Test de Sistema Inteligentes - MUIINF

ETSINF, Universitat Politècnica de València, 13 de Junio de 2017

Apellido:	Nombre:	

Cuestiones(60 minutos, sin apuntes)

Marca cada recuadro con una única opción entre las dadas.

- C | En el marco de la máxima entropía, la expresión $\widetilde{p}(f) = \sum_{x,y} \widetilde{p}(x,y) f(x,y)$ representa
 - A) Una restricción.
 - B) Una distribución condicional de una característica.
 - C) El valor esperado de una característica de acuerdo con una distribución empírica.
 - D) No es una expresion que se utilice en máxima entropía.
- Dada la expresión $\delta_i = \frac{1}{M} \log \frac{\tilde{p}(f_i)}{p_{\lambda}(f_i)}$ utilizada para actualizar el valor λ_i asociado a la característica *i*-ésima en un modelo entrado por máxima entropía:
 - A) Dicho valor es 1/M cuando el valor esperado de la característica i-ésima con la distribución emprírica es 0.
 - B) Dicho valor es 1/M cuando el valor esperado de la característica i-ésima con la distribución emprírica coincide con el valor esperado de la característica de acuerdo con la distribución $\widetilde{p}(x)p_{\lambda}(y|x)$.
 - C) Dicho valor puede ser 1/M.
 - D) Ninguna de las anteriores.
- D En el marco de la máxima entropía, la expresión $\widetilde{p}(f_i) = \sum_{x,y} \widetilde{p}(x,y) f_i(x,y)$ se puede expresar también como:

 - A) $\widetilde{p}(f_i) = \sum_{x,y} \widetilde{p}(x|y) f_i(x,y)$. B) $\widetilde{p}(f_i) = \sum_{x,y} \widetilde{p}(y|x) f_i(x,y)$. C) $\widetilde{p}(f_i) = \sum_{x,y} \widetilde{p}(y) \widetilde{p}(y|x) f_i(x,y)$. D) $\widetilde{p}(f_i) = \frac{1}{|\mathcal{M}|} \sum_{x,y} N((x,y), \mathcal{M}) f_i(x,y)$, donde $N((x,y), \mathcal{M})$ representa el número de veces que el par (x,y) ha aparecido en la muestra \mathcal{M} , y $|\mathcal{M}|$ es la talla de dicha muestra.
- B | Sea un problema de clasificación en 3 clases A, B y C tal que la clasificación se realiza a partir de 2 caracteríssticas c_0 y c_1 . Se dispone de un modelo entrenado por máxima entropía cuyas características son del tipo:

$$f(x,y) = \begin{cases} 1 & \text{si } y = S \text{ y la característica } c_j \text{ está presente en } x \\ 0 & \text{en otro caso} \end{cases}$$

donde $S \in \{A, B, C\}$.

Suponiendo que $\lambda_{A,c_0}=\lambda_{B,c_0}=\lambda_{C,c_0}=3, \lambda_{A,c_1}=\lambda_{B,c_1}=\lambda_{C,c_1}=-3$ indica cuál sería la clase en la que se clasificaría una muestra que tuviese las características c_0 y c_1 .

- A) En A.
- B) En cualquiera de ellas.
- C) En A o B.
- En el ejercicio anterior, indica cuál de los siguientes cambios en los lambdas provocaría que una muestra con las características c_0 y c_1 se clasificase en la clase A.
 - A) $\lambda_{B,c_1}=\lambda_{C,c_1}=-4$ y el resto como están. B) $\lambda_{A,c_1}=-2$ y el resto como están.

 - C) $\lambda_{A,c_0} = -3$ y el resto como están.
 - D) $\lambda_{B,c_0} = \lambda_{C,c_0} = 4$ y el resto como están.
- B Dada la expresión $\delta_{A,c_0} = \frac{1}{M} \log \frac{\tilde{p}(f_{A,c_0})}{p_{\lambda}(f_{A,c_0})}$ utilizada para actualizar el valor λ_{A,c_0} en el ejercicio que aparece dos ejercicios más arriba:
 - A) Si $\widetilde{p}(f_{A,c_0}) > p_{\lambda}(f_{A,c_0})$, entonces se está penalizando la clasificación en la clase A de las muestras que tengan las característica c_0 .
 - B) Si $\tilde{p}(f_{A,c_0}) > p_{\lambda}(f_{A,c_0})$, entonces se está favoreciendo la clasificación en la clase A de las muestras que tengan las característica c_0 .
 - C) Se favorece siempre la clasificación de cualquier muestra en la clase A.
 - D) Se penaliza siempre la clasificación de cualquier muestra en la clase A.

$lue{\mathbb{C}}$ Supongamos que tenemos un modelo de lenguaje de 1-gramas con un vocabulario compuesto por n palabras donde todos parámetros son equiprobables. La probabilidad de la cadena " $a\ b\ c\ d$ " será:	los
A) $1/n$.	
B) n.	
C) $1/n^4$.	

- A Sea el siguiente cojunto de cadenas: {aaba, abbbba, aaabba}. Si estimamos un 3-grama con esta muestra entonces tenemos que
 - A) P(b|aa) = 2/3.

D) 4/n.

- B) P(b|aa) = 1.0.
- C) P(b|aa) = 0.5.
- D) P(b|aa) = P(a).
- A En la aproximación inversa a la traducción estadística, el modelo de lenguaje
 - A) Se aprende a partir de cadenas en la lengua destino.
 - B) Se aprende a partir de cadenas en la lengua origen.
 - C) Se aprende con pares de cadenas de ambas lenguas.
 - D) Se define manualmente.
- D En traducción estadística, el problema de la búsqueda con un modelo log-lineal con K caracterÃsticas utiliza la siguiente expresión:
 - A) $\hat{y} = \arg\max_{y} \sum_{k=1}^{K} \lambda_k h_k(x|y)$.
 - B) $\hat{y} = \arg \max_{y} \sum_{k=1}^{K} \lambda_k \log h_k(x|y)$.
 - C) $\hat{y} = \arg\max_{y} \sum_{k=1}^{K} \log h_k(x, y)$.
 - D) $\hat{y} = \arg \max_{y} \sum_{k=1}^{K} \lambda_k h_k(x, y)$.
- Dada la frase de referencia "éramos dos antiguos amigos" y la frase "éramos los antiguos amigos" producida por un sistema de traducción estadística, y suponiendo que BP = 1, y w_n es equiprobable, el BLEU = BP exp $\left(\sum_{n=1}^{N} w_n \log P_n\right)$ con precisión de n-gramas hasta n=2 es:
 - A) 0,50.
 - B) 0,20.
 - C) 0,40.
 - D) 0,70.
- B Supongamos que dos sistema de traducción traducen un frase de entrada y cada unos de ellos produce una cadena de salida. Ambas salidas se evaluan con el BLEU con precisión de n-gramas hasta n=1. En ambos casos se obtiene un BLEU igual a 1,0. Eso significa
 - A) Que los dos sistemas traducen perfectamente.
 - B) Que los dos sistemas han generado las mismas palabras que la frase de refenrencia.
 - C) Que los dos sistemas han generado las mismas palabras que la frase de refenrencia y en el mismo orden.
 - D) Ninguna de las anteriores.