

Section Summary

- Cardinality
- Countable Sets
- Computability

Cardinality

Definition: The *cardinality* of a set *A* is equal to the cardinality of a set *B*, denoted

$$|A| = |B|$$

if and only if there is a one-to-one correspondence (*i.e.*, a bijection) from *A* to *B*.

- If there is a one-to-one function (*i.e.*, an injection) from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \le |B|$.
- When $|A| \le |B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and write |A| < |B|.

Cardinality

- **Definition**: A set that is either finite or has the same cardinality as the set of positive integers (**Z**⁺) is called *countable*. A set that is not countable is *uncountable*.
- The set of real numbers **R** is an uncountable set.
- When an infinite set is countable (*countably infinite*) its cardinality is \aleph_0 (where \aleph is aleph, the 1st letter of the Hebrew alphabet). We write $|S| = \aleph_0$ and say that S has cardinality "aleph null."

Showing that a Set is Countable

- An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers).
- The reason for this is that a one-to-one correspondence f from the set of positive integers to a set S can be expressed in terms of a sequence $a_1, a_2, ..., a_n, ...$ where $a_1 = f(1), a_2 = f(2), ..., a_n = f(n), ...$

Hilbert's Grand Hotel

David Hilbert

The Grand Hotel (example due to David Hilbert) has countably infinite number of rooms, each occupied by a guest. We can always accommodate a new guest at this hotel. How is this possible?

Explanation: Because the rooms of Grand Hotel are countable, we can list them as Room 1, Room 2, Room 3, and so on. When a new guest arrives, we move the guest in Room 1 to Room 2, the guest in Room 2 to Room 3, and in general the guest in Room n to Room n+1, for all positive integers n. This frees up Room 1, which we assign to the new guest, and all the current guests still have rooms.

The hotel can also accommodate a countable number of new guests, all the guests on a countable number of buses where each bus contains a countable number of guests (see exercises).

Showing that a Set is Countable

Example 1: Show that the set of positive even integers *E* is countable set.

Solution: Let f(x) = 2x.

Then f is a bijection from N to E since f is both one-to-one and onto. To show that it is one-to-one, suppose that f(n) = f(m). Then 2n = 2m, and so n = m. To see that it is onto, suppose that t is an even positive integer. Then t = 2k for some positive integer k and f(k) = t.

Showing that a Set is Countable

Example 2: Show that the set of integers **Z** is countable.

Solution: Can list in a sequence:

$$0, 1, -1, 2, -2, 3, -3, \dots$$

Or can define a bijection from N to Z:

- When *n* is even: f(n) = n/2
- When *n* is odd: f(n) = -(n-1)/2

The properties of Cardinality of infinite set

For every sets A and B, the following equivalence Are held:

(a) |A| = |B|; |A| < |B|; |A| > |B|

(b) If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B| (Benstien theorem)

If we want to prove |A| = |B|, we usually first prove $|A| \le |B|$ and then prove $|B| \le |A|$

The following example is interesting.

ordered pairs of integers are countably infinite 0 0 0 0 0 0 A one-to-one 0 0 0 0 0 correspondence 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0000 0 0 0 0-0-0 0

The Positive Rational Numbers are Countable

- **Definition**: A rational number can be expressed as the ratio of two integers p and q such that $q \neq 0$.
 - ³/₄ is a rational number
 - $\sqrt{2}$ is not a rational number.

Example 3: Show that the positive rational numbers are countable.

Solution: The positive rational numbers are countable since they can be arranged in a sequence:

$$r_1, r_2, r_3, \dots$$

The next slide shows how this is done.

