- The Euclidean space  $\mathbb{E}^n$ .
- The *polar form* of a quadratic form.
- Gram matrix associated with an inner product.
- The Cauchy-Schwarz inequality; the Minkowski inequality.
- The parallelogram law.
- Orthogonality, orthogonal complement  $F^{\perp}$ ; orthonormal family.
- The musical isomorphisms  $\flat \colon E \to E^*$  and  $\sharp \colon E^* \to E$  (when E is finite-dimensional); Theorem 12.6.
- The *adjoint* of a linear map (with respect to an inner product).
- Existence of an orthonormal basis in a finite-dimensional Euclidean space (Proposition 12.9).
- The Gram-Schmidt orthonormalization procedure (Proposition 12.10).
- The Legendre and the Chebyshev polynomials.
- Linear isometries (orthogonal transformations, rigid motions).
- The orthogonal group, orthogonal matrices.
- The matrix representing the adjoint  $f^*$  of a linear map f is the transpose of the matrix representing f.
- The orthogonal group O(n) and the special orthogonal group SO(n).
- QR-decomposition for invertible matrices.
- The *Hadamard inequality* for arbitrary real matrices.
- The *Hadamard inequality* for symmetric positive semidefinite matrices.
- The Rodrigues formula for rotations in SO(3).