0.1 Stolz 定理

0.1.1 数列 Stolz 定理

定理 0.1 (Stolz 定理)

(a): 设 x_n 是严格递增数列且满足 $\lim_{n\to\infty} x_n = +\infty$, 则

$$\underline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n} \leqslant \underline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}.$$

(b): 设 x_n 是严格递减数列且满足 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$, 则

$$\underline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n} \leqslant \underline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_n}{x_n} \leqslant \overline{\lim_{n\to\infty}} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}.$$

(c): 分别在 (a),(b) 的条件基础上, 若还有 $\lim_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}$ 存在或者为确定符号的 ∞ , 则

$$\lim_{n \to \infty} \frac{y_n}{x_n} = \lim_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}.$$
 (1)

注 注意 (c) 由 (a),(b) 是显然的, 且只有 $\lim_{n\to\infty} \frac{y_{n+1}-y_n}{x_{n+1}-x_n}$ 存在或者为确定符号的 ∞ 时才(1)式成立. 他和我们的洛必达法则有一定的相似程度. 即Stolz 定理是离散的洛必达法则.

证明 我们仅证明 x_n 是严格递增数列且满足 $\lim_{n\to\infty}x_n=+\infty$ 和 $\lim_{n\to\infty}\frac{y_{n+1}-y_n}{x_{n+1}-x_n}<\infty$ 时有

$$\overline{\lim}_{n \to \infty} \frac{y_n}{x_n} \leqslant \overline{\lim}_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}.$$
 (2)

记 $A \triangleq \overline{\lim}_{n \to \infty} \frac{y_{n+1} - y_n}{x_{n+1} - x_n}$,由上极限定义我们知道对任何 $\varepsilon > 0$,存在 $N \in \mathbb{N}$,使得 $\frac{y_{n+1} - y_n}{x_{n+1} - x_n} \leqslant A + \varepsilon, \forall n \geqslant N$. 利用 x_n 严格递增时,成立 $y_{n+1} - y_n \leqslant (A + \varepsilon)(x_{n+1} - x_n), n \geqslant N$,然后求和得

$$\sum_{j=N}^{n-1}(y_{j+1}-y_j)\leqslant (A+\varepsilon)\sum_{j=N}^{n-1}(x_{j+1}-x_j), \forall n\geqslant N+1.$$

即

$$y_n - y_N \le (A + \varepsilon)(x_n - x_N), \forall n \ge N + 1.$$

$$\overline{\lim_{n\to\infty}} \frac{y_n}{x_n} = \overline{\lim_{n\to\infty}} \frac{\frac{y_n}{x_n} - \frac{y_N}{x_n}}{1 - \frac{x_N}{x_n}} = \overline{\lim_{n\to\infty}} \frac{y_n - y_N}{x_n - x_N} \leqslant A + \varepsilon.$$

由 ε 任意性得到式(2).

命题 0.1

设 $\{a_n\}$ 为一个数列,p 为固定的正整数. 若 $\lim_{n\to\infty}(a_{n+p}-a_n)=\lambda$, 其中 λ 为常数, 证明:

$$\lim_{n\to\infty}\frac{a_n}{n}=\frac{\lambda}{p}.$$

证明 考虑 $\left\{\frac{a_n}{n}\right\}$ 的 p 个互不相交的子列 $\left\{\frac{a_{np+k}}{np+k}\right\}$, $k=0,1,2\cdots,p-1$. 由条件可得, 对 $\forall k\in [0,p-1]\cap \mathbb{N}$, 都有

$$\lim_{n\to\infty} \left(a_{(n+1)p+k} - a_{np+k} \right) = \lim_{n\to\infty} \left(a_{n+p} - a_n \right) = \lambda.$$

从而由 Stolz 定理可得

$$\lim_{n\to\infty}\frac{a_{np+k}}{np+k}=\lim_{n\to\infty}\frac{a_{(n+1)p+k}-a_{np+k}}{(n+1)\,p+k-\left\lceil np+k\right\rceil}=\frac{\lambda}{p}.$$

于是由命题??可知

$$\lim_{n\to\infty}\frac{a_n}{n}=\frac{\lambda}{p}.$$

命题 0.2 (Cauchy 命题)

若 $\lim y_n$ 存在或者为确定符号的 ∞ ,则有

$$\lim_{n\to\infty}\frac{y_1+y_2+\cdots+y_n}{n}=\lim_{n\to\infty}y_n.$$

笔记 这个命题说明Stolz 定理是一种有效的把求和消去的降阶方法.

证明 容易由Stolz 定理的 (a)直接得出.

定理 **0.2** (反向 **Stolz** 定理/反向 **Cauchy** 命题)

对某个 C > 0, 如果有 $n(a_n - a_{n-1}) \ge -C$, $\forall n \ge 2$, 且

$$\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a \in \mathbb{R},$$

则我们有

$$\lim_{n\to\infty}a_n=a.$$

笔记 反向 Stolz 定理本身是习题, 作为定理去应用的机会非常少.

笔记 不妨设 a=0. 记

$$b_1 = a_1, \ b_n = a_n - a_{n-1}, \ \forall n \geqslant 2, \ S_n = a_1 + a_2 + \dots + a_n.$$

证明的想法是用 S_n, S_m 来表示 a_n, m 是一个待定的自然数.即由

$$S_{n+m} = S_n + ma_n + mb_{n+1} + (m-1)b_{n+2} + \cdots + b_{n+m}$$

推出

$$\begin{split} a_n &= \frac{S_{n+m} - S_n}{m} - \frac{mb_{n+1} + (m-1)b_{n+2} + \dots + b_{n+m}}{m} \\ &\leq \frac{|S_{n+m}| + |S_n|}{m} + \frac{1}{m} \left[m \frac{C}{n+1} + (m-1) \frac{C}{n+2} + \dots + \frac{C}{n+m} \right]. \end{split}$$

然后想办法取合适的 m 即可.

证明 不妨设 a=0, 记

$$b_1 = a_1, \ b_n = a_n - a_{n-1}, \ \forall n \geqslant 2, \ S_n = a_1 + a_2 + \dots + a_n.$$

2

我们有 $b_n \geqslant -\frac{C}{n}$. 对任何 $\varepsilon \in (0,1)$, 存在 $N \in \mathbb{N}$, 使得 $|S_n| \leqslant n\varepsilon$, $\forall n \geqslant N$, 于是当 $n \geqslant N$, 有

$$a_{n} = \frac{S_{n+[n\sqrt{\varepsilon}]} - S_{n}}{[n\sqrt{\varepsilon}]} - \frac{1}{[n\sqrt{\varepsilon}]} \left([n\sqrt{\varepsilon}]b_{n+1} + ([n\sqrt{\varepsilon}] - 1)b_{n+2} + \dots + b_{n+[n\sqrt{\varepsilon}]} \right)$$

$$\leq \frac{|S_{n+[n\sqrt{\varepsilon}]}| + |S_{n}|}{[n\sqrt{\varepsilon}]} + \frac{1}{[n\sqrt{\varepsilon}]} \left([n\sqrt{\varepsilon}] \frac{C}{n+1} + ([n\sqrt{\varepsilon}] - 1) \frac{C}{n+2} + \dots + \frac{C}{n+[n\sqrt{\varepsilon}]} \right)$$

$$\leq \frac{|S_{n+[n\sqrt{\varepsilon}]}| + |S_{n}|}{[n\sqrt{\varepsilon}]} + \frac{1}{[n\sqrt{\varepsilon}]} \left([n\sqrt{\varepsilon}] \frac{C}{n} + ([n\sqrt{\varepsilon}] - 1) \frac{C}{n} + \dots + \frac{C}{n} \right)$$

$$= \frac{|S_{n+[n\sqrt{\varepsilon}]}| + |S_{n}|}{[n\sqrt{\varepsilon}]} + \frac{[n\sqrt{\varepsilon}] + 1}{2n} C$$

$$\leq \frac{2n\varepsilon}{[n\sqrt{\varepsilon}]} + \frac{[n\sqrt{\varepsilon}] + 1}{2n} C + \varepsilon, \tag{3}$$

于是我们得到

$$\overline{\lim}_{n\to\infty} a_n \leqslant 2\sqrt{\varepsilon} + \frac{C}{2}\sqrt{\varepsilon} + \varepsilon.$$

$$\mathcal{B}\mathcal{H} - \overline{f}\overline{\mathbf{m}}, \, \stackrel{}{=} \, n \geqslant \frac{N}{1 - \sqrt{\varepsilon}} > N, \, \stackrel{}{=} \, n - [n\sqrt{\varepsilon}] \geqslant n(1 - \sqrt{\varepsilon}) \geqslant N, \, \boxed{B}\mathbb{E}$$

$$a_n = \frac{S_n - S_{n-[n\sqrt{\varepsilon}]}}{[n\sqrt{\varepsilon}]} + \frac{([n\sqrt{\varepsilon}] - 1)b_n + ([n\sqrt{\varepsilon}] - 2)b_{n-1} + \dots + b_{n-[n\sqrt{\varepsilon}] + 2}}{[n\sqrt{\varepsilon}]}$$

$$\geqslant \frac{S_n - S_{n-[n\sqrt{\varepsilon}]}}{[n\sqrt{\varepsilon}]} - \frac{([n\sqrt{\varepsilon}] - 1)\frac{C}{n} + ([n\sqrt{\varepsilon}] - 2)\frac{C}{n} + \dots + \frac{C}{n-[n\sqrt{\varepsilon}] + 2}}{[n\sqrt{\varepsilon}]}$$

$$\geqslant \frac{S_n - S_{n-[n\sqrt{\varepsilon}]}}{[n\sqrt{\varepsilon}]} - \frac{C}{(n - [n\sqrt{\varepsilon}])[n\sqrt{\varepsilon}]} \left(([n\sqrt{\varepsilon}] - 1) + ([n\sqrt{\varepsilon}] - 2) + \dots + 1 \right)$$

$$\geqslant \frac{|S_n| + |S_{n-[n\sqrt{\varepsilon}]}|}{[n\sqrt{\varepsilon}]} - \frac{C}{2} \frac{[n\sqrt{\varepsilon}] - 1}{n - [n\sqrt{\varepsilon}]}$$

$$\geqslant -\frac{2n\varepsilon}{[n\sqrt{\varepsilon}]} - \frac{C}{2} \frac{[n\sqrt{\varepsilon}] - 1}{n - [n\sqrt{\varepsilon}]} + \varepsilon, \tag{4}$$

于是我们得到

$$\underline{\lim_{n\to\infty}} a_n \geqslant -2\sqrt{\varepsilon} - \frac{C}{2} \frac{\sqrt{\varepsilon}}{1-\sqrt{\varepsilon}} + \varepsilon.$$

由ε任意性即得

$$\lim_{n\to\infty} a_n = 0.$$

命题 0.3

若
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l\in\mathbb{R}\cup\{+\infty\}\cup\{-\infty\}$$
 且 $a_n>0$,则 $\lim_{n\to\infty}\sqrt[n]{a_n}=l$.

