监督学习

汪小圈

2025-03-10

内容安排

- 监督学习简介
- 回归问题
 - 线性回归模型
 - 岭回归与 Lasso 回归
- 分类问题
 - 逻辑回归
 - 线性判别分析
 - 支持向量机
 - 决策树
- 集成学习
 - Bagging 与随机森林
 - Boosting
 - 梯度提升树

监督学习简介

- **监督学习**是指从**带有标签的数据**中自动学习规律和模式,并利用这些规律和模式 对**新数据进行预测和决策**的过程
- 在监督学习中, 我们拥有:
 - 输入特征 x
 - 对应输出标签 y
 - 目标是学习一个从输入特征到输出标签的映射关系
- 主要任务类型:
 - 回归: 预测连续数值型输出
 - 分类: 预测离散类别标签

监督学习在金融领域的应用

• 风险评估:根据客户的历史信用数据(特征)预测其信用风险等级(标签)

• 欺诈检测: 基于交易记录(特征)识别欺诈交易(标签)

• 量化交易: 预测股票价格走势(标签)以辅助交易决策(特征)

• 客户细分:根据客户特征(特征)预测客户所属类别(标签),进行精准营销

回归问题描述

- 通过由 $K \times 1$ 维向量 \mathbf{x} 表示的 K 个观测到的预测变量(特征)来预测**连续数值** 型结果 y
- 由训练数据 $\{y_i, \mathbf{x}_i\}_1^N$ 找到如下关系中的未知函数 f

$$y_i = f(\mathbf{x}_i) + \epsilon_i$$

- 假设训练集中有 N 个观测,将观测值堆叠成
 - $N \times 1$ 维向量 $\mathbf{y} = (y_1, y_2, ..., y_N)'$
 - $N \times K$ 维矩阵 $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)'$
 - $N \times 1$ 维向量 $= (\epsilon_1, \epsilon_2, ..., \epsilon_N)'$
- 回归模型可以写为: $\mathbf{y} = f(\mathbf{X}) +$

线性回归模型

- 线性模型: y = X + , 其中 是回归系数向量
- 对于单个样本 i, 可以表示为:

•
$$y_i = \mathbf{x}_i^T + \epsilon_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK} + \epsilon_i$$

• 最小化误差平方和(最小二乘法):

$$\min(\mathbf{y} - \mathbf{X})'(\mathbf{y} - \mathbf{X})$$

• 得到普通最小二乘 (OLS) 估计量 $\hat{}=(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$

高维环境下的过拟合问题

- 当 K 相对于 N 来说并不小甚至比 N 更大的情况下,基于 OLS 估计值的预测通常是不可靠的
- 协变量相对观测数量来说非常多时, OLS 会调整 ^ 来拟合噪音而非真实信号
- 虽然样本内 R^2 可能非常高,但样本外预测的 R^2 则往往非常低甚至小于零
- 解决方案: 正则化 (Regularization)

岭回归 (Ridge Regression)

• 在最小化误差平方和的基础上,补充了 L^2 范数惩罚项 ':

$$\min \left[\frac{1}{N} (\mathbf{y} - \mathbf{X} \)' (\mathbf{y} - \mathbf{X} \) + \lambda \ ' \ \right]$$

- 其中超参数 λ 用以控制惩罚的强度
- 估计结果为 $\hat{} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I}_K)^{-1}\mathbf{X}'\mathbf{y}$, 其中 \mathbf{I}_K 是 $K \times K$ 单位矩阵
- 通过向 $\mathbf{X}'\mathbf{X}$ 添加对角矩阵(即"岭"),求逆运算时 $\lambda \mathbf{I}_K$ 的存在将导致回归系数 ^ 向零收缩
- 若 \mathbf{X} 是正交矩阵,即 $\mathbf{X}'\mathbf{X} = \mathbf{I}_K$,岭回归将 OLS 估计值中的每个回归系数向零等比例收缩,即 $\hat{\beta}_j = \hat{\beta}_{j,OLS}/(1+\lambda)$

