一手资源 持续更新 认准淘宝旺旺ID: 蔚然科技学堂 或者: 君学赢精品课堂 如在其他店购买请差评或退款, 他们断更新且残缺。可找我店免费领完整新资料

7.3 元组演算、域演算与查询优化

主要考点

- 1、元组演算
- 2、域演算
- 3、查询优化

一手资源 持续更新 认准淘宝旺旺ID: 蔚然科技学堂 或者: 君学赢精品课堂 如在其他店购买请差评或退款, 他们断更新且残缺。可找我店免费领完整新资料

元组演算

- 元组关系演算是非过程化查询语言,简称元组演算。它只描述所需信息,而不给出获得该信息的具体过程。
- 在元组演算中, 其元组演算表达式中的变量是以元组为单位的, 其一般形式为:

{t|P(t)}

其中, t是元组变量, P(t)是元组演算公式, 公式是由原子公式组成。

1、原子公式:

(1) R(t)

R是关系名, t是元组变量, R(t)表示: t是关系R中的一个元组。

(2) t[i] θC或Cθt[i]

t[i]表示元组变量t的第i个分量,C是常量, θ 为算术比较运算符。

(3) $t[i]\theta u[j]$

t和u是两个元组变量。 $t[i]\theta u[j]表示元组变量t的第i个分量与元组变量<math>u$ 的第j个分量之间满足 θ 运算。

元组演算

2、公式的定义

- 若一个公式的一个元组变量前有全称量词\v或存在量词∃符号,则称该变量为约束变量,否则称之为自由变量。公式可递归定义如下:
 - (1) 原子公式是公式。
 - (2) 如果 φ_1 和 φ_2 是公式,那么, $\neg \varphi_1$, φ_1 V φ_2 , φ_1 Λ φ_2 , φ_1 \Rightarrow φ_2 也都是公式。分别表示如下命题:
- ¬φ₁表示"φ₁不为真",φ₁νφ₂表示"φ₁或φ₂为真",φ₁Λφ₂表示"φ₁和φ₂都为真";φ₁⇒φ₂表示 "若φ₁为真则φ₂为真"。
- (3) 如果是 $φ_1$ 公式,那么, $∃t(φ_1)$ 是公式。 $∃t(φ_1)$ 表示这样一个命题: "如果有一个t使 $φ_1$ 为真,则 $∃t(φ_1)$ 为真,否则 $∃t(φ_1)$ 为假"。
- (4) 如果是 $φ_1$ 公式,那么, $∀t(φ_1)$ 是公式。 $∀t(φ_1)$ 表示这样一个命题: "如果对所有的t使 $φ_1$ 为真,则 $∀t(φ_1)$ 为真,否则 $∀t(φ_1)$ 为假"。
- 公式中运算符的优先顺序为:
- θ > ∀和∃ > ¬ > ∧和 ∨ > ⇒ , 加括号时 , 括号中的运算符优先。

例:设有关系R、S如下图所示,对如下所示的元组演算表达式,求出它们的值。

(1)
$$R1 = \{t \mid R(t) \land \neg S(t)\}$$

(2)
$$R2 = \{t \mid S(t) \land t[3] > t[2] \land t[2] < 8\}$$

(3)
$$R3 = \{t \mid (\exists u) (R(t) \land S(u) \land t[3] < u[2]) \}$$

(4)
$$R4 = \{ t \mid (\forall u) (R(t) \land S(u) \land t[3] > u[1]) \}$$

(5)
$$R5 = \{t \mid (\exists u) (\exists v) (R(u) \land S(v) \land u[2] > v[1] \land t[1] = u[1] \land t[2] = v[1] \land t[3] = v[3]) \}$$

A	В	С
1	2	3
4	5	6
7	8	9
10	11	12

Α	В	С
3	7	11
4	5	6
5	9	13
6	10	14

Α	В	С
1	2	3
7	8	9
10	11	12

(1) R1

Α	В	С
3	7	11
4	5	6
	(2) R	2

Α	В	C
1	2	3
4	5	6
7	8	9

(3) R3

(3) $R3 = \{t \mid (\exists u) (R(t) \land S(u) \land t[3] < u[2]) \}$

∃u表示:只要有一个(存在一个)u使得后面的公式成立就可以了,即t[3]只要小于u[2]中的其中一个就可以了,如果t[3]≥所有的u[2],就说明不存在任何一个u满足条件。