证明 由 Stolz 定理可得

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} e^{\frac{\ln a_n}{n}} = \frac{\operatorname{Stolz} \not \in \mathbb{Z}}{\lim_{n\to\infty} e^{\ln a_{n+1} - \ln a_n}} = \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l.$$

命题 0 4

若
$$\lim_{n\to\infty} \sqrt[n]{a_n} = l \in \mathbb{R}, a_n > 0$$
,并且对某个 $C > 0$,如果有 $n(a_n - a_{n-1}) \geqslant -C$, $\forall n \geqslant 2$,则 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$.

证明 由反向 Stolz 定理可得

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} e^{\ln a_{n+1} - \ln a_n} \underbrace{\frac{\mathbb{E} \cap \operatorname{Stolz} \mathbb{E}^{\underline{u}}}{\mathbb{E}^{\underline{u}}}}_{n\to\infty} \lim_{n\to\infty} e^{\frac{\sum_{k=0}^{n} (\ln a_{k+1} - \ln a_k)}{n}} = \lim_{n\to\infty} e^{\frac{\ln a_n - \ln a_0}{n}} = \lim_{n\to\infty} e^{\frac{\ln a_n}{n}} = \lim_{n\to\infty} \sqrt[n]{a_n} = 1.$$

0.1.1.1 利用 Stolz 定理求数列极限

例题 0.1 计算

$$\lim_{n\to\infty}\frac{\ln n}{\ln\sum_{k=1}^n k^{2020}}.$$

🕏 笔记 本题计算过程中使用了 Lagrange 中值定理, 只是过程省略了而已 (以后这种过程都会省略).

证明 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\ln n}{\ln \sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{\ln (n+1) - \ln n}{\ln \sum_{k=1}^{n+1} k^{2020} - \ln \sum_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{\ln (1 + \frac{1}{n})}{\ln \sum_{k=1}^{n+1} k^{2020}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\ln (1 + \frac{(n+1)^{2020}}{\sum_{k=1}^{n} k^{2020}})}.$$

又由Stolz 定理可知

$$\lim_{n \to \infty} \frac{(n+1)^{2020}}{\sum\limits_{k=1}^{n} k^{2020}} = \lim_{n \to \infty} \frac{(n+2)^{2020} - (n+1)^{2020}}{(n+1)^{2020}} = \lim_{n \to \infty} \frac{2020 \cdot n^{2019}}{(n+1)^{2020}} = 0.$$

于是再利用Stolz 定理可得

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{\ln\left(1 + \frac{(n+1)^{2020}}{\sum\limits_{k=1}^{n} k^{2020}}\right)} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{(n+1)^{2020}}{\sum\limits_{k=1}^{n} k^{2020}}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} k^{2020}}{n \cdot (n+1)^{2020}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} k^{2020}}{n^{2021}}$$

$$= \lim_{n \to \infty} \frac{(n+1)^{2020}}{(n+1)^{2021} - n^{2021}} = \lim_{n \to \infty} \frac{(n+1)^{2020}}{2021 \cdot n^{2020}} = \frac{1}{2021}.$$

$$\not \text{im} \lim_{n \to \infty} \frac{\ln n}{\ln \sum\limits_{k=1}^{n} k^{2020}} = \frac{1}{2021}.$$

例题 0.2

(1) 计算极限 $\lim_{n\to\infty} \frac{\sum\limits_{k=1}^{n}\frac{1}{k}}{\ln n}$.

(2) 证明下述极限存在 $\lim_{n\to\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n\right)$.

(3) 计算
$$\lim_{n\to\infty} n\left(\sum_{k=1}^n \frac{1}{k} - \ln n - \gamma\right)$$
.

(1) 直接由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k}}{\ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\ln (n+1) - \ln n} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1.$$

(2) 记 $c_n = \sum_{k=1}^n \frac{1}{k} - \ln n$, 则

$$\begin{split} c_{n+1} - c_n &= \frac{1}{n+1} + \ln n - \ln(n+1) = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) \\ &= \frac{1}{n+1} - \left[\frac{1}{n} + O\left(\frac{1}{n^2}\right)\right] = -\frac{1}{n(n+1)} + O\left(\frac{1}{n^2}\right) \\ &= O\left(\frac{1}{n^2}\right), n \to +\infty. \end{split}$$

从而存在常数 C > 0, 使得 $|c_{n+1} - c_n| \le \frac{C}{n^2}$, 又因为 $\sum_{n=1}^{\infty} \frac{C}{n^2}$ 收敛, 所以由比较原则可知 $\sum_{n=1}^{\infty} |c_{n+1} - c_n|$ 也收敛. 由于数列级数绝对收敛一定条件收敛, 因此 $\sum_{n=1}^{\infty} (c_{n+1} - c_n)$ 也收敛, 即 $\lim_{n \to \infty} \sum_{n=1}^{\infty} (c_{k+1} - c_k) = \lim_{n \to \infty} (c_{n+1} - c_1)$

存在. 故 $\lim_{n\to\infty} c_n = \lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n \right)$ 也存在.

(3) 由Stolz 定理可得

$$\lim_{n \to \infty} n \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n - \gamma \right) = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k} - \ln n - \gamma}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n+1} - \ln \left(1 + \frac{1}{n}\right)}{\frac{1}{n+1} - \frac{1}{n}}$$

$$\lim_{n \to \infty} \frac{1}{\left(\frac{1}{n+1} - \frac{1}{n}\right) n^2} \cdot \lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \ln \left(1 + \frac{1}{n}\right) \right] = \lim_{n \to \infty} \frac{1}{-\frac{1}{n(n+1)} \cdot n^2} \cdot \lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \ln \left(1 + \frac{1}{n}\right) \right]$$

$$= -\lim_{n \to \infty} n^2 \left[\frac{1}{n+1} - \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) \right] = \frac{1}{2}.$$

因此我们得到了调和级数的渐进估计

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right), n \to \infty.$$

例题 0.3 计算

1. $\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n};$ 2. $\lim_{n \to \infty} (\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!}).$

1. 由Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n} = \lim_{n \to \infty} \frac{e^{\sum_{k=1}^{n} \ln k}}{n} = \lim_{n \to \infty} e^{\sum_{k=1}^{n} \ln k} - \ln n = e^{\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln k - n \ln n}{n}}$$

$$= e^{\lim_{n \to \infty} \frac{\ln(n+1) - (n+1) \ln(n+1) + n \ln n}{1}} = e^{\lim_{n \to \infty} n \ln \frac{n+1}{n}}$$

$$= e^{\lim_{n \to \infty} n \left(\frac{n}{n+1} - 1\right)} = e^{-1}.$$

2. 注意到

$$\lim_{n \to \infty} \left(\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} \right) = \lim_{n \to \infty} \left(e^{\frac{n+1}{\sum_{k=1}^{n} \ln k}} - e^{\frac{\sum_{k=1}^{n} \ln k}{n}} \right) = \lim_{n \to \infty} e^{\frac{\sum_{k=1}^{n} \ln k}{n}} \left(e^{\frac{n+1}{\sum_{k=1}^{n} \ln k}} - \frac{\sum_{k=1}^{n} \ln k}{n} - 1 \right).$$

由上一小题可知

$$\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=\lim_{n\to\infty}\frac{e^{\sum\limits_{k=1}^{n}\ln k}}{n}=e^{-1}.$$

故
$$e^{\sum\limits_{k=1}^{n}\ln k}\sim rac{n}{e},n
ightarrow \infty$$
. 并且

$$\lim_{n \to \infty} \left(\frac{\sum_{k=1}^{n+1} \ln k}{n+1} - \frac{\sum_{k=1}^{n} \ln k}{n} \right) = \lim_{n \to \infty} \frac{n \sum_{k=1}^{n+1} \ln k - (n+1) \sum_{k=1}^{n} \ln k}{n (n+1)} = \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n (n+1)}$$

$$=-\lim_{n\to\infty}\frac{\sum\limits_{k=1}\ln k}{n\,(n+1)}\,\frac{\text{Stolz}\, \underline{\not{\text{rpt}}}}{n\,(n+1)}-\lim_{n\to\infty}\frac{\ln n}{2\,(n+1)}=0.$$

因此

$$\lim_{n \to \infty} \left(\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} \right) = \lim_{n \to \infty} e^{\sum_{k=1}^{n} \ln k} \left(e^{\sum_{k=1}^{n+1} \ln k} - \sum_{k=1}^{n} \ln k - 1 \right) = \lim_{n \to \infty} \frac{n}{e} \cdot \left(\sum_{k=1}^{n+1} \ln k - \sum_{k=1}^{n} \ln k - 1 - 1 \right)$$

$$= \frac{1}{e} \lim_{n \to \infty} n \cdot \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n (n+1)} = \frac{1}{e} \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{n+1}$$

$$\frac{\text{Stolz } \mathbb{R}^{\frac{n}{2}}}{e} \frac{1}{e} \lim_{n \to \infty} \left[(n+1) \ln (n+2) - \sum_{k=1}^{n+1} \ln k - n \ln (n+1) + \sum_{k=1}^{n} \ln k \right]$$

$$= \frac{1}{e} \lim_{n \to \infty} \left[(n+1) \ln (n+2) - (n+1) \ln (n+1) \right] = \frac{1}{e} \lim_{n \to \infty} (n+1) \ln \left(1 + \frac{1}{n+1} \right)$$

$$= \frac{1}{e} \lim_{n \to \infty} (n+1) \left[\frac{1}{n+1} + o\left(\frac{1}{n+1}\right) \right] = \frac{1}{e}.$$

例题 0.4 计算

$$\lim_{n\to\infty} \frac{\sum_{k=1}^n \ln C_n^k}{n^2}.$$

笔记 注意到,分子求和时,不是单纯的 $\sum_{k=0}^{n+1} \ln C_n^k - \sum_{k=0}^n \ln C_n^k$, 而是 $\sum_{k=0}^{n+1} \ln C_{n+1}^k - \sum_{k=0}^n \ln C_n^k$.

