

One-step synthesis of nanostructured $\text{g-C}_3\text{N}_4/\text{TiO}_2$ composite for highly enhanced visible-light photocatalytic H_2 evolution

Yigen Tan^a, Zhu Shu^{a,*}, Jun Zhou^{a,*}, Tiantian Li^b, Wenbin Wang^a, Zhengliang Zhao^a

^a Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, 430074 Wuhan, PR China

^b College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang Normal University, 464000 Xinyang, PR China

ARTICLE INFO

Keywords:

$\text{g-C}_3\text{N}_4$
 TiO_2
 nanocomposite
 photocatalysis
 hydrogen evolution

ABSTRACT

Improving the photocatalytic property of $\text{g-C}_3\text{N}_4$ by combined strategies has attracted increasing attention recently. In this work, we realized the structure nanosizing of $\text{g-C}_3\text{N}_4$ and its synchronous compounding with TiO_2 nanoparticles in one step, using a facile melamine-involved vapor deposition method coupled with a simple and easy setup. Nanostructured $\text{g-C}_3\text{N}_4/\text{TiO}_2$ heterojunction was well-established and the resultant nanocomposite demonstrated an excellent visible-light photocatalytic H_2 evolution performance 10.8 times higher than that of bulk $\text{g-C}_3\text{N}_4$. The structure nanosizing coupled with the heterojunction construction contributed together to the improvement of photoinduced electron-hole separation and final photocatalytic efficiency. The proposed simple method and setup have the potential to be used for preparing other $\text{g-C}_3\text{N}_4$ -based nanocomposites with advanced photocatalytic properties.

1. Introduction

Environmental pollution and energy crisis are two major problems to be solved at present [1–3]. Hydrogen energy, a kind of clean energy, has attracted close attention from governments and scientists all over the world [4–6]. Photocatalytic water splitting is considered as an ideal technique for hydrogen production [7]. Among all the catalysts, nanostructured TiO_2 has been extensively studied and commercialized already, e.g. P25 [8]. However, TiO_2 only absorbs little solar photons (~5%) and hardly responds to visible light due to its large band gap of 3.2 eV [9,10]. In recent years, graphitic carbon nitride ($\text{g-C}_3\text{N}_4$) has been a topic of wide concern owing to its unique electronic structure and properties [11,12]. Its narrow band gap of 2.7 eV and strong visible-light absorbing ability of 460 nm make it perform well in photocatalysis [13,14]. Nevertheless, the high photogenerated electron-hole recombination rate still limits the photocatalytic efficiency.

Nano-structuring [15–17], element-doping [18,19], composite-constructing [20–22], etc. are useful strategies to improve the activity of catalysts in photocatalytic H_2 evolution. Nano-structuring primarily increases specific surface area of photocatalysts, and element-doping and composite-constructing mainly alters the electronic structure. In general, different strategy contributes in different way to improve a certain aspect of catalyst's properties [23]. Thus, the combination of

mulfold strategies could bring additive effect on the improvement of photocatalytic activity and becomes a new tendency in the design of advanced photocatalysts [24,25].

Over the years, constructing the composite of $\text{g-C}_3\text{N}_4$ and nano- TiO_2 has been proved useful to obtain enhanced performance in photocatalysis, benefiting from their appropriate band levels [26,27]. For example, Zhong et al. successfully designed a $\text{g-C}_3\text{N}_4/\text{TiO}_2$ heterostructure by calcining the mixture of melamine and TiO_2 nanobelt, where 2 times higher performance of H_2 evolution are obtained [28]. Wang et al. synthesized $\text{g-C}_3\text{N}_4/\text{TiO}_2$ by calcining their precursors, where 6 times higher performance of H_2 evolution are obtained [29]. However, the $\text{g-C}_3\text{N}_4$ phase of these composites is still bulk $\text{g-C}_3\text{N}_4$ in the micron size range. It is supposed that, if nanosized $\text{g-C}_3\text{N}_4$ is compounded with nano- TiO_2 , the resultant nanostructured $\text{g-C}_3\text{N}_4/\text{TiO}_2$ composite will have a further increased efficiency in photocatalytic H_2 evolution. Several researchers have investigated the synthesis of nanostructured $\text{g-C}_3\text{N}_4/\text{TiO}_2$. For instance, Chen et al. controlled the growth of $\text{g-C}_3\text{N}_4$ on mesoporous TiO_2 spheres, resulting in a better fused $\text{g-C}_3\text{N}_4/\text{TiO}_2$ heterostructure [30]. Su et al. loaded $\text{g-C}_3\text{N}_4$ nanodots on TiO_2 nanotube arrays for better efficiency of pollutant degradation under solar light [31]. Nevertheless, the reported processes for synthesizing nanostructured $\text{g-C}_3\text{N}_4/\text{TiO}_2$ are generally complex, requiring two or more steps to realize the nano-structuring of $\text{g-C}_3\text{N}_4$.

* Corresponding authors at: 388 Lumo Road, 430074 Wuhan, PR China.

E-mail addresses: shuzhu@cug.edu.cn (Z. Shu), zhoujun@cug.edu.cn (J. Zhou).

and its recombination with nano-TiO₂. Moreover, the photocatalytic H₂ evolution of the nanostructured g-C₃N₄/TiO₂ was not investigated yet and the potential influence has not been revealed. Therefore, it is still of great interest and urgency to realize the facile synthesis of nanostructured g-C₃N₄/TiO₂ composites for enhanced photocatalytic H₂ evolution.

Herein, we proposed and demonstrated a facile one-step method to achieve the nano-structuring of g-C₃N₄ and its compounding with commercialized TiO₂ nanoparticles (P25). The method was actualized via vapor deposition using an easy and simple setup. The as-obtained nanostructured g-C₃N₄/TiO₂ realized 10.8 times higher efficiency than bulk g-C₃N₄ in visible-light H₂ evolution. The detailed process was introduced, the comprehensive characterization of catalysts was conducted and the mechanism of photocatalytic activity improvement was revealed.

