Computational Linguistics 2017-2018 Sheet 1

Q1) What is the language recognized by the following FSA

The language accepted by the FSA is the set of strings of 0's and 1's which ends with the sub-string of '101'.

Q2) Draw a transition diagram for a FSA that accepts the language that consists of:

• Strings containing the sequence 00 and $\Sigma = \{0, 1\}$.

• Strings containing even number of Zero's and $\Sigma = \{0, 1\}$.

• Strings with exactly 3 a's and $\Sigma = \{a, b\}$.

• Strings where (number of a's mod 3) = (number of b's mod 3), and Σ = { a, b}. (e.x. abaabbaaa)

• Strings that start and finish with 0 and $\Sigma = \{0, 1\}$.

• Binary strings of length 4 and $\Sigma = \{0, 1\}$. Recognized strings would include 0000, 1111, 0101, but not 01, or 00000.

Q3) Given the following FSA with $\Sigma = \{a, b\}$.

• Write down two words that this machine accepts and two words that it does not accept.

Accept: aaa, abba

Not accept: bb, ab

• Describe the language that this machine recognizes.

The language accepted by the FSA is the set of strings of a's and b's which are empty or must end with a.

• Write down the regular expression representing the language that this machine accepts.

 $a* | a* b^+a$

- Give the mathematical model for this machine -i.e. give:
 - \circ Q the set of states, {A, B, C}
 - I the start state, {A}
 - F the set of final states, {C}
 - o E the set of rules that map a state to the next state.

 ${A,a,A}, {A,b,B}, {B,a,C}, {B,b,B}$

Q4) What strings can be generated from the following regular expressions:

- (a*b*)* \rightarrow $\stackrel{\epsilon}{\rightarrow}$, a, b, ab, aab, abb, aa...bb..., ...
- $(a^{\dagger}b)^* \rightarrow {}^{\epsilon}$, ab, aab, aaab,, abab, abaab, aabaaab,...
- (abc*)[↑] → ab, abc, abcc, abccc,...., abab, ababc, ababcc, abcab, abccabccc,
- $(a|b|c^*)^{+} \rightarrow a$, b, ϵ , c, cc, ccc, ..., aa, ab, ac, acc, accc, ..., ba, bb, bc, bcc, bccc, ..., ca, cb, cca, ccb, ccca, cccb, ...

Q5) Draw a graph for FSA that represents the following regular expressions:

b*a*(aa)a*b*

bac*b⁺

• (a|c)*|b

a⁺bC⁺

• (a|c) + |b*

Q6) Given the following Context-Free Grammar, derive a valid sentence and draw its parse tree:

• N: {S, NP, VP, DT, N, V}

S:{S}

Σ: {canary, cat, song, sings, eats, the}

P:

 $S \rightarrow NP VP$

 $NP \rightarrow Dt N$

 $VP \rightarrow V NP$

 $V \rightarrow sings \mid eats$

N → cat | song | canary

 $DT \rightarrow the$

The sentence is valid

Q7) Given the following CFG:

N {S, NP, NOM, VP, Det, Noun, Verb, Aux}

 Σ : {that, this, a, the, man, book, flight, meal, include, read, does}

S: {S}

P:

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

 $NP \rightarrow Det NOM$

 $NOM \rightarrow Noun$

NOM → Noun NOM

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

Det \rightarrow that | this | a | the

Noun → book | flight | meal | man | fish

Verb → book | include | read

 $Aux \rightarrow does$

State if the following sentences are valid or not, and draw its parse tree:

• "The man read this book"

The sentence is valid

"Book that Flight"

The sentence is valid

• "Does this meal include a fish"

The sentence is valid