SAYISAL ANALIZ

Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ

SAYISAL TÜREV

(Numerical Differentiation)

İÇİNDEKİLER

- **□** Sayısal Türev
 - ☐ Geri Farklar İle Sayısal Türev
 - ☐ İleri Farklar İle Sayısal Türev
 - Merkez Farklar İle Sayısal Türev
 - ☐ Taylor Serisi İle Sayısal Türev

- Türev, bağımlı bir değişkenin bağımsız bir değişkene göre değişme miktarıdır.
- Analitik olarak türev ya da integral almanın mümkün olmadığı yerlerde sayısal türev veya sayısal integral işlemleri kullanılmalıdır. Birçok olayda değişim oranları kullanılır.
 - ☐ Örnek: Bir firmanın yıllık satış miktarı (cirosu)
- □ Geometrik olarak Türev, bir fonksiyona ait eğrinin her hangi bir x noktasındaki yatayla yaptığı açı yada diğer bir ifadeyle x noktasındaki teğetinin eğimi olarak görülebilir.

$$f(x)' = \frac{\partial f(x)}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}$$
$$\frac{\Delta f(x)}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

Sayısal türev, bir fonksiyonun bağlı olduğu değişkenlere göre değişim hızının bir ölçüsüdür.

X

Geri Farklar İle Sayısal Türev

$$f(x_i)' = \frac{\Delta f(x)}{\Delta x} = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

$$f(x_i)' = \frac{\Delta f(x)}{\Delta x} = \frac{f(x_i) - f(x_i - h)}{h}$$

İleri Farklar İle Sayısal Türev

$$f(x_i)' = \frac{\Delta f(x)}{\Delta x} = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

$$f(x_i)' = \frac{\Delta f(x)}{\Delta x} = \frac{f(x_i + h) - f(x_i)}{h}$$

Merkezi Farklar İle Sayısal Türev

$$f(x_i)' = \frac{\Delta f(x)}{\Delta x} = \frac{f(x_{i+1}) - f(x_{i-1})}{x_{i+1} - x_{i-1}}$$

$$f(x_i)' = \frac{\Delta f(x)}{\Delta x} = \frac{f(x_i + h) - f(x_i - h)}{2h}$$

- ☐ Örnek: f(x)= x² fonksiyonunun x=2 noktasındaki türevini h=0.2 kullanarak her üç yöntemle hesaplayınız?
- ☐ Çözüm:
 - □ Geri farklar

$$f(x_i)' = \frac{f(x_i) - f(x_i - h)}{h} = \frac{f(2) - f(2 - 0.2)}{0.2} = \frac{2^2 - 1.8^2}{0.2} = 3.8$$

□ İleri farklar

$$f(x_i)' = \frac{f(x_i + h) - f(x_i)}{h} = \frac{f(2 + 0.2) - f(2)}{0.2} = \frac{2.2^2 - 2^2}{0.2} = 4.2$$

Merkezi farklar

$$f(x_i)' = \frac{f(x_i + h) - f(x_i - h)}{2h} = \frac{f(2 + 0.2) - f(2 - 0.2)}{2 \cdot 0.2} = \frac{2.2^2 - 1.8^2}{0.4} = 4$$

■ Analitik Çözüm

Taylor Serisi ile Sayısal Türev

- Bir f(x) fonksiyonun x_i noktasındaki türevi f'(x_i) Taylor Serisi yardımıyla elde edilebilir.
- Bir fonksiyonun $x_i+\Delta x$ civarındaki değeri x_i civarındaki değerinin kuvvetleri cinsinden, Taylor Serisine açılarak bulunabilir.

$$f(x_i + \Delta x) = f(x_i) + \frac{\Delta x}{1!} f'(x_i) + \frac{\Delta x^2}{2!} f''(x_i) + \frac{\Delta x^3}{3!} f'''(x_i) + \dots + \frac{\Delta x^n}{n!} f^n(x_i)$$

- □ Taylor serisinde serinin kesilen noktadan sonraki hatanın mertebesi, kesilen noktadaki Δx ' in mertebesine eşit olur.
 - ☐ Örnek: Taylor serisinde ikinci terim'den sonraki terimler atılacak olursa, yapılan hatanın mertebesi 2 olacaktır.
- Taylor Serisi ile çok noktalı türev yaklaşımı gerçekleştirilir.

Taylor Serisi ile İleri Fark Yöntemi

 \Box f(x) fonksiyonun x_i+h civarındaki ve x_i+2h civarındaki değerlerini f(x_i) nin kuvvetleri cinsinden 2. kuvvetine kadar açıp, f'(x_i) yi çekelim.

$$-4 / f(x_i + h) = f(x_i) + \frac{h^1 f'(x_i)}{1!} + \frac{h^2 f''(x_i)}{2!}$$

$$f(x_i + 2h) = f(x_i) + \frac{(2h)^1 f'(x)}{1!} + \frac{(2h)^2 f''(x)}{2!}$$

$$-4f(x_i + h) = -4f(x_i) - 4hf'(x_i) - 4\frac{h^2f''(x_i)}{2}$$

$$f(x_i + 2h) = f(x_i) + 2hf'(x_i) + \frac{4h^2f''(x)}{2}$$

$$f_{i}' = \frac{1}{2h} \left[-3f_{i} + 4f_{i+1} - f_{i+2} \right]$$

Taylor Serisi ile Geri Fark Yöntemi

lleri fark yöntemindeki işlemler f(x) fonksiyonun x_i -h civarındaki ve x_i -2h civarındaki değerlerini $f(x_i)$ nin kuvvetleri cinsinden 2. kuvvetine kadar açıp, $f'(x_i)$ yi çekilmesi şeklinde tekrar edilerek elde edilir.

