	Recursion 2
	power an method 1 method 2
	method 2
	method 3
	· ·
	$a_{\alpha}(\alpha, \mathbf{N}, \mathbf{P})$
break?	m_
-	-pow(a,n,p) TC & SC of recursive Codes
	_ sun, pow, fact,
	- Fib

aso nso

P1	Given a,	n find an using	y recursion
ex	<u>a</u> n	2 ⁵ 232	V⊙ Assumption 120→0121 V2 Main Logic
	3 4	9x9 = 8	√3 Base andition
ροω1	int pow1(; f(n==0) ret poor	int a , int n) { a) ref 1 a 1(a , n -1) a 2	$3^{4} = 3 \times 3 \times 3 \times 3$ $3 \times 3^{3} \rightarrow \text{subpolen}$ $a^{n} = 2 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$ $a^{n} = 3 \times 3$ $a^{n} = 3 \times 3$
	J		$= \alpha \times \alpha^{n-1}$ $= \alpha \times \alpha \times \alpha \times \cdots \times \alpha$
	, ∱ (N≥2	2 (int a, int n){ 0) ret 1	$\frac{1}{3} = 3 \times 3 = 3 \times 3$
POW Z	ret	pow2 (a, 1/2) ** pow2 (a, n/2)	if n is even $a^{n} = a^{n/2} \times a^{n/2}$ $3^{7} = 3 \times 3^{6} = 3 \times 3 \times 3^{3}$
		ροω2 (α, η ₂) * α 3× 5 3	if n is odd
	3	35 32 32 32 32 32 32 32 32 32 32 32 32 32	3)

	* fost power	147.M57
	* lost four	243x243x3
Pows	int pows (int a, int n) {	$3^{11} - 3^{5} \times 3^{5} \times 3$
	1 (N=20) ret 1	~ R 24-3
	f(n/=0){ even?	2 2 2
	P = pow3(a, 1/2)	3x 5 x 3
	ret PxP	1)4
	}elsefodd?	3 x 3
		J 13
	P = ροω 3(α, 1/ζ) ret Pxpxa	3×3×3°
	} 'sa Pxpxa	L
		17
)	

PZ	Given a,n,m, calculate a"/.m			
		109	10000	overflow?
	1506	· 10 2	2 ntimes	
	1< n<=		im= axaxaxxa	/.m $(a*b)/P = [(a/P)*(b/P)]/P$
	2 <m<< td=""><td>-10⁹</td><td>armxar.mxxar</td><td>$\frac{\langle m \rangle}{\langle m \rangle} = \frac{\langle (\alpha m) + (\beta m) \rangle}{\langle m \rangle}$</td></m<<>	-10 ⁹	armxar.mxxar	$\frac{\langle m \rangle}{\langle m \rangle} = \frac{\langle (\alpha m) + (\beta m) \rangle}{\langle m \rangle}$
		2(W/J	$x(\alpha)$
C ₂	int P	tri) bo Mwo	a, int n, int m	
1 -	:40	1220) ret.	1	(
hy?	1	N/.==0){		
			Mod(a, nz, m)	$\rightarrow (P/m) \times (P/m) / m$
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	et PxP	, M	$\rightarrow (P/M) \times (I/M) / M$
	}el:	ser odd?		
	Q	any PzPo	w Mod (a, 1/2, m)	
			m) x a /m) /, m	
	}	- (X).		
	,			
)			
_				
break?				

```
TC for recursive code using recursive relation
                               T(N) = T(N-1)+1
                                                          Step
        int sum(n) {
 erg
                                T(n) = T(n-1) + 1_2
 Sum
         if(n==1) ret 1 -0(1)
                                     = T( N-2)+1+1
         ret sum(n-1)+n →0(1)
                                     = T(n-3)+1+1+1
                T(n-1)
                                     = T(n-(n-1))+n-1
                                     = T(1) + (N-1)
                                T(n) = 1+ n-1 = h
                                        TCO(N)
                          K== (N-1)
       after k stepus
        T(n) = T(n-k)+k
        => Kz n-l
                                Quiz
                                T(n) = T(u) = 1+ n-1 = n
CXS
        int fact (n)
fact
          if (n==1) ret 1
                                               TCSO(n)
          ret n*fact(n-1)
```

```
int pow1 (int a, int n)}
POW1
                                     T(n) = T(u) = 1+ n-1+1 = n+1
          if (n== 0) ret 1 0(1)
         ret Pow1(a, n-1)xa o(1)
                                                      TcsO(n)
                                        T(N)=2T(1/2)+1
        int pow2 (int a, int n)
                                        T(n)=T(1/2)+T(1/2)+1
           1 (n== 0) ret 1 0(1)
                                                                    step
Pow 2
           if(n/.2==0){ 0(1)
                                               = 2T( 1/5)+1
            ret powz(a, 1/2) x
                                 4T(1)+3 = 2x[2T(2)+1]+1
                pow 2 (a, 1/2)
           }else $ 1/odd
                                 8T( 1/2)+4+3 = 4 [2T( 1/2)+1]+3
             ret pow2 (a, 12)x
                powz (a, nz) xa
                                16T(16)+8+7 =8 2T(16)+1]+7
           T(0)=1
                                               = 16 [2T(1)+1]+15 (5)
           T(1) = 1 or 2
         -> assum n is the closest
             larger power of 2 as an upper bound
        ofter k steps
        T(n) = 2^{k} \times T\left(\frac{n}{2^{k}}\right) + \left(\frac{2^{k}}{n}\right) = N \times T(1) + (n-1)
         1 x 2 1 3 Nz 2 K
                                             => T(n)=3N-1
                                             TC = O(n)
```

