Pi V1.2

User Manual

CONTENTS

Revision History		
Product Profile		4
Feature Highligh	hts	4
Specifications .		4
Dimensions		5
Peripheral Port		5
Connector Diag	gram	5
Connection Descript	tion	6
Power Supply		6
40 pins GPIO		7
ADXL345 Wiring	g	
SPI Display Wiri	ring	8
Connecting a US	SB To CAN Module	9
Fan Wiring		9
HDMI Display W	Viring	
OS Writing		11
Download OS In	mage	11
Download and I	Install Writing Software	11
Start to Write O	s	11
Using Rasp	pberry Pi Imager	11
Using baler	naEtcher	13
Network Configuration	ion	
Wired Network.		
WiFi Setting		
Configure the Mothe	erboard	
SSH Connect to	Device	16
Compile MCU Fi	Firmware	
Cautions		

Revision History

Version	Revisions	Date	
01.00	Original	2022/12/29	
01.01	Add an explanation that SPI devices cannot be used simultaneously at the application layer (ADXL345) and kernel layer (TFT35 SPI/IO2CAN) Add pictures of USB ports occupied by U2C	2023/11/24	
01.02	Updated the cover image.	2025/03/26	

Product Profile

BIGTREETECH Pi v1.2 has the same size and the same mounting hole location as Raspberry Pi, with 2.4GHz WiFi built in.

Feature Highlights

- 1. CPU: ALLWINNER H616, Quad-core Cortex-A53 @1.5GHz
- 2. GPU: Mali G31 MP2, Support OpenGL3.2
- 3. RAM: 1GB DDR3L SDRAM
- 4. Display: HDMI2.0A Port, 4K Supported
- 5. 4 x USB 2.0 Ports
- 6. Fast Ethernet + 100Mbps WiFi
- 7. Audio: 3.5mm Jack
- 8. 40-pin GPIO
- 9. Display: SPI Port
- 10. ADXL345 Port
- 11. Onboard connecting port for USB To CAN Module.
- 12. Built-in IR Receiver
- 13. The mounting holes are in the same location as Raspberry Pi.

Specifications

- 1. Product Dimensions: 85 x 56 mm
- 2. Mounting Size: 64 x 49.4 mm
- 3. Type-C Input Voltage: DC 5V±5%/2A
- 4. Input Voltage of Power IN Terminal: DC 12V-24V
- 5. Pi v1.2 Output Voltage: 3.3V±2%/100mA
- 6. Pi v1.2 WiFi: 2.4G/802.11 b/g/n Wireless LAN

Dimensions

Peripheral Port

Connector Diagram

Connection Description

Power Supply

USB Power Supply: When using the USB-C port to supply 5V power to the board, you will need to insert the jumper in the position labelled J8. However, do not insert this jumper if you plan to use the screw terminal to provide power to the board. The SOC's UART converts USB signals through WCH340E. Connect this port to the PC to monitor Pi startup via the serial port tool, and identify faulty parts if there are any.

5V IN

DC12-24V:

40 pins GPIO

40Pin-GPIO											
BTT Pi	CB1-e II C	CB1	CM4		CM4	CB1	CB1−e II C	BTT Pi			
3. 3 v	3. 3 v	3. 3 V	3. 3V		5 v	5 v	5 v	5 V			
PC3	NC	NC	GPIO 2 (I2C1 SDA)		5 V	5 v	5 v	5 v			
PC0	NC	NC	GPIO 3 (I2C1 SCL)		GND	GND	GND	GND			
PC7	PI14	PC7	GPIO 4 (GPCLKO)		GPIO 14 (UARI IX)	TX	TX	TX			
GND	GND	GND	GND	•	GPIO 15 (UART RX)	RX	RX	RX			
PC14	PI15	PC14	GPIO 17		GPIO 18 (PCM CLK)	PC13	P17	PC13			
PC12	PI6	PC12	GPIO 27		GND	GND	GND	GND			
PC10	PI4	PC10	GPIO 22		GPIO 23	PC11	P15	PC11			
3. 3V	3. 3 v	3. 3V	3. 3V	•	GPIO 24	PC9	P13	PC9			
РН7	РН7	РН7	GPIO 10 (SPIO MOSI)		GND	GND	GND	GND			
РН8	РН8	РН8	GPIO 9 (SPIO MISO)	• •	GP10 25	NC	NC	PG13			
РН6	РН6	РН6	GPIO 11 (SPIO SCLK)	• •]	GPIO 8 (SPIO CEO)	NC	NC	PG12			
GND	GND	GND	GND	•	GPIO 7 (SPIO CE1)	PG8	PI11	P19			
PC2	NC	NC	GPIO O (EEPROM SDA)	• •	GPIO 1 (EEPROW SCL)	PG7	PI10	PI10			
PC4	NC	NC	GPIO 5		GND	GND	GND	GND			
P15	PI9	PG6	GPIO 6	• •	GPIO 12 (PWEO)	PG9	PI12	PI6			
PI14	NC	NC	GPIO 13 (PVM1)		GND	GND	GND	GND			
PC6	PI1	PC6	GPIO 19 (PCM FS)]	GPIO 16	NC	NC	PG11			
PC15	PI13	PC15	GPIO 26	• •]	GPIO 20 (PCM DIN)	PH10	PH10	PH4			
GND	GND	GND	GND	• 🖸	GPIO 21 (PCM DOUT)	PC8	P12	PC8			

