Linear Programming

Yuchun Ma

myc@tsinghua.edu.cn

$$\max(\min) \ Z = \sum c_j x_j$$

$$\left\{ \sum a_{ij} x_j \le (\ge =) b_i \quad (i = 1 \cdot 2 \cdot \dots m) \right.$$

$$\left\{ x_j \ge 0 \quad (j = 1 \cdot 2 \cdot \dots l) \right\}$$

$$\max Z = \sum c_j x_j$$

$$\begin{cases} \sum a_{ij} x_j = b_i & (i = 1 \cdot 2 \cdots m) \\ x_j \ge 0 & (j = 1 \cdot 2 \cdots n) \end{cases}$$
Augmented Form

- Transformation:
 - Objective: min/max \rightarrow max

 min $Z = \sum c_j x_j$ Multiply -1 \longrightarrow max $Z' = -Z = -\sum c_j x_j$
 - Variables: all the variables are non-negative x_k has no constraint then let $x_k = x_k$, and x_k , and x_k , are non-negative
 - Constant term: non-negative turn b_n to $-b_n$ by multiplying (-1) on both sides
 - Constraints: replace non-equalities with equalities non-negative slack variables

$$\sum a_{ij} x_j \le b_i \qquad \sum a_{ij} x_j + x_{n+i} = b_i \qquad x_{n+i} \ge 0$$

$$\sum a_{ij} x_j \ge b_i \qquad \sum a_{ij} x_j - x_{n+i} = b_i \qquad x_{n+i} \ge 0$$

Simplex Method

- 1. Begin the search at an extreme point (i.e., a basic feasible solution).
 - If $X = (x_1 \dots x_n x_{n+1} \dots x_{n+m})^T$ is an extreme point, then the coefficient vectors of non-zero variables x_i are linear independent.
- Determine if the movement to an adjacent extreme point can improve on the objective function. If not, the current solution is optimal. If, however, improvement is possible, then proceed to the next step.
- Move to the adjacent extreme point which offers (or, perhaps, appears to offer) the most improvement in the objective function.
- 4. Continue steps 2 and 3 until the optimal solution is found or it can be shown that the problem is either unbounded or infeasible.

Simplex Method

$$\boldsymbol{A} = \begin{bmatrix} 2 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 0 & 1 & 0 \\ 0 & 4 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 & \mathbf{p}_4 & \mathbf{p}_5 & \mathbf{p}_6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
Basic vectors
$$\mathbf{max} Z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6$$

$$\begin{cases} 2x_1 + 2x_2 + x_3 & = 12 \\ x_1 + 2x_2 & + x_4 & = 8 \\ 4x_1 & + x_5 & = 16 \\ 4x_2 & + x_6 = 12 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

$$\mathbf{p}_1 = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 & \mathbf{p}_4 & \mathbf{p}_5 & \mathbf{p}_6 \end{bmatrix} = \mathbf{I}$$
Basic vectors

$$\therefore x_3, x_4, x_5, x_6$$
 are the basic variables

 $\boldsymbol{x}_1, \boldsymbol{x}_2$ Are non-basic variables

Accordingly, the feasible solution is $(0\ 0\ 12\ 8\ 16\ 12)$ while the objective is Z=0

$$\max Z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6$$
Since (4)', we have $Z = 2x_1 + 9 + 0x_3 + 0x_4 + 0x_5 - \frac{3}{4}x_6$

$$P = \begin{bmatrix} 2 & 0 & 1 & 0 & 0 & -0.5 \\ 1 & 0 & 0 & 1 & 0 & -0.5 \\ 4 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0.2 \end{bmatrix} \xrightarrow{16}$$
Gaussian elimination to transform the coefficients for x_2 into I :
$$(4)' = \frac{(4)}{4}, (1)' = (1) - 2 \times (4)', (2)' = (2) - 2 \times (4)', (3)' = (3)$$

