Bootstrap Estimation of a Non-Parametric Information Divergence Measure

Arizona State University

Abstract

This work details the bootstrap estimation of a non-parametric information divergence measure - the D_p divergence measure - in the context of a binary classification problem. In practice only finite length data sets are available for analysis. To reduce the limitation of finite data size, a bootstrap approach is used to calculate the divergence measure. Monte-Carlo iterations are performed at various sample sizes of the data set, the D_p value is found for each value of sample size, and a power law curve is used to find the asymptotic convergence value of the D_p divergence measure as a function of sample size. The divergence measure can then be used to estimate the Bayes classification error rate. This method is applied to several data sets, and the Bayes error rate is calculated from the D_p divergence.

1 Introduction

Information divergence measures have a wide variety of applications in machine learning, pattern recognition, statistics, and information theory [8]. A common problem in machine learning is the binary classification problem, in which data $x_i \in \mathbf{R^n}$ is assigned a class label $c_i \in \{0,1\}$ according to a classification rule, where class labels c_0 and c_1 correspond to respective probability distributions $f_0(\mathbf{x})$ and $f_1(\mathbf{x})$. The Baysian classifier assigns class labels to x_i such that the posterior probability is maximized []. The error rate of this classifier, the Bayes error rate, provides an absolute lower bound on the classification error rate. Estimating the best achievable classification error rate makes it possible to quantify the usefulness of a feature set or the performance of a classifier [1].

Given the two conditional distributions, $f_0(\mathbf{x})$ and $f_1(\mathbf{x})$, it is possible to write the Bayes error rate in terms of the prior probabilities p_0 and p_1 as given in [2]:

$$E_{Bayes} = \int_{r_1} p_0 f_0(\mathbf{x}) \, dx + \int_{r_0} p_1 f_1(\mathbf{x}) \, dx \tag{1}$$

Here, r_1 and r_0 refer to the region where the corresponding posterior is the larger[5].

Direct evaluation of this integral can be quite involved and impractical, as it is challenging to create an exact model for the posterior distributions $f_0(\mathbf{x})$ and $f_1(\mathbf{x})$. As an alternative to direct evaluation, it is possible to derive bounds for the Bayes error rate.

We arrive at an estimate of the Bayes error rate by using expressions that give bounds on the classification error in terms of information divergence measures. However, common methods of estimating the Bayes error rate via divergence measure still require information about the conditional distributions corresponding to both class labels. Therefore the non-parametric divergence measure given in [3], and the Bayes error estimates derived in [2] will be used in this study.

The work is organized as follows: the remainder of Section 1 is devoted to previous work, Section 2 provides a description of the divergence measure used, and its relation to the Bayes error rate and Section 3 introduces the bootstrap sampling method used. In Section 4 we will apply the method to several generated datasets and real world datasets to show that the power law method can successfully be applied to several distributions. In 4.1 we will consider the generated example datasets, and in 4.2 we will perform our analysis on the Pima Indians dataset and the Banknote dataset found in the University of California Irvine machine learning repository [6].

Previous Work

2

2 The D_p Divergence Measure

3 Bootstrap Sampling

-lowest sub sample size has to be greater than the dimension of the data

4 Results

Uniform Dataset

Table 1: Uniform Dataset for Bootstrap Analysis of D_p

D_0									
μ_0	0	0	0	0	0	0	0	0	
σ_0	$\frac{1}{12}$								
D_1									
μ_1	$\frac{1}{2}$	0	0	0	0	0	0	0	
σ_1	$\frac{1}{12}$								

Figure 1: Asymptotic Convergence of D_p for 8-Dimensional Uniform Data Set, $\mathcal{N}=50$ trials

Gaussian Dataset

Table 2: Gaussian Dataset for Bootstrap Analysis of \mathcal{D}_p

D_0								
μ_0	0	0	0	0	0	0	0	0
σ_0	1	1	1	1	1	1	1	1
D_1								
μ_1	0	0	0	0	0	0	0	0
σ_1	2.56	1	1	1	1	1	1	1

