

# Franklin Institute Library

PHILADELPHIA

Class 67.2

Book P85

Accession 70255

## REFERENCE

GIVEN BY

Mr. George R. Henderson







Digitized by the Internet Archive in 2015



#70

## HANDBOOK

FOR

# Engineers, Architects, and other Workers

IN

#### IRON AND STEEL,

CONTAINING

TABLES OF CAPACITY OF I BEAMS AND CHANNELS
OF IRON AND STEEL,

AS MANUFACTURED BY THE

## POTTSVILLE IRON AND STEEL CO.

OF POTTSVILLE, PENNA.

ALSO,

#### DESIGN AND CALCULATION

OF

IRON AND STEEL FLOORS, PLATE GIRDERS, ETC., AND OTHER INFORMATION OF SERVICE TO WORKERS IN IRON.

J.C.BEAND

MEMBER OF AMERICAN SOCIETY OF CIVIL ENGINEERS.

PRINTED BY

J. B. LIPPINCOTT COMPANY,

PHILADELPHIA.

COPYRIGHT, 1887, BY POTTSVILLE IRON AND STEEL CO.

G. R. Henderson,

Mech. Eng'r.

No.



# Pottsville Iron and Steel Company.

•••

## POTTSVILLE ROLLING MILLS

MANUFACTURERS OF



ROLLED OF EITHER IRON OR STEEL.

•••

## BEST REFINED MERCHANT BARS,

SHAFTING, BRIDGE IRON, ETC.

•••

RIVETED GIRDERS AND COLUMNS

OF EVERY DESCRIPTION.

•••

GENERAL OFFICE, POTTSVILLE, PENNA.



## OFFICERS.

C. M. ATKINS . .

. President.

| WILLIAM  | ATKINS  |   |  |    |     |    |     |     |     |      |     |      | Treasurer.    |
|----------|---------|---|--|----|-----|----|-----|-----|-----|------|-----|------|---------------|
| John M.  | CALLEN  |   |  |    |     |    |     |     |     |      |     |      | Secretary.    |
|          |         |   |  |    |     |    |     |     |     |      |     |      |               |
|          |         |   |  |    |     |    | _   |     |     |      |     |      |               |
| WILLIAM  | ATKINS  |   |  |    |     |    |     |     |     | G    | er  | era  | al Manager.   |
| WILLIAM  | BRAZIER |   |  | Sı | ιрε | ri | nte | end | ler | ıt ( | of  | Ro   | olling Mills. |
| Wм. H.   | Knowlto | N |  |    |     |    |     |     |     |      | C   | hie  | f Engineer.   |
| IOSEPH S | UMMONS. |   |  |    |     |    |     |     |     | N    | Ias | ster | Mechanic.     |

CORRESPONDENTS WILL PLEASE ADDRESS

## POTTSVILLE IRON AND STEEL CO.,

POTTSVILLE, PENNA.

#### AGENTS.

WM. H. WALLACE & Co. . 131 Washington St., New York.

J. F. BAILEY . . . . . 257 S. Fourth St., Philadelphia.

A. G. Tompkins & Co. . . . 8 Oliver St., Boston, Mass.



## CONTENTS.

|                                                     | PAGE |
|-----------------------------------------------------|------|
| Remarks on the tables of capacity                   | 41   |
| Tables of capacity of wrought-iron I beams          | 45   |
| Tables of capacity of wrought-iron channels         | 73   |
| Tables of capacity of steel I beams                 | 97   |
| Tables of capacity of steel channels                | 125  |
| On determining the capacity of beams and channels . | 148  |
| On the properties of I beams and channels           | 155  |
| Table of properties of I beams                      | 159  |
| Table of properties of channels                     | 160  |
| On concentrated loading                             | 161  |
| On absolute maxima bending moments on stringers .   | 165  |
| On the use of the tables of capacity                | 173  |
| On plate girders                                    | 179  |
| Single-webbed plate girders                         | 188  |
| Box girders                                         | 205  |
| Buckled plates                                      | 212  |
| Buckled plate floors                                | 214  |
| Trussed girders                                     | 220  |
| Flitch beams                                        | 228  |
| Bending moments and shearing forces                 | 234  |

|                                                     | PAGE |
|-----------------------------------------------------|------|
| Moments of inertia for simple shapes                | 235  |
| Moments of inertia for compound shapes              | 236  |
| Bearing of girders on brick walls                   | 240  |
| Girders formed of beams                             | 240  |
| Weight of fire-proof floors                         | 244  |
| Standard separators for beams                       | 245  |
| Position of centre of inertia of a compound section | 246  |
| Columns and posts                                   | 247  |
| Strength of wrought- and cast-iron columns          | 248  |
| Strength of wrought-iron columns                    | 249  |
| Crushing loads on timber and stone                  | 250  |
| Strength of timber posts                            | 251  |
| Wooden beams and girders                            | 252  |
| Shearing and bearing value of rivets                | 255  |
| Bearing values and moments of resistance of pins .  | 256  |
| Wind pressure on roofs                              | 257  |
| Weight of roof coverings                            | 258  |
| Angles of roofs                                     | 259  |
| Weight of bar iron                                  | 262  |
| Upset ends and weights of clevises and sleeve nuts. | 264  |
| Weight of wrought-iron bars                         | 265  |
| Weight of wrought-iron flats                        | 266  |
| Weights for plates over twelve inches               | 267  |
| Weight of bars over one inch in thickness           | 269  |
| Weight of square-headed bolts                       | 270  |
| Weight of square and hexagon nuts                   | 270  |
| Weight of rivets and rivet heads                    | 271  |
|                                                     | , ,  |

|                                              | PAGE |
|----------------------------------------------|------|
| Weight of square-headed machine bolts        | 272  |
| Sizes and weights of square and hexagon nuts | 273  |
| Standard sizes of wrought-iron washers       | 274  |
| Cast heads and washers for combination bolts | 274  |
| Weight of larger sizes of hexagon nuts       | 275  |
| Weight of nut and bolt heads                 | 275  |
| Weight per square foot of iron and steel     | 276  |
| American and Birmingham wire gauges          | 278  |
| Weight of cast-iron pipe                     | 279  |
| Weight of wrought-iron welded tubes          | 280  |
| Weight of ship spikes                        | 281  |
| Number of nails and tacks to the pound       | 282  |
| Weight of railroad spikes                    | 282  |
| Weight of railroad bars                      | 283  |
| Weight of railroad splices                   | 283  |
| Note on brick arches for floors              | 284  |
| Weight of materials                          | 284  |
| Weight of timber                             | 285  |
| Plastering                                   | 285  |
| American slating                             | 286  |
| Shingling                                    | 286  |
| Painting and glazing                         | 287  |
| Skylight and floor glass                     | 288  |
| Weight of flagging                           | 288  |
| Brick work and masonry                       | 288  |
| Weight of galvanized and black iron          | 289  |
| Table of inches in decimal parts of a foot   | 292  |
|                                              |      |

| PAGE                                                  |
|-------------------------------------------------------|
| Table of fractions of an inch expressed decimally 294 |
| Measurements of length 295                            |
| Measurements of weights 295                           |
| Measurements of capacity 295                          |
| Measurements of surface 295                           |
| Table of squares and cubes 296                        |
| Length of a circular arc 300                          |
| Trigonometrical functions 301                         |
| Natural sines, etc 302                                |
| Properties of circular arcs 303                       |
| Proportions of the circle and its equal 304           |
| Areas of circles                                      |
| Circumferences of circles                             |
| Constants relating to the circle                      |
| Constants relating to logarithmic systems 308         |
| Constants relating to gravity 309                     |
| Reduction multipliers                                 |
| Thermometers                                          |

SHAPES OF

WROUGHT IRON
AND
STEEL

MANUFACTURED BY THE

POTTSVILLE IRON AND STEEL

COMPANY.

## BEAMS.





# POTTSVILLE IRON AND STEEL CO., No. 7 12" BEAM 100 LBS P. Y. 32 H26 11 16 1 2 No. 6 No. 5 12" BEAM 12" BEAM 170 LBS P. Y. 125 LBS P. Y. 32























## 15-INCH CHANNEL.





12"

#### No 32

| Depth<br>of channel,<br>in inches. | Width<br>of flange,<br>in inches. | Thickness<br>of web,<br>in inches. | Weight<br>per yard,<br>in lbs. |
|------------------------------------|-----------------------------------|------------------------------------|--------------------------------|
| 12                                 | 3                                 | 7<br>16                            | 90.0                           |
| 12                                 | $3^{1}_{16}$                      | 1/2                                | 97.5                           |
| 12                                 | 31/8                              | 9                                  | 105.0                          |
| 12                                 | $3_{16}^{3}$                      | 5/8                                | 112.5                          |
| 12                                 | 31/4                              | 11                                 | 120.0                          |
| 12                                 | 35                                | 3/4                                | 127.5                          |
| 12                                 | 33/8                              | 13                                 | 135.0                          |
| 12                                 | 3,7                               | 1/8                                | 142.5                          |
| 12                                 | 31/2                              | 15<br>16                           | 150.0                          |

#### No. 33

| Depth<br>of channel,<br>in inches. | Width<br>of flange,<br>in inches. | Thickness<br>of web,<br>in inches. | Weight<br>per yard,<br>in lbs. |
|------------------------------------|-----------------------------------|------------------------------------|--------------------------------|
| 12                                 | 25/8                              | 5<br>16                            | 64.0                           |
| 12                                 | $2\frac{11}{16}$                  | 3/8                                | 71.5                           |
| 12                                 | 23/4                              | 7<br>16                            | 79.0                           |
| 12                                 | $2\frac{13}{16}$                  | 1/2                                | 86.5                           |

#### No. 34

| Depth<br>of channel,<br>in inches. | Width<br>of flange,<br>in inches. | Thickness<br>of web,<br>in inches. | Weight<br>per yard,<br>in lbs. |
|------------------------------------|-----------------------------------|------------------------------------|--------------------------------|
| 12                                 | 23/4                              | 15<br>16                           | 62.0                           |
| 12                                 | $2^{\frac{13}{16}}$               | 3/8                                | 69.5                           |
| 12                                 | $2\frac{7}{8}$                    | 7 16                               | 77.0                           |
| 12                                 | 215                               | 1/6                                | 84.5                           |

10"

|                                    | No                                | 35                                 |                                |
|------------------------------------|-----------------------------------|------------------------------------|--------------------------------|
| Depth<br>of channel,<br>in inches. | Width<br>of flange,<br>in inches. | Thickness<br>of web,<br>in inches. | Weight<br>per yard,<br>in lbs. |
| 10                                 | $2\frac{23}{32}$                  | 3/8                                | 60.0                           |
| 10                                 | 27/8                              | 76                                 | 66.25                          |
| 10                                 | $2\frac{5}{16}$                   | 1/2                                | 72.5                           |
| 10                                 | 3                                 | 9                                  | 78.75                          |
| 10                                 | $3^{1}_{16}$                      | 5/8                                | 85.0                           |
| 10                                 | 31/8                              | 116                                | 91.25                          |
| 10                                 | 3,3                               | 3/4                                | 97.5                           |
| 10                                 | 31/4                              | 13                                 | 103.7                          |
| 10                                 | $3\frac{5}{16}$                   | 1/8                                | 110.0                          |
| 10                                 | 33/8                              | 15                                 | 116.25                         |
| 10                                 | $3\frac{7}{16}$                   | 1                                  | 122.5                          |
| 10                                 | 31/2                              | $1_{16}$                           | 128.75                         |

|                                    | No.                                           | 36                                 |                               |
|------------------------------------|-----------------------------------------------|------------------------------------|-------------------------------|
| Depth<br>of channel,<br>in inches. | Width<br>of flange,<br>in inches.             | Thickness<br>of web,<br>in inches. | Weight<br>per yard<br>in lbs. |
| 10                                 | $2\frac{1}{2}$ $2\frac{9}{16}$ $2\frac{5}{8}$ | 5<br>16                            | 48.0                          |
| 10                                 | $2\frac{9}{16}$                               | 16<br>3/8                          | 54.0                          |
| 10                                 | 25/8                                          | 7                                  | 62.0                          |

9"

|                                    | No                                | . 37                               |                                |
|------------------------------------|-----------------------------------|------------------------------------|--------------------------------|
| Depth<br>of channel,<br>in inches. | Width<br>of flange,<br>in inches. | Thickness<br>of web,<br>in inches. | Weight<br>per yard,<br>in lbs. |
| 9                                  | 21/2                              | 11 32                              | 52.00                          |
| 9                                  | $2\frac{9}{16}$                   | 13                                 | 57.75                          |
| 9                                  | $2\frac{5}{8}$                    | 15<br>32                           | 63.50                          |
| 9                                  | $2\frac{1}{16}$                   | 17 32                              | 69.25                          |
| 9                                  | $2\frac{11}{16}$ $2\frac{3}{4}$   | 19<br>32                           | 75.00                          |
| 9                                  | 215                               | 21<br>32                           | 80.75                          |
| 9                                  | 3                                 | 23                                 | 86.50                          |

9".

| No.  | 20 |
|------|----|
| TAO. | കര |

|   | Depth<br>of channel,<br>in inches. | Width<br>of flange,<br>in inches. | Thickness<br>of web,<br>in inches. | Weight<br>per yard,<br>in lbs. |
|---|------------------------------------|-----------------------------------|------------------------------------|--------------------------------|
| i | 9                                  | 2,3                               | 1/4                                | 37.00                          |
|   | 9                                  | 21/4                              | 5<br>16                            | 42.75                          |
|   | 9                                  | $2\frac{5}{16}$                   | 3/8                                | 48.50                          |
|   | 9                                  | 23/8                              | 7 16                               | 54.25                          |

8′′

#### - -----

|                         | No                             | . 39                                     |                        | 3 |
|-------------------------|--------------------------------|------------------------------------------|------------------------|---|
| Depth<br>of<br>channel. | Width<br>of<br>flange.         | Thickness<br>of<br>web.                  | Weight<br>per<br>yard. |   |
| 8                       | $2\frac{5}{16}$                | 5                                        | 40                     | j |
| 8                       | $2\frac{3}{8}$                 | 56<br>3/8<br>78<br>1/2<br>9<br>16<br>5/8 | 45                     |   |
| 8                       | $2\frac{7}{16}$                | 7 16                                     | 50                     |   |
| 8                       | $2\frac{1}{2}$                 | 1/2                                      | 55                     |   |
| 8                       | $2\frac{1}{2}$ $2\frac{9}{16}$ | 9                                        | 60                     |   |
| 8                       | 25/8                           | 5%                                       | 65                     |   |
| 8                       | 211                            | 11 16                                    | 70                     |   |

No. 40

| Depth<br>of<br>channel. | Width<br>of<br>flange. | Thickness<br>of<br>web. | Weight per yard. |
|-------------------------|------------------------|-------------------------|------------------|
| 8                       | 216                    | 1/4                     | 30               |
| 8                       | $2\frac{1}{8}$         | 18                      | 35               |

 $7^{''}$ 

|                         | No                             | . 41                    |                  |
|-------------------------|--------------------------------|-------------------------|------------------|
| Depth<br>of<br>channel. | Width<br>of<br>flange.         | Thickness<br>of<br>web. | Weight per yard. |
| 7                       | 21/4                           | 5<br>16                 | 35.0             |
| 7                       | $2\frac{1}{4}$ $2\frac{5}{16}$ | 3/8                     | 39.5             |
| 7                       | $2\frac{3}{8}$                 | 7 16                    | 44.0             |
| 7                       | $2\frac{7}{16}$                | 1/2                     | 48.5             |
| 7                       | 21/2                           | 9<br>18<br>5/8          | 53.0             |
| 7                       | 2 9                            | 5/8                     | 57.5             |

| ( |                         | No                             | . 42                    |                        |
|---|-------------------------|--------------------------------|-------------------------|------------------------|
|   | Depth<br>of<br>channel. | Width<br>of<br>flange.         | Thickness<br>of<br>web. | Weight<br>per<br>yard. |
|   | 7                       | 2                              | 7 32                    | 25.0                   |
|   | 7                       | $2\frac{1}{16}$ $2\frac{1}{8}$ | 32                      | 29.5                   |
|   | 7                       | $2\frac{1}{8}$                 | 11 32                   | 34.0                   |

6"

|                        | No                     | 43                    |                        |
|------------------------|------------------------|-----------------------|------------------------|
| Depth<br>of<br>channel | Width<br>of<br>flange. | Th'k'ss<br>of<br>web. | Weight<br>per<br>yard. |
| 6                      | 2                      | 1/4                   | 30.00                  |
| 6                      | $2\frac{1}{16}$        | 16                    | 33.75                  |
| 6                      | 21/8                   | 3/8                   | 37.50                  |
| 6                      | $2\frac{3}{16}$        | 7                     | 41.25                  |
| 6                      | 21/4                   | 1/2                   | 45.00                  |
| 6                      | 25                     | 9                     | 48.75                  |
| 6                      | 23/8                   | 5/8                   | 52.50                  |

6"

#### No. 44 Depth Width Th'k'ss of of channel flange. web. Weight per yard. 6 3 16 1/4 22.50 111 6 13/4 26.25 6 113 30.00

16

5"

|                                |                       | estima                 | 17 |  |
|--------------------------------|-----------------------|------------------------|----|--|
| No. 45                         |                       |                        |    |  |
| Width of flange.               | Th'k'ss<br>of<br>web. | Weight<br>per<br>yard. | 32 |  |
| 1½<br>1½                       | 1/4<br>5<br>16        | 26.00<br>29.25         |    |  |
| 2                              | 3/8                   | 32.50                  |    |  |
| $2\frac{1}{18}$ $2\frac{1}{8}$ | 7                     | 35.75                  |    |  |
| $2\frac{1}{8}$                 | 1/2                   | 39.00                  |    |  |

4"

| No. 47 |                            |                            |                              |    |  |  |
|--------|----------------------------|----------------------------|------------------------------|----|--|--|
|        | Width of flange.           | Th'k'ss<br>of<br>web.      | Weight<br>per<br>yard.       | 32 |  |  |
|        | 17/8<br>11/8<br>2<br>2 1/6 | 1/4<br>5<br>6<br>3/8<br>76 | 24.0<br>26.5<br>29.0<br>31.5 |    |  |  |

No. 46

| Width                        | Th'k'ss                          | Weight |
|------------------------------|----------------------------------|--------|
| of                           | of                               | per    |
| flange.                      | web.                             | yard.  |
| 15/8<br>1111<br>13/4<br>1118 | 3<br>16<br>1/4<br>5<br>16<br>3/8 |        |

No. 48

|   | Width<br>of<br>flange. | Th'k'ss<br>of<br>web. | Weight<br>per<br>yard. |  |
|---|------------------------|-----------------------|------------------------|--|
|   | 15/8                   | 3<br>16               | 15.0                   |  |
|   | $1\frac{11}{16}$       | 1/4                   | 17.5                   |  |
|   | 13/4                   | 5<br>16               | 20.0                   |  |
| ı | 113                    | 3/                    | 22.5                   |  |

#### ANGLES WITH EQUAL LEGS.



In ordering give either weight or thickness, never both.

Length of leg increases with the weight.

## ANGLES WITH UNEQUAL LEGS.



In ordering give either weight or thickness, never both.

Length of leg increases with the weight.

#### T IRON.















## POTTSVILLE IRON AND STEEL CO.'S STANDARD BRACKETS.

FOR FASTENING BEAMS TO HEADERS.





FOR 15" BEAMS





FOR 12" AND 101/2" BEAMS



FOR 9" AND 8" BEAMS





FOR 7" AND 6" BEAMS

ALL HOLES ARE 18" DIAMETER FOR 34" BOLTS.

ALL BRACKETS ARE CUT FROM STANDARD ANGLE IRON,
EXCEPT WHEN OTHERWISE ORDERED.

#### GIRDERS.







#### BUILT COLUMNS.





4





ROOPS FOR POTTSVILLE IRON AND STEEL CO.'S ROLLING MILL, POTTSVILLE. SPAN, 67 FT. O IN.

TRUSSES, - FT. APART.





### PRICE CURRENT.

SUBJECT TO CHANGES OF MARKET
WITHOUT NOTICE.



39

#### LIST OF REFINED BAR IRON

MADE BY

#### POTTSVILLE IRON AND STEEL CO.

#### ORDINARY SIZES.

#### No Extra.

| ROUND AND SQUARE | E |  | <br> |  | <br>3 to                                            | 2 in.                     |
|------------------|---|--|------|--|-----------------------------------------------------|---------------------------|
| FLAT IRON        |   |  | <br> |  | <br>I to 4 in. $\times \frac{3}{8}$ to              | $r_{\frac{1}{2}}^{1}$ in. |
| FLAT IRON        |   |  | <br> |  | <br>$4\frac{1}{8}$ to 6 in. $\times \frac{3}{8}$ to | ı in.                     |

#### EXTRA SIZES.

|                                      |   |   |   | ] | Ro | u | nc | 1 | an | íd | S | q١ | ıa | re |   |   | PER LB.            | PER TON. |
|--------------------------------------|---|---|---|---|----|---|----|---|----|----|---|----|----|----|---|---|--------------------|----------|
| 5 and 11 in.                         |   |   |   |   |    |   |    |   |    |    |   |    |    |    |   |   | $\frac{1}{10}$ C.  | \$2 24   |
| $\frac{1}{2}$ and $\frac{9}{16}$ in. |   |   |   |   |    |   |    |   |    |    |   |    |    |    |   |   | $\frac{2}{10}$ C.  | 4 48     |
| $\frac{7}{16}$ in                    |   |   |   |   |    |   |    |   |    |    |   |    |    |    |   |   | 410C.              | 8 96     |
| 3/8 in                               |   |   |   |   |    | ٠ |    | • |    |    | • |    |    |    |   | ٠ | $\frac{5}{10}$ C.  | II 20    |
| $2\frac{1}{8}$ to $2\frac{7}{8}$ in. |   |   |   |   |    |   |    |   |    |    |   |    |    |    |   |   | $\frac{1}{10}$ C.  | 2 24     |
| 3 to $3\frac{1}{2}$ in.              | ٠ | • | • |   |    |   | •  | • | •  |    |   | •  |    |    |   |   | $\frac{3}{10}$ C.  | 6 72     |
| 35 to 4 in.                          |   | • | • | ٠ | •  |   | •  | • | ٠  | •  | ٠ | •  |    | •  | • |   | $\frac{5}{10}$ C.  | 11 20    |
| 4½ to 4½ in.                         |   |   |   |   |    | ٠ | ٠  |   |    |    |   |    |    |    |   |   | $\frac{6}{10}$ C.  | 13 44    |
| 45 to 5 in.                          |   |   |   |   |    |   |    |   |    |    |   |    |    |    |   |   | -80°.              | 17 92    |
| $5\frac{1}{4}$ to $5\frac{1}{2}$ in. |   |   |   |   |    |   |    |   |    |    |   |    |    |    |   |   | r C.               | 22 40    |
| $5\frac{3}{4}$ to 6 in.              |   |   |   |   |    |   |    |   |    |    |   |    |    |    |   |   | $1\frac{5}{10}$ C. | 33 60    |

#### EXTRA SIZES.

| EATRA SIZES.                                            |                    |          |
|---------------------------------------------------------|--------------------|----------|
| Flats.                                                  | PER LB.            | PER TON. |
| 1 to 6 in. $\times \frac{1}{4}$ and $\frac{\pi}{16}$ in | $\frac{2}{10}$ C.  | \$4 48   |
| $1 \times \frac{3}{16}$ in                              | $\frac{4}{10}$ C.  | 8 96     |
| 4 to 6 in. $\times$ 1\frac{1}{8} to 2 in                | 20°.               | 4 48     |
| 4 to 6 in. $\times$ 2\frac{1}{8} to 3 in                | $\frac{4}{10}$ C.  | 8 96     |
| $7 \times \frac{3}{8}$ to 1 in                          | $\frac{3}{10}$ C.  | 6 72     |
| 7 × 11/8 to 2 in                                        | 40c.               | 8 96     |
| $7 \times 2\frac{1}{8}$ to 3 in                         | $\frac{6}{10}$ C.  | 13 44    |
| 8 × 3 to 1 in                                           | $\frac{4}{10}$ C.  | 8 96     |
| $8 \times r_{8}^{1}$ to $2\frac{3}{4}$ in               | $\frac{6}{10}$ C.  | 13 44    |
| 9 × 3/8 to 1 in                                         | $\frac{6}{10}$ C.  | 13 44    |
| 9 × 11/8 to 2 in                                        | 8 c.               | 17 92    |
| 10 × 3 to 1 in                                          | 8 c.               | 17 92    |
| $10 \times 1\frac{1}{8}$ to $2\frac{1}{2}$ in           | I C.               | 22 40    |
| II X 3 to I in                                          | $\frac{9}{10}$ C.  | 20 16    |
| $11 \times 1\frac{1}{8}$ to $2\frac{1}{2}$ in           | $1\frac{1}{10}$ C. | 24 64    |
| 12 X 3 to 1 in                                          | <u>9</u> c.        | 20 16    |
| $12 \times 1\frac{1}{8}$ to $2\frac{1}{2}$ in           | $1\frac{1}{10}$ C. | 24 64    |

6 to 12 in, wide,  $\frac{1}{4}$  and  $\frac{5}{16}$  in, thick =  $\frac{2}{10}$  extra. For cutting to specified lengths, from  $\frac{1}{10}$ c. to  $\frac{3}{0}$ c. per lb.

#### REMARKS

ON THE

#### TABLES OF CAPACITY

OF

## POTTSVILLE ROLLING MILLS' SHAPES OF IRON AND STEEL.

#### TABLES OF

#### BEAMS AND CHANNELS,

Showing the safe load for varying spans, deflexions under the safe load, and proper spacing of shapes for loads varying from 100 to 200 lbs. per square foot.

The first column gives the span in feet.

The second column gives the safe load in nett tons (2000 pounds), uniformly distributed, which the shape will carry for the spans given in the first column, the extreme fibre stress being 6.0 tons per square inch for iron shapes, and 7.8 tons per square inch for steel shapes.

The third column gives the deflexion at centre of span for the safe loads given in second column.

The fourth column gives the weight of the shape for a length equal to the span given in the first column.

The fifth to tenth columns give the maximum distance apart that the shapes can be placed to safely carry loads of

100 to 250 pounds per square foot, the spans being as in the first column.

At the head of each page of the Tables of Capacity are given:

- I. The material of which the shape is made.
- 2. The kind of shape, number, and weight per yard.
- 3. The depth of shape, width of flange, and thickness of web.
  - 4. The expression for the safe load in nett tons.
- 5. The maximum shear which the shape can bear without crippling of the web.
- 6. The span limit,—i.e., the span corresponding to the above maximum shear.

#### EXTREME FIBRE STRESSES

And reduction of safe loads due to lateral deflexion.

The safe loads given in the following series of tables include the weight of the shapes themselves, and assume that lateral deflexion does not occur. Should the length of span exceed about thirty times the width of flange, the extreme fibre stress should be reduced, or else the shapes should be stayed together. A table is given on page 43, which shows the reduction of fibre stresses in shapes of iron and steel, and likewise gives the proportion of the tabular loads which the shapes will stand, corresponding to the reduced unit stress.

#### REDUCTION OF

#### THE EXTREME FIBRE STRESSES

And proportion of the tabular safe loads which must be used
when the ratio of span to the flange
width of shape exceeds 30.

| Ratio of span<br>to flange width of<br>shape. | Corresponding extreme fibre stress for iron shapes. | Corresponding extreme fibre stress for steel shapes. | Proportion of<br>the tabular safe loads<br>which must be used. |
|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|
| 30                                            | 5.93                                                | 7.71                                                 | 0.99                                                           |
| 35                                            | 5.71                                                | 7.43                                                 | 0.95                                                           |
| 40                                            | 5.31                                                | 6.90                                                 | 0.88                                                           |
| 45                                            | 4.98                                                | 6.48                                                 | 0.83                                                           |
| 50                                            | 4.67                                                | 6.07                                                 | 0.78                                                           |
| 55                                            | 4.36                                                | 5.67                                                 | 0.73                                                           |
| 60                                            | 4.07                                                | 5.29                                                 | 0.68                                                           |
| 65                                            | 3.79                                                | 4.93                                                 | 0.63                                                           |
| 70                                            | 3.54                                                | 4.60                                                 | 0.59                                                           |
| 75                                            | 3.29                                                | 4.28                                                 | 0.55                                                           |
| 80                                            | 3.07                                                | 3.99                                                 | 0.51                                                           |
| 85                                            | 2.86                                                | 3.72                                                 | 0.48                                                           |
| 90                                            | 2.67                                                | 3.48                                                 | 0.45                                                           |
| 95                                            | 2.50                                                | 3.25                                                 | 0.42                                                           |
| COI                                           | 2.33                                                | 3.03                                                 | 0.39                                                           |

The above table is computed from the expression

$$p_{c} = \frac{f_{c}}{1 + \frac{I}{5000} \left(\frac{1}{W}\right)^{2}}$$

where

 $p_c =$  reduced fibre stress.

 $f_c =$  one-third the modulus of rupture.

l = length of span w = flange width Both in same units of dimension.

NOTE.—The exact ratio of span to flange width, for which the fibre stress is that used in the tables, is 28.86.

## MAXIMUM SHEAR AND CORRESPONDING SPAN LIMIT.

Besides the capacity of the beam to resist transverse loading, there is also a limit to the load which may be put on a beam, as regards its web resistance. A beam may be amply strong, as concerns its flange area, and yet unable to sustain the load, due to a very thin web.

The maximum shear which a beam can safely bear is determined by the following expressions:

For iron shapes, For steel shapes, 
$$F_o = \frac{3.0 \text{ tons}}{1 + \left[\frac{h\sqrt{2}}{t}\right]^2} \qquad F_o = \frac{4.0 \text{ tons}}{1 + \left[\frac{h\sqrt{2}}{t}\right]^2}$$

$$I + \frac{\left[\frac{h\sqrt{2}}{t}\right]^2}{3000}$$

where h denotes the height of shape in inches, and t denotes the thickness of web in inches,

As for beams under uniformly distributed loads, the end shear  $F_o$  is one-half the total load on the beam, we see that we can load no beam greater than this amount without exceeding the safe shearing stress.

By dividing the coefficient for one foot span by this maximum load, we get the "span limit," and for less spans we cannot use the tabular loads, since they are greater than twice the maximum shear.

The maximum shear and the span limit are given at the head of each Table of Capacity of shapes, and we can see, by inspection of column two in these tables, whether in any case the safe load there given is greater than *twice* the maximum allowable shear. If so, the safe load will be determined by twice the shear value.

If the defexion of the shape exceeds one-thirtieth  $(\frac{1}{30})$  of an inch per foot of span, there is danger of the plaster of the ceiling cracking. This limit has been indicated in the tables by a heavy black line. For spans below this line, shapes should not be used where there is a plaster ceiling, or, if used, the load should be decreased until the corresponding deflexion is less than one-thirtieth  $(\frac{1}{30})$  of an inch per foot.



#### TABLES

OF THE CAPACITY OF

#### WROUGHT-IRON I BEAMS

UNDER UNIFORMLY DISTRIBUTED
TRANSVERSE LOADS,

THE EXTREME FIBRE STRESS BEING 6.0 TONS PER SQUARE INCH, WHICH
IS TWO-SEVENTHS OF

THE MODULUS OF RUPTURE;

AND THE UNSTAYED LENGTH OF FLANGE NOT EXCEEDING  $\frac{\text{THIRTY}}{\text{TIMES}} \text{ TIS WIDTH.}$ 

The span, which is thirty times the flange width, is denoted by a dotted line on the tables, and for lengths greater than this, the tabular safe load must be reduced by multiplying it by the factors given in table on page 43, or else some method of staying the flanges be employed.



#### IRON I BEAMS.

#### 15" I BEAM. SHAPE No. 1. 250 LBS. PER YARD.

Depth, 15". Width of flange, 5\%". Thickness of web, \%".

Safe load in nett tons =  $\frac{432.00}{\text{Span in feet}}$ . Maximum shear = 33.06 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.53'.

|                                                                                                          | ons.                                                                                                                                                           | oř.                                                                                                                  |                                                      | Dist                         |                                                                      | rt, in fe<br>ms, for s                                             |                                                                                            |                                  | e of                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Span, in feet.                                                                                           | Safe load, in nett tons.                                                                                                                                       | Deflexion, in inches.                                                                                                | Weight of beam.                                      | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot.                                         | 150 lbs.<br>per square foot.                                       | 175 lbs.<br>per square foot.                                                               | 200 lbs.<br>per square foot.     | 250 lbs.<br>per square foot.                                                                                                                    |
| 10<br>11<br>12<br>13<br>14                                                                               | 43.20<br>39.27<br>36.00<br>33.23<br>30.85<br>28.80                                                                                                             | 0.09<br>0.11<br>0.14<br>0.16<br>0.19<br>0.21                                                                         | 833<br>917<br>1000<br>1083<br>1167<br>1250           | 38.40                        | 35.25<br>30.72                                                       | 34.08<br>29.38<br>25.60                                            | 29.2I<br>25.18                                                                             | 30.00<br>25.56<br>22.03<br>19.20 | 20.44<br>17.62                                                                                                                                  |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 27.00<br>25.41<br>24.00<br>22.73<br>21.60<br>20.57<br>19.63<br>18.78<br>18.00<br>17.28<br>16.61<br>16.00<br>15.42<br>14.89<br>14.40<br>13.93<br>13.50<br>13.09 | 0.24<br>0.27<br>0.30<br>0.33<br>0.37<br>0.41<br>0.45<br>0.53<br>0.68<br>0.73<br>0.78<br>0.84<br>0.90<br>0.96<br>1.02 | 1416<br>1500<br>1583<br>1667<br>1750<br>1833<br>1917 |                              | 23.9I<br>21.33<br>19.14<br>17.28<br>15.67<br>14.27<br>13.06<br>12.00 | 15.95<br>14.40<br>13.06<br>11.89<br>10.88<br>10.00<br>9.21<br>8.51 | 17.08<br>15.23<br>13.67<br>12.34<br>11.19<br>10.19<br>9.33<br>8.57<br>7.89<br>7.30<br>6.77 | 14.94<br>13.33<br>11.96          | 13.50<br>11.95<br>10.66<br>9.57<br>8.64<br>7.83<br>7.13<br>6.53<br>6.00<br>5.54<br>5.11<br>4.74<br>4.40<br>4.10<br>3.83<br>3.59<br>3.37<br>3.17 |

#### IRON I BEAMS.

15" I BEAM. SHAPE No. 2. 200 LBS. PER YARD.

Depth, 15". Width of flange,  $5\frac{9}{16}$ ". Thickness of web,  $\frac{5}{8}$ ".

Safe load in nett tons =  $\frac{370.0}{\text{Span in feet}}$ .

Maximum shear = 20.35 tons.

Span limit for uniformly distributed load of twice the maximum shear = 9.09'.

|                                                                                                                | tons.                                                                                                                                                                   | ø                                                                                                                            |                                                                              | Distance apart, in feet, centre to centre of<br>beams, for safe loads of                                                        |                                                                                                                               |                                                                                                    |                                      |                                                                                                                          |                                                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Span, in feet.                                                                                                 | Safe load, in nett tons.                                                                                                                                                | Deflexion, in inches.                                                                                                        | Weight of beam.                                                              | 100 lbs.<br>per square foot.                                                                                                    | 125 lbs.<br>per square foot.                                                                                                  | 150 lbs.<br>per square foot.                                                                       | 175 lbs.<br>per square foot.         | 200 lbs.<br>per square foot.                                                                                             | 250 lbs.<br>per square foot.                           |  |  |  |  |
| 10<br>11<br>12<br>13<br>14                                                                                     | 37.00<br>33.64<br>30.83<br>28.46<br>26.43                                                                                                                               | 0.09<br>0.11<br>0.14<br>0.16<br>0.19                                                                                         | 667<br>733<br>800<br>867<br>934                                              |                                                                                                                                 | 30.21                                                                                                                         |                                                                                                    | 29.36<br>25.02<br>21.58              | 25.69<br>21.89                                                                                                           | 17.51                                                  |  |  |  |  |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 24.67<br>23.13<br>21.76<br>20.56<br>19.47<br>18.50<br>17.62<br>16.82<br>16.09<br>15.42<br>14.80<br>14.23<br>13.70<br>13.21<br>12.76<br>12.33<br>11.94<br>11.56<br>11.21 | 0.21<br>0.24<br>0.27<br>0.30<br>0.33<br>0.37<br>0.41<br>0.45<br>0.53<br>0.58<br>0.63<br>0.73<br>0.78<br>0.84<br>0.90<br>0.96 | 1067<br>1134<br>1201<br>1267<br>1334<br>1401<br>1467<br>1534<br>1601<br>1668 | 28.91<br>25.60<br>22.84<br>20.49<br>18.50<br>16.78<br>15.29<br>12.85<br>11.84<br>10.95<br>10.15<br>9.44<br>8.80<br>8.22<br>7.70 | 23.13<br>20.48<br>18.27<br>16.39<br>14.80<br>13.42<br>12.23<br>11.19<br>10.28<br>9.47<br>8.76<br>8.12<br>7.55<br>7.04<br>6.58 | 19.27<br>17.07<br>15.23<br>13.66<br>12.33<br>11.19<br>9.33<br>8.57<br>7.89<br>7.30<br>6.77<br>6.29 | 9.59<br>8.74<br>7.99<br>7.34<br>6.77 | 14.45<br>12.80<br>11.42<br>10.24<br>9.25<br>8.39<br>7.64<br>6.99<br>6.42<br>5.92<br>5.47<br>5.07<br>4.72<br>4.40<br>4.11 | 11.56<br>10.24<br>9.14<br>8.20<br>7.40<br>6.71<br>6.12 |  |  |  |  |

#### IRON I BEAMS.

#### 15" I BEAM. SHAPE No. 3. 150 LBS. PER YARD.

Depth, 15". Width of flange, 5". Thickness of web, 15".

Safe load in nett tons =  $\frac{282.0}{\text{Span in feet}}$ .

Maximum shear = 12.60 tons.

Span limit for uniformly distributed load of twice the maximum shear = 11.19'.

|                                                                                                                      | ons.                                                                                                                                                                        | vå                                                                                                                           |                                                 | Dist                                                                                                                                                  |                                                                     | rt, in fee<br>ms, for s                                                                                                |                                                                                                                 | to centr<br>s of                                                                                                                               | e of                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Span, in feet.                                                                                                       | Safe load, in nett tons.                                                                                                                                                    | Deflexion, in inches.                                                                                                        | Weight of beam.                                 | 100 lbs.<br>per square foot.                                                                                                                          | 125 lbs.<br>per square foot.                                        | 150 lbs.<br>per square foot.                                                                                           | 175 lbs.<br>per square foot.                                                                                    | 200 lbs.<br>per square foot.                                                                                                                   | 250 lbs.<br>per square foot.                                                                                                          |
| 10<br>11<br>12<br>13                                                                                                 | 28.20<br>25.64<br>23.50<br>21.69                                                                                                                                            | 0.09<br>0.11<br>0.14<br>0.16                                                                                                 | 500<br>550<br>600<br>650                        |                                                                                                                                                       | 26.70                                                               | 26.11<br>22.25                                                                                                         | 22.38                                                                                                           | 28.20<br>23.31<br>19.58<br>16.68                                                                                                               | 18.65                                                                                                                                 |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 20.14<br>18.80<br>17.63<br>16.59<br>15.67<br>14.84<br>14.10<br>13.43<br>12.82<br>12.26<br>11.75<br>11.28<br>10.85<br>10.44<br>10.07<br>9.72<br>9.40<br>9.10<br>8.81<br>8.55 | 0.19<br>0.21<br>0.24<br>0.27<br>0.30<br>0.33<br>0.37<br>0.41<br>0.45<br>0.63<br>0.68<br>0.73<br>0.78<br>0.84<br>0.90<br>0.90 | 750<br>800<br>850<br>900<br>950<br>1000<br>1050 | 25.07<br>22.04<br>19.52<br>17.41<br>15.62<br>14.10<br>12.79<br>11.65<br>10.66<br>9.79<br>9.02<br>8.35<br>7.73<br>7.19<br>6.70<br>6.27<br>5.87<br>5.51 | 20.06<br>17.63<br>15.62<br>13.93<br>12.50<br>11.28<br>10.23<br>9.32 | 11.61<br>10.41<br>9.40<br>8.53<br>7.77<br>7.11<br>6.53<br>6.01<br>5.57<br>5.15<br>4.79<br>4.47<br>4.18<br>3.91<br>3.67 | 14.33<br>12.59<br>11.15<br>9.95<br>8.92<br>8.06<br>7.31<br>6.66<br>6.09<br>5.59<br>5.15<br>4.77<br>4.42<br>4.11 | 12.53<br>11.02<br>9.76<br>8.71<br>7.81<br>7.05<br>6.39<br>5.82<br>5.33<br>4.89<br>4.51<br>4.18<br>3.86<br>3.59<br>3.35<br>3.13<br>2.93<br>2.75 | 10.03<br>8.82<br>7.81<br>6.96<br>6.25<br>5.64<br>5.12<br>4.66<br>4.26<br>3.92<br>3.61<br>3.34<br>3.09<br>2.88<br>2.51<br>2.35<br>2.20 |

#### IRON I BEAMS.

#### 15" I BEAM. SHAPE No. 4. 125 LBS. PER YARD.

Depth, 15". Width of flange,  $4\frac{7}{8}$ ". Thickness of web,  $\frac{7}{16}$ ".

Safe load in nett tons =  $\frac{228.0}{\text{Span in feet}}$ .

Maximum shear = 10.73 tons.

Span limit for uniformly distributed load of twice the maximum shear = 10.62'.

|                                                                                                                            | ons,                                                                                                                                                                   | rå                                                                                                                                           |                                                                                                                                   | Dist                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                           | et, centre<br>safe loads                                                                                               |                              | e of                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Span, in feet.                                                                                                             | Safe load, in nett tons.                                                                                                                                               | Deflexion, in inches.                                                                                                                        | Weight of beam.                                                                                                                   | 100 lbs.<br>per square foot.                                                                                                                         | 125 lbs.<br>per square foot.                                                                                                                                                | 150 lbs.<br>per square fcot.                                                                                                                                              | 175 lbs.<br>per square foot.                                                                                           | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot,                                                                                                                          |
| 10<br>11<br>12                                                                                                             | 22.80<br>20.73<br>19.00                                                                                                                                                | 0.09<br>0.11<br>0.14                                                                                                                         | 417<br>458<br>500                                                                                                                 | )<br>)                                                                                                                                               | 25.36                                                                                                                                                                       | 25.13<br>21.11                                                                                                                                                            | 26.06<br>21.54<br>18.10                                                                                                | 22.80<br>18.84<br>15.83      | 15.08                                                                                                                                                 |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 17.54<br>16.29<br>15.20<br>14.25<br>13.41<br>12.67<br>12.00<br>11.40<br>10.86<br>10.36<br>9.91<br>8.77<br>8.44<br>8.14<br>4.81<br>7.86<br>7.60<br>7.35<br>7.13<br>6.91 | 0.16<br>0.19<br>0.21<br>0.24<br>0.27<br>0.30<br>0.33<br>0.37<br>0.41<br>0.45<br>0.63<br>0.68<br>0.73<br>0.78<br>0.84<br>0.90<br>0.96<br>1.02 | 542<br>583<br>625<br>667<br>709<br>750<br>792<br>834<br>875<br>917<br>959<br>1000<br>1043<br>1125<br>1168<br>1229<br>1234<br>1375 | 23.27<br>20.27<br>17.81<br>15.78<br>14.08<br>12.63<br>11.40<br>10.34<br>9.42<br>8.62<br>7.92<br>7.30<br>6.75<br>6.25<br>5.81<br>5.42<br>5.07<br>4.74 | 21.58<br>18.62<br>16.22<br>14.25<br>12.62<br>11.26<br>10.10<br>9.12<br>8.27<br>7.54<br>6.90<br>6.34<br>5.84<br>5.40<br>5.90<br>4.65<br>4.35<br>4.36<br>3.79<br>3.57<br>3.35 | 17.99<br>15.51<br>13.51<br>11.87<br>10.52<br>9.39<br>8.42<br>7.60<br>6.89<br>6.28<br>5.75<br>5.28<br>4.87<br>4.50<br>4.17<br>3.87<br>3.61<br>3.38<br>3.16<br>2.97<br>2.79 | 11.58<br>10.18<br>9.02<br>8.05<br>7.22<br>6.51<br>5.91<br>5.38<br>4.93<br>4.17<br>3.86<br>3.57<br>3.32<br>3.10<br>2.90 | 2.53<br>2.37<br>2.23         | 10.79<br>9.31<br>8.11<br>7.12<br>6.31<br>5.63<br>5.05<br>4.56<br>4.14<br>3.77<br>3.45<br>2.70<br>2.50<br>2.32<br>2.17<br>2.03<br>1.90<br>1.78<br>1.68 |

#### IRON I BEAMS.

#### 12" I BEAM. SHAPE No. 5. 170 LBS. PER YARD.

Safe load in nett tons =  $\frac{244.0}{\text{Span in feet}}$ .

Maximum shear = 20.80 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.86'.

|                                                                            | tt tons.<br>ches.                                                                                              |                                                                  | Dis                                                                        |                                                                                                     | art, in fe<br>ams, for       |                                                         |                                                                                                        | e of                                                                                                  |                                                                                                      |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Span, in feet.                                                             | Safe load, in nett tons.                                                                                       | Deflexion, in inches.                                            | Weight of beam.                                                            | 100 lbs.<br>per square foot.                                                                        | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot.                            | 175 lbs.<br>per square foot.                                                                           | 200 lbs.<br>per square foot.                                                                          | 250 lbs.<br>per square foot.                                                                         |
| 10<br>11<br>12<br>13<br>14                                                 | 24.40<br>22.18<br>20.33<br>18.77<br>17.43                                                                      | 0.12<br>0.14<br>0.16<br>0.20<br>0.23                             | 567<br>624<br>680<br>737<br>794                                            |                                                                                                     | 19.92                        | 19.25<br>16.60                                          |                                                                                                        |                                                                                                       | 19.52<br>16.13<br>13.55<br>11.55<br>9.96                                                             |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 16.27<br>15.25<br>14.35<br>13.56<br>12.84<br>12.20<br>11.62<br>11.09<br>10.61<br>10.17<br>9.76<br>9.38<br>9.04 | 0.26 0.30 0.34 0.38 0.42 0.46 0.51 0.56 0.62 0.67 0.73 0.79 0.84 | 907<br>964<br>1021<br>1077<br>1134<br>1190<br>1247<br>1304<br>1361<br>1418 | 19.06<br>16.88<br>15.07<br>13.51<br>12.20<br>11.07<br>10.08<br>9.23<br>8.48<br>7.81<br>7.22<br>6.70 | 13.50                        | 12.71<br>11.25<br>10.05<br>9.01<br>8.13<br>7.38<br>6.72 | 12.39<br>10.89<br>9.65<br>8.61<br>7.72<br>6.97<br>6.33<br>5.76<br>5.27<br>4.84<br>4.46<br>4.13<br>3.83 | 10.84<br>9.53<br>8.44<br>7.53<br>6.75<br>6.10<br>5.53<br>5.04<br>4.61<br>4.24<br>3.91<br>3.61<br>3.35 | 8.68<br>7.62<br>6.75<br>6.03<br>5.40<br>4.88<br>4.43<br>4.03<br>3.69<br>3.39<br>3.12<br>2.89<br>2.68 |
| 28<br>29<br>30<br>31<br>32<br>33                                           | 8.71<br>8.41<br>8.13<br>7.87<br>7.63<br>7.39                                                                   | 0.91<br>0.98<br>1.05<br>1.12<br>1.20<br>1.27                     | 1588<br>1644<br>1700<br>1758<br>1814<br>1871                               | 6.22<br>5.80<br>5.42<br>5.08<br>4.77<br>4.48                                                        |                              | 4.15<br>3.87<br>3.61<br>3.39<br>3.18<br>2.99            | 3.55<br>3.31<br>3.10<br>2.90<br>2.73<br>2.56                                                           | 3.11<br>2.90<br>2.71<br>2.54<br>2.38<br>2.24                                                          | 2.49<br>2.32<br>2.17<br>2.03<br>1.91<br>1.79                                                         |

#### IRON I BEAMS.

#### 12" I BEAM. SHAPE No. 6. 125 LBS. PER YARD.

Depth, 12". Width of flange, 4\%". Thickness of web, \\\\\\\\'''.

Safe load in nett tons =  $\frac{185.00}{\text{Span in feet}}$ .

Maximum shear = 13.02 tons.

Span limit for uniformly distributed load of twice the maximum shear = 7.10'.

|                                                                                        | ott tons.<br>ches.                                                                                                         |                                                                                                                      |                                              | Dist                                         |                                                                                                                  | rt, in feats, for s                                                                                                      |                                                                       |                                                                                                                       | e of                                                                                                         |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Span, in feet.                                                                         | Safe load, in nett tons.                                                                                                   | Deflexion, in inches.                                                                                                | Weight of beam.                              | 100 lbs.<br>per square foot.                 | 125 lbs.<br>per square foot.                                                                                     | 150 lbs.<br>per square foot.                                                                                             | 175 lbs.<br>per square fcot.                                          | 200 lbs.<br>per square foot.                                                                                          | 250 lbs.<br>per square foot.                                                                                 |
| IO<br>II<br>I2                                                                         | 18.50<br>16.82<br>15.42                                                                                                    | 0.12<br>0.14<br>0.17                                                                                                 | 416<br>458<br>500                            |                                              |                                                                                                                  | 17.13                                                                                                                    | 14.69                                                                 | 15.35<br>12.90                                                                                                        | 14.40<br>12.25<br>10.32                                                                                      |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 14.23<br>13.21<br>12.33<br>11.56<br>10.88<br>10.28<br>9.74<br>9.25<br>8.81<br>8.41<br>8.04<br>7.71<br>7.40<br>7.12<br>6.85 | 0.20<br>0.23<br>0.26<br>0.30<br>0.34<br>0.38<br>0.42<br>0.46<br>0.51<br>0.56<br>0.61<br>0.66<br>0.72<br>0.78<br>0.84 |                                              |                                              | 15.09<br>13.15<br>11.61<br>10.27<br>9.15<br>8.21<br>7.40<br>6.70<br>6.10<br>5.59<br>5.16<br>4.76<br>4.38<br>4.04 | 14.65<br>12.59<br>10.96<br>9.65<br>8.555<br>7.61<br>6.83<br>6.19<br>5.59<br>5.07<br>4.64<br>4.30<br>3.95<br>3.66<br>3.38 | 10.79<br>9.40<br>8.25<br>7.31<br>6.53<br>5.84<br>5.28<br>4.81<br>4.68 | 10.96<br>9.46<br>8.25<br>7.22<br>6.40<br>5.71<br>5.12<br>4.64<br>4.19<br>3.82<br>3.50<br>3.22<br>2.97<br>2.74<br>2.58 | 8.77<br>7.54<br>6.57<br>5.80<br>5.13<br>4.57<br>4.10<br>3.70<br>3.35<br>3.05<br>2.79<br>2.58<br>2.38<br>2.19 |
| 28<br>29<br>30<br>31<br>32<br>33                                                       | 6.61<br>6.38<br>6.17<br>5.97<br>5.78<br>5.61                                                                               | 0.91<br>0.98<br>1.05<br>1.12<br>1.19                                                                                 | 1167<br>1208<br>1250<br>1292<br>1333<br>1375 | 4.73<br>4.40<br>4.12<br>3.85<br>3.61<br>2.69 | 3.77<br>3.52<br>3.28<br>3.08<br>2.90<br>2.70                                                                     | 3.I4<br>2.92<br>2.74<br>2.53<br>2.41                                                                                     | 2.69<br>2.66<br>2.35<br>2.19                                          | 2.36<br>2.20<br>2.06                                                                                                  |                                                                                                              |

#### IRON I BEAMS.

#### 12" I BEAM. SHAPE No. 7. 100 LBS. PER YARD.

Depth, 12". Width of flange,  $4\frac{7}{16}$ ". Thickness of web,  $\frac{7}{16}$ ".

Safe load in nett tons =  $\frac{144.00}{\text{Span in feet}}$ .

Maximum shear = 10.63 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.77'.

| And and a state of the state of |                                                                                                                                 |                                                                                                                      |                 | Dist                                                                                                            | ance ana                                                                       | rt, in fe                                                                                                                      | et. centre                                                                                           | to centr                                                                     | e of                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ons.                                                                                                                            |                                                                                                                      |                 |                                                                                                                 |                                                                                | ms, for s                                                                                                                      |                                                                                                      |                                                                              | 0.01                                                                                         |
| Span, in feet,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Safe load, in nett tons.                                                                                                        | Deflexion, in inches.                                                                                                | Weight of beam. | 100 lbs.<br>per square foot.                                                                                    | 125 lbs.<br>per square foot,                                                   | 150 lbs.<br>per square foot.                                                                                                   | 175 lbs.<br>per square foot.                                                                         | 200 lbs.<br>per square foot.                                                 | 250 lbs.<br>per square foot.                                                                 |
| 10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.40<br>13.09                                                                                                                  | 0.12<br>0.14                                                                                                         | 333<br>367      |                                                                                                                 |                                                                                |                                                                                                                                | 13.60                                                                                                | 14.40<br>11.90                                                               | 11.52<br>9.52                                                                                |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.00<br>11.08<br>10.28<br>9.60<br>9.00<br>8.47<br>8.00<br>7.58<br>7.20<br>6.86<br>6.55<br>6.26<br>6.00<br>5.76<br>5.54<br>5.33 | 0.17<br>0.20<br>0.23<br>0.26<br>0.30<br>0.34<br>0.42<br>0.46<br>0.51<br>0.56<br>0.61<br>0.66<br>0.72<br>0.78<br>0.84 |                 | 14.68<br>12.80<br>11.25<br>9.96<br>8.89<br>7.98<br>7.20<br>6.53<br>5.95<br>5.44<br>5.00<br>4.61<br>4.26<br>3.95 | 11.74<br>10.24<br>9.00<br>7.97<br>7.11<br>6.38<br>5.76<br>5.22<br>4.76<br>4.35 | 13.33<br>11.36<br>9.79<br>8.53<br>7.50<br>6.64<br>5.93<br>5.32<br>4.80<br>4.35<br>3.97<br>3.63<br>3.33<br>3.07<br>2.84<br>2.63 | 9.74<br>8.39<br>7.31<br>6.43<br>5.55<br>5.08<br>4.56<br>4.11<br>3.73<br>3.40<br>3.11<br>2.86<br>2.63 | 8.52<br>7.34<br>6.40<br>5.62<br>4.98<br>4.45<br>3.99<br>3.60<br>3.27<br>2.97 | 8.00<br>6.81<br>5.87<br>5.12<br>4.50<br>3.98<br>3.55<br>3.19<br>2.88<br>2.61<br>2.38<br>2.17 |
| 28<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5. <b>1</b> 4<br>4.96                                                                                                           | 0.91                                                                                                                 | 933<br>967      | 3.67<br>3.42                                                                                                    |                                                                                |                                                                                                                                |                                                                                                      |                                                                              |                                                                                              |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.80                                                                                                                            | 1.05                                                                                                                 | 1000            | 3.20                                                                                                            | 2.56                                                                           |                                                                                                                                |                                                                                                      |                                                                              |                                                                                              |
| 31<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.64                                                                                                                            | I.I2<br>I.I9                                                                                                         | 1033<br>1067    | 2.99<br>2.81                                                                                                    |                                                                                |                                                                                                                                |                                                                                                      |                                                                              |                                                                                              |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.36                                                                                                                            | 1.26                                                                                                                 | 1100            | 2.64                                                                                                            |                                                                                |                                                                                                                                |                                                                                                      |                                                                              |                                                                                              |

#### IRON I BEAMS.

#### 101/2" I BEAM. SHAPE No. 8. 135 LBS. PER YARD.

Depth,  $10\frac{1}{2}$ ". Width of flange, 5". Thickness of web,  $\frac{17}{32}$ ".

Safe load in nett tons =  $\frac{182,00}{\text{Span in feet}}$ .

Maximum shear = 13,27 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.86'.

|                                                          | tt tons.                                                                          | rå                                                                   |                                                                      | Dist                                                                               |                                        | rt, in fe                                                     |                                                                               |                                                                              | e of                            |
|----------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------|
| Span, in feet.                                           | Safe load, in nett tons.                                                          | Deflexion, in inches.                                                | Weight of beam,                                                      | 100 lbs.<br>per square foot.                                                       | 125 lbs.<br>per square foot.           | 150 lbs.<br>per square foot.                                  | 175 lbs.<br>per square foot.                                                  | 200 lbs.<br>per square foot.                                                 | 250 lbs.<br>per square foot.    |
| 10<br>11<br>12<br>13                                     | 18.20<br>16.55<br>15.17<br>14.00                                                  | 0.14<br>0.16<br>0.19<br>0.23                                         | 450<br>495<br>540<br>585                                             |                                                                                    |                                        | 14.32                                                         | 14.40<br>12.26                                                                | 15.00<br>12.65<br>10.75                                                      | 14.50<br>12.01<br>10.10<br>8.61 |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | 13.00<br>12.13<br>11.37<br>10.71<br>10.11<br>9.58<br>9.10<br>8.67<br>8.27<br>7.91 | 0.27<br>0.31<br>0.35<br>0.39<br>0.44<br>0.49<br>0.54<br>0.60<br>0.66 | 630<br>675<br>720<br>765<br>810<br>855<br>900<br>945<br>990          | 18.50<br>16.12<br>14.21<br>12.55<br>11.21<br>10.04<br>9.10<br>8.25<br>7.51<br>6.87 | 12.90<br>11.34<br>9.95<br>8.95<br>8.06 | 10.75<br>9.45<br>8.35<br>7.47<br>6.67<br>6.05<br>5.50<br>5.00 | 10.60<br>9.20<br>8.10<br>7.18<br>6.38<br>5.71<br>5.17<br>4.70<br>4.28<br>3.80 | 9.28<br>8.06<br>7.10<br>6.27<br>5.60<br>5.02<br>4.55<br>4.12<br>3.75<br>3.43 | 6.45<br>5.67<br>4.97            |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 7.58<br>7.28<br>7.00<br>6.74<br>6.50<br>6.28<br>6.07<br>5.87<br>5.69<br>5.52      | 0.78<br>0.85<br>0.92<br>0.99<br>1.07<br>1.14<br>1.22<br>1.30<br>1.39 | 1080<br>1125<br>1170<br>1215<br>1260<br>1305<br>1350<br>1340<br>1485 | 6.30<br>5.80<br>5.38<br>5.00<br>4.62<br>4.32<br>4.03<br>3.78<br>3.55<br>3.31       |                                        | 3.86<br>3.58<br>3.32<br>3.09                                  | 3.60<br>3.32<br>3.06<br>2.90<br>2.65<br>2.56<br>2.30                          | 3.15<br>2.90<br>2.69<br>2.50                                                 | 2.33                            |

#### IRON I BEAMS.

#### 101/2" I BEAM. SHAPE No. 9. 105 LBS. PER YARD.

Depth, 101/2". Width of flange, 43%". Thickness of web, 1/2".

Safe load in nett tons =  $\frac{134.00}{\text{Span in feet}}$ .

Maximum shear = 12.13 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.52'.

|                                                                      | ons.                                                                                           | ú                                                                                    |                                               | Distance apart, in feet, centre to centre of<br>beams, for safe loads of     |                                                                        |                                                                      |                                                                      |                                                                              |                                                                              |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Span, in feet.                                                       | Safe load, in nett tons.                                                                       | Deflexion, in inches.                                                                | Weight of beam.                               | 100 lbs.<br>per square foot.                                                 | 125 lbs.<br>per square foot.                                           | 150 lbs.<br>per square foot.                                         | 175 lbs.<br>per square foot.                                         | 200 lbs.<br>per square foot.                                                 | 250 lbs.<br>per square foot.                                                 |  |
| IO<br>II                                                             | 13.40<br>12.18                                                                                 | 0. <b>1</b> 4<br>0. <b>1</b> 6                                                       | 350<br>385                                    |                                                                              |                                                                        |                                                                      | 12.66                                                                | 13.40<br>11.07                                                               | 10.72<br>8.86                                                                |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | 11.17<br>10.31<br>9.57<br>8.93<br>8.37<br>7.88<br>7.44<br>7.05<br>6.70<br>6.38<br>6.09<br>5.83 | 0.19<br>0.23<br>0.27<br>0.31<br>0.35<br>0.39<br>0.44<br>0.49<br>0.54<br>0.60<br>0.66 | 525<br>560<br>595<br>630<br>665<br>700<br>735 | 9.27<br>8.27<br>7.42<br>6.70<br>6.08                                         | 12.69<br>10.94<br>9.53<br>8.37<br>7.42<br>6.62<br>5.74<br>5.36<br>4.86 | 9.11<br>7.94<br>6.97<br>6.18<br>5.51<br>4.78<br>4.47<br>4.05<br>3.69 | 9.06<br>7.81<br>6.81<br>5.98<br>5.30<br>4.73<br>4.10<br>3.83<br>3.47 | 7.93<br>6.83<br>5.95<br>5.23<br>4.63<br>4.13<br>3.58<br>3.35<br>3.04<br>2.77 | 7.45<br>6.34<br>5.47<br>4.76<br>4.18<br>3.71<br>3.31<br>2.87<br>2.68<br>2.43 |  |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33             | 5.58<br>5.36<br>5.15<br>4.96<br>4.79<br>4.62<br>4.47<br>4.32<br>4.19<br>4.06                   | 0.78<br>0.85<br>0.92<br>0.99<br>1.07<br>1.14<br>1.22<br>1.30<br>1.39                 | 875<br>910<br>945<br>980<br>1015<br>1050      | 4.65<br>4.29<br>3.96<br>3.67<br>3.42<br>3.19<br>2.98<br>2.79<br>2.62<br>2.46 |                                                                        | 3.10<br>2.86<br>2.64<br>2.45                                         | 2.66<br>2.45                                                         |                                                                              |                                                                              |  |

#### IRON I BEAMS.

10%" I BEAM. SHAPE No. 10. 90 LBS. PER YARD.

Depth,  $10\frac{1}{2}$ ". Width of flange,  $4\frac{1}{8}$ ". Thickness of web,  $\frac{13}{32}$ ".

Safe load in nett tons =  $\frac{116.00}{\text{Span in feet}}$ .

Maximum shear = 9.08 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.39'.

| -                                                                          | ons.                                                                                                  | 10                                                                                           |                                                                                         | Dist                                                                                    |                                                               |                                                                                       | et, centre<br>afe loads                                      | to centr                                                                                             | e of                                                                                 |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Span, in feet.                                                             | Safe lead, in nett tons.                                                                              | Deflexion, in inches.                                                                        | Weight of beam,                                                                         | . 100 lbs.<br>per square feot.                                                          | 125 lbs.<br>per square foot.                                  | 150 lbs.<br>per square teet.                                                          | 175 lbs.<br>per square feet.                                 | 200 lbs.<br>per square feet.                                                                         | 250 lbs.<br>per square feet.                                                         |
| IO                                                                         | 11.60                                                                                                 | 0.14                                                                                         | 300                                                                                     |                                                                                         |                                                               |                                                                                       | 14.03                                                        | 11.60                                                                                                | 9 <b>.2</b> 8                                                                        |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | 10.55<br>9.67<br>8.92<br>8.29<br>7.73<br>7.25<br>6.82<br>6.44<br>6.11<br>5.80<br>5.52<br>5.27<br>5.04 | 0.16<br>0.19<br>0.23<br>0.27<br>0.31<br>0.35<br>0.39<br>0.44<br>0.49<br>0.54<br>0.60<br>0.66 | 330<br>360<br>390<br>420<br>450<br>480<br>510<br>540<br>570<br>600<br>630<br>660<br>690 | 13.72<br>11.84<br>10.31<br>9.06<br>8.02<br>7.16<br>6.43<br>5.80<br>5.26<br>4.79<br>4.38 | 10.90<br>9.47<br>8.25<br>7.25<br>6.42<br>5.73<br>5.14<br>4.64 | 10.74<br>9.08<br>7.89<br>6.87<br>6.04<br>5.35<br>4.77<br>4.29<br>3.87<br>3.51<br>3.19 | 5.89<br>5.18<br>4.58<br>4.09<br>3.67<br>3.31<br>3.01<br>2.72 | 9.59<br>8.05<br>6.81<br>5.92<br>5.15<br>4.53<br>4.01<br>3.58<br>3.21<br>2.90<br>2.63<br>2.39<br>2.19 | 7.67<br>6.44<br>5.49<br>4.74<br>4.12<br>3.62<br>3.21<br>2.86<br>2.57<br>2.32<br>2.10 |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                   | 4.83<br>4.64<br>4.46<br>4.30<br>4.14<br>4.00<br>3.87<br>3.74<br>3.62<br>3.52                          | 0.78<br>0.85<br>0.92<br>0.99<br>I.07<br>I.14<br>I.22<br>I.30<br>I.39<br>I.48                 | 720<br>750<br>780<br>810<br>840<br>870<br>900<br>930<br>960<br>990                      | 4.02<br>3.71<br>3.43<br>3.30<br>2.96<br>2.76<br>2.58<br>2.41<br>2.26<br>2.13            | 2.64<br>2.37<br>2.21<br>2.06                                  | 2.12                                                                                  | 2.12                                                         | 2.01                                                                                                 |                                                                                      |

#### IRON I BEAMS.

#### 10" I BEAM. SHAPE No. 11. 105 LBS. PER YARD.

Depth, 10". Width of flange,  $4\frac{5}{8}$ ". Thickness of web,  $\frac{1}{2}$ ".

Safe load in nett tons =  $\frac{129.00}{\text{Span in feet}}$ .

Maximum shear = 11.90 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.42'.

| -                                                                    | ons.                                                                                         | så.                                                                                  |                                                             | Dis                                                             | tance apa<br>bea                             | ert, in fe                                                   |                                                                      |                                                                      | e of                                                                 |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Span, in feet,                                                       | Safe load, in nett tons.                                                                     | Deflexion, in inches.                                                                | Weight of beam.                                             | 100 lbs.<br>per square foot.                                    | 125 lbs.<br>per square foot.                 | 150 lbs.<br>per square foot.                                 | 175 lbs.<br>per square foot.                                         | 200 lbs.<br>per square foot.                                         | 250 lbs.<br>per square foot.                                         |
| IO<br>II<br>I2                                                       | 12.90<br>11.73<br>10.75                                                                      | 0.15<br>0.18<br>0.21                                                                 | 350<br>385<br>420                                           |                                                                 |                                              | 11.95                                                        | 12.19<br>10.24                                                       | 12.90<br>10.67<br>8.96                                               | 10.32<br>8.53<br>7.16                                                |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21                   | 9.92<br>9.21<br>8.60<br>8.06<br>7.59<br>7.17<br>6.79<br>6.45<br>6.14                         | 0.24<br>0.28<br>0.33<br>0.37<br>0.41<br>0.46<br>0.52<br>0.58<br>0.64                 | 455<br>490<br>525<br>560<br>595<br>630<br>665<br>700<br>735 | 13.16<br>11.47<br>10.07<br>8.93<br>7.96<br>6.62<br>6.45<br>5.85 |                                              | 4.30                                                         | 8.72<br>7.52<br>6.55<br>5.75<br>5.10<br>4.55<br>3.78<br>3.69<br>3.34 | 7.63<br>6.58<br>5.74<br>5.03<br>4.47<br>3.98<br>3.31<br>3.22<br>2.92 | 6.10<br>5.26<br>4.59<br>4.03<br>3.57<br>3.18<br>2.65<br>2.58<br>2.34 |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 5.86<br>5.61<br>5.38<br>5.16<br>4.96<br>4.78<br>4.60<br>4.44<br>4.30<br>4.16<br>4.03<br>3.91 | 0.70<br>0.76<br>0.83<br>0.91<br>0.98<br>1.05<br>1.13<br>1.21<br>1.29<br>1.38<br>1.48 | 840<br>875<br>910<br>945<br>980<br>1015                     | 4.88                                                            | 3.58<br>3.30<br>3.05<br>2.83<br>2.63<br>2.45 | 3.55<br>3.25<br>2.99<br>2.75<br>2.54<br>2.36<br>2.19<br>2 24 | 2.36<br>2.18                                                         | 2.66<br>2.44<br>2.24<br>2.07                                         | 2.13                                                                 |

#### IRON I BEAMS.

#### 10" I BEAM. SHAPE No. 12. 90 LBS. PER YARD.

Depth, 10". Width of flange,  $4\frac{3}{8}$ ". Thickness of web,  $\frac{7}{16}$ ".

Safe load in nett tons =  $\frac{\text{III.00}}{\text{Span in feet}}$ .

Maximum shear = 9.79 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.67'.

|                                                                      | 31.07 ·                                                                                      |                                                                                      |                                                                           |                                                                                              |                                                                          |                                              |                                                              |                              |                                                                              |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------|--|--|--|
|                                                                      | ons.                                                                                         | s <sup>3</sup>                                                                       | 33                                                                        |                                                                                              | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                                              |                                                              |                              |                                                                              |  |  |  |
| Span, in feet.                                                       | Safe load, in nett tons.                                                                     | Deflexion, in inches.                                                                | Weight of beam.                                                           | 100 lbs.<br>per square foot.                                                                 | 125 lbs.<br>per square foot.                                             | 150 lbs.<br>per square foot.                 | 175 lbs.<br>per square foot.                                 | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot.                                                 |  |  |  |
| 10                                                                   | 11.10                                                                                        | 0.15<br>0.18                                                                         | 300<br>330                                                                |                                                                                              |                                                                          | 12.23                                        | 12.69<br>10.49                                               | 11.10<br>9.18                | 8.88<br>7·34                                                                 |  |  |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21             | 9.25<br>8.54<br>7.93<br>7.40<br>6.94<br>6.53<br>6.17<br>5.84<br>5.55<br>5.29                 | 0.21<br>0.24<br>0.28<br>0.33<br>0.37<br>0.41<br>0.46<br>0.52<br>0.58<br>0.64         | 360<br>390<br>420<br>450<br>480<br>510<br>540<br>570<br>600<br>630        | 13.14<br>11.33<br>9.87<br>8.68<br>7.68<br>6.86<br>6.15<br>5.55<br>5.04                       | 6.94<br>6.14<br>5.48<br>4.92<br>4.44                                     | 6.58<br>5.79<br>5.12<br>4.57<br>4.10<br>3.70 | 7.51<br>6.47<br>5.64<br>4.96<br>4.39<br>3.92<br>3.51<br>3.17 | 4.34                         | 6.16<br>5.26<br>4.53<br>3.95<br>3.47<br>3.07<br>2.74<br>2.46<br>2.22<br>2.02 |  |  |  |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 5.05<br>4.83<br>4.63<br>4.44<br>4.27<br>4.11<br>3.96<br>3.83<br>3.70<br>3.58<br>3.47<br>3.36 | 0.70<br>0.76<br>0.83<br>0.91<br>0.98<br>1.05<br>1.13<br>1.21<br>1.29<br>1.38<br>1.48 | 660<br>690<br>720<br>750<br>780<br>810<br>840<br>870<br>900<br>930<br>960 | 4.59<br>4.20<br>3.83<br>3.55<br>3.28<br>3.04<br>2.83<br>2.64<br>2.47<br>2.31<br>2.17<br>2.04 | 3.67<br>3.36<br>3.06<br>2.84<br>2.62<br>2.43<br>2.26<br>2.11             | 3.06<br>2.80<br>2.55<br>2.37<br>2.19<br>2.03 | 2.62<br>2.40<br>2.19<br>2.03                                 | 2.29                         |                                                                              |  |  |  |

#### IRON I BEAMS.

#### 9" I BEAM. SHAPE No. 13. 90 LBS. PER YARD.

Depth, 9". Width of flange, 4\%". Thickness of web, \frac{1}{2}".

Safe load in nett tons =  $\frac{98.00}{\text{Span in feet}}$ .

Maximum shear = 11.18 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.39'.

|                                                                      | ons.                                                                                         |                                                                                      |                                                                                  | Distance apart, in feet, centre to centre of<br>beams, for safe loads of        |                                              |                                                              |                                                                              |                                                                              |                                                              |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Span, in feet.                                                       | Safe load, in nett tons.                                                                     | Deflexion, in inches.                                                                | Weight of beam.                                                                  | 100 lbs.<br>per square foot.                                                    | 125 lbs.<br>per square foot.                 | 150 lbs.<br>per square foot.                                 | 175 lbs.<br>per square foot.                                                 | 200 lbs.<br>per square foot.                                                 | 250 lbs.<br>per square foot.                                 |  |
| IO                                                                   | 9.80<br>8.91                                                                                 | 0.16                                                                                 | 300<br>330                                                                       |                                                                                 | 15.68<br>12.96                               | 13.07<br>10.80                                               | 11.20<br>9.26                                                                |                                                                              | 7.84<br>6.48                                                 |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21             | 8.17<br>7.54<br>7.00<br>6.53<br>6.13<br>5.76<br>5.44<br>5.16<br>4.90<br>4.67                 | 0.23<br>0.27<br>0.31<br>0.35<br>0.40<br>0.46<br>0.51<br>0.57<br>0.63<br>0.70         | 360<br>390<br>420<br>450<br>480<br>510<br>540<br>570<br>600<br>630               | 13.62<br>11.60<br>10.00<br>8.71<br>7.66<br>6.78<br>6.04<br>5.43<br>4.90<br>4.45 | 8.00<br>6.97<br>6.13<br>5.42<br>4.83<br>4.34 | 7.73<br>6.67<br>5.81<br>5.11<br>4.52<br>4.03<br>3.62<br>3.27 | 7.78<br>6.63<br>5.71<br>4.98<br>4.38<br>3.87<br>3.45<br>3.10<br>2.80<br>2.54 | 6.81<br>5.80<br>5.00<br>4.35<br>3.83<br>3.39<br>3.02<br>2.71<br>2.45<br>2.22 | 5.45<br>4.64<br>4.00<br>3.48<br>3.06<br>2.71<br>2.42<br>2.17 |  |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 4.45<br>4.26<br>4.08<br>3.92<br>3.77<br>3.63<br>3.50<br>3.38<br>3.27<br>3.16<br>3.06<br>2.97 | 0.77<br>0.84<br>0.91<br>0.99<br>1.07<br>1.16<br>1.24<br>1.33<br>1.43<br>1.53<br>1.63 | 660<br>690<br>720<br>750<br>780<br>810<br>840<br>870<br>900<br>930<br>960<br>990 | 4.05<br>3.70<br>3.40<br>3.14<br>2.90<br>2.69<br>2.50<br>2.33<br>2.18<br>2.04    | 2.72<br>2.51<br>2.32<br>2.15                 |                                                              | 2.31<br>2.11                                                                 | 2.02                                                                         |                                                              |  |

#### IRON I BEAMS.

#### 9" I BEAM. SHAPE No. 14. 85 LBS. PER YARD.

Depth, 9". Width of flange, 41/4". Thickness of web, 76".

Safe load in nett tons =  $\frac{96.00}{\text{Span in feet}}$ .

Maximum shear = 9.22 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.204.

|                                                                      | ons.                                                                                         | rô                                                                                   |                                                                                  | Dis                                                                            |                                              | ert, in fea                  |                                                                              | to centr                                                                     | e of                                                         |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|
| Span, in feet.                                                       | Safe load, in nett tons.                                                                     | Deflexion, in inches.                                                                | Weight of beam.                                                                  | 100 lbs.<br>per square foot.                                                   | 125 lbs.<br>per square foot.                 | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.                                                 | 200 lbs.<br>per square foot.                                                 | 250 lbs.<br>per square foot.                                 |
| IO                                                                   | 9.60<br>8.73                                                                                 | 0.16                                                                                 | 283<br>312                                                                       |                                                                                | 15.36<br>12.70                               | 12.80<br>10.58               | 10.97<br>9.07                                                                | 9.60<br>7.93                                                                 | 7.68<br>6.35                                                 |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21             | 8.00<br>7.38<br>6.86<br>6.40<br>6.00<br>5.65<br>5.33<br>5.05<br>4.80<br>4.57                 | 0.23<br>0.27<br>0.31<br>0.35<br>0.40<br>0.46<br>0.51<br>0.57<br>0.63                 | 340<br>368<br>397<br>425<br>453<br>482<br>510<br>538<br>567<br>595               | 13.33<br>12.12<br>9.80<br>8.53<br>7.50<br>6.65<br>5.92<br>5.32<br>4.80<br>4.35 | 6.82                                         | 8.08                         | 7.62<br>6.93<br>5.60<br>4.87<br>4.28<br>3.80<br>3.38<br>3.04<br>2.74<br>2.49 | 6.66<br>6.06<br>4.90<br>4.26<br>3.75<br>3.32<br>2.96<br>2.66<br>2.40<br>2.17 | 5.33<br>4.85<br>3.92<br>3.41<br>3.00<br>2.66<br>2.36<br>2.13 |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 4.36<br>4.17<br>4.00<br>3.84<br>3.69<br>3.56<br>3.43<br>3.31<br>3.20<br>3.10<br>3.00<br>2.91 | 0.77<br>0.84<br>0.91<br>0.99<br>1.07<br>1.16<br>1.24<br>1.33<br>1.43<br>1.53<br>1.63 | 623<br>652<br>680<br>708<br>737<br>765<br>793<br>822<br>850<br>878<br>907<br>935 | 3.96<br>3.63<br>3.33<br>3.07<br>2.84<br>2.64<br>2.45<br>2.28<br>2.13<br>2.00   | 3.17<br>2.90<br>2.66<br>2.42<br>2.27<br>2.11 | 2.64<br>2.42<br>2.22         | 2.26<br>2.07                                                                 |                                                                              |                                                              |

#### IRON I BEAMS.

#### 9" I BEAM. SHAPE No. 15. 70 LBS. PER YARD.

Depth, 9". Width of flange, 4". Thickness of web, 3%".

Safe load in nett tons =  $\frac{74.00}{\text{Span in feet}}$ .

Maximum shear = 7.33 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.05'.

|                                                                      | ett tons.                                                                            |                                                                                      |                                                                                  | Distance apart, in feet, centre to centre of<br>beams, for safe loads of               |                                                              |                                              |                                                                              |                                                                      |                                                      |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|--|
| Span, in feet.                                                       | Safe load, in nett tons.                                                             | Deflexion, in inches.                                                                | Weight of beam.                                                                  | 100 lbs.<br>per square foot.                                                           | 125 lbs.<br>per square foot.                                 | 150 lbs.<br>per square foot.                 | 175 lbs.<br>per square foot.                                                 | 200 lbs.<br>per square foot.                                         | 250 lbs.<br>per square foot.                         |  |
| 10                                                                   | 7.40                                                                                 | 0.16                                                                                 | 233                                                                              | 14.80                                                                                  | 11.84                                                        | 9.87                                         | 8.46                                                                         | 7.40                                                                 | 5.92                                                 |  |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21       | 6.73<br>6.17<br>5.69<br>5.29<br>4.93<br>4.63<br>4.35<br>4.11<br>3.89<br>3.70<br>3.52 | 0.19<br>0.23<br>0.27<br>0.31<br>0.35<br>0.40<br>0.46<br>0.51<br>0.57<br>0.63<br>0.70 | 256<br>280<br>303<br>326<br>350<br>373<br>396<br>419<br>443<br>466<br>489        | 12.24<br>10.28<br>8.75<br>7.56<br>6.57<br>5.79<br>5.12<br>4.57<br>4.09<br>3.70<br>3.35 | 8.22<br>7.00<br>6.05<br>5.26<br>4.63<br>4.10<br>3.66<br>3.27 | 5.04<br>4.38<br>3.86<br>3.41<br>3.05<br>2.73 | 6.99<br>5.87<br>5.00<br>4.32<br>3.75<br>3.31<br>2.93<br>2.61<br>2.34<br>2.11 | 6.12<br>5.14<br>4.37<br>3.78<br>3.28<br>2.89<br>2.56<br>2.28<br>2.04 | 4.90<br>4.11<br>3.50<br>3.02<br>2.63<br>2.32<br>2.05 |  |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 3.36<br>3.22<br>3.08<br>2.96<br>2.85<br>2.74<br>2.64<br>2.55<br>2.47<br>2.39<br>2.31 | 0.77<br>0.84<br>0.91<br>0.99<br>1.07<br>1.16<br>1.24<br>1.33<br>1.43<br>1.53<br>1.63 | 513<br>536<br>559<br>583<br>606<br>629<br>652<br>676<br>699<br>722<br>746<br>769 | 3.05<br>2.80<br>2.57<br>2.37<br>2.19<br>2.03                                           | 2.44<br>2.24<br>2.06                                         | 2.03                                         |                                                                              |                                                                      |                                                      |  |

#### IRON I BEAMS.

8" I BEAM. SHAPE No. 16. 80 LBS. PER YARD.

Depth, 8". Width of flange,  $4\frac{5}{32}$ ". Thickness of web,  $\frac{1}{2}$ ".

Safe load in nett tons =  $\frac{77.\infty}{\text{Span in feet}}$ .

Maximum shear = 10.20 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.77'.

| 3,77                                                                                         |                                                                                                                              |                                                                                                                              |                                                                                                             |                                                              |                                              |                                              |                                                           |                                              |                                      |  |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------------|----------------------------------------------|--------------------------------------|--|--|
|                                                                                              | ons.                                                                                                                         | rå.                                                                                                                          |                                                                                                             | Dis                                                          | -                                            | ,                                            | rt, in feet, centre to centre of<br>ms, for safe loads of |                                              |                                      |  |  |
| Span, in feet.                                                                               | Safe load, in nett tons.                                                                                                     | Deflexion, in inches.                                                                                                        | Weight of beam,                                                                                             | 100 lbs.<br>per square foot.                                 | 125 lbs.<br>per square foot,                 | 150 lbs.<br>per square foot.                 | 175 lbs.<br>per square foot.                              | 200 lbs.<br>per square foot.                 | 250 lbs.<br>per square foot.         |  |  |
| 10                                                                                           | 7.70<br>7.00                                                                                                                 | 0.18                                                                                                                         | 266<br>293                                                                                                  | 15.40<br>12.73                                               | 12.32                                        | 10.26<br>8.48                                | 8.80<br>7.28                                              | 7.70<br>6.36                                 | 6.16<br>5.09                         |  |  |
| 12<br>13<br>14<br>15<br>16                                                                   | 6.42<br>5.92<br>5.50<br>5.13<br>4.81<br>4.53                                                                                 | 0.26<br>0.30<br>0.35<br>0.40<br>0.46<br>0.52                                                                                 | 320<br>346<br>373<br>400<br>426<br>453                                                                      | 9.11<br>7.85<br>6.84<br>6.01<br>5.66                         | 8.56<br>7.29<br>6.28<br>5.47<br>4.80<br>4.53 | 7.13<br>6.07<br>5.23<br>4.56<br>4.01<br>3.77 | 6.11<br>5.20<br>4.49<br>3.91<br>3.43<br>3.23              | 5·35<br>4·55<br>3·92<br>3·42<br>3·00<br>2.83 | 4.28<br>3.64<br>3.14<br>2.73<br>2.40 |  |  |
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 4.28<br>4.05<br>3.85<br>3.67<br>3.50<br>3.35<br>3.21<br>3.08<br>2.96<br>2.85<br>2.75<br>2.66<br>2.57<br>2.48<br>2.41<br>2.33 | 0.58<br>0.64<br>0.71<br>0.79<br>0.86<br>0.94<br>1.03<br>1.12<br>1.20<br>1.30<br>1.40<br>1.50<br>1.60<br>1.71<br>1.82<br>1.93 | 480<br>506<br>532<br>560<br>586<br>613<br>640<br>666<br>72<br>720<br>746<br>773<br>800<br>826<br>853<br>880 | 4.75<br>4.25<br>3.85<br>3.50<br>3.18<br>2.91<br>2.67<br>2.46 | 3.80<br>3.40<br>3.10<br>2.80<br>2.54         |                                              | 2.7I<br>2.43                                              | 2.37                                         |                                      |  |  |

#### IRON I BEAMS.

#### 8" I BEAM. SHAPE No. 17. 65 LBS. PER YARD.

Depth, 8". Width of flange, 4". Thickness of web, 5".

Safe load in nett tons =  $\frac{68.00}{\text{Span in feet}}$ .

