Integración numérica

Giovanni Ramírez García, PhD

Escuela de Ciencias Físicas y Matemáticas Universidad de San Carlos de Guatemala

Guatemala, 6 de abril de 2021

Introducción

Regla del trapecio

Regla de Simpson

Otros métodos

Solución de Problemas de Valores Iniciales Método de Euler Runge-Kutta

Dr. Giovanni Ramírez Integración numérica 2 / 38

Cuadratura numérica (I)

 Método para aproximar una integral definida basado en polinomios de interpolación

$$\int_a^b f(x)dx \approx \sum_{i=0}^n a_i f(x_i).$$

▶ Tomando los nodos $\{x_0, \ldots, x_n | x_i \in [a, b]\}$ se tiene el polinomio de Lagrange

$$P_n(x) = \sum_{i=0}^n f(x_i) L(x_i),$$

► de modo que

$$\int_a^b f(x)dx = \int_a^b \sum_{i=0}^n f(x_i) L_i(x) dx + \int_a^b \prod_{i=0}^n (x-x_i) \frac{f^{(n+1)}(\xi(x))}{(n+1)!} dx.$$

Dr. Giovanni Ramírez Integración numérica 3 / 38

Cuadratura numérica (II)

► El primer término se usa para aproximar

$$\int_a^b f(x)dx \approx \int_a^b \sum_{i=0}^n f(x_i) L_i(x) dx = \sum_{i=0}^n a_i f(x_i),$$

si
$$a_i = \int_a^b L_i(x) dx$$
,

▶ y el segundo término se usa para obtener el error de aproximación

$$E(f) = \frac{1}{(n+1)!} \int_a^b \prod_{i=0}^n (x-x_i) f^{(n+1)}(\xi(x)) dx.$$

Dr. Giovanni Ramírez Integración numérica 4 / 38

Regla del trapecio: definición (I)

- ► Se usa para aproximar la integral $\int_a^b f(x)dx$ con dos nodos.
- ▶ Si se toman $x_0 = a$ y $x_1 = b$, el polinomio de Lagrange de orden uno es

$$P_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1).$$

[Burden, Faires y Burden. Numerical Analysis. 10th Ed.]

Entonces

$$\int_a^b f(x)dx \approx \int_{x_0}^{x_1} \left[\frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1) \right] dx.$$

Dr. Giovanni Ramírez

Integración numérica

5 / 38

Regla del trapecio: definición (II)

► Al integrar se tiene

$$\int_a^b f(x)dx \approx \left[\frac{(x-x_1)^2}{2(x_0-x_1)}f(x_0) + \frac{(x-x_0)^2}{2(x_1-x_0)}f(x_1)\right]_{x_0}^{x_1},$$

▶ por lo que, si $h \equiv b - a = x_1 - x_0$,

$$\int_a^b f(x)dx \approx \frac{(x_1-x_0)}{2} \left[f(x_0) + f(x_1) \right] = \frac{h}{2} \left[f(x_0) + f(x_1) \right],$$

con el error de aproximación

$$R(x) = \frac{1}{2} \int_{x_0}^{x_1} f''(\xi(x))(x - x_0)(x - x_1) dx = -\frac{h^3}{12} f''(\xi),$$

porque $(x - x_0)(x - x_1)$ no cambia de signo en $[x_0, x_1]$ de modo que $f''(\xi)$ es una constante en la integral.

► Finalmente, la Regla del Trapecio es

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f(x_0) + f(x_1) \right] - \frac{h^3}{12} f''(\xi).$$

Dr. Giovanni Ramírez Integración numérica 6 / 38

▶ Para un número de subintervalos *n*, par o impar, es

$$\int_a^b f(x)dx = \frac{h}{2}\left[f(a) + 2\sum_{j=1}^{n-1} f(x_j) + f(b)\right] - \frac{b-a}{12}h^2f''(\mu),$$

donde h=(b-a)/n, $x_j=a+jh$ para $j=0,1,\ldots,n$ y con $\mu\in(a,b)$.

[Burden, Faires y Burden. Numerical Analysis. 10th Ed.]

Dr. Giovanni Ramírez Integración numérica 7 / 38

Método de trapecios compuesto: algoritmo

Entrada: La función que se quiere integrar f(x) se toma del módulo funciones; el intervalo [a,b] y un número entero n que se leen del archivo de configuraciones. **Salida:** El valor aproximado de la integral $S = \int_a^b f(x) dx$ con un error de aproximación $(b-a)/12h^2f''(\mu)$ donde h = (b-a)/n y $\mu \in (a,b)$. **Requiere:** el módulo donde se define la función f(x).

