Activation

Activation

Patrick Dupas, http://patrick.dupas.chez-alice.fr/.

Savoirs et compétences :

Exercice 1 - Réponse impulsionnelle (entrée Dirac)

Question Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

Exercice 2 - Pôles de la FTBF

On donne les pôles des FTBF de plusieurs systèmes :

1.
$$-1, -2;$$

2. $-3, -2, 0;$
3. $-2 + j, -2 - j, 2j,$
 $-2j;$
4. $-2+3j, -2-3j, -2;$
5. $-j, j, -1, 1;$
6. $-1, +1;$
7. $-1+j, -1-j;$
8. $2, -1, -3;$
9. $-6, -4, 7.$

4. -2+3j, -2-3j, -2;

On donne ci-dessous les lieux de transferts de plusieurs FTBO. Déterminer, à l'aide du critère du Revers si les systèmes sont stables en BF.

Question Pour les systèmes stables déterminer les marges de gain et de phase.

Exercice 4 – Étude de la stabilité

• Caractériser la stabilité d'un système à partir de la FTBO.

• La marge de gain est supérieure à 10 dB et que la marge de phase est supérieure à 45 °.

On donne le schéma bloc suivant :

On a
$$K = 1$$
, $\tau = 0$, 1 et $G = 20$.

Question 1 Déterminer l'erreur statique et l'erreur de traînage.

Question 2 Effectuer les tracés des diagrammes de Bode de la FTBO.

Question 3 Déterminer graphiquement les marges de gains et de phase.

Question 4 Confirmer ces résultats par le calcul.

Question 5 Conclure par rapport au cahier des charges.

