Lecture 6

Ratio and Regression Estimation

Ratio Estimation

Suppose	the resea	arch	believes	an	auxiliary	variable	(or	covariate)	x is	associated	with	the	variable	of i	nteres
y.															

y.	
variable of interest:auxiliary variable:	
variable of interest:covariate:	
Situation: we have bivariate (X, Y) data and assume there is a positive proportional relationship and Y .	between λ
Visual summary of ratio estimation.	
The population correlation coefficient of x and y is:	
where S_x and S_y are the population standard deviations of x and y .	

There are two cases that may be be of interest to the researcher:

1. To estimate the ratio of two population characteristics.

2. To use the relationship

Note that ratio estimation

The sampling plan will be to take a SRS of n pairs $(x_1, y_1), \ldots, (x_n, y_n)$ from the population of N pairs. We will use the following notation.

$$\bar{x}_U = \left(\sum_{i=1}^N x_i\right)/N \qquad \qquad t_x = \sum_{i=1}^N x_i \qquad \qquad \bar{y}_U = \left(\sum_{i=1}^N y_i\right)/N \qquad \qquad t_y = \sum_{i=1}^N y_i$$

$$\bar{x} = \left(\sum_{i=1}^n x_i\right)/n = \text{sample mean of x's} \qquad \qquad \bar{y} = \left(\sum_{i=1}^n y_i\right)/n = \text{sample mean of y's}$$

Estimation of B, \bar{y}_U , t_y

Case 1: t_x and $\bar{x_u}$ are known

First consider estimating B assuming t_x and \bar{x}_U are known. The ratio estimator \hat{B} is the ratio of the sample means and its estimated variance $\hat{V}(\hat{B})$ are

$$\hat{B} = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} = \frac{\bar{y}}{\bar{x}} \qquad \qquad \hat{V}(\hat{B}) = \left(\frac{N-n}{N\bar{x}^2}\right) \frac{s_e^2}{n},$$

where

$$s_e^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \hat{B}x_i)^2 = \frac{1}{n-1} \left(\sum_{i=1}^n y_i^2 + \hat{B}^2 \sum_{i=1}^n x_i^2 - 2\hat{B} \sum_{i=1}^n x_i y_i \right)$$

If

The distribution of \hat{B} is very complicated. For small samples \hat{B} is likely to be skewed and is biased for B. For large samples, the bias is negligible (very small) and the distribution of \hat{B} tends to be approximately normal.

Multiplication of \hat{B} and $\hat{V}(\hat{B})$ by \bar{x}_U and \bar{x}_U^2 , respectively, yield the estimator \hat{y}_r for \bar{y}_U and its estimated variance:

 $\hat{\bar{y}}_r$ is called the

By multiplying the above formulas by N and N^2 , respectively, we get the estimator \hat{t}_{yr} of t_y and its associated estimated variance:

$$\begin{array}{rcl} \hat{t}_{yr} & = & N\left(\frac{\bar{y}}{\bar{x}}\right)\bar{x}_{U} \\ \\ \hat{V}(\hat{t_{yr}}) & = & N(N-n)\left(\frac{\bar{x}_{U}}{\bar{x}}\right)^{2}\frac{s_{e}^{2}}{n} = \left(\frac{N-n}{N}\right)\left(\frac{t_{x}}{\bar{x}}\right)^{2}\frac{s_{e}^{2}}{n} \end{array}$$

 t_{yr} is called the ratio estimator of the population total.

If N is unknown but we know N is large relative to n, then the FPC $(N-n)/N \approx 1$, typically researchers will replace the FPC with 1.

Example: Suppose we can predict MSU statistics students future income, using the average GPA in statistics courses. Let y be income and x be GPA. Suppose that the $\bar{y} = \$70,000$ and $\bar{x} = 3.50$. Sampled from students that have taken STAT 446.