Maximum shear = 5.23 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.50'.

|                                                                                              | t tons.                                                                                                                      |                                                                                                                      |                                                                                                              | Dist                                         | ance apa<br>bea              |                              | et, centre<br>safe loads                             |                                                      | re of                                        |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| Span, in feet.                                                                               | Safe load, in nett tons.                                                                                                     | Deflexion, in inches.                                                                                                | Weight of beam.                                                                                              | 100 lbs.<br>per square foot,                 | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.                         | 200 lbs.<br>per square foot.                         | 250 lbs.<br>per square foot.                 |
| 10                                                                                           | 6.80                                                                                                                         | 0.18                                                                                                                 | 216                                                                                                          | 13.60                                        | 10.88                        | 9.06                         | 7.77                                                 | 6.80                                                 | 5.44                                         |
| 11<br>12<br>13<br>14<br>15<br>16                                                             | 6.18<br>5.67<br>5.23<br>4.86<br>4.53<br>4.25<br>4.00                                                                         | 0.22<br>0.26<br>0.30<br>0.35<br>0.40<br>0.46<br>0.52                                                                 | 238<br>260<br>282<br>304<br>325<br>347<br>369                                                                | 9.45<br>8.04<br>6.94<br>6.04<br>5.31<br>4.70 | 5.55<br>4.83<br>4.25         | 5.36                         | 6.41<br>5.40<br>4.59<br>3.96<br>3.45<br>3.03<br>2.68 | 5.62<br>4.72<br>4.02<br>3.47<br>3.02<br>2.66<br>2.35 | 4·49<br>3·78<br>3·21<br>2·77<br>2·41<br>2·12 |
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 3.78<br>3.58<br>3.40<br>3.24<br>3.09<br>2.96<br>2.83<br>2.72<br>2.62<br>2.52<br>2.43<br>2.34<br>2.21<br>2.19<br>2.12<br>2.06 | 0.58<br>0.64<br>0.71<br>0.79<br>0.86<br>0.94<br>1.02<br>1.20<br>1.30<br>1.40<br>1.50<br>1.60<br>1.71<br>1.82<br>1.93 | 390<br>412<br>432<br>454<br>476<br>498<br>520<br>542<br>564<br>586<br>608<br>629<br>648<br>672<br>694<br>714 | 4.20<br>3.76<br>3.40<br>3.08<br>2.81<br>2.57 | 2.72                         | 2.80<br>2.51                 | 2.40                                                 |                                                      |                                              |

#### IRON I BEAMS.

7" I BEAM. SHAPE No. 18. 65 LBS. PER YARD.

Depth, 7". Width of flange, 316". Thickness of web, 29".

Safe load in nett tons =  $\frac{55.00}{\text{Span in feet}}$ .

Maximum shear = 8.18 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.36'.

| snear = 3.3°.                                                        |                                                                                              |                                                                                      |                                                                                  |                                                       |                                      |                                                      |                                                      |                                                      |                                      |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------|--|--|--|
|                                                                      | ons,                                                                                         | **                                                                                   |                                                                                  | Dist                                                  |                                      |                                                      | et, centre<br>safe load:                             | e to centr<br>s of                                   | re of                                |  |  |  |
| Span, in feet.                                                       | Safe load, in nett tons.                                                                     | Deflexion, in inches.                                                                | Weight of beam.                                                                  | 100 lbs.<br>per square foot.                          | 125 lbs.<br>per square foot.         | 150 lbs.<br>per square foot.                         | 175 lbs.<br>per square foot.                         | 200 lbs.<br>per square foot.                         | 250 lbs.<br>per square foot.         |  |  |  |
| 10<br>11<br>12<br>13<br>14<br>15                                     | 5.50<br>5.00<br>4.58<br>4.23<br>3.93<br>3.67<br>3.44                                         | 0.20<br>0.25<br>0.29<br>0.35<br>0.40<br>0.46<br>0.52                                 | 217<br>239<br>260<br>282<br>304<br>326<br>347                                    | 11.00<br>9.09<br>7.63<br>6.51<br>5.61<br>4.89<br>4.30 | 7.27<br>6.10<br>5.21<br>4.49<br>3.91 | 7·33<br>6.06<br>5.09<br>4·34<br>3·74<br>3.26<br>2.87 | 6.29<br>5.19<br>4.36<br>3.72<br>3.21<br>2.79<br>2.46 | 5.50<br>4.54<br>3.81<br>3.25<br>2.81<br>2.44<br>2.15 | 4.40<br>3.64<br>3.05<br>2.60<br>2.24 |  |  |  |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 3.24<br>3.06<br>2.89<br>2.75<br>2.62<br>2.50<br>2.39<br>2.29<br>2.20<br>2.12<br>2.04<br>1.96 | 0.59<br>0.66<br>0.74<br>0.82<br>0.90<br>0.99<br>1.08<br>1.17<br>1.27<br>1.38<br>1.49 | 369<br>390<br>412<br>434<br>456<br>477<br>499<br>520<br>543<br>564<br>586<br>608 | 3.81<br>3.40<br>3.04<br>2.75<br>2.50<br>2.27<br>2.08  | 3.05<br>2.72<br>2.43<br>2.20<br>2.00 | 2.54<br>2.27<br>2.03                                 | 2.18                                                 |                                                      |                                      |  |  |  |
| 29<br>30<br>31<br>32<br>33                                           | 1.90<br>1.83<br>1.77<br>1.72<br>1.67                                                         | I.72<br>I.84<br>I.96<br>2.08                                                         | 629<br>650<br>673<br>694<br>716                                                  | Span limit for tabular safe loads $= 9.00'$ .         |                                      |                                                      |                                                      |                                                      |                                      |  |  |  |

#### IRON I BEAMS.

#### 7" I BEAM. SHAPE No. 19. 55 LBS. PER YARD.

Depth, 7". Width of flange,  $3\frac{7}{16}$ ". Thickness of web,  $\frac{21}{64}$ ".

Safe load in nett tons =  $\frac{50.00}{\text{Span in feet}}$ .

Maximum shear = 5.31 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.70'.

|                                                          | sitea - 4.70.                                                                        |                                                                                      |                                                                           |                                                       |                                      |                                                      |                                              |                                              |                                      |  |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|--|--|--|--|
|                                                          | cons.                                                                                | så.                                                                                  |                                                                           | Dist                                                  |                                      | art, in fe<br>ams, for :                             |                                              | e to centr<br>s of                           | e of                                 |  |  |  |  |
| Span, in feet.                                           | Safe load, in nett tons.                                                             | Deflexion, in inches.                                                                | Weight of beam.                                                           | 100 lbs.<br>per square foot.                          | 125 lbs.<br>per square foot.         | 150 lbs.<br>per square foot.                         | 175 lbs.<br>per square foot.                 | 200 lbs.<br>per square foot.                 | 250 lbs.<br>per square foot.         |  |  |  |  |
| 10<br>11<br>12<br>13<br>14<br>15<br>16                   | 5.00<br>4.55<br>4.17<br>3.84<br>3.57<br>3.33<br>3.12                                 | 0.20<br>0.25<br>0.29<br>0.35<br>0.40<br>0.46<br>0.52                                 | 183<br>201<br>220<br>238<br>257<br>275<br>293                             | 10.00<br>8.27<br>6.95<br>5.90<br>5.10<br>4.44<br>3.90 | 6.62<br>5.56<br>4.72<br>4.08<br>3.55 | 6.66<br>5.51<br>4.63<br>3.93<br>3.40<br>2.96<br>2.60 | 5.71<br>4.72<br>3.97<br>3.37<br>2.91<br>2.53 | 5.00<br>4.13<br>3.47<br>2.95<br>2.55<br>2.22 | 4.00<br>3.31<br>2.78<br>2.36<br>2.04 |  |  |  |  |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 2.94<br>2.78<br>2.63<br>2.50<br>2.38<br>2.27<br>2.17<br>2.08<br>2.00<br>1.92<br>1.85 | 0.59<br>0.66<br>0.74<br>0.82<br>0.90<br>0.99<br>1.08<br>1.17<br>1.27<br>1.38<br>1.49 | 312<br>330<br>348<br>366<br>385<br>402<br>421<br>440<br>458<br>476<br>495 | 3.46<br>3.09<br>2.76<br>2.50                          | 2.76<br>2.47<br>2.21                 | 2.30                                                 |                                              | -                                            |                                      |  |  |  |  |
| 28<br>29<br>30<br>31<br>32<br>33                         | 1.79<br>1.72<br>1.67<br>1.61<br>1.56<br>1.52                                         | 1.60<br>1.72<br>1.84<br>1.96<br>2.08<br>2.20                                         | 515<br>532<br>550<br>568<br>586<br>605                                    | Span limit for tabular safe                           |                                      |                                                      |                                              |                                              |                                      |  |  |  |  |

# IRON I BEAMS.

6" I BEAM. SHAPE No. 20. 50 LBS. PER YARD.

Depth, 6". Width of flange,  $3\frac{9}{32}$ ". Thickness of web,  $\frac{13}{32}$ ".

Safe load in nett tons =  $\frac{36.00}{\text{Span in feet}}$ .

Maximum shear = 6.39 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.82'.

|                                                                                                    | aett tons,                                                                                                           |                                                                                                                              |                                                                                                                     | Dist                                 |                                      |                                      | et, centre<br>safe loads             |                              | e of                         |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                             | Deflexion, in inches.                                                                                                        | Weight of beam.                                                                                                     | 100 lbs.<br>per square foot.         | 125 lbs.<br>per square foot.         | 150 lbs.<br>per square foot.         | 175 lbs.<br>per square foot.         | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 10<br>11<br>12<br>13<br>14                                                                         | 3.60<br>3.27<br>3.00<br>2.77<br>2.57                                                                                 | 0.24<br>0.29<br>0.34<br>0.40<br>0.47                                                                                         | 167<br>184<br>200<br>217<br>234                                                                                     | 7.20<br>5.95<br>5.00<br>4.26<br>3.67 | 5.76<br>4.76<br>4.00<br>3.41<br>2.94 | 4.80<br>3.97<br>3.33<br>2.84<br>2.45 | 4.11<br>3.40<br>2.86<br>2.43<br>2.10 | 3.60<br>2.97<br>2.50<br>2.13 | 2.88<br>2.38<br>2.00         |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31 | 2.40<br>2.25<br>2.12<br>2.00<br>1.89<br>1.80<br>1.71<br>1.64<br>1.57<br>1.44<br>1.38<br>1.33<br>1.29<br>1.24<br>1.20 | 0.54<br>0.60<br>0.69<br>0.77<br>0.86<br>0.95<br>1.05<br>1.26<br>1.37<br>1.49<br>1.61<br>1.74<br>1.87<br>2.00<br>2.14<br>2.27 | 250<br>267<br>284<br>300<br>317<br>334<br>350<br>367<br>384<br>400<br>418<br>434<br>450<br>468<br>484<br>500<br>518 | 3.20<br>2.81<br>2.49<br>2.22         | 2.56<br>2.25                         |                                      | r tabu                               |                              | fe                           |

## IRON I BEAMS.

6" I BEAM. SHAPE No. 21. 40 LBS. PER YARD.

Depth, 6". Width of flange, 31/8". Thickness of web, 1/4".

Safe load in nett tons =  $\frac{32.00}{\text{Span in feet}}$ .

Maximum shear = 3.30 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.85'.

|                                                                                                                | tons.                                                                                                                | sý.                                                                                                                                          |                                                                                                                            | Dist                                 |                                      | rt, in fea                           |                              | to centres of                | e of                         |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet.                                                                                                 | Safe load, in nett tons.                                                                                             | Deflexion, in inches.                                                                                                                        | Weight of beam.                                                                                                            | 100 lbs.<br>per square foot.         | 125 lbs.<br>per square foot.         | 150 lbs.<br>per square foot.         | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 10<br>11<br>12<br>13<br>14                                                                                     | 3.20<br>2.90<br>2.67<br>2.46<br>2.29                                                                                 | 0.24<br>0.29<br>0.34<br>0.40<br>0.47                                                                                                         | 133<br>146<br>160<br>173<br>187                                                                                            | 6.40<br>5.26<br>4.45<br>3.78<br>3.27 | 5.12<br>4.20<br>3.64<br>3.02<br>2.61 | 4.26<br>3.50<br>2.96<br>2.52<br>2.27 | 3.65<br>3.01<br>2.54<br>2.16 | 3.20<br>2.63<br>2.22         | 2.56<br>2.10                 |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 2.13<br>2.00<br>1.88<br>1.78<br>1.68<br>1.62<br>1.45<br>1.33<br>1.28<br>1.23<br>1.19<br>1.14<br>1.10<br>1.07<br>1.03 | 0.54<br>0.60<br>0.69<br>0.77<br>0.86<br>0.95<br>1.05<br>1.26<br>1.37<br>1.49<br>1.61<br>1.74<br>1.87<br>2.00<br>2.14<br>2.27<br>2.40<br>2.53 | 200<br>213<br>227<br>240<br>253<br>267<br>280<br>293<br>307<br>320<br>333<br>347<br>360<br>373<br>400<br>413<br>427<br>440 | 2.84<br>2.50                         |                                      | mit fo<br>load =                     |                              | lar sa                       | · ·                          |

## IRON I BEAMS.

5" I BEAM. SHAPE No. 22. 40 LBS. PER YARD.

Depth, 5". Width of flange, 215". Thickness of web, 3%".

Safe load in nett tons =  $\frac{25.00}{\text{Span in feet}}$ .

Maximum shear = 5.03 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.48'.

|                                                                            | ons.                                                                                                 | ú                                                                                                    |                                                                                                | Dist                         | ance apa<br>bea              | rt, in fe<br>ms, for s       |                                |                                | e of                         |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|--------------------------------|------------------------------|
| Span, in feet.                                                             | Safe load, in nett tons.                                                                             | Deflexion, in inches.                                                                                | Weight of beam.                                                                                | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.   | 200 lbs.<br>per square foot.   | 250 lbs.<br>per square foot. |
| 3<br>4<br>5<br>6<br>7<br>8                                                 | 8.34<br>6.25<br>5.00<br>4.17<br>3.57<br>3.12                                                         | 0.02<br>0.04<br>0.07<br>0.10<br>0.14<br>0.18                                                         | 40<br>53<br>67<br>80<br>93<br>107                                                              | 31.25<br>20.00               | 16.00<br>11.12<br>8.16       | 20.83<br>13.33<br>9.27       | 17.83<br>11.43<br>7.94<br>5.83 | 15.62<br>10.00<br>6.95<br>5.10 | 8.00<br>5.56<br>4.08         |
| 9<br>10<br>11<br>12                                                        | 2.87<br>2.50<br>2.27<br>2.08                                                                         | 0.23<br>0.28<br>0.34<br>0.4I                                                                         | 120<br>133<br>146<br>160                                                                       | 6.38<br>5.00<br>4.13<br>3.47 |                              | 2.75                         | 3.65<br>2.85<br>2.36           | 2.50                           | 2.55<br>2.00                 |
| 13<br>14<br>15<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 1.92<br>1.79<br>1.67<br>1.56<br>1.47<br>1.39<br>1.32<br>1.25<br>1.19<br>1.14<br>1.09<br>1.04<br>1.00 | 0.48<br>0.56<br>0.64<br>0.73<br>0.82<br>0.92<br>1.03<br>1.14<br>1.26<br>1.38<br>1.51<br>1.65<br>1.79 | 173<br>187<br>200<br>213<br>227<br>240<br>253<br>267<br>280<br>293<br>307<br>320<br>333<br>347 | 2.95<br>2.05                 | 2.36                         |                              |                                |                                |                              |

## IRON I BEAMS.

5" I BEAM. SHAPE No. 23. 30 LBS. PER YARD.

Depth, 5". Width of flange, 23/4". Thickness of web, 3/16.

Safe load in nett tons =  $\frac{19.20}{\text{Span in feet}}$ .

Maximum shear = 1.90 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.05'.

|                                                                                  | ett tons.                                                                                            | SŽ.                                                                                                  |                                                                                                | Dist                                 |                              |                                         |                              | t, centre to centre of<br>the loads of |                                       |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------|-----------------------------------------|------------------------------|----------------------------------------|---------------------------------------|--|
| Span, in feet.                                                                   | Safe load, in nett tons.                                                                             | Deflexion, in inches.                                                                                | Weight of beam.                                                                                | 100 lbs.<br>per square foot.         | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot.            | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot.           | 250 lbs.<br>per square foot.          |  |
| 3<br>4<br>5<br>6<br>7                                                            | 6.40<br>4.80<br>3.84<br>3.20<br>2.74                                                                 | 0.02<br>0.04<br>0.07<br>0.10<br>0.14                                                                 | 30<br>40<br>50<br>60<br>70                                                                     | 24.00                                | 19.20<br>12.28<br>8.52       | 28.44<br>16.00<br>10.24<br>7.10<br>5.21 | 13.71<br>8.77                | 21.33<br>12.00<br>7.68<br>5.33<br>3.91 | 17.06<br>9.60<br>6.14<br>4.26<br>3.12 |  |
| 8<br>9<br>10<br>11<br>12                                                         | 2.40<br>2.13<br>1.92<br>1.75<br>1.60                                                                 | 0.18<br>0.23<br>0.28<br>0.34<br>0.41                                                                 | 80<br>90<br>100<br>110<br>120                                                                  | 6.00<br>4.74<br>3.84<br>3.19<br>2.66 | 3.79<br>3.08<br>2.55         | 3. <b>1</b> 6<br>2. <b>5</b> 6          |                              | 3.00<br>2.37                           | 2.40                                  |  |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 1.48<br>1.37<br>1.28<br>1.20<br>1.13<br>1.07<br>1.01<br>0.96<br>0.91<br>0.87<br>0.83<br>0.80<br>0.77 | 0.48<br>0.56<br>0.64<br>0.73<br>0.82<br>0.92<br>1.03<br>1.14<br>1.26<br>1.38<br>1.51<br>1.65<br>1.79 | 130<br>140<br>150<br>160<br>170<br>180<br>190<br>200<br>210<br>220<br>230<br>240<br>250<br>260 | 2.27                                 |                              |                                         |                              |                                        |                                       |  |

# IRON I BEAMS.

#### 4" I BEAM. SHAPE No. 24. 30 LBS. PER YARD.

Depth, 4". Width of flange,  $2\frac{7}{16}$ ". Thickness of web,  $\frac{27}{64}$ ".

Safe load in nett tons =  $\frac{14.00}{\text{Span in feet}}$ .

Maximum shear = 4.74 tons.

Span limit for uniformly distributed load of twice the maximum shear = 1.45'.

|                                                                                                    | 311car — 1.43.                                                                                               |                                                                                                                                      |                                                                                                              |                              |                              |                                |                              |                              |                               |  |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------------|------------------------------|------------------------------|-------------------------------|--|--|
|                                                                                                    | tons.                                                                                                        | ໝໍ                                                                                                                                   |                                                                                                              | Dis                          |                              | ert, in fe                     |                              | e to centr<br>s of           | e of                          |  |  |
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                     | Deflexion, in inches.                                                                                                                | Weight of beam.                                                                                              | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot.   | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot.  |  |  |
| 3<br>4<br>5<br>6                                                                                   | 4.66<br>3.50<br>2.80<br>2.33                                                                                 | 0.03<br>0.06<br>0.09<br>0.13                                                                                                         | 30<br>40<br>50<br>60                                                                                         |                              |                              | 20.77<br>11.66<br>7.46<br>5.18 | 10.00                        | 5.60                         | 12.46<br>7.00<br>4.48<br>3.11 |  |  |
| 7<br>8<br>9                                                                                        | 2.00<br>1.75<br>1.55                                                                                         | 0.17<br>0.23<br>0.29                                                                                                                 | 70<br>80<br>90                                                                                               | 5.71<br>4.37<br>3.22         | 4.56<br>3.49<br>2.57         | 3.81<br>2.91<br>2.14           | 3.26<br>2.49                 | 2.85<br>2.18                 | 2.28                          |  |  |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 1.40<br>1.27<br>1.17<br>1.08<br>1.00<br>0.93<br>0.87<br>0.74<br>0.70<br>0.67<br>0.64<br>0.61<br>0.58<br>0.56 | 0.36<br>0.43<br>0.51<br>0.60<br>0.70<br>0.81<br>0.91<br>1.03<br>1.16<br>1.29<br>1.43<br>1.58<br>1.73<br>1.89<br>2.06<br>2.23<br>2.41 | 100<br>110<br>120<br>130<br>140<br>150<br>160<br>170<br>180<br>200<br>210<br>220<br>230<br>240<br>250<br>260 | 2.80 2.31                    | 2.24                         |                                |                              |                              |                               |  |  |

## IRON I BEAMS.

#### 4" I BEAM. SHAPE No. 25. 24 LBS. PER YARD.

Depth, 4". Width of flange,  $2\frac{1}{4}$ ". Thickness of web,  $\frac{5}{16}$ ".

Safe load in nett tons =  $\frac{11.40}{\text{Span in feet}}$ .

Maximum shear = 3.39 tons.

Span limit for uniformly distributed load of twice the maximum shear = 1.68%.

|                                                                                                    | tons.                                                                                                                | nett tons.<br>inches.                                                                                                        |                                                                                                           | Dis                            |                                | ert, in fe                   |                               | to centr                      | e of                         |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                             | Deflexion, in inches.                                                                                                        | Weight of beam.                                                                                           | 100 lbs.<br>per square foot.   | 125 lbs.<br>per square foot.   | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.  | 200 lbs.<br>per square foot.  | 250 lbs.<br>per square foot. |
| 3<br>4<br>5<br>6                                                                                   | 3.80<br>2.85<br>2.28<br>1.90                                                                                         | 0.03<br>0.06<br>0.09<br>0.13                                                                                                 | 24<br>32<br>40<br>48                                                                                      | 25.33<br>14.25<br>9.12<br>6.33 | 20.26<br>11.40<br>7.30<br>5.06 | 9.50                         | 14.47<br>8.14<br>5.21<br>3.62 | 12.66<br>7.12<br>4.56<br>3.16 | 5.70                         |
| 7<br>8<br>9                                                                                        | 1.63<br>1.43<br>1.27                                                                                                 | 0.17<br>0.23<br>0.29                                                                                                         | 56<br>64<br>72                                                                                            | 4.66<br>3.58<br>2.82           | 3.73<br>2.86<br>2.26           | 3.11<br>2.39                 | 2.66<br>2.04                  | 2.33                          |                              |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 1.14<br>1.04<br>0.95<br>0.88<br>0.81<br>0.76<br>0.67<br>0.63<br>0.60<br>0.57<br>0.54<br>0.52<br>0.50<br>0.48<br>0.46 | 0.36<br>0.43<br>0.51<br>0.60<br>0.70<br>0.81<br>1.03<br>1.16<br>1.29<br>1.43<br>1.58<br>1.73<br>1.89<br>2.06<br>2.23<br>2.41 | 80<br>88<br>96<br>104<br>112<br>120<br>128<br>136<br>144<br>152<br>160<br>168<br>176<br>184<br>192<br>200 | 2.28                           |                                |                              |                               |                               |                              |

## IRON I BEAMS.

#### 4" I BEAM. SHAPE No. 26. 18 LBS. PER YARD.

Depth, 4". Width of flange,  $2\frac{1}{8}$ ". Thickness of web,  $\frac{3}{16}$ ".

Safe load in nett tons =  $\frac{8.80}{\text{Span in feet}}$ .

Maximum shear = 1.73 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.54'.

|                                                                                                    | tons.                                                                                                                        | Š                                                                                                                            |                                                                                                       | Dist                           |                               | ert, in fe                    |                              |                              | re of                        |  |  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|--|--|
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                                     | Deflexion, in inches.                                                                                                        | Weight of beam.                                                                                       | 100 lbs.<br>per square foot.   | 125 lbs.<br>per square foot.  | 150 lbs.<br>per square foot.  | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |
| 3<br>4<br>5<br>6                                                                                   | 2.93<br>2.20<br>1.76<br>1.47                                                                                                 | 0.03<br>0.06<br>0.09<br>0.13                                                                                                 | 18<br>24<br>30<br>36                                                                                  | 19.53<br>11.00<br>7.04<br>4.90 | 15.62<br>8.80<br>5.63<br>3.92 | 13.02<br>7·33<br>4.69<br>3·27 | 6.29                         | 9.76<br>5.50<br>3.52<br>2.45 | 7.81<br>4.40<br>2.82         |  |  |
| 7<br>8<br>9                                                                                        | 1.26<br>1.10<br>0.98                                                                                                         | 0.17<br>0.23<br>0.29                                                                                                         | 42<br>48<br>54                                                                                        | 3.60<br>2.75<br>2.18           | 2.88<br>2.20                  | 2.40                          | 2.06                         |                              |                              |  |  |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 0.88<br>0.80<br>0.73<br>0.68<br>0.63<br>0.59<br>0.55<br>0.49<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.37<br>0.35<br>0.34 | 0.36<br>0.43<br>0.51<br>0.60<br>0.70<br>0.81<br>1.03<br>1.16<br>1.29<br>1.43<br>1.58<br>1.73<br>1.89<br>2.06<br>2.23<br>2.41 | 60<br>66<br>72<br>78<br>84<br>90<br>96<br>102<br>108<br>114<br>120<br>126<br>132<br>138<br>144<br>150 |                                |                               |                               | -                            |                              |                              |  |  |





# TABLES

OF THE CAPACITY OF

# WROUGHT-IRON CHANNELS

UNDER UNIFORMLY DISTRIBUTED TRANSVERSE LOADS,

THE EXTREME FIBRE STRESS BEING 6.0 TONS PER SQUARE INCH, WHICH IS TWO-SEVENTHS OF

THE MODULUS OF RUPTURE;

AND THE UNSTAYED LENGTH OF FLANGE NOT EXCEEDING THIRTY TIMES ITS WIDTH.

The span, which is thirty times the flange width, is denoted by a dotted line on the tables, and for lengths greater than this, the tabular safe load must be reduced by multiplying it by the factors given in table on page 43, or else some method of staying the flanges be employed.



#### 15" CHANNEL. SHAPE No. 30. 225 LBS. PER YARD.

Depth, 15". Width of flange, 554". Thickness of web, 154".

Safe load in nett tons =  $\frac{332.00}{\text{Span in feet}}$ .

Maximum shear = 42.85 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.88'.

|                | cons.                    | ett tons.             |                 | Dist                         |                              | rt, in fee<br>ms, for s      |                              |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square fcot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 55.33                    | 0.03                  | 450             |                              |                              |                              |                              |                              |                              |
| 8              | 41.50                    | 0.07                  | 600             |                              |                              |                              |                              |                              |                              |
| 10             | 33.20                    | 0.11                  | 750             |                              |                              |                              | 37.94                        | 33.20                        | 26.56                        |
| 12             | 27.67                    | 0.15                  | 900             |                              | 36.90                        | 30.75                        | 26.35                        | 23.06                        | 18.45                        |
| 14             | 23.71                    | 0.21                  | 1050            | 33.87                        | 27.10                        | 22.58                        | 19.35                        | 16.93                        | 13.55                        |
| 16             | 20.75                    | 0.27                  | I 200           | 25.94                        | 20.75                        | 17.29                        | 14.82                        | 12.97                        | 10.38                        |
| 18             | 18.44                    | 0.34                  | 1350            | 20.49                        | 16.39                        | 13.66                        | 11.71                        | 10.24                        | 8.20                         |
| 20             | 16.60                    | 0.43                  | 1500            | 16.60                        | 13.28                        | 11.07                        | 9.49                         | 8.30                         | 6.64                         |
| 22             | 15.09                    | 0.52                  | 1650            | 13.72                        | 10.98                        | 9.15                         | 7.84                         | 6.86                         | 5.49                         |
| 24             | 13.83                    | 0.62                  | 1800            | 11.52                        | 9.22                         | 7.68                         | 6.58                         | 5.76                         | 4.61                         |
| 26             | 12.75                    | 0.73                  | 1950            | 9.81                         | 7.85                         | 6.54                         | 5.61                         | 4.90                         | 3.92                         |
| 28             | 11.86                    | 0.84                  | 2100            | 8.49                         | 6.79                         | 5.66                         | 4.85                         | 4.24                         | 3.40                         |
| 30             | 11.07                    | 0.96                  | 2250            | 7.38                         | 5.90                         | 4.92                         | 4.22                         | 3.69                         | 2.95                         |
| 32             | 10.37                    | 1.10                  | 2400            | 6.48                         | 5.18                         | 4.32                         | 3.70                         | 3.24                         | 2.59                         |
| 34             | 9.79                     | 1.25                  | 2550            | 5.76                         | 4.61                         | 3.84                         | 3.29                         | 2.88                         | 2.30                         |

15" CHANNEL. SHAPE No. 30. 175 LBS. PER YARD.

Depth, 15". Width of flange, 4\%\". Thickness of web, \%\%\".

Safe load in nett tons =  $\frac{281.00}{\text{Span in feet}}$ .

Maximum shear = 26.98 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.20'.

|                | ons.                     | rå                    |                 | Dist                         | -                            | rt, in fee<br>ms, for s      |                              | to centre                    | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 46.83                    | 0.03                  | 350             |                              |                              |                              |                              |                              |                              |
| 8              | 35.13                    | 0.07                  | 467             |                              |                              |                              |                              |                              | 35.13                        |
| IO             | 28.10                    | 0.11                  | 583             |                              |                              |                              | 32.12                        | 28.10                        | 22.48                        |
| I 2            | 23.42                    | 0.15                  | 700             |                              | 31.22                        | 26.02                        | 22.30                        | 19.51                        | 15.61                        |
| 14             | 20.07                    | 0.21                  | 817             | 28.67                        | 22.94                        | 19.11                        | 16.38                        | 14.33                        | 11.47                        |
| 16             | 17.56                    | 0.27                  | 933             | 21.95                        | 17.56                        | 14.63                        | 12.54                        | 10.97                        | 8.78                         |
| 18             | 15.61                    | 0.34                  | 1050            | 17.34                        | 13.87                        | 11.56                        | 9.91                         | 8.67                         | 6.94                         |
| 20             | 14.05                    | 0.43                  | 1167            | 14.05                        | 11.24                        | 9.37                         | 8.03                         | 7.02                         | 5.62                         |
| 22             | 12.77                    | 0.52                  | 1283            | 11.61                        | 9.29                         | 7.74                         | 6.63                         |                              | 4.64                         |
| 24             | 11.71                    | 0.62                  | 1400            | 9.76                         | 7.81                         | 6.51                         | 5.58                         | 4.88                         | 3.90                         |
| 26             | 10.81                    | 0.73                  | 1517            | 8.32                         | 6.66                         | 5.55                         | 4.75                         | 4.16                         | 3.33                         |
| 28             | 10.04                    | 0.84                  | 1633            | 7.17                         | 5.74                         | 4.78                         | 4.10                         | 3.58                         | 2.87                         |
| 30             | 9.37                     | 0.96                  | 1750            | 6.25                         | 5.00                         | 4.17                         | 3.57                         | 3.12                         | 2.50                         |
| 32             | 8.78                     | 1.10                  | 1867            | 5.49                         | 4.39                         | 3.66                         | 3.14                         | 2.74                         | 2.20                         |
| 34             | 8.26                     | 1.25                  | 1983            | 4.86                         | 3.89                         | 3.24                         | 2.78                         | 2.43                         | 1.94                         |

15" CHANNEL. SHAPE No. 31. 1741 LBS. PER YARD.

Depth, 15". Width of flange,  $4\frac{5}{16}$ ". Thickness of web,  $\frac{13}{16}$ ".

Safe load in nett tons =  $\frac{265.00}{\text{Span in feet}}$ .

Maximum shear = 29.87 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.44'.

| 1              | ons.                     | sá.                   |                 | Dist                         |                              | rt, in fee<br>ms, for s      |                              |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square fcot. | 250 lbs.<br>per square foot. |
| 6              | 44.17                    | 0.03                  | 349             |                              |                              |                              |                              |                              |                              |
| 8              | 33.13                    | 0.07                  | 465             |                              | }                            |                              |                              | 41.41                        | 33.13                        |
| IO             | 26.50                    | 0.11                  | 582             |                              | 42.40                        | 35.33                        | 30.29                        | 26.50                        | 21.20                        |
| 12             | 22.08                    | 0.15                  | 698             | 36.8o                        | 29.44                        | 24.53                        | 21.03                        | 18.40                        | 14.72                        |
| 14             | 18.93                    | 0.21                  | 814             | 27.04                        | 21.63                        | 18.03                        | 15.45                        | 13.52                        | 10.81                        |
| 16             | 16.56                    | 0.27                  | 931             | 20.70                        | 16.56                        | 13.80                        | 11.83                        | 10.35                        | 8.28                         |
| 18             | 14.72                    | 0.34                  | 1047            | 16.36                        | 13.09                        | 10.91                        | 9.35                         | 8.18                         | 6.54                         |
| 20             | 13.25                    | 0.43                  | 1163            | 13.25                        | 10.60                        | 8.83                         | 7.57                         | 6.62                         | 5.30                         |
| 22             | 12.05                    | 0.52                  | 1280            | 10.95                        | 8.76                         | 7.30                         | 6.26                         | 5.47                         | 4.38                         |
| 24             | 11.04                    | 0.62                  | 1396            | 9.20                         | 7.36                         | 6.13                         | 5.26                         | 4.60                         | 3.68                         |
| 26             | 10.19                    | 0.73                  | 1513            | 7.84                         | 6.27                         | 5.23                         | 4.48                         | 3.92                         | 3.14                         |
| 28             | 9.46                     | 0.84                  | 1629            | 6.76                         | 5.41                         | 4.51                         | 3.86                         | 3.38                         | 2.70                         |
| 30             | 8.83                     | 0.96                  | 1745            | 5.89                         | 4.71                         | 3.93                         | 3.37                         | 2.94                         | 2.36                         |
| 32             | 8.28                     | 1.10                  | 1861            | 5.18                         | 4.14                         | 3.45                         | 2.96                         | 2.59                         | 2.07                         |
| 34             | 7.79                     | 1.25                  | 1978            | <b>4.5</b> 8                 | 3.66                         | 3.05                         | 2.62                         | 2.29                         | 1.83                         |

#### IRON CHANNELS.

## 15" CHANNEL. SHAPE No. 31. 125 LBS. PER YARD.

Depth, 15". Width of flange, 363". Thickness of web, 31".

Safe load in nett tons =  $\frac{211.00}{\text{Span in feet}}$ .

Maximum shear = 13.23 tons.

Span limit for uniformly distributed load of twice the maximum shear = 8.00'.

|                | ons.                     | rå                    |                 | Dist                         | ance apa<br>bea              |                              | t, centre<br>safe loads      |                             | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 35.17                    | 0.03                  | 250             |                              |                              |                              |                              |                             |                              |
| 8              | 26.38                    | 0.07                  | 333             |                              |                              |                              |                              | 32.97                       | 26.38                        |
| Io             | 21.10                    | 0.11                  | 417             |                              | 33.76                        | 28.13                        | 24. I I                      | 21.10                       | 16.88                        |
| 12             | 17.58                    | 0.15                  | 500             | 29.30                        | 23.44                        | 19.53                        | 16.74                        | 14.65                       | 11.72                        |
| 14             | 15.07                    | 0.21                  | 583             | 21,53                        | 17.22                        | 14.35                        | 12.30                        | 10.76                       | 8.61                         |
| 16             | 13.19                    | 0.27                  | 667             | 16.49                        | 13.19                        | 10.99                        | 9.42                         | 8.24                        | 6.60                         |
| 18             | 11.72                    | 0.34                  | 750             | 13.02                        | 10.42                        | 8.68                         | 7.44                         | 6.51                        | 5.21                         |
| 20             | 10.55                    | 0.43                  | 833             | 10.55                        | 8.44                         | 7.03                         | 6.03                         | 5.27                        | 4.22                         |
| 22             | 9.59                     | 0.52                  | 917             | 8.72                         | 6.98                         | 5.81                         | 4.98                         | 4.36                        | 3.49                         |
| 24             | 8.79                     | 0.62                  | 1000            | 7.33                         | 5.86                         | 4.89                         | 4.19                         | 3.66                        | 2.93                         |
| 26             | 8.12                     | 0.73                  | 1083            | 6.25                         | 5.00                         | 4.17                         | 3.57                         | 3.12                        | 2.50                         |
| 28             | 7.54                     | 0.84                  | 1167            | 5.39                         | 4.31                         | 3.59                         | 3.08                         | 2.69                        | 2.16                         |
| 30             | 7.03                     | 0.96                  | 1250            | 4.69                         | 3.75                         | 3.13                         | 2.68                         | 2.34                        |                              |
| 32             | 6.59                     | 1.10                  | 1333            | 4.12                         | 3.30                         | 2.75                         | 2.35                         | 2.06                        |                              |
| 34             | 6.21                     | 1.25                  | 1417            | 3.65                         | 2.92                         | 2.43                         | 2.09                         |                             |                              |

### IRON CHANNELS.

#### 12" CHANNEL. SHAPE No. 32. 150 LBS. PER YARD.

Depth, 12". Width of flange, 31/2". Thickness of web, 15".

Safe load in nett tons =  $\frac{170.00}{\text{Span in feet}}$ .

Maximum shear = 30.49 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.80'.

|                | ons,                     | ro.                   |                 | Dist                         |                              |                              | et, centre<br>safe loads     | to centr                     | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 28.33                    | 0.05                  | 300             |                              |                              |                              |                              |                              |                              |
| 8              | 21.25                    | 0.08                  | 400             |                              |                              | 35.42                        | 30.36                        | 26.56                        | 21.25                        |
| 10             | 17.00                    | 0.13                  | 500             | 34.00                        | 27.20                        | 22.67                        | <b>1</b> 9.43                | 17.00                        | 13.60                        |
| 12             | 14.17                    | 0.19                  | 600             | 23.62                        | 18.90                        | 15.75                        | 13.50                        | 11.81                        | 9.45                         |
| 14             | 12.14                    | 0.26                  | 700             | 17.34                        | 13.87                        | 11.56                        | 9.91                         | 8.67                         | 6.94                         |
| 16             | 10.63                    | 0.34                  | 800             | 13.29                        | 10.63                        | 8.86                         | 7.59                         | 6.64                         | 5.32                         |
| 18             | 9.44                     | 0.43                  | 900             | 10.49                        | 8.39                         | 6.99                         | 5.99                         | 5.24                         | 4.20                         |
| 20             | 8.50                     | 0.54                  | 1000            | 8.50                         | 6.80                         | 5.67                         | 4.86                         | 4.25                         | 3.40                         |
| 22             | 7.73                     | 0.65                  | 1100            | 7.03                         | 5.62                         | 4.69                         | 4.02                         | 3.51                         | 2.81                         |
| 24             | 7.08                     | 0.77                  | 1200            | 5.90                         | 4.72                         | 3.93                         | 3.37                         | 2.95                         | 2.36                         |
| 26             | 6.54                     | 0.90                  | 1300            | 5.03                         | 4.02                         | 3.35                         | 2.87                         | 2.51                         | 2.01                         |
| 28             | 6.07                     | 1.05                  | 1400            | 4.34                         | 3.47                         | 2.89                         | 2.48                         | 2.17                         |                              |
| 30             | 5.67                     | 1.20                  | 1500            | 3.78                         | 3.02                         | 2.52                         | 2.16                         |                              |                              |

### IRON CHANNELS.

#### 12" CHANNEL. SHAPE No. 32. 90 LBS. PER YARD.

Depth, 12". Width of flange, 3". Thickness of web, 7".

Safe load in nett tons =  $\frac{121.00}{\text{Span in feet}}$ .

Maximum shear = 10.45 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.79'.

| 0.17           |                          |                       |                 |                              |                              |                              |                              |                              |                              |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|
|                | ons,                     | så.                   |                 | Dist                         | ance apa<br>bea              | rt, in fee<br>ms, for s      |                              |                              | e of                         |  |  |  |
| Span, in feet. | Safe Ioad, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |
| 6              | 20.17                    | 0.05                  | 180             |                              |                              |                              |                              | 33.61                        | 26.89                        |  |  |  |
| 8              | 15.13                    | 0.08                  | 240             |                              | 30.26                        | 25.22                        | 21.62                        | 18.91                        | 15.13                        |  |  |  |
| 10             | 12.10                    | 0.13                  | 300             | 24.20                        | 19.36                        | 16.13                        | 13.83                        | 12.10                        | 9.68                         |  |  |  |
| 12             | 10.08                    | 0.19                  | 360             | 16.80                        | 13.44                        | 11.20                        | 9.60                         | 8.40                         | 6.72                         |  |  |  |
| 14             | 8.64                     | 0.26                  | 420             | 12.34                        | 9.87                         | 8.23                         | 7.05                         | 6.17                         | 4.94                         |  |  |  |
| 16             | 7.56                     | 0.34                  | 480             | 9.45                         | 7.56                         | 6.30                         | 5.40                         | 4.72                         | 3.78                         |  |  |  |
| 18             | 6.72                     | 0.43                  | 540             | 7.47                         | 5.98                         | 4.98                         | 4.27                         | 3.73                         | 2.99                         |  |  |  |
| 20             | 6.05                     | 0.54                  | 600             | 6.05                         | 4.84                         | 4.03                         | 3.46                         | 3.02                         | 2.42                         |  |  |  |
| 22             | 5.50                     | 0.65                  | 660             | 5.00                         | 4.00                         | 3.33                         | 2.86                         | 2.50                         | 2.00                         |  |  |  |
| 24             | 5.04                     | 0.77                  | 720             | 4.20                         | 3.36                         | 2.80                         | 2.40                         | 2.10                         |                              |  |  |  |
| 26             | 4.65                     | 0.90                  | 780             | 3.58                         | 2.86                         | 2.39                         | 2.05                         |                              |                              |  |  |  |
| 28             | 4.32                     | 1.05                  | 840             | 3.09                         | 2.47                         | 2.06                         |                              |                              |                              |  |  |  |
| 30             | 4.03                     | 1.20                  | 900             | 2.69                         | 2.15                         |                              |                              |                              |                              |  |  |  |

#### 12" CHANNEL. SHAPE No. 34. 841/2 LBS. PER YARD.

Depth, 12". Width of flange, 215". Thickness of web, 1/2".

Safe load in nett tons =  $\frac{102.00}{\text{Span in feet}}$ .

Maximum shear = 13.00 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.96'.

|                | ons.                     | sá.                   |                 | Dist                         |                              | ert, in fee<br>ems, for s    |                              |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam, | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot, |
| 6              | 17.00                    | 0.05                  | 179             |                              |                              |                              | 32.38                        | 28.33                        | 22.66                        |
| 8              | 12.75                    | 0.08                  | 225             |                              | 25.50                        | 21.25                        | 18.22                        | 15.92                        | 12.75                        |
| 10             | 10.20                    | 0.13                  | 282             | 20.40                        | 16.32                        | 13.60                        | 11.65                        | 10.20                        | 8.16                         |
| 12             | 8.50                     | 0.19                  | 338             | 14.16                        | 11.33                        | 9.44                         | 8.09                         | 7.08                         | 5.66                         |
| 14             | 7.28                     | 0.26                  | 394             | 10.40                        | 8.32                         | 6.93                         | 5.94                         | 5.20                         | 4.16                         |
| 16             | 6.37                     | 0.34                  | 450             | 7.96                         | 6.37                         | 5.31                         | 4.50                         | 3.98                         | 3.18                         |
| 18             | 5.66                     | 0.43                  | 507             | 6.29                         | 5.03                         | 4.19                         | 3.59                         | 3.14                         | 2.51                         |
| 20             | 5.10                     | 0.54                  | 564             | 5.10                         | 4.08                         | 3.40                         | 2.91                         | 2.55                         | 2.04                         |
| 22             | 4.63                     | 0.65                  | 6 <b>1</b> 9    | 4.21                         | 3.36                         | 2.81                         | 2.40                         | 2.11                         |                              |
| 24             | 4.25                     | 0.77                  | 676             | 3.54                         | 2.83                         | 2.36                         | 2.02                         |                              |                              |
| 26             | 3.92                     | 0.90                  | 732             | 3.01                         | 2.41                         | 2.01                         |                              |                              |                              |
| 28             | 3.64                     | 1.05                  | 788             | 2.60                         | 2.09                         |                              |                              |                              |                              |
| 30             | 3.40                     | 1.20                  | 846             | 2.26                         |                              |                              |                              |                              |                              |

#### IRON CHANNELS.

#### 12" CHANNEL. SHAPE No. 34. 62 LBS. PER YARD.

Depth, 12". Width of flange, 23/4". Thickness of web, 5".

Safe load in nett tons =  $\frac{84.00}{\text{Span in feet}}$ .

Maximum shear = 5.70 tons.

Span limit for uniformly distributed load of twice the maximum shear = 7.37'.

|                | ions.                    | vå                   |                 | Dist                         |                              | rt, in fee<br>ms, for s      |                              |                              | e of                         |  |  |  |  |
|----------------|--------------------------|----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |  |
| 6.             | 14.00                    | 0.05                 | 124             | 46.66                        | 37.33                        | 31.11                        | 26.66                        | 23.33                        | 18.66                        |  |  |  |  |
| 8              | 10.50                    | 0.08                 | 164             | 26.25                        | 21.00                        | 17.50                        | 15.00                        | 13.12                        | 10.50                        |  |  |  |  |
| 10             | 8.40                     | 0.13                 | 206             | 16.8o                        | 13.44                        | 11.20                        | 9.60                         | 8.40                         | 6.72                         |  |  |  |  |
| I 2            | 7.00                     | 0.19                 | 248             | 11.66                        | 9.33                         | 7.77                         | 6.66                         | 5.83                         | 4.66                         |  |  |  |  |
| 14             | 6.00                     | 0.26                 | 289             | 8.56                         | 6.85                         | 5.71                         | 4.89                         | 4.28                         | 3.42                         |  |  |  |  |
| 16             | 5.25                     | 0.34                 | 331             | 6.56                         | 5.25                         | 4.37                         | 3.75                         | 3.28                         | 2.62                         |  |  |  |  |
| 18             | 4.66                     | 0.43                 | 375             | 5.17                         | 4.14                         | 3.45                         | 2.95                         | 2.59                         |                              |  |  |  |  |
| 20             | 4.20                     | 0.54                 | 417             | 4.20                         | 3.36                         | 2.80                         | 2.40                         |                              |                              |  |  |  |  |
| 22             | 3.82                     | 0.65                 | 454             | 3.47                         | 2.77                         | 2.31                         |                              |                              |                              |  |  |  |  |
| 24             | 3.50                     | 0.77                 | 496             | 2.91                         | 2.33                         |                              |                              |                              |                              |  |  |  |  |
| 26             | 3.23                     | 0.90                 | 537             | 2.48                         |                              |                              |                              |                              |                              |  |  |  |  |
| 28             | 3.00                     | 1.05                 | 578             |                              |                              |                              |                              |                              |                              |  |  |  |  |
| 30             | 2.80                     | 1.20                 | 620             |                              |                              |                              |                              |                              |                              |  |  |  |  |

## IRON CHANNELS.

#### 10" CHANNEL. SHAPE No. 35, 128 LBS. PER YARD.

Depth, 10". Width of flange, 31/2". Thickness of web, 1116".

Safe load in nett tons =  $\frac{112.00}{\text{Span in feet}}$ .

Maximum shear = 30.16 tons.

Span limit for uniformly distributed load of twice the maximum shear = 1.86'.

|                | ons.                     | ú                     |                 | Dist                         |                              |                              | t, centre<br>afe loads       | to centre                   | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | r8.66                    | 0.04                  | 256             |                              |                              |                              |                              | 31.10                       | 24.80                        |
| 8              | 14.00                    | 0.09                  | 341             |                              | 28.00                        | 23.33                        | 20.00                        | 17.50                       | 14.00                        |
| 10             | 11.20                    | 0.15                  | 426             | 22.40                        | 17.92                        | 14.93                        | 12.80                        | 11.20                       | 8.96                         |
| 12             | 9.33                     | 0.22                  | 512             | 15.55                        | 12.44                        | 10.36                        | 8.88                         | 7.77                        | 6.22                         |
| 14             | 8.00                     | 0.30                  | 597             | 11.42                        | 9.14                         | 7.62                         | 6.53                         | 5.71                        | 4.57                         |
| 16             | 7.00                     | 0.40                  | 682             | 8.75                         | 7.00                         | 5.83                         | 5.00                         | 4.37                        | 3.50                         |
| 18             | 6.22                     | 0.50                  | 768             | 6.91                         | 5.52                         | 4.61                         | 3.94                         | 3.45                        | 2.76                         |
| 20             | 5.60                     | 0.62                  | 852             | 5.60                         | 4.48                         | 3.73                         | 3.20                         | 2.80                        | 2.24                         |
| 22             | 5.09                     | 0.76                  | 938             | 4.63                         | 3.70                         | 3.08                         | 2.64                         | 2.31                        |                              |
| 24             | 4.66                     | 0.92                  | 1024            | 3.88                         | 3.11                         | 2.59                         | 2.22                         |                             |                              |
| 26             | 4.31                     | 1.08                  | 1109            | 3.31                         | 2.59                         | 2.21                         |                              |                             |                              |
| 28             | 4.00                     | 1.24                  | 1194            | 2.85                         | 2.28                         |                              |                              |                             |                              |
| 30             | 3.73                     | 1.42                  | 1278            | 2.42                         |                              |                              |                              |                             | ,                            |

## IRON CHANNELS.

#### 10" CHANNEL. SHAPE No. 35, 60 LBS. PER YARD.

Depth, 10". Width of flange, 233". Thickness of web, 38".

Safe load in nett tons =  $\frac{66.00}{\text{Span in feet}}$ .

Maximum shear = 7.61 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.34'.

|                | ons.                     |                       |                 | Dist                         | ance apa<br>bea              | rt, in fee<br>ms, for s      |                              |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6.             | 11.00                    | 0.04                  | I 20            | 36.66                        | 29.33                        | 24.44                        | 20.95                        | 18.33                        | 14.66                        |
| 8              | 8.25                     | 0.09                  | 160             | 20.62                        | 16.50                        | 13.75                        | 11.78                        | 10.31                        | 8.25                         |
| IO             | 6.60                     | 0.15                  | 200             | 13.20                        | 10.56                        | 8.80                         | 7.54                         | 6.60                         | 5.28                         |
| 12             | 5.50                     | 0.20                  | 240             | 9.16                         | 7.33                         | 6.11                         | 5.23                         | 4.58                         | 3.66                         |
| 14             | 4.71                     | 0.30                  | 280             | 6.73                         | 5.38                         | 4.48                         | 3.84                         | 3.36                         | 2.69                         |
| 16             | 4.12                     | 0.40                  | 320             | 5.15                         | 4.12                         | 3.43                         | 2.94                         | 2.57                         | 2.06                         |
| 18             | 3.66                     | 0.50                  | .360            | 4.06                         | 3.25                         | 2.72                         | 2.32                         |                              |                              |
| 20             | 3.30                     | 0.62                  | 400             | 3.30                         | 2.64                         | 2.20                         |                              |                              |                              |
| 22             | 3.00                     | 0.76                  | 440             | 2.72                         | 2.18                         |                              |                              |                              |                              |
| 24             | 2.75                     | 0.92                  | 480             | 2.29                         | 1.83                         |                              |                              |                              |                              |
| 26             | 2.53                     | 1.08                  | 520             | 1.95                         |                              |                              |                              |                              |                              |
| 28             | 2.35                     | I.24                  | 560             |                              |                              |                              |                              |                              |                              |
| 30             | 2.20                     | 1.42                  | 600             |                              |                              |                              |                              |                              |                              |

#### 10" CHANNEL. SHAPE No. 36. 62 LBS. PER YARD.

Depth, 10". Width of flange,  $2\frac{5}{8}$ ". Thickness of web,  $\frac{7}{16}$ ".

Safe load in nett tons =  $\frac{64.00}{\text{Span in feet}}$ .

Maximum shear = 9.81 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.26'.

|                | ons,                     | rô.                   |                 | Dist                         |                              | rt, in fee<br>ms, for s      |                              |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet, | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam, | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 10.67                    | 0.04                  | 124             | 35.57                        | 28.46                        | 23.71                        | 20.33                        | 17.78                        | 14.23                        |
| 8              | 8.00                     | 0.09                  | 165             | 20.00                        | 16.00                        | 13.33                        | 11.43                        | 10.00                        | 8.00                         |
| 10             | 6.40                     | 0.15                  | 207             | 12.80                        | 10.24                        | 8.53                         | 7.31                         | 6.40                         | 5.12                         |
| 12             | 5.33                     | 0.22                  | 248             | 8.88                         | 7.10                         | 5.93                         | 5.07                         | 4.44                         | 3.55                         |
| 14             | 4.57                     | 0.30                  | 289             | 6.53                         | 5.22                         | 4.35                         | 3.74                         | 3.27                         | 2.61                         |
| 16             | 4.00                     | 0.40                  | 331             | 5.00                         | 4.00                         | 3.33                         | 2.86                         | 2.50                         | 2.00                         |
| 18             | 3.55                     | 0.50                  | 372             | 3.94                         | 3.15                         | 2.62                         | 2.25                         | 1.97                         | 1.58                         |
| 20             | 3.20                     | 0.62                  | 413             | 3.20                         | 2.56                         | 2.13                         | 1.83                         | 1.60                         | 1.28                         |
| 22             | 2.91                     | 0.76                  | 454             | 2.65                         | 2.12                         | 1.76                         | 1.51                         | 1.32                         | 1.06                         |
| 24             | 2.67                     | 0.92                  | 496             | 2.23                         | 1.78                         | 1.49                         | 1.28                         | 1.12                         |                              |
| 26             | 2.46                     | 1.08                  | 537             | 1.88                         | 1.50                         | 1.25                         | 1.08                         |                              |                              |
| 28             | 2.29                     | 1.24                  | 579             | 1.64                         | 1.31                         | 1.09                         |                              |                              |                              |
| 30             | 2.13                     | 1.42                  | 620             | 1.42                         | 1.14                         |                              |                              |                              |                              |

#### 10" CHANNEL. SHAPE No. 36. 48 LBS. PER YARD.

Depth, 10". Width of flange, 21/2". Thickness of web, 156".

Safe load in nett tons =  $\frac{52.00}{\text{Span in feet}}$ .

Maximum shear = 5.58 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.66'.

|                | ons.                     | sá.                  |                 | Dist                         |                              | rt, in fee<br>ms, for s      |                              | to centr<br>s of             | e of                         |
|----------------|--------------------------|----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square fcot. | 250 lbs.<br>per square foot. |
| 6              | 8.66                     | 0.04                 | 96              | 28.87                        | 23.09                        | 19.24                        | 16.42                        | 14.43                        | 11.54                        |
| 8              | 6.50                     | 0.09                 | 128             | 16.25                        | 13.00                        | 10.83                        | 9.30                         | 8.12                         | 6.50                         |
| IO             | 5.20                     | 0.15                 | 160             | 10.40                        | 8.32                         | 6.93                         | 5.94                         | 5.20                         | 4.16                         |
| I 2            | 4.33                     | 0.22                 | 192             | 7.22                         | 5.77                         | 4.81                         | 4.12                         | 3.61                         | 2.89                         |
| 14             | 3.71                     | 0.30                 | 224             | 5.30                         | 4.24                         | 3.53                         | 3.03                         | 2.65                         | 2.12                         |
| 16             | 3.25                     | 0.40                 | 256             | 4.06                         | 3.25                         | 2.71                         | 2.32                         |                              |                              |
| 18             | 2.88                     | 0.50                 | 288             | 3.20                         | 2.56                         |                              |                              |                              |                              |
| 20             | 2.60                     | 0.62                 | 320             | 2.60                         |                              |                              |                              |                              |                              |
| 22             | 2.36                     | 0.76                 | 352             |                              |                              |                              |                              |                              |                              |
| 24             | 2.17                     | 0.92                 | 384             |                              |                              |                              |                              |                              |                              |
| 26             | 2.00                     | 1.08                 | 416             |                              |                              |                              |                              |                              |                              |
| 28             | 1.86                     | 1.24                 | 448             |                              |                              |                              |                              |                              |                              |
| 30             | 1.73                     | 1.42                 | 480             |                              |                              |                              |                              |                              |                              |

9" CHANNEL. SHAPE No. 37. 52 LBS. PER YARD.

Depth, 9". Width of flange,  $2\frac{1}{2}$ ". Thickness of web,  $\frac{11}{32}$ ".

Safe load in nett tons =  $\frac{53.00}{\text{Span in feet}}$ .

Maximum shear = 6.37 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.16'.

|                | ons.                     | vá                    |                 | Dist                         | ance apa<br>bea              |                              | et, centre<br>safe load:     |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square f.ot. | 250 lbs.<br>per square foot. |
| 6              | 8.83                     | 0.03                  | 104             | 29.43                        | 23.54                        | 19.62                        | 16.82                        | 14.71                        | 11.77                        |
| 8              | 6.63                     | 0.10                  | 139             | 16.58                        | 13.26                        | 11.05                        | 9.48                         | 8.29                         | 6.63                         |
| Io             | 5.30                     | 0.18                  | 173             | 10.60                        | 8.48                         | 7.07                         | 6.06                         | 5.30                         | 4.24                         |
| 12             | 4.41                     | 0.26                  | 208             | 7.33                         | 5.86                         | 4.89                         | 4.18                         | 3.67                         | 2.93                         |
| 14             | 3.78                     | 0.35                  | 243             | 5.40                         | 4.32                         | 3.60                         | 3.09                         | 2.70                         | 2.16                         |
| 16             | 3.31                     | 0.46                  | 277             | 4.14                         | 3.31                         | 2.76                         | 2.36                         | 2.07                         | 1.65                         |
| 18             | 2.95                     | 0.58                  | 312             | 3.28                         | 2.62                         | 2.19                         | 1.88                         | 1.64                         | 1.31                         |
| 20             | 2.65                     | 0.71                  | 347             | 2.65                         | 2.12                         | 1.77                         | 1.52                         | i.32                         | 1.06                         |
| 22             | 2.41                     | 0.86                  | 381             | 2.19                         | 1.75                         | 1.46                         | 1.25                         | 1.10                         |                              |
| 24             | 2.20                     | 1.03                  | 416             | 1.83                         | 1.46                         | I.22                         | 1.04                         |                              |                              |
| 26             | 2.04                     | 1.20                  | 451             | 1.57                         | 1.26                         | 1.05                         |                              |                              |                              |
| 28             | 1.90                     | 1.40                  | 485             | 1.36                         | 1.09                         |                              |                              |                              |                              |
| 30             | 1.77                     | 1.60                  | 520             | 1.18                         |                              |                              |                              |                              |                              |

#### IRON CHANNELS.

## 9" CHANNEL. SHAPE No. 38. 37 LBS. PER YARD.

Depth, 9". Width of flange,  $2\frac{3}{16}$ ". Thickness of web,  $\frac{1}{4}$ ".

Safe load in nett tons =  $\frac{37.00}{\text{Span in feet}}$ .

Maximum shear = 3.69 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.0r'.

| <u></u>        |                          |                       |                 |                                              |                              |                              |                              |                              |                              |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|----------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|
|                | ons.                     | ró.                   |                 | Dist                                         |                              | rt, in fee<br>ms, for s      |                              | to centre<br>s of            | e of                         |  |  |  |
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                 | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |
| 6              | 6.17                     | 0.03                  | 74              | 20.56                                        | 16.45                        | 13.71                        | 11.75                        | 10.28                        | 8.23                         |  |  |  |
| 8              | 4.63                     | 0.10                  | 87              | 11.57                                        | 9.26                         | 7.71                         | 6.61                         | 5.78                         | 4.63                         |  |  |  |
| 10             | 3.70                     | 0.18                  | 123             | 7.40                                         | 5.92                         | 4.93                         | 4.23                         | 3.70                         | 2.96                         |  |  |  |
| I 2            | 3.17                     | 0.26                  | 148             | 5.29                                         | 4.23                         | 3.53                         | 3.02                         | 2.64                         | 2.13                         |  |  |  |
| 14             | 2.64                     | 0.35                  | 173             | 3.77                                         | 3.02                         | 2.51                         | 2.15                         | 1.89                         | 1.51                         |  |  |  |
| 16             | 2.31                     | 0.46                  | 197             | 2.89                                         | 2.31                         | 1.93                         | 1.65                         | 1.45                         | 1.16                         |  |  |  |
| 18             | 2.06                     | 0.58                  | 222             | 2.29                                         | 1.83                         | 1.53                         | 1.16                         | 1.15                         |                              |  |  |  |
| 20             | 1.85                     | 0.71                  | 247             | 1.85                                         | 1.48                         | 1.23                         | 1.06                         |                              |                              |  |  |  |
| 22             | 1.68                     | 0.86                  | 27 I            | 1.53                                         | I.22                         | 1.02                         |                              |                              |                              |  |  |  |
| 24             | 1.54                     | 1.03                  | 296             | 1.28                                         | I.02                         |                              |                              |                              |                              |  |  |  |
| 26             | 1.42                     | 1.20                  | 321             | 1.09                                         |                              |                              |                              |                              |                              |  |  |  |
| 28             | 1.32                     | 1.40                  | 345             |                                              |                              |                              |                              |                              |                              |  |  |  |
| 30             | 1.23                     | 1.60                  | 370             | Span limit for tabular safe load $= 5.40'$ . |                              |                              |                              |                              |                              |  |  |  |

## IRON CHANNELS.

8" CHANNEL. SHAPE No. 39. 40 LBS. PER YARD.

Depth, 8". Width of flange,  $2\frac{5}{16}$ ". Thickness of web,  $\frac{5}{16}$ ".

Safe load in nett tons =  $\frac{36.00}{\text{Span in feet}}$ .

Maximum shear = 5.25 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.43'.

| rt, in fee                   | et. centre                     | to contr                                                      |                                                                                                   |
|------------------------------|--------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| ms, for s                    | safe load                      |                                                               | e of                                                                                              |
| 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.   | 200 lbs.<br>per square foot.                                  | 250 lbs.<br>per square foot.                                                                      |
| 13.30                        | 11.42                          | 10.00                                                         | 8.00                                                                                              |
| 7.50                         | 6.42                           | 5.62                                                          | 4.50                                                                                              |
| 4.80                         | 4.11                           | 3.60                                                          | 2.88                                                                                              |
| 3.33                         | 2.85                           | 2.50                                                          | 2.00                                                                                              |
| 2.46                         | 2.11                           | 1.85                                                          | 1.48                                                                                              |
| 1.86                         | 1.60                           | 1.40                                                          | 1.12                                                                                              |
| 1.48                         | 1.26                           | 1.11                                                          |                                                                                                   |
| 1.20                         | 1.02                           |                                                               |                                                                                                   |
|                              | 13.30 7.50 4.80 3.33 2.46 1.86 | 13.30 11.42 7.50 6.42 4.80 4.11 3.33 2.85 2.46 2.11 1.86 1.60 | 13.30 11.42 10.00  7.50 6.42 5.62  4.80 4.11 3.60  3.33 2.85 2.50  2.46 2.11 1.85  1.86 1.60 1.40 |

# IRON CHANNELS.

#### 8" CHANNEL. SHAPE No. 40. 30 LBS. PER YARD.

Depth, 8". Width of flange,  $2\frac{1}{16}$ ". Thickness of web,  $\frac{1}{4}$ ".

Safe load in nett tons =  $\frac{26.00}{\text{Span in feet}}$ .

Maximum shear = 3.58 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.63'.

|                | ett tons.                | rő.                   |                 | Dist                         | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                                           |                              |                              |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|--------------------------------------------------------------------------|------------------------------|-------------------------------------------|------------------------------|------------------------------|--|--|--|
| Span, 1n feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot.                                             | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.              | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot, |  |  |  |
| 6              | 4.33                     | 0.05                  | 60              | 14.43                        | 11.54                                                                    | 9.62                         | 8.27                                      | 7.21                         | 5.77                         |  |  |  |
| 8              | 3.25                     | 0.11                  | 80              | 8.13                         | 6.50                                                                     | 5.42                         | 4.65                                      | 4.07                         | 3.25                         |  |  |  |
| 10             | 2.60                     | 0.20                  | 100             | 5.20                         | 4.16                                                                     | 3.47                         | 2.97                                      | 2.60                         | 2.08                         |  |  |  |
| 12             | 2.17                     | 0.30                  | I 20            | 3.62                         | 2.90                                                                     | 2.41                         | 2.06                                      | 1.81                         | 1.45                         |  |  |  |
| 14             | 1.86                     | 0.40                  | 140             | 2.64                         | 2.11                                                                     | 1.76                         | 1.51                                      | 1.32                         | 1.06                         |  |  |  |
| 16             | 1.63                     | 0.50                  | 160             | 2 04                         | 1.63                                                                     | 1.38                         | 1.17                                      | 1.02                         |                              |  |  |  |
|                |                          |                       |                 |                              |                                                                          |                              |                                           |                              |                              |  |  |  |
| 18             | 1.44                     | 0.66                  | 180             | 1.60                         | 1.28                                                                     | 1.07                         | Span limit for tabular safe load = 5.10'. |                              |                              |  |  |  |
| 20             | 1.30                     | 0.80                  | 200             | 1.30                         | 1.04                                                                     |                              |                                           |                              |                              |  |  |  |

# IRON CHANNELS.

#### 7" CHANNEL. SHAPE No. 41, 35 LBS. PER YARD.

Depth, 7". Width of flange, 21/4". Thickness of web, 5".

Safe load in nett tons =  $\frac{27.00}{\text{Span in feet}}$ .

Maximum shear = 4.91 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.75'.

|                | ons.                     | s,                    |                 | Dist                         |                              | rt, in fee<br>ms, for s      |                                |                              | e of                         |  |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|--------------------------------|------------------------------|------------------------------|--|--|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot, | 175 lbs.<br>per square foot.   | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |  |
|                |                          |                       |                 |                              |                              |                              |                                |                              |                              |  |  |  |  |
| 6              | 4.50                     | 0.05                  | 70              | 15.00                        | 12.00                        | 10.00                        | 8.57                           | 7.50                         | 6.00                         |  |  |  |  |
| 8              | 3.37                     | 0.13                  | 93              | 8.43                         | 6.74                         | 5.62                         | 4.82                           | 4.21                         | 3.37                         |  |  |  |  |
| IO             | 2.70                     | 0.23                  | 117             | 5.40                         | 4.32                         | 3.60                         | 3.09                           | 2.70                         | 2.16                         |  |  |  |  |
| 12             | 2.25                     | 0.34                  | 140             | 3.75                         | 3.00                         | 2.50                         | 2.14                           | 1.88                         | 1.50                         |  |  |  |  |
| 14             | 1.93                     | 0.49                  | 163             | 2.76                         | 2.21                         | 1.84                         | 1.72                           | 1.38                         | 1.11                         |  |  |  |  |
|                |                          |                       |                 |                              |                              |                              |                                |                              |                              |  |  |  |  |
|                |                          |                       |                 |                              |                              |                              |                                |                              |                              |  |  |  |  |
| 16             | 1.68                     | 0.60                  | 187             | 2.10                         | 1.68                         | 1.40                         | 1.20                           | 1.05                         |                              |  |  |  |  |
| 18             | 1.50                     | 0.76                  | 210             | 1.67                         | 1.34                         | 1.11                         | Sr                             | an lin                       | nit                          |  |  |  |  |
| 20             | 1.35                     | 0.94                  | 233             | 1.35                         | 1.08                         |                              | for tabular safe load = 5.70'. |                              |                              |  |  |  |  |
|                |                          |                       |                 |                              |                              |                              |                                |                              |                              |  |  |  |  |

### IRON CHANNELS.

#### 7" CHANNEL. SHAPE No. 42. 25 LBS. PER YARD.

Depth, 7". Width of flange, 2". Thickness of web,  $\frac{7}{32}$ ".

Safe load in nett tons =  $\frac{20.00}{\text{Span in feet}}$ .

Maximum shear = 2.74 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.65'.

|                | t tons.                  |                       |                 | Dist                         | ~                                         | rt, in fee<br>ms, for s      |                              | to centre                   | e of                         |  |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|-------------------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot.              | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs<br>per square foot. | 250 lbs.<br>per square fcot. |  |
| 6              | 3.33                     | 0.05                  | 50              | 11.10                        | 8.88                                      | 7.40                         | 6.34                         | 5.55                        | 4.44                         |  |
| 8              | 2.75                     | 0.13                  | 67              | 6.87                         | 5.50                                      | 4.58                         | 3.92                         | 3.44                        | 2.75                         |  |
| 10             | 2.00                     | 0.23                  | 83              | 4.00                         | 3.20                                      | 2.67                         | 2.57                         | 2.00                        | 1.60                         |  |
| 12             | 1.67                     | 0.34                  | 100             | 2.78                         | 2.22                                      | 1.85                         | 1.59                         | 1.39                        | 1.11                         |  |
| 14             | 1.43                     | 0.49                  | 117             | 2.04                         | 1.63                                      | 1.36                         | 1.17                         | 1.02                        |                              |  |
|                |                          |                       |                 |                              |                                           |                              |                              |                             |                              |  |
| 16             | 1.25                     | 0.60                  | 133             | 1.56                         | 1.25                                      | 1.04                         |                              |                             | ,                            |  |
| 18             | 1.11                     | 0.76                  | 150             | 1.23                         |                                           |                              |                              | 1                           |                              |  |
| 20             | 1.00                     | 0.94                  | 167             | 1.00                         | Span limit for tabular safe load = 5.10'. |                              |                              |                             |                              |  |

## IRON CHANNELS.

#### 6" CHANNEL. SHAPE No. 43. 30 LBS. PER YARD.

. Depth, 6". Width of flange, 2". Thickness of web, 1/4".

Safe load in nett tons =  $\frac{22.00}{\text{Span in feet}}$ .

Maximum shear = 3.30 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.30'.

|                | ons.                     | , så                  |                 | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |                              |  |  |
|----------------|--------------------------|-----------------------|-----------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                                             | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs,<br>per square foot. | 250 lbs.<br>per square foot. |  |  |
| 6              | 3.33                     | 0.05                  | 60              | 11.11                                                                    | 8.88                         | 7.40                         | 6.34                         | 5.55                         | 4.44                         |  |  |
| 8              | 2.75                     | 0.15                  | 80              | 6.87                                                                     | 5.49                         | 4.58                         | 3.92                         | 3.43                         | 2.74                         |  |  |
| 10             | 2.20                     | 0.26                  | 100             | 4.40                                                                     | 3.52                         | 2.93                         | 2.51                         | 2.20                         | 1.76                         |  |  |
| 12             | 1.83                     | 0.38                  | 120             | 3.05                                                                     | 2.44                         | 2.03                         | 1.74                         | 1.52                         | 1.22                         |  |  |
|                |                          |                       |                 |                                                                          |                              |                              |                              |                              |                              |  |  |
| 14             | 1.57                     | 0.58                  | 140             | 2.25                                                                     | 1.80                         | 1.50                         | 1.28                         | 1.12                         | 0.90                         |  |  |
| 16             | 1.38                     | 0.70                  | 160             | 1.73                                                                     | 1.38                         | 1.15                         |                              |                              |                              |  |  |
| 18             | 1.22                     | 0.87                  | 180             | 1.37                                                                     | 1.09                         |                              | Span                         | limit                        |                              |  |  |
| 20             | 1.10                     | 1.08                  | 200             | 1.10                                                                     |                              | for t                        |                              | safe                         | load                         |  |  |

### IRON CHANNELS.

#### 6" CHANNEL. SHAPE No. 44. 221/2 LBS. PER YARD.

Depth, 6". Width of flange, 111". Thickness of web, 3".

Safe load in nett tons =  $\frac{16.00}{\text{Span in feet}}$ .

Maximum shear = 2.00 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.00'.

|                | ons.                     | rå                    |                 | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |                              |  |  |
|----------------|--------------------------|-----------------------|-----------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                                             | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |
| 6              | 2.67                     | 0.05                  | 45              | 8.90                                                                     | 7.12                         | 5.93                         | 5.08                         | 4.45                         | 3.56                         |  |  |
| 8              | 2.00                     | 0.15                  | 60              | 5.00                                                                     | 4.00                         | 3.33                         | 2.85                         | 2.50                         | 2.00                         |  |  |
| 10             | 1.60                     | 0.26                  | 75              | 3.20                                                                     | 2.56                         | 2.13                         | 1.83                         | 1.60                         | 1.28                         |  |  |
| 12             | 1.33                     | 0.38                  | 90              | 2.22                                                                     | 1.78                         | 1.48                         | 1.26                         | 1.11                         |                              |  |  |
|                |                          |                       |                 |                                                                          |                              |                              |                              |                              |                              |  |  |
| 14             | 1.14                     | 0.58                  | 105             | 1.63                                                                     | 1.30                         | 1.08                         |                              |                              |                              |  |  |
| 16             | 1.00                     | 0.70                  | 120             | 1.25                                                                     | 1.00                         |                              |                              |                              |                              |  |  |
| 18             | 0.89                     | 0.87                  | 135             | Span limit for tabular safe load = 4.20'.                                |                              |                              |                              |                              |                              |  |  |
| 20             | 0.80                     | 1.08                  | 150             |                                                                          |                              |                              |                              |                              |                              |  |  |
|                |                          |                       |                 |                                                                          |                              |                              |                              |                              |                              |  |  |

#### IRON CHANNELS.

## 5" CHANNEL. SHAPE No. 45. 26 LBS. PER YARD.

Safe load in nett tons =  $\frac{15.00}{\text{Span in feet}}$ .

Maximum shear = 2.97 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.53'.

|                | tons.                    | Safe load, in nett tons.  Deflexion, in inches. |                    | Dist                                      |                    | rt, in fee<br>ms, for s |                    | to centre          | e of               |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |
|----------------|--------------------------|-------------------------------------------------|--------------------|-------------------------------------------|--------------------|-------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. |                                                 | Deflexion, in incl | Deflexion, in inch                        | Deflexion, in inch | Deflexion, in inch      | Deflexion, in inch | Deflexion, in inch | Deflexion, in inch | Deflexion, in inch | Deflexion, in inch | Deflexion, in inch | Deflexion, in inch | Deflexion, in inch | Deflexion, in inch | Deflexion, in inch | Deflexion, in incl | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. |
| 6              | 2.50                     | 0.11                                            | . 52               | 8.33                                      | 6.64               | 5.55                    | 4.76               | 4.17               | 3.32               |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |
| 8              | 1.88                     | 0.21                                            | 69                 | 4.70                                      | 3.76               | 3.13                    | 2.69               | 2.35               | 1.88               |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |
| 10             | 1.50                     | 0.33                                            | 87                 | 3.00                                      | 2.40               | 2.00                    | 1.71               | 1.50               | 1.20               |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |
|                |                          |                                                 |                    |                                           |                    |                         |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |
| 12             | 1.25                     | 0.48                                            | 104                | 2.08                                      | 1.66               | 1.38                    | 1.19               | 1.04               |                    |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |
| 14             | 1.07                     | 0.60                                            | 121                | 1.53                                      | 1.22               | 1.02                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |
| 16             | 0.94                     | 0.80                                            | 139                | 1.17                                      | 0.94               |                         |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |
| 18             | 0.84                     | 1.00                                            | 156                |                                           |                    |                         |                    | ,                  |                    |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |
| 20             | 0.75                     | 1.30                                            | 173                | Span limit for tabular safe load = 4.80'. |                    |                         |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                 |                              |                              |                              |                              |                              |

# IRON CHANNELS.

#### 5" CHANNEL. SHAPE No. 46. 17 LBS. PER YARD.

Depth, 5". Width of flange, 15%". Thickness of web, 3".

Safe load in nett tons =  $\frac{10.00}{\text{Span in feet}}$ .

Maximum shear = 1.90 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.60'.

|                | ons.                     | Deflexion, in inches. |                     | Dist                | tance apa                                 | rt, in fee                   |                              |                              | e of                         |                              |
|----------------|--------------------------|-----------------------|---------------------|---------------------|-------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. |                       | Deflexion, in inche | Deflexion, in inche | Weight of beam.                           | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. |
|                |                          |                       |                     |                     |                                           |                              |                              |                              |                              |                              |
| 6              | 1.67                     | 0.11                  | 34                  | 5.55                | 4.44                                      | 3.70                         | 3.17                         | 2.78                         | 2.22                         |                              |
| 8              | 1.25                     | 0.21                  | 46                  | 3.13                | 2.50                                      | 2.09                         | 1.79                         | 1.57                         | 1.25                         |                              |
| 10             | 1.00                     | 0.33                  | 58                  | 2.00                | 1.60                                      | 1.33                         | 1.14                         | 1.00                         | 0.80                         |                              |
|                |                          |                       |                     |                     |                                           |                              |                              |                              |                              |                              |
| 12             | 0.83                     | 0.48                  | 70                  | 1.38                | 1.10                                      | 0.92                         | 0.79                         | 0.69                         |                              |                              |
| 14             | 0.71                     | 0.60                  | 82                  | 1.02                | 0.82                                      | 0.68                         |                              |                              |                              |                              |
| 16             | 0.63                     | 0.80                  | 94                  | 0.79                | 0.63                                      |                              |                              |                              |                              |                              |
| 18             | 0.55                     | 1.00                  | 106                 | 0.61                | Span limit for tabular safe load = 4.40'. |                              |                              |                              |                              |                              |
| 20             | 0.50                     | 1.30                  | 118                 | 0.50                |                                           |                              |                              |                              |                              |                              |





## TABLES

OF THE CAPACITY OF

# STEEL I BEAMS

UNDER UNIFORMLY DISTRIBUTED TRANSVERSE LOADS,

THE EXTREME FIBRE STRESS BEING 7.8 TONS PER SQUARE INCH, WHICH IS TWO-SEVENTHS OF

#### THE MODULUS OF RUPTURE;

AND THE UNSTAYED LENGTH OF FLANGE NOT EXCEEDING THIRTY TIMES ITS WIDTH.

The span, which is thirty times the flange width, is denoted by a dotted line on the tables, and for lengths greater than this, the tabular safe load must be reduced by multiplying it by the factors given in table on page 43, or else some method of staying the flanges be employed.



## STEEL I BEAMS.

#### 15" I BEAM. SHAPE No. 1. 2521/2 LBS. PER YARD.

Depth, 15". Width of flange, 5\%". Thickness of web, \%".

Safe load in nett tons =  $\frac{563.70}{\text{Span in feet}}$ .

Maximum shear = 44.08 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.39'.

|                | ons.                     | tons.                 |                 | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                          |                          |                          |                          |                          |  |
|----------------|--------------------------|-----------------------|-----------------|--------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>square foot.                                                 | 125 lbs.<br>square foot. | 150 lbs.<br>square foot. | 175 lbs.<br>square foot. | 200 lbs.<br>square foot. | 250 lbs.<br>square foot. |  |
| Span,          | Safe lo                  | Deflexi               | Weigh           | 10<br>per sq                                                             | 12<br>per sq             | 15<br>per sq             | 17.<br>per sq.           | 20<br>per sq             | 25<br>per sq             |  |
| IO<br>II       | 56.36<br>51.24           | 0.I2<br>0.I4          | 842<br>926      |                                                                          |                          |                          |                          |                          |                          |  |
| 12             | 46.97                    | 0.18                  | 1010            |                                                                          |                          |                          |                          |                          | 31.31                    |  |
| 13<br>14       | 43.36<br>40.26           | 0.21                  | 1094            |                                                                          |                          |                          | 22.86                    | 33·35<br>28.75           | 26.68                    |  |
| 15             | 37.57                    | 0.25                  | 1263            |                                                                          |                          | 33.39                    | 28.62                    | 25.04                    | 23.01<br>20.04           |  |
| 16             | 35.23                    | 0.31                  | 1346            |                                                                          | 25.22                    |                          |                          | 22.02                    |                          |  |
| 17             | 33.15                    | 0.35                  | 1431            | 39.00                                                                    | 31.20                    | 26.00                    | 22.28                    | 19.50                    | 15.60                    |  |
| 18             | 31.31                    | 0.39                  | 1515            | 34.80                                                                    | 27.82                    | 23.20                    | 19.88                    | 17.40                    | 13.91                    |  |
| 19<br>20       | 29.66<br>28.18           | 0.43                  |                 | 31.23<br>28 18                                                           | 24.97                    | 18.78                    | 17.84                    | 15.61<br>14.09           | 12.48                    |  |
| 21             | 26.84                    | 0.53                  | 1767            | 25.56                                                                    | 20.45                    | 17.04                    | 14.60                    | 12.78                    |                          |  |
| 22             | 25.62                    | 0.58                  |                 | 23.30                                                                    | 18.62                    | 15.53                    | 13.31                    | 11.65                    | 9.31                     |  |
| 23<br>24       | 24.51                    | 0.64                  |                 |                                                                          |                          | 14.21<br>13.04           |                          |                          | 8.52<br>7.82             |  |
|                | 22.54                    | 0.75                  |                 | 18.03                                                                    |                          | 12.02                    |                          |                          | 7.02                     |  |
| 25<br>26       | 21.68                    | 0.82                  | 2189            | 16.68                                                                    | 13.35                    | 11.12                    | 9.53                     | 8.34                     | 6.67                     |  |
| 27<br>23       | 20.87                    | o.88<br>o.95          | 2261            |                                                                          | 12.33                    | 9.59                     | 8.83                     | 7.73<br>7.19             | 6.17<br>5.75             |  |
|                |                          | 1.02                  |                 | -                                                                        |                          |                          |                          | ,                        |                          |  |
| 29<br>30       | 19.45                    | 1.02                  |                 | 13.41<br>12.52                                                           | 10.73                    | 8.35                     | 7.15                     |                          |                          |  |
| 31             | 18.18                    | 1.17                  | 2609            | 11.73                                                                    | 9.38                     | 7.82                     | 6.70                     | 5.86                     | 4.69                     |  |
| 32             | 17.61                    | 1.25                  | 2693            | 11.01                                                                    | 8.80                     | 7.34                     | 6.29                     | 5.50                     | 4.40                     |  |
| 33             | 17.08                    | 1.33                  | 2777            | 10.35                                                                    | 8.28                     | 6.90                     | 5.91                     | 5.17                     | 4.14                     |  |

### STEEL I BEAMS.

#### 15" I BEAM. SHAPE No. 2. 202 LBS. PER YARD.

Depth, 15". Width of flange, 516". Thickness of web, 5%".

Safe load in nett tons =  $\frac{481.00}{\text{Span in feet}}$ .

Maximum shear = 27.11 tons,

Span limit for uniformly distributed load of twice the maximum shear = 8.87'.

|                                                                                  | ons.                                                                                                              | så.                                                                                                  |                                                                              | Distance apart, in feet, centre to centre of<br>beams, for safe loads of      |                                                                                        |                                                                                                        |                                                                                     |                                                                                            |                                                          |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Span, in fect.                                                                   | Span, in feet.<br>Safe load, in nett tons.                                                                        | Deflexion, in inches.                                                                                | Weight of beam.                                                              | 100 lbs.<br>per square foot.                                                  | 125 lbs.<br>per square foot.                                                           | 150 lbs.<br>per square foot.                                                                           | 175 lbs.<br>per square foot.                                                        | 200 lbs.<br>per square foot.                                                               | 250 lbs.<br>per square foot.                             |  |  |  |
| 10<br>11<br>12<br>13<br>14                                                       | 48.10<br>43.73<br>40.08<br>37.00<br>34.36                                                                         | 0.12<br>0.14<br>0.18<br>0.21<br>0.25                                                                 | 673<br>741<br>808<br>875<br>943                                              |                                                                               |                                                                                        | 32.73                                                                                                  | 32.53<br>28.05                                                                      |                                                                                            | 31.80<br>26.69<br>22.77<br>19.64                         |  |  |  |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 32.07<br>30.06<br>28.29<br>26.72<br>25.32<br>24.05<br>22.90<br>21.86<br>20.91<br>20.04<br>19.24<br>18.50<br>17.81 | 0.27<br>0.31<br>0.35<br>0.39<br>0.43<br>0.53<br>0.58<br>0.64<br>0.69<br>0.75<br>0.82<br>0.88<br>0.95 | 1212<br>1279<br>1347<br>1414<br>1481<br>1549<br>1616<br>1683<br>1751<br>1818 | 29.69<br>26.64<br>24.05<br>21.81<br>19.87<br>18.18<br>16.70<br>15.39<br>14.23 | 26.62<br>23.75<br>21.31<br>19.24<br>17.45<br>15.90<br>14.54<br>13.36<br>12.31<br>11.38 | 25.05<br>22.19<br>19.79<br>17.76<br>16.03<br>14.54<br>13.25<br>12.12<br>11.13<br>10.26<br>9.49<br>8.79 | 19.02<br>16.97<br>15.22<br>13.74<br>12.46<br>11.35<br>10.39<br>9.54<br>8.79<br>8.13 | 18.79<br>16.64<br>14.84<br>13.32<br>12.02<br>10.90<br>9.93<br>9.09<br>8.35<br>7.69<br>7.11 | 15.03<br>13.31<br>11.88<br>10.66<br>9.62<br>8.72<br>7.95 |  |  |  |
| 29<br>30<br>31<br>32<br>33                                                       | 16.59<br>16.03<br>15.52<br>15.03<br>14.58                                                                         | 1.02<br>1.08<br>1.17<br>1.25<br>1.33                                                                 |                                                                              | 11.44<br>10.69<br>10.01<br>9.39<br>8.84                                       | 8.55<br>8.01<br>7.51                                                                   | 7.63<br>7.13<br>6.67<br>6.26<br>5.89                                                                   | 6.54<br>6.11<br>5.72<br>5.37<br>5.05                                                | 5.72<br>5.34<br>5.00<br>4.69<br>4.42                                                       |                                                          |  |  |  |

# STEEL I BEAMS.

#### 15" I BEAM. SHAPE No. 3. 1511/2 LBS. PER YARD.

Depth, 15". Width of flange, 5". Thickness of web, 15".

Safe load in nett tons =  $\frac{366.60}{\text{Span in feet}}$ .

Maximum shear = 16.80 tons.

