Weakest Preconditions pt. 1

CS 536: Science of Programming, Fall 2019

9/20

A. Why

Weakest liberal preconditions (wlp) and weakest preconditions (wp) are the most general requirements that a
program must meet to be correct

B. Objectives

At the end of today you should understand

• What wlp and wp are and how they are related to preconditions in general.

C. Weaker and Weaker Preconditions?

- Say we have a triple ⊨ {p₀} S {q}. There may or may not be a strictly weaker precondition we can use instead of p₀. I.e., some p₁ where ⊨ {p₁} S {q} with p₁ strictly weaker than p₀? (I.e, p₁ → p₀, but not vice versa). Similarly, there might be an even strictly weaker p₂ that's valid as a precondition and so on.
 - (Note there's always a not-strictly weaker precondition: For an easy example, take $p_1 \equiv p_0 \wedge T$, $p_2 \equiv p_1 \wedge T$, etc.)
- So does the sequence ..., p_2 , p_1 , p_0 have to have a beginning? (Or reading the sequence backwards, is there a limit?) If if $\models \{T\}$ $S\{q\}$, then the sequence stops, since there's no predicate strictly weaker than true.
- In general, it turns out that there's always a limit to the sequence ..., p_2 , p_1 , p_0 . We call this limit the **weakest liberal precondition** (wlp) of S and q, written wlp(S, q). This limit is useful because it describes the largest set of states that gives us partial correctness.
- The key here is "largest set". If w is the weakest liberal precondition for S and q, then no p' strictly weaker than w is a valid precondition for S and q.
- wlp is for partial correctness; for \vDash_{tot} the notion is wp(S, q), the weakest precondition of S and q.
- Example: If $x \in \{y \in \mathbb{Z} \mid y \ge 0\}$ then $\{2 \le x \le 6\}$ $x := x * x \{x \ge 4\}$ is valid, and we can form the sequence $2 \le x, ..., 2 \le x \le 8, 2 \le x \le 7, 2 \le x \le 6$. Nothing weaker than $2 \le x$ is a precondition, so it's the $wp(x := x * x, x \ge 4)$.

D. Notation

- **Notation**: Sat(p) is the set of states that satisfy p: $Sat(p) = {\sigma \in \Sigma \mid \sigma \models p}$.
 - (Note some people write [p] for Sat(p).)
- Using this notation, we can say
 - $\sigma \vDash_{tot} \{p\} \ S \{q\} \ \text{iff} \ M(S, \sigma) \subseteq Sat(q).$
 - Since $\bot \nvDash q$, we can't have $M(S, \sigma) \subseteq Sat(q)$ if $\bot \in M(S, \sigma)$, so this guarantees termination of S.
 - $\sigma \vDash \{p\} S \{q\} \text{ iff } M(S, \sigma) \{\bot\} \subseteq Sat(q).$
 - The original phrasing was $\sigma \vDash \{p\}$ $S\{q\}$ iff $\sigma \vDash p$ implies $M(S, \sigma) \{\bot\}$ is \emptyset or $\vDash q$.

• Using \subseteq covers the case where $M(S, \sigma) = \{\bot\}$ without having to name it explicitly