(4) $R4 = \{ t \mid (\forall u) (R(t) \land S(u) \land t[3] > u[1]) \}$

∀u表示:对任意一个(所有的)u,都要使后面的公式成立,只要有一个u没有满足这个条件,就不行。即:满足条件的t[3]应该大于所有的u[1]。

(5) $R5 = \{t \mid (\exists u) (\exists v) (R(u) \land S(v) \land u[2] > v[1] \land t[1] = u[1] \land t[2] = v[1] \land t[3] = v[3]) \}$

R

Α	В	С
1	2	3
4	5	6
7	8	9
10	11	12

S

Α	В	С
3	7	11
4	5	6
5	9	13
6	10	14

Α	В	С
1	2	3
4	5	6
7	8	9
ASSETTING.		

(3) R3

Α	В	C
7	8	9
10	11	12

(4) R4

S.A	S.C
3	11
4	6
3	11
4	6
5	13
6	14
3	11
4	6
5	13
6	14
	3 4 3 4 5 6 3 4 5

(5) R5

域演算

• 域关系演算简称域演算。在域演算中,表达式中的变量是表示域的变量,可将关系的属性名视为 域变量, 域演算表达式的一般形式为:

$$\{t_1, ..., t_k | P(t_1, ..., t_k) \}$$

其中, t₁, ..., t_k是域变量, P(t₁, ..., t_k)是域演算公式。

1、原子公式:

(1) $R(t_1, ..., t_i, ..., t_k)$

R是k元关系, t_i 是元组变量t的第i个分量, $R(t_1, ..., t_i, ..., t_k)$ 表示这样一个命题:以 $t_1, ..., t_i, ..., t_k$ 为分量的元组在关系R。

- (2) t_iθC 或 Cθt_i
 - t_i表示元组变量t的第i个分量,C是常量,θ为算术比较运算符。
- (3) $t_i \theta u_j$

 t_i 和 u_j 是两个域变量。 $t_i\theta$ u_j 表示元组变量t的第i个分量与元组变量u的第j个分量之间满足 θ 运算。

域演算

2、公式的定义

若一个公式的一个元组变量前有全称量词∀或存在量词∃符号,则称该变量为约束变量,否则称之为自由变量。公式可递归定义如下:

- (1) 原子公式是公式。
- (2) 如果 φ_1 和 φ_2 是公式,那么, $\neg \varphi_1$, $\varphi_1 \lor \varphi_2$, $\varphi_1 \land \varphi_2$, $\varphi_1 \Rightarrow \varphi_2$ 也都是公式。
- (3) 如果是 φ_1 公式,那么, $\exists t_i(\varphi_1)$ 是公式。 $\exists t_i(\varphi_1)$ 表示这样一个命题:"如果有一个 t_i 使 φ_1 为真,则 $\exists t_i(\varphi_1)$ 为真,否则 $\exists t_i(\varphi_1)$ 为假"。
- (4) 如果 $φ_1(t_1, ..., t_i, ..., t_k)$ 是公式,那么, $∀t_i(φ_1)$ 是公式。 $∀t(φ_1)$ 表示这样一个命题: "如果对所有的 t_i 使 $φ_1(t_1, ..., t_i, ..., t_k)$ 为真,则 $∀t_i(φ_1)$ 为真,否则 $∀t_i(φ_1)$ 为假"。

公式中运算符的优先顺序为:

θ > ∀和∃ > ¬ > Λ和∀ > ⇒,加括号时,括号中的运算符优先。

例:设有关系R、S如下图所示,对如下所示的域演算表达式,求出它们的值。

- (1) R1 = { $t_1t_2t_3$ | R ($t_1t_2t_3$) $\wedge t_1 < t_2 \wedge t_2 > t_3$ }
- (2) R2 = { $t_1t_2t_3$ | (R ($t_1t_2t_3$) \wedge $t_1>4$) V (S ($t_1t_2t_3$) \wedge $t_2<8) }$
- (3) R3 = { $t_1t_2t_3 \mid (\exists u)(\exists v)(\exists w) R(ut_2v) \land S(t_1wt_3) \land u \geqslant 7 \land v > w$ }

