ATOMIC STRUCTURE

Ca	athode rays, Anode ray	rs, Basic definations an	d Rutherford model'				
1	Cathode ray are :						
	(1) stream of electrons		(2) stream of α -partic	cles			
	(3) radiation		(4) stream of cations				
2	Which of the following r	ays are affected by electr	ic field :				
	(1) Anode rays	(2) Cathode rays	(3) Both (1) and (2)	(4) None of these			
3	The e/m ratio for Anode	rays:					
	(1) varies with the	element forming the ano	de in the discharge tube.				
	(2) varies with the gas filled in the discharge tube.						
	(3) is constant.						
	(4) Both (1) & (2).						
4.	Millikan's oil drop expriments is used to find -						
	(1) e/m ratio of an	electron	(2) Charge of an elec	tron			
	(3) Mass of an elec	tron	(4) Velocity of an ele	ctron			
5.	An element having atom	ic number 25 and atomic	weight 55 will have –				
	(1) 25 protons and	(1) 25 protons and 30 neutrons		(2) 25 neutrons and 30 protons			
	(3) 55 protons		(4) 55 neutrons				
6.	The charge on the atom having 17 protons, 18 neutrons and 18 electrons is						
	(1) + 1	(2) – 1	(3) – 2	(4) zero			
7.	Which of the following a	Which of the following are isoelectronic with one another?					
	(1) Na ⁺ and Ne	(2) K ⁺ and O	(3) Ne and O	(4) Na ⁺ and K ⁺			
8.	When atoms are bomb out undeflected. The		s, only a few in million su	ffer deflection, others pass			
	(1) The force of rep	ulsion on the moving alp	ha particle is small				
	(2) The force of attraction on the alpha particle to the oppositely charged electrons is very small						

(3) There is only one nucleus and large number of electrons

(4) The nucleus occupies much smaller volume compared to the volume of the atom

9.	Which of the following elements has maximum density of nucleus :					
	(1) ₁₄ Si ³⁰	(2) ₁₅ P ³¹		(3) ₈ O ¹⁶	(4) All hav	ve same density
10.	Number of protons,	neutrons and e	electrons in the e	element 281 Ac	are respe	ctively :
	(1) 89, 231, 89	(2) 89,	89, 242	(3) 89, 142, 8	39	(4) 89, 192, 89
Na	ture of Light and pl	hotoelectric e	ffects			
11	. A photon in X regio	on is more ener	getic than in the	visible region	; X is :	
	(1) Infrared (IR)	(2) Ultr	aviolet (UV)	(3) Microwa	ve	(4) Radio wave
12	Which one of the fo	llowing is not th	ne characteristic	of Planck's qu	antum the	ory of radiation-
	(1) The energy is	s not absorbed	or emitted in wh	ole number n	nultiple of	quantum.
	(2) Radiation is a	associated with	energy.			
	(3) Radiation end quanta.	ergy is not emit	ted or absorbed	continously b	ut in the fo	rm of small packets called
	(4) This magnitu	ide of energy as	sociated with a	quantum is pr	oportional	to the frequency.
13	One quantum is absorbed has wave length				ing it into)	(atoms. If light absorbed
	(1) 10 eV/molec	ule (2) 20 J	/mole	(3) 48 eV/mo	olecule	(4) 184 J/mol
14	The work function f					ocity from the surface of
	(1) 310 Å	(2) 15	50 Å	(3) 155 Å		(4) 3100 Å
15	Cu metal (work funct	tion = 4.8 eV) ca	an show photoel	ectric effect if	f waveleng	th of photon is :
	(1) λ = 5000 Å	(2) λ =	6000 Å	(3) $\lambda = 2000$	Å	(4) λ = 4000 Å
16	Calculate frequency	of light having	wavelength 500	nm is		
	(1) 6×10 ¹⁴ Hz	(2) 5 ×10 ¹⁰ Hz	(3) 2 ×10 ²⁰ Hz	(4) 7×10^{10} H	lz	
17.	The energy of a phot	ton is 3.03 × 10 ⁻	⁻¹⁹ J, then wavel	ength of this p	hoton is:	
	(Given, h = 6.63	\times 10 ⁻³⁴ Js, c = 3	$.00 \times 10^8 \text{ ms}^{-1}$)			
	(1) 6.56 nm	(2) 65.6	5 nm	(3) 656 nm		(4) 0.656 nm

