Notes of Basic Topolgy

Taper

November 22, 2016

Abstract

A note of Basic Topology, based on $\mathit{Basic\ Topology}$ by M.A. Armstrong.

Contents

1	Special Notes	1			
2	A Brief Note of Chapter 4 - Identification Spaces				
	2.1 Identification topology	3			
	2.2 Topological Groups	7			
	2.3 Orbit Space	6			
3	Chapter 5 - Fundamental Groups				
	3.1 Homotopic maps	12			
	3.2 Review	13			
4	Anchor 16				
5	License 1				
	There are several parts that I will skipped for convenience. The	se			
ine	clude chapter 1 - Introduction, chapter 2 - Continuity, chapter 3 - Con-	m-			
pa	ctness and Connectedness, and chapter 4 - Identification Spaces. Belo	ow			
is	some especially confusing part that I would like to note:				

1 Special Notes

sec:Special-Notes

About map In book [1], a map is defined as a continuous function (page 32), which is confusing. In this note, I will not use this convention and will always states continuity clearly.

Basic facts about maps Assuming domain f = X, codomain f = Y.

$$f(U \cup V) = f(U) \cup f(V) \tag{1.0.1}$$

$$f(U \cap V) \subseteq f(U) \cap f(V) \tag{1.0.2}$$

$$f(U^c) \supseteq f(U)^c$$
, i.e. $f(U)^c \subseteq f(U^c)$ (1.0.3)

$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$
(1.0.4)

$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
(1.0.5)

$$f^{-1}(U^c) = [f^{-1}(U)]^c (1.0.6)$$

Smallest the Largest Topolgy The set of all possible topolgies on X is partially ordered by inclusion. For a certain characteristics \mathcal{C} , it is possible to have the smallest or the largest one.

The smallest topolgy \mathcal{T}_{\min} is the one such that, for any \mathcal{T}' satisfying \mathcal{C} , $\mathcal{T}_{\min} \subseteq \mathcal{T}'$. The largest topolgy \mathcal{T}_{\max} is the one such that, for any \mathcal{T}' satisfying \mathcal{C} , $\mathcal{T}' \subseteq \mathcal{T}_{\max}$. Synonyms of these two words are:

• Larger: stronger, finer.

• Smaller: weaker, coarser.

Figure 1: Comparing topologies and coffee (Credit: math3ma)

For example, assuming we have

$$f: X \to Y \tag{1.0.7}$$

where f is any function.

If X has topolgy \mathcal{T}_X , we ask then what kind of topolgy on Y will make f a continuous function. First, all $f^{-1}(V)$, with $V \in \mathcal{T}_Y$ should be open in

X. So, the easiest choice is to make $\mathcal{T}_{Y,\min} = \{\varnothing,Y\}$, this is the smallest topolgy. Also, any set $V \in Y$ such that $f^{-1}(V) \notin \mathcal{T}_X$ should not be in \mathcal{T}_Y . Then the largest topolgy is $\mathcal{T}_{Y,\max} = \{V \subset Y | f^{-1}(V) \in \mathcal{T}_X\}$.

If Y has topolgy \mathcal{T}_Y , we also ask what kind of topolgy on X will make f a continuous function. First, all $V \in \mathcal{T}_Y$, their preimage $f^{-1}(V)$ must be in \mathcal{T}_X . So the smallest topolgy is $\mathcal{T}_{X,\min} = \{f^{-1}(V)|V \in \mathcal{T}_Y\}$. Than what about the largest topolgy? We consider, what kind of sets cannot be inside \mathcal{T}_X . First, can $(f^{-1}(V))^c = f^{-1}(V^c)$ be in \mathcal{T}_X ? Yes. Since unless the space is connected, there can be sets being both open and closed (other than X and \emptyset). Any other restrictions? No that I can think of. So, the largest topolgy $\mathcal{T}_{X,\max} = 2^X$, the set of all subsets of X. (The notation 2^X is taken from the page 4 of book [2].