R

Α	В	С
1	2	1
4	5	7
7	8	6
10	11	9

S

Α	В	C
1	2	3
4	5	6
7	8	9
10	11	11

Α	В	С
1	2	1
7	8	6
10	11	9

(1) R1

			Section of the second
8.400	Α	В	С
	7	8	6
	10	11	9
	1	2	3
	4	5	6
	(2) D2		

(2) R2

S.A	R.B	S.C
1	8	3
4	8	6
1	11	3
4	11	6
7	11	9

(3) R3

查询优化

- 查询优化是指为查询选择最有效的查询计划的过程。一个查询可能会有多种实现方法,关键是如何找出一个与之等价的且操作时间又少的表达式,以节省时间、空间,提高查询效率。
- 在关系代数运算中, 笛卡儿积、连接运算是最耗费时间和空间的。

1、优化的准则:

- (1)提早执行选取运算。对于有选择运算的表达式,应优化成尽可能先执行选择运算的等价表达式,以得到较小的中间结果,减少运算量和从外存读块的次数。
 - (2) 合并乘积与其后的选择运算为连接运算。
 - (3) 将投影运算与其后的其他运算同时进行,以避免重复扫描关系。
 - (4) 将投影运算和其前后的二目运算结合起来, 使得没有必要为去掉某些字段再扫描一遍关系。
- (5) 在执行连接前对关系适当地预处理,就能快速地找到要连接的元组。方法有两种:索引连接法、排序合并连接法。
- (6)存储公共子表达式。对于有公共子表达式的结果应存于外存(中间结果),这样,当从外存读 出它的时间比计算的时间少时,就可节约操作时间。

一手资源 持续更新 认准淘宝旺旺ID:蔚然科技学堂 或者:君学赢精品课堂 如在其他 **S** 购买请差评或退款,他们断更新 **S G**钱缺。可找我店免费领完整新资

例:查询成绩大于90的男生的学号,姓名。

〔1〕 π_{学号,姓名}(σ_{成绩>'90'∧ 性别='男'}(S⋈SC))

S⋈**S**C

学号	姓名	性别	年龄	成绩
1001	李娜	女	18	94
1003	王华	男	18	92
1004	吴莉	女	20	86

学号	姓名	性别	年龄
1001	李娜	女	18
1002	赵聪	男	19
1003	王华	男	18
1004	吴莉	女	20

学号	成绩
1001	94
1003	92
1004	86
1005	72

σ_{成绩>'90'∧} 性别='男' **(S⋈SC)**

学号	姓名	性别	年龄	成绩
1003	王华	男	18	92

π_{学号,姓名}(σ_{成绩>'90'∧ 性别='男'}(S▷□SC))

学号	姓名
1003	王华

(2) π_{学号,姓名}(σ_{性别='男'}(S)) ⋈ π_{学号}(σ_{成绩>'90'} (SC))

σ_{性别='男'}(S)

学号	姓名	性别	年龄
1002	赵聪	男	19
1003	王华	男	18

π学号,姓名(σ性别='男'(S))

学号	姓名
1002	赵聪
1003	王华

π_{学号,姓名}(σ_{性别='男'}(S)) ⋈ π_{学号}(σ_{成绩>'90'} (SC))

学号	姓名
1003	王华

σ_{成绩>'90'} (SC)

学号	成绩
1001	94
1003	92

π_{学号}(σ_{成绩>'90'} (SC))

例:供应商数据库中有:供应商S、零件P、项目J、供应SPJ四个基本表(关系),其关系模式如下所示:

S (Sno, Sname, Status, City)
P (Pno, Pname, Color, Weight)
J (Jno, Jname, City)
SPJ (Sno, Pno, Jno, Qty)

