線形全単射

 \mathscr{A} :線形全単射, $A:\mathscr{A}$ の行列表現

A は正方行列

 $\forall x \in X$ に対して、y=Ax満たす $y \in Y$ がただ一つ存在する $\forall y \in Y$ に対して、y=Ax を満たす $x \in X$ がただ一つ存在する

y を x に戻す逆写像 \mathscr{A}^{-1} が存在する

$$X \xrightarrow{\bullet} Y = \mathscr{A}(X) = \mathscr{R}(A)$$

∞ 1:線形全単射 ∞ の逆写像とする

$$\mathscr{A}^{-1}$$
の行列表現 A^{-1} ? $orall x \in X$ に対して以下が成り立つ $y = Ax$ $x = A^{-1}y$ (まだ A^{-1} がどんなものであるか不明であることに注意) \square

 $A^{-1}A = I$ (A^{-1} は A の逆行列)

∅ が全単射のとき、その逆写像 ∅-1 が存在する

A が最大階数のとき、その逆行列 A^{-1} が存在する $\det A \neq 0$

行列対 スカラー

x, y: スカラー, a: スカラー

y の値が与えられたとき,y=ax を満たす x は次で与えられる $x=\frac{1}{a}y=a^{-1}y,$

ただし $a \neq 0$ でなければならない

x,y:ベクトル, A:行列

 $m{y}$ の値が与えられたとき、 $m{y}{=}Am{x}$ を満たす $m{x}$ は次で与えられる $m{x}=A^{-1}m{y}$

ただし $\det A \neq 0$ でなければならない

行列対 スカラー

スカラー a は 1×1 行列とみなすことができ、その階数は次のように 定められる

 $n \times n$ 行列 A の階数

$$\operatorname{rank} A(\leq n) = egin{cases} n & \det A \neq 0, A \text{ の逆行列が存在する.} \\ & \operatorname{与えられた} y \text{ に対して } y = Ax \text{ を満たす } x \text{ を 定めることができる} \\ \vdots & \\ 1 & \\ 0 & \operatorname{与えられた} y \text{ に対して } y = Ax \text{ を満たす } x \text{ を 定めることができない} \end{cases}$$

 $\operatorname{rank} A$ が 0, 1, ..., n-1のとき, どのような違いがあるか?

 $\operatorname{rank} A = r \le n - 1$ のときはどうなっている?

この場合、写像 🛭 は単射ではない

与えられた $y \in \mathcal{R}(A)$ に対して y=Ax を満たす複数の x が存在する. x を一意に定めることはできない.

もう少し詳しく言うと、xの一部は一意に定めることができるが、残りについては自由度がある

では、x のうちのどの程度までを一意に定めることができるだろうか?

では、x のうちのどの程度までを一意に定めることができるだろうか?

唯一に定めることができない部分は、右図では、 x_1-x_2 であり、これは $\mathcal{N}(A)$ に属している

つまり、x のうち A の零空間に属している部分は一意に定めることができない

 $\dim X = n$

y=Ax を満たす x を一つ見つけたとし、それを \bar{x} と表すことにする、 すなわち $y=A\bar{x}$ がなりたつとする.

 $orall x_0 \in \mathscr{N}(A)$ に対して $x' = \bar{x} + x_0$ と定義すると, y = Ax' も成り立つ $\therefore Ax' = A(\bar{x} + x_0) = A\bar{x} + Ax_0 = y + 0 = y$

$$\dim \mathcal{N}(A) + \dim \mathcal{R}(A) = n = \dim X$$

y からは一意y から一意にに定めることが定めることがでできない部分きる部分

例:線形微分方程式

$$\frac{dx}{dt} + x = y$$

x(t) から y(t) への写像を $\mathscr A$ とすると、これは線形写像. $\mathscr A=\left(rac{d}{dt}+1
ight),\,\mathscr A x=y$

$$\frac{dx}{dt} + x = y$$
 の一般解

$$\frac{dx}{dt}+x=y$$
 を満たすある解 と $\frac{dx}{dt}+x=0$ の一般解 の和 (特殊解, 特解)

$$y=\mathscr{A}x$$
を満たすある x $\mathscr{A}x=0$ を満たすある x (\bar{x} に相当する) ($\mathscr{N}(\mathscr{A})$ に属する)

例

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} \qquad n = 2, \ r = \operatorname{rank} A = 1 < 2, \ n - r = 1$$

$$A \qquad \boldsymbol{x} \qquad \boldsymbol{y} \qquad \begin{bmatrix} -2 \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \boldsymbol{0}, \ 0 \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \boldsymbol{0}, \ \det \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = 1 \cdot 4 - 2 \cdot 2 = 0, \ \det [1] = 1 \end{bmatrix}$$

$$ar{oldsymbol{x}} = egin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 は $Aar{oldsymbol{x}} = oldsymbol{y}$ を満たす

$$x_1+2x_2=0$$
 が満たされるとき $Am{x}=m{0}$ がなりたつしたがって $\forall m{x}_0\in \mathscr{N}(A)$ は $m{x}_0=egin{bmatrix} -2lpha \\ \alpha \end{bmatrix}$ と表される

ここで α は任意の実数である

$$m{x}' = ar{m{x}} + m{x}_0 = egin{bmatrix} 1 - 2lpha \\ 1 + lpha \end{bmatrix}$$
と定義すると、

$$Ax' = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 1 - 2\alpha \\ 1 + \alpha \end{bmatrix}$$
$$= \begin{bmatrix} (1 - 2\alpha) + 2(1 + \alpha) \\ 2(1 - 2\alpha) + 4(1 + \alpha) \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = y.$$

 $n \times n$ 行列 A が最大階数を持たない $(rank\ A < n)$ とき,与えられた y に対して y = Ax を満たす x を一意に定めることはできない (無限個の x が存在する)

どうすれば一意に定めることができるだろうか?