$$x_3 = 6 - 2x_1 + \frac{1}{2}x_6$$

$$x_{3} = 6 - 2x_{1} + \frac{1}{2}x_{6}$$

$$x_{4} = 2 - x_{1} + \frac{1}{2}x_{6}$$

$$(2)'$$

$$x_{3} = 6 - 2x_{1} + \frac{1}{2}x_{6} \quad (1)'$$

$$x_{4} = 2 - x_{1} + \frac{1}{2}x_{6} \quad (2)'$$

$$x_{5} = 16 - 4x_{1} \quad (3)$$

$$x_{6} = 16 - 4x_{1} \quad (3)$$

$$x_{7} = 16 - 4x_{1} \quad (3)$$

$$x_{8} = 16 - 4x_{1} \quad (3)$$

$$x_{8} = 16 - 4x_{1} \quad (3)$$

$$x_{9} = 16 - 4x_{1} \quad (4)'$$

$$Z = 2x_1 + 9 - \frac{3}{4}x_6 = 9 + 2x_1 - \frac{3}{4}x_6$$

$$x_1 = x_6 = 0, Z = 9 \quad (0, 3, 6, 2, 16, 0)$$

we can increase x_1 to enlarge Z.

$\max Z = 2x_1 + 3.$	$x_2 + 0x_3 + 0x_4 + 0x_5 + 0x$
$\int 2x_1 + 2x_2 + x_3$	
$x_1 + 2x_2 +$	$x_4 = 8$
$\left\{ 4x_{1}\right\}$	$+ x_5 = 16$
$4x_2$	$+x_6 = 12$
$(x_1, x_2, x_3, x_4, x_5)$	$x_6 \geq 0$

	c _j		2	3	0	()	0	0 _{B.}
C _B	X _B	P_0	P ₁	P_2	P_3	P_4	P_5	P_6	
0	X ₃	6	2	0	1	0	0	-1/2	6/2
0	X ₄	2	1	0	0	1	0	-1/2	2
0	X ₅	16	4	0	0	0	1	0	16/4
3	X ₂	3	0	1	0	0	0	1/4	_
-,	Z	-9	2	0	0	0	0	-3/4	

- Solves LP problems by constructing a feasible solution at a vertex of the polytope and then walking along a path on the edges of the polytope to vertices with non-decreasing values of the objective function until an optimum is reached.
 - Locate an extreme point of the feasible region.
 - 2. Examine each boundary edge intersecting at this point to see whether movement along any edge increases the value of the objective function.
 - 3. If the value of the objective function increases along any edge, move along this edge to the adjacent extreme point. If several edges indicate improvement, the edge providing the greatest rate of increase is selected.

4. Repeat steps 2 and 3 until movement along any edge no longer increases the value of the objective function.

$$A = \begin{bmatrix} 2 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 0 & 1 & 0 \\ 0 & 4 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 0 & 1 & 0 \\ 0 & 4 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$B^{-1}(b A_1 A_2 ... A_{n+m}) = (P0 P1 P2 ... Pn+m).$$

$$\max Z = \sum_{i=1}^{n} c_{i} x_{j}$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{j} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

$$\sum_{i=1}^{n} a_{ij} x_{i} = b_{i} \quad (i = 1 \cdot 2 \cdots m)$$

-	c_{j}		2	3	0	0	0	0	
c_B	x_B	P_0	P_1	P_2	P_3	P_4	P_5	P_6	$oldsymbol{eta}_{i}$
0	x_3	12	2	2	1	0	0	0	12/2
0	x_4	8	1	2	0	1	0	0	8/2
0	x_5	16	4	0	0	0	1	0	
0	x_6	12	0	4	0	0	0	1	12/4

$$\Delta Z = \beta (c_j - \sum_{i=1}^m c_i \alpha_{ij})$$

	c_{j}		2	3	0	0	0	0	P
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	\mathcal{D}_i
0	x_3	6	2	0	1	0	0	-1/2	
0	X_4	2	1	0	0	1	0	-1/2	
0	X_5	16	4	0	0	0	1	0	
3	x_2	3	0	1	0	0	0	1/4	
-/	Z	-9	2	0	0	0	0	-3/4	11

$$\lambda = (c_j - \sum_{i=1}^m c_i \alpha_{ij}) = c_j - C_B P_j$$

$$\max Z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6$$

$$\begin{cases} 2x_1 + 2x_2 + x_3 &= 12\\ x_1 + 2x_2 &+ x_4 &= 8\\ 4x_1 &+ x_5 &= 16\\ 4x_2 &+ x_6 = 12\\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