A summary:

Table 1: Largest and Smallest Topolgies

$X \stackrel{f}{\rightarrow}$	$\cdot Y$	Smallest	Largest
Given	\mathcal{T}_X	$\mathcal{T}_{Y,\min} = \{\varnothing, Y\}$	$\mathcal{T}_{Y,\max} = \{V \subset Y f^{-1}(V) \in \mathcal{T}_X\}$
Given	\mathcal{T}_Y	$\mathcal{T}_{X,\min} = \{ f^{-1}(V) V \in \mathcal{T}_Y \}$	$\mathcal{T}_{X, ext{max}} = 2^X$
No cons	traint	$\{\varnothing,X\}$	2^X

Facts about subspace/induced topolgy Let Y be a subspace of a topological space X wit induced topolgy.

Fact 1.1. A set $H \subseteq Y$ is open in Y if and only if $H = F \cap Y$ for some open set F in X.

Fact 1.2. A set $H \subseteq Y$ is closed in Y if and only if $H = F \cap Y$ for some closed set F in X.

Fact 1.3. A set H is open/closed in $X \Rightarrow H$ is open/closed in Y. But the converse may not be true. The converse statement depends on whether Y is open or closed in X.

2 A Brief Note of Chapter 4 - Identification Spaces

2.1 Identification topology

Definition 2.1 (Identification Topology). Let X be a topological space and let \mathscr{P} be a family of disjoint nonempty subsets of X such that $\cup \mathscr{P} = X$. Such a family is usually called a partition of X. Let Y be a new space whose points are the members of \mathscr{P} . Let $\pi: X \to Y$ sends each point of X to the subset of \mathscr{P} . Define a topology \mathcal{T}_Y on Y to be the largest topology such that the π is continuous. This \mathcal{T}_Y is called the identification topology. And Y is called the **identification space**.

sec:Brief-Note-Chapter-4

ec:Identification topology

Theorem 2.1. Let Y be an idetification space defined as above and let Z be an arbitrary topological space. A function $f: Y \to Z$ is continuous if and ony if the composition $f \circ \pi: X \to Z$ is continuous.

$$X \xrightarrow{\pi} Y \xrightarrow{f} Z$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathscr{P}$$

Definition 2.2 (Identification Map). Let $f: X \to Y$ be an onto continuous map and suppose that the topolgy on Y is the largest for which f is continuous. Then we call f an identification map.

The naming "identification map" is because:

Theorem 2.2. Any function $f: X \to Y$ gives rise to a partition of X whose members are the subsets $\{f^{-1}(y)\}$, where $y \in Y$. Let Y_* denote the identification space associated with this partition, and $\pi: X \to Y_*$ the usual continuous map.

$$X \xrightarrow{f} Y$$

$$\downarrow^{\pi}$$

$$\{f^{-1}(y)\} = Y_*$$

If f is an identification map, then:

- 1. the spaces Y and Y_* are homeomorphic;
- 2. a function $g:Y\to Z$ is continuous if and only if the composition $g\circ f:X\to Z$ is continuous.

Theorem 2.3. Let $f: X \to Y$ be an onto continuous map. If f maps open sets of X to open sets of Y, or closed sets to closed sets, then f is an identification map, i.e. \mathcal{T}_y is the largest topology such that f is continuous.

Corollary 2.1. Let $f: X \to Y$ be an onto continuous map. If X is compact and Y is Hausdorff, then f is an identification map.

Definition 2.3 (Torus). Torus is the unit square $[0,1] \times [0,1]$, with 1. opposite edge identified; 2. four edge points identified.

Remark 2.1. The identification map and corollary 2.1 can be used to show that torus is homeomorphic to two copies of circles: $S^1 \times S^1$. This is mentioned in page 68 of [1].

Definition 2.4 (Cone CX). The cone of any space CX is formed from $X \times I$, where I is the unit interval [0,1], with certain identification. The identification shrinks all points in one surface into one point. This is discussed in page 68 of [1].

coro:idmap-coro

Figure 2: Cone of a Circle (Wikipedia)

Remark 2.2. There is another definition of cone CX when X in imbeded into \mathbb{E}^n , may be found on page 68 of [1]. Cone constructed in this way is called a geometric cone. It is made up of all straight line segments that join $v = (0, 0, \dots, 1) \in \mathbb{E}^{n+1}$ to some point of X.