$$f(x_i - h) = f(x_i) + \frac{(-h)^1 f'(x_i)}{1!} + \frac{(-h)^2 f''(x_i)}{2!}$$

$$f(x_i - 2h) = f(x_i) + \frac{(-2h)^1 f'(x)}{1!} + \frac{(-2h)^2 f''(x)}{2!}$$

Taylor serisi için geri fark formülü

$$f_{i}' = \frac{1}{2h} [3f_{i} - 4f_{i-1} + f_{i-2}]$$

- Ornek: $f(x)=2x^2+1$ fonksiyonunun x=2 yaklaşık türevini gördüğünüz yöntemlerle hesaplayınız. h=0.1 ve analitik çözüm f'(2)=8
- Cözüm:
- Basit ileri farkla çözüm

$$f(x_i)' = \frac{f(x_i + h) - f(x_i)}{h} = \frac{f(2+0.1) - f(2)}{0.1} = \frac{(2*2.1^2 + 1) - (2*2^2 + 1)}{0.1} = \frac{9.82 - 9}{0.1} = 8.2$$

Taylor serisi ile iki noktalı ileri farkla çözüm

$$f_i = f(2) = 2 * 2^2 + 1 = 9$$

$$f_{i+1} = f(2.1) = 2 * 2.1^2 + 1 = 9.82$$

$$f_{i+2} = f(2.2) = 2 * 2.2^2 + 1 = 10.68$$

$$f_{i}' = \frac{1}{2h} \left[-3f_{i} + 4f_{i+1} - f_{i+2} \right]$$

$$f_{i+2} = f(2.2) = 2*2.2^2 + 1 = 10.68$$
 $f_i' = \frac{1}{2*0.1} [-3*9 + 4*9.82 - 10.68] = \frac{1.6}{0.2} = 8$

□ Örnek: f(x) = x²ex fonksiyonunun x=2 noktasındaki türevini 0.1 adımlarla ileri, geri, merkezi farklar ve taylor serisi 2. kuvvetin sayısal türev yöntemlerini kullanarak ayrı ayrı hesaplayınız.

Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analiz

diff komutu ile sembolik türev alma

- ☐ Tanımlanan bir denklemin türevini alır.
- diff (denklem, değişken)
 - türev işleminde kullanılacak değişkenin adı çözümü yapılacak sembolik ifadelerden oluşan denklem

diff komutu ile sembolik katlı türev alma

- Katlı türev alma durumu.
- diff (denklem, değişken, türevderecesi)

```
% sembol tanımlama
>> syms x
% diff komutu ile x² nin 2. dereceden türevi
>> diff (x^2, x, 2)
ans =
2
```


diff komutu ile bir dizinin türevini alma

■ MATLAB'ta dizi elemanları arasındaki fark diff komutu ile elde edilebilir.

t (sn)	0	0.5	1	1.5
y(t)	0	0.6	1.9	2.6

Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analiz

Sayısal Türev MATLAB Uygulama

```
% Savısal Türev
x=[0:0.5*pi:2*pi];
y=1+2*sin(x);
n=length(x);
%ileri farklar
dydxi=(y(2:n)-y(1:n-1))./(x(2:n)-x(1:n-1));
xi=x(1:n-1);
%geri farklar
dydxg=(y(1:n-1)-y(2:n))./(x(1:n-1)-x(2:n));
xq=x(2:n);
%merkezi farklar
dydxm=(y(3:n)-y(1:n-2))./(x(3:n)-x(1:n-2));
xm=x(2:n-1);
%analitik türev
dydx=2*cos(x);
% türev farklarının ortalaması
ileri = mean(abs(dydx(1:end-1)- dydxi))
geri = mean(abs(dydx(2:end)- dydxg))
merkezi = mean(abs(dydx(2:end-1)- dydxm))
plot(x,dydx,':rs',xi,dydxi,'-.ko',xg,dydxg,'--<',xm,dydxm,'-g*')
legend('analitik', 'ileri', 'geri', 'merkezi', -1)
```


Not: Vaktinde teslim edilmeyen ödevler alınmayacaktır.

☐ f(x)= e^{2x-3} fonksiyonunun x=2 için, h=0.2 adımlar ile gördüğünüz tüm yöntemleri kullanarak türevini hesaplayınız.

KAYNAKLAR

- İlyas ÇANKAYA, Devrim AKGÜN, Sezgin KAÇAR "Mühendislik Uygulamaları İçin MATLAB", Seçkin Yayıncılık
- Steven C. Chapra, Raymond P. Canale (Çev. H. Heperkan ve U. Kesgin), "Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler", Literatür Yayıncılık.
- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları, No:168, Kocaeli, 2005.
- Yüksel YURTAY, Sayısal Analiz Ders Notları, Sakarya Üniversitesi