Lasso 回归 (Least Absolute Shrinkage and Selection Operator)

• 在最小化误差平方和的基础上,补充了 L^1 范数惩罚项 $|| \cdot ||_1 = \sum_{j=1}^K |\beta_j|$:

$$\min \left[\frac{1}{N} (\mathbf{y} - \mathbf{X} \)'(\mathbf{y} - \mathbf{X} \) + \gamma \sum_{j=1}^K |\beta_j| \right]$$

- 其中超参数 γ 用以控制惩罚的强度
- 无解析解, 仅有数值解
- 若 X 是正交矩阵,Lasso 将 OLS 估计值向零移动一个固定量 γ ,即 $\hat{\beta}_j = sgn(\hat{\beta}_{j,OLS})(|\hat{\beta}_{j,OLS}| \gamma)_+$
- Lasso 的重要特性:可以将一些系数精确地缩减为零,实现自动特征选择

|弾性网 (Elastic Net)

• 弹性网结合了岭回归和 Lasso 的惩罚项:

$$\min \left[\frac{1}{N} (\mathbf{y} - \mathbf{X} \)'(\mathbf{y} - \mathbf{X} \) + \gamma_1 \sum_{j=1}^K |\beta_j| + \gamma_2 \ ' \ \right]$$

- 与 Lasso 一样,弹性网会将一些回归系数设为零,实现特征选择
- 同时也会像岭回归那样对回归系数进行收缩,减小模型方差
- 适用于特征数量多于样本数量的情况,尤其是当特征之间存在相关性时

分类问题描述

- 通过由 K×1 维向量 x 表示的 K 个 观测到的预测变量(特征)来预测结 果 y
- 二分类: 预测结果 $y \in \{0,1\}$
- 多分类: 预测结果 $y \in \{C_1, ..., C_L\}$
 - 有些二分类模型可以直接推广到多分类
 - 利用二分类模型来解决多分类问题, 基本思路是"拆解法",即将多分类 任务拆为若干个二分类任务求解

类别不平衡问题

分类任务中不同类别的训练样本数量差别很大

- 类别平衡时, 预测值 y > 0.5(即 y/(1-y) > 1) 判别为正例, 否则为反例
- 类别不平衡时,假定正类样本数量 m^+ 较少,反类样本数量 m^- 较多,则 $\frac{y}{1-y} > \frac{m^+}{m^-}$ 时预测为正例
- "再缩放" 策略:当 $\frac{y'}{1-y'} = \frac{y}{1-y} \times \frac{m^-}{m^+} > 1$ 时预测为正例

解决方案:

- 直接对训练集里的反类样本进行"欠抽样"(undersampling)
- 对训练集里的正类样本进行"过抽样"(oversampling)
- 直接基于原始训练集进行学习,但在用训练好的分类器进行预测时,将再缩放的方法嵌入到其决策过程中,称为"阈值移动"(threshold-moving)

逻辑回归 (Logistic Regression)

广义线性模型: 使用 Sigmoid 函数 g(.) 将分类任务的 y 与线性回归模型的预测值联系起来

$$y_i = g(z_i) = g(\mathbf{x}_i' + \epsilon_i)$$

逻辑函数 (logistic function): -

$$g(z) = \frac{1}{1+e^{-z}}$$

对数几率回归 / 逻辑回归: - 假设对数几率
(log odds) 是线性的 - $\ln \frac{y_i}{1-y_i} = \mathbf{x}_i' + \epsilon_i$

线性判别分析 (Linear Discriminant Analysis, LDA)