Span limit for uniformly distributed load of twice the maximum shear = 10.91'.

|                                                                                        | ons.                                                                                                                       | så.                                                                                                  |                                                                                         | Dist                                                                                                     |                                                                                                       | rt, in fe                                                                                                    |                                                                                                            | to centres of                                                                           | e of                         |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------|
| Span, in feet.                                                                         | Safe load, in nett tons.                                                                                                   | Deflexion, in inches.                                                                                | Weight of beam.                                                                         | 100 lbs.<br>per square foot.                                                                             | 125 lbs.<br>per square foot.                                                                          | 150 lbs.<br>per square foot.                                                                                 | 175 lbs.<br>per square foot.                                                                               | 200 lbs.<br>per square foot.                                                            | 250 lbs.<br>per square foot. |
| 10<br>11<br>12<br>13                                                                   | 36.66<br>33·33<br>30.55<br>28.20                                                                                           | 0.12<br>0.14<br>0.18<br>0.21                                                                         | 505<br>556<br>606<br>657                                                                |                                                                                                          | 34.70                                                                                                 | 33.95<br>28.92                                                                                               | 29.09                                                                                                      | 36.66<br>30.30<br>25.46<br>21.69                                                        | 24.24<br>20.37               |
| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 26.19<br>24.44<br>22.91<br>21.56<br>20.37<br>19.29<br>18.33<br>17.46<br>15.66<br>15.28<br>14.66<br>14.10<br>13.58<br>13.09 | 0.25<br>0.27<br>0.31<br>0.35<br>0.49<br>0.48<br>0.53<br>0.64<br>0.69<br>0.75<br>0.82<br>0.88<br>0.95 | 757<br>808<br>859<br>909<br>959<br>1010<br>1060<br>1111<br>1161<br>1212<br>1263<br>1313 | 32.59<br>28.64<br>25.36<br>22.64<br>20.30<br>18.33<br>16.62<br>15.15<br>13.86<br>12.74<br>11.73<br>10.84 | 26.07<br>22.91<br>20.29<br>18.11<br>16.24<br>14.66<br>13.30<br>12.12<br>11.09<br>9.38<br>8.67<br>8.05 | 21.73<br>19.09<br>16.91<br>15.09<br>13.53<br>12.22<br>11.08<br>10.10<br>9.24<br>8.49<br>7.82<br>7.23<br>6.71 | 18.62<br>16.37<br>14.49<br>12.94<br>11.60<br>10.47<br>9.50<br>8.66<br>7.92<br>7.28<br>6.99<br>6.19<br>5.75 | 12.68<br>11.32<br>10.15<br>9.17<br>8.30<br>7.58<br>6.93<br>6.37<br>5.87<br>5.42<br>5.03 | 13.04<br>11.46               |
| 29<br>30<br>31<br>32<br>33                                                             | 12.64<br>12.22<br>11.82<br>11.46<br>11.11                                                                                  | 1.02<br>1.08<br>1.17<br>1.25<br>1.33                                                                 | 1465<br>1515<br>1565<br>1616<br>1666                                                    |                                                                                                          | 6.52<br>6.10<br>5.73                                                                                  | 5.43<br>5.08<br>4.77                                                                                         | 4.98<br>4.66<br>4.35<br>4.09                                                                               | 4.36<br>4.08<br>3.81                                                                    | 3.26<br>3.05                 |

## STEEL I BEAMS.

# 15" I BEAM. SHAPE No. 4. 1261/4 LBS. PER YARD.

Depth, 15". Width of flange,  $4\frac{7}{8}$ ". Thickness of web,  $\frac{7}{16}$ ".

Safe load in nett tons =  $\frac{296.40}{\text{Span in feet}}$ .

Maximum shear = 14.30 tons.

Span limit for uniformly distributed load of twice the maximum shear = 10.36'.

|                                                                                              | ons.                                                                                                                                         | rå                                                                                                           |                                                                    | Dist                                                                                                                    | Distance apart, in feet, centre to centre of<br>beams, for safe loads of                                                     |                                                                                                                    |                                                                                                 |                                                                                                          |                                                                                                                        |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Span, in feet.                                                                               | Safe load, in nett tons.                                                                                                                     | Deflexion, in inches.                                                                                        | Weight of beam.                                                    | 100 lbs.<br>per square foot.                                                                                            | 125 lbs.<br>per square foot.                                                                                                 | 150 lbs.<br>per square foot.                                                                                       | 175 lbs.<br>per square foot.                                                                    | 200 lbs.<br>per square foot.                                                                             | 250 lbs.<br>per square foot.                                                                                           |  |  |
| IO<br>II<br>I2                                                                               | 29.64<br>26.94<br>24.70                                                                                                                      | 0.12<br>0.14<br>0.18                                                                                         | 421<br>463<br>505                                                  | ·                                                                                                                       | 32.93                                                                                                                        | 32.65<br>27.44                                                                                                     |                                                                                                 | 29.64<br>24.49<br>20.58                                                                                  | 19.59                                                                                                                  |  |  |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 22.80<br>21.17<br>19.76<br>18.53<br>17.44<br>16.47<br>15.60<br>14.82<br>14.11<br>13.47<br>12.89<br>12.35<br>11.86<br>11.40<br>10.98<br>10.59 | 0.21<br>0.25<br>0.27<br>0.31<br>0.35<br>0.39<br>0.43<br>0.53<br>0.58<br>0.64<br>0.69<br>0.75<br>0.82<br>0.88 | 589<br>631<br>673<br>715<br>757<br>800<br>842<br>884<br>926<br>968 | 30.24<br>26.35<br>23.16<br>20.52<br>18.30<br>16.42<br>14.82<br>13.44<br>12.25<br>11.21<br>10.29<br>9.49<br>8.77<br>8.14 | 24.19<br>21.08<br>18.53<br>16.42<br>14.64<br>13.14<br>11.86<br>10.75<br>9.80<br>8.97<br>8.23<br>7.59<br>7.02<br>6.51<br>6.05 | 20.16<br>17.57<br>15.41<br>13.68<br>12.20<br>10.95<br>9.88<br>8.96<br>8.17<br>7.47<br>6.86<br>6.33<br>5.85<br>5.43 | 13.23<br>11.73<br>10.46<br>9.38<br>8.47<br>7.68<br>7.00<br>6.41<br>5.89<br>5.42<br>5.01<br>4.65 | 15.12<br>13.18<br>11.58<br>10.26<br>9.15<br>8.21<br>7.41<br>6.72<br>5.60<br>5.15<br>4.75<br>4.07<br>3.78 | 12.10<br>10.54<br>9.27<br>8.21<br>7.32<br>6.57<br>5.93<br>5.38<br>4.90<br>4.48<br>4.12<br>3.79<br>3.51<br>3.26<br>3.02 |  |  |
| 29<br>30<br>31<br>32<br>33                                                                   | 9.88<br>9.56<br>9.26<br>8.98                                                                                                                 | I.02<br>I.08<br>I.17<br>I.25<br>I.33                                                                         | 1220<br>1262<br>1305<br>1347<br>1389                               | 6.59<br>6.17<br>5.79                                                                                                    | 5.27<br>4.94<br>4.63                                                                                                         | 4.39<br>4.12                                                                                                       | 3.77<br>3.52<br>3.31                                                                            | 3.30                                                                                                     | 2.63<br>2.47<br>2.31                                                                                                   |  |  |

# STEEL I BEAMS.

# 12" I BEAM. SHAPE No. 5. 171% LBS. PER YARD.

Depth, 12". Width of flange,  $5\frac{3}{8}$ ". Thickness of web,  $\frac{11}{16}$ ".

Safe load in nett tons =  $\frac{317.20}{\text{Span in feet}}$ .

Maximum shear = 27.72 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.72'.

|                                                                | ons.                                                                                          | rô                                                                           |                                            | Dis                                                                                     |                                                                                      | rt, in fe                                                                            |                                                                                      |                                                                                      | e of                                                                                 |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Span, in feet.                                                 | Safe load, in nett tons.                                                                      | Deflexion, in inches.                                                        | Weight of beam.                            | 100 lbs.<br>per square foot.                                                            | 125 lbs.<br>per square foot.                                                         | 150 lbs.<br>per square foot.                                                         | 175 lbs.<br>per square foot.                                                         | 200 lbs.<br>per square foot.                                                         | 250 lbs.<br>per square foot.                                                         |
| 10<br>11<br>12<br>13<br>14                                     | 31.72<br>28.84<br>26.43<br>24.40<br>22.66                                                     | 0.15<br>0.18<br>0.22<br>0.26<br>0.30                                         |                                            | 35.23<br>32.37                                                                          | 28.18                                                                                | 34.96<br>29.37<br>23.49<br>21.58                                                     | 29.97<br>25.17<br>20.13                                                              | 31.72<br>26.22<br>22.02<br>17.62<br>16.18                                            | 20.98<br>17.62<br>14.09                                                              |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                   | 21.15<br>19.82<br>18.66<br>17.62<br>16.71<br>15.86<br>15.10                                   | 0.34<br>0.39<br>0.44<br>0.49<br>0.55<br>0.59<br>0.66<br>0.73                 | 916<br>973<br>1030<br>1088<br>1145<br>1202 | 21.95<br>19.58                                                                          | 19.82<br>17.56<br>15.66<br>14.07<br>12.69                                            | 16.52<br>14.63<br>13.05<br>11.73<br>10.57<br>9.59                                    | 14.16<br>12.54<br>11.19<br>10.05<br>9.06<br>8.22                                     | 12.39<br>10.97<br>9.79<br>8.80<br>7.93<br>7.19                                       | 9.91<br>8.78<br>7.83<br>7.04<br>6.34<br>5.75<br>5.24                                 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 13.79<br>13.22<br>12.69<br>12.20<br>11.75<br>11.33<br>10.94<br>10.57<br>10.23<br>9.92<br>9.61 | 0.79<br>0.86<br>0.94<br>1.01<br>1.09<br>1.18<br>1.27<br>1.36<br>1.46<br>1.55 | 1374<br>1431<br>1489<br>1546               | 11.99<br>11.02<br>10.15<br>9.38<br>8.70<br>8.09<br>7.54<br>7.05<br>6.60<br>6.20<br>5.82 | 9.59<br>8.82<br>8.12<br>7.50<br>6.96<br>6.47<br>6.03<br>5.64<br>5.28<br>4.96<br>4.66 | 7.99<br>7.35<br>6.77<br>6.25<br>5.80<br>5.39<br>5.03<br>4.70<br>4.40<br>4.13<br>3.88 | 6.85<br>6.30<br>5.80<br>5.36<br>4.97<br>4.62<br>4.31<br>4.03<br>3.77<br>3.54<br>3.33 | 6.00<br>5.51<br>5.07<br>4.69<br>4.35<br>4.05<br>3.77<br>3.52<br>3.30<br>3.10<br>2.91 | 4.80<br>4.41<br>4.06<br>3.75<br>3.48<br>3.24<br>3.02<br>2.82<br>2.64<br>2.48<br>2.33 |

12" I BEAM. SHAPE No. 6. 1261/4 LBS. PER YARD.

Depth, 12". Width of flange,  $4\frac{7}{8}$ ". Thickness of web,  $\frac{1}{2}$ ".

Safe load in nett tons =  $\frac{240.90}{\text{Span in feet}}$ .

Maximum shear = 17.34 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.94'.

|                                                                | lons.                                                                                  | oř.                                                                                  |                                                                                     | Dist                                                        | tance apa<br>bea                                                                     |                                                                                      | et, centre<br>safe load:                                |                                                                                      | re of                                                                                |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Span, in feet.                                                 | Safe load, in nett tons.                                                               | Dofloxion, in inchos.                                                                | Woight of beam.                                                                     | 100 lbs.<br>per square foot.                                | 125 lbs.<br>per square foot.                                                         | 150 lbs.<br>por square foot.                                                         | 175 lbs.<br>por square foot.                            | 200 lbs.<br>por squaro foot.                                                         | 250 lbs.<br>por square foot.                                                         |
| IO<br>II<br>I2                                                 | 24.10<br>21.90<br>20.08                                                                | 0.15<br>0.18<br>0.22                                                                 | 421<br>463<br>505                                                                   | 33-47                                                       | 31.86<br>26.77                                                                       | 26.54                                                                                | 27.54<br>22.75<br>19.12                                 | 19.91                                                                                | 15.93                                                                                |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22       | 18.53<br>17.21<br>16.06<br>15.06<br>14.17<br>13.39<br>12.66<br>12.05<br>11.47          | 0.26<br>0.30<br>0.34<br>0.39<br>0.44<br>0.49<br>0.55<br>0.59<br>0.66                 | 590<br>632<br>674<br>716<br>758<br>800                                              | 24.58<br>21.41<br>18.83<br>16.67<br>14.88<br>13.33<br>12.05 | 8.74                                                                                 | 16.39<br>14.27<br>12.55<br>11.12<br>9.92<br>8.88<br>8.03                             | 14.05<br>12.24<br>10.76<br>9.53<br>8.50<br>7.62<br>6.88 | 12.29<br>10.71<br>9.41<br>8.34<br>7.44<br>6.66<br>6.03                               | 8.57<br>7.53<br>6.67<br>5.95<br>5.33<br>4.82<br>4.37                                 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 10.48<br>10.04<br>9.64<br>9.27<br>8.92<br>8.61<br>8.31<br>8.03<br>7.77<br>7.53<br>7.30 | 0.79<br>0.86<br>0.94<br>1.01<br>1.09<br>1.18<br>1.27<br>1.36<br>1.46<br>1.55<br>1.64 | 969<br>1011<br>1053<br>1095<br>1137<br>1179<br>1222<br>1264<br>1306<br>1348<br>1390 |                                                             | 7.29<br>6.69<br>6.17<br>5.70<br>5.28<br>4.92<br>4.58<br>4.28<br>4.01<br>3.76<br>3.54 | 6.07<br>5.58<br>5.14<br>4.75<br>4.40<br>4.10<br>3.82<br>3.57<br>3.34<br>3.14<br>2.95 | 4.4I<br>4.07<br>3.78<br>3.52<br>3.27<br>3.06<br>2.86    | 4.56<br>4.18<br>3.86<br>3.56<br>3.31<br>3.08<br>2.87<br>2.68<br>2.50<br>2.35<br>2.21 | 3.65<br>3.35<br>3.09<br>2.85<br>2.64<br>2.46<br>2.29<br>2.14<br>2.00<br>1.83<br>1.77 |

#### 12" I BEAM, SHAPE No. 7, 101 LBS, PER YARD.

Depth, 12". Width of flange, 47". Thickness of web, 7".

Safe load in nett tons =  $\frac{187.20}{\text{Span in feet}}$ .

Maximum shear = 14.18 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.60'.

|                                                                | ons.                                                                                        | ett tons.                                                                    |                                                                       | Dist                                                               |                                                                           | rt, in fe                                                               |                                                               | to centres of                                | e of                                                         |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|
| Span, in feet.                                                 | Safe load, in nett tons.                                                                    | Deflexion, in inches.                                                        | Weight of beam.                                                       | 100 lbs.<br>per square foot.                                       | 125 lbs.<br>per square foot.                                              | 150 lbs.<br>per square foot.                                            | 175 lbs.<br>per square foot.                                  | 200 lbs.<br>per square foot.                 | 250 lbs.<br>per square foot.                                 |
| 10                                                             | 18.72<br>17.02                                                                              | 0.15                                                                         | 337<br>370                                                            | 37·44<br>30.95                                                     | 29.95<br>24.76                                                            | 24.96<br>20.63                                                          | 21.39<br>17.69                                                | 18.72<br>15.47                               | 14.98<br>12.38                                               |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | 15.60<br>14.40<br>13.37<br>12.48<br>11.70<br>11.01<br>10.40<br>9.85<br>9.36<br>8.91<br>8.51 | 0.22<br>0.26<br>0.30<br>0.34<br>0.39<br>0.44<br>0.49<br>0.55<br>0.59<br>0.66 | 438<br>471<br>505<br>539<br>572<br>606                                | 19.10<br>16.64<br>14.63<br>12.95<br>11.56<br>10.37<br>9.36<br>8.48 | 17.72<br>15.28<br>13.31<br>11.70<br>10.36<br>9.25<br>8.30<br>7.49<br>6.78 | 14.77<br>12.73<br>11.09<br>9.75<br>8.63<br>7.71<br>6.91<br>6.24<br>5.65 | 10.91<br>9.51<br>8.36<br>7.40<br>6.61<br>5.93<br>5.35<br>4.85 | 9.55<br>8.32<br>7.31<br>6.47<br>5.78<br>5.18 | 8.86<br>7.64<br>6.66<br>5.85<br>5.18<br>4.62<br>4.15<br>3.74 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 8.14<br>7.80<br>7.49<br>7.20<br>6.93<br>6.69<br>6.46<br>6.24<br>6.04<br>5.85<br>5.67        | 0.79<br>0.86<br>0.94<br>1.01<br>1.09<br>1.18<br>1.27<br>1.36<br>1.46<br>1.55 | 774<br>808<br>842<br>875<br>909<br>944<br>977<br>1010<br>1044<br>1077 | 6.50<br>5.99<br>5.54<br>5.13<br>4.78<br>4.46<br>4.16               | 5.20<br>4.79<br>4.43<br>4.10<br>3.82<br>3.57<br>3.33<br>3.12              | 4·33<br>3·99<br>3.69<br>3·42<br>3·19<br>2·97<br>2.77<br>2.60            | 3.71<br>3.42<br>3.17<br>2.93<br>2.73                          | 3.25<br>2.99<br>2.77<br>2.56                 | 2.60                                                         |

#### 101/2" I BEAM. SHAPE No. 8. 1361/2 LBS. PER YARD.

Depth,  $10\frac{1}{2}$ ". Width of flange, 5". Thickness of web,  $\frac{17}{32}$ ".

Safe load in nett tons =  $\frac{236.70}{\text{Span in feet}}$ .

Maximum shear = 17.69 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.69'.

|                                                                                  | ons.                                                                                                     |                                                                                      |                                                                                            | Dis                                                                                                    | tance apa<br>bea                                             | ert, in fe                                                                           |                                                                                      |                                                | e of                                                                                         |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------|
| Span, in feet.                                                                   | Safe load, in nett tons.                                                                                 | Deflexion, in inches.                                                                | Weight of beam.                                                                            | 100 lbs.<br>per square foot.                                                                           | 125 lbs.<br>per square foot.                                 | 150 lbs.<br>per square foot.                                                         | 175 lbs.<br>per square foot.                                                         | 200 lbs.<br>per square foot.                   | 250 lbs.<br>per square foot.                                                                 |
| 10<br>11<br>12<br>13                                                             | 23.67<br>21.52<br>19.72<br>18.21                                                                         | 0.18<br>0.21<br>0.25<br>0.30                                                         | 500                                                                                        | 39.12<br>32.87                                                                                         | 37.87<br>31.30<br>26.29<br>22.41                             | 26.08<br>21.91                                                                       | 22.39<br>18.78                                                                       | 19.56<br>16.43                                 | 18.93<br>15.65<br>13.15<br>11.21                                                             |
| 14<br>15<br>16<br>17<br>18                                                       | 16.91<br>15.78<br>14.80<br>13.92<br>13.15<br>12.46                                                       | 0.35<br>0.40<br>0.46<br>0.51<br>0.57<br>0.64                                         | 682<br>728<br>773<br>819                                                                   | 21.04<br>18.50<br>16.36<br>14.61                                                                       | 19.33<br>16.84<br>14.80<br>13.10<br>11.69<br>10.49           | 14.03<br>12.33<br>10.92<br>9.74                                                      | 12.02<br>10.57<br>9.36<br>8.35                                                       | 12.08<br>10.52<br>9.25<br>8.19<br>7.30<br>6.56 | 8.42<br>7.40<br>6.55<br>5.84                                                                 |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 11.84<br>11.27<br>10.76<br>10.30<br>9.86<br>9.47<br>9.10<br>8.77<br>8.46<br>8.16<br>7.89<br>7.64<br>7.18 | 0.70<br>0.78<br>0.86<br>0.94<br>1.01<br>1.20<br>1.39<br>1.48<br>1.59<br>1.69<br>1.81 | 910<br>955<br>1001<br>1046<br>1092<br>1137<br>1183<br>1274<br>1319<br>1365<br>1410<br>1456 | 11.84<br>10.73<br>9.78<br>8.95<br>8.22<br>7.58<br>7.00<br>6.50<br>6.04<br>5.63<br>5.26<br>4.93<br>4.63 | 8.59<br>7.83<br>7.17<br>6.57<br>6.06<br>5.60<br>5.20<br>4.83 | 6.52<br>5.97<br>5.48<br>5.05<br>4.67<br>4.33<br>4.03<br>3.75<br>3.51<br>3.29<br>3.09 | 6.13<br>5.59<br>5.11<br>4.70<br>4.33<br>4.00<br>3.71<br>3.45<br>3.22<br>3.01<br>2.82 | 5.37<br>4.88<br>4.48<br>4.11<br>3.79           | 4.29<br>3.91<br>3.59<br>3.29<br>3.03<br>2.80<br>2.60<br>2.42<br>2.25<br>2.10<br>1.92<br>1.85 |

## STEEL I BEAMS.

101/2" I BEAM. SHAPE No. 9. 106 LBS. PER YARD.

Depth,  $10\frac{1}{2}$ ". Width of flange,  $4\frac{7}{16}$ ". Thickness of web,  $\frac{1}{2}$ ".

Safe load in nett tons =  $\frac{174.30}{\text{Span in feet}}$ .

Maximum shear = 16.17 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.39'.

| )                                                                                | tons.                                                                                                        | s's                                                                                  |                                                              | Dist                                                                                                 |                                                                                                      | ert, in fe                                                                                                   |                                                                                                              |                                                                                      | e of                                                                                                         |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Span, in feet.                                                                   | Safe load, in nett tons.                                                                                     | Deflexion, in inches.                                                                | Weight of beam.                                              | 100 lbs.<br>per square foot.                                                                         | 125 lbs.<br>per square foot.                                                                         | 150 lbs.<br>per square foot.                                                                                 | 175 lbs.<br>per square foot.                                                                                 | 200 lbs.<br>per square fdot.                                                         | 250 lbs.<br>per square foot.                                                                                 |
| IO<br>II                                                                         | 17.43<br>15.85                                                                                               | 0.18<br>0.21                                                                         |                                                              | 34.86<br>28.81                                                                                       |                                                                                                      |                                                                                                              |                                                                                                              |                                                                                      |                                                                                                              |
| 12<br>13<br>14<br>15<br>16<br>17<br>18                                           | 14.53<br>13.41<br>12.45<br>11.62<br>10.90<br>10.25<br>9.68<br>9.18                                           | 0.25<br>0.30<br>0.35<br>0.40<br>0.46<br>0.51<br>0.57<br>0.64                         | 425<br>460<br>495<br>531<br>566<br>602<br>637<br>672         | 20.63<br>17.80<br>15.49                                                                              | 16.50<br>14.24<br>12.39<br>10.90<br>9.65<br>8.60                                                     | 11.86<br>10.33<br>9.09<br>8.04                                                                               | 11.80<br>10.16<br>8.85<br>7.79                                                                               | 10.32                                                                                | 9.69<br>8.25<br>7.12<br>6.20<br>5.45<br>4.88<br>4.30<br>3.86                                                 |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 8.72<br>8.30<br>7.92<br>7.58<br>7.27<br>6.97<br>6.91<br>6.46<br>6.23<br>6.01<br>5.81<br>5.62<br>5.45<br>5.28 | 0.70<br>0.78<br>0.86<br>0.94<br>1.01<br>1.20<br>1.39<br>1.48<br>1.59<br>1.69<br>1.81 | 708 743 778 814 849 885 920 955 991 1026 1061 1097 1132 1168 | 8.72<br>7.90<br>7.20<br>6.59<br>6.06<br>5.58<br>5.16<br>4.78<br>4.45<br>3.87<br>3.63<br>3.41<br>3.20 | 6.98<br>6.32<br>5.76<br>5.27<br>4.84<br>4.13<br>3.83<br>3.56<br>3.32<br>3.10<br>2.90<br>2.73<br>2.56 | 5.81<br>5.27<br>4.80<br>4.40<br>4.04<br>3.72<br>3.44<br>3.19<br>2.97<br>2.76<br>2.58<br>2.42<br>2.27<br>2.14 | 4.98<br>4.52<br>4.10<br>3.77<br>3.46<br>3.19<br>2.95<br>2.73<br>2.54<br>2.37<br>2.21<br>2.07<br>1.95<br>1.83 | 4.36<br>3.95<br>3.60<br>3.03<br>2.79<br>2.58<br>2.39<br>2.23<br>2.07<br>1.94<br>1.81 | 3.49<br>3.16<br>2.88<br>2.64<br>2.42<br>2.23<br>2.07<br>1.92<br>1.78<br>1.66<br>1.55<br>1.45<br>1.36<br>1.28 |

# STEEL I BEAMS.

101/2" I BEAM. SHAPE No. 10. 91 LBS. PER YARD.

Depth,  $10\frac{1}{2}$ ". Width of flange,  $4\frac{1}{8}$ ". Thickness of web,  $\frac{13}{32}$ ".

Safe load in nett tons =  $\frac{149.60}{\text{Span in feet}}$ .

Maximum shear = 12.10 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.14'.

|                                                                                  | ons,                                                                                                 | vî.                                                                                          |                                                                                                 | Dist                         |                                                                                      | ert, in fee<br>ms, for s                                                             |                                                        |                                                                        | re of                        |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|------------------------------|
| Span, in feet.                                                                   | Safe load, in nett tons.                                                                             | Defloxion, in inches.                                                                        | Weight of beam.                                                                                 | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot.                                                         | 150 lbs.<br>per square foot.                                                         | 175 lbs.<br>per square foot.                           | 200 lbs.<br>per square foot.                                           | 250 lbs.<br>per square foot. |
| IO                                                                               | 14.96                                                                                                | 0.18                                                                                         | 303                                                                                             | 29.92                        | 23.94                                                                                | 19.95                                                                                | 17.10                                                  | 14.96                                                                  | 11.97                        |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                     | 13.59<br>12.46<br>11.50<br>10.68<br>9.97<br>9.35<br>8.80<br>8.31<br>7.87                             | 0.21<br>0.25<br>0.30<br>0.35<br>0.40<br>0.46<br>0.51<br>0.57<br>0.64                         | 364<br>394<br>425<br>455<br>485                                                                 | 20.77<br>17.70<br>15.26      | 16.62<br>14.16<br>12.21<br>10.64<br>9.35<br>8.28<br>7.38                             | 8.87<br>7.80<br>6.90<br>6.15                                                         | 11.87<br>10.11<br>8.72<br>7.60<br>6.68<br>5.92<br>5.27 | 12.35<br>10.38<br>8.85<br>7.63<br>6.65<br>5.85<br>5.18<br>4.62<br>4.14 | 7.08<br>6.10<br>5.32<br>4.68 |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 7.48<br>7.12<br>6.80<br>6.51<br>6.23<br>5.98<br>5.75<br>5.54<br>5.34<br>5.16<br>4.99<br>4.82<br>4.67 | 0.70<br>0.78<br>0.86<br>0.94<br>1.01<br>1.11<br>1.20<br>1.39<br>1.45<br>1.69<br>1.69<br>1.81 | 607<br>637<br>667<br>698<br>728<br>758<br>789<br>819<br>849<br>880<br>910<br>940<br>971<br>1001 | 3.81<br>3.56<br>3.33         | 5.42<br>4.94<br>4.53<br>4.15<br>3.83<br>3.54<br>3.05<br>2.85<br>2.66<br>2.49<br>2.34 | 4.52<br>4.12<br>3.78<br>3.46<br>3.19<br>2.95<br>2.74<br>2.54<br>2.37<br>2.22<br>2.07 | 3.88<br>3.54<br>3.23<br>2.97<br>2.73<br>2.53<br>2.35   | 3.09                                                                   | 2.7I<br>2.47<br>2.26<br>2.08 |

#### 10" I BEAM. SHAPE No. 11. 106 LBS. PER YARD.

Depth, 10". Width of flange, 45%". Thickness of web, 1/2".

Safe load in nett tons =  $\frac{167.70}{\text{Span in feet}}$ .

Maximum shear = 15.85 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.29'.

|                                                                                        | ons.                                                                                                         | si si                                                                                                |                                                                                                    | Dist                                                                                                         |                                                                                              | rt, in fee<br>ms, for s                                                                              |                                                                                                      |                                                                                      | e of                                                         |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Span, in feet.                                                                         | Safe load, in nett tons.                                                                                     | Deflexion, in inches.                                                                                | Weight of beam.                                                                                    | 100 lbs.<br>per square foot.                                                                                 | 125 lbs.<br>per square foot.                                                                 | 150 lbs.<br>per square foot.                                                                         | 175 lbs.<br>per square fcot.                                                                         | 200 lbs.<br>per square foot.                                                         | 250 lbs.<br>per square foot.                                 |
| IO<br>II<br>I2                                                                         | 16.77<br>15.24<br>13.98                                                                                      | 0.20<br>0.23<br>0.27                                                                                 | 389                                                                                                | 27.7I                                                                                                        | 22.17                                                                                        | 22.36<br>18.47<br>15.53                                                                              | 15.83                                                                                                | 16.77<br>13.86<br>11.65                                                              | 13.42<br>11.08<br>9.32                                       |
| 13<br>14<br>15<br>16<br>17<br>18                                                       | 12.90<br>11.98<br>11.18<br>10.48<br>9.87<br>9.32                                                             | 0.31<br>0.36<br>0.43<br>0.48<br>0.53<br>0.60                                                         | 566<br>601                                                                                         | 19.85<br>17.11<br>14.91<br>13.10<br>11.61<br>10.31                                                           | 9.29                                                                                         | 9.94<br>8.73                                                                                         | 9.80<br>8.52<br>7.49<br>6.64<br>5.89                                                                 | 7.46<br>6.55                                                                         | 5.96                                                         |
| 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 8.83<br>8.39<br>7.99<br>7.62<br>7.29<br>6.99<br>6.71<br>6.45<br>6.21<br>5.99<br>5.78<br>5.59<br>5.41<br>5.24 | 0.68<br>0.75<br>0.83<br>0.91<br>0.99<br>1.08<br>1.18<br>1.27<br>1.36<br>1.47<br>1.57<br>1.68<br>1.79 | 671<br>707<br>742<br>777<br>813<br>848<br>883<br>919<br>954<br>989<br>1025<br>1060<br>1095<br>1131 | 9.26<br>8.39<br>7.61<br>6.93<br>6.34<br>5.37<br>4.96<br>4.60<br>4.28<br>4.00<br>3.73<br>3.49<br>3.28<br>3.08 | 6.71<br>6.09<br>5.54<br>5.07<br>4.66<br>4.30<br>3.97<br>3.68<br>3.42<br>3.20<br>2.98<br>2.79 | 5.59<br>5.07<br>4.62<br>4.23<br>3.89<br>3.58<br>3.31<br>3.07<br>2.85<br>2.67<br>2.49<br>2.33<br>2.19 | 5.29<br>4.79<br>4.35<br>3.96<br>3.63<br>3.33<br>3.07<br>2.83<br>2.63<br>2.44<br>2.29<br>2.13<br>2.00 | 4.63<br>4.20<br>3.81<br>3.47<br>3.17<br>2.92<br>2.68<br>2.48<br>2.30<br>2.14<br>2.00 | 3.70<br>3.36<br>3.04<br>2.77<br>2.54<br>2.33<br>2.15<br>1.99 |

# STEEL I BEAMS.

#### 10" I BEAM. SHAPE No. 12. 91 LBS. PER YARD.

Depth, 10". Width of flange,  $4\frac{3}{5}$ ". Thickness of web,  $\frac{7}{16}$ ".

Safe load in nett tons =  $\frac{\tau_{45.60}}{\text{Span in feet}}$ .

Maximum shear = 13.05 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.58'.

|                                                                                        | 5.50 ·                                                                                       |                                                                                                      |                                                                                         |                                                                                                                      |                                                                                              |                                                                                                      |                                                                              |                                                              |                                                      |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|--|
|                                                                                        | nett tons.                                                                                   | s <sup>2</sup>                                                                                       |                                                                                         | Dis                                                                                                                  | tance apa<br>bea                                                                             | art, in fe<br>ams, for s                                                                             |                                                                              |                                                              | e of                                                 |  |
| Span, in feet.                                                                         | Safe load, in nett tons.                                                                     | Deflexion, in inches.                                                                                | Weight of beam.                                                                         | 100 lbs.<br>per square foot.                                                                                         | 125 lbs.<br>per square foot.                                                                 | 150 lbs.<br>per square foot.                                                                         | 175 lbs.<br>per square foot.                                                 | 200 lbs.<br>per square foot.                                 | 250 lbs.<br>per square foot.                         |  |
| 10                                                                                     | 14.56<br>13.24                                                                               | 0.20                                                                                                 |                                                                                         |                                                                                                                      | 23.30<br>19.26                                                                               |                                                                                                      |                                                                              |                                                              | 11.65<br>9.63                                        |  |
| 12<br>13<br>14<br>15<br>16<br>17                                                       | 12.13<br>11.20<br>10.40<br>9.71<br>9.10<br>8.56<br>8.09                                      | 0.27<br>0.31<br>0.36<br>0.43<br>0.48<br>0.53<br>0.60                                                 | 394<br>425<br>455<br>485<br>516                                                         | 17.23<br>14.86                                                                                                       | 8.06                                                                                         | 9.91<br>8.63<br>7.59<br>6.71                                                                         | 9.85<br>8.49<br>7.40<br>6.50<br>5.75                                         | 8.61<br>7.43<br>6.47<br>5.69<br>5.03                         | 8.08<br>6.89<br>5.94<br>5.18<br>4.55<br>4.03<br>3.60 |  |
| 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 7.66<br>7.28<br>6.93<br>6.62<br>6.33<br>6.07<br>5.82<br>5.60<br>5.39<br>5.20<br>4.85<br>4.69 | 0.68<br>0.75<br>0.83<br>0.91<br>1.08<br>1.18<br>1.27<br>1.36<br>1.47<br>1.57<br>1.68<br>1.79<br>1.92 | 576<br>607<br>637<br>667<br>698<br>728<br>789<br>819<br>849<br>880<br>910<br>940<br>971 | 8.06<br>7.28<br>6.60<br>6.02<br>5.50<br>5.06<br>4.66<br>4.31<br>3.99<br>3.71<br>3.46<br>3.23<br>3.03<br>2.84<br>2.67 | 5.82<br>5.28<br>4.82<br>4.40<br>4.05<br>3.73<br>3.45<br>3.19<br>2.97<br>2.77<br>2.58<br>2.42 | 5.37<br>4.85<br>4.40<br>4.01<br>3.67<br>3.37<br>3.11<br>2.87<br>2.66<br>2.47<br>2.31<br>2.15<br>2.02 | 4.61<br>4.16<br>3.77<br>3.44<br>3.14<br>2.89<br>2.66<br>2.46<br>2.28<br>2.12 | 4.03<br>3.64<br>3.30<br>3.00<br>2.75<br>2.53<br>2.33<br>2.15 | 2.64                                                 |  |

# STEEL I BEAMS.

#### 9" I BEAM. SHAPE No. 13. 91 LBS. PER YARD.

Depth, 9". Width of flange, 4\%". Thickness of web, \frac{1}{2}".

Safe load in nett tons =  $\frac{127.40}{\text{Span in feet}}$ .

Maximum shear = 14.90 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.28'.

|                                                                                                    | ons.                                                                                                                         | sá                                                                                                                   |                                                                                         | Dist                         |                                                              | rt, in fe                    |                                                                                      | to centres of                        | e of                                         |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|
| Span, in feet,                                                                                     | Safe load, in nett tons.                                                                                                     | Deflexion, in inches.                                                                                                | Weight of beam.                                                                         | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot.                                 | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.                                                         | 200 lbs.<br>per square foot.         | 250 lbs.<br>per square foot.                 |
| 10                                                                                                 | 12.74<br>11.58                                                                                                               | 0.20<br>0.25                                                                                                         |                                                                                         | 25.48<br>21.05               |                                                              | 16.99<br>14.03               |                                                                                      | 12.74<br>10.52                       | 10.19<br>8.42                                |
| 12<br>13<br>14<br>15<br>16                                                                         | 10.62<br>9.80<br>9.10<br>8.49<br>7.96                                                                                        | 0.30<br>0.35<br>0.40<br>0.46<br>0.52                                                                                 | 394<br>425                                                                              | 15.08                        | 14.16<br>12.06<br>10.40<br>9.06<br>7.96                      | 10.05<br>8.67<br>7.55        | 10.11<br>8.62<br>7.43<br>6.47<br>5.69                                                | 8.85<br>7.54<br>6.50<br>5.66<br>4.97 | 7.08<br>6.03<br>5.20<br>4.53<br>3.98         |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 7.49<br>7.08<br>6.70<br>6.37<br>6.07<br>5.79<br>5.51<br>5.10<br>4.90<br>4.72<br>4.55<br>4.39<br>4.25<br>4.11<br>3.98<br>3.86 | 0.60<br>0.66<br>0.74<br>0.82<br>0.91<br>1.00<br>1.18<br>1.29<br>1.51<br>1.61<br>1.73<br>1.86<br>1.99<br>2.12<br>2.26 | 516<br>546<br>576<br>607<br>637<br>667<br>698<br>728<br>789<br>819<br>849<br>980<br>910 | 3.50<br>3.25<br>3.03<br>2.83 | 5.64<br>5.10<br>4.62<br>4.21<br>3.86<br>3.54<br>3.26<br>3.02 | 5.25<br>4.70                 | 5.03<br>4.50<br>4.03<br>3.64<br>3.30<br>3.01<br>2.75<br>2.53<br>2.33<br>2.15<br>2.00 | 3.52<br>3.18                         | 3.52<br>3.15<br>2.82<br>2.55<br>2.31<br>2.10 |

# STEEL I BEAMS.

#### 9" I BEAM. SHAPE No. 14. 86 LBS. PER YARD.

Depth, 9". Width of flange, 41/4". Thickness of web, 7.".

Safe load in nett tons =  $\frac{124.20}{\text{Span in feet}}$ .

Maximum shear = 12.29 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.05'.

|                                                                                                    | ons.                                                                                                                                 | zá                                                                                                                           |                                                                                                                     | Dist                                                                                                                                 |                                                                                                                      | ert, in fee<br>ms, for s                                                             |                                                                              | to centr                     | e of                                         |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|----------------------------------------------|--|
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                                             | Deflexion, in inches.                                                                                                        | Weight of beam.                                                                                                     | 100 lbs.<br>per square foot.                                                                                                         | 125 lbs.<br>per square foot.                                                                                         | 150 lbs.<br>per square foot.                                                         | 175 lbs.<br>per square foot.                                                 | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot.                 |  |
| 10                                                                                                 | 12.42<br>11.29                                                                                                                       | 0.20<br>0.25                                                                                                                 | 286<br>315                                                                                                          |                                                                                                                                      |                                                                                                                      | 16.56<br>13.70                                                                       |                                                                              | I 2.42<br>IO.27              | 9.93<br>8.21                                 |  |
| 12<br>13<br>14<br>15<br>16                                                                         | 10.35<br>9.55<br>8.87<br>8.28<br>7.76                                                                                                | 0.30<br>0.35<br>0.40<br>0.46<br>0.52                                                                                         | 344<br>372<br>401<br>430<br>458                                                                                     |                                                                                                                                      | 11.76<br>10.14<br>8.83                                                                                               | 9.80<br>9.85<br>8.45<br>7.36<br>6.47                                                 | 8.40                                                                         | 7.35                         | 6.90<br>5.88<br>5.07<br>4.41<br>3.88         |  |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 7.31<br>6.85<br>6.54<br>6.21<br>5.92<br>5.65<br>5.40<br>5.18<br>4.97<br>4.78<br>4.60<br>4.44<br>4.28<br>4.14<br>4.00<br>3.88<br>3.77 | 0.60<br>0.66<br>0.74<br>0.82<br>0.91<br>1.00<br>1.18<br>1.29<br>1.39<br>1.51<br>1.61<br>1.73<br>1.86<br>1.99<br>2.12<br>2.26 | 487<br>516<br>544<br>573<br>601<br>630<br>659<br>687<br>716<br>745<br>773<br>802<br>831<br>859<br>888<br>917<br>945 | 8.60<br>7.61<br>6.88<br>6.21<br>5.64<br>5.14<br>4.70<br>4.32<br>3.98<br>3.68<br>3.41<br>3.17<br>2.95<br>2.76<br>2.58<br>2.43<br>2.28 | 6.88<br>6.09<br>5.50<br>4.98<br>4.51<br>4.11<br>3.76<br>3.45<br>3.18<br>2.94<br>2.73<br>2.54<br>2.36<br>2.21<br>2.06 | 5.73<br>5.07<br>4.59<br>4.14<br>3.76<br>3.43<br>2.88<br>2.65<br>2.45<br>2.27<br>2.11 | 4.92<br>4.35<br>3.93<br>3.55<br>3.22<br>2.94<br>2.68<br>2.47<br>2.27<br>2.10 | 3.81                         | 3.44<br>3.05<br>2.75<br>2.49<br>2.25<br>2.06 |  |

#### 9" I BEAM. SHAPE No. 15. 70% LBS, PER YARD.

Depth, 9". Width of flange, 4". Thickness of web, 3%".

Safe load in nett tons =  $\frac{96.20}{\text{Span in feet}}$ .

Maximum shear = 9.77 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.93'.

|                                                                                                    | ons,                                                                                                                          | si s                                                                                                         |                                                                                                              | Dist                                                                                                         |                                                      |                              | et, centre<br>safe loads                             |                                              | e of                                         |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                                      | Deflexion, in inches.                                                                                        | Weight of beam.                                                                                              | 100 lbs.<br>per square foot.                                                                                 | 125 lbs.<br>per square foot.                         | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.                         | 200 lbs.<br>per square foot.                 | 250 lbs.<br>per square foot.                 |
| 10                                                                                                 | 9.62                                                                                                                          | 0.20                                                                                                         | 236                                                                                                          | 19.24                                                                                                        | 15.39                                                | 12.83                        | 10.99                                                | 9.62                                         | 7.70                                         |
| 11<br>12<br>13<br>14<br>15                                                                         | 8.74<br>8.02<br>7.40<br>6.88<br>6.41<br>6.01                                                                                  | 0.25<br>0.30<br>0.35<br>0.40<br>0.46<br>0.52                                                                 | 259<br>283<br>307<br>339<br>354<br>378                                                                       | 15.89<br>13.37<br>11.38<br>9.83<br>8.55<br>7.51                                                              | 10.70<br>9.10                                        | 8.91<br>7.59                 | 7.64<br>6.50<br>5.62                                 | 7.94<br>6.68<br>5.69<br>4.91<br>4.27<br>3.75 | 6.36<br>5·35<br>4·55<br>3·93<br>3.42<br>3.00 |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 5.66<br>5.34<br>5.06<br>4.81<br>4.58<br>4.37<br>4.18<br>4.01<br>3.85<br>3.70<br>3.56<br>3.44<br>3.321<br>3.10<br>3.00<br>2.92 | 0.60<br>0.66<br>0.74<br>0.82<br>0.91<br>1.00<br>1.39<br>1.51<br>1.61<br>1.73<br>1.86<br>1.99<br>2.12<br>2.26 | 401<br>424<br>448<br>471<br>495<br>519<br>542<br>566<br>613<br>637<br>661<br>684<br>708<br>732<br>755<br>778 | 6.66<br>5.93<br>5.33<br>4.81<br>4.36<br>3.97<br>3.63<br>3.34<br>3.08<br>2.85<br>2.64<br>2.29<br>2.14<br>2.00 | 4.74<br>4.26<br>3.85<br>3.49<br>3.18<br>2.90<br>2.67 | 3.21<br>2.91<br>2.65         | 3.81<br>3.39<br>3.05<br>2.75<br>2.49<br>2.27<br>2.07 | 3·33<br>2·96<br>2·66<br>2·41<br>2·18         | 2.66<br>2.37<br>2.13                         |

## 8" I BEAM. SHAPE No. 16. 81 LBS. PER YARD.

Depth, 8". Width of flange,  $4\frac{5}{32}$ ". Thickness of web,  $\frac{1}{2}$ ".

Safe load in nett tons =  $\frac{100.15}{\text{Span in feet}}$ . Maximum shear = 13.60 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.68'.

|                                                                                                                | rå                                                                                                                                   |                                                                                                                                                      |                                                                                                                                   | Dis                                                                                                                           |                                                                                                      | art, in fe                                                                           |                                                                      | e to centr<br>s of                                           | e of                                         |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|
| Span, in feet.                                                                                                 | Safe load, in nett tons.                                                                                                             | Deflexion, in inches.                                                                                                                                | Weight of beam.                                                                                                                   | 100 lbs.<br>per square foot.                                                                                                  | 125 lbs.<br>per square foot.                                                                         | 150 lbs.<br>per square foot.                                                         | 175 lbs.<br>per square foot.                                         | 200 lbs.<br>per square foot,                                 | 250 lbs.<br>per square foot.                 |
| 10                                                                                                             | 10.01                                                                                                                                | 0.23                                                                                                                                                 | 270                                                                                                                               | 20.02                                                                                                                         | 16.02                                                                                                | 13.35                                                                                | 11.44                                                                | 10.01                                                        | 8.01                                         |
| 11<br>12<br>13<br>14                                                                                           | 9.10<br>8.34<br>7.70<br>7.15                                                                                                         | 0.29<br>0.34<br>0.39<br>0.46                                                                                                                         | 297<br>324<br>350<br>377                                                                                                          |                                                                                                                               | 13.23<br>11.12<br>9.48<br>8.17                                                                       | 11.00<br>9.27<br>7.90<br>6.81                                                        | 9·45<br>7·95<br>6.77<br>5.83                                         | 8.27<br>6.95<br>5.93<br>5.11                                 | 6.62<br>5.56<br>4.74<br>4.08                 |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 6.67<br>6.26<br>5.89<br>5.56<br>5.27<br>5.00<br>4.77<br>4.55<br>4.17<br>4.00<br>3.85<br>3.70<br>3.57<br>3.34<br>3.23<br>3.13<br>3.03 | 0.52<br>0.60<br>0.68<br>0.75<br>0.83<br>0.92<br>I.02<br>I.12<br>I.32<br>I.34<br>I.46<br>I.56<br>I.69<br>I.82<br>I.95<br>2.08<br>2.22<br>2.36<br>2.51 | 404<br>431<br>458<br>485<br>512<br>539<br>566<br>593<br>620<br>647<br>674<br>701<br>728<br>755<br>782<br>809<br>836<br>863<br>890 | 8.89<br>7.82<br>6.93<br>6.18<br>5.55<br>5.00<br>4.54<br>4.14<br>3.78<br>3.47<br>3.296<br>2.74<br>2.55<br>2.38<br>2.23<br>2.08 | 7.11<br>6.26<br>5.54<br>4.94<br>4.00<br>3.63<br>3.31<br>3.02<br>2.78<br>2.56<br>2.37<br>2.19<br>2.04 | 5.93<br>5.21<br>4.62<br>4.12<br>3.70<br>3.33<br>3.03<br>2.76<br>2.52<br>2.31<br>2.13 | 5.08<br>4.47<br>3.96<br>3.53<br>3.17<br>2.86<br>2.59<br>2.37<br>2.16 | 4.45<br>3.91<br>3.47<br>3.09<br>2.78<br>2.50<br>2.27<br>2.07 | 3·55<br>3·13<br>2·77<br>2·47<br>2·22<br>2·00 |

#### 8" I BEAM. SHAPE No. 17. 65% LBS. PER YARD.

Depth, 8". Width of flange, 4". Thickness of web, 5".

Safe load in nett tons =  $\frac{88,40}{\text{Span in feet}}$ .

Maximum shear = 6.97 tons.

Span limit for uniformly distributed load of twice the maximum shear = 6.34'.

|                                                                                                                | cons.                                                                                                                                        | nches.                                                                                                                               |                                                                                                                                   | Dist                                                                                                                 |                                                              |                                                      | et, centre<br>safe loads     |                                      | re of                        |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------|--------------------------------------|------------------------------|
| Span, in feet.                                                                                                 | Safe load, in nett tons.                                                                                                                     | Deflexion, in inches.                                                                                                                | Weight of beam.                                                                                                                   | 100 lbs.<br>per square foot.                                                                                         | 125 lbs.<br>per square foot.                                 | 150 lbs.<br>per square foot.                         | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot.         | 250 lbs.<br>per square foot. |
| 10                                                                                                             | 8.84                                                                                                                                         | 0.23                                                                                                                                 | 219                                                                                                                               | 17.68                                                                                                                | 14.14                                                        | 11.79                                                | 10.10                        | 8.84                                 | 7.07                         |
| 11<br>12<br>13<br>14                                                                                           | 8.04<br>7.37<br>6.80<br>6.31                                                                                                                 | 0.29<br>0.34<br>0.39<br>0.46                                                                                                         | 241<br>263<br>285<br>307                                                                                                          | 14.62<br>12.28<br>10.46<br>9.01                                                                                      | 8.37                                                         | 8.19<br>6.97                                         | 8.35<br>7.02<br>5.98<br>5.15 | 6.14                                 | 5.85<br>4.91<br>4.19<br>3.61 |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 5.89<br>5.53<br>5.20<br>4.91<br>4.65<br>4.42<br>4.21<br>4.02<br>3.84<br>3.68<br>3.54<br>3.47<br>3.16<br>3.05<br>2.95<br>2.85<br>2.76<br>2.68 | 0.52<br>0.60<br>0.68<br>0.75<br>0.83<br>0.92<br>1.02<br>1.12<br>1.34<br>1.46<br>1.56<br>1.69<br>1.82<br>2.28<br>2.28<br>2.23<br>2.36 | 329<br>350<br>372<br>394<br>416<br>438<br>460<br>482<br>504<br>526<br>548<br>569<br>591<br>613<br>635<br>657<br>679<br>701<br>723 | 7.85<br>6.91<br>6.12<br>5.46<br>4.89<br>4.42<br>4.01<br>3.65<br>3.34<br>3.07<br>2.83<br>2.62<br>2.42<br>2.26<br>2.10 | 5.53<br>4.89<br>4.37<br>3.91<br>3.54<br>3.21<br>2.92<br>2.67 | 4.61<br>4.08<br>3.64<br>3.26<br>2.95<br>2.67<br>2.40 | 3.95<br>3.49<br>3.12<br>2.79 | 3.46<br>3.06<br>2.73<br>2.45<br>2.21 | 3.14<br>2.77<br>2.45<br>2.19 |

# STEEL I BEAMS.

# 7" I BEAM. SHAPE No. 18. 65% LBS. PFR YARD.

Depth, 7". Width of flange,  $3\frac{9}{16}$ ". Thickness of web,  $\frac{29}{64}$ ".

Safe load in nett tons =  $\frac{71.50}{\text{Span in feet}}$ .

Maximum shear = 10.90 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.28'.

|                                                                                              | ons,                                                                                                         | vi.                                                                                                                          |                                                                                                              | Dist                                                                                                 |                                                                      |                                                                      | et, centre<br>safe load                                      | to centre                                    | e of                         |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|------------------------------|
| Span, in feet.                                                                               | Safe load, in nett tons.                                                                                     | Deflexion, in inches.                                                                                                        | Weight of beam.                                                                                              | 100 lbs.<br>per square foot.                                                                         | 125 lbs.<br>per square foot.                                         | 150 lbs.<br>per square foot.                                         | 175 lbs.<br>per square foot.                                 | 200 lbs.<br>per square foot.                 | 250 lbs.<br>per square foot. |
| IO<br>II<br>I2                                                                               | 7.15<br>6.50<br>5.96                                                                                         | 0.26<br>0.33<br>0.38                                                                                                         | 219<br>241<br>263                                                                                            | 14.30<br>11.82<br>9.93                                                                               | 11.44<br>9.46<br>7.94                                                | 9·53<br>7·88<br>6.62                                                 | 8.17<br>6.75<br>5.67                                         | 7.15<br>5.91<br>4.97                         | 5.72<br>4.73<br>3.97         |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 5.50<br>5.11<br>4.77<br>4.47<br>4.21<br>3.97<br>3.76<br>3.58<br>3.41<br>2.98<br>2.86<br>2.75<br>2.65<br>2.55 | 0.46<br>0.52<br>0.60<br>0.68<br>0.77<br>0.86<br>0.96<br>1.07<br>1.17<br>1.29<br>1.40<br>1.52<br>1.65<br>1.79<br>1.94<br>2.08 | 285<br>307<br>329<br>351<br>373<br>394<br>416<br>438<br>460<br>482<br>504<br>526<br>548<br>570<br>592<br>614 | 8.46<br>7.30<br>6.36<br>5.59<br>4.96<br>4.41<br>3.96<br>3.58<br>3.25<br>2.95<br>2.48<br>2.29<br>2.12 | 5.84<br>5.09<br>4.47<br>3.97<br>3.53<br>3.17<br>2.86<br>2.60<br>2.36 | 5.64<br>4.87<br>4.24<br>3.73<br>3.31<br>2.94<br>2.64<br>2.39<br>2.17 | 4.83<br>4.17<br>3.63<br>3.20<br>2.83<br>2.52<br>2.26<br>2.05 | 4.23<br>3.65<br>3.18<br>2.29<br>2.48<br>2.20 | 3.38<br>2.92<br>2.54<br>2.23 |
| 29<br>30<br>31<br>32<br>33                                                                   | 2.46<br>2.38<br>2.31<br>2.23<br>2.16                                                                         | 2.24<br>2.39<br>2.55<br>2.70<br>2.86                                                                                         | 636<br>657<br>679<br>701<br>723                                                                              | S                                                                                                    | -                                                                    |                                                                      | r tabu<br>= 9.00′                                            | ılar sa<br>•                                 | fe                           |

## 7" I BEAM. SHAPE No. 19. 551/2 LBS. PER YARD.

Depth, 7". Width of flange,  $3\frac{7}{16}$ ". Thickness of web,  $\frac{21}{64}$ ".

Safe load in nett tons =  $\frac{65.40}{\text{Span in feet}}$ .

Maximum shear = 7.08 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.62'.

|                                                                                              | tons.                                                                                                        | ø                                                                                                                            | ·w                                                                                                           |                                                                                                      | tance apa<br>bea                                     |                              | et, centre<br>safe load                              |                                              | e of                         |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------|
| Span, in feet.                                                                               | Safe load, in nett tons.                                                                                     | Deflexion, in inches.                                                                                                        | Weight of beam.                                                                                              | 100 lbs.<br>per square foot.                                                                         | 125 lbs.<br>per square foot.                         | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.                         | 200 lbs.<br>per square foot.                 | 250 lbs.<br>per square foot. |
| IO<br>II<br>I2                                                                               | 6.53<br>5.94<br>5.45                                                                                         | 0.26<br>0.33<br>0.38                                                                                                         | 185<br>204<br>222                                                                                            | 13.06<br>10.80<br>9.08                                                                               | 10.45<br>8.64<br>7.26                                | 8.71<br>7.20<br>6.05         | 7.46<br>6.17<br>5.19                                 | 6.53<br>5.40<br>4.54                         | 5.23<br>4.32<br>3.63         |
| 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 5.03<br>4.67<br>4.36<br>4.09<br>3.85<br>3.63<br>3.44<br>3.27<br>2.84<br>2.72<br>2.61<br>2.51<br>2.42<br>2.33 | 0.46<br>0.52<br>0.60<br>0.68<br>0.77<br>0.86<br>0.96<br>1.07<br>1.17<br>1.29<br>1.40<br>1.52<br>1.65<br>1.79<br>1.94<br>2.08 | 241<br>259<br>278<br>297<br>315<br>334<br>352<br>371<br>389<br>408<br>426<br>445<br>463<br>482<br>500<br>519 | 7.74<br>6.67<br>5.81<br>5.11<br>4.53<br>4.03<br>3.62<br>3.27<br>2.96<br>2.70<br>2.47<br>2.27<br>2.09 | 5·34<br>4.65<br>4.09<br>3.62<br>3.22<br>2.89<br>2.62 | 3.87<br>3.41<br>3.02<br>2.69 | 4.42<br>3.81<br>3.32<br>2.92<br>2.59<br>2.30<br>2.07 | 3.87<br>3.34<br>2.91<br>2.56<br>2.27<br>2.02 | 3.10<br>2.67<br>2.32<br>2.04 |
| 29<br>30<br>31<br>32<br>33                                                                   | 2.25<br>2.18<br>2.11<br>2.04<br>1.98                                                                         | 2.24<br>2.39<br>2.55<br>2.70<br>2.86                                                                                         | 537<br>556<br>574<br>593<br>612                                                                              | S                                                                                                    | pan li                                               |                              | r tabu<br>= 8½'.                                     | lar sa                                       | fe                           |

# STEEL I BEAMS.

#### 6" I BEAM. SHAPE No. 20. 501/2 LBS. PER YARD.

Depth, 6". Width of flange,  $3\frac{9}{32}$ ". Thickness of web,  $\frac{13}{32}$ ".

Safe load in nett tons =  $\frac{46.80}{\text{Span in feet}}$ .

Maximum shear = 8.52 tons.

Span limit for uniformly distributed load of twice the maximum shear =  $2.75^{7}$ .

|                                                                                                    | ons.                                                                                                                 | si .                                                                                                                                         |                                                                                                                            | Dist                                                                                 | to centres of                                                        | e of                                                 |                                              |                                      |                              |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------|
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                             | Deflexion, in inches.                                                                                                                        | Weight of beam.                                                                                                            | 100 lbs.<br>per square foot.                                                         | 125 lbs.<br>per square foot.                                         | 150 lbs.<br>per square foot.                         | 175 lbs.<br>per square foot.                 | 200 lbs.<br>per square foot.         | 250 lbs.<br>per square foot. |
| 10                                                                                                 | 4.68                                                                                                                 | 0.33                                                                                                                                         | 168                                                                                                                        | 9.36                                                                                 | 7.49                                                                 | 6.24                                                 | 5.35                                         | 4.68                                 | 3.74                         |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 4.25<br>3.90<br>3.60<br>3.34<br>3.12<br>2.95<br>2.60<br>2.46<br>2.34<br>2.23<br>2.13<br>2.04<br>1.95<br>1.87<br>1.80 | 0.38<br>0.44<br>0.52<br>0.61<br>0.70<br>0.78<br>0.89<br>1.00<br>1.12<br>1.23<br>1.36<br>1.49<br>1.64<br>1.78<br>1.94<br>2.09<br>2.26<br>2.43 | 185<br>202<br>219<br>236<br>253<br>269<br>286<br>303<br>320<br>337<br>353<br>370<br>387<br>404<br>421<br>438<br>454<br>471 | 7.61<br>6.50<br>5.54<br>4.77<br>4.16<br>3.65<br>3.23<br>2.88<br>2.59<br>2.34<br>2.12 | 6.09<br>5.20<br>4.43<br>3.82<br>3.33<br>2.92<br>2.58<br>2.30<br>2.07 | 5.07<br>4.33<br>3.69<br>3.18<br>2.77<br>2.43<br>2.15 | 4.35<br>3.71<br>3.16<br>2.72<br>2.38<br>2.09 | 3.80<br>3.25<br>2.77<br>2.38<br>2.08 | 3.04<br>2.60<br>2.21<br>1.91 |
| 29<br>30<br>31<br>32<br>33                                                                         | 1.61<br>1.56<br>1.51<br>1.46<br>1.42                                                                                 | 2.43<br>2.60<br>2.78<br>2.95<br>3.12<br>3.29                                                                                                 | 488<br>505<br>522<br>539<br>555                                                                                            | S                                                                                    | pan li                                                               |                                                      | r tabu<br>= 8.10'.                           |                                      | fe                           |

## STEEL I BEAMS.

#### 6" I BEAM. SHAPE No. 21. 401/2 LBS. PER YARD.

Depth, 6". Width of flange, 31/8". Thickness of web, 1/4".

Safe load in nett tons =  $\frac{41.60}{\text{Span in feet}}$ .

Maximum shear = 4.41 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.72'.

|                                                                                                    | ons.                                                                                                                 | ø <sup>*</sup>                                                                                                               |                                                                                                                     | Dist                                                                         |                                                              | ert, in fe                                   |                                      | to centres of                | e of                         |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------|------------------------------|
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                             | Deflexion, in inches.                                                                                                        | Weight of beam.                                                                                                     | 100 lbs.<br>per square foot.                                                 | 125 lbs.<br>per square foot.                                 | 150 lbs.<br>per square foot.                 | 175 lbs.<br>per square foot.         | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 10                                                                                                 | 4.16                                                                                                                 | 0.33                                                                                                                         | 135                                                                                                                 | 8.32                                                                         | 6.66                                                         | 5.55                                         | 4.75                                 | 4.16                         | 3.33                         |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 | 3.78<br>3.47<br>3.20<br>2.97<br>2.77<br>2.60<br>2.45<br>2.31<br>2.08<br>1.89<br>1.89<br>1.81<br>1.73<br>1.66<br>1.60 | 0.38<br>0.44<br>0.52<br>0.61<br>0.70<br>0.78<br>0.89<br>1.00<br>1.12<br>1.23<br>1.36<br>1.49<br>1.78<br>1.94<br>2.09<br>2.26 | 148<br>162<br>175<br>189<br>202<br>216<br>229<br>243<br>256<br>270<br>283<br>297<br>310<br>324<br>337<br>350<br>364 | 6.87<br>5.78<br>4.92<br>4.24<br>3.69<br>3.25<br>2.88<br>2.57<br>2.30<br>2.08 | 5.50<br>4.62<br>3.94<br>3.39<br>2.95<br>2.60<br>2.30<br>2.06 | 4.58<br>3.85<br>3.28<br>2.83<br>2.46<br>2.17 | 3.93<br>3.30<br>2.81<br>2.42<br>2.11 | 3.44<br>2.89<br>2.46<br>2.12 | 2.75<br>2.31                 |
| 28<br>29<br>30<br>31<br>32<br>33                                                                   | 1.49<br>1.43<br>1.39<br>1.34<br>1.30<br>1.26                                                                         | 2.43<br>2.60<br>2.78<br>2.95<br>3.12<br>3.29                                                                                 | 377<br>391<br>404<br>418<br>431<br>445                                                                              | S                                                                            | pan lii                                                      | mit fo:<br>load =                            |                                      | lar sai                      | Îe .                         |

# STEEL I BEAMS.

# 5" I BEAM. SHAPE No. 22. 401/2 LBS. PER YARD.

Depth, 5". Width of flange, 215". Thickness of web, 3/8".

Safe load in nett tons =  $\frac{33.30}{\text{Span in feet}}$ .

Maximum shear = 6.71 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.48'.

|                                                                                                    | ons.                                                                                                                 | rô.                                                                                                                          |                                                                                                                     | Dist                                                                 | tance apa                                            | ert, in fe                           |                              |                              | re of                        |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                             | Deflexion, in inches.                                                                                                        | Weight of beam.                                                                                                     | 100 lbs.<br>per square foot.                                         | 125 lbs.<br>per square foot.                         | 150 lbs.<br>per square foot.         | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 3<br>4<br>5<br>6<br>7<br>8                                                                         | 11.09<br>8.32<br>6.65<br>5.55<br>4.75<br>4.16                                                                        | 0.03<br>0.05<br>0.09<br>0.13<br>0.18<br>0.23                                                                                 | 40<br>54<br>68<br>80<br>94<br>108                                                                                   | 18.50                                                                | 21.28<br>14.80<br>10.86<br>8.32                      | 12.33                                | 15.20                        |                              | 7.40<br>5.43                 |
| 9                                                                                                  | 3.69                                                                                                                 | 0.30                                                                                                                         | I 20                                                                                                                | 8.20                                                                 | 6.56                                                 | 5.47                                 | 4.69                         | 4.10                         | 3.28                         |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 3·33<br>3·03<br>2·77<br>2·56<br>2·38<br>2·21<br>2·08<br>1·95<br>1·67<br>1·58<br>1·51<br>1·45<br>1·38<br>1·38<br>1·28 | 0.36<br>0.44<br>0.53<br>0.62<br>0.73<br>0.83<br>0.95<br>1.07<br>1.19<br>1.48<br>1.64<br>1.79<br>1.96<br>2.14<br>2.33<br>2.53 | 135<br>148<br>162<br>175<br>189<br>202<br>216<br>229<br>242<br>256<br>269<br>283<br>296<br>310<br>322<br>337<br>350 | 6.66<br>5.51<br>4.62<br>3.94<br>3.40<br>2.95<br>2.60<br>2.29<br>2.06 | 5.33<br>4.41<br>3.70<br>3.15<br>2.72<br>2.36<br>2.08 | 4.44<br>3.67<br>3.08<br>2.63<br>2.27 | 3.81<br>3.15<br>2.64<br>2.25 | 3.33<br>2.76<br>2.31         | 2.67<br>2.21                 |

# STEEL I BEAMS.

#### 5" I BEAM. SHAPE No. 23. 301/2 LBS. PER YARD.

Depth, 5". Width of flange, 23/4". Thickness of web, 3".

Safe load in nett tons =  $\frac{25.00}{\text{Span in feet}}$ .

Maximum shear = 2.54 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.00'.

|                                                                                                    | ons,                                                                                                         | vi.                                                                                                                          |                                                                                                                     | Dist                                         | ance apa                             | rt, in fe<br>ms, for s         |                              |                              | re of                                  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------|------------------------------|------------------------------|----------------------------------------|
| Span, in feet.                                                                                     | Safe load, in nett tons.                                                                                     | Deflexion, in inches.                                                                                                        | Weight of beam.                                                                                                     | 100 lbs.<br>per square foot.                 | 125 lbs.<br>per square foot.         | 150 lbs.<br>per square foot.   | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot.           |
| 3<br>4<br>5<br>6<br>7                                                                              | 8.32<br>6.24<br>4.99<br>4.16<br>3.57                                                                         | 0.03<br>0.05<br>0.09<br>0.13<br>0.18                                                                                         | 30<br>40<br>51<br>61<br>71                                                                                          | 19.96<br>13.87<br>10.20                      | 15.97<br>11.10                       | 20.80<br>13.31<br>9.25<br>6.80 | 11.41<br>7.93                | 9.98                         | 22.19<br>12.48<br>7.99<br>5.55<br>4.08 |
| 8<br>9                                                                                             | 3.12<br>2.77                                                                                                 | 0.23<br>0.30                                                                                                                 | 81<br>91                                                                                                            | 7.80<br>6.16                                 | 6.24<br>4.93                         | 5.20<br>4.11                   | 4.46<br>3.52                 |                              | 3.12<br>2.47                           |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 2.50<br>2.27<br>2.08<br>1.92<br>1.78<br>1.66<br>1.56<br>1.47<br>1.38<br>1.31<br>1.25<br>1.19<br>1.13<br>1.09 | 0.36<br>0.44<br>0.53<br>0.62<br>0.73<br>0.83<br>0.95<br>1.07<br>1.19<br>1.48<br>1.64<br>1.79<br>1.96<br>2.14<br>2.33<br>2.53 | 101<br>111<br>121<br>131<br>141<br>152<br>162<br>172<br>182<br>192<br>202<br>212<br>222<br>233<br>243<br>253<br>263 | 5.00<br>4.13<br>3.47<br>2.95<br>2.54<br>2.21 | 4.00<br>3.30<br>2.78<br>2.36<br>2.03 | 3·33<br>2·75<br>2·31           |                              | , ,                          | 2.00                                   |

#### 4" I BEAM. SHAPE No. 24. 301/2 LBS. PER YARD.

Depth, 4". Width of flange,  $2\frac{7}{16}$ ". Thickness of web,  $\frac{27}{64}$ ".

Safe load in nett tons =  $\frac{18.20}{\text{Span in feet}}$ .

Maximum shear = 6.32 tons.

Span limit for uniformly distributed load of twice the maximum shear = 1.44'.

|                                                                                                              | tons,                                                                                                                                        | Š.                                                                                                                                   |                                                                                                                   | Dist                                         |                              | ert, in feathers, for s        |                              |                                | re of                         |  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|--------------------------------|------------------------------|--------------------------------|-------------------------------|--|
| Span, in feet.                                                                                               | Safe load, in nett tons.                                                                                                                     | Deflexion, in inches.                                                                                                                | Weight of beam.                                                                                                   | 100 lbs.<br>per square foot.                 | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot.   | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot.   | 250 lbs.<br>per square foot.  |  |
| 3<br>4<br>5<br>6                                                                                             | 6.07<br>4.55<br>3.64<br>3.03                                                                                                                 | 0.04<br>0.08<br>0.12<br>0.17                                                                                                         | 30<br>40<br>51<br>61                                                                                              | 22.75                                        |                              | 26.98<br>15.17<br>9.71<br>6.73 |                              | 20.24<br>11.38<br>7.28<br>5.05 | 16.19<br>9.10<br>5.83<br>4.04 |  |
| 7                                                                                                            | 2.60                                                                                                                                         | 0.22                                                                                                                                 | 71                                                                                                                | 7.43                                         | 5.94                         | 4.95                           | 4.25                         | 3.72                           | 2.97                          |  |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 2.28<br>2.02<br>1.82<br>1.65<br>1.52<br>1.40<br>1.30<br>1.21<br>1.14<br>1.07<br>1.01<br>0.96<br>0.91<br>0.83<br>0.79<br>0.76<br>0.73<br>0.70 | 0.30<br>0.38<br>0.47<br>0.56<br>0.66<br>0.78<br>0.91<br>1.05<br>1.18<br>1.34<br>1.51<br>2.05<br>2.25<br>2.46<br>2.68<br>2.90<br>3.13 | 81<br>91<br>101<br>111<br>121<br>131<br>141<br>152<br>162<br>172<br>182<br>202<br>222<br>233<br>243<br>243<br>263 | 5.70<br>4.49<br>3.64<br>3.00<br>2.53<br>2.15 | 3.59<br>2.91                 |                                |                              | 2.85                           | 2.28                          |  |

# STEEL I BEAMS.

## 4" I BEAM. SHAPE No. 25. 241/4 LBS. PER YARD.

Depth, 4". Width of flange,  $2\frac{1}{4}$ ". Thickness of web,  $\frac{5}{16}$ ".

Safe load in nett tons =  $\frac{14.56}{\text{Span in feet}}$ .

Maximum shear = 4.51 tons.

Span limit for uniformly distributed load of twice the maximum shear = '1.61.

|                                                                                                              | tons.                                                                                                                        | Š                                                                                                                                    |                                                                                                                              | Dist                                 | ance apa<br>bea              |                              | et, centro<br>safe loads     |                              | re of                        |  |  |  |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|
| Span, in feet.                                                                                               | Safe load, in nett tons.                                                                                                     | Deflexion, in inches.                                                                                                                | Weight of beam.                                                                                                              | 100 lbs.<br>per square foot.         | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |
| 3<br>4<br>5<br>6                                                                                             | 4.85<br>3.64<br>2.91<br>2.43                                                                                                 | 0.04<br>0.08<br>0.12<br>0.17                                                                                                         | 24<br>32<br>40<br>48                                                                                                         |                                      |                              |                              | 10.40<br>6.65                | 5.82                         |                              |  |  |  |
| 7                                                                                                            | 2.08                                                                                                                         | 0.22                                                                                                                                 | 56                                                                                                                           | 5.94                                 | 4.75                         | 3.96                         | 3.38                         | 2.97                         | 2.38                         |  |  |  |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 1.82<br>1.62<br>1.46<br>1.32<br>1.21<br>1.12<br>1.04<br>0.97<br>0.86<br>0.81<br>0.76<br>0.73<br>0.66<br>0.63<br>0.60<br>0.58 | 0.30<br>0.38<br>0.47<br>0.56<br>0.66<br>0.78<br>0.91<br>1.03<br>1.34<br>1.51<br>1.68<br>2.05<br>2.25<br>2.46<br>2.68<br>2.90<br>3.13 | 64<br>73<br>81<br>89<br>97<br>105<br>113<br>121<br>129<br>137<br>146<br>154<br>162<br>170<br>178<br>186<br>194<br>202<br>210 | 4.55<br>3.60<br>2.92<br>2.40<br>2.02 | 3.64<br>2.88<br>2.34         |                              | 2.60                         | 2.28                         |                              |  |  |  |

## 4" I BEAM. SHAPE No. 26. 181/4 LBS. PER YARD.

Depth, 4". Width of flange, 21/8". Thickness of web, 3".

Safe load in nett tons =  $\frac{11.40}{\text{Span in feet}}$ .

Maximum shear = 2.31 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.47'.

|                                                                                                              | 214/                                                                                                                         |                                                                                                                                              |                                                                                                                          |                                |                              |                               |                               |                              |                              |  |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|--|
|                                                                                                              | tons,                                                                                                                        | vã                                                                                                                                           |                                                                                                                          | Dis                            | tance apa<br>bea             | ert, in fe                    |                               |                              | e of                         |  |
| Span, in feet.                                                                                               | Safe load, in nett tons.                                                                                                     | Deflexion, in inches.                                                                                                                        | Weight of beam.                                                                                                          | 100 lbs.<br>per square foot.   | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot.  | 175 lbs.<br>per square foot.  | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |
| 3<br>4<br>5<br>6                                                                                             | 3.80<br>2.85<br>2.28<br>1.90                                                                                                 | 0.04<br>0.08<br>0.12<br>0.17                                                                                                                 | 18<br>24<br>30<br>36                                                                                                     | 25.33<br>14.25<br>9.12<br>6.33 | 7.30                         | 16.89<br>9.50<br>6.08<br>4.22 | 14.47<br>8.14<br>5.21<br>3.62 | 4.56                         | 5.70                         |  |
| 7                                                                                                            | 1.63                                                                                                                         | 0.22                                                                                                                                         | 42                                                                                                                       | 4.66                           | 3.73                         | 3.07                          | 2.66                          | 2.33                         |                              |  |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 1.43<br>1.27<br>1.14<br>1.04<br>0.95<br>0.81<br>0.76<br>0.71<br>0.67<br>0.63<br>0.60<br>0.57<br>0.54<br>0.52<br>0.49<br>0.48 | 0.30<br>0.38<br>0.47<br>0.56<br>0.66<br>0.78<br>0.91<br>1.05<br>1.18<br>1.34<br>1.51<br>1.68<br>2.05<br>2.25<br>2.46<br>2.68<br>2.90<br>3.13 | 48<br>55<br>61<br>67<br>73<br>79<br>85<br>91<br>97<br>103<br>109<br>115<br>121<br>128<br>134<br>140<br>146<br>152<br>158 | 3.58<br>2.82<br>2.28           | 2.86<br>2.26                 | 2.39                          | 2.05                          |                              |                              |  |





## TABLES

OF THE CAPACITY OF

# STEEL CHANNELS

UNDER UNIFORMLY DISTRIBUTED TRANSVERSE LOADS,

THE EXTREME FIBRE STRESS BEING 7.8 TONS PER SQUARE INCH, WHICH IS TWO-SEVENTHS OF

THE MODULUS OF RUPTURE;

AND THE UNSTAYED LENGTH OF FLANGE NOT EXCEEDING THIRTY TIMES ITS WIDTH.

The span, which is thirty times the flange width, is denoted by a dotted line on the tables, and for lengths greater than this, the tabular safe load must be reduced by multiplying it by the factors given in table on page 43, or else some method of staying the flanges be employed.



## STEEL CHANNELS.

#### 15" CHANNEL, SHAPE No. 30, 2271/4 LBS, PER YARD.

Depth, 15". Width of flange,  $5\frac{5}{64}$ ". Thickness of web,  $1\frac{5}{64}$ ".

Safe load in nett tons =  $\frac{431.60}{\text{Span in feet}}$ .

Maximum shear = 57.08 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.78'.

|                | ons.                     | inches.               |                 | Dist                         | ance apa<br>bea              | rt, in fee<br>ms, for s      |                              |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square fcot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 71.93                    | 0.04                  | 455             |                              |                              |                              |                              |                              |                              |
| 8              | 53.95                    | 0.09                  | 606             |                              |                              |                              |                              |                              |                              |
| IO             | 43.16                    | 0.14                  | 758             |                              |                              |                              |                              | 43.16                        | 34.53                        |
| 12             | 35.97                    | 0.19                  | 909             |                              |                              | 39.97                        | 34.26                        | 29.97                        | 23.98                        |
| 14             | 30.83                    | 0.27                  | 1061            | 44.04                        | 35.23                        | 29.36                        | 25.17                        | 22.02                        | 17.62                        |
| 16             | 26.98                    | 0.35                  | 1212            | 33.73                        | 26.98                        | 22.49                        | 19.27                        | 16.86                        | 13.49                        |
| 18             | 23.97                    | 0.44                  | 1364            | 26.63                        | 21.30                        | 17.75                        | 15.22                        | 13.31                        | 10.65                        |
| 20             | 21.58                    | 0.56                  | 1515            | 21.58                        | 17.26                        | 14.39                        | 12.33                        | 10.79                        | 8.63                         |
| 22             | 19.62                    | 0.68                  | 1667            | 17.84                        | 14.27                        | 11.89                        | 10.19                        | 8.92                         | 7.14                         |
| 24             | 17.98                    | 0.81                  | 1818            | 14.98                        | 11.98                        | 9.99                         | 8.56                         | 7.49                         | 5.99                         |
| 26             | 16.60                    | 0.95                  | 1970            | 12.77                        | 10.22                        | 8.51                         | 7.30                         | 6.38                         | 5.11                         |
| 28             | 15.42                    | 1.09                  | 2121            | 10.11                        | 8.81                         | 7.34                         | 6.29                         | 5.50                         | 4.40                         |
| 30             | 14.39                    | 1.25                  | 2273            | 9.59                         | 7.67                         | 6.39                         | 5.48                         | 4.79                         | 3.84                         |
| 32             | 13.49                    | 1.43                  | 2424            | 8.43                         | 6.74                         | 5.62                         | 4.82                         | 4.21                         | 3.37                         |
| 34             | 12.69                    | 1.62                  | 2576            | 7.46                         | 5.97                         | 4.97                         | 4.26                         | 3.73                         | 2.98                         |

# STEEL CHANNELS.

## 15" CHANNEL. SHAPE No. 30. 17634 LBS. PER YARD.

Depth, 15". Width of flange, 4\frac{3}{4}". Thickness of web, \frac{3}{4}".

Safe load in nett tons =  $\frac{365.30}{\text{Span in feet}}$ .

Maximum shear = 35.66 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.01.

|                | ons.                     | rå                   |                 | Dist                         |                              | rt, in fee<br>ms, for s      |                              | to centre                    | e of                         |
|----------------|--------------------------|----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 60.88                    | 0.04                 | 354             |                              |                              |                              |                              |                              |                              |
| 8              | 45.66                    | 0.09                 | 47 I            |                              |                              |                              |                              |                              | 45.66                        |
| IO             | 36.53                    | 0.14                 | 589             |                              |                              |                              | 41.75                        | 36.53                        | 29.22                        |
| 12             | 30.44                    | 0.19                 | 707             |                              | 40.58                        | 33.82                        | <b>2</b> 8.99                | 25.36                        | 20.29                        |
| 14             | 26.09                    | 0.27                 | 825             | 37.27                        | 29.82                        | 24.85                        | 21.30                        | 18.63                        | 14.91                        |
| 16             | 22.83                    | 0.35                 | 943             | 28.54                        | 22.83                        | 19.03                        | 16.31                        | 14.27                        | 11.42                        |
| 18             | 20.29                    | 0.44                 | 1060            | 22.54                        | 18.03                        | 15.03                        | 12.88                        | 11.27                        | 9.02                         |
| 20             | 18.27                    | 0.56                 | 1178            | 18.27                        | 14.62                        | 12.18                        | 10.44                        | 9.13                         | 7.31                         |
| 22             | 16.60                    | 0.68                 | 1296            | 15.09                        | 12.07                        | 10.06                        | 8.62                         | 7.54                         | 6.04                         |
| 24             | 15.22                    | 0.81                 | 1414            | 12.68                        | 10.14                        | 8.45                         | 7.25                         | 6.34                         | 5.07                         |
| 26             | 14.05                    | 0.95                 | 1532            | 10.81                        | 8.65                         | 7.21                         | 6.18                         | 5.40                         | 4.32                         |
| 28             | 13.05                    | 1.09                 | 1650            | 9.32                         | 7.46                         | 6:21                         | 5.33                         | 4.66                         | 3.73                         |
| 30             | 12.17                    | 1.25                 | 1767            | 8.11                         | 6.49                         | 5.41                         | 4.63                         | 4.05                         | 3.24                         |
| 32             | II.42                    | 1.43                 | 1885            | 7.14                         | 5.71                         | 4.76                         | 4.08                         | 3.57                         | 2.86                         |
| 34             | 10.74                    | 1.62                 | 2003            | 6.32                         | 5.06                         | 4.21                         | 3.61                         | 3.16                         | 2.53                         |

# STEEL CHANNELS.

# 15" CHANNEL. SHAPE No. 31. 1761/4 LBS. PER YARD.

Depth, 15". Width of flange, 415". Thickness of web, 13".

Safe load in nett tons =  $\frac{344.50}{\text{Span in feet}}$ .

Maximum shear = 39.74 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.33'.

|                | oad, in nett tons.       |                       |                 | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |                              |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                                             | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot, | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |
| 6              | 57.42                    | 0.04                  | 353             |                                                                          |                              |                              |                              |                              |                              |  |  |  |
| 8              | 43.06                    | 0.09                  | 470             |                                                                          |                              |                              | 1                            |                              | 43.06                        |  |  |  |
| ю              | 34.45                    | 0.14                  | 588             |                                                                          |                              |                              | 39.37                        | 34.45                        | 27.56                        |  |  |  |
| 12             | 28.71                    | 0.19                  | 705             |                                                                          | 38.28                        | 31.90                        | 27.34                        | 23.92                        | 19.14                        |  |  |  |
| 14             | 24.61                    | 0.27                  | 823             | 35.16                                                                    | 28.13                        | 23.44                        | 20.09                        | 17.58                        | 14.06                        |  |  |  |
| 16             | 21.53                    | 0.35                  | 940             | 26.91                                                                    | 21.53                        | 17.94                        | 15.38                        | 13.46                        | 10.76                        |  |  |  |
| 18             | 19.14                    | 0.44                  | 1058            | 21.27                                                                    | 17.02                        | 14.18                        | 12.15                        | 10.63                        | 8.51                         |  |  |  |
| 20             | 17.23                    | 0.56                  | 1175            | 17.23                                                                    | 13.78                        | 11.49                        | 9.85                         | 8.61                         | 6.89                         |  |  |  |
| 22             | 15.66                    | 0.68                  | 1293            | 14.24                                                                    | 11.39                        | 9.49                         | 8.14                         | 7.12                         | 5.70                         |  |  |  |
| 24             | 14.35                    | 0.81                  | 1410            | 11.96                                                                    | 9.57                         | 7.97                         | 6.83                         | 5.98                         | 4.78                         |  |  |  |
| 26             | 13.25                    | 0.95                  | 1528            | 10.19                                                                    | 8.15                         | 6.79                         | 5.82                         | 5.09                         | 4.08                         |  |  |  |
| 28             | 12.30                    | 1.09                  | 1645            | 8.79                                                                     | 7.03                         | 5.86                         | 5.02                         | 4.39                         | 3.52                         |  |  |  |
| 30             | 11.48                    | 1.25                  | 1763            | 7.65                                                                     | 6.12                         | 5.10                         | 4.37                         | 3.82                         | 3.06                         |  |  |  |
| 32             | 10.77                    | 1.43                  | 1880            | 6.73                                                                     | 5.38                         | 4.49                         | 3.85                         | 3.36                         | 2.69                         |  |  |  |
| 34             | 10.13                    | 1.62                  | 1998            | 5.96                                                                     | 4.77                         | 3.97                         | 3.41                         | 2.98                         | 2.38                         |  |  |  |

# STEEL CHANNELS.

# 15" CHANNEL. SHAPE No. 31. 1261/4 LBS. PER YARD.

Depth, 15". Width of flange,  $3_{64}^{63}$ ". Thickness of web,  $\frac{31}{64}$ ".

Safe load in nett tons =  $\frac{274.30}{\text{Span in feet}}$ .

Maximum shear = 17.67 tons.

Span limit for uniformly distributed load of twice the maximum shear = 7.76'.

|                | ons.                     | oğ.                   |                 | Dist                         | ance apa<br>bea              |                              | et, centre<br>safe loads     |                             | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 45.72                    | 0.04                  | 254             |                              |                              |                              |                              |                             |                              |
| 8              | 34.29                    | 0.09                  | 338             |                              |                              |                              |                              | 42.86                       | 34.29                        |
| 10             | 27.43                    | 0.14                  | 422             |                              | 43.89                        | 36.57                        | 31.35                        | 27.43                       | 21.94                        |
| I 2            | 22.86                    | 0.19                  | 506             | 38.10                        | 30.48                        | 25.40                        | 21.77                        | 19.05                       | 15.24                        |
| 14             | 19.59                    | 0.27                  | 590             | 27.99                        | 22.39                        | 18.66                        | 15.99                        | 13.99                       | II.20                        |
| 16             | 17.14                    | 0.35                  | 674             | 21.43                        | 17.14                        | 14.29                        | 12.25                        | 10.71                       | 8.57                         |
| 18             | 15.24                    | 0.44                  | 758             | 16.93                        | 13.54                        | 11.29                        | 9.67                         | 8.46                        | 6.77                         |
| 20             | 13.72                    | 0.56                  | 843             | 13.72                        | 10.98                        | 9.15                         | 7.84                         | 6.86                        | 5.49                         |
| 22             | I 2.47                   | 0.68                  | 927             | 11.34                        | 9.07                         | 7.56                         | 6.48                         | 5.67                        | 4.54                         |
| 24             | 11.43                    | 0.81                  | IOIO            | 9.53                         | 7.62                         | 6.35                         | 5.45                         | 4.76                        | 3.81                         |
| 26             | 10.55                    | 0.95                  | 1094            | 8.12                         | 6.50                         | 5.41                         | 4.64                         | 4.06                        | 3.25                         |
| 28             | 9.80                     | 1.09                  | 1178            | 7.00                         | 5.60                         | 4.67                         | 4.00                         | 3.50                        | 2.80                         |
| 30             | 9.14                     | 1.25                  | I 262           | 6.09                         | 4.87                         | 4.06                         | 3.48                         | 3.04                        | 2.44                         |
| 32             | 8.57                     | 1.43                  | I 347           | 5.36                         | 4.29                         | 3.57                         | 3.06                         | 2.68                        | 2.14                         |
| 34             | 8.07                     | 1.62                  | 1430            | 4.75                         | 3.80                         | 3.17                         | 2.71                         | 2.37                        |                              |

# STEEL CHANNELS.

# 12" CHANNEL. SHAPE No. 32. 1511/2 LBS. PER YARD.

Depth, 12". Width of flange, 31/2". Thickness of web, 15".

