

LARCSEA

NIAC Phase I, Step B Proposal

Low-Altitude Re-Configuring Super-Efficient Aircraft

LARCSEA Team:

Thomas Ivanco, PI, Aeroelasticity Branch, RD Marie Ivanco, Co-I, Space Mission Analysis Branch, SACD Ersin Ancel, Co-I, Aeronautic Systems Analysis Branch, SACD Walter Silva, Collaborator, Aeroelasticity Branch, RD

Presented by: Tom Ivanco

April 1, 2015

NIAC Overview

NASA Innovative Advanced Concepts (NIAC)

- Early studies of visionary aerospace architecture, mission, and systems concepts; awarded by NASA HQ
- \$100K total award for phase I, then phase II and beyond have more
- Open to: All categories of US organizations, and non-US partner organizations
- Key Dates:
 - Release: OCT 2014
 - Step A proposal: NOV 2014
 - Step A announcement: DEC 2014
 - Step B proposal: JAN 2015 (invitation only)
 - Selection Announcement: JUN 2015
 - Award Start Date: JUL 2015, period of 9 months
- LaRC process:
 - Historically ~2/15 selected from LaRC for step B
 - Committee established to decrease out-of-scope proposals (Directorate and LaRC-HQ Reps)
 - Down-select prior to step A, shark-tank presentation
 - Substantial vetting, and support prior to step A submittal
 - Now 2/5 LaRC proposals selected for step B, then resources open from LaRC to support step B proposal

LARCSEA Overview

Systems Concept

- Low-altitude cruise (15Kft 20Kft) to realize environmental and performance benefits
- Aerodynamically actuated radical shape-change
- Tubeless, tail-less fuselage
- Potential configuration uses a telescoping-wing powered by active winglets
- Address projected travel increase by year 2031 (2x traffic volume of 2011)

LARCSEA Overview

Benefits of Profile

- Reduced climb, reduction in fuel burn (typically climb burn is ~ 3x cruise burn)
- Environmental benefits (less NOx, and GW)
- Smaller required engines in cruise;
 may need 3 or more engines
 to realize any size reduction
 (T/O engine out requirements)
- Fuselage pressure differential is only 1/3 of conventional altitudes
- Faster speed of sound at lower altitude
- Less wind at lower altitude
- Split winglets enable redundancy, can tailor tip vortex, can potentially eliminate traditional ailerons and spoilers, can create yaw and drag on approach
- Active controls likely required, can also be used for stability margin with a neutrally-stable design

LARCSEA Performance Potential

Assumptions

- 1. Comparison aircraft exists with traditional 35Kft cruise
- 2. Comparable L/D as comparison aircraft (wetted aspect ratio)
- 3. Comparable weight as comparison aircraft

Potential Benefits of LARCSEA Profile

- 1.4x fuel efficiency improvement
- 11% reduction in flight time
- 1.5x reduction in NOx impact
- 1.5x to 2.1x reduction in global warming effect

LARCSEA Performance Potential

Legend:

TO - Takeoff (0-3Kft)

LSC - Low speed climb (3Kft-10Kft)

MSC - Medium speed climb (10Kft-16Kft) HSC - High speed climb (16Kft-35Kft) HSD - High speed descent (35Kft-10Kft) LSD - Low speed descent (10Kft-0)

LARCSEA Challenges

- NASA
- Radical shape-change mechanism: robust, reliable, at acceptable weight
 - Stuttgart FS-29
 - Morphing studies
- Payload capacity
 - More design options, but still volume limited
- Controllability and operability
 - Redundant processors, dual-boost actuators, wiring etc.
 - Reliance on active-controls could become more commonplace in future decades (circa 2040)
- Weather
 - Less clear-air turbulence, "sweet-spot" between 15Kft and 20Kft
 - Convective turbulence, icing
 - No worse for high-intensity frontal systems
 - Low-medium intensity weather systems, cursory look: altitude dependent, options usually exist between 12Kft to 20Kft
- Proposed phase I effort will be a systems-level analysis to systematically address the challenges and test assumptions