Lemma 2.1. The geometric cone on X is homeomorphic to CX.

Definition 2.5 (Quotient Space). Let X be a topological space, A be its subspace. Then X/A menas the X with subspace A identified to a point.

- 1. the set A.
- 2. the individual points of $X \setminus A$.

Remark 2.3. In this notation, CX becomes $(X \times I)/(X \times \{1\})$.

Fact 2.1.

$$B^n/S^{n-1} \cong S^n \tag{2.1.1}$$

where \cong menas homeomorphic. This is proved on page 69. Intuitively, this is like wrap a lower dimension ball surround the higher dimension ball.

Definition 2.6 $(f \cup g)$. Let $X, Y \ f \cup g$ subsets of a topological space and give each of X, Y, and $X \cup Y$ the induced topology. If $f: X \to Z$ and $g: Y \to Z$ are functions which agree on the intersection of X and Y, we can define

$$f \cup g: X \cup Y \to Z$$
 (2.1.2)

$$(f \cup g)(x) = f(x), x \in X$$

$$(f \cup g)(x) = g(x), x \in Y$$

We say that $f \cup g$ are formed by 'glueing together' the functions f and g.

Lemma 2.2 (Glueing lemma (closed)). If X and Y are closed in $X \cup Y$, and if both f and g are continuous, then $f \cup g$ are continuous.

Similarly,

Lemma 2.3 (Glueing lemma (open)). If X and Y are open in $X \cup Y$, and if both f and g are continuous, then $f \cup g$ are continuous.

These two lemmas are seen as a special case of the following theorem, explained in page 70.

Define X+Y to be the disjoint union of spaces X,Y. Define $j:X+Y\to X\cup Y$ which restrict to either X or Y is just the inclusion in $X\cup Y$.

Theorem 2.4. If j is an identification map, and if both $f: X \to Z$ and $g: X \to Z$ are continuous, then $f \cup g: X \cup Y \to Z$ is continuous.

This can be generalized as follows. Let $X_{\alpha}, \alpha \in A$ be a family of subsets of a topological space and give each X_{α} and the union $\cup X_{\alpha}$, the induced topolgy. Let Z be a space and suppose we are given maps $f_{\alpha}: X_{\alpha} \to Z$, one for each α in A, such that if $\alpha, \beta \in A$,

$$f_{\alpha} \bigg|_{X_{\alpha} \cap X_{\beta}} = f_{\beta} \bigg|_{X_{\alpha} \cap X_{\beta}}$$

Define function $F: \cup X_{\alpha} \to Z$ by glueing together f_{α} . Let $\oplus X_{\alpha}$ be the disjoint unin of spaces X_{α} . Let $j: \oplus X_{\alpha} \to \cup X_{\alpha}$ be similarly defined.

Theorem 2.5. If j is an identification map, and if each f_{α} is continuous, then F is continuous.

Note: When j is the identification map, then $\cup X_{\alpha}$ has the identification topology instead of the subspace topology. The two will be quite different, as discussed on page 70 to 71 of [1].

Definition 2.7 (Projective space P^n). A discussion of real P^n may be found on page 71.

Attaching maps and $X \cup_f Y$ Let:

$$Y \supset A \xrightarrow{f} X$$
 (2.1.3)

where X,Y are topological spaces, f is continuous. We identify the disjoint union X+Y using f, partitioning them into:

- 1. pairs of points $\{a, f(a)\}$ where $a \in A$;
- 2. individual points of $Y \setminus A$;
- 3. individual points of $X \setminus \text{Im}(f)$.

The result identification space is denoted $X \cup_f Y$, and f is called the attaching map. This process can also be viewed as:

$$X \cup_f Y = (X \coprod Y) / \{ f(A) \sim A \}$$
 (2.1.4)

Figure 3: Attaching Space (credit: nLab

Example 2.1. P^2 can be seen as attaching a closed disc D to the boundary of M, a Mobius strip, as discussed in page 72 of [1]. Geometrically, this simply shrinks the boundary of M into a point. And an ant travelling around this point can point out the direction just as in P^2 .

Remark 2.4. It is remarked that properties such as compactness, connectedness, and path-connectedness is inherited in identification. However, Hausdorff-ness is not. An counter example can be found in page 72 of [1].

