Chap / Conservation of Energy $W_{spr} = -\frac{k}{2} \left(\frac{\lambda}{\lambda} \chi^{2} \right)$ $= -\frac{k}{2} \left(\frac{\lambda}{\lambda} \chi^{2} \right)$ W= J+ dx $W_{qrav} = \Delta(-mgy)$ $= \Delta(-mg(yz-y,))$

Work done by friction depends on "path" between Use ful: Define U(x)
potential energy $W = \Delta(-0) - \Delta V$ $\bigcup_{Spr}(\chi) = \frac{1}{2} k \chi^2$ Oran -

 $\Delta O = \frac{1}{2} k \left(\frac{1}{2} - \frac{1}{2} \right)$ DUga = Mg DY Formula only has Wet Sissing of the different of the second o Sum of forces

SK = North thic chang to -W Conservative forces this into 1/2 - 2 U, -2 + - - - Wfriz

 $\Delta U_1 + \Delta U_2 + \dots + \Delta K = W_{fric}$ AUTH + UK = Whis Total mechanical energy X+V = _ ムベナムレームデ 2 = $\sqrt{n6n-cons}$

Special case; Mb non-conserv forces (No friction no other misc. forces...) [] Ez= E, K, +U, = Kz+V, Conservation of Energy R

Principle 13 good for finding position. + Ma(Im) = >mv2+

mg (1.0m) = 2my 2 $V = \sqrt{29(1.0)}$ = 4.5 methy m = 4.4 m

7.21 Navy 'jet mass 10,000 by Imas on captes snags cable --- Spring 40,000 Nm. 5 pring stretches by 25 m to stop plane. What was landing speed of plane

Energy 15 consorved XmVo = O+ Zlex? Solve for vo $\sqrt{2}$ = $\sqrt{2}$