组合数的定义和性质可以参考 Binomial Coefficien 结论 $\mathbf{C}_a^b = \frac{a}{b} \mathbf{C}_{a-1}^{b-1}$. 解 由Stolz 定理可得

结论
$$C_a^b = \frac{a}{b} C_{a-1}^{b-1}$$
.

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln C_{n}^{k}}{n^{2}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n+1} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{n^{2} - (n-1)^{2}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n+1} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln C_{n+1}^{k} - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln \left(\frac{n+1}{k}C_{n}^{k-1}\right) - \sum_{k=1}^{n} \ln C_{n}^{k}}{2n}$$

$$= \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \ln (n+1) - \sum_{k=1}^{n} \ln k + \sum_{k=1}^{n} \left(\ln C_{n}^{k-1} - \ln C_{n}^{k}\right)}{2n} = \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k - \left(\ln C_{n}^{0} - \ln C_{n}^{n}\right)}{2n}$$

$$= \lim_{n \to \infty} \frac{n \ln (n+1) - \sum_{k=1}^{n} \ln k}{2n} = \frac{1}{2} \lim_{n \to \infty} \frac{(n+1) \ln (n+2) - n \ln (n+1) - \ln (n+1)}{1}$$

$$= \frac{1}{2} \lim_{n \to \infty} (n+1) \ln \frac{n+2}{n+1} = \frac{1}{2} \lim_{n \to \infty} (n+1) \left(\frac{n+2}{n+1} - 1\right) = \frac{1}{2}.$$

例题 **0.5** 求极限 $\lim_{n\to\infty}\sum_{k=1}^{n}\frac{n+1}{2^{k}(n+1-k)}$

笔记 倒序求和与顺序求和相等!(看到n+1-k,就应该想到倒序求和)

解 由 Stolz 公式可得

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+1}{2^{k}(n+1-k)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n+1}{2^{n+1-k}k} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{2^{k}}{k}}{\frac{2^{n+1}}{n+1}} = \lim_{n \to \infty} \frac{\frac{2^{n}}{n}}{\frac{2^{n+1}}{n+1} - \frac{2^{n}}{n}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{2^{n+1}}{n+1} - \frac{1}{n}} = 1.$$

例题 0.6 求极限 $\lim_{n\to\infty} n(H_n - \ln n - \gamma)$, 其中 γ 为欧拉常数, $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

$$\begin{split} \lim_{n \to \infty} n(H_n - \ln n - \gamma) &= \lim_{n \to \infty} \frac{H_n - \ln n - \gamma}{\frac{1}{n}} = \lim_{n \to \infty} \frac{H_{n+1} - H_n - \ln(n+1) + \ln n}{\frac{1}{n+1} - \frac{1}{n}} \\ &= \lim_{n \to \infty} \frac{\frac{1}{n+1} - \ln(1 + \frac{1}{n})}{-\frac{1}{n^2}} = \lim_{n \to \infty} n^2 \left(\ln(1 + \frac{1}{n}) - \frac{1}{n+1} \right) = \lim_{n \to \infty} n^2 \left(\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{n+1} \right) = \frac{1}{2} \end{split}$$

注 类似的, 你可以继续计算 $\lim_{n\to\infty} \left(n(H_n - \ln n - \gamma) - \frac{1}{2}\right)$, 并且仅用 stolz 公式就能证明存在一列 c_1, \dots, c_k 使得

$$H_n = \ln n + \gamma + \frac{c_1}{n} + \frac{c_2}{n^2} + \dots + \frac{c_k}{n^k} + O\left(\frac{1}{n^{k+1}}\right), n \to \infty.$$

例题 **0.7** 求极限 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\sqrt{1+\frac{k}{n}}$.

🕏 笔记 这题也可以凑定积分定义是显然的.

证明

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{1 + \frac{k}{n}} = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \sqrt{n+k}}{n\sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{2n+1} + \sqrt{2n+2} - \sqrt{n+1}}{\frac{3}{2}\sqrt{n}} = \frac{2}{3}(2\sqrt{2} - 1).$$

命题 0.5

设 $\alpha \in (0,1)$,证明

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = \frac{n^{1-\alpha}}{1-\alpha} + o\left(n^{1-\alpha}\right).$$

证明 由 Stolz 公式可得

$$\lim_{n\to\infty}\frac{\sum\limits_{k=1}^{n}\frac{1}{k^{\alpha}}}{n^{1-\alpha}}=\lim_{n\to\infty}\frac{\frac{1}{(n+1)^{\alpha}}}{(n+1)^{1-\alpha}-n^{1-\alpha}}=\lim_{n\to\infty}\frac{1}{n^{\alpha}\cdot(1-\alpha)n^{-\alpha}}=\frac{1}{1-\alpha}.$$

0.1.1.2 利用 Stolz 定理求抽象数列极限

例题 0.8 设 $x_1 > 0, x_{n+1} = x_n + \frac{1}{x_n \sqrt{n}}$, 求极限 $\lim_{n \to \infty} n^{-\frac{1}{4}} x_n$.

证明 归纳易证 x_n 单调递增, 如果 x_n 有界则设 $x_n \leqslant A < \infty$, 代入条件可知 $x_{n+1} - x_n = \frac{1}{\sqrt{nx_n}} \geqslant \frac{1}{A\sqrt{n}}$, 从而 $x_{n+1} = \sum_{k=1}^n (x_{k+1} - x_k) \geqslant \sum_{k=1}^n \frac{1}{A\sqrt{n}}$. 而这个不等式右边发散, 故 x_n 也发散, 矛盾. 所以 x_n 单调递增趋于无穷, 下面用 Stolz 公式求权限

$$\lim_{n \to \infty} \frac{x_n^2}{\sqrt{n}} = \lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{(x_{n+1} - x_n)(x_{n+1} + x_n)}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{\frac{1}{x_n\sqrt{n}}\left(2x_n + \frac{1}{x_n\sqrt{n}}\right)}{\frac{1}{2\sqrt{n}}} = 2\lim_{n \to \infty} \left(2 + \frac{1}{x_n^2\sqrt{n}}\right) = 4.$$

因此所求的极限是2.

注

1. 直接用 stolz 会做不出来:

$$\lim_{n \to \infty} \frac{x_n}{n^{\frac{1}{4}}} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{\frac{1}{4}n^{-\frac{3}{4}}} = \lim_{n \to \infty} \frac{4 \cdot \frac{1}{x_n \sqrt{n}}}{n^{-\frac{3}{4}}} = 4 \lim_{n \to \infty} \frac{n^{-\frac{1}{4}}}{x_n}.$$

设 $\lim_{n\to\infty} \frac{x_n}{n^{\frac{1}{4}}} = A$, 则由上式可得 $A = \frac{4}{A}$, 解得 A = 2.

但是注意我们事先并没有论证上式最后一个极限存在, 所以不满足 Stolz 定理的条件, 这导致前面的等号都不一定成立. 因此不可以"解方程"得到所求极限为 2.

2. 上述证明中最后一步求原式平方的极限而不求其他次方的极限的原因: 我们也可以待定系数自己探索出数

列的阶并算出这样的结果, 待定 a, b > 0, 则由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{x_n^a}{n^b} = \lim_{n \to \infty} \frac{x_{n+1}^a - x_n^a}{bn^{b-1}} = \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n\sqrt{n}}\right)^a - x_n^a}{bn^{b-1}} = \lim_{n \to \infty} \frac{x_n^a \left(\left(1 + \frac{1}{x_n^2\sqrt{n}}\right)^a - 1\right)}{bn^{b-1}} = \lim_{n \to \infty} \frac{x_n^a \frac{a}{x_n^2\sqrt{n}}}{bn^{b-1}} = \frac{a}{b} \lim_{n \to \infty} \frac{x_n^{a-2}}{n^{b-\frac{1}{2}}}.$$

我们希望上式最后一个极限能够直接算出具体的数, 因此令 $a=2, b=\frac{1}{2}, 则 \lim_{n\to\infty} \frac{x_n^a}{n^b} = \lim_{n\to\infty} \frac{x_n^2}{\sqrt{n}} = \frac{a}{b} = 4.$ 故

实际书写中我们只需要利用 Stolz 定理求出 $\lim_{n\to\infty} \frac{x_n^2}{\sqrt{n}}$ 即可.

类似题目的最后一步求的极限式都是通过这种待定系数的方式得到的,并不是靠猜.