2.2 Topological Groups

sec:Topological-Groups

In simple words, **topological groups** are objects that has both a topolgy on it and a group structure in it. And the two structures must be compatible. Specifically, the multiplication map $a \cdot b$ and the inverse map $a \to a^{-1}$ are continuous. Homomorphisms between are both grouphomomorphisms and topological-homomorphisms (continuous maps). Isomorphisms are both group-isomorphisms and topology-isomorphisms (homeomorphisms). A sub-(topological group) is both a subgroup and has subspace topology. For convenience of language, use \mathcal{TPG} denotes the category of topological groups. ¹

Example 2.2. The \mathbb{R} is a topological group. The \mathbb{Z} with discrete topology form the sub-(topological group) of \mathbb{R} . The quotient \mathbb{R}/\mathbb{Z} forms a topological group. The map $f: \mathbb{R} \to S^1$ induces a homeomorphism $\mathbb{R}/\mathbb{Z} \cong S^1$, which is also a group isomorphisms, i.e. it is a \mathcal{TPG} -isomorphism.

Example 2.3. Similarly, R^n .

Example 2.4. The circle is also one. The group structure is combination of degrees.

Example 2.5. Any group with discrete topology.

Example 2.6. The torus considered as the product of two circles. (Take the producttopology and the product group structure.

Example 2.7. Three sphere S^3 considered as the unit sphere in the space of quaterions \mathbb{H} .

Remember this? :

¹This notation is nowhere popular or accepted. I use it to only to save space and time.

The unit sphere are unit quaterions, see more Versor.

Example 2.8. The **orthogonal group** O(n), of $n \times n$ orthogonal real matrices. It is easy to check that O(n-1) is a sub- \mathcal{TPG} of O(n).

Definition 2.8 (Left translation L_x). For $x \in G$, the function

$$L_x: G \to G \tag{2.2.1}$$

$$q \mapsto xq$$
 (2.2.2)

is called a left translation by x. Similarly we have **right translation** R_x

Fact 2.2. L_x and R_x are homeomorphisms (But not group-isomorphisms).

Remark 2.5. This shows that a topological group has a certain homogeneity as a topological space. For if $x, y \in G$, then $L_{yx^{-1}}$ maps x to y and is a homeomorphism. Therefore G exhibits the same topological structure locally near each point.

Theorem 2.6. Let G is a topological group, let K be a connected component of G which contains the identity element. Then K is a closed normal subgroup of G.

Fact 2.3. If G = O(n), then K = SO(n).

Theorem 2.7. In a connected topological group, any neighbourhood of the identity element is a set generates the whole group.

The two theorems above is summarised as

A bit more examples about matrices:

Example 2.9. $\mathbb{M}(n)$ the $n \times n$ matrices, is not a topological group. But its subspace $\mathrm{GL}(n)$, specifically, $\mathrm{GL}(n,\mathbb{R})$ or $\mathrm{GL}(n,\mathbb{C})$, is a topological group. This is demonstrated in page 76, theorem 4.12.

Fact 2.4. GL(n) is not compact. It has two idsjoint nonempty open sets: those with positive and those with negative determinants.

Theorem 2.8. O(n) and SO(n) are closed and compact. SO(n) is a sub-TPG of O(n).

Fact 2.5. $SO(2) \cong S^1$ and $SO(3) \cong P^3$. Here \cong means isomorphisms of topological groups.

Remark 2.6. These two facts established on page 77. The first one can be easily guess. Since a rotation is obviously determined by a rotation degree on S^1 . Mathematically we have

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cong e^{i\theta}$$
 (2.2.3)

The second one is proved mathematical in book [1]. But it has a physical argument. Remember we have the the homogeneous coordinates for P^3 , such as $[1, \theta_x, \theta_y, \theta_z]$. As indicated in my labels, the three free coordinates θ_i can be regarded as rotation in 3-dimensional space. This rotation preserves the orientation, so it is in SO, not in O.

sec:Orbit-Space

2.3 Orbit Space

Definition 2.9 (Group Action on Topology Space). A topological group G is said to act as a group of homeomorphisms on a space X if each group element (let $g, h \in G$) induces a homeomorphism of the space in such a way that:

- 1. $(hg)(x) = h(g(x)), \forall x \in X;$
- $2. \ e(x)=x, \, \forall x\in X, \, \text{where} \, e=gg^{-1};$
- 3. the function $G \times X \to X, (g, x) \mapsto g(x)$ is continuous.