E. The Weakest Liberal Precondition (wlp) and Weakest Precondition (wp)

- Formally, we can define wlp and wp using states:
- **Definition**: wlp(S, q), the **weakest liberal precondition** of statement S with respect to a postcondition q, is the set of all states that satisfy $\{p\}$ S $\{q\}$ for partial correctness. wlp(S, q) = $\{\sigma \in \Sigma \mid \sigma \models \{p\} \mid S \mid \{q\}\}\}$
- **Definition**: wp(S, q), the **weakest precondition** of statement *S* with respect to a postcondition *q*, is the set of all states that satisfy $\{p\}$ S $\{q\}$ for total correctness: $wp(S, q) = \{\sigma \in \Sigma \mid \sigma \models_{tot} \{p\} \ S \{q\}\}$
 - Note $wp(S, q) \to wlp(S, q)$. If $wlp(S, q) \land \neg wp(S, q)$ is satisfiable iff running S under σ might not terminate.
- The important property of wlp and wp is that any start state outside of them does not satisfy $\{p\}$ S $\{q\}$ (under partial correctness for wlp and total correctness for wp).
- We can treat wlp and wp as yielding a predicate
 - w is a wlp(S, q) iff Sat(w) = wlp(S, q)
 - w is a wp(S, q) iff Sat(w) = wp(S, q)
- Note: w is "a" wlp/wp because as any predicate $\Leftrightarrow w$ is also a wlp/wp. (Trivial examples are $w \land T$, $w \land T \land T$, etc.) We say that w is determined "up to" logical equivalence, so "Let w be the wlp/wp of S and q" really means "Let w be any predicate $\Leftrightarrow wlp/wp$ of S and q."
- Now we can rephrase the definitions of wlp/wp using predicates:
 - $\models \{p\} S \{q\} \text{ iff } \models p \rightarrow wlp(S, q))$
 - $\vDash_{tot} \{p\} \ S \{q\} \ \text{iff} \vDash p \rightarrow wp(S, q)).$
- Equivalent phrasings
 - $\models \{wlp(S, q)\} S \{q\} \text{ and } \models \{p\} S \{q\} \text{ iff } \models p \rightarrow wlp(S, q)).$
 - If $\vDash p \rightarrow wlp(S, q)$) then $\vDash \{p\} S \{q\}$, but if $\nvDash p \rightarrow wlp(S, q)$) then $\nvDash \{p\} S \{q\}$.
- For total correctness,
 - If $\vDash p \rightarrow wp(S, q)$) then $\vDash_{tot} \{p\} S \{q\}$, but if $\nvDash p \rightarrow wlp(S, q)$) then $\nvDash \{p\} S \{q\}$.
 - $\models_{tot} \{ wp(S, q) \} S \{ q \}$ and $\models \{ p \} S \{ q \} \models_{tot} p \rightarrow wp(S, q))$.

F. wp and wlp for Deterministic Programs

- If S is deterministic, then S leads to a unique result: $M(S, \sigma) = {\tau}$ for some $\tau \in \Sigma_{\perp}$.
- If S terminates normally $(\tau \in \Sigma)$, then the start state σ is part of either wlp/wp(S, q) or $wlp/wp(S, \neg q)$, depending on whether τ satisfies q or $\neg q$.
- Since wp(S, q) is the set of states that lead to satisfaction of q, $\neg wp(S, q)$ is the set of states that lead to an error or to satisfaction of $\neg q$. Similarly, $\neg wp(S, \neg q)$ is the set of states that lead to an error or to satisfaction of q. The intersection of these two sets, $\neg wp(S, q) \land \neg wp(S, \neg q)$, is the set of states that lead to an error.
- Since σ must lead S either to termination satisfying q, termination satisfying $\neg q$, or nontermination, every state satisfies exactly one of wp(S, q), $wp(S, \neg q)$, and $\neg wp(S, q) \land \neg wp(S, \neg q)$.
- Let $E \equiv \neg wp(S, q) \land \neg wp(S, \neg q)$, then we get the identities

- $\neg wp(S, q) \Leftrightarrow E \lor wp(S, \neg q)$. The negation of "S terminates with q true" is "S doesn't terminate or it terminates with q false".
- $\neg wp(S, \neg q) \Leftrightarrow E \lor wp(S, q)$ is symmetric: The negation of "S terminates with q false" is "S doesn't terminate or it terminates with q true".
- If S contains a loop and $M(S, \sigma)$ diverges (and $\sigma \in \Sigma$), then $\sigma \models \neg wp(S, q) \land \neg wp(S, \neg q)$. (See Figure 3.)
- On the left of Figure 3 is the set of all states Σ broken up into three partitions
 - The states that establish q form $wp(S, q) = \{ \sigma \in \Sigma \mid M(S, \sigma) = \{ \tau \} \text{ and } \tau \models q \}$
 - The states that establish $\neg q$ form $wp(S, \neg q) = \{\sigma \in \Sigma \mid M(S, \sigma) = \{\tau\} \text{ and } \tau \vDash \neg q\}$
 - The states that lead to \bot form $\neg wp(S, q) \land \neg wp(S, \neg q) = \{ \sigma \in \Sigma \mid M(S, \sigma) = \{ \bot \} \}$
- The arrows indicate that starting from wp(S, q) or $wp(S, \neg q)$ yields a state that satisfies q or $\neg q$ respectively. Starting from a state outside both weakest preconditions leads to an error.

