
                                                               \theta_1 = \theta (240)
=-4.5579
                                                               ~675.65K
k_2 = f(t_0 + 1/2h, \theta_0 + 1/2k_1h)
                                                               For i=1,t_1=240, \ \theta_1=675.65K
f(0+1/2(240),1200+1/2(-4.5579)\times 240)
                                                               k_1 = f(t_1, \theta_1)
                                                               = f(240,675.65)
=f(120,653.05)
```

Vol-3, Issue-2, 2017

ISSN: 2454-1362, http://www.onlinejournal.in

 $= -2.2067 \times 10^{-12} (675.65^4 - 81 \times 10^8)$

=-0.44199

$$k_2 = f(t_1 + 1/2h, \theta_1 + 1/2k_1h)$$

= f(240+1/2(240),675.65+1/2(-0.44199)240)

$$= f(360,622.61)$$

$$= -2.2067 \times 10^{-12} (622.61^4 - 81 \times 10^8)$$

=-0.31372

$$k_3 = f(t_1 + 1/2h, \theta_1 + 1/2k_2h)$$

=
$$f(240+1/2(240),675.65+1/2(-0.31372)\times240)$$

$$= f(360,638.00)$$

$$=-2.2067\times10^{-12}(638.00^4-81\times10^8)$$

$$=-0.34775$$

$$k_4 = f(t_1 + h, \theta_1 + k_3 h)$$

= $f(240 + 240,675.65 + (-0.34775) \times 240)$
= $f(480,592.19)$

$$= -2.2067 \times 10^{-12} (592.19^4 - 81 \times 10^8)$$

=-0.25351

$$\theta_2 = \theta_1 + 1/6(k_1 + 2k_2 + 2k_3 + k_4)h$$

 $675.65 + 1/6(-0.31372) + 2(-0.34775) + (-0.25351)) \times 240$ =675.65+1/6(-2.0184) × 240

=594.91K

 θ_2 is the approximate temperature at

 $t = t_2$

 $=t_1+h$

=240+240

=480

$$\theta_2 = \theta$$
 (480)

=594.91K

5. References

[1] Atkinson, Kendall A. (1989), An Introduction to Numerical Analysis (2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-50023-0.

[2]Butcher, John C. (May 1963), study of Runge-Kutta integration processes 3 (2), pp. 185–201, doi:10.1017/S1446788700027932.

[3]Butcher, John C. (1975), "A stability property of implicit Runge-Kutta methods", BIT 15: 358–361, doi:10.1007/bf01931672.

[4]Butcher, John C. (2008), Numerical Methods for Ordinary Differential Equations, New York: John Wiley & Sons, ISBN 978-0-470-72335-7.

[5] John.H.Mathews , KurtisD.Fink , Numerical Method Using MATLAB, ISBN 978-81-203-2765-8

[6] Laurene V Fausett , Applied Numerical Analysis Using MATLAB ,2009 ,ISBN 978-81-317-2853-6

[7]Pallab Ghosh , Numerical Methods with computer programs in c++ , ISBN 81-203-2987-2

[8] Vedamurthy. V N Dr N Ch S Iyengar, Numerical Methods ,Vellore , ISBN 978-81259-0630-8.