The set of positive rational numbers Q⁺ (another solution)

- Let $S=\{(p,q)|p,q\in Z^+\}=Z^+\times Z^+$.
- .

$$\begin{vmatrix} Q^+ & | \leq | S | \\ |S| & |Z^+| \\ |Z^+ & | \leq |Q^+| \end{vmatrix} \Rightarrow |Q^+| = |Z^+|$$

13

2.5 Cardinality of Sets

$$(1) \mid Q^+ \mid \leq \mid S \mid$$

Suppose that
$$r = \frac{p}{q} \in Q^+$$

$$\frac{p}{q} \rightarrow (p,q)$$
 is injective

$$|Q^+| \leq |S|$$

2.5 Cardinality of Sets

2)
$$|S| = |Z^{+}|$$
 An infinite set is countable iff it is possible to list all the elements of the set in a sequence

1 2 3 ... p ...

1 (1,1) (2,1) (3,1) ... (p,1) ...
(1,2) (2,2) (3,2) ... (p,2) ...
(1,3) (2,3) (3,3) ... (p,3) ...

1 (1,q) (2,q) (3,q) ... (p,q) ...

1 + 2 + ... + (p + q - 2) = $\frac{\nu(p+q-2)(p+q-1)}{2}$
 $n = \frac{1}{2}(p+q-2)(p+q-1) + q$

Strings

Example 4: Show that the set of finite strings *S* over a finite alphabet *A* is countably infinite.

Assume an alphabetical ordering of symbols in A

Solution: Show that the strings can be listed in a sequence. First list

- 1. All the strings of length 0 in alphabetical order.
- 2. Then all the strings of length 1 in lexicographic (as in a dictionary) order.
- 3. Then all the strings of length 2 in lexicographic order.
- 4. And so on.

This implies a bijection from **N** to *S* and hence it is a countably infinite set.

The set of all Java programs is countable.

Example 5: Show that the set of all Java programs is countable. **Solution**: Let *S* be the set of strings constructed from the characters which can appear in a Java program. Use the ordering from the previous example. Take each string in turn:

- Feed the string into a Java compiler. (A Java compiler will determine if the input program is a syntactically correct Java program.)
- If the compiler says YES, this is a syntactically correct Java program, we add the program to the list.
- We move on to the next string.

In this way we construct an implied bijection from N to the set of Java programs. Hence, the set of Java programs is countable. ◀

The properties of the countable sets:

- 1) No infinite set has a smaller cardinality than a countable set.
- 2) The union of two countable sets is countable.
- 3) The union of finite number of countable sets is countable.
- 4) The union of a countable number of countable sets is countable.

19

2.5 Cardinality of Sets

3. Cantor Diagonalization Argument

---- An important technique used to construct an object which is not a member of a countable set of objects

Theorem The set of real numbers between 0 and 1 is uncountable.

Proof:

$$A = \{x \mid x \in (0,1) \land x \in R\}$$

$$\begin{array}{c|c} (1) \mid Z^+ \mid \leq \mid A \mid \\ (2) \mid Z^+ \mid \neq \mid A \mid \end{array}$$

$$(1) \mid Z^+ \mid \leq \mid A \mid$$

$$A = \{x \mid x \in (0,1) \land x \in R\}$$

$$B = \{\frac{1}{n+1} | n \in Z^+\}$$

$$|B| = |Z^+|$$
 $B \subseteq A$

$$|Z| \leq A$$

21

2.5 Cardinality of Sets

$(2)|Z^{\pm}|\neq |A|$

Assume A is countable, then let $A=\{r_1, r_2, r_3, \dots, r_n, \dots\}$

Represent each real number in the list using its decimal expansion.

THE LIST....

$$\mathbf{r}_1 = \mathbf{0.d_{11}} \mathbf{d}_{12} \mathbf{d}_{13} \mathbf{d}_{14} \mathbf{d}_{15} \mathbf{d}_{16} \dots$$

$$r_2 = 0.d_{21}d_{22}d_{23}d_{24}d_{25}d_{26}...$$

$$r_3 = 0.d_{31}d_{32}d_{33}d_{34}d_{35}d_{36}...$$

Georg Cantor (1845-1918)

Now construct the number $x = 0.x_1x_2x_3x_4x_5x_6x_7...$

$$x_i = 3$$
 if $d_{ii} \neq 3$

$$x_i = 4$$
 if $d_{ii} = 3$

Then x is not equal to any number in the list.

