Manual De Usuario

JUAN DIEGO QUIMBIULCO NRC:1270

05/03/2025

PRUEBA DE ANOVA

ANOVA DE UN FACTOR

1	A	В	С	D				
1	ANOVA DE UN FACTOR							
2	Datos	Software	Biotecnologia	Mercadotecnia				
3	1	75	80	80				
4	2	82	50	100				
5	3	76	60	80				
6	4	80	41	80				
7	Total	313	231	340				
8								

Ingresamos a la pestaña datos -> Seleccionamos la herramienta de MegaStat

Damos en análisis de varianza de un facto y aceptar

Se selecciona los complementos y damos en Aceptar

Obtenemos los siguientes resultados

9 10 11 12 13	Análisis RESUMEN Grupos	de varianza de	un factor Suma	Promedio	Varianza		media n n media global	1
15	Software Biotecnologia Mercadotecnia	4.00 4.00 4.00	313.00 231.00 340.00	78.25 57.75 85.00	10.92 280.25 100.00			
17 18 19	ANÁLISIS DE		340.00	85.00	100.00			
20	Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F	
21	Entre grupos	1611.17	2.00	805.58	6.18	0.02	4.26	
22 23	Dentro de los g	1173.50	9.00	130.39				
24 25	Total	2784.67	11.00					

JAMOVI

REGRESIÓN LINEAL MULTIPLE

En Excel Debemos ir a Archivos, vamos a Más... a seleccionamos Opciones

Se selecciona los complementos y damos en Aceptar

Lo que activara en la pestaña Datos una nueva pestaña Análisis de datos y Para el análisis de regresión, damos click a Análisis de datos y seleccionamos Regresión

Una vez se abra una nueva ventana seleccionamos las variables dependientes e independientes que deseamos analiza

JAMOVI

Wilcoxon

Ingresamos a la pestaña datos -> Seleccionamos la herramienta de MegaStat

Seleccionamos las opciones que necesitamos que son : Noneparametrics test y Wilcox Signer ranked

Se abrira una pestaña en donde tomaremos los valore del antes y despues pero sin sus cabeceras y aplicando la opcion "output ranked data" se da click em OK

Estudiantes	Antes	Después	diferencia	diferencia absoluta	rango	rango as	ignado	
1	80	90	-10	10	3		3	Wilcoxon Signed Ranks Test
2	10	80	-70	70	8		8	Wilcoxon signed nanks lest
3	60	50	10	10	3	3		
4	90	75	15	15	5	5		'PRIMERA FORMA DE WILCOXON'1\$C\$3:\$C\$10
5	70	60	10	10	3	3		
6	90	85	5	5	1	1		'PRIMERA FORMA DE WILCOXON'I\$D\$3:\$D\$10
7	50	80	-30	30	6		6	
8	10	70	-60	60	7		7	✓ Output ranked data Alternative:
						12	24	garacre.
								☐ Corrrect for ties
0000	1111	000	000	111111	1111	8 8 8 B	1111	

JAMOVI

Pruebas	Estadísticas Adicionales				
t de Student	Diferencia de medias				
Factor de Bayes	Intervalo de confianza 95				
Valores a Priori 0.707	Tamaño del efecto				
✓ Rangos de Wilcoxon	Intervalo de confianza 95				
Hipótesis	✓ Descriptivas				
Medida 1 ≠ Medida 2	✓ Gráficas descriptivas				

Mann-Whitney

Ingresamos a la pestaña datos -> Seleccionamos la herramienta de MegaStat

JAMOVI

Kruskal-Wallis & Spearman

Ingresamos a la pestaña datos -> Seleccionamos la herramienta de MegaStat

Seleccionamos Non parametrics test y kruskal_wallis y en el caso de spearman.

JAMOVI

Ji - Cuadrado

JAMOVI

1) Revisar que tengamos instalado el modulo JMV de Jamovi, caso contrario lo instalamos

2) Ir al aparto analísis, opción frecuencias y seleccionar la segunda opción "N Resultados"

3) Observar la tabla y comparar el valor de Ji -Cuadrado con los que hemos obtenido

