Answer to Assignment 1

12112627 李乐平

1. Solution.

For the 2 given functions, it is easy to discover that $\mu_1 = \mu_2 = 0$.

Now we first find the variance of these 2 functions.

$$\sigma_1^2 = E(X_1 - \mu_1)^2 = E(X_1^2) = \int_{-\infty}^{+\infty} x^2 f_1(x) dx$$

$$= 2(\int_0^{0.9399} 0.3334 x^2 dx + \int_{0.9399}^{2.3242} 0.2945 dx + 0) = 1.00$$

$$\sigma_2^2 = E(X_2 - \mu_2)^2 = E(X_2^2) = \int_{-\infty}^{+\infty} x^2 f_2(x) dx$$

$$= 2(\int_0^{2.4495} 0.4082 x^2 - 0.1667 x^2 | x | dx) = 1.00$$

By the definition of population kurtosis $\frac{E(X-\mu)^4}{\sigma^4}$, we can respectively compute the kurtosis of

2 functions as follows.

Kurtosis of f₁:

$$\frac{E(X_1 - \mu_1)^4}{\sigma_1^4} = \frac{E(X_1^4)}{1^2} = \int_{-\infty}^{+\infty} x^4 f_1(x) dx$$
$$= 2(\int_0^{0.9399} 0.3334 x^4 dx + \int_{0.9399}^{2.3242} 0.2945 x^2 dx) = 2.40$$

Kurtosis of f₂:

$$\frac{E(X_2 - \mu_2)^4}{\sigma_2^4} = E(X_2^4) = \int_{-\infty}^{+\infty} x^4 f_2(x) dx$$
$$= 2(\int_{0}^{2.4495} 0.4082x^4 - 0.1667x^4 \mid x \mid dx) = 2.40$$

We can discover that though the shapes of 2 distributions are different, but their variances and kurtosis are the same. Actually, kurtosis is a measure of whether data are heavy-tailed or light-tailed relative to a normal distribution, that is to say, it measures the probability of outliers present in a distribution.

2. Solution.

Kendall's τ is computed as

$$\tau$$
 = (#concordant pairs - #discordant pairs) / (#pairs)
= 1 - 2 (#discordant pairs / #pairs)
=1 - 2 * (5 / 45)
= 7 / 9

Though the rankings of 2 TAs given are totally different, the Kendall's τ holds a relative high value, showing a high consistency exists between 2 TAs.

3. Solution.

The equation expressed by the assumption of MCAR is given by

$$Pr(M = 1 | X, Y) = Pr(M = 1)$$

This equation shows that the probability of Y missing is not dependant to the value of X and Y.

The equation expressed by the assumption of MAR is given by

$$Pr(M = 1 | X, Y) = Pr(M = 1 | X)$$

This equation shows that the probability of Y missing is not dependant to the value of Y when X is given, but may be dependant to the value of X.

4. The output is as follows.

Figure 4.1: Formatted Table of "NationalPark.txt"

5. (1) The output is as follows.

观测	VARNUM	NAME	TYPE	LENGTH	LABEL					
1	5	Apr	1	8	Number of cumulative cases reported on the first day of the month for April					
2	9	Aug	1	8	Number of cumulative cases reported on the first day of the month for August					
3	17	Aug_d	1	8	Number of cumulative deaths reported on the first day of the month for August					
4	2	ByCont	1	8	ID for sorting by first case date within a continent					
5	12	ByCont_d	1	8	ID for sorting by first death date within a continent					
6	1	ByDate	1	8	ID for sorting by first case date					
7	11	ByDate_d	1	8	ID for sorting by first death date					
8	22	Continent	2	13	Continent					
9	3	Country	2	30	Name of country					
10	21	Dec_d	1	8	Number of cumulative deaths reported on the first day of the month for December					
11	4	FirstCase	1	8	Date of first case reported					
12	13	FirstDeath	1	8	Date of first death					
13	8	July	1	8	Number of cumulative cases reported on the first day of the month for July					
14	16	July_d	1	8	Number of cumulative deaths reported on the first day of the month for July					
15	7	June	1	8	Number of cumulative cases reported on the first day of the month for June					
16	15	June_d	1	8	Number of cumulative deaths reported on the first day of the month for June					
17	10	Latest	1	8	Last reported cumulative number of cases reported to WHO as of August 9, 2009					
18	6	May	1	8	Number of cumulative cases reported on the first day of the month for May					
19	14	May_d	1	8	Number of cumulative deaths reported on the first day of the month for May					
20	20	Nov_d	1	8	Number of cumulative deaths reported on the first day of the month for November					
21	19	Oct_d	1	8	Number of cumulative deaths reported on the first day of the month for October					
22	18	Sep_d	1	8	Number of cumulative deaths reported on the first day of the month for September					

Figure 5.(1).1: Information of Attributes in Table "sff.sas7bdat"

Continent								
Continent	频数	百分比	累积 频数	累积百分比				
Africa	24	13.41	24	13.41				
Asia	40	22.35	64	35.75				
Australia	16	8.94	80	44.69				
Europe	50	27.93	130	72.63				
North America	35	19.55	165	92.18				
South America	14	7.82	179	100.00				

Figure 5.(1).2: Number of Countries per Continent

5. (2) The output is as follows.