	c_{j}		c_1	• •	• • • •	c_n	$_{n}C_{m+1}$		• • •	C_n	ß
C_B	X_{B}	P_0	P_1		• • •	$\cdot P_{r}$	$_{n}P_{m+1}^{Ente}$	•	olumn	P_n	P_i
c_1	x_1	b_1	1	• • •	• • •	0	$a_{1,m+1}$	• •	• • •	a_{1n}	eta_1
:	:	•	:Le	eaving	row	•	•			•	•
•	•	•	•			•	•			•	•
C_{m}	X_m	b_{m}	0	•••	• • •	1	$a_{m,m+1}$	••	• • •	a_{mn}	$eta_{\scriptscriptstyle m}$
_	Z	$-\sum c_i b_i$	0	• • •	• • •	0	$\lambda_j =$	c_j –	$\sum c_i$	a_{ij}	

P₀ remains non-negative

$$\beta = \min(\frac{b_i}{a_{kj}} | a_{kj} > 0)$$

$$\max Z = 2x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6$$

	$-c_j$		2	3	0	0	0	0	
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	eta_i
0	x_3	12	2	2	1	0	0	0	
0	X_4		1	2	0	1	0	0	
0	X_5	16	4	0	0	0	1	0	
0	x_6	12	0	4	0	0	0	1	
		0	2	3	0	0	0	0	14

	c_{j}		2	3	0	0	0	0	
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	eta_i
0	x_3	12	2	2	1	0	0	0	12/2
0	X_4	8	1	2	0	1	0	0	8/2
0	x_5	16	4	0	0	0	1	0	
0	x_6	12	0	4	0	0	0	1	12/4
	Z	0	2	3	0	0	0	0	
	c_{j}		2	3	0	0	0	0	0
c_B	c_j x_B	P_{θ}	2 P ₁	3 P ₂	0 P ₃	0 P ₄	0 P ₅	0 P ₆	eta_i
c_B	<i>J</i>	P ₀ 6							eta_i
	χ_B		P_1	P_2		P_4	P_5	P_6	eta_i
0	x_B	6	P_1	P ₂	P ₃	P_4	P ₅	-1/2	eta_i
0	x_B x_3 x_4	6 2	P ₁ 2 1	P ₂ 0 0	P ₃ 1 0	P ₄ 0 1	P ₅	P ₆ -1/2 -1/2	eta_i

		c_{j}		2	3	0	0	0	0	$oldsymbol{eta_i}$
	c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	
	0	x_3	6	2	0	1	0	0	-1/2	6/2
	0	x_4	2	1	0	0	1	0	-1/2	2
	0	x_5	16	4	0	0	0	1	0	16/4
	3	x_2	3	0	1	0	0	0	1/4	_
-	-/	Z	-9	2 †	0	0	0	0	-3/4	
		c_{j}		2	3	0	0	0	0	R
	c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	$oldsymbol{eta}_i$ legradation
	0	x_3	2	0	0	1	-2	0	1/2	4)
	2	x_1	2	1	0	0	1	0	- 1/2	_
	0	x_5	8	0	0	0	-4	1	2	4
	3	x_2	3	0	1	0	0	0	1/4	12
	- /	Z	-13	0	0	0	-2	0	1/4	16

	c_i		2	3	0	0	0	0		
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	β_i	
0	x_3	2	0	0	1	-2	0	1/2	4	
2	x_1	2	1	0	0	1	0	-1/2		
0	X_5	8	0	0	0	-4	1	2	4	
3	x_2	3	0	1	0	0	0	1/4	12	
-/	Z	-13	0	0	0	-2	0	1/4 †		
	c_{j}		2	3	0	0	0	0	eta_i	
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	$igaphi_i$	
0	x_6	4	0	0	2	-4	0	1		
 2	x_1	4	1	0	1	-1	0	0	x1=4, x2	 2
 0	x_5	0	0	0	-4	4	1	0	Zmax=14	
 3	x_2	2	0	1	-1/2	1	0	0		
-/	Z	-14	0	0	-1/2	-1	0	0	17	

