import math import scipy.stats as stats Atividade Testes de Hipóteses (2024.2)	
Atividade lestes de Hipoteses (2024.2) Para todas as questões defina as hipóteses, indique qual é a estatística de teste que está sendo usada. Indique, através de intervalos, a Região crítico Questão 1	ca. Calcule o p-valor e lembre sempre de fazer a sua conclusão a respeito do problema.
	e com 40 automóveis desta marca acusa um consumo médio de 15,6 litros por 100 quilômetros rodados com desvio padrão de 1 litro por 100 quilômetros rodados. O que se pode concluir sobre a propaganda? Use o
H_a : μ_a :	
Estatística de teste: \$Z_0 \times N\left(-\infty_0, \frac{sigma^2}{n}\right) $Z_0 = \frac{\bar{X} - \mu_0}{\sqrt{\frac{s^2}{n}}} = 0, 6 \cdot \sqrt{40} = 3,7947$	
[3]: stats.norm.ppf(0.95) $ Z_{1-\frac{\alpha}{2}} = 1.6448 $	
Como $Z_0 > Z_{1-\frac{\alpha}{2}}$, rejeitamos a hipótese nula com nível de significância de 10%. Isso indica que há uma alta probabilidade da propaganda ser enganosa. Região crítica $= (1.6448, +\infty)$ [4]: p_value = 2 * (1 - stats.norm.cdf(3.7949))	
p_value t[4]: np.float64(0.00014770297615829264) O p-value encontrado é muito próximo de 0, ou seja, a probabilidade de estarmos enganados ao rejeitar a hipótese nula é ínfima, ou seja, podemos afirmar que	ie a propaganda é enganosa com um altíssimo nível de certeza.
Questão 2 (1.0 pts) Depois de desenvolver um algoritmo para acelerar a execução de determinada tarefa rotineira em um escritório de contabilidade, o analista de sistema segundos. Use o nível de significância de 5% para decidir se o algoritmo do analista realmente melhorou o desempenho do sistema.	na analisa uma amostra de 25 tempos, obtendo uma média 56,5 segundos e desvio padrão de 6 segundos. Dos dados passados, ele sabe que o tempo de execução é aproximadamente normal com média de 58,5
A estatística de teste é:	$H_0: \mu \geq 58, 5$ $H_a: \mu < 58, 5$ $ar{X} - \mu$
[5]: n = 25 # sample size sample_mean = 56.5 # sample mean sample_std = 6 # sample standard deviation	$T_0 = rac{ar{X} - \mu}{s/\sqrt{n}}$
<pre>population_mean = 58.5 # hypothesized population mean under H0 alpha = 0.05 # significance level t_statistic = (sample_mean - population_mean) / (sample_std / math.sqrt(n)) critical_t = stats.t.ppf(alpha, df=n-1) print(critical_t)</pre>	
-1.7108820799094282 O intervalo da região crítica é:	$(-\infty, -1.7108820799094282]$
<pre>[6]: p_value = stats.t.cdf(t_statistic, df=n-1) print(f"{t_statistic} < {critical_t}? {t_statistic < critical_t}") print(f"p-valor = {p_value}") -1.66666666666666667 < -1.7108820799094282? False p-valor = 0.05429006151236145</pre>	
Como não é verdade que t_statistic < critical_t, não conseguimos rejeitar H_0. Portanto, não temos evidências para afirmar que o algoritmo do analista realmente de la comparta del comparta de la comparta de la comparta del comparta de la comparta del la comparta de la comparta del la comparta de la compar	
(1.0 pts) Dados historicos indicam que a variancia na taxa de cambio do iene japones contra o dolar americano e aproximadamente 1,52. Obteve-se uma amost $oldsymbol{Pressupostos:}$ Hipótese nula: A variância da taxa de câmbio não mudou, ou seja, a variância histórica é igual à variância da amostra. $H_0: \sigma^2 = 1,52$	stra aleatória de 30 taxas de câmbio de fechamento, que acusou uma variância $s^2=2,1$. Realize um teste de hipótese para verificar se houve mudança na variância na taxa de câmbio.