Safe load in nett tons =  $\frac{221.00}{\text{Span in feet}}$ .

Maximum shear = 40.61 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.72'.

|                | ons.                     | ø                     |                 | Distance apart, in feet, centre to centre of beams, for safe loads of |                              |                              |                              |                              |                              |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|-----------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                                          | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |
| 6              | 36.83                    | 0.06                  | 303             |                                                                       |                              |                              |                              |                              |                              |  |  |  |
| 8              | 27.63                    | 0.10                  | 404             |                                                                       |                              |                              | 39.47                        | 34.54                        | 27.63                        |  |  |  |
| 01             | 22.10                    | 0.17                  | 505             | 44.20                                                                 | 35.36                        | 29.47                        | 25.26                        | 22.10                        | 17.68                        |  |  |  |
| I 2            | 18.42                    | 0.25                  | 606             | 30.70                                                                 | 24.56                        | 20.47                        | 17.54                        | 15.35                        | 12.28                        |  |  |  |
| 14             | 15.79                    | 0.34                  | 707             | 22.56                                                                 | 18.05                        | 15.04                        | 12.89                        | 11.28                        | 9.02                         |  |  |  |
| 16             | 13.81                    | 0.44                  | 808             | 17.26                                                                 | 13.81                        | 11.51                        | 9.86                         | 8.63                         | 6.90                         |  |  |  |
| 18             | 12.28                    | 0.56                  | 909             | 13.64                                                                 | 10.91                        | 9.09                         | 7.79                         | 6.82                         | 5.46                         |  |  |  |
| 20             | 11.05                    | 0.70                  | 1010            | 11.05                                                                 | 8.84                         | 7.37                         | 6.31                         | 5.52                         | 4.42                         |  |  |  |
| 22             | 10.05                    | 0.85                  | 1111            | 9.14                                                                  | 7.31                         | 6.09                         | 5.22                         | 4.57                         | 3.66                         |  |  |  |
| 24             | 9.21                     | 1.00                  | 1212            | 7.68                                                                  | 6.14                         | 5.12                         | 4.39                         | 3.84                         | 3.07                         |  |  |  |
| 26             | 8.50                     | 1.17                  | 1313            | 6.54                                                                  | 5.23                         | 4.36                         | 3.74                         | 3.27                         | 2.62                         |  |  |  |
| 28             | 7.89                     | 1.36                  | 1414            | 5.64                                                                  | 4.51                         | 3.76                         | 3.22                         | 2.82                         | 2.26                         |  |  |  |
| 30             | 7.37                     | 1.56                  | 1515            | 4.91                                                                  | 3.93                         | 3.27                         | 2.81                         | 2.46                         |                              |  |  |  |

# STEEL CHANNELS.

#### 12" CHANNEL. SHAPE No. 32. 91 LBS. PER YARD.

Depth, 12". Width of flange, 3". Thickness of web, 7".

Safe load in nett tons =  $\frac{157.30}{\text{Span in feet}}$ .

Maximum shear = 13.97 tons.

Span limit for uniformly distributed load of twice the maximum shear = 5.63'.

|                | ons.                     | si l                  | s's             |                              | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |  |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot.                                             | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |  |
| 6              | 26.22                    | 0.06                  | 181             |                              |                                                                          |                              |                              | 43.70                        | 34.96                        |  |  |  |  |
| 8              | 19.66                    | 0.10                  | 242             |                              | 39.32                                                                    | 32.77                        | 28.09                        | 24.57                        | 19.66                        |  |  |  |  |
| 10             | 15.73                    | 0.17                  | 303             | 31.46                        | 25.17                                                                    | 20.97                        | 17.98                        | 15.73                        | 12.58                        |  |  |  |  |
| I 2            | 13.11                    | 0.25                  | 363             | 21.85                        | 17.48                                                                    | 14.57                        | 12.49                        | 10.92                        | 8.74                         |  |  |  |  |
| 14             | 11.24                    | 0.34                  | 424             | 16.06                        | 12.85                                                                    | 10.71                        | 9.18                         | 8.03                         | 6.42                         |  |  |  |  |
| 16             | 9.83                     | 0.44                  | 484             | 12.29                        | 9.83                                                                     | 8.19                         | 7.02                         | 6.14                         | 4.92                         |  |  |  |  |
| 18             | 8.74                     | 0.56                  | 545             | 9.71                         | 7.77                                                                     | 6.47                         | 5.55                         | 4.85                         | 3.88                         |  |  |  |  |
| 20             | 7.87                     | 0.70                  | 606             | 7.87                         | 6.30                                                                     | 5.25                         | 4.50                         | 3.93                         | 3.15                         |  |  |  |  |
| 22             | 7.15                     | 0.85                  | 666             | 6.50                         | 5.20                                                                     | 4.33                         | 3.71                         | 3.25                         | 2.60                         |  |  |  |  |
| 24             | 6.55                     | 1.00                  | 727             | 5.46                         | 4.37                                                                     | 3.64                         | 3.12                         | 2.73                         | 2.18                         |  |  |  |  |
| 26             | 6.05                     | 1.17                  | 788             | 4.65                         | 3.72                                                                     | 3.10                         | 2.66                         | 2.32                         | 1.86                         |  |  |  |  |
| 28             | 5.62                     | 1.36                  | 848             | 4.01                         | 3.21                                                                     | 2.67                         | 2.29                         | 2.00                         |                              |  |  |  |  |
| 30             | 5.24                     | 1.56                  | 909             | 3.49                         | 2.79                                                                     | 2.33                         | 1.99                         | 1.74                         |                              |  |  |  |  |

# STEEL CHANNELS.

#### 12" CHANNEL. SHAPE No. 34. 851/2 LBS. PER YARD.

Depth, 12". Width of flange, 215". Thickness of web, 1/2".

Safe load in nett tons =  $\frac{132.60}{\text{Span in feet}}$ .

Maximum shear = 17.34 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.82'.

|                | ons.                     | si di                 |                 | Dist                         | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |  |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot.                                             | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |  |
| 6              | 22.10                    | 0.07                  | 171             |                              |                                                                          |                              |                              | 36.83                        | 29.47                        |  |  |  |  |
| 8              | 16.58                    | 0.10                  | 228             |                              | 33.16                                                                    | 27.63                        | 23.69                        | 20.72                        | 16.58                        |  |  |  |  |
| IO             | 13.26                    | 0.17                  | 285             | 26.52                        | 21.22                                                                    | 17.68                        | 15.15                        | 13.26                        | 10.61                        |  |  |  |  |
| 12             | 11.05                    | 0.25                  | 342             | 18.42                        | 14.74                                                                    | 12.28                        | 10.53                        | 9.21                         | 7.37                         |  |  |  |  |
| 14             | 9.47                     | 0.34                  | 399             | 13.53                        | 10.82                                                                    | 9.02                         | 7.73                         | 6.77                         | 5.41                         |  |  |  |  |
| 16             | 8.29                     | 0.44                  | 456             | 10.36                        | 8.29                                                                     | 6.91                         | 5.92                         | 5.18                         | 4.15                         |  |  |  |  |
| 18             | 7.37                     | 0.56                  | 512             | 8.19                         | 6.55                                                                     | 5.46                         | 4.68                         | 4.09                         | 3.28                         |  |  |  |  |
| 20             | 6.63                     | 0.70                  | 569             | 6.63                         | 5.30                                                                     | 4.42                         | 3.79                         | 3.32                         | 2.65                         |  |  |  |  |
| 22             | 6.03                     | 0.85                  | 626             | 5.48                         | 4.38                                                                     | 3.65                         | 3.13                         | 2.74                         | 2.19                         |  |  |  |  |
| 24             | 5.53                     | 1.00                  | 683             | 4.61                         | 3.69                                                                     | 3.07                         | 2.63                         | 2.31                         | 1.84                         |  |  |  |  |
| 26             | 5.10                     | 1.17                  | 740             | 3.92                         | 3.14                                                                     | 2.61                         | 2.24                         | 1.96                         | 1.57                         |  |  |  |  |
| 28             | 4.74                     | 1.37                  | 797             | 3.39                         | 2.71                                                                     | 2.26                         | 1.94                         | 1.65                         | 1.36                         |  |  |  |  |
| 30             | 4.42                     | 1.56                  | 854             | 2.95                         | 2.36                                                                     | 1.97                         | 1.69                         | 1.47                         | 1.18                         |  |  |  |  |

## STEEL CHANNELS.

## 12" CHANNEL. SHAPE No. 34. 62% LBS. PER YARD.

Depth, 12". Width of flange, 23/4". Thickness of web, 5".

Safe load in nett tons =  $\frac{109.20}{\text{Span in feet}}$ .

Maximum shear = 7.61 tons.

Span limit for uniformly distributed load of twice the maximum shear = 7.17'.

|                | ons.                     | rô                    |                 | Dist                         |                              |                              | et, centre<br>afe loads      |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 18.20                    | 0.07                  | 125             |                              |                              |                              | 34.67                        | 30.33                        | 22.92                        |
| 8              | 13.65                    | 0.10                  | 167             | 34.13                        | 27.30                        | 22.75                        | 19.50                        | 17.06                        | 17.07                        |
| 10             | 10.92                    | 0.17                  | 209             | 21.84                        | 17.47                        | 14.56                        | 12.48                        | 10.92                        | 8.73                         |
| I 2            | 9.10                     | 0.25                  | 251             | 15.17                        | 12.14                        | 10.11                        | 8.67                         | 7.58                         | 6.07                         |
| 14             | 7.80                     | 0.34                  | 292             | 11.14                        | 8.91                         | 7.43                         | 6.37                         | 5.57                         | 4.46                         |
| 16             | 6.83                     | 0.44                  | 334             | 8.54                         | 6.83                         | 5.69                         | 4.88                         | 4.27                         | 3.42                         |
| 18             | 6.07                     | 0.56                  | 376             | 6.74                         | 5.39                         | 4.49                         | 3.85                         | 3.37                         | 2.69                         |
| 20             | 5.46                     | 0.70                  | 418             | 5.46                         | 4.37                         | 3.64                         | 3.12                         | 2.73                         | 2.18                         |
| 22             | 4.96                     | 0.85                  | 460             | 4.51                         | 3.61                         | 3.01                         | 2.58                         | 2.25                         | 1.80                         |
| 24             | 4.55                     | I.00                  | 501             | 3.79                         | 3.03                         | 2.53                         | 2.17                         | 1.89                         | 1.51                         |
| 26             | 4.20                     | 1.17                  | 543             | 3.23                         | 2.58                         | 2.15                         | 1.85                         | 1.66                         | 1.29                         |
| 28             | 3.90                     | 1.37                  | 585             | 2.79                         | 2.23                         | 1.86                         | 1.59                         | 1.39                         | 1.12                         |
| 30             | 3.64                     | 1.56                  | 627             | 2.43                         | 1.94                         | 1.62                         | 1.39                         | 1.21                         | 0.97                         |

# STEEL CHANNELS.

#### 10" CHANNEL. SHAPE No. 35, 1291/2 LBS, PER YARD.

Depth, 10". Width of flange, 31/2". Thickness of web, 116".

Safe load in nett tons =  $\frac{145.60}{\text{Span in feet}}$ .

Maximum shear = 40.25 tons.

Span limit for uniformly distributed load of twice the maximum shear = 1.81'.

|                | ons.                     | vå                   |                 | Dist                         | ance apa<br>bea              |                              | t, centre<br>afe loads       |                             | e of                         |
|----------------|--------------------------|----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 24.27                    | 0.05                 | 260             |                              |                              |                              |                              | 40.45                       | 32.36                        |
| 8              | 18.20                    | 0.11                 | 347             |                              | 36.40                        | 30.33                        | 26.00                        | 27.75                       | 18.20                        |
| 10             | 14.56                    | 0.19                 | 434             | 29.12                        | 23.30                        | 19.41                        | 16.64                        | 14.56                       | 11.65                        |
| 12             | 12.13                    | 0.28                 | 520             | 20.22                        | 16.18                        | 13.48                        | 11.55                        | 10.11                       | 8.09                         |
| 14             | 10.40                    | 0.39                 | 607             | 14.86                        | 11.89                        | 9.91                         | 8.49                         | 7.43                        | 5.95                         |
| 16             | 9.10                     | 0.52                 | 694             | 11.38                        | 9.10                         | 7.59                         | 6.50                         | 5.69                        | 4.55                         |
| 18             | 8.09                     | 0.65                 | 78 <b>1</b>     | 8.99                         | 7.19                         | 5.99                         | 5.14                         | 4.49                        | 3.55                         |
| 20             | 7.28                     | 0.80                 | 867             | 7.28                         | 5.82                         | 4.85                         | 4.16                         | 3.64                        | 2.91                         |
| 22             | 6.62                     | 0.98                 | 954             | 5.65                         | 4.52                         | 3.77                         | 3.23                         | 2.83                        | 2.26                         |
| 24             | 6.07                     | 1.19                 | 1041            | 5.06                         | 4.05                         | 3.37                         | 2.89                         | 2.53                        | 2.03                         |
| 26             | 5.60                     | 1.40                 | 1128            | 4.31                         | 3.45                         | 2.87                         | 2.46                         | 2.16                        | 1.73                         |
| 28             | 5.20                     | 1.61                 | 1214            | 3.71                         | 2.97                         | 2.47                         | 2.12                         | 1.86                        | 1.49                         |
| 30             | 4.85                     | 1.84                 | 1301            | 3.23                         | 2.58                         | 2.15                         | 1.85                         | 1.62                        | 1.29                         |

# STEEL CHANNELS.

# 10" CHANNEL. SHAPE No. 35. 60% LBS. PER YARD.

Depth, 10". Width of flange, 233". Thickness of web, 38".

Safe load in nett tons =  $\frac{85.30}{\text{Span in feet}}$ .

Maximum shear = 10.12 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.21'.

|                | ons.                     | rå.                   | _               | Dist                         |                              |                              |                              | , centre to centre of<br>afe loads of |                              |  |  |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------------------------|------------------------------|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square fcot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot.          | 250 lbs.<br>per square foot. |  |  |
| 6              | 14.21                    | 0.05                  | 121             | 47.37                        | 37.90                        | 31.58                        | 27.07                        | 23.69                                 | 18.95                        |  |  |
| 8              | 10.66                    | 0.11                  | 162             | 26.65                        | 21.32                        | 17.77                        | 15.23                        | 13.32                                 | 10.66                        |  |  |
| 10             | 8.53                     | 0.19                  | 202             | 17.06                        | 13.65                        | 11.37                        | 9.75                         | -8.53                                 | 6.83                         |  |  |
| 12             | 7.11                     | 0.28                  | 243             | 11.85                        | 9.48                         | 7.90                         | 6.77                         | 5.93                                  | 4.74                         |  |  |
| 14             | 6.09                     | 0.39                  | 283             | 8.70                         | 6.96                         | 5.80                         | 4.97                         | 4.35                                  | 3.48                         |  |  |
| 16             | 5.33                     | 0.52                  | 324             | 6.66                         | 5.33                         | 4.44                         | 3.81                         | 3.33                                  | 2.67                         |  |  |
| 18             | 4.74                     | 0.65                  | 364             | 5.27                         | 4.22                         | 3.51                         | 3.01                         | 2.64                                  | 2.11                         |  |  |
| 20             | 4.26                     | 0.80                  | 404             | 4.26                         | 3.41                         | 2.84                         | 2.44                         | 2.13                                  | 1.71                         |  |  |
| 22             | 3.88                     | 0.98                  | 445             | 3.53                         | 2.82                         | 2.35                         | 2.02                         | 1.77                                  | 1.41                         |  |  |
| 24             | 3-55                     | 1.19                  | 485             | 2.96                         | 2.37                         | 1.97                         | 1.69                         | 1.48                                  | 1.19                         |  |  |
| 26             | 3.28                     | 1.40                  | 526             | 2.52                         | 2.02                         | 1.68                         | 1.44                         | 1.26                                  | 1.01                         |  |  |
| 28             | 3.05                     | 1.61                  | 566             | 2.18                         | 1.74                         | 1.45                         | 1.25                         | 1.09                                  |                              |  |  |
| 30             | 2.84                     | 1.84                  | 607             | 1.89                         | 1.51                         | 1.26                         | 1.08                         |                                       |                              |  |  |

## STEEL CHANNELS.

#### 10" CHANNEL. SHAPE No. 36. 62% LBS. PER YARD.

Depth, 10". Width of flange, 25/8". Thickness of web, 7/16".

Safe load in nett tons =  $\frac{83.20}{\text{Span in feet}}$ .

Maximum shear = 13.05 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.18'.

|                | ons.                     | vå.                  |                 | Dist                         |                              | rt, in fee<br>ms, for s      |                              | to centre                    | e of                         |
|----------------|--------------------------|----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 13.87                    | 0.05                 | 125             | 46.23                        | 36.98                        | 30.82                        | 26.42                        | 23.11                        | 18.49                        |
| 8              | 10.40                    | 0.11                 | 167             | 26.00                        | 20.80                        | 17.33                        | 14.86                        | 13.00                        | 10.40                        |
| 10             | 8.32                     | 0.19                 | 209             | 16.64                        | 13.31                        | 11.09                        | 9.51                         | 8.32                         | 6.66                         |
| 12             | 6.93                     | 0.28                 | 251             | 11.55                        | 9.24                         | 7.70                         | 6.60                         | 5.77                         | 4.62                         |
| 14             | 5.94                     | 0.39                 | 292             | 8.49                         | 6.79                         | 5.66                         | 4.85                         | 4.24                         | 3.40                         |
| 16             | 5.20                     | 0.52                 | 334             | 6.50                         | 5.20                         | 4.33                         | 3.71                         | 3.25                         | 2.60                         |
| 18             | 4.62                     | 0.65                 | 376             | 5.13                         | 4.10                         | 3.42                         | 2.93                         | 2.56                         | 2.05                         |
| 20             | 4.16                     | 0.80                 | 418             | 4.16                         | 3.33                         | 2.77                         | 2.38                         | 2.08                         |                              |
| 22             | 3.78                     | 0.98                 | 460             | 3.44                         | 2.75                         | 2.29                         | 1.97                         |                              |                              |
| 24             | 3.47                     | 1.19                 | 501             | 2.89                         | 2.31                         | 1.93                         |                              |                              |                              |
| 26             | 3.20                     | 1.40                 | 543             | 2.46                         | 1.97                         |                              |                              |                              |                              |
| 28             | 2.97                     | 1.61                 | 585             | 2.12                         |                              |                              |                              |                              |                              |
| 30             | 2.77                     | 1.84                 | 627             | 1.85                         |                              |                              |                              |                              |                              |

## STEEL CHANNELS.

#### 10" CHANNEL. SHAPE No. 36. 481/2 LBS. PER YARD.

Depth, 10". Width of flange, 21/2". Thickness of web, 15".

Safe load in nett tons =  $\frac{67.60}{\text{Span in feet}}$ .

Maximum shear = 7.46 tons.

Span limit for uniformly distributed load of twice the maximum -shear = 4.52'.

|                | ons.                     |                       |                 | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |                              |  |  |
|----------------|--------------------------|-----------------------|-----------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                                             | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |
| 6              | 11.27                    | 0.05                  | 97              | 37.57                                                                    | 30.06                        | 25.05                        | 21.47                        | 18.78                        | 15.03                        |  |  |
| 8              | 8.45                     | 0.11                  | 129             | 21.13                                                                    | 16.90                        | 14.09                        | 12.07                        | 10.57                        | 8.45                         |  |  |
| IO             | 6.76                     | 0.19                  | 162             | 13.52                                                                    | 10.82                        | 9.01                         | 7.73                         | 6.76                         | 5.41                         |  |  |
| 12             | 5.63                     | 0.28                  | <b>1</b> 94     | 9.38                                                                     | 7.50                         | 6.25                         | 5.36                         | 4.69                         | 3.75                         |  |  |
| 14             | 4.83                     | 0.39                  | 226             | 6.90                                                                     | 5.52                         | 4.60                         | 3.94                         | 3.45                         | 2.76                         |  |  |
| 16             | 4.23                     | 0.52                  | 259             | 5.29                                                                     | 4.23                         | 3.53                         | 3.02                         | 2.64                         | 2.12                         |  |  |
| 18             | 3.76                     | 0.65                  | 291             | 4.18                                                                     | 3.34                         | 2.79                         | 2.39                         | 2.09                         | 1.67                         |  |  |
| 20             | 3.38                     | 0.80                  | 323             | 3.38                                                                     | 2.70                         | 2.25                         | 1.93                         | 1.69                         | 1.35                         |  |  |
| 22             | 3.07                     | 0.98                  | 356             | 2.79                                                                     | 2.23                         | 1.86                         | 1.59                         | 1.39                         | 1.12                         |  |  |
| 24             | 2.82                     | 1.19                  | 388             | 2.35                                                                     | 1.88                         | 1.56                         | 1.34                         | 1.18                         | 0.94                         |  |  |
| 26             | 2.60                     | 1.40                  | 420             | 2.00                                                                     | 1.60                         | 1.33                         | 1.14                         | 1.00                         |                              |  |  |
| 28             | 2.41                     | 1.61                  | 453             | 1.72                                                                     | 1.38                         | 1.15                         | 0.98                         |                              |                              |  |  |
| 30             | 2.25                     | 1.84                  | 485             | 1.50                                                                     | 1.20                         | 1.00                         |                              |                              |                              |  |  |

# STEEL CHANNELS.

9" CHANNEL. SHAPE No. 37. 521/2 LBS. PER YARD.

Depth, 9". Width of flange,  $2\frac{1}{2}$ ". Thickness of web,  $\frac{11}{32}$ ".

Safe load in nett tons =  $\frac{68.90}{\text{Span in feet}}$ .

Maximum shear = 8.50 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.05'.

| - | ett tons.      | ú                        |                       | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |                              |                              |  |  |
|---|----------------|--------------------------|-----------------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|
|   | Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam.                                                          | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |
|   | 6              | 11.48                    | 0.04                  | 105                                                                      | 38.27                        | 30.62                        | 25.51                        | 21.87                        | 19.13                        | 15.31                        |  |  |
|   | 8              | 8.61                     | 0.13                  | 140                                                                      | 21.53                        | 17.22                        | 14.35                        | 12.30                        | 10.76                        | 8.61                         |  |  |
|   | 10             | 6.89                     | 0.23                  | 175                                                                      | 13.78                        | 11.02                        | 9.19                         | 7.87                         | 6.89                         | 5.51                         |  |  |
|   | I 2            | 5.74                     | 0.34                  | 210                                                                      | 9.57                         | 7.66                         | 6.38                         | 5.47                         | 4.78                         | 3.83                         |  |  |
|   | 14             | 4.92                     | 0.46                  | 245                                                                      | 7.03                         | 5.62                         | 4.69                         | 4.02                         | 3.51                         | 2.81                         |  |  |
|   | 16             | 4.31                     | 0.60                  | 280                                                                      | 5.39                         | 4.31                         | 3.59                         | 3.08                         | 2.69                         | 2.16                         |  |  |
|   | 18             | 3.83                     | 0.75                  | 315                                                                      | 4.26                         | 3.41                         | 2.84                         | 2.43                         | 2.13                         |                              |  |  |
|   | 20             | 3.45                     | 0.92                  | 350                                                                      | 3.45                         | 2.76                         | 2.30                         | 1.97                         |                              |                              |  |  |
|   | 22             | 3.13                     | 1.12                  | 385                                                                      | 2.85                         | 2.28                         | 1.90                         |                              |                              |                              |  |  |
|   | 24             | 2.87                     | 1.34                  | 420                                                                      | 2.39                         | 1.91                         |                              |                              |                              |                              |  |  |
|   | 26             | 2.65                     | 1.56                  | 455                                                                      | 2.04                         |                              |                              |                              |                              |                              |  |  |
|   | 28             | 2.46                     | 1.82                  | 490                                                                      | 1.76                         |                              |                              |                              |                              |                              |  |  |
|   | 30             | 2.30                     | 2.08                  | 525                                                                      | 1.53                         |                              |                              |                              |                              |                              |  |  |

# STEEL CHANNELS.

# 9" CHANNEL. SHAPE No. 38. 371/2 LBS. PER YARD.

Depth, 9". Width of flange,  $2\frac{3}{16}$ ". Thickness of web,  $\frac{1}{4}$ ".

Safe load in nett tons =  $\frac{48.10}{\text{Span in feet}}$ .

Maximum shear = 4.91 tons.

Span limit for uniformly distributed load of twice the maximum shear = 4.89'.

|                | ons.                     |                       |                 | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |                              |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                                             | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |
| 6              | 8.02                     | 0.04                  | 75              | 26.73                                                                    | 21.38                        | 17.82                        | 15.27                        | 13.36                        | 10.69                        |  |  |  |
| 8              | 6.01                     | 0.13                  | 100             | 15.03                                                                    | 12.02                        | 10.02                        | 8.59                         | 7.51                         | 6.01                         |  |  |  |
| 10             | 4.8 <b>1</b>             | 0.23                  | 125             | 9.62                                                                     | 7.70                         | 6.41                         | 5.50                         | 4.81                         | 3.85                         |  |  |  |
| 12             | 4.01                     | 0.34                  | 150             | 6.68                                                                     | 5.34                         | 4.45                         | 3.82                         | 3.34                         | 2.67                         |  |  |  |
| 14             | 3.44                     | 0.46                  | 175             | 4.91                                                                     | 3.93                         | 3.27                         | 2.81                         | 2.45                         | 1.96                         |  |  |  |
| 16             | 3.01                     | 0.60                  | 200             | 3.76                                                                     | 3.01                         | 2.51                         | 2.15                         | 1.88                         |                              |  |  |  |
| 18             | 2.67                     | 0.75                  | 225             | 2.97                                                                     | 2.38                         | 1.98                         |                              | 46                           |                              |  |  |  |
| 20             | 2.41                     | 0.92                  | 250             | 2.41                                                                     | 1.93                         |                              |                              |                              |                              |  |  |  |
| 22             | 2.19                     | 1.12                  | 275             | 1.99                                                                     |                              |                              |                              |                              |                              |  |  |  |
| 24             | 2.00                     | 1.34                  | 300             |                                                                          |                              |                              |                              |                              |                              |  |  |  |
| 26             | 1.85                     | 1.56                  | 325             |                                                                          | li                           | mit fo                       |                              | 1                            | c_                           |  |  |  |
| 28             | 1.72                     | 1.82                  | 350             | 3                                                                        | рап П                        |                              | = 5.40'.                     | iar sa                       | ie                           |  |  |  |
| 30             | 1.60                     | 2.08                  | 375             | 75                                                                       |                              |                              |                              |                              |                              |  |  |  |

# STEEL CHANNELS.

8" CHANNEL. SHAPE No. 39. 401/2 LBS. PER YARD.

Depth, 8". Width of flange,  $2\frac{5}{16}$ ". Thickness of web,  $\frac{5}{16}$ ".

Safe load in nett tons =  $\frac{45.80}{\text{Span in feet}}$ .

Maximum shear = 6.97 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.29'.

|                | ons.                     | nches.                |                 | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |                              |  |  |
|----------------|--------------------------|-----------------------|-----------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                                             | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |
| 6              | 7.64                     | 0.07                  | 81              | 25.47                                                                    | 20.38                        | 16.98                        | 14.55                        | 12.74                        | 10.19                        |  |  |
| 8              | 5.73                     | 0.14                  | 108             | 14.33                                                                    | 11.46                        | 9.55                         | 8.19                         | 7.17                         | 5.73                         |  |  |
| 10             | 4.58                     | 0.26                  | 135             | 9.16                                                                     | 7.33                         | 6.11                         | 5.23                         | 4.58                         | 3.67                         |  |  |
| 12             | 3.82                     | 0.39                  | 162             | 6.37                                                                     | 5.10                         | 4.25                         | 3.64                         | 3.19                         | 2.55                         |  |  |
| 14             | 3.27                     | 0.52                  | 189             | 4.67                                                                     | 3.74                         | 3.11                         | 2.67                         | 2.34                         | 1.87                         |  |  |
| 16             | 2.86                     | 0.65                  | 216             | 3.58                                                                     | 2.86                         | 2.39                         | 2.05                         | 1.79                         | 1.43                         |  |  |
| 18             | 2.55                     | 0.86                  | 243             | 2.83                                                                     | 2.26                         | 1.89                         | 1.62                         | 1.42                         | 1.13                         |  |  |
| 20             | 2.29                     | 1.04                  | 270             | 2.29                                                                     | 1.83                         | 1.53                         | 1.31                         | 1.15                         | 0.92                         |  |  |

# STEEL CHANNELS.

#### 8" CHANNEL. SHAPE No. 40. 301/3 LBS. PER YARD.

Depth, 8". Width of flange,  $2\frac{1}{16}$ ". Thickness of web,  $\frac{1}{4}$ ".

Safe load in nett tons =  $\frac{33.20}{\text{Span in feet}}$ .

Maximum shear = 4.78 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.49'.

|                | ons.                     | nches.                |                 | Distance apart, in feet, centre to centre of beams, for safe loads of |                              |                              |                              |                              |                              |  |  |  |
|----------------|--------------------------|-----------------------|-----------------|-----------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                                          | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |
| 6              | 5.53                     | 0.07                  | 61              | 18.43                                                                 | 14.74                        | 12.29                        | 10.53                        | 9.22                         | 7.37                         |  |  |  |
| 8              | 4.14                     | 0.14                  | 81              | 10.35                                                                 | 8.28                         | 6.90                         | 5.91                         | 5.18                         | 4.14                         |  |  |  |
| IO             | 3.31                     | 0.26                  | 101             | 6.62                                                                  | 5.30                         | 4.41                         | 3.78                         | 3.31                         | 2.65                         |  |  |  |
| 12             | 2.76                     | 0.39                  | 121             | 4.60                                                                  | 3.68                         | 3.07                         | 2.63                         | 2.30                         | 1.84                         |  |  |  |
| 14             | 2.37                     | 0.52                  | 142             | 3.39                                                                  | 2.71                         | 2.26                         | 1.94                         | 1.69                         | 1.36                         |  |  |  |
| 16             | 2.07                     | 0.65                  | 162             | 2.59                                                                  | 2.07                         | 1.73                         | 1.48                         | 1.30                         | 1.04                         |  |  |  |
| 18             | 1.84                     | 0.86                  | 182             | 2.04                                                                  | 1.63                         | 1.36                         | 1.17                         | 1.02                         |                              |  |  |  |
| 20             | 1.66                     | 1.04                  | 202             | 1.66                                                                  | 1.33                         | 1.11                         | 0.95                         |                              |                              |  |  |  |

Span limit for tabular safe load = 5.10'.

# STEEL CHANNELS.

#### 7" CHANNEL. SHAPE No. 41. 351/2 LBS. PER YARD.

Depth, 7". Width of flange,  $2\frac{1}{4}$ ". Thickness of web,  $\frac{5}{16}$ ".

Safe load in nett tons =  $\frac{35.10}{\text{Span in feet}}$ .

Maximum shear = 6.53 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.69'.

|                | ons.                     | sá .                  |                 | Dist                         |                              |                              | et, centre<br>afe loads      |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 5.85                     | 0.06                  | 71              | 19.50                        | 15.60                        | 13.00                        | 11.14                        | 9.75                         | 7.80                         |
| 8              | 4.39                     | 0.17                  | 95              | 10.98                        | 8.78                         | 7.32                         | 6.27                         | 5.49                         | 4.39                         |
| 10             | 3.51                     | 0.30                  | 118             | 7.02                         | 5.61                         | 4.68                         | 4.01                         | 3.51                         | 2.81                         |
| 12             | 2.93                     | 0.44                  | 142             | 4.88                         | 3.90                         | 3.25                         | 2.79                         | 2.44                         | 1.95                         |
| 14             | 2.51                     | 0.64                  | 166             | 3.59                         | 2.87                         | 2.39                         | 2.05                         | 1.79                         |                              |
| 16             | 2.19                     | 0.78                  | 189             | 2.74                         | 2.19                         | 1.83                         |                              |                              |                              |
| 18             | 1.95                     | 0.99                  | 213             | 2.17                         | 1.74                         |                              |                              |                              |                              |
| 20             | 1.76                     | 1.22                  | 237             | 1.76                         |                              | for t                        | Span<br>abular<br>= 5        |                              | load                         |

# STEEL CHANNELS.

7" CHANNEL. SHAPE No. 42. 251/4 LBS. PER YARD.

Depth, 7". Width of flange, 2". Thickness of web, 72".

Safe load in nett tons =  $\frac{26.00}{\text{Span in feet}}$ .

Maximum shear = 3.66 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.55'.

|                | ons.                     | 83                    |                 | Dist                         | ance apa                     |                                           | t, centre<br>afe loads       |                             | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|-------------------------------------------|------------------------------|-----------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot.              | 175 lbs.<br>per square foot. | 200 lbs<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 4.33                     | 0.06                  | • 51            | 14.43                        | 11.54                        | 9.62                                      | 8.25                         | 7.21                        | 5.77                         |
| 8              | 3.25                     | 0.17                  | 67              | 8.13                         | 6.50                         | 5.42                                      | 4.65                         | 4.06                        | 3.25                         |
| 10             | 2.60                     | 0.30                  | 84              | 5.20                         | 4.16                         | 3.47                                      | 2.97                         | 2.60                        | 2.08                         |
| 12             | 2.17                     | 0.44                  | 101             | 3.62                         | 2.90                         | 2.41                                      | 2.07                         | 1.81                        | 1.45                         |
| 14             | 1.86                     | 0.64                  | 118             | 2.66                         | 2.13                         | 1.77                                      | 1.52                         | 1.33                        |                              |
| 16             | 1.63                     | 0.78                  | 134             | 2.04                         | 1.63                         | 1.36                                      | 1.17                         |                             |                              |
| 18             | 1.44                     | 0.99                  | 152             | 1.60                         | 1.28                         |                                           |                              |                             |                              |
| 20             | 1.30                     | 1.22                  | 168             | 1.30                         |                              | Span limit for tabular safe load = 5.10'. |                              |                             | load                         |

# STEEL CHANNELS.

#### 6" CHANNEL. SHAPE No. 43. 301/3 LBS. PER YARD.

Depth, 6". Width of flange, 2". Thickness of web, 1/4".

Safe load in nett tons =  $\frac{28.20}{\text{Span in feet}}$ .

Maximum shear = 4.40 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.20'.

|                | ett tons.                | rô.                   |                 | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                              |                              |                              |  |  |
|----------------|--------------------------|-----------------------|-----------------|--------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot.                                             | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |
| 6              | 4.70                     | 0.07                  | 61              | 15.67                                                                    | 12.54                        | 1ô.45                        | 8.95                         | 7.84                         | 6.27                         |  |  |
| 8              | 3.52                     | 0.20                  | 81              | 8.80                                                                     | 7.04                         | 5.87                         | 5.03                         | 4.40                         | 3.52                         |  |  |
| 10             | 2.81                     | 0.34                  | 101             | 5.62                                                                     | 4.50                         | 3.75                         | 3.21                         | 2.81                         | 2.25                         |  |  |
| 12             | 2.35                     | 0.49                  | 121             | 3.92                                                                     | 3.14                         | 2.61                         | 2.24                         | 1.96                         | 1.57                         |  |  |
| 14             | 2.01                     | 0.75                  | 142             | 2.87                                                                     | 2.30                         | 1.91                         | 1.64                         | 1.44                         | 1.65                         |  |  |
| 16             | 1.76                     | 0.91                  | 162             | 2.20                                                                     | 1.76                         | 1.47                         | 1.26                         | 1.10                         |                              |  |  |
| 18             | 1.57                     | 1.13                  | 182             | 1.74                                                                     | 1.39                         | 1.16                         | 0.99                         |                              |                              |  |  |
| 20             | 1.41                     | 1.40                  | 202             | 1.41                                                                     | 1.13                         | 0.94                         | for t                        | an lin<br>abular<br>d = 5.   | safe                         |  |  |

## STEEL CHANNELS.

## 6" CHANNEL. SHAPE No. 44. 22% LBS. PER YARD.

Depth, 6". Width of flange, 111". Thickness of web, 3".

Safe load in nett tons =  $\frac{20.80}{\text{Span in feet}}$ .

Maximum shear = 2.66 tons.

Span limit for uniformly distributed load of twice the maximum shear = 3.91'.

|                | ons.                     | så.                  |                 | Dist                         |                              | rt, in fee<br>ms, for s                   |                              | to centr<br>s of             | e of                         |  |  |  |
|----------------|--------------------------|----------------------|-----------------|------------------------------|------------------------------|-------------------------------------------|------------------------------|------------------------------|------------------------------|--|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot.              | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |  |
| 6              | 3.47                     | 0.07                 | 45              | 11.57                        | 9 <b>.2</b> 6                | 7.71                                      | 6.61                         | 5.78                         | 4.63                         |  |  |  |
| 8              | 2.60                     | 0.20                 | 60              | 6.50                         | 5.20                         | 4.33                                      | 3.71                         | 3.25                         | 2.60                         |  |  |  |
| 10             | 2.08                     | 0.34                 | 76              | 4.16                         | 3.33                         | 2.77                                      | 2.38                         | 2.08                         | 1.66                         |  |  |  |
| 12             | 1.73                     | 0.49                 | 91              | 2.88                         | 2.30                         | 1.92                                      | 1.65                         | 1.44                         | 1.15                         |  |  |  |
| 14             | 1.49                     | 0.75                 | 106             | 2.13                         | 1.70                         | 1.42                                      | 1.22                         | 1.06                         |                              |  |  |  |
| 16             | 1.30                     | 0.91                 | 121             | 1.63                         | 1.30                         | 1.09                                      |                              |                              |                              |  |  |  |
| 18             | 1.16                     | 1.13                 | 136             | 1.29                         | 1.03                         |                                           | Snan                         | limit                        |                              |  |  |  |
| 20             | 1.04                     | 1.40                 | 152             | 1.04                         |                              | Span limit for tabular safe load = 4.20'. |                              |                              |                              |  |  |  |

#### STEEL CHANNELS.

5" CHANNEL. SHAPE No. 45. 261/4 LBS. PER YARD.

Depth, 5". Width of flange, 11/8". Thickness of web, 1/4".

Safe load in nett tons =  $\frac{19.50}{\text{Span in feet}}$ .

Maximum shear = 3.96 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.46'.

|                | ett tons.                | så.                   |                 | Dist                         |                              | rt, in fee<br>ms, for s      |                              |                              | e of                         |
|----------------|--------------------------|-----------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 100 lbs.<br>per square foot. | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot. | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |
| 6              | 3.25                     | 0.14                  | 52              | 10.83                        | 8.66                         | 7.22                         | 6.19                         | 5.41                         | 4.33                         |
| 8              | 2.44                     | 0.27                  | 70              | 6.10                         | 4.88                         | 4.07                         | 3.49                         | 3.05                         | 2.44                         |
| 10             | 1.95                     | 0.43                  | 88              | 3.90                         | 3.12                         | 2.60                         | 2.23                         | 1.95                         | 1.56                         |
| 12             | 1.63                     | 0.62                  | 104             | 2.72                         | 2.18                         | 1.81                         | 1.55                         | 1.36                         | 1.09                         |
| 14             | 1.39                     | 0.78                  | 123             | 1.99                         | 1.59                         | 1.33                         | 1.14                         |                              |                              |
| 16             | 1.22                     | 1.04                  | 140             | 1.53                         | 1.22                         | 1.02                         |                              |                              |                              |
| 18             | 1.08                     | 1.30                  | 158             | 1.20                         | 0.96                         |                              | S                            | 1imais                       |                              |
| 20             | 0.98                     | 1.69                  | 176             | 0.98                         |                              | for t                        | abula                        | limit<br>r safe<br>.80'.     | load                         |

# STEEL CHANNELS.

### 5" CHANNEL. SHAPE No. 46. 171/4 LBS. PER YARD.

Depth, 5". Width of flange, 15/8". Thickness of web, 3".

Safe load in nett tons =  $\frac{13.00}{\text{Span in feet}}$ .

Maximum shear = 2.54 tons.

Span limit for uniformly distributed load of twice the maximum shear = 2.56'.

|                | ons,                     | rå                    |                 | Distance apart, in feet, centre to centre of<br>beams, for safe loads of |                              |                              |                                         |                              |                              |  |  |
|----------------|--------------------------|-----------------------|-----------------|--------------------------------------------------------------------------|------------------------------|------------------------------|-----------------------------------------|------------------------------|------------------------------|--|--|
| Span, in feet. | Safe load, in nett tons. | Deflexion, in inches. | Weight of beam. | 160 lbs.<br>per square foot.                                             | 125 lbs.<br>per square foot. | 150 lbs.<br>per square foot. | 175 lbs.<br>per square foot.            | 200 lbs.<br>per square foot. | 250 lbs.<br>per square foot. |  |  |
| 6              | 2.17                     | 0.14                  | 34              | 7.23                                                                     | 5.78                         | 4.82                         | 4.13                                    | 3.61                         | 2.89                         |  |  |
| 8              | 1.62                     | 0.27                  | 46              | 4.05                                                                     | 3.24                         | 2.70                         | 2.31                                    | 2.02                         | 1.62                         |  |  |
| 10             | 1.30                     | 0.43                  | 59              | 2.60                                                                     | 2.08                         | 1.73                         | I.49                                    | 1.30                         | 1.04                         |  |  |
| 12             | 1.08                     | 0.62                  | 71              | 1.80                                                                     | 1.44                         | 1.20                         | 1.03                                    | 0.90                         | 0.72                         |  |  |
| 14             | 0.93                     | 0.78                  | 83              | 1.33                                                                     | 1.06                         | 0.89                         | 0.76                                    | 0.67                         |                              |  |  |
| 16             | 0.81                     | 1.04                  | 95              | 1.01                                                                     | 0.81                         | 0.67                         | 0.58                                    |                              |                              |  |  |
| 18             | 0.72                     | 1.30                  | 107             | 0.80                                                                     | 0.64                         | 0.53                         |                                         |                              |                              |  |  |
| 20             | 0.65                     | 1.69                  | I 20            | 0.65                                                                     | 0.52                         |                              | Span limit for tabular sa load = 4.40'. |                              | safe                         |  |  |

# ON DETERMINING THE CAPACITY, ETC., OF BEAMS AND CHANNELS.

Let S = area of section.

l = length of span.

w = load per linear unit of beam.

W = total load uniformly distributed.

Mo = maximum bending moment of external forces.

h = height of shape.

y = distance from neutral axis to that edge of shape which first ruptures, and which in symmetrical sections is one-half the height.

f = extreme fibre stress (generally taken in tons per square inch) on that side of the neutral axis which first ruptures.

I = maximum moment of inertia of section.

J = minimum moment of inertia of section.

 $r_1 = maximum radius of gyration, <math>\sqrt{\frac{1}{S}}$ 

 $r_{J} = minimum radius of gyration, <math>\sqrt{\frac{J}{S}}$ 

C = coefficient for one foot span.

For iron shapes  $=\frac{8 \text{ I}}{\text{h}} = 4 \text{ R}$ .

For steel shapes  $=\frac{10.4 \text{ I}}{\text{h}} = 5.2 \text{ R}.$ 

R = modulus of section =  $\frac{I}{y}$  = for a symmetrical shape =  $\frac{2I}{h}$ .

 $\triangle$  = maximum deflexion (generally given in inches).

Let  $F_0$  = the maximum shear permissible.

For iron shapes, 
$$F_o = \frac{3.00 \text{ tons}}{1 + \frac{\left[\frac{h\sqrt{2}}{t}\right]^2}{3000}}$$

For steel shapes, 
$$F_o = \frac{4.00 \text{ tons}}{1 + \frac{\left[\frac{h\sqrt{2}}{t}\right]^2}{3000}}$$

q = a factor dependent upon form of section, and is the ratio

$$q = \frac{I}{m' \, h^2 \, S} = \frac{I}{h \, y \, s} = \frac{r^2}{h \, y}$$

since  $\frac{I}{S}$  = square of radius of gyration.

If the shape is symmetrical,  $y = \frac{h}{2}$ , or  $m' = \frac{I}{2}$ ; then

$$q = \frac{2 \text{ I}}{h^2 \text{ S}} = 2 \frac{R^2}{h^2} = 2 \left[ \frac{R}{h} \right]^2$$

In the above, I denotes simply a moment of inertia. If the least moment of inertia be in question, the above relations are also applicable, replacing I by J, and r by r<sub>J</sub>, and h and y being taken in the direction of the least moment of inertia.

E = coefficient of elasticity, which for

iron shapes = 13,000 tons per square inch. steel shapes = 14,500 tons per square inch.

 $\triangle = \frac{5}{384} \frac{\text{W l}^3}{\text{E I}}$  for beam supported at both ends, and uniformly loaded over its entire length.

Let  $\triangle = \frac{W \, l^3}{8 \, E \, I}$  for beam fixed at one end, and uniformly loaded over its entire length.

$$\triangle = \frac{P \, l^3}{48 \, E \, I}$$
 for beam supported at both ends, and having a concentrated load, P, at the centre.

$$\triangle = \frac{\text{P l}^3}{3 \text{ E I}}$$
 for beam fixed at one end, and loaded at the other.

$$\triangle=rac{P~l^3}{192~E~I}$$
 for beam fixed at both ends, and having a concentrated load, P, at the centre.

$$\triangle = \frac{W \, l^3}{307 \, E \, I}$$
 for beam fixed at both ends, and uniformly loaded over its entire length.

The relation between the external and molecular forces of a beam subjected to transverse loading is expressed by

$$M_o = \frac{f I}{y} \tag{1}$$

the second member of which is called the *moment of resist-*ance.

When the beam is supported at its ends, and uniformly loaded over its entire length, the maximum moment due to external forces is at the centre of the beam, and is given by the expression,  $M_o = \frac{W1}{8}$ . The moment of resistance of the beam should at least equal this, and for beams of sym-

metrical sections, in which y is equal to one-half the height,

$$\frac{Wl}{8} = \frac{2fI}{h}$$
 (2)

from which we get

the general expression (1) becomes

$$W = \frac{16 f I}{1 h}$$
 (3)

If, as is usually the case, we take the length of beam in feet and the height in inches, then equation (3) becomes

$$W = \frac{4 f I}{3 l' h''}$$
 (4)

in which I' denotes the span of beam in feet, and h" the height in inches.

In beams of iron we take as the safe working extreme fibre stress f, 6.0 tons per square inch, this being two-sevenths  $\binom{2}{7}$  of the modulus of rupture.

In beams of steel we take as the safe working extreme fibre stress f, 7.8 tons per square inch, which is likewise two-sevenths (%) of the modulus of rupture of steel beams.

Then, for iron beams, we get from (4), by making f = 6.0 tons,

$$W = \frac{8 \text{ I}}{\text{l' b''}} \tag{5}$$

and for steel beams we get, by making f = 7.8 tons,

$$W = \frac{10.4 \text{ I}}{1' \text{ h''}} \tag{6}$$

in both of which expressions W is the safe load, in nett tons, uniformly distributed.

If we consider the span l' to be *one foot*, then we have what has been called the coefficient for one foot of span,—i.e.,

For iron beams, 
$$C = \frac{8 \text{ I}}{h''}$$
 (7)

For steel beams, 
$$C = \frac{10.4 \text{ I}}{\text{h''}}$$
 (8)

Now, on page 148, we have called  $\frac{I}{y}$  the *modulus* of the section, and denoted it by the letter R.

As in symmetrical sections  $y = \frac{1}{2} h''$ , the *modulus* for

such sections is 
$$R = \frac{2 \text{ I}}{h''}$$
 (9)

Whence the safe load could be written,

For iron beams, 
$$W = \frac{4 R}{l'}$$
 (10)

For steel beams, 
$$W = \frac{5.2 \text{ R}}{l'}$$
 (11)

and the coefficients for one foot span could be written,

For iron beams, 
$$C = 4 R$$
 (12)

For steel beams, 
$$C = 5.2 \text{ R}$$
 (13)

From the foregoing expressions many useful relations can be obtained.

I. Given the load in nett tons, W, on a beam; 1, the span in feet; h, the height in inches; I, the moment of inertia of the beam. Required the extreme fibre stress f?

$$f = \frac{3}{4} W l' \frac{h''}{I}$$
 (14)

II. Given the load in nett tons, W, on a beam; l', the span in feet; f, the extreme fibre stress. Required the modulus of the section?

$$R = \frac{2 I}{h''} = \frac{3}{2} \frac{W l'}{f}$$
 (15)

III. Given the load in nett tons, W, on a beam; f, the extreme fibre stress; h", the height of the beam, and I its moment of inertia; or R, the modulus of the section. Required the span for which the beam will safely carry the assumed load, W?

$$1 = \frac{4}{3} \frac{f}{W} \frac{I}{h''} = \frac{2}{3} \frac{f}{W} \frac{2I}{h''} = \frac{2f}{3W} R$$
 (16)

IV. Given the span l' in feet; the extreme fibre stress, f; the height, h" of the beam, and I, its moment of inertia; or R, the modulus of the section. Required the load which the beam will carry?

$$W = \frac{4}{3} \frac{f I}{l' h''} = \frac{2}{3} \frac{f}{l'} \frac{2 I}{h''} = \frac{2}{3} \frac{f}{l'} R \quad (17)$$

Examples on the use of the foregoing expressions:

EXAMPLE I. Given a 12" I beam of iron, 125 pounds per yard, whose span centre to centre of end bearings is 10 feet, carrying a load of 15 tons, uniformly distributed over its length. Required the extreme fibre stress, f?

Here

$$W = 15.0 \text{ tons}; l' = 10.0 \text{ feet}; h = 12''$$

and referring to the table "On the Properties of I Beams," page 159, we find for a 12" I beam, 125 pounds per yard, the moment of inertia I to be 279.

Making these substitutions in expression (14), we get

$$f = \frac{3}{4} \times 15.0 \times 10 \times \frac{12}{279} = 4.84$$
 tons per square inch.

EXAMPLE II. Given a load of 9.75 tons, uniformly distributed on a span whose length centre to centre of end bearings is 12.0 feet, and having a height limiting us to the use of a 10½" I beam. Required the moment of inertia of the necessary 10½" I beam, assuming the extreme fibre stress to be 6.0 tons?

Here we have

$$W = 9.75 \text{ tons}$$
;  $l' = 12.0 \text{ feet}$ ;  $h = 10\frac{1}{2}''$ ;  $f = 6.0$ 

Making these substitutions in expression (15), we get

$$R = \frac{2 \text{ I}}{10\frac{1}{2}"} = \frac{3}{2} \times \frac{9.75 \times 12.0}{6.0}$$
$$= \frac{1}{5.25} = 29.25$$

i.e., 
$$R = 29.25$$
  
 $I = 29.25 \times 5.25 = 153.56$ 

Referring to the table "On the Properties of I Beams," we find that a  $10\frac{1}{2}$ " I beam of *iron*, 90 pounds per yard,

shape No. 10, has a value of R = 29.0, and a moment of inertia = 151. Hence this shape meets the requirements.

EXAMPLE III. Given a 12" I beam of iron, 125 pounds per yard, whose moment of inertia is, as per table "On the Properties of I Beams," 279.0; or whose modulus R is 46.25; also, given the load to be carried is 9.25 tons, and the extreme fibre stress to be limited to 6.0 tons. Required the span centre to centre of end bearings, for which this beam could be used?

We have, then,

$$h'' = 12''$$
;  $I = 279.0$ ;  $R = 46.25$ ;  $W = 9.25$  tons;  $f = 6.0$  tons per square inch.

Substituting these values in expression (16), we get

$$l' = \frac{4}{3} \times \frac{6.0}{9.25} \times \frac{279.0}{12} = 20.00 \text{ feet};$$

or, using the modulus R instead of the moment of inertia I, we get from (16)

$$l' = \frac{2}{3} \times \frac{6.0}{9.25} \times 46.25 = 20.00$$
 feet.

Thus, 20.0 feet is the limiting span of this beam, for the assumed load and fibre stress.

EXAMPLE IV. Suppose we have a span of 15 feet, and that we wish to use a 15" I beam of wrought iron, 150 pounds per yard. Required the safe load which we can put on this beam, when the fibre stress is limited to 5.0 tons per square inch?

We have given, in the table "On the Properties of I Beams," R = 70.50. We also have given l' = 15.0, and f = 5.0 tons. Inserting these values in expression (17), we get

$$W = \frac{2}{3} \times \frac{5.0}{15.0} \times 70.5 = 15.66 \text{ tons};$$

that is, our safe load is 15.66 tons, uniformly distributed over length of beam.

#### ON THE

# PROPERTIES OF I BEAMS NO CHANNELS

OF IRON AND STEEL,

MANUFACTURED BY THE

#### POTTSVILLE IRON AND STEEL CO.

The tables "On the Properties of **I** Beams and Channels" are calculated for the minimum and maximum weight to which these shapes are rolled.

The plates illustrate how the increase of weight is effected, which is simply by increasing the distance apart of the rolls; consequently, the increase in width in flanges is the same as increase in thickness of web.

I beams, channels, and angle irons may be rolled to any weight intermediate between the minimum and maximum weights as given. T iron can be rolled to but one weight.

Columns Nos. 10 and 11 in the tables for **I** beams and channels, pages 159, 160, give coefficients, by means of which the safe uniformly distributed load for any **I** beam or channel on the list can at once be obtained, when we know the span.

We have only to divide the coefficient by the span in feet, when the result is the safe load in nett tons, uniformly distributed, that the **I** beam or channel will carry.

The fibre stresses upon which these coefficients are based are for iron shapes, 6.0 tons per square inch; for steel shapes, 7.8 tons per square inch.

Should any case arise in which a lower fibre stress is desirable, the coefficient is simply reduced in the same proportion. For example: the coefficient for a fibre stress of 6.0 tons per square inch on a 12" I beam of iron, 125 pounds per yard, is given by the table as 185. Should we wish the fibre stress to be but 4.0 tons, this being two-thirds of 6.0 tons, the coefficient is reduced in same proportion,—viz., to

$$\frac{2}{3}$$
 × 185 = 123.33.

The resistance to bending of a beam of any kind is proportional to the *modulus of the section* of the beam.

If two beams of different forms be subjected to the same loading, that one will be the more economical which, with a given value of the modulus of section, has the smaller sectional area, S. In other words, the greater the ratio  $\frac{R}{S}$ , the more economical the beam. For example: looking in the tables on pages 159, 160, we find that a 6" I beam of 5.0 square inches sectional area has a modulus of 9.00, and also that an 8" channel of 4.00 square inches sectional area has a modulus of 9.00. Thus it is seen that, for the same modulus in each case, the 8" channel has 20 per cent, less sectional area than the 6" I beam, and hence weighs 20 per cent. less for a given length; whence the 8" channel is the more economical shape. Moreover, it is a stiffer shape than the 6" I beam, for, with the same loads and span, that shape has the less deflexion, because its moment of inertia is greater. Thus, for the 6" I beam of 5.0 square inches area, the value of I is 27.0; whilst that for the 8" channel of 4.00 square inches sectional area is 35.25. Hence, if these shapes be protected against lateral deflexion, it would be more economical to use the 8" channel than the 6" I beam, for the weakness of the channel is in its small width of flange, it having only a flange width of  $2\frac{5}{16}$ ", whilst the **I** beam has  $3\frac{9}{32}$ ".

In columns 8 of the tables on pages 159, 160, we have given, for each shape, the values of what Rankine has called q, which is the ratio

that is,

$$q = \frac{2I}{h^2S} = \frac{R}{hS}$$
 (18)

This shows that for two beams of the same depth, that one is the more economical which has the greater value of the ratio  $\frac{R}{S}$ , or, in other words, that whose value of q is the greater.

For example: consider shape No. 34 in the list of channels,—viz., the 12" channel of 6.20 square inches sectional area, and the 12" channel of 8.45 square inches sectional area. The former has q = 0.281 and R = 21.0; the latter has q = 0.251 and R = 25.50. Again, the former has  $\frac{R}{S} = \frac{21}{6.2} = 3.387$ ; and the latter has  $\frac{R}{S} = \frac{25.50}{8.45} = 3.002$ .

It is evident, then, that the 12" channel, 6.2 square inches area, has a greater capacity for its weight than the 12" channel, 8.45 square inches area. Thus it appears that the strength of beams does not increase in proportion to their increase of weight. We should then, always use the minimum or standard section of a shape, rather than one obtained by widening the rolls. Of course, this applies only to shapes subjected to transverse loading. From the values of q given in the tables on pages 159, 160, we can then at once see the relative economy of the shapes.

Another very desirable use to which these values of q can be put is as follows:

From the fundamental expression

$$M_o = f \frac{I}{y}$$
 see (1), page 150

which, for symmetrical shapes, becomes

$$M_o = f \cdot \frac{2 I}{h}$$

we get, by substituting for  $\frac{2I}{h}$ , its equivalent, qh S,

$$M_o = f qh S$$
 (19)

Whence, transposing,

$$S = \frac{M_o}{f \, qh} = \frac{M_o}{f} \cdot \frac{I}{qh}$$
 (20)

*i.e.*, area of shape for given values of  $\frac{M_o}{f}$  is inversely pro-

portional to qh; that is to say, the greater the value of qh, the less the area of beam required to resist the bending moment  $M_o$ , with an extreme fibre stress, f. For example:

suppose we have given a load of 13 tons uniformly distributed over a span of 14.0'; then  $M_o = \frac{13 \times 14' \times 12''}{8} = 273$  inch-tons bending moment at centre. The extreme fibre stress is to be limited to 6.0 tons; then  $\frac{M_o}{f} = \frac{273}{6} = 45.5$ ; whence

$$S = area of beam required = \frac{M_o}{f} \cdot \frac{I}{qh} = \frac{45.5}{qh}$$

Now, looking at the table "On Properties of **I** Beams," we find for a 12" **I** beam, 12.5 square inches, q = 0.310, whence  $q = 0.31 \times 12'' = 3.72$ ; and for a  $10\frac{1}{2}$ " **I** beam, 13.5 square inches, q = 0.316, whence  $q = 10\frac{1}{2} \times 0.316 = 3.32$ ; whence for the former,

$$S = \frac{45.5}{3.72} = 12.20$$
 square inches,

and for the latter,

$$S = \frac{45.5}{3.32} = 13.70$$
 square inches;

that is, using a 12" I beam, we need only 12.2 square inches of area; whilst, if we use a  $10\frac{1}{2}$ " I beam, we require 13.70 square inches of area. It is evident, then, that for the same maximum moment, and same extreme fibre stresses, that beam is the more economical which has the larger value of qh.

By inspection of the tables on pages 159, 160, we see that for the standard or minimum roll of **I** beams, the value of q departs but little from 0.31. For channels, the value of q for the standard rolls is about 0.28, and for the heavier rolls q is about 0.25. Thus,

I beams, standard rolls, q = 0.31. Channels, minimum rolls, q = 0.28. Channels, maximum rolls, q = 0.25.

Now, substituting these constants in equation (19), we get

 $M_o = 0.31$  fh S, for **I** beams of standard rolls.  $M_o = 0.28$  fh S, for channels of minimum rolls.  $M_o = 0.25$  fh S, for channels of maximum rolls.

# PROPERTIES OF I BEAMS OF IRON AND STEEL.

| _         |                            |                     |                             |                                         |                              |                                     |                                                       |                     |                         |                                                                                                                          |                              |                    |
|-----------|----------------------------|---------------------|-----------------------------|-----------------------------------------|------------------------------|-------------------------------------|-------------------------------------------------------|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|
| 1         | 2                          | 3                   | 4                           | 5                                       | 6                            | 7                                   | 8                                                     | 9                   | 10                      | 11                                                                                                                       | 12                           | 13                 |
|           |                            | ches.               |                             | rå.                                     | N                            | eutral<br>F                         | axis at o                                             | centre of           | shape a<br>web.         | nd                                                                                                                       | Neutra<br>coinc<br>with      | ident              |
|           | inches.                    | square inches.      | inches.                     | in inches                               | Jo                           | $^{\rm r}_{ m I^{\circ}}$           |                                                       |                     |                         | ient for<br>ot span.                                                                                                     | Jo                           | r <sub>J</sub> .   |
| Shape No. | Depth of shape, in inches. | Area of shape, in s | Width of flange, in inches. | Thickness of web, in inches.            | Maximum moment<br>inerția I. | Radius of gyration r <sub>I</sub> . | $q = \frac{2  \mathrm{I}}{\mathrm{h}^2  \mathrm{S}}.$ | $R = \frac{2I}{h}.$ | Iron $C = \frac{8I}{h}$ | $\begin{array}{c} \text{Steel} \\ \textbf{I} \text{ beams} \\ \textbf{C} = \frac{10.4  \text{I}}{\text{h}}. \end{array}$ | Minimum moment<br>inertia J. | Radius of gyration |
| 1         | 15                         | 25.0                | 5 <del>7</del> /8           | 78                                      | 813.0                        | 6.38                                | 0.289                                                 | 108.0               | 432.0                   | 563.7                                                                                                                    | 40.84                        | 1.28               |
| 2         | 15                         | 20.0                | 5 1 6                       | 58                                      | 694.0                        | 5.89                                | 0.309                                                 | 92.5                | 370.0                   | 481.0                                                                                                                    | 33.79                        | 1.30               |
| 3         | 15                         | 15.0                | 5                           | $\frac{15}{32}$                         | 528.0                        | 5.93                                | 0.313                                                 | 70.5                | 282.0                   | 366.6                                                                                                                    | 18.34                        | 1.10               |
| 4         | 15                         | 12.5                | $4\frac{7}{8}$              | $\frac{7}{16}$                          | 430.0                        | 5.87                                | 0.306                                                 | 57.0                | 228.0                   | 296.4                                                                                                                    | 13.13                        | 1.03               |
| 5         | 12                         | 17.0                | $5\frac{3}{8}$              | 11<br>16                                | 367.0                        | 4.65                                | 0.300                                                 | 61.0                | 244.0                   | 317.2                                                                                                                    | 24.47                        | 1.20               |
| 6         | 12                         | 12.5                | $4\frac{7}{8}$              | $\frac{1}{2}$                           | 279.0                        | 4.72                                | 0.310                                                 | 46.25               | 185.0                   | 240.9                                                                                                                    | 14.50                        | 1.08               |
| 7         | 12                         | 10.0                | $4\frac{7}{16}$             | $\frac{7}{16}$                          | 218.0                        | 4.66                                | 0.303                                                 | 36.0                | 144.0                   | 187.2                                                                                                                    | 8.74                         | 0.94               |
| 8         | $10\frac{1}{2}$            | 13.5                | 5                           | $\frac{17}{32}$                         | 239.0                        | 4.17                                | 0.316                                                 | 45.5                | 182.0                   | 236.7                                                                                                                    | 17.90                        | 1.15               |
| 9         | $10\frac{1}{2}$            | 10.5                | $4\frac{3}{8}$              | $\frac{1}{2}$                           | 176.0                        | 4.08                                | 0.301                                                 | 33.5                | 134.0                   | 174.3                                                                                                                    | 9.52                         | 0.95               |
| 10        | $10\frac{1}{2}$            | 9.0                 | $4\frac{1}{8}$              | $\tfrac{1}{3}\tfrac{3}{2}$              | 151.0                        | 4.12                                | 0.309                                                 | 29.0                | 116.0                   | 149.6                                                                                                                    | 7.36                         | 0.90               |
| 11        | 10                         | 10.5                | $4\frac{5}{8}$              | $\frac{1}{2}$                           | 161.0                        | 3.92                                | 0.307                                                 | 32.25               | 129.0                   | 167.7                                                                                                                    | 11.08                        | 1.03               |
| 12        | 10                         | 9.0                 | 48                          | $\frac{7}{16}$                          | 139.0                        | 3.93                                | 0.310                                                 | 28.0                | 0.111                   | 145.6                                                                                                                    | 8.30                         | 0.96               |
| 13        | 9                          | 9.0                 | $4\frac{3}{8}$              | $\frac{1}{2}$                           | 110.0                        | 3.50                                | 0.302                                                 | 24.5                | 98.0                    | 127.4                                                                                                                    | 8.18                         | 0.95               |
| 14        | 9                          | 8.5                 | $4\frac{1}{4}$              | $\frac{7}{16}$                          | 107.0                        | 3.54                                | 0.309                                                 | 24.0                | 96.0                    | 124.2                                                                                                                    | 7.60                         | 0.94               |
| 15        | 9                          | 7.0                 | 4                           | 3 8                                     | 83.0                         | 3.45                                | 0.294                                                 | 18.5                | 74.0                    | 96.2                                                                                                                     | 5.37                         | 0.88               |
| 16        | 8                          | 8.0                 | $4\frac{5}{32}$             | $\frac{1}{2}$                           | 77.0                         | 3.10                                | 0.300                                                 | 19.25               | 77.0                    | 100.1                                                                                                                    | 6.60                         | 0.91               |
| 17        | 8                          | 6.5                 | 4                           | $\frac{5}{16}$                          | 69.0                         | 3.26                                | 0.332                                                 | 17.0                | 68.o                    | 88.4                                                                                                                     | 5.83                         | 0.95               |
| 18        | 7                          | 6.5                 | 318                         | $\begin{array}{c} 29 \\ 64 \end{array}$ | 48.0                         | 2.72                                | 0.300                                                 | 13.75               | 55.0                    | 71.5                                                                                                                     | 4.11                         | 0.79               |
| 19        | 7                          | 5.5                 | $3\frac{7}{16}$             | 21<br>61                                | 43.0                         | 2.80                                | 0.320                                                 | 12.5                | 50.0                    | 65.4                                                                                                                     | 3.51                         | 0.80               |
| 20        | 6                          | 5.0                 | 332                         | $\frac{13}{32}$                         | 27.0                         | 2.33                                | 0.301                                                 | 9.0                 | 36.0                    | 46.8                                                                                                                     | 2.65                         | 0.73               |
| 21        | 6                          | 4.0                 | 38                          | $\frac{1}{4}$                           | 24.0                         | 2.44                                | 0.332                                                 | 8.0                 | 32.0                    | 41.6                                                                                                                     | 2,22                         | 0.74               |
| 22        | 5                          | 4.0                 | $2\frac{15}{16}$            | 3)8                                     | 16.0                         | 1.94                                | 0.301                                                 | 6.25                | 25.0                    | 33.3                                                                                                                     | 1.75                         | 0.66               |
| 23        | 5                          | 3.0                 | 23                          | 16                                      | 12.0                         | 2.00                                | 0.320                                                 | 4.8                 | 19.2                    | 25.0                                                                                                                     | 1.39                         | 0.68               |
| 24        | 4                          | 3.0                 |                             | $\frac{27}{64}$                         | 7.0                          | 1.50                                | 0.281                                                 | 3.5                 | 14.0                    | 18.2                                                                                                                     | 0.82                         | 0.52               |
| 25        | 4                          | 2.4                 | 24                          | 5<br>16                                 | 5.6                          | 1.53                                | 0.293                                                 | 2.8                 | 11.4                    | 14.56                                                                                                                    | 0.58                         | 0.51               |
| 26        | 4                          | 1.8                 | 21/8                        | 3<br>16                                 | 4.4                          | 1.56                                | 0.306                                                 | 2.2                 | 8.8                     | 11.4                                                                                                                     | 0.40                         | 0.47               |

#### PROPERTIES OF

# CHANNEL BEAMS OF IRON AND STEEL.

| 1         | 2                          | 3                                | 4                                                                                                                                                                                                                                                                                         | 5                                    | 6                                                         | 7                                   | 8              | 9                                       | 10                             | 11                      | 12                            | 13                                  | 14                                            |
|-----------|----------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|-------------------------------------|----------------|-----------------------------------------|--------------------------------|-------------------------|-------------------------------|-------------------------------------|-----------------------------------------------|
| Ī         | inches.                    | Area of shape, in square inches. | Width of flange, in inches.                                                                                                                                                                                                                                                               | Thickness of web, in inches.         | Neutral axis at centre of shape and perpendicular to web. |                                     |                |                                         |                                |                         | Neutral axis parallel to web. |                                     |                                               |
|           |                            |                                  |                                                                                                                                                                                                                                                                                           |                                      | Jo                                                        | r.                                  |                |                                         | Coefficient for one foot span. |                         | jo                            | r,                                  | l axis                                        |
|           | Depth of shape, in inches. | e, in se                         | nge, in                                                                                                                                                                                                                                                                                   | web, i                               | Maximum moment<br>inertia I.                              | Radius of gyration r <sub>I</sub> . |                |                                         | . q                            | 10.4 I                  | Minimum moment<br>inertia J.  | Radius of gyration r <sub>J</sub> . | Distance of neutral axis from outside of web. |
| No.       | of sha                     | f shaj                           | of fla                                                                                                                                                                                                                                                                                    | less of                              | num m<br>inertia                                          | s of gr                             | 2 I            | 2 I                                     | el C=                          | el C=                   | um mo<br>inertia              | s of g.                             | ce of outsi                                   |
| Shape No. | Depth                      | Area o                           | Width                                                                                                                                                                                                                                                                                     | Thick                                | Maxim                                                     | Radiu                               | = 6            | ======================================= | Iron                           | Steel                   | Minim                         | Radius                              | Distan                                        |
| 30<br>30  | 15                         | 22.5                             | 5 5 4 3                                                                                                                                                                                                                                                                                   | I 5 3 4                              | 623.0<br>527.0                                            | 5.26                                | 0.246          | 83.0                                    | 332.0<br>281.0                 | 431.6                   | 39.32                         |                                     | 1.25                                          |
| 31<br>31  | 15                         | 17.45                            | $5\frac{5}{64}$ $4\frac{3}{4}$ $4\frac{5}{16}$ $3\frac{63}{64}$ $3\frac{1}{2}$                                                                                                                                                                                                            | 13<br>16<br>31                       | 497.0<br>396.0                                            | 5.34                                | 0.254          | 66.25                                   | 265.0<br>211.0                 | 305·3<br>344·5<br>274·3 | 23.13                         |                                     | 1.03                                          |
| 32        |                            | 15.0                             | 32                                                                                                                                                                                                                                                                                        | 136456<br>166156<br>166156<br>166156 | 255.0<br>181.5                                            | 4.13                                | 0.237          | 42.5<br>30.25                           | 170.0                          | 221.0<br>157.3          |                               | 0.87                                | 1.01                                          |
| 32<br>33  | 12                         | 8.65                             | 3<br>213<br>216                                                                                                                                                                                                                                                                           | 1 2                                  | 159.0                                                     | 4.49                                | 0.255          | 26.5                                    | 106.0                          | 137.8                   | 4.98                          | 0.76                                | 0.68                                          |
| 33<br>34  | 12                         | 6.4<br>8.45                      | 215 56 22 22 22 22 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                | 16<br>1<br>2                         | 133.0<br>153.0                                            | 4.25                                | 0.288<br>0.251 | 22.0<br>25.5                            | 102.0                          | 114.4                   | 3.92<br>5.04                  |                                     | 0.70                                          |
| 34.<br>35 | I2<br>IO                   | 6.2                              | 24                                                                                                                                                                                                                                                                                        |                                      | 125.5<br>140.0                                            |                                     | 0.281          | 21.0                                    | 84.0                           | 109.2<br>145.6          | 4.00<br>7.79                  | 0.80                                | 0.71                                          |
| 35        | 10                         | 6.0                              | 2232                                                                                                                                                                                                                                                                                      | 16                                   | 82.0                                                      | 3.69                                | 0.272          | 16.5                                    | 66.0                           | 85.3                    | 3.73                          | 0.79                                | 0.69                                          |
| 36<br>36  | IO                         | 6.2<br>4.8                       | 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1                                                                                                                                                                                                                                                   | 16<br>5                              | 80.0<br>65.0                                              |                                     | 0.258          | 16.0<br>13.0                            | 64.0<br>52.0                   | 83.2<br>67.6            | 3.02                          |                                     | 0.61                                          |
| 37        | 9                          | 8.6 <sub>5</sub>                 | 2 .                                                                                                                                                                                                                                                                                       | 23<br>32<br>11                       | 83.0<br>60.0                                              | 3.10                                | 0.237          | 18.5                                    | 74.0                           | 96.2<br>68.9            | 4.90                          | 0.75                                | 0.74                                          |
| 37<br>38  | 9                          | 5.42                             | 23                                                                                                                                                                                                                                                                                        | 32<br>7<br>16                        | 53.5                                                      | 3.14                                | 0.244          | 13.25<br>12.0                           | 53.0<br>48.0                   | 62.4                    | 2.04                          | 0.61                                | 0.54                                          |
| 38<br>39  | 9                          | 3·7<br>7.0                       | $ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{3}{2} \\ 2\frac{3}{16} \\ 2\frac{11}{16} \end{array} $                                                                                                                                                                                          | $\frac{1}{4}$                        | 42.0<br>51.0                                              |                                     | 0.282          | 9.25<br>12.75                           | 37.0<br>51.0                   | 48.1<br>66.3            | 2.85                          | 0.64                                | 0.55                                          |
| 39        | 8                          | 4.0                              | $2\frac{16}{16}$                                                                                                                                                                                                                                                                          | 16<br>5<br>16                        | 35.25                                                     | 2.97                                | 0.260          | 9.0                                     | 36.0                           | 45.8                    | 1.78                          | 0.67                                | 0.59                                          |
| 10        | 8                          | 3.5<br>3.0                       | $ \begin{array}{c} 16 \\ 2\frac{5}{16} \\ 2\frac{1}{8} \\ 2\frac{1}{16} \\ 2\frac{9}{16} \end{array} $                                                                                                                                                                                    | 16<br>1                              | 28.25<br>25.5                                             |                                     | 0.253          | 7.0<br>6.5                              | 28.0<br>26.0                   | 36.7<br>33.2            | 1.10                          |                                     | 0.46                                          |
| 41        | 7                          | 5.75                             | $2\frac{9}{16}$                                                                                                                                                                                                                                                                           | 58                                   | 33.5                                                      | 2.41                                | 0.237          | 9.5                                     | 38.0                           | 49.4                    | 2.29                          | 0.63                                | 0.62                                          |
| 4I<br>42  | 7                          | 3·5<br>3·4                       | $2\frac{1}{4}$ $2\frac{1}{8}$                                                                                                                                                                                                                                                             | 16                                   | 24.0                                                      |                                     | 0.276          | 6.75<br>6.0                             | 27.0<br>24.0                   | 35.1<br>31.2            | 1.47                          | 0.05                                | 0.58                                          |
| 12        | 7                          | 2.5                              | 2                                                                                                                                                                                                                                                                                         | $\frac{32}{32}$                      | 17.0                                                      | 2.62                                | 0.281          | 5.0                                     | 20.0                           | 26.0                    | 0.86                          | 0.59                                | 0.50                                          |
| 13<br>13  | 6                          | 5.25<br>3.0                      | 2 <sup>3</sup> / <sub>8</sub>                                                                                                                                                                                                                                                             | 81                                   | 23.0<br>16.25                                             |                                     | 0.243          | 7·75<br>5·5                             | 31.0                           | 39.9                    | 2.02<br>I.I4                  |                                     | 0.63                                          |
| 14        | 6                          | 3.0                              | I 13                                                                                                                                                                                                                                                                                      | 5<br>16                              | 14.5                                                      | 2.21                                | 0.271          | 4.75                                    | 19.0                           | 24.7                    | 0.80                          | 0.51                                | 0.52                                          |
| 14<br>15  | 6                          | 2.25<br>3.9                      | $\begin{array}{c} \mathbf{I}_{16}^{136} \\ \mathbf{I}_{16}^{116} \\ 2_{8}^{1} \\ \mathbf{I}_{8}^{16} \\ \mathbf{I}_{18}^{16} \end{array}$ | 16                                   | 12.25                                                     |                                     | 0.302          | 4.0<br>5.0                              | 16.0                           | 20.8<br>26.0            | 0.61                          |                                     | 0.52                                          |
| 15<br>16  | 5                          | 3.9                              | 178                                                                                                                                                                                                                                                                                       | 143                                  | 9.5                                                       | 1.93                                | 0.300          | 3.75                                    | 15.0                           | 19.5                    | 0.87                          | 0.58                                | 0.61                                          |
| 46<br>46  | 5                          | 2.675                            | 115<br>15                                                                                                                                                                                                                                                                                 | 383                                  | 8.5<br>6.25                                               |                                     | 0.252          | 3.4                                     | 13.6                           | 17.7                    | 0.62                          |                                     | 0.46                                          |
| 17        | 4                          | 3.15                             | $2\frac{1}{16}$                                                                                                                                                                                                                                                                           | 7 16                                 | 7.0                                                       | 1.47                                | 0.272          | 3.5                                     | 14.0                           | 18.2                    | 1.14                          | 0.60                                | 0.68                                          |
| 17<br>18  | 4                          | 2.4                              | 1/8<br>1/1/3                                                                                                                                                                                                                                                                              | 430                                  | 5·75<br>4·7                                               |                                     | 0.300          | 2.9                                     | 9.4                            | 15.08                   | 0.83                          |                                     | 0.67                                          |
| 18        | 4                          | 1.5                              | 158                                                                                                                                                                                                                                                                                       | 16                                   | 3.65                                                      |                                     | 0.304          | 1.82                                    | 7.3                            | 9.5                     | 0.38                          |                                     | 0.50                                          |

#### CONCENTRATED LOADING.

If there be a concentrated load P on a span l, and dividing the span into two segments, x and l-x; then x being the distance from the left support say, l-x is the distance of P from the right support. The reaction at left support is,

then,  $\frac{P}{I} \left\{ I - x \right\}$ , and the bending moment is a maximum under the load, and is

$$\frac{P}{l}(l-x)x = \frac{P}{l}(lx-x^2) \tag{1}$$

For a uniformly distributed load of W on the same span l, the maximum bending moment is at the centre, and is given

by  $\frac{W1}{8}$ . Equating this with  $\frac{P}{1}(lx - x^2)$ , we get

$$\frac{W1}{8} = \frac{P}{1} \left( 1x - x^2 \right)$$

whence

$$W = 8 P \left\{ \frac{x}{1} - \frac{x^2}{l^2} \right\}$$
 (2)

If the concentrated load be at the centre of the span,  $x = \frac{1}{2}$ , and, substituting this value of x in (2), we get

$$W = 2 P \tag{3}$$

Equation (2) gives the equivalent uniformly distributed load W, whose centre bending moment is equal to the maximum moment caused by the load P distant x from left support.

Equation (3) shows that the uniformly distributed load W will cause the same bending moment at centre as the load

 $P = \frac{W}{2}$ , concentrated at the centre of span. In other

words, if a beam of span I sustain, with a given fibre stress, a load, P, concentrated at the centre, it will also sustain, with the same fibre stress, a uniformly distributed load, W, equal to 2 P,—i.e., double the load if uniformly distributed.

EXAMPLE. Suppose a load of 8 tons to be concentrated at a point 12 feet from the left support of an 18 feet span. The reaction at the left support  $=\frac{P}{1}\left(1-x\right)=\frac{8}{18}\left(18-12\right)$   $=\frac{8\times 6}{18}=2\frac{2}{3}$  tons. The maximum bending moment is under the load of 8 tons, and is  $\frac{P}{1}\left(1x-x^2\right)=\frac{8}{18}\left\{18\times 12-\overline{12}^2\right\}=32$  foot-tons.

From equation (2) we find

W = 8 P 
$$\left\{ \frac{x}{1} - \frac{x^2}{l^2} \right\}$$
 = 8 × 8 tons  $\left\{ \frac{12}{18} - \left( \frac{12}{18} \right)^2 \right\}$   
= 64 ×  $\frac{2}{9}$  = 14.22 tons.

If the fibre stress is to be 4.15 tons per square inch, and the metal to be of iron, then, as iron beams in Tables of Capacity are figured for 6.0 tons extreme fibre stress, we should look in them for a beam of 18' span, which has a

capacity of 
$$\frac{6}{4.15} \times 14.22 = 20.56$$
 tons. Looking opposite

18' spans, we find that a 15" I beam of iron, shape No. 2. 200 pounds per yard, will carry 20.55 tons. This, then, is the beam which will carry a load of 8 tons situated 12' from the left support of an 18' span, the fibre stress being 4.15 tons per square inch.

These results could also be obtained in the following way: The maximum bending moment for the concentrated load of 8 tons, 12 feet distant from the left support of an 18' span, is 32 foot-tons = 384 inch-tons.

Now, 
$$M_o = f \cdot \frac{2I}{h} = fR$$
whence  $R = \frac{M_o}{f}$ 

Now, if f be taken 4.15 tons per square inch, then

$$R = \frac{384}{4.15} = 92.53$$

Looking in table of "Properties of I Beams," we find that for R = 92.50, the beam is 15" I, 200 pounds per yard. This beam, then, will do.

If the concentrated load of 8 tons be at the *centre* of an 18 feet span, the maximum bending moment is under the P1  $8 \times 18$ 

load, and is  $\frac{P1}{4} = \frac{8 \times 18}{4} = 36$  foot-tons. The "equiva-

lent" uniformly distributed load is 2 P = 2  $\times$  8 = 16 tons,

whose bending moment is  $\frac{16 \times 18}{8} = 36$  foot-tons, the same

as above. Thus, a beam which will carry 16 tons uniformly distributed, will also carry, at the same fibre stress, a load of 8 tons concentrated at the centre of the span. If the fibre stress is to be  $4\frac{1}{4}$  tons, then, in the Tables of Capacity, we must look for an iron beam which has a tabular capacity

of  $\frac{6}{4\frac{1}{4}} \times 16 = 22.61$  tons at 18' span. For 18' span in the tables, we find that a 15" I beam of iron, 250 pounds per

yard, will carry 24.00 tons, which is rather more than we need.

To find the exact weight of a 15" I beam which will answer our purpose, use the equation  $M_o = f$  qh S; whence

$$S = \frac{M_o}{f~qh}$$

Now  $M_o = 36$  foot-tons = 432 inch-tons.

 $f = 4\frac{1}{4}$  tons, the required extreme fibre stress.

h = 15''.

q = 0.309 for 15" I beam, 200 pounds per yard, from table of "Properties of I Beams."

Then

S=required area =  $\frac{432}{4\frac{1}{4} \times 0.309 \times 15}$  = 22.00 square inches;

whence we need a 15" iron I beam, 220 pounds per yard.

If the required fibre stress had been the same as in the tables,—viz., 6.0 tons for iron,—we would have found that, for the given span of 18 feet, the capacity of a 15"  $\mathbf{I}$  beam of iron, 150 pounds per yard, was 15.66 tons, which is rather less than the 16 tons uniformly distributed load for which we were seeking, and using the same method as before,—viz., the equation  $M_0 = f$  qh S,—we would have

$$S = \frac{M_o}{f \text{ qh}} = \frac{432}{6.0 \times 0.313 \times 15} = 15.33 \text{ square inches};$$

i.e., we require a 15" I beam of iron,  $153\frac{1}{2}$  pounds per yard. The centre deflexion for a beam under a uniformly distributed load, W, is  $\frac{5}{8}$  of that for the same load concentrated at the centre of the span. Inversely, the deflexion for a beam under a concentrated load, P, at centre of span is 1.6 times that for the same load uniformly distributed over the span. As in using the tabular loads to find the beam which will carry a centre concentrated load, we double the concentrated load, and seek for a beam to carry such load; then, to find the deflexion for the concentrated load, we must take

 $\frac{1.6}{2}$  = 0.8 of the tabular deflexion.

Another example. Having given a beam of certain kind, weight, and span, to find what load concentrated at a point x from the left support it can safely carry.

Suppose we have a 12" iron I beam, 125 pounds per yard, on a span of 15 feet. From Tables of Capacity, we find it will carry 12.33 tons, uniformly distributed, the fibre stress being 6.0 tons. Now, what load concentrated at a point distant 4.0' from the left support will it carry, the fibre stress

being the same? From 
$$\frac{W l}{8} = \frac{P}{l} (lx - x^2)$$
, we get

$$P = \frac{W l^2}{8 (lx - x^2)} = \frac{12.33 \times 15 \times 15}{8 (15 \times 4 - 16)} = 7.88 \text{ tons};$$

that is, a concentrated load of 7.88 tons, 4 feet from one end, will be carried by the 12" iron **I** beam, 125 pounds per yard, with the same extreme fibre stress as is produced by 12.33 tons uniformly distributed over the span.

[Written for "Engineering News," in 1884, by J. C. Bland, C.E.]

