Propositional proof systems

Definition 1. A propositional formula $\varphi(x_1, \ldots, x_n)$ is a *tautology* if it obtains the value 1 under any assignment of its variables.

Exercise 2. Give an example of a tautology!

Definition 3 (Cook-Reckhow). A propositional proof system P is a relation between propositional formulas and binary strings, such that

$$\varphi$$
 is a tautology $\iff \exists \pi : P(\varphi, \pi),$

and $P(\varphi, \pi)$ can be checked in polynomial time.

Definition 4. The propositional proof system LK (or Sequent Calculus) is the system whose proofs operate on *sequents* which are expressions of the form

$$A_1, \ldots, A_n \longrightarrow B_1, \ldots, B_m,$$

where A_i 's and B_i 's are formulas, which is interpreted the same as the formula

$$\bigvee_{i} \neg A_{i} \lor \bigvee_{i} B_{i}.$$

A valid proof in LK is a list of sequents $\pi = (S_1, \ldots, S_k)$ such that each sequent S_i is obtained as one of the initial sequents or from the previous sequents by one of the following rules:

- Intial sequents: $0 \longrightarrow \longrightarrow 0$, where p is a propositional variable.
- Structural rules:
 - the weakening rules

$$\frac{\Gamma \longrightarrow \Delta}{A, \Gamma \longrightarrow \Delta}$$
 and $\frac{\Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, A}$,

- the exchange rules

$$\frac{\Gamma_1, A, B, \Gamma_2 \longrightarrow \Delta}{\Gamma_1, B, A, \Gamma_2 \longrightarrow \Delta} \text{ and } \frac{\Gamma \longrightarrow \Delta_1, A, B, \Delta_2}{\Gamma \longrightarrow \Delta_1, B, A, \Delta_2},$$

- the contraction rules

$$\frac{\Gamma_1, A, A, \Gamma_2 \longrightarrow \Delta}{\Gamma_1, A, \Gamma_2 \longrightarrow \Delta} \text{ and } \frac{\Gamma \longrightarrow \Delta_1, A, A, \Delta_2}{\Gamma \longrightarrow \Delta_1, A, \Delta_2},$$

- Logical rules:
 - (\neg)-introduction rules:

$$\frac{\Gamma \longrightarrow \Delta, A}{\neg A, \Gamma \longrightarrow \Delta} \text{ and } \frac{A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta, \neg A},$$

 $-(\Lambda)$ -introduction rules

$$\frac{\Gamma \longrightarrow \Delta, A_1 \quad \dots \quad \Gamma \longrightarrow \Delta, A_n}{\Gamma \longrightarrow \Delta, \bigwedge_i A_i} \text{ and } \frac{\Gamma, A_1, \dots, A_n \longrightarrow \Delta}{\Gamma, \bigwedge_i A_i \longrightarrow \Delta},$$

- (\bigvee)-introduction rules

$$\frac{\Gamma, A_1 \longrightarrow \Delta \dots \Gamma, A_n \longrightarrow \Delta}{\Gamma, \bigvee_i A_i \longrightarrow \Delta} \text{ and } \frac{\Gamma \longrightarrow \Delta, A_1, \dots, A_n}{\Gamma \longrightarrow \Delta, \bigvee_i A_i},$$

• The cut rule:

$$\frac{\Gamma \longrightarrow \Delta, A \quad A, \Gamma \to \Delta}{\Gamma \to \Delta}.$$

Exercise 5. Prove $\longrightarrow \neg(p \land \neg p)$ in LK.

Fact 6. The system LK is complete, it proves all tautologies.

Definition 7. A depth of a formula in an LK-proof is defined as follows: Propositional variables and constants have the depth 0, and

$$\operatorname{depth}(\bigwedge(A_1,\ldots,A_r)) = 1 + \max_i(\operatorname{depth}(A_i)),$$

$$\operatorname{depth}(\bigvee(A_1,\ldots,A_r)) = 1 + \max_i(\operatorname{depth}(A_i)).$$

A system LK_d , or depth d sequent calculus, is a subsystem of LK allowing only formulas of depth at most d.

Exercise 8 (*). The system LK_d proves all depth d tautologies.

Definition 9. The system ELK, or extended sequent calculus, is defined as LK, except is allows for any formula A to add the initial sequents ('extension sequents')

$$q \longrightarrow A \quad A \longrightarrow q$$

where q is a propositional variable, called the extension variable, which was not used as an extension variable for another formula and does not appear in A.

Fact 10. For each $d \geq 0$, we have $LK_d \leq_p LK \leq_p ELK$, where $P \leq_p Q$ means that proofs of P can be transformed to proofs of Q without more than polynomial each in size.

Theorem 11 (Ajtai, early 1980's, first published 1988). For each $d \geq 2$, the system LK_d does not have polynomial size proofs of the formula PHP_n .

Theorem 12 (Buss, 1987). The system LK does have a polynomial size proofs of PHP_n .

Remark 13. The system LK_d , for any fixed d, is equivalent to a system called bounded-depth Frege (AC_0 -Frege), the system LK is equivalent to a system called Frege (F), and ELK is equivalent to a system called extended Frege (EF).

Bounded arithmetic, propositional translations and Ajtai's argument

Definition 14. We say an L_{PA} formula φ is bounded if every quantifier is of the form $(\exists x \leq t(\overline{y}))(\dots)$ or $(\exists x) \leq s(\overline{y})$ and y. The set of all bounded formulas is denoted Δ_0 .

Definition 15. Let R be a binary relational symbol and $L_{PA}(R) = L_{PA}(R)$. The theory $I\Delta_0(R)$ consists of Q and induction for all formulas in $\Delta_0(R)$, the bounded $L_{PA}(R)$.