18	The energy required to remove an electron from a metal X is 3.31×10^{-20} J. Wavelength/s of light that can not photoeject an electron from metal X is					
	(1) 4 μm	(2) 6 إ	um	(3) 7 μm	(4) 5 μm	
19	Wavelength of a ph	noton having ar	n energy of 2 e\	/. will be :		
	(1) 6.2×10^{-7} m	$1 (2) 6.2 \times 10^{-6}$	m (3) 6	$.2 \times 10^{-9} \text{ m}$	(4) 6.2×10^{-8} m	
20	Wave number of ra	adiations having	g frequency of	4×10^4 Hz will be :		
	(1) 1.33×10^{-6}	cm ⁻¹ (2) 1.3	$33 \times 10^{-7} \text{ cm}^{-1}$	(3) 9×10^{-11} cm	1^{-1} (4) 4 × 10 ⁻⁵ cm ⁻¹	
At	omic Spectru	m				
21	The wavelength of	a spectral line f	or an electroni	transition is inver	rsly related to :	
	(1) No. of elect	rons undergoir	g transition			
	(2) The nuclear	charge of the	atom			
	(3) The velocity	of an electron	undergoing tra	insition		
	(4) The differer	nce in the energ	gy levels involve	ed in the transition		
22	The spectral lines of 4th orbits to se			emitted by an ele	ectron jumping from 6th, 5th and	
	(1) Lyman serie	25		(2) Balmer seri	es	
	(3) Paschen sei	ries		(4) Pfund series	S	
23	Which transition e	mits photon of	maximum freq	uency in hydrogen	like species :	
	(1) 2 nd spectral	line of Balmer	series	(2) 2 nd spectral	line of Paschen series	
	(3) 5 th spectral	line of Humphe	ry series	(4) 5 th spectral	line of Lymen series	
24	The shortest wave	length for the B	Brakett series fo	or H is : (Given R _H =	109678 cm ⁻¹)	
	(1) 1459 Å	(2) 40	52 Å	(3) 4052 nm	(4) 1459 nm	
25	The transition of e	lectron in H-ato	om that will em	it maximum energ	y is :	
	(1) n ₃ ½ n ₂	(2) n ₄ ½ n ₃	(3) n ₅ \$ n ₄	(4) All have san	ne energy	

		(1) 6656 Å	(2) 6266 Å	(3) 6626 Å	(4) 6566 Å	
27 Different lines in Lyman series of hydrogen spectrum is present in :						
		(1) Ultra violet	(2) Visible	(3) Infared	(4) None of these	
28	Wł		ted hydrogen atom jump		e spectral line is observed	
		(1) Visible, Balmer	(2) Visible, Lyman	(3) Infrared, Paschen	(4) Infrared, Balmer	
29	Ma	ximum number of spect :	ral lines in Lyman series	will be if electron makes	transistion from n th orbit	
		(1) n	(2) n – 1	(3) n – 2	(4) n (n + 1)	
30	No	. of visible lines when ar	electron returns from 5	th orbit to ground state	in H spectrum -	
		(1) 5	(2) 4	(3) 3	(4) 10	
31	Wł	non the electron of a Hy spectral line is	drogen atom jumps fro	m n = 4 to n = 1 state, t	hen the total number of	
		(1) 15	(2) 3	(3) 6	(4) 4	
32	Rati	o of wavelength of seco	nd line of Lyman series t	o that of series limit of P	aschen series of H-atom.	
		(1) 1/8	(2) 1/9	(3) 8/9	(4) 9/8	
33	Th		line of Balmer series of Balmer series of Li ²⁺ ion:	hydrogen atom is 1520	O cm ⁻¹ . What is the wave	
		(1) 15200 cm ⁻¹	(2) 13680000 m ⁻¹	(3) 76000 cm ⁻¹	(4) 13680 cm ⁻¹	
Bohr's Model						
34	The	e expression for Bohr's ra	adius of an atom is			
		(1) $r = \frac{n^2 h^2}{4 \pi^2 m e^4 z^2}$	(2) $r = \frac{n^2 h^2}{4\pi^2 m e^2 z}$ (3) $r =$	$\frac{n^2h^2}{4\pi^2me^2z^2}$ (4) $r = \frac{1}{2}$	$\frac{n^2h^2}{4\pi^2m^2e^2z^2}$	