A Method of Computing the Absolute Maximum Bending
Moment on Stringers, due to the Passage across them
of a Series of Concentrated Moving Loads.

From an analytical consideration of the effects produced on the stringers of railway bridges by the passage across them of a series of concentrated weights, such as the wheels of a locomotive, the following principles are found to flow:

- 1. That the maximum bending moment always occurs under a load.
- 2. That the maximum bending moment occurs under one or the other of the two loads, between which the resultant of the total number of loads considered passes.
- 3. That if the resultant of the total number of loads considered passes through a load, the maximum bending moment occurs under that load.
- 4. Calling the load under which the maximum bending moment occurs the *critical* load, and x its distance from the left support, then, when the *critical* load is in the position causing the maximum bending moment, its distance from the left support is less than the half span, if the resultant of the total number of loads considered lies to the right of the *critical* load; and greater than the half span, if the resultant lies to the left.
- 5. Calling Z the distance from the resultant of the total number of loads considered to the load on the right, and  $\Delta$  the distance apart of the two loads between which the resultant passes, the distance of the load on the left from such resultant is  $\Delta Z$ .

Then 
$$x = \frac{1}{2} + \frac{Z}{2}$$
, or  $x = \frac{1}{2} - \frac{\Delta - Z}{2}$ 

according as the *critical* load is on the right or the left of such resultant.

- 6. Then when the *critical* load is in the position causing the maximum bending moment, the centre of the span divides *equally* the distance between the resultant and the *critical* load, or, in other words, the *critical* load and the resultant of the total number of loads considered are symmetrically placed with reference to the centre of the span.
- 7. That the expression for the maximum bending moment can always be put in one or the other of the two forms. (a) If the *critical* load lies to the right of the resultant of the total number of loads considered,

$$\mathbf{M}_{o} = \frac{\boldsymbol{\Sigma} \cdot \mathbf{P}}{4} \left[ \mathbf{l} + \frac{\mathbf{Z}^{2}}{1} - 2 \left( \frac{\boldsymbol{\Sigma} \cdot \mathbf{Pd}}{\boldsymbol{\Sigma} \cdot \mathbf{P}} \right) \right] \tag{I}$$

(b) If the critical load lies to the left of the resultant of the total number of loads considered,

$$\mathbf{M_o} \!=\! \frac{\boldsymbol{\Sigma} \cdot \mathbf{P}}{4} \left[ \mathbf{l} + \frac{(\Delta - \mathbf{Z})^2}{\mathbf{l}} - 2 \! \left( \frac{\boldsymbol{\Sigma} \cdot \mathbf{P} \mathbf{d}}{\boldsymbol{\Sigma} \cdot \mathbf{P}} \right) \right] \quad (2)$$

where  $\Sigma$ . P = number of loads on span, expressed in terms of the load on each pair of drivers. For example, if there are loads on the span of less amount than those on the drivers, express them in terms of the driver load. Thus the four pairs of drivers and the first pair of tender wheels, being on the span, express the tender wheel load as  $\alpha$  P, whence the total number of loads,  $\Sigma \cdot P = 4 P + \alpha P = (4 + a) P$ .

Let l = span.

Z = as already defined in 5.

 $\Delta - Z =$  as already defined in 5.

- Σ. Pd = sum of the moments of loads on span around the *critical* load as origin, no regard being had as to sign; that is, no regard being had to the sense of the moments.
- 8. That the expression for Z and for  $\Delta Z$  can always be put in the form

$$\frac{\Sigma^{1}. \text{ Pd}}{\Sigma. \text{ P}}$$
 (3)

where  $\Sigma^1$ . Pd = summation of the moments of loads on the

span around the critical load as origin, regard being had to sign; that is, regard being had to the sense of the moments.

9. Whence the maximum bending moment is always given by the following general expression:

$$\mathbf{M}_{o} = \frac{\Sigma \cdot \mathbf{P}}{4} \left\{ 1 + \left[ \frac{\Sigma^{1} \cdot \mathbf{Pd}}{\Sigma \cdot \mathbf{P}} \right]^{2} \cdot \frac{\mathbf{I}}{1} - 2 \left( \frac{\Sigma \cdot \mathbf{Pd}}{\Sigma \cdot \mathbf{P}} \right) \right\}$$
(4)

which can be used instead of equations (1) and (2).

10. That is, the cases where the resultant of the total number of loads considered passes between two of the loads, the maximum bending occurring under one or the other of these two loads, then in whichever of the expressions for  $M_o$ , considering first one and then the other as the *critical* load, the term

$$\left\{ \left( \frac{\Sigma^1 \cdot \operatorname{Pd}}{\Sigma \cdot \operatorname{P}} \right)^2 \cdot \frac{\operatorname{\mathbf{I}}}{\operatorname{\mathbf{I}}} - 2 \left( \frac{\Sigma \cdot \operatorname{Pd}}{\Sigma \cdot \operatorname{P}} \right) \right\}$$

is the greater, that one gives the absolute maximum bending moment due to the passage of number of loads considered across the span.

For example: consider the "Erie" consolidation engine, in the case where five loads are on the span,—viz., the four drivers and the first pair of tender wheels.



Where  $P_1 = P_2 = P_3 = P_4$ , hence call  $P_1 = 11.0$  tons.  $P_5 = 7.26$  tons  $= \alpha P$ ; whence

$$a = \frac{726}{1100} = 0.66$$
  
d = 4.5 feet, d<sub>1</sub> = 5.75 feet, d<sub>3</sub> = 7.083 feet.

167

From these values it is found that the line of action of the resultant of these loads passes between  $P_2$  and  $P_3$ ; whence by 2, the maximum bending moment will occur under the loads  $P_2$  or  $P_3$ . Let us first consider  $P_3$  as the *critical* load, and apply our equation (4). Then

$$\Sigma . P = 4 P + a P = (4 + a) P . = 4.66 P.$$

Taking moments of loads around P<sub>3</sub> as an origin, we have on the right of P<sub>3</sub>,

$$P_4 d + P_5 (d + d_3) = P \left\{ d + \alpha (d + d_3) \right\}$$

on the left of P3,

$$P_2 d + P_1 (d + d_1) = P\{2 d + d_1\}$$

now counting moments whose tendency is opposite to the hands of a watch as positive, and those whose tendency is same as the hands of a watch as negative, then the moments on the left of  $P_3$  are positive, and those on the right of  $P_3$  are negative; whence

$$\begin{split} \Sigma^{1}. & \operatorname{Pd} = \operatorname{P} \bigg\{ 2 \ d + d_{1} - \left[ d + \alpha \ (d + d_{3}) \right] \bigg\} \\ & = \operatorname{P} \Big\{ d + d_{1} - \alpha \ (d + d_{3}) \Big\} \end{split}$$

also, as  $\Sigma$ . Pd is sum of moments without regard to the sign, we have

$$\Sigma \cdot Pd = P \left\{ 2 d + d_1 + d + \alpha (d + d_3) \right\}$$
$$= P \left\{ 3 d + d_1 + \alpha (d + d_3) \right\}$$

Then

$$\frac{\Sigma^{1}. \operatorname{Pd}}{\Sigma. \operatorname{P}} = \frac{d + d_{1} - a (d + d_{3})}{4 + a}$$

and

$$2\left(\frac{\Sigma \cdot \mathrm{Pd}}{\Sigma \cdot \mathrm{P}}\right) = 2\left\{\frac{3 \, \mathrm{d} + \mathrm{d}_1 + a \, (\mathrm{d} + \mathrm{d}_3)}{4 + a}\right\}$$

Substituting these values in equation (4), we get

$$\begin{aligned} \mathbf{M_o} &= \frac{4+a}{4} \, \mathbf{P} \left\{ 1 + \left[ \frac{\mathbf{d} + \mathbf{d_1} - a \, (\mathbf{d} + \mathbf{d_3})}{4+a} \right]^2 \cdot \frac{\mathbf{1}}{1} \right. \\ &\left. - 2 \left[ \frac{3 \, \mathbf{d} + \mathbf{d_1} + a \, (\mathbf{d} + \mathbf{d_3})}{4+a} \right] \right\} \end{aligned}$$

Inserting in the above the values given for the distances between loads, etc., we get

$$\begin{split} \mathrm{M_o} &= \frac{4.66}{4} \times 11.0 \left\{ 1 + \frac{\overline{.559}^2}{1} - 11.543 \right\} \\ &= 12.815 \left\{ 1 + \frac{.3125}{1} - 11.543 \right\} \\ &= 12.815 \left\{ 1 + \frac{4.005}{1} - 147.923 \right\} \end{split}$$

Now, suppose our span is 30 feet; then

$$M_o = 12.815 \times 30 + \frac{4.005}{30} - 147.923 = 236.66$$
 foot-tons.

Let us now take another case at random, say the three pairs of drivers,  $P_1$ ,  $P_2$ ,  $P_3$ . The distance  $d_1$  being generally greater than  $d_1$ , and the driver loads alike, it is evident the line of action of the resultant will pass between the loads  $P_1$  and  $P_2$ . It is the case in the "Erie" engine we are considering for illustrations. Let us take  $P_2$  as the critical load; then

$$\Sigma \cdot P = 3 P.$$
  
 $\Sigma^1 \cdot Pd = P (d_1 - d).$   
 $\Sigma \cdot Pd = P (d_1 + d).$ 

Whence

$$\frac{\Sigma^1$$
. Pd  $=$   $\frac{d_1-d}{2}$ 

and 
$$2\left(\frac{\Sigma \cdot Pd}{\Sigma \cdot P}\right) = \frac{2}{3}\left(d_1 + d\right)$$

whence

$$M_{o}\!=\!\frac{3\ P}{4}\!\left\{l+\!\left(\!\frac{d_{1}-d}{3}\!\right)^{2}\frac{1}{l}\!-\!\frac{2}{3}\!\left(d_{1}\!+d\right)\right\}$$

Inserting the values given for the load, P, and the distances, d and  $d_1$ , we get

$$\begin{split} \mathbf{M_o} &= \frac{3 \times 11}{4} \left\{ 1 + \frac{0.1736}{1} - 6.833 \right\} \\ &= 8.251 + \frac{1.432}{1} - 56.375 \end{split}$$

Now, suppose the span is 15 feet; then

$$M_o = 8.25 \times 15 + \frac{1.432}{15} - 56.375 = 67.47$$
 foot-tons.

If we had chosen the three driver loads, P<sub>2</sub>, P<sub>3</sub>, P<sub>4</sub>, we see that the resultant passes through the load P<sub>3</sub>, since the other two loads are equally distant, d, from it; whence the *critical* load is P<sub>3</sub>. Here, then,

$$\Sigma . P = 3 P.$$
  
 $\Sigma^{1} . Pd = P (d - d) = 0.$   
 $\Sigma . Pd = P (d + d) = 2 Pd.$ 

Whence  $\frac{\Sigma^1 \cdot Pd}{\Sigma \cdot P} = 0$  and  $2\left(\frac{\Sigma \cdot Pd}{\Sigma \cdot P}\right) = \frac{4}{3} d$ 

whence

$$M_{o} = \frac{3 P}{4} \left\{ 1 - \frac{4}{3} d \right\}$$

Inserting the values for P and d, we get

$$M_o = \frac{3 \times 11}{4} \left\{ 1 - 6 \right\} = 8.25 1 - 49.5$$

Now, suppose the span to be 15 feet; then

$$M_0 = 8.25 \times 15 - 49.5 = 74.25$$

In passing, we might notice that this choice of loads gives a greater result than the loads P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>.

Let us now take the four drivers,  $P_1$ ,  $P_2$ ,  $P_3$ ,  $P_4$ . It is readily seen that in usual cases the resultant of the four loads pass between the loads  $P_2$  and  $P_3$ .

Let us take the load P<sub>3</sub> as the critical load; then we have

$$\Sigma \cdot P = 4 P.$$

$$\Sigma^{1}$$
. Pd = P (d + d + d<sub>1</sub>) - Pd = P (d + d<sub>1</sub>).

$$\Sigma$$
. Pd = P (d + d + d<sub>1</sub>) + Pd = P (3 d + d<sub>1</sub>).

Whence

$$\frac{\Sigma^1 \cdot Pd}{\Sigma \cdot P} = \frac{d+d}{4}$$

and 2. 
$$\left(\frac{\Sigma \cdot Pd}{\Sigma \cdot P}\right) = 2\left(\frac{3d + d_1}{4}\right) = \frac{3d + d_1}{2}$$

whence

$$\begin{split} M_o &= \frac{4 P}{4} \left\{ 1 + \left( \frac{d + d_1}{4} \right)^2 \frac{I}{1} - \frac{3 d + d_1}{2} \right\} \\ &= P \left\{ 1 + \left( \frac{d + d_1}{4} \right)^2 \cdot \frac{I}{1} - \frac{3 d + d_1}{2} \right\} \end{split}$$

Inserting the values of P, d and  $d_1$  for the "Erie" engine, we get

$$M_o = II \left\{ 1 + \frac{6.566}{1} - 9.625 \right\} = II 1 + \frac{72.23}{1} - I05.875$$

Suppose the span to be 21 feet; then

$$M_o = 11 \times 21 + \frac{72.23}{21} - 105.875 = 128.56$$
 foot-tons.

Let us now take P2 as the critical load. We then get

$$\Sigma^1$$
. Pd = Pd<sub>1</sub> - P (d + 2 d) = - P (3 d - d<sub>1</sub>)

and

$$\Sigma$$
. Pd = Pd<sub>1</sub> + P (d + 2 d) = P (3 d + d<sub>1</sub>)

whence

$$\frac{\Sigma^1 \cdot Pd}{\Sigma \cdot P} = -\frac{3 \cdot d - d_1}{4}$$
 and  $2\left(\frac{\Sigma \cdot Pd}{\Sigma \cdot P}\right) = \frac{3 \cdot d + d_1}{2}$ 

Now

$$\left(\frac{\Sigma^1 \cdot \operatorname{Pd}}{\Sigma \cdot \operatorname{P}}\right)^2 = \left(- \cdot \frac{3 \ \operatorname{d} - \operatorname{d}_1}{4}\right)^2 = \left(\frac{3 \ \operatorname{d} - \operatorname{d}_1}{4}\right)^2$$

whence

$$M_o \! = \! P \! \left\{ 1 + \left( \! \frac{3 \; d - d_1}{4} \! \right)^2 \cdot \frac{I}{l} - \! \frac{3 \; d + d_1}{2} \right\}$$

Inserting the values of P, d and d<sub>1</sub> for the "Erie" engine, we get

$$M_o = 11.0 \left\{ 1 + \frac{3.754}{1} - 9.625 \right\}$$
$$= 11.1 + \frac{41.294}{1} - 105.875$$

Computing for a 21 feet span, we get

$$M_o = 11 \times 21 + \frac{4^{1.294}}{21} - 105.875 = 127.09$$
 foot-tons.

It is noticed that this result is less than that given by choosing P<sub>3</sub> as the *critical* load.

Sufficient illustrations have been given to show how easy of application is the general expression (4).

When any number of loads are considered, the two loads between which the resultant passes can generally be determined by inspection,—if not easily seen, the determination is readily found. Then apply the expression (4), first considering the load on one side, then the load on the other side of the resultant as the *critical* load. Whichever gives the greater value of  $M_o$ , is the expression to use in computing the bending moments for that number of loads within the limits of span, both superior and inferior. Considering any particular engine, a table can be calculated showing the bending moments and limits of span for one, two, three, four, five, etc., loads in succession.

#### ON THE USE OF

#### THE TABLES OF CAPACITY.

In the table showing the reduction of extreme fibre stresses due to ratio of flange length to flange width, we notice that for fifty ratios the extreme fibre stress for *steel* shapes is reduced to 6.07 tons per square inch, which is very nearly that for which the capacity of the iron shapes has been calculated.

If, then, when we find that the tabular safe load of an iron shape would fulfil the requirements, but, by reason of the beam being *unstayed*, we have to reduce its load to 77 per cent. of its tabular capacity, we can substitute the *steel* shape of the same sectional area, and *all* our requirements are satisfied.

For example: Take a 15" iron  $\mathbf{I}$  beam, 150 pounds per yard, at 21' span. Its tabular capacity is 13.43 tons; but

its ratio of length to flange width = 
$$\frac{21' \times 12''}{5''}$$
 = 50.4;

whence its fibre stress should be 4.64 tons, instead of 6.0 tons, and hence it will carry but 0.773 of its tabular capacity, —viz., only  $0.773 \times 13.43 = 10.38$  tons. Now, looking at the same shape in *steel*, we see its tabular capacity is 17.46 tons, and the ratio of its unstayed length to flange width being as before, the reduced safe load will be  $0.773 \times 17.46 = 13.50$  tons.

Thus it is seen that the *steel* **I** beam, which has 15.0 square inches sectional area, will carry, when *unstayed* its full length of 21.0 feet, the same load which the iron **I** beam of same sectional area would carry if *stayed*, so that

its unsupported length of flange was no greater than 30 times its flange width. The limit to the 15'' iron **I** beam, in order to use the tabular loads, would be  $30 \times 5'' = 150'' = 12\frac{1}{2}'$ , —i.e., in order to use a fibre stress of 6.0 tons per square inch; and the steel **I** beam, unstayed for its full length, could be used at the same extreme fibre stress of 6.0 tons.

These facts are of use in designing the floor joist of a building, for frequently, by simply substituting steel shapes of same sectional areas as the iron ones, and which weigh only a little more per foot, we can do away with the necessity of some method of *staying* the flanges, or of having to use much heavier beams of iron.

It is also to be remembered that steel beams and channels cost no more *per pound* than iron ones; whence any saving in weight by the use of steel shapes is a like saving in cost.

Suppose the area of a floor surface to be  $20' \times 28'$ , and we desire to find the beam requisite to carry a total loading of 200 pounds per square foot. We would, of course, place the beams with their length in smaller dimension of the floor area; then the span centre to centre of the beams will be about 21 feet. Suppose, also, that by reason of using brick arches between the beams to carry the external floor load the distance apart of the beams is limited to 5'.0''.

Examining our Tables of Capacity of Iron I Beams, we find that a 12" I beam, 125 pounds per yard, shape No. 6, might answer; as for 21 feet span, and 200 pounds per square foot, the distance apart should not be greater than 4.19 feet. But the flange width is  $4\frac{7}{8}$ ", and the ratio of 21 feet to flange width is 52; whence this exceeding the ratio 30, the extreme fibre stress must be reduced from the tabular amount—viz., 6.0 tons—to about 4.5 tons; in other words, the safe load from 8.81 tons—the tabular safe load—to 0.75  $\times$  8.81 = 6.61 tons, and likewise the distance apart will be now 0.75  $\times$  4.19 = 3.14 feet. Now, this distance will be too close for the beams, so we should have to select another shape.

Looking at span 2I feet under 12" iron I beam, 170 pounds, shape No. 4, we find that for 200 pounds per square foot, the spacing may be 5.53 feet. The ratio of length to

flange width is  $\frac{21 \times 12}{5\frac{38}{8}''} = 47$ ; whence the distance 5.53

should be reduced to about  $0.8 \times 5.53 = 4.42$  feet. We might make six spaces of 4'.8" in the 28 feet length of floor, and hence would require five 12" **I** beams of iron, 170 pounds per yard, 21'.6" long each, weighing in all 6090 pounds. Now, looking at a steel 12" **I** beam of 126\frac{1}{4} pounds per yard (12.50 square inches area), we find that for 21 feet span, under the tabular loads, it may be spaced 5.46 feet. But the ratio of length of beam to flange width

being 
$$\frac{21 \times 12}{4\frac{11}{16}}$$
 = 54, the distance can only be 0.74 ×

5.46 = 4.04 feet.

Making seven spaces in the 28.0 feet, of 4'.02" each, we require 6 steel **I** beams, 126½ pounds per yard, 21'.6" long each, weighing in all 5430 pounds. Thus, even with *one* more beam, by using the steel, we save a weight of 660 pounds, or about 11 per cent.; and this is also a saving in cost of 11 per cent., because steel beams and channels cost no more per pound than do iron ones.

Suppose we have a floor area  $18' \times 32'$ , and a total floor load of 200 pounds per square foot, and that we wish to make 4.0 feet spaces between centres of beams. Placing the beams in short way of floor area, they will be 19 feet span centre to centre of bearings; and in 32 feet of length we will have eight spaces of 4 feet each, or require 7 beams, say  $19\frac{1}{2}$  feet long each.

Assuming the flange width about  $4\frac{1}{2}'' = \frac{3}{8}$  of a foot, if beams are *unstayed* laterally, the ratio of unstayed flange to flange width will be  $18 \div \frac{3}{8} = 48$ ; whence, by looking at Table of Reduction of Fibre Stresses and Tabular Loads, we see that tabular capacity will have to be multiplied by about 0.8, and tabular spacing also by 0.8; whence, in order to use the Tables of Capacity, if we divide the required spacing by 0.8, it will give us a spacing which, if we find the corresponding beams in the tables, they will fulfil our condi-

tions. Thus,  $\frac{4.00}{0.8} = 5.00$  feet. Now, looking in Tables of

Iron I Beams, at 19 feet spans, we find, under column of 200 pounds per square foot, that a 101 I beam of iron, 135 pounds per yard, will carry 9.58 tons, and be spaced 5.02 feet apart. Now, flange width of 101 I, 135 pounds, is 5"; whence ratio of unstayed length to flange width is  $19 \times 12 = 46$ ; then tabular safe load and tabular spacing will have to be multiplied by about .81. Thus, tabular load  $\times$  0.81 = 9.58  $\times$  0.81 = 7.75 tons; and tabular spacing  $\times$  0.81 = 5.02'  $\times$  0.81 = 4.06 feet; that is, we can use Ioh" I beams of iron, and spacing them 4.0 feet apart will compensate for the reduction of capacity due to beams being unstayed. We found the reduced safe load to be for this beam 7.75 tons, and this will be seen to be right, for the load to be carried is  $19' \times 4'$  apart  $\times$  200 pounds per square foot = 15,200 pounds = 7.60 tons; whence weight is  $7 - 10\frac{1}{2}$ " I beams (iron), 135 pounds per yard,  $19\frac{1}{2}$ ' long =6142 pounds.

To see what steel beam will satisfy the conditions. The spacing which we wish to use is 4.0 feet, and in Tables of Steel I Beams we find for a 19 feet span and 200 pounds per square foot of load, that the spacing is 4.14 feet, and load carried 7.87 tons, but, bearing in mind the reduction of strength by reason of beams not being stayed, we should look in the steel tables for a beam which will have a spacing

under the 200 pounds column of  $\frac{4.0}{0.8} = 5.0'$ , and a load of  $\frac{7.60}{0.8} = 9.50$  tons. The nearest to this is a  $10\frac{1}{2}$ " I beam

of steel, 106 pounds per yard, shape No. 9, 9.18 tons safe load, and 4.83 feet spacing.

It is evident that a little increase of section in this beam would add enough to strength so as to make it answer our purpose.

To find what weight of this shape we would need, we have from Table of Properties of I Beams, q = 0.30I, say 0.30, and using equation (20), page 157, we have

$$S = \frac{M_o}{f \ qh}$$

Now 
$$M_o = \frac{Wl}{8} = \frac{7.60 \times 19 \times 12}{8} = 216.6$$
 inch-tons.

 $f = 0.80 \times 7.8 = 6.04$  tons per square inch.

q = 0.30.

 $h = 10\frac{1}{2}$ ".

Then area required =  $S = \frac{216.6}{6.04 \times 0.3 \times 10^{\frac{1}{2}}} = \frac{216.6}{19.03} =$ 

11.38 square inches.

Or a  $10_2^{1\prime\prime}$  **I** beam (*steel*) of shape No. 9, and weighing 115 pounds per yard (11.38 square inches area).

Now from (18), page 156,

$$R = qh S = 0.3 \times 10^{\frac{1}{2}} \times 11.38 = 35.85$$

whence safe load for steel beams (see equation (II), page 152) is

$$W = \frac{5.2 \text{ R}}{l'} = \frac{5.2 \times 35.85}{19} = 9.81 \text{ tons,}$$

and reducing this by multiplying by 0.8, we get  $9.81 \times 0.8$  = 7.85 tons as the safe load, when beam is *unstayed* in its length of 19 feet.

Then for the weight of the steel beams, 7 beams,  $10\frac{1}{2}$ " I steel, 115 pounds per yard,  $19\frac{1}{2}$  feet long = 5232 pounds.

Now  $10\frac{1}{2}$  I iron beams, 135 pounds per yard, weighed for the 7 of  $19\frac{1}{2}$  feet each, 6142 pounds; whence a saving of 910 pounds in the floor joist, or almost 15 per cent., likewise a saving of 15 per cent. in cost.





# ON PLATE GIRDERS.





# PLATE GIRDERS.

Let l = span, centre to centre of

h

end bearings.

height of girder, centre to centre of gravity of flanges. Both in same linear units.

w = load per linear unit of span.

 $R_a$  = reaction at left abutment, a.

 $R_{a^1}$  = reaction at right abutment,  $a^1$ .

 $F_x$  = shear at section distant x from left abutment.

 $F_o$  = shear at end of girder = maximum shear.

M<sub>x</sub> = bending moment at section distant x from left abutment.

 $\frac{M_x}{h}$  = flange stress at section distant x from left abutiment.

 $f_c$  = allowable stress per square inch in compression.

 $p_c = \frac{f_c}{I + \frac{I}{5000} \left(\frac{1}{W}\right)^2} = reduced compression$ 

unit, due to length of unstayed portion of upper flange as regards its width.

 $f_t$  = allowable stress per square inch in tension.

 $f_{ps}$  = allowable shearing stress per square inch on the web plates.

 $f_{rs}$  = allowable shearing stress per square inch on rivets.

 $f_{rb}$  = allowable bearing stress per square inch on rivets.

 $\Box_{c}'' = rac{M_x}{p_c h} = gross sectional area required in upper flange at centre of span.$ 

 $\Box_{t}^{"}=rac{M_{x}}{f_{t}h}=$  nett sectional area required in lower flange at centre of span.

The bending moment,  $M_x$ , at a section distant x from the left abutment, is the algebraic sum of the moments around x, of all the external forces acting between the left abutment and the section x.

The shear,  $F_x$ , at a section distant x from the left abutment, is the *algebraic sum* of all the external forces acting between the left abutment and the section x.

Plate girder under a uniformly distributed load, w, per linear unit.

Then 
$$M_x = \frac{wl}{2} x - \frac{wx^2}{2} = \frac{wx}{2} (1 - x)$$
 (1)

$$F_{x} = \frac{wl}{2} - wx = w\left(\frac{l}{2} - x\right) \tag{2}$$

also

$$M_{(x+p)} = \frac{wl}{2}(x+p) - \frac{w(x+p)^2}{2}$$

$$=\frac{w(x+p)}{2}(l-x-p)$$
 (3)

$$\mathbf{F}_{(\mathbf{x}+\mathbf{p})} = \frac{\mathbf{w}\mathbf{l}}{2} - \mathbf{w}(\mathbf{x}+\mathbf{p}) = \mathbf{w}\left\{\frac{1}{2} - (\mathbf{x}+\mathbf{p})\right\} \quad (4)$$

The shear at any point x is the differential coefficient of the bending moment  $M_x$  at the point x, and equations (2) and (4) could be derived directly from (1) and (3). Thus,

$$F_{x} = \frac{\mathrm{d}}{\mathrm{d}x} \left\{ M_{x} \right\} = \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \frac{\mathrm{wx}}{2} \left( 1 - \mathrm{x} \right) \right\} = \frac{\mathrm{wl}}{2} - \mathrm{wx} \quad (5)$$

and

$$F_{(x+p)} \!=\! \frac{\mathrm{d}}{\mathrm{d}x} \left\{ M_{(x+p)} \right\} \!=\! \frac{\mathrm{d}}{\mathrm{d}x} \left\{ \frac{w \left(x+p\right)}{2} \! \left( 1 \!-\! x \!-\! p \right) \right\}$$

$$= \frac{\mathrm{wl}}{2} - \mathrm{w} \left( \mathrm{x} + \mathrm{p} \right) \tag{6}$$

Now, flange stress at point x is

$$\frac{M_x}{h} = \frac{wx}{2h} \left( 1 - x \right) \tag{7}$$

and flange stress at point x + p is

$$\frac{M_{(x+p)}}{h} = \frac{w(x+p)}{2h} (1-x-p)$$
 (8)

The difference of these flange stresses is the stress on the rivets in the distance  $p_i$ —i.e.,

$$\frac{M_{(x+p)}}{h} - \frac{M_{x}}{h} = \frac{w}{2h} \left\{ pl - 2 px - p^{2} \right\}$$

$$= \frac{wp}{2h} \left\{ 1 - 2 x - p \right\} = \left\{ \frac{wl}{2} - w\left(x + \frac{p}{2}\right) \right\} \frac{p}{h} \tag{9}$$

But shear at the section distant  $\left(x + \frac{p}{2}\right)$  from left abutment is

$$F_{(x+\frac{p}{2})} = \frac{wl}{2} - w\left(x + \frac{p}{2}\right)$$

whence equation (9) could be written

$$\frac{M_{(x+p)}}{h} - \frac{M_x}{h} = F_{\left(x+\frac{p}{2}\right)} \cdot \frac{p}{h} \tag{10}$$

that is, the stress on the rivets in the distance p, is the shear at the *middle* of the distance p, multiplied by the ratio of the distance p to the height h. Or, if the distance p be the pitch of the rivets, the stress on the rivet is the shear at that rivet multiplied by the pitch and divided by height of girder.

Thus, generally, calling a the stress on a rivet distant x from the abutment,

$$a = \frac{F_{x} \cdot p}{h} \tag{II}$$

i.e., stress on rivet at section x is the shear at x multiplied by the pitch and divided by height of girder.

From (II) we get

$$p = \frac{h a}{F_x} = \frac{a}{\frac{I}{F_x}}$$
 (12)

that is, the pitch of the rivet at any section x is the allowable stress on the rivet multiplied by the height of girder and divided by the shear at the rivet.

If we take the stress on the rivets in a distance, h, equal to the height of the girder, and say n the number of rivets in such distance; then

$$n a = F_{(x + \frac{h}{a})}$$
 (13)

that is, the number of rivets in the distance h, multiplied by the mean stress on each rivet, is the shear at a point distant

$$\left(x + \frac{h}{2}\right)$$
 from the abutment.

If, in (13), we make x = 0, then the stress on the rivets in the distance from the abutment to the section h—that is, in a distance from end of girder equal to height—is  $F(\frac{h}{2})$ . In other words,

n 
$$a = \frac{\text{wl}}{2} - \frac{\text{wh}}{2} = \frac{\text{w}}{2} (1 - \text{h})$$
 (14)

Now,  $\frac{\text{wl}}{2} - \frac{\text{wh}}{2}$  is the flange stress at the point h; whence

$$n \ a = \frac{M_h}{h} \tag{15}$$

i.e., the *entire* flange stress at a point whose distance from the abutment is equal to the depth of girder, must be conveyed to the flange angles by means of the rivets which connect the flange angles to the web.

But we must bear in mind that from o to h the flange stress increases from o to  $\frac{M_h}{h}$ , and if we proportioned the

number of rivets by (14) and (15), a would be the *mean* stress on the rivets in the distance h; we should, however,

determine the number from the *maximum* stress in the distance h,—that is to say, in (14) make h = 0, and then  $a = \frac{wl}{2}$ . In other words, the number of rivets required in a distance from end supports equal to depth of the girder is

$$n = \frac{F_o}{a} \tag{16}$$

where F<sub>o</sub> is the end shear, which is equal to the reaction, and a the allowable stress on the rivet.

If we divide both members of the above equation by h, the height in feet, then

number of rivets per foot  $=\frac{\frac{F_o}{h}}{a}$  = shear per foot,

divided by allowable stress on the rivet.

Now, considering the connexion of the two flange angles to the web sheet, the rivet may be sheared out between the angles, or it may crush the bearing on the web sheet. The stress on the rivet must then *not* exceed its shearing value nor its bearing value. The rivet being in double shear,—*i.e.*, there being two shearing areas, one on each side of the web,—its shearing value is  $2 f_{rs} a$ , where  $f_{rs}$  is the allowable shearing stress per square inch on rivets, and a the area of the rivet. The rivet having a bearing on the web sheet of dt, where d is the diameter of the rivet, and t the thickness of the web, its bearing value is  $f_{rb} dt$ ,  $f_{rb}$  being the allowable bearing stress per square inch; whence a must not exceed  $2 f_{rs} a$ , nor  $f_{rb} dt$ ,—*i.e.*,

$$a = \frac{F_x \cdot p}{h} \rightleftharpoons 2 f_{rs}a$$
, and  $\rightleftharpoons f_{rb}$ . dt

whence for shearing,

area of rivet, 
$$a = \frac{F_x \cdot p}{2 f_{rs} h}$$
 (17)

and for bearing,

thickness of plate, 
$$t = \frac{F_x \cdot p}{f_{rb} \cdot hd}$$
 (18)

#### TABLE OF SHEARING VALUE OF RIVETS

For allowable units of from 3.0 to 4.0 tons per square inch.

| Diam.<br>of<br>rivet, d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Area of rivet,                                                                                   | Value of rivets in single shear at the following allowable shearing units $=f_{r_S}\;\square''.$ |                                                                                       |                                                                                      |                                                                                      |                                                                                      |                                                        |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  | 3.0 tons<br>per<br>square in.                                                                    | 3.25 tons<br>per<br>square in.                                                        | 3.50 tons<br>per<br>square in.                                                       | 3.75 tons<br>per<br>square in.                                                       | 4.0 tons<br>per<br>square in.                                                        | 4.5 tons<br>per<br>square in.                          |  |  |  |
| 1//<br>9 //<br>16 //<br>55 //<br>16 | 0.1963<br>0.2485<br>0.3068<br>0.3712<br>0.4417<br>0.5185<br>0.6013<br>0.6903<br>0.7854<br>0.8866 | 0.59<br>0.74<br>0.92<br>1.11<br>1.33<br>1.56<br>1.80<br>2.07<br>2.36<br>2.66<br>2.98             | 0.64<br>0.81<br>1.00<br>1.21<br>1.44<br>1.69<br>1.95<br>2.24<br>2.55<br>2.88<br>3.23. | 0.69<br>0.87<br>1.07<br>1.30<br>1.54<br>1.81<br>2.10<br>2.42<br>2.75<br>3.10<br>3.48 | 0.74<br>0.93<br>1.15<br>1.39<br>1.66<br>1.94<br>2.25<br>2.59<br>2.94<br>3.32<br>3.73 | 0.79<br>0.99<br>1.23<br>1.48<br>1.77<br>2.07<br>2.40<br>2.76<br>3.14<br>3.55<br>3.98 | 0.88 1.12 1.38 1.67 1.99 2.33 2.70 3.16 3.53 3.99 4.47 |  |  |  |

## TABLE OF BEARING VALUE OF RIVETS

For allowable units of 6.0, 7.5, and 9.0 tons per square inch.

|                                                                                                       | Bearing value for different thicknesses of plates $=f_{rb}\!	imes\!d	imes\!t$ , |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |                                                                      |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| plate, t.                                                                                             | Bearing unit frb=6.0 tons.                                                      |                                                                      |                                                                      |                                                                      | Bearing unit f <sub>rb</sub> =7.5 tons.                              |                                                                      |                                                                      |                                                                      | Bearing unit frb=9.0 tons.                                           |                                                                      |                                                                      |                                                                      |
| ness of                                                                                               |                                                                                 |                                                                      |                                                                      |                                                                      | Diameter of rivet, d.                                                |                                                                      |                                                                      |                                                                      | Diameter of rivet, d.                                                |                                                                      |                                                                      |                                                                      |
| Thickness                                                                                             | 1/2"                                                                            | 5/8"                                                                 | 3/4"                                                                 | 7/8"                                                                 | 1/2"                                                                 | 5/8"                                                                 | 3/4"                                                                 | <i>7</i> ∕8″                                                         | 1/2"                                                                 | 5/8"                                                                 | 3/4"                                                                 | 7/8"                                                                 |
| 1" 5 6 " " 16 3 3 " " 16 5 5 " 16 5 3 " 16 5 3 " 16 5 3 " 16 5 3 " 16 " 16 " 16 " 16 " 16 " 16 " 16 " | 0.75<br>0.94<br>1.13<br>1.31<br>1.50<br>1.69<br>1.88<br>2.06<br>2.25            | 0.94<br>1.17<br>1.41<br>1.64<br>1.88<br>2.11<br>2.34<br>2.58<br>2.81 | 1.13<br>1.41<br>1.69<br>1.97<br>2.25<br>2.53<br>2.81<br>3.09<br>3.38 | 1.31<br>1.64<br>1.97<br>2.30<br>2.63<br>2.95<br>3.28<br>3.61<br>3.94 | 0.94<br>1.17<br>1.41<br>1.64<br>1.88<br>2.11<br>2.34<br>2.58<br>2.81 | 1.17<br>1.46<br>1.76<br>2.05<br>2.34<br>2.64<br>2.93<br>3.22<br>3.52 | 1.41<br>1.76<br>2.11<br>2.46<br>2.81<br>3.16<br>3.52<br>3.87<br>4.22 | 1.65<br>2.05<br>2.46<br>2.87<br>3.28<br>3.69<br>4.10<br>4.51<br>4.92 | 1.13<br>1.41<br>1.69<br>1.97<br>2.25<br>2.53<br>2.81<br>3.09<br>3.38 | 1.41<br>1.76<br>2.11<br>2.46<br>2.81<br>3.16<br>3.52<br>3.87<br>4.22 | 1.69<br>2.11<br>2.53<br>2.95<br>3.38<br>3.80<br>4.22<br>4.64<br>5.06 | 1.96<br>2.46<br>2.95<br>3.44<br>3.94<br>4.43<br>4.92<br>5.41<br>5.90 |

The thickness of web of a girder is generally limited to  $\frac{3}{8}$  of an inch for practical reasons; and, besides filling the condition  $\frac{\text{maximum shear}}{f_{ps}}$ , it must also resist the tendency to buckling; that is, the unit stress on the web should be determined by

$$p_{ps} = \frac{5.00 \text{ tons}}{1 + \frac{I}{3000} \left(\frac{h}{t}\right)^2}$$
 (19)

The girder should be divided into panels by the use of stiffening angle iron on the web sheet, and the length of such panels should generally be about the depth of the girder, unless the girder be quite shallow, in which case the panels may be about one and one-half times the depth.

In equation (19) it is allowable to consider h as the vertical distance in the clear between the angle iron flanges.

The permissible unit stresses on plate girders are determined from the following relations, where  $\phi$  denotes the ratio of the minimum stress to the maximum stress.

Compressive unit stress, 
$$f_c = I_3^2 \text{ tons } (2 + \phi)$$
. (a)

Tensile unit stress, 
$$f_t = 2 \text{ tons } (2 + \phi)$$
. (b)

Shearing stress on web plate, 
$$f_{ps} = I_{\frac{2}{3}} tons (2 + \phi)$$
. (c)

Shearing stress on rivets, 
$$f_{rs} = 1\frac{1}{2} tons (2 + \phi)$$
. (d)

Bearing stress on rivets, 
$$f_{rb} = 3 \text{ tons } (2 + \phi)$$
. (e)

In plate girders under uniformly distributed loads the stresses are in same ratios as the loads, and  $\phi$  may then denote the ratio of the *dead* load to the *total* load.

In plate girders used in buildings and warehouses the loads are all dead, and then  $\phi$  becomes unity, and the above permissible unit stresses become

 $f_c = 5.00$  tons per square inch on gross area.

 $f_t = 6.00$  tons per square inch on nett area.

 $f_{ps} = 5.00$  tons per square inch on nett area.

 $f_{rs} = 4.50$  tons per square inch on rivet area.

f<sub>rb</sub> = 9.00 tons per square inch on bearing area of rivet.

Taking  $f_t$  as a unit of comparison, the expressions (a), (b), (c), (d), (e) are in the following ratios:

$$\begin{split} &f_{c} = \frac{5}{6} \, f_{t}, \\ &f_{ps} = f_{c} = \frac{5}{6} \, f_{t}, \\ &f_{rs} = \frac{3}{4} \, f_{t}, \\ &f_{rb} = 2 \, f_{rs} = \, \mathbf{I}_{\frac{1}{2}} \, f_{t}. \end{split}$$

And, taking fc as a unit of comparison, we get

$$\begin{split} f_t &= \frac{6}{5} \, f_c. \\ f_{ps} &= f_c. \\ f_{rs} &= 0.9 \, f_c. \\ f_{rb} &= 2 \, f_{rs} = 1.8 \, f_c. \end{split}$$

#### EXAMPLE I.

#### SINGLE-WEBBED PLATE GIRDER.

Suppose we have a girder 32' 0" long, centre to centre of end bearings, and it is required to carry 128 tons uniformly distributed over its length. Dividing the span into eight panels of 4' 0" each; at each panel point we will use a pair of angle iron stiffeners, one on each side of the web. We will make the girder 40" deep out to out of flange angles, which will be the effective depth in this case, as when the flange plates are considered, the 40" will be about the distance centres of gravity of the flange areas.

Our unit stresses are  $f_c = 5.00$  tons;  $f_t = 6.00$  tons;  $f_{ps} = 5.0$  tons;  $f_{rs} = 4.50$  tons;  $f_{rb} = 9.0$  tons; and using 14" flange plates, the ratio of length to width of flange (supposing the flange *unstayed* in its length) will be  $32 \div 1\frac{1}{6} = 27.43$ , whence compressive unit stress  $f_c$  is reduced to

$$p_c = \frac{5.00}{1 + \frac{I}{5000} (27.43)^2} = \frac{5.00}{I.150} = 4.35 \text{ tons.}$$

This will be the maximum permissible unit stress on the upper flange.

We then have given

1 = span centre to centre of end bearings = 32 feet.

 $h = effective height = 40'' = 3\frac{1}{3} feet.$ 

w = load per linear foot  $= \frac{128}{32} = 4.0$  tons.

Then bending moment at any point x from left abutment is given by

$$M_x = \frac{WX}{2} (1 - X) = \frac{4.0}{2} X (32 - X) = 2.0 (32 X - X^2)$$

For bending moment at centre of span we have

$$x = \frac{1}{2}$$
 in the equation  $M_x = \frac{wx}{2}(1-x)$ 

i.e.,

$$M_c = \frac{wl^2}{8} = \frac{4.0 \times 3^2 \times 3^2}{8} = 512 \text{ ft.-tons} = 6144 \text{ in.-tons}.$$

Whence flange stress at centre of span is

$$\frac{M_c}{h} = \frac{6144}{40} = 153.60 \text{ tons.}$$

The flange section required at centre of span to resist compression is

$$\frac{M_c}{p_c h} = \frac{6144}{4.35 \times 40''} = 35.31 \text{ square inches gross.}$$

The flange section required at centre of span to resist tension is

$$\frac{M_c}{f_t h} = \frac{6144}{6.0 \times 40''} = 25.60 \text{ square inches nett.}$$

For compression flange—i.e., for upper flange—use

2 angle irons,  $6'' \times 4'' \times \frac{1}{2}''$ , 48 pounds per yard = 9.60 5 flange plates,  $\mathbf{1}4'' \times \frac{3}{8}'' =$  26.25

Total gross section used in upper flange = 35.85

For tension flange—i.e., the lower flange—use

2 angles, 
$$6'' \times 4'' \times \frac{1}{2}''$$
, 48 pounds per yard = 9.60

Deduct 4 holes, I'' diameter  $\times \frac{1}{2}''$  thick = 2.00 = 7.60

4 plates,  $14 \times \frac{3}{8} =$  21.00

Deduct 4 (2 holes,  $1'' \times \frac{3}{8}''$ ) = 3.00 = 18.00

Total nett section used in lower flange = 25.61

In deducting for rivet holes in the tension flange to get the nett area, the rivet holes are taken \frac{1}{8}" larger than diameter of the rivet. In above we have assumed 7" rivets; whence holes are taken I" diameter.

Having now determined the sections to be used at the centre of span, the next step is to find where the several flange plates begin and end,—i.e., the lengths of the various flange plates. The pair of flange angles and the first flange plate (the first flange plate is the one next the flange angles) extend from end to end of girder, and the other flange plates should extend about two rivet pitches beyond the points where they should stop theoretically. In order to determine these points, we take the general equation for the section required at any point distant x from left abutment,—viz.,

$$\begin{split} &\frac{M_x}{p_c h} \!=\! \frac{wx}{2 \; p_c h} \! \left( 1 - x \right) \! =\! \frac{4.0 \, x \, (32 - x)}{2 \, \times \, 4.35 \, \times \, 3\frac{1}{8}} \\ &= \! \frac{32 \; x - x^2}{7.25} \! =\! \frac{4}{29} \! \left\{ 32 \; x - x^2 \right\} \end{split}$$

i.e., square inches required at any point x of the girder =  $\frac{4}{29}$  32 x - x<sup>2</sup> where x is taken in feet. Now, to find the point where the second flange should begin, equate the areas of the two flange angles and first flange plate,-viz., 9.60 + 5.25 = 14.85 square inches to  $\frac{4}{2.9}$  (32 x - x<sup>2</sup>); i.e.,

Whence 
$$14.85 = \frac{4}{2.9} (32 \text{ x} - \text{x}^2)$$

$$x^2 - 32 x + 107.66 = 0$$

i.e., 
$$x = 16 \pm \sqrt{256 - 107.66} = 16 \pm \sqrt{148.34}$$
  
=  $16 \pm 12.18 = 3.82'$  or  $28.18'$ 

These are distances which, measured from *one* end of the effective span, give the two points at which the second flange plate begins and ends; it is, therefore, 24.36 feet long nett.

From the above an expression can be deduced which is general,—viz.,

$$x = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 - \frac{\prod_x''}{\frac{W}{2 p_c h}}}$$

$$= \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 - \frac{2 \operatorname{pch} \left(\prod_{x''}\right)}{\operatorname{w}}}$$

where x is the distance in feet from centre of end supports to the point where it is necessary to *add* another flange plate, and  $\Box_{x}$ " is the sectional area *just* at the point x; w is the load per linear foot of girder;  $p_{c}$  is the unit stress in compression; h is the height in feet.

The foregoing is for the compression flange, and  $p_c$  is the compressive unit; and hence  $\prod_x$  is the gross sectional area at the point x.

To adapt the expression to the tension flange, change  $p_c$  to  $f_t$ , and consider  $\prod_x$  as the *nett* sectional area at the point x,—*i.e.*, for tension flange,

$$x = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 - \frac{2 f_t h \prod_{x''}}{w}}$$

To continue with upper flange. For the point where it is necessary to begin the third flange plate. The area of the two flange angles and the first and second flange plates is  $9.60 + 5.25 + 5.25 = 20.10 \square$ "; i.e.,  $\square_x$ " = 20.10, and

$$\frac{2 p_{c}h}{w} = \frac{2 \times 4.35 \times 3\frac{1}{3}}{4.0} = \frac{29}{4}$$

Then 
$$x = 16 \pm \sqrt{\left(16\right)^2 - \frac{29 \times 20.10}{4}}$$
$$= 16 \pm \sqrt{256 - 145.72}$$
$$= 16 \pm \sqrt{110.28} = 16 \pm 10.50 = 5.5' \text{ or } 26.50'$$

whence third plate is 26.5 - 5.5 = 21.0' long nett.

To find the length of the *fourth* flange plate. The area of the two flange angles and the first, second, third flange plates is  $9.60 + 3 \times 5.25 = 25.35 \square''$ ; *i.e.*,  $\square_x'' = 25.35$ ; whence

$$x = 16 \pm \sqrt{\left(16\right)^2 - \frac{29}{4}\left(25.35\right)}$$

$$= 16 \pm \sqrt{256 - 183.78}$$

$$= 16 \pm \sqrt{72.22} = 16 \pm 8.50 = 7.50' \text{ or } 24.50'$$

whence fourth flange plate is 24.50 - 7.50 = 17.0' long nett.

To find the length of the *fifth* or last flange plate. The area of the two flange angles and the first four flange plates  $= 9.60 + 4 \times 5.25 = 30.60 \, \text{m}$ ; i.e., m = 30.60; whence

$$x = 16 \pm \sqrt{\left(16\right)^{2} - \frac{29}{4}\left(30.60\right)}$$

$$= 16 \pm \sqrt{256 - 221.84}$$

$$= 16 \pm \sqrt{34.16} = 16 \pm 5.84 = 10.16' \text{ or } 21.84'$$

whence fifth flange plate is 21.84 — 10.16 = 11.68' long nett.

Conclusion:

First flange plate,  $14 \times \frac{3}{8}$ ; full length of girder.

Second flange plate,  $14 \times \frac{3}{8}$ , 24.36' long nett, make  $25\frac{1}{2}$  long.

Third flange plate,  $14 \times \frac{3}{8}$ , 21.00′ long nett, make 22½′ long.

Fourth flange plate, 14  $\times$   $\frac{2}{8}$ , 17.00′ long nett, make 18 $\frac{1}{2}$ ′ long.

Fifth flange plate,  $14 \times \frac{3}{8}$ , 11.68' long nett, make  $13\frac{1}{4}'$  long.

The above lengths are just about the proper lengths; the

actual "bill" length can be determined when we fix on the pitch of the rivets in each panel.

Another way to determine the lengths of flange plates is as follows:

The centre section required in upper flange is

$$\square_c"\!=\!\!\frac{\mathrm{w} l^2}{8~\mathrm{p_c} h}$$

Transposing,

$$\frac{l^2}{8}\!=\!\frac{p_c h \, \square_c{''}}{w}$$

i.e.,

$$\left(\frac{1}{2}\right)^2 = \frac{2 p_c h \square_c''}{w}$$

This is the equation of a parabola, in which we may consider I and  $\square''$  as variables, and calling  $\frac{1}{2} = y$ ,

$$y^2 = \frac{2 p_c h}{w} \square''$$

i.e.,

$$y\!=\!\sqrt{\frac{2~p_ch}{w}}\,\sqrt{\;\square''}$$

where y represents the distance from the centre of span to point corresponding to \( \subseteq "\). See diagram, page 194.

Similarly, if we are considering the lower or tension flange,

$$y = \sqrt{\frac{2 f_t h}{w}} \sqrt{\square''}$$

To illustrate, as this is an inverse method.

The  $\Box_c$ " = 35.31  $\Box$ ". Now, 2 angles and 4 flange plates = 9.60 + 4  $\times$  5.25 = 30.60  $\Box$ "; whence difference = 35.31 - 30.60 = 4.81.

Then

$$y = \sqrt{\frac{2 p_c h}{w}} \sqrt{x} = \sqrt{\frac{2 \times 4.35 \times 3\frac{1}{3}}{4.0}} \sqrt{x}$$
$$= \sqrt{\frac{29}{4}} \sqrt{x} = 2.69 \sqrt{x}$$

but x for fifth flange plate, or first plate on top, = 4.81 \[ \]".



Lengths of flange plates should exceed the above nett lengths by about two rivet pitches at each end. Flange angles and first flange plates should extend full length of the girder.

Whence

$$y = 2.69 \sqrt{4.81} = 2.69 \times 2.19 = 5.89'$$

i.e., half length of top plate = 5.89; whence full length of top flange plate = 11.98 feet nett.

Now, for the *fourth* flange plate, or the second plate from top,  $\square'' = 4.81 + 5.25 = 10.06 \square''$ , or, as we saw before,  $35.31 - 30.06 = 10.06 \square''$ ; then

$$y = 2.69 \sqrt{10.06} = 2.69 \times 3.17 = 8.53'$$

i.e., full length of fourth flange plate  $= 2 \times 8.53 = 17.06$  feet nett.

For the *third* flange plate, or third plate from top,  $\square'' = 10.06 + 5.25 = 15.31$ .

$$y = 2.69 \sqrt{15.31} = 2.69 \times 3.91 = 10.52'$$

or full length of third flange plate  $= 2 \times 10.52 = 21.04$  feet nett.

For the second flange plate, or fourth plate from top,  $\square'' = 15.31 + 5.25 = 20.35 \square''$ ; then

$$y = 2.69 \sqrt{20.35} = 2.69 \times 4.51 = 12.13'$$

or full length of second flange plate  $= 2 \times 12.13 = 24.26$  feet; and the first flange *could* stop at

$$y = 2.69 \times \sqrt{25.60} = 2.69 \times 5.06 = 13.61$$

or full length of first flange plate  $= 2 \times 13.61 = 27.22'$ ; but we will continue this plate from end to end of girder.

Now, for lower flange plates, use the expression

$$y\!=\!\sqrt{\frac{2\;f_th}{w}}\,\sqrt{\;\square''}$$

The *nett* sectional area required at centre of span is 25.60 square inches, and from plates used we have the following values of square inches,—viz.,

For fourth flange plate,  $14 \times \frac{3}{8}$ , nett  $\square'' = 4.5 \square''$ ; i.e., lowest plate.

For third flange plate,  $2 - 14 \times \frac{3}{8}$ , nett  $\square'' = 9.0 \square''$ .

For second flange plate,  $3 - 14 \times \frac{3}{6}$ , nett  $\square'' = 13.5 \square''$ . For first flange plate,  $4 - 14 \times \frac{3}{6}$ , nett  $\square'' = 18.0 \square''$ ; *i.e.*, plate next flange angles.

And

$$\sqrt{\frac{2 \text{ f}_{t} \text{h}}{\text{w}}} = \sqrt{\frac{2 \times 6.0 \times 3\frac{1}{3}}{4.0}} = \sqrt{10} = 3.16$$

Then general expression becomes  $y = 3.16 \sqrt{\square''}$ . For *fourth* flange plate,  $\square'' = 4.5$  nett; then

$$y = 3.16 \sqrt{4.5} = 3.16 \times 2.12 = 6.70'$$

i.e., half length = 6.70′, whence full length =  $2 \times 6.70$  = 13.40′ long nett.

For third flange plate,  $\square'' = 9.0 \square''$  nett; then

$$y = 3.16 \sqrt{9.0} = 3.16 \times 3.0 = 9.48'$$

i.e., half length = 9.48′, or full length =  $2 \times 9.48 = 18.96$ ′ long nett.

For second flange plate,  $\square'' = 13.5 \square''$  nett; then

$$y = 3.16 \sqrt{13.5} = 3.16 \times 3.67 = 11.60'$$

i.e., half length = 11.60', whence full length =  $2 \times 11.60$  = 23.20' long nett.

For first flange plate,  $\square'' = 18.00 \square''$  nett; then

$$y = 3.16 \sqrt{18} = 3.16 \times 4.24 = 13.40'$$

i.e., half length = 13.40', or full length =  $2 \times 13.40$  = 26.80' long nett. But the first flange plate, being next to the flange angles, it should extend the full length of girder.

#### Conclusion:

First flange plate,  $14 \times \frac{3}{8}$ ; required length = 26.80′ nett; make full length.

Second flange plate,  $14 \times \frac{3}{8}$ ; required length = 23.20' nett; make 25.0'.

Third flange plate,  $14 \times \frac{3}{8}$ ; required length = 18.96' nett; make 20.5'.

Fourth flange plate,  $14 \times \frac{3}{8}$ ; required length = 13.40' nett; make 15.0'.

The above lengths are *about* the proper lengths to be used; the actual "bill" lengths can be determined when the pitch of rivets in each panel is known, and a drawing is made.

To determine the thickness of the web sheet in each panel, we will need the *shear* at *centre* of each panel.

To determine the diameter and pitch of the rivets in each panel, we will find the shears at each panel point, and, determining the diameter and pitch of rivets at these points, will continue such pitch to next panel point towards the centre of span. In other words, the pitch of the rivets in any panel will be determined by the shear at the end of such panel towards abutment.

The general expression for the shear at any point is

$$F_x = w \left\{ \frac{1}{2} - x \right\} = 4.0 \left\{ 16 - x \right\}$$

Then shear at

Supports, x = 0; whence  $F_0 = 4 \times 16 = 64.00$  tons. Centre of first panel, x = 2.0'; whence  $F_2 = 4 \times 14 = 56.00$  tons.

First panel point, x = 4.0'; whence  $F_4 = 4 \times 12 = 48.00$  tons.

Centre of second panel, x = 6.0'; whence  $F_6 = 4 \times 10$  = 40.00 tons.

Second panel point, x = 8.0'; whence  $F_8 = 4 \times 8 =$  32.00 tons.

Centre of third panel, x = 10.0'; whence  $F_{10} = 4 \times 6$  = 24.00 tons.

Third panel point, x = 12.0'; whence  $F_{12} = 4 \times 4 = 16.00$  tons.

Centre of fourth panel, x = 14.0'; whence  $F_{14} = 4 \times 2 = 8.00$  tons.

Fourth panel point, or centre of span, x=16.0'; whence  $F_c=4\times o=o$  tons.

To resist the crippling of the web sheet, the unit stress should be determined from

$$p_{ps} = \frac{5.0 \text{ tons}}{1 + \frac{1}{3000} \left(\frac{h}{t}\right)^2}$$

where h may be taken as the distance in the *clear* between the flange angles, and which here  $= 40'' - 2 \times 4'' = 32''$ ; and t is the thickness of the web in inches.

We will use no web sheet less than 3" thick; whence for

$$t = \frac{3}{8}$$
";  $\frac{h}{t} = 85$ ; then  $p_{ps} = \frac{5.0}{3.4I} = 1.47$  tons per sq. in.

$$t = \frac{7}{16}$$
";  $\frac{h}{t} = 73$ ; then  $p_{ps} = \frac{5.0}{2.78} = 1.80$  tons per sq. in.

$$t = \frac{1}{2}$$
";  $\frac{h}{t} = 64$ ; then  $p_{ps} = \frac{5.0}{2.37} = 2.11$  tons per sq. in.

$$t = \frac{9}{16}''; \frac{h}{t} = 57;$$
 then  $p_{ps} = \frac{5.0}{2.08} = 2.40$  tons per sq. in.

$$t = \frac{5''}{8}$$
;  $\frac{h}{t} = 5I$ ; then  $p_{ps} = \frac{5.0}{1.87} = 2.69$  tons per sq. in.

Now, at any panel centre, we should have  $p_{ps}ht = F_x$ ; whence  $p_{ps} \cdot t = \frac{F_x}{h}$ 

where t and h are in inches. If we take t in *inches* and h in *feet*, the above becomes

12. 
$$p_{ps}$$
.  $t = \frac{F_x}{h'}$ 

i.e., 12 .  $p_{ps}$  . t = shear at centre of panel divided by the height in feet = shear per foot at centre of panel.

Now

12. 
$$p_{ps}$$
 . t for  $\frac{3}{8}$ " web = 12  $\times$  1.47  $\times$   $\frac{3}{8}$  = 6.62 tons per foot; and

12.  $p_{ps}$ .t for  $\frac{7}{16}$ " web = 12  $\times$  1.80  $\times \frac{7}{16}$  = 9.45 tons per foot; and

12.  $p_{ps}$ . t for  $\frac{1}{2}$ " web = 12  $\times$  2.11  $\times$   $\frac{1}{2}$  = 12.66 tons per foot; and

12.  $p_{ps}$ . t for  $\frac{9}{16}$ " web = 12  $\times$  2.40  $\times \frac{9}{16}$  = 16.2 tons per foot;

12.  $p_{ps}$ .t for  $\frac{5''}{8}$  web = 12  $\times$  2.69  $\times \frac{5}{8}$  = 20.18 tons per foot.

And at centre of

First panel,  $F_x \div h = 56.00 \div 3\frac{1}{3}' = 16.80$  tons per foot. Second panel,  $F_x \div h = 40.00 \div 3\frac{1}{3}' = 12.00$  tons per foot. Third panel,  $F_x \div h = 24.00 \div 3\frac{1}{3}' = 7.20$  tons per foot. Fourth panel,  $F_x \div h = 8.00 \div 3\frac{1}{3}' = 2.40$  tons per foot.

Now, remembering that in any case 12.  $p_{ps}$ .  $t = \frac{F_x}{h'}$ , we can use, by inspection of above,

In first panel, a  $\frac{9}{16}$ " web. In second panel, a  $\frac{1}{2}$ " web. In third panel, a  $\frac{3}{8}$ " web. In fourth panel, a  $\frac{3}{8}$ " web.

For in first panel we require a resistance of 16.80 tons per foot, and by using a  $\frac{9}{16}$ " web, we have 16.20 tons per foot. In second panel we require a resistance of 12.00 tons per foot, and by using a  $\frac{1}{2}$ " web, we have 12.66 tons per foot. In third panel we require a resistance of 7.20 tons per foot, and by using a  $\frac{3}{8}$ " web, we have 6.62 tons per foot, which is close enough. In fourth panel we require a resistance of 2.40 tons per foot, and using no web less than  $\frac{3}{8}$ " thick, we have 6.62 tons per foot.

It is desirable to make as few joints in the web as possible, even at the expense of weight of iron; so we will use a  $\frac{9}{16}$ " web, extending from end of girder to the second panel point, and a  $\frac{3}{8}$ " web between the second panel points, from each end. There will then be but two joints in web, and at points where the shear = 32.00 tons; for at the distance x = 8,  $F_8 = 4 \times 8 = 32.00$  tons. The splice will be proportioned after we have determined the diameter and pitch of the rivets.

To determine the diameter and pitch of the rivets. The number of rivets per foot required at any point distant x

199

from the abutment = shear per foot at the point divided by the allowable stress on the rivet,—i.e.,

n per foot 
$$=$$
  $\frac{F_x}{h'}$ 

Now shear per foot at the point

x = 0, or end of girder = 64 tons  $\div 3\frac{1}{3}' = 19.20$  tons per foot.

x = 4.0', or first panel point = 48 tons  $\div 3\frac{1}{3}' = 14.40$  tons per foot.

x = 8.0', or second panel point = 32 tons ÷  $3\frac{1}{3}' = 9.60$  tons per foot.

x = 12.0', or third panel point = 16 tons  $\div 3\frac{1}{8}' = 4.80$  tons per foot.

x = 16.0', or fourth panel point  $= 0 \div 3\frac{1}{2}' = 0$ .

And using  $\frac{7}{8}''$  rivets; a  $\frac{7}{8}''$  rivet in *double* shear between the flange angles at 4.5 tons per square inch =  $2 \times 2.70$  = 5.40 tons. (See Table of Shearing Value of Rivets.) And a  $\frac{7}{8}''$  rivet in a  $\frac{9}{16}''$  web, with a bearing unit of 9.0 tons per square inch, has a value of 4.43 tons. (See Table of Bearing Value of Rivets.) Also, a  $\frac{7}{8}''$  in a  $\frac{3}{8}''$  web has a bearing value of 2.95 tons. Whence the bearing values in both cases of  $\frac{9}{16}''$  and  $\frac{3}{8}''$  web is less than the shearing values, and we see the allowable stress a in the panels which have a  $\frac{9}{16}''$  web is 4.43 tons, and in the panels which have a  $\frac{9}{8}''$  web is 2.95 tons; then

In first panel,

n per foot 
$$=\frac{19.20}{4.43} = 4.33$$
;

i.e., we require  $4\frac{1}{3}$  rivets  $\frac{7}{8}$ " diameter per foot; whence pitch  $=\frac{12''}{4\frac{1}{8}}=2.77''$ , which we can call  $2\frac{3}{4}$ ".

In second panel, having a \frac{1}{16}" web,

n per foot = 
$$\frac{14.40}{4.43}$$
 = 3.25 = 3.69" pitch say,  $3\frac{1}{2}$ " pitch.

In third panel, having a  $\frac{3}{8}$ " web,

n per foot = 
$$\frac{9.60}{2.95}$$
 = 3.25 = 3.69" pitch, say  $3\frac{1}{2}$ " pitch.

In fourth panel, having a  $\frac{3}{8}$ " web,

n per foot = 
$$\frac{4.8}{2.95}$$
 = 1.625 = 7.38" pitch, say 6" pitch,

because the flange plates being  $\frac{3}{8}''$  thick, the pitch in them to angles (the rivets "breaking joint" with those in flange angles to web) is limited to  $16 \times \frac{3}{8} = 6''$ .

Whence we have

In first panel, web  $\frac{9}{16}$ "; pitch  $= 2\frac{3}{4}$ " in flange angles to web.

In second panel, web  $\frac{9}{16}$ "; pitch =  $3\frac{1}{2}$ " in flange angles to web.

In third panel, web  $\frac{3}{8}$ "; pitch  $= 3\frac{1}{2}$ " in flange angles to web.

In fourth panel, web  $\frac{3}{8}$ "; pitch = 6" in flange angles to web.

And the pitch in flange plates to flange angles will be the same in each panel as above, and "break joint" with them. But the flange plates being 14" wide, and the horizontal leg of the flange angles being 6" wide each, there should be two lines of rivets in each horizontal leg,—i.e., four lines of rivets in the flange plates; whence the pitch of rivets on each line should be double the pitch of rivets in the vertical leg of angle to web in the panel under consideration, and so arranged that no more than two holes are deductive in each angle iron, for, in proportioning the tension flange, a deduction for two holes is made in each angle iron.

Now for the joint between the  $\frac{9}{15}$ " and  $\frac{3}{8}$ " webs, at the point 8.0 feet from abutment. The shear at this point is

$$F_8 = 4 (16 - 8) = 32.0 \text{ tons.}$$
 The shear per foot  $= \frac{32}{3\frac{1}{3}} =$ 

9.60 tons per foot. The shearing unit on plate  $f_{ps} = 5.00$  tons; whence we need  $\frac{3\cdot 2}{5} = 6.4$  square inches nett area in a vertical section of the splices. These splices are  $40 - 2 \times 4 = 32''$  long in height, and one on each side of web.

The nett sectional area of these splices is

 $2{32}$  — number of rivet holes in the height of 32'' t'',

where t is the thickness of each vertical splice plate. Now, the number of rivets required on each side of the vertical joint in the vertical dimension of splice is  $= 32.00 \text{ tons} \div$  allowable stress on the rivet  $= 32.00 \div 2.95 = 11.8$ , say 12; the allowable stress being for bearing in  $\frac{3}{3}$ " web, that being less than the shearing value of a  $\frac{7}{4}$ " rivet in double shear.

Then pitch required vertically  $=\frac{30''}{12 \text{ rivets}} = 2\frac{23''}{3}$ , say  $2\frac{5}{8}$ ;

or, as plate is 32" long, and extreme rivet holes should be  $1\frac{1}{2}$ " from ends, we have a height of  $32 - 2 \times 1\frac{1}{2} = 29$ "; and having 12 rivets, there are 11 spaces; whence spacing or pitch  $= \frac{29}{11} = 2.63$ ", if evenly pitched = say  $2\frac{5}{8}$ ".

The stiffeners may be made of  $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{3}{8}''$  angle irons, two at each panel point, and on opposite sides of web. At the intermediate panel points, where no splice occurs, the "fillers" between vertical stiffening angles and web sheet are  $3\frac{1}{2}'' \times \frac{1}{2}''$ , 32'' long in height,  $\frac{1}{2}''$  being same as thickness of flange angles. At splice in web, the splices are  $7'' \times \frac{1}{2}''$ , 32" long in height, and on them, one on each side of girder, is a  $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{3}{8}''$  angle iron stiffener, as at other points. There are two vertical lines of rivets, 4" apart horizontally, the vertical pitch being  $2\frac{5}{8}$ ", as determined above. At ends of girder over supports there should be two pairs of stiffeners, as per sketch, the distance apart of which is governed by thickness of wall on which the girders rest. For girders bearing such heavy loads as this, the "filler" plate should extend from back to back of the pair of stiffeners. Thus, if bearing were 18" wide, the stiffeners back to back would be 18"; and the "fillers" could then be  $18'' \times \frac{1}{2}''$ , 32" high, one on each side of web. The distance apart, centre to centre of stiffeners, would then be 15"= say five spaces, at 3" each; and the vertical pitch in the stiffeners could be 3" likewise.

If there were but *one* pair of stiffeners over end support, and but *one* line of rivets vertically, the pitch should be the

same as determined for first panel,—viz.,  $2\frac{3}{4}$ ". Taking the girder 33'.6" long from end to end, the approximate bill and weight of this girder is as follows, bearing in mind that the web sheets should be  $\frac{1}{2}$ " less in height than the distance out to out of angles, to allow for inequality of sheared edges of web, and the lengths of the web plates  $\frac{1}{2}$ " less in length, for a like reason:

| Upper flange. Two $6'' \times 4'' \times \frac{1}{2}''$ angles, 48 pounds                                                                              | Lbs. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| per yard, 33'.6" long                                                                                                                                  | 1070 |
| One plate, $14 \times \frac{3}{8}$ , $33'.6''$ long                                                                                                    |      |
| One plate, $14 \times \frac{3}{8}$ , $25'.6''$ long                                                                                                    |      |
| One plate, $14 \times \frac{3}{8}$ , $22'.6''$ long $\left.\right\}$ $113\frac{1}{4}$ linear feet.                                                     | 2000 |
| One plate, 14 $\times \frac{3}{8}$ , 18'.6" long                                                                                                       |      |
| One plate, $14 \times \frac{3}{8}$ , $13'.3''$ long                                                                                                    |      |
| Lower flange. Two $6'' \times 4'' \times \frac{1}{2}''$ , angles, 48 pounds                                                                            |      |
| per yard, 33'.6" long                                                                                                                                  | 1070 |
| One plate, 14 $\times \frac{3}{8}$ , 33'.6" long                                                                                                       |      |
| One plate, $14 \times \frac{3}{8}$ , 25'.0" long                                                                                                       | -66- |
| One plate, $14 \times \frac{2}{8}$ , 25.0° long One plate, $14 \times \frac{2}{8}$ , 20'.6" long $\begin{array}{c} 94 \text{ linear feet} \end{array}$ | 1000 |
| One plate, $14 \times \frac{3}{8}$ , $15'.0''$ long $\frac{1}{3}$                                                                                      |      |
| Rivet heads. 1st, in flange plates to angles.                                                                                                          |      |
| 16 lines $\frac{7}{8}$ " rivet heads, $5\frac{1}{2}$ " pitch, $9\frac{1}{2}$ ' long                                                                    |      |
| 16 lines $\frac{7}{8}$ " rivet heads, 7" pitch, 16' long $\}$                                                                                          | 200  |
| 16 lines $\frac{7}{8}$ " rivet heads, 12" pitch, 8' long J                                                                                             |      |
| 2d, in flange angles to web.                                                                                                                           |      |
| 4 lines $\frac{7}{8}$ " rivet heads, $2\frac{3}{4}$ " pitch, $9\frac{1}{2}$ ' long $\gamma$                                                            |      |
| 4 lines $\frac{7}{8}$ " rivet heads, $3\frac{1}{2}$ " pitch, 16' long \( \).                                                                           | 100  |
| 4 lines $\frac{7}{8}$ " rivet heads, 6" pitch, 8' long                                                                                                 |      |
| Two ends over supports.                                                                                                                                |      |
| Eight $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{3}{8}''$ angles, 24.9 pounds per                                                              |      |
| yard, 3'.3"                                                                                                                                            | 215  |
| Four plates, $18'' \times \frac{1}{2}''$ , $2'.8''$ long                                                                                               | 325  |
| Twenty lines $\frac{7}{8}$ " rivet heads, 3" pitch, $3\frac{1}{3}$ "                                                                                   | 55   |

| Four stiffeners.                                                                          | Lbs. |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|
| Eight $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{3}{8}''$ angles, 24.9 pounds per |      |  |  |  |  |  |  |
| yard, 3'.3"                                                                               | 215  |  |  |  |  |  |  |
| Eight bars, $3\frac{1}{2}'' \times \frac{1}{2}''$ , 2'.8" long                            | 125  |  |  |  |  |  |  |
| Eight lines $\frac{7}{8}$ " rivet heads, 3" pitch, $3\frac{1}{3}$ "                       | 25   |  |  |  |  |  |  |
| Two splices.                                                                              |      |  |  |  |  |  |  |
| Four $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{3}{8}''$ angles, 24.9 pounds per  |      |  |  |  |  |  |  |
| yard, 3'.3"                                                                               | 105  |  |  |  |  |  |  |
| Four flats, $7'' \times \frac{1}{2}''$ , 2'.8" long                                       | 125  |  |  |  |  |  |  |
| Eight lines $\frac{7}{8}$ " rivet heads, $2\frac{5}{8}$ " pitch, $3\frac{1}{3}$ '         | 25   |  |  |  |  |  |  |
| Three web sheets.                                                                         |      |  |  |  |  |  |  |
| Two plates, $39\frac{1}{2}'' \times \frac{9}{16}''$ , $8'.8\frac{1}{2}'' = 1285$ pounds \ | 2027 |  |  |  |  |  |  |
| One plate, $39\frac{1}{2}'' \times \frac{3}{8}''$ , 15'. 11 $\frac{1}{2}'' = 790$ pounds  | 2075 |  |  |  |  |  |  |
|                                                                                           | 9390 |  |  |  |  |  |  |
| Lbs.                                                                                      |      |  |  |  |  |  |  |
| Flanges 6100                                                                              |      |  |  |  |  |  |  |
| Ends 595                                                                                  |      |  |  |  |  |  |  |
| Stiffeners 365                                                                            |      |  |  |  |  |  |  |
| Splices                                                                                   |      |  |  |  |  |  |  |
| Web sheets 2075                                                                           |      |  |  |  |  |  |  |
| 9390                                                                                      |      |  |  |  |  |  |  |

The bearing pressure on brick walls should not exceed 8.0 tons per square foot, and if the above girders rest on brickwork, the bearing area needed is  $\frac{64}{8} = 8.0$  square feet = 1152 square inches. This would require a stone 5.0 feet long if the wall be 18" wide, for  $60 \times 18 = 1080$  square inches.

For such heavy girders there should be a pilaster built under the ends, and, covering it and the wall, should be set a stone block not less than 5" thick.

On stone, the bearing should not exceed 300 pounds per square inch; whence area of plate required under ends of the girder, between it and the stone, is 64 tons ÷ 0.15 tons = 427 square inches, say 18" wide, 24" long, which equals 432 square inches. Its thickness should be, for such a heavy girder, 1".,

#### EXAMPLE II.

### DOUBLE-WEBBED PLATE GIRDER;

i.e., a Box Girder.

Taking the same effective span, height, and load as in Example I., we have

$$1 = 32'.0''.$$
 $h = 3'.4'' = 40''.$ 
 $w = 4.0 \text{ tons.}$ 
 $M_c = 512 \text{ foot-tons} = 6144 \text{ inch-tons.}$ 

As the width of a single top flange plate may not exceed thirty times the distance centre to centre of rivets across the plate, allowing 2" from centre of each rivet hole to edge of plate, for a

$$\frac{3}{8}''$$
 plate, maximum width =  $30 \times \frac{3}{8} + 2 \times 2'' = 15.25''$ .  $\frac{1}{2}''$  plate, maximum width =  $30 \times \frac{1}{2} + 2 \times 2'' = 19.00''$ .  $\frac{5}{8}''$  plate, maximum width =  $30 \times \frac{5}{8} + 2 \times 2'' = 22.75''$ .  $\frac{3}{4}''$  plate, maximum width =  $30 \times \frac{3}{4} + 2 \times 2'' = 26.50''$ .

If, then, we use a 20" plate, its distance across centres of rivet holes will be about 16", and its thickness must be  $\frac{16}{30}$ " = 0.53"; or, we might say, the minimum thickness of first flange plate =  $\frac{1}{2}$ ". The ratio of length of girder to width of flange =  $32 \div 1\frac{2}{3} = 19$ ,

$$p_c = \frac{5.0}{1 + \frac{1}{5000} (19)^2} = \frac{5.0}{1.120} = 4.47$$
 tons per square inch,

which is the maximum permissible stress on upper flange.

Then  $\Box_c$ " required at centre of upper flange

$$= \frac{M_c}{P_c h''} = \frac{6144}{4.47 \times 40} = \frac{6144}{178.8} = 34.36 \, \square'' \, gross,$$

and It' required at centre of lower flange

$$= \frac{M_c}{f_t h''} = \frac{6144}{6 \times 40} = \frac{6144}{240} = 25.60 \, \square'' \text{ nett.}$$

| Tor compression nange—i.e., the top nange—use                                        |         |
|--------------------------------------------------------------------------------------|---------|
|                                                                                      | Sq. in. |
| $2-3\frac{1}{2} \times 3\frac{1}{2} \times \frac{1}{2}$ angles, 33.6 lbs. per yard = | 6.72    |
| I first top plate, $20 \times \frac{1}{2} =$                                         | 10.00   |
| I second top plate, $20 \times \frac{1}{2}$                                          | 10.00   |
| I third top plate, $20 \times \frac{3}{8} =$                                         | 7.50    |
| Total gross section used in upper flange —                                           | 24.22   |

Total gross section used in upper flange = 34.22For tension flange—*i.e.*, the lower flange—use

Sq. in., nett.

2— $3\frac{1}{2} \times 3\frac{1}{2} \times \frac{1}{2}$  angles, 33.6 lbs. per yard = 6.72

Deduct two holes,  $I'' \times \frac{1}{2}'' = 1.00 = 5.72$ 3 flange plates,  $20 \times \frac{3}{8} = 22.50$ Deduct 3 (two holes,  $I'' \times \frac{3}{8}'' = 2.25 = 20.25$ Total nett section used in lower flange = 25.97

To determine lengths of upper flange plates, we have

$$y = \sqrt{\frac{2 \text{ p}_c \text{h}'}{\text{w}}} \sqrt{\square''} = \sqrt{\frac{2 \times 4.47 \times 3\frac{1}{3}}{4.0}} \sqrt{\square''}$$
$$\sqrt{7.45} \sqrt{\square''} = 2.73 \sqrt{\square''}$$

For third top flange plate,  $\square'' = 34.36 - 26.72 = 7.64$   $\square''$ , then  $y = 2.73 \sqrt{7.64} = 2.73 \times 2.76 = 7.53'$ ; whence full nett length  $= 2 \times 7.53 = 15.06$  feet.

For second top flange plate,  $\square'' = 34.36 - 16.72 = 17.64$   $\square''$ , then y = 2.73  $\sqrt{17.64} = 2.73 \times 4.20 = 11.47'$ ; whence full nett length = 2  $\times$  11.47 = 22.94 feet.

For first top flange plate,  $\square'' = 34.36 - 6.72 = 27.64$   $\square''$ , then  $y = 2.73 \sqrt{27.64} = 2.73 \times 5.26 = 14.36'$ ; whence full nett length  $= 2 \times 14.36 = 28.72$  feet. This plate, however, must extend the full length of girder from end to end.

For lengths of lower flange plates, we have

$$y = \sqrt{\frac{2 f_t h'}{w}} \sqrt{\square''} = \sqrt{\frac{2 \times 6 \times 3\frac{1}{3}}{4}} \sqrt{\square''}$$
$$= \sqrt{10} \sqrt{\square''} = 3.16 \sqrt{\square''}$$

For third flange plate,  $\square'' = 25.60 - 19.22 = 6.38 \square''$ , then  $y = 3.16 \sqrt{6.38} = 3.16 \times 2.53 = 7.99'$ ; whence full nett length  $= 2 \times 7.99 = 15.98$  feet.

For second flange plate,  $\square'' = 25.60 - 12.47 = 13.13$   $\square''$ , then  $y = 3.16 \sqrt{13.13} = 3.16 \times 3.62 = 11.44'$ ; whence full nett length  $= 2 \times 11.44 = 22.88$  feet.

For first flange plate,  $\square'' = 25.60 - 5.72 = 19.88 \square''$ , then  $y = 3.16 \sqrt{19.88} = 3.16 \times 4.46 = 14.09'$ ; whence full nett length  $= 2 \times 14.09 = 28.18$  feet. This plate, however, should extend full length of girder from end to end.

#### Conclusion:

Upper flange.

First flange plate,  $20 \times \frac{1}{2}$ ; required length = 28.72'; make full length.

Second flange plate,  $20 \times \frac{1}{2}$ ; required length = 22.94'; make 24'.6".

Third flange plate, 20  $\times$   $\frac{3}{8}$ ; required length = 15.06'; make 16'.6".

Lower flange.

First flange plate,  $20 \times \frac{3}{8}$ ; required length, 28.18'; make full length.

Second flange plate,  $20 \times \frac{3}{8}$ ; required length, 22.88'; make 24'.6''.

Third flange plate, 20  $\times \frac{3}{8}$ ; required length, 15.98'; make 17'.6".

The shears per foot on *each* web sheet at centre of panels are

In first panel,  $16.80 \div 2 = 8.40$  tons per foot.

In second panel, 12.00  $\div$  2 = 6.00 tons per foot.

In third panel,  $7.20 \div 2 = 3.60$  tons per foot.

In fourth panel,  $2.40 \div 2 = 1.20$  tons per foot.

The permissible stress per square inch on the web sheets is determined by

$$p_{ps} = \frac{5.0 \text{ tons.}}{1 + \frac{I}{3000} \left(\frac{h}{t}\right)^2}$$

where  $h = 40 - 2 \times 3\frac{1}{2} = 33''$  and, considering  $\frac{3}{5}''$  as the minimum thickness to be used, we get for

$$t = \frac{3}{8}$$
;  $\frac{h}{t} = 88$ ; then  $p_{ps} = \frac{5.00}{3.58} = 1.40$  tons per sq. in.

$$t = \frac{7}{16}$$
";  $\frac{h}{t} = 76$ ; then  $p_{ps} = \frac{5.00}{2.92} = 1.71$  tons per sq. in.

$$t = \frac{1}{2}$$
";  $\frac{h}{t} = 66$ ; then  $p_{ps} = \frac{5.00}{2.45} = 2.04$  tons per sq. in.

and

12  $p_{ps}t$  for  $\frac{3}{8}''$  web = 12  $\times$  1.40  $\times$   $\frac{3}{8}$  = 6.30 tons per foot. and

12  $p_{ps}$ t for  $\frac{7}{16}$ " web = 12  $\times$  1.71  $\times$   $\frac{7}{16}$  = 9.00 tons per foot. and

12  $p_{ps}t$  for  $\frac{1}{2}$ " web = 12  $\times$  2.04  $\times$   $\frac{1}{2}$  = 12.24 tons per foot.

Now, remembering that 12  $p_{ps}$ t should equal or exceed  $\frac{F_x}{h'}$ , we can, by inspection of above, proportion the web sheets.

In first panel, need 8.40 tons per foot resistance. A  $\frac{7}{16}''$  web has 9.00 tons; whence use  $\frac{7}{16}''$  web in first panel. In second panel, need 6.00 tons per foot resistance. A  $\frac{3}{8}''$  web has 6.30 tons; whence can use  $\frac{3}{8}''$  web in second panel. And as no web sheet may be less than  $\frac{3}{8}''$ , all other web sheets are  $\frac{3}{8}''$ .

We shall splice the web at the second panel point, so use a  $\frac{7}{16}$ " plate for each web, from 0 to 8' from centre of end supports, and a  $\frac{3}{8}$ " web between the second panel points from each end. There will then be but two splices in each web, and at a point where the shear is 16.00 tons on each web, or a total of 32.0 tons per girder.

To determine the rivet diameter and pitch,

n per foot 
$$=$$
  $\frac{\frac{F_x}{h}}{a}$ 

Now shear per foot on each web at the point

x = 0, or end of girder =  $19.20 \div 2 = 9.60$  tons per foot. x = 4', or first panel point =  $14.40 \div 2 = 7.20$  tons per foot. x = 8', or second panel point =  $9.60 \div 2 = 4.80$  tons per foot. x = 12', or third panel point =  $4.80 \div 2 = 2.40$  tons per foot. x = 16', or fourth panel point = 0 = 0 tons per foot.

Using  $\frac{7}{8}''$  rivets; a  $\frac{7}{8}''$  rivet in single shear in connexion of flange angle to web at 4.5 tons per square inch = 2.70 tons. And a  $\frac{7}{8}''$  rivet in a  $\frac{7}{16}''$  web at 9.0 tons per square inch, has a bearing value of 3.44 tons; also, a  $\frac{7}{8}''$  rivet in a  $\frac{3}{8}$  plate has, at 9.0 tons per square inch, a bearing value of 2.95 tons. Whence, the shearing value being the less in each case, the allowable stress a on the rivets in all the panels is 2.70 tons.

In the first panel we have

n per foot 
$$=\frac{9.60}{2.70} = 3.56$$

which equals a pitch of

$$\frac{12}{3.56}$$
 = 3.37", say 3"

In the second panel we have

n per foot 
$$=\frac{7.20}{2.70}=2\frac{2}{3}=4\frac{1}{2}''$$
 pitch.

In the third panel we have

n per foot 
$$=\frac{4.80}{2.70} = 1.78 = 6\frac{3}{4}$$
", say use 6" pitch.

Result in each web.

First panel, web  $\frac{7}{16}$ ", pitch = 3" in flange angle to web. Second panel, web  $\frac{7}{16}$ ", pitch =  $4\frac{1}{2}$ " in flange angle to web. Third panel, web  $\frac{3}{8}$ ", pitch = 6" in flange angle to web. Fourth panel, web  $\frac{3}{8}$ ", pitch = 6" in flange angle to web.

Maximum pitch in flanges =  $16 \times \frac{3}{8} = 6$ "; whence no pitch greater than 6" throughout girder. Whence in flange plates,

Over first panel, pitch 3", and "breaking joint" with those in web,

Over second panel, pitch 4½", and "breaking joint" with those in web.

Over third panel, pitch 6", and "breaking joint" with those in web.

Over fourth panel, pitch 6", and "breaking joint" with those in web.