ADXL345 Wiring

Note: When using the TFT35 SPI screen or IO2CAN (MCP2515 SPI to CAN), this SPI bus is occupied by the Linux kernel and cannot be used by the application layer, so ADXL345 cannot be used simultaneously.

SPI Display Wiring

Note: When using the TFT35 SPI screen or IO2CAN (MCP2515 SPI to CAN), this SPI bus is occupied by the Linux kernel and cannot be used by the application layer, so application layer devices such as ADXL345 cannot be used simultaneously.

Connecting a USB To CAN Module

Note: when using the U2C module, the SOC's USB2 is used for communication, the USB2 port cannot be connected to other USB devices now. The U2C module communicates with the PI using the standard USB protocol, so there is no need to set up the system like the IO2CAN (MCP2515). U2C is plug and play. Simply follow the instructions under section 5.3 of the regular USB U2C module that can be found on github to complete the klipper setup. https://github.com/bigtreetech/U2C

Fan Wiring

HDMI Display Wiring

OS Writing

Download OS Image

Please download and install the OS image we provided: https://github.com/bigtreetech/CB1/releases

Download and Install Writing Software

Install the official Raspberry Pi Imager: https://www.raspberrypi.com/software/

balenaEtcher: https://www.balena.io/etcher/

Choose one of the above software to download and install.

Start to Write OS

Using Raspberry Pi Imager

- Insert a microSD card into your computer via a card reader.
- 2. Choose OS.

Select "Use custom", then select the image that you downloaded.

4. Select the microSD card and click "WRITE" (WRITE the image will format the microSD card. Be careful not to select the wrong storage device, otherwise the data will be formatted).

5. Wait for the writing to finish.

Using balenaEtcher

1. Insert a microSD card into your computer via a card reader.

2. Select the image that you downloaded.

3. Select the microSD card and click "WRITE" (WRITE the image will format the microSD card. Be careful not to select the wrong storage device, otherwise the data will be formatted).

4. Wait for the writing to finish.

Network Configuration

Wired Network

For wired networks, no additional settings are needed. Just plug and play.

WiFi Setting

After the OS image writing is completed, the microSD card will have a FAT32 recognized by the computer, find "system.cfg".

Open it with Notepad, replace WIFI-SSID with your WiFi name, and

PASSWORD with your password.

Configure the Motherboard

SSH Connect to Device

- 1. Install the SSH application Mobaxterm: https://mobaxterm.mobatek.net/download-home-edition.html
- 2. Insert the microSD card into the motherboard, and wait for the system to load after powering on, approx. 1-2min.
- The device will automatically be assigned an IP address after successfully connecting to the network.
- 4. Find the device IP address on your router page.

5. Open Mobaxterm and click "Session", and click "SSH", enter the device IP into the Remote host, and click "OK" (Note: your computer and the device needs to be under the same network).

6. Login

Login as: biqu Password: biqu

Compile MCU Firmware

1. After SSH is successfully connected to the device, enter in the terminal:

cd ~/klipper/

make menuconfig

The firmware is compiled based on the motherboard configuration, here we take Manta M4P as an example:

- * [*] Enable extra low-level configuration options
- * Micro-controller Architecture (STMicroelectronics STM32) --->
- * Processor model (STM32G0B1) --->
- * Bootloader offset (8KiB bootloader) --->
- * Clock Reference (8 MHz crystal) --->
- * Communication interface (USB (on PA11/PA12)) --->

- 2. Press 'q' to exit, and "Yes" when asked to save the configuration.
- Run make to compile firmware, 'klipper.bin' file will be generated in the home/pi/klipper/out folder when make is finished, download it onto your computer using the SSH application.

Cautions

Pay attention to the heat dissipation of Pi. If the running application consumes too many system resources, it will get hot quite serious.

If you need further resources for this product, you can find them at [GitHub](https://github.com/bigtreetech/). If you cannot find what you need, you may contact our after-sales support(service005@biqu3d.com).

If you encounter any other problems during use or have suggestions or feedback, please contact us. Thank you for choosing BIGTREETECH products.