Figure 3: The Weakest Precondition for Deterministic S

$$M(S, \sigma_0) = {\tau_0} \vDash q$$

$$M(S, \sigma_1) = {\tau_1} \vDash \neg q$$

$$M(S, \sigma_2) = {\bot} \nvDash q \text{ and } \nvDash \neg q$$

- Figure 4 shows how that with deterministic programs, the wlp(S, q) combines wp(S, q) with the states that cause errors; similarly, the $wlp(S, \neg q)$ combines $wp(S, \neg q)$ with the states that cause errors.
- I.e., $\sigma \vDash wlp(S, q)$ when $M(S, \sigma) \{\bot\} \subseteq Sat(q)$, $\sigma \vDash wlp(S, \neg q)$ when $M(S, \sigma) \{\bot\} \subseteq Sat(\neg q)$. (Note this allows for $M(S, \sigma) = \{\bot\}$ without naming it as a special case.)

Figure 4: The Weakest Liberal Precondition for Deterministic S

 \perp

G. wp and wlp for Nondeterministic Programs

- If S is nondeterministic, then $M(S, \sigma)$ is a nonempty subset of Σ_{\perp} that can contain more than one member. To satisfy q or $\neg q$, all the states in then $M(S, \sigma)$ must satisfy q or $\neg q$ respectively.
- Figure 5 shows the possible situations:
 - $\sigma \vDash wp(S, q)$ when everything in $M(S, \sigma)$ satisfies q.
 - $\sigma \vDash wp(S, \neg q)$ if everything in $M(S, \sigma)$ satisfies $\neg q$,
 - $\sigma \vDash \neg wp(S, q)$ when $\bot \in M(S, \sigma)$ and/or $\tau \vDash \neg q$ for some $\tau \in M(S, \sigma)$.
 - $\sigma \vDash \neg wp(S, \neg q)$ when $\bot \in M(S, \sigma)$ and/or $\tau \vDash q$ for some $\tau \in M(S, \sigma)$.
 - $\sigma \vDash wp(S, q) \land \neg wp(S, \neg q)$ when $\bot \in M(S, \sigma)$ and/or $\tau_1 \vDash q$ and $\tau_2 \vDash \neg q$ for some $\{\tau_1, \tau_2\} \subseteq M(S, \sigma)$.

Figure 5: Weakest Precondition $M(S, \sigma)$ for Non-Deterministic S

• For non-deterministic programs, the situation for wlp(S, q) is similar to the situation for deterministic programs in that $\sigma \vDash wlp(S, q)$ when $M(S, \sigma) - \{\bot\} \subseteq Sat(q)$. In Figure 6, the wlp(S, q) is satisfied by σ that lead to the top or middle sets, and the the $wlp(S, \neg q)$ is satisfied by σ that lead to the middle or bottom sets.

Figure 6: Weakest Liberal Preconditions $M(S, \sigma)$ for Non-Deterministic S

- Finally, Figure 7 shows how with nondeterministic programs, starting S outside the weakest precondition for q can still terminate in a state satisfying q: Even for $\sigma \nvDash wp(S, q)$ where $\bot \notin M(S, \sigma)$, it's possible for $M(S, \sigma) \cap Sat(q) \neq \emptyset$ because $M(S, \sigma) \cap Sat(\neg q)$ also $\neq \emptyset$.
- Example 9: Let $S \equiv \mathbf{if} \ \mathbf{x} \ge 0 \rightarrow \mathbf{x} := 10 \ \Box \ \mathbf{x} \le 0 \rightarrow \mathbf{x} := 20 \ \mathbf{fi}$, and let $\Sigma_0 = M(S, \{\mathbf{x} = 0\})$ be the set with two states $\{\{\mathbf{x} = 10\}, \{\mathbf{x} = 20\}\}$. Then $\Sigma_0 \nvDash \mathbf{x} = 10, \mathbf{x} \ne 10, \mathbf{x} = 20$, and $\mathbf{x} \ne 20$. (We do have $\Sigma_0 \vDash \mathbf{x} = 10 \lor \mathbf{x} = 20$.)