The subset of X, consisting of g(x) for all $g \in G$, is called an **orbit** of $x \in X$, written O(x). Thought, it more convenient to write it just as Gx, as in textbooks of abstract algebra.

Fact 2.6. A common fact in abstract algebra here is: each orbit Gx is disjoint. If two $Gx \cap Gy \neq \emptyset$, then Gx = Gy.

By above fact, orbits partitions X, hence we can form the Identification space, with every elements in X identified with their brothers in the same orbit. The result is **orbit space** X/G.

Example 2.10. \mathbb{Z} acts on \mathbb{R} by addition $x \mapsto x + n$, $x \in \mathbb{R}$, $n \in \mathbb{Z}$. It partitioned \mathbb{R} into intervals, for each $x \in X$, $x \sim x + n$, $\forall n \in \mathbb{Z}$. The orbit space \mathbb{R}/\mathbb{Z} is homeomorphic to S^1 .

An action G on X is called **transitive**, if and only if the orbit space X/G is the trivial point $\{1\}$. Or equivalently, the only orbit is the whole space, i.e. Gx = G, $\forall x \in G$.

Example 2.11. The orthogonal action O(n) on S^{n-1} is transitive. Physically, this is saying that $\forall x \in S^{n-1}$, it can be rotated into $\forall y \in S^{n-1}$. A mathematical proof is on page 79 of [1]

A lot of examples from book [1]

Example 2.12. Extending example 2.10:

$$\mathbb{E}^2/(\mathbb{Z} \times \mathbb{Z}) = T \text{ (torus)}$$
 (2.3.1)

Here = means homeomorphism.

Example 2.13.

$$S^n/\mathbb{Z}_2 = P^n \tag{2.3.2}$$

Here = means homeomorphism.

Example 2.14 (Three ways of \mathbb{Z}_2 acting on T). The detailed procedure is to be found on page 91 of [1]. Here's a picture to visualize the action:

ex:R-over-Z-T

Figure 4:

The results are (a) a sphere; (b) a torus; (c) a Klein bottle.

Example 2.15. If G is a topological group, and H is \mathcal{TPG} -subgroup. Then, the left cosets of right cosets can be canonically seen as orbits. See more on page 81, example 4.

Example 2.16.

$$O(n)/O(n-1) = S^{n-1}$$
 (2.3.3)

$$SO(n)/SO(n-1) = S^{n-1}$$
 (2.3.4)

Here = means homeomorphism. The first is established mathematically in page 82 of [1]. The second is mentioned there, indicating a similar proof.

Here I give an argument. Consider a unit vector y in S^{n-1} , if we want to rotate another unit vector e_1 to y, since the action is transitive, we can easily find a $A \in O(n)$ to do this. But in addition, we can also find that $A \cdot B$, where $B \in O(n-1)$ rotates the space around e_1 (thus leaving e_1 un-affected) also do our job. So there is an O(n-1) redundancy in $O(n) \to S^{n-1}$. Similar for the second relation.

Theorem 2.9. Let G acts on X and suppose that both G and X/G are connected, then X is connected.

Fact 2.7. Using the theorem above, one can deduce that: SO(1) is connected, S^{n-1} is connected, so SO(n) is connected.