2. Experimental

2.1. Materials synthesis

2.1.1. Nanostructured g-C₃N₄/TiO₂ composite

The one-step vapor deposition of nanostructured g-C₃N₄ onto TiO₂ nanoparticles was carried out using an easy and simple setup as illustrated in **Scheme 1**. It comprises of a covered crucible (300 mL) with a cylinder (4 cm in height) inside. In a typical experiment, 0.5 g TiO₂ nanoparticles (commercialized P25) were placed on the top of the cylinder and 24 g melamine was loaded on the bottom of the crucible. The covered crucible was put in a muffle furnace, heated at 520 °C for 4 h using a heating rate of 15 °C min⁻¹ and cooled down naturally. After the above one-step treatment, the white TiO₂ powder on the cylinder top became a light-yellow powder, namely the nanostructured g-C₃N₄/TiO₂ composite. It is supposed that, yellow g-C₃N₄ grew on the surface of TiO₂ nanoparticles although they were not in touch with melamine, resulting from the sublimation feature of melamine and the gaseous phase reaction essence of polymerization reaction from melamine to g-C₃N₄ [32,33]. Different amount of melamine (4.0, 8.0, 16.0, 24.0, 30.0 and 48.0 g) were used in the experiments to adjust the amount of g-C₃N₄ depositing on TiO₂, and an increased melamine dosage leaded to an increased g-C₃N₄ deposition. The resultant products were denoted as CN/TiO₂-x, where x (= 4, 8, 16, 24, 30 or 48) represents the melamine dosage.

2.2. Control samples

For comparison, bulk g-C₃N₄ (denoted as bulk-CN) was collected from the bottom of the crucible. The nanosized g-C₃N₄ phase (denoted as nano-CN) of the g-C₃N₄/TiO₂ composite was obtained by dissolving the TiO₂ phase of CN/TiO₂-24 in hydrofluoric acid aqueous solution (40 wt%) at room temperature. A physical mixture sample of nanosized g-C₃N₄ and TiO₂ was prepared by mixing 0.051 g nano-CN with 0.049 g P25 (denoted as CN/TiO₂-mixture), which owns a weight ratio of nanosized g-C₃N₄ to TiO₂ equal to that of CN/TiO₂-24. Bulk g-C₃N₄/TiO₂ composite (denoted as bulk-CN/TiO₂) was prepared by calcining the mixture of 2 g melamine and 1 g P25, resulting in a weight ratio of g-C₃N₄ to TiO₂ similar to that of CN/TiO₂-24. A physical mixture sample of bulk g-C₃N₄ and TiO₂ was prepared by mixing 0.051 g bulk-CN with

0.049 g P25 (denoted as bulk-CN/TiO₂-mixture).

2.3. Characterization

X-ray diffraction (XRD) patterns of the samples were obtained over the diffraction angle (2θ) of 3–80° by an X-ray diffractometer with Cu K α radiation. Fourier transform infrared (FT-IR) spectra were acquired on a Nicolet 6700 spectrometer with KBr pellet. Transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) images and the selected area electron diffraction (SAED) pattern were observed on a Tecnai G2 F20 S-TWIN electron microscope with an accelerating voltage of 200 kV. Nitrogen adsorption/desorption isotherms at 77 K were measured on a Micromeritics TriStar 3020 porosimeter. Specific surface areas of samples were calculated by the Brunauer-Emmett-Teller (BET) method. Photoluminescence (PL) spectra were obtained on an F-4500 FL spectrometer (excitation wavelength = 380 nm). UV-visible diffuse reflectance spectra (UV-vis DRS) were recorded by a Shimadzu UV-2500PC UV-vis spectrometer with the wavelength range of 240–850 nm. The photocurrent analysis was measured using photocatalyst-coated fluorine-doped tin oxide (FTO) glass with repeated on-off cycles of Xenon lamp illumination ($\lambda > 420$ nm), which was carried out using a computer-controlled potentiostat and a reference electrode of Ag/AgCl.

2.4. Photocatalytic H₂ evolution

The photocatalytic water splitting reaction was tested in a quartz reactor with top visible light irradiation. Typically, 0.1 g catalyst was dispersed in 100 mL aqueous solution containing 10 vol% sacrifice agent of triethanolamine. Then, under magnetic stirring, 10 mL triethanolamine was added as sacrificial electron donor and 1 mL H₂PtCl₆ aqueous solution was added to preset the mass ratio of Pt cocatalyst to photocatalyst at 3 wt%. The vessel was purged by N₂ for 0.5 h to remove air, sealed with a rubber stopper and then irradiated for 1 h under visible light using a 300 W Xe lamp with a cut-off filter ($\lambda > 420$ nm) at the fixed light-to-liquid distance (10 cm) to photo-reduce H₂PtCl₆ into Pt cocatalyst. Finally, the sealed reactor was irradiated under the same visible light after thoroughly purging the system with nitrogen again, and the reaction temperature was maintained at 283 K by cyclical cooling water. 1 mL gas was sampled every one hour and the hydrogen content was analyzed by a gas chromatograph with a thermal conductivity detector. After reacting for 4 h, the quartz reaction vessel was purged by nitrogen again. The reaction process was repeated for four runs.

2.5. Apparent quantum efficiency (AQE) measurement

The apparent quantum efficiency (AQE) was measured using the water splitting experimental setup under the irradiation of monochromatic light ($\lambda = 420$ nm) and calculated by the formula (1) [34–36]:

$$\text{AQE} = \frac{n \times \Delta G}{I} \times 100\% = \frac{n \times \Delta G}{W \times S \times t} \times 100\% \quad (1)$$

where n stands for the mole number of H₂ evolution; $\Delta G = 237 \text{ kJ mol}^{-1}$, that is the needed energy of one molecule water

Scheme 1. Schematic illustration of the one-step synthesis of nanostructured g-C₃N₄/TiO₂ composite via facial melamine-involved vapor deposition.

