BME Gépészmérnöki Kar	BMEGEMMBXVE	Név:
Műszaki Mechanikai Tanszék	Végeselem módszer alapjai	NEPTUN-kód:
Félév: 2022/23/02	2. kötelező HF.	Aláírás:

	ÁBRA	KÓD2	KÓD3	KÓD4
Feladatkód:				

A feladat ábrája egy befogott gerendát szemléltet, melynek egy adott keresztmetszete görgős támasszal alátámasztott. A gerenda állandó $\emptyset d$ átmérőjű, kör keresztmetszetű. A tartó anyagának rugalmassági modulusza E, sűrűsége ρ . A gerenda egy adott keresztmetszetében egy m_0 tömegű koncentrált tömeg helyezkedik el, melynek a tehetetlenségi nyomatékát elhanyagolhatjuk.

FELADATOK

- 1. Készítsen méretarányos ábrát a tartóról a kényszerek feltüntetésével!
- **2.** Az m_0 koncentrált tömeg *elhanyagolásával* határozza meg a gerenda első három hajlító sajátfrekvenciáját $(f_1^{(a)}, f_2^{(a)}, f_3^{(a)})$ végeselemes módszer alkalmazásával! Az **AB** és **BC** szakaszon is 1 elemet használjon!
- **3.** Az m_0 koncentrált tömeg elhanyagolásával határozza meg a gerenda első három hajlító sajátfrekvenciáját $(f_1^{(b)}, f_2^{(b)}, f_3^{(b)})$ végeselemes módszer alkalmazásával! Az **AB** szakaszon két egyenlő hosszúságú elemet, míg a **BC** szakaszon 1 elemet használjon!
- **4.** Az m_0 koncentrált tömeg figyelembe vételével határozza meg a gerenda első három hajlító sajátfrekvenciáját $(f_1^{(c)}, f_2^{(c)}, f_3^{(c)})$ végeselemes módszer alkalmazásával! Az **AB** szakaszon két egyenlő hosszúságú elemet, míg a **BC** szakaszon 1 elemet használjon!
- 5. Az m_0 koncentrált tömeg figyelembe vételével határozza meg a gerenda első három hajlító sajátfrekvenciáját $(f_1^{(d)}, f_2^{(d)}, f_3^{(d)})$ végeselemes módszer alkalmazásával! Az **AB** szakaszon két egyenlő hosszúságú elemet, míg a **BC** szakaszon 1 elemet használjon! A konzisztens tömegmátrix helyett az elemek tömegmátrixát a koncentrált tömegmátrix-szal (lumped mass matrix) számítsa a tehetetlenségi nyomatékok figyelembe vételével!

	Feladatkód	KÓD2		KÓD3		KÓD4	
A		a	m_0	b	d	E	ρ
D		[m]	[kg]	[m]	[mm]	[GPa]	kg/m^3
A	1	1.2	15	5	25	170	6000
T	2	1.7	20	6	35	190	6500
О	3	2.1	25	7	45	210	7000
K	4	2.6	30	8	55	230	7500

EREDMÉNYEK

$f_1^{(a)}$ [Hz]	$f_2^{(a)}$ [Hz]	$f_3^{(a)}$ [Hz]	$f_1^{(b)}$ [Hz]	$f_2^{(b)}$ [Hz]	$f_3^{(b)}$ [Hz]
$f_1^{(c)}$ [Hz]	$f_2^{(c)}$ [Hz]	$f_3^{(c)}$ [Hz]	$f_1^{(d)}$ [Hz]	$f_2^{(d)}$ [Hz]	$f_3^{(d)}$ [Hz]