例题 0.9 设 $0 < x_0 < y_0 < \frac{\pi}{2}, x_{n+1} = \sin x_n, y_{n+1} = \sin y_n \ (n \geqslant 0).$ 证明: $\lim_{n \to +\infty} \frac{x_n}{y_n} = 1.$ 证明 因为 $x_{n+1} = \sin x_n < x_n \ (n \geqslant 0)$,所以数列 $\{x_n\}$ 严格递减有下界. 设 $\lim_{n \to +\infty} x_n = a$,则 $\sin a = a$,于是 a = 0,即 $\lim_{n\to+\infty} x_n = 0.$ 同 \mathbb{H} , $\lim_{n\to+\infty} y_n = 0.$

对任意的正整数n有

$$y_{n+\ell} < x_n < y_n$$

进而

$$\frac{y_{n+\ell}}{y_n} < \frac{x_n}{y_n} < 1$$

注意到 $\lim_{n\to+\infty} \frac{y_{n+\ell}}{y_n} = 1$, 由夹逼准则即得 $\lim_{n\to+\infty} \frac{x_n}{y} = 1$.

注 事实上, 通过待定系数, 利用 Stolz 公式做形式计算可以得到 x_n 的阶. 待定 $\alpha, \beta > 0$, 由 Stolz 公式可得

$$\lim_{n \to \infty} n^{\beta} x_n^{\alpha} = \lim_{n \to \infty} \frac{n^{\beta}}{\frac{1}{x_n^{\alpha}}} = \lim_{n \to \infty} \frac{\beta n^{\beta - 1}}{\frac{1}{\sin^{\alpha} x_n} - \frac{1}{x_n^{\alpha}}}$$

$$= \beta \lim_{n \to \infty} \frac{n^{\beta - 1} x_n^{\alpha} \sin^{\alpha} x_n}{x_n^{\alpha} - \sin^{\alpha} x_n} = \beta \lim_{n \to \infty} \frac{n^{\beta - 1} x_n^{2\alpha}}{x_n^{\alpha} - \left(x_n - \frac{1}{6}x_n^3 + o\left(x_n^3\right)\right)^{\alpha}}$$

$$= \beta \lim_{n \to \infty} \frac{n^{\beta - 1} x_n^{2\alpha}}{C_{\alpha}^1 x_n^{\alpha - 1} \cdot \frac{1}{c} x_n^3 + o\left(x_n^{\alpha + 2}\right)} = \frac{6\beta}{\alpha} \lim_{n \to \infty} \frac{n^{\beta - 1}}{x_n^{2 - \alpha} + o\left(x_n^{2 - \alpha}\right)}.$$

于是取 $\alpha = 2, \beta = 1$,可得 $\lim_{n \to \infty} nx_n^2 = \frac{6 \cdot 1}{2} = 3$. 同理可得 $\lim_{n \to \infty} ny_n^2 = 3$.. 故 $\lim_{n \to +\infty} \sqrt{n}x_n = \lim_{n \to +\infty} \sqrt{n}y_n = \sqrt{3}$. 例题 **0.10** 设 $k \ge 2, a_0 > 0, a_{n+1} = a_n + \frac{1}{\sqrt[4]{a_n}}$,求极限 $\lim_{n \to \infty} \frac{a_n^{k+1}}{n^k}$.

笔记 这题很容易能猜出要先对原极限开 k 次方再用 Stolz 定理求解.

实际上, 我们也可以同例题 0.8一样, 待定系数自己探索出数列的阶并算出这样的结果, 待定 a,b > 0, 则由 Stolz 定理可得

$$\begin{split} &\lim_{n\to\infty}\frac{a_n^{a(k+1)}}{n^{bk}}=\lim_{n\to\infty}\frac{a_{n+1}^{a(k+1)}-a_n^{a(k+1)}}{bkn^{bk-1}}=\lim_{n\to\infty}\frac{\left(a_n+a_n^{-\frac{1}{k}}\right)^{a(k+1)}-a_n^{a(k+1)}}{bkn^{bk-1}}\\ &=\lim_{n\to\infty}\frac{a_n^{a(k+1)}\left[\left(1+a_n^{-\frac{1}{k}-1}\right)^{a(k+1)}-1\right]}{bkn^{bk-1}}=\lim_{n\to\infty}\frac{a_n^{a(k+1)}\frac{\frac{1}{k}+1}{a_n^{\frac{1}{k}+1}}}{bkn^{bk-1}}=\frac{k+1}{bk^2}\lim_{n\to\infty}\frac{a_n^{a(k+1)-\frac{k+1}{k}}}{n^{bk-1}}. \end{split}$$

我们希望上式最后一个极限能够直接算出具体的数值,因此令 $a=b=\frac{1}{k}$,于是 $\lim_{n\to\infty}\frac{a_n^{a(k+1)}}{n^{bk}}=\lim_{n\to\infty}\frac{a_n^{1+\frac{1}{k}}}{n}=\frac{k+1}{k}$. 故实际书写中我们只需要利用 Stolz 定理求出 $\lim_{n\to\infty}\frac{a_n^{1+\frac{1}{k}}}{n}$ 即可.

 $\vec{\text{ti}}$ 明 归纳易证 a_n 单调递增, 假设 a_n 有界, 则由单调有界定理可知, a_n 收敛, 设 $\lim_{n \to \infty} a_n = A < \infty$. 则由递推条件可

得, $A = A + \frac{1}{\sqrt[4]{A}}$, 无解, 矛盾. 于是 a_n 单调递增且无上界, 故 $\lim_{n \to \infty} a_n = +\infty$. 根据 Stolz 公式有

$$\lim_{n \to \infty} \frac{a_n^{1 + \frac{1}{k}}}{n} = \lim_{n \to \infty} \left(a_{n+1}^{1 + \frac{1}{k}} - a_n^{1 + \frac{1}{k}} \right) = \lim_{n \to \infty} \left(\left(a_n + a_n^{-\frac{1}{k}} \right)^{1 + \frac{1}{k}} - a_n^{1 + \frac{1}{k}} \right) = \lim_{n \to \infty} a_n^{1 + \frac{1}{k}} \left(\left(1 + a_n^{-\frac{1}{k} - 1} \right)^{1 + \frac{1}{k}} - 1 \right)$$

$$= \lim_{x \to +\infty} x^{1 + \frac{1}{k}} \left(\left(1 + x^{-(1 + \frac{1}{k})} \right)^{1 + \frac{1}{k}} - 1 \right) = \lim_{x \to +\infty} x^{1 + \frac{1}{k}} \left(1 + \frac{1}{k} \right) x^{-(1 + \frac{1}{k})} = 1 + \frac{1}{k}$$

因此所求极限是 $\left(1 + \frac{1}{k}\right)^k$.

注 如果题目没给出需要求的极限 $\lim_{n\to\infty}\frac{a_n^{k+1}}{n^k}$,而是问求 a_n 的渐近展开式 (只展开一项),那么我们就需要待定系数自己探索 a_n 的阶. 待定 $\alpha>0$,由 Taylor 公式得到

$$\begin{split} a_{n+1}^{\alpha} &= \left(a_n + \frac{1}{\sqrt[4]{a_n}}\right)^{\alpha} = a_n^{\alpha} + \alpha a_n^{\alpha-1} \frac{1}{\sqrt{a_n}} + o\left(a_n^{\alpha-\frac{3}{2}}\right) \\ &\Rightarrow a_{n+1}^{\alpha} \approx a_n^{\alpha} + \alpha a_n^{\alpha-\frac{3}{2}} \Rightarrow a_{n+1}^{\alpha} - a_n^{\alpha} \approx \alpha a_n^{\alpha-\frac{3}{2}}. \end{split}$$

从而令 $\alpha = \frac{3}{2}$, 则

$$a_{n+1}^{\frac{3}{2}} = a_{n+1}^{\alpha} = \sum_{k=1}^{n} \left(a_{k+1}^{\alpha} - a_{k}^{\alpha} \right) \approx \sum_{k=1}^{n} \alpha a_{k}^{\alpha - \frac{3}{2}} = \sum_{k=1}^{n} \frac{3}{2} a_{k}^{\frac{3}{2} - \frac{3}{2}} = \frac{3n}{2}.$$

这样就能写出 a_n 渐近展开式的第一项, 即 $a_n = \left(\frac{3n}{2}\right)^{\frac{2}{3}} + o\left(n^{\frac{2}{3}}\right)$.

例题 0.11 设 k 为正整数, 正数列 $\{x_n\}$ 满足 $\lim_{n\to\infty} x_n(x_1^k+x_2^k+\cdots+x_n^k)=1$, 证明: $\lim_{n\to\infty} nx_n^{k+1}=\frac{1}{k+1}$. 证明 设 $S_n=x_1^k+x_2^k+\cdots+x_n^k$, 则 S_n 单调递增. 如果 S_n 有界, 则 x_n 趋于零, $x_nS_n\to 0$, 这与已知条件矛盾, 所以 S_n 单调递增趋于正无穷, 进一步结合条件可知 x_n 趋于零. 注意到

$$\lim_{n \to \infty} x_{n+1} S_n = \lim_{n \to \infty} \frac{x_{n+1} S_{n+1} S_n}{S_{n+1}} = \lim_{n \to \infty} \frac{S_n}{S_{n+1}} = \lim_{n \to \infty} \frac{1}{1 + \frac{x_{n+1}}{S_{n+1}}} = 1.$$

下面运用等价无穷小替换和 Stolz 公式来求极限:

$$\lim_{n \to \infty} n x_n^{k+1} = \lim_{n \to \infty} \frac{n x_n^{k+1} S_n^{k+1}}{S_n^{k+1}} = \lim_{n \to \infty} \frac{n}{S_n^{k+1}} = \lim_{n \to \infty} \frac{1}{S_{n+1}^{k+1} - S_n^{k+1}}$$

$$= \lim_{n \to \infty} \frac{1}{(S_{n+1} - S_n)(S_{n+1}^k + S_{n+1}^{k-1} S_n + \dots + S_{n+1} S_n^{k-1} + S_n^k)}$$

$$= \lim_{n \to \infty} \frac{1}{x_{n+1}^k (S_{n+1}^k + S_{n+1}^{k-1} S_n + \dots + S_{n+1} S_n^{k-1} + S_n^k)}$$

$$= \lim_{n \to \infty} \frac{1}{(x_{n+1} S_{n+1})^k + (x_{n+1} S_{n+1})^{k-1} (x_{n+1} S_n) + \dots + (x_{n+1} S_{n+1}) (x_{n+1} S_n)^{k-1} + (x_{n+1} S_n)^k}$$

$$= \frac{1}{k+1}.$$

例题 **0.12** 设 $\lim_{n\to\infty} a_n \sum_{k=1}^n a_k^2 = 1$, 计算 $\lim_{n\to\infty} \sqrt[3]{n} a_n$.