Number of Countries per Continent by Case Status in April FREQ 讨释									
	Continent-Status	表							
Status									
Continent(Continent)	At Least One Case	No Cases	Unknown	合计					
Africa	0	21	3	24					
Asia	1	38	1	40					
Australia	1	15	0	16					
Europe	7	42	1	50					
North America	3	32	0	35					
South America	0	14	0	14					
合计	12	162	5	179					

Figure 5.(2).1: Number of Countries per Continent by Case Status in April **5. (3)** The output is as follows.

观测	Continent	Country	FirstCase	Latest	FirstDeath
1	Africa	Madagascar		88	11SEP2009
2	Africa	Mozambique		9.5	16SEP2009
3	Africa	São Tomé and Príncipe		8+	26OCT2009
4	Asia	Mongolia		11	26OCT2009
5	Europe	Belarus			06NOV2009

Figure 5.(3).1: Countries Reporting First Death Date but No First Case Date **6. (1)** The output is as follows. As the result shows, there is dulicate records in table "txgroup" while there is no duplicate record in table "visits".

Subject ID	count
115933	3
126920	3
144655	3
165582	2
165830	2
171976	3
173843	3
187179	2
200090	2
209347	3
224799	3
227241	2
228077	2

Figure 6.(1).1: Duplicate Records in Tables "visits.sas7bdat" and "txgroup.sas7bdat" **6. (2)** The output is as follows.

Figure 6.(2).1: Table Merged by Tables "visits" and "txgroup"

6. (3) The output is as follows.

Figure 6.(3).1: Merged Table with "Abovemedian" Attribute

7. (1) The output is as follows.

		Sex					全部			
		Female Age at Death			Male Age at Death					
								Age at Death		
		N	Mean	Median	N	Mean	Median	N	Mean	Median
Cause of Death	Smoking Status									
Cancer	Heavy (16-25)	33	61.61	62.00	93	67.82	68.00	126	66.19	66.50
	Light (1-5)	30	68.97	67.50	16	74.88	77.00	46	71.02	70.00
	Moderate (6-15)	34	62.97	62.00	24	70.17	72.50	58	65.95	65.00
	Non-smoker	150	69.74	71.00	84	74.23	75.00	234	71.35	72.00
	Very Heavy (> 25)	8	64.63	64.50	64	66.95	68.50	72	66.69	68.00
Cerebral Vascular Disease	Heavy (16-25)	19	69.26	71.00	54	70.43	70.50	73	70.12	71.00
	Light (1-5)	27	69.85	72.00	12	69.33	71.50	39	69.69	72.00
	Moderate (6-15)	19	70.11	74.00	24	70.38	71.50	43	70.26	72.00
	Non-smoker	122	75.64	77.00	59	73.31	75.00	181	74.88	76.00
	Very Heavy (> 25)	8	65.38	66.00	29	67.07	66.00	37	66.70	66.00
Coronary Heart Disease	Heavy (16-25)	24	70.54	72.50	103	66.19	66.00	127	67.02	67.00
	Light (1-5)	23	72.30	72.00	32	66.88	65.00	55	69.15	70.00
	Moderate (6-15)	22	71.14	69.00	39	70.59	71.00	61	70.79	71.00
	Non-smoker	134	75.14	75.00	137	72.69	73.00	271	73.90	74.00
	Very Heavy (> 25)	5	67.20	75.00	80	64.30	64.50	85	64.47	65.00

Figure 7.(1).1: Tabulation of Several Attributes in Table "Heart"

7. (2) The output is as follows.

Figure 7.(2).1: Age at CHD Diagnosed by Cholesterol Status for Female

7. (3) The output is as follows. The macro function will first print the weekday, then draw the plot corresponding to the weekday.

Figure 7.(3).1: The Weekday the Snapshot been Generated

Figure 7.(3).2: The Barplot Generated at Tuesday

Figure 7.(3).3: The Histogram Generated at Wedensday