Human Genetic Variation and Association Studies

Jacques Fellay, MD SNF Professor

Global Health Institute EPFL School of Life Sciences

Institute of Microbiology
University of Lausanne / CHUV

About 2% of people have two copies of APOE4 and are very likely to succumb to Alzheimer's disease

About 2% of people have two copies of APOE4 and are very likely to succumb to Alzheimer's disease

About 1% of us have two copies of a small deletion in CCR5 and are largely immune to infection by the HIV virus

About 2% of people have two copies of APOE4 and are very likely to succumb to Alzheimer's disease

About 1% of us have two copies of a small deletion in CCR5 and are largely immune to infection by the HIV virus

And about 7% do not make any functional CYP2D6 enzyme and therefore codeine provides no pain relief

These examples come from looking at only the tiniest fraction of our genome

It is now possible to scan the <u>whole genome</u> to find the genetic determinants of key differences amongst people

Overview

- > Types of human genetic variation
- Mapping approaches
 - GWAS
 - Sequencing
- Real life examples

- -single nucleotide variants
 - -3-4 million per individual
- -multiple nucleotides variants
 - -greater content than single site changes

-single nucleotide polymorphisms (or SNPs)

functional?

- -missense
- -non-sense
- -splice site

non-functional?

- -silent
- -intronic
- -intergenic

-single nucleotide polymorphisms (or SNPs)

-small insertions or deletions (indels)-coding/non-coding

- -single nucleotide polymorphisms (or SNPs)
 -small insertions or deletions (indels)
- -short tandem repeats/microsatellites
 - -repeat of 2, 3, 4 or more nucleotides
 - -10-100x
 - -highly polymorphic
 - -error during replication (slippage)

Trinucleotide repeat diseases

14 known diseases

- -9 due to glutamine repeats (CAG trinucleotide)
- -neurodegenerative disease (polyglutamine disease)
- -neuronal decay
- -spinocerebellar ataxias and Huntington's disease

Trinucleotide repeat diseases

14 known diseases

- -9 due to CAG trinucleotide=Glutamine
- -neurodegenerative disease (polyglutamine disease)
- -neuronal decay
- -Spinocerebellar ataxias and Huntington's disease

Huntington's disease trinucleotide repeats -tract of <28 =normal

-tract of 28 to 35 =intermediate

-tract of 36-40 =reduced penetrance/affected

=full penetrance/affected -tract of >40

anticipation – tract expands with successive generations leading to earlier age of onset and more severe disease.

- -single nucleotide polymorphisms (or SNPs) -small insertions or deletions (indels) -short tandem repeats/microsatellites
- -retrotransposons (RNA intermediate)
 - LINE -long interspersed repetitive elements
 - -makes copies
 - -17% of genome
 - SINE -short interspersed repetitive elements -alu sequence (around 300 bp)

 - -over 10% of genome
 - LTR -long terminal repeats
 - -8% of genome -still active?

- -single nucleotide polymorphisms (or SNPs)
- -small insertions or deletions (indels)
- -short tandem repeats/microsatellites
- retrotransposons (RNA intermediate)
- -copy number variants (CNVs)
 - -deletions/duplications

CNVs

- -single nucleotide polymorphisms (or SNPs)
- -small insertions or deletions (indels)
- -short tandem repeats/microsatellites
- -transposable elements
- -copy number variants (CNVs)
- -large structural variation
 - -inversions
 - -translocations

Factor VIII gene inversions

- -severe hemophilia A
- -40% of individuals have a large 400kb inversion

Variants may be...

- -common (>1%)
- -rare (<1%)
- -single family
- -small region
- -one population
- -all populations

International HapMap Project

- Identify SNPs from 270 individuals
 - CEU: CEPH (Utah residents with ancestry from northern and western Europe) (30 trios)
 - CHB: Han Chinese in Beijing, China (45 individuals)
 - JPT: Japanese in Tokyo, Japan (45 individuals)
 - YRI: Yoruba in Ibadan, Nigeria (30 trios)

International HapMap Project

Identify SNPs from 270 individuals

- Establish haplotypes
- Identify Tagging SNPs

Finding gene variants

Mapping strategies

- Map based
 - Use a set of markers spread throughout the genome designed to capture most regions/ common variants
- Complete resequencing

Mapping using genetic variation

linkage analysis using microsatellites

Clinically unaffected, but mutation confirmed

-genotype 300-400 markers for affected and unaffected individuals

-10 cM resolution = 10 Mb

Mapping using genetic variation

Genome-Wide Association Studies (GWAS), using SNPs

Goal: identify common variation associated with a specific phenotype/trait

GWAS Basic Strategy

- Large sample size (1000's)
- Well defined phenotype
- Case/control or continuous phenotype
- Whole-genome genotyping
- Appropriate statistics
 - -correction for multiple testing
 - -population stratification