Hence, no such list can exist and hence the interval (0,1) is uncountable.

Theorem The set of real numbers $R = (-\infty, +\infty)$ has the same cardinality as the set (0,1).

Proof:

Let f(x) = tg(x).

f(x) is a bijection from $(-\frac{\pi}{2}, \frac{\pi}{2})$ to $R = (-\infty, +\infty)$.

$$\left| \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right| = |(0,1)| \qquad \therefore |R| = |(0,1)|$$

 $|R| = \aleph_1$

23

2.5 Cardinality of Sets

[] Example [] Suppose that $[0,1] = \{ x \mid x \in R, 0 \le x \le 1 \}$. Show that the cardinality of this set is \aleph_1 .

Proof:

$$A = [0,1] = \{x \mid x \in R, 0 \le x \le 1\}$$

$$B = (0,1) = \{x \mid x \in R, 0 < x < 1\}$$

$$(1)B \subseteq A \Rightarrow \mid B \mid \leq \mid A \mid$$

(2) Let
$$g(x) = \frac{1}{2}x + \frac{1}{4}, x \in [0,1]$$

Hence, g(x) is a bijection from [0,1] to [1/4,3/4].

Thus $|A| \leq |B|$

Schröder-Bernstein Theorem If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$ then |A| = |B|. In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one to –one correspondence between a A and B.

Theorem The cardinality of the power set of an arbitrary set has a greater cardinality than the original arbitrary set.

The Continuum Hypothesis

The continuum hypothesis (CH) asserts that there is no cardinal number a such that $\aleph_0 < a < \aleph_1$.

25

Classification of numbers

Computability (Optional)

- **Definition**: We say that a function is **computable** if there is a computer program in some programming language that finds the values of this function. If a function is not computable we say it is **uncomputable**.
- There are uncomputable functions. We have shown that the set of Java programs is countable. Exercise 38 in the text shows that there are uncountably many different functions from a particular countably infinite set (i.e., the positive integers) to itself. Therefore (Exercise 39) there must be uncomputable functions.

Homework

Sec. 2.5 4(c,d), 28, 36, 38

Section Summary

- Definition of a Matrix
- Matrix Arithmetic
- Transposes and Powers of Arithmetic
- Zero-One matrices

Matrices

- Matrices are useful discrete structures that can be used in many ways. For example, they are used to:
 - describe certain types of functions known as linear transformations.
 - Express which vertices of a graph are connected by edges (see Chapter 10).
- In later chapters, we will see matrices used to build models of:
 - Transportation systems.
 - Communication networks.
- Algorithms based on matrix models will be presented in later chapters.
- Here we cover the aspect of matrix arithmetic that will be needed later.

Matrix

Definition: A *matrix* is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix.

- The plural of matrix is matrices.
- A matrix with the same number of rows as columns is called square.
- Two matrices are *equal* if they have the same number of rows and the same number of columns and the corresponding entries in every position are equal.

$$3 \times 2 \text{ matrix}$$

$$\begin{bmatrix}
1 & 1 \\
0 & 2 \\
1 & 3
\end{bmatrix}$$

Notation

• Let *m* and *n* be positive integers and let

$$\mathbf{A} \ = \left[\begin{array}{cccccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & \cdot & & \cdot \\ & \cdot & \cdot & & \cdot \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array} \right]$$

- The *i*th row of **A** is the $1 \times n$ matrix $[a_{ii}, a_{i2},...,a_{in}]$. The *j*th column of **A** is the $m \times 1$ *matrix:* $\begin{bmatrix} a_{1j} \end{bmatrix}$
- The (i,j)th element or entry of **A** is the element a_{ij} . We can use $\mathbf{A} = [a_{ij}]$ to denote the matrix with its (i,j)th element equal to a_{ij} .