思想:设法将样本投影到直线上,使得同 类样本的投影点尽可能接近、异类样本的 投影点尽可能远离

- 给定数据集 $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$, $y_i \in \{0, 1\}$
- 令 \mathbf{X}_i 、 $_i$ 、 $_i$ 分别表示第 $i \in \{0,1\}$ 类样本的集合、均值向量、协方差矩阵
- 若将样本投影到直线 上,两类样本的均值在直线的投影分别为 '0 和 '1, 两类样本的协方差分别为 '0 和 '1
- 最优化问题:

$$\min \ \ -||\ {'}_{0} - \ {'}_{1}||^{2}$$

$$s.t. \ '(\ _0 + \ _1) = 1$$

支持向量机图示 (Support Vector Machine, SVM)

FIGURE 12.1. Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while broken lines bound the shaded maximal margin of width $2M = 2/||\beta||$. The right panel shows the nonseparable (overlap) case. The points labeled ξ_j^* are on the wrong side of their margin by an amount $\xi_j^* = M\xi_j$; points on the correct side have $\xi_j^* = 0$. The margin is maximized subject to a total budget $\sum \xi_i \leq \text{constant}$. Hence $\sum \xi_j^*$ is the total distance of points on the wrong side of their margin.

支持向量机:线性可分

- 分类问题 $y_i \in \{-1,1\}$
- 超平面定义为 $\{\mathbf{x}: f(\mathbf{x}) = \mathbf{x}' + \beta_0 = 0\}$, 其中 $\|\cdot\| = 1$
- 在样本类别线性可分的情况下,目标是找到最大间隔

$$\max_{,\beta_0,||\;||=1}M$$

s.t.
$$y_i(\mathbf{x}_i' + \beta_0) \ge M, i = 1, ..., N$$

• 等同于如下最优问题

$$\min_{\beta_0} || ||$$

s.t.
$$y_i(\mathbf{x}'_i + \beta_0) \ge 1, i = 1, ..., N$$

支持向量机:线性不可分

• 非线性映射:引入核函数 $h(\mathbf{x})$,最优化问题仅改变约束条件

$$\begin{aligned} & \min_{\beta_0} || \ || \\ y_i(h(\mathbf{x}_i)' \ + \beta_0) \geq 1, \ i = 1,...,N \end{aligned}$$

• 软间隔与正则化:假设类别间有重叠区域,允许划分超平面两侧有错误的分类,引入松弛变量 (slack variables) $= (\xi_1, ..., \xi_N)$,最优化问题仅改变约束条件

$$\max_{\beta_0,||\ ||=1}M$$

$$y_i(\mathbf{x}_i'\ + \beta_0) \geq M(1-\xi_i)$$

等同于

决策树示例 (Decision Tree)

决策树的基本概念

一棵决策树包含

- 一个根节点 (root node)
- 若干个叶节点 (leaf node),包含决策结果
- 若干个非叶节点 (decision node),根据属性进行分枝

超参数:

- 树的最大深度 (maximum depth)
- 叶节点包含的最小样本数量
- 分裂标准(信息增益、基尼指数等)

决策树的生长

递归的过程、贪心的算法

- 从根节点出发开始选择最优划分属性, 确定分枝准则
- 在某枝再确定进一步最优划分属性和 分枝准则
- 直至分枝至叶节点

达到叶节点的标准

- 当前节点包含的样本全属于同一类别, 无需划分
- 当前节点所有样本在所有属性上取值相同,无法划分,将其类别设定为该节点所含样本最多的类别
- 当前节点包含的样本集合为空,不能划分,将其类别设定为其父节点所含

集成学习简介 (Ensemble Learning)

- 集成学习是一种将多个弱学习器 (Weak Learner) 组合成一个强学习器 (Strong Learner) 的技术
- 核心思想: 集思广益
 - 组合多个弱学习器的预测结果,获得更全面、更鲁棒的预测能力
- 降低误差的方式:
 - 降低方差:通过并行训练多个基学习器,对结果平均或投票(如 Bagging)
 - 降低偏差:通过串行训练基学习器,每个学习器纠正前一个的错误(如 Boosting)
 - 提高鲁棒性: 对异常值和噪声数据具有更强的抵抗力
- 主要方法:
 - Bagging (Bootstrap Aggregating)
 - Boosting (提升法)
 - Stacking (堆叠法)

