Introduction to Information Retrieval

The PageRank Citation Ranking: _____
Bring Order to the web

Motivation and Introduction

Search results (similarity + importance)

- Why is Page Importance Rating important?
 - Huge number of web pages:
 - Diversity of web pages: different topics, different quality, etc.

- What is PageRank?
 - A method for rating the importance of web pages objectively and mechanically using the link structure of the web.

The History of PageRank

PageRank was developed by Larry Page (hence the name Page-Rank) and Sergey Brin.

■ It is first as part of a research project about a new kind of search engine. That project started in 1995 and led to a functional prototype in 1998.

- Shortly after, Page and Brin founded Google.
- 16 billion...

Link Structure of the Web

■ 150 million web pages □ 1.7 billion links

Backlinks and Forward links:

- >A and B are C's backlinks
- ➤ C is A and B's forward link

Intuitively, a webpage is important if it has a lot of backlinks.

What if a webpage has only one link off www.yahoo.com?

A Simple Version of PageRank

$$R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v}$$

- u: a web page
- B_u: the set of u's backlinks
- N_v: the number of forward links of page v
- c: the normalization factor to make $||R||_{L1} = 1 (||R||_{L1} = |R_1 + ... + |R_n|)$

An example of Simplified PageRank

$$M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/3 \\ 1/2 \\ 1/6 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

PageRank Calculation: first iteration

An example of Simplified PageRank

$$M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 5/12 \\ 1/3 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/2 \\ 1/6 \end{bmatrix}$$

PageRank Calculation: second iteration

An example of Simplified PageRank

$$M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 3/8 \\ 11/24 \\ 1/6 \end{bmatrix} \begin{bmatrix} 5/12 \\ 17/48 \\ 11/48 \end{bmatrix} \dots \begin{bmatrix} 2/5 \\ 2/5 \\ 1/5 \end{bmatrix}$$

Convergence after some iterations

A Problem with Simplified PageRank

A loop:

During each iteration, the loop accumulates rank but never distributes rank to other pages!

An example of the Problem

$$M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/3 \\ 1/6 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

An example of the Problem

$$M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 1/4 \\ 1/6 \\ 7/12 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/6 \\ 1/2 \end{bmatrix}$$

An example of the Problem

$$M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$\begin{bmatrix} 5/24 \\ 1/8 \\ 2/3 \end{bmatrix} \begin{bmatrix} 1/6 \\ 5/48 \\ 35/48 \end{bmatrix} \dots \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Random Walks in Graphs

- The Random Surfer Model
 - The simplified model: the standing probability distribution of a random walk on the graph of the web. simply keeps clicking successive links at random
- The Modified Model
 - The modified model: the "random surfer" simply keeps clicking successive links at random, but periodically "gets bored" and jumps to a random page based on the distribution of E

Modified Version of PageRank

$$R'(u) = \operatorname{c_1}_{v \in B_u} \frac{R'(v)}{N_v} + \operatorname{c_2} E(u)$$

E(u): a distribution of ranks of web pages that "users" jump to when they "gets bored" after successive links at random.

An example of Modified PageRank

$$M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$C_1 = 0.8$$
 $C_2 = 0.2$

An example of Modified PageRank

$$M = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 \\ 0 & 1/2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} yahoo \\ Amazon \\ Microsoft \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$

$$C_1 = 0.8$$
 $C_2 = 0.2$

$$\begin{bmatrix} 0.333 \\ 0.333 \\ 0.333 \end{bmatrix} \begin{bmatrix} 0.333 \\ 0.200 \\ 0.467 \end{bmatrix} \begin{bmatrix} 0.280 \\ 0.200 \\ 0.520 \end{bmatrix} \begin{bmatrix} 0.259 \\ 0.179 \\ 0.563 \end{bmatrix} \dots \begin{bmatrix} 7/33 \\ 5/33 \\ 21/33 \end{bmatrix}$$

Dangling Links

- Links that point to any page with no outgoing links
- Most are pages that have not been downloaded yet
- Affect the model since it is not clear where their weight should be distributed
- Do not affect the ranking of any other page directly
- Can be simply removed before pagerank calculation and added back afterwards

PageRank Implementation

- Convert each URL into a unique integer and store each hyperlink in a database using the integer IDs to identify pages
- Sort the link structure by ID
- Remove all the dangling links from the database
- Make an initial assignment of ranks and start iteration
 - Choosing a good initial assignment can speed up the pagerank
- Adding the dangling links back.

Convergence Property

- PR (322 Million Links): 52 iterations
- PR (161 Million Links): 45 iterations
- Scaling factor is roughly linear in *logn*

Convergence Property

- Theory of random walk:
 - A random walk on a graph is said to be rapidly-mixing if it quickly converges to a limiting distribution on the set of nodes in the graph.
 - A random walk is rapidly-mixing on a graph if and only if the graph is an expander graph.

Convergence Property

- Expander graph
 - Every subset of nodes S has a neighborhood (set of vertices accessible via outedges emanating from nodes in S) that is larger than some factor α times of |S|.
 - A graph has a good expansion factor if and only if the largest eigenvalue is sufficiently larger than the second-largest eigenvalue.

The Web is an expander-like graph

- Two search engines:
 - Title-based search engine
 - Full text search engine

- Title-based search engine
 - Searches only the "Titles"
 - Finds all the web pages whose titles contain all the query words
 - Sorts the results by PageRank
 - Very simple and cheap to implement
 - Title match ensures high precision, and PageRank ensures high quality

- Full text search engine
 - Called Google
 - Examines all the words in every stored document and also performs PageRank (Rank Merging)
 - More precise but more complicated

Web Page	PageRank (average is 1.0)
Download Netscape Software	11589.00
http://www.w3.org/	10717.70
Welcome to Netscape	8673.51
Point: It's What You're Searching For	7930.92
Web-Counter Home Page	7254.97
The Blue Ribbon Campaign for Online Free Speech	7010.39
CERN Welcome	6562.49
Yahoo!	6561.80
Welcome to Netscape	6203.47
Wusage 4.1: A Usage Statistics System For Web Servers	5963.27
The World Wide Web Consortium (W3C)	5672.21
Lycos, Inc. Home Page	4683.31
Starting Point	4501.98
Welcome to Magellan!	3866.82
Oracle Corporation	3587.63

Top 15 Page Ranks: July 1996

Personalized PageRank

- Important component of PageRank calculation is *E*
 - A vector over the web pages (used as source of rank)
 - Powerful parameter to adjust the page ranks
- E vector corresponds to the distribution of web pages that a random surfer periodically jumps to
- Instead in Personalized PageRank *E* consists of a single web page

PageRank vs. Web Traffic

- Some highly accessed web pages have low page rank possibly because
 - People do not want to link to these pages from their own web
 pages (the example in their paper is pornographic sites...)
 - Some important backlinks are omitted

use usage data as a start vector for PageRank.

The PageRank Proxy

Conclusion

 PageRank is a global ranking of all web pages based on their locations in the web graph structure

PageRank uses information which is external to the web pages –
 backlinks

 Backlinks from important pages are more significant than backlinks from average pages

■ The structure of the web graph is very useful for information retrieval tasks.