(1) 1 : 2 : 3 (2) 6 : 4 : 3 (3) 3 : 4 : 6 (4) none of these

26 Wavelength of first line of Balmer series in hydrogen spectrum is :

35 The ratio of radii of second orbits of He $^{\scriptscriptstyle +}$, Li $^{\scriptscriptstyle 2+}$ and Be $^{\scriptscriptstyle 3+}$ is :

36	36 If r is the radius of first orbit, the radius of n th orbit of H atom is given by -						
	(1) rn	(2) r n ²	(3) r/n	(4) r ²	n²		
37	What is the ratio of sp	eeds of electrons in	n Ist orbit of H	I-atom to IVth orbit o	of He+ ion .		
	(1) 2 : 1	(2) 8 : 3	(3	3) 3 : 2	(4) 27 : 5		
38	If the speed of electronia hydrogen atom w		of He+ is "v" , t	then the speed of ele	ctron in first Bohr orbit of		
	(1) v/2	(2) 2v	(3	3) v	(4) 4v		
39	Which state of the trip of hydrogen atom		n (Be³⁺) has th	e same orbit radius a	as that of the ground state		
	(1) 1 (2	2) 2 (3) 3	(4	1) 4			
40	If the velocity of the e	lectron in first orbit	of H atom is	2.18 × 10 ⁶ m/s,what	is its value in third orbit ?		
	(1) 7.27 × 10⁵ m/s		(2	2) 4.36 × 10 ⁶ m/s			
	(3) 1.24 × 10⁵ m/s		(4	l) 1.09 × 10 ⁶ m/s			
41	The radius of a shell fo	or H-atom is 4.761 Å	Å. The value of	f n is.			
	(1) 9	(2) 3	(3) 5	(4) 4			
42	If the radius of Ist orbit	of hydrogen atom	is 0.53 Å then	radius of Ist orbit of	He⁺ is :		
	(1) 1.27 Å	(2) 0.265 Å	(3	B) 1.59 Å	(4) 0.132 Å		
43	Ratio of radii of secon	nd and first Bohr orl	oits of H atom	ı is :			
	(1) 2	(2) 4	(3	3) 3	(4) 5		
44	The angular momentu	m of an electron in	a given orbit	is J, Its kinetic energy	/ will be :		
	(1) $\frac{1}{2} \frac{J^2}{mr^2}$	(2) $\frac{Jv}{r}$	(3	3) $\frac{J^2}{2m}$	(4) $\frac{J^2}{2\pi}$		
45	When an electron dro	ps from a higher er	ergy level to a	a low energy level, th	nen :		
	(1) energy is abso	rbed	(2	2) energy is emitted			
	(3) atomic numbe	r increases	(4	l) atomic number dec	creases		