Fig. 1. (a) XRD patterns and local magnifications (inserts) and (b) FT-IR spectra of CN/TiO₂-24, TiO₂, bulk-CN and nano-CN.

entirely splitting into H₂ and O₂; W is the power of lamp; S represents the irradiated area; t is the reaction time.

3. Results and discussion

3.1. Formation of nanostructured g-C₃N₄/TiO₂ composite

The XRD pattern of as-synthesized CN/TiO₂-24 is shown in Fig. 1a in comparison with those of control samples: TiO₂ and bulk-CN. Obviously, CN/TiO₂-24 is a composite of TiO₂ and g-C₃N₄. For detailed comparison, the g-C₃N₄ phase (nano-CN) of CN/TiO₂-24 was abstracted by removing the TiO₂ phase from CN/TiO₂-24 and its XRD pattern is exhibited in Fig. 1a. It can be seen that, the peak locations belonging to the g-C₃N₄ phase of CN/TiO₂-24 (nano-CN) are slightly different from those of bulk-CN. Bulk-CN exhibits two characteristic diffraction peaks of g-C₃N₄ at $2\theta = 12.7^\circ$ and 27.5° , which correspond to the in-plane repeating of N-bridged tri-s-triazine units ((100) plane diffraction) and the inter-planar stacking of conjugated aromatic system ((002) plane diffraction), respectively. Compared with bulk-CN, nano-CN owns a similar XRD pattern with relatively lower peaks, suggesting that nano-CN is composed of g-C₃N₄ with reduced sizes. Moreover, the (002)

reflection peak of g-C₃N₄ right-shifts from 27.5° for bulk-CN to 27.8° for nano-CN and CN/TiO₂-24, implying a 0.003 nm decrease of interlayer distance between the unit layers of g-C₃N₄ in CN/TiO₂-24. The (100) peak down-shifts from 12.9° for bulk-CN to 12.7° for nano-CN and CN/TiO₂-24, corresponding to a 0.014 nm increase of the in-plane hole-to-hole distance, which means that the unit layer of g-C₃N₄ in CN/TiO₂-24 has become more planarized. The planarization of g-C₃N₄ unit layers is beneficial for the delocalization of π electrons, thus the interaction of π - π stacking is enhanced and leads to the decreasing of interlayer spacing [37]. These crystal structure differences between the g-C₃N₄ phase of CN/TiO₂-24 and the bulk g-C₃N₄ preliminarily indicate the nanosizing of g-C₃N₄ in CN/TiO₂-24, which will get further proofs in subsequent analysis.

The FT-IR spectra of bulk-CN, nano-CN, TiO₂ and CN/TiO₂-24 are shown in Fig. 1b. Data shows that the spectra of CN/TiO₂-24 is a combination of those of TiO₂ and g-C₃N₄. Specifically, the absorption band between 600 and 800 cm^{-1} denotes the stretching vibration of Ti-O-Ti. The sharp absorption peak at 808 cm^{-1} is attributed to the out-of-plane bending vibration of tri-s-triazine units of g-C₃N₄. The intense absorption band between 1200 and 1700 cm^{-1} is ascribed to the typical C-N and C=N stretching vibration of tri-s-triazine rings, and the wide absorption band between 3000 and 3600 cm^{-1} is due to the stretching vibration of terminal –NH groups of g-C₃N₄. It is remarkable that, the characteristic vibration peaks related to the g-C₃N₄ phase in both CN/TiO₂-24 and its nano-CN counterpart are much sharper than those of bulk-CN, which can be attributed to their crystal structural difference. As discussed above, the unit layers of the g-C₃N₄ phase in CN/TiO₂-24 are more planarized in comparison with bulk-CN, which leads to the separation of atoms in two neighbor tri-s-triazine rings and thus weakens their interaction. Hence, the atoms in the g-C₃N₄ phase of CN/TiO₂-24 vibrate more strongly due to the reduced constraint.

Fig. 2 exhibits the TEM-observed microstructure of CN/TiO₂-24 and reference samples. As shown in Fig. 2a, P25 is composed of typical TiO₂ nanoparticles of $10 \sim 20\text{ nm}$ in diameter. After the melamine-involved vapor deposition treatment, all the TiO₂ nanoparticles are wrapped by nanoscale g-C₃N₄ with a thickness of about 20 nm as shown by the TEM observations with different magnifications in Fig. 2b, c, forming a nanostructured g-C₃N₄/TiO₂ composite (CN/TiO₂-24). The HRTEM image of CN/TiO₂-24 nanocomposite in Fig. 2d shows the clear lattice fringes of TiO₂ ($d = 0.35\text{ nm}$ corresponding to TiO₂ (101)) coupled with the intimate vague fringes of g-C₃N₄ [38–40]. The observed intimate contact between g-C₃N₄ and TiO₂ enables the formation of surface hybrid heterojunction which is conductive to charge separation [41]. The selected area electron diffraction (SAED) pattern of CN/TiO₂-24 also shows that the composite is polycrystalline in nature. These results point out that the nanostructured g-C₃N₄/TiO₂ heterojunction is well established. When the TiO₂ phase of CN/TiO₂-24 is removed, the resultant pure g-C₃N₄ phase (nano-CN) clearly shows a nanoporous morphology (Fig. 2e). By contrast, the traditional bulk-CN sample consists of thick granules of micron size (Fig. 2f). N₂ adsorption-desorption analysis (Fig. 2g, h) further demonstrates that CN/TiO₂-24 owns a nanosized structure and nano-CN owns a mesoporous structure with favorable specific surface areas ($67.1\text{ m}^2\text{ g}^{-1}$ for CN/TiO₂-24 and $77.5\text{ m}^2\text{ g}^{-1}$ for nano-CN) about 11 and 13 times higher than that of bulk-CN ($6.1\text{ m}^2\text{ g}^{-1}$), respectively. Meanwhile, the specific surface area of CN/TiO₂-24 is much higher than that of the TiO₂ nanoparticles ($42.2\text{ m}^2\text{ g}^{-1}$), while the sample bulk-CN/TiO₂ synthesized by directly mixing and calcining their precursors owns a much lower specific surface area ($21.5\text{ m}^2\text{ g}^{-1}$). These results fully demonstrate the advantage of the proposed vapor deposition method in the construction of g-C₃N₄/TiO₂ nanocomposite with enlarged specific surface area. In short, the TEM/HRTEM observations and N₂ adsorption-desorption results accord well with the XRD and FT-IR results, all of which point to the successful construction of nanostructured g-C₃N₄/TiO₂ heterojunction via the facile one-pot vapor deposition process.