Matrix Arithmetic: Addition

Defintion: Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ be $m \times n$ matrices. The sum of \mathbf{A} and \mathbf{B} , denoted by $\mathbf{A} + \mathbf{B}$, is the $m \times n$ matrix that has $a_{ij} + b_{ij}$ as its (i,j)th element. In other words, $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$.

Example:

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & -3 \\ 3 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 4 & -1 \\ 1 & -3 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 & -2 \\ 3 & -1 & -3 \\ 2 & 5 & 2 \end{bmatrix}$$

Note that matrices of different sizes can not be added.

Matrix Multiplication

Definition: Let **A** be an $n \times k$ matrix and **B** be a $k \times n$ matrix. The *product* of **A** and **B**, denoted by **AB**, is the $m \times n$ matrix that has its (i,j)th element equal to the sum of the products of the corresponding elments from the ith row of **A** and the jth column of **B**. In other words, if $AB = [c_{ij}]$ then $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{kj}b_{2j}$.

Example: $\begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 1 & 1 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 14 & 4 \\ 8 & 9 \\ 7 & 13 \\ 8 & 2 \end{bmatrix}$

The product of two matrices is undefined when the number of columns in the first matrix is not the same as the number of rows in the second.

Illustration of Matrix Multiplication

• The Product of $\mathbf{A} = [\mathbf{a}_{ij}]$ and $\mathbf{B} = [\mathbf{b}_{ij}]$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ik} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mk} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & a_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kj} & \dots & b_{kn} \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj}$$

Matrix Multiplication is not Commutative

Example: Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbf{B} = \left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$$

Does AB = BA?

Solution:

$$\mathbf{AB} = \left[\begin{array}{cc} 2 & 2 \\ 5 & 3 \end{array} \right] \qquad \mathbf{BA} = \left[\begin{array}{cc} 4 & 3 \\ 3 & 2 \end{array} \right]$$

 $AB \neq BA$

Identity Matrix and Powers of Matrices

Definition: The *identity matrix of order n* is the $m \times n$ matrix $I_n = [\delta_{ij}]$, where $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

$$\mathbf{I}_{n} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \qquad \mathbf{A}\mathbf{I}_{n} = \mathbf{I}_{m}\mathbf{A} = \mathbf{A}$$
when \mathbf{A} is an $m \times n$ matrix

$$\mathbf{AI}_n = \mathbf{I}_m \mathbf{A} = \mathbf{A}$$

$$\mathbf{A} \text{ is an } m \times n \text{ matrix}$$

Powers of square matrices can be defined. When A is an $n \times n$ matrix, we have:

$$\mathbf{A}^0 = \mathbf{I}_n \qquad \mathbf{A}^r = \mathbf{A}\mathbf{A}\mathbf{A}\cdots\mathbf{A}$$

Transposes of Matrices

Definition: Let $\mathbf{A} = [a_{ij}]$ be an $m \times n$ matrix. The *transpose* of \mathbf{A} , denoted by \mathbf{A}^t , is the $n \times m$ matrix obtained by interchanging the rows and columns of \mathbf{A} .

If
$$A^t = [b_{ij}]$$
, then $b_{ij} = a_{ji}$ for $i = 1, 2, ..., n$ and $j = 1, 2, ..., m$.

The transpose of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 is the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

Transposes of Matrices

Definition: A square matrix **A** is called symmetric if $\mathbf{A} = \mathbf{A}^{t}$. Thus $\mathbf{A} = [a_{ij}]$ is symmetric if $a_{ij} = a_{ji}$ for i and j with $1 \le i \le n$ and $1 \le j \le n$.

The matrix
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 is square.

Square matrices do not change when their rows and columns are interchanged.

Zero-One Matrices

Definition: A matrix all of whose entries are either 0 or 1 is called a *zero-one matrix*. (These will be used in Chapters 9 and 10.)

