FAILURE MECHANISMS

H. Thomas Hahn Washington University St. Louis, Missouri

LONGITUDINAL TENSION

• FAILURE MODES

WEAK MATRIX

WEAK INTERFACE

OPTIMUM

STRONG MATRIX

STRONG INTERFACE

CRACK GROWTH MODES IN UNIDIRECTIONAL COMPOSITES

PREDICTION OF STRENGTH

RULE OF MIXTURES

$$X_L = (v_f + v_m E_m / E_f) X_f$$

MINIMUM FIBER VOLUME FRACTION

$$v_f = \frac{E_f}{E_f - E_m} \left(\frac{X_m}{X_f} - \frac{E_m}{E_f} \right)$$

- BUNDLE STRENGTH

FIBER STRENGTH DISTRIBUTION

$$R(X_f) = \exp \left[-L(X_f/X_{fo})^{\alpha}\right]$$

$$R(Y_f) = \exp \left[-L(Y_f/Y_{f0})^{\alpha}\right]$$

$$X_{fo} = E_{f}Y_{fo}$$

AVERACE FIBER STRENGTH

$$\overline{X}_f = X_{fo} L^{-1/\alpha} \Gamma(1 + 1/\alpha)$$

BUNDLE STRENGTH

$$X_b = X_{fo} (L\alpha e)^{-1/\alpha}$$

BUNDLE-TO-FIBER STRENGTH RATIO

$$\frac{x_b}{\overline{x}_f} = \frac{1}{(\alpha e)^{1/\alpha} \Gamma(1 + 1/\alpha)}$$

DUCTILE MATRIX

$$X_L = v_f X_f + v_m X_m$$

• OPTIMUM STRENGTH

$$X_{L} = v_{f}X_{b}(\delta) + v_{m}\overline{\sigma}_{m}^{*}$$

$$\frac{X_{b}(\delta)}{X_{f}(L)} = \frac{1}{(\alpha e)^{1/\alpha} \Gamma(1 + 1/\alpha)} \qquad (\frac{L}{\delta})^{1/\alpha}$$

INEFFECTIVE LENGTH OR
LENGTH OF FAILURE INTERACTION ZONE

$$\frac{\delta}{d} = 2\left(\frac{\overline{X}_{f}}{4\tau_{y}}\right)^{\alpha/(\alpha+1)} \left[(\alpha+1)L/d\right]^{1/(\alpha+1)}$$

IF $\alpha >> 1$, RULE OF MIXTURES

$$\frac{\delta}{d} = \frac{\overline{\chi}_f}{2\tau_y}$$

$$X_L = (v_f + v_m E_m / E_f) \widetilde{X}_f$$

Stress, %UTS 0

45

72

86

94

99

100

Static failure sequence for Kevlar 49/epoxy

LONGITUDINAL COMPRESSION

• MICROBUCKLING OF FIBERS

INITIAL DEFLECTION

$$v_0 = f_0 \sin \frac{\pi X}{\ell}$$

FINAL DEFLECTION

$$v = f \sin \frac{\pi X}{\ell}$$

COMPRESSIVE STRESS

$$\sigma = \left[G_{L} + \frac{\pi^{2}}{12} v_{f} E_{f} \left(\frac{w_{f}}{\ell} \right)^{2} \right] \left(1 - \frac{f_{o}}{f} \right)$$

$$\approx G_{L} \left(1 - \frac{f_{o}}{f} \right)$$

· COMPRESSIVE STRENGTH

$$X'_L = G_L \left(1 - \frac{f_0}{f_c}\right)$$

LOCAL SHEAR FAILURE

$$f_c = f_o + \frac{k}{\pi} \frac{X_S}{G_L}$$

FLEXURAL FAILURE OF FIBER

$$f_c = f_o + \frac{2k}{w_f} \frac{k}{\pi^2} \frac{\chi_f}{E_f}$$

FINAL STRENGTH

$$X'_{L} = G_{L} \frac{1}{1 + (\pi f_{0}/\ell)/(X_{S}/G_{L})}$$

Shear type Buckl:

