

01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru

ЛЕКЦИЯ 8

Основные дискретные распределения

Равномерное дискретное распределение

ξ	1	2		n
P	p_1	p_2	• •	p_n

где
$$p_k = \frac{1}{n}, k = 1, ..., n$$
.

$$M\xi = \sum_{k=1}^{n} (k\frac{1}{n}) = \frac{1}{n} (\sum_{k=1}^{n} k) = \frac{1}{n} \frac{(n+1)n}{2} = \frac{n+1}{2}.$$

$$M\xi^{2} = \sum_{k=1}^{n} k^{2} \frac{1}{n} = \frac{1}{n} \sum_{k=1}^{n} k^{2} = \frac{1}{n} \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6}.$$

$$D\xi = M\xi^{2} - (M\xi)^{2} = \frac{2n^{2} + 3n + 1}{6} - \frac{n^{2} + 2n + 1}{4} = \frac{n^{2} - 1}{12}.$$

$$W_{\xi}(s) = \sum_{k=1}^{n} (\frac{1}{n} s^{k}) = \frac{s}{n} (1 + s + \dots + s^{n-1}) = \frac{s}{n} \frac{1 - s^{n}}{1 - s}.$$

Распределение Бернулли

Z	0	1
P	q	p

где
$$q = 1 - p$$
.

Характеристики:

$$M\xi = p$$
.

$$M\xi^2 = p$$
.

$$D\xi = p - p^2 = p(1-p) = pq$$
.

$$W_{\xi}(s)=q\cdot 1+ps=q+ps$$
.

Это распределение применяется при рассмотрении одного испытания с вероятностью удачи $p: \xi = 1$ в случае удачного испытания и $\xi = 0$ в случае неудачного испытания.

Биноминальное распределение

μ	0	1	• • •	n
P	p_0	p_{l}		p_n

где
$$p_k = C_n^k \cdot p^k \cdot q^{n-k}, k = 0, ..., n, 0 .$$

Случайную величину ξ можно рассматривать, как число удач в n независимых испытаниях, где p — вероятность успеха в одном испытании.

При расчёте характеристик удобно представить ξ в виде суммы независимых одинаково распределенных с.в. $\xi = \sum_{i=1}^n \varepsilon_i$, где $\varepsilon_i = 1$ с

вероятностью p в случае удачи в i испытании и ε_i = 0 в случае неудачи в i испытании (с вероятностью q = 1 – p). Получаем:

$$M\xi = \sum_{i=1}^{n} M\varepsilon_i = np$$
, $D\xi = \sum_{i=1}^{n} D\varepsilon_i = npq$, $W_{\xi}(s) = (q+ps)^n$.

Геометрическое распределение I

ξ	0	1	
P	p_0	p_1	

где
$$p_k = p \cdot q^k$$
, $k = 0,1,..., 0 , $q = 1 - p$.$

Случайную величину ξ можно рассматривать, как число неудач до первой удачи при независимых испытаниях, где p — вероятность удачи в одном испытании.

$$\begin{split} W_{\xi}(s) &= \sum_{k=0}^{\infty} q^k \, p s^k = p \, \sum_{k=0}^{\infty} (q s)^k = \frac{p}{1-q s}; \\ M \xi &= W_{\xi}'(1) = \frac{p q}{(1-q)^2} = \frac{q}{p}; \quad W_{\xi}''(1) = \frac{2 \, p q^2}{(1-q)^3} = 2 \Big(\frac{q}{p}\Big)^2; \\ D \xi &= \frac{2 \, q^2}{p^2} + \frac{q}{p} - \frac{q^2}{p^2} = \frac{q \, (p+q)}{p^2} = \frac{q}{p^2}. \end{split}$$

Геометрическое распределение II

η	1	2	• • •
P	p_1	p_2	• • •

где
$$p_k = p \cdot q^{k-1}, k = 1, 2, ..., 0 .$$

Случайную величину η можно рассматривать, как номер первой удачи при независимых испытаниях, где p – вероятность удачи в одном испытании. При этом $\eta = \xi + 1$, где ξ имеет геометрическое распределение I.

$$W_{\eta}(s) = sW_{\xi}(s) = \frac{ps}{1 - qs};$$

$$M\eta = M\xi + 1 = \frac{q}{p} + 1 = \frac{1}{p}; \quad D\eta = D\xi = \frac{q}{p^2}.$$

Распределение Пуассона с параметром $\lambda > 0$

$$p_k = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0,1,...,$$

Проверка:
$$\sum_{k=0}^{\infty} p_k = \left(\sum_{k=0}^{\infty} \frac{\lambda^k}{k!}\right) e^{-\lambda} = e^{\lambda} e^{-\lambda} = 1.$$

$$\begin{split} W_{\xi}(s) &= \left(\sum_{k=0}^{\infty} \frac{(\lambda s)^{k}}{k!}\right) e^{-\lambda} = e^{\lambda s} e^{-\lambda} = e^{\lambda(s-1)}; \\ M\xi &= W'_{\xi}(1) = \left[\lambda e^{\lambda(s-1)}\right]_{s=1} = \lambda; \\ W''_{\xi}(1) &= \lambda^{2}; \\ D\xi &= \lambda^{2} + \lambda - \lambda^{2} = \lambda. \end{split}$$