- 1. Inicio.
- 2. Leer *a*, *b* y *n*.
- 3. Definir h = (b a)/n.
- 4. Definir S = f(a) + f(b).
- 5. Hacer para i = 1, ..., n 1:
 - 5.1 Definir x = a + ih
 - 5.2 S = S + 2f(x).

- 6. S = hS/2.
- 7. Escribir *S*.
- 8. Fin.

Dr. Giovanni Ramírez Integración numérica 8 / 38

Regla de Simpson: definición (I)

- ► Se usa para aproximar la integral $\int_a^b f(x)dx$ con más nodos.
- ► Considere tres nodos $x_0 = a$, $x_1 = a + h$, $x_2 = b$; donde $h \equiv (b a)/2$, el polinomio de Lagrange de orden dos es

$$P_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} f(x_1) + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} f(x_2),$$

[Burden, Faires y Burden. Numerical Analysis. 10th Ed.]

Dr. Giovanni Ramírez

Integración numérica

9 / 38

Regla de Simpson: definición (II)

► entonces

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{2}} P_{2}(x)dx + \int_{x_{0}}^{x_{2}} \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{6} f^{(3)}(\xi(x))dx,$$

de modo que el error de aproximación $E(x) \sim O(h^4)$.

▶ Sin embargo, tomando una expansión de f(x) con un polinomio de Taylor de orden 3 alrededor de x_1

$$f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(x_1)}{2}(x - x_1)^2 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(\xi(x))}{24}(x - x_1)^4,$$

Dr. Giovanni Ramírez Integración numérica 10 / 38

Regla de Simpson: definición (III)

► se puede integrar

$$\int_{x_0}^{x_2} f(x)dx = \left[f(x_1)(x - x_1) + \frac{f'(x_1)}{2}(x - x_1)^2 + \frac{f''(x_1)}{6}(x - x_1)^3 + \frac{f'''(x_1)}{24}(x - x_1)^4 \right]_{x_0}^{x_2} + \frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 dx.$$

► Ahora con $h = x_2 - x_1 = x_1 - x_0$ se tiene

$$(x_2 - x_1)^2 - (x_0 - x_1)^2 = 0,$$
 $(x_2 - x_1)^4 - (x_0 - x_1)^4 = 0,$ $(x_2 - x_1)^3 - (x_0 - x_1)^3 = 2h^3,$ $(x_2 - x_1)^5 - (x_0 - x_1)^5 = 2h^5.$

▶ Además, $(x - x_1)^4 > 0$ para cualquier $x \in [x_0, x_2]$, entonces

$$\frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 dx = \frac{f^{(4)}(\xi)}{24} \int_{x_0}^{x_2} (x - x_1)^4 dx
= \frac{f^{(4)}(\xi)}{120} (x - x_1)^5 \bigg]_{x_0}^{x_2},$$

Dr. Giovanni Ramírez

Integración numérica

11 / 38

Regla de Simpson: definición (IV)

▶ así que

$$\int_{x_0}^{x_2} f(x) dx = 2hf(x_1) + \frac{h^3}{3}f''(x_1) + \frac{f^{(4)}(\xi)}{60}h^5.$$

 Ahora, usando la fórmula para el punto medio de la segunda derivada

$$f''(x) = \frac{1}{h^2} \left[f(x-h) - 2f(x) + f(x+h) \right] - \frac{h^2}{12} f^{(4)}(\xi),$$

para $x - h < \xi < x + h$.

Finalmente, podemos escribir la integral como

$$\int_{x_0}^{x_2} f(x)dx = 2hf(x_1) + \frac{h^3}{3} \left\{ \frac{1}{h^2} \left[f(x_0) - 2f(x_1) + f(x_2) \right] - \frac{h^2}{12} f^{(4)}(\xi_2) \right\} + \frac{f^{(4)}(\xi_1)}{60} h^5,$$

Dr. Giovanni Ramírez Integración numérica 12 / 38

Regla de Simpson: definición (V)

▶ donde al reordenar, se puede reemplazar ξ_1 y ξ_2 por un valor común $\xi \in (x_0, x_2)$. Si se desea, la existencia de este valor común se puede mostrar derivando la regla de Simpson usando

$$\int_{x_0}^{x_2} f(x)dx = a_0 f(x_0) + a_1 f(x_1) + a_2 f(x_2) + k f^{(4)}(\xi),$$

se puede encontrar a_0 , a_1 y a_2 porque la Regla de Simpson es exacta para $f(x) = x^n$ con n = 1, 2, 3. Entonces se encuentra k usando $f(x) = x^4$.

