Expectation Maximization for Mixtures of Gaussians

CS229: Machine Learning Carlos Guestrin Stanford University

©2021 Carlos Guestrin

Learning a Mixture of Gaussians

Summary of GMM Components

$$x^i \in \mathbb{R}^d, \quad i = 1, 2, \dots, N$$

• Hidden cluster labels
$$z_i \in \{1,2,\ldots,K\}, \quad i=1,2,\ldots,N$$

$$\mu_k \in \mathbb{R}^d, \quad k = 1, 2, \dots, K$$

$$\Sigma_k \in \mathbb{R}^{d \times d}, \quad k = 1, 2, \dots, K$$

$$\pi_k, \quad \sum_{k=1}^K \pi_k = 1$$

Gaussian mixture marginal and conditional likelihood:

$$p(x^i|\pi,\mu,\Sigma) = \sum_{z^i=1}^K \pi_{z^i} \; p(x^i|z^i,\mu,\Sigma)$$
 $p(x^i|z^i,\mu,\Sigma) = \mathcal{N}(x^i|\mu_{z^i},\Sigma_{z^i})$

But we don't see class labels!!!

- MLE:
 - argmax $\prod_i P(z^i, x^i)$

- But we don't know zⁱ
- Maximize marginal likelihood:
 - argmax $\prod_i P(x^i)$ = argmax $\prod_i \sum_k P(z^i = k, x^i)$

Special case: spherical Gaussians and hard assignments

$$P(z^{i} = k, \mathbf{x}^{i}) = \frac{1}{(2\pi)^{m/2} |\Sigma_{k}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}^{i} - \mu_{k})^{T} \Sigma_{k}^{-1}(\mathbf{x}^{i} - \mu_{k})\right] P(z^{i} = k)$$

• If P(X|z=k) is spherical, with same σ for all classes:

$$P(\mathbf{x}^i \mid z^i = k) \propto \exp\left[-\frac{1}{2\sigma^2} \|\mathbf{x}^i - \mu_k\|^2\right]$$

• If each xⁱ belongs to one class C(i) (hard assignment), marginal likelihood:

$$\prod_{i=1}^{N} \sum_{k=1}^{K} P(\mathbf{x}^{i}, z^{i} = k) \propto \prod_{i=1}^{N} \exp \left[-\frac{1}{2\sigma^{2}} \left\| \mathbf{x}^{i} - \mu_{C(i)} \right\|^{2} \right]$$

Same as K-means!!!

EM: "Reducing" Unsupervised Learning to Supervised Learning

If we knew assignment of points to • classes → Supervised Learning!

- Expectation-Maximization (EM)
 - Expectation: Guess assignment of points to classes
 - In standard ("soft") EM: each point associated with prob. of being in each class
 - Maximization: Recompute model parameters
 - Iterate

Imagine we have an assignment of each x^i to a Gaussian

Introduce latent cluster indicator variable zⁱ

Then we have

$$p(x^i|z^i,\pi,\mu,\Sigma) =$$

Expectation: infer cluster assignments from observations

 Posterior probabilities of assignments to each cluster *given* model parameters:

$$r_{ik} = p(z^i = k | x^i, \pi, \mu, \Sigma) =$$

ML Estimate of Mixture Model Params

Log likelihood

$$L_x(\theta) \triangleq \log p(\lbrace x^i \rbrace \mid \theta) = \sum_i \log \sum_i p(x^i, z \mid \theta)$$

Want ML estimate

$$\hat{\theta}^{ML} =$$

Neither convex nor concave and local optima

Maximization: If "complete" data were observed...

lacksquare Assume class labels z^i were observed in addition to x^i

$$L_{x,z}(\theta) = \sum_{i} \log p(x^{i}, z^{i} \mid \theta)$$

- Compute ML estimates
 - \square Separates over clusters k!
- Example: mixture of Gaussians (MoG) $heta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$

Maximization: if inferred cluster assignments from observations

Soft assignments to clusters

Posterior probabilities of assignments to each cluster *given* model parameters:

$$r_{ik} = p(z^i = k | x^i, \pi, \mu, \Sigma)$$

Expectation-Maximization Algorithm

- Motivates a coordinate ascent-like algorithm:
 - 1. Infer missing values z^i given estimate of parameters $\hat{ heta}$
 - 2. Optimize parameters to produce new $\hat{ heta}$ given "filled in" data z^i
 - 3. Repeat
- Example: MoG
 - 1. Infer "responsibilities"

$$r_{ik} = p(z^i = k \mid x^i, \hat{\theta}^{(t-1)})$$

2. Optimize parameters

max w.r.t. π_k :

max w.r.t. μ_k, Σ_k :

E.M. Convergence

 EM is coordinate ascent on an interesting potential function

 Coord. ascent for bounded pot. func. → convergence to a local optimum guaranteed

• This algorithm is REALLY USED. And in high dimensional state spaces, too.

©2021 Carlos Guestrin

CS229: Machine Learning

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Some Bio Assay data

©2021 Carlos Guestrin

CS229: Machine Learning

GMM clustering of the assay data

Resulting Density Estimator

©2021 Carlos Guestrin

CS229: Machine Learning