解 因为 $\left\{\sum_{k=1}^{n}a_{k}^{2}\right\}$ 单调递增,故由单调有界定理可知, $\left\{\sum_{k=1}^{n}a_{k}^{2}\right\}$ 的极限要么为有限数,要么为 $+\infty$. 设 $\lim_{n\to\infty}\sum_{k=1}^{n}a_{k}^{2}=$

 $c<\infty$, 则由级数收敛知 $\lim_{n\to\infty}a_n=0$, 于是 $\lim_{n\to\infty}a_n\sum_{k=1}^na_k^2=0\neq 1$ 矛盾! 故 $\lim_{n\to\infty}\sum_{k=1}^na_k^2=+\infty$. 从而

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n \sum_{k=1}^n a_k^2 \cdot \lim_{n \to \infty} \frac{1}{\sum_{k=1}^n a_k^2} = 0.$$

并且由
$$\lim_{n\to\infty} a_n \sum_{k=1}^n a_k^2 = 1$$
 可知 $a_n \sim \frac{1}{\sum_{k=1}^n a_k^2}, n \to \infty$. 于是
$$\lim_{n\to\infty} \frac{1}{na_n^3} = \lim_{n\to\infty} \frac{\left(\sum_{k=1}^n a_k^2\right)^3}{n} = \lim_{n\to\infty} \left[\left(\sum_{k=1}^{n+1} a_k^2\right)^3 - \left(\sum_{k=1}^n a_k^2\right)^3\right]$$
$$= \lim_{n\to\infty} \left[\left(a_{n+1}^2 + \sum_{k=1}^n a_k^2\right)^3 - \left(\sum_{k=1}^n a_k^2\right)^3\right]$$
$$= \lim_{n\to\infty} \left(\sum_{k=1}^n a_k^2\right)^3 \left[\left(\frac{a_{n+1}^2}{\sum_{k=1}^n a_k^2} + 1\right)^3 - 1\right]$$

又由于
$$\lim_{n \to \infty} \frac{a_{n+1}^2}{\sum\limits_{k=1}^n a_k^2} = \lim_{n \to \infty} a_{n+1}^2 a_n = 0$$
,因此由 Taylor 公式可知 $\left(\frac{a_{n+1}^2}{\sum\limits_{k=1}^n a_k^2} + 1\right)^3 - 1 \sim \frac{3a_{n+1}^2}{\sum\limits_{k=1}^n a_k^2}, n \to \infty$. 从而上式可

化为

$$\lim_{n \to \infty} \frac{1}{na_n^3} = \lim_{n \to \infty} \left(\sum_{k=1}^n a_k^2 \right)^3 \left[\left(\frac{a_{n+1}^2}{\sum_{k=1}^n a_k^2} + 1 \right)^3 - 1 \right] = \lim_{n \to \infty} \left(\sum_{k=1}^n a_k^2 \right)^3 \frac{3a_{n+1}^2}{\sum_{k=1}^n a_k^2}$$

$$= 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^n a_k^2 \right)^2 = 3 \lim_{n \to \infty} a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 - a_{n+1}^2 \right)^2$$

$$= 3 \lim_{n \to \infty} \left[a_{n+1}^2 \left(\sum_{k=1}^{n+1} a_k^2 \right)^2 - 2a_{n+1}^4 \sum_{k=1}^{n+1} a_k^2 + a_{n+1}^6 \right]$$

$$= 3 + 0 + 0 = 3.$$

因此 $\lim_{n\to\infty} \sqrt[3]{n}a_n = \frac{1}{\sqrt[3]{\lim_{n\to\infty} \frac{1}{na_n^3}}} = \frac{1}{\sqrt[3]{3}}.$

例题 0.13

2. 设 $x_{n+1} = \sin x_n, n = 1, 2, \dots, x_1 \in (0, \pi)$, 计算 $\lim_{n \to \infty} \frac{n}{\ln n} (1 - \sqrt{\frac{n}{3}} x_n)$.

解

1. 由 $\ln(1+x) \leq x, \forall x \in \mathbb{R}$ 可知 $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$. 并且 $x_1 > 0$, 假设 $x_n > 0$, 则 $x_{n+1} = \ln(1+x_n) > 0$. 从而由数学归纳法, 可知 $x_n > 0, \forall n \in \mathbb{N}$. 于是由单调有界定理, 可知数列 $\{x_n\}$ 收敛. 设 $\lim_{n \to \infty} x_n = a \geq 0$. 对 $x_{n+1} = \ln(1+x_n)$ 两边同时令 $n \to \infty$, 可得

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \ln(1 + x_n) = \ln(1 + a).$$

故 $\lim_{n\to\infty} x_n = a = 0$. 进而, 由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{1}{nx_n} = \lim_{n \to \infty} \frac{\frac{1}{x_n}}{n} = \lim_{n \to \infty} \left(\frac{1}{x_{n+1}} - \frac{1}{x_n} \right)$$

$$= \lim_{n \to \infty} \left(\frac{1}{\ln(1+x_n)} - \frac{1}{x_n} \right) = \lim_{x \to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x} \right)$$

$$= \lim_{x \to 0} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0} \frac{x - \left(x - \frac{x^2}{2} + o(x^2)\right)}{x^2} = \frac{1}{2}.$$

因此 $\lim_{n\to\infty} nx_n = 2$. 即 $x_n \sim \frac{2}{n}, n\to\infty$. 因而, 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{n(nx_n - 2)}{\ln n} = \lim_{n \to \infty} \frac{nx_n \left(n - \frac{2}{x_n}\right)}{\ln n} = 2 \lim_{n \to \infty} \frac{n - \frac{2}{x_n}}{\ln n}$$

$$= 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{x_{n+1}}}{\ln \left(1 + \frac{1}{n}\right)} = 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{x_{n+1}}}{\frac{1}{n}}$$

$$= 2 \lim_{n \to \infty} \frac{1 + \frac{2}{x_n} - \frac{2}{\ln(1 + x_n)}}{\frac{x_n}{2}} = 4 \lim_{x \to 0} \frac{1 + \frac{2}{x} - \frac{2}{\ln(1 + x)}}{x}$$

$$= 4 \lim_{x \to 0} \frac{(x + 2) \ln(1 + x) - 2x}{x^2 \ln(1 + x)} = 4 \lim_{x \to 0} \frac{(x + 2) \left(x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)\right) - 2x}{x^3}$$

$$= 4 \lim_{x \to 0} \frac{-\frac{x^3}{2} + \frac{2x^3}{3} + o(x^3)}{x^3} = \frac{2}{3}.$$

实际上, 由上述计算我们可以得到 x_n 在 $n \to \infty$ 时的渐进估计:

$$\frac{n(nx_n - 2)}{\ln n} = \frac{2}{3} + o(1) \Rightarrow nx_n - 2 = \frac{2\ln n}{3n} + o\left(\frac{\ln n}{n}\right)$$
$$\Rightarrow x_n = \frac{2}{n} + \frac{2\ln n}{3n^2} + o\left(\frac{\ln n}{n^2}\right), n \to \infty.$$

2. 由 $\sin x \leqslant x, \forall x \in \mathbb{R}$ 可知 $x_{n+1} \leqslant x_n, \forall n \in \mathbb{N}$. 又由于 $0 < x_1 < \pi$ 及 $0 < x_{n+1} = \sin x_n < 1, \forall n \in \mathbb{N}_+$,故归纳可得 $0 \leqslant x_n \leqslant 1, \forall n \geqslant 2$. 因此 $\{x_n\}$ 极限存在,设 $\lim_{n \to \infty} x_n = a < \infty$. 从而对 $x_{n+1} = \sin x_n$ 两边同时令 $n \to \infty$ 可得

$$a = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \sin x_n = \sin a.$$

故 $\lim_{n\to\infty} x_n = a = 0$. 于是由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{3}{nx_n^2} = 3 \lim_{n \to \infty} \frac{\frac{1}{x_n^2}}{n} = 3 \lim_{n \to \infty} \left(\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} \right) = 3 \lim_{n \to \infty} \left(\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} \right)$$

$$= 3 \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \sin^2 x} = 3 \lim_{x \to 0} \frac{x^2 - \left(x - \frac{x^3}{3!} + o(x^3)\right)^2}{x^4}$$

$$= 3 \lim_{x \to 0} \frac{\frac{x^4}{3} + o(x^4)}{x^4} = 1.$$

因此 $\lim_{n\to\infty}\sqrt{\frac{n}{3}}x_n=\lim_{n\to\infty}\sqrt{\frac{1}{\frac{3}{nx_n^2}}}=1, \lim_{n\to\infty}nx_n^2=3.$ 即 $x_n\sim\sqrt{\frac{3}{n}}, n\to\infty$. 进而, 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{n}{\ln n} \left(1 - \sqrt{\frac{n}{3}} x_n \right) \xrightarrow{\frac{\pi}{5} \frac{\pi}{2} \times \frac{\pi}{5} / \frac{\pi}{12} \times \frac{\pi}{12}} \lim_{n \to \infty} \frac{n \left(1 - \frac{n}{3} x_n^2 \right)}{\ln n \left(1 + \sqrt{\frac{n}{3}} x_n \right)} = \lim_{n \to \infty} \frac{n x_n^2 \left(\frac{1}{x_n^2} - \frac{n}{3} \right)}{\ln n \left(1 + \sqrt{\frac{n}{3}} x_n \right)}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_n^2} - \frac{n}{3}}{\ln n} = \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2} - \frac{1}{3}}{\ln \left(1 + \frac{1}{n} \right)}$$

$$= \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{\frac{1}{n}} = \frac{3}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{\frac{x_n^2}{3}}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2} - \frac{1}{3}}{x^2} = \frac{9}{2} \lim_{n \to \infty} \frac{x^2 - \sin^2 x - \frac{1}{3} x^2 \sin^2 x}{x^4 \sin^2 x}$$

$$= \frac{9}{2} \lim_{n \to \infty} \frac{x^2 - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5) \right)^2 - \frac{1}{3} x^2 \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5) \right)^2}{x^6}$$

$$= \frac{9}{2} \lim_{x \to 0} \frac{-\frac{x^6}{36} - \frac{x^6}{60} + \frac{x^6}{9} + o\left(x^6\right)}{x^6} = \frac{3}{10}.$$

(最后几步的计算除了用 Taylor 展开也可以用洛朗展开计算, 即先用长除法算出 $\frac{1}{\sin^2 x} = \frac{1}{x^2} + \frac{1}{3} + \frac{1}{15}x^2 + o(x^2)$, 再直接带入计算得到结果, 实际上利用洛朗展开计算更加简便.)