線形微分方程式 $\frac{dx}{dt}+x=y$ では、解を一意に定めるために初期条件を与える.

y の値以外の条件を与えることにしてみよう

例

y=Ax に加えて、別の条件として、 $\|x\|=\sqrt{\sum_{i=1}^n x_i^2}$ を最小にする、という条件を付加してみよう.

90ページの例では

$$\|\mathbf{x}'\| = \left\| \begin{bmatrix} 1 - 2\alpha \\ 1 + \alpha \end{bmatrix} \right\| = \sqrt{(1 - 2\alpha)^2 + (1 + \alpha)^2} = \sqrt{5\alpha^2 - 2\alpha + 2} = \sqrt{5\left(\alpha - \frac{1}{5}\right)^2 + \frac{9}{5}}$$

であった. これは

$$\alpha = \frac{1}{5}$$

のとき最小値をとり、x' の値を

$$oldsymbol{x}' = \left[egin{array}{c} rac{3}{5} \ rac{6}{5} \end{array}
ight]$$

と一意に定めることができる.

行列 A が正方行列ではないとき、逆行列に近いものを定義することができるであろうか?

非正方行列 $A \in \mathbb{R}^{m \times n}$, $m \neq n$ を考えてみよう.

A が最大行階数をもつと仮定しよう. すなわち $\operatorname{rank} A = m < n$.

$$A = \begin{bmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{mn} & \cdots & \cdots & a_{mn} \end{bmatrix}$$

この行列で表現される写像は全射ではあるが単射ではない.

与えられた任意の $y \in Y$ に対して, y = Ax となる x は無限個存在する.

x を一意に定めるには、91、92ページの議論と全く同様に、付加的な条件が必要である。

• A が最大列階数をもつと仮定しよう. すなわち $\operatorname{rank} A = n < m$.

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ a_{mn} & \cdots & a_{mn} \end{bmatrix}$$

A は行最大階数をもたないので、A で表現される写像は全射ではない

したがって、Yには属しているが $\mathscr{R}(A)$ には属していない y に対し x に対し y に対し y に対し y に対し y に対し y に対し y に

では、どのようなものならば存在するだろうか?

- A が列最大階数を持つとして、y = Ax)関係からスタートしよう

$$y = Ax$$

両辺に左から A^T を掛けると次が得られる

$$A^T \boldsymbol{y} = A^T A \boldsymbol{x}$$

A が最大列階数を持つとき、 A^TA の逆行列が存在するので、 (一般に $\operatorname{rank} A = \operatorname{rank} A^TA = \operatorname{rank} AA^T$)

$$(A^T A)^{-1} A^T y = (A^T A)^{-1} A^T A x = x$$

行列 $A^{\dagger} = (A^T A)^{-1} A^T$ は逆行列と似た性質を持っている:

$$A^{\dagger}A = (A^T A)^{-1} A^T A = I,$$

しかし

$$AA^{\dagger} = A(A^T A)^{-1} A^T \neq I.$$

 A^{\dagger} はAの疑似逆行列と呼ばれる

• 疑似逆行列

A は逆行列 A^{-1} を持つとしよう x を $x=A^{-1}y$ によって定義すると、次がなりたつ x く $Ax=A(A^{-1}y)=y$.

A は逆行列 A^{-1} は持たないが疑似逆行列 A^{\dagger} は持つとしよう

$$\hat{x}$$
を $\hat{x}=A^{\dagger}y=(A^TA)^{-1}A^Ty$ によって定義する. このとき $\hat{y}=A\hat{x}=A(A^TA)^{-1}A^Ty$

は y と等しいだろうか? もし等しくないとすると, \hat{y} と y の違いは何だろうか

答え:

$$\hat{m{y}}
eq m{y},$$

であり、 $y-\hat{y}$ は \hat{y} と直交している

$y-\hat{y}$ と \hat{y} の内積

$$(y - \hat{y})^T \hat{y} = [y - \{A(A^T A)^{-1} A^T y\}]^T \{A(A^T A)^{-1} A^T y\}$$

$$= [\{I - A(A^T A)^{-1} A^T \} y]^T A(A^T A)^{-1} A^T y$$

$$= y^T \{I - A(A^T A)^{-1} A^T \}^T A(A^T A)^{-1} A^T y$$

$$= y^T \{I - A(A^T A)^{-1} A^T \} A(A^T A)^{-1} A^T y$$

$$= y^T \{A(A^T A)^{-1} A^T - A(A^T A)^{-1} A^T A(A^T A)^{-1} A^T \} y$$

$$= y^T \{A(A^T A)^{-1} A^T - A(A^T A)^{-1} A^T \} y$$

$$= y^T \{A(A^T A)^{-1} A^T - A(A^T A)^{-1} A^T \} y$$

$$= y^T \{0 y$$

$$= 0$$

$$\hat{m{y}} = A\hat{m{x}} \in \mathcal{R}(A)$$
 ではあるが、 $m{y} \in \mathcal{R}(A)$ とは限らない

 $oldsymbol{y} - \hat{oldsymbol{y}}$ is orthogonal to $\hat{oldsymbol{y}}$.

左の図で、点 \hat{P} は点Pから $\mathscr{R}(A)$ に下した垂線の足

点 \hat{P} は $\mathcal{R}(A)$ 上でPに最も近い点

ベクトル \hat{y} は $\mathcal{R}(A)$ 上でベクトルyに最も近いベクトル(yの最良近似)

 \hat{x} は次式を最小にする x である

$$(\boldsymbol{y} - A\boldsymbol{x})^T (\boldsymbol{y} - A\boldsymbol{x}).$$

… 最小2乗法