Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej

Symulacja wyścigów samochodowych w 3D

Grafika Komputerowa I

Autor: Maciej Grzeszczak

v1.0

10 grudnia 2016r.

Spis treści

10.12.2016

 ${\it Maciej~Grzeszczak}$

1	Specyfikacja							
	1.1	Opis biznesowy						
	1.2	Wymagania funkcjonalne						
	1.3	Wymagania niefunkcjonalne						
	1.4	Harmonogram projektu						
	1.5	.5 Architektura rozwiązania						
		Tablica 1: Lista zmian						
\mid D	ata	Autor Opis zmiany		We	ersja			

Pierwsza wersja dokumentu

1.0

1. Specyfikacja

1.1. Opis biznesowy

Niniejszy program służy do przedstawienia różnych modeli oświetlenia w grafice 3D wykorzystując do tego scenę z poruszającymi się pojazdami, które biorą udział w wyścigu. Aplikacja jest przeznaczona do użytku dla każdego. Użytkownik oprócz poruszania się pojazdem będzie mógł przełączać między poszczególnymi modelami oświetlenia, cieniowania oraz różnymi pozycjami kamery.

1.2. Wymagania funkcjonalne

Poniższy rysunek w postaci diagramu UML przedstawia możliwe przypadki użycia systemu przez użytkownika:

Tablica 2: Opisy przypadków użycia dla użytkownika

Aktor	Nazwa	Opis	Odpowiedź systemu
	Przełącz kamerę na nieruchomą w kabinie pojazdu.	Zmiana położenia kamery na kabinę pojazdu, skierowaną na drogę przed pojazdem.	Natychmiastowa zmiana pozycji kamery.
Użytkownik	Przełącz kamerę na nieruchomą, śledzącą scenę.	Zmiana położenia kamery na pozycję umożliwiającą obserwowanie całej sceny z oddali.	Natychmiastowa zmiana pozycji kamery.
	Przełącz kamerę na śledzącą po- jazd z tyłu.	Zmiana położenia kamery na pozycję za pojazdem. Będzie się ona poruszać wraz z nim.	Natychmiastowa zmiana pozycji kamery.
	Porusz pojazdem.	Przemieszczenie się pojazdu pod wpływem wciśnięcia odpowiednich klawiszy.	Przemieszczenie się pojazdu.
	Zmień oświetlenie na model Phonga.	Zmiana obecnego modelu oświetlenia na model Phonga.	Natychmiastowa zmiana modelu oświetlenia na model Phonga.
	Zmień oświetlenie na model Blinna.	Zmiana obecnego modelu oświetlenia na model Blinna.	Natychmiastowa zmiana modelu oświetlenia na model Blinna.
	Zmień cieniowa- nie na Phonga.	Zmiana obecnego trybu cieniowania na cieniowanie Phonga.	Natychmiastowa zmiana trybu cieniowania na cieniowanie Phonga.
	Zmień cieniowa- nie na Gourauda.	Zmiana obecnego trybu cieniowania na cieniowanie Gourauda.	Natychmiastowa zmiana trybu cieniowania na cieniowanie Gourauda.
	Zmień cieniowa- nie na stałe.	Zmiana obecnego trybu cieniowania na stałe.	Natychmiastowa zmiana trybu cieniowania na cieniowanie stałe.

1.3. Wymagania niefunkcjonalne

Poniżej przykładowe wymagania niefunkcjonalne pogrupowane w poszczególne kategorie URPS.

Tablica 3: Lista wymagań niefunkcjonalnych

Obszar wymagań	Lp	Opis						
Użyteczność	1	Aplikacja będzie działała na przeglądarce Mozilla Firefox dla każdej rozdzielczości powyżej 800x600.						
Niezawodność	2	Aplikacja będzie dostępna 24/7 pod podanym adresem.						
Wydajność	4	Aplikacja będzie utrzymywać minimalny poziom 15 FPS (klatek na sekundę).						
	5	Aplikacja będzie korzystać z biblioteki three.js która zapewni wysoką wydajność i odpowiednie zużycie zasobów.						
Utrzymanie	7	Wraz z aplikacją zostaje dostarczona instrukcja użytkownika.						

1.4. Harmonogram projektu

Implementacja projektu zostanie podzielona na dwie fazy:

- 1. Faza tworzenia sceny (7 dni) stworzenie świata wraz z obiektami (pojazdami), implementacja poruszania się pojazdem oraz poruszania się i zmiany pozycji kamery.
- 2. Faza implementacji poszczególnych modelów oświetlenia oraz cieniowania (14 dni) implementacja modeli oświetlenia Phonga i Blinna oraz cieniowań: stałego, Phonga i Gourauda.

1.5. Architektura rozwiązania

Program będzie aplikacją przeglądarkową, napisaną w języku Javascript i wykorzystującą bibliotekę **three.js**, która ułatwia korzystanie z WebGL.