Figure 2: Asymptotic Convergence of \mathcal{D}_p for Gaussian Data Set, N = 50 trials

Banknote Dataset

The first real world example we consider is the Banknote Authentication Data Set taken from the University of California, Irvine Machine Learning Repository [7]. The 4-dimensional dataset contains data extracted from images of banknotes. The data set consists of a relatively small number of dimensions, and highly separated data, so the convergence is . We note that for a sensitive task such as authenticating banknotes, it should not be surprising to see an asymptotic value for D_p that is close to 1.

Figure 3: Convergence of D_p for Banknote Authentication Data Set, $\mathcal{N}=50$ trials

Pima Indians Dataset

Figure 4: Asymptotic Convergence for Pima Indian Data Set, N=200 trials

Figure 5: Asymptotic Convergence for Pima Indian Data Set, N = 5000 trials

References

- [1] Hawes, Chad M., and Carey E. Priebe. "A Bootstrap Interval Estimator for Bayes' Classification Error." 2012 IEEE Statistical Signal Processing Workshop, 2012
- [2] V. Berisha, A. Wisler, A.O. Hero, and A. Spanias, "Empirically Estimable Classification Bounds Based on a Nonparametric Divergence Measure" IEEE Transactions on Signal Processing, vol. 64, no. 3, pp.580-591, Feb. 2016.
- [3] A. O. Hero, B. Ma, O. Michel, and J. Gorman, Alpha-divergence for classification, indexing and retrieval, Communication and Signal Processing Laboratory, Technical Report CSPL-328, U. Mich, 2001
- [4] K. Tumer, K. (1996) "Estimating the Bayes error rate through classifier combining" in Proceedings of the 13th International Conference on Pattern Recognition, Volume 2, 695699

Contains the pima indian dataset BERs in table format

- [5] Tumer, Kagan, and Joydeep Ghosh. "Bayes Error Rate Estimation Using Classifier Ensembles." International Journal of Smart Engineering System Design 5.2 (2003): 95-109.
- [6] Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
- [7] V. Lohweg, Banknote Authentication Data Set, 2012. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/banknote+authentication.
- [8] K. Pranesh, and L. Hunter. "On an Information Divergence Measure and

Table 3: Bayes Error Rates in Literature for Pima Indians Data Set $\left[4\right]$

Algorithm	Bayes Error Rate (%)
Discrim	22.50
Quadisc	26.20
Logdisc	22.30
SMART	23.20
ALLOC80	30.10
K-NN	32.40
CASTLE	25.80
CART	25.50
IndCART	27.10
NewID	28.90
AC2	27.60
Baytree	27.10
NaiveBay	26.20
CN2	28.90
C4.5	27.00
Itrule	24.50
Cal5	25.00
Kohonen	27.30
DIPOL92	22.40
Backprob	24.80
RBF	24.30
LVQ	27.20
D_p Bootstrap	22.83

Information Inequalities." (n.d.): n. pag. University of Northern British Columbia.

Table 4: D_p and Bayes Error Rate for the Pima Indian Data Set for Increasing Sample Size, and Increasing Monte-Carlo Iterations

Sample Size	Monte-Carlo	D_p Asymptotic Value	Bayes Error Rate
	Iterations	(95% Confidence Interval)	(%)
100	50	$0.2725 \ (0.245, \ 0.3)$	23.90
100	200	$0.2958 \ (0.265, \ 0.3267)$	22.81
100	5000	0.3107 (0.2959, 0.3254)	22.13
200	50	0.2946 (0.2732, 0.3161)	22.86
200	200	0.3029 (0.288, 0.3178)	22.48
200	5000	0.3162 (0.3114, 0.3209)	21.88
300	50	0.3118 (0.2827, 0.3409)	22.08
300	200	$0.3073 \ (0.2926, \ 0.3219)$	22.28
300	5000	0.3041 (0.3006, 0.3075)	22.43