Whole Genome Genotyping

- -10 million common variants in our genome
- -Genotyping chips can assay over 2.5 million SNVs
- -Excellent coverage of common genetic variants for most populations

Illumina Infinium Assay

SNP output

Copy Number Variation (CNVs)

-Many known common insertions/deletions identified throughout the genome

-Whole-genome genotyping arrays can detect larger CNV events (>50kb)

Common vs Rare Variation

GWAS generally only have the power to detect common SNP variation

- Rare variation?
 - Genome Sequencing

Transition to Sequencing

Moore's Law

sequencing throughput/cost

2007 2008 2009 2010 2011

single run 1Gb

single run 650 Gb

Next Generation Sequencing Setup

- -Huge amount of data (terabytes!)
- -Analysis computationally intensive
- -Dedicated IT infrastructure

Sequencing Approach

- 1. Identify subjects
 - -Extreme phenotype or family based
- 2. Sequence (50-100 individuals)
- 3. Align to reference and call variants
- 4. Compare to 100's of sequenced controls
- 5. Follow-up genotyping in larger cohorts!

Sequencing Approach

Filtered FastQ sequence

Data from a single cluster/read (75bp)

@G:1:1:11:1079#0/1

+G:1:1:11:1079#0/1

 $`Xa^YO _^a_`_`a_^a^a^a^a``^_\\ ``[XUGXXXXXWUTWWVWUSTXXPUWYYRVWYYYXZYXYWZ]$

*a finished genome will have over 1 billion reads

- Alignment to reference genome
 - 3 billion bases
- Call variants
 - Single nucleotide variants (SNVs)
 - Small insertion/deletions (indels)
 - Structural Variants (SV/CNV)

Summary of a single human genome

SNVs	3.5 million
Premature stop	120
Stop loss	25
Non-synonymous Essential splice site	11,000 100

indels	610,000
Frameshift	500
In-frame	900

Whole genome vs. exome sequencing

Exome

- -Coding regions
- -Cheaper/Faster
- -Uneven capture of both alleles
- -Incomplete capture of target region
- -Bias towards known biology

Genome

- -Complete sequence
- -Expensive/Throughput
- -IT issues (10 fold more data)

GWAS Examples

Host genetic differences contribute to variation in response to HIV

- Susceptibility to infection
- Natural history of disease
 - Viral load
 - Immunological progression
 - AIDS events / death

Host genetics of HIV disease

Genome-wide research demands

- precise phenotype
- careful selection of patients
- efficient genotyping
- powerful analysis

Phenotype: HIV viral load at set point

Patients / Cohorts

- ~2500 white patients
- High quality viremia data
- Genetic consent

MACS

Euro-CHAVI

Genotyping

WG chips:

500K to >1 mio single nucleotide polymorphisms (SNPs)

Gene & SNP	P-value for association with HIV-1 viral load at setpoint N=2362	P-value for association with protection against progression (CD4 <350) N=1071 1.2E-11		
HCP5 / HLA-B*5701 rs2395029	4.5E-35			
HLA-C rs9264942	5.9E-32	7.4E-12		
ZNRD1 / RNF39 rs9261174	1.1E-04	3.8E-08		
CCR5 Δ32 het rs333	1.7E-10	2.6E-06		

Bonferroni threshold for genome-wide significance: 5E-08

Genes and viral load to predict disease progression (no progression after 5 years, %)

Sequencing example

Host genetics of HIV-1 control

A Whole-Genome Association Study of Major Determinants for Host Control of HIV-1

Jacques Fellar, ³ Revin V. Shianna, ⁵ Dongliang Ge, ⁵ Sana Colombo, ⁵ Bruno Ladergerber, ⁶ Bible Blazle, ⁶ Konlin Dhang, ⁶ Curtin Gumbe, ⁶ Antonella Cartagna, ⁵ Andrea Cresarizza, ⁶ Antenando Ce Loza, ⁶ Philippa Esterberoock, ⁶ Patrick Francisti, ⁵² Simon Blatlat, ⁵³ Jarel Martinor Picado, ⁵³ Jord R. Mino, ⁵³ Nicho Obel, ⁵³ Jacon P. Smith, ⁵³ Donlane Wyndger, ⁵ Patrick Descomber, ⁵³ Spillanes E. Antonarakis, ⁵⁴ Norman I. Lervin, ⁵³ Andrew J. Bibliotherk, ⁵⁴ Barton F. Kaunes, ⁵⁵ Analio Telent, ⁵7 Donla E. Goldstein, ⁵⁴12