The surface chemical compositions of bulk-CN, TiO₂ and CN/TiO₂-

Fig. 2. (a) TEM image of TiO₂; (b, c) TEM images and (d) HRTEM image (insert is SAED pattern) of CN/TiO₂-24; TEM images of (e) nano-CN and (f) bulk-CN; (g) N₂ adsorption-desorption isotherm curves and (h) BET specific surface areas of bulk-CN, TiO₂, bulk-CN/TiO₂, CN/TiO₂-24 and nano-CN.

Fig. 3. Survey and high-resolution XPS spectra of bulk-CN, TiO_2 and CN/TiO_2 -24. (a) Survey spectra; (b) C 1 s spectra of bulk-CN and CN/TiO_2 -24; (c) N 1 s spectra of bulk-CN and CN/TiO_2 -24; (d) O 1 s spectra of TiO_2 and CN/TiO_2 -24; (e) Ti 2p spectra of TiO_2 and CN/TiO_2 -24.

24 samples were measured by X-ray photoelectron spectroscopy. As we can see from Fig. 3a, all elements including C, N, O and Ti are detected in the survey spectra of CN/TiO_2 -24, which implies that the composite is mainly composed of C, N, O and Ti elements. It should be noted that O was found in bulk-CN due to the adsorbed hydroxyl groups and C was found in pure TiO_2 due to the surface adventitious carbon from XPS instrument itself. Fig. 3b presents the corresponding high-resolution C 1 s spectra of bulk-CN and CN/TiO_2 -24. The C 1 s spectrum can be deconvoluted into three different Gaussian-Lorentzian peaks centered at the binding energies of 284.50, 285.35 and 288.04 eV. The peak at 284.50 eV is attributed to the C-C coordination of the surface

adventitious carbon; the peak at 285.35 eV is attributed to the C=N groups; and the peak at 288.04 eV is attributed to C-N or C-(N)₃ groups [42]. The C 1 s spectrum of CN/TiO_2 -24 was similar to that of bulk-CN, but the peak of C=N and C-N shifted 0.11 and 0.17 eV towards higher binding energy, respectively. In the N 1 s spectrum of bulk-CN (Fig. 3c), three peaks can be observed after deconvolution. The peak at 398.44 eV is attributed to sp^2 -hybridized aromatic N (C=N-C); the peak at 398.94 eV is attributed to tertiary nitrogen N-(C)₃; the peak at 400.05 eV is attributed to C-N-H groups [43]. These peaks have a shift of 0.14, 0.40 and 0.50 eV towards higher binding energy, respectively. In the O 1 s spectrum of TiO_2 (Fig. 4d), the peak at 530.58 eV is

Fig. 4. (a) UV-vis DRS spectra and (b) Kubelka-Munk transformed function of TiO₂, CN/TiO₂-24 and bulk-CN; (c) PL spectra of bulk-CN, nano-CN, CN/TiO₂-24 and TiO₂; (d) Transient photocurrent responses of CN/TiO₂-24 and bulk-CN.

attributed to the Ti-O band; the peak at 532.55 eV is attributed to the surface –OH groups [44]. Nevertheless, the peak of Ti-O shifts 0.60 eV towards lower binding energy in O 1 s spectrum of CN/TiO₂-24. In the Ti 2p spectrum (Fig. 3e), the two peaks at 459.37 and 465.04 eV of TiO₂ correspond to the Ti 2p_{3/2} and Ti 2p_{1/2}, respectively, while the peaks of CN/TiO₂-24 shifts 0.66 and 0.58 eV towards lower binding energy, respectively [45]. The up-shifts of C 1 s and N 1 s peaks and the down-shifts of O 1 s and Ti 2p peaks of CN/TiO₂-24 can be attributed to the chemical environment change arising from the close interaction between g-C₃N₄ and TiO₂ [46–48], which again demonstrates the well establishment of g-C₃N₄/TiO₂ heterojunction in CN/TiO₂-24.

3.2. Optical characteristics

UV-Vis diffuse reflectance spectrometer was used to study the optical absorption properties of these samples. Fig. 4a indicates that bulk-CN has an absorption edge at 465 nm, while CN/TiO₂-24 shows a blue shift toward shorter wavelength (~ 425 nm). The blue shift of absorption edge results from the increase of band gap of semiconductors. As plotted in Fig. 4b, the estimated band gap value is 2.65 and 2.75 for bulk-CN and CN/TiO₂-24, respectively, according to the converted curve of Kubelka-Munk function versus light energy. The increased band gap of CN/TiO₂-24 compared with bulk-CN can be attributed to the well-known quantum size effect in nanomaterials, namely, the band gap of g-C₃N₄ phase increases with the decrease of its crystal size into nanoscale. Besides, the light absorption of CN/TiO₂-24 is still much broader than that of TiO₂ with a typical large band gap of 3.17 eV. The existence of g-C₃N₄ phase in the composite is believed to contribute to

its superior optical absorption.