46	46 Angular momentum in 2 nd Bohr orbit of H-atom is x. Then angular momentum						
(of electron in Ist excited state of Li+2 is:						
	(1) 3x	(2) 9x	(3) $\frac{x}{2}$	(4) x			
47	The maximum energy of	an electron in an atom w	ill be at :				
	(1) Nucleus		(2) Ground state				
	(3) First excited stat	e	(4) Infinite distance	from the nucleus			
48	Energy of first excited orbit of hydrogen at		s – 3.4 eV then, kinetio	c energy of electron in same			
	(1) + 3.4 eV	(2) + 6.8 eV	(3) – 13.6 eV	(4) + 13.6 eV			
49	Potential energy of elect state of Hydrogen a		t of He [.] . Then total enei	rgy of electron in first excited			
	(1) –3.4 eV	(2) –13.6 eV	(3) 3.4 eV	(4) 13.6 eV			
50	If the potential energy of level is electron pre-		om is –3.02eV then in w	which of the following excited			
	(1) 1 st	(2) 2 nd	(3) 3 rd	(4) 4 th			
51		The ionisation energy for the H-atom is 13.6 eV. Then the required energy in eV to excite the electror it from the ground state to next higher state will be : (in eV)					
	(1) 3.4	(2) 10.2	(3) 12.1	(4) 1.5			
52	The ionization energy of	H-atom is 13.6 eV. The io	nization energy of Li ⁺² i	on will be :			
	(1) 54.4 eV	(2) 122.4 eV	(3) 13.6 eV	(4) 27.2 eV			
53		first excited state of a hyn from ground state of the	_	.8 eV. The energy needed to			
	(1) 54.4 eV	(2) 122.4 eV	(3) 40.8 eV	(4) 13.6 eV			
54	Match the following						
	(1) Energy of ground	d state of He ⁺	(i) + 6.04 eV				
	(2) Potential energy of I orbit of H-atom		(ii) –27.2 eV				
	(3) Kinetic energy of	(3) Kinetic energy of II excited state of He ⁺		(iii) 54.4 V			
	(4) Ionisation poten	tial of He ⁺	(iv) – 54.4 eV	(iv) – 54.4 eV			
	(1) A – (i), B – (ii), C	– (iii), D – (iv)	(2) A – (iv), B – (iii),	(2) A – (iv), B – (iii), C – (ii), D – (i)			
	(3) A – (iv), B – (ii), C	C – (i), D – (iii)	(4) A – (ii), B – (iii), C	C – (i), D – (iv)			

	(1) $\frac{16}{9}$	(2) 25 16	(3) 9 16	$(4) \frac{1}{4}$			
57 Co	57 Correct relation between total energy (TE) and potential energy (PE)						
	(1) $PE = \frac{TE}{2}$	(2) TE = PE	(3) $TE = \frac{PE}{4}$	(4) $TE = \frac{PE}{2}$			
58 Th	e energy of an electron given orbit will be	in an excited H-atom is	–1.51 eV. Angular mom	entum of electron in the			
	(1) $3h/\pi$	(2) $3h/2\pi$	(3) $2h/\pi$	(4) h/π			
59 The	e ratio of energies of hyd	Irogen atom for first and	second excited state is :				
	(1) 4/1	(2) 1/4	(3) 4/9	(4) 9/4			
60 The	e ratio of potential energ	y and total energy of an	electron in a Bohr orbit o	of hydrogen like species is			
	(1) 2	(2) –2	(3) 1	(4) -1			
<u>de-B</u>	roglie concept &	Heisenberg unc	ertainity principl	<u>e</u>			
61 Th	e de Broglie equation su	ggests that an electron h	nas				
	(1) Particle nature		(2) Wave nature				
	(3) Both Particle & way	ve nature	(4) Radiation behaviou	r			
62 de-	-Broglie wavelength of e of electron in	lectron in second orbit o	f Li ²⁺ ion will be equal to	de-Broglie of wavelength			
	(1) n = 3 of H-atom	(2) $n = 4 \text{ of } C^{5+} \text{ ion}$	(3) $n = 6$ of Be ³⁺ ion	(4) n = 3 of He ⁺ ion			
63 Sel	63 Select the incorrect relationship among the following:						
	$(1) \Delta x \times \Delta p \geq \frac{h}{4 \pi}$	(2) $\Delta x \times \Delta p \geq \frac{h}{4 \pi m}$	(3) $\Delta X \times \Delta V \geq \frac{h}{4 \pi m}$	$(4) \Delta E \times \Delta t \geq \frac{h}{4 \pi}$			
64 Wh	nat is the de-Broglie wav	elength associated with	the electron in 3 rd orbit o	f hydrogen :			
	(1) 9.96×10^{-10} cm	(2) 9.96×10^{-8} cm	(3) 9.96×10 ⁴ cm	(4) 9.96×10 ⁸ cm			

