X.25, Frame relay, ATM

Presented By Ch.Sai lakshmi 309175710017

ATM

ATM has four important differences from frame relay:

- -ATM uses fixed packet lengths of 53 bytes (5 bytes of overhead and 48 bytes of user data), which is more suitable for voice transmissions.
- -ATM provides extensive quality of service information that enables the setting of very precise priorities among different types of transmissions (i.e. voice, video & email; services include CBR, VBR, ABR and UBR).
- -ATM is scalable. It is easy to multiplex basic ATM circuits into much faster ATM circuits.
- –ATM provides connection-oriented services only.

An ATM cell

ATM layers in endpoint devices and switches

X.25

- •In case of packet switching networks, the attached stations must organize their data into packets for transmission.
- This requires a certain level of cooperation between the network and the attached stations.
- •X.25 is an ITV-T standard that specifies on interface between a host system and packet switching network.
- •The functionality of X.25 is specified in three levels they are:

Ø Physical level ØLink Level

X.25

Physical level:

 Physical level deals with the physical interface between an attached station and the link that attaches that station to the packet switching node.

Link level:

- The link level provides for the reliable transfer of data across the physical link, by transmitting the data as a sequence of frames.
- The link level standard is referred to as LAPB (link access protocol balanced)LAPB is subset of HDLC.

Packet level:

- •The packet level provides a virtual circuit service.
- This service enables any subscriber to the network to setup logical connections called virtual circuits, to other subscribers.

X.25

Format of a Frame in X.25

Flag Address Control Information FCS Flag

I-frame: user data

S-frame: empty

U-frame: control data

Frame relay

- Frame relay is designed to provide more efficient transmission than X.25.
- The traditional approach of packet switching makes use of X.25.
 - 1. Multiplexing of virtual circuits takes place at layers
 - 2.Both layer 2 and 3 include flow control and

Frame relay Network

Frame relay frame

C/R: Command/response

EA: Extended address

FECN: Forward explicit congestion notification

BECN: Backward explicit congestion notification

DE: Discard eligibility

DLCI: Data link connection identifier

Comparing Layers in Frame Relay and X.25

Differences:

X.25	Frame Relay	Cell Relay (ATM)
Switching at nodes	Digital switching	Digital switching
Multiple logical connections	Multiple logical connections	Multiple logical connections
can be multiplexed over a	can be multiplexed over a	can be multiplexed over a
single physical interface	single physical interface	single physical interface
Uses error and flow control	No link by link error control or	No link by link error control or
	flow control	flow control
Large overhead for error	Minimum overhead for error	Minimum overhead for error
control	control	control
		Data rates dynamically
		defined upon creation of
		virtual channel
Variable length packets	Variable length packets	Small fixed length packets.
64kbps	2Mbps	Up to 1000s of Mbps