3. 由条件可知 $x_{n+1}=x_n+\frac{1}{x_n}\geqslant x_n, \forall n\in\mathbb{N}_+$. 又 $x_1=1>0$,故归纳可得 $x_n>0, \forall n\in\mathbb{N}_+$. 由单调有界定理可知数列 $\{x_n\}$ 的极限要么是 $+\infty$,要么是有限数. 假设 $\lim_{n\to\infty}x_n=a<\infty$,则对 $x_{n+1}=x_n+\frac{1}{x_n}$ 两边同时令 $n\to\infty$,可得 $a=a+\frac{1}{a}\Rightarrow \frac{1}{a}=0$ 矛盾. 故 $\lim_{n\to\infty}x_n=+\infty$. 于是由 Stolz 定理可得

$$\lim_{n \to \infty} \frac{x_n}{\sqrt{n}} = \sqrt{\lim_{n \to \infty} \frac{x_n^2}{n}} = \sqrt{\lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2}{n+1-n}} = \sqrt{\lim_{n \to \infty} \left(\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2\right)}$$
$$= \sqrt{\lim_{n \to \infty} \left(2 + \frac{1}{x_n^2}\right)} = \sqrt{2}.$$

因此 $x_n \sim \sqrt{2n}, n \to \infty$. 从而 $x_n + \sqrt{2n} \sim 2\sqrt{2n}, n \to \infty$. 再结合 Stolz 定理可得

$$\lim_{n \to \infty} \frac{\sqrt{2n}(x_n - \sqrt{2n})}{\ln n} = \frac{\frac{\pi}{5} \frac{1}{2} \exp(\sqrt{n} \frac{1}{2} \frac{1}{2} \ln n)}{\ln n} = \lim_{n \to \infty} \frac{\sqrt{2n}(x_n^2 - 2n)}{2\sqrt{2n} \ln n} = \lim_{n \to \infty} \frac{\sqrt{2n}(x_n^2 - 2n)}{2\sqrt{2n} \ln n}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x_n^2 - 2n}{\ln n} = \frac{1}{2} \lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2 - 2}{\ln(n+1) - \ln n}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2 - 2}{\frac{1}{n}} = \frac{1}{2} \lim_{n \to \infty} \frac{\left(x_n + \frac{1}{x_n}\right)^2 - x_n^2 - 2}{\frac{2}{x_n^2}}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{\frac{2}{x_n^2}}{\frac{2}{x_n^2}} = \frac{1}{2}.$$

例题 **0.14** 讨论级数 $\sum_{n=1}^{\infty} v_n^s$ 的敛散性, 其中 $v_1 = \sin x > 0, v_{n+1} = \sin v_n (n = 1, 2, \cdots)$.

证明 由条件可知 $v_{n+1} = \sin v_n \leqslant v_n$, $\forall n \in \mathbb{N}$. 故 $\{v_n\}$ 递减且有下界 0. 因此 $\lim_{n \to \infty} v_n = a \in [0, +\infty)$,从而对 $v_{n+1} = \sin v_n$ 两边取极限得

$$a = \sin a \Longrightarrow a = 0.$$

由 Stolz 公式得

$$\lim_{n \to \infty} n v_n^2 = \lim_{n \to \infty} \frac{1}{\frac{1}{v_{n+1}^2} - \frac{1}{v_n^2}} = \lim_{n \to \infty} \frac{v_n^2 v_{n+1}^2}{v_n^2 - v_{n+1}^2}$$

$$= \lim_{n \to \infty} \frac{v_n^2 \sin^2 v_n}{v_n^2 - \sin^2 v_n} = \lim_{x \to 0^+} \frac{x^2 \sin^2 x}{x^2 - \sin^2 x}$$

$$= \lim_{x \to 0^+} \frac{x^4}{x^2 - \left(x - \frac{x^3}{6} + o\left(x^3\right)\right)^2}$$

$$= \lim_{x \to 0^+} \frac{x^4}{\frac{x^4}{3} + o\left(x^4\right)} = 3.$$

故

$$v_n^2 \sim \frac{3}{n} \Longrightarrow v_n \sim \sqrt{\frac{3}{n}}, \quad n \to \infty.$$

又 $\sum_{n=1}^{\infty} \left(\sqrt{\frac{3}{n}}\right)^s = \sum_{n=1}^{\infty} \left(\frac{3}{n}\right)^{\frac{s}{2}}$ 当且仅当 s > 2 时收敛, $s \leqslant 2$ 时发散. 故 $\sum_{n=1}^{\infty} v_n^s$ 当且仅当 s > 2 时收敛, $s \leqslant 2$ 时发散.

例题 **0.15** 设 $a_1 = 1, a_{n+1} = a_n + \frac{1}{S_n}, S_n = \sum_{k=1}^n a_k$, 计算 $\lim_{n \to \infty} \frac{a_n}{\sqrt{\ln n}}$.

解 由于 $a_{n+1} = a_n + \frac{1}{S_n}$, $\forall n \in \mathbb{N}_+$, 并且 $a_1 > 0$, 故由数学归纳法可知 $a_n > 0$, $\forall n \in \mathbb{N}_+$. 又 $a_2 = a_1 + a_1 > a_1$, 再根据 递推式,可以归纳得到数列 $\{a_n\}$ 单调递增. 因此, 数列 $\{a_n\}$ 要么 $\lim_{n \to \infty} a_n = a < \infty$, 要么 $\lim_{n \to \infty} a_n = +\infty$. 由条件可知 $a_{n+1} - a_n = \frac{1}{S_n} \geqslant \frac{1}{na_1} = \frac{1}{n}$, $\forall n \in \mathbb{N}_+$. 从而对 $\forall n \in \mathbb{N}_+$, 都有

$$a_n = a_n - a_{n-1} + a_{n-1} - a_{n-2} + \dots + a_2 - a_1 \geqslant \frac{1}{n-1} + \frac{1}{n-2} + \dots + 1 = \sum_{k=1}^{n-1} \frac{1}{k}.$$

而 $\lim_{n\to\infty}\sum_{k=1}^{n-1}\frac{1}{k}=+\infty$, 故 $\lim_{n\to\infty}a_n=+\infty$. 于是由 Stolz 定理, 可知

$$\lim_{n \to \infty} \frac{a_n^2}{\ln n} = \lim_{n \to \infty} \frac{a_{n+1}^2 - a_n^2}{\ln(1 + \frac{1}{n})} = \lim_{n \to \infty} n(a_{n+1}^2 - a_n^2)$$

$$= \lim_{n \to \infty} n \left[\left(a_n + \frac{1}{S_n} \right)^2 - a_n^2 \right] = \lim_{n \to \infty} n \left(\frac{2a_n}{S_n} + \frac{1}{S_n^2} \right).$$

根据 Stolz 定理, 可得

$$\lim_{n \to \infty} \frac{n}{S_n^2} = \lim_{n \to \infty} \frac{1}{a_{n+1}^2} = 0;$$

$$\lim_{n \to \infty} \frac{na_n}{S_n} = \lim_{n \to \infty} \frac{(n+1)a_{n+1} - na_n}{a_{n+1}} = \lim_{n \to \infty} \left[n + 1 - \frac{na_n}{a_{n+1}} \right].$$

由递推公式, 可得对 $\forall n \in \mathbb{N}_+$, 有

$$1 = n + 1 - n \le n + 1 - \frac{na_n}{a_{n+1}} = n + 1 - \frac{na_n}{a_n + \frac{1}{S_n}} = 1 + \frac{\frac{n}{a_n S_n}}{1 + \frac{1}{a_n S_n}}$$
$$= 1 + \frac{n}{1 + a_n S_n} \le 1 + \frac{n}{1 + a_1 S_n} = 1 + \frac{n}{1 + S_n}.$$

又由 Stolz 定理, 可得 $\lim_{n\to\infty}\frac{n}{1+S_n}=\lim_{n\to\infty}\frac{1}{a_{n+1}}=0$. 故由夹逼准则可知, $\lim_{n\to\infty}\frac{na_n}{S_n}=\lim_{n\to\infty}\left[n+1-\frac{na_n}{a_{n+1}}\right]=1$. 于是

$$\lim_{n \to \infty} \frac{a_n^2}{\ln n} = \lim_{n \to \infty} n \left(\frac{2a_n}{S_n} + \frac{1}{S_n^2} \right) = 2 \lim_{n \to \infty} \frac{na_n}{S_n} + \lim_{n \to \infty} \frac{n}{S_n^2} = 2 + 0 = 2.$$

因此 $\lim_{n\to\infty} \frac{a_n}{\sqrt{\ln n}} = \sqrt{2}$.