17 AUGUST 2007 VOL 317 SCIENCE

Common Genetic Variation and the Control of HIV-1 in Humans

OPEN BACCESS Freely available online

Jacques Fellity¹¹, Dongliang Ge¹², Kevin V. Shianna¹³, Sans Colombo², Bruns Lettergerber¹, Elizabeth T. Crulls¹, Thomas J. Uriten¹, Kunlin Zhang¹³, Curris E. Gumba¹, Jason P. Smith², Antanella Castagne², Alexandro Caszi Leper², Andrea De Loua², Philippa Easterbrook², Haldryth F. Gorthard², Simon Maller², Cristina Bhussini², Andrea De Loua², Philippa Easterbrook², Hodo M. Mine², Simon Maller², Cristina Bhussini², Andrea D. Levine³, Javier Blartinez-Piczdo ^{3,13}, Jook M. Mine³, Basko Obel³, Steven M. Wolfinsky³, Javier S. Antonovi³, Servine B. Barquiki³, Usa P. Salo Obel³, Steven M. Wolfinsky³, Javier S. Shore S. Sechmann³, Stephen A. O'Brien³, Patrick Cestomber³, Spillanos E. Antonoviki³, Javopen S. Bechmann³, Stephen A. O'Brien³, Naman L. Letnin³, Andrew J. McKlichael³, Barton F. Haynes³, Mary Carringoon^{3,13}, Sheng Feng³, Amalio Telechi³, Oscilla B. Goldstein³, NiADO Centre for HOVADO Vescrine Immunology (CHAN³).

Next-generation sequencing of extreme phenotypes

Sequencing of extreme HIV progressors

1. Rapid Progressors

- Known date of seroconversion
- CD4 <350 in less than 3 years
- [Severe PHI = immediate CD4 depletion without spontaneous recovery]

2. Controllers

- VL >50 cp/ml
- Excluding HLA-B*57, B*27 and B*5801

Exome sequencing in 31 rapid progressors and 10 controllers

Overview of genetic variation

Mean coverage: 72x

Total SNVs: 101057

Novel SNVs: 40385 (40%)

Total indels: 12149

Novel indels: 5330 (45.5%)

Analysis of genetic variants

- Single variant analysis (ATAV)
 - Case-control comparison of single variants (SNVs and indels) using Fisher's exact tests for allelic, dominant, recessive, and genotypic models, plus Cochran-Armitage trend test
- Ranking of putatively functional variants (SVA)
 - listing of homozygous or heterozygous variants observed mostly (or only) in cases, ranked by numbers
- Gene prioritization (SVA and ATAV)
 - Case-control comparison of genes carrying key functional variants, using Fisher's exact tests with assessment of genome-wide significance by permutations

How does it work?

Single variant analysis

variant	RS	gene	function	RP	VC	Ctrls	P_value
19_59711073_T	-	LAIR2 / CD306	STOP_GAINED	1/4/26	0/0/10	0/19/208	0.05 (genotypic:RPvsCtrls)
5_86731030_G	rs2230641	CCNH	NS	2/12/17	0/0/10	10/59/160	0.009 (allelic:RPvsVC)
16_55617854_C	rs28438857	NLRC5	NS	3/7/21	0/1/9	0/59/167	0.002(recessive:RPvsCtrls)
11_60533649_A	rs12360861	CD6	NS	3/8/19	0/3/7	2/48/160	0.02 (trend:31vsCtrls)
4_74921673_INS_T	-	CXCL6	FRAME SHIFT	0/2/29	0/0/10	0/2/226	0.018 (trend:RPvsCtrls)
1_26517124_A	-	CD52	NS	0/3/28	0/0/10	0/0/229	0.0006 (trend:RPvsCtrls)
1_12108645_G	rs2230625	TNFRSF8 / CD30	NS	0/3/28	0/3/6	0/5/210	0.0009 (trend:VCvsCtrls)
1_158052037_T	rs61823162	FCRL6	STOP_GAINED	3/3/25	0/1/9	7/52/170	0.06 (genotypic:RPvsCtrls)

Next steps

1. More "extreme" samples:

MACS: 25 rapid progressors

25 controllers

2. More sequence:

Whole genome sequencing

From GWAS to sequencing, and beyond...

- Only a limited amount of the genetic basis for much phenotypic variation has been located by GWAS
 - Still much 'missing heritability'
- Rare and/or <u>causal</u> variants will be identified by sequencing

 Data integration and systems approaches represent the next frontier