Algorithms operating on discrete structures represented by zero-one matrices are based on Boolean arithmetic defined by the following Boolean operations:

$$b_1 \wedge b_2 = \left\{ \begin{array}{ll} 1 & \text{if } b_1 = b_2 = 1 \\ 0 & \text{otherwise} \end{array} \right. \quad b_1 \vee b_2 = \left\{ \begin{array}{ll} 1 & \text{if } b_1 = 1 \text{ or } b_2 = 1 \\ 0 & \text{otherwise} \end{array} \right.$$

Zero-One Matrices

Definition: Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ be an $m \times n$ zero-one matrices.

- The *join* of **A** and **B** is the zero-one matrix with (i,j)th entry $a_{ii} \lor b_{ii}$. The *join* of **A** and **B** is denoted by **A** \lor **B**.
- The meet of of **A** and **B** is the zero-one matrix with (*i,j*)th entry a_{ij} ∧ b_{ij}. The *meet* of **A** and **B** is denoted by **A** ∧ **B**.

Joins and Meets of Zero-One Matrices

Example: Find the join and meet of the zero-one matrices

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right], \qquad \mathbf{B} = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 1 & 0 \end{array} \right].$$

Solution: The join of **A** and **B** is

$$\mathbf{A} \vee \mathbf{B} = \left[\begin{array}{ccc} 1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\ 0 \vee 1 & 1 \vee 1 & 0 \vee 0 \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

The meet of **A** and **B** is

$$\mathbf{A} \wedge \mathbf{B} = \left[\begin{array}{ccc} 1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\ 0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0 \end{array} \right] = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right].$$

Boolean Product of Zero-One Matrices

Definition: Let $\mathbf{A} = [a_{ij}]$ be an $m \times k$ zero-one matrix and $\mathbf{B} = [b_{ij}]$ be a $k \times n$ zero-one matrix. The *Boolean product* of \mathbf{A} and \mathbf{B} , denoted by $\mathbf{A} \odot \mathbf{B}$, is the $m \times n$ zero-one matrix with (i,j)th entry

$$c_{ij} = (a_{i1} \wedge b_{ij}) \vee (a_{i2} \wedge b_{2j}) \vee ... \vee (a_{ik} \wedge b_{kj}).$$

Example: Find the Boolean product of A and B, where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad \qquad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Continued on next slide →

Boolean Product of Zero-One Matrices

Solution: The Boolean product **A** ⊙ **B** is given by

$$\mathbf{A} \odot \mathbf{B} = \begin{bmatrix} (1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \\ (0 \land 1) \lor (1 \land 0) & (0 \land 1) \lor (1 \land 1) & (0 \land 0) \lor (1 \land 1) \\ (1 \land 1) \lor (0 \land 0) & (1 \land 1) \lor (0 \land 1) & (1 \land 0) \lor (0 \land 1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 \lor 0 & 1 \lor 0 & 0 \lor 0 \\ 0 \lor 0 & 0 \lor 1 & 0 \lor 1 \\ 1 \lor 0 & 1 \lor 0 & 0 \lor 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

Boolean Powers of Zero-One Matrices

Definition: Let **A** be a square zero-one matrix and let *r* be a positive integer. The *r*th Boolean power of **A** is the Boolean product of *r* factors of **A**, denoted by $\mathbf{A}^{[r]}$. Hence, $\mathbf{A}^{[r]} = \underbrace{\mathbf{A} \odot \mathbf{A} \odot ... \odot \mathbf{A}}_{r \text{ times}}.$

We define $A^{[o]}$ to be I_n .

(The Boolean product is well defined because the Boolean product of matrices is associative.)

Boolean Powers of Zero-One Matrices

Example: Let $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$.

Find A^n for all positive integers n.

Solution:

Solution:
$$\mathbf{A}^{[2]} = \mathbf{A} \odot \mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 $\mathbf{A}^{[3]} = \mathbf{A}^{[2]} \odot \mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

$$\mathbf{A}^{[4]} = \mathbf{A}^{[3]} \odot \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{A}^{[5]} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \mathbf{A^{[n]}} = \mathbf{A^5} \quad \text{for all positive integers n with $n \geq 5$.}$$

Homework

Sec. 2.6 27