0.1.2 函数 Stolz 定理

定理 0.3 (函数 Stolz 定理)

设 $T > 0, f, g: [0, +\infty) \to \mathbb{R}$ 是内闭有界函数.

(1) 设 g(x+T) > g(x), 若有 $\lim_{x \to +\infty} g(x) = +\infty$ 且

$$\lim_{x\to +\infty}\frac{f(x+T)-f(x)}{g(x+T)-g(x)}=A\in\mathbb{R}\bigcup\{-\infty,+\infty\}.$$

则有

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A.$$

(2) 设 0 < g(x+T) < g(x), 若有

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0,$$

且

 $\lim_{x \to +\infty} \frac{f(x+T) - f(x)}{g(x+T) - g(x)} = A \in \mathbb{R} \bigcup \{-\infty, +\infty\}.$

则有

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A.$$

注 考试中, 如果要用函数 Stolz 定理, 不要直接证明这个抽象的版本 (直接证明这个定理太繁琐). 而是根据具体问题, 利用夹逼准则和数列 Stolz 定理进行证明. 具体可见例题 0.16.

证明 我们仅考虑 $A \in \mathbb{R}$, 其余情况类似, 为了书写方便, 我们不妨设 A = 0, 否则用 f - Ag 代替 f 即可. 不妨设 T = 1, 否则用 f(Tx) 代替 f 即可.

(1) 对任何 $\varepsilon > 0$, 由条件知存在某个 $X \in \mathbb{N}$, 使得对任何 x > X 都有

$$|f(x+1) - f(x)| < \varepsilon[g(x+1) - g(x)], g(x) > 0.$$
(5)

于是对 $\forall x > X$, 利用(5)式, 我们有

$$\left| \frac{f(x)}{g(x)} \right| = \frac{\sum_{k=1}^{\lfloor x \rfloor - X} [f(x - k + 1) - f(x - k)]}{g(x)} + \frac{f(x - \lfloor x \rfloor + X)}{g(x)}$$

$$\leq \left| \frac{\sum_{k=1}^{\lfloor x \rfloor - X} [f(x - k + 1) - f(x - k)]}{g(x)} \right| + \left| \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$\leq \left| \frac{\sum_{k=1}^{\lfloor x \rfloor - X} [g(x - k + 1) - g(x - k)]}{g(x)} \right| + \left| \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$\leq \varepsilon \frac{\sum_{k=1}^{\lfloor x \rfloor - X} [g(x - k + 1) - g(x - k)]}{|g(x)|} + \left| \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$= \varepsilon \frac{g(x) - g(x - \lfloor x \rfloor + X)}{|g(x)|} + \left| \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|$$

$$\leq \varepsilon + \left| \frac{f(x - \lfloor x \rfloor + X)}{g(x)} \right|.$$

于是利用 f 在 [X, X+1] 有界及 $X \le x - [x] + X < X + 1$, 我们有

$$\overline{\lim_{x \to +\infty}} \left| \frac{f(x)}{g(x)} \right| \leqslant \varepsilon,$$

由ε任意性即得

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0.$$

这就完成了证明.

(2) 任何 $\varepsilon > 0$, 由条件可知存在某个 $X \in \mathbb{N}$, 使得对任何 x > X 都有

$$|f(x+1) - f(x)| < \varepsilon[g(x) - g(x+1)]. \tag{6}$$

于是对 $\forall x > X, \forall n \in \mathbb{N},$ 利用(6)可得

$$\left| \frac{f(x)}{g(x)} \right| = \left| \frac{\sum_{k=1}^{n} [f(x+k-1) - f(x+k)] + f(x+n)}{g(x)} \right|$$

$$\leq \frac{\sum_{k=1}^{n} |f(x+k-1) - f(x+k)|}{g(x)} + \frac{|f(x+n)|}{g(x)}$$

$$\leq \varepsilon \frac{\sum_{k=1}^{n} [g(x+k-1) - g(x+k)]}{g(x)} + \frac{|f(x+n)|}{g(x)}$$

$$= \varepsilon \frac{g(x) - g(x+n)}{g(x)} + \frac{|f(x+n)|}{g(x)}$$

$$\leq \varepsilon + \frac{|f(x+n)|}{g(x)}.$$

再利用 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0$ 得

$$\lim_{n \to \infty} \frac{|f(x+n)|}{g(x)} = 0 \Rightarrow \left| \frac{f(x)}{g(x)} \right| \leqslant \varepsilon, \forall x > X.$$

从而结论得证.

例题 0.16

(1) 设 $\alpha > -1$, 计算 $\lim_{\substack{x \to +\infty \\ t \to +\infty}} \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}}$.

(2) 计算 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x}$.

(3) 计算 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{1}{x} \int_0^x (t - [t]) dt$, 这里 [·] 表示向下取整函数.

笔记 虽然这个几个问题的思路都是函数 Stolz 定理, 但是注意在考试中我们不能直接使用这个定理, 需要我们结 合具体问题给出这个定理的证明. 具体可见下述证明.

注 第 (1) 题如果直接洛必达得

$$\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}} = \lim_{x \to +\infty} \frac{|\sin x|}{\alpha+1}$$
 不存在,

因此无法运用洛必达,但也无法判断原本的极限,而需要其他方法确定其极限,

证明

(1) 直接使用函数 Stolz 定理:由函数 Stolz 定理、Lagrange 中值定理和积分中值定理可知

$$\begin{split} &\lim_{x \to +\infty} \frac{\int_0^x t^\alpha \left| \sin t \right| \, \mathrm{d}t}{x^{\alpha+1}} = \lim_{x \to +\infty} \frac{\int_0^{x+\pi} t^\alpha \left| \sin t \right| \, \mathrm{d}t - \int_0^x t^\alpha \left| \sin t \right| \, \mathrm{d}t}{(x+\pi)^{\alpha+1} - x^{\alpha+1}} \\ &= \underbrace{\lim_{x \to +\infty} \frac{\int_x^{x+\pi} t^\alpha \left| \sin t \right| \, \mathrm{d}t}{\pi \left(\alpha+1\right) x^\alpha}}_{x \to +\infty} \underbrace{\lim_{x \to +\infty} \frac{\int_x^{x+\pi} \left| \sin t \right| \, \mathrm{d}t}{\pi \left(\alpha+1\right) x^\alpha}}_{x \to +\infty} \underbrace{\lim_{x \to +\infty} \frac{\int_x^{x+\pi} \left| \sin t \right| \, \mathrm{d}t}{\pi \left(\alpha+1\right) x^\alpha}}_{x \to +\infty}, \end{split}$$

其中 $x \le \theta_x \le x + \pi$. 从而 $\theta_x \sim x, x \to +\infty$

$$\lim_{x \to +\infty} \frac{\int_0^x t^{\alpha} \left| \sin t \right| dt}{x^{\alpha+1}} = \lim_{x \to +\infty} \frac{\theta_x^{\alpha} \int_x^{x+\pi} \left| \sin t \right| dt}{\pi \left(\alpha + 1 \right) x^{\alpha}} = \frac{1}{\pi \left(\alpha + 1 \right)} \lim_{x \to +\infty} \int_x^{x+\pi} \left| \sin t \right| dt = \frac{1}{\pi \left(\alpha + 1 \right)} \lim_{x \to +\infty} \int_0^{\pi} \left| \sin t \right| dt = \frac{2}{\pi \left(\alpha + 1 \right)}.$$

不直接使用函数 Stolz 定理(考试中的书写):对 $\forall x \in (0, +\infty)$, 存在唯一的 $n \in \mathbb{N}$, 使得 $n\pi \le x \le (n+1)\pi$, 故

$$\frac{\int_0^{n\pi} t^{\alpha} |\sin t| dt}{[(n+1)\pi]^{\alpha+1}} \leqslant \frac{\int_0^x t^{\alpha} |\sin t| dt}{x^{\alpha+1}} \leqslant \frac{\int_0^{(n+1)\pi} t^{\alpha} |\sin t| dt}{(n\pi)^{\alpha+1}}, \forall x \in [0, +\infty).$$
 (7)

又由数列 Stolz 定理、Lagrange 中值定理和积分中值定理可知

$$\lim_{x \to +\infty} \frac{\int_{0}^{(n+1)\pi} t^{\alpha} |\sin t| \, \mathrm{d}t}{(n\pi)^{\alpha+1}} \frac{\operatorname{Stolz} \, \mathbb{R}^{\underline{H}}}{=} \frac{1}{\pi^{\alpha+1}} \lim_{x \to +\infty} \frac{\int_{n\pi}^{(n+1)\pi} t^{\alpha} |\sin t| \, \mathrm{d}t}{(n+1)^{\alpha+1} - n^{\alpha+1}}$$

$$\frac{\Re \beta + \operatorname{dig} \, \mathbb{R}^{\underline{H}}}{=} \frac{1}{\operatorname{Lagrange}} \lim_{x \to +\infty} \frac{(n\pi)^{\alpha} \int_{n\pi}^{(n+1)\pi} |\sin t| \, \mathrm{d}t}{(\alpha+1) n^{\alpha+1}} = \frac{2}{\pi (\alpha+1)},$$

$$\lim_{x \to +\infty} \frac{\int_{0}^{n\pi} t^{\alpha} |\sin t| \, \mathrm{d}t}{[(n+1)\pi]^{\alpha+1}} \frac{\operatorname{Stolz} \, \mathbb{R}^{\underline{H}}}{=} \frac{1}{\pi^{\alpha+1}} \lim_{x \to +\infty} \frac{\int_{(n-1)\pi}^{n\pi} t^{\alpha} |\sin t| \, \mathrm{d}t}{(n+1)^{\alpha+1} - n^{\alpha+1}}$$

$$\frac{\Re \beta + \operatorname{dig} \, \mathbb{R}^{\underline{H}}}{=} \frac{1}{\pi^{\alpha+1}} \lim_{x \to +\infty} \frac{(n\pi)^{\alpha} \int_{(n-1)\pi}^{n\pi} |\sin t| \, \mathrm{d}t}{(\alpha+1) n^{\alpha+1}} = \frac{2}{\pi (\alpha+1)}.$$
(9)