• ------ ended here 2019-09-18

H. Disjunctive Postconditions

- There are some relationships that hold between the wp of a predicate and the wp's of its subpredicates.
- E.g., if you start in a state that is guaranteed to lead to a result that satisfies q_1 and q_2 separately, then the result will also satisfy $q_1 \wedge q_2$, and vice versa. In symbols, $wp(S, q_1) \wedge wp(S, q_2) \Leftrightarrow wp(S, q_1 \wedge q_2)$.
 - This relationship holds for both deterministic and nondeterministic *S*.
 - The relationship between $wp(q_1 \lor q_2)$ and $wp(q_1)$ and $wp(q_2)$ differs for deterministic and nondeterministic S.
- Deterministic S: For all S, $wp(S, q_1) \lor wp(S, q_2) \Leftrightarrow wp(S, q_1 \lor q_2)$
 - Nondeterministic S: For all S, $wp(S, q_1) \lor wp(S, q_2) \Rightarrow wp(S, q_1 \lor q_2)$, but \Leftarrow doesn't hold for some S.
 - For deterministic S, $M(S, \sigma) = {\tau}$ for some $\tau \in \Sigma_{\perp}$. If $\tau \vDash q_1 \lor q_2$ then either $\tau \vDash q_1$ or $\tau \vDash q_2$ (or both).
- So if $M(S, \sigma) \neq \{\bot\}$, then $M(S, \sigma) \models q_1 \lor q_2$ iff $M(S, \sigma) \models q_1$ or $M(S, \sigma) \models q_2$.
 - Because of this, $wp(S, q_1) \lor wp(S, q_2) \Leftrightarrow wp(S, q_1 \lor q_2)$.
 - For nondeterministic S, we still have $wp(S, q_1) \lor wp(S, q_2) \Rightarrow wp(S, q_1 \lor q_2)$. I.e., if you start in a state that's guaranteed to terminate satisfying q_1 , or guaranteed to terminate satisfying q_2 , then that state is guaranteed to terminate satisfying $q_1 \lor q_2$.
- For nondeterministic S, the other direction, $wp(S, q_1) \lor wp(S, q_2) \Leftarrow wp(S, q_1 \lor q_2)$, doesn't always hold: S can guarantee establishing $q_1 \lor q_2$ without leaving any way to guarantee satisfaction of just q_1 or just q_2 .
- Example 10: Let $CoinFlip \equiv if T \rightarrow x := 0 \square T \rightarrow x := 1 fi$.
 - For all σ , $M(CoinFlip, \sigma) = \{\{x = 0, x = 1\}\}$, which $\vDash x = 0 \lor x = 1$ but $\nvDash x = 0$ and $\nvDash x = 1$.
 - Let $Heads \Leftrightarrow wp(CoinFlip, \mathbf{x} = 0)$, $Tails = wp(CoinFlip, \mathbf{x} = 1)$, and $Heads_or_Tails = wp(CoinFlip, \mathbf{x} = 0 \lor \mathbf{x} = 1)$. We find $Heads \Leftrightarrow Tails \Leftrightarrow F$ but $Heads_or_Tails \Leftrightarrow T$.
 - Altogether, $(Heads \lor Tails) \Rightarrow (but not \Leftarrow) Heads_or_Tails$.
- So for nondeterministic S, even though $\vDash_{tot} \{wp(S, q)\} S \{q\}$, if q is disjunctive, it's possible for you to run S in a state $\sigma \vDash \neg wp(S, q)$ but still terminate without error in a state satisfying q. (For deterministic S, this won't happen.) E.g., if $S \equiv \mathbf{if} B \mathbf{then} \mathbf{x} := 0 \mathbf{else} \mathbf{x} := 1 \mathbf{fi}$, then $M(S, \sigma) \vDash \mathbf{x} = 0$ or $M(S, \sigma) \vDash \mathbf{x} = 1$ (tails), $wp(S, \mathbf{x} = 0) \Leftrightarrow B$ and $wp(S, \mathbf{x} = 1) \Leftrightarrow \neg B$.

I. The Weakest Liberal Precondition (wlp)

- The relationship between the **weakest precondition** (*wp*) and the **weakest liberal precondition** (*wlp*) is the same as total vs partial correctness.
 - wp(S, q) is the set of start states that guarantee termination establishing q.
 - wlp(S, q) is the set of start states that guarantee (causing an error or termination establishing q).
- **Definition**: The **weakest liberal precondition** of *S* and *q*, written wlp(S, q), is the predicate *w* such that $\models \{w\} S \{q\}$ and for every $\sigma \models \neg w, \bot \notin M(S, \sigma)$ and $M(S, \sigma) \nvDash q$.