Compression failure mode for G1/Ep

Buckling type

TRANSVERSE TENSION

· ELASTIC PREDICTION

$$(\sigma_{\rm m})_{\rm max} = (SCF) \overline{\sigma}_2$$

$$x_{ni} = (SCF) x_{T}$$

$$\frac{X_T}{X_m} = \frac{1}{SCF}$$

SCF + AS
$$\frac{E_f}{E_m}$$
 +

$$\frac{X_T}{X_m}$$
 + AS X_m +

USE X int IF INTERFACIAL FAILURE

MATRIX DUCTILITY

$$X_{T} = v_{f} \overline{\sigma}_{f2}^{*} + v_{m} \overline{\sigma}_{m2}^{*}$$

$$= (v_{f}/\eta_{2} + v_{m}) \overline{\sigma}_{m2}^{*}$$

$$K_{m2} = (\sigma_{m})_{max}/\overline{\sigma}_{m2}^{*}$$

$$\frac{X_{T}}{X_{m}} = \frac{1 + v_{f}(1/\eta_{2} - 1)}{K_{m2}}$$

$$K_{m2} + AS X_{m} +$$

$\frac{X_T}{X_m}$ + AS X_m +

TRANSVERSE COMPRESSION

FAILURE PLANE

~ 45° INCLINED

$$\chi_{L}/\chi_{L}$$

LONGITUDINAL SHEAR

ELASTIC PREDICTION

SAME AS
$$X_T$$

$$\frac{\chi_S}{S_m} = \frac{1}{SCF}$$

MATRIX DUCTILITY

$$\frac{X_{S}}{S_{m}} = \frac{1 + v_{f}(1/\eta_{6} - 1)}{K_{m6}}$$

macroscopic

Shear failure for Kevlar 49/Ep

LAMINA FATIGUE

.....

LONGITUDINAL TENSION

MATRIX-CONTROLLED FAILURE LIKELY

FATIGUE LIMIT STRAIN OF MATRIX ≈ FATIGUE LIMIT STRAIN OF COMPOSITE

FATIGUE LIMIT STRESS

$$S_{FL} = S_{mFL} + v_f(E_f/E_m - 1) E_m \varepsilon_{FL}$$

LOW FATIGUE SENSITIVITY IF FATIGUE LIMIT STRAIN > STATIC FAILURE STRAIN OF FIBER

Longitudinal S-N data for B/Al and B-SiC/Ti (Ultimate tensile strength - 1698 MPa for B/Al and 1296 MPa for B-SiC/Ti)

Single cycle strength versus slope of S-N curve, nonwoven glass fiber composites, tension-tension fatigue at R=0 to 0.1

Normalized tensile fatigue life curves for E-glass strand without matrix and with several matrices (5 Hz, R = 0.10).

Fatigue failure process at 60 percent UTS, RT, G1/Ep

[□]atigue shape parameters

Weibull parameters for fatigue life distributions

• TRANSVERSE TENSION AND LONGITUDINAL SHEAR

HIGHLY FATIGUE SENSITIVE

MORE THAN 60% REDUCTION IN STRENGTH AT 10⁶ CYCLES

FAILURE RESULTING FROM FAST CRACK PROPAGATION

NO INDICATION OF GRADUAL CHANGES IN MODULUS AND STRENGTH

Transverse S-N data for B/Ep (Ultimate tensile strength = 60.9 MPa)

Shear S-N data for B/Ep. (Longitudinal shear strength = 66.7 MPa, interlaminar shear strength = 81.4 MPa)

LEFT

RIGHT

30⁰

LEFT

RIGHT

RIGHT

90°

LEFT

RIGHT

LAMINATE FATIGUE

FAILURE PROCESSES

FIRST PLY-FAILURE
ASYMPTOTIC INCREASE IN CRACK DENSITY IN PLIES

DELAMINATION

LAMINATE FRACTURE

Stress-strain relations of $\left[0/\pm45/90\right]_{\text{S}}$ G1/Ep and of constituent plies

Failure modes at free edge

Graphite/Epoxy T300/5208 [0/90/±45]

Symbol	Maximum Stress ksi	Life N
0	50	793, 340
0	50	704,870
•	60.	37,560
	60	52, 360
A	60	23,090
•	60	24, 570
×	40	

Typical failure mechanisms of composite laminates - Mode (1) is the most catastrophic and mode (3) the most desirable