► Finalmente se obtiene la Regla de Simpson con tres nodos

$$\int_{x_0}^{x_2} f(x) dx = \frac{h}{3} \left[f(x_0) + 4f(x_1) + f(x_2) \right] + \frac{h^5}{90} f^{(4)}(\xi).$$

Dr. Giovanni Ramírez Integración numérica 13 / 38

Regla de Simpson: definición (V)

▶ Si se usan cuatro nodos se obtiene el Método de Simpson *tres* octavos que usa un polinomio $P_3(x)$

$$\int_{x_0}^{x_2} f(x) dx = \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right] - \frac{3h^5}{80} f^{(4)}(\xi),$$

con $x_0 < \xi < x_3$. El error sigue teniendo $O(h^5)$.

► Si se usan cinco nodos se obtiene una mejor aproximación

$$\int_{x_0}^{x_4} f(x)dx = \frac{2h}{45} \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right] - \frac{8h^7}{945} f^{(6)}(\xi),$$

con $x_0 < \xi < x_4$. Hay que notar que ahora el error si disminuye con $O(h^7)$.

Dr. Giovanni Ramírez Integración numérica 14 / 38

Método de Simpson compuesto

▶ Para un número par de subintervalos *n* se tiene

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[f(a) + 2 \sum_{j=1}^{n/2-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \right] - \frac{b-a}{180} h^{4} f^{(4)}(\mu),$$

donde h=(b-a)/n, $x_j=a+jh$ para $j=0,1,\ldots,n$ y con $\mu\in(a,b)$.

[Burden, Faires y Burden. Numerical Analysis. 10th Ed.]

Dr. Giovanni Ramírez

Integración numérica

15 / 38

Método de Simpson compuesto: algoritmo

Entrada: La función que se quiere integrar f(x) se toma del módulo funciones; el intervalo [a,b] y un número par n que se leen del archivo de configuraciones. **Salida:** El valor aproximado de la integral $S = \int_a^b f(x) dx$ con un error de aproximación $(b-a)/180h^4f^{(4)}(\mu)$ donde h = (b-a)/n y $\mu \in (a,b)$. **Requiere:** el módulo donde se define la función f(x).

- 1. Inicio.
- 2. Leer *a*, *b* y *n*.
- 3. Definir h = (b a)/n.
- 4. Definir $S_0 = f(a) + f(b)$.
- 5. Definir $S_1 = 0$, $S_2 = 0$.
- 6. Hacer para i = 1, ..., n 1:
 - 6.1 Definir x = a + ih
 - 6.2 Si *i* es par, $S_2 = S_2 + f(x)$. Si no, $S_1 = S_1 + f(x)$.

- 7. Definir $S = h(S_0 + 2S_2 + 4S_1)/3$.
- 8. Escribir *S*.
- 9. Fin.

Dr. Giovanni Ramírez Integración numérica 16 / 38

Otros métodos: Método de Romberg (I)

 Una forma alternativa de la regla trapezoidal compuesta que está dada por

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_{j}) + f(b) \right] + K_{1}h^{2} + K_{2}h^{4} + K_{3}h^{6} + \cdots$$

donde las constantes K_i sólo dependen de $f^{(2i-1)}$ y $f^{(2i-1)}(b)$.

- ▶ El método de Romberg usa los resultados de la regla trapezoidal compuesta para n = 1, 2, 4, 8, 16, ... asignándoles el nombre $R_{1,1}, R_{2,1}, R_{3,1}, ...$ respectivamente.
- ▶ Ahora se pueden extrapolar, mediante aproximaciones de orden $O(h^4)$, los valores de $R_{2,2}, R_{3,2}, R_{4,2}, \ldots$ usando

$$R_{k,2} = R_{k,1} + \frac{1}{3}(R_{k,1} - R_{k-1,1}), \forall k = 2, 3, \dots$$

Dr. Giovanni Ramírez

Integración numérica

17 / 38

Otros métodos: Método de Romberg (II)

