

Indian Association for the Cultivation of Science (Deemed to be University under the de novo category)

Integrated Bachelor's-Master's Program

End Semester Examination - Autumn 2022

Subject: Introductory Classical and Quantum Mechanics
Full marks: 50

Subject Code(s): PHS 1101
Time allotted: 3 hrs

Answer all questions

- 1. (a) Write the hamiltonian operator \hat{H} of a free particle of mass m moving in one dimension. Using $[\hat{x},\hat{p_x}]=i\hbar$, Calculate $[\hat{x},\hat{H}]$.
 - (b) Calculate $[\hat{x}, \hat{L_z}]$, where $\hat{L_z}$ is the z-component of angular momentum operator. (4 marks)
- 2. (a) From Schrodinger equation show that $\frac{d}{dt} < \hat{p_x} > = < \frac{\partial \hat{V}}{\partial x} >$. (Symbols have their usual meaning). (4 marks)
 - (b) Show that the eigenvalues of a hermitian operator are real numbers.

 Also show that $\frac{d^2}{dx^2}$ is a hermitian operator.

 (4 marks)
- 3. (a) Show that the number of modes of waves between frequency ν and $\nu + d\nu$ inside a closed cavity is proportional to $\nu^2 d\nu$. (4 marks)
 - (b) The stopping potential for a light of wavelength λ incident on a metallic surface is 4 volt. The stopping potential becomes 1 volt if the wavelength is doubled. Find λ . (4 marks)
- 4. (a) Find the energy difference between the first two energy eigenstates for a particle of mass 10⁻³¹kg enclosed between two infinite walls separated by a distance 10⁻¹⁰ m.
 (Derive the necessary expression of energy eigenvalues for this purpose).
 - (b) Show that the eigenvalue of the squares of a hermitian operator is positive. From this justify that the eigenvalues of a one dimensional harmonic oscillator is positive. (4 marks)
- 5. (a) Write the expression of the energy eigenvalues of a one dimensional harmonic oscillator. Explain, why the minimum energy is not zero. Consider a mass of 1 Kg, attached to a massless spring of spring constant k = 196 N/m. Find the energy spacing between two successive energy levels. (4 marks)
 - (b) From the expression of hamiltonian of a one dimensional harmonic oscillator, estimate the expression of energy using the uncertainty principle $\Delta x \Delta p_x \sim \hbar$. (4 marks)

6. A particle of mass m, moving along a line encounters a potential barrier of height V_0 and width a. If the energy E of the incident particle is less than V_0 then find the expression of it's tunnelling probability and show that the tunnelling probability decreases with increase in V_0 . (7 marks)

(b) A one dimensional harmonic oscillator is in the ground state wave function $\psi(x) = Ae^{-\alpha x^2}$, where

A and α are constants. Find the expectation value of it's position x.