Bagging (Bootstrap Aggregating)

- 核心思想: 并行集成
 - 通过自助采样创建多个训练数据集
 - 在每个数据集上独立训练基学习器
 - 通过投票或平均合并预测结果

• 算法流程:

- 自助采样:从原始数据集有放回地随机抽样,构建多个子数据集
 - ▶ 训练基学习器:在每个子数据集上独立训练
- 集成预测:分类问题用投票法,回归问题用平均法

• 优点:

- 有效降低方差(Variance)
- 提高模型稳定性和泛化能力
- 适用于容易过拟合的基学习器
- 可以并行计算,提高效率

随机森林 (Random Forest)

- 随机森林是一种基于 Bagging 思想的集成学习模型,以决策树为基学习器
- 在 Bagging 的基础上,引入了特征随机选择:
 - 每个节点分裂时,随机选择一部分特征
 - 只在这部分特征中选择最优特征进行分裂
 - 进一步增加基学习器之间的差异性
- 优点:
 - 高精度: 集成多个决策树的预测结果
 - 鲁棒性强: 对噪声和异常值不敏感
 - 不易过拟合: 特征随机选择和样本随机选择降低了过拟合风险
 - 可以评估特征重要性

Boosting

- 核心思想: 串行集成
 - 迭代训练多个基学习器
 - 每个新的基学习器都试图纠正前一个的错误
 - 通过加权组合基学习器的预测结果
- 与 Bagging 的区别:
 - Bagging 中基学习器相互独立、并行训练
 - Boosting 中基学习器序列依赖、串行训练
- 主要 Boosting 算法:
 - AdaBoost (Adaptive Boosting)
 - Gradient Boosting
 - XGBoost, LightGBM, CatBoost 等

Single classifier

Bagging/Random forest

O O O Training data

Boosting

AdaBoost (Adaptive Boosting)

核心思想:

- 调整样本权重,增加被误分类样本的 权重
- 构建新的基学习器来纠正前一个的错 误
- 根据基学习器的性能分配权重,加权 组合所有基学习器

• 算法流程:

- 初始化每个样本权重相等
- 在加权数据上训练基学习器
- 计算基学习器的误差率和权重
- 更新样本权重(提高误分类样本的权 重)
- 重复步骤 2-4, 直到达到基学习器数 量
- 加权组合所有基学习器

汪小圈

梯度提升决策树 (Gradient Boosting Decision Tree, GBDT)

• 核心思想:

- 新树拟合的目标是上一棵树的损失函数的负梯度的值
- 每棵新树都是在纠正之前所有树的残差
- 提升模型预测能力

与 AdaBoost 的区别:

- AdaBoost 通过调整样本权重来学习新的基学习器
- GBDT 通过拟合残差(负梯度)来学习新的基学习器

• 算法流程:

- 初始化模型为一个常数
- ② 计算当前模型的残差(负梯度)
- ◎ 训练一个回归树来拟合残差
- 将新树添加到模型中
- 重复步骤 2-4, 直到达到树的数量

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \dots, N$ compute

高级 GBDT 实现: XGBoost 与 LightGBM

- XGBoost (eXtreme Gradient Boosting)
 - 对传统 GBDT 的高效实现和扩展
 - 加入了正则化项,避免过拟合
 - 支持并行计算,训练速度快
 - 处理缺失值能力强
- LightGBM (Light Gradient Boosting Machine)
 - 微软开发的 GBDT 实现
 - 采用基于直方图的算法,减少内存使用
 - 使用叶子生长策略而非水平生长
 - 训练速度更快, 能处理超大规模数据
- 这些高级实现应用广泛:
 - 推荐系统
 - 风险评估
 - 量化投资
 - 各类机器学习竞赛