Next, the book [1] (page 82 to 85) introduces several three spaces (Lens space, irrational flow on T torus, fundamental region or in my word space filling shapes) and two group Euclidean group (page 84) and plane-crystallographic group (page 85). To save time, I leave here only some pictures:

Figure 5: Irrational Flow on ${\cal T}$

(a) Generators – two translations Orbit space – the torus

(b) Generators – three half-turns Orbit space – the sphere

(c) Generators – two parallel glide reflections Orbit space – the Klein bottle

Figure 6: Space-filling Shapes

pter-5-Fundamental-Groups

sec:Homotopic-maps

3 Chapter 5 - Fundamental Groups

3.1 Homotopic maps

By a **loop** we mena a continuous map $\alpha: I \to X$ such that $\alpha(0) = \alpha(1)$. We can view is also as a continuous map $\alpha: S^1 \to X$. It is said to be based at the point $\alpha(0)$. Two loops α and β with the same **base point** can be multiplied, and their product is defined on page 87. A visualization is here:

But this product is not sufficient to become a group. At least, the multiplication is not associative:

But clearly the two result are exactly if we do care how long they occupy on the interval I, if the interval I is considered as a time parameter. So we define the following homotopy relation between loops. If we can find a family $\{f_r\}$ of maps, one for each $r \in [0,1]$, such that $f_0 = \alpha$, $f_1 = \beta$, then we say that the loops α and β are homotopic. Schematically,

This relation can be generalized to any continuous maps:

Definition 3.1 (Homotopic). Let $f, g: X \to Y$ be continuous maps. Then f is homotopic to g if there exists a map $F: X \times I \to Y$ such that F(x, O) = f(x) and F(x, 1) = g(x) for all points $x \in X$.

The map F is called a **homotopy** from f to g, and we write $f \simeq_F g$. In addition, if f and g agree on some $A \subset X$, we may wish to deform f to g without altering the values of f on A. In this case we ask for a homotopy F from f to g with the additional property that

$$F(a,t) = f(a)$$
 for all $a \in A$, for all $t \in I$ (3.1.1)

when such a homotopy exists, we say the f is homotopic to g relative to A and write $f \simeq_F g$ rel A.

When f and g are loops, then the homotopic relation for loops are just saying that $f \simeq g$ rel $\{0,1\}$.

Example 3.1. The author shows on page 88 of [1] that: when C is a convex subset of a euclidean space, let $f, g: X \to C$ be continuous maps, then $f \simeq_F g$, where F is F(x,t) = (1-t)f(x) + tg(x). Note that if f and g agree on a subset A of X, then this homotopy is a homotopy relative to A. This F is called a **straight-line homotopy**.

Example 3.2. Let $f, g: X \to S^n$ be continuous maps. We can take S^n to be the unit sphere in \mathbb{E}^{n+1} , and think of f, g as continuous maps into \mathbb{E}^{n+1} , then we may form a straight-line homotopy from f to g by:

$$F(x,t) = \frac{(1-t)f(x) + tg(x)}{||(1-t)f(x) + tg(x)||}$$
(3.1.2)

But why we are

Example 3.3. This is example is best illustrated by pictures: Geometrieally, α winds each of the segments $[O, \frac{1}{2}], [\frac{1}{2}, \frac{3}{4}], [\frac{3}{4}, 1]$ once round the eircle, the first two being wound in an anticlockwise direction, and the third clockwise. The loop β simply winds the whole interval [0,1] once round the circle anticlockwise.

The book [1] gives a homotopy F between α and β on page 89. But it is best to imagine α and β being metal coils, and this F just describes the process when one magically strach and unfold the coil from α to β .

Notice that this coil is connected head to tail, so it is essential that there is not pole inside the coil in order that one can unfold the coil from α to β .

I think we already feel this, but the book proves it on page 90, that

Lemma 3.1. The relation of 'homotopy' is an equivalence relation on the set of all maps from X to Y.

Also

Lemma 3.2. The relation of 'homotopy relative to a subset A of X' is an equivalence relation on the set of all maps from X to Y which agree with some give map on A.

The book also mentions that

Lemma 3.3. Homotopy behaves well with respect to composition of maps which means precisely that:

• If $f \simeq_F g$ rel A, then $hf \simeq_{hF} hg$ rel A.

$$A\subset X \xrightarrow{g} Y \xrightarrow{h} Z$$

• If $g \simeq_G h$ rel B, then $gf \simeq_F hf$ rel $f^{-1}B$ via the homotopy F(x,t) = G(f(x),t).

$$\begin{array}{ccc} X & \xrightarrow{f} & Y & \xrightarrow{g} & Z \\ & \cup & & \cup & \\ f^{-1}B & & B & \end{array}$$

From this on, I will follow the lecture by professor Li Qin.