55 If the binding energy of first excited state of a hydrogen like species is 54.4 eV, then determine the

(3) 3

(4) 4

atomic number of the H-like species :

(1) 1

(2) 2

56 What is the ratio of energy of electron of Li^{+2} and Be^{+3} in 2^{nd} bohr orbit.

65	If wavelength is equal to the distance travelled by the electron in one second, then -				
	$(1) \lambda = \frac{p}{h}$	(2) $\lambda = \frac{h}{m}$	$(3) \lambda = \sqrt{\frac{h}{p}}$	$(4) \lambda = \sqrt{\frac{h}{m}}$	
66	·	•	_	vacuum. What is its de-Broglie of ss equal to one gram [h = $6.626 \times$	
	(1) $13.31 \times 10^{-3} \text{ Å}$	(2) $1.33 \times 10^{-3} \text{ Å}$	(3) 13.13×10^{-2}	2 Å (4) 1.31 × 10 ⁻² Å	
67	A 0.66 kg ball is moving wit	th a speed of 100 m/s. Tl	ne associated wa	evelength will be : (h = 6.6×10^{-34}	
	(1) 6.6×10^{-32} m	(2) 6.6×10^{-34} m	(3) 1.0×10^{-35} r	m (4) 1.0×10^{-32} m	
68	The wavelength of a charg which it is accelerated		e square root of	the potential difference through	
	(1) is inversely proport	ional to	(2) is directly p	roportional to	
	(3) is independent of		(4) is unrelated	with	
69	If the kinetic energy of a associated with it would		4 times, the wa	velength of the de-Broglie wave	
	(1) four times	(2) two times	(3) half times	(4) one fourth times	
70		ntio of the de Broglie wav d through 50 volts and 20	_	electrons each having zero initial	
	(1) 3:10	(2) 10 : 3	(3) 1 : 2	(4) 2:1	

Shape of orbitals Which orbital is non-directional 71 (1*)s(2) p(3) d (4) All **72.** An orbital with ℓ = 0 is symmetrical about the : (1) x-axis only (2) y-axis only (3) z-axis only (4) All 73. Which orbital has two angular nodal planes. (1) s(2) p(3) d (4) f Which d-orbital does not have four lobes 74. (3) d₂ (1) $d_{y^2-y^2}$ (2) d_{xy} $(4) d_{xz}$ The number of radial nodes of 5s atomic orbital are **75.** (1) 1(2) 2(3)3(4)476 A 3p-orbital has (1) Two non-spherical nodes (2) Two spherical nodes (3) One spherical and one Radial nodes (4) One spherical and two non spherical nodes **77.** Which of the following d-orbitals has dough-nut shape?

Quantum Numbers and Electronic configuration

(2) d_{v_2}

78 Magnetic quantum number specifies -

(1) Size of orbitals

(1) d_{xv}

(2) Shape of orbitals

(3) $d_{v^2-v^2}$

(3) Orientation of orbitals

(4) Nuclear stability

79 An orbital containing electron having quantum number n = 4, l = 3, m = 0 and $s = -\frac{1}{2}$ is called

(1) 3s orbital

(2) 3p orbital

(3) 4d orbital

(4) 4f orbital

(4) d₋₂

80 The maximum number of orbital electrons in a subshell is given by the expression

(1) 4l - 2

(2)(2/+1)

(3) 2(2l + 1)

