Unsupervised Data Quality Monitoring

THREE APPROACHES TO DETERMINE BATCH ACCEPTABILITY

Sheetal Laad, Micaela Flores, Ziv Schwartz, Kelly Sooch Data Engineering for Machine Learning NYU Center For Data Science

Introduction & Background

Task

Given a chronological series dataset batches, decide whether the next batch has acceptable data quality

Goal

Create and compare different methodologies that can discern which data batches are sufficiently clean by only training the model on a sample of clean batches

Motivation

When working with large amounts of data, it becomes too difficult to manually check if each input data batch maintains its integrity. Providing a dynamic data auditing system that performs unsupervised data quality monitoring given a chronological set of clean and dirty data batches to combat this issue.

Data

Data is comprised of Flights data and Facebook Posts

Facebook: 53 clean csv files and 53 dirty csv files

- o 'line', 'page',
- 'week', 'num_likes',
- o 'domain', 'outlet',
- 'title', 'description',
- 'contenttype', 'image',
- o 'url', 'text',
- o 'id', 'right_of_center'

Flights: 31 clean csv files and 31 dirty csv files

- 'Rowld', 'Source',
- 'Flight', 'ScheduledDeparture',
- 'ActualDeparture', 'DepartureGate'
- 'ScheduledArrival', 'ActualArrival',
- 'ArrivalGate', 'for_key', 'date'

Data

Example Flight Data (same batch)

		Rowld	Source	Flight	ScheduledDeparture	ActualDeparture D	DepartureGate	ScheduledArrival	ActualArrival	ArrivalGate	for_key	date
Clean	→	0	ua	UA-2708- EWR-CLT	Thu_ Dec 1 2:55 PM	Thu_ Dec 1 2:55 PM	A37	Thu_ Dec 1 4:53 PM	Thu_ Dec 1 4:44 PM	C5	Thu_ Dec 1 2:55 PM	734472
		1	airtravelcenter	UA-2708- EWR-CLT	Thu_ Dec 1 2:55 PM	Thu_ Dec 1 2:55 PM	A37	Thu_ Dec 1 4:53 PM	Thu_ Dec 1 4:44 PM	C5	Thu_ Dec 1 2:55 PM	734472
		2	myrateplan	UA-2708- EWR-CLT	Thu_ Dec 1 2:55 PM	Thu_ Dec 1 2:55 PM	A37	Thu_ Dec 1 4:53 PM	Thu_ Dec 1 4:44 PM	C5	Thu_ Dec 1 2:55 PM	734472
		3	helloflight	UA-2708- EWR-CLT	Thu_ Dec 1 2:55 PM	Thu_ Dec 1 2:55 PM	A37	Thu_ Dec 1 4:53 PM	Thu_ Dec 1 4:44 PM	C5	Thu_ Dec 1 2:55 PM	734472
		4	flytecomm	UA-2708- EWR-CLT	Thu_ Dec 1 2:55 PM	Thu_ Dec 1 2:55 PM	A37	Thu_ Dec 1 4:53 PM	Thu_ Dec 1 4:44 PM	C5	Thu_ Dec 1 2:55 PM	734472
		Rowld	Source	Flight	t ScheduledDeparture	ActualDepart	ture Departure	eGate Scheduled	Arrival	ActualArrival	ArrivalGate	date
		Rowld 0	Source	Flight UA-2708-EWR- CLT	Thu Doo 1 0:55 DM	•	•	A37 Cheduled Thu_Dec		ActualArrival ec 1 4:44 PM		734472
Dirty				UA-2708-EWR-	Thu_ Dec 1 2:55 PM	Thu_ Dec 1 2:55	PM PM		1 4:53 Thu_ D		C5	
Dirty	→		ua	UA-2708-EWR- CLT UA-2708-EWR-	Thu_ Dec 1 2:55 PM	Thu_ Dec 1 2:55 12/1/11 3:04 (-05	PM PM ::00)	A37 Thu_ Dec	1 4:53 PM Thu_ D NaN 12/	ec 1 4:44 PM	C5 NaN	734472
Dirty	→	0	ua	UA-2708-EWR- CLT UA-2708-EWR- CLT UA-2708-EWR-	Thu_ Dec 1 2:55 PM NaN NaN	Thu_ Dec 1 2:55 12/1/11 3:04 (-05 12/1/11 3:04 (-05	PM ::00) PM ::00) PM	A37 Thu_ Dec	1 4:53 PM Thu_ D NaN 12/ NaN 12/	1/11 4:22 PM (-05:00)	C5 NaN NaN	734472 734472
Dirty		0	ua	UA-2708-EWR- CLT UA-2708-EWR- CLT UA-2708-EWR-	Thu_ Dec 1 2:55 PM	Thu_ Dec 1 2:55 12/1/11 3:04 (-05 12/1/11 3:04	PM PM ::00)	A37 Thu_ Dec	1 4:53 PM Thu_ D NaN 12/	1/11 4:22 PM (-05:00)	C5 NaN	734472 734472

Training Methodology

There were two different ways in which our group decided to handle the batch size used to train our models:

• Increasing:

- Predetermined starting batch size is set and for every new batch that is read in, it is included as part of the whole training set.
- Example: Starting batch size of 3, the first example would get trained on clean batches 1 to 3 and batch 4 will be tested. For the second example, clean batches 1 to 4 would be used to train and batch 5 will be tested.