▶ Mediante aproximaciones de orden $O(h^6)$ se pueden calcular $R_{3,3}$, $R_{4,3}$, $R_{5,3}$ usando

$$R_{k,3} = R_{k,2} + \frac{1}{15}(R_{k,2} - R_{k-1,2}), \forall k = 3, 4, \dots$$

▶ En general, después de tener las $R_{k,j-1}$ aproximaciones, se pueden determinar las aproximaciones de orden $O(h^{2j})$ usando

$$R_{k,j} = R_{k,j-1} + \frac{1}{4^{j-1}-1}(R_{k,j-1} - R_{k-1,j-1}), \forall k = j, j+1, \dots$$

Dr. Giovanni Ramírez Integración numérica 18 / 38

Otros métodos

- ▶ Cuadraturas adaptivas: usan un paso h que se adapta según la variación de la función f(x). A mayor variación de f(x), menor h.
- ► Cuadraturas gausianas: los nodos no se eligen equiespaciados sino que se eligen de modo que minimicen el error esperado en la apro-ximación

$$\int_a^b f(x)dx \approx \sum_{i=1}^n c_i f(x_i),$$

donde ci con coeficientes arbitrarios.

► Métodos para integrales múltiples: son extensiones de los métodos descritos previamente adaptados para integrales múltiples. Por ejemplo,

$$\iint_R f(x,y)dA = \int_a^b \left(\int_c^d f(x,y)dy \right) dx.$$

Dr. Giovanni Ramírez Integración numérica 19 / 38

Introducción

- ► Las ecuaciones diferenciales de muchos modelos físicos de los problemas de valores iniciales resultan demasiado complejas para ser resueltas analíticamente.
- ► Los métodos numéricos usados no producen una aproximación continua de la solución.
- ► Las aproximaciones se obtienen para ciertos puntos y se puede usar algún método de interpolación para encontrar la solución en puntos intermedios.

Dr. Giovanni Ramírez Integración numérica 20 / 38

Definiciones (I)

▶ Una función f(t,y) satisface la condición de Lipschitz en la variable y en un conjunto $D \subset \mathbb{R}^2$ si existe una constante L > 0 tal que

$$|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|,$$

siempre que (t, y_1) ; $(t, y_2) \in D$. La constante L se conoce como constante de Lipschitz para f.

- ▶ Un conjunto $D \subset \mathbb{R}^2$ es convexo si (t_1, x_1) ; $(t_2, x_2) \in D$ y $((1 \lambda)t_1 + \lambda t_2, (1 \lambda)y_1 + \lambda y_2) \in D$ para $\lambda \in [0, 1]$.
- ▶ Suponga que f(t, y) está definida en un conjunto convexo $D \subset \mathbb{R}^2$, si una constante L > 0 existe con

$$\left|\frac{\partial f(t,y)}{\partial y}\right| \leq L,$$

para todos los puntos $(t, y) \in D$. Entonces f satisface la condición de Lipschitz en y con una constante de Lipschitz L.

Dr. Giovanni Ramírez Integración numérica 21 / 38

Definiciones (II)

▶ Suponga que $D = \{(t,y)|a \le t \le b \land -\infty < y < \infty\}$ y que f(t,y) es continua en D. Si f satisface la condición de Lipschitz en D en la variable y, entonces el problema de valor incial

$$y'(t) = f(t, y), a \le t \le b, y(a) = \alpha,$$

con α constante, tiene una solución única y(t) para $a \leq t \leq b$.

► El problema de valor inicial

$$\frac{dy}{dt} = f(t, y), a \le t \le b, y(a) = \alpha,$$

está bien definido si

(a) existe una solución única y(t); y

Dr. Giovanni Ramírez Integración numérica 22 / 38

Definiciones (III)

(b) existen unas constantes $\epsilon_0 > 0$ y k > 0 tal que para cualquier ϵ , con $\epsilon_0 > \epsilon > 0$ cuando $\delta(t)$ es continua con $|\delta(t)| < \epsilon$ para toda $t \in [a,b]$ y cuando $|\delta_0| < \epsilon$, se tiene

$$\frac{dz}{dt} = f(t,z) + \delta(t), a \le t \le b, z(a) = \alpha + \delta_0,$$

tiene una solución única z(t) que satisface

$$|z(t) - y(t)| < k\epsilon, \forall t \in [a, b],$$

que es *el problema perturbado* asociado al problema original, esto se usa para cuantificar un error introducido en la definición de la ecuación diferencial o en la condición inicial.