sec:Review

3.2 Review

From last lecture, we have shown:

Example 3.4. For $n \geq 2$,

$$\pi_1(S^n) = \{e\}$$

Example 3.5.

$$\pi_1(\mathbb{R}^n) = \{e\}$$

Theorem 3.1.

$$\pi_1(S^1) = \mathbb{Z}$$

Proof. Given any integer $n \in \mathbb{Z}$, we give a loop by associating each n

$$\pi: \mathbb{R} \to S^1$$
$$t \mapsto e^{2\pi i t}$$

Define

$$\gamma_n: [0,1] \to \mathbb{R} \tag{3.2.1}$$

$$s \mapsto ns$$
 (3.2.2)

Then $\phi_n := \pi \circ \gamma_n$ has the property that $\phi_n(0) = 1$, $\phi_n(1) = 1$. So we obtain

$$\phi: \mathbb{Z} \to \pi_1(S^1) \tag{3.2.3}$$

Geometrically, we ϕ_n loops around S^1 in n turns.

We need to prove that ϕ is a isomorphism. This is done by:

- 1. Prove that ϕ is a homomorphism;
- 2. Prove that ϕ is bijective.

First.

$$\gamma_n : s \mapsto ns$$

$$\gamma_m : s \mapsto ms$$

We need

$$\langle \pi \circ \gamma_{m+n} \rangle = \langle \pi \circ \gamma_m \rangle \langle \pi \circ \gamma_n \rangle$$

Define $\sigma:[0,1]\to\mathbb{R},\ s\mapsto\gamma_n(s)+m$, this is a translation of real line. Then $\pi\circ\sigma=\pi\circ\gamma_n$. Then

$$\langle \pi \circ \gamma_m \rangle \langle \pi \circ \gamma_n \rangle = \langle \pi \circ \gamma_m \rangle \langle \pi \circ \sigma \rangle = \langle \pi \circ (\gamma_m \circ \sigma) \rangle$$

 γ_{m+n} has the same domain and codomain of $\gamma_m \circ \sigma$, and they obviously share the same start and the same end point. Therefore these two path are homotopic relative to $\{0,1\}$. Therefore

$$\langle \pi \circ \gamma_{m+n} \rangle = \langle \pi \circ (\gamma_m \circ \sigma) \rangle \tag{3.2.4}$$

Or

$$\phi_{m+n} = \phi_m \phi_n \tag{3.2.5}$$

Second, we need to show that this map is surjective. Notice that $\pi:\mathbb{R}\to S^1,\ t\mapsto e^{2\pi it}$, is like a projection of a circulatory path onto a circle S^1 . This map is locally homeomorphic. We can find a cover of S^1 as the combination of

$$U = S^1 \setminus \{-1\}$$
$$V = S^1 \setminus \{1\}$$

Then $\pi^{-1}(V)$ are the intervals on \mathbb{R} excluding the whole integer points. Similarly, $\pi^{-1}(U)$ are those intervals on \mathbb{R} excluding those half-integer points. In each of those intervals the map π is bijective. Now we need a lemma:

Lemma 3.4 (Path-lifting lemma).

$$\begin{array}{c}
\mathbb{R} \\
\downarrow^{\pi} \\
[0,1] \xrightarrow{\sigma} S^{1}
\end{array} (3.2.6)$$

Assuming we have π and σ , both are continuous maps. More specifically, σ is a path in S^1 which begins at the point 1. Then there is a unique path $\tilde{\sigma}$ in \mathbb{R} which begins at 0 and satisfies $\pi \circ \tilde{\sigma} = \sigma$.

Proof. By Lebesgue lemma, we can divide the interval [0,1] fine enough such that each part is maped to only one of the cover U or V. We thus break a path

Note that $\tilde{\sigma}(0) = 0$, $\tilde{\sigma}(1)$ is an integer. Now for any loop $\gamma : [0,1] \to S^1$ based at 1, we can find a lifting $\tilde{\gamma} : [0,1] \to \mathbb{R}$ such that $\tilde{\gamma}(0) = 0$, $\tilde{\gamma}(1) = n$, and $\gamma = \pi \circ \tilde{\gamma}$. Then $\tilde{\gamma} \cong \gamma_n$ rel $\{0,1\}$, also $\langle \pi \circ \tilde{\gamma} \rangle = \langle \pi \circ \gamma_n \rangle$. Hence for any path γ we find a n such that $\gamma = \phi(n)$. So the map is surjective.