- If we start in a state σ satisfying wlp(S, q) then either some execution path for S in σ causes an error or else all execution paths for S in σ lead to final states that $\vDash q$. If we start in a σ satisfying $\neg wlp(S, q)$, then every execution path for S in σ leads to a final state and at least one of the final states $\vDash \neg q$.
- We always have $wp(S, q) \Rightarrow wlp(S, q)$; the other direction, $wp(S, q) \Leftarrow wlp(S, q)$, only holds if S never causes an error.
- Example 11: Let $W \equiv \text{while } x \neq 0 \text{ do } x := x-1$; y := 0 od, then for $M(W, \sigma)$,
 - If $\sigma \vDash x = 0$ then $M(W, \sigma) = {\sigma}$. Note if $\sigma \vDash x = 0 \land y = 0$ then $M(W, \sigma) = {\sigma}$
 - If $\sigma \models x > 0$ then $M(W, \sigma) = {\sigma[x \mapsto 0][y \mapsto 0]}$
 - Note the only way W terminates with $y \neq 0$ is if we run it in $x = 0 \land y \neq 0$.
 - If $\sigma \models \mathbf{x} < 0$ then $M(W, \sigma) = \{\bot\}$ so for any postcondition $q, \mathbf{x} < 0 \rightarrow wlp(W, r)$ and $\mathbf{x} < 0 \rightarrow wp(W, q)$.
 - If we look at a particular postcondition, say $q \equiv \mathbf{x} = 0 \land \mathbf{y} = 0$, we find $wlp(W, q) \Leftrightarrow \mathbf{x} > 0 \lor \mathbf{x} = \mathbf{y} = 0$ $\lor \mathbf{x} < 0$ and $wp(W, q) \Leftrightarrow \mathbf{x} > 0 \lor \mathbf{x} = \mathbf{y} = 0$. For $\neg q \Leftrightarrow \mathbf{x} \neq 0 \lor \mathbf{y} \neq 0$, since W can never terminate with $\mathbf{x} \neq 0$, we find $wlp(W, \neg q) \Leftrightarrow wp(W, \mathbf{y} \neq 0) \Leftrightarrow \mathbf{x} = 0 \land \mathbf{y} \neq 0 \lor \mathbf{x} < 0$ and $wp(W, \neg q) \Leftrightarrow wp(W, \mathbf{y} \neq 0) \Leftrightarrow \mathbf{x} = 0 \land \mathbf{y} \neq 0$.
- The "being weakest" property of wlp is similar to that for wp, but for partial correctness: $\models \{wlp(S, q)\}\ S\{q\}$ and for all $p, \models \{p\}\ S\{q\}$ iff $\models p \rightarrow wlp(S, q)$.

J. Calculating wlp for Loop-Free Programs

- It's easy to calculate the *wlp* of a loop-free program.
 - If a loop-free program cannot cause a runtime error then its wp and wlp are the same, which is also nice.
- The following algorithm takes S and q where S has no loops and syntactically calculates a particular predicate for wlp(S, q), which is why it's described using $wlp(S, q) \equiv \dots$ instead of $wp(S, q) \Leftrightarrow \dots$
 - $wlp(\mathbf{skip}, q) \equiv q$
 - $wlp(v := e, Q(v)) \equiv Q(e)$ where Q is a predicate function over one variable
 - The operation that takes us from Q(v) to Q(e) is called **syntactic substitution**; we'll look at it in more detail soon, but in the simple case, we simply inspect the definition of Q, searching its text for occurrences of the variable v and replacing them with copies of e.
 - $wlp(S_1; S_2, q) \equiv wlp(S_1, wlp(S_2, q))$
 - $wlp(\mathbf{if}\ B\ \mathbf{then}\ S_1\ \mathbf{else}\ S_2\ \mathbf{fi}, q) \equiv (B \to w_1) \land (\neg B \to w_2)$ where $w_1 \equiv wlp(S_1, q)$ and $w_2 \equiv wlp(S_2, q)$. If you want, you can write $(B \land w_1) \lor (\neg B \land w_2)$, which is equivalent.
 - $wlp(\mathbf{if} B_1 \to S_1 \square B_2 \to S_2 \mathbf{fi} \equiv (B_1 \to w_1) \land (B_2 \to w_2)$ where $w_1 \equiv wlp(S_1, q)$ and $w_2 \equiv wlp(S_2, q)$.
 - For the nondeterministic **if**, don't write $(B_1 \wedge w_1) \vee (B_2 \wedge w_2)$ instead of $(B_1 \rightarrow w_1) \wedge (B_2 \rightarrow w_2)$; they aren't logically equivalent. When B_1 and B_2 are both true, either S_1 or S_2 can run, so we need $B_1 \wedge B_2 \rightarrow w_1 \wedge w_2$.
 - Using $(B_1 \wedge w_1) \vee (B_2 \wedge w_2)$ fails because it allows for the possibility that B_1 and B_2 are both true but one of w_1 and w_2 is not true. This isn't a problem when $B_2 \Leftrightarrow \neg B_1$, which is why we can use $(B \wedge w_1) \vee (\neg B \wedge w_2)$ with deterministic **if** statements.