Pows	int pows(int a, int n) { if (n==0) ret 1 int p=pows(a, n) if (n/.2 ==0) { ret PxP }else f # odd ret PxPx a }	T(0)=1 $T(1)=1 or 2$ $T(1)=1 or 2$ $T(1)=1 or 2$ $T(2)+1$ $=T(2)+1+1$ $=T(2)+1+1+1$ $=T(2)+1+1+1$	\$\$\text{\$1}\$\$\tag{3}\$\$\tag{1}\$
Pow mod	ofter k step $T(n) = T\left(\frac{n}{2}k\right) + k = \frac{n}{2}k^{2}l \Rightarrow 2^{k} = n \Rightarrow k^{2}.$ $T(n) = 2 + \log n$ $O(\log n)$		

Space Complexity for recursion	
int sum(n) {	Sum (1)
if(n==1) ret 1	i
ret sum(n-1)+h	Sum(N-S)
SC SU(N)	sum(N-1) 0(1)
) (C 30(11)	Sum(N) 0(1)
	<u> </u>
int fact (n) {	
ret N*tact(N-1)	
\$	
int pow1(int a, int n){	
if $(n=0)$ ret 1 SC80(N)	
}	
)	
	<pre>int sum(n) { if(n==1) ret 1 ret sum(n-1)+n } int fact(n) { if(n==1) ret 1 ret n*fact(n-1) } int pow1(int a, int n) {</pre>

		①
POW3	int pows(int a, int n){	
	if(n== 0) ret 1	For(0.3.3)
	$wt p = p_0 w3 (a, n_2)$ if(n/2 = = 0)	• • •
	ret PXP SC30 (log ") Jelse filoda	(0w3(a, n/4)
	ret PxPxa	ροω3(α, 1/2)
	} {	pow3(0,n)
Tc, SC	F(n) = F(n-1) + F(n-2) F(0)	N> 0
Fib	F(I	
	int Fib(n){	- (n) T(N 2) 1
		T(n) = T(N-1) + T(N-2) + I
	if (n==1) ret 1	=T(n-2)+T(n-3)+T(n-2)+1+1
	ret Fikn-1)+Fik(n-2)	= 2 T(n-2) + T(n-3) + 2
		= 2T(n-2)+T(n-4)+T(n-5)+3
	S	22700 371 11 2
	T(n)= expansion will be	cumbersome
	T(N)= Expansion contract	