For the joint between the  $\frac{7}{16}$ " and  $\frac{3}{8}$ " web, the shear on each web = 16.00 tons; the allowable stress a on the  $\frac{7}{8}$  rivet being due to single shear = 2.70, then number of rivets

required on *each* side of the vertical joint  $=\frac{16.0}{2.7}=5.9$ , say 6 required.

The height of the splice plate being 40 - 7'' = 33''; then pitch required vertically  $= \frac{3\cdot 3}{6} = 5.5''$ . This we will make  $4\frac{1}{2}''$ , to agree with pitch in the adjoining panels. The splice plate we will make  $7 \times \frac{1}{2}$ , 33'' long, two rows of rivets,  $3\frac{1}{2}''$  apart horizontally, and  $4\frac{1}{2}''$  vertical pitch.

All stiffeners will be  $3'' \times 3'' \times \frac{3}{8}''$ , and have fillers of  $3'' \times \frac{1}{2}''$ , 33'' long. At the splice we will use two stiffeners,  $3'' \times 3'' \times \frac{3}{8}''$  on *each* web, and set back to back.

At the end supports will use three stiffeners of  $3'' \times 3'' \times \frac{3}{8}''$  angle iron on each web, and one filler plate,  $18 \times \frac{1}{2}$ , 33'' long in height, and the vertical pitch in each will make  $4\frac{1}{2}''$ . If we used but *one* stiffener here, the pitch would have to be 3'', the same as in first panel of flange rivets. The bearing plate will be as in Example I.,—viz.,  $18'' \times 24'' \times 1''$ .

Taking the girder 33'.6" long, out to out, the approximate bill and estimated weight will be

| ***************************************                                                                 | Lbs.  |
|---------------------------------------------------------------------------------------------------------|-------|
| Upper flange. Two $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{1}{2}''$ angles, 33.6              |       |
| pounds per yard, 33'.6" long                                                                            | 750   |
| One plate, $20 \times \frac{1}{2}$ , $33'.6''$ long                                                     |       |
| One plate, $20 \times \frac{1}{2}$ , $24'.6''$ long $74\frac{1}{2}$ linear feet.                        | 2,365 |
| One plate, $20 \times \frac{1}{2}$ , $24'.6''$ long One plate, $20 \times \frac{3}{8}$ , $16'.6''$ long |       |
| Lower flange. Two $3\frac{1}{2}'' \times 3\frac{1}{2}'' \times \frac{1}{2}''$ angles, 33.6              |       |
| pounds per yard, 33'.6" long                                                                            | 750   |
| One plate, 20 $\times \frac{3}{8}$ , 33'.6" long $\gamma$                                               |       |
| One plate, $20 \times \frac{3}{8}$ , $24'.6''$ long $75\frac{1}{2}$ linear feet.                        | 1,910 |
| One plate, $20 \times \frac{3}{8}$ , $17'.6''$ long                                                     |       |

| Rivet heads. Ist, in flange plates to angles.  8 lines $\frac{7}{8}$ " rivet heads, 3" pitch, $9\frac{1}{2}$ ' long 8 lines $\frac{7}{8}$ " rivet heads, $4\frac{1}{2}$ " pitch, 8' long 8 lines $\frac{7}{8}$ " rivet heads, 6" pitch, 16' long |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2d, in flange angles to web.  8 lines $\frac{7}{8}$ " rivet heads, 3" pitch, $9\frac{1}{2}$ ' long 8 lines $\frac{7}{8}$ " rivet heads, $4\frac{1}{2}$ " pitch, 8' long 8 lines $\frac{7}{8}$ " rivet heads, 6" pitch, 16' long                  |
| Two ends over supports.                                                                                                                                                                                                                          |
| Twelve angles, $3 \times 3 \times \frac{3}{8}$ , 21.6 pounds per                                                                                                                                                                                 |
| yard, 3'.3"                                                                                                                                                                                                                                      |
| Four plates $18'' \times \frac{1}{2}''$ , $2'.9''$ long 330<br>Forty lines $\frac{7}{8}''$ rivet heads, $4\frac{1}{2}''$ pitch, $3\frac{1}{3}'$ long . 75                                                                                        |
|                                                                                                                                                                                                                                                  |
| Four stiffeners per web.                                                                                                                                                                                                                         |
| Eight angles, $3 \times 3 \times \frac{3}{8}$ ", 21.6 pounds per yard,                                                                                                                                                                           |
| 3'.3''                                                                                                                                                                                                                                           |
| Sixteen lines $\frac{7}{8}$ " rivet heads, $4\frac{1}{2}$ " pitch, $3\frac{3}{8}$ ' long. 30                                                                                                                                                     |
| Two splices in each web.                                                                                                                                                                                                                         |
| Eight angles, $3 \times 3 \times \frac{3}{8}$ , 21.6 pounds per yard,                                                                                                                                                                            |
| 3'.3"                                                                                                                                                                                                                                            |
| Four flats, $7 \times \frac{1}{2}$ , $2'.9''$                                                                                                                                                                                                    |
| Sixteen lines $\frac{7}{8}$ " rivet heads, $4\frac{1}{2}$ " pitch, $3\frac{1}{3}$ ' long. 30                                                                                                                                                     |
| Six web sheets.                                                                                                                                                                                                                                  |
| Four plates, $39\frac{1}{2} \times \frac{7}{16}$ , 8'. $8\frac{1}{2}'' = 2040$ 3,620                                                                                                                                                             |
| Two plates, $39\frac{1}{2} \times \frac{3}{8}$ , $15'.11\frac{1}{2}'' = 1580$                                                                                                                                                                    |
| 11,080<br>Lbs.                                                                                                                                                                                                                                   |
| Flanges 6,105                                                                                                                                                                                                                                    |
| Ends 685                                                                                                                                                                                                                                         |
| Stiffeners 325                                                                                                                                                                                                                                   |
| Splices                                                                                                                                                                                                                                          |
| Web sheets 3,620                                                                                                                                                                                                                                 |
| 11,080                                                                                                                                                                                                                                           |

Whence box girder of same depth as single-webbed girder weighs 18 per cent. more. This is due principally to limiting the web sheets to a minimum thickness of \(\frac{3}{8}''\).

### BUCKLED PLATES.

Buckled plates are rectangular or square wrought iron or steel plates, shaped under the hammer, so as to have a slight convexity in the middle and a flat rim around the four sides, called the "fillet." They are so placed that the convex part is compressed and the flat fillet stretched; and when they are crippled, it is usually by the convex part crushing.

The plates in general use are made most frequently 3 feet square, the curvature about 2", and the fillets about 2". The thickness varies from  $\frac{1}{4}$ " to  $\frac{3}{8}$ ", the  $\frac{1}{4}$ " plates being amply sufficient for floors of buildings. The  $\frac{3}{8}$ " plates are those used for roadway bridge floors, under a heavy road covering.

The stiffness of buckled plates is as the square of the thickness, and inversely as the curvature. According to the table of safe loads published by the inventor, Mr. Mallet, a 36" square buckled plate has the following values for varying thicknesses:

 $\frac{3}{16}''$  thickness, safe load per plate = 5,600 pounds.  $\frac{1}{4}''$  thickness, safe load per plate = 10,000 pounds.  $\frac{5}{16}''$  thickness, safe load per plate = 14,000 pounds.  $\frac{3}{8}''$  thickness, safe load per plate = 20,000 pounds.

In using these plates, they generally rest on the upper flanges of beam, to which they are riveted, and the transverse joints between the buckled plates are covered by **L** irons, with a minimum horizontal flange of 4". These **L** irons are also riveted to the fillets. An iron platform is then formed, thoroughly connected together; and on this surface is laid a concrete covering, if for building purposes. If for bridge roadway, asphalt covering is used, on which is laid the Belgian block roadway.

It is easily seen that the widths of the flanges of the beams on which the buckled plates rest should not be less than about 4".

The actual dimensions of a buckled plate for 3'.0" spacing of beams, showing the rivet pitch, etc., are given by the following sketch. The *rise* or convexity of this plate is rather larger than usual. A rivet spacing of 10" is quite close enough.

In laying the plates, the transverse joints "break joint" with one another. The sketch, however, shows them in the

same transverse line.

The weights of 36" square buckled plates are as follows:  $\frac{1}{8}$ " thick, 45 pounds per plate;  $\frac{3}{16}$ " thick, 70 pounds per plate;  $\frac{1}{4}$ " thick, 90 pounds per plate;  $\frac{5}{16}$ " thick, 115 pounds per plate;  $\frac{3}{8}$ " thick, 135 pounds per plate.



## BUCKLED PLATE FLOORS.

A very excellent floor is made by using buckled plates on the floor joist, instead of brick arches between them.

The buckled plates are generally 3 feet square and 4" thick, and are riveted to the top flanges of the I beam joist, which are likewise spaced 3 feet apart. Over the transverse joints of the buckled plates are riveted 1 irons. The transverse joints should generally "break joint" with the adjacent ones. Above the buckled plates is concrete, the top surface of which should be about 1" above the crown of the buckled plate,—that is, about 4" above the top flanges of beams. (See sketch, page 213.) If the transverse joints of plates be in one line, the 1 iron may be made in one continuous length.

The weight of a floor of this kind, with a ceiling hung to the bottoms of the beams, will be about 60 pounds per square foot, which is 10 pounds *less* than the weight of floor formed of brick arches between the beams, and covered with concrete up to a little above level of tops of beams.

One great advantage of using a buckled plate floor is that the beams are *stayed* laterally, and their tabular capacity can always be used.

Another advantage is that, by the thorough binding together of the entire floor system, it is likely to be much more rigid than other floors designed for same loads.

In cases where ceilings are necessary, they may be hung to bottom of beams, by means of wire netting, with the usual fastenings; or small joist may be laid transversely between the beams and the ceiling attached thereto.

In ordinary warehouses there is generally no need for ceilings. In such cases, the floor load due to beams, buckled plates, and concrete covering may be taken 50 pounds per square foot, instead of 60 pounds, as given above.



Suppose we have a floor area of  $63' \times 18'$  inside of walls. If we divide it into four spaces lengthwise by three girders, making the two central spaces 16'.0'', then the two end spaces from centre of girder to centre of wall will be 16'.0''. Into these girders frame floor joist spaced 3' apart, and running lengthwise, then there will be 6 spaces in the width, of 3'.0'' each. The buckled plates next the wall will be carried on channels of same depth as the floor joist, and around the inner edge of all walls will be a  $4'' \times 3'' \times \frac{3}{8}''$  angle iron (the 4'' leg set vertically), to confine the concrete. These angles set over the fillets of the buckled plates.



In each panel, then, there will be *five* lines of **I** beams lengthwise of area, and two lines of channels next the long way of the wall. There are also three transverse girders into which are framed the five lines of **I** beams and two lines of channels. Suppose we wish the floor to carry an extraneous load of 100 pounds per square foot, the weight of the buckled plate floor being 60 pounds per square foot, the total load per square foot will be 160 pounds.

Each floor joist will then carry 3' wide  $\times$  160 pounds  $\times$  16' long, or 48 square feet at 160 pounds = 3.84 tons. As these joists are stayed laterally by the buckled plates, we can use the full tabular capacity, and looking in the tables at the 16' span line, we find that an 8" I beam of iron, 65 pounds per yard, will carry 4.25 tons, and the deflexion is

0.46". The channel iron against wall will carry but one-half the load on the beams; whence from tables we find that an 8" channel of iron, 40 pounds per yard, will answer, as its safe load is 2.25 tons, and deflexion 0.50".

Each transverse girder carries an area of  $16' \times 18' =$  288 square feet. This, at 160 pounds per square foot, has a load of 23.04 tons. The effective span of the girder is about 19', and looking at 19' span line in the tables, we find there, if the upper flange is *stayed laterally*, that a 15" **I** beam of iron, 250 pounds per yard, will do, as it carries 22.73 tons (which is close enough to the load required), and has a deflexion of 0.33". Or, looking in the Tables of Steel Beams, we find that at 19' span, a 15" **I** beam of 20.00 square inches area,—*i.e.*, 202 pounds per yard,—will do, as it carries, when flange is stayed, 25.32 tons.

In framing the 8" floor joist into the 15" **I** beam girder, if the top flanges are placed on the same level, the flanges of girder can be considered *stayed*. The joist, however, may be framed into girder 4" below the bottom of its top flange, in which case the top of concrete is level with top of girder. In this case the flange of girder beam cannot be considered as stayed. Assuming the girder flange  $5\frac{1}{2}$ ", the

ratio of unstayed length to flange width is 
$$\frac{19 \times 12}{5\frac{1}{2}}$$

about 40; whence tabular loads must be multiplied by 0.88,—that is to say, we can only place an extreme fibre stress of 6.90 tons on the steel beam, instead of 7.8 tons, the tabular fibre stress.

Since f qh S = Mo, and

$$M_o = \frac{23.04 \times 20 \times 12}{8} = 691.2$$
 inch-tons,

we get

$$S = \frac{M_o}{f \, qh} = \frac{691.2}{6.9 \times 0.3 \times 15} = 22.26 \text{ square inches};$$

i.e., we need a 15" steel I beam, 22.26 square inches area, or 225 pounds per yard.

The ends of all beams which rest on walls should have

loose bearing plates of iron, say 8" square, and say  $\frac{3}{8}$ " thick. Also there should be riveted on the webs two angle irons, to form "check angles."

An approximate estimate for this floor will read as follows:

1st. Girders with flanges not stayed.

| Three steel <b>I</b> beams, 15" deep, 225 pounds per yard, 19'.6" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | There exist There were said down and non-year                         | Lbs.   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------|
| Six bearing plates, $12 \times \frac{3}{8}$ , $1'.0''$ long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       | 4.300  |
| Twelve "check" angles, $3 \times 3 \times \frac{3}{8}$ angles, $21.6$ pounds per yard, $12''$ long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |        |
| pounds per yard, 12" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |        |
| yard, 16'.6" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | 90     |
| Ten floor joist, 8" iron I beams, 65 pounds per yard, 16'.0" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ten floor joist, 8" iron I beams, 65 pounds per                       |        |
| Ten floor joist, 8" iron I beams, 65 pounds per yard, 16'.0" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | 7,050  |
| Four floor joist, 8" iron channels, 40 pounds per yard, 16'.6" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | 1, 3   |
| yard, 16'.6" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |        |
| Four floor joist, 8" iron channels, 40 pounds per yard, 16'.0" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | 990    |
| yard, 16'.0" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | 000    |
| Fourteen bearing plates, $8 \times \frac{3}{8}$ , o'.8" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       | 850    |
| Twenty check angles on 8" I beams, $3 \times 3 \times \frac{3}{8}$ angles, o'.6" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |        |
| angles, 0'.6" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       | 23     |
| Four check angles on 8" channels, $3 \times 3 \times \frac{3}{8}$ angles, o'.6" long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | 75     |
| One hundred and twenty buckled plates, $36''$ square, $\frac{1}{4}''$ thick, at 90 pounds each 10,800 Ninety-six transverse joint covers, $4 \times 2 \times \frac{3}{8}$ <b>L</b> 's, 24 pounds per yard, $3'$ .0" long 2,305 Two lines, $63'$ each, curb angles Two lines, $18'$ each, curb angles gle iron, 24.9 lbs. per yard . 1350 Connexions of joist to girders contain 72 pieces $3 \times 3 \times \frac{3}{8}$ angles, 21.6 pounds per yard, 0'.6" long . 260 Allowance for rivet heads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Four check angles on 8" channels, $3 \times 3 \times \frac{3}{8}$ an- |        |
| 14" thick, at 90 pounds each 10,800 Ninety-six transverse joint covers, $4 \times 2 \times \frac{3}{8}$ L's, 24 pounds per yard, 3'.0" long 2,305 Two lines, 63' each, curb angles Two lines, 18' each, curb angles lbs. per yard . 1350 Connexions of joist to girders contain 72 pieces $3 \times 3 \times \frac{3}{8}$ angles, 21.6 pounds per yard, 0'.6" long . 260 Allowance for rivet heads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       | 15     |
| Ninety-six transverse joint covers, $4 \times 2 \times \frac{3}{8}$ L's, 24 pounds per yard, 3'.0" long 2,305  Two lines, 63' each, curb angles Two lines, 18' each, curb angles lbs. per yard . 1350  Connexions of joist to girders contain 72 pieces $3 \times 3 \times \frac{3}{8}$ angles, 21.6 pounds per yard, 0'.6" long . 260  Allowance for rivet heads 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |        |
| 24 pounds per yard, 3'.0" long 2,305  Two lines, 63' each, curb angles $\begin{cases} 162 \text{ linear feet of} \\ 4 \times 3 \times \frac{3}{8} \text{ angles} \end{cases}$ Two lines, 18' each, curb angles $\begin{cases} 162 \text{ linear feet of} \\ 4 \times 3 \times \frac{3}{8} \text{ angles} \end{cases}$ Connexions of joist to girders contain 72 pieces $3 \times 3 \times \frac{3}{8}$ angles, 21.6 pounds per yard, 0'.6" long . 260  Allowance for rivet heads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | 10,800 |
| Two lines, 63' each, curb angles Two lines, 18' each, curb angles and gle iron, 24.9 lbs. per yard . 1350  Connexions of joist to girders contain 72 pieces $3 \times 3 \times \frac{3}{8}$ angles, 21.6 pounds per yard, 0'.6" long . 260  Allowance for rivet heads 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       | 2 201  |
| Two lines, 63' each, curb angles described by the lines, 18' each, curb angles described by the lines of the |                                                                       | 2,305  |
| Two lines, 18' each, curb angles gle iron, 24.9 lbs. per yard . 1350  Connexions of joist to girders contain 72 pieces 3 × 3 × \frac{3}{8} angles, 21.6 pounds per yard, 0'.6" long . 260  Allowance for rivet heads 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       |        |
| Connexions of joist to girders contain 72 pieces $3 \times 3 \times \frac{3}{8}$ angles, 21.6 pounds per yard, 0'.6" long . 260  Allowance for rivet heads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 7 7 7 7 7                                                           |        |
| $3 \times \frac{3}{8}$ angles, 21.6 pounds per yard, 0'.6" long . 260  28,250  Allowance for rivet heads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lbs. per yard .                                                       | 1350   |
| Allowance for rivet heads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Connexions of joist to girders contain 72 pieces 3 X                  |        |
| Allowance for rivet heads 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $3 \times \frac{3}{8}$ angles, 21.6 pounds per yard, 0'.6" long .     | 260    |
| Allowance for rivet heads 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | 28,250 |
| 28,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Allowance for rivet heads                                             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | 28,600 |

#### POTTSVILLE IRON AND STEEL CO.,

|                                      | Lbs. per<br>Lbs. sq. ft. |
|--------------------------------------|--------------------------|
| Girders, bearings, and check angles. | 4,570 = 4.03             |
| Floor joist, bearings, check angles, |                          |
| and connexions                       | 9,225 = 8.14             |
| Buckled plates, 1 covers, and rivet  |                          |
| heads                                |                          |
| Curb angles                          | 1,350 = 1.19             |
|                                      | 28,600 = 25.23           |

Area of floor surface  $= 63' \times 19' = 1134$  square feet. 2d. Girders with top flanges *stayed*, by the joist being so framed into them that all top flanges are on same level.

On page 216 we found that a 15" steel I beam, 202 pounds per yard, would answer, and previous estimate is changed only in the weight of the three steel girders; whence it would now read

|                                            | Lbs.     | bs. per |
|--------------------------------------------|----------|---------|
|                                            | Lbs.     | sq. it. |
| Girders, bearings, and check angles.       | 4,120 =  | 3.63    |
| Floor joist, bearings, and check an-       |          |         |
| gles                                       | 9,225 =  | 8.14    |
| Buckled plates, <b>L</b> covers, and rivet |          |         |
| heads                                      | 13,455 = | 11.87   |
| Curb angles                                | 1,350 =  | 1.19    |
|                                            | 28,150 = | 24.83   |

Suppose the floor joist are laid in direction of short length of floor area; then there will be 21 spaces of 3' each,—i.e., 20 floor joist, 19' span, 2 joist of channels, 19' span. Each joist will carry  $18 \times 3 \times 160$  pounds = 4.32 tons.

Looking at 19' span line in the tables, we find that we can use a 9" iron **I** beam, 85 pounds per yard, as this will carry a safe load of 5.05 tons, and has a deflexion of 0.57". Looking in steel tables, we find that an 8" **I** beam of steel, 65.75 pounds per yard, will sustain a safe load of 4.91 tons, and has a deflexion of 0.75". Now, this .75" deflexion is greater than  $\frac{1}{30}$ " per foot of span. If, then, we dare not exceed the limit of  $\frac{1}{30}$ " per foot  $= 0.6\frac{3}{3}$ ", we shall have to

reduce the safe load to  $\frac{0.63}{0.75} \times 4.91 = 0.83 \times 4.91 = 4.08$ 

tons. This is less than 4.32 tons, the load required to be carried, whence we shall have to use a heavier beam. A 9'' I beam of steel  $70\frac{3}{4}$  pounds will answer, since its deflexion being 0.74, we shall have to take  $\frac{0.63}{0.74} = 0.85$ , its tabular

load =  $0.85 \times 5.06 = 4.30$  tons. Thus we can use, having

a plaster ceiling, a 9" iron beam, 85 pounds per yard, or a 9" steel beam,  $70\frac{3}{4}$  pounds per yard.

We will use for the intermediate joist 9" I beams of steel,  $70\frac{3}{4}$  pounds per yard, and for the joist next walls, 9" iron channels, 42.75 pounds per yard, as they will carry 2.72 tons, a little more than the required load of  $\frac{4.32}{2} = 2.16$ 

The approximate weight is as follows:

tons.

|                                                                                      | Lbs.   |
|--------------------------------------------------------------------------------------|--------|
| Twenty 9" steel I beams, $70\frac{3}{4}$ pounds per yard, 19'.6"                     |        |
| long                                                                                 | 9,200  |
| Two 9" iron channels, $42\frac{3}{4}$ pounds per yard, 19'.6"                        |        |
| long ,                                                                               | 550    |
| Forty-four bearing plates, $8 \times \frac{3}{8}$ , o'.8" long                       | 300    |
| Forty-four check angles, $3 \times 3 \times \frac{3}{8}$ angles, 21.6                |        |
| pounds per yard, o'.6"                                                               | 160    |
| Buckled plates, 126, at 90 pounds apiece                                             | 11,340 |
| Transverse joint covers, 120', $4 \times 2 \stackrel{1}{=} \frac{3}{8}$ , 3.0' long. | 2,880  |
| Curb angles, as in Estimate 1st                                                      | 1,350  |
| Allowance for rivet heads                                                            | 350    |
|                                                                                      | 26,130 |
| Lbs.                                                                                 |        |
| Floor joist, bearings, and check                                                     | ft.    |
| angles. A 10,210 = 9.0                                                               | 00     |
| Buckled plates, <b>⊥</b> covers, and                                                 |        |
| rivet heads 14,570 = 12.8                                                            | 85     |
| Curb angles 1,350 = 1.1                                                              |        |

A saving of over 8 per cent. in weight, which is likewise an 8 per cent. saving in dollars and cents, as steel beams cost no more per pound than iron ones.

26,130 = 23.04

### TRUSSED GIRDERS.

Given a trussed girder whose span centre to centre of end pins is 32 feet, whose depth is  $3\frac{1}{3}$  feet centre to centre of chord pins, and carrying a load of 4.0 tons per linear foot. From these dimensions we have tangent  $\phi = 10\frac{2}{3} \div 1\frac{1}{3} = 3.20$ , and secant  $\phi = 11.175 \div 10\frac{2}{3} = 3.35$ .

The load on each post, Bb, B'b', is  $42\frac{2}{3}$  tons, since each carries the load due to one-half a panel length on each side of it. This stress of  $42\frac{2}{3}$  tons, coming down the post Bb, is resolved at pin b on the chord bars bb', and on the diagonal bars Ab. On the chord bars bb' the stress is  $42\frac{2}{3} \times \tan \phi = 42\frac{2}{3} \times 3.2 = 136.53$  tons. On the diagonals Ab the stress is  $42\frac{2}{3} \times \sec \theta = 42\frac{2}{3} \times 3.35 = 143.06$  tons. This last, coming through the pin A, is resolved on the upper chord, and is  $42\frac{2}{3} \times \tan \phi = 136.53$  tons, which is the thrust from A to A'. Whence we have the following stresses:

In upper chord, AB, BB', B'A',  $42\frac{2}{3} \times \tan$ .  $\phi = 136.53$  tons. In lower chord, bb',  $42\frac{2}{3} \times \tan$ .  $\phi = 136.53$  tons. In diagonal bars, Ab and A'b',  $42\frac{2}{3} \times \sec$ .  $\phi = 143.06$  tons. In vertical posts, Bb and B'b',  $42\frac{2}{3}$  tons  $= 42\frac{2}{3}$  tons.

The unit stress  $f_c$  for compression is as given before,—viz.,  $1\frac{2}{3}$  tons  $(2 + \phi) = 1\frac{2}{3} \times 3 = 5.00$  tons.

The unit stress for rolled bars is 10 per cent. greater than that given for shape iron in tension,—viz., it is 2.2 tons  $(2 + \phi) = 6.60$  tons,  $\phi$  being as formerly given, the ratio of the minimum to the maximum stress in the piece. As this is all dead load in the case under consideration,  $\phi = 1$ .

For the posts Bb and B'b'. Assume them made of two 9" channels, laced together. The least radius of gyration is in plane of stress, and is about  $3\frac{1}{3}$ "; then the length centre

to centre of pins being 40", the ratio  $\frac{1}{r} = \frac{40}{3\frac{1}{3}} = 12$ . The ends are "pin ends." Whence

reduced unit stress, 
$$p_c = \frac{5.00}{1 + \frac{I}{20,000} \left(\frac{1}{r}\right)^2} = 4.96 \text{ tons};$$

whence section required is

$$\frac{42\frac{2}{3}}{4.96}$$
 = 8.60 square inches.

Can use two 9'' channels, 46 pounds per yard = 9.20 square inches.

For the lower chord bars, bb', the stress is 136.53 tons, and the unit stress 6.60 tons; whence section required is  $136.53 \div 6.60 = 20.68$  square inches nett. Use four eye bars,  $5'' \times 1'' = 20.00$  square inches nett.

For the diagonal bars, Ab and A'b', the stress is 143.06 tons, and the unit stress is 6.60 tons; whence section required is 143.06  $\div$  6.6 = 21.68 square inches nett. Use four eye bars,  $5'' \times 1\frac{1}{16}'' = 21.25$  square inches nett.

For the upper chord panels AB, BB', B'A'. In each panel the stress is the same, and is 136.53 tons; but each panel, beside having a longitudinal thrust of 136.53 tons, has also to sustain cross stress, due to a load of 4.0 tons per linear foot. For the end panels AB', A'B', we may consider the beam as fixed at the ends B and B', and merely supported at the ends A and A'. The maximum moment under such a condition is at the end B and B',—viz., at the pins B and B',—and is given by

$$M_o = \frac{wl^2}{8} = \frac{4 \times \overline{10\frac{2}{3}}^2}{8} = 56\frac{7}{8}$$
 foot-tons = 682.5 inch-tons.

The middle panel BB' we may consider as having "fixed ends," and under such condition the moment at centre of BB' panel is

$$M_o = \frac{\text{wl}^2}{24} = \frac{4 \times \overline{10\frac{2}{3}}^2}{24} = 18.96 \text{ foot-tons} = 227\frac{1}{2} \text{ inch-tons.}$$

The unit stress at a panel point may be taken as  $f_c = 5.00$  tons. The unit stress at the centre of a panel is dependent

### POTTSVILLE IRON AND STEEL CO.,

upon the ratio of its length to the least radius of gyration. Assuming a 20" chord, r may be taken  $\frac{3}{8} \times 20 = 7.5$ "; when

$$\frac{1}{r} = \frac{10\frac{2}{3} \times 12}{7\frac{1}{2}} = \frac{128}{7\frac{1}{2}} = 17$$

Then the reduced unit stress is

$$p_c = \frac{5.00}{1 + c\left(\frac{l}{r}\right)^2}$$

which for "fixed ends" is

$$p_c = \frac{5.00}{1 + \frac{1}{40,000} (17)^2} = 4\frac{2}{3} \text{ tons.}$$

The section required at B and B' is then

$$S = \frac{I}{5.0} \left\{ I_{3}6.53 + \frac{682.5}{qh} \right\}$$

Now qh may be taken one-third the height  $=6\frac{2}{3}$ ; then

$$S = \frac{1}{5.0} \left\{ 136.53 + \frac{682.5}{6\frac{2}{3}} \right\} = \frac{1}{5.0} \left\{ 136.53 + 102 37 \right\}$$

= 27.31 + 20.47 = 47.78 square inches required.

The section required at centre of BB' panel is

$$S = \frac{I}{4\frac{2}{3}} \left\{ I_{3}6.53 + \frac{227\frac{1}{2}}{6\frac{2}{3}} \right\} = \frac{I}{4\frac{2}{3}} \left\{ I_{3}6.53 + 34.12 \right\}$$

= 29.25 + 7.31 = 36.56 square inches required.

The section required at B, 47.78 square inches, is then the maximum, and we shall have to make this section constant throughout the chord.

Making a chord 20" wide, and 21" deep out to out, the thickness of flange plate must be  $\frac{16}{30} = \text{say } \frac{1}{2}$ ", 16" being

the width centre to centre of rivets across the flange plate. We can then use

|                                                                                       | Sq. in. |
|---------------------------------------------------------------------------------------|---------|
| One top flange plate, 20 $\times \frac{1}{2}$                                         | 10.00   |
| Two vertical web plates, $20 \times \frac{1}{2}$                                      | 20.00   |
| Four flange angles, $5'' \times 3\frac{1}{2}'' \times \text{about } \frac{9}{16}''$ , |         |
| 45 pounds per yard                                                                    | 18.00   |
| Total section used                                                                    | 48.00   |

For the centre of inertia of this section S = 48.00; wt = 10.00 square inches; h + t = 21''. Then  $E = \frac{10}{48} \times \frac{21}{2} = 0.2083 \times 10\frac{1}{2} = 2.18''$ .

The estimated weight of this trussed girder is

| Upper chords, battens, lacing, thickening,              | Lbs.   |
|---------------------------------------------------------|--------|
| and bearings                                            | 6,750  |
| Two vertical posts, channels, lacing, thick-            |        |
| ening                                                   | 460    |
| Four lower chord bars, $5'' \times 1''$                 | 950    |
| Eight diagonal bars, $5'' \times 1\frac{1}{16}'' \dots$ | 2,000  |
| Six pins, $4\frac{1}{2}''$ diameter, and pin nuts       | 600    |
|                                                         | 10,760 |

As the upper chord segment is made in one continuous segment from A to A', and of constant section, it would be nearer the truth to consider our girder as three spans of a continuous beam, each span being  $10\frac{3}{3}$  feet. Taking wl =  $4.0 \times 10\frac{3}{3} = 42\frac{2}{3}$  tons as a factor of shear and moment, we would have (remembering here we call  $1 = \frac{3}{3} = 10\frac{2}{3}$ )

Reactions. A and 
$$A' = \frac{4}{10} \text{ wl} = \frac{4}{10} \times 10\frac{2}{3} = 17.07.$$
B and  $B' = \frac{11}{10} \text{ wl} = \frac{11}{10} \times 10\frac{2}{3} = 46.93.$ 

Moments. At A and  $A' = 0$ .
At B and  $B' = \frac{1}{10} \text{ wl}^2 = \frac{1}{10} \times 42\frac{2}{3} \times 10\frac{2}{3} \times$ 

12 = 546.13 inch-tons.  
At centre of AB panel = 
$$\frac{3}{40}$$
 wl<sup>2</sup> =  $\frac{3}{40}$  × 42 $\frac{2}{3}$   
× 10 $\frac{2}{3}$  × 12 = 409.6 inch-tons.

At centre of BB' panel = 
$$\frac{1}{40}$$
 wl<sup>2</sup> =  $\frac{1}{40} \times 42\frac{2}{3}$   
  $\times$  10<sup>2</sup>  $\times$  12 = 136.53 inch-tons.

Now for stresses due to truss action.

On the posts Bb, B'c', = 46.93 tons. On the lower chord bars, bb',  $46.93 \times 3.2 = 150.18$  tons. On the diagonal bars, Ab, A'b',  $46.93 \times 3.35 = 157.27$  tons.

Unit stress in end panel,

$$P_c = \frac{5.00}{I + \frac{I}{30,000} (I7)^2} = 4.56 \text{ tons.}$$

Unit stress in centre panel,

$$p_c = \frac{5.00}{1 + \frac{1}{40,000} (17)^2} = 4\frac{2}{3} \text{ tons.}$$

Unit stresses at pin points B and B' = 5.00 tons =  $f_c$ . For the posts Bb, B'b', we can take same unit stress as before,—i.e., 4.96 tons; then  $46.93 \div 4.96 = 9.46$  square inches required. May use two 9" channels, 48 pounds per

yard = 9.60 square inches.

For the lower chord bars we need 150.18  $\div$  6.6 = 22.75 square inches nett. Use four bars,  $5 \times 1\frac{1}{8} = 22.50$  square inches.

For the diagonal bars we require  $157.27 \div 6.6 = 23.83$  square inches nett. Use four bars,  $5'' = 1\frac{3}{16}'' = 23.75$  square inches.

For the upper chord we would require, bearing in mind that  $qh = \frac{1}{3} \times 20 = 6\frac{2}{3}$ ",

At centre of AB panel,

$$S = \frac{1}{4.56} \left\{ 136.53 + \frac{409.6}{6\frac{2}{3}} \right\} = \frac{1}{4.56} \left\{ 136.53 + 61.44 \right\}$$
$$= 32.93 + 13.47 = 46.40 \text{ square inches.}$$

At panel point B,

$$S = \frac{1}{5.0} \left\{ 136.53 + \frac{546.13}{6\frac{2}{3}} \right\}$$
= 30.04 + 16.36 = 46.40 square inches.

At centre of panel BB',

$$S = \frac{1}{4\frac{2}{3}} \left\{ 136.53 + \frac{136.53}{6\frac{2}{3}} \right\}$$

= 32.18 + 4.39 = 36.57 square inches.

The maximum required is then 46.40 square inches, which we shall make constant from A to A'. Use

|                                                                               | Sq. in. |
|-------------------------------------------------------------------------------|---------|
| One 20 $\times \frac{1}{2}$ flange plate                                      | 10.00   |
| Two 20 $\times \frac{1}{2}$ web plates                                        | 20.00   |
| Four $5 \times 3^{\frac{1}{2}} \times ^{\frac{1}{2}}$ angles, 41.1 pounds per |         |
| yard                                                                          | 16.44   |
| Total section used                                                            | 46.44   |

The estimated weight would then be

| ne estimated weight would then be                         |        |
|-----------------------------------------------------------|--------|
| Upper chord, battens, lacing, thickening,                 | Lbs.   |
| and bearings                                              | 6,500  |
| Vertical posts, channels, lacing, and thick-              |        |
| ening                                                     | 500    |
| Four lower chord bars, $5 \times 1^{1}_{8} \dots$         | 1,050  |
| Eight diagonal bars, $5 \times 1\frac{3}{16} \dots \dots$ | 2,250  |
| Six pins, $4\frac{1}{2}''$ diameter, and pin nuts         | 600    |
|                                                           | 10,900 |

The estimated weight of a single-webbed plate girder to carry the same load was 9390 pounds (see page 204), and that of a box plate girder was 11,080 (see page 211); whence we have

Estimated weight of plate girder = 9,390 lbs. Estimated weight of box girder = 11,080 lbs. Estimated weight of trussed girder = 10,900 lbs.

from which it is seen that the single-webbed plate girder is the most economical in weight; it is likewise the most economical of construction.

Trussed girders of iron, to carry lighter loads, may have their upper chords made of a pair of channels connected by

a top flange plate, and the diagonals may often be made of square bars, with sleeve nuts.

The central panel should generally, no matter what the loading, have adjustable diagonal bars, for though not needed, theoretically, for an uniformly distributed load, yet are of service to transmit the unequal loads caused by the wall being "run up" irregularly.

Small span trussed girders may also be built of timber, as per sketch. Each half of the beam takes cross stress due to load on the distance  $\frac{1}{2}$ , as well as the direct thrust caused by the truss rod.

If T denote the direct thrust in tons on the beam; b, the breadth of the beam; h, the height; l, the length of beam centres of supports, then the panel length is  $\frac{1}{2}$ ; and w the load in tons per linear foot.

Then area of beam required is given by

$$bh = S = \frac{r}{f} \left\{ \frac{M}{qh} + T \right\}$$

Taking 1 the total length in feet, as per sketch, and w the load in tons per foot, the maximum moment in *inch-tons*,  $M = \frac{3}{8}$ . wl<sup>2</sup>; also  $qh = \frac{h}{6}$ , since for the rectangular section  $q = \frac{1}{6}$ , and f may be taken 1200 pounds per square inch = 0.6 tons.

Then area of beam required is

$$S = bh = \frac{I}{0.6} \left\{ \frac{I8}{8} \frac{wl^2}{h} + T \right\} = \frac{I}{0.6} \left\{ \frac{9}{4} \cdot \frac{wl^2}{h} + T \right\}$$
$$= 3.75 \frac{wl^2}{h} + \frac{T}{0.6}$$

where w is the load per linear foot in tons; l, the total span in feet; h, the height in inches; b, the breadth in inches; and T, the thrust in tons.



## FLITCH BEAMS.

A flitch beam is one in which are combined wooden beams and rectangular iron plates, the iron plates being so bolted together through the timbers as to prevent lateral deflexion of the former.

Let there be n beams of timber, of h depth and b thickness each, and m plates of iron, of h depth and t thickness each, and so bolted to the wooden beams that the full fibre stress  $f_c$  may be used on the iron plates.

The moment of inertia of a rectangular section is  $I = \frac{b h^3}{12} = \frac{S h^2}{12}$ ; and for symmetrical sections q being equal to

 $\frac{2 \text{ I}}{\text{h}^2\text{S}}$ , then q for rectangular sections =  $\frac{1}{6}$ .

Now, from equation  $M_o = f$  qh S, we may determine the capacity of a flitch beam.

It must, however, be borne in mind that the *deflexions* of each material under its proportion of the total load on the combined beam should be *the same*, and as the deflexions of two beams of different material are inversely as their moduli of elasticity, the fibre stresses used should be in same proportion. The ratio of the modulus of elasticity of iron is to that of wood as 18 to 1; whence, if we take  $f_c$  for iron as 6.0 tons per square inch, that for wood should be  $\frac{1}{18}$  of 6.0 tons,—viz.,  $\frac{1}{3}$  of a ton per square inch. Whence, for the timber beams,

$$M_o = f \text{ qh } S = \frac{1}{3} \times \frac{1}{6} \times h \text{ S} = \frac{h \text{ S}}{18}$$
  
 $S = \text{ nbh}$ 

but

then  $M_o = \frac{nbh^2}{18}$  (1)

And for the iron plates,

$$M_o = f qh S = 6.0 \times \frac{1}{6} \times h S = hS$$

but

$$S = mth$$

whence

$$M_o = mth^2$$
 (2)

Now, adding these, we get

$$\Sigma M_o = \frac{nbh^2}{18} + mth^2 = h^2 \left\{ \frac{nb}{18} + mt \right\}$$
 (3)

If w be the load per linear unit on the beam, and I the effective span, then the maximum moment is at centre, and is  $\frac{\text{wl}^2}{8}$ .

Equating this to (3), we get

$$\frac{wl^2}{8} = h^2 \left\{ \frac{nb}{18} + mt \right\}$$

or

$$wl = \frac{8 h^2}{l} \left\{ \frac{nb}{18} + mt \right\}$$
 (4)

denoting by w, the load in tons per linear foot, and l' the length of beam in feet; then wl will be the total load in tons, and may be written W, and l = 12 l', and equation (4) will become

$$W = \frac{8 h^2}{12 l'} \left\{ \frac{nb}{18} + mt \right\} = \frac{2}{3} \cdot \frac{h^2}{l'} \left\{ \frac{nb}{18} + mt \right\}$$
 (5)

In (5) it is seen that if mt =  $\frac{\text{nb}}{18}$ ,—i.e., if the total thick-

ness of the iron plates be  $\frac{1}{18}$  of the total breadth of the timber beams,—that the total load carried becomes

$$W = \frac{2}{27} \cdot \frac{h^2}{l'}$$
 (6)

*i.e.*, total load in tons  $=\frac{2}{27}$  of the ratio of the square of the

#### POTTSVILLE IRON AND STEEL CO.,

depth in inches to the span in feet. It is also evident that if we want to *double* the strength of a wooden girder, we should add flitch plates whose aggregate thickness  $=\frac{1}{18}$  the breadth of the girder.

If r denote the ratio  $\frac{mt}{nb}$ ; then  $mt = r \cdot nb$ , and, substituting this in (5), we get

$$W = \frac{2}{3} \cdot \frac{h^2}{l'} \left\{ \frac{nb}{18} + rnb \right\} = \frac{2}{3} \cdot \frac{h^2}{l'} nb \left\{ \frac{I}{18} + r \right\}$$
$$= \frac{2}{3} \cdot \frac{h^2}{l'} \frac{nb}{18} \left\{ I + I8 r \right\}$$
(7)

Now, suppose we have two pieces of  $7'' \times 14''$  forming a girder of 20 feet effective span, and it is required to add iron plates in order to increase its strength  $\frac{2}{3}$ ; then 18 r should equal  $\frac{2}{3}$ ,—i.e.,  $r = \frac{1}{27}$ ; whence  $mt = \frac{nb}{27} = \frac{14}{27} = 0.519''$ .

Whence

W = 
$$\frac{2 \times \overline{14}^2 \times 14}{3 \times 20 \times 18} \left\{ 1 + \frac{2}{3} \right\} = 5.08 \times 1\frac{2}{3} = 8.47 \text{ tons};$$

or, taking separately, the wooden beams will stand 5.08 tons, and the iron plates  $\frac{2}{3} \times 5.08 = 3.39$  tons.

Thus, an iron plate about  $\frac{1}{2}'' \times 14''$  placed between the two wooden beams of  $7'' \times 14''$  will add  $\frac{2}{3}$  to the strength of the wooded beams, and their deflexions will be alike. The fibre stresses under the above loads will be, on the iron 6.0 tons per square inch, and on the timber  $\frac{1}{3}$  of a ton per square inch.

As regards the deflexion. The expression which gives the centre deflexion for the wooden beams is

$$\Delta = \frac{5}{384} \left\{ \frac{\text{wl}^3}{\text{E I}} \right\} \tag{8}$$

where W = total load borne by the timber beams.

1 = span of beams in inches.

E = modulus of elasticity of timber =  $722\frac{2}{9}$  tons.

I = moment of inertia of the wooden beams =  $\frac{1}{12}$   $\times$  nb  $\times$  h³, where nb = aggregate breadth of beams, and h = height in inches.

Also, the deflexion for the iron flitches is given by

$$\Delta_1 = \frac{5}{384} \left\{ \frac{W'l^3}{E'l'} \right\}$$
(9)

where W' = total load borne by the flitches.

1 = span of beam in inches.

E' = modulus of elasticity of iron = 13,000 tons.

I' = moment of inertia of the iron plates =  $\frac{1}{12} \times$  mt  $\times$  h³, where mt = width of flitches, and h = height in inches.

Now, by the hypothesis, the deflexion of each material of the compound beam is the same,—*i.e.*,  $\Delta = \Delta_1$ ; therefore the ratio

$$\frac{\Delta}{\Delta_{1}} = \frac{W}{W'} \left\{ \frac{E' I'}{E I} \right\} = I \tag{10}$$

whence

$$W = W' \left\{ \frac{nb}{18 \text{ mt}} \right\} \tag{II}$$

and

$$W' = W \left\{ \frac{18 \text{ mt}}{\text{nb}} \right\} \tag{12}$$

The value of (8) for our example, in which we have l = 20' = 240''; h = 14''; nb = 14'';  $E = 722\frac{2}{9}$  tons;

$$I = \frac{\text{nbh}^3}{12} = \frac{\text{I}_4 \times \overline{\text{I}_4}^3}{\text{I}_2} = 320\text{I}_3^2$$
, is

$$\Delta = \frac{5}{384} \left\{ \frac{\overline{240}^3}{722\frac{2}{9} \times 3201\frac{2}{3}} \right\}. \text{ W} = 0.0788 \text{ W}$$

but

$$W = 5.08$$

whence

$$\Delta = 0.0788 \times 5.08 = 0.40''$$

And the value of (9) should be the same. Here we have 1 = 20' = 240''; h = 14'';  $mt = .519'' = \frac{1}{2}\frac{4}{7}$ ; E = 13,000

tons; and 
$$I = \frac{.519 \times I4^3}{I2} = \frac{I4 \times \overline{I4}^3}{I2 \times 27} = I18.58$$

Then

$$\Delta_1 \!=\! \frac{5}{384} \! \left\{ \frac{\overline{240}^3}{13,000 \times 118.58} \right\} W' \!=\! 0.1182 \; W';$$

but

$$W' = 3.39 \text{ tons},$$

whence

$$\Delta_1 = 0.1182 \times 3.39 = 0.40''$$

From (12) we see that

$$mt = \frac{W'}{W} \left\{ \frac{nb}{18} \right\} \tag{13}$$

Whence the following rule: Having given in a certain span, wooden beams of nb aggregate thickness, whose safe load at ton fibre stress is W, if we wish to add W' tons to the capacity of these beams, by adding iron flitches of same depth, the thickness of such flitches is given by

$$mt = \frac{W'}{W} \left\{ \frac{nb}{18} \right\}$$

EXAMPLE. Given nb = 14'', W = 5.08 tons; and we wish to add W' = 3.39 tons; then

$$mt = \frac{3.39}{5.08} \left\{ \frac{14}{18} \right\} = \frac{2}{3} \times \frac{7}{9} = \frac{14}{27} = 0.519''$$

Also, having given in a certain span, wooden beams of nb aggregate breadth, whose safe load is W, if we add flitch plates of mt thickness, we will add to the capacity of the beams

$$W' = 18 W \left\{ \frac{mt}{nb} \right\}$$

Example. Given mt = 0.519, nb = 14''; whence

$$\frac{\text{mt}}{\text{nb}} = \frac{\text{I}}{27}$$
; also W = 5.08 tons.

Then

W' = 
$$\frac{18}{27} \times 5.08 = \frac{2}{3} \times 5.08 = 3.39$$
 tons.

If we wish to *double* the strength of the wooden beam by addition of flitch plates, the thickness of such plates will be given by  $mt = \frac{nb}{18}$ , since W = W'.

EXAMPLE. Given nb = 14, W = 5.08 tons; then

$$mt = \frac{14}{18} = \frac{7}{9} = 0.778''$$

which we can check by (7); for, in order to double the strength of the beam, we should have 18 r = 1, then r =

$$\frac{1}{18}$$
; and, since  $r = \frac{mt}{nb}$ , then  $mt = r$ .  $nb = \frac{14}{18} = 0.778''$ .

Substituting 18 r = 1 in (7), and we get

$$W = \frac{2}{3} \times \frac{h^2}{l'} \times \frac{nb}{18} \times 2$$

$$= \frac{2 \times \overline{14}^2 \times 14 \times 2}{3 \times 20' \times 18} = 5.08 \times 2 = 10.16 \text{ tons.}$$

### POTTSVILLE IRON AND STEEL CO.,

### BENDING MOMENTS AND SHEARING FORCES

For different loads and supports.

#### BEAMS FIXED AT ONE END.

| BEAMO TIXED AT ONE END. |                                    |                               |                                                           |
|-------------------------|------------------------------------|-------------------------------|-----------------------------------------------------------|
| Diagram.                | Maximum<br>bending<br>moment at X, | Maximum<br>shearing<br>force. | Loading.                                                  |
| OW N                    | WI                                 | W                             | Load<br>at end.                                           |
|                         |                                    | Wl                            | Uniformly<br>loaded<br>with W<br>lbs. per<br>lineal foot. |
| $\langle v \rangle$     | Wlı                                | W                             | Eccentric<br>Loading.                                     |

#### BEAMS WITH SUPPORTED ENDS.

| BEAMS WITH SUFFORTED ENDS. |                                       |                                                                            |                                                                   |
|----------------------------|---------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|
| Diagram.                   | Maximum<br>bending<br>moment at X.    | Maximum<br>shearing<br>force.                                              | Loading.                                                          |
| OW   X                     | W1 4                                  | - W 2                                                                      | Load<br>at centre.                                                |
|                            | $\frac{\mathrm{Wl_1l_2}}{\mathrm{l}}$ | $\begin{array}{c} Wl_1 \\ \hline l \\ and \\ Wl_2 \\ \hline l \end{array}$ | Eccentric<br>Loading.                                             |
| 00000000                   |                                       | W1 2                                                                       | Uniformly<br>distributed<br>load of W<br>lbs. per<br>lineal foot. |

## MOMENTS OF INERTIA

For Simple Shapes.



$$= \frac{bh^3 - b^1 h^{1^3}}{12}$$



$$I = \frac{(bh^2 - b^1 h^{1^2})^2 - 4 \cdot bh \cdot b^1 h^1 (h - h^1)^2}{\text{12 (bh - b^1 h^1)}}$$

$$J = \frac{1}{12} (tb^3 + h^1 b^{13})$$





$$I = .7854 \text{ r}^4 = \frac{\text{Ad}^2}{16}$$

$$I = \frac{bh^3}{12} = \frac{Ah^2}{12}$$

Where A = area = bh.





$$I = \frac{bt^3}{12} = \frac{At^2}{12}$$

Where A = area = bt.

### MOMENTS OF INERTIA

For Compound Shapes.

Two channels, with lacing, arranged thus:



Line ab = neutral axes of channels.

S = area of each channel.

 $x_o$  = distance from neutral axis of channel to axis of compound shape YY.

J = least moment of inertia of the channel.

I = greatest moment of inertia of the channel.

Moment of inertia, axis YY,

$$= 2 \left[ J + x_0^2 S \right]$$

Radius of gyration, axis YY,

$$= \sqrt{\frac{2 \left[J + x_o^2 S\right]}{2 S}} = \sqrt{x_o^2 + \frac{J}{S}} = \sqrt{x_o^2 + r_J^2}$$

Moment of inertia, axis XX,

Radius of gyration, axis YY,

$$=\sqrt{\frac{2I}{2S}}=\sqrt{\frac{I}{S}}\cdot=r_{I}$$

Required the least radius of gyration of a column formed of two 10" channels, 60 pounds per yard, placed 6" apart, back to back of webs, as shown in figure.

The distance from back of a 10" channel, 60 pounds to the neutral axis of such channel, is given by the Table of Properties of Channels as 0.69"; therefore the distance from neutral axis of channel to neutral axis of compound shape is

^ 6" V

 $\frac{6''}{2}$  + 0.69" = 3.69". We also find the radius of gyration of the channel  $r_J$  to be 0.79 (see column 13 of Table of Properties above referred to).

Our formula is

$$r = \sqrt{x_o^2 + \frac{J}{S}} = \sqrt{x_o^2 + r_J^2}$$

which for the 10" channel post is

$$r = \sqrt{3.69^2 + 0.79^2} = 3.77$$

The radius of gyration when the axis is perpendicular to web is, for the 10" channel, 60 pounds per yard, as per table, 3.69".

Thus, we find that the column is slightly weaker in the direction of plane of channels than in a direction perpendicular to such plane.

Suppose we wish to form a post of two 12" channels, 90 pounds per yard, and that we desire to know how far apart in the clear to place these channels in order that both radii of gyration be the same. We simply equate the expressions

 $\sqrt{{
m x_o}^2+{
m r_J}^2}$  and  ${
m r_I}$ ;

whence  $x_0^2 = r_1^2 - r_1^2 = (r_1 + r_1) (r_1 - r_1)$ 

Now for the 12" channel, 90 pounds, the table gives us  $r_1 = 4.49$ ;  $r_3 = 0.89$ .

Therefore 4.49 + 0.89 = 5.38and 4.49 - 0.89 = 3.60

and  $x_0^2 = 5.38 \times 3.60 = 19.37$ 

therefore  $x_0 = \sqrt{19.37} = 4.40''$ 

#### POTTSVILLE, IRON AND STEEL CO.,

Now the distance from back of 12'' channel, 90 pounds to its neutral axis, is, as per table, 0.84. Therefore distance of back of channel from centre of compound shape  $= x_0 - 0.84 = 4.40 - 0.84 = 3.56''$ . Thus channels should be placed apart  $2 \times 3.56 = 7.12''$ , say 7 inches in the clear.

### TWO CHANNELS AND I BEAM.



ab = neutral axis of channel.

 $S_1 =$  area of channel.

 $S_2 =$  area of beam.

J<sub>1</sub> = least moment of inertia of channel.

 $J_2$  = least moment of inertia of beam.

I<sub>1</sub> = greatest moment of inertia of channel.

I<sub>2</sub> = greatest moment of inertia of beam.

Moment of inertia, axis YY,

$$= I_2 + 2 [J + x_0^2 . S_1]$$

Radius of gyration, axis YY,

$$= \sqrt{\left[\frac{I_2 + 2 \left[J + x_0^2 \cdot S_1\right]}{2 S_1 + S_2}\right]}$$

Moment of inertia, axis XX,

$$= J_2 + 2 I_1$$

Radius of gyration, axis XX,

$$= \sqrt{\frac{J_2 + 2 I_1}{2 S_1 + S_2}}$$

Required the moments of inertia of a column, formed as above, of two 10" channels, 48 pounds per yard, and one 12" I beam, 125 pounds per yard.

First, axis being YY.

Maximum moment of inertia of 12" I, 125 pounds = 279.0. Least moment of inertia of 10" channel, 48 pounds = 2.40; distance from back of channel to neutral axis = 0.59; whence  $x_0$  = one-half depth of beam + 0.59 = 6.59.

Therefore total moment of inertia of column, the axis being YY, is

$$279.0 + 2 \left[ 2.40 + (6.59)^2 \times 4.8 \right]$$
$$= 279.0 + 2 \times 208.45 = 695.90$$

The area of compound section =  $12.5 \square'' + 2 \times 4.8 = 22.1 \square''$ . Therefore radius of gyration, axis being as above, is

$$=\sqrt{\frac{699.74}{22.1}}=5.611''$$

Second, the axis being XX.

Least moment of inertia of 12" I beam, 125 pounds = 14.50
Twice maximum moment of inertia of 10" channel,

Moment of inertia of compound section, axis XX = 144.50

The radius of gyration is

$$\sqrt{\frac{144.50}{22.1}} = 2.56''$$

Thus, around the axis YY the compound section, formed of one 12" beam, 125 pounds, and two 10" channels, 48 pounds, is more than twice as strong as around the axis XX, provided, of course, the condition of ends of columns is the same; as, for example, both fixed ends.

#### BEARING OF

### GIRDERS ON BRICK WALLS.

The pressure on a brick wall should not exceed 8 tons per square foot; hence when beams are used for floor joist, their bearings on wall should be so proportioned as not to exceed the above limit. This is conveniently done by means of a loose \(\frac{3}{4}\)" plate of wrought iron.

The ends of girders and floor joist should have "check angles" at their wall ends, thus checking the walls from falling outwards in case of fire.

The depth which the beam extends in the wall must not be less than 8 inches.

The thrust of the brick arches is taken up by tie rods  $\frac{3}{4}$  to 1 inch in diameter, spaced from 5 to 8 apart, the holes for which are punched in middle of web.

### GIRDERS FORMED OF BEAMS

Placed side by side, and beams placed one over the other, and riveted along the flanges.

In supporting heavy walls, the beams can be placed side by side, or be coupled, as in the following sketches.

The width of wall to be supported sometimes prevents the use of more than two beams under them; and in such cases, if two beams cannot be found sufficient to carry the load, two coupled beams can be used, as shown by Fig. 2; or, if they be found insufficient, two sets of three beams each, placed one over the other, can be used. (See Fig. 3.) The coupled and trebled beams are used in lieu of plate girders. If plate girders be used, they would be with a single web, and the wide top flange necessary to carry wall would make the use of heavy vertical stiffeners a necessity.

In using coupled and trebled beams, cast-iron separators



are needed, and are generally made of depth of the compound shape. Between brick work and top of beams should be placed a slate or granite plate  $2\frac{1}{2}$ " to 5" thick, to get an even bearing for wall. This plan of carrying heavy walls is much used by the United States Government in the Public Buildings.



Two I beams coupled, as in the above sketch. Required the moment of inertia? Both beams being of same depth and weight.

Let h = height of beam, then  $\frac{h}{2}$  = distance from centre of inertia of single beam to centre of inertia of compound

#### POTTSVILLE IRON AND STEEL CO.,

shape. Let S = area of one beam, then 2 S = area of compound section.

I = moment of inertia of each single beam, axis XX.  $I_c$  = moment of inertia of compound shape, axis XX.

Then

$$I_c = 2 \left[ I + \frac{h^2}{4} S \right] = 2 I + \frac{h^2 S}{2}$$

but

$$\frac{h^2 S}{2} = \frac{I}{q}$$

$$I_c = 2 I + \frac{I}{q} = \left(\frac{2 q + I}{q}\right) I$$

Now, for the standard or minimum rolls of each I beam, q has the average value, 0.33; whence

$$\frac{2 + 1}{q} = \frac{2 \times 0.33 + 1}{0.33} = 5$$

$$I_c = 5 I$$

If R<sub>c</sub> be the modulus of this compound shape, then

$$R_c = \frac{2 \cdot I_c}{2 \cdot h} = \frac{I_c}{h} = \frac{5 I}{h} = 2.5 R$$

where R is the modulus for the single beam. Whence the moment of resistance of the coupled beams is  $2\frac{1}{2}$  times that for a single beam.

For maximum rolls of a beam, q has the average value of 0.3; whence

$$\frac{2 + 1}{q} = 5.33$$
, and  $I_c = 5.33$  I

The modulus  $R_{\rm c}$  then becomes 2.67 . R. Thus, for the heavier rolls of beams, the moment of resistance of the coupled beams is 2.67 times that for a single beam.

Comparing the coupled beams with two beams of same depth and weight, placed side by side, the coupled beams

are 1.25 stronger than if the two beams be placed side by side, if the sections be the minimum rolls; and 1.33 times stronger if the sections be the heavier rolls.

The rivets connecting the flanges together should be  $\frac{7}{8}$ " or  $\frac{3}{4}$ " diameter, dependent upon the thickness of the flanges, and the pitch should be about 6" or 8" staggered. At ends

of beams the pitch of rivets should be from 3" to 4" for a length of twice the depth of the compound shape.

Three beams riveted together as in adjoining sketch. Each beam being of same depth and weight.

Let h = height of each beam; then h is the distance from centre of inertia of outside beams to centre of inertia of compound shapes.

Let S = area of each beam; then 3 S = area of compound section.



I = moment of inertia of each beam, when referred to its own neutral axis.

I<sub>c</sub> = moment of inertia of compound shape.

Then

$$I_c = I + 2 [I + h^2 S] = 3 I + 2 h^2 S$$

but

$$2 h^2 S = \frac{4 I}{q}$$

$$I_c = 3 I + \frac{4I}{q} = \left(\frac{3 q + 4}{q}\right) I$$

For minimum rolls,  $I_c = 15 I$ .

For maximum rolls,  $I_c = 16 I$ .

For minimum rolls,  $R_c = 5 R$ .

For maximum rolls,  $R_c = 5.33 R$ .

### POTTSVILLE IRON AND STEEL CO.,

Comparing the trebled beams with 3 beams of the same depth and weight, placed side by side, the trebled beams are 1.66 times stronger than if the 3 beams be placed side by side, if the beams be the minimum rolls; and 1.78 times stronger if the sections be the maximum rolls.

### FIRE-PROOF FLOORS.

The dead weight of a fire-proof floor, comprising 4" brick arches, levelled up to top of beam with concrete, the ceiling and the flooring will run about 70 pounds per square foot of floor surface.

The live weight, equal to a dense crowd of people, is taken at 80 pounds per square foot.

The total weight is then assumed 150 pounds per square foot, exclusive of weight of beams themselves.

The following loads are *exclusive* of weight of arches and beams:

|                        |   |   |   |   |    |   | Lbs. per square foot.   |     |  |  |
|------------------------|---|---|---|---|----|---|-------------------------|-----|--|--|
| Dense crowd of people  |   |   |   |   |    |   |                         | 80  |  |  |
| Floors of houses       |   |   |   |   |    |   |                         | 50  |  |  |
| Theatres, churches     |   |   |   |   |    |   |                         | 80  |  |  |
| Ball rooms             |   |   |   |   |    |   |                         | 90  |  |  |
| Warehouses             |   |   |   |   |    |   |                         | 250 |  |  |
| Factories              |   |   |   |   | 20 | 0 | to                      | 450 |  |  |
| Snow, 30 inches deep . | • | • | • | • | •  | • | •                       | 15  |  |  |
|                        |   |   |   |   |    |   | Lbs. per<br>cubic foot. |     |  |  |
| Brick walls            |   |   |   |   |    |   |                         | 112 |  |  |
| Stone walls            | • |   | • | • | 11 | 6 | to                      | 144 |  |  |

## STANDARD SEPARATORS

OF

## POTTSVILLE IRON AND STEEL CO.





| Width, in inches.                                    | Height,<br>in inches.                                                                                                                                        | Number<br>of bolts.                                                                              | Length<br>of bolt, in<br>inches. | Distance<br>apart,<br>in inches.                                      | Weight of<br>beam<br>per yard, in<br>pounds.                                            | Weight of<br>separators<br>and bolts, in<br>pounds.                                                                            |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 15<br>12<br>12<br>10 <sup>1</sup> / <sub>2</sub><br>10 <sup>1</sup> / <sub>2</sub><br>10 <sup>1</sup> / <sub>2</sub><br>9<br>9<br>9<br>8<br>8<br>7<br>7<br>6 | 2<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 767666555555444                  | 8<br>8<br>6<br>6<br>In centre<br>"<br>"<br>"<br>"<br>"<br>"<br>"<br>" | 200<br>150<br>170<br>125<br>135<br>105<br>90<br>85<br>70<br>.80<br>65<br>65<br>55<br>40 | 22.29<br>20.06<br>17.2<br>16.06<br>13.45<br>11.97<br>10.82<br>10.88<br>8.5<br>8.4<br>7.88<br>7.5<br>6.8<br>6.76<br>5.73<br>5.2 |

All standard separators are I" thick.

All separator holes are  $\frac{7}{8}$ " diameter for  $\frac{3}{4}$ " bolts.

All standard separators made for close girders, except when ordered otherwise.

## POSITION OF CENTRE OF INERTIA OF A COMPOUND SECTION.

When a compound section is formed of vertical plates, to which are attached angle irons at their extremities, if the angles are similar and similarly placed, the centre of inertia is at the centre of the vertical plates. If a flange plate be added to one side of the section, the position of the centre of inertia will be shifted from the centre, upwards if the plate be on top, downwards if the plate be on the bottom.

For the amount of such moving of the centre of inertia from centre of vertical plates



Let S = total area of section.

h = vertical height out to out of angle iron flanges.

b = breadth of top flange plate.

t = thickness of top flange plate.

E == distance of centre of inertia of compound section from the centre of vertical plates; in other words, the eccentricity of the centre of inertia.

Then

$$E = \frac{bt}{S} \left[ \frac{h+t}{2} \right]$$

i.e., the eccentricity E = the ratio of area of top plate to total area of section multiplied by one-half the total height of the section.

In well-designed chords of above "make up," the value of r is about  $\frac{3}{8}$  the height, and the value of q about 90 per

cent. of r,—viz., about  $\frac{1}{3}$ . (For *very* heavy sections q is about 0.30.) For purposes of calculation, r may be taken  $\frac{3}{8}$  h, and  $q = \frac{1}{3}$ ; whence  $qh = \frac{h}{3}$ .

In some very favorable sections q may run as high as 0.38, and r from 0.40 to 0.42 times the height.

## COLUMNS AND POSTS.

The table of the ultimate and safe strength of hollow, cylindrical wrought- and cast-iron columns is given on page 248. It is computed by Gordon's formula for varying values of the ratio of length to diameter. The factor of safety for cast-iron columns has been taken at 6, and that for wroughtiron columns at 4. It is assumed that the ends are fixed in direction, such as having planed bearings on capitals and bases.

The table on the ultimate and safe strength of wroughtiron columns is computed according to Rankine's formula for varying values of the ratio of the length to the least radius of gyration, and for the three conditions of square end bearings, one square end bearing and the other pin end, and for both ends with pin bearings. The factor of safety used in the tables for safe strength is 5. If the column be subjected to loads without vibration, the factor could be 4.

To illustrate the use of this table, suppose we wish the ultimate strength of 15" I beam, 125 pounds per yard, when used as a post, its ends being fixed, and having an unsupported length of 8' 6".

Referring to the Tables of the Properties of **I** Beams, we find that the least radius of gyration, r<sub>1</sub>, is given as 1.03";

the length being 8' 6" = 102"; the ratio 
$$\frac{1}{r} = \frac{102}{1.03} =$$
say

100; for which, on looking at the table, we find the ultimate strength to be 32,000 pounds per square inch. The section of the 15" beam being 12.5  $\square$ ", the ultimate strength is then  $12\frac{1}{2} \times 32,000$  pounds = 400,000 pounds.

## Strength of Hollow, Cylindrical

## WROUGHT- AND CAST-IRON COLUMNS

When fixed at the ends.

Computed by Gordon's formula, 
$$P = \frac{fS}{r + c\left(\frac{l}{h}\right)^2}$$

Let P = ultimate strength, in pounds, per square inch.

S = sectional area, in square inches.

l = length of column, h = diameter of column, } both in same units.

 $\frac{1}{h}$  = ratio of length to diameter.

f =  $\begin{cases} 40,000 \text{ pounds for wrought iron.} \\ 80,000 \text{ pounds for cast iron.} \\ C = \frac{1}{3000} \text{ for wrought iron, and } \frac{1}{800} \text{ for cast iron.} \end{cases}$ 

For cast iron.

$$P = \frac{80,000 \text{ S}}{r + \frac{r}{800} \left(\frac{l}{h}\right)^2}$$

For wrought iron,

$$P = \frac{40,000 \text{ S}}{1 + \frac{1}{3000} \left(\frac{l}{h}\right)^2}$$

| Ratio<br>of length to<br>diameter, | Maximum load     | , per square inch. | Safe load, pe              | er square inch.            |
|------------------------------------|------------------|--------------------|----------------------------|----------------------------|
| l h                                | Cast iron.       | Wrought iron.      | Cast iron,<br>factor of 6. | Wrought iron, factor of 4. |
| 8                                  | 74,075           | 39,164             | 12,346                     | 9791                       |
| 10                                 | 71,110           | 38,710             | 11,851                     | 9677                       |
| 12                                 | 67,796           | 38,168             | 11,299                     | 9542                       |
| 14                                 | 64,256           | 37,546             | 10,709                     | 9386                       |
| 16                                 | 60,606           | 36,854             | 10,101                     | 9213                       |
| 18                                 | 56,938           | 36,100             | 9,489                      | 9025                       |
| 20                                 | 53,332           | 35,294             | 8,889                      | 8823                       |
| 22                                 | 49,845           | 34,442             | 8,307                      | 8610                       |
| 24                                 | 46,510           | 33,556             | 7,751                      | 8389                       |
| 26                                 | 43,360           | 32,642             | 7,226                      | 8161                       |
| 28                                 | 40,404           | 31,712             | 6,734                      | 7928                       |
| 30                                 | 37,646           | 30,768             | 6,274                      | 7692                       |
| 32                                 | 35,088           | 29,820             | 5,848                      | 7455                       |
| 34<br>36                           | 32,718<br>30,584 | 28,874             | 5,453                      | 7218<br>6983               |
| 38                                 | 28,520           | 27,932             | 5,097                      | 655                        |
| 40                                 | 26,666           | 27,002<br>26,086   | 4,753                      | 6750<br>6522               |
| 42                                 | 24,962           | 25,188             | 4,444<br>4,160             | 6297                       |
| 44                                 | 23,396           | 24,310             | 3,899                      | 6077                       |
| 46                                 | 21,946           | 23,454             | 3,658                      | 5863                       |
| 48                                 | 20,618           | 22,620             | 3,436                      | .5655                      |
| 50                                 | 19,392           | 21,818             | 3,262                      | 5454                       |
| 52                                 | 18,282           | 21,036             | 3,047                      | 5259                       |
| 54                                 | 17,222           | 20,284             | 2,870                      | 5071                       |
| 56                                 | 16,260           | 19,556             | 2,710                      | 4889                       |
| 58                                 | 15,368           | 18,856             | 2,561                      | 4714                       |
| 60                                 | 14,544           | 18,180             | 2,424                      | 4545                       |

## Ultimate and Safe Strength of

## WROUGHT-IRON COLUMNS.

p = ultimate strength per square inch.

1 = length of column, in inches.

r = least radius of gyration, in inches.

For square end bearings,

$$p = \frac{40,000}{1 + \frac{1}{40,000} \left(\frac{l}{r}\right)^2}$$

For one pin and one square bearing,

$$p = \frac{40,000}{1 + \frac{1}{30,000} \left(\frac{1}{r}\right)^2}$$

For two pin bearings,

$$p = \frac{40,000}{1 + \frac{1}{20,000} \left(\frac{l}{r}\right)^2}$$

For safe working load on these columns, use a factor of 4 when used in buildings, or when subjected to dead load only; but when used in bridges the factor should be 5.

| l<br>r                                                                                       |                                                                                                                                                                        | strength, i<br>r square in                                                                                                                                                       |                                                                                                                                                                                 | 1                                                                                                    | Safe strength, in pounds, per<br>square inch, factor of 5.                                                                           |                                                                                                                                                              |                                                                                                                                                      |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| r                                                                                            | Square ends. Pin and square ends. Pin ends.                                                                                                                            |                                                                                                                                                                                  | uare Pin ends.                                                                                                                                                                  |                                                                                                      | Square ends.                                                                                                                         | Pin and<br>square<br>ends.                                                                                                                                   | Pin ends.                                                                                                                                            |  |  |  |  |  |
| 10.0<br>15.0<br>20.0<br>25.0<br>35.0<br>40.0<br>55.0<br>65.0<br>65.0<br>75.0<br>85.0<br>95.0 | 39,944<br>39,776<br>39,604<br>39,384<br>39,118<br>38,460<br>38,460<br>37,164<br>37,169<br>36,182<br>35,634<br>35,634<br>33,883<br>33,264<br>32,636<br>32,636<br>32,035 | 39,866<br>39,702<br>39,472<br>39,182<br>38,834<br>38,439<br>37,974<br>36,928<br>36,336<br>35,714<br>34,478<br>34,384<br>32,966<br>32,236<br>32,236<br>31,496<br>30,750<br>30,050 | 39,800<br>39,554<br>39,214<br>38,78<br>37,690<br>37,036<br>36,322<br>35,525<br>34,748<br>33,808<br>33,024<br>32,128<br>30,288<br>29,384<br>29,384<br>29,562<br>26,566<br>25,786 | 10.0<br>15.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>55.0<br>60.0<br>75.0<br>85.0<br>90.0<br>95.0 | 7989<br>7955<br>7921<br>7877<br>7821<br>7762<br>7614<br>7529<br>7437<br>7236<br>7127<br>7015<br>6896<br>6777<br>6653<br>6527<br>6400 | 7973<br>7940<br>7894<br>7894<br>7767<br>7686<br>7595<br>7494<br>7386<br>7267<br>7143<br>6896<br>6897<br>6736<br>6593<br>6447<br>6299<br>6150<br>6000<br>5850 | 7960<br>7911<br>7843<br>7758<br>7656<br>7538<br>7497<br>7264<br>7105<br>6949<br>6780<br>6605<br>6426<br>6058<br>5827<br>5694<br>5512<br>5333<br>5157 |  |  |  |  |  |

## AVERAGE ULTIMATE CRUSHING LOADS.

| TIMBER. Weight Lbs.<br>per cubic foot. per sq. in. |
|----------------------------------------------------|
| Ash 48 8600                                        |
| Beech, unseasoned 53 7700                          |
| Beech, seasoned 43 9300                            |
| Çedar, unseasoned 56 5700                          |
| Cedar, seasoned 50 6500                            |
| Oak, unseasoned 54 4200                            |
| Oak, seasoned 67 6000                              |
| Pine, pitch                                        |
| Pine, yellow, unseasoned 5300                      |
| Pine, yellow, seasoned 5400                        |
| Pine, white, unseasoned 35 5000                    |
| Poplar, unseasoned 3100                            |
| Poplar, seasoned 5100                              |
| Sycamore                                           |
| Spruce, unseasoned 6500                            |
| Spruce, seasoned 6800                              |
|                                                    |
|                                                    |
| STONE AND CEMENTS. Mean-tons per sq. foot.         |
| Limestone                                          |
| Sandstone                                          |
| Brick                                              |
| Ordinary crack                                     |
| In cement                                          |
| First-class cement 60                              |
| Concrete                                           |
| Portland cement                                    |
|                                                    |

## LEAST WIDTH OF SQUARE PINE POSTS, IN INCHES. Breaking Load in Tons.

| 91      | 552.0<br>526.0<br>526.0<br>466.0<br>446.0<br>337.0<br>331.0<br>331.0<br>2249.0<br>2249.0<br>2249.0<br>189.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91      |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15      | 482.0<br>456.0<br>429.0<br>429.0<br>460.0<br>3335.0<br>274.0<br>224.0<br>224.0<br>184.0<br>167.0<br>152.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15      |
| 14      | 418.0<br>3394.0<br>3377.0<br>2570.0<br>2250.0<br>2250.0<br>182.0<br>1183.0<br>1133.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14      |
| 13      | 358.0<br>335.0<br>281.0<br>281.0<br>225.0<br>225.0<br>201.0<br>179.0<br>160.0<br>1157.0<br>103.0<br>93.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13      |
| 12      | 302.0<br>281.0<br>281.0<br>230.0<br>230.0<br>159.0<br>169.0<br>109.0<br>70.0<br>70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12      |
| II      | 251.0<br>231.0<br>207.0<br>183.0<br>160.0<br>1105.0<br>106.0<br>82.0<br>72.0<br>64.0<br>57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H       |
| OI      | 204.0<br>184.0<br>163.0<br>163.0<br>105.0<br>90.0<br>78.0<br>90.0<br>78.0<br>90.0<br>52.0<br>52.0<br>49.0<br>34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SI .    |
| 6       | 163.0<br>1024.0<br>1024.0<br>1026.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>1020.0<br>102                                                                                                                                                    | 6       |
| 00      | 125.0<br>1080<br>79.8<br>79.8<br>62.5<br>62.5<br>51.9<br>36.6<br>31.1<br>26.8<br>23.2<br>20.1<br>17.7<br>15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00      |
| 7       | 76.8<br>76.8<br>76.8<br>76.8<br>76.3<br>76.3<br>77.3<br>77.3<br>76.3<br>76.3<br>76.3<br>76.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7       |
| 9       | 8.53<br>0.17<br>0.18<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19<br>0.19                                                                                                                                                                                                                                                                                                                                                          | 9       |
| 2       | 8.04<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>10.01<br>1 | 5       |
| 4       | 22.01<br>26.01<br>26.01<br>26.02<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03<br>26.03     | 4       |
| က       | 9.9<br>9.2.2<br>0.0.2<br>1.1.1<br>1.1.0<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3       |
| Height. | FEET. 6 4 4 6 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Height. |

## STRENGTH OF TIMBER POSTS.

Formula for the ultimate strength of square or rectangular posts of moderately seasoned white and yellow pine, with ends flat and fixed:

$$P = \frac{f}{1 + \frac{I}{250} \left(\frac{l}{h}\right)^2}$$

Where P = crushing load per square inch.

f = 5000 pounds per square inch.

1 = length of post, in inches.

h = least width of post, in inches.

 $\frac{1}{h}$  = ratio of length to least width.

## WOODEN BEAMS AND GIRDERS.

From the general equation  $M_o = q$  fh S we can determine the carrying capacity of wooden beams. Now for rectangular sections, q being equal to  $2\left(\frac{r^2}{h^2}\right)$ , becomes

 $q=\frac{1}{6},$  since  $r^2,$  for rectangular section, is  $\frac{h^2}{12};$  whence the general expression becomes

$$M_o = \frac{fh S}{6}$$
 (1)

For beams uniformly loaded over their length, and supported at the ends,

$$M_o = \frac{Wl}{8} \tag{2}$$

where W is the *total* load on beam and l is the span; and this must be equated to second member of (1). Thus

$$\frac{\text{Wl}}{8} = \frac{\text{fh S}}{6} \tag{3}$$

For beams of seasoned white pine for building purposes we may take f, the extreme fibre stress, as 1200 pounds per square inch; then

$$\frac{\text{Wl}}{8} = \frac{1200}{6} \text{ h S}$$
 (4)

whence

$$Wl = 1600 h S \tag{5}$$

If 1 be taken in feet, and h in inches, and S, the area, in square inches, then (5) becomes

$$W.1' = \frac{400}{3} h S$$
 (6)

that is,

$$W = \frac{400}{3} \cdot \frac{h S}{l'}$$
 (7)

that is, the uniformly distributed total load in pounds which a beam can safely carry is (the height in inches multiplied by the area of beam in square inches, and divided by the span in feet)  $\times$  the factor  $\frac{400}{3}$ .

Now the area S = bh; whence (7) becomes

$$W = \frac{400}{3} \frac{b h^2}{l'}$$
 (8)

If in this, (8), the breadth be taken as I",

$$W = \frac{400}{3} \frac{h^2}{l'}$$
 (9)

We give a table of carrying capacities of I" broad white pine beams of varying depths for varying spans. For any beam whose width is b inches, merely multiplying the tabular number by such breadth b, and we get the capacity for the beam in question.

TABLE OF SAFE CARRYING CAPACITY, IN LBS., FOR SEASONED WHITE PINE BEAMS.