Strength; Weakest Preconditions, pt. 1

CS 536: Science of Programming

A. Why

 The weakest precondition and weakest liberal preconditions are the most general preconditions that a program needs in order to run correctly.

B. Objectives

At the end of this activity you should be able to

- Define what a weakest liberal precondition (wlp) and weakest precondition (wp) is and how it's related to (and different from) preconditions in general
- Be able to calculate the *wlp* of a simple loop-free program.

C. Problems

- 1. Let $w \Leftrightarrow wp(S, q)$ and let S be deterministic.
 - a. For which $\sigma \vDash w$ do we have $\sigma \vDash_{tot} \{w\} S \{q\}$?
 - b. For which $\sigma \vDash \neg w$ do we have $\sigma \vDash \{\neg w\} S \{q\}$?
 - c. For which $\sigma \vDash w$ do we have $\sigma \vDash_{tot} \{w\} \ S \{\neg q\}$?
 - d. For which $\sigma \vDash \neg w$ do we have $\sigma \vDash \{\neg w\} S \{\neg q\}$?
 - e. If S is nondeterministic, how do we have to modify the statement in part (d)?
- 2. If $\sigma \vDash w$ and $\sigma \vDash \{w\} S \{q\}$ and $\sigma \nvDash_{tot} \{w\} S \{q\}$,
 - a. What can we conclude about $M(S, \sigma)$?
 - b. If in addition, S is deterministic, what more can we conclude about $M(S, \sigma)$?
- 3. For an arbitrary p (not necessarily one that implies w), what \models and \models_{tot} properties relationships do the triples
 - a. $\{p \land w\} S \{q\}$ and $\{\neg p \land w\} S \{q\}$ have?
 - b. $\{p \land \neg w\} S \{\neg q\}$ and $\{\neg p \land \neg w\} S \{\neg q\}$ have, if S is deterministic?
 - c. $\{p \land \neg w\} S \{q\}$ and $\{\neg p \land \neg w\} S \{q\}$ have, if S is nondeterministic?
- 4. How are $wp(S, q_1 \lor q_2)$ and $wp(S, q_1) \cup wp(S, q_2)$, related if S is deterministic? If S is nondeterministic?

- 5. Which of the following statements are correct?
 - a. For all $\sigma \in \Sigma$, $\sigma \models wp(S, q)$ iff $M(S, \sigma) \models q$
 - b. For all $\sigma \in \Sigma$, $\sigma \vDash wlp(S, q)$ iff $M(S, \sigma) \cup \Sigma \vDash q$
 - c. $\models_{tot} \{wp(S, q)\} S \{q\}$
 - d. $\models \{wlp(S, q)\} S \{q\}$
 - e. $\models_{tot} \{p\} \ S \{q\} \ \text{iff} \models p \rightarrow wp(S, q)$
 - f. $\models \{p\} S \{q\} \text{ iff } \models p \rightarrow wlp(S, q)$
 - g. $\models \{\neg wp(S, q)\} S \{\neg q\}$
 - h. $\vDash_{tot} \{ \neg wlp(S, q) \} S \{ \neg q \}$
 - i. $wlp(S, q) \wedge wlp(S, \neg q)$ is not satisfiable
 - j. $\not\vdash p \rightarrow wp(S, q) \text{ iff } \not\vdash_{tot} \{p\} S \{q\}$
 - k. $\not\models p \rightarrow wlp(S, q) \text{ iff } \not\models \{p\} S \{q\}$

Solution to Activity 10 (Weakest Preconditions, pt. 1)