Ī				2	•	<u> </u>	<u> </u>	Λ	Δ		1
		c_j	Γ	2	3	0	0	0	0	B.	
	c_B	\mathcal{X}_{B}	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6		
	0	x_3	2	0	0	1	-2	0	1/2	4	
	2	x_1	2	1	0	0	1	0	-1/2	_	
	0	x_5	8	0	0	0	-4	1	2	4	
	3	\boldsymbol{x}_2	3	0	1	0	0	0	1/4	12	
	-/	Z	-13	0	0	0	-2	0	1/4		
		c_{j}		2	3	0	0	0	0	B.	
	c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6		
	0	x_3	0	0	0	1	-1	-1/4	0		
	2	x_1	4	1	0	0	0	1/4	0	X1=4, x2=	 2
	0	x_6	4	0	0	0	-2	1/2	1	Zmax=14	
	3	x_2	2	0	1	0		-1/8	0		
	-/	Z	-14	0	0	0	-3/2	-1/8	0	18	

$$x1=4, x2=2$$

$$max Z = 2x_1 + 3x_2$$

$$\begin{cases}
2x_1 + 2x_2 \le 12 \\
x_1 + 2x_2 \le 8 \\
4x_1 & \le 16 \\
4x_2 \le 12 \\
x_1, x_2 \ge 0
\end{cases}$$

$$x1=4, x2=2$$

$$The optimal solution:
$$Z=2*4+3*2=14$$

$$2*4+2*2=12$$

$$4+2*2=8$$

$$4*4=16$$

$$4*2=8<12$$$$

$$\max Z = x_1 + 2x_5 - x_6$$

$$\begin{cases}
-\frac{12}{7}x_1 + \frac{1}{14}x_2 + \frac{5}{14}x_3 + x_4 = \frac{45}{7} \\
\frac{1}{7}x_1 - \frac{3}{14}x_2 - \frac{1}{14}x_3 + x_5 = \frac{5}{7} \\
-\frac{3}{7}x_1 + \frac{1}{7}x_2 - \frac{2}{7}x_3 + x_6 = \frac{6}{7} \\
x_1, \dots, x_6 \ge 0
\end{cases}$$

	c_{j}		1			0		-1	B
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	ρ_i
0	x_4	45/7	-12/7	1/14	5/14	1	0	0	90
2	x_5	5/7	1/7	- 3/14	-1/14	0	1	0	-10/3
-1	x_6	6/7	-3/7	1/7	-2/7	0	0	1	6
-/	Z	-4/7	2/7	4/7	-1/7	0	0	0	20

	c_{j}		1	0	0	0	2	-1	ß
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	$oldsymbol{ ho}_i$
0	x_4	45/7	-12/7	1/14	5/14	1	0	0	90
2	x_5	5/7	1/7	<mark>-3/14</mark>	-1/14	0	1	0	-10/3
-1	x_6	6/7	-3/7	1/7	-2/7	0	0	1	6
-	·Z	-4/7	2/7	4/7	-1/7	0	0	0	

	$X_2 = (a_1^2)^2$	$\alpha_1 - \beta \alpha_1$	$\alpha_2 - \beta \alpha_2$	_j 0	O' ₂₈ -	- βα _{mi} () ß	0)1	$\mathcal{L}_{\mathcal{B}}$
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_5	P_6	${\cal P}_i$
0	X_4	6	-3/2	0	1/2	1	0	-1/2	
2	x_5	2	-1/2	0	-1/2	0	1	0	
0	x_2	6	-3	1	-2	0	0	7	
_	Z		2	0	1	0	0	0	

Since c1-z1>0, But $P1=(-3/2,-1/2,-3)^T$, all less than 0, unbounded solution.

Move to the adjacent extreme point which offers (or, perhaps, appears to offer) the most improvement in the objective function.

$$\max Z = 3x_1 + 2x_2$$

$$\begin{cases} 2x_1 + x_2 \le 4 \\ 5x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

	c_{j}				2	0	0	B
c_B	X_B	P_{θ}		P_1	P_2	P_3	P_4	P_i
0	x_3	4		2	1	1	0	2
0	x_4	5		5	1	0	1	1
Z		0		31	2	0	0	

(1)

	c_{j}			3	2	0	0	B
c_B	x_B	P_{θ}		P_1	P_2	P_3	P_4	P_i
0	x_3	4		2	1	1	0	2
0	X_4	5		5	1	0	1	1
Z		0		31	2	0	0	

	c_{j}			2	0	0	B
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	${m P}_i$
0	x_3	2	0	3/5	1	-2/5	10/3
3	x_1	1	1	1/5	0	1/5	5
Z		3	0	7/5	0	-3/5	

