Quiz 8

- 1. Recall that regular languages are closed under union. Based on this observation which of the following is necessarily true?
 - (A) If L_1 and L_2 are regular then $L_1 \cup L_2$ is regular.
 - (B) If $L_1 \cup L_2$ is regular then L_1 and L_2 is regular.
 - (C) $L_1 \cup L_2$ is regular.
 - (D) All of the above.

Correct answer is (A).

- 2. Recall that regular languages are closed under complementation. Based on this observation, which of the following is necessarily true?
 - (A) If L is regular then \overline{L} is regular.
 - (B) If \overline{L} is regular then L is regular.
 - (C) $L \cup \overline{L}$ is regular.
 - (D) All of the above.

Correct answer is (D).

- 3. Let $h: \{0,1\}^* \to \{a,b\}$ where h(0) = a and h(1) = ba. Let L be the language described by the regular expression $(0 \cup 1)^* 1 (0 \cup 1)^*$. Then h(L) is
 - (A) $\{w \in \{a,b\}^* \mid w \text{ has at least one } b\}$
 - (B) described by the regular expression $(a \cup b)^*$
 - (C) described by the regular expression $(a \cup b)^*ba(a \cup b)^*$
 - (D) $\{w \in \{a,b\}^* \mid w \text{ has at least one } b, \text{ has no consecutive } bs, \text{ and ends with an } a\}$

Correct answer is (D).

- 4. Recall that a homomorphism is a function $h: \Sigma^* \to \Delta^*$ that maps strings over (some alphabet) Σ to strings over (some alphabet) Δ . If $L \subseteq \Sigma^*$, which of the following is the correct definition of h(L)?
 - (A) $h(L) = \{ w \mid h(w) \in L \}$
 - (B) $h(L) = \bigcup_{w \in L} h(w)$
 - (C) $h(L) = \bigcup_{w \in L} \{h(w)\}\$
 - (D) $h(L) = \bigcup_{h(w) \in L} \{h(w)\}$

Correct answer is (C).