The photoluminescence (PL) spectroscopy reveals the recombination degree of photogenerated electron-hole pairs and a high emission intensity means a great recombination probability. Fig. 4b exhibits the PL emission spectra of bulk-CN, nano-CN, TiO₂ and CN/TiO₂-24 at 380 nm excitation. Bulk-CN shows a strong peak at 455 nm, corresponding to the energy of radiant light approximately equal to the narrow band gap energy of g-C₃N₄ (2.65 eV). Compared with bulk-CN, the emission intensity of nano-CN is significantly weaker, demonstrating its lower rate of electron-hole recombination. Besides, the PL emission peak down-shifts slightly from 455 nm for bulk-CN to 438 nm for nano-CN, which corresponds to the enlarging of band gap from 2.65 eV for bulk-CN to 2.75 eV for nano-CN. It is interesting that, when nano-CN combines with P25 to form the nanostructured g-C₃N₄/TiO₂ composite (CN/TiO₂-24), the emission intensity further decreases substantially, indicating that the charge carrier recombination is effectively impeded because of the efficient charge separation and transfer from g-C₃N₄ to TiO₂ via heterojunction interface. Additionally, there is hardly PL emission for TiO₂ in the range of 380 ~ 650 nm, since no electron can be excited by 380 nm photon due to its large band gap (3.17 eV).

On the other hand, photocurrent density analysis, a well-known important evidence for demonstrating charge separation and migration, was employed to further investigate the separation efficiency of photoinduced carriers in the nanocomposite. As plotted in Fig. 4d, CN/TiO₂-24 shows a photocurrent density response obviously higher than that of bulk-CN, which again manifests that the separation and transfer efficiency of photoinduced electro-hole pairs is increased in the nanostructured g-C₃N₄/TiO₂ composite.

Fig. 5. (a) Time courses of H_2 evolution on CN/TiO₂-24, nano-CN, CN/TiO₂-mixture, bulk-CN/TiO₂, bulk-CN, bulk-CN/TiO₂-mixture and TiO₂; insert is the H_2 evolution rates; (b) Schematic diagram of electronic transfer mechanism; (c) H_2 evolution rates and AQE values of TiO₂, CN/TiO₂-4, -8, -16, -24, -30 and -48, and bulk-CN; (d) Recycling tests of CN/TiO₂-24; (e) XRD patterns, (f) FT-IR, (g) UV-vis DRS and (h) PL spectra of the catalyst before and after H_2 evolution test.

3.3. Visible-light photocatalytic performance

The visible-light photocatalytic activity of the samples was evaluated by H₂ evolution reaction (HER) under visible light. Fig. 5a displays the time course and average rate of visible-light H₂ evolution on CN/TiO₂-24 in composition with the control samples. Data shows that, all samples except TiO₂ is capable of obvious H₂ evolution under visible light, because TiO₂ nanoparticles are negative in visible-light absorption (Fig. 4a). Bulk-CN generates H₂ at the rate of 47.4 μmol g⁻¹ h⁻¹. When bulk-CN is physically mixed with the TiO₂ nanoparticles, the obtained sample bulk-CN/TiO₂-mixture produces H₂ at an even reduced rate of 28.5 μmol g⁻¹ h⁻¹, due to both the visible-light inertness of TiO₂ and the absence of g-C₃N₄/TiO₂ heterojunction in the physical mixture. When combining bulk-CN with TiO₂ to form a composite by pre-mixing and calcining their precursors, the resultant bulk-CN/TiO₂ shows a H₂ evolution rate of 71.5 μmol g⁻¹ h⁻¹ slightly higher than that of bulk-CN, benefitting from the constructed g-C₃N₄/TiO₂ heterojunction. On the other hand, the physical mixture of nano-CN and TiO₂ (CN/TiO₂-mixture) and nano-CN show substantially enhanced H₂ evolution rate of 319 μmol g⁻¹ h⁻¹ and 450 μmol g⁻¹ h⁻¹, respectively, representing the contribution of the nanosizing of g-C₃N₄ on its visible-light photocatalytic activity. What is more, when the nanoscale g-C₃N₄ and TiO₂ combine to form the nanostructured g-C₃N₄/TiO₂ composite (CN/TiO₂-24), a further improved H₂ evolution rate of 513 μmol g⁻¹ h⁻¹ is realized, which is 10.8 times higher than bulk-CN and much superior to CN/TiO₂-mixture. These results suggest that, both the nanosizing of g-C₃N₄ phase and the well-established heterojunction of nanoscale g-C₃N₄ and TiO₂ in CN/TiO₂-24 have contributed to its improvement in visible-light photocatalytic H₂ evolution.

Specifically, compared with bulk g-C₃N₄, the nanosized g-C₃N₄ with increased specific surface area can absorb greater amount of light in unit time thus generate more photoinduced charge carriers. Moreover, the greatly enlarged specific surface area of nanosized g-C₃N₄ can provide much more active sites for photo-induced electrons and holes to participate in catalytic reaction, and the recombination of electron and hole can be suppressed efficiently. Furthermore, as well-known and illustrated in Fig. 5b, when g-C₃N₄ combines with TiO₂ to construct an II-type heterojunction, the visible-light-excited electrons in the conduction band (CB) of g-C₃N₄ can transfer into the CB of TiO₂, realizing a further enhanced separation of photoinduced charge carriers [49–51]. In short, the nanosizing of g-C₃N₄ and its association with TiO₂ synergistically suppress the recombination of photoinduced charge carriers and improve the visible-light photocatalytic H₂ evolution of CN/TiO₂-24.