(2)

	c_{j}		3	2	0	0	B
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	${\cal P}_i$
0	x_3	2	0	3/5	1	-2/5	10/3
3	x_1	1	1	1/5	0	1/5	5
Z		3	0	7/5	0	-3/5	

c_{j}		3	2	0	0	B	
c_B					P_3		${m P}_i$
2	x_2	10/3	0	1	5/3	- 2/3	-5
3	\boldsymbol{x}_1	1/3	1	0	-1/3	1/3	1
Z		23/3	0	0	-7/3	1/31	

(3)

	c_{j}		3	2	0	0	ß
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	P_i
2	x_2	10/3	0	1	5/3	- 2/3	-5
3	x_1	1/3	1	0	-1/3	1/3	1
2	Z	23/3	0	0	-7/3	1/3	

		c_{j}		3	2	0	0	B
(C_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	${\cal P}_i$
4	2	x_2	4	2	1	1	0	
	0	x_4	1	3	0	-1	1	
	Z	7	8	-1	0	-2	0	

x1=0, x2=4, maxZ=8

• How about to choose the less λ_j

	c_{j}		3	2	0	0	B
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	${\cal P}_i$
0	x_3	4	2	1	1	0	4
0	x_4	5	5	1	0	1	5
	Z	0	3	21	0	0	

	c_{j}		3	2	0	0	β
c_B	x_B	P_{θ}	P_1	P_2	P_3	P_4	ρ_i
2	x_2	4	2	1	1	0	
0	X_4	1	3	0	-1	1	
7	Z		-1	0	-2	0	

x1=0, x2=4, maxZ=8

26

- "The most improvement in the objective function" can not guarantee the least number of iterations.
- How to choose the entering column?

First column with a positive cost.

Bland's rule

Bland's rule

- Robert G. Bland, now a professor of operations research at Cornell University.
- An algorithmic refinement of the simplex method
- Choose the lowest-numbered (i.e., leftmost)
 nonbasic column t with a positive cost.

	c_{j}		c_1	$c_1 \cdots c_m c_{m+1} \cdots c_n$							
c_B	$X_{\!\scriptscriptstyle B}$	P_{0}	P_1	•••	•••	P_n	$_{n}P_{m+1}$	ring C	• • •	P_n	ρ_i
c_1	x_1	$b_{\scriptscriptstyle 1}$	1	• • •	•••	0	$a_{1,m+1}$	••		a_{1n}	β_{1}
:	:	:	Le			i	•			:	•
:	÷	:	:			:	•	0		:	7
C_m	x_m	b_{m}	0	•••	•••	1	$a_{m,m+1}$	••	•••	a_{mn}	β_{m}
_	Z	$-\sum c_i b_i$	0			0	$\lambda_j =$	c_j –	$\sum c$	a_{ij}	

LP solver

- Lindo/Lingo
- Matlab
- Glpk: GNU Linear Programming Kit.
- Excel
- •

Excel 2010

Programming

"Data"-> "Programming"

Simplex Method

$$\max Z = 3x_1 - x_2 - x_3 \qquad \max Z = 3x_1 - x_2 - x_3$$

$$\begin{cases} x_1 - 2x_2 + x_3 \le 11 \\ -4x_1 + x_2 + 2x_3 \ge 3 \\ -2x_1 + x_3 = 1 \end{cases} \qquad \begin{cases} x_1 - 2x_2 + x_3 + x_4 \\ -4x_1 + x_2 + 2x_3 - x_5 \\ -2x_1 + x_3 \end{cases} = 3$$

$$\begin{cases} x_1, x_2, x_3 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad \begin{cases} x_1, x_2, x_4, x_5, x_6, x_7 \ge 0 \end{cases} \qquad$$

Think over: What if the optimal solution for the slack variables are not "0"s?

Assignment

 Solving the following linear program using simplex method

$$\max Z = 3x_1 + 6x_2 + 2x_3$$

$$\begin{cases} 3x_1 + 4x_2 + x_3 \le 2 \\ x_1 + 3x_2 + 2x_3 \le 1 \end{cases}$$

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

Manks