Hipótese alternativa: A variância da taxa de câmbio não mudou, ou seja, a variância histórica é igual à variância da amostra. $H_a:\sigma^2\neq 1,52$ A estatística de teste a ser usada é a que será aproximada por uma χ^2_{29} com $30-1=29$ graus de liberdade para a variância amostral por ser uma amostra pe	bequena com $n < 30$. A fórmula será então:
$\chi^2=rac{(30-1)s^2}{\sigma_0^2}$ O nível de significância tomado é de 5%. Ou seja $lpha=0,05$ A partir disto, a região crítica é:	
A partir da tabela temos que $\chi^2_{29;0,025}=16,047$ e $\chi^2_{29;0,975}=45,722$ ou seja rejeitamos a hipótese nula se a hipótese de teste cair no intervalo $]-\infty;16,047$	$egin{array}{ll}]-\infty,\chi^2_{29;rac{0.05}{2}}[\ \cup \]\chi^2_{29;1-rac{0.05}{2}},\infty[\ 7[\ \cup \]45,722;\infty[\end{array}$
A estatística de teste neste caso assumo o valor de: $40,065$ (conforme calculado abaixo em código) Então, o p-valor pode-se olhar na tabela que seria $2*(1-0,9)=0,2$ A conclusão então é que a hipótese nula não é rejeitada. Isto significa que a variância na taxa de câmbio do iene japonês contra o dólar se manteve em compar	aração aos dados históricos.
[7]: estatistica_de_teste = 29*2.1/1.52 print(estatistica_de_teste) 40.06578947368421 Questão 4	
(1.0 pts) Um fabricante garante que pelo menos 90% das peças que fornece à linha de produção de uma determinada fábrica estão de acordo com as especifica afirmação do fabricante?	ficações exigidas. A análise de uma amostra de 320 peças mostrou que 50 peças não estão de acordo com as especificações exigidas. A um nível significância de 2% e 10%, podemos dizer que é verdadeira a $H_0: p \geq 0.9$ $H_a: p < 0.9$
A estatística de teste é:	$Z_0 = rac{p - p_0}{\sqrt{(p_0*(1-p_0))/n}}$
<pre>p_hat = 270 / 320 p0 = 0.9 n = 320 alpha = 0.02 z_statistic = (p_hat - p0) / math.sqrt((p0 * (1 - p0)) / n)</pre>	
<pre>print(z_statistic) critical_z = stats.norm.ppf(alpha) print(f"Região crítica com alpha = {alpha}: {critical_z}") alpha = 0.1</pre>	
<pre>alpha = 0.1 critical_z = stats.norm.ppf(alpha) print(f"Região crítica com alpha = {alpha}: {critical_z}") -3.3541019662496865 Região crítica com alpha = 0.02: -2.053748910631823 Região crítica com alpha = 0.1: -1.2815515655446004</pre>	
Regiao critica com alpha = 0.1: -1.2815515655446004 [9]: p_value = stats.norm.cdf(z_statistic) print(f"p-valor = {p_value}") p-valor = 0.00039811507879540314 Independentemente do nível de significância, como z_statistic < critical_z, Rejeitamos H_O. Portanto, não é verdadeira a afirmação do fabricante.	
Questão 5 Para ajudar os lojistas em seu planejamento, a cada ano se realiza um estudo para se determinar quanto as pessoas pretendem gastar com presentes nas festa amostral dos gastos antecipada foi relatada por gênero, grupo de idade, e nível de renda. Considere as estatísticas-resumo dadas na tabela que segue:	stas de fim de ano. Em uma pesquisa de novembro de 2023, obteve-se uma amostra de compradores e lhes foi pedido que estimassem a quantia que pretendiam gastar (em dólares) com presentes. A média
Homer Mulher	eres 19 652 17,01
• (1.5 pts) Pode-se afirmar, com o nível de significância de 1% que a variabilidade dos gastos com presentes do grupo das mulheres é menor do que a variab	As proporções foram 0.37 e 0.48 para homens e mulheres, respectivamente. Quer se testar a hipótese nula de que a proporção de homens que gastam menos de $R\$500$ com presentes é igual que a proporção de
Glossário: $\mu_h \text{ \'e a m\'edia populacional dos gastos dos homens}$ • $\mu_m \text{ \'e a m\'edia populacional dos gastos das mulheres}$ • $\bar{X}_h \text{ \'e a m\'edia amostral dos gastos dos homens}$	
• \bar{X}_m é a média amostral dos gastos das mulheres • σ_h^2 é a variância populacional dos homens. • σ_m^2 é a variância populacional das mulheres. • σ_h é o desvio padrão populacional dos homens. • σ_m é o desvio padrão populacional das mulheres.	
 s_h^2 é a variância amostral dos homens. s_m^2 é a variância amostral das mulheres. s_h é o desvio padrão amostral dos homens. s_m é o desvio padrão amostral das mulheres. n_h é o tamanho da amostra de homens. 	
• n_m é o tamanho da amostra de mulheres. Questão a) Hipótese nula (H_0): A média dos gastos dos homens é maior ou igual à média dos gastos das mulheres.	