▶ Suponga que $D = \{(t, y) | a \le t \le b \land -\infty < y < \infty\}$, si f es continua y satisface la condición de Lipschitz en y en D, entonces

$$\frac{dy}{dt} = f(t, y), \ a \le t \le b, \ y(a) = \alpha,$$

es un problema de valor inicial bien definido.

Dr. Giovanni Ramírez Integración numérica 23 / 38

Método de Euler (I)

- ► Técnica elemental que no se usa mucho en la práctica, pero su derivación es sencilla y se usa para ilustrar otras técnicas más avanzadas.
- Se usa para obtener aproximaciones a problemas de valor inicial bien definidos

$$\frac{dy}{dt} = f(t, y), \ a \le t \le b, \ y(a) = \alpha.$$

- No proporciona una aproximación continua de la solución y(t), sino aproximaciones a y en varios puntos llamados puntos de malla o de red en [a, b].
- ▶ Se debe usar algún método de aproximación para conocer el comportamiento de y(t) cerca de estos puntos de malla o de red.

Dr. Giovanni Ramírez Integración numérica 24 / 38

Método de Euler (II)

► Consideremos los puntos de malla distribuidos uniformemente en [a, b]

$$t_i = a + ih, i = 0, 1, 2, \dots, N,$$

donde $h = (b - a)/N = t_{i+1} - t_i$.

▶ Suponiendo que y(t) tiene dos derivadas continuas en [a, b], se usa una expansión de Taylor de modo que

$$y(t_{i+1}) = y(t_i) + y'(t_i)(t_{i+1} - t_i) + \frac{y''(\xi_i)}{2}(t_{i+1} - t_i)^2,$$

para un valor $\xi_i \in (t_i, t_{i+1})$.

► Ahora, usando la definición de *h*

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi_i),$$

Dr. Giovanni Ramírez

Integración numérica

25 / 38

Método de Euler (III)

 \blacktriangleright Como y(t) es una solución del problema, entonces

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}f''(\xi_i).$$

▶ Finalmente, si $\omega_i \approx y(t_i)$, para i = 1, 2, ..., N, se tiene $\omega_0 = \alpha$ y

$$\omega_{i+1} = \omega_i + hf(t_i, \omega_i),$$

que es la ecuación en diferencias asociada al método de Euler.

Ahora, supongamos que f es continua y satisface la condición de Lipschitz con L en $D=\{(t,y)|a\leq t\leq b, \wedge-\infty< y<\infty\}$ y que existe M tal que $|y''(t)|\leq M$, $\forall t\in [a,b]$ donde y(t) es una solución al problema de valor inicial, entonces

$$|y(t_i) - \omega_i| \leq \frac{hM}{2I} \left[e^{L(t_i-a)} - 1 \right],$$

donde $\{\omega_i\}$ se generan con el método de Euler.

Dr. Giovanni Ramírez Integración numérica 26 / 38

Figure 5.2

Figure 5.3

Figure 5.4

[Burden y Faires, Numerical Analysis, Brooks/Cole, 9ed.]

Dr. Giovanni Ramírez Integración numérica 27 / 38

Método de Euler: algoritmo

Resuelve el problema y' = f(t, y), para $a \le t \le b$ y con un valor inicial $y(a) = \alpha$.

Entrada: La función f(t,y) se toma del módulo funciones; el intervalo [a,b], el valor inicial α y un número de pasos n se leen del archivo de configuraciones. Salida: El valor aproximado $w \equiv y(t_i)$ donde $t_i = a + ih$, $\forall i \in [0, n+1]$, con un error de aproximación O(h) y que también depende exponencialmente de $t_i - a$.

Requiere: el módulo donde se define la función f(t, y).

- 1. Inicio.
- 2. Leer a, b, α y n.
- 3. Definir h = (b a)/n.
- 4. Definir t = a.
- 5. Definir $w = \alpha$.
- 6. Imprimir t, w.

- 7. Hacer para $i = 1, \ldots, n$:
 - 7.1 Definir w = w + hf(t, w).
 - 7.2 Definir t = a + ih.
 - 7.3 Imprimir *t*, *w*.
- 8. Fin.