I" in width, the load being uniformly distributed, and the extreme fibre stress 1200 pounds per square inch.

|                           | 1          |       |                  |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------------|-------|------------------|------|------|------|------|------|------|------|------|------|------|
| -                         | 24         |       | 7680             | 6400 | 5484 | 4800 | 4264 | 3840 | 3492 | 3200 | 2952 | 2740 | 2560 |
|                           | 23         | 0     | 6453             | 5377 | 4609 | 4033 | 3585 | 3226 | 2933 | 2689 | 2482 | 2304 | 2151 |
|                           | 50         | 8888  | 5333             | 4444 | 3809 | 3333 | 2962 | 5995 | 2424 | 2222 | 2051 | 1905 | 1777 |
|                           | 81         | 7200  | 5400<br>4320     | 3600 | 3085 | 2700 | 2400 | 2160 | 1962 | 1800 | 1991 | 1542 | 1440 |
| INCHES.                   | 91         | \$688 | 4200             | 2844 | 2438 | 2133 | 9681 | 90/1 | 1551 | 1422 | 1313 | 1219 | 1138 |
| z                         | 14         | 4355  | 3260<br>2613     | 2177 | 9981 | 1633 | 1452 | 1306 | 8811 | 8801 | 1005 | 933  | 871  |
| ОЕРТН,                    | 12         | 3200  | 2400<br>1920     | 0091 | 1371 | 1200 | 9901 | 960  | 873  | 800  | 738  | 685  | 049  |
|                           | OI         | 2222  | 1333             | IIII | 952  | 833  | 740  | 999  | 909  | 555  | 513  | 476  | 444  |
|                           | ∞          | 1422  | 853              | 711  | 609  | 533  | 474  | 427  | 388  | 355  | 328  | 304  | 284  |
|                           | 9          | 800   | 000<br>480<br>80 | 400  | 343  | 300  | 506  | 240  | 218  | 200  |      |      |      |
|                           | 4          | 355   | 200              | 177  | 152  | 133  | 811  | 901  |      |      |      |      |      |
| Span,<br>in feet, varying | by 2 feet. | 9     | o 01             | 12   | 14   | 91   | 81   | 20   | 22   | 24   | 56   | 28   | 30   |

## SHEARING AND BEARING VALUE OF RIVETS.

Bearing value for different thicknesses of plate, at 6.0 tons per square inch.

at 3.0 inch.

rivet.

|                                                                | 1,,                                           |        |        |        |        |        |        |        |          |        |        | 000.0  | 5.375                       | 6.750          | 7.125  |
|----------------------------------------------------------------|-----------------------------------------------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|-----------------------------|----------------|--------|
|                                                                | 15"                                           |        |        |        |        |        |        |        |          |        | 5.273  | 5.625  | 5.977                       | 6.329          | 6.680  |
|                                                                | ±<br>∞ ≺1                                     |        |        |        |        |        |        |        |          | 4.592  | 4.921  | 5.250  | 5.579                       | 5.907 6.329 6. | 6.235  |
|                                                                | 13"                                           |        |        |        |        |        |        |        | 3.960    | 4.264  | 4.570  | 4.875  | 5.180                       | 5.485          | 5.789  |
| tons.                                                          | # E +                                         |        |        |        |        |        |        | 3.375  | 3.655    | 3.936  | 4.219  | 4.500  | 4.782                       | 5.062          | 5.344  |
| late $	imes$ 6.0                                               | 111"                                          |        |        |        |        |        | 2.836  | 3.092  | 3.352    | 3.608  | 3.867  | 4.125  | 4.383                       | 4.640          | 4.898  |
| ckness of p                                                    | ±c ∞                                          |        |        |        |        | 2.344  | 2.578  | 2.811  | 3.047    | 3.280  | 3.516  | 3.750  | 3.985                       | 4.219          | 4.453  |
| Diameter of rivet $	imes$ thickness of plate $	imes$ 6.0 tons. | 9 "                                           |        |        |        | 006.1  | 2,110  | 2.320  | 2.530  | 2.743    | 2.952  | 3.165  | 3.375  | 3.586                       | 3.797          | 4.007  |
| umeter of r                                                    | E913                                          |        |        | 1.500  | 1.687  | 1.875  | 2,062  | 2.249  | 2.438    | 2.624  | 2.813  | 3.000  | 3.188                       | 3.375          | 3.562  |
| ij                                                             | 16"                                           |        | 1.148  | 1.313  | 1.475  | 1.640  | 1.805  | 1.968  | 2.134    | 2.296  | 2.462  | 2.625  | 2.789                       | 2.953          | 3.117  |
|                                                                | 80/30<br>11                                   | 0.844  | 0.984  | 1.125  | 1.266  | 1.417  | 1.547  | 1.687  | 1.828    | 896.1  | 2.110  | 2.250  | 2.391                       | 2.531          | 2.672  |
|                                                                | $\frac{5}{16}$ "                              | 0.703  | 0.820  | 0.937  | 1.055  | 1.172  | 1.290  | 1.406  | 1.524    | 1.640  | 1.757  | 1.875  | 1.992                       | 2.109          | 2.227  |
|                                                                | <u>                                      </u> | 0.562  | 0.656  | 0.750  | 0.844  | 0.937  | 1.031  | 1.125  | 1.219    | 1.312  | 1.406  | 1.500  | 1.594                       | 1.688          | 1.782  |
| spear,                                                         |                                               | 0.331  | 0.451  | 0.589  | 0.745  | 0.920  | 1.114  | 1.325  | 1.555    | 1.804  | 2.071  | 2.356  | 2.660                       | 2.972          | 3.322  |
| təvir 10                                                       | seta                                          | 0.1104 | 0.1503 | 0.1963 | 0.2485 | 0.3068 | 0.3712 | 0.4418 | 0.5185   | 0.6013 | 0.6903 | 0.7854 | 0.8866                      | 0.9940         | 1.1075 |
| ter of                                                         | əmsiQ                                         | 99°90  | 16     | m[01   | 1,5    | £∆¦∞   | -19    | m   +  | mko<br>H | x -1   | 5 2    | I      | $\mathbf{I}_{\overline{1}}$ | I              | 1 3    |

## BEARING VALUES AND MOMENTS OF RESISTANCE OF PINS.

| in inches.                                                                                                                                                                                                                          | square                | Š                                        | for 1" t | ng value<br>hickness<br>earing. |                            | ats of residues $M_0 = 1$  |                            | r fibre str                 |                             |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------|----------|---------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|--|--|--|--|--|
| Diameter of pin, d, in inches.                                                                                                                                                                                                      | pin, S, in<br>inches. | vi v |          | 7.5 tons<br>per<br>sq. in.      | 7.5 tons<br>per<br>sq. in. | 8.0 tons<br>per<br>sq. in. | 9.0 tons<br>per<br>sq. in. | 10.0 tons<br>per<br>sq. in. | 12.5 tons<br>per<br>sq. in. |  |  |  |  |  |
| Diamet                                                                                                                                                                                                                              | Area of               | Diameter                                 | Values,  | Values, in tons.                |                            | Values, in inch-tons.      |                            |                             |                             |  |  |  |  |  |
| 2                                                                                                                                                                                                                                   | 3.142                 | 6.28                                     | 12,00    | 15.00                           | 5.89                       | 6.28                       | 7.07                       | 7.85                        | 9.81                        |  |  |  |  |  |
| 21/8<br>21/4                                                                                                                                                                                                                        | 3.546                 | 7.54                                     | 12.75    | 15.94                           | 7.07                       | 7.54                       | 8.48                       | 9.42                        | 11.78                       |  |  |  |  |  |
| 23/8                                                                                                                                                                                                                                | 3.976                 | 8.95                                     | 13.50    | 16.88                           | 9.86                       | 8.95                       | 10.07                      | 11.19                       | 13.99                       |  |  |  |  |  |
| 21/8                                                                                                                                                                                                                                | 4.430                 | 12.27                                    | 15.00    | 18.75                           | 11.50                      | 12.27                      | 13.81                      | 13.15                       | 10.44                       |  |  |  |  |  |
| 25%                                                                                                                                                                                                                                 | 5.412                 | 14.21                                    | 15.75    | 19.69                           | 13.32                      | 14.21                      | 15.98                      | 17.76                       | 22,20                       |  |  |  |  |  |
| 23/4                                                                                                                                                                                                                                | 5.940                 | 16.34                                    | 16.50    | 20.63                           | 15.32                      | 16.34                      | 18.38                      | 20.42                       | 25.53                       |  |  |  |  |  |
| 27/8                                                                                                                                                                                                                                | 6.492                 | 18.66                                    | 17.25    | 21.56                           | 17.49                      | 18.66                      | 20.99                      | 23.32                       | 29.15                       |  |  |  |  |  |
| 2                                                                                                                                                                                                                                   | 7.069                 | 21.21                                    | 18.00    | 22.50                           | 19.88                      | 21.21                      | 23.86                      | 26.51                       | 33.14                       |  |  |  |  |  |
| 31/8                                                                                                                                                                                                                                | 7.670                 | 23.97                                    | 18.75    | 23.44                           | 22.47                      | 23.97                      | 26.96                      | 29.96                       | 37.45                       |  |  |  |  |  |
| 3 <sup>1</sup> / <sub>8</sub><br>3 <sup>1</sup> / <sub>4</sub><br>3 <sup>3</sup> / <sub>8</sub><br>3 <sup>1</sup> / <sub>2</sub><br>3 <sup>5</sup> / <sub>8</sub><br>3 <sup>7</sup> / <sub>8</sub><br>3 <sup>7</sup> / <sub>8</sub> | 8.296                 | 26.96                                    | 19.50    | 24.38                           | 25.28                      | 26.96                      | 30.33                      | 33.70                       | 42.12                       |  |  |  |  |  |
| 33/8                                                                                                                                                                                                                                | 8.946                 | 30.19                                    | 20.25    | 25.31                           | 28.30                      | 30.19                      | 33.97                      | 37.74                       | 47.18                       |  |  |  |  |  |
| 3 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                       | 9.621                 | 33.67                                    | 21.00    | 26.25                           | 31.57                      | 33.67                      | 37.88                      | 42.09                       | 52.61                       |  |  |  |  |  |
| 378                                                                                                                                                                                                                                 | 10.321                | 37.41<br>41.42                           | 21.75    | 27.19                           | 35.09<br>38.83             | 37.4I<br>4I.42             | 46.59                      | 46.79                       | 58.49<br>64.71              |  |  |  |  |  |
| 374                                                                                                                                                                                                                                 | 11.793                | 45.70                                    | 23.25    | 29.06                           | 42.84                      | 45.70                      | 51.41                      | 51.77<br>57.12              | 71.40                       |  |  |  |  |  |
| 4                                                                                                                                                                                                                                   | 12.566                | 50.26                                    | 24.00    | 30.00                           | 47.11                      | 50.26                      | 56.54                      | 62.82                       | 78.52                       |  |  |  |  |  |
|                                                                                                                                                                                                                                     | 13.364                | 55.13                                    | 24.75    | 30.94                           | 51.68                      | 55.13                      | 62.02                      | 68.91                       | 86.14                       |  |  |  |  |  |
| 41/8<br>41/4<br>43/8<br>41/2<br>45/8<br>43/4<br>47/8                                                                                                                                                                                | 14.186                | 60.29                                    | 25.50    | 31.88                           | 56.52                      | 60.29                      | 67.82                      | 75.36                       | 94.20                       |  |  |  |  |  |
| 43/8                                                                                                                                                                                                                                | 15.033                | 65.77                                    | 26.25    | 32.81                           | 61.66                      | 65.77                      | 73.99                      | 82,21                       | 102.76                      |  |  |  |  |  |
| 41/2                                                                                                                                                                                                                                | 15.904                | 71.57                                    | 27.00    | 33.75                           | 67.09                      | 71.57                      | 80.51                      | 89.46                       | 111.83                      |  |  |  |  |  |
| 45/8                                                                                                                                                                                                                                | 16.800                | 77.70                                    | 27.75    | 34.69                           | 72.84                      | 77.70                      | 87.41                      | 97.12                       | 121.40                      |  |  |  |  |  |
| 4%                                                                                                                                                                                                                                  | 17.721                | 84.18                                    | 28.50    | 35.63                           | 78.92                      | 84.18                      | 94.70                      | 105.22                      | 131.52                      |  |  |  |  |  |
| 4/8                                                                                                                                                                                                                                 | 18,665                | 90.99                                    | 29.25    | 36.56                           | 85.30                      | 90.99                      | 102.37                     | 113.74                      | 142.18                      |  |  |  |  |  |
| 5<br>5 <sup>1</sup> /8                                                                                                                                                                                                              | 19.635                | 98.18<br>105.72                          | 30.00    | 37.50<br>38.44                  | 92.04                      | 105.72                     | 110.45                     | 122.72                      | 153.40                      |  |  |  |  |  |
| 578                                                                                                                                                                                                                                 | 21.648                | 113.65                                   | 31.50    | 39.38                           | 106.55                     | 113.65                     | 127.85                     | 142.06                      | 177.58                      |  |  |  |  |  |
| 53/4                                                                                                                                                                                                                                | 22.691                | 121.96                                   | 32.25    | 40.31                           | 114.34                     | 121.96                     | 137.21                     | 152.45                      | 190.56                      |  |  |  |  |  |
| 51/2                                                                                                                                                                                                                                | 23.758                | 130.67                                   | 33.00    | 41.25                           | 122.51                     | 130.67                     | 147.00                     | 163.34                      | 204.18                      |  |  |  |  |  |
| 55/8                                                                                                                                                                                                                                | 24,850                | 139.78                                   | 33.75    | 42.19                           | 131.04                     | 139.78                     | 157.25                     | 174.72                      | 218.40                      |  |  |  |  |  |
| 51/8<br>51/4<br>53/8<br>51/2<br>55/8<br>57/8<br>6                                                                                                                                                                                   | 25.967                | 149.31                                   | 34.50    | 43.13                           | 139.98                     | 149.31                     | 167.98                     | 186.64                      | 233.30                      |  |  |  |  |  |
| 57/8                                                                                                                                                                                                                                | 27.109                | 159.26                                   | 35.25    | 44.06                           | 149.31                     | 159.26                     | 179.17                     | 199.08                      | 248.85                      |  |  |  |  |  |
|                                                                                                                                                                                                                                     | 28.274                | 169.64                                   | 36.00    | 45.00                           | 159.04                     | 169.64                     | 190.85                     | 212.05                      | 265.06                      |  |  |  |  |  |
| 6½<br>6¼                                                                                                                                                                                                                            | 29.465                | 180.47                                   | 36.75    | 45.94                           | 169.19                     | 180.47                     | 203.03                     | 225.59                      | 281.99                      |  |  |  |  |  |
|                                                                                                                                                                                                                                     | 30.680                | 191.75                                   | 37.50    | 46.88<br>47.81                  | 179.77                     | 191.75                     | 215.72                     | 239.69                      | 299.61                      |  |  |  |  |  |
| 61/2                                                                                                                                                                                                                                | 31.919                | 203.48                                   | 38.25    | 48.75                           | 202.21                     | 215.69                     | 242.65                     | 260.61                      | 337.02                      |  |  |  |  |  |
| 65/8                                                                                                                                                                                                                                | 34.472                | 228.38                                   | 39.75    | 49.68                           | 214.10                     | 228.38                     | 256.92                     | 285.47                      | 356.84                      |  |  |  |  |  |
| 63/4                                                                                                                                                                                                                                | 35.785                | 241.55                                   | 40.50    | 50.63                           | 226.45                     | 241.55                     | 271.75                     | 301.94                      | 377.42                      |  |  |  |  |  |
| 67%                                                                                                                                                                                                                                 | 37.122                | 255.21                                   | 41.25    | 51.56                           | 239.26                     | 255.21                     | 287.11                     | 319.01                      | 398.76                      |  |  |  |  |  |
| 7<br>7 <sup>1</sup> ⁄ <sub>4</sub><br>7 <sup>1</sup> ⁄ <sub>2</sub><br>7 <sup>3</sup> ⁄ <sub>4</sub>                                                                                                                                | 38.485                | 269.40                                   | 42.00    | 52.50                           | 252.56                     | 269.40                     | 303.08                     | 336.75                      | 420.94                      |  |  |  |  |  |
| 71/4                                                                                                                                                                                                                                | 41,282                | 299.29                                   | 43.50    | 54.38                           | 280.58                     | 299.29                     | 336.70                     | 374.11                      | 467.64                      |  |  |  |  |  |
| 7/2                                                                                                                                                                                                                                 | 44.179                | 331.34                                   | 45.00    | 56.25                           | 310.63                     | 331.34                     | 372.76                     | 414.18                      | 517.73                      |  |  |  |  |  |
| 73/4                                                                                                                                                                                                                                | 47.173                | 365.60                                   | 46.50    | 58.13                           | 342.75                     | 365.60                     | 411.30                     | 457.00                      | 571.25                      |  |  |  |  |  |
| 8                                                                                                                                                                                                                                   | 50.265                | 402.12                                   | 48.00    | 60.00                           | 376.99                     | 402,12                     | 452.39                     | 502.65                      | 628.31                      |  |  |  |  |  |

## WIND PRESSURE

Upon the inclined surfaces of roofs.

If P = intensity of wind pressure in pounds per square foot upon any surface normal to its direction, and  $\phi$  = angle made by roof surface with the direction of wind, then the normal pressure on the roof surface is given by

$$P_n = P. \sin \phi.$$
 1.84  $\cos \phi - 1.$ 

Let P<sub>h</sub>, P<sub>v</sub>, be the components of this normal force P<sub>n</sub>, parallel and perpendicular respectively, to the direction of wind; then

$$P_h = P_n$$
 sin  $\phi$ , and  $P_v = P_n$  cos  $\phi$ .

If P be assumed to blow horizontally, then  $\phi$  is angle made by roof surface with the horizontal, and  $P_n$  is perpendicular to roof surface, and  $P_h$  and  $P_v$  are respectively parallel and perpendicular to direction of wind,—that is, respectively horizontal and vertical wind forces.

## TABLE OF NORMAL PRESSURES

And vertical and horizontal components for varying inclinations of roof surface to direction of wind, when P=40 pounds.

| Angle of roof.                                      | Pounds per square foot of surface.                         |                                                            |                                                           |  |  |  |  |  |  |  |  |
|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|--|
| Angio of Tool.                                      | $P_{\rm n}$                                                | $P_{v}$                                                    | $P_{\mathrm{h}}$                                          |  |  |  |  |  |  |  |  |
| 5°<br>10°<br>20°<br>30°<br>40°<br>50°<br>60°<br>70° | 5.0<br>9.7<br>18.1<br>26.4<br>33.3<br>38.1<br>40.0<br>41.0 | 4.9<br>9.6<br>17.0<br>22.8<br>25.5<br>24.5<br>20.0<br>14.0 | 0.4<br>1.7<br>6.2<br>13.2<br>21.4<br>29.2<br>34.0<br>38.5 |  |  |  |  |  |  |  |  |

## TABLE OF MULTIPLIERS

For any wind intensity p pounds per square foot.

| Angle of roof, $\phi$ .                                                                                                                                       | 5°.                     | 10°. | 200. | 30°. | 40°. | 50°. | 60°. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|------|------|------|------|------|
| $\begin{aligned} p_n &= p \text{ (the wind unit)} \times \\ p_v &= p \text{ (the wind unit)} \times \\ p_h &= p \text{ (the wind unit)} \times \end{aligned}$ | 0.125<br>0.122<br>0.010 | 0.24 | 0.42 | 0.57 | 0.64 | 0.61 | 0.50 |

Thus, for instance, if the angle of roof to the horizontal be 20°, and the wind be assumed as blowing horizontally, we find, from preceding table, that the force of wind normal to roof surface is 18.1 pounds per square foot, the horizontal and vertical components of which are respectively 17.0 pounds per square foot and 6.2 pounds per square foot.

The horizontal component tends to turn the roof framing about the leeward side considered as a fulcrum, and also to slide it off the walls; the vertical component acts as a one-sided load on the windward side of roof trusses. The trusses and framing should be proportioned to resist these eccentric loadings, and not for a *uniform* load distributed over *whole* surface of roof.

Usually, the computation of the stresses is most quickly done by means of the Graphical method.

## WEIGHT OF ROOF COVERINGS

In pounds per square foot.

|                                                        | Lbs. |
|--------------------------------------------------------|------|
| Slate, $\frac{3}{16}$ " thick, on I" boards            | 10.0 |
| Slate, $\frac{1}{8}''$ thick, on $\mathbf{I}''$ boards | 7.5  |
| Corrugated iron, No. 20, on I" boards                  | 6.0  |
| Felt on boards, 3 ply, on I" boards =                  | 3.5  |
| Tin on I" boards                                       | 4.0  |

|                           |  |  |  |  |  |  | Lbs. |
|---------------------------|--|--|--|--|--|--|------|
| Slate on <b>T</b> purlins |  |  |  |  |  |  | 12.0 |
| Corrugated iron and laths |  |  |  |  |  |  |      |
| Slate or iron laths       |  |  |  |  |  |  | 10.0 |

When slate is used on purlins of  $\mathbf{T}$  irons, the purlins should be  $2 \times 2 \times \frac{1}{4}$ , 10 pounds per yard, and spaced from 10" to 12" apart, the spacing between rafters (jacks and principals, or between jacks and jacks) should be about 5 feet.

## ANGLES OF ROOFS.

| Proportion of rise to span. | Angle.                                   | Slope.                       | Proportion of rise to span.                                     | Angle.                        | Slope.                           |
|-----------------------------|------------------------------------------|------------------------------|-----------------------------------------------------------------|-------------------------------|----------------------------------|
| 1/6<br>1/4<br>1/3<br>1/2    | 18° 25′<br>26° 35′<br>33° 42′<br>45° 00′ | 3 to 1 2 to 1 1½ to 1 1 to 1 | <sup>2</sup> / <sub>3</sub><br><sup>3</sup> / <sub>4</sub><br>1 | 53° 00′<br>56° 20′<br>63° 30′ | 3/4 to 1<br>2/3 to 1<br>1/2 to 1 |



260



## TABLES OF WEIGHTS

COMPILED FROM VARIOUS SOURCES.



## WEIGHT OF BAR IRON.

| Size, in inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Square bar,<br>1 foot long. | Round bar,<br>1 foot long. | Area, in [] inches. | Area,<br>in () inches. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|---------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                            |                     |                        |
| 1 6 + 6 5 16 + 4 5 6 2 8 7 6 + 3 6 1 2 8 1 6 5 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 8 1 2 6 | 0.0132                      | 0.0104                     | 0.0039              | 0.0031                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0526<br>0.1184            | 0.0414                     | 0.0156              | 0.0123<br>0.0276       |
| $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2105                      | 0.1653                     | 0.0625              | 0.0270                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3290                      | 0.2583                     | 0.0976              | 0.0767                 |
| 1 6<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4736                      | 0.3720                     | 0.1406              | 0.1104                 |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6446                      | 0.5063                     | 0.1914              | 0.1503                 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8420                      | 0.6612                     | 0.2500              | 0.1963                 |
| <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0660                      | 0.8370                     | 0.3166              | 0.2485                 |
| <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3160                      | 1.0330                     | 0.3906              | 0.3068                 |
| $\frac{1}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5920                      | 1.2500                     | 0.4727              | 0.3712                 |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8950                      | 1.4880                     | 0.5625              | 0.4418                 |
| $\frac{13}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2230                      | 1.7460                     | 0.6603              | 0.5185                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5790                      | 2.0250                     | 0.7656              | 0.6013                 |
| $\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9600                      | 2.3250                     | 0.8790              | 0.6903                 |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3680                      | 2.6450                     | 1.0000              | 0.7854                 |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.8030                      | 2.9860                     | 1.1290<br>1.2660    | 0.8868                 |
| 8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2630<br>4.7500            | 3.3480                     | I.4090              | 0.9940<br>1.1070       |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.2630                      | 3.7270<br>4.1330           | 1.5620              | 1.1070                 |
| 4<br>5_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8020                      | 4.5570                     | 1.7230              | 1.3530                 |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.3680                      | 5.0010                     | 1.8910              | 1.4850                 |
| 116<br>118 316 44 51638876 122 916 58 8116 524 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.9600                      | 5.4660                     | 2.0670              | 1.6230                 |
| 1 6<br>1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.5780                      | 5.9520                     | 2.2500              | 1.7670                 |
| <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.2230                      | 6.4530                     | 2.4390              | 1.9160                 |
| 5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8970                      | 6.9850                     | 2.6410              | 2.0740                 |
| $\frac{1}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.6460                      | 7.5780                     | 2.8640              | 2.2500                 |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3100                     | 8.1010                     | 3.0630              | 2.4050                 |
| $\frac{1}{1}\frac{3}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.0700                     | 8.6930                     | 3.2870              | 2.5810                 |
| <u>\frac{7}{8}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.8400                     | 9.3000                     | 3.5160              | 2.7610                 |
| $\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.6400                     | 9.9300                     | 3.7520              | 2.9480                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.4700                     | 10.5800                    | 4.0000              | 3.1420                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.2100                     | 11.9500                    | 4.5160<br>5.0620    | 3.5460                 |
| 4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.0500                     | 13.2900                    | 5.6400              | 3.9760                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.0500                     | 14.9200<br>16.5300         | 6.2500              | 4.4300<br>4.9080       |
| 2<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.2100                     | 18.2300                    | 6.8890              | 5.4120                 |
| <del>(</del> Φ π(4°0) Φπ(24π) Φ∞(4°1- Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.4700                     | 20.0100                    | 7.5600              | 5.9390                 |
| 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.8400                     | 21.8700                    | 8.2640              | 6.4920                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.3100                     | 23.8100                    | 9.0000              | 7.0690                 |
| 1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.8900                     | 25.8300                    | 9.7640              | 7.6700                 |
| 1 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.5700                     | 27.9400                    | 10.5610             | 8.2960                 |
| 1814<br>381<br>122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.3600                     | 30.1300                    | 11.3880             | 8.9460                 |
| $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41.2600                     | 32.4100                    | 12.2500             | 9.6210                 |

## WEIGHT OF BAR IRON.

## TABLE GIVING DIMENSIONS OF UPSET ENDS

And weights of clevises and sleeve nuts for round and square bars.

## ROUND BARS.

|                                                                                                      |                                                                                                                                    |                                                                                                                                              |                                                    | DAN                                                                                   | •                                                                       |                                            |                                                                             |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------|
|                                                                                                      | Bar.                                                                                                                               |                                                                                                                                              |                                                    | Upset en                                                                              | ds.                                                                     | Weight of<br>and sl<br>nuts for up         | eeve                                                                        |
| Diameter<br>of round, in<br>inches.                                                                  | Weight<br>per foot,<br>in lbs.                                                                                                     | Area.                                                                                                                                        | Diameter<br>of upset,<br>in inches.                | Length<br>of upset,<br>in inches.                                                     | Iron required<br>to make upset,<br>in inches.                           | One<br>clevise,<br>in 1bs.                 | One<br>sleeve,<br>in lbs.                                                   |
| Charton libriardia-isosiacharia diatardia-isosiacharia tratardia-isosiacharia tratardia-isosiacharia | 1.50<br>2.00<br>2.65<br>3.35<br>4.13<br>5.00<br>6.00<br>7.00<br>8.10<br>9.30<br>10.60<br>12.00<br>13.30<br>15.00<br>16.50<br>18.20 | 0.441<br>0.601<br>0.785<br>0.994<br>1.227<br>1.484<br>1.767<br>2.073<br>2.405<br>2.761<br>3.141<br>3.546<br>3.976<br>4.430<br>4.908<br>5.411 | I 1/2元/中の次元/公元/公元/公元/公元/公元/公元/公元/公元/公元/公元/公元/公元/公元 | 4<br>4<br>4<br>4 and 6<br>4 and 6<br>4 and 6<br>4 and 6<br>6<br>6<br>6<br>6<br>6<br>6 | 3½ 3 2 24 2 and 3 2 2 2 2 4 2 and 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 501/21/21/21/21/21/21/21/21/21/21/21/21/21 | 55<br>88<br>89<br>12<br>13<br>146<br>16<br>16<br>18<br>18<br>25<br>30<br>30 |

### SQUARE BARS.

|                                       | Bar.                                                                                                                                      |                                                                                                                              |                                       | Upset en                              | ds.                                           | Weight of cleve<br>and sleeve<br>nuts for upset e                                                        |                                                                                           |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| Size<br>of bar, in<br>inches.         | Weight<br>per foot,<br>in lbs.                                                                                                            | Area.                                                                                                                        | Diameter<br>of upset,<br>in inches.   | Length<br>of upset,<br>in inches.     | Iron required<br>to make upset,<br>in inches. | One<br>clevise,<br>in lbs.                                                                               | One<br>sleeve,<br>in lbs.                                                                 |  |  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.89<br>2.57<br>3.36<br>4.26<br>5.26<br>5.80<br>6.36<br>6.96<br>7.57<br>8.22<br>8.89<br>9.64<br>10.31<br>11.07<br>11.84<br>12.64<br>13.47 | 0.5625<br>0.7656<br>1.000<br>1.266<br>1.562<br>1.725<br>1.891<br>2.067<br>2.250<br>2.439<br>2.641<br>3.063<br>3.287<br>3.516 | I   I   I   I   I   I   I   I   I   I | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4       | 6197.44<br>7.44<br>9 1334.63<br>1334.63<br>1334.62<br>204.62<br>2514.62<br>2554.62<br>2554.62<br>2554.63 | 5<br>8<br>9<br>12<br>13<br>13<br>16<br>16<br>16<br>18<br>18<br>25<br>25<br>25<br>25<br>30 |  |  |

## WEIGHT OF WROUGHT-IRON BARS.

## WEIGHT OF WROUGHT-IRON FLATS.

| 17 1/2 1/8 110 110 110 110 110 110 110 110 110 11 |
|---------------------------------------------------|
| 7.58 8.84 10.10                                   |
| 7.90 9.21 10.53 11.84 13.16 14.47                 |
| 8.21 9.58 10.94 12.30 13.68 15.04                 |
| 8.53 9.95 II.36 I2.78 I4.2I                       |
| 8.84 IO.32 II.79 I3.36 I4.74                      |
| 9.16 10.68 12.21 13.74 15.26                      |
| 9.48 11.06 12.64 14.22 15.78                      |
| 9.79 11.42 13.06 14.69 16.31                      |
| 10.10 II.78 13.48 15.16 16.84                     |
| 10.42 12.16 13.89 15.63 17.37                     |
| 10.74 12.52 14.32 16.11 17.90                     |
| 11.05   12.89   14.74   16.58   18.42             |
| 11.36 13.26 15.16 17.06 18.95                     |
| 11.68 13.63 15.58 17.53 19.47                     |
| 12.00 14.00 16.00 18.00 20.00                     |
| 12.32 14.37 16.42 18.47 20.53                     |
| 12.64 14.74 16.84 18.94 21.05                     |
| 12.95 15.11 17.26 19.42 21.58                     |
| 13.26 15.48 17.68 19.89 22.10                     |
| 13.58 15.84 18.10 20.36 22.63                     |
| 16.21 18.52 20.84 23.16                           |
| 14.21 16.58 18.94 21.31 23.68                     |
| 14.52 16.94 19.36 21.78 24.20                     |
| 14.84 17.31 19.78 22.25 24.73                     |
| 15 16 17 68 20.20 22.72 25.26                     |

# WEIGHTS FOR PLATES OVER TWELVE INCHES WIDE.

| Width         | Tant.     | 13    | 14    | 15    | 91    | ĹΙ    | 81    | 61    | 20    | 21    | 22    | 23    | 24    | 25    | 56    | 27    | 28    | 29    | 30     | 31     | 32     | 33     | 34     | 35     | 36     |
|---------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
|               | 1         | 43.76 | 47.16 | 50.53 | 53.88 | 57.25 | 60.62 | 63.99 | 67.36 | 71.73 | 74.08 | 77.45 | 80.80 | 84.17 | 87.54 | 16.06 | 94.32 | 69.76 | 90.101 | IO4.43 | 107.70 | 111.13 | 114.50 | 117.87 | 121.24 |
|               | F) = 0101 | 41.04 | 44.22 | 47.38 | 50.52 | 53.68 | 56.84 | 00,00 | 62.16 | 65.32 | 69.48 | 73.64 | 75.76 | 78.92 | 82.07 | 85.23 | 88.44 | 91.60 | 94.75  | 16.76  | 101.04 | 104.20 | IO7.35 | 110.51 | 113.68 |
|               | 1/8       | 38.32 | 41.28 | 44.23 | 47.16 | 50.11 | 53.04 | 55.99 | 58.96 | 16.19 | 64.82 | 67.77 | 70.72 | 73.67 | 19.92 | 79.56 | 82.56 | 85.51 | 88.45  | 91.40  | 95.32  | 98.27  | 101.21 | 91.401 | 80.901 |
|               | 1103      | 35.56 | 38.30 | 41.04 | 43.76 | 46.50 | 49.30 | 52.04 | 54.72 | 57.46 | 60.20 | 62.94 | 65.68 | 68.42 | 71.15 | 73.89 | 26.60 | 79.34 | 82.07  | 84.81  | 87.52  | 90.26  | 92.99  | 95.73  | 98.60  |
| ES.           | 34        | 32.84 | 35.36 | 37.89 | 40.40 | 42.93 | 45.50 | 48.03 | 50.52 | 53.05 | 55.56 | 58.09 | 60.64 | 63.17 | 62.69 | 68.22 | 70.72 | 73.25 | 75.77  | 78.30  | 80.80  | 83.33  | 85.85  | 88.38  | 91.00  |
| -NCH          | 11        | 30.08 | 32.42 | 34.74 | 37.04 | 39.36 | 41.70 | 44.02 | 46.30 | 48.62 | 50.96 | 53.28 | 55.56 | 57.88 | 61.09 | 62.51 | 64.84 | 67.16 | 69.47  | 71.79  | 74.08  | 76.40  | 78.71  | 81.03  | 83.40  |
| THICKNESS, IN | %<br>%    | 27.36 | 29.48 | 31.59 | 33.68 | 35.79 | 37.90 | 40.01 | 42.10 | 44.21 | 46.32 | 48.43 | 50.52 | 52.63 | 54.73 | 56.84 | 58.96 | 61.07 | 63.17  | 65.28  | 67.36  | 69.47  | 71.57  | 73.68  | 75.80  |
| ICKN          | e 1 6     | 24.60 | 26.72 | 28.61 | 30.32 | 32.21 | 34.12 | 36.01 | 37.88 | 39.77 | 41.68 | 43.57 | 45.44 | 47.33 | 49.23 | 51.12 | 53.44 | 55.33 | 57.23  | 59.12  | 60.64  | 62.53  | 64.43  | 66.32  | 68.24  |
| H             | 74        | 21.88 | 23.58 | 25.26 | 26.96 | 28.64 | 30.32 | 32,00 | 33.68 | 35.36 | 37.04 | 38.72 | 40.40 | 42.08 | 43.77 | 45.45 | 47.16 | 48.84 | 50.53  | 52.21  | 53.92  | 55.60  | 57.29  | 58.97  | 60.64  |
|               | 16        | 19.15 | 20.64 | 22.11 | 23.56 | 25.03 | 26.52 | 27.99 | 29.48 | 31.95 | 32.42 | 33.89 | 35.38 | 36.85 | 38.33 | 39.80 | 41.28 | 42.75 | 44.23  | 45.70  | 47.12  | 48.59  | 50.07  | 51.54  | 53.04  |
|               | %%        | 16.42 | 17.68 | 18.94 | 20,20 | 21.46 | 22.72 | 23.98 | 25.28 | 26.54 | 27.80 | 29.06 | 30.32 | 31.58 | 32.85 | 34.11 | 35.36 | 36.62 | 37.89  | 39.15  | 40.40  | 41.66  | 42.93  | 44.19  | 45.44  |
|               | 16        | 13.69 | 14.72 | 15.77 | 16.84 | 17.89 | 96.81 | 20,01 | 21.04 | 22.00 | 23.16 | 24.21 | 25.28 | 26.33 | 27.39 | 28.44 | 29.44 | 30.49 | 31.55  | 32.60  | 33.68  | 34.73  | 35.79  | 36.84  | 37.92  |
|               | 74        | 10.94 | 11.78 | 12.62 | 13.46 | 14.30 | 15.16 | 00'91 | 16.84 | 17.68 | 18.52 | 19.36 | 20,20 | 21.04 | 21.88 | 22.72 | 23.56 | 24.40 | 25.24  | 26.08  | 26.92  | 27.76  | 28.60  | 29.44  | 30.32  |
| WE 341        | widin.    | 13    | 14    | 15    | 91    | 17    | 18    | 61    | 20    | 21    | 22    | 23    | 24    | 25    | 56    | 27    | 28    | 29    | 30     | 31     | 32     | 33     | 34     | 35     | 36     |

## WEIGHTS FOR PLATES OVER TWELVE INCHES WIDE.

| Width    |      | 37     | 38     | 39     | 40     | 41     | 42     | 43     | 44     | 45     | 46     | 47     | 48     | 49     | 50     | 51      | 52     | 53     | 54     | 55     | 26     | 57       | 58     | 59     | 9      |
|----------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|----------|--------|--------|--------|
|          | 1    | 124.61 | 128.00 | 131.37 | 134.72 | 138.09 | 141.46 | 144.83 | 148.08 | 151.45 | 154.82 | 158.19 | 161.60 | 164.97 | 168.34 | 171.71  | 175.08 | 178.45 | 181.82 | 185.19 | 188.64 | 192.01   | 195.38 | 198.75 | 202.12 |
|          | 16   | 116.84 | 120,00 | 123.10 | 124.32 | 127.48 | 130.63 | 133.79 | 138.96 | 142,12 | 145.27 | 148.43 | 151.52 | 154.68 | 157.83 | 160.091 | 164.14 | 167.30 | 170.55 | 173.71 | 176.88 | 180.04   | 183.19 | 186.35 | 189.50 |
|          | 7%   | 109.03 | 112.00 | 114.95 | 117.92 | 120.87 | 123.81 | 126.76 | 129.64 | 132.59 | 135.53 | 138.48 | 141.44 | 144.39 | 147.33 | 150.28  | 153.22 | 156.17 | 159.11 | 162.06 | 165.12 | . 20.891 | 171.01 | 173.96 | 176.90 |
|          | 113  | 101.34 | 104.00 | 100.74 | 109.44 | 112.18 | 16.91  | 117.65 | 120.40 | 123.14 | 125.87 | 128.61 | 131.36 | 134.10 | 136.83 | 139.57  | 142.30 | 145.04 | 147.77 | 150.51 | 153.20 | 155.94   | 158.67 | 161.41 | 164.14 |
| ES.      | 25/4 | 93.53  | 96.00  | 98.53  | 101.04 | 103.57 | 106.09 | 108.62 | 111.12 | 113.65 | 116.17 | 118.70 | 121.28 | 123.81 | 126.33 | 128.86  | 131.38 | 133.91 | 136.43 | 138.96 | 141.44 | 143.97   | 146.49 | 149.02 | 151.54 |
| - NCH    | 19   | 85.72  | 88.00  | 90.32  | 92.60  | 94.92  | 97.23  | 99.55  | 101.92 | 104.24 | 106.55 | 108.87 | 111.12 | 113.42 | 115.75 | 118.07  | 120.38 | 122.70 | 125.0I | 127.33 | 129.64 | 131.96   | 134.27 | 136.59 | 138.90 |
| . SS, IN | %    | 16.77  | 80.00  | 82.II  | 84.20  | 86.31  | 88.41  | 90.52  | 92.64  | 94.75  | 96.85  | 98.96  | 101.04 | 103.15 | 105.25 | 107.36  | 109.46 | 111.57 | 113.67 | 115.78 | 117.92 | 120.03   | 122.13 | 124.24 | 126.34 |
| THICKNES | 16   | 70.13  | 72.00  | 71.89  | 75.76  | 77.65  | 79.55  | 81.44  | 83.36  | 85.25  | 88.15  | 89.04  | 90.88  | 92.77  | 94.67  | 96.56   | 98.46  | 100.35 | 102.25 | 104.14 | 106.88 | 108.77   | 110.67 | 112.46 | 114.46 |
| H        | 17%  | 62.32  | 64.00  | 05.08  | 92.29  | 69.04  | 70.73  | 72.41  | 74.08  | 75.76  | 77.45  | 79.13  | 80.80  | 82.48  | 84.17  | 85.85   | 87.54  | 89.22  | 90.91. | 92.59  | 94.32  | 96.00    | 69.76  | 99.37  | 90'101 |
|          | 7 16 | 54.51  | 26.00  | 57.47  | 58.96  | 60.43  | 16.19  | 63.38  | 64.84  | 16.99  | 62.29  | 69.26  | 20.76  | 72.23  | 73.71  | 75.18   | 26.66  | 78.13  | 19.62  | 81.08  | 82.56  | 84.03    | 85.51  | 86.98  | 88.46  |
|          | %    | 46.70  | 48.00  | 49.20  | 50.56  | 51.82  | 53.09  | 54.35  | 55.60  | 56.86  | 58.13  | 59.39  | 60.64  | 61.90  | 63.17  | 64.43   | 65.70  | 96.99  | 68.23  | 69.49  | 70.72  | 71.98    | 73.25  | 74.51  | 75.78  |
|          | 16   | 38.97  | 40.00  | 41.05  | 42.08  | 43.13  | 44.19  | 45.24  | 46.32  | 47.37  | 48.43  | 49.48  | 50.56  | 51.61  | 52.67  | 53.73   | 54.78  | 55.83  | 26.89  | 57.94  | 58.88  | 59.93    | 66.09  | 62.04  | 63.10  |
|          | 1/4  | 31.16  | 32.00  | 32.04  | 33.68  | 34.52  | 35.36  | 36.20  | 37.04  | 37.88  | 38.72  | 39.56  | 40.40  | 41.24  | 42.08  | 42.92   | 43.74  | 44.58  | 45.42  | 46.26  | 47.12  | 47.96    | 48.80  | 49.64  | 50.48  |
| Width    |      | 37     | 338    | 39     | 40     | 41     | 42     | 43     | 44     | 45     | 46     | 47     | 48     | 49     | 20     | 51      | 52     | 53     | 54     | 55     | 20     | 57       | 28     | 26     | 8      |

WEIGHT OF

## BARS OVER ONE INCH IN THICKNESS,

Per lineal foot of length.

| in inches.                                          |     |      | WIDT | -H, II | N INC | HES.         |      |      | in inches.                                          |
|-----------------------------------------------------|-----|------|------|--------|-------|--------------|------|------|-----------------------------------------------------|
| Thickness, in inches.                               | I   | 2    | 3    | 4      | 5     | 6            | 7    | 8    | Thickness, in inches.                               |
| $I_{\frac{1}{16}}$                                  | 3.6 | 7.2  | 10.7 | 14.3   | 17.9  | 21.5         | 25.0 | 28.6 | $I\frac{1}{16}$                                     |
| I 1/8                                               | 3.8 | 7.6  | 11.4 | 15.2   | 19.0  | 22.7         | 26.5 | 30.4 | $1\frac{1}{8}$                                      |
| $I\frac{3}{16}$                                     | 4.0 | 8.0  | 12.0 | 16.0   | 20.0  | 24.0         | 28.0 | 32.0 | $1\frac{3}{16}$                                     |
| $I_{\frac{1}{4}}$                                   | 4.2 | 8.4  | 12.6 | 16.8   | 2I.I  | 25.3         | 29.5 | 33.6 | $\mathbf{I}_{4}^{1}$                                |
| $\mathbf{I} \frac{5}{16}$                           | 4.5 | 8.9  | 13.3 | 17.7   | 22.I  | 26.5         | 31.0 | 35.4 | $\mathbf{I}\tfrac{5}{16}$                           |
| $1\frac{3}{8}$                                      | 4.7 | 9.3  | 13.9 | 18.5   | 23.2  | 27.8         | 32.4 | 37.0 | $1\frac{3}{8}$                                      |
| $I\frac{7}{16}$                                     | 4.9 | 9.7  | 14.5 | 19.4   | 24.2  | 29.I         | 33.9 | 38.8 | $1\frac{7}{16}$                                     |
| $\mathbf{I}_{\frac{1}{2}}^{\frac{1}{2}}$            | 5.1 | 10.1 | 15.2 | 20.2   | 25.3  | 30.3         | 35.4 | 40.4 | $I\frac{1}{2}$                                      |
| $I\frac{9}{16}$                                     | 5.3 | 10.6 | 15.8 | 2I.I   | 26.3  | 31.6         | 36.9 | 42.2 | $I\frac{9}{16}$                                     |
| I 5/8                                               | 5.5 | 10.9 | 16.4 | 21.9   | 27.4  | 32.8         | 38.3 | 43.8 | 1 <del>5</del> /8                                   |
| $\mathbf{I}\frac{1}{1}\frac{1}{6}$                  | 5.7 | 11.4 | 17.0 | 22.7   | 28.4  | 34. <b>I</b> | 39.8 | 45.4 | $\mathbf{I}_{\frac{1}{1}\frac{1}{6}}^{\frac{1}{6}}$ |
| $1\frac{3}{4}$                                      | 5.9 | 11.8 | 17.6 | 23.6   | 29.5  | 35.6         | 41.3 | 47.2 | $1\frac{3}{4}$                                      |
| $I_{\frac{1}{1}\frac{3}{6}}$                        | 6.1 | 12.2 | 18.3 | 24.4   | 30.5  | 36.6         | 42.7 | 48.8 | $\mathbf{I}\frac{1}{1}\frac{3}{6}$                  |
| I 7/8                                               | 6.3 | 12.6 | 18.9 | 25.3   | 31.5  | 37.9         | 44.2 | 50.6 | $I\frac{7}{8}$                                      |
| $\mathbf{I}_{\frac{1}{1}\frac{5}{6}}^{\frac{1}{6}}$ | 6.5 | 13.0 | 19.6 | 26.1   | 32.6  | 39.2         | 45.7 | 52.2 | $\mathbf{I}\tfrac{1}{1}\tfrac{5}{6}$                |
| 2                                                   | 6.7 | 13.4 | 20.2 | 26.9   | 33.7  | 40.4         | 47.2 | 53.8 | 2                                                   |

## BOLTS, WITH SQUARE HEADS AND NUTS.

Weight of one hundred of the enumerated sizes.

HOOPES & TOWNSEND, PHILADELPHIA.

| Length,<br>in inches.                                                              | 1/4"                                         | 3/8"                                                                                                              | 1/2"                                                                                                                                                                             | 5/8"                                                                                                                                                                         | 3/4"                                                                                                                                                   | ½"                                                                                                                             | 1"                                                                                     | 11/8"                                                                                                    |
|------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 11 in incides:  11/4 2 2 2 2/4 2 2/4 3 3/2 4 4/2 5 5/2 6 61/2 7 7/2 8 9 9 10 11 12 | 4.16<br>4.22<br>4.75<br>5.34<br>5.97<br>6.50 | 10.62<br>11.72<br>12.38<br>12.90<br>14.69<br>16.47<br>17.87<br>18.94<br>20.59<br>21.69<br>23.62<br>25.81<br>26.87 | 23.87<br>25.06<br>26.44<br>28.62<br>29.50<br>31.16<br>39.75<br>42.50<br>44.87<br>48.81<br>51.38<br>53.31<br>56.87<br>59.12<br>61.87<br>64.44<br>70.50<br>77.00<br>82.88<br>86.37 | 39.31<br>41.38<br>45.69<br>49.50<br>51.25<br>53.00<br>63.12<br>74.87<br>79.62<br>83.00<br>87.88<br>92.38<br>96.88<br>99.87<br>105.75<br>109.50<br>118.12<br>128.13<br>136.19 | 73.62<br>76.00<br>79.75<br>83.00<br>85.38<br>93.44<br>108.12<br>113.12<br>122.00<br>128.62<br>131.75<br>145.50<br>145.50<br>150.62<br>160.62<br>195.13 | 127.25<br>140.56<br>148.37<br>158.76<br>174.88<br>204.25<br>214.69<br>228.44<br>235.31<br>239.88<br>258.12<br>276.18<br>295.69 | 228.0<br>239.0<br>250.0<br>261.0<br>272.0<br>294.0<br>305.0<br>316.0<br>360.0<br>382.0 | 296.0<br>310.0<br>324.0<br>338.0<br>352.0<br>366.0<br>370.0<br>384.0<br>398.0<br>426.0<br>454.0<br>482.0 |
| 13                                                                                 |                                              |                                                                                                                   | 92.00                                                                                                                                                                            | 155.50<br>163.58                                                                                                                                                             | 219.37                                                                                                                                                 | 335.81<br>351.88                                                                                                               | 426.0                                                                                  | 538.0<br>566.0                                                                                           |
| 14<br>15                                                                           |                                              |                                                                                                                   | 103.25                                                                                                                                                                           | 170.75                                                                                                                                                                       | 249.06                                                                                                                                                 | 391.75                                                                                                                         | 470.0                                                                                  | 594.0                                                                                                    |

## Franklin Institute Standard Sizes

## SQUARE AND HEXAGON NUTS.

Number of each size in 100 lbs. These nuts are chamfered and trimmed.

HOOPES & TOWNSEND, PHILADELPHIA.

| Width.                                                                          | Thickness.                                 | Hole.                                  | Size of bolt.                              | No. of square.       | No. of hexagon.      |
|---------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|--------------------------------------------|----------------------|----------------------|
| 12<br>19<br>32<br>11                                                            | 14<br>5<br>16<br>3                         | 1 3<br>6 4<br>1<br>4                   | 14<br>5<br>16<br>38<br>7<br>16             | 8140<br>3000<br>2320 | 9300<br>6200<br>3120 |
| 16<br>25<br>25<br>7<br>8<br>31<br>32                                            | 1601871648918<br>11-1809185186348718       | 16<br>153<br>153<br>152<br>209<br>264  |                                            | 1940<br>1180<br>920  | 2200<br>1350<br>1000 |
| $ \begin{array}{c} 1\frac{1}{16} \\ 1\frac{1}{4} \\ 1\frac{7}{16} \end{array} $ | 5 23 417 3                                 | 00000000000000000000000000000000000000 | (57 9.)6<br>(57 9.)45/(57)45-(50           | 738<br>420<br>280    | 830<br>488<br>309    |
| 1 1 1 3 1 1 6 2 2                                                               | I<br>I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3 ½<br>1 5<br>1 6<br>1 1 6             | I<br>I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 180<br>130<br>96     | 216<br>148<br>111    |
| $2\frac{3}{16}$ $2\frac{3}{8}$                                                  | 18<br>11/2                                 | 1 3 2<br>1 3 2                         | 18<br>112                                  | 7º<br>60             | 85<br>70             |

## WEIGHT OF RIVETS.

Per hundred. Length from under head.

| Length,                                                                       | DIAMETER, IN INCHES. |      |       |       |       |       |       |       |  |  |  |
|-------------------------------------------------------------------------------|----------------------|------|-------|-------|-------|-------|-------|-------|--|--|--|
| in<br>inches.                                                                 | 3/8                  | 1/2  | 5/8   | 3/4   | 7∕8   | ī     | 11/8  | 11/4  |  |  |  |
| I 1 1 1 1 2 1 3 1 3 2                                                         | 5.4                  | 12.6 | 21.5  | 28.7  | 43.I  | 65.3  | 91.5  | 123.0 |  |  |  |
|                                                                               | 6.2                  | 13.9 | 23.7  | 31.8  | 47.3  | 70.7  | 98.4  | 133.0 |  |  |  |
|                                                                               | 6.9                  | 15.3 | 25.8  | 34.9  | 51.4  | 76.2  | 105.0 | 142.0 |  |  |  |
|                                                                               | 7.7                  | 16.6 | 27.9  | 37.9  | 55.6  | 81.6  | 112.0 | 150.0 |  |  |  |
| $ \begin{array}{c} 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \end{array} $ | 8.5                  | 18.0 | 30.0  | 41.0  | 59.8  | 87.1  | 119.0 | 159.0 |  |  |  |
|                                                                               | 9.2                  | 19.4 | 32.2  | 44.I  | 63.0  | 92.5  | 126.0 | 167.0 |  |  |  |
|                                                                               | 10.0                 | 20.7 | 34.3  | 47.I  | 68.1  | 98.0  | 133.0 | 176.0 |  |  |  |
|                                                                               | 10.8                 | 22.1 | 36.4  | 50.2  | 72.3  | 103.0 | 140.0 | 184.0 |  |  |  |
| 3 <sup>1</sup> / <sub>4</sub>                                                 | 11.5                 | 23.5 | 38.6  | 53·3  | 76.5  | 109.0 | 147.0 | 193.0 |  |  |  |
| 3 <sup>1</sup> / <sub>2</sub>                                                 | 12.3                 | 24.8 | 40.7  | 56·4  | 80.7  | 114.0 | 154.0 | 201.0 |  |  |  |
| 3 <sup>3</sup> / <sub>4</sub>                                                 | 13.1                 | 26.2 | 42.8  | 59·4  | 84.8  | 120.0 | 161.0 | 210.0 |  |  |  |
| 4                                                                             | 13.8                 | 27.5 | 45.0  | 62.5  | 89.0  | 125.0 | 167.0 | 218.0 |  |  |  |
| 4 <sup>1</sup> / <sub>4</sub>                                                 | 14.6                 | 28.9 | 47.I  | 65.6  | 93.2  | 131.0 | 174.0 | 227.0 |  |  |  |
| 4 <sup>1</sup> / <sub>2</sub>                                                 | 15.4                 | 30.3 | 49.2  | 68.6  | 97.4  | 136.0 | 181.0 | 236.0 |  |  |  |
| 4 <sup>3</sup> / <sub>4</sub>                                                 | 16.2                 | 31.6 | 51.4  | 71.7  | 102.0 | 142.0 | 188.0 | 244.0 |  |  |  |
| 5                                                                             | 16.9                 | 33.0 | 53.5  | 74.8  | 106.0 | 147.0 | 195.0 | 253.0 |  |  |  |
| 5 <sup>1</sup> / <sub>2</sub>                                                 | 17.7                 | 34·4 | 55.6  | 77.8  | 110.0 | 153.0 | 202.0 | 261.0 |  |  |  |
| 5 <sup>2</sup> / <sub>4</sub>                                                 | 18.4                 | 35·7 | 57.7  | 80.9  | 114.0 | 158.0 | 209.0 | 270.0 |  |  |  |
| 5 <sup>3</sup> / <sub>4</sub>                                                 | 19.2                 | 37·1 | 59.9  | 84.0  | 118.0 | 163.0 | 216.0 | 278.0 |  |  |  |
| 6                                                                             | 20.0                 | 38·5 | 62.0  | 87.0  | 122.0 | 169.0 | 223.0 | 287.0 |  |  |  |
| $\begin{array}{c} 6\frac{1}{2} \\ 7 \\ 7\frac{1}{2} \\ 8 \end{array}$         | 21.5                 | 41.2 | 66.3  | 93.2  | 131.0 | 180.0 | 236.0 | 304.0 |  |  |  |
|                                                                               | 23.0                 | 43.9 | 70.5  | 99.3  | 139.0 | 191.0 | 250.0 | 321.0 |  |  |  |
|                                                                               | 24.6                 | 46.6 | 74.8  | 106.0 | 147.0 | 202.0 | 264.0 | 338.0 |  |  |  |
|                                                                               | 26.1                 | 49.4 | 79.0  | 112.0 | 156.0 | 213.0 | 278.0 | 355.0 |  |  |  |
| 8½                                                                            | 27.6                 | 52.1 | 83.3  | 118:0 | 164.0 | 223.0 | 292.0 | 372.0 |  |  |  |
| 9                                                                             | 29.2                 | 54.8 | 87.6  | 124.0 | 173.0 | 234.0 | 306.0 | 389.0 |  |  |  |
| 9½                                                                            | 30.7                 | 57.6 | 91.8  | 130.0 | 181.0 | 245.0 | 319.0 | 406.0 |  |  |  |
| 10                                                                            | 32.2                 | 60.3 | 96.1  | 136.0 | 189.0 | 256.0 | 333.0 | 423.0 |  |  |  |
| $10\frac{1}{2}$ $11$ $11\frac{1}{2}$ $12$                                     | 33.8                 | 63.0 | 101.0 | 142.0 | 198.0 | 267.0 | 347.0 | 440.0 |  |  |  |
|                                                                               | 35.3                 | 65.7 | 105.0 | 148.0 | 206.0 | 278.0 | 361.0 | 457.0 |  |  |  |
|                                                                               | 36.8                 | 68.5 | 109.0 | 155.0 | 214.0 | 289.0 | 375.0 | 474.0 |  |  |  |
|                                                                               | 38.4                 | 71.2 | 113.0 | 161.0 | 223.0 | 300.0 | 388.0 | 491.0 |  |  |  |
| Heads.                                                                        | 1.8                  | 5.7  | 10.9  | 13.4  | 22.2  | 38.0  | 57.0  | 82.0  |  |  |  |

Table showing the average weight, in pounds, of one hundred

## MACHINE BOLTS

Of various sizes and lengths, having square heads and square nuts.

| Lengths        | 1/4            | 7 <del>5</del> | 3/8   | 7 16 | 1/2    | 9 16   | 5/8   | 3/4 | <i>7</i> ⁄8 | 1   |
|----------------|----------------|----------------|-------|------|--------|--------|-------|-----|-------------|-----|
| 11/2           | 4              | 6              | 93/4  | 15   | 21     | 30     | 35    |     |             |     |
| 2              | 43/4           | 7              | 11    | 17   | 24     | 33 1/2 | 39    | 68  |             |     |
| 21/2           | $5\frac{1}{2}$ | 8              | 121/4 | 19   | 263/4  | 37     | 43    | 74  | 116         |     |
| 3              | 61/4           | 9              | 14    | 21   | 293/4  | 401/2  | 48    | 81  | 124         | 185 |
| $3\frac{1}{2}$ | 7              | 10             | 151/2 | 23   | 321/2  | 44     | 52    | 87  | 132         | 196 |
| 4              | 73/4           | 11             | 171/4 | 25   | 35     | 471/2  | 561/2 | 93  | 140         | 207 |
| $4\frac{1}{2}$ | 81/2           | 12             | 181/2 | 27   | 373/4  | 51     | бі    | 100 | 149         | 218 |
| 5              | 91/4           | 131/4          | 20    | 29   | 40     | 541/2  | 65    | 106 | 158         | 229 |
| 51/2           | 10             | 141/4          | 211/2 | 31   | 423/4  | 58     | 69    | 112 | 166         | 240 |
| 6              | 103/4          | 151/2          | 231/4 | 33   | 451/2  | 611/2  | 74    | 118 | 174         | 251 |
| $6\frac{1}{2}$ | 111/2          | 161/2          | 25    | 35   | 481/2  | 65     | 781/2 | 125 | 182         | 262 |
| 7              | 121/4          | 171/2          | 263/4 | 37   | 511/4  | 681/2  | 821/2 | 131 | 190         | 273 |
| 7½             | 13             | 183/4          | 281/2 | 39   | 533/4  | 72     | 87    | 137 | 198         | 284 |
| 8              | 133/4          | 20             | 301/4 | 41   | 56     | 751/2  | 91    | 143 | 207         | 295 |
| 9              |                |                | 34    | 45   | 611/2  | 821/2  | 100   | 155 | 223         | 317 |
| 10             |                |                | 37½   | 49   | 67     | 891/2  | 109   | 168 | 240         | 339 |
| 11             |                |                | 41    | 53   | 721/2  | 961/2  | 118   | 180 | 256         | 360 |
| 12             |                |                | 441/2 | 57   | 78     | 1031/2 | 127   | 192 | 272         | 382 |
| 13             |                |                |       |      | 831/2  | 1101/2 | 135   | 205 | 289         | 404 |
| 14             |                |                |       |      | 89     | 1171/2 | 144   | 217 | 306         | 426 |
| 15             |                |                |       |      | 941/2  | 1241/2 | 153   | 230 | 323         | 448 |
| 16             |                |                |       |      | 100    | 1311/2 | 162   | 242 | 340         | 470 |
| 17             |                |                |       |      | 1051/2 | 1381/2 | 171   | 255 | 357         | 492 |
| 18             |                |                |       |      | 111    | 1451/2 | 179   | 267 | 374         | 514 |
| 19             |                |                |       |      | 1161/2 | 1521/2 | 188   | 280 | 391         | 536 |
| 20             |                |                |       |      | 122    | 1591/2 | 197   | 292 | 408         | 558 |

Sizes and weights of

## SQUARE AND HEXAGON NUTS.

|                 |                  |                  | lin Insti<br>dard Size |                       | Hoopes & Townsend's<br>Regular Sizes. |                                  |                          |                               |                |                          |  |
|-----------------|------------------|------------------|------------------------|-----------------------|---------------------------------------|----------------------------------|--------------------------|-------------------------------|----------------|--------------------------|--|
|                 |                  |                  | Square.                | Hexa-<br>gon.         |                                       | Square                           |                          | Hexagon,                      |                |                          |  |
| Size of bolt.   | Width.           | Thickness        | Weight, each, in 1bs.  | Weight, each, in lbs. | Width.                                | Thickness.                       | Weight, each,<br>in lbs. | Width.                        | Thickness.     | Weight, each,<br>in lbs. |  |
| 1/4             | 1/2              | 14               | 0.012                  | 0.011                 | 1/2                                   | 1/4                              | 0.015                    | $\frac{1}{2}$                 | 1/4            | 0.012                    |  |
| $\frac{5}{16}$  | $\frac{19}{32}$  | $\frac{5}{16}$   | 0.033                  | 0.016                 | 5/8                                   | 5<br>16                          | 0.028                    | 58                            | 5<br>16        | 0.023                    |  |
| 3 8             | 11<br>16         | 38               | 0.043                  | 0.032                 | 34                                    | 38                               | 0.049                    | $\frac{3}{4}$                 | 38             | 0.040                    |  |
| $\frac{7}{16}$  | $\frac{25}{32}$  | $\frac{7}{16}$   | 0.052                  | 0.045                 | 78                                    | 38                               | 0.072                    | 34                            | 7<br>16        | 0.046                    |  |
| $\frac{1}{2}$   | 78               | $\frac{1}{2}$    | 0.085                  | 0.074                 | ı                                     | $\frac{1}{2}$                    | 0.119                    | ı                             | 9<br>16        | 0.111                    |  |
| $\tfrac{9}{16}$ | $\frac{31}{32}$  | 9<br>16          | 0.109                  | 0.100                 | 118                                   | $\frac{1}{2}$                    | 0.154                    | 1                             | 9 16           | 0.114                    |  |
| 58              | I 1 6            | 58               | 0.135                  | 0.120                 | $I_{4}^{1}$                           | 58                               | 0.244                    | 118                           | 3<br>4         | 0.187                    |  |
| 34              | 14               | 34               | 0.238                  | 0.205                 | 13                                    | 34                               | 0.370                    | 138                           | 7/8            | 0.339                    |  |
| 7/8             | $1\frac{7}{16}$  | 78               | 0.357                  | 0.32                  | $1\frac{1}{2}$                        | 78                               | 0.465                    | $1\frac{1}{2}$                | 1              | 0.446                    |  |
| I               | 15               | I                | 0.556                  | 0.46                  | $1\frac{3}{4}$                        | I                                | 0.714                    | $1\frac{3}{4}$                | 118            | 0.667                    |  |
| 18              | $1\frac{13}{16}$ | 1 <del>1</del> 8 | ·o.769                 | 0.68                  | 2                                     | 118                              | 1.05                     | 2                             | 138            | 1.00                     |  |
| I 1/4           | 2                | 11/4             | 1.04                   | 0.90                  | $2\frac{1}{4}$                        | 11/4                             | 1.39                     | 2                             | 138            | 1.04                     |  |
| 18              | 2 3<br>16        | 138              | 1.43                   | 1.18                  | $2\frac{1}{2}$                        | $1\frac{1}{2}$                   | 2.22                     | 21/4                          | $1\frac{1}{2}$ | 1.39                     |  |
| 11/2            | 28               | 11/2             | 1.67                   | 1.43                  | 3                                     | ${\tt I}{\textstyle\frac{1}{2}}$ | 3.12                     | 23                            | 15             | 2.33                     |  |
| 13/4            |                  |                  |                        |                       |                                       |                                  |                          | 3 <sup>1</sup> / <sub>4</sub> | 178            | 3.50                     |  |
| 2               |                  |                  |                        |                       |                                       |                                  |                          | $3\frac{1}{2}$                | 2              | 5.25                     |  |
| 24              |                  |                  |                        |                       |                                       |                                  |                          | 34                            | $2\frac{1}{4}$ | 5-75                     |  |
| 21/2            |                  |                  |                        |                       |                                       |                                  |                          | $4\frac{1}{4}$                | 2 <u>3</u>     | 7.25                     |  |
| 23/4            |                  |                  |                        |                       |                                       |                                  |                          | $4\frac{1}{2}$                | 3              | 10.0                     |  |
| 3               |                  |                  |                        |                       |                                       |                                  |                          | 43                            | 34             | 12.0                     |  |

## Standard sizes of WROUGHT-IRON WASHERS.

Number in 100 pounds.

| Diameter,<br>in inches.                                       | Size of hole,<br>in inches.              | Thickness<br>of wire gauge.<br>Number.                     | Size of bolt,<br>in inches.                                                 | Number in 100 lbs.                                                                                 |
|---------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 5500014<br>I 112112214<br>I 12212214<br>2 2 150014<br>2 2 3 3 | 5   10   10   10   10   10   10   10   1 | 16<br>16<br>14<br>11<br>11<br>11<br>10<br>8<br>8<br>7<br>6 | 1 년 <sup>5</sup> 년 6<br>1 년 2 일 년 6<br>1 년 2 년 6년 8일 8<br>1 <b>1 년</b> 2일 8 | 29,300<br>18,000<br>7,600<br>3,300<br>2,180<br>2,350<br>1,680<br>1,140<br>580<br>470<br>360<br>360 |

## CAST HEADS AND WASHERS,

For combination bolts.

| Diameter of bolt,<br>in inches.                      | Diameter<br>of head or washer,<br>in inches. | Weight of head, in lbs.                                         | Weight of washer,<br>in lbs.                                     | Diameter of bolt,<br>in inches.                                                                                                                                                | Diameter<br>of head or washer,<br>in inches.         | Weight of head,<br>in lbs.                                 | Weight of washer,<br>in lbs.                               |
|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| 1(245)00(47)0 1 0 10 10 10 10 10 10 10 10 10 10 10 1 | 212<br>3 1223414341434143414<br>554414       | 0.32<br>0.67<br>0.91<br>0.95<br>1.7<br>2.3<br>3.0<br>4.2<br>5.2 | 0.32<br>0.61<br>0.78<br>0.89<br>1.75<br>2.3<br>3.0<br>4.2<br>5.2 | $\begin{array}{c c} \mathbf{I} & 5_{50} \\ \mathbf{I} & 3_{4} \\ \mathbf{I} & 5_{18} \\ \mathbf{I} & 5_{18} \\ 2 & 2_{14} \\ 2_{20} \\ 2_{12} \\ 2_{22} \\ 2_{22} \end{array}$ | 634<br>744<br>744<br>844<br>834<br>988<br>988<br>988 | 7.0<br>8.3<br>10.4<br>12.4<br>13.4<br>15.8<br>17.5<br>20.0 | 7.0<br>8.3<br>10.4<br>12.4<br>13.4<br>15.8<br>17.5<br>20.0 |

WEIGHT OF

LARGER SIZES OF FORGED HEXAGON NUTS

| Diameter of bolt,<br>in inches. | Weight, in lbs. | Diameter of bolt,<br>in inches. | Weight, in lbs. |
|---------------------------------|-----------------|---------------------------------|-----------------|
| 2 <del>1</del>                  | 8               | 31/8                            | 20              |
| $2\frac{3}{8}$                  | 9               | 31/4                            | 22              |
| $2\frac{1}{2}$                  | $9\frac{1}{2}$  | 3 8                             | 23              |
| 2 <del>5</del> 8                | II              | 31/2                            | 24              |
| $2\frac{3}{4}$                  | 131             | 3 <del>5</del> 8                | 25              |
| 27/8                            | 14              | . 33/4                          | 27              |
| 3                               | 17              | 4                               | 29              |

Note.—The above is the weight of iron required to forge one nut of the sizes given.

## Weight, in 1bs., of NUT AND BOLT HEADS.

For common-sized nuts and heads, the following table is close enough for estimating the weights.

| HE                | EAD AND I | NUT.     | HEAD AND NUT.                 |         |          |  |  |
|-------------------|-----------|----------|-------------------------------|---------|----------|--|--|
| Diameter of bolt. | Square.   | Hexagon. | Diameter of bolt.             | Square, | Hexagon. |  |  |
| $\frac{1}{4}$     | 0.021     | 0.017    | I 1/4                         | 2.56    | 2.14     |  |  |
| <u>3</u><br>8     | 0.70      | 0.57     | $I\frac{1}{2}$                | 4.42    | 3.77     |  |  |
| $\frac{1}{2}$     | 0.164     | 0.128    | I 3/4                         | 7.00    | 5.62     |  |  |
| <u>5</u><br>8     | 0.321     | 0.267    | 2                             | 10.5    | 8.75     |  |  |
| $\frac{3}{4}$     | 0.55      | 0.43     | 2 <sup>1</sup> / <sub>2</sub> | 21.0    | 17.2     |  |  |
| 7 8               | 0.88      | 0.73     | 3                             | 36.4    | 28.8     |  |  |
| I                 | 1.31      | 1.1      |                               |         |          |  |  |

Weight of

## ONE SQ. FOOT OF SHEET IRON OR STEEL.

Birmingham Gauge.

| V 5                   | Thickness,     | in inches.                                           | Iron.                        | Steel.       |
|-----------------------|----------------|------------------------------------------------------|------------------------------|--------------|
| No. of gauge.         | In decimals.   | In fractions.                                        | 11011,                       | Steen.       |
| 0000                  | 0.454          | 29                                                   | 18.35                        | 18.54        |
| 000                   | 0.425          | 55                                                   | 17.18                        | 17.35        |
| 00                    | 0.380          | 128                                                  | 15.36                        | 15.51        |
| 0                     | 0.340          | $\frac{1}{3}\frac{1}{2}$                             | 13.74                        | 13.87        |
| I                     | 0.300          | $\frac{19}{64}$                                      | 12.13                        | 12.25        |
| 2                     | 0.284          | $\frac{9}{32}$                                       | 11.48                        | 11.59        |
| 3                     | 0.259          | $\frac{33}{128}$                                     | 10.47                        | 10.57        |
| 4<br>5<br>6<br>7<br>8 | 0.238          | $\frac{31}{128}$                                     | 9.62                         | 9.72         |
| 5                     | 0.220          | $\frac{7}{32}$                                       | 8.89                         | 8.98         |
| 6                     | 0.203          |                                                      | 8.21                         | 8.29         |
| 7                     | 0.180          | $\begin{array}{c} 2.3 \\ \overline{128} \end{array}$ | 7.27                         | 7.35         |
|                       | 0.165          | 1.0                                                  | 6.70                         | 6.74         |
| 9                     | 0.148          | $\frac{19}{128}$                                     | 5.98                         | 6.04         |
| 10                    | 0.134          | 15                                                   | 5.42                         | 5.47         |
| II<br>I2              | 0.120          | 128                                                  | 4.85                         | 4.90         |
|                       | 0.109          | 7<br>64<br>3                                         | 4.4 <b>I</b>                 | 4.45         |
| 13<br>14              | 0.095<br>0.083 | $\frac{3}{32}$                                       | 3.84                         | 3.88         |
| 15                    | 0.033          |                                                      | 3·3 <b>5</b><br>2.9 <b>1</b> | 3·39<br>2·94 |
| 16                    | 0.072          | 1 16                                                 | 2.63                         | 2.65         |
| 17                    | 0.058          | 16                                                   | 2.34                         | 2.37         |
| 18                    | 0.049          |                                                      | 1.98                         | 2.00         |
| 19                    | 0.042          |                                                      | 1.70                         | 1.71         |
| 20                    | 0.035          |                                                      | 1.41                         | 1.43         |
| 21                    | 0.032          | $\frac{1}{32}$                                       | 1.29                         | 1.30         |
| 22                    | 0.028          | 32                                                   | 1.13                         | 1.14         |
| 23                    | 0.025          |                                                      | 1.01                         | 1.02         |
| 24                    | 0.022          |                                                      | 0.889                        | 0.898        |
| 25                    | 0.020          | 1                                                    | 0.808                        | 0.816        |
| 26                    | 0.018          |                                                      | 0.722                        | 0.735        |
| 27                    | 0.016          | $\frac{1}{64}$                                       | 0.647                        | 0.653        |
| 28                    | 0.014          |                                                      | 0.568                        | 0.572        |
| 29                    | 0.013          | 1                                                    | 0.525                        | 0.531        |
| 30                    | 0.012          |                                                      | 0.485                        | 0.490        |
| 31                    | 0.010          |                                                      | 0.404                        | 0.408        |
| 32                    | 0.009          | ,                                                    | 0.364                        | 0.367        |
| 33                    | 0.008          | $\frac{1}{128}$                                      | 0.323                        | 0.326        |
| 34                    | 0.007          |                                                      | 0.283                        | 0.286        |
| 35                    | 0.005          | 1                                                    | 0.202                        | 0.204        |

Weight of

## ONE SQ. FOOT OF SHEET IRON OR STEEL.

## American Gauge.

| No. of gauge. | Thickness,     | in inches.                                                  | Iron.        | Steel.       |
|---------------|----------------|-------------------------------------------------------------|--------------|--------------|
| No. or gauge. | In decimals.   | In fractions.                                               | II on.       | bieer.       |
| 0000          | 0.46           | 15                                                          | 18.63        | 18.87        |
| 000           | 0.41           | 15/23/23/23/41/962/661                                      | 16.58        | 16.80        |
| 00            | 0.365          | 23<br>64                                                    | 14.77        | 15.00        |
| 0             | 0.325          | $\frac{2}{6}\frac{1}{4}$                                    | 13.15        | 13.32        |
| I             | 0.289          | $\frac{19}{64}$                                             | 11.70        | 11.86        |
| 2             | 0.257          | $\frac{1}{6}\frac{7}{4}$                                    | 10.43        | 10.57        |
| 3             | 0.229          | $\frac{15}{64}$                                             | 9.29         | 9.42         |
| 4             | 0.204          | $\frac{1}{6}\frac{3}{4}$                                    | 8.27         | 8.38         |
| 4<br>5<br>6   | 0.182          | 3<br>16                                                     | 7.37         | 7.46         |
|               | 0.162          | $\frac{1}{6}\frac{1}{4}$                                    | 6.56         | 6.64         |
| 7 8           | 0.144          | $\begin{array}{c} \frac{9}{64} \\ \frac{1}{8} \end{array}$  | 5.84         | 5.92         |
|               | 0.128          | 8                                                           | 5.20         | 5.27         |
| 9             | 0.114          | 7                                                           | 4.63         | 4.69         |
| IO            | 0.102          | $\frac{\frac{7}{64}}{\frac{3}{32}}$                         | 4.12         | 4.18         |
| II<br>I2      | 0.091          | 32                                                          | 3.67         | 3.72         |
|               | 0.080          | 5                                                           | 3.27         | 3.31         |
| 13<br>14      | 0.072<br>0.064 | $\begin{array}{r} \frac{5}{64} \\ \frac{1}{16} \end{array}$ | 2.92         | 2.95         |
| 15            | 0.004          | 16                                                          | 2.59<br>2.3I | 2.63<br>2.34 |
| 16            | 0.050          |                                                             | 2.05         | 2.08         |
| 17            | 0.045          | $\frac{3}{64}$                                              | 1.83         | 1.86         |
| 18            | 0.040          | 64                                                          | 1.63         | 1.65         |
| 19            | 0.036          |                                                             | 1.45         | 1.47         |
| 20            | 0.032          | $\frac{1}{32}$                                              | 1.29         | 1.31         |
| 21            | 0.028          | 0.4                                                         | 1.15         | 1.16         |
| 22            | 0.025          |                                                             | 1.03         | 1.04         |
| 23            | 0.023          |                                                             | 0.91         | 0.92         |
| 24            | 0.020          |                                                             | 0.81         | 0.82         |
| 25            | 0.018          |                                                             | 0.72         | 0.73         |
| 26            | 0.016          | $\frac{1}{64}$                                              | 0.64         | 0.65         |
| 27            | 0.014          |                                                             | 0.57         | 0.58         |
| 28            | 0.013          |                                                             | 0.51         | 0.52         |
| 29            | 0.011          |                                                             | 0.46         | 0.47         |
| 30            | 0.010          |                                                             | 0.41         | 0.41         |
| 31<br>32      | 0.009          | 1                                                           | 0.36         | 0.37         |
| 33            | 0.008          | 128                                                         | 0.32         | 0.33         |
| 34            | 0.007          |                                                             | 0.29         | 0.29         |
| 35            | 0.005          |                                                             | 0.23         | 0.20         |
| 33            | 0.005          |                                                             | 0.23         | 0.23         |

## AMERICAN AND BIRMINGHAM WIRE GAUGES

Thickness, in inches.

### HASWELL

| No. of gauge. | Thickness<br>of American<br>gauge. | Thickness<br>of Birmingham<br>gauge. | No. of gauge. | Thickness<br>of American<br>gauge. | Thickness<br>of Birmingham<br>gauge. |  |
|---------------|------------------------------------|--------------------------------------|---------------|------------------------------------|--------------------------------------|--|
| 0000          | 0.46                               | 0.454                                | 17            | 0.0452                             | 0.058                                |  |
| 000           | 0.4096                             | 0.425                                | 18            | 0.0403                             | 0.049                                |  |
| 00            | 0.3648                             | 0.38                                 | 19            | 0.0359                             | 0.042                                |  |
| O             | 0.3248                             | 0.34                                 | 20            | 0.0319                             | 0.035                                |  |
| I             | 0.2893                             | 0.30                                 | 21            | 0.0284                             | 0.032                                |  |
| 2             | 0.2576                             | 0.284                                | 22            | 0.0253                             | 0.028                                |  |
| 3             | 0.2294                             | 0.259                                | 23            | 0.0225                             | 0.025                                |  |
| 4             | 0.2043                             | 0.238                                | 24            | 0.0201                             | . 0.022                              |  |
| 5             | 0.1819                             | 0.22                                 | 25            | 0.0179                             | 0.02                                 |  |
| 6             | 0.1620                             | 0.203                                | 26            | 0.0160                             | 0.018                                |  |
| 7             | 0.1443                             | 0.18                                 | 27            | 0.0142                             | 0.016                                |  |
| 8             | 0.1285                             | 0.165                                | 28            | 0.0126                             | 0.014                                |  |
| 9             | 0.1144                             | 0.148                                | 29            | 0.0112                             | 0.013                                |  |
| 10            | 0.1019                             | 0.134                                | 30            | 0.01                               | 0.012                                |  |
| 11            | 0.0907                             | 0.12                                 | 31            | 0.0089                             | 0.01                                 |  |
| 12            | 0.0808                             | 0.109                                | 32            | 0.0079                             | 0.009                                |  |
| 13            | 0.0719                             | 0.095                                | 33            | 0.007                              | 0.008                                |  |
| 14            | 0.0641                             | 0.083                                | 34            | 0.0063                             | 0.007                                |  |
| 15            | 0.057                              | 0.072                                | 35            | 0.0056                             | 0.005                                |  |
| 16            | 0.0508                             | 0.065                                | 36            | 0.005                              | 0.004                                |  |

## CAST-IRON PIPE.

Weight of a lineal foot.

| Bore,          | Thickness of metal, in inches. |          |              |              |           |           |              |           |           |  |  |  |
|----------------|--------------------------------|----------|--------------|--------------|-----------|-----------|--------------|-----------|-----------|--|--|--|
| in inches.     | 1/4                            | 3/8      | 1/2          | 5/8          | 3/4       | 7/8       | I            | 11/8      | 11/4      |  |  |  |
| 2              | LBS. 5.5                       | LBS. 8.7 | LBS.<br>12.3 | LBS.<br>16.1 | LBS. 20.3 | LBS. 24.7 | LBS.<br>29.5 | LBS. 34.5 | LBS. 39.9 |  |  |  |
| $2\frac{1}{2}$ | 6.8                            | 10.6     | 14.7         | 19.2         | 1         |           |              |           |           |  |  |  |
| 3              | 7.9                            | 12.4     | 17.2         |              | _         | 1         | _            |           | 1         |  |  |  |
| $3\frac{1}{2}$ | 9.2                            | 14.3     | 19.6         | 25.3         |           |           |              |           |           |  |  |  |
| 4              | 10.4                           | 16.1     | 22.I         | 28.4         |           |           |              | 56.6      |           |  |  |  |
| $4\frac{1}{2}$ | 11.7                           | 18.0     | 24.5         | 31.5         | 38.7      | 46.2      | 54.0         | 62.1      | 70.6      |  |  |  |
| 5              | 12.9                           | 19.8     | 27.0         | 34.5         | 42.3      | 50.5      | 59.9         | 67.7      | 76.7      |  |  |  |
| $5\frac{1}{2}$ | 14.1                           | 21.6     | 29.5         | 37.6         | 46.0      | 54.8      |              | 73.2      | 82.9      |  |  |  |
| 6              | 15.3                           | 23.5     | 31.9         | 40.7         | 49.7      | 59.1      | 68.7         | 78.7      | 89.0      |  |  |  |
| 7              | 17.8                           | 27.2     | 36.9         | 46.8         | 57.1      | 67.7      | 78.5         | 89.8      | 101.0     |  |  |  |
| 8              | 20.3                           | 30.8     | 41.7         | 52.9         | 64.4      | 76.2      | 88.4         | 0.101     | 114.0     |  |  |  |
| 9              | 22.7                           | 34.5     | 46.6         | 59.1         | 71.8      | 84.8      |              |           | 126.0     |  |  |  |
| 10             | 25.2                           | 38.2     | 51.5         | 65.2         | 79.2      | 93.4      | 108.0        | 123.0     | 138.0     |  |  |  |
| II             | 27.6                           | 41.9     | 56.5         | 71.3         | 86.5      | 102.0     | 0.811        | 134.0     | 150.0     |  |  |  |
| 12             | 30.1                           | 45.6     | 61.4         | 77.5         | 93.9      | 0.111     | 128.0        | 145.0     | 163.0     |  |  |  |
| 13             | 32.5                           | 49.2     | 66.3         | 83.6         | 0.101     | 119.0     | 138.0        | 156.0     | 175.0     |  |  |  |
| 14             | 35.0                           | 52.9     | 71.2         | 89.7         | 109.0     | 128.0     | 147.0        | 167.0     | 187.0     |  |  |  |
| 15             | 37.4                           | 56.6     | 76.1         | 95.9         | 116.0     | 136.0     | 157.0        | 178.0     | 199.0     |  |  |  |
| 16             | 39.1                           | 60.3     | 81.0         | 102.0        | 123.0     | 145.0     | 167.0        | 189.0     | 212.0     |  |  |  |
| 18             | 44.8                           | 67.7     | 90.9         | 114.0        | 138.0     | 162.0     | 187.0        | 211.0     | 236.0     |  |  |  |
| 20             | 49.7                           | 75.2     | 0.101        | 127.0        | 153.0     | 179.0     | 206.0        | 233.0     | 261.0     |  |  |  |
| 22             | 54.6                           | 82.6     | 0.111        | 139.0        | 168.0     | 197.0     | 226.0        | 255.0     | 285.0     |  |  |  |
| 24             | 59.6                           | 89.9     |              |              |           | 214.0     |              |           |           |  |  |  |
| 26             | 64.5                           | 97.3     | 131.0        | 164.0        | 198.0     | 231.0     | 266.0        | 300.0     | 335.0     |  |  |  |
| 28             | 69.4                           |          |              |              |           | 249.0     |              |           |           |  |  |  |
| 30             | 74.2                           | 112.0    | 150.0        | 188.0        | 227.0     | 266.0     | 305.0        | 345.0     | 384.0     |  |  |  |

Note.—For each joint, add a foot to length of pipe.

## WROUGHT-IRON WELDED TUBES.

For steam, gas, or water.

1½ inch and below, butt welded; proved to 300 pounds per square inch, hydraulic pressure.

 ${\bf 1}\frac{1}{2}$  inch and above, lap welded; proved to 500 pounds per square inch, hydraulic pressure.

### TABLE OF STANDARD DIMENSIONS.

MORRIS, TASKER & CO., LIMITED.

| Inside diameter, in inches.    | Actual<br>outside diameter,<br>in inches. | Thickness, in inches. | Actual<br>inside diameter, in<br>inches. | Internal area, in<br>inches. | External area, in inches. | Weight<br>per foot of length,<br>in pounds. | Number of<br>threads per inch<br>of screw. |
|--------------------------------|-------------------------------------------|-----------------------|------------------------------------------|------------------------------|---------------------------|---------------------------------------------|--------------------------------------------|
| 1/8                            | 0.405                                     | 0.068                 | 0.270                                    | 0.0572                       | 0.129                     | 0.243                                       | 27                                         |
| $\frac{1}{4}$                  | 0.54                                      | 0.088                 | 0.361                                    | 0.1041                       | 0.229                     | 0.422                                       | 18                                         |
| 38                             | 0.675                                     | 0.091                 | 0.494                                    | 0.1916                       | 0.358                     | 0.561                                       | 18                                         |
| $\frac{1}{2}$                  | 0.84                                      | 0.109                 | 0.623                                    | 0.3048                       | 0.554                     | 0.845                                       | 14                                         |
| $\frac{3}{4}$                  | 1.05                                      | 0.113                 | 0.824                                    | 0.5333                       | 0.866                     | 1.126                                       | 14                                         |
| I                              | 1.315                                     | 0.134                 | 1.048                                    | 0.8627                       | 1.357                     | 1.670                                       | $II\frac{1}{2}$                            |
| $\mathbf{I}_{\frac{1}{4}}^{1}$ | 1.66                                      | 0.140                 | 1.380                                    | 1.496                        | 2.164                     | 2.258                                       | $II\frac{1}{2}$                            |
| $\mathbf{I}\frac{1}{2}$        | 1.9                                       | 0.145                 | 1.611                                    | 2.038                        | 2.835                     | 2.694                                       | $II\frac{1}{2}$                            |
| 2                              | 2.375                                     | 0.154                 | 2.067                                    | 3.355                        | 4.430                     | 3.667                                       | $II\frac{1}{2}$                            |
| $2\frac{1}{2}$                 | 2.875                                     | 0.204                 | 2.468                                    | 4.783                        | 6.491                     | 5.773                                       | 8                                          |
| 3                              | 3.5                                       | 0.217                 | 3.067                                    | 7.388                        | 9.621                     | 7.547                                       | 8                                          |
| $3\frac{1}{2}$                 | 4.0                                       | 0.226                 | 3.548                                    | 9.887                        | 12.566                    | 9.055                                       | . 8                                        |
| 4                              | 4.5                                       | 0.237                 | 4.026                                    | 12.730                       | 15.904                    | 10.728                                      | 8                                          |
| $4\frac{1}{2}$                 | 5.0                                       | 0.247                 | 4.508                                    | 15.939                       | 19.635                    | 12.492                                      | 8                                          |
| 5                              | 5.563                                     | 0.259                 | 5.045                                    | 19.990                       | 24.299                    | 14.564                                      | 8                                          |
| 6                              | 6.625                                     | 0.280                 | 6.065                                    | 28.889                       | 34.47 I                   | 18.767                                      | 8                                          |
| 7                              | 7.625                                     | 0.301                 | 7.023                                    | 38.737                       | 45.663                    | 23.410                                      | 8                                          |
| 8                              | 8.625                                     | 0.322                 | 7.982                                    | 50.039                       | 58.426                    | 28.348                                      | 8                                          |
| 9                              | 9.688                                     | 0.344                 | 9.001                                    | 63.633                       | 73.715                    | 34.077                                      | 8                                          |
| 10                             | 10.75                                     | 0.366                 | 10.019                                   | 78.838                       | 90.762                    | 40.641                                      | 8                                          |

### WROUGHT-IRON WELDED TUBES.

Extra strong.

| Nominal<br>Diameter,       | Actual outside<br>diameter. | Thickness,<br>extra strong. | Thickness,<br>double extra<br>strong. | Actual inside<br>diameter,<br>extra strong. | Actual inside<br>diameter,<br>double extra<br>strong. |
|----------------------------|-----------------------------|-----------------------------|---------------------------------------|---------------------------------------------|-------------------------------------------------------|
| 1 8                        | 0.405                       | 0.100                       |                                       | 0.205                                       |                                                       |
| H(S)((국) S) (기) (기) (기)    | 0.54                        | 0.123                       |                                       | 0.294                                       |                                                       |
| 3/8                        | 0.675                       | 0.127                       |                                       | 0.421                                       |                                                       |
| $\frac{1}{2}$              | 0.84                        | 0.149                       | 0.298                                 | 0.542                                       | 0.244                                                 |
| $\frac{3}{4}$              | 1.05                        | 0.157                       | 0.314                                 | 0.736                                       | 0.422                                                 |
| I                          | 1.315                       | 0.182                       | 0.364                                 | 0.951                                       | 0.587                                                 |
| $I_{\frac{1}{4}}$          | 1.66                        | 0.194                       | 0.388                                 | 1.272                                       | 0.884                                                 |
| $\mathbf{I}_{\frac{1}{2}}$ | 1.9                         | 0.203                       | 0.406                                 | 1.494                                       | 1.088                                                 |
| 2                          | 2.375                       | 0.221                       | 0.442                                 | 1.933                                       | 1.491                                                 |
| $2\frac{1}{2}$             | 2.875                       | 0.280                       | 0.560                                 | 2.315                                       | 1.755                                                 |
| 3                          | 3.5                         | 0.304                       | 0.608                                 | 2.892                                       | 2.284                                                 |
| $3\frac{1}{2}$             | 4.0                         | 0.321                       | 0.642                                 | 3.358                                       | 2.716                                                 |
| 4                          | 4.5                         | 0.341                       | 0.682                                 | 3.818                                       | 3.136                                                 |

### SHIP SPIKES.

Number in one hundred pounds.

| Size, in inches.                                                                                   | Length, in inches.                                                                                                                                     | Number<br>in<br>100 lbs.                                                                      | Size, in inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Length, in inches.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number<br>in<br>100 lbs.                                                                | Size, in inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Length, in inches.                                                                                                    | Number<br>in<br>100 lbs.                                                       |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 14<br>14<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | $\begin{array}{c} 3 \\ 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \\ 5 \\ 3 \\ 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \\ 5 \\ 6 \\ 4 \\ 4\frac{1}{2} \\ \end{array}$ | 1910<br>1585<br>1326<br>1223<br>1025<br>1010<br>963<br>810<br>605<br>583<br>521<br>542<br>503 | $\begin{array}{c} 7 \overline{16} \\ \overline{17} \\ 6 \overline{17} \\ \overline{17} \\ 6 \overline{11} \\ \overline{17} \\ \overline{11} \\ 6 \overline{11} \\ \overline{11} \\$ | $\begin{array}{c} 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 2 \\ 5 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 2 \\ 8 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 8 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 8 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 8 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 8 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 8 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 8 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 8 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 8 \\ 6 \\ 6 \\ 1 \\ 2 \\ 7 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$ | 46I<br>423<br>402<br>32I<br>340<br>3I2<br>298<br>280<br>26I<br>240<br>223<br>22I<br>200 | $\begin{array}{c} 9.6 \\ 1.6 \\ 9.16 \\ 1.6 \\ 1.9 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 $ | 7<br>7 <sup>1</sup> / <sub>2</sub><br>8<br>8 <sup>1</sup> / <sub>2</sub><br>9<br>10<br>8<br>9<br>10<br>11<br>10<br>15 | 190<br>180<br>170<br>160<br>150<br>140<br>140<br>120<br>110<br>100<br>80<br>60 |

### NUMBER OF NAILS AND TACKS PER POUND.

| N A                                                                                                   | ILS.                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | TACKS.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Title.                                                                                                | Length,<br>in inches.                                                                                                                                                                                                                                                                                                                                                            | No. nails<br>per lb.                                                                                           | Title.                                                                       | Length,<br>in inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. tacks<br>per 1b.                                                                                                                   |  |  |  |
| 3 penny fine. 3 " 4 " 5 " 6 " 7 " 8 " 9 " 10 " 12 " 16 " 20 " 30 " 40 " 50 " 60 " 6 " fence. 8 " 10 " | $\begin{array}{c} \mathbf{I}_{\frac{1}{4}}^{\frac{1}{4}} \\ \mathbf{I}_{\frac{1}{2}\frac{1}{2}\frac{1}{2}}^{\frac{1}{2}\frac{1}{2}} \\ 2^{\frac{1}{4}\frac{1}{4}\frac{1}{2}\frac{1}{2}\frac{1}{2}} \\ 3^{\frac{1}{4}\frac{1}{4}\frac{1}{2}} \\ 3^{\frac{1}{4}\frac{1}{4}\frac{1}{2}} \\ 4^{\frac{1}{4}\frac{1}{2}} \\ 5^{\frac{1}{2}\frac{1}{2}} \\ 6^{\frac{1}{2}} \end{array}$ | 760<br>480<br>300<br>200<br>160<br>128<br>92<br>72<br>60<br>44<br>32<br>24<br>18<br>14<br>12<br>10<br>80<br>50 | I OZ.  1½ " 2 " 2½ " 3 " 4 " 6 " 8 " 10 " 12 " 14 " 16 " 18 " 20 " 22 " 24 " | 1 6 3 16 4 5 16 5 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 17 16 5 | 16,000<br>10,666<br>8,000<br>6,400<br>5,333<br>4,000<br>2,666<br>2,000<br>1,600<br>1,333<br>1,143<br>1,000<br>888<br>800<br>727<br>666 |  |  |  |

<sup>5</sup> pounds of 4 penny, or  $3\frac{3}{4}$  pounds of 3 penny, will lay 1000 shingles;  $5\frac{3}{4}$  pounds of 3 penny fine will put on 1000 laths, 4 nails to the lath.

