SCS 43XX

Quantum Mechanics in Computing

University of Colombo, School of Computing

Labsheet 02

Multiple Systems in Qiskit

In this section, we'll explore the behavior of multiple systems.

1. Import necessary classes: Start by importing Statevector and Operator, as well as the square root function from NumPy

Below is the importation:

```
from qiskit.quantum_info import Statevector, Operator
from numpy import sqrt
```

Figure 1: Imports

2. Tensor Products:

Create two state vectors representing $|0\rangle$ and $|1\rangle$, and use the tensor method to create a new vector, $|0\rangle \otimes |1\rangle$.

Answer: Below is the tensor product in Qiskit:

```
zero = Statevector.from_label("0")
one = Statevector.from_label("1")

psi = zero.tensor(one)
display(psi.draw("latex"))
```

Output:

```
|01
angle
```

Figure 2: Basis states tensor products 2-system

3. Another Tensor Product

Create state vectors representing the $|+\rangle$ and $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ states, and combine them to create a new state vector. We'll assign this new vector to the variable psi.

Answer: Below is the tensor product in Qiskit:

```
plus = Statevector.from_label("+")
i_state = Statevector([1 / sqrt(2), 1j / sqrt(2)])

psi = plus.tensor(i_state)

psi.draw("latex")
```

Output:

$$rac{1}{2}|00
angle+rac{i}{2}|01
angle+rac{1}{2}|10
angle+rac{i}{2}|11
angle$$

Figure 3: Advanced tensor products 2-system

4. More Tensor Products

Create state vectors representing the

$$|+i\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle$$

$$|-i\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{i}{\sqrt{2}}|1\rangle$$

states, and combine them to create a new state vector. Assign this new vector to the variable phi.

```
plus = Statevector.from_label("+")
minus_i = Statevector.from_label("1")
phi = plus.tensor(minus_i)
display(phi.draw("latex"))
```

Output:

$$rac{1}{2}|00
angle - rac{i}{2}|01
angle + rac{1}{2}|10
angle - rac{i}{2}|11
angle$$

Figure 4: Advanced tensor products 2-system

Obtain the tensor using the operator.

Answer:

```
1 | display((plus ^ minus_i).draw("latex"))
```

Output:

$$rac{1}{2}|00
angle - rac{i}{2}|01
angle + rac{1}{2}|10
angle - rac{i}{2}|11
angle$$

Figure 5: Advanced tensor products 2-system

5. Tensor products of operators

The Operator class also has a tensor method. Create the X and I gates and display their tensor product.

```
1   X = Operator([[0, 1], [1, 0]])
2   I = Operator([[1, 0], [0, 1]])
3
4   X.tensor(I)
```

Output:

Figure 6: X and I tensor product

Obtain $H \otimes I \otimes X$.

Answer:

```
H = Operator.from_label("H")
I = Operator.from_label("I")
X = Operator.from_label("X")
display(H.tensor(I).draw("latex"))
display(H.tensor(I).tensor(X).draw("latex"))
```

Output:

$$\begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

$$\begin{bmatrix} 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & -\frac{\sqrt{2}}{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 & 0 & 0 & -\frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & -\frac{\sqrt{2}}{2} & 0 \end{bmatrix}$$

Figure 7: H and I and X tensor product

It is possible to use the operator

Figure 8: H and I and X tensor product

6.Use Compound Operations on Compound States

Compound states can be evolved using compound operations.

$$(H \otimes I)|\phi\rangle$$
 for $|\phi\rangle = |+\rangle \otimes |-i\rangle$

Perform the about transformation on the state $|\phi\rangle$ (phi).

Answer: :

```
1 display(phi.evolve(H ^ I).draw("latex"))
```

Output:

$$rac{\sqrt{2}}{2}|00
angle - rac{\sqrt{2}i}{2}|01
angle$$

Figure 9: Compound Operator Operation

7. Controlled Operation

Calculate $CX|\psi\rangle$ for

$$|\psi\rangle = |+\rangle \otimes |0\rangle.$$

To be clear, this is a CX operation where the left-hand qubit is the control and the right-hand qubit is the target. The result is the Bell state:

$$|\phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$$

Output:

$$rac{\sqrt{2}}{2}|00
angle+rac{\sqrt{2}}{2}|11
angle$$

Figure 10: Controlled NOT

8. Partial Measurement

The measure method is used to simulate a measurement of a quantum state vector. This method returns two items: the simulated measurement result and the new state vector after the measurement.

By default, the measure method measures all qubits in the state vector. Alternatively, it's possible to provide a list of integers as an argument, which causes only those qubit indices to be measured.

To demonstrate this, the following quantum state is created:

$$|w\rangle = \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |100\rangle)$$

Then, qubit number 0 (the rightmost qubit) is measured.

```
w = Statevector([0, 1, 1, 0, 1, 0, 0, 0] / sqrt(3))
       display(w.draw("latex"))
   3
   4 result, state = w.measure([0])
   5
      print(f"Measured: {result}\nState after measurement:")
       display(state.draw("latex"))
   8
      result, state = w.measure([0,1])
       print(f"Measured: {result}\nState after measurement:")
   9
  display(state.draw("latex"))
Output:
  rac{\sqrt{3}}{3}|001
angle+rac{\sqrt{3}}{3}|010
angle+rac{\sqrt{3}}{3}|100
angle
  Measured: 0
  State after measurement:
  rac{\sqrt{2}}{2}|010
angle+rac{\sqrt{2}}{2}|100
angle
  Measured: 01
  State after measurement:
  |001\rangle
```

Figure 11: Partial Measurement