 $(4) 2n^2$

81	The	ne electrons present in K-shell of the atom will differ in					
		(1) principal quantum r	number	(2) azimuthal quantum number			
		(3) magnetic quantum number		(4) spin quantum number			
82	Nu	mber of electrons having	g ℓ = 1 and m=0 in phosp	ohorous-atom in its ground state :			
		(1) 3	(2) 1	(3) 2	(4) 0		
83		Maximum number of e	lectrons that can have n	$n = 3$, $\ell = 2$, $m = +2$, $s = +\frac{1}{2}$ in an atom are :			
		(1) 18	(2) 6	(3) 24	(4) 1		
84.		Which of the following principles limits the maximum number of electrons in an orbital to two					
		(1) Aufbau principle		(2) Pauli's exclusion principle			
		(3) Hund's rule of maxim	mum multiplicity	(4) Heisenberg's uncertainty principle			
85. _ Number of possible orbitals			pitals (all type) in n = 3 e	nergy level is			
		(1) 2	(2) 9	(3) 4	(4) 1		

Solution

- 1. A
- 2 C
- 3. B
- 4. B
- 5 A
- 6 **Ans.**

(2)

@Sol.

Net charge is -1. (17 e+ 18 p)

- 7. **Sol.** 1 Isoelectronic species should have same number of electrons.
- 8. **Sol. 4** It is fact.
- 9. D
- 10. D
- 11. Sol. 2 More energy means less wavelength.
- 12. A
- 13 A

14 Sol. 4 (in Å) =
$$\frac{12400 \text{ eVÅ}}{4\text{eV}}$$
 = 3100 Å

- 15 C
- 16 A

17 **Sol.** 3 According to formula,
$$E = \frac{hc}{\lambda}$$

$$3.03 \times 10^{-19} = \frac{hc}{\lambda}$$

$$\lambda = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{3.03 \times 10^{-19}}$$

$$= 6.56 \times 10^{-7} \text{ m}$$

$$= 6.56 \times 10^{-7} \times 10^{9} \text{ nm}$$

$$= 6.56 \times 10^{2} \text{ nm} = 256 \text{ nm}$$

$$18 \;\; \text{Sol.} \; 3 \;\; \lambda = \frac{hc}{E} \; = \; \frac{(6.63 \times 10^{-34} \, J \;\; . \;\; s)(3.00 \times 10^8 \, m/s)}{3.31 \times 10^{-20} \, J} \; = 6.01 \times 10^{-6} \, m$$

19 **Sol. 1**
$$\lambda = \frac{12400}{2} A^{\circ} = 6200 A^{\circ}$$

- 20 A
- 21 D
- 22 B
- 23 D
- 24 D
- 25 A
- 26 Sol. 4 For 1st line of Balmer series (3 222)

$$E_3 - E_2 = \frac{hc}{\lambda}$$

- 27 A
- 28 C
- 29 **Sol.** 2 When electron falls from n to 1, total possible number of lines = n-1
- 30 **Sol. 3** Visible lines ? Balmer series ? 3 lines. (5 ? 2, 4 ? 2, 3 ? 2).
- 31 C
- 32 A
- 33 B
- 34 B
- 35 B
- 36 B
- 37 A
- 38 C

Radius of ground state of hydrogen atom = 0.529 Å

So,
$$0.529 = 0.529 \times \frac{n^2}{Z}$$

$$0.529 = 0.529 \times \frac{n^2}{4}$$

40 Sol.
$$1 v_3 = v_1 \times \left(\frac{Z}{n}\right)$$

$$v_3 = 2.18 \times 10^6 \times \left(\frac{1}{3}\right) = 7.27 \times 10^5 \text{ m/s}$$

42 **Sol. 2** Radius of He⁺ is =
$$\frac{0.53}{2}$$
 = 0.265Å

43 **Sol. B** Bohr radius =
$$=\frac{r_2}{r_1} = \frac{(2)^2}{(1)^2} = 4$$

$$J^2 = m^2 v^2 r^2$$

or
$$\frac{J^2}{2} = \left(\frac{1}{2}mv^2\right) mr^2$$
 or K.E. = $\frac{J^2}{2mr^2}$

48 **Sol.** Total energy
$$(E_n) = KE + PE$$

In first excited state =
$$\frac{1}{2}mv^2 + \left[-\frac{ze^2}{r}\right]$$

$$= +\frac{1}{2}\frac{Ze^2}{r} - \frac{ze^2}{r}$$

$$-3.4 \text{ eV} = -\frac{1}{2} \frac{\text{Ze}^2}{\text{r}}$$

$$\therefore \qquad \text{KE} = \frac{1}{2} \frac{Ze^2}{r}$$

= + 3.4 eV

49 A

50 B

51 B

52 **Sol. 2**
$$E_1$$
 for $Li^{+2} = E_1$ for $H \times Z^2$ [for Li, $Z = 3$]