Método de Euler: ejemplo (I)

Use el método de Euler para encontrar la solución de

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

para n = 10 y compare con el resultado exacto $y(t) = (t+1)^2 - 0.5e^t$.

Solución: con n = 10, se tiene h = 0.2, $t_i = 0.2i$ y $w_0 = 0.5$. Ahora

$$w_{i+1} = w_i + h(w_i - t_i^2 + 1) = 1.2w_i - 0.008i^2 + 0.2,$$

así que se obtienen estos resultados

ti	Wi	$ y(t_i)-w_i $
0.0	0.5000000	0.0000000
0.2	0.8000000	0.0292986
0.4	1.1520000	0.0620877
0.6	1.5504000	0.0985406
8.0	1.9884800	0.1387495
1.0	2.4581760	0.1826831

ti	Wi	$ y(t_i)-w_i $
1.2	2.9498112	0.2301303
1.4	3.4517734	0.2806266
1.6	3.9501281	0.3333557
1.8	4.4281538	0.3870225
2.0	4.8657845	0.4396874

Dr. Giovanni Ramírez

Integración numérica

29 / 38

Método de Euler: ejemplo (II)

Dr. Giovanni Ramírez Integración numérica 30 / 38

Métodos de orden superior (I)

- ▶ Otros métodos obtenidos usando polinomios de Taylor de orden superior tendrán cotas de error más pequeñas que el método de Euler, pero hay que calcular y evaluar derivadas de f(t, y).
- Para deducir otros métodos hay que usar el teorema de Taylor para dos variables: suponga que f(t,y) y todas sus derivadas de orden menor que o igual a n+1 son continuas en el conjunto $D=\{(t,y)|a\leq t\leq b\land c\leq y\leq d\}$ y que $(t_0,y_0)\in D$, para cada punto $(t,y)\in D$ existen dos números $\xi\in (t_0,t)$ y $\mu\in (y_0,y)$ tal que

$$f(t,y) = P_n(t,y) + R_n(t,y).$$

Dr. Giovanni Ramírez Integración numérica 31 / 38

Métodos de orden superior (II)

 \blacktriangleright El polinomio de Taylor de dos variables de orden n es

$$P_{n}(t,y) = f(t_{0},y_{0}) + \left[(t-t_{0}) \frac{\partial f}{\partial t}(t_{0},y_{0}) + (y-y_{0}) \frac{\partial f}{\partial y}(t_{0},y_{0}) \right]$$

$$= \left[\frac{(t-t_{0})^{2}}{2} \frac{\partial^{2} f}{\partial t^{2}}(t_{0},y_{0}) + (t-t_{0})(y-y_{0}) \frac{\partial^{2} f}{\partial t \partial y}(t_{0},y_{0}) + \frac{(y-y_{0})^{2}}{2} \frac{\partial^{2} f}{\partial y^{2}}(t_{0},y_{0}) \right] + \cdots$$

$$+ \frac{1}{n!} \sum_{j=0}^{n} \binom{n}{j} (t-t_{0})^{n-j} (y-y_{0})^{j} \frac{\partial^{n} f}{\partial t^{n-j} \partial y^{j}}(t_{0},y_{0}),$$

y el término de error es

$$R_n(t,y) = \frac{1}{(n+1)!} \sum_{j=0}^{n+1} \binom{n+1}{j} (t-t_0)^{n+1-j} (y-y_0)^j \frac{\partial^{n+1} f(\xi,\mu)}{\partial t^{n+1-j} \partial y^j}.$$

Dr. Giovanni Ramírez Integración numérica 32 / 38

Métodos de orden superior (III)

▶ De esta forma se pueden construir otros métodos que se conocen como *métodos de Taylor* de orden n, por ejemplo con $\omega_0 = \alpha$ y $\omega_{i+1} = \omega_i + hT^{(n)}$, donde

$$T^{(n)}(t_i,\omega_i)=f(t_i,\omega_i)+\frac{h}{2}f'(t_i,\omega_i)+\cdots+\frac{h^{n-1}}{n!}f^{(n-1)}(t_i,\omega_i).$$

- ► El método de Euler se obtiene con la expansión de Taylor de orden uno, T⁽¹⁾.
- ▶ El método de Runge-Kutta de orden dos se obtiene al determinar los valores para a_1 , α_1 y β_1 que hacen que $a_1f(t+\alpha_1,y+\beta_1)$ se aproxime a

$$T^{(2)}(t,y) = f(t,y) + \frac{h}{2}f'(t,y),$$

con un error menor que $O(h^2)$.