$H_0: \mu_h - \mu_m \geq 0$ Hipótese alternativa (H_a): A média dos gastos dos homens é menor do que a média dos gastos das mulheres. $H_a: \mu_h - \mu_m < 0$	
A estatística de teste tem de ser a do teste t para duas amostras independentes com variância populacional desconhecida, que é:	$t=rac{ar{X}_h-ar{X}_m}{\sqrt{rac{s_h^2}{n_h}+rac{s_m^2}{n_m}}}$
Valores conhecidos: $ \bar{X}_h = 784 \\ \bullet \ s_h = 37, 5 \\ \bullet \ n_h = 21 \\ \bullet \ \bar{X}_m = 652 $	
• $s_m=17,01$ • $n_m=19$ Por se tratar de amostras pequenas ($n<30$), temos também de calcular o número de graus de liberdade v :	$\left(rac{s_h^2}{n_h}+rac{s_m^2}{n_m} ight)^2$
$X_h = 784$	$v=rac{\left(rac{n_h}{s_h^2} ight)^2}{\left(rac{s_h^2}{n_h} ight)^2}+rac{\left(rac{s_m^2}{n_m} ight)^2}{n_m-1}}$
n_h = 21 s_h = 37.5 X_m = 652 n_m = 19 s_m = 17.01	
<pre>T = (X_h - X_m) / math.sqrt(s_h ** 2 / n_h + s_m ** 2 / n_m) v = ((s_h ** 2 / n_h) + (s_m ** 2 / n_m)) ** 2 / ((s_h ** 2 / n_h) ** 2 / (n_h - 1) + (s_m ** 2 / n_m) ** 2 / (n_m - 1)) p_valor = 1 - stats.t.cdf(abs(T), v) print("0 p-valor é:", p_valor,"\nvalor t:",T,"\ngraus de liberdade:",math.floor(v)) 0 p-valor é: 4.9960036108132044e-15</pre>	
<pre>valor t: 14.55986257564296 graus de liberdade: 28 são 28 graus de liberdade conforme calculado. então para calcular a região crítica teremos: [28]: alpha = 0.05 print("limiar do valor crítico inferior:", -stats.t.ppf(1-(alpha),28))</pre>	
limiar do valor crítico inferior: -1.701130934265931 A região crítica então é: $(-\infty,-1.7011)$ $t=14.5598$	
$p-valor=4.996*10^{-15}$ Conclusão: Há evidência que a diferença entre as médias dos gastos entre os homens e mulheres se manteve em relação ao histórico, que é dos homens gastarem mais d	do que as mulheres.
Questão b) Hipótese nula (H_0): A variabilidade dos gastos das mulheres é igual à dos homens. $H_0:\sigma_h^2-\sigma_m^2\leq 0$	
Hipótese alternativa (H_a): A variabilidade dos gastos das mulheres é menor que a dos homens. $H_a:\sigma_h^2-\sigma_m^2>0$ Nível de significância: $\alpha=0.01$ estatística de teste será de F de Snedecor por estarmos comparando variâncias:	
$F=rac{s_h^2}{s_m^2}$ Valores conhecidos:	
$ullet s_h = 37, 5$ $ullet n_h = 21$ $ullet s_m = 17, 01$ $ullet n_m = 19$	
[31]: $n_h = 21$ $s_h = 37.5$ $n_m = 19$ $s_m = 17.01$ $F = s_h ** 2 / s_m ** 2$	
<pre>p_valor = 1 - stats.f.cdf(F, n_h-1, n_m-1) print("0 p-valor é:", p_valor,"\nvalor F:",T) 0 p-valor é: 0.0006969403381724693 valor F: 14.55986257564296 [33]: alpha = 0.01</pre>	
F_critico = stats.f.ppf(1 - alpha, n_h-1, n_m-1) print("o limiar da região crítica é:", F_critico) o limiar da região crítica é: 3.077096720200263 A região crítica para a qual a hipótese nula será rejeitada é então: $(3.0771, +\infty)$	
O valor F em questão foi de: $F=14.5599$ Conclusão: Existe evidência que a variância do valor gasto para homens é de fato maior do que para mulheres.	
Questão c) Glossário: • p_h é a proporção de homens que gastam menos de R\$500. • p_m é a proporção de mulheres que gastam menos de R\$500.	
Hipótese nula (H_0) : A proporção de homens que gastam menos de R\$ 500 é igual à proporção de mulheres. $H_0: p_h=p_m$ Hipótese alternativa (H_a) : A proporção de homens que gastam menos de R\$ 500 é diferente da proporção de mulheres.	