### RAILROAD SPIKES.

| Length,                                                                                 | Thickness,                             | No. in                                        | Length, in inches.               | Thickness,                                   | No. in                                 |
|-----------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------|
| in inches.                                                                              | in inches.                             | 100 lbs.                                      |                                  | in inches.                                   | 100 lbs.                               |
| 4 <sup>1</sup> / <sub>2</sub><br>4 <sup>1</sup> / <sub>2</sub><br>5<br>5<br>5<br>5<br>5 | 7-16<br>1-10400188 7-16<br>1-10249-160 | 351<br>267<br>473<br>326<br>260<br>197<br>172 | 5½1<br>5½1<br>5½1<br>6<br>6<br>6 | 12.9 (C) | 237<br>193<br>146<br>207<br>175<br>131 |

### RAILROAD BARS.

Table showing the number of tons per mile corresponding to the following weight of rails per lineal yard. Ton of 2240 pounds.

| Weight per yard,<br>in lbs. | Tons per mile,              | Weight per yard,<br>in lbs. | Tons per mile.              |  |  |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--|--|
| 8                           | $12,\frac{1280}{2240}$      | 52                          | 81.1600                     |  |  |
| 12                          | $18.\frac{1920}{2240}$      | 56                          | 88                          |  |  |
| 16                          | $25.\frac{320}{2240}$       | 57                          | 89.1280                     |  |  |
| 25                          | $39 \cdot \frac{640}{2240}$ | 60                          | $94.\frac{640}{2240}$       |  |  |
| 30                          | $47 \cdot \frac{320}{2240}$ | 62                          | $97 \cdot \frac{960}{2240}$ |  |  |
| 35                          | 55                          | 64                          | $100.\frac{1280}{2240}$     |  |  |
| 40                          | $62.\frac{1920}{2240}$      | 65                          | $102, \frac{320}{2240}$     |  |  |
| 45                          | $70.\frac{1600}{2240}$      | 68                          | $106,\frac{1920}{2240}$     |  |  |
| 50                          | $78.\frac{1230}{2240}$      | 70                          | 110                         |  |  |

Calculated for "single track" (2 rails).

Multiply the pounds per yard by 1\frac{1}{2}, and the result will be the number of tons (of 2240 pounds) per mile of single track.

### RAILROAD SPLICE OR "FISH" JOINTS.

The ordinary length of splice plates is 23'' or 24'', with 4 bolts of  $\frac{3}{4}''$  diameter to each pair of plates. The average weight of the plates is 16 pounds, and of the 4 bolts (with *single* nuts), 4 pounds, making 20 pounds total weight per "joint." If double or "jam" nuts are used, the weight of the 4 bolts will be  $5\frac{1}{2}$  pounds, or  $21\frac{1}{2}$  pounds per joint.

#### "SINGLE TRACK."

| Lengths of rail, in feet. | Number of joints per mile. | Pounds of plates per mile. | Pounds of bolts per mile. | Total<br>weight per mile. |
|---------------------------|----------------------------|----------------------------|---------------------------|---------------------------|
| 18                        | 588                        | 9408                       | 2352                      | 11,760                    |
| 21                        | 528                        | 8448                       | 2112                      | 10,560                    |
| 24                        | 440                        | 7040                       | 1760                      | 8,800                     |
| 25                        | 423                        | 6768                       | 1692                      | 8,460                     |
| 27                        | 391                        | 6256                       | 1564                      | 7,820                     |
| 30                        | 352                        | 5632                       | 1408                      | 7,040                     |

Note.—If double nuts are used, add 37½ per cent. to the weight of the bolts.

### NOTE ON BRICK ARCHES FOR FLOORS.

The approximate number of bricks, and the cost of brick work in arches for floors, will depend somewhat upon the size and cost per thousand of bricks.

With bricks  $8\frac{1}{4} \times 4 \times 2$ , and joints of mortar from  $\frac{1}{8}$ " to  $\frac{1}{4}$ " between them, edgewise arches will require about 8 bricks per square foot of floor, and endwise arches will require  $16\frac{1}{2}$ .

Estimating the average cost of hard brick at \$10 per thousand, and the cost of laying, including mortar, centres, scaffolding, etc., at \$10 per thousand more, or \$20 per thousand in place, the edgewise arches will cost 16 cents per square foot, and the endwise arches 33 cents per square foot, put up complete.

### WEIGHTS OF MATERIALS.

|             |     |      |    |      |    | - |   |    | <br> |  |  | P | er | cul | ic foot. |
|-------------|-----|------|----|------|----|---|---|----|------|--|--|---|----|-----|----------|
| Water       |     |      |    |      |    |   |   | .• |      |  |  |   |    |     | 62.3     |
| Fire brick  |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |
| Brick wor   | k.  |      |    |      |    |   |   |    |      |  |  |   |    |     | 112.0    |
| Coal, anth  | rac | ite, | SC | olio | 1  |   |   |    |      |  |  |   |    |     | 100.0    |
| Coal, anth  | rac | ite, | bı | ok   | en | Ł |   |    |      |  |  |   |    |     | 57.0     |
| Coal, bitur | nin | ous  | ;  |      |    |   |   |    |      |  |  |   | 77 | .0- | - 90.0   |
| Coke        |     |      |    |      |    |   |   |    |      |  |  |   | 62 | .0- | -104.0   |
| Granite     |     |      |    |      |    |   |   |    |      |  |  | I | 64 | .0- | -172.0   |
| Plaster of  | Pa  | ris  |    |      |    |   |   |    |      |  |  |   |    |     | 73.5     |
| Limestone   |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |
| Masonry .   |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |
| Sandstone   |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |
| Slate       |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |
| Common g    |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |
| Mud         |     |      |    |      |    |   | ٠ |    |      |  |  |   |    |     | 102.0    |
| Mortar      |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |
| Concrete .  |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |
| Common s    |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |
| Glass       |     |      |    |      |    |   |   |    |      |  |  |   |    |     |          |

1 bushel of bituminous coal weighs 80 pounds.
28 bushels = 1 ton of 2240 pounds.

### WEIGHT OF TIMBER.

|                       | Lbs. per cubic foot. | Lbs. per foot, B. M. | Relative<br>strength for cross<br>breaking. | Crushing weight<br>per sq. inch in tons<br>of 2000 lbs. |
|-----------------------|----------------------|----------------------|---------------------------------------------|---------------------------------------------------------|
| Ash                   | 47                   | 3.9                  | 149                                         | 4.3                                                     |
| Beech, white          |                      |                      | 115                                         |                                                         |
| Beech, red            | 43                   | 3.6                  | 144                                         | 4.6                                                     |
| Chestnut              | 33                   | 2.8                  | 112                                         |                                                         |
| Cedar, American white | 50                   | 4.2                  | 63                                          | 2.8                                                     |
| Elm                   | 34                   | 2.8                  |                                             | 5.1                                                     |
| Hemlock               |                      |                      | 95                                          |                                                         |
| Locust                | 44                   | 3.7                  |                                             |                                                         |
| Maple                 | 49                   | 4.I                  |                                             |                                                         |
| White oak             | 45                   | 3.8                  | 145                                         | 2.8                                                     |
| Live oak              | 70                   | 5.8                  | 155                                         |                                                         |
| White pine            | 30                   | 2.5                  | 102                                         | 2.5                                                     |
| Yellow pine           | 33                   | 2.8                  | 98                                          | 2.7                                                     |
| Spruce                |                      |                      | 86                                          |                                                         |
| Black walnut          | 42                   | 3.5                  | 121                                         | 3.0                                                     |
|                       |                      |                      |                                             |                                                         |

### PLASTERING.

The plastering of inside walls of buildings generally consists of three separate coats of mortar.

A plasterer, aided by one or two laborers, can average from 100 to 150 square yards a day of first coat; 90 to 100 yards of second coat; and about 50 yards for the third coat.

One thousand laths,  $1\frac{1}{2}$ "  $\times$  4', will cover 660 square feet, and a carpenter can nail up laths at the rate of 50 square yards per day, in common square rooms.

### AMERICAN SLATING.

Slating is estimated by the "square," which is the quantity required to cover 100 square feet. The slates are usually laid so that the third laps the first three inches. Therefore to compute the number of slates of a given size required per square: Subtract 3" from the length of the slate, multiply the remainder by the width, and divide by 2. This will give the number of square inches covered per slate; divide 14,400 (the number of square inches in a square) by the number so found, and the result will be the number of slates required.

The following table gives the number of slates per square for the usual sizes:

#### NUMBER OF SLATES PER SQUARE.

| Size, in inches.                                                                                  | Pieces per<br>square.                                | Size, in inches.                                                                                                     | Pieces per<br>square.                         | Size, in inches.                                                                                                                                                                                  | Pieces per<br>square.                              |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| $6 \times 12$ $7 \times 12$ $8 \times 12$ $9 \times 12$ $7 \times 14$ $8 \times 14$ $9 \times 14$ | 533<br>457<br>400<br>355<br>374<br>327<br>291<br>261 | $8 \times 16$ $9 \times 16$ $10 \times 16$ $9 \times 18$ $10 \times 18$ $12 \times 18$ $10 \times 20$ $11 \times 20$ | 277<br>246<br>221<br>213<br>192<br>160<br>169 | $   \begin{array}{c}     12 \times 20 \\     14 \times 20 \\     11 \times 22 \\     12 \times 22 \\     14 \times 22 \\     12 \times 24 \\     14 \times 24 \\     16 \times 24   \end{array} $ | 141<br>121<br>137<br>126<br>108<br>114<br>98<br>86 |

The weight of slate per cubic foot is about 174 pounds, or per square foot of various thicknesses as follows:

| Thickness, in inches.              | Weight,<br>in 1bs. | Thickness, in inches. | Weight,<br>in lbs. | Thickness, in inches. | Weight,<br>in lbs. |
|------------------------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|
| $\frac{\frac{1}{8}}{\frac{3}{16}}$ | 1.81               | 1<br>4<br>3<br>8      | 3.62<br>5.43       | 1/2                   | 7.25               |

The weight of slating laid per square foot of surface covered will, of course, depend on the size used. The weight of  $10 \times 18$  slate,  $\frac{3}{16}$  thick, for example, per square foot of roof, would be 5.86 pounds.

### SHINGLING.

An average shingle  $7\frac{1}{2}$ " wide in  $8\frac{1}{2}$ " courses shows  $64 \square$ ", making 3 shingles to a square foot of roof, including waste. They are usually laid in 3 thicknesses.

#### PAINTING AND GLAZING.

Painting is measured by the superficial yard, girting every part of the work that is covered by paint, and allowing an addition to the actual surface for covering deep quirks of moulding. Generally estimates are made for each coat of paint at a certain price per superficial yard.

#### WINDOW GLASS.

NUMBER OF LIGHTS PER BOX OF FIFTY FEET.

| Inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No.                                                                                                                                                                                                                                      | Inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No.                                                                                                                                                                                                                                                                                                      | Inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No.                                                                                                                          | Inches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No.                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 6 × 8<br>7 × 9<br>8 × 10<br>8 × 11<br>8 × 13<br>8 × 14<br>9 × 12<br>9 × 13<br>9 × 14<br>9 × 15<br>9 × 15<br>9 × 16<br>9 × 17<br>9 × 16<br>10 × 12<br>10 × 16<br>10 × 17<br>10 × 16<br>10 × 16<br>10 × 22<br>10 × 28<br>10 × 30<br>11 × 15<br>11 × 16<br>11 × 26<br>11 × 26<br>12 × 16<br>12 × 17 | 150<br>115<br>90<br>82<br>75<br>70<br>64<br>60<br>65<br>57<br>22<br>57<br>44<br>40<br>60<br>55<br>52<br>48<br>45<br>40<br>40<br>33<br>30<br>28<br>26<br>24<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | $\begin{array}{c} 12 \times 18 \\ 12 \times 20 \\ 12 \times 22 \\ 12 \times 24 \\ 12 \times 28 \\ 12 \times 28 \\ 12 \times 30 \\ 12 \times 31 \\ 13 \times 16 \\ 13 \times 16 \\ 13 \times 18 \\ 13 \times 22 \\ 13 \times 26 \\ 13 \times 28 \\ 13 \times 26 \\ 14 \times 16 \\ 14 \times 20 \\ 14 \times 22 \\ 14 \times 20 \\ 14 \times 20 \\ 14 \times 21 \\ 14 \times 20 \\ 14 \times 20 \\ 14 \times 20 \\ 14 \times 21 \\ 15 \times 20 \\ 16 \times 21 \\ 16 \times 20 \\ 16 \times 30 \\$ | 33<br>30<br>27<br>22<br>21<br>20<br>18<br>17<br>40<br>35<br>31<br>32<br>22<br>29<br>18<br>23<br>22<br>29<br>20<br>18<br>17<br>40<br>21<br>19<br>10<br>11<br>11<br>12<br>13<br>11<br>12<br>13<br>11<br>12<br>13<br>11<br>12<br>13<br>14<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | 16 × 44<br>18 × 20<br>18 × 24<br>18 × 24<br>18 × 28<br>18 × 30<br>18 × 31<br>18 × 34<br>18 × 34<br>18 × 34<br>18 × 40<br>18 × 40<br>20 × 26<br>20 × 26<br>20 × 32<br>20 × 34<br>20 × 36<br>20 × 37<br>20 × 40<br>20 | 10 20 18 17 15 14 13 13 12 11 10 0 16 15 14 13 12 11 11 10 0 9 8 8 8 8 7 7 6 14 13 12 11 10 10 10 10 10 10 10 10 10 10 10 10 | 26 × 32<br>26 × 34<br>26 × 36<br>26 × 42<br>26 × 44<br>26 × 48<br>26 × 50<br>28 × 30<br>28 × 36<br>28 × 36<br>28 × 36<br>28 × 50<br>28 × 50<br>28 × 50<br>30 × 40<br>30 × 42<br>30 × 44<br>30 × 45<br>30 × 40<br>31 × 40<br>32 × 50<br>32 × 40<br>33 × 40<br>34 × 50<br>36 × 50<br>36 × 50<br>36 × 50<br>36 × 60<br>36 × 60 | 988 776666 55988 77666 6 55555 4 4 4 4 5 5 5 5 5 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |

### SKYLIGHT AND FLOOR GLASS.

LENNOX PLATE GLASS CO. WARD & CO., AGENTS, PHILADELPHIA.

Weight per cubic foot, 156 pounds.

#### WEIGHT PER SQUARE FOOT.

| Thickness,<br>in inches. | Weight,<br>in lbs.   | Thickness, in inches. | Weight,<br>in lbs.   | Thickness, in inches. | Weight,<br>in lbs. |
|--------------------------|----------------------|-----------------------|----------------------|-----------------------|--------------------|
| 1<br>8<br>3<br>16<br>14  | 1.62<br>2.43<br>3.25 | 3/0-4/245/8           | 4.88<br>6.50<br>8.13 | 3<br>4<br>1 ,         | 9.75<br>13.00      |

#### FLAGGING.

Weight per cubic foot, 168 pounds.

#### WEIGHT PER SQUARE FOOT.

| Thickness,<br>in inches. | Weight,<br>in lbs. | Thickness, in inches. | Weight,<br>in lbs. | Thickness, in inches. | Weight,<br>in lbs. |
|--------------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|
| 1<br>2<br>3              | 14<br>28<br>42     | 4<br>5<br>6           | 56<br>70<br>84     | 7 8                   | 98<br>112          |

### BRICK WORK AND MASONRY.

Stone work is estimated by the perch of 25 cubic feet. Brick work is estimated by the thousand, and for various thicknesses of wall runs as follows:

9'' wall, or 1 brick in thickness, 14 bricks per superficial foot. 13'' wall, or  $1\frac{1}{2}$  bricks in thickness, 21 bricks per superficial foot. 18'' wall, or 2 bricks in thickness, 28 bricks per superficial foot. 22'' wall, or  $2\frac{1}{2}$  bricks in thickness, 35 bricks per superficial foot.

For each additional half brick in thickness count seven (7) bricks per superficial foot.

One square yard of paving requires 36 bricks when laid flat, or 82 when laid on edge.

A 9" wall will weigh 84 pounds per square foot of side surface; a 13" wall, 121 pounds; an 18" wall, 168 pounds; assuming weight per cubic foot of brick work at 112 pounds.

#### GALVANIZED AND BLACK IRON.

Weight, in pounds, per square foot of galvanized sheet iron, both flat and corrugated.

The numbers and thicknesses are those of the iron before it is galvanized. When a flat sheet (the ordinary size of which is from 2 to  $2\frac{1}{2}$  feet in width by 6 to 8 feet in length) is converted into a corrugated one, with corrugations 5 inches wide from centre to centre, and about an inch deep (the common sizes), its width is thereby reduced about  $\frac{1}{10}$  part, or from 30 to 27 inches; and consequently the weight per square foot of area covered is increased about  $\frac{1}{9}$  part. When the corrugated sheets are laid upon a roof, the overlapping of about  $2\frac{1}{2}$  inches along their sides, and of 4 inches along their ends, diminishes the covered area about  $\frac{1}{7}$  part more; making their weight per square foot of roof about  $\frac{1}{8}$  part greater than before. Or the weight of corrugated iron per square foot in place on a roof is about  $\frac{1}{8}$  greater than that of the flat sheets of above sizes of which it is made.

| No. by                    | BLA                   | CK.           | GALVANIZED.   |                     |                                  |  |
|---------------------------|-----------------------|---------------|---------------|---------------------|----------------------------------|--|
| Birmingham<br>wire gauge. | Thickness, in inches. | Flat, in lbs. | Flat, in lbs. | Corrugated, in lbs. | Corrugated<br>on<br>roof, in lbs |  |
| 30                        | 0.012                 | 0.485         | 0.806         | 0.896               | 1.08                             |  |
| 20                        | 0.013                 | 0.526         | 0.857         | 0.952               | 1.14                             |  |
| 28                        | 0.014                 | 0.565         | 0.897         | 0.997               | 1.20                             |  |
| 27                        | 0.016                 | 0.646         | 0.978         | 1.09                | 1.30                             |  |
| 26                        | 0.018                 | 0.722         | 1.06          | 1.18                | 1.41                             |  |
| 25                        | 0.020                 | 0.808         | 1.14          | 1.27                | 1.52                             |  |
| 24                        | 0.022                 | 0.889         | 1.22          | 1.36                | 1.62                             |  |
| 23                        | 0.025                 | 1.01          | 1.34          | 1.49                | 1.79                             |  |
| 22                        | 0.028                 | 1.13          | 1.46          | 1.62                | 1.95                             |  |
| 21                        | 0.032                 | 1.29          | 1.63          | 1.81                | 2.17                             |  |
| 20                        | 0.035                 | 1.41          | 1.75          | 1.94                | 2.33                             |  |
| 19                        | 0.042                 | 1.69          | 2.03          | 2.26                | 2.71                             |  |
| 18                        | 0.049                 | 1.98          | 2.32          | 2.58                | 3.09                             |  |
| 17                        | 0.058                 | 2.34          | 2.68          | 2.98                | 3.57                             |  |
| 16                        | 0.065                 | 2.63          | 2.96          | 3.29                | 3.95                             |  |
| 15                        | 0.072                 | 2.91          | 3.25          | 3.61                | 4.33                             |  |
| 14                        | 0.083                 | 3.36          | 3.69          | 4.10                | 4.92                             |  |
| 13                        | 0.095                 | 3.84          | 4.18          | 4.64                | 5.57                             |  |

Note.—The galvanizing of sheet iron adds about one-third of a pound to its weight per square foot.

Nos. 20 to 22 are the usual sizes for roof coverings.





## TABLES OF MEASURES

COMPILED FROM VARIOUS SOURCES.



DECIMAL PARTS OF A FOOT FOR EACH ONE-THIRTY-SECOND OF AN INCH. TABLE OF

| Ħ     | 2916 | 9193  | 9219 | 9245        | 9271 | 9297                    | 9323 | 9349           | 9375 | 9401 | 9427 | 9453         | 9479  | 9505 | 9531 | 9557 | H     |
|-------|------|-------|------|-------------|------|-------------------------|------|----------------|------|------|------|--------------|-------|------|------|------|-------|
| OI.   | 8333 | 8359  | 8385 | 8411        | 8438 | 8464                    | 8490 | 8516           | 8542 | 8568 | 8594 | 8620         | 8646  | 8672 | 8698 | 8724 | OI    |
| 6     | 7500 | 7526  | 7552 | 7578        | 7604 | 7630                    | 7656 | 7682           | 7708 | 7734 | 7760 | 2786         | 7813  | 7839 | 7865 | 1687 | 6     |
| œ     | 2999 | 6693  | 6119 | 6745        | 1229 | 2629                    | 6823 | 6849           | 6875 | 1069 | 6927 | 6953         | 6269  | 7005 | 7031 | 7057 | ω     |
| 7     | 5833 | 5859  | 5885 | 1165        | 5938 | 5964                    | 5990 | 9109           | 6042 | 8909 | 6094 | 6120         | 6146  | 6172 | 8619 | 6224 | 7     |
| 9     | 5000 | 5026  | 5052 | 5078        | 5104 | 5130                    | 5156 | 5182           | 5208 | 5234 | 5260 | 5286         | 5313  | 5339 | 5365 | 5391 | 9     |
| ro.   | 4167 | 4193  | 4219 | 4245        | 4271 | 4297                    | 4323 | 4349           | 4375 | 440I | 4427 | 4453         | 4479  | 4505 | 453I | 4557 | 20    |
| 4     | 3333 | 3359  | 3385 | 3411        | 3438 | 3464                    | 3490 | 3516           | 3542 | 3568 | 3594 | 3620         | 3646  | 3672 | 3698 | 3724 | 4     |
| က     | 2500 | 2526  | 2552 | 2578        | 2604 | 2630                    | 2656 | 2682           | 2708 | 2734 | 2760 | 2786         | 2813  | 2839 | 2865 | 2891 | 6     |
| 61    | 1991 | 1693  | 61/1 | 1745        | 1772 | 1797                    | 1823 | 1849           | 1875 | 1901 | 1927 | 1953         | 6261  | 2005 | 2031 | 2057 | 64    |
| ı     | 0833 | 0859  | 0885 | 1160        | 0938 | 9664                    | 0660 | 9101           | 1042 | 8901 | 1094 | 1120         | 1146  | 1172 | 8611 | 1224 | н     |
| 0     | 0000 | 9200  | 0052 | 8200        | 0104 | 0130                    | 0156 | 0182           | 0208 | 0234 | 0920 | 0286         | 0313  | 0339 | 0365 | 0391 | 0     |
| Inch. | 0    | 3 2 2 | 16   | သ<br>တ<br>တ | xc   | 00<br> 01<br> 02<br> 03 | 2 S  | 1  00<br>  101 | 4    | 9 8  | 16   | -100<br>-100 | 20/00 | - m  | 16   | 325  | Inch. |

AN INCH. OF. ONE-THIRTY-SECOND TABLE OF OF A FOOT FOR EACH DECIMAL PARTS

TABLES OF

DECIMAL PARTS OF AN INCH FOR EACH

ONE-SIXTY-FOURTH.

| 1<br>64                  | 0.015625 | $\frac{19}{64}$ 0.2969   |        | 58                       | 0.6250 |
|--------------------------|----------|--------------------------|--------|--------------------------|--------|
|                          |          |                          |        |                          |        |
| $\frac{1}{32}$           | 0.03125  | 16                       | 0.3125 | $\frac{21}{32}$          | 0.6562 |
| $\frac{3}{64}$           | 0.04687  | $\frac{1}{3}\frac{1}{2}$ | 0.3438 | $\frac{43}{64}$          | 0.6719 |
| $\frac{1}{16}$           | 0.0625   | 23<br>64                 | 0.3594 | $\frac{11}{16}$          | 0.6875 |
| $\frac{5}{64}$           | 0.07812  | 38                       | 0.3750 | 23<br>32                 | 0.7188 |
| $\frac{3}{32}$           | 0.09375  | $\frac{1}{3}\frac{3}{2}$ | 0.4063 | 34                       | 0.7500 |
| $\frac{7}{64}$           | 0.10937  | 27<br>64                 | 0.4219 | $\frac{25}{32}$          | 0.7812 |
| 1/8                      | 0.1250   | 7 16                     | 0.4375 | $\frac{13}{16}$          | 0.8125 |
| $\frac{9}{64}$           | 0.1406   | $\frac{15}{32}$          | 0.4688 | $\frac{27}{32}$          | 0.8437 |
| $\frac{5}{32}$           | 0.1563   | $\frac{31}{64}$          | 0.4844 | 7/8                      | 0.8750 |
| $\frac{1}{6}\frac{1}{4}$ | 0.1718   | 1/2                      | 0.5000 | $\frac{57}{64}$          | 0.8906 |
| $\frac{3}{16}$           | 0.1875   | $\frac{1}{3}\frac{7}{2}$ | 0.5312 | $\frac{29}{32}$          | 0.9062 |
| $\frac{7}{32}$           | 0.2187   | $\frac{35}{64}$          | 0.5469 | $\frac{15}{16}$          | 0.9375 |
| $\frac{15}{64}$          | 0.2344   | 9<br>16                  | 0.5625 | $\frac{61}{64}$          | 0.9531 |
| $\frac{1}{4}$            | 0.2500   | $\frac{1}{3}\frac{9}{2}$ | 0.5938 | $\frac{3}{3}\frac{1}{2}$ | 0.9688 |
| $\frac{9}{32}$           | 0.2813   | 3 9<br>6 4               | 0.6094 | 6364                     | 0.9844 |

### MEASUREMENTS OF LENGTH.

| Miles.                                             | Rods.                                     | Yards.                                 | Feet.                                | Inches.                      |
|----------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------|------------------------------|
| 1.<br>0.003125<br>0.000568<br>0.00019<br>0.0000157 | 320.<br>1.<br>0.1818<br>0.0606<br>0.00505 | 1760.<br>5.5<br>1.<br>0.0333<br>0.0277 | 5280.<br>16.5<br>3.<br>1.<br>0.08333 | 63360.<br>198.<br>36.<br>12. |

Prussian foot = 12.356 inches. Prussian mile = 4.6804 English miles. German mile = 4.6105 English miles. Russian verst = 3500 feet = 0.6629 English mile.

### MEASUREMENT OF WEIGHTS.

| Tons.       | Cwts.               | Pounds.                       | Ounces.                      |  |
|-------------|---------------------|-------------------------------|------------------------------|--|
| I.<br>0,050 | 20.<br>1.<br>0.0089 | 2240.<br>112.<br>1.<br>0.0625 | 35840.<br>1792.<br>16.<br>1. |  |

1 pound = 27.7 cubic inches of distilled water at 40° Fahrenheit.

### MEASUREMENT OF CAPACITY.

| Cubic yards.           | Barrels.                                  | Bushels.                               | Cubic feet.                                          | Gallons.                                      | Cubic inches.                             |
|------------------------|-------------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------------------------------|
| 1.<br>0.1782<br>0.0396 | 5.6103<br>1.<br>0.222<br>0.2078<br>0.0277 | 25.2467<br>4.5<br>1.<br>0.804<br>0.125 | 27.<br>4.8125<br>1.2438<br>1.<br>0.13369<br>0.000578 | 201.97<br>36.<br>8.<br>7.476<br>1.<br>0.00433 | 46656.<br>8316.<br>2150.<br>1728.<br>231. |

Bushels are here calculated without cones.

I bushel = 2150.42 cubic inches of distilled water at 40° Fahrenheit. Its dimensions are 18½ inches diameter inside, 8 inches deep, and when heaped the cone must be 6 inches high, or = 2748 cubic inches.

The imperial gallon = 277.274 cubic inches.

### MEASUREMENT OF SURFACE.

| Sq. miles. | Sq. acres.            | Sq. rods.       | Sq. yards.                 | Sq. feet.                     | Sq. inches.                      |
|------------|-----------------------|-----------------|----------------------------|-------------------------------|----------------------------------|
| .001562    | 640.<br>1.<br>0.00625 | 102400.<br>160. | 3097600.<br>4840.<br>30.25 | 27878400.<br>43560.<br>272.25 | 4014489600.<br>696960.<br>39204. |
|            |                       | 0.033           | 0.111                      | 9.<br>1.<br>0.00694           | 1296.<br>144.<br>1.              |

### TABLE OF SQUARES AND CUBES

Of all numbers from 1 to 500.

| No.                   | Squares.       | Cubes.                                 | No.                  | Squares.       | Cubes.             |
|-----------------------|----------------|----------------------------------------|----------------------|----------------|--------------------|
| I                     | I              | ī                                      | 50                   | 25 00          | 125 000            |
| 2                     | 4              | 8                                      | 51                   | 26 01          | 132 651            |
| 3                     | 9<br>16        | 27                                     | 52                   | 27 04          | 140 608            |
| 4<br>5<br>6<br>7<br>8 |                | 64                                     | 53                   | 28 09          | 148 877            |
| 5                     | 25<br>36       | 125                                    | 54                   | 29 16          | 157 464            |
| 0                     | 30             | 216                                    | 55                   | 30 25          | 166 375            |
| 7                     | 49             | 343                                    | 56                   | 31 36          | 175 616<br>185 193 |
| 9                     | 64<br>81       | 512                                    | 57<br>58             | 32 49<br>33 64 | 195 193            |
| 10                    | 1 00           | 729<br>1 000                           | 59                   | 34 81          | 205 379            |
| II                    | 1 21           | 1 331                                  | 60                   | 36 00          | 216 000            |
| 12                    | I 44           | I 728                                  | 61                   | 37 21          | 226 981            |
| 13                    | 1 60           | 2 197                                  | 62                   | 38 44          | 238 328            |
| 14                    | 1 96           | 2 744                                  | 63                   | 39 69          | 250 047            |
|                       | 2 25           | 3 375                                  | 64                   | 40 96          | 262 144            |
| 15                    | 2 56           | 4 096                                  | 65                   | 42 25          | 274 625            |
| 17                    | 2 89           | 4 913                                  | 66                   | 43 56          | 287 496            |
| 18                    | 3 24           | 5 8 <sub>32</sub><br>6 8 <sub>59</sub> | 67<br>68             | 44 89          | 300 763            |
| 19                    | 3 61           | 6 859                                  | 68                   | 46 24          | 314 432            |
| 20                    | 4 00           | 8 000                                  | 69                   | 47 61          | 328 509            |
| 21                    | 4 41           | 9 261                                  | 70                   | 49 00          | 343 000            |
| 22                    | 4 84           | 10 648                                 | 71                   | 50 41          | 357 911            |
| 23                    | 5 29           | 12 167<br>13 824                       | 72<br>73             | 51 84<br>53 29 | 373 248<br>389 017 |
|                       | 5 76<br>6 25   | 15 625                                 | 74                   | 54 <b>7</b> 6  | 405 224            |
| 25<br>26              | 6 76           | 17 576                                 | 75                   | 56 25          | 421 875            |
| 27                    | 7 29           | 19 683                                 | 75<br>76             | 57 76          | 438 976            |
| 28                    | 7 84           | 21 952                                 | 77                   | 59 29          | 456 533            |
| 29                    | 8 41           | 24 389                                 | 78                   | 60 84          | 474 552            |
| 30                    | 9 00           | 27 000                                 | 79                   | 62 41          | 493 039            |
| 31                    | 9 61           | 29 791                                 | 80                   | 64 00          | 512 000            |
| 32                    | 10 24          | 32 768                                 | 81                   | 65 61          | 531 441            |
| 33                    | 10 89          | 35 937                                 | 82                   | 67 24<br>68 89 | 551 368            |
| 34                    | 11 56<br>12 25 | 39 304<br>42 875                       | 83<br>84             | 70 56          | 571 787            |
| 35<br>36              | 12 25          | 46 656                                 | 8                    | 72 25          | 592 704<br>614 125 |
|                       | 13 69          | 50 653                                 | 8 <sub>5</sub><br>86 | 73 96          | 636 056            |
| 37<br>38              | 14 44          | 54 872                                 | 87                   | 75 69          | 658 503            |
| 39                    | 15 21          | 59 319                                 | 87<br>88             | 77 44          | 681 472            |
| 40                    | 16 00          | 64 000                                 | 89                   | 79 21          | 704 969            |
| 41                    | 16 81          | 68 921                                 | 90                   | 81 00          | 729 000            |
| 42                    | 17 64          | 74 088                                 | 91                   | 82 81          | 753 57I            |
| 43                    | 18 49          | 79 507                                 | 92                   | 84 64          | 778 688            |
| 44                    | 19 36          | 85 184                                 | 93                   | 86 49          | 804 357            |
| 45                    | 20 25          | 91 125                                 | 94                   | 88 36          | 830 584            |
| 46                    | 21 16          | 97 336                                 | 95                   | 90 25          | 857 375            |
| 47<br>48              | 22 09          | 103 823                                | 96                   | 92 16          | 884 736<br>912 673 |
|                       | 23 04<br>24 0I | 110 592<br>117 649                     | 97                   | 94 09<br>96 04 | 912 073            |
| 49                    | 24 01          | 11/0/.9                                | 90                   | 90 04          | 941 192            |

### TABLE OF SQUARES AND CUBES, ETC.

|     |                    |                        | 17  |                    | 7                      |
|-----|--------------------|------------------------|-----|--------------------|------------------------|
| No. | Squares.           | Cubes.                 | No. | Squares.           | Cubes.                 |
| 99  | 98 01              | 970 299                | 156 | 2 43 36            | 3 796 416              |
| 100 | 1 00 00            | 1 000 000              | 157 | 2 46 49            | 3 869 893              |
| IOI | I 02 0I            | 1 030 301              | 158 | 2 49 64            | 3 944 312              |
| 102 | I 04 04            | 1 061 208              | 159 | 2 52 81            | 4 019 679              |
| 103 | 1 06 09            | 1 092 727              | 160 | 2 56 00            | 4 096 000              |
| 104 | 1 08 16            | 1 124 864              | 161 | 2 59 21            | 4 173 281              |
| 105 | 1 10 25            | 1 157 625              | 162 | 2 62 44            | 4 251 528              |
| 106 | 1 12 36            | 1 191 016              | 163 | 2 65 69            | 4 330 747              |
| 107 | I 14 49            | 1 225 043              | 164 | 2 68 96            | 4 410 944              |
| 108 | I 16 64            | 1 259 712              | 165 | 2 72 25            | 4 492 125              |
| 109 | 1 18 81            | 1 295 029              | 166 | 2 75 56            | 4 574 296              |
| IIO | I 2I 00            | 1 331 000              | 167 | 2 78 89            | 4 657 463              |
| III | 1 23 21            | 1 367 631              | 168 | 2 82 24            | 4 741 632              |
| 112 | 1 25 44            | I 404 928              | 169 | 2 85 61            | 4 826 809              |
| 113 | 1 27 69            | 1 442 897              | 170 | 2 89 00            | 4 913 000              |
| 114 | 1 29 96<br>1 32 25 | 1 481 544<br>1 520 875 | 171 | 2 92 41            | 5 000 211              |
| 115 | 1 34 56            | 1 560 896              | 172 | 2 95 84            | 5 177 717              |
| 117 | 1 36 8g            | 1 601 613              | 174 | 3 02 76            | 5 268 024              |
| 118 | I 39 24            | 1 643 032              | 175 | 3 06 25            | 5 359 375              |
| IIQ | 1 41 61            | 1 685 159              | 176 | 3 09 76            | 5 451 776              |
| 120 | I 44 00            | 1 728 000              | 177 | 3 13 29            | 5 545 233              |
| 121 | 1 46 41            | 1 771 561              | 178 | 3 16 84            | 5 639 752              |
| 122 | 1 48 84            | 1 815 848              | 179 | 3 20 41            | 5 735 339              |
| 123 | 1 51 29            | I 860 867              | 180 | 3 24 00            | 5 832 000              |
| 124 | 1 53 76            | 1 906 624              | 181 | 3 27 61            | 5 929 741<br>6 028 568 |
| 125 | I 56 25            | 1 953 125              | 182 | 3 31 24            | 6 028 568              |
| 126 | 1 58 76            | 2 000 376              | 183 | 3 34 89            | 6 128 487              |
| 127 | 1 61 29            | 2 048 383              | 184 | 3 38 56            | 6 229 504              |
| 128 | 1 63 84            | 2 097 152              | 185 | 3 42 25            | 6 331 625              |
| 129 | 1 66 41            | 2 146 689              | 186 | 3 45 96            | 6 434 856              |
| 130 | 1 71 61            | 2 197 000 2 248 091    | 188 | 3 49 69            | 6 539 203<br>6 644 672 |
| 131 | 1 74 24            | 2 299 968              | 189 | 3 53 44<br>3 57 21 | 6 751 269              |
| 133 | 1 76 89            | 2 352 637              | 190 | 3 61 00            | 6 859 000              |
| 134 | 1 79 56            | 2 406 104              | 191 | 3 64 81            | 6 967 871              |
| 135 | 1 82 25            | 2 460 375              | 192 | 3 68 64            | 7 077 888              |
| 136 | I 84 96            | 2 515 456              | 193 | 3 72 49            | 7 189 057              |
| 137 | 1 87 69            | 2 571 353              | 194 | 3 76 36            | 7 301 384              |
| 138 | I 90 44            | 2 628 072              | 195 | 3 80 25            | 7 414 875              |
| 139 | 1 93 21            | 2 685 619              | 196 | 3 84 16            | 7 529 536              |
| 140 | 1 96 00            | 2 744 000              | 197 | 3 88 09            | 7 645 373              |
| 141 | 1 98 81            | 2 803 221              | 198 | 3 92 04            | 7 762 392              |
| 142 | 2 01 64            | 2 863 288              | 199 | 3 96 01            | 7 880 599<br>8 000 000 |
| 143 | 2 04 49            | 2 924 207              | 200 | 4 00 00            | 8 000 000              |
| 144 | 2 07 36            | 2 985 984              | 201 | 4 04 01            | 8 120 601              |
| 145 | 2 10 25<br>2 13 16 | 3 048 625<br>3 112 136 | 202 | 4 08 04            | 8 242 408<br>8 365 427 |
| 147 | 2 16 00            | 3 176 523              | 203 | 4 16 16            | 8 489 664              |
| 148 | 2 19 04            | 3 241 792              | 204 | 4 20 25            | 8 615 125              |
| 149 | 2 22 01            | 3 307 949              | 206 | 4 24 36            | 8 741 816              |
| 150 | 2 25 00            | 3 375 000              | 207 | 4 28 49            | 8 869 743              |
| 151 | 2 28 01            | 3 442 951              | 208 | 4 32 64            | 8 998 912              |
| 152 | 2 31 04            | 3 511 808              | 209 | 4 36 81            | 9 129 329              |
| 153 | 2 34 09            | 3 581 577              | 210 | 4 41 00            | 9 261 000              |
| 154 | 2 37 16            | 3 652 264              | 211 | 4 45 21            | 9 393 931              |
| 155 | 2 40 25            | 3 723 875              | 212 | 4 49 44            | 9 528 128              |

### TABLE OF SQUARES AND CUBES, ETC.

| No.        | Squares.           | Cubes.                   | No.              | Squares.           | Cubes.                   |
|------------|--------------------|--------------------------|------------------|--------------------|--------------------------|
| 213        | 4 53 69            | 9 663 597                | 270              | 7 29 00            | 19 683 000               |
| 214        | 4 57 96            | 9 800 344                | 271              | 7 34 41            | 19 902 511               |
| 215        | 4 62 25            | 9 938 375                | 272              | 7 39 84            | 20 123 648               |
| 216        | 4 66 56            | 10 077 696               | 273              | 7 45 29            | 20 346 417               |
| 217        | 4 70 89            | 10 218 313               | 274              | 7 50 76            | 20 570 824               |
| 218        | 4 75 24            | 10 360 232               | 275              | 7 56 25            | 20 796 875               |
| 219        | 4 79 61<br>4 84 00 | 10 503 459               | 276              | 7 61 76            | 21 024 576               |
| 220<br>22I | 4 88 41            | 10 648 000               | 277              | 7 67 29<br>7 72 84 | 21 253 933 21 484 952    |
| 222        | 4 92 84            | 10 941 048               | 279              | 7 78 41            | 21 717 639               |
| 223        | 4 97 29            | 11 089 567               | 280              | 7 84 00            | 21 952 000               |
| 224        | 5 01 76            | 11 239 424               | 281              | 7 89 61            | 22 188 041               |
| 225        | 5 06 25            | 11 390 625               | 282              | 7 95 24            | 22 425 768               |
| 226        | 5 10 76            | 11 543 176               | 283              | 7 95 24<br>8 oo 89 | 22 665 187               |
| 227        | 5 15 29            | 11 697 083               | 284              | 8 06 56            | 22 906 304               |
| 228        | 5 19 84            | 11 852 352               | 285              | 8 12 25            | 23 149 125               |
| 229        | 5 24 41            | 12 008 989               | 286              | 8 17 96            | 23 393 656               |
| 230        | 5 29 00            | 12 167 000               | 287              | 8 23 69            | 23 639 903               |
| 231        | 5 33 61            | 12 326 391               | 288              | 8 29 44            | 23 887 872               |
| 232        | 5 38 24            | 12 487 168               | 289              | 8 35 21            | 24 137 569               |
| 233        | 5 42 89            | 12 649 337               | 290              | 8 41 00<br>8 46 81 | 24 389 000<br>24 642 171 |
| 234        | 5 47 56            | 12 812 904               | 291              | 8 52 64            | 24 897 088               |
| 235        | 5 52 25<br>5 56 96 | 12 977 875<br>13 144 256 | 293              | 8 58 49            | 25 153 757               |
| 237        | 5 61 69            | 13 312 053               | 294              | 8 64 36            | 25 412 184               |
| 238        | 5 66 44            | 13 481 272               | 295              | 8 70 25            | 25 672 375               |
| 239        | 5 71 21            | 13 651 919               | 296              | 8 76 16<br>8 82 09 | 25 672 375<br>25 934 336 |
| 240        | 5 76 00            | 13 824 000               | 297              | 8 82 09            | 26 198 073               |
| 241        | 5 80 81            | 13 997 521               | 298              | 8 88 04            | 26 463 592               |
| 242        | 5 85 64            | 14 172 488               | 299              | 8 94 01            | 26 730 899               |
| 243        | 5 90 49            | 14 348 907               | 300              | 9 00 00            | 27 000 000<br>27 270 901 |
| 244        | 5 95 36<br>6 00 25 | 14 526 784               | 301<br>302       | 9 12 04            | 27 543 608               |
| 245<br>246 | 6 05 16            | 14 886 936               | 303              | 9 18 09            | 27 818 127               |
| 247        | 6 10 09            | 15 060 223               | 304              | 9 24 16            | 28 094 464               |
| 248        | 6 15 04            | 15 252 992               | 305              | 9 30 25            | 28 372 625               |
| 249        | 6 20 01            | 15 438 249               | 306              | 9 36 36            | 28 652 616               |
| 250        | 6 25 00            | 15 625 000               | 307              | 9 42 49            | 28 934 443               |
| 251        | 6 30 01            | 15 813 251               | 308              | 9 48 64            | 29 218 112               |
| 252        | 6 35 04            | 16 003 008               | 309              | 9 54 81            | 29 503 629               |
| 253        | 6 40 09            | 16 194 277               | 310              | 9 61 00            | 29 791 000<br>30 080 231 |
| 254        | 6 45 16            | 16 387 064               | 311              | 9 67 21            | 30 371 328               |
| 255        | 6 50 25<br>6 55 36 | 16 581 375<br>16 777 216 | 312              | 9 73 44<br>9 79 69 | 30 664 297               |
| 256<br>257 | 6 60 49            | 16 974 593               | 314              | 9 85 96            | 30 959 144               |
| 258        | 6 65 64            | 17 173 512               | 315              | 0 02 25            | 31 255 875               |
| 259        | 6 70 81            | 17 373 979               | 316              | 9 98 56            | 31 554 496               |
| 260        | 6 76 00            | 17 576 000               | 317              | 10 04 89           | 31 554 496<br>31 855 013 |
| 261        | 68121              | 17 779 581               | 318              | 10 11 24           | 32 157 432               |
| 262        | 6 86 44            | 17 984 728               | 319              | 10 17 61           | 32 461 759               |
| 263        | 6 91 69            | 18 191 447               | 320              | 10 24 00           | 32 768 000               |
| 264        | 6 96 96            | 18 399 744               | 321              | 10 30 41           | 33 076 161<br>33 386 248 |
| 265        | 7 02 25            | 18 609 625               | 322              | 10 36 84           | 33 360 246               |
| 266<br>267 | 7 07 56<br>7 12 89 | 18 821 096<br>19 034 163 | 3 <sup>2</sup> 3 | 10 43 29           | 34 012 224               |
| 268        | 7 18 24            | 19 248 832               | 324              | 10 56 25           | 34 328 125               |
|            | 1 20 24            |                          | 326              | 10 62 76           | 34 645 976               |

### TABLE OF SQUARES AND CUBES, ETC.

| No.        | Squares.             | Cubes.                   | No.        | Squares. | Cubes.                   |
|------------|----------------------|--------------------------|------------|----------|--------------------------|
|            | 60.0                 | 2.267 =0                 | -0.        |          |                          |
| 327        | 10 69 29             | 34 965 783               | 384        | 14 74 56 | 56 623 104               |
| 328        | 10 75 84             | 35 287 552               | 385        | 14 82 25 | 56 066 625               |
| 329        | 10 82 41             | 35 611 289               | 386        | 14 89 96 | 57 512 456               |
| 330        | 10 89 00             | 35 937 000               | 387        | 14 97 69 | 57 960 603               |
| 331        | 10 95 61             | 36 264 691               | 388        | 15 05 44 | 58 411 072               |
| 332        | 11 02 24             | 36 594 368               | 389        | 15 13 21 | 58 863 869               |
| 333        | 11 08 89             | 36 926 037               | 390        | 15 21 00 | 59 319 000               |
| 334        | 11 15 56             | 37 259 704               | 391        | 15 28 81 | 59 776 471               |
| 335        | 11 22 25             | 37 595 375               | 392        | 15 36 64 | 60 236 288               |
| 336        | 11 28 96             | 37 933 056               | 393        | 15 44 49 | 60 698 457               |
| 337        | 11 35 69             | 38 272 753               | 394        | 15 52 36 | 61 162 984               |
| 338        | 11 42 44             | 38 614 472               | 395        | 15 60 25 | 61 629 875               |
| 339        | 11 49 21             | 38 958 219               | 396        | 15 68 16 | 62 099 136               |
| 340        | 11 56 00             | 39 304 000               | 397        | 15 76 09 | 62 570 773               |
| 341        | 11 62 81             | 39 651 821               | 398        | 15 84 04 | 63 044 792               |
| 342        | 11 69 64             | 40 001 688               | 399        | 15 92 01 | 63 521 199               |
| 343        | 11 76 49             | 40 353 607               | 400        | 16 00 00 | 64 000 000               |
| 344        | 11 83 36             | 40 707 584               | 401        | 16 08 01 | 64 481 201               |
| 345        | 11 90 25             | 41 063 625               | 402        | 16 16 04 | 64 964 808               |
| 346        | 11 97 16             | 41 421 736               | 403        | 16 24 09 | 65 450 827               |
| 347        | 12 04 09             | 41 781 923               | 404        | 16 32 16 | 65 939 264               |
| 348        | 12 11 04             | 42 144 192               | 405        | 16 40 25 | 66 430 125               |
| 349        | 12 18 01             | 42 508 549               | 406        | 16 48 36 | 66 923 416               |
| 350        | 12 25 00             | 42 875 000               | 407        | 16 56 49 | 67 419 143               |
| 351        | 12 32 01             | 43 243 551               | 408        | 16 64 64 | 67 917 312               |
| 352        | 12 39 04             | 43 614 208               | 409        | 16 72 81 | 68 417 929               |
| 353        | 12 46 09             | 43 986 977               | 410        | 16 81 00 | 68 921 000               |
| 354        | 12 53 16             | 44 361 864               | 411        | 16 89 21 | 69 426 531               |
| 355        | 12 60 25             | 44 738 875               | 412        | 16 97 44 | 69 934 528               |
| 356        | 12 67 36             | 45 118 016               | 413        | 17 05 69 | 70 444 997               |
| 357        | 12 74 49<br>12 81 64 | 45 499 293               | 414        | 17 13 96 | 70 957 944               |
| 358        | 12 88 81             | 45 882 712<br>46 268 279 | 415        | 17 22 25 | 71 473 375               |
| 359<br>360 | 12 96 00             | 46 656 000               | 416        | 17 30 56 | 71 991 296               |
| 361        | 13 03 21             | 47 045 881               | 417        | 17 38 89 | 72 511 713               |
| 362        | 13 10 44             |                          |            | 17 47 24 | 73 034 632               |
| 363        | 13 17 69             | 47 437 928<br>47 832 147 | 419<br>420 | 17 55 61 | 73 560 059               |
| 364        | 13 24 96             | 48 228 544               | 421        | 17 64 00 | 74 088 000               |
| 365        | 13 32 25             | 48 627 125               | 422        | 17 72 41 | 74 618 461               |
| 366        | 13 39 56             | 49 027 896               | 423        | 17 89 29 | 75 151 448               |
| 367        | 13 46 89             | 49 430 863               | 424        | 17 97 76 | 75 686 967<br>76 225 024 |
| 368        | 13 54 24             | 49 836 032               | 425        | 18 06 25 | 76 765 625               |
| 369        | 13 61 61             | 50 243 409               | 425        | 18 14 76 | 77 308 776               |
| 370        | 13 69 00             | 50 653 000               | 427        | 18 23 29 | 77 854 483               |
| 371        | 13 76 41             | 51 064 811               | 428        | 18 31 84 | 78 402 752               |
| 372        | 13 83 84             | 51 478 848               | 429        | 18 40 41 | 78 953 589               |
| 373        | 13 91 29             | 51 895 117               | 430        | 18 49 00 | 79 507 000               |
| 374        | 13 98 76             | 52 313 624               | 431        | 18 57 61 | 80 062 gg1               |
| 375        | 14 06 25             | 52 734 375               | 432        | 18 66 24 | 80 621 568               |
| 376        | 14 13 76             | 53 157 376               | 433        | 18 74 89 | 81 182 737               |
| 377        | 14 21 29             | 53 157 376<br>53 582 633 | 434        | 18 83 56 | 81 746 504               |
| 378        | 14 28 84             | 54 010 152               | 435        | 18 92 25 | 82 312 875               |
| 379        | 14 36 41             | 54 439 939               | 436        | 19 00 96 | 82 88 <b>1</b> 856       |
| 380        | 14 44 00             | 54 872 000               | 437        | 19 09 69 | 83 453 453               |
| 381        | 14 51 61             | 55 306 341               | 438        | 19 18 44 | 84 027 672               |
| 382        | 14 59 24             | 55 742 968               | 439        | 19 27 21 | 84 604 519               |
| 383        | 14 66 89             | 56 181 887               |            |          |                          |

### TABLE OF SQUARES AND CUBES, ETC.

| No.        | Squares.             | Cubes.                   | No.        | Squares.             | Cubes.      |
|------------|----------------------|--------------------------|------------|----------------------|-------------|
| 441        | 19 44 81             | 85 766 121               | 471        | 22 18 41             | 104 487 111 |
| 442        | 19 53 64             | 86 350 888               | 472        | 22 27 84             | 105 154 048 |
| 443        | 19 62 49             | 86 938 307               | 473        | 22 37 29             | 105 823 817 |
| 444        | 19 71 36             | 87 528 384               | 474        | 22 46 76             | 106 496 424 |
| 445        | 19 80 25             | 88 121 125               | 475        | 22 56 25             | 107 171 875 |
| 446        | 19 89 16             | 88 716 536               | 476        | 22 65 76             | 107 850 176 |
| 447        | 19 98 09             | 89 314 623               | 477        | 22 75 29             | 108 531 333 |
| 448        | 20 07 04             | 89 915 392               | 478        | 22 84 84             | 109 215 352 |
| 449        | 20 16 01             | 90 518 849               | 479        | 22 94 41             | 109 902 239 |
| 450        | 20 25 00             | 91 125 000               | 480        | 23 04 00             | 110 592 000 |
| 451        | 20 34 01             | 91 733 751               | 481        | 23 13 61             | 111 284 641 |
| 452        | 20 43 04             | 92 345 408               | 482<br>483 | 23 23 24             | 111 980 168 |
| 453        | 20 52 09<br>20 61 16 | 92 959 677               | 484        | 23 32 89             |             |
| 454        |                      | 93 576 664               | 485        | 23 42 56             | 113 379 904 |
| 455        | 20 70 25             | 94 196 375<br>94 818 816 | 486        | 23 52 25<br>23 61 96 | 114 791 256 |
| 456        | 20 88 49             | 95 443 993               | 487        | 23 71 69             | 115 501 303 |
| 457<br>458 | 20 97 64             | 95 443 993               | 488        | 23 81 44             | 116 214 272 |
| 459        | 21 06 81             | 96 702 579               | 489        | 23 91 21             | 116 930 169 |
| 459        | 21 16 00             | 97 336 000               | 490        | 24 01 00             | 117 649 000 |
| 461        | 21 25 21             | 97 972 181               | 491        | 24 10 81             | 118 370 771 |
| 462        | 21 34 44             | 98 611 128               | 492        | 24 20 64             | 119 095 488 |
| 463        | 21 43 69             | 99 252 847               | 493        | 24 30 49             | 119 823 157 |
| 464        | 21 52 96             | 99 897 344               | 494        | 24 40 36             | 120 553 784 |
| 465        | 21 62 25             | 100 554 625              | 495        | 24 50 25             | 121 287 375 |
| 466        | 21 71 56             | 101 194 696              | 496        | 24 60 16             | 122 023 936 |
| 467        | 21 80 89             | 101 847 563              | 497        | 24 70 00             | 122 763 473 |
| 468        | 21 90 24             | 102 503 232              | 498        | 24 80 04             | 123 505 992 |
| 469        | 21 99 61             | 103 161 700              | 499        | 24 90 OI             | 124 251 499 |
| 470        | 22 00 00             | 103 823 000              | 500        | 25 00 00             | 125 000 000 |

### LENGTH OF CIRCULAR ARC.

### Huygen's approximation.

Huygen's approximation to length of a circular arc:

A = chord of any circular arc.

B = chord of half that arc.

R = radius of the circular arc.

L = length of the circular arc.

Then

$$L = \frac{8 B - A}{3}$$

or, as it is usually written,

$$L = 2 B + \frac{1}{3} (2 B - A).$$

### TRIGONOMETRICAL FUNCTIONS.



$$\frac{a}{b} = \text{sine} \quad \text{angle A.} \quad \frac{I}{\text{sine A}} = \frac{b}{a} = \text{cosecant angle A.}$$

$$\frac{c}{b} = \text{cosine} \quad \text{``A.} \quad \frac{I}{\text{cosine A}} = \frac{b}{c} = \text{secant} \quad \text{``A.}$$

$$\frac{a}{c} = \text{tangent} \quad \text{``A.} \quad \frac{I}{\text{tangent A}} = \frac{c}{a} = \text{cotangent ``A.}$$

Therefore,

$$a = b \times \text{sine A.}$$
  $b = c \times \text{secant A.}$   $b = a \times \text{cosecant A.}$   $a = c \times \text{tangent A.}$   $c = b \times \text{cosine A.}$   $c = a \times \text{cotangent A.}$ 

### NATURAL SINES, ETC.

|        |         |         |             | Tangent. |             |          | Versin. |         | Deg      |
|--------|---------|---------|-------------|----------|-------------|----------|---------|---------|----------|
|        |         |         | T., C., :4. |          | T., C., 14. |          |         |         |          |
| 0      | 0.0     | 1.00000 | Infinite.   |          |             | 1.00000  |         | 1.00000 | 90       |
| 1      |         | 0.98254 |             | 0.01745  |             | 1.00015  |         |         | 89       |
| 2      |         | 0.96510 |             | 0.03492  |             | 1.00060  |         |         | 88       |
| 3      |         | 0.94766 |             | 0.05240  | 19.0811     | 1.00137  | 0.0013  | 0.99862 | 87       |
| 4      |         | 0.93024 |             | 0.06992  | 14.3000     | 1,00244  | 0.0024  | 0.99750 | 86       |
| 5      | 0.08715 | 0.91284 |             | 0.08748  |             | 1.00381  |         |         | 85       |
|        |         | 0.89547 | 9.5667      | 0.10510  |             | 1.00550  |         |         | 84       |
| 7<br>8 |         | 0.87813 |             | 0.12278  | 8.1443      | 1.00750  | 0.0074  | 0.99254 | 83       |
| 8      |         | 0.86082 |             | 0.14054  |             | 1.00982  |         |         | 82       |
| 9      | 0.15643 | 0.84356 | 6.3924      | 0.15838  | 6.3137      | 1.01246  | 0.0123  | 0.98768 | 81       |
| IO     |         | 0.82635 |             | 0.17632  |             | 1.01542  |         |         | 80       |
| II     | 0.19080 | 0.80919 | 5.2408      | 0.19438  |             | 1.01871  |         |         | 79<br>78 |
| 12     | 0.20791 | 0.79208 | 4.8097      | 0.21255  | 4.7046      | 1.02234  | 0.0218  | 0.97814 | 78       |
| 13     | 0.22495 | 0.77504 | 4.4454      | 0.23086  |             | 1.02630  |         |         | 77       |
| 14     |         | 0.75807 | 4.1335      | 0.24932  | 4.0107      | 1.03061  | 0.0297  | 0.97029 | 77<br>76 |
| 15     | 0.25881 | 0.74118 | 3.8637      | 0.26794  | 3.7320      | 1.03527  | 0.0340  | 0.96592 | 75       |
| 16     | 0.27563 | 0.72436 | 3.6279      | 0.28674  | 3.4874      | 1.04029  | 0.0387  | 0.96126 | 74       |
| 17     | 0.29237 | 0.70762 |             | 0.30573  |             | 1.04569  |         |         | 73       |
| 18     | 0.30001 | 0.69098 |             | 0.32491  |             | 1.05146  |         |         | 72       |
| 19     |         | 0.67443 |             | 0.34432  |             | 1.05762  |         |         | 71       |
| 20     | 0.34202 | 0.65797 | 2.0238      | 0.36397  | 2.7474      | 1.06417  | 0.0603  | 0.93969 | 70       |
| 21     | 0.35836 | 0.64163 | 2.7904      | 0.38386  | 2.6050      | 1.07114  | 0.0664  | 0.93358 | 69       |
| 22     |         | 0.62539 |             | 0.40402  | 2.4750      | 1.07853  | 0.0728  | 0.02718 | 68       |
| 23     |         | 0.60926 | 2.5593      | 0.42447  | 2.3558      | 1.08636  | 0.0704  | 0.92050 | 67       |
| 24     | 0.40673 | 0.59326 | 2.4585      | 0.44522  | 2.2460      | 1.09463  | 0.0864  | 0.91354 | 66       |
| 25     |         | 0.57738 |             | 0.46630  |             | 1.10337  |         |         | 65       |
| 26     |         | 0.56162 |             | 0.48773  |             | 1.11260  |         |         | 64       |
| 27     |         | 0.54600 |             | 0.50952  |             | 1.12232  |         |         | 63       |
| 28     |         | 0.53052 |             | 0.53170  |             | 1.13257  |         |         | 62       |
| 29     |         | 0.51519 |             | 0.55430  |             | 1.14335  |         |         | 61       |
| 30     | 0.50000 | 0,50000 | 2,0000      | 0.57735  | 1.7320      | 1.15470  | 0.1330  | 0.86602 | 60       |
| 31     |         | 0.48496 | 1.9416      | 0.60086  | 1.6642      | 1.16663  | 0.1428  | 0.85716 | 59       |
| 32     |         | 0.47008 |             | 0.62486  |             | 1.17917  |         |         | 58       |
| 33     |         | 0.45536 |             | 0.64940  |             | 1.19236  |         |         | 57       |
| 34     |         | 0.44080 |             | 0.67450  |             | 1.20621  |         |         | 56       |
| 35     | 0.57357 | 0.42642 |             | 0.70020  |             | 1.22077  |         |         | 55       |
| 36     | 0.58778 | 0.41221 |             | 0.72654  | 1.3763      | 1.23606  | 0.1900  | 0.80001 | 54       |
| 37     |         | 0.39818 |             | 0.75355  |             | 1.25213  |         |         | 53       |
| 38     |         | 0.38433 |             | 0.78128  |             | 1.26901  |         |         | 52       |
| 39     |         | 0.37067 |             | 0.80978  |             | 1.28675  |         |         | 51       |
| 40     | 0.64278 | 0.35721 | 1.5557      | 0.83909  | 1.1917      | 1.30540  | 0.2339  | 0.76604 | 50       |
| 41     |         | 0.34394 |             | 0.86928  |             | 1.32501  |         |         | 49       |
| 42     |         | 0.33086 |             | 0.90040  |             | 1.34563  |         |         | 48       |
| 43     |         | 0.31800 |             | 0.93251  |             | 1.36732  |         |         | 47       |
| 44     |         | 0.30534 |             | 0.96568  |             | 1.39016  |         |         | 46       |
| 45     |         | 0.29289 |             | 1,00000  |             | 1.41421  |         |         | 45       |
|        | Cosin.  | Versin. | Gecant.     | Cotano   | Tangent.    | Cosecant | Cover   | Sine.   |          |

### PROPERTIES OF CIRCULAR ARCS.



$$CD = v$$
.

$$AB = c$$
.

$$CD = v = r (I - \cos \phi).$$

$$\sin \phi = \frac{\frac{1}{2}c}{r}$$

Given, chord A B = c, and ver. sine C D = v, required radius r.

$$\frac{A B}{2}$$
 = A D = D B

then

$$\frac{\overline{A} \overline{D}^2 + \overline{D} \overline{C}^2}{2 \overline{D} \overline{C}} = C E$$

i.e.,

$$\frac{c^2 + 4^{-2}}{8^{-2}}$$

Given, chord A B and radius C E, to find rise C D.

$$C \to \sqrt{\overline{C E^2 - A D^2}} = C D$$

$$r = \sqrt{r^2 - \frac{c^2}{4}}$$

i.e.,

Given, the radius and rise or vers. sine, to find the chord A B.

$$A D = \sqrt{\overline{C} E^2 - (C E - C D)^2}$$

$$C = 2 \sqrt{2 \text{ vr} - \text{v}^2}$$

i.e.,

# TABLE OF PROPORTIONS OF THE CIRCLE AND ITS EQUAL.

The diameter of any circle  $\times$  3.1416 = the circumference.

The circumference of any circle  $\times \left(\frac{1}{3.1416} = 0.31831\right)$  = the diameter.

The square of the diameter  $\times \left(\frac{3.1416}{4} = 0.7854\right) =$ the area.

The square of the circumference  $\times \left(\frac{0.7854}{3.1416^2} = 0.07958\right)$  = the area.

The diameter of a circle  $\times$  ( $\sqrt{0.7854} = 0.8862$ ) = side of equal square.

The circumference of a circle  $\times$  ( $\sqrt{0.07958} = 0.2821$ ) = side of equal square.

The side of any square  $\times \left(\frac{1}{0.8862} = 1.1284\right) = \text{diameter of equal circle.}$ 

The side of any square  $\times \left(\frac{1}{0.2821} = 3.545\right) = \text{circumference of equal circle.}$ 

Square of side  $\times \left(\frac{1}{0.7854} = 1.27324366\right)$  = square of diameter of equal circle = so-called round inches.

Round inches 
$$\times \left(\frac{0.7854}{144.} = 0.0546\right) = \text{square feet.}$$

Square of diameter of equal circle  $\times$  0.7854 = square of side.

Area of segment of circle = area of sector of equal radius, less area of triangle.

Area of parabola = base  $\times \frac{2}{3}$  height.

Area of ellipse = longest diameter × shortest diameter × .7854.

Area of any regular polygon = sum of its sides × perpendicular from its centre to one of its sides, divided by 2.

Surface of cylinder = area of both ends + length × circumference.

Surface of segment = height of segment  $\times$  whole circumference of sphere of which it is a part.

Cubic contents of a cylinder = area of one end  $\times$  length.

### AREAS OF CIRCLES.

Advancing by eighths.

| _                          | AREAS.                                             |                                                      |                                                     |                                                     |                                                |                                                     |                                                     |                                                     |  |  |
|----------------------------|----------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--|--|
| Diam.                      | .0                                                 | .1/8                                                 | .1⁄4                                                | .3/8                                                | .1/2                                           | .5/8                                                | .3⁄4                                                | .7/8                                                |  |  |
| 0<br>1<br>2<br>3<br>4<br>5 | 0.0<br>0.7854<br>3.1416<br>7.068<br>12.56<br>19.63 | 0.0122<br>0.9940<br>3.546<br>7.669<br>13.36<br>20.62 | 0.0490<br>1.227<br>3.976<br>8.295<br>14.18<br>21.64 | 0.1104<br>1.484<br>4.430<br>8.946<br>15.03<br>22.69 | 0.1963<br>1.767<br>4.908<br>9.621<br>15.90     | 0.3068<br>2.073<br>5.411<br>10.32<br>16.80<br>24.85 | 0.4417<br>2.405<br>5.939<br>11.04<br>17.72<br>25.96 | 0.6013<br>2.761<br>6.491<br>11.79<br>18.66<br>27.10 |  |  |
| 6<br>7<br>8<br>9           | 28.27<br>38.48<br>50.26<br>63.61<br>78.54          | 29.46<br>39.87<br>51.84<br>65.39<br>80.51            | 30.67<br>41.28<br>53.45<br>67.20<br>82.51           | 31.91<br>42.71<br>55.08<br>69.02<br>84.54           | 33.18<br>44.17<br>56.74<br>70.88<br>86.59      | 34·47<br>45.66<br>58.42<br>72·75<br>88.66           | 35.78<br>47.17<br>60.13<br>74.69<br>90.76           | 37.12<br>48.70<br>61.86<br>76.58<br>92.88           |  |  |
| 11<br>12<br>13<br>14<br>15 | 95.03<br>113.0<br>132.7<br>153.9<br>176.7          | 97.20<br>115.4<br>135.2<br>156.6<br>179.6            | 99.40<br>117.8<br>137.8<br>159.4<br>182.6           | 101.6<br>120.2<br>140.5<br>162.2<br>185.6           | 103.8<br>122.7<br>143.1<br>165.1<br>188.6      | 106.1<br>125.1<br>145.8<br>167.9<br>191.7           | 108.4<br>127.6<br>148.4<br>170.8<br>194.8           | 110.7<br>130.1<br>151.2<br>173.7<br>197.9           |  |  |
| 16<br>17<br>18<br>19<br>20 | 201.0<br>226.9<br>254.4<br>283.5<br>314.1          | 204.2<br>230.3<br>258.0<br>287.2<br>318.1            | 207.3<br>233.7<br>261.5<br>291.0<br>322.0           | 210.5<br>237.1<br>265.1<br>294.8<br>326.0           | 213.8<br>240.5<br>268.8<br>298.6<br>330.0      | 217.0<br>243.9<br>272.4<br>302.4<br>334.1           | 220.3<br>247.4<br>276.1<br>306.3<br>338.1           | 223.6<br>250.9<br>279.8<br>310.2<br>342.2           |  |  |
| 21<br>22<br>23<br>24<br>25 | 346.3<br>380.1<br>415.4<br>452.3<br>490.8          | 350.4<br>384.4<br>420.0<br>457.1<br>495.7            | 354.6<br>388.8<br>424.5<br>461.8<br>500.7           | 358.8<br>393.2<br>429.1<br>466.6<br>505.7           | 363.0<br>397.6<br>433.7<br>471.4<br>510.7      | 367.2<br>402.0<br>438.3<br>476.2<br>515.7           | 371.5<br>406.4<br>443.0<br>481.1<br>520.7           | 375.8<br>410.9<br>447.6<br>485.9<br>525.8           |  |  |
| 26<br>27<br>28<br>29<br>30 | 530.9<br>572.5<br>615.7<br>660.5<br>706.8          | 536.0<br>577.8<br>621.2<br>666.2<br>712.7            | 541.1<br>583.2<br>626.7<br>671.9<br>718.6           | 546.3<br>588.5<br>632.3<br>677.7<br>724.6           | 551.5<br>593.9<br>637.9<br>683.4<br>730.6      | 556.7<br>599.3<br>643.5<br>689.2<br>736.6           | 562.0<br>604.8<br>649.1<br>695.1<br>742.6           | 567.2<br>610.2<br>654.8<br>700.9<br>748.6           |  |  |
| 31<br>32<br>33<br>34<br>35 | 754.8<br>804.3<br>855.3<br>907.9<br>962.1          | 760.9<br>810.6<br>861.8<br>914.7<br>969.0            | 767.0<br>816.9<br>868.3<br>921.3<br>975.9           | 773.1<br>823.2<br>874.9<br>928.1<br>982.8           | 779.3<br>829.6<br>881.4<br>934.8<br>989.8      | 785.5<br>836.0<br>888.0<br>941.6<br>996.8           | 791.7<br>842.4<br>894.6<br>948.4<br>1003.8          | 798.0<br>848.8<br>901.3<br>955.3<br>1010.8          |  |  |
| 37<br>38<br>39             | 1017.9<br>1075.2<br>1134.1<br>1194.6<br>1256.6     | 1025.0<br>1082.5<br>1141.6<br>1202.3<br>1264.5       | 1032.1<br>1089.8<br>1149.1<br>1210.0<br>1272.4      | 1039.2<br>1097.1<br>1156.6<br>1217.7<br>1280.3      | 1046.3<br>1104.5<br>1164.2<br>1225.4<br>1288.2 | 1053.5<br>1111.8<br>1171.7<br>1233.2<br>1296.2      | 1060.7<br>1119.2<br>1179.3<br>1241.0<br>1304.2      | 1068.0<br>1126.7<br>1186.9<br>1248.8<br>1312.2      |  |  |
| 42<br>43<br>44             | 1320.3<br>1385.4<br>1452.2<br>1520.5<br>1590.4     | 1328.3<br>1393.7<br>1460.7<br>1529.2<br>1599.3       | 1336.4<br>1402.0<br>1469.1<br>1537.9<br>1608.2      | 1344.5<br>1410.3<br>1477.6<br>1546.6<br>1617.0      | 1352.7<br>1418.6<br>1486.2<br>1555.3<br>1626.0 | 1360.8<br>1427.0<br>1494.7<br>1564.0<br>1634.9      | 1369.0<br>1435.4<br>1503.3<br>1572.8<br>1643.9      | 1377.2<br>1443.8<br>1511.9<br>1581.6<br>1652.9      |  |  |

### CIRCUMFERENCES OF CIRCLES.

Advancing by eighths.

| CI | R | С | U | M | F | Ę | R | Ε | Ν | С | E: | S. |  |
|----|---|---|---|---|---|---|---|---|---|---|----|----|--|
|    |   |   |   |   |   |   |   |   |   |   |    |    |  |

| Diam.            | .0                                        | .1/s                                      | .1/4                                      | .3/8                                      | .1/2                                      | .5/s                                      | .3/4                                      | .7/8                                      |
|------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 0<br>I<br>2      | 0.0<br>3.141<br>6.283                     | 0.3927<br>3.534<br>6.675                  | 0.7854<br>3.927<br>7.068                  | 1.178<br>4.319<br>7.461<br>10.60          | 1.570<br>4.712<br>7.854                   | 1.963<br>5.105<br>8.246                   | 2.356<br>5.497<br>8.639                   | 5.890<br>9.032                            |
| 3                | 9.424                                     | 9.817                                     | 10.21                                     | 13.74                                     | 10.99                                     | 11.38                                     | 11.78                                     | 12.17                                     |
| 4                | 12.56                                     | 12.95                                     | 13.35                                     |                                           | 14.13                                     | 14.52                                     | 14.92                                     | 15.31                                     |
| 5                | 15.70                                     | 16.10                                     | 16.49                                     |                                           | 17.27                                     | 17.67                                     | 18.06                                     | 18.45                                     |
| 6<br>7<br>8<br>9 | 18.84<br>21.99<br>25.13<br>28.27<br>31.41 | 19.24<br>22.38<br>25.52<br>28.66<br>31.80 | 19.63<br>22.77<br>25.91<br>29.05<br>32.20 | 20.02<br>23.16<br>26.31<br>29.45<br>32.59 | 20.42<br>23.56<br>26.70<br>29.84<br>32.98 | 20.81<br>23.95<br>27.09<br>30.23<br>33.37 | 21.20<br>24.34<br>27.48<br>30.63<br>33.77 | 21.59<br>24.74<br>27.88<br>31.02<br>34.16 |
| 11               | 34.55                                     | 34.95                                     | 35·34                                     | 35.73                                     | 36.12                                     | 36.52                                     | 36.91                                     | 37·30                                     |
| 12               | 37.69                                     | 38.09                                     | 38·48                                     | 38.87                                     | 39.27                                     | 39.66                                     | 40.05                                     | 40·44                                     |
| 13               | 40.84                                     | 41.23                                     | 41·62                                     | 42.01                                     | 42.41                                     | 42.80                                     | 43.19                                     | 43·58                                     |
| 14               | 43.98                                     | 44.37                                     | 44·76                                     | 45.16                                     | 45.55                                     | 45.94                                     | 46.33                                     | 46·73                                     |
| 15               | 47.12                                     | 47.51                                     | 47·90                                     | 48.30                                     | 48.69                                     | 49.08                                     | 49.48                                     | 49·87                                     |
| 16               | 50.26                                     | 50.65                                     | 51.05                                     | 51.44                                     | 51.83                                     | 52.22                                     | 52.62                                     | 53.01                                     |
| 17               | 53.40                                     | 53.79                                     | 54.19                                     | 54.58                                     | 54.97                                     | 55.37                                     | 55.76                                     | 56.15                                     |
| 18               | 56.54                                     | 56.94                                     | 57.33                                     | 57.72                                     | 58.11                                     | 58.51                                     | 58.90                                     | 59.29                                     |
| 19               | 59.69                                     | 60.08                                     | 60.47                                     | 60.86                                     | 61.26                                     | 61.65                                     | 62.04                                     | 62.43                                     |
| 20               | 62.83                                     | 63.22                                     | 63.61                                     | 64.01                                     | 64.40                                     | 64.79                                     | 65.18                                     | 65.58                                     |
| 21               | 65.97                                     | 66.36                                     | 66.75                                     | 67.15                                     | 67.54                                     | 67.93                                     | 68.32                                     | 68.72                                     |
| 22               | 69.11                                     | 69.50                                     | 69.90                                     | 70.29                                     | 70.68                                     | 71.07                                     | 71.47                                     | 71.86                                     |
| 23               | 72.25                                     | 72.64                                     | 73.04                                     | 73.43                                     | 73.82                                     | 74.22                                     | 74.61                                     | 75.00                                     |
| 24               | 75.39                                     | 75.79                                     | 76.18                                     | 76.57                                     | 76.96                                     | 77.36                                     | 77.75                                     | 78.14                                     |
| 25               | 78.54                                     | 78.93                                     | 79.32                                     | 79.71                                     | 80.10                                     | 80.50                                     | 80.89                                     | 81.28                                     |
| 26               | 81.68                                     | 82.07                                     | \$2.46                                    | 82.85                                     | 83.25                                     | 83.64                                     | 84.03                                     | 84.43                                     |
| 27               | 84.82                                     | 85.21                                     | 85.60                                     | 86.00                                     | 86.39                                     | 86.78                                     | 87.17                                     | 87.57                                     |
| 28               | 87.96                                     | 88.35                                     | 88.75                                     | 89.14                                     | 89.53                                     | 89.92                                     | 90.32                                     | 90.71                                     |
| 29               | 91.10                                     | 91.49                                     | 91.89                                     | 92.28                                     | 92.67                                     | 93.06                                     | 93.46                                     | 93.85                                     |
| 30               | 94.24                                     | 94.64                                     | 95.03                                     | 95.42                                     | 95.81                                     | 96.21                                     | 96.60                                     | 96.99                                     |
| 31               | 97.39                                     | 97.78                                     | 98.17                                     | 98.57                                     | 98.96                                     | 99.35                                     | 99.75                                     | 100.14                                    |
| 32               | 100.53                                    | 100.92                                    | 101.32                                    | 101.71                                    | 102.10                                    | 102.49                                    | 102.89                                    | 103.29                                    |
| 33               | 103.67                                    | 104.07                                    | 104.46                                    | 104.85                                    | 105.24                                    | 105.64                                    | 106.03                                    | 106.42                                    |
| 34               | 106.81                                    | 107.21                                    | 107.60                                    | 107.99                                    | 108.39                                    | 108.78                                    | 109.17                                    | 109.56                                    |
| 35               | 109.96                                    | 110.35                                    | 110.74                                    | 111.13                                    | 111.53                                    | 111.92                                    | 112.31                                    | 112.71                                    |
| 36               | 113.10                                    | 113.49                                    | 113.88                                    | 114.28                                    | 114.67                                    | 115.06                                    | 115.45                                    | 115.85                                    |
| 37               | 116.24                                    | 116.63                                    | 117.02                                    | 117.42                                    | 117.81                                    | 118.20                                    | 118.60                                    | 118.99                                    |
| 38               | 119.38                                    | 119.77                                    | 120.17                                    | 120.56                                    | 120.95                                    | 121.34                                    | 121.74                                    | 122.13                                    |
| 39               | 122.52                                    | 122.92                                    | 123.31                                    | 123.70                                    | 124.09                                    | 124.49                                    | 124.88                                    | 125.27                                    |
| 40               | 125.66                                    | 126.06                                    | 126.45                                    | 126.84                                    | 127.24                                    | 127.63                                    | 128.02                                    | 128.41                                    |
| 41               | 128.81                                    | 129.20                                    | 129.59                                    | 129.98                                    | 130.38                                    | 130.77                                    | 131.16                                    | 131.55                                    |
| 42               | 131.95                                    | 132.34                                    | 132.73                                    | 133.13                                    | 133.52                                    | 133.91                                    | 134.30                                    | 134.70                                    |
| 43               | 135.09                                    | 135.48                                    | 135.87                                    | 136.27                                    | 136.66                                    | 137.05                                    | 137.45                                    | 137.84                                    |
| 44               | 138.23                                    | 138.62                                    | 139.02                                    | 139.41                                    | 139.80                                    | 140.19                                    | 140.59                                    | 140.98                                    |
| 45               | 141.37                                    | 141.76                                    | 142.16                                    | 142.55                                    | 142.94                                    | 143.34                                    | 143.73                                    | 144.12                                    |

### CONSTANTS RELATING TO THE CIRCLE.

|                                                              |                   | Constant.   | Log.    |
|--------------------------------------------------------------|-------------------|-------------|---------|
| Circumference of circle $= \pi \times \text{diam.}$          |                   |             |         |
| Surface of sphere $= \pi \text{ (diam.)}^2$                  |                   | 3.14159     | 0.49715 |
| Area of circle $= \pi \times (\text{radius})^2$              |                   |             |         |
| Circumference of circle $=$ 2 $\pi 	imes$ radius .           | 2 π               | 6.28318     | 0.79818 |
| Area of circle $=\frac{1}{4}\pi \times (\text{diam.})^2$     | $\frac{1}{4}\pi$  | 0.785398    | 1.89509 |
| Surface of sphere $=4\pi	imes ({\rm radius})^2$              | 4 π               | 12.56637    | 1.09921 |
| Volume of sphere $=\frac{1}{6}\pi \times (\text{diam.})^3$ . | $\frac{1}{6}\pi$  | 0.52359     | 1.71900 |
| Volume of sphere $=\frac{4}{3}\pi (\text{radius})^3$         | ξ π               | 4.18879     | 0.62209 |
| Square of $\pi$                                              | $\pi^2$           | 9.86960     | 0.99430 |
| Square root of $\pi$                                         | $\sqrt{\pi}$      | 1.772454    | 0.24857 |
| Cube root of $\pi$ ,                                         | j <sup>3</sup> /π | 1.46459     | 0.16572 |
| 360° expressed in seconds                                    |                   | 1296000     | 6.11261 |
| 360° expressed in minutes                                    |                   | 21600       | 4-33445 |
| Arc equal radius expressed in seconds.                       |                   | 206264.8    | 5.31442 |
| Arc equal radius expressed in minutes .                      |                   | 3437-747    | 3.53627 |
| Arc equal radius expressed in degrees .                      | 180               | 57.29578    | 1.75812 |
| Length of arc, $\mathbf{i''} = \sin \mathbf{i''}$            | sin I"            | 0.000004848 | 6.68557 |
| Length of arc, $i' = \sin i'$                                | sin 1"            | 0.0002909   | 4.46373 |

# CONSTANTS RELATING TO LOGARITHMIC SYSTEMS.

|                           |   | Constant. | Log.    |
|---------------------------|---|-----------|---------|
| Base of Napierian system  | 1 | 2.7182818 | 0.43429 |
| Modulus of Brigg's system | M | 0.434294  | ī.63778 |
| Reciprocal of modulus     | K | 2.302585  | 0.36222 |

### CONSTANTS RELATING TO GRAVITY.

|                                                       | Constant. |
|-------------------------------------------------------|-----------|
| Cubic inch of distilled water at 62° F., in grains    | 252.458   |
| Cubic inch of distilled water at 60° F., in grains    | 252.500   |
| Cubic inch of distilled water at 4° C., in grains     | 252.890   |
| Cubic foot of distilled water at 60° F., in ounces av | 997.310   |
| Cubic foot of distilled water at 60° F., in pounds av | 62.33184  |
| Cubic inch of mercury at 32° F., in grains            | 3438.8    |
| Cubic inch of mercury at 32° F., in pounds av         | 0.49125   |
| Seconds pendulum, in inches, at London                | 39.139    |
| Seconds pendulum, in inches, at Pole                  | 39.218    |
| Seconds pendulum, in inches, at Latitude 45°          | 39.118    |
| Seconds pendulum, in inches, at Equator               | 39.018    |
| Gravity, in feet, at London                           | 32.1908   |
| Gravity, in feet, at Pole                             | 32.2552   |
| Gravity, in feet, at Latitude 45°                     | 32.1736   |
| Gravity, in feet, at Equator                          | 32.0907   |

### REDUCTION MULTIPLIERS.

| EOK CONVERTING                                                                                                          | Constant. |
|-------------------------------------------------------------------------------------------------------------------------|-----------|
| Barometric inches [32] F. jinto pour is per square inch<br>Barometric millimegres [32] F. jinto kilogramnies per square | Ç.40125   |
| centimetre                                                                                                              | 0.00136   |
| Kilogrammes per square centimetre into pounds per square inch                                                           | 14.22263  |
| Foot-pounds into kilogrammetres                                                                                         | 0.13825   |

### HEAT.

#### THERMOMETERS.

To convert the degrees of different thermometers, from one into the other, use the following formula:

F stands for degrees of Fahrenheit, or 212° C stands for degrees of Celsius, or 100° R stands for degrees of Reaumur, or 80° boiling point.

 $F = \frac{9 R}{4} + 32$  and  $F = \frac{9 C}{5} + 32$  for degrees above freezing point.

 $F = \frac{9 R}{4} - 32$  and  $F = \frac{9 C}{5} - 32$  for degrees below freezing point.

 $C = \frac{5 (F - 32)}{9}$  and  $R = \frac{4 (F - 32)}{9}$  for degrees above

freezing point.

 $C = \frac{5 (F + 32)}{9}$  and  $R = \frac{4 (F + 32)}{9}$  for degrees below

freezing point.

Zero of Celsius or Reaumur is  $= +32^{\circ}$  Fahrenheit. Zero of Fahrenheit  $= -17.77^{\circ}$  C. or  $-14.22^{\circ}$  R.

I. How much is 8° Celsius above zero in Fahrenheit?

$$F = \frac{9 \times 8}{5} = \frac{7^2}{5} = 14.4 + 32 = 46.4^{\circ}$$
 above.

2. How much is 8° Celsius below zero in Fahrenheit?

$$F = \frac{9 \times 8}{5} = \frac{72}{5} = 14.4 - 32 = 17.6^{\circ} \text{ above.}$$

In cases where the product is smaller than 32, it indicates that the degree is above zero of Fahrenheit. See Example 2.

3. How much is 19° Celsius below zero in Fahrenheit?

$$F = \frac{9 \times 19}{5} - 32 = 34.2 - 32 = 2.2^{\circ}$$
 below Fahrenheit.