► Este método también se conoce como *método de punto medio* y permite definir otro que se conoce como *método de Euler modificado*.

Dr. Giovanni Ramírez

Integración numérica

33 / 38

Métodos de orden superior (IV)

▶ El método de Euler modificado se obtiene con $\omega_0 = \alpha$ y

$$\omega_{i+1} = \omega_i + \frac{h}{2} [f(t_i, \omega_i) + f(t_{i+1}, \omega_i + hf(t_i, \omega_i))], i = 0, 1, ..., N-1,$$

- ▶ con la expansión de Taylor de orden 3, el término $T^{(3)}(t,y)$ se puede aproximar usando $f(t + \alpha_1, y + \delta_1 f(t + \alpha_2, y + \delta_2 f(t, y)))$ con un error de orden $O(h^3)$;
- lacktriangle así que con $\omega_0=lpha$ y

$$\omega_{i+1} = \omega_i + \frac{h}{4} \left(f(t_i, \omega_i) + 3f(t_i + \frac{2h}{3}, \omega_i + \frac{2h}{3} f(t_i + \frac{h}{3}, \omega_i + \frac{h}{3} f(t_i, \omega_i)) \right),$$

para i = 0, 1, ..., N - 1, este método también se conoce como *método de Heun*.

Dr. Giovanni Ramírez Integración numérica 34 / 38

Método de Runge-Kutta (I)

▶ El método de Runge-Kutta más usado es el de orden cuatro donde se toma $\omega_0 = \alpha$ y los coeficientes

$$k_1 = hf(t_i, \omega_i),$$

$$k_2 = hf(t_i + \frac{h}{2}, \omega_i + \frac{k_1}{2}),$$

$$k_3 = hf(t_i + \frac{h}{2}, \omega_i + \frac{k_2}{2}),$$

$$k_4 = hf(t_{i+1}, w_i + k_3),$$

para obtener $\omega_{i+1} = \omega_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$, para i = 0, 1, ..., N-1 y un error del orden $O(h^4)$.

Dr. Giovanni Ramírez Integración numérica 35 / 38

Método de Runge-Kutta (II)

► También se usa el *método de Runge-Kutta-Fehlberg* o método de Runge-Kutta con error de truncamiento local con un polinomio de orden cinco

$$\tilde{\omega}_{i+1} = \omega_i + \frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{5}k_5 + \frac{2}{55}k_6,$$

que aproxima el error local para un polinomio de orden cuatro

$$\omega_{i+1} = \omega_i + \frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5.$$

▶ De modo que se debe adaptar el nuevo paso a un tamaño qh donde

$$q \leq \left(\frac{\epsilon h}{|\tilde{\omega}_{i+1} - \omega_{i+1}|}\right)^{1/n},$$

y ϵ es el límite deseado.

Dr. Giovanni Ramírez Integración numérica 36 / 38

Método de Runge-Kutta (III)

► Los coeficientes son

$$\begin{aligned} k_1 &= hf\left(t_i,\,\omega_i\right),\\ k_2 &= hf\left(t_i + \frac{h}{4},\,\omega_i + \frac{k_1}{4}\right),\\ k_3 &= hf\left(t_i + \frac{3h}{8},\,\omega_i + \frac{3k_1}{32} + \frac{9k_2}{32}\right),\\ k_4 &= hf\left(t_i + \frac{12h}{13},\,\omega_i + \frac{1932k_1}{2197} + \frac{7200k_2}{2197} + \frac{7296k_3}{2197}\right),\\ k_5 &= hf\left(t_i + h,\,\omega_i + \frac{439k_1}{216} - 8k_2 + \frac{3680k_3}{513} - \frac{845k_4}{4104}\right),\\ k_6 &= hf\left(t_i + \frac{h}{2},\,\omega_i - \frac{8k_1}{27} + 2k_2 - \frac{3544k_3}{2565} + \frac{1859k_4}{4104} - \frac{11k_5}{40}\right). \end{aligned}$$

Dr. Giovanni Ramírez Integración numérica 37 / 38

¡Muchas gracias!

Contacto:

Giovanni Ramírez García, PhD ramirez@ecfm.usac.edu.gt http://ecfm.usac.edu.gt/ramirez

Dr. Giovanni Ramírez Integración numérica 38 / 38