Vectors in Julia

Reese Pathak Keegan Go David Zeng Stephen Boyd

EE103 Stanford University

September 28, 2016

Vectors in Julia

main topics:

- ▶ how to create and manipulate vectors in Julia
- ▶ how Julia notation differs from math notation

Outline

Vectors

Vector operations

Norm and distance

Vectors

- vectors are represented by arrays in Julia
- ▶ to create the 3-vector

$$x = (8, -4, 3.5) = \begin{bmatrix} 8 \\ -4 \\ 3.5 \end{bmatrix}$$

use

$$x = [8, -4, 3.5]$$

($x = [8, -4, 3.5]$ also works)

- ▶ watch out for similar looking expressions
 (8,-4,3.5) and [8 -4 3.5] are not equivalent in Julia
- ▶ length of a vector: length(x)

Ranges

- ▶ to get a range from i to j (for $i \leq j$), use a colon (:)
 - the range from 1 to 10 is 1:10
 - collect(1:10) returns the array
- ▶ the default increment between values is 1. (1:3 is 1, 2, 3)
- ▶ to specify an increment size add an additional argument:
 - the range from 1 to 10 with a step size of 0.1 is 1:0.1:10

Indexing and slicing

- ▶ indexes run from 1 to n: x_2 is x[2]
- ► can also set an element, e.g., x[3] = 10.5
- use a range to select more than one element
 x[2:3] selects the second and third elements
- x[end] selects the last element
- ▶ to select every other element use x[1:2:end]

Block vectors

▶ to form a stacked vector like

$$a = (b, c) = \begin{bmatrix} b \\ c \end{bmatrix}$$

(with b and c vectors)

a = [b; c]

(a = [b, c] does NOT work)

can mix vectors and scalars:

$$a = [b; 2; c; -6]$$

Basic functions for arrays

- sum of (the entries of) a vector: sum(x)
- mean of the entries $(\mathbf{avg}(x))$: mean(x)
- \triangleright 0_n is zeros(n)
- ▶ $\mathbf{1}_n$ is ones(n)

Creating unit vectors

- ▶ form e_3 with length 10
- create a zero vector of size 10 then set the third element to 1
 e_3 = zeros(10); e_3[3] = 1;

List of vectors

▶ to form a list with vectors a, b, and c:

```
vector_list = [a,b,c]
```

- ▶ the second vector in this list is vector_list[2]
- ▶ to access an element in a vector: vertor_list[2][3]

Outline

Vectors

Vector operations

Norm and distance

Vector operations 11

Vector addition and subtraction

vector addition uses +, for example

$$\left[\begin{array}{c}1\\2\\3\end{array}\right]+\left[\begin{array}{c}4\\5\\6\end{array}\right]$$

is written

$$[1, 2, 3] + [4, 5, 6]$$

- subtraction uses -
- ▶ the arrays must have the same length (unless one is scalar)

Vector operations 12

Scalar-vector addition

- in Julia, a scalar and a vector can be added
- the scalar is added to each entry of the vector [2, 4, 8] + 3 gives (in mathematical notation)

$$\begin{bmatrix} 2\\4\\8 \end{bmatrix} + 3\mathbf{1} = \begin{bmatrix} 5\\7\\11 \end{bmatrix}$$

13

Scalar-vector multiplication

- scalar-vector multiplication uses *
- ▶ for example,

$$(-2) \left[\begin{array}{c} 1 \\ 9 \\ 6 \end{array} \right]$$

is written

$$-2 * [1, 9, 6]$$

▶ the other order gives the same result:

$$[1, 9, 6] * -2$$

Inner product

- ▶ inner product a^Tb is written as dot(a,b)
- lacktriangleright a and b must have the same length

Vector operations 15

Outline

Vectors

Vector operations

Norm and distance

Norm and distance 16

Norm and distance

- ▶ the norm $||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$ is written norm(x)
- ▶ $\mathbf{dist}(x,y) = \|x y\|$ is written $\mathtt{norm}(\mathbf{x}-\mathbf{y})$

Norm and distance 17

RMS value

 $ightharpoonup \mathbf{rms}(x)$ is defined as

$$\mathbf{rms}(x) = \sqrt{\frac{1}{n}(x_1^2 + \dots + x_n^2)} = \frac{\|x\|}{\sqrt{n}}.$$

can be expressed as

Standard deviation

standard deviation is defined as

$$\mathbf{std}(x) = \frac{\|x - \mathbf{avg}(x)\mathbf{1}\|}{\sqrt{n}}$$

- which can be expressed as std_of_x = norm(x - mean(x))/sqrt(length(x))
- warning: the Julia function std does not use this definition

Norm and distance 19

Angle

ightharpoonup the angle between two vectors a and b is

$$\angle(a,b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)$$

▶ can be expressed as angle_a_b = acos(dot(a,b)/(norm(a)*norm(b)))