Rolling:

- Predetermined batch size is used for the training criterion and moves from subsequent batch to batch
- Example: Batch size set to 3, first example trained on batches 1 to 3 and batch 4 is tested.
 Second example is trained on batches 2 to 4, batch 5 tested.

Criterion Approach 1: Baseline Methodology

Percentage of null values per data batch

Criterion Explained:

- Percentage of null values in each batch of the training data
- If the percentage of nulls in the test batch is not within the minimum and maximum percentage of nulls of the training batches, the batch is classified as not acceptable

Criterion Approach 2: Range Methodology

- Uniqueness = count of distinct values by field
- Completeness = count of records that have a missing value for that field / count of records that don't have a missing value by field

Aggregated the mean values across all batches for each given column:

	Clean		Dirty	
Uniqueness	RowId Source Flight ScheduledDeparture ActualDeparture DepartureGate ScheduledArrival ActualArrival ArrivalGate for_key date	2381.290323 37.612903 93.483871 82.935484 86.516129 67.000000 90.354839 86.322581 66.838710 82.935484 1.000000	RowId Source Flight ScheduledDeparture ActualDeparture DepartureGate ScheduledArrival ActualArrival ArrivalGate date	2381.290323 37.612903 93.483871 508.064516 662.903226 147.225806 588.225806 728.419355 146.225806
Completeness	Clean RowId Source Flight ScheduledDeparture ActualDeparture DepartureGate ScheduledArrival ActualArrival ArrivalGate date	0.000000 0.000000 0.000000 0.000000 0.014968 0.188292 0.000000 0.025478 0.188728 0.000000	Dirty RowId Source Flight ScheduledDeparture ActualDeparture DepartureGate ScheduledArrival ActualArrival ArrivalGate date	0.000000 0.000000 0.000000 0.476794 0.190283 1.503791 0.464570 0.197457 1.488697 0.000000

Criterion Approach 2: Range Methodology

Completeness and Uniqueness by batch

Criterion Explained:

• If 80% of fields are within +/- 2 stds of completeness mean and of uniqueness mean, batch is determined to be acceptable

Criterion Approach 3: TensorFlow Data Validation

Example of anomalies for a field:

Anomaly short description

Anomaly long description

Feature name

'DepartureGate'
Unexpected string

Examples contain values missing from the schema: - (~2%), 134 (~1%), 15? (<1%), 27/T2 (<1%), 29 (<1%), 3/8 (<1%), 33/8 (<1%), 37 (<1%), 40/8 (<1%), 41/8 (<1%), 44E (<1%), 44F/T4 (<1%), 45/T4 (<1%), 48B (<1%), 48B/T4 (<1%), 6/3 (<1%), 6/3 (<1%), 60 (<1%), 62 (<1%), 64 (<1%), 70A (<1%), 70B (~1%), 8/8 (<1%), 88 (<1%), 92 (<1%), A1 (<1%), A14 (<1%), A14 \$(<1%), A7/A (<1%), B22 (<1%), B3 (<1%), B8/B (<1%), C-33 (<1%), C11 (~3%), C134 (<1%), C16 (~1%), C16/C (<1%), C19 (<1%), C19/C (<1%), C30/C (<1%), C40 (<1%), C41 (<1%), C9/C (<1%)

Criterion Explained:

- TensorFlow Data Validation library to create an acceptable schema from the training batches and measure the number anomalies
- Anomalies are counted before and after schema adjustment, which consists of relaxing certain columns' domain mass requirements in the trained schema
 - Flights: 'DepartureGate' and 'ArrivalGate' were both reduced to 80% adherence
 - Facebook: 'outlet' and 'domain' were relaxed to 65% and 60% adherence, respectively
- Then number of anomalies is calculated again, using the same method from before. If the schema adjustment reduces the number of anomalies, then the test batch is considered acceptable

Evaluation/Results

Example of experiment results:

Final Results:

Discussion

The results of this project provides great insight into data quality monitoring in a production environment.

- There exists an optimal batch size
- Rolling training methods: faster runtimes, give less importance on older information (helpful in production when a field starts getting recorded different, when data seems to be changing, to capture seasonal trends)
- Range method: faster runtimes, more intuitive and generalizable

Some of the challenges that we faced:

- Inherent differences in production batches (Flights data)
- TensorFlow Data Validation's very long runtime
- TensorFlow Data Validation is not very generalizable

Future work for this topic could include:

- Looking more at the data values themselves
- Involving more analysis of data trends (seasonal, yearly, etc.)