

Assessment of the Statistical Impedance Field Method for the Analysis of the RTN Amplitude in Nanoscale MOS Devices

G. Torrente*, N. Castellani*, A. Ghetti[†], C. Monzio Compagnoni*, A. Lacaita*, A. S. Spinelli* and A. Benvenuti[†]

^{*} Politecnico di Milano, Milano, Italy

[†] Micron Technology Inc., Process R&D, Agrate Brianza, Italy

Outline

- Introduction
- Statistical Impedance Field Method (sIFM) for the analysis of the amplitude of RTN fluctuations
- Comparison between sIFM and conventional MC results
- Conclusions

Random Telegraph Noise

- RTN is a fluctuation of device V_T (or I_D) between two definite levels
- Technology scaling has been increasing the amplitude of RTN fluctuations giving rise to a wider statistical distribution

Statistical RTN effect

- The fluctuation is due to a carrier capture/emission mechanism at the SiO₂/Si interface
- The RTN amplitude is the result of trap capability to stop the percolative path
- RTN now represents a major reliability issue

Conventional RTN MC scheme

 The computational burden is proportional to the number of samples

Statistical Impedance Field Method

- Motivation: reducing the computational loads
- Hypothesis: treating the variability sources as a small perturbation of Poisson/DD solution
- Approximation: linear approximation of Poisson/DD equations around a reference condition
- Thesis: treating the effects of variability sources through the Green Functions approach

Statistical Impedance Field Method

Literature: neutral V_⊤ statistics

$$\delta I_k = \int G_D^0(r) \, \delta N_k(r) d^3 r$$

$$\delta N_k(r) = N_k(r) - N_{cont}(r)$$

- This work: neutral V_⊤ statistics + RTN amplitude, using
 - sIFM-doping: atomistic doping as perturbation of the continuous doping case (with neutral and charged trap)
 - sIFM-trap: trapped charge as perturbation of the atomistic doping

1- The sIFM-doping scheme

2- The sIFM-trap scheme

Computational load comparison

- Given:
 - N_{dop} atomistic doping configurations
 - N_{trap} trap positions per cell
- Any simulation set gives a statistical ensamble of N_{dop} x N_{trap} elements

Statistical dispersion of ΔV_T

- Both of the sIFM schemes are able to reproduce the reference MC statistics
- Reduced computational burdens allow to explore lower probability ranges

A more in-depth analysis

- A point by point comparison between MC and sIFM methods shows a non-negligible discrepancy in the results
- Unphysical negative ΔV_T may occur using sIFM-doping method
- Correlation values are calculated omitting unphysical points

Role of trap position

- Largest errors using sIFM schemes occur when the RTN trap is placed close to cell edges
- Dispersion is symmetric over the average value
- ΔV_T estimation errors compensate each other in a statistical analysis

Vertically non-uniform dopings

- In some cases sIFM schemes maybe inaccurate also for ΔV_T statistics
 - The sIFM-trap is not very inaccurate
 - The sIFM-doping is very good

(b

δ-shaped

t_{epi}=16nm

 $N_{dop} = 100$

90 120 150

60

 ΔV_{T} [mV]

ວ ຣ 1-Cumulative Probability

Vertically non-uniform dopings

- Dopants are far from the channel surface
- sIFM-doping scheme is accurate also looking at the single MC samples

Laterally non-uniform dopings

- Changing the doping profile along W methods are equivalent
- A change in the doping profile along L modifies percolation paths
- sIFM-doping better describes these last effects

Conclusions

- The sIFM methods are a good compromise between accuracy and computational burdens allowing to explore lower probability ranges
- sIFM methods are able to reproduce with a good accuracy statistical quantities
- Performing a point by point comparison between sIFM results and MC reference, a non-negligible discrepancy occurs
- In case of nonuniform doping profiles the accuracy of the sIFM methods should be evaluated case by case

Thank you for your attention

Niccolo' Castellani, Ph.D. Student, Politecnico di Milano, Milano (Italy) ncastellani@elet.polimi.it

Effects of linearization

 Inaccuracies of the sIFM schemes come from the linear approximations involved in the method

I_D-V_G of the highest sIFM-doping ΔV_T

- The sIFM methods fail to reproduce filled trap I_D-V_G
- The sIFM-doping method also fails to reproduce neutral I_D-V_G curve
- Atomistic doping cannot be considered as a small perturbation

Remarks on ΔV_T dispersion

 Thanks to lower computational burdens sIFM methods are useful to extend statistics to lower probability ranges

- sIFM-trap:
 - is computationally faster
 - shows a better agreement with MC reference
 - does not introduce errors in neutral I_D-V_G calculation

Results: RTN, Uniform doping

 ΔVt_MC 6,4 mV $\Delta Vt_sIFMdop$ -66,7 mV