又因为 $n\pi \leq x \leq (n+1)\pi$, $\forall x \in (0,+\infty)$, 所以 $n \to +\infty$ 等价于 $x \to +\infty$. 于是利用(7)(8)(9)式, 由夹逼准则可得

$$\lim_{x\to +\infty} \frac{\int_0^x t^\alpha |\sin t| \mathrm{d}t}{x^{\alpha+1}} = \lim_{n\to \infty} \frac{\int_0^x t^\alpha |\sin t| \mathrm{d}t}{x^{\alpha+1}} = \frac{2}{\pi(\alpha+1)}.$$

(2) 直接使用函数 Stolz 定理:由函数 Stolz 定理、Lagrange 中值定理和积分中值定理可知

$$\lim_{x \to +\infty} \frac{\int_{0}^{x} \frac{|\sin t|}{t} dt}{\ln x} = \lim_{x \to +\infty} \frac{\int_{0}^{x+\pi} \frac{|\sin t|}{t} dt - \int_{0}^{x} \frac{|\sin t|}{t} dt}{\ln (x+\pi) - \ln x} \xrightarrow{\text{Lagrange } + \text{d} \in \mathbb{Z}} \lim_{x \to +\infty} \frac{\int_{x}^{x+\pi} \frac{|\sin t|}{t} dt}{\frac{\pi}{x}}$$

$$\frac{\# \beta + \text{d} \in \mathbb{Z}}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x} \int_{x}^{x+\pi} |\sin t| dt = \frac{1}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x} \int_{0}^{\pi} |\sin t| dt = \frac{2}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x}. \tag{10}$$

其中 $x \le \theta_x \le x + \pi$. 从而 $\theta_x \sim x, x \to +\infty$. 再结合(10)式可得

$$\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \frac{2}{\pi} \lim_{x \to +\infty} \frac{x}{\theta_x} = \frac{2}{\pi}.$$

不直接使用函数 Stolz 定理(考试中的书写):对 $\forall x \in (0, +\infty)$, 存在唯一的 $n \in \mathbb{N}$, 使得 $n\pi \leq x \leq (n+1)\pi$. 故

$$\frac{\int_0^{n\pi} \frac{|\sin t|}{t} dt}{\ln((n+1)\pi)} \leqslant \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} \leqslant \frac{\int_0^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln(n\pi)}, \forall x > 0.$$
 (11)

又由数列 Stolz 定理和积分中值定理可知

$$\lim_{n \to \infty} \frac{\int_{0}^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln(n\pi)} \xrightarrow{\frac{1}{n} \to \infty} \frac{\int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln(n\pi) - \ln((n-1)\pi)}$$

$$\frac{\frac{\Re \beta + \text{liz}}{\text{lin}}}{\ln(n\pi)} \lim_{n \to \infty} \frac{\frac{1}{n\pi} \int_{n\pi}^{(n+1)\pi} |\sin t| dt}{\ln(1 + \frac{1}{n-1})} = \lim_{n \to \infty} \frac{2(n-1)}{n\pi} = \frac{2}{\pi},$$

$$\lim_{n \to \infty} \frac{\int_{0}^{n\pi} \frac{|\sin t|}{t} dt}{\ln((n+1)\pi)} \xrightarrow{\frac{\text{Stolz}}{\text{zp}}} \lim_{n \to \infty} \frac{\int_{n\pi}^{(n+1)\pi} \frac{|\sin t|}{t} dt}{\ln((n+2)\pi) - \ln((n+1)\pi)}$$

$$\frac{\Re \beta + \text{liz}}{\text{lin}} \lim_{n \to \infty} \frac{\frac{1}{n\pi} \int_{n\pi}^{(n+1)\pi} |\sin t| dt}{\ln(1 + \frac{1}{n+1})} = \lim_{n \to \infty} \frac{2(n+1)}{n\pi} = \frac{2}{\pi}.$$
(13)

又因为 $n\pi \le x \le (n+1)\pi$, $\forall x \in (0,+\infty)$, 所以 $n \to +\infty$ 等价于 $x \to +\infty$. 于是利用(11)(12)(13)式, 由夹逼准则可得

$$\lim_{x \to +\infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \lim_{n \to \infty} \frac{\int_0^x \frac{|\sin t|}{t} dt}{\ln x} = \frac{2}{\pi}.$$

(3) 直接使用函数 Stolz 定理:注意到 t-[t] 是 \mathbb{R} 上周期为 1 的非负函数, 故由函数 Stolz 定理可知

$$\lim_{x \to +\infty} \frac{1}{x} \int_0^x (t - [t]) dt = \lim_{x \to +\infty} \frac{\int_0^{x+1} (t - [t]) dt - \int_0^x (t - [t]) dt}{x + 1 - x} = \lim_{x \to +\infty} \int_x^{x+1} (t - [t]) dt$$

$$= \lim_{x \to +\infty} \int_x^{x+1} (t - [t]) dt = \lim_{x \to +\infty} \int_0^1 (t - [t]) dt = \lim_{x \to +\infty} \int_0^1 t dt = \frac{1}{2}.$$

不直接使用函数 Stolz 定理(考试中的书写):对 $\forall x \in (0, +\infty)$, 存在唯一的 $n \in \mathbb{N}$, 使得 $n \leq x \leq n+1$. 故

$$\frac{\int_0^n (t - [t]) dt}{n+1} \leqslant \frac{1}{x} \int_0^x (t - [t]) dt \leqslant \frac{\int_0^{n+1} (t - [t]) dt}{n}, \forall x > 0.$$
 (14)

又由数列 Stolz 定理可知

$$\lim_{n \to \infty} \frac{\int_0^{n+1} (t - [t]) dt}{n} \xrightarrow{\text{Stolz } \mathcal{E}^{\underline{H}}} \lim_{n \to \infty} \int_n^{n+1} (t - [t]) dt = \int_0^1 (t - [t]) dt = \int_0^1 t dt = 1, \tag{15}$$

$$\lim_{n \to \infty} \frac{\int_0^n (t - [t]) dt}{n + 1} = \lim_{n \to \infty} \int_{n-1}^n (t - [t]) dt = \int_0^1 (t - [t]) dt = \int_0^1 t dt = 1.$$
 (16)

又因为 $n \le x \le n+1, \forall x \in (0,+\infty)$, 所以 $n \to +\infty$ 等价于 $x \to +\infty$. 于是利用(14)(15)(16)式, 由夹逼准则可得

$$\lim_{x \to +\infty} \frac{1}{x} \int_{0}^{x} (t - [t]) dt = \lim_{n \to \infty} \frac{1}{x} \int_{0}^{x} (t - [t]) dt = 1.$$

例题 0.17 设 φ 是 \mathbb{R} 上内闭黎曼可积且周期为 T > 0 的函数, 计算

$$\lim_{\lambda \to +\infty} \left(\frac{1}{\ln \lambda} \int_0^T \frac{\varphi(\lambda x)}{x} \, \mathrm{d}x \right),$$

其中 $\int_0^T \frac{\varphi(\lambda x)}{x} dx$ 在 $\lambda \in (0, +\infty)$ 收敛.

注 因为 x = 0 是 $\int_0^T \frac{1}{x} dx$ 的奇点, 所以不能直接用 Riemann 引理计算.(这里也难以实现去奇点再使用 Riemann 引理的操作)

解 由函数 Stolz 定理知

$$\lim_{\lambda \to +\infty} \left(\frac{1}{\ln \lambda} \int_0^T \frac{\varphi(\lambda x)}{x} \, \mathrm{d}x \right) = \lim_{\lambda \to +\infty} \left(\frac{1}{\ln \lambda} \int_0^{\lambda T} \frac{\varphi(x)}{x} \, \mathrm{d}x \right) = \lim_{\lambda \to +\infty} \left(\frac{1}{\ln \left(1 + \frac{1}{\lambda}\right)} \int_{\lambda T}^{(\lambda+1)T} \frac{\varphi(x)}{x} \, \mathrm{d}x \right)$$

$$= \lim_{\lambda \to +\infty} \lambda \int_0^T \frac{\varphi(x + \lambda T)}{x + \lambda T} \, \mathrm{d}x = \lim_{\lambda \to +\infty} \int_0^T \frac{\lambda}{x + \lambda T} \varphi(x) \mathrm{d}x.$$

注意到

$$\overline{\lim}_{\lambda \to +\infty} \left(\int_0^T \frac{\lambda}{x + \lambda T} \varphi(x) \, dx - \frac{1}{T} \int_0^T \varphi(x) \, dx \right) \leqslant \overline{\lim}_{\lambda \to +\infty} \int_0^T \frac{x}{T(x + \lambda T)} \varphi(x) \, dx$$

$$\leqslant \overline{\lim}_{\lambda \to +\infty} \int_0^T \frac{x}{\lambda T^2} \varphi(x) \, dx \leqslant \frac{1}{T^2} \overline{\lim}_{\lambda \to +\infty} \frac{1}{\lambda} \int_0^T x |\varphi(x)| \, dx = 0.$$

故

$$\lim_{\lambda \to +\infty} \left(\frac{1}{\ln \lambda} \int_0^T \frac{\varphi(\lambda x)}{x} \, \mathrm{d}x \right) = \lim_{\lambda \to +\infty} \int_0^T \frac{\lambda}{x + \lambda T} \, \varphi(x) \mathrm{d}x = \frac{1}{T} \int_0^T \varphi(x) \, \mathrm{d}x.$$