3

Compute \hat{B}

It is known that the average GPA for all statistics students is 3.00. Compute $\hat{\bar{y}}_r$

Case 2: t_x and \bar{x}_U are unknown

If t_x and \bar{x}_U are unknown, it will not affect the estimator $\hat{B} = \bar{y}/\bar{x}$.

In such cases, it is common to replace t_x with $N\bar{x}$ or replace \bar{x}_U with \bar{x} . then

This will yield:

$$\hat{V}(\hat{y}_r) \approx \left(\frac{N-n}{n}\right) \frac{s_e^2}{n}$$
 $\hat{V}(\hat{t}_{yr}) = N(N-n) \frac{s_e^2}{n}$

When \bar{x} is larger than \bar{x}_U , $\hat{V}(\hat{y}_r)$ and $\hat{V}(\hat{t}_{yr})$ tend to be too large as variance estimates. Similarly, when \bar{x} is smaller than \bar{x}_U , $\hat{V}(\hat{y}_r)$ and $\hat{V}(\hat{t}_{yr})$ tend to be too small as variance estimates.

Example: Demonstration of Bias in Ratio Estimation

There are N=4 sampling units in the population, where x is the number of aspen trees and y is the number of Ponderosa pine trees:

x_i value	67	63	66	69
y_i value	68	62	64	70

Let n=2, then there are 6 possible samples. The total abundances are $t_x=265$ and $t_y=264$. Therefore, B=264/265=0.9962. Also, $S_x^2=6.250$ and $S_y^2\approx 13.3$.

Sample	Units	\hat{t}_{yr}	\hat{t}_{SRS}
1	1,2		260
2	1,3		264
3	1,4		276
4	2,3	258.8372	
5	2,4	265	
6	3,4	263.0370	

Note that

Recall that the $MSE(\hat{\theta}) = E\left[(\hat{\theta} - \theta)^2\right]$, it turns out the ratio estimator has much smaller variance.

4

```
t.y <- 265
t.yr <- c(265,263.0075,268.8971,258.8372,265,263.0370)
t.srs <- c(260,264,276,252,264,268)
MSE.ratio <- mean((t.yr - t.y)^2); MSE.ratio

## [1] 10.16515
MSE.srs <- mean((t.srs - t.y)^2); MSE.srs

## [1] 54.33333</pre>
```

Bias and MSE of Ratio Estimators

As we have seen ratio estimators are biased. The bias occurs in the ratio estimation because $E\left[\frac{\bar{y}}{\bar{x}}\right] \neq \frac{E[\bar{y}]}{E[\bar{x}]}$.

However, when used appropriately the

Also for large samples, the estimators t_{yr} and \bar{y}_r will be approximately normally distributed.

The bias of $\hat{\bar{y}}_r$ as well as $(\hat{t}_{yr} \text{ and } \hat{B})$ will be small if

Note that if the x's all have the same value the ratio estimator reduces to the SRS estimator \bar{y} and is unbiased.

The approximate MSE of $\hat{\bar{y}}_r$ will be small when:

Ratio Estimation in R

```
# Simulate Ratio Estimation Data
set.seed(10162019)
N <- 1000
x <- runif(N,0,100)
t.x <- sum(x)
x.mean <- mean(x)
B <- .8
sigsq <- 100
y <- x*B + rnorm(N,0,sqrt(sigsq))
t.y <- sum(y)
ratio_df <- tibble(x=x, y=y)</pre>
```

Depiction of Ratio between Y and X


```
# Take SRS
n <- 50
sample_vals <- ratio_df %>% sample_n(n)

# Compute Estimates of t.y
y_bar <- sample_vals %>% summarize(mean(y)) %>% pull()
SRS_estimate <- N * y_bar

B <- y_bar / sample_vals %>% summarize(mean(x)) %>% pull()
ratio_estimate <- B * x.mean * N</pre>
```

In this case, $t_y = 3.9668 \times 10^4$. Based on a single sample, the ratio estimator is off by