

Phase-2 Submission

Student Name: RAJESHWARI S

Register Number:712523205046

Institution: PPG INSTITUTE OF TECHNOLOGY

Department: B TECH INFORMATION TECHNOLOGY

Date of Submission: 02.05.2025

Github Repository Link: Rajeshwari265/nm_rajeshwari_ds

Transforming health care with AI-Powered disease prediction based on patient data

1. Problem Statement

- In today's healthcare landscape, early and accurate disease prediction remains a critical challenge
- Using traditional diagnostic methods often results in delayed intervention, which can increase treatment costs and reduce patient survival rates.
- his project aims to leverage AI and machine learning to predict the likelihood of various diseases based on structured patient data, including demographics, lifestyle factors, medical history, and test results.

2. Project Objectives

- To build machine learning models that can accurately predict the presence or risk of diseases using patient data.
- To identify the most influential features (risk factors) associated with various health conditions.
- To create interpretable and scalable solutions that can be integrated into healthcare systems.

3. Flowchart of the Project Workflow

4. Data Description

- Source: [Specify dataset origin, e.g., UCI Heart Disease Dataset or Kaggle Patient Data]
- Type: Structured, tabular data
- Number of Records and Features: [Insert exact figures]
- Dataset Nature: Static
- *Target Variable*: Disease presence (binary or multiclass, depending on the dataset)

5. Data Preprocessing

- Handled missing values using [mean imputation / removal / domain-specific methods].
- Removed duplicate records to maintain data integrity.
- Identified and treated outliers using IQR and z-score methods.
- Encoded categorical variables using One-Hot and Label Encoding.
- Scaled numerical features using Standard Scaler for algorithms sensitive to data distribution.
- Ensured data type consistency across all columns.

6. Exploratory Data Analysis (EDA)

- *Univariate*: Distribution of age, cholesterol, blood pressure using histograms and boxplots.
- **Bivariate**: Correlation heatmap revealed strong associations between age, blood pressure, and disease presence.
- Multivariate: Pair plots showed clusters indicating higher risk profiles.

- Insights:
- Age and cholesterol are strong predictors.
- Lifestyle variables like smoking and physical activity have notable influence.

7. Feature Engineering

- Derived new features such as BMI category and risk score index.
- Extracted time-based features (e.g., years since last check-up).
- Performed feature selection using mutual information and recursive feature elimination (RFE).
- Applied PCA (optional) for dimensionality reduction in experimentation.

8. Model Building

- Derived new features such as BMI category and risk score index.
- Extracted time-based features (e.g., years since last check-up).
- Performed feature selection using mutual information and recursive feature elimination (RFE).
- Applied PCA (optional) for dimensionality reduction in experimentation.

9. Visualization of Results & Model Insights

- Confusion Matrix: Displayed TP, FP, FN, TN for each class.
- ROC Curve: Compared AUC of models; Random Forest showed higher AUC.
- Feature Importance: Random Forest showed age, cholesterol, and smoking history as top predictors.
- Interpretation: Model confidently identifies high-risk patients with minimal false negatives.

10. Tools and Technologies Used

- Programming Language: Python
- IDE: JupYter Notebook
- Libraries: pandas, numpy, matplotlib, seaborn, scikit-learn, xgboost
- Visualization: matplotlib, seaborn, Plotly (optional)

11. Team Members and Contributions

- Clearly mention who worked on:
 - o Rajeshwari S:Data cleaning
 - Sanjay S :EDA
 - Vignesh: Feature engineering
 - o TamilVanan K: Model development
 - ThamilSelvan P: Documentation and reporting]