Fig. 5c shows the calculated average visible-light H₂ evolution rate and apparent quantum efficiency (AQE, under 420 nm) of several nanostructured g-C₃N₄/TiO₂ composites (CN/TiO₂-x) with different content of g-C₃N₄, which was determined by thermogravimetric (TG) measurement (shown in Fig. S1 in Supporting Information). It can be seen that, the visible-light H₂ evolution efficiency of the composite increases upon enlarging the g-C₃N₄ content from 12.5 wt% to 51.5 wt% and then decreases at further enlarged g-C₃N₄ content. The AQE of CN/TiO₂-x also varies with the g-C₃N₄ content, which follows the same trend as that of the H₂ evolution rate. The optimal sample, CN/TiO₂-24, shows the maximum AQE value of 0.31% that is 11.3 times greater than that of bulk-CN (0.027%). The increase of activity at the beginning can be attributed to the increase of g-C₃N₄ content in the composite, because g-C₃N₄ is the only phase absorbing visible light. However, a larger g-C₃N₄ content also means the deposition of a thicker g-C₃N₄ phase, which possesses a worse efficiency for the separation of photoinduced charge carriers. At the same time, the decrease of TiO₂ content, corresponding to the increase of g-C₃N₄ content, indicates the reduction of g-C₃N₄/TiO₂ heterojunction interface that is extremely important for photoinduced electron-hole separation. Therefore, the excessive deposition of g-C₃N₄ on TiO₂ (g-C₃N₄ content above 51.5 wt%) leads to the decrease of visible-light photocatalytic activity of the g-C₃N₄/TiO₂

nanocomposite.

For further comparison, some other reported g-C₃N₄/TiO₂ composites were also prepared according to literatures [28,29]. The synthesis procedures are detailed in the Supporting Information, and the time course of visible-light H₂ evolution on the samples were plotted in Fig. S2. The average H₂ evolution rate of these reported optimal composites are calculated to be below 261 μmol g⁻¹ h⁻¹ (shown in Fig. S3 in the Supporting Information), which is much smaller than that of CN/TiO₂-24 (513 μmol g⁻¹ h⁻¹). It can be found that the proposed vapor deposition method is easier-to-handle and the as-prepared CN/TiO₂-24 is much superior in visible-light photocatalytic H₂ evolution.

In addition, the stability of photocatalyst is also an important index to evaluate photocatalytic activity. The recycling test of H₂ evolution was carried out at the same experiment condition. As shown in Fig. 5d, the CN/TiO₂-24 sample displays steady H₂ evolution for four runs (16 h in total) without apparent deactivation, indicating a favorable photocatalytic stability. For further proof, the fresh sample loaded with Pt without H₂ evolution test (denoted as Pt-CN/TiO₂-24-fresh) and the used counterpart after H₂ evolution testing for four runs (denoted as Pt-CN/TiO₂-24-used) were collected for further characterization. Data shows that, there is few difference in the XRD pattern (Fig. 5e), FT-IR (Fig. 5f), UV-vis DRS (Fig. 5g) and PL (Fig. 5h) spectra of the sample before and after the H₂ evolution test, further suggesting that the catalyst is relatively stable in visible-light photocatalytic H₂ evolution.

4. Conclusion

Nanostructured g-C₃N₄/TiO₂ composites were synthesized by controlling the growth of nanoscale g-C₃N₄ on TiO₂ nanoparticles via a facile one-step melamine-involved vapor deposition method using an easy and simple setup. The nanosizing of g-C₃N₄ and its good interfacial connection with TiO₂ promote both visible light absorption and photogenerated electron transfer and separation. The g-C₃N₄ content can be adjusted and the optimal g-C₃N₄/TiO₂ nanocomposite presents a favorable visible-light photocatalytic H₂ evolution efficiency that is 10.8 times superior to bulk g-C₃N₄. The established simple method and setup provide more opportunities for the design and facial synthesis of g-C₃N₄-based nanocomposites.

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (41502030, 51502272), the Zhejiang Provincial Natural Science Foundation of China (LQY18D020001), the Fundamental Research Funds for the Central Universities, the Open Foundation of Engineering Research Center of Nano-Geomaterials of Ministry of Education (NGM2017KF008) and Hubei Environmental Protection Bureau (2013HB10). The helpful comments of two anonymous reviewers are also highly acknowledged.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at <https://doi.org/10.1016/j.apcatb.2018.02.056>.

References

- [1] C. Han, Y. Wang, Y. Lei, B. Wang, N. Wu, Q. Shi, Q. Li, In situ synthesis of graphitic-C₃N₄ nanosheet hybridized N-doped TiO₂ nanofibers for efficient photocatalytic H₂ production and degradation, *Nano Res.* 8 (2015) 1199–1209.
- [2] X. Wei, C. Shao, X. Li, N. Lu, K. Wang, Z. Zhang, Y. Liu, Facile in situ synthesis of plasmonic nanoparticles-decorated g-C₃N₄/TiO₂ heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H₂ evolution, *Nanoscale* 8 (2016) 11034–11043.
- [3] J. He, L. Chen, Z.Q. Yi, C.T. Au, S.F. Yin, CdS nanorods coupled with WS₂ nanosheets for enhanced photocatalytic hydrogen evolution activity, *Ind. Eng. Chem. Res.* 55 (2016) 8327–8333.
- [4] B. Chai, T. Peng, J. Mao, K. Li, L. Zan, Graphitic carbon nitride (g-C₃N₄)-Pt-TiO₂

- nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation, *Phys. Chem. Chem. Phys.* 14 (2012) 16745–16752.
- [5] G. Li, Z. Lian, W. Wang, D. Zhang, H. Li, Nanotube-confinement induced size-controllable g-C₃N₄ quantum dots modified single-crystalline TiO₂ nanotube arrays for stable synergistic photoelectrocatalysis, *Nano Energy* 19 (2016) 446–454.
- [6] J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C.T. Au, S.F. Yin, CdS nanowires decorated with ultrathin MoS₂ nanosheets as an efficient photocatalyst for hydrogen evolution, *ChemSusChem.* 9 (2016) 624–630.
- [7] H. Hou, F. Gao, L. Wang, M. Shang, Z. Yang, J. Zheng, W. Yang, Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO₂/WO₃/g-C₃N₄ nanofibers for visible-light-driven hydrogen evolution, *J. Mater. Chem. A* 4 (2016) 6276–6281.
- [8] Y. Chen, W. Huang, D. He, S. Yue, H. Huang, Construction of heterostructured g-C₃N₄/TiO₂ microspheres with enhanced photocatalysis performance under visible-light irradiation, *ACS. Appl. Mater. Inter.* 6 (2014) 14405–14414.
- [9] K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, In-situ-reduced synthesis of Ti³⁺ self-doped TiO₂/g-C₃N₄ heterojunctions with high photocatalytic performance under LED light irradiation, *ACS. Appl. Mater. Inter.* 7 (2015) 9023–9030.
- [10] S. Sun, M. Sun, Y. Fang, Y. Wang, H. Wang, One-step in situ calcination synthesis of g-C₃N₄/N-TiO₂ hybrids with enhanced photoactivity, *RSC Adv.* 6 (2016) 13063–13071.
- [11] J. Zhang, M. Zhang, R.-Q. Sun, X. Wang, A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions, *Angew. Chem. Int. Ed.* 51 (2012) 10145–10149.
- [12] Y. Zeng, X. Liu, C. Liu, L. Wang, Y. Xia, S. Zhang, S. Luo, Y. Pei, Scalable one-step production of porous oxygen-doped g-C₃N₄ nanorods with effective electron separation for excellent visible-light photocatalytic activity, *Appl. Catal. B* 224 (2018) 1–9.
- [13] I. Papailias, N. Todorova, T. Giannakopoulou, J. Yu, D. Dimotikali, C. Trapalis, Photocatalytic activity of modified g-C₃N₄/TiO₂ nanocomposites for NO_x removal, *Catal. Today* 280 (2017) 37–44.
- [14] C. Li, Z. Sun, W. Zhang, C. Yu, S. Zheng, Highly efficient g-C₃N₄/TiO₂/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus, *Appl. Catal. B* 220 (2017) 272–282.
- [15] J.S. Zhang, F.S. Guo, X.C. Wang, An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures, *Adv. Mater.* 23 (2013) 3008–3014.
- [16] Y.S. Jun, W.H. Hong, M. Antonietti, A. Thomas, Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites, *Adv. Mater.* 21 (2009) 4270–4274.
- [17] J. He, L. Chen, Z.Q. Yi, D. Ding, C.T. Au, S.F. Yin, Fabrication of two-dimensional porous CdS nanoplates decorated with C₃N₄ nanosheets for highly efficient photocatalytic hydrogen production from water splitting, *Catal. Commun.* 99 (2017) 79–82.
- [18] S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity, *Appl. Catal. B* 163 (2015) 611–622.
- [19] J. Zhao, L. Ma, H. Wang, Y. Zhao, J. Zhang, S. Hu, Novel band gap-tunable K-Na co-doped graphitic carbon nitride prepared by molten salt method, *Appl. Surf. Sci.* 332 (2015) 625–630.
- [20] K.C. Christoforidis, T. Montini, E. Bontempi, S. Zafeiratos, J.J. Delgado Jaen, P. Fornasiero, Synthesis and photocatalytic application of visible-light active beta-Fe₂O₃/g-C₃N₄ hybrid nanocomposites, *Appl. Catal. B* 187 (2016) 171–180.
- [21] X.Y. Yuan, C. Zhou, Q.Y. Jing, Q. Tang, Y.H. Mu, A.K. Du, Facile synthesis of g-C₃N₄ nanosheets/ZnO nanocomposites with enhanced photocatalytic activity in reduction of aqueous chromium(VI) under visible light, *Nanomaterials* 6 (2016) 12.
- [22] Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J.G. Yu, CdS/graphene nanocomposite photocatalysts, *Adv. Energy. Mater.* 5 (2015) 28.
- [23] X.J. Bai, S.C. Yan, J.J. Wang, L. Wang, W.J. Jiang, S.L. Wu, C.P. Sun, Y.F. Zhu, A simple and efficient strategy for the synthesis of a chemically tailored g-C₃N₄ material, *J. Mater. Chem. A* 2 (2014) 17521–17529.
- [24] M.J. Munoz-Batista, A. Kubacka, M. Fernandez-Garcia, Effect of g-C₃N₄ loading on TiO₂-based photocatalysts: UV and visible degradation of toluene, *Catal. Sci. Technol.* 4 (2014) 2006–2015.
- [25] Y.X. Wang, H. Wang, F.Y. Chen, F. Cao, X.H. Zhao, S.G. Meng, Y.J. Cui, Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis, *Appl. Catal. B* 206 (2017) 417–425.
- [26] H. Tang, S. Chang, L. Jiang, G. Tang, W. Liang, Novel spindle-shaped nanoporous TiO₂ coupled graphitic g-C₃N₄ nanosheets with enhanced visible-light photocatalytic activity, *Ceram. Int.* 42 (2016) 18443–18452.
- [27] C. Li, Z. Sun, Y. Xue, G. Yao, S. Zheng, A facile synthesis of g-C₃N₄/TiO₂ hybrid photocatalysts by sol-gel method and its enhanced photodegradation towards methylene blue under visible light, *Adv. Powder. Technol.* 27 (2016) 330–337.