53 **Sol.**1
$$40.8 = (\Delta E)_{2\to 1} \times Z^2$$
 \Rightarrow $40.8 = 10.2 \times Z^2 \Rightarrow$ $Z^2 = 4$ or $Z = 2$

 $IE = 13.6 Z^2 = 13.6 \times 4 = 54.4 eV$

54 **Sol.** 3

(1) Energy of ground state of He⁺ =
$$-13.6 \times 2^2 = -54.4 \text{ eV}$$
 (iv)

(2) Potential energy of I orbit of H-atom =
$$-27.2 \times 1^2 = -27.2 \text{ eV}$$
 (ii)

(3) Kinetic energy of II excited state of He⁺ =
$$13.6 \times \frac{2^2}{3^2} = 6.04 \text{ eV}$$
 (i)

(4) Ionisation potential of He⁺ =
$$13.6 \times 2^2 = 54.4 \text{ V}$$
 (iii)

55 **Sol.**4

Given binding energy of I^{st} excited state (n = 2) = 54.4 eV

$$\Rightarrow$$
 3.4 Z² = 54.4 eV \Rightarrow Z² = 16 \Rightarrow Z = 4

56 C

57 D

58 B

59 D

60 A

61 **Sol.** C An electron has particle and wave nature both.

62 **Sol. 2**
$$V \propto \frac{z}{n}$$
, $\lambda = \frac{h}{mv}$, $\lambda \propto \frac{n}{Z}$: $\frac{n_1}{Z_1} = \frac{n_2}{Z_2}$ or $\frac{2}{3} = \frac{4}{6}$ (n = 4 of C⁵⁺ ion)

63 B

64 **Sol. 2**
$$v = 2.18 \times \frac{z}{n}$$
 10⁶ m/s

$$\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-34} \times 3}{9.1 \times 10^{-31} \times 2.188 \times 10^{6} \times 1} = 9.96 \times 10^{-8} cm$$

65 **Sol.** D $\lambda = v$

then
$$\lambda = \frac{h}{mV}$$
 or $\lambda^2 = \frac{h}{m}$ So, $\lambda = \sqrt{\frac{h}{m}}$.

So,
$$\lambda = \sqrt{\frac{h}{m}}$$

66 **Sol.**B
$$\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-34} \times 6.02 \times 10^{23} \times 100}{10^{-3} \times 3 \times 10^{8}}$$

67 **Sol C** According to de-Broglie equation,
$$\lambda = \frac{h}{mv}$$

Given,
$$h = 6.6 \times 10^{-34} \text{ J s}$$

$$v = 100 \text{ m s}^{-1}$$

$$\therefore \qquad \lambda = \frac{6.6 \times 10^{-34}}{0.66 \times 100} = 1 \times 10^{-35} \text{ m}$$

68 **Sol. A** For a charged particle
$$\lambda = \frac{h}{\sqrt{2mqV}}$$
, \therefore $\lambda \propto \frac{1}{\sqrt{V}}$.

69 C

70 Sol. D
$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_1}} = \sqrt{\frac{200}{50}} = \frac{2}{1}$$
.

71 **Sol. A** s orbital is spherical so non-directional.

72 D

```
73 C
74 C
75 D
76 Sol. C Spherical node = n - \ell - 1
        non spherical = \ell
77 Sol. D Factual
78 C
79 D
80 Sol. B Maximum no. of electrons in a subshell = 2 (2\ell + 1) = 4+ 2.
81 Sol. D Two electrons in K shell will differ in spin quantum number s = +\frac{1}{2} or -\frac{1}{2}.
82 A
83 D
84 Sol. 2 No two electrons in an atom can have identical set of all the four quantum numbers
85 B
```