$H_a:p_h eq p_m$ Estatística de teste: Tem-se que usar a diferença de proporções, com a fórmula:	$z = rac{p_h - p_m}{\sqrt{rac{p_h(1 - p_h)}{n_h} + rac{p_m(1 - p_m)}{n_m}}}$
Valores conhecidos: $\begin{array}{l} \bullet \ \ p_h = 0,37 \\ \bullet \ \ p_m = 0,48 \\ \bullet \ \ n_t = 21 \end{array}$	$oldsymbol{V} = n_h$
• $n_h=21$ • $n_m=19$	
$n_h = 21$ $n_m = 19$ $p_h = 0.37$ $p_m = 0.48$ $Z = (p_h - p_m) / (((p_h*(1-p_h))/n_h + (p_m*(1-p_m))/n_m)) ** 0.5$	
<pre>Z_critico = stats.norm.ppf(1 - alpha / 2) p_valor = 2 * (1 - stats.norm.cdf(abs(Z))) print("0 p valor é:",p_valor,"\n0 valor Z é:",Z,"\n0 limiar da região crítica é:",-Z_critico,',',Z_critico) 0 p valor é: 0.4798342691530104 0 valor Z é: -0.7065691449312987 0 limiar da região crítica é: -2.17009037758456 , 2.17009037758456</pre>	
Temos então que: $p-valor=0.4798~z=-0.7066$ O intervalo para a região crítica é: $(-\infty,-2.1701)\cup(2.1701,+\infty)$ Conclusão:	
	amostrais do produto fornecido pela mineradora A, para as quais se mede o conteúdo de enxofre. Com base nessas 48 medições calculam-se para essa variável uma média amostral de 0,60% e um desvio padrão
amostral de 0,056%. Enquanto isso, outras 65 análises do carvão proveniente da mineradora B nos levam a uma média amostral de 0,70% de enxofre e um des Hipótese nula: H_0 : μ_0 : μ	
Hipótese alternativa: $H_a \colon \operatorname{mu_A} - \operatorname{mu_B} \neq 0 $ medidas estatísticas dadas no enunciado:	$n_A = 48$ $n_B = 65$ (1)
$ \begin{bmatrix} n_A = 48 \\ n_B = 65 \\ N_A = 0.006 \end{bmatrix} $	$n_A = 48$ $n_B = 65$ ($ar{X}_A = 0,006$ $ar{X}_B = 0,007$ ($ar{S}_A = 0,00056$ $ar{S}_B = 0,00065$
<pre>N_B = 65 X_A = 0.006 X_B = 0.007 s_A = 0.00056 s_B = 0.00065 T = (X_A - X_B) / math.sqrt(s_A ** 2 / n_A + s_B ** 2 / n_B) v = ((s_A ** 2 / n_A) + (s_B ** 2 / n_B)) ** 2 / ((s_A ** 2 / n_A) ** 2 / (n_A - 1) + (s_B ** 2 / n_B) ** 2 / (n_B - 1))</pre>	
<pre>v = ((s_A ** 2 / n_A) + (s_B ** 2 / n_B)) ** 2 / ((s_A ** 2 / n_A) ** 2 / (n_A - 1) + (s_B ** 2 / n_B) ** 2 / (n_B - 1)) p_valor = 2 * (1 - stats.t.cdf(abs(T), v)) print("0 p-valor é:", p_valor) 0 p-valor é: 2.9753977059954195e-14 A estatística de teste sendo usada neste caso é a do teste t para duas amostras independentes com variância populacional desconhecida:</pre>	
A estatística de teste sendo usada neste caso é a do teste t para duas amostras independentes com variância populacional desconhecida: $t = \frac{\bar{X}_A - \bar{X}_B}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}}$ Sendo que é necessário calcular o valor v dos graus de liberdade, com a fórmula:	
	$v = rac{\left(rac{s_A^2}{n_A} + rac{s_B^2}{n_B} ight)^2}{rac{\left(rac{s_A^2}{n_A} ight)^2}{n_A - 1} + rac{\left(rac{s_B^2}{n_B} ight)^2}{n_B - 1}}$
A região crítica então deve ser calculada, a partir destes graus de liberdade: 18]: print("os graus de liberdade são:", math.floor(v)) os graus de liberdade são: 108	
<pre>[23]: alpha = 0.05 print("limiar do valor crítico superior:", stats.t.ppf(1-(alpha/2),108)) print("limiar do valor crítico superior:", -stats.t.ppf(1-(alpha/2),108)) print(T) limiar do valor crítico superior: 1.9821734832574511</pre>	
limiar do valor crítico superior: -1.9821734832574511 -8.759357437106758 Região crítica = $(-\infty, -1.9821) \cup (1.9821, +\infty)$ valor $t = -8.7593$ Conclusão: Existe evidência que a hipótese nula é falsa; o que significa que pode-se assumir que as médias populacionais da quantidade de enxofre no carvão destas dua	as mineradoras pode ser considerada diferente.