Exercise 16. Show that

$$I\Delta_0(R) \vdash R(c,c) \rightarrow (\exists b \leq c)(R(b,b) \land (\forall a < b)(\neg R(a,a))),$$

or 'If R(x, x) is non-empty, it has a smallest element.'

Definition 17 (Paris-Wilkie translation). Let $\theta(a_1, \ldots, a_k) \in \Delta_0(R)$ and let p_{ij} be a propositional variable for each $i, j \in \mathbb{N}$. For $(n_1, \ldots, n_k) \in \mathbb{N}^k$ we define a propositional formula $\langle \theta \rangle_{(n_1, \ldots, n_k)}$ by induction on the logical depth:

1. if θ is an atomic formula $s(\overline{n}) = t(\overline{n})$ or $s(\overline{n}) \leq t(\overline{n})$, then

$$\langle \theta \rangle_{\overline{n}} = \begin{cases} 1 & \theta(\overline{n}) \text{ is true} \\ 0 & \text{otherwise.} \end{cases}$$

2. if θ is an atomic formula $R(s(\overline{n}), t(\overline{n}))$, then

$$\langle \theta \rangle_{\overline{n}} = p_{s(\overline{n}), t(\overline{n})}$$

- 3. $\langle \rangle_{\overline{n}}$ commutes with \wedge, \vee, \neg
- 4. if $\theta(\overline{a})$ is of the form $(\forall x \leq t(\overline{a}))\theta_0(\overline{a}, x)$, then

$$\langle \theta \rangle_{\overline{n}} = \bigwedge_{m \le t(\overline{n})} \langle \theta_0 \rangle_{(\overline{n}, m)}$$

5. if $\theta(\overline{a})$ is of the form $(\exists x \leq t(\overline{a}))\theta_0(\overline{a}, x)$, then

$$\langle \theta \rangle_{\overline{n}} = \bigvee_{m \leq t(\overline{n})} \langle \theta_0 \rangle_{(\overline{n},m)}.$$

Note that for a fixed θ and all \overline{n} the size of $\langle \theta \rangle_{\overline{n}}$ is polynomial in \overline{n} and the depth is constant.

Theorem 18. Assume that $\theta(x) \in \Delta_0(R)$ and that

$$I\Delta_0(R) \vdash (\forall x)\theta(x),$$

then there is a number d such that

$$LK_d \vdash_{poly(n)} \langle \theta \rangle_n$$
.

Fact 19. Let F, P be binary relations and E unary. There are $\Delta_0(E, F, P)$ formulas

- $Fla_d(F)$ formalizing that F denotes a depth d DeMorgan formula,
- $Prf_d(P, F)$ formalizing that P is a valid LK_d proof of F which satisfies $Fla_d(F)$,
- $Sat_d(E, F)$ formalizing that E is a satisfying assignment to F,
- $Ref_d(E, F, P) \equiv (Prf_d(P, F) \rightarrow Sat_d(E, F))$, the formalization of the reflection principle for LK_d .

Then for every d, we have

$$I\Delta_0(E, F, P) \vdash Ref_d(E, F, P).$$

Definition 20. Let M be a non-standard model of true arithmetic, and let $n \in M \setminus \mathbb{N}$. Then $n^{\mathbb{N}} = \{i \in M; i < n^k; k \in \mathbb{N}\}.$

Theorem 21 (Ajtai's argument). Let $\theta(x) \in \Delta_0(R)$, let M be a non-standard model of true arithmetic, let $n \in M \setminus \mathbb{N}$. Let τ be a set of relational symbols containing R, and let every $R' \in \tau \setminus \{R\}$ be interpreted by a relation $(R')^{\alpha}$ coded in M. If there is an interpretation of R, denoted R^{α} , such that

- $(n^{\mathbb{N}}, \tau^{\alpha}) \models I\Delta_0(\tau)$
- $(n^{\mathbb{N}}, \tau^{\alpha}) \models \neg \theta(n)$,

then $\langle \theta \rangle_n$ does not have polynomial size proofs in LK_d .

Theorem 22 (Ajtai). For every non-standard model of true arithmetic M, and τ containing R, where each $R' \in \tau \setminus \{R\}$ is interpreted by elements of M as $(R')^{\alpha}$ there is a relation R^{α} such that

- $(n^{\mathbb{N}}, \tau^{\alpha}) \models I\Delta_0(\tau)$
- $(n^{\mathbb{N}}, \tau^{\alpha}) \models \neg PHP(n)$.

Exercise 23. Prove Theorem 11.

Remark 24. The theory $I\Delta_0(\tau)$ is a bit cumbersome to work with as the objects of our interest, the relations in τ , are not part of the model-theoretic universe. This can be fixed by introducing the theory V_1^0 , which is two-sorted (sometimes called 'second order'): it has sorts for numbers and sets of numbers.

For every $\theta \in \Delta_0(R)$ we have

$$I\Delta_0(R) \vdash \theta(R) \iff V_1^0 \vdash (\forall X)\theta(X),$$

the theory V_1^0 contains a few axioms about the sets of numbers, bounded induction without set quantification and comprehension axiom which says that any set definable by a bounded formula without set quantification exists.

A stronger theory V_1^1 , which allows comprehension for formulas existentially quantifying sets, then corresponds to polynomial size proofs of ELK in the same way V_1^0 (or $I\Delta_0(R)$) corresponds to polynomial size proofs of (all) LK_d . There is also a theory VNC^1 which corresponds to polynomial size proofs of LK.