We need another lemma to prove that it is injective.

Lemma 3.5 (Homotopy-lifting lemma). If $F:[0,1]\times[0,1]\to S^1$ is a map such that F(0,t)=F(1,t)=1 for $0\leq t\leq 1$, then there exists a unique $\tilde{F}:[0,1]\times[0,1]\to\mathbb{R}$ such that

$$\pi \circ \tilde{F} = F \tag{3.2.7}$$

$$\tilde{F}(0,t) = 0, \ 0 \le t \le 1$$
 (3.2.8)

Proof. We need the Lebesgue lemma. Let $S^1 = U \cup V$ as before. \square

Now we proof that the map ϕ is injective. Suffice to prove that $\operatorname{Ker}(\phi)$ is trivial. Suppose $\phi(n) = \pi \circ \gamma_n$ is homotopic to the constant loop. Then choose a homotopy F from $\pi \circ \gamma_n$ to the constant loop. By the homotopylifting lemma we can find $\tilde{F}: [0,1] \times [0,1] \to \mathbb{R}$ such that $\pi \circ \tilde{F} = F$. Also $\tilde{F}(0,t) = 0$. One can find that $\gamma_n \cong 0$. This completes the proof of injectivity. Hence completes the whole proof.

We have an application,

Theorem 3.2 (Brow Fixed Point theorem). A continuous map $f: B^2 \to B^2$ ($B^2: 2D$ -closed dicks) must have a fixed point. That is, $\exists x \in B^2$ such that f(x) = x.

Proof. Assuming that this theorem is false, that is $\forall x \in B^2$, $x \neq f(x)$, then we have a straight path from f(x) to x. We can extends this path to cuts the boundary of B^2 at h(x). This is for all $x \in B^2$, hence we have a map $h: B^2 \to S^1$. Also, $h|_{S^1}$ is obvious an identity map. But S^1 can be included inside B^2 , so we have:

$$S^1 \to B^2 \to S^1 \tag{3.2.9}$$

Hence we have a series of homomorphism of fundamental groups:

$$\pi_1(S^1) \to \pi_1(B^2) \to \pi_1(S^1)$$
 (3.2.10)

and the composite is identity map. But observe that B^2 is a convex set and hence its fundamental group is trivial. But S^1 has non-trivial fundamental group.

Remark 3.1. This theorem can be extended to higher dimensional case. But the proof cannot be the same because for higher dimension $\pi_1(S^n)$ is no longer non-trivial.

Another application, which we need a theorem to help:

Theorem 3.3.

$$\pi_1(X \times Y, (x_0, y_0)) = \pi_1(X, x_0) \otimes \pi_1(X, y_0) \tag{3.2.11}$$

Proof. We use the projection maps: P_1 and P_2 . Then, the map

$$(P_1)_* : \pi_1(X \times Y) \to \pi_1(X)$$

 $(P_2)_* : \pi_1(X \times Y) \to \pi_1(Y)$

and their composition formed into

$$\langle \alpha \rangle \mapsto (\langle P_1 \circ \alpha \rangle, \langle P_2 \circ \alpha \rangle)$$

this map is surjective, injective, and is homomorphism. because any \Box

Fact 3.1. By this theorem, the two objects S^2 and $S^1 \times S^1$ is not homeomorphic, since their fundamental groups are not the same (the former is trivial and the later is $\mathbb{Z} \times \mathbb{Z}$).

4 Anchor

sec:Anchor

References

book

Singer.Thorpe

- [1] M.A. Armstrong. Basic Topology. 2ed.
- [2] I.M. Singer, J.A. Thorpe. Lecture Notes on Elementary Topology and Geometry. UTM.

5 License

The entire content of this work (including the source code for TeX files and the generated PDF documents) by Hongxiang Chen (nicknamed we.taper, or just Taper) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at mailto:we.taper[at]gmail[dot]com.