供应商编号,供应商名称,供应商城市 零件号,零件名称,颜色,重量 工程号,项目名称,所在城市 供应商编号,零件编号,工程号,数量

若用户要求查询使用"上海"供应商生产的"红色"零件的工程号,请解答如下问题:

- (1) 试写出该查询的关系代数表达式;π_{Jno}(σ_{City='上海'∧ Color='红'}(S⋈SPJ⋈P))
- (2) 试写出查询优化的关系代数表达式。
 π_{Jno} (π_{Sno}(σ_{city='上海'}(S)) ⋈ π_{Sno, Pno, Jno} (SPJ) ⋈ π_{Pno} (σ_{Color='红'} (P)))
- (3) 画出该查询初始的关系代数表达式的语法树。
- (4) 使用优化算法,对语法树进行优化,并画出优化后的语法树。

(2)
$$\pi_{Jno}\left(\pi_{Sno}(\sigma_{city='$$
上海'(S)) \bowtie $\pi_{Sno,\ Pno,\ Jno}(SPJ) \bowtie $\pi_{Pno}\left(\sigma_{Color='$ 红'}(P)))$

1、19年第38题

关系代数表达式的查询优化中,下列说法错误的是(C)。

- A、提早执行选择运算
- B、合并乘积与其后的选择运算为连接运算
- C、如投影运算前后存在其它的二目运算,应优先处理投影运算
- D、存储公共的子表达式, 避免重新计算

2、16年第37题

关系R, S如下表所示, 元组演算表达式T={t|R(t)Λ∀u(S(u)→t[3]>u[1])} 运算的结果为(C)。

R		
A	В	С
1	2	3
4	5	6
7	8	9
10	11	12

5		
A	В	С
3	7	11
4	5	6
5	9	13
6	10	14

	A	В	С
1	1	2	3
	4	5	6

	A	В	С
В、	3	7	11
	4	5	6

	A	В	С
C、	7	8	9
	10	11	12

5	9	13
		15
6	10	14

3、15年第30题

在关系R(A1, A2, A3)和S(A2, A3, A4)上进行关系运算的4个等价的表达式E1, E2, E3和E4如下所示:

$$E1 = \pi_{A1,A4}(\sigma_{A2<'2015' \land A4='95'}(R\bowtie S))$$

$$E2 = \pi_{A1,A4}(\sigma_{A2<'2015'}(R) \bowtie \sigma_{A4='95'}(S))$$

E3 =
$$\pi_{A1,A4}(\sigma_{R.A2=S.A2 \land R.A3=S.A3 \land A2<'2015' \land A4='95'}(R \times S))$$

E4 =
$$\pi_{A1,A4}(\sigma_{R.A2=S.A2 \land R.A3=S.A3}(\sigma_{A2<'2015'}(R) \times \sigma_{A4='95'}(S)))$$

如果严格按照表达式运算顺序,则查询效率最高的是(B)。

A. E1

B. E2

C. E3

D. E4

4、13年第33~35题

关系R、S如下图所示,关系代数表达式 $\pi_{R.A,S.B,S.C}(\sigma_{R.A>S.B}(R\times S)) = (D)$,它与元组演算表达式 {t| (∃u)(∃v)(R(u) Λ S(v) Λ (B) Λ (C))}等价。

A	В	С
a	b	С
d	e	f
h	i	j
k	m	n
	R	

A	В	С
с	h	m
d	h	f
e	n	p
f	k	q
	S	

(33) A.

R.A	S.B	S.C
a	n	p
a	k	q

B.

R.A	S.B	S.C
e	h	m
e	h	f

R.A	S.B	S.C
h	n	p
h	k	q

D.

R.A	S.B	S.C
k	h	m
k	h	f

(34)A. u[1]<v[2]

B. u[1] > v[2]

 $(35)A. t[1]=v[1] \wedge t[2]=u[5] \wedge t[3]=v[6]$

C. $t[1]=u[1] \wedge t[2]=v[2] \wedge t[3]=v[3]$

C. u[1]<v[5]

D. u[1]>v[5]

B. $t[1]=u[1] \wedge t[2]=u[2] \wedge t[3]=u[3]$

D. $t[1]=u[1] \wedge t[2]=v[2] \wedge t[3]=u[3]$