- 1. (Properties of weakest preconditions)
 - a. For all $\sigma \vDash w$, we have $\sigma \vDash_{tot} \{w\} S \{q\}$, since w is a precondition for $\vDash_{tot} \{...\} S \{q\}$.
 - b. For no $\sigma \vDash \neg w$ do we have $\sigma \vDash \{\neg w\}$ $S\{q\}$ because for w to be the weakest precondition for S and q, it cannot be that $M(S, \sigma) \vDash q$.
 - c. For no $\sigma \vDash w$ do we have $\sigma \vDash_{tot} \{w\} S \{\neg q\}$ because w is a precondition for $\vDash_{tot} \{...\} S \{q\}$.
 - d. For all $\sigma \vDash \neg w$, we have $\sigma \vDash \{\neg w\}$ S $\{\neg q\}$ because for w to be the weakest precondition for S and q, $\sigma \vDash \neg w$ implies $M(S, \sigma) \nvDash q$. Since S is deterministic, either $M(S, \sigma) = \{\bot\}$ or $M(S, \sigma) \vDash \neg q$. Either way, $\sigma \vDash \{\neg w\}$ S $\{\neg q\}$.
 - e. If *S* is nondeterministic and $M(S, \sigma) \nvDash q$, then as in the deterministic case, nontermination is a possibility $(\bot \in M(S, \sigma) \text{ can happen})$. Regardless, we no longer know $M(S, \sigma) \vDash \neg q$ because we can have $M(S, \sigma) \nvDash q$ and $M(S, \sigma) \nvDash \neg q$ simultaneously.
- 2. (Partial but not total correctness when the wp is satisfied)
 - a. If $\sigma \vDash w$ and $\sigma \vDash \{w\} S \{q\}$ then $M(S, \sigma) \{\bot\} \vDash q$. If $\sigma \nvDash_{tot} \{w\} S \{q\}$ then $M(S, \sigma) \nvDash q$. This can only happen if $\bot \in M(S, \sigma)$. (I.e., S can diverge under σ .)
 - b. If in addition *S* is deterministic, then we don't just have $\bot \in M(S, \sigma)$, we have $\{\bot\} = M(S, \sigma)$. (I.e., S diverges under σ .)
- 3. (Intersection with *wp*)
 - a. $\models_{tot} \{p \land w\} S \{q\}$ and $\models_{tot} \{\neg p \land w\} S \{q\}$ follow from w being a precondition under \models_{tot} .
 - b. Because w is weakest, we have for all $\sigma \vDash p \land \neg w$, that $\sigma \nvDash_{tot} \{p \land \neg w\} S \{q\}$. If S is deterministic, this implies $\sigma \vDash \{p \land \neg w\} S \{\neg q\}$. Similarly, for all $\sigma \vDash \neg p \land \neg w$, we have $\sigma \vDash \{p \land \neg w\} S \{\neg q\}$.
 - c. If *S* is nondeterministic then if $\sigma \vDash p \land \neg w$, we still know $\sigma \nvDash_{tot} \{p \land \neg w\} S \{q\}$ but both $\sigma \vDash$ and $\sigma \nvDash \{p \land \neg w\} S \{\neg q\}$ are possible. Similarly, if $\sigma \vDash \neg p \land \neg w$, we know $\sigma \nvDash_{tot} \{\neg p \land \neg w\} S \{q\}$, but both $\sigma \vDash$ and $\sigma \nvDash \{p \land \neg w\} S \{\neg q\}$ are possible.
- 4. For deterministic S, $wp(S, q_1 \vee q_2) = wp(S, q_1) \cup wp(S, q_2)$. For nondeterministic S, we have \supseteq instead of =.
- 5. (Properties of wp and wlp) The following properties are correct:
 - (a) and (b) are the basic definitions of wp and wlp
 - (c) and (d) say that wp and wlp are preconditions
 - (e) and (f) say that wp and wlp are weakest preconditions
 - (g) and (h) also say that wp and wlp are weakest
 - (j) and (k) are the contrapositives of (e) and (f).
 - However, (i) is incorrect: It claims that $wlp(S, q) \land wlp(S, \neg q)$ is never satisfiable, but if $M(S, \sigma) \subseteq \{\bot\}$, then σ satisfies both wlp(S, q) and $wlp(S, \neg q)$.