- [28] X. Zhong, M. Jin, H. Dong, L. Liu, L. Wang, H. Yu, S. Leng, G. Zhuang, X. Li, J.G. Wang, TiO₂ nanobelts with a uniform coating of g-C₃N₄ as a highly effective heterostructure for enhanced photocatalytic activities, *J. Solid. State. Chem.* 220 (2014) 54–59.
- [29] J. Wang, J. Huang, H. Xie, A. Qu, Synthesis of g-C₃N₄/TiO₂ with enhanced photocatalytic activity for H₂ evolution by a simple method, *Int. J. Hydrogen. Energy* 39 (2014) 6354–6363.
- [30] X. Chen, J. Wei, R. Hou, Y. Liang, Z. Xie, Y. Zhu, X. Zhang, H. Wang, Growth of g-C₃N₄ on mesoporous TiO₂ spheres with high photocatalytic activity under visible light irradiation, *Appl. Catal. B* 188 (2016) 342–350.
- [31] J. Su, L. Zhu, P. Geng, G. Chen, Self-assembly graphitic carbon nitride quantum dots anchored on TiO₂ nanotube arrays: An efficient heterojunction for pollutants degradation under solar light, *J. Hazard. Mater.* 316 (2016) 159–168.
- [32] B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, W. Schnick, Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies, *J. Am. Chem. Soc.* 125 (2003) 10288–10300.
- [33] B.V. Lotsch, W. Schnick, New light on an old story: formation of melam during thermal condensation of melamine, *Chemistry* 13 (2007) 4956–4968.
- [34] J. Yan, H. Wu, H. Chen, Y. Zhang, F. Zhang, S.F. Liu, Fabrication of TiO₂/C₃N₄ heterostructure for enhanced photocatalytic Z-scheme overall water splitting, *Appl. Catal. B* 191 (2016) 130–137.
- [35] K. Kondo, N. Murakami, C. Ye, T. Tsubota, T. Ohno, Development of highly efficient sulfur-doped TiO₂ photocatalysts hybridized with graphitic carbon nitride, *Appl. Catal. B* 142 (2013) 362–367.
- [36] J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti₃C₂ MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, *Nat. Commun.* 8 (2017) 13907.
- [37] X. Fan, Z. Xing, Z. Shu, L. Zhang, L. Wang, J. Shi, Improved photocatalytic activity of g-C₃N₄ derived from cyanamide-urea solution, *RSC Adv.* 5 (2015) 8323–8328.
- [38] H. Zhu, D. Chen, D. Yue, Z. Wang, H. Ding, In-situ synthesis of g-C₃N₄-P25 TiO₂ composite with enhanced visible light photoactivity, *J. Nanopart. Res.* 16 (2014).
- [39] K. Dai, L. Lu, C. Liang, Q. Liu, G. Zhu, Heterojunction of facet coupled g-C₃N₄/surface-fluorinated TiO₂ nanosheets for organic pollutants degradation under visible LED light irradiation, *Appl. Catal. B* 156 (2014) 331–340.
- [40] W.K. Jo, T.S. Natarajan, Influence of TiO₂ morphology on the photocatalytic efficiency of direct Z-scheme g-C₃N₄/TiO₂ photocatalysts for isoniazid degradation, *Chem. Eng. J.* 281 (2015) 549–565.
- [41] Z. Wei, F. Liang, Y. Liu, W. Luo, J. Wang, W. Yao, Y. Zhu, Photoelectrocatalytic degradation of phenol-containing wastewater by TiO₂/g-C₃N₄ hybrid heterostructure thin film, *Appl. Catal. B* 201 (2017) 600–606.
- [42] X. Song, Y. Hu, M. Zheng, C. Wei, Solvent-free in situ synthesis of g-C₃N₄/ {001}TiO₂ composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation, *Appl. Catal. B* 182 (2016) 587–597.
- [43] K. Sridharan, E. Jang, T.J. Park, Novel visible light active graphitic C₃N₄-TiO₂ composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants, *Appl. Catal. B* 142 (2013) 718–728.
- [44] S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, Y. Wei, Facile in situ synthesis of graphitic carbon nitride (g-C₃N₄)-N-TiO₂ heterojunction as an efficient photocatalyst for the selective photoreduction of CO₂ to CO, *Appl. Catal. B* 158 (2014) 20–29.
- [45] J. Ma, X. Tan, T. Yu, X. Li, Fabrication of g-C₃N₄/TiO₂ hierarchical spheres with reactive {001} TiO₂ crystal facets and its visible-light photocatalytic activity, *Int. J. Hydrogen. Energy* 41 (2016) 3877–3887.
- [46] R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C₃N₄/TiO₂ heterojunction photocatalysts with enhanced visible light photocatalytic activity, *Appl. Catal. B* 187 (2016) 47–58.
- [47] B. Sun, N. Lu, Y. Su, H. Yu, X. Meng, Z. Gao, Decoration of TiO₂ nanotube arrays by graphitic-C₃N₄ quantum dots with improved photoelectrocatalytic performance, *Appl. Surf. Sci.* 394 (2017) 479–487.
- [48] W. Chen, T.Y. Liu, T. Huang, X.H. Liu, G.R. Duan, X.J. Yang, S.M. Chen, A novel yet simple strategy to fabricate visible light responsive C, N-TiO₂/g-C₃N₄ heterostructures with significantly enhanced photocatalytic hydrogen generation, *RSC Adv.* 5 (2015) 101214–101220.
- [49] J. Ma, C. Wang, H. He, Enhanced photocatalytic oxidation of NO over g-C₃N₄-TiO₂ under UV and visible light, *Appl. Catal. B* 184 (2016) 28–34.
- [50] G. Dai, T. Wang, S. Liu, Y. Liang, W. Xu, Self-generated macrochannel-structure TiO₂/g-C₃N₄ with high photocatalytic activity, *Aust. J. Chem.* 69 (2016) 478–484.
- [51] Y. Zang, L. Li, Y. Xu, Y. Zuo, G. Li, Hybridization of brookite TiO₂ with g-C₃N₄: a visible-light-driven photocatalyst for As³⁺ oxidation, MO degradation and water splitting for hydrogen evolution, *J. Mater. Chem. A* 2 (2014) 15774–15780.